Uguit - 2017 s. (13) (17) Критерий на Абен-Дирихле за сходиност на несобстве. Hu unterparu or Buga Standa. Формупировка/ кр. ка Абел- Оирихле: Ако е измълнено, се: g(x) мокотонко намалява и lor g(x) = 0; • ДСх) ина Свогранитека пришитивна), за както [] f(x)dx | = C za Borno uza; то тогава / fcx). gcx) dx е сходящу. #
(2) [12т] Dox., ге /smx²dx е условно сходящу.

D-во: +0, +0. Hera I := $\int_{0}^{\infty} \sin x^{2} dx = \int_{0}^{\infty} \frac{2x}{2x} \cdot \sin x^{2} \cdot \frac{(2x)}{2x} \cdot \ln x^{2} \cdot \ln x^{2} \cdot \frac{(2x)}{2x} \cdot \ln x^{2} \cdot \ln x^{2} \cdot \frac{(2x)}{2x} \cdot \ln x^{2} \cdot \ln x^{2$ $0 \xrightarrow{1} \xrightarrow{\chi \to \varphi} 0$, 7.2. MOH. HAMANABA 4 $\lim_{x \to \varphi} \frac{1}{2x} = 0$, ② $\int_{2x.5m} x^2 dx = -\cos x^2 = 1$ => Or O_1O_1 u kp. ka Hoen-Dupunne nonyeasane. Te I e yenosho exogeny o_1 . # Dok. re Jos x² dx e gonobro cxogruy. D-Bo: Angroracno. Hera I:= $\int \cos x^2 dx = \int \frac{2x}{2x} \cdot \cos x^2$. Unque, re: 1) Ex xx 0, T.R. MOK. Hawanaka u low 2x =0; (2) Six. cosx2dx = Scosx2dx2 = SInx2 = 1, T.e. orpanucena, =707 0,0 u np. na Aten-Daparne nongrasane, re I e усповно сходошу. #

Зг. Доринмираите и докажете пр. на вабе за сходиност на редове. /Критерий на Paase (- Drainen) - Нека an гоминаne pequiyara $b_n = n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right)$, vigero pegér e $\frac{z}{h} = a_n$. Dy za exegunoce - Ano una 9>1, za rocco bu = 9 upu nz no, to peget e exogeny. Dy za pazxoquiaci- Aro bn < 1, To peget e pazxogruy.

Tparincha dooping - Aro lom bn = b, to upu b> 1 peget e exogeny, a upu bet peget e pagaogeny. D-Bo: T. Dy sa parxognuocT:

Dageno e $n \cdot \left(\frac{an}{an+1} - 1\right) \leq 1 \leq 2 \cdot \frac{an}{an+1} \leq 1 + \frac{1}{n} \leq 2$ Знави, те хариокитният ред Ей в разходящу =) kp. za cpas nenne 11. D9 za crogernoct: Hera p=, 1+9/2. goctation e $\frac{a_{n+1}}{a_n} \leq \frac{\overline{(n+1)^r}}{1}$, saugoto $\frac{z}{z} \frac{1}{n^r}$ e сходит съгласно интегратия критерий. Dagerro e le anti 2 1 + 9 (=) anti = 1+ 2 = (n+1) = () (n+1) = 1 + 2 = 1 (1+ h) < 1 + (2p-1). 1 => (1+x) = 1+ (2p-1). x 39 "Manky" X. Hera (CX) = (1+X)P_ (1+(2p-1).x) ища кепремската производка.

