

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/599,036	09/18/2006	Teruo Amoh	20239/0204318-US0	3301
7278	7590	07/09/2008	EXAMINER	
DARBY & DARBY P.C. P.O. BOX 770 Church Street Station New York, NY 10008-0770			BELOUSOV, ALEXANDER	
ART UNIT	PAPER NUMBER			
			2811	
MAIL DATE	DELIVERY MODE			
07/09/2008			PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/599,036	Applicant(s) AMOH ET AL.
	Examiner ALEXANDER BELOUSOV	Art Unit 2811

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED. (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 14 April 2008.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-4 and 6-11 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-4 & 6-11 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413)
Paper No(s)/Mail Date: _____ |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/1449/06)
Paper No(s)/Mail Date: _____ | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

This Office Action is in response to the amendment filed on 04/14/2008. Currently, claims 1-4 & 6-11 are pending.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

4. **Claims 1-4, 6, 9 & 10** are rejected under 35 U.S.C. 103(a) as being unpatentable over (JP-2003-209286) by Kitano in view of Silicon Processing for VLSI Era Volume 1 by Wolf et al (“Wolf”).

Regarding claim 1, Kitano discloses in FIG. 3 and related text (machine translation of the publication has been included) a semiconductor light-emitting element mounting member comprising: a substrate (111); and a metal film (107) formed on a surface of said substrate, formed from Ag, Al, or an alloy containing said metals, and functioning as an electrode layer for mounting at least one of a semiconductor light-emitting element (100) and a reflective layer for reflecting light from a semiconductor light-emitting element.

Kitano does not disclose the thickness of the metal film is 0.5-3 .mu.m and crystal grains of said metal or alloy forming said metal film have a particle diameter along a surface plane of said metal film is no more than 0.5 .mu.m and said surface of said metal film has a center-line average roughness Ra of no more than 0.1 .mu.m.

Wolf teaches the thickness of the metal film is 0.5-3 .mu.m (page 435; “thickness range of 500-1500 nm”) and crystal grains of said metal or alloy forming said metal film have a particle diameter along a surface plane of said metal film is no more than 0.5 .mu.m and said surface of said metal film has a center-line average roughness Ra of no more than 0.1 .mu.m (pages 106-107 describe the vapor deposition process; bottom of page 106: smaller grains are result of lower substrate temperature; top of page 107: smaller grains are result of higher deposition rates; these are the two methods stated by applicant in his disclosure for achieving his particle diameter and roughness specs; hence, these results are **inherent** in the application of Wolf’s teaching by applicant’s own disclosure; NOTE: applicant states one more factor which **may** affect particle diameter and roughness specs: roughness of the substrate; however, applicant discloses that this is not a strict requirement (page 16: “**may** not be possible”)).

It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the device of Kitano with the thickness of the metal film is 0.5-3 .mu.m and crystal grains of said metal or alloy forming said metal film have a particle diameter along a surface plane of said metal film is no more than 0.5 .mu.m and said surface of said metal film has a center-line average roughness Ra of no more than 0.1 .mu.m as taught by Wolf, in order to simplify the manufacturing process, by using conventional & well-known materials (page 435, Table 11-1) of conventional & well-known thickness for use as a conductor of electricity that have low resistivity (page 435), and in order to further increase the reflection factor of the thin film (see Kitano, paragraph 8: raising reflection factor is a stated goal of the invention), respectively.

Please note that applying a known technique (Wolf's teaching for reducing the grain size and surface roughness of a thin film) to a known device ready for improvement (device of Kitano) to yield predictable results (grain size and surface roughness of thin film are reduced) is considered to be obvious (KSR International Co. v. Teleflex Inc., 550 U.S.-, 82 USPQ2d 1385).

Regarding claim 2, Kitano discloses in FIG. 3 and related text an adhesion layer (110) and a barrier layer (109) are formed, in sequence, on said substrate, with said metal film being formed on said barrier layer.

Regarding claims 3, 4 & 6, Kitano does not disclose said metal film is formed as an alloy of at least one of Ag and Al and other metal, a proportional content of said other metal being 0.001-10 percent by weight, wherein said other metal is at least one type of metal selected from a group consisting of Cu, Mg, Si, Mn, Ti, and Cr.

Wolf teaches said metal film is formed as an alloy of at least one of Ag and Al and other metal (page 435, Table 11-1, "Aluminum / 4% Copper), a proportional content of said other metal being 0.001-10 percent by weight, wherein said other metal is at least one type of metal selected from a group consisting of Cu, Mg, Si, Mn, Ti, and Cr.

