

Unit 5: Memory

Contents

Basic Concepts

Characteristic parameters

Memory Hierarchy

Principal Memory

- Technology
- Structure
- Memory map

Bibliography

Digital fundamentals.

Thomas Floyd. Prentice-Hall.

Digital Design.

M. Morris Mano. Prentice-Hall

Introduction to Digital Logic Design.

John P. Hayes. Addison-Wesley

Basic concepts

➤ **Memory**: Part of the computer that stores information: instructions and data.

Organization:

- Address: Identifies memory position
- Content: stored information
- ➤ **Memory cell:** Minimum storing element: one bit
- ➤ Word: group of bits implied in each memory operation (8, 16, 32, 64, ... bits).

It defines data bus size

- > Basic operations:
 - Read (R)
 - Write (W)

Characteristic Parameters (I)

- >Capacity: Maximum quantity of information that a memory system can store
 - Usual measures:

Kilobyte (Kb) =
$$2^{10}$$
 bytes

Megabyte (Mb) =
$$2^{10}$$
 Kb = 2^{20} bytes

Gigabyte (Gb) =
$$2^{10}$$
 Mb = 2^{30} bytes

Terabyte (Tb) =
$$2^{10}$$
 Gb = 2^{40} bytes

- ➤ **Velocity** or **access time**: Elapsed time since the moment a memory address is provided until the data contained in it is accessible
- ➤ Memory cycle: Elapsed time between two consecutive memory accesses.
- ➤ Bit cost: Total memory cost divided by its capacity in bits

Characteristic Parameters (II)

Memory hierarchy

Hierarchy:

- > CPU registers
- > Internal cache
- External cache
- Principal memory (RAM)
- External/secondary storing devices (Hard Discs, CDs, DVDs, pen drive, magnetic tapes, etc...)

RAM Random Access Memory (volatile, read/write)

- SRAM Static RAM
- DRAM Dynamic RAM
 - SDRAM Synchronous Dynamic RAM

ROM Read Only Memory (non-volatile, only read)

- PROM *Programmable ROM* -
- EPROM Erasable PROM
- EEPROM Electrically EPROM -

FLASH – (non-volatile, only read/write). Pen drives, cameras....

Principal Memory: structure (I)

Principal Memory: structure (II)

Example: static RAM 8Kx8

Memory map (I)

Memory map

- Organization and structure of the addressable space in a computer
- It is determined by the quantity of addresses and the size of the content of each address (word size)
 - Size of address bus, m, determines number of addresses, 2^m
 - Size of data bus, n, generally equals the size of the content of each address (word)

Memory map amplification

 Generally a processor is not equipped with all the memory it can address.

RAM and **ROM** positions

 Example: Simplified memory map of 8086 micro processor

2m-1

Memory map (II)

Example of capacity amplification (number of addresses):

Use more memory chips to increase number of addresses – ie of accessible words

Built a 16Kx8 memory system with 8Kx8 chips

Memory map (III)

Example of word size amplification:

Use more memory chips to increase the size of the content of each memory position (word size)

Built a 8Kx16 memory system with 8Kx8 chips

