LCC

1.0.0.

Generated by Doxygen 1.8.17

1 about	1
2 Todo List	3
3 Namespace Index	5
3.1 Namespace List	5
4 Class Index	7
4.1 Class List	7
5 Namespace Documentation	9
5.1 lcc_allocation_mod Module Reference	9
5.1.1 Detailed Description	9
5.1.2 Function/Subroutine Documentation	9
5.1.2.1 lcc_reallocate_char2vect()	9
5.1.2.2 lcc_reallocate_char3vect()	10
5.1.2.3 lcc_reallocate_intmat()	10
5.1.2.4 lcc_reallocate_intvect()	10
5.1.2.5 lcc_reallocate_realmat()	11
5.1.2.6 lcc_reallocate_realvect()	11
5.2 lcc_aux_mod Module Reference	11
5.2.1 Detailed Description	12
5.2.2 Function/Subroutine Documentation	12
5.2.2.1 inv()	12
5.2.2.2 lcc_canonical_basis()	12
5.2.2.3 lcc_center_at_box()	13
5.2.2.4 lcc_center_at_origin()	13
5.2.2.5 lcc_get_coordination()	14
5.2.2.6 lcc_get_reticular_density()	14
5.2.2.7 lcc_parameters_to_vectors()	14
5.2.2.8 lcc_vectors_to_parameters()	15
5.3 lcc_build_mod Module Reference	15
5.3.1 Detailed Description	15
5.3.2 Function/Subroutine Documentation	16
5.3.2.1 lcc_add_randomness_to_coordinates()	16
5.3.2.2 lcc_bravais_growth()	16
5.3.2.3 lcc_build_slab()	17
5.3.2.4 lcc_plane_cut()	17
5.4 lcc_check_mod Module Reference	18
5.4.1 Detailed Description	18
5.4.2 Function/Subroutine Documentation	18
5.4.2.1 lcc_check_periodicity()	18
5.5 lcc_compute_mod Module Reference	18
5.5.1 Detailed Description	19

5.5.2 Function/Subroutine Documentation	19
5.5.2.1 lcc_compute_roughness()	19
5.6 lcc_constants_mod Module Reference	19
5.6.1 Detailed Description	20
5.7 lcc_lattice_mod Module Reference	20
5.7.1 Detailed Description	20
5.7.2 Function/Subroutine Documentation	20
5.7.2.1 lcc_add_base_to_cluster()	21
5.7.2.2 lcc_add_randomness()	22
5.7.2.3 lcc_check_basis()	22
5.7.2.4 lcc_fcc()	22
5.7.2.5 lcc_get_besttranslations()	23
5.7.2.6 lcc_make_lattice()	23
5.7.2.7 lcc_minimize_from()	24
5.7.2.8 lcc_read_base()	24
5.7.2.9 lcc_sc()	25
5.7.2.10 lcc_set_atom_type()	25
5.7.2.11 lcc_triclinic()	26
5.8 lcc_lib Module Reference	26
5.8.1 Detailed Description	27
5.9 lcc_mc_mod Module Reference	27
5.9.1 Detailed Description	27
5.10 lcc_message_mod Module Reference	27
5.10.1 Detailed Description	27
5.10.2 Function/Subroutine Documentation	28
5.10.2.1 lcc_print_error()	28
5.10.2.2 lcc_print_intval()	28
5.10.2.3 lcc_print_message()	28
5.10.2.4 lcc_print_realmat()	29
5.10.2.5 lcc_print_realval()	29
5.10.2.6 lcc_print_realvect()	29
5.10.2.7 lcc_print_warning()	30
5.11 lcc_parser_mod Module Reference	30
5.11.1 Detailed Description	30
5.11.2 Function/Subroutine Documentation	30
5.11.2.1 lcc_parse()	31
5.11.2.2 lcc_write_coords()	31
5.12 lcc_regular_mod Module Reference	31
5.12.1 Detailed Description	32
5.12.2 Function/Subroutine Documentation	32
5.12.2.1 lcc_spheroid()	32
5.13 lcc_string_mod Module Reference	32

Index	41
6.3.1 Detailed Description	39
6.3 lcc_structs_mod::lattice_type Type Reference	38
6.2.1 Detailed Description	37
6.2 lcc_structs_mod::compute_type Type Reference	37
6.1.1 Detailed Description	37
6.1 lcc_structs_mod::build_type Type Reference	35
6 Class Documentation	35
5.15.2.1 lcc_template_subroutine()	34
5.15.2 Function/Subroutine Documentation	34
5.15.1 Detailed Description	34
5.15 lcc_template_mod Module Reference	34
5.14.1 Detailed Description	34
5.14 lcc_structs_mod Module Reference	33
5.13.2.2 lcc_split_string()	33
5.13.2.1 lcc_get_word()	33
5.13.2 Function/Subroutine Documentation	33
5.13.1 Detailed Description	32

Chapter 1

about

title: Building LCC documentation

The folder (src/docs{.sourceCode}:) contains all the documentation relevant to both users and developpers.

Prerequisites

- [pdflatex] Latex GNU compiler. pdfTeX is an extension of TeX which can produce PDF directly from TeX source, as well as original DVI files. pdfTeX incorporates the e-TeX extensions.
- [doxygen] Doxygen is a documentation system for C++, C, Java, Objective-C, IDL (Corba and Microsoft flavors) and to some extent PHP, C#, and D.
- [sphinx] Sphinx is a documentation generator or a tool that translates a set of plain text source files into various output formats, automatically producing cross-references, indices, etc.
 That is, if you have a directory containing a bunch of reStructuredText or Markdown documents, Sphinx can generate a series of HTML files, a PDF file (via LaTeX), man pages and much more.
- · Any pdf viewer.
- · Any web browser.

