GATE NM-54 2022

EE23BTECH11011- Batchu Ishitha*

Q: A system with two degrees of freedom, as shown in the figure, has masses $m_1 = 200kg$ and $m_2 = 100kg$ and stiffness coefficients $k_1 = k_2 = 200N/m$. Then the lowest natural frequency of the system is (rounded off to one decimal place).

Fig. 0.

GATE NM 2022

Solution:

Fig. 0.

Variable	Description	Value
m_1	Mass of block 1	200kg
m_2	Mass of block 2	100kg
k_1	Stiffness coefficient of spring1	200N/m
k_2	Stiffness coefficient of spring2	200N/m
$x_i(t)$	Displacement of <i>i</i> th block	$x_i(0) = 0$
$\dot{x}_i(t)$	Velocity of i th block	$\dot{x}_i(0) = 0$
$\ddot{x}_i(t)$	Acceleration of <i>i</i> th block	$\ddot{x}_i(0) = 0$

TABLE 0 INPUT PARAMETERS

$$m_2\ddot{x_2}(t) + k_2(x_2(t) - x_1(t)) = 0$$
 (1)

$$m_1\ddot{x}_1(t) - k_2(x_2(t) - x_1(t)) + k_1x_1(t) = 0$$
 (2)

Applying Laplace transform for (1) and (2)

$$m_2 s^2 X_2(s) + k_2 (X_2(s) - X_1(s)) = 0$$
 (3)

$$m_1 s^2 X_1(s) - k_2 (X_2(s) - X_1(s)) + k_1 X_1(s) = 0$$
 (4)

Equating Transfer function from (3) and (4)

$$\frac{m_2s^2 + k_2}{k_2} = \frac{k_2}{m_1s^2 + k_1 + k_2} \tag{5}$$

$$\frac{m_2 s^2 + k_2}{k_2} = \frac{k_2}{m_1 s^2 + k_1 + k_2}$$
(5)
$$\frac{100 s^2 + 200}{200} = \frac{200}{200 s^2 + 200 + 200}$$
(6)

$$\implies \left(s^2 + 2\right)^2 = 2\tag{7}$$

Substituting s as $j\omega$ in (7)

$$\left(2 - \omega^2\right)^2 = 2\tag{8}$$

$$\omega = \sqrt{2 - \sqrt{2}} \tag{9}$$

$$\implies \omega = 0.766 rad/sec$$
 (10)