第5课:函数的极限:概念-性质-计算

第2章 函数及其连续性

- 内容:

第2.4节 函数的极限

函数极限的概念和性质

- **目的**: 研究函数 f(x) 在某一点 x_0 附近的性质(局部性质)
 - 【注意】不是 $f(x_0)$ 的值, $f(x_0)$ 甚至可以不存在!
- 约定: 函数f 在 x_0 的附近有定义(除了 x_0 之外)
- 也即 $f: D \to \mathbb{R}$, $\exists \eta > 0$, 只要 $0 < |x x_0| < \eta$ 都有 $x \in D$
- 极限: 设f 在 \mathbf{x}_0 的附近有定义, $A \in \mathbb{R}$,如果

 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时 $|f(x) - A| < \varepsilon$

则称 x 趋于 x_0 时 f(x) 的极限为A, 或 f(x) 趋于A, 记为

 $\lim_{x \to x_0} f(x) = A, \quad \text{if} \quad f(x) \to A \quad (x \to x_0)$

【注意】在上面"x趋于 x_0 "的极限过程中 $x \neq x_0$ (很重要!)

- 极限的含义: $\lim_{x \to x_0} f(x) = A$
 - 1) $\forall \varepsilon > 0$ $|f(x) A| < \varepsilon$ —— 可以任意小
 - 2) $\exists \delta > 0$ —— 通常与 ε 有关
 - 3) $0 < |x x_0| < \delta$ —— x 充分接近 x_0 时

综上,只要x充分接近 x_0 ,就可以使得 f(x)任意接近A

此外
$$|f(x)-A| < \varepsilon$$
 等价于 $A-\varepsilon < f(x) < A+\varepsilon$

- **□ 几何含义:** 见右图 ▶▶▶
 - 1) 一般而言 ε 越小需要的 δ 也越小
 - 2) $在x_0$ 附近曲线越陡需要的 δ 越小

■ 单侧极限:

左极限: $\lim_{x \to x} f(x) = A$ —— x从左侧趋于 x_0 时f(x)趋于A

右极限: $\lim_{x \to x_0^+} f(x) = A$ —— x从右侧趋于 x_0 时f(x)趋于A

以右极限为例,其定义为:

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, 使得当 $0 < x - x_0 < \delta$ 时 $|f(x) - A| < \varepsilon$

- **记号**: 当相应的单侧极限存在时,分别记左右极限值 $f(x_0-) = \lim_{x \to x_0^-} f(x), \quad f(x_0+) = \lim_{x \to x_0^+} f(x)$
- **推论:** $\lim_{x \to x_0} f(x) = A$ 当且仅当 $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A$ 证明留作练习

- ✓ **例1**: 考虑函数 f(x) = x, 验证 $\lim_{x \to x_0} x = x_0$ 解: $\forall \varepsilon > 0$, 取 $\delta = \varepsilon$, 当 $0 < |x x_0| < \delta$ 时 $|x x_0| < \varepsilon$
- ✓ **例2**: 考虑函数 f(x) = c, 验证 $\lim_{x \to x_0} c = c$ 解: $\forall \varepsilon > 0$, 对所有x 都有 $|f(x) c| = c c = 0 < \varepsilon$
- ✓ **例**3: 考虑 $\lim_{x\to 0} \frac{|x|}{x} = ?$ 解: 先研究单侧极限,注意 $|x| = \begin{cases} x, & x > 0 \\ -x, & x < 0 \end{cases}$ $\lim_{x\to 0^{-}} \frac{|x|}{x} = \lim_{x\to 0^{-}} \frac{-x}{x} = \lim_{x\to 0^{-}} (-1) = -1$ $\lim_{x\to 0^{+}} \frac{|x|}{x} = \lim_{x\to 0^{+}} \frac{x}{x} = \lim_{x\to 0^{+}} 1 = 1, \quad \therefore \lim_{x\to 0} \frac{|x|}{x} \text{ 不存在 } \square$

在极限 $\lim_{x\to x_0} f(x) = A$ 定义中,

为什么要求 $x \neq x_0$?

