STAT 401A - Statistical Methods for Research Workers Inference Using *t*-Distributions

Jarad Niemi (Dr. J)

Iowa State University

last updated: September 5, 2014

Random variables

From: http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html

Definition

A random variable is a function that associates a unique numerical value with every outcome of an experiment.

Definition

A discrete random variable is one which may take on only a countable number of distinct values such as 0, 1, 2, 3, 4,... Discrete random variables are usually (but not necessarily) counts.

Definition

A continuous random variable is one which takes an infinite number of possible values. Continuous random variables are usually measurements.

Random variables

Examples:

- Discrete random variables
 - Coin toss: Heads (1) or Tails (0)
 - Die roll: 1, 2, 3, 4, 5, or 6
 - Number of Ovenbirds at a 10-minute point count
 - RNAseq feature count
- Continuous random variables
 - Pig average daily (weight) gain
 - Corn yield per acre

Statistical notation

Let Y be 1 if the coin toss is heads and 0 if tails, then

$$Y \sim Bin(n, p)$$

which means

Y is a binomial random variable with n trials and probability of success p

For example, if Y is the number of heads observed when tossing a fair coin ten times, then $Y \sim Bin(10, 0.5)$.

Later we will be constructing $100(1-\alpha)\%$ confidence intervals, these intervals are constructed such that if n of them are constructed then $Y \sim Bin(n, 1-\alpha)$ will cover the true value.

Statistical notation

Let Y_i be the average daily (weight) gain in pounds for the ith pig, then

$$Y_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$$

which means

 Y_i are independent and identically distributed normal (Gaussian) random variables with expected value $E[Y_i] = \mu$ and variance $V[Y_i] = \sigma^2$ (standard deviation σ).

For example, if a litter of pigs is expected to gain 2 lbs/day with a standard deviation of 0.5 lbs/day and the knowledge of how much one pig gained does not affect what we think about how much the others have gained, then $Y_i \stackrel{iid}{\sim} N(2, 0.5^2)$.

Normal (Gaussian) distribution

A random variable Y has a normal distribution, i.e. $Y \sim N(\mu, \sigma^2)$, with mean μ and variance σ^2 if draws from this distribution follow a bell curve centered at μ with spread determined by σ^2 :

Probability density function

3

t-distribution

A random variable Y has a t-distribution, i.e. $Y \sim t_{\nu}$, with degrees of freedom ν if draws from this distribution follow a similar bell shaped pattern:

Probability density function

t-distribution

As $v \to \infty$, then $t_v \overset{d}{\to} N(0,1)$, i.e. as the degrees of freedom increase, a t distribution gets closer and closer to a standard normal distribution, i.e. N(0,1). If v>30, the differences is negligible.

Probability density function

t critical value

Definition

If $T \sim t_v$, a $t_v(1 - \alpha/2)$ critical value is the value such that $P(T < t_v(1 - \alpha/2)) = 1 - \alpha/2$ (or $P(T > t_v(1 - \alpha)) = \alpha/2$).

Probability density function t₅

Hypotheses

Three key features:

- a test statistic calculated from data
- a sampling distribution for the test statistic under the null hypothesis
- a region that is as or more extreme (one-sided vs two-sided hypotheses)

Calculate probability of being in the region:

Definition

A pvalue is the probability of observing a test statistic as or more extreme than that observed, if the null hypothesis is true.

- ullet If pvalue is less than or equal to lpha, we reject the null hypothesis.
- If pvalue is greater than α , we fail to reject the null hypothesis.

Z-statistics

Let's assume, we have

- calculated a test statistic z that
- ullet has a $Z \sim \mathcal{N}(0,1)$ sampling distribution if the null hypothesis is true.

We could easily replace z with t and have a sampling distribution that is t_v for some v.

Now, we can have one of three types of hypotheses:

- Two-sided: P(|Z| > |z|) = P(Z > |z|) + P(Z < -|z|)= 2P(Z < -|z|)
- One-sided:
 - P(Z > z) = P(Z < -z)
 - P(Z < z)

F(c) = P(Z < c) is the cumulative distribution function for the standard normal.

