

## ECUACIONES DIFERENCIALES.

UNIDAD III. Ecuaciones Diferenciales de Orden Superior.

Tarea 8: Ecuaciones Diferenciales Homogéneas.

| Elaboro: Sandra Elizabeth Delgadillo Aleman. |                                 |
|----------------------------------------------|---------------------------------|
| Alumno(a):                                   | Carrera: No. de ejercicios: / 1 |
|                                              |                                 |

## I. Resuelve correctamente los siguientes ejercicios:

## Ecuaciones Diferenciales Homogéneas (12).

- 1. (Hacer 4 ejercicios) Determine la solución general de las siguientes ecuaciones diferenciales de segundo orden.
  - a) 4y'' + y' = 0. Solución.  $y = c_1 + c_2 e^{-x/4}$ .
  - b) y'' y' 6y = 0. Solución.  $y = c_1 e^{3x} + c_2 e^{-2x}$ .
  - c) y'' + 8y' + 16y = 0. Solución.  $y = c_1 e^{-4x} + c_2 x e^{-4x}$ .
  - d) 12y'' 5y' 2y = 0. Solución.  $y = c_1 e^{2x/3} + c_2 e^{-x/4}$ .
  - e) y'' + 9y = 0. Solución.  $y = c_1 \cos 3x + c_2 \sin 3x$ .
  - f) y'' 4y' + 5y = 0. Solución.  $y = e^{2x}(c_1 \cos x + c_2 \sin x)$ .

g) 
$$3y'' + 2y' + y = 0$$
. Solución.  $y = e^{-x/3} \left( c_1 \cos \frac{\sqrt{2}}{3} x + c_2 \sin \frac{\sqrt{2}}{3} x \right)$ .

- 2. (Hacer 4 ejercicios) Determine la solución general de las siguientes ecuaciones diferenciales de orden superior
  - a) y''' 4y'' 5y' = 0. Solución.  $y = c_1 + c_2 e^{-x} + c_3 e^{5x}$ .
  - b) y''' 5y'' + 3y' + 9y = 0. Solución.  $y = c_1 e^{-x} + c_2 e^{3x} + c_3 x e^{3x}$ .
  - c)  $\frac{d^3u}{dt^3} + \frac{d^2u}{dt^2} 2u = 0$ . Solución.  $u = c_1 e^t + e^{-t} (c_2 \cos t + c_3 \sin t)$ .
  - d) y''' + 3y'' + 3y' + y = 0. Solución.  $y = c_1 e^{-x} + c_2 x e^{-x} + c_3 x^2 e^{-x}$
  - e)  $y^{(4)} + y''' + y'' = 0$ . Solución.  $y = c_1 + c_2 x + e^{-x/2} \left( c_3 \cos \frac{\sqrt{3}}{2} x + c_4 \sin \frac{\sqrt{3}}{2} x \right)$ .
  - f)  $16\frac{d^4y}{dt^4} + 24\frac{d^2y}{dt^2} + 9y = 0$ . Solución.  $y = c_1 \cos \frac{\sqrt{3}}{2}t + c_2 \sin \frac{\sqrt{3}}{2}t + c_3 t \cos \frac{\sqrt{3}}{2}t + c_4 t \sin \frac{\sqrt{3}}{2}t$ .
  - g)  $\frac{d^5u}{dr^5} + 5\frac{d^4u}{dr^4} 2\frac{d^3u}{dr^3} 10\frac{d^2u}{dr^2} + \frac{du}{dr} + 5u = 0$ . Solución.  $u = c_1e^r + c_2re^r + c_3e^{-r} + c_4re^{-r} + c_5e^{-5r}$ .
- 3. (Hacer 2 ejercicios) Resuelve los siguientes problemas de valor inicial y esboza su grafica, haciendo énfasis en la interpretación geométrica de las condiciones iniciales.
  - a) y'' + 16y = 0, y(0) = 2, y'(0) = -2. Solución.  $y = 2\cos 4x \frac{1}{2}\sin 4x$ .
  - b)  $\frac{d^2y}{dt^2} 4\frac{dy}{dt} 5y = 0$ , y(1) = 0, y'(1) = 2. Solución.  $y = -\frac{1}{3}e^{-(t-1)} + \frac{1}{3}e^{5(t-1)}$ .
  - c) y'' + y' + 2y = 0, y(0) = 0, y'(0) = 0. Solución. y = 0.
  - d) y''' + 12y'' + 36y' = 0, y(0) = 0, y'(0) = 0, y''(0) = -7. Solución.  $y = -\frac{7}{36} + \frac{7}{36}e^{-6x} + \frac{7}{6}xe^{-6x}$ .
- 4. (Hacer 2 ejercicios) Resuelve las siguientes ecuaciones diferenciales, sujeta a las condiciones de frontera indicadas y esboza su gráfica, haciendo énfasis en la interpretación geométrica de las condiciones de frontera.

a) 
$$y'' - 10y' + 25y = 0$$
,  $y(0) = 1$ ,  $y(1) = 0$ . Solución.  $y = e^{5x} - xe^{5x}$ .

b) 
$$y'' + y = 0$$
,  $y'(0) = 0$ ,  $y'\left(\frac{\pi}{2}\right) = 2$ . Solución.  $y = -2\cos x$ .

<sup>\*</sup>Puedes usar GeoGebra https://www.geogebra.org/m/KGWhcAqc o WolframAlpha https://www.wolframalpha.com/ para esbozar o verificar las graficas de las soluciones de PVI o PVF.