

예금상품 가입 예측

3조

권상우, 양지성, 이은지, 장성훈, 홍성재

INDEX

- 1. 프로젝트 개요
- 2. 데이터 전처리
- 3. 모델 & 알고리즘
- 4. 최적의 모델 찾기
- 5. 정리 및 결론

1. 프로젝트 개요

1. 프로젝트 개요

데이터 소개

- 은행의 정기 예금상품 가입 여부를 예측
- 포르투갈 은행의 '08년 5월 ~ '10년 11월 데이터
- 총 41188개의 데이터 / 20개의 칼럼
- UCI Machine Learning Repository 데이터

1. 프로젝트 개요

변수 소개

- 개인 정보 나이, 직업, 결혼, 채무 불이행, 주택융자
- 마케팅 정보 ─ 마케팅 수단, 마지막 연락의 달, 마지막 연락의 요일 마지막 연락과의 기간, 이번 시즌 연락 횟수
- **전 마케팅 정보** 지난 시즌 연락 횟수, 지난 시즌 마지막 연락과의 기간 지난 시즌 상품가입 여부, 이전 연락 횟수
- 경제적 수치 소비자 물가 지수, 소비자 신뢰 지수, 기준 금리, 총 고용인 수

Tensorflow의 Transform 모듈 → 정보 적어서 X

- 1. Pandas로 데이터 정리
 - 2. R을 이용하여 분석에 사용할 열 선별
 - 3. Tensorflow로 불러오기

■ 엑셀: 데이터 → 텍스트 나누기

■ CSV 파일 불러오기

```
df = pd.read_csv('C:/ProgramData/Anaconda3/ML script/bank-additional.csv',encoding = 'CP949')
#df = df.dropna(axis=0)
```

■ "y"열의 명목변수 → 0 or 1

```
cleanup_nums = {"y":{"yes": 1, "no": 0}}
df.replace(cleanup_nums, inplace=True)
```

■ data type이 object인 열 모두 더미변수 처리

```
conti var=df.columns[df.dtypes!='object']
cate var=df.columns[df.dtypes=='object'].difference(['y'])
dummy_var=pd.get_dummies(df[cate_var])
df_2=pd.concat([df[conti_var],dummy_var],axis=1)
df 2 y = df 2['y']
df 2_y = pd.DataFrame(data=df_2_y)
df 2 = df 2.drop('y', axis = 1)
df_2 = pd.concat([df_2, df_2_y], axis=1)
df_2 = df_2.astype('float32')
df5 = pd.DataFrame(data=df 2, dtype=np.float32)
```

■ 총 41188개의 행 / 64개의 열

- 로지스틱 회귀분석(R)을 이용해서 불필요한 열 삭제
 - 1. 유의도가 낮게 나온 열 제거
 - 2. 같은 열에서 파생된 더미변수들은 가장 유의한 것만 남기고 나머지 제거

■ 그 결과, 64개 열 → 13개 열

- 상관분석 corrplot() → 최종적으로 9개의 독립변수, 1개의 종속변수
- duration / campaign / pdays / emp.var.rate / cons.conf.idx / contact_cellular / day_of_week_mon / month_mar / poutcome_failure / y


```
xy = np.loadtxt('bank4-additional.csv',delimiter=',',dtype=np.float32)
xy_1 = xy[:,0:5]
xy_2 = xy[:,5:10]
```

