

1. 도입

Telemarketing is a method of direct marketing to advertise or sell of goods or services by phone.

Find the best strategies to **improve** for the next marketing campaign. How can the financial institution have a greater **effectiveness** for future marketing campaigns?

Propose a data mining (DM) approach to predict the success of telemarketing calls for selling bank long-term deposits.

Acquired Data Site:

https://www.kaggle.com/janio bachmann/bank-marketingdataset

Ⅱ. 데이터 소개 및 처리

II. 데이터 소개 및 처리 데이터 프로파일링

Overview

Dataset info

Number of variables	17
Number of observations	11162
Missing cells	0 (0.0%)
Duplicate rows	0 (0.0%)
Total size in memory	1.4 MiB
Average record size in memory	136.0 B

Variables types

Numeric	7
Categorical	6
Boolean	4
Date	0
URL	0
Text (Unique)	0
Rejected	0
Unsupported	0

Warnings

balance has 774 (6.9%) zeros previous has 8324 (74.6%) zeros

II. 데이터 소개 및 처리 데이터 소개

변수	변수설명	변수	변수설명
Default	파산여부	Month	마지막 연락 월
Duration	통화 지속 시간	Day	마지막 연락 일
Campaig n	캠페인 기간 연락횟수	Previous	이전 캠페인에서 이 고객에게 연락한 횟수
Pday	마지막 연락으로부터의 일수	Poutcome	이전 캠페인에서의 결과

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	deposit
0	59	admin.	married	secondary	no	2343	yes	no	unknown	5	may	1042	1	-1	0	unknown	yes
1	56	admin.	married	secondary	no	45	no	no	unknown	5	may	1467	1	-1	0	unknown	yes
2	41	technician	married	secondary	no	1270	yes	no	unknown	5	may	1389	1	-1	0	unknown	yes
3	55	services	married	secondary	no	2476	yes	no	unknown	5	may	579	1	-1	0	unknown	yes

II. 데이터 소개 및 처리 데이터 분포도

II. 데이터 소개 및 처리 데이터 처리

Data Cleaning

Standardization

```
sc = preprocessing.StandardScaler()
data=sc.fit_transform(data)
```

Applying OneHotEncoder

```
train_label = utils.to_categorical(train_label) # 0-9 -> one-hot vector test_label = utils.to_categorical(test_label) # 0-9 -> one-hot vector
```

II. 데이터 소개 및 처리 피어슨 상관 관계

상관계수가 1에 가깝다는 것은 두 변수 간의 강한 양의 상관관계가 있다.

0에 가까울 수록 두 변수 사이의 관계가 없다.

II. 데이터 소개 및 처리 상관 관계로 부터 중요한 열 추출

II. 데이터 소개 및 처리 머신러 닝을 활용해 특징 중요도 추출

Decision Tree Classifier

https://www.kaggle.com/janiobachman n/bank-marketing-campaign-opening-aterm-deposit

Gradient Boosting Classifier

II. 데이터 소개 및 처리 특정 열을 선택하여 딥러 닝한 결과

상관도 **0.2 이상** 열

loss (cross-entropy) : 0.40047685369052755 test accuracy : 0.8187519

상관도가 큰 **상위 2개 열**

loss (cross-entropy) : 0.48313790471669843 test accuracy : 0.77724695

모델	
Trian: Test	7:3
Batch size	100
은닉층의 수	4
은닉층 1 노드 수	256
은닉층 2 노드 수	512
은닉층 3 노드 수	512
은닉층 4 노드 수	256
활성화함수	elu

Ⅲ. 결과

Ⅲ. 결과

특정 열을 선택하여 딥러닝한 결과

loss (cross-entropy) : 0.43799497739312615

test accuracy : 0.8226336

	ROC Curve
1.0 -	
- 90 te (TPR)	
True Positive Rate (TPR)	
0.2 -	
0.0 -	— AUC : 0.890
0.0	0.2 0.4 0.6 0.8 1.0 False Positive Rate (FPR)

	Precision	recall	F1-score	Support
Not Deposit	0.87	0.79	0.83	1792
Deposit	0.78	0.86	0.82	1557
Micro avg	0.82	0.82	0.82	3349
Macro avg	0.82	0.82	0.82	3349
Weighted avg	0.83	0.82	0.82	3349

IV. 요약 및 결론

1) 상관도 분석

상관도가 높은 열 이외에 다른 열이 추가하여 계산을 했음에도 정확도에 치명적인 영향은 없었다.

2) 하이퍼 파라미터

• 딥러닝 모델에 사용되는 **하이퍼 파라미터**(hyper-parameter) 를 적절히 선택하는 것은 중요하지만 **데이터 전처리**(data processing)가 더 중요한 요소라고 생각한다.

3) 머신러닝/딥러닝에 적합한 문제는 무엇일까?

우리가 알고자 하는 현상 혹은 문제를 적절히 정의하는 것이 중요하다.

감사합니다