Lecture Outline

Reminders to self:

ECE2060

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone
- Last Lecture
 - Foundations for K-Maps (Minterms & Maxterms)
 - Started K-Maps(2-variable introduction so far)
- Today's Lecture
 - Continue K-Maps
 - 3-variable
 - 4-variable
 - Start binary adders and subtracters

Handouts and Announcements

Announcements

ECE2060

- Homework Problems 5-1, 5-2
 - Posted on Carmen yesterday
 - Due in Carmen 11:25am, Monday 2/6
- Homework Problems 2-4 and 4-1 reminder
 - Both due: 11:59pm Thursday 2/2
- Participation Quiz 3
 - Based on this lecture. 15min limit after you start.
 - Available 12:25pm today, due 12:25pm tomorrow, but also available 24hrs more with late penalty
- Read for Wednesday: No new reading assignment

3-Variable Karnaugh Maps

- Three-variable K-Map plotted in a similar manner
- The value of one variable, a, is listed on the top and the values of the other two, b and c, are listed on the side
 - Order of variables in the minterms shown here is abc
 - Note: alternative layout with one variable on the side and two on the top is equally valid

© Cengage Learning 2014

- Note "Gray-codelike" order
- Only one variable changes from rowto-row

(b) Decimal notation

3-Variable Karnaugh Maps

- Minterms in adjacent squares of map differ in only one variable and therefore can be combined using uniting theorem XY + XY' = X
- Do this as an example. Formal algorithm next lecture

	ABC	F
Values of F	000	0
	0 0 1	0
come from	010	1
first equation	0 1 1	1
tist chain.	100	1
just because	101	0
	110	1
equation can	111	0
equation can be changed to	(:	a)

COLLEGE OF ENGINEERING

ECE2060

4-Variable Karnaugh Maps

 m_{10}

 m_{11}

COLLEGE OF ENGINEE

ECE2060

K-Map Minimal SOP Algorithm

- 1. Draw the largest rectangular box (squares are a special case of rectangular) that:
 - A. Does not include any 0s
 - B. Has height ($\# \mathcal{L}_{rows}$) that is a power of 2 ($1, 2, 4, 8, \dots$)
 - C. Has width (# of columns) that is a power of 2
- 2. Make sure that every 1 on the map is in the <u>largest</u>

 possible box <u>larger boxes</u> do more reduction
- 3. Reduce the products by looking at boxes
 - A. The reduced expression will be SOP
 - B. The result may not be unique, but will be maximally reduced

COLLEGE OF ENGINEERING

ECE2060

K-Map Example

$$f(a,b,c) = \sum m(1,3,4,5,7)$$
$$f = a'b'c + a'bc + ab'c'$$
$$+ab'c + abc$$

K-Map Example

Don't Cares in K-maps

- All 1s must be covered
- Xs are used only if they will simplify the resulting expression

Note: Still SOP form

K-Map Amount of Reduction

K-map Boxes that are Groups of:

- $2 \rightarrow$ reduce minterm by | variable
- 4 → reduce minterm by 2 variables
- $8 \rightarrow$ reduce minterm by 3 variables
- 1 \rightarrow reduce minterm by \bigcirc variables (full-length minterm)

K-Map Example

$$f(a,b,c) = \sum m(0,2,4)$$

Later in semester will implement logic using hardware that assume 2-level AND-OR \rightarrow SOP

Note: f = c'(a' + b') is algebraically correct, but it is POS.

Sketch circuit

COLLEGE OF ENGINEERING

ECE2060

K-Map Example

COLLEGE OF ENGINEERING

ECE2060

K-Map Example

I copied the truth table from the previous slide and pasted it here. I was supposed to edit it for the function of this example, but apparently neglected to do so before lecture. I

corrected it after lecture.

$$f(A,B,C,D) = A'B'C'D' + A'BC'D + ABCD + AB'CD'$$

equation already minimal

K-Map Example

$$f(A, B, C, D) = A D + A'D' + B C'D + B'C D$$

Note that this solution is not unique. There are other ways to pick up those last two ones:

- A'BC' for the first one
- A'B'C for the second one

Summary of K-Maps

- Method to reduce SOP expression into another SOP expression:
 - Minimal in # of gates
 - Minimal in # of inputs/gate
- Map minterms next to each other such that they vary by only one bit
- Group in rectangles whose dimensions are power of 2
 - Variables whose values change within rectangles can be eliminated
 - -AB'C + A'B'C = B'C(A + A') = B'C
 - Group of 1, no reduction
 - Group of 2, eliminate | variable
 - Group of 4, eliminate 2 variables
 - Group of 8, eliminate 3 variables
- K-Map edges are connectable (wrap around) ↔ \$
- Five variable K-map (think 3-D: layers) section not assigned reading
 - You are not responsible for (not on HW or exams)
 - But we will do an example that uses them late in semester

