Wydział	Imię i nazwisko		Rok	Grupa	Zespół
WI	1. Dominik Marek				4
	2. Maciej Nowakows	ski			_
PRACOWNIA	Temat:	Nr ćwiczenia			
FIZYCZNA WFiIS AGH	<u>Fale podłużne w ciałach stałych</u> 29				
WFIIS AGH					

1.Cel Ćwiczenia:

• Wyznaczenie modułu Younga dla różnych materiałów, na podstawie prędkości rozchodzenia się fali dźwiękowej w danym materiale.

2.1 Układ pomiarowy

- Komputer stacjonarny z zainstalowanym oprogramowaniem Zelscope
- mikrofon
- Zestaw czterech prętów
- Suwmiarka
- Metr
- Młotek
- Waga elektroniczna

2.2 Dokładności pomiarowe

- Metr 1mm
- Suwmiarka 1mm
- Waga elektroniczna 1g
- Mikrofon wraz systemem Zelscope -25Hz

3. Przebieg doświadczenia:

Po zapoznaniu się z oprogramowaniem Zelscope, przystąpiliśmy do wyznaczenia częstotliwości pierwszych sześciu harmonicznych dla prętów wykonanych kolejno z aluminium, miedzi, mosiądzu i stali. Częstotliwości odczytywaliśmy z oprogramowania Zelscope, które na wykresie obrazowało częstotliwości, zarejestrowane przez mikrofon, po wprawieniu pręta w ruch drgający za pomocą młotka. Następnie przystąpiliśmy do pomiaru wymiarów fragmentów prętów oraz ich masy, w celu wyznaczenia gęstości materiałów, z których wykonane były pręty.

Wzory:

Prędkość:
$$v = \sqrt{\frac{E}{\rho}}$$

Moduł Younga: $E = \rho v^2$

Długość fali: $\lambda_i = \frac{2l}{i}$

Prędkość fali: $v_i = \lambda_i f = 2lf$

Zatem moduł Younga można wyrazić wzorem: $E = 4l^2 f^2 \rho$

Niepewność odchylenia standardowego średniej: $u_{v \circ r} = \sqrt{\sum_{i=1}^{n} (\frac{u(v_i)}{n})^2}$

Niepewność złożona objętości:
$$u(V) = \sqrt{\left[\frac{\partial V}{\partial r}u(r)\right]^2 + \left[\frac{\partial V}{\partial l}u(l)\right]^2} = S$$

Niepewność złożona gęstości:

$$u(\rho) = \sqrt{\left[\frac{\partial \rho}{\partial V} m(V)\right]^2 + \left[\frac{\partial \rho}{\partial m} u(m)\right]^2} = \sqrt{\left[\frac{-mu(V)}{V^2}\right]^2 + \left[\frac{u(m)}{V}\right]^2}$$

Niepewność złożona prędkości rozchodzenia się fali w pręcie:

$$u(v_i) = \sqrt{\left[\frac{\partial v}{\partial l}u(l)\right]^2 + \left[\frac{2v}{\partial f}u(f)\right]^2} = \sqrt{[2fu(l)]^2 + \left[\frac{2lu(f)}{i}\right]^2}$$

Niepewność złożona modułu Younga:

$$u(E) = \sqrt{\left[\frac{\partial E}{\partial \rho}U(\rho)\right]^2 + \left[\frac{\partial E}{\partial v}U(v)\right]^2}$$

4. Wyznaczanie gęstości materiałów.

Materiał	Długość	Długość	Promień	Masa	Gęstość	Niepewność
	pręta	próbki	próbki	próbki	materiału	rozszerzona
	l[m]	$l_P[m]$	r[<i>m</i>]	m[kg]	$\rho\left[\frac{kg}{m^3}\right]$	$U(\rho)\left[\frac{kg}{m^3}\right]$
aluminium	2	0,12	0,008	0,069	2 861,27	170
miedź	2,04	0,12	0,006	0,12	8 846,43	640
mosiądz	2,02	0,12	0,006	0,114	8 404,11	600
stal	1,966	0,12	0,006	0,107	7 888,06	560

