Отчет по численным методам: QR-разложение матрицы

Сотникова Виктория 307 группа

1 Постановка задачи

Требуется двумя различными методами получить QR-разложение данной в csv файле (вариант 8) матрицы $A \in \mathbb{R}^{n \times n}$. Сравнить полученные разложения на основе матричной нормы разности $\|A - QR\|$. А также получить решение системы уравнений Ax = f с использованием разложения с меньшей нормой разности.

2 Методы QR-разложения

 QR -разложением матрицы A называется разложение вида:

$$A = QR$$

где Q — ортогональная матрица, R — верхняя треугольная матрица.

Для выполнения задачи использованы следующие методы QR-разложения:

2.1 Метод Холецкого

2.1.1 Получение матрицы R

Пусть A = QR, где $\det(A) \neq 0$.

Тогда:

$$B = A^T A = (R^T Q^T)(QR) = R^T (Q^T Q)R = R^T R$$

Поскольку:

$$B^{T} = (A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A = B,$$

$$x^{T}(A^{T}A)x = (Ax)^{T}(Ax) = ||Ax||^{2} > 0, \quad x \in \mathbb{R}^{n}$$

Матрица В является симметричной и положительно определённой:

$$B^T = B$$
 w $B > 0$.

Из единственности разложения Холецкого следует, что:

$$R = L^T$$
.

где L — транспонированный множитель Холецкого матрицы A^TA .

2.1.2 Формулы разложения Холецкого

Элементы матрицы L можно вычислить, начиная с верхнего левого угла матрицы, по формулам

$$l_{11} = \sqrt{a_{11}}$$

$$l_{j1} = \frac{a_{j1}}{l_{11}}, \quad j \in [2, n]$$

$$l_{ii} = \sqrt{a_{ii} - \sum_{p=1}^{i-1} l_{ip}^2}, \quad i \in [2, n]$$

$$l_{ji} = \frac{1}{l_{ii}} \left(a_{ji} - \sum_{p=1}^{i-1} l_{ip} l_{jp} \right), \quad i \in [2, n-1], j \in [i+1, n]$$

Выражение под корнем всегда положительно, если A - действительная положительно определённая матрица. Вычисление происходит сверху вниз, слева направо, т. е. сперва L_{ij} , а затем L_{ii} .

2.1.3 Получение матрицы Q

Для того, чтобы найти матрицу Q, можно решить:

$$LQ^T = A^T$$

Поскольку матрица L нижняя треугольная, решаем n СЛАУ с помощью прямой подстановки, итеративно получая столбцы матрицы Q^T по следующим формулам:

Начинаем с первого уравнения:

$$q_1 = \frac{b_1}{L_{11}},$$

где q_1 - первое значение в соответствующем столбце Q^T , а b_1 - первое значение в соответствующем столбце A^T .

Затем переходим к следующим уравнениям:

$$q_i = \frac{b_i - \sum_{j=1}^{i-1} L_{ij} x_j}{L_{ii}}, \quad i = 2 \dots, n$$

2.2 Метод отражений Хаусхолдера

Рассмотрим нормированный первый столбец матрицы A

$$y_1 = [a_{11}a_{21} \dots a_{n1}]^T / \sqrt{\sum_{i=1}^n a_{i1}^2},$$

и вектор $e_1 = \begin{bmatrix} 1 & 0 & \dots \end{bmatrix}^T$. Если $a_{21} = a_{31} = \dots = a_{n1} = 0$, то переходим к следующему шагу, положив $A^{(1)} = A$, $U_1 = I$ и введя обозначения $a_{ij}^{(1)} = a_{ij}$. В противном случае умножим матрицу A слева на матрицу отражения

$$U_1 = I - 2w_1 w_1^T = I_n - 2w_1 w_1^T,$$

где вектор w_1 вычисляется по формуле:

$$w_1 = \frac{y_1 + \operatorname{sign}(e_1, y_1) e_1}{\|y_1 + \operatorname{sign}(e_1, y_1) e_1\|_2}.$$

В результате получим матрицу

$$A^{(1)} = U_1 A,$$

в первом столбце которой стоят нули во всех позициях, кроме первой.

