Sesotho Tone Extraction - Quick Execution Guide

How to Run the Complete Pipeline

Prerequisites

Ensure your conda environment is activated:

conda activate sesotho-tone

Execution Order (In Jupyter Notebook)

Open sesotho_tone_extraction_project/sesotho_tone_extraction.ipynb and run cells in this order:

Phase 1: Setup & Data Exploration (Cells 1-7)

- ✓ Cell 1: Introduction (Markdown skip)
- ✓ Cell 2: Import libraries and verify versions
- ✓ Cell 3: Set project paths (PROJECT_ROOT and DATA_ROOT)
- ✓ **Cell 4**: Data exploration intro (Markdown skip)
- ✓ Cell 5: Explore audio files
- ✓ Cell 6: Analyze sample audio
- ✓ Cell 7: Load and visualize waveform

Phase 1 (Continued): Dataset Analysis (Cells 8-12)

- ✓ Cell 8: Folder structure analysis (Markdown skip)
- ✓ Cell 9: Complete dataset structure analysis
- ✓ Cell 10: Analyze file naming patterns
- ✓ **Cell 11**: Data strategy recommendations

Phase 1 (Continued): Feature Extraction (Cells 13-17)

- ✓ **Cell 12**: Manifest generation intro (Markdown skip)
- ✓ Cell 13: IMPORTANT Create manifest & extract sample features (20 files)
- ✓ **Cell 14**: Robust smoke-test (5 files with error handling)
- ✓ **Cell 15**: Debug librosa bindings (optional for troubleshooting)
- ✓ **Cell 16**: View manifest and features (optional for verification)
- ✓ Cell 17: OPTIONAL Full feature extraction (2106 files, ~10-20 min)

↑ DECISION POINT:

- Quick path (recommended for testing): Skip Cell 17, use sample features from Cell 13
- Full dataset: Run Cell 17 for all 2106 files (set n_batches appropriately)

Phase 2: Machine Learning Pipeline (Cells 18-26) * NEW!

- ✓ Cell 18: ML Pipeline intro (Markdown skip)
 ✓ Cell 19: Load and prepare dataset Combines features with labels
 ✓ Cell 20: Speaker-independent split Critical for proper evaluation
 ✓ Cell 21: Feature scaling StandardScaler on training data
 ✓ Cell 22: Train Random Forest ~1-5 minutes depending on data size
 ✓ Cell 23: Evaluate on test set Accuracy, F1, confusion matrix
 ✓ Cell 24: Feature importance See which features matter most
 ✓ Cell 25: Per-speaker/region analysis Generalization insights
 ✓ Cell 26: Error analysis Understand misclassifications
 ✓ Cell 27: Save results JSON, CSV, and text reports
 ✓ Cell 28: Summary (Markdown skip)
 ✓ Cell 29: Quick reference for inference
- **L** Expected Outputs

After running all cells, you should have:

Files Created

```
c:\Users\mubva\Downloads\Nlp\
                                  # 2106 audio files cataloged
 sesotho_tone_manifest.csv
  - features_sample.csv
                                   # Sample features (20 files)
features_sample_debug.csv
                                    # Debug features (5 files)
 scaler.joblib
                                    # Feature scaler (for inference)
                                    # Full extraction (if Cell 17 ran)
 — features_parts/
   features_part_001.csv
     features_part_002.csv
   - models/
   random_forest_baseline.joblib # Trained model
    baseline_results.json
                              # Structured results
     — baseline_summary.txt
                                  # Human-readable summary
    test predictions.csv
                                   # Per-sample predictions
```

Console Output Summary

- Test Accuracy: XX.XX%
 Macro F1-Score: X.XXXX
- ✓ Training Time: XX seconds
- Per-speaker accuracy breakdown
- Per-region accuracy comparison
- Feature importance rankings

Phase	Cells	Time (Sample)	Time (Full Dataset)
Setup & Exploration	1-11	~2 minutes	~2 minutes
Feature Extraction	12-17	~2 minutes	~15-30 minutes
ML Pipeline	18-29	~5 minutes	~5-10 minutes
TOTAL	1-29	~10 minutes	~20-45 minutes

© Quick Start (Minimum Viable)

If you want results FAST (for testing):

- 1. Run Cells 1-16 (skip Cell 17) Uses 20-sample features
- 2. Run Cells 18-29 Complete ML pipeline
- 3. **Check** reports/baseline_summary.txt for results

Total time: ~10 minutes

Troubleshooting

Issue: "No feature files found"

Solution: Run Cell 13 (sample extraction) or Cell 17 (full extraction) first

Issue: "Manifest not found"

Solution: Run Cell 13 which creates the manifest

Issue: librosa keyword argument error

Solution: Already fixed! All librosa calls use keyword arguments (e.g., y=y, sr=sr)

Issue: All-NaN F0 values

Solution: Already handled! The estimate_f0 function has 2-tier fallback (pyin → piptrack)

Issue: Memory error during full extraction

Solution: Reduce BATCH_SIZE in Cell 17 from 200 to 100

PROFESSEUR: M.DA ROS

Performance Benchmarks

Based on .github/copilot-instructions.md thresholds:

Macro F1 **Status** Level **Test Accuracy**

Level	Test Accuracy	Macro F1	Status
Excellence	≥90%	≥0.85	Publishable quality
Target	≥85%	≥0.80	Strong academic result 🗹
Minimum	≥70%	≥0.65	Project completion

Your goal: ≥85% accuracy for strong academic submission

Next Steps After Baseline

If you have time remaining (check date: deadline is Oct 24, 2025):

Priority 1: LSTM Sequence Model (1-2 days)

- Extract frame-level F0 contours instead of aggregated stats
- Train LSTM to model pitch trajectory
- Expected improvement: +5-10% accuracy

Priority 2: Hyperparameter Tuning (few hours)

- Use GridSearchCV or RandomizedSearchCV
- Optimize n_estimators, max_depth, min_samples_split
- Expected improvement: +2-5% accuracy

Priority 3: Feature Engineering (few hours)

- Add F0 contour slope, range, variance
- Add formant frequencies (F1, F2)
- · Add delta and delta-delta features
- Expected improvement: +3-7% accuracy

Saving Your Work

Before closing Jupyter:

- 1. Save notebook: Ctrl+S or File → Save
- 2. Export results: Already done automatically in Cell 27
- 3. Backup models: Copy models/ and reports/ to safe location

Additional Resources

- Detailed Guide: sesotho_tone_extraction_project/README.md
- Project Plan: sesotho_tone_extraction_project/PROJECT_ROADMAP.md
- Al Agent Guide: .github/copilot-instructions.md
- Feature Extraction Script: run_full_extraction.py (alternative to Cell 17)

✓ Success Checklist

- Environment activated (conda activate sesotho-tone)
- All libraries imported successfully (Cell 2)
- Manifest created (Cell 13)
- Features extracted (Cell 13 or 17)
- Model trained (Cell 22)
- Results saved (Cell 27)
- ☐ Accuracy meets minimum threshold (≥70%)
- Speaker-independent evaluation verified (Cell 20)
- Reports generated in reports/ directory

Ready to submit! 🕏