Obliczenia Naukowe

Lista 1 Mateusz Kościelniak nr indeksu: 244973

Zadanie 1

1.1 Epsilon maszynowy

Opis problemu

Napisanie programu w języku Julia wyznaczającego epsilon maszynowy (najmniejsza taka liczba e>0, że 1.0+e>1.0) iteracyjnie dla wszystkich typów zmiennopozycyjnych i porównanie ich z wartościami zwracanymi przez funkcję eps(type) z języka Julia oraz wartościami zawartymi w pliku nagłówkowym float.h języka C.

Rozwiązanie

```
function machEps(type)
   macheps::type = 1
   while (type(1) + macheps / type(2)) > type(1)
        macheps /= type(2)
   end
   return macheps
end
```

Wyniki

	algorytm	eps(type)	float.h
Float16	0.000977	0.000977	-
Float32	1.1920929e-7	1.1920929e-7	1.1920928955e-07
Float64	2.220446049250313e-16	2.220446049250313e-16	2.2204460493e-16

Wnioski

Widzimy, że dla każdego typu zmiennopozycyjnego, wyniki są takie same, co świadczy o tym, że algorytm podany przez mnie jest poprawny. Można zauważyć, że wartość epsilonu maszynowego maleje wraz ze wzrostem precyzji arytmetyki, a tą zależność można opisać wzorem 2^{-m} , gdzie m to długość mantysy w IEEE754, a całe wyrażenie to wartość epsilonu maszynowego.

1.2 Liczba eta

Opis problemu

Iteracyjne wyznaczenie liczby *eta>*0 i porównanie jej z funkcją *nextfloat*(*float number*) z języka Julia, liczbą *MIN*_{sub} oraz przedstawienie zależności pomiędzy eta a epsilonem maszynowym.

Rozwiązanie

```
function eta(type)
  eta::type = type(1)
    while eta / type(2) > type(0)
        eta /= type(2)
  end
  return eta
end
```

Wyniki

	algorytm	nextfloat(type)	$\overline{MIN}_{\mathrm{sub}}$
Float16	6.0e-8	6.0e-8	-
Float32	1.0e-45	1.0e-45	1.4e-45
Float64	5.0e-324	5.0e-324	4.9e-324

Wnioski

Tutaj również wyniki iteracyjnego obliczenia funkcji eta oraz wartości zwracane przez funkcję <code>nextfloat(type)</code> są takie same. Wszystkie liczby mniejsze od liczby eta oraz większe od zera są traktowane jako zero. Po wykonaniu operacji <code>bitstring()</code> w języku Julia na liczbie eta można zauważyć, że liczba ta jest równa najmniejszej liczbie subnormalnej, czyli liczbie mniejszej niż najmniejsza normalna liczba zmiennoprzecinkowa dodatnia.

1.3 Liczba max

Opis problemu

Wyznaczenie liczby max – maksymalnej wartości dla każdego z typów zmiennopozycyjnych i porównanie wartości z funkcją *realmax(type)* z języka Julia oraz wartościami przechowanymi w pliku nagłówkowym float.h języka C

Rozwiązanie

```
function maxFlt(type)
  max::type = 2
  while !isinf(max * type(2))
       max *= type(2)
  end
  addend = max/type(2)

  while addend > eps(type)
       if !isinf(max + addend)
            max += addend
       end
       addend /= type(2)
  end
  return max
end
```

Wyniki

	algorytm	nextfloat(type)	float.h
Float16	6.55e4	6.55e4	-
Float32	3.4028235e38	3.4028235e38	3.4028235e38
Float64	1.7976931348623157e308	1.7976931348623157e308	1.7976931348623157e308

Wnioski

Tak samo jak w poprzednich przykładach udało wyniki metody iteracyjnej pokrywają się z poprawnymi wartościami.

Zadanie 2

Opis

Sprawdzenie czy wartość epsilonu maszynowego można aproksymować wyrażeniem Kahana $\ 3*(4/3-1)-1$.

