Análisis Matemático II

Tema 7: Integración de funciones reales

Funciones integrables

Teorema de la convergencia dominada

Funciones integrables y su integral

Seguimos trabajando en un conjunto medible $\,\Omega \subset \mathbb{R}^{N}\,$

Funciones integrables y su integra

Seguimos trabajando en un conjunto medible $\Omega \subset \mathbb{R}^N$

$$f\in\mathcal{L}(\Omega)$$
 es integrable en un conjunto medible $E\subset\Omega$ cuando: $\int_E|f|<\infty$

Funciones integrables y su integral

Seguimos trabajando en un conjunto medible $\Omega \subset \mathbb{R}^N$

$$f\in\mathcal{L}(\Omega)$$
 es integrable en un conjunto medible $E\subset\Omega$ cuando: $\int_E|f|<\infty$

Se tiene entonces que
$$\int_E f^+ < \infty$$
 y $\int_E f^- < \infty$

Funciones integrables y su integra

Seguimos trabajando en un conjunto medible $\Omega \subset \mathbb{R}^N$

 $f\in\mathcal{L}(\Omega)$ es integrable en un conjunto medible $E\subset\Omega$ cuando: $\int_E|f|<\infty$

Se tiene entonces que $\int_E f^+ < \infty$ y $\int_E f^- < \infty$

y se define la integral de f sobre E como el número real dado por

$$\int_{E} f = \int_{E} f^{+} - \int_{E} f^{-}$$

Funciones integrables y su integra

Seguimos trabajando en un conjunto medible $\Omega \subset \mathbb{R}^N$

 $f\in\mathcal{L}(\Omega)$ es integrable en un conjunto medible $E\subset\Omega$ cuando: $\int_E|f|<\infty$

Se tiene entonces que
$$\int_E f^+ < \infty$$
 y $\int_E f^- < \infty$

y se define la integral de f sobre E como el número real dado por

$$\int_{E} f = \int_{E} f^{+} - \int_{E} f^{-}$$

• Cuando $f \geqslant 0$, esta integral coincide con la que conocíamos

Funciones integrables y su integral

Seguimos trabajando en un conjunto medible $\Omega \subset \mathbb{R}^N$

 $f\in\mathcal{L}(\Omega)$ es integrable en un conjunto medible $E\subset\Omega$ cuando: $\int_E|f|<\infty$

Se tiene entonces que
$$\int_E f^+ < \infty$$
 y $\int_E f^- < \infty$

y se define la integral de f sobre E como el número real dado por

$$\int_{E} f = \int_{E} f^{+} - \int_{E} f^{-}$$

- Cuando $f \geqslant 0$, esta integral coincide con la que conocíamos
- f es integrable en E si y sólo si lo es $f|_{E}$, y las integrales coinciden

Localización

 $f \in \mathcal{L}(\Omega)$ es integrable en un conjunto medible $E \subset \Omega$

si, y sólo si, $\chi_{\scriptscriptstyle E}\,f$ es integrable en Ω , en cuyo caso se tiene:

Localización

 $f\in\mathcal{L}(\Omega)$ es integrable en un conjunto medible $E\subset\Omega$

si, y sólo si, $\chi_{\scriptscriptstyle E}\,f$ es integrable en Ω , en cuyo caso se tiene:

$$\int_E f = \int_{\Omega} \chi_E f$$

Localización

 $f\in\mathcal{L}(\Omega)$ es integrable en un conjunto medible $E\subset\Omega$

si, y sólo si, $\chi_{\scriptscriptstyle E} \, f\,$ es integrable en $\,\Omega\,$, en cuyo caso se tiene:

$$\int_E f = \int_{\Omega} \chi_E f$$

El conjunto de las funciones integrables

Localización

 $f\in\mathcal{L}(\Omega)$ es integrable en un conjunto medible $E\subset\Omega$

si, y sólo si, $\chi_{\scriptscriptstyle E} f$ es integrable en Ω , en cuyo caso se tiene:

$$\int_{E} f = \int_{\Omega} \chi_{E} f$$

El conjunto de las funciones integrables

Denotamos por $\mathcal{L}_1(\Omega)$ al conjunto de las funciones integrables en Ω , es decir,

