

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=8; day=1; hr=11; min=40; sec=10; ms=771;]

=====

Reviewer Comments:

E310 Invalid sequence type in <212> in SEQID: (1)
E310 Invalid sequence type in <212> in SEQID: (3)
E310 Invalid sequence type in <212> in SEQID: (4)
E310 Invalid sequence type in <212> in SEQID: (5)
E310 Invalid sequence type in <212> in SEQID: (6)
E310 Invalid sequence type in <212> in SEQID: (7)
E310 Invalid sequence type in <212> in SEQID: (8)
E310 Invalid sequence type in <212> in SEQID: (10)
E310 Invalid sequence type in <212> in SEQID: (11)
E310 Invalid sequence type in <212> in SEQID: (12)
E310 Invalid sequence type in <212> in SEQID: (13)
E310 Invalid sequence type in <212> in SEQID: (14)
E310 Invalid sequence type in <212> in SEQID: (15)
E310 Invalid sequence type in <212> in SEQID: (9)

Numeric identifier <212> can only be DNA, RNA, or PRT. Please make all necessary changes.

W402 Undefined organism found in <213> in SEQ ID (4)
W402 Undefined organism found in <213> in SEQ ID (5)
W402 Undefined organism found in <213> in SEQ ID (6)
W402 Undefined organism found in <213> in SEQ ID (7)
W402 Undefined organism found in <213> in SEQ ID (8)
W402 Undefined organism found in <213> in SEQ ID (9)
W402 Undefined organism found in <213> in SEQ ID (10)
W402 Undefined organism found in <213> in SEQ ID (11)
W402 Undefined organism found in <213> in SEQ ID (12)
W402 Undefined organism found in <213> in SEQ ID (13)

W402 Undefined organism found in <213> in SEQ ID (14)
W402 Undefined organism found in <213> in SEQ ID (15)
W402 Undefined organism found in <213> in SEQ ID (16)

<210> 4
<211> 643
<212> ADN
<213> Séquence artificielle
<220>
<223> Séquence promotrice du vecteur pEGT

A sequence listing must be in English only.

Application No: 10586348 Version No: 2.0

Input Set:

Output Set:

Started: 2008-07-31 12:18:54.746
Finished: 2008-07-31 12:18:56.649
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 903 ms
Total Warnings: 13
Total Errors: 14
No. of SeqIDs Defined: 16
Actual SeqID Count: 16

Error code	Error Description
E 310	Invalid sequence type in <212> in SEQID: (1)
E 310	Invalid sequence type in <212> in SEQID: (3)
E 310	Invalid sequence type in <212> in SEQID: (4)
W 402	Undefined organism found in <213> in SEQ ID (4)
E 310	Invalid sequence type in <212> in SEQID: (5)
W 402	Undefined organism found in <213> in SEQ ID (5)
E 310	Invalid sequence type in <212> in SEQID: (6)
W 402	Undefined organism found in <213> in SEQ ID (6)
E 310	Invalid sequence type in <212> in SEQID: (7)
W 402	Undefined organism found in <213> in SEQ ID (7)
E 310	Invalid sequence type in <212> in SEQID: (8)
W 402	Undefined organism found in <213> in SEQ ID (8)
E 310	Invalid sequence type in <212> in SEQID: (9)
W 402	Undefined organism found in <213> in SEQ ID (9)
E 310	Invalid sequence type in <212> in SEQID: (10)
W 402	Undefined organism found in <213> in SEQ ID (10)
E 310	Invalid sequence type in <212> in SEQID: (11)
W 402	Undefined organism found in <213> in SEQ ID (11)
E 310	Invalid sequence type in <212> in SEQID: (12)
W 402	Undefined organism found in <213> in SEQ ID (12)

Input Set:

Output Set:

Started: 2008-07-31 12:18:54.746
Finished: 2008-07-31 12:18:56.649
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 903 ms
Total Warnings: 13
Total Errors: 14
No. of SeqIDs Defined: 16
Actual SeqID Count: 16

