Family list 7 family members for: JP8166775 Derived from 5 applications.

1 Image display apparatus

Publication info: CN1115066 A - 1996-01-17 CN1129886C C - 2003-12-03

2 PICTURE DISPLAY DEVICE

Publication info: JP3207693B2 B2 - 2001-09-10 JP8166775 A - 1996-06-25

3 PICTURE DISPLAY DEVICE AND ITS DRIVING METHOD

Publication info: JP7199149 A - 1995-08-04

4 ACTIVE MATRIX TYPE PICTURE DISPLAY DEVICE

Publication info: KR168477 B1 - 1999-03-20

5 Active matrix-type image display apparatus controlling writing of display data with respect to picture elements

Publication info: US5844538 A - 1998-12-01

Data supplied from the esp@cenet database - Worldwide

DIALOG(R)File 347:JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

05211275 **Image available**

PICTURE DISPLAY DEVICE

PUB. NO.: **08-166775** [JP 8166775 A] PUBLISHED: June 25, 1996 (19960625)

INVENTOR(s): SHIRAKI ICHIRO

KUBOTA YASUSHI

APPLICANT(s): SHARP CORP [000504] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.: 06-309236 [JP 94309236]

FILED: December 13, 1994 (19941213)

INTL CLASS: [6] G09G-003/36; G02F-001/133; G09F-009/35

JAPIO CLASS: 44.9 (COMMUNICATION -- Other); 29.2 (PRECISION INSTRUMENTS --

Optical Equipment)

JAPIO KEYWORD:R011 (LIQUID CRYSTALS); R097 (ELECTRONIC MATERIALS --

Metal

Oxide Semiconductors, MOS)

ABSTRACT

PURPOSE: To improve mounting efficiency and to decrease a manufacturing cost by applying driver monolithic technology.

CONSTITUTION: This device is constituted of MOS transistors arranged to respective pixels 1... as a switching element for driving the pixels 1, a scanning signal line driving circuit 21 and a data signal line driving circuit 22 transmitting a driving signal based on display data to the MOS transistor through data signal lines 67 and a scanning signal lines 66, and a first frame memory 24 and a second frame memory 25 storing display data outputted to these driving circuits 21, 22 by one frame unit and provided on the outside of pixels on the same substrate.

(11)特許出願公開番号

特開平8-166775

(43)公開日 平成8年(1996)6月25日

(51) Int. Cl. 6		識別記号		F
G09G	3/36			
G02F	1/133	505		
G09F	9/35	305	7426-5H	

審査請求 未請求 請求項の数5 〇L (全16頁)

(21)出願番号	特願平6-309236	(71)出願人 000005049
		シャープ株式会社
(22) 出願日	平成6年(1994)12月13日	大阪府大阪市阿倍野区長池町22番22号
		(72)発明者 白木 一郎
		大阪府大阪市阿倍野区長池町22番22号 シ
		ャープ株式会社内
		(72)発明者 久保田 靖
		大阪府大阪市阿倍野区長池町22番22号 シ
		ャープ株式会社内
		(74)代理人 弁理士 原 謙三
		j

I

(54) 【発明の名称】画像表示装置

(57)【要約】

【構成】 画素1を駆動するためのスイッチング素子として各画素1…に配されたMOSトランジスタと、データ信号線67…及び走査信号線66…を介してMOSトランジスタに表示用データに基づく駆動信号を伝送する走査信号線駆動回路21及びデータ信号線駆動回路22と、これら駆動回路21・22に出力するための表示用データを1フレーム単位で記憶し、かつ画素外に設けられる第1フレームメモリ24及び第2フレームメモリ25とが同一基板上に形成されている。

【効果】 ドライバモノリシック技術を応用することにより、実装効率の向上及び低コスト化を図ることができる。

【特許請求の範囲】

【請求項1】複数のデータ信号線と、それらデータ信号線に対して交差する複数の走査信号線とを備えると共に、表示用データに基づき画像を表示するための各画素が、隣り合う各データ信号線及び隣り合う各走査信号線により囲まれた位置にそれぞれ配置された画素アレイよりなる画像表示装置において、

1

上記画素を駆動するためのスイッチング素子として各画素に配列されたMOSトランジスタと、

上記データ信号線及び走査信号線を介して上記MOSト 10 ランジスタに表示用データに基づく駆動信号を伝送する 駆動回路と、

上記駆動回路に出力するための表示用データを1フレーム単位で記憶し、かつ画素外に設けられるメモリ手段とが同一基板上に形成されていることを特徴とする画像表示装置。

【請求項2】上記メモリ手段は少なくとも2つの区分メモリ手段に区分される一方、上記表示用データにおける新たな1フレーム分の一方の区分メモリ手段への記憶と他方の区分メモリ手段における既に記憶された1フレー 20ム分の表示用データの上記駆動回路への読み出しとを交互に切り替えて行わせる切替手段と、

上記一方の区分メモリ手段による表示用データの新たな 1フレームを記憶する期間内に、他方の区分メモリ手段 における既に記憶された1フレーム分の表示用データの 上記駆動回路への読み出しを2回以上回行うことにより 同一表示用データを同一画素に2回以上繰り返して書き 込ませる繰返書込手段とが設けられていることを特徴とする請求項1記載の画像表示装置。

【請求項3】上記メモリ手段をDRAM構成、SRAM 30 構成又はEEPROM構成としたことを特徴とする請求 項1又は2記載の画像表示装置。

【請求項4】上記MOSトランジスタと駆動回路及びメモリ手段を構成する各素子とは、多結晶シリコン薄膜を半導体層としてなっていることを特徴とする請求項1、2又は3のいずれかに記載の画像表示装置。

