CSE 251: Electronic Devices and Circuits

Lecture 2

Operational Amplifier:

Introduction, Open Loop Configuration, Circuit Modeling

Operational Amplifiers

Textbook

Outline

Operational Amplifier: Introduction

- Dependent Sources
- Op-Amp: Circuit Symbols and terminal
- Op-Amp: VTC (Voltage Transfer Characteristics)

Linear Amplification

(Positive and Negative) Saturation

- Op-Amp: Examples
- Op-Amp: Physical Entity

Dependent Sources

To analyze op-amps, we must understand dependent source.

A dependent source generates a voltage or current whose value depends on another voltage or current.

Example: current-controlled current source

Dependent Sources

Voltage Gain:
$$\frac{V_o}{V_i} = \frac{1}{2}$$

$$I_B = \frac{V_i}{1000 \,\Omega}$$

$$V_o = 100 I_B \times 5 \Omega$$

$$= 100 \frac{V_i}{1000 \,\Omega} \times 5 \,\Omega = \frac{1}{2} V_i$$

Dependent Sources

Resistors, (Ind.) Voltage sources, (Ind.) Current sources are single "port" device. They are characterized by a single equation.

Dependent sources are two-ports: characterized by two equations.

Here
$$V_1 = 0$$
 and $I_2 = -100 I_1$.

Operational Amplifier: Introduction

Operational:

Mathematical Operations

Amplifier:

Amplifies input signal/voltage.

An **op-amp (operational amplifier)** can be modelled by a **voltage-controlled voltage** source.

Operational Amplifier: Introduction

An **op-amp (operational amplifier)** can be represented by a **voltage-controlled voltage source.**

 $I_1 = 0$ and $V_0 = KV_{In}$ where K is large (typically $K > 10^5$).

Op-Amp: Circuit Symbols and terminal

Op-Amp: Circuit Symbols and terminal

Difference Amplifier –

Amplifies the voltage difference between two terminals.

 V_d Differential input voltage

Voltage Transfer Characteristics (VTC)

Op-Amp: VTC – Linear Amplification

Voltage Transfer Characteristics (VTC)

- Shows how the output voltage varies with the input voltage $V_{\rm O}(V_{\rm d})$

$$-y$$
 −axis \rightarrow V_0

-
$$x$$
 -axis $\rightarrow V_d$

- Slope:
$$K = \frac{\Delta V_0}{\Delta V_d} = \frac{V_0}{V_d}$$

If the line passes through origin:

LINEAR AMPLIFICATION

Op-Amp: VTC – Linear Amplification

- Linear Amplification only takes place within a valid input range.
- Otherwise output will be distorted - Saturation

The limiting factor of **linear amplification** is determined by the **power supply** to the amplifier

Op-Amp: VTC - Saturation

Non-Linear characteristics

 $oldsymbol{V_0} = K \cdot oldsymbol{V_{In}}$: When $-5~\mathrm{V} < oldsymbol{V_0} < 5~\mathrm{V}$

 $K
ightarrow 10^5$: Gain / Amplification

If $V_d < -50\mu$: Negative Saturation

$$\Rightarrow V_0 = -5$$

Op-Amp: VTC - Saturation

Op-Amp: VTC - Summary

Voltage Transfer Characteristics (VTC)

Positive saturation:

If
$$V_d > \frac{+V_{\text{sat}}}{A}$$
: Positive
$$\Rightarrow V_0 = +V_{\text{sat}}$$

Linear Region

$$V_0 = AV_d$$
: When V_d is very small $-V_{\text{sat}} < V_o = AV_d < +V_{\text{sat}}$

Negative saturation:

If
$$V_d < \frac{-V_{\text{sat}}}{A}$$
: Negative
$$\Rightarrow V_0 = -V_{\text{sat}}$$