- A 因为 $f(x_0)$ 可能没定义
- B 因为可能 $f(x_0) \neq A$
- 因为 $f(x_0)$ (无论存在与否) 不影响极限值
- D 因为数学家的习惯——追求完美

- **函数极限的性质** (类似数列极限的性质)
- \rightarrow 唯一性: 设 $\lim_{x \to x_0} f(x)$ 存在,则极限值唯一

$$\mathbb{i}\mathbb{E} \colon \Leftrightarrow \lim_{x \to x_0} f(x) = A \perp \lim_{x \to x_0} f(x) = B$$

注意
$$|A-B| \le |f(x)-A| + |f(x)-B|$$

由此可导出
$$\forall \varepsilon > 0$$
, $|A - B| < \varepsilon$, $\therefore A = B$

ightharpoonup 有界性(局部): 设 $\lim_{x \to x_0} f(x) = A$, 则 $\exists \delta > 0$, 使得

$$\forall 0 < |x - x_0| < \delta, |f(x)| \le 1 + |A|$$

即在 x_0 附近(除去 x_0 之外) f(x)有界

证: 注意
$$|f(x)| \le |f(x)-A| + |A|$$

- ightharpoonup 保号性: 设 $\lim_{x \to x_0} f(x) = A$
 - 1) 若在 \mathbf{x}_0 附近(除去 \mathbf{x}_0 之外) $f(x) \ge 0$, 则 $A \ge 0$
 - 2) 若A>0, 则 $\exists \delta>0$, 使得 $0<|x-x_0|<\delta$ 时f(x)>0

证: 己知 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得 $0 < |x - x_0| < \delta$ 时 $A - \varepsilon < f(x) < A + \varepsilon$

- 1) 据假设不妨令上面的 $f(x) \ge 0$,从而 $A + \varepsilon \ge 0$ 注意 $\varepsilon > 0$ 是任意的, 这就导出 $A \ge 0$
- 2) 当A>0时上面可取 $\varepsilon = A/2$,对于相应的 $\delta > 0$ 当 $0 < |x-x_0| < \delta$ 时,便有 f(x) > A-A/2 > 0
- 注: 1)中即便 f(x)>0 也无法保证 A>02)中A>0不能改为A≥0

- **四则运算:** 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$, 则
 - 1) $\lim_{x \to x_0} [f(x) \pm g(x)] = A \pm B$
 - $2) \lim_{x \to x_0} f(x)g(x) = AB$
 - 3) $\lim_{x \to a_0} f(x)/g(x) = A/B$, 只要 $B \neq 0$

证: 以2)为例 f(x)g(x) - AB = f(x)[g(x) - B] + [f(x) - A]B

 $| f(x)g(x) - AB | \le | f(x) | \cdot | g(x) - B | + | f(x) - A | \cdot | B |$

由己知 $\exists \delta_0 > 0$,使得 $0 < |x - x_0| < \delta_0$ 时 $|f(x)| \le 1 + |A|$

 $\forall \varepsilon > 0$, $\exists \delta_1, \delta_2 > 0$, 使得

$$0 < |x - x_0| < \delta_1$$
时 $|f(x) - A| < \varepsilon/[2(1+|B|)]$

$$0 < |x - x_0| < \delta_2$$
时 $|g(x) - B| < \varepsilon/[2(1+|A|)]$

取 $\delta = \min\{\delta_0, \delta_1, \delta_2\}$, 当 $0 < |x - x_0| < \delta$ 时

- **推论 (**保序性**)**: 设 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$
 - 1) 若在 \mathbf{x}_0 附近(除去 \mathbf{x}_0 之外) $f(x) \ge g(x)$, 则 $A \ge B$
 - 2) 若A>B, 则 $\exists \delta>0$, 使得 $0<|x-x_0|<\delta$ 时f(x)>g(x)

证:对于函数 f(x)-g(x) 应用四则运算性质和保号性质 \square

✓ 例4: 设P(x)为多项式函数,求 $\lim P(x) = ?$

解:
$$\Rightarrow P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1}^{x \to x_0} x + a_n, x \in \mathbb{R}$$

