$HW 5 Due: Feb 28^{th} 2025$

1. Prove that $L = \{w\overline{w} : w \in \{0,1\}^*\}$ is nonregular, where \overline{w} is the bitwise binary complement of w, e.g., 0001 = 1110, thus $00011110 \in L$.

Answer Prove by contradiction.

Proof. Assume the contrary that L is regular. Let p be the given pumping length. Now, consider $s = 0^p 1^p$. Because s is a member of L and s has a length more than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, satisfying the three conditions of the lemma, where for any $i \ge 0$, the string xy^iz is in L. Since $|xy| \le p$, y must be all 0's, and we can consider the following:

$$\underbrace{0^i}_x\underbrace{0^j}_y\underbrace{0^{p-i-j}1^p}_z$$

Consider i = 3. Consequently, xy^iz is:

$$\underbrace{0^{i}}_{x} \underbrace{(0^{j})^{3}}_{y^{i}} \underbrace{0^{p-i-j} 1^{p}}_{z} = 0^{i} 0^{3j} 0^{p-i-j} 1^{p} = 0^{p+2j} 1^{p}$$

The length of this string is 2p + 2j. Hence, if $xy^3z \in L$, then the first p + j symbols are w, and the latter represent \overline{w} . Hence:

$$\underbrace{0^{p+j}}_{w}\underbrace{0^{j}1^{p}}_{\overline{w}}$$

However the bitwise binary complement of w is 1^{p+j} and not $0^j 1^p$. It is also important to note that j > 0 since |y| > 0. Therefore, we arrive at a contradiction that $xy^3z \notin L$ and conclude that L is not regular.

2. Prove that $L = \{w \in \{a, b\}^* : |w|_a \neq |w|_b\}$ is nonregular.

Answer: Prove by contradiction.

Proof. Assume the contrary that L is regular. Let p be the given pumping length. Now, consider $s = a^p b^{p!+p}$. Because s is a member of L and s has a length more than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, satisfying the three conditions of the lemma, where for any $i \geq 0$, the string xy^iz is in L. Since $|xy| \leq p$, y must be all 0's, and we can consider the following:

$$\underbrace{a^i}_x\underbrace{a^j}_y\underbrace{a^{p-i-j}b^{p!+p}}_z$$

Consider $i = \frac{p!+j}{j}$. i is a natural number since $j \leq p$ and p! is divisible by all the numbers less or equal than p, including j. Consequently, xy^iz is:

$$\underbrace{a^i}_x\underbrace{(a^j)^i}_{y^i}\underbrace{a^{p-i-j}b^{p!+p}}_z = a^i(a^j)^{\frac{p!+j}{j}}a^{p-i-j}b^{p!+p} = a^ia^{p!+j}a^{p-i-j}b^{p!+p} = a^{p!+p}b^{p!+p}$$

However considering this string $a^{p!+p}b^{p!+p}$, $|w|_a = |w|_b$. Therefore, we arrive at a contradiction that $xy^iz \notin L$ and conclude that L is not regular.

- 3. Let $|x|_a$ be the number of occurrences of the symbol a in the string x.
 - Define a context-free grammar for the language $L = \{w \in \{0,1\}^* : |w|_0 = |w|_1\}.$

Answer

Consider the grammar $G = (\{S\}, \{0, 1\}, R, S)$ where the set of rules, R, is

$$S \rightarrow 0S1 \mid 1S0 \mid SS \mid \varepsilon$$
.

• Give a formal proof, or at least the key idea(s), of why your grammar generates L.

Answer

To prove L(G) = L, we have to show two things $L(G) \subset L$ and $L \subset L(G)$ since we're trying to show the two sets are equal:

(a) $L(G) \subset L$: The shortest string in L(G) is ε , which is also in L. Additionally, $S \to 0S1$ and $S \to 1S0$ maintain balance because they always introduce one 0 and one 1 together. Finally, $S \to SS$ allows for concatenation of two valid substrings, ensuring that the overall number of 0s and 1s remains equal.

Thus, every derivation maintains the invariant $|w|_0 = |w|_1$, proving that $L(G) \subset L$.

