

EECS 370 - Lecture 8 Combinational Logic

Announcements

- P1 and 2
 - P1 s+m due today
 - P2 posted by tomorrow
- HW 1
 - Due Monday
- Lab 4 meets Fr/M
 - Don't forget the pre-lab quiz tonight!

What do object files look like?

Source Code to Execution

Loader

- Executable file is sitting on the disk
- Puts the executable file code image into memory and asks the operating system to schedule it as a new process
 - Creates new address space for program large enough to hold text and data segments, along with a stack segment
 - Copies instructions and data from executable file into the new address space
 - Initializes registers (PC and SP most important)
- Take operating systems class (EECS 482) to learn more!

Summary

- Compiler converts a single source code file into a single assembly language file
- Assembler handles directives (.fill), converts what it can to machine language, and creates a checklist for the linker (relocation table). This changes each .s file into a .o file
- Assembler does 2 passes to resolve addresses, handling internal forward references
- Linker combines several .o files and resolves absolute addresses
- Linker enables separate compilation: Thus unchanged files, including libraries need not be recompiled.
- Linker resolves remaining addresses.
- Loader loads executable into memory and begins execution

Floating Point Arithmetic

See end of slides for bonus material (not covered in HW or exams)

Why floating point

- Have to represent real numbers somehow
- Rational numbers
 - Ok, but can be cumbersome to work with
- Fixed point
 - Do everything in thousandths (or millionths, etc.)
 - Not always easy to pick the right units
 - Different scaling factors for different stages of computation
- Scientific notation: this is good!
 - Exponential notation allows HUGE dynamic range
 - Constant (approximately) relative precision across the whole range

IEEE Floating point format (single precision)

- Sign bit: (0 is positive, 1 is negative)
- Significand: (also called the mantissa; stores the 23 most significant bits after the decimal point)
- Exponent: used biased base 127 encoding
 - Add 127 to the value of the exponent to encode:
 - $-127 \to 00000000$ $1 \to 10000000$ • $-126 \to 00000001$ $2 \to 10000001$ • ...
 - $0 \to 01111111$ $128 \to 11111111$
- How do you represent zero ? Special convention:
 - Exponent: -127 (all zeroes), Significand 0 (all zeroes), Sign + or -

Some other exception cases (e.g. NaN) we won't cover

- Step 1: convert from decimal to binary
 - 1st bit after "binary" point represents 0.5 (i.e. 2⁻¹)
 - 2nd bit represents 0.25 (i.e. 2⁻²)
 - etc.

$$1.010101 \times 2^{3}$$

Step 2: normalize number by shifting binary point until you get 1.XXX * 2^Y

Step 3: store relevant numbers in proper location (ignoring initial 1 of significand)

 What is the value of the following IEEE 754 floating point encoded number?

1 = -10000101 = 133 – 127 -> exponent 6 01011001 = mantissa -1.01011001 x 2^6 -1010110.01 -(2^6+2^4+2^2+2^1+2^-2) -(64+16+4+2+1/4) -86.25

1 10000101 0101100100000000000000

What matters to a CS person?

- What happens if you add a big number to a small number?
 - E.g.

1000 + .00001

- The larger the exponent, the larger the "gap" between numbers that can be represented
- When the smaller number is added to the larger one, it can't be represented so precisely
- It will be rounded down to zero: we end up with the same number
- This can be a real problem when writing scientific code.
 - For the above example, imagine you did that addition a million times
 - You'd still have 1000 when the answer should be 1,010
- So you need to be aware of the issue.
 - This is why most people use "double" instead of "float"
 - The problem can still exist, it's just less likely.

More precision and range

- We've described IEEE-754 binary32 floating point format, i.e. "single precision" ("float" in C/C++)
 - 24 bits precision; equivalent to about 7 decimal digits
 - 3.4 * 10³⁸ maximum value
 - Good enough for most but not all calculations
- IEEE-754 also defines larger binary64 format, "double precision" ("double" in C/C++)
 - 53 bits precision, equivalent to about 16 decimal digits
 - 1.8 * 10³⁰⁸ maximum value
 - Most accurate physical values currently known only to about 47 bits precision, about 14 decimal digits

Single ("float") precision

Next few lectures: Digital Logic

- Lectures 1-7:
 - LC2K and ARMv8/LEGv8 ISAs
 - Converting C to Assembly
 - Function Calls
 - Linking
- Today:
 - Floating Point
 - Combinational Logic
- Next lecture:
 - Sequential Logic

Up Until Now...

- We've covered high-level C code to an executable
 - Compilation
 - Assembly
 - Linking
 - Loading
- Now, we'll talk about the hardware that runs this code
 - First step: the basics of digital logic

Next 3 Lectures

- 1. Combinational Logic:
 - Basics of electronics; logic gates, muxes, decoders
- 2. Sequential Logic
 - Clocks, latches and flip-flops
- 3. State Machines and Single-Cycle Processors
 - Building a simple processor

Transistors

- At the heart of digital logic is the transistor
- Electrical engineers draw it like this

 The physics is complicated, but at the end of the day, all it is a really small and really fast electric switch

Basic gate: Inverter

CS abstraction

- logic function

Truth Table

	0
0	1
1	0

Schematic symbol (CS/EE)

Basic gates: AND and OR

Basic gate: NAND

Basic gate: XOR (eXclusive OR)

How do we fill in the truth table for XOR?

