

Lecture 9 Wavelet and Other Image Transforms

Dr. Xavier LAGORCE

Email: xavier@shanghaitech.edu.cn

Office: 1D-301.B, SIST

ShanghaiTech University

Outline

- **□** 2D Unitary transform
- ☐ Frequency Domain Extension
 - ➤ Discrete Cosine Transform (余弦变换)
 - ➤ Hadamard Transform (哈德马变换)
- □ Discrete Wavelet Transform (DWT, 小波变换)
 - An example for 1D-DWT
 - Generalization of 1D-DWT
 - > 2D-DWT

Unitary Transform

Forward Transform:

Matrix Vector
$$t = Af$$

$$t[k] = \sum_{n=0}^{N-1} A[k, n] f[n]$$

□ Inverse Transform:

In that case A is a unitary transform

$$f = A^H t$$
 where $A^H = (A^T)^*$ and $AA^H = I$
Conjugate transpose

Example for 1D Unitary Transform

☐ Image rotation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} * \begin{bmatrix} x \\ y \end{bmatrix}$$

☐ Principle Component Analysis (PCA):

$$Y = PX$$

that satisfies:

$$C = XX^T$$
, $D = PCP^T$, and $PP^T = I$

Goal: Basis Functions

$\mathbf{S}_{0,0}$	$\mathbf{S}_{0,1}$		$\mathbf{S}_{0,N-1}$
$\mathbf{S}_{1,0}$	··.		:
•			
		··.	
			:
$S_{N-1,0}$	•••		$\ \mathbf{S}_{N-1,N-1}\ $

a b

FIGURE 7.6

(a) Basis image organization and (b) a standard basis of size 8×8 . For clarity, a gray border has been added around each basis image. The origin of each basis image (i.e., x = y = 0) is at its top left.

Discrete Fourier Transform

> Forward Transform:

$$t = Af;$$
 $t[k] = \sum_{n=0}^{N-1} A[k, n]f[n]$

Inverse Transform:

$$f = A^{H}t; \quad f[n] = \sum_{k=0}^{N-1} A^{H}[k, n]t[k]$$

> 1-D DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}, \qquad (k = 1, 2, \dots, N)$$

$$A[k,n] = e^{-j\frac{2\pi kn}{N}} = \cos\left(2\pi\frac{kn}{N}\right) - j.\sin(2\pi\frac{kn}{N})$$

Real(A)

2D Unitary Transform

☐ Forward Transform:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{v=0}^{N-1} f(x,y) e^{-j2\pi (\frac{ux}{M} + \frac{vy}{N})}$$

$$= A_M f A_N$$

Inverse Transform

$$f = A_M^H F A_N^H$$

$$AA^H = I$$

Image Transform

☐ The general approach for operating in linear transform domain

☐ The unitary transform satisfies

$$\sum_{x=0}^{M} \sum_{y=0}^{N} (f[x, y])^2 = \sum_{u=0}^{M} \sum_{v=0}^{N} (F[u, v])^2$$

▶i.e., the energy is preserved.

Good and Bad things about DFT

□ **V** Positive :

- > Energy is usually packed into low-frequency coefficients
- Convolution property
- > Fast implementation

□ **X** Negative :

- Transform is complex, even if image is real
- > The basis functions span the whole image height and width
- Need to process stationary signals

DFT vs. DCT (Discrete Cosine Transform)

> 1D-DFT

$$A[k,n] = e^{-j\frac{2\pi kn}{N}}$$
$$= cos\left(2\pi\frac{kn}{N}\right) + jsin\left(2\pi\frac{kn}{N}\right)$$

Real(A)

Imag(A)

1D-DCT

$$A[0,n] = \sqrt{\frac{1}{N}}, \ A[k,n] = \sqrt{\frac{2}{N}} \cos \frac{\pi(2n+1)k}{2N} \text{ for } k > 0$$

k = 7

- Only real part
- Half-frequencies

What's the difference???

