Лекция 16

Краткое содержание

- 1. Ключ на полевом транзисторе с резистивной нагрузкой:
 - статический режим;
 - передаточная характеристика;
 - переходные процессы.
- 2. Ключ на полевом транзисторе с нелинейной нагрузкой (*n*-МОП технология):
 - статический режим;
 - передаточная характеристика.
- 3. Ключ на полевом транзисторе с нелинейной нагрузкой (КМОП технология):
 - статический режим;
 - передаточная характеристика;
 - переходные процессы.

1. Ключи на полевых транзисторах

Ключи на полевых транзисторах используются для коммутации как аналоговых, так и цифровых сигналов. Для коммутации аналоговых сигналов используются полевые транзисторы с управляющим *p-n* — переходом или МОП транзисторы с индуцированным каналом. В цифровых схемах используют МОП с индуцированным каналом.

Достоинства электронных ключей на ПТ:

- ✓ малое напряжение на ключе в открытом состоянии;
- ✓ большое входное сопротивление в закрытом состоянии;
- ✓ малая потребляемая мощность от источника управляющего напряжения;
- ✓ возможность коммутации электрических сигналов очень малого уровня (порядка мкВ).

Технологически производится меньше операций при изготовлении; меньше площадь логической схемы на кристалле; меньше стоимость изделия.

Ключи на полевых транзисторах

Недостатки электронных ключей на ПТ:

- ✓ Остаточное напряжение во включенном состоянии больше, чем у биполярных транзисторов, поскольку сопротивление канала rси больше аналогичного rкэ биполярного транзистора;
- ✓ по быстродействию уступают ключам на БТ; так как ток полевого транзистора определяется только движением основных для полупроводника носителей заряда, то при его переключении отсутствуют процессы, связанные с изменением объемного заряда неосновных носителей; переходные процессы в ключах на полевых транзисторах обусловлены в основном перезарядом межэлектродных емкостей, емкостей нагрузки и монтажа.
- ✓ наблюдается проникновение в коммутирующую цепь дополнительных импульсов, параметры которых зависят от управляющего сигнала, причиной их появления являются емкости транзистора Сзс и Сзи.

Характеристики МДП - транзистора

Напряжение затвора, при котором появляется заметный ток стока, называют *пороговым* и обозначают *U*₀. Пороговое напряжение МДП - транзистора с индуцированным каналом *n*-типа положительно. Его величина зависит от технологии изготовления и составляет для современных интегральных МДП - транзисторов 0,5...1,0 В.

Стоко - затворная характеристика

Выходные характеристики

На выходных характеристиках можно выделить крутую и пологую область и область отсечки. В режиме отсечки $U_{3\mu} < U_0$, $I_C = 0$. Область отсечки расположена ниже ветви выходной характеристики, соответствующей напряжению $U_{3\mu} = U_0$.

Крутая область:
$$U_{
m cu} \leq U_{
m 3H} - U_{
m o} = U_{
m Hac}$$
 $I_{
m c} = b \Big[2 \big(U_{
m 3H} - U_{
m o} \big) U_{
m cH} - U_{
m cH}^2 \Big]$

Пологая область:
$$I_{c} = b(U_{34} - U_{0})^{2}$$

$$U_{\text{cu}} \ge U_{\text{hac}}$$

Инвертор на полевых транзисторах с резистивной (линейной) нагрузкой

В статическом состоянии в цепи управления (цепь затвора) нет тока ($\sim 10^{-9} \dots 10^{-10} \, \, \mathrm{A}$)

Область отсечки, соответствующая режиму закрытого транзистора Активная область, соответствующая пологой области ВАХ

Крутая область ВАХ и максимальная проводимость канала. Режим открытого транзистора

Передаточная характеристика

При Uвх=0 транзистор закрыт (ключ выключен), сопротивление канала велико, $I_{\rm c}\approx 0\,$ и $U_{\rm cu}\approx E_{\rm ff}\,.$ Включение ключа осуществляется подачей напряжения отпирающей полярности на затвор величиной $U_{\rm bx}>U_{\rm o}$. При этом сопротивление канала $r_{\rm cu}$ уменьшается, чем больше $U_{\rm bx}=U_{\rm bx}$, тем меньше $v_{\rm cu}$ и

Выключение ключа осуществляется подачей напряжения $U_{\rm BX} \leq U_{\rm o}$ на затвор.

больше ток *I*с.

