Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

~	Congra	atulations! You passed!	Next Item
		1/1	
		points	
		notation would you use to denote the 3rd layer's active out is the 7th example from the 8th minibatch?	ations when
		$a^{[8]\{7\}(3)}$	
		$a^{[8]\{3\}(7)}$	
	0	$a^{[3]\{8\}(7)}$	
	Corr	ect	
		$a^{[3]\{7\}(8)}$	
	~	1/1 points	
	2. Which agree	of these statements about mini-batch gradient descer with?	t do you
		You should implement mini-batch gradient descent vexplicit for-loop over different mini-batches, so that talgorithm processes all mini-batches at the same time (vectorization).	he

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient

Correct

descent.

Optimizatio	Training one epoch (one pass through the training set) using on algorithms gradient descent is faster than training one epoch using batch gradient descent. 10/10 points (100%)
	1/1 points
	3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.
	Un-selected is correct
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.
	Correct
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
	Un-selected is correct
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
	Correct
	1/1 points
	4.

https://www.coursera.org/learn/deep-neural-network/exam/rqT6n/optimization-algorithms

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Which of the following do you agree with?

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=10$$
, $v_2^{corrected}=10$

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
, $v_2^{corrected}=10$

Correct

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = rac{1}{1+2*t}\,lpha_0$$

$$\bigcirc \quad \alpha = e^t \alpha_0$$

Correct

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

$$lpha = 0.95^t lpha_0$$

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Optimization algorithms Un-selected is correct

Quiz, 10 questions

10/10 points (100%)

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

1/1 points 9.

Optimizations Quiz, 10 questions	Suppose batch gradient descent in a deep network is taking excessively ong goal batch gradient descent in a deep network is taking excessively ong goal batch of the parameters that achieves a small value for the following cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)			
	Try using Adam Correct			
	Try better random initialization for the weights Correct			
	Try tuning the learning rate α			
	Try initializing all the weights to zero Un-selected is correct			
	Try mini-batch gradient descent Correct			
	1/1 points			
	10. Which of the following statements about Adam is False?			
	Adam combines the advantages of RMSProp and momentum			
	The learning rate hyperparameter α in Adam usually needs to be tuned.			

We usually use "default" values for the hyperparameters eta_1,eta_2 $\text{and } \varepsilon \text{ in Adam } (\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8})$ Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Adam should be used with batch gradient computations, not with mini-batches.

Correct

