Wiederholung

R komm. Ring $1 \neq 0$ R $^{n \times n}$ Ring, i. A. micht homewathin, $GL_n(R) = (R^{n \times n})^{\times}$ $A = (a_{ij}) \in R^{m \times n}$, $A^{t} := (a_{ji})_{j=1,\dots,m}$ Transpossible von $A^{t} := (A + B)^{t} = A^{t} + B^{t}$, $(A \cdot B)^{t} = B^{t} \cdot A^{t}$ $A \in GL_n(R) = A^{t} \cap B^{t}$ and $(D^{t})^{-1} = (D^{-1})^{t}$. K Kp, m, n e N, LGS über K $a_{11} \times_1 + \cdots + a_{1n} \times_n = b_1$ m Gleidunger n Unbehannte $a_{m_1} x_1 + \cdots + a_{m_n} x_n = b_m$ $A \times = b$ mil $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ n - Tupel vor UnbehannteA = (aij) & K mxx Koeffirienter matrix des LGS $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in K^m$ reclute Seide LGS erweiterte Koeff. matrix des LGS $L(A,b) = \{ s \in K^n \mid As = b \}$ Låsungsmenge

· Fui alle s ∈ L(A,b) gilt L(A,b) = s+ L(A,0) (= {s+u|u∈L(A,0)}) · Aquivaleur umformunger des LGS: (a) Vertausche zwei Gleichungen (b) Addiere das c-tache eine Gl. ru einer andere. (c) Multiplinière une Off mit CEK, C + O. -> elementare Zeilentrafos (von Matriren) (a) Tij Vertaunde Zeiler i met j (b) xij. (c): (i+j) Addion der c-Fache von Paile j en Zeile i' (c) pi(c): (c+c) Multipliniere Zeile i mit c. Am) B: Bentsteht aux Adural Falge elem. Zuilen transo's.

(A,b), (A',b') & K m × (n+1)

(A,b) m(A',b') = L(A,b) = L(A',b').

Zeilenstufenform

Definition

Es sei $A \in K^{m \times n}$.

- $ightharpoonup z_i$ sei die *i*-te Zeile von A, $i=1,\ldots,m$.
- ▶ $k_i \in \underline{n+1}$: (Anzahl der führenden Nullen von z_i) + 1.
- ► A hat Zeilenstufenform, wenn gilt:

$$k_1 < k_2 < \cdots < k_r < k_{r+1} = \cdots = k_m = n+1$$

für ein $0 \le r \le m$.

▶ In diesem Fall: r: Stufenzahl, k_1, \ldots, k_r : Stufenindizes von A.

Bemerkung

Die Nullmatrix hat Zeilenstufenform (Fall r = 0).

Zeilenstufenform

A hat genau dann Zeilenstufenform, wenn A die Gestalt hat:

- \blacksquare und \star sind beliebige Elemente aus K, aber $\blacksquare \neq 0$;
- steht in der i-ten Zeile genau an der Stelle k_i .

Zeilenstufenform (Forts.)

Satz

 $A \in K^{m \times n}$ kann durch eine Folge elementarer Transformationen auf Zeilenstufenform gebracht werden.

de Type T, X

Zeilenstufenform (Forts.)

Algorithmus (Gauß)

Eingabe: $A = (a_{ij}) \in K^{m \times n}$.

Ausgabe: $A' \in K^{m \times n}$ mit $A \rightsquigarrow A'$ und A' hat Zeilenstufenform.

Für j = 1, ..., n bezeichne s_i die j-te Spalte von A.

- 1. Ist A die Nullmatrix oder eine $(1 \times n)$ -Matrix, dann Stopp.
- 2. Setze $k := \min\{1 \le j \le n \mid s_j \ne 0\}$.
- 3. Wähle ein *i* mit $a_{ik} \neq 0$ und wende τ_{1i} an. $(\tau_{11}$ ist erlaubt.)
- 4. Für jedes $i=2,\ldots,m$ wende $\alpha_{i1}(-\frac{a_{ik}}{a_{1k}})$ an.
- 5. Führe 1. 5. rekursiv mit $(a_{ij})_{\substack{2 \leq i \leq m \\ k < j \leq n}} \in K^{(m-1)\times (n-k)}$ aus.

(Nach den Schrittten 3. und 4. wird die **transformierte** Matrix wieder mit (a_{ij}) bezeichnet.)

Ad 1) Nullmat nix ade (1xn)-Matrix hat 25F (Zailantufanform)

Ad 2) k Nummer der ersten Spulte + 0.

Ad 3) i ex. mach Wahl vor k i mache i-te Zaile zur 1-tem.

