"计算机组织结构"作业 06

1. 存储器中有一个 8 位字 11000010, 假设在海明码中采用偶校验,请写出加入校验码后的数据。

12	11	10	9	8	7	6	5	4	3	2	1
1	1	0	0	空	0	0	1	空	0	空	空

表格中空的部分为校验码

根据海明码校验公式: 空1为0^1^0^0^1=0

空 2 为 0⁰0⁰0¹=1 空 4 为 1⁰0¹=0 空 8 为 0⁰1¹=0

则加入海明码后为 110000010010

综上: 在海明码中采用偶校验结果为 110000010010

2. 一个 8 位字 00111001,采用海明码生成校验位后存储。假定由存储器读出数据时, 计算出的校验位是 1101,那么由存储器读出的数据字是什么?

12	11	10	9	8	7	6	5	4	3	2	1
0	0	1	1	空	1	0	0	空	1	空	空

根据海明码校验公式: 空1为1^0^1^10=1

空 2 为 1⁰1¹0=1 空 4 为 0⁰1⁰=1 空 8 为 1¹0⁰0=0

由于读出时计算出的校验位为 1101,与 0111 做异或为 1010 则从右到左第 10 个数据位产生错误,存储器读出的数据字为 00011001

3. 已知下列字符的 ACSII 编码: A=1000001, a=1100001, 0=0110000, 求 E、e、f、7、G、Z、5 的 7 位 ACSII 码和第 7 位前加入奇校验位后的 8 位编码。

分别以 A, a, 0 为基, 对问题的每一个数用其与对应基之间十进制中的位置差, 加上对应的基的二进制表达, 得到其最终的二进制表达

	E	е	f	7	G	Z	5
校验	1000101	1100101	1100110	0110111	1000111	1011010	0110101
前							
校验	01000101	11100101	11100110	00110111	11000111	11011010	10110101
后							

4. 某计算机在信息传输中采用基于偶校验的海明码,对每个字节生成校验位。假设所传输信息的十六进制表示为8F3CAB96H,且将信息与校验码按照故障字的顺序排列后一起传输。如果传输中没有发生任何错误,写出所接收到信息(含校验码)的十六进制表示。

由题,对每个字节生成校验位,同时信息用十六进制表示则原信息中两两一组,分别为8F 3C AB 96,并对其分别求出校验码8F 校验码: 1011 (B)

3C 校验码: 0010 (2)

AB 校验码: 0111 (7)

96 校验码: 0110 (6)

对于每一组,将其对应的校验码从右到左放置到长度为 12 位的信息中,位置分别位 1, 2, 4, 8, 从而新城新的信息

8F 信息: 1000 1111 0111

3C 信息: 0011 0110 0010

AB 信息: 1010 0101 1111

96 信息: 1001 0011 1010

将新的信息按顺序排列下来为 1000 1111 0111 0011 0110 0010 1010 0101 1111 1001 0011 1010

转成十六进制为: 8F7362A5F93A

5. 假设要传送的数据信息为 100011,若约定的生成多项式位 $G(x) = x^3 + 1$,则生成的循环 冗余校验码是多少?

生成的多项式为 1001,则将 100011 左移 3 位得 100011000

用 100011000 对 1001 做异或除法,得到余数为 111。则校验码为 111

计算过程如下图:

