

Report No:CCISE160503704

FCC REPORT

(UNII)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin,

Hong Kong

Equipment Under Test (EUT)

Product Name: 17.3 inches Quad Core Media Player Slim Housing

Model No.: DT173-AC4-1080-SL, 502-1739ATATM-01

FCC ID: 2AB6Z-DT173-AC4-SL

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 12 Jun.,2016

Date of Test: 12 Jun., to 23 Jun., 2016

Date of report issued: 23 Jun., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00 23 Jun., 2016		Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMBA-V2) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Tested by: Date: 23 Jun., 2016

Reviewed by: Date: 23 Jun., 2016

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
- 5		NERAL INFORMATION	
J	GEI	NERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT ANDMODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	15
	6.6	BAND EDGE	16
	6.7	Spurious Emission	25
	6.7.	1 Restricted Band	25
	6.7.	2 Unwanted Emissions out of the Restricted Bands	34
	6.8	FREQUENCY STABILITY	44
7	TES	ST SETUP PHOTO	45
0	E1 17	CONSTRUCTIONAL DETAILS	46

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a) (1) (iv) & (a) (3)	Pass*
26dB Occupied Bandwidth	15.407(a) (5)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407(a) (1) (iv) &(a) (3)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMBA-V2.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address of Manufacturer/Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Product Name:	17.3 inches Quad Core Media Player Slim Housing
Model No.:	DT173-AC4-1080-SL, 502-1739ATATM-01
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4,802.11n40: 2,802.11ac:1 Band 4: 802.11a/802.11n20: 5,802.11n40: 2,802.11ac:1
Channel separation:	802.11a/802.11n20:20MHz, 802.11n40:40MHz, 802.11ac : 80MHz
Modulation technology: (IEEE 802.11a)	BPSK,QPSK,16-QAM,64-QAM
Modulation technology: (IEEE 802.11n)	BPSK,QPSK,16-QAM,64-QAM
Modulation technology: (IEEE 802.11ac)	BPSK,QPSK,16-QAM,64-QAM, 256-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps,MCS1:13Mbps,MCS2:19.5Mbps,MCS3:26Mbps, MCS4:39Mbps,MCS5:52Mbps,MCS6:58.5Mbps,MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps,MCS1:30Mbps,MCS2:45Mbps,MCS3:60Mbps, MCS4:90Mbps,MCS5:120Mbps,MCS6:135Mbps,MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	Omni-directional
Antenna gain:	2 dBi
AC Adapter:	Model: PS24A120K2000UD Input: 100-240V ac, 50/60Hz, 1A Output: 12V dc, 2A
Remark:	Model No.: DT173-AC4-1080-SL, 502-1739ATATM-01were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different model numberfor customer and for HUNG WAI.

Operation Frequency each of channel

Band 1						
802.11a	802.11a/802.11n20		802.11n40		802.11ac	
Channel	Frequency	Channel	Frequency	Channel	Frequency	
36	5180MHz	38	5190MHz	42	5210MHz	
40	5200MHz	46	5230MHz			
44	5220MHz					
48	5240MHz					
		Band 4				
802.11a	/802.11n20	802.	802.11n40 802.11a		.11ac	
Channel	Frequency	Channel	Frequency	Channel	Frequency	
149	5745MHz	151	5755MHz	155	5775MHz	
153	5765MHz	159	5795MHz			
157	5785MHz					
161	5805MHz					
165	5825MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1							
802.11a/802.11n20		802.11n40		802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz		
Middle channel	5200MHz	Highest channel	Highest channel 5230MHz				
Highest channel	5240MHz						
	Band 4						
802.11a/80	02.11n20	802.11	n40	802.1	1ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
Lowest channel	5745MHz	Lowest channel	5755MHz	Middle channel	5775MHz		
Middle channel	5785MHz	Highest channel	5795MHz				
Highest channel	5825MHz		_				

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode	Data rate			
802.11a	6 Mbps			
802.11n20	6.5 Mbps			
802.11n40	13 Mbps			
802.11ac	23.9 Mbps			

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6Mbps for 802.11a,6.5 Mbps for 802.11n20, 13 Mbps for 802.11n40 and 29.3Mbps for 802.11ac. All test items for 802.11a, 802.11ac and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

●FCC- Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully describedin a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017		
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirementdoes not apply to carrier currentdevices or to devices operated underthe provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbances ensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is a Reverse-SMA which cannot replace by end-user, the best case gain of the antenna is 2dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15	.207						
Test Method:	ANSI C63.4: 2014							
TestFrequencyRange:	150kHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range Limit (dBuV)							
	(MHz) Quasi-peak							
	0.15-0.5 66 to 56* 0.15-0.5							
	0.5-5	56	0.5-5					
	5-30	60	5-30					
	* Decreases with the loga							
Test procedure	line impedance s 500hm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. lin interference. In order positions of equipme	 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 						
Test setup:	. F	Reference Plane						
	AUX Equipment Test table/Insulati Remark: E.U.T. Equipment Under To LISN: Line Impedence Stat Test table height=0.8m	E.U.T EMI Receiver	Iter — AC power					
Test Uncertainty:			±3.28 dB					
Test Instruments:	Refer to section 5.7 for de	etails						
Test mode:	Refer to section 5.3 for de	etails.						
Test results:	Passed							

Measurement Data:

Line:

Trace: 9

Site Condition

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 17.3"Quad Core Media Player Slim Housing EUT

: DT173-AC4-1080SL Test Mode : 5G-WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remark Model

Remark

Freq	Read Level	LISN Factor			Limit Line		Remark
MHz	—dBu∜	<u>dB</u>		dBu₹	dBu₹	<u>dB</u>	
0.150	49.15	0.26	10.78	60.19	66.00	-5.81	QP
0.150	33.64	0.26	10.78	44.68	56.00	-11.32	Average
0.190	42.55	0.26	10.76	53.57	64.02	-10.45	QP
0.190	25.37	0.26	10.76	36.39	54.02	-17.63	Average
0.200	41.97	0.26	10.76	52.99	63.62	-10.63	QP
0.200	28.74	0.26	10.76	39.76	53.62	-13.86	Average
0.249	35.35	0.26	10.75	46.36	61.78	-15.42	QP
0.264	33.44	0.26	10.75	44.45	61.29	-16.84	QP
0.404	19.05	0.26	10.72	30.03	47.77	-17.74	Average
0.489	32.33	0.27	10.76	43.36	56.19	-12.83	QP
0.489	25.04	0.27	10.76	36.07	46.19	-10.12	Average
0.759	17.54	0.28	10.80	28.62	46.00	-17.38	Average
	MHz 0. 150 0. 150 0. 190 0. 190 0. 200 0. 200 0. 249 0. 264 0. 404 0. 489 0. 489	MHz dBuW 0.150 49.15 0.150 33.64 0.190 42.55 0.190 25.37 0.200 41.97 0.200 28.74 0.249 35.35 0.264 33.44 0.404 19.05 0.489 32.33 0.489 25.04	Freq Level Factor MHz dBuV dB 0.150 49.15 0.26 0.150 33.64 0.26 0.190 42.55 0.26 0.190 25.37 0.26 0.200 41.97 0.26 0.200 28.74 0.26 0.249 35.35 0.26 0.249 35.35 0.26 0.249 35.35 0.26 0.264 33.44 0.26 0.404 19.05 0.26 0.489 32.33 0.27 0.489 25.04 0.27	Freq Level Factor Loss MHz dBuV dB dB dB	MHz dBuV dB dB dBuV 0.150 49.15 0.26 10.78 60.19 0.150 33.64 0.26 10.78 44.68 0.190 42.55 0.26 10.76 53.57 0.190 25.37 0.26 10.76 36.39 0.200 41.97 0.26 10.76 52.99 0.200 28.74 0.26 10.75 46.36 0.249 35.35 0.26 10.75 44.45 0.404 19.05 0.26 10.72 30.03 0.489 32.33 0.27 10.76 43.36 0.489 25.04 0.27 10.76 36.07	Freq Level Factor Loss Level Line MHz dBuV dB dB dBuV dBuV	MHz dBuV dB dB dBuV dBuV dB 0.150 49.15 0.26 10.78 60.19 66.00 -5.81 0.150 33.64 0.26 10.78 44.68 56.00 -11.32 0.190 42.55 0.26 10.76 53.57 64.02 -10.45 0.190 25.37 0.26 10.76 36.39 54.02 -17.63 0.200 41.97 0.26 10.76 52.99 63.62 -10.63 0.200 28.74 0.26 10.76 53.97 53.62 -13.86 0.249 35.35 0.26 10.75 46.36 61.78 -15.42 0.264 33.44 0.26 10.75 44.45 61.29 -16.84 0.404 19.05 0.26 10.72 30.03 47.77 -17.74 0.489 32.33 0.27 10.76 43.36 56.19 -12.83 0.489 25.04 0.27

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 17.3 Quad Core Media Player Slim Housing : DT173-AC4-1080SL EUT

Model : 5G-WIFI mode Test Mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

CHAIR	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.150	47.35	0.17	10.78	58.30	66.00	-7.70	QP
1 2	0.150	36.10	0.17	10.78	47.05	56.00	-8.95	Average
3	0.160	45.55	0.17	10.78	56.50	65.47	-8.97	QP
4	0.185	27.94	0.16	10.77	38.87	54.24	-15.37	Average
4 5 6 7	0.195	42.39	0.16	10.76	53.31	63.80	-10.49	QP
6	0.235	38.52	0.16	10.75	49.43	62.26	-12.83	QP
7	0.246	36.25	0.16	10.75	47.16	61.91	-14.75	QP
8 9	0.249	24.74	0.16	10.75	35.65	51.78	-16.13	Average
9	0.350	21.25	0.16	10.73	32.14	48.96	-16.82	Average
10	0.494	33.11	0.16	10.76	44.03	56.10	-12.07	QP
11	0.494	26.07	0.16	10.76	36.99	46.10	-9.11	Average
12	0.561	22.24	0.17	10.77	33.18	46.00	-12.82	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)					
Test Method:	ANSI C63.10: 2013, KDB789033					
Limit:	Band 1: 24dBm Band 4:30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2					

