RESUMEN ALGEBRA 1 FINAL

NUMEROS COMPLEJOS

Números Complejos.

6.1 Cuerpos.

Definición 6.1.1. (Cuerpo.)

Se dice que $(K, +, \cdot)$ es un cuerpo si

- + y · son operaciones asociativas y conmutativas.
- Existe un elemento neutro para la suma, que se nota 0_K , es decir $\forall x \in K$ se tiene $x + 0_K = x$, y un elemento neutro para el producto, que se nota 1_K , es decir $\forall x \in K$ se tiene $x \cdot 1_K = x$.
- Cualquiera sea $x \in K$, x tiene un inverso aditivo, u opuesto, que se nota -x, es decir $x + (-x) = 0_K$, y cualquiera sea $x \in K$, $x \neq 0$, x tiene un inverso multiplicativo que se nota x^{-1} , es decir $x \cdot x^{-1} = 1_K$.
- La operación · es distributiva sobre +, es decir $\forall x, y, z \in K$ se tiene $x \cdot (y+z) = x \cdot y + x \cdot z$.

cada lado $-0 \cdot x$ se obtiene $0 \cdot x = 0$. También se deduce que $\forall x, y \in K$ no nulos, vale que $x \cdot y \neq 0$ pues si fuera $x \cdot y = 0$ con $x \neq 0$ entonces, como existe x^{-1} , se tendría $y = x^{-1} \cdot x \cdot y = x^{-1} \cdot 0 = 0$.

En particular, cuando K es un cuerpo, notando $K^{\times} := K - \{0\}$, se tiene que $\cdot : K^{\times} \times K^{\times} \to K^{\times}$, y tanto (K, +) como (K^{\times}, \cdot) son grupos abelianos.

6.2 Números complejos: forma binomial.

Teorema 6.2.1. (El cuerpo de los números complejos.)

 $(\mathbb{C},+,\cdot)$ es un cuerpo.

•
$$i^2=-1, i^3=-i, i^4=1$$
 y en general,
$$i^{4n}=1, i^{4n+1}=i, i^{4n+2}=-1, i^{4n+3}=-i, \quad \forall \, n\in\mathbb{N}_0.$$

Definición 6.2.2. (Forma binomial, parte real, parte imaginaria, conjugado, módulo.)

- Dado $z \in \mathbb{C}$, la forma $z = a + b \cdot i$ con $a, b \in \mathbb{R}$ se llama la forma binomial de z, su parte real es $\Re e(z) := a \in \mathbb{R}$ y su parte imaginaria es $\Im m(z) := b \in \mathbb{R}$.
- Dado z = a + bi con $a, b \in \mathbb{R}$, el conjugado de z es $\overline{z} := a bi \in \mathbb{C}$, y el módulo de z es $|z| = \sqrt{a^2 + b^2} \in \mathbb{R}_{\geq 0}$. Observemos que $|z| = 0 \Leftrightarrow z = 0$, y que si $z \neq 0$, entonces $|z| \in \mathbb{R}_{>0}$.

Además se tiene las siguientes relaciones entre \overline{z} y |z|:

$$z \cdot \overline{z} = |z|^2$$
, $\forall z \in \mathbb{C}$ y $z^{-1} = \frac{\overline{z}}{|z|^2}$, $\forall z \in \mathbb{C}^{\times}$.

Proposición 6.2.3. (Propiedades del conjugado y del módulo.)

Para todo $z \in \mathbb{C}$, se tiene

 \bullet $\overline{\overline{z}} = z$,

- $\bullet \ |z| \overline{z} = 2 \Im m(z) i,$
- $z = \overline{z} \Leftrightarrow z \in \mathbb{R}$,
- $\bullet \ z + \overline{z} = 2 \Re e(z) \,,$
- $|\Re e(z)| \le |z| \ e \ |\Im m(z)| \le |z|$.

Además, para todo $z, \omega \in \mathbb{C}$, se tiene

- $\bullet \ \overline{z+\omega} = \overline{z} + \overline{\omega} \ .$
- \bullet $|z+\omega| \le |z|+|\omega|$.

