

Design of Embedded Systems

ESSTA, Energy Saving Smart-home distributed Temperature control Application

Requirements

Falzone Giovanni

jointly M.Sc Embedded Computing Systems

Sant'Anna School of Advanced Studies

University of Pisa

June 11, 2019

Contents

1	Introduction						
2	Requirements						
	2.1	Central Unit Data Dictionary	3				
		2.1.1 Events	3				
		2.1.2 Parameters	3				
	2.2	Central Unit Requirements	3				
	2.3	Room Data Dictionary	7				
		2.3.1 Events	7				
		2.3.2 Parameters	7				
	2.4	Room Requirements	7				
3	SyS	SML Functional model	10				
	3.1		11				
	3.2	Room module	12				

1 Introduction

The purpose of this document is to describe the *User requirements* and the *Functional specification* of the project in order to have a clear description of what the system shall do and which will be the tests to check the behaviour of the system.

2 Requirements

2.1 Central Unit Data Dictionary

2.1.1 Events

Signal Name	Description	Direction	Trigger	Data Type	Min	Max	Unit
B_NEXT	Next page button	input	rising	Boolean	0	1	
B_PREVIOUS	Previous page button	input	rising	Boolean	0	1	
B_SETTINGS	Settings button	input	rising	Boolean	0	1	
B_PLUS	Plus button	input	rising	Boolean	0	1	
B_MINUS	Minus button	input	rising	Boolean	0	1	
PollingRoomId	Id of the room displayed	Output		Real Positive	1	8	
Desired Temperature	Desired Temperature set by the user	Output		Real Positive	15.00	30.00	Celsius*
RoomId	Id of the room	Input		Real Positive	1	8	
RoomTemperature	Average Temperature of the building	Input		Real Positive	15.00	30.00	Celsius°
RoomHumidity	Average Humidity of the building	Input		Real Positive	0.00	100.00	%
RoomValve	Average Usage of the building	Input		Natural	0	100	%
RoomEco	Eco status of the building	Input		Boolean	0	1	
RoomWarning	Warning of the building	Input		Boolean	0	1	

2.1.2 Parameters

Data	Description	Data Type	Min	Max	Unit	Default
POLLING_PERIOD	period for requesting room' status	Real Positive	0	30	Seconds	5
Building Temperature	Average Temperature of the building	Real Positive	0	1	Celsius°	0
BuildingHumidity	Average Humidity of the building	Real Positive	0.00	100.00	%	0
Building Usage	Average Usage of the building	Natural	0	100	%	0
BuildingEco	Eco status of the building	Boolean	0	1		0
BuildingWarning	Warning of the building	Boolean	0	1		0
SelectedRoomId	Id of the displayed room	Natural	1	8		0

2.2 Central Unit Requirements

2.2.1. Graphical User Interface

2.2.1.1. **Main Page**

2.2.1.1.1. **During**

- 2.2.1.1.1.1. If at least one room is set to **Energy Saving mode** then the module shall set to true the *BuildingEco* false otherwise
- 2.2.1.1.1.2. If at least one room is marked as ${\bf crashed}$ the module shall set to true the ${\it Building Warning}$ false otherwise
- 2.2.1.1.1.3. If the Next page event is set the module shall move in the Room page and set the SelectedRoomId to the lowest Id among the initialized rooms
- 2.2.1.1.1.4. If the $Previous\ page$ event is set the module shall move in the $Room\ page$ and set the SelectedRoomId to the greatest Id among the initialized rooms
- 2.2.1.1.1.5. If the $Settings\ page$ event is set the module shall move in the $Settings\ page$

- 2.2.1.1.1.6. The module shall represent the Building Temperature in Celsius°
- 2.2.1.1.1.7. The module shall represent the BuildingHumidity in %
- 2.2.1.1.1.8. The module shall represent the Building Usage
- 2.2.1.1.1.9. The module shall represent the BuildingEco and Building-Warning as boolean

2.2.1.2. Settings Page

2.2.1.2.1. **Entry**

2.2.1.2.1.1. The module shall represent the *plus* and *minus* buttons to allow the user to change the *DesiredTemperature*