Symmetric distributions

The standard normal and t distributions are both symmetric around zero.

$$P(Z > c) = P(Z < -c)$$
 blue area is equal to red area

Paired t-test example

In a paired t-test, we might have

- a one-sided hypothesis that the difference is greater than zero
- a test statistic t = 2.43
- which has a t distribution with 7 degrees of freedom when the null hypothesis is true.

So we need to calculate

$$P(t_7 > 2.43) = 1 - P(t_7 < 2.43)$$

where t_7 represents a t-distribution with 7 degrees of freedom.

Using SAS or R

```
In SAS,
PROC IML;
  p = 1-CDF('T', 2.43, 7);
  PRINT p;
  QUIT;
In R.
p = 1-pt(2.43,7)
```

Both obtain p=0.0227.

Paired t-test example

In a paired t-test, we might have

- a one-sided hypothesis that the difference is greater than zero
- a test statistic t = 2.43
- which has a t distribution with 7 degrees of freedom when the null hypothesis is true.

So we need to calculate

$$P(t_7 > 2.43) = 1 - P(t_7 < 2.43) = 0.02$$

So, we reject the null hypothesis that there is no difference, but how big is the difference?

Confidence interval construction

Key steps in confidence interval construction:

- Calculate statistic
- Calculate standard error of the statistic
- Find the appropriate critical value
- Construct the interval
 - Two-sided interval:

statistic \pm critical value imes standard error

One-sided interval:

 $statistic - critical\ value \times standard\ error$

or

statistic + critical value × standard error

Critical values

A related quantity are critical values for confidence interval construction, e.g.

$$(\overline{Y}_2 - \overline{Y}_1) \pm t_v (1 - \alpha/2) SE(\overline{Y}_2 - \overline{Y}_1).$$

х

Using SAS or R

```
If \alpha = 0.05, then 1 - \alpha/2 = 0.975.
In SAS.
PROC IML;
  q = QUANTILE('T', 0.975, 7);
  PRINT q;
  QUIT;
In R,
q = qt(0.975,7)
```

Both obtain q=2.364.

Summary

Two main approaches to statistical inference:

- Statistical hypothesis (hypothesis test)
- Statistical question (confidence interval)

Cedar-apple rust

Cedar-apple rust is a (non-fatal) disease that affects apple trees. Its most obvious symptom is rust-colored spots on apple leaves. Red cedar trees are the immediate source of the fungus that infects the apple trees. If you could remove all red cedar trees within a few miles of the orchard, you should eliminate the problem. In the first year of this experiment the number of affected leaves on 8 trees was counted; the following winter all red cedar trees within 100 yards of the orchard were removed and the following year the same trees were examined for affected leaves.

- Statistical hypothesis:
 - H_0 : Removing red cedar trees increases or maintains the same mean number of rusty leaves.
 - H_1 : Removing red cedar trees decreases the mean number of rusty leaves.
- Statistical question:
 - What is the expected reduction of rusty leaves in our sample between year 1 and year 2 (perhaps due to removal of red cedar trees)?

Data

Here are the data

```
library(plyr)
y1 = c(38, 10, 84, 36, 50, 35, 73, 48)
v2 = c(32, 16, 57, 28, 55, 12, 61, 29)
leaves = data.frame(year1=y1, year2=y2, diff=y1-y2)
leaves
  year1 year2 diff
     38
           32
          16
               -6
               27
     50
        55
               -5
        12
               23
     73
           61
               12
     48
           29
               19
summarize(leaves, n=length(diff), mean=mean(diff), sd=sd(diff))
  n mean
1 8 10.5 12.2
```

Is this a statistically significant difference?

Assumptions

Let

- Y_{1j} be the number of rusty leaves on tree j in year 1
- Y_{2j} be the number of rusty leaves on tree j in year 2

Assume

$$D_j = Y_{1j} - Y_{2j} \stackrel{iid}{\sim} N(\mu, \sigma^2)$$

Then the statistical hypothesis test is

*H*₀:
$$\mu = 0 \ (\mu \le 0)$$

$$H_1$$
: $\mu > 0$

while the statistical question is 'what is μ ?'

