# Automated feature selection of predictors in electronic medical records data

Gronsbell, Jessica, Jessica Minnier, Sheng Yu, Katherine Liao, and Tianxi Cai. "Automated Feature Selection of Predictors in Electronic Medical Records Data." *Biometrics* 75, no. 1 (2019): 268–77. <a href="https://doi.org/10.1111/biom.12987">https://doi.org/10.1111/biom.12987</a>.

# Agenda

- (Quick) Introduction
- Proposed Methods
- Simulation Study
- Data Analysis
- Discussion

# Introduction EHR Data



- X: wide range of candidate features
- Interested in true disease status Y, but...
  - Chart review is labor-intensive
- S: easily extracted from EHR data and closely related to y

Can we accurately extract features that are predictive of Y using only S?

#### **Notation Set-up**

- Ni.i.d. random vectors  $\mathscr{F} = \{(Y_i, X_i^T, S_i^T)^T, i = 1,...,N\}$
- only  $\mathcal{D} = \{W_i = (X_i^T, S_i^T)^T, i = 1,...,N\}$  is observed
- Assumptions
  - $P(Y=1|X)=g(\alpha_0+X^T\beta_0)=g(\overrightarrow{X}^T\theta_0)$ ; Y follows a GLM  $\overrightarrow{X}=(1,X^T)^T, \theta_0=(\alpha_0,\beta_0^T)^T$
  - $S \perp X \mid Y$  S depends on X only through Y
  - ullet X is elliptical symmetric

#### Unsupervised feature selection procedure

- Step I:
  - Estimate  $\pi_S = P(Y = 1 | S)$
- Step II:
  - Penalized regression  $\hat{\pi_S}$  against  $X_i$
  - Candidate features are in  $\widehat{\mathcal{A}} = \{j: \hat{\beta}_j \neq 0\}$

#### Step I: Clustering

$$S \sim \tau f_{\Theta_1} + (1 - \tau) f_{\Theta_0}$$
 working parametric mixture model

- $\tau := P(Y = 1)$
- $S \mid Y \sim f_{\Theta_y}$ ;  $f_{\Theta_y}$  is specified up to unknown parameters  $\Theta_y$ ; e.g.  $S \mid Y = 1 \sim N(\mu_1, \Sigma_1)$
- unknown  $\boldsymbol{\Theta} \cdot = (\boldsymbol{\Theta}_1^T, \boldsymbol{\Theta}_0^T, \tau)^T$

$$\widehat{\mathbf{\Theta}}.^{MLE} = argmin_{\mathbf{\Theta}} \{-N^{-1} \sum_{i=1}^{N} l(\mathbf{\Theta}.|S_i)\} \text{ can be found using EM alogirthm}$$

$$\hat{\pi}_{S} = \frac{P(Y=1,S)}{P(S)} = \frac{\hat{\tau}f_{\hat{\mathbf{\Theta}}_{1}}}{\hat{\tau}f_{\hat{\mathbf{\Theta}}_{1}} + (1-\hat{\tau})f_{\hat{\mathbf{\Theta}}_{0}}}$$

#### Step II: Regularized Estimation

$$\hat{\boldsymbol{\theta}} = (\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}}^T)^T = argmin_{\boldsymbol{\theta}} \left\{ N^{-1} \sum_{i=i}^{N} \underbrace{l(\boldsymbol{\theta}^T \overrightarrow{\boldsymbol{X}}_i | \hat{\boldsymbol{\pi}}_{S_i})}_{\text{negative likelihood}} + \lambda_N \underbrace{\sum_{j=1}^{p} \frac{|\beta_j|}{|\tilde{\beta}_j|}}_{\text{adaptive lasso penalty}} \right\}$$

let  $ilde{ heta}$  be the MLE of the average negative likelihood.

$$\approx argmin_{\boldsymbol{\theta}} \left\{ (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})^T \Sigma_{\boldsymbol{X}}^{-1} (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}}) + \lambda_N \sum_{j=1}^p \frac{|\beta_j|}{|\tilde{\beta}_j|} \right\}$$

