Databázové systémy a metody zpracování dat

Data Mining

Úvod do problematiky, základní metody Uživatelské aplikace

8.přednáška

Architektura-aplikace

Proč data mining?

- Stále větší množství dat uložených v databázích
 - Neustále generujeme data
 - Obchodní a bankovní transakce
 - Biologická, astronomická data atd...
 - Ukládáme stále více dat
 - Databázové technologie jsou stále rychlejší a levnější
 - Databázové systémy jsou schopny pracovat se stále rozsáhlejšími daty

Proč data mining?

- Data jsou stále rozsáhlejší, ale vyvodit z nich užitečné závěry je stále složitější
 - Velké množství nákupů v supermarketech
 - Miliony různých spojení (denně) u telekomunikačních operátorů

– ...

Co je to data mining?

- Zavedení pojmu: 1991 Frawley
- Definice
 - Netriviální proces identifikace
 - · nových,
 - platných,
 - potenciálně použitelných
 - a snadno pochopitelných vzorů v datech
- Zahrnuje poznatky z několika oborů matematiky a informatiky

OLAP vs. Data Mining

- Data Mining
 - Hledání zcela nových vzorů, znalostí, které v datech nejsou explicitně uvedeny
 - Znalostí je dosahováno pomocí sofistikovaných algoritmů
- OLAP
 - Soubor operací (drill-down, roll-up...) poskytující různé pohledy na data
 - Výsledků je dosahováno pomocí sumačních a předdefinovaných operací

OLAP vs. Data Mining

Vlastnost	OLAP	Data Mining
Motivace použití	Co se děje v podniku?	Predikce budoucnosti, skryté znalosti
Granularita dat	Sumační data	Data na úrovni záznamu
Počet obchodních dimenzí	Omezený počet dimenzí	Velký (až nekonečný) počet dimenzí
Počet vstupních atributů	Spíše velmi nízký počet atributů	Mnoho atributů
Velikost dat pro jednu dimenzi	Ne velká pro každou dimenzi	Obvykle velmi rozsáhlá pro každou dimenzi

OLAP vs. Data Mining

Vlastnost	OLAP	Data Mining	
Přístup k analýze	Řízený uživatelem, interaktivní analýza	Autmatický, řízený daty	
Techniky analýzy	Multidimenzionální, drill- down, slice-and-dice	Příprava dat, použití nástrojů pro získávání znalostí	
Stav technologie	Známý a rozsáhle využívaný	Stále se vyvíjející, některé metody jsou již využívané v praxi	

Proces získávání znalostí z dat

- Stanovení cílů
 - Jaký typ znalosti chceme nalézt?
 - Nad jakými daty budeme proces získávání znalostí provádět?
 - Je problém řešitelný?
 - Budou získané výsledky užitečné v praxi?
 - V jakém tvaru a formě chceme výsledky získávání znalostí zobrazit?
 - Jsou naše data vhodná pro danou dolovací metodu vhodná?

Proces získávání znalostí z dat

- Výběr zdrojů dat
 - Typy dat pro data mining z hlediska zaměření
 - Demografická data (charakteristika osob pohlaví, věk, vzdělání) – jsou levná, ale často neúplná
 - Behaviorální data (nákupy, prodeje atd.) jsou dražší, ale z hlediska data miningu nejcennější
 - Psychografická data (typicky získaná průzkumem veřejného mínění) pomáhají při analýze chování zákazníka

Proces získávání znalostí z dat

- Výběr zdrojů dat
 - Typy databází z hlediska obsahu
 - Zákaznické databáze údaje o zákazníka, případně o jeho aktivitách
 - Transakční databáze údaje o aktivitách zákazníků (většinou anonymních)
 - Databáze historie nabídek databáze o oslovování zákazníků kampaněmi
 - · Datový sklad
 - Externí data

Proces získávání znalostí z dat

- Výběr zdrojů dat
 - Typy dat z hlediska formátu
 - Relační a transakční databáze
 - Objektově-orientované databáze
 - Multimediální databáze
 - WWW
 - Textové dokumenty
 - Prostorová, časová data...