4.1 Aluminium

Nr. harmonicznej	Częstotliwość [Hz]	Długość fali λ _i [m]	Prędkość fali $\left[\frac{m}{s}\right]$	Niepewność $\left[\frac{m}{s}\right]$
1	1270,59	4	5082,36	100,03
2	2600,00	2	5200	50,27
3	3882,35	1,333	5176,47	34,23
4	5200,00	1	5200	27,08
5	6482,35	0,8	5185,88	23,83
6	7776,47	0,667	5184,31	22,80

Wartość średniej prędkości dźwięku w aluminium wynosi:

$$\bar{v}_{Al} \approx 5171,6 \frac{m}{s}$$

Niepewność średniej prędkości wynosi:

$$u_{v \le r} \approx 20,77 \frac{m}{s}$$

Niepewność rozszerzona średniej prędkości jest równa:

$$U(v_{sr}) \approx 41,53$$

Niepewność złożona objętości próbki aluminiowej wynosi:

$$u(V_{Al}) \approx 0.64 cm^3$$

Objętość próbki aluminiowej wynosi:

$$V_{A_I} \approx 24,12cm^3$$

Niepewność złożona dla gęstości wynosi:

$$u(\rho_{Al}) \approx 0.086 \frac{g}{cm^3}$$

Niepewność rozszerzona dla gęstości wynosi:

$$u(\rho_{AL}) \approx 0.17 \frac{g}{cm^3}$$

Niepewność złożona modułu Younga dla aluminium:

$$u(E_{Al}) \approx 4.71 \cdot GPa$$

4.2 Miedź

Nr. harmonicznej	Częstotliwość [Hz]	Długość fali λ _i [m]	Prędkość fali $\left[\frac{m}{s}\right]$	Niepewność $\left[\frac{m}{s}\right]$
1	929,41	4,08	3 791,99	100,02
2	1870,59	2,04	3 816	50,14
3	2811,76	1,36	3 823,99	33,80
4	3741,18	1,02	3 816	26,10
5	4623,53	0,816	3 772,8	22,03
6	5623,94	0,68	3 824,28	20,11

Wartość średniej prędkości dźwięku w miedzi wynosi:

$$\bar{v}_{Cu} \approx 3807,51 \frac{m}{s}$$

Niepewność średniej prędkości wynosi:

$$u_{v \le r} \approx 20,57 \frac{m}{s}$$

Niepewność rozszerzona średniej prędkości jest równa:

$$U(v_{sir}) \approx 41.14 \frac{m}{s}$$

Niepewność złożona objętości próbki miedzianej wynosi:

$$u(V_{Cu}) \approx 0.47 cm^3$$

Objętość próbki miedzianej wynosi:

$$V_{Cu} \approx 13,56cm^3$$

Niepewność złożona dla gęstości wynosi:

$$u(\rho_{Cu})\approx 0.32\frac{g}{cm^3}$$

Niepewność rozszerzona dla gęstości wynosi:

$$u(\rho_{Cu}) \approx 0.64 \frac{g}{cm^3}$$

Niepewność rozszerzona modułu Younga dla miedzi:

$$u(E_{Cu}) = 9.30 \cdot GPa$$

4.3 Mosigdz

Nr. harmonicznej	Częstotliwość [Hz]	Długość fali λ _i [m]	Prędkość fali $\left[\frac{m}{s}\right]$	Niepewność $\left[\frac{m}{s}\right]$
1	882,35	4,04	3564,69	100,02
2	1776,47	2,02	3588,47	50,13
3	2647,06	1,346	3562,94	33,75
4	3529,41	1,01	3564,70	25,98
5	4423,53	0,808	3574,21	21,87
6	5317,65	0,673	3578,78	19,77

