Introduction

Constrained Optimization

A constrained optimization problem can be written as

Minimize
$$f(x)$$
,
subject to, $g_j(x) \ge 0$, $j = 1, 2, ..., J$,
 $h_k(x) = 0$, $k = 1, 2, ..., K$,
 $x_i^{(L)} \le x_i \le x_i^{(U)}$, $i = 1, 2, ..., n$. (1)

- $x = (x_1, x_2, \dots, x_N)^T$ is the vector of decision variables.
- f(x) is the objective function.
- g_j(x) is the inequality constraint.
- h_k(x) is the equality constraint.

Types of Constraints

- Linear constraints are relatively easy to deal with.
- Nonlinear equality constraints can be hard to handle.

Graphical Example

Feasible search space is defined by the bounds on the variables.

Graphical Example

- Feasible search space is defined by the common space among constraints and the variables bounds.
- The constraints do not change the previous optimal solution.

Graphical Example

- Some constraints can make the previous optimal solution infeasible.
- Mostly, the optimum solution is found on the boundary of feasible space.

Visualization

Why Constraint Handling is needed?

- EC techniques are population-based techniques.
- When EC techniques are used for constrained optimization problem, some solutions can be feasible and infeasible.
- In order to identify them and assign fitness, we need constraint handling techniques.
- Moreover, almost every practical optimization problem involves constraint(s).

Types of Constraint Handling Techniques

 Carlos A Coello Coello, "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art," Computer Methods in Applied Mechanics and Engineering, Volume 191, Issues 1112, 2002, Pages 1245-1287.

Types

- Penalty Function Methods
- Special representations and operators
 - Separation of constraints and objectives
 - Hybrid Methods

- These methods are found be simple and most popular methods for handling constraints.
- If a solution violates any constraint, the solution is <u>penalized</u> by adding penalty with the objective function.
- The constraint problem is transformed to an unconstrained problems by adding penalty term of each constraint violation to the objective function value.

Penalty Function Methods

- Interior penalty methods: These methods work for feasible points and penalize points that are close to the constraint boundary.
- Exterior penalty methods: These methods penalize infeasible points but not the feasible solutions.

A constrained optimization problem can be written as

Minimize
$$f(x)$$
,
subject to, $g_j(x) \ge 0$, $j = 1, 2, ..., J$,
 $h_k(x) = 0$, $k = 1, 2, ..., K$,
 $x_i^{(L)} \le x_i \le x_i^{(U)}$, $i = 1, 2, ..., N$.

- EC techniques normally adopt exterior penalty methods.
- The penalty function method can be written as

$$P(x,R) = f(x) + \Omega(R, g(x), h(x)), \tag{2}$$

where R is a set of penalty parameters, Ω is the penalty term chosen to favor the selection of feasible point over infeasible point.

イロト (日) (三) (三) (日) (日)

Parabolic Penalty

$$\Omega = R\{h(x)\}^2 \tag{3}$$

- It is used for handling equality constraints only.
- Since all infeasible points are penalized, it is an exterior penalty term.
- It starts with small value of R which increases gradually.

Bracket Operator Penalty

$$\Omega = R \langle g(x) \rangle^2$$

where $\langle \alpha \rangle = \alpha$, when α is negative; zero otherwise.

- Since it assigns positive value to infeasible point, it is an exterior penalty term.
- \bullet It starts with small value of R which increases gradually.
- It is one of the commonly used methods.

• The penalty function method can be written as

$$P(x,R) = f(x) + \sum_{k=1}^{K} R_k \{h_k(x)\}^{\gamma} + \sum_{j=1}^{J} R_j \langle g_j(x) \rangle^{\beta},$$
 (5)

where R_k and R_j are the penalty parameters. Normally, β and γ are kept 1 and 2, respectively.

Handling Equality Constraints

- The penalty function methods can handle both equality and inequality constraints.
- One of the suggested ways to handle the equality constraints is

 $|h(x)| - \epsilon \le 0$, where ϵ is the tolerance allowed (a small value).

