Wstęp do uczenia maszynowego

Metody drzewiaste

Ewa Szczurek + BW (modyfikacje)

bartek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski

Drzewo regresyjne dla log zarobków w baseballu

Predyktory: liczba lat grania w lidze (Years) i liczba uderzeń, które wykonał w zeszłym roku (Hits).

Etykiety węzłów wewnętrznych: podziały. $X_j < t$ określa lewą gałąź. Prawa spełnia $X_j \ge t$. Np w lewej gałęzi są obserwacje spełniające Years < 4.5, a w prawej Years > 4.5.

Etykiety liści: średnia ze zmiennej objaśnianej (logarytmu pensji rocznej uderzającego) dla obserwacji wpadających do tych liści.

Predykcje na podstawie etykiet. Np dla obserwacji w lewym liściu pensja $e^{5.11}$ i.e. 165, 67 tysięcy dolarów.

Interpretacja:

- Years ważniejszym predyktorem.
- Jeśli gracz gra krótko (niedoświadczony), liczba uderzeń nie wpływa na jego zarobki.
- Ale już dla doświadczonych graczy (Years ≥ 4.5) wieksza liczba uderzeń zwieksza zarobki.

Interpretowalność jest główną zaletą drzew decyzyjnych.

Drzewa decyzyjne generują podział przestrzeni wartości predyktorów na rozłączne obszary

$$R_1 = \{X \mid Years < 4.5\}, R_2 = \{X \mid Years \ge 4.5, Hits < 117.5\}, R_3 = \{X \mid Years \ge 4.5, Hits \ge 117.5\}.$$

Dwa kroki konstruowania drzew decyzyjnych

- Dzielimy przestrzeń wartości predyktorów na J rozłącznych obszarów R₁, R₂,..., R_J. Obszary te są zwykle wielowymiarowymi prostopadłościanami.
- Dla każdej obserwacji, która wpada do obszaru R_j dajemy jako odpowiedź stałą c_j

$$f(x) = \sum_{j}^{J} c_{j} I(x \in R_{j}).$$

Jako ocenę jakości danego wyboru podziału przyjmujemy RSS:

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} (y_i - c_j)^2,$$

gdzie y; to odpowiedź dla zestawu i wartości predyktorów.

• Przy tej ocenie optymalne c_j to \hat{y}_{R_j} , średnia z odpowiedzi dla obszaru R_i .

Rekurencyjne binarne dzielenie przestrzeni wartości predyktorów (algorytm zachłanny)

• Wybieramy ten X_j oraz wartość odcięcia s, tak aby podział regionu (początkowo całej przestrzeni predyktorów) na obszary $R_1(j,s)=\{X\mid X_j< s\}$ oraz $R_2(j,s)=\{X\mid X_j\geq s\}$ prowadził do maksymalnego spadku RSS. Czyli minimalizujemy wartość

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2.$$

- Na każdym etapie tego procesu mamy pewien zbiór obszarów, które można dalej dzielić. Kryterium stopu: nie dzielimy obszarów mających mniej niż, np. 5 obserwacji.
- Po zakończeniu procesu konstruowania podziałów (czyli całego drzewa decyzyjnego), przypisujemy liściom wartość średnią odpowiedzi dla obszaru odpowiadającego temu liściowi.

Przykład podziału na 5 obszarów

 X_1

- A Podział, którego nie można otrzymać z rekurencyjnego binarnego dzielenia.
- B Podział, który można otrzymać.
- C Drzewo odpowiadające prawemu górnemu podziałowi.
- D Wykres wartości predykcji dla tego drzewa.

Przycinanie drzewa

- Drzewa otrzymane metodą rekurencyjnego binarnego dzielenia mogą być zbyt duże, co często prowadzi do przeuczenia. W zawiązku z tym należy je przyciąć.
- Uwaga: w podręczniku jest niecodzienna definicja podrzewa T
 jest poddrzewem drzewa T₀ jeśli T jest otrzymane z T₀ przez
 zastąpienie pewnej liczby węzłów wewnętrznych liśćmi.
- Przycinanie najsłabszych gałęzi: przy ustalonej wartości parametru α wybieramy podrzewo \mathcal{T} (w powyższym sensie) drzewa \mathcal{T}_0 otrzymanego metodą rekurencyjnego binarnego dzielenia tak aby zminimalizować koszt

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|,$$

gdzie |T| to liczba liści w T.