COLLEGE OF ENGINEERING

ECE2060

Half Adder

Α

В

- Add two binary bits, A and B Need two outputs
 - A sum bit, \$
 - A carry bit, ^C
- A + B = S, C (regular addition here, not an OR)
- $S = A'B + AB' = A \oplus B$
- \bullet C = AB
- This works for adding two 1-bit numbers, but what if each number has more than one bit?
- Need to be able to add in the carry from the previous bit
- · Circuit for that is known as a Full Adder

COLLEGE OF ENGINEERING

ECE2060

Full Adder

- Add two binary bits, X_i and Y_i ; and carry bit C_i
- $X_i + Y_i + C_i = S_i$, C_{i+1} (regular addition here)
- $S_i = \sum m(1,2,4,7)$
- $C_{i+1} = \sum m(3,5,6,7)$
- K-map for S_i

Y_i	C _i 00	01	11	10
0				1
1			1	

X_i	Y_i	C_i	S_i	C_{i+1}
0	0	0	0	0
0	0	1	1	D
0	1	0	1	0
0	1	1	D	1
1	0	0	1	D
1	0	1	0	- 1
1	1	0	D	1
1	1	1	l	1

- · No reduction possible
- · For Si each mintern has an odd number of 1s
- $S_i = X_i \oplus Y_i \oplus C_i$

COLLEGE OF ENGINEERING

ECE2060

Full Adder

- Add two binary bits, X_i and Y_i ; and carry bit C_i
- $X_i + Y_i + C_i = S_i$, C_{i+1} (regular addition here)
- $S_i = \sum m(1,2,4,7)$
- $C_{i+1} = \sum m(3,5,6,7)$
- K-map for C_{i+1}

Y_i	C _i 00	01	11	10
0				
1				

X_i	Y_i	C_i	S_i	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $\bullet \quad C_{i+1} = X_i Y_i + X_i C_i + Y_i C_i$

Ripple Carry Adder

- $S_i = X_i \oplus Y_i \oplus C_i$
- $\bullet \quad C_{i+1} = X_i Y_i + X_i C_i + Y_i C_i$
- The circuits for each of the *i* bits are:

- The Carry-out circuit has two levels of logic
 - Two gate-delays for the C_{out} signal to be stable after x, y and c_{in} are applied
- In block diagram form, each Full Adder block contains both the Sum

and Carry-out circuits

Four-bit Adder

- In principle, one could make a four-bit adder directly from a truth table using a brute force approach
 - Add $B_3B_2B_1B_0$ to $A_3A_2A_1A_0$
 - Need to allow for a carry-in bit, C_0
 - Nine inputs
 - Five outputs: $S_3S_2S_1S_0$ and C_4 (
 - Truth table will have
 - This approach very difficult, and logic circuit to implement very complex
- Alternate approach
 - Use multiple instances of the full-adder block
 - This type of approach using multiple instances of smaller functional blocks is standard in digital design
 - Allows reliable design of complex systems to perform complex tasks

Ripple Carry Adder

- To make a four-bit adder use four full adders
 - Add $B_3B_2B_1B_0$ to $A_3A_2A_1A_0$, bit-by-bit
 - With the carry-out from the *i*-th bit becoming the carry-in of the i + 1 bit
 - Figure shows addition of and

_

Question: What can you say about the result if this is 1's or 2's complement addition?

- Dashed line wire is only needed for: end-around carry for 1's complement
- For 2's complement the carry out of bit 4 is discarded, so wire not needed

Ripple Carry Adder

- For 2s complement addition
 - Since each there is a delay of 2 gate-delays to generate each carry, and
 - the carry from one bit ripples into the next bit (
 - there is a total delay of 8 gate-delays to generate the final carry

Ripple Carry Adder

- For 2s complement addition
 - The final carry is discarded ()
 - Note that $C_0 = 0$, giving simplifications $S_0 = A_0 \oplus B_0$ and $C_1 = A_0 B_0$

Ripple Carry Adder

- For 1s complement addition
 - The final carry is used for the end-around carry
 - Fed back as C_0 , as shown by the dashed line
 - Have to wait an additional 7 gate delays for certainty its effects rippled to S_3

Ripple Carry Adder

Overflow detection

- Adding two positive numbers and getting a negative result
- Adding two negative numbers and getting a positive result
- Use the sign bits of A, B and S
- Overflow $V = A_3' B_3' S_3 + A_3 B_3 S_3'$

end-around carry for 1's complement