参考数据:

	$F_{0.95}(1,13) = 4.67$	$F_{0.9879}(2,9) = 7.5$	$t_{0.975}(13) = 2.1604$
$\chi^2_{0.025}(4) = 0.4844$	$\chi^2_{0.95}(2) = 5.991$	$\chi^2_{0.9725}(4) = 11.1433$	$t_{0.8427}(15) = 1.0405$

5.1 节 (2014、2015)

设样本 x_1, \dots, x_n 取自总体 $N(\mu, \sigma^2)$,其中 σ^2 已知。下面不是统计量的是()

A.
$$\sum_{i=1}^{n} x_i$$

B.
$$\frac{x_1^2 + x_n^2}{\sigma^2}$$

C.
$$x_1^2 + x_n^2$$

A.
$$\sum_{i=1}^{n} x_i$$
 B. $\frac{x_1^2 + x_n^2}{\sigma^2}$ C. $x_1^2 + x_n^2$ D. $\sum_{i=1}^{n} (x_i - \mu)^3$

5.1 节 (2014)

设样本 x_1 , x_n 取自总体 B(1,p),则 x_1 , x_n 的联合分布列为 p(x_1 , x_n)=

5.1 节

设X为离散型随机变量,其分布列为

$$\begin{array}{c|cccc} X & x_1 & x_2 & x_3 \\ \hline p & p_1 & p_2 & p_3 \\ \end{array}$$

则该分布列的函数表达式为 $P(X = x_k) = ____, k = 1,2,3$ 。

5.3 节 (2014、2015)

设样本 x_1, \cdots, x_n 取自总体 x, \bar{x} 为样本均值,则 $x_1 - \bar{x}, \cdots, x_n - \bar{x}$ 的自由度是(

- A. n-1 B. n
- C. 1
- D. 0

5.3 节 (2014)

设总体X具有二阶矩, $E(X) = \mu$, $Var(X) = \sigma^2 < \infty$, x_1 ,, x_n 为取自该总体的样本,记样本均值和样本方差分别为 \overline{x} 和 s^2 ,试证明:

$$E(\overline{x}) = \mu$$
, $Var(\overline{x}) = \frac{\sigma^2}{n}$, $E(s^2) = \sigma^2$.

5.3 节 13 颗

设 \bar{x}_1 与 \bar{x}_2 是从同一正态总体 $N(\mu, \sigma^2)$ 独立抽取的容量相同的两个样本均值,试确定样本容量 n,使得两样本均值的距离超过 σ 的概率不超过0.01。

5.3 节 17 题

设 x_1, \cdots, x_{20} 是从二点分布b(1,p)抽取的样本,则样本均值 \bar{x} 的渐进分布为

5.3 节 26 题

设总体密度函数为 p(x) = 6x(1-x) , 0 < x < 1 , x_1 , x_2 是来自该总体的样本,试求样本中位数的分布。

5.4 节

当样本 x_1, \cdots, x_n 取自总体 () 时,样本均值 \bar{x} 和样本方差 s^2 相互独立。

A.
$$B(n,p)$$
 B. $P(\lambda)$ C. $N(\mu,\sigma^2)$ D. $e(\lambda)$

5.4 节 (2014、2015)

设 x_1, \cdots, x_n 是来自 $N(\mu, \sigma^2)$ 的样本,样本均值和样本方差分别为 \bar{x} 和 S^2 ,则 $\frac{\bar{x} - \mu}{S/\sqrt{n}}$

服从的分布是_____

5.4 节 (2015)

设
$$x_1, \dots, x_n$$
是来自总体 $N(1,4)$ 的样本,则 $\frac{1}{4} \sum_{i=1}^n (x_i - 1)^2$ 服从______

5.4 节 (2015)

设随机变量
$$X \sim t(n)$$
, $n > 1$, 令 $Y = \frac{1}{X^2}$, 则()

A.
$$Y \sim \chi^2(n)$$
 B. $Y \sim \chi^2(n-1)$ C. $Y \sim F(n,1)$ D. $Y \sim F(1,n)$

5.4 节 5 题 (2014、2015)

