Betonarme2000: Çokgen Kesitli Kolon Boyuna Donatısının Hesabı Teori ve Örnekler

Ahmet TOPÇU, Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi, İnşaat Mühendisliği Bölümü, Eskişehir, 2000-2014

Özet

Malzemesi, tasarım kuvvetleri ve kesit geometrisi bilinen bir kolonun boyuna donatısının görsel ortamda çalışan Betonarme2000 programı ile belirlenmesinde kullanılan teorik ilkeler ve çözüm örnekleri verilmektedir. İlk 16 örnek teoriktir ve diğer araştırmacıların sonuçları ile karşılaştırılmıştır. Teorik örneklerde T500-2000 ve Deprem yönetmeliği-1997 sınırları dikkate alınmazken diğer örneklerde dikkate alınmıştır. Kolon kesiti dikdörtgen, daire, sekizgen, kutu, halka, L, I, T, C veya boşluklu/boşluksuz çokgen gibi herhangi bir keyfi geometri de olabilir.

Giriş

Betonarme yapıların en önemli taşıyıcı elemanı kuşkusuz kolon ya da perdedir. Ne var ki çözümü de en zor olan bir problemdir. Eksenel yük ve iki yönde eğilme momenti etkisinde olan bir kolonda süperposizyon kuralı geçerli olmadığından, denge denklemlerinin uygunluk şartları da sağlanacak bir çözümünü bulmak el hesapları için kullanışlı olmayan uzun-yorucu iterasyon işlemleri gerektirir. Genelde el çözümü mümkün değildir.

Çokgen kesitli kolonların çözümünde bir dizi zorlukla karşılaşılır:

- Tarafsız eksenin konumunun belirlenmesi
- En büyük birim kısalmanın oluştuğu basınç noktanın belirlenmesi,
- Beton basınç alanını oluşturan poligonun belirlenmesi,
- Beton bileşke basınç kuvvetinin etkidiği noktanın belirlenmesi,
- Uygunluk şartlarının (birim şekil değiştirme) belirlenmesi,
- Tasarım momentlerinin teorik modelde varsayılan yönde olmaması durumu

en önemlileri olarak sıralanabilir.

Uygulamaya yönelik, bilgisayar programı da içeren, ilk çalışmayı 1987 yılında KIRAL/DÜNDAR yapmışlardır. Bu program sadece dikdörtgen kesitler için geçerliydi. Çokgen kesitli kolonlar için MARJANI 1989 ve DÜNDAR/ŞAHİN 1992 program destekli calısmalarını yayınladılar.

Betonarme2000; malzeme dayanımları, tasarım kuvvetleri, kesit geometrisi ve donatı planı bilinen bir kolonun doğrusal olmayan denge denklemlerini uygunluk şarları da sağlanacak şekilde NEWTON-RAPHSON iterasyon yöntemiyle çözülmekte, tarafsız eksenin konumunu ve gerekli donatı alanını belirlenmektedir. Klasik varsayımlar yanında; beton basınç bloğu, basitliği ve uygulama açısından önemli bir fark içermemesi (ERSOY 1990) nedeniyle, eşdeğer dikdörtgen varsayılmıştır. Elasto-plastik davrandığı varsayılan donatı çeliğinde en büyük birim şekil değiştirme sınırlandırılmamıştır. TS500-2000 ve Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik-1997 koşulları dikkate alınmıştır. Kesit tipi dikdörtgen, daire, sekizgen, kutu, halka, L, I, T, C veya, çok daha genel, boşluklu/boşluksuz çokgen olabilmektedir, Şekil 1.

Şekil 1. Kesit tipleri ve donatı planları.

Kesitin tanımlanması olabildiğince basitleştirilmiştir. Dikdörtgen kesitin iki kenar boyutunun, beton örtüsün verilmesi ve Şekil 1 de görülen ilgili donatı planlarından birinin seçilmesi kesiti tanımlamak için yeterlidir. Daire, sekizgen, kalka, kutu kesitlerde de sadece çap ve et kalınlığının(halka ve kutu kesit) tanımlanması yeterlidir. Boşluksuz genel çokgen kesitlerin köşe noktalarının koordinatlarını kullanıcı verir. Bu tür kesitlerde donatıyı program otomatik yerleştirir. Diğer kesit tiplerinde kesit ve donatı koordinatları program tarafından türetilir. Boşluklu genel çokgen kesitlerde hem kesitin köşe noktalarının hem de donatıların koordinatlarını kullanıcı verir. Hesap sonrası; gerekli donatı alanı, önerilen donatı sayısı ve çapı, indirgenmiş tarafsız eksenin konumu, basınç alanı ve akmış donatıları görsel olarak elde edilir.

Kesit geometrik ve mekanik özellikleri

Genel bir çokgen kesit Şekil 1 de verilmiştir. Kesit boşluklu veya boşluksuz olabilir. Kesitin n tane koordinatları bilinen köşe noktalarının bazıları dış çevre bazıları da boşluğu belirleyen iç çevre üzerindedir. Noktaların numaralanma yönü kalın oklar ile gösterilmiştir. Dış noktaların herhangi birinden başlanarak; dış noktalar saat yönünde iç noktalar saatin ters yönünde numaralanmıştır.

Dış noktaların herhangi birinden iç noktaya geçilir ve iç noktaların numaralanması tamamlandıktan sonra aynı dış noktaya dönülerek dış noktaların numaralanması tamamlanır. Örneğin; şekildeki kesitin 2 nolu dış noktasından 3 nolu iç noktaya geçilmiş, iç noktalar saatin ters yönünde numaralanarak 8 noktasına(3 ile aynı nokta) geldikten sonra 9 nolu dış noktaya(2 ile aynı) dönülmüş ve dış noktalar saat yönünde numaralanmaya devam edilmiştir. Bu numaralama kuralına uyulmadığı takdirde aşağıda verilen bağıntılar geçerli olmayacaktır. Birden çok boşluk olması durumunda da aynı kurala uyulmalıdır. Kesit içindeki, koordinatları bilinen, n_s adet donatı çubuğu keyfi bir sıraya göre numaralandırılabilirler. Kullanıcının koordinat vermesini gerektirmeyen donatı planlarında bu numaralandırmayı program otomatik olarak yapar.

Kesit x-y koordinat sisteminin daima 1. bölgesindedir. $T(x_t,y_t)$ kesitin bir köşe noktası, $G(x_g,y_g)$ kesitin ağırlık merkezi, $\dot{I}(x_i,y_i)$ herhangi bir donatı noktasıdır. a>0 ve c>0 olmak üzere; eksenleri (a,0) ve (0,c) noktalarında kesen bir y doğrusunun T noktasına uzaklığı t ile ve \dot{I} noktasına uzaklığı s ile gösterilmiştir. A kesit alanı, I_{xg} , I_{yg} , I_{xyg} kesitin G noktasında tanımlı x-y eksen takımına göre atalet momentleri olsun. Kesit hesaplarında gerekli olan aşağıdaki tanımlar bilgisayar hesaplarında uygun olmaktadır.

y doğrusunun kapalı denklemi:

$$\frac{c}{a}x + y - c = 0 \tag{1.1}$$

t mesafesi:

$$t = -\frac{\frac{c}{a}x_{t} + y_{t} - c}{\sqrt{(\frac{c}{a})^{2} + 1}}$$
 (1.2)

t>0 durumunda T(xt,yt) noktası y doğrusunun altındaki bölgede(orijin tarafında),

t=0 durumunda T(x_t,y_t) noktası y doğrusu üzerinde,

t<0 durumunda T(x_t,y_t) noktası y doğrusunun üstündeki bölgededir.

s mesafesi:

$$s = -\frac{\frac{c}{a}x_i + y_i - c}{\sqrt{(\frac{c}{a})^2 + 1}}$$
 (1.3)

s>0 halinde İ(x_i,y_i) noktası y doğrusunun altındaki bölgede(orijin tarafında),

s=0 halinde İ(x_i,y_i) noktası y doğrusu üzerinde,

s<0 halinde İ(x_i,y_i) noktası y doğrusunun üstündeki bölgededir.