Op-Amp: Examples

Find v_0

$$A=2 imes 10^5$$

$$A=2\times 10^5$$

Example 1

• Find v_o

Solution:

$$V_d = V_{(+)} - V_{(-)} = (10 - 5) \,\mu\text{V} = 5 \,\mu\text{V}$$

$$AV_d = (2 \times 10^5) \times (5 \times 10^{-6}) V = 1 V$$

Since
$$-15 \text{ V} < AV_d < +15 \text{ V}$$

$$V_0 = AV_d = 1 V$$

Example 2

• Find v_o

Solution:

$$V_d = V_{(+)} - V_{(-)} = (0.5 - 1) \text{ mV} = -0.5 \text{ mV}$$

$$AV_d = (2 \times 10^5) \times (-0.5 \times 10^{-3}) \text{ V} = -100 \text{ V}$$

Since $AV_d < -15 \text{ V}$ (Negative saturation)

$$V_0 = AV_d = -15 \text{ V}$$

Op-Amp: Physical Entity

Difference Amplifier – Amplifies the voltage difference between two terminals.

Circuit symbol for the general-purpose op amp.
Pin numbering is that for an **8-pin mini-DIP**package

Part Identification Number (PIN)

Op-Amp: Summary

Op-Amp Amplifies the difference between the voltages at it's two input terminals - $oldsymbol{V_d}$

However, the **Amplification** is limited within voltage levels defined by the positive and negative saturation voltages $[-V_{sat}, +V_{sat}]$.

The "ideal" op-amp behaves like a **voltage dependent voltage source** within the linear region.

Thank you!

Part 1 ends here

Outline

- Op-Amp: Open Loop Configuration
 - Op-Amp: Circuit Modelling
 - Example Problem Op-amp model
 - Op-amp configuration open and closed loop
 - Open Loop op-amp: Voltage Transfer Characteristics
 - Open Loop op-amp: Comparators

Op-Amp: Circuit Modelling

Voltage controlled voltage Source

"Ideal" op-amp approximation

$$V_{(+)} \approx V_{(-)}$$
 $I_1 \approx 0$

Op-amp: Circuit Model and VTC

Voltage (Differential/OL) Gain:

 A/A_{OL} or K Slope of **VTC**

Parameter	Typical Range	Ideally
A or K	$10^4 - 10^8$	8

 Positive Saturation Voltage: $+V/V_{CC}/V_{sat}$

 Negative Saturation Voltage: $-V/V_{EE}/-V_{sat}$

Op-amp: Circuit Model and VTC

Voltage Transfer Characteristics (VTC)

Positive saturation:
$$V_d > 0$$
 $\Rightarrow V_0 = +V_{\text{sat}}$

Negative saturation: $V_d < 0$ $\Rightarrow V_O = -V_{sat}$

 $A \rightarrow \infty$: Open Loop Gain

Types of Op-Amp configuration

Open loop configuration:
 No physical connection between input and output

2. Closed loop configuration: Feedback from output terminal

Level Crossing Detector / Comparator

NON-INVERTING COMPARATOR

$$V_d = v_I - V_{REF} > 0$$
 \Rightarrow $v_O = V_H$ $v_I > V_{REF}$ \Rightarrow $v_O = V_H$

Level Crossing Detector / Comparator

INVERTING COMPARATOR

$$V_d = V_{REF} - v_I > 0 \Rightarrow v_0 = V_H$$
 $v_I < V_{REF} \Rightarrow v_0 = V_H$

Zero Crossing Detector

Compare values with a reference and pin value to $+V_{sat}$ if voltage is above or to below that.

Non-inverting configuration

(a) Noninverting: When E_t is above V_{ref} , $V_o = +V_{sat}$.

Zero Crossing Detector

Inverting configuration

(b) Inverting: When E_i is above V_{ref} , $V_o = -V_{sat}$.

Summary

Level Crossing Detector / Comparator

Figure 2: (1) Op-Amp Comparator (2) Noninverting Circuit (3) Inverting Circuit

Part 2 ends here

Outline

- Op-Amp: Comparator
 - Open Loop Configuration: Example 1
 - Open Loop Configuration: Example 2
 - Open Loop Configuration: Example 3

Open Loop Configuration: Example 1

• Design a circuit using **op-amp** that has the voltage transfer characteristics as shown in the figure below. $v_O(V)$ is the **output voltage** and $v_I(V)$ is the **input voltage**.

