Diszkrét matematika I. keddi (2025.03.11.) 1. Zh

feladatainak eredményei és részletesen kidolgozott megoldásai

A megoldások ismertetésénél itt most nem csak a konkrét módszert, hanem a módszer hátterét, illetve a módszerhez vezető gondolatsort is bemutatjuk (ez utóbbiak részletezését a hallgatóktól a ZH megoldásában természetesen nem vártuk el).

1. a) Pozitív egészeket tekintve jelölje P(x), K(x,y) illetve D(x,y) rendre azt, hogy x prím, x kisebb y-nál, illetve hogy x osztója y-nak. Igaz-e a következő állítás? (Válaszát indokolja!) Tagadja formálisan a kifejezést! (3p)

$$\forall x (P(x) \Rightarrow (\forall y (D(y, x) \land K(y, x) \Rightarrow \forall z D(y, z))))$$

Megoldás: Minden x-re, ha x prím, akkor minden olyan y-ra, amire y osztja x-et, és y < x, arra az is teljesül, hogy y oszt minden z-t. Természetesebb nyelvre átfogalmazva:

Minden (pozitív egész) x prímszámnak minden nála kisebb pozitív egész y osztója minden pozitív egész z számot oszt.

Ha x prím, akkor a pozitív egészek körében csak saját maga és az 1 a két osztója, ezek közül csak az 1 az, ami x-nél kisebb, azaz a fenti kifejezésben csak y=1 lehet olyan, amire $(D(y,x) \wedge K(y,x))$ IGAZ értéket vesz fel P(x) IGAZsága esetén. Az 1 pedig tényleg minden pozitív egész z-nek osztója (minden más y esetén HAMIS a második implikáció feltétele, így maga az implikáció azonosan IGAZ). **Tehát IGAZ az állítás.**

A formális tagadáshoz először fogalmazzuk át az implikációkat "Ha A akkor B' formáról "nem A vagy B' formájúra. Először az első ("külső") implikációt:

$$\forall x: \left(\neg P(x) \lor \left(\forall y: \left((D(y,x) \land K(y,x)\right) \Rightarrow \left(\forall z: D(y,z)\right)\right)\right)$$

Majd a másikat is, a $\neg (D(y,x) \land K(y,x)) \Leftrightarrow \neg D(y,x) \lor \neg K(y,x)$ de Morgan szabállyal:

$$\forall x: \left(\neg P(x) \lor \left(\forall y: \left(\neg D(y,x) \lor \neg K(y,x) \right) \lor \left(\forall z: D(y,z) \right) \right) \right)$$

A kvantorokat is gyűjtsük a kifejezés legelejére, és a "vagy' asszociativitását kihasználva hagyjuk el a "felesleges" zárójeleket:

$$\forall x : \forall y : \forall z : \neg P(x) \lor \neg D(y, x) \lor \neg K(y, x) \lor D(y, z)$$

Most már kényelmesen lehet formálisan tagadni, újra a deMorgan-szabályokat használva:

$$\exists x : \exists y : \exists z : P(x) \land D(y,x) \land K(y,x) \land \neg D(y,z)$$

- 1. b) Az embereket tekintve jelölje J(x), B(x), E(x), K(x), N(x), H(x,y), I(x,y) rendre azt, hogy x jogász, bíró, életerős, képviselő, nő, illetve hogy x házastársa y-nak és x ismeri y-t. Formalizálja az alábbi állításokat: (3p)
 - minden életerős bíró ismer olyan jogászt aki házas de a jogász viszont nem ismeri azt az életerős bírót;
 - azok a bírók, akiknek képviselő feleségük van de életerősek, mind jogászok.

