现代概率论总结

2023年5月18日

目录

1	集合	、集合系	2	
	1.1	集合及其运算	2	
	1.2	集合系	2	
	1.3	由集合系生成的集合系	2	
	1.4	映射	3	
2	测度			
	2.1	测度的定义	3	
	2.2	测度在基本集合系的建立和性质	3	
	2.3	外测度	4	
	2.4	基于 $X, \mathcal{F}_{\tau}, \tau$ 的测度扩张	4	
	2.5	测度空间完全化	5	
3	可测空间 6			
	3.1	可测映射	6	
	3.2	可测函数	6	
	3.3	可测函数的运算	6	
	3.4	可测函数的收敛性	7	
4	积分		8	
	4.1	积分的定义和性质	8	
	4.2	$L^p(X,\mathcal{F},\mu)$ 空间	10	
5	概率空间 12			
	5.1	Lebesgue-Stieljes 测度	12	
	5.2	Lebesgue-Stieljes 积分	12	
	5.3	概率空间中的收敛性 1	13	

1 集合、集合系

1.1 集合及其运算

- 1. 并、交、补、差 (略)
- 2. 集合列的上下极限

1.2 集合系

- 1. 有限运算背景下的集合系
- (1) π 系: 非空, 对交封闭。例如 $\{(-\infty, a): a \in \mathcal{R}\}.$
- (2) 半环: π 系; 真差可以被表示成其中两两不交元素的并。例如所有 \mathcal{R} 上左开右闭区间构成的集合系、有限集由其所有单点构成的集合系。
- (3) 环:对并和差封闭;例如所有 R 上左 开右闭区间的有限或可列并构成的集合系、有 限集的幂集。

定理 1.2.1. 环是半环,所以环也是 π 系,对交也封闭。

证明. 先证对交封闭, 将交表示成并减去对称差。再证真差可表, 用真差自身表示。□

(4) 域:全集在;对余、有限并封闭。

定理 1.2.2. 域必是环。

证明. 只需证明对差封闭,运用德摩根律。 □

- 2. 可列运算背景下的集合系
- (1) 单调系: 单调序列的极限还在其中。
- (2) λ 系: 全集在; 真差封闭; 单增序列极限封闭。

定理 1.2.3. λ 系是单调系。

证明. 只需对单减集列证,运用德摩根律两重取余。 □

(3) σ域: 对域,可列并封闭。

定理 1.2.4. σ 域是 λ 系。

证明. 只证余, 运用德摩根律。

3. 相互关系

定理 1.2.5. 单调系 +域 \iff σ 域 \iff λ 系 $+\pi$ 系。

证明. 第一个: 只需证可列并封闭。表可列并为有限并的并。

第二个: π 系,又全集在、取余封闭,可推出域。由第一个可得。

1.3 由集合系生成的集合系

1. 定义

包含原集合系最小的集合系。

2. 存在性

证明. 仅证生成环的情形。取幂集,它是 σ 域,也是环。取 A 为包含原集合系的所有集合系的集合,则它非空。取它所有元素的并即可。

3. 性质定理

定理 1.3.1. (1) 若 \mathcal{E} 为半环,则 $r(\mathcal{E}) = \bigcup_{n=1}^{\infty} \{ \bigcup_{k=1}^{n} A_k : k = 1, 2, \cdots, n \}$ 两两不交。

- (2) 若 \mathcal{E} 为域,则 $\sigma(\mathcal{E}) = m(\mathcal{E})$.
- (3) 若 \mathcal{E} 为 π 系,则 $\sigma(\mathcal{E}) = l(\mathcal{E})$.

证明. (1) 左包含右: 因为任意一个 A_k 在 \mathcal{E} 中,故在 $r(\mathcal{E})$ 中,所以有限并也在 $r(\mathcal{E})$ 中,故右边任意一个元素都在 $r(\mathcal{E})$ 中。

右包含左: 只需证右边是环,即对差、并 封闭。

差: 任取两个集合 A, B,按照右边的形式各拆分成有限并 A_i, B_j ,再由半环的性质将 A_i, B_j 的差拆分成有限并 $C_l^{i,j}$. 用 $C_l^{i,j}$ 结合分配律将 A-B 表示成两两不交元素的并,符合右边的形式。

并:结合差的证明,证明 B_j 和上述最后两两不交元素也不交。

(2) 左包含于右: 只需右是 σ 域,只需右是域,只需右是环 (全集在),故只需证明对

并和差封闭。证明分两步: a. 构造 $g_A = \{B: B, A \cup B, A - B \in m(\mathcal{E})\}$ 并验证它是单调系,从而证明 $A \in \mathcal{E}, B \in m(\mathcal{E})$ 时其并和差在 $m(\mathcal{E})$ 中; b. 构造 $H_B = \{A: A, A \cup B, A - B \in m(\mathcal{E})\}$ 并验证是单调系,证明结论。

右包含于左: 由最小性即可。

(3) 与 (2) 完全类似。

1.4 映射

- 1. 映射的原像
- (1) 原像基本性质

$$f^{-1}\phi = \phi, f^{-1}Y = X;$$

$$f^{-1}B_1 \subset f^{-1}B_2, B_1 \subset B_2.$$

$$(f^{-1}B)^c = f^{-1}B^c;$$

$$f^{-1} \cup A_t = \cup f^{-1}A_t.$$

(2) 由集合系生成的 σ 域

定理 1.4.1. $f^{-1}\sigma(\mathcal{E}) = \sigma(f^{-1}\mathcal{E})$.

证明. (i) 左包含右,只需左边为 σ 域。全集在 (Y); 假设 f(A) = B 并按原像取余的性质可证余封闭;按原像取可列并的性质可证可列并封闭。

(ii) 右包含左: 设 $g=\{B\subset Y: f^{-1}B\subset \sigma(f^{-1}\mathcal{E})\}$,验证是 σ 域,进而推出 $\sigma(\mathcal{E})\subset g$,进而证得。

2 测度

2.1 测度的定义

1. 测度的定义

设 \mathcal{E} 为全集 X 上集合系, 若函数 μ 满足:

- (1) $\mu(\phi) = 0$;
- (2) $\mu(A) \ge 0, \forall A$;
- $(3) \ \forall A_1, \cdots, A_n \in \mathcal{E}$ 两两不交, $\mu(\cup A_n) = \sum \mu(A_n)$.

则称 μ 为测度, 若还满足

(4) $\forall A \in \mathcal{E}, \mu(A) < \infty$,

称其为有限测度, 若满足

(5) $\forall A \in \mathcal{E}, \exists A_n \in \mathcal{E}, n \geq 1, A \subset \cup A_n, \mu(A_n) < \infty.$

称其为 σ 有限测度,若满足

(6) $\mu(X) = 1$,

称其为概率测度。

- 2. 测度举例
- (1) 计数测度: $X \neq \phi, \mu(A) = \#(A), \forall A \in 2^X$.
- (2) 示性测度: $\delta_x(A) = I_A(x), \forall A \in \mathcal{E}, x \in X$.

