Introduction to Stochastic Simulation

Python 5

General Plan

Assignments. Any issue with the last assignment? How long did it take you?

Project. See Canvas page.

- By pairs: same project programmed in Mathematica and in Python
- Choice from a list, or project of your own choice (upon approval)
- Work on the project during the 6 sessions of weeks 6 and week 7
- Deadline at the end of week 7

Plan.

- 0. Feedback on last week's exercises
- 1. Random Number Generators
- 2. Sampling Random variables
- 3. Example Brownian motion
- 4. Introduction to Monte Carlo

Part 0 Last week's exercises

Do you have any question?
Is there anything you are not sure you have understood?

Part 1 Random Number Generators

Random number generators

Random Number Generators

Question: How are random numbers generated in a computer?

Random Number Generators

Question: How are random numbers generated in a computer?

Hardware random number generators, or True random number generators:

Devices that generate random numbers from measurements of a physical process expected to be random (e.g., thermal noise, atmospheric noise, quantum phenomena)

Pseudo-random number generators:

algorithms that can generate long sequences of numbers that are random in appearance, but that are completely determined by the initial value, the **seed**.

Sequence has a finite length = period of the generator \longrightarrow can sometimes be an issue

Pseudo-random Number Generators in NumPy

Using np.random:

Uses by default a **Mersenne-Twister generator**:

- one of the most tested random number generator
- has a very long period of 2¹⁹⁹³⁷-1

>>> Ex1-2

>>> Ex1-2

>>> Q1

Pseudo-random Number Generators in NumPy

Using np.random:

Uses by default a **Mersenne-Twister generator**:

- one of the most tested random number generator
- has a very long period of 2¹⁹⁹³⁷-1

Pseudo-random Number Generators in NumPy

"Generator" object: new recommended syntax

```
### Without specifying the seed:
                                        Define the generator
rng=np.random.default rng()
print(rng)
rng.random((3,3))
                                        By default: PCG64
Generator(PCG64)
array([[0.7493631 , 0.21492898, 0.97161296],
       [0.96073753, 0.55448631, 0.82254493],
       [0.2566791 , 0.51780946 , 0.6871649 ]])
### With the seed:
rng=np.random.default_rng(seed=42)
                                                   Setting the seed
rng.random((3,3))
array([[0.77395605, 0.43887844, 0.85859792],
       [0.69736803, 0.09417735, 0.97562235],
       [0.7611397 , 0.78606431, 0.12811363]])
```

>>> Ex 3

Pseudo-random Number Generators in NumPy

"Generator" object: new recommended syntax

```
### Without specifying the seed:
                                        Define the generator
rng=np.random.default rng()
print(rng)
rng.random((3,3))
                                        By default: PCG64
Generator(PCG64)
array([[0.7493631 , 0.21492898, 0.97161296],
       [0.96073753, 0.55448631, 0.82254493],
                                                                                       >>> Ex 3
       [0.2566791 , 0.51780946 , 0.6871649 ]])
### With the seed:
rng=np.random.default_rng(seed=42)
                                                    Setting the seed
rng.random((3,3))
array([[0.77395605, 0.43887844, 0.85859792],
       [0.69736803, 0.09417735, 0.97562235],
       [0.7611397 , 0.78606431, 0.12811363]])
### Using Mersenne-Twister generator, MT19937:
                                                                                       >>> Q2
from numpy.random import Generator, MT19937
rng=np.random.Generator(MT19937())
print(rng)
print(rng.random())
Generator(MT19937)
0.34337016943942145
```

Pseudo-random Number Generators in NumPy

"Generator" object: new recommended syntax

0.34337016943942145

```
### Without specifying the seed:
                                       Define the generator
rng=np.random.default rng()
print(rng)
rng.random((3,3))
                                       By default: PCG64
Generator(PCG64)
array([[0.7493631 , 0.21492898, 0.97161296],
       [0.96073753, 0.55448631, 0.82254493],
                                                                                       >>> Ex 3
       [0.2566791 , 0.51780946 , 0.6871649 ]])
### With the seed:
rng=np.random.default_rng(seed=42)
                                                   Setting the seed
rng.random((3,3))
array([[0.77395605, 0.43887844, 0.85859792],
       [0.69736803, 0.09417735, 0.97562235],
       [0.7611397 , 0.78606431, 0.12811363]])
### Using Mersenne-Twister generator, MT19937:
                                                                                       >>> Q2
from numpy.random import Generator, MT19937
rng=np.random.Generator(MT19937())
print(rng)
print(rng.random())
                                                                                       >>> Q3-4
Generator(MT19937)
```

Part 2 Sampling random variables

Sampling a Binary Discrete Random Variable

Sampling a Binary Discrete Random Variable

Sampling a Binary Discrete Random Variable

Sampling a Discrete Random Variable

Ex. Biased dice:

Sampling a Discrete Random Variable

Ex. Biased dice:

$$\epsilon \in [0, 1)$$
 uniform

Sampling a Discrete Random Variable

Ex. Biased dice:

$$\epsilon \in [0, 1)$$
 uniform

if
$$\epsilon < p_1$$
, then 1

else if
$$\epsilon < p_1 + p_2$$
, then 2

else if
$$\epsilon < p_1 + p_2 + p_3$$
, then 3

Etc.

