Fundamentos de Ingeniería Eléctrica Tema 6: Elementos de la teoría de circuitos (III)

Contenidos

- Bobina
- Condensador
- Acoplamiento magnético
- Bobinas acopladas
- Transformador ideal

Elementos básicos

Resistencia (R)	$- \underbrace{ v(t)}^{i(t)}$	v(t) = Ri(t)
Bobina (L)	-v(t)	$v(t) = L rac{di(t)}{dt}$
Condensador (C)	$\begin{array}{c c} & i(t) \\ \hline & v(t) \end{array}$	$i(t) = C\frac{dv(t)}{dt}$
Fuente tensión	$\underbrace{-(1+)}_{v(t)}$	v(t) conocida $i(t)$ incógnita
Fuente intensidad	$ \begin{array}{c} i(t) \\ - \\ v(t) \end{array} $	$egin{aligned} v(t) & & \text{incógnita} \\ i(t) & & \text{conocida} \end{aligned}$

Bobina

- Hilo metálico alrededor de un núcleo (magnético o no)
- Ley de Ampere: una corriente eléctrica (variable) produce un campo magnético (variable)
- Ley de Faraday: un campo magnético variable crea una tensión inducida
- Su comportamiento está relacionado con campos magnéticos
- Se demostró que la tensión inducida es proporcional al ratio de variación de la corriente

Aplicaciones Principales de una Bobina

Transformadores:

• Las bobinas son parte fundamental de los transformadores, los cuales convierten la energía entre diferentes niveles de voltaje.

Motores Eléctricos y Generadores:

• Las bobinas son componentes clave en motores y generadores, ya que convierten la energía eléctrica en energía mecánica, y viceversa.

Filtros de Frecuencia:

• Se utilizan en circuitos de radio y televisión para bloquear o permitir el paso de ciertas frecuencias.

Bobina (cont)

 L es el coeficiente de autoinducción (se mide en Henrios (H) y depende de la geometría de la bobina y las características magnéticas)

$$\underbrace{L}_{v}\underbrace{i}_{v}\underbrace{i}_{-}$$

$$v = L\frac{di}{dt}$$

- Para i constante, $v = 0 \rightarrow$ cortocircuito
- La intensidad no puede cambiar de bruscamente (función continua)
- La intensidad se calcula como $i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(t) dt$
- \bullet La potencia se calcula como $P(t)=v(t)i(t)=Li(t)\frac{di}{dt}$
- La energía almacenada se calcula como

$$w(t) = \int_{t_0}^{t} p(t)dt = \int_{t_0}^{t} Li(t)\frac{di}{dt}dt = \frac{1}{2}L\left(i^2(t) - i^2(t_0)\right)$$

ullet Si $i(t_0)=0$ la energía se calcula como $w(t)=rac{1}{2}Li^2(t)$

La fuente genera una corriente igual a cero para t<0 y un pulso $10\cdot\delta\cdot t\cdot e^{-\beta t}$ para t>0. Determina la expresión de la tensión en bornas de la bobina v(t), dibuja la forma de onda de corriente y tensión, y calcula

- a) $i(t = \frac{2}{\beta}s)$ [A]
- b) $v(t = \frac{2}{\beta}s)$ [V]
- c) Energía almacenada $t=\frac{2}{\beta}s$ [mJ] f) Instante t (en segundos) en el
- d) Instante t (en segundos) en el que la corriente es máxima

- e) Instante t (en segundos) en el que la tensión es máxima
- f) Instante t (en segundos) en el que la tensión cambia de polaridad

Datos: $L = 100 \cdot \delta \text{ mH}$

Solución 6-1

$$\begin{split} i(t) &= 10te^{-5t}, t > 0 \qquad L = 100 \text{mH} \\ v(t) &= L\frac{di}{dt} = 0.1 \cdot 10 \left(e^{-5t} - 5te^{-5t} \right) = e^{-5t} (1 - 5t) \\ i(t = 0.4) &= 10 \cdot 0.4 \cdot e^{-5 \cdot 0.4} = 0.54 \text{ [A]} \\ v(t = 0.4) &= e^{-5 \cdot 0.4} (1 - 5 \cdot 0.4) = -0.14 \text{ [V]} \\ w(t = 0.4) &= 0.5 \cdot 0.1 \cdot 0.54^2 = 14.58 \text{ [mJ]} \end{split}$$

