

G53FIV: Fundamentals of Information Visualization <u>Lecture 3: Data and Image</u>

Ke Zhou
School of Computer Science
Ke.Zhou@nottingham.ac.uk

https://moodle.nottingham.ac.uk/course/view.php?id=68644

Last Lecture

The Value of Visualization

Key Values of Visualizations

- Record information
 - Blueprints, photographs, seismographs, ...
- Communicate information to others
 - Share and persuade
 - Collaborate and revise
- Analyze data to support reasoning
 - Find patterns / Discover errors in data
 - Expand memory
 - Develop and assess hypotheses

Different Stages of Visualization

Overview

- How to process data?
 - Data models
 - Processing algorithms

- How to encode the data using images (the visual channel)?
 - Visual encoding (mapping)

Administrivia: Module Expectation

- 10 credits = 100 hours
- Around 20 hours of lectures
- 80 hours of self-study
 - 5 hours per week during term time, i.e. 1 hour per day
 - 20 hours revision
- Activities
 - Readings
 - Practice (course work)

Administrivia: G53FIV Coursework

- Objective: implementing a visualization with R
 - Pick a dataset of your interest
 - Pose the initial questions (3 to 5) that you would like to answer
 - Assess the fitness of the data
 - Answer the questions by visualizing the dataset using R in an exploratory fashion
 - Further refine/propose questions and produce the visualization for those refined/proposed (more exploratory) questions (<= 10 questions in total).
 - It is a bonus if you can make your visualization interactive
 - You can also try other visualization tools for the ultimate visualization if you want (optional, e.g., to make it more interactive). However, using R for the initial exploratory analysis is required.
 - You should work closely with the "R Graphics Cookbook".

Administrivia: G53FIV Coursework

Written report

- Description of your data
- The description with the initial questions
- For each question, a description of your visualization strategies, including data cleaning, transformation, visual encoding, etc.
- An explanation of the exploratory process of generating new questions and visualizations.
- Critical discussion of your visualization design (e.g. why you pick these encodings or this visualization)
- A reflection on the development process
- Upload your R codes as well

Administrivia: G53IVP Project

- Goal: hands-on experience in designing, implementing, and evaluating a new visualization method, algorithm or tool.
- Some examples*:
 - http://courses.ischool.berkeley.edu/i247/s16/
- A written report
 - Introduction
 - Related work
 - Methods/Design (storyboard, etc.)
 - Results (Visualizations)
 - Evaluation (user study)
 - Discussions
 - Conclusions

- Demo
 - A poster covers the main visualizations
 - A presentation
- Code repositories

^{*} Those examples are for inspiration purpose only. They are from a different course format.

Administrivia: G53IVP Project

More Examples from last year

G53IVP First Meeting

- First meeting: Feb 11th Monday 15:00 or 17:00
 - third week of G53FIV, i.e. next Monday
- B50, School of Computer Science
- Discuss the general format and available resources
- Doodle link to fill in (to send via email later)

- Next: Proposal development
 - Feb 25th 11:00 (fifth week of G53FIV)

Data

Data Models

- Data models are formal descriptions
- Characterize data through three components
 - Objects (Items of Interest)
 - Students, courses, semesters
 - Attributes (properties of data)
 - Name, age, id, date, score
 - Relations (how two or more objects relate)
 - Student takes course, course during semester, etc.

Example (Data Table)

cases

	Student 1	Student 2	Student 3	Student 4
Name	Tom	Jim	Mary	Jane
Age	20	19	22	21
Grade	А	В	A-	B+
Course	Math	Math	Art	Sport
Entry Year	1997	1998	1995	1996

variables

Taxonomy of Data Types

- 1D (sets and sequences)
- 2D (maps)
- 3D (shapes)
- nD (relational)

- Temporal
- Trees (hierarchies)
- Networks (graphs)
- Others?

