

GENERAL DESCRIPTION

OB2202 is a highly integrated Quasi-Resonant (QR) controller optimized for high performance offline flyback converter applications.

At normal load condition, it operates in QR mode with minimum drain voltage switching. To meet the CISPR-22 EMI starting at 150KHz, the maximum switching frequency is internally limited to 130KHz. It operates in PFM mode for high power conversion efficiency at light load condition. When the loading is very small, the IC operates in 'Extended Burst Mode' to minimize the switching loss. As a result, lower standby power consumption and higher conversion efficiency can be achieved.

OB2202 offers comprehensive protection coverage including Cycle-by-Cycle Current Limiting, VCC Under Voltage Lockout(UVLO), Programmable Output Over Voltage Protection(OVP), VCC Clamp, Gate Clamp, Over Load Protection(OLP), On-chip Thermal Shutdown, Programmable Soft Start, Programmable Brownout Protection, Programmable Over Power Protection (OPP) Compensation, and External Latch Triggering, Max On-time Limit, etc. OB2202 is offered in SOP-8 and DIP-8 packages.

FEATURES

- Multi-Mode Operation
- Quasi-Resonant Operation at Normal Loading
- Pulse Frequency Modulation (PFM) Operation at Light Load
- Programmable Brownout Protection and Line OVP Protection
- Burst Mode at No Load
- Excellent OPP Compensation
- 20KHz Minimum Frequency Limit at QR Mode
- 130KHz Maximum Frequency Limit
- Internal Minimum T off for Ringing Suppression
- 35us Maximum On Time Limit
- 50us Maximum Off Time Limit
- Internal Leading Edge Blanking
- Programmable Soft-start
- Cycle-by-cycle Current Limiting
- External Latch Triggering
- Internal Thermal Shutdown
- 1A Peak Current Sink/Source Capability
- Programmable Output OVP

APPLICATIONS

Offline AC/DC flyback converter for

- Power Adaptor and Open-frame SMPS
- LCD Monitor/TV/PC/Set-Top Box Power Supplies
- NB/DVD/Portable DVD Power Supplies

TYPICAL APPLICATION

GENERAL INFORMATION

Pin Configuration

The pin map of OB2202 in DIP8 and SOP8 package is shown as below.

Ordering Information

Part Number	Description
OB2202AP	8 Pin DIP, Pb free in Tube
OB2202CP	8 Pin SOP, Pb free in Tube
OB2202CPA	8 Pin SOP, Pb free in T&R

Note: All Devices are offered in Pb-free Package if not otherwise noted.

Package Dissipation Rating

Package	RθJA (°C/W)
DIP8	90
SOP8	150

Absolute Maximum Ratings

Parameter	Value
VCC Zener Clamp Voltage	31 V
VCC Clamp Continuous	10 mA
Current	
SS Input Voltage	-0.3 to 7V
FB Input Voltage	-0.3 to 7V
CS Input Voltage	-0.3 to 7V
DEM Input Voltage	-0.3 to 7V
BO Input Voltage	-0.3 to 7V
Min/Max Operating Junction	-20 to 150 °C
Temperature T _J	
Min/Max Storage Temperature	-55 to 150 °C
T_{stg}	
Lead Temperature (Soldering,	260 °C
10secs)	

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Marking Information

Y: Year Code (0-9)

WW: Week Code (1-52)

C: SOP8

P:lead-free

s: internal code

Y: Year Code (0-9)

WW: Week Code (1-52)

