Sesión de ejercicios 4

Andrés Auquilla August 2, 2024

Contents

1	Evaluación de hipótesis en el mismo dataset												
	1.1 Aplicando el test de McNemar	3											
	1.2 Curvas ROC	3											
2	Caso práctico	3											

1 Evaluación de hipótesis en el mismo dataset

Aplicando el test de McNemar 1.1

Asuma que probó 2 hipótesis sobre el mismo dataset de instancias, los resultados son los siguientes:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
real	+	+	+	+	+	+	+	+	-	-	-	-	-	-	-	-
H_1	-	+	-	+	-	-	+	+	-	+	-	-	-	+	+	+
H_2	+	+	+	+	+	-	+	+	-	+	-	-	+	-	-	-

Figure 1: Tabla de resultados para el ejercicio 2.1

Aplique el test de McNemar exacto para comparar las 2 hipótesis. Use una distribución binomial para determinar cuan significantes son las diferencias entre las 2 hipótesis. ¿Cuales son sus conclusiones?

La distribución binomial P(x) es la probabilidad de tener x éxitos en n experimentos si la probabilidad de éxito es p_0 . Donde $P(x) = \binom{n}{x} \times p_0^x \times (1 - p_0)^{n-x}$. Así mismo, $\binom{n}{x} = \frac{n!}{x!(n-x)!}$. Realice el cálculo de este test mediante la función *mcnemar* del paquete *statsmodels.stats.contingency_tables*.

1.2 **Curvas ROC**

En la tabla a continuación se muestran los resultados de la clasificación de 13 instancias realizada por los clasificadores A, B, y un clasificador probabilístico C. Tenga en consideración que un clasificador probabilístico puede convertirse en un clasificador ordinario con la ayuda de un umbral (threshold): C clasifica positivo si su valor es mayor que el threshold; de lo contrario, clasifica negativo.

	1	2	3	4	5	6	7	8	9	10	11	12	13
real	+	+	+	+	+	+	+	-	-	-	-	-	-
\mathbf{A}	+	+	-	-	+	+	-	-	+	-	-	-	-
В	+	+	+	+	-	+	+	-	+	-	+	-	-
$^{\mathrm{C}}$	0.8	0.9	0.7	0.6	0.4	0.8	0.4	0.4	0.6	0.4	0.4	0.4	0.2

Figure 2: Tabla de resultados para el ejercicio 2.2

Realice lo siguiente:

- a. Grafique A, B y C (con thresholds 0.30, 0.5, y 0.65) en un diagrama ROC.
- b. Sea P(+) = P(-) = 0.5, el costo de predecir un ejemplo negativo como positivo $C_{FP} = 1$ y el costo de predecir un ejemplo positivo como negativo $C_{FN} = 5$. ¿Cuál clasificador es mejor: A, B, o C?. Como threshold para C utilice el valor de 0.5.
- c. Grafique el "convex hull" de los clasificadores A, B, y C.
- d. ¿Que clasificadores nunca son óptimos?

Caso práctico 2

Abra el archivo caso practico.ipynb y siga las instrucciones del mismo. Para este ejercicio también necesitará el archivo amazon.csv.