#### Summary

- $E(\bar{\pi}_S | X) \approx g(\theta_0^T \overline{X}) = E(Y | X)$  provided that  $E(\bar{\pi}_S | Y = y) \approx y$
- Fitting  $\hat{\pi}_S$  (the "error-corrupted" version of Y) can be viewed as misspecification of link function (Neuhaus, 1999)
- ullet Even mixture model fails to hold, if X follows elliptical symmetric distribution, then
  - $E(\hat{\pmb{\beta}}) = c \pmb{\beta}_0$  provided that  $cov(\bar{\pi}_{\pmb{S}}, \pmb{\theta}_0^T \vec{\pmb{X}}) \neq 0$  (Li and Duan, 1989)
  - $P(\widehat{\mathscr{A}} = \mathscr{A}) \rightarrow 1$  as  $N \rightarrow \infty$  (Appendix)

Neuhaus, John M. "Bias and Efficiency Loss Due to Misclassified Responses in Binary Regression." *Biometrika* 86, no. 4 (1999): 843–55. Li, Ker-Chau, and Naihua Duan. "Regression Analysis Under Link Violation." *The Annals of Statistics* 17, no. 3 (September 1989): 1009–52. <a href="https://doi.org/10.1214/aos/1176347254">https://doi.org/10.1214/aos/1176347254</a>.

#### Variable selection via resampling

- $X_{\widehat{\mathscr{A}}}$  does not perform as well as  $X_{\mathscr{A}}$  due to uncertainty in  $\widehat{\mathscr{A}}$
- Let  $\hat{m{ heta}}^{(m)}$  be the minimizer solved in  $m^{th}$  subsample of size  $N_b$

• 
$$\hat{\rho}_{0j} := P(\hat{\beta}_j = 0) = \mathbb{P}_m(I\{\hat{\beta}_j^{(m)} = 0\})$$

• Variable selected if  $\hat{\rho}_{0i} < 0.5$ 

#### Methods compared

- Suppose training data n=100, validation set N=5000, two surrogate marker  $\boldsymbol{S}$
- AUC is used to compare prediction performance
- Supervised approach:
  - $L_{100}$ :  $Y \sim X + S$  using ALASSO
  - $L_{100}^{2\text{step}}$ :  $Y \sim X_{\mathscr{A}} + S$ ;  $X_{\mathscr{A}}$  selected using  $Y \sim X$
- Proposed unsupervised approach:
  - AutoClust:  $Y \sim X_{\mathscr{A}} + S$ ;  $X_{\mathscr{A}}$  selected using  $\hat{\pi}_S \sim X$
  - AutoClust<sub>R</sub>:  $Y \sim X_{\mathcal{A}} + S$ ;  $X_{\mathcal{A}}$  selected using  $\hat{\pi}_S \sim X$  with resampling

# Simulations Methods compared

- Other unsupervised approach:
  - PenReg $_{S_1+S_2}$ :  $Y \sim X_{\mathscr{A}} + S$ ;  $X_{\mathscr{A}}$  selected using  $S_1 + S_2 \sim X$
  - PenReg\_S:  $Y \sim X_{\mathscr{A}} + S$ ;  $X_{\mathscr{A}}$  selected using  $S \sim X$
  - RankCor $_{S_1+S_2}$ :  $Y \sim X_{\mathscr{A}} + S$ ;  $X_{\mathscr{A}}$  selected based on rank correlation [1]
  - Extreme:  $Y \sim X_{\mathcal{A}} + S$ ;  $X_{\mathcal{A}}$  selected based on extreme sampling [2]

<sup>1.</sup> Yu, Sheng, Katherine P Liao, Stanley Y Shaw, Vivian S Gainer, Susanne E Churchill, Peter Szolovits, Shawn N Murphy, Isaac S. Kohane, and Tianxi Cai. "Toward High-Throughput Phenotyping: Unbiased Automated Feature Extraction and Selection from Knowledge Sources." *Journal of the American Medical Informatics Association* 22, no. 5 (September 1, 2015): 993–1000. <a href="https://doi.org/10.1093/jamia/ocv034">https://doi.org/10.1093/jamia/ocv034</a>. Yu, Sheng, Abhishek Chakrabortty, Katherine P Liao, Tianrun Cai, Ashwin N Ananthakrishnan, Vivian S Gainer, Susanne E Churchill, et al. "Surrogate-Assisted Feature Extraction for High-Throughput Phenotyping." *Journal of the American Medical Informatics Association: JAMIA* 24, no. e1 (April 2017): e143–49. <a href="https://doi.org/10.1093/jamia/ocw135">https://doi.org/10.1093/jamia/ocw135</a>.

