

Fraternité





# TRAITEMENT D'IMAGES

**Partie Introductive** 

Frédéric Cointault
Institut Agro Dijon
Responsable Equipe ATIP
UMR Agroécologie
26 Bd Dr Petitjean
21000 Dijon
+33 3 80 77 27 54
frederic.cointault@agrosupdijon.fr



L'INSTITUT NATIONAL D'ENSEIGNEMENT SUPÉRIEUR POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT

- 0 Préambule
- I Introduction
- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
- VI Analyse et Reconnaissance de formes
  - VII Détection de mouvement
    - VIII Introduction au Deep Learning

#### \* Représentations temporelles, spatiales et fréquentielles:

III – 4 Filtres numériques fréquentiels

- Pour un signal : Amplitude des variations du signal (tension, courant, pression, ...) en fonction du Temps (t)

-Pour une image: Amplitude des variations de l'Image (niveaux de gris) en fonction des variables Spatiales (X,Y)

- Plusieurs Images: Amplitude des variations de l'Image (niveaux de gris) en fonction des variables Spatiales et Temps (X,Y, t)

#### Trois cas de signaux:



avec:

S0=Amplitude du signal T0= Période du signal

f0= Fréquence du signal



S1 présente de nombreuses variations:

T1<<T0 and f1>>f0
Donc f1 correspond
aux hautes fréquences



S2 ne présente aucune variation: est infini and f2=0 Donc f2 correspond aux très basses fréquences (ici O!)



#### Fréquences et images:

- \* Faibles variations en niveaux de gris (ex: Fond Image):

  Basses Fréquences
- \* Grandes variations en niveaux de gris (ex: Contours, Bruit): Hautes Fréquences
- \* Représentation fréquentielle obtenue avec la TRANSFORMEE de FOURIER 2D
- \* Avantage: Représentation dans domaine spatial:

Filtrage = Convolution: 
$$g(x,y)=h(x,y)*f(x,y)$$

\* Représentation dans domaine fréquentiel: :

Filtrage = Simple Multiplication: 
$$G(u,v)=H(u,v)$$
.  $F(u,v)$ 

EXAMPLE:

$$F(u) = \int_{-\infty}^{+\infty} f(x) \cdot \exp(-j2\Pi ux) dx \quad avec \quad u : Fréquence$$

# TF 1D d'un signal analogique



$$\left|F(u)\right| = A.X_{0} \left| \frac{\sin\left( \left| uX_{0} \right| \right)}{\left| uX_{0} \right|} \right|$$



Signal numérique 1D avec N échantillons



$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \cdot \exp(\frac{-j2\Pi ux}{N}) \quad avec \ u = 0,1,2,...,N-1$$

La transformée de Fourier 1D nécessite  $N^2$  calculs

Alors que la Transformée de Fourier rapide (FFT-1D) nécessite  $NLog_2N$  calculs

Application à une image de M\*N pixels

### → Correspond à un Signal Numérique 2D

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{M-1} f(x,y) \cdot \exp(-j2\Pi(\frac{ux}{M} + \frac{vy}{N}))$$

avec 
$$u = 0,1,2,...,M-1$$
 et  $v = 0,1,2,...,N-1$ 

$$\longrightarrow$$
 Correspond à  $M^2.N^2$  calculs

avec 
$$FFT2D$$
:  $MLog_2M.NLog_2N$  calculs

Exemple: 
$$M = N = 512$$

**Exemple FFT 2D** 



**Spectre Image: F(u,v)** 

u,v: Coordonnées fréquentielles

$$G(u,v)=H(u,v).F(u,v)$$

avec : G(u,v): Image Filtrée F(u,v): Image Originale H(u,v): Filtre

Filtre Passe-Bas Idéal: G(u,v)=F(u,v) si  $(u,v)<(u_0,v_0)$ 

Filtre idéal dans le domaine fréquentiel



Filtre Passe-Haut Idéal: G(u,v)=F(u,v) si (u,v)>(u0,v0)



Exemple de filtre passe-bas



### Masque de Sobel

$$h_x = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \text{ et } h_y = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$



Original



Noyau [-1 1]



Noyau [-1 0 1]



Gradient horizontal (Sobel)



Gradient vertical (Sobel)



Module du gradient de Sobel

| TYPES DE MASQUE                                                                  | GRADIENTS PARTIELS                                       | AMPLITUDE                  | DIRECTION                                                      |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------------------------|--|
| Masques de Roberts           -1 0 0 -1 0 1 0 0           0 1 1 0 0               | $G_1,\ G_2$<br>Substitution du pixel<br>supérieur gauche | $A = \sqrt{G_1^2 + G_2^2}$ | $\theta = \frac{\pi}{4} + \arctan\left(\frac{G_2}{G_1}\right)$ |  |
| Masques de Sobel       1 0 -1   1 2 1   2 1   0 0 0 0   1 0 -1   -1 -2 -1        | $G_x,\ G_y$                                              | $A = \sqrt{G_x^2 + G_y^2}$ | $\theta = \arctan\left(\frac{G_y}{G_x}\right)$                 |  |
| Masques de Prewitt         1 0 -1 1 1 1 1 1 1 1 0 -1 1 0 0 0 0 1 1 0 -1 -1 -1 -1 | $G_x,\ G_y$                                              | $A = \sqrt{G_x^2 + G_y^2}$ | $\theta = \arctan\left(\frac{G_y}{G_x}\right)$                 |  |

| Masques de Kirsh    5   5   5      -3   0   -3      -3   -3   -3   -3    + les 7 autres masques obtenus par permutation circulaire des coefficients | $G_i$ pour $i$ de 1 à 8                                                   | maximum des $ G_i $ | Direction $ {\it correspondant} \\ {\it au} \ G_i \ {\it s\'electionn\'e} $ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------|
| Masques de Robinson  1 1 1 1 -2 1 -1 -1 -1  + les 7 autres masques obtenus par permutation circulaire des coefficients                              | $G_i$ pour $i$ de $1$ à $8$                                               | maximum des $ G_i $ | Idem                                                                        |
| 1         1         1           1         -8         1           1         1         1                                                              | 1       -2       1         -2       4       -2         1       -2       1 |                     |                                                                             |

