תרגילים: סיבוכיות

B -ו A ו- V_2 ו- V_1 ו- עבור אלגוריתמי אימות אלגוריתמי אימות V_2 ו- V_3 מעל אותו אלפיביט V_3 , שני אלגוריתמי אימות V_2 ו- V_3 עבור V_3 ו- V_3 (בהתאמה) הרצים בזמן פולינומיאלי.

- את נכונה הבניה. $A \cup B$ עבור הבעיה V עבור אימות עבור הבעיה $A \cup B$. תארו במילים את האלגוריתם והוכיחו את נכונה הבניה.
 - ב) הוכיחו כי אלגוריתם שבניתם בסעיף א' רץ בזמן פולינומיאלי.

שאלה 2 בעיית PARTITION מוגדרת באופן הבא:

-בהינתן קבוצת מספרים A_1 ו- A_2 האם קיימת חלוקה של A לשתי קבוצות A_1 ו- A_2 כך ש-

- $A_1 \cap A_2 = \emptyset \bullet$
- $A_1 \cup A_2 = A \bullet$
- $\sum_{a_i \in A_1} a_i = \sum_{a_i \in A_2} a_i = \frac{1}{2} \sum_{a_i \in A} a_i \bullet$

. בומן פולינומיאלי. אי-דטרמיניסטית המכריעה את אי-דטרמיניסטית פולינומיאלי. בנו מכונט טיורינג אי-דטרמיניסטית המכריעה את

שאלה 3 בזמן פולינומיאלי. נגדיר את הבעיה M_A המכריע אלגוריתם A ונתון אלגוריתם $B=\left\{ww\mid w\in A\right\}$

- . בני אלגוריתם והוכיחו את במילים את האלגוריתם והוכיחו את נכונות הבניה. B המכריע את B
 - ב) האם האלגוריתם שבניתם רץ בזמן פולינומיאלי? הסבירו.

שאלה 4 קבעו אם הטענה הבאה נכונה, לא נכונה או שקולה לשאלה פתוחה:

קיים אלגוריתם המקבל כקלט גרף לא מכוון G ומכריע בזמן פולינומיאלי האם G מכיל קבוצה בלתי תלויה בגודל 1000.

תשובות

שאלה 1

:ארעיון

 $w \in A \cup B$ -ש אות עדות לזה ש הוא עדות לבדוק ורוצה (w,y) אוג מקבל מקבל V

(w,y) אוג על הזוג V_1 את מריץ את V_1 את לצורך אה

אם V מקבל אזי אז V_1

אחרת, V_2 מריץ את V_2 אחרת, V_3 ועונה כמוה.

האלגוריתם

:(w,y) על קלט =V

- .(w,y) על V_1 את מריץ (1
- . אם $V \Leftarrow V$ מקבל \bullet
- . ועונה (w,y) אם V_2 את מריץ מריץ על $V \Leftarrow V_1$ ועונה כמוה V_1

נכונות

 $w \in A \cup B$ אם

 $w \in B$ או $w \in A \Leftarrow$

(w,y) או סקבל את הזוג V_2 או הזוג (w,y) או סקבל את הזוג עדות עדות y

(w,y) את האוג עדות V כך ש- y מקבל את (w,y)

 $w \notin A \cup B$ אם

 $w \notin B$ וגם $w \notin A \Leftarrow$

(w,y) וגם V_2 דוחה את הזוג (w,y) ווחה את הזוג V_1 את לכל (w,y)

(w,y) לכל עדות V, דוחה את הזוג \Leftarrow

 $.V_1$ נסמן p_1 הפולינום של $.V_2$ נסמן p_2 הפולינום של

|w| אזי זמן הריצה של V חסום על ידי $O\left(p_1\left(|w|\right)+p_2\left(|w|\right)
ight)$ ולכן ולכן V פולינומיאלי בגודל

. נבנה מ"ט א"ד M המכרעיה את PARTITION בזמן פולינומיאלי

 $:\langle A
angle$ על קלט =M

- A של A_1 בוחרת באופן א"ד תת-קבוצות (1
- A שווה חצי מסכום האיברים של בודקת האם סכום האיברים של (2

- אם כן \Rightarrow מקבלת.
 - \bullet אם לא \Rightarrow דוחה.

