## EE 421 / CS 425 Digital System Design Spring 2023 Lecture 8

**Shahid Masud** 

**State Machines** 

**Vending Machine Example** 



### **Topics**

- State Diagrams
- Introduction to State Machines
- Moore State Machine and Mealy State Machine
- State Tables Description of State Machines
- Design Example of a State Machine (Vending Machine)
- Sequential State Machine Circuit Design
- One Hot Encoding and ASMD





#### Practice Questions from Past Papers



**Check folders:** 

SSE → EE 421

and

 $CS \rightarrow CMPE 424$ 

and

CS → CS 424

### State Diagram of D Flipflop





Internal

States

### State Diagram of T Flipflop

| Input (T) | Next State (Q) |
|-----------|----------------|
| 0         | Q              |
| 1         | Q'             |





### Linking State Table with State Diagram

Complete State Description Including Inputs, Present State, Outputs and Next State

| Q (t) | Q (1                | t <b>+1</b> ) | Z (Ou     | tput)     |
|-------|---------------------|---------------|-----------|-----------|
|       | Input X=0 Input X=1 |               | Input X=0 | Input X=1 |
| Α     | Α                   | В             | 0         | 0         |
| В     | С                   | В             | 1         | 0         |
| С     | Α                   | D             | 0         | 0         |
| D     | С                   | С             | 0         | 0         |





### Types of State Machines

- Mealy Machine
  - Output depends upon Internal State plus External Inputs
  - Output can change at any time and not necessarily after a Clocked event
- Moore Machine
  - Output depends upon External Inputs and Current Internal State
  - Output is Synchronized with the Change in Internal States



### Mealy State Machine Block Diagram





### State Machine Block Diagrams - Comparison



### State Machine Based Synchronous Design

- Understand the Problem desired sequence based on inputs and present state
- Develop abstract representation of FSM A state diagram or a state table that shows all possible states and transitions
- Perform state minimization to achieve efficient implementation
- Perform state assignment
- Choose appropriate flipflop for storage elements (eg. D flipflops)
- Use K-maps to determine characteristic equations for Next State
- After K-maps based minimization; draw complete logic circuit using combinational and sequential elements



# Example of a State Machine Based Design – Coke Vending Machine

- Machine dispenses a can of coke for Rs. 15/-
- You can provide coins of either Rs. 5/- or Rs. 10/-
- The Machine does not provide any change back
- The Machine is 'Reset' after the can has been dispensed



### Block Diagram of Vending Machine Example



**Is Input Directly Connected to Output Logic?** 

Question: Which type is this? Moore or Mealy??



### Elaborate State Machine in text description

- Enumerate all possible inputs and outputs
- Objective: Insert sufficient coins to release a can of Coke
- Either Insert R5 + R5 + R5 in sequence
- OR Insert R5 + R10 in sequence
- OR Insert R10 + R5 in sequence
- OR Insert R10 + R10 in sequence
- OR Insert R5 + R5 + R10 in sequence



## Make a State Diagram Representation of State Machine (Moore Machine)





### Simplifying the State Machine

**Identify Similar States (same present state and next state)** 

State Minimization by Observation

- Reset brings to State S0
- State S1 represents R5 received so far, one possible path
- State S2 represents R10 received so far, two possible paths;
- State S3 represents R15 received so far, three possible paths
- S4, S5, S6, S7 have identical behaviour so they can be Combined into one state





### State Transition Table Describing Vending Machine

| Q1 | Q0 | Present State | Inpu                       | ts    | Next State  | Output<br>OPEN |
|----|----|---------------|----------------------------|-------|-------------|----------------|
|    |    |               | R10                        | R5    |             |                |
|    |    | S0; R0        |                            |       | S0; R0      |                |
|    |    |               |                            |       | S1; R5      |                |
|    |    |               |                            |       | S2; R10     |                |
|    |    |               |                            |       |             |                |
|    |    | S1; R5        |                            |       | S1; R5      |                |
|    |    |               |                            |       | S2; R10     |                |
|    |    |               |                            |       | S3; R15     |                |
|    |    |               |                            |       | Not Allowed | Х              |
|    |    | S2; R10       |                            |       | S2; R10     |                |
|    |    |               |                            |       | S3; R15     |                |
|    |    |               |                            |       | S3; R20     |                |
|    |    |               |                            |       | Not Allowed | Х              |
|    |    | S3; R15       |                            |       | S3; R15     |                |
|    |    |               |                            |       | S3; R15     |                |
|    |    |               |                            |       | S3; R15     |                |
|    |    | Digital       | System Design Lec 8 Fall 2 | 024 1 | Not Allowed | X              |



