Engenharia de Software

Aula1: Introdução

Dra. Ana Patrícia F. Magalhães Mascarenhas anapatriciamagalhaes@gmail.com

PLANO DE AULA

Objetivo

- Introduzir e conceituar engenharia de software e identificar a sua importância.
- Identificar os diferentes campos de aplicação de software e os sistemas legados
- Analisar a natureza mutante do software
- ► Entender a evolução da Engenharia de software e os desafios atuais
- Analisar algumas questões éticas e profissionais para engenheiros de software.
- Bibliografia básica
 - ▶ PRESSMAN, R., MAXIM, B. Engenharia de Software, Capítulo 1, 8th edição. AMGH, 01/2016
 - ▶ SOMMERVILLE, I. Engenharia de Software. 9a edição. Capítulo 1. Pearson Addison Wesley. 2011.

Antes de começar...

Qual o papel do software no mundo atual?

▶ Você já usou algum software que deu problema? Que tipo de problema?

► E construir um software, é complexo? Por que?

Que problemas você pode enfrentar quando constrói um soft

Por que estamos aqui falando de Engenharia de Software?

Introdução

Praticamente todos os países, hoje em dia, dependem de sistemas complexos baseados em computadores.

"Ideias e descobertas tecnológicas são as forças propulsoras do crescimento econômico" The Wall Street journal

Introdução

Produzir e manter software dentro de custos adequados é essencial para o funcionamento da economia nacional e internacional.

► Mas então... O que é Software?

O que é Software?

- "Software de computador é o produto que profissionais de software desenvolvem ao qual dão suporte no longo prazo" (Roger Pressman)
 - ▶ Software ≠ Programa de computador
- Software engloba:
 - Programa
 - Documentações (para técnicos e usuários)
 - Especificações
 - Configurações
 - ► Etc.

O que é Software?

- Software é abstrato e intangível
 - Não é limitado por materiais ou controlado por leis da física ou por processos de manufatura
 - Qual a implicação disto?
- Software se "desgasta"?
 - Software se deteriora!
- O software é desenvolvido ou passa por um processo de engenharia; não é fabricado no sentido clássico (artesanal)

Campos de aplicação de software

- Software de sistema feitos para atender a outros programas (ex.: compiladores, componentes de um sistema operacional)
- ► Software de aplicação solucionam uma necessidade específica de negócio
- Software de engenharia/científico programas de cálculo em massa (auxiliam em áreas como astronomia, biologia molecular, meteorologia)
- Software embarcado reside em um produto ou sistema (ex.: controle de painel de um forno de micro-ondas, funções digitais de um automóvel)
- Software para linha de produtos projetado para prover capacidades específicas de utilização por muitos clientes diferentes (produtos de controle de inventário)
- Aplicações Web / Aplicativos móveis contempla aplicações voltadas para navegadores e software residentes em dispositivos móveis
- Software de inteligência artificial faz uso de algoritmos não numéricos para solucionar algoritmos complexos que não são passíveis de computação ou análise direta (sistemas especialistas, reconhecimento de padrões de imagem e voz)

Software legado

- Mais antigos, desenvolvidos já há algum tempo
- Continuamente modificado para se adequar às mudanças dos requisitos de negócio e as plataformas computacionais
- Muitos ainda dão suporte para funções de negócio que são vitais para as empresas
- As vezes tem baixa qualidade, projetos inexistentes, documentação deficiente e códigos difíceis de serem entendidos, alterações mal gerenciadas, casos de testes não documentados

Longevidade e criticidade para os negócios

Uma opção é a reengenharia, que veremos em aulas futuras

Natureza mutante do software

- WebApps
 - Inicialmente formados por páginas de conteúdos estáticos
 - Aplicações baseadas na web, com capacidade de processamento
 - Integração com banco de dados
 - APIs de acesso externo
 -
- Aplicativos móveis
 - ▶ O termo aplicativo é usado para expressar software que reside em uma plataforma móvel
 - Acessa diretamente as características do hardware do dispositivo (ex. localizador GPS)
- Computação em nuvem
 - Compreende uma estrutura que permite a usuários utilizar de qualquer lugar dispositivos de computação para compartilhar recursos computacionais em grande escala
- Software em linha de produtos de software
 - Sistemas que pertencem a um segmento de mercado e compartilham recursos da Engenharia de Software (requisitos, arquitetura, padrões....) (estudaremos em aulas futuras).

Voltando ao início....

... o que é Engenharia de Software?