2.2.1.2.2. **During**

- 2.2.1.2.2.1. If at least one room is set to **Energy Saving mode** then the module shall set to true the *BuildingEco* false otherwise
- 2.2.1.2.2.2. If at least one room is marked as **crashed** the module shall set to true the *BuildingWarning* false otherwise
- 2.2.1.2.2.3. If the B_NEXT event is set the module shall move in the $Room\ page$ and set the SelectedRoomId to the lowest Id among the initialized rooms
- 2.2.1.2.2.4. If the B_PREVIOUS event is set the module shall move in the Room page and set the SelectedRoomId to the greatest Id among the initialized rooms
- 2.2.1.2.2.5. If the $B_SETTINGS$ event is set the module shall move in the $Main\ page$
- 2.2.1.2.2.6. If the B_PLUS event is set the module shall increase the DesiredTemperature by a factor of 0.5 Celsius°if it not exceed the MAX_TEMPERATURE
- 2.2.1.2.2.7. If the B_MINUS event is set the module shall decrease the DesiredTemperature by a factor of 0.5 Celsius°if it is not less then MIN TEMPERATURE
- 2.2.1.2.2.8. The module shall represent the Desired Temperature in Celsius $^{\circ}$
- 2.2.1.2.2.9. The module shall represent the BuildingHumidity in %
- 2.2.1.2.2.10. The module shall represent the Building Usage
- 2.2.1.2.2.11. The module shall represent the BuildingEco and Building-Warning as boolean

2.2.1.2.3. Exit

2.2.1.2.3.1. The module shall hide the plus and minus buttons

2.2.1.3. **Room Page**

2.2.1.3.1. **During**

- 2.2.1.3.1.1. If the B_NEXT event is set the module shall move in the $Room\ page$ and set the SelectedRoomId to the next greater Id among the initialized rooms, if no rooms are available then shall move in the $Main\ page$
- 2.2.1.3.1.2. If the $B_PREVIOUS$ event is set the module shall set the Se-lectedRoomId to the previous Id among the initialized rooms, if no rooms are available then shall move in the $Main\ page$
- 2.2.1.3.1.3. If the B_SETTINGS event is set the module shall move in the Settings page
- 2.2.1.3.1.4. The module shall represent the Temperature of the SelectedRoomId in Celsius°
- 2.2.1.3.1.5. The module shall represent the Humidity of the SelectedRoomId in %
- 2.2.1.3.1.6. The module shall represent the Usage of the SelectedRoomId
- 2.2.1.3.1.7. The module shall represent if the SelectedRoomId is in Energy saving mode or Normal mode
- 2.2.1.3.1.8. The module shall represent if the SelectedRoomId is considered Crashed or not

2.2.2. Communication

2.2.2.1. Entry

2.2.2.1.1. The module shall send the Initial Message in broadcast

2.2.2.2. **During**

- 2.2.2.2.1. The Central Unit shall send a Room Request message with the PollingRoomId and the DesiredTemperature in Celsius every POLLING_PERIOD ±1 second
- 2.2.2.2.2. The incoming Room Status message must include the RoomId of the room, the Energy Saving mode one if active zero otherwise, the Temperature in Celsius°, the Humidity in % and the Valve position in %
- 2.2.2.2.3. The module shall check the correctness of the *Room Status message* and the consistency of each parameter
- 2.2.2.4. Whenever a Room Status message is corrupted or doesn't arrive within $POLLING_PERIOD \pm 1$ seconds from the sent of the Room Request message, the same Room Request message shall

- be resent at least 3 times before marking the room as ${f crashed}$ and increase the PollingRoomId
- 2.2.2.5. Whenever a Room Status message with RoomId equal to PollingRoomId arrives and it is not corrupted then the module shall increase the PollingRoomId cycling in the range [FirstId, LastId]

2.3 Room Data Dictionary

2.3.1 Events

Signal Name	Description	Direction	Trigger	Data Type	Min	Max	Unit
OPEN_SWITCH	1 when the valve is open	Input	rising	Boolean	0	1	
CLOSED_SWITCH	1 when the valve is closed	Input	rising	Boolean	0	1	
motion	1 when a motion is detected	Input	rising	Boolean	0	1	
Temperature	Temperature from sensors	Input		Real Positive	0	1	Celsius°
Humidity	Humidity from sensors	Input		Real Positive	0.00	100.00	%
ValvePosition	position of the valve	Output		Nat ur al	10	160	•
PollingRoomId	Id of the room displayed	Input		Real Positive	1	8	
Desired Temperature	Desired Temperature set by the user	Input		Real Positive	15.00	30.00	Celsius°
RoomId	Id of the room	Output		Real Positive	1	8	
RoomTemperature	Temperature of the room	Output		Real Positive	15.00	30.00	Celsius°
RoomHumidity	Humidity of the room	Output		Real Positive	0.00	100.00	%
RoomUsage	Usage of the heating in %	Output		Nat ur al	0	100	%
E coMo de	Eco status of the building	Output		Boolean	0	1	

