LM1117-TO-220(穩 3.3V)

內部電路

型號

	Α	GND	OUT	IN		UTC
TO-220	В	OUT	GND	IN		LD11170 CURRENT CODE
	С	GND	IN	OUT	VOLTAGE CODE	DATE CODE
	D	IN	GND	OUT		1 2 3

電性

For LD1117/A-3.3

For LD1117/A-3.3							
PARAMETER	SYMBOL	TEST CONDITION	NS	MIN.	TYP.	MAX.	UNIT
Output Voltage	Vout	V _{IN} =5.3V, I _{OUT} =10mA, T _J =2	25°C	3.234	3.300	3.366	V
Output Voltage		V _{IN} =4.75 to 10V LD1117 : I _{OUT} =0~800mA LD1117A : I _{OUT} =0~1000m	3.234	3.300	3.366	>	
Line Regulation	ΔV_{OUT}	V _{IN} =4.75 to 15V, I _{OUT} =0mA			1	6	mV
Load Regulation	ΔV _{OUT}	V _{IN} =4.75V LD1117 : I _{OUT} =0~800mA LD1117A : I _{OUT} =0~1000mA			1	10	mV
Temperature stability	ΔV_{OUT}				0.5		%
Long Term Stability	ΔV_{OUT}	1000 hrs, T _J =125°C			0.3		%
Operating Input Voltage		I _{OUT} =100mA				15	V
Quiescent Current	la	V _{IN} ≤15V			5	10	mA
Current Limit	I _{LIMIT}	V _{IN} =8.3V, T _J =25°C	LD1117 LD1117A	800 1000			mA
Output Noise Voltage	e _N	B=10Hz to 10KHz, T _J =25°	•		100		μV
Supply Voltage Rejection	SVR	I _{OUT} =40mA, f=120Hz, T _J =2 V _{IN} =6.3V, V _{RIPPLE} =1V _{PP}		60	75		dB
		I _{OUT} =100mA			1.00	1.10	
Drangut Voltage	Vp	I _{OUT} =500mA			1.15	1.25	v
Dropout Voltage	VD	I _{OUT} =800mA		1.20	1.30	·	
		I _{OUT} =1A		1.20	1.30		
Thermal Regulation		T _A =25°C, 30ms Pulse			0.01	0.10	%/W

LM317(可調穩壓,輸出可超過1.5A)

 V_I - V_O = 5 V, I_O = 500 mA, I_{MAX} = 1.5 A and P_{MAX} = 20 W, T_J = 0 to 125 °C, unless otherwise specified.

Table 4. Electrical characteristics for LM317

Symbol	Parameter	Test conditions			Тур.	Max.	Unit
ΔVΩ	Line regulation	V ₁ - V ₀ = 3 to 40 V	T _J = 25°C		0.01	0.04	%/V
Δν0	Line regulation	V - V() = 3 to 40 V			0.02	0.07	70/ V
		V _O ≤ 5 V	T _J = 25°C		5	25	mV
ΔVO	Load regulation	I _O = 10 mA to I _{MAX}			20	70	mv
Δνο	Load regulation	V _O ≥ 5 V,	T _J = 25°C		0.1	0.5	%
		I _O = 10 mA to I _{MAX}			0.3	1.5	%
I _{ADJ}	Adjustment pin current				50	100	μA
ΔI _{ADJ}	Adjustment pin current	$V_1 - V_0 = 2.5 \text{ tr}$ $I_0 = 10 \text{ mA to}$			0.2	5	μА
			110-01				
.,		$V_1 - V_0 = 2.5 \text{ tr}$.,
V _{REF}	Reference voltage (between pin 3 and pin 1)	I _O = 10 mA to		1.2	1.25	1.3	V
		P _D ≤ P _{MA}	X				
$\Delta V_{O}/V_{O}$	Output voltage temperature stability				1		%
I _{O(min)}	Minimum load current	$V_I - V_O = 4$	0 V		3.5	10	mA
	Maximum land arrest	$V_{I} - V_{O} \le 15 \text{ V, P}$	D < P _{MAX}	1.5	2.2		
I _{O(max)}	Maximum load current	V _I - V _O = 40 V, P _D < P _I	_{MAX} , T _J = 25°C	0.4			Α
eN	Output noise voltage (percentage of V _O)	$V_I - V_O \le 15 \text{ V, } P_D < P_{MAX}$ $V_I - V_O = 40 \text{ V, } P_D < P_{MAX}, T_J = 25^{\circ}C$ $B = 10 \text{ Hz to } 100 \text{ kHz, } T_J = 25^{\circ}C$			0.003		%
		T - 0500 (- 400 II-	C _{ADJ} = 0		65		
SVR	Supply voltage rejection (1)	T _J = 25°C, f = 120 Hz	C _{ADJ} = 10 μF	66	80		dB

^{1.} C_{ADJ} is connected between adjust pin and ground.