Optional reading: The eyes have it: A task by data type taxonomy for information visualization [Shneiderman 96]

- N Nominal (labels or categories)
 - Operations: =, ≠

e.g. math, art (course)

- O Ordered
 - Operations: =, ≠, <, >

e.g. A, A-, B+, B (grade)

- Q Interval (location of zero arbitrary)
 - Operations: =, ≠, <, >, -
 - Can measure distances or spans

e.g. (3.23, -1.2) (GPS)

- Q Ratio (zero fixed)
 - Operations: =, ≠, <, >, -, %
 - Can measure ratios or proportions

- N Nominal (labels or categories)
 - Operations: =, ≠

e.g. math, art (course)

- O Ordered
 - Operations: =, ≠, <, >

e.g. A, A-, B+, B (grade)

- Q Interval (location of zero arbitrary)
 - Operations: =, ≠, <, >, -
 - Can measure distances or spans

e.g. (3.23, -1.2) (GPS)

- Q Ratio (zero fixed)
 - Operations: =, ≠, <, >, -, %
 - Can measure ratios or proportions

- N Nominal (labels or categories)
 - Operations: =, ≠

e.g. math, art (course)

- O Ordered
 - Operations: =, ≠, <, >

e.g. A, A-, B+, B (grade)

- Q Interval (location of zero arbitrary)
 - Operations: =, ≠, <, >, -
 - Can measure distances or spans

e.g. (3.23, -1.2) (GPS)

- Q Ratio (zero fixed)
 - Operations: =, ≠, <, >, -, %
 - Can measure ratios or proportions

- N Nominal (labels or categories)
 - Operations: =, ≠

e.g. math, art (course)

- O Ordered
 - Operations: =, ≠, <, >

e.g. A, A-, B+, B (grade)

- Q Interval (location of zero arbitrary)
 - Operations: =, ≠, <, >, -
 - Can measure distances or spans

e.g. (3.23, -1.2) (GPS)

- Q Ratio (zero fixed)
 - Operations: =, ≠, <, >, -, %
 - Can measure ratios or proportions

Example

00			
		$m{\mu}$	
Lu	J	L	J

	Student 1	Student 2	Student 3	Student 4
Name (N)	Tom	Jim	Mary	Jane
Age (Q)	20	19	22	21
Grade (O)	Α	В	A-	B+
Course (N)	Math	Math	Art	Sport
Entry Year (Q)	1997	1998	1995	1996

variables

Dimensions and Measures

- Dimensions (independent variables)
 - Discrete variables describing data (N, O)
 - Categories, dates, binned quantities

- Measures (dependent variables)
 - Data values that can be aggregated (Q)
 - Numbers to be analyzed
 - Aggregate as sum, count, avg, std. dev...

	Student 1	Student 2	Student 3	Student 4
Name (N)	Tom	Jim	Mary	Jane
Age (Q)	20	19	22	21
Grade (O)	А	В	A-	B+
Course (N)	Math	Math	Art	Sport
Entry Year (Q)	1997	1998	1995	1996

independent variables

	Math	Art	Sport
Avg Age	19.5	22	21

dependent variables

Exercises

• N, O, Q?

Dimension or Measure?

	Α	В	С	D	E
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1850	50	0	1	321343
23	1850	50	0	2	286580
24	1850	55	0	1	194080

UNITED KINGDOM - CHINA - MALAYSIA

Exercises

- N, O, Q?
- Dimension or Measure?

