How does a convolutional neural network work?

Valerio Velardo

CNNs

- Mainly used for processing images
- Perform better than multilayer perceptron
- Less parameters than dense layers

Intuition

- Image data is structured
 - Edges, shapes
 - Translation invariance
 - Scale invariance
- CNN emulates human vision system
- Components of a CNN learn to extract different features

CNN components

- Convolution
- Pooling

- *Kernel* = grid of weights
- Kernel is "applied" to the image
- Traditionally used in image processing

1	2	-1
0	1	2
-2	1	0

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Image

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel

1	0	0
2	1	0
1	0	-1

Image

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel

1	0	0
2	1	0
1	0	-1

Image

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel

1	0	0
2	1	0
1	0	-1

Image

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel

1	0	0
2	1	0
1	0	-1

$$\sum_{i=1}^{P} image_i \cdot K_i$$

3

image						
5	2	3	1	2	4	
2	4	1	0	3	1	
5	1	0	2	8	3	
0	2	1	5	2	4	
2	7	0	0	2	1	

Image

Kernel				
1	0	0		
2	1	0		
1	0	-1		

Output					
	?				

$$\sum_{i=1}^{P} image_i \cdot K_i = 5 \cdot 1 + 2 \cdot 0 + \dots + 0 \cdot -1$$

Image					
5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel				
1	0	0		
2	1	0		
1	0	-1		

Output					
	?				

$$\sum_{i=1}^{P} image_i \cdot K_i = 5 \cdot 1 + 2 \cdot 0 + \dots + 0 \cdot -1 = \boxed{18}$$

Image					
5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel				
1	0	0		
2	1	0		
1	0	-1		

Output					
	18				

$$\sum_{i=1}^{P} image_i \cdot K_i = 5 \cdot 1 + 2 \cdot 0 + \dots + 0 \cdot -1 = 18$$

Image

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel

1	0	0
2	1	0
1	0	-1

Image

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel

1	0	0
2	1	0
1	0	-1

Image

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel

1	0	0
2	1	0
1	0	-1

Image

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel

1	0	0
2	1	0
1	0	-1

Image

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Kernel

1	0	0
2	1	0
1	0	-1

18	10	-3	5	
12	?	?	?	
?	?	?	?	
?	?	?	?	

Kernel				
1	0	0		
2	1	0		
1 0 -1				

Output						
	18	10	-3	5		
	12	?	?	?		
	?	?	?	?		
	?	?	?	?		

Convolution: Zero padding

	Image							
0	0	0	0	0	0	0	0	
0	5	2	3	1	2	4	0	
0	2	4	1	0	3	1	0	
0	5	1	0	2	8	3	0	
0	0	2	1	5	2	4	0	
0	2	7	0	0	2	1	0	
0	1	3	2	8	7	0	0	
0	0	0	0	0	0	0	0	

Kernel					
1	0	0			
2	1	0			
1	0	-1			

Output						
-1						
	18	10	-3	5		
	12	?	?	?		
	?	?	?	?		
	?	?	?	?		

Image

0	0	0	0	0	0	0	0
0	5	2	3	1	2	4	0
0	2	4	1	0	3	1	0
0	5	1	0	2	8	3	0
0	0	2	1	5	2	4	0
0	2	7	0	0	2	1	0
0	1	3	2	8	7	0	0
0	0	0	0	0	0	0	0

Kernel

1	0	0
2	1	0
1	0	-1

-1	?	?	?	?	?
?	18	10	-3	5	?
?	12	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?

Kernels

- Feature detectors
- Kernels are learned

Oblique line detector

1	0	0
0	1	0
0	0	1

Vertical line detector

0	1	0
0	1	0
0	1	0

Architectural decisions for convolution

- Grid size
- Stride
- Depth
- Number of kernels

- # of pixels for height/width
- Odd numbers

- # of pixels for height/width
- Odd numbers

3 by 3				
1	2	9		
1	6	5		
2	2	3		

- # of pixels for height/width
- Odd numbers

5	by	5
---	----	---

1	2	9	8	7
1	6	5	0	0
2	2	3	1	0
1	1	-3	0	-1
1	-2	2	2	3

- # of pixels for height/width
- Odd numbers

5 by 5						
1	2	9	8	7		
1	6	5	0	0		
2	2	3	1	0		
1	1	-3	0	-1		
1	-2	2	2	3		

- Step size used for sliding kernel on image
- Indicated in pixels

- Step size used for sliding kernel on image
- Indicated in pixels

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

- Step size used for sliding kernel on image
- Indicated in pixels

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

- Step size used for sliding kernel on image
- Indicated in pixels

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

- Step size used for sliding kernel on image
- Indicated in pixels

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

- Step size used for sliding kernel on image
- Indicated in pixels

5	2	3	1	2	4
2	4	1	0	3	1
5	1	0	2	8	3
0	2	1	5	2	4
2	7	0	0	2	1
1	3	2	8	7	0

Depth

Depth

Kernel = $3 \times 3 \times 3$ # weights = 27

of kernels

- A conv layer has multiple kernels
- Each kernel outputs a single 2D array
- Output from a layer has as many 2d arrays as # kernels

Pooling

- Downsample the image
- Overlaying grid on image
- Max/average pooling
- No parameters

Pooling settings

- Grid size
- Stride
- Type (e.g., max, average)

Input

-1	2	0	2
3	18	10	-3
2	12	5	2
1	3	7	4

Input

-1	2	0	2
3	18	10	-3
2	12	5	2
1	3	7	4

Input

-1	2	0	2
3	18	10	-3
2	12	5	2
1	3	7	4

18	10

Input

-1	2	0	2
3	18	10	-3
2	12	5	2
1	3	7	4

10	18
12	

Input

-1	2	0	2
3	18	10	-3
2	12	5	2
1	3	7	4

10	18
12	7

CNN architecture

How does convolution/pooling apply to audio?

- Spectrogram/MFCC = image
- Time, frequency = x, y
- Amplitude = pixel value

Preparing MFCCs for a CNN

- 13 MFCCs
- Hop length = 512 samples
- # samples in audio file = 51200

Preparing MFCCs for a CNN

- 13 MFCCs
- Hop length = 512 samples
- # samples in audio file = 51200

Data shape = $100 \times 13 \times 1$

What's up next?

Implement CNN for music genre classification