

Πιθανοτική Ταξινόμηση: Κανόνας Bayes & Αλγόριθμοι Naive Bayes

καθ. Βασίλης Μάγκλαρης

maglaris@netmode.ntua.gr

www.netmode.ntua.gr

Video Conference μέσω Cisco Webex

Πέμπτη 21/5/2020

Γενικό Μοντέλο Επιβλεπόμενης Μάθησης - Supervised Learning (επανάληψη)

Βασισμένο στο Andrew Ng, "CS229 Lecture Notes", Stanford University, Fall 2018

• Στόχος του συστήματος είναι η αντιστοίχηση ενός δειγματικού στοιχείου εισόδου (input sample point, example) $\mathbf{x} = [x_1 \ x_2 \ ... \ x_m]^{\mathrm{T}}$ σε τιμές εξόδου y που εκτιμούν επιθυμητή (desired) έξοδο d συμβατή με δεδομένη υπόθεση (π.χ. πρόβλεψη ή ταξινόμηση). Τα στοιχεία x_i είναι αριθμητικές τιμές που κωδικοποιούν m ειδοποιά χαρακτηριστικά (features) του \mathbf{x}

Ζητείται ο προσδιορισμός της συνάρτησης $y=h(\mathbf{x})\cong d$

- Η σχεδίαση της $h(\cdot)$ προκύπτει από αλγόριθμο μάθησης, με προσαρμογή της μορφής και των παραμέτρων ενός μοντέλου σε εμπειρικά δεδομένα ενός συνόλου N χαρακτηρισμένων (labeled) του δείγματος μάθησης (Training Set) ζευγών, $\{\mathbf{x}(i),d(i)\},\ i=1,2,\ldots,N$ ώστε να προσεγγίζεται ο στόχος της υπόθεσης $d(i)\cong y(i)=h(\mathbf{x}(i))$
- Αν ο στόχος ικανοποιείται με μικρό αριθμό διακριτών επιλογών της y πρόκειται για πρόβλημα Ταξινόμησης,
 Classification (για δύο επιλογές έχουμε δυαδική ταξινόμηση)
- Αν η έξοδος *y* λαμβάνει συνεχείς τιμές, το πρόβλημα αναφέρεται σαν Παλινδρόμηση, *Regression*

Πιθανοτικά Μοντέλα Ταξινόμησης, Εκτίμηση Παραμέτρων ΜLE, MAP (1/2)

http://www.cs.cmu.edu/~tom/mlbook/Joint MLE MAP.pdf

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x},y)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$
 (Κανόνας Bayes)

 $P(\mathbf{x})$: Prior (πρότερη) πιθανότητα παραδείγματος εισόδου \mathbf{x} του δειγματικού χώρου $\{\mathbf{X}\}$

P(y): Class Prior πιθανότητα εξόδου της τάξης y

 $P(\mathbf{x}|y)$: Likelihood (πιθανοφάνεια) εισόδου \mathbf{x} όταν η έξοδος υποδεικνύει την τάξη y

 $P(y|\mathbf{x})$: Posterior (ύστερη) πιθανότητα ταξινόμησης στην τάξη y παραδείγματος εισόδου \mathbf{x}

Εκτίμηση παραμέτρων θ (πιθανοτήτων, ροπών, κατανομών) του δειγματικού χώρου {**X**} με

βάση τις παρατηρήσεις του δείγματος μάθησης $D = \{\mathbf{x}(i), d(i)\}$

1. Maximum Likelihood Estimation (MLE) $\hat{\theta} = \arg \max_{\Omega} P(D|\theta)$

boundary

2. Maximum a Posteriori Probability (MAP) Estimation

$$\hat{\theta} = \arg \max_{\theta} P(\theta|D) = \arg \max_{\theta} \frac{P(D|\theta)P(\theta)}{P(D)} \propto \arg \max_{\theta} P(D|\theta) P(\theta)$$

$$P(\theta): Prior \text{ Assumption}$$

Πιθανοτικά Μοντέλα Ταξινόμησης, Εκτίμηση Παραμέτρων ΜLE, MAP (2/2)

http://www.cs.cmu.edu/~tom/mlbook/Joint MLE MAP.pdf

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x},y)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$
 (Κανόνας Bayes)