Paired t-test pvalue

Test statistic

$$t = \frac{\overline{D_j} - \mu}{SE(\overline{D_j})}$$

where $SE(\overline{D_i}) = s/\sqrt{n}$ with

- n being the number of observations (differences) and
- s being the sample standard deviation of the differences.

If H_0 is true, then $\mu=0$ and $t\sim t_{n-1}$. The pvalue is $P(t_{n-1}>t)$ since this is a one-sided test. By symmetry, $P(t_{n-1}>t)=P(t_{n-1}<-t)$.

For these data,

- $\overline{D_i} = 10.5$
- $SE(\overline{D_j}) = 4.31$
- t = 2.43
- p = 0.02

Confidence interval for μ

The $100(1-\alpha)\%$ confidence interval has lower endpoint

$$\overline{D_j} - t_{n-1}(1-\alpha)SE(\overline{D_j})$$

and upper endpoint at infinity

For these data at 95% confidence, the lower endpoint is

$$10.5 - 1.89 \cdot 4.31 = 2.33$$

So we are 95% confident that the true difference in the number of rusty leaves is greater than 2.33.

SAS code for paired t-test

```
DATA leaves;
  INPUT tree year1 year2;
  DATALINES;
1 38 32
2 10 16
3 84 57
4 36 28
5 50 55
6 35 12
7 73 61
8 48 29
PROC TTEST DATA=leaves SIDES=U;
    PAIRED year1*year2;
    RUN;
```

,

SAS output for paired t-test

The TTEST Procedure

Difference: year1 - year2

N Std Dev Std Err Mean Minimum Maximum 10.5000 12.2007 4.3136 -6.0000 27,0000 Mean 95% CL Mean Std Dev 95% CL Std Dev 10.5000 2.3275 Infty 12.2007 8.0668 24.8317 DF t Value Pr > t

7 2.43 0.0226

SAS

R output for paired t-test

```
t.test(leaves$year1, leaves$year2, paired=TRUE, alternative="greater")
Paired t-test
data: leaves$year1 and leaves$year2
t = 2.434, df = 7, p-value = 0.02257
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
2.328 Inf
sample estimates:
mean of the differences
                   10.5
```

Statistical Conclusion

Removal of red cedar trees within 100 yards is associated with a significant reduction in rusty apple leaves (paired t-test t=2.43, p=0.023). The mean reduction in rust color leaves is $10.5 [95\% \text{ CI } (2.33,\infty)]$.

Do Japanese cars get better mileage than American cars?

- Statistical hypothesis:
 - H_0 : Mean mpg of Japanese cars is the same as mean mpg of American cars.
 - *H*₁: Mean mpg of Japanese cars is different than mean mpg of American cars.
- Statistical question:

What is the difference in mean mpg between Japanese and American cars?

- Data collection:
 - Collect a random sample of Japanese/American cars

```
mpg = read.csv("mpg.csv")
library(ggplot2)
ggplot(mpg, aes(x=mpg))+
geom_histogram(data=subset(mpg,country=="Japan"), fill="red", alpha=0.5)+
geom_histogram(data=subset(mpg,country=="US"), fill="blue", alpha=0.5)
```


Assumptions

Let

- Y_{1i} represent the jth Japanese car
- Y_{2j} represent the jth American car

Assume

$$Y_{1j} \stackrel{\textit{iid}}{\sim} N(\mu_1, \sigma^2) \qquad Y_{2j} \stackrel{\textit{iid}}{\sim} N(\mu_2, \sigma^2)$$

Restate the hypotheses using this notation

 H_0 : $\mu_1 = \mu_2$

 H_1 : $\mu_1 \neq \mu_2$

Alternatively

 H_0 : $\mu_1 - \mu_2 = 0$

 $H_1: \mu_1 - \mu_2 \neq 0$

Test statistic

The test statistic we use here is

$$\frac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{SE(\overline{Y}_1 - \overline{Y}_2)}$$

where

- \bullet \overline{Y}_1 is the sample average mpg of the Japanese cars
- ullet \overline{Y}_2 is the sample average mpg of the American cars

and

$$SE(\overline{Y}_1 - \overline{Y}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
 $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}}$

where

- \bullet s_1 is the sample standard deviation of the mpg of the Japanese cars
- \bullet s_2 is the sample standard deviation of the mpg of the American cars

Pvalue

If H_0 is true, then $\mu_1=\mu_2$ and the test statistic

$$t = \frac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{\mathsf{SE}(\overline{Y}_1 - \overline{Y}_2)} \sim t_{n_1 + n_2 - 2}$$

where t_v is a t-distribution with df degrees of freedom.

