

COMP 478 CSUCI - Spring 2022

Lab7: A mini-project



### Course Evaluation Result

- Thank You for your feedback!
- Additional resources
- Going through the lab's solution together in the class
- Not having HW and Lab in the same week
- More explanations on the lab assignments
- More examples
- Review session before the midterm

2 bonus points + midterm exam

towards data science

### **Announcements**

- The solution to Lab 5 is posted.
- The sample questions for the midterm exam are posted. I'll go through the solutions in our review session (Wed, March 23).
- Midterm Exam:
  - Lecture 1 Lecture 13 (from the beginning to the end of the LR)

# Let's do a mini project together!!

Let's work on the "Wine recognition dataset" from sklearn!

### A Real-world ML Problem

### Stroke Prediction Dataset:

- Binary classification task: +/-
- columns:
  - 1) id: unique identifier
  - 2) gender: "Male", "Female" or "Other"
  - 3) age: age of the patient
  - 4) hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
  - 5) heart\_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
  - 6) ever married: "No" or "Yes"
  - 7) work\_type: "children", "Govt\_jov", "Never\_worked", "Private" or "Self-employed"
  - 8) Residence\_type: "Rural" or "Urban"
  - 9) avg\_glucose\_level: average glucose level in blood
  - 10) bmi: body mass index
  - 11) smoking\_status: "formerly smoked", "never smoked", "smokes" or "Unknown"\*
  - 12) stroke: 1 if the patient had a stroke or 0 if not



Load data:

```
import pandas as pd

df = pd.read csv('./healthcare-dataset-stroke-data.csv')
```

analthours dataset stroke data

| id    | gender | age | hypertension | heart_disease | ever_married | work_type     | Residence_type | avg_glucose_level | bmi  | smoking_status  | stroke |
|-------|--------|-----|--------------|---------------|--------------|---------------|----------------|-------------------|------|-----------------|--------|
| 9046  | Male   | 67  | 0            | 1             | Yes          | Private       | Urban          | 228.69            | 36.6 | formerly smoked | 1      |
| 51676 | Female | 61  | 0            | 0             | Yes          | Self-employed | Rural          | 202.21            | N/A  | never smoked    | - 1    |
| 31112 | Male   | 80  | 0            | 1             | Yes          | Private       | Rural          | 105.92            | 32.5 | never smoked    | 1      |
| 60182 | Female | 49  | 0            | 0             | Yes          | Private       | Urban          | 171.23            | 34.4 | smokes          | 1      |
| 1665  | Female | 79  | 1            | 0             | Yes          | Self-employed | Rural          | 174.12            | 24   | never smoked    | 1      |
| 56669 | Male   | 81  | 0            | 0             | Yes          | Private       | Urban          | 186.21            | 29   | formerly smoked | 1      |
| 53882 | Male   | 74  | 1            | 1             | Yes          | Private       | Rural          | 70.09             | 27.4 | never smoked    | 1      |
| 10434 | Female | 69  | 0            | 0             | No           | Private       | Urban          | 94.39             | 22.8 | never smoked    | - 1    |
| 27419 | Female | 59  | 0            | 0             | Yes          | Private       | Rural          | 76.15             | N/A  | Unknown         | 1      |
| 60491 | Female | 78  | 0            | 0             | Yes          | Private       | Urban          | 58.57             | 24.2 | Unknown         | - 1    |
| 12109 | Female | 81  | 1            | 0             | Yes          | Private       | Rural          | 80.43             | 29.7 | never smoked    | 1      |
| 12095 | Female | 61  | 0            | 1             | Yes          | Govt_job      | Rural          | 120.46            | 36.8 | smokes          | 1      |
| 12175 | Female | 54  | 0            | 0             | Yes          | Private       | Urban          | 104.51            | 27.3 | smokes          | 1      |
| 8213  | Male   | 78  | 0            | 1             | Yes          | Private       | Urban          | 219.84            | N/A  | Unknown         | 1      |
| 5317  | Female | 79  | 0            | 1             | Yes          | Private       | Urban          | 214.09            | 28.2 | never smoked    | 1      |
| 58202 | Female | 50  | 1            | 0             | Yes          | Self-employed | Rural          | 167.41            | 30.9 | never smoked    | 1      |
| 56112 | Male   | 64  | 0            | 1             | Yes          | Private       | Urban          | 191.61            | 37.5 | smokes          | 1      |