It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the device of Kitano with said metal film is formed as an alloy of at least one of Ag and Al and other metal, a proportional content of said other metal being 0.001-10 percent by weight, wherein said other metal is at least one type of metal selected from a group consisting of Cu, Mg, Si, Mn, Ti, and Cr as taught by Wolf, in order to improve the film's resistance to electromigration (page 435).

Regarding claim 9, Kitano discloses in FIG. 3 and related text a semiconductor light-emitting element mounting member according to claim 1 wherein said semiconductor light-emitting element mounting member is a flat submount (see FIG. 3).

Regarding claim 10, Kitano discloses in FIG. 3 and related text a semiconductor light-emitting element (100) mounted thereto.

5. **Claims 7 & 8** are rejected under 35 U.S.C. 103(a) as being unpatentable over (JP-2003-209286) by Kitano in view of Silicon Processing for VLSI Era Volume 1 by Wolf et al ("Wolf") as applied to claim(s) above, and further in view of (US-2004/0026708) by Chen.

Regarding claims 7 & 8, Kitano and Wolf disclose substantially the entire claimed structure, as recited in claim 1, except a thermal expansion coefficient of said substrate is 1.times.10.sup.-6/K-10.times.10.sup.-6/K and a thermal conductivity of said substrate is at least 80 W/mK.

Chen teaches in FIG. 1 and related text a thermal expansion coefficient of said substrate (50) is 1.times.10.sup.-6/K-10.times.10.sup.-6/K and a thermal conductivity of said substrate is at least 80 W/mK (50 is a silicon substrate (paragraph 9); silicon has the thermal expansion coefficient and thermal conductivity specs stated above, by applicant's admission).

It would have been obvious to one of ordinary skill in the art at the time of the invention to further modify the device of Kitano and Wolf with a thermal expansion coefficient of said substrate is 1.times.10.sup.-6/K-10.times.10.sup.-6/K and a thermal conductivity of said substrate is at least 80 W/mK as taught by Chen, in order to simplify the processing steps of making the device, by using conventional & well-known substrate material.

6. **Claim 11** is rejected under 35 U.S.C. 103(a) as being unpatentable over (JP-2003-209286) by Kitano in view of Silicon Processing for VLSI Era Volume 1 by Wolf et al ("Wolf") as applied to claim(s) above, and further in view of (US-2004/0004435) by Hsu.

Regarding claim 11, Kitano and Wolf disclose substantially the entire claimed structure, as recited in claims 1 & 10, except the output of said semiconductor light-emitting element is at least 1 W.

Hsu teaches in FIG. 2 and related text the output of said semiconductor light-emitting element is at least 1 W (paragraph 9).

It would have been obvious to one of ordinary skill in the art at the time of the invention to further modify the device of Kitano and Wolf with the output of said semiconductor light-emitting element is at least 1 W, in order to use the device in an application that requires high brightness (see Hsu, paragraph 9).

7. **Claims 1-4, 6, 9 & 10** are rejected under 35 U.S.C. 103(a) as being unpatentable over Silicon Processing for VLSI Era Volume 1 by Wolf et al ("Wolf") in view of (JP-2003-209286) by Kitano.

Regarding claim 1, Wolf discloses a substrate (Fig. 4-1); and a metal film formed on a surface of said substrate, formed from Ag, Al, or an alloy containing said metals (see Table 11-1); wherein the thickness of the metal film is 0.5-3 .mu.m (page 435; "thickness range of 500-1500 nm") and crystal grains of said metal or alloy forming said metal film have a particle diameter along a surface plane of said metal film is no more than 0.5 .mu.m and said surface of said metal film has a center-line average roughness Ra of no more than 0.1 .mu.m (pages 106-107 describe the vapor deposition process; bottom of page 106: smaller grains are result of lower

substrate temperature; top of page 107: smaller grains are result of higher deposition rates; these are the two methods stated by applicant in his disclosure for achieving his particle diameter and roughness specs; hence, these results are **inherent** in the application of Wolf's teaching by applicant's own disclosure; NOTE: applicant states one more factor which **may** affect particle diameter and roughness specs: roughness of the substrate; however, applicant discloses that this is not a strict requirement (page 16: "**may** not be possible").

Wolf does not disclose a semiconductor light-emitting element mounting member comprising: a metal film functioning as an electrode layer for mounting at least one of a semiconductor light-emitting element and a reflective layer for reflecting light from a semiconductor light-emitting element.

Kitano discloses in FIG. 3 and related text (machine translation of the publication has been included) a semiconductor light-emitting element mounting member comprising: a metal film (107) functioning as an electrode layer for mounting at least one of a semiconductor light-emitting element (100) and a reflective layer for reflecting light from a semiconductor light-emitting element.