A: DIP8

P:lead-free

s: internal code

TERMINAL ASSIGNMENTS

Pin Num	Pin Name	I/O	Description				
1	SS	I/O	Soft-start programming pin. Program the soft-start time with a capacitor				
			connected to GND. After soft-start, the pin's voltage is clamped at 2V. This				
			pin is also used as external latch input, latch will be triggered when SS pin				
			voltage higher than 3.75V.				
2	FB	I/O	Feedback input pin. PWM duty cycle is determined by voltage level into this				
			pin and current-sense signal level at Pin 3. The voltage level at this pin also				
			controls the mode of operation in one of the three modes: quasi-resonant				
			(QR), pulse frequency modulation mode (PFM) and burst mode (BM).				
3	CS	I	Current sense input.				
4	GND	P	Ground for internal circuitry.				
5	GATE	0	Totem-pole gate drive output for power MOSFET.				
6	VCC	P	Chip DC power supply pin.				
7	DEM	I/O	Input from auxiliary winding for demagnetization timing. Also this pin is				
			used for output over voltage protection (Load OVP).				
8	BO	I/O	Brownout and Line OVP detection pin. Connect a resistor divider from line				
			voltage to this pin to detect line voltage. If this pin drops below 0.5V and				
			lasts for 50ms, brownout protection will be triggered and PWM output will				
			be disabled. This pin is also used as line OVP sense input				

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITION

Symbol	Parameter	Min	Max	Unit
VCC	VCC Supply Voltage	11	28	V
$T_{\mathbf{A}}$	Operating Ambient Temperature	-20	85	°C

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C, VCC=16V, if not otherwise noted)$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Supply Voltage (V	(CC) Section					
Istartup	VCC Start up Current	VCC=15V, Measure		5	15	uA
•	•	current into VCC				
I_VCC_quiet	Operation Current	VCC=12V, FB is floating,		1		mA
1	without switching	,				
I VCC operation	Operation current	VCC=12V, Fsw=130KHz,		4	6	mA
1	with switching	1nF load at GATE			0	
UVLO(ON)	VCC Under Voltage		8	9	10	V
` ,	Lockout Enter					
UVLO(OFF)	VCC Under Voltage		14	15	16	V
` /	Lockout Exit			\times		
	(Startup)					
OVP(ON)	VCC Over Voltage			31		V
,	Protection Enter					
VCC_Clamp	VCC Zener Clamp	I(VCC) = 5 mA		32		V
· · · · _ · · · · · · · ·	Voltage					
Feedback Input Se	•			1	ı	l
A _{VCS}	PWM Input Gain	$\Delta V_{FB}/\Delta V_{cs}$		3		V/V
V _{FB} Open	FB Open Voltage	- V FB / - V CS		4.8		V
A FR Oben	The Open voltage			7.0		*
I _{FB} Short	FB pin short circuit	Short FB pin to GND,		1.5		mA
IFB_DHOIT	current	measure current		1.5		1112 \$
V _{TH} PFM on	PFM mode on	measure current		1.8		V
VIH_IIIVI_OII	threshold			1.0		*
V _{TH} _PFM_off	PFM mode off			1.2		V
V [H_1 1 1V1_011	threshold			1.2		•
V _{TH} _BM_on	Burst Mode on			1.6		V
V TH_DIVI_OII	threshold			1.0		*
V _{TH} _BM_off	Burst Mode off			1.0		V
VTH_DIVI_OII	threshold			1.0		•
V _{TH} _PL	Power Limiting FB			4.4		V
VTH_I L	Threshold Voltage			7.7		•
T _D PL	Power limiting			80		mSec
1D_1 L	Debounce Time			80		IIISCC
Z _{FB} IN	Input Impedance			4		Kohm
	out(CS Pin) Section			Т		Rollin
T blanking	CS Input Leading			350		nSec
1_blanking	Edge Blanking Time			330		nsec
I_{CS}	Internal source	0V <v(bo)<0.4v< td=""><td></td><td>0</td><td></td><td>uA</td></v(bo)<0.4v<>		0		uA
ICS	current to CS pin for	0.4V <v(bo)<0.4v< td=""><td>100</td><td>×[V(BO)</td><td>0.41</td><td>uA</td></v(bo)<0.4v<>	100	×[V(BO)	0.41	uA
	OPP compensation	1.2V <v(bo)<3v< td=""><td></td><td><u>^[v(во)</u> .6×[V(В</td><td></td><td>uA uA</td></v(bo)<3v<>		<u>^[v(во)</u> .6×[V(В		uA uA
ТОС	Over Current	\ /	00⊤∠8	100	<i>∪)</i> -1.∠] 	nSec
T_{D} OC	Detection and Control	CL=1nf at GATE,		100		nsec
	Delay					
Demagnetization l			I	I	Ì	
				I		
V_{TH}_DEM	Demagnetization		10	75	20	mV
	comparator threshold		10	75	30	mV
V DEM 14	voltage			20	-	mV.
V _{TH} _DEM_hyst	Hysteresis for DEM			20		mV

