		Cre	eated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

1 Input Parameters

Main Module	Shear Connection
Module	Cleat Angle Connection
Connectivity	Beam-Beam
Shear Force (kN)	21.7
	•

Supporting Section - Mechanical Properties

Supporting Section - Mechanical Properties					
Supporting Section		JB 200			
Materia	l	E 165 (Fe 290)			
Ultimate Strength.	F_u (MPa)		290		
Yield Strength, I	F_y (MPa)		165		
Mass, $m \text{ (kg/m)}$	9.92	$I_z \text{ (cm}^4)$	780.0		
Area, $A \text{ (cm}^2)$	12.6	$I_y(\mathrm{cm}^4)$	17.2		
D (mm)	200.0	r_z (cm)	7.85		
B (mm)	60.0	r_y (cm)	1.16		
t (mm)	3.4	$Z_z \text{ (cm}^3)$	78.0		
T (mm)	5.0	$Z_y \text{ (cm}^3)$	5.76		
Flange Slope	91.5	$Z_{pz} \ (\mathrm{cm}^3)$	90.9		
$R_1 \text{ (mm)}$	5.0	$Z_{py} \text{ (cm}^3)$	9.35		
$R_2 \text{ (mm)}$	1.5				

Supported Section - Mechanical Properties

Supported Section - Mechanical Properties					
Supported Section		JB 175			
Materia	Material		E 165 (Fe 290)		
Ultimate Strength	Ultimate Strength, F_u (MPa)		290		
Yield Strength,	Yield Strength, F_y (MPa)		165		
Mass, m (kg/m)	8.07	I_z (cm ⁴)	480.0		
Area, $A \text{ (cm}^2)$	10.2	$I_y(\text{cm}^4)$	9.65		
D (mm)	175.0	r_z (cm)	6.83		
B (mm)	50.0	r_y (cm)	0.97		
t (mm)	3.2	$Z_z \text{ (cm}^3)$	54.9		
T (mm)	4.8	$Z_y \text{ (cm}^3)$	3.86		
Flange Slope	91.5	$Z_{pz} \ (\mathrm{cm}^3)$	64.2		
$R_1 \text{ (mm)}$	5.0	$Z_{py} \ (\mathrm{cm}^3)$	6.32		
$R_2 \text{ (mm)}$	1.5				

Bolt Details - Input and Design Preference

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

	I
	[np.int64(8), np.int64(10), np.int64(12), np.int64(14),
	np.int64(16), np.int64(18), np.int64(20), np.int64(22),
Diameter (mm)	np.int64(24), np.int64(27), np.int64(30), np.int64(33)
Diameter (mm)	, np.int64(36), np.int64(39), np.int64(42), np.int64(45
), np.int64(48), np.int64(52), np.int64(56), np.int64(6
	0), np.int64(64)]
	[np.float64(3.6), np.float64(4.6), np.float64(4.8), np.f
D Cl	loat $64(5.6)$, np.float $64(5.8)$, np.float $64(6.8)$, np.float
Property Class	64(8.8), np.float64(9.8), np.float64(10.9), np.float64(
	12.9)]
Type	Bearing Bolt
Hole Type	Standard
Slip Factor, (μ_f)	0.3
Detailing - Design Prefe	erence
Edge Preparation Method	Sheared or hand flame cut
Gap Between Members (mm)	10.0
Are the Members Exposed to Corrosive Influences?	False