Localización

 $f\in\mathcal{L}(\Omega)$ es integrable en un conjunto medible $E\subset\Omega$

si, y sólo si, $\chi_{\scriptscriptstyle E} \, f$ es integrable en Ω , en cuyo caso se tiene:

$$\int_{E} f = \int_{\Omega} \chi_{E} f$$

El conjunto de las funciones integrables

Denotamos por $\mathcal{L}_1(\Omega)$ al conjunto de las funciones integrables en $\,\Omega$, es decir,

$$\mathcal{L}_1(\Omega) = \left\{ f \in \mathcal{L}(\Omega) : \int_{\Omega} |f| < \infty \right\}$$

Localización

 $f \in \mathcal{L}(\Omega)$ es integrable en un conjunto medible $E \subset \Omega$

si, y sólo si, $\chi_{\scriptscriptstyle E} \, f$ es integrable en Ω , en cuyo caso se tiene:

$$\int_{E} f = \int_{\Omega} \chi_{E} f$$

El conjunto de las funciones integrables

Denotamos por $\mathcal{L}_1(\Omega)$ al conjunto de las funciones integrables en Ω , es decir,

$$\mathcal{L}_1(\Omega) = \left\{ f \in \mathcal{L}(\Omega) : \int_{\Omega} |f| < \infty \right\}$$

Los elementos de $\mathcal{L}_1(\Omega)$ son las funciones integrables

Linealidad

 $\mathcal{L}_1(\Omega)$ es un subespacio vectorial de $\mathcal{L}(\Omega)$

Linealidad

 $\mathcal{L}_1(\Omega)$ es un subespacio vectorial de $\mathcal{L}(\Omega)$

y definiendo:
$$I(f) = \int_{\Omega} f \quad \forall f \in \mathcal{L}_1(\Omega)$$
 ,

se obtiene una aplicación lineal $I:\mathcal{L}_1(\Omega) \to \mathbb{R}$

Linealidad

 $\mathcal{L}_1(\Omega)$ es un subespacio vectorial de $\mathcal{L}(\Omega)$

y definiendo:
$$\,I(f)=\int_\Omega f \quad \forall \, f\in \mathcal{L}_1(\Omega)\,,$$

se obtiene una aplicación lineal $I:\mathcal{L}_1(\Omega) \to \mathbb{R}$

Linealidad

 $\mathcal{L}_1(\Omega)$ es un subespacio vectorial de $\mathcal{L}(\Omega)$

y definiendo:
$$I(f) = \int_{\Omega} f \quad \forall f \in \mathcal{L}_1(\Omega)$$
 ,

se obtiene una aplicación lineal $I:\mathcal{L}_1(\Omega) \to \mathbb{R}$

$$h \in \mathcal{L}_1(\Omega), h \geqslant 0 \implies \int_{\Omega} h \geqslant 0$$

Linealidad

 $\mathcal{L}_1(\Omega)$ es un subespacio vectorial de $\mathcal{L}(\Omega)$

y definiendo:
$$I(f) = \int_{\Omega} f \quad \forall f \in \mathcal{L}_1(\Omega)$$
 ,

se obtiene una aplicación lineal $I:\mathcal{L}_1(\Omega) \to \mathbb{R}$

$$h \in \mathcal{L}_1(\Omega), \ h \geqslant 0 \implies \int_{\Omega} h \geqslant 0$$

$$\bullet \quad f,g \in \mathcal{L}_1(\Omega), \quad f \leqslant g \quad \Longrightarrow \quad \int_{\Omega} f \leqslant \int_{\Omega} g$$

