This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 870 827 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 14.10.1998 Bulletin 1998/42

(21) Application number: 97310562.0

(22) Date of filing: 23.12.1997

(51) Int. CI.⁶: **C12N 15/12**, C07K 14/705, C07K 16/28, A61K 38/17, C12Q 1/68, G01N 33/68

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

NL FI SE

(30) Priority: 14.03.1997 US 41230 P

09.05.1997 US 853684 22.08.1997 US 916625

(71) Applicant:

SMITHKLINE BEECHAM CORPORATION Philadelphia Pennsylvania 19103 (US)

(72) Inventors:

 Deen, Keith Charles King of Prussia, Pennsylvania 19406 (US)

Young, Peter Ronald
 King of Prussia, Pennsylvania 19406 (US)

(74) Representative:

Crump, Julian Richard John et al

fJ Cleveland,

40-43 Chancery Lane London WC2A 1JQ (GB)

(54) Tumor necrosis factor related receptor, TR6

(57) TR6 polypeptides and polynucleotides and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing TR6 polypeptides and polynucleotides in the design of protocols for the treatment of chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschlerosis, and Alzheimers disease., among others and diagnostic assays for such conditions.

EP 0 870 827 A2

Description

This application is a continuation-in-part application of U.S. Serial No: 08/853,684, filed May 9, 1997, which claims the benefit of U.S. Provisional Application No: 60/041,230, filed March 14, 1997.

FIELD OF INVENTION

This invention relates to newly identified polynucleotides, polypeptides encoded by them and to the use of such polynucleotides and polypeptides, and to their production. More particularly, the polynucleotides and polypeptides of the present invention relate to Tumor Necrosis Factor Related family, hereinafter referred to as TR6. The invention also relates to inhibiting or activating the action of such polynucleotides and polypeptides.

BACKGROUND OF THE INVENTION

Many biological actions, for instance, response to certain stimuli and natural biological processes, are controlled by factors, such as cytokines. Many cytokines act through receptors by engaging the receptor and producing an intracellular response.

For example, tumor necrosis factors (TNF) alpha and beta are cytokines which act through TNF receptors to regulate numerous biological processes, including protection against infection and induction of shock and inflammatory disease. The TNF molecules belong to the "TNF-ligand" superfamily, and act together with their receptors or counterligands, the "TNF-receptor" superfamily. So far, nine members of the TNF ligand superfamily have been identified and ten members of the TNF-receptor superfamily have been characterized.

Among the ligands there are included TNF-α, lymphotoxin-α (LT-α, also known as TNF-β), LT-β (found in complex heterotrimer LT-α2-β), FasL, CD40L, CD27L, CD30L, 4-1BBL, OX40L and nerve growth factor (NGF)). The superfamily of TNF receptors includes the p55TNF receptor, p75TNF receptor, TNF receptor-related protein, FAS antigen or APO-1, CD40, CD27, CD30, 4-1BB, OX40, low affinity p75 and NGF-receptor (Meager, A., Biologicals, 22:291-295 (1994)).

Many members of the TNF-ligand superfamily are expressed by activated T-cells, implying that they are necessary for T-cell interactions with other cell types which underlie cell ontogeny and functions. (Meager, A., supra).

Considerable insight into the essential functions of several members of the TNF receptor family has been gained from the identification and creation of mutants that abolish the expression of these proteins. For example, naturally occurring mutations in the FAS antigen and its ligand cause lymphoproliferative disease (Watanabe-Fukunaga, R., et al., Nature 356:314 (1992)), perhaps reflecting a failure of programmed cell death. Mutations of the CD40 ligand cause an X-linked immunodeficiency state characterized by high levels of immunoglubulin M and low levels of immunoglobulin G in plasma, indicating faulty T-cell-dependent B-cell activation (Allen, R.C. et al., Science 259:990 (1993)). Targeted mutations of the low affinity nerve growth factor receptor cause a disorder characterized by faulty sensory innovation of peripheral structures (Lee, K.F. et al, Cell 69:737 (1992)).

TNF and LT- α are capable of binding to two TNF receptors (the 55- and 75-kd TNF receptors). A large number of biological effects elicited by TNF and LT- α , acting through their receptors, include hemorrhagic necrosis of transplanted tumors, cytotoxicity, a role in endotoxic shock, inflammation, immunoregulation, proliferation and anti-viral responses, as well as protection against the deleterious effects of ionizing radiation. TNF and LT- α are involved in the pathogenesis of a wide range of diseases, including endotoxic shock, cerebral malaria, tumors, autoimmuine disease, AIDS and grafthost rejection (Beutler, B. and Von Huffel, C., Science 264:667-668 (1994)). Mutations in the p55 Receptor cause increased susceptibility to microbial infection.

Moreover, an about 80 amino acid domain near the C-terminus of TNFR1 (P55) and Fas was reported as the "death domain," which is responsible for transducing signals for programmed cell death (Tartaglia et al., Cell 74:845 (1993)).

The effects of TNF family ligands and TNF family receptors are varied and influence numerous functions, both normal and abnormal, in the biological processes of the mammalian system. There is a clear need, therefore, for identification and characterization of such receptors and ligands that influence biological activity, both normally and in disease states. In particular, there is a need to isolate and characterize novel members of the TNF receptor family.

This indicates that these receptors have an established, proven history as therapeutic targets. Clearly there is a need for identification and characterization of further receptors which can play a role in preventing, ameliorating or correcting dysfunctions or diseases, including, but not limited to, chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschlerosis, and Alzheimers disease.

SUMMARY OF THE INVENTION

In one aspect, the invention relates to TR6 polypeptides and recombinant materials and methods for their production. Another aspect of the invention relates to methods for using such TR6 polypeptides and polynucleotides. Such uses include the treatment of chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschlerosis, and Alzheimers disease, among others. In still another aspect, the invention relates to methods to identify agonists and antagonists using the materials provided by the invention, and treating conditions associated with TR6 imbalance with the identified compounds. Yet another aspect of the invention relates to diagnostic assays for detecting diseases associated with inappropriate TR6 activity or levels.

DESCRIPTION OF THE INVENTION

5 Definitions

20

25

The following definitions are provided to facilitate understanding of certain terms used frequently herein.

"TR6" refers, among others, to a polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2, or an illelic variant thereof.

"Receptor Activity" or "Biological Activity of the Receptor" refers to the metabolic or physiologic function of said TR6 including similar activities or improved activities or these activities with decreased undesirable side-effects. Also included are antigenic and immunogenic activities of said TR6.

"TR6 gene" refers to a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO:1 or allelic variants thereof and/or their complements.

"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an Fab or other immunoglobulin expression library.

"Isolated" means altered "by the hand of man" from the natural state. If an "isolated" composition or substance occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living animal is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.

"Polynucleotide" generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotides" include, without limitation single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term polynucleotide also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications has been made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short polynucleotides, often referred to as oligonucleotides.

"Polypeptide" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptides" include amino acid sequences modified either by natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation,

iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993 and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter et al., "Analysis for protein modifications and nonprotein cofactors", Meth Enzymol (1990) 182:626-646 and Rattan et al., "Protein Synthesis: Posttranslational Modifications and Aging", Ann NY Acad Sci (1992) 663:48-62.

"Variant" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis.

"Identity" is a measure of the identity of nucleotide sequences or amino acid sequences. In general, the sequences are aligned so that the highest order match is obtained. "Identity" per se has an art-recognized meaning and can be calculated using published techniques. See, e.g.: (COMPUTATIONAL MOLECULAR BIOLOGY, Lesk, A.M., ed., Oxford University Press, New York, 1988; BIOCOMPUTING: INFORMATICS AND GENOME PROJECTS, Smith, D.W., ed., Academic Press, New York, 1993; COMPUTER ANALYSIS OF SEQUENCE DATA, PART I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; SEQUENCE ANALYSIS IN MOLECULAR BIOLOGY, von Heinje, G., Academic Press, 1987; and SEQUENCE ANALYSIS PRIMER, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). While there exist a number of methods to measure identity between two polynucleotide or polypeptide sequences, the term "identity" is well known to skilled artisans (Carillo, H., and Lipton, D., SIAM J Applied Math (1988) 48:1073). Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994, and Carillo, H., and Lipton, D., SIAM J Applied Math (1988) 48:1073. Methods to determine identity and similarity are codified in computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, GCS program package (Devereux, J., et al., Nucleic Acids Research (1984) 12(1):387), BLASTP, BLASTN, FASTA (Atschul, S.F. et al., J Molec Biol (1990) 215:403).

As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence of SEQ ID NO: 1 is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence of SEQ ID NO: 1. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5 or 3 terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% "identity" to a reference amino acid sequence of SEQ ID NO:2 is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid of SEQ ID NO: 2. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

Polypeptides of the inventi n

In one aspect, the present invention relates to TR6 polypeptides. The TR6 polypeptides include the polypeptides of SEQ ID NOS:2 and 4; as well as polypeptides comprising the amin—acid sequence of SEQ ID NO:2; and polypeptides comprising the amino acid sequence which have at least 80% identity to that of SEQ ID NO:2 over its entire length, and still more preferably at least 90% identity, and even still more preferably at least 95% identity to SEQ ID NO: 2. Furthermore, those with at least 97-99% are highly preferred. Also included within TR6 polypeptides are polypeptides having the amino acid sequence which have at least 80% identity to the polypeptide having the amino acid sequence of SEQ ID NO: 2 over its entire length, and still more preferably at least 90% identity, and even still more preferably at least 95% identity to SEQ ID NO: 2. Furthermore, those with at least 97-99% are highly preferred. Preferably TR6 polypeptides exhibit at least one biological activity of the receptor.

The TR6 polypeptides may be in the form of the "mature" protein or may be a part of a larger protein such as a fusion protein. It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification such as multiple histidine residues, or an additional sequence for stability during recombinant production.

Fragments of the TR6 polypeptides are also included in the invention. A fragment is a polypeptide having an amino acid sequence that entirely is the same as part, but not all, of the amino acid sequence of the aforementioned TR6 polypeptides. As with TR6 polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, and 101 to the end of TR6 polypeptide. In this context "about" includes the particularly recited ranges larger or smaller by several, 5, 4, 3, 2 or 1 amino acid at either extreme or at both extremes.

Preferred fragments include, for example, truncation polypeptides having the amino acid sequence of TR6 polypeptides, except for deletion of a continuous series of residues that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus or deletion of two continuous series of residues, one including the amino terminus and one including the carboxyl terminus. Also preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Other preferred fragments are biologically active fragments. Biologically active fragments are those that mediate receptor activity, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those that are antigenic or immunogenic in an animal, especially in a human

Preferably, all of these polypeptide fragments retain the biological activity of the receptor, including antigenic activity. Among the most preferred fragment is that having the amino acid sequence of SEQ ID NO: 4. Variants of the defined sequence and fragments also form part of the present invention. Preferred variants are those that vary from the referents by conservative amino acid substitutions -- i.e., those that substitute a residue with another of like characteristics. Typical such substitutions are among Ala, Val, Leu and IIe; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gln; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr. Particularly preferred are variants in which several, 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination.

The TR6 polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

Polynucleotides of the invention

45

Another aspect of the invention relates to TR6 polynucleotides. TR6 polynucleotides include isolated polynucleotides which encode the TR6 polypeptides and fragments, and polynucleotides closely related thereto. More specifically, TR6 polynucleotide of the invention include a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 1 encoding a TR6 polypeptide of SEQ ID NO: 2, and polynucleotides having the particular sequences of SEQ ID NOS: 1 and 3. TR6 polynucleotides further include a polynucleotide comprising a nucleotide sequence that has at least 80% identity to a nucleotide sequence encoding the TR6 polypeptide of SEQ ID NO:2 over its entire length, and a polynucleotide that is at least 80% identical to that having SEQ ID NO:1 over its entire length. In this regard, polynucleotides at least 90% identical are particularly preferred, and those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred and those with at least 98-99% are most highly preferred, with at least 99% being the most preferred. Also included under TR6 polynucleotides are a nucleotide sequence which has sufficient identity to a nucleotide sequence contained in SEQ ID NO:1 to hybridize under conditions useable for amplifica-

tion or for use as a probe or marker. The invention also provides polynucleotides which are complementary to such TR6 polynucleotides.