2.2 测度在基本集合系的建立和性质

1. 测度在半环上

定理 2.2.1. 半环 Q 上具有有限可加性的 非负集函数 μ 具有:

- (1) 单调性。 $\forall A, B \in \mathcal{Q}, A \subset B, \mu(A) \leq \mu(B)$.
- (2) 可减性: $\forall A, B \subset \mathcal{E}, A \subset B, \mu(A) < \infty, B A \in \mathcal{E}, \mu(B A) = \mu(B) \mu(A).$

若可列可加,还有:

- (3) 下连续性: $\forall A_n \in \mathcal{Q}, n \geq 1$ 单调递增到 $A, \mu(A_n) \rightarrow \mu(A)$.
- (4) 上连续性: $\forall A_n \in \mathcal{Q}, n \geq 1$ 单调递减到 $A, \mu(A_n) \rightarrow \mu(A)(\mu(A_1) < \infty)$.
- (5) 次可列可加性: $\forall A_n \in \mathcal{Q}$, 若可列并还在 \mathcal{Q} 中,则 $\mu(\cup A_n) \leq \sum \mu(A_n)$.

从而半环上的测度具有上述所有性质。

证明. (1) 由半环定义可以拆分 B;

(2) 表 $B = (B - A) \cup A$;

由可列可加性 $\mu(\phi) = \infty$ or 0, 若无穷, 任意一个集合的函数值都是无穷, 此时后续结论都成立。下面讨论 $\mu(\phi) = 0$.

- (3) 前减后,两两做差,可以用半环定义并 集表示。用可列可加性,拿出极限号。
- (4) 后减前,表示出 A_n 并用可列可加性 拆分,并利用 A_1 断定级数收敛性。

(5) 利用半环生成环的性质把 A_i 的部分并、 A_i 的"增量"分别表示成半环中元素并的形式,然后分别表出两边。

2. 测度在环上

定理 2.2.2. 环 R 上有限可加的非负集函数 μ 满足:

(1) 可列可加性 \iff (2) 次可列可加性 \iff (3) 下连续 \Rightarrow (4) 上连续 \Rightarrow (5) 在空集 处上连续。

若μ有限, (5)⇒(1).

证明. 由半环的结论有 $(1)\Rightarrow(2),(3),(4)$; $(4)\Rightarrow(5)$ 显然。

- (2)⇒(1): 对于可列可加性的集合设定,只需证 $\mu(\cup A_n) \geq \sum \mu(A_n)$. $\sum_{i=1}^N \mu(A_i) = \mu(\cup_{i=1}^n A_i) \leq \mu(\cup A_i)$ 即可。
 - (3)⇒(1): 用部分并是单增集列。
- (5)⇒(1): 同上,拆分成部分并和余项 (有限可加性),再令 $n \to \infty$.

2.3 外测度

1. 外测度的定义

满足单调性,空集映为 0,次可列可加性的,由幂集到广义实数的集函数。

2. 由测度生成的外测度

定理 2.3.1. $\tau(A) = \inf\{\sum \mu(B_n) : B_n \in \mathcal{E}, n \geq 1, A \subset \cup B_n\}$ 是外测度。 μ 为不一定有可列可加性的准测度。

证明. 空集映到 0 显然。

单调性:取集合列包含大集,则一定包含 小集。用下确界定义即可。

次可列可加性: 先排除某一个外测度为无 穷情形; 有穷情形对每个 A_n 找一列 $B_{n,k}$ 对 应 $\varepsilon/2^n$.

3. 外测度不一定是测度的反例

 $\forall x \in (0,1), L_x = \{\xi \in (0,1) | \xi - x \in \mathbb{Q} \}.$ 在每个 L_x 内取不重复点,构成 (0,1) 的一 $\{X, \phi\}.$

个子集 S. 设 $\{r_i\}$ 为 [-1,1] 中有理数全体, $S_k = \{x + r_k : x \in S\}$. 可以证明:

- (1) L_x , L_y 要么相等,要么不交;相等时x-y 为有理数。 S_x , S_y 情况相似,相等时x=y.
 - (2) $(0,1) \subset \cup S_i \subset (-1,2)$.

这里可列可加性不可能存在。

4. 把外测度限制在比幂集小的集合系上, 使之成为测度

定理 2.3.2 (Caratheodory 定理). 设 τ 为 X 上的外测度,定义 τ 可测集 A : $\forall D \in \mathcal{T}, \tau(D) = \tau(D \cap A) + \tau(D \cap A^c)$,定义 \mathcal{F}_{τ} 为全体这样的集合构成的集合系,则下列结论成立

- (1) F_{τ} 为 σ 域;
- $(2)(X,\mathcal{F}_{\tau},\tau)$ 为完全测度空间,即 \mathcal{F}_{τ} 内 零测的子集还在 \mathcal{F}_{τ} 中。

证明. (1) 由 τ 可测条件可知全集在 \mathcal{F}_{τ} 中,且取余封闭。故只需证可列并封闭。分为四步证明。

- (1.1) 证明关于交封闭。可测条件先对 A_1 展开,再用 A_1 对 A_2 展开,配凑一项 $(A_1 \cap A_2)^c$.
 - (1.2) 证明关于有限并的分配。
- (1.3) 对有限并展开可测条件,再放缩到无穷。
 - (1.4) 借助外测度的次可列可加性证得。
- (2) 证明 τ 限制在 \mathcal{F}_{τ} 上为测度,从而证明零测集都在 \mathcal{F}_{τ} 中。

2.4 基于 $X, \mathcal{F}_{\tau}, \tau$ 的测度扩张

- 1. 测度扩张的定义
- $\mathcal{E} \subset \mathcal{E}', \mu, \nu$ 分别为其上测度,对 \mathcal{E} 内集合两个测度相等,则称 ν 为 μ 的扩张。
- 2. 不对集合系作任何限制,不一定实现扩 张(反例)

例 2.4.1.

 $X = \{a, b, c\}, \mathcal{E} = \{\phi, X, \{a, b\}, \{b, c\}\}, \mu(\phi) = 0, \mu(\{a, b\}) = \mu(\{b, c\}) = 1, \mu(X) = 2, \mathcal{F}_{\tau} = \{X, \phi\}.$

3. 限制集合系为半环,得到测度扩张定理

定理 2.4.1 (σ 有限条件). \mathcal{P} 为 π 系, $\sigma(\mathcal{P})$ 上测度 μ,ν 在 \mathcal{P} 中每个集合都对应相等,且满足 σ 有限条件: $\forall A \in \mathcal{P}, \exists$ 两两不交的集合 $A_1, \dots, \in \mathcal{P}, \cup A_i = X, \mu(A_n) < \infty$, 则它们在 $\sigma(\mathcal{P})$ 上也相等。

证明. 采用生成集合系惯用方法,先对 $\forall B \in \mathcal{P}$,构造 $\mathcal{L}_B = \{A \in \sigma(\mathcal{P}) : \mu(A \cap B) = \nu(A \cap B)\}$ 并验证其为 λ 系。

然后推 $\sigma(P) \subset \mathcal{L}_B$.

然后借助 σ 有限条件推结论。

定理 2.4.2 (测度扩张定理). 设 μ 为半环 Q 上测度,则 τ 是 μ 在 F_{τ} 上的扩张,故也 是在 $\sigma(Q)$ 上的扩张。若关于 Q 的 σ 有限条件成立,则扩张唯一。

证明. (1) 两测度相等:

找一列 A_n 并集包含 A, 将测度表示为 $A \cap A_n$ 的并求测度,利用次可列可加性和 τ 的下确界性质得到一个 \leq , 再取 $B_1 = A, B_i = \phi, i \geq 2$, 得到 \geq .

(2) 集合系得到扩张:

先证明 $A,D\in\mathcal{Q},\tau(D)\geq\tau(D\cap A)+\tau(D\cap A^c)$; 这里利用 (1) 的结论结合半环的定义,再利用下确界性质。

再证明 $\forall D \in \tau$, 对 $\tau(D)$ 是否有穷讨论: 无穷,次可列可加性; 有穷,利用下确界的 ε 条件,利用上一步结论和次可列可加性。进而 证明了 $\mathcal{Q} \subset \mathcal{F}_{\tau}$.