利用极限的四则运算性质和例1-例2结果

$$\lim_{x \to x_0} P(x) = \lim_{x \to x_0} a_0 x^n + \lim_{x \to x_0} a_1 x^{n-1} + \dots + \lim_{x \to x_0} a_{n-1} x + \lim_{x \to x_0} a_n$$

$$= a_0 x_0^n + a_1 x_0^{n-1} + \dots + a_{n-1} x_0 + a_n = P(x_0)$$

✓ **例5**: $f(x) = \frac{P(x)}{Q(x)}$ 为有理函数, $Q(x_0) \neq 0$, 则 $\lim_{x \to x_0} f(x) = f(x_0)$

▶ 子列性质 (回忆收敛数列子列性质)

 $\lim_{x \to a} f(x) = A$ 的充分必要条件是:

对于任何数列 $\{x_n\}$ 满足 $x_n \neq x_0$ 且 $\lim_{n \to \infty} x_n = x_0$,都有 $\lim_{n \to \infty} f(x_n) = A$ 证: 必要性较容易(自己练习),下面证充分性:

假若 $\lim_{x \to x_0} f(x) \neq A$,则 $\exists \varepsilon_0 > 0$, $\forall n \in \mathbb{N}$, $\exists x_n$ 满足 $0 < |x_n - x_0| < 1/n$, $|f(x_n) - A| \ge \varepsilon_0$

显然数列 $\{x_n\}$ 满足 $x_n \neq x_0$ 且 $\lim_{n \to \infty} x_n = x_0$,但 $\lim_{n \to \infty} f(x_n) \neq A$

推论: 若有两个数列 $\{x_n\}, \{y_n\}$ 满足 $x_n \neq x_0, y_n \neq x_0$ 且 $\lim_{n\to\infty} x_n = x_0, \lim_{n\to\infty} f(x_n) = A$,以及 $\lim_{n\to\infty} y_n = x_0, \lim_{n\to\infty} f(y_n) = B \neq A$ 则 $\lim_{n\to\infty} f(x_n)$ 不存在

✓ 例6: 求极限
$$\lim_{x\to 0} \sin(\frac{1}{x}) = ?$$

解: 记
$$f(x) = \sin(\frac{1}{x})$$
, 注意 $f(\frac{1}{n\pi}) = 0$, $f(\frac{1}{2n\pi + (\pi/2)}) = 1$

$$\mathbb{X}_n = \frac{1}{n\pi}, \ y_n = \frac{1}{2n\pi + (\pi/2)}, \ n = 1, 2, \dots$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0, \quad f(x_n) = 0, \quad f(y_n) = 1, \quad n = 1, 2, \dots$$

所以
$$\lim_{n\to\infty} f(x_n) = 0 \neq \lim_{n\to\infty} f(y_n) = 1$$

根据函数极限的子列性质, $\lim_{x\to 0} f(x)$ 不存在

已知极限 $\lim_{x\to 0} |x|$ 存在,极限 $\lim_{x\to 0} \sin(\frac{1}{x^2})$ 不存在,极限 $\lim_{x\to 0} |x| \sin(\frac{1}{x^2})$ 是否存在?

- A 根据极限四则运算性质,该极限不存在
- B 根据子列性质可知,该极限不存在
- 根据极限四则运算性质,该极限存在
- 可以直接验证,该极限存在

ightharpoonup **夹逼原理**: 设在 \mathbf{x}_0 附近(除去 \mathbf{x}_0 之外)函数 f, g, h满足 $f(x) \leq g(x) \leq h(x)$

如果
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = A$$
,则 $\lim_{x \to x_0} g(x) = A$ 证:留作练习 (可参考数列夹逼原理的证明)

夕 例7: 已知 $\lim_{x \to x_0} f(x) = A$,求证 $\lim_{x \to x_0} |f(x)| = |A|$ 证: 考虑利用夹逼原理,注意三角不等式导出 $||f(x)| - |A|| \le |f(x) - A|$

由极限的四则运算性质得 $\lim_{x\to x_0} [f(x)-A]=0$, 易见这等价于 $\lim_{x\to x_0} |f(x)-A|=0$,应用夹逼原理得 $\lim_{x\to x_0} |f(x)|-|A|=0$, $\lim_{x\to x_0} (|f(x)|-|A|)=0$,… □