These programs can be installed as follows:

```
sudo apt-get install pdflatex
sudo apt-get install doxygen
sudo apt-get install dot2tex
sudo apt-get install python3-sphinx
pip3 install PSphinxTheme
pip3 install recommonmark
```

Build the full documentation

This will build all three types of docs (Sphinx, Doxygen, and latex):

make

The documentation that is build with Sphinx can be tested as follows:

```
firefox lcc.html
```

The file can be explored using any web browser.

One can also build any of the documentations separatly. For example, to build the Sphinx documentation, we can

```
make sphinx
```

2 about

Documenting

In order to add a documentation using Sphinx follow these steps:

: 1) make a file with a proper name under ./sphinx-src/source/{.sourceCode}. For example: $MYPA \leftarrow GE.md{.sourceCode}$. 2) Add the documentation inside the file using "markdown" syntax. 3) Modify the file in ./sphinx-src/source/index.txt{.sourceCode} to include the documentation.

After modyfing this file, recompile Sphinx by typing make sphinx{.sourceCode}.

Chapter 2

Todo List

Subprogram lcc_bravais_growth (nCycles, dTol, dTo, tCoordination, seed_file, r_inout)

Optimize the routine.

Subprogram lcc_triclinic (Nx1, Nx2, Ny1, Ny2, Nz1, Nz2, lattice_vectors, supra_lattice_← vectors, r_sy, verbose)

A angles_to_vectors transformation will be available.

4 Todo List

Chapter 3

Namespace Index

3.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

icc_allocation_mod	
Module for allocation operations	ç
lcc_aux_mod	
Module for auxiliary operations routines	11
lcc_build_mod	
Module for generating the shapes after lattice is constructed	15
lcc_check_mod	
Module for checking operations routines	18
lcc_compute_mod	
Template module for contributing	18
lcc_constants_mod	
A module to handle the constants needed by the code	19
lcc_lattice_mod	
Module to hold routines for handling the lattice and lattice base	20
lcc_lib	
Library module	26
lcc_mc_mod	
Module for Monte Carlo related routines	27
lcc_message_mod	
Module for printing through the code	27
lcc_parser_mod	
This module controls the initialization of the variables	30
lcc_regular_mod	
Module for generating regular shapes after lattice is constructed	31
lcc_string_mod	
Module for manipulating strings	32
lcc_structs_mod	
A module to handle the structures needed by the code	33
lcc_template_mod	
Template module for contributing	34

6 Namespace Index

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

lcc_structs_mod::build_type	
Build type	35
lcc_structs_mod::compute_type	
Compute type	37
lcc_structs_mod::lattice_type	
Lattice type to be read and extended	38

8 Class Index

Chapter 5

Namespace Documentation

5.1 lcc allocation mod Module Reference

Module for allocation operations.

Functions/Subroutines

- subroutine, public lcc_reallocate_realvect (vect, ndim)
 - To reallocate a real vector.
- subroutine, public lcc_reallocate_realmat (mat, mdim, ndim)
 - To reallocate a real mxn matrix.
- subroutine, public lcc_reallocate_intvect (vect, ndim)
 - To reallocate a real vector.
- subroutine, public lcc_reallocate_intmat (mat, mdim, ndim)
 - To reallocate an integer mxn matrix.
- subroutine, public lcc_reallocate_char2vect (vect, ndim)
 - To reallocate a character vector.
- subroutine, public lcc_reallocate_char3vect (vect, ndim)

To reallocate a character vector.

5.1.1 Detailed Description

Module for allocation operations.

5.1.2 Function/Subroutine Documentation

5.1.2.1 lcc_reallocate_char2vect()

To reallocate a character vector.

This will reallocate a character len=2 vector If it is already allocated, a deallocation will first happen.

Parameters

vect	Character(2) 1D array.
ndim	Dimension to reallocate the vector to.

5.1.2.2 lcc_reallocate_char3vect()

To reallocate a character vector.

This will reallocate a character len=3 vector. If it is already allocated, a deallocation will first happen.

Parameters

vect	Character(3) 1D array.
ndim	Dimension to reallocate the vector to.

5.1.2.3 lcc_reallocate_intmat()

```
subroutine, public lcc_allocation_mod::lcc_reallocate_intmat (
    integer, dimension(:,:), intent(inout), allocatable mat,
    integer, intent(in) mdim,
    integer, intent(in) ndim )
```

To reallocate an integer mxn matrix.

This will reallocate a matrix. If it is already allocated, a deallocation will first happen.

Parameters

mat	Integer 2D array.
mnim	First dimension to realocate the matrix to.
ndim	Second dimension to reallocate the matrix to.

5.1.2.4 lcc_reallocate_intvect()

To reallocate a real vector.

This will reallocate a vector If it is already allocated, a deallocation will first happen.

Parameters

vect	Integer 1D array.
ndim	Dimension to reallocate the vector to.

5.1.2.5 lcc_reallocate_realmat()

To reallocate a real mxn matrix.

This will reallocate a matrix If it is already allocated, a deallocation will first happen.

Parameters

mat	Real 2D array.
mnim	First dimension to realocate the matrix to.
ndim	Second dimension to reallocate the matrix to.

5.1.2.6 lcc_reallocate_realvect()

To reallocate a real vector.

This will reallocate a vector If it is already allocated, a deallocation will first happen.

Parameters

vect	Real 1D array.
ndim	Dimension to reallocate the vector to.