(3) 唯一性:

由 σ 有限条件定理,存在另一个 τ' 时, $\tau(A) = \mu(A) = \tau'(A), \forall A \in \sigma(Q).$

推论: 设 $X \in \mathcal{Q}, \mu$ 为 σ 有限测度,扩张 结论成立。

 $4. \sigma$ 有限条件的必要性(反例)

 $Q = \{ \mathbb{Q} \cap (c, b] \}, \mu(A) = \#(A), \lambda(A) = a\mu(A), \forall A \in \sigma(Q), \forall a > 0, \forall b, c \in \mathbb{R}.$

可以证明: λ 是测度扩张; 但扩张不固定, 用单点集验证。

- 5. 在 τ 意义下的逼近
- (1) \mathcal{F}_{τ} 中集合被 $\sigma(\mathcal{Q})$ 中集合逼近

定理 **2.4.3.** (1) $\forall A \in \mathcal{F}_{\tau} \Rightarrow \exists B \in \sigma(\mathcal{Q}), A \subset B, \tau(A) = \tau(B).$

(2) 如果 σ 有限条件成立,则存在条件同 (1) 中的集合使得 $\tau(B-A)=0$.

证明. (1) 无穷情形取全集。有穷时,对每个 n 取一列 B_{nk} ,按照 τ 定义取并集包含 A; 一方面取这些并集的交 B,由单调性推出 $\tau(B) \geq \tau(A)$,另一方面再由 B_{nk} 构造证明相 反不等号。

- (2) $A \cap A_n \in \mathcal{F}_{\tau}, A = \cup (A \cap A_n)$. 由 (1) 对每个 A_n 取 B_n 等测度,验证 B_n 可列并为所求。
 - (2) $\sigma(Q)$ 中集合被 Q 中集合逼近

定理 2.4.4. 设 μ 为域 Q 上测度, $A \in \sigma(Q), \tau(A) < \infty$, 则 $\forall \varepsilon > 0, \exists B \in Q, \tau(A\Delta B) < \varepsilon$.

证明. $\forall \varepsilon > 0$, 依据下确界性质取得 B_n 覆盖 A.

- (1) 证明 $\forall N$, 部分和与 A 差集测度小于 $\varepsilon/2$.
- (2) 证明存在一个 N_0 , 证明 N_0 部分并为所求。

推论: 设 \mathcal{A} 为域, μ 为 $\sigma(\mathcal{A})$ 上的 σ 有限 测度, 若 $A \in \sigma(\mathcal{A}), \mu(A) < \infty, \forall \varepsilon > 0, \exists B \in \mathcal{A}, \mu(A\Delta B) < \varepsilon.$

2.5 测度空间完全化

1. 一般的测度空间 (X, \mathcal{F}, μ) 完全化

定理 2.5.1. $\tilde{\mathcal{F}} = \{A \cup N : A \in \mathcal{F}; \exists N \subset B \in \mathcal{F}, \mu(B) = 0\}$ 为 σ 域。若 $\forall A \cup N \in \mathcal{F}, \tilde{\mu}(A \cup N) = \mu(A), 则 <math>(X, \tilde{\mathcal{F}}, \tilde{\mu})$ 为实现了测度扩张的完全测度空间。

证明. 先验证 $\tilde{\mathcal{F}}$ 为 σ 域。首先, $X = X \cup \phi \in \tilde{\mathcal{F}}$. 然后,若 $A \cup N \in \tilde{\mathcal{F}}$, 则 $B^c \cap A^c \in \mathcal{F}$, $B \cap A^c \cap N^c \subset B$, 可推补封 闭。最后 A_n, B_n, N_n 逐一并,验证可列并封 闭。

再验证 $\tilde{\mu}$ 为测度。首先,任取 $A_1 \cup N_1 = A_2 \cup N_2 \in \tilde{\mathcal{F}}$,由 $\mu(A_1) = \mu(A_1 \cup B_1 \cup B_2)$ 可以推得一意性。非负和归一性显然。 A_n, N_n 分别并,用 $\tilde{\mu}$ 定义验证可列可加性。

最后验证完全测度空间,取 $C \subset A \cup N \subset A \cup B$ 零测, $C = C \cup \phi \in \tilde{\mathcal{F}}$.

2. 将 $(X, \sigma(Q), \tau)$ 完全化

定理 2.5.2. $\tilde{\mathcal{F}} = \mathcal{F}_{\tau}$. 其中 μ 为 σ 有限测度。

证明. $\tilde{\mathcal{F}} \subset \mathcal{F}_{\tau}$. 这由完全测度空间的定义即可。

 $\mathcal{F}_{\tau} \subset \tilde{\mathcal{F}}$. 对于 $\forall A \in \mathcal{F}_{\tau}$, 可以找到一个 $\sigma(\mathcal{Q})$ 内的 C 逼近。但 $C - A \in \mathcal{F}_{\tau}$, 又可以找 到 $\sigma(\mathcal{Q})$ 内的 B 逼近。表 $A = (A \cap B^c) \cup (A \cap B)$ 加一项为 $[\{(C - A) \cup A\} \cap B^c] \cup (A \cap B) = (C \cap B^c) \cup (A \cap B) \in \tilde{\mathcal{F}}$.

3 可测空间

将一个集合 X, 及其上的一个 σ 域 \mathcal{F} , 连同该 σ 域上的一个测度 μ 的有机组合 (X,\mathcal{F},μ) 称为可测空间。

3.1 可测映射

1. 可测映射的定义

设 f 是由 $(X,\mathcal{F}) \to (Y,\mathcal{S})$ 的映射,若 $f^{-1}S \subset \mathcal{F}$, 称该映射可测。

2. σ 可测

定理 3.1.1. f 为 $(X,\mathcal{F}) \to (Y,\sigma(\mathcal{E}))$ 的可测映射 $\iff f^{-1}\mathcal{E} \subset \mathcal{F}.$

证明. 利用 $\sigma(f^{-1}\mathcal{E})=f^{-1}\sigma(\mathcal{E})$ 以及可测映射定义。

3. 可测的复合

定理 **3.1.2.** g, f 分别为 (X, \mathcal{F}) \rightarrow $(Y, \mathcal{S}), (Y, \mathcal{S}) \rightarrow (Z, \mathcal{Z})$ 的可测映射,则其复合是 $(X, \mathcal{F}) \rightarrow (Z, \mathcal{Z})$ 的可测映射。

证明. $\forall C \in \mathcal{Z}$ 验证满足定义。

3.2 可测函数

1. 定义

可测函数: $(X, \mathcal{F}) \to (\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}})$ 的可测映射。 随机变量: $(X, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ 的可测映射。 $F(-\infty) = 0, F(\infty) = 1$ 的准分布函数叫 分布函数,对于随机变量而言 $F(x) = P(f \le x)$. 在 (Y, \mathcal{S}) 或一般为 $(\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}})$ 导出概率测度 $Pf^{-1}(B) = P(f^{-1}B) \forall B \in \mathcal{B}_{\overline{\mathbb{R}}}$ 称为 f 的概率分布。

2. 可测函数判别准则及推论

定理 3.2.1. f 为 (X, \mathcal{F}) 上可测函数 \iff $\{f > a\} (or \ \{f < a\}, \{f \geq a\}, \{f \leq a\}) \in \mathcal{F}, \forall a \in \mathbb{R}.$ 随机变量类似。