>>> Q7-8

Unfair coin: 1 Tails

p

Heads

Biased dice:

Sampling a Continuous RV Variable Using the inverse of a cumulative

Consider a continuous probability density function:

$$x \in (a,b), \qquad p(x) \qquad \text{with} \quad \int_a^b p(x) = 1$$

Sampling a Continuous Random Variable Using the inverse of a cumulative

$$x \in (a,b), \qquad p(x) \qquad \text{with} \quad \int_a^b p(x) = 1$$

Sampling a Continuous Random Variable Using the inverse of a cumulative

Sampling a Continuous Random Variable Using the inverse of a cumulative

Sampling a Continuous Random Variable Using the inverse of a cumulative

Ex. Exponential distribution:

Consider a series of **independent events** that happen with a **constant rate** λ

Ex. light scattering in a diffusive medium

At any time t_0 , the probability that the next event happens at time t_0+t is independent of t_0 and is given by the **Exponential distribution:**

$$P(t) = \lambda \exp(-\lambda t)$$

- $\epsilon = \text{uniform}(0, 1)$
- Find T such that: $\int_0^T \lambda \exp(-\lambda \, t) \, dt = \epsilon$

Sampling a Continuous Random Variable Using the inverse of a cumulative

Ex. Exponential distribution:

Consider a series of **independent events** that happen with a **constant rate** λ

Ex. light scattering in a diffusive medium

At any time t_0 , the probability that the next event happens at time t_0+t is independent of t_0 and is given by the **Exponential distribution:**

$$P(t) = \lambda \exp(-\lambda t)$$

- $\epsilon = \text{uniform}(0, 1)$
- Find T such that: $\int_0^T \lambda \exp(-\lambda\,t)\,dt = \epsilon \qquad \Rightarrow \qquad \epsilon = 1 \exp(-\lambda\,T)$

$$\Rightarrow T = -\frac{1}{\lambda}\log(1-\epsilon)$$

Sampling a Continuous Random Variable Using the inverse of a cumulative

Ex. Exponential distribution:

Consider a series of **independent events** that happen with a **constant rate** λ

Ex. light scattering in a diffusive medium

At any time t_0 , the probability that the next event happens at time t_0+t is independent of t_0 and is given by the **Exponential distribution:**

$$P(t) = \lambda \exp(-\lambda t)$$

- $\epsilon = \text{uniform}(0, 1)$
- Find T such that: $\int_0^T \lambda \exp(-\lambda \, t) \, dt = \epsilon \qquad \Rightarrow \qquad \epsilon = 1 \exp(-\lambda \, T)$

$$\Rightarrow T = -\frac{1}{\lambda} \log(1 - \epsilon) \qquad \Rightarrow \boxed{T = -\frac{1}{\lambda} \log(\eta) \quad \text{where } \eta = \text{uniform}(0, 1)}$$

Sampling a Continuous Random Variable Using the inverse of a cumulative

Ex. Exponential distribution:

Consider a series of **independent events** that happen with a **constant rate** λ

Ex. light scattering in a diffusive medium

At any time t_0 , the probability that the next event happens at time t_0+t is independent of t_0 and is given by the **Exponential distribution:**

$$P(t) = \lambda \exp(-\lambda t)$$

>>> Q9

•
$$\epsilon = \text{uniform}(0, 1)$$

>>> Q10-11

$$ullet$$
 Find T such that:

$$\int_0^T \lambda \exp(-\lambda t) dt = \epsilon \quad \Rightarrow \quad \epsilon = 1 - \exp(-\lambda T)$$

$$\Rightarrow T = -\frac{1}{\lambda} \log(1 - \epsilon) \qquad \Rightarrow \boxed{T = -\frac{1}{\lambda} \log(\eta) \quad \text{where } \eta = \text{uniform}(0, 1)}$$

Part 3 Monte Carlo Simulation

Book. Algorithms and Computations, by Werner Krauth

Fig. 1.1 Children computing the number π on the Monte Carlo beach.

$$\frac{\text{area circle}}{\text{area square}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$

$$\frac{\text{area circle}}{\text{area square}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$

$$\frac{\text{number of "hits"}}{\text{number of trials}} \simeq \frac{\text{area circle}}{\text{area square}}$$

$$\pi \simeq 4 \frac{\text{number of "hits"}}{\text{number of trials}}$$

$$\frac{\text{area circle}}{\text{area square}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$

$$\frac{\text{number of "hits"}}{\text{number of trials}} \simeq \frac{\text{area circle}}{\text{area square}}$$

$$\pi \simeq 4 \frac{\text{number of "hits"}}{\text{number of trials}}$$

Table 1.1 Results of five runs of Alg. 1.1 (direct-pi) with N = 4000

Run	$N_{ m hits}$	Estimate of π
1 2 3 4 5	3156 3150 3127 3171 3148	3.156 3.150 3.127 3.171 3.148

Ex. Calculating the area of a circle:

$$\frac{\text{area circle}}{\text{area square}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$

Powerful approach for calculating integrals!

$$\frac{\text{number of "hits"}}{\text{number of trials}} \simeq \frac{\text{area circle}}{\text{area square}}$$

$$\pi \simeq 4 \frac{\text{number of "hits"}}{\text{number of trials}}$$

Table 1.1 Results of five runs of Alg. 1.1 (direct-pi) with N = 4000

Run	$N_{ m hits}$	Estimate of π
1	3156	3.156
2	3150	3.150
3	3127	3.127
4	3171	3.171
5	3148	3.148

Going further in learning computational methods Possible interesting courses

Numerical Algorithms (6EC block 2). Link

Solving eigenvalue problems, non-linear equations, optimization problems, interpolations, etc.

Stochastic Simulation (6EC block 2). Link

Including, Statistical analysis of data, hypothesis testing,

Monte Carlo, Importance sampling, simulated annealing