# Portion Size Effect for Children at High and Low Familial Risk for Obesity (Food and Brain Study)

# Contents

| 1        | Demographics                                   |   |
|----------|------------------------------------------------|---|
|          | 1.1 CEBQ SR - t-test                           |   |
| <b>2</b> | CEBQ - SR                                      |   |
| 3        | Meal Liking                                    |   |
|          | 3.1 Overall                                    |   |
|          | 3.2 Chicken Nuggets - Liking                   |   |
|          | 3.3 Mac and Cheese - Liking                    |   |
|          | 3.4 Grapes - Liking                            |   |
|          | 3.5 Broccoli - Liking                          |   |
|          | 3.6 Chicken Nuggets vs Mac and Cheese          |   |
|          | 3.7 Chicken Nuggets vs Grapes                  | 1 |
|          | 3.8 Chicken Nuggets vs Broccoli                | 1 |
|          | 3.9 Mac and Cheese vs Grapes                   | 1 |
|          | 3.10 Mac and Cheese vs Broccoli                | 1 |
|          | 3.11 Grapes vs Broccoli                        | 1 |
|          | 3.12 Chicken Nuggets - Rank                    | 1 |
|          | 3.13 Mac and Cheese - Rank                     | 1 |
|          | 3.14 Grapes - Rank                             | 1 |
|          | 3.15 Broccoli - Rank                           | 1 |
|          | 3.16 Frequency of Intake                       | 1 |
|          | 5.10 Frequency of Intake                       | 1 |
| 4        | Portion Size Effect                            | 2 |
|          | 4.1 Total Intake                               | 2 |
|          | 4.2 Intake by Food                             | 2 |
|          | 4.3 Base Model - Test Quadratic Effect         |   |
|          | 4.4 Risk Status x Portion Size (linear effect) | 2 |
|          |                                                |   |
| 5        | Exploratory Analyses: Individual Foods         | 3 |
|          | 5.1 Chicken Nuggets                            | 3 |
|          | 5.2 Mac and Cheese                             | 3 |
|          | 5.3 Grapes                                     | 4 |
|          | 5.4 Broccoli                                   | 4 |
| 6        | Exploratory Analyses: Mediated Moderation      | 4 |
| •        | 6.1 Grams                                      |   |
|          | 6.2 kcal                                       |   |
|          | VI= 11001                                      |   |

# 1 Demographics

Table 1: Demographics

|                                     | Risk              | Groups                     | Overall           |  |
|-------------------------------------|-------------------|----------------------------|-------------------|--|
| Characteristic                      | Low Risk, N = 50  | High Risk, N = 36          | N = 86            |  |
| Sex                                 |                   |                            |                   |  |
| Male                                | 29 (58%)          | 16 (44%)                   | 45 (52%)          |  |
| Female                              | 21 (42%)          | 20 (56%)                   | 41 (48%)          |  |
| Age, yr                             | 7.8(0.7)          | 7.7(0.5)                   | 7.8(0.6)          |  |
| Ethnicity                           |                   |                            |                   |  |
| Not Hispanic/Lantinx                | 50 (100%)         | 36 (100%)                  | 86 (100%)         |  |
| Race                                | ,                 | ,                          | ` /               |  |
| 0                                   | 47 (94%)          | 36 (100%)                  | 83 (97%)          |  |
| 2                                   | 3 (6.0%)          | 0 (0%)                     | 3(3.5%)           |  |
| Income                              |                   |                            |                   |  |
| < \$51,000                          | 4 (8.2%)          | 7 (21%)                    | 11 (13%)          |  |
| >\$100,000                          | 23 (47%)          | 7 (21%)                    | 30 (36%)          |  |
| \$51,000 - \$100,000                | 22 (45%)          | 20 (59%)                   | 42 (51%)          |  |
| Unknown                             | 1                 | $\stackrel{\backprime}{2}$ | 3                 |  |
| BMI %tile                           | 41.2(24.4)        | $56.1\ (24.3)$             | 47.4 (25.3)       |  |
| Fat Mass, g                         | 6,786.4 (1,445.9) | 8,123.4 (1,773.0)          | 7,346.1 (1,714.6) |  |
| Body Fat, %                         | 27.0 (3.8)        | 30.8 (4.4)                 | 28.6 (4.4)        |  |
| Fat Mass Index (fat, kg/height, m2) | 4.1 (0.8)         | 4.9 (1.0)                  | 4.5 (0.9)         |  |
| Satiety Responsiveness              | 2.8(0.6)          | 3.1(0.6)                   | 2.9(0.6)          |  |
| Mother's Education                  |                   |                            |                   |  |
| > Bachelor Degree                   | 21 (43%)          | 5 (14%)                    | 26 (31%)          |  |
| AA/Technical Degree                 | 3 (6.1%)          | 6 (17%)                    | 9 (11%)           |  |
| Bachelor Degree                     | 22 (45%)          | 19 (53%)                   | 41 (48%)          |  |
| High School/GED                     | 3 (6.1%)          | 6 (17%)                    | 9 (11%)           |  |
| Unknown                             | 1                 | 0                          | 1                 |  |
| Father's Education                  |                   |                            |                   |  |
| > Bachelor Degree                   | 27 (54%)          | 3 (9.4%)                   | 30 (37%)          |  |
| AA/Technical Degree                 | 3 (6.0%)          | 11 (34%)                   | 14 (17%)          |  |
| Bachelor Degree                     | 14 (28%)          | 12 (38%)                   | 26 (32%)          |  |
| High School/GED                     | 6 (12%)           | 5 (16%)                    | 11 (13%)          |  |
| Other/NA                            | 0 (0%)            | 1 (3.1%)                   | 1 (1.2%)          |  |
| Unknown                             | 0                 | 4                          | 4                 |  |

<sup>&</sup>lt;sup>1</sup> n (%); Mean (SD)

## Age - t-test

Welch Two Sample t-test

data: age\_yr by risk\_status\_mom

t = 0.50681, df = 82.343, p-value = 0.6136

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equal 95 percent confidence interval:

-0.1939215 0.3265215

sample estimates:

mean in group Low Risk mean in group High Risk 7.8138 7.7475

Welch Two Sample t-test

data: bmi\_percentile by risk\_status\_mom t = -2.8105, df = 75.711, p-value = 0.006292

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-25.551839 -4.356339

sample estimates:

mean in group Low Risk mean in group High Risk 41.15980 56.11389

Low Risk High Risk 24.38858 24.30838

## FMI - t-test

Welch Two Sample t-test

data: fmi by risk\_status\_mom

t = -4.1967, df = 65.514, p-value = 8.326e-05

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-1.2051372 -0.4280523

sample estimates:

mean in group Low Risk mean in group High Risk
4.131468
4.948062

Low Risk High Risk 0.7800754 0.9616947

## 1.1 CEBQ SR - t-test

Welch Two Sample t-test

data: cebq\_sr by risk\_status\_mom

t = -1.7358, df = 76.432, p-value = 0.08663

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-0.51726301 0.03548524

sample estimates:

mean in group Low Risk mean in group High Risk 2.848000 3.088889

Low Risk High Risk 0.6421393 0.6296383

## Sex -  $\chi^2$ 

Pearson's Chi-squared test with Yates' continuity correction

data: r01\_intake\$sex and r01\_intake\$risk\_status\_mom
X-squared = 1.0462, df = 1, p-value = 0.3064

## Income -  $\chi^2$ 

Pearson's Chi-squared test

data: r01\_intake\$income and r01\_intake\$risk\_status\_mom
X-squared = 6.9633, df = 2, p-value = 0.03076

## Mom Education - Fisher test

Fisher's Exact Test for Count Data

data: r01\_intake\$mom\_ed and r01\_intake\$risk\_status\_mom

p-value = 0.01375

alternative hypothesis: two.sided

## CEBQ - SR

```
Reliability analysis
Call: alpha(x = r01_intake[c("cebq3_rev", "cebq17", "cebq21", "cebq26",
   "cebq30")])
 raw_alpha std.alpha G6(smc) average_r S/N ase mean
                                                     sd median_r
      0.8
               0.8
                       0.8
                               0.45 4.1 0.035 2.9 0.64
                                                           0.39
   95% confidence boundaries
        lower alpha upper
         0.72 0.8 0.86
Feldt
Duhachek 0.73 0.8 0.87
Reliability if an item is dropped:
         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
cebq3_rev
             0.79
                       0.80
                              0.79
                                    0.50 4.0
                                                  0.038 0.0284 0.44
                                       0.40 2.7
cebq17
             0.72
                       0.73
                              0.68
                                                   0.049 0.0077 0.37
             0.72
                     0.72
                              0.66
                                      0.39 2.6
                                                   0.049 0.0018 0.38
cebq21
             0.76
                              0.76
                                       0.45 3.3
                                                   0.044 0.0317 0.39
cebq26
                       0.76
cebq30
             0.79
                       0.80
                              0.79
                                       0.49 3.9
                                                   0.038 0.0312 0.44
Item statistics
          n raw.r std.r r.cor r.drop mean
cebq3_rev 86 0.67 0.66 0.52 0.47 2.9 0.88
         86 0.81 0.82 0.82
                              0.68 3.2 0.87
cebq17
cebq21
         86 0.82 0.83 0.84
                              0.71 3.1 0.76
         86 0.75 0.75 0.65
                              0.58 2.9 0.90
cebq26
cebq30
         86 0.69 0.67 0.52
                              0.48 2.7 0.92
Non missing response frequency for each item
           1
                2
                   3 4
                              5 miss
cebq3_rev 0.06 0.27 0.45 0.20 0.02
cebq17
        0.01 0.22 0.40 0.33 0.05
cebq21
         0.00 0.21 0.49 0.28 0.02
                                   0
cebq26
```

0

0.07 0.23 0.47 0.21 0.02

cebq30 0.08 0.34 0.40 0.16 0.02

# 3 Meal Liking

Table 2: Demographics

| Group         | ${\bf Characteristic}$ | <b>PS-1</b> , $N = 86$ | <b>PS-2</b> , $N = 86$ | <b>PS-3</b> , $N = 86$ | <b>PS-4</b> , $N = 86$ |
|---------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| **Overall**   | avg_vas                | 3.8 (0.6)              | 3.8 (0.6)              | 3.8 (0.6)              | 3.9 (0.6)              |
|               | $\mathrm{mac}$ _vas    | 3.9(0.9)               | 3.8(1.0)               | 3.8(1.1)               | 3.8(1.0)               |
|               | chnug_vas              | 4.2(0.9)               | 4.3(0.8)               | 4.2(0.9)               | 4.2(0.9)               |
|               | $broc\_vas$            | 3.1(1.4)               | 3.0(1.3)               | 3.0(1.3)               | 3.2(1.4)               |
|               | $grape\_vas$           | 4.2 (0.9)              | 4.3 (0.9)              | 4.2(1.0)               | 4.2 (1.0)              |
|               | mac_rank               | 2.5(1.1)               | 2.6(1.1)               | 2.4(1.1)               | 2.5(1.1)               |
|               | chnug_rank             | 1.9(1.0)               | 2.1(1.1)               | 2.0(1.0)               | 1.9(1.0)               |
|               | grape_rank             | 2.3(1.0)               | 2.1(1.0)               | 2.2(1.0)               | 2.3(1.0)               |
|               | $broc\_rank$           | 3.4(0.9)               | 3.2(1.0)               | 3.4(0.9)               | 3.3(0.9)               |
| **High-Risk** | avg_vas                | 3.9(0.6)               | 3.8(0.7)               | 3.8(0.7)               | 3.9(0.6)               |
|               | mac_vas                | 4.2 (0.8)              | 3.9 (1.1)              | 3.9 (1.1)              | 4.0 (1.0)              |
|               | chnug_vas              | 4.3 (1.0)              | 4.2 (1.0)              | 4.1 (1.2)              | 4.3 (0.9)              |
|               | broc_vas               | 2.9(1.7)               | 2.8(1.5)               | 2.8(1.5)               | 2.9(1.6)               |
|               | grape_vas              | 4.2(0.8)               | 4.4(0.9)               | 4.4(0.9)               | 4.4(0.8)               |
|               | $mac\_rank$            | 2.2 (0.9)              | 2.5(1.1)               | 2.4(1.1)               | 2.3(1.1)               |
|               | chnug_rank             | 1.9 (1.1)              | 2.2(1.1)               | 2.1(1.1)               | 2.1(1.1)               |
|               | grape_rank             | 2.3(0.9)               | 1.9(0.8)               | 2.1(1.0)               | 2.3(1.0)               |
|               | broc_rank              | 3.6(0.7)               | 3.3(1.0)               | 3.3(0.9)               | 3.4(0.8)               |
| **Low-Risk**  | avg_vas                | 3.8(0.6)               | 3.8(0.6)               | 3.8(0.6)               | 3.8(0.7)               |
|               | $mac\_vas$             | 3.6(1.0)               | 3.7(1.0)               | 3.8 (1.1)              | 3.7(1.0)               |
|               | chnug_vas              | 4.1 (0.9)              | 4.3(0.7)               | 4.2(0.7)               | 4.2(0.9)               |
|               | broc_vas               | 3.2(1.2)               | 3.1(1.1)               | 3.2(1.2)               | 3.3 (1.3)              |
|               | grape_vas              | 4.2(0.9)               | 4.2(1.0)               | 4.1(1.1)               | 4.1 (1.0)              |
|               | $mac\_rank$            | 2.7(1.2)               | 2.7(1.1)               | 2.4(1.1)               | 2.7(1.1)               |
|               | $chnug\_rank$          | 1.8 (0.9)              | 2.0(1.1)               | 1.9 (1.0)              | 1.8 (1.0)              |
|               | grape_rank             | 2.3 (1.0)              | 2.2 (1.1)              | 2.3(0.9)               | 2.2 (1.0)              |
|               | broc_rank              | 3.2(1.0)               | $3.1\ (0.9)$           | $3.4\ (0.9)$           | 3.2(0.9)               |

