Les FHE, c'est facheux.

Lucas Roux & Eric Sageloli 15 février 2019

Un bref historique

- 2009 : Un premier plan par Craig Gentry dans sa thèse;
 - idée du bootstrapping;
- 2011 : premiers FHE de seconde génération : Z.Brakerski,
 V.Vaikuntanathan, J.Fan, F.Vercauteren
 - basés sur LWE et ses variantes (comme RLWE);
 - une somme simple à définir;
 - un produit en 2 étapes;
- 2013 : premiers FHE de troisième génération : GWS par C.Gentry,
 B.Waters and A.Sahai, en 2013;
 - basés sur LWE et ses variantes;
 - produit et somme de même nature;

GSW, premier essai:

Clé secrète : un vecteur $\vec{sk} \in \mathbb{Z}_q^N$

Clé publique : pk

Chiffrement: Encrypt(pk, μ) = $C \in \mathbb{Z}_q^{N \times N}$ telle que

$$C\vec{sk} = \mu \vec{sk}$$

Déchiffrement : Evident

Opérations homomorphes :

Pour $C_i = \mathsf{Encrypt}(\mu_i)$ $(1 \leqslant i \leqslant 2)$ et $\lambda \in \mathbb{Z}_q$

• Somme : $C_1 + C_2$

$$(C_1 + C_2) \vec{sk} = (\mu_1 + \mu_2) \vec{sk}$$

• **Produit** : $C_1 \times C_2$

$$(C_1 \times C_2) \ \vec{sk} = C_1 \left(\mu_2 \ \vec{sk}\right) = (\mu_1 \mu_2) \ \vec{s}$$

• NAND : $C_1 * C_2 - Id$

• Produit par scalaire : λC_1

GSW, second essai:

Clé secrète : un vecteur $sk \in \mathbb{Z}_q^N$

Clé publique : pk

Chiffrement : Encrypt(μ) = $C \in \mathbb{Z}_q^{N \times N}$ telle que

$$C\vec{sk} = \vec{sk} + \vec{e}$$
 avec \vec{e} petit

Déchiffrement: on prend un i tel que \vec{sk}_i est grand

$$\mathsf{Decrypt}(\mathit{sk}, C) = \left\lfloor \frac{\left(C \, \vec{\mathit{sk}}\right)_i}{v_i} \right\rfloor = \left\lfloor \frac{\left(\mu \, \vec{\mathit{sk}}_i + \, \vec{e_i}\right)_i}{v_i} \right\rfloor$$
$$= \left\lfloor \mu + \frac{\vec{e_i}}{v_i} \right\rfloor$$
$$= \mu$$

4

GSW, second essai:

Retour sur les opérations homomorphes :

• Somme : $C_1 + C_2$

$$(C_1 + C_2) \vec{sk} = (\mu_1 + \mu_2) \vec{sk} + \vec{e_1} + \vec{e_2}$$

• NAND : $C_1 \times C_2 - Id$

$$(C_1 \times C_2 - \operatorname{Id}) \vec{sk} = C_1 \left(\mu_2 \vec{sk} + \vec{e_2} - \vec{s} \right)$$
$$= (\mu_1 \mu_2 - 1) \vec{sk} + \mu_2 \vec{e_1} + C_1 \vec{e_2}$$

Problème:

Les coefficients de $C_1\vec{e}_2$ peuvent être gros

GSW, version finale:

On utilise une fonction Flatten qui a notamment les propriétés suivantes :

$$C \in \mathbb{Z}_q^{n \times n} \Rightarrow \mathsf{Flatten}(C) \in \{0,1\}^{N \times N}$$

 $\langle \mathit{Flatten}(C), \vec{sk} \rangle = \langle C, \vec{sk} \rangle$ pourunsecret \vec{sk} bienchoisi

Clé secrète : un vecteur $s \in \mathbb{Z}_q^N$ bien choisi

Clé publique : pk

Chiffrement : Encrypt(pk, μ) = Flatten(C) $\in \mathbb{Z}_q^{N \times N}$ pour C telle que

$$C\vec{sk} = \vec{sk} + \vec{e}$$
 avec \vec{e} petit

Déchiffrement : on prend un i tel que $\vec{s_i}$ est grand et :

$$\mathsf{Decrypt}(\vec{sk},C) = \left\lfloor \frac{(C\vec{s})_i}{v_i} \right\rfloor$$

Opérations homomorphes : on applique Flatten aux précédentes opérations homomorphes.