Kesit alanı:

$$A = \frac{1}{2} \sum_{t=1}^{n} (x_{t+1} - x_{t})(y_{t+1} + y_{t})$$
 (1.4)

G noktasının koordinatları(kesit koordinatlarının tanımlandığı x-y eksenlerine göre):

$$x_{g} = -\frac{1}{6A} \sum_{t=1}^{n} (y_{t+1} - y_{t})(x_{t}^{2} + x_{t}x_{t+1} + x_{t+1}^{2})$$
(1.5)

$$y_{g} = \frac{1}{6A} \sum_{t=1}^{n} (x_{t+1} - x_{t})(y_{t}^{2} + y_{t}y_{t+1} + y_{t+1}^{2})$$
 (1.6)

Atalet momentleri(G noktasında tanımlı x-y eksenlerine göre):

$$I_{xg} = \frac{1}{12} \sum_{t=1}^{n} (x_{t+1} - x_t) (y_{t+1} + y_t) (y_{t+1}^2 + y_t^2)$$
 (1.7)

$$I_{yg} = \frac{1}{12} \sum_{t=1}^{n} (y_{t+1} - y_t)(x_{t+1} + x_t)(x_{t+1}^2 + x_t^2)$$
 (1.8)

$$I_{xyg} = \frac{1}{24} \sum_{t=1}^{n} (X_{t+1} - X_{t}) \left[2X_{t} y_{t}^{2} + (y_{t+1} + y_{t})^{2} (X_{t+1} + X_{t}) + 2X_{t+1} y_{t+1}^{2} \right]$$
(1.9)

(1.4)-(1.9) bağıntılarda $x_{n+1} = x_1$ ve $y_{n+1} = y_1$ alınır.

Birim şekil değiştirme ve gerilme dağılımı

Çokgen bir kesitin G ağırlık merkezine etkiyen N_d , M_{xd} ve M_{yd} tasarım kuvveti üçlüsünden oluşan birim şekil değiştirme ve gerilme dağılımı Şekil 3 de gösterilmiştir. N_d eksenel kuvveti basınçtır.

Şekil 3. Şekil değiştirme ve gerilme dağılımı

Kesitte koordinatları bilenen n nokta ve n_s adet çelik çubuk olsun. Tarafsız eksen TE ile, indirgenmiş tarafsız eksen iTE ile gösterilmiştir. iTE nin konumunu a ve c parametreleri belirlemektedir. M_{xd} ve M_{yd} momentleri için Şekil 3 de seçilen pozitif yönleri nedeniyle beton basınç alanı daima x-y eksen takımının orijini tarafında oluşur.

Beton basınç bloğu TS500-2000 e uygun olarak, basitliği nedeniyle, eşdeğer dikdörtgen seçilmiştir. Beton bileşke kuvveti basınç alanının ağırlık merkezi olan $C(x_c, y_c)$ noktasına etkir. Basınç alanının tarafsız eksene en uzak $T(x_t, y_t)$ noktasındaki beton birim kısalması ϵ_{cu} dur. f_{cd} betonun hesap dayanımıdır. $0.85f_{cd}$, k_1 ve ϵ_{cu} büyüklükleri TS500-2000 de tanımlıdır.

Kesite etkiyen N_d , M_{xd} , M_{yd} tasarım kuvvetleri, beton ve çelik çubuklarda oluşan gerilmeler ile dengededir. Denge bağıntılarının yazılabilmesi için:

- Tarafsız eksene en uzak ve basınç bölgesinde olan T(xt,yt) noktasının
- Acc beton basınç alanının,
- Beton bileşke basınç kuvvetinin etkidiği C(x_c,y_c) noktasının,
- $\dot{I}(x_i,y_i)$ noktasındaki i.çelik çubuğun ϵ_{si} birim şekil değiştirmesinin

belirlenmesi gerekir.

t ve s uzaklıklarının belirlenmesi

iTE nin a ve c parametrelerine bağlı denklemi (1.1) e göre

$$y = -\frac{c}{a}x + c \tag{1.10}$$

dir. iTE nin konumu değiştikçe, kendisine en uzak olan basınç noktası T(x,y) de değişebilir. Bu nedenle a ve c her değiştiğinde T noktasının yeniden belirlenmesi gerekir.

Bunun için, kesitin koordinatları bilinen n tane noktasının iTE ye uzaklıkları (1.2) bağıntısı ile t₁, t₂, ..., t_n olarak hesaplanır. Uzaklığı negatif olan noktalar çekme bölgesinde, sıfır olan noktalar iTE nin üzerinde ve pozitif olanlar da basınç bölgesindeki noktalar oluğundan iTE ye en uzak noktanın uzaklığı

$$t = \max(t_1, t_2, ..., t_n)$$
 (1.11)

olur. Dolayısıyla t değerine karşılık gelen nokta aranan $T(x_t, y_t)$ noktası olacaktır. Betondaki en büyük birim kısalma ϵ_{cu} bu noktada oluşur.

Kesitte bulunan n_s tane donatı çubuğundan $\dot{I}(x_i, y_i)$ noktasında bulunan i.donatının iTE ye olan s uzaklığı da (1.3) bağıntısından hesaplanır.

Basınç alanının belirlenmesi

Basınç alanını sınırlayan noktaların kümesi, iTE ye uzaklıkları pozitif veya sıfır olan noktalar ile iTE nin kesit kenarlarını kestiği noktalardan oluşur. Bu noktalar kümesini belirleyebilmek için aşağıdaki algoritma kullanılabilir.

- Basınç bölgesini sınırlayan noktaların koordinatlarını içeren boş bir küme oluşturulur.
- Kesitin 1. noktasından başlanarak noktanın iTE ye uzaklığı hesaplanır. uzaklık sıfır veya pozitif ise, nokta basınç bölgesindedir, kümeye eklenir.
- Uzaklığın negatif olması halinde bu nokta ile bir önceki nokta arasındaki kesit kenarının iTE ile kesişmesi olasıdır. Kesişme kontrol edilir. Varsa, kesişme noktası koordinatları hesaplanarak kümeye eklenir.
- Kesitin n tane noktası için bu işlem tekrarlandığında kümede basınç alanını sınırlayan n_c noktanın koordinatları oluşmuş olur.