Engenharia de Software

- "A engenharia de software é um ramo da engenharia cujo foco é o desenvolvimento dentro de custos adequados de sistemas de software de alta qualidade." Roger Pressman
- "Uma disciplina da engenharia relacionada com todos os aspectos da produção de software, desde os estágios iniciais de especificação do sistema até a sua manutenção, após entrar em operação." Ian Sommervile
- "Aplicação de uma abordagem sistemática, disciplinada e quantificável no desenvolvimento, na operação e na manutenção de software." IEEE

Engenharia de software

- ► Mas o que é Engenharia?
 - Engenharia = Uso de princípios científicos para uma atividade de projeto e construção

Vamos usar princípios científicos para construir Software

Origem da Engenharia de Software

- Inicialmente proposto em 1968
 - Conferência da OTAN (Organização do Tratado do Atlântico Norte)
 - Objetivo de discutir a "Crise de Software"

O que a Crise de Software?

Introdução de novo hardware de computador baseado em circuitos integrados.

Aplicações de computador até então não realizáveis passaram a ser viáveis.

Software resultante era ordens de grandeza maior e mais complexo que sistemas anteriores de software.

Experiências iniciais na construção desses sistemas mostrou que o desenvolvimento informal de software não era suficiente.

Projetos importantes apresentavam, algumas vezes, anos de atraso.

- ► Consequência daquele cenário:
 - Custo superava previsões
 - ► Software não era confiável
 - Difícil de manter
 - Desempenho insatisfatório

Enquanto o custo de hardware caia o custo de software aumentava rapidamente

Novas técnicas e métodos eram necessários para controlar a complexidade inerente aos grandes sistemas de software

► Tais técnicas e métodos (de antigamente até hoje) compõem o corpo de conhecimento e práticas da ES

De 1968 pra cá...

- Conseguimos melhorar o processo de construção de software
- Conhecemos uma variedade de métodos de especificação, projeto e implementação de software
- Conhecemos notações e ferramentas que reduzem o esforço necessário para a produção de sistemas
- Sabemos que n\u00e3o existe uma abordagem "ideal" para a engenharia de software

Analisando

- Sem software complexos:
 - não teríamos explorado o espaço,
 - não existiriam a internet e os sistemas de telecomunicações modernos,
 - meios de viagem seriam mais perigosos e caros,
 - diversos serviços essenciais para o progresso econômico custariam muito mais pela falta de informatização
- A ES tem contribuído muito.
- À medida que essa disciplina amadurece, sua contribuição no século XXI será ainda maior

Atualmente ...

- Novos desafios estão sempre aparecendo à frente do engenheiro de software
 - ▶ Interoperabilidade, múltiplas plataformas, segurança ...
- Esse cenário piora quando as empresas não aplicam as práticas de ES de forma efetiva.

Dinâmica

Desenhe uma árvore em um papel em no máximo 2 minutos

O que você considera um software de boa qualidade?

- Para te ajudar, pense que o software é um produto
- Se você fosse comprar um produto, ex. um aparelho de ar condicionado, o que você consideraria para realizar a sua compra?
 - ▶ O aparelho "gela" o ar?
 - Tem um bom design?
 - Tem assistência técnica?
 - ▶ O preço é competitivo?
 - Gasta pouca energia?
 - ► É silencioso?

Atributos de um bom software

- ► Refletem a qualidade do software
- Não estão diretamente associados ao que o software faz, fletem o comportamento durante o funcionamento, a estrutura e organização dos programas fonte e a documentação associada
 - Dependem da aplicação. Ex. para um sistema bancário a segurança é essencial
 - Dois atributos são destacados por Sommerville:
 - ► Manutenção e confiabilidade

O engenheiro de software

- Responsáveis por criar e manter o software
- O trabalho do Engenheiro de Software envolve responsabilidades mais amplas do que apenas aplicar técnicas
- O trabalho é realizado dentro de uma estrutura legal e social
- A Engenharia de Software é delimitada por leis locais, nacionais e internacionais
- O Engenheiro de Software deve se comportar de forma ética e moral

Reflexão

- Atualmente temos muito cuidado com a proteção de dados sejam eles de empresas ou pessoas
- Qual a relação entre proteção de dados e a profissão do engenheiro de software no que se refere a?
 - Acesso a dados pessoais dos cidadãos
 - Propriedade intelectual dos produtos de software
 - Confidencialidade (ex. funcionamento dos software)
 - ▶ Utilização dos computadores (vírus, acesso a arquivos, uso pessoal...)