Error code	Error Description
E 310	Invalid sequence type in <212> in SEQID: (13)
W 402	Undefined organism found in <213> in SEQ ID (13)
E 310	Invalid sequence type in <212> in SEQID: (14)
W 402	Undefined organism found in <213> in SEQ ID (14)
E 310	Invalid sequence type in <212> in SEQID: (15)
W 402	Undefined organism found in <213> in SEQ ID (15)
W 402	Undefined organism found in <213> in SEQ ID (16)

LISTE DE SEQUENCES

<110> INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE

<120> PROCEDE DE SURPRODUCTION D'UNE PROTEINE DETERMINEE PAR DES SOUCHES MONOCARYOTIQUES DE P. CINNABARINUS

<130> WOB 03 DH INR ORUS

<140> 10586348

<141> 2008-07-31

<160> 16

<170> PatentIn version 3.1

<210> 1

<211> 3331

<212> ADN

<213> Pycnoporus cinnabarinus

<400> 1

ctgcagacat ctggagcgcc tgtctttccc ctgtataaaa ttagtgcgttgt ccgcagggtcc 60

ttgaagaccg ctcgagtccc acttgagttt taggtaggac ctgtccacca aaccctctt 120

tctgatcatg tcgaggttcc agtccctttt cttcttcgtc ctgcgtctccc tcaccgctgt 180

ggccaacgca gccatagggc ctgtggcgga cctgaccctt accaatgccc aggtcagccc 240

cgatggcttc gctcgcgagg ccgtcggtt gaacggtatac acccctgccc ctctcatcac 300

aggcaataag gtatgtatat gctgctcgtc cctcagagct acatacatct gatccacaat 360

cgttttagggc gatcgattcc agctcaatgt catcgaccag ttgacaaatc ataccatgtt 420

gaaaacatct agtattgtaa gggttcagtt tttcccgact accatgttat tgaccatcac 480

cactcgttagc attggcacgg cttcttccag caaggcacga actgggccga tggccccgcg 540

ttcgtgaacc agtgtccat cgttcgggc cactcggtt tttatgactt tcaagttccc 600

gaccaagcag gtacgaattc cgtacacgtt tcattgcgtc gcaactaaac ctccctttac 660

tagggacttt ctggtaccat agccatctct ccacgcaata ctgcgttgt ttgagggggc 720

ctttcgctgt ctacgacccc aacgatcctc acgctagcct gtatgacatt gataacggtg 780

agcagatcat ggtatcgcaa tattgcgtcc acttatgctt cctggcatcc agacgacact 840

gtcattacgc tggctgattt gtatcacgtt gctgccaagc tcggacctcg cttcccgta 900

gtgtcaaatg tctacgagag atctcacata tacgactaga ctcacttcgc tgattacaga 960

tttggctccg attcaaccct tatcaatgga cttggcgaa ccactggcat agcaccgtcc 1020

gacttggcgag ttatcaaggt cacgcagggc aagcggtaaat tatggatggt catcaactgca 1080

cattggctct gatacatggc cttgtttcca cagctaccgc ttccgcttgg tgtcgcttc 1140
ttgcgatccg aaccatacat tcagcattga taatcacaca atgactataa ttgaggcgga 1200
ctcgatcaac actcaacccc tagaggttga ttcaatccag attttgccg cgcacgcta 1260
ctccttcgtg gtaggtcgta ggctcctgtc atcaagtttgc cagacattct tagatacacc 1320
ttttcaatg cagctggatg cttagccagcc ggtggataac tactggatcc gcgcaaacc 1380
tgccctcgga aacacaggtt ttgctggtgg aatcaattct gccatcctgc gttatgatgg 1440