2D DCT

Forward Transform

$$F(u,v) = \alpha(u)\alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

where

$$\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}}, & \text{for } u = 0\\ \sqrt{\frac{2}{N}}, & \text{for } u = 1, 2, \dots, N - 1 \end{cases}$$

Inverse Transform

Still separable!

$$f(x,y) = \frac{1}{N}F(0,0)$$

$$+\frac{\sqrt{2}}{N}\sum_{u=1}^{N-1}F(u,0)\cos\frac{(2x+1)u\pi}{2N}$$

$$+\frac{\sqrt{2}}{N}\sum_{v=1}^{N-1}F(0,v)\cos\frac{(2y+1)v\pi}{2N}$$

$$+\sum_{v=1}^{N-1}F(u,v)\cos\frac{(2x+1)u\pi}{2N}\cos\frac{(2y+1)u\pi}{2N}$$

$$+\frac{2}{N}\sum_{x=1}^{N-1}\sum_{y=1}^{N-1}F(u,y)\cos\frac{(2x+1)u\pi}{2N}\cos\frac{(2y+1)v\pi}{2N}$$

2D DCT – Requirements

- ☐ Direct Cosine Transform assumes:
 - ➤ 2N-point periodicity
 - Even symmetry

a b

FIGURE 7.11

The periodicity implicit in the 1-D

- (a) DFT and
- (b) DCT.

DFT vs DCT: Basis Functions

DFT DCT

DFT example

- ☐ Complicated transform even if the signal is simple
 - > Red: frequencies with weight above average
 - ➤ Blue: frequencies with weight below average
- ☐ Frequencies are going up and then down through the basis functions
- Large weights everywhere and large differences
- ☐ Kind of complexifies the problem

DCT example

- ☐ Same representation:
 - ➤ Red: frequencies with weight above average
 - ➤ Blue: frequencies with weight below average
- Large weights grouped in the top left corner! (and more similar)
- No more complex numbers, more regular variation of frequencies in basis functions
- ☐ Still complexifies the problem

DCT coefficients

Good things about DCT

□ **V** Positive:

- ightharpoonup Transform is real, $C^{-1} = C^T$ (unitary transform).
- Excellent energy compaction for nature images.
- > Fast transform.
- > JPEG algorithms.

101	-23	72	-	— 0	0	0	0	0
001	-51	14	Z	Ø	0	0	0	0
101	6	Z	Ø	0	0	0	0	0
001	7	71	0	0	0	0	0	0
	d	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	

How to simplify the transforms?

- ☐ From DFT to DCT we already moved from complex numbers to real numbers
- But trigonometry functions are still complicated....

Walsh Transform

- \triangleright Consist of ± 1 arranged in a checkerboard pattern.
- > Transforms:

$$W(i) = \frac{1}{N} \sum_{t=0}^{N-1} f(t) Wal(i,t)$$

$$f(t) = \sum_{t=0}^{N-1} W(i) Wal(i,t)$$

- \triangleright Different types of Wal(i,t) for different transforms:
 - Walsh Ordering (沃尔什定序)
 - ➤ Paley Ordering (佩利定序)
 - ➤ Hadamard Matrix Ordering (哈达玛矩阵定序)

Transformation matrix:

(contains all the basis vectors)

$$\mathbf{A}_{\mathrm{W}} = \frac{1}{\sqrt{N}} \mathbf{H}_{N}$$

Where

$$\begin{bmatrix} \mathbf{H}_{2N} = \begin{bmatrix} \mathbf{H}_N & \mathbf{H}_N \\ \mathbf{H}_N & -\mathbf{H}_N \end{bmatrix}$$

$$\mathbf{H}_2 = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$$

$$\mathbf{H}_8 = \begin{bmatrix} \mathbf{H}_4 & \mathbf{H}_4 \\ \mathbf{H}_4 & -\mathbf{H}_4 \end{bmatrix}$$

Sequency: number of sign change along a row (like *frequency*)

$$\mathbf{H}_8 = \begin{vmatrix} \mathbf{H}_4 & \mathbf{H}_4 \\ \mathbf{H}_4 & -\mathbf{H}_4 \end{vmatrix}$$

Sequency: number of sign change along a row (like *frequency*)

→ Measures the rate of change

Hadamard-ordered Walsh-Hadamard transform

☐ It is both common and desirable to sort the rows by increasing sequency

Sequency-ordered Walsh-Hadamard transform

Hadamard example

- ☐ Same representation as before
 - > Red: frequencies with weight above average
 - ➤ Blue: frequencies with weight below average
- Many zeroes → good for compression
- Energy is concentrated in a few weights

DFT, DCT, & Hadamard

- Any connection between DFT and DCT?
- More complex image → Energy is more scattered in Hadamard transform
- ☐ The relationship between the spectrum and the image is still complicated...

