# 1)Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.

| CRIME_RATE         |                                            |  |  |  |
|--------------------|--------------------------------------------|--|--|--|
|                    |                                            |  |  |  |
| Mean               | 4.871976285                                |  |  |  |
| Standard Error     | 0.129860152                                |  |  |  |
| Median             | 4.82                                       |  |  |  |
| Mode               | 3.43                                       |  |  |  |
| Standard Deviation | 2.921131892                                |  |  |  |
| Sample Variance    | 8.533011532<br>-1.189122464<br>0.021728079 |  |  |  |
| Kurtosis           |                                            |  |  |  |
| Skewness           |                                            |  |  |  |
| Range              | 9.95                                       |  |  |  |
| Minimum            | 0.04                                       |  |  |  |
| Maximum            | 9.99                                       |  |  |  |
| Sum                | 2465.22                                    |  |  |  |
| Count              | 506                                        |  |  |  |

<sup>\*</sup>The sharp ratio of Crime Rate is 1.67

<sup>\*</sup>Crime Rate is Flat Curve with Positive skewness

| INDUS              |              |
|--------------------|--------------|
|                    |              |
| Mean               | 11.13677866  |
| Standard Error     | 0.304979888  |
| Median             | 9.69         |
| Mode               | 18.1         |
| Standard Deviation | 6.860352941  |
| Sample Variance    | 47.06444247  |
| Kurtosis           | -1.233539601 |
| Skewness           | 0.295021568  |
| Range              | 27.28        |
| Minimum            | 0.46         |
| Maximum            | 27.74        |
| Sum                | 5635.21      |
| Count              | 506          |

<sup>\*</sup>The sharp ratio of Indus is 1.62

| AGE                |              |
|--------------------|--------------|
|                    |              |
| Mean               | 68.57490119  |
| Standard Error     | 1.251369525  |
| Median             | 77.5         |
| Mode               | 100          |
| Standard Deviation | 28.14886141  |
| Sample Variance    | 792.3583985  |
| Kurtosis           | -0.967715594 |
| Skewness           | -0.59896264  |
| Range              | 97.1         |
| Minimum            | 2.9          |
| Maximum            | 100          |
| Sum                | 34698.9      |
| Count              | 506          |

<sup>\*</sup>The sharp ratio of Age is 2.43

<sup>\*</sup>Age is Flat Curve with Negative skewness

| NOX                |              |
|--------------------|--------------|
|                    |              |
| Mean               | 0.554695059  |
| Standard Error     | 0.005151391  |
| Median             | 0.538        |
| Mode               | 0.538        |
| Standard Deviation | 0.115877676  |
| Sample Variance    | 0.013427636  |
| Kurtosis           | -0.064667133 |
| Skewness           | 0.729307923  |
| Range              | 0.486        |
| Minimum            | 0.385        |
| Maximum            | 0.871        |
| Sum                | 280.6757     |
| Count              | 506          |

<sup>\*</sup>The sharp ratio of NOX is 4.78

<sup>\*</sup>Indus is Flat Curve with Positive skewness

<sup>\*</sup>NOX is Flat Curve with Positive skewness

| DISTANCE           |              |  |  |  |
|--------------------|--------------|--|--|--|
|                    |              |  |  |  |
| Mean               | 9.549407115  |  |  |  |
| Standard Error     | 0.387084894  |  |  |  |
| Median             | 5            |  |  |  |
| Mode               | 24           |  |  |  |
| Standard Deviation | 8.707259384  |  |  |  |
| Sample Variance    | 75.81636598  |  |  |  |
| Kurtosis           | -0.867231994 |  |  |  |
| Skewness           | 1.004814648  |  |  |  |
| Range              | 23           |  |  |  |
| Minimum            | 1            |  |  |  |
| Maximum            | 24           |  |  |  |
| Sum                | 4832         |  |  |  |
| Count              | 506          |  |  |  |

