Advanced Computer Architecture

COMP 5123

Fall 2016

Computer Science Department

Prairie View A&M University

Mary Heejin Kim (aka Heejin Lim), Ph.D.

Chapter 5

Internal Memory

Semiconductor Memory Types

Memory Type	Category	Erasure	Write Mechanism	Volatility	
Random-access memory (RAM)	Read-write memory	Electrically, byte-level Electrically		Volatile	
Read-only memory (ROM)	Read-only	Not possible	Masks	Nonvolatile	
Programmable ROM (PROM)	memory	Not possible			
Erasable PROM (EPROM)		UV light, chip- level			
Electrically Erasable PROM (EEPROM)	Read-mostly memory	Electrically, byte-level	Electrically		
Flash memory		Electrically, block-level			

Table 5.1 Semiconductor Memory Types

Dynamic RAM (DRAM)

- RAM technology is divided into two technologies:
 - Dynamic RAM (DRAM)
 - Static RAM (SRAM)
- DRAM
 - Made with cells that store data as charge on capacitors
 - Presence or absence of charge in a capacitor is interpreted as a binary 1 or 0
 - Requires periodic charge refreshing to maintain data storage
 - The term dynamic refers to tendency of the stored charge to leak away, even with power continuously applied

SRAM versus DRAM

SRAM

- Both volatile
 - Power must be continuously supplied to the memory to preserve the bit values
- Dynamic cell
 - Simpler to build, smaller
 - More dense (smaller cells = more cells per unit area)
 - Less expensive
 - Requires the supporting refresh circuitry
 - Tend to be favored for large memory requirements
 - Used for main memory
- Static
 - **■** Faster
 - Used for cache memory (both on and off chip)

DRAM

Read Only Memory (ROM)

- Contains a permanent pattern of data that cannot be changed or added to
- No power source is required to maintain the bit values in memory
- Data or program is permanently in main memory and never needs to be loaded from a secondary storage device
- Data is actually wired into the chip as part of the fabrication process
 - Disadvantages of this:
 - No room for error, if one bit is wrong the whole batch of ROMs must be thrown out
 - Data insertion step includes a relatively large fixed cost

Programmable ROM (PROM)

- Less expensive alternative
- Nonvolatile and may be written into only once
- Writing process is performed electrically and may be performed by supplier or customer at a time later than the original chip fabrication
- Special equipment is required for the writing process
- Provides flexibility and convenience
- Attractive for high volume production runs

11

Read-Mostly Memory

Erasable programmable readonly memory Erasure process can be performed repeatedly More expensive than PROM but it has the advantage of the multiple update capability

Error Correction

- Hard Failure
 - Permanent physical defect
 - Memory cell or cells affected cannot reliably store data but become stuck at 0 or 1 or switch erratically between 0 and 1
 - Can be caused by:
 - Harsh environmental abuse
 - · Manufacturing defects
 - Wear
- Soft Error
 - Random, non-destructive event that alters the contents of one or more memory cells
 - No permanent damage to memory
 - Can be caused by:
 - Power supply problems
 - Alpha particles

18

Error Correcting Code Function Error Signal Data In Memory K Compare Figure 5.7 Error-Correcting Code Function

Performance Comparison DRAM Alternatives

Table 5.3

	Clock Frequency (MHz)	Transfer Rate (GB/s)	Access Time (ns)	Pin Count		
SDRAM	166	1.3	18	168		
DDR	200	3.2	12.5	184		
RDRAM	600	4.8	12	162		

Table 5.3 Performance Comparison of Some DRAM Alternatives

Layout of Data Bits and Check Bits

Bit Position	12	11	10	9	8	7	6	5	4	3	2	1
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data Bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check Bit					C8				C4		C2	C1

Figure 5.9 Layout of Data Bits and Check Bits

221

Check Bit Calculation

Bit position	12	11	10	9	8	7	6	5	4	3	2	1
Position number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data bit	D8	D7	D6	D5		D4	D3	D2		D1		/
Check bit					C8				C4		C2	C1
Word stored as	0	0	1	0	0	1	0	0	1	1	1	1
Word fetched as	0	0	1	1	0	1	1	0	1	1	1	1
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Check Bit					0				0		0	1

Figure 5.10 Check Bit Calculation

Advanced DRAM Organization One of the most critical system bottlenecks when using highperformance processors is the interface to main internal memory ■ The traditional DRAM chip is constrained both by its internal architecture and by its interface to the processor's memory bus A number of enhancements to the basic DRAM architecture have been explored: Clock Transfer Rate Access Time Pin Count (GB/s) Frequency (ns) (MHz) SDRAM 1.3 18 166 168 200 184 DDR 3.2 12.5 RDRAM 600 4.8 12 162 Table 5.3 Performance Comparison of Some DRAM Alternatives

SDRAM Pin Assignments

A0 to A13	Address inputs
CLK	Clock input
CKE	Clock enable
CS	Chip select
RAS	Row address strobe
CAS	Column address strobe
WE	Write enable
DQ0 to DQ7	Data input/output
DQM	Data mask

Table 5.4 SDRAM Pin Assignments

28

SDRAM Read Timing

Figure 5.13 SDRAM Read Timing (Burst Length = 4, \overline{CAS} latency = 2)

Double Data Rate SDRAM (DDR SDRAM)

- SDRAM can only send data once per bus clock cycle
- Double-data-rate SDRAM can send data twice per clock cycle, once on the rising edge of the clock pulse and once on the falling edge
- Developed by the JEDEC Solid State Technology Association (Electronic Industries Alliance's semiconductor-engineering-standardization body)

Cache DRAM (CDRAM)

- Developed by Mitsubishi
- Integrates a small SRAM cache onto a generic DRAM chip
- SRAM on the CDRAM can be used in two ways:
 - It can be used as a true cache consisting of a number of 64bit lines
 - Cache mode of the CDRAM is effective for ordinary random access to memory
 - Can also be used as a buffer to support the serial access of a block of data

34

Summary

Chapter 5

- Semiconductor main memory
 - Organization
 - DRAM and SRAM
 - Types of ROM
 - · Chip logic
 - · Chip packaging
 - Module organization
 - Interleaved memory
- Error correction
 - · Hard failure
 - Soft error

- Hamming code
- Advanced DRAM organization
 - Synchronous DRAM
 - Rambus DRAM
 - DDR SDRAM
 - Cache DRAM