【請求項5】上記基板は電気絶縁性を有するガラス基板からなっており、上記各手段を構成する素子が600℃以下のプロセス温度で形成されていることを特徴とする請求項1、3又は4のいずれかに記載の画像表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、マトリクス状に表示用 画素を有する画像表示装置に関するものである。

[0002]

【従来の技術】薄型パネルディスプレイとして代表的なものの一つにアクティブマトリクス型の液晶表示装置が知られている。上記アクティブマトリクス型の液晶表示装置では、図12に示すように、液晶容量71及び補助容量72からなる画素容量73と非晶質シリコンからな

る薄膜トランジスタ(Thin Film Transistor)スイッチング素子(以下、「TFT」と称する)74とからなる画素75を、図13に示すように、マトリクス状に配列して画素アレイ70として形成し、これを表示用電極基板として用いている。

【0003】上記の画素75はガラス板等の光透過型の 絶縁基板上に形成されており、この絶縁基板上には、図 12に示すように、その他に、TFT74に接続されて 画素75を駆動するためのデータ信号線76や走査信号 線77等の各配線も併せて形成されている。そして、こ れら各画素75…が隣り合う各データ信号線76…及び 隣り合う各走査信号線77…により囲まれた位置にそれ ぞれ配置されたものとなっている。

【0004】この種の液晶表示装置は、画像の表示品位が高く、また表示用電極基板として利用される絶縁基板の面積の大きさに制約が少なく、かつ反射型、透過型のいずれにも適用可能なため、広く実用に供されている。 【0005】ところで、液晶表示装置では、スイッチング素子を備えた画素にデータ信号及び走査信号を供給するための駆動回路を表示用電極基板に接続する必要がある。

【0006】駆動回路と表示用電極基板との接続方法としては、ポリイミド樹脂薄膜ベース等に銅薄膜線を多数形成してなる接続フィルムを用いるフィルムキャリア方式や表示用電極基板上に直接駆動回路を実装するCOG (Chip On Glass)方式等がある。

【0007】これに対し、近年では表示電極基板におけるスイッチング素子の形成に際して、駆動回路とスイッチング素子とを一体形成し、回路素子の実装効率を向上させるドライバモノリシック技術の開発が行われている。

【0008】しかし、スイッチング素子として一般的に 用いられる非晶質シリコン薄膜を半導体層とした非晶質 シリコンのTFTを用いたのでは駆動能力が不足し、ド ライバモノリシック技術を実現させるには困難である。

【0009】そこで、駆動能力の高い多結晶シリコン薄膜を半導体層とした多結晶シリコンのTFTを用いたドライバモノリシック技術の開発が進められている。

【0010】ここで、一般的なドライバモノリシック型アクティブマトリクス画像表示装置について詳述する。【0011】図14に示すように、多結晶シリコンからなるTFTを用いたMOS(Metaloxide Semiconductor)トランジスタは、絶縁基板81に多結晶シリコンからなる半導体層82を形成し、次いで、ゲート絶縁膜83及びゲート電極84を形成した後、半導体層82にソース電極85及びドレイン電極86を形成し、さらに、層間絶縁膜87及び金属配線層88・89を形成した後、保護膜90を形成した構造である。

接置では、図12に示すように、液晶容量71及び補助 【0012】上記ゲート電極84は上記走査信号線77容量72からなる画素容量73と非晶質シリコンからな 50 に、ソース電極85はデータ信号線76に、並びにドレ

イン電極86は液晶容量71及び補助容量72に接続さ れている。なお液晶容量71及び補助容量72の反対側 の端子は共通電極に接続されている。

【0013】また、上記各データ信号線76…は、表示 用データを供給するデータ信号線駆動回路78に接続さ れ、各走査信号線77…は走査信号を供給する走査信号 線駆動回路79にそれぞれ接続されている。そして、上 記データ信号線駆動回路78及び走査信号線駆動回路7 9は、これらにタイミング信号を送るタイミングコント ローラ80に接続されている。

【0014】上記タイミングコントローラ80は、図1 3に示すように、各画素75…に表示すべきデータの電 圧、及び表示を行う際の位置決めを行うための水平、垂 直同期信号等を生成し、これら信号を基にデータ信号線 駆動回路78にて1水平期間分の表示用データをサンプ リングし、このサンプリングされた信号をタイミングコ ントローラ80にて生成した転送信号により上記データ 信号線76に出力する。

【0015】一方、走査信号線駆動回路79では、図1 2に示すように、走査信号線77がアクティブ状態であ 20 るときにデータ信号線76上を送られている表示用デー タがTFT74を介して液晶容量71に書き込まれる。 液晶容量71に書き込まれた電荷により液晶層の透過 率、或いは反射率が変調され表示が維持される。そし て、表示用データの垂直周波数が60Hzであればイン ターレース方式では1/30秒、ノンインターレース方 式では1/60秒で1画面の表示、つまり1フレームが 完了する。

【0016】ところで、液晶容量71にはこの液晶容量 71と並列に比較的高抵抗の抵抗成分が存在すると共 に、OFF状態のTFT74にも抵抗成分が存在する。 このため、蓄積された電荷がこれら抵抗成分を介してリ 一クし、次のフレームによって再びこの画素75に表示 用データが書き込まれるまでに画素電極の電位が変化す る。さらに、ドライバモノリシック技術を実現するため に必要不可欠である多結晶シリコンのTFTをスイッチ ング素子として用いた場合には、該トランジスタのOF F特性は非晶質シリコンのTFTと比較すると劣悪であ るために、さらに表示品位の劣化を招いていた。したが って、上記不具合を低減させるために液晶容量と並列に 40 比較的大きな値を有する補助容量72を設けることが通 例とされている。

[0017]

【発明が解決しようとする課題】しかしながら、上記従 来の液晶表示装置では、ドライバモノリシック技術を実 現するために必要不可欠である多結晶シリコンのTFT 74をスイッチング素子として用いた場合、この多結晶 シリコンのTFT74のOFF特性が非晶質シリコンの TFT74と比較すると劣悪であるために、表示電位が

