Cheat Sheet

Proposition 0.1. A functor is an equivalence if and only if it is full, faithful, and essentially surjective on objects.

The naturality axiom of adjoints has two parts:

$$\overline{\left(F(A) \xrightarrow{g} B \xrightarrow{q} B'\right)} = \left(A \xrightarrow{\bar{g}} G(B) \xrightarrow{G(q)} G(B')\right) \tag{1}$$

(that is, $\overline{q \circ g} = G(q) \circ \overline{g}$) for all g and q, and

$$\overline{\left(A' \xrightarrow{p} A \xrightarrow{f} G(B)\right)} = \left(F(A') \xrightarrow{F(p)} F(A) \xrightarrow{\bar{f}} B\right)$$
(2)

for all p and f.

Forgetful functors between categories of algebraic structures usually have left adjoints.

Example 0.1. Initial and terminal objects can be described as adjoints. Let \mathcal{A} be a category. There is precisely one functor $\mathcal{A} \to \mathbf{1}$. Also, a functor $\mathbf{1} \to \mathcal{A}$ is essentially just an object of \mathcal{A} . Viewing functors $\mathbf{1} \to \mathcal{A}$ as objects of \mathcal{A} , a left adjoint to $\mathcal{A} \to \mathbf{1}$ is exactly an initial object of \mathcal{A} .

Similarly, a right adjoint to the unique functor $\mathcal{A} \to 1$ is exactly a terminal object of \mathcal{A} .

For each $A \in \mathcal{A}$, we have a map

$$\left(A \xrightarrow{\eta_A} GF(A)\right) = \overline{\left(F(A) \xrightarrow{1} F(A)\right)}.$$
 (3)

Dually, for each $B \in \mathcal{B}$, we have a map

$$\left(FG(B) \xrightarrow{\epsilon_B} B\right) = \overline{\left(G(B) \xrightarrow{1} G(B)\right)}.\tag{4}$$

These define natural transformations

$$\eta: 1_{\mathcal{A}} \to G \circ F, \qquad \epsilon: F \circ G \to 1_{\mathcal{B}},$$

called the unit and counit of the adjunction, respectively.

Lemma 0.1. Given an adjunction $F \dashv G$ with unit η and counit ϵ , the triangles

$$F \xrightarrow{F\eta} FGF \qquad G \xrightarrow{\eta G} GFG$$

$$\downarrow_{\epsilon F} \qquad \downarrow_{G\epsilon} \qquad \downarrow_{G\epsilon} \qquad \downarrow_{G}$$

commute.

Remark. These are called the **triangle identities**. An equivalent statement is that the triangles

commute for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Definition 0.1. Given categories and functors

$$egin{aligned} oldsymbol{\mathcal{B}} \ & \downarrow_Q \ oldsymbol{\mathcal{A}} & \stackrel{P}{\longrightarrow} oldsymbol{\mathcal{C}}, \end{aligned}$$

the **comma category** $(P \Rightarrow Q)$ (often written as $(P \downarrow Q)$) is the category defined as follows:

- objects are triples (A, h, B) with $A \in \mathcal{A}, B \in \mathcal{B}$, and $h : P(A) \to Q(B)$ in \mathcal{C} ;
- maps $(A, h, B) \to (A', h', B')$ are pairs $(f: A \to A', g: B \to B')$ of maps such that the square

$$P(A) \xrightarrow{P(f)} P(A')$$

$$\downarrow h'$$

$$Q(B) \xrightarrow{Q(g)} Q(B')$$

commutes.

Example 0.2. Let \mathcal{A} be a category and $A \in \mathcal{A}$. The slice category of \mathcal{A} over A, denoted by \mathcal{A}/A , is the category whose objects are maps into A and whose maps are commutative triangles. More precisely, an object is a pair (X, h) with $X \in \mathcal{A}$ and $h: X \to A$ in \mathcal{A} , and a map $(X, h) \to (X', h')$ in \mathcal{A}/A is a map $f: X \to X'$ in \mathcal{A} making the triangle

commute.

Slice categories are a special case of comma categories. Functors $1 \to \mathcal{A}$ are just objects of \mathcal{A} . Now, given an object A of \mathcal{A} , consider the comma category $(1_{\mathcal{A}} \Rightarrow A)$, as in the diagram

$$\begin{array}{c}
\mathbf{1} \\
\downarrow_A \\
A \xrightarrow{1_A} A.
\end{array}$$

An object of $(1_{\mathcal{A}} \Rightarrow A)$ is in principle a triple (X, h, B), with $X \in \mathcal{A}$, $B \in \mathbf{1}$, and $h : X \to A$ in \mathcal{A} ; but 1 has only one object, so it is essentially just a pair (X, h). Hence the comma category $(1_{\mathcal{A}} \Rightarrow A)$ has the same objects as the slice category \mathcal{A}/A and one can check that is has the same maps too, so $\mathcal{A}/A \cong (1_{\mathcal{A}} \Rightarrow A)$.

Lemma 0.2. Take an adjunction $\mathcal{A} \xrightarrow{F \atop \leftarrow L \atop G} \mathcal{B}$ and an object $A \in \mathcal{A}$. Then the unit map $\eta_A : A \to GF(A)$ is an initial object of $(A \Rightarrow G)$.

Corollary 0.1. Let $G : \mathcal{B} \to \mathcal{A}$ be a functor. Then G has a left adjoint if and only if for each $A \in \mathcal{A}$, the category $(A \Rightarrow G)$ has an initial object.

Definition 0.2. Let \mathcal{A} be a locally small category and $A \in \mathcal{A}$. We define a functor

$$H^A = \mathcal{A}(A, -) : \mathcal{A} \to \mathbf{Set}$$

as follows:

- for objects $B \in \mathcal{A}$, put $H^A(B) = \mathcal{A}(A, B)$;
- for maps $B \xrightarrow{g} B'$ in \mathcal{A} , define

$$H^A(g) = \mathcal{A}(A,g) : \mathcal{A}(A,B) \to \mathcal{A}(A,B')$$

by

$$p\mapsto g\circ p$$

for all $p: A \to B$.

Definition 0.3. Let \mathcal{A} be a locally small category. A functor $X : \mathcal{A} \to \mathbf{Set}$ is **representable** if $X \cong H^A$ for some $A \in \mathcal{A}$. A **representation** of X is a choice of an object $A \in \mathcal{A}$ and an isomorphism between H^A and X.

Proposition 0.2. Any set-valued functor with left adjoint is representable.

Definition 0.4. Let \mathcal{A} be a locally small category and $A \in \mathcal{A}$. We define a functor

$$H_A = \mathcal{A}(-,A) : \mathcal{A}^{\mathrm{op}} \to \mathbf{Set}$$

as follows:

- for objects $B \in \mathcal{A}$, put $H_A(B) = \mathcal{A}(B, A)$;
- for maps $B' \xrightarrow{g} B$ in \mathcal{A} , define

$$H_A(g) = \mathcal{A}(g,A) : \mathcal{A}(B,A) \to \mathcal{A}(B',A)$$

by

$$p \mapsto p \circ g$$

for all $p: B \to A$.

Definition 0.5. Let \mathcal{A} be a locally small category. A functor $X : \mathcal{A}^{\mathrm{op}} \to \mathbf{Set}$ is **representable** if $X \cong H_A$ for some $A \in \mathcal{A}$. A **representation** of X is a choice of an object $A \in \mathcal{A}$ and an isomorphism between H_A and X.

Any map $A \xrightarrow{f} A'$ in \mathcal{A} induces a natural transformation

whose component at an object $B \in \mathcal{A}$ is

$$H_A(B) = \mathcal{A}(B, A) \to H_{A'}(B) = \mathcal{A}(B, A')$$

 $p \mapsto f \circ p.$

Definition 0.6. Let \mathcal{A} be a locally small category. The Yoneda embedding of \mathcal{A} is the functor

$$H_{ullet}: \mathcal{A}
ightarrow [\mathcal{A}^{\mathrm{op}}, \mathbf{Set}]$$

defined on objects A by $H_{\bullet}(A) = H_A$ and on maps f by $H_{\bullet}(f) = H_f$.

Here is a summary of the definitions so far.

For each
$$A \in \mathcal{A}$$
, we have a functor $\mathcal{A} \xrightarrow{H^A} \mathbf{Set}$.

Putting them all together gives a functor $\mathcal{A}^{\mathrm{op}} \xrightarrow{H^{\bullet}} [\mathcal{A}, \mathbf{Set}]$.

For each
$$A \in \mathcal{A}$$
, we have a functor $\mathcal{A}^{\text{op}} \xrightarrow{H_A} \mathbf{Set}$.

Putting them all together gives a functor $\mathcal{A} \xrightarrow{H_{\bullet}} [\mathcal{A}^{\text{op}}, \mathbf{Set}]$.

Fix a small category \mathcal{A} . Take an object $A \in \mathcal{A}$ and a functor $X : \mathcal{A}^{op} \to \mathbf{Set}$. The object A gives rise to another functor $H_A = \mathcal{A}(-,A) : \mathcal{A}^{op} \to \mathbf{Set}$. The question is: what are the maps $H_A \to X$? Since H_A and X are both objects of the presheaf category $[\mathcal{A}^{op}, \mathbf{Set}]$, the 'maps' concerned are maps in $[\mathcal{A}^{op}, \mathbf{Set}]$. So, we are asking what natural transformations

$$\mathcal{A}^{\mathrm{op}}$$
 $\bigvee_{Y}^{H_A}$ Set

there are. The set of such natural transformations is called

$$[\mathcal{A}^{\mathrm{op}}, \mathbf{Set}](H_A, X).$$

Are there any other ways to construct a set from the same input data (A, X)? Yes: simply take the set X(A).

Theorem 0.1 (Yoneda). Let \mathcal{A} be a locally small category. Then

$$[\mathcal{A}^{\mathrm{op}}, \mathbf{Set}](H_A, X) \cong X(A)$$
 (6)

naturally in $A \in \mathcal{A}$ and $X \in [\mathcal{A}^{op}, \mathbf{Set}]$.

Proposition 0.3. Let A be a category.

- (a) If A has all products and equalizers then A has all limits.
- (b) If A has binary products, a terminal object and equalizers then A has finite limits.

Lemma 0.3. A map $X \xrightarrow{f} Y$ is monic if and only if the square

$$\begin{array}{ccc} X & \xrightarrow{1} & X \\ \downarrow \downarrow & & \downarrow f \\ X & \xrightarrow{f} & Y \end{array}$$

is a pullback.

Example 0.3. Take sets and functions $X \xrightarrow{s} Y$. To find the coequalizer of s and t, we must construct in some canonical way a set C and a function $p:Y \to C$ such that p(s(x)) = p(t(x)) for all $x \in X$. Let \sim be the equivalence relation on Y generated by $s(x) \sim t(x)$ for all $x \in X$. Take the quotient map $p:Y \to Y/\sim$. The maps $Y/\sim B$ correspond one-to-one with maps $f:Y \to B$, so p is indeed the coequalizer of s and t.

Definition 0.7. (a) Let **I** be a small category. A functor $F : \mathcal{A} \to \mathcal{B}$ preserves limits of shape **I** if for all diagrams $D : \mathbf{I} \to \mathcal{A}$ and all cones $\left(A \xrightarrow{p_I} D(I)\right)_{I \in \mathbf{I}}$ on D,

$$\left(A \xrightarrow{p_I} D(I)\right)_{I \in \mathbf{I}} \text{ is a limit cone on } D \text{ in } \boldsymbol{\mathcal{A}}$$

$$\Rightarrow \left(F(A) \xrightarrow{Fp_I} FD(I)\right)_{I \in \mathbf{I}} \text{ is a limit cone on } F \circ D \text{ in } \boldsymbol{\mathcal{B}}.$$

- (b) A functor $F: \mathcal{A} \to \mathcal{B}$ preserves limits if it preserves limits of shape I for all small categories I.
- (c) **Reflection** of limits is defined as in (a), but with \Leftarrow instead of \Rightarrow .

Definition 0.8. A functor $F : \mathcal{A} \to \mathcal{B}$ creates limits (of shape I) if whenever $D : I \to \mathcal{A}$ is a diagram in \mathcal{A} ,

- for any limit cone $\left(B \xrightarrow{q_I} FD(I)\right)_{I \in \mathbf{I}}$ on the diagram $F \circ D$, there is a unique cone $\left(A \xrightarrow{p_I} D(I)\right)_{I \in \mathbf{I}}$ on D such that F(A) = B and $F(p_I) = q_I$ for all $I \in \mathbf{I}$;
- this cone $\left(A \xrightarrow{p_I} D(I)\right)_{I \in \mathbf{I}}$ is a limit cone on D.

The forgetful functors from **Grp**, **Ring**,... to **Set** all create limits.

Lemma 0.4. Let $F : \mathcal{A} \to \mathcal{B}$ be a functor and \mathbf{I} a small category. Suppose that \mathcal{B} has, and F creates, limits of shape \mathbf{I} . Then \mathcal{A} has, and F preserves limits of shape \mathbf{I} .

0.1 Bonus

$$\operatorname{Hom}(X,A) \times \operatorname{Hom}(X,B) \cong \operatorname{Hom}(X,A \times B)$$

 $\operatorname{Hom}(A,X) \times \operatorname{Hom}(B,X) \cong \operatorname{Hom}(A+B,X)$
 $\operatorname{Hom}(X \times A,B) \cong \operatorname{Hom}(X,B^A)$
 $HA \cong HB \Rightarrow A \cong B$