TR6 of the invention is structurally related to other proteins of the Tumor Necrosis Factor Related family, as shown by the results of sequencing the cDNA encoding human TR6. The cDNA sequence of SEQ ID NO:1 contains an open reading frame (nucleotide numbers 94 to 1329) encoding a polypeptide of 411 amino acids of SEQ ID NO:2. The amino acid sequence of Table 1 (SEQ ID NO:2) has about 58% identity (using GAP (From GCG)) in 411 amino acid residues with DR4, the receptor for the ligand TRAIL. (Pan,G., O'Rourke,K., Chinnaiyan,A.M., Gentz,R., Ebner,R., Ni,J. and Dixit,V.M., Science 276, 111-113 (1997)). The nucleotide sequence of Table 1 (SEQ ID NO:1) has about 70% identity (using GAP (from GCG)) in 1335 nucleotide residues with DR4, the receptor for the ligand TRAIL. TR6 contains a death domain (amino acids 290 to 324 in SEQ ID NO:2) which is 64% identical to the death domain of the human Death receptor 4 (DR4) (Pan,G., O'Rourke,K., Chinnaiyan,A.M., Gentz,R., Ebner,R., Ni,J. and Dixit,V.M., Science 276, 111-113 (1997)), 35.7% identical to the death domain of the human Death receptor 3 (DR3) (A.M. Chinnaiyan, et al, Science 274 (5289), 990-992 (1996)), 32.7% identical to the death domain of human TNFR-1, and 19.6% identical to the death domain of CD95 (Fas) (I. Cascino, J. Immunol. 154 (6), 2706-2713 (1995)).

т

Table 1ª

	1	CTTTGCGCCC 1	A CAAAAT A CA	CCGACGATGC	COGAT CT A CT	TT AAGGGCTG	
20	51	AAACCCACGG (GCCTGAGAGA	CT AT AAGAGC	GTT CCCT ACC	GCCATGGAAC	
	101	AA CGGGGACA	SAAŒÇÇCŒ	GCCGCTT CGG	GGGCCCGGAA	AAGGCA CGGC	
25	151	CCAGGA CCCA (GGAGG CG CG	GGGAG CCAGG	careeecccc	GGGT ÇCCCAA	
30	201	GACCCTTGTG	CT CCTTGT CC	टव्हव्हवा टवा	GCTGTTGGT C	t cag ct gagt	·
	25 1	CTGCT CTGAT	CACCCAACAA	GA CCT AG CT C	CCCAGCAGAG	AG CGG CCCCA	
35	301	CAACAAAAGA (GGT CCAGCCC	CT CAGAGGGA	TTGTGT CCAC	CTGGACACCA	
	351	TAT CT CAGAA	GA CGGT AGAG	ATTGCATCTC	CTG CAAAT AT	gGA CAGGA CT	
40	401	AT AG CA CT CA	aTGGAATGAC	CT CCTTTT CT	ಆರ್ಡಿ	CACCAGGTGT	
	451	GATT CAGGTG	AAGTGGAGCT	AAGT CCCTGC	ACCACGACCA	GAAA CA CAGT	3
45	501	GTGT CAGTGC	GAAGAAGGCA	CCTT COGGGA	AGAAGATT CT	CCTGAGATGT	

50

15

5	551	GCCGGAAGTG	CCGCACAGGG	TGT CCCAg AG	GGATGGT CAA	GGT OGGT GAT	
	601	TGT A CA CCCT	GGAGT GA CAT	OGAATGTGT C	: CACAAAGAAT	CAGG CAT CAT	
10	65 i	CAT AggAGT C	ACAGTTGCAG	COGT AGT CTT	GATTGTGGCT	GTGTTTGTTT	
	701	GCaAgT CTTT	ACTGTGGAAg	AAAGT CCTT C	CTTACCTGAA	AGGCAT CTGC	
15	751	T CAGGTGGTG	GTGGGGACCC	TGAG OGT GT G	GACAGAAGcT	CACAACGACc	
	801	TGGGGCTGAG	GACAATGT CC	T CAATGAGAT	OGT GAGT AT C	TTGCAGCCCA	
20	851	CCCAGGT CCC	TGAG CAGGAA	AT GGAAGT CC	AGGAGCCAGC	AGAGCCAACA	
20	901	GGTGT CAACA	TGTTGT CCCC	CGGGGAGT CA	GAG CAT CTGC	TGGAACŒGC	
25	951	AGAAGCTGAA	AGGT CT CAGA	GGAGGAGGCT	GCTGGTT CCA	GCAAATGAAG	
25	1001	GTGAT CCCAC	rgaga ct ctg	AGACAGTGCT	T CGATGA CTT	TGCAGACTTG	
20	1051	GTGCCCTTTG	ACT CCTGGGA	g CCg CT CAT G	AGGAAGTTGG	GCCT CAT GGA	
30	1101	CAATGAGATa a	aaggtggcta	AAG CT GAGG C	AG OGGG CCA C	AGGGACACCT	
	1151	TGTACACGAT (GCTGAT AAAG	TGGGT CAACA	AAACCGGGCG	AGAT GCCT CT	
35	1201	GT CCACACCC 1	rgcrggatgc	CTTGGAGA CG	CTGGGAGAGA	GACTTGCCAA	
	1251	GCAGAAGATT (GAGGA CCACT	tgttgagct c	TGGAAAGTT C	at gt at ct ag	
40	1301	AAGGTAATGC I	AGA CT CTGCC	atgt cctaag	TGTGATT CT C	tt Caggaagt	
	1351	CAGACCTTCC	CTGGTTTACC	TTTTTT CTGG	AAAAAGCCCA	ACT GGACT CC	
4 5	1401	AGT CAGT AGG	AAAGTGCCAC	AATTGT CA CA	TGACOGGTAC	TGGAAGAAAC	
	1451	T CT CCCAT CC	AA CAT CA CCC	agtggatgga	A CAT CCT GT A	ACTTTT CACT	
50	1501	GCACTTGGCA 1	TA TTTTT AT	AAGCTGAATG	TGAT AAT AAG	GA CA CT AT GG	

	1551	AAATGT CTGG	AT CATT COGT	TTGTGCGTAC	TTTGAGATTT	GGTTTGGGAT	
5	1601	GT CATTGTTT	T CA CAG CA CT	TTTTT AT CCT	aatgtaaatg	CTTTATTTAT	
	1651	TTATTTGGGC	TACATTGTAA	gat ccat ct a	CA CAGT CGTT	GT COGACTT C	
10	1701	ACTTGATACT	AT ATGAT ATG	AACCTTTTTT	GGGTGGGGGG	TGCGGGGCAg	
	1751	TT CACT CTGT	CT CCCAGG CT	GGAGTGCAAT	GGTG CAAT CT	TGGCT CACTA	
15	1801	TAGCCTTGAC	CT CT CAGG CT	CAAGCGATT C	T CCCA CCT CA	GCCAT CCAAA	
	1851	TAGCTGGGAC	CA CAGGT GT G	CACCACCACG	CCCGGCT AAT	TTTTTGT ATT	
20	1901	TTGT CT AGAT	AT AGGGG CT C	TCTATGTTGC	T CAGGGTGGT	CT CGAATT CC	
	1951	TGGACT CAAG	CAGT CTGCCC	A CCT CAGACT	CCCAAAGCGG	tggaatt aga	
25	2001	GGCGTGAGCC	CCCATGCTTG	gccttacett	TCTACTTTTA	TAATT CTGTA	
	2051	TGTT ATT ATT	TT AT GAA CAT	GAAGAAACIT	t agt aaat gt	ACTTGTTTAC	
30	2101	at agit atgi	GAAT AGATT A	GAT AAA CAT A	AAAGGAGGAG	ACATACAATG	
	2151	GGGGAAGAAG	AAGAAGT CCC	CTGTAAGATG	TCACTGTCTG	GGTT CCAGCC	
35	2201	CT CCCT CAGA	TGTACTTTGG	CTT CAATGAT	TGGCAACTT	: TACAGGGGCC	
	2251	agt cttttga	ACTGGACAA	CITACAAGTA	TATGAGTATT	ATTT AT AGGT	
40	2301	AGTTGTTT AC	ATATGAGT CO	GGACCAAAGA	GAACTGGAT	CACGTGAAGT	
	2351	ccrcrcrcr	GCTGGTCCC	ACCTGGGCAG	Tet Cattig	ACCCATAGCC	
45	2401	CCCAT CT AT G	GACAGGCTG	G GACAGAGGC	GATGGGTTAC	AT CACACATA	
	2451	A CAAT AGGGT	CT ATGT CAT	A TCCCAAGTG	A ACTTGAGCC	TGTTTGGGCT	
50	25 0 1	CAGGAGAT AG	G AAGACAAAA		CACCTCTGCC	A TGGCAT CAAG	
	2551	GGGGAAGAG	r AGATGGTGC	T tGAGAATC		, #GCCATCTCA	

5	2601	ggagt agatg	GCCCGGCT CA	CTT CTGGTTA	T CtGT CACCC	TGAGCCCAtG	
•	2651	AGCTGC=TTT	T AGGGT A CAG	ATTGCCTACT	TGAGGACCTT	ecc ಡ ದ ಡ ಕ	
10	2701	TAAGCAT CTG	A CT CAT CT CA	gaaat gt caa	TT CTT AAA CA	CTGTGGCAAC	
,,	2751	AGGA CCT AGA	atggctgacg	CATT AAGGTT	TT CIT CIT GT	दा टटा दा र टा	
15	2801	ATT A tTGTTT	TAAGA CCT CA	GT AA CCATTT	CAGCCT CTTT	CCAGCAAACC	
15	2851	CTT CT CCAT A	GT ATTT CAGT	CATGGAAGGA	T CATTT ATGC	AGGT AGT CAT	
20	2901	T CCAGGAGTT	TTTGGT CTTT	t ctgt ct caa	GGCATTGTGT	GTTTTGTT CC	
20	2951	GGGACT GGTT	TGGGTGGGAC	AAAGTT AGAA	TTGCCTGAAG	ATCACACATT	
	3001	CAGACTGTtG	TGT CTGTGGA	GTTTTAGGAG	TGGGGGGTGA	CCTTTeTGGT	
25	3051	CTTtGcAcTT	CCAT CET CT C	CCACTT CCAT	cTGGCATCCC	CACGCGTTGT	
	3101	CCCcTGCAcT	TcTGGAAGGC	ACAGGGTGCT	GCTGCTTCCT	GGT CTTT GCC	
30	3151	TTTGCTGGGC	ctt ctgtgca	GGA CG CT CAG	CCT CAGGGCT	CAGAAGGTGC	
	3201	CAGT COGGT C	CCAGGT CCCT	TGT CCCTT CC	A CAGAGG CCT	T CCT AGAAGA	
35	3 25 1	TGCAT CTAGA	GTGT CAGCCT	TAT CAGTGTT	TAAGATTTTT	CPTTTATTTT	
	3301	TAATTTTTT	GAGA CAGAAT	CTCACTCTCT	OCCCAGGCT	GGAGTGCAAC	
40	3351	GGT A CG AT CT	TGGCT CAGTG	CAACCT COGC	CT CCTGGGTT	CAAGOGATTC	
	3401	T COT G C CT CA	GCCT CCGGAG	T AG CT GGGAT	TGCAGGCACC	OG CCACCA OG	
45	3451	CCTGGCTAAT	TTTTGT ATTT	TT AGT AGAGA	OGGGGTTT CA	CCATGTTGGT	
	3501	CAGG CT GGT C	T CGAACT CCT	GA CCT CAGGT	GAT CCA CNTT	GGCCT CCGAA	
50	3551	AGT G CT GGGA	tatacaaggc	GTGAGCCACC	AGCCAGGCCA	AGAT ATT NTT	

3601 NTAAAGNNAG CTTCCGGANG ACATGAAATA ANGGGGGGTT TTGTTGTTTA

3651 GTAACATTNG GCTTTGATAT ATCCCCAGGC CAAATNGCAN GNGACACAGG

3701 ACAGCCATAG TATAGTGTGT CACTCGTGGT TGGTGTCCTT TCATGGTTCT

3751 GCCCTGTCAA AGGTCCCTAT TTGAAATGTG TTATAATACA AACAAGGAAG

3801 CACATTGTGT ACAAAATACT TATGTATTTA TGAATCCATG ACCAAATTAA

3851 ATATGAAACC TTATATAAAA AAAAAAAAAA

^a A nucleotide sequence of a human TR6. (SEQ ID NO: 1).