5.2 Icc aux mod Module Reference

Module for auxiliary operations routines.

Functions/Subroutines

• subroutine, public lcc_vectors_to_parameters (lattice_vector, abc_angles, verbose)

Transforms the lattice vectors into lattice parameters.

• subroutine, public lcc_parameters_to_vectors (abc_angles, lattice_vector, verbose)

Transforms the lattice parameters into lattice vectors.

• subroutine, public lcc_get_coordination (r_at, r_env, thresh, cnum)

Get the coordination of an atom.

• subroutine, public lcc_canonical_basis (lattice_vectors, r_inout, verbose)

To "canonical base" transformation.

• subroutine, public lcc_center_at_box (lattice_vectors, r_inout, verbose)

Cetering the system inside the lattice box.

• subroutine, public lcc_center_at_origin (r_inout, verbose)

Cetering the system at the origin.

• real(dp) function, dimension(:,:), allocatable inv (A)

Computes the inverse of a matrix using an LU decomposition.

• subroutine, public lcc_get_reticular_density (lattice_vectors, hkl_in, density)

Get the reticular density of a particular hkl face: This soubroutine computes:

- real(dp) function, dimension(:), allocatable crossprod (r1, r2)
- subroutine, public **lcc_get_geometriccenter** (r_inout, geomCent)

5.2.1 Detailed Description

Module for auxiliary operations routines.

5.2.2 Function/Subroutine Documentation

5.2.2.1 inv()

Computes the inverse of a matrix using an LU decomposition.

Parameters

Α	nxn Matrix to be inverted.
Ainv	Inverse of matrix A

5.2.2.2 lcc_canonical_basis()

```
real(dp), dimension(:,:), intent(inout), allocatable r_inout, integer, intent(in) verbose)
```

To "canonical base" transformation.

This will reorient the shape/slab so that the first translation vector is alligned with x.

Parameters

lattice_vectors	Translation vectors for the shape/slab.
r_inout	Coordinates to be transformed.
verbose	Verbosity level.

5.2.2.3 lcc_center_at_box()

Cetering the system inside the lattice box.

This will move the coordinates so that the geometric center of the system is at the center of the box.

Parameters

lattice_vectors	Translation vectors for the shape/slab.
r_inout	Coordinates to be transform.
verbose	Verbosity level.

5.2.2.4 lcc_center_at_origin()

```
subroutine, public lcc_aux_mod::lcc_center_at_origin ( real\,(dp)\,,\,\,dimension\,(:,:)\,,\,\,allocatable\,\,r\_inout, integer,\,\,intent\,(in)\,\,verbose\,\,)
```

Cetering the system at the origin.

This will move the coordinates so that the geometric center of the system is at (0,0,0).

Parameters

r_inout	Coordinates to be transform.
verbose	Verbosity level.

5.2.2.5 lcc_get_coordination()

Get the coordination of an atom.

Will count how many atoms are around a particular atom (coordination number) given a set radius.

Parameters

r_at	Coodinates of the atom for which we need the coordination.
r_env	Coordinated of the environment sorounding atom at r_at.
thres	Threshod distance to find coordinations.
cnum	Coordination number (output).

5.2.2.6 lcc_get_reticular_density()

Get the reticular density of a particular hkl face: This soubroutine computes:

Parameters

lattice_vectors	Lattice vectors for the system.
hkl_in	Vector containing h, k, and I.
density	Reticular density.

5.2.2.7 lcc_parameters_to_vectors()

Transforms the lattice parameters into lattice vectors.

Parameters

abc_angles	2x3 array containing the lattice parameters. abc_angles(1,1) = a, abc_angles(1,2) = b, and abc_angles(1,3) = c abc_angles(2,1) = α , abc_angles(2,2) = β and abc_angles(2,3) = γ	
lattice_vector	3x3 array containing the lattice vectors. lattice_vector(1,:) = \overrightarrow{a}	
verbose	Verbosity level.	

5.2.2.8 lcc_vectors_to_parameters()

Transforms the lattice vectors into lattice parameters.

Parameters

lattice_vector	3x3 array containing the lattice vectors. lattice_vector(1,:) = $\overrightarrow{\alpha}$
abc_angles	2x3 array containing the lattice parameters. abc_angles(1,1) = a, abc_angles(1,2) = b and abc_angles(1,3) = c abc_angles(2,1) = α , abc_angles(2,2) = β , and abc_angles(2,3) = γ .
verbose	Verbosity level.

5.3 lcc_build_mod Module Reference

Module for generating the shapes after lattice is constructed.

Functions/Subroutines

- subroutine, public lcc_bravais_growth (nCycles, dTol, dTo, tCoordination, seed_file, r_inout)

 For "growing" a crystal shape using Bravias type of growth teory.
- subroutine, public lcc_plane_cut (planes, ploads, interPlanarDistances, lattice_vectors, cluster_lattice_
 vectors, resindex, r_inout, verbose)

Cutting a shape based on Miller planes.

- subroutine lcc_build_slab (slab, sloads, lattice_vectors, cluster_lattice_vectors, resindex, r_inout, verbose)

 Cutting a shape based on PBC vectors.
- subroutine, public lcc_add_randomness_to_coordinates (r_inout, seed, rcoeff)
 Will add randomness to the system.

5.3.1 Detailed Description

Module for generating the shapes after lattice is constructed.

5.3.2 Function/Subroutine Documentation

5.3.2.1 lcc_add_randomness_to_coordinates()

Will add randomness to the system.

Parameters

r_inout	System coordinates.
lattice_vectors	Lattice vectors.
seed	Random seed. rcoeff Coefficient for randomness.