■ xy_1에서 각각의 열 정규분포 표준화

```
xy_standardized_skl = StandardScaler().fit_transform(xy_1)
xy = np.concatenate((xy_standardized_skl,xy_2), axis=1)
x_data = xy[:,:-1]
y data = xy[:,[-1]]
```

```
print(x_data)
print(y_data)
```

```
[ 0.35030031  0.56962967  0.20103207  ...,  0.
[-0.11696601 -0.59865469 0.20103207 ..., 0. 0.
[-0.75700307 -0.20922659 0.20103207 ..., 1. <u>0</u>.
[ 1.06494296 -0.59865469 0.20103207 ..., 0. 0.
[-0.32114962 -0.59865469 0.20103207 ..., 0. 0.
[[0.]]
[ 0.]
[ 0.]
[ 0.]
[0.]
[0.]
```

duration

campaign

pdays

emp.var.rate

cons.conf.idx

contact_cellular

day_of_week_mon

month_mar

poutcome_failure

Logistic Regression

$$X_1 \sim X_9$$
 $Y = \{0, 1\}$

■ Training Set / Test Set 구분: 일정한 비율로 무작위 추출

```
from sklearn.cross_validation import train_test_split

xy = np.loadtxt('bank4.csv',delimiter=',',dtype=np.float32) ← 원본 데이터 불러오기

xy_train,xy_test = train_test_split(xy,test_size=0.2,random_state=777)

→ 전체 데이터셋의 무작위 20%를 테스트셋으로 설정

(정규화 과정 생략)
```

■ Training Set / Test Set 분할

```
x_data_train = xy_train[:,:-1]
y_data_train = xy_train[:,[-1]]
x_data_test = xy_test[:,:-1]
y_data_test = xy_test[:,:-1]
```


Placeholders

```
X = tf.placeholder(tf.float32, [None, 9])

Y = tf.placeholder(tf.float32, [None, 1])

num\_hidden = K \leftarrow Hidden Layer간 input의 개수
```


Layer 1

```
W1 = tf.get_variable("weight1", shape=[9,K], dtype = tf.float32, initializer=tf.contrib.layers.xavier_initializer()) ← Xavier 초기화 적용

b1 = tf.get_variable("bias1", shape=[K], dtype = tf.float32, initializer=tf.contrib.layers.xavier_initializer()) ← Xavier 초기화 적용

_L1 = tf.nn.leaky_relu(tf.matmul(X, W1) + b1) ← Leaky ReLU/ReLU 적용

L1 =tf.nn.dropout( L1, keep prob) ← Dropout 적용
```

Layer N

```
WN = tf.get_variable("weightN", shape=[K,1], dtype = tf.float32, initializer=tf.contrib.layers.xavier_initializer())
```

bN = tf.get_variable("biasN", shape=[1], dtype = tf.float32, initializer=tf.contrib.layers.xavier_initializer())

hypothesis = tf.sigmoid(tf.matmul(LN-1, WN) + bN)
→ 마지막 Hidden Layer에서는 Sigmoid 적용

■ 비용함수와 최적화

```
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))

→ 로지스틱 회귀 cost function

train = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

→ AdamOptimizer 사용
```

■ 예측치와 정확도 정의

predicted = tf.cast(hypothesis > threshold, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))

Learning rate	0.003
Drop out	0.5~0.7
Threshold	0.65
Layer	5~7
Input	27~45
step	1000

Learning rate / drop out / threshold

```
# learning Rate

tf.reset_default_graph()
learning_rate = 0.003
keep_prob = tf.placeholder_with_default(0.6, shape=())
threshold = tf.placeholder_with_default(0.65, shape=())
```

Learning rate / drop out / threshold

Layer & Input

Layer 4

```
initializer=tf.contrib.layers.xavier_initializer())
b4 = tf.get_variable("bias4", shape=[num_hidden], dtype = tf.float32,
                     initializer=tf.contrib.layers.xavier_initializer())
_L4 = tf.nn.relu(tf.matmul(L3, W4) + b4)
L4 = tf.nn.dropout( L4, keep prob)
# Layer 5
W5 = tf.get variable("weight5", shape=[num hidden,num out], dtype = tf.float32,
                     initializer=tf.contrib.layers.xavier_initializer())
b5 = tf.get_variable("bias5", shape=[num_out], dtype = tf.float32,
                     initializer=tf.contrib.layers.xavier initializer())
hypothesis = tf.sigmoid(tf.matmul(L4, W5) + b5)
hypothesis = tf.clip_by_value(hypothesis,1e-1,1-(1e-1))
```