证明. 由 $\bar{\mathbb{R}}$ 即可。如: $f^{-1}\bar{\mathbb{R}} \subset \mathcal{F} \iff f^{-1}[-\infty, a) \in \mathcal{F}, \forall a \in \bar{\mathbb{R}}.$

定理 3.2.2. 若 f, g 可测,则 $\{f < g\}, \{f \le g\}, \{f = g\}, \{f = a\}, \forall a \in \mathbb{R}$ 都是在 \mathcal{F} 中的。

证明. $\{f < g\}$ 由有理数可列并推出, $\{f \le g\}$ 由小于取余推出, $\{f = g\}$ 由前两个推出, $\{f = a\}$ 有穷情形由差集推出,无穷情形由 $\{f < -n\}, \{f > n\}$ 无穷交推出。

3.3 可测函数的运算

1. 四则运算

定理 3.3.1. 若有意义,对于可测函数 $f,g, \forall a \in \mathbb{R}, af, f+g, fg, f/g$ 都是可测函数。

测 证明. 先证明示性函数及其线性组合均为 □ 可测函数。

- (1) 若 a 为无穷,按照 f 为正、负、0 拆分成示性函数线性组合。若 a=0,af=0 可测。若 $a\neq 0$,且有限,两边同除即可。
 - (2) 用有理数的可列并。
- (3) 按照 g = 0 与否拆分 $\{fg < a\}$ 为 A_1, A_2 .
- (4) 按照 g > 0 与否拆分 $\{1/g < a\}$ 为 $A_1, A_2,$ 利用 (1).
 - 2. 可测函数可用简单函数逼近

有限分割:存在有限个不交集合,取并集为全集。

有限可测分割:有限分割,且每个分割元在 F 中。

简单函数: 对于 $f:(X,\mathcal{F}\to (Y,\mathcal{S}),$ 存在有限可测分割 $\{A_i\}$, 实数 $a_i,i=1,2,\cdots,n,$ 使得 $f=\sum_{i=1}^n a_i I_{A_i}$.

定理 3.3.2. \forall 非负可测函数 $f:(X, \mathcal{F} \rightarrow (Y, \mathcal{S}))$, 存在一列非负简单函数 $f_n \uparrow f$. 非负性假设可以同时取消。且当 f 有界时,收敛是一致的。

证明. 今

$$f_n = \sum_{k=0}^{n \cdot 2^n - 1} \frac{k}{2^n} I\{\frac{k}{2^n} \le f < \frac{k+1}{2^n}\} + nI\{f \ge n\}.$$

应用 1. 复合运算

定理 3.3.3. 设 $g:(X,\mathcal{F})\to (Y,\mathcal{S})$ 为 可测映射,则 h 为 $(X,g^{-1}\mathcal{S})$ 上可测函数 $\iff \exists (Y,\mathcal{S})$ 上可测函数 f 使得 $h=f\circ g$.

证明. 测度论中具有典型意义的方法: 特征函数 \rightarrow 简单函数 \rightarrow 非负可测函数 \rightarrow 可测函数。

必要性由可测映射的定义即可。

充分性:

(1) 构造简单函数,及分割在像集中的像, 再通过集合"增量"构造出两两不交的像,代 入简单函数表达式,运用示性函数转换即可。

- (2) 对于非负可测函数,取逼近列,再由 (1) 取复合,令 $F_n = \max f_k$, $f = \lim F_n$.
- (3) 对于一般可测函数,表正负部即可。 □

应用 2. 两个可测函数类

- (1) 单调类 \mathcal{M} : 设 \mathcal{A} 为域, \mathcal{X} 上具有下列性质的非负广义实函数组成的集合:
- $(1.1) \ \forall f, g \in \mathcal{M}, a, b \in \mathbb{R}, af + bg \ge 0 \Rightarrow af + bg \in \mathcal{M};$
 - $(1.2) \ \forall f_n \uparrow f, f_n \in \mathcal{M} \Rightarrow f \in \mathcal{M}.$
- (2) λ 类 \mathcal{L} : 设 \mathcal{P} 为 π 系,X 上的包含函数 1 的单调类。

性质定理:

定理 3.3.4. $\forall A \in A, I_A \in M \Rightarrow \forall (X, \sigma(A))$ 上的可测函数,都在单调类中;

 $\forall A \in \mathcal{P}, I_A \in \mathcal{L} \Rightarrow \forall (X, \sigma(\mathcal{P}))$ 上的可测函数,都在 λ 类中。

证明. (1) 构造 $g = \{A : I_A \in M\}$,可以证明它是单调系。增列易证,减列观察 $I_{A_n^c}$,对其运用第一条定义,再取极限,再对可列交的示性函数运用第一条定义即可。最后,运用非负可测函数逼近。

3.4 可测函数的收敛性

设 $f_n: n \ge 1$ 是可测函数列。

1. 可测函数的极限运算

定理 **3.4.1.** inf f_n , sup f_n , lim sup f_n , lim inf f_n 均为可测函数。

证明. 前两者用 $\{f_n \geq (\leq)a\}$ 可列交,后两者用前两者的结论。

- 2. 可测函数的三种收敛及其相互关系
- (1) 收敛性

几乎处处收敛到 $f: \mu(\{\lim f_n \neq f\}) = 0$ (称几乎处处以 f 为极限) 和 $\mu(\{f = \infty\}) = 0$ (称 f 几乎处处有限或 $|f| < \infty$) 同时成立。 $f_n \xrightarrow{a.e.} f$.

П

几乎一致收敛到 $f: \forall \epsilon > 0, \exists A \in \mathcal{F}, \mu(A) \leq \epsilon, \sup |f_n - f| \to 0. f_n \xrightarrow{a.u.} f.$

依测度收敛到 $f: \forall \delta > 0, \mu(\{|f_n - f| \geq \delta\}) \rightarrow 0.f_n \xrightarrow{\mu} f.$

(2) 判别法

定理 3.4.2. (1) $f_n \stackrel{a.e.}{\longrightarrow} f \iff \forall \epsilon > 0, \mu(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \{|f_n - f| \ge \epsilon\}) = 0.$

(2) $f_n \xrightarrow{a.u.} f \iff \forall \epsilon > 0, \mu(\bigcup_{n=m}^{\infty} \{|f_n - f| \ge \epsilon\}) \to 0.$

证明. (1) 证明不 a.e. 收敛的集合(按定义拆分并表示为并-交-并的形式)测度为 0. 右推左次可列可加性. 左推右找到充分大的 k 使得 $1/k \le \epsilon$,然后先去掉并再利用单调性。

(2) 左推右根据 a.u. 收敛的定义找到 A,δ 以及 sup 极限所需的 m, 证明 A 和所证明集合包含关系,由 δ 任意性得。右推左 $\forall \epsilon = 1/k$ 找到 m_k 再根据 k 求并集即可构造出 A.