			_		-
1	year	age	marst	sex	people
2	1850	0	0	1	1483789
3	1850	0	0	2	1450376
4	1850	5	0	1	1411067
5	1850	5	0	2	1359668
6	1850	10	0	1	1260099
7	1850	10	0	2	1216114
8	1850	15	0	1	1077133
9	1850	15	0	2	1110619
10	1850	20	0	1	1017281
11	1850	20	0	2	1003841
12	1850	25	0	1	862547
13	1850	25	0	2	799482
14	1850	30	0	1	730638
15	1850	30	0	2	639636
16	1850	35	0	1	588487
17	1850	35	0	2	505012
18	1850	40	0	1	475911
19	1850	40	0	2	428185
20	1850	45	0	1	384211
21	1850	45	0	2	341254
22	1850	50	0	1	321343
23	1850	50	0	2	286580
24	1850	55	0	1	194080

Year

Q-Internal (O)

Dimension

Age

Q-Ratio (O)

Depends

Marital

N

Dimension

– Sex

N

Dimension

People

Q-Ratio

Measure

Data Processing

- Data cleaning and filtering
 - for quality control
 - Remove (Outlier, missing data)
 - Modify (conversion of format, etc.)

- Data adjustment
 - Depends on your task and questions to ask
 - Relational algebra:
 - e.g. Aggregation, mean, sort, projection
 - Reformatting and Integration

We will learn later how to do these in R.

Data Cleaning and Filtering

- Missing Data
- Erroneous Values
- Type Conversion
- Entity Resolution
- Data Integration

- no measurements, redacted, ...?
- misspelling, outliers, ...?
- e.g., zip code to lat-lon
- diff. values for the same thing?
- effort/errors when combining data

 Anticipate problems with your data. Many research problems around these issues!

- Movie rating data
 - IMDB ratings

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

- Movie rating data
 - RottenTomatoRatings

 Many data ratings as null.

Movie rating data scatter plot

 Movie rating data scatter plot

Many data
 ratings as null/
 missing
 (orange)

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Data Cleaning and Filtering

- Exercise Skepticism
- Check data quality and your assumptions.
- Start with univariate summaries, then start to consider relationships among variables.
- Avoid premature fixation!

Data Adjustment: Relational Algebra

- Relational Data Model
- Data Transformations (SQL)
 - Projection (select) selects columns
 - Selection (where) filters rows
 - Sorting (order by)
 - Aggregation (group by, sum, min, max, ...)
 - Combine relations (union, join, ...)

Data Adjustment

- Roll-up
- Drill-down

SELECT year, age, marital, sum(people) FROM census GROUP BY year, age, marital;

• IMDB movie rating by language

IMDB movie rating by director

Data Adjustment

- Additional readings:
 - Relational algebra
 - database (SQL)
- You need to think carefully about what questions to answer in order to decide how you adjust the data.
- We will learn some basics when we process data using R.

Image

Image: Visual Language

- Visual Language is a Sign System
 - Images perceived as a set of signs
 - Sender encodes information in signs
 - Receiver decodes information from signs

- "Resemblance, order and proportion are the three sign fields in graphics."
 - Jacques Bertin

Visual Encoding Variables

Bertin's Semiology of Graphics (1967)

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

Information in Hue and Value

- Value is perceived as ordered
 - Encode ordinal variables (O)

- Encode continuous variables (Q) [not as well]
- Hue is normally perceived as unordered
 - Encode nominal variables (N) using color

Bertin's Levels of Organization

	Nominal	Ordinal	Quantitative
Position	\	✓	✓
Size	✓	✓	~
(Grey)Value	✓	✓	~
Texture	✓	~	×
Color	\	×	×
Orientation	\	×	×
Shape	✓	×	×

√ = Good

 \sim = OK

X = Bad

Exports and Imports to and from DENMARK & NORWAY from 1700 to 1780.

The Visual Display of Quantitative Information (Textbook). Tufte.

Dr. Ke Zhou (http://www.cs.nott.ac.uk/~pszkz/)

- X-axis: year (Q); Y-axis: currency (Q)
- Color: imports/exports (N, O)

- Rectangle area: market cap (Q);
- Rectangle position: market sector (N)
- Color Hue: loss vs. gain (N, O)
- Color Value: magnitude of loss or gain (Q)

How do we choose visual encodings?

What design criteria should we follow?

Next Lecture

- Topic: Design and Graphs
 - Design Principles
 - Fundamental graphs and charts