Para el circuito de la figura determina las expresiones $i_R(t)$ y $i_L(t)$ para t>0 suponiendo que $i_L=0$ para $t\leq 0$. Dibuja las funciones $v_a(t)$ y $i_L(t)$ para t > 0 y calcula

a)
$$i_R(t=\frac{2}{\beta})$$
 [A]

b)
$$i_L(t = \frac{2}{\beta})$$
 [A]

a)
$$i_R(t=\frac{2}{\beta})$$
 [A] b) $i_L(t=\frac{2}{\beta})$ [A] c) $w_L(t=\frac{2}{\beta})$ [mJ]

Datos:
$$R = \gamma[\Omega], L = 100 \cdot \delta \text{ [mH]}, v_g = \begin{cases} 0, t \leq 0 \\ 2 \cdot \alpha \cdot te^{-\beta \cdot t}, t > 0 \end{cases}$$

Bobina (cont)

• Bobinas en serie

• Bobinas en paralelo

Bobina real

Condensador

- Está compuesto de dos conductores separados por un aislante o material dieléctrico
- Puede almacenar carga eléctrica (como las baterías)
- Su comportamiento está basado en fenómenos asociados con campos eléctricos
- Se demostró que la corriente es proporcional al ratio de variación de la tensión

Aplicaciones Principales de un Condensador

Corrección del Factor de Potencia:

 Mejora la eficiencia energética de sistemas eléctricos compensando la energía reactiva.

Almacenamiento de Energía:

• Usados en fuentes de alimentación, estabilizadores y sistemas de backup de energía (UPS).

Filtros de Frecuencia:

• Se utilizan para eliminar ruidos y estabilizar señales en circuitos de audio y radiofrecuencia.

Condensador (cont)

• *C* es la capacidad (se mide en Faradios (F) y depende de la geometría del condensador y las características del material dieléctrico)

- Para v constante, $i = 0 \rightarrow \text{circuito abierto}$
- La tensión no puede cambiar de bruscamente (función continua)
- La tensión se calcula como $v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(t) dt$
- La potencia se calcula como $P(t) = v(t)i(t) = Cv(t)\frac{dv}{dt}$
- La energía almacenada se calcula como

$$w(t) = \int_{t_0}^{t} p(t)dt = \int_{t_0}^{t} Cv(t) \frac{dv}{dt} dt = \frac{1}{2} C \left(v^2(t) - v^2(t_0) \right)$$

ullet Si $v(t_0)=0$ la energía se calcula como $w(t)=rac{1}{2}Cv^2(t)$

Dado el circuito de la figura determina y dibuja v(t) y i(t) y calcula

a)
$$v(t = \frac{\delta}{2}s)$$
 [V]

b)
$$i(t=\frac{\delta}{2}s)$$
 [μ A] c) $w(t=\frac{\delta}{2}s)$ [μ J]

c)
$$w(t = \frac{\delta}{2}s) [\mu J]$$

$$v_g \stackrel{+}{\overset{+}{\smile}} v(t) \stackrel{+}{\overset{-}{\smile}} C$$

Datos:
$$C = \frac{\beta}{10} \ [\mu F], v_g = \begin{cases} 0, t \leqslant 0s \\ \kappa \cdot t, 0 \leqslant t \leqslant \delta s \\ \kappa e^{-(t-\delta)}, t \geqslant \delta s \end{cases}$$
 [V]

Solución 6-3

$$C = 0.5 \, [\mu F]$$

$$v(t) = \begin{cases} 0, t \leqslant 0s \\ 4 \cdot t, 0 \leqslant t \leqslant 1s \\ 4e^{-(t-1)}, t \geqslant 1s \end{cases}$$
 [V]

$$v(t = 0.5s) = 2$$
 [V]

$$i(t = 0.5s) = 2 [\mu A]$$

$$w(t = 0.5s) = \frac{1}{2}Cv^2 = 1 \ [\mu J]$$

 $i(t) = \begin{cases} 0, t \leqslant 0s \\ 2, 0 \leqslant t \leqslant 1s \\ -2e^{-(t-1)}, t \geqslant 1s \end{cases} \quad [\mu \mathsf{A}]$

Solución 6-3 (cont)

Para el circuito de la figura calcula

a)
$$w_c(t=\frac{1}{\beta})$$
 [mJ]

b)
$$P_{ig}(t=\frac{1}{\beta})$$
 [mW,gen]

