本次习题课主要内容是定积分的三方面应用:

一. 几何应用: 用于求平面图形的面积, 曲线的弧长, 旋转体的体积和侧面积

二. 物理应用: 求曲线和平面图形的形心, Guldin 第一定理和第二定理

三. 综合应用: 积分应用于求极限(续), 以及积分估计

第一部分: 内容提要

一. 几何应用提要.

1) 求平面图形的面积

(i) 由非负函数 y = f(x),  $a \le x \le b$  所确定的曲边梯形  $\{(x,y), 0 \le y \le f(x), a \le x \le b\}$  的面积为  $\int_a^b f(x) dx$ . 如图所示



**FIGURE 2** If  $f(x) \ge 0$ , the integral  $\int_a^b f(x) dx$  is the area under the curve y = f(x) from a to b.

(ii) 由两条曲线 y = f(x), y = g(x), 其中  $g(x) \le f(x)$ ,  $a \le x \le b$ , 所围成的平面图形  $\{(x,y),g(x) \le y \le f(x), a \le x \le b\}$  之面积为  $\int_a^b [f(x)-g(x)]dx$ . 如图所示



FIGURE 1  $S = \{(x, y) \mid a \le x \le b, g(x) \le y \le f(x)\}$ 

(iii) 参数方程形式下的面积: 设函数  $y=f(x), a \leq x \leq b$ , 由参数方程 x=x(t), y=y(t),  $\alpha \leq t \leq \beta$  所确定. (典型例子是旋轮线, 如图所示) 这里 y(t)=f(x(t)), x(t) 在  $[\alpha,\beta]$  上严格单调, 不失一般性, 设 x(t) 为单调增加且连续可微, 并且  $x(\alpha)=a, x(\beta)=b$ . 则对曲边梯形  $S=\{(x,y), 0\leq y\leq f(x), a\leq x\leq b\}$  的面积公式  $|S|=\int_a^b f(x)dx$ , 作积分变量代换 x=x(t) 得

$$|S| = \int_{\alpha}^{\beta} f(x(t))x'(t)dt = \int_{\alpha}^{\beta} y(t)x'(t)dt.$$



(iv) 极坐标下的面积公式. 由极坐标曲线  $r=f(\theta), a \leq \theta \leq b$ , 以及两条射线  $\theta=a$ ,  $\theta=b$  所为图形  $\mathcal R$  的面积公式为  $|\mathcal R|=\int_a^b \frac{1}{2}[f(\theta)]^2d\theta$ .



FIGURE 2

- 2). 曲线弧长公式:
- (i) 设平面曲线  $\Gamma$  由参数方程 r = r(t) = (x(t), y(t)) 给出,  $\alpha \leq t \leq \beta$ , 则弧长为  $|\Gamma| = \int_{\alpha}^{\beta} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$ .
- (ii) 设  $\Gamma$  由函数曲线 y=f(x) 给出,  $a\leq x\leq b$ , 则弧长为  $|\Gamma|=\int_a^b\sqrt{1+[f'(x)]^2}dx$ .
- (iii) 设  $\Gamma$  由极坐标方程  $r = r(\theta)$  给出,  $\alpha \le \theta \le \beta$ , 其弧长为  $|\Gamma| = \int_{\alpha}^{\beta} \sqrt{[r(\theta)]^2 + [r'(\theta)]^2} d\theta$ .

(iv) 设空间曲线  $\Gamma$  由参数方程  $r = r(t) = (x(t), y(t), z(t)), \alpha \le t \le \beta$  给出, 其弧长为

$$|\Gamma| = \int_{\alpha}^{\beta} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt.$$

- 3). 旋转体的体积: 设函数 f(x) 非负, 记曲线 y = y(x),  $a \le x \le b$  所围成的曲边梯形为  $S = \{(x,y), 0 \le y \le f(x), a \le x \le b\}$ ,
- (i) 则图形 S 绕 x 轴旋转一周所产生的旋转体 V 的体积公式为  $|V|=\int_a^b\pi[y(x)]^2dx$ . 如图为情形  $f(x)=\sqrt{x},\,x\in[0,1]$ .



(ii) 假设  $0 \le a < b$ , 由图形 S 绕 y 轴旋转一周所得旋转体的体积为  $|V| = \int_a^b 2\pi x f(x) dx$ .



4). 旋转体的侧面积: 非负函数曲线  $y = f(x), a \le x \le b$  绕 x 轴旋转一周所产生的旋转面 S 的面积公式为  $|S| = \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} dx$ .



