

Water Quality Research Program

Sediment-Water Fluxes and Sediment Analyses in Chesapeake Bay: Tidal Fresh Potomac River and Maryland Main Stem

by Walter R. Boynton, Janet M. Barnes, Barbara J. Weaver, L. L. Magdeburger Chesapeake Biological Laboratory

Peter Sampou Horn Point Environmental Laboratory

Approved For Public Release; Distribution Is Unlimited

19960904 116

DTIC QUALITY INSPECTED 3

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Sediment-Water Fluxes and Sediment Analyses in Chesapeake Bay: Tidal Fresh Potomac River and Maryland Main Stem

by Walter R. Boynton, Janet M. Barnes, Barbara J. Weaver, L. L. Magdeburger

Chesapeake Biological Laboratory Box 38 Solomons, MD 20688-0038

Peter Sampou

Horn Point Environmental Laboratory Cambridge, MD 21613-0775

Final report

Approved for public release; distribution is unlimited

DTIC QUALITY INSPECTED 3

Prepared for U.S. Army Corps of Engineers

Washington, DC 20314-1000

Monitored by U.S. Army Engineer Waterways Experiment Station

Vicksburg, MS 39280-6199

Waterways Experiment Station Catatoging-in-Publication Data

Sediment-water fluxes and sediment analyses in Chesapeake Bay: tidal fresh Potomac River and Maryland Main Stem / by Walter R. Boynton ... [et al.]; prepared for U.S. Army Corps of Engineers; monitored by U.S. Army Engineer Waterways Experiment Station. 145 p.: ill.; 28 cm. -- (Contract report; W-96-1) Includes bibliographical references.

1. Sedimentation analysis. 2. River sediments -- Potomac River -- Measurement.
3. Sedimentation and deposition -- Chesapeake Bay (Md.) -- Measurement. I. Boynton, Walter R. II. United States. Army. Corps of Engineers. III. U.S. Army Engineer Waterways Experiment Station. IV. Water Quality Research Program. V. Title: Tidal fresh Potomac River and Maryland Main Stem. VI. Series: Contract report (U.S. Army Engineer Waterways Experiment Station); W-96-1.
TA7 W34c no.W-96-1

Contents

Preface v
1—Introduction
Background Information
Objectives
2—Project Description
Station Locations
3—Field Methods
Water Column Profiles
Sediment Profiles—Solid Phase and Pore Water Analyses
4—Chemical Analyses
5—Summary of Major Sediment-Water Fluxes
Sediment Oxygen Consumption
References 20
Appendix A: Water Column Profile Data Tables
Appendix B: Bottom Water Dissolved Nutrient Data Tables B1
Appendix C: Sediment Samples: Solid Phase Data Tables; Dissolved Phase Data Tables
Appendix D: Incubation Core Nutrient Concentration Data Tables D1
Appendix E: Sediment-Water Oxygen and Nutrient Flux Data Tables E1
SF 298

List of Figures

Figure 1.	Map of Potomac River and Maryland main stem: station locations occupied during 1994
Figure 2.	Schematic diagram of incubation chamber 8
Figure 3.	Potomac River and Maryland main stem sediment oxygen consumption rates for 1994
Figure 4.	Potomac River and Maryland main stem ammonium flux rates for 1994
Figure 5.	Potomac River and Maryland main stem phosphate flux rates for 1994
Figure 6.	Potomac River and Maryland main stem total carbon dioxide flux rates for 1994

Preface

The work reported herein was conducted as part of the Water Quality Research Program (WQRP), Work Unit 32694. The WQRP is sponsored by Headquarters, U.S. Army Corps of Engineers (HQUSACE), and is assigned to the U.S. Army Engineer Waterways Experiment Station (WES) under the purview of the Environmental Laboratory (EL). Funding was provided under Department of the Army Appropriation No. 96X3121, General Investigation. The WQRP is managed under the Environmental Resources Research and Assistance Programs (ERRAP), Mr. J. L. Decell, Manager. Mr. Robert Gunkel, Jr., was Assistant Manager, ERRAP, for the WQRP. Program Monitors during this study were Messrs. Frederick B. Juhle and Rixie Hardy and Dr. John Bushman, HQUSACE.

Principal Investigator of the Work Unit was Dr. Carl F. Cerco, Water Quality and Contaminant Modeling Branch (WQCMB), Environmental Processes and Effects Division (EPED), EL. The study was conducted under the supervision of Dr. Mark S. Dortch, Chief, WQCMB, and Mr. Donald L. Robey, Chief, EPED. Report review was provided by Dr. Barry Bunch, WQCMB, and Mr. Ross Hall, WQCMB. Dr. John W. Keeley was Director of EL.

This report was prepared by Dr. Walter Boynton, Chesapeake Biological Laboratory (CBL), Solomons, MD, Dr. Pete Sampou, Horn Point Environmental Laboratory, Cambridge, MD, Ms. Janet Barnes, CBL, Ms. Barbara Weaver, CBL, and Mr. L. Magdeburger, CBL. The report describes field studies to provide data for development and calibration of a freshwater sediment diagenesis model.

At time of publication of this report, Dr. Robert W. Whalin was Director of WES, and COL Bruce K. Howard, EN, was WES Commander.

This report should be cited as follows:

Boynton, W. R., Sampou, P., Barnes, J. M., Weaver, B. J., and Magdeburger, L. L. (1996). "Sediment-water fluxes and sediment analyses in Chesapeake Bay: Tidal fresh Potomac River and Maryland main stem," Contract Report W-96-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

1 Introduction

Background Information

Recent water quality models and nutrient mass balance budgets indicate that sediment-water exchanges of oxygen and nutrients across the sediment-water interface are a major feature of estuarine nutrient cycles. These cycles play an important role in determining estuarine water quality and habitat conditions. For example, during summer periods when water quality conditions are typically poorest (i.e., anoxic conditions in deep water and algal blooms), sediment releases of nutrients (e.g., nitrogen and phosphorus) and consumption of oxygen are often highest.

These models also indicate that the total metabolic processes within estuarine sediments and the resulting fluxes into and out of these sediments are very dynamic. Past studies by the Ecosystem Processes Component of the Maryland Chesapeake Bay Water Quality Monitoring Program have concentrated mainly on the processes of aerobic metabolism and the input of organic matter and nutrients from both natural and anthropogenic sources driving these processes. However, other studies (Jorgensen 1977; Howes, Dacey, and King 1984; Howes, Dacey, and Teal 1985) indicate that in some cases over 50 percent of the sediment metabolic processes can be attributed to anaerobic metabolism. Anaerobic and aerobic metabolism are tightly coupled not only with each other, but also with the standing stocks of many compounds in the top few centimeters of sediment, including particulate and dissolved organic matter and various other reduced compounds.

Conceptual Model of Estuarine Metabolic Processes in Chesapeake Bay

Metabolic processes associated with estuarine sediments have a considerable influence on water quality and habitat conditions in the Bay and its tributaries. Nutrients and organic matter enter the Bay from a variety of sources, including sewage treatment plant effluents, fluvial inputs, nonpoint drainage, and direct rainfall on Bay waters. These dissolved nutrients are rapidly incorporated into particulate matter via biological, chemical, and physical

mechanisms. Much of this particulate material then sinks to the bottom and is potentially available for remineralization. Essential nutrients released during the decomposition of organic matter may then be utilized by algal communities. A portion of this newly produced organic matter sinks to the bottom, contributing to the development of anoxic conditions and loss of habitat for important infaunal, shellfish, and demersal fish communities. The regenerative capacities and the potentially large nutrient storages within bottom sediments ensure the ample return flux of nutrients from sediments to the water column, which sustains continued phytoplankton growth. This growth in turn supports deposition of organics to deep waters, creating anoxic conditions typically associated with the eutrophication of estuarine systems.

Once these anoxic conditions develop, anaerobic metabolism begins to dominate the system. The oxidation of available organic matter under anoxic conditions occurs via the reduction of compounds other than oxygen: sulfate reduction dominates in regions of the Chesapeake Bay where sulfate is readily available while methanogenesis dominates in the freshwater regions.

Objectives

The objectives of this U.S. Army Engineer Waterways Experiment Station (WES) project included collecting data to aid in the ongoing characterization of the present state of the Chesapeake Bay and its tributaries (including spatial and seasonal variation). The variables measured include measurements of the stocks of several organic compounds associated with the top 10 cm of sediment, measurements of the stocks of the compounds involved in the metabolic processes in the sediments, and measurements of the resulting fluxes into and out of the sediments. These data are available to further calibrate the coupled hydrodynamic/water quality/sediment flux model of Chesapeake Bay, especially for applications to low salinity regions. The information collected in this program can be compared with data from other elements of the Chesapeake Bay Monitoring Program to gain a better understanding of the processes affecting Chesapeake Bay water quality, especially in low salinity regions.

2 Project Description

Station Locations

The four WES station locations for the sediment-water fluxes and the sediment analyses are identified in Figure 1 and Table 1. There are three stations located in the tidal fresh Potomac River and one station in the Chesapeake Bay Maryland main stem. These stations were visited four times from May - October 1994 (Table 2).

Sampling Frequency

The station sampling frequency is based on the seasonal patterns of sediment water exchanges observed in previous studies conducted in the Chesapeake Bay region (Kemp and Boynton 1980; Kemp and Boynton 1981; Boynton et al. 1982; Boynton and Kemp 1985) as well as previous sediment-oxygen and nutrient exchange (SONE), mini-SONE, and benthic exchange and sediment transformation (BEST) data. These studies indicted several distinct periods over an annual cycle including the following:

- a. April and May, when the spring phytoplankton bloom occurs and water column nutrient concentrations are high (particularly nitrate).
- b. June, influenced by the presence of a large macrofaunal community.
- c. July, August, and September, when macrofaunal biomass is low, but water temperature and water column metabolic activity is high and anoxia prevalent in deeper waters.
- d. October and November, when anoxia is not present and the macrofaunal community abundance low but re-establishing.

Previous studies also indicate that short-term temporal (day-week) variation in these exchanges is small; however, considerable differences in the magnitude and characteristics of fluxes appear among distinctively different estuarine zones (i.e., tidal fresh versus mesohaline regions). Since benthic fluxes are small when water temperatures fall below 12 to 15 °C, monitoring during

Figure 1. Map of Potomac River and Maryland main stem: station locations occupied during 1994

winter and early spring does not yield as much useful information as when large fluxes are observed from May through October. For example, during this warmer time, N and P fluxes exceed total annual loading from other sources by as much as a factor of 4.

Table 1
Numerical Water Quality and Contaminant Modeling (EL-22) Tidal
Fresh Potomac River and Maryland Main Stem Stations: Station
Name, Code, and Location

			Location
Station	Code	Latitude	Longitude
Hedge Neck	HGNK	38′ 44.17"	77′ 02.03"
Gunston Cove	GNCV	38′ 39.33"	77′ 07.45"
Maryland Point	MDPT	38′ 21.18"	77′ 11.34"
Main Stem	R 64	38′ 33.59"	76′ 25.63"

Table 2
Sampling Frequency: Stations and Sampling Dates

Station	May	July	August	October
HGNK	19	12	9	13
GNCV	19	12	9	13
MDPT	20	13	10	14
R 64	21	14	11	17

3 Field Methods

Water Column Profiles

At each of the four WES stations, vertical water column profiles of temperature, conductivity, salinity, and dissolved oxygen were measured at 2-m intervals (0.5- or 1-m intervals at shallow stations) from the surface to the bottom. A submersible pump and a Hydrolab S-II Data Sonde CTD were used to obtain the readings. Water column turbidity was measured using a Secchi disc. (See Appendix A.)

Bottom Water Analyses

Near-bottom (approximately 1 m) water samples were collected using a high volume submersible pump system. Samples were immediately processed and frozen for later analysis of the following compounds: ammonium (NH₄⁺), nitrite plus nitrate (NO₂⁻ + NO₃⁻), dissolved inorganic phosphorous (PO₄⁻³), siliceous acid Si(OH)₄, dissolved organic nitrogen (DON), dissolved organic phosphorus (DOP), dissolved organic carbon (DOC), total carbon dioxide (TCO₂), total iron (Fe), total manganese (Mn), and sulfate (SO₄⁻²) concentrations. The bottom water pH was also measured. (See Appendix B.)

Sediment Profiles—Solid Phase and Pore Water Analyses

Zero to ten-centimeter sediment composites were subcored from the 6-in. cores and prepared for solid and pore water analyses. (See Appendix C.) For the solid phase analyses, 50-ml centrifuge tubes (each one containing a 1-in. in diameter 0- to 10-cm subcore) were frozen and returned to either Nutrient Analytical Services Laboratory (NASL) at the Chesapeake Biological Laboratory (CBL) or to Dr. Peter Sampou at the Horn Point Environmental Laboratory (HPEL). Solid phase analyses were conducted by NASL and included particulate carbon (PC), particulate nitrogen (PN), particulate phosphorus (PP), and total and active chlorophyll-a concentrations. Solid phase

compounds analyzed by Dr. Sampou at HPEL included biogenic silica (BiSi), acid volatile sulfur (AVS), chromate reducible sulfur (CRS), iron (Fe), calcium carbonate (CaCO₃) phosphorus (using both the Aspila and Ruttenberg extractions), and manganese (Mn⁺²).

To prepare the composites for pore water analyses for NASL, 50-ml centrifuge tubes containing the 0- to 10-cm composites were centrifuged at 4,000 rpm for 10 min; pore water was then filtered and frozen. NASL analyzed pore waters for NH_4^+ , $NO_2^- + NO_3^-$, PO_4^{-3} , $Si(OH)_4$, alkalinity (Alk), DOC, DON, and DOP.

Dr. Sampou's centrifuge tubes containing sediments for pore water analyses were held in ice, but not frozen. These were later analyzed for chloride (Cl⁻), SO₄⁻², calcium (Ca⁺²), manganese (Mn⁺²), Fe, and TCO₂.

Pore water pH was measure directly in the centrifuge pore water using a Hanna Piccolo Plus ATC Temperature pH meter.

To prepare pore water H_2S samples for analyses by Dr. Douglas Capone's laboratory at CBL, a 2-cm slice of a large box core was packed into a centrifuge tube, spun for 10 min at 4,000 rpm, then filtered into a preweighed scintillation vial containing 0.5 ml of zinc acetate. Five depths were analyzed: 0 to 2, 2 to 4, 4 to 6, 6 to 8, and 8 to 10 cm. The large core was divided into two halves, side A and side B. Two replicates were taken at each depth, one sample from side A and one from side B. After sampling in the field, the samples were kept on ice.

To prepare pore water methane and porosity samples for analyses in Dr. Capone's laboratory, two 3-ml syringes (with cut off ends) of sediment were extracted at each 2-cm interval to a depth of 10 cm. Again the large box core was divided into two halves, side A and B, and one sample taken from each side at each depth. Each syringe of sediment was injected into a glass serum vial. The vial was sealed using a rubber serum cap and a crimp top, then frozen.

Sediment-Water Fluxes

Three intact sediment cores were obtained at each WES station using a modified Bouma box corer. These sediment cores, each contained in a 15- by 30-cm Plexiglas microcosm (Figure 2), constitute the basic system where changes in oxygen, nutrient, and other compound concentrations are determined. A decrease in these overlying water concentrations implies uptake (either biologically or chemically) of the compounds by the sediments. Conversely, an increase in concentration implies release by the sediments. (See Appendixes D and E.) An overview of the measurement techniques follows.

After deployment and retrieval of the box corer, the Plexiglas microcosm containing the sediment core is visually inspected for disturbances such as

Figure 2. Schematic diagram of incubation chamber

large macro fauna or cracks in the sediments surface, and for proper core height. If the core is satisfactory, the microcosm is equipped with an O-ring sealed top containing ports for probes and water column sampling plus a neoprene gasket sealed bottom. The sealed microcosms are placed in a darkened bottom water-filled holding tank until all of the necessary cores are acquired.

A fourth microcosm is filled with bottom water (but no sediment) to serve as a blank. The blank receives the exact same treatment as the cores with sediments. Fluxes recorded from the bottom water blank microcosm are subtracted from the fluxes obtained in the sediment core microcosms to remove any possible water column-only chemical and biological reactions from the final flux calculations.

Immediately prior to beginning the actual flux incubation, the overlying water in each microcosm (including the blank) is slowly replaced with fresh bottom water to ensure that the water quality conditions in each core closely resemble in situ conditions. (Note: in situ conditions are determined by the CTD water column profile and the bottom water sample, which is analyzed for the same compounds measured during the flux experiment.)

The microcosms are placed in a darkened, temperature-controlled circulating water bath to maintain in situ temperature and light conditions. An oxygen probe containing a stirring device is inserted into one of the ports on the top of each microcosm. The stirring device ensures gentle circulation without sediment resuspension in the microcosm. Another port in each microcosm top is fitted with a device used to sample the overlying water while leaving the microcosm completely sealed.

The microcosms are incubated for 4 hr. Every hour, oxygen concentrations are recorded, plus overlying water samples are extracted to measure the various compound concentrations. (Note: as a water sample is extracted, an equal amount of bottom water from a reservoir is simultaneously pulled into the microcosm.

At each WES station, extracted overlying water samples were immediately filtered, frozen, then later analyzed for NH_4^+ , $NO_3^- + NO_2^-$, PO_4^{-3} , $Si(OH)_4$, DON, DOP, and DOC. Whole water samples were extracted for total CO_2 , Fe, and Mn fluxes. Each sample for total carbon dioxide analysis was slowly injected into a small BOD bottle, fixed with mercuric chloride, sealed with the BOD cap, then water sealed. These samples were stored on board in coolers at room temperature. Overlying water samples for iron and manganese analyses were injected into AA vials (5 ml per vial) then fixed with ultra pure nitric acid (3 μ l HNO₃ per milliliter of sample). These samples were stored at room temperature.

The overlying water pH was measured at each time point using a Hanna Piccolo pH meter.

All of these fluxes are estimated by calculating the mean rate of change in concentration over the incubation period, correcting for dilution, and converting the volumetric rate to a flux using the volume: area ratio of each core.

In situ methane fluxes were measured by Dr. Sampou. A brief description of the field and laboratory methods follows. For a more in-depth description, see Martens and Klump (1980).

An inverted polypropylene cone (0.086-m² area) is suspended in the water column near each station (at the same station depth) approximately 1 m off the bottom. The cone was weighted with 72 oz (2,041 g) of lead and is tethered to a surface float. The hanging depth of the cone is adjustable. The length of the line from the anchor to the surface float is roughly two times the water column depth.

These methane traps were suspended over the sediment for approximately 24 hr (encompassing two low tides when gas ebullition may be affected by hydrostatic head change). Using a gas-tight 10-ml Hamilton syringe, a 5- to 10-ml subsample of the total gas captured in the cone is extracted. This subsample, in the syringe, is transported back to the laboratory and immediately analyzed for methane using a Shimadzu (model GC-8A) gas chromatograph equipped with a thermal conductivity detector (detection limit: 1-percent methane). Prior to sample analysis, five standards were run on the gas chromatograph using pure methane plus atmospheric gas mixtures. Quality control is better than plus/minus 3 percent for the standards. The precision of the traps is calculated to be between 20 and 50 percent due to the heterogeneity of methane ebullition inherent in sediments.

The methane flux calculation follows: (volume of trapped gas) (percent of methane gas) (1 mole of gas/22.4 ℓ) (core area/square meter) (1/incubation time hours).

4 Chemical Analyses

Standard oceanographic and estuarine methods of chemical analysis were used for all determinations of dissolved and particulate materials (see Table 3).

IR .	Quality and Contaminant Modeling (EL-22) Tidal ver and Maryland Main Stem Analyses Problem d Description
Code	Description of Problem
НН	Sample Not Taken
NI	Data for This Variable Are Considered Noninterpretable
NS	Data for This Variable Are Considered Nonsignificant
S	Sample Container Broken During Analysis

Analyses performed by NASL, Chesapeake Biological Laboratory, used the following techniques:

- a. Nitrate (NO₂⁻) + nitrite (NO₂⁻), nitrite (NO₂⁻), ammonia (NH₄⁺), and dissolved inorganic phosphorus (DIP) followed the procedure of the U.S. Environmental Protection Agency (EPA), EPA-600/4-79-020 (1979).
- b. Siliceous acid (Si(OH)₄) followed the procedure of Technicon Industrial System (1977).
- c. Dissolved organic carbon (DOC) using automated persulfate digestion (Menzel and Vaccaro 1964).
- d. Dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP): subtraction of inorganic N and P from the total dissolved concentrations of N and P which were obtained by a persulfate oxidation technique (D'Elia, Steudler, and Corwin 1977 and Valderrama 1981).

- e. Particulate phosphorus (PP) using acid digestion of muffled-dry samples (Aspila, Agemian, and Chau 1976).
- f. Particulate carbon (PC) and particulate nitrogen (PN) analyses used high temperature combustion with a model 240B Perkin-Elmer Elemental Analyzer (Zimmerman, Keefe, and Bashe 1992).
- g. Chlorophyll-a analysis utilized acetone extraction followed by fluorometric detection (Strickland and Parsons 1972; Shoaf and Lium 1976).
- h. Pore water carbonate alkalinity (Alk) via acidification and detection with O.I. model 700 carbon analyzer (Menzel and Vaccaro 1964).

Analyses performed by Dr. Peter Sampou, Horn Point Environmental Laboratory, used the following techniques:

- a. Sediment calcium carbonate (CaCO₃) using acidification followed by gas chromatography.
- b. Sulfate (SO₄-2) and chloride (Cl) detection with Dionex Corporation chromatograph and conductivity detection method following the procedures of EPA 600/4-87/026 (1987).
- c. Total carbon dioxide (TCO₂) using coulometric method of Johnson et al. (1987).
- d. Ruttenberg phosphorus extraction following the procedures of Ruttenberg (1992).
- e. Sediment phosphate (PO₄) analyses used acid digestion of muffled-dry samples (Aspila, Agemian, and Chau 1976).
- f. Biogenic silica (BiSi) followed the wet chemical dissolution technique of Eggimann, Manheim, and Betzen (1980).
- g. Iron (Fe) and manganese (Mn) followed the procedures of Canfield (1989).
- h. Calcium (Ca) utilized flame atomic absorption followed by spectrometric detection (Zimmerman, Keefe, and Bashe 1992).
- i. Acid volatile sulfide (AVS) and chromate reducible sulfide (CRS) following the procedures of Morse and Cornwell (1987).
- Methane (CH₄) flux analyses used a gas trap and GC analysis with a flame ionization detector.

Analyses performed by Dr. Douglas Capone's laboratory, Chesapeake Biological Laboratory, used the following techniques:

- a. Hydrogen sulfide (H₂S) followed the colorimetric technique of Cline (1969).
- b. Pore water methane (CH₄) and porosity used the methods of Capone and Kiene (1985).

On Board Measurements:

- a. Sediment oxygen demand utilized an Orbisphere 2112 oxygen electrode.
- b. pH measurements used a pH/ion selective electrode.

5 Summary of Major Sediment-Water Fluxes

Graphic summaries of the major fluxes observed are provided to show seasonal patterns and to give an overall indication of the magnitude of sediment-water oxygen and nutrient exchanges (Figures 3-6). Winter samples were not taken due to low activity during cold weather (below 12 to 15 °C) resulting in low to nonexistent fluxes. Figures are provided for sediment oxygen consumption (SOC), ammonium (NH_4^+) , dissolved inorganic phosphate (PO_4^{-3}) , and total carbon dioxide (TCO_2) . These fluxes are particularly important because the data can be used to infer the types and magnitudes of processes controlling water quality conditions. Graphics are not provided for the following fluxes: pH, nitrite plus nitrate $(NO_2^- + NO_3^-)$, dissolved silicate $(Si(OH)_4)$, dissolved organic carbon (DOC), dissolved organic nitrogen (DON), total dissolved nitrogen (TDN), dissolved organic phosphorus (DOP), total dissolved phosphorus (TDP), iron (Fe), and manganese (Mn).

Sediment Oxygen Consumption

Sediment oxygen consumption (SOC) in the tidal fresh Potomac River ranged from -0.69 g O₂ m⁻² day⁻¹ at Maryland Point in October to -2.04 at Gunston Cove in August. Rates at the Maryland main stem (R 64) ranged from 0.0 g O₂ m⁻² day⁻¹ in August to -1.32 in October. SOC rates at the main stem station appear to follow seasonal peak patterns observed in other areas of the Bay. SOC rates at Potomac River stations peaked later in the season than at the main stem station (Figure 3).

Ammonium and Phosphate

Ammonium (NH₄⁺) fluxes in the Potomac River are moderate to high and comparable with other enriched areas of the Bay (Figure 4). Phosphate (PO₄⁻³) fluxes were low in comparison with other areas of the Bay (Figure 5). Low rates of phosphate release from sediment is indicative of oxidized sediment. Phosphorus binds to iron under oxic conditions and is released

Figure 3. Potomac River and Maryland main stem sediment oxygen consumption rates for 1994

Figure 4. Potomac River and Maryland main stem ammonium flux rates for 1994

Figure 5. Potomac River and Maryland main stem phosphate flux rates for 1994

under anoxic (reduced) sediment conditions. High bottom water DO measurements and SOC rates support the conclusion that phosphorus is probably bound to iron in Potomac sediments.

Total Carbon Dioxide

Total carbon dioxide (TCO₂) is a tool used to measure total (aerobic and anaerobic) metabolism. TCO₂ rates in the Potomac were slightly lower than those observed in the Patapsco and Back River systems, two very enriched bay tributaries (Figure 6). TCO₂ rates followed the same seasonal patterns as SOC rates. When SOC increased, so did TCO₂; when SOC decreased, TCO₂ decreased as well.

Figure 6. Potomac River and Maryland main stem total carbon dioxide flux rates for 1994

References

- Aspila, I., Agemian, H., and Chau, A. S. Y. (1976). "A semi-automated method for the determination of inorganic, organic and total phosphate in sediments," *Analyst* 101, 187-197.
- Boynton, W. R., and Kemp, W. M. (1985). "Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient," *Mar. Ecol. Progr. Ser.* 23, 45-55.
- Boynton, W. R., Kemp, W. M., Osborne, C. G., Spalding, E., Keefe, C. W., and Wood, K. V. (1982). "Estuarine community dynamics in relation to power plant operations," Chesapeake Biological Laboratory (CBL), University of Maryland System, Solomons, MD.
- Canfield, D. (1989). "Reactive iron in marine sediments," *Geochim. Cosmochim. Acta* 53, 619-632.
- Capone, D. G., and Kiene, R. P. (1985). "A simple, convenient, and precise method for determining methane concentrations in the sediments," Unpublished manuscript, Marine Sciences Research Center, SUNY at Stony Brook, NY.
- Cline, J. D. (1969). "Spectrophotometric determination of hydrogen sulfide in natural waters," *Limnol. and Oceanog.* 14, 454-458.
- D'Elia, C. F., Steudler, P. A., and Corwin, N. (1977). "Determination of total nitrogen in aqueous samples using persulfate digestion," *Limnol. Oceangr.* 22, 760-764.
- Eggimann, D. W., Manheim, F. T., and Betzen, P. R. (1980). "Dissolution and analysis of amorphous silica in marine sediment," *J. Sed. Petrology* 50, 215-225.
- Howes, B. L., Dacey, J. W. H., and King, G. M. (1984). "Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments," *Limnol. Oceanogr.* 29, 1037-1051.

- Howes, B. L., Dacey, J. W. H., and Teal, J. M. (1985). "Annual carbon mineralization and below ground production of *Spartina alterniflora* in a New England salt marsh," *Ecology* 66, 595-605.
- Johnson, K. M., Sieburth, J. M., Williams, P. J., and Brandstrom, L. (1987). "Coulometric total carbon dioxide analysis for marine studies: Automation and calibration," Mar. Chem. 21, 117-133.
- Jorgensen, B. B. (1977). "The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)," *Limnol. Oceanogr.* 22, 814-832.
- Kemp, W. M., and Boynton, W. R. (1980). "Influence of biological and physical factors on dissolved oxygen dynamics in an estuarine system: Implications for measurements of community metabolism," Estuar. Coast. Mar. Sci. 11, 407-431.
- _____. (1981). "External and internal factors regulating metabolic rates of an estuarine benthic community," *Oecologia* 51, 19-27.
- Martens, C. S., and Klump, J. V. (1980). "Biogeochemical cycling in an organic-rich coastal marine basin-I. Methane sediment-water exchange processes," *Geochim. et Cosmochim. Acta* 44, 471-490.
- Menzel, D. W., and Vaccaro, R. F. (1964). "The measurement of dissolved organic and particulate carbon in seawater," *Limnol. Oceanogr.* 9, 138-142.
- Morse, J. W., and Cornwell, J. C. (1987). "Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments," *Mar. Chem.* 22, 55-71.
- Ruttenberg, K. (1992). "Development of a sequential extraction method for different forms of phosphorus in marine sediments," *Limonol. Ocenog.* 37, 1460-1482.
- Shoaf, W. T., and Lium, B. W. (1976). "Improved extraction of chlorophyll-a and b from algae using dimethyl sulfoxide," *Limnol. Oceanogr.* 21, 926-928.
- Strickland, J. D. H., and Parsons, T. R. (1972). A practical handbook of seawater analysis. Fish Res. Bd. Can. Bull. 167 (second edition).
- Technicon Industrial Systems. (1977). "Silicates in water and seawater," Industrial Method No. 186-72W/B, Technicon Industrial Systems, Terrytown, NY.

- U.S. Environmental Protection Agency (EPA). (1979). "Methods for chemical analysis of water and wastes," USEPA-600/4-79-020, Environmental Monitoring and Support Laboratory, Cincinnati.
- Valderrama, J. C. (1981). "The simultaneous analysis of total nitrogen and total phosphorus in natural waters," *Mar. Chem.* 10, 109-122.
- Zimmerman, C. F., Keefe, C. W., and Bashe, J. (1992). "Determination of carbon and nitrogen in sediments and particulates of estuarine/coastal waters using elemental analysis, Method 440.0, EPA/600/R-92/121.

Appendix A Water Column Profile Data Tables

STATION	DATE	TIME	TOTAL DEPTH (m)	SECCHI DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	COND (mmho/cm)	SALIN (psu)	DO (mg/L)	DO SAT (%)
MDPT	20MAY94	0908	10.0	0.5	0.5	18.0	0.7	0.0	8.50	89.7
IVIDY I	ZOIVIA 134	0300	10.0	0.0	2.0	18.0	0.7	0.0	8.47	89.4
					4.0	18.0	0.7	0.0	8.39	88.6
					6.0	18.0	0.8	0.0	8.35	88.1
					8.0	17.9	0.8	0.1	8.44	89.0
					9.5	17.9	0.8	0.1	8.48	89.4
GNCV	19MAY94	1410	3.0	0.6	0.5	16.9	0.4	0.0	9.50	98.0
					1.0	16.9	0.4	0.0	9.48	97.8
					2.5	16.9	0.4	0.0	9.51	98.2
HGNK	19MAY94	0900	5.0	0.7	0.5	16.4	0.5	0.0	9.69	98.8
					1.0	16.3	0.5	0.0	9.65	98.3
					2.0	16.3	0.5	0.0	9.70	98.9
					3.0	16.4	0.5	0.0	9.72	99.1
					4.5	16.3	0.5	0.0	9.70	98.9
R-64	21MAY94	0915	17.0	2.5	0.5	15.6	11.0	6.0	9.98	103.8
					2.0	15.5	11.0	6.0	10.10	104.9
					4.0	15.5	11.1	6.0	9.75	101.2
					6.0	15.6	11.4	6.2	9.69	100.9
					8.0	15.5	12.3	6.8	9.35	97.7
					10.0	15.7	16.1	9.2	7.82	83.2
					12.0	16.1	20.1	11.8	6.04	65.8
					14.0	16.1	23.3	13.9	5.04	55.6
					16.5	15.8	24.2	14.5	4.01	44.2

STATION	DATE	TIME	TOTAL DEPTH (m)	SECCHI DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	COND (mmho/cm)	SALIN (psu)	DO (mg/L)	DO SAT (%)
MDPT	13JUL94	1025	10.1	0.6	0.5	28.7	5.0	2.0	0.10	
		. 020	10.1	0.0	2.0	28.5	5.9 5.9	2.9	6.10	80.2
					4.0	28.5		3.0	5.85	76.7
					6.0	28.5	6.2	3.1	5.32	69.8
					8.0	28.4	6.4 6.4	3.2	5.25	68.9
					9.5	28.4		3.3	5.00	65.6
					9.5	20.4	6.6	3.4	4.98	65.3
GNCV	12JUL94	1404	3.0	0.4	0.5	29.8	0.6	0.0	10.23	134.8
					1.0	29.7	0.6	0.0	9.72	127.9
					2.0	29.6	0.6	0.0	9.86	129.7
HGNK	12JUL94	0955	5.4	0.6	0.5	29.5	0.6	0.0	8.12	106.5
					2.0	29.4	0.6	0.0	7.84	100.7
					3.0	29.4	0.6	0.0	7.94	104.1
					4.0	29.4	0.6	0.0	8.70	114.1
R-64	14JUL94	1030	16.5	2.4	0.5	28.3	15,1	8.6	8.40	113.2
					2.0	28.1	15.2	8.6	8.45	113.5
					4.0	28.0	15.6	8.9	7.83	105.2
					6.0	27.3	16.8	9.7	5.00	66.7
					8.0	25.7	21.0	12.4	1.32	17.4
					10.0	23.7	24.3	14.6	0.15	1.9
					12.0	23.3	26.2	15.9	0.12	1.5
					14.0	23.3	26.8	16.3	0.12	1.7
					16.0	23.2	27.6	16.8	0.16	2.1

STATION	DATE	TIME	TOTAL DEPTH (m)	SECCHI DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	COND (mmho/cm)	SALIN (psu)	DO (mg/L)	DO SAT (%)
MDPT	10AUG94	1000	10.5	0.5	0.5	26.7	6.5	3.3	6.74	85.7
	, , , , , , , , , , , , , , , , , , , ,				2.0	26.6	6.4	3.3	6.68	84.9
					4.0	26.7	7.0	3.6	6.30	80.3
					6.0	26.8	7.6	3.9	5.97	76.3
					8.0	26.8	7.8	4.1	5.96	76.3
					10.0	26.8	7.9	4.1	5.82	74.6
GNCV	9AUG94	1240	3.4	0.4	0.5	27.0	0.6	0.0	10.90	136.9
					1.0	27.0	0.6	0.0	10.80	135.5
					2.0	26.9	0.6	0.0	11.10	139.2
HGNK	9AUG94	0923	4.0	0.5	0.5	26.5	0.7	0.0	8.13	101.1
					2.0	26.5	0.7	0.0	8.05	100.1
					3.0	26.4	0.7	0.0	8.35	103.7
R-64	11AUG94	1015	17.6	1.9	0.5	26.3	17.8	10.3	8.20	107.7
					2.0	26.3	17.8	10.3	8.07	106.0
					4.0	26.2	17.8	10.3	7.88	103.4
					6.0	26.2	18.2	10.6	6.41	84.2
					8.0	26.1	20.9	12.3	2.22	29.4
					10.0	25.9	26.0	15.7	0.10	1.3
					12.0	25.6	28.8	17.7	0.10	1.4
					14.0	25.5	30.3	18.7	0.10	1.4
					16.0	25.3	31.7	19.7	0.10	1.4

STATION	DATE	TIME	TOTAL DEPTH (m)	SECCHI DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	COND (mmho/cm)	SALIN (psu)	DO (mg/L)	DO SAT (%)	
MDPT	140CT94	0957	9.5	0.7	0.5	17.8	6.8	3.5	7.88	84.6	
				•.,	2.0	17.9	7.1	3.6	7.80	83.9	
					4.0	17.9	7.1	3.7	7.78	83.8	
					6.0	17.9	7.7	4.0	7.76	83.8	
					8.0	18.0	7.7	4.0	7.74	83.6	
					9.0	18.1	8.7	4.6	7.75	84.2	
GNCV	13OCT94	1210	3.3	0.4	0.5	17.6	0.6	0.0	10.12	105.9	
					1.0	17.6	0.6	0.0	10.14	106.1	
					1.5	17.5	0.6	0.0	10.25	107.0	
					2.0	17.7	0.6	0.0	10.35	108.4	
HGNK	13OCT94	0855	5.5	0.7	0.5	17.5	0.7	0.0	8.42	88.0	
					2.0	17.5	0.7	0.0	8.42	88.0	
					4.0	17.5	0.7	0.0	8.49	88.8	
					5.0	17.5	0.7	0.0	8.67	90.6	
R-64	17OCT94	1436	16.0	2.3	0.5	17.6	24.0	14.4	8.53	97.4	
					2.0	17.6	24.2	14.5	8.44	96.4	
					4.0	17.4	24.9	15.0	8.43	96.2	
					6.0	17.3	25.6	15.5	8.58	98.0	
					8.0	17.4	25.8	15.6	8.26	94.5	
					10.0	17.4	25.9	15.7	8.23	94.2	
					12.0	17.6	26.2	15.9	8.00	92.0	
					14.0	18.3	27.0	16.4	6.79	79.5	
					15.0	18.3	27.0	16.4	6.83	80.0	

Appendix B Bottom Water Dissolved Nutrient Data Tables

1518.0 1285.2 1687.7 1506.7 1387.5 1232.1 1499.3 TC02 (mm) Ξ 11065.86 7270.80 2689.21 313.00 236.44 24.92 334.94 366.17 E 88 7.22 7.28 7.34 7.67 8.62 8.63 7.84 7.81 핍 0.00 0.03 0.02 0.16 0.62 1.38 96.0 1.07 E ₩ -0.18 0.00 -0.36 0.72 0.00 0.00 0.00 1.97 Fe LM (μM) (mg/L) 4.00 2.93 2.03 3.04 4.04 2.76 2.72 8 S SI(0H)4 63.3 39.1 26.6 14.4 (mM) 5.6 95.0 95.4 0.7 0.36 0.70 0.14 0.34 0.23 0.28 0.23 0.51 (m) g 1.85 1.81 1.39 0.38 1.07 0.46 0.58 1.08 (mt) þ 0.56 69.0 1.71 22.3 1.45 8 (mm) 0.24 0.85 0.10 0.23 9 Bottom Water Nutrients: Dissolved nutrient concentrations in bottom waters 18.0 125.0 28.0 24.5 19.2 106.0 10.3 125.0 13.0 (FW 8 8.1 106.0 72.6 50.3 48.4 56.2 (FM NQ. NO2+NO3 Numerical Water Quality and Contaminant Modeling (EL-22) 101.4 91.2 26.9 91.5 92.7 25.7 47.7 (mH) 0.1 Tidal Fresh Potomac River and Maryland Mainstem 26.0 10.6 11.3 NH4 (ma) 4.2 5.2 5.4 5.8 4.0 SAMPLE DEPTH 16.5 16.0 9.5 2.0 9.5 4.0 2.5 Ξ TOTAL 16.5 17.0 10.0 5.4 3.0 10.1 5.0 3.0 Ξ 21MAY94 **20MAY94** 13JUL94 14JUL94 19MAY94 19MAY94 12JUL94 12JUL94 DATE STATION ĘŠ ŦĠĶ **GNCV GNCV** MDPT MDPT R 64 ж 2

1716 1502 1259 1880 1932 1645 1454 TCO2 (µM) 15644.68 3625.45 3430.60 12516.7 398.22 407.88 322.89 375.35 E & 7.18 7.77 7.49 7.46 7.24 8.19 8.37 7.61 핌 0.58 0.00 0.00 0.00 0.49 0.62 0.53 0.00 E W 5.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P (₹ DOC (mg/L) 3.13 3.63 3.63 3.82 3.17 1.94 3.42 2.24 SI(0H)4 (µM) 47.3 10.9 27.1 ω S ø 9 3.0 49. 44 44 33. 0.32 0.33 0.29 0.29 (FW) 0.38 0.30 0.32 0.38 2.17 2.88 2.04 0.40 0.75 0.92 0.48 (F. 70 0.67 2.50 0.35 1.75 0.11 0.62 1.85 0.15 0.37 (mm) 90 Bottom Water Nutrients: Dissolved nutrient concentrations in bottom waters 21.7 25.8 23.7 19.4 21.2 23.6 241.0 26.6 23.4 E ON 137.6 163.0 32.5 9.62 34.0 49.8 68.8 TDN FW NO2+NO3 (µM) Numerical Water Quality and Contaminant Modeling (EL-22) 202.0 139.0 109.2 59.8 ø 1.9 9.1 0.2 39. Tidal Fresh Potomac River and Maryland Mainstem NH4 (FM) 26.0 12.4 9.0 4.0 9.7 4.8 4.7 3.7 SAMPLE DEPTH 16.0 10.0 15.0 2.0 5.0 2.0 9.0 $\widehat{\mathsf{E}}$ 3.0 TOTAL DEPTH 17.6 10.5 16.0 4.0 3.4 5.5 3.3 9.5 $\widehat{\epsilon}$ 11AUG94 10AUG94 170CT94 130CT94 14OCT94 130CT94 **9AUG94 9AUG94** DATE STATION ŦĠĶ GNCV ŦĞĶ GNCV MDPT MDPT R 64 R 64

Appendix C
Sediment Samples: Solid Phase
(0-10 cm) Data Tables;
Dissolved Phase (0-10 cm) Data
Tables

Numerical Water Quality and Contaminant Modeling (EL-22) Tidal Fresh Potomac River and Maryland Mainstem Surficial Sediments: Surficial sediment characteristics

	STATION	DATE	SED FC %(wt)	SED PN %(wt)	SED FP %(wt)	SED CHLa TOTAL (mg/m2)	SED CHLa ACTIVE (mg/m2)
-							
	HGNK	19MAY94	4.18	0.34	0.087	13.4	7.1
	GNCV	19MAY94	3.22	0.26	0.072	10.9	5.5
	MDPT	20MAY94	2.58	0.29	0.093	4.6	1.2
	R-64	21MAY94	2.88	0.36	0.132	15.5	4.6
	HGNK	12JUL94	3.79	0.29	0.080	17.7	8.9
	GNCV	12JUL94	3.83	0.26	0.080	13.9	7.0
	MDPT	13JUL95	2.45	0.27	0.120	8.4	1.8
	R-64	14JUL95	2.66	0.32	0.040	13.9	5.1
	HGNK	9AUG95	3.59	0.30	0.100	12.9	5.5
	GNCV	9AUG95	3.51	0.24	0.059	13.6	6.2
	MDPT	10AUG95	2.38	0.26	0.097	9.2	2.5
	R-64	11AUG95	2.72	0.33	0.050	13.9	5.4
	HGNK	13OCT95	3.75	0.32	0.120	5.8	2.1
	GNCV	13OCT95	3.00	0.23	0.080	8.5	3.0
	MDPT	14OCT95	2.48	0.26	0.140	5.3	1.2
	R-64	17OCT95	3.09	0.37	0.050	9.2	2.8

7.27 7.47 6.97 7.30 7.39 7.31 6.87 6.91 6.81 7.21 6.83 7.04 玉 46.90 00 (mg/L) -0.05 -0.09 12.70 94.06 2.90 0.55 -1.15 -0.13 26.00 -0.20 0.54 00 0.51 0.39 1.73 64. 257.40 -247.52 -40.53 275.32 -301.33 .765.28 48 DON (µg/L) 90.67 -99.25 -177.71 59 20.72 25.69 26.92 78.30 307 32. **Y44 Y66 Y88** 44 99 31 99 88 36 35 99 88 ALK CaCO3/L) 1360.0 1650.0 1079.2 1175.0 1106.7 1120.0 1184.2 1580.0 730.0 1287.5 250.8 475.8 266.7 629.2 295.0 335.0 gm) (mg/L) 25.0 21.4 24.5 18.9 18.0 18.7 14.6 23.9 22.8 8 17.7 6.0 10.1 14.4 15.1 6.8 8.9 # ¥ 80 **G19** G43 **4 R66** R88 **G65 G21** 49 79 16 35 44 36 99 88 SI(OH)4 (µM) 276.8 220.5 213.7 379.6 366.4 329.4 385.0 222.0 374.0 429.0 280.0 817.0 365.0 704.0 12.80 33.40 146.00 193.00 E B 0.29 06.0 0.39 2.05 0.34 0.27 4.41 0.22 5.09 Pore Water: Nutrient concentrations in sediment pore water Numerical Water Quality and Contaminant Modeling (EL-22) NO2+NO3 110.00 (FW 0.53 0.33 0.48 1.81 6.08 0.33 0.25 0.28 1.40 0.28 1.52 0.46 0.52 2.71 0.31 Tidal Fresh Potomac River and Maryland Mainstern 2126 1283 1906 NH4 172 1542 1834 1326 1930 1380 356 522 243 416 802 495 * 4 A 212 235 212 402 208 106 235 209 204 236 98 19MAY94 19MAY94 21MAY94 **20MAY94** 12JUL94 12JUL94 14OCT94 13JUL94 14JUL94 9AUG94 10AUG94 130CT94 130CT94 170CT94 DATE STATION ŦĠĶ GNC MOP **R-64** ŦĞĶ SNC SNC MOPT SNC GNC R-64 PON PON **GNCV** R-64 R-64 MOP

STATION	МОЛТН	SEDIMENT DEPTH (cm)	SIDE A* (μΜ)	SIDE B* (μΜ)	AVG H2S (μΜ)	STANDARD EFFOR
1101114	1417		4.45	4.04	1.50	0.38
HGNK	MAY	1	1.15	1.91	1.53	0.65
		3	0.18	1.49	0.83	0.26
		5	0.51	-0.01	0.25	0.14
		7	0.93	0.65	0.79	
		9	0.94	0.74	0.84	0.10
GNCV	MAY					
GNCV	IVIAT	1 .	0.32	0.58	0.45	0.13
		3	0.46	0.22	0.34	0.12
		5	-0.01	-0.01	-0.01	0.00
		7	-0.01	-0.01	-0.01	0.00
		9	-0.25	-0.01	-0.13	0.12
MOPT	MAY	1	0.69	1.29	0.99	0.30
		3	2.42	1.96	2.19	0.23
		5	2.99	1.76	2.38	0.61
		7	2.98	2.20	2.59	0.39
		9	4.09	2.00	3.04	1.05
R 64	MAY		0.17	0.45	0.31	0.14
n 04	MAI	3	12.58	7.99	10.29	2.30
		5	227.17	181.91	204.54	13.10
		7	508.31	662.67	585.49	52.82
		9	923.29	1117.73	1020.51	73.98
		9	323.23	1117.73	1020.01	70.00

STATION	MONTH	SEDIMENT DEPTH (cm)	SIDE A* (μΜ)	SIDE Β* (μΜ)	AVG H2S (μΜ)	STANDARD EFFOR
HGNK	JULY	4	4.04	0.05	2.22	
HONK	JULY	1	1.04	0.95	0.99	0.04
		3	1.50	0.37	0.94	0.57
		5	0.65	0.27	0.46	0.19
		7	0.75	0.47	0.61	0.14
		9	0.56	0.56	0.66	0.00
CNOV	0.037		0.10			
GNCV	JULY	1	0.46	0.56	0.51	0.05
		3	0.36	0.65	0.51	0.15
;		5	0.58	1.03	0.80	0.23
		7	0.58	0.84	0.71	0.13
		9	0.34	0.86	0.60	0.26
MDPT	JULY	1	0.22	0.56	0.39	0.17
		3	9.57	1.97	5.77	3.80
		5	0.11	0.75	0.43	0.32
		7	0.34	0.86	0.60	0.26
		9	3.71	8.65	6.18	2.47
R 64	JULY	1	301.11	403.28	352.20	51.08
		3	496.26	431.39	463.82	32.40
•		5	448.84	334.56	391.70	57.10
		7	437.52	299.01	368.27	69.20
		9	565.02	837.93	701.48	
		3	303.02	037.93	701.48	136.40

STATION	MONTH	SEDIMENT DEPTH (cm)	SIDE A* (μΜ)	SIDE Β* (μΜ)	AVG H2S (μΜ)	STANDARD EFFOR
HGNK	AUGUST	1	1.03	1.40	1.22	0.19
		3	0.74	0.88	0.81	0.07
		5	0.50	0.64	0.57	0.07
		7	0.50	0.73	0.61	0.11
		9	0.79	0.58	0.69	0.11
GNCV	AUGUST	1	0.42	0.80	0.61	0.19
		3	0.72	0.58	0.65	0.07
		5	0.66	0.51	0.59	0.07
		7	0.65	0.52	0.59	0.06
		9	0.88	0.35	0.61	0.27
MDPT	AUGUST	1	0.50	0.42	0.46	0.04
		3	0.42	0.50	0.46	0.04
		5	0.35	0.58	0.47	0.11
		7	0.58	0.43	0.50	0.08
		9	0.43	1.19	0.81	0.38
R 64	AUGUST	1	1151.03	1025.31	1088.17	45.87
1104	AGGGGI	3	1901.11	2021.84	1961.47	99.67
		5	1647.60	2028.68	1838.14	133.01
		7	1913.97	2273.24	2093.60	104.48
		9	1895.12	2054.50	1974.81	54.29
		9	1090.12	2004.00	13/4.01	34.23

STATION	MONTH	SEDIMENT DEPTH (cm)	SIDE A* (μΜ)	SIDE B* (μM)	AVG H2S (μΜ)	STANDARD ERROR
.:					-	
HGNK	OCTOBER	1	1.15	1.54	1.34	0.19
		3	0.85	0.94	0.90	0.04
		5	0.85	0.85	0.85	0.00
		7	1.10	0.93	1.02	0.08
		9	1.50	0.52	1.01	0.49
GNCV	OCTOBER	1	0.69	0.69	0.69	0.00
		3	0.77	0.86	0.81	0.04
		5	0.68	0.94	0.81	0.13
		7	0.60	0.77	0.69	0.08
		9	0.78	0.94	0.86	0.08
•						
MDPT	OCTOBER	1	0.92	0.93	0.92	0.00
		3	0.92	1.10	1.01	0.09
		5	1.01	1.74	1.38	0.37
		7	1.18	0.93	1.05	0.13
		9	1.02	1.18	1.10	0.08
R 64	OCTOBER	1	1315.65	2661.12	1988.38	409.18
		3	2000.24	4655.34	3327.79	797.79
		5	4559.36	5302.87	4931.11	1067.89
		7	3968.64	5342.62	4655.63	753.60
		9	3156.96	3786.74	3471.85	269.08

^{*}Note: A core was divided into halves. Samples were taken from each half, side A and B respectively.

Numerical Water Quality and Contaminant Modeling (EL-22) Tidal Fresh Potomac River and Maryland Mainstem Methane: Vertical profile of methane in sediments

					AVG				
		DEPTH	SIDE A*	SIDE B*	METHANE	STANDARD		AVERAGE	STANDARD
STATION	MONTH	(cm)	(mM/Lws)**	(mM/Lws)**	(mM/Lws)**	DEVIATION	(mM/m2)	POROSITY	DEVIATION
HGNK	MAY	1	0.502	0.092	0.297	0.205	5.95	3.475	2.475
		3	1.072	0.758	0.915	0.157	18.30	10.650	7.650
		5	1.002	1.533	1.267	0.266	25.35	15.175	10.175
		7	. 1.471	1.206	1.339	0.132	26.77	16.885	9.885
		9	1.012	1.070	1.041	0.029	20.82	14.910	5.910
GNCV	MAY	1.1	0.725	0.604	0.665	0.061	13.29	7.145	6.145
		3	1.153	1.203	1.178	0.025	23.55	13.275	10.275
		5	1.174	1.352	1.263	0.089	25.27	15.135	10.135
		7	1.373	1.724	1.549	0.175	30.98	18.990	11.990
		9	1.132	1.644	1.388	0.256	27.77	18.385	9.385
MOPT	MAY	1	0.020	0.010	0.015	0.005	0.31	0.655	0.345
		3	0.033	0.016	0.024	0.008	0.40	1.700	1.300
		5	0.087	0.073	0.080	0.007	1.50	3.250	1.750
		7	0.161	0.197	0.179	0.018	3.50	5.250	1.750
		9	0.368	0.314	0.341	0.027	6.80	7.900	1.100
R 64	MAY	1	0.004	0.008	0.006	0.002	0.13	0.565	0.435
		3	0.009	0.013	0.011	0.002	0.22	1.610	1.390
		5	0.020	0.020	0.020	0.000	0.39	2.695	2.305
		7	0.025	0.033	0.029	0.004	0.58	3.790	3.210
		9	0.037	0.037	0.037	0.000	0.74	4.870	4.130

^{*}Note: A core was divided into two halves. Samples were taken from each half, side A and B respectively.

^{**}Note: Lws = liter wet sediment

Numerical Water Quality and Contaminant Modeling (EL-22) Tidal Fresh Potomac River and Maryland Mainstem Methane: Vertical profile of methane in sediments

					AVG				
		DEPTH	SIDE A*	SIDE B*	METHANE	STANDARD	METHANE	AVERAGE	STANDARD
STATION	MONTH	(cm)	(mM/Lws)**	(mM/Lws)**	(mM/Lws)**	DEVIATION	(mM/m2)	POROSITY	DEVIATION
HGNK	JULY	1	1.345	S	1.345	0.000	26.90	13.950	12.950
		3	1.095	1.139	1.117	0.022	22.34	12.670	9.670
		5	1.321	0.999	1.160	0.161	23.20	14.100	9.100
		7	1.355	1.096	1.226	0.129	24.51	15.755	8.755
		9	1.165	1.397	1.281	0.116	25.62	17.310	8.310
GNCV	JULY	1	1.347	2.129	1.738	0.391	34.77	17.885	16.885
		3	1.192	1.175	1.184	0.008	23.67	13.335	10.335
		5	4.424	2.162	3.293	1.131	65.86	35.430	30.430
		. 7	1.222	1.491	1.357	0.135	27.13	17.065	10.065
		9	1.137	1.164	1.151	0.013	23.02	16.010	7.010
MOPT	JULY	.1	0.023	0.017	0.020	0.003	0.39	0.695	0.305
		3	0.017	0.051	0.034	0.017	0.68	1.840	1.160
		5	0.042	0.081	0.061	0.019	1.23	3.115	1.885
		7	0.074	0.241	0.158	0.083	3.15	5.075	1.925
		9	0.429	0.569	0.499	0.070	9.98	9.490	0.490
R 64	JULY	1	0.004	0.004	0.004	0.000	0.08	0.540	0.460
		3	0.006	0.006	0.006	0.000	0.12	1.560	1.440
		5	0.008	0.007	0.008	0.000	0.15	2.575	2.425
		7	0.010	0.008	0.009	0.001	0.18	3.590	3.410
		9	0.012	0.011	0.012	0.000	0.23	4.615	4.385

^{**}Note: Lws = liter wet sediment

Numerical Water Quality and Contaminant Modeling (EL-22) Tidal Fresh Potomac River and Maryland Mainstem Methane: Vertical profile of methane in sediments

CT.T.C.	NO. TI	DEPTH	SIDE A*	SIDE B*	AVG METHANE	STANDARD DEVIATION	METHANE	AVERAGE POROSITY	STANDARD DEVIATION
STATION	MONTH	(cm)	(mM/Lws)**	(mM/Lws)**	(mM/Lws)**	DEVIATION	(mM/m2)	FURGITI	DEVIATION
HGNK	AUGUST	1	0,506	1.868	1.187	0.681	23.74	12.370	11.370
rica (I	A00001	3	1.350	1.374	1.362	0.012	27.24	15.120	12,120
		5	2.135	1.796	1.965	0.169	39.30	22.150	17.150
		7		1.710	1.923	0.214	38.47	22.735	15.735
			2.137				20.69	14.845	5.845
		9.	1.104	0.965	1.035	0.069	20.69	14.043	3.643
GNCV	AUGUST	1	1.311	0.903	1.107	0.204	22.14	11.570	10.570
GI 10 V	AUGUOT	3	1,191	0.902	1.046	0.145	20.93	11.965	8.965
		5	1.009	1.050	1.030	0.021	20.59	12.795	7.795
		.7	1.099	1.105	1.102	0.003	22.04	14.520	7.520
		9	1.135	2.190	1.662	0.527	33.25	21.125	12.125
		9	1.133	2.150	1.002	0.527	00.20	21.120	
MDPT	AUGUST	1	0.008	0.012	0.010	0.002	0.20	0.600	0.400
		3	0.016	0.037	0.027	0.011	0.53	1.765	1.235
		5	0.043	0.045	0.044	0.001	0.88	2.940	2.060
		7	0.047	0.127	0.087	0.040	1.73	4.365	2.635
		9	0.119	0.286	0.203	0.084	4.05	6.525	2.475
R 64	AUGUST	1	0.015	0.011	0.013	0.002	0.25	0.625	0.375
		3	0.028	0.027	0.028	0.001	0.55	1.775	1.225
		5	0.045	0.044	0.045	0.001	0.89	2.945	2.055
		7	0.051	0.068	0.059	0.009	1.19	4.095	2.905
		9	0.083	0.089	0.086	0.003	1.72	5.360	3.640

^{**}Note: Lws = liter wet sediment

Numerical Water Quality and Contaminant Modeling (EL-22)

Tidal Fresh Potomac River and Maryland Mainstem Methane: Vertical profile of methane in sediments

		DEPTH	SIDE A*	SIDE B*	AVG METHANE	STANDARD	METHANE	AVERAGE	STANDARD
STATION	MONTH	(cm)	(mM/Lws)**	(mM/Lws)**	(mM/Lws)**	DEVIATION	(mM/m2)	POROSITY	DEVIATION
OTATION	WORTH	(СПП)	(IIIIII/CW3)	(MINIO EN 3)	(11111/12113)	DEVIATION	(IIIIII/IIIZ)	10100111	DEVIATION
HGNK	OCTOBER	1	1.649	1.535	1.592	0.057	31.83	16.415	15.415
		3	2.971	1.626	2.299	0.673	45.98	24.490	21.490
		5	2.410	2.717	2.563	0.153	51.27	28.135	23.135
		7	2.115	1.606	1.860	0.255	37.20	22,100	15.100
		9	2.430	1.144	1.787	0.643	35.74	22.370	13.370
GNCV	OCTOBER	1	1.585	0.694	1.140	0.445	22.79	11.895	10.895
		3	1.323	1.502	1.413	0.090	28.26	15.630	12.630
		5	1.307	1.276	1.291	0.016	25.83	15.415	10.415
		7	1.898	1.933	1.915	0.018	38.30	22.650	15.650
		9	3.239	2.792	3.016	0.223	60.31	34.655	25.655
MDPT	OCTOBER	1	0.027	0.032	0.030	0.002	0.59	0.795	0.205
		3	0.379	0.011	0.195	0.184	3.90	3,450	0.450
		5	0.054	0.285	0.169	0.116	3.39	4.195	0.805
		7	0.020	0.048	0.034	0.014	0.68	3.840	3,160
		9	0.090	0.131	0.111	0.020	2.21	5.605	3.395
R 64	OCTOBER	1	0.020	0.025	0.022	0.002	0.45	0.725	0.275
		3	0.033	0.031	0.032	0.001	0.64	1.820	1.180
		5	0.038	0.036	0.037	0.001	0.74	2.870	2.130
		7	0.038	0.036	0.037	0.001	0.74	3.870	3.130
		9	0.036	0.035	0.036	0.001	0.71	4.855	4.145
		-							

^{*}Note: A core was divided into two halves. Samples were taken from each half, side A and B respectively.

^{**}Note: Lws = liter wet sediment

Appendix D Incubation Core Nutrient Concentration Data Tables

ПΡ (FW) 0.23 0.26 0.29 0.29 0.29 0.27 0.30 0.33 0.33 0.26 0.32 0.30 0.31 0.21 EM (EM NO2+NO3 101.6 101.8 101.5 99.1 97.3 96.2 94.7 99.9 99.0 97.0 94.8 99.3 95.3 93.5 90.0 101.5 100.1 E HA 13.4 13.0 11.7 12.4 12.2 17.6 21.7 25.0 29.8 36.7 13.3 16.0 19.0 22.4 23.5 13.6 14.5 16.9 18.4 20.3 A M S 169 174 178 182 186 170 175 179 183 187 171 176 180 184 188 172 177 181 185 189 8 (mg/L) 9.30 9.28 9.26 9.23 8.94 8.47 8.07 7.62 7.20 8.95 8.44 7.95 7.43 7.00 8.87 8.42 7.98 7.56 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME SUM (min) 60 120 182 240 0 60 120 182 240 0 120 182 240 0 60 120 182 240 TIME DELTA (min) 0 0 0 0 8 98 88 0 0 0 0 8 Numerical Water Quality and Contaminant Modeling (EL-22) SAMPLE (hr min) CORE TIME OF 25 25 27 25 25 25 25 25 25 27 25 25 25 25 Tidal Fresh Potomac River and Maryland Mainstem 5 T 2 E 4 5 t 5 t 4 9 12 2 4 5 T Z E T 9 ω 2 က DATE 19MAY94 STATION HGNK