1.1 List of Input Section

Cleat Angle List	'50 x 50 x 3', '50 x 50 x 5', '50 x 50 x 6', '50 x 50 x 7', '50 x 50 x 8', '55 x 55 x 4', '55 x 55 x 5', '55 x 55 x 6',
Clear Thighe List	
	'55 x 55 x 8', '60 x 60 x 4', '60 x 60 x 5', '60 x 60 x 8', '65 x 65 x 4', '65 x 65 x 5', '65 x 65 x 6', '65 x 65 x 8',
	$70 \times 70 \times 5'$, $70 \times 70 \times 6'$, $70 \times 70 \times 70'$, $70 \times 70 \times 8'$, $75 \times 75 \times 5'$, $75 \times 75 \times 6'$, $75 \times 75 \times 8'$, $80 \times 80 \times 80'$,
	$^{\prime}80 \times 80 \times 8^{\prime}, \ ^{\prime}90 \times 90 \times 6^{\prime}, \ ^{\prime}90 \times 90 \times 8^{\prime}, \ ^{\prime}55 \times 55 \times 10^{\prime}, \ ^{\prime}60 \times 60 \times 10^{\prime}, \ ^{\prime}65 \times 65 \times 10^{\prime}, \ ^{\prime}70 \times 70 \times 10^{\prime}, \ ^{\prime}75 \times 75 \times 10^{\prime}, \ ^{\prime}80 \times 80 \times 10^{\prime}, \ ^{\prime}80 \times 80 \times 10^{\prime}, \ ^{\prime}80 \times 10^{\prime}, \ ^{$
	$10', \ '80 \times 80 \times 10', \ '80 \times 80 \times 12', \ '90 \times 90 \times 10', \ '90 \times 90 \times 12', \ '100 \times 100 \times 6', \ '100 \times 100 \times 7', \ '100 \times 100 \times 8', \ '100 \times 100 \times 10', \ '100 \times 10', \ $
	'110 x 110 x 8', '120 x 120 x 8', '130 x 130 x 8', '130 x 130 x 9', '100 x 100 x 10', '100 x 100 x 12', '100 x 100
	\times 15', '110 \times 110 \times 10', '110 \times 110 \times 12', '110 \times 110 \times 16', '120 \times 120 \times 10', '120 \times 120 \times 12', '120 \times 120 \times 15',
	$'130 \times 130 \times 10', '130 \times 130 \times 12', '130 \times 130 \times 16', '150 \times 150 \times 10', '150 \times 150 \times 12', '150 \times 150 \times 15', '150 \times 150 \times 150', '150 \times 150', '$
	\times 16', '150 \times 150 \times 18', '150 \times 150 \times 20', '180 \times 180 \times 15', '180 \times 180 \times 18', '180 \times 180 \times 20', '200 \times 200 \times 12',
	'200 x 200 x 16', '200 x 200 x 20', '200 x 200 x 24', '200 x 200 x 25'

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

2 Design Checks

Design Status	Pass
---------------	------

2.1 Selected Member Data

Section Size		50 x 50 x 3	
Material		E 165 (Fe 290)	
Ultimate Strength, Fu (MPa)			290
Yield Streng	Yield Strength, Fy (MPa)		165
Mass, m (kg/m)	2.34	$I_u \text{ (cm}^4)$	11.4
Area, $A \text{ (cm}^2)$	2.99	$I_v(\mathrm{cm}^4)$	3.01
A (mm)	50.0	r_z (cm)	1.55
B (mm)	50.0	r_y (cm)	1.55
t (mm)	3.0	r_u (cm)	1.96
$R_1 \text{ (mm)}$	6.0	r_v (cm)	1.0
$R_2 \text{ (mm)}$	0.0	$Z_z \text{ (cm}^3)$	1.97
C_y (mm)	13.4	$Z_y \text{ (cm}^3)$	1.97
C_z (mm)	13.4	Z_{pz} (cm ³)	3.53
$I_z \text{ (cm}^4)$	7.21	$Z_{py} (\mathrm{cm}^3)$	1.97
$I_y(\mathrm{cm}^4)$	7.21		

2.2 Initial Section Check

Check	Required	Provided	Remarks
Shear Yielding Capacity (kN)	21.7	$V_{d_y} = \frac{A_v f_y}{\sqrt{3} \gamma_{m0}}$ $= \frac{155.0 \times 3.2 \times 165}{\sqrt{3} \times 1.1 \times 1000}$ $= 42.95$ [Ref. IS 800:2007, Cl.10.4.3]	Pass

