

0,9

0,5

Датчик давления и температуры BMP180 (Digital Pressure Sensor)

совместим с датчиком ранней модели МВР085

Датчик поставляется в виде модуля (на печатной плате) с 4 или 5 выводами:

- если у модуля 4 вывода (VIN GND SCL SDA), то на вывод VIN подаётся питание +3,3в.
- если у модуля 5 выводов (VIN 3V3 GND SCL SDA), то на вывод VIN подаётся +5в. (так же можно запитать модуль с 5 выводами от 3,3в, подав их на вывод 3V3 оставив вывод VIN свободным)
- если у модуля 5 выводов с выводом IO или VDDIO, то считайте, что у Вашего модуля 4 вывода. Не подавайте +5в!!!

Выводы датчика:

1 - CS, $2 - V_{DD}$, $3 - V_{DDIO}$, 4 - MOSI, 5 - CSL (CSLK), 6 - SDA (MISO), 7 - GND.

Датчик имеет возможность передачи данных используя интерфейсы I2C (выводы: 5-CSL и 6-SDA) или SPI (выводы: 1-CS, 4-MOSI, 5-CSLK и 6-MISO)
В рассматриваемых модулях используется протокол I2C, а значит выводы 1 и 4 датчика не используются, но должны быть припаяны к плате для симметрии.

Выводы модуля:

VIN (Vcc, Vdd) плюс питания;

GND (-) (англ. GrouND) общий (минус питания);

SDA (DA) (англ. Serial DAta) линия данных, интерфейс I2C SCL (CL) (англ. Serial CLock) линия тактирования, интерфейс I2C

Виды некоторых модулей с установленным датчиком ВМР180:

Питание датчика: (V_{DD})	1,8	3,6	В	постоянного тока				
Питание шины I2C: (V _{DDIO})	1,62	3,6	В	постоянного тока (подводимое к подтягивающим резисторам)				
Питание модуля:	3,3 или	5	В	зависит от модуля (см. выше)				
Потребляемый ток:	3	32	мкА	во время измерений (зависит от режима точности)				
	650	1	MΑ	во время преобразований				
	0,1		мкА	в режиме ожидания				
Рабочая температура	-40	80	°C	предельно допустимые значения				
Рабочее давление	0	10	МПа	предельно допустимые значения				
Диапазон давления:	300	1100	гПа	разрешение 0,06 гПа точность ± 0 ,12 гПа (на пределах ± 1 гПа)				
Диапазон температуры:	0	65	°C	разрешение 0,1°C точность \pm 0,5°C (на пределах \pm 2°C)				
Время преобразований	3	51	MC	зависит от режима точности				
Рабочая частота шины I2C		3,4	МГц					
Уровень «0» в шине I2C	0	$0,2*V_{DDI}$	o B					
Уровень «1» в шине I2C	$0.8*V_{DD}$	o V _{DDIO}	В					
Резисторы на шине I2C	2,2	10	кОм	подтягивающие резисторы на линиях SDA и SCL шины I2C				
Ток стока линии SDA в I2C	≈	9	MΑ					
Адрес датчика на шине I2C 0x7		0x77	HEX	id адрес датчика (модуля) для обращения по шине I2C				
Подготовка к запуску	10		MC	неустойчивое состояние после подачи питания на датчик				

1гПа (гектопаскаль) = 100 Паскалей \approx 0,75 мм. рт. ст.

Состав датчика ВМР180:

- пьезо-резистивный датчик (для определения атмосферного давления);
- термодатчик (для определения температуры);
- АЦП (аналого-цифровой преобразователь);
- EEPROM (энергонезависимая электрически стираемая перепрограммируемая память);
- RAM (энергозависимая память, другими словами ОЗУ);
- микроконтроллер;
- передача данных организована по шинам I2C или SPI (в рассматриваемом случае используется I2C).

