Лабораторная работа 4 «Условные конструкции *Python*»

Цель работы: изучить синтаксис условных конструкций языка Python, продемонстрировать возможности конструкций ветвления на примере разработки интерактивных приложений.

Основное задание

Разработать интерактивную программу «Quadric Equation» («Квадратное уравнение») для решения квадратных уравнений вида: $ax^2 + bx + c = 0$. Программа должна запрашивать соответствующие параметры a, b и c, проверять параметры и выдавать результат.

Индивидуальное задание

В соответствии с заданием своего варианта выполнить задания из Приложения «А» «Разветвляющиеся алгоритмы».

Дополнительное задание*

- 1. Написать программу, которая бы эмулировала игру «Dice» (игра в кости). Суть игры заключается в броске двух шестигранных кубиков (костей) и подсчёте общей суммы очков, которые выпали на первой и второй кости. Для генерирования случайного значения на костях воспользоваться функциями из стандартного модуля random.
- 2. Написать программу симулятор пирожков с «сюрпризом». Программа должна выводить пирожок и один из пяти (можно больше) различных «сюрпризов», который бы выбирался случайно.
- 3. Написать программу «Mood Sensor», которая определяет настроение пользователя в текущий момент времени. Приложение генерирует случайное число, в зависимости от которого выводится одно из псевдографических «лиц», отображающее настроение.

Требования к выполнению

- 1. Программа должна обязательно быть снабжена комментариями на английском языке, в которых необходимо указать краткое предназначение программы, номер лабораторной работы и её название, версию программы, ФИО разработчика и дату разработки.
- 2. Каждая программа должна быть снабжена дружелюбным и интуитивно понятным интерфейсом (да-да, пусть даже пока в консольном варианте).

№ Теперь Вы знаете условные конструкция языка Python!

Контрольные вопросы

- 1. Перечислить основные управляющие конструкции.
- 2. Описать основные элементы блок-схем.
- 3. Как в языке *Python* реализуется механизм истинности-ложности? Может ли значение быть условием?
- 4. Описать синтаксис простой условной конструкции if. Представить примерную блоксхему конструкции.
- 5. С помощью каких операторов можно комбинировать в одной условной конструкции if несколько условий? Какой механизм оптимизации применяет интерпретатор *Python* для эффективного вычисления результата комбинированных условных выражений?
- 6. Описать синтаксис условной конструкции if-else. Представить примерную блок-схему конструкции.
- 7. Описать синтаксис условной конструкции elif. Представить примерную блок-схему конструкции.
- 8. Чем использование elif будет отличаться от использования вложенных условных конструкций if-else?
- 9. Как сгенерировать случайную последовательность чисел с использованием функций randint() и randrange()? Чем они отличаются? Какие ещё есть полезные функции в модуле random?

Базовый синтаксис языка *Python***:** условные конструкции ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ

Логическими (boolean expression) называются выражения, которые могут принимать одно из двух значений – истина или ложь. Операнды логических операторов должны быть логическими выражениями. В *Python* любое ненулевое число интерпретируется им как «истинное» (рисунок 4.1).

```
Python 3.4.3 Shell

File Edit Shell Debug Options Window Help

Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 tel)] on win32

Type "copyright", "credits" or "license()" >>> 5==5

True
>>> 7==8

False
>>> 21 and True
True
>>> |
```

Рис. 4.1. Пример логических выражений

True и False — специальные значения, которые принадлежат к типу bool, они не являются строками (рисунок 4.2).

```
File Edit Shell Debug Options Window Help
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 tel)] on win32
Type "copyright", "credits" or "license()"
>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>
>>>
```

Рис. 4.2. True и False

УСЛОВНОЕ ИСПОЛНЕНИЕ

Условные инструкции (conditional statements) позволяют изменять ход выполнения программы в зависимости от условий.

На рисунке 4.3 представлена блок-схема и код для проверки положительности числа x с выводом соответствующего сообщения.

Рис. 4.3. Блок-схема условной конструкции и код на языке Python

Логическое выражение после инструкции if называется *условием*, далее следует *символ двоеточия* (:) и *строка (строки) с отступами*. Если логическое условие истинно, то управление получает выражение, записанное с отступами, иначе — выражение пропускается.

