Logik I Übungsblatt 8

Aufgabe 1. Zeigen Sie, dass wenn $\neg CON_{ZFC}$ nicht in ZFC beweisbar ist, diese Unbeweisbarkeit nicht in ZFC beweisbar ist.

Hinweis: Der zweite Gödelsche Unvollständigkeitssatz gilt für jede Erweiterung von ZFC durch endlich viele Axiome, so auch für $ZFC^+ := ZFC \cup \{CON_{ZFC}\}$.

Aufgabe 2. Zeigen Sie in ZFC:

- a) Die Aussage ¬CON_{ZFC} ist zu ihrer eigenen Widerlegbarkeit äquivalent.
- b) Bis auf beweisbare Äquivalenz ist $\neg CON_{ZFC}$ die einzige Aussage mit dieser Eigenschaft.

Hinweis: Beweis des zweiten Gödelschen Unvollständigkeitssatzes.

Aufgabe 3. Zeigen Sie in ZFC, dass wenn ZFC \vdash Bew($\ulcorner \varphi \urcorner$) $\rightarrow \varphi$, so ZFC \vdash Bew($\ulcorner \varphi \urcorner$). *Hinweis:* Benutzen Sie den zweiten Gödelschen Unvollständigkeitssatz für die Theorie ZFC $\cup \{ \neg \varphi \}$.

Aufgabe 4.

- a) Sei $P_i^n: \mathbb{N}^n \to \mathbb{N}$ die *i*-te Projektionsfunktion, genauer sei $P_i^n(x_1, \dots, x_n) := x_i$, $1 \le i \le n$. Zeigen Sie, dass P_i^n Turing-berechenbar ist.
- b) Seien g, h n bzw. n + 2-stellige, Turing-berechenbare Funktionen, dann zeigen Sie, dass die durch primitive Rekursion definierte Funktion f,

$$f(x_1, \cdots, x_n, 0) := q(x_1, \cdots, x_n)$$

und

$$f(x_1, \dots, x_n, y+1) := h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y))$$

ebenfalls Turing-berechenbar ist.

Abgabe bis Donnerstag, den 30.05, 10:00 Uhr, in Briefkasten 177. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Web-Seite: https://www.uni-muenster.de/IVV5WS/WebHop/user/bboisson/de/L1/