<u>נכונות הבנייה</u>

 $\langle A \rangle \in PARTITION$ אם

$$\sum_{a_i\in A_1}a_i=\sum_{a_i\in A_2}a_i=rac{1}{2}\sum_{a_i\in A}a_i$$
 כך ש- A_2 ו- A_2 ל- A_1 ל- A_2 קיימת חלוקה של A_2

- A קיימת ריצה של M בה תבחר את A_1 ותבדוק שהסכום שלה שווה חצי הסכום של \Leftarrow
 - $.\langle A \rangle$ את קבל בה תקבל את M ביימת ריצה ל

 $\langle A \rangle \notin PARTITION$ אם

$$\sum_{a_i \in A_1} a_i = \sum_{a_i \in A_2} a_i = rac{1}{2} \sum_{a_i \in A} a_i$$
 כך ש- לא קיימת חלוקה של A_1 ל- A_1 ל- A_1 ל- לא קיימת חלוקה של ל-

- ותבדוק ותדחה A_1 בכל ריצה של M על M איא בכל היא בכל ליצה של היא בכל היא אותבחה של היא בכל היא אותבדוק ותדחה
 - $.\langle A \rangle$ את תדחה M על $\langle A \rangle$, על של הצכל ריצה של \Leftarrow

 $\langle A \rangle$ אמן הריצה של M פולינומיאלי בגודל הקלט

שאלה 3

$$w'=\sigma_1\dots\sigma_n$$
 על קלט M_B

$$.w'$$
 על M_A אם מריץ מריץ $w'=arepsilon$ (1

- . מקבל $M_B \Leftarrow M_B$ מקבל \bullet
- דוחה. $M_B \Leftarrow$ דוחה M_A דוחה.
 - $i \leftarrow 1$ (2

$$(i=rac{n}{2}$$
 נאו לבדוק האם $\sigma_1\cdots\sigma_i=\sigma_{i+1}\cdots\sigma_n$ בודק האם (3

 $.\sigma_1 \cdots \sigma_i$ על M_A את מריץ את \Leftarrow

. מקבל מקבל מקבל מקבל מקבל מקבל מ

דוחה. $M_B \Leftarrow M_B$ דוחה. \circ

- $.i \leftarrow i+1$ (4
- .(3) -אם i < n אם (5).
 - . דוחה $M_B \Leftarrow$ אחרת

נכונות

אם $w' \in B$ שני מקרים:

- w' את מקבלת את מקבלת $M_B \Leftarrow \varepsilon \in A$ וגם ווגס $w' = \varepsilon$
- $\sigma_1\cdots\sigma_i\in A$ וגם $\sigma_1\cdots\sigma_i=\sigma_{i+1}\cdots\sigma_n$ מתקיים $i=\dfrac{|w'|}{2}$ וגם $w\in A$ וגם w'=ww
 eq arepsilon באיטרציה M_B ,i מקבלת את w'=ww

:שני מקרים $w' \notin B$ אם

- w' את דוחה את $M_B \Leftarrow arepsilon
 otin A$ וגם w' = arepsilon ullet
 - שני מקרים $\Leftarrow w' \neq \varepsilon$

$$w'$$
 את דוחה את הוח $M_B \Leftarrow \sigma_1 \cdots \sigma_i
eq \sigma_{i+1} \cdots \sigma_n$ מתקיים $i = rac{|w'|}{2}$ עבור \circ

$$w'$$
 אבל $M_B \Leftarrow \sigma_1 \cdots \sigma_i \notin A$ אבל $\sigma_1 \cdots \sigma_i = \sigma_{i+1} \cdots \sigma_n$ דוחה את $i = \frac{|w'|}{2}$ עבור $i = \frac{|w'|}{2}$

 M_A נסמן ב- p_A הפולינום של

בזמן $\sigma_1\cdots\sigma_i=\sigma_{i+1}\cdots\sigma_n$ באנים לכל היותר ובכל איטרציות ובכל איטרציה עושים בדיקה איטרציות ובכל איטרצים לכל היותר וובכל איטרציה עושים בזמן וובכל איטרצים את וובכל $p_A\left(|w'|\right)$ בזמן $O\left(|w'|\right)$

ולכן זמן הריצה הוא

$$O\left(\left|w'\right|^{2} + p_{A}\left(\left|w'\right|\right)\right)$$

שאלה 4 הטענה נכונה.

ניתן לבנות אלגוריתם שיעבור על כל התתח-קבוצות בגודל 1000 קודקודים מ-G ויבדוק לכל תת-קבוצה האם היא קבוצה בלתי תלויה בזמן פולינומיאלי ויחזיר תשובה בהתאם.

. מכיוון שמספר התת-קבוצות בגודל 1000 שווה $pprox 2^{1000}$ שזה קבוע, זמן הריצה של האלגוריתם פולינמיאלי