Truth Table

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

Building Complexity: Selecting

- We want to design a circuit that can select between two inputs (multiplexer or **mux**)
- Let's do a one-bit version
 - 1. Draw a truth table

Poll: How do we fill in the truth table for this?

A	В	S	0
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Symbol

$$O = S ? B : A$$

Building Complexity: Selecting

- We want to design a circuit that can select between two inputs (multiplexor or **mux**)
- Let's do a one-bit version
 - 1. Draw a truth table

Muxes are universal! A 2^N entry truth table can be implemented by passing each ouput value into an input of a 2^N—to-1 mux

LA	В	S	O
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Symbol

Building Complexity: Addition

- We want to design a circuit that performs binary addition
- Let's start by adding two bits
 - Design a circuit that takes two bits (A and B) as input
 - Generates a sum and carry bit (S and C)
 - 1. Make a truth table
 - 2. Design a circuit

	T	U	U	T	Т	
+	0	0	1	1	0	

Building Complexity: Addition

- We want to design a circuit that performs binary addition
- Let's start by adding two bits
 - Design a circuit that takes two bits (A and B) as input
 - Generates a sum and carry bit (S and C)
 - 1. Make a truth table
 - 2. Design a circuit

0 1 1 0	
10011	
+00110	
11001	

Α	В	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Building Complexity: Addition

- Now we can add two bits, but how do we deal with carry bits?
- This is a **full adder**
 - We have to design a circuit that can add three bits
 - Inputs: A, B, Cin
 - Outputs: S, Cout
 - 1. Design a truth table
 - 2. Circuit
- This is a full adder

	0	1	1	0	
	1	0	0	1	1
+	0	0	1	1	0
	1	1	0	0	1

Cir	ı A	В	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

If we invert B's bits and set C to 1, we also have a subtractor! Why?

8-bit Ripple Carry Adder

This will be very slow for 32 or 64 bit adds, but is sufficient for our needs

Building Complexity: Decoding

- Another common device is a decoder
 - Input: N-bit binary number
 - Output: 2^N bits, exactly one of which will be high
 - Allows us to index into things (like a register file)

Decoder

Poll: What will be the output for 101?

Propagation delay in combinational gates

- Gate outputs do not change exactly when inputs do.
 - Transmission time over wires (~speed of light)
 - Saturation time to make transistor gate switch
 - ⇒ Every combinatorial circuit has a propagation delay (time between input and output stabilization)

Timing in Combinational Circuits

What is the input/output delay (or simply, delay) of the MUX?

What is the delay of this Circuit?

Each oval represents one gate, the type does not matter

<u>Poll</u>: What is the delay?

Exercise

- Use the blocks we have learned about so far (full adder, NOR, mux) to build this circuit
 - Input A, 32 bits
 - Input B, 32 bits
 - Input S, 1 bit
 - Output, 32 bits
 - When S is low, the output is A+B, when S is high, the output is NOR(a,b)
- Hint: you can express multi-bit gates like this:

Exercise

- This is a basic ALU (Arithmetic Logic Unit)
- It is the heart of a computer processor!

Next Time

- Logic circuits that "remember"
 - Aka "sequential logic"

BONUS Floating Point Slides

Bonus slides – this material is not testable

- This material is here for those folks that may care.
 - You may find it useful when considering the gap between representations
 - But the material isn't directly testable.
- It is interesting if you are into that kind of thing.
- It can be useful if you are going to do scientific programming for a living.
- So it is provided as a reference, but isn't part of the class (we may cover a bit of it in lecture if we have time)

Floating point multiplication

- Add exponents (don't forget to account for the bias of 127)
- Multiply significands (don't forget the implicit 1 bits)
- Renormalize if necessary
- Compute sign bit (simple exclusive-or)

Floating point multiply

0 10000101 10101001000000000000000

$$1101010.01_2$$

= 106.25_{10}

Floating point addition

- More complicated than floating point multiplication!
- If exponents are unequal, must shift the significand of the smaller number to the right to align the corresponding place values
- Once numbers are aligned, simple addition (could be subtraction, if one of the numbers is negative)
- Renormalize (which could be messy if the numbers had opposite signs; for example, consider addition of +1.5000 and -1.4999)
- Added complication: rounding to the correct number of bits to store could denormalize the number, and require one more step

Floating point Addition

- 1. Shift smaller exponent right to match larger.
- 2.Add significands
- 3. Normalize and update exponent
- 4. Check for "out of range"

Show how to add the following 2 numbers using IEEE floating point addition: 101.125 + 13.75

13.75

Shift by 6-3=3

Shift mantissa by difference in exponent

Sum Significands

1100101001 +0001101110

1110010111

Sum didn't overflow, so no re-normalization needed

00110111000000000000000

Note: When shifting to the right, the first shift should put the implicit 1, then 0's

10000101 11001011100000000000000

= 114.875

Show how to add the following 2 numbers using IEEE floating point addition: 117.125 + 13.75

1 NVC 6

Class Problem

13.75

Shift by 6-3=3

Shift mantissa by difference in exponent

Sum Significands

1110101001 +0001101110

10000010111

00110111000000000000000

Note: When shifting to the right, the first shift should put the implicit 1, then 0's

10000110 0000010111000000000000

Súm overflows, re-normalize by adding one to exponent and shifting mantissa by one