Práctica 4 : diagramas de Voronoi

I E G

3 de noviembre de 2021

Resumen

Examina el efecto del número de semillas k, manteniendo [2] constante el tamaño de la zona n, en la penetración de las grietas que se forman en términos de la mayor distancia Manhattan entre la grieta y el exterior de la pieza, visualizando los resultados con diagramas caja-bijote o similar sobre las réplicas y aplicando métodos estadísticos para establecer el efecto tiene, si es que tenga, k en ello.

Figura 1: Generación de semillas.

1. Desarrollo

Para efectos de esta práctica se utiliza Python versión 3.9.6, primeramente se utiliza el código previamente reportado [2] donde se colocaran las semillas, la zona empleada es constante de n=100 posteriormente se generan las semillas en la zona creada variando [1] la cantidad de 40, 90, 180; una vez generada la zona se propaga la grieta y se calcula la distancia manhattan, final mente se genera un grafico de las distancias manhattan de las grietas en función de las semillas de la zona de distribución.

2. Experimento

En la figura 1 se observa un ejemplo de las celdas de Voronoi generadas en una zona de distribución de 100×100 para 90 semillas y en la figura 2 se muestra las celdas generadas con su respectiva grieta. En la figura 3 se muestrea la gráfica caja-bigote para representar los datos del desarrollo.

Figura 2: Celdas con grieta formada.

Figura 3: Grafico caja-bigote.

3. Conclusiones

La distancia manhattan máxima de las grietas propagadas tiende a ser menor en tamaños de zona al aumentar la cantidad de semillas.

Referencias

- [1] C. A. Estrada. Práctica 4: diagramas de voronoi, octubre 2020. URL https://github.com/CrisAE/Simulacion/blob/master/P4/P4.pdf.
- [2] E. Schaeffer. Práctica 4: diagramas de voronoi, septiembre 2021. URL https://elisa.dyndns-web.com/teaching/comp/par/p4.html.