#### Setting 1: Correct model specifications

#### Generate data:

- $Y \sim Bin(N = 5000, p = 0.3)$
- $X_i \sim MVN(y_i \Sigma^X \beta_0, \Sigma^X)$   $logit(P(Y = 1 | X)) = (\alpha_0 + \beta_0^T)X$
- $S_i^0 \sim MVN(0, \Sigma^S) + \mu^S + y_i \Delta_0^S S \perp X \mid Y$
- $S = log\{ \lfloor exp(S^0) \rfloor + 1 \}$  Count Data; log-transformation to stabilize model fitting and standardize unit variance

#### Parameter values:

• Strong signals:  $\beta_0 = [1.2, -1.2, 0.5, -0.3, 0.3, 0.1, 0.1, \mathbf{0}_{(p-7)\times 1}^T]^T, \Delta_0^S = [0.75, 0.3]^T$ 

**TABLE 1** Percent of times each feature was selected over 500 replications as well as the average AUC attained for final algorithm training with 100 or 200 labeled examples (AUC<sub>100</sub>, AUC<sub>200</sub>) when the covariate distribution is elliptically symmetric for the strong signal based on (i) supervised training with all features and 100 or 200 labeled samples (L<sub>100</sub>, L<sub>200</sub>) or with features selected via the two-step approach (L<sup>2step</sup><sub>100</sub>, L<sup>2step</sup><sub>200</sub>) (ii) the automated feature selection method with and without resampling (AutoClust, AutoClust<sub>R</sub>), (iii) a penalized regression with  $S_1 + S_2$  or **S** as the outcome (PenReg<sub>S1+S2</sub>, PenReg<sub>S</sub>), (iii) the rank correlation method based on  $S_1 + S_2$  (RCor<sub>S1+S2</sub>) (iv) the extreme sampling method (Extreme) and (iv) the method of Agarwal et al. (2016) based on  $S_1 + S_2 \ge 1$  as the silver standard label (Agarwal<sub>S1+S2</sub>).

