Global Cauchy theorem

Arijit Ganguly Department of Mathematics and Statistics Indian Institute of Technology Kanpur

August 31, 2023

Theorem 1. Let $U \subseteq_{open} \mathbb{C}$ and γ be a closed path such that $\gamma^* \subseteq U$. Assume that

$$\operatorname{Ind}_{\nu}(z) = 0, \ \forall z \in \mathbb{C} \setminus U. \tag{*1}$$

Then at least one (thence both) of the following equivalent statements holds:

- (C.1) $\int_{\gamma} f = 0$, for every holomorphic $f: U \longrightarrow \mathbb{C}$.
- (C.2) For every holomorphic $f: U \longrightarrow \mathbb{C}$, one has

$$\operatorname{Ind}_{\gamma}(z)f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw, \ \forall z \in U \setminus \gamma^*.$$
 (*2)

We first see the equivalence of (C.1) and (C.2). Assume (C.1). Let $z \in U \setminus \gamma^*$. Consider the following function:

$$g(w) = \begin{cases} \frac{f(w) - f(z)}{w - z} & \text{if } w \neq z \\ f'(z) & \text{if } w = z. \end{cases}$$
 (*3)

It is obvious that g is holomorphic on $U \setminus \{z\}$. Choose r > 0 such that $D(z; r) \subseteq U$. Since D(z; r) is open and convex and the function g is continuous on D(z; r) and holomorphic on $D(z; r) \setminus \{z\}$, it follows from Morera's theorem that g is holomorphic at z. Now (*2) is immediate since $\int_{Y} g = 0$.

To see the converse, fix $z \in U \setminus \gamma^*$. Define $F : U \longrightarrow \mathbb{C}$, $w \mapsto (w - z)f(w)$, $\forall w \in U$. Clearly F is holomorphic. So in view of (C.1), one obtains that

$$\int_{\gamma} f = \int_{\gamma} \frac{F(w)}{w - z} dw = 2\pi i \operatorname{Ind}_{\gamma}(z) F(z) = 0.$$

Remark 1. If U is star-like and $z \in \mathbb{C} \setminus U$, then the function $w \mapsto \frac{1}{w-z}$ is holomorphic on U, and hence it admits a primitive. As a consequence of this, for every closed path γ with $\gamma^* \subseteq U$, we get that

$$\operatorname{Ind}_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{dw}{w - z} = 0.$$

In other words, the condition (*1) of Theorem 1 is satisfied by all closed path γ such that $\gamma^* \subseteq U$. Then (C.1) yields that f has a primitive, while the Cauchy's integral formula for a star-like open set is obtained from (C.2). Thus one notes that Theorem 1 generalizes Cauchy's theorem and the integral formula for a star-like region.

Theorem 1 is due to Emil Artin. Artin's proof makes use of greater topological considerations. In fact, in this approach, Theorem 1 reduces to a statement which only involves the index, not the holomorphic function f at all. The proof is highly geometric and surprisingly beautiful, an excellent reference of which is [2, IV, §3]. However, we follow Dixon's approach ([1]) for being succinct and more analytic.

Dixon's proof of Theorem 1. We consider the function $g: U \times U \longrightarrow \mathbb{C}$ defined as follows:

$$g(w,z) = \begin{cases} \frac{f(w) - f(z)}{w - z} & \text{if } w \neq z \\ f'(z) & \text{if } w = z \end{cases}$$
 (*4)

It is enough to show that $\int_{\gamma} g(w, z) dw = 0$, whenever $z \in U \setminus \gamma^*$.

Step 1. We show that the function $z \mapsto \int_{\mathcal{X}} g(w, z) dw$, $\forall z \in U$, is holomorphic.

Claim 1. *g is continuous.*

Let $(w_0, z_0) \in U \times U$. The continuity of g at (w_0, z_0) is clear if $w_0 \neq z_0$. So we now assume $w_0 = z_0$. Let $\varepsilon > 0$. Since f' is continuous at z_0 , we obtain $\delta > 0$ such that, for all $u \in D(z_0; r)$, $|f'(u) - f'(z_0)| < \varepsilon$. Pick any $z, w \in D(z_0; \delta)$. Then $z + t(w - z) \in D(z_0; \delta)$, for all $t \in [0, 1]$. Observe that, if $w \neq z$,

$$g(w,z) = \frac{f(w) - f(z)}{w - z} = \frac{1}{w - z} \int_{[z,w]} f' = \int_0^1 f'(z + t(w - z)) dt.$$
 (*5)

For w = z, $g(w, z) = \int_0^1 f'(z + t(w - z)) dt$ holds trivially. From this, it follows that,

$$|g(w,z) - g(w_0, z_0)| = \left| \int_0^1 f'(z + t(w - z)) dt - \int_0^1 f'(z_0) dt \right|$$

$$\leq \int_0^1 |f'(z + t(w - z)) - f'(z_0)| dt$$

$$\leq \varepsilon.$$

This settles Claim 1.