Kümedeki koordinatlar kullanılarak ve n yerine n_c alınarak, A_{cc} basınç alanı (1.4) bağıntısından

$$A_{cc} = \frac{1}{2} \sum_{t=1}^{n_c} (X_{t+1} - X_t) (y_{t+1} + y_t)$$
 (1.12)

ve A_{cc} alanının ağırlık merkezi olan C(x_c,y_c) noktasının koordinatları da (1.5) ve (1.6) bağıntılarından

$$x_{c} = -\frac{1}{6A_{cc}} \sum_{t=1}^{n_{c}} (y_{t+1} - y_{t})(x_{t}^{2} + x_{t}x_{t+1} + x_{t+1}^{2})$$
(1.13)

$$y_{c} = \frac{1}{6A_{co}} \sum_{t=1}^{n_{c}} (x_{t+1} - x_{t})(y_{t}^{2} + y_{t}y_{t+1} + y_{t+1}^{2})$$
(1.14)

hesaplanırlar.

Çelik çubuktaki birim şekil değiştirmenin ve gerilmenin belirlenmesi

(1.11) ile t bilindiğinden, TE nin konumu $x = t / k_1$ ile bellidir. $\dot{I}(x_i, y_i)$ noktasındaki çelik çubuğun iTE ye uzaklığı s de (1.3) bağıntısından hesaplanabileceğinden Şekil 3 deki şekil değiştirme diyagramından orantı ile

$$\varepsilon_{\rm si} = \varepsilon_{\rm cu} \left(1 + k_1 \frac{\rm s}{\rm t} - k_1 \right) \tag{1.15}$$

bulunur. Elasto-plastik çelik davranışı varsayımı nedeniyle çelikdeki gerilme

$$\sigma_{si} = E_s \varepsilon_{si}, \quad -f_{vd} \le \sigma_{si} \le f_{vd}$$
 (1.16)

olacaktır. Çeliğin elastisite modülü $\rm E_{s}$ ve tasarım dayanımı $\rm f_{vd}$ TS500 de tanımlıdır.

Denge denklemleri

Kesitteki çelik çubukların aynı çaplı olduğu varsayılacaktır. Toplam donatı alanı $A_{\rm st}$ ile gösterilirse her bir çubuğun kesit alanı $A_{\rm st}/n_{\rm s}$ olur. Kesitin ağırlık merkezinde tanımlı x-y eksen takımına göre denge denklemleri, Şekil 3 den:

$$0.85f_{d} A_{cc} + \frac{A_{st}}{n_{s}} \sum_{i=1}^{n_{s}} \sigma_{si} = N_{d}$$
 (1.17)

$$0.85f_{cd} A_{cc}(y_g - y_c) + \frac{A_{st}}{n_s} \sum_{i=1}^{n_s} \sigma_{si}(y_g - y_i) = M_{xd}$$
 (1.18)

$$0.85f_{cd} A_{cc}(x_g - x_c) + \frac{A_{st}}{n_s} \sum_{i=1}^{n_s} \sigma_{si}(x_g - x_i) = M_{yd}$$
 (1.19)

Denge denklemlerinin çözümü

(1.17)-(1.19) denge denklemlerinden, (1.16) süreklilik şartları da sağlanacak şekilde, A_{st} toplam donatı alanının hesaplanması amaçlanmaktadır. A_{cc} , x_c , y_c ve σ_{si} değerlerinin belirlenebilmesi için tarafsız eksenin konumunun, yani a ve c parametrelerinin bilinmesi gerekir. Bu sebeple (1.17)-(1.19) bağıntıları doğrusal olmayan bir denklem sistemidir. Bilinmeyenler a, c, ve A_{st} dir.

Bu denklemlerin çözümü için, her sayısal analiz kitabında bulunabilen, NEWTON-RAPHSON iterasyon yöntemi uygun olmaktadır. Bu yönteme göre a, c ve A_{st} için bir başlangıç değeri seçilmekte ve (1.17)-(1.19) bağıntıları yeterli bir hassasiyetle(Tolerans) sağlanıncaya kadar a, c ve A_{st} değerleri değiştirilmektedir.

Kesitin 1. Bölge dışında olması durumu

Burada verilen bağıntılar kesitin daima 1.bölgede olmasını gerektirir. Bunun sağlanmaması durumunda kesit köşe noktalarının ve donatıların koordinatları program tarafından değiştirilerek kesit birinci bölgeye taşınır, Şekil 4.

Şekil 4. Kesitin 1. bölgeye taşınması

Tasarım kuvvetlerinin farklı yönde olması durumu

Şekil 3 de pozitif yönleri görülen tasarım kuvvetleri basınç alanının daima tarafsız eksenin altında olmasını sağlar. $N_{d, d}$ ve M_{yd} tasarım kuvvetlerinin Şekil 3 deki pozitif kabul edilen yönde olmaması durumunda programda aşağıdaki yol izlenir:

- N_d eksenel kuvveti basınç varsayılmıştır. Çekme olması durumunda bağıntılar geçersizdir, çözüm bulunamaz.
- M_{xd} Hesap momentinin farklı yönde olması durumunda kesit x eksenine göre ayna rotasyona tabi tutulur.
- M_{yd} Hesap momentinin farklı yönde olması durumunda kesit y eksenine göre ayna rotasyona tabi tutulur.

- Hem M_{xd} hem de M_{yd} momentlerinin farklı yönde olması durumunda kesit hem x hem de y etrafında ayna rotasyona tabi tutulur.
- Ayna rotasyona uğramış kesit 1. Bölgeye taşınır. Farklı yönde olan moment pozitif alınarak çözüm yapılır.

Örnek olmak üzere; M_{yd} momentinin ters yönde (negatif) olması durumuna ait ayna rotasyon ve kesitin 1.bölgeye taşınması Şekil 5 de gösterilmiştir.

Şekil 5. y ekseni etrafında ayna rotasyon

Betonarme2000 ana penceresi:

Betonarme2000 ayarlar penceresi:

Betonarme2000 kolon boyuna donati hesabi penceresi:

Teorik örnekler

Programın test edilmesi, ekstrem durumlarda davranışının gözlenmesi ve başka kaynaklarda çözülmüş örnekler ile karşılaştırılması amacıyla teorik örnekler çözülmüştür. Teorik örneklerde hiç bir yönetmelik dikkate alınmamıştır. Örneğin, minimum kesit alanı, eksenel kuvvetin üst sınırı, minimum dışmerkezlik kontrolü yapılmamıştır. Buradaki amaç, N_d , M_{xd} ve M_{yd} tasarım üçlüsünün aşırı değerleri için (mesela, bu kuvvetlerden birinin veya hepsinin sıfır veya birinin veya hepsinin aşırı büyük olması durumunda programın çözüm üretip üretemediğini anlamaktır. Yabancı kaynaklardan alınan teorik örneklerde kesit ölçüleri, malzeme dayanımları ve kuvvetler küsuratlıdır. Bunun nedeni İngiliz birimlerinin SI birimine dönüştürülmesidir. Standard dışı beton ve çelik simgesi olarak B ve Ç simgeleri kullanılmıştır. Örnek: B42 karakteristik beton dayanımı f_{ck} =42 N/mm² olan beton , Ç483 karakteristik akma dayanımı f_{vk} =483 N/mm² olan çelik anlamındadır.