20

Table 2h

	1	Met	Glu	Gln	Arg	Gly	Gln	Asn	Ala	Pro	Ala	Ala	Ser	Gly	Ala	Arg	Lys	16	j
5	17	Arg	His	Gly	Pro	Gly	Pro	Arg	Glu	Ala	Arg	Gly	Ala	Arg	Pro	Gly	Pro	32	
	33	Arg	Val	Pro	Lys	Thr	Leu	Val	Leu	Val	Val	Ala	Ala	Val	Leu	Leu	Leu	48	
	49	Val	Ser	Ala	Glu	Ser	Ala	Leu	Ile	Thr	Gln	Gln	Asp	Leu	Ala	Pro	Gln	64	
o ·	65	Gln	Arg	Ala	Ala	Pro	Gln	Gln	Lys	Arg	Ser	Ser	Pro	Ser	Glu	Gly	Leu	80	
	81	Сув	Pro	Pro	Gly	His	His	Ile	Ser	Glu	Ąsp	Gly	Arg	Asp	Cys	Ile	Ser	96	
5	97	Сув	Lys	Tyr	Gly	Gln	Asp	Tyr	Ser	Thr	Gln	Trp	Asn	Asp	Leu	Leu	Phe	112	
	113	Cys	Leu	Arg	Cys	Thr	Arg	Cys	Asp	Ser	Gly	Glu	Val	Glu	Leu	Ser	Pro	128	
o	129	Сув	Thr	Thr	Thr	Arg	Asn	Thr	Val	Сув	Gln	Суз	Glu	Glu	Gly	Thr	Phe	144	
	145	Arg	Glu	Glu	Asp	Ser	Pro	Glu	Met	Сув	Arg	Lys	Cys	Arg	Thr	Gly	Cys	160	
5	161	Pro	Arg	Gly	Met	Val	Lys	Val	Gly	Asp	Сув	Thr	Pro	Trp	Ser	Asp	Ile	176	
	177	Glu	Cys	Val	His	Lys	Glu	Ser	Gly	Ile	Ile	Ile	Gly	Val	Thr	Val	Ala	192	
0	193	Ala	Val	Val	Leu	Ile	Val	Ala	Val	Phe	Val	Сув	Lys	Ser	Leu	Leu	Trp	208	

																			- 1
	209	Lys	Lys	Val	Leu	Pro	Tyr	Leu	Lys	Gly	Ile	Суз	Ser	Gly	Gly	Gly	Gly	224	
5	225	Ąsp	Pro	Glu	Arg	Val	Asp	Arg	Ser	Ser	Gln	Arg	Pro	Gly	Ala	Glu	Asp	240	
	241	Asn	Val	Leu	Asn	Glu	Ile	Val	Ser	Ile	Leu	Gln	Pro	Thr	Gln	Val	Pro	256	
10	257	Glu	Gln	Glu	Met	Glu	Val	Gln	Glu	Pro	Ala	Glu	Pro	Thr	Gly	Val	Asn	272	
	273	Met	Leu	Ser	Pro	Gly	Glu	Ser	Glu	His	Leu	Leu	Glu	Pro	Ala	Glu	Ala	288	
15	289	Glu	Arg	Ser	Gln	Arg	Arg	Arg	Leu	Leu	Val	Pro	Ala	Asn	Glu	Gly	Asp	304	
	305	Pro	Thr	Glu	Thr	Leu	Arg	Gln	Сув	Phe	Asp	Asp	Phe	Ala	Asp	Leu	Val	320	
20	321	Pro	Phe	Asp	Ser	Trp	Glu	Pro	Leu	Met	Arg	Lys	Leu	Gly	Leu	Met	Asp	336	
	337	Asn	Glu	Ile	Lys	Val	Ala	Lys	Ala	Glu	Ala	Ala	Gly	His	Arg	Авр	Thr	352	
25	353	Leu	Tyr	Thr	Met	Leu	Ile	Lys	Trp	Val	Asn	Lys	Thr	Gly	Arg	Asp	Ala	368	
	369	Ser	Val	His	Thr	Leu	Leu	Asp	Ala	Leu	Glu	Thr	Leu	Gly	Glu	Arg	Leu	384	
30	385	Ala	Lys	Gln	Lys	Ile	Glu	Ąsp	His	Leu	Leu	Ser	Ser	Gly	Lys	Phe	Met	400	
	401	Tyr	Leu	Glu	Gly	Asn	Ala	Asp	Ser	Ala	Met	Ser	End					411	
35																			

An amino acid sequence of a human TR6. (SEQ ID NO: 2).

40

One polynucleotide of the present invention encoding TR6 may be obtained using standard cloning and screening, from a cDNA library derived from mRNA in cells of human of human thymus stromal cells, monocytes, peripheral blood lymphocytes, primary dendritic, and bone marrow cells using the expressed sequence tag (EST) analysis (Adams, M.D., et al., Science (1991) 252:1651-1656; Adams, M.D. et al., Nature, (1992) 355:632-634; Adams, M.D., et al., Nature (1995) 377 Supp:3-174). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.

The nucleotide sequence encoding TR6 polypeptide of SEQ ID NO:2 may be identical to the polypeptide encoding sequence contained in Table 1 (nucleotide number 94 to 1329 of SEQ ID NO:1), or it may be a sequence, which as a result of the redundancy (degeneracy) of the genetic code, also encodes the polypeptide of SEQ ID NO:2.

When the polynucleotides of the invention are used for the recombinant production of TR6 polypeptide, the polynucleotide may include the coding sequence for the mature polypeptide or a fragment thereof, by itself; the coding sequence for the mature polypeptide or fragment in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence which facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments of this aspect of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag. The polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.

Further preferred embodiments are polynucleotides encoding TR6 variants comprising the amino acid sequence

of TR6 polypeptide of Table 1 (SEQ ID NO:2) in which several, 5-10, 1-3, 1-3 or 1 amino acid residues are substituted, deleted or added, in any combination. Among the preferred polynucleotides of the present invention is contained in Table 3 (SEQ ID NO: 3) encoding the amino acid sequence of Table 4 (SEQ ID NO: 4).

1 ATGACCTCCT TTTCTGCTTG CGCTGCACCA GGTGTGATTC AGGTGAAGTG

10 51 GAGCTAAGTC CCTGCACCAC GACCAGAAAC ACAGTGTGTC AGTGCGAAGA

101 AGGCACCTTC CGGGAAGAAG ATTCTCCTGA GATGTGCCGG AAGTGCCGCA

151 CAGGGTGTCC CAGAGGGATG GTCAAGGTCG GTGATTGTAC ACCCTGGAGT

201 GACATCGAAT GTGTCCACAA AGAATCAGGC ATCATCATAG GAGTCACAGT

5	. 251	TGCAGCCGTA	GTCTTGATTG	TGGCTGTGTT	TGTTTGCaAg	TCTTTACTGT
	301	GGAAGAAGT	CCTTCCTTAC	CTGAAAGGCA	TCTGCTCAGG	TGGTGGTGGG
10	351	GACCCTGAGC	GTGTGGACAG	AAGCTCACAA	CGACcTGGGG	CTGAGGACAA
,,	, 401	TGTCCTCAAT	GAGATCGTGA	GTATCTTGCA	GCCCACCCAG	GTCCCTGAGC
15	451	AGGAAATGGA	AGTCCAGGAG	CCAGCAGAGC	CAACAGGTGT	CAACATGTTG
,5	501	TCCCCCGGGG	AGTCAGAGCA	TCTGCTGGAA	CCGGCAGAAG	CTGAAAGGTC
20	551	TCAGAGGAGG	AGGCTGCTGG	TTCCAGCAAA	TGAAGGTGAT	CCCACTGAGA
20	601	CTCTGAGACA	GTGCTTCGAT	GACTTTGCAG	ACTTGGTGCC	CTTTGACTCC
05	651	TGGGAgCCgC	TCATGAGGAA	GTTGGGCCTC	ATGGACAATg	AGATaaaGGT
25	701	GGCTAAAGCT	GAGGCAGCGG	GCCACAGGGA	CACCTTGTAC	ACGATGCTGA
	751	TAAAGTGGGT	CAACAAAACC	GGGCGAGATG	CCTCTGTCCA	CACCCTGCTG
30	801	GATGCCTTGG	AGACGCTGGG	AGAGAGACTT	GCCAAGCAGA	AGATTGAGGA
	851	CCACTTGTTG	AGCTCTGGAA	AGTTCATGTA	TCTAGAAGGT	AATGCAGACT
35	901	CTGCCATGTC	CTAAGTGTGA	TTCTCTTCAG	GAAGTCAGAC	CTTCCCTGGT
	951	TTACCTTTTT	TCTGGAAAAA	GCCCAACTGG	ACTCCAGTCA	GTAGGAAAGT
40	1001	GCCACAATTG	TCACATGACC	GGTACTGGAA	GAAACTCTCC	CATCCAACAT
	1051	CACCCAGTGG	AT			
45	C A	nucleotide sec				

A partial nucleotide sequence of a human TR6. (SEQ ID NO: 3).

Table 4d

1 DLLFCLRCTR CDSGEVELSP CTTTRNTVCQ CEEGTFREED SPEMCRKCRT

55

	51	GCPRGMVKVG	DCTPWSDIEC	VHKESGIIIG	VTVAAVVLIV	AVFVCKSLLW	
5	· 101	KKVLPYLKGI	CSGGGGDPER	VDRSSQRPGA	EDNVLNEIVS	ILQPTQVPEQ	-
	151	EMEVQEPAEP	TGVNMLSPGE	SEHLLEPAEA	ERSQRRRLLV	PANEGDPTET	
10	201	LRQCFDDFAD	LVPFDSWEPL	MRKLGLMDNE	IKVAKAEAAG	HRDTLYTMLI	
	251	KWVNKTGRDA	SVHTLLDALE	TLGERLAKQK	IEDHLLSSGK	FMYLEGNADS	į
15	301	AMS*					

^a A partial amino acid sequence of a human TR6. (SEQ ID NO: 4).

20

The present invention further relates to polynucleotides that hybridize to the herein above-described sequences. In this regard, the present invention especially relates to polynucleotides which hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences.

Polynucleotides of the invention, which are identical or sufficiently identical to a nucleotide sequence contained in SEQ ID NO:1 or a fragment thereof, including that of SEQ ID NO:3, may be used as hybridization probes for cDNA and genomic DNA, to isolate full-length cDNAs and genomic clones encoding TR6 and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to the TR6 gene. Such hybridization techniques are known to those of skill in the art. Typically these nucleotide sequences are 80% identical, preferably 90% identical, more preferably 95% identical to that of the referent. The probes generally will comprise at least 15 nucleotides. Preferably, such probes will have at least 30 nucleotides and may have at least 50 nucleotides. Particularly preferred probes will range between 30 and 50 nucleotides.

In one embodiment, to obtain a polynucleotide encoding TR6 polypeptide comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled probe having the SEQ ID NO: 1 or a fragment thereof, including that of SEQ ID

NO: 3, and isolating full-length cDNA and genomic clones containing said polynucleotide sequence. Such hybridization techniques are well known to those of skill in the art. Thus in another aspect, TR6 polynucleotides of the present invention further include a nucleotide sequence comprising a nucleotide sequence that hybridize under stringent condition to a nucleotide sequence having SEQ ID NO: 1 or a fragment thereof, including that of SEQ ID NO:3. Also included with TR6 polypeptides are polypeptide comprising amino acid sequence encoded by nucleotide sequence obtained by the above hybridization condition. Stringent hybridization conditions are as defined above or alternatively conditions under overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

The polynucleotides and polypeptides of the present invention may be employed as research reagents and materials for discovery of treatments and diagnostics to animal and human disease.

