divide_shift	alpha
0	0 - не рабочий режим, возможна потеря устойчивости фильтра!
1	0,5
2	0,75
3	0,875
4	0,9375
5	0,96875
6	0,984375
7	0,9921875
8	0,99609375
9	0,998046875
10	0,9990234375
11	0,99951171875
12	0,999755859375
13	0,9998779296875
14	0,99993896484375
15	0,99969482421875

Расчётные АЧХ фильтра (без увеличения по оси частот и с увеличением) представлены на рисунках ниже

Исходники

$axi_s_cordic_abs$

axi_s_cordic_abs одна из реализаций вычислителя модуля комплексного числа. Выполняет следующие функции

- Вычисляет модуль комплексного числа, причем за один такт принимается одно комплексное число
- Обеспечивает целостность передачи информации по AXI-Stream

Входное комплексное число представляет собой пару целых чисел (действительная и минмая части), результат вычислений — целое число, которое будет адаптировано к параметризуемой ширине выходных данных путем сдвига вираю или путем дополнения пульми слева.

Данная реализация примечательна тем, что погрешность вычисления определяется передаваемыми модуло параметрами. Существование реализаций с фиксированной погрешностью обусловлено тем, что они имеют лучшие по сравнению с данной реализацией аппаратные характеристики на своих погрешностях.

Порты

• AXI-S - master шина AXI-Stream с модулями.

Стр. 5 из 7

• AXI-S - slave шина AXI-Stream с комплексными числами.

Параметры

Параметр	Описание
S_TDATA_WIDTH	Ширина входных данных. Разрядность ге и іт части по отдельности
M_TDATA_WIDTH	Шприна выходных данных (выходные данные всегда беззнаковые)
TID_WIDTH	Ширина TID
PLATFORM	Параметр задающий целевую платформу для платформозависимого кода
IS_SIGNED_DATA_IN	Знаковость входных данных
VECTOR_MODE_STAGES_QUAN	Количество стадий CORDIC в режиме вектор
MULT_STAGES_QUANTITY	Количество стадий умножения на 1/К
GUARD_BITS_QUANTITY	Количество дополнительных разрядов после точки для стадий CORDIC
MULT_GUARD_BITS	Количество дополнительных разрядов после точки для стадий умножения

Погрешность вычисления

Пусть А - истинное значение модуля комплексного числа; А1 - значение, вычисленное по формулам, лежащим в основе данной реализации; А2 - значение, полученное с помощью аппаратной реализации

Под методической погрешностью понимается относительная погрешность $nl_ort(N,M)$, где N — VECTOR_MODE_STAGES_QUAN πM — MULT_STAGES_QUANTITY. Эта погрешность характеризует разницу между A и M1.

$$rel_err(N, M) = \max(\left|\frac{A - A1}{A}\right|)$$

В таблице ниже для каждого возможного в текущей реализации $log2(rel_err(N, M))$ приведены N и M такие, что N+M минимальна

log2(rel_err)	-2	-3	-4	-	5 -0	-7	-8	3 -	9 -1	0 -	11	-12	-13	-14	-15	-16	-17	-18	-19	-20) -2	1 -2.	2 -2	3 -2	4 -:	25 -:	26 -	-27	-28	-29	-30	-31	-32	-33	-34	-35	-36	-37	-38	-39	-40	-41	-42	-43	-44	-45	-46	-47	-48	-49	-50
N	2	3	3	4	5	5	5	6	7	7	7	7	8	8	9	10	10	10	11	12	12	12	13	13	3 1	4 1	4 1	15	15	16	16	17	17	18	18	19	19	20	21	21	21	22	22	23	24	24	24	24	24	25	26
M	2	3	4	4	4	6	7	7	7	9)	10	10	10	10	10	12	13	13	13	15	16	16	17	7 1	.7 1	8 1	18	19	19	19	19	20	20	20	20	20	20	20	22	23	23	24	24	24	25	26	27	28	28	28

Под инструментальной погрешностью понимается абсолютная погрешность тип_err/N, M, G_N, G_M), так N—VECTOR_MODE_STAGES_QUAN, M—MULT_STAGES_QUANTITY, G_N—GUARD_BITS_QUANTITY и G_M—MULT_GUARD_BITS. Эта погрешность

$$trun_err(N, M, G_N, G_M) = \max(|A2 - A1|)$$

Ниже приведена формула для её расчета (погрешность выражена в ЕМР)

$$trun_err(N, M, G_N, G_M) = 1.61 + 0.61 \cdot (N-1) \cdot 2^{-G_N} + M \cdot 2^{-G_M}$$

Формула справедлива только в том случае, когда ширины выходных данных достаточно для представления результата вычислений.

Аппаратные характеристики

Ниже приведены сведения о реализациях ахі_s_cordic_abs для 16, 24 и 32 разрядных входных значений (Artix-7, xc7a15tcsg324-21). В данных реализациях параметры заданы таким образом, чтобы полная опшбка вычисления не превосходила 3 ЕМР.

Ширина входных значений	LUT	FF	Частота
16	628	860	256 МГц
24	1119	1735	235 МГц
32	1785	2769	205 МГц

axi_s_heavy_fast_abs

axi_s_heavy_fast_abs одна из реализаций вычислителя модуля комплексного числа. Выполняет следующие функции

- Вычисляет модуль комплексного числа, причем за один такт принимается одно комплексное число
 Обеспечивает целостность передачи информации по AXI-Stream

Входное комплексное число представляет собой пару целых чиссо (действительная и минмая части), результат вычислений — целое число, которое будет адаптировано к параметризуемой ширине выходных данных путем сдвига вправо или путем дополнения нулями слева.

- AXI-S master шина AXI-Stream с модулями.
- AXI-S slave шина AXI-Stream с комплексными числами

Параметры

Параметр	Описание
S_TDATA_WIDTH	Ширина входных данных. Разрядность re и im части по отдельности
M_TDATA_WIDTH	Ширина выходных данных (выходные данные всегда беззнаковые)
TID_WIDTH	Ширина TID
PLATFORM	Параметр задающий целевую платформу для платформозависимого кода
IS_SIGNED_DATA_IN	Знаковость входных данных

Оценка | глит_стг справедлива только в том случае, когда ширины выходных данных достаточно для представления результата вычислений.

Аппаратные характеристики

Ниже приведены сведения о реализациях $axi_s_heavy_fast_abs$ для 16, 24 и 32 разрядных входных значений (Artix-7, xc7a15tcsg324-2L).

Ширина входных значений	LUT	FF	Частота
16	316	456	313 МГц
24	449	667	307 МГц
32	601	878	252 МГц

Для еравнения в таблице ниже приведены сведения о реализациях ахі_s_cordic_abs, имеющих те же rel_err и trun_err что и ахі_s_heavy_fast_abs (Artix-7, xc7a15tesg324-21).

Ширина входных значений	LUT	FF	Частота
16	335	452	267 МГц
24	466	658	260 МГц
32	617	864	234 МГц

Кроме того, ахі з cordic abs имеет латентность на 3 такта больше