Передаточная характеристика

Ключ закрыт
$$I_{
m c}=0$$
 $U_{
m BX}< U_{
m пор}^0=U_{
m o}$ $U_{
m BHX}=E_{
m II}$

Ключ открыт
$$I_{\rm c} = b \Big[2 \big(U_{_{\rm 3H}} - U_{_{\rm O}} \big) U_{_{\rm CH}} - U_{_{\rm CH}}^2 \Big]$$
 $U_{_{\rm BX}} > U_{_{\rm Hop}}^1 \qquad U_{_{\rm BMX}} = U_{_{\rm BMX}}^0 = I_{_{\rm c}} r_{_{\rm c}} = I_{_{\rm c}} r_{_{\rm K}}$
 $I_{_{\rm C}} = I_{_{\rm C}} r_{_{\rm K}}$
 $I_{_{\rm BMX}} = E_{_{\rm II}} \frac{r_{_{\rm K}}}{r_{_{\rm K}} + R_{_{\rm C}}}$
 $I_{_{\rm C}} = I_{_{\rm C}} r_{_{\rm K}}$
 $I_{_{\rm C}} = I_{_{\rm C}} r_{_{\rm K}}$

Нестабильность питающего напряжения, нелинейность зависимости тока от напряжения приводят к нестабильности и нелинейности сопротивления канала в открытом состоянии и нестабильности выходного (остаточного) напряжения.

Характеристики ключа

Остаточное напряжение на включенном полевом транзисторе сильно зависит от значения управляющего напряжения. Для биполярного транзистора, находящегося в режиме насыщения, такая зависимость полностью отсутствует и равна Uкэ нас. Уменьшить остаточное напряжение можно, если увеличить сопротивление нагрузки, но в таком случае увеличиваются размеры изделия (площадь) и потребляемая мощность.

Насколько можно изменить входное (управляющее) напряжение, чтобы состояние ключа считалось открытым? При увеличении $U_{_{
m BX\,MAKC}} = U_{_{
m 3M\,MAKC}}$, амплитуда входного напряжения не должна превышать предельного (максимального) $U_{_{\scriptscriptstyle{\mathrm{3M\,MAKC}}}}$, указываемого в справочнике.

Уменьшение входного напряжения возможно до входа на пологий участок; при этом остаточное напряжение достигнет значения *U*с нас.

Расчет *U*1пор

$$U_{
m c \ hac} = U_{
m 3H} - U_{
m o} \Longrightarrow U_{
m Bых} = U_{
m BX} - U_{
m o}$$
 $I_{
m c} = rac{\left(E_{
m II} - U_{
m c \ hac}
ight)}{R_{
m c}} = rac{\left(E_{
m II} - U_{
m Bыx}
ight)}{R_{
m c}}$
 $I_{
m c} = b(U_{
m 3H} - U_{
m o})^2$ по характеристике $U_{
m Ilop}^1$
 $I_{
m c} = rac{\left(E_{
m II} - U_{
m Bыx}
ight)}{R_{
m c}} = rac{\left(E_{
m II} - \left(U_{
m BX} - U_{
m o}
ight)
ight)}{R_{
m c}}$
 $b(U_{
m Ilop}^1 - U_{
m o})^2 = rac{\left(E_{
m II} - \left(U_{
m Ilop}^1 - U_{
m o}
ight)
ight)}{R_{
m c}}$
 $\left(E_{
m II} - U_{
m Ilop}^1 + U_{
m o}
ight) = R_{
m c}b(U_{
m Ilop}^1 - U_{
m o})^2$

Переходные процессы

Инерционность МДП - транзисторных ключей обусловлена главным образом перезарядом емкостей, входящих в состав комплексной нагрузки и межэлектродных емкостей: емкость затвор-канал (определяет принцип действия МДП –транзистора – величину удельной крутизны); емкость сток-подложка (барьерная емкость стокового *p-n* перехода); емкости затвора относительно областей стока и истока; паразитная емкость монтажных соединений относительно подложки. Суммарная емкость *C*н включает все эти компоненты (порядка 1... 3 пФ).

Переходной процесс при выключении (закрытии)

Пусть в исходном состоянии ключ открыт (на выходе низкий уровень напряжения, логический 0). При подаче в момент t=t0 запирающего напряжения ток в транзисторе уменьшается до нуля практически мгновенно. После закрытия ключа переходной процесс определяется зарядкой емкости от источника питания через резистор Rc.