It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the device of Wolf with a semiconductor light-emitting element mounting member comprising: a metal film functioning as an electrode layer for mounting at least one of a semiconductor light-emitting element and a reflective layer for reflecting light from a semiconductor light-emitting element, as taught by Kitano, in order to use the device in an application which requires a semiconductor light-emitting element mounting member, and a semiconductor light-emitting element, respectively.

Please note that combining prior art elements (Wolf's teaching of thin film and Kitano's teaching of a mounting member and light-emitting element) according to known methods (mounting the device on top of a film is known, according to Kitano) to yield predictable results is considered to be obvious (KSR International Co. v. Teleflex Inc., 550 U.S.-, 82 USPQ2d 1385).

Regarding claim 2, Wolf does not disclose an adhesion layer and a barrier layer are formed, in sequence, on said substrate, with said metal film being formed on said barrier layer.

Kitano teaches in FIG. 3 and related text an adhesion layer (110) and a barrier layer (109) are formed, in sequence, on said substrate, with said metal film being formed on said barrier layer.

It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the device of Wolf with an adhesion layer and a barrier layer are formed, in sequence, on said substrate, with said metal film being formed on said barrier layer, as taught by Kitano, in order to form a connection with good thermal conductivity (paragraph 30), and in order to more easily plate the reflecting layer on the underlying layer than directly on substrate (paragraph 22 & paragraph 30), respectively.

Regarding claims 3, 4 & 6, Wolf discloses said metal film is formed as an alloy of at least one of Ag and Al and other metal (page 435, Table 11-1, "Aluminum / 4% Copper), a proportional content of said other metal being 0.001-10 percent by weight, wherein said other metal is at least one type of metal selected from a group consisting of Cu, Mg, Si, Mn, Ti, and Cr.

Regarding claim 9, Wolf does not disclose a semiconductor light-emitting element mounting member according to claim 1 wherein said semiconductor light-emitting element mounting member is a flat submount

Kitano teaches in FIG. 3 and related text a semiconductor light-emitting element mounting member according to claim 1 wherein said semiconductor light-emitting element mounting member is a flat submount (see FIG. 3).

It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the device of Wolf with a semiconductor light-emitting element mounting member according to claim 1 wherein said semiconductor light-emitting element mounting member is a flat submount, as taught by Kitano, in order to use a flip chip type light-emitting element on top of it (see FIG. 3 of Kitano).

Regarding claim 10, Wolf does not disclose a semiconductor light-emitting element (100) mounted thereto.

Kitano teaches in FIG. 3 and related text a semiconductor light-emitting element (100) mounted thereto.

It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the device of Wolf with a semiconductor light-emitting element (100) mounted thereto, in order to use the device in an application that requires a light-emitting element.

8. **Claims 7 & 8** are rejected under 35 U.S.C. 103(a) as being unpatentable over Silicon Processing for VLSI Era Volume 1 by Wolf et al (“Wolf”) in view of (JP-2003-209286) by Kitano as applied to claim(s) above, and further in view of (US-2004/0026708) by Chen.

Regarding claims 7 & 8, Wolf and Kitano disclose substantially the entire claimed structure, as recited in claim 1, except a thermal expansion coefficient of said substrate is 1.times.10.sup.-6/K-10.times.10.sup.-6/K and a thermal conductivity of said substrate is at least 80 W/mK.

Chen teaches in FIG. 1 and related text a thermal expansion coefficient of said substrate (50) is 1.times.10.sup.-6/K-10.times.10.sup.-6/K and a thermal conductivity of said substrate is at least 80 W/mK (50 is a silicon substrate (paragraph 9); silicon has the thermal expansion coefficient and thermal conductivity specs stated above, by applicant's admission).

It would have been obvious to one of ordinary skill in the art at the time of the invention to further modify the device of Wolf and Kitano with a thermal expansion coefficient of said substrate is 1.times.10.sup.-6/K-10.times.10.sup.-6/K and a thermal conductivity of said substrate is at least 80 W/mK as taught by Chen, in order to simplify the processing steps of making the device, by using conventional & well-known substrate material.

9. **Claim 11** is rejected under 35 U.S.C. 103(a) as being unpatentable Silicon Processing for VLSI Era Volume 1 by Wolf et al ("Wolf") in view of (JP-2003-209286) by Kitano as applied to claim(s) above, and further in view of (US-2004/0004435) by Hsu.

Regarding claim 11, Wolf and Kitano disclose substantially the entire claimed structure, as recited in claims 1 & 10, except the output of said semiconductor light-emitting element is at least 1 W.

Hsu teaches in FIG. 2 and related text the output of said semiconductor light-emitting element is at least 1 W (paragraph 9).

It would have been obvious to one of ordinary skill in the art at the time of the invention to further modify the device of Wolf and Kitano with the output of said semiconductor light-emitting element is at least 1 W, in order to use the device in an application that requires high brightness (see Hsu, paragraph 9).

