Problema 4. Demuestre que el principio del buen orden implica el principio de inducción matemática.

Sea P(n) una proposición definida para toda $n \in \mathbb{N}$. Suponga que P(1) es verdadero y si P(k) es verdadero para un natural k, entonces P(k+1) también es verdadero. Demostraremos que P(n) es verdadero para todo $n \in \mathbb{N}$.

Para esto, considere el conjunto $A = \{n \in \mathbb{N} : P(n) \text{ es falso.}\}$ y suponga que es no vacío. Entonces, por el principio del buen orden, A contiene un primer elemento, digamos m. Como P(1) es verdadero, entonces m > 1. Por la definición de m, m-1 no pertenece a A. Entonces P(m-1) es verdadero, lo cual implica que P((m-1)+1) = P(m) también es verdadero. Pero entonces m no pertenece a A, lo cual es una contradicción. Por tanto, el supuesto que A es no vacío es falso. Luego, P(n) es verdadero para todo $n \in \mathbb{N}$.

Problema 5. Utilice inducción matemática para demostrar el principio del buen orden.

Sea S un subconjunto no vacío de $\mathbb N$ y consideremos la proposición P(n): si $n \in S$, entonces S tiene un primer elemento. Demostraremos por inducción que P(n) es verdadero para toda $n \in \mathbb N$.

Observe que 1 < m para todo $m \in N$. Luego, si $1 \in S$, entonces 1 es el elemento mínimo de S. Es decir, P(1) es verdadero. Suponga ahora que P(k) es verdadero para todo natural k < m y suponga que P(m) es falso. Es decir, $m \in S$, pero S no tiene primer elemento. Como $m \in S$, este no es el primer elemento de S y por tanto existe $n \in S$ tal que n < m. Pero, P(n) es verdadero, entonces S tiene primer elemento, lo cual es una contradicción.

Problema 6. Sea $f: X \to Y$ una función de un conjunto X no vacío en un conjunto Y. Demuestre que f es 1-1 si y solo si existe una función $g: Y \to X$ tal que $g \circ f$ es la función identidad en X.

Suponga que f es 1-1. Sea $x_0 \in X$. Defininamos la función $g: Y \to X$ como g(y) = x si f(x) = y. Luego, $(g \circ f)(x_0) = g(f(x_0)) = x_0$. Hemos demostrado que $(g \circ f)$ es la función identidad en X.

Suponga que existe una función $g: Y \to X$ tal que $g \circ f$ es la identidad en X. Sean x_1, x_2 en X tales que $f(x_1) = f(x_2)$. Entonces $x_1 = g(f(x_1)) = g(f(x_2)) = x_2$. Por tanto f es 1-1.

Problema 7. Sea $f: X \to Y$ una función de X en Y. Demuestre que f es *sobre* si y solo si existe una función $g: Y \to X$ tal que $f \circ g$ es la función identidad en Y.

Suponga que existe una función $g: Y \to X$ tal que $f \circ g$ es la función identidad en Y. Sea $y \in Y$. Por definición $(f \circ g)(y) = y$. Entonces g(y) es un elemento de X que satisface f(g(y)) = y. Por tanto f es una función sobre. **Incompleto.**

Problema 16. Demuestre que:

a)
$$f[\bigcup A_{\lambda}] = \bigcup f[A_{\lambda}].$$

- b) $f[\bigcap A_{\lambda}] \subset \bigcap f[A_{\lambda}]$.
- c) De un ejemplo donde

$$f[\bigcap A_{\lambda}] \neq \bigcap f[A_{\lambda}].$$

En lo siguiente asumiremos que $\{A_{\lambda}\}$ está indexada por un conjunto Λ .

- a) Demostraremos primero que $f[\bigcup A_{\lambda}] \subset \bigcup f[A_{\lambda}]$. Sea $y \in f[\bigcup A_{\lambda}]$. Entonces existe $x \in \bigcup A_{\lambda}$ tal que f(x) = y. Luego existe $\bar{\lambda} \in \Lambda$ tal que $x \in A_{\bar{\lambda}}$. Entonces $y = f(x) \in f[A_{\bar{\lambda}}] \subset \bigcup f[A_{\lambda}]$. Por tanto, $f[\bigcup A_{\lambda}] \subset \bigcup f[A_{\lambda}]$. Para demostrar la segunda contención, sea $y \in \bigcup f[A_{\lambda}]$. Entonces existe $\bar{\lambda} \in \Lambda$ tal que $y \in f[A_{\bar{\lambda}}]$. Entonces existe $x \in A_{\bar{\lambda}}$ tal que f(x) = y. Como $A_{\bar{\lambda}} \subset \bigcup A_{\lambda}$, entonces $y = f(x) \in f[A_{\bar{\lambda}}] \subset f[\bigcup A_{\lambda}]$. Por tanto, $f[\bigcup A_{\lambda}] \supset \bigcup f[A_{\lambda}]$. Podemos concluir que $f[\bigcup A_{\lambda}] = \bigcup f[A_{\lambda}]$.
- b) Sea $y \in f[\cap A_{\lambda}]$. Entonces existe $x \in \cap A_{\lambda}$ tal que f(x) = y. Entonces, para toda $\lambda \in \Lambda$, $x \in A_{\lambda}$. Esto implica que $y = f(x) \in f[A_{\lambda}]$ para todo $\lambda \in \Lambda$. Luego, $y = f(x) \in \cap f[A_{\lambda}]$. Por tanto, $f[\cap A_{\lambda}] \subset \cap f[A_{\lambda}]$.
- c) Considere la función $f: \mathbb{R} \to \mathbb{R}$ definida como $f(x) = x^2$ para todo $x \in \mathbb{R}$. Observe que $f[[0,\infty)] = [0,\infty) = f[(-\infty,0]]$. Entonces $[0,\infty) = f[[0,\infty)] \cap f[(-\infty,0]] \neq f[(-\infty,0] \cap [0,\infty)] = f[\{0\}] = \{0\}$.