(b) $L \subset L(G)$: We will use induction on the length of strings $w \in L$.

Base Case: The shortest string in L is ε , which can be produced by the rule:

$$S \to \varepsilon$$
.

Induction Hypothesis: Suppose that for all balanced strings w of length at most 2n, we can derive w using G, i.e.,

$$S \stackrel{*}{\Longrightarrow} w$$
.

Induction Step: Consider a string w where |w| = 2n + 2 and $|w|_0 = |w|_1$. Define the function:

$$g_i = f_0(w_{1:i}) - f_1(w_{1:i}),$$

where $f_c(y)$ counts the number of occurrences of symbol c in y.

We know:

$$g_0 = 0, \quad g_{2n+2} = 0.$$

By the discrete intermediate value property, there exists an index j such that:

$$g_i = 0$$
, for some $1 < j < 2n + 2$.

This allows us to split w into two balanced substrings:

$$x = w_1 w_2 \cdots w_i, \quad z = w_{i+1} w_{i+2} \cdots w_{2n+2}.$$

By the induction hypothesis, both are derivable:

$$S \stackrel{*}{\Longrightarrow} x$$
 and $S \stackrel{*}{\Longrightarrow} z$.

Then:

$$S \xrightarrow{\mathbf{G}} SS \xrightarrow{*}_{\mathbf{G}} xS \xrightarrow{*}_{\mathbf{G}} xz.$$

If no such j exists, consider the cases:

- Case 1: $w_1 = 0$, so $g_1 = 1$. Since $g_{2n+2} = 0$, and g changes by ± 1 , we claim that:

$$g_i > 0$$
, $\forall 1 < i < 2n + 2$.

If g_i were to drop below 0 at any point, it would have to pass through 0, contradicting our assumption that $g_j \neq 0$ for all 1 < j < 2n + 2. Thus, in order for g_{2n+2} to return to 0, w_{2n+2} must be 1, ensuring the balance.

Therefore, w takes the form:

$$w = 0w_2w_3\cdots w_{2n+1}1.$$

Let $x = w_2 w_3 \cdots w_{2n+1}$, which is balanced and derivable by the induction hypothesis. Hence, we derive w as follows:

$$S \stackrel{*}{\Longrightarrow} 0S1 \stackrel{*}{\Longrightarrow} 0w_2w_3 \cdots w_{2n+1}1.$$

- Case 2: $w_1 = 1$, so $g_1 = -1$. Since $g_{2n+2} = 0$, we claim that:

$$q_i < 0, \quad \forall 1 < i < 2n + 2.$$

If g_i were to become positive at any point, it would have to pass through 0, contradicting our assumption that $g_j \neq 0$ for all 1 < j < 2n + 2. Thus, in order for g_{2n+2} to reach 0, w_{2n+2} must be 0, ensuring the balance.

Therefore, w must be of the form:

$$w = 1w_2w_3 \cdots w_{2n+1}0.$$

Let $x = w_2 w_3 \cdots w_{2n+1}$, which is balanced and derivable by the induction hypothesis. Hence, we derive w as follows:

$$S \stackrel{*}{\Longrightarrow} 1S0 \stackrel{*}{\Longrightarrow} 1w_2w_3 \cdots w_{2n+1}0.$$

4. Define a context-free grammar for the language $L = \{a^n b^m c^{n-m} : n \ge m\}$.

Answer

This language can be written as follows:

$$L = \{a^{n-m}a^mb^mc^{n-m} : n \ge m\}$$

Now, consider the grammar $G = (\{X, S\}, \{a, b, c\}, R, S)$ where the set of rules, R, is

$$S \to aSc \mid X$$

$$X \to aXb \mid \varepsilon.$$

5. Define a context-free grammar for the language $L = \{xy00y^Rx^R : x \in \{0,1\}^*, y \in \{2,3\}^*\}$.

Answer:

Consider the grammar $G = (\{S, W\}, \{0, 1, 2, 3\}, R, S)$ where the set of rules, R, is

$$S \rightarrow 0S0 \mid 1S1 \mid W$$

$$W \to 2W2 \mid 3W3 \mid 00.$$