

DNA cloning Volume I

a practical approach

**Edited by
D M Glover**

IRL Press
Eynsham
Oxford
England

© IRL Press Limited 1985

First Published 1985
Reprinted 1986 (twice), 1988

All rights reserved by the publisher. No part of this book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publisher.

British Library Cataloguing in Publication Data

DNA cloning : a practical approach.—(Practical approach series)
1. Molecular cloning 2. Recombinant DNA
I. Title II. Series
574.87'3282 QH442.2

ISBN 0 947946 18 7

Cover illustration. The design for the cover was based on Figure 2 Chapter 2 Volume I, showing a map of λ gt11; Figure 10 Chapter 4 Volume II, showing crown gall tumour on *Nicotiana tabacum*; and Figure 4 Chapter 6 Volume II, showing peroxidase stained cells.

Typeset by Infotype and printed by Information Printing, Oxford, England.

Contents

ABBREVIATIONS

xiii

1. THE USE OF PHAGE LAMBDA REPLACEMENT VECTORS IN THE CONSTRUCTION OF REPRESENTATIVE GENOMIC DNA LIBRARIES	1
K.Kaiser and N.E.Murray	
 The Perfect Library	1
The Principles of Cloning in Lambda Replacement Vectors	1
Donor and Vector DNAs	4
Isolation of donor DNA	4
Fractionation of donor DNA	5
Vector DNA	8
Removal of the central fragment	10
Combination and Packaging	11
The ligation reaction	11
The packaging reaction	12
Transfection	12
Scaling Up	12
What Size of Library?	13
Working with Limiting Amounts of Donor DNA	14
Amplification	15
Screening by Hybridisation	16
Alternative Screening and Selection Procedures	19
Analysis of Recombinant DNA Molecules	19
'Chromosome Walking'	20
Bacteriophage Lambda	24
Relevant biology	24
Factors influencing plaque size	28
Selection Against Parental Sequence Phage	30
Choosing a Replacement Vector	31
Choosing a Bacterial Host	32
Host restriction and modification	32
Host genetic recombination systems	32
Lambda or Cosmids	34
Technical Details	35
Media and buffers	35
General hints	36
Checking enzymes	37
Isolation of high molecular weight chromosomal DNA from eukaryotic cells	38
Partial cleavage by Sau3A	40

vii

Size fractionation in velocity gradients	41
Checking vector DNA	42
Cleavage of vector DNA	42
Determination of the optimal ligation conditions	43
A specific protocol for hybridisation screening	44
Acknowledgements	47
References	47
Addendum	48
2. CONSTRUCTING AND SCREENING cDNA LIBRARIES IN λgt10 AND λgt11	49
T.V.Huynh, R.A.Young and R.W.Davis	
Introduction – λ Vectors for cDNA Cloning	49
λgt10	50
λgt11	51
Factors influencing the decision whether to use λgt10 or λgt11	52
Methods included in this chapter	53
Synthesising and Cloning Double-stranded cDNA in λgt10 and λgt11	53
Enzymes	55
Other reagents	55
Bacterial and phage strains	56
Directions for growth of λ phage vectors and preparation of λ vector DNA	56
Procedure for synthesising and cloning double-stranded cDNA in λgt10 and λgt11	59
Examples of results	70
Screening cDNA Libraries in λgt10 and λgt11 with Nucleic Acid Probes	72
Screening Libraries in λgt11 with Antibody Probes	73
Reagents	73
Procedure for screening libraries in λgt11 with antibody probes	73
Further comments on the procedure for screening libraries with antibody probes	75
Preparation of Recombinant Antigen from a λgt11 Recombinant Lysogen	76
Generation of a λgt11 recombinant lysogen in Y1089	76
Preparation of a crude lysate from a λgt11 recombinant lysogen	76
Preparation of β-galactosidase fusion protein from a crude lysate of a λgt11 recombinant lysogen	77
Acknowledgements	77
References	78