Vectors, Host Cells, Expression

The present invention also relates to vectors which comprise a polynucleotide or polynucleotides of the present invention, and host cells which are genetically engineered with vectors of the invention and to the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Introduction of polynucleotides into host cells can be effected by methods described in many standard laboratory manuals, such as Davis et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986) and Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) such as calcium phosphate transfection, DEAE-dextran

mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation transduction, scrape loading, ballistic introduction or infection.

Representative examples of appropriate hosts include bacterial cells, such as streptococci, staphylococci, *E. coli*, *Streptomyces* and *Bacillus subtilis* cells; fungal cells, such as yeast cells and *Aspergillus* cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEX 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used. Such systems include, among others, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorables viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any system or vector suitable to maintain, propagate or express polynucleotides to produce a polypeptide in a host may be used. The appropriate nucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL (supra).

For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the desired polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.

If the TR6 polypeptide is to be expressed for use in screening assays, generally, it is preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If TR6 polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide; if produced intracellularly, the cells must first be lysed before the polypeptide is recovered.

TR6 polypeptides can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.

Diagnostic Assays

20

25

30

This invention also relates to the use of TR6 polynucleotides for use as diagnostic reagents. Detection of a mutated form of TR6 gene associated with a dysfunction will provide a diagnostic tool that can add to or define a diagnosis of a disease or susceptibility to a disease which results from under-expression, over-expression or altered expression of TR6. Individuals carrying mutations in the TR6 gene may be detected at the DNA level by a variety of techniques.

Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to labeled TR6 nucleotide sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers *et al.*, *Science* (1985) 230:1242. Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method. See Cotton *et al.*, *Proc Natl Acad Sci USA* (1985) 85: 4397-4401. In another embodiment, an array of oligonucleotides probes comprising TR6 nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of e.g., genetic mutations. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability. (See for example: M.Chee et al., Science, Vol 274, pp 610-613 (1996)).

The diagnostic assays offer a process for diagnosing or determining a susceptibility to chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschlerosis, and Alzheimers disease, through detection of mutation in the TR6 gene by the methods described.

In additi n, chr nic and acute inflammation, arthritis, septicemia, autoimmune diseases (.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease

syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschlerosis, and Alzheimers disease, can be diagnosed by methods comprising determining from a sample derived from a subject an abnormally decreased or increased level of TR6 polypeptide or TR6 mRNA. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as an TR6, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

10 Chromosome Assays

The nucleotide sequences of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes). The differences in the cDNA or genomic sequence between affected and unaffected individuals can also be determined. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

The 3' untranslated region of TR6 matches the 295 bp nucleotide sequence of a mapped EST (Genbank ID: D20151). This EST has been mapped by the Whitehead Institute to chromosome 8, 97.68 cR from the top of the Chromosome 8 linkage group

Antibodies

The polypeptides of the invention or their fragments or analogs thereof, or cells expressing them can also be used as immunogens to produce antibodies immunospecific for the TR6 polypeptides. The term "immunospecific" means that the antibodies have substantiall greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.

Antibodies generated against the TR6 polypeptides can be obtained by administering the polypeptides or epitopebearing fragments, analogs or cells to an animal, preferably a nonhuman, using routine protocols. For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C., *Nature* (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor *et al.*, *Immunology Today* (1983) 4:72) and the EBV-hybridoma technique (Cole *et al.*, MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp. 77-96, Alan R. Liss, Inc., 1985).

Techniques for the production of single chain antibodies (U.S. Patent No. 4,946,778) can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms including other mammals, may be used to express humanized antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography.

Antibodies against TR6 polypeptides may also be employed to treat chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschlerosis, and Alzheimers disease, among others.

Vaccines

50

Another aspect of the invention relates to a method for inducing an immunological response in a mammal which comprises inoculating the mammal with TR6 polypeptide, or a fragment thereof, adequate to produce antibody and/or T cell immune response to protect said animal from chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschierosis, and Alzheimers disease, among others. Yet another aspect of the invention relates to a method of inducing immunological response in a mammal which comprises, delivering TR6 polypeptide via a vector directing expression of TR6 polynucleotide *in vivo* in order to induce such an immunological response to pro-

duce antibody to protect said animal from diseases.

Further aspect of the invention relates to an immunological/vaccine formulation (composition) which, when introduced into a mammalian host, induces an immunological response in that mammal to a TR6 polypeptide wherein the composition comprises a TR6 polypeptide or TR6 gene. The vaccine formulation may further comprise a suitable carrier. Since TR6 polypeptide may be broken down in the stomach, it is preferably administered parenterally (including subcutaneous, intramuscular, intravenous, intradermal etc. injection). Formulatin in suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation instonic with the blood of the recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

Screening Assays

15

25

We have now discovered that TL2 of SEQ ID NO: 5 (otherwise known as TRAIL, Immunity (6):673-682 (1995)) is a ligand of TR6. Thus, the TR6 polypeptide of the present invention, and one of its ligands, TL2 may be employed in a screening process for compounds which bind the receptor, or its ligand, and which activate (agonists) or inhibit activation of (antagonists) the receptor polypeptide of the present invention, or its ligand TL2. Thus, polypeptides of the invention may be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).

TR6 polypeptides are responsible for many biological functions, including many pathologies. Accordingly, it is desirous to find compounds and drugs which stimulate TR6 on the one hand and which can inhibit the function of TR6 or remove TR6 expressing cells on the other hand. Antagonists, or agents which remove TR6 expressing cells, may be employed for a variety of therapeutic and prophylactic purposes for such conditions as chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschlerosis, and Alzheimers disease. Agonists can be employed for therapeutic and prophylactic purposes for such conditions responsive to activation of T cells and other components of the immune system, such as for treatment of cancer and AIDS. However, agonists can also be employed for inappropriate stimulation of T cells and other components of the immune system which leads to down modulation of immune activity with therapeutic or prophylactic application for conditions such, as chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, Bone diseases, atheroschlerosis, and Alzheimers disease.

Candidate compounds may be identified using assays to detect compounds which inhibit binding of TL2 to TR6 in either cell-free or cell based assays. Suitable cell-free assays may be readily determined by one of skill in the art. For example, an ELISA format may be used in which purified TR6, or a purified derivative of TR6, containing the extracellular domain of TR6, is immobilized on a suitable surface, either directly or indirectly (e.g., via an antibody to TR6) and candidate compounds are identified by their ability to block binding of purified TL2 to TR6. The binding of TL2 to TR6 could be detected by using a label directly or indirectly associated with TL2. Suitable detection systems include the streptavidin horseradish peroxidase conjugate, or direct conjugation by a tag, e.g., fluorescein. Conversely, purified TL2 may be immobilized on a suitable surface, and candidate compounds identified by their ability to block binding of purified TR6 to TL2. The binding of TR6 to TL2 could be detected by using a label directly or indirectly associated with TR6. Many other assay formats are possible that use the TR6 protein and its ligands.

Suitable cell based assays may be readily determined by one of skill in the art. In general, such screening procedures involve producing appropriate cells which express the receptor polypeptide of the present invention on the surface thereof. Such cells include cells from mammals, yeast, Drosophila or E. coli. Cells expressing the receptor (or cell membrane containing the expressed receptor) are then contacted with a known ligand, such as TL2, or test compound to observe binding, or stimulation or inhibition of a functional response. The assays may simply test binding of a candidate compound wherein adherence to the cells bearing the receptor is detected by means of a label directly or indirectly associated with the candidate compound or in an assay involving competition with a labeled competitor, such as the ligand TL2. Further, these assays may test whether the candidate compound results in a signal generated by activation of the receptor or its ligand (e.g. TL2)using detection systems appropriate to the cells bearing the receptor or its ligand

and fusion proteins thereof at their surfaces. Typical fusion partners include fusing the extracellular domain of the receptor or ligand with the intracellular tyrosine kinase domain of a second receptor. Inhibitors of activation are generally assayed in the presence of a known agonist, such as the ligand TL2, and the effect on activation by the agonist by the presence of the candidate compound is observed. Standard methods for conducting such screening assays are well understood in the art.

Examples of potential TR6 antagonists include antibodies or, in some cases, oligonucleotides or proteins which are closely related to the ligand of the TR6, e.g., a fragment of the ligand TL2, or small molecules which bind to the receptor, or its ligand, but do not elicit a response, so that the activity of the receptor is prevented. Examples of potential TR6 agonists include antibodies that bind to TR6, its ligand, such as TL2, or derivatives thereof, and small molecules that bind to TR6. These agonists will elicit a response mimicking all or part of the response induced by contacting the native ligand.

The nucleotide sequence of TL2 (SEQ ID NO:5) (published by Immunex Research and Development Corporation, Seattle, Washington as TNF-related apoptosis-inducing ligand (TRAIL) TWiley SR, et al. Immunity (6):673-682 (1995)) is as follows.

	1	CCTCACTGAC	TATAAAAGAA	TAGAGAAGGA	AGGGCTTCAG	TGACCGGCTG	
20	51	CCTGGCTGAC	TTACAGCAGT	CAGACTCTGA	CAGGATCATG	GCTATGATGG	
	101	AGGTCCAGGG	GGGACCCAGC	CTGGGACAGA	CCTGCGTGCT	GATCGTGATC	
25	151	TTCACAGTGC	TCCTGCAGTC	TCTCTGTGTG	GCTGTAACTT	ACGTGTACTT	
	201	TACCAACGAG	CTGAAGCAGA	TGCAGGACAA	GTACTCCAAA	AGTGGCATTG	

5 .	251	CTTGTTTCTT	AAAAGAAGAT	GACAGTTATT	GGGACCCCAA	TGACGAAGAG	
	301	AGTATGAACA	GCCCCTGCTG	GCAAGTCAAG	TGGCAACTCC	GTCAGCTCGT	
10	351	TAGAAAGATG	ATTTTGAGAA	CCTCTGAGGA	AACCATTTCT	ACAGTTCAAG	
	401	AAAAGCAACA	AAATATTTCT	CCCCTAGTGA	GAGAAAGAGG	TCCTCAGAGA	
15	451	GTAGCAGCTC	ACATAACTGG	GACCAGAGGA	AGAAGCAACA	CATTGTCTTC	
	501	TCCAAACTCC	aagaatgaaa	AGGCTCTGGG	CCGCAAAATA	AACTCCTGGG	
20	551	AATCATCAAG	GAGTGGGCAT	TCATTCCTGA	GCAACTTGCA	CTTGAGGAAT	
	601	GGTGAACTGG	TCATCCATGA	AAAAGGGTTT	TACTACATCT	ATTCCCAAAC	
<i>2</i> 5	651	ATACTTTCGA	TTTCAGGAGG	Aaataaaga	AAACACAAAG	AACGACAAAC	
	701	AAATGGTCCA	ATATATTTAC	AAATACACAA	GTTATCCTGA	CCCTATATTG	
30	751	TTGATGAAAA	GTGCTAGAAA	TAGTTGTTGG	TCTAAAGATG	CAGAATATGG	
30	801	ACTCTATTCC	ATCTATCAAG	GGGGAATATT	TGAGCTTAAG	GAAAATGACA	
	851	GAATTTTTGT	TTCTGTAACA	AATGAGCACT	TGATAGACAT	GGACCATGAA	
35	901	GCCAGTTTTT	TCGGGGCCTT	TTTAGTTGGC	TAACTGACCT	GGAAAGAAAA	
	951	AGCAATAACC	TCAAAGTGAC	TATTCAGTTT	TCAGGATGAT	ACACTATGAA	
40	1001	GATGTTTCAA	AAAATCTGAC	CAAAACAAAC	AAACAGAAAA	CAGAAAACAA	
	1051	AAAAACCTCT	ATGCAATCTG	AGTAGAGCAG	CCACAACCAA	AAAATTCTAC	
45	1101	AACACACACT	GTTCTGAAAG	TGACTCACTT	ATCCCAAGAA	AATGAAATTG	
	1151	CTGAAAGATC	TTTCAGGACT	CTACCTCATA	TCAGTTTGCT	AGCAGAAATC	
50	1201	TAGAAGACTG	TCAGCTTCCA	AACATTAATG	CAATGGTTAA	CATCITCTGT	

