Chapitre 9 Statistiques

I. Vocabulaire

Population : Une population est un ensemble de personnes ou d'objets, appelés **individus**, définis par une propriété commune.

Exemple : les habitants d'un pays, les automobiles fabriquées en 2010,...

Caractère: Pour une population choisie, on peut étudier un caractère de ses individus.

Exemple : on peut étudier le caractère « taille » des élèves d'un lycée.

<u>Caractère quantitatif</u>: Un caractère est dit quantitatif lorsqu'il est possible de le mesurer en associant un nombre à chaque individu. Un caractère quantitatif est aussi appelé **variable**.

Exemple : l'âge, la taille, le nombre de frères et sœurs, ...

- Un caractère quantitatif est dit **continu** lorsque les nombres qui le mesurent peuvent prendre, à priori, toutes les valeurs d'un intervalle.

 <u>Exemple</u>: le poids, la taille, la durée de vie d'un moteur, ...
- Il est **discret** dans le cas contraire.

 <u>Exemple</u>: l'année de naissance, le nombre d'enfants par famille, ...

Caractère qualitatif: On appelle ainsi tout caractère non quantitatif.

Exemple : la couleur des yeux.

Exemple:

Le tableau suivant donne le relevé des cours d'une action sur 36 jours consécutifs de bourse.

jour	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
cours (en €)	18,8	18,91	18,9	19,4	19,22	19,06	19,33	19,03	19,41	19,67	19,69	19,57	19,2	19,49	19,7	19,8	20,37	20,33

jour	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
cours (en €)	20,32	20,46	20,33	20,34	20,4	20	20,4	20,4	20,5	20,2	20,21	20,61	20,61	21,25	21,63	21,42	21	20,9

Pour cette série statistique :

La population étudiée est les actions, le caractère (quantitatif continu) est le cours (prix) des actions.

II. Paramètres d'une série

Pour résumer une **série quantitative**, on utilise des **caractéristiques de position** (moyenne, médiane, quartiles, ...) et des **caractéristiques de dispersion** (étendue, écart interquartile, ...)

1) Caractéristiques de position

Moyenne

Définition:

Pour déterminer la **moyenne** d'une série prenant les valeurs $x_1, x_2, ..., x_n$ on utilise la formule :

$$\overline{x} = \frac{1}{n} (x_1 + x_2 + ... + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Exemple:

Pour la série étudiée, on a donc :

$$\overline{x} = \frac{18,8+18,91+19,9+\dots+21,42+21+20,9}{36} \approx 20,02$$

Sur les 36 derniers jours le cours moyen de l'action est de 20,02 €.

Médiane et quartiles

Définitions:

- La **médiane** d'une série statistique est le nombre **Me** tel que :
 - o 50% au moins des individus ont une valeur du caractère inférieure ou égale à **Me**.
 - o 50% au moins des individus ont une valeur supérieure ou égale à Me.
- Le **premier quartile** est la plus petite valeur Q_1 de la liste telle qu'au moins **un quart** des valeurs de la liste sont **inférieures ou égales** à Q_1 .
- Le **troisième quartile** est la plus petite valeur Q_3 de la liste telle qu'au moins les **trois** quarts des valeurs de la liste sont **inférieures ou égales** à Q_3 .

Exemple:

Pour la série de l'exemple précédent :

18,8 18,9 18,91 19,03 19,06 19,2 19,22 19,33 19,4 19,41 19,49 19,57 19,67 19,69 19,7 19,8 20 **20**,2

20,21 20,32 20,33 20,33 20,34 20,37 20,4 20,4 20,4 20,4 20,6 20,5 20,61 20,61 20,9 21 21,25 21,42 21,63

• Donc la médiane vaut :

$$Me = \frac{20,2+20,21}{2} = 20,205$$

donc le cours de l'action était inférieur à 20,205 € durant 18 jours.

• Q_1 : $\frac{36}{4} = 9$

donc le 1er quartile vaut 19,4 €.

• Q₃: $9 \times 3 = 27$ donc le 3ème quartile vaut 20,4 \in .

Définition:

Un diagramme en boîte (ou boîte à moustaches) est une représentation graphique qui résume le caractère quantitatif étudié par les valeurs extrêmes, la médiane, les quartiles.