Не существует ограничения на число инструкций, которые могут встречаться в теле if, но хотя бы одна инструкция там должна быть. Иногда полезно иметь тело if без инструкций (обычно оставляют место для кода, который еще не написан). В этом случае можно воспользоваться инструкцией pass, которая ничего не делает (рисунок 4.4).

```
File Edit Format Run Options Window Help
#conditional statements
if x < 0:
    pass # следует обработать
#отрицательные значения!
```

Рис. 4.4. Инструкция pass

АЛЬТЕРНАТИВНОЕ ИСПОЛНЕНИЕ

Альтернативное исполнение (*alternative execution*) инструкции if предполагает два направления выполнения, и условие определяет, какое из них выполнится. Пример (рисунок 4.5) иллюстрирует проверку четности/нечетности числа *x* с выводом соответствующего сообщения.

Рис. 4.5. – Инструкция if

Альтернативное исполнение предполагает выполнение одного из вариантов, так как условие может быть либо истинным, либо ложным. Варианты называются ветвями (branches).

ПОСЛЕДОВАТЕЛЬНОСТЬ УСЛОВИЙ

Когда имеется больше двух вариантов выполнения, то необходимо больше двух ветвей. В этом случае, можно воспользоваться *сцепленными условиями* (chained conditional). На рисунке 4.6 приведен алгоритм сравнения двух чисел x и y.

Рис. 4.6. Сцепленные условия

Инструкция elif — аббревиатура от «else if». Оператор else должен быть в конце инструкции, но может и отсутствовать.

Каждое условие проверяется в порядке расположения. Если первое условие ложно, то проверяется следующее и так далее. Если одно из условий истинно, то выполняется соответствующая ветка, и инструкция завершается.

ВЛОЖЕННЫЕ УСЛОВИЯ

Условия могут быть вложенными. Пример *трихотомии*, иллюстрирующий сравнение чисел x и y, представлен рисунке 4.7.

```
File Edit Format Run Options Window Help
#conditional statements
if x == y:
    print ('x and y are equal')
else:
    if x < y:
        print ('x is less than y')
    else:
        print ('x is greater than y')</pre>
```

Хотя отступ инструкций делает структуру более очевидной, вложенные условия (nested conditionals) усложняют чтение кода. Их следует по возможности избегать.

Рис. 4.7. Код трихотомии

ПЕРЕХВАТ ИСКЛЮЧЕНИЙ С ПОМОЩЬЮ *TRY* И *EXCEPT*

Структура условного выполнения «try/except» обрабатывает типы ожидаемых и неожиданных ошибок. Идея try и except заключается в следующем. Пусть некоторая последовательность инструкций может иметь ошибки. Нужно добавить дополнительные инструкции (блок except), которые выполняются в случае возникновения ошибки, и игнорируются, если ошибка не произошла.

Общий вид конструкции «try/except»:

```
try:
    instruction 1
except:
    instruction 2
```

Выполнение начинается с последовательности инструкций в блоке try. Если все выполняется без ошибок, блок except пропускается. Если произошло исключение в блоке try, то блок try покидается и выполняет последовательность инструкций внутри блока except. Обработка исключения с помощью инструкции try называется *перехватом* (catching) исключения.

Пример кода и результат программы ввода с учетом некорректного ввода представлен на рисунке 4.8.

```
Python 3.4.3 Shell
                                                 File Edit Shell Debug Options Window H
*try_ex.py - D:/try_ex.py (3.4.3)*
                                                  Python 3.4.3 (v3.4.3:9b73f1c3e601,
File Edit Format Run Options Window Help
                                                  tel) 1 on win32
#catching
                                                  Type "copyright", "credits" or "lic
                                                  >>> :
        x=int(input('Ввелите целое число\n'))
                                                  >>>
except:
                                                  Введите целое число
        print('Некорректный ввод данных')
                                                  lololo
                                                  Некорректный ввод данных
                                                  >>>
```

Рис. 4.8. Учет некорректного ввода целого числа с клавиатуры

СЛУЧАЙНЫЕ ЧИСЛА

Программы, генерирующие одни и те же выходные значения для одинаковых входных значений, называются *детерминированными*. Для многих приложений, например игр, характерна непредсказуемость в поведении. Для создания недетерминированных программ можно использовать алгоритмы генерации псевдослучайных чисел.

