Machine Learning Model Evaluation Report

1. Modeling Problem

We explored two types of machine learning problems:

Regression Problems

- Model 1: Predicting Canada's Per Capita Income over the years.
- Model 2: Predicting Maximum Temperature in Lahore using historical weather data.

Classification Problems

- Model 3: Classifying iris flowers using KMeans (unsupervised).
- Model 4: Predicting iris flower species using Random Forest Classifier.
- Model 5: Predicting iris flower species using Support Vector Machine (SVM).

2. Models Trained

Regression Models

Model	Dataset	Technique	Preprocessing	Tuni ng
Linear Regression	Canada Per Capita Income	LinearRegression()	None	No
Linear Regression with Pipeline	Lahore Weather Data	Pipeline + FunctionTransformer	Date converted to ordinal	No

Classification Models

Madal	Datasat	Taalaaiaaa	Preproces	T
Model	Dataset	Technique	sing	Tuning

KMeans Clustering	Iris	KMeans(n_clusters	MinMaxSca	No
	Dataset	=3)	ler	INO
Random Forest	Iris	RandomForestClass	None	No
Classifier	Dataset	ifier()	None	INO
Support Vector	Iris	SVC/C-10)	None	GridSearchCV,
Classifier	Dataset	SVC(C=10)		RandomizedSearchCV

3. Evaluation Metrics

Regression Models Evaluation

Model	R ² Score	Additional Notes	
Canada Income Prediction	High R ² (visually	Predicted 2025 income	
Canada income Frediction	linear)	successfully	
Lahore Temperature	<pre>model.score()</pre>	Custom pipeline used with ordinal	
Prediction	used	date	

Recommended Improvements:

- Evaluate using MAE, MSE, and R² explicitly.
- Add cross-validation or time-series split for better evaluation.

Classification Models Evaluation

Model	Accura cy	Precision	Recall	F1-Score
KMeans + Label	Reason	Used mode-based	Good for unsupervised	Decent but not
Mapping	able	mapping	baseline	optimal
Random Forest	~90%	High	High	High
SVM	~97%	High	High	High

Hyperparameter Tuning:

• **SVM**: Tuned using GridSearchCV and RandomizedSearchCV with parameters C and kernel.

4. Visualizations Included

- Scatter plots for income and temperature trends.
- Cluster visualizations for KMeans using petal features.
- Heatmaps for confusion matrices of classification models.
- Elbow curve for optimal K in KMeans.

5. Key Observations & Improvements

Observations

- Linear models work well on clean, linear trends (e.g., income, temperature).
- Random Forest outperforms SVM slightly on Iris dataset without tuning.
- KMeans is good as an unsupervised learning example but less accurate than supervised methods.

Improvements

- Add error metrics (RMSE, MAE) for regression.
- Add cross-validation scores for classification robustness.
- For temperature prediction, consider seasonality trends or time-series models.
- Incorporate more features (e.g., humidity, wind) for temperature prediction.
- Use classification reports and ROC curves for deeper classification insight.