Computer Lab 3

Martynas Lukosevicius

17/11/2020

Question 1

```
distrib1 <- function(x,c){</pre>
  if(x>0){
    return(c*(sqrt(2*pi)^(-1))*(exp(-(c^2)/(2*x))) * (x^(-3/2)))
  }
  else return(0)
powerlaw <- function(x,a,t){</pre>
  if(x>t){
    return(((a-1)/t) * ((x/t)^(-a)))
  else return(0)
}
x \leftarrow seq(0,50, by=0.01)
c <- 1.6
\#n \leftarrow length(x)
\#a= 1 + n*(sum(log(x/t)))^{-1}
y1 <- sapply(x, distrib1, c=c)
y2 \leftarrow sapply(x, powerlaw, a = 2,t = 1.5)
ymax \leftarrow max(y1,y2)
b \leftarrow \min(c(y1,y2))
e <- max(c(y1,y2))
ax <- seq(b,e,by=(e-b)/200)
plot(x,y1, type="l", col = "blue", ylim = c(0,ymax))
lines(x,y2, col = "red")
legend("topright", c("target density", "powerlaw"), fill=c("blue", "red"))
```



```
# hist(y1, breaks = ax,
# col = "red",
# main = "Comparison of rnorm() with our rNorm()",
# xlab = "values",
# xlim = range(y1,y2))
#
# hist(y2, breaks = ax, col = "blue", xlim =range(y1,y2), add = TRUE)
```

Power-law distribution cannot be used just by itself because it doesnt support range from 0 to T_{min} . Because of this we need to use mixture distribution. To support x from 0 to T_{min} we choose uniform distribution $Unif(0,T_{min})$. AS we can see power-law distribution is monotonically decreasing, so we T_{min} should be equal to x where target density has maximum value.

Lets find maximum of target density function:

$$\frac{\partial}{\partial x} \frac{ce^{-\frac{c^2}{2x}}x^{-\frac{3}{2}}}{\sqrt{2\pi}} = \frac{ce^{-\frac{c^2}{2x}}\left(c^2 - 3x\right)}{2\sqrt{2\pi}x^{7/2}}$$
$$\frac{c\frac{e^{-c^2}}{2x}\left(c^2 - 3x\right)}{2\sqrt{2\pi}x^{7/2}} = 0$$
$$x = \frac{c^2}{3}$$
$$T_{min} = \frac{c^2}{3}$$

To make a mixture model we need to know the probability of taking uniform distribution and powerlaw distribution probability that number will be in 0- T_{min} region is:

$$\int_{0}^{T_{min}} cx^{-\frac{3}{2}} e^{-\frac{c^{2}}{2x}} \sqrt{2\pi}^{-1} dx = \frac{\Gamma\left(\frac{1}{2}, \frac{c^{2}}{2T_{min}}\right)}{\sqrt{\pi}}$$

as
$$T_{min} = \frac{c^2}{3} - \frac{\Gamma\left(\frac{1}{2}, \frac{c^2}{2T_{min}}\right)}{\sqrt{\pi}} = \frac{\Gamma\left(\frac{1}{2}, \frac{3}{2}\right)}{\sqrt{\pi}} \sim 0.08326451666$$

As the result: majorising density function is:

$$g(x) = \frac{2 * 0.08326}{c^2} 1_{[0,T_{min}]} + (1 - 0.08326) * \frac{2^{1-a}(a-1)\left(\frac{x}{c^2}\right)^{-a}}{c^2} * 1_{(T_{min},\infty)}$$

2.

Target density:

$$f(x) = c(\sqrt{2\pi})^{-1} e^{\frac{-c^2}{2x}} x^{\frac{-3}{2}} 1_{(0,\infty)}(x)$$

We need to find c_{maj}

$$c_{maj} > 0; sup_x(f(x)/g(x)) \le c_{maj}$$

$$h(x) = \frac{f(x)}{g(x)}$$

$$c_{maj} = h(x_{maj})$$

if $x < T_{min}$

$$\frac{\partial}{\partial x} \frac{f(x)}{\frac{0.16652}{c^2}} = \frac{e^{-\frac{c^2}{2x}} \left(1.19788c^5 - 3.59364c^3x\right)}{x^{7/2}}$$

$$\frac{e^{-\frac{c^2}{2x}}\left(1.19788c^5 - 3.59364c^3x\right)}{r^{7/2}} = 0$$

$$x_{maj} = \frac{c^2}{3}$$

x for cmaj = $x = 0.333333c^2 = T_{min}$

if x > Tmin

$$\frac{\partial}{\partial x} \frac{f(x)}{g(x)} = \frac{3^{a-1} c^3 \frac{e^{-c^2}}{2x} \left(\frac{x}{c^2}\right)^a \left((2a-3)x + c^2\right)}{2\sqrt{2\pi} (a-1)x^{7/2}}$$

$$\frac{3^{a-1}c^3\frac{e^{-c^2}}{2x}\left(\frac{x}{c^2}\right)^a\left((2a-3)x+c^2\right)}{2\sqrt{2\pi}(a-1)x^{7/2}}=0$$