W4 = tf.get variable("weight4", shape=[num hidden,num hidden], dtype = tf.float32,

```
# In[7]:
num in = 9
num_hidden = 50
num_out = 1
# Layer 1
W1 = tf.get_variable("weight1", shape=[num_in,num_hidden], dtype = tf.float32,
                    initializer=tf.contrib.layers.xavier_initializer())
b1 = tf.get_variable("bias1", shape=[num_hidden], dtype = tf.float32,
                    initializer=tf.contrib.layers.xavier_initializer())
_L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
L1 =tf.nn.dropout( L1, keep prob)
```

Step

```
# In[9]:
# Launch Graph
with tf.Session() as sess:
    # Initialize TensorFlow variables
    sess.run(tf.global_variables_initializer())
   for step in range(1001):
        sess.run(train, feed_dict={X: x_data_train, Y: y_data_train})
        if step % 100 == 0:
            print("step ",step, "cost ", sess.run(cost, feed_dict={
                  X: x data train, Y: y data train}))
```

Result

```
학습을 시작합니다.
                           Hypothesis: [[ 0.1
                            [ 0.1
step 0 cost 1.3825
                            [ 0.1
step 100 cost 0.348505
step 200 cost 0.348507
                            [ 0.47589734]
step 300 cost 0.348507
                            [ 0.1
step 400 cost 0.348507
                            [ 0.1
step 500 cost 0.348495
                           Correct: [[ 0.]
step 600 cost 0.267739
                            [ 0.]
step 700 cost 0.253482
                            [ 0.]
step 800 cost 0.252512
step 900 cost 0.249519
                            [ 0.]
step 1000 cost 0.248062
                            [ 0.]
                            [ 0.11
                           Accuracy: 0.905008
```

정확도 90% 이상! 성공입니다.

최대 : accuracy	레이어 수 🔻			
Dropout rate 및 input 개수	▼ 5	6	7 최대값	
□ 0.5	0.9045	0.9066	0.9071	0.9071
27	0.8937	0.9066	0.8894	0.9066
32	0.9003	0.9017	0.8894	0.9017
36	0.9045	0.9056	0.8894	0.9056
41	0.9022	0.8968	0.9071	0.9071
45	0.904	0.9036	0.8894	0.904
□ 0.6	0.9073	0.9114	0.9061	0.9114
27	0.9007	0.9026	0.8999	0.9026
32	0.9018	0.9027	0.9061	0.9061
36	0.9037	0.904	0.8894	0.904
41	0.903	0.9028	0.8894	0.903
45	0.9073	0.9114	0.8997	0.9114
□ 0.7	0.909	0.9077	0.9084	0.909
27	0.9028	0.9077	0.9019	0.9077
32	0.9034	0.9049	0.9038	0.9049
36	0.9072	0.9039	0.9033	0.9072
41	0.909	0.9024	0.9077	0.909
45	0.908	0.905	0.9084	0.9084
최대값	0.909	0.9114	0.9084	0.9114

정확도: 0.88 ~ 0.91

최대 정확도: 91.14%

Layer: 6 / Input: 45 / Dropout: 0.6

Processing

Logistic
Regression

Neural
Network

MODEL

(Layer: 6 / Input: 45 / dropout: 0.6)

은행 정기예금 상품에 대한 가입 여부를 예측

은행의 수익 = 대출이자 - 예금이자

최적의 모델로 가입예측

맞춤형 예금서비스 제공, 꾸준하면서도 충분한 고객 확보 가능

보완할 점

■ Epoch / Mini batch — cost값을 효과적으로 줄이고 정확도를 높여 일반화 가능성 ↑

■ Tensorboard — visualization

THANK YOU

Q & A