Beton modeli için eşdeğer dikdörtgen gerilme bloğu kullanılmıştır. 2. ve 3. örnekte beton ezilme birim kısalması ε_{cu} =0.0025, diğer tüm örneklerde ε_{cu} =0.003 alınmıştır. Çelik için ideal elasto-plastik model varsayılmış, kopma uzaması sınırlandırılmamıştır.

Teorikörnek01: Dikdörtgen kesit

Betonarme2000 programının geliştirilmesinde kullanılan temel örnektir. N_d, M_{xd}, M_{yd} Tasarım üçlüsünün değişik değerleri için programın hesapladığı toplam A_{st} donatı alanı aşağıdaki tabloda verilmiştir.

Beton: C25/30 (f_{ck} =25 N/mm², γ_{mc} =1.5, f_{cd} =16.67 N/mm²) **Çelik:** B420C (f_{vk} =420 N/mm², γ_{ms} =1.15, f_{vd} =365.22 N/mm²)

Beton örtüsü(paspayı): 50 mm

Donatı aralığı: 400 mm

Tablo 1: Teorikörnek01 sonuçları

	leorikor	1		Casilan	Danati	Acildona
N_d	M_{xd}	M_{yd}	Hesaplanan	Seçilen	Donati	Açıklama
[kN]	[kNm]	[kNm]	A _{st} [mm ²]	donatı	oranı	
2000	500	-500	9803	?	0	Hesaplanan donatı alanı çok büyük, program dört çubuk için uygun çap seçememiştir.
2000	500	0	4276	4Ф40	0.0201	
2000	0	-500	4276	4Ф40	0.0201	
2000	0	0	0	4Ф16	0.032	
0	500	-500	10640	?	0	Hesaplanan donatı alanı çok büyük, program dört çubuk için uygun çap seçememiştir.
0	500	0	6739	4Ф50	0.0314	
0	0	-500	6739	4Ф50	0.0314	
0	0	0	0	4Ф16	0.0032	
3542	0	0	1.0	4Ф16	0.0032	N _d =0.85f _{cd} A _c =0.85x16.67x500x500≈3542 kN, salt beton bu kuvveti karşılıyor. teorik olarak donatı gerekmez.
3542	1	0	13.0	4Ф16	0.0032	
10000	500	-500	27537	?	0	Hesaplanan donatı alanı çok büyük, program dört çubuk için uygun çap seçememiştir.
100000	500	-500	243998	?	0	Hesaplanan donatı alanı çok büyük, program dört çubuk için uygun çap seçememiştir.

Teorikörnek02: Dikdörtgen kesit

Sağda kesiti, donatı planı ve malzeme özellikleri verilen dikdörtgen kolon örneği ÖZMEN(2013) den alınmıştır. ÖZMEN eşdeğer dikdörtgen gerilme dağılımı kullanmış beton ezilme birim kısalmasını ε_{cu} =0.0025 varsaymıştır. Kesitteki toplam donatının A_{st}=2250 mm², $A_{st}=3000 \text{ mm}^2$, $A_{st}=3750 \text{ mm}^2$ olması durumları için kesitin taşıyabileceği 15 farklı N_d, M_{xd}, M_{vd} kuvvet üçlüsü hesaplamış, sonuçları ÇAKIROĞLU/ÖZER(1983) formülleri ve SAP 2000 ile karşılaştırarak tablo ve grafik olarak vermiştir (Tablo 2 ve Grafik 1). Aynı varsayımlar ve kuvvet üçlüleri kullanılarak Betonarme2000 ile bu kuvvet üçlülerinin gerektirdiği Ast donatı alanları ve p donatı oranları hesaplanmış sonuçlar Tablo 2 ve Grafik 1 e,

Myd

Myd

Nd

Mxd

Beton: C30/37 (f_{ck} =30 N/mm², γ_{mc} =1.5, f_{cd} =20 N/mm²) **Celik:** C419.75 (f_{vk} =419.5N/mm², γ_{ms} =1.15, f_{yd} =365 N/mm²)

Beton örtüsü(paspayı): 30 mm

Donatı aralığı: b kenarında 100 mm, d kenarında 200 mm

Tablo 2: Teorikörnek02 karşılaştırmalı sonuçları

karşılaştırmak amacıyla, eklenmiştir.

Kuvvet				ÖZN	/IEN ¹	ÇAKIRO	LU/ÖZER ²	SAP	2000 ¹	Betonar	me2000 ¹
üçlüsü	N_d	M_{xd}	M_{yd}	A _{st}		A _{st}		A _{st}		A _{st}	
No	[kN]	[kNm]	[kNm]	[mm²]	ρ	[mm²]	ρ	[mm²]	ρ	[mm ²]	ρ
1	3156.45	19.72	10.14	2250	0.015	2400	0.016	4650	0.031	2064	0.014
2	1823.77	222.93	39.28	2250	0.015	2700	0.018	2700	0.018	2250	0.015
3	1336.27	122.73	120.41	2250	0.015	2250	0.015	2550	0.017	2250	0.015
4	2384.86	136.48	62.23	2250	0.015	2550	0.017	2700	0.018	2250	0.015
5	456.21	183.94	74.86	2250	0.015	2400	0.016	2550	0.017	2250	0.015
6	3358.60	26.30	13.53	3000	0.020	3300	0.022	5400	0.036	2753	0.018
7	1921.69	249.07	43.87	3000	0.020	3300	0.022	3450	0.023	3000	0.020
8	1385.03	140.03	133.54	3000	0.020	2850	0.019	3150	0.021	3000	0.020
9	2521.06	153.29	68.63	3000	0.020	3450	0.023	3450	0.023	3000	0.020
10	404.28	214.65	85.53	3000	0.020	3000	0.020	3300	0.022	3000	0.020
11	3560.75	32.87	16.91	3750	0.025	4200	0.028	6150	0.041	3441	0.023
12	2019.61	275.21	48.46	3750	0.025	3900	0.026	4200	0.028	3750	0.025
13	1433.79	157.33	146.66	3750	0.025	3600	0.024	3900	0.026	3750	0.025
14	2657.27	170.09	75.03	3750	0.025	4050	0.027	4200	0.028	3750	0.025
15	352.35	245.36	96.20	3750	0.025	3600	0.024	4200	0.028	3750	0.025

 1 Eşdeğer dikdörtgen gerilme bloğu, $\varepsilon_{\text{cu}}\!\!=\!\!0.0025,$ ideal elasto plastik çelik modeli

² Eşdeğer dikdörtgen-parabol gerilme bloğu, ε_{cu}=0.003, ideal elasto plastik çelik modeli Ahmet TOPÇU, Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi, İnşaat Mühendisliği Bölümü, Eskişehir, 2000-2014

Tablo 2 ve Grafik 1 in incelenmesinden ÖZMEN ve Betonarme2000 sonuçlarının çakıştığı anlaşılır. ÇAKIROĞLU/ÖZER formülleri de tatminkardır. SAP 2000; Eksenel kuvvetin büyük, momentlerin küçük olduğu durumlarda (tüm kesitin basınç altında olması durumu) aşırı farklı sonuç vermektedir.