Pvalue is $P(|t_{n_1+n_2-2}| > |t|) = P(t_{n_1+n_2-2} > |t|) + P(t_{n_1+n_2-2} < -|t|)$ or as a picture

Hand calculation

To calculate the quantity by hand, we need 6 numbers:

Car	Ν	Mean	SD	
Japanese	79	30.5	6.11	
American	249	20.1	6.41	

Calculate

$$s_p = \sqrt{\frac{(79-1)\cdot 6.11^2 + (249-1)\cdot 6.41^2}{79+249-2}} = 6.34$$

$$SE(\overline{Y}_1 - \overline{Y}_2) = 6.34\sqrt{\frac{1}{279} + \frac{1}{249}} = 0.82$$

$$t = \frac{30.5 - 20.1}{0.82} = 12.6$$

Finally, we are interested in finding $P(|t_{326}| > |12.6|) < 0.0001$ which is found using a table or software.

Confidence interval

Alternatively, we can construct a $100(1-\alpha)\%$ confidence interval. The formula is

$$\overline{Y}_1 - \overline{Y}_2 \pm t_{n_1+n_2-2}(1-\alpha/2)SE(\overline{Y}_1 - \overline{Y}_2)$$

where \pm indicates plus and minus and $t_v(1-\alpha/2)$ is the value such that $P(t_v < t_v(1-\alpha/2)) = 1-\alpha/2$. If $\alpha = 0.05$ and df = 326, then $t_v(1-\alpha/2) = 1.97$.

The 95% confidence interval is

$$30.5 - 20.1 \pm 1.97 \cdot 0.82 = (8.73, 11.9)$$

We are 95% confident that, on average, Japanese cars get between 8.73 and 11.9 more mpg than American cars.

SAS code for two-sample t-test

```
DATA mpg;
    INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;
    INPUT mpg country $;
PROC TTEST DATA=mpg;
    CLASS country;
    VAR mpg;
    RUN;
```

The TTEST Procedure

Variable: mpg

coun	try	N	Mean	Std Dev	Std Err	Minimum	Maximum	
Japan	n	79	30.4810	6.1077	0.6872	18.0000	47.0000	
US		249	20.1446	6.4147	0.4065	9.0000	39.0000	
Diff	(1-2)		10.3364	6.3426	0.8190			
country	Method		Mean	95% (CL Mean	Std Dev	95% CL :	Std Dev
Japan			30.4810	29.1130	31.8491	6.1077	5.2814	7.2429
บร			20.1446	19.3439	20.9452	6.4147	5.8964	7.0336
Diff (1-2)	Pooled		10.3364	8.7252	11.9477	6.3426	5.8909	6.8699
Diff (1-2)	Sattert	hwaite	10.3364	8.7576	11.9152			
	Meth	ıod	Variance	s	DF t Value	Pr > t		
Pooled		led	Equal	3	326 12.62	<.0001		
	Satt	erthwaite	e Unequal	136.	87 12.95	<.0001		
			Equali	ty of Var	ciances			
		Method	Num DF	Den DF	F Value	Pr > F		
		Folded F	248	78	1.10	0.6194		

R code/output for two-sample t-test

```
t.test(mpg~country, data=mpg, var.equal=TRUE)

Two Sample t-test

data: mpg by country

t = 12.62, df = 326, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
8.725 11.948
sample estimates:
mean in group Japan mean in group US
30.48 20.14
```

Conclusion

Mean miles per gallon of Japanese cars is significantly different than mean miles per gallon of American cars (two-sample t-test t=12.62, p < 0.0001). Japanese cars get an average of 10.3 [95% CI (8.7,11.9)] more miles per gallon than American cars.