Megoldás:

• minden életerős bíró $(\forall x : E(x) \land B(x) \Rightarrow \dots)$ ismer olyan jogászt $(\exists y : I(x,y) \land J(y))$, aki házas $(\exists z : H(y,z))$, de a jogász viszont nem ismeri őt $(\neg I(y,x))$; összerakva:

$$\forall x: E(x) \land B(x) \Rightarrow \exists y: I(x,y) \land J(y) \land (\exists z: H(y,z)) \land \neg I(y,x)$$

Vagy egy kvantort előrehozva is jó:

$$\forall x: \exists y: E(x) \land B(x) \Rightarrow I(x,y) \land J(y) \land (\exists z: H(y,z)) \land \neg (I(y,x))$$

Vagy az összes kvantort előrehozva is jó:

$$\forall x: \exists y: \exists z: E(x) \land B(x) \Rightarrow I(x,y) \land J(y) \land H(y,z) \land \neg I(y,x)$$

• azok a bírók (B(x)), akiknek képviselő feleségük van $(\exists y : K(y) \land H(x,y) \land N(y))$, de életerősek (E(x)), mind jogászok (J(x)). Tehát minden olyan x-re, ami a korábbi mondatrészek feltételeit teljesíti, teljesül az, hogy J(x).

$$orall x:ig(B(x)\wedgeig(\exists y:K(y)\wedge H(x,y)\wedge N(y)ig)\wedge E(x)ig)\Rightarrow J(x)$$

Már ez is jó megoldás. Ha viszont most is előre akarjuk hozni az összes kvantort, akkor itt nagyon körültekintően kell eljárni, mivel itt a ∃y kvantor egy *implikáció* feltételén belül szerepel! Fogalmazzuk át ezt az implikációt ,Ha A akkor B' formáról ,nem A vagy B' formájúra:

$$\forall x: \neg \Big(B(x) \land \big(\exists y: K(y) \land H(x,y) \land N(y)\big) \land E(x)\Big) \lor J(x)$$

Használjuk a deMorgan szabályt:

$$\forall x: \left(\neg B(x) \lor \neg \left(\exists y: K(y) \land H(x,y) \land N(y)\right) \lor \neg E(x)\right) \lor J(x)$$

Használjuk a deMorgan szabályt a kvantort tartalmazó zárójeles formula tagadására:

$$\forall x: \Big(\neg B(x) \lor \big(\forall y: \neg K(y) \lor \neg H(x,y) \lor \neg N(y)\big) \lor \neg E(x)\Big) \lor J(x)$$

Most már bátran előrehozhatjuk a kvantort:

$$\forall x : \forall y : \left(\neg B(x) \lor \neg K(y) \lor \neg H(x,y) \lor \neg N(y) \lor \neg E(x)\right) \lor J(x)$$

A sok tagadást a zárójelen kívülre hozva, ugyancsak deMorgan szabállyal:

$$\forall x : \forall y : \neg \big(B(x) \land K(y) \land H(x,y) \land N(y) \land E(x) \big) \lor J(x)$$

És visszaírhatjuk a "Nem A vagy B' formulát implikációvá:

$$\forall x : \forall y : (B(x) \land K(y) \land H(x,y) \land N(y) \land E(x)) \Rightarrow J(x)$$

Tehát az "akiknek képvislő feleségük VAN' feltételből előre hozott kvantor "MINDEN' kvantorrá lényegül át, egyébént minden más változatlan.

2. Léteznek-e olyan A, B, C halmazok, melyekre egyszerre teljesülnek a következők:

$$\overline{A} \triangle B \neq \emptyset$$
, $A \triangle \overline{C} = \emptyset$, $B \cap C = \emptyset$.

Ha igen, mutasson példát, ha nem, indokoljon! (6p)

Megoldás: Két halmaz szimmetrikus differenciája pontosan akkor üres, ha a két halmaz megegyezik (vagyis pontosan akkor nemüres, ha a két halmaz nem egyezik meg). Tehát

$$\overline{A} \triangle B \neq \emptyset \Leftrightarrow \overline{A} \neq B$$
, $A \triangle \overline{C} = \emptyset \Leftrightarrow A = \overline{C} \Leftrightarrow C = \overline{A}$, $B \cap C = \emptyset$.

