Distributions.jl Cheat Sheet

Carlos Lesmes

September 26, 2025

Install Julia Language

Go to https://julialang.org/downloads/ to download and install Julia.

Install packages

In the Julia REPL (Read-Eval-Print Loop) type 1 to enter the package manager mode, then type:

Pkg> add Distributions, Statistics, Random, StatsBase julia> using Distributions, Statistics, StatsBase

To go back to the Julia REPL type backspace, using is a command to load the installed packages.

Create a distribution —

p = [.4, .3, .2, .1] # categorical ditribution

 $d\theta = Categorical(p)$

d1 = Binomial(10, 0.5) # Binomial distribution with n=10 and p=0.5

d2 = Normal(10,4) #Normal distribution with mean 10 and std 4

d3 = FDist(4,6) # Fdistribution with (4,6) df

d4 = Exponential(2.5) # Exponential distribution scale 2.5

d5 = Gamma(2,3) # Gamma distribution with $\alpha=2$, $\theta=3$

d6 = Chisq(3) # Chi square distribution with 3 df

Parameter retrieval

If method applies to the distribution:

params(d1) # Return a tuple of parameters.

scale(d2) # Get the scale parameter.

location(d2) # Get the location parameter

shape(d5) # Get the shape parameter

scale(d4) # Get the scale parameter

rate(d4) # Get the rate parameter

ncategories(d0) # # Get the number of categories probs(d0) # Get the probability vector

ntrials(d1) # Get the number of trials.

succorob(d1) # Get the probability of success

failprob(d1) # Get the probability of failure.

minimum(d1) # Return the maximum of the support of d.

maximum(d1) # Return the minimum of the support of d.

extrema(d2) # Return the minimum and maximum of the support of d as a

mean(d2) # Compute the expectation.

var(d2) # Compute the variance.

std(d2) # Return the standard deviation of distribution d, i.e.

median(d2) # Return the median value of distribution d. The median is

the smallest x in the support of d for which $cdf(d, x) \ge 1/2$.

Corresponding to this definition as 1/2-quantile, a fallback is provided

calling the quantile function.

mode(d2) # Returns the first mode.

skewness(d2) # Compute the skewness. kurtosis(d2) # Computes excess kurtosis by default. Proper kurtosis can he returned with correction=false

isplatykurtic(d2) # Return whether d is platykurtic (i.e kurtosis(d) <

isleptokurtic(d2) # Return whether d is leptokurtic (i.e kurtosis(d) >

ismesokurtic(d2) # Return whether d is mesokurtic (i.e kurtosis(d) ==

entropy(d2) # Compute the entropy value of distribution d. mgf(d2,.5) # Evaluate the moment-generating function of distribution d

cgf(d2,1) # Evaluate the cumulant-generating function of distribution d

cf(d2,1) # Evaluate the characteristic function of distribution d.

pdfsquaredL2norm(d2) # Return the square of the L2 norm of the probability density function f(x)

Probability evaluation

insupport(d1,2) # When x is a scalar, it returns whether x is within the support of d. When x is an array, it returns whether every element in x is within the support of d.

pdf(d2,1) # Evaluate the probability density (mass) at x.

logpdf(d2,-1) # Evaluate the logarithm of probability density (mass) at

cdf(d2,1) # Evaluate the cumulative probability at x.

logcdf(d2,0) # The logarithm of the cumulative function value(s) evaluated at x.

logdiffcdf(d2,0,1) # The natural logarithm of the difference between the cumulative density function at \boldsymbol{x} and \boldsymbol{y}

 $\operatorname{ccdf}(\operatorname{d2},\operatorname{-1})$ # The complementary cumulative function evaluated at x, i.e.

logccdf(d2,0) # The logarithm of the complementary cumulative function values evaluated at x

quantile(d2, 0.8) # Evaluate the (generalized) inverse cumulative distribution function at q.

cquantile(d2,0.3) # The complementary quantile value, i.e. quantile(d,

invlogcdf(d2,-0.2) # The (generalized) inverse function of logcdf invlogccdf(d2,-.5) # The (generalized) inverse function of logccdf

Random number generation

Random.seed!(1234) # set random seed for reproducibility rand(d2.n) # Generate a n-vector sample from d

5 Special functions

Gamma function

$$\Gamma(x) = \int^{\infty} t^{x-1} e^{-t} \, \mathrm{d}t$$

using SpecialFunctions

gamma(5) # Calculates gamma function at 5 gamma(0.5)

Gamma function

Beta function

 $\Gamma(x)\Gamma(y)$ B(x, y) = $\Gamma(x+y)$

beta(2,3) # B(2,3)

Install packages

Install StatsPlots package. This package is a drop-in replacement for Plots.jl that contains many statistical recipes for concepts and types introduced in the JuliaStats organization

Discrete distribution

Continuous distribution

julia> plot(Beta(2,3), leg= false) julia> title!("Beta distribution B(2,3)") julia> savefig("beta.png")

Beta distribution B(2,3)

Discrete

Bernoulli BernoulliLogit BetaBinomial

Binomial

Biweight

Categorical Dirac

DiscreteNonParametric

DiscreteUniform Geometric

Hypergeometric

NegativeBinomial Poisson

PoissonBinomial Skellam

Soliton

Arcsine Beta RetaPrime Cauchy

Chernoff Chi Chisq

Cosine Epanechnikov

ylabel!("mgf(t)")

savefig("normal-mgf.png")

1. Distributions.jl manual: https://juliastats.org/Distributions.jl/stable/

Normal Standard Distribution MGE

2. HTML Cheat Sheet: https://carloslesmes.github.io

Exponential

GeneralizedExtremeValue

GeneralizedPareto

InverseGamma

InverseGaussian

FDist

Frechet

Gamma

Gumbel

Carlos Lesmes @ https://carloslesmes.github.io.