Types of Penalty Functions

Types of Penalty Functions

- Death Penalty /
- Static Penalty
- Dynamic Penalty /
- Adaptive Penalty
- Other Approaches
 - Self-Adaptive Fitness Formulation
 - Stochastic Ranking, etc.

Death Penalty

- Death Penalty: Infeasible solution is rejected and re-generated again.
- This is the easiest way to handle the constraints.
- It is considered as computationally efficient.

• It does not require to estimate the degree of violation for assigning the fitness to a solution.

Limitations of Death Penalty

- It is not advisable for those problems in which the feasible space is limited.
- Thereby, it can stagnate search of EC techniques for small feasible spaced problems.

Limitations of Death Penalty

 Since an infeasible solution can be closer to the optimal solution in the variable-space than a feasible solution, the method cannot take advantage of such information.

Static Penalty

• The penalty function method can be written as

$$P(x,R) = f(x) + \sum_{k=1}^{K} R_k \{h(x)\}^{\gamma} + \sum_{j=1}^{J} R_j \langle g_j(x) \rangle^{\beta},$$
 (6)

where R_k and R_j are the penalty parameters. Normally, β and γ are kept 1 and 2, respectively.

The penalty parameters <u>remain constant</u> throughout evolutionary process.

Limitations of Static Penalty

- Penalty factors are problem dependent.
 - Small values of penalty factors may not be able to differentiate feasible and infeasible solutions in the populations.
 - Large values of penalty factors can distort the penalty function that can result in artificial local optimal solutions.

Dynamic Penalty

ullet The penalty factors include the current generation counter (t) in its computation.

$$P(x,R) = f(x) + (C \times t)^{\alpha} \left[\sum_{k=1}^{K} \{h(x)\}^{\gamma} + \sum_{j=1}^{J} \langle g_j(x) \rangle^{\beta} \right], \tag{7}$$

where C, α , β and γ are the user defined constants.

- It suggests that the penalty term $((C \times t)^{\alpha})$ is increasing with the generation counter (t).
- Joines and Houck [1994] used C=0.5, $\alpha=1$ or 2, β and γ are kept 1 and 2, respectively.
- Here, $\langle g_j(x)\rangle = g_j(x)$, when $g_j(x) < 0$, otherwise, it is zero.
- We convert an equality constraint into two inequality constraints as $|h(x)| \epsilon \leq 0$.

Limitation /

 Although it is considered good for many EC techniques, it is difficult to produce good dynamic penalty factors for static functions.

Adaptive Penalty

- \bullet Similar to dynamic penalty, adaptive penalty also changes with generation counter (t)
- Bean and Hadj-Alouane [1992,1997] developed such an adaptive penalty

$$P(x,R) = f(x) + \lambda(t) \left[\sum_{k=1}^{K} |h(x)| + \sum_{j=1}^{J} \langle g_j(x) \rangle^2 \right],$$
 (8)

where $\lambda(t)$ is getting updated in every generation.

It is calculated as

$$\lambda(t+1) = \begin{cases} \underbrace{(1/\beta_1) \cdot \lambda(t)}, & \text{if case } \# \ 1 \\ \underbrace{\beta_2 \cdot \lambda(t)}, & \text{if case } \# \ 2 \\ \lambda(t), & \text{otherwise}, \end{cases}$$

where case # 1 denotes situation where the best solution in the last k generations was always feasible, case # 2 denotes situation where the best individual in the last k generations was never feasible, $\beta_1, \beta_2 > 1$, $\beta_1 > \beta_2$.

Adaptive Penalty

$$\lambda(t+1) = \begin{cases} (1/\beta_1) \cdot \lambda(t), & \text{if case } \#\ 1 \\ \beta_2 \cdot \lambda(t), & \text{if case } \#\ 2 \\ \lambda(t), & \text{otherwise}, \end{cases}$$

- The penalty term $\lambda(t+1)$ decreases if all the best solutions in the last k generations were feasible
- It increases if they were all infeasible.
- If there are some feasible and infeasible solutions tied as best in the population, then the penalty does not change.

