Testing pleiotropy vs. separate QTL in multiparental populations

Frederick J. Boehm, Brian S. Yandell, & Karl W. Broman

University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract

- High-dimensional phenotypes & multiparental populations inform complex trait architecture
- New analysis tools needed
- Developed a test of pleiotropy vs. separate QTL for multiparental populations
- Evidence for two separate QTL affecting three behavioral traits in a 3 cM region
- Shared methods in an R package, qtl2pleio https://github.com/fboehm/qtl2pleio

Behavioral genetics

- Logan et al. (2013) and Recla et al. (2014) genotyped and phenotyped 261 Diversity Outbred mice
- Identified *Hydin* as the Chr 8 gene affecting "hot plate latency" at 57 cM
- Identified Chr 8 QTLs for "percent time in light" and "distance traveled in light" at 55 cM
- Motivated us to ask if Hydin also affects "percent time in light" and "distance traveled in light"

3 pairwise tests

Trait1	Trait2	pvalue
pct. time in light	hot plate latency	0.109
distance traveled	hot plate latency	0.108
pct. time in light	distance traveled	0.871

Introduction

- Experimentalists measure thousands of phenotypes with RNA sequencing and mass spectrometry
- Multiparental populations enable high-resolution QTL mapping
- Together, they inform complex trait genetics
- New analysis tools, such as our test of pleiotropy vs. separate QTL, are needed

Background

- Jiang and Zeng (1995) developed a pleiotropy
 vs. separate QTL test for two-parent crosses
- Applies to two traits that map to a single genomic region
- Null hypothesis: pleiotropy
- Alternative: presence of two separate QTL
- Perform a two-dimensional QTL scan
- Calculate likelihood ratio test statistic

Allele effects plots

Conclusions

- Evidence for two separate QTL affecting the 3 traits
- 1 QTL affects both "distance traveled in light" and "percent time in light"
- Second QTL contains Hydin and affects "hot plate latency"

Future directions

- Examine expression data from Keller et al. (2018)
- 378 Diversity Outbred mice
- Expression QTL hotspot dissection
- Statistical power studies
- Comparisons with mediation test results

Challenges

- Relatedness: Multivariate polygenic random effects
- Eight founder lines: 8 fixed effects
- Test statistic calibration: Parametric bootstrap test

Profile LOD plots for pairwise

Fred Boehm
EMAIL: <frederick.boehm@gmail.com>

Contact information

WEBSITE: <https://fboehm.us/>
ORCID: 0000-0002-1644-5931

<https://github.com/fboehm/qtl2pleio>

Test procedure

Fit the model:

$$Y = XB + G + E \label{eq:Y}$$
 for each ordered pair of markers

$$G \sim MN(0,K,V_g)$$

$$E\sim MN(0,I,V_e)$$

- ullet X contains allele probabilities
- $oldsymbol{\cdot}$ B contains allele effects
- Calculate likelihood for each model fit
- Test statistic:

$$-\log_{10}rac{\max L_0(B,\Sigma,\omega_1)}{\max L_A(B,\Sigma,\omega_1,\omega_2)}$$

Parametric bootstrap to get p-value

References

qtl2pleio R package:

Jiang, Changjian, and Zhao-Bang Zeng. 1995. "Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Loci." *Genetics* 140 (3). Genetics Soc America: 1111–27.

Keller, Mark P, Daniel M Gatti, Kathryn L Schueler, Mary E Rabaglia, Donnie S Stapleton, Petr Simecek, Matthew Vincent, et al. 2018. "Genetic Drivers of Pancreatic Islet Function." *Genetics*. Genetics Soc America, genetics—300864.

Logan, Ryan W, Raymond F Robledo, Jill M Recla, Vivek M Philip, Jason A Bubier, Jeremy J Jay, Carter Harwood, et al. 2013. "High-Precision Genetic Mapping of Behavioral Traits in the Diversity Outbred Mouse Population." *Genes, Brain and Behavior* 12 (4). Wiley Online Library: 424–37.

Recla, Jill M, Raymond F Robledo, Daniel M Gatti, Carol J Bult, Gary A Churchill, and Elissa J Chesler. 2014. "Precise Genetic Mapping and Integrative Bioinformatics in Diversity Outbred Mice Reveals Hydin as a Novel Pain Gene." *Mammalian Genome* 25 (5-6). Springer: 211–22.