Mining Association Rules

- It is one of techniques used to discover patterns from massive data.
- The type of data being processed by this technique is usually transaction data.
 - This technology could be used for market analysis, pattern associations.
 - Example: 90% of transactions that purchase bread and butter also purchase milk.
 - The antecedent of this rules consists of bread and butter, and the consequent consists of milk.

• Mining Association Rules: the presence of one set of items implies the presence of another set of items.

Ex. People who purchased hammers also purchased nails.

- An association rule is an expression X=>Y, where X and Y are sets of items.
 - i.e. transactions of the database which contain X tend to contain Y.

• Given:

- (1)a database of transactions TX
- (2)each TX has a list of items purchased

Applications

- Bar-code technology can collect transaction data.
- Examples
 - Find all rules that have "Diet Coke" as consequent.
 These rules may help plan what the store should do to boost the sale of Diet Coke.
 - Find all rules that have "bagels" in the antecedent.
 These rules may help determine what products may be impacted if the store discontinues selling bagels.
 - Find all the rules relating items located on shelves A and B in the store. These rules may help shelf planning by determining if the sale of items on shelf A is related to the sale of items on shelf B.

Definitions

- Let
 - $-I = \{i_1, i_2, \dots, i_m\}$ be a set of items.
 - D be a set of transactions
 - Each transaction T is an itemset such that T⊂I
- We say that a transaction T contains an itemset X, if X⊆T.
- An association rule is an implication of the form $X \Rightarrow Y$, where $X \subset I$, $Y \subset I$, and $X \cap Y = \phi$.

Support

• The Rule $X \Rightarrow Y$ has support s in the transaction set D if s% of transactions in D contain X.

• support =
$$\frac{\# of \ trans \ containing \ all \ the \ items \ in \ X \cup Y}{total \ \# \ of \ trans}$$

• example: 30% of <u>all</u> transactions have bread, butter and milk.

Confidence

- The Rule $X \Rightarrow Y$ holds in the transaction set D with confidence c if c% of transactions in D that contain X also contain Y.
- confidence = $\frac{\# of trans that contain both X and Y}{\# of trans containing X}$

$$= \frac{\text{support}(X \cup Y)}{\text{support}(X)}$$

• Example: 90% of transactions that purchase bread and butter also purchase milk.

Example

Support=
$$P(X \cap Y)$$

$$\frac{\text{support}(X \cup Y)}{\text{support}(X)} = \frac{P(X \cap Y)}{P(X)}$$

Support and Confidence

- Support corresponds to statistical significance.
- Confidence is a measure of the rule's strength.

Items	Count
Bread	3
Butter	3
Milk	3
Bread Butter	2
Bread Milk	3
Butter Milk	2
Bread Butter Milk	2

Antecedent	Consequent	Support	Confidence
Bread	Butter	50 %	67 %
Bread	Milk	75 %	100 %
Bread	Butter, Milk	50 %	67 %
Butter	Bread	50 %	67 %
Milk	Bread	75 %	100 %
Milk	Butter	50 %	67 %
Bread Butter	Milk	50 %	100 %
Bread Milk	Butter	50 %	67 %

total # of transaction = 4

The Task of Mining Association Rules

- find all rules or patterns that satisfy user specified minimum support (minsup) and minimum confidence (minconf).
 - for example: 50% as minsup and 66% minconf

- find out strong rules in the transactions
 - Strong rules is defined as rules with high confidence and strong support.

How to Mining Association Rules

- Find the strong rules.
 - To find the strong rules, two tasks are required.
 - Discovery the large itemsets (the sets of itemset) that have transaction support above a pre-determined minimum support.
 - Use the large itemsets found to generate the association rules in the database.
 - After the large itemset are identified, the corresponding association rules can be derived in a straightforward manner.
 - The performance of the mining technique is largely determined by the first task.

Methods for Mining Association Rules

- Apriori Algorithm (Agrawal & Srikant'94)
 - The original mining association rules.
 - Apriori algorithm is mainly used to search the largest itemsets.
 - Apriori <u>constructs a candidate set of large itemsets</u>, <u>counts the number of occurrence of each candidate</u> <u>itemset</u>, and <u>then determines large itemsets based on a</u> <u>pre-determined minimum support</u>.
 - Derive association rules.

Example (Apriori)

• Let min_support=50% and min_confidence=60%. Since there are four records in the table, the number of transactions above the minsup is 2 (4 * 50% = 2).