Переходной процесс при включении (открытии)

Открытие ключа и формирование фронта импульса напряжения на выходе протекают несколько сложнее, чем при закрывании. После подачи отпирающего входного напряжения практически мгновенно достигает значения $I_{\rm c} = b \left(U_{_{\rm 3M}} - U_{_{\rm o}} \right)^2$. Емкость Cн начинает разряжаться; пока выходное напряжение, равное напряжению на конденсаторе, $U_{_{\rm CM}} \geq U_{_{\rm Hac}}$ транзистор работает в пологой области, ток не меняет своего значения.

$$\begin{split} I_{\mathrm{c}}(0) &= b \big(U_{_{\mathrm{3M}}} - U_{_{\mathrm{o}}} \big)^2 = b \big(U_{_{\mathrm{BX}}} - U_{_{\mathrm{o}}} \big)^2 \\ U_{_{\mathrm{CM}}} &= U_{_{\mathrm{BMX}}} \geq U_{_{\mathrm{Hac}}} \end{split}$$

Переходной процесс при включении (открытии)

Как только $U_{\text{си}} \leq U_{\text{нас}}$ ток $I_{\text{с}}$ начинает уменьшаться, в пределе $I_{\text{с}}(\infty) = I_{\text{сн}}$. Зависимость $I_{\text{c}}(U_{\text{c}})$ на этом этапе нелинейная, при расчете длительности фронта используют приближенную формулу. Напряжение на выходе определяется остаточным напряжением.

$$t_{\rm \phi}^{10} \approx 1.5 E_{\rm m} C_{\rm H} / I_{\rm c}(0)$$

Так как $I_{\rm c}(0) \gg I_{\rm ch}$

$$t_{\rm \phi}^{10} \ll t_{\rm \phi}^{01}$$

Инвертор на полевых транзисторах с нелинейной нагрузкой (n-MOП технология)

Роль нелинейной нагрузки выполняет транзистор, у которого затвор соединен со стоком. В схеме с динамической нагрузкой транзистор VT2 называют нагрузочным, а транзистор VT1 – активным.

Инвертор на полевых транзисторах с нелинейной нагрузкой (n-MOП технология)

Если на вход подано напряжение

 $U_{\scriptscriptstyle \mathrm{BX}} < U_{\scriptscriptstyle \mathrm{Ol}}$, то выходное напряжение $U_{\scriptscriptstyle
m BMX}pprox E_{\scriptscriptstyle
m II}-U_{\scriptscriptstyle
m O^2}$ (точка В), высокий уровень выходного напряжения, логическая 1.

Если на вход подано напряжение

 $U_{\scriptscriptstyle \mathrm{BY}} > U_{\scriptscriptstyle \mathrm{Ol}}$, то рабочая точка А определяется на пересечении двух характеристик; низкий уровень выходного напряжения, логический 0.

Точка лежит на крутом участке

характеристики VT1:
$$I_{\rm c1} = b_{\rm l} \Big[2 \big(U_{\rm зи1} - U_{\rm o1} \big) U_{\rm си1} - U_{\rm cu1}^2 \Big] = b_{\rm l} \Big[2 \big(U_{\rm вx} - U_{\rm o1} \big) U_{\rm ост} - U_{\rm oct}^2 \Big]$$

$$I_{c2} = b_2 (E_{_{
m II}} - U_{_{
m OCT}} - U_{_{
m O2}})^2$$
 $I_{c2} = I_{_{
m C1}} = I_{_{
m CH}}$

$$U_{
m oct} = U_{
m \tiny BMX}^0 pprox rac{b_2 (E_{
m \tiny II} - U_{
m o2})^2}{2 b_1 (U_{
m \tiny BX} - U_{
m o1})}$$

На практике всегда $U_{\text{вх}} \leq E_{\text{п}}$, поэтому $b_{2} \ll b_{1}$, $U_{
m oct} = U_{
m вых}^0 pprox rac{b_2 \left(E_{
m ii} - U_{
m o2}
ight)^2}{2b_1 \left(U_{
m iv} - U_{
m o1}
ight)}
ight| \,$ транзисторы должны быть существенно различными (если $b_1/b_2 = 50...100$, то $U_{
m вых}^0 pprox 50...100$ мВ).

Инвертор на полевых транзисторах с нелинейной нагрузкой (КМОП технология)

Инвертор с минимальным потреблением мощности можно реализовать на комплементарной (дополняющей) паре полевых транзисторов. В такой схеме используются два МОП - транзистора с индуцированными каналами *n*- и *p*-типов. Подложки обоих транзисторов соединены с истоками.