(3) 相互关系

定理 3.4.3 (Riesz 定理). (1) a.u. 可推出 a.e. 或 μ 收敛。

- (2) 有限测度下 a.e. 可推出 a.u. 收敛,无限测度有反例。
- (3) μ 收敛当且仅当任意子列都存在子列 a.u. 收敛。

证明. (1) 均根据判别法。

(2) 对于 a.e. 判别法所对应集合可以用上连续性。

对于 L 可测的 $f_n=I_{|x|>n}, f_n$ $\overset{a.e.}{f}$, 但 a.u. 和 μ 收敛不成立。

(3) 左推右取 n_k 子列 $\mu(\{|f_{n_k} - f| \ge 1/k\}) < 1/2^k$, 找到充分大的 k 使得 $1/k \le \epsilon$, 利用单调性。

右推左反证,用测度收敛的定义写出 $\epsilon_0, \delta_0, f_{n_k}$, 再构造 f_{n_k} 的子列,利用下极限大于 δ_0 说明 a.u. 的判别法不成立。

反例: n 等分 [0,1] : $[\frac{k-1}{n}, \frac{k}{n}], k = 1, 2, \dots, n$ 每个小区间特征函数 $I_{n,k}$, 阶梯式命名 f_n, μ 收敛但不 a.e. 或 a.u. 收敛。

3. a.e. 定义的可测函数

定义: $\exists \mu(N)=0, f$ 在 N^c 有定义,且 $\exists (X,\mathcal{F},\mu)$ 上可测函数 \tilde{f} 使得 $\mu(\{f\neq \tilde{f}\})=0$.

此时若 \tilde{f}_n , \tilde{f} 有对应的收敛性,则称 f_n , f 也有对应收敛性。

对于 a.e. 定义的随机变量,几乎处处相等可以推出同分布。

4 积分

4.1 积分的定义和性质

1. 定义

对于非负简单函数,

 $\int_X f d\mu = \sum_{i=1}^n a_i \mu(A_i).$

对于非负可测函数,

 $\int_X f d\mu = \sup\{\int_X h d\mu : h$ 为非负简单函数且 $h \leq f$.}

对于一般可测函数,

 $\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$, 若下式有限: $\max\{\int_X f^- d\mu, \int_X f^+ d\mu\}$ 。(此时称可积, 换为 min 称为积分存在)。此时对 $\forall A \in \mathcal{F}, fI_A$ 积分也存在(或也可积),类似可定义在 A 上积分。

- 2. 定义的合理性:
- (1) 对于非负简单函数,定义一意。设 $f = \sum_{j=1}^{m} b_j \mu(B_j), m \leq n$. 则 $A_i \subset B_j$ 或 A_i, B_j 不交。拆分积分为 $\mu(A_i \cap B_j)$ 的形式,并转化。
- (2) 对于非负可测函数,当它退化为简单情形时简单积分的定义仍满足。由上确界性质取 h = f 可证明非负可测定义的积分 \geq 非负简单的,由非负简单的单调性可证明 \leq .
 - 3. 积分的性质

定理 4.1.1. 积分有如下性质。

- (1) 数乘: 对 $\forall a \in \mathbb{R}, af$ 积分存在, $\int_X af d\mu = a \int_X f d\mu.$
- = (2) 加法: $\int_X (f+g)d\mu = \int_X fd\mu +$ 式 $\int_X gd\mu.$ (若上式右边有意义则 f+g a.e. 有意 以, 积分存在且二式相等) 由加法可得单调性。

- (3) 积分逼近:
- (3.A) 非负简单函数的保号性: f_n ↑, $\lim f_n \ge g \Rightarrow \lim \int_X f_n d\mu \ge \int_X g d\mu$.
- (3.B) 非负简单函数逼近非负可测函数: $f_n \uparrow f$ 分别为非负简单列和非负可测函数,则积分也渐升收敛。
- (3.C) 非负可测升列逼近非负可测函数的 Levi 定理: 若 f_n , f 均为 a.e. 非负可测函数, 若 f_n 几乎处处渐升收敛则积分也渐升收敛。由此可推出积分的可列可加性。
- (3.D) Fatou 引理: 若 f_n 为 a.e. 非负可测函数,则 $\int_X \liminf f_n d\mu \le \liminf \int_X f_n d\mu$. 这可以推出:

 $f_n \geq g$ a.e. 且 g 可积时 $\liminf f_n$ 积分存在且 $\int_X \liminf f_n d\mu \leq \liminf \int_X f_n d\mu$.

 $f_n \leq g$ a.e. 且 g 可积时 $\limsup f_n$ 积分存在且 $\int_X \limsup f_n d\mu \geq \limsup \int_X f_n d\mu$.

- (3.E) Lebesgue 控制收敛定理: 若若 f_n , f 均为 a.e. 可测函数, 若存在非负可测函数 g 使得 $|f_n| \leq g$ a.e. 对任意 n 都成立, 则 a.e. 或 μ 收敛性可推出 $\lim_{X} f_n d\mu = \int_{X} f d\mu$.
- 一个推论是 f_n 几乎处处有界,测度空间有限时。
 - (4) 绝对值的积分:
- (4.A) 若 f 积分存在则 $|\int_X f d\mu| \le \int_X |f| d\mu$.
- (4.B) f 可积 \iff |f| 可积 \Rightarrow $|f| < \infty$ a.e..
- (4.C) 绝对连续性: 若 f 可积, $\forall \varepsilon > 0, \exists \delta > 0, \forall A \in \mathcal{F}, \mu(A) < \delta \Rightarrow \int_A |f| d\mu < \varepsilon$.
 - (5) 零测集的影响:
- (5.A) 零测积分为 0: 若 f 积分存在, $\forall A \in \mathcal{F}, \mu(A) = 0 \Rightarrow \int_A f d\mu = 0.$
- (5.B) 零测不影响积分存在性: 若 $f \ge g$ a.e. 积分都存在,则 $\int_X f d\mu \ge \int_X g d\mu$. 从 而,若 f = g a.e.,f 积分存在 $\Rightarrow g$ 积分也存在且二者相等;
- (5.C) 部分推出几乎处处:由 $\forall A \in \mathcal{F}, \int_A f d\mu \geq \int_A g d\mu$,可推 $f \geq g$ a.e.. 从而上述论述将 \geq 换为 = 也是成立的。

(6) 变量替换: 设 g 为 $(X, \mathcal{F}, \mu) \to (Y, \mathcal{S})$ 的可测映射,则: $\forall B \in \mathcal{S}, \nu(B) := \mu(g^{-1}B)$ 为 测度;从而对可测空间 (Y, \mathcal{S}, ν) 上可测函数 f 当 $\int_{V} f d\nu = \int_{X} f \circ g d\mu$ 一侧成立时等式成立。

证明. (1) 先证明 a 为非负有限时成立,用典型方法。

(1.1) 非负简单函数,显然。由此可先证明(3)中前二者。

第一个: 设 $A_n(\alpha) = \{f_n \geq \alpha g\}$,则 $f_n I_{A_n(\alpha)} \geq g I_{A_n(\alpha)}$,由此可将 f_n 积分缩小到 $f_n I_{A_n(\alpha)}$ 进而利用非负简单函数的数乘将 α 提出积分号,积分表示为 $\mu(B_j \cap A_n(\alpha))$ 的线性和。由 $A_n(\alpha)$)的单调性利用连续性两边取极限,令 $\alpha \to 1$ 即可。

为证第二个,先证明非负简单函数积分具有加法,进而具有单调性。表出 f,g,f+g 为 $A_i \cap B_j$ 的累和形式,再利用非负简单积分定义表出后拆分。

第二个: 极限 \leq : 利用简单函数积分的单调性,极限保号性; \geq : 运用第一个,人找 h < f.

