编译原理HW3

3.27

3.27 文法 G 的产生式如下:

 $S \rightarrow I \mid R \qquad \qquad I \rightarrow d \mid I d \qquad \qquad R \rightarrow WpF$ $W \rightarrow Wd \mid \varepsilon \qquad \qquad F \rightarrow Fd \mid d$

- (a) 令 d 表示任意数字,p 表示十进制小数点,那么非终结符S, I, R, W 和 F 在编程语言中分别表示什么?
 - (b) 该文法是 LR(1)文法吗? 为什么?
- S表示数字,S分I或者R,I是整数,R是浮点数,R定义为WpF,W是浮点数的整数部分,F是小数部分
- 是LR(1)文法,理由见下(分析表无冲突):

拓广文法:

- 0 S'->S
- $1 S \rightarrow I$
- $2 S \rightarrow R$
- $3 I \rightarrow d$
- 4 I-> Id
- 5 R-> WpF
- 6 W-> Wd

- 7 W-> ϵ
- 8 F->Fd
- 9 F->d

带向前搜索符的项目集规范族:

由此得LR(1)分析表:

状态	action			goto				
	d	р	\$	S	Ι	R	W	F
0	s4			1	2	3	5	
1			acc					
2	s6		r1					
3			r2					
4	r3		r3					
5	s8	s7						
6	r4		r4					
7	s10							9
8		r6						
9	s11		r5					
10	r9		r9					
11	r8		r8					

3.37

3.37 下面是一个二义文法:

 $S \rightarrow AS + b$

 $A \rightarrow SA + a$

如果为该文法构造 LR 分析表,则一定存在某些有分析动作冲突的条目,它们是哪些?假定分析表这样来使用:出现冲突时,不确定地选择一个可能的动作。给出对于输入 abab 所有可能的动作序列。

• 拓广文法

- 0 S'->S
- 1 S->AS
- 2 S->b
- 3 A->SA
- 4 A->a
- 构造带向前搜索符的项目集规范族

由此得分析表:

状态	action			goto	
	a	ь	\$	S	A
0	s4	s3		1	2
1	s4	s7	acc	6	5
2	s4	s3		8	2
3	r2	r2	r2		
4	r4	r4			
5	s4/r3	s7/r3		10	9
6	s4	s7		6	5
7	r2	r2			
8	s4/r1	s7/r1	r1	6	5
9	s4	s7		10	9
10	s4/r1	s7/r1		6	5

表中标红部分则是冲突条目

对于输入abab,有如下动作序列:

s4->r4->s3->r2->s4->r4->s7不能acc

s4->r4->s3->r2->s4->r4->r3->s3->r2->r1->acc

s4->r4->s3->r2->r1->s4->r4->r3->s3->r2->r1->acc

s4->r4->s3->r2->r1->s4->r4->s7不能acc

4.3 为文法

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

- (a) 写一个语法制导定义,它输出括号的对数。
- (b) 写一个语法制导定义,它输出括号嵌套的最大深度。

由于需要输出,所以改写初始语句为S'->S

•	S'->S	print(S.val)
	S->(L)	S.val=L.val+1
	S->a	S.val=0
	L->L,S	L.val=L1.val+S.val
	L->S	L.val=S.val

S'->S	print(S.val)
S->(L)	S.val=L.val+1
S->a	S.val=0
L->L,S	L.val=max{L1.val,S.val}
L->S	L.val=S.val

4.5

4.5 为下面文法写一个语法制导的定义,它完成一个句子的 while-do 最大嵌套层次的计算并输出这个计算结果。

 $S \rightarrow E$

 $E \rightarrow \text{while } E \text{ do } E \mid \text{id} := E \mid E + E \mid \text{id} \mid (E)$

由于需要输出,所以改写初始语句为S'->S

S'->S	print(S.val)
S->E	S.val=E.val
E->while E1 do E2	E.val=max{E1.val,E2.val}+1
E->id :=E1	E.val=E1.val
E->E1+E2	E.val=max {E1.val,E2.val}
E->id	E.val=0
E->(E1)	E.val=E1.val

4.9 用 S 的综合属性 val 给出下面文法中 S 产生的二进制数的值。例如,输入 101.101 时, S. val=5.625。

$$S \rightarrow L, L \mid L$$

$$L \rightarrow LB \mid B$$

$$B \rightarrow 0 \mid 1$$

- (a) 仅用综合属性决定 S. val。
- (b) 用 L 属性定义决定 S.val。在该定义中,B 的唯一综合属性是 c(还需要继承属性),它给出由 B 产生的位对最终值的贡献。例如,101.101 的最前一位和最后一位对值 5.625 的贡献分别是 4 和 0.125。

$$S->L_1.\,L_2$$
 $S.\,val=L_1.\,val+L_2.\,val*\,2^{-L_2.len}$ $S->L$ $S.\,val=L.\,val$ $L.\,val=L_1.\,val*\,2+B.\,val$; $L.\,len=L_1.\,len+1$ $L->B$ $L.\,val=B.\,val$; $L.\,len=1$ $B->0$ $B.\,val=0$ $B.\,val=1$

S o L L.i = 1 L.fi = 2 L.fs = 1 S.val = L.val S o L1.L2 $L_1.i = 1$ $L_1.fi = 2$ $L_1.fs = 1$ $L2.i = 2^{-1}$ $L_2.fi = 1$ $L_2.fs = 2^{-1}$ $S.val = L_1.val + L_2.val$ L o B L.s = L.i B.i = L.s L.val = B.c L o L1B $L.i = L.i * L_1.fi$ $L.s = L_1.s * L_1.fs$ $L.s = L_1.s * L_1.fs$ L.s = L.s $L.val = L_1.val + L_2.c$ $L.val = L_1.s$ $L.val = L_1.s$ $L.val = L_1.s$ $L.val = L_1.val + L_2.c$ $L.val = L_1.val + L_3.c$ $L.val = L_3.c$ $L.val = L_3.c$ $L.val = L_3.c$ $L.val = L_3.c$

由于需要综合属性从左向右计数,继承属性从右向左计数,所以设置fs为综合因子,fi为继承因子

最后应该如图:

