

74LCX373

OCTAL D-TYPE LATCH NON-INVERTING (3-STATE) WITH 5V TOLERANT INPUTS AND OUTPUTS

- 5V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED :
 - t_{PD} = 8.0 ns (MAX.) at V_{CC} = 3V
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $|I_{OH}| = I_{OL} = 24\text{mA}$ (MIN) at $V_{CC} = 3V$
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE:
 V_{CC}(OPR) = 2.0V to 3.6V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 373
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE: HBM > 2000V (MIL STD 883 method 3015); MM > 200V

DESCRIPTION

The 74LCX373 is a low voltage CMOS OCTAL D-TYPE LATCH with 3 STATE OUTPUT NON-INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring C^2MOS technology. It is ideal for low power and high speed 3.3V applications; it can be interfaced to 5V signal environment for both inputs and outputs.

These 8 bit D-Type latch are controlled by a latch

SOP TSSOP

ORDER CODES

PACKAGE	TUBE	T & R
SOP	74LCX373M	74LCX373MTR
TSSOP		74LCX373TTR

enable input (LE) and an output enable input (\overline{OE}) . While the LE inputs is held at a high level, the Q outputs will follow the data input. When the LE is taken low, the Q outputs will be latched precisely at the logic level of D input data. While the (\overline{OE}) input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while (\overline{OE}) is in high level, the outputs will be in a high impedance state.

It has same speed performance at 3.3V than 5V AC/ACT family, combined with a lower power consumption.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

September 2001 1/10

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	OE	3 State Output Enable Input (Active LOW)
2, 5, 6, 9, 12, 15, 16,19	D0 to D7	Data Inputs
3, 4, 7, 8, 13, 14, 17, 18	Q0 to Q7	3-State Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

TRUTH TABLE

	INPUT	OUTPUT	
OE	LE	D	Q
Н	Х	Х	Z
L	L	Х	NO CHANGE*
L	Н	L	L
L	Н	Н	Н

- X : Don't Care
- Z : High Impedance
- * : Q Outputs are latched at the time when the LE input is taken LOW.

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage (OFF State)	-0.5 to +7.0	V
Vo	DC Output Voltage (High or Low State) (note 1)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 50	mA
I _{OK}	DC Output Diode Current (note 2)	- 50	mA
Io	DC Output Current	± 50	mA
I _{CC}	DC Supply Current per Supply Pin	± 100	mA
I _{GND}	DC Ground Current per Supply Pin	± 100	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

1) I_O absolute maximum rating must be observed

2) V_O < GND

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (note 1)	2.0 to 3.6	V
V _I	Input Voltage	0 to 5.5	V
Vo	Output Voltage (OFF State)	0 to 5.5	V
Vo	Output Voltage (High or Low State)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 3.0 to 3.6V)	± 24	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.7V)	± 12	mA
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 2)	0 to 10	ns/V

¹⁾ Truth Table guaranteed: 1.5V to 3.6V 2) V_{IN} from 0.8V to 2V at V_{CC} = 3.0V

DC SPECIFICATIONS

		Te	Test Condition		Value					
Symbol	Parameter	v _{cc}		-40 to	85 °C	-55 to 125 °C		Unit		
		(V)		Min.	Max.	Min.	Max.			
V _{IH}	High Level Input Voltage	2.7 to 3.6		2.0		2.0		V		
V_{IL}	Low Level Input Voltage	2.7 10 3.0			0.8		0.8	V		
V _{OH}	High Level Output	2.7 to 3.6	I _O =-100 μA	V _{CC} -0.2		V _{CC} -0.2				
	Voltage	2.7	I _O =-12 mA	2.2		2.2		V		
		2.0	I _O =-18 mA	2.4		2.4] v		
		3.0	I _O =-24 mA	2.2		2.2				
V _{OL}	Low Level Output	2.7 to 3.6	I _O =100 μA		0.2		0.2			
	Voltage	2.7	I _O =12 mA		0.4		0.4	V		
		3.0	I _O =16 mA		0.4		0.4]		
		3.0	I _O =24 mA		0.55		0.55			
I ₁	Input Leakage Current	2.7 to 3.6	V _I = 0 to 5.5V		± 5		± 5	μА		
I _{off}	Power Off Leakage Current	0	V_{I} or $V_{O} = 5.5V$		10		10	μА		
I _{OZ}	High Impedance Output Leakage Current	2.7 to 3.6	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ to } V_{CC}$		± 5		± 5	μА		
I _{CC}	Quiescent Supply	2.7 to 3.6	$V_I = V_{CC}$ or GND		10		10			
	Current	2.7 10 3.6	V_{I} or $V_{O} = 3.6$ to 5.5V		± 10		± 10	μΑ		
ΔI_{CC}	I _{CC} incr. per Input	2.7 to 3.6	$V_{IH} = V_{CC} - 0.6V$		500		500	μΑ		

