Catedra: Tecnología Electrónica

Profesor: Ing. Centeno Carlos

Curso: 5R2

Integrantes: Sosa Javier,

Sueldo Enrique, 62508

Fecha: 09/04/17

Integrantes: Sosa, Sueldo. Curso: 5R2 Año: 2017

Introducción

En el siguiente trabajo práctico se determinará el tiempo medio de falla de un circuito electrónico de 10 componentes aplicando la técnica de la norma HDBK-MIL-217, fallas por estrés y cuenta de las partes. Realizando los cálculos en base a los datos proporcionados en las tablas que figuran en la norma y a las condiciones reales de funcionamiento del circuito. Luego, un análisis del modo de fallas y sus efectos, es decir afectar los resultados anteriores por los posibles modos de falla (FMEA). En base a las funciones que desempeñan cada uno de los componentes en el circuito, se realizara un análisis crítico de los modos de falla (FMECA). Además se clasificara las fallas en cuanto a severidad y en probabilidad de ocurrencia, determinando su número crítico para construir la matriz de criticidad.

Integrantes: Sosa, Sueldo.

Curso: 5R2

Tareas a Realizar

1)Circuito

2) Condiciones de funcionamiento:

Temperatura de trabajo: 25°C

Tensión aplicada: 9V

• Aplicación en el exterior.

3) Análisis por estrés, obtenemos de este análisis los datos necesarios para calcular la cantidad de fallas cada 1 millón de horas de cada componente, sumándolos tenemos el total del circuito.

$$\lambda p = \lambda b * \pi T * \pi A * \pi s * \pi c * \pi Q * \pi E$$

#La ecuación puede variar dependiendo del componente a analizar.

	λb	πT	πΑ	πR	πS	πQ	πΕ	πCV	πC	πCYC	πL	λр
Capacitor Variable 365pF	0,01	9				20	13					4,94
Capacitor de mica-plate 100pF	0,0007	5				1	10	0,8519				0,00638925
Capacitor de disco 0,05uF	0,007	1				10	10	1,72				1,2212
Capacitor electrolitico de 12 V (5uF)	0,01	9				10	10	0,9	3			0,513
Transistor npn SK3011	0,0007	4 2,8	0,7	0,43	0,16	5,5	9					0,00493948
bobina	0,002	6				30	12					0,936
Resistencia 680	0,0002	2		1		15	8					0,0264
Resistencia 10k	0,0002	2		1		15	8					0,0264
Resistencia 47k	0,0002	2		1		15	8					0,0264
Switch	0,0	4					18		3	1	1,1	2,2896
Total del sistema												7,70072873

Integrantes: Sosa, Sueldo.

Año: 2017

Por lo tanto tenemos

	λр	Horas	Años
Capacitor Variable 365pF	4,94	2024291	230,769174
Capacitor de mica-plate 100pF	0,00638925	1565128927	178424,6977
Capacitor de disco 0,05uF	1,2212	8188666	933,507924
Capacitor electrolitico de 12 V (5uF)	0,513	19493177	2222,222178
Transistor npn SK3011	0,00493948	2024503685	230793,4201
bobina	0,936	10683760	1217,94864
Resistencia 680	0,0264	378787878	43181,81809
Resistencia 10k	0,0264	378787878	43181,81809
Resistencia 47k	0,0264	378787878	43181,81809
Switch	2,2896	4367575	497,90355

4) Cuenta partes:

A partir de la siguiente fórmula se estima el tiempo medio de falla de cada componente:

$$\lambda p = \sum Ni \left(\lambda g * \pi Q\right)i$$

	λg	πQ	Ni	λpequi
Capacitor Variable 365pF	1,2	10	1	12
Capacitor de mica-plate 100pF	0,0091	10	1	0,091
Capacitor de disco 0,05uF	0,034	10	1	0,34
Capacitor electrolitico de 12 V (5uF)	0,069	10	1	0,69
Transistor npn SK3011	0,0017	5,5	1	0,00935
bobina	0,39	30	1	11,7
Resistencia	0,071	15	3	3,195
Switch	0,018	1	1	0,018
Total del sistema				28,04335

Por lo tanto tenemos

	λpequi	MTBF	Años
Capacitor Variable 365pF	12	83333	9,499962
Capacitor de mica-plate 100pF	0,091	10989010	1252,74714
Capacitor de disco 0,05uF	0,34	2941176	335,294064
Capacitor electrolitico de 12 V (5uF)	0,69	1449275	165,21735
Transistor npn SK3011	0,00935	106951871	12192,5133
bobina	11,7	85470	9,74358
Resistencia	3,195	312989	35,680746
Switch	0,018	5555555	6333,33327
Total del sistema	28,04335	178368679	20334,0294

Integrantes: Sosa, Sueldo.

