Learning to Search for Targets

with Deep Reinforcement Learning

Oskar Lundin

Linköping University

June 12, 2022

Outline

Introduction

Motivation

Aim

Research Questions

Theory

Reinforcement Learning Related Work

Method

Environments

Approach

Experiments

Search Performance Scaling to Larger Search Spaces Generalization From Limited Samples

Conclusion

Future Work

Learned autonomous search for a set of targets in a visual environment with a camera.

► Camera perceives limited region of environment.

- ► Camera perceives limited region of environment.
- ► Moving camera changes visible region.

- ► Camera perceives limited region of environment.
- ► Moving camera changes visible region.
- ► Detect when targets are visible.

- ► Camera perceives limited region of environment.
- ► Moving camera changes visible region.
- ► Detect when targets are visible.
- ► Locate targets in minimum time.

- ► Camera perceives limited region of environment.
- ► Moving camera changes visible region.
- ► Detect when targets are visible.
- ► Locate targets in minimum time.
- ► Learn control from sample scenarios.

- ► Camera perceives limited region of environment.
- ► Moving camera changes visible region.
- ► Detect when targets are visible.
- ► Locate targets in minimum time.
- ► Learn control from sample scenarios.
- ► Use deep reinforcement learning.

- ► Camera perceives limited region of environment.
- ► Moving camera changes visible region.
- ► Detect when targets are visible.
- ► Locate targets in minimum time.
- ► Learn control from sample scenarios.
- ► Use deep reinforcement learning.
- ► Focus on search behavior, simple detection.

▶ Searched scene $S \subset \mathbb{R}^d$.

- ▶ Searched scene $S \subset \mathbb{R}^d$.
- ▶ Perceived view $V \subset S$ in the form of an image.

- ▶ Searched scene $S \subset \mathbb{R}^d$.
- ightharpoonup Perceived view $V \subset S$ in the form of an image.
- ► View can be transformed to new subspace at a cost.

- ▶ Searched scene $S \subset \mathbb{R}^d$.
- ightharpoonup Perceived view $V \subset S$ in the form of an image.
- ► View can be transformed to new subspace at a cost.
- ▶ Targets in scene $\{t_0, \ldots t_n\}$, $t_i \in S$.

- ▶ Searched scene $S \subset \mathbb{R}^d$.
- ▶ Perceived view $V \subset S$ in the form of an image.
- ▶ View can be transformed to new subspace at a cost.
- ▶ Targets in scene $\{t_0, \ldots t_n\}$, $t_i \in S$.
- ▶ Detect when targets are visible, i.e. $V \cap T \neq \emptyset$.

- ▶ Searched scene $S \subset \mathbb{R}^d$.
- ightharpoonup Perceived view $V \subset S$ in the form of an image.
- ► View can be transformed to new subspace at a cost.
- ▶ Targets in scene $\{t_0, \ldots t_n\}$, $t_i \in S$.
- ▶ Detect when targets are visible, i.e. $V \cap T \neq \emptyset$.
- ► Goal:

- ▶ Searched scene $S \subset \mathbb{R}^d$.
- ▶ Perceived view $V \subset S$ in the form of an image.
- ▶ View can be transformed to new subspace at a cost.
- ▶ Targets in scene $\{t_0, \ldots t_n\}$, $t_i \in S$.
- ▶ Detect when targets are visible, i.e. $V \cap T \neq \emptyset$.
- ► Goal:
 - Maximize probability of finding all targets.

- ▶ Searched scene $S \subset \mathbb{R}^d$.
- ightharpoonup Perceived view $V \subset S$ in the form of an image.
- ► View can be transformed to new subspace at a cost.
- ▶ Targets in scene $\{t_0, \ldots t_n\}$, $t_i \in S$.
- ▶ Detect when targets are visible, i.e. $V \cap T \neq \emptyset$.
- ► Goal:
 - ► Maximize probability of finding all targets.
 - Minimize cost (time).

- ▶ Searched scene $S \subset \mathbb{R}^d$.
- ▶ Perceived view $V \subset S$ in the form of an image.
- ► View can be transformed to new subspace at a cost.
- ▶ Targets in scene $\{t_0, \ldots t_n\}$, $t_i \in S$.
- ▶ Detect when targets are visible, i.e. $V \cap T \neq \emptyset$.
- ► Goal:
 - ► Maximize probability of finding all targets.
 - ► Minimize cost (time).
 - ► NP-complete [1].