DYNAMIC SWITCHING CHARACTERISTICS

		Tes	Value				
Symbol	Parameter	V _{CC} (V)		7	Γ _A = 25 °C		Unit
				Min.	Тур.	Max.	
V _{OLP}	Dynamic Low Level Quiet	3.3	C _L = 50pF		0.8		V
V _{OLV}	Output (note 1)		$V_{IL} = 0V, V_{IH} = 3.3V$		-0.8		V

¹⁾ Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

AC ELECTRICAL CHARACTERISTICS

		Test Condition				Value					
Symbol	Parameter	V _{CC}	CL	R _L	$t_s = t_r$	-40 to	85 °C	-55 to	125 °C	Unit	
		(V)	(pF)	(Ω)	(ns)	Min.	Max.	Min.	Max.		
t _{PLH} t _{PHL}	Propagation Delay	2.7	50	500	2.5	1.5	9.0	1.5	9.0	ns	
	Time (Dn to Qn)	3.0 to 3.6	30	300	2.5	1.5	8.0	1.5	8.0	115	
t _{PLH} t _{PHL}	Propagation Delay	2.7	50	500	2.5	1.5	9.5	1.5	9.5	ns	
	Time (LE to Qn)	3.0 to 3.6	30	300	2.5	1.5	8.5	1.5	8.5	115	
t _{PZL} t _{PZH}	Output Enable Time	2.7				1.5	9.5	1.5	9.5		
	to HIGH and LOW level	3.0 to 3.6	50 3.6	50 500	500	2.5	1.5	8.5	1.5	8.5	ns
t _{PLZ} t _{PHZ}	Output Disable Time	2.7				1.5	8.5	1.5	8.5		
	from HIGH to LOW level	3.0 to 3.6	50	500	2.5	1.5	7.5	1.5	7.5	ns	
t _S	Set-Up Time, HIGH	2.7				2.5		2.5			
	or LOW level (Dn to LE)	3.0 to 3.6	50	500	2.5	2.5		2.5		ns	
t _h	Hold Time, HIGH or	2.7				1.5		1.5			
	LOW level (Dn to LE)	3.0 to 3.6	50	500	2.5	1.5		1.5		ns	
t_{W}	LE Pulse Width,	2.7	50	500	2.5	3.3		3.3		ns	
	HIGH	3.0 to 3.6	30	300	2.5	3.3		3.3		115	
t _{OSLH} t _{OSHL}	Output To Output Skew Time (note1, 2)	3.0 to 3.6	50	500	2.5		1.0		1.0	ns	

CAPACITIVE CHARACTERISTICS

		Tes	Value				
Symbol	Parameter	V _{CC}		T _A = 25 °C		;	Unit
		V _{CC} (V)		Min.	Тур.	Max.	
C _{IN}	Input Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		6		pF
C _{OUT}	Output Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		12		pF
C _{PD}	Power Dissipation Capacitance (note 1)	3.3	$f_{IN} = 10MHz$ $V_{IN} = 0 \text{ or } V_{CC}$		50		pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}/8 (per latch)

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V
t _{PZH} , t _{PHZ}	GND

 C_L = 50 pF or equivalent (includes jig and probe capacitance) R_L = R1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM 1: LE TO Qn PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn TO LE SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)

47/ 6/10

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 3: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

SO-20 MECHANICAL DATA

DIM.		mm.			inch	
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.012
С		0.5			0.020	
c1			45°	(typ.)		l
D	12.60		13.00	0.496		0.512
Е	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.300
L	0.50		1.27	0.020		0.050
М			0.75			0.029
S		1	8° (r	max.)		1

TSSOP20 MECHANICAL DATA

DIM		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

477