Digital I/O

Entradas e saídas

Agenda

- GPIOs
- Configuração
- Vetores de interrupção
- Dicas de operação
- Aspectos "analógicos" de pinos digitais

- Portas de entrada/saída configuráveis
- Tamanho: 8-bits
- Cada pino é controlado individualmente
- Alguns pinos podem gerar interrupção
- Pinos controlados por registros mapeados em memória
 - PxIN

PxREN

PxOUT

PxSEL

PxDIR

PxDS

• Botões e LEDs

• Botões e LEDs

 Configuração a base de registros

 Configuração a base de registros

- Alguns pinos são compartilhados entre GPIO e algum outro bloco.
- O pino P1 é compartilhado com o TimerA, por exemplo.

GPIOs - Resumo

- Portas controladas por registros de 8 bits.
 - PxIN
 - PxOUT
 - PxDIR
 - PxREN
 - PxSEL
 - PxDS

 Pinos são controlados individualmente com operações de set, clear e toggle (usando máscaras)

Vetores de interrupção (P1 e P2)

- Uma atividade pode ser ativada por um sinal de um pino qualquer.
- Essa atividade pode ser iniciada através de uma interrupção
- Interrupções são geradas por variações nos pinos GPIO
- Registros :
 - PxIFG Interrupt Flag (r/w → swi)
 - PxIE Interruption Enable
 - PxIES Interrupt Edge Select $(0 \rightarrow rising, 1 \rightarrow falling)$
 - PxIV Interrupt Vector

Vetores de interrupção (P1 e P2)

- PxIV Interrupt Vector
 - Posição na memória que se encontra o programa de interrupção 16-bits (word – 2 bytes)
 - PxIV_H indica o byte mais significativo
 - PxIV_L indica o byte menos significativo

Dicas de operação

- Nunca deixe os pinos desconectados.
 - Conecte externamente os pinos a Vss ou Vdd
 - Configure os pinos como entradas e use um resistor de pull-up ou pull-down para forçar a entrada num valor conhecido (recomendado)
 - Configure os pinos como saídas se seu uC não tiver resistores de pull-up/down (não recomendo)

- Switch bouncing
 - Chaves "flutuam" antes do contato e provocam ruído de chaveamento pós contato

Switch bouncing

- Nomenclatura (Número de polos e terminais)
 - SPST Single Pole, Single Throw

• SPDT – Single Pole, Double Throw

• DPST – Double Pole, Single Throw

DPDT – Single Pole, Double Throw

- •
- 2P6T

Debouncing

Ruído de entradas digitais.

