	Passes	Fails
_	Addition	Addition
1. a.	ClosureCompatibilityAssociativityCommutativity	 Identity - For there to be an identity, there must be a positive integer b such that b+a = a for all positive integers a. This means that b must be greater than all a. This is obviously not possible as there is no greatest positive integer. Inverses - Since there is no identity, there cannot be an inverse. Furthermore, we do not have opposite numbers as all elements are positive integers.
	Multiplication	Multiplication
_	 Closure Compatibility Associativity Commutativity Identity - 1 × a will always equal a because all positive integers are ≥ than 1. Distributivity over addition Passes	- None Fails
	Addition	$\operatorname{Addition}$
b.	 Closure Compatibility Associativity Commutativity Identity - (0,0) Inverses - If an ordered pair (a,b) exists, it has an invers (-(a,b)) or (-a,-b). 	- None
	Multiplication	Multiplication
	 Closure Compatibility Associativity Commutativity Identity - (1,1) Distributivity over addition reflexivity of equals 0 = 0. By compatibility 	- None

2. By the reflexivity of equals 0 = 0. By compatibility of addition with equality, we can add (x + y) + (-(x + y)) + x + (-x) + y + (-y) to both sides.

$$0 = 0$$

$$0 + (x + y) + (-(x + y)) + x + (-x) + y + (-y) = 0 + (x + y) + (-(x + y)) + x + (-x) + y + (-y)$$

By the additive inverse

$$0 + (x + y) + (-(x + y)) + 0 + 0 = 0 + 0 + x + (-x) + y + (-y)$$
$$(x + y) + (-(x + y)) = +x + (-x) + y + (-y)$$

By compatibility, we can add (-x) + (-y) to both sides.

$$(x + y) + (-(x + y)) + (-x) + (-y) = x + (-x) + y + (-y) + (-x) + (-y)$$

$$x + y + (-(x + y)) + (-x) + (-y) = x + (-x) + y + (-y) + (-x) + (-y)$$

By much associativity

$$x + (-x) + y + (-y) + (-(x + y)) = x + (-x) + (-x) + y + (-y) + (-y)$$

Thus, by the additive inverse

$$0 + 0 + (-(x + y)) = 0 + (-x) + 0 + (-y)$$

$$(-(x+y)) = (-x) + (-y)$$

Thus, we have shown that (-(x+y)) = (-x) + (-y).

3. By left distributivity

$$z \cdot (x+y) = z \cdot x + z \cdot y$$

Let w = (x + y).

$$z \cdot w = z \cdot x + z \cdot y$$

By the commutativity of multiplication, $z \cdot w = w \cdot z$, so

$$w \cdot z = z \cdot x + z \cdot y$$

Substituting (x + y) back in for w,

$$(x+y) \cdot z = z \cdot x + z \cdot y$$

Thus, we have proven right distributivity.

4. **a**. In class, we found

$$0 \cdot a = 0$$

By the additive inverse, 1 + (-1) = 0, thus

$$(1+(-1))\cdot a = 0$$

By right distributivity,

$$1 \cdot a + (-1) \cdot a = 0$$

By the multiplicative identity, $1 \cdot a = a$, so

$$a + (-1) \cdot a = 0$$

By additive compatibility,

$$a + (-1) \cdot a + (-a) = 0 + (-a)$$

By additive associativity,

$$a + (-a) + (-1) \cdot a = (-a)$$

By the additive inverse,

$$0 + (-1) \cdot a = (-a)$$

$$(-1) \cdot a = (-a)$$

Thus, we have shown that $(-1) \cdot a = (-a)$.

b. Let us start with $(-a) \cdot b$. From part \underline{a} , we know $a = (-1) \cdot a$. Thus,

$$(-a) \cdot b = ((-1) \cdot a) \cdot b$$

By multiplicative associativity,

$$= (-1) \cdot (a \cdot b)$$

By part <u>a</u> again, we can say that this equals $(-(a \cdot b))$. Therefore, we have shown that $(-a) \cdot b = -(a \cdot b)$.