Scanned by CamScanner

 $C'(x) = p. (1+x)^{p-1} - (2p-1)$ l'(0)=-P+1 <0 Henpewschara (ECX)) u grea en ma 520, 70 ka ce & (x) <0 30 1x1 < 0. Ho TOBA OZNACABA, re E(x) namanaBa B [0; 5] E(x) ≤ e(0) B [0, 5]. => goragique (1+x) = 1+ (2p-1)x za x & Eo, 5] => (1+ f) = 1+ (2p-1). f 3a n> f # Интеграпен критерий за схадиност- Нека $f:E1:+ce)\to IR$ е монотонно каналяванца, $f(x) \ge 0$. Тогава е изпълнено E(x): E f(u) e cxogrum (=> /jcxdx e crogrum D-BO: (a) f(x) dx e exogeny (=) flim ffcx dx. Owne una-Me, re; $\int_{1}^{4} f(x) dx = \int_{1}^{2} f(x) dx + \int_{1}^{4} f(x) dx + \int_{1}^{4} f(x) dx + \dots = \int_{1}^{4} \frac{1}{2} f(x) dx + \dots =$ UNTERPORTET E CXOGRUY KOFOTO $\frac{2}{5}$ $\int_{n=1}^{5}$ \int_{n}^{4} \int_{n}^{5} \int_{n}^{5} Pagrnencgaux / fex) dx u oturane go uspoga, re: $f(n+1) \leq \int_{f(x)} dx \leq f(n)$ Сушранки неровенството за всички n nongeapoure: $\leq f(n) \leq \leq \int_{f(x)} dx \leq \leq \int_{n=0}^{\infty} f(n)$ шат едкаква сходиност

Scanned by CamScanner

Scanned by CamScanner

93. Do sépure geopernuyunes D Kazrane, re unonc. e Acll' c respra ryra (Bermoer
Ha Pleano-Mopgan), and za Board E20 Chuyect by Bat Kpaen Spain upasot rennum Δ_L , Δ_Z ,, Δ_m , takuba ze:
AC DAS u (THATA) & S(As) < E (cynaproto muze
e no-marko ot E). # D Kazsane re mnosec. A c/R² e uznepuno (B cuncos ra
PLEAND- DICORDY), and CELLECT BYBO MPOBOBFENHUK A, 39 KOT-
TO ACA " XA (xapantepurtuena objunción HA A) e unas
Περιο-Μικορροιη), από υπιγραπειμένα πραβουστάκια $Δ$, 39 κοῦ- το A c Δ u X_A (χαραπτεριστάκια οβγμκιμένη H 9 A) e unterpyena $β/y$ Δ - Πονασαμέ $S(A)$ = $\iint X_A(X_c y) dx dy$ $\#$
103 Dok, ге от ограниченого иноже. Не изперино, то мю. 2А от граничните точки на А ина мирка нула.
ДА от граничните точки на А имя мерка нума.
D-BO: Dageno e. re 1 e nyuepuno, ACA. Toraka za E20
und paygenthe $S(x_A, \Delta, \widetilde{x}, \widetilde{y}) - s(x_A, \Delta, \widetilde{x}, \widetilde{y}) < \frac{1}{2}$
Aij ca ($A \rightarrow M$) $M_{ij} = 1$, $M_{ij} = 1$
{ Dij nA = ())) = Mij = mij = 0
* $\left\{ \begin{array}{ll} \Delta ij \ n(\Delta A) \neq \emptyset \\ \Delta nA \neq \emptyset \end{array} \right\} \Rightarrow Mij = 1, mij = 0$
Torasa: \(\(\int \) S(\(\alpha \) \) < \(\frac{\xi}{2} \), \(\ko \) \(\alpha \) A \(\alpha \) \(\alp
$=> \sum_{p=1}^{s} S(\Delta_p) < \frac{\varepsilon}{2} \#$
O OT FOO KIRMITA TOOK OF

DOK, re ano unoncellaboto DA OT FRAKURMITE TO ENU RA OFFANUTE NOTO UNONE. A una urpra kyra, to A e ugue-puno.