- 二. 物理应用提要(求曲线和平面图形的形心, Guldin 第一第二定理)
- 1). 设平面曲线  $\Gamma$  由参数方程  $\vec{r} = \vec{r}(t) = (x(t), y(t)), \, \alpha \le t \le \beta$  给出, 则其形心  $(x_c, y_c)$  坐标为

$$x_c = \frac{1}{|\Gamma|} \int_{\alpha}^{\beta} x(t) \sqrt{[x'(t)]^2 + [y'(t)]^2} dt, \quad y_c = \frac{1}{|\Gamma|} \int_{\alpha}^{\beta} y(t) \sqrt{[x'(t)]^2 + [y'(t)]^2} dt,$$

- 2). 曲边梯形  $D = \{(x,y), 0 \le y \le f(x), a \le x \le b\}$  的形心坐标  $(x_c, y_c)$  为  $x_c = \frac{1}{|D|} \int_a^b x f(x) dx, \quad y_c = \frac{1}{2|D|} \int_a^b [f(x)]^2 dx.$
- 3). Guldin 第一定理: 设平面曲线  $\Gamma$  位于上半平面, 则曲线  $\Gamma$  绕 x 轴旋转一周所产生的旋转面 S 的面积 |S|, 等于曲线  $\Gamma$  的形心绕 x 旋转一周的周长, 乘以曲线  $\Gamma$  的弧长  $|\Gamma|$ , 即  $|S| = 2\pi y_c |\Gamma|$ , 其中  $y_c$  为平面曲线  $\Gamma$  的形心的纵坐标.
- 4). Guldin 第二定理: 设平面图形 D 位于上半平面, 则图形 D 绕 x 轴旋转一周所产生的旋转体 V 的体积, 等于 D 的形心绕 x 旋转一周的周长, 乘以图形 D 的面积 |D|, 即  $|V| = 2\pi y_c |D|$ , 其中  $y_c$  为平面图形的形心的纵坐标.
- 三. 综合应用提要: (i) 积分用于求极限(续), (ii) 积分估计.

第二部分: 习题

## 一. 几何应用习题

题 1. (球带面积与柱面带面积的关系) 将一个半径为 R 的球体, 和一个高为 2R, 半径为 R 圆柱并排放置在同一个水平面上. 对任意  $z_1, z_2 \in [-R, R], z_1 > z_2$ , 球面和柱面位于两个水平面  $z=z_1, z=z_2$  之间的部分分别记作  $S_{z_1z_2}$  和  $C_{z_1z_2}$ , 即如图所示的阴影部分.



猜猜两部分面积  $|S_{z_1z_2}|$  和  $|C_{z_1z_2}|$  有何关系? 并证明你的结论.

题 2. 求封闭曲线  $x^4 + y^4 = a^2(x^2 + y^2)$  所围图形的面积.

题 3. 在曲线  $y = \sqrt{x-1}$  上某点  $(x_0, y_0)$  处作切线, 使得该切线过原点. 求切点  $(x_0, y_0)$  的坐标和切线方程. 进一步求由切线, x 轴, 以及曲线本身所围的平面有界区域, 即图中阴影部分, 绕 x 轴旋转一周所得旋转体的表面积.



题 4. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导且大于零,且满足  $xf'(x)=f(x)+\frac{3a}{2}x^2$ ,其中 a 为参数. 再设曲线 y=f(x) 与直线 x=0 和 x=1 所围的图形 S 的面积为 2. (1) 求函数 f(x); (2) 当 a 为何值时,图形 S 绕 x 轴旋转一周所得旋转体的体积最小.

分析: 由假设  $xf'(x) = f(x) + \frac{3a}{2}x^2$  得  $\frac{xf'(x) - f(x)}{x^2} = \frac{3a}{2}$ , 此即  $\left(\frac{f(x)}{x}\right)' = \frac{3a}{2}$ . 然后两边取不定积分, 可确定 f(x) 的含有任意常数的表达式, 再由已给的面积关系确定, 从而可以讨论旋转体的体积.

题 5. 用微元法推导出极坐标下的区域  $D:0\leq\alpha\leq\theta\leq\beta\leq\pi,\,0\leq r\leq r(\theta),$  绕极轴旋转一周所得旋转体的体积公式为

$$V = \frac{2\pi}{3} \int_{\alpha}^{\beta} r^{3}(\theta) \sin \theta d\theta,$$

这里  $r(\theta)$  是区间  $[\alpha, \beta]$  上的连续函数. (注: 直观推导, 可不必追求严格性)

题 6. 求心脏线  $r = a(1 + \cos \theta)$  绕极轴旋转一周所得旋转体的体积, 如图所示.