<sup>&</sup>lt;sup>1</sup> Mean (SD)

# 3.1 Overall

Table 3: Regression Table: Portion Size for Liking

|                                                                | Estimate | Std. Error | df      | t value | Pr(> t ) |
|----------------------------------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                                                    | 3.493    | 0.456      | 82.640  | 7.666   | 0.000    |
| preFF                                                          | -0.002   | 0.001      | 307.991 | -2.331  | 0.020    |
| fmi                                                            | 0.026    | 0.078      | 80.564  | 0.333   | 0.740    |
| sexFemale                                                      | 0.107    | 0.134      | 80.603  | 0.801   | 0.426    |
| $\operatorname{cebq}\operatorname{\underline{\hspace{1em}sr}}$ | 0.061    | 0.101      | 80.499  | 0.604   | 0.547    |
| meal_order                                                     | 0.018    | 0.014      | 254.729 | 1.276   | 0.203    |
| risk_status_momHigh Risk                                       | 0.010    | 0.145      | 80.904  | 0.066   | 0.948    |
| $g\_served$                                                    | 0.000    | 0.000      | 254.760 | 0.521   | 0.603    |

# 3.2 Chicken Nuggets - Liking

Table 4: Regression Table: Portion Size for Liking of Chicken Nuggets

|                              | Estimate | Std. Error | df      | t value | Pr(> t ) |
|------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                  | 3.913    | 0.612      | 83.604  | 6.389   | 0.000    |
| $\operatorname{preFF}$       | -0.002   | 0.001      | 321.752 | -1.542  | 0.124    |
| fmi                          | -0.037   | 0.105      | 80.752  | -0.356  | 0.723    |
| sexFemale                    | -0.142   | 0.179      | 80.803  | -0.794  | 0.430    |
| $\operatorname{cebq}$ _sr    | 0.152    | 0.136      | 80.670  | 1.118   | 0.267    |
| meal_order                   | 0.037    | 0.023      | 254.979 | 1.638   | 0.103    |
| $risk\_status\_momHigh Risk$ | 0.105    | 0.195      | 81.190  | 0.537   | 0.593    |
| $g\_served$                  | 0.000    | 0.000      | 255.018 | 0.420   | 0.674    |

# 3.3 Mac and Cheese - Liking

Table 5: Regression Table: Portion Size for Liking of Mac and Cheese

|                              | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                  | 3.131    | 0.704      | 84.111  | 4.447   | 0.000       |
| preFF                        | -0.002   | 0.001      | 325.306 | -1.395  | 0.164       |
| fmi                          | 0.168    | 0.120      | 80.999  | 1.397   | 0.166       |
| sexFemale                    | 0.140    | 0.206      | 81.054  | 0.681   | 0.498       |
| $\operatorname{cebq}$ _sr    | -0.032   | 0.156      | 80.911  | -0.203  | 0.840       |
| meal_order                   | 0.006    | 0.027      | 255.246 | 0.218   | 0.828       |
| $risk\_status\_momHigh Risk$ | 0.117    | 0.224      | 81.466  | 0.521   | 0.604       |
| $g\_served$                  | 0.000    | 0.000      | 255.288 | -0.323  | 0.747       |

# 3.4 Grapes - Liking

Table 6: Regression Table: Portion Size for Liking of Grapes

|                              | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                  | 3.293    | 0.640      | 83.974  | 5.145   | 0.000       |
| $\operatorname{preFF}$       | -0.001   | 0.001      | 326.883 | -1.062  | 0.289       |
| fmi                          | 0.017    | 0.109      | 80.739  | 0.158   | 0.875       |
| sexFemale                    | 0.170    | 0.187      | 80.795  | 0.911   | 0.365       |
| $\operatorname{cebq}$ _sr    | 0.265    | 0.142      | 80.648  | 1.873   | 0.065       |
| meal_order                   | 0.009    | 0.026      | 254.996 | 0.336   | 0.737       |
| $risk\_status\_momHigh Risk$ | 0.106    | 0.203      | 81.219  | 0.521   | 0.603       |
| g_served                     | 0.000    | 0.000      | 255.039 | -0.056  | 0.955       |

# 3.5 Broccoli - Liking

Table 7: Regression Table: Portion Size for Liking of Broccoli

|                          | Estimate        | Std. Error       | df                | t value         | Pr(> t )         |
|--------------------------|-----------------|------------------|-------------------|-----------------|------------------|
| (Intercept) preFF        | 3.647<br>-0.002 | 1.020<br>0.001   | 81.600<br>293.472 | 3.575<br>-1.511 | $0.001 \\ 0.132$ |
| fmi                      | -0.002          | 0.001 $0.175$    | 80.163            | -0.254          | 0.132            |
| sexFemale<br>cebq_sr     | 0.258 $-0.140$  | $0.300 \\ 0.227$ | 80.191<br>80.116  | 0.863<br>-0.618 | $0.391 \\ 0.538$ |
| meal order               | 0.022           | 0.027            | 254.273           | 0.809           | 0.419            |
| risk_status_momHigh Risk | -0.287          | 0.326            | 80.411            | -0.879          | 0.382            |
| $g_served$               | 0.000           | 0.000            | 254.296           | 1.147           | 0.252            |

## 3.6 Chicken Nuggets vs Mac and Cheese

Paired t-test data: r01\_intake\$ps1\_rank\_chkn\_nug and r01\_intake\$ps1\_rank\_mac\_cheese t = -2.8463, df = 50, p-value = 0.006399 alternative hypothesis: true mean difference is not equal to 095 percent confidence interval: -1.070231 -0.184671 sample estimates: mean difference -0.627451Paired t-test data: r01\_intake\$ps2\_rank\_chkn\_nug and r01\_intake\$ps2\_rank\_mac\_cheese t = -2.018, df = 50, p-value = 0.04897 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.017224978 -0.002382865 sample estimates: mean difference -0.5098039 Paired t-test data: r01\_intake\$ps3\_rank\_chkn\_nug and r01\_intake\$ps3\_rank\_mac\_cheese t = -1.8247, df = 50, p-value = 0.07402 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -0.90620118 0.04345608 sample estimates: mean difference -0.4313725 Paired t-test data: r01\_intake\$ps4\_rank\_chkn\_nug and r01\_intake\$ps4\_rank\_mac\_cheese t = -2.5438, df = 50, p-value = 0.0141 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.0526937 -0.1237769 sample estimates: mean difference -0.5882353

## 3.7 Chicken Nuggets vs Grapes

Paired t-test data: r01\_intake\$ps1\_rank\_chkn\_nug and r01\_intake\$ps1\_rank\_grape t = -1.8247, df = 50, p-value = 0.07402 alternative hypothesis: true mean difference is not equal to 095 percent confidence interval: -0.90620118 0.04345608 sample estimates: mean difference -0.4313725 Paired t-test data: r01\_intake\$ps2\_rank\_chkn\_nug and r01\_intake\$ps2\_rank\_grape t = 0.25211, df = 50, p-value = 0.802 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -0.4098237 0.5274708 sample estimates: mean difference 0.05882353 Paired t-test data: r01\_intake\$ps3\_rank\_chkn\_nug and r01\_intake\$ps3\_rank\_grape t = -1.105, df = 50, p-value = 0.2744 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -0.7182235 0.2084196 sample estimates: mean difference -0.254902 Paired t-test data: r01\_intake\$ps4\_rank\_chkn\_nug and r01\_intake\$ps4\_rank\_grape t = -1.3067, df = 50, p-value = 0.1973 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -0.7959444 0.1684934 sample estimates: mean difference -0.3137255

## 3.8 Chicken Nuggets vs Broccoli

Paired t-test data: r01\_intake\$ps1\_rank\_chkn\_nug and r01\_intake\$ps1\_rank\_broccoli t = -6.6321, df = 50, p-value = 2.259e-08 alternative hypothesis: true mean difference is not equal to 095 percent confidence interval: -1.941511 -1.038881 sample estimates: mean difference -1.490196Paired t-test data: r01\_intake\$ps2\_rank\_chkn\_nug and r01\_intake\$ps2\_rank\_broccoli t = -4.6077, df = 50, p-value = 2.836e-05 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.5485326 -0.6083301 sample estimates: mean difference -1.078431 Paired t-test data: r01\_intake\$ps3\_rank\_chkn\_nug and r01\_intake\$ps3\_rank\_broccoli t = -6.3092, df = 50, p-value = 7.222e-08 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.8353570 -0.9489567 sample estimates: mean difference -1.392157 Paired t-test data: r01\_intake\$ps4\_rank\_chkn\_nug and r01\_intake\$ps4\_rank\_broccoli t = -5.831, df = 50, p-value = 4.003e-07alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.7926201 -0.8740466 sample estimates: mean difference -1.3333333

## 3.9 Mac and Cheese vs Grapes

0.2745098

Paired t-test data: r01\_intake\$ps1\_rank\_mac\_cheese and r01\_intake\$ps1\_rank\_grape t = 0.78268, df = 50, p-value = 0.4375 alternative hypothesis: true mean difference is not equal to 095 percent confidence interval: -0.3071066 0.6992635 sample estimates: mean difference 0.1960784 Paired t-test data: r01\_intake\$ps2\_rank\_mac\_cheese and r01\_intake\$ps2\_rank\_grape t = 2.3405, df = 50, p-value = 0.02329 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: 0.08065318 1.05660172 sample estimates: mean difference 0.5686275 Paired t-test data: r01\_intake\$ps3\_rank\_mac\_cheese and r01\_intake\$ps3\_rank\_grape t = 0.71027, df = 50, p-value = 0.4808 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -0.3225668 0.6755080 sample estimates: mean difference 0.1764706 Paired t-test data: r01\_intake\$ps4\_rank\_mac\_cheese and r01\_intake\$ps4\_rank\_grape t = 1.0328, df = 50, p-value = 0.3067 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -0.2593656 0.8083852 sample estimates: mean difference

#### 3.10 Mac and Cheese vs Broccoli

Paired t-test data: r01\_intake\$ps1\_rank\_mac\_cheese and r01\_intake\$ps1\_rank\_broccoli t = -3.6051, df = 50, p-value = 0.0007187 alternative hypothesis: true mean difference is not equal to 095 percent confidence interval: -1.3434176 -0.3820726 sample estimates: mean difference -0.8627451 Paired t-test data: r01\_intake\$ps2\_rank\_mac\_cheese and r01\_intake\$ps2\_rank\_broccoli t = -2.3723, df = 50, p-value = 0.02157 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.05007377 -0.08718113 sample estimates: mean difference -0.5686275 Paired t-test data: r01\_intake\$ps3\_rank\_mac\_cheese and r01\_intake\$ps3\_rank\_broccoli t = -3.9891, df = 50, p-value = 0.0002166 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.444545 -0.477024 sample estimates: mean difference -0.9607843 Paired t-test data: r01\_intake\$ps4\_rank\_mac\_cheese and r01\_intake\$ps4\_rank\_broccoli t = -3.0961, df = 50, p-value = 0.003211 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.2284735 -0.2617226 sample estimates: mean difference -0.745098