Database D

- k-itemset An itemset haves k items.
- L_k Set of a large k-itemset.
- C_k Set of a candidate k-itemset.

TID	Items
100	ACD
200	ВСЕ
300	ABCE
400	ВЕ

Database D

TID	Items	
100	ACD	
200	BCE	
300	ABCE	
400	BE	

C_1	
Itemset	Sup.
{A} {B} {C} {D}	2 3 3 1
{D} {E}	1 3

	′ 1

1	
Itemset	Sup.
{A}	2
{B}	3
{C}	3
{E}	3

 C_2

Itemset
{A B}
{A C}
{A E}
{B C}
{B E}
{CE}

Itemset	Sup.
{A B}	1
{A C}	2
{A E}	1
{B C}	2
{B E}	3
{C E}	2

 L_2

Itemset	Sup.
{A C}	2
{B C}	2
{B E}	3
{C E}	2

 C_3

Itemset
{B C E}

Scan
D

 C_3

Itemset	Sup.
{B C E}	2

 L_3

Itemset	Sup.
{B C E}	2

Association-13

Apriori's Algorithm

```
1)
     L_1 = \{large 1-itemsets\};
2)
     for (k=2; L_k-1\neq 0; k++) do begin
        C_k=apriori-gen(L_k-1); // New candidates
3)
        forall transactions t∈D do begin
4)
5)
                 C_t=subset(C_k,t); // Candidates contained in t
                 for all candidates c \in C_t do
6)
7)
                         c.count++:
8)
        end
        L_{k} = \{c \in C_{k} \mid c.count \ge minsup\}
9)
10) end
11) Answet=\bigcup_k L_k;
```

• The apriori-gen function takes an argument L_{k-1} , the set of all large (k-1)-itemsets. It returns a superset of the set of all large k-itemsets. The function works. First, in the join step, we join L_{k-1} with L_{k-1} ;

```
insert into C_k select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k-1</sub>, q.item<sub>k-1</sub> from L_{k-1} p, L_{k-1} q where p.item<sub>1</sub>=q.item<sub>1</sub>, ..., p.item<sub>k-2</sub>=q.item<sub>k-2</sub>, p.item<sub>k-1</sub><q.item<sub>k-1</sub>;
```

• Next, in the prune step, we delete all itemsets $c \in C_k$ such that some (k-1)-subset of c is not in L_{k-1} ;

for all itemsets $c \in C_k$ do for all (k-1)-subsets s of c do if $(s \notin L_{k-1})$ then delete c from C_k ;

For Example:

_	Candidates	
Large	4-itemsets	
3-itemsets	(after join)	(after pruning)
{A B C}	{A B C D}	{ABCD}
{A B D}	$\{ACDE\}$	
{A C D}		
$\{ACE\}$		
{B C D}		

Algorithm AprioriTID

- The database *D* is not used for counting support after the first pass.
- Each member of the set \overline{C}_k is of the from $\langle \text{TID}, \{X_k\} \rangle$, where each X_k is a potentially large k-itemset present in the transaction with identifier TID.

Database

Items
A C D
ВСЕ
ABCE
ΒE

_	_
	٦
l	ر

TID	Set-of-Itemsets
	$\{\{A\}, \{C\}, \{D\}\}$
200	$\{\{B\}, \{C\}, \{E\}\}$
300	$\{\{A\}, \{B\}, \{C\}, \{E\}\}$
400	$\{\{B\}, \{E\}\}$

L_1

1	
Itemset	Sup.
{A}	2
{B}	3
{C}	3
{E}	3

C_2

Itemset	Sup.
{A B}	1
{A C}	2
$\{A E\}$	1
{B C}	2
{B E}	3
{CE}	2
	{A B} {A C} {A E} {B C} {B E}

 $\overline{\mathbf{C}}_2$

TID	Set-of-Itemsets
100	{{A C}}
200	$\{\{BC\}, \{BE\}, \{CE\}\}$
300	{{A B}, {A C}, {A E}, {B C}, {B E}, {C E}}
400	{{B E}}}