	1251	CTTTATAATC	TACTCCTTGT	AAAGACTGTA	GAAGAAAGCG	CAACAATCCA	
5	1301	TCTCTCAAGT	AGTGTATCAC	AGTAGTAGCC	TCCAGGTTTC	CTTAAGGGAC	
	1351	AACATCCTTA	AGTCAAAAGA	GAGAAGAGGC	ACCACTAAAA	GATCGCAGTT	
10	1401	TGCCTGGTGC	AGTGGCTCAC	ACCTGTAATC	CCAACATTTT	GGGAACCCAA	
	1451	GGTGGGTAGA	TCACGAGATC	AAGAGATCAA	GACCATAGTG	ACCAACATAG	
15	1501	TGAAACCCCA	TCTCTACTGA	AAGTGCAAAA	ATTAGCTGGG	TGTGTTGGCA	
	1551	CATGCCTGTA	GTCCCAGCTA	CTTGAGAGGC	TGAGGCAGGA	GAATCGTTTG	
20	1601	AACCCGGGAG	GCAGAGGTTG	CAGTGTGGTG	AGATCATGCC	ACTACACTCC	•
	1651	AGCCTGGCGA	CAGAGCGAGA	CTTGGTTTCA	AAAAAAAAA	AAAAAAAA	
25	1701	CTTCAGTAAG	TACGTGTTAT	TTTTTTCAAT	AAAATTCTAT	TACAGTATGT	
	1751	САЛАЛАЛАЛА	АААААААА				

30

The amino acid sequence of TL2 (SEQ ID NO:6) (published by Immunex Research and Development Corporation, Seattle, Washington as TNF-related apoptosis-inducing ligand (TRAIL) TWiley SR, et al. Immunity (6):673-682 (1995)) is as follows:

1 Met Ala Met Met Glu Val Gln Gly Gly Pro Ser Leu Gly Gln Thr Cys 16 40 17 Val Leu Ile Val Ile Phe Thr Val Leu Leu Gln Ser Leu Cys Val Ala 32 Val Thr Tyr Val Tyr Phe Thr Asn Glu Leu Lys Gln Met Gln Asp Lys 45 Tyr Ser Lys Ser Gly Ile Ala Cys Phe Leu Lys Glu Asp Asp Ser Tyr 65 Trp Asp Pro Asn Asp Glu Glu Ser Met Asn Ser Pro Cys Trp Gln Val

50

81 Lys Trp Gln Leu Arg Gln Leu Val Arg Lys Met Ile Leu Arg Thr Ser

	97	Glu	Glu	Thr	Ile	Ser	Thr	Val	Gln	Glu	Lys	Gln	Gln	Asn	Ile	Ser	Pro	112
5	113	Leu	Val	Arg	Glu	Arg	Gly	Pro	Gln	Arg	Val	Ala	Ala	His	Ile	Thr	Gly	128
	129	Thr	Arg	Gly	Arg	Ser	Asn	Thr	Leu	Ser	Ser	Pro	Asn	Ser	Lys	Asn	Glu	144
10	145	Lys	Ala	Leu	Gly	Arg	Lys	Ile	Asn	Ser	Trp	Glu	Ser	Ser	Arg	Ser	Gly	160
	161	His	Ser	Phe	Leu	Ser	Asn	Leu	His	Leu	Arg	Asn	Gly	Glu	Leu	Val	Ile	176
15	177	His	Glu	Lys	Gly	Phe	Tyr	Tyr	Ile	Tyr	Ser	Gln	Thr	Tyr	Phe	Arg	Phe	192
	193	Gln	Glu	Glu	Ile	Lys	Glu	Asn	Thr	Lys	Asn	Asp	Lys	Gln	Met	Val	Gln	208
20	209	Tyr	Ile	Tyr	Lys	Tyr	Thr	Ser	Tyr	Pro	Asp	Pro	Ile	Leu	Leu	Met	Lys	224
25	225	Ser	Ala	Arg	Asn	Ser	Сув	Trp	Ser	Lys	Asp	Ala	Glu	Tyr	Gly	Leu	Tyr	240
23	241	Ser	Ile	Tyr	Gln	Gly	Gly	Ile	Phe	Glu	Leu	Lys	Glu	Asn	Asp	Arg	Ile	256
30	257	Phe	Val	Ser	Val	Thr	Asn	Glu	His	Leu	Ile	qaA	Met	Asp	His	Glu	Ala	272
	273	Ser	Phe	Phe	Gly	Ala	Phe	Leu	Val	Gly	End							281

35

40

45

Prophylactic and Therapeutic Methods

This invention provides methods of treating abnormal conditions such as, chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschlerosis, and Alzheimers disease, related to both an excess of and insufficient amounts of TR6 activity.

If the activity of TR6 is in excess, several approaches are available. One approach comprises administering to a subject an inhibitor compound (antagonist) as hereinabove described along with a pharmaceutically acceptable carrier in an amount effective to inhibit activation by blocking binding of ligands to the TR6, or by inhibiting a second signal, and thereby alleviating the abnormal condition. In another approach, soluble forms of TR6 polypeptides still capable of binding the ligand in competition with endogenous TR6 may be administered. Typical embodiments of such competitors comprise fragments of the TR6 polypeptide.

In still another approach, expression of the gene encoding endogenous TR6 can be inhibited using expression blocking techniques. Known such techniques involve the use of antisense sequences, either internally generated or separately administered. See, for example, O'Connor, *J Neurochem* (1991) 56:560 in Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Alternatively, oligonucleotides which form triple helices with the gene can be supplied. See, for example, Lee *et al.*, Nucleic Acids Res (1979) 6:3073; Cooney *et al.*, Science (1988) 241:456; Dervan *et al.*, Science (1991) 251:1360. These oligomers can be administered *per se* or the relevant oligomers can be expressed *in vivo*.

For treating abnormal conditions related to an under-expression of TR6 and its activity, several approaches are also

available. One approach comprises administering to a subject a therapeutically effective amount of a compound which activates TR6, i.e., an agonist as described above, in combination with a pharmaceutically acceptable carrier, to thereby alleviate the abnormal condition. Alternatively, gene therapy may be employed to effect the endogenous production of TR6 by the relevant cells in the subject. For example, a polynucleotide of the invention may be engineered for expression in a replication defective retroviral vector, as discussed above. The retroviral expression construct may then be isolated and introduced into a packaging cell transduced with a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention such that the packaging cell now produces infectious viral particles containing the gene of interest. These producer cells may be administered to a subject for engineering cells in vivo and expression of the polypeptide in vivo. For overview of gene therapy, see Chapter 20, Gene Therapy and other Molecular Genetic-based Therapeutic Approaches, (and references cited therein) in Human Molecular Genetics, T Strachan and A P Read, BIOS Scientific Publishers Ltd (1996). Another approach is to administer a therapeutic amount of TR6 polypeptides in combination with a suitable pharmaceutical carrier.

Formulation and Administration

15

Peptides, such as the soluble form of TR6 polypeptides, and agonists and antagonist peptides or small molecules, may be formulated in combination with a suitable pharmaceutical carrier. Such formulations comprise a therapeutically effective amount of the polypeptide or compound, and a pharmaceutically acceptable carrier or excipient. Such carriers include but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. Formulation should suit the mode of administration, and is well within the skill of the art. The invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.

Polypeptides and other compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

Preferred forms of systemic administration of the pharmaceutical compositions include injection, typically by intravenous injection. Other injection routes, such as subcutaneous, intramuscular, or intraperitoneal, can be used. Alternative means for systemic administration include transmucosal and transdermal administration using penetrants such as bile salts or fusidic acids or other detergents. In addition, if properly formulated in enteric or encapsulated formulations, oral administration may also be possible. Administration of these compounds may also be topical and/or localized, in the form of salves, pastes, gels and the like.

The dosage range required depends on the choice of peptide, the route of administration, the nature of the formulation, the nature of the subject's condition, and the judgment of the attending practitioner. Suitable dosages, however, are in the range of 0.1-100 µg/kg of subject. Wide variations in the needed dosage, however, are to be expected in view of the variety of compounds available and the differing efficiencies of various routes of administration. For example, oral administration would be expected to require higher dosages than administration by intravenous injection. Variations in these dosage levels can be adjusted using standard empirical routines for optimization, as is well understood in the art.

Polypeptides used in treatment can also be generated endogenously in the subject, in treatment modalities often referred to as "gene therapy" as described above. Thus, for example, cells from a subject may be engineered with a polynucleotide, such as a DNA or RNA, to encode a polypeptide ex vivo, and for example, by the use of a retroviral plasmid vector. The cells are then introduced into the subject.

Examples

The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples illustrate, but do not limit the invention.

Example 1

Two ESTs (EST#1760054 and EST#1635744) with sequence similarity to the human TNF receptor were discovered in a commercial EST database. Analysis of the two nucleotide sequences (3,466 bp and 2,641 bp respectively), revealed each was a partial sequence of the complete cDNA sequence, overlapping, with 100% identity, 2,226 bp at the nucleotide level. Together, the two sequences encompassed the complete predicted cDNA sequence of 3,881 bp, and encoded an open reading frame for a novel member of the TNF receptor superfamily and named TR6. The predicted protein is 411 amino acids long with a hydrophobic membrane spanning region indicating that at least one form of TR6 is expressed as a membrane bound protein. Comparison of TR6 protein sequence, with other TNF receptor family proteins indicates that it has two of the cysteine-rich repeats characteristic of the extracellular domains of this family, and an intracellular death domain,

Northern blot of TR6.

Various tissues and cell lines were screened for mRNA expression by Northern blot. RNA was prepared from cells and cell lines using Tri-Reagent (Molecular Research Center Inc., Cincinnati, OH), run in denaturing agarose gels (Sambrook et al., Molecular Cloning: a laboratory manual, 2nd Ed. Cold Spring Harbor Lab Press, NY (1989)) and transfered to Zeta-probe nylon membrane (Biorad, Hercules, CA.) via vacuum blotting in 25mM NaOh for 90 min. After neutralization for 5-10 minutes with 1M tris-HCl, pH 7.5 containing 3M NaCl, the blots were prehybridized with 50% formamide, 8% dextran sulfate, 6XSSPE, 0.1%SDS and 100mg/ml of sheared and dentured salmon sperm DNA for at least 30 min. At 42°C. cDNA probes were labeled with 32P-CTP by random priming (Statagene, La Jolla, CA), briefly denatured with 0.25M NaOH and added to the prehybridization solution. After a further incubation for at least 24h at 42°C, the blots were washed in high stringency conditions and exposed to X-ray film.

Very high expression of TR6 RNA was detected in aortic endothelial cells. High expression was also detected in monocytes. Low expression was detected in bone marrow and CD4+ activated PBLs. Very low, but detectable levels of TR6 RNA was expressed in CD19+ PBLs, CD8+ PBLs (both activated and unstimulated), and unstimulated CD4+ PBLs.

In hematopoietic cell lines, low levels of TR6 RNA was expressed in HL60 (promyelocyte), KG1a (promyeloblast) and KG1 (myeloblast) cell lines. Very low but detectable levels of TR6 RNA was expressed in U937 (monoblast) and THP-1 (monocyte) cell lines.