6.4 Occupy Bandwidth

FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)					
ANSI C63.10:2013 and KDB 789033					
Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)					
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Refer to section 5.7 for details					
Refer to section 5.3 for details					
Refer to FCC ID: 2AB6Z-1859ATMBA-V2					

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) &(a) (3)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1:11 dBm/MHz Band 4: 30dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2				

6.6 Band Edge

6.6 Band Edge							
Test Requirement:	FCC Part15 E Section 15.407 (b)						
Test Method:	ANSI C63.10:20	ANSI C63.10:2013, KDB 789033					
Receiver setup:	Detector Quasi-peak RMS	RBW 120kHz 1MHz	VBW 300kHz 3MHz	Remark Quasi-peak Va Average Val			
I too to	L KIVIS	IIVITZ	SIVITZ	Average var	ue		
Limit:	Band Limit (dBuV/m @3m) Remark						
Test Procedure:	1. The EUT w the ground todetermine 2. The EUT w antenna, who tower. 3. The antenn the ground Both horizon make the m 4. For each su case and the meters and to find the meters and to	as placed of at a 3 meter at a 3 meter at a 3 meter at the position as set 3 methich was much a height is to determinate and veneasurement aspected enter the rota tal maximum receiver systems and width which is a set of the rota tal and with the rota tal and with the rota tal and with the rotal an	on the top of the higher camber. To on of the higher away founted on the varied from the the maximum the maximum the EUT in the testing content.	The table was roghest radiation. From the interfer he top of a variation one meter to formum value of the zations of the arrespondent to heights from 0 degrees to Peak Detect m Hold Mode. peak mode was all do be stopped an erwise the emissisted one by one	e 1.5 meters above otated 360 degrees ence-receiving able-height antenna our meters above e field strength. Intenna are set to aged to its worst rom 1 meter to 4 ees to 360 degrees		
Test setup:	AE EUT (Turntable)	Ground Reference Plane	Antenna Tow	ver			
Test Instruments:	Refer to section	5.7 for deta	ails	-			
Test mode:	Refer to section	5.3 for deta	ails				
Test results:	Passed						

Band 1:

	802.11a									
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.05	36.23	10.96	40.06	48.18	68.20	-20.02	Horizontal		
5150.00	42.69	36.23	10.96	40.06	49.82	68.20	-18.38	Vertical		
	802.11a									
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	31.99	36.23	10.96	40.06	39.12	54.00	-14.88	Horizontal		
5150.00	33.54	36.23	10.96	40.06	40.67	54.00	-13.33	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	40.58	35.37	11.19	40.18	46.96	68.20	-21.24	Horizontal		
5350.00	41.56	35.37	11.19	40.18	47.94	68.20	-20.26	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.01	35.37	11.19	40.18	38.39	54.00	-15.61	Horizontal		
5350.00	32.78	35.37	11.19	40.18	39.16	54.00	-14.84	Vertical		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT20									
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.89	36.23	10.96	40.06	49.02	68.20	-19.18	Horizontal		
5150.00	41.36	36.23	10.96	40.06	48.49	68.20	-19.71	Vertical		
			8	02.11n-HT20)					
Test cl	hannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.05	36.23	10.96	40.06	39.18	54.00	-14.82	Horizontal		
5150.00	33.12	36.23	10.96	40.06	40.25	54.00	-13.75	Vertical		
			8	02.11n-HT20)					
Test cl	hannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	41.57	35.37	11.19	40.18	47.95	68.20	-20.25	Horizontal		
5350.00	41.36	35.37	11.19	40.18	47.74	68.20	-20.46	Vertical		
			8	02.11n-HT20)					
Test cl	hannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.48	35.37	11.19	40.18	38.86	54.00	-15.14	Horizontal		
5350.00	32.91	35.37	11.19	40.18	39.29	54.00	-14.71	Vertical		

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT40									
Test cl	nannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.65	36.23	10.96	40.06	48.78	68.20	-19.42	Horizontal		
5150.00	42.57	36.23	10.96	40.06	49.70	68.20	-18.50	Vertical		
			8	02.11n-HT40)					
Test cl	nannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.05	36.23	10.96	40.06	39.18	54.00	-14.82	Horizontal		
5150.00	33.48	36.23	10.96	40.06	40.61	54.00	-13.39	Vertical		
			8	02.11n-HT40)					
Test cl	nannel	Highest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	41.78	35.37	11.19	40.18	48.16	68.20	-20.04	Horizontal		
5350.00	42.35	35.37	11.19	40.18	48.73	68.20	-19.47	Vertical		
			8	02.11n-HT40)					
Test cl	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.84	35.37	11.19	40.18	39.22	54.00	-14.78	Horizontal		
5350.00	33.47	35.37	11.19	40.18	39.85	54.00	-14.15	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11ac-HT80									
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.72	36.23	10.96	40.06	48.85	68.20	-19.35	Horizontal		
5150.00	41.58	36.23	10.96	40.06	48.71	68.20	-19.49	Vertical		
			80	02.11ac-HT8	0					
Test cl	hannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.56	36.23	10.96	40.06	39.69	54.00	-14.31	Horizontal		
5150.00	32.47	36.23	10.96	40.06	39.60	54.00	-14.40	Vertical		
			80	02.11ac-HT8	0					
Test ch	nannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	41.53	35.37	11.19	40.18	47.91	68.20	-20.29	Horizontal		
5350.00	40.17	35.37	11.19	40.18	46.55	68.20	-21.65	Vertical		
			80	02.11ac-HT8	0					
Test ch	nannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.57	35.37	11.19	40.18	38.95	54.00	-15.05	Horizontal		
5350.00	31.65	35.37	11.19	40.18	38.03	54.00	-15.97	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a									
Test cl	nannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	42.15	34.65	11.62	40.54	47.88	78.20	-30.32	Horizontal		
5725.00	41.65	34.65	11.62	40.54	47.38	78.20	-30.82	Vertical		
				802.11a						
Test cl	nannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	33.14	34.65	11.62	40.54	38.87	54.00	-15.13	Horizontal		
5725.00	32.10	34.65	11.62	40.54	37.83	54.00	-16.17	Vertical		
				802.11a						
Test ch	nannel	Highest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	42.03	34.63	11.75	40.69	47.72	78.20	-30.48	Horizontal		
5850.00	41.58	34.63	11.75	40.69	47.27	78.20	-30.93	Vertical		
				802.11a						
Test cl	nannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	33.12	34.63	11.75	40.69	38.81	54.00	-15.19	Horizontal		
5850.00	32.15	34.63	11.75	40.69	37.84	54.00	-16.16	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT20								
Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	41.58	34.65	11.62	40.54	47.31	78.20	-30.89	Horizontal	
5725.00	42.74	34.65	11.62	40.54	48.47	78.20	-29.73	Vertical	
	802.11n-HT20								
Test cl	hannel		Lowest		Le	vel	Av	verage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	32.02	34.65	11.62	40.54	37.75	54.00	-16.25	Horizontal	
5725.00	33.47	34.65	11.62	40.54	39.20	54.00	-14.80	Vertical	
			8	02.11n-HT20)				
Test cl	hannel		Highest		Level		F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	41.58	34.63	11.75	40.69	47.27	78.20	-30.93	Horizontal	
5850.00	40.14	34.63	11.75	40.69	45.83	78.20	-32.37	Vertical	
			8	02.11n-HT20)				
Test cl	hannel		Highest		Le	vel	Av	verage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	32.01	34.63	11.75	40.69	37.70	54.00	-16.30	Horizontal	
5850.00	31.47	34.63	11.75	40.69	37.16	54.00	-16.84	Vertical	

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			3	302.11n-HT40)			
Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	42.56	34.65	11.62	40.54	48.29	78.20	-29.91	Horizontal
5725.00	41.52	34.65	11.62	40.54	47.25	78.20	-30.95	Vertical
	802.11n-HT40							
Test cl	hannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	33.14	34.65	11.62	40.54	38.87	54.00	-15.13	Horizontal
5725.00	32.57	34.65	11.62	40.54	38.30	54.00	-15.70	Vertical
			8	02.11n-HT40)			
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	41.75	34.63	11.75	40.69	47.44	78.20	-30.76	Horizontal
5850.00	42.02	34.63	11.75	40.69	47.71	78.20	-30.49	Vertical
			8	02.11n-HT40)			
Test cl	hannel		Highest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	32.47	34.63	11.75	40.69	38.16	54.00	-15.84	Horizontal
5850.00	33.14	34.63	11.75	40.69	38.83	54.00	-15.17	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			8	02.11ac-HT8	0			
Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	42.05	34.65	11.62	40.54	47.78	78.20	-30.42	Horizontal
5725.00	41.32	34.65	11.62	40.54	47.05	78.20	-31.15	Vertical
	802.11ac-HT80							
Test ch	nannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	33.25	34.65	11.62	40.54	38.98	54.00	-15.02	Horizontal
5725.00	32.14	34.65	11.62	40.54	37.87	54.00	-16.13	Vertical
			8	02.11ac-HT8	0			
Test ch	nannel		Highest			vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	41.78	34.63	11.75	40.69	47.47	78.20	-30.73	Horizontal
5850.00	41.02	34.63	11.75	40.69	46.71	78.20	-31.49	Vertical
			8	02.11ac-HT8	0			
Test cl	nannel		Highest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	32.58	34.63	11.75	40.69	38.27	54.00	-15.73	Horizontal
5850.00	32.69	34.63	11.75	40.69	38.38	54.00	-15.62	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band					
	Test Requirement:	FCC Part15 E S	Section 15.407	(b)		
	Test Method:	ANSI C63.10: 2	2013			
	TestFrequencyRange:	Band 1: 4.5 GH Band 4: 5.35 G			z to 5.46GH	Ηz
	Test site:	Measurement D	Distance: 3m			
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value
	Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Remark
		Above 1	GHz	74.0		Peak Value
	Test Procedure:	the ground todetermin 2. The EUT wantenna, watower. 3. The antenry the ground Both horizon make the result of find the store of the EUT have 10dB	at a 3 meter of the position o	camber. The of the highes rs away from need on the tried from one the maximum cal polarization, the EU a was turned was turned was set to Family Maximum He EUT in peasing could bred. Otherw bere-tested	otating table table was restracted a variation. In the interferop of a variation of the analysis of the emission of the emissi	Average Value e 1.5 meters above otated 360 degrees rence-receiving able-height antenna our meters above ne field strength. Intenna are set to reged to its worst rom 1 meter to 4 rees to 360 degrees Function and as 10dB lower than and the peak values ssions that did not using peak, quasi- ported in a data
	Test setup:	(Turntab	Ground Reference Test Receiver		nna Tower	
	Test Instruments:	Refer to section	5.7 for details	<u> </u>		
	Test mode:	Refer to section				
	Test results:	Passed				