Linealidad

 $\mathcal{L}_1(\Omega)$ es un subespacio vectorial de $\mathcal{L}(\Omega)$

y definiendo:
$$I(f) = \int_{\Omega} f \quad orall f \in \mathcal{L}_1(\Omega)$$
 ,

se obtiene una aplicación lineal $I:\mathcal{L}_1(\Omega) \to \mathbb{R}$

$$h \in \mathcal{L}_1(\Omega), h \geqslant 0 \implies \int_{\Omega} h \geqslant 0$$

•
$$f,g \in \mathcal{L}_1(\Omega), f \leqslant g \implies \int_{\Omega} f \leqslant \int_{\Omega} g$$

$$\bullet \quad \left| \int_{\Omega} f \right| \leqslant \int_{\Omega} |f| \ \forall f \in \mathcal{L}_1(\Omega)$$

Linealidad

 $\mathcal{L}_1(\Omega)$ es un subespacio vectorial de $\mathcal{L}(\Omega)$

y definiendo:
$$I(f) = \int_{\Omega} f \quad orall f \in \mathcal{L}_1(\Omega)$$
 ,

se obtiene una aplicación lineal $I:\mathcal{L}_1(\Omega) \to \mathbb{R}$

Positividad

$$h \in \mathcal{L}_1(\Omega), h \geqslant 0 \implies \int_{\Omega} h \geqslant 0$$

•
$$f,g \in \mathcal{L}_1(\Omega), f \leqslant g \implies \int_{\Omega} f \leqslant \int_{\Omega} g$$

$$\bullet \quad \left| \int_{\Omega} f \right| \leqslant \int_{\Omega} |f| \ \forall f \in \mathcal{L}_1(\Omega)$$

Se dice que la integral es un funcional lineal positivo en $\mathcal{L}_1(\Omega)$

La convergencia puntual no preserva la integrabilidad

La convergencia puntual no preserva la integrabilidad

Para $n \in \mathbb{N}$ sea f_n la función característica de $[-n, n]^N$. Entonces:

La convergencia puntual no preserva la integrabilidad

Para $n \in \mathbb{N}$ sea f_n la función característica de $[-n, n]^N$. Entonces:

 $f_n \in \mathcal{L}_1(\mathbb{R}^N)$ para todo $n \in \mathbb{N}$, y $\{f_n\}$ converge puntualmente en \mathbb{R}^N

La convergencia puntual no preserva la integrabilidad

Para $n \in \mathbb{N}$ sea f_n la función característica de $[-n, n]^N$. Entonces:

$$f_n \in \mathcal{L}_1(\mathbb{R}^N)$$
 para todo $n \in \mathbb{N}$, y $\{f_n\}$ converge puntualmente en \mathbb{R}^N a la función $f: \mathbb{R}^N \to \mathbb{R}$ dada por $f(x) = 1$ para todo $x \in \mathbb{R}^N$

La convergencia puntual no preserva la integrabilidad

Para $n\in\mathbb{N}$ sea f_n la función característica de $[-n,n]^N$. Entonces: $f_n\in\mathcal{L}_1(\mathbb{R}^N)$ para todo $n\in\mathbb{N}$, y $\{f_n\}$ converge puntualmente en \mathbb{R}^N a la función $f:\mathbb{R}^N\to\mathbb{R}$ dada por f(x)=1 para todo $x\in\mathbb{R}^N$

pero f no es integrable en \mathbb{R}^N

La convergencia puntual no preserva la integrabilidad

Para $n\in\mathbb{N}$ sea f_n la función característica de $[-n,n]^N$. Entonces: $f_n\in\mathcal{L}_1(\mathbb{R}^N)$ para todo $n\in\mathbb{N}$, y $\{f_n\}$ converge puntualmente en \mathbb{R}^N a la función $f:\mathbb{R}^N\to\mathbb{R}$ dada por f(x)=1 para todo $x\in\mathbb{R}^N$ pero f no es integrable en \mathbb{R}^N

