### Visão Computacional

Prof. Maurício Pamplona Segundo

Prof. Rubisley de Paula Lemes

Universidade Federal da Bahia

1° semestre de 2015

### REFERÊNCIAS

- GONZALEZ, R. C. and WOODS, R. E. (2000). "Processamento de Imagens Digitais", Ed. Edgard Blüncher.
- SHAPIRO, L. and STOCKMAN, G. (2001). "Computer Vision", Prentice Hall.
- SCHALKOFF, R. J. (1989). "Digital image processing and computer vision", Wiley.
- SANZ, J. L. C. (1989). "Advances in Machine Vision", Springer-Verlag.
- JAIN, R., KASTURI, R. and SCHUNCK, B. G. (1995). "Machine Vision", McGraw-Hill.
- RUSS, J. C. (1995). "The Image Processing Handbook", CRC Press.

### REFERÊNCIAS

- BESL, P. J. (1988). "Surfaces in Range Image Understanding", Springer-Verlag.
- BALLARD, D. H. (1981). "Generalizing the hough transform to detect arbitrary shapes". Pattern Recognition, 13(2):111-122.

OpenCV http://sourceforge.net/projects/opencvlibrary/

IEEE Xplore http://ieeexplore.ieee.org/

Web of Science http://apps.isiknowledge.com/

Science Direct http://www.sciencedirect.com/

Portal CAPES http://www.periodicos.capes.gov.br/

Keith Price http://iris.usc.edu/Vision-Notes/

Google Scholar http://scholar.google.com.br/

## INTRODUÇÃO

### Pesquisas com Imagens Digitais

Diversidade de aplicações presentes no dia-a-dia

Impressões Digitais, Diagnósticos Médicos, Leitores de Códigos de Barras, Segurança, Mapas ...

#### Multidisciplinaridade

Física, Medicina, Matemática, Engenharia, Química, Astronomia, Arqueologia...

### CONCEITOS BÁSICOS

#### Processamento de Imagens

Processos de baixo nível para análise de imagens. Melhoramento dos dados de entrada para uma aplicação.

#### Visão Computacional

Processos de alto nível. Interpretação da imagem. Modelos de representação da informação.

#### Computação Gráfica

Síntese da imagem com base em modelos matemáticos.

## CONCEITOS BÁSICOS



### CONCEITOS BÁSICOS



### ANÁLISE DE IMAGENS

### Problemas das aplicações

Dados de entrada imprecisos

Informações imprecisas entre etapas

Propagação de erros no processo todo

Custo computacional elevado (etapas finais)

Obtenção de um sistema robusto

#### CONCEITO DE IMAGEM

#### Imagens de Intensidade Luminosa

Função bidimensional de intensidade de luz f(x,y)

f no ponto (x,y) é proporcional ao brilho (níveis de cinza) na posição

Luz é energia então f(x,y) varia entre 0 e infinito

Sinal 2D contínuo (representa infinitos pontos na imagem)

No computador a imagem deve assumir elementos finitos (limite para coordenadas e intensidade)

#### CONCEITO DE IMAGEM

### Representação da imagem

Limitar dados

Discretizar coordenadas espaciais (x e y)

Representada como uma matriz

Discretizar brilho (entre 0 e 255)

255 branco (reflexão total), 0 preto (absorção total)

Pixel (Picture Element)

# REPRESENTAÇÃO DA IMAGEM

| f(1,1) | f(1,2) | f(1,3) | ••• | f(1,n) |
|--------|--------|--------|-----|--------|
| f(2,1) | f(2,2) | f(2,3) | ••• | f(2,n) |
| •••    | •••    | •••    | ••• | •••    |
| f(m,1) | f(m,2) | f(m,3) | ••• | f(m,n) |

M

# REPRESENTAÇÃO DA IMAGEM Formatos PGM e PPM

Portable Gray Map (PGM)

Identificador "P2" ou "P5"

Whitespace (Espaço, TAB, Enter)

Largura (decimal em ASCII)

Whitespace

Altura (decimal em ASCII)

Whitespace

Tom de cinza máximo (decimal em ASCII, > 0, < 65536)

Whitespace

Vetor de tons de cinza (concatenação de linhas)