## 3.11 Grapes vs Broccoli

Paired t-test data: r01\_intake\$ps1\_rank\_grape and r01\_intake\$ps1\_rank\_broccoli t = -6.0223, df = 50, p-value = 2.021e-07 alternative hypothesis: true mean difference is not equal to 095 percent confidence interval: -1.4119599 -0.7056871 sample estimates: mean difference -1.058824 Paired t-test data: r01\_intake\$ps2\_rank\_grape and r01\_intake\$ps2\_rank\_broccoli t = -5.4746, df = 50, p-value = 1.417e-06 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.5544971 -0.7200127 sample estimates: mean difference -1.137255Paired t-test data: r01\_intake\$ps3\_rank\_grape and r01\_intake\$ps3\_rank\_broccoli t = -6.1913, df = 50, p-value = 1.103e-07 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.506201 -0.768309 sample estimates: mean difference -1.137255 Paired t-test data: r01\_intake\$ps4\_rank\_grape and r01\_intake\$ps4\_rank\_broccoli t = -5.8683, df = 50, p-value = 3.504e-07 alternative hypothesis: true mean difference is not equal to 0 95 percent confidence interval: -1.3685911 -0.6706246 sample estimates: mean difference -1.019608

# 3.12 Chicken Nuggets - Rank

Table 8: Regression Table: Portion Size for Rank Preference of Chicken Nuggets

|                              | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                  | 2.011    | 0.895      | 53.283  | 2.246   | 0.029       |
| $\operatorname{preFF}$       | 0.002    | 0.002      | 193.030 | 1.063   | 0.289       |
| fmi                          | 0.006    | 0.161      | 50.706  | 0.036   | 0.972       |
| sexFemale                    | 0.474    | 0.274      | 48.900  | 1.727   | 0.090       |
| $\operatorname{cebq}$ _sr    | -0.161   | 0.226      | 49.971  | -0.711  | 0.480       |
| meal_order                   | 0.032    | 0.038      | 149.616 | 0.845   | 0.400       |
| $risk\_status\_momHigh Risk$ | 0.141    | 0.294      | 50.199  | 0.479   | 0.634       |
| $g\_served$                  | 0.000    | 0.000      | 148.043 | 0.467   | 0.641       |

## 3.13 Mac and Cheese - Rank

Table 9: Regression Table: Portion Size for Rank Preference of Mac and Cheese

|                              | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                  | 2.878    | 0.999      | 52.239  | 2.879   | 0.006       |
| preFF                        | -0.001   | 0.002      | 189.615 | -0.265  | 0.791       |
| fmi                          | -0.222   | 0.180      | 50.081  | -1.230  | 0.225       |
| sexFemale                    | -0.072   | 0.307      | 48.462  | -0.233  | 0.817       |
| $\operatorname{cebq}$ _sr    | 0.265    | 0.253      | 49.427  | 1.049   | 0.299       |
| meal_order                   | -0.047   | 0.040      | 148.828 | -1.185  | 0.238       |
| $risk\_status\_momHigh Risk$ | -0.032   | 0.329      | 49.613  | -0.097  | 0.923       |
| $g\_served$                  | 0.000    | 0.000      | 147.448 | -0.578  | 0.564       |

# 3.14 Grapes - Rank

Table 10: Regression Table: Portion Size for Rank Preference of Grapes

|                              | Estimate | Std. Error | df      | t value | Pr(> t ) |
|------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                  | 1.714    | 0.792      | 55.155  | 2.165   | 0.035    |
| $\operatorname{preFF}$       | 0.003    | 0.002      | 194.224 | 1.458   | 0.147    |
| fmi                          | 0.072    | 0.141      | 50.827  | 0.510   | 0.612    |
| sexFemale                    | -0.450   | 0.239      | 48.522  | -1.881  | 0.066    |
| $\operatorname{cebq}$ _sr    | 0.060    | 0.198      | 49.875  | 0.304   | 0.763    |
| meal_order                   | 0.045    | 0.044      | 150.641 | 1.025   | 0.307    |
| $risk\_status\_momHigh Risk$ | -0.163   | 0.258      | 50.260  | -0.634  | 0.529    |
| g_served                     | 0.000    | 0.000      | 148.314 | 0.180   | 0.857    |

## 3.15 Broccoli - Rank

Table 11: Regression Table: Portion Size for Rank Preference of Broccoli

|                                                    | Estimate               | Std. Error            | df                           | t value                   | $\Pr(> t )$           |
|----------------------------------------------------|------------------------|-----------------------|------------------------------|---------------------------|-----------------------|
| (Intercept) preFF                                  | 3.411<br>-0.005        | $0.723 \\ 0.002$      | 56.345 $193.512$             | 4.720<br>-2.385           | $0.000 \\ 0.018$      |
| fmi<br>sexFemale                                   | 0.144 $0.042$          | 0.129 $0.218$         | 51.794<br>49.427             | 1.113<br>0.192            | 0.271<br>0.848        |
| cebq_sr                                            | -0.172                 | 0.180                 | 50.815                       | -0.957                    | 0.343                 |
| meal_order<br>risk_status_momHigh Risk<br>g_served | -0.026 $0.058$ $0.000$ | 0.041 $0.235$ $0.000$ | 151.617<br>51.220<br>149.257 | -0.645<br>0.247<br>-0.109 | 0.520 $0.806$ $0.913$ |

## 3.16 Frequency of Intake

Table 12: Child Report - Typical Portion Selection and Intake

|                        | Risk (           | Groups            | Overall     |  |
|------------------------|------------------|-------------------|-------------|--|
| Characteristic         | Low Risk, N = 50 | High Risk, N = 36 | N = 86      |  |
| Broccoli, eat          |                  |                   |             |  |
| N                      | 31 (62%)         | 21 (66%)          | 52 (63%)    |  |
| Y                      | 19 (38%)         | 11 (34%)          | 30 (37%)    |  |
| Broccoli, amount       | 58.3 (31.5)      | 60.0 (38.7)       | 58.9 (33.7) |  |
| Broccoli, like         | 66.6 (37.0)      | 59.9 (43.5)       | 64.1 (38.9) |  |
| Chicken Nugget, eat    |                  |                   |             |  |
| N                      | 4 (8.0%)         | 1 (3.1%)          | 5 (6.1%)    |  |
| Y                      | 46 (92%)         | 31 (97%)          | 77 (94%)    |  |
| Chicken Nugget, amount | 39.9 (22.9)      | 47.3 (25.0)       | 42.9 (23.9) |  |
| Chicken Nugget, like   | 63.4 (28.2)      | 77.5 (28.7)       | 69.1 (29.1) |  |
| Grapes, eat            |                  |                   |             |  |
| N                      | 6 (12%)          | 3 (9.4%)          | 9 (11%)     |  |
| Y                      | 44 (88%)         | 29 (91%)          | 73 (89%)    |  |
| Grapes, amount         | 47.0 (21.0)      | 54.4 (29.7)       | 49.9 (24.9) |  |
| Grapes, like           | 72.4 (25.8)      | 68.7 (26.2)       | 71.0 (25.8) |  |
| Mac + Cheese, eat      |                  |                   |             |  |
| N                      | 3 (6.0%)         | 3 (9.4%)          | 6 (7.3%)    |  |
| Y                      | 47 (94%)         | 29 (91%)          | 76 (93%)    |  |
| Mac + Cheese, amount   | 49.7 (22.2)      | 64.0 (25.2)       | 55.1 (24.3) |  |
| Mac + Cheese, like     | 72.1 (24.2)      | 78.8 (23.0)       | 74.7 (23.8) |  |

<sup>&</sup>lt;sup>1</sup> n (%); Mean (SD)

## Broccoli -  $\chi^2$ 

 ${\tt Pearson's\ Chi-squared\ test\ with\ Yates'\ continuity\ correction}$ 

data: xtabs(~pss\_broccoli\_eat + risk\_status\_mom, data = r01\_intake)
X-squared = 0.0094944, df = 1, p-value = 0.9224

## Grapes - Fisher

Fisher's Exact Test for Count Data

data: xtabs(~pss\_grapes\_eat + risk\_status\_mom, data = r01\_intake)
p-value = 1

alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval:

0.2557472 8.7593598

sample estimates:

odds ratio

1.313864

## Mac and Cheese - Fisher

#### Fisher's Exact Test for Count Data

```
data: xtabs(~pss_mac_cheese_eat + risk_status_mom, data = r01_intake)
p-value = 0.6738
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.07782524    4.95038679
sample estimates:
odds ratio
    0.6208164

## Chicken Nuggets - Fisher

Fisher's Exact Test for Count Data
```

data: xtabs(~pss\_chkn\_nug\_eat + risk\_status\_mom, data = r01\_intake)
p-value = 0.6437
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.2483595 136.8733876
sample estimates:
odds ratio
 2.667579

Table 13: Parent Report - Typical Portion Selection and Intake

|                                                  | Risk                                                      | Groups                     | Overall                    |
|--------------------------------------------------|-----------------------------------------------------------|----------------------------|----------------------------|
| Characteristic                                   | Low Risk, N = 50                                          | High Risk, N = 36          | N = 86                     |
| Broccoli, eat                                    |                                                           |                            |                            |
| N                                                | 14 (28%)                                                  | 16 (44%)                   | 30 (35%)                   |
| Y                                                | 36 (72%)                                                  | 20~(56%)                   | 56~(65%)                   |
| Broccoli, freq                                   |                                                           |                            |                            |
| Never - 1/month                                  | 6 (17%)                                                   | 3 (15%)                    | 9 (16%)                    |
| 2-3/month                                        | 9 (25%)                                                   | 6 (30%)                    | 15 (27%)                   |
| 1-2/week                                         | 16 (44%)                                                  | 9 (45%)                    | 25 (45%)                   |
| 3-4/week                                         | 5 (14%)                                                   | 2 (10%)                    | 7 (12%)                    |
| Broccoli, amount                                 | $42.1\ (17.1)$                                            | 49.4 (23.1)                | 44.7(19.6)                 |
| Broccoli, like                                   | 58.3 (26.5)                                               | 59.4(32.7)                 | 58.7 (28.6)                |
| Broccoli, portion                                | 61.9 (28.7)                                               | 50.8 (36.6)                | 57.9 (31.9)                |
| Broccoli, health                                 | 87.0 (12.0)                                               | 83.6 (12.3)                | 85.8 (12.1)                |
| Chicken Nugget, eat                              | ,                                                         | ,                          | ,                          |
| N                                                | 5 (10%)                                                   | 1(2.8%)                    | 6(7.0%)                    |
| Y                                                | 45 (90%)                                                  | 35 (97%)                   | 80 (93%)                   |
| Chicken Nugget, freq                             |                                                           |                            |                            |
| Never - 1/month                                  | 15 (33%)                                                  | 8 (23%)                    | 23 (29%)                   |
| 2-3/month                                        | 19 (42%)                                                  | 11 (31%)                   | 30 (38%)                   |
| 1-2/week                                         | 8 (18%)                                                   | 13 (37%)                   | 21 (26%)                   |
| 3-4/week                                         | 3 (6.7%)                                                  | 3 (8.6%)                   | 6 (7.5%)                   |
| Chicken Nugget, amount                           | 28.3 (12.7)                                               | 32.0 (11.1)                | 29.9 (12.1)                |
| Chicken Nugget, like                             | 76.2 (23.2)                                               | 81.3 (16.1)                | 78.4 (20.5)                |
| Chicken Nugget, portion                          | 67.4 (28.0)                                               | 63.8 (28.4)                | 65.8 (28.1)                |
| Chicken Nugget, health                           | 44.4 (18.5)                                               | 31.9 (19.8)                | 38.9 (19.9)                |
| Grapes, eat                                      | 11.1 (10.0)                                               | 01.0 (10.0)                | 00.0 (10.0)                |
| N                                                | 6 (12%)                                                   | 1 (2.8%)                   | 7 (8.1%)                   |
| Y                                                | 44 (88%)                                                  | 35 (97%)                   | 79 (92%)                   |
| Grapes, freq                                     | 11 (0070)                                                 | 00 (0170)                  | 10 (0270)                  |
| Never - 1/month                                  | 8 (18%)                                                   | 3(8.6%)                    | 11 (14%)                   |
| 2-3/month                                        | 14 (32%)                                                  | 15 (43%)                   | 29 (37%)                   |
| 1-2/week                                         | 16 (36%)                                                  | 15 (43%)                   | 31 (39%)                   |
| 3-4/week                                         | 4 (9.1%)                                                  | 15(45%) $1(2.9%)$          | 5(6.3%)                    |
| 5-6/week                                         | 2 (4.5%)                                                  | 1 (2.9%)                   | 3 (3.8%)                   |
| Grapes, amount                                   | 42.1 (16.2)                                               | 43.9 (16.8)                | 42.9 (16.4)                |
| Grapes, like                                     | 73.2 (22.8)                                               | 79.6 (15.2)                | 76.0 (20.0)                |
| • ,                                              |                                                           |                            | ` .                        |
| Grapes, poriton<br>Grapes, health                | 50.1 (30.0)<br>83.1 (18.8)                                | 47.9 (35.5)<br>86.3 (14.3) | 49.1 (32.3)<br>84.5 (16.9) |
| Mac + Cheese, eat                                | 03.1 (10.0)                                               | 60.5 (14.5)                | 04.5 (10.9)                |
| N                                                | 8 (16%)                                                   | 2 (5.6%)                   | 10 (12%)                   |
| Y                                                | 42 (84%)                                                  | 34 (94%)                   | 76 (88%)                   |
|                                                  | ( )                                                       | - ()                       | ()                         |
| Mac + Cheese, freq                               | 6 (1407)                                                  | 5 (150%)                   | 11 (1407)                  |
| Never - 1/month                                  | 6 (14%)                                                   | 5 (15%)                    | 11 (14%)                   |
| $\frac{2-3}{\text{month}}$<br>1-2/week           | $\begin{array}{c} 23 \ (55\%) \\ 12 \ (29\%) \end{array}$ | 18 (53%)<br>9 (26%)        | 41 (54%)<br>21 (28%)       |
| 3-4/week                                         | 12(23%) $1(2.4%)$                                         | 2 (5.9%)                   | 3 (3.9%)                   |
|                                                  |                                                           |                            | , ,                        |
| 1/day                                            | 0 (0%)                                                    | 0 (0%)                     | 0 (0%)                     |
| Mac + Cheese, amount                             | 35.5 (10.3)                                               | 34.3 (14.0)                | 35.0 (12.0)                |
| Mac + Cheese, like                               | 76.9 (19.2)<br>65.2 (26.5)                                | 76.4 (25.8)                | 76.7 (22.2)                |
| Mac + Cheese, poriton<br>Mac + Cheese, nutrition | 65.2 (26.5)<br>36.9 (18.1)                                | 65.1 (33.0)<br>28.0 (22.9) | 65.1 (29.4)<br>32.9 (20.7) |
| 1 n (%). Moon (SD)                               | 00.0 (10.1)                                               | 20.0 (22.3)                | 32.3 (20.1)                |