TOTAS TOTAS TOTAS BRUTAN
D-BO: XA: • areo (Xo, yo) e Botpemka (X4) CA
D-BO: XA: • and (Xo, yo) e Botpemka totka, to za Bentky (Xiy) OT \((X-Xo)^2 + (4-yo)^2' \) & chegga \((Xiy)\) & H.
x_{A} е непремъсната в (x_{0}, y_{0}) . • оно (x_{0}, y_{0}) е външна, то от $(x_{0})^{2} + (y_{0} - y_{0})^{2} = \delta$ сперва (x_{0}, y_{0}) е f .
0000 (Xx 40) 0 BEHUNEA, TO OT /(X-X0) + (4-90)
Casala (X W) & A
XA e respensances B
X_A ε μεπρεντόταστα B (X_0, Y_0). =) $\{(X, Y): X$ ε μεπρεντόταστα $\{C, X_0, Y_0\}$. There is the interpretation of the property of the interpretation of the interpreta
Torasa so:
ACA
XA OFFOURWICKA >=> XA e unterpyena. #
Bare mat wip
Base mat wif
ra ryna /
All The Seal Cathering evel every
72 DY 29 pasen CTBO KG CHECE HUTE Upongsogne - Hero
Fund La CLAN Manuscal Mar Solo Secretary (20, 20) n mas
Fund to the information $\frac{\partial^2 F}{\partial x \partial y}$ in $\frac{\partial^2 F}{\partial y \partial x}$ in the continuous warm is (x_0, y_0) . To take $\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}$ is $\frac{\partial^2 F}{\partial y \partial x}$ is $\frac{\partial^2 F}{\partial y \partial x}$. It is continuous $\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}$ is $\frac{\partial^2 F}{\partial y \partial x}$.
WE CHATU B (XO, YO). TOTOKBO 234 2000
DXD = B TOCKETO
(Xo, yo). U-10.
1) Hera Byenen - Boprobe CEC ZHOUR +.
1(x, y) = F(x, y)+ F(xo, yo) - F(xo, y) - F(x, yo)
(3) Here ECu) = F(u, y) - F(u, yo) Torang chez karo zaweczu
D'Here, $\xi(u) = F(u, y) - F(u, y_0)$. Torousa cheq karo gamecrum nongrasame: $\Delta(x, y) = \xi(x) - \xi(x_0)$
3 Oceangro $e'(u) = \frac{\partial F}{\partial x}(u, y) - \frac{\partial F}{\partial u}(u, y_0)$

 $\Delta(x_{i}y) = (x-x_0) \cdot \ell'(x_0 + \theta_{i}(x-x_0)) =$ $= (X - X_0) \cdot \left(\frac{\partial F}{\partial x} \left(x_0 + \beta_1 (X - X_0), y \right) - \frac{\partial F}{\partial x} \left(x_0 + \beta_2 (X - X_0), y_0 \right)^{(4)} \right)$ $(x-x_0)$. $(y-y_0)$. $\frac{\partial^2 F}{\partial x \partial y}$. $(x_0 + \theta_1(x-x_0), (y-y_0))$, ντgeτο: 00 | 0 < 01 < 1 0 < 02 < 1 Difference $Y(u) = F(x,u) - F(x_0,u)$. Bauectbane u normales Baue: $\Delta(x,y) = Y(y) - Y(y_0)$ (5) Break te $\psi'(u) = \frac{\partial F}{\partial y}(x, u) - \frac{\partial F}{\partial y}(x_0, u)$ Πρима гане Thm 39 κρατίτωτε καραστβουπως α ποληκαβαπε: $\Delta(x,y) = (y-y_0)$. $\psi'(y_0 + \theta_3(y-y_0)) =$ $= (g-y_0) \cdot \left(\frac{\partial f}{\partial y}(x, y_0 + \theta_3(g-y_0)) - \frac{\partial f}{\partial y}(x_0, y_0 + \theta_3(g-y_0))\right) \stackrel{(A)}{=}$ Припатаме отново Тим закрайните нараствания. (**) $(y-y_0)$. $(x-x_0)$. $\frac{\partial^2 F}{\partial y \partial x} (x_0 + \theta_y (x-x_0), y_0 + \theta_s (y-y_0))$, Wegero: 02 03 <1 0< 04 < 1 O Hera $(x,y) \longrightarrow (x_0,y_0)$ $u \mid x \neq x_0, x \rightarrow x_0$ Toraba cheasa, ze: $y \neq y_0, y \rightarrow y_0$ To raise enegge, te: $\frac{\partial^2 F}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 F}{\partial y \partial x}(x_0, y_0) \#$