Design and Analysis of Algorithms

Final Exam Solution

```
1. (5%, 無限制方法,只有結果對 1 分,只有過程對 4 分)
Let m = lg n, thus,T (2^m) = 3T (2^{m/2}) + m, (2 分)
We now rename S(m) = T (2^m) to produce new recurrence
S(m) = 3S(m/2) + m (1 分)=> S(m) = \Theta(m^{\lg 3}). (1 分)
Changing back to T (n) and resubstituting m = \lg n, T (n) = \Theta((\lg n)^{\lg 3}) (1 分)
```

2. (10%, Finding out SCCs: 3 points; Computational steps: 5 points; Time complexity: 2 points)


```
{
    1. Perform DFS on G;
```

2. Construct G^T;

}

- 3. while (some node in G^T is undiscovered)
 - { u = undiscovered node with latest finishing time refer to Step 1's DFS;

Perform DFS on G^T from u;

} // nodes in the DFS tree from u forms an SCC

→ Time-complexity : O(|V|+|E|)

3. (10%, 4 points for each time complexity; 2 points for the reason.)

Kruskal's algorithm sorts edges in nondecreasing order by weight. If the edge weights are integers in the range 1 to |V|, we can use Counting-Sort to sort the edges in $\Theta(V+E)$ time (recall Counting-Sort correctly sorts n integers in the range 0 to k in $\Theta(n+k)$ time). Then Kruskal's algorithm will run in $O(V+E+V\log V)=O(E+V\log V)$ time.

If the edge weights are integers in the range from 1 to W for some constant W, we can use Counting-Sort to sort the edges in $\Theta(W+E)$ time and Kruskal's algorithm will run in $O(W+E+V\log V)$ time.

4. (10%, 過程 4%, 結果 3%, time complexity 3%)

Topological sort

- 1. Call DFS
- 2. Output the decreasing order of their finishing times.(=結果)
- => Time complexity O(|V|+|E|)

Dijkstra algorithm

- 1. while (there is unvisited vertex) {
- 2. v = unvisited vertex with smallest d;
- 3. Visit v, and Relax all its outgoing edges;
- 4. }
- => Time complexity $O(V^2)$

(with binary heap $O(E \log V)$, with Fibonacci heap $O(E + V \log V)$)

(使用以下方法扣 3 分,因為圖變動就找不到 one-to-all shortest path)

Prim's algorithm, $O(E \log E) = O(E \log V)$ (with binary heap $O(E \log V)$, with Fibonacci heap $O(E + V \log V)$)

5. (10%, 部分過程錯誤扣3分)

Consider the graph with negative weight cycle like the following example:

First, we relax vertex b and c :

After including vertex b, we relax vertex d:

After including vertex \mathbf{d} , we relax vertex \mathbf{c} :

After we including vertex c, we find that vertex b can be relaxed by vertex c. As a result, if we apply Dijkstra's algorithm to the graph with negative weight cycle, we will not get the correct answer.

6. (10%, algorithm: 4 points; time complexity: 2 points; matrices: 4 points)

- Algorithm and time complexity: Because there is no negative weight cycle, we choose Floyd-Warshall algorithm
 - 1. n = W.rows
 - 2. $D^{(0)} = W$
 - 3. for k = 1 to n
 - 4. Let $D^{(k)} = (d_{ij}^{(k)})$ be a new n x n matrix
 - 5. for i = 1 to n
 - 6. for j = 1 to n
 - 7. $d_{ij}^{(k)} = \min (d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
 - 8. return D⁽ⁿ⁾

Time Complexity: O(n³)