2.3.2 Parameters

Data	Description	Data Type	Min	Max	Unit	Default
MOTION_TIMESLOT		Real Positive	1	60	Seconds	30
TEMPERATURE_PERIOD		Real Positive	2	60	Seconds	2
HUMIDITY_PERIOD		Real Positive	2	60	Seconds	2
VALVE_PERIOD		Real Positive	2	120	Seconds	4
COMMUNICATION_DEADLINE		Real Positive	30	3600	Seconds	30
OPEN_POSITION		Real Positive	0	180	۰	170
HIGH_POSITION		Real Positive	0	180	۰	135
MIDDLE_POSITION		Real Positive	0	180	۰	90
LOW_POSITION		Real Positive	0	180	۰	45
CLOSED_POSITION		Real Positive	0	180	۰	10
HIGH_THRESHOLD		Real Positive	0	10	C.	2
APPROACHING_THRESHOLD		Real Positive	0	5	C.	1
Goal Temper ature	temperature to control the valve	Real Positive	15.00	30.00	C.	24.00
APPROACHING_THRESHOLD		Real Positive	0	5	C.	1

2.4 Room Requirements

2.4.1. Energy Saving

2.4.1.1. Energy Saving Mode

2.4.1.1.1. **Entry**

- 2.4.1.1.1.1. The module shall set the Goal Temperature to the Desired Temperature minus the TemperatureEcoOffset
- 2.4.1.1.1.2. The module shall turn on the ENERGY SAVING LED

2.4.1.1.2. **During**

- 2.4.1.1.2.1. Whenever a motion is detected the module shall turn on the MOTION_LED
- 2.4.1.1.2.2. If in the last MOTION_TIMESLOT seconds ± 10 seconds a motion has been detected then the module shall move in Normal Mode
- 2.4.1.1.2.3. If the *Temperature* or the *Humidity* is not consistent then the module shall turn on the ERROR LED
- 2.4.1.1.2.4. The module shall read and update the temperature every TEMPERATURE_PERIOD ± 1 second
- 2.4.1.1.2.5. The module shall read and update the temperature every HUMIDITY_PERIOD $\pm 1~{\rm second}$

2.4.1.1.3. Exit

2.4.1.1.3.1. The module shall turn off the ENERGY SAVING LED

2.4.1.2. Normal Mode

- 2.4.1.2.1. Entry
 - 2.4.1.2.1.1. The module shall set the GoalTemperature to the DesiredTemperature
- 2.4.1.2.2. **During**
 - 2.4.1.2.2.1. If in the last MOTION_TIMESLOT seconds ±10 seconds have not been detected any motion then the module shall move in **Energy Saving Mode**
 - 2.4.1.2.2.2. If the *Temperature* or the *Humidity* is not consistent then the module shall turn on the ERROR LED
 - 2.4.1.2.2.3. whenever a motion is detected the module shall turn on the MOTION LED
- 2.4.1.2.3. Exit

2.4.2. Communication

2.4.2.1. Normal Mode

- 2.4.2.1.1. Entry
- 2.4.2.1.2. **During**
 - 2.4.2.1.2.1. The Room Request message must include the RoomId and the DesiredTemperature
 - 2.4.2.1.2.2. Whenever a Room Request message arrives and it is not corrupted the module shall update the Desired Temperature with the desired temperature in the message and shall send the Room Status message
 - 2.4.2.1.2.3. If no messages arrives in the last COMMUNICATION_DEADLINE seconds ±2 seconds then the module shall move in **Error**Mode
- 2.4.2.1.3. Exit