Take home message

- ☐ The key idea for unitary transform is to find a proper basis for data decomposition.
- □ DCT provides better frequency consistency than DFT.
- □ Hadamard transform is able to represent a simple image with simple coefficients. But can not keep energy compact for image full of details.

Wavelet transform Outline

- □ Discrete Wavelet Transform (DWT) (小波变换)
 - An example for 1D-DWT
 - Generalization of 1D-DWT
 - > 2D-DWT

Discrete Wavelet Transform (DWT)

- Based on small waves called Wavelets:
 - Limited
 - Have oscillations
 - → small waves with band-limited spectra.
- ☐ Key idea: Translation & Scaling.
- ☐ Localize both time/space and frequency.
- Efficient for noise reduction and image compression.
- ☐ Two types of DWT:
 - one for image processing (easily invertible)
 - one for signal processing (invertible but computationally expensive)

into two four-point signals:

$$c(n) = 0.5x(2n) + 0.5x(2n+1)$$

Average of neighbors

$$d(n) = 0.5x(2n) - 0.5x(2n+1)$$

Difference of neighbors

The above process can be represented by a block diagram:

$$x(n) \longrightarrow \begin{bmatrix} \mathsf{AVE/} & \longrightarrow c(n) \\ \mathsf{DIFF} & \longrightarrow d(n) \end{bmatrix}$$

It is clear that this decomposition can be easily reversed:

$$y(2n) = c(n) + d(n)$$

$$y(2n+1) = c(n) - d(n)$$

Which is also represented by a block diagram:

☐ When we repeat the simple AVE/DIFF signal decomposition:

$$x(n) = [x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8] = [3, 4, 5, 5, 7, 6, 4, 2]$$

Level 1

$$c_1 =$$

$$d = d_1 =$$

Level 2

$$c_2 =$$

$$d_2 =$$

Level 3

$$c_3 =$$

$$d_3 =$$

☐ When we repeat the simple AVE/DIFF signal decomposition:

$$x(n) = [x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8] = [3, 4, 5, 5, 7, 6, 4, 2]$$

Level 1

$$c_1 = \frac{1}{2} [x_1 + x_2, x_3 + x_4, x_5 + x_6, x_7 + x_8] \qquad d = d_1 = \frac{1}{2} [x_1 - x_2, x_3 - x_4, x_5 - x_6, x_7 - x_8]$$

Level 2

$$c_2 = \frac{1}{4} [x_1 + x_2 + x_3 + x_4, x_5 + x_6 + x_7 + x_8]$$

$$d_2 = \frac{1}{4} [x_1 - x_3 + x_2 - x_4, x_5 - x_7 + x_6 - x_8]$$

Level 3

$$c_3 = \frac{1}{8}[x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8] \qquad d_3 = \frac{1}{8}[x_1 + x_2 + x_3 + x_4 - x_5 - x_6 - x_7 - x_8]$$

When we repeat the simple AVE/DIFF signal decomposition:

The Haar wavelet representation of the eight-point signal x[n] is simply the set of four output signals produced by this three-level operation:

$$c_3 = [4.5]$$
 $d_3 = [-0.25]$
 $d_2 = [-0.75, 1.75]$
 $d = [-0.5, 0, 0.5, 1]$

Haar Transform matrix

When N=2 we have:

$$\mathbf{H}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

➤ When N=4 we have:

$$\mathbf{H}_4 = rac{1}{2} \left[egin{array}{cccc} 1 & 1 & 1 & 1 \ 1 & 1 & -1 & -1 \ \sqrt{2} & -\sqrt{2} & 0 & 0 \ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{array}
ight]$$

➤ When N=8 we have:

Haar Transform matrix

The family of N Haar functions $h_u(x)$, (u=0,...,N-1) is defined on the interval $0 \le x \le 1$. The shape of the specific function $h_u(x)$ of a given index u depends on two parameters p and q from the decomposition of u:

$$u=2^p+q$$

u	p	\boldsymbol{q}
1	0	0
2	1	0
3	1	1

> The Haar basis functions are defined by:

$$h_u(x) = \begin{cases} 1 & u = 0 \text{ and } 0 \le x < 1\\ 2^{p/2} & u > 0 \text{ and } q/2^p \le x < (q+0.5)/2^p\\ -2^{p/2} & u > 0 \text{ and } (q+0.5)/2^p \le x < (q+1)/2^p\\ 0 & \text{otherwise} \end{cases}$$

