

Reusing Domain Ontologies on the Basis of Decision Analysis

Mari Carmen Suárez-Figueroa

Asunción Gómez-Pérez

Mariano Fernández-López

Antonio Jiménez

Alfonso Mateos

Work distributed under the license Creative Commons Attribution-Noncommercial-Share Alike 3.0

Date: 19/04/2012

Index

- Motivation
- State of the Art
 - Ontology Reuse Guidelines
 - Decision Analysis
- Ontology Reuse on the basis of Decision Analysis
- Conclusion
- Future Work

Motivation

- With the goal of speeding up the ontology development process, ontology practitioners are reusing
 - other ontologies [Simperl, 2009]
 - ontology modules [Cuenca-Grau et al., 2007]
 - ontology design patterns [Gangemi, 2007]
 - non-ontological resources [Jimeno-Yepes et al., 2009]
- **Different approaches for reusing ontologies** have been proposed [Gómez-Pérez et al., 2003; Uschold et al., 1998; Pinto and Martins, 2001; Paslaru and Mochol, 2005; Suárez-Figueroa, 2010]
- The selection of the most suitable domain ontologies for reuse in the development of a new ontology is a complex decision-making problem

The selection of ontologies for reuse in the development of a new ontology can be performed applying the decision analysis methodology.

Formeron: Noth References (or to during Ordering (reference) Noth Grossop of Particles (Noth Grossop o

Ontology Reuse Guidelines in the NeOn Methodology

Suárez-Figueroa, Mari Carmen (2010).

NeOn Methodology for Building
Ontology Networks: Specification,
Scheduling and Reuse. PhD Thesis.

UPM. 2010.

Domain Ontology Reuse Guidelines (I)

Domain Ontology Reuse Guidelines (II)

Domain Ontology Reuse Guidelines (III)

Values

Candidate Domain Ontologies

Ontology 2

Ontology 3

Ontology 1

Domain Ontology Reuse Guidelines (IV)

Criteria to select domain ontologies

16 criteria organized in 4 dimensions

ORSD

Activity 1. Domain Ontology

Search

Integration

Set of selected domain OUTPUT ontologies

Ontology Development Team

Ontology Development Team

Ontology Development Team

Activity 4. Domain Ontology

OUTPUT

Ontology network (interconnected ontologies + associated metadata) + set of domain ontologies

Method to calculate the score of each candidate domain ontology

- 1. To transform the different values into the same scale [0,3]
- 2. To calculate the score of the different candidate domain ontologies

$$Score_{i(+)} = \sum_{j(+)} Value_{T_{i,j}} \times \frac{Weight_j}{\sum_{j} Weight_j} \quad Score_{i(-)} = \sum_{j(-)} Value_{T_{i,j}} \times \frac{Weight_j}{\sum_{j} Weight_j}$$

$$Score_i = Score_{i(+)} - Score_{i(-)}$$

Decision Analysis (I)

- Decision analysis (DA) is aimed at structuring and simplifying the task of making hard decisions
- DA is based on the assumption that the alternatives will appeal to experts depending on
 - how likely the possible performances of each alternative are
 - Existing information, collected data, models and professional judgments are used to quantify the likelihoods of a range of performances
 - what preferences experts have for the possible performances
 - Utility theory is used to quantify preferences
- DA Methodology can be divided into four steps:
 - structure the problem;
 - 2. identify feasible strategies, their impact and uncertainty;
 - 3. quantify preferences; and
 - 4. evaluate alternatives and analyze sensitivity.

Decision Analysis (II)

The Generic Multi-Attribute Analysis System (GMAA) is a decision support system that is intended to allay the operational difficulties involved in the DA methodology.

GMAA

- is based on a multi-attribute additive utility model
- accounts for
 - uncertainty about alternative performances
 - incomplete information about decision-maker (DM) preferences

http://www.dia.fi.upm.es/~ajimenez/GMAA

- A. Jiménez, S. Ríos-Insua and A. Mateos. A decision support system for multiattribute utility evaluation based on imprecise assignments. Decis Sup Syst 36(2003) 65-79.
- A. Jiménez, S. Ríos-Insua and A. Mateos. **A generic multi-attribute analysis system.** Comput Oper Res 33(2006) 1081-1101.

Ontology Reuse on the basis of Decision Analysis (I)

The selection of the most suitable domain ontologies for reuse in the development of a new ontology is a **complex decision-making problem** where different conflicting criteria, like understandability effort, integration effort, and reliability, have to be taken into account simultaneously.