3. AN ALTERNATIVE PROCEDURE FOR THE SYNTHESIS OF DOUBLE-STRANDED cDNA FOR CLONING IN PHAGE AND PLASMID VECTORS	79
C.J.Watson and J.F.Jackson	
Introduction	79
Synthesis of cDNA	80
First strand cDNA synthesis	80
Second strand cDNA synthesis	82
Preparing the double-stranded cDNA for the vector	84
Ligation of vector DNA to cDNA	86
In Vitro Packaging and Plating out of Hybrid Phage	86
Concluding Remarks	87
Acknowledgements	87
References	87
4. IMMUNOLOGICAL DETECTION OF CHIMERIC β-GALACTOSIDASES EXPRESSED BY PLASMID VECTORS	89
M.Koenen, H.-W.Griesser and B.Müller-Hill	
Introduction	89
Cloning into the 5' end of the lacZ Gene	89
Cloning in the 3' end of the lacZ Gene	92
Experimental Approaches	94
Materials	94
Coating of plastic sheets with antibodies	94
Lysis of bacterial colonies	95
Immunoabsorption	96
Wash procedure	97
Identification of antigen producing colonies	97
Purification of the chimeric β -galactosidases	98
General Comments	99
References	100
5. THE pEMBL FAMILY OF SINGLE-STRANDED VECTORS	101
L.Dente, M.Sollazzo, C.Baldari, G.Cesareni and R.Cortese	
Introduction	101
The pEMBL Family	101
Alternative Single-stranded Plasmid Vectors for Special Applications	102
Procedures for Preparing Single-stranded pEMBL DNA	104
Acknowledgements	107
References	107

6. TECHNIQUES FOR TRANSFORMATION OF E. COLI 109
D.Hanahan

Introduction	109
Choosing a Suitable Strain	109
Maintenance of E. coli Strains for Transformation	111
Frozen stocks	111
Stabs	112
Plates at room temperature	112
Transformation Procedures	112
Simple transformation	112
Standard high efficiency transformation	114
Colony transformation	117
Frozen storage of competent cells	118
Transformation of χ 1776	121
Materials	125
Evaluation of Transformations	128
State of growth	128
Transformation frequency	129
Fraction of competent cells	129
Impact of additives and components	129
General Practice	130
Plating	130
Plating in top agar	130
Heat shock	130
Storage of transformed cells	131
Special Applications	131
cDNA cloning	131
Plasmid rescue	132
Storage and amplification of plasmid libraries	133
References	135

7. THE USE OF GENETIC MARKERS FOR THE SELECTION AND ALLELIC EXCHANGE OF IN VITRO INDUCED MUTATIONS THAT DO NOT HAVE A PHENOTYPE IN E. COLI 137

G.Cesareni, C.Traboni, G.Ciliberto, L.Dente and R.Cortese

A general Method for Induction and Selection of Base-pair Substitutions	137
The mutagenesis step	137
Mutants selection protocol	138
Efficiency of mutagenesis	139
A more general selective marker	143
Alternative methods for exploratory mutagenesis	143

A General Method to Exchange Allelic Sequences Between Two Replicons	144
Acknowledgements	148
References	148
 8. THE OLIGONUCLEOTIDE-DIRECTED CONSTRUCTION OF MUTATIONS IN RECOMBINANT FILAMENTOUS PHAGE	 151
H.-J.Fritz	
Introduction and Theoretical Background	151
Directed mutagenesis and the construction of precise mutations	151
The essential biology of phage M13	152
Possible mechanisms for mutation fixation	152
DNA mismatch repair in <i>Escherichia coli</i> and the importance of adenine methylation in the transfecting heteroduplex DNA	152
The gapped duplex DNA approach employing heteroduplex DNA with properly orientated hemimethylated GATC site	153
Limitations	154
Experimental Approaches	154
The synthetic primer	154
Preparation of gapped duplex DNA	158
Analysis	161
Acknowledgements	163
References	163
 9. BROAD HOST RANGE CLONING VECTORS FOR GRAM NEGATIVE BACTERIA	 165
F.C.H.Franklin	
Introduction	165
Broad Host Range Plasmids	166
Development of incQ/W plasmids as broad host range cloning vectors	167
Vectors based on the incw Sa plasmid	171
Practical use of Broad Host Range Vectors	171
Isolation of vector DNA	171
Cloning DNA fragments using broad host range vectors	172
Transformation of non-enteric Gram negative bacteria with broad host range vector DNA	172
Mobilisation of broad host range vectors as a method of transfer to recipient bacteria	174
Special Purpose Broad Host Range Cloning Vectors	176
Broad host range cosmids	176

