Разбор летучки

Лекция 13

Композиции алгоритмов

Екатерина Тузова

Мотивация

Где уже видели композиции?

Постановка задачи

$$X^l = (x_i, y_i)_{i=1}^l$$
 — обучающая выборка $b: X \to R$ — базовый алгоритм $C: R \to Y$ — решающее правило R — пространство оценок.

Искомый алгоритм: a(x) = C(b(x))

Примеры

- 1. Классификация (2 класса): $a(x) = \mathrm{sign}(b(x))$ $b: X \to \mathbb{R}$ $C(b) = \mathrm{sign}(b)$
- 2. Классификация (М классов): $a(x) = \arg\max_{y \in Y}(b_y(x))$ $b: X \to \mathbb{R}^M \qquad C(b_1,\dots,b_M) = \arg\max_{y \in Y}(b_y)$
- 3. Регрессия C(b) = b

Определение композиции

Композиция базовых алгоритмов b_1,\dots,b_T

$$a(x) = C(F(b_1(x), \dots, b_T(x)))$$
 $F: R^T o R$ – корректирующая операция

Примеры

1. Простое голосование

$$F(b_1(x), \dots, b_T(x)) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$$

2. Взвешенное голосование

$$F(b_1(x),\ldots,b_T(x)) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

3. Смесь алгоритмов

$$F(b_1(x),...,b_T(x)) = \sum_{t=1}^{T} g_t(x)b_t(x)$$

Теорема Кондорсе "о жюри присяжных"

Если каждый член жюри присяжных имеет независимое мнение, и если вероятность правильного решения члена жюри больше 0.5, то тогда вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри и стремится к единице.

$$F(b_1(x),...,b_T(x)) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$$

$$F(b_1(x),...,b_T(x)) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$$

$$a(x) = \operatorname{sign}\left(\sum_{t=1}^{T} b_t(x)\right)$$

$$F(b_1(x), \dots, b_T(x)) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$$

$$a(x) = \operatorname{sign}\left(\sum_{t=1}^{T} b_t(x)\right)$$

Если каждый из b_t лучше случайного гадания и b_1,\dots,b_T достаточно различны, то композиция может работать лучше.

Достаточно различны?

- Настройка по случайным подвыборкам
- Обучение по случайным подмножествам признаков
- Использование различных начальных приближений
- · Использование различных моделей

Бэггинг

 ${\sf N}$ дея: обучим b_t независимо по случайным подвыборкам длины l с повторениями.

Доля объектов, которые попадут в выборку ≈ 0.63

Бэггинг

Бэггинг позволяет снизить дисперсию (variance) обучаемого классификатора.

Бэггинг

Бэггинг позволяет снизить дисперсию (variance) обучаемого классификатора.

Бэггинг эффективен на малых выборках, когда исключение даже малой части обучающих объектов приводит к построению существенно различных базовых классификаторов.

Метод случайных подпространств

Идея: обучим b_t независимо по случайным подмножествам n' признаков.

Алгоритм

```
1 function \operatorname{BAGGING\_RSM}(X^l,\,T,\,l',\,n',\,\varepsilon_1,\,\varepsilon_2)
2 for t=1,\ldots,T do
3 U_t — случайное подмножество X^l длины l'
4 F_t — случайное подмножество признаков длины n'
5 b_t=\mu(F_t,U_t)
6 if Q(b_t,U_t)>\varepsilon_1 или Q(b_t,X^l\setminus U_t)>\varepsilon_2 then
7 не включать b_t в композицию
```

Случайный лес

Бэггинг над решающими деревьями.

Голосование деревьев классификации, $Y = \{-1, +1\}$ $a(t) = Majority(b_t(x))$

- Каждое дерево $b_t(x)$ обучается по случайной выборке с повторениями
- В каждой вершине предикат выбирается из случайного подмножества n предикатов

Random forest 12

Взвешенное голосование

$$Y = \{\pm 1\}, \qquad b_t: X \to \{-1,0,+1\}, \qquad C(b) = \mathrm{sign}(b)$$
 $b_t(x) = 0$ – отказ от классификации

$$Y=\{\pm 1\}, \qquad b_t: X o \{-1,0,+1\}, \qquad C(b)={
m sign}(b)$$
 $b_t(x)=0$ – отказ от классификации

$$a(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t b_t(x)\right)$$

 ${\sf N}$ дея: Фиксируем $lpha_1b_1(x)\ldotslpha_{t-1}b_{t-1}(x)$ при добавлении b_t