Limitation

• The major issue with this penalty is the setting of the parameters that can be difficult sometimes.

Major Issues with Penalty Function Methods

- Choosing the best penalty term is not known a priori for any arbitrary problem.
- Large value of penalty terms can distort the function with artificial optimal solutions.
 - ▶ If the optimal solution is on the constraint boundary, EC techniques will push all solutions inside the feasible search space and may find difficulty to move toward the boundary.
- Small penalty terms will not penalize the infeasible solution as compared to the objective function value.
 - EC techniques will waste their effort in searching the solution in the infeasible space.

Himmelblau Function

Minimize
$$f(x_1,x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2,$$
 subject to
$$(x_1 - 5)^2 + x_2^2 \le 26,$$

$$x_1, x_2 \ge 0.$$

• Let us convert the inequality constraints in the form of $g_i(x) \geq 0$.

$$g_1(x) = 26 - (x_1 - 5)^2 - x_2^2 \ge 0,$$

 $g_2(x) = 20 - 4x_1 - x_2 \ge 0.$

• Let us generate random solutions in the range of $0 \le x_1, x_2 \le 6$.

Index(i)	$(x_1, x_2)^T$
1	$(3.660, 4.595)^T$
2	$(2.380, 5.561)^T$
3	$(4.698, 3.219)^T$
4	$(3.755, 5.151)^T$
5	$(1.976, 1.754)^T$
6	$(3.654, 5.160)^T$
7	$(0.100, 3.858)^T$
8	$(2.446, 0.880)^T$

- Consider solution 1 $x^{(1)} = (3.660, 4.595)^T$.
- Calculate $f(x_1,x_2) = (x_1^2 + x_2 11)^2 + (x_1 + x_2^2 7)^2 = 364.823$
- Calculate $g_1(x_1,x_2) = 26 (x_1 5)^2 x_2^2 = 3.089$
- Calculate $g_2(x_1, x_2) = 20 4x_1 x_2 = 0.765$
- Since both the constraints are satisfied, solution 1 is a feasible solution.
- Death Penalty: it will keep this solution because it is feasible.

- For solution 1, $f(x^{(1)}) = 364.823$, $g_1(x^{(1)}) = 3.089$ and $g_2(x^{(1)}) = 0.765$.
- Consider Static Penalty: $P(x,R) = f(x) + \sum_{j=1}^{2} R_j \langle g_j(x) \rangle^2$
- Let us take $R_1 = 1$ and $R_2 = 5$.
- The penalty function value is

$$P(x^{(1)}, R) = 364.823 + R_1 \langle 3.089 \rangle^2 + R_2 \langle 0.765 \rangle^2 = 364.823 + 0 + 0 = 364.823$$

- For solution 1, $f(x^{(1)}) = 364.823$, $g_1(x^{(1)}) = 3.089$ and $g_2(x^{(1)}) = 0.765$.
- Consider Static Penalty: $P(x,R) = f(x) + \sum_{j=1}^{2} R_j \langle g_j(x) \rangle^2$
- Let us take $R_1 = 1$ and $R_2 = 5$.
- The penalty function value is $P(x^{(1)},R) = 364.823 + R_1 \ \langle 3.089 \rangle^2 + R_2 \ \langle 0.765 \rangle^2 = 364.823 + 0 + 0 = 364.823$
- Consider Dynamic Penalty: $P(x) = f(x) + (C \times t)^{\alpha} \left[\sum_{j=1}^{n} \langle g_j(x) \rangle^2 \right]$
- Considering C=0.5, and $\alpha=1$. Assuming it is the first generation, that is, t=1.

