

# **AGENDA**

Background
Data Overview
Statistical Methods
Limitations & Conclusions



7/1/20XX

## **BACKGROUND**

#### **ISSUE**

Potential gender-based discrimination at bank

#### DATA

Data on skilled, entry-level clerical employees of a bank

#### **GOAL**

Use statistical methods to test for gender-based pay disparity at a bank





## **DATA OVERVIEW**

#### **VARIABLES**

Response variable: Starting salary

Input variables: Age Education

Education Experience Gender Seniority

#### **SAMPLES**

32 men, 61 women

hired between 1965 and 1975

# **EXPLORATORY GRAPHS**



# **EXPLORATORY GRAPHS**



not enough evidence against normality

equal variances



#### **TWO-SAMPLE T-TEST**

- Sample size acceptable
- Not enough evidence against normality
- Equal variances







T-Statistic: -6.2926

Degrees of Freedom: 91

P-Value: 1.076e-08

95% confidence interval: -1076 -560

Reject the null hypothesis that the true difference in means is equal to 0.

#### **REGRESSION**

Goal: model with the smallest number of predictors necessary to provide good predictions.

### Forward selection

Successively add predictors, assess based on p-values

# **Backward elimination**

Successively remove predictors, assess based on p-values

# **Automated - Subsets**

Have a computer add, remove, assess predictors; "caret" package step.model "leapBackward"

#### FORWARD SELECTION - W/O VARIABLE SEX

**Linear models** 

Best: Educ

Non-linear models

No significant effect, not included in the model

**Transformations** 

No effect, not included in the model

Two-variable models

Best: Educ, Senior

**Two-way Interactions** 

No significant effect, not included in the model

Three-variable models

No significant effect, not included in the model

10

Full model

Sex had significant effect

#### **REGRESSION**

Goal: model with the smallest number of predictors necessary to provide good predictions.

# **Backward elimination**

Successively remove predictors, assess based on p-values

# **Automated - Subsets**

Have a computer add, remove, assess predictors; "caret" package step.model "leapBackward"

## FINAL MODEL SELECTION

# R-squared, # of variables

# step.model\$results[, "Nymax"]

# **AIC**

| MODEL                                | df AIC      |
|--------------------------------------|-------------|
| ## Full.lm                           | 7 1430.6230 |
| <pre>## Educ.Senior.Age.Sex.lm</pre> | 6 1428.8633 |
| ## Educ.Senior.Sex.lm                | 5 1432.2413 |
| ## Senior.Sex.lm                     | 4 1441.3382 |
| ## Sex.lm                            | 3 1456.3515 |

#### **FINAL MODEL**

Sex, Seniority, Education

# Coefficient table

(Intercept) SexMale Senior Educ 6110.79166 737.40468 -24.25706 84.09670





# **RESIDUAL ANALYSIS**





# **LIMITATIONS**

- Observational data, cannot prove causation
- Other variables related to job role not captured
- Qualitative factors also important for legal conclusion



# **CONCLUSIONS**

T-test established that the differences in starting salaries were not due to random chance

Regression established that these differences depended on gender

Conclusion: Statistical evidence suggests gender-based discrimination at the bank, but additional investigation needed for firm legal ruling

Pitch deck title 16