Visualizador de Operações no Plano Projetivo

Objetivo: O objetivo do presente trabalho é fazer uma análise visual do aprendido em aula sobre as operações feitas no plano projetivo com a finalidade de entender elas intuitivamente olhando para elas graficamente. Para fazer isso, nós estamos usando a ferramenta chamada de GeoGebra. Basicamente, são duas coisas as que nós queremos olhar em detalhe neste trabalho:

- Calculo da equação da reta: Dados dois pontos em coordenadas homogêneas P1 = (x1, y1, 1) e P2 = (x2, y2, 1) a equação da reta que passa por os pontos antes mencionados pode ser calculada por o produto vetorial P1×P2.
- Ponto de intersecção de duas retas: Dadas duas retas no plano, expressas pelas equações cujos coeficientes (ax + by + c = 0) são R1 = (a1, b1, c1) e R2 = (a2, b2, c2), o ponto de intersecção entre elas pode ser obtido por meio do produto vetorial R1 x R2, seguido pela divisão por w (coordenada homogênea).

Nos itens a seguir, será mostrada uma explicação passo a passo do que foi implementado para mostrar que as premissas mencionadas foram atendidas, bem como uma explicação intuitiva do que está acontecendo em cada etapa.

Implementação no Geogebra

Os seguintes passos foram implementados usando o Geogebra Classic na versão 6.0 instalado localmente no Sistema Operacional Ubuntu 18.04.

1. Dado que a primeira premisa precisa de ter os dois pontos P1 e P2 expressos em coordenadas homogêneas, então a primeira coisa que dá para fazer é desenhar um grid ou plano no eixo z=1, como pode ser visto na figura 1

Figure 1: Plano no eixo z=1

2. Depois de desenhar o plano antes mencionado, os pontos P1(1,5,1), P2(5,1,1), P3(3,1,1) e o P4(5,3,1) em coordenadas homogêneas foram desenhados como pode ser visto na figura 2. Foram escolhidos os mesmos pontos do exemplo mostrado em aula, só pra ficar mais simples.

Figure 2: Vista aérea do plano Z=1 e os pontos que foram desenhados.

No caso da figura 2, o eixo vermelho representa o eixo X enquanto que o eixo verde representa o eixo Y. Essa é a vista aérea do plano, isto é o plano visto de cima.

3. Dado que a premisa fala de um produto vetorial dos pontos P1×P2 então precisamos obter os vetores $\vec{P1}$ e $\vec{P2}$ pra fazer o produto vetorial deles. Na figura 3, a vista aérea sobre o plano z=1 é mostrada com os vetores sendo graficados e mostrando o resultado do produto vetorial:

Figure 3: Vista aérea do plano Z=1 com vetores V1 e V2 associados aos pontos P1 e P2.

Como pode ser visto na parte esquerda o vetor unitário N1 é o resultado do produto vetorial normalizado dos vetores $\vec{V1}$ e $\vec{V2}$. Além disso, os coeficientes do vetor $\vec{N1}$ podem ser escalados para (1,1,-6) multiplicando eles por 6, o que finalmente pode ser escrito como x+y-6=0 o que é a equação da reta que passa por os pontos P1 e P2 tal como foi visto em aula. A vista mostrada na figura 4, mostra o vetor unitário $\vec{N1}$ graficamente e como ele é perpendicular aos vetores $\vec{V1}$ e $\vec{V2}$.

Figure 4: Vetores $\vec{V1}$ e $\vec{V2}$ junto com o vetor unitário $\vec{N1}$.

4. As mesmas operações foram feitas sobre os vetores $\vec{V3}$ e $\vec{V4}$ associados aos pontos P3 e P4 provando também que o produto vetorial desses vetores fica representando a equação da reta que pasa pelos ponto P3 e P4. Os mesmos gráficos mostrados para os pontos P1 e P2 são mostrados abaixo:

Figure 5: Vista aérea do plano Z=1 com vetores V3 e V4 associados aos pontos P3 e P4.

Figure 6: Vetores $\vec{V3}$ e $\vec{V4}$ junto com o vetor unitário $\vec{N2}$.

5. Finalmente, fazendo o produto vetorial dos vetores unitários $\vec{N1}$ e $\vec{N2}$ e reescalando o vetor resultante pra cruzar o plano Z=1, pode ser visto gráficamente que o vetor resultante cruza o plano exatamente no ponto de intersecção das retas que passam pelos pontos (P1,P2) e (P3,P4) respectivamente tal como a segunda premissa indicou. A figura mostrada abaixo mostra exatamente isso:

Figure 7: Produto vetorial de $\vec{N1}$ e $\vec{N2}$.

6. Eliminando a restrição de z=1 (coordenada homogênea) o produto vetorial dos vetores $\vec{N1}$ e $\vec{N2}$ fica sendo igualmente o ponto de intersecção das retas que passam pelos pontos

P1 e P2, só que o fator de escala varia. Na imagem apresentada abaixo é mostrado o mesmo gráfico da figura 7 só que em vez de z=1, o z=5.6.

Figure 8: Produto vetorial de $\vec{N1}$ e $\vec{N2}$ quando z=5.6.

Conclusões

- 1. A demonstração gráfica das propriedades do produto vetorial ficou muito mais clara após a realização deste exercício já que consegui olhar graficamente o que foi discutido na aula.
- 2. O fato de olhar os vetores e suas operações graficamente em 3D facilita muito o entendimento do que ocorre após cada operação.
- 3. Inicialmente ficou um pouco dificil gerar os gráficos pelo fato de que eu não conhecia os comandos que a ferramenta usa, mas quando eu consegui me acostumar com ela, tudo foi mais intuitivo.
- 4. Ainda asim, ficou dificil mostrar gráficamente os resultados quando z=1 já que a ferramenta não tem uma opção de zoom sem modificar a escala sendo usada.