PSALTer results panel

Wave operator and propagator

								_															
			+2 h,))+ a,)	+4 h,)+ a,)	9-4a.	+4 h.))- a.)		$^{0^+}h^{\scriptscriptstyle \perp}$	0,+h	$^{0^+}\mathcal{A}_{s^{^{\perp t}}}$	${}^{0\dot{+}}_{}\mathcal{A}_{_{\mathbf{S}}}{}^{\parallel}$		${}^{0^+}\!\mathcal{A}_{S}{}^{{\scriptscriptstyle \perp} h}$		3	$\overline{W}_{S}^{\parallel} \dagger^{lphaeta\chi}$	$\frac{3 \left\ W_{S} \right\ _{\alpha\beta\chi}}{\frac{2}{a}}$	$ \begin{array}{c c} 3 & \mathcal{A}_{s} \parallel_{\alpha\beta\chi} \\ -\frac{o}{2} \end{array} $	2+ #		2+		25 !!
$^{1}\mathcal{A}_{S}^{\parallelh}_{}}$	0	i k a -4 √6	$\frac{1}{12}(k^2(h_1-2(h_3+2$	√5 (+2 h, +4 h 12 √2	2(h	0,+ h+ +	0 0 0			i k a 0 4		i k a 0 8 √2				2(k ⁴ (h.+h.) ² +	$2^{+}\mathcal{T}^{\parallel}_{\alpha\beta}$ $-4 k^{2} \left(h_{11} + h_{12} - h_{13} - h_{13}\right) a_{1} + 4 a_{1}^{2}$	$ \begin{array}{c c} 2^{+}W_{S}\ _{\alpha\beta} \\ 0 & 4i(k^{2}(h_{11}+h_{12})+a_{10}) \end{array} $		2+W _S +		2 W _s αβχ
					$\frac{k^{2} \left(-h + 2h + 4h \right) \cdot 4a}{12 \sqrt{2}}$	$\frac{1}{12} (k^2 (4 h_{11})^2)$	^{0,+} <i>h</i> ∥†				$-\frac{i k a}{4 \sqrt{3}}$		5 i k a			$^{2^{+}}\mathcal{T}^{\parallel}\dagger^{\alpha\beta}$	$k^2 a_0^3$		$\sqrt{3} k a_0^2$		$\frac{2 i \sqrt{\frac{2}{3}} (k^2 (h_1 + h_1) + 4 a_1)}{k a_1^2 a_0^2}$		0
							⁰⁺ Æs ^{⊥t} †	0 (0 0		a. 0 2		$\frac{a_0}{4\sqrt{2}}$		2	$\pm^+W_s^{\parallel} \pm^{\alpha\beta}$	4 i ($\frac{k^2 (h_1 + h_1) + a_1)}{\sqrt{3} k_0^2}$	- <u>8</u> 3 a.		$\frac{4\sqrt{2}}{3a_{0}}$		0
-		$i \stackrel{k}{\sim} \frac{a}{0}$ $8 \sqrt{3}$	$\frac{2k^2(n_1+h_7+h_9)+a_0}{12\sqrt{2}}$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-2 k^2 (h_1 + h_1 - h_1) + a_1 \right) \frac{1}{12}$	9.0	.01	^{0,+} ℋ _s ∥†	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$-\frac{2}{3}k^{2}(h_{.}+h_{.}+h_{.}+h_{.}+h$	212/24 24 14 14 112-			2	$^{+}W_{s}^{\perp}\dagger^{lphaeta}$	$\frac{2i\sqrt{\frac{2}{3}}}{}$	$\frac{(k^2 (h_1 + h_1) + 4 a_0)}{k a_0^2}$	$\frac{4\sqrt{2}}{3a}$		-4 3 a.		0
$^{1}\mathcal{A}_{S}^{\perph}{}_{\alpha}$	0						$^{0^+}\mathcal{A}_{ extsf{s}}{}^{\perp extsf{h}}$ †				$\frac{2 k^2 (-2 h2 h+h+h)+3 a}{12 \sqrt{2}}$	$\frac{1}{12} \left(k^2 \left(8 h. +8 h7 \left(h. +h.\right)\right) -3\right)$)-3 <i>a</i>) ₂	W_s^{\parallel} † $^{lphaeta\chi}$	0		0		0		4 a. 0	
									$^{0^+}\mathcal{T}^{\scriptscriptstyle \perp}$	Į.	0,+√∥	0+Ws ¹		0,+W _S II	0+Ws ¹	L							0
