

2.12/2.120 Introduction to Robotics

February 23-24, 2023

Lab 3: DC Motor Control

Objectives

- Understand the Proportional, Integral, and Derivative (PID) control actions.
- Derive closed-loop transfer functions.
- Design and fine-tune a PI controller for velocity control.
- Design and fine-tune a PD controller for position control.

Term Project: Task strategy.

System Setup

• Detach the second link and attach the disc to Motor 2.

Standard Closed-Loop PID Control

PID controller transfer function

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s$$

$$= \frac{K_d s^2 + K_p s + K_i}{s}$$

$$= K_d \left(\frac{s^2 + \binom{K_p}{K_d} s + \binom{K_i}{K_d}}{s} \right)$$

PID controller pseudo code

$$PID_output = K_p e(t) + K_i \int e(t) dt + K_d \frac{d}{dt} e(t)$$

$$e(t) = \text{set_point - sensor_output}$$

$$\int e(t) dt \approx \sum_t e(t) \Delta t$$

$$\frac{d}{dt} e(t) \approx \frac{e(t) - e(t - 1)}{\Delta t}$$

Estimate Open-Loop Transfer Function

Plant transfer function:

$$G_p(s) = \frac{\Omega(s)}{V_{pwm}(s)} = \frac{K_{dc}}{\tau s + 1} = \frac{1.3}{0.11s + 1}$$

PWM = 255 corresponds to 5V from PWM pin (1V = 51 PWM) so we can further represent the transfer function as:

$$G_p(s) = \frac{\Omega(s)}{PWM(s)} = \frac{\frac{K_{dc}}{51}}{\tau s + 1} = \frac{0.0255}{0.11s + 1}$$

STOP

Velocity Control with P&I Control Actions

Closed-Loop Transfer Function:
$$G_{cl}(s) = \frac{K(K_p s + K_i)}{\tau s^2 + (1 + K_p K)s + K_i K}$$
 One zero

Steady-state
$$\Omega_{SS} = \lim_{t \to \infty} \Omega(t) = \lim_{s \to 0} s\left(\frac{1}{s}\right) G_{cl}(s) = \left(\frac{K_i K}{K_i K}\right) = 1$$

No steady-state error with a step input

Position Control with P&D Control Actions

Closed-Loop Transfer Function:
$$G_{cl}(s) = \frac{K(K_p + K_d s)}{\tau s^2 + (1 + K_d K)s + K_p K}$$
 Two poles

No steady-state error with a step input

Comparison of Closed-Loop Transfer Functions

PI Control of Velocity:
$$G_{cl}(s) = \frac{K(K_p s + K_i)}{\tau s^2 + (1 + K_p K)s + K_i K}$$

PD Control of Position: $G_{cl}(s) = \frac{K(K_p s + K_i)}{\tau s^2 + (1 + K_d K)s + K_p K}$

2nd Order System Poles

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

$$S_{1,2} = -\sigma_d \pm j\omega_d = -\zeta\omega_n \pm j\omega_n \sqrt{1-\zeta^2}$$

$$T_{p} = \frac{\pi}{\omega_{n} \sqrt{1 - \zeta^{2}}}$$

$$T_{s} = \frac{4}{\zeta \omega_{n}} \text{ (within 2\%)}$$

$$\%OS = e^{-\left(\frac{\zeta \pi}{\sqrt{1 - \zeta^{2}}}\right)} \times 100$$

Dynamic Response Characteristics

Example: Figure 1
$$y_{ss} = 1$$
 $y(T_P) = 1.5$ $M_P = 0.5$ % $OS = 50\%$ $\zeta = -\frac{\ln(0.5)}{\sqrt{\pi^2 + \ln^2(0.5)}} = 0.215$

$$T_{\rm S} pprox rac{4}{\sigma} = rac{4}{\zeta \omega_n}$$
 2% Settling Time

$$T_{\rm S} pprox rac{4.6}{\sigma} = rac{4.6}{\zeta \omega_n}$$
 1% Settling Time

$$\omega_d = \omega_n \sqrt{1-\zeta^2} = \frac{2\pi}{T}$$
 Damped Natural Frequency

$$T_p = \frac{\pi}{\omega_d}$$
 Peak Time

$$M_P \triangleq y(T_p) - y_{ss}$$
 Overshoot (Magnitude)

$$\%OS \triangleq \frac{y(T_p) - y_{ss}}{y_{ss}} \times 100$$
 Overshoot (Percent)

$$\frac{M_P}{y_{SS}} = \frac{\%0S}{100} = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$$
 , $0 \le \zeta < 1$

Controller Design

- Control action comparison:
 - <u>Proportional</u> improves speed but with steady-state error in some cases
 - <u>Integral</u> improves steady state error but with less stability; may create overshoot, longer transient, or integrator windup
 - <u>Derivative</u> improves stability but sensitive to noise; may create large output when the input is not a continuous signal
- Reduce overall gain can increase stability but with slower response
- Avoid saturations
- Set integrator limits to prevent windups

FYI: PD Controller Design with Matlab's SISOTOOL

Monitoring/Capturing Serial Data

Arduino File

Code Files and Deliverable

• Required code in GitHub: https://github.com/mit212/lab3_2023

Demonstrate to the lab staff your closed-loop responses.

Term Project: Task Strategy

Manipulator:

- Design and fabricate an end-effector to perform CPR (Cardiopulmonary Resuscitation).
- Detect and guide the end-effector to the chest of the patient.
- May need computer vision and force feedback control.

