Modeliranje strojev

električnih

7. LABORATORIJSKA VAJA

Ime in priimek: Jaka Ambruš

Datum in ura: sreda ob 14.00 Ocena poročila:

1. Merjenec, vezalni načrt, uporabljeni instrumenti in nazivni podatki

Merjenec je bil trifazni asinhronski motor s kratkostično kletko:

Vezalni načrt:

Z dvema vatmetrama smo z Aronovo vezavo merili moči trifaznih sistemov.

Podatki o merjencu:

NAZIVNI PODATKI MERJENCA (TRIFAZNI ASINHRONSKI MOTOR S KRATKOSTIČNO KLETKO)

Uporabljeni instrumenti:

- -Multimeter,
- -Asinhronski motor,
- -Sinhronski generator,
- -Merilnik navora in hitrosti,
- -Primež,
- -Trifazni variak.
- -Digitalni V-A-W meter,

2. Nadomestno vezje

Nadomestno vezje asinhronskega stroja:

Asinhronski motor je sestavljen iz treh takih nadomestnih vezij v obliki zvezde, torej tako da so napetosti fazne. Je enofazno nadomestno vezje s slipom: $s=\frac{n_s-n}{n_s}$

Pri laboratorijski vaji bomo določili naslednje vrednosti, razvidne tudi na prejšnji sliki nadomestnega vezja:

 $R_{\rm S}$ – fazna upornost statorskega navitja,

 $R_{R'}$ – fazna upornost rotorskega navitja (reducirana na statorsko stran),

 $X_{\sigma S}$ – stresana reaktanca statorskega navitja,

 $X_{\sigma R}$ ' – stresana reaktanca rotorskega navitja (reducirana na statorsko stran),

 $R_{\rm Fe}$ – moč na tem uporu predstavlja izgube v železu ($P_{\rm Fe}$),

 $X_{\rm SR}$ – reaktanca magnetenja.

Rotorsko delovno moč z dvema uporoma v nadomestnem vezju ločimo na izgube v navitju in na mehansko moč

3. Rezultati

3.1 Preizkus kratkega

Slip je enak 1 in lahko zaradi zanemarljivega pretoka skozi prečno vejo poenostavimo nadomestno vezje na sledeč način:

Statorska navitja smo obremenjevali dokler ni veljalo: Ik = In.

Tabela meritev:

I/A	U _{MF} /V	U_F/V	P ₁ /W	P_2/W	$P_1 + P_2$
2	14.8	8.5	24	-7	17
4	30.7	17.7	98	-21	77
6	45.5	26.3	216	-41	175
8	59.3	34.2	379	-66	313
10.5	76.0	43.9	642	-99	543

Kratkostična napetost:Uk=43.9V

Kratkostičen tok: Ik = In =10,5A

Kratkostična moč: Pk=543W

Kratkostična impedanca motorja:

$$|Z_{k}| = \frac{U_{k}}{I_{k}}$$

Znaša $4.18~\Omega$

Razdelimo jo na:

-Upornost:
$$R_k = \frac{P_k}{3I_k^2} = \frac{543 W}{3*10.5^2} = 1.64 \Omega$$

-Reaktanco:
$$X_k = \sqrt{|Z_k|^2 - {R_k}^2} = 3.84 \,\Omega$$

Iz teh vrednosti izračunamo še:

$$R_R{'}=R_k-R_S=0.92\,\Omega$$

$$X_{\sigma S} = \frac{X_k}{2} = 1.92 \,\Omega$$

3.2 Preizkus prostega teka

V idealnem prostem teku je slip enak(vrtilna hitrost rotorja je enaka sinhronski), torej lahko poenostavimo vezje:

Meritve preizkusa prostega teka:

U _{MF} /V	U _F /V	I/A	n /vrt/min	Pp/W
460.2	265.58	7.32	2997.6	532
430.6	248.61	5.3	2997	434
400.3	231.11	4.1	2996.4	381
371.0	214.20	3.22	2995.8	344
340.9	196.82	2.74	2995.8	320
310.9	179.50	2.4	2995.2	302
281.3	162.41	1.95	2994	281
249.6	144.11	1.78	2991	268
220.6	127.36	1.49	2989.8	256
189.5	109.41	1.33	2986.2	242
170.2	98.27	1.28	2982	238

Pp pri nazivni napetosti Up = 400.3V je Pp = 381W.

Karakteristika prostega teka:

V programskem okolju Matlab sem z uporabo ekstrapolacije določil izgube trenja in ventilacije. Dobljeni rezultat ekstrapolacije Pcu in Pfe sem delil s tri saj je trifazni sistem.

Izračuni:

$$P_{t,vent} = 197,82W$$
, $P_{Cu} = R_S I_p^2 = 12.1 W$, $P_{Fe} = \frac{P_P}{3} - \frac{P_{t,vent}}{3} - P_{Cu} = 48.96 W$,

Za izračun:

$$R_{Fe} = 3 \frac{{U_{i0}}^2}{P_{Fe}} = 3046 \,\Omega$$

Sem potreboval:

$$U_{i0} = |U_{pRe} - (I_{pRe} + jI_{plm})(R_S + jX_{\sigma S})|,$$

Kjer je:

 $R_S = \frac{R_{povp}}{2} = 0.72 \, \Omega$ kjer smo povprečno vrednost izračunali iz naslednjih meritev:

Zdaj lahko ponovno izračunamo:

$$R_p = \frac{P_p}{3 * {I_p}^2} = 7.56 \,\Omega$$

$$|Z_p| = \frac{U_p}{I_p} = \frac{400.3 V}{4.1 A} = 97.63 \Omega$$

$$X_p = \sqrt{|Z_p|^2 - R_p^2} = 97.34 \,\Omega$$

$$X_{SR} = X_p - X_{\sigma S} = 95.42 \,\Omega$$