Домашня робота № 2.1

Тема. Чисельні методи наближення функцій. Інтерполяційний многочлен Лагранжа.

Завдання 1. Опрацювати з лекції 3 питання 2.1.6 та 2.1.7.

Завдання 2. Законспектувати у зошити приклади 1,2,3 з лекції 3, с фотогра фувати та надіслати на перевірку у файлі **Конспект_ПЗ_2_Прізвище_Група.pdf** (завдання зараховується як робота на парі і ставиться в таблицю моніторингу +).

Завдання 3. Побудувати інтерполяційний многочлен Лагранжа $L_n(x)$ для функції f(x), що задана таблицею, та обчислити значення функції у заданих точках. Побудувати графік інтерполяційної функції $y = L_n(x)$ за наявним набором точок. Для виконання завдання розробити програму на одній з мов програмування.

Вимоги до оформлення Звіту

Номер варіанта слід обрати за номером списку групи. Перший за списком групи студент виконує варіант 1, другий — варіант 2, і так далі (дивитися файл в клас-румі МОНІТОРИНГ ВІДВІДУВАННЯ ЗАНЯТЬ).

Звіт має бути оформлений в MS Word та включати в себе такі складові:

- 1. Титульний лист (додаток 1 в кінці даного файлу).
- 2. Постановку задачі та варіант своїх завдань.
- 3. Короткий опис рішення завдання алгоритм у вигляді блок-схеми для розв'язку наведеної задачі.
- 4. Математичне підґрунтя для виконання даного завдання (перелік формул, що були використані при розробленні програми на мові програмування).
- 5. Програма проекту (копія коду на білому фоні) та результати обчислень (обрізаний скриншот екрану). У результатах обчислень мають бути виведені:
 - формула многочлена Лагранжа,
 - обчислені значення многочлена в заданих точках,
 - графік.
- 6. Висновки (обов 'язково).

Звіт третього завдання має бути надісланий в клас-рум двома файлами: ДЗ-2.1_Група_Прізвище.docx та програмний проект (щоб я змогла відкрити і перевірити).

Варіант	3a	дана т	аблиця	значе	НЬ		3 a ₂	цані точ	нки	
1	x_i	-2	-1	0	1	X_i	-3	-1,5	0,5	1,5
1	$f(x_i)$	-7	4	1	2	$L(x_i)$?	?	?	?
•	x_i	-1	0	2	3	X_i	-0,5	0,5	1,5	2,5
2	$f(x_i)$	-16	-7	-1	20	$L(x_i)$?	?	?	?
2	x_i	-2	-1	1	2	x_i	-0,5	0,5	1,5	2,5
3	$f(x_i)$	-26	-5	1	10	$L(x_i)$?	?	?	?
4	x_i	-1	0	1	2	x_i	-0,5	0,5	1,5	2,5
4	$f(x_i)$	-20	-5	6	25	$L(x_i)$?	?	?	?
_	x_i	-2	-1	2	3	x_i	-1,5	-0,5	1,5	2,5
5	$f(x_i)$	-22	-10	-10	-2	$L(x_i)$?	?	?	?
	X_i	-2	0	1	2	x_i	-1,5	-0,5	0,5	2,5
6	$f(x_i)$	-11	-3	-11	5	$L(x_i)$?	?	?	?
7	x_i	-3	-2	1	3	X_i	-1,5	0,5	1,5	2
7	$f(x_i)$	-4	19	-8	14	$L(x_i)$?	?	?	?
0	x_i	-3	-2	0	2	X_i	-4	-1,5	-1	1,5
8	$f(x_i)$	-22	-13	-7	23	$L(x_i)$?	?	?	?
0	x_i	-2	0	1	2	x_i	-1,5	-1	-0,5	1,5
9	$f(x_i)$	30	-4	3	18	$L(x_i)$?	?	?	?
10	X_i	-1	0	1	5	x_i	-0,5	2	3	4,5
10	$f(x_i)$	11	4	7	-1	$L(x_i)$?	?	?	?