Problema 17. Demuestre que:

- a) $f^{-1}[\bigcup B_{\lambda}] = \bigcup f^{-1}[B_{\lambda}].$
- b) $f^{-1}[\cap B_{\lambda}] = \cap f^{-1}[B_{\lambda}].$
- c) $f^{-1}[B^c] = f^{-1}[B]^c$, para $B \subset Y$.

En lo siguiente asumiremos que $\{B_{\lambda}\}$ está indexada por un conjunto Λ .

a) Primero demostraremos que $f^{-1}[\bigcup B_{\lambda}] \subset \bigcup f^{-1}[B_{\lambda}]$. Sea $x \in f^{-1}[\bigcup B_{\lambda}]$. Entonces $f(x) \in \bigcup B_{\lambda}$. Luego, existe un $\bar{\lambda} \in \Lambda$ tal que $f(x) \in B_{\bar{\lambda}}$. Entonces $x \in f^{-1}[B_{\bar{\lambda}}] \subset \bigcup f^{-1}[B_{\lambda}]$. Por tanto, $f^{-1}[\bigcup B_{\lambda}] \subset \bigcup f^{-1}[B_{\lambda}]$.

Ahora bien, sea $x \in \bigcup f^{-1}[B_{\lambda}]$. Entonces existe $\bar{\lambda} \in \Lambda$ tal que $x \in f^{-1}[B_{\bar{\lambda}}]$. Esto implica que $f(x) \in B_{\bar{\lambda}} \subset \bigcup B_{\lambda}$. Lo cual implica que $x \in f^{-1}[\bigcup B_{\lambda}]$. Por tanto, $f^{-1}[\bigcup B_{\lambda}] \supset \bigcup f^{-1}[B_{\lambda}]$.

Se concluye que $f^{-1}[\bigcup B_{\lambda}] = \bigcup f^{-1}[B_{\lambda}].$

b) Sea $x \in f^{-1}[\cap B_{\lambda}]$. Entonces $f(x) \in \cap B_{\lambda}$; esto es, $f(x) \in B_{\lambda}$, para todo $\lambda \in \Lambda$. Luego, $x \in f^{-1}[B_{\lambda}]$ para todo $\lambda \in \Lambda$. Lo cual, implica que $x \in \cap f^{-1}[B_{\lambda}]$. Por tanto, $f^{-1}[\cap B_{\lambda}] \subset \cap f^{-1}[B_{\lambda}]$.

Para la segunda contención, sea $x \in \bigcap f^{-1}[B_{\lambda}]$. Entonces, $x \in f^{-1}[B_{\lambda}]$, para todo $\lambda \in \Lambda$. Esto implica que $f(x) \in B_{\lambda}$ para todo $\lambda \in \Lambda$; es decir, $f(x) \in \bigcap B_{\lambda}$. Se sigue que $x \in f^{-1}[\bigcap B_{\lambda}]$. Por tanto, $f^{-1}[\bigcap B_{\lambda}] \supset \bigcap f^{-1}[B_{\lambda}]$.

Concluimos que $f^{-1}[\cap B_{\lambda}] = \bigcap f^{-1}[B_{\lambda}].$

c) Sea $x \in f^{-1}[B^c]$. Entonces $f(x) \in B^c$; es decir, f(x) no pertence a B. Luego, x no pertence a $f^{-1}[B]$. Entonces $f(x) \in f^{-1}[B]^c$. Por tanto, $f^{-1}[B^c] \subset f^{-1}[B]^c$. Sea $x \in f^{-1}[B]^c$. Entonces x no pertence a $f^{-1}[B]$. Luego, f(x) no es elemento de B; es decir, $f(x) \in B^c$. Esto implica que $x \in f^{-1}[B]$. Por tanto, $f^{-1}[B^c] \supset f^{-1}[B]^c$. Por lo anterior, podemos concluir que $f^{-1}[B^c] = f^{-1}[B]^c$.

