

Coq Proof Assistant: Propositions and Proofs

Mirco Kocher

Logic and Theory Group Institute of Computer Science and Applied Mathematics Universität Bern

Minimal Propositional Logic

Basics

Definition

Goal-directed proof

Definition

Tactics

Structure

Typing rules

omposing tactics

Minimal Propositional Logic Basics

Definition

Goal-directed proof
Definition
Tactics

Structure

Minimal Propositional Logic

Basics

Definition

Goal-directed proof Definition Tactics

Structure

Minimal Propositional Logic

Basics

Definition

Goal-directed proof

Definition Tactics

Structure

Minimal Propositional Logic

Basics

Definition

Goal-directed proof

Definition

Tactics

Structure

Minimal Propositional Logic

Basics

Definition

Goal-directed proof

Definition

Tactics

Structure

Minimal Propositional Logic

Basics Definition

Goal-directed proof

Definition

Tactics

Structure

Minimal Propositional Logic

Basics

Definition

Goal-directed proof

Definition

Tactics

Structure

Typing rules

Composing tactics

Minimal Propositional Logic

Basics

Definition

Goal-directed proof

Definition Tactics

Structure

Propositional logic

$$(P\Rightarrow Q)\Rightarrow ((Q\Rightarrow R)\Rightarrow (P\Rightarrow R))$$

- P, Q, R are propositions
- Goal is to prove the implication

Propositional logic

$$(P\Rightarrow Q)\Rightarrow ((Q\Rightarrow R)\Rightarrow (P\Rightarrow R))$$

- P, Q, R are propositions
- Goal is to prove the implication

$$(P \Rightarrow Q)$$

- Question "is the proposition P true?"
- Classical logic
- Assign to every variable a denotation true or false
- Truth table
- Formula is valid iff true in all cases

$$(P \Rightarrow Q)$$

- Question "is the proposition P true?"
- Classical logic
- Assign to every variable a denotation true or false
- Truth table
- Formula is valid iff true in all cases

$$(P \Rightarrow Q)$$

- Question "is the proposition P true?"
- Classical logic
- Assign to every variable a denotation true or false
- Truth table
- Formula is valid iff true in all cases

$$(P \Rightarrow Q)$$

- Question "is the proposition P true?"
- Classical logic
- Assign to every variable a denotation true or false
- Truth table
- Formula is valid iff true in all cases

$$(P \Rightarrow Q)$$

- Question "is the proposition P true?"
- Classical logic
- Assign to every variable a denotation true or false
- Truth table
- Formula is valid iff true in all cases

$$(P \Rightarrow Q)$$

- Question "what are the proofs of P (if any)?"
- Intuitionistic logic
- Obtain a proof of Q from a proof of F
- Arbitrary proof of P constructs a proof of Q
- Coq system follows this approach

$$(P \Rightarrow Q)$$

- Question "what are the proofs of P (if any)?"
- Intuitionistic logic
- Obtain a proof of Q from a proof of F
- Arbitrary proof of P constructs a proof of Q
- Coq system follows this approach

$$(P \Rightarrow Q)$$

- Question "what are the proofs of P (if any)?"
- Intuitionistic logic
- Obtain a proof of Q from a proof of P
- Arbitrary proof of P constructs a proof of Q
- Coq system follows this approach

$$(P \Rightarrow Q)$$

- Question "what are the proofs of P (if any)?"
- Intuitionistic logic
- Obtain a proof of Q from a proof of P
- Arbitrary proof of P constructs a proof of Q
- Coq system follows this approach

$$(P \Rightarrow Q)$$

- Question "what are the proofs of P (if any)?"
- Intuitionistic logic
- Obtain a proof of Q from a proof of P
- Arbitrary proof of P constructs a proof of Q
- Coq system follows this approach

$$(P \Rightarrow Q)$$

- Curry-Howard isomorphism is the direct relationship between computer programs and proofs
- Proofs are seen as programs
- Statements are treated as specifications
- The " \Rightarrow " becomes " \rightarrow "

$$(P \rightarrow Q)$$

$$(P \Rightarrow Q)$$

- Curry-Howard isomorphism is the direct relationship between computer programs and proofs
- Proofs are seen as programs
- Statements are treated as specifications

• The "
$$\Rightarrow$$
" becomes " \rightarrow " $P \rightarrow Q$)

$$(P \Rightarrow Q)$$

- Curry-Howard isomorphism is the direct relationship between computer programs and proofs
- Proofs are seen as programs
- Statements are treated as specifications
- The " \Rightarrow " becomes " \rightarrow "

$$(P \rightarrow Q)$$

$$(P \Rightarrow Q)$$

- Curry-Howard isomorphism is the direct relationship between computer programs and proofs
- Proofs are seen as programs
- Statements are treated as specifications
- The " \Rightarrow " becomes " \rightarrow "

$$(P \rightarrow Q)$$

- Present types and tools used to reason in Coq
- Use tactics to obtain proofs in a semi-automatic way
- Control the flow of an interactive proof
- More details on tactics and corrresponding typing rules
- Composing tactics, tacticals
- Proof irrelevance

- Present types and tools used to reason in Coq
- Use tactics to obtain proofs in a semi-automatic way
- Control the flow of an interactive proof
- More details on tactics and corrresponting typing rules
- Composing tactics, tacticals
- Proof irrelevance

