Numerical Optimization, 2020 Fall Homework 1

Due on 14:59 Sep 15, 2020 请尽量使用提供的 tex 模板, 画图部分可手绘拍照加入文档.

1 优化问题的应用

给出目前业界线性规划的一个应用场景.介绍模型(变量、约束、目标).一般的规模是多大?

解:通过从事电子行业的亲戚了解到,工厂加工零件会受到设备生产速率,设备费用,设备可运行时间; 产品工序;原料费,市场价格等多方面的影响。以下列例题作为精简的模型进行讨论。

某厂生产三种产品 I, II, III。每种产品要经过 A,B 两道工序加工。设该厂有两种规格的设备能完成 A 工序,它们以 A_1 、 A_2 表示;有三种规格的设备能完成 B 工序,它们以 B_1 、 B_2 、 B_3 表示。产品 I 可在 A,B 任何一种规格设备上加工。产品 II 可在任何规格的 A 设备上加工,但完成 B 工序时,只能在 B_1 设备上加工;产品 III 只能在 A_2 与 B_2 设备上加工。已知在各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床设备的费用如下表,求安排最优的生产计划,使该厂利润最大。

设备	产品			设备有效台时	港名巷时的沿久弗田/元
	I	II	III	以留有双口的	满负荷时的设备费用/元
A_1	5	10		6000	300
A_2	7	9	12	10000	300
B_1	6	8		4000	250
B_2	4		11	7000	783
B_3	7			4000	200
原料费/(元/件)	0.25	0.35	0.5		
单价/(元/件)	1.25	2.00	2.80		

本模型的变量为: 各个产品通过不同机器完成不同工序的数量对产品 I,设以 A_1 , A_2 完成 A 工序的产品数量为 X_1 , X_2 ;以 B_1 , B_2 , B_3 完成 B 工序的产品数量为 X_3 , X_4 , X_5 对产品 II,设以 A_1 , A_2 完成 A 工序的产品数量为 X_6 1, X_7 ;以 B_1 完成 B 工序的产品数量为 X_8 对产品 III,设以 A_2 完成 A 工序的产品数量为 X_9 ;以 B_2 完成 B 工序的产品数量同 A 工序均为实际生产产品 III 的数量,因此也设为 X_9 。

本模型的目标为: maximize 销售额-生产费用, 转化为等式即为 (用最小化表述)

 $\min \ z = (1.25 - 0.25)(X_1 + X_2) + (2 - 0.35)X_8 + (2.8 - 0.5)X_9 - (300/6000)(5X_1 + 10X_6) - (321/10000)(7X_2 + 9X_7 + 12X_9) - (250/4000)(6X31 + 8X_8) - (783/7000)(4X_4 + 11X_9) - (200/4000)7X_5$

本模型的约束条件为:

- 1 同一产品在不同工序生产数量的总和相等
- 2 设备有效生产时有限
- 3 不同机器不同步骤生产的数量要大于等于 0

回到实际制造业也是如此,只是把工序,设备的数量增加了;一般来说一天工厂的生产规模(以电容为例) 在大约 1000 卷左右

2 将下述问题建模成线性规划问题

一个原油精练场有 8 百万桶原油 A 和 5 百万桶原油 B 用以安排下个月的生产. 可用这些资源来生产售价为 38 元/桶的汽油,或者生产售价为 33 元/桶的民用燃料油. 有三种生产过程可供选择,各自的生产参数如下:除成本外,所有的量均以桶为单位. 例如,对于第一个过程而言,利用 3 桶原油 A 和 5 桶原油 B 可以生产

	过程 1	过程 2	过程 3
输入原油 A	3	1	5
输入原油 B	5	1	3
输出汽油	4	1	3
输出燃烧油	3	1	4
成本 (单位:元)	51	11	40

4 桶汽油和 3 桶民用燃料油, 成本为 51 元. 表格中的成本指总的成本 (即原油成本和生产过程的成本). 将此问题建模成线性规划, 其能使管理者极大化下个月的净利润.

解:此题为整数规划。由于最优化情况下不一定将原油 A 和 B 均投入到生产中,因此输入不同过程的原油总和应使用不等式表示。

设完成过程 1 的次数为 X_1 (单位:百万次),完成过程 2 的次数为 X_2 (单位:百万次),完成过程 3 的次数为 X_3 (单位:百万次),其中完成一次过程为输入表中所需最低限度的原油,以过程 1 为例即为输入 3 桶 A 和 5 桶 B。

目标函数: $\min z=51X_1+11X_2+40X_3-(4*38+3*33)X_1-(38+33)X_2-(3*38+4*33)X_3=-200X_1-60X_2-206X_3$ (单位:百万元)

约束条件:

$$s.t. \begin{cases} 3X_1 + X_2 + 5X_3 \le 800 \\ 5X_1 + X_2 + 3X_3 \le 500 \\ X_1, X_2, X_3, X_4 X_5, X_6 \ge 0 \\ X_1, X_2, X_3, X_4 X_5, X_6 \in Z \end{cases}$$

3 线性规划的等价转换

(i) 考虑如下线性回归问题. 令 $(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$ 为样本点和对应标签, a 和 b 为线性模型的参数. 线性回归模型可表示为 $y_i=ax_i+b,\ i=1,\cdots,n$. 用 L_∞ 范数作为该线性模型的损失函数,则对应的数学规划问题可建模为:

$$\min_{a,b} \max_{i} |y_i - (ax_i + b)|. \tag{1}$$

将(1)改写成等价的线性规划模型.

解:目标函数: min z

$$s.t. \begin{cases} y_1 - (ax_1 + b) \le z \\ -y_1 + (ax_1 + b) \le z \end{cases}$$
$$\vdots$$
$$y_n - (ax_n + b) \le z$$
$$-y_n + (ax_n + b) \le z$$

(ii) 极小化如下绝对值和问题:

$$\min_{x_1, x_2} |x_1| + |x_2|
s.t. x_1 + 3x_2 \ge 5
2x_1 + x_2 \ge 5.$$
(2)

- (a) 引入新变量 $x_1^+, x_1^-, x_2^+, x_2^-,$ 将问题(2)转换为线性规划问题.
- (b) 分析为何只有当互补条件 (即 $x_1^+x_1^-=0, x_2^+x_2^-=0$) 成立时, 问题取得最优解.
- (c) 图解法求解问题(2).