### Portable Gray Map

```
P2
# feep.pgm
24
15
   0
                  0
                                         0
       0
                  0
              0
                  0
                                         0
                                                                         15
                                                                             15
                                                                                 15
                          7
   3
                              0
       0
           0
               0
                  0
                      0
                                 0
                                     0
                                         0
                                                                      15
                                                                                  0
       0
                  0
                              0
                                                                0
                                                                       0
```



# REPRESENTAÇÃO DA IMAGEM Formatos PGM e PPM

Portable Pixel Map (PPM)

Identificador "P3" ou "P6"

Whitespace (Espaço, TAB, Enter)

Largura (decimal em ASCII)

Whitespace

Altura (decimal em ASCII)

Whitespace

Valor máximo para cor (decimal em ASCII, > 0, < 65536)

Whitespace

Vetor de pixels RGB (concatenação de linhas)

### Portable Pixel Map

```
P3
 feep.ppm
 4
15
 0
                                15
                                     15
      0 0 15 7
      0
                      0 15
             0
                                   0 0
15
     15
              0
                            0
```



#### Amostragem

Digitalização das coordenadas espaciais de pontos da imagem

Quanto maior o número de pontos amostrados, maior a resolução (detalhes)

#### Quantização

Digitalização dos valores de intensidade no ponto (8 bits)

Quanto maior a faixa de valores, mais suave são as mudanças de tons de cinza



Exemplo de sinal contínuo de uma imagem 2D.



Linha obtida após amostragem e quantização.



Imagem obtida após amostragem e quantização.

#### EFEITOS DA AMOSTRAGEM



Efeitos da redução na resolução espacial. Amostragem de 256x256, 128x128, 64x64 e 32x32 pixels, respectivamente.

## EFEITOS DA QUANTIZAÇÃO



Efeitos da redução do número de bits que representa cada pixel. Imagens com 8, 7, 6, 5, 4, 3, 2 e 1 bits, respectivamente.

# RELAÇÕES BÁSICAS

|         | (x-1,y) |         |
|---------|---------|---------|
| (x,y-1) | (x,y)   | (x,y+1) |
|         | (x+1,y) |         |

Vizinhança-4

| (x-1,y-1) | (x-1,y) | (x-1,y+1) |
|-----------|---------|-----------|
| (x,y-1)   | (x,y)   | (x,y+1)   |
| (x+1,y-1) | (x+1,y) | (x+1,y+1) |

Vizinhança-8

# RELAÇÕES BÁSICAS



Conectividade-

Conectividade-8

4

**Conectividade-m:** Possui as mesmas conexões disponíveis na Conectividade-8, mas utiliza uma conexão diagonal apenas quando o pixel conectado por tal ligação não pode ser alcançado indiretamente por ligações verticais e horizontais.

#### **CAMINHO**

Um caminho de um pixel p de coordenadas (x,y) até um pixel q de coordenadas (s,t) é uma seqüência de pixels distintos de coordenadas:

$$(x_{0}, y_{0}), (x_{1}, y_{1}), (x_{2}, y_{2}), ..., (x_{n}, y_{n})$$
  
onde:  
 $(x_{0}, y_{0}) = (x, y)$   
 $(x_{n}, y_{n}) = (s, t)$   
 $(x_{i}, y_{i})$  é adjacente a  $(x_{i-1}, y_{i-1}), 1 \le i \le n$   
n é o comprimento do caminho

### MEDIDAS DE DISTÂNCIA

Dados os pixels p, q e z, chama-se D uma função de distância ou métrica se:

$$D(p,q) \ge 0$$

$$D(p,q) = D(q,p)$$

$$D(p,z) \le D(p,q) + D(q,z)$$

Distância Euclidiana

$$D_e(p,q) = ((x_p-x_q)^2+(y_p-y_q)^2)^{1/2}$$

Distância D<sub>4</sub>

$$D_4(p,q) = |x_p - x_q| + |y_p - y_q|$$

Distância D<sub>s</sub>

$$D_{s}(p,q) = \max(|x_{p}-x_{q}|,|y_{p}-y_{q}|)$$

# MEDIDAS DE DISTÂNCIA

#### Euclidiana

| $8^{1/2}$ | $5^{1/2}$ | 2 | $5^{1/2}$ | $8^{1/2}$        |
|-----------|-----------|---|-----------|------------------|
| $5^{1/2}$ | $2^{1/2}$ | 1 | $2^{1/2}$ | $5^{1/2}$        |
| 2         | 1         | 0 | 1         | 2                |
| 51/2      | $2^{1/2}$ | 1 | $2^{1/2}$ | 5 <sup>1/2</sup> |
| $8^{1/2}$ | $5^{1/2}$ | 2 | $5^{1/2}$ | $8^{1/2}$        |