持されないという表示品位の劣化等が問題となってい

【0018】また、上記不具合を低減させるために液晶 容量71と並列に比較的大きな値を有する補助容量72 を設けるという対策が施されているが、この補助容量7 2の存在によって画素 75の開口率が低下していた。 【0019】そこで、これらの問題を解決するために、 表示用データを各画素の補助容量で保持するのではな く、画素外に各画素に対応させて設けたメモリを用いて 10 表示用データを保持する構成が提案できる。

【0020】しかしながら、上記画素外にメモリを設 け、メモリを形成する基板と画素アレイを形成する基板 とを別々にした場合には、その接続が煩雑となり、画像 表示装置の実装効率を向上させるというドライバモノリ シック技術の利点を損なうという問題点を有している。 【0021】本発明は、上記従来の問題点に鑑みなされ たものであって、その目的は、多結晶シリコンTFTを スイッチング素子として用いた場合においても、ドライ パモノリシック技術を実現し得ると共に、多結晶シリコ ンTFTのOFF特性の不足を補い、画素開口率の向上 を図り、良好な表示品位を確保し得る画像表示装置を提 供することにある。

[0022]

【課題を解決するための手段】請求項1記載の発明の画 像表示装置は、上記課題を解決するために、複数のデー 夕信号線と、それらデータ信号線に対して交差する複数 の走査信号線とを備えると共に、表示用データに基づき 画像を表示するための各画素が、隣り合う各データ信号 線及び隣り合う各走査信号線により囲まれた位置にそれ ぞれ配置された画素アレイよりなる画像表示装置におい て、上記画素を駆動するためのスイッチング素子として 各画素に配列されたMOSトランジスタと、上記データ 信号線及び走査信号線を介して上記MOSトランジスタ に表示用データに基づく駆動信号を伝送する駆動回路 と、上記駆動回路に出力するための表示用データを1フ レーム単位で記憶し、かつ画素外に設けられるメモリ手 段とが同一基板上に形成されていることを特徴としてい

【0023】請求項2記載の発明の画像表示装置は、上 記課題を解決するために、請求項1記載の画像表示装置 において、上記メモリ手段は少なくとも2つの区分メモ リ手段に区分される一方、上記表示用データにおける新 たな1フレーム分の一方の区分メモリ手段への記憶と他 方の区分メモリ手段における既に記憶された1フレーム 分の表示用データの上記駆動回路への読み出しとを交互 に切り替えて行わせる切替手段と、上記一方の区分メモ リ手段による表示用データの新たな1フレームを記憶す る期間内に、他方の区分メモリ手段における既に記憶さ れた1フレーム分の表示用データの上記駆動回路への読 減衰して画素75に書き込まれた表示用データが十分保 50 み出しを2回以上回行うことにより同一表示用データを

同一画素に2回以上繰り返して書き込ませる繰返書込手 段とが設けられていることを特徴としている。

【0024】請求項3記載の発明の画像表示装置は、上 記課題を解決するために、請求項1又は2記載の画像表 示装置において、上記メモリ手段をDRAM (Dynamic Random Access Memory) 構成、SRAM(Static Random Access Memory) 構成又はEEPROM(Electrical Er asable Programable Read Only Memory)構成としたこと を特徴としている。

【0025】請求項4記載の発明の画像表示装置は、上 10 記課題を解決するために、請求項1、2又は3のいずれ かに記載の画像表示装置において、上記MOSトランジ スタと駆動回路及びメモリ手段を構成する各素子とは、 多結晶シリコン薄膜を半導体層としてなっていることを 特徴とする請求項1、2又は3のいずれかに記載の画像 表示装置。

【0026】請求項5記載の発明の画像表示装置は、上 記課題を解決するために、請求項1、3又は4のいずれ かに記載の画像表示装置において、上記基板は電気絶縁 性を有するガラス基板からなっており、上記MOSトラ 20 イパモノリシック技術を実現させるには困難である。 ンジスタ、駆動回路、及びメモリ手段の各手段を構成す る素子が600℃以下のプロセス温度で形成されている ことを特徴としている。

[0027]

【作用】請求項1の構成によれば、画素を駆動するMO Sトランジスタと、駆動信号を伝送する駆動回路と、表 示用データを1フレーム単位で記憶するメモリ手段とが 同一基板上に形成されている。これにより、実装効率の 向上及び低コスト化を図ることができる。

【0028】請求項2の構成によれば、新たな1フレー 30 ム分の表示用データは、切替手段によって、少なくとも 2つの区分メモリ手段のいずれかに記憶される。そし て、一方の区分メモリ手段への記憶が行われる期間内 に、他方の区分メモリ手段における既に記憶された1フ レーム分の表示用データの駆動回路への読み出しが上記 切替手段によって行われる。そして、切替手段は、上記 少なくとも2つの区分メモリ手段への記憶と読み出しと を交互に切り替えて行わせる。これによって、表示デー 夕の記憶と各駆動手段への読み出しとを同時に行うこと ができる。

【0029】一方、他方の区分メモリ手段における既に 記憶された1フレーム分の表示用データの上記駆動回路 への読み出しに際しては、一方の区分メモリ手段によっ て表示用データの新たな1フレームを記憶させる期間内 に、他方の区分メモリ手段における既に記憶された1フ レーム分の表示用データの上記駆動回路への読み出しを 2回以上行うことにより繰返書込手段が同一表示用デー 夕を同一画素に2回以上書き込ませる。

【0030】この結果、新たな1フレームの表示用デー

に繰り返し書き込ませるので、画素に要求されるデータ 保持時間が短縮され、保持率が向上する。したがって、 多結晶シリコンTFTをスイッチング素子として用いた 場合においても、多結晶シリコンTFTのOFF特性の 不足を補い、良好な表示品位を確保することができる。