Předzpracování dat

- Proč předzpracování?
 - Objemné databáze je potřeba vybrat relevantní data
 - Nesprávná, nekonzistentní data, chybějící hodnoty
 - Zvýší efektivitu a usnadní proces získávání znalostí

Předzpracování dat – čištění dat

- Položky obsahující neúplné hodnoty
 - Zanedbání záznamu, doplnění průměrnou hodnotou nebo konstantou "unknown", ruční zadání, predikce
- Položky obsahující chybné hodnoty
 - Binding vyhlazení na základě sousedních hodnot
 - Shlukování podobné hodnoty jsou organizovány do skupin, ostatní jsou chybné
 - Regresní metody
 - Kombinace lidské a počítačové kontroly

Předzpracování dat – čištění dat

- Nekonzistentní data
 - Vznikají při vkládání dat do databáze
 - Při integraci dat (např. různé názvy atributů)
- Řešení
 - Ruční opravení
 - Opravné rutiny

Předzpracování dat – integrace dat

- Integrace více zdrojů do jedné databáze
 - Redundance
 - Jak určit ekvivalentní entity z více zdrojů?
 - Detekce a řešení konfliktů hodnot atributů
 - např. různé kódování, měrné jednotky nebo různé vyjádření hodnoty

Předzpracování dat – transformace dat

- Transformace dat do formátu vhodného pro dolování dat
 - Slučující techniky
 - Sumační operace atd... (z více hodnot jedna hodnota)
 - Generalizace
 - Data nižší úrovně nahrazena úrovní vyšší (např. ulice město)
 - Normalizace
 - Přepočítání hodnot do daného intervalu

Předzpracování dat – transformace dat

- Přidávání nových atributů (odvozených)
- Diskretizace hodnot numerických atributů
 - Rozdělení numerických hodnot na intervaly
 - Ekvidistantní
 - Do hloubky
 - Pokročilé metody

Předzpracování dat – redukce dat

- Agregace v kostce
 - Redukce dat sumačními operacemi
- Redukce rozměrů
 - Nadbytečné a nepoužívané atributy jsou detekovány a odstraněny
- Komprese dat
 - Zmenšení objemu dat
- Numerosity
 - Data jsou nahrazena alternativní menší reprezentací

Dolování dat

- Aplikace zvoleného algoritmu na předzpracovaná data, dle typu znalosti a dat
- Typy znalostí
 - Asociační pravidla
 - Shlukování
 - Klasifikace
 - Predikce

Asociační pravidla

- Původně pro transakční data
- Pravidlo ve tvaru $A \Rightarrow B$
 - A, B ... množiny položek
 - s ... podpora
 - c ... spolehlivost
- Interpretace asociačního pravidla:
 - "Jestliže transakce obsahuje položky z množiny A, pak také pravděpodobně obsahuje položky z B"

Asociační pravidla – základní pojmy

- Zajímavost pravidla A⇒B určují tyto ukazatele:
 - podpora (support) pravděpodobnost, že se vyskytují v databázi položky z obou stran asociačního pravidla
 - spolehlivost (confidence) podmíněná
 pravděpodobnost, že se vyskytuje v transakci množina
 položek B, za předpokladu, že se tam vyskytují položky z A

Asociační pravidla – základní pojmy

- Pravidlo, které má podporu a spolehlivost vyšší než je uživatelem zadaná hodnota, nazveme silné asociační pravidlo.
- Množina položek, která má podporu vyšší než minimální hodnota, se nazývá frekventovaná množina.

Asociační pravidla – základní postup

- Výpočet frekventovaných množin
 - na základě minimální podpory
 - časově náročnější krok
- Generování silných asociačních pravidel z frekventovaných množin
 - na základě minimální spolehlivosti

Základní algoritmus - Apriori

- Založeno na postupném generování kandidátů na frekventované položky
- Začíná se u množin o velikosti 1, postupně se generují množiny větší.
 - spojovací fáze: spojují se dvě stejně velké množiny, které se liší pouze v jednom prvku
 - vylučovací fáze: vylučují se ty množiny, jejichž některá podmnožina není frekventovaná

Základní algoritmus - Apriori

TID	List of item_IDs	
T100	11, 12, 15	
T200	12, 14	
T300	12, 13	
T400	11, 12, 14	
T500	I1, I3	
T600	12, 13	
T700	I1, I3	
T800	11, 12, 13, 15	
T900	11, 12, 13	