设
$$x_1, \dots, x_{16}$$
是来自 $N(\mu, \sigma^2)$ 的样本,经计算 $\bar{x} = 9$, $S^2 = 5.32$,则 $P(|\bar{x} - \mu| < 0.6) = _____$

5.5 节 1 题 (2014、2015)

设 x_1, \dots, x_n 是来自几何分布

$$P(X = x) = \theta(1 - \theta)^x, \qquad x = 0, 1, 2, \dots$$

的样本,请利用因子分解定理给出参数 θ 的一个充分统计量。

6.1 节 (2015)

已知总体均值为 μ ,方差为 σ^2 ,则下列关于样本均值 \bar{x} 和样本方差 S^2 的说法正确是()

A.
$$ar{x}^2$$
是 μ^2 的无偏估计 B. $\dfrac{(n-1)S^2}{n}$ 是 σ^2 的无偏估计

$$C \cdot 2\bar{x}^2 + 3 \pm 2\mu^2 + 3$$
的无偏估计 $D \cdot S^2 \pm \sigma^2$ 的无偏估计

6.1 节 3 题

设 $\hat{\theta}$ 是参数 θ 的无偏估计,且有 $Var(\hat{\theta}) > 0$,试证明 $\hat{\theta}^2$ 不是 θ^2 的无偏估计。

6.1 节 5 题

设 X_1 , X_n 是来自下列总体的简单随机样本,

$$p(x,\theta) = \begin{cases} 1, & \theta - 1/2 \le x \le \theta + 1/2 \\ 0, & \sharp \stackrel{\sim}{\Xi} \end{cases}, \quad -\infty < \theta < \infty ,$$

证明 $\frac{1}{2}(x_{(1)}+x_{(n)})$ 是 θ 的无偏估计。

6.2 节 (2015)

设总体方差为
$$Var(X) = \sigma^2$$
,则样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$ 是 σ 的()

- A. 无偏估计 B. 有效估计 C. 相合估计 D. 以上均不是

6.3 节 (2014、2015)

设样本 x_1, \dots, x_n 来自泊松分布 $P(\lambda)$, λ 的最大似然估计的渐进分布是 $\hat{\lambda}_n \sim$ _____

6.3 节 (2015)

设 x_1, \cdots, x_n 是来自二点分布b(1,p)的样本,考虑参数p的最大似然估计,则似然函

6.3 节 (2014)

设某批产品的不合格率为p,现在进行简单随机抽样,得到样本 x_1 ,, x_n 。给出p的最大似然估计。

6.4 节 (2014、2015)

请描述统计推断中的"充分性原则": ______

6.4 节

设总体密度函数为 $p(x;\theta) = \frac{2\theta}{x^3} e^{-\theta/x^2}$, $x > 0, \theta > 0$, 求 θ 的费希尔信息量 $I(\theta)$ 。

6.4 节 12 颞 (2015)

设 x_1, \dots, x_n i.i.d., 服从 $N(\mu, 1)$,求 μ^2 的 UMVUE。证明此 UMVUE 达不到 C-R 不等式的下界,即它不是有效估计。

6.4 节 定理 6.4.2

设总体的概率函数是 $p(x;\theta)$, $x_1,...,x_n$ 是其样本, $T=T(x_1,...,x_n)$ 是 θ 的充分统计量,则对 θ 的任一无偏估计 $\hat{\theta}=\hat{\theta}(x_1,...,x_n)$,记 $\tilde{\theta}=E(\hat{\theta}|T)$,证明 $Var(\tilde{\theta})\leq Var(\hat{\theta})$

6.5 节 1 题

设一页书上的错别字个数服从泊松分布 $p(\lambda)$, λ 有两个可能取值 1.5 和 1.8,且先验分布为

$$P(\lambda = 1.5) = 0.45, \quad P(\lambda = 1.8) = 0.55,$$

现检查了一页,发现3个错别字,试求λ的后验分布。

7.1 节 (2015)

在一次假设检验中,下列说法正确的是()