Ad 4) Errenge Nuller in de k-ter Spalte ab Zaile 2.

(Ausräumer b)

Ad 5) Nach 4. haben wir

(0 .- 0 | ank * .- *)

Madre mit dieser

Matrix weiter.

Spatte h

Zeilenstufenform (Forts.)

Beispiel

Beispiel
$$\begin{pmatrix} 1 & -2 & 3 & 4 & 2 \\ 2 & -4 & 6 & 9 & 1 \\ -1 & 2 & -1 & -3 & -6 \\ 1 & -2 & 5 & 4 & 1 \end{pmatrix} \sim \begin{pmatrix} \boxed{1} & -2 & 3 & 4 & 2 \\ \boxed{0} & \boxed{0} & \boxed{2} & \boxed{1} & -4 \\ \boxed{0} & \boxed{0} & \boxed{0} & \boxed{-1} & \boxed{3} \\ \boxed{0} & \boxed{0} & \boxed{0} & \boxed{0} \end{pmatrix}$$

$$\begin{pmatrix}
1 & -2 & 3 & 4 & 2 \\
0 & 0 & 2 & 1 & -4 \\
0 & 0 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 & -3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -2 & 3 & 4 & 2 \\
0 & 0 & 2 & 1 & -4 \\
0 & 0 & 0 & -1 & 3 \\
0 & 0 & 0 & 1 & -3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -2 & 3 & 4 & 2 \\
0 & 0 & 0 & 1 & -3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -2 & 3 & 4 & 2 \\
0 & 0 & 0 & 1 & -3
\end{pmatrix}$$

Lösungsverfahren für homogene LGS

Algorithmus

Eingabe: $A \in K^{m \times n}$.

Ausgabe: $\mathbb{L}(A,0)$.

- 1. Bringe A mittels elementarer Zeilentransformationen auf Zeilenstufenform.
- 2. Abhängige Unbekannte: die r Unbekannten zu k_1, \ldots, k_r ; Freie Unbekannte: die n-r restlichen.
- 3. Ersetze die freien Unbekannten durch Parameter $t_1, \ldots, t_{n-r} \in K$.
- 4. Löse von unten nach oben nach den abhängigen Unbekannten auf (Rückwärtssubstitution).

Lösungsverfahren für homogene LGS (Forts.)

Beispiel K = Q, R, C

$$A \leadsto \begin{pmatrix} 1 & -2 & 3 & 4 & 2 \\ 0 & 0 & 2 & 1 & -4 \\ 0 & 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbb{L}(A,0) = \left\{ egin{pmatrix} 2t_1 - rac{31}{2}t_2 \ t_1 \ rac{1}{2}t_2 \ 3t_2 \ t_2 \end{pmatrix} \mid t_1,t_2 \in \mathbb{Q}
ight\}.$$

Løsung run Beispiel:

$$X_2 = t_1, \quad X_5 = t_2$$

$$-x_4 + 3t_2 = 0$$

$$2x_3 + 3t_2 - 4t_2 = 0$$

$$x_1 - 2t_1 + \frac{3}{2}t_2 + 12t_2 + 2t_2 = 0$$

$$\Rightarrow$$
 $x_4 = 3 \epsilon_2$

$$=) \quad \chi_3 = \frac{1}{2}t_2$$

$$=) X_{\lambda} = 2t_{1} - \frac{31}{2}t_{2}$$

Lösungsverfahren für homogene LGS (Forts.)

Bemerkung

Es sei $A \in K^{m \times n}$.

- ▶ $0 \in \mathbb{L}(A,0)$: die triviale Lösung $0 \in K^n$
- ▶ Ist m < n, dann existiert ein $s \in \mathbb{L}(A,0) \setminus \{0\}$ $\begin{cases} \text{Ist } m < n, \text{ dam} \\ \text{int } r < n, \text{ d.t.} \end{cases}$ (eine nicht-triviale Lösung).

Die Umkehrung dieser Aussage gilt nicht!

- Für das homogene LGS Ax = 0 sind äquivalent:
 - ► Das LGS ist nicht-trivial lösbar.
 - ▶ $\mathbb{L}(A,0) \neq \{0\}.$
 - ► Das LGS ist nicht eindeutig lösbar.
 - ▶ Es gibt freie Unbekannte (n r > 0).

Lösungsverfahren für inhomogene LGS

Es seien $A \in K^{m \times n}$, $b \in K^m$.

Erinnerung

Ist
$$s \in \mathbb{L}(A, b)$$
, dann ist $\mathbb{L}(A, b) = \{s + u \mid u \in \mathbb{L}(A, 0)\} = s + \mathbb{L}(A, 0).$

Bemerkung

 $\mathbb{L}(A, b) = \emptyset$ ist möglich.