【0031】また、各画素の補助容量を廃止するか又は 補助容量の該容量値を小さくすることができるので、画 素開口率の向上を図ることができ、かつ画素回路規模の 縮小を図り、ひいては良品率の向上及び髙精細化が可能 となる。

【0032】また、請求項3の構成によれば、上記メモ リ手段をDRAM構成、SRAM構成、又はEEPRO M構成としているので、既存のDRAM、SRAM又は EEPROMの技術を活用して、MOSトランジスタ、 駆動回路及びメモリ手段を同一基板上に容易に形成する ことができる。

【0033】一方、スイッチング素子として一般的に用 いられる非晶質シリコン薄膜を半導体層とした非晶質シ リコンTFTを用いたのでは、駆動能力が不足し、ドラ

【0034】しかし、請求項4の構成によれば、MOS トランジスタは、駆動能力が高い多結晶シリコン薄膜を 半導体層としてなっているので、メモリ手段及び駆動回 路とスイッチング素子とをモノリシックに形成すること ができる。

【0035】しかも、メモリ手段は、フレーム周期以下 の時間毎にデータを書き換えることにより、リーク電流 の大きい多結晶シリコンTFTを用いたメモリにおいて も、リークによるデータの消失を防ぐことができ、これ によって、通常のDRAMで行われているようなリフレ ッシュ動作を必要としない。また、多結晶シリコン薄膜 を用いたMOSトランジスタのOFF特性の不足を充分 に補うことができる。

【0036】また、請求項5の構成によれば、基板上に 形成されるMOSトランジスタ、駆動回路及びメモリ手 段を構成する素子がプロセス温度600℃以下で形成さ れているので、安価な低融点のガラス基板が使用可能と なり、これによって、装置の大型化、低コスト化が可能 となる。

[0037] 40

【実施例】

〔実施例1〕本発明の一実施例について図1ないし図7 に基づいて説明すれば、以下の通りである。

【0038】本実施例の画像表示装置としての例えば液 晶表示装置は、アクティブマトリクス型の液晶表示装置 に適用されるものであり、図1に示すように、複数の画 素1…をm×nのマトリクス状に配した画素アレイ2を 有している。

【0039】上記画素1は、図2に示すように、液晶容 夕が記憶される期間内に、同一表示用データを同一画素 50 量61及び補助容量62からなる画素容量63と多結晶

シリコンの半導体層からなるMOS (Metal Oxide Semi conductor)トランジスタ64とからなっている。

【0040】また、画素1はガラス基板等の光透過型の 後述する絶縁基板5上に形成されており、この絶縁基板 5上には、MOSトランジスタ64に接続されて画素1 を駆動するためのデータ信号線66や走査信号線67も 併せて形成されている。そして、隣り合う各データ信号 線66…及び隣り合う各走査信号線67…により囲まれ た位置に各画素 1 …がそれぞれ配置されたものとなって

【0041】上記の各データ信号線66…及び各走査信 号線67…は、図1に示すように、画素アレイ2の横で 上記絶縁基板5上に一体に形成された駆動回路としての 走査信号線駆動回路21及びデータ信号線駆動回路22 にそれぞれ接続されると共に、後述する第1フレームメ モリ24及び第2フレームメモリ25も合わせてこの絶 縁基板5上に形成されている。したがって、同図におい て一点鎖線で示す各画素 1 …のMOSトランジスタ64 …、走査信号線駆動回路21及びデータ信号線駆動回路 22、並びに第1フレームメモリ24及び第2フレーム 20 メモリ25が同一絶縁基板5上に形成されていることに なり、これによって、回路素子の実装効率を向上させる ドライバモノリシック技術の適用が図られている。以 下、これらの構造を順に説明する。

【0042】上記の走査信号線駆動回路21及びデータ 信号線駆動回路22は、繰返書込手段としてのタイミン グコントローラ23に接続されている。また、データ信 号線駆動回路22は、メモリ手段としての第1フレーム メモリ24又は第2フレームメモリ25を介して表示用 データに接続される一方、上記第1フレームメモリ24 30 及び第2フレームメモリ25には、切替手段としての上 記タイミングコントローラ23からの切替信号がそれぞ れ入力されている。

【0043】上記タイミングコントローラ23は、各画 素1…に表示すべきデータの電圧、及び表示を行う際の 位置決めを行うための水平・垂直同期信号等を生成し、 これらの信号を基にデータ信号線駆動回路22にて1水 平期間分の表示用データをサンプリングする。次いで、 タイミングコントローラ23は、サンプリングされた上 記信号をタイミングコントローラ23で生成した転送信 40 号によりデータ信号線66に出力する。

【0044】上記の第1フレームメモリ24及び第2フ レームメモリ25は、書き込みと読み出しとを1フレー ム毎、すなわちフレーム周波数が60Hzの場合には1 6.67msec毎に交互に行う。なお、1フレームと は、画素アレイ2全体で表示される完結した1画像をい

【0045】また、本実施例においては、上記メモリ手 段及び一方の区分メモリ手段としての第1フレームメモ ての第2フレームメモリ25は、合計2つのメモリに区 分されているが、必ずしもこれに限らず、それ以上の数 でも良い。

【0046】ところで、本実施例では、第1フレームメ モリ24及び第2フレームメモリ25を構成するメモリ セルは、図3に示すように、スイッチング素子とキャパ シタとを備えたDRAMと同様の構造を有している。な お、第1フレームメモリ24又は第2フレームメモリ2 5におけるメモリ容量は、下記の条件を満たすように構 10 成されている。

【0047】メモリ容量≥画素数×色数×階調数 ここで、色数は、カラーでは3、白黒では1となる。ま た、階調数は、256階調では8、64階調では6、8 階調では3となる。