Teorikörnek03: Dikdörtgen kesit

Beton: C30/37 (f_{ck} =30 N/mm², γ_{mc} =1.5, f_{cd} =20 N/mm², e_{cu} =0.0025) **Çelik:** Ç419.75 (f_{vk} =419.75 N/mm², γ_{ms} =1.15, f_{vd} =365 N/mm²)

Beton örtüsü(paspayı): 30 mm

Donatı aralığı: b kenarında 300 mm, d kenarında 500 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

A_{st}=2268 mm² Betonarme2000 A_{st}=2268 mm² ÖZMEN (2013)

Teorikörnek04: Dikdörtgen kesit

Beton: C30/37 (f_{ck} =30 N/mm², γ_{mc} =1.5, f_{cd} =20 N/mm²)

Çelik: B420C (f_{vk} =420 N/mm², γ_{ms} =1.15, f_{vd} =365.22 N/mm²)

Beton örtüsü(paspayı): 40 mm

Donatı aralığı: 150 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

A_{st}=4812 mm² Betonarme2000

A_{st}=4512 mm² DURMUŞ/EYÜBOĞLU(1984) A_{st}=4812 mm² KIRAL/DÜNDAR(1987) A_{st}=4813 mm² MARJANİ(1989)

Teorikörnek05: Dikdörtgen kesit

Beton: B42 (f_{ck} =42 N/mm², γ_{mc} =1.5, f_{cd} =28 N/mm²) **Celik:** C483 (f_{vk} =483 N/mm², γ_{ms} =1.15, f_{vd} =420 N/mm²)

Beton örtüsü(paspayı): 45.7 mm

Donatı aralığı: b kenarında 120 mm, d kenarında 120 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

A_{st}=18288 mm² (Betonarme2000)

A_{st}=18394 mm² (ÇAKIROĞLU/ÖZER(1990)

Teorikörnek06: Dikdörtgen kesit

Beton: B46.1 (f_{ck} =46.1 N/mm², γ_{mc} =1.5, f_{cd} =30.7 N/mm²) **Çelik:** $Q299 (f_{yk}=299 N/mm^2, \gamma_{ms}=1.15, f_{yd}=260 N/mm^2)$

Beton örtüsü(paspayı): 19 mm

Donatı aralığı: b kenarında 30 mm, d kenarında 50 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

A_{st}=765 mm² Betonarme2000 A_{st}=734 mm² MARJANİ(1989) Ast=702 mm² DÜNDAR/TOKGÖZ(2001) Ast=713 mm² FURLONG(1979)

Teorikörnek07: Dikdörtgen kesit

Beton: B42 (f_{ck} =42 N/mm², γ_{mc} =1.5, f_{cd} =28 N/mm²)

Çelik: Ç402.5 (f_{vk} =402.5 N/mm², γ_{ms} =1.15, f_{vd} =350 N/mm²)

Beton örtüsü(paspayı): 60 mm

Donatı aralığı: b kenarında 50 mm, d kenarında 60 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

A_{st}=15033 mm² Betonarme2000 A_{st}=14892 mm² YEN (1991)

Teorikörnek08: Dikdörtgen kesit

Beton: B31.5 (f_{ck} =31.5 N/mm², γ_{mc} =1.5, f_{cd} =21 N/mm²) **Çelik:** Ç322 (f_{yk} =322 N/mm², γ_{ms} =1.15, f_{yd} =280 N/mm²)

Beton örtüsü(paspayı): 60 mm

Donatı aralığı: b kenarında 480 mm, d kenarında 60 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

 A_{st} =2706 mm² Betonarme2000 A_{st} =2517 mm² YEN (1991)

Teorikörnek09: Dikdörtgen kesit

Beton: C20/25 (f_{ck} =20 N/mm², γ_{mc} =1.5, f_{cd} =13.33 N/mm²) **Çelik:** Q400 (f_{vk} =400 N/mm², γ_{ms} =1.15, f_{vd} =347.83 N/mm²)

Beton örtüsü(paspayı)=40 mm

Donatı aralığı: Herhangi bir değer verilebilir

Bu donati planinda betonarme2000 donati koordinatlarini otomatik türetemez. Koordinatların verilmesi gerekir.

Donatı koordinatları:

Donati no	x[mm]	y[mm]
1	40	40
2	100	40
3	250	40
4	400	40
5	460	40
6	40	100
7	460	100
8	40	350
9	460	350
10	40	600
11	460	600
12	40	660
13	100	660
14	250	660
15	400	660
16	460	660
	1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 40 2 100 3 250 4 400 5 460 6 40 7 460 8 40 9 460 10 40 11 460 12 40 13 100 14 250 15 400

Betonarme2000 ve diğer araştırmacıların sonuçları:

 A_{st} =7752 mm² Betonarme2000 A_{st} =8366 mm² ÇAKIROĞLU/ÖZER(1983) A_{st} =7735 mm² KRAL/DÜNDAR(1987) A_{st} =7702 mm² MARJANİ(1989)

Teorikörnek10: Halka kesit

Beton: B41.4 (f_{ck} =31.5 N/mm², γ_{mc} =1.5, f_{cd} =27.6 N/mm²)

Çelik: Ç475.74 (f_{yk} =322 N/mm², γ_{ms} =1.15, f_{yd} =413.69 N/mm²)

Beton örtüsü(paspayı): 60.96 mm

Donatı aralığı: 150 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

A_{st}=3053 mm² Betonarme2000 A_{st}=3104 mm² RODRIQUEZ/OCHOA(1999) A_{st}=3104 mm² DÜNDAR/TOKGÖZ(2010)

Teorikörnek11: Çokgen kesit-Merdiven perdesi

Teorikörnek12: Boşluklu çokgen kesit

Betonarme2000 bu örneğin kesit ve donatı koordinatlarını otomatik türetemez, verilmesi gerekir.

Kutu kesiti oluşturmak için numarama aşağıdaki gibi yapılır: Kesit noktalarının numaraları daire içinde gösterilmiştir. Kesitin 1 noktasından başlanarak 3 noktasına kadar saat yönünde numaralandıktan sonra 4 noktasında iç noktaya geçilmiş iç noktalar saatın ters yönünde numaralanarak 8 noktasına (4 noktası ile aynı) gelinmiştir. 9 noktasında(3 noktası ile aynı) dış noktaya geçilmiş, saat yönünde numaralanmaya devam edilerek 10 noktasına gelinmiştir.

Kesitin düşey ve yatay kol uzunluğu aynı olmasına rağmen donatı sayıları farklıdır. Bu nedenle numarası görülen donatıların koordinatları Betonarme2000 e verildikten sonra yatay kollardaki ara çubukların koordinatları türetilmiştir.