- ▶ Searched scene $S \subset \mathbb{R}^d$.
- ▶ Perceived view $V \subset S$ in the form of an image.
- ► View can be transformed to new subspace at a cost.
- ▶ Targets in scene $\{t_0, \ldots t_n\}$, $t_i \in S$.
- ▶ Detect when targets are visible, i.e. $V \cap T \neq \emptyset$.
- ► Goal:
 - ► Maximize probability of finding all targets.
 - ► Minimize cost (time).
 - ► NP-complete [1].

▶ Applications in search and rescue, surveillance, home assistance, etc.

5/36

- ► Applications in search and rescue, surveillance, home assistance, etc.
- Autonomous systems may be faster and less costly than manual ones.

- ▶ Applications in search and rescue, surveillance, home assistance, etc.
- Autonomous systems may be faster and less costly than manual ones.
- ► Learning vs. handcrafted systems:

- ▶ Applications in search and rescue, surveillance, home assistance, etc.
- Autonomous systems may be faster and less costly than manual ones.
- ► Learning vs. handcrafted systems:
 - ▶ May find better solutions (deep RL: Atari [2], Go [3], StarCraft II [4]).

- ▶ Applications in search and rescue, surveillance, home assistance, etc.
- Autonomous systems may be faster and less costly than manual ones.
- ► Learning vs. handcrafted systems:
 - ► May find better solutions (deep RL: Atari [2], Go [3], StarCraft II [4]).
 - ► Applicable as long as data is available.

- ▶ Applications in search and rescue, surveillance, home assistance, etc.
- Autonomous systems may be faster and less costly than manual ones.
- ► Learning vs. handcrafted systems:
 - ► May find better solutions (deep RL: Atari [2], Go [3], StarCraft II [4]).
 - ► Applicable as long as data is available.
 - Guarantees and understandability.

► Utilize structure in environments:

- ► Utilize structure in environments:
 - ► Books are in bookshelves, cars on roads...

- ► Utilize structure in environments:
 - ► Books are in bookshelves, cars on roads...
 - ► Targets can be spread out/close together...

- ► Utilize structure in environments:
 - ► Books are in bookshelves, cars on roads...
 - ► Targets can be spread out/close together...
- ► Learn distribution of targets from training samples.

- ► Utilize structure in environments:
 - ► Books are in bookshelves, cars on roads...
 - ► Targets can be spread out/close together...
- ► Learn distribution of targets from training samples.
 - ► Realistically limited training samples available.

- ► Utilize structure in environments:
 - ► Books are in bookshelves, cars on roads...
 - ► Targets can be spread out/close together...
- ► Learn distribution of targets from training samples.
 - ► Realistically limited training samples available.
 - ► Generalize to similar unseen search scenarios.

- ► Utilize structure in environments:
 - ► Books are in bookshelves, cars on roads...
 - ► Targets can be spread out/close together...
- ► Learn distribution of targets from training samples.
 - ► Realistically limited training samples available.
 - ► Generalize to similar unseen search scenarios.
- ► Remember features of explored environment to:

- ► Utilize structure in environments:
 - ► Books are in bookshelves, cars on roads...
 - ► Targets can be spread out/close together...
- ► Learn distribution of targets from training samples.
 - ► Realistically limited training samples available.
 - ► Generalize to similar unseen search scenarios.
- ► Remember features of explored environment to:
 - Avoid searching regions twice.

- ► Utilize structure in environments:
 - ► Books are in bookshelves, cars on roads...
 - ► Targets can be spread out/close together...
- ► Learn distribution of targets from training samples.
 - ► Realistically limited training samples available.
 - ► Generalize to similar unseen search scenarios.
- ► Remember features of explored environment to:
 - ► Avoid searching regions twice.
 - ► Prioritize promising regions.

Research Questions

1. How can an agent that learns to intelligently search for targets be implemented with deep reinforcement learning?

Research Questions

- 1. How can an agent that learns to intelligently search for targets be implemented with deep reinforcement learning?
- 2. How does the learning agent compare to random, greedy, exhaustive and human searchers?

Research Questions

- 1. How can an agent that learns to intelligently search for targets be implemented with deep reinforcement learning?
- 2. How does the learning agent compare to random, greedy, exhaustive and human searchers?
- 3. How well does the learning agent generalize from a limited number of training samples to unseen in-distribution search scenarios?