Curso: 5R2

Año: 2017

5) Análisis de modo de falla y sus efectos (FMEA.

	Probabilidad	λр
Capacitor Variable 365pF Short	0,3	4,94
Capacitor Variable 365pF Open	0,1	4,94
Capacitor Variable 365pF Change in value	0,6	4,94
Capacitor de mica-plate 100pF Short	0,72	0,00638925
Capacitor de mica-plate 100pF Open	0,13	0,00638925
Capacitor de mica-plate 100pF Change in value	0,15	0,00638925
Capacitor de disco 0,05uF Short	0,49	1,2212
Capacitor de disco 0,05uF Open	0,22	1,2212
Capacitor de disco 0,05uF Change in value	0,29	1,2212
Capacitor electrolitico de 12 V (5uF) Short	0,69	0,513
Capacitor electrolitico de 12 V (5uF) Open	0,17	0,513
Capacitor electrolitico de 12 V (5uF) Change in	0,14	0,513
Transistor npn SK3011 Short	0,73	0,004939482
Transistor npn SK3011 Open	0,27	0,004939482
bobina Short	0,52	0,936
bobina Open	0,05	0,936
bobina Slow movement	0,43	0,936
Resistencia Open	0,31	0,0264
Resistencia Short	0,03	0,0264
Resistencia parameter change	0,66	0,0264
Switch Open	0,65	2,2896
Switch Short	0,16	2,2896

Como se puede observar en la tabla anterior, la mayor probabilidad de falla se da en el capacitor variable y en el interruptor:

• Si el interruptor queda abierto (α =0.65), la probabilidad de falla del cicuito será:

$$\lambda p = \lambda pcv + \lambda pcm + \lambda pce + \lambda pt + \lambda pb + (3*\lambda per) + (\lambda pio*\alpha) = 6.902 \frac{fallas}{10^6 horas}$$

MTFB=16.51 años

• Si cambia el valor del capacitor variable(α =0.6):

$$\lambda p = \lambda pi + \lambda pcm + \lambda pce + \lambda pt + \lambda pb + (3 * \lambda per) + (\lambda pcv * \alpha) = 8.38 \frac{fallas}{10^6 horas}$$

MTFB=13.59 años

6) Análisis de falla y avería

Integrantes: Sosa, Sueldo.

Curso: 5R2 Año: 2017

7) el estudio de FMECA nos permite analizar los componentes críticos de mantenimiento o bien aquellos que deben ser modificados en un rediseño. Se analizan las fallas desde los criterios de severidad y probabilidad.

- Análisis por severidad de la falla:
 - Catastrófico (categoría I): una falla que puede causar la pérdida total del sistema.
 - Importante (categoría II): Una falla que puede causar lesiones graves, importantes daños materiales daños en el sistema principal que traduzca en la pérdida de la misión.
 - Marginal (categoría III): Puede causar lesiones leves, de menor importancia, daños materiales, que se traducirían en un retraso o pérdida de disponibilidad del sistema.
 - Menor (categoría IV): Falla mínima que solo provocaría la necesidad de un mantenimiento o reparación programada.

Componente	Categoría
Capacitor Variable	
365pF	4
Capacitor de mica-plate	
100pF	4
Capacitor de disco	
0,05uF	4
Capacitor electrolitico	
de 12 V (5uF)	4
Transistor npn SK3011	4
bobina	4
Resistencia 680	4
Resistencia 10k	4
Resistencia 47k	4
Switch	4

- Análisis por probabilidad de ocurrencia:
 - Frecuente (nivel A): Probabilidad Superior a 0,20
 - Razonablemente probable (nivel B) : Probabilidad Mayor a 0,10 y menor a 0,20
 - Ocasional (nivel C): Probabilidad Mayor a 0,01 y menor a 0,10
 - Remota (nivel D) :Probabilidad Mayor a 0,001 y menor a 0,01
 - > Improbable (nivel E):Probabilidad menor a 0,001