 $\bullet \ \overline{z \cdot \omega} = \overline{z} \cdot \overline{\omega} .$

- \bullet $|z \cdot \omega| = |z| \cdot |\omega|$
- $Si \ z \neq 0$, $\overline{z^{-1}} = \overline{z}^{-1}$.
- \bullet $|Si \ z \neq 0$, $|z^{-1}| = |z|^{-1}$.
- $Si \ z \neq 0$, $\overline{z^k} = \overline{z}^k$, $\forall k \in \mathbb{Z}$.
- $Si \ z \neq 0$, $|z^k| = |z|^k$, $\forall k \in \mathbb{Z}$.

La propiedad $|z + \omega| \le |z| + |\omega|$ se llama la desigualdad triangular y se puede comprobar geométricamente:

 $d \leq |z|, \; e \leq |\omega| \implies |z+\omega| = d + e \leq |z| + |\omega| -$

Proposición 6.2.4. (Raíces cuadradas de números complejos.)

Sea $z \in \mathbb{C}$. Entonces existe $\omega \in \mathbb{C}$ tal que $\omega^2 = (-\omega)^2 = z$. Si $z \neq 0$, entonces z tiene exactamente dos raíces cuadradas distintas, que son ω $y - \omega$.

EJEMPLO IMPORTANTE:

Ejemplo: Calcular las raíces cuadradas complejas de z = 3 - 4i.

Planteemos $\omega^2=z$ donde $\omega=x+y$ $i\in\mathbb{C}$ con $x,y\in\mathbb{R}$ a determinar. Esto implica $|\omega^2|=|z|$, es decir $|\omega|^2=|z|$ también. Por lo tanto, de $\omega^2=3-4$ i y $|\omega|^2=|3-4$ $i=\sqrt{25}=5$, obtenemos las ecuaciones:

$$\left\{ \begin{array}{l} x^2 - y^2 + 2xy \, i = 3 - 4 \, i \\ x^2 + y^2 = 5 \end{array} \right. \iff \left\{ \begin{array}{l} x^2 - y^2 = 3 \\ 2xy = -4 \\ x^2 + y^2 = 5. \end{array} \right.$$

De la primera ecuación $2x^2 = 5 + 3 = 8$, y de la tercera $2y^2 = 5 - 3 = 2$. Luego

$$x = \pm \sqrt{\frac{8}{2}} = \pm \sqrt{4} = \pm 2$$
 e $y = \pm \sqrt{\frac{2}{2}} = \pm \sqrt{1} = \pm 1$.

O sea que en principio tenemos 4 posibilidades, eligiendo x e y positivos y/o negativos. Pero la segunda condición nos dice que $x\,y=-2$, el producto es negativo, por lo tanto si se toma x=2 se debe tomar y=-1 y si se toma x=-2 se debe tomar y=1: los candidatos a raíces cuadradas son entonces

$$\omega = 2 - i$$
 y $\omega' = -\omega = -2 + i$.

6.3 Números complejos: forma trigonométrica.

Sea $z \in \mathbb{C}^{\times}$. Entonces z no solo está determinado por su parte real $\Re e(z) \in \mathbb{R}$ y su parte imaginaria $\Im m(z) \in \mathbb{R}$, pero también se lo puede determinar de otra forma por su módulo $r = |z| \in \mathbb{R}_{>0}$, que determina en qué circunferencia se encuentra z, y por un ángulo θ con respecto a (por ejemplo) el semieje real positivo, como lo muestra el dibujo.

Luego,

$$z = r (\cos \theta + i \sin \theta)$$

donde

$$|r = |z|$$
 y θ es tal que $\cos \theta = \frac{\Re e(z)}{|z|}$ y $\sin \theta = \frac{\Im m(z)}{|z|}$.

se denomina la Fórmula de Euler $e^{\theta i} = \cos \theta + i \sin \theta$, $\forall \theta \in \mathbb{R}$.

Por lo tanto
$$|z| = re^{\theta i}$$
 donde $|z| \in \mathbb{R}_{>0}$ y $\theta \in \mathbb{R}$ es tal que $\cos \theta = \frac{\Re e(z)}{|z|}$ y $\sin \theta = \frac{\Im m(z)}{|z|}$.

El ángulo $\theta \in \mathbb{R}$ está por convención dado en radianes.

Claramente, el ángulo no está determinado en forma única, ya que sabemos que $\cos \theta = \cos(\theta + 2k\pi)$ y $\sin \theta = \sin(\theta + 2k\pi)$, $\forall k \in \mathbb{Z}$. Así,

$$e^{\theta i} = e^{(\theta + 2k\pi)i}, \quad \forall k \in \mathbb{Z},$$

y más aún, para $r, s \in \mathbb{R}_{>0}$ y $\theta, \varphi \in \mathbb{R}$, se tiene

$$\left. \begin{array}{l} s\,e^{\varphi i} = r\,e^{\theta i} \end{array} \right. \iff \left\{ \begin{array}{l} s = r \\ \varphi = \theta + 2k\pi \ \ \text{para algún } k \in \mathbb{Z}. \end{array} \right.$$

Si elegimos θ con $0 \le \theta < 2\pi$, entonces este ángulo está determinado en forma única y se denomina el argumento de z que se denota $\arg(z)$.

La forma trigonométrica o polar de $z \in \mathbb{C}^{\times}$ es

$$z = r(\cos \theta + i \sin \theta) = re^{\theta i} \text{ con } r \in \mathbb{R}_{>0} \text{ y } 0 \le \theta < 2\pi.$$

Repasemos los ángulos típicos con sus coseno y seno:

θ	0	$\pi/6$	$\pi/4$	$(\pi/3)$	$ \pi/2 $	$ \pi $
$\cos \theta$	(1)	$\sqrt{3}/2$	$\sqrt{2}/2$	-1/2	0	(-1)
$\operatorname{sen} \theta$	0	(1/2)	$\sqrt{2}/2$	$\sqrt{3}/2$	1	0

Observación 6.3.1. Sea $z = r(\cos \theta + i \sin \theta) = re^{\theta i}$ con $r \in \mathbb{R}_{>0}$ y $\theta \in \mathbb{R}$. Entonces

•
$$\overline{z} = r(\cos(-\theta) + i \sin(-\theta)) = r e^{-\theta i}$$
,

•
$$z^{-1} = r^{-1} \left(\cos(-\theta) + i \operatorname{sen}(-\theta) \right) = r^{-1} e^{-\theta i}$$
.

Teorema 6.3.2. (Fórmula de de Moivre.)

Sean
$$z = r(\cos \theta + i \sin \theta) = re^{\theta i}$$
 $y \omega = s(\cos \varphi + i \sin \varphi) = se^{\varphi i}$ con $r, s \in \mathbb{R}_{>0}$ $y \theta, \varphi \in \mathbb{R}$. Entonces

$$z \cdot \omega = rs\left(\cos(\theta + \varphi) + i \operatorname{sen}(\theta + \varphi)\right) = rs e^{(\theta + \varphi)i}.$$

Es decir

$$r e^{\theta i} \cdot s e^{\varphi i} = r s e^{(\theta + \varphi)i}$$
.

En particular,

$$arg(z \cdot \omega) = arg(z) + arg(\omega) - 2k\pi$$

con k = 0 o 1 elegido de modo tal que

$$0 \le \arg(z) + \arg(\omega) - 2k\pi < 2\pi.$$

Corolario 6.3.3. (Expresión trigonométrica de una potencia.)

Sean $z = r(\cos \theta + i \sin \theta) = re^{\theta i}$ $y \omega = s(\cos \varphi + i \sin \varphi) = se^{\varphi i}$ con $r, s \in \mathbb{R}_{>0}$ $y \theta, \varphi \in \mathbb{R}$. Entonces

$$\bullet \ \frac{z}{\omega} = \frac{r}{s} \left(\cos(\theta - \varphi) + i \, \sin(\theta - \varphi) \right) = \frac{r}{s} e^{(\theta - \varphi)i}.$$

•
$$z^n = r^n (\cos(n\theta) + i \sin(n\theta)) = r^n e^{n\theta i}$$
, para todo $n \in \mathbb{Z}$.