Mobile Robot:

- Design and fabricate a mechanism to get an AED (Automated External Defibrillator) bag.
- Deliver the AED bag to the destination.
- May need obstacle avoidance, path planning, and autonomous navigation.

Avatar:

- Interact with the patient and the environment with VR headset and controllers.
- Tele-operation of the manipulator.

DC Motor

DC Motor Principle

Lorentz law:

magnetic field applies force to a current (Lorentz force)

Faraday law:

moving in a magnetic field results in potential (back EMF)

$$F = (\mathbf{i} \times \mathbf{B}) \cdot l = iBl$$
 $(\mathbf{i} \perp \mathbf{B})$ $v_e = \mathbf{V} \times \mathbf{B} \cdot l = VBl$ $(\mathbf{V} \perp \mathbf{B})$

DC Motor Principle (Cont.)

$$T=2Fr=2(iBNl)r$$
 (Lorentz law) $v_e=2VBNl=2(\omega r)BNl$ (Faraday law) or where

 $T = K_m i$

 $v_e=K_v\omega$

multiple windings *N*: continuity of torque

- $K_m \equiv 2BNlr$ torque constant
- $K_v \equiv 2BNlr$ back-emf constant

DC Motor as A Transducer

DC motor is an electromechanical system that may have a time constant close to the plant.

A transducer converts energy from one domain (e.g., electrical) to another (e.g., mechanical), or vice versa.

$$P_{in} = P_{out}$$

$$i(t) * v(t) = T(t) * \omega(t)$$

 $|K_m|$: motor torque constant

 K_{y} : motor speed (back EMF) constant

Equation of motion - Electrical

KVL:
$$v_s - v_L - v_R - v_e = 0$$

$$\Rightarrow v_s - L rac{di}{dt} - Ri - K_v \omega = 0$$

Equation of motion – Mechanical

Torque Balance: $T = T_b + T_J$

$$\Rightarrow K_m i - b\omega = J \frac{d\omega}{dt}$$

Combined equations of motion

$$Lrac{di}{dt}+Ri+K_v\omega=v_s$$

$$Jrac{d\omega}{dt}+b\omega=K_m i$$

Equation of motion – Electrical

KVL:
$$V_s(s) - V_L(s) - V_R(s) - V_e(s) = 0$$

$$V_s(s) - LsI(s) - RI(s) - K_v\Omega(s) = 0$$

Equation of motion – Mechanical

Torque Balance:
$$T(s) = T_b(s) + T_J(s)$$

$$K_m I(s) - b\Omega(s) = Js\Omega(s)$$

Combined equations of motion

$$LsI(s) + RI(s) + K_v\Omega(s) = V_s(s)$$

$$Js\Omega(s) + b\Omega(s) = K_m I(s)$$

$$\Rightarrow \left[(Ls+R) \left(rac{Js+b}{K_m}
ight) + K_v
ight] \Omega(s) = V_s(s)$$

$$\Rightarrow \left[\frac{LJ}{R}s^2 + \left(\frac{Lb}{R} + J\right)s + \left(b + \frac{K_mK_v}{R}\right)\right]\Omega(s) = \frac{K_m}{R}V_s(s)$$

Neglecting the inductance (why?)

$$L \approx 0$$

$$\Rightarrow \left[Js + \left(b + rac{K_m K_v}{R}
ight)
ight]\Omega(s) = rac{K_m}{R} V_s(s)$$

This is our familiar 1st-order system!

If we are given step input $v_s(t) = V_0 u(t)$ \Rightarrow we already know the step response

$$\omega(t) = rac{K_m}{R} V_0 \left(1 - \mathrm{e}^{-t/ au} \right) u(t),$$

where now the time constant is

$$au = rac{J}{\left(b + rac{K_m K_v}{R}
ight)}.$$

Gear Ratio and Power Conservation

Gear Ratio N:
$$\frac{n_1}{n_2} = \frac{r_1}{r_2} = \frac{\Omega_2}{\Omega_1} = \frac{T_1}{T_2} = \frac{F_1^T r_1}{F_2^T r_2}$$

$$\frac{n_1}{n_2} = \frac{44}{180}$$

Unit Conversion:

$$rpm = \frac{2\pi}{60} (rad/s)$$

$$N = \frac{kg \times m}{s^2}$$

$$V(voltage) = \frac{kg \times m^2}{s^3 \times A}$$

Power Conservation:

$$P_{mechanical}$$
 = $P_{electrical}$

$$P_{mechanical}(t) = T(t) \times \Omega(t) = K_m \times i(t) \times \Omega(t)$$

$$\begin{aligned} P_{electrical}(t) &= v_b(t) \cdot i(t) \\ &= K_v \cdot \Omega(t) \cdot i(t) \end{aligned}$$

 $|K_m|$: motor torque constant

 K_{y} : motor speed (back EMF) constant

Neglecting the inductance...

$$L \approx 0$$

$$\Rightarrow \left[Js + \left(b + rac{K_m K_v}{R}
ight)
ight]\Omega(s) = rac{K_m}{R} V_s(s)$$

This is our familiar 1st-order system!

If we are given step input $v_s(t) = V_0 u(t)$ \Rightarrow we already know the step response

$$\omega(t) = rac{K_m}{R} V_0 \left(1 - \mathrm{e}^{-t/ au} \right) u(t),$$

where now the time constant is

$$au = rac{J}{\left(b + rac{K_m K_v}{R}
ight)}$$