浙江大学 2006 - 2007 学年春季学期 《 微积分Ⅱ 》 课程期末考试试卷

开课	学院:	理学院	考试形式:	闭卷 考试	时间:	年	月日	月 所需时	间:]	120_分钟
考生	主姓名:		<u></u>	号:		<u></u> 专业	上:			
→,	填空题	(每小题	5分,满分	30分)						
1.	直线 x	$\frac{+1}{2} = \frac{y}{3} =$	$=\frac{z-3}{6}$ 在平	面 2x + y -	- 2 <i>z</i> – 5 =	= 0 上的	投影』	直线方程	为	
2.	数量场	g(x, y, z)	$z) = ye^x + z$	$\frac{1}{2}$ 在 $P(1,\sqrt{3})$	3,0)点的	梯度为	$\vec{u} =$			
函数 $f(x, y, z) = \ln(x + \sqrt{y^2 + z^2})$ 在 P 点沿 \vec{u} 的方向导数为										
3.	设 <i>z</i> =	$f(x,u), \iota$	$u = \varphi(3x, x - 1)$	$+2y), f, \varphi$	具有二四	介连续偏	扁导数	,则		
$\frac{\partial}{\partial z}$	$\frac{\partial^2 z}{\partial x \partial y} = -$									
4.	设 <i>D</i> =	$=\{(x, y)\mid$	$-1 \le x \le 1, x$	$z^3 \le y \le 1$,则∭(ɔ	$x^2 + xy$	$e^{x^2+y^2}$	$\int dxdy =$:	
5.	己知曲		1与椭球面.	J	,]点坐	标为
			公共切平面	方程为					•	
6.	设函数	$f(x) = \begin{cases} f(x) = \begin{cases} f(x) = \\ f(x) = \\ f(x) = \end{cases} \end{cases}$	$\begin{cases} x^2, & 0 \le x < x < x < x < x < x < x < x < x < x$	$<\frac{1}{2}, S(x)$	$=\frac{a_0}{2}+\frac{1}{2}$	$\sum_{n=1}^{\infty} a_n \cot$	$\cos n\pi$	x ,其中	1	
	$a_n = 2$	$\int_0^1 f(x) \mathrm{d}x$	$\cos n\pi x \mathrm{d}x$	n = 0,1,2,	,则 \$	$S(\frac{7}{2}) = \frac{1}{2}$		·		
Ξ,	(满分	· 10 分)፮	水直线 $\begin{cases} x - \\ 2x - \end{cases}$	y + 2z - 1 = 0 $+ y + z - 2$	= 0 = 0 绕 <i>x</i>	轴旋转	一周月	斤得的旋转	专曲面	方程.

三、 (满分 10 分) 计算 $\int_0^1 dx \int_0^{\frac{\sqrt{x}}{2}} e^{-2y^2} dy$.

四、(满分 15 分) 已知 z = z(x, y) 由方程 $yz^3 + xe^z + 1 = 0$ 确定,试求 $\frac{\partial^2 z}{\partial x^2}\Big|_{\substack{x=0\\y=1}}$

五、 (满分 15 分) 设平面 π : x+y=1, d(x,y,z) 为曲线 $\begin{cases} x^2+y^2+\frac{z^2}{4}=1\\ x+y+z=0 \end{cases}$ 上的点 (x,y,z) 到平面 π 的距离,求 d(x,y,z) 的最大,最小值.

六、(满分 15 分)如图是一块密度为 ρ (常数)的薄板的平面图形(在一个半径为R 的半圆直

径上拼上一个矩形,矩形的另一边为h),已知平面图形的形心位于原点 (0,0). 试求: 1. 长度h; 2.薄板绕x轴旋转的转动惯量.

七、(满分 5分) 求证:当 $t \ge 1$, $s \ge 0$ 时, 成立不等式 $ts \le t \ln t - t + e^s$.