6.4 Raíces *n*-ésimas de números complejos.

Sea $z\in\mathbb{C}^{\times}$. Hallar las raíces n-ésimas de z consiste en determinar todos los $\omega\in\mathbb{C}$ que satisfacen $\omega^n=z$. Hagamos primero un ejemplo.

Teorema 6.4.1. (Las raíces n-ésimas de $z \in \mathbb{C}^{\times}$.)

Sea $n \in \mathbb{N}$ y sea $z = s e^{\varphi i} \in \mathbb{C}^{\times}$, con $s \in \mathbb{R}_{>0}$ y $0 \le \varphi < 2\pi$. Entonces z tiene n raíces n-ésimas $\omega_0, \ldots, \omega_{n-1} \in \mathbb{C}$, donde

$$\omega_k = s^{1/n} e^{\theta_k i}$$
 donde $\theta_k = \frac{\varphi + 2k\pi}{n}$ para $0 \le k \le n - 1$.

6.4.1 El grupo G_n de raíces n-ésimas de la unidad.

Cuando z=1, buscamos las raíces n-é simas de 1, es decir los $\omega \in \mathbb{C}$ tales que $\omega^n=1$. Según el Teorema 6.4.1, como $1=e^0$, se tiene que las soluciones son $\omega_0,\ldots,\omega_{n-1}$ donde

$$\omega_k = e^{\frac{2k\pi}{n}i}, \quad 0 \le k \le n - 1.$$

Éstas se llaman las raíces n-ésimas de la unidad.

Definición 6.4.2. (El conjunto G_n .)

Sea $n \in \mathbb{N}$. El conjunto G_n es el conjunto de raíces n-ésimas de la unidad, es decir

$$G_n := \{ \omega \in \mathbb{C} : \omega^n = 1 \} = \{ \omega_k = e^{\frac{2k\pi}{n}i}, \ 0 \le k \le n-1 \} \subseteq \mathbb{C}.$$

Proposición 6.4.3. $((G_n, \cdot))$ es un grupo abeliano.)

Sea $n \in \mathbb{N}$.

- 1. $\forall \omega, z \in G_n$ se tiene que $\omega \cdot z \in G_n$.
- 2. $1 \in G_n$.
- 3. $\forall \omega \in G_n$, existe $\omega^{-1} \in G_n$.
- $-1 \in G_n \Leftrightarrow n \text{ es par}, \text{ pues } (-1)^n = 1 \Leftrightarrow n \text{ es par}.$

Proposición 6.4.4. (Más propiedades de G_n .)

Sea $n \in \mathbb{N}$ y sea $\omega \in G^n$. Entonces

- $|\omega| = 1$.
- 2. Sea $m \in \mathbb{Z}$ tal que $n \mid m$. Entonces $\omega^m = 1$.
- 3. Sean $m, m' \in \mathbb{Z}$ tales que $m \equiv m' \pmod{n}$, entonces $\omega^m = \omega^{m'}$. En particular $\omega^m = \omega^{r_n(m)}$.
- 4. $\omega^{-1} = \overline{\omega} = \omega^{n-1}$.

Proposición 6.4.5.
$$(G_n \cap G_m = G_{(n:m)}).$$

Sean $n, m \in \mathbb{N}$.

1.
$$n \mid m \Rightarrow G_n \subset G_m$$
.

$$(2.) G_n \cap G_m = G_{(n:m)}.$$

3.
$$G_n \subset G_m \Leftrightarrow n \mid m$$
.

Proposición 6.4.6. (G_n es un grupo cíclico.)

Sea $n \in \mathbb{N}$. Existe $\omega \in G_n$ tal que

$$G_n = \{1, \omega, \omega^2, \dots, \omega^{n-1}\} = \{\omega^k, 0 \le k \le n-1\}.$$

Definición 6.4.7. (Raíz n-ésima primitiva de la unidad.)

Sea $n \in \mathbb{N}$. Se dice que $\omega \in \mathbb{C}$ es una raíz n-ésima primitiva de la unidad si

 $G_n = \{1, \omega, \dots, \omega^{n-1}\} = \{\omega^k, \ 0 \le k \le n-1\}.$

Proposición 6.4.9. (Caracterización de las raíces n-ésimas primitivas de la unidad.)