- (1.2) 利用 (3) 的第二个结论,取非负简单 升列逼近,利用非负简单函数的数乘即可证明 非负可测函数情形。
- (1.3) 利用 $(af)^+ = af^+, (af)^- = af^-$ 和 (1.2) 即可证明一般可测函数情形。

最后对 a 为有限负数,一般可测函数情形证明。 $(af)^+ = -af^-, (af)^- = -af^+$ 和 (1.2)即可。

(2) 加法。非负简单函数由 (1.1) 已证明。 非负可测函数找非负简单升列逼近,用非负简 单情形。

下面证明一般可测情形。为此证明三点:

首先,若 f,g 非负且至少一个积分存在,f-g a.e. 有意义,则其积分存在且减法成立。为此,由 $f-g \le f$ a.e. 和 $f-g \ge -g$ a.e. 可以分别取其正、负部得到 $(f-g)^+ \le f, (f-g)^- \le g$ a.e. 进而积分存在。又表 $f+(f-g)^- = g+(f-g)^+$ 由非负可测的加法可证明此处减法。

然后证明 $\int_X f d\mu + \int_X g d\mu$ 有意义时 f+g a.e. 有意义,且 $\min\{\int_X (f^++g^+)d\mu, \int_X (f^-+g^-)d\mu\}$ 有限。只需证后半句,又只需证括号内第一者无限时第二者必有限。由非负可测积分加法不妨 $\int_X f^+ d\mu = \infty$,由 $\int_X f d\mu + \int_X g d\mu$ 有意义可知 $\int_X f^- d\mu$, $\int_X g^- d\mu$ 都有限。故得证。

最后,由于 $(f+g)^+ \le f^+ + g^+, (f-g)^- \le f^- + g^-$ 可知 f+g 积分存在,再将其积分正部与正部结合、负部与负部结合,利用第一点的减法和非负可测的加法可写成四项。再另两两组合可得结论。

(3) 下证 Levi 定理,对 f_n 用一个 $\{f_{nk}\}$ 非负简单升列逼近,设 $g_k = \max_{k} f_{nk}$, 则:

 q_k 为非负简单函数;

 g_k 为升列;

 $g_k \ge f_{nk}$, $\lim g_k \ge f_n \Rightarrow \lim g_k \ge f$. 由迫敛性即可。

下证 Fatou 引理,构造非负渐升列 $g_k = \inf_{n \geq k} f_n \uparrow f_n$.

下证 Lebesgue 控制收敛定理,先证 a.e.情形,此时由 Fatou 引理推论迫敛。 μ 收敛可推出子列的子列 a.u. 收敛,进而推出子列的子列 a.e. 收敛,故结论对子列的子列成立。用反证法推出结论。

(4) 考虑 f 正部负部均不超过绝对值,利用非负可测单调性,利用绝对值不等式。

若 |f| 可积,由上一点可知。若 f 可积,将 |f| 积分表示为 $f^+ + f^-$ 的积分,再用非负可测的加法拆解,利用 f 可积的定义即可。

由上述 \iff ,只需证 f 非负时 $f<\infty$ a.e. 反设 $\{f=\infty\}$ 测度为正。

对于绝对连续性,此时 |f| 也可积。找一个非负渐升简单列逼近 |f|,导出积分之差在 N 时可以小于 $\varepsilon/2$. 再对 f_N 取最大值 $M,\delta:=\varepsilon/2M$.

(5)

- (5.A) 只需证非负简单函数。表示成 $A \cup A_i$ 非负简单函数的积分形式,再放大到 $\mu(A)$.
- (5.B) 对 f,g 均按照 A,A^c 的示性函数拆分, $A = \{f > g\}$. 可证明非负可测函数情形,一般情形由 $f \geq g$ a.e. 推出 $f^+ \geq g^+, f^- \leq g^-$. 从而将 f = g a.e. 的条件拆分为 \geq 和 \leq 分别对正部负部证明即可。
- (5.C) 设 $B = \{g > f\}$ 利用可加性和条件 证明 $I_B = 0$ a.e..
- (6) 验证可列可加性证明测度,运用典型 方法证明等式。 □

4.2 $L^p(X, \mathcal{F}, \mu)$ 空间

1. $L^p(X, \mathcal{F}, \mu)$ 空间及模的定义

 $0 :满足 <math>\int_X |f|^p d\mu < \infty$ 的 (X, \mathcal{F}, μ) 可测函数全体构成的空间。

 $L^{\infty}(X,\mathcal{F},\mu)$ 空间: (X,\mathcal{F},μ) 上 a.e. 有界的可测函数全体构成的空间。

可以证明它们是线性空间。(线性性;交换、结合、零元、负元、单位元、标量分配、标量 结合、向量分配)

 $1 \leq p < \infty$ 定义 $||f||_p = (\int_X |f|^p d\mu)^{1/p};$ 对 $p = \infty$, 定义 $||f||_p = \inf\{a \in \mathbb{R}^+ : \mu(\{|f| > a\}) = 0\};$

对 $0 , 定义 <math>||f||_p = \int_X |f|^p d\mu$.

2. 证明 $1 \le p \le \infty$ 的模是范数 (范数不等式)

定理 4.2.1. 以下关于范数的不等式成立。 以此可以证明 $1 \le p \le \infty$ 时模是范数。

(1) C_r 不等式:

 $\forall a, b \in \mathbb{R}, 0$

(2) Young 不等式:

 $1 < p,q < \infty$ 互为共轭数, $\forall 0 \le a,b < \infty, a^{1/p}b^{1/q} \le a/p + b/q;$ " = " $\iff a = b$.

(3) Holder 不等式:

 $1 < p,q < \infty$ 互为共轭数, $\forall f \in L_p, g \in L_q, ||fg|| \le ||f||_p ||g||_q; "= " \iff \exists \alpha, \beta$ 不全

为 0 且非负, 使得 $\alpha |f|^p = \beta |g|^q$ a.e.

(4) Minkowski 不等式:

 $1 1, \exists \alpha, \beta$ 不全为 0 且非负, $\alpha f = \beta g$ a.e..

证明. (1) 仅证明 $1 情形。由绝对值不等式仅需证 <math>||a| + |b|| \leq$ 右。从而可以转化为证明 $a, b > 0, (a + b)^p \leq 2^{p-1}(a^p + b^p)$ 移项做差研究函数即可。

- (2) 仅证明 a,b > 0 情形,即证明 $(a/b)^{1/p} \le a/bp + 1/q$. 移项做差研究函数即可。
- (3) 仅证明右边均为正时。在 Young 不等式中取 $a = |f|^p / ||f||_p^p, b = |g|^q / ||g||_q^q$ 两边积分即可。
- (4) 仅证 $1 \le p < \infty$ 情形。p = 1 情形由绝对值不等式即可。p > 1,对 $||f + g||_p^p$ 分为一阶和 p 1 阶,一阶利用绝对值不等式拆分,再分别用 Holder 不等式。

3. 距离空间

定理 **4.2.2.** 对 $0 为距离,<math>L_p$ 为完备距离空间,基本列的极限点仍在空间内。

证明. 由基本列性质可以找出其子列 $\{f_{n_k}\}$,前后距离小于 $1/2^k$. 令 $g_k = |f_{n_1}| + \sum_{i=1}^k |f_{n_{k+1}} - f_{n_k}|$ 可证明其在 L_p 中。取它 $k \to \infty$ 的极限 g 并利用控制收敛证明它也在 L_p 中。 $f = \lim f_{n_k} = f_{n_1} + \sum_{i=1}^\infty f_{n_{k+1}} - f_{n_k}$ 几乎处处有定义且 |f| < g,所以 $f \in L_p$. 取 n_l 充分大使得 f_n 差的模充分小,将 $|f_n - f|^p = \lim |f_n - f_{n_k}|^p$ 再利用 Fatou 引理证明 $||f_n - f||_p \to 0$.

 $4. L_p$ 空间中的收敛性

(1) 定义

若 $||f_n - f||_p \to 0$, 称 $f_n \xrightarrow{L_p} f$.

若 1 或 <math>p = 1 且 (X, \mathcal{F}, μ) 为 σ 有限测度, $\exists f \in L_p \ s.t. \ \forall g \in L_q, 1/p + 1/q = 1, \int_X f_n g d\mu \to \int_X f g d\mu, 称 f_n \xrightarrow{(w)L_p} f.$

(2) 与其他收敛性的关系

定理 4.2.3. (1) $L_p \Rightarrow \mu; L_p \Rightarrow ||f_n||_p \rightarrow ||f||_p.$

- (2) μ 或 a.e. 时 $||f_n||_p \to ||f||_p \Rightarrow L_p$.
- (3) 设 p > 1, 若 $\sup ||f_t||_p < \infty (f_t 在 L_p$ 中有界), 且 μ 或 a.e., 则 $f \in L_p$ 且 $(w)L_p$.
- (4) 若 $f_n, f \in L_1, ||f_n|| \to ||f||, \mu$ 或 a.e., 则 $\forall A \in \mathcal{F}, L_1, (w)L_1$.
 - (5) $1 \le p < \infty$ 时 $L_p \Rightarrow (w)L_p$.

证明. (1) 若 L_p 收敛,以 Markov 不等式可证明 μ 收敛。以 Minkowski 不等式互相拆分 f_n, f 的 L_p 范数,得到绝对值的关系可证明 $||f_n||_p \to ||f||_p$.

- (2) 找到子列的子列 $f_{n'}$ a.e. 收敛,令 $g_{n'} = C_p(||f_n||_p + ||f||_p) |f f_{n'}|^p \rightarrow 2C_p|f|^p$ 用 Fatou 引理。
- (3) 只证 a.e. 情形。设 $M = \sup ||f_t||_p < \infty$ 由 Fatou 引理可证 $f \in L_p$.

任取 $g \in L_q$ 由绝对连续性可证明 $||gI_A||_q$ 当 A 测度很小时可以任意小。

设 $A_k = \{1/k \le ||g||_q \le k\} \uparrow \{0 < g < \infty\}$. 由控制收敛可证明 $\exists k \ s.t. \ ||gI_{A_k^c}||_q \le \varepsilon$.

固定一个 k 使得上式成立,由 A_k 构造可知 $\mu(A_k) < \infty$,在有限测度空间 $(A_k, A_k \cup \mathcal{F}, \mu)$ 上有 a.u. 收敛, $\forall \delta > 0$,可以找到 A_k 的子集 $B, \mu(A_k - B) < \delta, \sup_{x \in B} |f_n - f| \to 0$. 此时又有 $||gI_{A_k - B}||_q \le \varepsilon$.

对于 $|\int_X (f_n - f)gd\mu|$, 由绝对值不等式可以放大为 $|f_n - f||g|$ 在 $B, A_k - B, A_k^c$ 上的积分。后二者运用上面结论和 Holder 不等式可证小于 $2M\varepsilon$, 第一者利用 $x \in B, |g(x)| \le k^{1/q}$ 以及 $f_n \xrightarrow{a.w.} f$ 可证明趋于 0. 故得证。

- (4) L_1 收敛用 (2) 推得。 $(w)L_1$ 收敛用 Holder 不等式推得。
 - (5) 由 (3)(4) 推得。

5 概率空间

5.1 Lebesgue-Stieljes 测度

1. \mathbb{R}, \mathbb{R} 上的博雷尔 σ 域

定理 **5.1.1.** 设 $\mathcal{Q}_{\mathbb{R}} = \{(a,b] : a,b \in \mathbb{R}\}, \mathcal{P}_{\mathbb{R}} = \{(-\infty,a] : a \in \mathbb{R}\}.\mathbb{R}$ 上的博雷尔集定义为 $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{Q}_{\mathbb{R}}) = \sigma(\mathcal{P}_{\mathbb{R}})$. 两种定义等价。

证明. 左包含右: $(-\infty, a] = \cup (a - n, a]$; 右包含左: $(a, b] = (-\infty, b] - (-\infty, a]$.

定理 5.1.2. $\mathcal{B}_{\mathbb{R}}$ 定义为 $\sigma(-\infty,\infty,\mathcal{B}_{\mathbb{R}})$, 它 可以表示为 $\sigma([-\infty,a),\forall a\in\mathbb{R}),\sigma([-\infty,a],\forall a\in\mathbb{R})$, $\sigma([a,\infty],\forall a\in\mathbb{R})$, 或 $\sigma((a,\infty],\forall a\in\mathbb{R})$.

证明. 只证第一种表示。

左包含右: $[-\infty, a) = (-\infty, a) \cup \{-\infty\} \subset \mathcal{B}_{\mathbb{R}}$, 取 σ 域即可。

右包含左: $\{-\infty\} = \cap [-\infty, -n); \{\infty\} = \cap ([-\infty, n) \cup \{n\})^c$, 先证明有限左开右闭区间 (差) 再证单点在 (无限交)即可。 $(-\infty, a) = [-\infty, a) - \{-\infty\}$. 取 σ 域即可。

2. 准分布测度

定理 5.1.3. $\mathcal{E} = \mathcal{Q}_{\mathbb{R}}, F$ 为 \mathbb{R} 上非负非降右连续实函数(准分布函数), $\forall a,b \in \mathbb{R}, \mu((a,b]) = (F(b) - F(a))I\{a < b\}$ 是一个测度。

证明. 只需证可列可加。分四步:

- (1) 有限可加性成立。由不交的包含可以 得到一个序,由此序进行添项。
- (2) 次可列可加的相反不等号,在区间并起来包含于 (a,b] 时成立。似 (1) 序,添项作放缩。
- (3) 次可列可加性的不等号,在区间并起来包含 (*a*, *b*] 时成立。分为一个区间就盖住和不可一个就盖住(数学归纳法)。
- (4) 次可列可加性的不等号,在区间并起来等于 (a, b] 时成立。由有限覆盖定理覆盖包

含 $[a + \eta, b], \forall \eta > 0$. 利用右连续性添项 $F(b_i)$ 可得结论。

3. Lebesgue-Stieljes 测度

由测度扩张定理, $\mathbb{R} = \cup (n, n+1]$ 满足 σ 有限条件,故在 $\sigma(\mathcal{Q}_{\mathbb{R}})$ 有唯一扩张。由 Caratheodory 定理, μ 的外测度 λ_F 在 \mathcal{F}_{λ_F} 上 是测度。 $\mathcal{B}_{\mathbb{R}}$ 上测度 μ 和 \mathcal{F}_{λ_F} 上测度 λ_F 满足 逼近结论。

称:

 \mathcal{F}_{λ_F} 上集合称为 L-S 可测集, λ_F 称为 \mathbb{R} 上的 L-S 测度;

当 F(x) = x 时, $\mathcal{F}_{\lambda_F} = F_{\lambda}$ 上集合称为 L 可测集, $\lambda_F = \lambda$ 称为 \mathbb{R} 上的 L 测度;

5.2 Lebesgue-Stieljes 积分

1. 定义

设 F 为准分布函数,g 为 $(\mathbb{R}, \mathcal{F}_{\lambda_F})$ 上对 λ_F 积分存在的可测函数,称 $\int_X g dF = \int_X g d\lambda_F$ 为 g 对 F 在 \mathbb{R} 上的 L-S 积分。

2. 数学期望

 $(X, \mathcal{F}, P) \perp r.v. f, Ef = \int_{\mathbb{R}} f dP.$

3. 随机变量的矩

定理 5.2.1. 高阶矩存在则低阶矩存在。

证明. 设 $0 < t \le s < \infty, ||f||_t < \infty, p = t/s, q = t/t - s$. 对 1 和 $|f|^s$ 用 Holder 不等式。

4. 一致可积和绝对连续

设 f_t 为 r.v.,

一致可积: $\sup E|f_t|I_{|f_t|>\lambda}\to 0$.

