Dette løsningsforslaget svarer til den kombinasjonen av oppgaver som er lagt ut.

Oppgave 1 Implisitt derivasjon gir

$$3y^2\frac{dy}{dx} - 2y - 2x\frac{dy}{dx} = 4e^{2x-y}\left(2 - \frac{dy}{dx}\right)$$

som videre gir

$$\frac{dy}{dx}(3y^2 - 2x + 4e^{2x-y}) = 8e^{2x-y} + 2y.$$

Innsatt x=1 og y=2 får vi fra ligninga over at $\frac{dy}{dx}=\frac{6}{7}$ som blir stigningstallet for tangenten. Ligninga for tangenten i punktet (1,2) fås ved å sette $y-2=\frac{6}{7}(x-1)$ som gir

 $y = \frac{6}{7}x + \frac{8}{7}.$

Oppgave 2 Multipliser på begge sider av

$$y' + 3xy = 2x$$

med den integrerende faktoren $e^{3x^2/2}$ og vi får $\left(ye^{3x^2/2}\right)'=2xe^{3x^2/2}$ som ved antiderivasjon gir $ye^{3x^2/2}=\frac{2}{3}e^{3x^2/2}+C$, dvs. $y=\frac{2}{3}+Ce^{-3x^2/2}$. Innsatt y(0)=0 gir $C=-\frac{2}{3}$, så den endelige løsningen blir

$$y(x) = \frac{2}{3} - \frac{2}{3}e^{-3x^2/2}.$$

Oppgave 3 For å vise at f er kontinuerlig i x = 0 må vi vise at $\lim_{x\to 0} f(x) = 0$. For $x \neq 0$ kan vi skrive

$$f(x) = \frac{\sin x}{x} \frac{1 - \cos x}{x}.$$

At $\lim_{x\to 0} \frac{\sin x}{x} = 1$ kan anses som kjent. For å bestemme $\lim_{x\to 0} \frac{1-\cos x}{x}$ kan vi gjøre bruk av at $\cos x = 1 - \frac{x^2}{2} + \mathcal{O}(x^4)$. Dermed er $\frac{1-\cos x}{x} = \frac{x}{2} + \mathcal{O}(x^3)$, dvs. $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$.

Altså er $\lim_{x\to 0} f(x) = 0$.

Definisjonen av den deriverte gir

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\sin h(1 - \cos h)}{h^3} = \lim_{h \to 0} \frac{\sin h}{h} \frac{1 - \cos h}{h^2}.$$

Vi bruker igjen at $1 - \cos x = \frac{x^2}{2} + \mathcal{O}(x^4)$ slik at når $h \neq 0$ er $\frac{1 - \cos h}{h^2} = \frac{1}{2} + \mathcal{O}(h^2)$, så $\lim_{h\to 0} \frac{1 - \cos h}{h^2} = \frac{1}{2}$, og som før er $\lim_{h\to 0} \frac{\sin h}{h} = 1$.

Dette gir da $f'(0) = \frac{1}{2}$.

Oppgave 4 Området R ligger mellom kurvene y = x og $y = \sqrt{x}$ for x mellom 1 og 3. I dette intervallet er $x \ge \sqrt{x}$. Det skal roteres om linja x = -1, så avstanden fra et punkt (x, y) i R og til rotasjonsaksen blir x + 1. Sylinderskallmetoden gir at volumet kan uttrykkes som

$$V = 2\pi \int_{1}^{3} (x+1)(x-\sqrt{x})dx.$$

Dermed får vi

$$\begin{split} V &= 2\pi \int_{1}^{3} (x^{2} - x\sqrt{x} + x - \sqrt{x}) dx = 2\pi \left[x^{3}/3 - \frac{2}{5}x^{5/2} + x^{2}/2 - \frac{2}{3}x^{3/2} \right]_{1}^{3} \\ &= 2\pi \left(3^{3}/3 - \frac{2}{5}3^{5/2} + \frac{9}{2} - \frac{2}{3}3^{3/2} - \frac{1}{3} + \frac{2}{5} - \frac{1}{2} + \frac{2}{3} \right) = 2\pi \left(\frac{206}{15} - \frac{28}{5}\sqrt{3} \right). \end{split}$$