Haar Transform matrix

Generalization of 1D-DWT

Discrete Wavelet Transform (DWT):

Approximation coefficients
$$W_{\varphi}(j_0,k) = \frac{1}{\sqrt{M}} \sum_{n} f(n) \varphi_{j_0,k}(n)$$
 Scaling function (down-sampling) Wavelets

Detail coefficients
$$W_{\psi}(j,k) = \frac{1}{\sqrt{M}} \sum_{n} f(n) \psi_{j,k}(n) \quad j \ge j_0$$

Inverse Discrete Wavelet Transform (IDWT):

$$f(n) = \frac{1}{\sqrt{M}} \sum_{k} W_{\varphi}(j_0, k) \, \varphi_{j_0, k}(n) + \frac{1}{\sqrt{M}} \sum_{j=j_0}^{\infty} \sum_{k} W_{\psi}(j, k) \, \psi_{j, k}(n)$$

Where

 $\varphi_{j_0,k}(n)$: scaling function (尺度函数) $\psi_{j,k}(n)$: Wavelet (小波)

 $W_{\varphi}(j_0,k)$: Approximation coefficients (近似系数) $W_{\psi}(j,k)$: detail coefficients (细节系数)

2D-DWT

Define 2D wavelet function: Directionally sensitive wavelet

$$\psi^H(x,y) = \psi(x)\varphi(y)$$
 $\psi^V(x,y) = \varphi(x)\psi(y)$ $\psi^D(x,y) = \psi(x)\psi(y)$ Variations along columns (i.e. horizontal edges) Variations along diagonals

> 2D-DWT

$$W_{\varphi}(j_0, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \, \varphi_{j_0, m, n}(x, y)$$

$$W_{\psi}(j, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \, \psi_{j, m, n}^{i}(x, y) \qquad i = \{H, V, D\}$$

> 2D-IDWT

$$f(x,y) = \frac{1}{\sqrt{MN}} \sum_{m} \sum_{n} W_{\varphi}(j_0, m, n) \varphi_{j_0, m, n}(x, y)$$

$$+\frac{1}{\sqrt{MN}}\sum_{i=\{H,V,D\}}\sum_{j=j_0}^{\infty}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}W_{\psi}(j,m,n)\,\psi_{j,m,n}^i(x,y)$$

2D-DWT

M. 12. 1

2D-DWT Example

Two-scale DWT

Original image

One scale DWT

Mother Wavelet (母小波)

Mother Wavelet should satisfy:

•
$$\int_{-\infty}^{\infty} |\psi(t)|^2 dt = 1$$

•
$$\int_{-\infty}^{\infty} |\psi(t)| dt < \infty$$

•
$$\int_{-\infty}^{\infty} \psi(t) dt = 0$$

Meyer

Using Wavelets in image processing

- ☐ The idea is similar to the Fourier domain processing:
 - 1. Compute the 2D-wavelet transform with respect to a selected wavelet basis
 - 2. Alter the computed transform to take advantage of the DWT's ability to:
 - Decorrelate image pixels
 - Reveal important frequency and temporal characteristics
 - Measure the image's similarity to the transform's basis images
 - ☐ Modifications designed for image smoothing, sharpening, noise reduction, edge detection, ... are possible
 - 3. Compute the inverse wavelet transform.

Example – Edge detection

2 1 0 -1,5 0 1 2 3 4 5 6 7

Two-scale DWT with 4th-order symlets (symmetrical wavelets)

Example – Edge detection

2 1 0 -1.5 0 1 2 3 4 5 6 7

Inverse DWT

Edge enhancement

Example – Edge detection

2 1 0 -1 -1.5 0 1 2 3 4 5 6 7

Inverse DWT

Isolates vertical edges

Take home message

- ☐ Based on small waves called Wavelets-1) limited; 2) oscillation.
- ☐ Key idea: Translation & Scaling.
- ☐ Localized both time/space and frequency.
- ☐ Efficient for noise reduction and image compression.
- ☐ JPEG2000, FBI finger printing database (for its digitization and compression).

