A

每个点问一次d=1,然后问一次d=h+1,这样可以得到根,第二层。同时目前已知和全局除了最底下一层和第一层系数都相同

取出前两层的点问一次d=h,得到根,再通过问一次rt, 2和两次第二层,距离为1就可以算出答案。

B

我们把这个问题进行一个建模。具体地,对于 $a_i < b_i$ 的 (a_i,b_i) ,我们视为一个"区间"(闭区间,左右端点为 a_i,b_i)。对于 $a_i > b_i$ 的 (a_i,b_i) ,我们视为一个"反区间"。

我们在二维平面上刻画该问题。我们用点表示每个"区间",用 X 表示极短的"反区间",用 O 表示横纵坐标相等的点,设第 i 个 X 左上方的点数为 c_i ,第 i 个 O 左上方的点数为 d_i ,那么答案就是 $\max(\max c_i+1,\max d_i)$ 。

我们考虑,添加一个X的时候,只有当阴影区域内没点,这个X才可能对答案造成贡献。

否则,取这个 X 右下方的 O,这个 O 目前左上方的点数一定不小于 X 左上方的点数 +1。而这个 O 覆盖范围严格包含 X,所以之后这个 O 一定一直优于 X。这个 X 没用,不需要加入。

那么只需要考虑阴影内没点的情况。此时投影到某个坐标上再弄一个线段树维护即可。

判断阴影区域有无点,再在按横坐标排序的 set 中查前驱即可。

时间复杂度 $O(n \log n)$ 。

C

首先随便定一个根,把 $\operatorname{dis}(u,v)$ 转化为 $\operatorname{dep}_u + \operatorname{dep}_v - 2 \times \operatorname{dep}_{\operatorname{lca}(u,v)}$ 。

由于 $\sum dep_{p_i}$ 是固定的,所以我们只需要最小化 $\sum -dep_{\mathrm{lca}(p_i,p_{i \bmod n+1})}$,即最大化 $\sum dep_{\mathrm{lca}(p_i,p_{i \bmod n+1})}$ 。

考虑从下向上合并,从 u 的子树中会传上来若干个还没匹配的点,然后在 u 钦定若干个 pair 匹配,其他的继续往上传即可得到一个 $\mathcal{O}(Tn^3)$ 的 dp。

注意到转移方程的形式是 $f'_{i,j+k-t} = \max(t \times dep_i + f_{i,j} + f_{son,k})$ $(0 \le t \le 2 \times \min(j,k))$,如果枚举 j,k,t 那么时间复杂度就是 $\mathcal{O}(Tn^3)$ 的,但我们可以给 f 数组的第二维做整体减,即将 $f_{i,x}$ 减去 $x \times dep_i$,这样新的 f' 数组的转移就没有了 $t \times dep_i$ 一项,是一个区间取 \max 的形式,于是可以做到 $\mathcal{O}(Tn^2)$ 。

现在,我们需要考虑的是怎么快速计算 $h_{j+k-t} = \max(f_j + g_k)$ $(0 \le t \le 2 \times \min(j,k))$ 。

考虑取出 f_i 和 g_k 的最大值位置,设为 x, y,不妨设 x < y,那么 h_{y-x} 至 h_{y+x} 的值都等于 $f_x + g_{y\circ}$

接下来我们考虑 y-x 的左侧和 y+x 的右侧。

这里有一个结论是,f 和 g 都是凸包,接下来会证明这个结论。

对于 y+x 的右侧,转移式形如 $\max(f_j+g_k)\to h_{i,j+k}$,并且选择的 j,k 一定满足 $j\geq x$ 且 $k\geq y$,否则在凸包上一定能调整到更优,然后这就是一个 minkowski 和。y-x 的左侧同理。

时间复杂度 $\mathcal{O}(Tn\log n)$ 。