Calculatrice:

Remarque:

Les modes de calcul des quartiles diffèrent d'un logiciel à l'autre.

De ce fait, les résultats obtenus seront souvent différents des résultats attendus.

Pour la calculatrice, Q_1 est la médiane des valeurs comprises entre Xmin et Med et Q_3 est la médiane des valeurs comprises entre Med et Xmax.

Caractéristiques de dispersion 2)

Étendue

Définition:

L'étendue est la différence entre les valeurs extrêmes de la série.

Exemple:

Pour la série étudiée l'étendue est 2,83 €.

Écart interquartile

Définition:

L'écart interquartile est la différence entre les $3^{\text{ème}}$ et 1^{er} quartiles $(Q_3 - Q_1)$.

Exemple:

Pour la série étudiée l'écart interquartile est 1 €.

Remarque:

L'écart interquartile ne prend pas en compte les valeurs extérieures à l'intervalle interquartile. Pour prendre ces valeurs en compte, on utilise une autre mesure de dispersion : l'écart type.

Écart type

Définitions:

• La **variance V** de la série prenant les valeurs $x_1, x_2, ..., x_n$ et de moyenne \overline{x} est définie par :

$$V = \frac{1}{n} \left[(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \ldots + (x_n - \overline{x})^2 \right] = \frac{1}{n} \sum_{i=1}^{n=n} (x_i - \overline{x})^2$$

• L'écart type s est alors défini comme la racine carrée de la variance :

$$s = \sqrt{V}$$

Exemple:

Pour la série étudiée on a :

$$V = \frac{(18,8-20,02)^2 + (18,91-20,02)^2 + \dots + (21-20,02)^2 + (20,9-20,02)^2}{36} \approx 0,549$$

et
$$s = \sqrt{V} \simeq 0.74$$
.

Donc l'écart type est de 0,74 €.

Remarques:

- L'écart type est une quantité réelle positive qui mesure la dispersion autour de la moyenne.
- Pratiquement, c'est l'**écart type**, racine carrée de la variance, qui est utilisé car il possède les mêmes dimensions que le caractère.

Calculatrice:

L1	L2	L3 1
18.91 18.9 19.4 19.22 19.06 19.33		
$L_{1(1)} = 13$	3.8	

Pour obtenir un résumé statistique :

1		ii dii i codi	ne statistiq
	L1	L2	L3 1
	18.91 18.91 19.4 19.22 19.03		
	L1(1) = 13	3.8	

III. Série chronologique

Définition:

On appelle **série chronologique** une série statistique telle que les valeurs de la série sont observées à des intervalles de temps égaux (heures, mois, trimestre, années,...).

Exemple:

La série étudiée est donc bien une série chronologique.

Lissage par moyennes mobiles

Définition:

On appelle **moyenne mobile centrée d'ordre** k, à la date i, la moyenne arithmétique de l'observation x_i et des 2k observations qui l'encadrent.

Exemple:

Pour la série étudiée, la série des moyennes mobiles d'ordre 3 est :

jour	1	2	3	4	5	6	
cours (en €)				$\begin{array}{c} \frac{18,8+18,91+18,9+19,4+19,22+19,06+19,33}{2} \\ \simeq 19,09 \end{array}$	$ \frac{18,91+18,9+19,4+19,22+19,06+19,33+19,03}{7} \simeq 19,12 $	$ \frac{18,9+19,4+19,22+19,06+19,33+19,03+19,41}{7} \simeq 19,19 $	

jour	 31	32	33	34	35	36
cours (en €)	 $\begin{array}{c} \frac{20,2+20,21+20,61+20,61+21,25+21,63+21,42}{7} \\ \simeq 20,84 \end{array}$	$\begin{array}{c} \frac{20,21+20,61+20,61+21,25+21,63+21,42+21}{7} \\ \simeq 20,96 \end{array}$	$\begin{array}{c} \frac{20,61+20,61+21,25+21,63+21,42+21+20,9}{7} \\ \simeq 21,06 \end{array}$			

Exemple:

Lissage par moyennes mobiles d'ordre 3.

Remarque:

La série des moyennes mobiles permet de lisser la série chronologique initiale, en « gommant » les irrégularités.