

11-10-2018 10 marks 10 min

NAME: ______ ROLL O: _____

Complete your answer within the 2 sides of this sheet. Additional sheets will neither be provided nor accepted.

Decompose the CTFS of the signal x(t) shown into $x_c(t)$ and $x_s(t)$ that result respectively from accumulating only the cosine terms and only the sine terms in its trigonometric Fourier Series expansion. Sketch both. Likewise, we could also decompose x(t) into a constant part $x_f(t)$ and a time varying part $x_v(t)$. Sketch both.

$$x(t) = \sum_{k} x_k e^{jkw_0 t} = \overline{a_0} + \sum_{k} a_k c_{es} kw_0 t + b_k s_{in} kw_0 t$$

Now, all the cosine terms yield even symmetric components and also as. On the other hand, the sim terms yield odd symmetric components. Here

$$x(t) = x_c(t) + x_s(t) : x_c(t) = \alpha_0 + \sum_{k} \alpha_k coskw_0 t$$

$$x_s(t) = \sum_{k} b_k sinkw_0 t.$$

be now know that xelt) is even, ns H) is edd. Already we also know,

$$\alpha_c(t) = \frac{\chi(t) + \chi(-t)}{2}$$
, $\alpha_s(t) = \frac{\chi(t) - \chi(-t)}{2}$

we next proceed to graphically obtain xclt) and rs(t)

x(t) ______

Constant port = any value of z(t) $x_{4}(t) = 1.25/2$. $\frac{1}{6.625}$

Xult)

x(-t)

×_b(t)=2(t)-2_f(t)

xelt)

					•
CC GGGI	2 4	AIR	MI	17	U
EE 200 Bignots, Systems & Michaelie	9 11	FILE	IUU	14	2
Eignels, Systems & Notworks	8		E		

25-10-2018 10 marks 10 min

NAME: ROLL TO:						
SECTION ROLL TO:	NAME:					
	SECTION	ROLL	0:	П	TT	

Complete your answer within the 2 sides of this sheet. Additional sheets will neither be provided nor accepted.

Find and sketch $|X(\omega)|, \angle X(\omega)$ for x(t) shown. Next, find and sketch $|X'(\omega)|, \angle X'(\omega)$ if $x'(t) = \sum_n \delta(t - nT)$

xlt) is even; Lena LX(w)=0.

$$\chi(t) = 1 + 2\delta(t) \iff 2\pi \delta(w) + 2$$

x'(t) is also even symmetric to |x'(w)| is real and Lx'(w)=0

To find IX'(w) 1. 2'1+) is periodic and we first walerate its

Using the CTFS we write the extended CTFT of x'Lt)

$$X'(\omega) = |X'(\omega)| = 2\pi \sum_{k} \chi_{k} \delta(\omega - 2\pi k) = \frac{2\pi}{T} \sum_{k} \delta(\omega - 2\pi k)$$