- Present types and tools used to reason in Coq
- Use tactics to obtain proofs in a semi-automatic way
- Control the flow of an interactive proof
- More details on tactics and corrresponting typing rules
- Composing tactics, tacticals
- Proof irrelevance

- Present types and tools used to reason in Coq
- Use tactics to obtain proofs in a semi-automatic way
- Control the flow of an interactive proof
- More details on tactics and corrresponting typing rules
- Composing tactics, tacticals
- Proof irrelevance

- Present types and tools used to reason in Coq
- Use tactics to obtain proofs in a semi-automatic way
- Control the flow of an interactive proof
- More details on tactics and corrresponting typing rules
- Composing tactics, tacticals
- Proof irrelevance

- Present types and tools used to reason in Coq
- Use tactics to obtain proofs in a semi-automatic way
- Control the flow of an interactive proof
- More details on tactics and corrresponting typing rules
- Composing tactics, tacticals
- Proof irrelevance

Sorts

Prop is one of the predefined sorts

- Plays a similar role as Set
- Set is for programs and specifications (nat \rightarrow nat, bool) Prop is for proofs and Propositions (P, Q, R)

Definition: Every type P whose type is the sort Prop is called a proposition. Any term t whose type is a propostion is called a proof term (=proof).

Sorts

Prop is one of the predefined sorts

- Plays a similar role as Set
- Set is for programs and specifications (nat \rightarrow nat, bool) Prop is for proofs and Propositions (P, Q, R)

Definition: Every type P whose type is the sort Prop is called a proposition. Any term t whose type is a propostion is called a proof term (=proof).

Sorts

Prop is one of the predefined sorts

- Plays a similar role as Set
- Set is for programs and specifications (nat \rightarrow nat, bool) Prop is for proofs and Propositions (P, Q, R)

Definition: Every type P whose type is the sort Prop is called a proposition. Any term t whose type is a propostion is called a proof term (=proof).

Hypothesis

Hypothesis h:P

- Local declaration
- *h* is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use Hypotheses or

to declare several at a time

Hypothesis h:P

- Local declaration
- h is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use
 Hypotheses
 or
 Variables

to declare several at a time

Hypothesis h:P

- Local declaration
- h is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use
 Hypotheses
 or
 Variables

to declare several at a time

Hypothesis h:P

- Local declaration
- h is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use
 Hypotheses
 or
 Variables

Hypothesis h:P

- Local declaration
- *h* is the name of the hypothesis
- P is its statement
- Synonymous to Variable h:P
- Use Hypotheses or Variables
 - to declare several at a time

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms

$$E, \Gamma \vdash \pi : P$$

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms
Context contains hypotheses

$$E, \Gamma \vdash \pi : P$$

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms

$$E, \Gamma \vdash \pi : F$$

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms

$$E, \Gamma \vdash \pi : P$$

Axiom x:P

- Global declaration
- Synonymous to Parameter x:P

Environment contains axioms

$$E,\Gamma \vdash \pi : P$$

A goal is the pairing of two pieces of information: a local context Γ and a type P that is well-formed in this context.

Goal: $E, \Gamma \vdash^? P$

Term t of type P is called a solution

Tactics

Can be applied to a goal

Decompose this goal into simpler goals and create new goals

A goal is the pairing of two pieces of information: a local context Γ and a type P that is well-formed in this context.

Goal: $E, \Gamma \vdash^? P$

Term t of type P is called a solution

Tactics

Can be applied to a goal

Decompose this goal into simpler goals and create new goals

A goal is the pairing of two pieces of information: a local context Γ and a type P that is well-formed in this context.

Goal: $E, \Gamma \vdash^? P$

Term t of type P is called a solution

Tactics

Can be applied to a goal

Decompose this goal into simpler goals and create new goals

A goal is the pairing of two pieces of information: a local context Γ and a type P that is well-formed in this context.

Goal: $E, \Gamma \vdash^? P$

Term t of type P is called a solution

Tactics:

Can be applied to a goal.

Decompose this goal into simpler goals and create new goals

A goal is the pairing of two pieces of information: a local context Γ and a type P that is well-formed in this context.

Goal: $E, \Gamma \vdash^? P$

Term t of type P is called a solution

Tactics:

Can be applied to a goal.

Decompose this goal into simpler goals and create new goals

Transitivity

Proove this implication by introducing tactics as needed

$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

Section Example 1.

Variables P Q R T : Prop

P is assumed

Q is assumed

R is assumed

T is assumed

$$(P \to Q) \to (Q \to R) \to (P \to R)$$

Section Example1.
Variables P Q R T : Prop.

```
P is assumed
Q is assumed
R is assumed
T is assumed
```


$$(P \to Q) \to (Q \to R) \to (P \to R)$$

Section Example1.
Variables P Q R T : Prop.
P is assumed
Q is assumed
R is assumed
T is assumed


```
(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)
Theorem imp_trans : (P->Q) \rightarrow (Q->R) \rightarrow P \rightarrow R.
```



```
(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)
Theorem imp_trans : (P->Q) \rightarrow (Q->R) \rightarrow P \rightarrow R.
1 subgoal
P : Prop
   : Prop
R : Prop
T : Prop
  (P\rightarrow Q) \rightarrow (Q\rightarrow R) \rightarrow P \rightarrow R
Proof.
```


Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p.