Band 1:

802.11a

Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	42.66	34.50	10.22	40.67	46.71	74.00	-27.29	Horizontal
4500.00	43.05	34.50	10.22	40.67	47.10	74.00	-26.90	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	33.04	34.50	10.22	40.67	37.09	54.00	-16.91	Horizontal
4500.00	33.98	34.50	10.22	40.67	38.03	54.00	-15.97	Vertical
Test cl	nannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	40.21	34.90	11.32	40.23	46.20	74.00	-27.80	Horizontal
5460.00	41.63	34.90	11.32	40.23	47.62	74.00	-26.38	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.22	34.90	11.32	40.23	37.21	54.00	-16.79	Horizontal
5460.00	32.58	34.90	11.32	40.23	38.57	54.00	-15.43	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	41.32	34.50	10.22	40.67	45.37	74.00	-28.63	Horizontal
4500.00	41.59	34.50	10.22	40.67	45.64	74.00	-28.36	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.65	34.50	10.22	40.67	36.70	54.00	-17.30	Horizontal
4500.00	31.89	34.50	10.22	40.67	35.94	54.00	-18.06	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.99	34.90	11.32	40.23	47.98	74.00	-26.02	Horizontal
5460.00	42.65	34.90	11.32	40.23	48.64	74.00	-25.36	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.05	34.90	11.32	40.23	38.04	54.00	-15.96	Horizontal
5460.00	33.12	34.90	11.32	40.23	39.11	54.00	-14.89	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	41.56	34.50	10.22	40.67	45.61	74.00	-28.39	Horizontal
4500.00	42.03	34.50	10.22	40.67	46.08	74.00	-27.92	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.98	34.50	10.22	40.67	37.03	54.00	-16.97	Horizontal
4500.00	33.51	34.50	10.22	40.67	37.56	54.00	-16.44	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	40.95	34.90	11.32	40.23	46.94	74.00	-27.06	Horizontal
5460.00	41.78	34.90	11.32	40.23	47.77	74.00	-26.23	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.99	34.90	11.32	40.23	37.98	54.00	-16.02	Horizontal
5460.00	32.56	34.90	11.32	40.23	38.55	54.00	-15.45	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac-HT80

Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	42.06	34.50	10.22	40.67	46.11	74.00	-27.89	Horizontal
4500.00	41.77	34.50	10.22	40.67	45.82	74.00	-28.18	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.69	34.50	10.22	40.67	36.74	54.00	-17.26	Horizontal
4500.00	32.01	34.50	10.22	40.67	36.06	54.00	-17.94	Vertical
Test cl	nannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.65	34.90	11.32	40.23	47.64	74.00	-26.36	Horizontal
5460.00	42.08	34.90	11.32	40.23	48.07	74.00	-25.93	Vertical
Test cl	nannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.87	34.90	11.32	40.23	37.86	54.00	-16.14	Horizontal
5460.00	32.96	34.90	11.32	40.23	38.95	54.00	-15.05	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	41.66	35.37	11.19	40.18	48.04	74.00	-25.96	Horizontal
5350.00	42.71	35.37	11.19	40.18	49.09	74.00	-24.91	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.14	35.37	11.19	40.18	38.52	54.00	-15.48	Horizontal
5350.00	33.21	35.37	11.19	40.18	39.59	54.00	-14.41	Vertical
Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.09	34.90	11.32	40.23	47.08	74.00	-26.92	Horizontal
5460.00	42.32	34.90	11.32	40.23	48.31	74.00	-25.69	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.56	34.90	11.32	40.23	38.55	54.00	-15.45	Horizontal
5460.00	33.47	34.90	11.32	40.23	39.46	54.00	-14.54	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	41.55	35.37	11.19	40.18	47.93	74.00	-26.07	Horizontal
5350.00	42.59	35.37	11.19	40.18	48.97	74.00	-25.03	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.56	35.37	11.19	40.18	38.94	54.00	-15.06	Horizontal
5350.00	33.14	35.37	11.19	40.18	39.52	54.00	-14.48	Vertical
Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.59	34.90	11.32	40.23	47.58	74.00	-26.42	Horizontal
5460.00	42.55	34.90	11.32	40.23	48.54	74.00	-25.46	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.22	34.90	11.32	40.23	38.21	54.00	-15.79	Horizontal
5460.00	33.14	34.90	11.32	40.23	39.13	54.00	-14.87	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	43.02	35.37	11.19	40.18	49.40	74.00	-24.60	Horizontal
5350.00	42.59	35.37	11.19	40.18	48.97	74.00	-25.03	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.78	35.37	11.19	40.18	40.16	54.00	-13.84	Horizontal
5350.00	33.02	35.37	11.19	40.18	39.40	54.00	-14.60	Vertical
Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.03	34.90	11.32	40.23	48.02	74.00	-25.98	Horizontal
5460.00	41.59	34.90	11.32	40.23	47.58	74.00	-26.42	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	33.54	34.90	11.32	40.23	39.53	54.00	-14.47	Horizontal
5460.00	32.69	34.90	11.32	40.23	38.68	54.00	-15.32	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor .
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac-HT80

