1.

(a)根据题意其正则表达式为

$$0(0+1)^*1+1(0+1)^*0$$

(b)根据题意其正则表达式为

$$(\ 110+\ 10+\ 0)\ (\ 0+\ 1)\ \ ^{*}(\ 0+\ 01+\ 011)\ + (\ \varepsilon+\ 1+\ 11)\ (\ \varepsilon+\ 0+\ 01+\ 011)$$

2.

根据迭代条件 $R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$ 可得到如下迭代过程

1

$R_{0,0}^{(-1)}$	1+ ε
$R_{1,1}^{(-1)}$	$\mathbf{0+}arepsilon$
$R_{2,2}^{(-1)}$	ε
$R_{0,1}^{(-1)}$	0
$R_{0,2}^{(-1)}$	Ø
$R_{1,0}^{(-1)}$	Ø
$R_{1,2}^{(-1)}$	1
$R_{0,0}^{(-1)}$ $R_{1,1}^{(-1)}$ $R_{2,2}^{(-1)}$ $R_{0,1}^{(-1)}$ $R_{0,2}^{(-1)}$ $R_{1,0}^{(-1)}$ $R_{1,2}^{(-1)}$ $R_{2,0}^{(-1)}$	1
$R_{2,1}^{(-1)}$	0

2

$R_{0,0}^{(0)}$	1*
$R_{1,1}^{(0)}$	0+ <i>ε</i>
$R_{2,2}^{(0)}$	ε
$R_{0,1}^{(0)}$	1*0
$R_{0,2}^{(0)}$	Ø
$R_{1,0}^{(0)}$	Ø
$R_{1,2}^{(0)}$	1
$R_{2,0}^{(0)}$	1+
$R_{2,1}^{(0)}$	1*0

3

$R_{0,0}^{(1)}$	1*
$R_{1,1}^{(1)}$	0*
$R_{2,2}^{(1)}$	$arepsilon + 1^*00^*1$
$R_{2,2}^{(1)}$ $R_{0,1}^{(1)}$	1*00*1
$R_{0,2}^{(1)}$	1*00*1
$R_{0,2}^{(1)}$ $R_{1,0}^{(1)}$	Ø
$R_{1,2}^{(1)}$	0*1
$R_{2,0}^{(1)}$	1+
$R_{2,1}^{(1)}$	1*00*

$$4R_{0.2}^2 = (1*00*1)^+$$

故用迭代法得到其正则表达式为(1*00*1)+

3.

证明: 假设L是正则的

那么一定存在正整数N,对 $\omega \in L(|\omega| \ge N)$ 满足泵引理

从L中取 $\omega = a^C b^N c^{N-C}$,显然 $\omega \in L$,且 $|\omega| = 2N > N$

将 ω 分为 $\omega = xyz$,且 $|xy| \le N$ 和 $y \ne \varepsilon$

①当C = 0时, $y = b^m (m > 0)$

那么 $xz = b^{N-m}c^N$,此时N-m < N,∴ $xz \notin L$

②当C = N时, $y = a^m (m > 0)$

那么 $xy^2z = a^{N+m}b^N$,此时N+m>N, $\therefore xy^2z \notin L$

③当0 < C < N时,

i)若 $y = b^m (m > 0)$,此时同①,取 $xz = a^C b^{N-m} C^{N-C}$,此时N - C - m < N - C, $\therefore xz \notin L$

ii)若 $y = a^t b^s (0 < t < C, s > 0)$, 取 $xy^2 z = a^C b^s a^t b^N C^{N-C}$,此时显然 $xy^2 z \notin L$

所以假设不成立,L不是正则的