	aamnaratar					1
	Comparator					
V -1()	Negative clamp			-0.7		V
V _{DEM_clamp(neg)}	voltage					
V_{DEM} _clamp(pos)	Positive clamp			5.8		V
T	voltage					
T_{supp}	Suppression of the					
	transformer ringing at			2		usec
	start of secondary					
_	stroke					
T_{OUT}	Timeout after last			5		usec
	demag transistion					
T_{DEM_delay}	Demag propagation			150	0	nsec
	delay			150	VO	11500
V _{TH} _OVP	Output OVP trigger			3.75		V
	point			3.73		V
T_ovp_plateau	OVP plateau			\mathcal{L}	/	
	sampling after			2		usec
	switching off					
N true OVP	Number of					
	subsequent cycles to			4		
	be true OVP	X				
Soft Start Section	oc true o vi				1	
Iss	Soft start charge			10		uA
133	current			10		un
V _{TH} _ss_over	Soft start over			2.1		V
V _{TH} _SS_OVEI	threshold voltage			2.1		v
V1)			2		V
V _{TH} _ss_clamp	SS clamp voltage			2		V
T 1 '1	after soft start is over				200	
I _{SS} _clamp_sink	Maximum sink				200	uA
	current capability					
	when SS is clamped					
V _{SS} _clamp	SS pin high clamp			5.8		V
	voltage					
Timer Section	X					
F_{burst}	Burst mode switching			20		KHz
	frequency					
F_QR_clamp_h	Frequency high clamp			130		KHz
1_	in QR mode					
F QR clamp 1	Frequency low clamp			20		KHz
_ < _ · · · /	in QR mode					
Ton max	Maximum on time			35		usec
Toff max	Maximum off time			50		usec
Thermal Protection			1		1	4500
T shutdown	Thermal shutdown			140		°C
1_SHULLOWII	temperature			1-10		
Latch Protection	temperature				<u>I</u>	
	External lotals tricas:	CC nin null up aumant		2.75		V
V_latch_trigger	External latch trigger	SS pin pull up current		3.75	1	v
	threshold voltage at	should be larger than				
X	SS pin	200uA				* 7
V_latch_release	VCC latch release			6	1	V
	voltage]	
	ion and Line OVP Prot	ection		_	1	
Vth_BO	Brownout comparator			0.5	1	V
	threshold					

Vth_line_OVP	Line OVP comparator			2		V
	threshold					
T _D _BO	Brownout debounce			50		ms
	time					
IBO_hys	BO output current for			1		uA
	BO hysteresis					
	programming					
Gate Drive Outpu	ıt					
VOL	Output Low Level	Io = 20 mA (sink)			0.3	V
VOH	Output High Level	Io = 20 mA (source)	11			V
VG_Clamp	Output Clamp	VCC=20V		15		V
	Voltage Level					
T_r	Output Rising Time	CL = 1nf		80		nSec
T_f	Output Falling Time	CL = 1nf		20		nSec

CHARACTERIZATION PLOTS

OPERATION DESCRIPTION

Quasi-Resonant (QR) converter typically features lower EMI and higher power conversion efficiency compared to conventional hard-switched converter with a fixed switching frequency. OB2202 is a highly integrated QR controller optimized for offline flyback converter applications. The built-in advanced energy saving with high level protection features provide cost effective solutions for energy efficient power supplies.