Vagyis ha létezneki ilyen halmazok, akkor nem kell külön A halmazt keresnünk, mert az maga lesz a C komplementere. Tehát olyan B és C halmazokat keresünk (egy adott H alaphalmaz részhalmazaiként), amikre az teljesül, hogy:

$$C \neq B \quad \land \quad B \cap C = \emptyset.$$

Bármely két diszjunkt halmaz jó B és C szerepére, feltéve, hogy nem azért diszjunktak, mert mindkettő az üreshalmaz lenne. Például $H=\{1,2,3\}$ alaphalmaz esetén jó lehet $A=\{2,3\}, B=\emptyset, C=\{1\}$, vagy az $A=\{3\}, B=\emptyset, C=\{1,2\}$, vagy az $A=\emptyset, B=\emptyset, C=\{1,2,3\}$, vagy az $A=\{1,3\}, B=\{1\}, C=\{2\}$, vagy az $A=\{1\}, B=\{1\}, C=\{2,3\}$, vagy az $A=\{1,2\}, B=\{1,2\}, C=\{3\}$, stb...

- 3. Legyen $R=\{(\mathbf{u},\mathbf{v})\in\mathbb{R}^2\times\mathbb{R}^2:|\mathbf{u}-\mathbf{v}|\leq 1\}$ és $S=\{(\mathbf{u},\mathbf{v})\in\mathbb{R}^2\times\mathbb{R}^2:\mathbf{u}$ és \mathbf{v} merőlegesek $\}$.
 - (a) Legyenek $\mathbf{e}_1=(1,0)$ és $\mathbf{e}_2=(0,1)$ a sztenderd egységvektorok \mathbb{R}^2 -ben. Mi lesz $(S\circ R)^{-1}(\{\mathbf{e}_1\})$ és $(R\circ S)^{-1}(\{\mathbf{e}_1\})$? $(\mathbf{4p})$

Megoldás: Mindkét reláció látványosan szimmetrikus, hiszen $|\mathbf{u} - \mathbf{v}| = |\mathbf{v} - \mathbf{u}|$, és \mathbf{u} pontosan akkor merőleges \mathbf{v} -re, ha \mathbf{v} merőleges \mathbf{u} -ra. Vagyis $R^{-1} = R$, és $S^{-1} = S$, és így $(S \circ R)^{-1} = R^{-1} \circ S^{-1} = R \circ S$, ezért $(S \circ R)^{-1}(\{\mathbf{e}_1\}) = R \circ S(\{\mathbf{e}_1\})$, és hasonlóan $(R \circ S)^{-1} = S^{-1} \circ R^{-1} = S \circ R$, ezért $(R \circ S)^{-1}(\{\mathbf{e}_1\}) = S \circ R(\{\mathbf{e}_1\})$. Határozzuk meg a két kompozíciót:

$$R \circ S = \{ (\mathbf{u}, \mathbf{w}) \in \mathbb{R}^2 \times \mathbb{R}^2 \mid \exists \mathbf{v} \in \mathbb{R}^2 : \mathbf{u} \bot \mathbf{v} \wedge |\mathbf{v} - \mathbf{w}| \le 1 \}$$

ezt használva:

$$R \circ S(\{\mathbf{e}_1\}) = \{\mathbf{w} \in \mathbb{R}^2 \mid \exists \mathbf{v} \in \mathbb{R}^2 : \mathbf{e}_1 \bot \mathbf{v} \land |\mathbf{v} - \mathbf{w}| \le 1\}$$

Mivel $\mathbf{e}_1 = (1,0)$ sztenderd egységvektorra pontosan az $\mathbf{e}_2 = (0,1)$ sztenderd egységvektor skalárszorosai ($\lambda \mathbf{e}_2 : \lambda \in \mathbb{R}$) merőlegesek, így tovább írhatjuk:

$$R \circ S(\{\mathbf{e}_1\}) = \{\mathbf{w} \in \mathbb{R}^2 \mid \exists \lambda \in \mathbb{R} : |\lambda \mathbf{e}_2 - \mathbf{w}| \le 1\}$$

Tehát $R \circ S(\{\mathbf{e}_1\})$ képhalmaz azokat a **w** vektorokat tartalmazza, amelyek végpontjai a $\lambda \mathbf{e}_2 : \lambda \in \mathbb{R}$ egyenesnek legalább egy pontjától legfeljebb egy távolságra vannak, vagyis amelyek végpontjai ezen egyenessel (az "y-tengellyel") párhuzamos, attól jobbra-balra 1-1 távolságra lévő két egyenes közé esnek, vagyis amelyeknek első koordinátája 1 és -1 közé esik.