- For solution 1, $f(x^{(1)}) = 364.823$ $g_1(x^{(1)}) = 3.089$ and $g_2(x^{(1)}) = 0.765$.
- Consider Static Penalty: $P(x,R) = f(x) + \sum_{j=1}^{2} R_j \langle g_j(x) \rangle^2$
- Let us take $R_1 = 1$ and $R_2 = 5$.
- The penalty function value is $P(x^{(1)},R) = 364.823 + R_1 \ \langle 3.089 \rangle^2 + R_2 \ \langle 0.765 \rangle^2 = 364.823 + 0 + 0 = 364.823$
- Consider Dynamic Penalty: $P(x) = f(x) + (C \times t)^{\alpha} \left[\sum_{j=1}^{J} \langle g_j(x) \rangle^2 \right]$
- Considering C=0.5, and $\alpha=1$. Assuming it is the first generation, that is, t=1.
- The penalty function value is $P(x^{(1)}) = f(x) + (0.5 \times 1) \left[\langle 3.089 \rangle^2 + \langle 0.765 \rangle^2 \right] = 364.823 + 0 + 0 = 364.823$
- Since it is a feasible solution, the penalty function value remains the same for static and dynamic penalty functions.

- For solution 2, we calculate $f(x^{(2)} = (2.380, 5.561)^T) = 692.216$, $g_1(x^{(2)}) = -11.791$ and $g_2(x^{(2)}) = 4.917$.
- The constraint $g_1(x^{(2)})$ is not satisfied, hence the solution is infeasible.
- Consider Static Penalty: $P(x,R) = f(x) + \sum_{j=1}^{2} R_j \langle g_j(x) \rangle^2$
- Let us take $R_1 = 1$ and $R_2 = 5$.
- The penalty function value is $P(x^{(2)}, R) = 692.216 + \langle -11.791 \rangle^2 + 5.0 \ \langle 4.917 \rangle^2 = 692.216 + 139.021 + 0 = 831.236$
- Consider Dynamic Penalty: $P(x) = f(x) + (C \times t)^{\alpha} \left| \sum_{j=1}^{J} \langle g_j(x) \rangle^2 \right|$
- Considering C=0.5, and $\alpha=1$. Assuming it is the first generation, that is, t=1.
- The penalty function value is $P(x^{(2)}) = 692.216 + (0.5 \times 1) \left| \langle -11.791 \rangle^2 + \langle 4.917 \rangle^2 \right| =$ 692.216 + 0.5[139.021 + 0] = 761.726
- ullet If we consider the tenth generation, that is, t=10 the penalty function value becomes $P(x^{(2)}) = 692.216 + (0.5 \times 10) [139.021 + 0] = [1387.319]$

- For solution 3, we calculate $f(x^{(3)} = (4.698, 3.219)^T) = 269.112$, $g_1(x^{(3)}) = 15.548$ and $g_2(x^{(3)}) = -2.010$.
- The constraint $g_2(x^{(3)})$ is not satisfied, hence the solution is infeasible.
- Consider Static Penalty: $P(x,R) = f(x) + \sum_{j=1}^{2} R_j \langle g_j(x) \rangle^2$
- Let us take $R_1 = 1$ and $R_2 = 5$.
- The penalty function value is $P(x^{(3)},R) = 269.112 + \langle 15.548 \rangle^2 + 5.0 \ \langle -2.010 \rangle^2 = 269.112 + 0 + 20.208 = 289.320$

- For solution 3, we calculate $f(x^{(3)} = (4.698, 3.219)^T) = 269.112$, $g_1(x^{(3)}) = 15.548$ and $g_2(x^{(3)}) = -2.010$.
- The constraint $g_2(x^{(3)})$ is not satisfied, hence the solution is infeasible.
- Consider Static Penalty: $P(x,R) = f(x) + \sum_{j=1}^{2} R_j \langle g_j(x) \rangle^2$
- Let us take $R_1 = 1$ and $R_2 = 5$.
- The penalty function value is $P(x^{(3)},R) = 269.112 + \langle 15.548 \rangle^2 + 5.0 \ \langle -2.010 \rangle^2 = 269.112 + 0 + 20.208 = 289.320$
- Consider Dynamic Penalty: $P(x) = f(x) + (C \times t)^{\alpha} \left[\sum_{j=1}^{J} \langle g_j(x) \rangle^2 \right]$
- Considering C=0.5, and $\alpha=1$. Assuming it is the first generation, that is, t=1.
- The penalty function value is $P(x^{(3)}) = 269.112 + (0.5 \times 1) \left[\langle 15.548 \rangle^2 + \langle -2.010 \rangle^2 \right] = 269.112 + 0.5[0 + 4.042] = 271.133$