• Apply the method we propose to solve the question

$$D^{(0)} = \begin{array}{cccc} 0 & 3 & 8 & \infty \\ \infty & 0 & \infty & 1 \\ 3 & 4 & 0 & \infty \\ 2 & \infty & -5 & 0 \end{array}$$

$$D^{(1)} = \begin{array}{cccc} 0 & 3 & 8 & \infty \\ \infty & 0 & \infty & 1 \\ 3 & 4 & 0 & \infty \\ 2 & 5 & -5 & 0 \end{array}$$

$$D^{(2)} = \begin{cases} 0 & 3 & 8 & 4 \\ \infty & 0 & \infty & 1 \\ 3 & 4 & 0 & 5 \\ 2 & 5 & -5 & 0 \end{cases}$$

$$D^{(3)} = \begin{array}{cccc} 0 & 3 & 8 & 4 \\ \infty & 0 & \infty & 1 \\ 3 & 4 & 0 & 5 \\ -2 & -1 & -5 & 0 \end{array}$$

$$D^{(4)} = \begin{array}{ccccc} 0 & 3 & -1 & 4 \\ -1 & 0 & -4 & 1 \\ 3 & 4 & 0 & 5 \\ -2 & -1 & -5 & 0 \end{array}$$

7. (10%, 部分過程錯誤扣3分)

$$\begin{split} \hat{w}(p) &= w(p) + h(v_0) - h(v_k) \\ \hat{w}(p) &= \hat{w}(v_{i-1}, v_i) \\ &= (w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)) \\ &= w(v_{i-1}, v_i) + h(v_0) - h(v_k) \\ &= w(p) + h(v_0) - h(v_k) \end{split}$$

Because $h(v_0)$ and $h(v_k)$ do not depend on the path, if one path from v_0 to v_k is shorter than another using weight function w, then it is also shorter using \hat{w} . Thus,

$$w(p) = \delta(v_0, v_k)$$
 if and only if $\hat{w}(p) = (v_0, v_k)$

G has a negative-weight cycle using w iff G has a negative-weight cycle using \hat{w} . Consider any cycle $C=<v_0,v_1,...,v_k>$ with $v_0=v_k$. Then $\hat{w}(C)=w(C)+h(v_0)-h(v_k)=w(C)$.

- **8.** (10%, 2 points for each time complexity)
- (1) O(VE log V)
- (2) O $(VE + V^2 log V)$
- (3) O(E log E)
- (4) $O(V^2 log V + VE)$
- (5) O (V^2E)

ps. $E=V^2$ 不一定成立,但有做此換算不扣分。

- **9.** (10%, algorithm: 3 points; steps: 3 points; proof: 4 points)
 - 1. $V_1 = V_2 = \text{empty set}$;
 - 2. Label the vertices by $x_1, x_2, ..., x_n$
 - 3. For $(k = 1 \text{ to } n) \{$ /* Fix location of x_k */

Fix x_k to the set such that more in-between edges

```
(with those already fixed vertices x_1,\,x_2,\,...,\,x_{k\text{-}1}) are obtained ;
```

4. return the cut (V_1,V_2) ;

}

When a vertex v is fixed, we will add some edges into the cut, and discard some edges (u,v) if u is placed in the same set as v

But when each vertex is fixed:

#edges added ≥ #edges discarded

→ total # of edges added ≥ m/2

10. (30%, 答案1分;解釋2分)

- a. False, W 可以是 2^K 所以可能跟 n 無關。
- b. True, NP-Complete problem can reduce to A in polynomial time, then A is NP-Hard.
- c. False, 只知道 SAT 比 A 難,不一定就是 NP-Complete。
- d. True, NPC 是 NP 最難的, NPC=P > NP=P
- e. True, Halting Problem 比 NP 還難 > NP-Hard False, 因為 halting Problem 不在 NP 問題裡。
- f. True, 3-CNF SAT 是 NP-Complete, 可以用 P 時間解> NP=P
- g. False, 有可能 AB=2 BC=3 CA=4 CA 最短是 4,可是 spanning tree 是 AB+BC=5
- h. True, minimum cost edge 一定會在 MST 裡
- i. True, 可以 ρ >1 解出來 > P=NP
- j. False, NP-hard 不一定全部都在 NP 裡。