Broad host range regulatable expression vectors	178
Low copy number broad host range vectors	180
An RSF1010 derived 'promoter probe' vector	180
Containment vectors derived from RSF1010	182
Acknowledgements	183
References	183

INDEX

185

3 1822 00376 6474

Gene II

QH
#42-2
D108
1085
V2
BM

A practical approach

Edited by
D M Clover

Published in the
Practical Approach Series
Series editors: D. Rickwood and B.D. Hames

Oxford IRL PRESS
Oxford Washington DC

IRL Press Limited
P.O. Box 1,
Eynsham,
Oxford OX8 1JJ,
England

©1985 IRL Press Limited

All rights reserved by the publisher. No part of this book may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publisher.

British Library Cataloguing in Publication Data

DNA cloning : a practical approach.—(Practical approach series)
1. Molecular cloning 2. Recombinant DNA
I. Title II. Series
574.87'3282 QH442.2

ISBN 0-947946-19-5

Cover illustration. The design for the cover was based on Figure 2 Chapter 2 Volume I, showing a map of λ gt11; Figure 10 Chapter 4 Volume II, showing crown gall tumour on *Nicotiana tabacum*; and Figure 4 Chapter 6 Volume II, showing peroxidase stained cells.

Printed in England by Information Printing, Oxford.

Contents

ABBREVIATIONS	xii
1. BACILLUS CLONING METHODS	1
K.G.Hardy	
Introduction	1
Strains and Plasmids	1
Bacterial strains	1
Plasmids	3
Bacillus phages and plasmids	4
Storage of strains	5
Growth media	6
Isolation of Plasmid DNA	7
Large-scale isolation of plasmid DNA	7
Method for the isolation of small quantities of plasmid DNA	8
Preparation and Storage of Competent Cells	9
Method for preparing competent cells	10
Transformation of competent cells	11
Preparation of protoplasts	11
Techniques for Studying Gene Expression in Bacillus	13
Preparation and labelling of bacillus minicells	14
Use of the erythromycin resistance gene, ermC, for expression of cloned genes	15
Acknowledgement	16
References	16
2. GENE CLONING IN STREPTOMYCES	19
I.S.Hunter	
Introduction	19
A Strategy for DNA Cloning in Streptomyces	20
The host strain	20
Statistical analysis	23
Growth and Maintenance of Strains	27
Practical Approaches to DNA Cloning	29
An overview of DNA cloning in Streptomyces	30
Preparation of DNA	31
Ligation of DNA	36
Preparation of protoplasts	37
Transformation	39

Regeneration	40
Detection of/selection for transformants	41
Media	42
References	44
3. CLONING IN YEAST	45
R.Rothstein	
Introduction	45
Identification of Cloned Yeast Genes	45
Cloning structural RNA genes and purified mRNA genes	45
Cloning by differential hybridisation	46
Cloning by hybrid selection and antibody screening	46
Cloning by complementation in <i>E. coli</i>	47
Cloning by complementation in yeast	47
Yeast Vectors and Transformation Methods	49
Vectors	52
Yeast transformation procedures	53
Growth media and selection	55
Yeast colony hybridisation	55
Yeast DNA isolation and plasmid rescue	56
Manipulation of Cloned DNA	56
Directed plasmid integration	57
Allele rescue methods	57
Gene disruption strategies	59
Gene replacement techniques	62
Acknowledgements	64
References	65
4. GENETIC ENGINEERING OF PLANTS	67
C.Lichtenstein and J.Draper	
Introduction	67
Plasmid Vectors to Deliver Foreign DNA to Plants	68
Shuttle vector and Ti-plasmid derived acceptor for the transfer of foreign DNA to plants	72
Transfer of plasmids to <i>A. tumefaciens</i> by conjugation	77
Rapid mapping of cointegrates of the shuttle vector into the Ti-plasmid based vector in <i>A. tumefaciens</i>	80
Binary vectors for the transfer of foreign DNA to plants	83
The Delivery of DNA to Plant Cells and the Regeneration of Transformed Plants	85