The major RNA form is 3.8 kb in size.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION
10	(i) APPLICANT: SmithKline Beecham Corporation
	(ii) TITLE OF THE INVENTION: TUMOR NECROSIS FACTOR RELATED
	RECEPTOR, TR6
15	(iii) NUM BER OF SEQUENCES: 6
	(iv) CORRESPONDENCE ADDRESS:
20	(A) ADDRESSEE: SmithKline Beecham,
	Corporate Intellectual Property
	(B) STREET: Two New Horizons Court
25	(C) CITY: Brentford
	(D) COUNTY: Middles ex
	(E) COUNTRY: United Kingdom
30	(F) POST CODE: TW8 9EP
	(v) COMPUTER READABLE FORM:
35	(A) MEDIUM TYPE: Diskette
35	(B) COMPUTER IBM Compatible
	(C) OPERATING SYSTEM DOS
	(D) SOFTWARE: FastSEQ for Windows Version 2.0
40 ,	
	(vi) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER TO BE ASSIGNED
45	(B) FILING DATE: 22-AUGUST-1997
	(C) CLASSIFICATION: Unknown
50	(vii) PRIOR APPLICATION DATA:
50	(A) APPLICATION NUMBER 08/853,684
	(E) FILING DATE: 09-MAY-1997

	(viii) ATTORNEY/AGENT INFORMATION	
5	(A) NAME: THOMPSON, Clive Beresford	
J	(B) GENERAL AUTHORISATION NUMBER 5630	
	(C) REFERENCE/DOCKET NUMBER GH-50008-1	
10	(ix) TELECOMMUNICATION INFORMATION:	
	(A) TELEPHONE: +44 181 975 6347	
	(E) TELEFAX: +44 181 975 6294	
15	(C) TELEX:	
	(2) INFORMATION FOR SEQ ID NO: 1:	
20		
	(i) SEQUENCE CHARACTERISTICS	
	(A) LENGTH: 3,881 base pairs	
25	(B) TYPE: nucleic acid	
	(C) ST RANDEDNESS single	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
35	CTTTGCGCCC ACAAAATACA CCGACGATGC CCGATCTACT TTAAGGGCTG AAACCCACGG	60
	GCCTGAGAGA CTATAAGAGC GTTCCCTACC GCCATGGAAC AACGGGGACA GAACGCCCCG	1 20
	GCCGCTTCGG GGGCCCGGAA AAGGCACGGC CCAGGACCCA GGGAGGCGCG GGGAGCCAGG	180
40	CCTGGGCCCC GGGT CCCCAA GACCCTTGTG CTCGTTGTCG CCGCGGT CCT GCTGTTGGT C	240
	T CAGCTGAGT CTGCT CTGAT CACCCAACAA GACCTAGCTC CCCAGCAGAG AGCGGCCCCA	300
	CAACAAAAGA GGT CCAGCCC CT CAGAGGGA TTGTGT CCAC CTGGACACCA TATCT CAGAA	360
45	GACGGTAGAG ATTGCATCTC CTGCAAATAT GGACAGGACT ATAGCACTCA ATGGAATGAC CTCCTTTTCT GCTTGCGCTG CACCAGGTGT GATTCAGGTG AAGTGGAGCT AAGTCCCTGC	4 20 48 0
	ACCACGACCA GAAACACAGT GTGT CAGTGC GAAGAAGGCA CCTT CCGGGA AGAAGATT CT	540
	CCTGAGATGT GCCGGAAGTG CCGCACAGGG TGTCCCAGAG GGATGGTCAA GGTCGGTGAT	600
50	TGTACACCCT GGAGTGACAT CGAATGTGTC CACAAAGAAT CAGGCATCAT CATAGGAGTC	660
50	ACAGTTGCAG COGTAGTCTT GATTGTGGCT GTGTTTGTTT GCAAGTCTTT ACTGTGGAAG	7 20
	AAAGT CCTT C CTTACCTGAA AGGCAT CTGC T CAGGTGGTG GTGGGGACCC TGAGGTGTG	780
	The state of the s	

	GACAGAAGCT	CACAACGACC	TGGGGCTGAG	GACAATGT CC	T CAATGAGAT	OGT GAGT AT C	840
	TTGCAGCCCA	CCCAGGT CCC	TGAGCAGGAA	ATGGAAGT CC	AGGAGCCAGC	AGAG CCAA CA	900
5	GGT GT CAACA	TGTTGT CCCC	CGGGGAGT CA	GAGCAT CTGC	TGGAACCGGC	AGAAGCTGAA	960
	AGGT CT CAGA	GGAGGAGGCT	G CT GGTT CCA	GCAAATGAAG	GTGAT CCCAC	TGAGACT CTG	1020
	AGACAGTGCT	TOGATGACTT	TGCAGACTTG	GTGCCCTTTG	ACT CCT GGGA	GCCGCT CATG	1080
10	AGGAAGTTGG	GCCT CATGGA	CAATGAGATA	AAGGTGGCTA	AAGCTGAGGC	AG CGGG CCA C	1140
	AGGGACACCT	TGTACACGAT	GCTGAT AAAG	TGGGT CAACA	AAACCGGGCG	AGATGCCT CT	1200
	GT CCACACCC	TGCTGGATGC	CTTGGAGACG	CTGGGAGAGA	GACTTGCCAA	GCAGAAGATT	1 26 0
	GAGGACCACT	TGTTGAGCT C	TGGAAAGTTC	AT GT AT CT AG	AAGGT AATGC	AGACT CTGCC	1320
15	ATGT CCT AAG	TGTGATT CT C	TT CAGGAAGT	CAGACCTTCC	CTGGTTTACC	TTTTTT CTGG	1380
	AAAAAGCCCA	ACTGGACT CC	AGT CAGT AGG	AAAGTGCCAC	AATTGT CACA	TGACOGGTAC	1440
	TGGAAGAAAC	T CT CCCAT CC	AACAT CACCC	AGTGGATGGA	ACAT CCTGT A	ACTTTT CACT	1500
20	GCACTTGGCA	TTATTTTTAT	AAGCTGAATG	TGAT AAT AAG	GACACT AT GG	AAAT GT CTGG	1560
	AT CATT COST	TTGTGCGTAC	TTTGAGATTT	GGTTTGGGAT	GT CATTGTTT	T CACAG CACT	16 20
	TTTTTAT CCT	AATGT AAATG	CTTT ATTT AT	TTATTTGGGC	TACATTGT AA	GAT CCAT CT A	1680
	CA CAGT CGTT	GT COGACTT C	ACTTGAT ACT	AT ATGAT ATG	AACCTTTTTT	GGGTGGGGG	1740
25	TG CGGGG CAG	TT CACT CTGT	CT CCCAGG CT	GGAGTG CAAT	GGT G CAAT CT	TGGCT CACT A	1800
	TAGCCTTGAC	CT CT CAGG CT	CAAGCGATTC	T CCCACCT CA	GCCAT CCAAA	TAGCTGGGAC	1860
•	CACAGGTGTG	CACCACCACG	CCCGGCTAAT	TTTTTGT ATT	TTGT CT AGAT	AT AGGGGCT C	1920
30	T CT AT GTTGC	T CAGGGTGGT	CT CGAATT CC	TGGACT CAAG	CAGT CTGCCC	ACCT CAGACT	1980
	CCCAAAG OGG	TGGAATTAGA	GGOGTGAGCC	CCCATGCTTG	GCCTTACCTT	TCTACTTTTA	2040
	TAATT CTGTA	TGTT ATT ATT	TTATGAACAT	GAAGAAACTT	TAGTAAATGT	ACTTGTTTAC	2100
	AT AGTT ATGT	GAAT AGATTA	GAT AAACAT A	AAAGGAGGAG	ACATACAATG	GGGGAAGAAG	2160
35	AAGAAGT CCC	CTGT AAGATG	T CACTGT CTG	GGTT CCAG CC	CT CCCT CAGA	TGTACTTTGG	2220
	CTT CAATGAT	TGG CAACTT C	TACAGGGGCC	AGT CTTTTGA	ACTGGACAAC	CTTACAAGTA	2280
	TATGAGTATT	ATTT AT AGGT	AGTTGTTT AC	at at gagt og	GGACCAAAGA	GAACTGGAT C	2340
40	CACGTGAAGT	CCTGTGTGTG	GCTGGT CCCT	ACCTGGG CAG	T CT CATTTGC	ACCCAT AGCC	2400
	CCCAT CT AT G	GACAGGCTGG	GA CAGAGG CA	GATGGGTT AG	AT CACACAT A	ACAAT AGGGT	2460
	CT AT GT CAT A	T CCCAAGTGA	ACTTGAGCCC	TGTTTGGGCT	CAGGAGAT AG	AAGACAAAAT	25 20
45		ACGT CTGCCA					2580
45		TGCCAT CT CA					2640
		AGCTGCCTTT					2700
,		ACT CAT CT CA					2760
50						T AAGA CCT CA	28 20
		CAG CCT CTTT					2880
	TCATTTATGC	AGGT AGT CAT	TCCAGGAGTT	TTTGGT CTTT	t ctgt ct caa	GGCATTGTGT	2940

	GTTTTGTT CC	GGGACTGGTT	TGGGTGGGA	AAAGTT <i>I</i>	AGAA TTG	CCTGAAG	AT CA	CACAI	T.	3000
	CAGACTGTTG	TGT CTGTGGA	GTTTT AGG AG	TGGGGG	TGA CCT	TT CTGGT	CTTTC	CACI	T	3060
5	CCAT CCT CT C	CCACTT CCAT	CTGGCATCC	CACGCGI	TGT CCC	CTGCACT	TCTG	SAAGO	C	3120
	ACAGGGTGCT	GCTGCTTCCT	GGTCTTTGCC	TTTGCT	GGC CTT	CTGTGCA	GGAC	CT CF	\G	3180
	CCT CAGGGCT	CAGAAGGTGC	CAGT COGGT (CCAGGT	CCT TGT	CCCTTCC	ACAGA	AGGCC	T	3240
10	T CCT AGAAGA	TGCATCT AGA	GTGT CAGCCT	TAT CAGT	GTT TAA	GATTTTT	CITTI	TTTA	T	3300
	TAATTTTTT	GAGACAGAAT	CT CACT CT CT	OGCCCAG	GCT GGA	GTGCAAC	GGTA	GAT (T	3360
	TGGCT CAGTG	CAACCT COGC	CTCCTGGGTT	CAAGCGA	TTC TOG	TGCCT CA	GCCT	CCGGF	\G	3420
	TAGCTGGGAT	TGCAGGCACC	OGCCACCAO	ccrecci	AAT TTT	TGT ATTT	TTAGI	'AGAG	A	3480
15	CGGGGTTT CA	CCATGTTGGT	CAGGCTGGT	TOGAACT	CCT GAC	CT CAGGT	GAT CO	CACNI	T	3540
	GG CCT COGAA	agtg ctggga	TATACAAGG	GTGAGC	CACC AGO	CAGGCCA	AGAT A	IN TTA	T	3600
	NT AAAG NNAG	CTT CCGGANG	ACATGAAAT A	ANGGGGG	GTT TTG	TTGTTTA	GTAAC	ATT N	KG	3660
20	GCTTTGATAT	AT CCCCAGGC	CAAAT NG CAN	GNGACAC	CAGG ACA	GCCATAG	TATAG	TGTG	T	37 20
	CACT CGT GGT	TGGTGT CCTT	T CATGGTT CT	GCCCTGT	CAA AGG	T CCCT AT	TTGA	AT GT	G	3780
	TT AT AAT ACA	AACAAGGAAG	CACATTGTGT	ACAAAAT	ACT TAT	GT ATTT A	TGAAT	CCAT	G	3840
	ACCAAATTAA	ATATGAAACC	TTATATAAAA	AAAAAA	AAA A	•				3881
25										
			•							-
	((2) INFORMA	TION FOR SE	Q ID NO:	2:					
30										
	(i)	SEQUENCE C	HARACTERIST	IC3						
	(7	A) LENGTH:	411 amino a	cids ·						
	(1	B) TYPE: ami	ino acid							
35	((C) ST RANDED	NESS singl	е						
	•)) TOPOLOGY:								
	(ii)	MOLECULE 1	[YPE: prote	in						
40										_
.•	(xi.)	SEQUENCE	DESCRIPTION	E SEQ ID	NO: 2:					
	Mat	Glu Gln Ar	a Glu Gla	aca Ala	B== 31=	11 n Co	~ Cl	71 -	A	Tura
45	1	Old Olli Al	5 5	non ALA	10 A1a		r Gry	ALA	15	Lys
	Arg	His Gly Pr	o Gly Pro	Arg Glu			a Arg	Pro		Pro
			0		25	-	Ĵ	30	-	
50	Arg	Val Pro Ly	s Thr Leu	Val Leu	Val Val	Ala Ala	a Val	Leu	Leu	Leu
		35		40			45			
		Ser Ala Gl							_	

