Variables-Aleatoires

- \square On note X la VA égale au maximum des deux numéros obtenus.
- 1. Quel est l'univers Ω associé à cette expérience?
- 2. Caractériser la pbté P sur Ω .
- 3. Quelle est l'image de la VA X?
- 4. Quelle est la loi de pbté de X?
- 5. Calculer l'espérance, la variance et l'écart type de X.
- 6. Effectuer avec python une simulation de cette expérience en effectuant un grand nombre de tirages et comparer les résultats théoriques et expérimentaux.

- Soit X la variable aléatoire égale au nombre de piles obtenus.
- 1. Quel est l'univers Ω associé à cette expérience aléatoire?
- 2. Quelle probabilité définir sur Ω ?
- 3. Déterminer l'image de la variable aléatoire X.
- 4. Déterminer la loi de probabilité de X.
- 5. Calculer l'espérance, la variance et l'écart type de X.
- 6. Généraliser l'exercice avec n lancers.
- 7. Faire des simulations avec python

Exercice 3 Une boîte contenant 12 articles dont 3 sont défectueux.

- On tire au hasard et simultanément un échantillon de 4 articles.
- Soit X la VA égale au nombre d'articles défectueux obtenus.
- 1. Quelle est l'image de la VA X?
- 2. Déterminer la loi de probabilité de X.
- 3. Calculer l'espérance, la variance et l'écart-type de X.
- 4. Faire des simulations avec python.

- Le joueur lance un dé non pipé à 6 faces.
 - S'il obtient un nombre premier il reçoit la somme indiquée par le dé

- dans le cas contraire, c'est lui qui doit verser cette somme.
- 1. Ce jeu est-il favorable au joueur?
- 2. Faire une simulation avec python.

Exercice 5 On jette un dé plusieurs fois consécutivement jusqu'à la sortie d'un 6.

- Soit X la VA égale au nombre de lancers effectués.
- 1. Quelle est l'image de la VA X?
- 2. Quelle est la loi de probabilité de X?
- 3. Calculer l'espérance, la variance et l'écart-type de X.
- 4. Faire une simulation avec python.

Exercice 6 On lance deux dés à six faces, non truqués.

- Soient X et Y les VA égales resp. au minimum et au maximum obtenus.
- 1. Déterminer la loi de (X,Y), les lois marginales.
- 2. Étudier l'indépendance de X et Y.
- 3. Calculer les espérances de X, Y et XY.
- 4. Écrire un programme python simulant 1000 lancers et calculer les espérances expérimentales de X, Y et XY.

- On considère la VA X égale à la somme des deux numéros obtenus.
- 1. Déterminer la loi de probabilité de X
- 2. Calculer l'espérance et la variance de X
- 3. Effectuer des simulations avec python

Exercice 8 On considère une urne contenant N boules : B_1, B_2, \ldots, B_N .

- \square On effectue N tirages avec remise, en supposant l'équipbté des résultats.
- $\forall i \in [1, n]$, on note X_i la VA prenant la valeur 1 si la boule B_i sort lors du i^e tirage, et la valeur 0 sinon.
- On pose $S_N = X_1 + X_2 + ... + X_N$.
- Pour tout $k \in \mathbb{N}$, on note p(N, k) la pbté de l'événement $S_N = k$.
- 1. Déterminer l'esp de X_i . En déduire celle de S_N .
- 2. Montrer que p(N,k)=0 lorsque k>N et que $p(N,k)=\binom{N}{k}\left(1-\frac{1}{N}\right)^{N-k}\frac{1}{N^k}$ si $0\leqslant k\leqslant N$.

3. Pour $k \in \mathbb{N}$ fixé, déterminer $\lim_{N \to +\infty} p(N, k)$. (On commencera par traiter les cas k = 0, k = 1 et k = 2.)

Exercice 9 On considère une urne contenant $N \ge 2$ boules : B_1, B_2, \ldots, B_N .