【0048】上記の第1フレームメモリ24及び第2フ レームメモリ25を形成する場合には、まず、絶縁基板 5上に、多結晶シリコンからなる半導体層8及び多結晶 シリコン半導体からなる第1容量電極9を形成し、これ らの上にゲート絶縁膜10を形成する。次いで、半導体 層8におけるゲート絶縁膜10の上にゲート電極11を 形成する一方、第1容量電極9におけるゲート絶縁膜1 0の上に第2容量電極12を形成する。

【0049】次いで、上記の半導体層8にはソース電極 13及びドレイン電極14を形成する。さらに、層間絶 縁膜15を形成した後、後述するピットライン7となる 金属配線16、ドレイン電極14と第2容量電極12と を接続する金属配線層17、及び中間電位であるHVC C端子と第1容量電極9とを接続する金属配線18を形 成する。最後に保護膜19を形成する。

【0050】上記の構成は、図4に示す回路と等価にな っており、半導体層8等から形成されるスイッチング素 子であるメモリ用MOSトランジスタ4と第1容量電極 9及び第2容量電極12からなるデータ保持容量3とが 一体化して1つのメモリセルとして形成されており、D RAM (Dynamic Random Access Memory) と同様の構造 となっている。

【0051】上記のメモリ用MOSトランジスタ4にお ける上記金属配線16はビットライン7に接続される一 方、上記のゲート電極11はワードライン6に接続され る。

【0052】また、メモリ用MOSトランジスタ4のド レイン電極14がデータ保持容量3に接続される。

【0053】そして、ワードライン6に所定の電圧を印 加することによりメモリ用MOSトランジスタ4がON し、ビットライン7に供給される表示用データがデータ 保持容量3に記憶される。また、読み出しも同様に、ワ ードライン6に所定の電圧を印加するとメモリ用MOS トランジスタ4がONし、データ保持容量3に記憶され ている表示用データがピットライン?を通して読み出さ リ24並びにメモリ手段及び他方の区分メモリ手段とし 50 れる。したがって、本実施例の液晶表示装置における第

10

9

1フレームメモリ24及び第2フレームメモリ25は、 DRAMと同様の動作を行う。しかも、通常のDRAM では外部にリフレッシュ回路が必要であるが、本実施例 の駆動法においては、後述するように、第1フレームメ モリ24及び第2フレームメモリ25を使用して、1フ レーム期間の1/z毎、すなわちフレーム周波数が60 Hzの場合には、16.67×1/z [msec] 毎に 表示用データが読み出し及び再售き込みされるので、こ れによって該リフレッシュ回路を不要とすることができ る。

【0054】さらに、本実施例では、絶縁基板5は、安 価な低融点のガラス基板を使用しており、上記の画素1 のMOSトランジスタ64、第1フレームメモリ24及 び第2フレームメモリ25、並びに走査信号線駆動回路 21及びデータ信号線駆動回路22も600℃以下のプ ロセス温度で形成されている。

【0055】上記の構成を有する液晶表示装置の動作に ついて説明する。図5に示すように、最初の状態t。で は、上記タイミングコントローラ23にて生成された切 行い、第2フレームメモリ25が読み出しを行うモード になっているものとする。ただし、第2フレームメモリ 25には既に1フレーム前の表示用データが記憶されて いるものとする。

【0056】この状態で、第1フレームメモリ24は、 1フレーム期間内に現フレームの表示用データを書き込 み、記憶する。

【0057】この動作と平行して第2フレームメモリ2 5は、既に記憶されている1フレーム前の表示用データ の読み出しを1フレーム期間内に2回(2は2以上の整 30 数)繰り返して行う。この読み出された1フレーム前の 表示用データは、図1に示すように、データ信号線駆動 回路22に入力され、タイミングコントローラ23から のタイミング信号によりサンプリングされ、データ信号 線66に出力される。

【0058】これと同時にタイミングコントローラ23 からのタイミング信号により走査信号線駆動回路21か らも走査信号が出力され表示用データが所定の画素1に **書き込まれる。**

【0059】すなわち、タイミングコントローラ23 は、第2フレームメモリ25の読み出し速度に対応し で、1フレーム期間(フレーム周波数が60H2の場合 には16.67/z [msec]) 以内でn本分の走査 信号が出力できるようなタイミングで走査信号線駆動回 路21を動作させると共に、それぞれの走査信号のパル ス内でm個の表示用データのサンプリングと書き込みと を行えるような周波数でデータ信号線駆動回路22も動 作させる。この結果、データ信号線駆動回路22及び走 査信号線駆動回路21の動作周波数は、1フレーム期間 内に各画素 1…に 1 回表示用データを書き込む動作を行 50 多結晶シリコンTFTをスイッチング素子として用いた

った場合の動作周波数の2倍となる。

【0060】このように、本実施例の液晶表示装置で は、画素1…を駆動するMOSトランジスタ64と、駆 動信号を伝送する走査信号線駆動回路21及びデータ信 号線駆動回路22と、表示用データを1フレーム単位で 記憶する第1フレームメモリ24及び第2フレームメモ リ25とが同一絶縁基板5上に形成されている。これに より、実装効率の向上及び低コスト化を図ることができ る。

【0061】また、これらを全て同一絶縁基板5上に形 成することによって、既存プロセスにデータ保持容量3 の製造工程のみを追加することによって、又は補助容量 62と同様の工程でモノリシックに形成可能な第1フレ ームメモリ24及び第2フレームメモリ25を用いるこ とによって、さらに実装効率の向上及び低コスト化を図 ることができる。

