

A Genetic Study of the Brain Cortical Sulci with the IMAGEN Cohort

Yann Le Guen¹, François Leroy², Jean-François Mangin¹, Clara Fischer¹, Antoine Grigis¹, Ghislaine Dehaene-Lambertz³, Gunter Schumann⁴, Sylvane Desrivières⁴, Edouard Duchesnay¹, IMAGEN consortium⁵, Vincent Frouin¹

¹CEA, NeuroSpin, Gif-sur-Yvette, France, ²INSERM, Gif-sur-Yvette, France, ³INSERM, CEA, NeuroSpin, U992, Gif-sur-Yvette, France, ⁴King's College London, United-Kingdom, ⁵IMAGEN consortium, London, United-Kingdom

Challenge

- Central sulcus depth has already been studied in an extended-pedigree study was reported under genetic control [1].
- We propose to analyze the depth of all primary sulci, which are specific landmarks of the brain cortical surface.
- Genome wide complex trait analysis (GCTA) to estimate the variance of an observed phenotype which can be explained by the SNPs [2].

Materials & Methods

Imaging

- IMAGEN cohort composed of 1765 subjects with T1 MR Images (ADNI-MPRAGE) and genotyping data.
- <u>Approach 1)</u> Extraction of the sulci using the Morphologist pipeline available in Brainvisa [3].
- Extracting the sulcal depth related phenotypes Approach 2) Cortical dense sulcal depth obtained using Freesurfer recon-all command [4].
- Subjects were quality checked using the following criterion: they need to have at least 2% of all their sulci features within $\mu \pm 3\sigma$.

Genetics

- 466,125 variants filtered using PLINK with the following thresholds: minor allele frequency 0.01, genotyping rate 0.99, threshold for Hardy-Weinberg equilibrium test 10⁻⁶. Keep the SNPs in moderate linkage disequilibrium with variation inflation factor 10 within a window of 50 SNPs.
- Compute the genetic relationship matrix with GCTA using the 229.193 SNPs left
- Covariates: sex, center of acquisition, 5 principal components of identity-by-state matrix, and ICV.
- Use MEGHA equivalent to GCTA to compute the estimate of the heritability of the sulcal depth [5].

Phenotype	h2	Pval
FCLp_left	0.643	0.0260
SC_left	0.548	0.0488
SFinf_left	0.648	0.0250
SOlf_left	0.586	0.0383
SPeCinf_left	0.835	0.0058
STs_left	0.610	0.0327
Stster-post_left	0.560	0.0453

Phenotype	h2	Pval
FIP_right	0.956	0.0019
SC_right	0.600	0.0348
SFinter_right	0.594	0.0364
SFsup_right	0.808	0.0073
SPasup_right	0.804	0.0076
SPeCsup_right	0.571	0.0422
Stster-ant_right	0.714	0.0153

Tab. 1 Heritability (h2) estimates of the maximum depth of primary sulci recognized on 1657 subjects, using Brainvisa.

Fig. 2 Mapping of the heritability of the vertex-wise cortical sulcal depth on the whole brain on 1657 subjects, using MEGHA.

Fig. 1 Mapping of the heritability of the sulcal-based maximum depth for each sulcus having a p-val < 0.05, computed with MEGHA

Fig. 3 Mapping of the significant clusters after family wise error correction of the pval, using MEGHA.

Conclusion

- Our findings emphasize the sulcal depth as a phenotype under genetic control. Yet, we would need 10k subjects to confirm this result.
- We compared two phenotypes, which contain a priori similar information on the brain structure, one sulcal based maximum depth phenotype and one vertex-wise dense sulcal depth. The relationship between these two phenotypes need to be further analyzed.

Remark: The genome-wide heritability of the cortical sulcal depth was estimated with only 50% statistical power to detect heritability values above 45% and presented results with uncorrected pval.

Perspective

The sulci are specific landmarks of the brain that appear in utero and early year in development. The results presented here suggest that sulcal depth is a trait of interest to unveil how genetics contribute to the brain structure development. This phenotype is a good candidate

References & Acknowledgment

- for finer genetic analyses with either more powerful cohort or by using gene candidate or sulcus-candidate analysis.
- [2] Yang, J. et al. (2010), 'Common SNPs explain a large proportion of the heritability for human height', Nature Genetics, vol. 42, pp. 565–569.
- [4] Fischl, B. (2012), 'FreeSurfer', NeuroImage, vol. 62, pp. 774-781.
- [5] Ge, T. et al. (2015), 'Massively expedited genome-wide heritability analysis (MEGHA)', PNAS, vol. 112, pp. 2479-2484.

[3] Perrot, M. et al. (2011), 'Cortical sulci recognition and spatial normalization', Medical Image Analysis, vol. 15, pp. 529-550.

[1] McKay, D. R. et al. (2013), 'Sulcal Depth-Position Profile is a Genetically Mediated Neuroscientific Trait: Description and Characterization in the Central Sulcus', The Journal of Neuroscience, vol. 33, pp. 15618-15625.