5.3.2.2 lcc_bravais_growth()

For "growing" a crystal shape using Bravias type of growth teory.

Parameters

nCycles	Number of shells to add.
dTol	Tolerance for distinguising the coordinates from the seed to the coodinates from the bulk.
dTo	Parameter to determine the coordination the incoming atom.
tCoordination	Target coordination. If coodination is larger than the target, the atom will be picked.
seed_file	Name of the file containing the seed.
r_inout	Input: Bulk lattice, Output: Crystal shape.

Todo Optimize the routine.

5.3.2.3 lcc_build_slab()

Cutting a shape based on PBC vectors.

A set of PBC vectors and distances is provided.

Parameters

planes	List of planes to cut the shape with.
ploads	Distance from the origin to locate the plane.
interPlanarDistance	Use "interplanar distances" as measure for the cut.
lattice_vectors	Lattice vectors.
cluster_lattice_vectors	Lattice vectors of the shape. Note: this only makes sense if the planes make a parellelepiped.
r_inout	Coordinates in and out.
verbose	Verbosity level.

5.3.2.4 lcc_plane_cut()

Cutting a shape based on Miller planes.

A set of panes and distances is provided.

Parameters

planes	List of planes to cut the shape with.	
ploads	Distance from the origin to locate the plane.	
interPlanarDistance	Use "interplanar distances" as measure for the cut.	
lattice_vectors	Lattice vectors.	
cluster_lattice_vectors	Lattice vectors of the shape. Note: this only makes sense if the planes make a parellelepiped.	
r_inout	Coordinates in and out.	
verbose Generated by Doxygen	Verbosity level.	

5.4 Icc check mod Module Reference

Module for checking operations routines.

Functions/Subroutines

• subroutine, public lcc_check_periodicity (r_in, lattice_vectors, r_ref, tol, verbose)

Check the periodicity.

5.4.1 Detailed Description

Module for checking operations routines.

5.4.2 Function/Subroutine Documentation

5.4.2.1 lcc_check_periodicity()

Check the periodicity.

Will use a "brute force" approach to check periodidity.

Parameters

r_in	Input coordinates.	
lattice_vectors	Translation vectors for the slab.	
r_ref	Reference or "bulk structure from where the shape was cut.	
verbose	Verbosity level.	

5.5 lcc_compute_mod Module Reference

Template module for contributing.

Functions/Subroutines

• subroutine, public lcc_compute_roughness (coords, lattice_vectors, isoval, rab, ni, nj, nk, verbose) Example subroutine.

5.5.1 Detailed Description

Template module for contributing.

5.5.2 Function/Subroutine Documentation

5.5.2.1 lcc_compute_roughness()

Example subroutine.

Parameters

coords	Coordinates.	
lattice_vectors	Lattice vectors.	
isoval	Parameter value to compute isosurface.	
rab	Radius of the spherical probe.	
ni	Number of discrete points on the a1 axis.	
nj	Number of discrete points on the a2 axis.	
nk	Number of discrete points on the a3 axis.	
verbose	Verbosity level.	

5.6 lcc_constants_mod Module Reference

A module to handle the constants needed by the code.

Variables

- integer, parameter, public dp = kind(1.0d0)
 Precision used troughout the code.
- real(dp), parameter pi = 3.14159265358979323846264338327950_dp
 Pi number.

5.6.1 Detailed Description

A module to handle the constants needed by the code.

This module will be used to store the constants needed in the code

5.7 Icc_lattice_mod Module Reference

Module to hold routines for handling the lattice and lattice base.

Functions/Subroutines

• subroutine, public lcc make lattice (bld, ltt, check, sy)

Make a lattice depending on the input parameter.

• subroutine lcc_read_base (bld, ltt, check, verbose)

Reading the basis from an input file.

• subroutine lcc_check_basis (base_format, r_base, lattice_vectors, verbose)

Routine to check for atom repetitions in basis \bnrief It will do all possible translations searching for atoms that could be repeated.

subroutine lcc_add_base_to_cluster (ltt, sy, verbose)

Add a basis to the lattice.

• subroutine lcc_sc (Nx1, Nx2, Ny1, Ny2, Nz1, Nz2, h_lattice_a, supra_lattice_vectors, r_sy)

Simple cubic (SC) lattice construction.

• subroutine lcc_fcc (Nx1, Nx2, Ny1, Ny2, Nz1, Nz2, h_lattice_a, supra_lattice_vectors, r_sy, verbose)

Face center cubic (FCC) lattice construction.

• subroutine lcc_triclinic (Nx1, Nx2, Ny1, Ny2, Nz1, Nz2, lattice_vectors, supra_lattice_vectors, r_sy, verbose)

Triclinic lattice construction.

• subroutine, public lcc_set_atom_type (a_type, atom_symbol, atom_name, nats)

Sets the atom type.

subroutine lcc_add_randomness (r_inout, lattice_vectors, seed, rcoeff)

Will add randomness to the system.

• subroutine lcc minimize from (xVar, i, ai, nats, trs, verbose)

To get the best translation that minimizes the distance to any previous fragment.

• subroutine lcc_get_besttranslations (nop, nats, r_inout, verbose)

To get the best translation that minimizes the distance to any previous fragment.

5.7.1 Detailed Description

Module to hold routines for handling the lattice and lattice base.

5.7.2 Function/Subroutine Documentation

5.7.2.1 lcc_add_base_to_cluster()

Add a basis to the lattice.

This routine will add the basis to the system points previously cut from the lattice. This is the last step of the solid/shape/slab creation.