| p = 50                            |     |      |     |      |     |     |     |    |             |                   |
|-----------------------------------|-----|------|-----|------|-----|-----|-----|----|-------------|-------------------|
| Method                            | 1.2 | -1.2 | 0.5 | -0.3 | 0.3 | 0.1 | 0.1 | 0  | $AUC_{100}$ | AUC <sub>20</sub> |
| L <sub>100</sub>                  | 85  | 46   | 3   | 6    | 14  | 11  | 9   | 3  | 79.9        |                   |
| 2step<br>100                      | 88  | 59   | 4   | 5    | 19  | 13  | 9   | 4  | 81.1        |                   |
| 200                               | 100 | 99   | 26  | 12   | 46  | 32  | 28  | 10 |             | 84.5              |
| 2step 200                         | 100 | 99   | 32  | 12   | 47  | 33  | 27  | 11 |             | 84.3              |
| AutoClust                         | 100 | 100  | 91  | 43   | 66  | 28  | 29  | 12 | 84.2        | 86.3              |
| AutoClust <sub>R</sub>            | 100 | 100  | 74  | 15   | 42  | 12  | 10  | 2  | 85.3        | 86.6              |
| $PenReg_{S_1+S_2}$                | 100 | 100  | 100 | 96   | 97  | 65  | 66  | 45 | 81.9        | 85.4              |
| PenRegs                           | 100 | 100  | 99  | 65   | 96  | 79  | 72  | 34 | 82.4        | 85.6              |
| $RankCor_{S_1+S_2}$               | 36  | 0    | 0   | 0    | 0   | 0   | 0   | 0  | 79.7        | 80.2              |
| Extreme                           | 100 | 95   | 1   | 0    | 6   | 4   | 1   | 0  | 85.3        | 86.2              |
| $Agarwal_{S_1+S_2\geq 1}$         | 100 | 100  | 99  | 66   | 85  | 38  | 38  | 14 | 83.9        | 86.2              |
| p = 100                           |     |      |     |      |     |     |     |    |             |                   |
| Method                            | 1.2 | -1.2 | 0.5 | -0.3 | 0.3 | 0.1 | 0.1 | 0  | $AUC_{100}$ | AUC <sub>20</sub> |
| L <sub>100</sub>                  | 58  | 13   | 2   | 0    | 4   | 4   | 3   | 0  | 76.5        |                   |
| L <sup>2step</sup>                | 47  | 8    | 1   | 0    | 2   | 4   | 2   | 0  | 79.6        |                   |
| L <sub>200</sub>                  | 98  | 84   | 6   | 3    | 25  | 20  | 13  | 3  |             | 82.5              |
| L <sub>200</sub> <sup>2step</sup> | 100 | 92   | 8   | 3    | 31  | 23  | 15  | 3  |             | 83.9              |
| AutoClust                         | 100 | 100  | 90  | 39   | 65  | 31  | 24  | 11 | 83.5        | 85.8              |
| AutoClust <sub>R</sub>            | 100 | 100  | 68  | 12   | 34  | 11  | 6   | 2  | 85.2        | 86.5              |
| $PenReg_{S_1+S_2}$                | 100 | 100  | 100 | 96   | 99  | 67  | 62  | 46 | 79.6        | 84.4              |
| PenRegs                           | 100 | 100  | 97  | 42   | 95  | 78  | 61  | 20 | 82.1        | 85.4              |
| $RankCor_{S_1+S_2}$               | 36  | 0    | 0   | 0    | 0   | 0   | 0   | 0  | 79.6        | 80.2              |
| Extreme                           | 98  | 58   | 0   | 0    | 3   | 0   | 0   | 0  | 84.1        | 84.8              |
| $Agarwal_{S_1+S_2\geq 1}$         | 100 | 100  | 98  | 59   | 81  | 35  | 32  | 11 | 83.4        | 85.9              |

#### Setting 2: Distribution of X not elliptical symmetric

#### Generate data:

- $Y \sim Bin(N = 5000, p = 0.3)$
- $X_i \sim MVN(y_i \Sigma^X \beta_0, \Sigma^X) \Rightarrow \log(\exp(X)) + 1$
- $S_i^0 \sim MVN(0, \Sigma^S) + \mu^S + y_i \Delta_0^S$
- $S = log\{ \left[ exp(S^0) \right] + 1 \}$

Setting 3:  $S \perp \!\!\! \perp X \mid Y$ 

#### Generate data:

- $Y \sim Bin(N = 5000, p = 0.3)$
- $X_i \sim MVN(y_i \Sigma^X \beta_0, \Sigma^X)$
- $S_i^0 \sim MVN(0, \Sigma^S) + \mu^S + y_i \Delta_0^S + [X_1, X_3]$
- $S = log\{ \left[ exp(S^0) \right] + 1 \}$

**TABLE 2** Model Sizes and AUCs for final algorithm training with (a) p = 100 or (b) p = 200 labeled samples (AUC<sub>100</sub>, AUC<sub>200</sub>) for the strong signal when **X** is not elliptically symmetric based on (i) supervised training with all features and 100 or 200 labeled samples (L<sub>100</sub>, L<sub>200</sub>) or with features selected via the two-step approach (L<sup>2step</sup><sub>100</sub>, L<sup>2step</sup><sub>200</sub>) (ii) the automated feature selection method with and without resampling (AutoClust, AutoClust<sub>R</sub>), (iii) a penalized regression with  $S_1 + S_2$  or **S** as the outcome (PenReg<sub>S1+S2</sub>, PenReg<sub>S</sub>), (iii) the rank correlation method based on  $S_1 + S_2$  (RCor<sub>S1+S2</sub>) (iv) the extreme sampling method (Extreme) and (iv) the method of Agarwal et al. (2016) based on  $S_1 + S_2 \ge 1$  as the silver standard label (Agarwal<sub>S1+S2</sub>).