- Transform the task of constructing a proof into proving R with those hypotheses added
- $H:P\rightarrow Q$
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p.

- Transform the task of constructing a proof into proving R with those hypotheses added
- $H:P\rightarrow Q$
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p.

- Transform the task of constructing a proof into proving R with those hypotheses added
- H : P → Q
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p.

- Transform the task of constructing a proof into proving R with those hypotheses added
- $H: P \rightarrow Q$
- $H': Q \rightarrow R$ and
- p: P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p.

- Transform the task of constructing a proof into proving R with those hypotheses added
- H : P → Q
- $H': Q \rightarrow R$ and
- p: P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p.

- Transform the task of constructing a proof into proving R with those hypotheses added
- $H: P \rightarrow Q$
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p.

- Transform the task of constructing a proof into proving R with those hypotheses added
- H : P → Q
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

Goal:
$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

intros H H' p.

- Transform the task of constructing a proof into proving R with those hypotheses added
- $H: P \rightarrow Q$
- $H': Q \rightarrow R$ and
- p : P
- New subgoal: R

$$(P \to Q) \to (Q \to R) \to (P \to R)$$

intros H H' p.
1 subgoal

Q : Prop R : Prop T : Prop H : P->Q H' : Q->R

R

$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$
 intros H H, p.

1 subgoal

Q : Prop R : Prop T : Prop H : P->Q H' : Q->R

R

apply

Subgoal: R

Hypothesis $H':Q\to R$ and $H:P\to Q$

apply H'.

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal P

apply

Subgoal: R

Hypothesis $H': Q \rightarrow R$ and $H: P \rightarrow Q$

apply H'.

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal P

apply

Subgoal: R

Hypothesis $H': Q \to R$ and $H: P \to Q$

apply H'.

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal P

apply

Subgoal: R

Hypothesis $H': Q \to R$ and $H: P \to Q$

apply H'.

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal P

apply

Subgoal: R

Hypothesis $H': Q \to R$ and $H: P \to Q$

apply H'.

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal $\it F$

apply

Subgoal: R

Hypothesis $H': Q \rightarrow R$ and $H: P \rightarrow Q$

apply H'.

- Use the hypothesis H' to advance our proof
- Argument has to be a premise and a conclusion
- Creates new goal for the premise
- New subgoal: Q

Applying hypothesis H gives the new subgoal P


```
(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)
apply H'.
```

```
(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)
apply H'.
1 subgoal
  : Prop
  : Prop
R: Prop
T : Prop
H : P \rightarrow Q
H': Q->R
_____
 Q
```


$$(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

1 subgoal

Q : Prop R : Prop T : Prop H : P->Q H' : Q->R

P

$$(P o Q) o (Q o R) o (P o R)$$
 apply H.

P: Prop Q: Prop R: Prop T: Prop

H' : Q->R

P


```
(P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)
apply H.
1 subgoal
   : Prop
   : Prop
R: Prop
T : Prop
H : P \rightarrow Q
H': Q->R
_____
 P
```


Subgoal: P

Hypothesis p: P

assumption

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals

Proof complete

Subgoal: P

Hypothesis p: P

assumption.

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals

Proof complete


```
Subgoal: P
```

Hypothesis p: P

assumption.

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals Proof complete


```
Subgoal: P
```

Hypothesis p: P

assumption.

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals

Proof complete


```
Subgoal: P
```

Hypothesis p: P

assumption.

- Statement to proof is exactly statement of hypothesis p
- Succeeds without generating any new goal

No more subgoals

Proof complete

Qed.

- Every proof should be terminated by the Qed command
- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics.

```
intros H H'p.
apply H'.
apply H.
assumption.
```

Print imp_trans.

```
imp-trans = fun (H:P->Q)(H':Q->R)(p:P) => H' (H p)
: (P->Q) -> (Q->R) -> P -> R
```


Qed.

- Every proof should be terminated by the Qed command
- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics

```
intros H H'p
apply H'.
apply H.
assumption.
```

Print imp_trans.

```
imp-trans = fun (H:P->Q)(H':Q->R)(p:P) => H' (H p)
: (P->Q) -> (Q->R) -> P -> R
```


Qed.

- Every proof should be terminated by the Qed command
- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics

```
intros H H'p.
apply H'.
apply H.
assumption.
```

Print imp_trans.

```
imp-trans = fun (H:P->Q)(H':Q->R)(p:P) => H' (H p) : (P->Q) -> (Q->R) -> P -> R
```


Qed.

- Every proof should be terminated by the Qed command
- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics.

```
intros H H' p. apply H'. apply H. assumption.
```

```
Print imp_trans.
```

```
imp-trans = fun (H:P->Q)(H':Q->R)(p:P) => H' (H p) : (P->Q) -> (Q->R) -> P -> R
```


Qed.

- Every proof should be terminated by the Qed command
- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics.

```
intros H H' p. apply H'. apply H. assumption.
```

Print imp_trans.

```
imp-trans = fun (H:P->Q)(H':Q->R)(p:P) => H' (H p) : (P->Q) -> (Q->R) -> P -> R
```


Qed.

