Calculation and Applications of Concurrent Rules

Jonas S. Bezerra, Leila Ribeiro

Motivation

- Concurrent Systems (as Graph Transformations)
- Emergent Behaviour

Summarizing Concurrent Behaviour

- Construction of Concurrent Rules
 - Check whether the overall intended behaviour is achieved
 - Show the different behaviours that emerge from the system

Example Grammar

Example Grammar

Calculating Concurrent Rules

Calculating Concurrent Rules

Combinatorial Explosion

- There is one concurrent rule for each possible interaction
- We need to calculate a concurrent rule for each generated concurrent rule of a sequence (n-1) and their interactions with n

Combinatorial Explosion

- There is one concurrent rule for each possible interaction
- We need to calculate a concurrent rule for each generated concurrent rule of a sequence (n-1) and their interactions with n

# Rules	2	3	4
# Concurrent Rules	5	189	1021
# NACs	11	533	3961

Combinatorial Explosion

- We can reduce the problem focusing on more "interesting" rules:
 - Constraints
 - Rules by dependencies
 - Maximal Rules

Constraints

- Restrictions on the model domain
 - Forbid certain structures to exist
 - Ensures that certain structures exist

Constraints

- Restrictions on the model domain
 - Forbid certain structures to exist
 - Ensures that certain structures exist

Constraints on Overlappings

Constraints on Overlappings

Constraints on Rules and NACs

- Even if the overlapping satisfy the constraints, the LHS and RHS may not
- NACs of the concurrent rules may forbid something already forbidden

Concurrent-Rules induced by dependency

- Restrict the calculation of rules only where the previous rule:
 - Create something needed for the next one
 - Delete something forbidden by a NAC of the next one

Concurrent-Rules induced by dependency

Concurrent-Rules induced by dependency

Maximal Concurrent Rules

Calculate rules for pairs the represent the maximal possible interactions

Maximal Concurrent Rules

Verigraph

- All strategies above were implemented on verigraph
- These strategies can be combined
- The combination of strategies benefits from Haskell laziness

Results

Concurrent rules for the 4 rules of the example grammar

Strategy	Time	Number of Rules	Number of NACs
None	1 m 30 s	1021 rules	$\approx 4 \text{ nacs/rule}$
Constraints on Overlappings	8s	141 rules	$\approx 2 \text{ nacs/rule}$
Constraints on LHS and RHS	8s	141 rules	$\approx 2 \text{ nacs/rule}$
Dependencies	0.45s	2 rules	2 nacs/rule
Maximal Rule	0.32s	1 rule	2 nacs/rule

Table 1. Concurrent rules for the server grammar

Results

• Concurrent rules for an elevator system grammar with 8 rules

Strategy	Time	Number of Rules	Number of NACs
None	>2d	NA	NA
Constraints on Overlappings	$30 \mathrm{m}$	11313 rules	$\approx 0.7 \text{ nacs/rule}$
Constraints on LHS and RHS	1 m 55 s	287 rules	$\approx 5 \text{ nacs/rule}$
Dependencies	2m15s	9 rules	$\approx 4 \text{ nacs/rule}$
Maximal Rule	0.93s	0 rules	0 nacs/rule

Table 2. Concurrent rules for elevator grammar

Conclusion

- Performance improvement
- Focus on meaningful rules
- Available on verigraph: https://github.com/Verites/verigraph

Ongoing/Future Work

- Use of concurrent rules for Use Cases analysis
- Use of concurrent rules for generating test cases
- Use of other static analysis for generating test cases

Acknowledgement

Contact

- Jonas S. Bezerra: <u>jsbezerra@inf.ufrgs.br</u>
- Prof^a. Dr^a. Leila Ribeiro: <u>leila@inf.ufrgs.br</u>

Calculation and Applications of Concurrent Rules

