Vzorové riešenie a hodnotenie príkladu č.1.

1. prípad

$$\begin{array}{c|cccc}
\underline{\text{2. prípad}} & d \\
\hline
Q & d - x & x & 4Q
\end{array}$$

r₁ + r₂ = d – môže sa počítať aj takto, pričom sa vyjadrí jedna zo vzdialeností pomocou d

- aby na tretí náboj Qo pôsobila nulová sila, musí byť výslednica síl, ktoré na neho pôsobia, nulová (resp. výsledná intenzita el. pol'a v tom bode musí byť nulová) $\vec{F}_1 + \vec{F}_2 = 0$
- pretože smery el. síl (intenzít) sú opačné, aby bola výslednica nulová, musia sa rovnať ich veľkosti $|\vec{F}_1| = |\vec{F}_2|$,

$$\mathsf{resp.} \ \left| \vec{E}_1 \right| = \left| \vec{E}_2 \right|$$

$$F_1 = k. \frac{Q_{1.}Q_0}{x^2} \qquad F_2 = k. \frac{Q_{2.}Q_0}{\left(d-x\right)^2} \quad \text{resp. } E_1 = k. \frac{Q_{1.}}{x^2} \quad E_2 = k. \frac{Q_{2.}}{\left(d-x\right)^2}$$

kde
$$k = \frac{1}{4\pi\varepsilon_0}$$
, Q₁ = Q, Q₂ = 4Q

1.prípad:

- riešenie bez kvadratickej rovnice

$$k.\frac{Q.Q_0}{x^2} = k.\frac{4Q.Q_0}{(d-x)^2}$$

$$k.\frac{Q.Q_0}{x^2} = k.\frac{4Q.Q_0}{\left(d-x\right)^2}$$
 resp. pre el. intenzity
$$k.\frac{Q}{x^2} = k.\frac{4Q}{\left(d-x\right)^2}$$
 (1b)

po úprave oboch rovníc dostaneme $\frac{1}{x^2} = \frac{4}{(d-x)^2}$ (1b)

po odmocnení
$$\frac{d-x}{x} = 2$$

$$d - x = 2x$$
, $d = 3x$, výsledok je $x = d/3$. (1b)

- riešenie cez kvadratickú rovnicu: rovnaké bodovanie po spoločnú časť riešenia

po úprave dostaneme $(d - x)^2 = 4x^2$ $d^2 - 2dx + x^2 = 4x^2$ $3x^2 + 2dx - d^2 = 0$

$$d^2 - 2dx + x^2 = 4x^2$$

$$3x^2 + 2dx - d^2 = 0$$

diskriminant: D = $(2d)^2 - 4.3.(-d^2) = 16d^2$

2 riešenia: $x_1 = d/3$ (správne) $x_2 = -d$ (nesprávne) (1b)

2.prípad:

- riešenie bez kvadratickej rovnice

$$k.\frac{Q.Q_0}{(d-x)^2} = k.\frac{4Q.Q_0}{x^2}$$

$$k.\frac{Q.Q_0}{(d-x)^2} = k.\frac{4Q.Q_0}{x^2}$$
 resp. pre el. intenzity
$$k.\frac{Q.}{(d-x)^2} = k.\frac{4Q.}{x^2}$$
 (1b)

po úprave oboch rovníc dostaneme $\frac{1}{(d-x)^2} = \frac{4}{x^2}$ (1b)

a po odmocnení
$$\frac{x}{d-x} = 2$$

$$x = 2(d - x)$$
, $x = 2d - 2x$, $3x = 2d$ výsledok je $x = 2d/3$. (1b)

- riešenie cez kvadratickú rovnicu: rovnaké bodovanie po spoločnú časť riešenia

po úprave dostaneme $(x)^2 = 4(d-x)^2$ $x^2 = 4(d^2 - 2dx + x^2)$ $3x^2 - 8dx + 4d^2 = 0$ diskriminant: D = $(-8d)^2 - 4.3.4 d^2 = 16d^2$ 2 riešenia: $\mathbf{x}_1 = 2d/3$ (správne) $x_2 = 2d$ (nesprávne) (1b)

Hodnotenie:

- najčastejšie chyby:
 - 1. zámena vzorcov na výpočet el. intenzity alebo el. sily,
 - 2. nesprávne riešenie kvadratickej rovnice
 - 3. vektorový súčet intenzít a el. síl je nulový, preto sú ich veľkosti rovnaké, opačné sú len orientácie vektorov
 - 4. správne riešenie príkladu, ale nebol označený správny výsledok

0b: nesprávne riešenie alebo ak napriek úplne chybnému postupu, vrátane nesprávneho vzťahu na výpočet el. intenzity alebo el. sily, nesprávnym znamienkam, vyšlo zrazu správne riešenie

0.5b:

- ak je napísaný iba správny vzťah na výpočet el. intenzity alebo el. sily, inak je riešenie príkladu úplne chybné alebo ďalej príklad nie je riešený.
- ak je napísaný iba správny vzťah na výpočet el. intenzity alebo el. sily, ale napríklad vzdialenosť nábojov je nesprávne vyjadrená, znamienka sú chybné, príklad nie je doriešený
- je naznačený správny postup, ale znamienko je chybné a obrázok k zadaniu je chybný, pretože poloha náboja nie je hľadaná medzi zadanými nábojmi

1b:

 - zámena vzorcov na výpočet el. intenzity alebo el. sily, nasleduje správny postup riešenia (porovnanie veľkosti síl alebo intenzít, krátenie zlomkov), ale vzdialenosť nábojov je nesprávne vyjadrená a príklad nie je doriešený, resp. nesprávne krátenie zlomku

1,5 b:

- správne vzorce aj postup, nesprávne znamienko
- správne vzorce aj postup, chybné vyjadrenie vzdialenosti
- správne vzorce aj postup, chybné vyjadrenie vzdialenosti, napriek tomu zrazu správny výsledok
- sú uvedené dva navzájom si protirečiace vzorce, nasleduje riešenie s použitím správneho, no výsledok je chybný
- zámena vzorcov, správny postup aj znamienka, správne vyjadrenie vzdialenosti, no príklad nie je doriešený

2b:

- správne vzorce, vyjadrenie vzdialenosti aj postup, chýba riešenie kvadratickej rovnice, nie je doriešená kvadratická rovnica alebo je riešená chybne
- správne vzorce, vyjadrenie vzdialenosti aj postup, príklad nie je riešený cez kvadratickú rovnicu, ale výsledok je nesprávny alebo príklad nie je úplne doriešený, resp. chybná úprava zlomkov, chybné odmocňovanie
- zámena vzorcov, správny postup aj riešenie, ale oba výsledky sú považované za správne riešenie príkladu

2,5b:

- správne vzorce, vyjadrenie vzdialenosti aj postup, správne riešenie kvadratickej rovnice, numerická chyba alebo nie je odmocnený diskriminant, pričom je riešenie správne a aj označený správny výsledok
- celý príklad je vyriešený správne, ale oba výsledky sú považované za správne riešenie príkladu
- zámena vzorcov, celé riešenie správne a označený správny výsledok
- správne vzorce, vyjadrenie vzdialenosti aj postup, na začiatku uvedené nesprávne znamienko, v ďalšom kroku je už riešenie so správnym znamienkom a je označený správny výsledok

2.75b

- celé riešenie je správne, označený je správny výsledok, no na začiatku je uvedené, že sa obe el. sily rovnajú nule, nie ich výslednica