Lösungsverfahren für inhomogene LGS (Forts.)

Algorithmus

Eingabe: $A \in K^{m \times n}$, $b \in K^m$.

Ausgabe: $\mathbb{L}(A, b)$.

- 1. Bringe (A, b) mittels elementarer Zeilentransformationen auf Zeilenstufenform.
- 2. Lösungsentscheidung:

Es seien k_1, \ldots, k_r die Stufenindizes der Zeilenstufenform.

Ist r > 0 und $k_r = n + 1$, so ist $\mathbb{L}(A, b) = \emptyset$.

Ist r = 0 oder $k_r \le n$, so ist $\mathbb{L}(A, b) \ne \emptyset$.

3. Lösungsmenge: Bestimme $\mathbb{L}(A,0)$ (ignoriere b).

Bestimme eine Lösung $s \in \mathbb{L}(A, b)$ wie folgt:

Setze alle freien Unbekannten gleich 0 und löse nach den abhängigen Unbekannten auf.

Lösung entscheidung Y >0 and $k_{r+1} = n+1$, dh. die r-te Zeile $\neq 0$ Gladling $0 \cdot x_1 + \cdots + 0 \cdot x_n = b_r \neq 0$. (0 0 .-- 0 m)

Lösungsverfahren für inhomogene LGS (Forts.)

Beispiel $\mathcal{L} = \mathcal{Q}$

$$A = \begin{pmatrix} 1 & -2 & 3 & 4 \\ 2 & -4 & 6 & 9 \\ -1 & 2 & -1 & -3 \\ 1 & -2 & 5 & 4 \end{pmatrix} \in \mathbb{Q}^{4 \times 4}, \qquad b = \begin{pmatrix} 2 \\ 1 \\ -6 \\ 1 \end{pmatrix} \in \mathbb{Q}^4.$$

$$(A,b) \leadsto egin{pmatrix} 1 & -2 & 3 & 4 & 2 \\ 0 & 0 & 2 & 1 & -4 \\ 0 & 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$r = 3 > 0$$
, $k_r = 4 \neq 5 = n + 1$
=> $L(A_1b) \neq 0$

$$x_4 = 0$$
, $x_3 = 0$, $x_1 - 2t = 0$, $d.h.$ $x_1 = 2t$

$$- x_4 = 3$$

$$2x_3 - 3 = -4$$

$$x_1 - \frac{3}{2} - 12 = 2$$

$$x_4 = -3$$

$$X_3 = -\frac{1}{2}$$

$$x_1 = \frac{31}{2}$$

$$L(A,b) = \begin{cases} \begin{pmatrix} \frac{31}{2} \\ 0 \\ -\frac{1}{2} \\ -3 \end{pmatrix} + \begin{pmatrix} 2t \\ t \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{31}{2} \\ 0 \\ -\frac{1}{2} \\ -2 \end{pmatrix} + \left\{ \frac{2}{1} \\ 0 \\ 0 \\ 0 \end{pmatrix} \mid t \in \mathbb{Q} \right\}$$

$$=\begin{pmatrix} 31\\ \hline 2\\ c\\ -\frac{1}{2} \end{pmatrix} + Q \begin{pmatrix} 2\\ 1\\ 0\\ 0 \end{pmatrix} = \begin{pmatrix} 31\\ \hline 2\\ +2t\\ t\\ -\frac{1}{2}\\ -3 \end{pmatrix} | t \in Q$$

Lösungsverfahren für inhomogene LGS (Forts.)

Bemerkung

Es sei $A \in K^{m \times n}$ und A' eine Zeilenstufenform von A. Dann sind folgende Aussagen äquivalent:

- (a) \blacktriangleright Ax = b hat für jedes $b \in K^m$ höchstens eine Lösung.
- (b) \blacktriangleright Ax = 0 ist eindeutig lösbar (nur trivial).
- (c) \triangleright A' hat Stufenzahl n.
- (d) $\triangleright \varphi_A$ is injektiv. $\varphi_A : K^M \to K^N, \quad v \longmapsto Av$

Insbesondere ist in diesem Fall $m \ge n$.

