Correction du TD

I | Levier

1) On fait un schéma et on détermine les distances des bras de levier pour calculer les moments :

$$\mathcal{M}_x(\overrightarrow{P}_1) = +\ell_1 m_1 g = m_1 d_1 g \cos(\alpha)$$
$$\mathcal{M}_x(\overrightarrow{P}_2) = -\ell_2 m_2 g = -m_2 d_2 g \cos(\alpha)$$

Pour avoir rotation, il faut que le moment total soit **négatif** (sens horaire autour de (Ox)), soit

$$\gcd(\alpha)(m_1d_1 - m_2d_2) < 0$$

$$\Leftrightarrow m_2d_2 > m_1d_1$$

$$\Leftrightarrow \boxed{m_2 > m_1\frac{d_1}{d_2}} \quad \text{avec} \quad \begin{cases} m_1 = 200 \, \text{kg} \\ d_1 = 0.50 \, \text{m} \\ d_2 = 1.5 \, \text{m} \end{cases}$$

$$\text{A.N.} : m_{2, \min} = 67 \, \text{kg}$$

2) On fait un schéma et on détermine les distances des bras de levier pour calculer les moments :

En modifiant la direction de la force, donc de la droite d'action, la longueur du bras de levier est modifiée : on a, au mieux, $\ell_2 = d_2$, obtenu pour une force perpendiculaire au levier.

$$\sum_{i} \mathcal{M}_{x}(\vec{F}_{i}) < 0$$

$$\Leftrightarrow m_{1} g d_{1} \cos(\alpha) - m_{2} g d_{2} < 0$$

$$\Leftrightarrow m_{2} > m_{1} \frac{d_{1}}{d_{2}} \cos(\alpha)$$

$$A.N. : m_{2, \min} = 33 \text{ kg}$$

Autrement dit, avec $g = 10 \,\mathrm{m\cdot s^{-2}}$, c'est 330 N de force gagné par rapport à la situation précédente, soit un gain de 50%!

\bigcirc

À retenir

- ♦ Dessinez les moments et les bras de levier des forces **et** indiquez la direction de rotation induite par la force.
- ♦ Le moment total est la somme des moments

II | Pendule pesant non amorti

- \diamond **Système**: {benne+bras} solide de masse $m_{\text{tot}} = m + M$
- ♦ **Référentiel** : terrestre, supposé galiléen.
- \diamond **Repère** : cylindrique $(O, \vec{e_r}, \vec{e_\theta}, \vec{e_y})$ avec O centre de la liaison pivot.
- $^{1)} \diamond \mathbf{Rep\'erage} :$

$$\begin{cases} \overrightarrow{OG} = d \overrightarrow{e_r} \\ \overrightarrow{v}(G) = d \dot{\theta} \overrightarrow{e_{\theta}} \\ \overrightarrow{a}(G) = d \ddot{\theta} \overrightarrow{e_{\theta}} - d \dot{\theta}^2 \overrightarrow{e_r} \end{cases}$$

- ♦ Bilan des forces :
 - $\triangleright \overrightarrow{P} = m_{\text{tot}} g \overrightarrow{e_y} = m_{\text{tot}} g(\cos(\theta) \overrightarrow{e_r} \sin(\theta) \overrightarrow{u_\theta})$
 - $\Rightarrow \vec{F} = \vec{0}$ car pivot parfaite
- ♦ Bilan des moments :

$$\triangleright \overrightarrow{\mathcal{M}}_{\mathcal{O}}(\overrightarrow{P}) = \overrightarrow{\mathcal{OG}} \wedge \overrightarrow{P} = (d\overrightarrow{e_r}) \wedge (m_{\text{tot}}g(\cos(\theta)\overrightarrow{e_r} - \sin(\theta)\overrightarrow{e_\theta})) \Leftrightarrow \overrightarrow{\overrightarrow{\mathcal{M}}_{\mathcal{O}}(\overrightarrow{P})} = -m_{\text{tot}}gd\sin(\theta)\overrightarrow{e_y}$$

Par projection, on retrouve le résultat qu'on aurait eu avec le bras de levier :

$$\ell = d\sin(\theta)$$
 et $\|\vec{P}\| = m_{\text{tot}}g$ \Rightarrow $M_y(\vec{P}) = -m_{\text{tot}}gd\sin(\theta)$

$$\Rightarrow \mathcal{L}_{y}(\mathcal{S}) = J_{\text{tot}}\dot{\theta}$$

$$\Rightarrow \mathbf{TMC}: \qquad \frac{\mathrm{d}\mathcal{L}_{y}(\mathcal{S})}{\mathrm{d}t} = \mathcal{M}_{y}(\vec{P}) \Leftrightarrow J_{\text{tot}}\ddot{\theta} = -m_{\text{tot}}gd\sin(\theta) \Leftrightarrow \boxed{\ddot{\theta} + \frac{m_{\text{tot}}gd}{J_{\text{tot}}}\sin(\theta) = 0}$$

2) Petites oscillations $\Rightarrow \sin(\theta) \underset{\theta \to 0}{\sim} \theta$, donc oscillateur harmonique :

$$\omega_0 = \sqrt{\frac{m_{\rm tot}gd}{J_{\rm tot}}} \Leftrightarrow \boxed{T = 2\pi\sqrt{\frac{J_{\rm tot}}{m_{\rm tot}gd}}}$$

3) En restant autour du même axe, les moments cinétiques se somment, soit $J_{\text{tot}} = J_{\text{bras}} + J_{\text{benne}}$. On isole J_{tot} :

$$J_{\text{tot}} = \frac{T^2}{4\pi^2} m_{\text{tot}} g d$$

$$\Leftrightarrow J = \frac{T^2}{4\pi^2} m_{\text{tot}} g d - J'$$

$$\Leftrightarrow J = \frac{T^2}{4\pi^2} m_{\text{tot}} g d - \frac{mL^2}{3}$$

$$\Rightarrow J = \frac{T^2}{4\pi^2} m_{\text{tot}} g d - \frac{mL^2}{3}$$

$$\text{avec}$$

$$d = 4.1 \text{ s}$$

$$L = 3.0 \text{ m}$$

$$d = 4.5 \text{ m}$$

$$m = 300 \text{ kg}$$

$$m_{\text{tot}} = 2.3 \times 10^3 \text{ kg}$$

$$g = 9.81 \text{ m·s}^{-2}$$

III. Chute d'un arbre 3

III Chute d'un arbre

1)

$$\mathcal{E}_{c} = \frac{1}{2}J\dot{\theta}^{2} \quad \text{et} \quad \mathcal{E}_{p,p} = mgy_{G} + 0$$

$$\text{Or} \quad y_{G} = \frac{L}{2}\sin(\theta) \Rightarrow \mathcal{E}_{p,p} = \frac{mgL}{2}\sin(\theta)$$

$$\Rightarrow \left[\mathcal{E}_{m} = \frac{1}{2}J\dot{\theta}^{2} + \frac{mgL}{2}\sin(\theta)\right] \quad (8.1)$$

2) Le système n'est soumis qu'à son poids, conservatif, et à l'action de la liaison pivot, supposée parfaite donc sans frottement. Le système est donc conservatif, et par TPM on a $\frac{d\mathcal{E}_m}{dt} = 0$.

On a donc
$$\mathcal{E}_m(t) = \mathcal{E}_m(0)$$
, or $\mathcal{E}_c(0) = 0$ et $\mathcal{E}_{p,p}(0) = \frac{mgL}{2}\sin(\theta_0)$, soit

$$\mathcal{E}_m = \frac{mgL}{2}\sin(\theta_0) \tag{8.2}$$

$$(8.1) = (8.2)$$

$$\Leftrightarrow \frac{1}{2}J\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 = \frac{mgL}{2}\left(\sin(\theta_0) - \sin(\theta)\right)$$

$$\Leftrightarrow \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 = \frac{3mgL}{mL^2}\left(\sin(\theta_0) - \sin(\theta)\right)$$

$$\Rightarrow \frac{\mathrm{d}\theta}{\mathrm{d}t} = \pm\sqrt{\frac{3g}{L}\left(\sin(\theta_0) - \sin(\theta)\right)}$$

Or, de toute évidence θ diminue puisque l'arbre tombe $(\mathcal{M}_z(\dot{P}) < 0)$, soit

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\sqrt{\frac{3g}{L}\left(\sin(\theta_0) - \sin(\theta)\right)}$$

4) Avec le bras de levier, on a $\mathcal{M}_z(\vec{P}) = -\frac{mgL}{2}\cos(\theta)$. Ainsi, avec le TMC,

$$\frac{\mathrm{d}\mathcal{L}_{z}}{\mathrm{d}t} = \mathcal{M}_{z}(\overrightarrow{P})$$

$$\Leftrightarrow J\ddot{\theta} = -\frac{mgL}{2}\cos(\theta)$$

$$\Leftrightarrow J\ddot{\theta}\dot{\theta} = -\frac{mgL}{2}\cos(\theta)\dot{\theta}$$

$$\Rightarrow J\int_{t=0}^{t} \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{1}{2}\dot{\theta}^{2}\right] \mathcal{M} = -\frac{mgL}{2}\int_{t=0}^{t}\cos(\theta)\frac{\mathrm{d}\theta}{\mathcal{M}}\mathcal{M}$$

$$\Leftrightarrow \dot{\theta}^{2}(t) - \dot{\underline{\theta}}^{2}(0) = -\frac{mgL}{2J}\left(\sin(\theta) - \sin(\theta_{0})\right)$$

$$\Leftrightarrow \dot{\theta}^{2}(t) = -\frac{3mgK}{mL^{\frac{1}{2}}}\left(\sin(\theta) - \sin(\theta_{0})\right)$$

$$\Leftrightarrow \dot{\theta}^{2}(t) = \frac{3g}{L}\left(\sin(\theta_{0}) - \sin(\theta_{0})\right)$$
On prend l'opposé
$$\Leftrightarrow \dot{\theta}^{2}(t) = \frac{3g}{L}\left(\sin(\theta_{0}) - \sin(\theta)\right)$$

$$\Rightarrow \frac{\mathrm{d}\theta}{\mathrm{d}t} = -\sqrt{\frac{3g}{L}}\left(\sin(\theta_{0}) - \sin(\theta)\right)$$

Lycée Pothier 3/10MPSI3 - 2023/2024 On retiendra ici deux choses:

À retenir

- \diamond Penser à multiplier par $\dot{\theta}$ pour facilement intégrer les relations avec $\ddot{\theta}$ et des fonctions transcendantales (cos, sin...)
- ♦ Attention en prenant la racine carré d'une fonction : toujours écrire les deux valeurs possibles et vérifier la faisabilité physiquement.
- 5) On inverse pour avoir

$$dt = \frac{-d\theta}{\sqrt{\frac{3g}{L}(\sin(\theta_0) - \sin(\theta))}}$$

Or, quand $t|_{0}^{t_f}$, on a $\theta|_{\theta_0}^{\theta_f=0}$. Ainsi,

$$\int_{0}^{t_f} dt = \int_{\theta_0}^{0} \frac{-d\theta}{\sqrt{\frac{3g}{L} \left(\sin(\theta_0) - \sin(\theta)\right)}}$$

$$\Leftrightarrow t_f - 0 = \sqrt{\frac{L}{3g}} \int_{0}^{\theta_0} \frac{d\theta}{\sqrt{\sin(\theta_0) - \sin(\theta)}}$$
A.N. : $\underline{t_f = 3.2 \,\text{s}}$

6) On obtient bien $t_f = 3.17 \,\mathrm{s}$ avec :


```
from scipy.integrate import quad # Module d'intégration "quad"
  import numpy as np
 # Intervalle d'intégration
  theta_0 = 1.5 \# rad
   theta_f = 0 # rad
   # Constantes
  L = 10
  g = 9.81
   K = np.sqrt(L/(3*g)) # s
   # Fonction à intégrer
   def function(theta):
       return K/(np.sqrt(np.sin(theta_0) - np.sin(theta)))
16
   # Calcul de l'intégrale
  res, err = quad(function, theta_f, theta_0)
19
   # Affichage du résultat
  print(f"Résultat de l'intégrale = {res:.2f} ± {err:.2f}")
```

Barre fixée à ses extrémités

- 1) ♦ **Système** : {barre}
 - ♦ **Référentiel** : terrestre supposé galiléen
 - \diamond Repère : $(O, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$
 - \diamond **Repérage** : $\overrightarrow{OG} = a \overrightarrow{u_x}$ et $\overrightarrow{OA} = 2a \overrightarrow{u_x}$
 - \diamond **BdF** : $\grave{\mathbf{a}}$ **l'équilibre**, le ressort est vertical, soit

$$\triangleright \vec{P} = -mg \vec{u_y};$$

$$\triangleright \vec{F}_r = k(\ell_{\text{eq}} - \ell_0) \vec{u_y}.$$

$$\triangleright \vec{F}_f = \vec{0}$$
 pas de frottements

$$\triangleright \mathcal{M}_z(\overrightarrow{P}) = -a \times mg \text{ (sens horaire)};$$

$$\triangleright \mathcal{M}_z(\overrightarrow{F}_r) = +2a \times k(\ell_{\text{eq}} - \ell_0).$$

$$\triangleright \mathcal{M}_z(\overrightarrow{F}_f) = 0$$
 pivot parfaite.

♦ TMC : à l'équilibre, pas de rotation donc

$$\mathcal{M}_z(\vec{P}) + \mathcal{M}_z(\vec{F}_r) = 0 \quad \Leftrightarrow \quad -mga + 2ak(\ell_{\text{eq}} - \ell_0) = 0 \quad \Leftrightarrow \quad \boxed{\ell_{\text{eq}} = \ell_0 + \frac{mg}{2k}}$$

2) Avec un angle, les droites d'actions ne sont plus perpendiculaires à la barre donc les bras de levier ne se confondent plus avec les distances des points d'application. Il faut refaire un schéma et recalculer les moments :

\diamond BdM:

$$\triangleright \mathcal{M}_z(\overrightarrow{P}) = -a\cos(\theta) \times mg;$$

$$\mathcal{M}_z(\overrightarrow{F}_r) = +2a\cos(\theta) \times k(\ell - \ell_0)$$

Or, ℓ n'est plus $\ell_{\rm eq}$ puisqu'on n'est plus à l'équilibre. On trouve $\ell = \ell_{\rm eq} - 2a\sin(\theta)$, soit finalement

$$\mathcal{M}_z(\overrightarrow{F}_r) = +2a\cos(\theta) \times k(\ell_{eq} - 2a\sin(\theta) - \ell_0)$$

$$\triangleright \ \mathcal{L}_z = J_z \dot{\theta}$$

 \diamond TMC :

$$\frac{\mathrm{d}\mathcal{L}_z}{\mathrm{d}t} = \sum_i \mathcal{M}_z(\overrightarrow{F}_i)$$

$$\Leftrightarrow J_z \ddot{\theta} = -a\cos(\theta) \times mg + 2a\cos(\theta) \times k(\ell_{\mathrm{eq}} - 2a\sin(\theta) - \ell_0) \quad \cos(\theta) \approx 1$$

$$\Leftrightarrow J_z \ddot{\theta} = -mga + 2ak(\ell_{\mathrm{eq}} - 2a\theta - \ell_0)$$

$$\Leftrightarrow J_z \ddot{\theta} = -mga - 4ak\theta + 2ak(\ell_{\mathrm{eq}} - \ell_0)$$

$$\Leftrightarrow J_z \ddot{\theta} = -mga + mga - 4ak\theta$$

$$\Leftrightarrow J_z \ddot{\theta} = -mga + mga - 4ak\theta$$

$$\Rightarrow J_z \ddot{\theta} = -mga + mga - 4ak\theta$$

$$\Rightarrow J_z = \frac{4}{3}ma^2$$

$$\Rightarrow T_0 = 2\pi\sqrt{\frac{k}{3}}$$

$$\Rightarrow \omega_0 = \sqrt{\frac{3k}{m}}$$

V | Choc de deux chariots

- 1) Dans cette partie, on suppose qu'après le choc les masses restent solidaires.
 - a ♦ **Système** : {2 chariots} considérés chacun comme un point matériel
 - ♦ **Référentiel** : terrestre supposé galiléen
 - \diamond Base : $(\overrightarrow{u_x}, \overrightarrow{u_z})$ avec $\overrightarrow{u_z}$ vertical ascendant
 - \diamond BdF:
 - $ightharpoonup \vec{P}_1 = -m_1 g \vec{u}_z$ et $\vec{N}_1 \vec{u}_z$ pour le premier
 - $ightharpoonup \overrightarrow{P}_2 = -m_2 g \overrightarrow{u_z}$ et $\overrightarrow{N}_2 \overrightarrow{u_z}$ pour le second
 - \triangleright Aucune force de frottements, donc système pseudo-isolé $(\sum_i \overrightarrow{F}_i = \overrightarrow{0})$

Ainsi, $\frac{\mathrm{d} \overrightarrow{p}_{\mathrm{tot}}}{\mathrm{d}t} = \overrightarrow{0}$ soit $\overrightarrow{p}_{\mathrm{tot}} = \overrightarrow{\mathrm{cte}}$. Ainsi,

$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}_f \quad \Leftrightarrow \quad \vec{v}_f = \frac{m_1}{m_1 + m_2} v_1 \vec{u}_x$$

b – On utilise le TEC :

$$\Delta \mathcal{E}_c = W_{\text{int}} + \underbrace{W_{\text{ext}}}_{=0} \Leftrightarrow W_{\text{int}} = \mathcal{E}_f - \mathcal{E}_i = \frac{1}{2}(m_1 + m_2)v_f^2 - \frac{1}{2}m_1v_1^2$$

$$\Leftrightarrow W_{\text{int}} = -\frac{m_1m_2}{2(m_1 + m_2)}v_1^2 < 0$$

Le travail des forces intérieures est donc **négatif**, ce qui est cohérent avec le fait que le système perd de l'énergie cinétique, transformée en énergie thermique lors du choc.

- 2) On considère dans cette partie que le choc est élastique, c'est-à-dire que l'énergie cinétique de l'ensemble des deux masses est conservée au cours du choc et qu'elles ne sont plus solidaires après.
 - a On a toujours un système pseudo-isolé :

VI. Étagère murale

On a donc la conservation de la quantité de mouvement totale, ainsi que l'énergie cinétique totale; ainsi entre les deux situations :

$$\begin{cases} m_1 v_1 = m_1 v_1' + m_2 v_2' \\ \frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 v_1' + \frac{1}{2} m_2 v_2' \end{cases} \Leftrightarrow \begin{cases} v_1' = \frac{m_1 - m_2}{m_1 + m_2} v_1 \\ v_2' = \frac{2m_1}{m_1 + m_2} v_1 \end{cases}$$

- b Si $m_2 \gg m_1$, alors $v_1' \to -v_1$ et $v_2' \to 0$. La masse m_1 rebondit sur la masse m_2 , qui elle reste immobile. C'est la situation du lancer d'une balle rebondissante sur un mur.
- c Pour faire un carreau, on veut $v_1' = 0 \Rightarrow \boxed{m_1 = m_2}$, et on aura bien $v_2' = v_1$.

Étagère murale

1) On fait un schéma:

\diamond BdF:

⊳ En B et B', les tensions des câbles obliques sont portées par les vecteurs \overrightarrow{BA} et $\overrightarrow{B'A'}$. Elles ont la même norme T_1 par symétrie, et on peut déduire les angles $\overrightarrow{OBA} = 45^\circ = \overrightarrow{O'B'A'}$ puisque les triangles sont isocèles et rectangles. Ainsi, avec $\cos(45^\circ) = \frac{\sqrt{2}}{2} = \sin(45^\circ)$, on trouve

$$\overrightarrow{T}_{\mathrm{B}} = \frac{\sqrt{2}}{2} T_{1} (\overrightarrow{u_{y}} - \overrightarrow{u_{z}}) = \overrightarrow{T}_{\mathrm{B}},$$

⊳ En O et O', les tensions sont égales et verticales, soit

$$\vec{T}_{\mathrm{O}} = T_2 \, \vec{u_y} = \vec{T}_{\mathrm{O}}$$

 $\,\rhd\,$ De plus, la réaction du mur est $\overrightarrow{R}_N = R_N\,\overrightarrow{u_z}.$

 \triangleright Enfin, le poids s'exprime $\overrightarrow{P} = -mg \overrightarrow{u_y}$

\diamond BdM :

 \triangleright le moment des tensions en B et B' se trouvent par le bras de levier. Avec H le projeté orthogonal de O sur AB, on trouve OH = $R\frac{\sqrt{2}}{2}$ (OBA triangle rectangle isocèle, OH moitié de la diagonale et diagonale d'un carré de côté $a=a\sqrt{2}$). Ainsi,

$$\mathcal{M}_{\Delta}(\vec{T}_{\mathrm{B}} + \vec{T}_{\mathrm{B'}}) = 2 \times \mathcal{M}_{\Delta}(\vec{T}_{\mathrm{B}}) = -2 \text{ OH} \|\vec{T}_{\mathrm{B}}\| \Leftrightarrow \mathcal{M}_{\Delta}(\vec{T}_{\mathrm{B}} + \vec{T}_{\mathrm{B'}}) = -2 R \frac{\sqrt{2}}{2} T_{1}$$

$$\Leftrightarrow \boxed{\mathcal{M}_{\Delta}(\vec{T}_{\mathrm{B}} + \vec{T}_{\mathrm{B'}}) = -RT_{1}\sqrt{2}}$$

- ▶ Les moments des tensions \overrightarrow{T}_{O} et $\overrightarrow{T}_{O'}$ ainsi que la réaction du support \overrightarrow{R}_{N} sont tous nuls, puisque leurs droites d'actions passent par l'axe Δ .
- \triangleright Finalement, à l'équilibre la droite d'action du poids est à une distance R/2 de l'axe de rotation, et comme le poids fait tourner l'étagère dans le sens horaire, on a

$$\mathcal{M}_{\Delta}(\overrightarrow{P}) = \frac{mgR}{2}$$

♦ PFD : à l'équilibre, la somme des forces est nulle, soit

$$\begin{cases} T_1\sqrt{2} + 2T_2 = mg & \text{sur } \overrightarrow{u_y} \\ T_1\sqrt{2} = R_N & \text{sur } \overrightarrow{u_z} \end{cases}$$

♦ TMC : à l'équilibre, il n'y a pas de rotation donc la somme des moments est nulle :

$$RT_1\sqrt{2} = \frac{mgR}{2}$$

 \diamond Ccl : on trouve

$$\boxed{T_1 = \frac{mg}{2\sqrt{2}} \Rightarrow \underline{T_1 = 3.5\,\mathrm{N}} \quad ; \quad \boxed{R_N = \frac{mg}{2}} \Rightarrow \underline{R_N = 4.9\,\mathrm{N}} \quad ; \quad \boxed{T_2 = \frac{mg}{4}} \Rightarrow \underline{T_2 = 2.5\,\mathrm{N}}$$

2) On reconnaît l'énergie cinétique dans la partie gauche de l'équation proposée. Il serait donc logique de partir du TEC. On sait que la puissance d'une force de rotation est $\mathcal{M}_{\Delta}(\vec{F})\omega$, donc le travail élémentaire associé est $\mathcal{M}_{\Delta}(\vec{F}) d\theta$. Or, les tensions en B et B' n'existent plus et les moments des tensions en O et de la réaction normale sont toujours nuls : il ne reste que le moment du poids.

Or, avec un angle θ , le bras de levier diminue et on trouve $\mathcal{M}_{\Delta}(\overrightarrow{P}) = \frac{mgR}{2}\cos(\theta)$. Ainsi,

$$\Delta \mathcal{E}_{c} = W(\overrightarrow{P})$$

$$\Leftrightarrow \frac{1}{2} J_{\Delta} \dot{\theta}^{2} = \int_{0}^{\theta} \frac{mgR}{2} \cos(\theta) d\theta$$

$$\Leftrightarrow \frac{1}{2} J_{\Delta} \dot{\theta}^{2} = \frac{mgR}{2} \sin(\theta)$$

$$\Leftrightarrow \frac{1}{2} J_{\Delta} \dot{\theta}^{2} = \frac{mgR}{2} \sin(\theta)$$

$$\Leftrightarrow \dot{\theta}^{2} = \frac{mgR}{J_{\Delta}} \sin(\theta)$$

Quand l'étagère touche le mur, $\theta = \frac{\pi}{2}$, d'où

$$|\dot{\theta}_f = \sqrt{\frac{3g}{R}}| \Leftrightarrow \dot{\underline{\theta}_f} = 12 \,\mathrm{rad \cdot s^{-1}}$$

VII Entraînement par frottements

1) Il n'y a plus de frottements si les deux disques vont à la même vitesse angulaire. Or, le moment cinétique **total** se conserve puisque $\mathcal{M}_z(\overrightarrow{P}_1) = \mathcal{M}_z(\overrightarrow{P}_2) = 0$ (forces passent par l'axe de rotation) et les liaisons pivot sont supposées parfaites; ainsi $\frac{\mathrm{d}\mathcal{L}_z(\mathcal{S})}{\mathrm{d}t} = 0$ soit $\mathcal{L}_z(\mathcal{S}) = \mathrm{cte}$.

En prenant une situation avant contact et à la fin du contact, on obtient

$$0 + J_2\omega_0 = J_1\omega_{1,f} + J_2\omega_{2,f}$$

$$\Leftrightarrow \boxed{\omega_f = \frac{J_2}{J_1 + J_2}\omega_0}$$

$$\omega_{1,f} = \omega_{2,f} = \omega_f$$

Ce résultat ne dépend aucunement du type de frottements; seule la durée du régime transitoire est impactée par l'expression des frottements.

- 2) Avec l'énergie potentielle de pesanteur prise à 0, on a :
 - 1) $\Delta \mathcal{E}_{m,1} = \Delta \mathcal{E}_{c,1} = \frac{1}{2} J_1 \omega_f^2 0$ soit

$$\Delta \mathcal{E}_{m,1} = \frac{1}{2} J_1 \left(\frac{J_2}{J_1 + J_2} \right)^2 \omega_0^2 > 0$$

Le disque 1 gagne donc de l'énerie cinétique grâce aux frottements avec le second disque.

2) Pour le second,

$$\Delta \mathcal{E}_{m,2} = \Delta \mathcal{E}_{c,2} = \frac{1}{2} J_2 \omega_f^2 - \frac{1}{2} J_2 \omega_0^2$$
Soit
$$\Delta \mathcal{E}_{m,2} = \frac{1}{2} J_2 \left(\left(\frac{J_2}{J_1 + J_2} \right)^2 - 1 \right) \omega_0^2 < 0$$

Évidemment, le second **perd** de l'énergie : il l'a cédée au premier et perdu une partie par frottements.

3) On somme les résultats précédents :

$$\Delta \mathcal{E}_{m} = \Delta \mathcal{E}_{m,1} + \Delta \mathcal{E}_{m,2}$$

$$= \frac{1}{2} (J_{1} + J_{2}) \frac{J_{2}^{2}}{(J_{1} + J_{2})^{2}} \omega_{0}^{2} - \frac{1}{2} J_{2} \omega_{0}^{2}$$

$$\Leftrightarrow \Delta \mathcal{E}_{m} = -\frac{1}{2} \frac{J_{1} J_{2}}{J_{1} + J_{2}} \omega_{0}^{2} < 0$$

4) À cause des frottements, l'énergie mécanique totale diminue. En revanche, l'énergie mécanique d'un sous-système peut augmenter ou diminuer.

VIII Expérience de CAVENDISH

- 1) Nous cherchons dans un premier temps à déterminer la constante de torsion C du pendule en faisant osciller celui-ci. Les boules en plomb ne sont pas encore présentes.
 - a Soit $\Delta = (Oz)$ l'axe vertical ascendant. Chacune des deux sphères étant en mouvement de rotation de rayon $\ell/2$ autour de Δ à la même vitesse angulaire $\dot{\theta}$ et la masse de la tige étant négligée, le moment cinétique total de l'ensemble {tige+deux sphères} par rapport à Δ est $\mathcal{L}_{\Delta} = \frac{m\ell^2}{2}\dot{\theta}$.

Ce système est soumis à l'action de son poids et de la tension du fil, dont les moments par rapport à Δ sont nuls, et au couple de torsion $\overrightarrow{\Gamma} = -C\theta \overrightarrow{u_z}$.

L'application du TMC scalaire conduit donc à

$$\frac{m\ell^2}{2}\ddot{\theta} = -C\theta$$

$$\Leftrightarrow \left[\ddot{\theta} + \frac{2C}{m\ell^2}\theta = 0 \right]$$

C'est bien un oscillateur harmonique de pulsation $\omega_0 = \sqrt{\frac{2C}{m\ell_2}}$.

b -

$$\boxed{C = \frac{2\pi^2 m \ell^2}{T_0^2}} \Rightarrow \underline{C = 2.6 \times 10^{-4} \,\text{N} \cdot \text{m} \cdot \text{rad}^{-1}}$$

2) On se place dans le système de coordonnées polaires, de base associée $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$ pour chacune des deux sphères, et on estime que la distance entre une des sphères et la boule correspondante est

$$r - \frac{\ell}{2}\sin(\theta) \approx r - \frac{\ell}{2}\theta$$

On néglige aussi l'action de la boule la plus éloignée. On suppose de plus que la force de gravitation exercée par la boule sur la sphère est portée par $\overrightarrow{u_{\theta}}$, et on utilise le développement limité $(1-x)^{-2} \underset{x\to 0}{\sim} 1+2x$:

$$\overrightarrow{F}_g = \mathcal{G} \frac{mM}{\left(r - \frac{\ell}{2}\theta\right)^2} \overrightarrow{u_\theta} \approx \frac{\mathcal{G}mM}{r^2} \left(1 + \frac{\ell}{r}\theta\right) \overrightarrow{u_\theta}$$

Le moment de cette force par rapport à Δ est ainsi, avec d du bras de levier égal à $\ell/2$:

$$\mathcal{M}_{\Delta}(\vec{F}_g) = \frac{\mathcal{G}mM\ell}{2r^2} \left(1 + \frac{\ell}{r} \theta \right)$$

On en déduit que le moment total des deux forces gravitationnelles est le double de ce moment unique :

 $\mathcal{M}_{\Delta}(\overrightarrow{F}_{g,\mathrm{tot}}) = \frac{\mathcal{G}mM\ell}{r^2} \left(1 + \frac{\ell}{r}\theta\right)$

Ainsi, avec le TMC:

$$\frac{m\ell^2}{2}\ddot{\theta} = -C\theta + \frac{\mathcal{G}mM\ell}{r^2} \left(1 + \frac{\ell}{r}\theta \right)$$

$$\Rightarrow \theta_{\text{eq}} = \frac{\mathcal{G}mM\ell r}{Cr^3 - \mathcal{G}mM\ell_2}$$
Équilibre

$$\theta_{\rm eq} = 1.4 \times 10^{-3} \, {\rm rad}$$

Ainsi, CAVENDISH avait donc développé une méthode de mesure d'angle avec une précision inférieure au milliradian!

Pour une vidéo sur le sujet, voir notamment celle de Steve MOULD : https://youtu.be/70-_GBymrck?si=6iBDUeYnSixdLS3c