<sup>&</sup>lt;sup>1</sup> n (%); Mean (SD)

```
Pearson's Chi-squared test with Yates' continuity correction
data: xtabs(~p_pss_broccoli_eat + risk_status_mom, data = r01_intake)
X-squared = 1.8204, df = 1, p-value = 0.1773
   Fisher's Exact Test for Count Data
data: xtabs(~p_pss_broccoli_freq + risk_status_mom, data = r01_intake)
p-value = 1
alternative hypothesis: two.sided
## Grapes - Fisher
   Fisher's Exact Test for Count Data
data: xtabs(~p_pss_grapes_eat + risk_status_mom, data = r01_intake)
p-value = 0.2307
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
  0.5321588 225.4437121
sample estimates:
odds ratio
  4.703046
   Fisher's Exact Test for Count Data
data: xtabs(~p_pss_grapes_freq + risk_status_mom, data = r01_intake)
p-value = 0.5283
alternative hypothesis: two.sided
## Mac and Cheese - Fisher
   Fisher's Exact Test for Count Data
data: xtabs(~p_pss_mac_cheese_eat + risk_status_mom, data = r01_intake)
p-value = 0.182
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.5841448 32.8789599
sample estimates:
odds ratio
```

## Broccoli -  $\chi^2$ 

3.199433

## Fisher's Exact Test for Count Data

data: xtabs(~p\_pss\_mac\_cheese\_freq + risk\_status\_mom, data = r01\_intake)
p-value = 0.9375
alternative hypothesis: two.sided

## Chicken Nuggets - Fisher

Fisher's Exact Test for Count Data

data: xtabs(~p\_pss\_chkn\_nug\_eat + risk\_status\_mom, data = r01\_intake)
p-value = 0.3937
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.4028961 188.9209316
sample estimates:
odds ratio
 3.837976

Fisher's Exact Test for Count Data

data: xtabs(~p\_pss\_chkn\_nug\_freq + risk\_status\_mom, data = r01\_intake)

p-value = 0.2423

alternative hypothesis: two.sided

# 4 Portion Size Effect

Note - Portion Size was coded in ps\_prop as the proportion increase in amount served: Portion Size 1 = 0, Portion Size 2 = 0.33, Portion Size 3 = 0.66, and Portion Size 4 = 0.99. This means that a 1 unit increase is equal to a 100% increase in amount served – the difference between Portion Size 1 and Portion Size 4.

## 4.1 Total Intake

Table 14: Intake by Portion Size

|                        | Risk             | Groups            | Overall       |
|------------------------|------------------|-------------------|---------------|
| ${\bf Characteristic}$ | Low Risk, N = 50 | High Risk, N = 36 | N = 86        |
| ps1_total_g            | 406.6 (170.2)    | 408.9 (165.6)     | 407.5 (167.3) |
| ps1_total_kcal         | 469.7 (201.2)    | 493.7 (197.2)     | 479.8 (198.7) |
| ps1_avg_vas            | 3.8(0.6)         | 3.9(0.6)          | 3.8(0.6)      |
| $ps2\_total\_g$        | 466.7 (174.3)    | 393.4 (160.9)     | 436.0 (171.8) |
| $ps2\_total\_kcal$     | 535.6 (208.9)    | 485.4 (217.3)     | 514.6 (212.7) |
| $ps2\_avg\_vas$        | 3.8(0.6)         | 3.8 (0.7)         | 3.8(0.6)      |
| $ps3\_total\_g$        | 484.8 (191.5)    | 432.7 (189.3)     | 463.0 (191.2) |
| $ps3\_total\_kcal$     | 581.9 (239.1)    | 530.2 (287.2)     | 560.3 (260.0) |
| ps3_avg_vas            | 3.8(0.6)         | 3.8(0.7)          | 3.8(0.6)      |
| $ps4\_total\_g$        | 496.4 (192.8)    | 425.3 (168.4)     | 466.6 (185.4) |
| $ps4\_total\_kcal$     | 616.7 (249.1)    | 568.9 (253.5)     | 596.7 (250.6) |
| ps4_avg_vas            | 3.8 (0.7)        | 3.9 (0.6)         | 3.9 (0.6)     |

<sup>&</sup>lt;sup>1</sup> Mean (SD)

## 4.2 Intake by Food

Table 15: High Risk: Intake by Portion Size

| Characteristic | <b>PS-1</b> , $N = 36$ | <b>PS-2</b> , $N = 36$ | <b>PS-3</b> , $N = 36$ | <b>PS-4</b> , $N = 36$ |
|----------------|------------------------|------------------------|------------------------|------------------------|
| chnug_grams    | 64.8 (45.8)            | 64.3 (54.0)            | 77.1 (62.2)            | 85.6 (65.3)            |
| chnug_kcal     | 162.1 (114.6)          | 160.7 (134.9)          | 192.7 (155.6)          | 214.1 (163.2)          |
| $mac\_grams$   | 133.0 (106.3)          | 132.8 (112.4)          | 136.1 (132.4)          | 142.5 (125.3)          |
| mac_kcal       | 226.1 (180.8)          | 225.7 (191.1)          | 231.4 (225.1)          | 242.2 (213.1)          |
| $grape\_grams$ | 84.1 (65.6)            | 93.4 (76.2)            | 96.3 (88.7)            | 104.5 (91.4)           |
| grape_kcal     | 58.4 (45.6)            | 64.9 (53.0)            | 66.9 (61.7)            | 72.6 (63.5)            |
| $broc\_grams$  | 32.7(53.7)             | 23.1(29.3)             | 24.6 (38.1)            | 23.9(37.6)             |
| broc_kcal      | 32.8(53.9)             | 23.1(29.4)             | 24.7(38.2)             | 24.0(37.7)             |
| mac_vas        | 4.2(0.8)               | 3.9(1.1)               | 3.9(1.1)               | 4.0(1.0)               |
| chnug_vas      | 4.3 (1.0)              | 4.2 (1.0)              | 4.1 (1.2)              | 4.3 (0.9)              |
| broc_vas       | 2.9 (1.7)              | 2.8 (1.5)              | 2.8 (1.5)              | 2.9 (1.6)              |
| grape_vas      | 4.2 (0.8)              | $4.4\ (0.9)$           | $4.4\ (0.9)$           | $4.4\ (0.8)$           |

<sup>&</sup>lt;sup>1</sup> Mean (SD)

Table 16: Low Risk: Intake by Portion Size

| Characteristic       | <b>PS-1</b> , $N = 50$ | <b>PS-2</b> , $N = 50$ | <b>PS-3</b> , $N = 50$ | <b>PS-4</b> , $N = 50$ |
|----------------------|------------------------|------------------------|------------------------|------------------------|
| chnug_grams          | 68.1 (42.0)            | 80.3 (49.0)            | 91.4 (59.9)            | 104.0 (67.9)           |
| chnug_kcal           | 170.3 (104.9)          | 200.8 (122.6)          | 228.5 (149.8)          | 260.0 (169.7)          |
| mac_grams            | 115.2 (91.8)           | 129.7 (103.8)          | 139.8 (116.9)          | 133.3 (108.7)          |
| mac_kcal             | 195.8 (156.1)          | 220.5 (176.5)          | 237.7 (198.7)          | 226.6 (184.7)          |
| ${\tt grape\_grams}$ | 95.9 (82.5)            | 105.5 (87.4)           | 105.8 (93.5)           | 117.9 (105.2)          |
| grape_kcal           | 66.7 (57.3)            | 73.3 (60.7)            | 73.5 (65.0)            | 81.9 (73.1)            |
| broc_grams           | 27.2(41.3)             | 29.9 (55.2)            | 30.0 (55.4)            | 36.2 (66.6)            |
| broc_kcal            | 27.3(41.4)             | 30.0 (55.4)            | 30.1 (55.6)            | 36.3 (66.8)            |
| mac_vas              | 3.6 (1.0)              | 3.7 (1.0)              | 3.8 (1.1)              | 3.7(1.0)               |
| chnug_vas            | 4.1 (0.9)              | 4.3(0.7)               | 4.2(0.7)               | 4.2(0.9)               |
| broc_vas             | 3.2 (1.2)              | 3.1 (1.1)              | 3.2 (1.2)              | 3.3 (1.3)              |
| grape_vas            | 4.2 (0.9)              | 4.2 (1.0)              | 4.1 (1.1)              | 4.1 (1.0)              |

<sup>&</sup>lt;sup>1</sup> Mean (SD)

# 4.3 Base Model - Test Quadratic Effect

All intake models are currently controlling for: pre-meal Freddy Fullness, child BMI, average VAS liking rating for the meal foods conducted at each meal, and meal order.