Παράδειγμα: Πείραμα Bernoulli για τυχαία μεταβλητή $X = \{heads, tails\} \triangleq \{1,0\}$ Δείγμα Μάθησης $D = \{x(1), x(2), ..., x(50)\}$ με 50 δοκιμές για εκτίμηση $\hat{\theta}$ της $\theta = P(X = 1)$, της πιθανότητας heads. Αν οι δοκιμές έβγαλαν $a_1 = 24$ heads, $a_0 = 26$ tails, η εκτίμηση MLE είναι $\hat{\theta} = \frac{a_1}{(a_1 + a_0)} = 0.48$. Για εκτίμηση MAP απαιτείται γνώση των $P(\theta)$, π.χ. από εμπειρική παραδοχή για το δείγμα. Αν πιστεύουμε πως το νόμισμα είναι κάλπικο με P(1) = 0.6 μπορούμε να θεωρήσουμε $a_1 \to 24 + 9$, $a_0 \to 26 + 1$ οπότε $\hat{\theta} \to 0.55$ Προκύπτει με $Prior\ P(\theta) = Beta(\beta_0, \beta_1) = K\theta^{\beta_1-1}(1-\theta)^{\beta_0-1} = Beta(1,9)$

Αν ξέρουμε πως οι όλες οι επιλογές της θ έχουν ίσες πιθανότητες, τότε **MAP** \equiv **MLE**

https://homepage.divms.uiowa.edu/~mbognar/applets/beta.html

Πιθανοτικά Μοντέλα Ταξινόμησης, Κανόνας του Bayes (1/3)

http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

Πιθανοτήτες \sim Σχετική Συχνότητα Παραδειγμάτων $\{\mathbf{x}(i),d(i)\}$ στο Δείγμα Μάθησης

- Είσοδος $\mathbf{x}(i) = (Gender, HoursWorked)$ με 2 δυαδικές διαστάσεις (features)
- Έξοδος (label) $d(i) \cong y(i) = h(\mathbf{x}(i)) = Wealth$ δυαδική (poor, rich)

Gender	HoursWorked	Wealth	probability
female	< 40.5	poor	0.2531
female	< 40.5	rich	0.0246
female	≥ 40.5	poor	0.0422
female	≥ 40.5	rich	0.0116
male	< 40.5	poor	0.3313
male	< 40.5	rich	0.0972
male	≥ 40.5	poor	0.1341
male	≥ 40.5	rich	0.1059

$$P(\mathbf{x}, y) = P(G, HW, y)$$

$$G = \{M, F\}$$

$$HW = \{light, hard\}$$

$$y = \{poor, rich\}$$

Posterior
$$P(y|\mathbf{x})$$
: $P(\text{ric}h|F, light) = \frac{0.0246}{0.2531 + 0.0246} \sim \mathbf{0.09}$

	0.2831.0.0210				
Gender (G)	HrsWorked (HW)	<i>P</i> (rich G,HW)	<i>P</i> (poor G,HW)		
F	<40.5 (light)	0.09	0.91		
F	>40.5 (hard)	0.21	0.79		
M	<40.5 (light)	0.23	0.77		
M	>40.5 (hard)	0.38	0.62		

m=2 features $\{G,HW\}$ απαιτούν 4 εκτιμήσεις (m features απαιτούν 2^m εκτιμήσεις)

Πιθανοτικά Μοντέλα Ταξινόμησης, Κανόνας του Bayes (2/3)

http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

Κανόνας του Bayes για Τυχαίες Μεταβλητές $X,Y:P(Y|X)=\frac{P(X,Y)}{P(X)}=\frac{P(X|Y)P(Y)}{P(X)}$ Υπό Συνθήκη Ανεξαρτησία Τυχαίας Μεταβλητής (X|Y,Z) από Y:P(X|Y,Z)=P(X|Z)

Προσεγγιστική Απλοποίηση – Naive Bayes Classifier

Οι τυχαίες μεταβλητές που κωδικοποιούν τα m χαρακτηριστικά (features) παραδείγματος $\mathbf{x} = [x_1 \ x_2 \ ... \ x_m]^{\mathrm{T}}$ υπό την συνθήκη εξόδου $y \approx d$ είναι υπό συνθήκη ανεξάρτητες οπότε για το fikelihood ισχύει

$$P(\mathbf{x}|y) = P(x_1, x_2, ..., x_m | y) \cong \prod_{k=1}^{m} P(x_k | y)$$

Ο Naive Bayes Classifier βασίζεται στην εκτίμηση της posterior $P(d|\mathbf{x})\cong P(y|\mathbf{x})$ με βάση το training sample

$$P(y|\mathbf{x}) = \frac{P(y)P(\mathbf{x}|y)}{P(\mathbf{x})} \propto P(y)P(x_1|y)P(x_2|y) \dots P(x_m|y)$$