 L_2

Itemset	Sup.
{A C}	2
{B C}	2
{BE}	3
{C E}	2

 C_3

3	
Itemset	Sup.
{B C E}	2

 $\overline{\mathbf{C}}_3$

TID	Set-of-Itemsets
200	{{B C E}}
300	$\{\{B C E\}\}$

 \mathbf{L}_{i}

<u> </u>		
Itemset	Sup.	
{B C E}	2	

DHP Algorithm (Direct Hashing with Pruning)

- Apriori + hashing (Park, Chen and Yu'95)
- use hash-based method to reduce the size of C2
- Allow effective reduction on Tx database size (Tx number and each Tx size)

Example (DHP)

```
Making a hash table

100 {AC}, {AD}, {CD}

200 {BC}, {BE}, {CE}

300 {AB}, {AC}, {AE}, {BC}, {BE}, {CE}

400 {BE}

h{{x y}} = ((order of x) * 10 + (order of y)) mod 7;
```

	{C E} {C E} {A D}	{AE}	{B C} {B C}		{BE} {BE} {BE}	{AB}	{A C} {C D} {A C}	
	3	1	2	0	3	1	3	Hash table H ₂
-	0	1	2	3	4	5	6	Hash address

Generating C₂

Example of L₂ and D₃

TID	Items
100	A C D
200	BCE
300	ABCE
400	BE

$$D_3 = \{ <200, B C E >, <300, B C E > \}$$

$$C_2$$
 count C_2 C_2 C_2 C_3 C_4 C_5 C_5 C_6 C_7 C_8 C_8

Counting support in a hash tree

Boolean Algorithm

- Boolean Algorithm (Wur & Leu '99)
 - Similar to the Apriori algorithm.
 - By only scanning the database once and avoiding generating candidate itemsets in computing frequent itemsets.
 - Step 1: the frequent itemsets is identified.
 - Step 2: the association rules based on the identified frequent itemsets are generated.

Boolean Operations

- Logic OR and AND operations are used to compute frequent itemsets.
- Logic AND and XOR operations are applied to derive all interesting association rules based on the computed frequent itemsets.

V1	1	1	0	0
V2	1	0	1	0
V1 AND V2	1	0	0	0
V1 OR V2	1	1	1	0
V1 XOR V2	0	1	1	0

Example (Boolean)

Database D

TID	Items
100	ACD
200	BCE
300	ABCE
400	BE

Item Set I: ABCDE

Minimum support:40% (2)

Minimum confidence:50%

The Initial TITTC Table

	A	В	С	D	Е	T100	T200	T300	T400	Count
A	1	0	0	0	0	1	0	1	0	2
В	0	1	0	0	0	0	1	1	1	3
С	0	0	1	0	0	1	1	1	0	3
D	0	0	0	1	0	1	0	0	0	1
Е	0	0	0	0	1	0	1	1	1	3

The TITTC₁ Table

	A	В	С	D	Е	T100	T200	T300	T400	Count
A	1	0	0	0	0	1	0	1	0	2
В	0	1	0	0	0	0	1	1	1	3
С	0	0	1	0	0	1	1	1	0	3
Е	0	0	0	0	1	0	1	1	1	3

The TITTC₂ Table

	A	В	C	D	Е	T100	T200	T300	T400	Count
AC	1	0	1	0	0	1	0	1	0	2
BC	0	1	1	0	0	0	1	1	0	2
BE	0	1	0	1	0	0	1	1	1	3
CE	0	0	1	0	1	0	1	1	0	2

The TITTC₃ Table

	A	В	С	D	Е	T100	T200	T300	T400	Count
BCE	0	1	1	0	1	0	1	1	0	2

The TAR Table

The final TIC Table

	A	В	C	D	Е	Count
A	1	0	0	0	0	2
В	0	1	0	0	0	3
C	0	0	1	0	0	3
Е	0	0	0	0	1	3
AC	1	0	1	0	0	2
BC	0	1	1	0	0	2
BE	0	1	0	0	1	3
CE	0	0	1	0	1	2
BCE	0	1	1	0	1	2

Antecedent	Consequent	Support	Confidence
A	С	50 %	100 %
В	С	50 %	67 %
В	Е	75 %	100 %
В	CE	50 %	67 %
С	A	50 %	67 %
С	В	50 %	67 %
С	Е	50 %	67 %
С	BE	50 %	67 %
Е	В	75 %	100 %
Е	С	50 %	67 %
Е	ВС	50 %	67 %
ВС	Е	50 %	100 %
BE	С	50 %	67 %
CE	В	50 %	100 %