#### 4.3.1 Grams

Data: intake\_long

Models:

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Table 17: Regression Table: Portion Size for Grams

|                      | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|----------------------|----------|------------|---------|---------|-------------|
| (Intercept)          | 610.538  | 243.366    | 84.190  | 2.509   | 0.014       |
| preFF                | -0.342   | 0.215      | 323.045 | -1.587  | 0.113       |
| $\operatorname{fmi}$ | 28.280   | 17.427     | 78.116  | 1.623   | 0.109       |
| sexFemale            | -25.793  | 33.160     | 78.518  | -0.778  | 0.439       |
| $age\_yr$            | -17.505  | 25.802     | 78.104  | -0.678  | 0.500       |
| $cebq\_sr$           | -97.546  | 24.479     | 78.288  | -3.985  | 0.000       |
| $avg\_vas$           | 36.599   | 15.013     | 328.020 | 2.438   | 0.015       |
| $meal\_order$        | -5.970   | 4.136      | 252.664 | -1.443  | 0.150       |
| g_served             | 0.080    | 0.017      | 252.061 | 4.733   | 0.000       |

#### 4.3.2 kcal

Data: intake\_long

Models:

kcal\_ps\_mod: kcal ~ preFF + fmi + sex + age\_yr + cebq\_sr + avg\_vas + meal\_order + kcal\_served + (1 | su kcal\_psquad\_mod: kcal ~ preFF + fmi + sex + age\_yr + cebq\_sr + avg\_vas + meal\_order + kcal\_served + kca

kcal\_ps\_mod 11 4456.9 4499.2 -2217.5 4434.9

kcal\_psquad\_mod 12 4458.9 4505.0 -2217.5 4434.9 0.0241 1 0.8767

Table 18: Regression Table: Portion Size for kcal

|                                                                 | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|-----------------------------------------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                                                     | 841.643  | 297.094    | 85.106  | 2.833   | 0.006       |
| preFF                                                           | -0.898   | 0.290      | 331.211 | -3.096  | 0.002       |
| $_{ m fmi}$                                                     | 43.937   | 21.172     | 78.424  | 2.075   | 0.041       |
| sexFemale                                                       | -40.363  | 40.299     | 78.890  | -1.002  | 0.320       |
| $age\_yr$                                                       | -46.778  | 31.347     | 78.415  | -1.492  | 0.140       |
| $\operatorname{cebq}\operatorname{\underline{\hspace{1pt}-sr}}$ | -124.846 | 29.744     | 78.616  | -4.197  | 0.000       |
| $avg\_vas$                                                      | 56.425   | 19.851     | 311.118 | 2.842   | 0.005       |
| $meal\_order$                                                   | 3.511    | 5.700      | 253.226 | 0.616   | 0.538       |
| $kcal\_served$                                                  | 0.118    | 0.017      | 252.581 | 6.843   | 0.000       |

## 4.4 Risk Status x Portion Size (linear effect)

#### 4.4.1 Grams

Adding an interaction between Risk Status and Portion Size significantly improved model fit.

Data: intake\_long

Models:

grams\_ps\_mod: grams ~ preFF + fmi + sex + age\_yr + cebq\_sr + avg\_vas + meal\_order + g\_served + (1 | sub grams\_psxrisk\_mod: grams ~ preFF + fmi + sex + age\_yr + cebq\_sr + avg\_vas + meal\_order + risk\_status\_mod npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

grams\_ps\_mod 11 4257.9 4300.2 -2117.9 4235.9

grams\_psxrisk\_mod 13 4253.1 4303.0 -2113.6 4227.1 8.8066 2 0.01224 \*

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Table 19: Regression Table: Risk x Portion Size for Grams

|                                                                                                                                                                 | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                                                                                                                                                     | 548.952  | 243.127    | 83.360  | 2.258   | 0.027       |
| preFF                                                                                                                                                           | -0.355   | 0.214      | 320.876 | -1.656  | 0.099       |
| fmi                                                                                                                                                             | 41.214   | 19.011     | 77.444  | 2.168   | 0.033       |
| sexFemale                                                                                                                                                       | -26.320  | 32.829     | 77.764  | -0.802  | 0.425       |
| $age\_yr$                                                                                                                                                       | -18.253  | 25.549     | 77.364  | -0.714  | 0.477       |
| $\operatorname{cebq}$ sr                                                                                                                                        | -89.274  | 24.749     | 77.468  | -3.607  | 0.001       |
| avg_vas                                                                                                                                                         | 35.732   | 14.872     | 325.594 | 2.403   | 0.017       |
| meal_order                                                                                                                                                      | -5.801   | 4.097      | 251.936 | -1.416  | 0.158       |
| risk_status_momHigh Risk                                                                                                                                        | -26.863  | 37.520     | 98.277  | -0.716  | 0.476       |
| $g\_served$                                                                                                                                                     | 0.115    | 0.022      | 251.441 | 5.225   | 0.000       |
| $\underline{\hspace{1cm}} risk\underline{\hspace{1cm}} status\underline{\hspace{1cm}} momHigh \ Risk:\underline{\hspace{1cm}} g\underline{\hspace{1cm}} served$ | -0.083   | 0.034      | 251.633 | -2.441  | 0.015       |

Figure 1: Grams Consumed: Risk Status x Portion Size



Table 20: Estimated Simple Slopes: Risk Status x Linear Portion Size for Grams

| risk_status_mom       | $g\_served.trend$ | SE  | df                 | t.ratio | p.value        |
|-----------------------|-------------------|-----|--------------------|---------|----------------|
| Low Risk<br>High Risk | 00                | 0.0 | 253.385<br>253.454 | 00      | 0.000<br>0.218 |

Table 21: Estimated Marginal Means: Risk Status x Portion Size for Grams

|       | Low Risk | High Risk |
|-------|----------|-----------|
| 0     | 421.420  | 403.317   |
| 242.4 | 448.356  | 410.773   |
| 485.8 | 476.945  | 414.579   |
| 730.2 | 507.692  | 431.542   |

Welch Two Sample t-test

data: grams\_pred\_rxps by risk\_status\_mom
t = 0.55089, df = 78.669, p-value = 0.5833

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-47.30916 83.51479

sample estimates:

mean in group Low Risk mean in group High Risk
421.4203 403.3175

Welch Two Sample t-test

data: grams\_pred\_rxps by risk\_status\_mom
t = 1.1378, df = 77.531, p-value = 0.2587

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-28.18194 103.34859

sample estimates:

mean in group Low Risk mean in group High Risk 448.3562 410.7728

Welch Two Sample t-test

data: grams\_pred\_rxps by risk\_status\_mom
t = 1.8701, df = 76.98, p-value = 0.06528

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-4.042121 128.774554

sample estimates:

mean in group Low Risk mean in group High Risk 476.9452 414.5790

Welch Two Sample t-test

data: grams\_pred\_rxps by risk\_status\_mom
t = 2.34, df = 79.636, p-value = 0.02179

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

11.38357 140.91629

sample estimates:

mean in group Low Risk mean in group High Risk 507.6917 431.5418

#### 4.4.1.1 No Plate Cleaners

Table 22: Regression Table: No Plate Cleaners - Risk x Portion Size for grams

|                                              | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|----------------------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                                  | 450.615  | 249.506    | 80.741  | 1.806   | 0.075       |
| preFF                                        | -0.333   | 0.212      | 312.292 | -1.570  | 0.117       |
| fmi                                          | 38.422   | 19.043     | 75.372  | 2.018   | 0.047       |
| sexFemale                                    | -17.616  | 33.017     | 75.759  | -0.534  | 0.595       |
| $age\_yr$                                    | -8.789   | 25.996     | 75.299  | -0.338  | 0.736       |
| $\operatorname{cebq\_sr}$                    | -75.867  | 25.823     | 75.423  | -2.938  | 0.004       |
| avg_vas                                      | 33.164   | 14.863     | 317.264 | 2.231   | 0.026       |
| meal_order                                   | -6.464   | 4.090      | 245.829 | -1.580  | 0.115       |
| risk_status_momHigh Risk                     | -31.755  | 37.803     | 95.247  | -0.840  | 0.403       |
| $g\_served$                                  | 0.118    | 0.022      | 245.487 | 5.382   | 0.000       |
| ${\tt risk\_status\_momHigh~Risk:g\_served}$ | -0.079   | 0.034      | 245.697 | -2.333  | 0.020       |

#### 4.4.2 kcal

Adding an interaction between Risk Status and Portion Size (linear effect) significantly improved model fit.

Data: intake\_long

Models:

kcal\_ps\_mod 11 4456.9 4499.2 -2217.5 4434.9

kcal\_psxrisk\_mod 13 4455.9 4505.8 -2214.9 4429.9 5.0904 2 0.07846.

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Table 23: Regression Table: Risk x Portion Size for kcal

|                                           | Estimate | Std. Error | df      | t value | Pr(> t ) |
|-------------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                               | 795.876  | 300.061    | 84.191  | 2.652   | 0.010    |
| preFF                                     | -0.915   | 0.290      | 328.606 | -3.155  | 0.002    |
| fmi                                       | 52.682   | 23.358     | 77.722  | 2.255   | 0.027    |
| sexFemale                                 | -40.696  | 40.347     | 78.083  | -1.009  | 0.316    |
| $age\_yr$                                 | -47.276  | 31.389     | 77.629  | -1.506  | 0.136    |
| $\operatorname{cebq\_sr}$                 | -119.207 | 30.409     | 77.736  | -3.920  | 0.000    |
| avg_vas                                   | 55.276   | 19.786     | 309.778 | 2.794   | 0.006    |
| meal_order                                | 3.710    | 5.666      | 252.432 | 0.655   | 0.513    |
| risk_status_momHigh Risk                  | -3.450   | 46.795     | 104.316 | -0.074  | 0.941    |
| kcal_served                               | 0.148    | 0.022      | 251.899 | 6.577   | 0.000    |
| $risk\_status\_momHigh~Risk:kcal\_served$ | -0.071   | 0.035      | 252.128 | -2.046  | 0.042    |

Figure 2: kCal Consumed: Risk Status x Portion Size



Table 24: Estimated Simple Slopes: Risk Status x Linear Portion Size for kcal

| risk_status_mom       | kcal_served.trend | SE  | df                 | t.ratio | p.value        |
|-----------------------|-------------------|-----|--------------------|---------|----------------|
| Low Risk<br>High Risk | 0.2.20            | 0.0 | 253.453<br>253.556 | 0.0     | 0.000<br>0.004 |

Table 25: Estimated Marginal Means: Risk Status x Portion Size for kcal

|       | Low Risk | High Risk |
|-------|----------|-----------|
| 0     | 477.859  | 481.352   |
| 328.8 | 525.858  | 506.562   |
| 658.6 | 577.043  | 524.942   |
| 989.4 | 623.169  | 565.408   |

Welch Two Sample t-test

data:  $kcal_pred_rxps$  by  $risk_status_mom$ t = -0.081698, df = 73.102, p-value = 0.9351

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-88.69351 81.70816 sample estimates:

mean in group Low Risk mean in group High Risk
477.8590 481.3516

Welch Two Sample t-test

data: kcal\_pred\_rxps by risk\_status\_mom
t = 0.4628, df = 73.864, p-value = 0.6449

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-63.78518 102.37781

sample estimates:

mean in group Low Risk mean in group High Risk 525.8583 506.5620

Welch Two Sample t-test

data: kcal\_pred\_rxps by risk\_status\_mom
t = 1.1831, df = 70.856, p-value = 0.2407

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-35.71301 139.91525

sample estimates:

mean in group Low Risk mean in group High Risk 577.0433 524.9422

Welch Two Sample t-test

data: kcal\_pred\_rxps by risk\_status\_mom
t = 1.3646, df = 75.687, p-value = 0.1764

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-26.54999 142.07215

sample estimates:

mean in group Low Risk mean in group High Risk 623.1687 565.4076

#### 4.4.2.1 No Plate Cleaners

Table 26: Regression Table: No Plate Cleaners - Risk x Portion Size for kcal

|                                                 | Estimate | Std. Error | df      | t value | Pr(> t ) |
|-------------------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                                     | 708.654  | 309.664    | 81.498  | 2.288   | 0.025    |
| preFF                                           | -0.911   | 0.288      | 319.895 | -3.158  | 0.002    |
| fmi                                             | 50.283   | 23.539     | 75.641  | 2.136   | 0.036    |
| sexFemale                                       | -32.145  | 40.824     | 76.081  | -0.787  | 0.433    |
| $age\_yr$                                       | -38.120  | 32.132     | 75.557  | -1.186  | 0.239    |
| $\operatorname{cebq}$ _sr                       | -106.486 | 31.921     | 75.689  | -3.336  | 0.001    |
| avg_vas                                         | 51.707   | 19.849     | 301.954 | 2.605   | 0.010    |
| meal_order                                      | 1.655    | 5.672      | 246.312 | 0.292   | 0.771    |
| risk_status_momHigh Risk                        | -6.669   | 47.400     | 100.851 | -0.141  | 0.888    |
| kcal_served                                     | 0.150    | 0.022      | 245.946 | 6.697   | 0.000    |
| ${\tt risk\_status\_momHigh~Risk:kcal\_served}$ | -0.074   | 0.035      | 246.197 | -2.128  | 0.034    |

