Базы данных нормальные формы

В.Н.Лукин

04.11.2020

Функциональная зависимость

- Цели, которым служит база данных, снижение избыточности и повышение надежности хранения информации. Любое знание об ограничениях на данные, может служить этим целям.
- Один из способов формализации этих знаний установление зависимости между данными, отражающей их семантику, которая выражается в функциональных зависимостях схемы.
- Функциональная зависимость имеет место, если значение кортежа на одном множестве атрибутов однозначно определяет его значение на другом.

Функциональная зависимость определение

Пусть R — схема отношения, X, $Y \subseteq R$. Множество атрибутов Y функционально зависит от X ($X \to Y$) тогда и только тогда, когда в любой момент времени для равных значений X значения Y тоже равны: $\forall r(R), t_i, t_j \in r$: $t_i(X) = t_j(X) \Rightarrow t_i(Y) = t_j(Y)$.

Равнозначное утверждение: $t_i(Y) \neq t_j(Y) \Rightarrow t_i(X) \neq t_j(X)$. Левая часть функциональной зависимости (X) — ∂E

Функциональная зависимость пример

Задан график ежедневного выполнения авиарейсов, на которые назначается первый пилот. Зададим его отношением со следующей схемой:

график (Пилот, Рейс, Дата, Время).

Зависимость атрибутов определяется ограничениями:

- для каждого рейса определено одно время вылета;
- пилот в один день и в одно время выполняет один рейс;
- на рейс в заданную дату назначается один пилот.

Функциональные зависимости:

- Рейс → Время
- (Пилот, Дата, Время) \rightarrow Рейс
- (Рейс, Дата) \rightarrow Пилот

Нормализация (1)

- Некоторые функциональные зависимости могут быть нежелательными в конкретной схеме, так как они при модификации базы данных приводят к трудностям, аномалиям модификации (добавления, изменения и удаления).
- Для приведения схемы в корректный вид используется замена одного множества отношений другим, сохраняющим её эквивалентность.
- Такое преобразование составляет суть процесса нормализации.

Нормализация (2)

- В результате исходное небольшое число таблиц с «большой» схемой и непривлекательными свойствами, заменяется большим числом таблиц с «меньшей» схемой без этих свойств.
- Говорят, что полученные отношения удовлетворяют некоторой *нормальной форме*.
- Нормальные формы составляют иерархию, в ней формы с большими номерами не обладают некоторыми нежелательными свойствами форм с меньшими номерами. Для реляционных БД существует шесть уровней нормализации.

Нормализация (3)

- Проектирование данных не всегда сопровождается процессом нормализации. Обычно при создании информационной модели проектировщик, при естественном порядке построения, строит её сразу в третьей нормальной форме.
- К. Дейт вообще утверждает, что отношения, полученные при проектировании, будут сразу в пятой нормальной форме, если проектировщик не злонамерен.
- Некоторые специалисты считают, что достаточно третьей или четвёртой формы.

- Согласно определению отношения, все его атрибуты атомарны, то есть не могут быть разделены семантически на более мелкие элементы.
- Отношение, обладающее этим свойством, называется нормализованным или, что то же самое, находящимся в первой нормальной форме (1НФ).
- Отношение находится в первой нормальной форме $(1H\Phi)$, если все значения его атрибутов атомарны, то есть для каждого отношения r(R) и $A \in R$, adom(A,r) атомарен.

пример

Расписание авиарейсов задано отношением *Расписание* со схемой (*Рейс, Пункт назначения, Вылет*). Атрибут *Вылет* обозначает день недели и время вылета.

(Рейс,	Пункт назначения,	Вылет)
1	Владивосток	пн, 9:40
1	Владивосток	cp, 9:40
347	Уфа	пн, 20:00
347	Уфа	вт, 20:00

Запрос «Выдать рейсы до Уфы во вторник» невозможен: день недели — часть атомарного атрибута. Заменим атрибут Вылет парой (День, Время): расписание1(Рейс, Пункт назначения, День, Время).

- Распространенная ошибка при проектировании объявить в качестве первичного ключа суперключ. Это приводит к значительным неприятностям.
- Функциональная зависимость $X = (A_1, A_2, ..., A_k) \to B$ полная, если B зависит от каждого $A_i \in X$. Если же существует $X' \to B$, $X' \subset X$, функциональная зависимость $X \to B$ неполная
- Отношение находится во *второй* нормальной форме (2НФ), если оно находится в 1НФ и каждый непервичный атрибут функционально полно зависит от ключа.

10

2 Нормальная форма пример (1)

Рассмотрим задачу поставок товара поставщиками, если определены следующие ограничения:

- товар могут поставлять разные поставщики;
- поставщик может поставлять разные товары;
- цена одинаковых товаров одинакова.

Первые два ограничения говорят о том, что ключ отношения **поставки** составляет пара атрибутов (<u>Поставщик</u>, <u>Товар</u>):

поставки(Поставщик, Товар, Цена),

что соответствует функциональной зависимости

 \square оставщик, \square овар \rightarrow Цена

• Третье ограничение порождает функциональную зависимость $extit{Товар} o extit{Цена}$

2 Нормальная форма пример (2)

Цена функционально зависит от части ключа, то есть отношение не находится во второй нормальной форме.