DA Methodology Steps:

- 1. structure the problem;
- 2. identify feasible strategies, their impact and uncertainty;
- 3. quantify preferences; and
- 4. evaluate alternatives and analyze sensitivity

Ontology Reuse on the basis of Decision Analysis (II)

1. Structuring the problem

Several conflicting criteria have to be taken into account simultaneously when selecting domain ontologies for reuse

16 criteria organized in 4 dimensions

Criteria	Range of values	How to measure it					
Reuse cost							
Reuse economic cost	{Unknown, Low, Medium, High}	Asking the owner for an estimate.	(-)	9			
Reuse time required	{Unknown, Low, Medium, High}	Trying the connection to the server.	(-)	7			
	Und	erstandability effort					
Quality of the documentation	{Unknown, Low, Medium, High}	Analyzing if the ontology has documentation, and if such documentation really explains the domain and the ontology itself, as well as modelling criteria using during the ontology development.		8			
Availability of external knowledge	(Unknown, Low, Medium, High)	Analyzing if in the ontology documentation there is any reference to external sources that could be used to better understand the ontology.		7			
Code clarity	(Unknown, Low, Medium, High)	Inspecting the ontology code by analyzing the complexity of the definitions (and axioms) implemented the ontology.	(+)	8			
	li li	ntegration effort					
Adequacy of knowledge extraction	(Unknown, Low, Medium, High)	Analyzing if the ontology is modularized, or if it can be modularized in an easier way.		9			
Adequacy of naming conventions	{Unknown, Low, Medium, High}	Comparing the naming conventions of both ontologies.		5			
Adequacy of the implementation language	(Unknown, Low, Medium, High)	Comparing the ontology language of both ontologies. If both languages are different, analyzing the loss of knowledge in the translation.		7			
Knowledge clash	(Unknown, Low, Medium, High)	Comparing modelling decisions and knowledge representation decision of both ontologies.		7			
Adaptation to the reasoner	(Unknown, Low, Medium, High)	Comparing the reasoners related to the ontology language of both ontologies.		7			
Necessity of bridge terms	(Unknown, Low, Medium, High)	Inspecting the ontology code.	(-)	6			
		Reliability					
Availability of tests	(Unknown, Low, Medium, High)	Analyzing if the ontology documentation refers to existing unit tests.	(+)	8			
Former evaluation	(Unknown, Low, Medium, High)	Analyzing if the ontology documentation refers to existing unit tests and the results of such tests.		8			
Development team reputation	(Unknown, Low, Medium, High)	Searching for information about the ontology development team (other ontologies developed, papers published, etc.).		8			
Purpose reliability	(Unknown, Low, Medium, High)	Analyzing if the ontology documentation refers to the purpose for which the ontology was developed.		3			
Practical support	(Unknown, Low, Medium, High)	Analyzing if the ontology documentation refers to other ontologies and/or projects reusing the ontology.	(+)	7			

Criteria = Objectives

Associated Attributes

11 criteria and their attributes

Ontology Reuse on the basis of Decision Analysis (III)

1. Structuring the problem

11 criteria

11 criteria and their objective attributes

	Criteria	Associated Attributes			
Reuse Cost					
	Reuse Cost	Continuous Attribute			
Understandability Effort					
Docum	entation Availability and Quality	Discrete Attribute			
Code	Naming Understandability	Binary Attribute			
Clarity	Code Documentation	Continuous Attribute			
	Pattern Conformance	Discrete Attribute			
Integration Effort					
Adequacy	y of Knowledge Extraction	Binary Attribute			
Adequac	y of Naming Conventions	Binary Attribute			
Adequ	uacy of Implementation Language	Discrete Attribute			
Reliability					
0	ntology Evaluation	Discrete Attribute			
	Purpose of Use	Discrete Attribute			
	Popularity	Discrete Attribute			

Ontology Reuse on the basis of Decision Analysis (IV)

1. Structuring the problem

	Criteria	Associated Attributes			
	Reuse Cost				
	Reuse Cost	Continuous Attribute			
Understandability Effort					
Docum	entation Availability and Quality	Discrete Attribute			
Code Clarity	Naming Understandability	Binary Attribute			
	Code Documentation	Continuous Attribute			
	Pattern Conformance	Discrete Attribute			
Integration Effort					
Adequacy	of Knowledge Extraction	Binary Attribute			
Adequac	y of Naming Conventions	Binary Attribute			
Adequ	acy of Implementation Language	Discrete Attribute			
	Reliability				
0	ntology Evaluation	Discrete Attribute			
	Purpose of Use	Discrete Attribute			
	Popularity	Discrete Attribute			

Documentation availability and quality (A/Q Document) refers to whether there is any communicable material used to describe or explain different aspects of the candidate ontology, as well as the enacted development process.

A *discrete attribute* with three possible values has been established:

- low, when the candidate ontology has no documentation;
- medium, when the candidate ontology has documentation (in the form of web page, wiki, and/or paper) detailing the ontology; and
- high, when the candidate ontology has documentation (in the form of web page, wiki, and/or paper) detailing both the candidate ontology and its development process (ORSD, modeling decisions, etc.).

Code documentation (Code Documen) refers to whether the ontology code is documented.