1,							⁰⁺ ∕√⁺ †	$\frac{4 k^2 (6 k^2 (h+h+h+h+h)-a)}{3 (4 + k^2)^2 a^2}$			$-\frac{8 k^2 (h \cdot + h \cdot)}{\sqrt{3} (4 + k^2) a \cdot^2_0}$	$\frac{8i k(6k^2 (h_1 + h_1 + h_2)^2)}{3(4+k^2)^2 a}$	$\frac{\binom{h_1+h_2-a_1}{7800}}{\binom{2}{300000000000000000000000000000000000$		$\frac{4i\sqrt{2}k}{3(4+k^2)a}$	- ö							
							^{0,+} ∕7″†	- 8	$k^2 (h_{11} + \frac{1}{3})$	7.)	$\frac{4(2 k^{2} (-h_{1} - h_{1} + h_{1} + h_{1}) + a_{0})}{k^{2} a_{0}^{2}}$	$-\frac{16 i k(h_1 + k^2)}{\sqrt{3} (4 + k^2)}$	h.)	$-\frac{2i}{\sqrt{3} k a_0}$	$\frac{4i\sqrt{\frac{2}{3}}}{4i\sqrt{\frac{2}{3}}}$					icities			
$^{1}\mathcal{A}_{S}^{\parallelt}$	0	$\frac{1}{4}\bar{i}\sqrt{\frac{5}{6}}k\alpha$	$\sqrt{5} (k^2 (h_1 + h_1 - h_1) + a_1)$		$h_{0}^{(1)} + a_{0}^{(1)}$	- a.)	0+a.r.t.	8 i k(6 k ² ((h +h 12	+h.+h.)-a. 7 8 C	.) 16 i k(h+h)	16(6 k² (h+h+	h.+h.)-a.)	20	8 √2	_				Multiplicities		8	4
				+ h.)+2 a		+4 h.)+	⁰⁺ W _s ^{⊥t} †	3	10 i k	a. ² 0	$\sqrt{3}(4+k^2)a_0^2$	$3(4+k^2)^2 a$	0	3(4+ k ²) a.	$3(4+k^2) a$	<u>o</u>							
				+ \(\psi + \psi \)	12 + h	2 h	^{0,+} W _s †		.2 a . +3 k		√3 k a ₀	12 a _. +3 k ²	a. 0	0	0								
$^{1}\beta$				(h. +	(-2 k² (h ₁₂ -	2 (h	^{0,+} W _s ^{⊥h} †	- <u>-</u>	4 i √2 .2 a . +3 k		$-\frac{4 i \sqrt{\frac{2}{3}}}{k a}$	$\frac{8\sqrt{2}}{12a_0+3k^2}$	a. 0	0	0								
			$\frac{1}{6}\sqrt{5}$ (,	$\frac{1}{6}$ (-5 k^2 (h_{11})	$\frac{1}{12}\sqrt{\frac{5}{2}}$ (-	$\sqrt{5} (-k^2 (h_{11})$		αβ_															
	0	$\frac{i k a}{0}$	$\frac{1}{6} (-k^2 (h_1 + h_1 + h_2) - 2 a_1)$	a.)	-11-)+ a)	+ *	$2 a_0 h^{\alpha\beta} \partial_{x} \mathcal{A}_{\alpha\beta}^{x}$ $\beta_{\beta} \mathcal{A}_{\alpha\beta}^{\delta} \partial^{x} \mathcal{A}_{\alpha\beta}^{\delta}$		1	+ . + +	# # \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\										$\mathcal{W}^{\beta\alpha\chi} ==$ $\mathcal{W}^{\beta\chi} \delta$	
				h.)+	2 4 8		× W _{αβχ} +	$-2 a_{0} h^{\alpha \beta} \partial_{x} \mathcal{A}_{\alpha \beta}^{x}$ $^{x}_{\beta} -2 h_{0} \partial_{\beta} \mathcal{A}_{x \delta}^{\delta} \partial^{x}$	(Aa b.	, , , , , , , , , , , , , , , , , , ,	$\begin{array}{c} h \cdot \partial_{\alpha} \mathcal{A}^{\alpha \beta \chi} \partial_{\delta} \mathcal{A}_{\beta \chi}^{\ \ \delta} + \\ h \cdot \partial^{\alpha} \mathcal{A}^{\alpha \beta \zeta} \partial_{\delta} \mathcal{A}_{\beta \zeta}^{\ \ \delta} - \\ h \cdot \partial^{\alpha} \mathcal{A}^{\alpha \beta \zeta} \partial_{\delta} \mathcal{A}_{\beta \chi}^{\ \ \delta} - \\ 12 \cdot \partial_{\alpha} \mathcal{A}^{\alpha \beta \zeta} \partial_{\delta} \mathcal{A}_{\beta \chi}^{\ \ \delta} + \\ h \cdot \partial^{\alpha} \mathcal{A}_{\alpha}^{\ \ \alpha} \partial_{\delta} \mathcal{A}_{\beta \chi}^{\ \ \delta} + \\ 8 \cdot \partial^{\alpha} \mathcal{A}_{\alpha}^{\ \ \delta} \partial_{\delta} \mathcal{A}_{\beta \chi}^{\ \ \delta} + \end{array}$	(α ^β _α δ _δ Ωβ _χ - ^{χβ} _β δ _δ Ωχ _β + α δ _δ Ωχ _β + I z d y d χ									$\mathcal{M}_{\alpha\beta\chi}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\mathcal{W}^{\beta\alpha\chi} = 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta} + \partial_{\delta}\partial_{\chi}\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\beta\chi}$	
$^{1}\mathcal{A}_{\mathrm{s}}^{\mathrm{\perp t}}$. μ . 8			4 Я ^{аβх}	x 2 a 0 1	-2 h, 3x4 6 3x4a	6		+2 h , $\partial^x \mathcal{R}^{\alpha\beta}_{\alpha}$ +2 h , $\partial^x \mathcal{R}^{\alpha\beta}_{\alpha}$ $\partial^{\alpha\beta}_{\alpha}$								٤	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == \dot{q}\partial_{\beta}\partial_{\alpha}\mathcal{W}$	$+\partial_{\delta}\partial^{\delta}$ $\alpha^{\beta}+\partial_{\delta}$	
1.5				$\sqrt{5} (k^2 (h_1)^4)$			$\mathcal{A}^{\chi}_{\beta\chi}$ +4	$\partial_{\beta}\mathcal{A}_{\alpha\chi}^{\chi}$.	2 h, 3 _x ,	+2 h 3BB x x -2 h 3BB aBX 6		-2 h 2 2 h 3 11 3 11 4 11 4 11 4 11 4 11 4 11 11 11 11 11								Covariantform		$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi}$ 2 $\partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}$	
			612	$\frac{1}{6}\sqrt{5}$		$\frac{1}{12} \left(k^2 \right)$	Aa b	a h' + a o	2 × 0	2 11 12	. ' ' ' × '	. × . T								Coval	9β90	Ñ	
$\alpha \beta = \frac{1}{\alpha} h^{\perp} \alpha$	$\frac{1}{4} \left(-2 k^2 h_0 + a_0 \right) $ 0		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 k a.	k a √3		+2 a.	γ × ω	34° 3×3° 1	$2h_{0}^{\prime}\partial_{x}\mathcal{A}^{\prime}_{\beta\delta}\partial^{x}\mathcal{A}^{\prime\prime}_{\beta}$		g									2	7⁻±α == 0	rs:
			i k a 4 √6	$-\frac{1}{4}\vec{l}\sqrt{\frac{5}{6}}$	i k a 0 8 √3		Ğ.	