Parameters

ltt	lattice_type See lcc_structs_mod	
sy	system_type See progress library	

5.7.2.2 lcc_add_randomness()

Will add randomness to the system.

Parameters

r_inout	System coordinates.	
lattice_vectors	ice_vectors Lattice vectors.	
seed Random seed. rcoeff Coefficient for randomr		

5.7.2.3 lcc_check_basis()

Routine to check for atom repetitions in basis \bnrief It will do all possible translations searching for atoms that could be repeated.

Parameters

base_format	Basis format, if xyz of abc	
r_base	Coordinates of the basis. r_base(1,7) means coordinate x of atom 7	
lattice_vectors	Lattice vectors. WARNING, in this case lattice_vector(1,3) means the coordinate 3=z of vector 1.	

5.7.2.4 lcc_fcc()

```
integer, intent(in) Nx2, integer, intent(in) Ny1, integer, intent(in) Ny2, integer, intent(in) Nz1, integer, intent(in) Nz2, real(dp), intent(in) h_lattice_a, real(dp), dimension(:,:), intent(inout), allocatable supra_lattice_l vectors, real(dp), dimension(:,:), intent(inout), allocatable r_sy, integer, intent(in) verbose)
```

Face center cubic (FCC) lattice construction.

Constructs a "bulk" of Face center cubic lattice.

Parameters

Nx1	Initial x lattice point.
Nx2	Final x lattice point.
Ny1	Initial y lattice point.
Ny2	Final y lattice point.
Nz1	Initial z lattice point.
Nz2	Final z lattice point.
h_lattice_a	Lattice parameter.
supra_lattice_vectors	Lattice unit vectors of the resulting slab.
r_sy	Output system coordinates.

5.7.2.5 lcc_get_besttranslations()

To get the best translation that minimizes the distance to any previous fragment.

Parameters

пор	Number of symmetry operations	
nats	Number of atoms in each fragment	
r_inout	Coordinates for the fragment	
verbose	e Verbosity level	

5.7.2.6 lcc_make_lattice()

```
type(lattice_type), intent(inout) ltt,
logical, intent(in) check,
type(system_type), intent(inout) sy)
```

Make a lattice depending on the input parameter.

This will make one of the following latices: SC: Simple cubic, FCC: Face center cubic, or Triclinic.

Parameters

bld	Building structure (see lcc_structures_mod)	
Itt	Lattice structure (see lcc_scturctures_mod)	
check	If we want to check the basis for atom repetition. Note that checks can be expensive.	

5.7.2.7 lcc_minimize_from()

To get the best translation that minimizes the distance to any previous fragment.

Parameters

xVar	Coordinates of the full basis (including symmetry operations).	
i	Fragmet being added at the "i" operation.	
ai	Atom index to translate and get the optimal translation.	
nats	Number of atoms in the fragment.	
trs	Optimal translation.	

5.7.2.8 lcc_read_base()

Reading the basis from an input file.

This will read the coordinates for the basis from an input file If information about the lattice is contained, it will also be read.

Parameters

bld	Building structure (see lcc_structures_mod).	
ltt	Lattice structure (see lcc_scturctures_mod).	
check	If we want to check the basis for atom repetition.	
verbose	Verbose level. Note that checks can be expensive.	

5.7.2.9 lcc_sc()

```
subroutine lcc_lattice_mod::lcc_sc (
    integer, intent(in) Nx1,
    integer, intent(in) Nx2,
    integer, intent(in) Ny1,
    integer, intent(in) Ny2,
    integer, intent(in) Nz1,
    integer, intent(in) Nz2,
    real(dp), intent(in) h_lattice_a,
    real(dp), dimension(:,:), intent(inout), allocatable supra_lattice_vectors,
    real(dp), dimension(:,:), intent(inout), allocatable r_sy)
```

Simple cubic (SC) lattice construction.

Constructs a "bulk" of Simple Cubic lattice.

Parameters

Nx1	Initial x lattice point.
Nx2	Final x lattice point.
Ny1	Initial y lattice point.
Ny2	Final y lattice point.
Nz1	Initial z lattice point.
Nz2	Final z lattice point.
h_lattice_a	Lattice parameter.
supra_lattice_vectors	Lattice unit vectors of the resulting slab.
r_sy	Output system coordinates.

5.7.2.10 lcc_set_atom_type()

Sets the atom type.

Sets the atom "symbol/type/name."

Parameters

a_type	Atom symbol character.	
atom_symbol	Atom symbols.	
atom_name	Atom name. Note: Atom name is a tag that can distinguish atoms with same symbol.	

5.7.2.11 lcc_triclinic()

```
subroutine lcc_lattice_mod::lcc_triclinic (
    integer, intent(in) Nx1,
    integer, intent(in) Nx2,
    integer, intent(in) Ny1,
    integer, intent(in) Ny2,
    integer, intent(in) Nz1,
    integer, intent(in) Nz2,
    real(dp), dimension(:,:), intent(in), allocatable lattice_vectors,
    real(dp), dimension(:,:), intent(inout), allocatable supra_lattice_vectors,
    real(dp), dimension(:,:), intent(inout), allocatable r_sy,
    integer, intent(in) verbose)
```

Triclinic lattice construction.

Constructs a "bulk" of triclinic lattice.

Parameters

Nx1	Initial x lattice point.
Nx2	Final x lattice point.
Ny1	Initial y lattice point.
Ny2	Final y lattice point.
Nz1	Initial z lattice point.
Nz2	Final z lattice point.
lattice_vectors	Lattice vectors.
supra_lattice_vectors	Lattice unit vectors of the resulting slab.
r_sy	Output system coordinates. Note: Unit cell representation has to be transformed from edges and angles to vetors before calling this routine.