Аномалия включения: новый товар не включается в БД, если поставщик неизвестен.

Аномалия удаления: последний поставщик прекращает поставлять товар — теряются сведения о товаре.

Аномалия обновления: изменение цены влечет полный пересмотр таблицы.

Преобразование:

поставки(<u>Поставщик</u>, <u>Товар</u>) **цена товара**(<u>Товар</u>, Цена)

2 Нормальная форма пример (3)

Проектируется учебная база данных, которая должна содержать список студентов. Предлагается схема

студент(Группа, Номер, ФИО),

где *Группа* — номер группы, а *Номер* — номер студента в списке группы. Выясняется, что работать с номерами студентов неудобно, и атрибут *Номер* заменяется на *Номер зачетки*:

студент(Группа, Номер зачетки, ФИО).

Но *Номер зачетки* однозначно определяет студента! Таким образом, ключ превратился в суперключ, а таблица перестала быть во 2НФ, что привело к появлению аномалий (например, студента нельзя включить в список, если он не распределен в конкретную группу).

У отношения во 2НФ, могут быть другие аномалии. Они обнаруживаются, если есть функциональная зависимость атрибута от непервичных.

Атрибут *А транзитивно зависит* от *X,* если есть *Y* такой, что выполняется условие

$$(X \rightarrow Y) \& (Y \rightarrow A) \& (X \rightarrow A), A \notin XY$$

и X функционально не зависит от Y.

Отношение находится в третьей нормальной форме (3*НФ*), если оно находится в 1НФ и в нём нет транзитивной зависимости атрибутов от первичных.

3 Нормальная форма пример (1)

- Решается задача определения складов для отделений больницы. Для руководства больницы важно, чтобы у каждого отделения был склад определенного объема, причем только один.
- Считается, что один склад может предназначаться для разных отделений.
- У отношения со схемой **хранение**(<u>Отделение</u>, Склад, Объем) есть одна функциональная зависимость:

$Omdenehue \rightarrow Cклад$

Но если нужно следить и за состоянием складов отдельно, возникает функциональная зависимость $\mathit{Cклад} \to \mathit{Oбъем}$, и отношение оказалось не в $\mathit{3H\Phi}$.

3 Нормальная форма пример (2)

Аномалия включения: нет возможности добавить сведения о новом складе, для которого нет отделения.

Аномалия удаления: ликвидируется последнее отделение, работающее с некоторым складом, — данные об этом складе становятся недоступными.

Аномалия обновления: изменение объема склада влечет полный пересмотр таблицы.

Преобразование:

хранение(<u>Отделение</u>, Склад) **объем склада**(Склад, Объем)

Нормальная форма Бойса—Кодда (нфбк)

- Нормальная форма Бойса—Кодда одно из базовых понятий в теории нормальных форм, но оно вызывает неоднозначное отношение исследователей.
- Некоторые считают НФБК частным случаем ЗНФ, другие выделяют её как самостоятельную.
- Существуют эквивалентные определений НФБК.
- Определение. Отношение находится в нормальной форме Бойса—Кодда (НФБК), если оно находится в 1НФ и в нем отсутствует зависимость первичных атрибутов от непервичных.

Нормальная форма Бойса—Кодда пример (1)

Студенты занимаются спортом, для каждого вида спорта секция единственная. В секции может быть более одного тренера, но каждый тренер работает только в одной секции. По одному виду спорта студент тренируется только у одного тренера, но может заниматься разными видами спорта.

Очевидно, что существует функциональная зависимость $\underline{Cmydehm}$, $\underline{Bud\ cnopma} \to Tpehep$

Казалось бы, схема отношения должна быть такой:

тренировка(<u>Студент</u>, <u>Вид спорта</u>, Тренер)

Однако из условия единственности вида спорта, которым занимается тренер, следует функциональная зависимость: Тренер \rightarrow Вид спорта

Нормальная форма Бойса—Кодда пример (2)

Аномалия включения: тренер не попадает в БД, пока нет занимающихся у него студентов.

Аномалия удаления: последний студент, который занимается у данного тренера, ушёл — тренера в базе данных не стало.

Аномалия модификации: замена тренера требует пересмотра всей таблицы.

Преобразование:

тренировка(<u>Студент</u>, <u>Тренер</u>) **тренер**(<u>Тренер</u>, Вид спорта)

Многозначная зависимость

- Ошибка при проектировании баз данных наличие в отношении атрибутов, связанных зависимостью «один ко многим» или «многие ко многим», где детерминант содержит один из возможных ключей.
- Для X, Y, $Z \subset R$ существует многозначная зависимость Y от X (обозначается $X \rightarrow Y$), если каждому значению X соответствует множество значений Y, не зависящих от Z.
- То есть, множество значений Y, соответствующее паре (X, Z), зависит от X и не зависит от Z. Многозначная зависимость тривиальна, если либо $X \subseteq Y$, либо $Z = \emptyset$.