• Startup Current and Start up Control

Startup current of OB2202 is designed to be very low so that VCC could be charged up above UVLO(OFF) threshold level and device starts up quickly. A large value startup resistor can therefore be used to minimize the power loss yet reliable startup in application. For a typical AC/DC adaptor with universal input range design, a 2 M Ω , 1/8 W startup resistor could be used together with a VCC capacitor to provide a fast startup and yet low power dissipation design solution.

Operating Current

The operating current of OB2202 is very low. Good efficiency is achieved by the low operating current together with extended burst mode control schemes at No/light conditions.

• Multi-Mode Operation for High Efficiency

OB2202 is a multi-mode QR controller. The controller changes the mode of operation according to FB voltage, which reflects the line and load conditions.

- Under normal operating conditions (FB>Vth2, Figure 1), the system operates in QR mode. The frequency variation in QR mode is limited to the range of 20KHz ~ 130KHz due to the fact that frequency varies depending on the line voltage and the load conditions. System design should be optimized such that the operation frequency is within the range specified at full loading conditions and in universal AC line input range.
- At light load condition (Vth1<VFB<Vth2, Figure 1), the system operates in PFM (pulse frequency modulation) mode for high power conversion efficiency. In PFM mode, the "ON" time in a switching cycle is fixed and the system modulates the frequency according to the load conditions. Generally, in flyback converter, the decreasing of loading results in voltage level decreasing at FB pin. The controller monitors the voltage level at FB and control the switching frequency. However, the

valley switching characteristic is still preserved in PFM mode. That is, when loading decreases, the system automatically skip more and more valleys and the switching frequency is thus reduced. In such way, a smooth frequency foldback is realized and high power conversion efficiency is achieved.

■ At zero load or very light load conditions (VFB<Vth1), the system operates in On-Bright's proprietary "extended burst mode". In this condition, voltage at FB is below burst mode threshold level, Vth1. The Gate drive output switches only when VCC voltage drops below a preset level or FB input is active to output an on state. Otherwise the gate drive remains at off state to minimize the switching loss thus reduce the standby power consumption to the greatest extend. In extended burst mode, the switching frequency is fixed to 20KHz, in this way, possible audio noise is eliminated.

Figure 1

Demagnetization Detection

The core reset is detected by monitoring the voltage activity on the auxiliary windings through DEM pin. This voltage features a flyback polarity. A new cycle starts when the power switch is activated. After the on time (determined by the CS voltage and FB), the switch is off and the flyback stroke starts. After the flyback stroke, the drain voltage shows an oscillation with a frequency of approximately $1/2\pi\sqrt{L_pC_d}$, where L_p is the primary self inductance of the transformer and C_d is the capacitance on the drain node, as shown in Fig.2.

Figure 2

The typical detection level is fixed at 75mV at the DEM pin. Demagnetization is recognized by detection of a possible "valley" when the voltage at DEM is below 75mV in falling edge.

Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in OB2202 current mode control. The switch current is detected by a sense resistor into the CS pin. An internal leading edge blanking circuit chops off the sense voltage spike at initial MOSFET on state due to snubber diode reverse recovery so that the external RC filtering on sense input is no longer needed. The current limit comparator is disabled and cannot turn off the external MOSFET during the blanking period. The PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

Maximum and Minimum On-Time

The minimum on-time of the system is determined by the LEB time (typical 350ns). The IC limits the on-time to a maximum time of 35us.

• Ringing Suppression Timer

A ringing suppression timer is implemented. In normal operation, the ringing suppression timer starts when CS reaches the feedback voltage FB, the gate drive GATE is set to low. During the ringing suppression time, gate drive GATE remains in low state and cannot turn power switch on gain. The ringing suppression is necessary in applications where the transformer has a large leakage inductance, particularly at low output voltages or startup. In OB2202, the ringing suppression timer is set to 2us internally.