- For solution 4, we calculate $f(x^{(4)} = (3.755, 5.151)^T) = 610.196$, $g_1(x^{(4)}) = -2.081$ and $g_2(x^{(4)}) = -0.169$.
- Both constraints are not satisfied, hence the solution is infeasible.
- Consider Static Penalty: $P(x,R) = f(x) + \sum_{j=1}^{2} R_j \langle g_j(x) \rangle^2$
- Let us take $R_1 = 1$ and $R_2 = 5$.
- The penalty function value is $P(x^{(4)}, R) = 610.196 + \langle -2.081 \rangle^2 + 5.0 \ \langle -0.169 \rangle^2 = 614.671$
- Consider Dynamic Penalty: $P(x) = f(x) + (C \times t)^{\alpha} \left[\sum_{j=1}^{J} \langle g_j(x) \rangle^2 \right]$
- Considering C=0.5, and $\alpha=1$. Assuming it is the first generation, that is, t=1.
- The penalty function value is $P(x^{(4)}) = 610.196 + (0.5 \times 1) \left[\langle -2.081 \rangle^2 + \langle -0.169 \rangle^2 \right] = 612.376$

Index(i)	$(x^{(i)})^T$	$f(x^{(i)})$	$g_1(x^{(i)})$	$g_2(x^{(i)})$	Static Penalty	Dynamic Penalty
1	$(3.660, 4.595)^T$	364.823	3.089	0.765	364.823	364.823
2	$(2.380, 5.561)^T$	692.216	-11.791	4.917	831.236	761.726
3	$(4.698, 3.219)^T$	269.112	15.548	-2.010	289.320	271.133
4	$(3.755, 5.151)^T$	610.196	-2.081	-0.169	614.671	612.376
5	$(1.976, 1.754)^T$	32.329	13.780	10.342	32.329	32.329
6	$(3.654, 5.160)^T$	598.194	-2.434	0.225	604.120	601.157
7	$(0.100, 3.858)^T$	114.638	-12.900	15.743	281.046	197.842
8	$(2.446, 0.880)^T$	31.385	18.704	9.335	31.385	31.385

Separation of Objective Function and Constraints

• These approaches handle objective function and constraints separately.

Superiority of Feasible Solutions over Infeasible

Powell and Skolnick Approach

ullet Considering minimization problem, fitness F(x) of a solution is calculated as

$$F(x) = \begin{cases} f(x), & \text{if } x \text{ is feasible} \\ f(x) + R\left(\sum_{j=1}^{J} |\langle g_j(x)\rangle| + \sum_{k=1}^{K} |h_k(x)|\right) + \lambda(t,x), & \text{otherwise}, \end{cases}$$

Powell and Skolnick Approach

The fitness is given as

$$F(x) = \begin{cases} f(x), & \text{if } x \text{ is feasible} \\ f(x) + R\left(\sum_{j=1}^{J} |\langle g_j(x)\rangle| + \sum_{k=1}^{K} |h_k(x)|\right) + \lambda(t,x), & \text{otherwise}, \end{cases}$$

- ullet Here, R is the penalty factor, and $\lambda(t,x)$ is the difference between the worst feasible solution and the best static penalized function value among all infeasible solutions.
- The significance is that the best infeasible solution in the population will have the same fitness value as that of the worst feasible solution in the population.

