1

2012-ME-1-13

Golla Shriram - AI24BTech11010

I.	Q.1-	Q.25	CARRY	ONE	MARK	EACH.
----	------	------	-------	-----	------	-------

	n abrasive jet machin naterial removal rate	ing, as the distance between	en the nozzle tip and the	work surface increases, (2012-N			
	increases continuou decreases continuou	•		stable and then increases stable and then decreases			
2) Match the following metal forming processes with their associated stresses in the workpiece (2012 ME)							
	,	Metal Forming Process	Type of Stress				
		1. Coining	S. Compressive				
		2. Wire Drawing	P. Tensile				
		3. Blanking	Q. Shear				
		4. Deep Drawing	R. Tensile and Compre	ssive			
a)	1-S, 2-P, 3-Q, 4-R		c) 1-P, 2-Q, 3-S, 4-R				
	1-S, 2-P, 3-R, 4-Q		d) 1-P, 2-R, 3-Q, 4-S				
			+0.040				
3) In an interchangeable assembly, shafts of size $25.000^{-0.010}$ mm mate with holes of size $+0.030$							
$25.000^{+0.020}$ mm. The maximum interference (in <i>microns</i>) in the assembly is (2012-ME)							
a)	40	b) 30	c) 20	d) 10			
4) During <i>normalizing</i> process of steel, the specimen is heated a) between the upper and lower critical temperature and cooled in still air.							
b) above the upper critical temperature and cooled in furnace.c) above the upper critical temperature and cooled in still aird) between the upper and lower critical temperature and cooled in furnace.							
5) Oil flows through a 200 mm diameter horizontal cast iron pipe (friction factor, $f = 0.0225$) of length 500 m. The volumetric flow rate is 0.2 m^3/s . The head loss (in m) due to friction is (assume $g = 9.81 \ m/s^2$) (2012-ME)							
a)	116.18	b) 0.116	c) 18.22	d) 232.36			
	or an opaque surfac quation	ee, the absorptivity(α), tra	nsmissivity(τ) and reflec	ctivity(ρ)are related by (2012-N			
a)	$\rho + \alpha = \tau$	b) $\rho + \alpha + \tau = 0$	c) $\rho + \alpha = 1$	d) $\rho + \alpha = 0$			

7) Steam enters an adiabatic turbine operating at steady state with an enthalpy of $3251.0 \ kJ/kg$ and leaves as a saturated mixture at 15 kPa with quality (dryness fraction) 0.9. The enthalpies of the saturated liquid and vapor at 15 kPa are $h_f = 225.94 \ kJ/kg$ and $h_g = 2598.3 \ kJ/kg$ respectively. The mass flow rate of steam is $10 \ kg/s$. Kinetic and potential energy changes are negligible. The power output of the turbine in MW is (2012-ME)

d) 27.0

8)	The following are the data for two crossed helical gears used for speed reduction: Gear I: Pitch circle diameter in the plane of rotation 80 mm and helix angle 30° Gear II: Pitch circle diameter in the plane of rotation 120 mm and helix angle 22.5° If the input speed is 1440 rpm, the output speed in rpm is (2012-ME)					
	a) 1200	b) 900	c) 875	d) 720		
9)	9) A solid disc of radius r rolls without slipping on a horizontal floor with angular velocity ω an angular acceleration α . The magnitude of the acceleration of the point of contact on the disc (2012-ME)					
	a) zero	b) $r\alpha$	c) $\sqrt{(r\alpha)^2 + (r(\omega)^2)^2}$	d) $r\omega^2$		
10)	0) A thin walled spherical shell is subjected to an internal pressure. If the radius of the shell is increased by 1% and the thickness is reduced by 1%, with the internal pressure remaining the same, the percentage change in the circumferential (hoop) stress is (2012-ME)					
	a) 0	b) 1	c) 1.08	d) 2.02		
11)	11) The area enclosed between the straight line $y = x$ and the parabola $y = x^2$ in the x-y plane is (2012-ME)					
	a) $\frac{1}{6}$	b) 1/4	c) $\frac{1}{3}$	d) $\frac{1}{2}$		
12) Consider the function $f(x) = x $ in the interval $-1 \le x \ge 1$. At the point $x = 0$, $f(x)$ is (2012-ME)						
	a) continuous and diffeb) non-continuous and		c) continuous and non-d) neither continuous n			
13) Which one of the following is NOT a decision taken during the aggregate production planning stage? (2012-ME)						
	a) Scheduling of machib) Amount of labour to		c) Rate at which produ d) Inventory to be carri	-	open	

c) 9.1

a) 6.5

b) 8.9