Aerospace Propulsion

Lecture 16
Airbreathing Propulsion VI

Airbreathing Propulsion: Part VI

- Cooling and Materials
- Combustor Cooling
- Turbine Cooling
- Nozzle Cooling

Cooling and Materials

 Heat release from combustion is necessary and provides propulsion

- Heat release from combustion leads to <u>very high</u> temperatures
 - Recall RQL-type combustors even briefly hit stoichiometric
 - Temperatures up to 2500 K possible

Cooling and Materials

- Most modern jet engine materials cannot maintain steady state operation above ~1900 K
- Aircraft engine designs couple high-temperature materials with active cooling
 - Cold bypass air is used to cool walls
- Everything starting from combustor potentially needs cooling
 - Combustor -> Turbine -> Nozzle

- Primary zone
 - Main flame ignited and stabilized
 - High temperature combustion
 - Up to 2500 K
- Intermediate zone
 - Aids flame stabilization and complete combustion
 - Also high temperature combustion
- Flame <u>cannot</u> touch walls for extended periods without issue

- A second "layer" of walls exist in the combustor called the liner
 - Combustion occurs inside liner
 - Cold bypass air flows around liner
- Liner generally needs to be kept below 1200 K
- Jets of cold air are blown nearly parallel to liner surface to separate liner from hot combustion gases
 - "Film Cooling"

Film Cooling

- Produces a cold boundary layer separating liner from hot gases
- Goal is to minimize heat transfer
- Transpiration Cooling
 - Cold air flows through a porous surface to separate liner from hot gas
 - "Limit" of film cooling with many holes
- Cooling effectiveness: $\epsilon = \frac{T_h T_w}{T_h T_c}$
 - T_h/T_c = Hot/cold gas temp
 - T_w = Wall temperature

COMBUSTION CHAMBER: injection side

CASING: suction side

- Up to 40% of air flowing into combustor is used for cooling
- 20% of air is used for primary combustion zone
- 20% of air is used for the intermediate zone
 - Complete combustion
 - Flame stabilization
- 20% of air is used for dilution
 - Cool gases before entering turbine

- Hot combustion products get "blown" away from walls
- At least a small region of cold air exists near walls

- Heat transfer from combustion gases to liner minimized
- Heat transfer from liner to cold bypass air (outside) maximized

- As hot gases leave the combustor, they are hit with one last dilution air jet in preparation for the turbine
 - Doesn't contribute much to combustion, mostly just cools
- Turbine still receives very hot gas
- Turbine inlet temperature profile is hot in the middle and cold near the liner (film cooling)
 - More discussion soon

- In theory, we want high turbine inlet temperatures
 - Ideal Brayton Cycle (with turbojet station numbering)
 - $\eta = 1 r_p^{\frac{1-\gamma}{\gamma}} \to$ Increasing pressure ratio increases efficiency
 - $\frac{T_{t3}}{T_{t2}} = r_p^{\frac{\gamma-1}{\gamma}} o$ Increasing pressure ratio increases combustor inlet temperature
 - Increases combustor inlet temperature increase turbine inlet temperature
 - Higher turbine inlet temperature gives higher efficiency
 - To increase pressure ratio (and efficiency) but limit turbine inlet temperature, must lower heat input in combustor, which reduces work input
 - Forced to choose: Power or Efficiency

- Turbine inlet temperature is capped by material and cooling
- Before 1960, cooling not used
 - Turbine inlet temperature directly limited by materials

entry

(K)

- After 1960, cooling introduced
 - Turbine inlet temperatures limited by combined material and cooling
- Turbine temperatures continue to increase with new tech

- What temperature profiles enter the turbine?
 - Pattern factor

$$\bullet PF \equiv \frac{T_{tmax} - T_{t4}}{T_{t4} - T_{t3}}$$

- Measure of magnitude of fluctuations at combustor exit
- Maintained below 25%
- Profile factor

$$\bullet \ P_f \equiv \frac{T_{t_{max,avg}} - T_{t3}}{T_{t4} - T_{t3}}$$

- Measure of uniformity of timeaveraged temperature profile
- Maintained below 1.1

- Materials
 - Even high-performance superalloys do not provide sufficient temperature resistance
 - Most superalloys used in turbines are nickel-based
 - Highest design temperature of all metals
 - Improvements in strength and temperature resistance come through material structure
 - Directional solidification (DS)
 - Single crystal (SC) alloys
 - Ceramics are (currently) too brittle to be manufactured into turbine blades

- Thermal barrier coatings
 - Introduced in the 1970's
 - Bond a low-conductivity ceramic to a superalloy to reduce heat transfer to metal
 - Up to 100 K increase in turbine inlet temperature

- Film cooling
 - Similar to cooling in combustor
 - Introduce holes with cold bypass air jets to "protect" surface
 - Typically used in conjunction with ceramic coating

 Note that compressor blades look different from turbine blades because cooling is not required (no holes)

- Film cooling
 - Film cooling occurs through internal passageways in blade
- Convective cooling
 - Internal flow that does not exit the blade for film cooling follows a serpentine pathway through the blade to remove heat from blade
 - Increase mixing intensity to maximize convective heat transfer

- Impingement Cooling
 - Front of blade experience largest heat input
 - Internal flow is routed to impinge against the (internal) surface, increasing heat transfer
 - Sometimes, holes may also be present at leading edge to allow impinging flow to also provide film cooling

- Remember that this cooling air comes from somewhere
 - Generally, bled from the high-pressure compressor
- Overall efficiency decreased because:
 - Coolant mass flow rate not participate in turbine power production
 - 1% cooling air fraction gives ~1% loss in power
 - Mixing and drag losses when injected from turbine blades
 - Total pressure drop from flow pattern inside turbine blades
 - Heat transfer between hot gas and coolant leads to entropy rise
- Losses due to these inefficiencies estimated at ~3%
- These are more than offset by increase efficiency from higher temperatures in turbine inlet

Nozzle Cooling

Why would we ever need to cool the nozzle?

- Nothing particularly new here
 - Liner is used to control combustion location
 - Cold bypass air for film cooling
 - Air can come from compressor or fan
 - High-temperature resistant materials

Summary

- How do we deal with high temperatures in gas turbines?
 - Advanced Materials
 - Active Cooling
- High turbine inlet temperatures lead to high efficiencies
- Materials
 - Turbine blades typically made from nickel alloys with ceramic coatings
- Cooling
 - Cold air bled from compressor or fan
 - Film "Blanket" the material in a cold flow; minimize heat transfer
 - Convective Carry heat away from hot surfaces; maximize heat transfer, massing