Input features and labels:

### • Missing values:

- 1. Remove datapoints with missing values
- Recover the value:
  - Continuous features: Average/mean, median, ...
  - Categorical features: Most frequent category
  - Predict missing values using classification, regression, ...
  - **....**

Handling non-numerical features:

```
x = pd.get dummies(x)
print (x.columns)
                        Index(['age', 'hypertension', 'heart disease', 'avg glucose level', 'bmi',
                                'stroke', 'gender Female', 'gender Male', 'gender Other',
                                'ever married No', 'ever_married_Yes', 'work_type_Govt_job',
                                'work type Never worked', 'work type Private',
                               'work type Self-employed', 'work type children', 'Residence type Rural',
                               'Residence type Urban', 'smoking status Unknown',
                                'smoking status formerly smoked', 'smoking status never smoked',
                                'smoking status smokes'],
                              dtype='object')
x = x.drop(columns='ever married Yes')
print (x.columns)
                         Index(['age', 'hypertension', 'heart disease', 'avg glucose level', 'bmi',
                                'stroke', 'gender Female', 'gender Male', 'gender Other',
                                'ever married No', 'work type Govt job', 'work type Never worked',
                                'work type Private', 'work type Self-employed', 'work type children',
                                'Residence type Rural', 'Residence type Urban',
                                'smoking status Unknown', 'smoking status formerly smoked',
                                'smoking status never smoked', 'smoking status smokes'],
                              dtype='object')
```

Balance data: (Class +: 209, Class -: 4700)

#### How to balance data?

1. Down-sample the majority class

```
from sklearn.utils import resample

x_minority = x[x.stroke == 1]

x_majority = x[x.stroke == 0]

x_majority_downsampled = resample(x_majority, replace = False, n_samples = len(x_minority), random_state = 0)
```

2. Up-sample the minority class

```
from sklearn.utils import resample

x_minority = x[x.stroke == 1]
x_majority = x[x.stroke == 0]

x_minority_upsampled = resample(x_minority, replace = True, n_samples = len(x_majority) - len(x_minority), random_state = 0)
```

## Training Phase

Split data into train (70%) & test (30%):

```
Y = x_new['stroke']
X = x_new.drop(columns='stroke')

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=0)
```

- KNN:
  - The best model?
  - The best result?

```
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=1)
neigh.fit(X_train, y_train)
pred = neigh.predict(X_test)

from sklearn.metrics import classification_report
print (classification_report(y_test, pred))
```

## How to Tune Threshold?

**Predict** → predicted class label

**Predict\_proba** → probability associated to each class

|    | pred |
|----|------|
| D1 | 1    |
| D2 | 1    |
| D3 | 0    |
| D4 | 1    |
| D5 | 0    |
| D6 | 0    |
| D7 | 0    |

| GT label |
|----------|
| 0110001  |
| 1        |
| 1        |
| 1        |
| 1        |
| 1        |
| 0        |
| 0        |

|    | Class 0 | Class 1 |
|----|---------|---------|
| D1 | 0.09    | 0.91    |
| D2 | 0.36    | 0.64    |
| D3 | 0.55    | 0.45    |
| D4 | 0.3     | 0.7     |
| D5 | 0.59    | 0.41    |
| D6 | 0.95    | 0.05    |
| D7 | 0.87    | 0.13    |

### **ROC Curve**

- Report the performance of a model:
  - Precision, Recall, f1score, accuracy, confusion matrix, ...
  - Receiver Operating Characteristic Curve (ROC curve):
    - Binary classification tasks
    - A graphical plot (TPR vs FPR) for different threshold

■ TPR = 
$$\frac{TP}{TP+FN}$$
 , FPR =  $\frac{FP}{FP+TN}$ 

How to compare different models?

AUC (Area under the ROC Curve)