En general, no podemos permutar límite e integral

La convergencia puntual no preserva la integrabilidad

Para $n\in\mathbb{N}$ sea f_n la función característica de $[-n,n]^N$. Entonces: $f_n\in\mathcal{L}_1(\mathbb{R}^N)$ para todo $n\in\mathbb{N}$, y $\{f_n\}$ converge puntualmente en \mathbb{R}^N a la función $f:\mathbb{R}^N\to\mathbb{R}$ dada por f(x)=1 para todo $x\in\mathbb{R}^N$ pero f no es integrable en \mathbb{R}^N

En general, no podemos permutar límite e integral

$$\text{Para cada } n \in \mathbb{N} \text{ sea } A_n = \left] \, 0 \, , \frac{1}{n} \left[^N \text{ y } f_n = n^N \chi_{A_n} \in \mathcal{L}_1(\mathbb{R}^N) . \right.$$

La convergencia puntual no preserva la integrabilidad

Para $n\in\mathbb{N}$ sea f_n la función característica de $[-n,n]^N$. Entonces: $f_n\in\mathcal{L}_1(\mathbb{R}^N)$ para todo $n\in\mathbb{N}$, y $\{f_n\}$ converge puntualmente en \mathbb{R}^N a la función $f:\mathbb{R}^N\to\mathbb{R}$ dada por f(x)=1 para todo $x\in\mathbb{R}^N$ pero f no es integrable en \mathbb{R}^N

En general, no podemos permutar límite e integral

$$\text{Para cada } n \in \mathbb{N} \text{ sea } A_n = \left] \, 0 \, , \, \frac{1}{n} \left[^N \text{ y } f_n = n^N \, \chi_{A_n} \in \mathcal{L}_1(\mathbb{R}^N) . \right.$$

Ahora $\{f_n\}$ converge puntualmente a cero en \mathbb{R}^N

La convergencia puntual no preserva la integrabilidad

Para $n\in\mathbb{N}$ sea f_n la función característica de $[-n,n]^N$. Entonces: $f_n\in\mathcal{L}_1(\mathbb{R}^N)$ para todo $n\in\mathbb{N}$, y $\{f_n\}$ converge puntualmente en \mathbb{R}^N a la función $f:\mathbb{R}^N\to\mathbb{R}$ dada por f(x)=1 para todo $x\in\mathbb{R}^N$ pero f no es integrable en \mathbb{R}^N

En general, no podemos permutar límite e integral

Para cada
$$n \in \mathbb{N}$$
 sea $A_n = \left[0, \frac{1}{n} \right]^N$ y $f_n = n^N \chi_{A_n} \in \mathcal{L}_1(\mathbb{R}^N)$.

Ahora $\{f_n\}$ converge puntualmente a cero en \mathbb{R}^N

pero
$$\lim_{n\to\infty}\int_{\mathbb{R}^N}f_n=1$$

Teorema de la convergencia dominada de Lebesgue

Sea $\{f_n\}$ una sucesión de funciones reales medibles, que converge puntualmente en Ω a una función $f:\Omega\to\mathbb{R}$.

Teorema de la convergencia dominada de Lebesgue

Sea $\{f_n\}$ una sucesión de funciones reales medibles, que converge puntualmente en Ω a una función $f:\Omega\to\mathbb{R}$.

Supongamos que existe una función integrable $g:\Omega\to\mathbb{R}_0^+$ tal que:

$$|f_n(x)| \leq g(x) \quad \forall x \in \Omega, \ \forall n \in \mathbb{N}$$

Teorema de la convergencia dominada de Lebesgue

Sea $\{f_n\}$ una sucesión de funciones reales medibles,

que converge puntualmente en Ω a una función $f:\Omega\to\mathbb{R}$. Supongamos que existe una función integrable $g:\Omega\to\mathbb{R}_0^+$ tal que:

$$|f_n(x)| \leq g(x) \quad \forall x \in \Omega, \ \forall n \in \mathbb{N}$$

Entonces f es integrable y se verifica que

$$\lim_{n\to\infty}\int_{\Omega}|f_n-f|\ =0\,,\quad \text{ de donde: }\quad \int_{\Omega}f\ =\lim_{n\to\infty}\int_{\Omega}f_n$$