- Vstup: Transakční databáze
- Výstup: Frekventované množiny
- Apriori vlastnost: Podpora k-množiny nemůže být vyšší než podpora její podmnožiny, tj. frekventovaná (k+1)množina může vzniknout pouze z frekventované k-množiny

Generování asociačních pravidel z frekventovaných množin

Založeno na výpočtu spolehlivosti

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)}$$

- Pro každou frekventovanou množinu se zjistí všechny její podmnožiny
- Pro každou podmnožinu s frekventované množiny se generuje
- Kontrola minimální spolehlivosti

Víceúrovňová asociační pravidla

- Důvod: málo silných asociačních pravidel
- Položky se sdružují do skupin (konceptů), musí být definována tzv. konceptuální hierarchie položek

Asociační pravidla v relačních databázích

- Kategorické atributy
 - Mají konečný počet hodnot
 - Lze na ně použít známé modifikované metody pro transakční data, např. algoritmus Apriori
- Kvantitativní atributy
 - Nemají konečný počet hodnot
 - Nutnost diskretizace základní problém asociačních pravidel v relačních datech

Metody diskretizace kvantitativních atributů

- Základní metody
- Pokročilé metody
 - Postupné spojování menších intervalů ve větší
 - Shlukovací metody jsou hledány shluky hodnot ležící blízko sebe, ty pak vytvoří interval
- Diskretizovaný atribut už lze považovat za kategorický a lze použít některou z metod

Sekvenční vzory

- Podobné jako frekventované množiny, ale hraje zde důležitou roli čas
- Př.: Koupí-li si zákazník notebook, pak si později koupí také mobil.
 - Odpovídá to sekvenčnímu vzoru ("notebook", "mobil")
- Důležité je tedy pořadí položek sekvenčního vzoru

Sekvenční vzory - příklad SALE DATE NAME OF CUSTOMER PRODUCTS PURCHASED Nov. 15, 2000 John Brown Desktop PC, MP3 Player Desktop PC, MP3 Player, Digital Camera Transaction Nov. 15, 2000 Cindy Silverman Data File Nov. 15, 2000 Robert Stone Laptop PC Dec. 19, 2000 Terry Goldsmith Laptop PC Digital Camera Digital Camera Dec 19 2000 John Brown Dec. 19, 2000 Terry Goldsmith Dec. 19, 2000 Bohert Stone Digital Camera Dec. 20, 2000 Cindy Silverman Tape Backup Drive Sequential Patterns -Dec. 20, 2000 Richard McKeown Desktop PC, MP3 Player **Customer Sequence** NAME OF CUSTOMER PRODUCT SEQUENCE FOR CUSTOMER Desktop PC, MP3 Player, Digital Camera Desktop PC, MP3 Player, Digital Camera, Tape Backup Drive John Brown Sequential Cindy Silverman Pattern Robert Stone Laptop PC, Digital Camera Discovery with Laptop PC, Digital Camera Support Richard McKeown Desktop PC, MP3 Player Factors SEQUENTIAL PATTERNS (Support Factor > 60%) SUPPORTING CUSTOMERS Desktop PC, MP3 Player John Brown, Cindy Silverman, Richard McKeown SEQUENTIAL PATTERNS (Support Factor > 40%) SUPPORTING CUSTOMERS Desktop PC, MP3 Player, Digital Camera John Brown, Cindy Silverman Laptop PC, Digital Camera Robert Stone, Terry Goldsmith

Shlukování

- Nejstarší nástroje data miningu
- Roztřídění skupiny objektů do skupin (shluků), které nejsou předem stanoveny
- Rozdíly objektů uvnitř shluků musí být minimální, rozdíly jednotlivých shluků musí být maximální
- Problém: Jakou metriku použít pro měření rozdílu?

Shlukování - vlastnosti

- Shluky nejsou předem dány a nemají tedy význam – ten je potřeba zjistit – ne vždy se to podaří
- Při 2-3 atributech je možné použít jednoduché metody, pro více atributů je potřeba použít pokročilé metody

Shlukování – některé metody

- Rozdělovací metody
 - Rozdělení objektů na předem daný počet shluků
 - Např. algoritmus K-means, který optimalizuje těžiště jednotlivých shluků a dané prvky pak přiřadí k nejbližšímu těžišti
 - V každé iteraci se počítají vzdálenosti prvků od těžiště. Tato hodnota musí pro každý shluk (těžiště) minimální

Shlukování – některé metody

• Ukázka použití algoritmu K-means

Shlukování – některé metody

- Hierarchické metody
 - Postupné rozdělování velkých shluků nebo postupné slučování malých shluků
 - Vzniká tím hierarchická struktura shluků
 - Ukončení procesu rozdělování (slučování) při splnění určité podmínky (např. určitý minimální počet shluků)
- Další metody (neuronové sítě, mřížky apod.)

