A* Algorithm with Mandatory Stopovers

1 Algorithm Summary

The A* algorithm with mandatory stopovers extends the classical A* pathfinding algorithm to handle scenarios where specific intermediate locations must be visited before reaching the final destination.

1.1 Main Logical Flow

The algorithm operates in three main phases:

- 1. Stopover Selection Phase: Iteratively select the closest unvisited stopover using heuristic distance estimation
- 2. Pathfinding Phase: Apply standard A* algorithm to find optimal path from current location to selected stopover
- 3. Final Phase: Once all stopovers are visited, apply A* to reach the final goal

1.2 Key Components

- S = Set of mandatory stopovers
- V = Set of visited stopovers (initially empty)
- h(a,b) = Heuristic function estimating distance from location a to location b
- current_qoal = Dynamic target location for each iteration

1.3 Algorithm Structure

Algorithm 1 A* with Mandatory Stopovers

- 1: $V \leftarrow \emptyset$
- $2: current_location \leftarrow START$
- 3: while $V \neq S$ do
- 4: $current_goal \leftarrow \arg\min_{s \in S \setminus V} h(current_location, s)$
- 5: Run A*(current_location, current_qoal)
- 6: $current_location \leftarrow current_goal$
- 7: $V \leftarrow V \cup \{current_goal\}$
- 8: end while
- 9: Run A*(current_location, FINAL_GOAL)
- 10: Reconstruct complete path through all segments

1.4 Optimality Properties

- \bullet Each individual path segment is optimal (guaranteed by $\mathbf{A}^*)$
- Overall path optimality depends on stopover visiting order
- Greedy heuristic-based selection provides computational efficiency
- Trade-off between optimality and computational complexity