Data Transmission

- ◆ The successful transmission of data depends upon two factors:
 - The quality of the transmission signal
 - The characteristics of the transmission medium
- ◆ Some type of transmission medium is required for transmission:
 - Guided e.g. Electric Cable, Fibre Optic Cable
 - Unguided Electromagnetic Waves in Space

Signal Characteristics

◆ Continuous

- No breaks or discontinuities within signal
- Example is a speech signal

◆ Discrete

- Contains a finite number of discrete values
- Example is computer or binary data

◆ Periodic

Repeats itself after some fixed time

◆ Aperiodic

No repetition of signal pattern

Continuous and Discrete Signals

Periodic Signals

Sine Wave Characteristics

◆ The general equation applies:

$$s(t) = A\sin(2\pi . ft + \phi)$$

- Where:
 - Amplitude (A) is the peak value of the waveform
 - Frequency (f) is the number of repetitions per sec.
 Measured in Hertz (Hz.). Inverse of the period
 - Phase (Ø) is a measure of the relative position within a cycle of a signal. Measured in degrees or radians
- All three characteristics can be varied to give different waveforms

Varying Sine Wave Characteristics

Addition of Frequency Components

 $s(t) = \sin(2\pi f_1 t) + \frac{1}{3} \sin(2\pi (3f_1)t)$

Time Domain and Frequency Domain

Frequency Domain (Hertz)

Fourier Analysis

- ◆ By Fourier Analysis any signal can be expressed as the <u>sum</u> of a series of sinusoidal components of different frequencies
- ◆ This is of fundamental importance:
 - The <u>effects</u> of transmission media on a signal can be analysed by examining the effects on these component sinusoids

Signalling Concepts

◆ Spectrum

- The range of frequencies contained in a signal.
 - For the above sample signal the spectrum ranges from f₁ to 3f₁
- ◆ Absolute Bandwidth = width of spectrum
 - For the above sample signal the bandwidth is $2f_1$ (i.e. $3f_1 f_1$)
- Effective Bandwidth
 - Signals with sharp rising and falling edges in the time domain have very wide Absolute Bandwidth
 - Most energy is contained in relatively narrow band called the *Effective Bandwidth*
- ◆ DC Component
 - Signals with a component at zero frequency

Fourier Analysis

- ◆ By Fourier Analysis any signal can be expressed as the sum of a series of sinusoidal components of various frequencies
- ◆ This is of fundamental importance since effects of transmission media on a signal can be analysed by analysing the effects on component sinusoids

Full Representation of Square Wave

$$s(t) = A \sum_{\substack{K=1 \\ \square \dots odd}}^{\infty} \frac{1}{K} SIN(2\pi . kft)$$

- ◆ The bandwidth of a transmission system can be described as:
- "The fastest continuously oscillating signal that can be sent (transmitted) across the transmission system. It is represented in Hertz (Hz)."
- This limitation arises from the physical properties of matter and energy

- ◆ This limitation has a direct effect on the maximum data rate achieveable across a transmission system
- ◆ Consider a transmission system that has a bandwidth of 4MHz.....

- ◆ For a Transmission <u>System</u> the greater the bandwidth of the <u>system</u> the higher the data rate that can be achieved
- ◆ For a Transmission <u>Signal</u> the greater the speed (frequency) of the <u>signal</u>:
 - The greater the bandwidth of the signal
 - The more data can be transmitted

Conclusions

- ◆ In <u>digital</u> transmission the *square wave* is usually used to encode data
 - A digital waveform has infinite Absolute Bandwidth
- ◆ <u>All</u> transmission systems have a *limited bandwidth*
- ◆ The more limited the bandwidth the greater the distortion i.e. not all components will get through
- ◆ In general for a <u>digital signal</u> of W bps, very good representation can be achieved with a *transmission* bandwidth of 2W Hz.
- Hence, there is a relationship between data rate and bandwidth

Data and Signals - Concepts

- ◆ Data
 - Entities that convey meaning
- ◆ Signal
 - Electromagnetic wave with encoded data
- ◆ Transmission System
 - The entity over which the signal is transmitted
- Analogue Data
 - Take on continuous values on some interval e.g. voice, temperature, pressure etc.
- ◆ Digital Data
 - Take on discrete values e.g. integers, text

Signals - Defined

◆ Analogue Signal

 Continuously varying electromagnetic wave representing data that may be propagated over a medium

Digital Signal

 Sequence of discrete discontinuous voltage pulses that may be propagated over a medium

Data Transmission - Defined

- ◆ Data Transmission is the communication of data by the propagation and processing of signals:
 - Analogue data can be conveyed by an analogue signal e.g. ordinary telephone
 - Digital data can be conveyed by an analogue signal e.g. modem
 - Analogue data can be conveyed by a digital signal e.g. CODEC
 - Digital data can be conveyed by a digital signal e.g. digital transmitter

Analogue Transmission - Defined

- ◆ Analogue Transmission is the propagation of analogue signals <u>only</u> i.e. some physical quantity (e.g. voltage) that changes continuously as a function of time
- ◆ There is **no** regard to the <u>content</u> of the signal i.e. the *encoded* data
- ◆ A transmitted analogue signal can be boosted by amplifiers periodically to extend range but this also boosts *noise* so signal eventually becomes *distorted*

Digital Transmission - Defined

- ◆ Digital transmission is the propagation of analogue (with encoded *digital data*) <u>and</u> digital signals <u>with regard</u> to the encoded data.
- ◆ Here a physical quantity switches between a number of discrete levels.
- ◆ As transmitted digital signal becomes attenuated with distance a repeater can extend range
- ◆ A repeater receives the signal, recovers the digital data and re-transmits a new signal with no noise added
 22

Analogue V Digital Transmission

- Digital is Superior
 - Low cost of digital electronics
 - Data integrity signal can be maintained free of noise
 - Capacity Utilisation different digital signals can be 'Multiplexed' and 'De-multiplexed' more easily and thus share a signal channel
 - Security Encryption can be more easily applied to digital data
 - Integration Digitised analogue data can be mixed with digital and share the same facilities as other digital data

Bandwidth-Limited Signals

Bandwidth-Limited Signals (2)

Bandwidth-Limited Signals (3)

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0