# 5 Exploratory Analyses: Individual Foods

## 5.1 Chicken Nuggets

#### **5.1.1** Grams

**5.1.1.1** Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_chnug_ps_mod: chnug_grams ~ preFF + fmi + sex + age_yr + cebq_sr + chnug_vas + meal_order + g_ser
grams_chnug_ps_psquad_mod: chnug_grams ~ preFF + fmi + sex + age_yr + cebq_sr + chnug_vas + meal_order
                                        BIC logLik deviance Chisq Df
                               AIC
                         npar
grams_chnug_ps_mod
                           11 3510.5 3552.7 -1744.2
                                                     3488.5
grams_chnug_ps_psquad_mod 12 3512.2 3558.3 -1744.1
                                                      3488.2 0.2618 1
                         Pr(>Chisq)
grams_chnug_ps_mod
grams_chnug_ps_psquad_mod
                             0.6089
```

Table 27: Chicken Nugget - Portion Size for Grams

|                        | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|------------------------|----------|------------|---------|---------|-------------|
| (Intercept)            | 86.586   | 68.301     | 77.414  | 1.268   | 0.209       |
| $\operatorname{preFF}$ | -0.218   | 0.074      | 334.458 | -2.965  | 0.003       |
| $\operatorname{fmi}$   | 1.178    | 4.850      | 70.177  | 0.243   | 0.809       |
| sexFemale              | -13.638  | 9.229      | 70.549  | -1.478  | 0.144       |
| $age\_yr$              | -7.273   | 7.203      | 70.758  | -1.010  | 0.316       |
| $\operatorname{cebq}$  | -11.770  | 6.829      | 70.821  | -1.724  | 0.089       |
| $chnug\_vas$           | 18.123   | 3.315      | 315.856 | 5.468   | 0.000       |
| $meal\_order$          | 1.308    | 1.490      | 244.590 | 0.878   | 0.381       |
| g_served               | 0.041    | 0.006      | 243.494 | 6.637   | 0.000       |

#### 5.1.1.2 Risk x Portion Size

Table 28: Chicken Nugget - Risk x Portion Size for Grams

|                                   | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|-----------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                       | 72.688   | 68.790     | 76.467  | 1.057   | 0.294       |
| preFF                             | -0.218   | 0.074      | 332.273 | -2.957  | 0.003       |
| fmi                               | 3.897    | 5.331      | 69.241  | 0.731   | 0.467       |
| sexFemale                         | -13.755  | 9.201      | 69.431  | -1.495  | 0.139       |
| $age\_yr$                         | -7.432   | 7.182      | 69.638  | -1.035  | 0.304       |
| $\operatorname{cebq\_sr}$         | -10.047  | 6.948      | 69.496  | -1.446  | 0.153       |
| chnug_vas                         | 18.129   | 3.309      | 313.445 | 5.479   | 0.000       |
| meal_order                        | 1.342    | 1.487      | 243.443 | 0.903   | 0.368       |
| $g\_served$                       | 0.048    | 0.008      | 242.373 | 6.063   | 0.000       |
| $risk\_status\_momHigh Risk$      | -5.177   | 10.920     | 102.428 | -0.474  | 0.636       |
| g_served:risk_status_momHigh Risk | -0.019   | 0.012      | 242.677 | -1.525  | 0.128       |



#### 5.1.2 kcal

kcal\_chnug\_ps\_psquad\_mod

**5.1.2.1** Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_chnug_ps_mod: chnug_kcal ~ preFF + fmi + sex + age_yr + cebq_sr + chnug_vas + meal_order + kcal_se
kcal_chnug_ps_psquad_mod: chnug_kcal ~ preFF + fmi + sex + age_yr + cebq_sr + chnug_vas + meal_order + from the control of the cont
```

Table 29: Chicken - Nugget Portion Size for kcal

0.6062

|                           | Estimate | Std. Error | df      | t value | Pr(> t ) |
|---------------------------|----------|------------|---------|---------|----------|
| (Intercept)               | 216.453  | 170.753    | 77.415  | 1.268   | 0.209    |
| preFF                     | -0.546   | 0.184      | 334.458 | -2.965  | 0.003    |
| fmi                       | 2.945    | 12.125     | 70.178  | 0.243   | 0.809    |
| sexFemale                 | -34.095  | 23.073     | 70.550  | -1.478  | 0.144    |
| $age\_yr$                 | -18.182  | 18.008     | 70.758  | -1.010  | 0.316    |
| $\operatorname{cebq}$ _sr | -29.424  | 17.072     | 70.821  | -1.724  | 0.089    |
| $chnug\_vas$              | 45.309   | 8.286      | 315.854 | 5.468   | 0.000    |
| $meal\_order$             | 3.269    | 3.726      | 244.590 | 0.877   | 0.381    |
| $kcal\_served$            | 0.075    | 0.011      | 243.494 | 6.637   | 0.000    |

Table 30: Chicken - Nugget Risk x Portion Size for kcal

|                                                                       | Estimate | Std. Error | df      | t value | Pr(> t ) |
|-----------------------------------------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                                                           | 181.709  | 171.976    | 76.467  | 1.057   | 0.294    |
| preFF                                                                 | -0.546   | 0.185      | 332.273 | -2.957  | 0.003    |
| fmi                                                                   | 9.742    | 13.327     | 69.241  | 0.731   | 0.467    |
| sexFemale                                                             | -34.388  | 23.004     | 69.431  | -1.495  | 0.139    |
| $age\_yr$                                                             | -18.580  | 17.956     | 69.638  | -1.035  | 0.304    |
| $\operatorname{cebq}$ _sr                                             | -25.118  | 17.370     | 69.496  | -1.446  | 0.153    |
| chnug_vas                                                             | 45.324   | 8.272      | 313.444 | 5.479   | 0.000    |
| meal_order                                                            | 3.353    | 3.717      | 243.443 | 0.902   | 0.368    |
| kcal_served                                                           | 0.089    | 0.015      | 242.373 | 6.063   | 0.000    |
| $risk\_status\_momHigh Risk$                                          | -12.936  | 27.303     | 102.453 | -0.474  | 0.637    |
| $\underline{\hspace{1cm}} kcal\_served: risk\_status\_momHigh \ Risk$ | -0.035   | 0.023      | 242.677 | -1.525  | 0.128    |



5.1.2.2 Risk x Portion Size

#### 5.2 Mac and Cheese

#### **5.2.1** Grams

**5.2.1.1** Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 31: Mac and Cheese - Portion Size for Grams

|                      | Estimate | Std. Error | df      | t value | $\Pr(> \mid \! t \mid)$ |
|----------------------|----------|------------|---------|---------|-------------------------|
| (Intercept)          | 266.161  | 138.494    | 77.812  | 1.922   | 0.058                   |
| preFF                | -0.127   | 0.117      | 313.857 | -1.085  | 0.279                   |
| $\operatorname{fmi}$ | 30.598   | 10.149     | 76.899  | 3.015   | 0.003                   |
| sexFemale            | -4.959   | 19.231     | 76.268  | -0.258  | 0.797                   |
| $age\_yr$            | -26.733  | 14.975     | 76.017  | -1.785  | 0.078                   |
| $cebq\_sr$           | -51.617  | 14.197     | 76.054  | -3.636  | 0.001                   |
| $mac\_vas$           | 21.601   | 4.540      | 330.911 | 4.757   | 0.000                   |
| $meal\_order$        | 2.287    | 2.222      | 249.471 | 1.029   | 0.304                   |
| $g\_served$          | 0.022    | 0.009      | 249.530 | 2.393   | 0.017                   |

Table 32: Mac and Cheese - Risk x Portion Size for Grams

|                                   | Estimate | Std. Error | df      | t value | Pr(> t ) |
|-----------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                       | 252.211  | 140.333    | 76.752  | 1.797   | 0.076    |
| preFF                             | -0.125   | 0.117      | 311.416 | -1.061  | 0.289    |
| fmi                               | 33.924   | 11.208     | 75.475  | 3.027   | 0.003    |
| sexFemale                         | -5.074   | 19.301     | 75.122  | -0.263  | 0.793    |
| $age\_yr$                         | -26.935  | 15.032     | 74.882  | -1.792  | 0.077    |
| $\operatorname{cebq\_sr}$         | -49.529  | 14.553     | 74.866  | -3.403  | 0.001    |
| mac_vas                           | 21.491   | 4.575      | 329.351 | 4.698   | 0.000    |
| meal_order                        | 2.298    | 2.226      | 248.322 | 1.032   | 0.303    |
| $g\_served$                       | 0.025    | 0.012      | 248.591 | 2.047   | 0.042    |
| $risk\_status\_momHigh~Risk$      | -12.268  | 21.927     | 92.817  | -0.560  | 0.577    |
| g_served:risk_status_momHigh Risk | -0.006   | 0.019      | 249.696 | -0.348  | 0.728    |

**5.2.1.2** Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 33: Mac and Cheese - Risk x Portion Size for Grams

|                               | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|-------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                   | 252.662  | 140.234    | 76.831  | 1.802   | 0.076       |
| preFF                         | -0.122   | 0.117      | 312.203 | -1.041  | 0.299       |
| fmi                           | 33.905   | 11.201     | 75.569  | 3.027   | 0.003       |
| sexFemale                     | -5.082   | 19.289     | 75.219  | -0.263  | 0.793       |
| $age\_yr$                     | -26.936  | 15.022     | 74.979  | -1.793  | 0.077       |
| $cebq\_sr$                    | -49.528  | 14.543     | 74.963  | -3.406  | 0.001       |
| mac_vas                       | 21.641   | 4.545      | 330.042 | 4.762   | 0.000       |
| $meal\_order$                 | 2.285    | 2.223      | 249.412 | 1.028   | 0.305       |
| $g\_served$                   | 0.022    | 0.009      | 249.469 | 2.394   | 0.017       |
| $risk\_status\_momHigh\ Risk$ | -14.677  | 20.791     | 75.456  | -0.706  | 0.482       |



#### 5.2.2 kcal

**5.2.2.1** Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Data: intake\_long

Models:

kcal\_mac\_ps\_mod 11 4210 4252.2 -2094.0 4188

kcal\_mac\_ps\_psquad\_mod 12 4211 4257.1 -2093.5 4187 0.9954 1 0.3184

Table 34: Mac and Cheese - Portion Size for kcal

|                       | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|-----------------------|----------|------------|---------|---------|-------------|
| (Intercept)           | 452.468  | 235.439    | 77.812  | 1.922   | 0.058       |
| preFF                 | -0.215   | 0.198      | 313.857 | -1.085  | 0.279       |
| fmi                   | 52.017   | 17.254     | 76.899  | 3.015   | 0.003       |
| sexFemale             | -8.430   | 32.693     | 76.268  | -0.258  | 0.797       |
| $age\_yr$             | -45.446  | 25.458     | 76.017  | -1.785  | 0.078       |
| mac_vas               | 36.721   | 7.719      | 330.910 | 4.757   | 0.000       |
| $\operatorname{cebq}$ | -87.748  | 24.135     | 76.054  | -3.636  | 0.001       |
| $meal\_order$         | 3.887    | 3.778      | 249.471 | 1.029   | 0.305       |
| $kcal\_served$        | 0.027    | 0.011      | 249.530 | 2.393   | 0.017       |
|                       |          |            |         |         |             |

Table 35: Mac and Cheese - Risk x Portion Size for kcal

|                                                  | Estimate | Std. Error | df      | t value | Pr(> t ) |
|--------------------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                                      | 428.752  | 238.566    | 76.752  | 1.797   | 0.076    |
| preFF                                            | -0.212   | 0.200      | 311.415 | -1.061  | 0.289    |
| fmi                                              | 57.671   | 19.054     | 75.475  | 3.027   | 0.003    |
| sexFemale                                        | -8.626   | 32.813     | 75.122  | -0.263  | 0.793    |
| $age\_yr$                                        | -45.790  | 25.555     | 74.882  | -1.792  | 0.077    |
| $\operatorname{cebq}$ _sr                        | -84.200  | 24.740     | 74.866  | -3.403  | 0.001    |
| mac_vas                                          | 36.534   | 7.777      | 329.351 | 4.698   | 0.000    |
| meal_order                                       | 3.907    | 3.785      | 248.322 | 1.032   | 0.303    |
| kcal_served                                      | 0.031    | 0.015      | 248.591 | 2.048   | 0.042    |
| risk_status_momHigh Risk                         | -20.851  | 37.277     | 92.830  | -0.559  | 0.577    |
| ${\it kcal\_served:} risk\_status\_momHigh~Risk$ | -0.008   | 0.023      | 249.697 | -0.348  | 0.728    |