Rozwiązanie

Implementacja wyrażenia Kahana dla różnych typów.

Wyniki

	3*(4/3-1)-1	eps(type)
Float16	0.000977	0.000977
Float32	1.1920929e-7	1.1920929e-7
Float64	2.220446049250313e-16	2.220446049250313e-16

Wnioski

Wartości bezwzględne wyników uzyskane przy pomocy wyrażenia Kahana zgadzają się z poprawnymi wartościami epsilonu maszynowego, dla typów Float16 i Float64 różnią się jednak co do znaku, więc w wyliczeniach użyłem funkcji abs(). Wyrażenie to daje poprawne wyniki dzięki pewnej niedoskonałości komputerów które nie potrafią operować na liczbach rzeczywistych mających dowolną liczbę cyfr. Dokładność z jaką można te liczby przedstawiać, zależy od długości słowa w komputerze.

Zadanie 3

Opis

Sprawdzenie w języku Julia czy liczby są równo rozmieszczone w przedziale (1,2) z odległością $delta = 2^{-52}$ oraz ich rozmieszczenie w przedziałach (½,1) i (2,4)

Rozwiązanie

Funkcja wyświetla reprezentacje bitową kolejnych n liczb oddalonych od siebie o delte poczynając od wartości min. Za pomocą tej funkcji i $deltq = 2^{-52}$ badałem rozmieszczenie kolejnych liczb w wyznaczonych predziałach.

```
function deltaPrint(min, delta, n)
  for i in 1:n
    min += delta
    println(bitstring(min))
  end
end
```

Wyniki

Wyświetliłem po 5 liczb na początku oraz na końcu każdego przedziału. Widać że dla przedziału (1,2) delta wynosi 2^{-52} , po kilku eksperymentach z wielkością delty udało mi się ustalić, że dla przedziału (½,1) wynosi ona 2^{-53} , a dla przedziału (2,4) wynosi 2^{-51} .

```
od 1
od 0.5
od 2
```

Wnioski

Liczby między kolejnymi potęgami dwójki są równomiernie rozmieszczone, a odległość pomiędzy kolejnymi liczbami w przedziałach (delta) podczas oddalania się od zera o kolejna potęgę maleje dwukrotnie. Dla wszystkich liczb w przedziale cecha jest identyczna, a zmianie ulega tylko mantysa, co za tym idzie ilość liczb w każdym przedziale można opisać wzorem 2^m , gdzie m to dlugość mantysy.

Zadanie 4

Opis

Napisanie programu znajdującego najmniejszą taką liczbę x w przedziale (1,2), że $x*(1/x) \neq 1$

Rozwiązanie

Algorytm zaczynał działanie od 1 i biorąc kolejne liczby w reprezentacji Floa64 sprawdzał czy posiadają pożądane własności, jeśli znajdował taką liczbę to przerywał działanie.

```
x = nextfloat(Float64(1))
while Float64(x * (Float64(1) / x)) != Float64(1)
    x = nextfloat(x)
end
```

Wyniki

Najmniejsza taka liczba to 1.0000000000000002.

Wnioski

Zaokrąglenie w arytmetyce zmiennopozycyjnej spowodowane skończoną ilością bitów używanych do reprezentacji liczby spowodowało, że znaleźliśmy liczbę która spełniała równanie bez rozwiązania. Przy używaniu typów zmiennopozycyjnych takie błędy są nieuniknione, ale możemy z nimi walczyć np. poprzez uproszczenie równania, które chcemy obliczyć w komputerze.

Zadanie 5

Opis

Obliczenie iloczynu skalarnego dwóch wektorów z wykorzystaniem 4 różnych algorytmów.