Wartość średniej prędkości dźwięku w mosiądzu wynosi:

$$\bar{v}_{mo} \approx 3572,30 \frac{m}{s}$$

Niepewność średniej prędkości wynosi:

$$u_{v \le r} \approx 20,55 \frac{m}{s}$$

Niepewność rozszerzona średniej prędkości jest równa:

$$U(v_{\dot{sr}}) \approx 41,09\frac{m}{s}$$

Niepewność złożona objętości próbki mosiężnej wynosi:

$$u(V_{mo})\approx 0.47cm^3$$

Objętość próbki mosiężnej wynosi:

$$V_{mo} \approx 13,56cm^3$$

Niepewność złożona dla gęstości wynosi:

$$u(\rho_{mo}) \approx 0.30 \frac{g}{cm^3}$$

Niepewność rozszerzona dla gęstości wynosi:

$$u(\rho_{mo}) \approx 0.60 \frac{g}{cm^3}$$

Niepewność złożona modułu Younga dla mosiądzu:

$$u(E_{mo}) \approx 8.04 \cdot GPa$$

4.4 Stal

Nr. harmonicznej	Częstotliwość [Hz]	Długość fali λ _i [m]	Prędkość fali $\left[\frac{m}{s}\right]$	Niepewność $\left[\frac{m}{s}\right]$
1	1258,82	3,932	4949,68	100,03
2	2529,41	1,966	4972,82	50,26
3	3764,71	1,311	4935,53	34,17
4	5035,29	0,983	4949,69	26,95
5	6294,12	0,786	4947,17	23,63
6	7564,71	0,655	4954,89	22,51

Wartość średniej prędkości dźwięku w stali wynosi:

$$\bar{v}_{st} \approx 4951,63 \frac{m}{s}$$

Niepewność średniej prędkości wynosi:

$$u_{v \le r} \approx 20,74 \frac{m}{s}$$

Niepewność rozszerzona średniej prędkości jest równa:

$$U(v_{sir}) \approx 41,49\frac{m}{s}$$

Niepewność złożona objętości próbki stalowej wynosi:

$$u(V_{st}) \approx 0.47 cm^3$$

Objętość próbki stalowej wynosi:

$$V_{st} \approx 13,56cm^3$$

Niepewność złożona dla gęstości wynosi:

$$u(\rho_{st}) \approx 0.28 \frac{g}{cm^3}$$

Niepewność rozszerzona dla gęstości wynosi:

$$u(\rho_{st}) \approx 0.56 \frac{g}{cm^3}$$

Niepewność złożona modułu Younga dla mosiądzu:

$$u(E_{st}) \approx 14,11 \cdot GPa$$

5. Wyniki

Materiał	Moduł Younga E [GPa]	Niepewność złożona U(E) [GPa]	Wartość Tabelaryczna E [GPa]
Aluminium	76,53	4,71	72-100 [1]
Miedź	128,25	9,30	100-130 [1]
Mosiądz	107,25	8,04	112.5 [2]
Stal	193,4	14,11	180-210 [1],[2]

6. Wnioski

Wyliczone metodą przedstawioną w doświadczeniu wartości modułu Younga zawierają w swojej niepewności rozszerzonej poprawne wartości tabelaryczne. Wynika to z faktu, że doświadczenie, które dokonaliśmy dzięki wykorzystaniu mikrofonu i specjalistycznego oprogramowania umożliwiało na dokładne zmierzenie prędkości fal wewnątrz materiałów. Dodatkowo dzięki temu, że jednocześnie można było zmierzyć wiele fal harmonicznych na raz można było zmniejszyć ewentualne niepewności pomiarowe, co dodatkowo skutkowało wysoką precyzją wyników tego doświadczenia.

Bibliografia:

- [1] Moduł Younga dla aluminium, miedzi i stali https://www.zwcad.pl/wyszukiwanie-w-bazie-wiedzy/46-zagadnienia-konstrukcyjne/605-modul-younga.html
- [2] Moduł Younga dla mosiądzu i stali https://calculla.pl/modul_younga