ML2 Sheet 2

1 Exercise 3

1.1 Exercise 3 (a)

The two min functions are going to return a large negative value if either $\omega_x^\top C_{xx} \omega_x$ or $\omega_y^\top C_{xx} \omega_y$ or both are large. Therefore, they will subtract away much of the impact of the first term $\omega_x^\top C_{xy} \omega_y$. This means that, dependent on the size of the positive scalar α , the last two terms will impose a "penalty" whenever a large ω_x or ω_y is used, which will mitigate the issue where the maximization is caused by any such large vector, similarly to the constrained CCA.

1.2 Exercise 3 (b)

$$\frac{\partial \phi_x}{\partial \theta_x} = \begin{pmatrix} \frac{\partial \phi_{x_1}}{\partial \theta_{x_1}} & \cdots & \frac{\partial \phi_{x_n}}{\partial \theta_{x_1}} \\ & \ddots & \vdots \\ \frac{\partial \phi_{x_{h_1}}}{\partial \theta_{x_1}} & \cdots & \frac{\partial \phi_{x_{h_1}}}{\partial \theta_{x_n}} \end{pmatrix}$$

1. a $w_x \in \mathbb{R}^{d_1} \quad X \in \mathbb{R}^{d_1 \times N} \quad \mathcal{L}_x \in \mathbb{R}^N$

We can represent $w_x = X \cdot \alpha_X$ as a system of equations

 $\begin{cases} X_{11} \cdot d_1 + X_{12} \cdot d_2 + \dots + X_{1N} \cdot d_N = \omega_{X_1} \\ X_{21} \cdot d_1 + X_{22} \cdot d_2 + \dots + X_{2N} \cdot d_N = \omega_{X_2} \\ X_{31} \cdot d_1 + X_{32} \cdot d_2 + \dots + X_{3N} \cdot d_N = \omega_{X_3} \end{cases}$ \vdots

Maving N variables and of equations would normally mean that ine solutions exist because N > ds, but I considering the condition N << d: system becomes determined (even overdeterm; meaning there exist a solution that lies in the span of the data.

1. b
$$\begin{bmatrix} O & AB \\ BA & O \end{bmatrix} \cdot \begin{bmatrix} \langle x \rangle \\ \langle y \rangle \end{bmatrix} = \rho \begin{bmatrix} A^3 & O \\ O & B^2 \end{bmatrix} \begin{bmatrix} \langle x \rangle \\ \langle x \rangle \end{bmatrix}$$
 (4)

We can rewrite (1) as

$$BA dx = \beta B^2 dy$$

$$X^T X Y^T Y Ly = \rho X^T X X^T X Lse$$

After dividing by X and Y' we get

which is the original eigenvalue problem.

Original eigenvalue problem . 1 Reformulate the problem in terms of dot products First, set $w_x = X + x_x -$ Solution will lie in the $w_y = Y + y -$ space spanned by the data not number of dimensions Lagrangéan lacks like that: L = Zx XXXXXXxx-1) -- λ_{i} (ig^{T} YY YY ig -1) .2 Replace all dot products with valid kernels $K_{x} = \phi_{i}(x) \phi_{i}(x)^{T}$, $K_{y} = \phi_{i}(y) \phi_{i}(y)^{T}$ where $\phi_{i}: x \mapsto \phi_{i}(x)$ L = Lot Kx Kyky - A, (dx kx dx - 1) - hldy Ky dy -1) Original eigenvalue problem. The course of action is the same or above 1 Cxy wy = A, Cxx wx -> XYYLy = A, XXX Lx (1) Cyx wx = A, Cyy wy YX'X Ly = N, XYY Ly (e) Multiplying with sides by XT for (1) and YT for (2)
we get XX YYLY = 2, XXXXXxx us

YTYXTXLX = 7, YYYTYLY

2 Replace dof products with kernels

Kx Ky Ly = 7, Kx Lsc

Ky Kx Kx = 7, Ky Ly

2. b k CCA computes new coordinate system that is optimal in maximizing correlation between two sets of variables. Each axis is nonlinear combination of variables in corresponding set of variables.

Index of comments

- 3.1 Likely not invertible
- 3.2 What is the original eigenvalue problem?