- Every proof should be terminated by the Qed command
- Saves the theorem's name, statement and proof term
- Displays the sequence of tactics.

```
intros H H' p. apply H'. apply H. assumption.
```

Print imp_trans.

```
imp-trans = fun (H:P->Q)(H':Q->R)(p:P) => H' (H p)
: (P->Q) -> (Q->R) -> P -> R
```


Reading the proof term

```
Print imp_trans. 

imp-trans = fun (H:P->Q)(H':Q->R)(p:P) => H' (H p) 

: (P->Q) -> (Q->R) -> P -> R 

(H): Assume P \rightarrow Q 

(H'): Assume Q \rightarrow R 

(p): Assume P 

(1): By using (p) we get P 

(2): By applying (H) we get Q 

(3): By applying (H') we get R 

Discharging H, H' and p, we get (P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow P
```


Reading the proof term

```
Print imp_trans. 

imp-trans = fun (H:P->Q)(H':Q->R)(p:P) \Rightarrow H' (H p)

: (P->Q) \rightarrow (Q->R) \rightarrow P \rightarrow R

(H): Assume P \rightarrow Q

(H'): Assume Q \rightarrow R

(p): Assume P

(1): By using (p) we get P

(2): By applying (H) we get Q

(3): By applying (H') we get Q
```


Reading the proof term

```
Print imp_trans. 

imp-trans = fun (H:P->Q)(H':Q->R)(p:P) => H' (H p) 

: (P->Q) -> (Q->R) -> P -> R 

(H): Assume P \rightarrow Q 

(H'): Assume Q \rightarrow R 

(p): Assume P 

(1): By using (p) we get P 

(2): By applyig (H) we get Q 

(3): By applying (H') we get R 

Discharging H, H' and p, we get (P \rightarrow Q) \rightarrow (Q \rightarrow R) \rightarrow P \rightarrow R
```


Not all the details for the proof are needed

```
Transitivity is a rather trivial statement A few automatic tactics are able to solve this goal Theorem transitivity : (P->Q) \rightarrow (Q->R) \rightarrow P \rightarrow R Proof.
```


Not all the details for the proof are needed

Transitivity is a rather trivial statement A few automatic tactics are able to solve this goal

```
Theorem transitivity : (P->Q) \rightarrow (Q->R) \rightarrow P \rightarrow R. Proof.
```

```
auto
Oed.
```


Not all the details for the proof are needed

Transitivity is a rather trivial statement A few automatic tactics are able to solve this goal

Theorem transitivity : $(P->Q) \rightarrow (Q->R) \rightarrow P \rightarrow R$. Proof.

```
auto
Qed.
```


Not all the details for the proof are needed

Transitivity is a rather trivial statement A few automatic tactics are able to solve this goal

Theorem transitivity : $(P->Q) \rightarrow (Q->R) \rightarrow P \rightarrow R$. Proof.

auto.

Qed.

Same kind of typing rules that control the construction of proposition as those used to build simple specifications.

Difference is in the use of Prop instead of Set

 $E, \Gamma \vdash id : Prop$

Check id.

Same kind of typing rules that control the construction of proposition as those used to build simple specifications.

Difference is in the use of *Prop* instead of *Set*.

 $E, \Gamma \vdash id : Prop$

Check id.

Same kind of typing rules that control the construction of proposition as those used to build simple specifications.

Difference is in the use of *Prop* instead of *Set*.

 $E, \Gamma \vdash id : Prop$

Check id.

Same kind of typing rules that control the construction of proposition as those used to build simple specifications.

Difference is in the use of *Prop* instead of *Set*.

 $E, \Gamma \vdash id : Prop$

Check id.

Same kind of typing rules that control the construction of proposition as those used to build simple specifications.

Difference is in the use of *Prop* instead of *Set*.

 $E, \Gamma \vdash id : Prop$

Check id.

General Prod

Prod-Prop
$$\frac{E, \Gamma \vdash P : Prop}{E, \Gamma \vdash P \rightarrow Q : Prop}$$

As the rules Prod-Set and Prod-Prop only differ in their use of sorts they can be presented as a single rule with parameter sort s

Prod
$$\frac{E,\Gamma\vdash A:s}{E,\Gamma\vdash A\to B:s}$$
 With $s\in\{\text{Set, Prop}\}$

General Prod

Prod-Prop
$$\frac{E, \Gamma \vdash P : Prop}{E, \Gamma \vdash P \rightarrow Q : Prop}$$

As the rules Prod-Set and Prod-Prop only differ in their use of sorts they can be presented as a single rule with parameter sort s

General Prod

$$\textbf{Prod-Prop} \ \frac{E, \Gamma \vdash P : Prop \qquad E, \Gamma \vdash Q : Prop}{E, \Gamma \vdash P \rightarrow Q : Prop}$$

As the rules Prod-Set and Prod-Prop only differ in their use of sorts they can be presented as a single rule with parameter sort s

Prod
$$\frac{E, \Gamma \vdash A : s}{E, \Gamma \vdash A \rightarrow B : s}$$
With $s \in \{\text{Set, Prop}\}$

Var rule

$$\mathbf{Var} \ \frac{(x:P) \in E \cup \Gamma}{E, \Gamma \vdash x:P}$$

This corresponds to the tactic assumption or, if x is not in the context, exact x.

Var rule

$$\mathbf{Var} \ \frac{(x:P) \in E \cup \Gamma}{E, \Gamma \vdash x:P}$$

This corresponds to the tactic assumption or, if x is not in the context, exact x.