cgcaccccgag atcgagccta cgtctgtcca gactacttct acgaaggctc tgaacgaggt 1500
cgacttgcattt cctcttcgc ctatgcctgt ggtacgtgtc tcaaagaacc tcgatcacta 1560
agtgcattgtc aactcatatg gtgcattgtaca gcctggcagc cccgagcccg gaggtgtcga 1620
caaggctctg aacttggtct tcaacttcgt gагtactggc gcgcttccgt agcacacgtt 1680
cgaacaaaagc ctgataccat gcagaacggc accaacttct tcatcaacga ccacacctt 1740
gtccccggcgt ctgtcccaagt ctgtctacaa atcctcgttgc gggcgcaggc ggctcaggac 1800
ctggtcccgag agggcagcgt gttcggttctt cccagcaact cgtccattga gatatccttc 1860
ccttccctc gtctaaaggc ggagtcgata tctgactccc atcacagcac gccttcgtg 1980
tcgtccggag cgccgggagc agcgtctaca actacgacaa cccgatcttc cgcgacgtcg 2040
tcagcaccgg ccagccggc gacaacgtca cgattcgctt cgagaccaat aacccaggcc 2100
cgtggttcctt ccactgccac attgacttcc acctcgacgc aggctttgtcgt gtagtcatgg 2160
ccgaggacac tccggacacc aaggccgcga accctgttcc tcaggcgtgg tcggacttgt 2220
gccccatcta tgatgcactt gacccagcgc acctctgagc gggattgtta ctgtgacctg 2280
gtgtgggggg aacatgtcga gggctttcat cgatcaggga ctttcaaggt tggcataata 2340
tacctcacgg cctggatgac tcggacagcg tgtggcgtg ggtgttaactc tgcttgatgt 2400
tgaaaaaaagg atttatgttta gaacaattta tgagcaatca gcaatcaata ggattgtgtc 2460
ggtttcgacg aaatgtcttgc tctccctgac attacttttgcgt gtcgagaaa tgggtccatg 2520
atacacatca ttgagctctc aataccaaga aggattaccc atgtcaatac ccaagatcat 2580
gtcttcgtg tccgcaatgg tctcatgttg cggtgagcag atcgcagttac gttgaaaagc 2640
gattagtatt acatgcaaca tgcaacattt ggaagggggc atgcagaggt tcagctcgcg 2700
tcagtcggcc aagttagcgac ctttgcgcac ctgcctgtta acctgaacgt atgcttcaga 2760

actccgtcg	tatcgagagc	gatcgtagac	gttccggat	agatccattg	atccccgctc	2820
tggtcggcgc	gtgcgatggc	cccgagcg	accggcagct	tcgcgatgc	gctttccta	2880
ggggcgaggc	cgtgtacccg	cgtgtacgag	acgagctgct	tgttcgggtg	gggcgaaggc	2940
ccgaaggagc	cactcacgaa	gagcaatgcg	acgtaatccg	aggtagcctt	gcccggttta	3000
gtcacacgca	cggagaacgt	gtcgagcggc	gcgaggtcga	ggaaggcggc	gctttctga	3060
ccgcgtgt	cgaggtcgga	aatcgaatac	gtcgatggcg	gtcctccaaa	gtccgtgacg	3120
ttggtcgcat	cggccgcccgc	gcctggagct	gcccaagaga	aatcgaaggt	ggtgaagtgc	3180
agtccaaagc	caaattcgta	gaccggcgtg	ccggtgtacc	acttgtatgt	acgccccggg	3240
ttcgacgcgc	ttggcgaag	ggtcatgtca	gtcatcgaa	cctgatcagc	gtagatggct	3300
gggtattggg	tgtatggcag	gcgtcctgca	g			3331

<210> 2
 <211> 518
 <212> PRT
 <213> Pycnoporus cinnabarinus

<400> 2

Met	Ser	Arg	Phe	Gln	Ser	Leu	Phe	Phe	Phe	Val	Leu	Val	Ser	Leu	Thr
1					5				10				15		

Ala	Val	Ala	Asn	Ala	Ala	Ile	Gly	Pro	Val	Ala	Asp	Leu	Thr	Leu	Thr
						20			25			30			

Asn	Ala	Gln	Val	Ser	Pro	Asp	Gly	Phe	Ala	Arg	Glu	Ala	Val	Val	Val
						35			40			45			

