

Chapter 9: Subnetting IP Networks

Introduction to Networks

Cisco Networking Academy® Mind Wide Open™

- 9.0 Introduction
- 9.1 Subnetting an IPv4 Network
- 9.2 Addressing Schemes

9.1 Subnetting an IPv4 Network

Cisco Networking Academy® Mind Wide Open®

Subnetting is the process of segmenting a larger network into multiple smaller networks called subnetworks or subnets.

Reasons for Subnetting:

- Large networks must be segmented into smaller subnetworks, creating smaller groups of devices and services to:
 - Control traffic by containing broadcast traffic within each subnetwork.
 - Reduce overall network traffic and improve network performance.

Network Segmentation Subnetting

Communication Between Subnets

- A router is necessary for devices on different networks and subnets to communicate.
- Each router interface must have an IPv4 host address that belongs to the network or subnet that the router interface is connected.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.

Planning the Network

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Subnetting an IPv4 Network

Basic Subnetting

- Subnets are created by using one or more of the host bits as network bits.
- This is done by borrowing some of the bits from the host portion of the address.
- The more host bits borrowed, the more subnets can be created.
- For each bit borrowed, the number of subnetworks available is doubled.
- For example, if 1 bit is borrowed, 2 subnets can be created. If 2 bits, 4 subnets are created, if 3 bits are borrowed, 8 subnets are created, and so on (2ⁿ; where n is the number of borrowed bits).
- However, with each bit borrowed, fewer host addresses are available per subnet.

Let's examine the example in Section 9.1.3.1.

Subnetting an IPv4 Network

Subnetting Formulas

Subnetting an IPv4 Network Subnets in Use

Subnets in Use

Subnet 0

Network 192.168.1.0-127/25

192.168.1.0/25

Subnet 1

Network 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet

Network Address

192. 168. 1. 0 000 0000 = 192.168.1.0

First Host Address

192. 168. 1. 0 000 0001 = 192.168.1.1

Last Host Address

192. 168. 1. 0 111 1110 = 192.168.1.126

Broadcast Address

192. 168. 1. 0 111 1111 = 192.168.1.127

Address Range for 192.168.1.128/25 Subnet

Network Address

192. 168. 1. 1 000 0000 = 192.168.1.128

First Host Address

192. 168. 1. 1 000 0001 = 192.168.1.129

Last Host Address

192. 168. 1. 1 111 1110 = 192.168.1.254

Broadcast Address

192. 168. 1. 1 111 1111 = 192.168.1.255

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Subnetting an IPv4 Network

Creating 4 Subnets

Borrowing 2 bits to create 4 subnets. $2^2 = 4$ subnets

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Creating Eight Subnets

Borrowing 3 bits to Create 8 Subnets. $2^3 = 8$ subnets

							400 400 4 0
	Network	192.	168.	1.	000	0 0000	192.168.1.0
Net 0	First	192.	168.	1.	000	0 0001	192.168.1.1
	Last	192.	168.	1.	000	1 1110	192.168.1.30
	Broadcast	192.	168.	1.	000	1 1111	192.168.1.31
	Network	192.	168.	1.	001	0 0000	192.168.1.32
Net 1	First	192.	168.	1.	001	0 0001	192.168.1.33
	Last	192.	168.	1.	001	1 1110	192.168.1.62
	Broadcast	192.	168.	1.	001	1 1111	192.168.1.63
	Network	192.	168.	1.	010	0 0000	192.168.1.64
Net 2	First	192.	168.	1.	010	0 0001	192.168.1.65
	Last	192.	168.	1.	010	1 1110	192.168.1.94
	Broadcast	192.	168.	1.	010	1 1111	192.168.1.95
	Network	192.	168.	1.	010	0 0000	192.168.1.96
Net 3	First	192.	168.	1.	010	0 0001	192.168.1.97
	Last	192.	168.	1.	010	1 1110	192.168.1.126
	Broadcast	192.	168.	1.	010	1 1111	192.168.1.127

Creating Eight Subnets (Cont.)

	Network	192.	168.	1.	100	0 0000	192.168.1.128
Net 4	First	192.	168.	1.	100	0 0001	192.168.1.129
	Last	192.	168.	1.	100	1 1110	192.168.1.158
	Broadcast	192.	168.	1.	100	1 1111	192.168.1.159
	Network	192.	168.	1.	101	0 0000	192.168.1.160
Net 5	First	192.	168.	1.	101	0 0001	192.168.1.161
	Last	192.	168.	1.	101	1 1110	192.168.1.190
	Broadcast	192.	168.	1.	101	1 1111	192.168.1.191
	Network	192.	168.	1.	110	0 0000	192.168.1.192
Net 6	First	192.	168.	1.	110	0 0001	192.168.1.193
	Last	192.	168.	1.	110	1 1110	192.168.1.222
	Broadcast	192.	168.	1.	110	1 1111	192.168.1.223
	Network	192.	168.	1.	111	0 0000	192.168.1.224
Net 7	First	192.	168.	1.	111	0 0001	192.168.1.225
	Last	192.	168.	1.	111	1 1110	192.168.1.254
	Broadcast	192.	168.	1.	111	1 1111	192.168.1.255

Subnetting an IPv4 Network

Creating Eight Subnets (Cont.)