- 0 Préambule
- I Introduction
- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
  - VI Analyse et Reconnaissance de formes
    - VII Détection de mouvement
      - VIII Introduction au Deep Learning

IV-I Segmentation par les régions

**IV-2 Segmentation par les contours** 



Segmentation par les régions

- Binarisation (cf chap III):



- Morphologie mathématique (cf chap VI)
- Clustering (algorithme K-Means)
- Mask-RCNN (Deep Learning)

- Clustering (algorithme K-Means):

https://github.com/suhas-nithyanand/Image-Segmentation-using-K-Means



- Mask-RCNN (Deep Learning):

https://github.com/matterport/Mask\_RCNN



### **→**Approche « Dérivative »





$$f(x) - f(x-1)$$

0001000





les contours



(Contours of the Image)

#### **Exemple Gradient de Roberts:**

$$g(x,y) = |f(x,y) - f(x+1,y+1)| + |f(x+1,y) - f(x,y+1)|$$

#### **Exemple du Gradient de Roberts:**

$$g(x,y) = |f(x,y) - f(x+1,y+1)| + |f(x+1,y) - f(x,y+1)|$$



#### Image d'un carré de 8x8 Pixels

| 7 | 1  | 0        | 0          | 0 | 0 | 0 | 0 |
|---|----|----------|------------|---|---|---|---|
| 0 | A  | ×        | g          | 0 | D | N | 0 |
| 0 | g) | <b>X</b> | $\nearrow$ | 1 | 1 | d | 0 |
| 0 | 0  | 1        | 1          | 1 | 1 | 0 | 0 |
| 0 | 0  | 1        | 1          | 1 | 1 | 0 | 0 |
| 0 | 0  | 1        | 1          | 1 | 1 | 0 | 0 |
| 0 | 0  | 0        | 0          | 0 | 0 | 0 | 0 |
| 0 | 0  | 0        | 0          | 0 | 0 | 0 | 0 |

#### **Image « Contours »**

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ |
|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 2 | 2 | 1 | 0 | _ |
| 0 | 2 | 0 | 0 | 0 | 2 | 0 | _ |
| 0 | 2 | 0 | 0 | 0 | 2 | 0 | _ |
| 0 | 2 | 0 | 0 | 0 | 2 | 0 | _ |
| 0 | 1 | 2 | 2 | 2 | 1 | 0 | _ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ |
| _ | - | - | - | - | - | _ | _ |

Cours L3 ESIREM

21

#### Généralisation des opérateurs de contours:

- Opérateur de Roberts: 2 Masques de Convolution

$$hr1 = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix} \qquad hr2 = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{vmatrix}$$

$$hr2 = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{vmatrix}$$

$$g(x,y) = |f(x,y) - f(x+1,y+1)| + |f(x+1,y) - f(x,y+1)| =$$

$$= |Hr1 * f(x,y)| + |Hr2 * f(x,y)|$$

- Opérateur de Prewitt: 2 Masques de Convolution

$$hp1 = \begin{vmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix} \qquad hp2 = \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$

$$hp2 = \begin{vmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{vmatrix}$$

$$g(x,y) = |Hp1*f(x,y)| + |Hp2*f(x,y)|$$

#### - Opérateur de Sobel: 2 Masques de Convolution

$$Hs1 = \begin{vmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{vmatrix} \qquad Hs2 = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

$$Hs2 = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

$$g(x,y) = |Hs1*f(x,y)| + |Hs2*f(x,y)|$$

Filtres de Roberts, Prewitt, Sobel efficaces pour des images peu bruitées

Pour des images bruitées : filtre de Canny ou filtrage passe-bas suivi de Sobel

#### Trois critères à prendre en considération :

1.bonne détection : faible taux d'erreur dans la signalisation des contours, 2.bonne localisation : minimisation des distances entre les contours détectés et les contours réels,

3.clarté de la réponse : une seule réponse par contour et pas de faux positifs

### Filtre de Canny



- 0 Préambule
- I Introduction
- II Définitions
- III Pré-traitement des images
- IV Segmentation image et contours
- V Hough et morphologie mathématique
- VI Analyse et Reconnaissance de formes
  - VII Détection de mouvement
    - VIII Introduction au Deep Learning

### Code de Freeman

- Reconnaissance de formes
- Calculs géométriques

### Transformée de Hough

 Détections de formes géométriques: droites, cercles,...

· Principe: Codage de l'orientation des pixels de contours



# Codage contours d'un rectangle





Code obtenu: 00002224444666

# Codage contours d'un triangle





Code obtenu: 111444444777

- Première étape: Compression du code
  - Code original transformé en vecteurs (ou Segments).
  - Chaque vecteur contient deux composantes: Orientation et Longueur.

- Seconde Etape: Reconnaissance formes et/ou Calculs géométriques

Analyse du code

- Example 1: Rectangle -----

Code Obtenu: 00002224444666

Code Comprimé: 0:4; 2:3; 4:4; 6:3

4 vecteurs détectés : Quadrilatère

Périmètre= 4 + 3 + 4 + 3 = 14

- Example 2: Triangle -----

Code Obtenu: 111444444777

Code Comprimé: 1:3; 4:6; 7:3

3 vecteurs détectés : Triangle

Périmètre= 3x1.4+ 6 + 3x1.4= 14.4