

Lista de Exercícios de Álgebra Linear I

30/08/2023

- 1. Considere os subespaços $F_1, F_2 \subset \mathbb{R}^3$ assim definidos: F_1 é o conjunto de todos os vetores v = (x, x, x) que têm as três coordenadas iguais e F_2 é o conjunto de todos os vetores w = (x, y, 0) que têm a última coordenada igual a zero. Mostre que $\mathbb{R}^3 = F_1 \oplus F_2$.
- 2. Dados u = (1, 2) e v = (-1, 2), sejam F_1 e F_2 as retas que passam pela origem em \mathbb{R}^2 e contém u e v, respectivamente. Mostre que $\mathbb{R}^2 = F_1 \oplus F_2$.
- 3. Prove que o conjunto \mathcal{S} , das matrizes simétricas, e o conjunto \mathcal{W} , das matrizes antisimétricas, são subespaços vetoriais de $\mathcal{M}(n \times n)$. Mostre ainda que $\mathcal{M}(n \times n) = \mathcal{S} \oplus \mathcal{W}$.
- 4. Mostre que o vetor b = (1, 2, 2) não é combinação linear dos vetores $v_1 = (1, 1, 2)$ e $v_2 = (1, 2, 1)$.
- 5. Mostre que o conjunto das funções pares é um subespaço vetorial do espaço $\mathcal{F}(E;F)$, que é o espaço das funções $f:E\to F$.
- 6. Quais dos seguintes conjuntos são subespaços vetoriais? Justifique!
 - a) O conjunto dos vetores do \mathbb{R}^n cujas coordenadas formam uma progressão aritmética.
 - b) O conjunto dos vetores do \mathbb{R}^n cujas coordenadas formam uma progressão geométrica.
 - c) Os vetores do \mathbb{R}^n cujas primeiras k coordenadas são iguais.
 - d) Os vetores do \mathbb{R}^n que têm k coordenadas iguais.
 - e) Os vetores (x, y) tais que $x^2 + 3x = y^2 + 3y$.
 - f) As funções $f \in \mathcal{C}^{\infty}(\mathbb{R})$ tais que f'' 2f' + f = 0.
- 7. Mostre que, dados os números a_1, \dots, a_n, c , o conjunto V dos vetores $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ tais que

$$a_1x_1 + \cdots + a_nx_n = c$$

é um subespaço vetorial do \mathbb{R}^n se, e somente se, c=0.

8. Uma função $f: X \to \mathbb{R}$ é limitada quando existe um k > 0 (dependendo de f) tal que $|f(x)| \le k$ para todo $x \in X$. Prove que o conjunto das funções limitadas é um subespaço de $\mathcal{F}(X;\mathbb{R})$ (conjunto de todas as funções $f: X \to \mathbb{R}$).