PH231 Lead-up to Lab 4

Current amplifier done in Lab 3 now use BJT as a voltage amplifier

Main points: Lab 2

In a diode (two-terminal device), I_D v/s V_D defines the diode 'characteristic'

 V_D is defined as the Voltage between Anode(P) and Cathode(N) – by convention: $V_P - V_N$ (not $V_N - V_P$). V_N is assumed lower than V_P since the opposite (reverse bias) is not so interesting

In forward bias the Shockley equation gives $I = I_0(e^{\frac{qV}{k_BT}} - 1)$

- 1. Since $k_BT = 25.3 \text{ meV} \sim 25 \text{meV}$ at room temp, and numerator has q = e
- 2. Use Euler expansion of e^x : $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3} + \frac{x^4}{4!} + \cdots$ to leading term:

3. $\frac{I}{I_0} = \frac{V}{25mV} \rightarrow \text{a characteristic diode juncton resistance comes out:} \\ 25mV$

$$r_e = \frac{25mV}{I}$$

Main points:

Lab 3

BJT: THREE TERMINAL DEVICE C, B, E – focus on Forward Active Mode Key concept: Arrange a "BIAS"ing circuit using resistors around the BJT To set relative terminal voltages

- \triangleright CB reverse biased not so interesting (as long as your bias circuit guarantees $V_C > V_B$)
- ightharpoonup We mentioned in the design steps that the BE junction (forward biased) has an equivalent resistance $r_e=rac{25mV}{I_C}$ but **didn't pay much attention to it....**

Because we chose I $_{\rm CQ}$ = $\,$ 10mV, so $r_e=2.5\Omega$ was insignificant compared to R $_{\rm E}$ (510) or R $_{\rm E}$ | | R $_{\rm L}$ (250)

In Lab 4, r_e will be crucial to the circuit design and operation

Main points:

Lab 4

BJT amplifies CURRENT: if we measure that amplified current across a resistor we get an amplified voltage..... (in this diagram I_CR_C

As in Lab 3, C, B, E relative voltages will have to be setup for forward-active mode

Why is r_e more important in this design?

"Skeleton" diagram of the BJT working as a voltage amplifier Note there is much work to be done (in Lab 4) to make this a real circuit!

In Lab 4, r_e will be crucial to the circuit design and operation

Stepping back, some principles of circuit design (actually, more like practical tips)

DC design (like setting the Q-point) evaluating I_Q etc, set all capacitors in the circuit to be open. i.e. any components on the other side of a capacitor are ignored

AC design: when currents and voltages are time dependent,

set all capacitors to be short-circuit

Example: In Lab 3. We concluded that R_L cannot be connected to BJT's E directly, there must be a fixed R_F at E-GND to set the Q point

Hence, in DC design ignore R_L because C_{out} is open in AC design must use $R_E \mid \mid R_L$ because C_{out} is short-circuited

Stepping back some more, to effective impedances at BJT terminals...

For rigorous derivation using BJT R_{pi} model, see B. Razavi's lecture: https://www.youtube.com/watch?v=HLJWeQYI9QI

What does it mean when we say "Impedance looking into the base"?

BJT Voltage amplification – set Q point low

 $I_B = 100uA$

 $I_a = 90uA$

 $I_B = 80uA$

I_B = 70uA I_B = 60uA

I_B = 30uA I_B = 20uA

 $I_{B} = 10uA$

when $I_r = 0$

 $V_{CE} = V_{CC}$

V_{CE (max)}

9.34v

Lab 4

when $V_{CE} = 0$ (saturation)

Note: simplistic circuit!

NOT complete!

Will solve in Lab 4

For voltage amplifier
We want large voltage swing at $V_{CE} \rightarrow$ Hence preferable to set I_O very low

$$V_{out} = V_{CC} - I_C R_C$$

 $V_{out} + v_{out} = V_{CC} - (I_{CQ} + i_C) R_C$
 $\rightarrow dropping DC terms:$
 $v_{out} = -i_C R_C$

If I_{CQ} high, $V_{CQ} = V_{OUT|DC}$ will be close to $V_{CC} \rightarrow v_{out}$ will hit saturation easily

Detailed guidelines for setting I_{cQ} and $V_{E|Q}$

Lab 3
We
wanted
large
current
swing

BJT cares about I_C , V_{CE} NOT V_C Generally we set V_{CE} to swing between $\sim 0.1 V_{CC}$ and $\sim 0.9 V_{CC}$

So E cannot be at GND

- 2) In forward active: $r_e = \frac{25mV}{I_C}$ $25mV = \frac{k_BT}{e} \ assuming \ T = 30^{\circ}C!$ $\rightarrow this \ is \ a \ nonlinear \ effect!$
- 3) As $I_C = (I_{CQ} + i_C)$ changes, r_e will heat up, T rises $\rightarrow r_e$ rises: thermal runaway!
- 4) So, try to keep I_{CO} as low as possible

Main points to remember for BJT as

voltage amplifier:

Keep I_{CQ} low and minimize AC swing of i_C R_C dominates i_CR_C voltage amplification

E should not be at GND: if so, non-linear r_e will vary causing to thermal 'runaway' $\mathbf{R_E}$ used at **E** to set $\mathbf{V_{EQ}} \sim \mathbf{0.1V_{CC}}$ should dominate over r_e

There are 3 voltages to account for:

- 1) V_C should get close to, but not = V_{CC} If $V_C = V_{CC}$, $I_C = 0$ (cut-off!)
- 2) V_E should be above GND (thermal r_e)
- 3) V_{CE} : midpoint V_{CEQ} determines DC offset of v_{out} and allowed swing permitted by (1) and (2)