Integrantes: Sosa, Sueldo. Curso: 5R2 Año: 2017

Componente	Categoría
Capacitor Variable	
365pF	А
Capacitor de mica-plate	
100pF	D
Capacitor de disco	
0,05uF	А
Capacitor electrolitico	
de 12 V (5uF)	Α
Transistor npn SK3011	D
Bobina	Α
Resistencia 680	С
Resistencia 10k	С
Resistencia 47k	С
Switch	Α

Matriz de criticidad:

Es una matriz que relaciona la probabilidad de ocurrencia con la severidad de la falla. Mientras más arriba y a la derecha se encuentren ubicados los componentes, peor será la criticidad del circuito.

Nivel A	Capacitor Variable 365pF; Capacitor de disco			
	0,05uF; Capacitor electrolitico de 12 V (5uF);			
	Switch			
Nivel B				
Nivel C	Resistencias			
Nivel D	Capacitor de mica-plate 100pF; Transistor npn			
	SK3011			
Nivel E				
	Categoría IV	Categoría	Categoría	Categoría
ı		III	II	1

Integrantes: Sosa, Sueldo.

Numero Crítico:

El numero crítico de falla determina por si mismo la peligrosidad de un modo de falla determinado.

$$Cm = \beta * \alpha * \lambda pt$$

Donde

- α =probabilidad de modo de falla(Open-Short)
- β = probabilidad de pérdida de función
- λ=probabilidad de falla total MBTF
- t = tiempo de funcionamiento requerido

	Probabilidad (α)	λр	β	CM
Capacitor Variable 365pF Short	0,3	4,94	0,8	1,1856
Capacitor Variable 365pF Open	0,1	4,94	0,8	0,3952
Capacitor Variable 365pF Change in value	0,6	4,94	0,8	2,3712
Capacitor de mica-plate 100pF Short	0,72	0,00638925	0,1	0,00046003
Capacitor de mica-plate 100pF Open	0,13	0,00638925	0,1	8,306E-05
Capacitor de mica-plate 100pF Change in value	0,15	0,00638925	0,1	9,5839E-05
Capacitor de disco 0,05uF Short	0,49	1,2212	0,4	0,2393552
Capacitor de disco 0,05uF Open	0,22	1,2212	0,4	0,1074656
Capacitor de disco 0,05uF Change in value	0,29	1,2212	0,4	0,1416592
Capacitor electrolitico de 12 V (5uF) Short	0,69	0,513	0,5	0,176985
Capacitor electrolitico de 12 V (5uF) Open	0,17	0,513	0,5	0,043605
Capacitor electrolitico de 12 V (5uF) Change in	0,14	0,513	0,5	0,03591
Transistor npn SK3011 Short	0,73	0,004939482	0,01	3,6058E-05
Transistor npn SK3011 Open	0,27	0,004939482	0,01	1,3337E-05
bobina Short	0,52	0,936	0,5	0,24336
bobina Open	0,05	0,936	0,5	0,0234
bobina Slow movement	0,43	0,936	0,5	0,20124
Resistencia Open	0,31	0,0264	0,01	0,00008184
Resistencia Short	0,03	0,0264	0,01	0,00000792
Resistencia parameter change	0,66	0,0264	0,01	0,00017424
Switch Open	0,65	2,2896	0,8	1,190592
Switch Short	0,16	2,2896	0,8	0,2930688

Integrantes: Sosa, Sueldo. Curso: 5R2 Año: 2017

Conclusión

Al finalizar el trabajo práctico pudimos obtener distintas conclusiones acerca de los factores que influyen directamente sobre la confiabilidad de un circuito. Se pudo observar que agentes externos como la región de trabajo, la temperatura y hasta la propia calidad de componentes, son los factores que más repercusión tienen sobre el tiempo medio de falla, motivo por el cual deben ser corregidos siempre que sea posible. Es de suma importancia también, tener en consideración los distintos modos de falla y sus consecuencias, ya que las mismas nos permiten predecir las consecuencias de un posible fallo, y tomar acciones para revertir esta situación.

La matriz crítica, por su parte, es una herramienta muy útil para analizar si es inminente el rediseño, o simplemente se debe conseguir un componente de mayor calidad.