Shlukování – příklady aplikací

- Marketing možnost identifikace skupin zákazníků, použití cílených reklam
- Plánování města identifikace skupin domů na základě typu, ceny a polohy
- Studie zemětřesení shlukování epicenter zemětřesení dle jejich vlastností
- Pojištění hledání potenciálních zákazníků s vysokým povinným ručením
- Geografie hledání shluků pozemků na základě jeho typu

Klasifikace

- Rozdělování objektů do předem známých skupin
- Nejčastěji se využívají rozhodovací stromy
 - 1. krok: konstrukce rozhodovacího stromu na základě vzorku dat
 - 2. krok: klasifikace objektů na základě vytvořeného rozhodovacího stromu
- Úspěšnost se měří procentem úspěšně klasifikovaných objektů

Klasifikátory (modely)

- Pravidla
 - Ve tvaru: if (podmínka atributu) then result = ...
 - Lze je převést na rozhodovací strom
- Rozhodovací stromy
 - Vnitřní uzel test hodnoty jistého atributu
 - Koncový uzel třída, do které je objekt klasifikován
- Neuronové sítě

Klasifikace – příklady

- Určení, zda je možné zákazníkovi možné poskytnout úvěr na základě několika atributů (věk, příjem...)
- Určení pohlaví zákazníka na základě toho, jaký notebook si koupí – to např. umožňuje směrovat kampaň...

Data Mining a datové sklady

- Data Mining hraje důležitou roli v prostředí datového skladu.
- Společné znaky
 - Velké množství dat, většinou na detailní úrovni ale ne vždy jsou tam všechna data
 - Data Mining nejlépe pracuje s integrovanými a vyčištěnými daty
 - Máme-li datový sklad, není potřeba investovat do HW pro data mining

Využití data miningu

- Členění (segmentace) zákazníků
 - Cíl: porozumět zákazníkovi a jeho chování
- Analýza nákupního košíku
 - Nalezení závislostí mezi různým zbožím, které si zákazník koupí
- Management rizik
 - Odhalení rizikových zákazníků (např. u pojišťoven)
- Detekce podvodů
 - Např. hledání extrémních útrat na kreditní kartě
- Odhalování zločinnosti
 - Odhalení potenciálních neplatičů půjček...
- Predikce požadavků
 - Předpověď zájmu zákazníků o různé zboží...

Dotazovací jazyky pro data mining

- Data mining by měl být interaktivním procesem
- Základ pro uživatelské rozhraní
- Standardizace
- Součásti dotazu pro data mining
 - Relevantní data
 - Typ znalosti
 - Doménová znalost
 - Metriky zajímavosti
 - Vizualizace/prezentace získaných znalostí

Dotazovací jazyky pro data mining – součásti dotazu

- Relevantní data
 - Jméno databáze/datového skladu
 - Databázové tabulky/kostky
 - Podmínky pro selekci dat
 - Relevantní atributy nebo dimenze
 - Kritéria pro seskupování dat
- Typ získávané znalosti
 - Asociační pravidla, shlukování, klasifikace, ...

Dotazovací jazyky pro data mining – součásti dotazu

- Doménová znalost
 - Typické využití: Konceptuální hierarchie
 - <u>Stromová hierarchie</u>: město kraj země světadíl
 - <u>Seskupovací hierarchie</u>: Např.: (15-39) mladý; (40-59)
 střední věk
 - <u>Hierarchie založená na pravidlech</u>: nízký_zisk(X) = cena(X) = p AND náklady(X) = q AND p-q < 50\$
 - Hierarchie odvozená z operace: emailová adresa: <u>hagonzal@cs.uiuc.edu</u> – login – ústav – univerzita – země