Responsabilidade profissional ética

- Confidencialidade: Engenheiros de Software devem respeitar a confidencialidade de seus empregadores e clientes, tendo ou não assinado um acordo formal.
- Competência: Engenheiros de Software não devem enganar quanto ao seu nível de conhecimento, aceitando serviços que estejam fora do seu limite de competência;
- Direitos de propriedade intelectual: Os engenheiros devem estar cientes das leis locais que regulam o uso de propriedade intelectual, como patentes e direitos autorais. Devem ser cuidadosos para que a propriedade intelectual de empregadores e clientes seja protegida;
- Má utilização de computadores: Engenheiros de Software não devem empregar suas habilidades técnicas para o mau uso dos computadores de outras pessoas (ex. jogar, disseminar vírus)

Código de ética profissional da ES

Código de ética e de prática profissional da engenharia de software Força tarefa da ACM/IEEE-CS sobre éticas e práticas profissionais da engenharia de software

reâmbulo

A versão resumida do código apresenta as aspirações em um alto nível de abstração; as cláusulas que estão incluídas na versão integral dão exemplos e detalhes de como essas aprincipales de como profiss da engenharia de software. Sem essas aspirações, os detalhes podem se tornar muito específicos e tediosos; sem os da engenharia de software. Sem essas aspirações e detallos de como essas estas de como essas e detallos de como essas e de da engenharia de software. Sem essas aspirações, os detalhes, mas vazias; juntos, aspirações e detalhes formam um detalhes, as aspirações podem se tornar aparentemente odigo coeso.

Os engenheiros de software se comprometerão benéfica e respeitada. De acordo com seu compromisso com

Os engenheiros de software se comprometerado a lazer.

Os engenheiros de software uma profissão benéfica e respeitada. De acordo com seu compromisso com a saúde, a testes e da manutenção de software uma profissão de software deverão aderir aos seguintes princípios: testes e da manutenção de software uma profissão de software deverão aderir aos seguintes princípios: segurança e o bem-estar do público, os engenheiros de software deverão aderir aos seguintes princípios:

- 1. PÚBLICO Os engenheiros de software agirão consistentemente com o interesse público. 1. PÚBLICO – Os engenheiros de software agirão de uma maneira que esteja em conformidade com os 2. CLIENTE E EMPREGADOR – Os engenheiros de software agirão de uma maneira que esteja em conformidade com os conformidades e consistente com o interesse público.
- melhores interesses de seus clientes e empregadores e consistente com o interesse público.
- melhores interesses de seus clientes e chipros.

 3. PRODUTO Os engenheiros de software deverão assegurar que seus produtos e as alterações a eles relacionadas. cumpram o mais alto padrão profissional possível.
- cumpram o mais alto padrao profissional. Per de conceptaria de software adotarão o profissional.

 4. JULGAMENTO Os engenheiros de software de conceptaria de software adotarão o profissional.
- 4. JULGAMENTO Os engenheiros de soldata de software adotarão e promoverão uma abordagem ética 5. GERENCIAMENTO Os gerentes e os líderes de engenharia de software para o gerenciamento do desenvolvimento e da manutenção do software.
- 6. PROFISSÃO Os engenheiros de software fomentarão a integridade e a reputação da profissão, de modo consistente com o interesse público.
- 7. COLEGAS Os engenheiros de software serão justos e darão apoio aos seus colegas.
- 8. PESSOAL Os engenheiros de software participarão de aprendizado constante com relação à prática de sua profissão e promoverão uma abordagem ética dessa prática.

Atividade

Vamos analisar a demanda a seguir

Você é gerente de projetos de uma fábrica de software e foi alocado para gerenciar o projeto de desenvolvimento de um sistema para informatização da matrícula da rede estadual de ensino.

Atualmente a matrícula dos alunos da rede pública é bastante complicada, pois é realizada presencialmente em cada escola.

Essa prática gera muitas filas e problemas quando os alunos querem se transferir de uma escola para outra.

Imagine que temos muitas escolas e muitos alunos.

Precisamos diminuir as filas, atender ao máximo as demandas dos alunos em termo de escola/vaga

Atividade (2)

Proposta de solução

Sua equipe foi contratada para solucionar o problema da matrícula

O que poderia ser feito? Como a tecnologia pode ajudar?

Descreva em linhas gerais como seria um sistema para resolver esse problema, que funcionalidades ele teria, a plataforma (ex. web, mobile), quem utilizaria...

Atividade (3)

Antecipando os problemas

Que problemas você imagina que teria no desenvolvimento e implantação de um sistema como esse?