Απαιτούνται $\sim m$ εκτιμήσεις για ταξινόμηση ενός νέου παραδείγματος $\mathbf{x}^{new} = [x_1^{new} \ x_2^{new} \ ... \ x_m^{new}]^{\mathrm{T}}$ αντί για 2^m (αντιμετώπιση (;) του curse of dimensionality)

Οι εκτιμήσεις των πιθανοτήτων προκύπτουν από συχνότητα εμφάνισης στα παραδείγματα στο δείγμα μάθησης (Multinomial Naive Bayes Classifier - συνήθως για διακριτές τιμές των x_i) ή από παραδοχή Gauss (Gaussian Naive Bayes Classifier - συνήθως για συνεχείς x_i)

Πιθανοτικά Μοντέλα Ταξινόμησης, Κανόνας του Bayes (3/3)

http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

Ο Naive Bayes Classifier βασίζεται στην προσέγγιση της posterior $P(d|\mathbf{x}) \cong P(y|\mathbf{x})$ σαν γινόμενο ανεξαρτήτων υπό συνθήκη likelihoods των χαρακτηριστικών (features)

$$P(y|\mathbf{x}) \propto P(y)P(x_1|y)P(x_2|y) \dots P(x_m|y)$$

Naive Bayes Algorithm:

Από το labeled δείγμα μάθησης $D = \{\mathbf{x}(i), d(i)\}, i = 1, 2, ..., N$ εκτιμώνται:

- Οι prior $P(d=c)\cong P(y=c)\triangleq \pi_c$ για όλες τις δυνατές κλάσεις c, π.χ. $c=\{0,1\}$ για δυαδική ταξινόμηση
- Οι likelihood $P(x_k = l | y = c) \triangleq \theta_{klc}$ για κάθε (διακριτό) χαρακτηριστικό k = 1, 2, ..., m των στοιχείων μάθησης x_k που στο δείγμα μάθησης κατετάγη στη κλάση y = c

Νέο δειγματικό στοιχείο $\mathbf{x}^{new} = [x_1^{new} \ x_2^{new} \ ... \ x_m^{new}]^\mathrm{T}$, $x_k^{new} = l$ θα καταταγεί στη κλάση y^{new} που προκύπτει από τη σχέση:

$$y^{new} \leftarrow \arg\max_{y} P(y) \prod_{k=1}^{m} P(x_k^{new}|y)$$

$$\dot{\eta}$$

$$y^{new} \leftarrow \arg\max_{c} \pi_c \prod_{k=1}^{m} \theta_{klc}$$

Παράδειγμα του Naive Bayes

https://towardsdatascience.com/all-about-naive-bayes-8e13cef044cf

Δείγμα Μάθησης - Labeled Sample από 1000 Στοιχεία (Examples)

Fruit	Long	Sweet	Yellow	Total
Banana	400 (80%)	350 (70%)	450 (90%)	500 (50%)
Orange	0 (0%)	150 (50%)	300 (100%)	300 (30%)
Other	100 (50%)	150 (75%)	50 (25%)	200 (20%)
Total	500 (50%)	650 (65%)	800 (80%)	1000

$$P(y|\mathbf{x}) \propto P(y)P(x_1|y)P(x_2|y) \dots P(x_m|y)$$

•
$$P(\text{Banana}|\text{Long, Sweet, Yellow}) = \frac{(0.8)\times(0.7)\times(0.9)\times(0.5)}{(0.25)\times(0.33)\times(0.41)} = 0.252$$

• P(Orange|Long, Sweet, Yellow) = 0

•
$$P(\text{Other}|\text{Long, Sweet, Yellow}) = \frac{(0.5) \times (0.75) \times (0.25) \times (0.2)}{(0.25) \times (0.33) \times (0.41)} = 0.01875$$

Ταξινόμηση Νέου Δειγματικού Στοιχείου (Test Example)

Φρούτα με χαρακτηριστικά $\mathbf{x}=$ (Long, Sweet, Yellow) ανήκουν στην κλάση y= (Banana) με τη μεγαλύτερη πιθανότητα $P(y|\mathbf{x})=0.252$