Ugyenez másik gondolatmenettel: Egy vektor hosszának négyzete a saját magával vett

skaláris szorzata: $|\mathbf{u} - \mathbf{w}|^2 = \langle \mathbf{u} - \mathbf{w} | \mathbf{u} - \mathbf{w} \rangle = \langle \mathbf{u} | \mathbf{u} \rangle + \langle \mathbf{w} | \mathbf{w} \rangle - 2\langle \mathbf{u} | \mathbf{w} \rangle = |\mathbf{u}|^2 + |\mathbf{w}|^2 - 2\langle \mathbf{u} | \mathbf{w} \rangle$, azaz $\mathbf{w} = (x, y)$ és $\lambda \mathbf{e}_2 = (0, \lambda)$ koordinátás felírással: $|\lambda \mathbf{e}_2 - \mathbf{w}|^2 = \lambda^2 + x^2 + y^2 - 2y\lambda = (\lambda - y)^2 + x^2 \ge x^2$, hiszen $(\lambda - y)^2 \ge 0$, azaz $|\lambda \mathbf{e}_2 - \mathbf{w}| \le 1$ szükséges feltétele, hogy $x^2 \le 1$ legyen, viszont ha ez teljesül a \mathbf{w} első koordiátájára, akkor $\lambda = y$ választással $|\lambda \mathbf{e}_2 - \mathbf{w}|^2 = (\lambda - y)^2 + x^2 = x^2 \le 1$, és így $|\lambda \mathbf{e}_2 - \mathbf{w}| \le 1$ is teljesül. Mindkét gondolatmenet eredménye az, hogy

$$R \circ S(\{\mathbf{e}_1\}) = \{\mathbf{w} = (x, y) \in \mathbb{R}^2 : |x| \le 1\} = [-1, 1] \times \mathbb{R} \subset \mathbb{R}^2$$

A másik kompozíció:

$$S \circ R = \{ (\mathbf{u}, \mathbf{w}) \in \mathbb{R}^2 \times \mathbb{R}^2 \mid \exists \mathbf{v} \in \mathbb{R}^2 : |\mathbf{u} - \mathbf{v}| \le 1 \land \mathbf{v} \perp \mathbf{w} \}$$

ezt használva:

$$S \circ R(\{\mathbf{e}_1\}) = \{\mathbf{w} \in \mathbb{R}^2 \mid \exists \mathbf{v} \in \mathbb{R}^2 : |\mathbf{e}_1 - \mathbf{v}| \le 1 \land \mathbf{v} \bot \mathbf{w}\}$$

Most teljesen más a helyzet, mint a korábbi esetben, mivel a $\mathbf{v} = \mathbf{0} = (0,0)$ választás mindig kielégíti a $|\mathbf{e}_1 - \mathbf{v}| = |\mathbf{e}_1 - \mathbf{0}| = |\mathbf{e}_1| = 1 \le 1$, és a $\mathbf{0} \perp \mathbf{w}$ feltételt is, tetszőleges $\mathbf{w} \in \mathbb{R}^2$ vektor esetén! Azaz

$$S \circ R(\{\mathbf{e}_1\}) = \mathbb{R}^2$$

(b) Adjon példát olyan $T \subset \mathbb{R}^2 \times \mathbb{R}^2$ binér relációra, hogy $S \circ T \neq T \circ S$? (4p)

Megoldás: Az előbb láttuk, hogy $R \circ S(\{\mathbf{e}_1\}) = [-1,1] \times \mathbb{R} \subset \mathbb{R}^2$, míg $S \circ R(\{\mathbf{e}_1\}) = \mathbb{R}^2$, azaz biztosan nem igaz az, hogy $S \circ R$ és $R \circ S$ egyenlő lenne, vagyis $S \circ R \neq R \circ S$, tehát T = R tökéletes választás.