Todo A angles_to_vectors transformation will be available.

5.8 lcc_lib Module Reference

Library module.

Functions/Subroutines

• subroutine, public lcc (readInputFile, inputFileName, syOut, writeOut, clType, planeIn)

5.8.1 Detailed Description

Library module.

5.9 lcc_mc_mod Module Reference

Module for Monte Carlo related routines.

Functions/Subroutines

• subroutine lcc_check_system (r, iter, temp, cost, cost0)

Maximize: This checks the acceptance.

5.9.1 Detailed Description

Module for Monte Carlo related routines.

5.10 lcc_message_mod Module Reference

Module for printing through the code.

Functions/Subroutines

- subroutine, public lcc_print_ussage ()
 - For printing the instructions on how to execute the code.
- subroutine, public lcc_print_message (message, verbose)

Print a simple message.

subroutine, public lcc_print_warning (at, message, verbose)

Print a Warning (will not stop execution).

- subroutine, public lcc_print_error (at, message)
 - Print error (will stop execution).
- subroutine, public lcc_print_intval (name, value, units, verbose)

Print integer magnitude.

• subroutine, public lcc_print_realval (name, value, units, verbose)

Print real magnitude.

• subroutine, public lcc_print_realvect (name, vect, units, verbose)

Print real vector.

subroutine lcc_print_realmat (name, mat, units, verbose)

Print real vector.

• subroutine Icc_help ()

5.10.1 Detailed Description

Module for printing through the code.

5.10.2 Function/Subroutine Documentation

5.10.2.1 lcc_print_error()

Print error (will stop execution).

Parameters

at	Name of the routine.
message	Message to print.

5.10.2.2 lcc_print_intval()

Print integer magnitude.

Parameters

name	Name of the magnitude.
value	Value to print.
units	Units of the magnitude.

5.10.2.3 lcc_print_message()

Print a simple message.

Parameters

message	Message to print.
verbose	Verbosity level.

5.10.2.4 lcc_print_realmat()

Print real vector.

Parameters

name	Name of the quantities.
mat	Matrix to print.
units	Units of the quantities.
verbose	Verbosity level.

5.10.2.5 lcc_print_realval()

Print real magnitude.

Parameters

name	Name of the magnitude.
value	Value to print.
units	Units of the magnitude.

5.10.2.6 lcc_print_realvect()

Print real vector.

Parameters

name	Name of the quantities.
vect	Vector to print.
units	Units of the quantities.
verbose	Verbosity level.

5.10.2.7 lcc_print_warning()

Print a Warning (will not stop execution).

Parameters

at	Name of the routine.
message	Message to print.
verbose	Verbosity level.

5.11 lcc_parser_mod Module Reference

This module controls the initialization of the variables.

Functions/Subroutines

- subroutine, public lcc_parse (filename, bld, ltt, cmp)
 Clustergen parser.
- subroutine, public lcc_make_sample_input ()

Make a sample inputfile sample_input.in.

• subroutine, public lcc_write_coords (sy, bld, coordsout_file, verbose)

Writes the coordinates to a file (coordsandbase.pdb)

5.11.1 Detailed Description

This module controls the initialization of the variables.

5.11.2 Function/Subroutine Documentation

5.11.2.1 lcc_parse()

Clustergen parser.

This module is used to parse all the input variables for this program. Adding a new input keyword to the parser:

- If the variable is real, we have to increase nkey_re.
- Add the keyword (character type) in the keyvector_re vector.
- Add a default value (real type) in the valvector_re.
- Define a new variable and pass the value through valvector_re(num) where num is the position of the new keyword in the vector.

Parameters

filename	File name for the input.	
bld	Build type.	
ltt	Lattice type.	

5.11.2.2 lcc_write_coords()

Writes the coordinates to a file (coordsandbase.pdb)

Parameters

sy	System type.	
bld	Build type.	
coordsout_file	File name to write the coordinates to.	
verbose	Verbosity level.	

5.12 lcc_regular_mod Module Reference

Module for generating regular shapes after lattice is constructed.

Functions/Subroutines

• subroutine, public lcc_spheroid (a_axis, b_axis, c_axis, r_inout)

For building spheroidal shapes out of a bulk lattice.

5.12.1 Detailed Description

Module for generating regular shapes after lattice is constructed.

5.12.2 Function/Subroutine Documentation

5.12.2.1 lcc_spheroid()

```
subroutine, public lcc_regular_mod::lcc_spheroid (
    real(dp) a_axis,
    real(dp) b_axis,
    real(dp) c_axis,
    real(dp), dimension(:,:), allocatable r_inout )
```

For building spheroidal shapes out of a bulk lattice.

Parameters

a_axis	Lenght in the x direction.	
b_axis	Lenght in the y direction.	
c_axis	Lenght in the z direction.	
r_inout	Input and output coordinates.	

5.13 Icc_string_mod Module Reference

Module for manipulating strings.

Functions/Subroutines

- subroutine, public lcc_get_word (string, posh, post, word)
 Cut a word from string.
- subroutine, public lcc_split_string (string, delimit, head, tail)

 Split a string in two words uning a delimiter.

5.13.1 Detailed Description

Module for manipulating strings.

5.13.2 Function/Subroutine Documentation

5.13.2.1 lcc_get_word()

Cut a word from string.

Parameters

string	Full string.
posh	Cut from position.
post	Cut to position.
word	Extracted word.

5.13.2.2 lcc_split_string()

Split a string in two words uning a delimiter.

Parameters

string	Full string.
delimit	Delimiter.
head	First word.
tail	Last word.