Features

- Output voltage range: 1.2 to 37 V
- Output current in excess of 1.5 A
- · 0.1% line and load regulation
- Floating operation for high voltages
- Complete series of protections: current limiting, thermal shutdown and SOA control

Vref=1.25V=Vo-adj Iadj=50 μA Vo=Vref(1+R2/R1)+Iadj*R2

C1 input bypass capacitor(旁通電容)

C2 increase ripple rejection(電壓抑制比)15dB

 $PSRR = 20log(\Delta V_{supply} / \Delta V_{out})dB$

Power supply ripple rejection 電源電壓抑制比

C3 tantulum 電容(or 25µF 鋁電容) improve transient response

D1 protect LM317 against input short circuit

D2 protect output short circuit for capacitance discharging

Figure 7. Voltage regulator with protection diodes

Figure 3. Output current vs. input-output differential voltage

Figure 17. Line Transient Response

Figure 18. Load Transient Response

Figure 26. Current Regulator

Line regulation(電源電壓調整率,線性調整率) Load regulation(負載調整率)

UA741C(P)

		μ Α741 C
Supply voltage, V _{CC+} (see Note 1)		18
Supply voltage, V _{CC} _ (see Note 1)		-18
Differential input voltage, V _{ID} (see Note 2)		±15
Input voltage, V _I any input (see Notes 1 and 3)		±15
Voltage between offset null (either OFFSET N1 or OFFSET N2) as	nd VCC-	±15
Duration of output short circuit (see Note 4)		unlimited
Continuous total power dissipation		Se
Operating free-air temperature range, TA		0 to 70
Storage temperature range		-65 to 150
Case temperature for 60 seconds	FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, or U package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, P, or PW package	260

$Vcc=\pm 15V$ condition

6.7 Electrical Characteristics, LM741C(1)

PARAM	ETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT	
Input offset voltage		D < 1010	T _A = 25°C		2	6	mV	
input offset voltage		R _S ≤ 10 kΩ	T _{AMIN} ≤ T _A ≤ T _{AMAX}			7.5	mV	
Input offset voltage adjustment range		T _A = 25°C, V _S = ±20 V			±15		mV	
least effect essent		T _A = 25°C			20	200	nA	
Input offset current		$T_{AMIN} \le T_A \le T_{AMAX}$				300	nA	
Input bias current		T _A = 25°C			80	500	nΑ	
		$T_{AMIN} \le T_A \le T_{AMAX}$	T _{AMIN} ≤ T _A ≤ T _{AMAX}				μА	
Input resistance		T _A = 25°C, V _S = ±20 V	0.3	2		МΩ		
Input voltage range		T _A = 25°C	±12	±13		V		
		V _S = ±15 V, V _O = ±10 V, R _L	T _A = 25°C	20	200		V/mV	
Large signal voltage	gain	≥ 2 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	15			Villiv	
			R _L ≥ 10 kΩ	±12	±14			
Output voltage swin	9	V _S = ±15 V	R _L ≥2 kΩ	±10	±13		V	
Output short circuit	current	T _A = 25°C		25		mA		
Common-mode reje	ction ratio	R _S ≤ 10 kΩ, V _{CM} = ±12 V, T _A	R _S ≤ 10 kΩ, V _{CM} = ±12 V, T _{AMIN} ≤ T _A ≤ T _{AMAX}				dB	
Supply voltage reject	tion ratio	V _S = ±20 V to V _S = ±5 V, R _S	≤ 10 Ω, T _{AMIN} ≤ T _A ≤ T _{AMAX}	77	96		dB	
	Rise time	T 0500 H 3 0 1			0.3		μs	
Transient response Overshoot		T _A = 25°C, Unity Gain			5%			
Slew rate		T _A = 25°C, Unity Gain	T _A = 25°C, Unity Gain				V/µs	
Supply current		T _A = 25°C			1.7	2.8	mΑ	
Power consumption		V _S = ±15 V, T _A = 25°C			50	85	mW	