Dotazovací jazyky pro data mining – součásti dotazu

- Metriky zajímavosti
 - Jednoduchost počet prvků pravidla, velikost rozhodovacího stromu
 - Použitelnost např. podpora a spolehlivost
 - Jedinečnost odstranění podobných znalostí
- Prezentace/Vizualizace
 - Různé formy reprezentace grafy, tabulky...
 - Reprezentace konceptuální hierarchie
 - Vizualizace různých typů znalostí

Dotazovací jazyky pro data mining

Příklad dotazu jazyka DMQL

use database AllElectronics_db use hierarchy location_hierarchy for T.branch, age_hierarchy for C.age mine classification as promising_customers in relevance to C.age, C.income, I.type, I.place_made, T.branch from customer C, item I, transaction T where I.item_ID = T.item_ID and C.cust_ID = T.cust_ID and C.income $\geq 40,\!000$ and I.price ≥ 100 group by T.cust_ID having sum(I.price) $\geq 1,\!000$ display as rules

Získávání znalostí z komplexních dat

- Prostorové databáze
 - Nutnost předzpracování...
 - Příklad asociačního pravidla

 $is_a(x, large_town) \land intersect(x, highway) \rightarrow adjacent_to(x, water)$

- Multimediální databáze
 - Konstrukce vektoru rysů
 - Histogramy
 - Identifikace objektů v obrázku

Získávání znalostí z komplexních dat

- Časová a sekvenční data
 - Obsahují sekvence hodnot a událostí závislých na čase
 - Použití v meteorologii, lékařství (krevní tlak), burza (inflace, ceny akcií)
- Textové databáze
 - Velké kolekce dokumentů...
 - Hledání podobných kolekcí dokumentů obsahujících zadaná slova
 - Asociační pravidla založená na klíčových slovech
 - Klasifikace dokumentů

Získávání znalostí z komplexních dat

- World-Wide-Web
 - WWW dokumenty
 - Databáze s informacemi o přístupu...

Získávání znalostí z komplexních dat

- Objektové databáze
 - Lze použít upravené metody pro získávání znalostí z relačních dat
- XML

Dolování dat – Data Mining

SHRNUTÍ

Data Mining (DM)

- Deskriptivní model popisuje nalezené vzory a vztahy v datech, které mohou ovlivnit rozhodování (Př. Analýza prodeje zboží v supermarketu na jejímž základě je pak umístěno zboží v regálech).
- Prediktivní model umožňuje předvídat budoucí hodnoty atributů na základě nalezených vzorů v datech (Př. Analýza zákazníků, u kterých je vysoká pravděpodobnost, že budou reagovat na písemnou reklamní nabídku...)

Predikce

- Klasifikace
- Regresní analýza
- Analýza časových řad

Deskriptivní DM

- Zjišťování odchylek
- Segmentace
- Shlukování
- Asociační pravidla
- Sumarizace
- Vizualizace
- Dolování v textu

Kategorie úloh Data Mining

- Klasifikace bude produkt úspěšný?
- Regrese závislost mezi dvěma proměnnými
- Shlukování rozdělení do množin dle společných znaků
- Sumarizace
- Predikce podle časových řad (autoregresní modely)
- · Modelování závislostí
- Asociace např. analýza nákupního koše
- Analýza sekvencí např. procházení webu návštěvníkem
- Analýza odchylek bankovní podvody

Metody DM

- regresní metody (lineární regresní analýza, nelineární regresní analýza, neuronové sítě)
- klasifikace (diskriminační analýza, logistická regresní analýza, rozhodovací stromy, neuronové sítě),
- segmentace shlukování shluková analýza, genetické algoritmy, neuronové shlukování (Kohonenovy mapy)
- analýza vztahů (asociační algoritmus pro odvozování pravidel typu " if X then Y")
- predikce v časových řadách (Boxova-Jenkinsonova metoda, neuronové sítě, autoregresní modely, ARIMA)
- detekce odchylek

Lineární regrese

- Závislost mezi dvěma proměnnými
 - Nezávislá
 - Závislá (tu se snažíme predikovat)
- Je hledána přímka procházející mezi hodnotami tak, že součet druhých mocnin odchylek je minimální
- Tato přímka pak definuje vztah závislosti s možností určit nejpravděpodobnější hodnotu závislé proměnné

Lineární regrese

- Někdy je vztah nelineární -> nezávislou proměnnou je pak třeba transformovat
- Použití: modely pro marketing, odhad rizika