11	X_i	-1	0	1	3	X_i	-0,5	1,5	2	2,5
11	$f(x_i)$	1	-8	-3	25	$L(x_i)$?	?	?	?
12	X_i	-1	0	1	2	X_i	-2	-0,5	0,5	1,5
	$f(x_i)$	5	-11	-3	23	$L(x_i)$?	?	?	?
10	x_i	-4	-3	0	1	X_i	-2	-0,5	0,5	2
13	$f(x_i)$	-7	10	-11	-22	$L(x_i)$?	?	?	?
1.4	x_i	-4	0	3	4	X_i	-3	-2	2	3,5
14	$f(x_i)$	-15	-11	-8	25	$L(x_i)$?	?	?	?
15	x_i	-4	-3	-1	3	X_i	-3,5	-2	1,5	2
15	$f(x_i)$	-15	5	3	-1	$L(x_i)$?	?	?	?
	X_i	-3	-1	0	2	X_i	-2,5	-2	-0,5	1
16	$f(x_i)$	5	3	-7	-15	$L(x_i)$?	?	?	?
17	x_i	-4	-2	0	3	X_i	-3,5	-3	-0,5	2
17	$f(x_i)$	-18	8	-6	3	$L(x_i)$?	?	?	?
10	X_i	-3	-1	1	2	X_i	-4	-2	-1,5	0,5
18	$f(x_i)$	3	3	-13	-12	$L(x_i)$?	?	?	?
10	X_i	-4	-1	1	2	X_i	-3	-2	-0,5	2,5
19	$f(x_i)$	-6	3	-11	-6	$L(x_i)$?	?	?	?
20	X_i	-3	-2	0	3	X_i	-4	-1,5	2	2,5
20	$f(x_i)$	9	10	-6	15	$L(x_i)$?	?	?	?
21	x_i	-4	-2	1	3	X_i	-3	-1	0,5	2,5
21	$f(x_i)$	-8	10	-8	20	$L(x_i)$?	?	?	?

22	X_i	-3	-1	0	2	X_i	-2	-1,5	-0,5	1
22	$f(x_i)$	8	4	-4	-2	$L(x_i)$?	?	?	?
22	x_i	-2	0	2	4	X_i	-1,5	-1	3	3,5
23	$f(x_i)$	-5	1	-9	13	$L(x_i)$?	?	?	?
24	X_i	-2	-1	0	3	X_i	-1,5	-0,5	1	2
24	$f(x_i)$	-4	3	2	11	$L(x_i)$?	?	?	?
25	X_i	-3	-2	0	2	X_i	-2,5	-1	1,5	3
25	$f(x_i)$	-13	3	5	7	$L(x_i)$?	?	?	?
26	X_i	-2	0	2	3	X_i	-1,5	-1	0,5	1,5
20	$f(x_i)$	-5	7	11	25	$L(x_i)$?	?	?	?
27	x_i	-2	1	2	3	X_i	-3	-1	0,5	1,5
27	$f(x_i)$	11	-4	-1	26	$L(x_i)$?	?	?	?
20	X_i	-3	-1	0	2	X_i	-2	-1,5	-0,5	1
28	$f(x_i)$	-16	14	5	-1	$L(x_i)$?	?	?	?

Зразок виконання завдання

Завдання: Побудувати інтерполяційний багаточлен Лагранжа $L_{n}(x)$ для функції $f(x)_{,}$ що задана таблицею:

X_i	0	2	3	5
$f(x_i)$	1	3	2	5

Знайти значення функції у заданій точці x=4. Побудувати графік інтерполяційної функції $y = L_n(x)$ за наявним набором точок.

Розв'язання.

