

FIGURE 1. A dissection D_o with its quiver $Q(D_o)$ (left), a D_o -accordion diagonal (middle) and a D_o -accordion dissection (right).

1. MOTIVATING EXAMPLE: ACCORDION COMPLEXES OF DISSECTIONS

Let P be a convex polygon. We call <u>diagonals</u> of P the segments connecting two non-consecutive vertices of P. A <u>dissection</u> of P is a set D of non-crossing diagonals. It dissects the polygon into <u>cells</u>. We denote by Q(D) the quiver with relations whose vertices are the diagonals of D, whose arrows connect any two counterclockwise consecutive edges of a cell of D, and whose relations are given by triples of counterclockwise consecutive edges of a cell of D. See Figure 1 for an example.

We now consider 2m points on the unit circle alternately colored black and white, and let P_{\circ} (resp. P_{\bullet}) denote the convex hull of the white (resp. black) points. We fix an arbitrary reference dissection D_{\circ} of P_{\circ} . A diagonal δ_{\bullet} of P_{\bullet} is a D_{\circ} -accordion diagonal if it crosses either none or two consecutive edges of any cell of D_{\circ} . In other words the diagonals of D_{\circ} crossed by δ_{\bullet} together with the two boundary edges of P_{\circ} crossed by δ_{\bullet} form an accordion. A D_{\circ} -accordion dissection is a set of non-crossing D_{\circ} -accordion diagonals. See Figure 1 for an example. We call D_{\circ} -accordion complex the simplicial complex $\mathcal{AC}(D_{\circ})$ of D_{\circ} -accordion dissections. This complex appeared in recent works of F. Chapoton [?], A. Garver and T. McConville [?], and T. Manneville and V. Pilaud [?].

For a diagonal δ_{\circ} of D_{\circ} and a D_{\circ} -accordion diagonal δ_{\bullet} intersecting δ_{\circ} , we consider the three edges (including δ_{\circ}) crossed by δ_{\bullet} in the two cells of D_{\circ} containing δ_{\circ} . We define $\varepsilon(\delta_{\circ} \in D_{\circ} \mid \delta_{\bullet})$ to be 1, -1, or 0 depending on whether these three edges form a Z, a Σ , or a Ψ . The **g**-vector of δ_{\bullet} with respect to D_{\circ} is the vector $\mathbf{g}(D_{\circ} \mid \delta_{\bullet}) \in \mathbb{R}^{D_{\circ}}$ whose δ_{\circ} -coordinate is $\varepsilon(\delta_{\circ} \in D_{\circ} \mid \delta_{\bullet})$.

Example 1. When the reference dissection D_{\circ} is a triangulation of P_{\circ} , any diagonal of P_{\bullet} is a D_{\circ} -accordion diagonal. The D_{\circ} -accordion complex is thus an n-dimensional associahedron (of type A), where n = m - 3. In this case, it is known [?] that the D_{\circ} -accordion complex is isomorphic to the 2-term silting complex of the quiver $Q(D_{\circ})$ of the triangulation D_{\circ} (see Section ?? for definitions). The isomorphism sends a diagonal of P_{\bullet} to the 2-term projective complex with the same g-vector.

The initial motivation of this paper was to prove the following extension of Example 1.

Theorem 2. For any reference dissection D_{\circ} , the D_{\circ} -accordion complex is isomorphic to the 2-term silting complex of the quiver $Q(D_{\circ})$.

One possible approach to Theorem 2 would be to provide an explicit bijective map between D_{\circ} -accordion diagonals and 2-term projective complexes for $Q(D_{\circ})$. Such a map is easy to guess using **g**-vectors, but the proof that it is actually a bijection and that it preserves compatibility is intricated. This approach was developed in the more general context of non-kissing complexes of gentle quivers in [?]. In this paper, we use an alternative simpler strategy to obtain Theorem 2, understanding accordion complexes as certain subcomplexes of the associahedron.

For that, consider two nested dissections $D_{\circ} \subset D'_{\circ}$. Observe that any D_{\circ} -accordion diagonal is a D'_{\circ} -accordion diagonal. Conversely a D'_{\circ} -accordion diagonal δ_{\bullet} is a D_{\circ} -accordion diagonal if and only if it does not cross any diagonal δ'_{\circ} of $D'_{\circ} \setminus D_{\circ}$ as a Z or a Z, that is if and only if the δ'_{\circ} -coordinate of its \mathbf{g} -vector $\mathbf{g}(D'_{\circ} \mid \delta_{\bullet})$ vanishes for any $\delta'_{\circ} \in D'_{\circ} \setminus D_{\circ}$. This observation shows the following statement.

1

FIGURE 2. The associahedron (left) and the 2-term silting complex of an oriented triangle (right).

Theorem 3 ([?]). For any two nested dissections $D_{\circ} \subset D'_{\circ}$, the accordion complex $\mathcal{AC}(D_{\circ})$ is isomorphic to the subcomplex of $\mathcal{AC}(D'_{\circ})$ induced by D'_{\circ} -accordion diagonals δ_{\bullet} whose \mathbf{g} -vector $\mathbf{g}(D'_{\circ} \mid \delta_{\bullet})$ lie in the coordinate subspace spanned by elements in D_{\circ} .

Consider now any quiver with relations Q and any subset J of vertices of Q. We call shortcut quiver the quiver with relations Q/J whose vertices are the vertices of Q not in J, whose arrows are the paths in Q with internal vertices in J, and whose relations are inherited from those of Q. For example, quivers of subdissections are shortcut quivers: if $D_o \subset D'_o$, then $Q(D_o) = Q(D'_o)/(D'_o \setminus D_o)$. The main result of this paper is the following statement.

Theorem 4. For any quiver with relations Q and any subset J of vertices of Q, the 2-term silting complex SC(Q/J) for the shortcut quiver Q/J is isomorphic to the subcomplex of the 2-term silting complex SC(Q) induced by 2-term projective complexes whose \mathbf{g} -vector lie in the coordinate subspace spanned by vertices not in J.

Combining Theorems 3 and 4 together with Example 1 proves Theorem 2.

Fans — V.

ACKNOLEDGEMENTS

We are grateful to F. Chapoton for various conversations on quadrangulations and Stokes posets.

REFERENCES

(Vincent Pilaud) CNRS & LIX, ÉCOLE POLYTECHNIQUE, PALAISEAU E-mail address: vincent.pilaud@lix.polytechnique.fr URL: http://www.lix.polytechnique.fr/~pilaud/

Université de Paris Sud XI

E-mail address: pierre-guy.plamondon@math.u-psud.fr URL: https://www.math.u-psud.fr/~plamondon/

(Salvatore Stella) Università degli studi di Roma "La Sapienza"

E-mail address: stella@mat.uniroma1.it

 URL : http://www1.mat.uniroma1.it/people/stella/

Figure 3. The D_{\circ} -accordion complex of the dissection D_{\circ} of Figure 1 (left) and the 2-term silting complex of the quiver $Q(D_{\circ})$ (right).