М _п (µМ)	1.16	1.09	1.02	96.0	0.91	2.42	3.57	4.31	5.22	6.26	1.89	2.35	2.91	3.60	4.10	1.93	2.57	3.09	3.55	4 04
Fе (µM)	0.72	0.18	0.54	0.18	0.00	0.90	0.72	86.9	1.43	2.15	0.18	0.36	0.72	0.54	0.18	0.36	0.36	0.30	3.94	000
Ħ	7.84	7.98	8.11	8.13	7.99	7.90	7.88	7.85	7.76	7.72	7.96	7.96	7.94	7.89	7.79	7.97	7.98	7.94	7.97	7 89
ТDР (µg/L)	0.49	0.51	0.55	0.53	0.52	0.50	0.53	0.56	0.59	0.54	0.52	0.55	0.59	0.65	0.59	0.49	0.57	0.57	0.56	0.53
DOP (µg/L)	0.28	0.24	0.32	0.31	0.30	0.24	0.24	0.27	0.30	0.25	0.25	0.25	0.26	0.32	0.24	0.23	0.25	0.27	0.25	0.22
TDN (µg/L)	126.0	127.0	125.0	126.0	128.0	130.0	141.0	146.0	147.0	152.0	126.0	127.0	128.0	129.0	133.0	126.0	123.0	123.0	120.0	118.0
DON (µg/L)	11.6	12.5	11.7	11.8	14.3	12.3	20.2	23.7	21.0	20.6	12.8	12.0	12.0	11.8	15.7	12.5	13.2	12.6	11.6	11.8
TCO2 (µM)	1388.7	王	壬	壬	1381.8	1504.4	1559.3	壬	1690.6	1703.5	1432.3	1603.4	Ŧ	1640.8	1620.9	1423.2	1522.7	Ξ	1599.8	1729.0
DOC (mg/L)	2.56	2.36	2.44	2.43	2.40	2.51	2.54	2.58	2.58	တ	2.49	2.89	2.53	2.54	တ	2.51	2.51	2.48	2.50	2.52
SI(OH)4 DOC (μM) (mg/L)	94.3	97.3	94.6	100.5	0.66	93.5	94.1	8.66	105.4	109.1	91.2	96.5	6.66	103.2	11.1	6.86	111.4	119.6	133.9	147.8

E DE 0.23 0.26 0.27 0.25 0.24 0.27 0.31 0.32 0.32 0.34 0.26 0.25 0.32 0.35 0.34 0.24 0.30 0.30 0.30 Ē Ē 90.0 88.5 86.3 85.8 88.3 87.3 86.6 NO2+NO3 91.2 91.2 90.9 91.0 90.5 88.8 87.5 9.98 85.8 87.4 90.3 89.4 NH4 (MI) 10.6 13.7 15.3 8.6 9.8 10.8 4.1 7.6 10.3 11.9 12.8 14.5 4.0 4.2 6.6 8.7 5.0 6.7 S K S 191 195 199 203 207 192 196 200 204 208 193 197 201 205 209 194 198 202 206 206 210 8 (mg/L) 8.67 8.08 7.60 7.17 6.79 8.71 8.10 7.59 7.12 6.72 8.76 8.23 7.92 7.53 7.21 9.03 8.99 8.96 8.93 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME (min) 0 120 180 240 0 120 180 240 0 120 180 240 0 120 180 240 TIME DELTA (min) 09 09 0 8 8 8 8 0 0 0 0 0 0 8 8 8 8 Numerical Water Quality and Contaminant Modeling (EL-22) min) 35 35 35 35 35 35 35 88 88 88 88 88 88 33 33 33 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem 16 17 18 19 15 17 18 19 15 16 17 19 19 ٦ 9 ш ო N DATE 19MAY94 STATION GNCV

Fe Mn (μM) (μM)					-0.36 0.42	-0.18 1.98		-0.18 2.89		-0.18 2.86					-0.18 3.48	1.25 0.96			-0.36 1.75	
Нq	7.97	8.01	8.09	8.10	8.04	7.94	7.86	7.86	7.84	7.80	8.01	7.91	7.88	7.85	7.82	8.05	7.95	7.94	7.96	7.85
ТDР (//gu/	0.67	0.63	0.61	0.65	0.59	0.65	0.64	0.71	0.68	0.68	0.63	0.65	69.0	S	0.68	0.64	0.65	0.64	0.67	0.63
DOP (J/g/l)	0.44	0.37	0.34	0.40	0.35	0.38	0.33	0.37	0.36	0.34	0.37	0.40	0.37	S	0.34	0.40	0.39	0.34	0.38	0.33
TDN (J/gil)	107	109	105	108	107	109	111	112	112	112	108	109	110	S	=======================================	109	108	109	111	109
DON (J/g/l)	11.6	13.8	9.6	13.0	12.0	10.9	11.9	12.6	12.6	11.7	11.4	11.8	12.0	S	6.6	13.7	11.9	12.1	13.9	11.6
ТСО2 (µM)	1229.0	Ŧ	Ŧ	Ŧ	1238.0	1330.8	1417.0	壬	1502.8	1543.6	1295.0	1368.0	王	1473.3	1492.9	1285.9	1350.6	壬	1359.0	1378.2
DOC (mg/L)	တ	2.66	2.61	2.64	2.75	2.71	2.80	2.78	2.75	တ	2.74	2.76	2.74	တ	2.94	2.62	2.83	2.87	2.73	2.90
SI(OH)4	102.4	103.1	6.66	106.4	104.7	102.1	105.3	107.1	108.9	110.3	102.8	105.3	103.0	106.4	103.5	102.6	102.4	102.7	105.0	105.2

DIP (LM) 0.95 0.95 0.98 0.98 0.94 0.95 0.96 1.01 0.90 0.88 0.96 0.97 0.85 0.85 0.86 0.84 0.84 (EM NO2+NO3 95.6 92.8 92.8 93.3 91.6 89.6 87.7 84.5 84.1 92.0 89.3 87.8 84.8 83.5 91.4 90.3 89.4 88.2 92.7 NTA TA (EM 6.0 6.9 7.5 8.3 9.5 4.9 5.0 5.5 6.4 7.1 6.9 5.7 6.4 7.1 7.9 8.3 A A S 215 219 223 227 231 216 220 224 228 232 217 221 225 229 229 233 214 218 222 226 230 8 (mg/L) 7.72 7.11 6.58 5.95 5.57 7.74 7.21 6.76 6.26 5.93 7.97 7.98 7.95 7.88 7.50 7.21 6.83 6.62 8.03 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME SUM (min) 0 60 120 190 252 0 120 130 252 0 0 120 130 252 DELTA TIME (min) 0 8 8 8 8 08888 08828 0 8 8 8 8 Numerical Water Quality and Contaminant Modeling (EL-22) min) 35 35 45 45 45 35 35 45 45 35 35 45 45 35 35 45 45 45 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstern 0 1 2 5 4 5 t 2 t 4 0 = 2 5 4 5 t 2 t t Ē 9 B N က DATE **20MAY94** STATION MDPT

	Mn (µM)	0.47	0.46	0.47	0.46	0.46	0.95	1.26	1.55	1.78	1.84	0.93	1.27	1.55	1.98	2.11	0.82	1.16	1.44	1.78	1.97	
	Fe (μM)	0.54	-0.18	0.54	-0.18	-0.18	0.18	0.18	0.54	0.90	0.18	-0.36	0.36	-0.18	0.18	0.00	0.18	0.00	0.18	0.18	0.00	
	됩	7.94	7.82	7.86	7.81	7.81	7.95	7.87	7.86	7.79	7.83	7.95	7.84	7.81	7.72	7.75	7.94	7.88	7.86	7.79	7.78	
	TDP (µg/L)	1.22	1.03	တ	1.13	1.24	1.08	1.15	1.16	1.18	1.28	1.22	1.22	1.18	1.18	1.25	1.12	1.19	1.23	1.25	1.33	
	DOP (µg/L)	0.37	0.18	S	0.29	0.40	0.17	0.20	0.21	0.20	0.34	0.28	0.27	0.22	0.17	0.20	0.22	0.31	0.27	0.28	0.32	
į	IDN (μg/L)	108	103	S	107	109	104	105	105	104	106	107	104	104	101	100	105	104	104	102	100	
į	NOO (πg/L)	10.2	5.4	တ	9.5	10.4	6.4	9.7	8.3	7.5	10.9	9.4	7.5	8.8	8.2	6.4	7.3	8.3	9.1	9.3	8.2	
,	(hM)	1517.1	王	王	Ξ	1519.6	1523.5	1533.8	壬	1550.8	1569.9	1523.6	1534.8	王	1551.1	1561.1	1508.3	1531.4	壬	1548.0	1560.8	
C C	(mg/L)	2.77	2.66	2.62	2.75	2.76	2.95	2.68	2.73	2.69	2.88	2.74	2.69	3.01	2.73	2.78	2.74	2.67	2.75	2.93	2.81	
Ya Ozo	э(ОН) (µМ)	29.7	28.6	27.6	27.8	28.1	30.1	34.2	36.8	38.2	45.2	29.5	31.8	32.6	32.7	34.3	30.2	31.2	32.4	35.0	37.1	

DIP (mW) 0.23 0.25 0.28 0.33 0.21 0.28 0.31 0.32 0.33 0.13 0.12 0.12 0.22 0.26 0.29 0.32 0.32 25.3 24.7 23.7 22.9 22.6 (EM) NO2+NO3 25.2 24.5 24.1 23.0 23.0 25.2 24.4 23.6 23.4 22.4 25.6 25.7 25.7 25.7 25.7 NH4 (mM) 12.2 13.6 14.8 15.8 11.6 11.9 11.6 13.1 15.2 17.4 18.7 20.2 13.0 14.4 15.9 17.1 18.3 11.6 A M S 130 138 143 151 131 139 152 152 138 136 141 149 129 137 142 150 00 4.18 3.89 3.62 3.45 SS (mg/L) 4.15 3.83 3.57 3.34 3.16 3.79 3.56 3.56 3.36 3.18 4.27 4.27 4.22 4.31 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME SUM (min) 65 120 180 240 240 0 0 120 180 240 TIME DELTA (min) 0 8 8 8 8 0 8 8 8 8 0 8 8 8 0 0 0 0 0 Numerical Water Quality and Contaminant Modeling (EL-22) min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem 1 2 2 4 4 5 1 2 5 4 5 122545 Ē 2 മ N က DATE 21MAY94 STATION R-64