| (a) $p = 50$                                                                                                                                   |                                                |                                    |                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|--------------------------------------------|
| Method                                                                                                                                         | Model Size                                     | $AUC_{100}$                        | $AUC_{200}$                                |
| $L_{100}$                                                                                                                                      | 1                                              | 77.8                               |                                            |
| L <sub>100</sub> <sup>2step</sup>                                                                                                              | 1.1                                            | 79.8                               |                                            |
| L <sub>200</sub>                                                                                                                               | 4.7                                            |                                    | 82.8                                       |
| $L_{200}^{2step}$                                                                                                                              | 5.4                                            |                                    | 83.4                                       |
| AutoClust                                                                                                                                      | 10.1                                           | 82.8                               | 85                                         |
| $AutoClust_R$                                                                                                                                  | 4.3                                            | 84                                 | 85.4                                       |
| $PenReg_{S_1+S_2}$                                                                                                                             | 26                                             | 80.3                               | 84.3                                       |
| PenReg <sub>S</sub>                                                                                                                            | 19.6                                           | 81.3                               | 84.6                                       |
| $RankCor_{S_1+S_2}$                                                                                                                            | 0.3                                            | 79.3                               | 79.9                                       |
| Extreme                                                                                                                                        | 1.3                                            | 82.5                               | 83.3                                       |
| $Agarwal_{S_1+S_2\geq 1}$                                                                                                                      | 11                                             | 82.6                               | 85                                         |
| (b) $p = 100$                                                                                                                                  |                                                |                                    |                                            |
| Method                                                                                                                                         | Model Size                                     | AUC <sub>100</sub>                 | AUC <sub>200</sub>                         |
|                                                                                                                                                |                                                |                                    |                                            |
| $L_{100}$                                                                                                                                      | 0.5                                            | 75.6                               |                                            |
| L <sub>100</sub><br>L <sub>100</sub>                                                                                                           | 0.5<br>0.2                                     | 75.6<br>78.7                       |                                            |
| $L_{100}^{2step}$                                                                                                                              |                                                |                                    | 80                                         |
| L <sub>100</sub> <sup>2step</sup><br>L <sub>200</sub>                                                                                          | 0.2                                            |                                    |                                            |
| $ m L_{100}^{2step} \  m L_{200}$                                                                                                              | 0.2<br>1.9                                     |                                    | 80                                         |
| $egin{array}{c} L_{100}^{2	ext{step}} \ L_{200}^{2	ext{step}} \ \end{array}$                                                                   | 0.2<br>1.9<br>2.4                              | 78.7                               | 80<br>82.6                                 |
| $L_{100}^{2step}$ $L_{200}$ $L_{200}^{2step}$ AutoClust AutoClust <sub>R</sub>                                                                 | 0.2<br>1.9<br>2.4<br>14.9                      | 78.7<br>82                         | 80<br>82.6<br>84.7                         |
| $L_{100}^{2step}$ $L_{200}$ $L_{200}^{2step}$ AutoClust                                                                                        | 0.2<br>1.9<br>2.4<br>14.9<br>4.6               | 78.7<br>82<br>83.9                 | 80<br>82.6<br>84.7<br>85.3                 |
| $egin{array}{c} L_{100}^{2	ext{step}} \ L_{200} \ L_{200}^{2	ext{step}} \ AutoClust \ AutoClust_R \ PenReg_{S_1+S_2} \ PenReg_S \ \end{array}$ | 0.2<br>1.9<br>2.4<br>14.9<br>4.6<br>50.3       | 78.7<br>82<br>83.9<br>77.8         | 80<br>82.6<br>84.7<br>85.3<br>82.6         |
| $egin{array}{c} L_{100}^{2	ext{step}} \ L_{200} \ L_{200}^{2	ext{step}} \ AutoClust \ AutoClust_R \ PenReg_{S_1+S_2} \ \end{array}$            | 0.2<br>1.9<br>2.4<br>14.9<br>4.6<br>50.3<br>22 | 78.7<br>82<br>83.9<br>77.8<br>80.9 | 80<br>82.6<br>84.7<br>85.3<br>82.6<br>84.3 |