Response to Arguments

Applicant's arguments filed on 04/14/2008 have been fully considered but they are not persuasive.

1. **Regarding claim 1**, the Applicant argues that Wolf does not teach the Applicant's crystal grains diameter, because the Examiner incorrectly interprets Wolf's teachings. Specifically, the Examiner states that "smaller grains are the result of higher deposition rates". However, Wolf also teaches that "high deposition rates ... can raise the substrate temperature ... thereby producing increased grain size".

Please see rejection of claim 1. The Examiner specifically points out from Wolf's teachings that the smaller crystal grain diameter is the result of at least **two** factors. The two factors are lower substrate temperature **and** higher deposition rates. The Examiner has specifically pointed out, from Wolf's teachings, that the control of substrate temperature is one of the requirements. Therefore, the rising substrate temperature is not an issue, since Wolf teaches that the temperature needs to be lowered. Hence, the application of Wolf's teaching will result in the Applicant's claimed crystal grain diameter.

2. **Regarding claim 1**, the Applicant argues that the combination of Wolf and Kitano is the result of improper hindsight.

In response to applicant's argument that the examiner's conclusion of obviousness is

based upon improper hindsight reasoning, it must be recognized that any judgment on obviousness is in a sense necessarily a reconstruction based upon hindsight reasoning. But so long as it takes into account only knowledge which was within the level of ordinary skill at the time the claimed invention was made, and does not include knowledge gleaned only from the applicant's disclosure, such a reconstruction is proper. See *In re McLaughlin*, 443 F.2d 1392, 170 USPQ 209 (CCPA 1971).

In the instant case, the Wolf reference is an undergraduate level college textbook. The college textbooks are not **merely** knowledge which was within the level of ordinary skill at the time the claimed invention was made. The college textbooks are **conventional** knowledge. Therefore, it is beyond doubt that it would be within the level of ordinary skill at the time the claimed invention was made to combine the references.

3. **Regarding claim 1**, the Applicant argues that Wolf is **silent** with regards to surface roughness, and therefore does not teach the claim limitations of the “center-line average roughness Ra of no more than 0.1 um”.

Please see rejection of claim 1. The Examiner has specifically pointed out that the application of techniques described by Wolf will result in the claimed the “center-line average roughness Ra of no more than 0.1 um”. The Examiner has also explained why a person of ordinary skill at the time the claimed invention was made would be motivated to use Wolf’s teachings.

4. **Regarding claim 1**, the Applicant argues that Wolf’s reference is **solely** directed to the fabrication of VLSI and ULSI devices and **not** toward semiconductor light-emitting element mounting members. More specifically Wolf’s teachings are related to small line widths and high

densities. In contrast, the Applicant's invention has to do with large line widths.

As the Applicant is well aware, a recent Supreme Court decision has expounded on the grounds of obviousness rejection (KSR International Co. v. Teleflex Inc., 550 U.S.-, 82 USPQ2d 1385). In part, the decision states that "known work in one field of endeavor may prompt variations of it for use in either the same field or a different one based on design incentives or other market forces".

In his rejection of claim 1, the Examiner has clearly pointed out what Wolf teaches and why it would be obvious to combine Wolf's teachings with the teachings of Kitano. The combination of the references clearly falls within the grounds specified by the Supreme Court, above. Minor variations, such as line widths and density, do not place the teachings into the vastly different fields of endeavor. Both references deal with semiconductor device manufacturing and processes involved therein. Differences in a specific application do not preclude the combination, according to the Supreme Court.

5. Regarding claim 1, the Applicant argues that Wolf's teachings are related to small line widths and high densities, which result in "highly rugged topography for overlaying films to cover". Therefore, application of Wolf's teachings will not result in the smooth surface desired for the light-emitting element mounting member.

Please see rejection of claim 1. The rejection is based on combination of Wolf's and Kitano's teachings. Kitano teaches the light-emitting element mounting member per se. The Kitano's light-emitting element mounting member does not have "small line widths and high densities". Therefore, the "highly rugged topography" argued by Applicant does not exist in the combined device.

6. **Regarding claim 1**, the Applicant argues that Kitano does not disclose “a metal film formed **on** a surface of said substrate”.

Please see rejection of claim 1 and FIG. 3 of Kitano reference. Kitano clearly discloses metal film (107) formed on (**above**) a surface of said substrate (111).

Conclusion

1. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Alexander Belousov whose telephone number is 571-270-3209. The examiner can normally be reached on Monday - Thursday 7:30AM - 5:00PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Lynne Gurley can be reached on 571-272-1670. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Alexander Belousov/
Examiner, Art Unit 2811
06/30/2008

/Ori Nadav/
Primary Examiner, Art Unit 2811