1. Beta estimation by Crq package

Table 1: Crq package : $t_0=0$

censor	beta_0	SE of beta_0	beta_1	SE of beta_1
0	1.612687	0.048159	1.607900	0.073843
10	1.611620	0.049539	1.606690	0.075214
20	1.606791	0.050526	1.607532	0.078112
30	1.609247	0.055678	1.605384	0.086155

Table 2: Crq package : $t_0 = 1$

concor	beta_0	SE of beta_0	beta_1	SE of beta_1
censor	beta_0	SE of beta_o	beta_1	SE of beta_f
0	1.412293	0.058708	1.765218	0.080037
10	1.412021	0.065216	1.767131	0.084367
20	1.408970	0.061307	1.775480	0.084166
30	1.412860	0.062522	1.762401	0.093718

Table 3: Crq package: $t_0 = 2$

censor	$beta_0$	SE of beta_0	${ m beta}_1$	SE of beta_1
0	1.216880	0.075892	1.920729	0.092637
10	1.218693	0.070669	1.918879	0.094298
20	1.221132	0.078372	1.916944	0.100739
30	1.218962	0.074702	1.922773	0.098688

Table 4: Crq package: $t_0 = 3$

censor	$beta_0$	SE of beta_0	${ m beta_1}$	SE of beta_1
0	1.032496	0.089281	2.066462	0.107307
10	1.044603	0.091216	2.055335	0.109224
20	1.035707	0.091459	2.068797	0.110508
30	1.035868	0.093049	2.061560	0.118945

2. Beta estimation by Induced smoothing

Table 5: Induced smoothing : $t_0 = 0$

censor	beta_0	SE of beta_0	beta_1	SE of beta_1
0	1.612112	0.047176	1.606322	0.071616
10	1.611281	0.048469	1.605025	0.072836
20	1.603825	0.051518	1.605933	0.077186
30	1.608481	0.055201	1.558830	0.088151

Table 6: Induced smoothing : $t_0 = 0$

censor	$beta_0$	SE of beta_0	$beta_{-}1$	SE of beta_1
0	1.411618	0.057672	1.764185	0.078217
10	1.411499	0.063580	1.764791	0.080948
20	1.408579	0.061085	1.769136	0.083292
30	1.411566	0.061954	1.715243	0.097840

Table 7: Induced smoothing : $t_0=2$

			0 0	
censor	beta_0	SE of beta_0	$beta_1$	SE of beta_1
0	1.216806	0.074289	1.919081	0.090543
10	1.218068	0.069891	1.917508	0.092669
20	1.219678	0.078101	1.911348	0.099404
30	1.218287	0.073342	1.874563	0.100025

Table 8: Induced smoothing : $t_0 = 3$

censor	beta_0	SE of beta_0	beta_1	SE of beta_1
0	1.031326	0.087791	2.065815	0.104894
10	1.043351	0.089949	2.053756	0.106982
20	1.035983	0.090032	2.060626	0.108290
30	1.033711	0.092656	2.011142	0.124114

3. Variance estimation (β_0) (True,MB,ISMB,Crq)

Table 9: Standard error of β_0 at $t_0 = 0$

censor	true	MB	ISMB	Crq
0	0.047176	0.049942	0.056432	0.048679
10	0.048469	0.051081	0.058613	0.051156
20	0.051518	0.051596	0.059090	0.052543
30	0.055201	0.052973	0.061032	0.052924

Table 10: Standard error of β_0 at $t_0=1$

censor	true	MB	ISMB	Crq
0	0.057672	0.061242	0.068785	0.061390
10	0.063580	0.062221	0.070599	0.061750
20	0.061085	0.064066	0.073794	0.063317
30	0.061954	0.064688	0.075140	0.063939

Table 11: Standard error of β_0 at $t_0 = 2$

censor	true	MB	ISMB	Crq
0	0.074289	0.073361	0.082758	0.072033
10	0.069891	0.073207	0.083645	0.072978
20	0.078101	0.076187	0.086686	0.074966
30	0.073342	0.079417	0.092919	0.078524

Table 12: Standard error of β_0 at $t_0 = 3$

censor	true	MB	ISMB	Crq
0	0.087791	0.088500	0.103195	0.088395
10	0.089949	0.091435	0.105218	0.091717
20	0.090032	0.091810	0.105689	0.088791
30	0.092656	0.095122	0.112563	0.093617

4. Variance estimation (β_1) (True,MB,ISMB,Crq)

Table 13: Standard error of β_1 at $t_0 = 0$

censor	true	MB	ISMB	Crq
0	0.071616	0.070318	0.079589	0.076584
10	0.072836	0.075201	0.087718	0.080393
20	0.077186	0.082271	0.099144	0.082257
30	0.088151	0.097181	0.124329	0.087115

Table 14: Standard error of β_1 at $t_0=1$

censor	true	MB	ISMB	Crq
0	0.078217	0.080054	0.090186	0.086372
10	0.080948	0.084599	0.097919	0.092397
20	0.083292	0.092154	0.111107	0.094133
30	0.097840	0.105395	0.134005	0.096656

Table 15: Standard error of β_1 at $t_0 = 2$

censor	true	MB	ISMB	Crq
0	0.090543	0.090978	0.102547	0.094998
10	0.092669	0.094033	0.108606	0.095147
20	0.099404	0.102866	0.122095	0.101459
30	0.100025	0.120704	0.153733	0.106994

Table 16: Standard error of β_1 at $t_0 = 3$

censor	true	MB	ISMB	Crq
0	0.104894	0.104658	0.120876	0.108811
10	0.106982	0.110160	0.127570	0.114007
20	0.108290	0.117245	0.139248	0.118341
30	0.124114	0.134482	0.169726	0.123934

5. Coverage of parameter

Table 17: Coverage of β_0 30% 0% 10% 20% 0.970 0.958 0.964 t0=0 0.950 0.9620.9460.9600.968t0=1t0=20.9280.9600.9500.976 $t0=3 \quad 0.944$ 0.9360.9520.940

Table 18: Coverage of β_1				
	0%	10%	20%	30%
t0 = 0	0.962	0.970	0.972	0.962
t0=1	0.964	0.966	0.978	0.968
t0=2	0.942	0.968	0.966	0.992
t0 = 3	0.960	0.948	0.986	0.966