Problema 18. Demuestre que si f mapea X en Y y $A \subset X$, $B \subset Y$, entonces:

- a) $f[f^{-1}[B]] \subset B \text{ y } f^{-1}[f[A]] \supset A$.
- b) De ejemplos que muestre que no se cumple la igualdad de conjuntos.
- c) Demuestre que si f mapea X sobre Y y $B \subset Y$, entonces

$$f[f^{-1}[B]] = B.$$

- a) Sea $y \in f[f^{-1}[B]]$. Entonces existe $x \in f^{-1}[B]$ tal que f(x) = y. Como $x \in f^{-1}[B]$, entonces $f(x) = y \in B$. Por tanto $f[f^{-1}[B]] \subset B$. Ahora, sea $x \in A$. Entonces $f(x) \in f[A]$. Luego, $x \in f^{-1}[f[A]]$. Por tanto $f^{-1}[f[A]] \supset A$.
- b) Sea $f: \mathbb{R} \to \mathbb{R}$ definida como $f(x) = x^2$ para toda $x \in \mathbb{R}$. Observe que, si $B = [-1, \infty)$, entonces $f[f^{-1}[B]] = f(\mathbb{R}) = [0, \infty) \neq B$. Por otro lado, si A = B, entonces $f^{-1}[f[A]] = f^{-1}[[0, \infty)] = \mathbb{R} \neq A$.
- c) Suponga que f es sobre. Sea $y \in B$. Entonces existe $x \in X$ tal que f(x) = y. Luego $x \in f^{-1}[B]$. Esto implica que $y = f(x) \in f[f^{-1}[B]]$. Por tanto $f[f^{-1}[B]] \supset B$. Con lo anterior y con el inciso a), se concluye que $f[f^{-1}[B]] = B$.

Problema 20. Sea $f: X \to Y$ una función sobre. Entonces existe una función $g: Y \to X$ tal que $f \circ g$ es la función identidad en Y.

Sea C el conjunto definido como

$$C = \{A \subset X : \text{existe } y \in Y \text{ tal que } A = f^{-1}[\{y\}]\}.$$

Por el axioma de elección, existe una función $F:C\to\bigcup_{A\in C}A$ que asigna a cada elemento $A\in C$ un elemento $F(A)\in A$. Como f es sobre, $f^{-1}[\{y\}]\neq\emptyset$, para todo $y\in Y$. Luego $f^{-1}[\{y\}]\in C$ para todo $y\in Y$. Entonces podemos definir $g:Y\to X$ como $g(y)=F(f^{-1}[\{y\}])$, para todo $y\in Y$. Si $y\in Y$, entonces $(f\circ g)(y)=f(g(y))=f(F(f^{-1}[\{y\}]))=y$, ya que $F(f^{-1}[\{y\}])\in f^{-1}[\{y\}]$. Por tanto, $f\circ g$ es la función identidad en Y.

Problema 22. Demuestre la Proposición 6 utilizando las Proposiciones 4 y 5.

Sea *f* una función definida como sigue:

$$(p,q,1) \longmapsto \frac{p}{q}$$

$$(p,q,2) \longmapsto \frac{-p}{q}$$

$$(1,1,3) \longmapsto 0$$

donde p,q son números naturales. Esta es una función definida en un subconjunto del conjunto de todas las suceciones finitas de $\mathbb N$ y rango igual a $\mathbb Q$. Como $\mathbb N$ es numerable, por la Proposición 5, el conjunto de todas las suceciones finitas de $\mathbb N$ es numerable. Por la Proposición 4, el dominio de f es numerable. Luego, $\mathbb Q$ se puede poner en correspondencia 1 a 1 con el conjunto de los números naturales. Por tanto $\mathbb Q$ es numerable.

Problema 23. Demuestre que el conjunto E de sucesiones infinitas de $\{0,1\}$ es no numerable.

Suponga que E es numerable. Entonces E es el rango de una función f definida en \mathbb{N} . Note que, para toda $m \in \mathbb{N}$, $f(m) = (a_{mn})_{n=1}^{\infty}$ con $\{a_n\} \subset \{0,1\}$. Ahora bien, definamos la sucesión $(b_n)_{n=1}^{\infty}$ como $b_n = 1 - a_{nn}$. Observe que $\{b_n\} \subset \{0,1\}$, y por tanto $(b_n)_{n=1}^{\infty} \in E$. Pero $(b_n)_{n=1}^{\infty} \neq (a_{mn})_{n=1}^{\infty} = f(m)$ para toda $m \in \mathbb{N}$. Es decir, encontramos un elemento de E que no está en el rango de f, lo cual es una contradicción. Por tanto, la suposición de que E es numerable es falsa.

Problema 29. De un ejemplo de un conjunto parcialmente ordenado que tiene un elemento mínimo único pero que no tiene primer elemento.

Ejemplo. Sea $E = \{(-\frac{1}{n}, \frac{1}{n}) : n \in \mathbb{N}\} \cup \{\{2\}, \{2,3\}\}\}$. Consideremos el orden parcial \subset usual de conjuntos. Observe que el elemento $\{2\}$ es minimal en E y es único. Sin embargo, el conjunto E no tiene primer elemento.