✓ **例**8: 验证
$$\lim_{x\to 0} \sqrt{1\pm x} = 1$$
解: 注意 $|\sqrt{1\pm x} - 1| = \frac{|x|}{\sqrt{1\pm x} + 1} \le |x|$
已知 $\lim_{x\to 0} |x| = 0$, 应用夹逼原理 $\lim_{x\to 0} |\sqrt{1\pm x} - 1| = 0$
∴ $\lim_{x\to 0} (\sqrt{1\pm x} - 1) = 0$, $\lim_{x\to 0} \sqrt{1\pm x} = 1$

✓ **例**9: 计算 $\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = ?$

解: 注意 $\frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$

应用例8结论和极限的四则运算性质

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}} = \frac{2}{1+1} = 1$$

✓ **例10:** 求证
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 证: 考察右图中单位圆弧(半径1) 任取 $0 < x < \frac{\pi}{2}$, 有以下面积关系

 ΔOAB 的面积 ≤ 扇形 OAB 的面积 ≤ ΔOAC 的面积

世即
$$\frac{1}{2}\sin x \le \frac{1}{2}x \le \frac{1}{2}\tan x = \frac{1}{2}\frac{\sin x}{\cos x}$$

这等价于
$$\frac{\cos x}{\sin x} \le \frac{1}{x} \le \frac{1}{\sin x}$$
, $\therefore \cos x \le \frac{\sin x}{x} \le 1$
 $\frac{\pi}{2} < x < 0$ 时, 利用函数的奇偶性有
$$\cos x = \cos(-x) \le \frac{\sin(-x)}{(-x)} = \frac{\sin x}{x} \le 1$$

✓ **例10** (续): 已知
$$0 < |x| < \frac{\pi}{2}$$
 时有 $\cos x \le \frac{\sin x}{x} \le 1$ 为应用夹逼原理,由上式结合三角公式可得 $0 \le 1 - \frac{\sin x}{x} \le 1 - \cos x = 2\sin^2 \frac{x}{2} \le 2(\frac{x}{2})^2 = \frac{1}{2}x^2$ 最后一个不等式用到了前面导出的 $0 < |\sin x| \le |x|$ 整理得 $0 \le 1 - \frac{\sin x}{x} \le 1 - \cos x \le \frac{1}{2}x^2$ 令 $x \to 0^+$ 便得 $\lim_{x \to 0^+} (1 - \frac{\sin x}{x}) = \lim_{x \to 0^+} (1 - \cos x) = 0$ 所以 $\lim_{x \to 0} \frac{\sin x}{x} = 1$ (顺便得到 $\lim_{x \to 0} \cos x = 1$)

Prop6.(单调收敛原理)

- (1) f在(a,b)上的单增有上界,则 $\lim_{x\to b^-} f(x) = \sup_{a < x < b} f(x)$;
- (2) f在(a,b)上的单减有下界,则 $\lim_{x\to b^-} f(x) = \inf_{a < x < b} f(x)$;
- (3) f在(a,b)上的单增有下界,则 $\lim_{x\to a^+} f(x) = \inf_{a < x < b} f(x)$;
- (4) f在(a,b)上的单减有上界,则 $\lim_{x \to a^+} f(x) = \sup_{a < x < b} f(x)$.

Proof.只证(1),其它情形同理可证. $\{f(x): x \in (a,b)\}$

非空有上界,从而有上确界

$$A = \sup \{ f(x) : x \in (a,b) \}.$$

由上确界的定义,

$$\forall \varepsilon > 0, \exists x_1 \in (a,b), s.t. \ f(x_1) > A - \varepsilon,$$

且

$$f(x) \le A$$
, $\forall x \in (a,b)$.

f 个,则 $\forall x \in (x_1,b)$,有

$$A - \varepsilon < f(x_1) \le f(x) \le A$$
.

$$to \lim_{x \to b^{-}} f(x) = A. \square$$

Thm. 证明:(a,b)上的单调函数在每一点处左右极限都存在.

Proof.不妨设f在(a,b)上单增, $x_0 \in (a,b)$, 往证 $\lim_{x \to x_0^+} f(x)$ 存在 (同理可证 $\lim_{x \to x_0^+} f(x)$ 存在).