Przycinanie najsłabszych gałęzi

- Dla zadanego α istnieje dokładnie jedno T_{α} minimalizujące koszt $C_{\alpha}(T)$
- ullet Procedura znajdowania \mathcal{T}_{lpha}
 - Iteracyjnie zastępujemy liśćmi takie kolejne wierzchołki, które powodują najmniejszy przyrost członu $\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i \hat{y}_{R_m})^2$ (w tym sensie najsłabsze)
 - postępujemy tak aż dojdziemy do korzenia
 - to generuje sekwencję poddrzew
 - ullet można pokazać, że ta sekwencja zawiera $\mathcal{T}_{lpha}.$

Przykład drzewa decyzyjnego przed operacją przycinania

Algorytm konstrukcji drzewa regresyjnego

- Stosując metodę rekurencyjnego binarnego dzielenia zbuduj duże drzewo decyzyjne, stosując jako kryterium stopu ustaloną progową liczbę obserwacji w otrzymanym obszarze.
- 2 Zastosuj metodę przycinania najsłabszych krawędzi, otrzymując ciąg przyciętych drzew jako funkcję od parametru α .
- ① Użyj K-krotnej walidacji krzyżowej do oceny wyboru parametru α : Dla każdego $k=1,\ldots,K$
 - (a) Wykonaj kroki 1 i 2 na wszystkich danych, za wyjątkiem k-tej części.
 - (b) Oblicz średni błąd kwadratowy predykcji dla k-tej części jako funkcję od α .
 - Wyznacz α_0 , przy którym średnia z błędów po wszystkich k jest najmniejsza.
- lacktriangle Zwróć jako wynik drzewo z kroku 2 odpowiadające znalezionej wartości $lpha_0$.

Analiza poziomu błędu dla danych o zarobkach w baseballu

- Podział danych na 132 obserwacje w zbiorze treningowym i 131 w testowym.
- Zbudowanie dużego drzewa regresji na danych treningowych
- ullet Zbudowanie poddrzew dla różnych wartości lpha
- ullet Wykonanie 6-krokowej walidacji krzyżowej, estymując testowy MSE w zależności od lpha
- Porównanie wyestymowanego testowego MSE z rzeczywistym (policzonym na danych testowych)

Analiza poziomu błędu dla danych o zarobkach w baseballu

Walidacja krzyżowa wskazuje, że przycięte drzewo o 3 liściach daje najlepszy wynik.

Drzewo o minimalnym MSE

Drzewa klasyfikujące

Konstrukcja drzew klasyfikujących jest podobna do drzew regresyjnych

- Zamiast brać średnią jako predykcję dla danego obszaru (tak jak to było dla drzew regresyjnych) wybieramy tę odpowiedź, która jest najczęstsza wśród odpowiedzi z danego obszaru.
- Miara RSS nie nadaje się do wyboru podziału i jako miara jakości klasyfikacji obserwacji wpadających do regionu dla danego wierzchołka.
- Rozważmy jeden region (wierzchołek) R_m . Niech \hat{p}_{mk} oznacza proporcję obserwacji treningowych z m-tego regionu, które należą do klasy (z klasyfikacji) k.
- $\max_k(\hat{p}_{mk})$: proporcja tych obserwacji w obszarze, które należą do klasy o największej częstości w tym obszarze.

Miary oceny "czystości" klasyfikacji dla obszaru

Błąd klasyfikacji:

$$E_m = 1 - \max_k (\hat{p}_{mk}).$$

• Indeks Giniego:

$$G_m = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk}).$$

Entropia krzyżowa:

$$D_m = -\sum_{k=1}^K \hat{p}_{mk} \log(\hat{p}_{mk}).$$

• Miary te przyjmują wartości bliskie 0, gdy \hat{p}_{mk} jest bliskie 1 (można wtedy powiedzieć, że węzeł m jest czysty).

Zastosowanie miar

Najczęściej stosuje się

- Przy budowaniu drzewa, gdy oceniamy podział regionu w danej iteracji: Indeks Giniego bądź entropia krzyżowa (są bardziej wrażliwe na czystość wierzchołków).
- Przy ocenie klasyfikacji i przy przycinaniu drzewa: Błąd klasyfikacji.

Przykład: Dane 'heart'

- 303 pacjentów z bólem w klatcie piersiowej.
- Klasy: chory na serce 'Yes', lub nie-chory 'No'.
- Łącznie 13 predyktorów, takich jak Age, Sex, Chol (poziom cholesterolu).

Pełne drzewo

Uwaga: niektóre podziały dają w wyniku liście o identycznych etykietach. To niepotrzebne ze względu na predykcję, ale zwiększa czystość węzłów.

