# Multi-Domain Active Learning for Semi-Supervised Anomaly Detection

#### Vincent Vercruyssen

Lorenzo Perini Wannes Meert Jesse Davis

DTAI Research Group, KU LEUVEN, Belgium

vincent.vercruyssen@kuleuven.be











#### Active learning









#### Different datasets necessitate different models



What if we only have I expert that has limited time to answer queries?





## 1) Some datasets require more expert labels than others

Labeling payoff = marginal gain of acquiring another label for a given dataset







LOW labeling payoff

HIGH labeling payoff





## 2) Active learning entails diminishing labeling payoff

The more labels given by the oracle for a dataset, the less the marginal gain of providing an additional label









#### Multi-domain active learning

**GIVEN**: a multi-domain dataset M consisting of K datasets, a fixed query budget T, and an expert oracle O

**DO**: learn a classifier for each of the K datasets with active learning

Pool-based active learning with a query batch size of one

Central to this problem is the exploration versus exploitation trade-off

= figuring out which datasets are most useful to label

= providing the most labels in datasets that need it most





## Exploration-exploitation with multi-armed bandits (MAB)





- 2) observe reward/payoff
- 3) estimate reward distribution





## An MAB algorithm to tackle multi-domain active learning

Labeling payoff distribution













Solving active learning via a multi-armed bandit approach is challenging:

- I. How to equate groups of examples with the arms that the MAB can choose from?
- 2. How to select an individual example to query?
- 3. How do we quantify the *reward* for asking a query and getting the label?
- 4. How do we deal with the diminishing returns of labeling an additional example?





#### I. An MAB algorithm chooses between arms

Each arm corresponds to selecting a group of examples from which to query one

I. Arm = one of the K datasets to query an example from

$$|arms| = K$$

√ less exploration needed

X less fine-grained control

2. Arm = a cluster in a dataset to query an example from

$$|arms| = K \times C$$

X more exploration needed

√ more fine-grained control





## 2. Randomly select the final query example from a group

The MAB algorithm chooses one arm at each iteration Each arm corresponds to selecting a group of examples

- I. Select an example in the group randomly
  - X not necessarily query most informative examples
  - √ unbiased estimate of the reward distribution
- 2. Select an example in the group heuristically
  - √ select examples with highest estimated labeling payoff
  - X distorts the reward distribution estimate







## 3. Playing an arm results in an observed reward

The reward of each action taken by the MAB algorithm reflects the labeling payoff

I. Reward = entropy reduction in the predictions of the underlying classifier

$$r = \sum_{x \in D^k} \left[ H_{f_+^k}(x) - H_{f^k}(x) \right]$$

2. Reward = number of examples for which the prediction of the classifier changes

$$r = 1 - \frac{Y_{f_{+}^{k}} \cdot Y_{f^{k}}}{\|Y_{f_{+}^{k}}\| \|Y_{f^{k}}\|}$$





## 4. Model diminishing labeling payoff with rotting bandits

The more labels given by the oracle for a dataset, the less the marginal gain of providing an additional label





ALBA uses the <u>Sliding Window Average</u> (SWA) rotting bandit algorithm





#### Our Active Learning Bandits (ALBA) algorithm in full

**Input:** multi-domain dataset M, budget T, oracle  $\mathcal{O}$ , number of clusters  $\mathcal{C}$ 

Output: set of trained classifiers

- 1.  $A \leftarrow \text{divide each dataset } \in M \text{ into } C \text{ clusters}$
- 2. F ← Train an initial classifier for each dataset ∈ M
- 3. WHILE t < T:
- 4.  $k \leftarrow SWA$  picks a cluster  $\in A$  based on the reward distribution
- 5.  $x \leftarrow randomly select example in cluster k$
- 6. l  $\leftarrow$  query x and receive label from O
- 7. update the classifier for the corresponding dataset
- 8. compute reward and update cluster k's reward distribution
- 9. t = t + 1





#### Differences between ALBA and active learning

#### Classic active learning

- I. Estimates labeling payoff of every single example
- 2. Estimates labeling payoff of an example before it is queried
- 3. Works for a single dataset with a single classifier

#### Active learning Bandits (ALBA)

- Estimates labeling payoff of groups of examples
- 2. Directly observes true payoff *after* an example is queried
- 3. Works for multiple datasets, each with its own classifier





#### Experimental evaluation

Our paper addresses three research questions:

- QI: does ALBA outperform the existing active learning baselines for multi-domain active learning
- Q2: how does the division in groups of examples impact ALBA's performance
- Q3: how do the choice of reward function and query selection strategy impact ALBA's performance