Logistická regrese

- Závislá proměnná není spojitá, ale diskrétní (kategorická)
- Užitečné např. v marketingu předpověď odezvy na nějakou akci

Neuronové sítě

- Nevychází ze statistiky, ale řešení je modelováno na základě modelů funkcí lidského mozku
- Přijímání informací a poučení se z každé zkušenosti
- Užití v marketingu např. predikce reakce na nabídku
- Neuronové sítě mají schopnost vystihnout i nelineární vztahy

Genetické algoritmy

- Modely, které se v každém kroku upravují, až se nalezne nejlepší model pro danou úlohu
- Určení cíle modelu, výběr míry pro vyhodnocení, jak model odpovídá našim požadavkům

Klasifikační stromy

- Účelem je roztřídit data do skupin
- Oproti regresi i nelineární závislosti
- Identifikace segmentů s požadovaným chováním

DM - postup

- Specifikace problému
- Získání dat
- Výběr metody
- Předzpracování dat
- · Vlastní data mining
- Interpretace

Fáze při dolování dat

- 1. Data Understanding porozumění úloze
- 2. Data Preparation příprava
- 3. Modelling dolování
- 4. Evaluation vyhodnocení
- 5. Deployment nasazení

Příklady DM

- Množina pravidel, které určují jak lze seskupit produkty do skupin
- Rozhodovací strom, který predikuje, zda si zákazník koupí produkt
- Matematický model předpovídající prodej

Microsoft Analysis Service - DM

- Classification Decision Tree Algorithm
- Regression Microsoft Time Series Alg.
- Segmentation Clustering Algorithm
- Association hledá korelace
- Sequence analysis algorithm

Klasifikační algoritmy

 Předvídají jednu nebo více diskrétních veličin na základě vstupních algoritmů

Regresní algoritmy

 na základě atributů předvídají jednu nebo více spojitých veličin, jako je například zisk či ztráta.

Segmentační algoritmy

- Rozdělují data do skupin s podobnými charakteristikami
- "trs" dat
- Např. Analýza nákupního koše

Sekvenční algoritmy

- Hledají sekvence v datech
- Např. analýza informací o uživatelích webu snaha vytvořit skupiny uživatelů s podobnými nakupovacími návyky

Metodiky

- 5 A (SPASS, 1996)
- SEMMA (Enterprise Miner, SAS)
- CRISP-DM (2000, Chapman)
 - DIME
 - RAMSYS (2001)
- Two Crows
- Annad & Buchner

Metodika 5A

- Assess posouzení potřeb
- Access shromáždění dat
- Analyze
- Akt přeměna na znalosti
- Automate převedení výsledků analýzy do praxe

SEMMA

- Sample
- Explore
- Modify datová transformace, seskupení
- Model analýza dat
- Assess porovnání modelů, interpretace

CRISP-DM

- Standard podporovaný většinou systémů
- Metodologie pro plánování data miningových projektů

Predictive modeling Markup Language

- Na bázi XML
- Data Mining Group
- www.dgm.org
- Popis dat, datových transformací a vytvořených modelů

API pro Data Mining

- OLE DB for Data Mining Microsoft
- Java Data Mining

Systémy používané pro Data Mining

SPM	Salford Systems	www.salford-systems.com
Clementine	SPSS	www-01.ibm.com/software/analytics/ spss/products/modeler/
Enterprise Miner	SAS Institute	www.sas.com/technologies/analytics/ datamining/miner/
GhostMiner	Fujitsu	www.fqs.pl/business_intelligence/prod ucts/ghostminer
Intelligent Miner	IBM	www-01.ibm.com/software/data/infosphere/warehouse/enterprise.html
Knowledge Studio	Angoss	www.angoss.com
Oracle Data Mining	Oracle	www.oracle.com/us/products/database/ options/data-mining/index.html
PolyAnalyst	Megaputer	www.megaputer.com/
Statistica Data Miner	StatSoft	www.statsoft.com/products/data- mining-solutions/
LISp Miner	VŠE	lispminer.vse.cz
RapidMiner	Rapid-I	rapid-i.com/
Weka	University of Waikato	www.cs.waikato.ac.nz/ml/weka/index. html

Zdroje dat

 http://www.registry.cz/index.php?pg=nabizen e-sluzby--analyza-dat