Пусть мы уже осуществили l-1>0 шагов и пришли к матрице $A^{(l-1)}$ с элементами $a_{ij}^{(l-1)}$ такими, что $a_{ij}^{(l-1)}=0$ при $i>j, j=1,\ldots,l-1$. В пространстве \mathbb{R}_{n-l+1} векторов размерности n-l+1 рассмотрим вектор

$$y_{l} = \left[a_{ll}^{(l-1)} a_{l+1,l}^{(l-1)} \dots a_{nl}^{(l-1)}\right]^{T} / \sqrt{\left(a_{ll}^{(l-1)}\right)^{2} + \dots + \left(a_{nl}^{(l-1)}\right)^{2}}.$$

Если $a_{l+1,l}^{(l-1)}=a_{l+2,l}^{(l-1)}=\cdots=a_{n,l}^{(l-1)}=0$, то переходим к следующему шагу, положив

$$A^{(l)} = A^{(l-1)}, \quad U_l = I.$$

В противном случае строим матрицу отражения

$$V_l = I_{n-l+1} - 2w_l w_l^T$$

(размеры матрицы V_l и вектора w_l равны (n-l+1)), переводящую вектор y_l в вектор, коллинеарный $e_l=[10\dots0]^T\in\mathbb{R}_{n-l+1}$, и переходим к матрице

$$A^{(l)} = U_l A^{(l-1)},$$

где

$$U_l = \begin{pmatrix} I_{l-1} & 0\\ 0 & V_l \end{pmatrix}$$

После (n-1) шагов мы приходим к матрице

$$A^{(n-1)} = U_{n-1}U_{n-2}\dots U_1A,$$

имеющей треугольную форму.

Обозначим

$$U_{n-1}U_{n-2}\dots U_1=U.$$

Тогда

$$A^{(n-1)} = UA, \quad A = U^T A^{(n-1)}.$$

Для того, чтобы получить матрицу Q, необходимо действовать на единичную матрицу.

Замечание: можно более эффективно вычислить

$$U_1 A = (I_n - w_1 w_1^T) A = A - 2w_1(w_1^T A) = A - 2w_1[w_1^T a_1 \dots w_1^T a_n]$$

3 Решение СЛАУ

Система линейных уравнений (СЛАУ) представляется в виде:

$$Ax = f$$

где A — матрица коэффициентов, x — вектор неизвестных, f — вектор правой части.

С помощью QR-разложения СЛАУ можно переписать в виде:

$$Rx = Q^T f = b$$

Система уравнений Rx = b решается с помощью обратной подстановки. Начинаем с последнего уравнения:

$$x_n = \frac{b_n}{R_{nn}}$$

Затем переходим к предыдущим уравнениям:

$$x_i = \frac{b_i - \sum_{j=i+1}^n R_{ij} x_j}{R_{ii}}, \quad i = n-1, n-2, \dots, 1$$

Этот процесс продолжается до тех пор, пока не будут найдены все компоненты вектора x.

Система уравнений Ax=f решается в тестовом режиме. Для этого с помощью генератора строится вектор $x\in\mathbb{R}^n$ с компонентами $x_k\in[-1,1]$, где $k=1,2,\ldots,n$. Правая часть системы вычисляется как: f=Ax.

4 Результаты

Максимум-норма арифметического пространства \mathbb{R}^n :

$$\|\mathbf{x}\|_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

где
$$\mathbf{x} = (x_1, x_2, \dots, x_n).$$

Матричная норма разности:

$$||A - QR||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij} - (QR)_{ij}|$$

Невязка определяется как:

$$r = f - A\tilde{x}$$

где \tilde{x} — численное решение системы уравнений.

Погрешность решения:

$$\delta = \tilde{x} - x$$

где x — точное решение системы.

Получены следующие результаты:

Метод разложения	Норма разности	Время (мс)
Холецкого	5.19943×10^{-17}	29.6049
Хаусхолдера	1.71313×10^{-13}	17.8628

Таблица 1: Сравнение методов QR-разложения

Поскольку при использовании метода Холецкого норма разности ||A-QR|| меньше, система уравнений Ax=f решается с его помощью. Результаты решения системы:

Параметр	Значение	
Время на решение системы	0.2837 мс	
Максимум-норма невязки	1.10606×10^{-14}	
Максимум-норма погрешности	1.66317×10^{-16}	

Таблица 2: Результаты решения системы с помощью QR-разложения

5 Заключение

В данном отчете были рассмотрены два различных метода QR-разложения. Получено решение системы уравнений Ax=f с помощью QR-разложения по методу Холецкого.

Исходный код приложен к отчету.

Команда для компиляции:

Команда для запуска:

./1

Список литературы

- 1. В.Б. Андреев. Численные методы. 2013.
- 2. К.Ю. Богачев. Методы решения линейных систем и нахождение собственных значений. 1998.