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
		$V_d = 0.6 \ V_{dy}$	
		$= 0.6 \times 42.95$	
Allowable Shear Capacity (kN)	21.7	=25.77	Pass
		[Limited to low shear]	

2.3 Load Consideration

Check	Required	Provided	Remarks
Applied Shear Force (kN)	21.7	$V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$ $= \min(0.15 \times 42.95, 40.0)$ $= 40$ $V_u = \max(V_y, V_{y_{\min}})$ $= \max(21.7, 40)$ $= 40$ [Ref. IS 800:2007, Cl.10.7]	

2.4 Bolt Design - Connected to Beam

Check	Required	Provided	Remarks
Diameter (mm)		10	
Property Class		3.6	
Cleat Angle Connection		50 x 50 x 3	
No. of Bolt Columns		1	
No. of Bolt Rows		3	
Min. Pitch Distance (mm)	$p_{\min} = 2.5d$ $= 2.5 \times 10$ $= 25.0$ [Ref. IS 800:2007, Cl.10.2.2]	45	Pass

		Created with OSdag®	
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
	$p_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 3.0, 300)$		
	$= \min(96.0, 300)$		
Max. Pitch Distance	= 96.0	45	Pass
(mm)		40	1 ass
	Where, $t = \min(3.0, 3.2)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$g_{\min} = 2.5d$		
	$=2.5\times10$		
Min. Gauge Distance	= 25.0	N/A	
(mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		
	$g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 3.0, 300)$		
	$= \min(96.0, 300)$ $= 96.0$		
Max. Gauge Distance	= 96.0	N/A	
(mm)	Whoma 4 - min (2.0.2.2)		
	Where, $t = \min(3.0, 3.2)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$e_{\min} = 1.7d_0$		
	$= 1.7 \times 10$		
Min. End Distance		20	Pass
(mm)			
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Created with OSdag®	
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 3.0 \times \sqrt{\frac{250}{165}} = 44.31$ $e_2 = 12 \times 3.2 \times \sqrt{\frac{250}{165}} = 47.27$ $e_{\text{max}} = \min(e_1, \ e_2) = 44.31$ [Ref. IS 800:2007, Cl.10.2.4.3]	20	Pass
Min. Edge Distance (mm)	$e'_{\min} = 1.7d_0$ = 1.7 × 10 = 17.0 [Ref. IS 800:2007, Cl.10.2.4.2]	20	Pass
Max. Edge Distance (mm)	$e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 3.0 \times \sqrt{\frac{250}{165}} = 44.31$ $e_2 = 12 \times 3.2 \times \sqrt{\frac{250}{165}} = 47.27$ $e'_{\text{max}} = min(e_1, \ e_2) = 44.31$ [Ref. IS 800:2007, Cl.10.2.4.3]	20	Pass
Moment Demand (kNm)		$M_d = (V_u \times \text{ecc} + M_w)$ $\text{ecc} = \text{eccentricity}$ $M_w = \text{external moment acting on web}$ $= \frac{(21.7 \times 10^3 \times 30.0 + 0.0 \times 10^6)}{10^6}$ $= 651.0$	

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
	$l_n = \text{length available}$ $l_n = p (n_r - 1)$		
	$= 45 \times (3 - 1)$ $= 90$		
Bolt Force Parameter(s) (mm)	$y_{\text{max}} = l_n/2$ $= 90/2$ $= 45.0$		
	$x_{\text{max}} = g(n_c - 1)/2$ = $0.0 \times (1 - 1)/2$ = 0.0		