Solution:

Inverting comparator

Open Loop Configuration: Example 2

• Draw the voltage transfer characteristic (VTC) curve (v_0 vs v_I) from the adjacent waveform graph. Also draw the **Op-Amp Circuit** that would give rise to such a VTC.

Solution:

 v_I smaller than $2 \text{ V} \Rightarrow v_O = 2.5 \text{ V} \Rightarrow$ Positive Saturation v_I larger than $2 \text{ V} \Rightarrow v_O = -2.5 \text{ V} \Rightarrow$ Negative Saturation

INVERTING CONFIGURATION

Open Loop Configuration: Example 3

Design an op-amp circuit to transform the sinusoidal voltage, $v_I = 5 \cdot sin(\frac{\pi}{5} \cdot t)$ (t is in units of ms, and time-period T is 5 ms), to: A square wave with a duty cycle of 25%.

Open Loop Configuration: Example 3

Design an op-amp circuit to transform the sinusoidal voltage, $v_I = 5 \cdot \sin(\frac{\pi}{5} \cdot t)$ (t is in units of ms, and time-period T is 5 ms), to: A square wave with a duty cycle of 25%.

Open Loop Configuration: Example 3

Design an op-amp circuit to transform the sinusoidal voltage, $v_I = 5 \cdot sin(\frac{2\pi}{5} \cdot t)$ (t is in units of ms, and time-period T is 5 ms), to: A square wave with a duty cycle of 25%.

Solution:

$$V_{REF}=5\sin(rac{2\pi}{5}\cdotrac{5}{8})$$
 $V_{REF}=5\cdotrac{1}{\sqrt{2}}\,\mathbf{V}$
 $V_{REF}=3.535\,\mathbf{V}$
 $v_{I}\geq3.535\,\mathbf{V}:v_{o}
ightarrow$ Positive Saturation
 $v_{I}\leq3.535\,\mathbf{V}:v_{o}
ightarrow$ Negative Saturation

Open Loop Configuration: Example 3

Design an op-amp circuit to transform the sinusoidal voltage, $v_I = 5 \cdot \sin(\frac{\pi}{2} \cdot t)$ (t is in units of ms, and time-period T is 5 ms), to: A square wave with a duty cycle of 25%.

$$V_{REF} = 5 \cdot \frac{1}{\sqrt{2}} \text{ V}$$

$$V_{REF} = 3.535 \text{ V}$$

$$V_{REF} = V_{Sat}$$

Part 3 ends here

Outline

- Comparator Application Smoke Detectors
- Smoke Detector Operation
- Comparator Application Automatic AC
- General Principle Comparator

Comparator Application - Smoke Detectors

Working Principle:

Smoke present → Alarm rings

No smoke present \rightarrow No Alarm rings.

Since the **alarm** is an <u>electrically driven device</u>, we need some method to convert smoke levels to proportionate voltage.

Smoke levels → Voltage

Comparator Application - Smoke Detectors

Light from the LED is reflected off the smoke particles on to the photoconductor –

Light Dependent Resistor (LDR).

No Smoke

- No scattering
- Low intensity at LDR (Dark $I\downarrow$) •

- High scattering from smoke particles
- High intensity at LDR (Light I ↑)

No Smoke

- No scattering
- Low intensity at LDR (Dark $I \downarrow$)
- High resistance across LDR ($R_{
 m LDR}$ 1)

- High scattering from smoke particles
- High intensity at LDR (Light I ↑)
- Low resistance across LDR ($R_{\rm LDR} \downarrow$)

No Smoke

- No scattering
- Low intensity at LDR (Dark I ↓)
- High resistance across LDR ($R_{
 m LDR}$ \uparrow)
- Decrease in E_{in}

- High scattering from smoke particles
- High intensity at LDR (Light I 1)
- Low resistance across LDR ($R_{\rm LDR} \downarrow$)

No Smoke

- No scattering
- Low intensity at LDR (Dark I ↓)
- High resistance across LDR ($R_{
 m LDR}$ 1)
- Decrease in E_{in}
- Possibility of $(E_{in} < V_{REF})$
- $V_0 = -V_{\text{sat}} \rightarrow \text{No Alarm}$