对单个正态总体的期望μ作区间估计,得到置信度为 95%的置信区间,意义是指 这个区间()
A. 平均含总体 95%的值 B. 平均含样本 95%的值
C. 有 95%的机会含样本值 D. 有 95%的机会含µ的值
6.6 节 6 题
在一批货物中随机抽取80件,发现有11件不合格。使求这批货物的不合格品率
p 的置信水平为 0.90 的大样本置信区间。
6.6 节 (2015)
设 x_1, \cdots, x_n 是来自二点分布 $b(1,p)$ 的样本,现要求 p 的 $1-\alpha$ 置信区间,利用中心极限定理,可取枢轴量为
6.6 节 14 题
设 x_1 , x_n 为抽自 $N(\mu, \sigma^2)$ 的简单随机样本,为使 μ 的 $1-\alpha$ 置信区间的长度不
大于给定的 L ,样本容量 \mathfrak{l} 至少要多少?
7.1 节 (2014、2015)
在进行假设检验时,若增大样本容量,其它条件不变,则犯两类错误的概率()
A. 都增大 B. 都减小 C. 一个减小, 一个增大 D. 都不变

- A. 既可能犯第一类错误,也可能犯第二类错误
- B. 如果备择假设是正确的,但拒绝了备择假设,则犯了第一类错误
- C. 增大样本容量,则犯两类错误的概率都不变
- D. 如果原假设是错误的,但接受了原假设,则犯了第二类错误

7.1 节

在假设检验中,显著性水平α是()

- A. 发生第一类错误的概率
- B. 第一类错误概率的上界
- C. 发生第二类错误的概率
- D. 第二类错误概率的上界

7.1 节 (2014、2015)

关于假设检验的p值,下列说法错误的是:()

- A. 当显著水平大于p值时,应拒绝原假设;
- B. p值是利用样本观测值能够做出拒绝原假设的最小显著水平;
- C. p值是原假设为真, 却被拒绝的概率;
- D. p值是原假设为真时出现样本观测值或更极端于样本观测值的概率。

7.1 节

在假设检验中,如果所计算的 p 值越小,说明是:()

- A. 原假设越真实;
- B. 备择假设越不真实;
- C. 否定原假设证据越不充分

D. 否定原假设证据越充分

7.1 节 3 题

设 $x_1, ..., x_{16}$ 是来自正态总体 $N(\mu, 4)$ 的样本,考虑检验问题

$$H_0$$
: $\mu=6$ VS H_1 : $\mu\neq 6$,

对显著水平 0.05,求该检验在 $\mu = 6.5$ 处犯第二类错误的概率。

7.2 节 (2014、2015)

7.2 节 21 题 (2014、2015)

已知维尼纶纤度在正常条件下服从正态分布,且标准差为 0.048。从某天产品中抽取 5 根纤维测其纤度,经计算得样本均值为 1.414,样本方差为 0.00778。问这一天纤度的总体标准差是否正常(取 $\alpha=0.05$)?

7.3 节 例 7.3.4

检查了一本书的100页,记录各页中印刷错误的个数,结果如下

错误个数	0	1	2	3	4	5	≥6
页数	35	40	19	3	2	1	0

问能否认为一页的印刷错误不超过 1 个(取显著水平 $\alpha = 0.05$)?

7.4 节 (2014)

设 x_1 , x_n 为来自密度为 $p(x;\theta)$, $\theta \in \Theta$ 的样本,对检验问题 $H_0:\theta \in \Theta_0$ vs $H_1:\theta \in \Theta_1=\Theta\setminus \Theta_0$, 则 似 然 比 检 验 所 使 用 的 检 验 统 计 量 为

7.4 节 7 题 (2014、2015)

检查了一本书的 100 页,记录各页中印刷错误的个数,结果如下

错误个数	0	1	2	3	4	5	≥6
页数	35	40	19	3	2	1	0

问能否认为一页的印刷错误的个数服从泊松分布(取显著水平 $\alpha = 0.05$)?