Bewein der Bernerkung (a) =) (b) : Nehme b=0. (b) =) (c): A Stufewrahl < n =) en ex. freie Unbehannte ((1 =) (a): Dei de Rüchwärtmubrtitution (fall los ber) jeweils en deutige Losung. (a) (d): Klar. Insterondere: (c) =) $A' = \begin{bmatrix} m_{1} \\ m_{2} \end{bmatrix}$

Reduzierte Zeilenstufenform

Beispiel

Weitere elementare Zeilentransfornationen an Spalten zu Stufenindizes liefern:

$$(A,b) \rightsquigarrow \begin{pmatrix} 1 & -2 & 3 & 4 & 2 \\ 0 & 0 & 2 & 1 & -4 \\ 0 & 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -2 & 0 & 0 & \frac{31}{2} \\ 0 & 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Daraus ist die Lösungsmenge direkt ablesbar.

$$\mathbb{L}(A,b) = \begin{pmatrix} \frac{31}{2} \\ 0 \\ -\frac{1}{2} \\ -3 \end{pmatrix} + \mathbb{Q} \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix}
1 & -2 & 3 & 4 & 2 \\
0 & 0 & 2 & 1 & -4 \\
0 & 0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & -2 & 3 & 0 & 14 \\
0 & 0 & 2 & 0 & -1 \\
0 & 0 & 2 & 0 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & -2 & 3 & 0 & 14 \\
0 & 0 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Definition

Es sei $A \in K^{m \times n}$.

1. A hat reduzierte Zeilenstufenform, wenn A Zeilenstufenform hat und zusätzlich gilt:

Für alle
$$1 \le j \le r$$
: $a_{1k_j} = a_{2k_j} = \cdots = a_{j-1,k_j} = 0$, $a_{jk_j} = 1$

2. A hat Normalform, wenn A reduzierte Zeilenstufenform hat und zusätzlich gilt:

Für alle
$$1 \le i \le r$$
 ist $k_i = i$.

Eine Matrix hat reduzierte Zeilenstufenform, wenn sie so aussieht:

$$\begin{pmatrix}
0 & \cdots & 0 & 1 & * & \cdots & * & 0 & * & \cdots & 0 & * & \cdots & * \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 1 & * & \cdots & 0 & * & \cdots & * \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & & \vdots & & & \vdots \\
\vdots & \ddots & & 0 & \vdots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & * & \cdots & * \\
\hline
0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & * & \cdots & * \\
\hline
0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0
\end{pmatrix}$$

wobei \star beliebige Einträge aus K sind.

Eine Matrix $A \in K^{m \times n}$ hat Normalform, wenn sie so aussieht:

$$\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \vdots & C \\
\vdots & \vdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
n-r
\end{pmatrix}$$

wobei $C \in K^{r \times (n-r)}$ ist. Dafür verwenden wir auch die "Block"-Schreibweise:

$$A = \left(\begin{array}{c|c} E_r & C \\ \hline 0 & 0 \end{array}\right).$$

Satz

Jede Matrix $A \in K^{m \times n}$ kann durch eine Folge elementarer Zeilentransformationen (vom Typ τ, α und μ) auf reduzierte Zeilenstufenform gebracht werden.

Mit Spaltenvertauschungen kann A weiter auf Normalform gebracht werden.

Bemerkung

Beim Lösen von (homogenen und inhomogenen) linearen Gleichungssystemen dürfen Spalten vertauscht werden, wenn über die Zuordnung zwischen Spalten und Unbekannten Buch geführt wird, und die "b-Spalte" an ihrer Stelle bleit.

Beispiel

Spaltenvertauschungen können die Rechnung abkürzen. Z.B. kann man

$$(A,b) := egin{pmatrix} x_1 & x_2 & x_3 & b \ \hline 2 & 1 & -1 & 2 \ -2 & 0 & 1 & -6 \ 1 & 0 & 0 & 3 \end{pmatrix}$$

allein durch Spaltenvertauschungen auf die Zeilenstufenform

$$\begin{pmatrix} x_2 & x_3 & x_1 & b \\ \hline 1 & -1 & 2 & 2 \\ 0 & 1 & -2 & -6 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

bringen.

Beispiel

Weiter kommt man in zwei Schritten zur reduzierten Zeilenstufenform:

$$\begin{pmatrix}
x_2 & x_3 & x_1 & b \\
\hline
1 & -1 & 2 & 2 \\
0 & 1 & -2 & -6 \\
0 & 0 & 1 & 3
\end{pmatrix}
\sim
\begin{pmatrix}
x_2 & x_3 & x_1 & b \\
\hline
1 & 0 & 0 & -4 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3
\end{pmatrix}.$$

Diese ist eine Normalform, und man liest als Lösungsmenge ab:

$$\mathbb{L}(A,b) = \left\{ \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix} \right\}.$$

Bluein des Satres:
$$\frac{\mathcal{E}(A_10): A \cdot \left(\frac{C}{-E_{n-r}}\right) = \left(\frac{E_r/C}{o/o} \cdot \left(\frac{C}{-E_{n-r}}\right) = O \in K^{m \times (n-r)}.$$