<sup>\*</sup>The sharp ratio of Distance is 1.10

<sup>\*</sup>Distance is Flat Curve with Positive skewness

| PTRATIO            |                             |  |  |  |
|--------------------|-----------------------------|--|--|--|
|                    |                             |  |  |  |
| Mean               | 18.4555336                  |  |  |  |
| Standard Error     | 0.096243568                 |  |  |  |
| Median             | 19.05                       |  |  |  |
| Mode               | 20.2                        |  |  |  |
| Standard Deviation | 2.164945524                 |  |  |  |
| Sample Variance    | 4.686989121<br>-0.285091383 |  |  |  |
| Kurtosis           |                             |  |  |  |
| Skewness           | -0.802324927                |  |  |  |
| Range              | 9.4                         |  |  |  |
| Minimum            | 12.6                        |  |  |  |
| Maximum            | 22                          |  |  |  |
| Sum                | 9338.5                      |  |  |  |
| Count              | 506                         |  |  |  |

<sup>\*</sup>The sharp ratio of PTRATIO is 8.52

| TAX                |              |
|--------------------|--------------|
|                    |              |
| Mean               | 408.2371542  |
| Standard Error     | 7.492388692  |
| Median             | 330          |
| Mode               | 666          |
| Standard Deviation | 168.5371161  |
| Sample Variance    | 28404.75949  |
| Kurtosis           | -1.142407992 |
| Skewness           | 0.669955942  |
| Range              | 524          |
| Minimum            | 187          |
| Maximum            | 711          |
| Sum                | 206568       |
| Count              | 506          |

<sup>\*</sup>The sharp ratio of Tax is 2.42

<sup>\*</sup>Tax is Flat Curve with Positive skewness

| AVG_ROOM           |             |
|--------------------|-------------|
|                    |             |
| Mean               | 6.284634387 |
| Standard Error     | 0.031235142 |
| Median             | 6.2085      |
| Mode               | 5.713       |
| Standard Deviation | 0.702617143 |
| Sample Variance    | 0.49367085  |
| Kurtosis           | 1.891500366 |
| Skewness           | 0.403612133 |
| Range              | 5.219       |
| Minimum            | 3.561       |
| Maximum            | 8.78        |
| Sum                | 3180.025    |
| Count              | 506         |

<sup>\*</sup>The sharp ratio of Avg\_room is 8.94

<sup>\*</sup>PTRATIO is Flat Curve with Negative skewness

<sup>\*</sup>Avg\_room is sharp with Positive skewness

| LSTAT              |             |
|--------------------|-------------|
|                    |             |
| Mean               | 12.65306324 |
| Standard Error     | 0.317458906 |
| Median             | 11.36       |
| Mode               | 8.05        |
| Standard Deviation | 7.141061511 |
| Sample Variance    | 50.99475951 |
| Kurtosis           | 0.493239517 |
| Skewness           | 0.906460094 |
| Range              | 36.24       |
| Minimum            | 1.73        |
| Maximum            | 37.97       |
| Sum                | 6402.45     |
| Count              | 506         |

| *The sharp ratio of LSTAT is 1 | .77 |
|--------------------------------|-----|
|--------------------------------|-----|

<sup>\*</sup>LSTAT is sharp with Positive skewness

| AVG_PRICE          |             |
|--------------------|-------------|
|                    |             |
| Mean               | 22.53280632 |
| Standard Error     | 0.408861147 |
| Median             | 21.2        |
| Mode               | 50          |
| Standard Deviation | 9.197104087 |
| Sample Variance    | 84.58672359 |
| Kurtosis           | 1.495196944 |
| Skewness           | 1.108098408 |
| Range              | 45          |
| Minimum            | 5           |
| Maximum            | 50          |
| Sum                | 11401.6     |
| Count              | 506         |

<sup>\*</sup>The sharp ratio of Avg\_price is 2.44

## 2)Plot a histogram of the Avg\_Price variable. What do you infer?



Avg\_price is sharp with Positive skewness.