绝对连续: $P(A) \to 0 \Rightarrow \sup E|f_t|I_A \to 0$.

定理 5.2.2. 一致可积等价于: 绝对连续且 L_1 有界。

证明. \Rightarrow : $\sup E|f_t|I_A$ 根据 $|f_t| \ge \lambda$ 与否 拆分,令 A = X 可证明 L_1 有界, $\forall \varepsilon > 0$,先 取 λ 充分大使得 $\sup E|f_t|I_{\{|f_t| > \lambda\}} \le \varepsilon/2$,再 令 $P(A) < \delta = \varepsilon/2\lambda$ 可证绝对连续。

←: 绝对连续定义和 Markov 不等式。 □

5.3 概率空间中的收敛性

- 1. 随机变量依分布收敛
- (1) 定义

若非降实函数列在每个连续点收敛到一个非降实函数,称其弱收敛。若 $r.v.f_n$, f 的分布函数如此,称该 $r.v.f_n \stackrel{d}{\to} f$, 依分布收敛。

- (2) 性质
- (2.1) 与其他收敛的关系链

定理 **5.3.1.** $a.u. \iff a.s. \Rightarrow P \Rightarrow d.$

(2.2) Skorokhod 定理,统计量枢轴量化

定理 **5.3.2.** $(X, \mathcal{F}, P), r.v.f_n \stackrel{d}{\rightarrow} f, \exists X_1 = (0,1), \mathcal{F}_1 = (0,1) \cap \mathcal{B}_{\mathbb{R}}, P_1 \quad \mathcal{H} \quad L \quad 测度,则 <math display="block">\exists (X_1, \mathcal{F}_1, P_1) \perp r.v.\tilde{f}_n \stackrel{a.s.}{\rightarrow} \tilde{f}; f_n, f \stackrel{d}{=} \tilde{f}_n, \tilde{f}.$

证明. 引入准分布函数的左连续逆 $F^{\leftarrow}(t)=\inf\{x\in\mathbb{R}:F(x)\geq t\}.$

可以证明它有如下基本性质: 值域为 \mathbb{R} ; 左 连续; $F(x) \geq t \iff x \geq F^{\leftarrow}(t)$. 利用第三条 可推出若 $U(t) = t, \forall t \in (0,1), F^{\leftarrow} \circ U$ 是以 F为分布函数的 r.v.

可以证明如下引理: F_n 弱收敛时 F_n^{\leftarrow} 弱收敛。思路是: 设 t 为其连续点,在 $F^{\leftarrow}(t)$ 左 ε 邻域内找到一个 x 是 F 的连续点。同理对于 t'>t 可以在 $F^{\leftarrow}(t')$ 右邻域找到一个 y。由 $t< t' \leq F(F^{\leftarrow}(t)) \leq F(y)$ 和 y 处连续性可以得出 $F_n^{\leftarrow}(t)$ 上极限不大于 $F^{\leftarrow}(t)$,由 x 处连续性和 F(x) < t 可推出下极限不小于 $F^{\leftarrow}(t)$ 。

由以上结论,构造 $\tilde{f}_n, \tilde{f} = F_n^{\leftarrow}(t) \circ U, F^{\leftarrow}(t) \circ U$ 即可。

2. 随机变量的依概率截尾

定理 5.3.3. $f_n \stackrel{P}{\longrightarrow} f, 0$

证明. 由于 λ 为 df 的右连续点,由 $0 \le P(|f_n| \le \lambda, |f| \ge \lambda) - P(|f_n| \le \lambda, |f| \ge \lambda + \delta) \le F(\lambda + \delta) - F(\lambda) \le \varepsilon$ 可推 $P(|f_n| \le \lambda, |f| \ge \lambda) \to 0$. 同理左连续可推 $P(|f_n| \ge \lambda, |f| \le \lambda) \to 0$. 从而 $P(\{|f_n| \le \lambda\} \triangle \{|f| \le \lambda\}) \to 0$.

下用数学归纳法证明,先设 $0 . 设 <math>\alpha(p, f_n, f) = ||f_n|^p I_{\{f_n \le \lambda\}} - |f|^p I_{\{f \le \lambda\}}|$, 则添一项减一项 $|f|^p I_{\{f_n \le \lambda\}}$ 再利用绝对值不等式放大为 $|f_n - f|^p$ 和 $|f|^p |I_{\{f_n \le \lambda\}} - I_{\{f \le \lambda\}}|$ 。 $P(\alpha(p, f_n, f) \ge \epsilon)$ 相应可拆分为两概率,第一项由 Markov 不等式可证依概率收敛到 0. 第二项进一步放大分为 $P(|f|^p \ge M) + P(|I_{\{f_n \le \lambda\}} - I_{\{f \le \lambda\}}| \ge \varepsilon/2M)$,依次令 $n, M \to 0$ 即可证明。

下设 k 推 <math>k+1 . $依然添一项减一项 <math>|f|^{p-1}|f_n|I_{\{f_n \le \lambda\}}$ 可证。 \square

3. 收敛性的关系

定理 5.3.4. 设 0 , 下列说法等价:

- (1) $|f_n|^p$ 列一致可积;
- (2) $f \in L_p, f_n \xrightarrow{L_p} f;$
- (3) $f \in L_p, ||f_n||_p \to ||f||_p$.

证明. (2) ⇔ (3) 已证。下证 (1)⇒(2)。

一致可积推出一致有界,由 Fatou 引理可以推出 $f \in L_p$. $\forall \varepsilon > 0$,将 $E|f_n - f|^p$ 拆分为 $|f_n - f| \ge \varepsilon$ 与否两项,后一项用 ε^p 控制,前一项用 C_r 不等式。

由于 (1)⇒(3) 已证,对一致有界、一致可积的 $|f_n|^p I_{\{f_n \leq \lambda\}}$ 应用此结论得到期望相应收敛,而 $f \in L_p, E|f_n|^p \to E|f|^p$,所以 $E|f_n|^p I_{\{|f_n|>\lambda\}}$ ⇒ $E|f|^p I_{\{|f|>\lambda\}}$. $\forall \varepsilon > 0, E|f|^p I_{\{|f|>\lambda\}}$ 可以很小,由极限保号性可以找到 n_0 使得 n_0 之后的 $E|f_n|^p I_{\{|f_n|>\lambda\}} \leq \varepsilon$. 同时 $f_n \in L_p$,故对 n_0 之前的 $E|f_n|^p I_{\{|f_n|>\lambda\}} \leq \varepsilon$ 可以找到充分大的 λ 使得其上确界也小于 ε . 从而 (3)⇒(1) 得证。

至此有如下收敛性关系:

 $a.u. \iff a.s. \Rightarrow P \Rightarrow d;$

Riesz 定理: $P \Rightarrow$ 子列的子列 a.s..

 $|f_n|^p$ 列一致可积 $\iff f \in L_p, ||f_n||_p \to$ $||f||_p \Leftarrow L_p \Rightarrow (w)L_p, 1 \leq p < \infty;$

 $L_p \Rightarrow P, P \& ||f_n||_p \rightarrow ||f||_p \Rightarrow L_p.$