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	40.59	35.37	11.19	40.18	46.97	74.00	-27.03	Horizontal
5350.00	41.89	35.37	11.19	40.18	48.27	74.00	-25.73	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	31.54	35.37	11.19	40.18	37.92	54.00	-16.08	Horizontal
5350.00	32.66	35.37	11.19	40.18	39.04	54.00	-14.96	Vertical
Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.15	34.90	11.32	40.23	48.14	74.00	-25.86	Horizontal
5460.00	40.96	34.90	11.32	40.23	46.95	74.00	-27.05	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	33.12	34.90	11.32	40.23	39.11	54.00	-14.89	Horizontal
5460.00	31.08	34.90	11.32	40.23	37.07	54.00	-16.93	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:20)13							
TestFrequencyRange:	30MHz to 40GH	z							
Test site:	Measurement D	istance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
·	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
Limit:	Freque	_	Limit (dBuV/	m @3m)	Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-21	6MHz	43.5	5	Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-	1GHz	54.0)	Quasi-peak Value				
	Freque	ncv	Limit (dBn	n/MHz)	Remark				
			68.2		Peak Value				
	Above 1	GHZ	54.0	0	Average Value				
Test Procedure:	1GHz)/1.5r table was r radiation. 2. The EUT w antenna, w tower. 3. The antenr ground to c horizontal a measureme 4. For each si and thenthe and the rote maximum r 5. The test-re Specified E 6. If the emiss limitspecifie EUT would 10dB marg	RP[dBm] + 95.2= ras placed on the content of the co	the top of a role above the express to determine a way from the don the to the field from one aximum valuations of the EU tuned to he in the from 0 could be stored the row is the tested one be a solution of the field from 10 could be stored from 5 could be stored the role in the field from 5 could be stored the role in the field from 5 could be stored the role in	the interfer op of a variating table ground at a mine the position of a variation of a variation of the interfer of the antennal T was arrarghts from 1 degrees to 3 leak Detect old Mode. It is mode was opped and emissions y one using	e 0.8m(below 3 meter camber. The osition of the highest rence-receiving able-height antenna our meters above the eld strength. Both a are set to make the nged to its worst case meter to 4 meters 860 degrees to find the Function and s 10dB lower than the the peak values of the that did not have peak, quasi-peak or				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : 17.3 "Quad Core Media Player Slim Housing Model : DT173-AC4-1080-SL
Test mode : 5G-Wifi Mode
Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

Freq								Remark
MHz	dBu∀	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
35.624	46.23	15.05	1.07	29.94	32.41	40.00	-7.59	QP
51.843	45.31	13.40	1.27	29.81	30.17	40.00	-9.83	QP
106.013	52.72	10.62	2.01	29.48	35.87	43.50	-7.63	QP
136.939	53.45	11.88	2.36	29.29	38.40	43.50	-5.10	QP
163.182	49.28	9.86	2.61	29.11	32.64	43.50	-10.86	QP
494.199	43.20	16.72	3.57	28.94	34.55	46.00	-11.45	QP
	MHz 35. 624 51. 843 106. 013 136. 939 163. 182	MHz dBuV 35.624 46.23 51.843 45.31 106.013 52.72 136.939 53.45 163.182 49.28	Freq Level Factor MHz dBuV dB/m 35.624 46.23 15.05 51.843 45.31 13.40 106.013 52.72 10.62 136.939 53.45 11.88 163.182 49.28 9.86	Freq Level Factor Loss MHz dBuV dB/m dB 35.624 46.23 15.05 1.07 51.843 45.31 13.40 1.27 106.013 52.72 10.62 2.01 136.939 53.45 11.88 2.36 163.182 49.28 9.86 2.61	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 35.624 46.23 15.05 1.07 29.94 51.843 45.31 13.40 1.27 29.81 106.013 52.72 10.62 2.01 29.48 136.939 53.45 11.88 2.36 29.29 163.182 49.28 9.86 2.61 29.11	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 35.624 46.23 15.05 1.07 29.94 32.41 51.843 45.31 13.40 1.27 29.81 30.17 106.013 52.72 10.62 2.01 29.48 35.87 136.939 53.45 11.88 2.36 29.29 38.40 163.182 49.28 9.86 2.61 29.11 32.64	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 35.624 46.23 15.05 1.07 29.94 32.41 40.00 51.843 45.31 13.40 1.27 29.81 30.17 40.00 106.013 52.72 10.62 2.01 29.48 35.87 43.50 136.939 53.45 11.88 2.36 29.29 38.40 43.50 163.182 49.28 9.86 2.61 29.11 32.64 43.50	Freq Level Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 35.624 46.23 15.05 1.07 29.94 32.41 40.00 -7.59 51.843 45.31 13.40 1.27 29.81 30.17 40.00 -9.83 106.013 52.72 10.62 2.01 29.48 35.87 43.50 -7.63 136.939 53.45 11.88 2.36 29.29 38.40 43.50 -5.10 163.182 49.28 9.86 2.61 29.11 32.64 43.50 -10.86