Asn	Gly	Ile	Thr	Pro	Ala	Pro	Leu	Ile	Thr	Gly	Asn	Lys	Gly	Asp	Arg
						50			55			60			

Phe	Gln	Leu	Asn	Val	Ile	Asp	Gln	Leu	Thr	Asn	His	Thr	Met	Leu	Lys
					65			70		75		80			

Thr	Ser	Ser	Ile	His	Trp	His	Gly	Phe	Phe	Gln	Gln	Gly	Thr	Asn	Trp
					85			90				95			

Ala	Asp	Gly	Pro	Ala	Phe	Val	Asn	Gln	Cys	Pro	Ile	Ala	Ser	Gly	His
						100			105			110			

Ser Phe Leu Tyr Asp Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp

115

120

125

Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro
130 135 140

Phe Val Val Tyr Asp Pro Asn Asp Pro His Ala Ser Leu Tyr Asp Ile
145 150 155 160

Asp Asn Asp Asp Thr Val Ile Thr Leu Ala Asp Trp Tyr His Val Ala
165 170 175

Ala Lys Leu Gly Pro Arg Phe Pro Phe Gly Ser Asp Ser Thr Leu Ile
180 185 190

Asn Gly Leu Gly Arg Thr Thr Gly Ile Ala Pro Ser Asp Leu Ala Val
195 200 205

Ile Lys Val Thr Gln Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu
210 215 220

Ser Cys Asp Pro Asn His Thr Phe Ser Ile Asp Asn His Thr Met Thr
225 230 235 240

Ile Ile Glu Ala Asp Ser Ile Asn Thr Gln Pro Leu Glu Val Asp Ser
245 250 255

Ile Gln Ile Phe Ala Ala Gln Arg Tyr Ser Phe Val Leu Asp Ala Ser
260 265 270

Gln Pro Val Asp Asn Tyr Trp Ile Arg Ala Asn Pro Ala Phe Gly Asn
275 280 285

Thr Gly Phe Ala Gly Gly Ile Asn Ser Ala Ile Leu Arg Tyr Asp Gly
290 295 300

Ala Pro Glu Ile Glu Pro Thr Ser Val Gln Thr Thr Pro Thr Lys Pro
305 310 315 320

Leu Asn Glu Val Asp Leu His Pro Leu Ser Pro Met Pro Val Pro Gly
325 330 335

Ser Pro Glu Pro Gly Gly Val Asp Lys Pro Leu Asn Leu Val Phe Asn
340 345 350

Phe Asn Gly Thr Asn Phe Phe Ile Asn Asp His Thr Phe Val Pro Pro
355 360 365

Ser Val Pro Val Leu Leu Gln Ile Leu Ser Gly Ala Gln Ala Ala Gln
370 375 380

Asp Leu Val Pro Glu Gly Ser Val Phe Val Leu Pro Ser Asn Ser Ser
385 390 395 400

Ile Glu Ile Ser Phe Pro Ala Thr Ala Asn Ala Pro Gly Phe Pro His
405 410 415

Pro Phe His Leu His Gly His Ala Phe Ala Val Val Arg Ser Ala Gly
420 425 430

Ser Ser Val Tyr Asn Tyr Asp Asn Pro Ile Phe Arg Asp Val Val Ser
435 440 445

Thr Gly Gln Pro Gly Asp Asn Val Thr Ile Arg Phe Glu Thr Asn Asn
450 455 460

Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Phe His Leu Asp Ala
465 470 475 480