 ${\sf N}$ дея: Фиксируем $lpha_1b_1(x)\ldotslpha_{t-1}b_{t-1}(x)$ при добавлении b_t

$$b_{1} = \arg\min_{b} Q(b, X^{l})$$

$$b_{2} = \arg\min_{b, F} Q(F(b_{1}, b), X^{l})$$
...
$$b_{t} = \arg\min_{b, F} Q(F(b_{1}, ..., b_{t-1}, b), X^{l})$$

Функционал качества

Функционал качества композиции:

$$Q_T = \sum_{i=1}^{l} \mathcal{L}(\sum_{t=1}^{T} \alpha_t b_t(x_i), y_i) = \sum_{i=1}^{l} \left[y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) < 0 \right] \to \min_{\alpha, b}$$

Функционал качества

Функционал качества композиции:

$$Q_T = \sum_{i=1}^{l} \mathcal{L}(\sum_{t=1}^{T} \alpha_t b_t(x_i), y_i) = \sum_{i=1}^{l} \left[y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) < 0 \right] \to \min_{\alpha, b}$$

Оценка функционала сверху:

$$Q_T \le \hat{Q}_T = \sum_{i=1}^l \underbrace{\exp\left(-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)\right)}_{w_i} \exp(-y_i \alpha_T b_T(x_i)) \to \min_{\alpha, b}$$

Нормируем веса:

$$u_i = w_i / \sum_{j=1}^l w_j$$

Взвешенное число ошибочных классификаций:

$$N(b, U^l) = \sum_{i=1}^{l} u_i [b(x_i) = -y_i]$$

Взвешенное число правильных классификаций:

$$P(b, U^l) = \sum_{i=1}^{l} u_i [b(x_i) = y_i]$$

Adaboost

B – семейство базовых алгоритмов.

Пусть для любого нормированного вектора весов U^l существует алгоритм $b\in B$, классифицирующий выборку немного лучше, чем наугад $P(b,U^l)>N(b,U^l).$

Минимум функционала Q_T достигается при:

$$b_T = \arg\max_{b \in B} \sqrt{P(b, U^l)} - \sqrt{N(b, U^l)}$$

$$\alpha_T = \frac{1}{2} \ln \frac{P(b_T, U^l)}{N(b_T, U^l)}$$

Алгоритм

```
1 function ADABOOST(X^l, T)
2 Инициализировать w_i = 1/l, i = 1, \ldots, l
3 for t = 1, \ldots, T do
4 b_t = \arg\max_{b \in B} \sqrt{P(b, U^l)} - \sqrt{N(b, U^l)}
5 \alpha_t = \frac{1}{2} \ln \frac{P(b_T, U^l)}{N(b_T, U^l)}
6 w_i = w_i \exp(-\alpha_t y_i b_t(x_i)) i = 1, \ldots, l
7 u_i = w_i / \sum_{j=1}^l w_j
```

Рекоммендации

- · Чаще всего в качестве базовых классификаторов используются решающие деревья
- · Для SVM бустинг не эффективен

+ Хорошая обобщающая способность

- + Хорошая обобщающая способность
- + Простота реализации

- + Хорошая обобщающая способность
- + Простота реализации
- + Накладные расходы на построение не велики

- + Хорошая обобщающая способность
- + Простота реализации
- + Накладные расходы на построение не велики
- Склонен к переобучению при наличии большого количества шума в данных

- + Хорошая обобщающая способность
- + Простота реализации
- + Накладные расходы на построение не велики
- Склонен к переобучению при наличии большого количества шума в данных
- Требует большой обучающей выборки

- + Хорошая обобщающая способность
- + Простота реализации
- + Накладные расходы на построение не велики
- Склонен к переобучению при наличии большого количества шума в данных
- Требует большой обучающей выборки
- Жадность приводит к неоптимальности

Stacking

Почему эти подходы работают

- 1. Бэггинг уменьшает разброс
- 2. Бустинг уменьшает разброс и смещение
- 3. Чем сильнее коррелируют базовые алгоритмы, тем менее эффективны композиции

Вопросы?