► Learn from interaction how to achieve a goal.

- ► Learn from interaction how to achieve a goal.
- ► Partially Observable Markov Decision Process [5]:

- ► Learn from interaction how to achieve a goal.
- ▶ Partially Observable Markov Decision Process [5]:
 - Agent interacts with environment over discrete time steps $t = 0, 1, 2 \dots, T$.

- ▶ Learn from interaction how to achieve a goal.
- ► Partially Observable Markov Decision Process [5]:
 - Agent interacts with environment over discrete time steps $t = 0, 1, 2 \dots, T$.
 - ▶ New state s_{t+1} depends on history $a_0, o_1, r_1, \ldots, a_{t-1}, o_t, r_t$.

- ▶ Learn from interaction how to achieve a goal.
- ► Partially Observable Markov Decision Process [5]:
 - Agent interacts with environment over discrete time steps $t = 0, 1, 2 \dots, T$.
 - ▶ New state s_{t+1} depends on history $a_0, o_1, r_1, \dots, a_{t-1}, o_t, r_t$.
 - ightharpoonup Agent usually maintains internal state ightharpoonup memory.

▶ Policy $\pi(a|s)$ defines agent's behavior.

- ▶ Policy $\pi(a|s)$ defines agent's behavior.
- ▶ Find policy that maximizes expected future reward $\mathbb{E}\left[\sum_{k=0}^{T} \gamma^{k-t-1} r_k\right]$.

- ▶ Policy $\pi(a|s)$ defines agent's behavior.
- ▶ Find policy that maximizes expected future reward $\mathbb{E}\left[\sum_{k=0}^{T} \gamma^{k-t-1} r_k\right]$.
- ► There are several different algorithms.

- ▶ Policy $\pi(a|s)$ defines agent's behavior.
- ▶ Find policy that maximizes expected future reward $\mathbb{E}\left[\sum_{k=0}^{T} \gamma^{k-t-1} r_k\right]$.
- ► There are several different algorithms.
- ► Reward signal is often a design parameter.

- ▶ Policy $\pi(a|s)$ defines agent's behavior.
- ▶ Find policy that maximizes expected future reward $\mathbb{E}\left[\sum_{k=0}^{T} \gamma^{k-t-1} r_k\right]$.
- ► There are several different algorithms.
- ► Reward signal is often a design parameter.
- \blacktriangleright Deep reinforcement learning: approximate π with deep neural networks.

▶ Visual attention (determining what to pay attention to in a visual environment):

- ▶ Visual attention (determining what to pay attention to in a visual environment):
 - ► Sequential focus points for foveated vision. [6]

- ▶ Visual attention (determining what to pay attention to in a visual environment):
 - ► Sequential focus points for foveated vision. [6]
- ▶ Visual navigation (searching for a goal location in a visual environment):

- ▶ Visual attention (determining what to pay attention to in a visual environment):
 - ► Sequential focus points for foveated vision. [6]
- ► Visual navigation (searching for a goal location in a visual environment):
 - ► Solve random mazes [7].

- ▶ Visual attention (determining what to pay attention to in a visual environment):
 - ► Sequential focus points for foveated vision. [6]
- ► Visual navigation (searching for a goal location in a visual environment):
 - ► Solve random mazes [7].
 - ► Find target object in indoor scenes [8].

- ▶ Visual attention (determining what to pay attention to in a visual environment):
 - Sequential focus points for foveated vision. [6]
- ► Visual navigation (searching for a goal location in a visual environment):
 - ► Solve random mazes [7].
 - ► Find target object in indoor scenes [8].
- ▶ Object localization (searching for objects in an image):

- ▶ Visual attention (determining what to pay attention to in a visual environment):
 - Sequential focus points for foveated vision. [6]
- ► Visual navigation (searching for a goal location in a visual environment):
 - ► Solve random mazes [7].
 - ► Find target object in indoor scenes [8].
- ▶ Object localization (searching for objects in an image):
 - ► Region proposals for object localization [9].

- ▶ Visual attention (determining what to pay attention to in a visual environment):
 - Sequential focus points for foveated vision. [6]
- ► Visual navigation (searching for a goal location in a visual environment):
 - ► Solve random mazes [7].
 - ► Find target object in indoor scenes [8].
- ▶ Object localization (searching for objects in an image):
 - ► Region proposals for object localization [9].
 - ► Anatomical landmark detection in medical images [10].

