简单时序电路

- □ 实验目的
- □ 实验器件和仪表
- □ 实验任务
- □ 实验步骤&提交成果
- □实验要求

实验四实验目的

- ① 掌握简单时序电路的分析、设计和测试方法;
- ② 掌握计数器74LS162的功能;
- ③ 掌握任意模计数器的构成方法;

实验四实验器件和仪表

- □ TEC8数字电路实验系统 1台
- □ TBS1102B-EDU双踪示波器 1台
- □ 四2输入与非门74LS00 1片
- □ 双D触发器74LS74 2片
- □ 双JK触发器74LS107 2片
- □ 同步4位BCD计数器74LS162 2片

实验四 实验器件和仪表 -74LS162

□ 同步4位十进制BCD计数器74LS162

- ✓ Clk时钟输入端,上升沿触发计数器触发器翻转;
- ✓ ENP, 计数控制端, 高有效;
- ✓ ENT, 计数控制端, 高有效;
 - ✓ 当ENP、ENT均为高电平时,在时钟上升沿作用下计数;
- ✓ *LOAD* , 同步预置端,低有效,在下一个时钟的上升沿将计数器 置为预置数据端的值;
- ✓ *CLR* , 同步清除端 , 低有效 , 在下一个时钟上升沿将计数器复位 为0;
- ✓ RCO, 进位位, 在计数值等于9时为高;

74162

实验四实验任务

- ① 双D触发器74LS74构成四位计数器
- ② 双JK触发器74LS107构成四位计数器
- ③ 异步十进制计数器 (选做)
- ④ 采用置位法构成模7计数器

实验步骤&提交成果 - 任务一 - 双D触发器构成四位计数器

- □ **问题描述**: 用2片74LS74构成4位计数器并测试 其功能;
 - ✓ 实验电路:

实验步骤&提交成果 - 任务— - 双D触发器构成四位二进制计数器

时钟: □ 됨

$$\blacksquare$$
 CP1 = $\overline{Q_0}^n$

□ 驱动方程:

$$D0 = \overline{Q_0^n}$$

$$D1 = \overline{Q_1^n}$$

$$D2 = \overline{Q_2}^n$$

■ D3 =
$$\overline{Q_3}^n$$

□ 状态方程:

•
$$Q_0^{n+1} = \overline{Q_0^n} \text{ CP0 } \uparrow$$

•
$$Q_1^{n+1} = \overline{Q_1^n} \text{ CP1 } \uparrow$$

•
$$Q_2^{n+1} = \overline{Q_2^n} \text{ CP2 } \uparrow$$

•
$$Q_3^{n+1} = \overline{Q_3^n}$$
 CP3

实验步骤&提交成果 - 任务— – 双D触发器构成四位计数器

时钟:

□ 驱动方程:

$$D0 = \overline{Q_0}^n$$

$$D1 = \overline{Q_1^{\mathrm{n}}}$$

$$D2 = \overline{Q_2}^n$$

■ D3 =
$$\overline{Q_3}^n$$

□ 状态方程:

$$Q_0^{n+1} = \overline{Q_0^n} CP0 \uparrow$$

$$Q_1^{n+1} = \overline{Q_1^n} CP1 \uparrow$$

$$Q_2^{n+1} = \overline{Q_2^n} CP2 \uparrow$$

$$Q_3^{n+1} = \overline{Q_3^n} CP3 \uparrow$$

CP0	Q ₃ ⁿ	Q ₂ ⁿ	Q ₁ ⁿ	Q ₀ ⁿ	Q_3^{n+1}	Q_2^{n+1}	Q ₁ ⁿ⁺¹	Q_0^{n+1}	CP3	CP2	CP1
1	0	0	0	0	0	0	0	1			\
2	0	0	0	1	0	0	1	0		↓	↑
3	0	0	1	0	0	0	1	1			\
4	0	0	1	1	0	1	0	0	\downarrow	↑	↑

实验步骤&提交成果 - 任务一 - 双D触发器构成四位计数器

□ 时钟:

□ 驱动方程:

$$D0 = \overline{Q_0}^n$$

$$D1 = \overline{Q_1}^n$$

■ D2 =
$$\overline{Q_2}^n$$

$$D3 = \overline{Q_3}^n$$

□ 状态方程:

$$Q_0^{n+1} = \overline{Q_0^n} CP0 \uparrow$$

$$Q_1^{n+1} = \overline{Q_1^n} CP1 \uparrow$$

$$Q_2^{n+1} = \overline{Q_2^n} CP2 \uparrow$$

$$Q_3^{n+1} = \overline{Q_3^n} CP3 \uparrow$$

实验步骤&提交成果 - 任务一 -双D触发器构成四位计数器

□ 针对任务一, 执行如下步骤:

- ① 根据电路图接线, CLR '端接电平开关, PRE '接VCC, CLK接实验台上的QD按钮的输出, Q₀~Q₃端接电平指示灯;
- ② 将CLR '开关K1拨到0, 使Q₀~Q₃复位,观察LED0~LED3的状态;
- ③ 将CLR '开关K1拨到1,按实验台上的QD按钮,观测并记录 LED0~LED3的状态,写出的Q₀~Q₃状态转移表;
- ④ 改变CLK的输入,使其接入100KHz的时钟,用示波器观测 $Q_0 \sim Q_3$ 的 波形,并把波形画下来;
 - ① 先测低2位波形,将水平时基调整到2µs左右,纵向位移调整到偏上方,分别存储2路信号到参考;
 - ② 再测高2位波形,将水平位移微调,同时观测4路信号。