	50)				55					60				
GI	n Arg	Ala	Ala	Pro	Gln	Gln	Lys	Arg	Ser	Ser	Pro	Ser	Glu	Gly	Leu
5	5				70					75					80
c)	s Pro	Pro	Gly	His 85	His	Ile	Ser	Glu	Asp 90	Gly	Arg	Asp	Cys	Ile 95	Ser
Q,	s Lys	Tyr	Gly		Asp	Tyr	Ser	Thr		Tro	As n	As p	Leu		Phe
10			100		•	•		105		•		•	110		
	s Lev	Arg	Cys	Thr	Arg	Cys	Asp	Ser	Gly	Glu	Val	Glu	Leu	Ser	Pro
		115					120					1 25			
c)	s Thi		Thr	Arg	Asn		Val	Cys	Gln	Cys		Glu	Gly	Thr	Phe
15	130		.	~	D	135		_	_	_	140	_			_
· 14	g Glu s	GIU	ASD	Ser	150	GIU	Met	cys	Arg	ட்ys 155	cys	Arg	Thr	GIÀ	суз 16 0
	o Arg	Gly	Met	Val		Val	Glv	Asp	Cvs		Pro	Tro	Ser	Asp	
	-	-		165	•		•	•	170					175	
20 G1	u Cys	Val	His	Lys	Glu	Ser	Gly	Ile	Ile	Ile	Gly	Val	Thr	Val	Ala
			180					185					190		
Al ·	a Val		Leu	Ile	Val	Ala		Phe	Val	Cys	Lys		Leu	Leu	Trp
25	- T	195	7	D	m	•	200	63.		_		205	۵.		-1
ь	s Lys 210		Leu	Pro	Tyr	215	rys	GIÀ	Ile	Cys	Ser 220	GIY	GTA	GIĀ	Gly
As	p Pro		Arg	Val	q eA		Ser	Ser	Gln	Arg		Glv	Ala	Glu	Asp
22			•		230	,				235		,			240
30 As	n Val	Leu	Asn	Glu	Ile	Val	Ser	Ile	Leu	Gln	Pro	Thr	Gln	Val	Pro
				245					25 0					255	
G1	u Gln	Glu		Glu	Val	Gln	Glu		Ala	Glu	Pro	Thr	Gly	Val	Asn
35 Ma	.	C	260	61	C1	0	-	265	_			_	270		
me	t Leu	. ser 275	PIO	GIA	GIU	ser	280	HIS	Leu	Leu	GLu	285	Ala	Glu	ALA
G1	u Arg		Gln	Arg	Ara	Ara		Leu	Val	Pro	Ala		Glu	Glv	Asn
	290			-		295					300			,	
40 Pr	o Thr	Glu	Thr	Leu	Arg	Gln	Cys	Phe	Asp	Asp	Phe	Ala	Asp	Leu	Val
30					310					315					3 20
Pı	o Phe	Asp	Ser		Glu	Pro	Leu	Met		Lys	Leu	Gly	Leu		Asp
45 Ag	n Glu	Tla	Lve	3 25	A1 -	Tue	71.	C1	330	21.	C1	u: -	3	335	mb
,,	010	116	340	Val	vr a	гуз	ΑLG	345	ALA	MIG	GIA	urs	35 O	ASP	·
Le	u Tyr	Thr		Leu	Ile	Lys	Trp		Asn	Lys	Thr	Gly		Asp	Ala
		355				-	360			-		365	•	•	
<i>50</i> S€	r Val		Thr	Leu	Leu	Asp	Ala	Leu	Glu	Thr	Leu	Gly	Glu	Arg	Leu
	370					375					380				
Al	a Lys	Gln	Lys	Ile	Glu	Asp	His	Leu	Leu	Ser	Ser	Gly	Lys	Phe	Met

	385 390 395	400
	Tyr Leu Glu Gly Asn Ala Asp Ser Ala Met Ser End	
5	405 410 411	
	(2) INFORMATION FOR SEQ ID NO: 3:	
10		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1062 base pairs	
	(B) TYPE: nucleic acid	
15	(C) ST RANDED NESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(II) ROBEOUD III E. CORR	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	200 000 000 000 000 000 000 000 000 000	60
	ATGACCTCCT TTTCTGCTTG CGCTGCACCA GGTGTGATTC AGGTGAAGTG GAGCTAAGTC CCTGCACCAC GACCAGAAAC ACAGTGTGTC AGTGCGAAGA AGGCACCTTC CGGGAAGAAG	120
25	ATTICTICITIES GATGTGCOGG AAGTGCOGCA CAGGGTGTCC CAGAGGGATG GTCAAGGTOG	180
	GTGATTGTAC ACCCTGGAGT GACAT CGAAT GTGT CCACAA AGAAT CAGGC AT CAT CAT AG	240
	GAGT CACAGT TGCAGCCGTA GTCTTGATTG TGGCTGTGTT TGTTTGCAAG TCTTTACTGT	300
30	GGAAGAAGT CCTTCCTTAC CTGAAAGGCA TCTGCTCAGG TGGTGGTGGG GACCCTGAGC	360
50	GTGTGGACAG AAGCT CACAA CGACCTGGGG CTGAGGACAA TGTCCT CAAT GAGAT CGTGA	4 20
	GTAT CTTGCA GCCCACCCAG GTCCCTGAGC AGGAAATGGA AGTCCAGGAG CCAGCAGAGC	480
	CAACAGGTGT CAACATGTTG TCCCCCGGGG AGTCAGAGCA TCTGCTGGAA CCGGCAGAAG	540
35	CTGAAAGGTC TCAGAGGAGG AGGCTGCTGG TTCCAGCAAA TGAAGGTGAT CCCACTGAGA	600
	CT CTGAGACA GTGCTT CGAT GACTTTG CAG ACTTGGTGCC CTTTGACT CC TGGGAGCCGC	660
	T CATGAGGAA GTTGGGCCTC ATGGACAATG AGATAAAGGT GGCTAAAGCT GAGGCAGCGG	7 20
	GCCACAGGGA CACCTTGTAC ACGATGCTGA TAAAGTGGGT CAACAAAACC GGGCGAGATG	780
40	CCTCTGTCCA CACCCTGCTG GATGCCTTGG AGACGCTGGG AGAGAGACTT GCCAAGCAGA	840
	AGATTGAGGA CCACTTGTTG AGCTCTGGAA AGTTCATGTA TCTAGAAGGT AATGCAGACT	900
	CTG CCATGT C CTAAGTGTGA TT CT CTT CAG GAAGT CAGAC CTT CCCTGGT TT ACCTTTTT	960
	TCTGGAAAAA GCCCAACTGG ACTCCAGTCA GTAGGAAAGT GCCACAATTG TCACATGACC	1020
45	GGT ACTGGAA GAAACT CT CC CAT CCAACAT CACCCAGTGG AT	1062
	(2) INFORMATION FOR SEQ ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 303 amino acids	
	(B) TYPE: amino acid	

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

10																
	Ąsp	Leu	Leu	Phe	Cys	Leu	Arg	Cys	Thr	Arg	Cys	Asp	Ser	Gly	Glu	Val
	1				5					10		-			15	
	Glu	Leu	Ser	Pro	Cys	Thr	Thr	Thr	Arg	Asn	Thr	Val	Cys	Gln	Суз	Glu
15				20					25					30		
15	Glu	Gly	Thr	Phe	Arg	Glu	Glu	Asp	Ser	Pro	Glu	Met	Cys	Arg	Lys	Суз
			35					40					45			
	Arg	Thr	Gly	Cys	Pro	Arg	Gly	Met	Val	Lys	Val	Gly	Asp	Cys	Thr	Pro
		50					55					60				
20	Trp	Ser	Asp	Ile	Glu	Cys	Val	His	Lys	Glu	Ser	Gly	Ile	Ile	Ile	Gly
	65					70					75					80
	Val	Thr	Val	Ala	Ala	Val	Val	Leu	Ile	Val	Ala	Val	Phe	Val	Cys	Lys
					85					90					95	
25	Ser	Leu	Leu	Trp	Lys	Lys	Val	Leu	Pro	Tyr	Leu	Lys	Gly	Ile	Cys	Ser
				100					105					110		
	Gly	Gly	Gly	Gly	Asp	Pro	Glu	Arg	Val	Asp	Arg	Ser	Ser	Gln	Arg	Pro
			115					120					125			
30	Gly	Ala	Glu	Asp	Asn	Val	Leu	Asn	Glu	Ile	Val	Ser	Ile	Leu	Gln	Pro
		130					135					140				
	Thr	Gln	Val	Pro	Glu	Gln	Glu	Met	Glu	Val	Gln	Glu	Pro	Ala	Glu	Pro
	145					150					155					160
35	Thr	Gly	Val	As n	Met	Leu	Ser	Pro	Gly	Glu	Ser	Glu	His	Leu	Leu	Glu
					165					170					175	
	Pro	Ala	Glu	Ala	Glu	Arg	Ser	Gln	Arg	Arg	Arg	Leu	Leu	Val	Pro	Ala
				180					185					190		
40	Asn	Glu	Gly	As p	Pro	Thr	Glu	Thr	Leu	Arg	Gln	Cys	Phe	Asp	Asp	Phe
•			195					200					205			
	Ala	Asp	Leu	Val	Pro	Phe	Asp	Ser	Trp	Glu	Pro	Leu	Met	Arg	Lys	Leu
		210					215					220				
45		Leu	Met	As p	Asn	Glu	Ile	Lys	Val	Ala	Lys	Ala	Glu	Ala	Ala	Gly
	225					230					235					240
	His	Arg	Asp	Thr	Leu	Tyr	Thr	Met	Leu	Ile	Lys	Trp	Val	Asn	Lys	Thr
					245					250					255	
50	Gly	Arg	Asp	Ala	Ser	Val	His	Thr	Leu	Leu	Asp	Ala	Leu	Glu	Thr	Leu
				260					265					270		
	Gly	Glu	Arg	Leu	Ala	Lys	Gln	Lys	Ile	Glu	q zA	His	Leu	Leu	Ser	Ser

		275			280					285			
	Gly	Lys Phe M	et Tyr	Leu Gl	u Gly	As n	Ala	Asp	Ser	Ala	Met	Ser	
5		290		29				-	300				
	(2) INFORM	ATION FOR	SEQ I	NO:5:									
10	(i)	SEQUENCE	CHARAC	TERIST	ICS:								
	(.	A) LENGTH	: 1769	base pa	airs								
	(:	B) TYPE:	nuclei	cacid									
		C) STRAND		-	e								
15	(D) TOPOLO	GY: lir	near									
	(ii) MOLECUL	E TYPE	CDNA									
	(xi) SEQUENC	E DESCE	RIPTION	: SEQ	ID NO	0:5:						
20													
	CCTCACTGAC												60
	TTACAGCAGT												120
	CTGGGACAGA												180
25	GCTGTAACTT												240
	AGTGGCATTG												300
	AGTATGAACA												360
	ATTTTGAGAA												420
30	CCCCTAGTGA												480
	AGAAGCAACA												540
	AACTCCTGGG												600
	GGTGAACTGG												660
35	TTTCAGGAGG												720
	AAATACACAA												780
	TCTAAAGATG												840
	GAAAATGACA												900
40	GCCAGTTTTT												960
	TCAAAGTGAC												1020
	CAAAACAAAC												1080
	CCACAACCAA												1140
45	AATGAAATTG												1200
	TAGAAGACTG												1260
	TACTCCTTGT												1320
	ACCACTAAAA												1380
50	ACCACTAAAA												1440
	GGGAACCCAA												1500
	TGAAACCCCA												1560
	GTCCCAGCTA	CITIGAGAG	SC TGAG	HCAGGA	GAATC	GTTTG	AAC	CCCG	GGAG	GCA	GAGG'	TTG	1620