5.14 lcc_structs_mod Module Reference

A module to handle the structures needed by the code.

Data Types

• type build_type

Build type.

type compute_type

Compute type.

• type lattice_type

Lattice type to be read and extended.

5.14.1 Detailed Description

A module to handle the structures needed by the code.

This module will be used to build and handle structures in the code.

5.15 lcc_template_mod Module Reference

Template module for contributing.

Functions/Subroutines

• subroutine, public lcc_template_subroutine (dummy, verbose)

Example subroutine.

5.15.1 Detailed Description

Template module for contributing.

5.15.2 Function/Subroutine Documentation

5.15.2.1 lcc_template_subroutine()

Example subroutine.

Parameters

dummy	Example variable
verbose	Verbosity level.

Chapter 6

Class Documentation

6.1 lcc_structs_mod::build_type Type Reference

Build type.

Public Attributes

• character(len=20) job_name

Job name.

• character(len=20) output_file_name

Output file name.

• character(len=60), public coordsout_file

Output file name for coordinates.

• character(len=60), public latticebase_file

Lattice base file name.

• character(len=1) cut_by_planes

Cut lattice using planes.

• character(len=1) cut_with_base

Cut lattice after base is added.

• character(len=1) read_lattice_from_file

Read lattice from file.

• character(len=1) use lattice base

Use lattice base.

character(len=60) cl_type

Cluster (or solid) shape to be constructed.

• character(len=60) planes_type

Type of planes used for the cut.

• character(len=60) seed_file

File name for the seed used to grow a cluster.

• integer n

Number of atoms.

integer nplanes

Number of planes to use in the cut.

integer nx1

Number of lattice points in +-(x, y, and z) directions.

36 Class Documentation

- · integer nx2
- · integer ny1
- integer ny2
- integer nz1
- · integer nz2
- · integer seed

Random seed.

· integer cl number

Cluster number (if it is a solid with "magic" numbers)

real(dp) a_axis

Axis length if cluster is a spheroid.

- real(dp) b axis
- · real(dp) c_axis
- real(dp) rcoeff

Coefficient used with random seed to create noise in coordinates.

real(dp) r_cut

Cutoff radius to build spheroids.

· real(dp) trunc

Truncation for solids.

• character(2) a_type

Atom type (if specified on the input file)

• real(dp), dimension(:,:), allocatable planes

Planes for the cut.

real(dp), dimension(:), allocatable ploads

Plenes weight factors.

• type(system_type) syseed

System seed to be grow on top.

integer ncluster

Number of atoms in cluster/slab.

• character(2), dimension(:), allocatable atom_in

Atoms in the cluster/slab.

- character(2), dimension(:), allocatable atomname in
- integer, dimension(:), allocatable resindex_in
- character(2), dimension(:), allocatable resname_in
 - real(dp), dimension(:,:), allocatable r_cluster

Coordinates of the resulting cluster/slab.

integer maxcoordination

Max coordination number.

real(dp) rtol

Distance tolerance for distinguishing coordinates.

· integer niter

Number of iterations.

integer verbose

Verbose level.

logical center

Center at box.

· logical reorient

Reorient first lattice vector toward x direction.

· logical writecml

Reorient first lattice vector toward x direction.

logical checkperiod

To check periodicity.

• character(5) rdfpair

To compute RDFs.

logical writeImp

Write LAMMPS input coordinates.

logical interplanardistances

Use "number of interplanar distances" as unit of measurement for plane cut.

• real(dp), dimension(:,:), allocatable slab

To build a slab out of regular vectors.

- real(dp), dimension(:), allocatable sloads
- · logical randomcoordinates

To add randomness to coordinates.

6.1.1 Detailed Description

Build type.

The documentation for this type was generated from the following file:

• /tmp/LCC/src/lcc_structs_mod.F90

6.2 lcc_structs_mod::compute_type Type Reference

Compute type.

Public Attributes

· logical computeroughness

Compute surface roughness.

• real(dp) roughnessisoval

Surface roughness parameters.

- real(dp) roughnessrab
- integer roughnessni
- · integer roughnessnj
- integer roughnessnk

6.2.1 Detailed Description

Compute type.

The documentation for this type was generated from the following file:

/tmp/LCC/src/lcc_structs_mod.F90

38 Class Documentation

6.3 lcc_structs_mod::lattice_type Type Reference

Lattice type to be read and extended.

Public Attributes

· character(len=3) base_format

Lattice basis.

character(len=60) primitive_format

The lattice primitive format (Angles of Vectors)

• character(len=60) type_of_lattice

Type of lattice (sc, bcc, fcc, and triclinic)

• real(dp) angle_alpha

Angles for triclinic lattice.

- · real(dp) angle_beta
- real(dp) angle_gamma
- real(dp) h_lattice_a

abc parameters for lattice

- real(dp) h_lattice_b
- real(dp) h_lattice_c
- real(dp), dimension(:,:), allocatable lattice_vectors

Lattice vectors.

· real(dp) volr

Volume of the cell.

• real(dp), dimension(:,:), allocatable recip_vectors

Lattice reciprocal vectors.

real(dp) volk

Volume of the reciprocal cell.

integer nbase

Number of atoms in the basis.

• character(2), dimension(:), allocatable base_atom

Basis atoms.

• real(dp), dimension(:,:), allocatable r_base

Basis coordinates.

• type(system_type) sybase

System for the basis.

· logical bsopl

If there are symmetry operations to be performed.

integer nop

Number of Symmetry operations.

real(dp), dimension(:,:), allocatable bstr

Translations to be performed.