$$x_{maj} = \frac{c^2}{3 - 2a}$$

when 1 < a < 1.5

$$c_{maj} = h(x_{maj})$$

```
majDensity <- function(x, c,a){
    Tmin <- (c^2)/3

if(x>Tmin){
    return((1-0.083264) * powerlaw(x, a, Tmin))
    }
    else {return(0.083264 * dunif(x,0,Tmin))}
}

c <- 9
y3 <- sapply(x, majDensity, c = c, a = 1.12)
y1 <- sapply(x, distrib1, c = c)
plot(x,y1, type = "l", ylim = c(0,max(y3,y1)))
#lines(x,dnorm(x,3,1.2), col ="red")

lines(x,y3, col ="blue")</pre>
```



```
#lines(x,y1, col = "red")
```

2

```
library(poweRlaw)
```

Warning: package 'poweRlaw' was built under R version 4.0.3

```
randomnumber <- function(t,a){</pre>
  numb <- runif(1)</pre>
  if(numb \le 0.08326){
    return(runif(1,0,t))
  else{
    return(rplcon(1,t,a))
}
CompleteDist <- function(c, a, rej){</pre>
  z \leftarrow TRUE
  res <- 0
  Tmin \langle -(c^2)/3 \rangle
  xmaj <- (c^2)/(3-2*a)
  cmaj <- distrib1(xmaj,c)/majDensity(xmaj,c, a)</pre>
  while (z == TRUE) {
    y <- randomnumber(Tmin,a)</pre>
    u <- runif(1)
    if(u <= distrib1(y, c) / (cmaj*majDensity(y,c,a))){</pre>
      res <- y
      z <- FALSE
    }
    if(rej){
    rejected <<- rejected + 1
  }
  return(res)
rDist <- function(n,c,a ,rej = FALSE){</pre>
return(replicate(n, CompleteDist(c, a, rej)))
}
```

3.

	c=2	c=9	c=15
mean	1.119115e + 05	6.172831e + 05	1.903368e+06
variance	2.337273e + 13	5.602875e + 14	5.427475e + 15

Question 2

1.

$$DE(\mu, \alpha) = \frac{\alpha}{2} e^{-\alpha|x-\mu|}$$

- μ location parameter
- b > 0 scale parameter

inverse CDF of DE:

 $Source-https://en.wikipedia.org/wiki/Laplace_distribution$

$$F^{-1}(p) = \mu - bsgn(p - 0.5)ln(1 - 2|p - 0.5|)$$

where $b = \frac{1}{\alpha}$

```
rLaplace <- function(n, mean = 0, alpha = 1){
  b <- 1/alpha
  u <- runif(n)
  res <- mean - (b*sign(u-0.5) * log(1-(2*abs(u-0.5))))
  return(res)
}</pre>
```

meaning:

- 1. calculate b.
- 2. take n random variables from uniform distribution [0,1]
- 3. calculate random numbers from inverse CDF of laplace distribution where x is a random variable from uniform distribution

Comparison of rlaplace function from rmutil with our rLaplace

From histogram we can see that inverse CDF method approximated laplace distribution reasonably, mean and variance very similar.

2.

```
DE <- function(x, mean = 0,alpha = 1){
  return((0.5*alpha)*exp((-alpha)*abs(x-mean)))
}

genNorm <- function(c, rej){
  z <- TRUE
  res <- 0
  while (z == TRUE) {
    y <- rLaplace(1)
    u <- runif(1)
    if(u <= pnorm(y) / (c*DE(y))){
      res <- y</pre>
```

```
z <- FALSE
}
if(rej){
  rejected <<- rejected + 1
  }
}
return(res)
}

rNorm <- function(n,c,rej = FALSE){
  return(replicate(n, genNorm(c, rej)))
}</pre>
```

algorithm:

- 1. write Laplace probability function
- 2. assign 0 to result value res
- 3. generate random number y from rLaplace function
- 4. generate random number u from uniform distribution
- 5. check if u is less or equal to probability of y in normal distribution / c * probability of y in laplace distribution
 - a) if yes, return y
 - b) repeat steps from 3

$$c > 0; sup_x(f(x)/g(x)) \le c$$

$$h(x) = \frac{f(x)}{g(x)}$$

$$f(x) = N(0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

$$g(x) = \frac{1}{2}e^{-|x|}$$

$$h(x) = \sqrt{\frac{2}{\pi}}e^{|x| - \frac{x^2}{2}}$$

$$\frac{d}{dx}\sqrt{\frac{2}{\pi}}e^{|x| - \frac{x^2}{2}} = \sqrt{\frac{2}{\pi}}xe^{|x| - \frac{x^2}{2}}\left(\frac{1}{|x|} - 1\right)$$

$$\frac{\sqrt{2}e^{x - \frac{x^2}{2}}(x - 1)}{\pi} = 0$$

$$x = \pm 1$$

$$c = h(1) = 1.3154892$$

Comparison of rnorm() with our rNorm()

rejection rate: 0.2119779, expected rejection rate = c=0.2398265, difference - -0.0464892 We can see that mean and variance of generated distribution slightly differs.