► Three simulated environments.

- ► Three simulated environments.
- ► Structure can be utilized to find targets quicker.

- ► Three simulated environments.
- ► Structure can be utilized to find targets quicker.
- ► Procedurally generated, conditioned on seed.

- ► Three simulated environments.
- ► Structure can be utilized to find targets quicker.
- ► Procedurally generated, conditioned on seed.
- ► Find three targets in less than 1 000 steps.

- ► Three simulated environments.
- ► Structure can be utilized to find targets quicker.
- ► Procedurally generated, conditioned on seed.
- ► Find three targets in less than 1 000 steps.
- ► New seed after each finished search.

▶ Observations $o_t = \langle x_t, p_t \rangle$, where

- ▶ Observations $o_t = \langle x_t, p_t \rangle$, where
 - $lackbox{} x_t \in \mathbb{R}^{3 imes 64 imes 64}$ is an RGB image,

- ▶ Observations $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image,
 - ▶ $p_t \in \{0, ..., H\} \times \{0, ..., W\}$ is the camera position.

- ightharpoonup Observations $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image.
 - ▶ $p_t \in \{0, ..., H\} \times \{0, ..., W\}$ is the camera position.
- \blacktriangleright Actions $a_t \in \{\text{INDICATE}, \text{UP}, \text{DOWN}, \text{LEFT}, \text{RIGHT}\}, \text{ where}$

- ightharpoonup Observations $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image,
 - ▶ $p_t \in \{0, ..., H\} \times \{0, ..., W\}$ is the camera position.
- ▶ Actions $a_t \in \{\text{INDICATE}, \text{UP}, \text{DOWN}, \text{LEFT}, \text{RIGHT}\}, \text{ where}$
 - ► INDICATE identifies targets, and

- ightharpoonup Observations $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image.
 - ▶ $p_t \in \{0, ..., H\} \times \{0, ..., W\}$ is the camera position.
- \blacktriangleright Actions $a_t \in \{\text{INDICATE}, \text{UP}, \text{DOWN}, \text{LEFT}, \text{RIGHT}\}, \text{ where}$
 - ► INDICATE identifies targets, and
 - UP. DOWN, LEFT, RIGHT move camera.

- ightharpoonup Observations $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image.
 - ▶ $p_t \in \{0, ..., H\} \times \{0, ..., W\}$ is the camera position.
- \blacktriangleright Actions $a_t \in \{\text{INDICATE}, \text{UP}, \text{DOWN}, \text{LEFT}, \text{RIGHT}\}, \text{ where}$
 - ► INDICATE identifies targets, and
 - ► UP. DOWN. LEFT. RIGHT move camera.
- Reward $r_t = h 0.01 + 0.005d + 0.005e$ where

- ightharpoonup Observations $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image.
 - ▶ $p_t \in \{0, ..., H\} \times \{0, ..., W\}$ is the camera position.
- \blacktriangleright Actions $a_t \in \{\text{INDICATE}, \text{UP}, \text{DOWN}, \text{LEFT}, \text{RIGHT}\}, \text{ where}$
 - ► INDICATE identifies targets, and
 - ► UP. DOWN. LEFT. RIGHT move camera.
- Reward $r_t = h 0.01 + 0.005d + 0.005e$ where
 - ▶ $h = |T \cap V|$ if $a_t = INDICATE$, else 0.

- ightharpoonup Observations $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image.
 - ▶ $p_t \in \{0, ..., H\} \times \{0, ..., W\}$ is the camera position.
- \blacktriangleright Actions $a_t \in \{\text{INDICATE}, \text{UP}, \text{DOWN}, \text{LEFT}, \text{RIGHT}\}, \text{ where}$
 - ► INDICATE identifies targets, and
 - ► UP. DOWN. LEFT. RIGHT move camera.
- Reward $r_t = h 0.01 + 0.005d + 0.005e$ where
 - ▶ $h = |T \cap V|$ if $a_t = INDICATE$, else 0.
 - ightharpoonup d = 1 if a_t moves closer to nearest target, else 0.