<sup>\*</sup>Avg\_price is sharp with Positive skewness

#### 3)Compute the covariance matrix. Share your observations

|           | CRIME_RATE | AGE       | INDUS     | NOX       | DISTANCE   | TAX        | PTRATIO    | AVG_ROOM  |    |
|-----------|------------|-----------|-----------|-----------|------------|------------|------------|-----------|----|
| CRIME_RAT | 8.51614787 |           |           |           |            |            |            |           |    |
| AGE       | 0.56291522 | 790.79247 |           |           |            |            |            |           |    |
| INDUS     | -0.1102152 | 124.26783 | 46.97143  |           |            |            |            |           |    |
| NOX       | 0.00062531 | 2.3812119 | 0.605874  | 0.0134011 |            |            |            |           |    |
| DISTANCE  | -0.2298605 | 111.54996 | 35.47971  | 0.6157102 | 75.6665313 |            |            |           |    |
| TAX       | -8.2293224 | 2397.9417 | 831.7133  | 13.020502 | 1333.11674 | 28348.6236 |            |           |    |
| PTRATIO   | 0.06816891 | 15.905425 | 5.680855  | 0.0473037 | 8.74340249 | 167.820822 | 4.6777263  |           |    |
| AVG_ROOM  | 0.05611778 | -4.742538 | -1.884225 | -0.024555 | -1.2812774 | -34.515101 | -0.5396945 | 0.4926952 |    |
| LSTAT     | -0.8826804 | 120.83844 | 29.52181  | 0.4879799 | 30.3253921 | 653.420617 | 5.7713002  | -3.073655 |    |
| AVG PRICE | 1.16201224 | -97.39615 | -30.4605  | -0.454512 | -30.50083  | -724.82043 | -10.090676 | 4.4845656 | -4 |

<sup>\*</sup>Positive value denotes, both the x and y values are above or below their averages.

#### 4) Create a correlation matrix of all the variables (Use Data analysis tool pack)

|            | CRIME_RATE   | AGE                         | INDUS                       | NOX                         | DISTANCE                    | TAX                         | PTRAT                   |
|------------|--------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------|
| CRIME_RATE | 1            |                             |                             |                             |                             |                             |                         |
| AGE        | 0.006859463  | 1                           |                             |                             |                             |                             |                         |
| INDUS      | -0.005510651 | 0.644778511                 | 1                           |                             |                             |                             |                         |
| NOX        | 0.001850982  | 0.73 <mark>147010</mark> 4  | 0.76 <mark>365144</mark> 7  | 1                           |                             |                             |                         |
| DISTANCE   | -0.009055049 | 0.45 <mark>6022</mark> 452  | 0.59 <mark>5129</mark> 275  | 0.61 <mark>14405</mark> 63  | 1                           |                             |                         |
| TAX        | -0.016748522 | 0.50 <mark>6455</mark> 594  | 0.7 <mark>20760</mark> 18   | 0. <mark>66802</mark> 32    | 0.910228189                 | 1                           |                         |
| PTRATIO    | 0.010800586  | 0.26 <mark>15</mark> 15012  | 0.38 <mark>324</mark> 7556  | 0.188932677                 | 0.46 <mark>4741</mark> 179  | 0.46 <mark>085</mark> 3035  |                         |
| AVG_ROOM   | 0.02739616   | -0. <mark>24</mark> 0264931 | -0 <mark>.39</mark> 1675853 | -0. <mark>30</mark> 2188188 | -0.2 <mark>0</mark> 9846668 | -0. <mark>29</mark> 2047833 | -0 <mark>.35</mark> 550 |
| LSTAT      | -0.042398321 | 0.60 <mark>23385</mark> 29  | 0.60 <mark>37997</mark> 16  | 0.59 <mark>08789</mark> 21  | 0.48 <mark>8676</mark> 335  | 0.54 <mark>3993</mark> 412  | 0.37404                 |
| AVG_PRICE  | 0.043337871  | -0 <mark>.37</mark> 6954565 | <mark>-0.4</mark> 8372516   | -0 <mark>.42</mark> 7320772 | -0 <mark>.38</mark> 1626231 | - <mark>0.46</mark> 8535934 | - <mark>0.50</mark> 778 |

### A) Which are the top 3 positively correlated pairs B) Which are the top 3 negatively correlated pairs.

<sup>\*</sup>Negative value denotes, both the x and y values are mostly on opposite sides of their averages.

<sup>\*</sup>Distance and tax

<sup>\*</sup>Index and Nox

<sup>\*</sup>Age and nox

<sup>\*</sup>LSTAT and Avg price

<sup>\*</sup>Avg room and LSTAT

<sup>\*</sup>PTRATIO and Avg price

5) Build an initial regression model with AVG\_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.



A)What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and the Residual plot?

R Square 0.544146298

Coefficients of LSTAT -0.950049354

Intercept 34.55384088

#### R Square:

There are 54% changes for LSTAT and Avg price

#### **Coefficients of LSTAT:**

Coefficinet of LSTAT is -0.95005. It is inferred that if the Average price is increase, there will be a 0.95% decrease in population.