The exact tactic takes any term (with right type) as argument

The whole proof could be given as an argument

```
Theorem delta : (P\rightarrow P\rightarrow Q) \rightarrow P \rightarrow Q.

Proof.

exact (fun (H:P\rightarrow P\rightarrow Q)(p:P) \Rightarrow H p p)

Qed.
```

Or even shorter

```
Theorem delta : (P->P->Q) \rightarrow P \rightarrow Q.

Proof (fun (H:P->P->Q)(p:P) \Rightarrow H p p).
```


The exact tactic takes any term (with right type) as argument The whole proof could be given as an argument

```
Theorem delta : (P->P->Q) -> P -> Q.
Proof.
exact (fun (H:P->P->Q)(p:P) => H p p)
Qed.
```

Or even shorter:

```
Theorem delta : (P->P->Q) -> P -> Q.

Proof (fun (H:P->P->Q)(p:P) => H p p).
```


The exact tactic takes any term (with right type) as argument The whole proof could be given as an argument

```
Theorem delta : (P->P->Q) \rightarrow P \rightarrow Q. Proof.
```

```
exact (fun (H:P->P->Q)(p:P) => H p p).
Qed.
```

Or even shorter

```
Theorem delta : (P->P->Q) \rightarrow P \rightarrow Q.

Proof (fun (H:P->P->Q)(p:P) \Rightarrow H p p).

Uses the context hypotheses
```


The exact tactic takes any term (with right type) as argument The whole proof could be given as an argument

```
Theorem delta : (P->P->Q) \rightarrow P \rightarrow Q.

Proof.

exact (fun (H:P->P->Q)(p:P) \Rightarrow H p p).

Qed.
```

Or even shorter

```
Theorem delta : (P->P->Q) -> P -> Q.

Proof (fun (H:P->P->Q)(p:P) => H p p).
```


The exact tactic takes any term (with right type) as argument The whole proof could be given as an argument

```
Theorem delta : (P->P->Q) \rightarrow P \rightarrow Q. Proof. exact (fun (H:P->P->Q)(p:P) \Rightarrow H p p). Qed.
```

Or even shorter:

```
Theorem delta : (P\rightarrow P\rightarrow Q) \rightarrow P \rightarrow Q.
Proof (fun (H:P\rightarrow P\rightarrow Q)(p:P) \Rightarrow H p p).
```

Uses the context hypotheses

The exact tactic takes any term (with right type) as argument The whole proof could be given as an argument

```
Theorem delta : (P->P->Q) \rightarrow P \rightarrow Q. Proof. exact (fun (H:P->P->Q)(p:P) \Rightarrow H p p). Qed.
```

Or even shorter:

```
Theorem delta : (P->P->Q) -> P -> Q.
Proof (\text{fun } (H:P->P->Q)(p:P) => H p p).
Uses the context hypotheses
```


Apply tactic uses the Modus Ponens

$$\mathbf{App} \ \frac{E, \Gamma \vdash t : P \to Q \qquad E, \Gamma \vdash t' : P}{E, \Gamma \vdash tt' : Q}$$

Term $t: P_1 \rightarrow P_2 \rightarrow ... \rightarrow P_n \rightarrow Q$ Goal: $P_k \rightarrow P_{k+1} \rightarrow ... \rightarrow P_n \rightarrow Q$, also called "head type" of rank P_k The term Q is called "final type" if it's not an arrow type. Head and final types play a role in later tactics

```
apply t generates k-1 goals with statements P_1, ..., P_{k-1} if new goals have solution t_1, t_2, ..., t_{k-1} solution is t t_1 t_2 ... t_{k-1} for initial goal
```


Apply tactic uses the Modus Ponens

$$\mathbf{App} \ \frac{E, \Gamma \vdash t : P \to Q \qquad E, \Gamma \vdash t' : P}{E, \Gamma \vdash tt' : Q}$$

Term $t: P_1 \rightarrow P_2 \rightarrow ... \rightarrow P_n \rightarrow Q$ Goal: $P_k \rightarrow P_{k+1} \rightarrow ... \rightarrow P_n \rightarrow Q$, also called "head type" of rank P_k The term Q_k is called "final type" if it's not an arrow type. Head and final types play a role in later tactics

```
apply t generates k-1 goals with statements P_1,...,P_{k-1} if new goals have solution t_1,t_2,...,t_{k-1} solution is t t_1 t_2 ... t_{k-1} for initial goal
```


Apply tactic uses the Modus Ponens

$$\mathbf{App} \ \frac{E, \Gamma \vdash t : P \rightarrow Q \qquad E, \Gamma \vdash t' : P}{E, \Gamma \vdash tt' : Q}$$

Term $t: P_1 \to P_2 \to ... \to P_n \to Q$ Goal: $P_k \to P_{k+1} \to ... \to P_n \to Q$, also called "head type" of rank kThe term Q is called "final type" if it's not an arrow type. Head and final types play a role in later tactics

apply t generates k-1 goals with statements $P_1,...,P_{k-1}$ if new goals have solution $t_1,t_2,...,t_{k-1}$ solution is t t_1 t_2 ... t_{k-1} for initial goal

Apply tactic uses the Modus Ponens

$$\mathbf{App} \ \frac{E, \Gamma \vdash t : P \rightarrow Q \qquad E, \Gamma \vdash t' : P}{E, \Gamma \vdash tt' : Q}$$

Term $t: P_1 \to P_2 \to ... \to P_n \to Q$ Goal: $P_k \to P_{k+1} \to ... \to P_n \to Q$, also called "head type" of rank kThe term Q is called "final type" if it's not an arrow type. Head and final types play a role in later tactics

apply t generates k-1 goals with statements $P_1, ..., P_{k-1}$ if new goals have solution $t_1, t_2, ..., t_{k-1}$ solution is t t_1 t_2 ... t_{k-1} for initial goal

Apply tactic uses the Modus Ponens

$$\mathbf{App} \ \frac{E, \Gamma \vdash t : P \rightarrow Q \qquad E, \Gamma \vdash t' : P}{E, \Gamma \vdash tt' : Q}$$

Term $t: P_1 \to P_2 \to ... \to P_n \to Q$ Goal: $P_k \to P_{k+1} \to ... \to P_n \to Q$, also called "head type" of rank kThe term Q is called "final type" if it's not an arrow type. Head and final types play a role in later tactics

apply t generates k-1 goals with statements $P_1,...,P_{k-1}$ if new goals have solution $t_1,t_2,...,t_{k-1}$ solution is t t_1 t_2 ... t_{k-1} for initial goal

Proof of P o Q is a function mapping any proof of P to a proof of Q

$$\mathsf{Lam} \ \frac{E,\Gamma :: (H:P) \vdash t : Q}{E,\Gamma \vdash \mathsf{fun} \ H : P \Rightarrow t : P \to Q}$$

$$\Gamma \vdash^? P \to Q$$

$$\Gamma :: (H : P) \vdash^? Q$$

If term t is a solution to the subgoal then "fun $H: P \Rightarrow t$ " is a solution to the initial goal.

Proof of P o Q is a function mapping any proof of P to a proof of Q

$$\mathsf{Lam} \ \frac{E,\Gamma :: (H:P) \vdash t : Q}{E,\Gamma \vdash \mathsf{fun} \ H : P \Rightarrow t : P \to Q}$$

$$\Gamma \vdash^? P \to Q$$

$$\Gamma :: (H : P) \vdash^{?} Q$$

If term t is a solution to the subgoal then "fun $H: P \Rightarrow t$ " is a solution to the initial goal.

Proof of P o Q is a function mapping any proof of P to a proof of Q

$$\mathsf{Lam} \ \frac{E,\Gamma :: (H:P) \vdash t : Q}{E,\Gamma \vdash \mathsf{fun} \ H : P \Rightarrow t : P \to Q}$$

$$\Gamma \vdash^{?} P \rightarrow Q$$

$$\Gamma :: (H : P) \vdash^? Q$$

If term t is a solution to the subgoal then "fun $H: P \Rightarrow t$ " is a solution to the initial goal.

Proof of P o Q is a function mapping any proof of P to a proof of Q

$$\Gamma \vdash^{?} P \rightarrow Q$$

$$\Gamma :: (H : P) \vdash^? Q$$

If term t is a solution to the subgoal then "fun $H: P \Rightarrow t$ " is a solution to the initial goal.

Proof of P o Q is a function mapping any proof of P to a proof of Q

$$\Gamma \vdash^? P \to Q$$

$$\Gamma :: (H : P) \vdash^? Q$$

If term t is a solution to the subgoal then "fun $H: P \Rightarrow t$ " is a solution to the initial goal.

Proof of P o Q is a function mapping any proof of P to a proof of Q

$$Lam \ \frac{E,\Gamma :: (H:P) \vdash t : Q}{E,\Gamma \vdash \text{fun } H:P \Rightarrow t : P \rightarrow Q}$$

$$\Gamma \vdash^{?} P \rightarrow Q$$

$$\Gamma :: (H : P) \vdash^? Q$$

If term t is a solution to the subgoal then "fun $H: P \Rightarrow t$ " is a solution to the initial goal.

intros v_1, v_2, ..., v_n

is the same as

intro v_1, intro v_2, ..., intro v_n

intro v_1 takes the first implication as a hypothesis called v_1

Proof Theorem $K: P \rightarrow Q \rightarrow P$

Goal is $P \to Q \to P$

intro p.

Hypothesis p: P and new Goal $Q \rightarrow P$

intros v_1 , v_2 , ..., v_n is the same as intro v_1 , intro v_2 , ..., intro v_n

intro \emph{v}_1 takes the first implication as a hypothesis called \emph{v}_1

Proof Theorem K : $P \rightarrow Q \rightarrow P$ Goal is $P \rightarrow Q \rightarrow P$

intro p.

Hypothesis p:P and new Goal $Q \rightarrow P$

intros v_1, v_2, ..., v_n

is the same as

intro v_1, intro v_2, ..., intro v_n

intro v_1 takes the first implication as a hypothesis called v_1

Proof Theorem $K: P \rightarrow Q \rightarrow P$

Goal is $P \to Q \to F$

intro p.

Hypothesis p:P and new Goal $Q \rightarrow P$

intros v_1, v_2, ..., v_n is the same as intro v_1, intro v_2, ..., intro v_n intro v_1 takes the first implication as a hypothesis called v_1 Proof Theorem K: $P \to Q \to P$ Goal is $P \to Q \to P$

intro p.