• Programmable Brownout Protection and Line OVP Protection

By monitoring the level on pin BO during normal operation, the controller protects the SMPS against

low main condition, as shown in Fig.3. When BO level falls below 0.5V, brownout is triggered, the controller stops pulsing and disable internal source current for brownout hysteresis. BO pin is also used for line OVP sense input, when BO level is above 2.0V, line OVP is triggered and stops pulsing.

Maximum and Minimum Frequency Clamp in QR operation

According to the QR operation principle, the switching frequency is inversely proportional to the output power. Therefore, when the output power decreases, the switching frequency can become rather high without limiting. To meet the CISPR-22 EMI limit starting at 150KHz, the maximum switching frequency in OB2202 is internally limited to 130KHz. In addition to up clamping, the switching frequency is also low clamped to 20KHz in QR mode for audio noise free operation.

On chip Thermal Shutdown

OB2202 provides an on chip thermal shutdown. The IC will stop switching when the junction temperature exceeds the thermal shutdown temperature, typically 140 °C. The IC resumes normal operation when the junction temperature decreased below this temperature.

External Latch Triggering

By externally forcing a level on pin SS (e.g.., with a signal coming from a temperature sensor) greater than 3.75V, OB2202 can be permanently latched-off. To resume normal operation, VCC voltage should go below 6V, which implies to unplug the SMPS form the mains.

• Programmable Over Power Protection (OPP) Compensation

The variation of max output power in QR system can be rather large if no compensation is provided. In OB2202, an internal current which is a function of BO voltage is sourced out for Over Power Protection (OPP) compensation. By adjusting the external resistor in series with CS pin, an excellent OPP performance can be realized in the universal input range.

• Output Over voltage protection (OVP)

An output over voltage protection (OVP) is implemented by sensing the auxiliary winding voltage at DEM pin during the flyback phase. The auxiliary winding voltage is a well-defined replica of the output voltage. The OVP works by sampling the plateau voltage at DEM pin during the flyback phase.

If the sampled plateau voltage exceeds the OVP trip level (3.75V), the controller stops all switching operations and enters into latch off mode.

Overload Operation

When over load (for example, short circuit) occurs, the feedback current is below minimum value and a fault is detected. If this fault is present for more than 80ms, the controller enters an auto-recovery soft burst mode. All pulses are stopped, VCC will drops below UVLO and the controller will try to restart with the power on soft start. The SMPS enters the burst sequence and it resumes operation once the fault disappears.

Programmable Soft Start

OB2202 features a programmable soft start to soften the constraints in the power supply during the startup. It is activated during the power on sequence. As soon as VCC reaches UVLO(OFF), an internal trimmed 10 uA current is sourced from SS pin and charges the external programming capacitor, the peak current is then gradually increased from zero. When SS pin reaches 2.1V,

soft start process is over, as shown in Fig.5. Every restart attempt is followed by soft start sequence.

Figure 5

Gate Drive

The Gate pin is connected to the gate of an external MOSFET for power switch control. Too weak the gate drive results in higher conduction and switch loss of MOSFET while too strong gate drive output compromises the EMI.

Good tradeoff is achieved through the built-in totem pole gate drive design with right output strength and dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme. An internal 15V clamp is added for MOSFET gate protection at high VCC voltage.

PACKAGE MECHANICAL DATA

8-Pin Plastic DIP

DIP8 PACKAGE OUTLINE DIMENSIONS

8-Pin Plastic SOP

SOP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions I	n Millimeters	Dimensions	s In Inches	
Symbol	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.300	1.550	0.051	0.061	
b	0.330	0.510	0.013	0.020	
C	0.170	0.250	0.006	0.010	
D	4.700	5.150	0.185	0.203	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.270	(BSC)	0.050 (BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.