Teórico

Ejercicio 1

Segmento espacial: Es el satélite ubicado en el espacio. Recibe señales desde la tierra, las amplifica, cambia la frecuencia de la portadora y las retransmite a otras estaciones terrestres.

Segmento terrestre: Procesan las señales, son multiplexadas por división de tiempo y finalmente enviadas al transmisor, que las amplifica y transmite a la antena con la frecuencia y potencia adecuadas.

Según su empleo y capacidad final se clasifican en estaciones de alta, media o pequeña capacidad o estaciones terrestres móviles.

Sistema de seguimiento, telemetría y control: Las estaciones reciben datos del estado del satélite y mediante computadoras se calcula la posición correcta y se envían comandos a los motores.

Ejercicio 2

Pag 681 Fusario

Fig. 8.38. Estructura de una trama STM - 1.

Comunicaciones - Castro Lechtaler - Fusario

Ejercicio 3

Fig. 2.52. Códigos AMI y HDB-3. Gráfico comparativo.

Practica

Ejercicio 1

Suponiendo que $\tau = T$

 $V_t = 9600 \ bps$

 $V_m = 9600 \ baudios$

$$\frac{1}{\tau} = 9600 \frac{1}{s} \rightarrow \tau = 1.0417 * 10^{-4} seg = 104.17 \ \mu s$$

$$V_t = V_m * \log_2 n = V_m * 4$$

 $V_m = 2400 \ baudios$

$$\frac{1}{\tau} = 2400 \frac{1}{s} \rightarrow \tau = 4.167 * 10^{-4} seg = 416.7 \ \mu s$$

Ejercicio 2

$$P_T = 0.1mW = -10 dBm$$

 $P_T + G = S_R + P$
 $-10dBm + 35dB = S_R + 0.25 * 100dB$
 $25dBm - 25dB = S_R = 0dBm$

Luego
$$S_R = 0dBm = 1mW$$

Ejercicio 3

$$\Delta f 1 = \frac{0.44}{\delta t}$$

 $\Delta f1$ = Ancho de Banda [GHz/km].

$$\delta t = \sqrt{1.5^2 - 1.2^2} = 0.9 \text{ nanosegundos}$$

Luego el ancho de banda resultara

$$\Delta f 1 = \frac{0.44}{0.9} = 0.48 \; GHz/Km = 480 \; MHz/km$$

Pag 415-416