Anexo 9 — Espaço de Hilbert Ressonante na Teoria ERIЯЗ

1. Introdução

Este anexo estabelece a formalização de um **espaço de Hilbert ressonante** adequado ao domínio multiplanar $\mathbb{E} = \mathbb{C}_i \oplus \mathbb{C}_j \oplus \mathbb{C}_k$. O objetivo é definir uma base funcional para o tratamento quântico completo de sistemas que evoluem sob coerência rotacional, incluindo produtos internos, completude, operadores e medidas.

2. Definição do Espaço de Hilbert Ressonante

Seja \mathcal{H}_R o conjunto das funções $\Psi:D\subset\mathbb{E} o\mathbb{E}$ tais que:

- 1. $\Psi \in L^2(D)$: integrável ao quadrado sob a norma rotacional;
- 2. Ψ possui decomposição ortogonal: $\Psi=\psi_i+\psi_j+\psi_k$;
- 3. $\|\Psi\|^2=\langle\Psi,\Psi
 angle<\infty$.

Então \mathcal{H}_R é um espaço de Hilbert com produto interno definido abaixo.

3. Produto Interno Ressonante

Para $\Psi,\Phi\in\mathcal{H}_R$:

$$\langle \Psi, \Phi
angle = \sum_{I \in \{i,j,k\}} \int_D \overline{\psi_I(x)} \cdot \phi_I(x) \, dx$$

Esse produto é:

- Linear no segundo argumento;
- Conjugado no primeiro;
- · Positivo-definido;

• Invariante sob projeções.

4. Base Ortonormal Ressonante

Uma base $\{e_n\}\subset \mathcal{H}_R$ é ortonormal se:

$$\langle e_n,e_m
angle = \delta_{nm}, \quad orall n,m$$

Toda função $\Psi \in \mathcal{H}_R$ pode ser escrita como:

$$\Psi = \sum_n c_n e_n, \quad c_n = \langle e_n, \Psi
angle$$

5. Operadores Hermitianos e Observáveis

Um operador $\hat{O}:\mathcal{H}_R o\mathcal{H}_R$ é hermitiano se:

$$\langle \hat{O}\Psi, \Phi \rangle = \langle \Psi, \hat{O}\Phi \rangle$$

Se Ψ é autovetor, então:

$$\hat{O}\Psi=\lambda\Psi,\quad \lambda\in\mathbb{R}$$

6. Medidas e Expectação

O valor esperado de um operador \hat{O} em um estado Ψ é:

$$\langle \hat{O}
angle = \langle \Psi, \hat{O} \Psi
angle$$

A variância é:

$$(\Delta O)^2 = \langle \hat{O}^2 \rangle - \langle \hat{O} \rangle^2$$

7. Completude e Convergência

 \mathcal{H}_R é completo: toda sequência de Cauchy converge.

Operadores limitados, compactos, e integrais podem ser definidos analogamente à teoria funcional tradicional.

8. Conclusão

O espaço de Hilbert \mathcal{H}_R permite a formulação quântica completa de estados rotacionais coerentes, mantendo:

- A tridimensionalidade ressonante;
- A simetria de projeções;
- A estrutura espectral e probabilística da mecânica quântica.

Esse espaço forma a base para aplicar ERIЯЗ a sistemas quânticos reais, ópticos, computacionais e atômicos, permitindo uma interpretação geométrica e funcional de toda a teoria quântica no domínio \mathbb{E} .