Neural Network

- Neurons are connected to and receive electrical signal from other neurons
- Neuron process input signal and can be activated

Artificial neural network

- Mathematical model for learning inspired by biological neural networks
- Usage:
 - Model mathematical function from input to output based on The structure and parameters of the network
 - Allow for learning the network parameters based on Data
- Example for activation function:
 - Logistic sigmoid :
 - $g(x) = \frac{e^x}{e^x + 1}$
 - Rectified linear unit (ReLU):
 - g(x) = max(0, x)

Gradient Descent

Def:

Algorithm for minimizing the loss when training neural network

Sudo Code:

- Start with a random choice of weights
- Repeat:
 - Calculate the gradient based on all data points :
 - Which is the Direction that will lead to decreasing loss
 - Update weights according to the gradient

Improvement:

- Stochastic gradient Descent:
 - Use one data point(Randomly) instead of all the data
- Mini-batch gradient descent :
 - Use a one small batch

Percepti	ron(the unit):	
	nly capable of learning linearly separable decision boundary	
Ar	Multilayer neural network: Artificial neural network with an input layer, output layer and at least one hidden layer	
	ppagation : popagation : Igorithm for training neural network with hidden layers	
Sudo Co	ode:	
	cart with random choice of weights epeat: Calculate the error for the output layer For each layer, starting with the output layer, And moving inwards towards earliest hidden layer: Propagate the error back one layer Update weights	
	eural network : eural network with multiple hidden layers	
Overfitt	: ting :	
- <mark>Us</mark>	se dropout to avoid overfitting	
- Dr	ropout: Temporarily removing units (selected randomly) from a neural network To prevent over-reliance on certain units	
Def : - Co	Computer vision omputational methods for analyzing and understanding digital images	
_	c <mark>onvolution</mark> : pplying a filter that adds each pixel value of an image to its neighbor, Weighted according to kernel matrix	

Example :

Reducing the size of an input by sampling from regions in the inputs

Pooling:

Max-pooling:

Pooling by choosing the maximum value in each region

Convolution neural network:

Neural network that use convolution, Usually for analyzing images

Feed-forward neural network:

Neural network that has connections only in one direction

Recurrent neural network:

Generate output that gets fed back into itself as input for future runs of the network

- Has multiple inputs or multiple outputs or both