Модуль random предоставляет функции, которые генерируют псевдослучайные числа (далее «случайные числа»):

- random() возвращает случайное число с плавающей точкой в интервале от 0.0 до 1.0 (включая 0.0 и не включая 1.0);
- randint (low, high) возвращает целочисленное значение в интервале от low до high включительно;
- randrange(start, stop, step) возвращает число от start включительно до stop не включительно с шагом step;
- для выбора случайного элемента из последовательности, можно воспользоваться функцией choice().

Модуль random также включает функции, которые генерируют значения, принадлежащие показательному закону распределения, распределению Гаусса, Гамма и другие.

ПРИЛОЖЕНИЕ А «Разветвляющиеся алгоритмы»

Задание 1. В соответствии с заданием своего варианта составить программу для вычисления значений составной функции G(x). Параметр а вводится с клавиатуры. Функция f(x) может принимать одно из двух значений (e^x или x^2) по выбору пользователя. Выполнить расчет для всех вариантов ветвления. Результат представить в виде:

Х	а	f(x)	G(x)	

Задание 2. В соответствии с заданием своего варианта составить программу, которая распределяет целые числа, вводимые пользователем с клавиатуры по четырем группам. Результат представить в виде: число 49 относится к группам A и B.

Таблица А 1. Индивидуальные задания

	1аолица А 1. Индивидуальные задания				
Вариант	Задание 1.	Вариант	Задание 2.		
1	$G(x) = \begin{cases} \sin(f(x) + a)^2 - \sqrt{ f(x) }, ax > 0; \\ (f(x) + 2a)^2 - \sqrt{ f(x)a }, ax < 0; \\ (f(x) + a)^2 + 1, ax = 0; \end{cases}$	13	$G(x) = \begin{cases} 2e^{af(x)}, 1 < ax < 11; \\ \sqrt{ f(x) + a }, 11 \le ax < 55; \\ \sqrt{ a^3 f(x) }, e \text{ остальных случаяx}; \end{cases}$		
2	$G(x) = \begin{cases} \ln(f(x) + 5) + (f(x))^3, \frac{x}{a} > 0; \\ \ln(\left \frac{f(x)}{a}\right + 2) + a^3, \frac{x}{a} < 0; \\ (f(x)^2 + a)^3, x = 0; \\ 0, a = 0; \end{cases}$	14	$G(x) = \begin{cases} a^5 + 5e^{af(x)}, \ a - \text{четное}, \ x \ge 0; \\ 7\sqrt{ f(x) - a }, \ a - \text{нечетное}, \ x < 0; \\ \sqrt{ a^3 }, \ e \ ocmaльных \ cлучаяx; \end{cases}$		
3	$G(x) = \begin{cases} f(x)^2 a^2 + \sin(a), x - a = 0; \\ (f(x) - a)^2 + a, x - a > 0; \\ (af(x))^2 + 15a, x - a = 0; \end{cases}$	15	$G(x) = \begin{cases} \sin(a) + \ln(\sin(f(x)) + 1), x - a = 0; \\ f(x)^2 + a , x - a > 0; \\ \sqrt{ a^2 + f(x)^2 }, x - a < 0; \end{cases}$		
4	$G(x) = \begin{cases} arctg(f(x)), x > a; \\ (af(x))^3 + \cos(a+1), x < a; \\ (a+f(x))^3 + 25, x = a; \end{cases}$	16	$G(x) = \begin{cases} \cos(a+1) + \ln(\sin(f(x)^2) + 1), \frac{x}{a} > 0; \\ f(x)^2 + a, \frac{x}{a} < 0; \\ \sqrt{ a^2 + f(x)^2 }, x = 0; \\ x + \cos a, a = 0 \end{cases}$		
5	$G(x) = \begin{cases} a\sqrt{f(x)}, a - \textit{четное}, x > 0;\\ \sin(2a), a - \textit{нечетное}, x < 0;\\ \sqrt{ af(x) }, \textit{в остальных случаях}; \end{cases}$	17	$G(x) = \begin{cases} \cos(a+1) + e^{f(x)}, \frac{x}{a} > 0; \\ f(x)^2 - f(a), \frac{x}{a} < 0; \\ \sqrt{ a^2 - f(x)^2 }, x = 0; \\ x + \cos a, a = 0 \end{cases}$		