Drzewo klasyfikacyjne po przycięciu

Minimalny błąd osiąga się przy drzewie o 6 liściach.

Podział przestrzeni przy predyktorach jakościowych

- Predyktor 'Thal' oznacza wynik testu stresowego przy pomocy talu.
 Możliwe wyniki to 'normal' lub 'stałe' lub 'odwracalne' uszkodzenia.
- Predyktor 'ChestPain' przyjmuje 4 możliwe wartości, między innymi: typowa dusznica, nietypowa dusznica, ból nie-dusznicowy.
- Dla predyktorów X przyjmujących wartości jakościowe (np. 'Thal', 'ChestPain') podział przestrzeni określa sie przez wypisanie które wartości prowadzą do lewego poddrzewa (a oznacza pierwszą wartość predyktora, b drugą, itd.). Niewymienione wartości prowadzą do prawego poddrzewa.

Liniowe modele mogą dawać lepsze wyniki niż drzewa

Ale drzewa mogą też dawać lepsze wyniki niż liniowe modele

Zalety i wady drzew decyzyjnych

Zalety

- Drzewa bardzo łatwo wytłumaczyć
- Drzewa odpowiadają sposobowi podejmowania decyzji przez (niektórych) ludzi
- Mają intuicyjną reprezentację graficzną
- Łatwo buduje się je w oparciu o kategoryczne (nominalne, jakościowe) zmienne, bez potrzeby generowania "dummy variables"

Wady

- Słabe wyniki w zastosowaniu do danych
- Duża wariancja małe zmiany w danych mogą silnie wpłynąć na model

Metody poprawiania jakości predykcji drzewowych: bootstrap aggregation (bagging)

Bagging jako metoda zmniejszania wariancji

- Oparte na obserwacji, że jeśli mamy zmienne losowe Z_1, \ldots, Z_n o tej samej wariancji σ^2 , to wariancja średniej \bar{Z} jest równa σ^2/n .
- Korzystamy z boostrap, czyli udajemy, że mamy B zbiorów treningowych.
- Wykonujemy bootstrap produkując B danych treningowych. Dla b-tych danych bootstrapowych konstruujemy funkcję predykcji $\hat{f}^{*b}(x)$ i następnie obliczamy średnią po wszystkich b

$$f_{bag}(x) = (1/B) \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

Bagging jako metoda zmniejszania wariancji

- Tu pokazujemy jako metodę zmniejszania wariancji drzew decyzyjnych
- Jest to podejście ogólne, które można zastosować aby zredukować wariancję różnych metod.
- W przypadku drzew regresyjnych:
 - budujemy B drzew regresji na B prób z bootstrap i uśredniamy ich predykcje.
 - drzewa nie są przycinane każde z nich ma małe obciążenie, a dużą wariancję, którą zmniejszamy uśredniając po drzewach
- Gdy zmienna objaśniana przyjmuje wartości jakościowe (klasyfikacja), to zamiast brać średnią stosujemy głosowanie większościowe (klasa najczęściej zgłaszana wygrywa).

Estymacja błędu testowego dla metody bagging – estymacja out-of-bag (OOB)

- Można pokazać, że średnio około 2/3 obserwacji w procesie boostrapowania jest użyte do konstrukcji drzewa. Obserwacje nie użyte w budowie drzewa nazywane są obserwacjami out-of-bag (OOB).
- Zatem jeśli wykonujemy bootstrap B razy to dla każdej obserwacji średnio B/3 drzew nie wykorzystywało tej obserwacji. Możemy te drzewa wykorzystać do estymowania błędu predykcji przez wzięcie średniego błędu dla tych drzew.
- Łączny błąd wyestymowany przez OOB (jako średnia błędów po wszystkich obserwacjach) jest dobrym przybliżeniem błędu testowego.

Ustalenie rankingu predyktorów

Dla każdego predyktora wyznaczamy jego "wagę" (istotność) przez obliczenie spadku wartości (RSS dla drzew regresyjnych i indeks Giniego dla drzew klasyfikujących), uśrednionego po B drzewach.

Ilustracja: dane "Heart"i średni indeks Giniego.