- ightharpoonup Observations $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image.
 - ▶ $p_t \in \{0, ..., H\} \times \{0, ..., W\}$ is the camera position.
- \blacktriangleright Actions $a_t \in \{\text{INDICATE}, \text{UP}, \text{DOWN}, \text{LEFT}, \text{RIGHT}\}, \text{ where}$
 - ► INDICATE identifies targets, and
 - ► UP. DOWN. LEFT. RIGHT move camera.
- Reward $r_t = h 0.01 + 0.005d + 0.005e$ where
 - ▶ $h = |T \cap V|$ if $a_t = INDICATE$, else 0.
 - ightharpoonup d = 1 if a_t moves closer to nearest target, else 0.
 - ightharpoonup e = 1 if a_t moves to new position, else 0.

13/36

13/36

► Three gaussian distributions with random center.

- ► Three gaussian distributions with random center.
- Normalized sum give blue color intensity and target probability.

- ► Three gaussian distributions with random center.
- Normalized sum give blue color intensity and target probability.
- ► Agent should prioritize blue regions.

- ► Three gaussian distributions with random center.
- ► Normalized sum give blue color intensity and target probability.
- ► Agent should prioritize blue regions.

► Terrain seen from above (e.g. UAV).

- ► Terrain seen from above (e.g. UAV).
- ► Targets between ocean and mountains.

- ► Terrain seen from above (e.g. UAV).
- ► Targets between ocean and mountains.
- ► More realistic, higher variance.

- ► Terrain seen from above (e.g. UAV).
- ► Targets between ocean and mountains.
- ► More realistic, higher variance.

► Terrain seen from perspective projection camera.

- ► Terrain seen from perspective projection camera.
- ► Moving actions control pan and tilt.

- ► Terrain seen from perspective projection camera.
- ► Moving actions control pan and tilt.
 - ▶ 20 pan angle steps.

- ► Terrain seen from perspective projection camera.
- ► Moving actions control pan and tilt.
 - ▶ 20 pan angle steps.
 - ► 10 tilt angle steps.

- ► Terrain seen from perspective projection camera.
- ► Moving actions control pan and tilt.
 - ► 20 pan angle steps.
 - ► 10 tilt angle steps.
- ► Variance in target appearance.

- ► Terrain seen from perspective projection camera.
- ► Moving actions control pan and tilt.
 - ► 20 pan angle steps.
 - ► 10 tilt angle steps.
- ► Variance in target appearance.

► Function approximation with deep neural networks.

- ► Function approximation with deep neural networks.
 - ▶ Policy $\pi(a|s,\theta)$.

- ► Function approximation with deep neural networks.
 - ▶ Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).

- ► Function approximation with deep neural networks.
 - Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:

- ► Function approximation with deep neural networks.
 - Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.

- ► Function approximation with deep neural networks.
 - Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.

- ► Function approximation with deep neural networks.
 - Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize \mathcal{L} wrt θ .

- ► Function approximation with deep neural networks.
 - Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize \mathcal{L} wrt θ .
 - 4. Repeat until π achieves high reward.

- ► Function approximation with deep neural networks.
 - Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize \mathcal{L} wrt θ .
 - 4. Repeat until π achieves high reward.
- ► Reinforcement learning algorithm:

- ► Function approximation with deep neural networks.
 - Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize \mathcal{L} wrt θ .
 - 4. Repeat until π achieves high reward.
- ► Reinforcement learning algorithm:
 - ► Proximal policy optimization [11].

- Function approximation with deep neural networks.
 - Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize \mathcal{L} wrt θ .
 - 4. Repeat until π achieves high reward.
- ► Reinforcement learning algorithm:
 - ► Proximal policy optimization [11].
 - ► Relatively new algorithm.

- ► Function approximation with deep neural networks.
 - Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize \mathcal{L} wrt θ .
 - 4. Repeat until π achieves high reward.
- ► Reinforcement learning algorithm:
 - ▶ Proximal policy optimization [11].
 - ► Relatively new algorithm.
 - ► Stable performance with little tuning [12].

Architecture

Memory

▶ Agent should remember visual features and associate them with their spatial location.

Memory

- ▶ Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants:

Memory

- ▶ Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants:
 - 1. Temporal memory (long short-term memory [13]):

- ▶ Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants:
 - 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied successfully to tasks where memory is required [14, 15].

- ▶ Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants:
 - 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied successfully to tasks where memory is required [14, 15].
 - ► How long sequences can be remembered?