Gly Phe Ala Val Val Met Ala Glu Asp Thr Pro Asp Thr Lys Ala Ala
485 490 495

Asn Pro Val Pro Gln Ala Trp Ser Asp Leu Cys Pro Ile Tyr Asp Ala
500 505 510

Leu Asp Pro Ser Asp Leu
515

<210> 3
<211> 2527
<212> ADN
<213> Pycnoporus cinnabarinus

<400> 3
agatctccga accagaaaatg cgattgcgtt caggcccaat taagaataaa gctgcgtcag 60
ggcagcgacg tatcttgatc catcattgac tcaccggcat cggcgtaac accaaagcaa 120
gctcgccccca cccataggcg tgcaccggcc ggcgtgcgcc attgaggtac atgagcgggg 180

cgaaaagtccg ccattggtag ccctgtcgta gacgcgcggc gatgaaacgt ttcccaccat 240
tgggaagaaaa cgtctgcggc ccatcatccc ttcaccggat gacaaggcgg cgtcgcgcct 300
ttgccgcaga ggccggcggg cgacatgcac agcgaaggc cgttgcggat gggaaagcagg 360
caatcagtgg gtgtcctacg cgcgcacgat ggtcgaaaaag cgtaggcgcc ctcccataag 420
gcggcaagca tcatgatgct ctccgattcg ggaagcctgg tgcgatgctg gagagactct 480
ctccgagaga ccagtgtgcg caacgttcct ggcctggaag actttaaagt gagtgtagaa 540
ggcgagcag aggacgatca tcggattgca ggaaccatcg gcattcctcag cctggaaagg 600
atggctcttg gtagacattc gcgaaagggtg tcctagatgt gagcgggctt cttggatgat 660
catgtcgtaa cttttctga cctcgctggt ggtacgcatttgc gcaaggatttgc gcattacgg 720
atgcctccca ttccataaacg ataaccctt cttcagggtt ggtcatctcc atagagcggc 780
acgctctcaa ggcctaggct attcacacct cttcgcaac atccctattt acgggtgtctg 840
taaggAACGA ctgtcatgg gatcacatga agtgcagcat actgttcgccc ggtctcgac 900
tacagacgct agtacggaa gtcgacatcc aagcgttcag tcaccacatg gcaaaaaaagc 960
tgcaccatac tctttatggt gagttgttcg tgagtggat acagtcatcc atgaggaaat 1020
gcccacccgga taggggtgtgg cggccgcaat attcatcgcc tggcaatagt cgatgtgcgt 1080
ccttggtaaa tgaatatcat gggcacatg tggagacgggt taaaacagcgt tgactgtgaa 1140
tccctggtgt gtgtgggccc gaacaggatc gttgcaggaa caccaatattc tcttcggcag 1200
cccagttctt tgcgagcggc acaggcaggc atcgcaac agatcccagc catccggcct 1260
ctgacattcg ggataacctga agcccttcag gtacggagcg aagagggtgg ctctctgcag 1320
cgattggcgg acggatagct gtatttcctc tctcaccatt gggaaagatgt gaaaggctcc 1380
atcatatagc ggctcaactc tacctcgaat gtccaaacac ggcgggata cttatattatg 1440
tggacaaggc cgagctatga tagttgtctc ccgaaggttgg taagtcccgc aatctgcgg 1500
tcaggcaaca gtctcgaaaa aataagaaga atattttagg tgctgttagg cgtatcgccc 1560
aatgcgcac acacggaggc tttaggagat gaagcgcccc tgagcggtaa gggagttgg 1620
tcaccggccgc cccgaccgac tctctctttt tcccagcatc atgtctcgcc gcaaacttta 1680
ccctctattt accaactcca cgagaaagca ggaacagctt cttgtctct catgacgtcc 1740
gcaatccaga cccttagccg gttcggtact catcgatc cctgcccggca tggtagtgaa 1800
gtcagcctgg ccagtgcgtta gtcccgatc tcttgctgca ctagagaagc cccatgagac 1860

