Logistic Regression as Soft Perceptron Learning

Raúl Rojas

February 25, 2015

Abstract

We show that gradient ascent for logistic regression has a connection with the perceptron learning algorithm. Logistic learning is the "soft" variant of perceptron learning.

Logistic Regression is used to build classifiers with a function which can be given a probabilistic interpretation. We are given the data set (x_i, y_i) , for i = 1, ..., N, where the x_i are (n + 1)-dimensional extended vectors and the y_i are zero or one (representing the positive or negative class, respectively). We would like to build a function $p(x, \beta)$, which depends on a single (n + 1)-dimensional parameter vector β (like in linear regression) but where $p(x, \beta)$ approaches one when x belongs to the positive class, and zero if not. An extended vector x is one in which the collection of features has been augmented by attaching the additional component 1 to n features, so that the scalar product of the β and x vectors can be written as

$$\beta^{\mathrm{T}} x = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

The extra component allows us to handle a constant term β_0 in the scalar product in an elegant way.

A proposal for a function such as the one described above is

$$p(x,\beta) = \exp(\beta^{\mathrm{T}}x)/(1 + \exp(\beta^{\mathrm{T}}x))$$

where $p(x, \beta)$ denotes the probability that x belongs to the positive class. The function is always positive and never greater than one. It saturates asymptotically to 1 in the direction of β . Note that the probability of x belonging to the negative class is given by:

$$1 - p(x, \beta) = 1/(1 + exp(\beta^{\mathrm{T}}x))$$

With this interpretation we can adjust β so that the data has maximum likelihood. If N_1 is the number of data points in the positive class and N_2 the number o data points in the negative class, the likelihood is given by the product of all points probabilities

$$L(\beta) = \prod_{i=1}^{N_1} p(x_i, \beta) \prod_{i=1}^{N_2} (1 - p(x_i, \beta))$$

We want to maximize the likelihood of the data, but we usually maximize the log-likelihood, since the logarithm is a monotonic function. The log-likelihood of the data is obtained taking the logarithm of $L(\beta)$. The products transform into sums of logarithms of the probabilities:

$$\ell(\beta) = \sum_{i=1}^{N_1} \beta^{\mathrm{T}} x_i - \sum_{i=1}^{N_1} \log(1 + \exp(\beta^{\mathrm{T}} x_i)) - \sum_{i=1}^{N_2} \log(1 + \exp(\beta^{\mathrm{T}} x_i))$$

which can be simplified to

$$\ell(\beta) = \sum_{i=1}^{N} y_i \beta^{\mathrm{T}} x_i - \sum_{i=1}^{N} \log(1 + \exp(\beta^{\mathrm{T}} x_i))$$

where $N = N_1 + N_2$ and $y_i = 0$ for all points in the negative class.

If we want to find the best parameter β we could set the gradient of $\ell(\beta)$ to zero and solve for β . However the nonlinear function makes an analytic solution very difficult. Therefore we can try to maximize $\ell(\beta)$ numerically, using gradient ascent. Therefore we compute the deervative of $\ell(\beta)$ relative to the vector β :

$$\nabla \ell(\beta) = \sum_{i=1}^{N} (y_i x_i - (exp(\beta^{\mathrm{T}} x_i) x_i) / (1 + exp(\beta^{\mathrm{T}} x_i))$$

which reduces to

$$\nabla \ell(\beta) = \sum_{i=1}^{N} (y_i x_i - p(x_i, \beta) x_i) = \sum_{i=1}^{N} x_i (y_i - p(x_i, \beta))$$

This is a very interesting expression. It essentially says that, when doing gradient ascent, the corrections to the vector β are computed in the following way: if x belongs to the positive class $(y_i = 1)$ but the probability $p(x_i, \beta)$ is low, we add the vector x_i to β , weighted by $y_i - p(x_i, \beta)$. And conversely: x belongs to the negative class $(y_i = 0)$ but the probability $p(x_i, \beta)$ is high, we subtract the vector x_i from β , weighted by $|y_i - p(x_i, \beta)|$. This is the way the perceptron learning algorithm works, without the weights. If instead of a logistic function we had a step function for assigning "hard" probabilities of zero and one to the data vectors, we would obtain the perceptron learning algorithm.

References

[1] T. Hastie, R. Tibshirani, J. Friedman, *The Elements of Statistical Learning*, Springer-Verlag, New York, 2001.