	$e^{f(x)}, 1 < ax < 2;$		$[1+(f(x)+a)^2, ax>0;$
6	$G(x) = \begin{cases} \sin(a) + \sqrt{ f(x) }, \ 2 \le ax \le 10; \\ \sqrt{ a^3 }, \ \epsilon \ ocmaльных \ cлучаяx; \end{cases}$	18	$G(x) = \begin{cases} f(x)^2 - \sqrt{ f(a) }, & ax < 0; \\ \sqrt{ a^2 + f(x)^2 }, & ax = 0; \end{cases}$
7	$G(x) = \begin{cases} e^{f(x)+2a}, \ 0 < ax < 1; \\ 2\sqrt{ f(x) } - \cos a, \ 2 \le ax \le 10; \\ \sqrt{ f(x) }, \ \theta \ \text{остальных случаях}; \end{cases}$	19	$G(x) = \begin{cases} \sqrt{1 + (f(x) + a)^2}, ax > 1; \\ f(x)^2 + e^a, ax < 1; \\ \sqrt{ 2a^2 + f(x)^2 }, ax = 1; \end{cases}$
8	$G(x) = \begin{cases} \sin(5f(x) + 3ae^{f(x)}), & a < x; \\ \cos(f(x) + \sqrt{ f(x) }), & a > x; \\ \sqrt{ a^2 + f(x)^2 }, & a = x; \end{cases}$	20	$G(x) = \begin{cases} \sqrt{20 + (f(x) + a)^2}, a + x > 1; \\ f(x) - e^a, a + x < 1; \\ a - \sqrt{ 2a^2 + f(x) }, a + x = 1; \end{cases}$
9	$G(x) = \begin{cases} 2\sin(f(x)) + 3a^2, & x > a ; \\ f(x) - a , & x < a ; \\ \sqrt{ a^2 + f(x)^2 }, & x = a ; \end{cases}$	21	$G(x) = \begin{cases} \sqrt{21 + (f(x) + a)^2}, a - x > 1; \\ \sin(f(x) + a), a - x < 1; \\ a + \sqrt{ 2a^2 - f(x) }, a - x = 1; \end{cases}$
10	$G(x) = \begin{cases} \ln(f(x) + 1) + a, 10 > ax ; \\ f(x) + a , 10 < ax ; \\ \sqrt{ a^2 + f(x)^2 }, ax = 10; \end{cases}$	22	$G(x) = \begin{cases} \sqrt{e^a + (f(x) + a)^2}, ax > 5; \\ f(x) + \cos(e^a), ax < 5; \\ a - \sqrt{ 2a^2 f(x) }, ax = 5; \end{cases}$
11	$G(x) = \begin{cases} \sin(4\sin(f(x)) + 3a, a > x; \\ \cos(f(x) + a), a < x; \\ \sqrt{ a^2 + f(x)^2 }, a = x; \end{cases}$	23	$G(x) = \begin{cases} \sqrt{5 + (f(x) + a)^2}, ax > 2; \\ 2f(x) - e^a, ax < 2; \\ \sin(2a) - \sqrt{ 2a^4 - f(x) }, ax = 2; \end{cases}$
12	$G(x) = \begin{cases} e^{f(x)-a}, 0.7 < ax < 11; \\ \sqrt{\cos^2(f(x))}, 0 < ax \le 0.7; \\ a, в остальных случаях; \end{cases}$	24	$G(x) = \begin{cases} \sqrt{20 + f(x)^2}, a + x > 10; \\ f(x) + e^a, a + x < 10; \\ 24a - \sqrt{ 2a^2 + f(x) }, a + x = 10; \end{cases}$
25	$G(x) = \begin{cases} \sqrt{25 + (f(x) + a)^2}, a + x > 25; \\ f(x)^2 - e^a, a + x < 25; \\ \cos a + \sqrt{ 2a^2 - 2f(x) }, a + x = 25; \end{cases}$		