Название регистров Адрес	A	Данные регист	Значение	_	Примечание	
	7 бит 6 бит 5 бит 4 бит 3 бит	2 бит 1 бит 0 бит	при сбросе	Доступ		
AC1	0xAA	Старший бай	константа	R		
	0xAB	Младший ба	константа	R		
AC2	0xAC	Старший бай	константа	R		
	0xAD	Младший ба	константа	R		
AC3	0xAE	Старший бай	константа	R	44 6 11	
	0xAF	Младший ба	константа	R	11 калибровочных коэффициентов размером по 16 бит.	
AC4	0xB0	Старший бай	константа	R	Каждый занимает два регистра.	
	0xB1	Младший ба	константа	R	V	
AC5	0xB2	Старший бай	константа	R	Коэффициенты записываются на заводе изготовителе и являются	
	0xB3	Младший ба	константа	R	индивидуальными для каждого датчика. Они предназначены для компенсации:	
AC6	0xB4	Старший бай	константа	R	-смещения,	
	0xB5	Младший ба	константа	R	-температурной зависимости,	
B1	0xB6	Старший бай	константа	R	-погрешностей при изготовлении,	
	0xB7	Младший ба	константа	R	-неоднородностей материалов и т.д.	
B2	0xB8	Старший бай	константа	R		
	0xB9	Младший ба	константа	R	Коэффициенты не могут иметь значение 0 или 0xFFFF	
MB	0xBA	Старший бай	константа	R	поэффициенты не могут иметь значение о или охгтт	
	0xBB	Младший ба	константа	R		
MC	0xBC	Старший бай	константа	R		
	0xBD	Младший ба	константа	R		
MD	0xBE	Старший бай	константа	R		
	0xBF Младший байт		константа	R		
Chip Id	0xD0	0 1 0 1 0	1 0 1	константа	R	Значение регистра всегда=0х55 (можно исп. для проверки связи)
Soft Reset	0xE0	доступен только дл	0x00	W	При записи 0хВ6, произойдёт сброс как при включении питания.	
Measurement	0xF4	OSS CSO биты упр	управления	0x00	R/W	Регистр управления измерениями.
control		033 СЗО изм	UAUU	N/ W	OSS-режим точности, CSO-флаг состояния.	
Out MSB	0xF6	Старший байт рез	0x80	R	Регистры хранящие данные результатов измерений.	
Out LSB	0xF7	Младший байт рез	0x00	R		
Out xLSB	0xF8	Доп. биты результата	0x00	R		

Доступ к данным регистров датчика ВМР180:

Каждый регистр датчика хранит 1 байт данных. Так как модуль использует интерфейс передачи данных I2C, то и доступ к данным охарактеризован им.

Запись данных в регистры:

отправляем 1й байт (адрес датчика 0x77 и бит «R/W»=«0»); отправляем 2ой байт (адрес нужного нам регистра); отправляем 3й байт (данные для записи); после каждого отправленного байта, получаем ответ от датчика в виде одного бита «ACK».

Пример записи в регистр 0xF4 значения 0xB4:

Чтение данных из регистров:

отправляем 1й байт, (адрес датчика 0x77 и бит «R/W»=«0»); отправляем 2ой байт (адрес нужного нам регистра); отправляем сигнал «RESTART»; отправляем 3й байт, (адрес датчика 0x77 и бит «R/W»=«1»); датчик ответит одним байтом данных из указанного регистра; если подать сигнал «ACK», то датчик передаст байт данных следующего регистра и т.д. пока мы не передадим сигнал «NACK».

Пример чтения байта из регистра 0xF6 (датчик ответил значением 0x5C)

Если на шине только один ведущий, то после передачи двух первых байт (адреса датчика с битом «R/W» = «0» и адреса регистра) допустимо завершить пакет подачей сигнала «STOP» и начать новый пакет сигналом «START» передать адрес датчика с битом «R/W» после чего начать принимать или передавать данные. Такой вариант передачи данных позволяет использовать библиотеки в которых нет сигнала «RESTART».

«START» - начинает пакет переход из «1» в «0» на линии «SDA» при наличии «1» на линии «SCL».

«STOP» - завершает пакет переход из «О» в «1» на линии «SDA» при наличии «1» на линии «SCL».

«1» / «0» - биты данных передаваемый бит равен логическому состоянию линии «SDA» при наличии «1» на линии «SCL».

«АСК» - байт принят передача бита «0» «NACK» - байт не принят передача бита «1»

- приём/чтение

«R/W»

последний бит первого байта. Если «0» - инициализирована запись, если «1» - инициализировано чтение,

а первые 7 бит первого байта – это id-адрес устройства на шине I2C к которому направлена инициализация.

«RESTART» повторный старт сигнал нужен при наличии на шине двух ведущих и невозможности передачи инициативы второму.

Изменения уровней на линии «SDA» происходят только при наличии «O» на линии «SCL» за исключением сигналов «START», «STOP», «RESTART».

«OSS» - 7 и 6 биты регистра «Measurement Control»: режим точности

Может принимать значения от 0 до 3 (00b, 01b, 10b, 11b) на основании этого значения датчик устанавливает соотношение передискретизации при измерении давления (00b: 1, 01b: 2, 10b: 4, 11b: 8).

