Inductive Limit Topology

Notation

Let X be LCH. Let $C_c(X)$ be the subset of C(X) with compact support. For $S \subset X$, let $C_{\infty}(S)$ be the subset of C(S) that "vanishes at infinity," i.e. ε -bounded outside a compact set.

Definition of ILT

The ILT on $C_c(X)$ is the strongest topology such that the natural inclusion

$$C_{\infty}(U) \to C_c(X)$$

is continuous for all open U with compact closure. (Here, we equip $C_{\infty}(U)$ with the $\|\cdot\|_{\infty}$ norm.)

Remark. In general, there is no natural inclusion from $C(S) \to C_c(X)$ for any $S \subset X$. Nor is there a natural inclusion $C_{\infty}(U) \to C_c(X)$ if U is not open or does not have compact closure.

Motivation

Why are we concerned with the ILT? Note that $C_c(X)$ with $\|\cdot\|_{\infty}$ norm makes all the maps $C_{\infty}(U) \to C_c(X)$ continuous, so the $\|\cdot\|_{\infty}$ topology is weaker than the ILT.

This makes the ILT topology easier to work with because the ILT allows for more continuous linear functionals than $\|\cdot\|_{\infty}$. (Think about it, a stonger topology means more continuous maps can be defined on it.) For instance, every positive Radon measure is continuous for the ILT, but this is not the case for $\|\cdot\|_{\infty}$.

Exercise 1. For $X = \mathbb{R}$, what is an example of a open set in the ILT that is not an open set for $\|\cdot\|_{\infty}$? Hint: consider the positive Radon measure given by

$$\phi(f) = \int f d\lambda$$

where λ is the usual measure on \mathbb{R} . Note ϕ is discontinuous for $\|\cdot\|_{\infty}$, and consider $\phi^{-1}(0,1)$.

Criterion for Continuity

Suppose T is a linear functional defined on $C_c(X)$. Then T is continuous for the ILT if for all U open with compact closure, the map

$$T|_{C_{\infty}(U)}:C_{\infty}(U)\to\mathbb{R}$$

is continuous. $(C_{\infty}(U))$ is equipped with the $\|\cdot\|_{\infty}$ norm.) Think about why.