#### Benchmark based on retail water consumption data

From the 7 datasets, we constructed a full benchmark of 54 multi-domain datasets







#### Baselines and evaluation

#### 7 baselines

Combine all datasets into I dataset and learn a single classifier:

- C-RAND: acquire new labels randomly
- C-UC: acquire new labels heuristically

Treat each dataset independently and learn a separate classifier for each dataset:

- I-U: acquire no labels
- I-RAND: acquire new labels randomly
- I-UC: acquire new labels heuristically
- I-R-RAND: I-RAND + max queries / dataset
- I-R-UC: I-UC + max queries / dataset

#### **Evaluation**

Area under the ROC curve measures the base performance of each anomaly classifier (we use the SSDO detector)

AUROC averaged over the K classifiers

The learning curve plots the AUROC as a function of the number of queried & labeled examples

Area under the learning curve (AULC)
measures the impact of the active learning
strategy (higher = better)



# QI: ALBA outperforms the active learning baselines (1/2)



Friedman test: not all methods perform similarly

Bonferroni-Dunn test: Alba is significantly better @ 100 query rounds





## Q1: ALBA outperforms the active learning baselines (2/2)

|          | Nr. c     | Nr. of times ALBA: |       | Ranking           |
|----------|-----------|--------------------|-------|-------------------|
| Method   | wins      | draws              | loses | Avg. $\pm$ SD     |
| ALBA     | -         | -                  | -     | $1.315 \pm 0.894$ |
| I-rand   | 48        | 2                  | 4     | $2.639 \pm 0.573$ |
| I-R-RAND | 48        | 2                  | 4     | $2.639 \pm 0.573$ |
| I-U      | 48        | 2                  | 4     | $4.333\pm1.656$   |
| I-UC     | <b>53</b> | 0                  | 1     | $5.157 \pm 0.551$ |
| I-R-UC   | <b>53</b> | 0                  | 1     | $5.231 \pm 0.497$ |
| C-RAND   | <b>54</b> | 0                  | O     | $6.741\pm0.865$   |
| C-U $C$  | <b>54</b> | 0                  | 0     | $7.944 \pm 0.404$ |

| (a) | Results | @ | 100 | query | rounds |
|-----|---------|---|-----|-------|--------|
|-----|---------|---|-----|-------|--------|

|          | Nr. o     | Nr. of times ALBA: |       | Ranking           |
|----------|-----------|--------------------|-------|-------------------|
| Method   | wins      | draws              | loses | Avg. $\pm$ SD     |
| ALBA     | -         | -                  | -     | $1.306 \pm 0.710$ |
| I-RAND   | 45        | 2                  | 7     | $2.417\pm0.507$   |
| I-R-RAND | 46        | 1                  | 7     | $2.417 \pm 0.507$ |
| I-R-UC   | <b>54</b> | 0                  | 0     | $4.537 \pm 0.686$ |
| I-UC     | <b>53</b> | 1                  | 0     | $4.546\pm0.512$   |
| I-U      | <b>54</b> | 0                  | 0     | $6.370\pm0.818$   |
| C-RAND   | <b>54</b> | 0                  | 0     | $6.491\pm0.717$   |
| C-uc     | <b>54</b> | 0                  | 0     | $7.917 \pm 0.382$ |

(b) Results @ 500 query rounds

Friedman test: not all methods perform similarly

Bonferroni-Dunn test: Alba is significantly better @ 100 query rounds





#### Q2: More clusters improves ALBA's performance



Correlation: higher C = higher ALBA performance





## Q3: cosine reward function + random example selection

|         | Query sel.<br>strategy | Ranking Avg. $\pm$ SD |
|---------|------------------------|-----------------------|
| cosine  | rand                   | $1.806 \pm 0.813$     |
| cosine  | uc                     | $2.944 \pm 0.926$     |
| entropy | rand                   | $2.241\pm0.843$       |
| entropy | uc                     | $3.009 \pm 0.825$     |

Reward function: cosine > entropy

Example selection strategy: random > heuristic (uncertainty sampling)





#### Conclusions

- I. Multi-armed bandit strategies are an effective tool for multi-domain active learning
- 2. Our contribution, the ALBA algorithm, outperforms existing AL algorithms
- 3. Constructing a large benchmark helped us gain insight in the performance

Feel free to ask any question!

Vincent Vercruyssen, Lorenzo Perini, Wannes Meert, Jesse Davis

https://github.com/Vincent-Vercruyssen/ALBA-paper