• Somme : Flatten $(C_1 + C_2)$

6

Le problème DLWE

Paramètres : $n,q\in\mathbb{N}$, une distribution χ sur \mathbb{Z}_q

Le problème DLWE (n,q,χ) consiste à distinguer deux distributions :

- La distribution qui crée uniformément $(\vec{a},b)\in\mathbb{Z}_q^{n+1}$;
- La distribution qui utilise un secret $\vec{s} \in \mathbb{Z}_q^n$ tiré uniformément, et crée des vecteurs (\vec{a}, b) où

$$b_i = \langle \vec{a}_i, \vec{s} \rangle + e_i$$

 e_i étant échantillonné par χ .

à partir d'un ensemble d'échantillons.

FHE avec bootstrapping

$$C = D + erreur$$

$$\label{eq:continuous} \mathsf{Decrypt}(\mathsf{sk},\mathit{C}) \qquad \mathsf{Encrypt}(\mathsf{sk},\mu) \\ \mathit{C} = \mathit{D} + \mathsf{error} \longrightarrow \mu \longrightarrow \mathit{C}^\mathsf{new} = \mathit{D} + \mathsf{error}$$

FHE avec bootstrapping

$$C = D + erreur$$

$$\label{eq:continuous} \mathsf{Decrypt}(\mathsf{sk},\mathit{C}) \qquad \mathsf{Encrypt}(\mathsf{sk},\mu) \\ \mathit{C} = \mathit{D} + \mathsf{error} \longrightarrow \mu \longrightarrow \mathit{C}^{\mathsf{new}} = \mathit{D} + \mathsf{error}$$

Soit Π le circuit booléen tel que

$$\Pi(\mathsf{binsk}) = \mathsf{Decrypt}\left(\mathsf{sk}, \mathit{C}\right)$$

FHE avec bootstrapping

$$C = D + erreur$$

$$\mathsf{Decrypt}(\mathsf{sk},\mathit{C}) \qquad \mathsf{Encrypt}(\mathsf{sk},\mu)$$

$$\mathit{C} = \mathit{D} + \mathsf{error} \longrightarrow \mu \longrightarrow \mathit{C}^{\mathsf{new}} = \mathit{D} + \mathsf{error}$$

Soit Π le circuit booléen tel que

$$\Pi(\mathsf{binsk}) = \mathsf{Decrypt}\left(\mathsf{sk}, C\right)$$

Alors:

Encrypt (sk, Decrypt (sk,
$$C$$
)) = Encrypt (sk, Π (binsk))
= Eval (Π , Encrypt(sk, binsk))

• Si Π contient assez peu de NAND, on peut avoir un FHE.

Découpage de Decrypt

L'algorithme de déchiffrement est le suivant :

- 1. trouver $1 \leqslant i \leqslant l$ tel que $q/4 \leqslant 2^i < q/2$
- 2. calculer $a = C_i \cdot \vec{v}$
- 3. retourner $\left|\frac{a}{\vec{v_i}}\right|$
 - On peut ramener le calcul du produit scalaire à une somme de nombres binaire;
 - Diviser par une puissance de 2 est un shift à gauche sur l'écriture binaire;
 - Calculer la valeur valeur absolue implique essentiellement de faire un complément à 2.