Determining the Subnet Mask

Subnetting Based on Host Requirements

Two considerations when planning subnets:

- Number of subnets required
- Number of host addresses required

Formula to determine number of usable hosts: 2ⁿ-2

- 2ⁿ (where n is the number of remaining host bits) is used to calculate the number of hosts.
- -2 (The subnetwork address and broadcast address cannot be used on each subnet.)

Calculate the number of subnets:

- 2ⁿ (where n is the number of bits borrowed)
- Subnet needed for each department.

Let's examine the animation in 9.1.4.1

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Subnetting Network-Based Requirements

Determining the Subnet Mask

Subnetting To Meet Network Requirements

- Balance the required number of subnets and hosts for the largest subnet.
- Design the addressing scheme to accommodate the maximum number of hosts for each subnet.
- Allow for growth in each subnet.

Determining the Subnet Mask Determine the Number and Size of the Networks

- Given, Network Address 172.16.0.0/22.
- Available host bits: 10.
- The largest subnet requires 40 hosts, a minimum of 6 host bits are needed to provide addressing for 40 hosts (2⁶ 2 = 62 hosts).
- The first 4 host bits can be used to allocate subnets (2⁴ = 16).
- Because the example internetwork requires 9 subnets this will meet the requirement and allow for some additional growth.

Determining the Subnet Mask

Subnetting To Meet Network Requirements

Subnets and Addresses

```
10101100.00010000.000000000000000000 172.16.0.0/22
  10101100.00010000.00000000000000000 172.16.0.0/26
   10101100.00010000.000000000.01000000 172.16.0.64/26
  10101100.00010000.000000000.100000000 172.16.0.128/26
  10101100.00010000.000000000.110000000 172.16.0.192/26
  10101100.00010000.000000001.00000000 172.16.1.0/26
  10101100.00010000.000000001.010000000 172.16.1.64/26
  10101100.00010000.000000001.100000000 172.16.1.128/26
                    Nets 7 – 14 not shown
15 10101100.00010000.0000000<mark>11.100000000</mark> 172.16.3.128/26
16 10101100.00010000.0000000<mark>11.110000000</mark> 172.16.3.192/26
```

ation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

subnets

2^4 = 16 2^6 - 2 = 62

Hosts per subnet

Subnetting To Meet Network Requirements

172.16.0.0/22

Benefits of Variable Length Subnet Masking

Traditional Subnetting Wastes Addresses

- Traditional subnetting Uses the same number of addresses is allocated for each subnet.
- Subnets that require fewer addresses have unused (wasted) addresses; for example, WAN links only need two addresses.

Benefits of Variable Length Subnet Masking

Traditional Subnetting Wastes Addresses

 \rightarrow Host portion: 2⁵-2=30 hosts per subnet → 30-2=28 Each WAN subnet wastes 28 addresses \rightarrow 28 x 3 = 84 addresses are unused and wasted

Variable Length Subnet Masks (VLSM)

- The variable-length subnet mask (VLSM) or subnetting a subnet provides more efficient use of addresses.
- VLSM allows a network space to be divided in unequal parts.
- Subnet mask varies, depending on how many bits have been borrowed for a particular subnet.
- Network is first subnetted, and then the subnets are re-subnetted.

Benefits of Variable Length Subnet Masking Basic VLSM

- Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.
- Each LANs will be assigned a subnet with /27 mask.
- Each WAN link will be assigned a subnet with /30 mask.

Benefits of Variable Length Subnet Masking Basic Subnetting of 192.168.20.0/24

	/27 Network	Hosts
Building A	.0	.130
Building B	.32	.3362
Building C	.64	.6594
Building D	.96	.97126
WAN R1 – R2	.128	.129158
WAN R2 – R3	.160	.161190
WAN R3 – R4	.192	.193222
Unused	.224	.225254

Benefits of Variable Length Subnet Masking VLSM Subnetting of 192.168.20.0/24

	/27 Network	Hosts
Bldg A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254
	.224	.225254
1	/30 Network	.225254 Hosts
WAN R1-R2	<u> </u>	<u> </u>
WAN R1-R2 WAN R2-R3	/30 Network	Hosts
	/30 Network	Hosts .225226
WAN R2-R3	/30 Network .224 .228	Hosts .225226 .229230
WAN R2-R3 WAN R3-R4	/30 Network .224 .228 .232	Hosts .225226 .229230 .233234
WAN R2-R3 WAN R3-R4 Unused	/30 Network .224 .228 .232 .236	Hosts .225226 .229230 .233234 .237238
WAN R2-R3 WAN R3-R4 Unused Unused	/30 Network .224 .228 .232 .236 .240	Hosts .225226 .229230 .233234 .237238 .241242

9.2 Addressing Schemes

Cisco Networking Academy® Mind Wide Open®

Structured Design

Planning to Address the Network

Allocation of network addresses should be planned and documented for the purposes of:

- Preventing duplication of addresses
- Providing and controlling access
- Monitoring security and performance

Client addresses – Usually dynamically assigned using the Dynamic Host Configuration Protocol (DHCP).

Sample Network Addressing Plan

Network: 192.168.1.0/24				
Use	First	Last		
Host Devices	.1	.229		
Servers	.230	.239		
Printers	.240	.249		
Intermediary Devices	.250	.253		
Gateway (router LAN interface)	.254			