Якщо задано 4 точки для інтерполювання, то n=3 і розрахункова формула матиме вигляд:

$$L_{3}(x) = \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} y_{0} + \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} y_{1} + \frac{(x - x_{0})(x - x_{1})(x - x_{3})}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} y_{2} + \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})} y_{3}$$

Отже:

$$L_{3}(x) = 1 \cdot \frac{(x-2)(x-3)(x-5)}{(0-2)(0-3)(0-5)} + 3 \cdot \frac{(x-0)(x-3)(x-5)}{(2-0)(2-3)(2-5)} + 2 \cdot \frac{(x-0)(x-2)(x-5)}{(3-0)(3-2)(3-5)} + 5 \cdot \frac{(x-0)(x-2)(x-3)}{(5-0)(5-2)(5-3)} =$$

$$= \frac{x^{3} - 10x^{2} + 31x - 30}{-30} + \frac{x^{3} - 8x^{2} + 15x}{2} + \frac{x^{3} - 7x^{2} + 10x}{-3} + \frac{x^{3} - 5x^{2} + 6x}{6} =$$

$$= \frac{3}{10}x^{3} - \frac{13}{6}x^{2} + \frac{62}{15}x + 1$$

Отже, отримали форуму многочлена Лагранжа:

$$L_3(x) = \frac{3}{10}x^3 - \frac{13}{6}x^2 + \frac{62}{15}x + 1.$$

Знайдемо значення функції у заданій точці x=4:

$$f(4) \approx \frac{3}{10} \cdot 4^3 - \frac{13}{6} 4^2 + \frac{62}{15} \cdot 4 + 1 \approx 2.067$$

Побудуємо графік інтерполяційної функції $y = L_3(x)$ (рис. 1):

Рис. 1. Графік інтерполяційної функції $y = L_3(x)$

Відповідь:
$$L_3(x) = \frac{3}{10}x^3 - \frac{13}{6}x^2 + \frac{62}{15}x + 1$$
, $f(4) \approx 2.067$.

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Навчально-науковий інститут атомної та теплової енергетики

Кафедра інженерії програмного забезпечення в енергетиці

ДОМАШНЯ РОБОТА №2.1

з дисципліни «Математичне моделювання та оптимізація процесів і систем»

тема «Чисельні методи наближення функцій. Інтерполяційний многочлен Лагранжа»

Варіант № _13_

Виконав: Студент 3 курсу, групи <u>ТІ-01</u> <u>Круть Катерини</u> (прізвище ім'я)								
Студент 3 курсу, групи <u>ТІ-01</u>								
<u> Kpym</u>	<u>ь Катерини</u>							
Пата зпачі	2023_03_09							

Завдання:

Побудувати інтерполяційний многочлен Лагранжа $L_n(x)$ для функції f(x), що задана таблицею, та обчислити значення функції у заданих точках. Побудувати графік інтерполяційної функції $y = L_n(x)$ за наявним набором точок. Для виконання завдання розробити програму на одній з мов програмування.

Дані:

Варіант	Задана таблиця значень функції						Задані точки				
13	x_i	-4	-3	0	1	x_i	-2	-0,5	0,5	2	
	$f(x_i)$	-7	10	-11	-22	$L(x_i)$?	?	?	?	

Блок-схема:

Використані формули:

$$L_n(x) = y_0 l_0(x) + y_1 l_1(x) + \dots + y_n l_n(x), \tag{1.11}$$

де

Код:

```
import copy
import itertools
import matplotlib.pyplot as plt
import numpy as np
def get coeff denominator(copy list, removed element):
    """ Отримуємо дільник для інтерполяційного многочлена"""
    denominator = 1
    for j in range(len(copy_list)):
        denominator *= removed_element - copy_list[j]
    return denominator
def get_numerator_elements(combinations):
    :param combinations: всі комбінації для перемноження
    :return: елементи чисельника
    .....
    summ = 0
    for combination in combinations:
        mult = 1
        for elem in combination:
            mult *= -1 * elem
        summ += mult
    return summ
def coefficient(list x, list y):
    :param list_x: значееня ряду хі
    :param \; list\_y: \; Значення ряду f(xi)
    :return: коефіцієнти многочлена Лагранжа
    L3(x) = a*x^3 - b*x^2 + c*x + d \Rightarrow [a, b, c, d]
    L3(x) = 3/10*x^3 - 13/6*x^2 + 62/15*x + 1 \Rightarrow [0.3, -2.16667, 4.13333, 1]
    if not (isinstance(list x, list) or isinstance(list y, list)):
        raise ValueError
    if len(list_x) != len(list_y) or len(list_x) < 2:</pre>
        raise ValueError
    list coefficient = [0] * (len(list x))
    # for i in range(1):
    for i in range(len(list_x)):
        removed_element = list_x[i]
```

```
copy_list = copy.deepcopy(list_x)
        copy_list.pop(i)
        # Дільник (x0 - x1)(x0 - x2)(x0 - x3)
        \# (0 -2)(0 - 3)(0 - 5) = -30
        denominator = get_coeff_denominator(copy_list, removed_element)
        for j in range(0, len(copy_list) + 1):
            # комбінації для перемноження (x - x1)(x - x2)(x - x3)
            \# (x - 2)(x - 3)(x - 5)
            combinations = list(itertools.combinations(copy_list, len(copy_list)
- j))
            # ax^3 + bx^2 + cx + d (TYT OTPUMYEMO a, b, c, d)
            \# x^3 - 10x^2 + 31x - 30 (1, -10, 31, -30)
            summ = get numerator elements(combinations)
            # ділимо на знаменник всі значення чисельника многочлена
            \# (x^3 - 10x^2 + 31x - 30) / -30
            summ /= denominator
            # множимо на значеня f(xi), y0
            \# (x - x1)(x - x2)(x - x3) / (x0 - x1)(x0 - x2)(x0 - x3) * y0
            summ *= list y[i]
            list_coefficient[j] += summ
    return list_coefficient
def lagrange(x):
    Розрахову\epsilonмо значеня многочлена Лагранжа для якогось значення {f x}
    :param x: аргумент x, для кого потрібно знайти значення
    coefficients = coefficient(lagrange_x, lagrange_y)
    return sum([coefficients[i] * pow(x, i) for i in range(len(coefficients))])
def get formula():
    """ Отримуємо формулу інтерполяційної функції y = Ln(x)""
    coeffs = coefficient(lagrange x, lagrange y)
    formula = ""
    for i in range(len(coeffs)):
        formula = str(round(coeffs[i], 5)) + "x^" + str(i) + " " + formula
        if coeffs[i] > 0 and i != len(coeffs) - 1:
            formula = "+ " + formula
    return formula
```

```
def get_all_dots(*args):
    .....
    Знаходиом значення L(xi) для ряду заданих точок
    :param args: xi
    :return: L(xi)
    " " "
    # знаходиом значення L(xi)
    for x in args:
        print("\nX=", x, "\nY=", round(lagrange(x), 5))
def draw():
    """Function for drawing graphic"""
    x = np.linspace(-10, 10, 100)
    y = lagrange(x)
    plt.plot(x, y, 'black')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.title('Lagrange:')
    plt.grid(color='green', linestyle='--', linewidth=0.5)
    plt.show()
"""Коменарі для 10(x) з прикладу"""
lagrange x = [-4, -3, 0, 1]
lagrange_y = [-7, 10, -11, -22]
print(get_formula())
get_all_dots(-2, -0.5, 0.5, 2)
draw()
"""Дані з прикладу в ДЗ"""
\# lagrange_x = [0, 2, 3, 5]
\# lagrange_y = [1, 3, 2, 5]
# print(get_formula())
# get all dots(4)
# draw()
```

Приклад роботи:

```
/ main ×

/Users/katiakrut/PycharmProjects/mathModeling/value
1.0x^3 + 1.0x^2 -13.0x^1 -11.0x^0

X= -2
Y= 11.0

X= -0.5
Y= -4.375

X= 0.5
Y= -17.125

X= 2
Y= -25.0

Process finished with exit code 0
```


Висновки:

Під часи виконання домашнього завдання було розроблено алгоритм для програмної реалізації побудови многочлена Лагранжа Ln(x) для функції f(x), що задана таблицею. Алгоритм редставлений у вигляді блок схеми, а для пограмної реалізації було вибрано мову програмування Python. Крім того, розроблено алгорит для пошуку значення уі = L(xi) за наявним набором точок хі. Також доступний функціонал для побудови графіку інтерполяційної функції у = Ln(x) за знадений набором данних $\{xi; L(xi)\}$.