#### $\mathbf{D}_{4}$

| 4 | 3 | 2 | 3 | 4 |
|---|---|---|---|---|
| 3 | 2 | 1 | 2 | 3 |
| 2 | 1 | 0 | 1 | 2 |
| 3 | 2 | 1 | 2 | 3 |
| 4 | 3 | 2 | 3 | 4 |

#### D

| 2 | 2 | 2 | 2 | 2 |
|---|---|---|---|---|
| 2 | 1 | 1 | 1 | 2 |
| 2 | 1 | 0 | 1 | 2 |
| 2 | 1 | 1 | 1 | 2 |
| 2 | 2 | 2 | 2 | 2 |

Considere um retângulo preto em um quadrado branco que possui dimensões na imagem de exatamente 5.9 x 8.1 pixels, e suas laterais estão alinhadas com as linhas e colunas da imagem. Durante o processo de amostragem, qual a menor área que o retângulo pode assumir na imagem de saída? E qual a maior área?





#### Menor área: 8x6 pixels





#### Maior área: 9x6 pixels



Considere uma linha preta em um quadrado branco que possui largura na imagem de exatamente 0.8 pixels, alinhada com as colunas da imagem. Durante o processo de amostragem, esta linha pode desaparecer? Explique!







A linha pode ficar exatamente entre duas colunas amostradas da imagem, sem que nenhum ponto amostrado esteja localizado sobre ela.

Qual a quantidade de componentes conexas na imagem abaixo considerando conectividade-4? E se a conectividade-8 for utilizada?



#### **Conectividade-4 = 10 componentes conexas**



**Conectividade-8 = 4 componentes conexas** 



#### MELHORAMENTO DE IMAGENS

### Objetivo

Tornar a imagem processada mais adequada que a original

Técnicas orientadas a problemas

### Categorias

Métodos no domínio espacial

Métodos no domínio da frequência

## FUNÇÃO DE CONTRASTE



Exemplo de função para melhoramento de contraste.

# FUNÇÃO DE CONTRASTE



Exemplo de função para melhoramento de contraste.

# FUNÇÃO DE CONTRASTE



Exemplo de função para melhoramento de contraste.

#### Algoritmo

```
/* img é uma matriz com altura H e largura W, com valores variando de 0 à 255,
representando uma imagem de entrada */
int * calculaHistograma(int H, int W, unsigned char **img) {
  int i, j, *hist=malloc(256*sizeof(int));
  for(i=0; i < 256; i++)
     hist[i] = 0;
  for(i=0; i < H; i++)
  for(j=0; j < W; j++)
     hist[img[i][j]]++;
  return hist;
```





Exemplo de histograma de imagem com alto contraste.





Exemplo de histograma de imagem escura.





Exemplo de histograma de imagem clara.

## MÁSCARAS E FILTROS



Máscara 3x3 em torno de um ponto (x,y) da imagem.

**Filtro da média:** soma-se os valores dos pixels que pertencem à máscara, e divide-se o valor obtido pelo número de pixels que compõe a máscara.

## FILTRO DA MÉDIA

| 7 | 4 | 5 |
|---|---|---|
| 8 | 4 | 4 |
| 4 | 6 | 5 |

$$(7+4+5+8+4+4+4+6+5)/9 = 47/9 = 5,222$$

**Filtro da média:** obtem-se o valor médio dos pixels contidos na máscara utilizada.

# SUAVIZAÇÃO DE IMAGENS



Imagem original e imagens com filtragem da média aplicada com máscaras 3x3, 5x5, 7x7, 9x9, 11x11.

#### FILTRO DA MEDIANA

| 7 | 2 | 5 |
|---|---|---|
| 8 | 1 | 4 |
| 3 | 6 | 9 |



Filtro da mediana: obtem-se o valor do pixel que ocupa a posição central da série de pixels da máscara utilizada ordenados.

# SUAVIZAÇÃO DE IMAGENS



Imagem original e imagem com aplicação de ruído.

# SUAVIZAÇÃO DE IMAGENS



Imagem com ruído suavizada pelos filtras da média e da mediana.