Datos:
$$C=\gamma$$
 [mF], $R=\delta[\Omega], i_g=\begin{cases} 0, t\leqslant 0 \\ \alpha e^{-\beta \cdot t}, t>0 \end{cases}$ [A

Condensador (cont)

Condensadores en serie

• Condensadores en paralelo

Condensador real

El circuito de la figura lleva en operación un tiempo suficientemente largo. Calcula

- a) la energía total almacenada en el circuito [mJ]
- b) la potencia suministrada por la fuente [W,gen]

Datos:

$$v_g = 10 \cdot \theta \text{ [V]}, R_1 = 10 \cdot \epsilon[\Omega], R_2 = 10 \cdot \kappa[\Omega], L = 10 + \lambda \text{ [mH]}, C = \beta \text{ [}\mu\text{F]}$$

Para el circuito en corriente continua de la figura determina:

- a) v_g [V]
- b) v_R [V]
- c) i_L [A]
- d) $P_{3,5v_R}$ [W,gen] e) P_{v_q} [W,gen]
- f) $P_{2,5i_L}$ [W,gen]
- g) w_L [J]

Datos:
$$R_1=\gamma[\Omega], R_2=\alpha[\Omega], R_3=\eta[\Omega], R_4=\beta[\Omega], R_5=\kappa[\Omega], R_6=\theta\Omega], R_7=\lambda[\Omega], L=\epsilon$$
 [H], $C=1+\frac{\epsilon}{10}$ [F], $v_C=20+\kappa$ [V]

Resuelve el circuito de la figura usando el método de nudos y calcula:

a) i [A] c) P_{3v} [W,gen] e) w_L [J] b) v [V] d) P_{3i} [W,gen] f) w_C [J]

Datos: $v_g = \kappa$ [V], $i_g = \epsilon$ [A], $R_1 = \epsilon$ [Ω], $R_2 = \delta$ [Ω], $R_3 = \delta$ [Ω], $R_4 = \epsilon$ [Ω], $R_5 = \kappa$ [Ω], $L = \theta$ [mH], $C = \alpha$ [μ F]

Acoplamiento magnético

- ullet La intensidad variable i_1 crea un flujo magnético variable Φ_{11}
- Dicho flujo magnético variable induce una tensión en la bobina 1 $u_1=L_1\frac{di_1}{dt}$ donde L_1 es el coeficiente de autoinducción de la bobina 1
- ullet Parte del flujo creado por la bobina 1 atraviesa la bobina 2 (Φ_{21})
- Este flujo magnético variable también crea una tensión inducida en la bobina 2 $u_2=M_{21}\frac{di_1}{dt}$ donde M_{21} es el coeficiente de inducción mutua

Acoplamiento magnético (cont)

- ullet La intensidad variable i_2 crea un flujo magnético variable Φ_{22}
- Dicho flujo magnético variable induce una tensión en la bobina 2 $u_2=L_2\frac{di_2}{dt}$ donde L_2 es el coeficiente de autoinducción de la bobina 2
- ullet Parte del flujo creado por la bobina 2 atraviesa la bobina 1 (Φ_{12})
- Este flujo magnético variable también crea una tensión inducida en la bobina 1 $u_1=M_{12}\frac{di_2}{dt}$ donde M_{12} es el coeficiente de inducción mutua

Acoplamiento magnético (cont)

• Aplicando superposición obtenemos:

$$u_{1} = L_{1} \frac{di_{1}}{dt} + M_{12} \frac{di_{2}}{dt}$$

$$u_{2} = M_{21} \frac{di_{1}}{dt} + L_{2} \frac{di_{2}}{dt} \implies \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix} = \begin{pmatrix} L_{1} & M_{12} \\ M_{21} & L_{2} \end{pmatrix} \begin{pmatrix} \frac{di_{1}}{dt} \\ \frac{di_{2}}{dt} \end{pmatrix}$$

• $M_{12}=M_{21}=M=k\sqrt{L_1L_2}$, con $0 \leqslant k \leqslant 1$ coeficiente de acoplamiento

Terminales correspondientes

Pareja de terminales tales que al inyectar corrientes por ellos producen flujos magnéticos en el mismo sentido

- \bullet En la figura de la izquierda, los terminales correspondientes son 1 y 2
- En la figura de la derecha, los terminales correspondientes son 1 y 2'
- Sus circuitos equivalentes en dos dimensiones serían

Terminales correspondientes (cont)