【0062】また、本実施例の液晶表示装置では、新た な1フレーム分の表示用データは、タイミングコントロ ーラ23によって、第1フレームメモリ24又は第2フ り替え信号により第1フレームメモリ24が書き込みを 20 レームメモリ25のいずれかに記憶される。そして、例 えば、第1フレームメモリ24への記憶が行われる期間 内に、第2フレームメモリ25における既に記憶された 1フレーム分の表示用データの走査信号線駆動回路21 及びデータ信号線駆動回路22への読み出しが上記タイ ミングコントローラ23によって行われる。そして、タ イミングコントローラ23は、上記2個の第1フレーム メモリ24及び第2フレームメモリ25への記憶と読み 出しとを交互に切り替えて行わせる。これによって、表 示データの記憶と各駆動回路21・22への読み出しと を同時に行うことができる。

> 【0063】一方、第2フレームメモリ25における既 に記憶された1フレーム分の表示用データの走査信号線 駆動回路21及びデータ信号線駆動回路22への読み出 しに際しては、タイミングコントローラ23が、第1フ レームメモリ24によって表示用データの新たな1フレ **一ムを記憶させる期間内に、第2フレームメモリ25に** おける既に記憶された1フレーム分の表示用データの走 査信号線駆動回路21及びデータ信号線駆動回路22へ の読み出しを2回以上の2回行うことにより、1フレー 40 ム期間に、同一表示用データを同一画素1に2回以上の z回書き込ませる。

【0064】この結果、新たな1フレームの表示用デー 夕が記憶される期間内に、同一表示用データを同一画素 1に繰り返し書き込ませるので、画素1に要求されるデ ータ保持時間が短縮され、保持率が向上する。すなわ ち、図6に示すように、画素容量63の電位は、時間の 経過に伴い減衰するが、これを必要電位にまで減衰する 時間T。以内に再度電位を高めることによって、絶えず 表示の必要電位を確保することができる。したがって、

場合においても、多結晶シリコンTFTのOFF特性の 不足を補い、良好な表示品位を確保することができる。 【0065】また、各画素1…の補助容量62を廃止す るか又は補助容量62の該容量値を小さくすることがで きるので、画案開口率の向上を図ることができ、かつ画 素回路規模の縮小を図り、ひいては良品率の向上及び高 精細化が可能となる。

【0066】また、本実施例の液晶表示装置は、第1フ レームメモリ24及び第2フレームメモリ25がDRA Mと同様の構造となっており、既存のDRAMの技術を 10 活用することができる。

【0067】さらに、DRAM構成とすることで、第1 フレームメモリ24及び第2フレームメモリ25の占め る面積を小さくすることが可能となる。

【0068】一方、スイッチング素子として一般的に用 いられる非晶質シリコン薄膜を半導体層とした非晶質シ リコンTFTを用いたのでは、駆動能力が不足し、ドラ イバモノリシック技術を実現させるには困難である。

【0069】しかし、本実施例では、MOSトランジス 夕64は、多結晶シリコン薄膜を半導体層としてなって 20 いるので、従来用いていた非晶質シリコンよりも大幅に キャリア移動度を稼ぐことができ、駆動能力が高い。ま た、第1フレームメモリ24及び第2フレームメモリ2 5及び走査信号線駆動回路21及びデータ信号線駆動回 路22を構成する各素子も同様に多結晶シリコン薄膜を 用いることでモノリシックに形成することができる。

【0070】しかも、第1フレームメモリ24及び第2 フレームメモリ25は、フレーム周期以下の時間毎にデ ータを書き換えるので、リーク電流の大きい多結晶シリ コンTFTを用いたメモリにおいても、リークによるデ 30 ータの消失を防ぐことができ、これによって、通常のD RAMで行われているようなリフレッシュ動作を必要と しない。さらに、多結晶シリコン薄膜を用いたMOSト ランジスタ64のOFF特性の不足を充分に補うことが できる。

【0071】また、絶縁基板5上に形成されるMOSト ランジスタ64、データ信号線駆動回路22及び走査信 号線駆動回路21、第1フレームメモリ24及び第2フ レームメモリ25を構成する素子がプロセス温度600 ℃以下で形成されているので、安価な低融点のガラス基 40 板が使用可能となり、これによって、装置の大型化、低 コスト化が可能となる。

【0072】なお、本発明は、上記の実施例に限定され るものではなく、本発明の範囲内で種々の変更が可能で ある。例えば、上記実施例では、データ信号線駆動回路 22は、ディジタル信号入力用となっているが、特にこ れに限定するものではなく、例えば、アナログ信号入力 用とすることも可能である。

【0073】すなわち、データ信号線駆動回路22がア

ログ表示用データをデジタル信号に変換するA/Dコン パータ31を第1フレームメモリ24及び第2フレーム メモリ25への入力前に設けると共に、第1フレームメ モリ24及び第2フレームメモリ25とデータ信号線駆 動回路22との間に、D/Aコンバータ32及び極性反 転回路33を直列に接続する。上記D/Aコンバータ3 2は、デジタル信号をもとのアナログ表示用データに変 換するものである。また、極性反転回路33は、図8

(a)~(d)に示すように、画素アレイ2における各 画素1…の液晶に同一方向にのみ電界をかけていると液 晶の寿命が短くなるので、1フレーム毎にフレーム反 転、フレーム+1水平ライン反転、フレーム+1垂直ラ イン反転又はフレーム+ドット反転等の反転を行うもの である。なお、この反転駆動は、デジタル信号入力の場 合にも必要なものである。

【0074】これによって、アナログ表示用データにお いても、画像表示が可能となる。

【0075】また、上記第1フレームメモリ24及び第 2フレームメモリ25は、上述の構成に限らず、いかな る能動素子を用いても良く、例えばMIM (Metal Insu lator Metal)素子等を用いることも可能である。さら に、第1容量電極9及び第2容量電極12の構成も既存 プロセスにおける導電性材料であることが望ましいが、 他の材料を用いても所望の容量が得られればいかなる構 成であっても良い。