(cardioid)



## 二. 物理应用习题

题 1. 考虑旋轮线 Γ:  $x = r(\theta - \sin \theta), y = r(1 - \cos \theta), 0 \le \theta \le 2\pi, r > 0.$ 

- (i) 求曲线  $\Gamma$  的弧长  $|\Gamma|$  (课本第175页已经计算过. 为完整计, 这里再计算一遍);
- (ii) 求曲线  $\Gamma$  的形心坐标  $(x_c, y_c)$ ;
- (iii) 用旋转面面积公式  $|S| = \int_0^{2\pi} 2\pi y d\ell$  求曲线  $\Gamma$  绕 x 轴旋转一周所得旋转面 S 的面积, 其中  $d\ell$  为弧长微分;
- (vi) 利用 Guldin 第一定理计算(iii)中的旋转面 S 的面积.



题 2. 考虑星形线  $\Gamma$ :  $x = a \cos^3 t$ ,  $y = a \sin^3 t$ ,  $0 \le t \le 2\pi$ , a > 0. 记  $\Gamma$  位于上半平面的部分为  $\Gamma^+$ , 再记  $\Gamma$  所围平面图形为 D, 图形 D 位于上半平面的部分记为  $D^+$ . (注: 星型线的直角坐标方程为  $x^{2/3} + y^{2/3} = a^{2/3}$ )



- (i) 求 Γ 的弧长;
- (ii) 求  $\Gamma$  所围图形 D 的面积;
- (iii) 求  $\Gamma^+$  的形心坐标  $(x_c, y_c)$ ;
- (iv) 求平面图形  $D^+$  的形心坐标  $(x_c, y_c)$ ;
- (v) 求  $\Gamma^+$  绕 x 轴旋转所得旋转体的侧面积;
- (vi) 求  $D^+$  绕 x 轴旋转所得旋转体的体积.

## 三. 综合应用习题

积分综合应用共九道题. 前三道题涉及积分用于求极限. 后六道习题涉及积分估计.

题 1: 计算极限  $\lim_{n\to+\infty} \frac{\sqrt[n]{n!}}{n}$ . (提示取对数)

題 2. 求极限  $\lim_{n\to+\infty} a_n$ , 其中

$$a_n = \sum_{k=1}^n \left( 1 + \frac{k}{n} \right) \sin \frac{k\pi}{n^2}.$$

题 3. 设函数 f(x) 在区间  $[0,\pi]$  上连续. 证明

$$\lim_{n \to +\infty} \int_0^{\pi} f(x) |\sin nx| dx = \frac{2}{\pi} \int_0^{\pi} f(x) dx.$$

题 4. 设 f(x) 在 [0,a] 上二阶可导, a > 0 且  $f''(x) \ge 0$ ,  $\forall x \in [0,a]$ . 证明

$$\int_0^a f(x)dx \ge af(a/2).$$

题 5. 设函数 f(x) 在 [0,1] 二阶可导且  $f''(x) \le 0$ ,  $\forall x \in [0,1]$ . 证明  $\int_0^1 f(x^2) dx \le f(1/3)$ . 推广: 在题 5 的假设下, 我们可以类似证明  $\int_0^1 f(x^n) dx \le f(\frac{1}{n+1})$ , n 为任意正整数.

题 6: 设 f(x) 在区间 [0,1] 上可积, 且存在两个正常数 M>m>0, 使得  $m \leq f(x) \leq M$ ,  $\forall x \in [0,1]$ . 证明

$$1 \le \int_0^1 f(x)dx \cdot \int_0^1 \frac{dx}{f(x)} \le \frac{(m+M)^2}{4mM}.$$

题 7. 假设 f(x) 在 [a,b] 上二次连续可微,证明存在  $\xi \in [a,b]$ , 使得

$$\int_{a}^{b} f(x)dx = f\left(\frac{a+b}{2}\right)(b-a) + \frac{f''(\xi)}{24}(b-a)^{3}.$$

(注: 这是课本第146页习题11. 入选这道题是因为恐怕有些同学误用积分中值定理. 详见题解)

题 8. 设 f(x) 为  $[0,2\pi]$  上的单调减函数,证明对任何正整数 n 成立

$$\int_0^{2\pi} f(x) \sin nx dx \ge 0.$$

题 9. 设 f(x) 在  $[0,+\infty)$  上连续可微, 严格单调上升, 且 f(0)=0, 则对任意 a>0, b>0,  $b\in Range(f)$ , 成立

$$ab \le \int_0^a f(x)dx + \int_0^b f^{-1}(y)dy,$$
 (称为 Young 不等式)

其中  $x = f^{-1}(y)$  记 y = f(x) 的反函数,并且不等式等号成立的充要条件是 b = f(a). 几何意义如图所示.



<u>几何意义</u>: 在如下三个不同情形下 (a) f(a) < b; (b) f(a) > b; (c) f(a) = b, 积分  $\int_0^a f(x) dx$  与  $\int_0^b f^{-1}(y) dy$  之和为如图影印部分的面积. 由图可知 Young 不等式显然成立.