Многозначная зависимость пример

Для базы данных учебной работы задали отношение **преподаватель**(<u>Код преп</u>, ФИО, Должность, <u>Читаемый курс</u>)

В нём указан уникальный ключ преподавателя и читаемые им курсы. Атрибуты *Код преп* и *Читаемый курс* находятся в отношении 1:*М*, каждый из этих атрибутов первичен.

<u>Читаемый курс</u> не зависит от других атрибутов, т. е. имеет место многозначная зависимость <u>Код преп</u> \rightarrow <u>читаемый курс</u>.

Если здесь же регистрировать аспирантов, отношение примет вид преподаватель (Код преп, ФИО, Должность, <u>Читаемый курс</u>, <u>Код асп</u>)

В нем, по аналогичным соображениям, появится еще одна многозначная зависимость *Код преп* → *Код асп*.

4 Нормальная форма определение

Отношение находится в четвертой нормальной форме (4НФ), если оно находится в 3НФ и в нем для любой нетривиальной зависимости X → Y множество атрибутов X содержит возможный ключ.

Определения 4НФ у разных авторов несколько различаются. В некоторых работах требуется, чтобы отношение находилось в НФБК, в других этого требования нет, но есть дополнительные условия, следствием которых будет 3НФ или НФБК.

4 Нормальная форма пример

Зависимость между преподавателем, курсами и аспирантами из предыдущего примера приводит не только к избыточности, но и к тому, что при появлении нового аспиранта приходится добавлять столько кортежей, сколько курсов читает этот преподаватель, а при добавлении курса следует добавить столько кортежей, сколько у преподавателя аспирантов.

Преобразование:

преп_курс(Код преп, Читаемый курс)
преп_асп(Код преп, Код асп)
преп(Код преп, ФИО, Должность)

Пусть для схемы R заданы подмножества $R_1, R_2, ..., R_k \subseteq R$. Будем называть их множество $\{R_1, R_2, ..., R_k\}$ полной нетривиальной декомпозицией, если оно отлично от $\{R, \emptyset\}$ и $\{R, R\}$ и при этом $R_1 \cup R_2 \cup ... \cup R_k = R$.

Зависимость по соединению говорит о том, что отношение может быть восстановлено без потерь соединением его проекций на элементы полной нетривиальной декомпозиции. Для отношения r(R):

$$\pi_{R1}(r) \parallel \pi_{R2}(r) \parallel ... \parallel \pi_{Rk}(r) = r(R).$$

Определение. Отношение находится в 5НФ, если оно находится в 1НФ и любая зависимость по соединению определяется его возможными ключами.

- Здесь отношение не разбивается на другие. Оно просто может быть разбито на более удобные отношения и восстановлено, то есть, его проекции состоят из полностью соединимых кортежей.
- Пример факторизация отношения при работе с распределенными базами данных. Когда разделенное оператором фактора отношение будет соединено, мы должны быть уверены в его корректности.
- Исследование 5НФ достаточно сложно, в ряде работ говорится об отсутствии ясной её интерпретации и сомнительной практической применимости. Однако это финальная форма: отношение, находящееся в ней, больше не нормализуется.

5 Нормальная форма пример (1)

Рассмотрим отношение *R*1. Оно находится в 4НФ: нет многозначных зависимостей. Посмотрим, находится ли оно в 5НФ. Если мы обнаружим не полностью соединимые проекции, значит, оно не в 5НФ.

<i>R</i> 1:	(A,	В,	<u>C</u>)	
	\			

a_1	b_1	C ₁
a_1	b_1	C_2
a_2	b_1	C ₁
a_2	b_1	C ₂
a_3	b_1	C ₁
a_3	b_1	C ₂
a_3	b_2	C ₁
a_3	b_2	C_2

5 Нормальная форма пример (2)

Для проекций $R2(\underline{A},\underline{B})$ и $R3(\underline{B},\underline{C})$ условие $R2 \parallel R3 = R1$ выполняется. Но в соединении проекций $R4(\underline{A},\underline{C})$ и R3 уже появляются лишние кортежи, например, $\langle a_1,b_2,c_1\rangle$. Значит, исходное отношение не находится в 5НФ.

R2: $(\underline{A}, \underline{B})$

a_1	b_1
a_2	b_1
a_3	b_1
a_3	b_2

R3: (<u>B</u>, <u>C</u>)

b_1	<i>C</i> ₁
b_1	C_2
b_2	<i>C</i> ₁
b_2	C_2

R4: (A, C)

a_1	<i>C</i> ₁
a_1	C_2
a_2	<i>C</i> ₁
a_2	C_2
a_3	<i>C</i> ₁

Литература

- 1. Ampe Ш. Структурный подход к организации баз данных.
- 2. Дейт К. Руководство по реляционной СУБД DB2.
- *3. Каратыгин С. А., Тихонов А. Ф., Тихонова Л. Н.* Visual FoxPro 7.
- 4. Кренке Д. Теория и практика построения баз данных.
- 5. Кузнецов С. Д. Основы баз данных: учебное пособие.
- 6. Марков А. С., Лисовский К. Ю. Базы данных. Введение в теорию и методологию.
- 7. Мейер Д. Теория реляционных баз данных.