Oppgave 5 En måte å regne ut integralet på er å sette $u=3+e^x$. Da blir $e^x=u-3$ og $du=e^x\,dx$, dvs. $dx=\frac{du}{u-3}$. Da får vi

$$\int \frac{dx}{3+e^x} = \int \frac{du}{u(u-3)} = \frac{1}{3} \int \left(\frac{1}{u-3} - \frac{1}{u}\right) du$$
$$= \frac{1}{3} (\ln(u-3) - \ln u) = \frac{1}{3} \ln \frac{u-3}{u} = \frac{1}{3} \ln \frac{e^x}{3+e^x}.$$

Videre får vi

$$\int_0^b \frac{dx}{3 + e^x} = \frac{1}{3} \left(\ln \frac{e^b}{3 + e^b} - \ln \frac{1}{4} \right).$$

Når $b \to \infty$ vil $\ln \frac{e^b}{3+e^b} \to 0$, så

$$\int_0^\infty \frac{dx}{3+e^x} = -\frac{1}{3} \ln \frac{1}{4} = \frac{1}{3} \ln 4 = \frac{2}{3} \ln 2.$$

Oppgave 6

- (i) $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)\ln(n+1)}$ er en alternerende rekke der det nte leddet går mot 0, så den konvergerer. Rekka $\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(n+1)}$ divergerer fordi det uegentlige integralet $\int_{1}^{\infty} \frac{dx}{(x+1)\ln(x+1)}$ divergerer. Dette er fordi en antiderivert til $\frac{dx}{(x+1)\ln(x+1)}$ er $\ln(\ln(x+1))$, og denne funksjonen går mot uendelig når x går mot uendelig (men den er endelig for x=1). Dvs. rekka $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)\ln(n+1)}$ er betinget konvergent.
- (ii) $\sum_{n=2}^{\infty} \frac{3^n}{(n-1)!}$ konvergerer absolutt. Sett $a_n = \frac{3^n}{(n-1)!}$. Da er $\frac{a_{n+1}}{a_n} = \frac{3^{n+1}}{3^n} \frac{(n-1)!}{n!} = \frac{3}{n}$. Dette går mot 0 når $n \to \infty$, så rekka konvergerer ved Forholdstesten.
- (iii) $\sum_{n=1}^{\infty} \frac{1}{n^2} \sin(n)$ konvergerer absolutt fordi $\sum_{n=1}^{\infty} \left| \frac{1}{n^2} \sin(n) \right| \leq \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$ (p-rekke med p > 1).

Oppgave 7 Sett fra langsiden vil et snitt vinkelrett på kortveggen i bassenget ha form som en rettvinklet trekant der katetene har lengde henholdsvis 5 (høyden) og 30 (lengden), med et rektangel øverst som har langside 30 og kortside 1. For $0 \le h \le 5$ vil volumet være gitt som volumet av et trekantet prisme der grunnflaten er trekanten med kateter h og 6h og høyden er 15. Det betyr at $V(h) = \frac{1}{2} \cdot 6h \cdot h \cdot 15 = 45h^2$ for $0 \le h \le 5$. For $5 < h \le 6$ blir volumet lik volumet av det trekantede prismet for h = 5 pluss volumet av et rektangulært prisme med målene 30, h - 5 og 15, altså $V(h) = 45 \cdot 5^2 + 30 \cdot 15 \cdot (h - 5) = 1125 + 450(h - 5) = 450h - 1125$, når 5 < h < 6. Altså,

$$V(h) = \begin{cases} 45h^2, & 0 \le h \le 5\\ 450h - 1125, & 5 < h \le 6. \end{cases}$$

I det følgende skal vi se på situasjonen når h=3, dvs. vi er i intervallet $0 \le h \le 5$. I dette intervallet er $V(h)=45h^2$, så $\frac{dV}{dh}=90h$, dvs $\frac{dV}{dh}(h=3)=270$. Vi har oppgitt at $\frac{dV}{dt}=-1$ og skal finne $\frac{dh}{dt}$ i det øyeblikket at h=3.

Kjerneregelen gir $\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$. Innsatt de verdiene vi kjenner får vi $-1 = 270 \cdot \frac{dh}{dt}$ som gir $\frac{dh}{dt} = -\frac{1}{270}$ (meter per minutt).

Oppgave 8

Utregning gir $f(\pi/2) > 0$ og $f(\pi) < 0$. Dermed har funksjonen minst ett nullpunkt i intervallet $[\frac{\pi}{2}, \pi]$. I dette intervallet er $\cos x \le 0$, så $f'(x) = 2\cos x - 1$ er garantert mindre enn 0 i det aktuelle intervallet. Dvs. funksjonen er strengt avtakende i intervallet $[\frac{\pi}{2}, \pi]$. Dette sikrer at funksjonen har nøyaktig ett nullpunkt i intervallet $[\frac{\pi}{2}, \pi]$.