КМОП - инвертор является практически идеальным логическим инвертором. Его быстродействие оказывается значительно выше, чем у других типов инверторов. Совершенствование технологии производства КМОП - интегральных схем привело к тому, что в настоящее время они стали доминирующими при производстве цифровых схем не только высокой, но и средней степени интеграции.

Статический режим КМОП - инвертора

В статическом состоянии на входе может быть нулевое напряжение; может быть высокий уровень напряжения $U_{\text{вх}} \approx E_{\text{п}}$. Рассмотрим состояние транзисторов и уровень выходного напряжения для этих вариантов.

Для реальных транзисторов

$$I_{\text{ост1}} \approx 10^{-9} \text{ A} \quad U_{\text{си2}} \approx 0,1...1 \text{ мB}$$
 $U_{\text{вых}}^1 \approx E_{\text{п}}$

Пусть на входе нулевое напряжение $U_{\scriptscriptstyle \mathrm{RY}}=0$.

Тогда
$$U_{_{3\text{\tiny M}}1} = 0$$
 $U_{_{3\text{\tiny M}}2} = -E_{_{\Pi}}; E_{_{\Pi}} > |U_{_{0}2}|$

В таком случае *n*-канальный транзистор *VT*1 заперт, а *p*-канальный транзистор *VT*2 открыт и работает на крутом участке характеристики. Эквивалентная схема замещения имеет вид:

Статический режим КМОП - инвертора

Пусть на входе управляющее напряжение $U_{\text{вх}} \approx E_{\text{п}}$. Тогда n-канальный транзистор VT1 открыт и работает на крутом участке характеристики, а p-канальный транзистор VT2 закрыт. Эквивалентная схема замещения имеет вид:

Важнейшей особенностью комплементарных ключей является то, что они практически не потребляют мощности в обоих вариантах и имеют малое остаточное напряжение в открытом состоянии транзистора *VT*1.

Статический режим КМОП - инвертора

- В обоих статических состояниях выход схемы подключен к общей шине или источнику питания через небольшие сопротивления каналов открытых транзисторов. Поэтому выходное напряжение равно нулю или напряжению питания и почти не зависит от параметров транзисторов.
- Если напряжение питания превышает сумму пороговых напряжений обоих транзисторов, то в интервале $U_{
 m ol} \le U_{
 m BX} \le E_{
 m in} - |U_{
 m o2}|$ оба транзистора открыты и ток в цепи может иметь достаточно большое значение, поэтому для КМОП – инверторов характерны низкие напряжения источника питания.
- Разность выходных напряжений инвертора в закрытом и открытом состояниях максимальна (близка к величине E_{Π}). Это обеспечивает высокую помехоустойчивость схемы.
- КМОП инверторы обладают значительно большей нагрузочной способностью, чем инверторы на биполярных транзисторах. Входное сопротивление МОП транзистора бесконечно велико. Поэтому к его выходу можно подключить большое число аналогичных инверторов. При этом уровень выходного напряжения практически не изменится. Однако каждый дополнительный инвертор увеличивает емкость нагрузки, что приводит к замедлению переключения инвертора из одного логического состояния в другое.

Передаточная характеристика КМОП - инвертора

Участок	VT1	VT2
1-2	Закрыт	Крутая область
2-3	Пологая	Крутая
	область	область
3-4	Пологая	Пологая
	область	область
4-5	Крутая	Пологая
	область	область
5-6	Крутая	Dormara
	область	Закрыт

$$U_{\mathrm{пер}} pprox rac{E_{\mathrm{\Pi}}}{2}$$
 напряжение переключения (для одинаковых транзисторов)

Передаточная характеристика КМОП - инвертора

Переходной процесс в КМОП - инверторе

В комплементарном ключе переходные процессы характерны тем, что заряд и разряд нагрузочной емкости Сн происходит примерно в одинаковых условиях из-за симметрии схемы по отношению к запирающему и отпирающему управляющему сигналу. Заряд емкости происходит через открытый транзистор VT2 при закрытом транзисторе VT1, а разряд — через открытый транзистор VT1 при закрытом транзисторе VT2. В обоих случаях транзистор, открывшийся после переключения, находится в режиме насыщения со сравнительно большим током /с(0) и ток начинает уменьшаться после того, как напряжение на стоке уменьшается до значения *U*нас. Механизм обоих процессов (заряда и разряда) подобен процессу разряда в ключе с резистивной нагрузкой.

Переходной процесс в КМОП - инверторе