acgcgttttt	gctttatttc	tgcgtttct	atagacacca	taggggcaaa	cgtatcctgca	1920
cgcccagagg	tattgggctc	gtcagattcc	cagttttct	cctcggtctg	aatcggtgc	1980
acggcagata	aatcgccgg	aaatgtata	gcccttcata	gcccgctatg	agagtcgcaa	2040
aaggcttgtc	agtcaaggctcg	gtcgagtgcc	tctcacgaag	agcgtcaact	tcgcgcgaca	2100
gccgcctttc	agggcaagat	agatcctccc	atcatcccct	actgcgctca	gcgcgggtac	2160
cgaacaattg	acttaccgac	atccctccgg	acgcgcaaat	gctgttcgac	ggaacgtaat	2220
cctcttcgtc	ccgcctcttt	tcgctctcac	gcattccgtg	tggttcgcc	gacggccgct	2280
catcaggacc	agaccagtct	caatgtctgg	tacccggcaca	atggtgacac	tgccggcaact	2340
gagtaggtct	ggtcactctg	gtgcaccgtc	gcttacgctg	actttcggga	tactgtcctg	2400
cagacatctg	gagcgcctgt	cttcccccta	gtataaatga	tgtctgtccg	caggtccttg	2460
aagaccgctc	gagtccact	tgagtttag	gtaggacctg	tccacccaaac	ccctcttct	2520
gatcatg						2527

<210> 4
<211> 643
<212> ADN
<213> Séquence artificielle

<220>
<223> Séquence promotrice du vecteur pEGT

<400> 4	cgaccgagcg	cgcgcaccc	agccatccc	gcgcgggtcg	ggacccaaaa	taagcgggcc	60
	ccgcgcgccc	ccgtcgccgcg	agcggtgtta	tctacgaacg	gaactgggag	gcgactcgga	120
	agagtttgt	tagaaagggg	aacaccatcg	cggacggccc	agtgcgtctgg	dcagctgagc	180
	gtgcatttgt	ttcaattctg	acctgtggca	tgtaaggaac	gtgctcgga	tcggagggtg	240
	gcgcgagagc	ctttcggtg	ttagattagt	aactgtactg	cgaagccgctg	gaggggttag	300
	gatgagaggt	agacagggtc	gcagcccagg	tgcgagaagg	actgcgaagg	actgttcttc	360
	gaccgcgcac	ctgcaattgc	gcatggat	agaatagagc	gtcgccctcg	agggggactc	420
	gaccagggtc	ggtggtggcg	cccgacggga	ctggctggc	atttgagat	ggcgcgact	480
	ccaggccgcc	gccgatgtgt	tcatcccggt	ttgtcagtat	cgatcgatc	tttcgggcgt	540
	gggtataaaa	gcgcggccgc	cgccgtctcc	cttttctcc	agcactccca	tccagagcac	600
	ttccctctcc	catcgcatcc	catcacacaa	taatgccat	cac		643

<210> 5
<211> 1033
<212> ADN
<213> Séquence artificielle

<220>
<223> Séquence promotrice du vecteur pESC

<400> 5
agcttctccg gccccgaatc gaacggcagg atgtgtggc gtgtccaata ttgccatcaa 60
aatctgtcag aagttagccc ttcgtcacc ctgtacagct tcgctgagtt gaaaagcagg 120
gttcatcttg ggctcaactga tgcactgagg tcgaccggag aactaaatga ccagccggag 180
tgttcactaa cttAACGCCG ggtattcagg gcagcttctc tatgttgcgctacgacgta 240
gatcacccgcc catgaacggg gaaaaacgggg aggggtgcgt ttggtaacgtc tttacgtctg 300
gctatgttgt attgaccaggc gtctgcagaa gatgggcacg acgatgcgcc gagccggcca 360
gtgtcgctgg atgtccactg ttgaggccat cttttgcta gacagacgga agagctttgg 420
aggtagcgatt cctctacgaa tggaaagggg ctttagatgga gaggacacg tctgagctcc 480
ccaacacgccc ttgcgcgagg gtgcgtctcc gcggacattc acctcagttc attgttctga 540
cctgcctaattgtatagacc ggccaacaac cttgtacgc cccatcataa cagtgcctg 600
cacagagcct tcccactcag tggcgccctc cctcaatcaa tcccactaac tcgcccggctc 660
tgccccctcg ccgctcgaca cgtcgcttgg aagagccgg gcacggcgt ccgctcccc 720
cttccctccg cgtcgtcatg cacgcagcgt taatgttgct gcaggcgagc cgtaagtata 780
ttcaaaggcg tagcgaatga atagcaggcg cgccccggacc tggcacgcgc ggcataaca 840
tgcagacttg ggtgacgata acttgaactc agacgcggcg aatgaatatc caaacgcgcg 900
ggaagaaaaat aatttacggg agcctccccca ggtataaaag cccctcaccc gtcactctt 960
tctccagtcg aacaccccaag ttcaactacc cagcccttcc ttccctcgct atccttcytt 1020
acaacacctgct cgc 1033