【0076】〔実施例2〕本発明の他の実施例を図9及 び図10に基づいて説明すれば、以下の通りである。な お、説明の便宜上、前記の実施例1の図面に示した部材 と同一の機能を有する部材については、同一の符号を付 し、その説明を省略する。

【0077】本実施例の液晶表示装置におけるフレーム メモリは、図9に示すように、前記第1フレームメモリ 24及び第2フレームメモリ25を構成する各メモリセ ___ ルが多結晶シリコンのメモリトランジスタ41からなっ ている。

【0078】上記の多結晶シリコンのメモリトランジス タ41からなる第1フレームメモリ24及び第2フレー ムメモリ25を形成する場合には、図10に示すよう に、まず、絶縁基板5上に、多結晶シリコンからなる半 導体層 8 を形成し、この上に第 1 ゲート絶縁膜 1 0 a 及 びフローティングゲート42を積層する。上記半導体層 8にはn型の不純物が注入されている。次いで、半導体 層8にソース電極13及びドレイン電極14を形成す る。次いで、第2ゲート絶縁膜10bを積層し、さらに この第2ゲート絶縁膜10 b上にゲート電極11を形成 する。次いで、層間絶縁膜15を形成した後、上記ビッ トライン7となる金属配線16、及びドレイン電極14 と接地するための金属配線44を形成する。最後に保護 膜19を形成する。なお、上記のゲート電極11はワー ナログ信号入力用の場合には、図7に示すように、アナ 50 ドライン6に接続される。この構造は、EEPROM(E

lectrical Erasable Programable Read Only Memory) & 同様の構造となっている。

【0079】上記のメモリセルの動作原理を説明する。 初期状態としてフローティングゲート42に電荷がない 状態とする。まず、ゲート電極11に該トランジスタの 閾値電圧よりも少しでも高い電圧が印加されるとソース 電極13及びドレイン電極14間に電流が流れるように なる。次に、フローティングゲート42に電子がホット エレクトロン注入等で注入されている場合にゲート電極 11にプラス電圧が印加されると、フローティングゲー 10 ト42の電荷によりプラス電圧が相殺されるが、さらに 大きなプラス電圧を印加することによりチャネルに電子 が誘起され、ソース電極13及びドレイン電極14間に 電流が流れるようになる。このようにフローティングゲ ート42に電子が注入されている場合に、該トランジス タがONするためにはゲート電極11に電源電圧よりも 高い電圧を印加する必要があるように、つまり通常のゲ ート電圧では電流が流れないようにすることができる。 すなわち、フローティングゲート42中の電荷の有無に よって"0"、"1"が記憶可能となる。これによっ て、第1フレームメモリ24及び第2フレームメモリ2 5をON/OFFすることができる。

【0080】このように、本実施例の液晶表示装置は、 第1フレームメモリ24及び第2フレームメモリ25が EEPROMと同様の構造となっている。したがって、 既存のEEPROMの技術を活用して、実施例1で説明 した1フレームの期間内に繰返し書込みを行うという駆 動法の適用を図ることができる。また、第1フレームメ モリ24及び第2フレームメモリ25をEEPROM構 成としたことで、書込み及び消去に時間がかかるという 30 面もあるが、メモリの保持能力を向上させ、かつ面積も 小さくできる。

【0081】なお、本実施例における第1フレームメモ リ24及び第2フレームメモリ25は、必ずしも上述の 構成に限らず、例えば、フローティングゲート42を有 し、該フローティングゲート42中の電荷の有無により "0"、"1"を記憶する機能を有するものであればい かなる構成であってもよい。

【0082】〔実施例3〕本発明の他の実施例を図11 に基づいて説明すれば、以下の通りである。なお、説明 40 レーム単位で記憶し、かつ画素外に設けられるメモリ手 の便宜上、前記の実施例1及び実施例2の図面に示した 部材と同一の機能を有する部材については、同一の符号 を付し、その説明を省略する。

【0083】本実施例の液晶表示装置におけるフレーム メモリは、図11に示すように、第1フレームメモリ2 4及び第2フレームメモリ25のメモリセルが、スイッ チング素子である2つの選択用MOSトランジスタ51 ・52と、これら選択用MOSトランジスタ51・52 の間に接続される第1インパータ53及び第2インパー 夕54とから構成されている。

【0084】上記の第1インバータ53及び第2インバ 一夕54は、第1インパータ53の出力が第2インパー **夕54の入力に接続され、同様に、第2インパータ54** の出力が第1インパータ53の入力へと接続されたフリ ップフロップ構成となっている。

【0085】そして、上記選択用MOSトランジスタ5 1・52の他方の電極はピットライン7a及びピットラ イン7 b にそれぞれ接続される一方、ゲート電極はワー ドライン6にそれぞれ接続されている。したがって、こ の第1フレームメモリ24及び第2フレームメモリ25 は、SRAM(Static Random Access Memory) と同様の 構成となっている。

【0086】次に、上記メモリセルの動作原理について 説明する。まず、選択用MOSトランジスタ51・52 がON状態の時に、例えばビットライン7aに"1"が 供給され、かつビットライン7bに"0"が供給されて いるとするとA点には"1"が、B点には"0"がフリ ップフロップに書き込まれ、選択用MOSトランジスタ 51・52がOFF状態となってもA点には"1"が、 B点には"0"が保持し続けられる。そして、再び選択 用MOSトランジスタ51・52がON状態となった時 に、ビットライン?aには"1"が、ビットライン?b には"0"が読み出される。

【0087】このように、本実施例の液晶表示装置で は、第1フレームメモリ24及び第2フレームメモリ2 5の構成がSRAMと同様の構成となっている。したが って、既存のSRAMの技術を活用して、実施例1で説 明した1フレームの期間内に繰返し書込みを行うという 駆動法の適用を図ることができる。また、第1フレーム メモリ24及び第2フレームメモリ25をSRAM構成 としたことで、メモリの保持能力を向上させることがで きる。