• real(dp), dimension(:), allocatable bsopload

Scaling factos (load) for the translation.

• real(dp), dimension(:,:), allocatable bssym

Symmetry operation (diagonal)

integer, dimension(:), allocatable spindex

Spicies index.

• real(dp), dimension(:), allocatable base mass

System basis masses.

• integer, dimension(:), allocatable resindex

Residue index.

• real(dp), dimension(:,:), allocatable bulk

To save the "bulk" positions.

logical check

Check lattice.

logical getopttrs

Get optimal translations at symmetry operations.

• logical randomlattice

To add randomness to each lattice position.

· logical randrotations

To add random orientations to each lattice molecules/basis.

• real(dp) setdensity

To set a particular density in [gr/cc].

6.3.1 Detailed Description

Lattice type to be read and extended.

The type of lattice read from input.

The documentation for this type was generated from the following file:

• /tmp/LCC/src/lcc_structs_mod.F90

40 Class Documentation

Index

inv	lcc_constants_mod, 19
lcc_aux_mod, 12	lcc_fcc
	lcc_lattice_mod, 22
lcc_add_base_to_cluster	lcc_get_besttranslations
lcc_lattice_mod, 20	lcc_lattice_mod, 23
lcc_add_randomness	lcc_get_coordination
lcc_lattice_mod, 22	lcc_aux_mod, 13
lcc_add_randomness_to_coordinates	lcc_get_reticular_density
lcc_build_mod, 16	lcc_aux_mod, 14
lcc_allocation_mod, 9	lcc_get_word
lcc_reallocate_char2vect, 9	lcc string mod, 33
lcc_reallocate_char3vect, 10	lcc lattice mod, 20
lcc_reallocate_intmat, 10	lcc_add_base_to_cluster, 20
lcc_reallocate_intvect, 10	lcc_add_randomness, 22
lcc_reallocate_realmat, 11	lcc_check_basis, 22
lcc_reallocate_realvect, 11	lcc_fcc, 22
lcc_aux_mod, 11	lcc get besttranslations, 23
inv, 12	lcc_make_lattice, 23
lcc_canonical_basis, 12	lcc minimize from, 24
lcc_center_at_box, 13	lcc_read_base, 24
lcc_center_at_origin, 13	lcc sc, 25
lcc_get_coordination, 13	- :
lcc_get_reticular_density, 14	lcc_set_atom_type, 25 lcc_triclinic, 26
lcc_parameters_to_vectors, 14	
lcc_vectors_to_parameters, 15	lcc_lib, 26
lcc_bravais_growth	lcc_make_lattice
lcc_build_mod, 16	lcc_lattice_mod, 23
lcc_build_mod, 15	lcc_mc_mod, 27
lcc_add_randomness_to_coordinates, 16	lcc_message_mod, 27
lcc_bravais_growth, 16	lcc_print_error, 28
lcc_build_slab, 16	lcc_print_intval, 28
lcc_plane_cut, 17	lcc_print_message, 28
lcc_build_slab	lcc_print_realmat, 29
lcc_build_mod, 16	lcc_print_realval, 29
lcc_canonical_basis	lcc_print_realvect, 29
lcc_aux_mod, 12	lcc_print_warning, 30
lcc_center_at_box	lcc_minimize_from
lcc_aux_mod, 13	lcc_lattice_mod, 24
lcc_center_at_origin	lcc_parameters_to_vectors
lcc_aux_mod, 13	lcc_aux_mod, 14
lcc_check_basis	lcc_parse
lcc_lattice_mod, 22	lcc_parser_mod, 30
lcc_check_mod, 18	lcc_parser_mod, 30
lcc_check_periodicity, 18	lcc_parse, 30
lcc_check_periodicity	lcc_write_coords, 31
lcc_check_mod, 18	lcc_plane_cut
lcc_compute_mod, 18	lcc_build_mod, 17
lcc_compute_roughness, 19	lcc_print_error
lcc_compute_roughness	lcc_message_mod, 28
lcc_compute_mod, 19	lcc_print_intval

42 INDEX

lcc_message_mod, 28
lcc_print_message
lcc_message_mod, 28
lcc_print_realmat
lcc_message_mod, 29
lcc print realval
lcc_message_mod, 29
lcc_print_realvect
lcc_message_mod, 29
lcc_print_warning
lcc_message_mod, 30
lcc_read_base
lcc_lattice_mod, 24
lcc_reallocate_char2vect
lcc_allocation_mod, 9
lcc_reallocate_char3vect
lcc_allocation_mod, 10
lcc_reallocate_intmat
lcc_allocation_mod, 10
lcc reallocate intvect
lcc allocation mod, 10
lcc reallocate realmat
lcc allocation mod, 11
lcc reallocate realvect
<u> </u>
lcc_allocation_mod, 11
lcc_regular_mod, 31
lcc_spheroid, 32
lcc_sc
lcc_lattice_mod, 25
lcc_set_atom_type
lcc_lattice_mod, 25
lcc_spheroid
lcc_regular_mod, 32
lcc_split_string
lcc_string_mod, 33
lcc string mod, 32
lcc_get_word, 33
lcc_split_string, 33
lcc structs mod, 33
lcc_structs_mod::build_type, 35
lcc_structs_mod::compute_type, 37
lcc_structs_mod::lattice_type, 38
lcc_template_mod, 34
lcc_template_subroutine, 34
lcc_template_subroutine
lcc_template_mod, 34
lcc_triclinic
lcc_lattice_mod, 26
lcc_vectors_to_parameters
lcc_aux_mod, 15
lcc_write_coords
lcc_parser_mod, 31