**TABLE 3** Model Sizes and AUCs for final algorithm training with 100 or 200 labeled samples (AUC<sub>100</sub>, AUC<sub>200</sub>) for the strong signal when  $\mathbf{S} \not\perp \mathbf{X} \mid Y$  based on (i) supervised training with all features and 100 or 200 labeled samples (L<sub>100</sub>, L<sub>200</sub>) or with features selected via the two-step approach (L<sup>2step</sup><sub>100</sub>, L<sup>2step</sup><sub>200</sub>) (ii) the automated feature selection method with and without resampling (AutoClust, AutoClust<sub>R</sub>), (iii) a penalized regression with  $S_1 + S_2$  or  $\mathbf{S}$  as the outcome (PenReg<sub>S1+S2</sub>, PenReg<sub>S</sub>), (iii) the rank correlation method based on  $S_1 + S_2$  (RCor<sub>S1+S2</sub>) (iv) the extreme sampling method (Extreme) and (iv) the method of Agarwal et al. (2016) based on  $S_1 + S_2 \ge 1$  as the silver standard label (Agarwal<sub>S1+S2≥1</sub>).

| (a) $p = 50$                      |            |                    |                    |
|-----------------------------------|------------|--------------------|--------------------|
| Method                            | Model Size | AUC <sub>100</sub> | AUC <sub>200</sub> |
| $L_{100}$                         | 3.3        | 81.2               |                    |
| $ m L_{100}^{2step}$              | 3.6        | 81.6               |                    |
| L <sub>200</sub>                  | 6.8        |                    | 85.8               |
| I .2step                          | 7.9        |                    | 84.5               |
| AutoClust                         | 5.7        | 85.3               | 86.5               |
| AutoClust                         | 4          | 85.6               | 86.6               |
| $PenReg_{S_1+S_2}$                | 30.6       | 83                 | 86.1               |
| PenReg <sub>S</sub>               | 19         | 83.9               | 86.1               |
| $RankCor_{S_1+S_2}$               | 2.6        | 83.6               | 84.5               |
| Extreme                           | 2.3        | 82.1               | 83                 |
| $Agarwal_{S_1+S_2\geq 1}$         | 9.1        | 84.9               | 86.4               |
| (b) $p = 100$                     |            |                    |                    |
| Method                            | Model Size | AUC <sub>100</sub> | AUC <sub>200</sub> |
| $L_{100}$                         | 1.1        | 76.9               |                    |
| $L_{100}^{2step}$                 | 0.8        | 81.2               |                    |
| $L_{200}$                         | 5.1        |                    | 84.3               |
| L <sub>200</sub> <sup>2step</sup> | 5.7        |                    | 84.1               |
| AutoClust                         | 7.4        | 85.1               | 86.4               |
| AutoClust <sub>R</sub>            | 4.2        | 85.6               | 86.6               |
| $PenReg_{S_1+S_2}$                | 53.1       | 80.6               | 85.2               |
| PenReg <sub>S</sub>               | 21.2       | 83.8               | 86                 |
| $RankCor_{S_1+S_2}$               | 2.6        | 83.6               | 84.4               |
| Extreme                           | 2          | 81.3               | 82.1               |
| $Agarwal_{S_1+S_2}$               | 12.6       | 84.6               | 86.1               |

# Data Analysis

#### **Rheumatoid arthritis**

- 46,111 potential RA subjects
- 435 subjects are labeled via chart review
- $S_1$ : number of RA icd-9 codes;  $S_2$ : counts of NLP mentions of RA
- X: p = 77 NLP features
- Randomly sample N=5000 unlabelled data for feature selection
- n = 100,200 training data; 435 n validation set.