Metody poprawiania jakości predykcji drzewowych: lasy losowe (random forests)

Lasy losowe jako dalsze ulepszenie metody bagging

- Podobnie jak w metodzie bagging dla drzew budujemy B drzew na bootstrapowanych danych.
- Ale w trakcie budowy drzewa, przy rozważaniu dla którego predyktora zastosować podział, bierzemy pod uwagę tylko m predyktorów wylosowanych spośród wszystkich p predyktorów.
- Tutaj m jest parametrem. Często przyjmuje się $m \approx \sqrt{p}$. Dla m=p metoda sprowadza się do bagging.
- Dzięki temu uwalniamy się od wpływu najsilniejszych predyktorów (czyli takich, które są wybierane na początku do konstrukcji podziału) - mogą one nie wpaść do zbioru m rozważanych.
- Najsilniejsze predyktory często są użyte blisko korzeni drzew, stąd konstruowane drzewa metodą bagging moga być ze sobą silnie skorelowane.
- Restrykcja do m predyktorów może pomóc w redukcji błędu testowego.

Lasy losowe w predykcji typu choroby nowotworowej

- Trzy różne strategie wyboru parametru m.
- Dane z ekspresji 4718 genów pochodzące od 349 pacjentów.
- Pacjenci są podzieleni na 15 klas (zdrowy oraz 14 typów raka).
- Obserwacje losowo podzielono na treningowe i testowe.
- Cel: użyć drzew losowych na podstawie 500 genów o największej zmienności ekspresji w zbiorze treningowym do predykcji typu raka.

- Pojedyncze drzewo ma błąd 45.7%.
- Model zerowy (przypisujący do dominującej klasy - tutaj 'normal') ma błąd 75.4%.
- las losowy z m = p to bagging

Lasy losowe lepsze niż bagging na danych 'Heart'

- Przerywana linia: błąd testowy pochodzący od jednego drzewa.
- Las losowy dla $m = \sqrt{p}$.

Metody poprawiania jakości predykcji drzewowych: boosting

Boosting

- Ogólne podejście (podobnie jak bagging), można boostować różne metody. Tutaj skupimy się na drzewach.
- Drzewa są konstruowane sekwencyjnie, jedno po drugim.
- Tak otrzymane drzewa są agregowane aby dać uśrednioną predykcję
- Nie korzystamy z bootstrap, każde drzewo budujemy na nieco zmodyfikowanym zbiorze danych
- Uczenie powolne: zamiast jednego dużego modelu zbudowanego naraz, z dużym ryzykiem przeuczenia, postępujemy w kolejnych B krokach, w każdym go nieco go tylko "poduczając"
 - Mając model z danego kroku, w kolejnym dopasowujemy drzewo do reszt tego modelu (reszty są zmienną objaśnianą)
 - Dodajemy otrzymane drzewo do modelu i uaktualniamy reszty.

Trzy parametry dla metody boosting

- Liczba drzew: B.
 - Jeśli liczba B będzie za duża, możemy przeuczyć (w odróżnieniu od bagging i random forest, gdzie liczba prób z bootstrap nie ma wpływu na przeuczenie)
- Parametr ściągania (shrinkage): $\lambda > 0$.
 - Kontroluje współczynnik "poduczania".
 - Typowe wartości są rzędu 0.01 albo 0.001, zależą od danych.
 - ullet Bardzo małe λ może wymagać bardzo dużego B aby uzyskać dobry model.
- Liczba podziałów w każdym drzewie (czyli wierzchołków wewnętrznych): d.
 - Dla d=1 mamy tylko jeden podział w drzewie (drzewo zamienia się w kikut, ang. stump).
 - d określa głębokość interakcji, czyli ile zmiennych jest zaangażowanych w model (drzewo z d podziałami opiera się o wartości co najwyżej d zmiennych)

Algorytm boostingu dla drzew regresyjnych

- Początkowe wartości: $\hat{f}(x) = 0$, reszty $r_i = y_i$ dla $i = 1, \dots, n$.
- Dla $b = 1, 2, \dots, B$ powtarzaj:
 - (a) Dopasuj drzewo \hat{f}^b o d węzłach wewnętrznych (czyli o d+1 liściach) do danych treningowych (X,r).
 - (b) Uaktualnij \hat{f} przez dodanie skurczonej wersji nowego drzewa:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$

(c) Uaktualnij reszty

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i).$$

• Wynikiem boostingu jest model

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$

Zastosowanie boostingu do predykcji raka

- Cel: klasyfikator cancer (którykolwiek z 14 typów) vs normal
- $\lambda = 0.01$
- Boosting wygrywa, ale różnice między metodami nie są statystycznie istotne
- Wszystkie biją pojedyncze drzewo regresji na głowę (błąd 24%)

Kilka metod drzewiastych

- Drzewa decyzyjne
- Bagging
- Random forest
- Boosting