INTRODUCTORY APPLIED MACHINE LEARNING

Yan-Fu Kuo

Dept. of Bio-industrial Mechatronics Engineering National Taiwan University

Today:

- Types of data
- Data visualization

About Your Project...

Introductory Applied Machine Learning

 UCI machine learning repository: http://archive.ics.uci.edu/ml/datasets.html

Outline

- Goal of the lecture
- Types of data
- Data preprocessing
- Measures of similarity
- The Iris data set
- Descriptive statistics
- Visualization

Goals

- After this, you should be able to:
 - Understand data types and data acronyms
 - Calculate similarity between data points
 - Use basic descriptive statistics
 - Visualize data

Introductory Applied Machine Learning

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable or feature
- A collection of attributes describe an object
 - Object is also known as case, sample, entity, or instance

Attributes

_	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Discrete attribute
 - Has only a finite or countably infinite set of values
 - Examples: zip codes or counts
 - Often represented as integer variables
- Continuous attribute
 - Has real numbers as attribute values
 - Examples: temperature, height, or weight
 - Practically, real values can only be measured and represented using a finite number of digits
 - Continuous attributes are typically represented as floatingpoint variables

Types of Data Sets

- Record
 - Data matrix
 - Document data
 - Transaction data
- Graph
 - World wide web
 - Molecular structures
- Ordered
 - Spatial data
 - Temporal data
 - Sequential data
 - Genetic sequence data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Record Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by a matrix $A \in \mathbb{R}^{N \times M}$, where there are N rows, one for each object, and M columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Graph Data

• Examples: Generic graph and chemical structure (C₆H₆)

Ordered Data

Sequences of transactions

Items/Events (AB) (D) (CE) (BD) (C) (E) (CD) (B) (AE) An element of the sequence

Ordered Data

Genomic sequence data

Data Preprocessing – Sampling

- Sampling is the main technique employed for data selection
- It is often used for both the preliminary investigation of the data and the final data analysis
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming
- Sampling is used in machine learning because processing the entire set of data of interest is too expensive or time consuming

Measures of Similarity

• The Euclidean distance between two data points $p = [p_k]$ and $q = [q_k]$ is defined as

$$d(\boldsymbol{p},\boldsymbol{q}) = \sqrt{\sum_{k=1}^{M} (p_k - q_k)^2} \in \Re$$

where $M \in \aleph$ is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) of data objects p and q

Examples of Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Distance Matrix

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Minkowski Distance

Minkowski distance is a generalization of Euclidean distance

$$d(\boldsymbol{p}, \boldsymbol{q}) = \left(\sum_{k=1}^{M} |p_k - q_k|^r\right)^{\frac{1}{r}} \in \Re$$

where $r \in \aleph$ is a parameter, M is the number of dimensions (attributes), and p_k and q_k are, respectively, the kth attributes (components) data objects p and q

Common Minkowski Distance

- r = 1: City block (L_1 norm)
- r = 2: Euclidean distance (L_2 norm)
- $r \to \infty$: "supremum" (L_{∞} norm)

Examples of Minkowski Distance

Distance Matrix

point	X	\mathbf{y}
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Common Properties of a Distance

- Positive definiteness: $d(p,q) \ge 0$ for all p and q and d(p,q) = 0 only if p = q
- Symmetry: d(p, q) = d(q, p) for all p and q
- Triangle inequality: $d(p,t) \le d(p,q) + d(q,t)$ for all points p, q, and t, where d(p,q) is the distance (dissimilarity) between points p and q
- A distance that satisfies these properties is a metric

Statistical Methodologies

Numerical and graphical methods to look for patterns, to summarize the information in a data set

The Iris Data Set

- Can be obtained from the UCI
 Machine Learning Repository
 http://www.ics.uci.edu/~mlearn/MLRepository.html
- Matlab command:
 - >load fisheriris.mat
- From the statistician Douglas
 Fisher
- Three flower types (classes):
 Setosa, Virginica, Versicolour
- Four (non-class) attributes:
 Sepal width and length,
 Petal width and length

Mean, Median, and Variance

 The mean is the most common measure of the location of a set of points, though it is very sensitive to outliers

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

The median is also commonly used

$$median(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r + 1\\ \frac{1}{2} (x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{cases}$$

 The variance is the most common measure of the spread of a set of points

$$Var(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

Visualization

- The conversion of data into a <u>visual</u> or <u>tabular</u> format, so that the characteristics of the data and the relationships among data items or attributes can be analyzed or reported
- Visualization of data is one of the most powerful and appealing techniques for data exploration
 - Humans have a well developed ability to analyze large amounts of information that is presented visually
 - Can detect general patterns and trends
 - Can detect outliers and unusual patterns

The Powerfulness of Visualization

Visualization Techniques: Box Plots

- Invented by J. Tukey
- A way of displaying the distribution of data
- Following figure shows the basic part of a box plot

Example of Box Plots

Box plots can be used to compare attributes

Visualization Techniques: Matrix Plots

- Display three variables on a 2D plot
- This can be useful when objects are sorted according to class

Visualization Techniques: Parallel Coordinates

- Used to plot the attribute values of high-dimensional data
- The attribute values of each object are plotted as a point on each corresponding coordinate axis and the points are connected by a line

Summary

- For many machine-learning applications, a first step is identifying data type
- Norm is a metric to measure distance between data points
- Data visualization makes data analytics more effective

References

 P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining