اگر U و V یک ماتریس متعامد(n×n (orthogonal matrix باشند آنگاه:

الف) نشان دهید سطرهای ماتریس U تشکیل پایه متعامد برای Rn میدهد.

ب) توضیح دهید که چرا ماتریس ۷۷ نیز یک ماتریس متعامد میشود.

پاسخ الف)

If U is an $n \times n$ orthogonal matrix, then $I = UU^{-1} = UU^{T}$. Since U is the transpose of U^{T} , Theorem 6 applied to U^{T} says that U^{T} has orthogonal columns. In particular, the columns of U^{T} are linearly independent and hence form a basis for \mathbb{R}^{n} by the Invertible Matrix Theorem. That is, the rows of U form a basis (an orthonormal basis) for \mathbb{R}^{n} .

پاسخ ب)

Since U and V are orthogonal, each is invertible. By Theorem 6 in Section 2.2, UV is invertible and $(UV)^{-1} = V^{-1}U^{-1} = V^TU^T = (UV)^T$, where the final equality holds by Theorem 3 in Section 2.1. Thus UV is an orthogonal matrix.