#### Intercept:

It is inferred that the Intercept value is 34.5538.

### **Residual plot:**

- \* It is inferred that all the values are equally distributed
- \* Linear equation is Avg price = -0.95+34.554

#### B) Is LSTAT variable significant for the analysis based on your model?

Yes, it is significant for analysis

6) Build a new Regression model including LSTAT and AVG\_ROOM together as Independent variables and AVG\_PRICE as dependent variable

A)Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG\_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging?

B)Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain

Yes, the performance of this model is better than the previous model(Q5). The R square value is improved because we have added AVG\_Room for this regression.

7) Build another Regression model with all variables where AVG\_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted R square, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG\_PRICE

|            | Coefficients |
|------------|--------------|
| Intercept  | 29.24131526  |
| CRIME_RATE | 0.048725141  |
| AGE        | 0.032770689  |
| INDUS      | 0.130551399  |
| NOX        | -10.3211828  |
| DISTANCE   | 0.261093575  |
| TAX        | -0.01440119  |
| PTRATIO    | -1.074305348 |
| AVG_ROOM   | 4.125409152  |
| LSTAT      | -0.603486589 |

<sup>\*</sup>Avg price = Coefficient of intercept + (Coefficient of AVG\_Room \* Avg\_Room) + (Coefficient of LSTAT \* LSTAT)

<sup>\*</sup>The company is overcharging, and the company can quote the amount as 21458 USD.

\*For every \$1000 of avg. price of houses, per capita crime rate by town increases by 0.0487.

\*For every \$1000 of avg. price of houses, proportion of houses built prior to 1940 increases by 0.03%.

\*For every \$1000 of avg. price of houses, proportion of non-retail business acres per town increases by 0.13%.

\*For every \$1000 of avg. price of houses, nitric oxides concentration decreases by 10 million.

\*For every \$1000 of avg. price of houses, distance from highway increases by 0.2610 miles.

\*For every \$1000 of avg. price of houses, full-value property-tax rate decreases by 0.0144.

\*For every \$1000 of avg. price of houses, pupil-teacher ratio by town decreases by 1.0743.

\*For every \$1000 of avg. price of houses, average number of rooms per house increases by 4.12540.

\*For every \$1000 of avg. price of houses, lower status(LSTAT) of the population decreases by 0.603%.

8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:

#### a) Interpret the output of this model

|           | Coefficients | P-value     |
|-----------|--------------|-------------|
| Intercept | 29.42847349  | 1.84597E-09 |
| AGE       | 0.03293496   | 0.012162875 |
| INDUS     | 0.130710007  | 0.038761669 |
| NOX       | -10.27270508 | 0.008545718 |
| DISTANCE  | 0.261506423  | 0.000132887 |
| TAX       | -0.014452345 | 0.000236072 |
| PTRATIO   | -1.071702473 | 7.08251E-15 |
| AVG_ROOM  | 4.125468959  | 3.68969E-19 |
| LSTAT     | -0.605159282 | 5.41844E-27 |

Adjusted R Square = 0.68868

B)Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

R Square = 0.6886836818 (Qn.8)

R Square = 0.6882986468 (Qn.7)

Adjusted R square value for this model is slightly a good percentage of changes for analysis compared to the previous model.

## C) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?

| Coefficient |          |  |  |
|-------------|----------|--|--|
| NOX         | -10.2727 |  |  |
| PTRATIO     | -1.0717  |  |  |
| LSTAT       | -0.60516 |  |  |
| TAX         | -0.01445 |  |  |
| AGE         | 0.032935 |  |  |
| INDUS       | 0.13071  |  |  |
| DISTANCE    | 0.261506 |  |  |
| AVG_ROOM    | 4.125469 |  |  |
| Intercept   | 29.42847 |  |  |

If the value of NOX is more in a locality in this town, the value of the average price will be reduced.

#### D) Write the regression equation from this model

AVG\_PRICE = Intercept + (coefficient of Age \* value of Age) + (coefficient of Indus \* value of Indus) + (coefficient of NOX \* value of NOX) + (coefficient of Distance \* value of Distance) + (coefficient of Tax \* value of Tax) + (coefficient of PTRATIO \* value of PTRATIO) + (coefficient of Avg\_room \* value of Avg\_room) + (coefficient of LSTAT \* value of LSTAT)