- ▶ Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants:
 - 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied successfully to tasks where memory is required [14, 15].
 - ► How long sequences can be remembered?
 - 2. Spatial memory (inspired by [16] and [17]):

- ▶ Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants:
 - 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied successfully to tasks where memory is required [14, 15].
 - ► How long sequences can be remembered?
 - 2. Spatial memory (inspired by [16] and [17]):
 - ► Feature map with one slot per camera position.

- ▶ Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants:
 - 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied successfully to tasks where memory is required [14, 15].
 - ► How long sequences can be remembered?
 - 2. Spatial memory (inspired by [16] and [17]):
 - ► Feature map with one slot per camera position.
 - ► Indexed with current position.

- ▶ Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants:
 - 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied successfully to tasks where memory is required [14, 15].
 - ► How long sequences can be remembered?
 - 2. Spatial memory (inspired by [16] and [17]):
 - ► Feature map with one slot per camera position.
 - ► Indexed with current position.
 - ► Stores image representation at each slot.

- ▶ Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants:
 - 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied successfully to tasks where memory is required [14, 15].
 - ► How long sequences can be remembered?
 - 2. Spatial memory (inspired by [16] and [17]):
 - ► Feature map with one slot per camera position.
 - ► Indexed with current position.
 - ► Stores image representation at each slot.
 - ► Read whole memory with convolutional layers.

Training

► Train for 25M time steps.

Training

- ► Train for 25M time steps.
- ► Results reported across 3 training runs.

Training

- ► Train for 25M time steps.
- ► Results reported across 3 training runs.
- ► Separate training and test sets.

► OpenAl Gym environment interface.

- ► OpenAl Gym environment interface.
- ► Custom proximal policy optimization implementation.

- ► OpenAl Gym environment interface.
- ► Custom proximal policy optimization implementation.
- ▶ PyTorch for models and automatic differentiation.

- ► OpenAl Gym environment interface.
- ► Custom proximal policy optimization implementation.
- ▶ PyTorch for models and automatic differentiation.
- ► Intel Core i9-10900X CPU.

- ► OpenAl Gym environment interface.
- ► Custom proximal policy optimization implementation.
- ▶ PyTorch for models and automatic differentiation.
- ► Intel Core i9-10900X CPU.
- ► NVIDIA GeForce RTX 2080 Ti GPU.

► Compare to simple reference behaviors (baselines).

- ► Compare to simple reference behaviors (baselines).
- ► Fixed test set from each environment.

- ► Compare to simple reference behaviors (baselines).
- ► Fixed test set from each environment.
- ► Metrics:

- ► Compare to simple reference behaviors (baselines).
- ► Fixed test set from each environment.
- Metrics:
 - 1. Average search path length.

- ► Compare to simple reference behaviors (baselines).
- ► Fixed test set from each environment.
- Metrics:
 - 1. Average search path length.
 - 2. Average success rate.

- ► Compare to simple reference behaviors (baselines).
- Fixed test set from each environment.
- Metrics:
 - 1. Average search path length.
 - 2. Average success rate.
 - 3. Success weighted by inverse path length (SPL) [18]. With N test samples, S_i as a binary success indicator, p_i as the taken search path length I_i is the shortest search path length:

$$SPL = \frac{1}{N} \sum_{i=1}^{N} S_i \frac{I_i}{\max(p_i, I_i)}$$

Random: randomly samples actions.

Random: randomly samples actions.

Greedy: greedily selects exploring actions (random if none).

Random: randomly samples actions.

Greedy: greedily selects exploring actions (random if none).

Exhaustive: exhaustively covers search space with minimal revisits.

Random: randomly samples actions.

Greedy: greedily selects exploring actions (random if none).

Exhaustive: exhaustively covers search space with minimal revisits.

Human: human searcher with knowledge of environment.

Random: randomly samples actions.

Greedy: greedily selects exploring actions (random if none).

Exhaustive: exhaustively covers search space with minimal revisits.

Human: human searcher with knowledge of environment.

Handcrafted: prioritize actions that lead to higher blue intensity

(gaussian environment only).

Gaussian Environment

Agent	SPL	Success	Length
random greedy	$0.06 \pm 0.01 \\ 0.17 \pm 0.00$	$0.92 \pm 0.06 \\ 1.00 \pm 0.00$	$369.07 \pm 24.93 \\ 147.12 \pm 2.38$
exhaustive	0.21 ± 0.00	1.00 ± 0.00	83.37 ± 2.88
handcrafted human	0.33 ± 0.00 0.23 ± 0.03	$1.00 \pm 0.00 \ 1.00 \pm 0.00$	$65.20 \pm 1.41 \\ 80.97 \pm 13.49$
temporal spatial	$0.24 \pm 0.03 \\ 0.29 \pm 0.02$	$0.99 \pm 0.01 \\ 0.99 \pm 0.01$	$101.25 \pm 13.32 \\ 72.16 \pm 5.97$

video 1, video 2, video 3.

