	A
	Asymptotic Analysis:
	The time required by an algorithm comes
	under three types:
	worst rase :- It defines the input for which
	the algorithm takes a huge time.
	Linea Para
	Average rase: - It takes average time for
	the program execution.
	D Viah
	Best case: - It defines the input for which
	the algorithm takes the lowest time.
	1
	Asymptotic Notations:
	The commany used asymptotic notations
	used for acculating the running time complexity
	or an algorithm is given below:
	Bia ab notation (0):
	This measures the perturbance of an
	arguithm by simply providing the order of
	arouth of the function.
	This notation provides an upper bound
-	praction which ensures that function never

faster than the upper bound.

Example: - If find and gind are two functions defined for positive integer,

then find = 0 gind as find is big on of gind or find is an arrier of gind if there exists constants a and no such that:

find x c. gind for all n> ho.

2). Omega Motation (-2):
It basically describes best case
senario which is opposite to big o notation.

It is the formal way to represent lower bound
of an algorithm's running time.

Example: - let fcn) and g(n) be functions of h whore n is steps required to execute programs

F(n) = 0 g(n)

The above andition is satisfied only if when: ci.g(n) < = f(n) < = (2.g(n))

2>.	omega Motation (_2)
	It basically decembes best-case
	scenario which is opposite to big - o notation
	It is formal way to represent lower bound to
	an algorithm's running time. It measures the
	bost amount of time and include on the original
	best amount of time an algorithm can possibly
	take to complete or best case time complexity.
	Example: - If f(n) and g(n) are two functions
	defined for positive integers,
	then f(n) = -2 g(n) as f(n) is omega of 9(n)
	or fen) is on the order of g(n) if there exists
	constants c and no such that:
	fin) > = c.g(n) for all n> no and c>o
	yans 1
	f(n)
	(2000)
	(ig(i))
-	no x aus
	TIO TO LE
3>.	Theta Motation (0)

The motal notation mainly describes average case scenarios.

Threpresents realistic time complexity of an algorithm. Big thetal is mainly used when the value of worst-case and pest case is same.