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : 17.3 Quad Core Media Player Slim Housing : DT173-AC4-1080-SL Condition

EUT

Model Test mode : 5G-Wifi Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor				Limit Line	Over Limit	
_	MHz	dBu∜	dB/m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	35.128	51.46	14.79	1.04	29.95	37.34	40.00	-2.66	QP
2	51.481	45.51	13.85	1.27	29.81	30.82	40.00	-9.18	QP
2	84.110	54.86	7.35	1.79	29.61	34.39	40.00	-5.61	QP
4	139.851	54.93	11.74	2.39	29.27	39.79	43.50	-3.71	QP
5	163.755	55.25	9.86	2.62	29.10	38.63	43.50	-4.87	QP
6	210.048	50.50	10.70	2.86	28.77	35.29	43.50	-8.21	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	42.03	40.10	15.37	41.34	56.16	68.20	-12.04	Vertical			
10360.00	41.86	40.10	15.37	41.34	55.99	68.20	-12.21	Horizontal			
		802.11	a mode Lowe	est channe	I (AverageV	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	32.84	40.10	15.37	41.34	46.97	54.00	-7.03	Vertical			
10360.00	31.67	40.10	15.37	41.34	45.80	54.00	-8.20	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	41.69	40.00	15.42	41.27	55.84	68.20	-12.36	Vertical			
10400.00	42.03	40.00	15.42	41.27	56.18	68.20	-12.02	Horizontal			
		802.11	a mode Mido	dle channe	l (AverageVa	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	32.14	40.00	15.42	41.27	46.29	54.00	-7.71	Vertical			
10400.00	31.87	40.00	15.42	41.27	46.02	54.00	-7.98	Horizontal			

	802.11a mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	41.16	39.70	15.55	41.10	55.31	68.20	-12.89	Vertical		
10480.00	40.91	39.70	15.55	41.10	55.06	68.20	-13.14	Horizontal		
		802.11a	a mode High	est channe	I (AverageV	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	31.23	39.70	15.55	41.10	45.38	54.00	-8.62	Vertical		
10480.00	31.11	39.70	15.55	41.10	45.26	54.00	-8.74	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	42.15	40.10	15.37	41.34	56.28	68.20	-11.92	Vertical			
10360.00	41.23	40.10	15.37	41.34	55.36	68.20	-12.84	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average\	√alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	32.03	40.10	15.37	41.34	46.16	54.00	-7.84	Vertical			
10360.00	31.17	40.10	15.37	41.34	45.30	54.00	-8.70	Horizontal			

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	41.19	40.00	15.42	41.27	55.34	68.20	-12.86	Vertical		
10400.00	41.58	40.00	15.42	41.27	55.73	68.20	-12.47	Horizontal		
		802.11n	20 mode Mid	dle chann	el (Average\	/alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400.00	31.25	40.00	15.42	41.27	45.40	54.00	-8.60	Vertical		
10400.00	31.13	40.00	15.42	41.27	45.28	54.00	-8.72	Horizontal		

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	42.58	39.70	15.55	41.10	56.73	68.20	-11.47	Vertical			
10480.00	41.12	39.70	15.55	41.10	55.27	68.20	-12.93	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average)	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	32.03	39.70	15.55	41.10	46.18	54.00	-7.82	Vertical			
10480.00	31.81	39.70	15.55	41.10	45.96	54.00	-8.04	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	41.13	40.00	15.42	41.31	55.24	68.20	-12.96	Vertical			
10380.00	42.27	40.00	15.42	41.31	56.38	68.20	-11.82	Horizontal			
		802.11n4	40 mode Lov	vest chann	el (Average	√alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	31.28	40.00	15.42	41.31	45.39	54.00	-8.61	Vertical			
10380.00	32.25	40.00	15.42	41.31	46.36	54.00	-7.64	Horizontal			

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	41.89	39.80	15.51	41.17	56.03	68.20	-12.17	Vertical			
10460.00	40.64	39.80	15.51	41.17	54.78	68.20	-13.42	Horizontal			
		802.11n ²	10 mode Hig	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	32.32	39.80	15.51	41.17	46.46	54.00	-7.54	Vertical			
10460.00	31.11	39.80	15.51	41.17	45.25	54.00	-8.75	Horizontal			