### State Mapping to Flipflops

- In the reduced State Diagram, there are 4 states
- We can distinctly represent these states using two Flipflops
- Assign states as follows:

|           |      |    |    | D1 Q1 States                                                         |
|-----------|------|----|----|----------------------------------------------------------------------|
| States    | Code | Q1 | Q0 | FF1                                                                  |
| S0        | 00   | 0  | 0  |                                                                      |
| <b>S1</b> | 01   | 0  | 1  | $\begin{array}{c c} \hline \text{To set} & D0 \\ \hline \end{array}$ |
| <b>S2</b> | 10   | 1  | 0  | NEW FFO ('                                                           |
| <b>S3</b> | 11   | 1  | 1  | States                                                               |



### Present State to Next State Table using DFF

| Present State |        | Inputs           |                    | Next                | Output<br>OPEN |   |
|---------------|--------|------------------|--------------------|---------------------|----------------|---|
| Q1            | Q0     | <mark>R10</mark> | R5                 | D1                  | D0             |   |
|               |        |                  |                    |                     |                |   |
|               |        |                  |                    |                     |                |   |
|               |        |                  |                    |                     |                |   |
|               |        |                  |                    |                     |                |   |
|               | 1 (S1) |                  |                    |                     | 1 (S1)         |   |
|               |        |                  |                    |                     | 0 (S2)         |   |
|               |        |                  |                    |                     | 1 (S3)         |   |
|               |        |                  |                    | Х                   | Х              | Х |
|               | 0 (S2) |                  |                    |                     | 0 (S2)         |   |
|               |        |                  |                    |                     | 1 (S3)         |   |
|               |        |                  |                    |                     | 1 (S3)         |   |
|               |        |                  |                    | Х                   | Х              | Х |
|               | 1 (S3) |                  |                    |                     | 1 (S3)         |   |
|               |        |                  |                    |                     | 1 (S3)         |   |
|               |        |                  |                    |                     | 1 (S3)         |   |
|               |        |                  | Digital System Des | ign Lec 8 Fall 2024 | Х              | Х |



### Characteristic Equation for D0 using K-Map



D0 = (R5'.Q0) + (R5.Q0') + (R10.Q1) + (Q1.Q0)



### Characteristic Equation for D1 using K-Map



$$D1 = Q1 + R10 + (R5.Q0)$$



### Characteristic Equation for OPEN using K-Map



OPEN = Q1Q0



### Vending Machine Circuit using DFF





Moore State Machine for Vending Machine





Mealy State Machine for Vending Machine





### Some Comparison Moore vs Mealy

- Mealy machine requires fewer states to reach output in comparison with Moore machine
- Mealy machine is more susceptible to glitches
- Explicit output values are shown in Mealy machine associated with each transition
- Output changes after state is changed in Moore machine
- Output in Moore machine depends upon state only; inputs can steer the output towards a particular state that affects output
- Output depends upon present state and the present value at the input; thus, output can change immediately with the change in input, independent of synchronous clock.



### One Hot Encoding – one FF for each state

| Presen | t State |    |    | Inp              | outs | Next State |    |    |    | Output<br>OPEN |
|--------|---------|----|----|------------------|------|------------|----|----|----|----------------|
| Q3     | Q2      | Q1 | Q0 | <mark>R10</mark> | R5   | D3         | D2 | D1 | D0 | Y              |
|        |         |    |    |                  |      |            |    |    |    |                |
|        |         |    |    |                  |      |            |    |    |    |                |
|        |         |    |    |                  |      |            |    |    |    |                |
|        |         |    |    | 1                | 1    | Х          |    |    |    |                |
|        |         |    |    |                  |      |            |    |    |    |                |
|        |         |    |    |                  |      |            |    |    |    |                |
|        |         |    |    |                  |      |            |    |    |    |                |
|        |         |    |    | 1                | 1    | Х          | X  | Х  | X  |                |
|        |         |    |    |                  |      |            |    |    |    |                |
|        |         |    |    |                  |      |            |    |    |    |                |
|        |         |    |    |                  |      |            |    |    |    |                |
|        |         |    |    | 1                | 1    | Х          |    |    |    |                |
|        |         |    |    |                  |      |            |    |    |    |                |

D3 is directly the Output and Its State





### Algorithmic State Machine Description - ASMD



