6.002 电路与电子学

受控电源和放大器

复习

- ■非线性电路——可以使用节点方法
- ■小信号分析利用线性响应

今天要讲的是:

- ■受控电源
- ■放大器

请看: 第七章 7.17.2

受控电源

以前看到的有:

新型器件: 受控电源

例:电压控制电流源 输出电流受输入电压的控制。

受控电源:例

例 1: 求出下图中的 V

独立电 流源

$$V = I_0 R$$

受控电源:例

例 2: 求出下图中的 V

受控电源:例

例 2: 求出下图中的 V

电压控制 电流源

另一受控电源:例

可以发现输出电压心是心的函数。

另一受控电源:例

同样可以发现输出电压 v_O 由输入电压 v_I 控制。

另一受控电源:例

同样可以发现输出电压 v_O 由输入电压 v_{I} 控制。

受控电源:例

保留这种思想

下一个,放大器

放大原理?

信号放大是模拟和数字处理的关键

模拟信号:

除了我们所知的显而易见的放大作用外,放大也是信号传输过程中噪声容限的关键。

放大原理?

放大作用是信号传输过程中噪声容限的关键:

在没有放大时:

有放大过程时:

放大原理?

数字信号:

放大原理?

数字信号:

静态规则需要放大。 所需的最小放大要求:

放大器是一个三端口网络,实际上

我们一般不在图中画出电源端。

也为了方便起见,我们要观察"公共地"。 也就是说,所有的端口一般都有一个共同的参 考点,这个参考点叫做"地"。

我们这样建立系统

还记得以上讲的:

注意: 这是一个放大器

现在让我们看它的放大作用:

让我们来看 v_o 关于 v_I 的曲线。

例
$$V_S = 10V$$
, $K = 2\frac{mA}{V^2}$, $R_L = 5k\Omega$
 $v_O = V_S - \frac{K}{2} R_L (v_I - 1)^2$
 $= 10 - \frac{2}{2} \cdot 10^{-3} \cdot 5 \cdot 10^3 (v_I - 1)^2$

$$v_{O} = 10 - 5 (v_{I} - 1)^{2}$$

$$\Delta v_{O}$$

$$1$$

$$\Delta v_{I}$$

绘制 v_O 和 v_I 的关系图表

$$v_O = 10 - 5(v_I - 1)^2$$

			-
	v_I	v_O	
	0.0	10.00	
v _I 改变 0.1v	1.0	10.00	
	1.5	8.75	
	2.0	5.00	vo改变 1v
	2.1	4.00	1 V
	2.2	2.80	
	2.3	1.50	│ │获得增益
	2.4	~ 0.00	1 20 C 1 A . El TITT
	4		=

测量得到 v_o .

数学角度看, $v_O = V_S - \frac{K}{2} R_L (v_I - 1)^2$

可以利用数学推测出其变化归律

然而, 由公式

$$i_{D} = \frac{K}{2} (v_{I} - 1)^{2} \qquad \text{if} \quad v_{I} \ge 1 \text{ If}$$

$$V_{S} = R_{L}$$

$$v_{O}$$

$$VCCS \downarrow i_{D}$$

当 $v_o > 0$ 时,VCCS 消耗电能: $v_o i_D$ 当 $v_o < 0$ 时,VCCS 必须提供电能!

如果 VCCS 是可以提供电源的装置,利用数学可知其特性曲线变为:

如果 VCCS 是一个无源器件,

也就是说它不能提供电能,这时^vo不能为负,

所以这时候要注意!

容易知道,我们的模型失效。

$$i_D = \frac{K}{2} \left(v_I - 1 \right)^2$$

通常,

当 v_O ≤0时,将不在有效。

也就是说 i_D 饱和(停止增加)。 我们可以看到:

