STAT 331 - Applied Linear Models

Cameron Roopnarine

Last updated: September 9, 2020

Contents

Conten	ts															1
0.1	Simple linear regression		 													2

CONTENTS 2

LECTURE 1 | 2020-09-08

Regression model infers the relationship between:

- Response (dependent) variable: variable of primary interest, denoted by a capital letter such as Y.
- Explanatory (independent) variables: (covariates, predictors, features) variables that potentially impact response, denoted (x_1, x_2, \dots, x_p) .

Alligator data:

- length (m) Y
- male/female (categorical, 0 or 1) x_1

Mass in stomach:

- fish x_2
- invertebrates x_3
- reptiles x_4
- birds x_5
- other x_6

We imagine we can explain Y in terms of (x_1, \ldots, x_p) using some function so that $Y = f(x_1, \ldots, x_p)$.

In this course, we will be looking at linear models.

Linear regression model assumes that

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

- Y value of response
- x_1, \ldots, x_p values of p explanatory variables (assumed to be fixed constants)
- $\beta_0, \beta_1, \dots, \beta_p$ model parameters
 - β_0 intercept, expected value of Y when all $x_i = 0$.
 - β_1, \ldots, β_p quantify effect on x_j on $Y, j = 1, \ldots, p$
 - ε random error "all models are wrong, but some are useful"

Assume $\varepsilon \sim N(0, \sigma^2)$. In general, the model will not perfectly explain the data.

Q: What is the distribution of *Y* under these assumptions?

$$\mathbf{E}[Y] = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$\mathbf{Var}[Y] = \mathbf{Var}[\varepsilon] = \sigma^2.$$

$$Y \sim N(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p, \sigma^2)$$

LECTURE 2 | 2020-09-09

0.1 Simple linear regression

A linear model with response variable (Y) and one explanatory variable (x); that is,

$$\bar{Y} = \beta_0 + \beta_1 x + \varepsilon$$

Data consists of pairs (x_i, y_i) where i = 1, ..., n.

CONTENTS 3

Before fitting any model, we might

- make a scatterplot to visualize if there is a linear relationship between x and y
- calculate correlation

If *X* and *Y* are random variables, then

$$\rho = \mathbf{Corr}[X, Y] = \frac{\mathbf{Cov}[X, Y]}{sd(x)sd(y)}$$

Based on (x_i, y_i) , the estimated correlation is

$$r = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})}}$$

$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$= \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

Measures the strength and direction of *linear* relationship between x and y.

- $|r| \approx 1$ strong linear relationship
- $|r| \approx 0$ lack of linear relationship
- r > 0 positive relationship
- r < 0 negative relationship
- $-1 \leqslant r \leqslant 1$

But does not tell us how to predict Y from x. To do so, we need to estimate β_0 and β_1 .

For data (x_i, y_i) for i = 1, ..., n, the simple linear regression model is

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Assume $\varepsilon \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ Therefore, $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$. In other words, $\mathbf{E}[Y_i] = \mu_i = \beta_0 + \beta_1 x_i$ and $\mathbf{Var}[Y_i] = \sigma^2$. Note that the Y_i 's are independent, but they are *not* independently distributed.

Use the *Least Squares* (LS) to estimate β_0 and β_1 .

$$\min_{\beta_0, \beta_1} \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2 = S(\beta_0, \beta_1)$$

LS is equivalent to MLE when ε_i 's are iid and Normal.

Taking partial derivatives:

$$\frac{dS}{d\beta_0} = 2\sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)] (-1)$$

$$\frac{dS}{d\beta_1} = 2\sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)] (-x_i)$$

CONTENTS

4

Now,

$$\frac{dS}{d\beta_0} = 0 \iff \sum_{i=1}^n y_i - n\beta_0 - \beta_1 \sum_{i=1}^n x_i = 0 \iff \beta_0 = \bar{y} - \beta_1 \bar{x}$$

$$\frac{dS}{d\beta_1} = 0 \iff \sum_{i=1}^n [y_i - \bar{y} + \beta_1 \bar{x} - \beta_1 x_i] x_i = 0$$

$$\iff \sum_{i=1}^n x_i (y_i - \bar{y}) - \beta_1 \sum_{i=1}^n x_i (x_i - \bar{x}) = 0$$

$$\iff \beta_1 = \frac{\sum_{i=1}^n x_i (y_i - \bar{y})}{\sum_{i=1}^n x_i (x_i - \bar{x})}$$

We can also show that

$$\beta_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Notationally, we use hats to show that they are estimates

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Call $\hat{\mu}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ the **fitted values** and $e_i = y_i - \hat{\mu}_i$ the **residual**.