線形代数学・同演習 B

1月31日分 演習問題*1

$$\begin{aligned} &1. & (1) \ P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}. \\ & (2) \ P = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}. \\ & (3) \ P = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix}. \\ & (4) \ P = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 5 & 0 \\ 0 & -1 \end{pmatrix}. \\ & (5) \ P = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix}. \\ & (7) \ P = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \\ & (2) \ P = \frac{1}{\sqrt{6}} \begin{pmatrix} -2 & 0 & \sqrt{2} \\ 1 & -\sqrt{3} & \sqrt{2} \\ 1 & \sqrt{3} & \sqrt{2} \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \\ & (3) \ P = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & 1 & -\sqrt{3} \\ \sqrt{2} & -2 & 0 \\ \sqrt{2} & 1 & \sqrt{3} \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\ & (4) \ P = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & -\sqrt{3} & \sqrt{2} \\ -2 & 0 & \sqrt{2} \\ 1 & \sqrt{3} & \sqrt{2} \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}. \\ & (5) \ P = \frac{1}{\sqrt{6}} \begin{pmatrix} -2 & \sqrt{2} & 0 \\ -1 & -\sqrt{2} & \sqrt{3} \\ 1 & \sqrt{2} & \sqrt{3} \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 7 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\ & (6) \ P = \frac{1}{\sqrt{6}} \begin{pmatrix} -\sqrt{2} & 1 & -\sqrt{3} \\ -\sqrt{2} & 1 & \sqrt{3} \\ \sqrt{2} & 2 & 0 \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \\ & (7) \ P = \frac{1}{3\sqrt{5}} \begin{pmatrix} -\sqrt{5} & 6 & -2 \\ -2\sqrt{5} & 0 & 5 \\ 2\sqrt{5} & 3 & 4 \end{pmatrix} \text{ IT & IT } P^{-1}AP = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \end{aligned}$$

 $^{^{}st 1}$ 凡例:無印は基本問題 $, \dagger$ は特に解いてほしい問題 , st は応用問題 .

$$(8) \ P = \frac{1}{\sqrt{30}} \begin{pmatrix} -2\sqrt{5} & \sqrt{6} & 2\\ \sqrt{5} & 0 & 5\\ \sqrt{5} & 2\sqrt{6} & -1 \end{pmatrix} \text{により} \ P^{-1}AP = \begin{pmatrix} 5 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

$$(9) \ P = \frac{1}{\sqrt{42}} \begin{pmatrix} 2\sqrt{2} & -3\sqrt{3} & \sqrt{7}\\ 4\sqrt{2} & \sqrt{3} & -\sqrt{7}\\ \sqrt{2} & 2\sqrt{3} & 2\sqrt{7} \end{pmatrix} \text{により} \ P^{-1}AP = \begin{pmatrix} 4 & 0 & 0\\ 0 & -3 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

- 3. (1) $\det A = (a-1)(b-a)$
 - (2) (i) a = 1 かつ $b \neq 1$ (ii) $a \neq 1$ かつ a = b
 - (3) 0 < a < b (問題 4 の同値性を使うとよい)
- 4.* (1) $A=(a'_{ij}),$ $a'_{jj}=a_{jj}$ $(j=1,\ldots,n),$ $a'_{ij}=(a_{ij}+a_{ji})/2$ $(i\neq j)$ とすれば A は対称行列であって $f(x)={}^txAx$ となる.(2) $f(x)={}^txAx$ において y=Sx を代入すれば $f(y)={}^t(Sy)ASy={}^ty{}^tSASy$ となることより.(3) 対称行列は直交行列により対角化できることと(2)より.
- 5.* $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ とおく.
 - (1) A は対称行列なのである直交行列 P により $A=P\left(egin{array}{c} \lambda & 0 \\ 0 & \mu \end{array} \right) {}^tP$ とかける.ここで λ,μ は A の固有値である.ここで $\lambda,\mu>0$ であることと $\det A=\lambda\mu$ であることに注意.さて

$$ax^{2} + 2by + cy^{2} = (x, y)A\begin{pmatrix} x \\ y \end{pmatrix} = {}^{t} \left[{}^{t}P\begin{pmatrix} x \\ y \end{pmatrix} \right] \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \left[{}^{t}P\begin{pmatrix} x \\ y \end{pmatrix} \right]$$

なので $\binom{u}{v}={}^t\!P\binom{x}{y}$ という変数変換を考える. ${}^t\!P$ は正則な行列であり (x,y) に関する積分領域は \mathbb{R}^2 全体なので,(u,v) に関する積分領域も \mathbb{R}^2 全体である.また変数変換に伴う Jacobian は 1 月 24 日の演習問題 8 により 1 であることがわかっている.よって

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(ax^2 + 2bxy + cy^2)} dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(\lambda u^2 + \mu v^2)} du dv$$
$$= \int_{-\infty}^{\infty} e^{-\lambda u^2} du \int_{-\infty}^{\infty} e^{-\mu v^2} dv$$
$$= \sqrt{\frac{\pi}{\lambda}} \cdot \sqrt{\frac{\pi}{\mu}} = \frac{\pi}{\sqrt{\det A}}$$

(2) $A=L^tL$ とおけば , 1 月 24 日の演習問題 5 より $L=\begin{pmatrix} \sqrt{a} & 0 \\ b/\sqrt{a} & \sqrt{(\det A)/a} \end{pmatrix}$ である . さて

$$ax^{2} + 2by + cy^{2} = (x, y)A\begin{pmatrix} x \\ y \end{pmatrix} = {}^{t}[{}^{t}L\begin{pmatrix} x \\ y \end{pmatrix}]{}^{t}L\begin{pmatrix} x \\ y \end{pmatrix}$$

なので $\binom{u}{v}={}^t\!L\binom{x}{y}$ という変数変換を考える. ${}^t\!L$ は正則な行列であり (x,y) に関する積分領域は \mathbb{R}^2 全体なので,(u,v) に関する積分領域も \mathbb{R}^2 全体である.また変数変換に伴う Jacobian は 1 月 24 化の演習問題 8 により $\det L^{-1}=1/\sqrt{\det A}$ であることがわかっている.よって

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(ax^2 + 2bxy + cy^2)} \, dx \, dy = \frac{1}{\sqrt{\det A}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(u^2 + v^2)} \, du \, dv = \frac{\pi}{\sqrt{\det A}}.$$