2.4.2.2. **Error Mode**

- 2.4.2.2.1. **Entry**
 - $2.4.2.2.1.1.\,$ The module shall turn on the ERROR $\,$ LED
- 2.4.2.2.2. **During**
 - 2.4.2.2.2.1. The Room Request message must include the RoomId and the Desired Temperature
 - 2.4.2.2.2. Whenever a *Room Request message* arrives and it is not corrupted the module shall update the *Desired Temperature* with the desired temperature in the message and move in **Normal Mode**
 - 2.4.2.2.3. If no messages arrives in the last COMMUNICATION_DEADLINE seconds ± 2 seconds then the module shall send a Room Status message
- 2.4.2.2.3. Exit
 - 2.4.2.2.3.1. The module shall turn off the ERROR LED

2.4.3. Control Valve

2.4.3.1. Normal Mode

- 2.4.3.1.1. **Entry**
- 2.4.3.1.2. **During**
 - 2.4.3.1.2.1. The module shall check and move the position of the valve every VALVE_PERIOD seconds ±1 second
 - 2.4.3.1.2.2. The valve shall be in OPEN_POSITION whenever the difference between the Temperature and the GoalTemperature is below -HIGH THRESHOLD C $^\circ$
 - 2.4.3.1.2.3. The valve shall be in HIGH_POSITION whenever the difference between the Temperature and the GoalTemperature is greater or equal then -HIGH_THRESHOLD C° and below -APPROACHING THRESHOLD C°
 - 2.4.3.1.2.4. The valve shall be in MIDDLE_POSITION whenever the difference between the *Temperature* and the *GoalTemperature* is greater or equal then -APPROACHING_THRESHOLD C° and below or equal then APPROACHING_THRESHOLD C°
 - 2.4.3.1.2.5. The valve shall be in LOW_POSITION whenever the difference between the *Temperature* and the *GoalTemperature* is greater then APPROACHING_THRESHOLD C° and below or equal then HIGH_THRESHOLD C°
 - 2.4.3.1.2.6. The valve shall be in CLOSED_POSITION whenever the difference between the *Temperature* and the *GoalTemperature* is greater then HIGH_THRESHOLD C°
 - 2.4.3.1.2.7. Whenever the valve is in OPEN_POSITION or in CLOSED_POSITION the module shall check the consistency of the status using the OPEN_SWITCH and CLOSED_SWITCH and shall move in **Error Mode** if it is not consistent
- 2.4.3.1.3. Exit
- 2.4.3.2. **Error Mode**
 - 2.4.3.2.1. Entry
 - 2.4.3.2.1.1. The module shall turn on the <code>ERROR_LED</code>
 - 2.4.3.2.2. **During**
 - 2.4.3.2.2.1. The module shall move the valve in the opening direction until the OPEN_SWITCH is set and update the OPEN_POSITION with the new position then shall move the valve in the closing direction until the CLOSED_SWITCH is set and update the CLOSED_POSITION with the new position and update the MIDDLE_POSITION, LOW_POSITION and HIGH_POSITION if the positions are consistent with the OPEN_SWITCH and CLOSED_SWITCH then the module shall move in Normal Mode
 - 2.4.3.2.3. Exit
 - 2.4.3.2.3.1. The module shall turn off the ERROR LED

3 SySML Functional model

In the picture 1 is reported the functional Block Definition Diagram that describes the composition of the system, composed by one Central Unit and up to eight Rooms, the two modules are connected via two FlowPort as shown in 2. The Central Unit send a *RoomRequest* message composed as follows:

parameter	type	[Min,Max]
Id	Natural	[1,8]
DesiredTemperature	Float	[15.00, 30.00]

Table 1: Room Request variables

The Room module send a *RoomStatus* message composed as follow:

parameter	type	[Min,Max]
Id	Integer	[1,8]
Eco	Boolean	[0, 1]
Temperature	Float	[15.00, 30.00]
Humidity	Float	[0.00, 100.00]
Valve	Integer	[0, 100]

Table 2: Room Status variables

Figure 1: System Components

Figure 2: System Internals

3.1 Central Unit

The Central Unit is composed by two modules, the RoomsManager and the UserInterfaceManager. The RoomsManager implements the functionalities related to the status of each room. The UserInterfaceManager that implements the functionalities related to represent the status of the system. The two components exchange data as shown in 4.

Figure 3: Central Unit components

Figure 4: Central Unit internals

3.2 Room module

The main component of this module is the *MainController* composed by different functions as shown in 6.

Figure 5: Room Components

Figure 6: Room Internals

Figure 7: Room sensors components

Figure 8: Room sensors internals

Figure 9: Valve Controller components

Figure 10: Valve Controller internals