Claim 2. For any $z \in U$, the one variable function $w \mapsto g(w, z)$ is holomorphic on U. Similarly, for any $w \in U$, the function $z \mapsto g(w, z)$ is holomorphic on U.

This is apparent the moment we proceed along the line of proof of $(C.1) \Longrightarrow (C.2)$.

Define $\phi: [a,b] \times U \longrightarrow \mathbb{C}$ by $\phi(t,z) = g(\gamma(t),z)\gamma'(t), \ \forall (t,z) \in [a,b] \times U$. From Claim 1 and Claim 2, it is clear that ϕ is continuous, and for any $t \in [a,b]$, the function $z \mapsto \phi(t,z)$ is holomorphic on U. It now follows that the function $z \mapsto \int_a^b \phi(t,z) dt = \int_{\gamma} g(w,z) dw$ is holomorphic on U.

Step 2. We extend the holomorphic the function $z \mapsto \int_{\gamma} g(w, z) dw$, $\forall z \in U$, to an entire function.

Let $V \stackrel{\text{def}}{=} \{z \in \mathbb{C} \setminus \gamma^* : \operatorname{Ind}_{\gamma}(z) = 0\}$. Since the function $\operatorname{Ind}_{\gamma}$ is locally constant, V is open. Also, from the hypothesis, we have $\mathbb{C} \setminus U \subseteq V$ so that $U \cup V = \mathbb{C}$. Observe that, whenever $z \in U \cap V$,

$$\int_{\gamma} g(w,z) dw = \int_{\gamma} \frac{f(w)}{w-z} dw - \operatorname{Ind}_{\gamma}(z) f(z) = \int_{\gamma} \frac{f(w)}{w-z} dw,$$

as $\operatorname{Ind}_{\gamma}(z) = 0$. This allows us to define the function $h : \mathbb{C} \to \mathbb{C}$ given by,

$$h(z) = \begin{cases} \int g(w, z) dw & \text{if } z \in U \\ \gamma & \int_{\gamma} \frac{f(w)}{w - z} dw & \text{if } z \in V. \end{cases}$$

Since the function $z \mapsto \int_{\gamma} \frac{f(w)}{w-z} dw$, is holomorphic on $\mathbb{C} \setminus \gamma^*$, it is obvious that h is holomorphic everywhere on \mathbb{C} .

Step 3. We now show, using Liouville's theorem, that h is constant.

Choose R > 0 such that $\gamma^* \subseteq D(0; R)$. The connected subset $\mathbb{C} \setminus D(0; R)$ must be contained in one of the connected components, say \mathfrak{C} , of $\mathbb{C} \setminus \gamma^*$. Hence \mathfrak{C} is unbounded. As $\operatorname{Ind}_{\gamma}$ is identically 0 on \mathfrak{C} , one has $\mathbb{C} \setminus D(0; R) \subseteq \mathfrak{C} \subseteq V$. This implies that $\mathbb{C} \setminus V \subseteq D(0; R)$. From this we see that h is bounded on the complement of V, as it is bounded on $\overline{\mathbb{C} \setminus V}$. Therefore, it suffices to show that h is bounded on V.

Consider any M > 0. Let us split V into two parts as follows:

$$V_M' \stackrel{\text{def}}{=} \left\{ z \in V : \min_{a \le t \le b} |\gamma(t) - z| > M \right\},\tag{*6}$$

and

$$V_M'' \stackrel{\text{def}}{=} \left\{ z \in V : \min_{a \le t \le b} |\gamma(t) - z| \le M \right\}. \tag{*7}$$

Claim 3. For any $z \in V_M'$, $|h(z)| \le L_{\gamma} \cdot \sup_{w \in \gamma^*} |f(w)| \cdot \frac{1}{M}$

This follows directly from *ML*-inequality.

Claim 4. V_M'' is bounded, whence h is bounded on V_M'' .

Let $z \in V_M''$. Then $\exists t_0 \in [a, b]$ such that $|\gamma(t_0) - z| \le M$. This implies that $|z| \le |\gamma(t_0) - z| + |\gamma(t_0)| \le M + R$.

The boundedness of h is now immediate from Claim 3 and Claim 4. From Liouville's theorem, we conclude that $\exists c \in \mathbb{C}$ such that h(z) = c, for every $z \in \mathbb{C}$.

Step 4. The final stage is to show that c = 0.

As V is not bounded, it is easy to see that, $\forall M > 0, V_M' \neq \emptyset$. It thus follows at once from Claim 3 that

$$|c| \le \frac{L_{\gamma} \cdot \sup_{w \in \gamma^*} |f(w)|}{M}, \forall M > 0.$$
 (*8)

The estimate given by (*8) shows that c = 0. This completes Step 4 and hereby the proof of Theorem 1.

References

- [1] Dixon, John D.; A brief proof of Cauchy's integral theorem, Proc. Amer. Math. Soc **29** (1971), 625-626
- [2] Lang, Serge; Complex Analysis, Springer Verlag, ISBN 978-1-4757-3083-8