[0088]

【発明の効果】請求項1の発明の画像表示装置は、以上 のように、画素を駆動するためのスイッチング素子とし て各画素に配されたMOSトランジスタと、上記データ 信号線及び走査信号線を介して上記MOSトランジスタ に表示用データに基づく駆動信号を伝送する駆動回路 と、上記駆動回路に出力するための表示用データを1フ 段とが同一基板上に形成されている構成である。

【0089】これにより、実装効率の向上及び低コスト 化を図ることができるという効果を奏する。

【0090】請求項2の発明の画像表示装置は、以上の ように、請求項1の画像表示装置において、上記メモリ 手段は少なくとも2つの区分メモリ手段に区分される― 方、上記表示用データにおける新たな1フレーム分の一 方の区分メモリ手段への記憶と他方の区分メモリ手段に おける既に記憶された1フレーム分の表示用データの上 50 記駆動回路への読み出しとを交互に切り替えて行わせる

AVAILABLE COPY 切替手段と、上記一方の区分メモリ手段による表示用データの新たな1フレームを記憶する期間内に、他方の区分メモリ手段における既に記憶された1フレーム分の表示用データの上記駆動回路への読み出しを2回以上回行うことにより同一表示用データを同一画素に2回以上繰り返して告き込ませる繰返啓込手段とが設けられている構成である。

【0091】これにより、新たな1フレームの表示用データが記憶される期間内に、同一表示用データを同一画素に繰り返し書き込ませるので、画素に要求されるデー 10 タ保持時間が短縮され、保持率が向上する。したがって、多結晶シリコンTFTをスイッチング素子として用いた場合においても、多結晶シリコンTFTのOFF特性の不足を補い、良好な表示品位を確保することができる。

【0092】また、各画素の補助容量を廃止するか又は 補助容量の該容量値を小さくすることができるので、画 素開口率の向上を図ることができ、かつ画素回路規模の 縮小を図り、ひいては良品率の向上及び高精細化が可能 となるという効果を奏する。

【0093】請求項3の発明の画像表示装置は、以上のように、請求項1又は2の画像表示装置において、上記メモリ手段をDRAM構成、SRAM構成又はEEPROM構成とした構成である。

【0094】これにより、既存のDRAM、SRAM又はEEPROMの技術を活用することができるという効果を奏する。

【0095】請求項4の発明の画像表示装置は、以上のように、請求項1、2又は3のいずれかの画像表示装置において、上記MOSトランジスタと駆動回路及びメモ 30リ手段を構成する各素子とは、多結晶シリコン薄膜を半導体層としてなっている構成である。

【0096】これにより、MOSトランジスタは、駆動能力が高い多結晶シリコン薄膜を半導体層としてなっているので、メモリ手段及び駆動回路とスイッチング素子とをモノリシックに形成することができる。

【0097】特に、請求項2のような区分メモリ手段から各画素に表示用データを複数回書き込むことにより、 多結晶シリコン薄膜を用いたMOSトランジスタのOF F特性の不足を充分に補うことができるという効果を奏 40 する。

【0098】請求項5の発明の画像表示装置は、以上のように、請求項1、3又は4のいずれかの画像表示装置において、上記基板は電気絶縁性を有するガラス基板からなっており、上記各手段を構成する素子が600℃以下のプロセス温度で形成されている構成である。

【0099】これにより、安価な低融点のガラス基板が 使用可能となり、この結果、装置の大型化、低コスト化 が可能となるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の一実施例における液晶表示装置の構成を示すプロック図である。

【図2】上記液晶表示装置の画素を示す構造図である。

【図3】上記液晶表示装置の第1フレームメモリ及び第2フレームメモリを示す構造図である。

【図4】上記第1フレームメモリ及び第2フレームメモリの等価回路図である。

【図5】上記液晶表示装置の駆動動作を示すタイムチャートである。

0 【図6】上記液晶表示装置における画素電極の電位の減 衰変化を示すグラフである。

【図7】上記液晶表示装置における変形例の構成を示す プロック図である。

【図8】上記液晶表示装置における極性反転回路の動作を示す説明図であり、(a) はフレーム反転、(b) はフレーム+1 H反転、(c) はフレーム+1 V反転、

(d) はフレーム+1ドット反転を示すものである。

【図9】本発明の他の実施例における液晶表示装置の第 1フレームメモリ及び第2フレームメモリの構造を示す 20 等価回路図である。

【図10】上記液晶表示装置の第1フレームメモリ及び第2フレームメモリを示す構造図である。

【図11】本発明のさらに他の実施例における液晶表示 装置の第1フレームメモリ及び第2フレームメモリを示 す等価回路図である。

【図12】従来例を示すものであり、液晶表示装置の画素の構造を示すプロック図である。

【図13】上記液晶表示装置の構成を示すブロック図である。

30 【図14】上記液晶表示装置の画素を示す構造図である。

【符号の説明】

1 画素

- 2 画素アレイ
- 3 データ保持容量
- 4 メモリ用MOSトランジスタ
- 6 ワードライン
- 7 ビットライン
- 21 走查信号線駆動回路(駆動回路)
- 22 データ信号線駆動回路 (駆動回路)
- 23 タイミングコントローラ(切替手段、繰返書込 手段)

24 第1フレームメモリ(メモリ手段、一方の区分メモリ手段)

25 第2フレームメモリ(メモリ手段、他方の区分 メモリ手段)

- 61 液晶容量
- 62 補助容量
- 63 画素容量
- 50 64 MOSトランジスタ

66 データ信号線

67 走査信号線

【図1】

[図7]

【図12】

BEST AVAILABLE CONT

[図13]

