Задание 1. Множества, отношения, функции.

- 1. а) Докажите, что $A \cup A = A$, $A \cup B = B \cup A$, $(A \cup B) \cup C = A \cup (B \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, и что эти свойства остаются справедливыми при замене объединения на пересечение и наоборот.
- б) Докажите, что операция \triangle коммутативна и ассоциативна, \cap дистрибутивна относительно \triangle , $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$, $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$, $A \setminus (A \setminus B) = (A \cap B)$, и $A \setminus B = (A \setminus (A \cap B))$.
- 2. а) Докажите, что множество $(x,y)=\{\{x\},\{x,y\}\}$ обладает свойством упорядоченной пары, т.е. $(x,y)=(x_1,y_1)$ в точности тогда, когда $x=x_1$ и $y=y_1$.
- б) Докажите, что операция композиции бинарных отношений на данном множестве ассоциативна, но не коммутативна. Задает ли эта операция группу на этом множестве? Ответ обоснуйте.
- 3. Перечислите все упорядоченные пары множеств из списка $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C},$ для которых существует инъекция первого множества во второе. Ответ обоснуйте.
- 4. Существует ли биекция между следующими множествами: $X \times Y$ и $Y \times X$, $(X \times Y) \times Z$ и $X \times (Y \times Z)$, $X^Y = \{f \mid f : Y \to X\}$ и Y^X , $(X^Y)^Z$ и $X^{Y \times Z}$, $(X^Y)^Z$ и $X^{Y \times Z}$, $(X^Y)^Z$ и $X^Y \times Y$, $(X \times Y)^Z$ и $(X \times Y)^Z$ и $(X \times Y)^Z$ и $(X \times Y)^Z$ и $(X \times Y)^Z$ ответ обоснуйте.
- 5. а) Пусть $x' = x \cup \{x\}$ и $P(x) = \{y \mid y \subseteq x\}$. Найдите \emptyset'''' и $P^4(\emptyset) = P(P(P(P(\emptyset))))$. Сколько элементов в множестве $P^{12}(\emptyset)$?
- б) Множество X называется индуктивным, если $\emptyset \in X$ и $x \in X \to x' \in X$. Может ли индуктивное множество быть конечным? Докажите, что существует наименьшее по включению индуктивное множество.