 $f \uparrow, \{f(x): x \in (a, x_0)\}$ 非空有上界 $f(x_0)$,从而有上确界 $A = \sup\{f(x): x \in (a, x_0)\}.$

由上确界的定义,

$$\forall \varepsilon > 0, \exists x_1 \in (a, x_0), s.t. \ f(x_1) > A - \varepsilon,$$

 $\exists f(x) \le A, \quad \forall x \in (a, x_0).$

 $f \uparrow, \forall x \in (x_1, x_0),$ 有A $-\varepsilon < f(x_1) \le f(x) \le A.$ 故 $\lim_{x \to x_0^-} f(x) = A.$ □

Ex.
$$\lim_{x \to +\infty} \frac{\log_a x}{x^b} = 0 \ (a > 1, b > 0).$$

Proof.
$$0 < \frac{\ln x}{x} \le \frac{\ln(\lfloor x \rfloor + 1)}{\lfloor x \rfloor} \le \frac{\ln 2}{\lfloor x \rfloor} + \frac{\ln\lfloor x \rfloor}{\lfloor x \rfloor}, \quad \forall x > 1.$$

$$\lim_{x \to +\infty} \left(\frac{\ln 2}{[x]} + \frac{\ln[x]}{[x]} \right) = \lim_{x \to +\infty} \frac{\ln 2}{[x]} + \lim_{x \to +\infty} \frac{\ln[x]}{[x]} = 0.$$

由夹挤原理,
$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$
. 而 $\lim_{x \to +\infty} \frac{\log_a x}{x} = \frac{1}{\ln a} \lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

$$\lim_{x \to +\infty} \frac{\log_a x}{x^b} = \lim_{y \to +\infty} \frac{\log_a y^{1/b}}{y} = \frac{1}{b} \lim_{y \to +\infty} \frac{\log_a y}{y} = 0. \square$$

Remark.
$$\lim_{x\to 0^+} x^b \log_a x = 0 \ (a > 1, b > 0).$$

Ex.
$$\lim_{x \to +\infty} \frac{x^b}{a^x} = 0 \ (a > 1, b > 0).$$

Proof.
$$0 < \frac{x^b}{a^x} \le \frac{([x]+1)^b}{a^{[x]}} \le \frac{(2[x])^b}{a^{[x]}} \le \frac{2^b [x]^b}{a^{[x]}}, \forall x > 1.$$

Ex.
$$\lim_{x \to +\infty} \frac{a^x}{x^x} = 0 \ (a > 0, a \ne 1).$$

Proof.
$$\lim_{x \to +\infty} \frac{a^x}{x^x} = \lim_{y \to +\infty} e^{x(\ln a - \ln x)} = e^{(+\infty) \cdot (-\infty)} = e^{-\infty} = 0.\square$$

Thm. $f \in U(x_0, \rho)$ 中有定义,则以下命题等价:

$$(1)$$
 $\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in U(x_0, \delta),$ 有 $|f(x) - f(y)| < \varepsilon;$

$$(2)$$
日 $A \in \mathbb{R}$,对 $U(x_0, \rho)$ 中任意收敛到 x_0 的点列 $\{x_n\}$,有
$$\lim_{n \to \infty} f(x_n) = A;$$

(3)
$$\lim_{x \to x_0} f(x) = A$$
.

Remark. (1) ⇔ (3) (函数极限的Cauchy收敛原理)

Remark. (2) ⇔ (3) (用数列的极限来研究函数的极限)

 $\exists \delta > 0, \forall x, y \in U(x_0, \delta),$ 有 $|f(x) - f(y)| < \varepsilon$. 对此 δ ,因 $\lim_{n\to\infty} x_n = x_0$, $\exists N, s.t.$ $x_n \in U(x_0, \delta)$, $\forall n > N$. 于是 $|f(x_n)-f(x_m)| < \varepsilon$, $\forall n,m > N$. 故 $\{f(x_n)\}$ 为Cauchy列,收敛, $\exists A \in \mathbb{R}$, s.t. $\lim f(x_n) = A$. 设 $\lim_{n\to\infty} y_n = x_0$,同理 $\lim_{n\to\infty} f(y_n) = B$.只要证A = B即可. 构造点列 $\{z_n\}$: $z_{2n-1}=x_n, z_{2n}=y_n, 则 lim <math>z_n=x_0, \{f(z_n)\}$ 收敛, 且 A = $\lim_{n\to\infty} f(z_{2n-1}) = \lim_{n\to\infty} f(z_n) = \lim_{n\to\infty} f(z_{2n}) = B.$

$$(2) \Rightarrow (3)$$
:

设
$$\lim_{x \to x_0} f(x) \neq A$$
. 则 $\exists \varepsilon_0 > 0, \forall n \in \mathbb{N}, \exists x_n \in U(x_0, \frac{1}{n}), s.t.$
$$|f(x_n) - A| > \varepsilon_0.$$

此时,
$$\lim_{n\to\infty} x_n = x_0$$
, 但 $\lim_{n\to\infty} f(x_n) \neq A$,与(2)矛盾.