Hypothesis p:P and new Goal $Q \rightarrow P$

intros v_1, v_2, ..., v_n is the same as intro v_1, intro v_2, ..., intro v_n intro v_1 takes the first implication as a hypothesis called v_1 Proof Theorem K: $P \to Q \to P$ Goal is $P \to Q \to P$ intro p. Hypothesis p:P and new Goal $Q \to P$

intros v_1, v_2, ..., v_n is the same as intro v_1, intro v_2, ..., intro v_n intro v_1 takes the first implication as a hypothesis called v_1 Proof Theorem K: $P \to Q \to P$ Goal is $P \to Q \to P$ intro p.

Hypothesis p: P and new Goal $Q \rightarrow P$

Show i

Display goal *i* with complete context Coq displays the current goal after each proof step

Undo 1

Go back *n* steps and try an alternative if goal can not be solved

Focus r

Focus the attention on the *n*th subgoal to prove

Restart

Go back to the beginning of the proof

Abort

Show i

Display goal *i* with complete context Coq displays the current goal after each proof step

Undo n

Go back n steps and try an alternative if goal can not be solved

Focus 1

Focus the attention on the *n*th subgoal to prove

Restart

Go back to the beginning of the proof

Abort

Show i

Display goal *i* with complete context Coq displays the current goal after each proof step

Undo n

Go back n steps and try an alternative if goal can not be solved

Focus n

Focus the attention on the *n*th subgoal to prove

Restart

Go back to the beginning of the proof

Abort

Show i

Display goal *i* with complete context Coq displays the current goal after each proof step

Undo n

Go back n steps and try an alternative if goal can not be solved

Focus n

Focus the attention on the *n*th subgoal to prove

Restart

Go back to the beginning of the proof

Abort

Show i

Display goal *i* with complete context Coq displays the current goal after each proof step

Undo n

Go back n steps and try an alternative if goal can not be solved

Focus n

Focus the attention on the *n*th subgoal to prove

Restart

Go back to the beginning of the proof

Abort

Combine tactics without stopping at intermediary subgoals

Goal: $P \rightarrow Q \rightarrow (P \rightarrow Q \rightarrow R) \rightarrow R$

intros p q H; apply H; assumption.

Like chess: forsee results of tactics

Combine tactics without stopping at intermediary subgoals

Goal:
$$P \rightarrow Q \rightarrow (P \rightarrow Q \rightarrow R) \rightarrow R$$

intros p q H; apply H; assumption.

Like chess: forsee results of tactics

Combine tactics without stopping at intermediary subgoals

Goal:
$$P \rightarrow Q \rightarrow (P \rightarrow Q \rightarrow R) \rightarrow R$$

intros p q H; apply H; assumption.

Like chess: forsee results of tactics

Combine tactics without stopping at intermediary subgoals

Goal: $P \rightarrow Q \rightarrow (P \rightarrow Q \rightarrow R) \rightarrow R$

intros p q H; apply H; assumption.

Like chess: forsee results of tactics

Combine tactics without stopping at intermediary subgoals

Goal:
$$P \rightarrow Q \rightarrow (P \rightarrow Q \rightarrow R) \rightarrow R$$

intros p q H; apply H; assumption.

Like chess: forsee results of tactics

General composing

Tactics can generate multiple subgoals

```
Goal: (P \to Q \to R) \to (P \to Q) \to (P \to R)
intros H H'p; apply H; [assumption | apply H'; assumption]. Two subgoals P and Q
```

First is solved with assumption Other one first has to apply H' and then use assumption

General composing

Tactics can generate multiple subgoals

Goal:
$$(P \rightarrow Q \rightarrow R) \rightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

intros H H' p; apply H; [assumption | apply H'; assumption].

Two subgoals P and Q

First is solved with assumption Other one first has to apply H' and then use assumption

Tactics can generate multiple subgoals

Goal:
$$(P \rightarrow Q \rightarrow R) \rightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

intros H H' p; apply H; [assumption | apply H'; assumption].

Two subgoals P and G

First is solved with assumption Other one first has to apply H' and then use assumptior

Tactics can generate multiple subgoals

Goal:
$$(P \to Q \to R) \to (P \to Q) \to (P \to R)$$
 intros H H' p; apply H; [assumption | apply H'; assumption]. Two subgoals P and Q

First is solved with assumption Other one first has to apply H' and then use assumption

Tactics can generate multiple subgoals

Goal:
$$(P \rightarrow Q \rightarrow R) \rightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

intros H H' p; apply H; [assumption | apply H'; assumption].

Two subgoals P and Q

First is solved with assumption

Other one first has to apply H' and then use assumption

Tactics can generate multiple subgoals

Goal:
$$(P \rightarrow Q \rightarrow R) \rightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

intros H H' p; apply H; [assumption | apply H'; assumption].

Two subgoals P and Q

First is solved with assumption Other one first has to apply H' and then use assumption

If a tactic fails automatically use another tactic

```
intros H p; apply H; (assumption || intro H').
If assumption fails, then intro H' is used
```


If a tactic fails automatically use another tactic intros H p; apply H; (assumption || intro H').

