Third Year B. Tech., Sem VI 2021-22

Software Engineering Tools Lab

Assignment Submission

Assignment No-2

Topic: Google Colab

Batch:T2

Students 2019BTECS00043 2019BTECS00083 2019BTECS00079

1. Original author

Ans: Google collab is product of Google Research

2. Developers

Ans: Google developers team developed google collab

3. Initial release:

Ans: 2014

4. Stable release

Ans: 2017

5. Preview release

Ans: 2014

6. Repository (with cloud support)

Ans: https://github.com/googlecolab

7. Written in (Languages)

Ans: Python

8. Operating System support

Ans: Windows, Linux distributions, MAC

9. Platform ,portability

Ans: Web, yes it is portable

10. Available in (Total languages)

Ans: 40 languages including python, R, scala, julia etc...

11. List of languages supported

Ans: python,R,scala,julia and even more

12. Type (Programming tool, integrated development environment etc.)

Ans: It is Notebook environment for collaborative development

13. Website

Ans: https://colab.research.google.com/

14. Features

Ans: Interactive tutorials to learn machine learning and neural networks

Execute terminal commands from notebook

Import datasets from external sources

Free cloud services, GPUs and TPUs

15. Size (in MB, GB etc.)

Ans: 12.7 GB

16. Privacy and Security

Ans: It is secure as it is our private google document and no one can access it

17. Type of software (Open source/Licence)

Ans: Open source

18. If Licence- Provide details.

Ans:

19. Latest version

Ans:

20. Cloud support (Yes/No)

Ans: yes

21. Applicability

Ans: To develop collaborative softwares or programs

22. Drawbacks (if any)

Ans:

Question 2 -

Downloading Given Data Set -

```
[4] %%shell

mkdir -p /tmp/lifetime-value/kdd_cup_98

wget https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup98-mld/epsilon_mirror/cup98lrn.zip -P /tmp/lifetime-value/kdd_cup_98/

wget https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup98-mld/epsilon_mirror/cup98val.zip -P /tmp/lifetime-value/kdd_cup_98/

wget https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup98-mld/epsilon_mirror/valtargt.txt -P /tmp/lifetime-value/kdd_cup_98/

cd /tmp/lifetime-value/kdd_cup_98/

unzip cup98lrn.zip

unzip cup98val.zip
```

Output of Regression (Donations And Count)

Training Data -

```
[25] callbacks = [
    tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', min_lr=1e-6),
    tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10),
]

[26] history = model.fit(
    x=x_train,
    y=y_train,
    batch_size=2048,
    epochs=200,
    verbose=2,
    callbacks=callbacks,
    validation_data=(x_eval, y_eval)).history

Epoch 1/200
47/47 - 8s - loss: 0.4851 - val_loss: 0.3560 - lr: 0.0010 - 8s/epoch - 166ms/step
    Epoch 2/200
47/47 - 2s - loss: 0.3574 - val_loss: 0.3546 - lr: 0.0010 - 2s/epoch - 33ms/step
```

Total Profit -

```
Total Profit
unit_costs = [0.4, 0.5, 0.6, 0.68, 0.7, 0.8, 0.9, 1.0]
[30] num_mailed = [np.sum(y_pred > v) for v in unit_costs]
     num_mailed
     [90096, 80404, 67015, 55471, 52694, 39260, 27743, 18761]
[31] baseline_total_profit = np.sum(y_eval - 0.68)
     baseline_total_profit
     10560.074
[32] total_profits = [np.sum(y_eval[y_pred > v] - v) for v in unit_costs]
     total_profits
     [37133.24,
     28405.14,
     20239.139,
     15020.856,
     14103.342,
     9779.139,
     6935.0723,
     5350.95]
```

Loss Graph -