Himmelblau Function

Minimize
$$f(x_1,x_2)=(x_1^2+x_2-11)^2+(x_1+x_2^2-7)^2,$$
 subject to $(x_1-5)^2+x_2^2\leq 26,$ $4x_1+x_2\leq 20,$ $0\leq x_1,x_2\leq 6$?

Let is consider the following solutions.

Index(i)	$(x^{(i)})^T$	$f(x^{(i)})$	$g_1(x^{(i)})$	$g_2(x^{(i)})$
1	$(3.660, 4.595)^T$	364.823	3.089	0.765
2	$(2.380, 5.561)^T$	692.216	-11.791	4.917
3	$(4.698, 3.219)^T$	269.112	15.548	-2.010
4	$(3.755, 5.151)^T$	610.196	-2.081	-0.169
5	$(1.976, 1.754)^T$	32.329	13.780	10.342
6	$(3.654, 5.160)^T$	598.194	-2.434	0.225
7	$(0.100, 3.858)^T$	114.638	-12.900	15.743
8	$(2.446, 0.880)^T$	31.385	18.704	9.335

- Let us consider R=2.
- For calculating the fitness, the static penalty function is

$$F_s(x) = f(x) + R\left(\sum_{j=1}^{J} |\langle g_j(x)\rangle| + \sum_{k=1}^{K} |h_k(x)|\right)$$

- Let us consider solution 1, $x^{(1)} = (3.660, 4.595)^T$, $f(x^{(1)}) = 364.823$, $g_1(x^{(1)}) = 3.089$ and $g_2(x^{(1)}) = 0.765$.
- Since it is a feasible solution, $F_s(x^{(1)}) = f(x^{(1)}) = 364.823$.
- Let us consider solution 2, $x^{(2)}=(2.380,5.561)^T$, $f(x^{(2)})=692.216$, $g_1(x^{(2)})=-11.791$ and $g_2(x^{(2)})=4.917$.
- It is an infeasible solution.
- The penalty function value is $F_s(x^{(2)}) = f(x^{(2)}) + R(|\langle g_1(x^{(2)})\rangle| + |\langle g_2(x^{(2)})\rangle|)$ = 692.216 + 2(11.791) + 0 = 715.797.
- Let us consider solution 3, $x^{(3)} = (4.698, 3.219)^T$, $f(x^{(3)}) = 269.112$, $g_1(x^{(3)}) = 15.548$ and $g_2(x^{(3)}) = -2.010$.
- It is an infeasible solution.
- The penalty function value is $F_s(x^{(3)}) = f(x^{(3)}) + R(|\langle g_1(x^{(3)})\rangle| + |\langle g_2(x^{(3)})\rangle|)$ = 269.112 + 0 + 2(2.010) = 273.133.

• Let us consider R=2.

Index(i)	$(x^{(i)})^T$	$f(x^{(i)})$	$g_1(x^{(i)})$	$g_2(x^{(i)})$	Static Penalty, $F_s(x^{(i)})$	
1	$(3.660, 4.595)^T$	364.823	3.089	0.765	364.823	
2	$(2.380, 5.561)^T$	692.216	-11.791	4.917	715.797	
3	$(4.698, 3.219)^T$	269.112	15.548	-2.010	273.133	
4	$(3.755, 5.151)^T$	610.196	-2.081	-0.169	614.697	
5	$(1.976, 1.754)^T$	32.329	13.780	10.342	32.329	
6	$(3.654, 5.160)^T$	598.194	-2.434	0.225	603.063	
7	$(0.100, 3.858)^T$	114.638	-12.900	15.743	140.438	4
8	$(2.446, 0.880)^T$	31.385	18.704	9.335	31.385	

- The infeasible solutions are '2', '3', '4', '6' and '7'.
- The best fitness among the infeasible solutions in the population is 140.438 corresponding to solution '7'.
- The worst fitness of feasible solution in the population is 364.823 corresponding to solution '1'.