Beton: B41.4 (f_{ck} =41.4 N/mm², γ_{mc} =1.5, f_{cd} =27.6 N/mm²) **Çelik:** Ç475.74 N/mm², γ_{ms} =1.15, f_{yd} =413.69 N/mm²)

Beton örtüsü(paspayı): 60.96 mm

Donatı aralığı: 100 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

A_{st}=4181 mm² Betonarme2000 A_{st}=4181 mm² DÜNDAR/ŞAHİN(1990) A_{st}=4056 mm² RODRIQUEZ/OCHOA(1999) A_{st}=3928 mm² DÜNDAR/TOKGÖZ(2010) A_{st}=4059 mm² CHİOREAN(2013)

	coordinat x[mm]	
1	0	0
2	0	609.6
3	609.6	609.6
4	482.6	482.6
5	127	482.6
6	127	127
7	482.6	127
8	482.6	482.6
9	609.6	609.6
10	609.6	0

Nokta	x[mm]	y[mm]
1	60.96 548.64	60.96 60.96
3	60.96	223.52
4	548.64	223.52
5	60.96	386.08
6	548.64	386.08
7	60.96	548.64
8	548.64	548.64

t7 84

Donatı koordinatları:

t7 8 in anlamı: 7 nolu çubuk ile 8 nolu çubuk arasındaki çubukların koordinatlarını donatı aralığını(=100 mm) dikkate alarak otomatik türet

Teorikörnek13: L kesit

 $\begin{array}{l} \textbf{Beton:} \ \ \text{C25/30} \ \ (f_{ck} = 25 \ \text{N/mm}^2, \ \gamma_{mc} = 1.5, \ f_{cd} = 20 \ \text{N/mm}^2) \\ \textbf{Celik:} \ \ \text{B420C} \ \ (f_{yk} = 420 \ \text{N/mm}^2, \ \gamma_{ms} = 1.15, \ f_{yd} = 365.22 \ \text{N/mm}^2) \\ \end{array}$

Beton örtüsü(paspayı): 30 mm

Donatı aralığı: 200 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

 A_{st} =3079 mm² Betonarme2000 A_{st} =3059 mm² MARJANI(1989)

Teorikörnek14: L kesit

Beton: B36.2 (f_{ck} =36.2 N/mm², γ_{mc} =1.5, f_{cd} =24.13 N/mm²)

Çelik: Ç410.73 (f_{vk} =410.73 N/mm², γ_{ms} =1.15, f_{vd} =357.16 N/mm²)

Beton örtüsü(paspayı): 19.05 mm

Donatı aralığı: 55 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

A_{st}=1000 mm² Betonarme2000 A_{st}=996.8 mm² HSU(1985)

A_{st}=996.8 mm² DÜNDAR/TOKGÖZ(2010)

Teorikörnek15: C kesit

Beton: B37.88 (f_{ck} =37.88 N/mm², γ_{mc} =1.5, f_{cd} =26.25 N/mm²) **Çelik:** Ç410.73 (f_{vk} =410.73 N/mm², γ_{ms} =1.15, f_{vd} =357.16 N/mm²)

Beton örtüsü(paspayı): 19.05 mm

Donatı aralığı: 50 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

A_{st}=2757 mm² Betonarme2000 A_{st}=2600 mm² MARJANİ(1989) A_{st}=2601 mm² TOKGÖZ(2006)

Teorikörnek16: T kesit

Beton: B50.16 (f_{ck} =50.16 N/mm², γ_{mc} =1.5, f_{cd} =33.44 N/mm²) **Çelik:** Ç532.29 (f_{vk} =532.29 N/mm², γ_{ms} =1.15, f_{vd} =612.13 N/mm²)

Beton örtüsü(paspayı): 12.7 mm

Donatı aralığı: 55 mm

Betonarme2000 ve diğer araştırmacıların sonuçları:

 A_{st} =1219 mm² Betonarme2000 A_{st} =1282 mm² TOKGÖZ(2006)

Sonuçlar neden farklı?

Yukarıda verilen farklı araştırmacıların çözümleri, az da olsa farklıdır. Farkın nedeni nedir?

Nedenler:

- 1.Beton ve çelik için farklı model kullanılması(Eşdeğer dikdörtgen parabol veya eşdeğer dikdörtgen gerilme modeli).
- 2.Çözüm için farklı yöntem kullanılması(analitik, integrasyon, iterasyon, deneysel).
- 4.İterasyon yöntemi kullanıldığında durdurma kriterinin farklı olması.
- 5.Aynı kesit için toplam donatı alanı belli iken kuvvetlerin hesaplanması(taşıma gücü) veya kuvvetler belli iken gerekli donatı alanının hesaplanması(kesit hesabı).
- 6.Dairesel veya halka bir kolonun modellenmesinde kullanılan nokta sayısının farklı olması.
- 7. Sargı etkisinin dikkate alınması veya alınmaması.
- 8.İngiliz birimlerinin SI birimlerine dönüştürülmesinde yapılan yuvarlamalar.
- 9.Donatı sayısının veya donatı çubuklarının kesitteki yerinin, az da olsa, farklı dolması.

Betonarme2000 her durumda çözüm bulabilir mi?

Bazı durumlarda, nadir de olsa, betonarme2000 çözüm bulamayabilir.

Nedenler:

- 1.Kesit çok karmaşıktır, çok dar açılı kenarlar vardır.
- 2.N_d, M_{xd}, M_{vd} tasarım kuvvetleri aşırı değerlerdedir, özellikle momentler aşı büyüktür.
- 3.Max iterasyon sayısı çok küçük seçilmiştir.
- 4. Tolerans çok küçük seçilmiştir.

Çözüm bulunamaması durumunda yukarıdaki nedenleri kontrol ediniz, gerekirse donatı planını değiştirerek deneyiniz.

Diğer Örnekler: Test

İzleyen örneklerde TS500-2000 ve Deprem Yönetmeliği-2007 dikkate alınmıştır.

Örnek02: Dikdörtgen kesit

Beton: C25/30 (f_{ck} =25 N/mm², γ_{mc} =1.5, f_{cd} =16.67 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²) **Beton örtüsü(paspayı):** b kenarında 35 mm, d kenarında 70 mm

Donatı aralığı: b kenarında 50 mm, d kenarında 100 mm

Hesaplanan donatı: 6488 mm² Seçilen donatı: 20\psi 22(7603 mm²)

Donati orani: 0.0310

Örnek03: Daire kesit

Beton: C20/25 (f_{ck} =25 N/mm², γ_{mc} =1.5, f_{cd} =13.33 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²)

Beton örtüsü(paspayı): 50 mm Donatı aralığı: 100 mm

Hesaplanan donatı: 4454 mm² Seçilen donatı: 13\psi 22(4942 mm²)

Donatı oranı: 0.0252

Örnek04: Sekizgen kesit

Beton: C20/25 (f_{ck} =25 N/mm², γ_{mc} =1.5, f_{cd} =13.33 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²)

Beton örtüsü(paspayı): 50 mm Donatı aralığı: 100 mm

Hesaplanan donatı: 4176 mm² Seçilen donatı: 13\psi 22(4942 mm²)

Donatı oranı: 0.0239

Ahmet TOPÇU, Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi, İnşaat Mühendisliği Bölümü, Eskişehir, 2000-2014

Örnek05: Halka kesit

Beton: C40/50 (f_{ck} =40 N/mm², γ_{mc} =1.5, f_{cd} =26.67 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²)

Beton örtüsü(paspayı): 40 mm Donatı aralığı: 120 mm Hesaplanan donatı: 3922 mm² Seçilen donatı: 24\psi16(4825 mm²)

