Eye Tracking for Reading Assistance

Ashkan Bozorgzad, Kyle Diederich, Suhas Kumar, Ziqi Su

Problem Formulation

 Create a story environment to allow reading support

- Develop techniques to determine how to convert eye tracking into the precision needed for reading
- Create prediction techniques to allow for smooth transitions to between words

DANS, KÖNOCH JACPROJEKT

På jakt efter ungdomars kroppsspråk och den "synkretiska dansen", en sammansmältning av olika kulturers dans hat jag i mitt fältarbete under hösten rört nig på olika arenor inom skolans varld. Nordiska, afrikanska, syd- och östeuropeiska ungdomar gör sina röster börda genom sång musik skrik skraft och gestaltar känslor och uttryck med hjälp av kroppsspråk och dans.

Den individuella estetiken franträder i kläder, frisyrer och symboliska tecken som forstärker ungdomarnas "jagptojekt" där också den egna stilen kroppsrörelserna spelar en betydande roll i identitetsprövningen. Uppehållsrummet fungerar som offentlig arena där ungdomarna spelar upp sina performance liknande kroppss ower

Problem Formulation

Detecting eyes during setup

$\underline{\mathbf{Pros}}$

- Accuracy OK
- Speed
- Gaze Trace options
- Touch at gaze
- Scroll at gaze
- Mouse wrap on move
- Application switching

Cons

- Detail Accuracy
- Miss
- Eyes Pain
- Mounted

Detection of eyes during Gaze Trace

Tobii eye X Tracker

Technical Challenges

Accuracy

- Individual differences between eyes and conditions
 - What works for one set does not always transfer
 - Account for rapid, random eye movements

Technical Challenges

• Degree of coverage

- Constant connection between eye and sensors
 - Dealing with dynamic positioning of user

Technical Challenges

- Ease of setup / portability
 - Hidden mounting requirement

 Write our own program to obtain data from eye tracker and detect text and object

Approach

- EyeLink Headband
 - Mounted to head
 - Cameras hang below eyes
 - Overhead camera tracking head position
 - Only track dominate eye position
 - Calibration period difficult (unclear of what changes to calibration allowed for greater success)
- Currently minimal exploration of text
- Capture infrared light reflections on both cornea and retina
- Saccades and fixations
- Develop a grid based on calibration
- Change stimulus based on where eye is looking
- Create boundaries to compensate for over/undershooting targets

- Configuration time and reconfiguration requirement
- Assumption: user sit still and laptop at a fixed position
- Record configuration time
- Move head to different position

- Whether or not user are look at screen
- Assumption: head keep still just eye movement
- Look at 8 position outside the screen:
 - Up
 - Down
 - Left
 - Right
 - Up right corner
 - Up left corner
 - Down left corner
 - Down right corner
- Utilize results to help set up grid for tracking fixation

- Test of various granularity expectations from eye movement data
- Assumption: User looks at screen during experiment
- Divide screen into 2 by 2, 3 by 3, and so on doing experiment until the accuracy is better than random guessing
- User looks at one shape and eye tracker give the one they think user is looking at

- Does tracking the flow of user's actual reading
- Highly depends on the result of experiment 3
- Assumption: User reads the article during experiment and does not get distract
- Highlight words which software thinks user is reading
- Design a questionnaire to collect user's feedback

Demo

- Eye Tracker is mounted to a laptop and a person is made to sit in front of laptop.
- Person is made to see a sentence.
- Eye movements are tracked accurately.
- · Render the voice of the words as the person scans the sentence.

Milestones

Tasks	October	November	December
Programming to get correct output from Eye tracking sensor			
Programming for object detection			
Writing first draft of report			
Combining two programs and writing final report			
Writing final report			

References

- Alghowinem, S., AlShehri, M., Goecke, R., & Wagner, M. (2014). Exploring eye activity as an indication of emotional states using an eye-tracking sensor. In *Intelligent systems for science and information* (pp. 261-276). Springer International Publishing.
- Evans, M. A., & Saint-Aubin, J. (2005). What children are looking at during shared storybook reading evidence from eye movement monitoring. *Psychological Science*, 16(11), 913-920.
- Gary Feng (2011) Eye Tracking: A Brief Guide for Developmental Researchers, Journal of Cognition and Development, 12:1, 1-11, DOI: 10.1080/15248372.2011.547447
- Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. *Mind*, *2*(3), 4.