If assumption fails, then intro H' is used

A tactic can be left unchanged to finish every subgoal in one go Goal: $(P \to Q) \to (P \to R) \to (P \to Q \to R \to T) \to P \to T$ intros H HO H1 p.

If a tactic fails automatically use another tactic intros H p; apply H; (assumption | | intro H'). If assumption fails, then intro H' is used

If a tactic fails automatically use another tactic intros H p; apply H; (assumption | | intro H'). If assumption fails, then intro H' is used

If a tactic fails automatically use another tactic intros H p; apply H; (assumption | | intro H'). If assumption fails, then intro H' is used

If a tactic fails automatically use another tactic intros H p; apply H; (assumption | | intro H'). If assumption fails, then intro H' is used

Tactic that always fails

Goal: $(P \rightarrow Q) \rightarrow (P \rightarrow Q)$

This combination succeeds; there are no more subgoals after "apply X"

Goal:
$$((P \rightarrow P) \rightarrow (Q \rightarrow Q) \rightarrow R) \rightarrow R$$

intro X; apply X; fail.

This combination fails; there are subgoals left after "apply X"

Tactic that always fails

Goal: $(P \rightarrow Q) \rightarrow (P \rightarrow Q)$

intro X; apply X; fail.

This combination succeeds; there are no more subgoals after "apply X"

Goal:
$$((P \rightarrow P) \rightarrow (Q \rightarrow Q) \rightarrow R) \rightarrow R$$

intro X; apply X; fail.

This combination fails; there are subgoals left after "apply X"

Tactic that always fails

Goal: $(P \rightarrow Q) \rightarrow (P \rightarrow Q)$ intro X; apply X; fail.

This combination succeeds; there are no more subgoals after "apply X"

Goal:
$$((P \rightarrow P) \rightarrow (Q \rightarrow Q) \rightarrow R) \rightarrow R$$

intro X; apply X; fail.

This combination fails; there are subgoals left after "apply X'

Tactic that always fails

Goal:
$$(P \rightarrow Q) \rightarrow (P \rightarrow Q)$$

intro X; apply X; fail.

This combination succeeds; there are no more subgoals after "apply X"

Goal:
$$((P \rightarrow P) \rightarrow (Q \rightarrow Q) \rightarrow R) \rightarrow R$$

This combination fails; there are subgoals left after "apply X'

Tactic that always fails

Goal:
$$(P \rightarrow Q) \rightarrow (P \rightarrow Q)$$

intro X; apply X; fail.

This combination succeeds; there are no more subgoals after "apply X"

Goal:
$$((P \rightarrow P) \rightarrow (Q \rightarrow Q) \rightarrow R) \rightarrow R$$

intro X; apply X; fail.

This combination fails; there are subgoals left after "apply X"

Tactic that always fails

Goal:
$$(P \rightarrow Q) \rightarrow (P \rightarrow Q)$$

intro X; apply X; fail.

This combination succeeds; there are no more subgoals after "apply X"

Goal:
$$((P \rightarrow P) \rightarrow (Q \rightarrow Q) \rightarrow R) \rightarrow R$$

intro X; apply X; fail.

This combination fails; there are subgoals left after "apply X"

Try

Combination of tactics that never fail

```
Goal: (P \to Q \to R \to T) \to (P \to Q) \to (P \to R \to T)
intros H H' p r.
apply H; try assumption; apply H'; assumption.
```

try tac behaves like tac | lutac

Try

Combination of tactics that never fail

$$\mathsf{Goal} \colon (P \to Q \to R \to T) \to (P \to Q) \to (P \to R \to T)$$

intros H H' p r

apply H; try assumption; apply H'; assumption.

"try tac" behaves like "tac | idtac'

Goal-directed proof

Structure 0000000

Try

Combination of tactics that never fail

Goal: $(P \rightarrow Q \rightarrow R \rightarrow T) \rightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R \rightarrow T)$ intros H H' p r.

apply H; try assumption; apply H'; assumption.

"try tac" behaves like "tac | idtac'

Try

Combination of tactics that never fail

Goal:
$$(P \to Q \to R \to T) \to (P \to Q) \to (P \to R \to T)$$

intros H H' p r.

apply H; try assumption; apply H'; assumption.

"try tac" behaves like "tac | idtac"

Try

Combination of tactics that never fail

Goal:
$$(P \rightarrow Q \rightarrow R \rightarrow T) \rightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R \rightarrow T)$$

intros H H' p r.

apply H; try assumption; apply H'; assumption.

"try tac" behaves like "tac || idtac"

There are goals with no solution at all

Even though they are valid in classical logic

Peirce's formula: (((P o Q) o P) o P

There are goals with no solution at all Even though they are valid in classical logic

Peirce's formula: (((P o Q) o P) o P)

There are goals with no solution at all

Even though they are valid in classical logic

Peirce's formula: $(((P \rightarrow Q) \rightarrow P) \rightarrow P)$

There are goals with no solution at all

Even though they are valid in classical logic

Peirce's formula: $(((P \rightarrow Q) \rightarrow P) \rightarrow P)$

- finish typing rules
- More details on tactics
- Composing
- Proof irrelevance

- finish typing rules
- More details on tactics
- Composing
- Proof irrelevance

- finish typing rules
- More details on tactics
- Composing
- Proof irrelevance

- finish typing rules
- More details on tactics
- Composing
- Proof irrelevance