<210> 6
<211> 19
<212> ADN
<213> Séquence artificielle

<220>
<223> Amorce PCR

<400> 6
caytggcayg grttttcc 19

<210> 7
<211> 20
<212> ADN
<213> Séquence artificielle

<220>
<223> Amorce PCR

<400> 7
gagrtggaag tcratgtgrc 20

<210> 8
<211> 20
<212> ADN
<213> Séquence artificielle

<220>
<223> Amorce PCR

<400> 8
ggataactac tggatccgcg 20

<210> 9
<211> 19
<212> ADN
<213> Séquence artificielle

<220>
<223> Amorce PCR

<400> 9
cgcagtattg cgtggagag 19

<210> 10
<211> 19
<212> ADN
<213> Séquence artificielle

<220>
<223> Amorce PCR

<400> 10
gacatcttggaa ggcgcgtgtc 19

<210> 11
<211> 27
<212> ADN
<213> Séquence artificielle

<220>
<223> Amorce PCR

<400> 11
atcgaagggtt ccgatgactg acatgac

27

<210> 12
<211> 5122
<212> ADN
<213> Séquence artificielle

<220>
<223> Séquence du vecteur pEGT

<400> 12
catggatat cgcatgcctg cagagctcta gagtcgacgg gcccggtacc gcggccgcct 60
taagacgcgt ggatccgcag gtgaacgcgc ctatcggtgg gatattcggg cgacgggagc 120
ctcggcaatc tgagcctcggt tactgccttag caaattcggg atcccttcga tgtcataggg 180
tcgcggacaa gtgatcgctc tgctacatac tccaagggtgt tgactcattc cctcgataat 240
gaacattgtt gtttgtgttt gttctctatc cgctcaagtca cgcgacccca cacgtgcattg 300
gttgaacttc gccacgcaac aaccgcattga cgacatggcg aacctaaatgta aaggctgagt 360
cgtggactaa agcactccac tttacggcga ggatgccagt ctacgtcatg aatgaaggct 420
caggtcccgaa agtaagggggg tacaaaagga gggtgaaagg tggacgtttt cttaccatcc 480
ttccacccccc cagaccacca tgccggaaat tcccagcttg ctcaaaaagg ttctgccccgt 540
acgccccgca aattccttcg aggtggccccc tatcgatcac atgcacgact tcaaaacatc 600
cattctatca ttttggatc gtacaattat tagacatgtt gtacaacgtt acattccccc 660
cttctttac tctccggcccc agtctatgtt gaggtaaagt acaagcgtcc aaaggatcag 720
gcacttagag cgccgcgtct tgcttcgcgc cttagagcgc gccgtccgtc ttccggcggt 780
agacgagcag gtcgcagaca cggcgggaggt agccccactc gttgtcgatc caggcaatga 840
gcttcacgaa gctcttgctg atcgatgc cggggatcga tccacgcgtc ttaaggcggc 900
cgccgtaccc cctcgaccc gtcggggccgc gtcggaccgg cgggtttgggt cggcgatcggt 960
cagtcctgtc cctcgccac gaagtgcacg cagttgcggg ccgggtcgatc cagggcgaaac 1020
tcccccccccc acggctgctc gccgatctcg gtcatggccg gcccggaggc gtcccgaaag 1080
ttcgtggaca cgaccccgaa ccactcgccg tacagctcgatcc ccaaggccgcg caccacaccc 1140
caggccaggg tgggttcggg caccacctgg tcctggaccg cgctgtatgaa cagggtcaccg 1200
tcgtcccgaa ccacaccggc gaagtgcgtcc tcc