Rozwiązanie

Implementacja algorytmów:

(a) "w przód"
$$\sum_{i=1}^{n} x_{i} y_{i}$$

(b) "w tył" $\sum_{i=n}^{1} x_{i} y_{i}$

- (c) od największego do najmniejszego (dodaj dodatnie liczby w porządku od największego do najmniejszego, dodaj ujemne liczby w porządku od najmniejszego do największego, a następnie daj do siebie obliczone sumy częściowe),
- (d) od najmniejszego do największego (przeciwnie do metody (c))

Wyniki

Wyniki:

	1	2	3	4
Float32	-0.4999443	-0.4543457	-0.5	-0.5
Float64	1.0251881368296672e-10	-1.5643308870494366e-10	0.0	0.0

Błędy:

	1	2	3	4
Float32	0.49994429944939 167	0.45434570311493 43	0.4999999999899343	0.49999999999934
Float64	1.12584524382966 72e-10	1.46367378004943 65e-10	1.00657107000000004 e-11	1.006571070000000 4e-11

Wnioski

To zadanie pokazuje, że kolejność działań ma znaczenie. Dodanie bardzo dużej liczby do bardzo małej generuje błędy. Jednym ze sposobów zmniejszenia błędów jest u życie arytmetyki o większej precyzji, choć jak widzimy w tym przypadku dalej nie dało to zadowalających rezultatów.

Zadanie 6

Opis

Policzenie w arytmetyce Float64 wartości dwóch funkcji $f(x) = \sqrt{(x^2+1)} - 1$ i $g(x) = x^2 / (\sqrt{(x^2+1)} + 1)$, gdzie f = g dla argumentu $x = b^{-i}$ $i \in \{1, 2...n\}$.

Rozwiązanie

Obliczanie wartości funkcji f oraz g dla kolejnych wartości w pętli po czym wypisanie wyników na ekran.

Wyniki

8 ^x	f	g
-1	-0.030532544378698234	0.007933616752794135
: -8	: 0.0	: 1.7763568394002568e-15
- <u>9</u>	0.0	2.7755575615628914e-17
: -178	: 0.0	: 1.6e-322
-179	0.0	0.0

Wnioski

Funkcje f oraz g dla malejącego argumentu dążą do zera, którego teoretycznie nigdy nie powinny osiągnąć, w praktyce robią to przez to, że komputer posiada ograniczoną arytmetykę. Funkcja f szybko uzyskuje zero, ponieważ odejmowane są bardzo bliskie obie liczby, funkcja g jest dużo dokładniejsza a jej błąd wynika w zasadzie z niedokładności arytmetyki.

Zadanie 7

Opis

Obliczenie wartości pochodnej funkcji $f(x) = \sin(x) + \cos(3*x)$ w punkcie $x_0 = 1$ z definicji (dla h = {1,2,...,54} i normalnie, oraz obliczenie wartości błędu.

Rozwiązanie

Przybliżoną wartość funkcji obliczałem wg wzoru $f'_{\sim}(x) = (f(x_0 + h) - f(x_0))/h$, rzeczywistą wartość wg wzoru $f'(x) = \cos(x) - 3 \cdot \sin(3 \cdot x)$, a błąd $|f'(x) - f'_{\sim}(x)|$

Wyniki

$h=2^{-i}$	f'~(x)	$ f'(x)-f'_{\sim}(x) $	1+h
0	2.0179892252685967	1.9010469435800585	2.0
1	1.8704413979316472	1.753499116243109	1.5
:	:	<u>:</u>	:
52	-0.5	0.6169422816885382	1.00000000000000002
53	0.0	0.11694228168853815	1.0
54	0.0	0.11694228168853815	1.0

Wnioski

Wartość 1+h=1 dla bardzo małych wartości h , to pokazuje, że należy unikać dodawania do siebie liczb które tak bardzo różnią się wykładnikami. Drugą rzeczą która zapewne wpływa negatywnie na wynik obliczeń jest odejmowanie $f(x_0+h)-f(x_0)$ czyli bardzo bliskich sobie liczb, co sprowadza się do utraty cyfr znaczących.