Introduction to Oracle VM (Xen) Networking

Dongli Zhang

Oracle Asia Research and Development Centers (Beijing)

dongli.zhang@oracle.com

May 30, 2017

Plan

- Paravirtualized Networking
 - vif, bridge, bond
- Emulated Networking
- Environment:
 - xen: Oracle VM server 3.3.3 with xen-4.3.0-55.el6.47.33.x86_64
 - dom0: Unbreakable Enterprise Kernel v4.1.12-89
 - domU: Unbreakable Enterprise Kernel v4.1.12-89
- Prerequisite Knowledge: http://finallyjustice.github.io/xen-arch.pdf
 - xen framework
 - PVM vs. HVM vs. PVHVM
 - event channel, grant table
 - xen admin hands-on experience (preferred)

Paravirtual xen-netfront/xen-netback framework

xen-netfront/xen-netback source code

Unbreakable Enterprise Kernel v4.1.12-89

- drivers/net/xen-netfront.c
- drivers/net/xen-netback/xenbus.c
- drivers/net/xen-netback/netback.c
- drivers/net/xen-netback/interface.c

kernel upstream v4.9-rc8

- drivers/net/xen-netfront.c
- drivers/net/xen-netback/xenbus.c
- drivers/net/xen-netback/netback.c
- drivers/net/xen-netback/interface.c
- drivers/net/xen-netback/rx.c
- drivers/net/xen-netback/hash.c

Paravirtual networking scenario 1/2

Paravirtual networking scenario 2/2

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	
device discovery	PCI Tree	
device configuration	PCI Config Space (IO/MMIO)	
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	
device configuration	PCI Config Space (IO/MMIO)	
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	Memory Ring Buffer
shared memory	N/A or IOMMU	
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	Memory Ring Buffer
shared memory	N/A or IOMMU	Grant Table
interrupt	IOAPIC, MSI, MSI-X	

	PCI driver	PV driver
device abstraction	pci_device, pci_driver	xenbus_device, xenbus_driver
device discovery	PCI Tree	Xenstore
device configuration	PCI Config Space (IO/MMIO)	Xenstore
data flow	DMA Ring Buffer	Memory Ring Buffer
shared memory	N/A or IOMMU	Grant Table
interrupt	IOAPIC, MSI, MSI-X	Event Channel

pv xmit: front —> backend 1/3

pv xmit: front —> backend 2/3

pv xmit: front —> backend 3/3

pv xmit: backend —> bridge —> bond

pv xmit: bond —> physical NIC

pv recv: physical NIC —> bond —> bridge

pv recv: bridge —> backend

pv recv: backend —> frontend

xen-netfront/xen-netback summary: req/rsp protocol

netfront to netback (produce req)

- 1st page of linear data (skb->data)
- extra info (xen_netif_extra_info)
- the rest of linear data (skb->data)
- all skb fragments (skb_shinfo(skb)->frags)

netback to netfront (produce rsq)

- 1st page of linear data (skb->data)
- extra info (xen_netif_extra_info)
- the rest of linear data (skb->data)
- all skb fragments (skb_shinfo(skb)->frags)

xen-netfront/xen-netback summary: irq and napi

features: multiqueue (default)

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation
- TSO would postpone segmentation to as late (low level) as possible

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation
- TSO would postpone segmentation to as late (low level) as possible
- TSO info is shared via "struct xen_netif_extra_info gso" in ring buffer
 - gso.gso->u.gso.size = skb_shinfo(skb)->gso_size;
 - gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation
- TSO would postpone segmentation to as late (low level) as possible
- TSO info is shared via "struct xen_netif_extra_info gso" in ring buffer
 - gso.gso->u.gso.size = skb_shinfo(skb)->gso_size;
 - gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
- TSO and other offload features are stored in xenstore (e.g., feature-gso-tcpv4)
 - .ndo_fix_features = xennet_fix_features
 - .ndo_set_features = xennet_set_features

- Segmentation Offload
 - GSO (Generic Segmentation Offload): software segmentation
 - TSO (TCP Segmentation Offload): hardware segmentation
- TSO would postpone segmentation to as late (low level) as possible
- TSO info is shared via "struct xen_netif_extra_info gso" in ring buffer
 - gso.gso->u.gso.size = skb_shinfo(skb)->gso_size;
 - gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
- TSO and other offload features are stored in xenstore (e.g., feature-gso-tcpv4)
 - .ndo_fix_features = xennet_fix_features
 - .ndo_set_features = xennet_set_features
- checksum offload
 - XEN_NETTXF_csum_blank: Protocol checksum field is blank in the packet (hardware offload)
 - XEN_NETTXF_data_validated: Packet data has been validated against protocol checksum

features: multicast

xen-netfront/xen-netback init

performance tuning

- netfront/netback multiqueue
- Limit and pin dom0 CPUs to first NUMA socket
- Interrupt affinity to reduce CPU 0 workload
- domU vcpu affinity to improve memory access performance
- Jumbo frame
- NIC offload
- TCP Parameter Settings

Interesting works related to paravirtual I/O

- Achieving 10 Gb/s Using Safe and Transparent Network Interface Virtualization. VEE 2009
- Efficient and Scalable Paravirtual I/O System. USENIX ATC 2013
- rIOMMU: Efficient IOMMU for I/O Devices that Employ Ring Buffers. ASPLOS 2015
- vRIO: Paravirtual remote I/O. ASPLOS 2016

Networking Emulation with QEMU

qemu arguments

pvm

/usr/lib/xen/bin/qemu-dm -d 4 -serial pty -domain-name testpv -videoram 4 -k en-us -vnc 0.0.0.0:0 -vncunused -M xenpv

pvhvm

/usr/lib/xen/bin/qemu-dm -d 5 -domain-name oel65.xm -videoram 4 -k en-us -vnc 0.0.0.0:0 -vncunused -vcpus 2 -vcpu_avail 0x3 -boot dc -serial pty -acpi -net none -M xenfv

hvm

/usr/lib/xen/bin/qemu-dm -d 3 -domain-name oel65.xm -videoram 4 -k en-us -vnc 0.0.0.0:0

- -vncunused -vcpus 2 -vcpu_avail 0x3 -boot dc -serial pty -acpi
- -net nic,vlan=1,macaddr=00:16:e3:cc:64:a9,model=e1000
- -net tap,vlan=1,ifname=vif3.0-emu,bridge=xenbr0,script=no,downscript=no
- -M xenfv

xen paravirtual networking workflow

- xen paravirtual networking workflow
- xen paravirtual networking framework

- xen paravirtual networking workflow
- xen paravirtual networking framework
- xen paravirtual networking init, protocol, features

- xen paravirtual networking workflow
- xen paravirtual networking framework
- xen paravirtual networking init, protocol, features
- xen paravirtual networking performance

- xen paravirtual networking workflow
- xen paravirtual networking framework
- xen paravirtual networking init, protocol, features
- xen paravirtual networking performance
- xen emulated networking