- High scattering from smoke particles
- High intensity at LDR (Light I ↑)
- Low resistance across LDR ($R_{\mathrm{LDR}} \downarrow$)
- Increase in E_{in}
- Possibility of $(E_{in} > V_{REF})$
- $V_0 = +V_{\text{sat}} \rightarrow \text{Alarm Rings!}$

$$V_{
m REF}$$
 $V_{
m O} = egin{cases} +V_{
m sat} & ext{if} & E_{
m in} > V_{
m REF} \ -V_{
m sat} & ext{if} & E_{
m in} < V_{
m REF} \end{cases}$ Non-inverting Op-Amp comparator $V_{
m CO}$

Comparator Application – Automatic AC

Comparators can be used to switch on an AC based on a Temperature.

Temp. \uparrow **AC** - ON Temp. \downarrow **AC** - OFF - Non-inverting relationship

• The sensitivity of switching on the AC is determined by V_{REF}

Summary

- Comparators can be used to switch on any device based on a physical quantity.
- The sensitivity of switching is determined by V_{REF}

Question: 01

An automatic AC switching system using an Op-Amp comparator that will turn on automatically whenever the temperature is higher than 20° Celsius. The output waveform of an Op-Amp comparator should be between the voltage range of [-4V 5V]. The temperature sensor used with the circuit produces a voltage signal of 1.5V for a temperature value of 20° Celsius.

- a) Design and draw the comparator circuit with the required inputs. [3]
- **b)** Draw the VTC curve for your designed comparator. [2]

Question: 02

Design an **automatic room heater** switching system using an Op-Amp comparator that will turn on automatically whenever the temperature is lower than **20°** Celsius. The output waveform of the comparator should be between the voltage range of [-4V 5V]. The temperature sensor produces a voltage signal of **2.5V** for a temperature value of **20°** Celsius.

- a) Design and draw the comparator circuit with the required inputs. [3]
- **b)** Draw the VTC curve for your designed comparator. [2]

Question: 03

An automated **smoke detector** system using an Op-Amp comparator that will turn on automatically whenever the particle density in the air is higher than **2.5x10**²⁶ m⁻³. The output waveform of an Op-Amp comparator should be between the voltage range of [-6V 6V]. The smoke particle sensor used with the circuit produces a voltage signal of **2.0V** for a particle density of **2.5x10**²⁶ m⁻³.

- a) **Design** and **draw** the comparator circuit with the required inputs. [3]
- **b) Draw** the VTC curve for your designed comparator. [2]

Question: 04

Farhan, CEO of Rajshahi WASA, is building a water level indicator for an overhead tank. For this, he placed three sensors at three different levels of the tank. The voltage outputs of the three sensors are denoted as V_1 (lowest level), V_2 (mid-level), and V_3 (highest level). Farhan decided that the indicator for the water level would be,

$$V_{\text{indicator}} = \frac{1}{k} \left(V_1 + V_2 + V_3 \right)$$

(a) Assuming k = 1, **design** the circuit using op amps that will take V_1 , V_2 , and V_3 as input and will produce $V_{\text{indicator}}$ as output. [3]

Upon further experimentation, Farhan realized that the maximum values of V_1 , V_2 , and V_3 are 5 V. Hence, the maximum value of $V_1 + V_2 + V_3$ can be 15 V. However, Farhan only has access to +5 V and -5 V as power supplies, meaning that the $V_{\text{indicator}}$ cannot be greater than +5 V or less than -5 V.

- (b) Choose a value of k such that the maximum value of $V_{\text{indicator}}$ is within the given range. [1]
- (c) Design the circuit in part (a) again using this new value of k.

Question: 05

Figure 1 shows the variation of direct solar irradiance, G (in units of kW/m^2) throughout the day in Greece. The irradiance is $0.25 \ kW/m^2$ at $7:00 \ hours$. A photodetector generates a voltage of V_S by converting solar irradiance G (in units of kW/m^2) according to the following equation:

$$V_S(G) = 4G^2 + 9G \tag{1}$$

You have to design an automatic system with an Op-Amp comparator circuit. This system will take V_S as an input from a photodetector and control a street fan, ensuring it meets the following **conditions**:

- The fan has to switch ON after 7:00 hours.
- The fan switches <u>ON</u> when system output is 5 V.
- The fan switches **OFF** when system output is **0 V**.

