In [17]:

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
%matplotlib inline
plt.rcParams['figure.figsize'] = (15, 10)
```

In [34]:

```
N = 100
sample = np.random.normal(size=100)
```

In [3]:

```
gamma = 0.95
```

In [40]:

```
def plot_int(low_lim, high_lim, title= None, ylim=None):
    low = [low_lim(sample[0:i+1]) for i in range(len(sample))]
    high = [high_lim(sample[0:i+1]) for i in range(len(sample))]

plt.grid(True)
    plt.plot(np.arange(len(sample))+1, low, color='black')
    plt.plot(np.arange(len(sample))+1, high, color='black')
    plt.fill_between(np.arange(len(sample))+1, low, high, facecolor='green')
    if title:
        plt.title(title, fontsize=25)
    if ylim:
        plt.ylim(ylim)
    plt.xlabel('sample size', fontsize=20)
    plt.ylabel('parameter', fontsize=20)
    plt.show()
```

Доверительный интервал уровня γ для $\mathcal{N}(\theta,1)$:

•
$$(ar{X}-Z_{rac{1+\gamma}{2}}rac{1}{\sqrt{N}},ar{X}+Z_{rac{1+\gamma}{2}}rac{1}{\sqrt{N}})$$

где $Z_{(rac{1+\gamma}{2})}$ - квантиль распределения $\mathcal{N}(0,1)$ уровня $rac{1+\gamma}{2}$

In [24]:

Доверительный интервал уровня γ для $\mathcal{N}(0,\theta)$:

•
$$(rac{\sum_{i=1}^n X_i^2}{
u_{rac{1+lpha}{2}}},rac{\sum_{i=1}^n X_i^2}{
u_{rac{1-lpha}{2}}})$$
, где u квантиль распределения χ_n^2

In [47]:

Доверительный интервал уровня γ для $\mathcal{N}(\theta,\sigma^2)$:

$$ullet \ (ar{X} - t_{rac{1+\gamma}{2}} rac{ ilde{s}}{\sqrt{N}}, ar{X} + t_{rac{1+\gamma}{2}} rac{ ilde{s}}{\sqrt{N}})$$

где $t_{(rac{1+\gamma}{2})}$ - квантиль распределения Стьюдента с n-1 степенью свободы уровня $rac{1+\gamma}{2}$, $ilde{s}=\sqrt{rac{\sum_{i=1}^n(X_i-ar{X})^2}{n-1}}$ - стандартное отклонение

In [43]:

/home/pavel/anaconda2/lib/python2.7/site-packages/ipykernel/__main_
_.py:2: RuntimeWarning: invalid value encountered in double_scalars
 from ipykernel import kernelapp as app
/home/pavel/anaconda2/lib/python2.7/site-packages/ipykernel/__main_
_.py:3: RuntimeWarning: invalid value encountered in double_scalars
 app.launch_new_instance()

Доверительный интервал уровня γ для $\mathcal{N}(a,\theta)$:

•
$$(\frac{(n-1)\tilde{s}^2}{\mu_{\frac{1+\alpha}{2}}},\frac{(n-1)\tilde{s}^2}{\mu_{\frac{1-\alpha}{2}}})$$
, где ν квантиль распределения χ^2_{n-1} , $\tilde{s}=\sqrt{\frac{\sum_{i=1}^n(X_i-\bar{X})^2}{n-1}}$ - стандартное отклонение

In [46]:

Выводы:

- 1) Знание второго параметра дает небольшой выигрыш в ширине доверительного интервала.
- 2) Чем больше выборка, тем доверительный интервал уже, но начиная с какого-то размера (40-60) существенно сужаться он пререстает.
- 3) Для оценки дисперсии (второго параметра) особенно важно сделать выборку достаточно большой (хотя бы 20-40).

In []:			