Donati orani: 0.0146

Örnek06: Kutu kesit

Beton: C20/25 (f_{ck} =25 N/mm², γ_{mc} =1.5, f_{cd} =16.67 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²)

Beton örtüsü(paspayı): 40 mm

Donatı aralığı: 160 mm

Hesaplanan donatı: 5072 mm² Seçilen donatı: 18\psi 20(5665 mm²)

Donatı oranı: 0.0118

Örnek07: T kesit

Beton: C20/25 (f_{ck} =25 N/mm², γ_{mc} =1.5, f_{cd} =16.67 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²) **Beton örtüsü(paspayı):** 40 mm

Donatı aralığı: 160 mm

Hesaplanan donatı: 4047 mm² Seçilen donatı: 20 \$\psi\$ 18(5089 mm²)

Donati orani: 0.0212

Örnek08: I kesit

 $\begin{array}{l} \textbf{Beton:} \ C30/37 \ (f_{ck}\!\!=\!\!30 \ N/mm^2, \ \gamma_{mc}\!\!=\!\!1.5, \ f_{cd}\!\!=\!\!20 \ N/mm^2) \\ \textbf{Celik:} \ B420C \ (f_{yk}\!\!=\!\!420 \ N/mm^2, \ \gamma_{ms}\!\!=\!\!1.15, \ f_{yd}\!\!=\!\!365.22 \ N/mm^2) \\ \end{array}$

Beton örtüsü(paspayı): 30 mm Donatı aralığı: 200 mm

Hesaplanan donatı: 3054 mm²

Seçilen donatı: 36 \$\psi\$16(7238 mm^2)- Min donatı

Donati orani: 0.0113

Örnek09: Dolu çokgen kesit

Beton: C25/30 (f_{ck} =25 N/mm², γ_{mc} =1.5, f_{cd} =16.67 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²)

Beton örtüsü(paspayı): 30 mm

Donatı aralığı: 100 mm Hesaplanan donatı: 2103 mm² Seçilen donatı: 18 14(2771 mm²)

Donati orani: 0.0141

Kesit koordinatları: Nokta x[mm] y[mm]

		<i>,</i> [
 1	250	0
2	0	250
3	200	450
4	400	250
5	750	250
6	750	0

Betonarme2000 bu kesiti otomatik türetemez. Kesit koordinatlarının programa verilmesi gerekir.

Donatı koordinatları seçilen donatı aralığı(=100 mm) dikkate alınarak program tarafından otomatik türetilir.

Örnek10: Dolu çokgen kesit

 $\begin{array}{l} \textbf{Beton:} \ C18/22 \ (f_{ck} = 18 \ N/mm^2, \ \gamma_{mc} = 1.5, \ f_{cd} = 12 \ N/mm^2) \\ \textbf{Celik:} \ B420C \ (f_{yk} = 420 \ N/mm^2, \ \gamma_{ms} = 1.15, \ f_{yd} = 365.22 \ N/mm^2) \\ \end{array}$

Beton örtüsü(paspayı): 30 mm

Donatı aralığı: 100 mm

Hesaplanan donatı: 2153 mm² Seçilen donatı: 14 4 14(2155 mm²)

Donati orani: 0.0160

Kesit koordinatları: Nokta x[mm] y[mm]

1	150	0
2	0	150
3	150	300
4	450	300
5	600	150
6	450	0

Myd= 1000 kN.m

Nd= 4000 kg

Betonarme2000 bu kesiti otomatik türetemez. Kesit koordinatlarının programa verilmesi gerekir.

Donatı koordinatları seçilen donatı aralığı(=100 mm) dikkate alınarak program tarafından otomatik türetilir.

Örnek11: Dolu çokgen kesit

I	I
Beton: C20/25 (fck=	18 N/mm ² , γ _{mc} =1.5, f _{cd} =13.33 N/mm ²)
Beton örtüsü(pasp	20 N/mm ² , γ _{ms} =1.15, f _{yd} =365.22 N/mm ²)
Donati aralığı: 200	• ,

Seçilen donatı: 25 \$\psi 22(9503 \text{ mm}^2) - \text{Min donatı}

Donati orani: 0.0100

Hesaplanan donatı: 9091 mm²

Kesit koordinatları: Nokta x[mm] y[mm]

Mxd= 2100 kN.m

1	300	0
2	0	300
3	600	900
4	600	1400
5	1000	1400
3	1000	900
7	1600	300
3	1300	0
9	900	400
10	700	400

Betonarme2000 bu kesiti otomatik türetemez. Kesit koordinatlarının programa verilmesi gerekir.

Donatı koordinatları seçilen donatı aralığı(=200 mm) dikkate alınarak program tarafından otomatik türetilir.

Örnek12: Dolu çokgen kesit

Beton: C25/30 (f_{ck} =25 N/mm², γ_{mc} =1.5, f_{cd} =16.67 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²)

Beton örtüsü(paspayı): 40 mm Donatı aralığı: 150 mm

Hesaplanan donatı: 5842 mm² Seçilen donatı: 20 \$\phi 20(6283 \text{ mm}^2)

Donati orani: 0.0140

Programa M_{yd}=100 kN.m olarak verilmiştir. Ancak, program Min M_{vd}=(15+0.03x900)x4000=168000 kNmm=168 kNm

almıştır.

Uyarı: M_{vd}=168 kN.m (Min moment)

Kesit k	arı: 🚄	
Nokta	x[mm]	y[mm]

300

300

12

Betonarme2000 bu kesiti otomatik türetemez. Kesit koordinatlarının programa verilmesi gerekir.

Donatı koordinatları seçilen donatı aralığı(=200 mm) dikkate alınarak program tarafından otomatik türetilir.

y[mm]

Örnek13: Boşluklu çokgen kesit

Beton: C25/30 (f_{ck} =25 N/mm², γ_{mc} =1.5, f_{cd} =16.67 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²)

Beton örtüsü(paspayı): 40 mm

Donatı aralığı: 120 mm

Hesaplanan donatı: 1764 mm² Seçilen donatı: 18\$\psi\$14(2771 mm²) Donati orani: 0.0103-Min donati

• •	Myd= 440 kN.s	m
•		
	Nd= 1200 kN	Mxd= 180 kN.m
•	/	

Kesit k Nokta	oordinatl x[mm]	arı: y[mm]		koordin x[mm]	-
1 2 3 4 5 6 7 8 9 10	0 0 400 350 150 150 600 350 400 750 750	0 550 550 400 400 150 150 400 550 200 0	1 2 3 4 5 t1 2 t2 3 t3 4 t4 5 t5 1	40 40 360 710 710	40 520 510 160 40

Örnek14: Boşluklu çokgen kesit

Beton: C18/20 (f_{ck} =18 N/mm², γ_{mc} =1.5, f_{cd} =12 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²) **Beton örtüsü(paspayı):** 100 mm **Donatı aralığı:** 200 mm

Hesaplanan donatı: 27828 mm²

Seçilen donatı: 76 \$\psi 24(34382 \text{ mm}^2) - \text{Min donatı}

Donati orani: 0.0113

Betonarme2000 bu kesiti otomatik türetemez. Kesit ve donatı koordinatlarının programa verilmesi gerekir.

Kesit koordinatları: Nokta x[mm] y[mm]			Donatı koordinatları: Nokta x[mm] y[mm]		
1 2	0 0	0 2400	1 2	100 2300	100 100
3	200	2200	3	4500	100
4	200	200	4	100	2300
5	2200	200	5	2300	2300
6	2200	2200	6	4500	2300
7	200	2200			
8	0	2400	t1 2		
9	4600	2400	t 2 3		
10	4400	2200	t 4 5		
11	2400	2200	t5 6		
12	2400	200	t1 4		
13	4400	200	t2 5		
14	4400	2200	t3 6		
15	4600	2400			
16	4600	0			

Örnek14: Kutu kesit-köprü ayağı güçlendirme

7200x3200 mm kesitli bir köprü ayağının etrafına mantolama yapılarak ayak güçlendirilecektir. Kutu kesitli yeni ayağın şekilde verilen kuvvetleri taşıması gerekmektedir. Eski ayak hesapta yok varsayılacaktır.

Beton: C40/50 (f_{ck} =40 N/mm², γ_{mc} =1.5, f_{cd} =26.67 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²)

Beton örtüsü(paspayı): 50 mm Donatı aralığı: 100 mm

Hesaplanan donatı: 117481 mm² Seçilen donatı: 448\$20(140743 mm²)

Donati orani: 0.0157

Örnek15: Kare kesit

Eksenel kuvveti çok yüksek olan ve solda kesiti görülen kolon C40/50 betonu ve B420C çeliği ile üretilecektir. Mimari nedenlerle kolon kare kesitli olacaktır ve boyutları en fazla 600x600 mm olmak zorundadır. Donatı çapının Φ 20 yı aşmamsı, donatı aralığının da 50 mm den az olmaması istenmektedir. Özetle:

Beton: C40/50 (f_{ck} =40 N/mm², γ_{mc} =1.5, f_{cd} =26.67 N/mm²) **Çelik:** B420C (f_{yk} =420 N/mm², γ_{ms} =1.15, f_{yd} =365.22 N/mm²)

Beton örtüsü(paspayı) ≤ 50 mm Maks Kolon boyutu: 600x600 mm

Maks donatı çapı ≤ \$20 Min donatı aralığı ≤ 50 mm

Kesit boyutları müsaade edilen üst sınır (600x600 mm) ve donatı aralığı müsaade edilen alt sınır (50 mm) seçilerek yapılan soldaki çözümde donatı çapının verilen üst sınırı aştığı ve ayrıca donatı oranının da üst sınırı aştığı görülmektedir. Kesit büyütülemeyeceği ve donatı aralığı daha küçük seçilemeyeceği için bu donatı planı yetersizdir.

Çözüm üretebilmek için soldaki donatı planı kullanılmıştır. Aşırı basınç kuvvetini karşılayabilmek için kenarlardan 150 mm içeride olan ikinci sıra çubuklar konmuştur. İkinci sıra donatılar dıştakilere nazaran daha az moment alacaklardır. Yani bu donatı planı pek de ekonomik olmayacaktır. Ancak kısıtlamalar nedeniyle daha iyi bir çözüm mümkün değildir.

Bu çözümde donatı çapı $\,^{\oplus}$ 16 ye düşmüş, ancak donatı oranı üst sınırı az da olsa aşmış, %4olan üst sınır %4.02 olmuştur. Fark önemsenemeyecek kadar küçüktür. Bu nedenle çözüm kabul edilebilir.

Kaynaklar

ÖZMEN, G., (2013), Eğik Eğilme Etkisindeki Dikdörtgen Kolon Kesitlerinin boyutlandırılması http://www.yapistatigi.itu.edu.tr/papers_reports/KOLDON.pdf

DÜNDAR C., TOKGÖZ, S., (2010), Betonarme kolonların normal kuvvet-moment etkileşim diyagramları, Çukurova üniversitesi Müh.Mim.Fak. Dergisi, Cilt 25, Sayı 1-2

http://www.mmf.cu.edu.tr/tr/5_Dundar-Tokgoz-N-M_Betonarme_Kolon_25_1_2_59_71.pdf

TOKGÖZ, S, (2006), Öngerilmeli ve betonarme elemanların iki eksenli eğilme ve eksenel yük etkisi altında davranışı, Doktora tezi, Çukurova üniversitesi, Adana http://library.cu.edu.tr/tezler/5722.pdf

DÜNDAR C., TOKGÖZ, S., (2001), "Değişik Gerilme Dağılım Modelleri ile Poligonal Betonarme Elemanların Eğik Eğilme ve Eksenel Yük Altında Tasarımı" 16. Teknik Kongre, Ankara http://www.e-kutuphane.imo.org.tr/pdf/13062.pdf

RODRIQUEZ, J. A., OCHOA, J. D. (1999), "Biaxial interaction diagrams for short RC columns of any cross section.", *J. Struct. Eng.*, ASCE, **125**(6), 672-683.

DÜNDAR, C., ŞAHİN, B.,(1992), Eğik Eğilme ve Eksenel Yük Altında Gelişigüzel Geometriye Sahip Betonarme Elemanların Tasarımı, İMO, Teknik Dergi, C .3, S. 2 http://www.e-kutuphane.imo.org.tr/pdf/4103.pdf

YEN, J. Y., (1991), Quasi-Newton method for reinforced concrete column analysis and design., *J. Struct. Eng.*, ASCE, **117**(3), 657-666.

ÇAKIROĞLU, A., ÖZER, E., (1990), Dikdörtgen ve Daire Betonarme Kesitlerde Taşıma Gücü Formülleri ve Yaklaşık Mertebeleri, İMO Teknik Dergi, 1990, Cilt 1, Sayı 1. http://www.e-kutuphane.imo.org.tr/pdf/4047.pdf

ERSOY, U., (1990), Taşıma Gücü Yöntemi Varsayımları ile İlgili Bir İrdeleme, İMO, Teknik Dergi, C.1, S. 1 http://www.e-kutuphane.imo.org.tr/pdf/4049.pdf

MARJANİ, F., (1989), Design of Reinforced Concrete Columns Under Biaxial Bending, Yüksek Lisans tezi , ODTÜ, İnşat Müh. Bölümü, Ankara

KIRAL, E., DÜNDAR, C., (1987), Eğik Eğilme ve Eksenel Basınç Altındaki Betonarme Kesitlerin Bilgisayar ile Hesabı, Teknik Yayınevi, No 14., Adana

DURMUŞ, A, EYÜBOĞLU, U., (1984), İki doğrultuda bileşik eğilme etkisindeki betonarme kesitlerin taşıma gücüne göre hesabı, Deprem Araştırma bülteni, No 46., Ankara

ÇAKIROĞLU, A. ÖZER, E., (1983), Eğik Eğilme ve Eksenel Kuvvet Etkisindeki Dikdörtgen Betonarme Kesitlerde Taşıma Gücü Formülleri, Yesa Yayınları-1, İstanbul

MAGALHAES, M. P., (1979), "Biaxially loaded concrete sections.", J. Struct. Division, ASCE, 105 (ST12), 2639-2656.

FURLONG, R., W., (1979), Concrete columns under biaxially eccentric thrust, ACI J., V. 76, No:10