$a h^{\alpha}$	$2h$, $\partial_{\beta}\mathcal{A}^{\delta}_{\chi}$	$2h_{11} \frac{\partial_x \mathcal{A}^{\circ}}{\partial_x \mathcal{A}^{\circ}_{g_g}}$ $2h_{g_g} \mathcal{A}^{\circ}_{g_g}$	$\begin{array}{c} 2h_{0} \partial_{\beta} \mathcal{A}^{\alpha\beta\gamma} \\ 8 \\ 8 \\ 8 \\ 2h_{1} \partial_{\alpha} \mathcal{A}^{\alpha\beta} \\ 2h_{1} \partial_{\alpha} \mathcal{A}^{\alpha\beta\gamma} \\ 11 \\ 4h_{1} \partial^{\gamma} \mathcal{A}^{\alpha\beta} \\ \end{array}$	$2h \frac{\partial^{\chi} \mathcal{A}^{\alpha\beta}}{11}$ $2h \frac{\partial_{\alpha} \mathcal{A}^{\alpha\beta\chi}}{\partial_{\alpha} \mathcal{A}^{\alpha\beta\chi}}$ $4h \frac{\partial^{\chi} \mathcal{A}^{\alpha\beta}}{\partial_{\alpha} \mathcal{A}^{\alpha\beta\chi}}$		$^{2^{+}}h^{\parallel}_{\alpha\beta}$		².⁺ℋ _s ∥,		$2^+_{S}\mathcal{A}_{S}^{\perp}_{\alpha\beta}$	² A _s ∥	αβχ	, ,	+6 i 1 T	nerato
		0					$\mathcal{A}_{lpha\chi}$, ,	, ,		(4 (4 (4)	,, ,,	$^{2^{+}}h^{\parallel} + ^{a}$	0		$-\frac{i k a}{4 \sqrt{3}}$		$-\frac{i k a}{2 \sqrt{6}}$	0		0 ==	$W_{\mathrm{s}}^{\mathrm{ ext{t}} lpha}$ +	Total expected gauge generator
$^{1^{+}}\mathcal{A}_{S^{\perp}}{}_{\alpha\beta}$	-2 k ² h	0	0	0	0	0	$S == \iiint \left(\frac{1}{4} \left(-2 a_0 \mathcal{A}_{\alpha_0}\right)\right)$						$^{2^{+}}\mathcal{R}_{s}^{\parallel}\dagger^{a}$	$\frac{i k a}{4 \sqrt{3}}$			$h_{.} + h_{.}) - 3 a_{.}$	$-\frac{k^2 \left(h_1 + h_1 + 4\right) \left(h_1 + \frac{1}{12}\right)}{12 \sqrt{2}}$	+h.)) 0	orm	$k^{0+}\mathcal{W}_{\mathrm{s}^{\perp}t} + 2 i^{0+}\mathcal{T}^{\perp}$	2 k 1 M _s ^{1ha} + k 1 M _s ^{1ta}	ted ga
	$+^{\alpha\beta}\frac{1}{4}$	+α	<u>α</u> +	+α	φ+	ρ+)]][[^{2,+} ℋ _s [⊥] †	$\frac{i k a}{2 \sqrt{6}}$		$\frac{1^{2}(h_{.1}+h_{.1}+4)}{12\sqrt{2}}$	1(h, +h.)) 2	$\frac{1}{6} k^2 (h_{.1} + h_{.1} - 2 (h_{.1} + h_{.2} - 2 (h_{.1} + h_{.2} - 2 (h_{.2} + h_{.2} + h_{.2}$	$+h_{8}))+\frac{a_{0}}{4}$ 0	Spin-parityform	ν _s ^{±t} +2	$\mathcal{W}_{s}^{\perp h^{\alpha}}$	exbec
	$^{1^{+}}\mathcal{A}_{S^{^{\perp}}}\!\uparrow^{^{\alpha\beta}}$	1 h^{\perp} †	$^{1}\mathcal{A}_{\mathrm{s}}^{^{\mathrm{lt}}}\mathbf{t}^{^{a}}$	$^{1}\mathcal{A}_{\mathrm{S}}^{\mathrm{ll}}t^{\dagger}$	$_{1}\mathcal{A}_{\mathrm{s}}^{\mathrm{h}}$	$^{1}\mathcal{A}_{\mathrm{s}}^{\mathrm{lh}}\dagger^{\mathrm{a}}$	ς) 						$^{2}\mathcal{A}_{s}^{\parallel}$ † $^{\alpha\beta}$		0			0	$\frac{a}{4}$	Spin-	10×	2 k 1	Total

Massive and massless spectra

Spin: Parity:	Square mass:	Pole residue:	Massive pa	$J^{P} = 1 + \frac{1}{2}$ $J^{P} = 1 + \frac{1}{2}$	Polarisations:	Pole residue:	Masslessp	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
1 Even	$\frac{a}{2h} > 0$	½ > 0	article		2	$\frac{1}{a_0} > 0$	particle	, , , , , , , , , , , , , , , , , , ,

Unitarity conditions

