Spanning Tree Fraction

Consider a connected graph, G=(V,E), with n vertices numbered from 0 to n-1 connected by m edges. Each edge i (where $0 \le i < m$) is labeled with pair of integers, (a_i,b_i) . For example:

Given G, find a spanning tree $T\subset E$ with maximum possible value of $\dfrac{\displaystyle\sum_{i\in T}a_i}{\displaystyle\sum_{i\in T}b_i}$

Then print the result of the maximal summation as an irreducible fraction in the form p/q.

Input Format

The first line contains two space-separated integers denoting the respective values of n (the number of vertices in G) and m (the number of edges in G).

Each of the m subsequent lines contains four space-separated integers describing the respective values of u_i , v_i , a_i , and b_i defining an edge between vertices u_i and v_i with the label (a_i, b_i) .

Constraints

- $2 \le n \le 10^5$
- $n-1 < m < 10^5$
- $0 \leq u_i, v_i \leq n-1$
- $1 \le a_i, b_i \le 100$
- ullet Graph G may contain self-loops and multiple edges between the same pair of nodes.

Output Format

Print the maximum value of the given summation for any $T \subset E$ as an irreducible fraction in the form p/q. If this number is an integer, q must be 1.

Sample Input 0

Sample Output 0

2/3

Explanation 0

The diagram below depicts $oldsymbol{G}$ and its three different spanning trees:

Because the maximum $\frac{p}{q}$ is $\frac{2}{3}$, we print $\frac{2}{3}$ as our answer.