Tumour induction on sterile seedlings or explants with virulent and oncogenic agrobacteria	88
Transformation of explants with onc ⁻ vectors containing dominant selectable markers	88
Transformation of plant cells by cocultivation with <i>A. tumefaciens</i>	90
Delivery of DNA to plant cells by isolated DNA vectors	96
Regeneration of transformed plants	98
Isolation of Plant DNA and RNA	101
Preparation of total plant DNA	102
The isolation of nuclear, mitochondrial and chloroplast DNA	105
Preparation of plant RNA	109
Analysis of Organisation and Expression of Foreign DNA in Plant Tissue	110
Octopine and nopaline synthase assays	112
Chloramphenicol acetyltransferase assay	115
Neomycin phosphotransferase assay	115
Dihydrofolate reductase assay	116
Future Prospects	117
Acknowledgements	117
References	118
5. P ELEMENT MEDIATED GERM LINE TRANSFORMATION OF DROSOPHILA	121
R.E.Karess	
Introduction	121
Background	121
P elements and hybrid dysgenesis	121
Structure of P elements and germ line transformation	122
Strategic considerations in Preparing for Transformation	123
The need for a genetic marker	123
Markers for transformation	124
P element vectors	125
The need for a helper element	126
Selecting the fly strain for transformation	127
Preparing Materials for Microinjection	127
Materials for microinjection	127
Collecting staged embryos	128
Dechorionating the embryos	129
Desiccation	130
Preparing the needle	131
Preparing the DNA for injection	132
Injection of DNA into the Embryos	132
The proper developmental stage for injection	132
Microinjection	133

Inucbation of injected embryos	134
Testing for Transformants	135
Characterising the Transformants	136
Genetic analysis	136
DNA blot analysis	137
In situ hybridisation	137
Survival frequency	140
Remobilising the P Element Transposon within the Transformed Fly	140
References	140

6. HIGH EFFICIENCY GENE TRANSFER INTO MAMMALIAN CELLS

C.Gorman

Introduction	143
Vectors used in Mammalian Cell Expression	144
The pSV2 vectors	144
Variations	145
Inducible promoters	145
Transient versus stable expression vectors	146
Preparation of DNA	147
Cell Culture	147
Solutions for cell culture	148
Subculturing monolayer cells	150
The 'Calcium Phosphate Method'	152
Stock solutions for the 'calcium phosphate method'	152
The basic protocols	152
Variations on the basic protocol	153
The 'DEAE-Dextran Method'	154
Stock solutions	154
Protocol for the transfection of a monolayer cell culture on a 10 cm plate	154
Variations on the basic protocol	155
Transient Expression	155
Chloramphenicol acetyl transferase assay	156
β -Galactosidase assay	157
Assay of transfection efficiency by antibody staining	158
Stable Expression	160
Thymidine kinase selection	161
GPT selection	162
Selection by neomycin resistance	162
Gene Transfer of Cellular DNA	162
References	164
Appendix	165

7. THE CONSTRUCTION AND CHARACTERISATION OF VACCINIA VIRUS RECOMBINANTS EXPRESSING FOREIGN GENES	191
M.Mackett, G.L.Smith and B.Moss	
Introduction	191
Construction of Virus Recombinants	192
Strategy	192
Design of plasmid insertion vectors	193
Growth and purification of vaccinia virus	194
Transfection procedures	197
Selection of recombinants	197
Characterisation of Recombinants	204
Analysis of virus DNA	204
Characterisation of the foregin gene product	206
Conclusions	209
References	211
8. BOVINE PAPILLOMA VIRUS DNA: A EUKARYOTIC CLONING VECTOR	213
M.S.Campo	
Introduction	213
BPV-1 as a Virus	214
Physical and functional organisation of the BPV-1 genome	214
Transformation function of the BVP-1 genome	216
Transcription of the BPV-1 genome	216
BPV-1 as a Vector	216
Recombinant BPV-1 plasmids	217
Hybrid plasmids expressing selectable markers	221
Eukaryotic genes cloned in BPV vectors	227
Conclusions	235
Acknowledgements	236
References	236
INDEX	239