**TABLE 4** (a) Number of features included in the algorithm training as well as coefficient estimates and AUC of the resulting algorithms trained with (b) n = 100 and (c) n = 200 labels when fitting the full model (L) as well as when only including features selected based on the AutoClust, AutoClust<sub>R</sub>, RankCor<sub>S1+S2</sub>, Extreme, and Agarwal<sub>S1+S2≥1</sub> methods for the EMR-based study of RA.

|                                                         | 1 2              |           | 2 —               |                     |         |                           |
|---------------------------------------------------------|------------------|-----------|-------------------|---------------------|---------|---------------------------|
|                                                         |                  | ` ´       | features selected |                     | _       |                           |
|                                                         |                  | AutoClust | $AutoClust_R$     | $RankCor_{S_1+S_2}$ | Extreme | $Agarwal_{S_1+S_2\geq 1}$ |
|                                                         |                  | 33.00     | 26.80             | 69.20               | 23.80   | 45.10                     |
| (b) Coefficient and AUC estimate                        | s with $n = 100$ | labels    |                   |                     |         |                           |
|                                                         | $L_{100}$        | AutoClust | $AutoClust_R$     | $RankCor_{S_1+S_2}$ | Extreme | Agarwal                   |
| $RA_{ICD}$                                              | 0.35             | 0.66      | 0.7               | 0.4                 | 0.73    | 0.58                      |
| $RA_{NLP}$                                              | 0.27             | 0.68      | 0.74              | 0.32                | 0.85    | 0.49                      |
| $Methotraxate_{NLP}$                                    | 0.08             | 0.14      | 0.14              | 0.09                | 0.13    | 0.11                      |
| AM Stiffness <sub>NLP</sub>                             | 0.04             | 0.12      | 0.13              | 0.05                | 0.15    |                           |
| Echography <sub>NIP</sub>                               |                  |           |                   |                     | -0.21   |                           |
| AUC                                                     | 91.1             | 92.7      | 92.8              | 91.2                | 93.4    | 91.7                      |
| (c) Coefficient and AUC estimates with $n = 200$ labels |                  |           |                   |                     |         |                           |
|                                                         | $L_{200}$        | AutoClust | $AutoClust_R$     | $RankCor_{S_1+S_2}$ | Extreme | Agarwal                   |
| $RA_{ICD}$                                              | 0.7              | 0.85      | 0.87              | 0.72                | 0.87    | 0.79                      |
| $RA_{NLP}$                                              | 0.72             | 1.26      | 1.35              | 0.79                | 1.52    | 1.07                      |
| $Methotraxate_{NLP}$                                    | 0.13             | 0.15      | 0.15              | 0.14                | 0.14    | 0.15                      |
| $MRI_{NLP}$                                             | -0.05            |           |                   | -0.09               |         |                           |
| AM Stiffness <sub>NLP</sub>                             | 0.1              | 0.28      | 0.29              | 0.12                | 0.29    | 0.17                      |
| Physiotherapy $_{NLP}$                                  | -0.07            |           |                   |                     |         | -0.15                     |
| $Echography_{NLP}$                                      | -0.08            |           |                   |                     | -0.53   | -0.26                     |
| Note Count <sub>NLP</sub>                               |                  | -0.37     | -0.41             |                     | -0.36   |                           |
| Antinuclear Antibodies <sub>NLP</sub>                   |                  | -0.11     | -0.13             |                     |         |                           |
| $Redness_{NLP}$                                         |                  |           | -0.16             | -0.06               |         |                           |
| Intravenous Infusion <sub>NLP</sub>                     |                  |           |                   |                     | -0.15   |                           |
| AUC                                                     | 92.8             | 94.3      | 94.5              | 92.9                | 94.8    | 94.2                      |

## Discussion

- AutoClust Vs AutoClust<sub>R</sub>
  - AUC is similar
  - AutoClust<sub>R</sub> tends to select smaller number of variables
- Combine label and unlabeled data

$$\sum_{i=1}^{N} l(\boldsymbol{\theta}^T \overrightarrow{\boldsymbol{X}}_i | \hat{\boldsymbol{\pi}}_S) + \sum_{j=N+1}^{N+n} l(\boldsymbol{\theta}^T \overrightarrow{\boldsymbol{X}}_i | Y_i)$$