Based on the above scenario, answer the following questions:

- a. Calculate the photodetector voltage V_S at 7:00 hours. Determine how V_S changes before and after 7:00 hours. (2 marks)
- **b. Determine** whether the Op-Amp comparator circuit of the system should be in an **inverting or non-inverting** configuration. **Justify** your choice by explaining briefly how this configuration meets the conditions mentioned above. (3 marks)
- **c. Draw** the completed Op-Amp comparator circuit marking the input and output terminals and the positive and negative saturation voltages. Also clearly **indicate the reference voltage** against which the input of the comparator is compared. (5 marks)

Op-Amp: Circuit Modelling

Voltage controlled voltage Source

"Ideal" op-amp approximation

$$V_{(+)} \approx V_{(-)}$$
 $I_1 \approx 0$

"Non-Ideal" op-amp approximation

$$V_d = V_{(+)} - V_{(-)} \neq 0$$
 $I_1 > 0$

Op-amp Model parameters

• Input resistance: R_i

• Output resistance: R_O

• Voltage (Differential/OL) Gain: A/A_{OL} or K

• Positive Saturation Voltage: $+V/V_{CC}/V_{sat}$

• Negative Saturation Voltage: $-V/V_{EE}/-V_{sat}$

Parameter	Typical Range	Ideally
A or K	$10^4 - 10^8$	8
R_i	$100 \ k\Omega - 10^{10} \ k\Omega$	8
R_o	$0.01 \ k\Omega - 0.1 \ k\Omega$	0

Practice Problem – op-amp

Practice Problem – op-amp

$$v_i = -21 \, \mu V$$
 $v_o = -3.999 \, V$
 $i_F = 2 \, \text{mA}$

Some circuits with OP-AMP

40 KSZ Find i_F and v_o . Here, $R_i = 200 k\Omega$ $R_o = 0.1 k\Omega$ $A = 2 \times 10^5$ 5 kSL 40 kΩ $\overrightarrow{i_F}$ $5~\mathrm{k}\Omega$ 1 V • 20 kΩ ****

Part 5 ends here

Closed Loop Configuration

Feedback

Outline

- Feedback in Op-Amp circuit
- Negative Feedback
- Open Loop VS Closed Loop Gain
- Closed Loop Configuration

Feedback in Op-Amp circuit

Two types of feedback

1. Negative Feedback:

Output voltage is fed to the inputs negatively

The output voltage is connected to the inverting terminal

$$V_{o} \uparrow \Rightarrow \frac{V_{o}}{k} \uparrow \Rightarrow V_{(-)} \uparrow \Rightarrow V_{d} \downarrow = V_{(+)} - V_{(-)} \uparrow \Rightarrow V_{o} \propto V_{d} \downarrow$$

Positive Feedback:

Output voltage is fed to the inputs positively

The output voltage is connected to the non-inverting terminal

$$V_{o} \uparrow \Rightarrow \frac{V_{o}}{k} \uparrow \Rightarrow V_{(+)} \uparrow \Rightarrow V_{d} \uparrow = V_{(+)} \uparrow -V_{(-)} \Rightarrow V_{o} \propto V_{d} \uparrow$$

Feedback in Op-Amp circuit

Two types of feedback

1. Negative Feedback:

Output voltage is fed to the inputs **negatively**The output voltage is connected to the **inverting** terminal

$$V_{o} \uparrow \Rightarrow V_{o} \propto V_{d} \downarrow$$

Positive Feedback:

Output voltage is fed to the inputs positively

The output voltage is connected to the non-inverting terminal

$$V_o \uparrow \Rightarrow V_o \propto V_d \uparrow$$

Negative Feedback in Op-Amp circuit

Negative Feedback:

Output voltage is fed to the inputs negatively

The output voltage is connected to the inverting terminal

Here,
$$V_{(-)} = \frac{V_0}{k}$$

We know, $V_0 = AV_d$
 $V_0 = A(V_{(+)} - V_{(-)})$
 $= A(V_{(+)} - \frac{V_0}{k})$
 $= AV_{(+)} - \frac{A}{k}V_0$
 $\Rightarrow V_0(1 + \frac{A}{k}) = AV_{(+)}$

$$\frac{\mathbf{V_o}}{\mathbf{V_{(+)}}} = \frac{A}{1 + \frac{A}{k}} = \frac{1}{\frac{1}{A} + \frac{1}{k}}$$

$$\mathbf{V_o/k} \bullet$$

$$\mathbf{V_{(+)}} \circ$$

If $A \to \infty$ then $\frac{1}{A} \to 0$.

$$\therefore \frac{V_0}{V_{(+)}} = k$$
 This is the new amplification factor / Gain

Open Loop Gain VS Closed Loop Gain

Open Loop (OL) Configuration

With "Negative Feedback": Closed Loop (CL) Configuration

 $\mathbf{V_o/k}$ $+V_{\mathrm{sat}}$ $\mathbf{V_{(+)}}$ $-V_{\mathrm{sat}}$

Input Voltage: V_d Output Voltage: V_d

Input Voltage: $V_{(+)}$ Output Voltage: $V_{(-)}$

∴ Voltage Gain: $\frac{V_0}{V_d} = A$ or K

OL Gain	CL Gain	
A or $K \sim 10^5$	$k \ll A$	
	k < 100	

∴ Voltage Gain: $\frac{V_0}{V_{(+)}} = k$

Open Loop Gain VS Closed Loop Gain

Open Loop (OL) Configuration

Closed Loop (CL) Configuration

OL Gain	CL Gain
$\frac{V_o}{V_d} = A \text{ or } K \sim 10^5$	$\frac{\mathbf{V_0}}{\mathbf{V_{(+)}}} = k \ll A$ $k < 100$
Can't be controlled	Can be controlled by the feedback element
Used as "Comparator"	Used as "Linear Amplifier "

Negative Feedback in Op-Amp circuit

The **output voltage** is transformed in the following way:

$$\mathbf{V}_{(-)} = \frac{1}{k} \cdot \mathbf{V}_{\mathbf{0}}$$

This factor of 1/k can be achieved with a voltage divider network.

$$\frac{\mathbf{1}}{\mathbf{k}} = \frac{R_2}{R_1 + R_2}$$

A voltage divider can act as a multiplier/factor in the feedback branch

Negative Feedback in Op-Amp circuit

A voltage divider can act as a multiplier/factor in the feedback branch

If k = 10 (meaning we feed back one tenth of the output to negative input), we will get $v_0 = 10 v_i$. that is 10-fold gain.

Solving Closed Loop Op-Amp Circuit

- For ideal op-amp
 - Infinite input resistance, $R_i = \infty$ = open circuit
 - Zero output resistance, $R_o = 0$ = short circuit
 - $i_i = 0$ and $i_+ = 0$
- When there is negative feedback, for an ideal op-amp, "A" is infinitely high. Thus, for a finite output voltage v_o , $\frac{v_o}{A} = v_d \to 0 \Rightarrow v_+ = v_-$. This is called virtual short circuit
- Because of these, solving ideal op-amp circuit with negative feedback is very simple

Solving Closed Loop Op-Amp Circuit

$$Gain = \frac{v_o}{v_i} = -\frac{R_2}{R_1}$$

Since v_+ is connected to ground, $v_+ = 0 \text{ V}$

Since there is negative feedback, from virtual short, $oldsymbol{v}_- = oldsymbol{v}_+ = oldsymbol{0}$ $oldsymbol{V}$

From Ohm's law for $R_1 \Rightarrow i_1 = \frac{v_i - 0}{R_1} = \frac{v_i}{R_1}$

Since ideal op-amp, $i_- = i_+ = 0$

From KCL at v_- , $i_1=i_-+i_2\Rightarrow i_1=i_2=v_i/R_1$

From Ohm's law for $R_2 \Rightarrow i_2 = \frac{v_- - v_0}{R_2} = \frac{v_i}{R_1} \Rightarrow v_0 = -i_2 \times R_2 \Rightarrow v_0 = -\frac{R_2}{R_1} v_i$ [ANS]