- \square On effectue N tirages sans remise, en supposant l'équipbté des résultats.
- Pour tout $i \in [1, N]$, on note Y_i la VA prenant la valeur 1 si la boule B_i sort lors du i^e tirage, et la valeur 0 sinon.
- On pose $T_N = Y_1 + Y_2 + ... + Y_N$.
- 1. Déterminer l'esp de Y_i et celle de Y_iY_j où $1 \le i < j \le N$.
- 2. Calculer la covariance de Y_i et Y_j (Cov $(Y_i, Y_j) = E(Y_i Y_j) E(Y_i) E(Y_j)$.)
- 3. Montrer que si deux VA sont indép, alors leur covariance est nulle. La réciproque est-elle vraie?
- 4. Les VA Y_i et Y_j sont-elles indép?
- 5. Déterminer $E(T_N)$ et $V(T_N)$.

Exercice 10 Soient $k, n \in \mathbb{N}$ tel que $0 < 3k \leq n$.

- 1. Démontrer que pour tout $i \in \mathbb{N}$ tel que $i \leq k-1$ on a $\binom{n}{i} \leq \frac{1}{2} \binom{n}{i+1}$.
- 2. Démontrer que pour tout $i \in \mathbb{N}$ tel que $i \leqslant k$ on a $\binom{n}{i} \leqslant \frac{1}{2^{k-i}} \binom{n}{k}$.
- 3. En déduire que $\binom{n}{k} \leqslant \sum_{i=0}^{k} \binom{n}{i} \leqslant 2\binom{n}{k}$.

On suppose:

- Monsieur X vend des journaux, sur le marché, le samedi matin.
- \blacksquare Il propose, au choix, deux quotidiens A et B.
- \blacksquare Il dispose d'un stock de 40 exemplaires de A et de 40 exemplaires de B.
- \blacksquare Aucun client ne demande A et B.
- Si un client demande A (resp. B) alors que le stock de A (resp. B) est épuisé alors il part sans demander B (resp. A).
- Un samedi, 60 clients se présentent dans la matinée.
- \square Chaque client demande soit A, soit B avec la même pbté $\frac{1}{2}$.
- Y est la VA égale au nb de clients qui demandent A.
- x la pbté de "M. X ne satisfait pas à toutes les demandes"
- 1. Déterminer la loi de Y. Donner son esp. et sa var.
- 2. Exprimer x à l'aide de la loi de Y
- 3. Déduire de l'inégalité de Bienaymé-Tchebychev un majorant de x.

- 4. Déduire des questions préliminaires un encadrement de x
- 5. Comparer les résultats des deux questions précédentes.

Exercice 11 On vous propose le jeu suivant :

- Vous lancez un dé à six faces bien équilibré jusqu'à ce que le résultat, noté p, soit un nombre premier.
- \square Soit n le nombre de lancers effectués.
- Vous recevez à l'issue de ce jeu la somme p-n euros (dans le cas où p-n<0, c'est vous qui versez la somme n-p).
- 1. Acceptez-vous de jouer?
- 2. Faire quelques simultations avec python.

Exercice 12 \square Une urne contient des boules, dont B sont bleues et R sont rouges.

- \square On prélève simulanément n boules de l'urne $(n \leq B + R)$
- \square On note X la VA égale au nb de boules bleues dans l'échantillon.
- 1. Quel univers peut-on associer à cette expérience aléatoire?
- 2. Déterminer la loi de pbté de X. On notera $X \leadsto H(B,R,n)$
- 3. Calculer l'espérance de X
- 4. Calculer la variance de X

Exercice 13 \square On considère où a est un réel fixé.

- \square On considère un couple de VA (X,Y)
 - \Leftrightarrow dont l'image est $[1, n]^2$
 - $\ \, \ \, \text{de loi définie par } \forall (i,j) \in [\![1,n]\!]^2 \quad P(X=i,Y=j) = \frac{a \cdot i \cdot j}{n^2(n+1)^2}$
- 1. Déterminer la valeur de a
- 2. Déterminer les lois marginales de X et de Y
- 3. Calculer E(X) et E(Y)
- 4. Calculer V(X) et V(Y)
- 5. X et Y sont-elles indépendantes?

Exercice 14 Sur des cases numérotées de 0 à n, on place un pion en position 0.

- \square On fait le test n fois et on note sur quelle case le pion finit.
- 1. Écrire une fonction python CaseFinale(n) qui renvoie la case où finit le pion.