		Cre	eated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
	$vbv = V_u/(n_r \times n_c)$ $= \frac{21.7}{(3 \times 1)}$ $= 7.23$		
	$tmh = \frac{M_d \times y_{\text{max}}}{\Sigma r_i^2}$ $= \frac{651.0 \times 45.0}{4.05}$ $= 7.23$		
Bolt.Force (kN)	$tmv = \frac{M_d \times x_{\text{max}}}{\Sigma r_i^2}$ $= \frac{651.0 \times 0.0}{4.05}$ $= 0.0$		
	$abh = \frac{A_u}{(n_r \times n_c)}$ $= \frac{0.0}{(3 \times 1)}$ $= 0.0$		
	$v_{\text{res}} = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(7.23 + 0.0)^2 + (7.23 + 0.0)^2}$ $= 10.23$		
Shear Capacity (kN)		$V_{\text{dsb}} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{330.0 \times 2 \times 58}{1000 \times \sqrt{3} \times 1.25}$ $= 17.68$ [Ref. IS 800:2007, Cl.10.3.3]	

		Crea	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
		$k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$	
		$= \min\left(\frac{20}{3\times10}, \ \frac{45}{3\times10} - 0.25, \ \frac{330.0}{290}, \ 1.0\right)$	
Kb		$= \min(0.67, 1.25, 1.14, 1.0)$	
		= 0.67	
		[Ref. IS 800:2007, Cl.10.3.4]	
		$V_{\rm dpb} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$	
		$= \frac{2.5 \times 0.67 \times 10 \times 3.2 \times 290}{1000 \times 1.25}$	
Bearing Capacity (kN)			
		= 12.44	
		[D f 10 000 0007 Gl 10 0 4]	
		[Ref. IS 800:2007, Cl.10.3.4] $V_{\rm db} = \min (V_{\rm dsb}, V_{\rm dpb})$	
		$= \min (17.68, 12.44)$	
Capacity (kN)		= 12.44	
		[Ref. IS 800:2007, Cl.10.3.2]	
		$l_j = (n_r - 1) \times p$	
		$= (3-1) \times 45 = 90$	
		l = 90	
Long Joint Reduction Factor		$15 \times d = 15 \times 10 = 150$	
ractor			
		since, $l_j < 15 \times d$ then $\beta_{lj} = 1.0$	
		[D. f. IG 200 2007, Cl. 10 2 2 1]	
		[Ref. IS 800:2007, Cl.10.3.3.1] $l_g = \Sigma (t_p + t_{\text{member}})$	
		= 9.2	
		5d = 50	
Large Grip Length Reduction Factor		8d = 80	Pass
duction ractor		since, $l_g < 5d$; $\beta_{lg} = 1.0$	
		[Ref. IS 800:2007, Cl.10.3.3.2]	

		Cre	eated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
		$V_{\rm rd} = \beta_{lj} \beta_{lg} V_{\rm db}$	
Bolt Capacity (post re-		$= 1.0 \times 1.0 \times 12.44$	
duction factor) (kN)		= 12.44	
Capacity (kN)	10.23	12.44	Pass

2.5 Bolt Design - Connected to Column

Check	Required	Provided	Remarks
Diameter (mm)		10	
Property Class		3.6	
Cleat Angle Connection		50 x 50 x 3	
No. of Bolt Columns		1	
No. of Bolt Rows		3	
	$p_{\min} = 2.5d$		
	$=2.5\times10$		
Min. Pitch Distance (mm)	= 25.0	45	Pass
	[Ref. IS 800:2007, Cl.10.2.2]		
	$p_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 3.0, 300)$		
	$= \min(96.0, 300)$		
Max. Pitch Distance (mm)	= 96.0	45	Pass
Max. Pitch Distance (mm)		45	Pass
	Where, $t = \min(3.0, 3.4)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$g_{\min} = 2.5d$		
	$=2.5\times10$		
Min. Gauge Distance	= 25.0	N/A	
(mm)			
	[Ref. IS 800:2007, Cl.10.2.2]		

