ΛΥΣΗ

α) Το συνημίτονο μιας γωνίας σχεδιασμένης στον τριγωνομετρικό κύκλο είναι η τετμημένη του σημείου τομής της τελικής πλευράς της με τον κύκλο. Οπότε είναι $\sigma v v \omega = -0, 6 = -\frac{3}{5}$.

β)

i. Είναι:
$$\eta\mu\omega=\pm\sqrt{1-\sigma\upsilon v^2\omega}=\pm\sqrt{1-\left(-\frac{3}{5}\right)^2}=\pm\sqrt{1-\frac{9}{25}}=\pm\frac{4}{5}$$
, το $\eta\mu\omega=\frac{4}{5}$ απορρίπτεται διότι $\omega\in\left(\pi,\frac{3\pi}{2}\right)$ \Rightarrow $\eta\mu\omega<0$, οπότε $\eta\mu\omega=-\frac{4}{5}$.

Εναλλακτικά, σχεδιάζουμε το ορθογώνιο τρίγωνο $\hat{OAB}(\hat{A} = \frac{\pi}{2})$, όπως φαίνεται στο παρακάτω σχήμα.

Από το πυθαγόρειο θεώρημα έχουμε:

$$(AB) = \sqrt{1 - (OA)^2} = \sqrt{1 - \left(-\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}.$$

Όμως το ημίτονο μιας γωνίας σχεδιασμένης στον τριγωνομετρικό κύκλο είναι η τεταγμένη του σημείου τομής της τελικής πλευράς της με τον κύκλο. Οπότε είναι $\eta\mu\omega = -\frac{4}{5}$ (1).

ii. Υπολογισμός της *εφω* :

Είναι: $\varepsilon \varphi \omega = \frac{\eta \mu \omega}{\sigma \upsilon \nu \omega}$, οπότε από το α) ερώτημα και τη σχέση (1) έχουμε

$$\varepsilon\varphi\omega = \frac{-\frac{4}{5}}{-\frac{3}{5}} = \frac{4}{3}.$$