Terrain Environment

SPL	Success	Length
0.06 ± 0.01	0.89 ± 0.04	366.05 ± 26.96
0.17 ± 0.01	1.00 ± 0.00	141.01 ± 2.31
0.22 ± 0.00	1.00 ± 0.00	84.11 ± 0.84
0.26 ± 0.02	1.00 ± 0.00	$\textbf{76.73} \pm \textbf{5.33}$
0.25 ± 0.02 0.27 ± 0.01	1.00 ± 0.01 1.00 ± 0.00	$103.76 \pm 11.69 \\ 79.60 \pm 6.88$
	$0.06 \pm 0.01 \\ 0.17 \pm 0.01 \\ 0.22 \pm 0.00 \\ 0.26 \pm 0.02$	$ \begin{array}{cccc} 0.06 \pm 0.01 & 0.89 \pm 0.04 \\ 0.17 \pm 0.01 & 1.00 \pm 0.00 \\ 0.22 \pm 0.00 & 1.00 \pm 0.00 \\ 0.26 \pm 0.02 & 1.00 \pm 0.00 \\ 0.25 \pm 0.02 & 1.00 \pm 0.01 \\ \end{array} $

video 1, video 2, video 3.

Camera Environment

Agent	SPL	Success	Length
random	0.04 ± 0.00	0.62 ± 0.03	545.09 ± 56.25
greedy	0.12 ± 0.01	0.97 ± 0.01	255.60 ± 10.44
exhaustive	0.37 ± 0.00	1.00 ± 0.00	67.03 ± 0.00
human	0.68 ± 0.08	1.00 ± 0.00	38.10 ± 5.72
temporal	0.70 ± 0.02	1.00 ± 0.00	42.36 ± 2.05
spatial	0.66 ± 0.03	1.00 ± 0.00	$\textbf{42.90} \pm \textbf{1.73}$

video 1, video 2, video 3.

► Real-world search tasks usually have large search spaces.

- ► Real-world search tasks usually have large search spaces.
- ► Stronger demands on memory:

- ► Real-world search tasks usually have large search spaces.
- ► Stronger demands on memory:
 - ► Remember visited positions.

- ► Real-world search tasks usually have large search spaces.
- ► Stronger demands on memory:
 - ► Remember visited positions.
 - ► Remember appearance of environment.

- ► Real-world search tasks usually have large search spaces.
- Stronger demands on memory:
 - ► Remember visited positions.
 - ► Remember appearance of environment.
- \blacktriangleright Compare memories on 10×10 , 15×15 , and 20×20 versions of gaussian environment.

Experiment III: Generalization From Limited Samples

► Real-world tasks usually have limited training samples.

Experiment III: Generalization From Limited Samples

- ► Real-world tasks usually have limited training samples.
- ► Train on 500, 1 000, 5 000 and 10 000 samples of terrain environment.

Experiment III: Generalization From Limited Samples

- ► Real-world tasks usually have limited training samples.
- ► Train on 500, 1 000, 5 000 and 10 000 samples of terrain environment.
- ► Test on held out samples from full distribution.

► Architecture:

- ► Architecture:
 - ▶ Spatial memory: architecture scales to larger search spaces and generalizes better.

- ► Architecture:
 - ► Spatial memory: architecture scales to larger search spaces and generalizes better.
 - ► Temporal memory: sufficient (and better) for smaller search spaces.

- ► Architecture:
 - ► Spatial memory: architecture scales to larger search spaces and generalizes better.
 - ► Temporal memory: sufficient (and better) for smaller search spaces.
- ► Approach:

- ► Architecture:
 - ► Spatial memory: architecture scales to larger search spaces and generalizes better.
 - ► Temporal memory: sufficient (and better) for smaller search spaces.
- ► Approach:
 - ► Search performance: better than simple baselines, comparable to human, worse than handcrafted.