Sea $n \in \mathbb{N}$, y sea $\omega \in \mathbb{C}$. Entonces ω es una raíz n-ésima primitiva de la unidad si y solo si

$$\forall m \in \mathbb{Z}, \quad \omega^m = 1 \iff n \mid m.$$

Corolario 6.4.10. (Raíces primitivas y potencias.)

Sean $n, k \in \mathbb{N}$ y sea $\omega \in \mathbb{C}$ una raíz n-ésima primitiva de la unidad. Entonces ω^k es una raíz n-ésima primitiva de la unidad si y solamente si (n:k)=1.

Corolario 6.4.11. (Las raíces primitivas en G_n .)

Sea $n \in \mathbb{N}$, y sea $\omega_k = e^{\frac{2k\pi}{n}i}$, $0 \le k \le n-1$. Entonces ω_k (es raíz n-ésima primitiva de la unidad si y solamente si (n:k) = 1.

Corolario 6.4.12. (Las raíces primitivas en G_p .)

Sea p un primo. Entonces cualquiera sea k, $1 \le k \le p-1$, se tiene que $\omega_k = e^{\frac{2k\pi}{p}i}$ es ráiz p-ésima primitiva de la unidad. Es decir $\forall \omega \in G_p$, $\omega \ne 1$, se tiene que ω es una raíz p-ésima primitiva de la unidad.

Proposición 6.4.13. (Suma y producto de los elementos de G_n .)

Sea $n \in \mathbb{N}$ con n > 1. Entonces

$$\sum_{\omega \in G_n} \omega = 0 \qquad y \qquad \prod_{\omega \in G_n} \omega = \left\{ \begin{array}{cc} 1 & si & n \ es \ impar, \\ -1 & si & n \ es \ par. \end{array} \right.$$

EJERCICIOS DE FINALES

3/8/22

3) Sea we Gystal grew & G3 y w& Gs. Hallar el argumento del número comprejo (2+w3+w3+w6+w4+i(2+w5+w5))32

27/7/22

3. En G_{12} se define la relación \mathcal{R} de la siguiente manera:

$$wRz$$
 si y sólo si $wz \in G_6$.

- (a) Probar que R es una relación de equivalencia.
- (b) Hallar el cardinal de la clase de equivalencia del número complejo i.

17/6/22

3. Sea $n \in \mathbb{N}$ par y sean w y z dos raíces n-ésimas de la unidad. Pruebe que $(z+w)^{n/2}$ es real o imaginario puro.

29/4/22

3. Pruebe que si $w \in \mathbb{C}$ es distinto de 1 y satisface $w^7 = 1$, entonces $w + \overline{w}$ es raíz del polinomio $X^3 + X^2 - 2X - 1$.

25/2/22

Sea
 R la relación en G₃₂ definida por

$$z \Re \omega \iff z \overline{\omega} \in G_{24}$$
.

- (a) Probar que R es una relación de equivalencia.
- (b) Determinar la cantidad de elementos $z \in G_{32}$ relacionados con i.

22/12/21

Ejercicio 3

Sea $\omega = e^{\frac{\pi}{3}i}$, y sea $(z_n)_{n \in \mathbb{N}}$ la sucesión de números complejos definida por:

$$z_1 = \omega - 1$$
 y $z_{n+1} = \overline{z_n}^{3n+8}$, $\forall n \ge 1$.

Calcular z_n para todo $n \in \mathbb{N}$.

4/8/21

3. (a) Probar que si $\omega = e^{\frac{2\pi}{5}i} \in G_5$, entonces

$$X^2 + X - 1 = (X - (\omega + \omega^{-1}))(X - (\omega^2 + \omega^{-2})).$$

(b) Calcular, justificando cudadosamente, el valor exacto de cos $\frac{2\pi}{5}$.

11/6/21

 Fijemos n ∈ N. En el conjunto C* = C − {0} de los números complejos no nulos definimos una relación ~ de manera que

$$z \sim w \iff \text{existe } \alpha \in G_n \text{ tal que } z = \alpha w.$$

- (a) Pruebe que ~ es una relación de equivalencia.
- (b) Encuentre explícitamente la clase de equivalencia del complejo z=3+5i respecto a la relación \sim cuando n=4.