- ¿Cómo determinar terminales correspondientes?
- 1) Seleccionar un terminal de la bobina 1 y marcarlo con un punto
- 2) Asignar una corriente entrante por el terminal marcado
- 3) Determinar la dirección del flujo magnético (regla mano derecha)
- 4) Seleccionar un terminal de la bobina 2 y asignar una corriente entrante
- 5) Determinar la dirección del flujo magnético (regla mano derecha)
- 6) Si los flujos van en el mismo sentido, marcar el terminal seleccionado de la bobina 2 con un punto
- 7) Si los flujos van en sentido contrario, marcar con un punto el terminal no seleccionado de la bobina 2

Terminales correspondientes (cont)

Terminales correspondiente (cont)

A partir del circuito en tres dimensiones, dibuja las terminales correspondientes del dibujo en dos dimensiones

Bobinas acopladas magnéticamente

Pasos para determinar la tensión en bobinas acopladas magnéticamente

k es el coeficiente de acoplamiento y varía entre 0 y 1

 Elige arbitrariamente el sentido de las intensidades y las tensiones de las bobinas

Bobinas acopladas magnéticamente (cont)

2) Escribe la siguiente ecuación matricial sin signos

$$\begin{pmatrix} \boxed{s_1}v_1\\ \boxed{s_2}v_2 \end{pmatrix} = \begin{pmatrix} +L_1 & \boxed{s_{12}}M_{12}\\ \boxed{s_{12}}M_{21} & +L_2 \end{pmatrix} \begin{pmatrix} \frac{di_1}{dt}\\ \frac{di_2}{dt} \end{pmatrix}$$

3) Determina los signos como sigue:

$$s_1 o + \operatorname{si} \ v_1$$
 y i_1 tienen el mismo sentido y $-$ en otro caso $s_2 o + \operatorname{si} \ v_2$ y i_2 tienen el mismo sentido y $-$ en otro caso $s_{12} o + \operatorname{si} \ i_1$ y i_2 entran o salen de terminales correspondientes $-$ si i_1 sale por un terminal correspondiente y i_2 entra, o viceversa.

- 4) Comprueba que la matriz resultante es simétrica
- 5) Si es necesario multiplica algunas filas por -1 para obtener las ecuaciones en la forma deseada

Bobinas acopladas magnéticamente (cont)

Determina las expresiones de v_1 , v_2 y v_3 (Contesta aquí)

Bobinas acopladas magnéticamente (cont)

• Bobinas acopladas en serie

• Bobinas en paralelo

Circuitos con bobinas acopladas magnéticamente

Escribe el sistema de ecuaciones diferenciales del siguiente circuito

 Elegimos arbitrariamente sentidos de tensión e intensidades de las bobinas

Circuitos con bobinas acopladas magnéticamente (cont)

2) Escribimos las ecuaciones de las bobinas como hemos hecho anteriormente

$$v_1 = +L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$$
$$v_2 = -L_2 \frac{di_2}{dt} - M \frac{di_1}{dt}$$

3) Planteamos las ecuaciones de malla

$$v_g(t) = R_1 i_1 + v_1$$
$$v_2 = R_2 i_2$$

4) Sustituimos las tensiones de las bobinas acopladas

$$v_g(t) = R_1 i_1 + L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$$
$$-L_2 \frac{di_2}{dt} - M \frac{di_1}{dt} = R_2 i_2$$

Sabiendo que el coeficiente de acoplamiento de las bobinas es 0.5, calcula la tensión [V] en el nudo A para t=1s. La energía inicial almacenada en el circuito es nula.

Datos:
$$i_{g1} = \sin 2\pi t$$
 [A], $i_{g2} = \sin \pi t$ [A], $R_1 = \alpha$ [Ω], $R_2 = \beta$ [Ω], $L_1 = \gamma$ [H], $L_2 = \delta$ [H], $L_3 = \epsilon$ [H], $C_1 = \eta$ [F], $C_2 = \theta$ [F]

Potencia en bobinas acopladas

Para determinar la energía almacenada en bobinas acopladas hacemos:

1) Calculamos la expresión de la potencia consumida por todas las bobinas

$$p(t) = v_1 i_1 - v_2 i_2$$

2) Sustituimos las expresiones de las tensiones

$$p(t) = \left(+L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}\right) i_1 - \left(-L_2 \frac{di_2}{dt} - M \frac{di_1}{dt}\right) i_2$$