$$\begin{split} &(h_{11} \mid h_{1}) \in \kappa \& \& a_{0} < 0 \& \& \\ &((h_{8} < h_{7}^{-} \& \& (h_{9} < \frac{1}{12} (\cdot h_{7}^{-} + h_{8}^{-}) \& \& \frac{1}{2} (2h_{11} + h_{7}^{-} \cdot h_{8}^{-} + 12h_{9}^{-}) - \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{7}^{-2} - 2h_{7}^{-} h_{8}^{-} + h_{8}^{-2} + 24h_{7}^{-} h_{9}^{-} - 24h_{8}^{-} h_{9}^{-} + 144h_{9}^{-2})} \\ &= \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{7}^{-2} - 2h_{7}^{-} h_{8}^{-} + h_{8}^{-2} + 24h_{7}^{-} h_{9}^{-} - 24h_{8}^{-} h_{9}^{-} + 144h_{9}^{-2})} \parallel \\ &(h_{9} = \frac{1}{12} (\cdot h_{7}^{-} + h_{8}^{-}) \& \& h_{12}^{-} = \frac{1}{2} (2h_{11}^{-} + h_{7}^{-} - h_{8}^{-} + 12h_{9}^{-}) + \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{7}^{-2} - 2h_{7}^{-} h_{8}^{-} + h_{8}^{-2} + 24h_{7}^{-} h_{9}^{-} - 24h_{8}^{-} h_{9}^{-} + 144h_{9}^{-2}}) \parallel \\ &(h_{12}^{-} (\cdot h_{7}^{-} + h_{8}^{-}) \& \& \& h_{12}^{-} = \frac{1}{2} (2h_{11}^{-} + h_{7}^{-} - h_{8}^{-} + 12h_{9}^{-}) + \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{7}^{-2} - 2h_{7}^{-} h_{8}^{-} + h_{8}^{-2} + 24h_{7}^{-} h_{9}^{-} - 24h_{8}^{-} h_{9}^{-} + 144h_{9}^{-2}}) \parallel \\ &(h_{12}^{-} (\cdot h_{7}^{-} + h_{8}^{-}) \& \& \& \frac{1}{2} (2h_{11}^{-} + h_{7}^{-} - h_{8}^{-} + 12h_{9}^{-}) + \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{7}^{-2} - 2h_{7}^{-} h_{8}^{-} + h_{8}^{-2} + 24h_{7}^{-} h_{9}^{-} - 24h_{8}^{-} h_{9}^{-} + 144h_{9}^{-2}}) \parallel \\ &(h_{8}^{-} = h_{7}^{-} \& \& h_{9}^{-} & 0 \& \& (\frac{1}{2} (2h_{11}^{-} + h_{7}^{-} - h_{8}^{-} + 12h_{9}^{-}) + \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{7}^{-2} - 2h_{7}^{-} h_{8}^{-} + h_{8}^{-2} + 24h_{7}^{-} h_{9}^{-} - 24h_{8}^{-} h_{9}^{-} + 144h_{9}^{-2}})) \parallel \\ &(h_{8}^{-} = h_{7}^{-} \& \& h_{9}^{-} & 0 \& \& (\frac{1}{2} (2h_{11}^{-} + h_{7}^{-} - h_{8}^{-} + 12h_{9}^{-}) + \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{7}^{-2} - 2h_{7}^{-} h_{8}^{-} + h_{8}^{-2} + 24h_{7}^{-} h_{9}^{-} - 24h_{8}^{-} h_{9}^{-} + 144h_{9}^{-2}})) \parallel \\ &(h_{8}^{-} = h_{7}^{-} \& \& h_{9}^{-} & 0 \& \& (\frac{1}{2} (2h_{11}^{-} + h_{7}^{-} - h_{8}^{-} + 12h_{9}^{-}) + \frac{1}{2} \sqrt{\frac{5}{3}} \sqrt{h_{7}^{-2} - 2h_{7}^{-} h_{8}^{-} + h_{8}^{-2} + 24h_{7}^{-} h_{9}^{-} - 24h_{8}^{-} h_{9}^{-} + 144h_{9}^{-2}})) \parallel \\ &(h_{8}^{-} > h_{7}^{-} \& \& \& ((h_{9}^{-} & h_{7}^{-} h_{8}^{-} + h_{8}^{-}) + h_{1$$