参考解答:

$$-1. \begin{cases} 3x - 4y + z = 0 \\ 2x + y - 2z - 5 = 0 \end{cases}$$
 2. $\{\sqrt{3}e, e, 0\}, \frac{1}{2};$

3.
$$2f_{12}'' \varphi_2' + 2f_{22}'' \cdot (3\varphi_1' \cdot \varphi_2' + (\varphi_2')^2) + 2f_2' \cdot (3\varphi_{12}'' + \varphi_{22}'')$$
; 4. $\frac{2}{3}$; *6. $\frac{3}{8}$.(微 3)

5.
$$\left(\frac{1}{\sqrt{3}}, 1, \sqrt{3}\right), \quad \sqrt{3}x + y + \frac{1}{\sqrt{3}}z - 3 = 0;$$

设切点:
$$(x_0, y_0, z_0)$$
, 法矢量 $\{y_0 z_0, x_0 z_0, x_0 y_0\} / \{x_0, \frac{y_0}{3}, \frac{z_0}{9}\}$

$$\Rightarrow \frac{x_0}{y_0 z_0} = \frac{y_0}{3x_0 z_0} = \frac{z_0}{9x_0 y_0} \Rightarrow \frac{x_0^2}{x_0 y_0 z} = \frac{y_0^2}{3x_0 y_0 z} = \frac{z_0^2}{9x_0 y_0 z}$$

$$\Rightarrow x_0^2 = \frac{y_0^2}{3} = \frac{z_0^2}{9} \Rightarrow 3x_0^2 = 1 \Rightarrow x_0 = \frac{1}{\sqrt{3}}, y_0 = 1, z_0 = \sqrt{3}$$

二. 直线:
$$x = t, y = 1 - t, z = 1 - t$$

曲面上点
$$P(x, y, z)$$
 → 直线上点 (x_0, y_0, z_0) , $y_0 = 1 - x_0$, $z_0 = 1 - x_0$

$$x = x_0, y^2 + z^2 = y_0^2 + z_0^2, \implies y^2 + z^2 = (1 - x)^2 + (1 - x)^2$$

则旋转曲面方程:
$$y^2 + z^2 = 2(1-x)^2$$

五.
$$d(x, y, z) = \frac{1}{\sqrt{2}} |x + y - 1|$$

$$L = (x + y - 1)^2 + \lambda(x + y + z) + \mu(x^2 + y^2 + \frac{z^2}{4} - 1)$$

$$\begin{bmatrix} L'_x = 2(x + y - 1) + \lambda + 2\mu x = 0 \\ L_y = 2(x + y - 1) + \lambda + 2\mu y = 0 \\ L'_z = x + y + z = 0 \end{bmatrix} \qquad \mu = 0, \Rightarrow \lambda = 0 \text{ £解}$$

$$\mu \neq 0, \Rightarrow y = x, z = -2x$$

$$3x^2 = 1$$

$$L'_z = \lambda + \frac{1}{2}\mu z = 0$$

$$L'_z = \lambda + \frac{1}{2}\mu z = 0$$

$$L'_z = x^2 + y^2 + \frac{z^2}{4} - 1 = 0$$

最小距离:
$$d(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{2}{\sqrt{3}}) = \frac{\sqrt{6}}{3} - \frac{\sqrt{2}}{2}$$
, 最大距离: $d(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}) = \frac{\sqrt{6}}{3} + \frac{\sqrt{2}}{2}$

於. 形心:
$$\overline{y} = 0$$
, $\overline{x} = \frac{1}{\sigma} \iint_D x dx dy = 0$ \Rightarrow $\iint_D x dx dy = 0$

即 $\int_{-h}^0 dx \int_{-R}^R x dy + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^R r \cos\theta \cdot r dr = 0$

$$2R \cdot (-\frac{1}{2}h^2) + 2 \cdot \frac{1}{3}R^3 = 0 \Rightarrow h = \sqrt{\frac{2}{3}}R$$

$$I_x = \iint_D y^2 dx dy = \int_{-h}^0 dx \int_{-R}^R y^2 dy + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^R r^2 \sin^2\theta \cdot r dr = (\frac{2}{3}h + \frac{\pi}{8}R)R^3$$

七. 设
$$F(t,s) = t \ln t - t + e^s - ts$$
, $F(1,0) = 0$
$$F'_s(t,s) = e^s - t = 0 \implies t = e^s, \ s = \ln t.$$
 且对固定的 $t > 1$, 当 $0 < s < \ln t$, $F'_s(t,s) < 0$, 当 $s > \ln t$, $F'_s(t,s) > 0$, 所以, $s = \ln t$ 取得最小值且为 0 , 则 $F(t,s) \le 0$, 即 $ts \le t \ln t - t + e^s$