	CAG	TGTG	GTG .	agat	CATG	CC A	CTAC	ACTC	CAG	CCTG	GCGA	CAG	AGCG	AGA	CTTG	GTTTCA	1680
	AAA	AAAA	AAA .	AAAA	AAAA	AA C	TTCA	GTAA	G TA	CGTG	TTAT	TTT	TTTC	AAT	AAAA	TTCTAT	1740
5	TAC	AGTA	TGT	CAAA	AAAA	AA A	AAAA	AAAA									1769
			(2) I	NFOR	MATI	ON F	OR SI	EQ I	D NO	:6:						
10				-				ERIS:									
								ino a	acid	S							
			-) TY:													
								singl	le		-						
15) TO													
			(11)	MOL	ECUL	E TY	PE:]	prote	ein								
			(xi)	SEO	IIENC!	R DR	ידפרי	PTION	J. C1	RO TI	ח אים	٠					
			,,,,	J_4					· · ·								
20	Met	Ala	Met	Met	Glu	Val	Gln	Gly	Glv	Pro	Ser	Leu	Glv	Gln	Thr	Cvs	
	1				5				4	10			,		15	-,-	
	Val	Leu	Ile	Val	Ile	Phe	Thr	Val	Leu	Leu	Gln	Ser	Leu	Суз	Val	Ala	
	•			20					25					30			
25	Val	Thr	Tyr	Val	Tyr	Phe	Thr	Asn	Glu	Leu	Lys	Gln	Met	Gln	Asp	Lys	
			35					40					45				
	Tyr	Ser	Lys	Ser	Gly	Ile	Ala	Сув	Phe	Leu	Lys	Glu	Asp	Asp	Ser	Tyr	
30		50					55					60					
30	Trp	Asp	Pro	Asn	Asp	Glu	Glu	Ser	Met	Asn	Ser	Pro	Cys	Trp	Gln	Val	
	65					70					75					80	
	Lys	Trp	Gln	Leu	Arg	Gln	Leu	Val	Arg	Lys	Met	Ile	Leu	Arg	Thr	Ser	
35					85					90					95		
	Glu	Glu	Thr		Ser	Thr	Val	Gln	Glu	Lys	Gln	Gln	Asn	Ile	Ser	Pro	
	_	_		100		_			105					110			
	Leu	Val		Glu	Arg	Gly	Pro	Gln	Arg	Val	Ala	Ala	His	Ile	Thr	Gly	
40	· ·	•	115	_	_	_		120					125				
	Inr		GIY	Arg	ser	ASN		Leu	Ser	Ser	Pro		Ser	Lys	Asn	Glu	
	Lare	130	Tan	Gly	A	T	135	B ===	c	m	a1	140		-			
	145		Deu	GLY	λιg	150	116	Asn	ser	Trp		ser	ser	Arg	ser		
45			Phe	Leu	Ser		Len	His	T.em	2~~	155	Gl.	@1	Lau	170.1	160	
					165			*****	204	170	ADII	GLY	GIU	Deu	175	116	
	His	Glu	Lys	Gly		Tyr	Tyr	Ile	Tvr		Gln	Thr	Tvr	Phe		Phe	
			•	180	-	4 =	4 -		185				-1-	190	3		
50	Gln	Glu	Glu	Ile	Lys	Glu	Asn	Thr		Asn	Asp	Lys	Gln		Val	Gln	
			195					200	-		•	-	205			-	
	Tyr	Ile	Tyr	Lys	Tyr	Thr	Ser	Tyr	Pro	Asp	Pro	Ile		Leu	Met	Lys	
										•						-	
55																	

		210					215					220				
	Ser	Ala	Arg	Asn	Ser	Суз	Trp	Ser	Lys	Asp	Ala	Glu	Tyr	Gly	Leu	Tyr
5	225					230					235					240
	Ser	Ile	Tyr	Gln	Gly	Gly	Ile	Phe	Glu	Leu	Lys	Glu	Asn	Asp	Arg	Ile
					245					250			٠		255	
	Phe	Val	Ser	Val	Thr	Asn	Glu	His	Leu	Ile	Asp	Met	Asp	His	Glu	Ala
10				260					265					270		
	Ser	Phe	Phe	Gly	Ala	Phe	Leu	Val	Gly							
			275					280								

15

Claims

- 20 1. An isolated polynucleotide comprising a nucleotide sequence that has at least 80% identity to a nucleotide sequence encoding the TR6 polypeptide of SEQ ID NO:2 over its entire length; or a nucleotide sequence complementary to said nucleotide sequence.
 - 2. The polynucleotide of claim 1 which is DNA or RNA.

- The polynucleotide of claim 1 wherein said nucleotide sequence is at least 80% identical to that contained in SEQ ID NO:1.
- 4. The polynucleotide of claim 3 wherein said nucleotide sequence comprises the TR6 polypeptide encoding sequence contained in SEQ ID NO:1.
 - 5. The polynucleotide of claim 3 which is polynucleotide of SEQ ID NO: 1.
- 6. A DNA or RNA molecule comprising an expression system, wherein said expression system is capable of producing a TR6 polypeptide comprising an amino acid sequence, which has at least 80% identity with the polypeptide of SEQ ID NO:2 when said expression system is present in a compatible host cell.
 - 7. A host cell comprising the expression system of claim 6.
- 40 8. A process for producing a TR6 polypeptide comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide and recovering the polypeptide from the culture.
- A process for producing a cell which produces a TR6 polypeptide thereof comprising transforming or transfecting
 a host cell with the expression system of claim 6 such that the host cell, under appropriate culture conditions, produces a TR6 polypeptide.
 - 10. A TR6 polypeptide comprising an amino acid sequence which is at least 80% identical to the amino acid sequence of SEQ ID NO:2 over its entire length.
- 50 11. The polypeptide of claim 10 which comprises the amino acid sequence of SEQ ID NO:2.
 - 12. An antibody immunospecific for the TR6 polypeptide of claim 10.
- 13. A method for the treatment of a subject in need of enhanced activity or expression of TR6 polypeptide of claim 10 comprising:
 - (a) administering to the subject a therapeutically effective amount of an agonist to said receptor; and/or
 - (b) providing to the subject an isolated polynucleotide comprising a nucleotide sequence that has at least 80%

identity to a nucleotide sequence encoding the TR6 polypeptide of SEQ ID NO:2 over its entire length; or a nucleotide sequence complementary to said nucleotide sequence in a form so as to effect production of said polypeptide activity in vivo.

- 5 14. A method for the treatment of a subject having need to inhibit activity or expression of TR6 polypeptide of claim 10 comprising:
 - (a) administering to the subject a therapeutically effective amount of an antagonist to said receptor; and/or
 - (b) administering to the subject a nucleic acid molecule that inhibits the expression of the nucleotide sequence encoding said receptor; and/or
 - (c) administering to the subject a therapeutically effective amount of a polypeptide that competes with said receptor for its ligand.
- 15. A process for diagnosing a disease or a susceptibility to a disease in a subject related to expression or activity of TR6 polypeptide of claim 10 in a subject comprising:
 - (a) determining the presence or absence of a mutation in the nucleotide sequence encoding said TR6 polypeptide in the genome of said subject; and/or
 - (b) analyzing for the presence or amount of the TR6 polypeptide expression in a sample derived from said subject.
 - 16. A method for identifying agonists to TR6 polypeptide of claim 10 comprising:
 - (a) contacting a cell which produces a TR6 polypeptide with a candidate compound; and
 - (b) determining whether the candidate compound effects a signal generated by activation of the TR6 polypeptide.
 - 17. An agonist identified by the method of claim 16.

10

20

25

35

40

45

50

55

- 30 18. The method for identifying antagonists to TR6 polypeptide of claim 10 comprising:
 - (a) contacting said a cell which produces a TR6 polypeptide with an agonist; and
 - (b) determining whether the signal generated by said agonist is diminished in the presence of a candidate compound.
 - 19. An antagonist identified by the method of claim 18.
 - 20. A recombinant host cell produced by the process of claim 9 or a membrane thereof expressing a TR6 polypeptide.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 870 827 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 28.10.1998 Bulletin 1998/44

(43) Date of publication A2: 14.10.1998 Bulletin 1998/42

(21) Application number: 97310562.0

(22) Date of filing: 23.12.1997

(51) Int. Cl.⁵: **C12N 15/12**, C07K 14/715, C07K 16/28, A61K 38/17, C12Q 1/68, G01N 33/68

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

(30) Priority: 14.03.1997 US 41230 P 09.05.1997 US 853684 22.08.1997 US 916625

(71) Applicant:
SMITHKLINE BEECHAM CORPORATION
Philadelphia Pennsylvania 19103 (US)

(72) Inventors:

Deen, Keith Charles
 King of Prussia, Pennsylvania 19406 (US)

Young, Peter Ronald
 King of Prussia, Pennsylvania 19406 (US)

(74) Representative:
Crump, Julian Richard John et al
fJ Cleveland,
40-43 Chancery Lane
London WC2A 1JQ (GB)

(54) Tumor necrosis factor related receptor, TR6

(57) TR6 polypeptides and polynucleotides and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing TR6 polypeptides and polynucleotides in the design of protocols for the treatment of chronic and acute inflammation, arthritis, septicemia, autoimmune diseases (e.g. inflammatory bowel disease, psoriasis), transplant rejection, graft vs. host disease, infection, stroke, ischemia, acute respiratory disease syndrome, restenosis, brain injury, AIDS, Bone diseases, cancer (e.g. lymphoproliferative disorders), atheroschlerosis, and Alzheimers disease., among others and diagnostic assays for such conditions.

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent ConventionEP 97 31 0562 shall be considered, for the purposes of subsequent proceedings, as the European search report

		roceedings, as the European search	rrieport	
	DOCUMENTS CONSID	PERED TO BE RELEVANT]
Category	Citation of document with of relevant pas	indication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
Ρ,Χ	signaling and decoy SCIENCE,	tosis by a family of y receptors" 1997, pages 818-821,	1-12, 15-20	C12N15/12 C07K14/715 C07K16/28 A61K38/17 C12Q1/68 G01N33/68
P,X	RECEPTOR FOR TRAIL' SCIENCE,	TH DOMAIN-CONTAINING 1997, pages 815-818,	1-12,15, 16,20	
j	WO 97 01633 A (IMMU 1997 * figures 1,2; exam	JNEX CORP) 16 January		,
	October 1992 see tha claims	AKA BIOSCIENCE INST) 28 1,2,7; examples 1,2 *	,	TECHNICAL FIELDS SEARCHED (Int.Cl.6) CO7K A61K C12N C12O
INCOM	MPLETE SEARCH		<u> </u>	G01N
Claims see Claims see Claims not Reason for Althitea EPC)	with the EPC to such an extent that out, or can only be carried out partial erched completely: searched: the limitation of the search: ough claims 13 and thent of the human/, the search has be	application, or one or more of its claims, does a meaningful search into the state of the art of th	thod of	
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	28 August 1998	0der	wald, H
X : partic Y : partic docum A : techn O : non-v	TEGORY OF CITED DOCUMENTS ularly relevant if taken alone ularly relevant if combined with anot nent of the same category ological background written disclosure rediate document	T: theory or principle E: earlier patent doc after the filing dat b: document cited in L: document cited in A: member of the se document	zument, but publis e n the application or other reasons	hed on, or

O COBM 1601 03 BY

:ť

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 97 31 0562

	DOCUMENTS CONSIDERED TO BE RELEVANT	•	CLASSIFICATION OF THE APPLICATION (Int.Cl.5)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
1	CHINNAIYAN A M ET AL: "SIGNAL TRANSDUCTION BY DR3, A DEATH DOMAIN-CONTAINING RECEPTOR RELATED TO TNFR-1 AND CD95" SCIENCE, vol. 274, no. 5289, 8 November 1996, pages 990-992, XP000676685 * the whole document *		
			TECHNICAL FIELDS SEARCHED (Int.CL6)
		·	
		-	
		,	