«CSO» - 5 бит регистра «Measurement Control»: флаг состояния

При установке «CSO» в «1», датчик начнет измерения и после всех преобразований сбросит его в «0» указывая на доступность регистров «Out ...».

- 4:0 биты регистра «Measurement Control»: вид измерения

Принимают два значения: 01110b или 10100b в первом случае датчик будет измерять температуру, во втором давление. Результаты измерений доступны для чтения из регистров «Out MSB», «Out LSB», «Out xLSB», как для давления, так и для температуры.

Исходя из выше изложенного, в регистр «Measurement Control» можно записывать следующие значения:

Вид измерений		Запи	сываемое	е значение	Время	Потребляемый	Точность измерений	
	OSS	CSO	4:0	Результат	измерений	ток		
Температура	00	1	01110	00101110 = 0x2E	до 4,5 мс	3 мкА	0,5 °C	
Давление	00	1	10100	00110100 = 0x34	до 4,5 мс	3 мкА	0,6 гПа	
Давление	01	1	10100	01110100 = 0x74	до 7,5 мс	5 мкА	0,5 гПа	
Давление	10	1	10100	10110100 = 0xB4	до 13,5 мс	7 мкА	0,4 гПа	
Давление	11	1	10100	11110100 = 0xF4	до 25,5 мс	12 мкА	0,3 гПа	

Алгоритм получения данных:

1) Чтение калибровочных коэффициентов:

Чтение значений из одноименных регистров: AC1, AC2, AC3, B1, B2, MB, MC, MD;

unsigned short AC4, AC5, AC6;

short

long

2) Чтение температуры: (некомпенсированное значение)

Записываем в регистр «Measurement Control» значение: 0x2E;

Ожидаем спад флага состояния «CSO» в «О»;

Читаем результат из регистров «Out MSB» и «Out LSB»;

long
UT = «Out MSB»<<8 + «Out LSB»;</pre>

3) Чтение давления: (некомпенсированное значение)

Записываем в регистр «Measurement Control» значение: 0x34 + (OSS<<6);

Ожидаем спад флага состояния «CSO» в «0»;

Читаем результат из регистров «Out MSB», «Out LSB» и «Out xLSB»;

UP = («Out MSB»<<16 + «Out LSB»<<8 + «Out xLSB») >> (8-OSS);

4) Вычисление промежуточных переменных:

short PP1=((UT-AC6)*AC5>>15)+(MC<<11)/(((UT-AC6)*AC5>>15)+MD);

unsigned short PP2=((uint32_t)AC4*(uint32_t)(((((AC3*(PP1-4000))>>13)+((B_1*(((PP1-4000))>>12))>>16)+2)>>2)+32768))>>15;

short PP4=PP3<0x80000000?PP3*2/PP2:PP3/PP2*2;

5) Вычисление действительных значений:

float T=((float)PP1+8)/160;

float P=((float)PP4+(((((PP4>>8)*(PP4>>8)*3038)>>16)+((-7357*PP4)>>16)+3791)>>4))/133.322;

Высота над уровнем моря: Зная текущее атмосферное давление «Р» и давление на уровне моря «Ро», можно рассчитать текущую высоту над уровнем моря по международной барометрической формуле:

Высота = 44330 (1-(P/Po)^{1/5,255}) Высота = 44330
$$\left(1 - \frac{5,255}{Po}\right)^{\frac{P}{Po}}$$

Обе записи верны, выбирайте какая больше нравится.

Принцип действия датчика ВМР180:

В датчике имеется герметичная камера, одна из стенок которой является гибкой мембраной с установленными на ней тензодатчиками. Мембрана прогибается пропорционально разности давлений внутри камеры и снаружи, что влияет на изменение сопротивления тензодатчиков электрическому току. Так же имеется термодатчик, сопротивление которого меняется пропорционально температуре.

АЦП (аналого-цифровой преобразователь) переводит результаты изменений датчиков в цифровые данные «некомпенсированные результаты», которые доступны для чтения из регистров датчика: «Out MSB», «Out LSB» и «Out xLSB».

Для компенсации указанных результатов (компенсации смещения, температурной зависимости, погрешностей при изготовлении, неоднородностей материалов и т.д.) каждый датчик калибруется на заводе, и в EEPROM записываются индивидуальные для каждого датчика 11 калибровочных коэффициентов (176 бит), которые доступны для чтения из регистров датчика: «AC1», «AC2», «AC3», «AC4», «AC5», «AC6», «B1», «B2», «MB», «MC», «MD».

Не допускайте попадания на датчик влаги и прямых солнечных лучей.