**5.2.2.2** Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 36: Mac and Cheese - Risk x Portion Size for kcal

|                              | Estimate | Std. Error | df      | t value | Pr(> t ) |
|------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                  | 429.519  | 238.398    | 76.831  | 1.802   | 0.076    |
| preFF                        | -0.207   | 0.199      | 312.203 | -1.041  | 0.299    |
| fmi                          | 57.639   | 19.041     | 75.569  | 3.027   | 0.003    |
| sexFemale                    | -8.639   | 32.791     | 75.219  | -0.263  | 0.793    |
| $age\_yr$                    | -45.792  | 25.538     | 74.979  | -1.793  | 0.077    |
| $cebq\_sr$                   | -84.198  | 24.724     | 74.963  | -3.406  | 0.001    |
| mac_vas                      | 36.790   | 7.726      | 330.041 | 4.762   | 0.000    |
| $meal\_order$                | 3.884    | 3.778      | 249.412 | 1.028   | 0.305    |
| kcal_served                  | 0.027    | 0.011      | 249.469 | 2.394   | 0.017    |
| $risk\_status\_momHigh Risk$ | -24.951  | 35.345     | 75.456  | -0.706  | 0.482    |



## 5.3 Grapes

#### **5.3.1** Grams

**5.3.1.1** Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_grape_ps_mod: grape_grams ~ preFF + fmi + sex + age_yr + cebq_sr + grape_vas + meal_order + g_ser
grams_grape_ps_psquad_mod: grape_grams ~ preFF + fmi + sex + age_yr + cebq_sr + grape_vas + meal_order
                         npar
                                       BIC logLik deviance Chisq Df
                                AIC
                           11 3739.1 3781.3 -1858.5
grams_grape_ps_mod
                           12 3741.1 3787.2 -1858.5
grams_grape_ps_psquad_mod
                                                      3717.1 0.0108 1
                         Pr(>Chisq)
grams_grape_ps_mod
grams_grape_ps_psquad_mod
                             0.9171
```

Table 37: Grapes - Portion Size for Grams

|                       | Estimate | Std. Error | df      | t value | Pr(> t ) |
|-----------------------|----------|------------|---------|---------|----------|
| (Intercept)           | 6.518    | 126.242    | 76.715  | 0.052   | 0.959    |
| preFF                 | -0.052   | 0.099      | 306.576 | -0.529  | 0.597    |
| $_{ m fmi}$           | -14.144  | 9.238      | 75.411  | -1.531  | 0.130    |
| sexFemale             | -2.797   | 17.566     | 75.676  | -0.159  | 0.874    |
| $age\_yr$             | 20.048   | 13.679     | 75.430  | 1.466   | 0.147    |
| $\operatorname{cebq}$ | -11.169  | 13.022     | 76.519  | -0.858  | 0.394    |
| $grape\_vas$          | 9.860    | 4.183      | 323.480 | 2.357   | 0.019    |
| $meal\_order$         | -5.168   | 1.866      | 248.719 | -2.769  | 0.006    |
| $g\_served$           | 0.025    | 0.008      | 248.715 | 3.304   | 0.001    |

Table 38: Grapes - Risk x Portion Size for Grams

|                                              | Estimate | Std. Error | df      | t value | Pr(> t ) |
|----------------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                                  | 8.860    | 128.210    | 75.931  | 0.069   | 0.945    |
| $\operatorname{preFF}$                       | -0.055   | 0.100      | 303.903 | -0.552  | 0.581    |
| fmi                                          | -14.943  | 10.234     | 74.490  | -1.460  | 0.148    |
| sexFemale                                    | -2.786   | 17.666     | 74.730  | -0.158  | 0.875    |
| $age\_yr$                                    | 20.097   | 13.759     | 74.493  | 1.461   | 0.148    |
| $\operatorname{cebq\_sr}$                    | -11.684  | 13.367     | 75.362  | -0.874  | 0.385    |
| grape_vas                                    | 9.921    | 4.218      | 321.972 | 2.352   | 0.019    |
| meal_order                                   | -5.159   | 1.870      | 247.767 | -2.759  | 0.006    |
| $g\_served$                                  | 0.027    | 0.010      | 248.136 | 2.701   | 0.007    |
| $risk\_status\_momHigh~Risk$                 | 5.217    | 19.877     | 89.111  | 0.262   | 0.794    |
| ${\tt g\_served:risk\_status\_momHigh~Risk}$ | -0.005   | 0.016      | 248.780 | -0.296  | 0.768    |

**5.3.1.2** Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 39: Grapes - Risk x Portion Size for Grams

|                          | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|--------------------------|----------|------------|---------|---------|-------------|
| (Intercept)              | 10.013   | 128.270    | 75.889  | 0.078   | 0.938       |
| preFF                    | -0.053   | 0.099      | 304.786 | -0.535  | 0.593       |
| fmi                      | -14.935  | 10.243     | 74.559  | -1.458  | 0.149       |
| sexFemale                | -2.748   | 17.681     | 74.794  | -0.155  | 0.877       |
| $age\_yr$                | 20.103   | 13.771     | 74.562  | 1.460   | 0.149       |
| $cebq\_sr$               | -11.641  | 13.378     | 75.422  | -0.870  | 0.387       |
| grape_vas                | 9.752    | 4.188      | 322.458 | 2.328   | 0.021       |
| $meal\_order$            | -5.167   | 1.866      | 248.839 | -2.769  | 0.006       |
| $g$ _served              | 0.025    | 0.008      | 248.834 | 3.304   | 0.001       |
| risk_status_momHigh Risk | 3.526    | 19.052     | 74.945  | 0.185   | 0.854       |



#### 5.3.2 kcal

kcal\_grape\_ps\_psquad\_mod

**5.3.2.1** Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_grape_ps_mod: grape_kcal ~ preFF + fmi + sex + age_yr + cebq_sr + grape_vas + meal_order + kcal_se
kcal_grape_ps_psquad_mod: grape_kcal ~ preFF + fmi + sex + age_yr + cebq_sr + grape_vas + meal_order + in the control of the contro
```

Table 40: Grapes - Portion Size for kcal

0.918

|                                                                 | Estimate | Std. Error | df      | t value | Pr(> t ) |
|-----------------------------------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                                                     | 4.529    | 87.739     | 76.715  | 0.052   | 0.959    |
| preFF                                                           | -0.036   | 0.069      | 306.576 | -0.529  | 0.597    |
| fmi                                                             | -9.830   | 6.420      | 75.411  | -1.531  | 0.130    |
| sexFemale                                                       | -1.944   | 12.208     | 75.676  | -0.159  | 0.874    |
| $age\_yr$                                                       | 13.934   | 9.507      | 75.430  | 1.466   | 0.147    |
| $\operatorname{cebq}\operatorname{\underline{\hspace{1pt}-sr}}$ | -7.762   | 9.050      | 76.519  | -0.858  | 0.394    |
| $grape\_vas$                                                    | 6.853    | 2.907      | 323.479 | 2.357   | 0.019    |
| $meal\_order$                                                   | -3.592   | 1.297      | 248.719 | -2.770  | 0.006    |
| $kcal\_served$                                                  | 0.013    | 0.004      | 248.715 | 3.304   | 0.001    |

Table 41: Grapes - Risk x Portion Size for kcal

|                                                                      | Estimate | Std. Error | df      | t value | Pr(> t ) |
|----------------------------------------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                                                          | 6.156    | 89.106     | 75.931  | 0.069   | 0.945    |
| preFF                                                                | -0.038   | 0.069      | 303.903 | -0.552  | 0.581    |
| fmi                                                                  | -10.386  | 7.113      | 74.490  | -1.460  | 0.148    |
| sexFemale                                                            | -1.936   | 12.278     | 74.729  | -0.158  | 0.875    |
| $age\_yr$                                                            | 13.967   | 9.562      | 74.492  | 1.461   | 0.148    |
| $\operatorname{cebq}$ _sr                                            | -8.120   | 9.290      | 75.362  | -0.874  | 0.385    |
| grape_vas                                                            | 6.895    | 2.931      | 321.972 | 2.352   | 0.019    |
| meal_order                                                           | -3.586   | 1.300      | 247.767 | -2.759  | 0.006    |
| kcal_served                                                          | 0.014    | 0.005      | 248.136 | 2.701   | 0.007    |
| $risk\_status\_momHigh Risk$                                         | 3.626    | 13.815     | 89.121  | 0.262   | 0.794    |
| $\underline{\hspace{1cm}} kcal\_served:risk\_status\_momHigh \ Risk$ | -0.002   | 0.008      | 248.780 | -0.296  | 0.768    |

**5.3.2.2** Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 42: Grapes - Risk x Portion Size for kcal

|                               | Estimate | Std. Error | df      | t value | $\Pr(> t )$ |
|-------------------------------|----------|------------|---------|---------|-------------|
| (Intercept)                   | 6.958    | 89.148     | 75.889  | 0.078   | 0.938       |
| preFF                         | -0.037   | 0.069      | 304.786 | -0.536  | 0.593       |
| fmi                           | -10.380  | 7.119      | 74.559  | -1.458  | 0.149       |
| sexFemale                     | -1.910   | 12.288     | 74.794  | -0.155  | 0.877       |
| $age\_yr$                     | 13.971   | 9.571      | 74.561  | 1.460   | 0.149       |
| $cebq\_sr$                    | -8.090   | 9.297      | 75.422  | -0.870  | 0.387       |
| grape_vas                     | 6.777    | 2.911      | 322.458 | 2.328   | 0.021       |
| $meal\_order$                 | -3.591   | 1.297      | 248.839 | -2.769  | 0.006       |
| kcal_served                   | 0.013    | 0.004      | 248.834 | 3.304   | 0.001       |
| $risk\_status\_momHigh\ Risk$ | 2.451    | 13.241     | 74.945  | 0.185   | 0.854       |



### 5.4 Broccoli

### **5.4.1** Grams

**5.4.1.1** Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 43: Broccoli - Portion Size for Grams

|                       | Estimate | Std. Error | df      | t value | Pr(> t ) |
|-----------------------|----------|------------|---------|---------|----------|
| (Intercept)           | -50.805  | 71.254     | 71.851  | -0.713  | 0.478    |
| preFF                 | 0.009    | 0.066      | 322.980 | 0.133   | 0.894    |
| $\operatorname{fmi}$  | -6.030   | 5.208      | 70.632  | -1.158  | 0.251    |
| sexFemale             | 12.860   | 9.906      | 70.947  | 1.298   | 0.198    |
| $age\_yr$             | 13.101   | 7.706      | 70.524  | 1.700   | 0.094    |
| $\operatorname{cebq}$ | -1.238   | 7.316      | 70.829  | -0.169  | 0.866    |
| $broc\_vas$           | 1.288    | 2.310      | 285.344 | 0.558   | 0.577    |
| $meal\_order$         | -1.106   | 1.274      | 244.042 | -0.868  | 0.386    |
| $g\_served$           | 0.002    | 0.005      | 244.316 | 0.330   | 0.742    |

Table 44: brocs - Risk x Portion Size for Grams

|                                              | Estimate | Std. Error | df      | t value | Pr(> t ) |
|----------------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                                  | -53.112  | 72.536     | 70.574  | -0.732  | 0.466    |
| $\operatorname{preFF}$                       | 0.000    | 0.066      | 319.246 | 0.006   | 0.995    |
| fmi                                          | -6.056   | 5.787      | 69.385  | -1.046  | 0.299    |
| sexFemale                                    | 12.887   | 9.999      | 69.773  | 1.289   | 0.202    |
| $age\_yr$                                    | 13.139   | 7.780      | 69.370  | 1.689   | 0.096    |
| $\operatorname{cebq\_sr}$                    | -1.262   | 7.537      | 69.471  | -0.168  | 0.867    |
| broc_vas                                     | 1.007    | 2.315      | 287.623 | 0.435   | 0.664    |
| meal_order                                   | -1.059   | 1.266      | 242.816 | -0.837  | 0.404    |
| $g\_served$                                  | 0.011    | 0.007      | 243.262 | 1.553   | 0.122    |
| $risk\_status\_momHigh~Risk$                 | 7.686    | 11.459     | 89.845  | 0.671   | 0.504    |
| ${\tt g\_served:risk\_status\_momHigh~Risk}$ | -0.021   | 0.011      | 242.964 | -2.005  | 0.046    |