- ► Architecture:
 - ► Spatial memory: architecture scales to larger search spaces and generalizes better.
 - ► Temporal memory: sufficient (and better) for smaller search spaces.
- ► Approach:
 - ► Search performance: better than simple baselines, comparable to human, worse than handcrafted.
 - ► Sample efficiency: relatively many samples needed even for simple environments.

► Improvements to approach.

- ► Improvements to approach.
 - ► Neural network architecture.

- ► Improvements to approach.
 - ► Neural network architecture.
 - ► Reinforcement learning algorithm.

- ► Improvements to approach.
 - ► Neural network architecture.
 - ► Reinforcement learning algorithm.
 - ► Reward signal design.

- ► Improvements to approach.
 - ► Neural network architecture.
 - ► Reinforcement learning algorithm.
 - ► Reward signal design.
- ► Evaluate on realistic search scenarios.

- ► Improvements to approach.
 - ► Neural network architecture.
 - ► Reinforcement learning algorithm.
 - ► Reward signal design.
- ► Evaluate on realistic search scenarios.
 - ► Does the approach scale?

- ► Improvements to approach.
 - ► Neural network architecture.
 - ► Reinforcement learning algorithm.
 - ► Reward signal design.
- ► Evaluate on realistic search scenarios.
 - ► Does the approach scale?
 - ► Difficult detection problems.

- ► Improvements to approach.
 - ► Neural network architecture.
 - ► Reinforcement learning algorithm.
 - ► Reward signal design.
- Evaluate on realistic search scenarios.
 - ► Does the approach scale?
 - ► Difficult detection problems.
 - ► Noise and higher variance.

References I

 A. Andreopoulos and J. K. Tsotsos, "A theory of active object localization," in 2009 IEEE 12th International Conference on Computer Vision, pp. 903–910.
 citations (Crossref) [2022-05-19] ISSN: 2380-7504.

References II

- [4] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver, "Grandmaster level in StarCraft II using multi-agent reinforcement learning," vol. 575, no. 7782, pp. 350–354.
 Number: 7782 Publisher: Nature Publishing Group.
- [5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, "Planning and acting in partially observable stochastic domains," vol. 101, no. 1, pp. 99–134.
- [6] V. Mnih, N. Heess, A. Graves, and k. kavukcuoglu, "Recurrent models of visual attention," in *Advances in Neural Information Processing Systems*, vol. 27, Curran Associates, Inc.
- [7] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell, "Learning to navigate in complex environments,"
- [8] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi, "Target-driven visual navigation in indoor scenes using deep reinforcement learning," in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3357–3364. 474 citations (Crossref) [2022-05-19].

References III

- [9] J. C. Caicedo and S. Lazebnik, "Active object localization with deep reinforcement learning,"
- [10] F.-C. Ghesu, B. Georgescu, Y. Zheng, S. Grbic, A. Maier, J. Hornegger, and D. Comaniciu, "Multi-scale deep reinforcement learning for real-time 3d-landmark detection in CT scans," vol. 41, no. 1, pp. 176–189.
- [11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms,"
- [12] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, "Deep reinforcement learning that matters," vol. 32, no. 1. Number: 1.
- [13] S. Hochreiter and J. Schmidhuber, "Long short-term memory," vol. 9, no. 8, pp. 1735–1780. Conference Name: Neural Computation.
- [14] M. Hausknecht and P. Stone, "Deep recurrent q-learning for partially observable MDPs,"
- [15] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, "Asynchronous methods for deep reinforcement learning,"
- [16] E. Parisotto and R. Salakhutdinov, "Neural map: Structured memory for deep reinforcement learning,"
- [17] S. Gupta, V. Tolani, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, "Cognitive mapping and planning for visual navigation,"

References IV

[18] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, and A. R. Zamir, "On evaluation of embodied navigation agents,"

Search Paths I

Search Paths I

Environment sample

Search Paths I

Environment sample

Random baseline

Search Paths II

Search Paths II

Environment sample

Search Paths II

Environment sample

Greedy baseline

Search Paths III

Search Paths III

Environment sample

Search Paths III

Environment sample

Exhaustive baseline

Search Paths IV

Search Paths IV

Environment sample

Search Paths IV

Environment sample

Handcrafted baseline

Search Paths V

Search Paths V

Environment sample

Search Paths V

Environment sample

Temporal memory

Search Paths VI

Search Paths VI

Environment sample

Search Paths VI

Environment sample

Spatial memory

Memory Viualization

PCA decomposition of spatial memory after episode.