Université de Jijel

Département de Mathématiques

Module : Mesure et Intégration

TD N°2

Exercice 1: Soient (E, T) un espace mesurable et $f : E \to \mathbb{R}$ une application.

- 1) Montrer que $T_f = \{B \in \mathcal{P}(\mathbb{R}), f^{-1}(B) \in T\}$ est une tribu.
- 2) Soit C un ensemble qui engendre $\mathcal{B}(\mathbb{R})$. Montrer que les deux assertions suivantes sont équivalentes.
 - (i) *f* est mesurable.
 - (ii) $f^{-1}(C)$ ∈ T, $\forall C$ ∈ C.

Exercice 2: Soient (E, T) et (F, S) deux espaces mesurables. Soient $f: E \to F$ et $\varphi: F \to \mathbb{R}$ deux applications mesurables. Montrer que $\varphi \circ f: E \to \mathbb{R}$ est mesurable.

Exercice 3: Soient (E, T), (F, S) et (G, O) trois espaces mesurables. Soient $f: E \to F$ et $g: F \to G$ deux applications mesurables. Montrer que $g \circ f: E \to G$ est mesurable.

Exercice 4: Soit $f : \mathbb{R} \to \mathbb{R}$ une application continue. Montrer que f est mesurable.

Exercice 5 : Soit $\mathbb R$ muni de sa tribu borélienne. Montrer que $1_{\mathbb Q}$ est mesurable.

Exercice 6: Soit T une tribu sur un ensemble E et soit $A \in T$ tel que

$$B \in T$$
 et $B \subset A \Rightarrow B = \phi$ ou $B = A$.

Montrer que toute fonction mesurable de E dans \mathbb{R} est constante sur A.

Exercice 7:1) Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions continues et λ la mesure de Lebesgue. Montrer que $f = g \lambda p.p$ si et seulement si f = g.

2) Soient $f,g:\mathbb{R}\to\mathbb{R}$ deux fonctions et δ_0 la mesure de Dirac en 0. Montrer que $f=g\,\delta_0\,p.p$ si et seulement si f(0)=g(0).

Exercice 8: Soient (E, T, μ) un espace mesuré et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de E dans \mathbb{R} , (i.e, $(f_n)_{n \in \mathbb{N}} \subset \mathcal{M}$). Montrer que si $f_n \xrightarrow[n \to +\infty]{} f$ presque uniformément, alors $f_n \xrightarrow[n \to +\infty]{} f \mu p.p$.

Exercice 9: Soient (E, T, μ) un espace mesuré et $(f_n)_{n \in \mathbb{N}} \subset \mathcal{M}$.

- a) Montrer que s'il existe deux fonctions mesurables $f,g:E\to\mathbb{R}$ telles que $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers f et g, alors $f=g\,p.p.$
- b) Montrer que si $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers $f\subset\mathcal{M}$ et $(g_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ converge en mesure vers $g\subset\mathcal{M}$, alors $(f_n+g_n)_{n\in\mathbb{N}}\subset\mathcal{M}$ converge en mesure vers $f+g\subset\mathcal{M}$.