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
	$g_{\text{max}} = \min(32t, 300)$		
	$= \min(32 \times 3.0, 300)$		
	$= \min(96.0, 300)$		
Max. Gauge Distance	= 96.0	N/A	
(mm)	Where, $t = \min(3.0, 3.4)$		
	[Ref. IS 800:2007, Cl.10.2.3]		
	$e_{\min} = 1.7d_0$		
	$= 1.7 \times 10$		
Min. End Distance (mm)	= 17.0	20	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		
	$e_{\max} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$		
	$e_1 = 12 \times 3.0 \times \sqrt{\frac{250}{165}} = 44.31$		
Max. End Distance (mm)	$e_2 = 12 \times 3.4 \times \sqrt{\frac{250}{165}} = 50.22$	20	Pass
	$e_{\text{max}} = \min(e_1, e_2) = 44.31$		
	[Ref. IS 800:2007, Cl.10.2.4.3]		
	$e'_{\min} = 1.7d_0$		
	$= 1.7 \times 10$		
Min. Edge Distance (mm)	= 17.0	20	Pass
	[Ref. IS 800:2007, Cl.10.2.4.2]		

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 3.0 \times \sqrt{\frac{250}{165}} = 44.31$ $e_2 = 12 \times 3.4 \times \sqrt{\frac{250}{165}} = 50.22$ $e'_{\text{max}} = min(e_1, \ e_2) = 44.31$ [Ref. IS 800:2007, Cl.10.2.4.3]	20	Pass
Moment Demand (kNm)	[161. 15 500.2007, 01.10.2.4.9]	$M_d = (V_u \times \text{ecc} + M_w)$ $\text{ecc} = \text{eccentricity}$ $M_w = \text{external moment acting on web}$ $= \frac{(10.85 \times 10^3 \times 29.0 + 0.0 \times 10^6)}{10^6}$ $= 314.65$	
Bolt Force Parameter(s) (mm)	l_n = length available l_n = $p (n_r - 1)$ = $45 \times (3 - 1)$ = 90 $y_{\text{max}} = l_n/2$ = $90/2$ = 45.0 $x_{\text{max}} = g(n_c - 1)/2$ = $0.0 \times (1 - 1)/2$ = 0.0		

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
	$vbv = V_u/(n_\tau \times n_c)$ $= \frac{21.7}{(3 \times 1)}$ $= 3.62$		
	$tmh = \frac{M_d \times y_{\text{max}}}{\Sigma r_i^2}$ $= \frac{314.65 \times 45.0}{4.05}$ $= 3.5$		
Bolt.Force (kN)	$tmv = \frac{M_d \times x_{\text{max}}}{\Sigma r_i^2}$ $= \frac{314.65 \times 0.0}{4.05}$ $= 0.0$		
	$abh = \frac{A_u}{(n_r \times n_c)}$ $= \frac{0.0}{(3 \times 1)}$ $= 0.0$		
	$v_{\text{res}} = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(3.62 + 0.0)^2 + (3.5 + 0.0)^2}$ $= 5.03$		
Shear Capacity (kN)		$V_{\text{dsb}} = \frac{f_{ub} n_n A_{nb}}{\sqrt{3} \gamma_{mb}}$ $= \frac{330.0 \times 1 \times 58}{1000 \times \sqrt{3} \times 1.25}$ $= 8.84$	
		[Ref. IS 800:2007, Cl.10.3.3]	