**5.4.1.2** Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 45: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli grams

| risk_status_mom g_    | _served.trend   | SE    | d     | f t.ratio         | o p.value |
|-----------------------|-----------------|-------|-------|-------------------|-----------|
| Low Risk<br>High Risk | 0.011<br>-0.011 |       |       | 1.553<br>3 -1.309 | _         |
| contrast              | estimate        | SE    | df    | t.ratio           | p.value   |
| Low Risk - High Ris   | sk 0.021        | 0.011 | 253.7 | 2.005             | 0.046     |



#### 5.4.2 kcal

kcal\_broc\_ps\_psquad\_mod

**5.4.2.1** Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Table 46: Broccoli - Portion Size for kcal

0.3798

|                | Estimate | Std. Error | df      | t value | Pr(> t ) |
|----------------|----------|------------|---------|---------|----------|
| (Intercept)    | -50.957  | 71.468     | 71.851  | -0.713  | 0.478    |
| preFF          | 0.009    | 0.066      | 322.981 | 0.133   | 0.894    |
| fmi            | -6.048   | 5.223      | 70.632  | -1.158  | 0.251    |
| sexFemale      | 12.898   | 9.936      | 70.947  | 1.298   | 0.198    |
| $cebq\_sr$     | -1.242   | 7.338      | 70.829  | -0.169  | 0.866    |
| $broc\_vas$    | 1.292    | 2.317      | 285.345 | 0.558   | 0.577    |
| $age\_yr$      | 13.140   | 7.729      | 70.524  | 1.700   | 0.094    |
| $meal\_order$  | -1.109   | 1.278      | 244.042 | -0.868  | 0.386    |
| $kcal\_served$ | 0.001    | 0.004      | 244.315 | 0.329   | 0.742    |

Table 47: brocs - Risk x Portion Size for kcal

|                                      | Estimate | Std. Error | df      | t value | Pr(> t ) |
|--------------------------------------|----------|------------|---------|---------|----------|
| (Intercept)                          | -53.273  | 72.753     | 70.574  | -0.732  | 0.466    |
| preFF                                | 0.000    | 0.066      | 319.246 | 0.006   | 0.995    |
| fmi                                  | -6.074   | 5.805      | 69.385  | -1.046  | 0.299    |
| sexFemale                            | 12.925   | 10.029     | 69.773  | 1.289   | 0.202    |
| $age\_yr$                            | 13.179   | 7.804      | 69.370  | 1.689   | 0.096    |
| $\operatorname{cebq}$ _sr            | -1.266   | 7.559      | 69.471  | -0.168  | 0.867    |
| broc_vas                             | 1.010    | 2.322      | 287.624 | 0.435   | 0.664    |
| meal_order                           | -1.062   | 1.270      | 242.816 | -0.837  | 0.404    |
| kcal_served                          | 0.008    | 0.005      | 243.261 | 1.553   | 0.122    |
| $risk\_status\_momHigh Risk$         | 7.713    | 11.493     | 89.860  | 0.671   | 0.504    |
| kcal_served:risk_status_momHigh Risk | -0.016   | 0.008      | 242.964 | -2.005  | 0.046    |

**5.4.2.2** Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 48: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli kcal

| risk_status_mom       | kcal_served.trend | SE    |       | df t.ra         | atio p.va | alue       |
|-----------------------|-------------------|-------|-------|-----------------|-----------|------------|
| Low Risk<br>High Risk |                   |       |       | 73 1.<br>18 -1. |           | 122<br>191 |
| contrast              | estimate          | SE    | df    | t.ratio         | p.value   | _          |
| Low Risk - High       | n Risk 0.016      | 0.008 | 253.7 | 2.005           | 0.046     | _          |



# 6 Exploratory Analyses: Mediated Moderation

Since broccoli was the only food showing a Risk Status x Portion Size interaction, I tested whether broccoli intake mediates the overall Risk x Potion Size interaction using a mediated moderation model.

## 6.1 Grams

lavaan 0.6-12 ended normally after 127 iterations

| Estimator                  | ML     |
|----------------------------|--------|
| Optimization method        | NLMINB |
| Number of model parameters | 26     |
|                            |        |
| Number of observations     | 344    |
| Number of clusters [sub]   | 86     |

#### Model Test User Model:

|                                         | Standard | Robust |
|-----------------------------------------|----------|--------|
| Test Statistic                          | 10.013   | 4.657  |
| Degrees of freedom                      | 3        | 3      |
| P-value (Chi-square)                    | 0.018    | 0.199  |
| Scaling correction factor               |          | 2.150  |
| Yuan-Bentler correction (Mplus variant) |          |        |
| Information                             | Observed |        |

#### Parameter Estimates:

| Standard errors                  | Robust.cluster |
|----------------------------------|----------------|
| Information                      | Expected       |
| Information saturated (h1) model | Structured     |

#### Regressions:

|              |     | Estimate | Std.Err | z-value | P(> z ) |
|--------------|-----|----------|---------|---------|---------|
| grams ~      |     |          |         |         |         |
| sub          |     | -0.397   | 0.323   | -1.228  | 0.219   |
| ${	t preFF}$ |     | -1.030   | 0.305   | -3.373  | 0.001   |
| fmi          |     | 45.774   | 15.438  | 2.965   | 0.003   |
| sex          |     | -60.630  | 28.321  | -2.141  | 0.032   |
| age_yr       |     | -37.981  | 20.212  | -1.879  | 0.060   |
| cebq_sr      |     | -85.051  | 20.556  | -4.138  | 0.000   |
| avg_vas      |     | 57.960   | 23.820  | 2.433   | 0.015   |
| meal_order   |     | -4.634   | 4.363   | -1.062  | 0.288   |
| $rsk_stts_m$ |     | -23.863  | 32.739  | -0.729  | 0.466   |
| g_served     |     | 0.102    | 0.020   | 5.035   | 0.000   |
| psxrsk_nt_   | (c) | -0.062   | 0.033   | -1.865  | 0.062   |
| broc_grams ~ |     |          |         |         |         |
| preFF        |     | -0.083   | 0.069   | -1.197  | 0.231   |
| fmi          |     | -5.858   | 4.482   | -1.307  | 0.191   |
| sex          |     | 9.623    | 9.647   | 0.998   | 0.318   |
| age_yr       |     | 12.519   | 8.008   | 1.563   | 0.118   |
| cebq_sr      |     | 0.364    | 3.666   | 0.099   | 0.921   |
| broc_vas     |     | 11.975   | 2.847   | 4.207   | 0.000   |

| meal_order                | -1.258    | 1.467    | -0.857  | 0.391   |
|---------------------------|-----------|----------|---------|---------|
| ${\tt rsk\_stts\_m}$      | 11.828    | 8.601    | 1.375   | 0.169   |
| g_served                  | 0.009     | 0.008    | 1.134   | 0.257   |
| <pre>psxrsk_nt_ (a)</pre> | -0.021    | 0.010    | -2.055  | 0.040   |
| grams ~                   |           |          |         |         |
| broc_grams (b)            | 1.265     | 0.186    | 6.792   | 0.000   |
| Intercepts:               |           |          |         |         |
|                           | Estimate  | Std.Err  | z-value | P(> z ) |
| .grams                    | 699.008   | 212.096  | 3.296   | 0.001   |
| .broc_grams               | -105.036  | 62.996   | -1.667  | 0.095   |
| -0                        |           |          |         |         |
| Variances:                |           |          |         |         |
|                           | Estimate  | Std.Err  | z-value | P(> z ) |
| .grams                    | 19368.496 | 1965.060 | 9.856   | 0.000   |
| .broc_grams               | 2033.384  | 694.228  | 2.929   | 0.003   |
| Defined Parameters        | :         |          |         |         |
|                           | Estimate  | Std.Err  | z-value | P(> z ) |
| ab                        | -0.026    | 0.013    | -1.969  | 0.049   |
| total                     | -0.088    | 0.036    |         |         |
|                           | 3.000     | 5.000    |         | 0.010   |

There was a significant level indirect effect (p = 0.036) indicating that broccoli intake mediated the interaction between risk status and portion size for gram intake.

## 6.2 kcal

# lavaan 0.6-12 ended normally after 111 iterations

| Estimator                  | ML     |
|----------------------------|--------|
| Optimization method        | NLMINB |
| Number of model parameters | 26     |
| Number of observations     | 344    |
| Number of clusters [sub]   | 86     |

## Model Test User Model:

|                                         | Standard | Robust |
|-----------------------------------------|----------|--------|
| Test Statistic                          | 18.154   | 8.740  |
| Degrees of freedom                      | 3        | 3      |
| P-value (Chi-square)                    | 0.000    | 0.033  |
| Scaling correction factor               |          | 2.077  |
| Yuan-Bentler correction (Mplus variant) |          |        |
| Information                             | Observed |        |

### Parameter Estimates:

| Standard errors                  | Robust.cluster |
|----------------------------------|----------------|
| Information                      | Expected       |
| Information saturated (h1) model | Structured     |

# Regressions:

|                     |     | Estimate  | Std.Err  | z-value | P(> z ) |
|---------------------|-----|-----------|----------|---------|---------|
| kcal ~              |     |           |          |         |         |
| sub                 |     | -0.228    | 0.453    | -0.503  | 0.615   |
| ${\tt preFF}$       |     | -1.637    | 0.351    | -4.660  | 0.000   |
| fmi                 |     | 58.120    | 21.195   | 2.742   | 0.006   |
| sex                 |     | -71.368   | 35.781   | -1.995  | 0.046   |
| age_yr              |     | -65.990   | 28.588   | -2.308  | 0.021   |
| cebq_sr             |     | -115.870  | 24.208   | -4.786  | 0.000   |
| avg_vas             |     | 76.010    | 27.544   | 2.760   | 0.006   |
| meal_order          |     | 5.010     | 5.929    | 0.845   | 0.398   |
| rsk_stts_m          |     | -1.745    | 39.657   | -0.044  | 0.965   |
| kcal_servd          |     | 0.137     | 0.022    | 6.217   | 0.000   |
| psxrsk_nt_          | (c) | -0.055    | 0.037    | -1.479  | 0.139   |
| broc_kcal ~         |     |           |          |         |         |
| ${\tt preFF}$       |     | -0.083    | 0.070    | -1.197  | 0.231   |
| fmi                 |     | -5.875    | 4.496    | -1.307  | 0.191   |
| sex                 |     | 9.652     | 9.676    | 0.998   | 0.318   |
| age_yr              |     | 12.557    | 8.032    | 1.563   | 0.118   |
| cebq_sr             |     | 0.365     | 3.677    | 0.099   | 0.921   |
| broc_vas            |     | 12.011    | 2.855    | 4.207   | 0.000   |
| ${\tt meal\_order}$ |     | -1.262    | 1.471    | -0.858  | 0.391   |
| $rsk_stts_m$        |     | 11.867    | 8.628    | 1.375   | 0.169   |
| kcal_servd          |     | 0.007     | 0.006    | 1.134   | 0.257   |
| psxrsk_nt_          | (a) | -0.015    | 0.008    | -2.055  | 0.040   |
| kcal ~              |     |           |          |         |         |
| broc_kcal           | (b) | 1.348     | 0.303    | 4.446   | 0.000   |
| Intercepts:         |     |           |          |         |         |
|                     |     | Estimate  | Std.Err  | z-value | P(> z ) |
| .kcal               |     | 916.747   | 309.517  | 2.962   | 0.003   |
| .broc_kcal          |     | -105.355  | 63.185   | -1.667  | 0.095   |
| Variances:          |     |           |          |         |         |
|                     |     | Estimate  | Std.Err  | z-value | P(> z ) |
| .kcal               |     | 33277.547 | 3557.144 | 9.355   | 0.000   |
| .broc_kcal          |     | 2045.600  | 698.399  | 2.929   | 0.003   |
| Defined Paramet     | ers | :         |          |         |         |
|                     |     | Estimate  | Std.Err  | z-value | P(> z ) |
| ab                  |     | -0.021    | 0.011    | -1.922  | 0.055   |
| total               |     | -0.075    | 0.038    | -1.972  | 0.049   |
|                     |     |           |          |         |         |

There was a significant level indirect effect (p=0.048) indicating that broccoli intake mediated the interaction between risk status and portion size for kcal intake.