達靈頓

	PARAMETER	ARAMETER TEST CONDITIONS		T _A ⁽¹⁾	LM293 LM393			UNIT	
		2000			MIN	TYP	MAX		
(A. (C.) (c.)	15 X26 At	V _{CC} = 5 V to 3	30 V,	25°C		2	5		
VIO	Input offset voltage	$V_{IC} = V_{ICR} min$ $V_{O} = 1.4 V$	1,	Full range			9	mV	
	Input offset current	V _O = 1.4 V		25°C		5	50	^	
lio	input offset current	V _O = 1.4 V	VO = 1.4 V				250	nA	
	Input bias current	V _O = 1.4 V		25°C		-25	-250	nA	
I _{IB}	input bias current			Full range			-400	nA.	
.,	Common-mode input-voltage	mmon-mode input-voltage ge ⁽²⁾		25°C	0 to V _{CC} – 1.5			v	
V _{ICR}	range ⁽²⁾			Full range	0 to V _{CC} - 2			V	
A _{VD}	Large-signal differential-voltage amplification	$V_{CC} = 15 \text{ V},$ $V_{O} = 1.4 \text{ V to}$ $R_{L} \ge 15 \text{ k}\Omega$ to		25°C	50	200		V/mV	
	Ulah lasal astast assast	V _{OH} = 5 V	V _{ID} = 1 V	25°C		0.1	50	nA	
ЮН	High-level output current	V _{OH} = 30 V	V _{ID} = 1 V	Full range			1	μA	
	Level and autout values	1 - 1 - 1	W - 411	25°C		130	400	m)/	
VOL	Low-level output voltage I _{OL} = 4 m		$V_{ID} = -1 V$	Full range			700	mV	
loL	Low-level output current	V _{OL} = 1.5 V,	V _{ID} = -1 V	25°C	6			mA	
	C		V _{CC} = 5 V	25°C		0.45	1	A	
lcc	Supply current	R _L = ∞	V _{CC} = 30 V	Full range		0.55	2.5	mA	

Figure 3. Visual Representation of Input Voltage Range With a 5V Supply

6.14 Typical Characteristics, LMx93, LM2903 (all 'V' and 'A' suffixes)

 T_A = 25°C, V_8 = 5V, R_{PULLUP} =5.1k, C_L = 15 pF, V_{CM} =0V unless otherwise noted.

Figure 39. Single-Ended and Differential Comparator Configurations

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input Voltage Range	0 V to Vsup-2 V
Supply Voltage	4.5 V to V _{CC} maximum
Logic Supply Voltage	0 V to V _{CC} maximum
Output Current (RPULLUP)	1 µA to 4 mA
Input Overdrive Voltage	100 mV
Reference Voltage	2.5 V
Load Capacitance (C _L)	15 pF

比較器 vs 放大器

沒有相位補償 vs 相位補償

只有 npn 做 open collector 當輸出 vs pnp 和 npn 當輸出 比較器只能做電壓比較,但相對比較電壓速度快

Application

Optical sensor

Microphone sensor

Unusage comparator

Figure 9. Best Connections Practices for Single and Dual Supplies

Protect negative voltage

Figure 6. Commonly Used Two-Resistor Voltage Divider with Clamping Diode

comparator 網址

http://www.bristolwatch.com/ele/vc.htm

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage	Vs		4		12	V
Quiescent Current	lα	V _S =6V, V _{IN} =0		4	8	mΑ
Cutnut Davier	_	V_S =6V, R_L =8 Ω , THD=10%	250	325		mW
Output Power	Pout	V_S =9V, R_L =8 Ω , THD=10%	500	700		TTIVV
Valtage Cain	_	V _S =6V, f=1kHz		26		dB
Voltage Gain	G _V	10µF from pin 1 to pin 8		46		dB
Bandwidth	BW	V _S =6V , Pin1 and pin 8 open		300		kHz
Total Harmonic Distortion	THD	P _{OUT} =125mW, V _S =6V, f=1kHz		0.2		%
Total Harmonic Distortion	IND	R _L =8Ω pin1 and pin 8 open		0.2		70
Rejection Ratio	RR	V _S =6V, f=1kHz, C _{BYPASS} =10µF		50		dB
Rejection Ratio	KK	pin1and pin 8 open, Referred to output		50		иь
Input Resistance	R _{IN}			50		kΩ
Input Bias Current	I _{BIAS}	V _S =6V Pin2 and pin 3 open		250		nA

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	PARAMETER		RATINGS	UNIT
Supply Voltage		V _{cc}	15	V
Input Voltage	age		-0.4V ~ +0.4V	V
	DIP-8		1250	mW
Power Dissipation	SOP-8	P _D	600	mW
	TSSOP-8		600	mW
Junction Temperature		TJ	+125	°C
Operating Temperature		T _{OPR}	-40 ~ +85	°C
Storage Temperature		T _{STG}	-40 ~ +150	°C

只接 10μF

Amplifier with Gain=200

Lm386 module