- Therefore, $\lambda(t,x) = 364.823 140.438 = 224.385$.
- Since solution 1 is feasible, the fitness will remain same as objective function value.
- Let us consider solution 2, which has static penalty function value 715.797.
- The fitness of solution 2 is $F(x^{(2)}) = 715.797 + \lambda(t, x) = 940.182$
- The fitness assigned to each solution by Powell and Skolnick approach is

Index(i)	$(x^{(i)})^T$	$f(x^{(i)})$	$g_1(x^{(i)})$	$g_2(x^{(i)})$	Penalty function	$F(x^{(i)})$
1	$(3.660, 4.595)^T$	364.823	3.089	0.765	364.823	364.823
2	$(2.380, 5.561)^T$	692.216	-11.791	4.917	715.797	940.182
3	$(4.698, 3.219)^T$	269.112	15.548	-2.010	ر+ 273.133	497.518
Y	$(3.755, 5.151)^T$	610.196	-2.081	-0.169	614.697+	839.082
5	$(1.976, 1.754)^T$	32.329	13.780	10.342	32.329	32.329
8	$(3.654, 5.160)^T$	598.194	-2.434	0.225	603.063+	827.448
1	$(0.100, 3.858)^T$	114.638	-12.900	15.743	الم + 140.438	364.823
8	$(2.446, 0.880)^T$	31.385	18.704	9.335	31.385	31.385

The fitness of the best infeasible solution '7' and the fitness of the worst feasible solution '1' are the same

• Let us consider large value of R = 100.

Index(i)	$(x^{(i)})^T$	$f(x^{(i)})$	$g_1(x^{(i)})$	$g_2(x^{(i)})$	Static Penalty, $F(x^{(i)})$	
1	$(3.660, 4.595)^T$	364.823	3.089	0.765	364.823	4
2	$(2.380, 5.561)^T$	692.216	-11.791	4.917	1871.286	
3	$(4.698, 3.219)^T$	269.112	15.548	-2.010	470.149	+
4	$(3.755, 5.151)^T$	610.196	-2.081	-0.169	835.214	
5	$(1.976, 1.754)^T$	32.329	13.780	10.342	32.329	
6	$(3.654, 5.160)^T$	598.194	-2.434	0.225	841.635	
7	$(0.100, 3.858)^T$	114.638	-12.900	15.743	1404.632	
8	$(2.446, 0.880)^T$	31.385	18.704	9.335	31.385	

- The best fitness among the infeasible solutions in the population is 470.149 corresponding to solution '3'.
- The worst fitness of feasible solution in the population is 364.823 corresponding to solution '1'.
- Therefore, $\lambda(t,x) = 364.823 470.149 = -105.326$.

ullet The fitness assigned to each solution by Powell and Skolnick approach for R=100 is

Index(i)	$(x^{(i)})^T$	$f(x^{(i)})$	$g_1(x^{(i)})$	$g_2(x^{(i)})$	$F(x^{(i)})$	
1	$(3.660, 4.595)^T$	364.823	3.089	0.765	364.823	4
2	$(2.380, 5.561)^T$	692.216	-11.791	4.917	1765.959	
3	$(4.698, 3.219)^T$	269.112	15.548	-2.010	364.823	4
N.	$(3.755, 5.151)^T$	610.196	-2.081	-0.169	729.888	7
8	$(1.976, 1.754)^T$	32.329	13.780	10.342	32.329	
8	$(3.654, 5.160)^T$	598.194	-2.434	0.225	736.309	1
7	$(0.100, 3.858)^T$	114.638	-12.900	15.743	1299.305	
8	$(2.446, 0.880)^T$	31.385	18.704	9.335	31.385	

• The fitness of the best infeasible solution '3' and the fitness of the worst feasible solution '1' are the same.

Deb's Approach

• Deb's approach is similar to Powell and Skolnick approach. However, it does not require any penalty parameter, R and $\lambda(t,x)$.

$$F(x) = \begin{cases} f(x), & \text{if } x \text{ is feasible;} \\ f_{max} + \sum_{j=1}^{J} |\langle g_j(x) \rangle| + \sum_{k=1}^{K} |h_k(x)|, & \text{Otherwise.} \end{cases}$$
 (4)

- Here, f_{max} is the objective function value of the worst feasible solution in the population.
- Therefore, this approach is considered as penalty parameter-less approach.

• Let us consider the following solutions

Index(i)	$(x^{(i)})^T$	$f(x^{(i)})$	$g_1(x^{(i)})$	$g_2(x^{(i)})$
1	$(3.660, 4.595)^T$	364.823	3.089	0.765
2	$(2.380, 5.561)^T$	692.216	-11.791	4.917
3	$(4.698, 3.219)^T$	269.112	15.548	-2.010
4	$(3.755, 5.151)^T$	610.196	-2.081	-0.169
5	$(1.976, 1.754)^T$	32.329	13.780	10.342
6	$(3.654, 5.160)^T$	598.194	-2.434	0.225
7	$(0.100, 3.858)^T$	114.638	-12.900	15.743
8	$(2.446, 0.880)^T$	31.385	18.704	9.335

- The feasible solutions in the population are '1', '5' and '8'.
- Among them, the worst feasible solution is '1' with the objective function value 364.823.
- It means that $f_{max} = 364.823$,

- Let us consider solution 1, $x^{(1)} = (3.660, 4.595)^T$, $f(x^{(1)}) = 364.823$, $g_1(x^{(1)}) = 3.089$ and $g_2(x^{(1)}) = 0.765$.
- Since it is a feasible solution, $F(x^{(1)}) = f(x^{(1)}) = 364.823$.
- Let us consider solution 2, $x^{(2)}=(2.380,5.561)^T$, $f(x^{(2)})=692.216$, $g_1(x^{(2)})=-11.791$ and $g_2(x^{(2)})=4.917$.
- It is an infeasible solution.
- Fitness of solution 2 is $F(x^{(2)}) = |\langle g_1(x^{(2)}) \rangle| + |\langle g_2(x^{(2)}) \rangle| + f_{max} = 11.791 + 364.823 = 376.614.$
- Let us consider solution 3, $x^{(3)} = (4.698, 3.219)^T$, $f(x^{(3)}) = 269.112$, $g_1(x^{(3)}) = 15.548$ and $g_2(x^{(3)}) = -2.010$.
- It is an infeasible solution.
- The fitness solution 3 is $F(x^{(3)}) = |\langle g_1(x^{(3)})\rangle| + |\langle g_2(x^{(3)})\rangle| + f_{max}$ = 2.010 + 364.823 = 366.833.

• The fitness of each solution using Deb's approach is

Index(i)	$(x^{(i)})^T$	$f(x^{(i)})$	$g_1(x^{(i)})$	$g_2(x^{(i)})$	$F(x^{(i)})$		
1	$(3.660, 4.595)^T$	364.823	3.089	0.765	364.823	6	1
2	$(2.380, 5.561)^T$	692.216	-11.791	4.917	376.614	+	1
3	$(4.698, 3.219)^T$	269.112	15.548	-2.010	366.833	K	
4	$(3.755, 5.151)^T$	610.196	-2.081	-0.169	367.073	_	7
5	$(1.976, 1.754)^T$	32.329	13.780	10.342	32.329		
6	$(3.654, 5.160)^T$	598.194	-2.434	0.225	367.257	-	
7	$(0.100, 3.858)^T$	114.638		15.743	377.723	_	1
- 8	$(2.446, 0.880)^T$	31.385	18.704	9.335	31.385		

- The best infeasible solution '3' has more fitness value than the worst feasible solution '1'
- A feasible solution is always better than any infeasible solution in the population.

Closure

• Constraint handling via separation of objective function and constraints

Powell and Skolnick's approach

Deb's approach

Software for the sense of the s

• Hand calculations for both the approaches