7.4 节 12 颢 (2014)

设按有无特性A与B将n个样品分成四类,组成2×2列联表:

	В	Ē	合计
A	a	b	a + b
$ar{A}$	С	d	c + d
合计	a + c	b + d	n

其中n = a + b + c + d,试证明此时列联表独立性检验的 χ^2 统计量可以表示成

$$\chi^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

7.4 节 13 题

在研究某种新药物对疟疾的治疗效果,获得了如下数据:

	痊愈数 未痊愈数		合计
对照组	114	36	150
新药物	132	18	150
合计	246	54	300

试问新药物对治疗疟疾是否有显著效果($\alpha = 0.05$)?

8.1 节 (2014、2015)

下列说法正确的是()

- A. 方差分析是比较两个总体方差的大小;
- B. 方差分析是比较多个总体方差的大小;
- C. 方差分析是比较两个总体的均值是否相同;
- D. 方差分析是比较多个总体的均值是否相同。

8.1 节

设有数据 Y_{ij} , i=1, r, j=1, m。记

$$S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{m} (y_{ij} - \overline{y})^{2} , \quad S_{e} = \sum_{i=1}^{r} \sum_{j=1}^{m} (y_{ij} - \overline{y}_{i\bullet})^{2} , \quad S_{A} = m \sum_{i=1}^{r} (\overline{y}_{i\bullet} - \overline{y})^{2} ,$$

其中
$$\overline{y} = \frac{1}{r m} \sum_{i=1}^{r} \sum_{j=1}^{m} y_{ij}$$
 , $\overline{y}_{i \bullet} = \frac{1}{m} \sum_{j=1}^{m} y_{ij}$, $i = 1$, $r \circ$ 试证明 $S_T = S_A + S_e \circ$

8.1 节 4 题 (2015)

在单因子方差分析中,因子A有三个水平,每个水平各做4次重复试验,请完成 下列方差分析表,并在显著水平 $\alpha = 0.05$ 下对因子 A 是否显著做出检验。

来源	平方和	自由度	均方	F比	p 值
因子 A	4.2				
误差 e	2.5				
和T	6.7				

8.4 节

对一元线性回归模型 $y = \beta_0 + \beta_1 x + \varepsilon$, 其回归方程为_____,

回归方程的显著性检验是检验_____,

若对其进行 F 检验, 所使用的检验统计量是_____。

8.4 节 (2014、2015)

在一元线性回归 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ ($i = 1, \dots, n$, $\epsilon_i \sim N(0, \sigma^2)$ 且相互独立)中, 对回归方程 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ 进行显著性检验,是检验()

A.
$$H_0: \beta_1 = 1 \text{ vs } H_1: \beta_1 \neq 1$$

A.
$$H_0: \beta_1 = 1$$
 vs $H_1: \beta_1 \neq 1$ B. $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$

C.
$$H_0: \beta_0 = 1 \text{ vs } H_1: \beta_0 \neq 1$$

C.
$$H_0: \beta_0 = 1 \text{ vs } H_1: \beta_0 \neq 1$$
 D. $H_0: \beta_0 = 0 \text{ vs } H_1: \beta_0 \neq 0$

8.4 节 4 题

对给定的 n 组数据 (x_i, y_i) , i=1, _, n ,若我们关心的是 y 如何依赖 x 的取值而变动,则可以建立如下回归方程 $\hat{y}=a+bx$ 。反之,若我们关心的是 x 如何依赖 y 的取值而变动,则可以建立另一个回归方程 $\hat{x}=c+dy$ 。试问这两条直线在直角坐标系中是否重合?为什么?

8.4 节 9 颞 (2014、2015)

设回归模型为

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

现收集15组数据,经计算有

$$\bar{x} = 0.83, \quad \bar{y} = 25.62, \quad l_{xx} = 19.254, \quad l_{xy} = 30.641, \quad l_{yy} = 50.844$$

- (1) 求 β_0 , β_1 的最小二乘估计;
- (2) 对回归方程做显著性检验 ($\alpha = 0.05$);
- (3) 若 $x_0 = 1.1$, 给出对应响应变量的 0.95 预测区间。