Révisions Master IMA

Axel PIGEON

8 juillet 2025

Table des matières

1	Probabilités				
	1.1	.1 Espaces Probabilisés et Mesures			
		1.1.1	Univers	5	
		1.1.2	Évènements, Issues et Mesure de Probabilité	5	
		1.1.3	Variable Aléatoire	6	
		1.1.4	Variables Discrètes et Continues	6	
2	Opt	imisat	ion	9	
3	3 Simulation			11	

Chapitre 1

Probabilités

1.1 Espaces Probabilisés et Mesures

1.1.1 Univers

Introduisons les concepts fondamentaux des probabilités, les univers et les espaces probabilisés.

Définition (**Univers**). On appelle univers Ω pour une expérience aléatoire, l'ensemble de toutes les issues (situations finales) possibles de cette expérience aléatoire. Chaque élément $\omega \in \Omega$ représente une **issue** de cette expérience aléatoire.

Exemple • Pour une expérience aléatoire de lancer de dé, il existe 6 issues possibles correspondant aux 6 faces du dé. On a donc $\Omega = \{1, 2, 3, 4, 5, 6\}$.

• Si on pioche un boule dans une urne contenant une boule rouge et deux boules noires, on a $\Omega = \{\text{rouge}, \text{noir}\}.$

A partir d'un univers, on peut définir la notion d'espace probabilisé. Plus complexe, la définition nécessaire les prérequis du cours d'intégration et de théorie de la mesure.

Définition (Espace Probabilisé) . Un espace probabilisé est un triplet $(\Omega, \mathcal{F}, \mathbb{P})$ où :

- Ω est un univers.
- \mathcal{F} est une tribu (σ -algèbre) sur Ω .
- \mathbb{P} est une mesure de probabilité sur \mathcal{F} (voir plus loin).

1.1.2 Évènements, Issues et Mesure de Probabilité

Définition (Évènement) . Soit Ω un univers. On définit un évènement de Ω comme un sous-ensemble $A\subseteq\Omega$.

Remarque Comme définit au début, les issues $\omega \in \Omega$ correspondent à des résultats élémentaires de l'expérience aléatoire, à ne pas confondre avec les évènements. Dans notre expérience de lancer de dé, $\{2\} \in \Omega$ est l'issue correspondant à "obtenir un 2" et $A = \{1,2\} \subset \Omega$ est l'évènement correspondant à "le résultat est inférieur ou égal à 2".

Par construction, \mathcal{F} contient donc tous les évènements et issues possibles de l'expérience aléatoire. Elle est dont "plus complète" que Ω , on retrouve les propriétés des espaces mesurables, vus en intégration en Licence.

Définition (Mesure de Probabilité). Soit un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. Une mesure de probabilité \mathbb{P} sur \mathcal{F} est une mesure (au sens de la théorie de la mesure) qui vérifie :

- 1. $\mathbb{P}: \mathcal{F} \longrightarrow [0,1]$
- 2. $\mathbb{P}(\Omega) = 1$

Remarque (Rappel : Mesure) Une fonction $\mu:(X,\mathcal{B})\longrightarrow \overline{\mathbb{R}_+}$ telle que :

- 1. $\mu(\emptyset) = 0$
- 2. (Sigma-additivité) : $\forall (A_n)_{n\in\mathbb{N}}$ suite de parties mesures deux à deux disjointes, on ait :

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n)$$

est appelée mesure sur l'espace (X, \mathcal{B}, μ) alors appelé **espace mesuré**.

1.1.3 Variable Aléatoire

Pour pouvoir quantifier des calculs de probabilités ou ce que nous appellerons plus tard des lois, nous devons définir les variables aléatoires.

Définition (Variable Aléatoire) . Une variable aléatoire est une fonction mesurable qui associe une valeur numérique à chaque issue d'un espace probabilisé.

Plus formellement, une variable aléatoire X sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ est une fonction $X : \Omega \longrightarrow \mathbb{R}$ telle que, pour tout ensemble $B \in \mathcal{B}_{\mathbb{R}}$ (tribu borélienne), on ait $X^{-1}(B) \subset \mathcal{F}$.

On définit l'ensemble des valeurs possibles de la variable aléatoire comme l'image de Ω par X noté $X(\Omega)$.

La mesurabilité d'une variable aléatoire permet donc garantir que les évènements associés aux valeurs de la variable aléatoire sont bien mesurables par la mesure de probabilité.

Proposition Maintetant que nous avons définit formellement le concept de variable aléatoire, on peut lier cette définition à celle des évènements. En effet, une variable aléatoire est une fonction mesurable sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ telle que :

$$X: \Omega \longrightarrow \mathbb{R} \quad \forall B \in \mathcal{B}_{\mathbb{R}}, X^{-1}(B) \subset \mathcal{F}$$

On peut alors caractériser un évènement A comme la préimage d'un sous-ensemble de $\mathbb R$ par X de la façon suivante.

$$A = X^{-1}(B)$$
 pour un certain $B \in \mathcal{B}_{\mathbb{R}}$

1.1.4 Variables Discrètes et Continues

Selon la nature de l'espérience aléatoire et de l'univers choisis, on distingue deux grands types de variables aléatoires : les variables aléatoires discrètes et continues. Cette distinction est fondamentale car elle caractérise la façon dont on exprime et calcule ensuite les probabilités.

Définition (Variable aléatoire discrète). Une variable aléatoire X définie sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ est dite discrète si l'ensemble de ses valeurs possibles $X(\Omega)$ est un ensemble fini ou dénombrable. Dans ce cas, la loi de probabilité de X est donnée par

une fonction de masse et les probabilités s'expriment comme des sommes.

Exemple Le résultat d'un lancer de dé est une variable aléatoire discrète. Par exemple, si X désigne le résultat d'un lancer de dé, alors $X(\Omega) = \{1, 2, 3, 4, 5, 6\}$.

Définition (Variable aléatoire continue). Une variable aléatoire X est dite continue si elle peut prendre une infinité non dénombrable de valeurs, typiquement un intervalle de \mathbb{R} . Dans ce cas, il n'existe pas de fonction de masse mais une **densité de probabilité**, et les probabilités s'expriment par des **intégrales**.

Exemple Le temps d'attente avant un événement (modélisé par une loi exponentielle), ou la taille d'une personne (loi normale), sont des variables continues. Si X est la taille d'un individu, alors $X(\Omega) \subseteq \mathbb{R}$ est un intervalle de réels.

Remarque La distinction entre lois discrètes et lois continues repose donc sur la nature de la mesure de probabilité utilisée :

- Mesure de comptage (ou somme de Dirac) ⇒ lois discrètes.
- Mesure de Lebesgue (avec densité) ⇒ lois continues.

Nous allons maintenant étudier les deux grands types de lois de probabilité selon la nature de la variable aléatoire :

- Dans le cas discret : lois binomiale, géométrique, de Poisson...
- Dans le cas continu : loi uniforme, loi exponentielle, loi normale...

Chapitre 2

Optimisation

Chapitre 3

Simulation