▲ 注意:认清所用器件型号和管脚,VCC与实验台的+5V插孔连接,GND与实验台的GND连接。

实验少骤&提交成果 - 任务一

□ 针对任务一提交:

✓ 给出单脉冲情况下Q0~Q3的状态转移表(第4步);

C	CP0	Q ₃ ⁿ	Q ₂ ⁿ	Q ₁ ⁿ	Q ₀ n	Q_3^{n+1}	Q_2^{n+1}	Q ₁ ⁿ⁺¹	Q_0^{n+1}	CP3	CP2	CP1
	1	0	0	0	0	0	0	0	1			↓
	2	0	0	0	1	0	0	1	0		\downarrow	↑

- ✓ 画出连续时钟情况下CLK以及Q0~Q3的波形图;
- \overline{Q}_3 , \overline{Q}_2 , \overline{Q}_1 , \overline{Q}_0 构成计数器吗?如果是,那么是递增还是递减?
- ✓ 根据所学知识分析测试结果;

实验步骤&提交成果 - 任务二 – 双JK触发器构成四位计数器

- □ **问题描述**: 用2片74LS107构成4位二进制计数器 并测试其功能;
 - ✓ 实验电路:

实验步骤&提交成果 - 任务二 -双JK触发器构成四位计数器

□ 针对任务二,完成如下内容:

- ① 根据电路图分析时钟和状态方程;
- ② 画出CLK以及Q0~Q3的波形;

实验少骤&提交成果 - 任务二

□ 针对任务二提交:

- ✓ 给出时钟和状态方程;
 - 状态方程中需要标注状态变化发生在时钟的哪个跳变时刻;
- ✓ 画出CLK以及Q0~Q3的波形图;
- ✓ 根据所学知识解释该计数器是一个模为多少的计数器;

实验步骤&提交成果 - 任务三 - 异步十进制计数器 (选做)

□ **问题描述**: 用2片74LS107构成一个异步十进制 计数器并测试其功能;

□ 针对任务三,执行如下步骤:

- ① 根据电路图接线,CLR '端接电平开关,CLK接实验台上的QD 按钮的输出,Q₀~Q₃端接电平指示灯;
- ② 将CLR '开关K1拨到0, 使Q₀~Q₃复位,观察LED0~LED3的状态;
- ③ 将CLR '开关K1拨到1,按实验台上的QD按钮,观测并记录 LED0~LED3的状态,写出的Q₀~Q₃状态转移表;
- ④ 改变CLK的输入,使其接入100KHz的时钟,用示波器观测 $Q_0 \sim Q_3$ 的波形,总结四个波形的规律并画下来。
 - ① 先测低2位波形,将水平时基调整到2μs左右,纵向位移调整到偏上方,分别存储2路信号到参考;
 - 更 再测高2位波形,将水平位移微调,同时观测4路信号。

⚠ 注意:认清所用器件型号和管脚,VCC与实验台的+5V插孔连接,GND与实验台的GND连接。

□ 针对任务三,完成如下内容:

- ① 根据电路图分析给出时钟、驱动方程和状态方程;
- ② 画出单脉冲情况下Q0~Q3的状态转移表;
- ③ 画出连续时钟情况下CLK以及Q0~Q3的波形;
- ④ 根据所学知识分析测试结果;

实验四 实验步骤&提交成果 - 任务三 (选做)

□ 针对任务三提交:

- ✓ 给出时钟、驱动方程和状态方程;
 - * 状态方程中需要标注状态变化发生在时钟的哪个跳变时刻;
- ✓ 给出Q0~Q3的状态转移表;

C	CP0	Q ₃ ⁿ	Q ₂ ⁿ	Q ₁ ⁿ	Q ₀ ⁿ	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	CP3	CP2	CP1
	1	0	0	0	0	0	0	0	1			\downarrow
	2	0	0	0	1	0	0	1	0		\downarrow	↑

- ✓ 画出CLK以及Q0~Q3的波形图;
- 根据所学知识分析测试结果;

实验步骤&提交成果-任务四-置位法构成模7计数器

□ 问题描述: 用1片74LS162和1片74LS00采用置位法构成一个模7计数器并测试其功能;

■ 实验电路:

实验四 实验步骤&提交成果 - 任务四

□ 针对任务四执行如下步骤:

- ① 根据电路图接线;
- ② 用单脉冲做计数时钟,用LED灯观测计数状态并记录 ;
- ③ 采用连续脉冲做计数时钟,用示波器观测并记录Q_D Q_C Q_B Q_A的波形。

实验少骤&提交成果 - 任务四

□ 针对任务四提交:

- ✓ 画出连续计数脉冲下QD, QC, QB, QA的波形图并解释该波形图(四路波在一幅图中画出并且注意对齐,需要有完整计数周期的完整波形);
- 如果用复位法构成模7计数器,电路图应该是怎样的? 请画出;
- ✓ 思考题:如果置位法从0010开始置数,计数器还是模7计数器吗?如果不是,那么是模几的?