

4.4 Conditional Random Fields

Edwin Simpson

Department of Computer Science,

University of Bristol, UK.

HMM as a Generative Model

- HMM is a generative model:
 - Learns the likelihoods of observations then apply Bayes' rule to predict tags
 - Benefits: closed form maximum likelihood estimates, interpretable, modular
 - Related generative approach for classification: Naïve Bayes

Section 8.5, Speech and Language Processing (3rd edition draft), Jurafsky & Martin (2019).

Discriminative Models: CRF

- Conditional Random Field (CRF) is discriminative:
 - Optimises predictive distribution p(y|x)
 - Related discriminative approach for classification: Logistic regression

<u>Section 8.5</u>, Speech and Language Processing (3rd edition draft), Jurafsky & Martin (2019).

CRF Prediction Function

Directly computes probability of the sequence $P(\boldsymbol{y}|\boldsymbol{x}) \propto \exp(\sum_{k=1}^K \theta_k F_k(\boldsymbol{x},\boldsymbol{y}))$

Global feature function to compute the feature from the sequence **x**

Section 8.5, Speech and Language Processing (3rd edition draft), Jurafsky & Martin (2019).

Global Feature Function

Function for feature *k*

Compute a local function for each token in the sequence

$$F_k(x, y) = \sum_{i=1}^{N} f_k(y_{i-1}, y_i, x, i)$$

Local function can use previous tag, current tag, whole token sequence, and current position.

bristol.ac.uk

Local Feature Functions

- We can use any function that can extract a feature from y_{i-1} , y_i , x, i
- Examples for POS tagging: $f_k(y_{i-1}, y_i, x, i) =$

```
[y_i = DET \text{ and } x_i = \text{``the''}]
[y_i = VB \text{ and } y_{i-1} = MD]
[x_{i-1} = \text{``will''} \text{ and } x_{i+2} = \text{``bill''}]
[suffix(x_i) = \text{``ed''}]
```

'[...]' notation means the value is 1 if $y_i = DET$ and $x_i = "the"$ and 0 otherwise

Training

- Stochastic gradient descent
- Forward-backward algorithm needed to compute gradients
- Training is expensive with computational complexity $\mathcal{O}(C^2N)$.
- Often more accurate than HMM but less suitable for online learning.

bristol.ac.uk

Summary

- Like NB, HMM is a generative model while CRF is discriminative, like logistic regression
- CRF is undirected, so can find globally optimal sequences
- It has higher training cost than HMMs

bristol.ac.uk