- 2. Faire 500 fois l'expérience et tracer un graphe représentant la fréquence d'occurrence de chaque valeur entre 0 et n, dans le cas où n=50.
- 3. Écrire un programme binom(n) renoyant la liste des coefficients $\binom{n}{k}$.
- 4. Représenter la liste des coefficients binomiaux $\binom{50}{k}$

Exercice 15 On donne
$$\Omega = \{(0,1), (0,-1), (1,0), (-1,0)\}$$
 et $X_0 = (0,0)$

- X_n représente la position d'un objet dans le plan
- $\mathbb{R} \ V_n \in \Omega$ est la VA donnant le n^{e} déplacement : $X_{n+1} = X_n + V_{n+1}$
- 1. Écrire une fonction deplacement retournant un élément de Ω de manière aléatoire suivant la loi uniforme.
- 2. Écrire une fonction trajectoire(n) retournant une liste $[X_0, X_1, \dots, X_n]$ de positions successives.
- 3. Tester cette fonction et afficher les trajectoires pour n=10.
- 4. Écrire une fonction premierretour(n) retournant l'indice i de premier retour à l'origine de l'objet quand il en existe un, et -1 sinon.
- 5. On note T la VA donnant l'indice du premier retour à l'origine. Peut-on conjecturer, à l'aide d'un programme que T est bien définie?

Exercice 16 Peut-on truquer deux dés de telle sorte que leur somme suive une loi uniforme?

Exercice 17 Soient X_1, \ldots, X_n des VA indép.

$$\forall i \in [1, n] \quad X_i \leadsto B(\frac{1}{i})$$

 \square On définit la VA N_n égale à :

$$1 \text{ is } 0 \text{ si } X_1 = X_2 = \ldots = X_n = 1$$

$$\Rightarrow \min\{k \in [1, n]/X_k = 0\} \text{ sinon }$$

- 1. Trouver la loi de la VA N_n
- 2. Déterminer $\lim_{n\to+\infty} E(N_n)$
- 3. Déterminer $\lim_{n\to+\infty}V(N_n)$
- 4. Simulations python.

Exercice 18 \square On lance une pièce avec une pbté p de faire «pile».

- \square On note N le nb de lancers effectués pour obtenir le premier «pile».
- Si on obtient «pile» pour la première fois au n^e lancer :
 - \Rightarrow on relance n fois la pièce
 - \triangleleft on note X le nb de «pile» obtenus au cours de ces n lancers.

- 1. Déterminer la loi de N
- 2. Déterminer la loi du couple (N, X)
- 3. Montrer que $\forall k \in \mathbb{N} \quad \forall x \in]-1,1[\quad \sum\limits_{a=k}^{\infty} {a \choose k} x^{a-k} = \frac{1}{(1-x)^{k+1}}$
- 4. Déterminer la loi de X
- 5. Simulations python.

Exercice 19 \square On pioche une poignée de jetons dans une urne en contenant n, numérotés de 1 à n.

- On suppose que toutes les poignées (y compris la poignée vide) ont la même probabilité d'être tirées.
- 1. Donner l'espérance de la VA S égale à la somme des numéros tirés.
- 2. Simulations python

Exercice 20 \bowtie la pbté d'obtenir «pile» en lançant une pièce est $p \in]0,1]$.

- \blacksquare l'évt "ne pas obtenir deux «pile» d'affilée au cours des n premiers lancers" et e_n sa pbté.
- T la VA égale au premier rang n où on obtient deux «pile» d'affilée.
- 1. Écrire un programme python qui prend n et p en paramètres et renvoie True si E_n est réalisé et False sinon.
- 2. Montrer que $e_{n+2} = (1-p)e_{n+1} + p(1-p)e_n$
- $3.\ En$ déduire que l'évt "obtenir 2 «pile» d'affilée sur un nombre infini de lancers" est presque sûr.
- 4. Donner la loi de probabilité T.
- 5. Donner la fonction génératrice de T.
- 6. Montrer que T admet une espérance et la calculer.
- 7. Écrire un programme qui vérifie la valeur de cette espérance.

Exercice 21 Les coeff. d'une matrice aléatoire $M \in M_n(\mathbb{R})$ suivent tous une loi de Bernoulli de paramètre p.

- 1. Donner la loi de tr(M).
- 2. Calculer l'espérance de $(tr(M))^2$.
- 3. On suppose les coeff. de M indép. Ceux de M^2 le sont-ils?