Remark.
$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = x_0$$
, \mathbb{N}

- $\lim_{n\to\infty} f(x_n) = A \neq B = \lim_{n\to\infty} f(y_n)$ ⇒ $\lim_{x\to x_0} f(x)$ 不存在;
- $\lim_{n\to\infty} f(x_n)$ 不存在 $\Rightarrow \lim_{x\to x_0} f(x)$ 不存在.

Ex. Dirichlet函数
$$D(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

$$\forall x_0 \in \mathbb{R}$$
.

Ex.
$$\limsup_{x\to 0} \frac{1}{x}$$
 不存在.

Proof.
$$x_n = \frac{1}{2n\pi}, y_n = \frac{1}{\left(2n + \frac{1}{2}\right)\pi},$$

$$\lim_{n\to+\infty}x_n=\lim_{n\to+\infty}y_n=0,$$

而
$$\lim_{n \to +\infty} \sin \frac{1}{x_n} = 0$$
, $\lim_{n \to +\infty} \sin \frac{1}{y_n} = 1$, 故 $\lim_{x \to 0} \sin \frac{1}{x}$ 不存在.

Ex. (1)
$$\lim_{x \to x_0} e^x = e^{x_0}$$
, (2) $\lim_{x \to x_0} \ln x = \ln x_0$.

Proof.
$$\forall \{x_n\}, x_n \to x_0, \exists \lim_{n \to \infty} e^{x_n} = e^{x_0}, \lim_{n \to \infty} \ln x_n = \ln x_0. \Box$$

Thm.
$$\lim_{x \to x_0} u(x) = a$$
, $\lim_{x \to x_0} v(x) = b$, a^b 有意义, 则 $\lim_{x \to x_0} u(x)^{v(x)} = a^b$.

Proof.
$$\lim_{x \to x_0} u(x)^{v(x)} = \lim_{x \to x_0} e^{v(x)\ln u(x)}$$

$$= e^{\lim_{x \to x_0} \left(v(x) \ln u(x) \right)} = e^{\lim_{x \to x_0} v(x) \cdot \lim_{x \to x_0} \ln u(x)} = e^{b \ln a} = a^b . \square$$

Remark.
$$\lim_{x \to x_0} \sqrt{u(x)} = \sqrt{\lim_{x \to x_0} u(x)}, \quad \lim_{x \to x_0} a^{u(x)} = a^{\lim_{x \to x_0} u(x)}, \dots$$

1°型极限

$$\operatorname{Ex.lim}_{x \to 0} (\cos x)^{\frac{1}{x^2}} = e^{-\frac{1}{2}}.$$

Proof.
$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x \to 0} \left(1 - 2\sin^2 \frac{x}{2} \right)^{\frac{1}{x^2}}$$

$$= \lim_{x \to 0} \left(1 - 2\sin^2 \frac{x}{2} \right)^{\frac{1}{-2\sin^2 \frac{x}{2}}} \frac{-2\sin^2 \frac{x}{2}}{x^2}$$

$$= \left\{ \lim_{x \to 0} \left(1 - 2\sin^2 \frac{x}{2} \right)^{-\frac{1}{2}\sin^2 \frac{x}{2}} \right\}^{-\frac{1}{2}\lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^2} = e^{-\frac{1}{2}}.\Box$$

第5课:函数的极限:概念-性质-运算

■ 预习 (下次课内容):

第2.4-2.5节 复合函数的极限与无穷远处的极限第2.6节 无穷大与无穷小及其比较第2.7节 连续函数-概念

· 作业 (本次课):

练习题2.4: 1-2[自己练习], 3(3,4), 4(3,5), 5, 7*, 9, 11(1,3,5,7-10), 12*.