Potencia en bobinas acopladas (cont)

3) Calculamos la energía haciendo la integral

$$w(t) = \int_{t_0}^{t} p(t)dt = \int_{t_0}^{t} \left(L_1 i_1 \frac{di_1}{dt} + L_2 i_2 \frac{di_2}{dt} + M \left(i_1 \frac{di_2}{dt} + i_2 \frac{di_1}{dt} \right) \right) dt = \frac{1}{2} L_1 \left(i_1^2(t) - i_1^2(t_0) \right) + \frac{1}{2} L_2 \left(i_2^2(t) - i_2^2(t_0) \right) + M \left(i_1(t) i_2(t) - i_1(t_0) i_2(t_0) \right)$$
Si $i_1(t_0) = i_2(t_0) = 0$

 $w(t) = \frac{1}{2}L_1i_1^2(t) + \frac{1}{2}L_2i_2^2(t) + Mi_1(t)i_2(t)$

- 4) El signo de los términos correspondientes a las auto inductancias en siempre positivo
- 5) El signo correspondiente a la inductancia mutua es + si i_1 y i_2 entran o salen de terminales correspondientes y en otro caso (mismo signo que el s_{12} de la matriz!!)

Las fuentes del circuito son de corriente continua. El coeficiente de acoplamiento es k=0.8. Resuelve usando mallas y calcula:

Transformador ideal

- ullet Está formado por dos bobinas acopladas magnéticamente con N_1 y N_2 espiras, respectivamente
- La relación de transformación se define como $a=\frac{N_1}{N_2}$
- El coeficiente de acoplamiento entre las bobinas es la unidad k=1
- El coeficiente de autoinducción es infinito $L_1=L_2=\infty$
- Para esas condiciones se demuestra que

 No hay pérdidas de potencia, es decir, la potencia de entrada del primario es igual a la potencia de salida del secundario

$$v_1(t)i_1(t) = -v_2(t)i_2(t) \implies \frac{v_1}{v_2} = -\frac{i_2}{i_1} = a$$

39 / 44

• Los transformadores solo tienen sentido si hay variación del flujo magnético con respecto al tiempo

Transformador ideal (cont)

Para el circuito de la figura calcula las siguientes intensidades en [mA]

- a) $i_1(t=\frac{\pi}{2})$ con $v_q(t)=\beta\sin t$ c) $i_1(t=\frac{\pi}{2})$ con $v_q(t)=\epsilon\cdot e^t$
- b) $i_2(t=\frac{\pi}{2})$ con $v_q(t)=\beta\sin t$ d) $i_2(t=\frac{\pi}{2})$ con $v_q(t)=\epsilon\cdot e^t$

Datos: $R_1 = \gamma [\Omega], R_2 = \delta [\Omega]$

Solución 6-10

1) Escribimos las ecuaciones del transformador ideal

$$\frac{v_1}{v_2} = 9$$
 $\frac{i_2}{i_1} = 9$

2) Escribimos las dos ecuaciones de malla

$$v_g = R_1 i_1 + v_1 \implies 5 \sin t = 8i_1 + v_1$$

 $v_2 = R_2 i_2 \implies v_2 = 1i_2$

3) Resolvemos el sistema de 4 ecuaciones con 4 incógnitas

$$i_1(t) = 56,18 \sin t \text{ [mA]}$$

 $i_2(t) = 505,62 \sin t \text{ [mA]}$

Las bobinas acopladas de la figura forman un transformador ideal, con una relación de transformación $a=\frac{N_1}{N_2}=\theta$. Calcula la potencia consumida [W] por las dos resistencias del circuito para $t=\alpha$ s.

Datos: $v_g(t) = \beta \sin^2 t, i_g(t) = \gamma \sin^2 t, R_1 = \delta [\Omega], R_2 = \epsilon [\Omega]$

Las cuatro bobinas forman un transformador ideal. Calcula la potencia cedida por la fuente para $t=1\mathrm{s}.$

$$\begin{split} N_1 &= 100 \cdot \alpha \\ N_2 &= 100 \cdot \beta \\ N_3 &= 100 \cdot \gamma \\ N_4 &= 100 \cdot \delta \\ v_g(t) &= 1 - e^{-t} \\ R &= \epsilon \left[\Omega \right] \\ C &= 0.1 \cdot \eta \left[\mathsf{F} \right] \\ L &= \theta \left[\mathsf{H} \right] \end{split}$$