Voyons comment sommer deux nombres binaires.

sommer deux listes:

Somme classique entre deux nombres binaires :

- a_1 et b_1 présents dans la formule booléenne de r_s .
- ullet profondeur de NAND en O(s)

a b	а ₁ b ₁	a ₂ b ₂	a ₃ b ₃	а ₄ Ь ₄
G1, P1				
G2, P2				
G4, P4				

• G pour génération

• P pour propagation

• *G* pour génération

 $(G1)_i = a_i \wedge b_i \quad (P1)_i = a_i \vee b_i$

P pour propagation

• G pour génération

• *P* pour propagation

$$(G1)_i = a_i \wedge b_i \quad (P1)_i = a_i \vee b_i$$
 $G2^i, P2^i \qquad \qquad \qquad 1$
 $G2^{i+1}, P2^{i+1} \qquad \qquad \qquad \qquad 2$

$$(G2^{i+1})_1 = (G2^i)_2 \lor ((G2^i)_1 \land (P2^i)_2)$$
$$(P2^{i+1})_1 = (G2^i)_1 \land (P2^i)_2$$

Les variables de générations de blocs commençants par 0 calculent des retenues.

Les variables de générations de blocs commençants par 0 calculent des retenues.

$$c_6 = G2_3 \lor (c_4 \land P2_3) = 1 \lor (1 \land 1) = 1$$

Les variables de générations de blocs commençants par 0 calculent des retenues.

$$c_6 = G2_3 \lor (c_4 \land P2_3) = 1 \lor (1 \land 1) = 1$$

 $c_7 = G1_7 \lor (c_6 \land P1_7) = 0 \lor (1 \land 0) = 0$

Effectuer un bootstrapping

Profondeur de NAND totale en :

$$\mathcal{O}(\log(\log(q)) + \log(n))$$

avec n un paramètre du système.

Certains choix de paramètres permettent d'effectuer un bootstrapping en garantissant que le cryptosystème est IND-CPA.

Effectuer un bootstrapping

Profondeur de NAND totale en :

$$\mathcal{O}(\log(\log(q)) + \log(n))$$

avec n un paramètre du système.

Certains choix de paramètres permettent d'effectuer un bootstrapping en garantissant que le cryptosystème est IND-CPA.

sécurité	taille du secret	taille de la clé	taille d'un chiffré
$\lambda = 8$	3 Ko	113 Mo	135 Go
$\lambda = 16$	12 Ko	2 Go	6 To
$\lambda = 32$	45 Ko	32 Go	176 To

The Gate Bootstrapping API

- librairie open source utilisable en C et C++
- utilise une version modifiée du cryptosysteme GSW, avec une variante de LWE nommée TFHE.
- s'appuie notamment sur des travaux de I. Chillotti, N. Gama, M. Georgieve et M. Izabachène

Performances : pour un ordinateur 64-bit simple coeur (i7-4930MX) cadencé à 3.00GHz, le bootstrapping se fait en un temps moyen de 52ms et la clé de bootstrapping fait environ 24 Mo.

The Gate Bootstrapping API

- Alice génère des clés, chiffre deux nombres de 16 bits et les inscrits dans un fichier;
- le cloud récupère les données, applique homomorphiquement la fonction minimum aux deux nombres et inscrit le résultat dans un fichier;
- Alice récupère et déchiffre le résultat.

Performances : pour un paramètre de sécurité $\lambda=110$ et sur un ordinateur 64-bit quadri-coeur (i5-7200U CPU) cadencé à 2.50GHz, on obtient un temps de 2.10s.

On a alors des données de taille :

Données	Taille
Clé secrète	79 Mo
Clé publique et clé de bootstrapping	79 Mo
Chiffrement d'un bit	2 Ko
Chiffrement des deux nombres	64 Ko

Ce dont nous n'avons pas parlé

- Flatten, dont nous avons caché la définition sous le tapis;
- Deux autres algorithmes de déchiffrement ;
- Les gaussiennes discrètes;
- Choix des paramètres pour un leveled FHE;
- Contraintes de sécurité supplémentaires liées au bootstrapping;