	802.11ac-HT80MHz mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10420.00	40.85	39.90	15.46	41.24	54.97	68.20	-13.23	Vertical			
10420.00	41.48	39.90	15.46	41.24	55.60	68.20	-12.60	Horizontal			
	80	2.11ac-HT	80MHz mode	e Middle ch	nannel (Avei	rageValue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10420.00	32.28	39.90	15.46	41.24	46.40	54.00	-7.60	Vertical			
10420.00	33.56	39.90	15.46	41.24	47.68	54.00	-6.32	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	42.36	41.50	16.83	40.75	59.94	74.00	-14.06	Vertical
11490.00	41.93	41.50	16.83	40.75	59.51	74.00	-14.50	Horizontal
		802.11	a mode Lowe	est channe	I (AverageVa	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	32.23	41.50	16.83	40.75	49.81	54.00	-4.19	Vertical
11490.00	31.59	41.50	16.83	40.75	49.17	54.00	-4.83	Horizontal

	802.11a mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	41.23	41.38	16.90	40.91	58.60	74.00	-15.40	Vertical
11570.00	40.95	41.38	16.90	40.91	58.32	74.00	-15.68	Horizontal
		802.11a	a mode Midd	le channel	(Average V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	32.96	41.38	16.90	40.91	50.33	54.00	-3.67	Vertical
11570.00	31.87	41.38	16.90	40.91	49.24	54.00	-4.76	Horizontal

802.11a mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	41.56	41.26	16.97	41.06	58.73	74.00	-15.27	Vertical
11650.00	40.74	41.26	16.97	41.06	57.91	74.00	-16.09	Horizontal
		802.11a	mode Highe	est channe	l (Average V	'alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	32.69	41.26	16.97	41.06	49.86	54.00	-4.14	Vertical
11650.00	31.78	41.26	16.97	41.06	48.95	54.00	-5.05	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	40.25	41.50	16.83	40.75	57.83	74.00	-16.17	Vertical
11490.00	40.36	41.50	16.83	40.75	57.94	74.00	-16.06	Horizontal
		802.11n2	20 mode Low	est chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	31.21	41.50	16.83	40.75	48.79	54.00	-5.21	Vertical
11490.00	30.42	41.50	16.83	40.75	48.00	54.00	-6.00	Horizontal

	802.11n20 mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	40.48	41.38	16.90	40.91	57.85	74.00	-16.15	Vertical
11570.00	41.92	41.38	16.90	40.91	59.29	74.00	-14.71	Horizontal
		802.11n2	20 mode Mid	dle channe	el (Average '	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	31.54	41.38	16.90	40.91	48.91	54.00	-5.09	Vertical
11570.00	33.15	41.38	16.90	40.91	50.52	54.00	-3.48	Horizontal

	802.11n20 mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	41.06	41.26	16.97	41.06	58.23	74.00	-15.77	Vertical
11650.00	42.47	41.26	16.97	41.06	59.64	74.00	-14.36	Horizontal
		802.11n2	0 mode High	nest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	32.44	41.26	16.97	41.06	49.61	54.00	-4.39	Vertical
11650.00	33.14	41.26	16.97	41.06	50.31	54.00	-3.69	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	41.23	41.50	16.83	40.77	58.79	74.00	-15.21	Vertical
11510.00	40.02	41.50	16.83	40.77	57.58	74.00	-16.42	Horizontal
		802.11n ²	10 mode Low	est chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	31.23	41.50	16.83	40.77	48.79	54.00	-5.21	Vertical
11510.00	30.25	41.50	16.83	40.77	47.81	54.00	-6.19	Horizontal

	802.11n40 mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	40.57	41.32	16.93	40.95	57.87	74.00	-16.13	Vertical
11590.00	41.62	41.32	16.93	40.95	58.92	74.00	-15.08	Horizontal
		802.11n4	0 mode High	nest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	31.06	41.32	16.93	40.95	48.36	54.00	-5.64	Vertical
11590.00	32.50	41.32	16.93	40.95	49.80	54.00	-4.20	Horizontal

	802.11ac-HT80 mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	41.77	41.44	16.86	40.88	59.19	74.00	-14.81	Vertical
11550.00	42.05	41.44	16.86	40.88	59.47	74.00	-14.53	Horizontal
		802.11ac-H	IT80 mode N	/liddle char	nnel (Averag	e Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	32.91	41.44	16.86	40.88	50.33	54.00	-3.67	Vertical
11550.00	33.47	41.44	16.86	40.88	50.89	54.00	-3.11	Horizontal

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.					
Test setup:	Temperature Chamber					
	Spectrum analyzer EUT Att. Variable Power Supply					
Test passed was	Note: Measurement setup for testing on Antenna connector					
Test procedure:	The EUT is installed in an environment test chamber with external power source.					
	2. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.					
	A sufficient stabilization period at each temperature is used prior to each frequency measurement.					
	4. When temperature is stabled, measure the frequency stability.					
	5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2					