		Cre	ated with Osdag®
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
		$k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$	
		$= \min\left(\frac{20}{3\times10}, \ \frac{45}{3\times10} - 0.25, \ \frac{330.0}{290}, \ 1.0\right)$	
Kb		$= \min(0.67, 1.25, 1.14, 1.0)$	
		= 0.67	
		[Ref. IS 800:2007, Cl.10.3.4]	
		$V_{\rm dpb} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$	
		$\begin{array}{ c c c }\hline & \gamma_{mb} \\ 2.5 \times 0.67 \times 10 \times 3.2 \times 290\end{array}$	
Bearing Capacity (kN)		$= \frac{2.5 \times 0.67 \times 10 \times 3.2 \times 290}{1000 \times 1.25}$	
Bearing Capacity (KIV)		= 11.66	
		[Ref. IS 800:2007, Cl.10.3.4]	
		$V_{ m db} = { m min} \ (V_{ m dsb}, \ V_{ m dpb})$	
		$= \min (8.84, 11.66)$	
Capacity (kN)		= 8.84	
		[Ref. IS 800:2007, Cl.10.3.2]	
		$l_j = (n_r - 1) \times p$	
		$= (3-1) \times 45 = 90$	
		l = 90	
Long Joint Reduction Fac-		$15 \times d = 15 \times 10 = 150$	
tor			
		since, $l_j < 15 \times d$ then $\beta_{lj} = 1.0$	
		[Ref. IS 800:2007, Cl.10.3.3.1]	
		$l_g = \Sigma \ (t_p + t_{\rm member})$	
		= 6.4	
Large Grip Length Reduc-		5d = 50	Pass
tion Factor		8d = 80	
		since, $l_g < 5d$; $\beta_{lg} = 1.0$	
		[Ref. IS 800:2007, Cl.10.3.3.2]	

		Created with OSdag®	
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
		$V_{\rm rd} = \beta_{lj}\beta_{lg}V_{\rm db}$	
Bolt Capacity (post reduc-		$= 1.0 \times 1.0 \times 8.84$	
tion factor) (kN)		= 8.84	
Capacity (kN)	5.03	8.84	Pass

2.6 Cleat Angle Check

Check	Required	Provided	Remarks
Min. Cleat Angle Height	$0.6 \times (d_b - 2 \times t_f - 2 \times r_r)$ $= 0.6 \times (175.0 - 2 \times 4.8 - 2 \times 5.0)$ $= 93.24$	130	Pass
Max. Cleat Angle Height	[Ref. INSDAG, Ch.5, sec.5.2.3] $d_b - t_{bf} + r_{b1} - notch_h$ $= 200.0 - 5.0 + 5.0 - 0.0$ $= 145.2$	130	Pass
Min. Leg Length (mm) (on supported leg)	$\max \left(\text{gap, } t_{\text{cleat}} + r_{r_{\text{angle}}} + 2e'_{\min} + (n_c - 1)g_{\min} \right)$ $= \max \left(10.0, \ 3.0 + 6.0 + 2 \times 17.0 + (1 - 1) \times 25.0 \right)$ $= 44.0$	50.0	Pass
Min. Leg Length (mm) (on supporting leg)	$t_{\text{cleat}} + r_{r_{\text{angle}}} + 2e'_{\text{min}} + (n_c - 1)g_{\text{min}}$ $= 3.0 + 6.0 + 2 \times 17.0 + (1 - 1) \times 25.0$ $= 44.0$	50.0	Pass
Min. Cleat Angle Thickness (mm)	$t_w = 0.5 \times 3.2 = 1.6$	3.0	Pass
Shear Yielding Capacity (kN)		$V_{dy} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{2 \times 130 \times 3.0 \times 165}{\sqrt{3} \times 1.1 \times 1000}$ $= 67.55$ [Ref. IS 800:2007, Cl.10.4.3]	

		Created with OSdag®	
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

Check	Required	Provided	Remarks
		$V_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Block Shear Capacity in Shear (kN)		$V_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
		$V_{\rm db} = \min(V_{db1}, \ V_{db2}) = 75.95$	
		[Ref. IS 800:2007, Cl.6.4]	
		$V_d = \min(V_{d_y}, \ V_{d_b})$	
		$= \min(67.55, 75.95)$	
Shear Capacity (kN)	21.7	= 67.55	Pass
		[Ref. IS 800:2007, Cl.6.1]	
		$M_{dz} = \frac{\beta_b Z_p f y}{\gamma_{m0}}$	
Moment Capacity (kNm)	0.65	$=\frac{1.0\times25350.0\times165}{1.1\times10^6}$	
		= 3.8	Pass
		[Ref. IS 800:2007, Cl.8.2.1.2]	

		Created with OSdag®	
Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	26 /12 /2024	Client	

3 3D Views

4 Design Log