A **continuous attribute** ([0,100]) was used: $\frac{\#CommentedOntologyElements}{\#OntologyElements} \times 100$,

where #CommentedOntologyElements is the number of elements commented in the ontology (rated by searching the code for the "#rdfs:comment" string) and #OntologyElements is the number of elements in the ontology (#OntologyElements = 1+ #Classes + #ObjectProperties + #DatatypeProperties + #Instances).

Adequacy of naming conventions (Naming Conv) refers to whether the two ontologies (the candidate ontology and the ontology under development) follow the same rules for naming the different ontology components.

A binary attribute

- value 1 when the candidate ontology and the ontology under development follow the same naming conventions
- value 0 when they do not.

Ontology Reuse on the basis of Decision Analysis (V)

2. Identifying feasible strategies, their impact and uncertainty

Feasible alternatives are those candidate domain ontologies obtained in Activity 2 (Domain Ontology Assessment)

Alternative performances should be established in terms of attributes associated with the lowest level objectives in the hierarchy

	Athlete	Baseball	oso	OntoSem	Rissen	Soccer	Tsinara k i	Soccer V2	UNSPSC
Document A/Q	Low	Medium	Low	Medium	Low	Low	Low	Medium	Medium
Nam. Underst	1	1	1	0	1	1	0	1	0
Code Documen	0	0	[35, 45]	0	[80, 90]	0	[65, 75]	0	0
Pattems	0	0	0	0	0	0	CP	0	0
Know Extract	0	0	0	0	0	0	1	0	0
Naming Conv.	1	1	0	0	0	0	1	0	0
Imp Language	High	High	High	High	High	Medium	High	Medium	Medium
O Evaluation	2	2	6	[0, 21]	2	0	0	0	[0, 21]
Purpose Rel	Low	Low	Low	High	Low	Low	Low	Medium	High
Popularity	Low	Medium	Low	Medium	Low	Medium	Low	Medium	Medium

FG GMAH

Ontology Reuse on the basis of Decision Analysis (VI)

3. Quantifying preferences

3.1. Quantifying preferences involves assessing single attribute utilities that represent DM preferences concerning the possible ontology performances.

Utility functions for continuous attributes

Utility intervals for discrete attributes

Imprecise values

	Low	Medium	High	Very High	0	I
A/Q Document	[0, 0.2]	[0.3, 0.6]	[0.7, 1]	-	-	-
Nam. Underst	-	-	-	-	[0.0, 0.2]	[0.3, 1]
Know Extract	-	-	-	-	0	1
Naming Conv.	-	-	-	-	[0.0, 0.3]	[0.4, 1]
Imp Language	0	[0.4, 0.6]	1	-	-	-
Purpose of use	[0, 0.2]	[0.3, 0.6]	[0.7, 1]	-	-	-
Popularity	0	[0.3, 0.4]	[0.7, 0.8]	[0.9, 1]	-	-

Ontology Reuse on the basis of Decision Analysis (VII)

3. Quantifying preferences

3.2. Quantifying preferences involves eliciting weights that represent the relative importance of criteria.

Documentation availability and quality is the most important criteria, followed by adequacy of knowledge extractions and adequacy of implementation language and ontology evaluation, respectively.

F¥ GMAA

Ontology Reuse on the basis of Decision Analysis (VIII)

4. Evaluating alternatives

The additive model is

$$u(O_i) = \sum_{j=1}^n w_j u(x_{ij}),$$

where xij is the performance of ontology Oi for attribute Xj; uj(xij) is the utility associated with value xij, and wj are the weights of each attribute.

The *additive model* is used to assess average overall utilities and minimum and maximum overall utilities.

The ranking of alternatives is based on the average overall utilities

the minimum and maximum overall utilities provide further insight into the robustness of the ranking

Conclusion

GMAA system

- used to apply the decision analysis (DA) methodology
- has proved to be a useful tool for complex decision-making problems including different conflicting objectives (such as the domain ontology selection for reuse)
- helps DMs to think about the problem in more depth, and accounts for imprecision in the inputs
- makes the process less stressful for experts and suitable for group decision-making
- Updated set of criteria for ontology reuse has been created
 - Importance of criteria has been established by means of weights.
- New attributes for measuring the performances of the candidate domain ontologies for the different criteria have been identified
 - most are objective rather subjective attributes
 - easier for experts to measure
- This approach (mixing ontology engineering and decision analysis) has been used in in the following domains

- Multimedia
- Sport
- News

Future Work

- Questionnaires will be created and sent to ontology experts asking for
 - feedback about current criteria and attributes
 - feedback about utilities for each attribute
 feedback about importance of each criteria
- Criteria and associated attributes for reusing domain ontologies will be updated
- Global preferences will be obtained by applying aggregation processes

Reusing Domain **Ontologies on the Basis** of Decision Analysis

Mari Carmen Suárez-Figueroa

Asunción Gómez-Pérez Mariano Fernández-López Antonio Jiménez Alfonso Mateos

Work distributed under the license Creative Commons Attribution-Noncommercial-Share Alike 3.0

Date: 19/04/2012