先进视觉-3D 识别项目技术报告

学校: 西安交通大学 队名: XJTUfly3

参加学生: 黄隆宁 雷博书 周靖淦 刘昭宇 杜佩珊 胡思敏 指导教师: 武彤晖

一. 测试用笔记本电脑配置说明:

本队所使用的笔记本电脑已经无法在京东或者天猫商城找到,所以我们列举了所使用版本和更高配置版本的参数对比,以及更高配置版本的京东购买页面截图。

	测试用笔记本	最新产品 (京东)
型号	戴尔 灵越 7560(已停产)	戴尔 灵越 8550
CPU	Intel i7-7500	Intel i7-8550
内存	8G	16G
硬盘	512G 固态+1T 机械	512G 固态+1T 机械
显卡	NVIDIA GeForce 940MX	MX150
价格	/	6399 元

最新产品价格截图

二. 视觉软件处理流程

- 1. 可视化界面初始化,打开摄像头。
- 2. 加载网络,并读取训练好的权值参数。
- 3. 开始识别之后,拍摄图片并传入模型识别。
- 4. 将识别到的 ID、数量、位置等结果可视化显示。

软件处理流程

三. 视觉软件界面及功能说明

视觉处理软件主要使用 Python 编写完成。实现视觉处理的过程中,为了得到测试样品的彩色及深度图片,我们使用 pyreal sense 库调用 Inter Real sense 深度摄像头的相关接口获得;识别检测部分,我们使用 pytorch 及其辅助模块,在 yolo-v3 的基础上完善改进训练得到 所使用的模型;最终通过 tkinter 模块实现实时捕获图片和检测结果的可视化。

软件界面

界面设计: tkinter 模块在 Windows 10 系统上实现, 左侧为相机拍摄 画面实时显示区域, 右侧为识别结果输出区域。

主要功能:

程序开始执行之后,图像界面初始化如下。点击开始按钮即可进行识别,识别过程中,左侧实时显示相机拍摄图片及识别结果,右侧显示

识别物体种类及各自数量。点击结束按钮则识别过程结束。

初始图像界面

检测效果图

Realsense:

基于 Windows 10 和 vs2017 完成的

主要功能:使用过程中将摄像机和电脑相连接,之后在软件上直接进行相关操作。

Realsense 界面

在网络算法编译过程当中,使用到的库文件 numpy、matplotlib、time。

四. 主要算法

数据集制作

在不同相机的角度、不同光线强度、不同背景的情况下,共拍摄 8000 多张照片来制作数据集,其中包含仅有一个物体、多个物体、10 个以 上物体、有遮挡物体在标定纸上的照片,使用开源软件 label Img 制 作类似于 coco 的数据集,同时制作相对应的标签文件。然后采用 opency 将图片读入,并对颜色,位置,旋转角度三个方面做了数据 扩展。输入到神经网络中。

模型训练

采用 pytorch 的 dataloader 加载输入数据。采用 SGD 优化器。设

置 scheduler, 在训练到总进度的 0.8, 0.9 时将学习率降低到之前的 0.1 倍。采用学习率为 0.001。先设置所有的参数都可以优化。在进行到 1500 批后,每次随机固定一半的参数进行优化。并降低学习率到 0.0001。

模型的导出

为了能够使用训练好的模型,需要对模型训练出来的 checkpoint 文件进行整合导出为. pt 文件,该步骤亦使用了 pytorch 所自带的 api 进行导出。

模型加载

得到模型的 pt 和标签文件之后,就可以直接使用 api 对输入的图片进行预测,得到类别、概率、检测框位置等信息。

基于深度学习的三维图像分类与定位算法

使用 yolov3 算法对 3D 图像进行了图像分类及物体检测。过程中我们对不同类待测样本进行了不同角度不同方位的多样采集。为了训练出的模型更为准确,在采样过程中对物体进行一定程度的遮挡。将数据集进行手动标定,输入 yolov3 的训练器,经过 epoch 训练之后,训练后的参数导出。

彩色图与深度图处理--yolov3 网络结构

比赛采用两个网络结构,分别处理彩色图与深度图。彩色图的处理采用 yolov3 网络结构 Yolo 层设置的 anchor box 的比值为 :10,13 16,30 33,23 30,61 62,45 59,119 116,90 156,198 373,326 之后,在深度图上截取获得由 yolov3 网络预测的区域。将此伪彩色图转换

到 HSV 空间,并提取 H 通道上的数值,输入到下一个网络中。下一层 网络由三层卷积层

与一层全连接层构成,负责检测该区域中是否真正存在物体,或是由于彩色图导致前一个网络误判。在保持图像中比例尺寸不变的情况下,将图像放缩到 50,50 输入到网络中,得到真正存在的概率。并将概率大于一定阈值的结果输出。最后,综合输出得到的分类,边界框。

yolov3 网络结构示意图

实物和贴图区分问题的解决方法

针对实物和贴图问题,采用两种解决方法:贴图拟物法,传统深度图法。贴图拟物法:将贴图同样看做实物,然后根据神经网络自身识别

能力将实物与贴图区分开,这一方法可解决一部分区分问题。传统深度图法:获取识别对象各点的深度值,根据实物与贴图的深度不同,从而来判断识别对象为实物或为贴图。将上述两种方法相结合处理实物和贴图区分问题,从而准确识别解决问题。

运动物体识别的解决方法

针对运动物体识别问题,采用如下解决方法: 1. 提升识别的速度。提升单次识别速度,缩短单次识别时间,从而准确识别到运动物体; 2. 置信度法。识别对象不同区域的置信度不同,可根据置信度的不同识别处运动中的物体; 3. 众数、平均数法。将测试结果取众数或平均数得最终结果,将结果和实物相对比,从而识别出运动中的物体。