Newtons metode for funksjonen gir iterasjonsskjemaet

$$x_{n+1} = x_n - \frac{2\sin x_n - x_n}{2\cos x_n - 1}.$$

Innsatt $x_0 = 2$ gir dette $x_1 = 1.900...$

Oppgave 9 Definer

$$f(x) = \frac{x \sin^2 x}{x - \arctan x}, \quad x \neq 0.$$

Det er oppgitt at $\arctan x = x - \frac{1}{3}x^3 + \mathcal{O}(x^5)$. Videre får vi fra taylorutviklingen til $\sin x$ om x = 0 at $\sin x = x - \frac{1}{6}x^3 + \mathcal{O}(x^5)$. Dette gir at

$$x \sin^2 x = x \left(x - \frac{1}{6} x^3 + \mathcal{O}(x^5) \right) \left(x - \frac{1}{6} x^3 + \mathcal{O}(x^5) \right)$$
$$= x \left(x^2 - \frac{1}{3} x^4 + \mathcal{O}(x^6) \right) = x^3 + \mathcal{O}(x^5).$$

•

Dermed får vi, for $x \neq 0$,

$$f(x) = \frac{x^3 + \mathcal{O}(x^5)}{\frac{1}{2}x^3 + \mathcal{O}(x^5)} = \frac{1 + \mathcal{O}(x^2)}{\frac{1}{2} + \mathcal{O}(x^2)}.$$

Når $x \to 0$, går leddene som er samlet i uttrykkene $\mathcal{O}(x^2)$ mot 0, slik at vi får

$$\lim_{x \to 0} \frac{x \sin^2 x}{x - \arctan x} = 3.$$

Oppgave 10 Utregning gir

$$f'(x) = e^{2x^2 - 1} \frac{4x^2 - 1}{x^2}, \quad x \neq 0.$$

Dette viser at de eneste nullpunktene for f'(x) opptrer når $4x^2 - 1 = 0$, dvs. for $x = \pm \frac{1}{2}$.

Når $x>\frac{1}{2}$ og når $x<-\frac{1}{2}$, er $4x^2-1>0$. De andre faktorene i f'(x) er alltid positive, så vi får da at f'(x)>0 for $x>\frac{1}{2}$ og for $x<-\frac{1}{2}$.

Når $0 < x < \frac{1}{2}$ og $-\frac{1}{2} < x < 0$ er $4x^2 - 1 < 0$, så i disse intervallene er f'(x) < 0.

Dette viser at x=1/2 gir et lokalt minimumspunkt, og x=-1/2 gir et lokalt maksimumspunkt. Utregning gir $f(\frac{1}{2})=2e^{-1/2}$ og $f(-\frac{1}{2})=-2e^{-1/2}$.

Når $x \to 0^+$ vil $f(x) \to \infty$, og når $x \to 0^-$ vil $f(x) \to -\infty$. Videre vil $f(x) \to \pm \infty$ når $x \to \pm \infty$.

Siden f'(x) < 0 for $0 < x < \frac{1}{2}$ og f'(x) > 0 for $\frac{1}{2} < x < \infty$, så viser dette at for alle k, $2e^{-1/2} < k < \infty$ vil f(x) = k for eksakt to verdier av x. Tilsvarende argument gir at vi også har eksakt to verdier av x som gir f(x) = k for $-\infty < k < -2e^{-1/2}$.

For $k = 2e^{-1/2}$ er f(x) = k for nøyaktig én x-verdi, nemlig x = 1/2 (det lokale minimumspunktet). Og for $k = -2e^{-1/2}$ er også f(x) = k for nøyaktig én x-verdi, nemlig x = -1/2 (det lokale maksimumspunktet). For $-2e^{-1/2} < k < 2e^{-1/2}$ er det ingen verdier av x som gjør at f(x) = k, siden dette er intervallet mellom det lokale maksimumspunktet og det lokale minimumspunktet for f.

Oppsummert gir dette: Ligningen $e^{2x^2-1} = kx$ har

- a) ingen løsninger for $-2e^{-1/2} < k < 2e^{-1/2}$,
- b) én løsning for $k = -2e^{-1/2}$ og for $k = 2e^{-1/2}$,
- c) to løsninger for $2e^{-1/2} < k < \infty$ og for $-\infty < k < -2e^{-1/2}$.