Calculation of truncated Demagnetisation Field - Direct Approach

Gabriel Balaban and University of Southampton February 14, 2012

Abstract

In this document the mathematics of the program truncdemag2.py are explained. The demagnetisation field is found using an approach that truncates an infinite domain and uses two scalar potentials.

The Demagnetisation Field inside a Magnetic Body

The demagnetisation field $\overrightarrow{H}_{demag}$ related to a magnetic body is generated by its magnetisation field \overrightarrow{M} , and tends to oppose it. In this context the region in space occupied by the magnetic object of interest (usually a ferromagnetic material) is denoted by Ω_M . The complement of this region Ω_V is considered to be a vacuum, which extends to infinity and over which the demagnetisation field $\overrightarrow{H}_{demag}$ is also defined. According to basic electrodynamics the two fields are related by

$$\nabla \cdot \overrightarrow{H}_{demag} = -\nabla \cdot \overrightarrow{M} \text{ in } \Omega_M$$
 (1)

The assumption is also made that there are no free currents and that the electric displacement field does not change over time so that

$$\nabla \times \overrightarrow{H}_{demag} = 0$$

This means that we can introduce a magnetic potential function ϕ , such that

$$\overrightarrow{H}_{demag} = -\nabla \phi$$

which means that

$$-\nabla^2\phi = \nabla \cdot \overrightarrow{M}$$

so that our demagnetisation field can be obtained by solving a Poisson problem.

The Fredkin-Koehler approach

The Fredkin-Koehler approach splits the magnetic potential ϕ into two parts ϕ_1 and ϕ_2 ,

$$\phi = \phi_1 + \phi_2$$

in order to get ϕ_2 using the hybrid boundary/finite element method(FEM/BEM). Here we solve for the two directly using domain truncation.

 ϕ_1 is defined to be the solution of the Neumann problem:

$$\begin{cases} -\nabla^2 \phi_1 = \nabla \cdot \overrightarrow{M} & \text{in } \Omega_M \\ \frac{\partial \phi_1}{\partial n} = -n \cdot \overrightarrow{M} & \text{on } \partial \Omega_M \\ \phi_1 = 0 & \text{on } \Omega_V \end{cases}$$

and ϕ_2 is defined to be the solution of the Laplace problem

$$\begin{cases}
-\nabla^2 \phi_2 = 0 & \text{in } \Omega_M \\
\text{jump}(\phi_2) = \phi_1 & \text{on } \partial \Omega_M \\
\phi_2 \to 0 & \text{as } \overrightarrow{r} \in \Omega_V \to \infty
\end{cases}$$

Poisson Problem for the Scalar Potential

The vector poisson problem for the scalar potential ϕ reads

$$\begin{cases}
-\nabla^2 \phi = \nabla \cdot \overrightarrow{M} & \text{in } \Omega_M \\
-\nabla^2 \phi = 0 & \text{in } \Omega_V \\
\text{jump}(\frac{\partial \phi}{\partial n}) = -n \cdot \overrightarrow{M} & \text{on } \partial \Omega_M \\
|\overrightarrow{H}_{demag}| \to 0 & \text{as } \overrightarrow{r} \in \Omega_V \to \infty
\end{cases}$$

Where n denotes the unit outward normal. The prescribed jump in the normal derivative is a consequence of the divergence theorem applied to the definition of $\overrightarrow{H}_{demag}$, equation 1.

Truncation of the Domain

Since a computer cannot simulate an infinite domain there needs to be some way of dealing with the open boundary condition

$$|\overrightarrow{H}_{demag}| \to 0 \text{ as } \overrightarrow{r} \in \Omega_V \to \infty$$

Here the domain is truncated, using the rule of thumb that it should be about 5 times as large as in order to get decent results.