Mn (µM)	1.38	1.47	1.46	1.42	1.49	1.7	1.86	2.06	2.13	2.17	164	1.67	1.78	1.97		1.64	1.66	1.66	1.80	1 86
Fe (µM)	1.79	1.61	1.61	1.61	2.15	1.79	1.97	1.97	1.79	1.97	2.15	1.97	1.97	2.86	1.97	1.97	1.97	2.15	2.33	3 22
Hd.	7.30	7.42	7.35	7.29	7.30	7.34	7.38	7.31	7.26	7.24	7.31	7.40	7.34	7.32	7.30	7.39	7.38	7.35	7.33	7.28
TDP (µg/L)	0.22	0.35	0.28	0.31	0.32	0.34	0.49	0.49	0.53	0.58	0.49	0.43	0.45	0.50	0.50	0.36	0.47	0.48	0.50	0.59
DOP (µg/L)	0.10	0.23	0.15	0.18	0.20	0.12	0.23	0.20	0.21	0.26	0.26	0.18	0.17	0.17	0.19	0.15	0.19	0.17	0.18	0.26
TDN (µg/L)	52.3	54.4	52.4	53.7	52.8	55.5	59.2	59.2	58.8	63.1	56.8	55.9	56.3	56.9	58.1	54.6	56.0	55.6	56.5	62.5
DON (µg/L)	15.1	17.3	15.1	16.1	15.5	17.2	19.5	17.7	17.1	19.9	18.6	17.1	16.8	16.4	17.4	17.1	17.7	17.1	17.8	23.0
TCO2 (μM)	1498.0	1497.2	1497.3	1497.2	1494.2	1513.0	1531.7	1553.0	1565.1	1578.3	1505.0	1521.6	1533.3	1540.3	1554.5	1505.6	1526.1	1533.2	1548.0	1556.9
DOC (mg/L)	2.15	2.19	2.11	2.09	2.14	2.18	2.16	2.14	2.17	2.15	2.23	2.17	2.16	2.15	2.18	2.13	2.29	2.14	2.16	2.12
SI(OH)4 (µM)	14.6	14.7	15.0	14.7	14.6	16.8	19.4	21.6	23.7	25.2	16.9	19.0	21.0	23.2	24.8	15.8	18.4	20.2	22.6	24.9

DIP (IIM) 0.53 0.60 0.36 0.62 0.62 0.64 1.28 0.38 0.45 0.46 0.50 0.73 0.62 0.66 0.45 0.80 NO2+NO3 (EM) 90.50 89.20 89.10 87.90 86.20 83.30 76.30 89.30 87.00 85.10 83.00 79.70 88.60 84.40 82.30 79.30 NH4 (mM) 45.9 56.8 8.2 13.9 18.9 23.1 27.9 4.6 4.8 10.0 17.0 21.8 27.0 34.7 15.8 29.6 41.0 NO YE A 171 175 179 184 188 172 176 180 185 189 173 177 181 186 190 178 183 187 74 00 (mg/L) 6.87 5.92 5.10 4.36 3.41 7.10 6.95 6.88 6.75 4.99 4.30 3.40 6.79 5.83 5.01 4.32 3.45 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME SUM (min) 125 185 270 0 65 125 185 270 0 65 125 185 270 0 65 125 185 270 TIME DELTA (min) 99 99 99 0 60 85 85 00 00 00 83 85 85 85 Numerical Water Quality and Contaminant Modeling (EL-22) min) 5 2 2 2 3 4 5 4 5 15 2 2 2 3 45 45 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem 12 2 2 4 5 **= 2 t 4 t** 12 2 2 4 5 Ė **5 4 5** 9 α က 2 DATE 12JUL94 STATION HGNK

Mn (µM)	0 41	0.47	0.27	0.60	0.25	•	0	2.75	2 57	5.02	÷	2.0	5.63	, r , r	7.81	7	5 7	9.0	22.2	79 0
Fe (µM)	000	0.90	0.30	0.30	0.18	6	0.00	2 6	0.00	3.76	ar c	98.0	0.00 38	98.0	0.36	98 0	9 0	0 C	9 0	0.54
됩	7 82	7 7	7.63	55.7	7.63	7 73	7.62	7.50	7.50	7.41	7.70	7.53	7.42	7.41	7.34	77.7	7.65	7.53	7.49	7.43
ТDР (µg/L)	1.01	1 07	1.07	00.1	1.08	121	13	1.53	1.58	1.63	1.07	1.09	1.20	1.15	1.37	1.1	1.10	1.16	1.27	1.33
DOP (μg/L)	0.60	0.54	0.47	0.73	0.61	0.59	0.80	0.91	0.94	0.35	69.0	0.64	0.74	0.65	0.64	0.49	0.63	0.50	0.82	0.53
TDN (μg/L)	120.0	122.0	113.4	117.0	123.0	127.0	130.0	131.0	138.0	133.0	131.0	142.0	150.0	152.0	167.0	123.0	128.0	129.0	131.0	133.0
DON (µg/L)	24.9	27.5	19.6	23.1	30.4	28.0	26.8	25.9	30.6	22.0	25.9	25.4	23.9	23.1	30.5	26.2	27.8	25.7	25.6	25.8
TCO2 (μM)	1679.3	Ξ	壬	Ŧ	1762.3	1771.6	1816.8	王	1956.4	2007.7	1822.9	1845.2	Ξ	1970.1	2049.4	1779.3	1811.4	壬	1904.9	1960.1
DOC (mg/L)	3.86	4.02	3.88	3.91	3.86	3.92	4.04	4.19	4.05	4.06	4.02	4.04	4.13	4.24	4.29	3.96	4.09	4.09	4.23	4.16
SI(OH)4 (µM)	5.6	8.4	12.4	16.2	22.0	4.3	7.6	10.8	13.5	16.8	5.2	9.1	12.8	15.7	20.0	3.8	9.9	8.8	11.3	13.8

OIP (mM) 0.51 0.85 0.77 0.79 1.02 0.71 0.96 0.95 0.85 1.15 0.61 1.03 0.99 0.96 1.06 0.84 0.81 0.72 NO2+NO3 (EM) 49.0 48.3 48.0 47.9 37.3 48.1 48.7 48.2 47.7 47.3 48.3 48.3 48.6 47.3 47.3 46.8 NH4 (FM) 2.1 4.1 6.0 7.3 9.1 3.4 5.4 7.7 9.4 5.3 7.0 8.5 0.5 2.2 4.0 S A S 193 197 201 205 209 194 198 202 206 210 191 195 199 203 207 192 196 200 204 208 8 (mg/L) 8.44 7.56 6.85 6.27 5.77 9.13 8.12 7.44 6.85 6.35 8.70 8.40 8.28 8.18 8.60 7.81 7.23 6.75 6.32 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME SUM (min) 0 120 180 240 240 TIME DELTA (min) 0 8 8 8 8 0 8 8 8 0 8 8 8 0 8 8 8 Numerical Water Quality and Contaminant Modeling (EL-22) Tidal Fresh Potomac River and Maryland Mainstem min) **रा** रा रा रा 5 5 5 5 5 存存存存 SAMPLE CORE TIME OF 15 14 15 15 15 15 17 18 19 15 17 18 19 15 16 17 18 19 يّ 9 $\boldsymbol{\omega}$ N က DATE 12JUL94 STATION GNCV

E DIP 1.75 1.77 1.55 1.50 1.96 1.84 1.76 1.34 1.65 1.59 1.73 1.76 1.63 1.74 1.52 NO2+NO3 26.3 24.6 24.0 26.5 20.5 25.1 23.6 26.8 13.7 19.2 19.9 22.5 21.0 26.3 26.4 26.4 27.1 25.6 24.7 (EM 5.1 6.5 5.3 5.4 10.4 18.3 27.0 31.1 37.7 8.7 13.2 17.3 19.3 21.7 5.6 7.5 7.9 8.6 8.8 NO AA 217 221 225 229 229 214 218 222 226 230 215 219 223 227 231 216 220 224 228 228 400 mg/L) 4.85 4.79 4.78 4.77 3.96 3.47 3.05 2.71 4.76 4.16 3.79 3.46 3.22 3.78 3.19 2.67 2.30 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME SUM (min) 0 8 2 8 4 60 120 180 240 TIME (min) 0 8 8 8 8 08888 0 8 8 8 9 08888 Numerical Water Quality and Contaminant Modeling (EL-22) 88888 88888 88888 88888 CORE TIME OF NO SAMPLE SAMPLE Tidal Fresh Potomac River and Maryland Mainstem **- 2 2 4 4** 12 12 12 15 12 2 2 4 5 5 5 4 5 Ė œ N က DATE 13JUL94 STATION MDPT

	Mn	(mm)	0.00	0.49	0.47	0.40	0.42	2.51	4.46	6.01	7.34	8.30	1.64	3.84	3.51	4.08	4.77	4.17	7.86	10.65	13.11	14.71
	Fe	(μη)	壬	-0.18	0.00	0.00	-0.18	0.36	0.00	0.18	0.36	0.54	-0.18	7.52	-0.36	-0.18	-0.18	0.00	0.18	0.54	1.25	2.15
	H		7.42	7.35	7.34	7.34	7.38	7.40	7.32	7.29	7.26	7.27	7.40	7.34	7.32	7.29	7.30	7.40	7.31	7.26	7.23	7.23
	TDP	(μg/L)	1.94	1.94	1.94	1.92	1.94	2.04	1.99	1.87	1.83	1.87	1.90	1.85	1.78	1.76	1.75	1.94	1.97	1.94	1.88	2.22
	DOP	(hg/L)	0.23	0.19	0.15	0.21	0.14	0.20	0.23	0.53	0.18	0.28	0.17	60.0	0.15	0.02	0.23	0.17	0.20	0.39	0.38	0.26
	NOT	(μg/L)	51.2	49.4	50.6	49.2	50.4	52.5	56.9	58.8	62.1	61.5	52.0	50.5	49.8	49.7	50.2	51.5	59.5	63.2	66.5	73.8
	DON	(µg/L)	20.0	17.7	17.7	17.5	17.9	18.2	19.0	21.6	20.3	18.8	20.1	18.4	17.9	14.6	20.9	16.0	17.6	9.4	21.7	16.9
	TC02	(mm)	1284.9	Ξ	王	王	1281.1	1284.4	1303.4	Ξ	1325.2	1332.0	1285.8	1305.9	王	1344.5	1369.4	1290.1	1322.3	壬	1353.4	1383.8
t continued	DOC	(mg/L)	2.98	2.92	2.89	2.84	2.96	2.87	2.86	2.84	2.82	2.88	2.95	2.93	2.82	2.88	2.94	2.93	2.97	2.84	2.94	2.88
MDPT JULY 1994 continued	SI(OH)4	(m ^r l)	65.4	9.99	67.0	58.3	64.6	67.3	68.4	68.4	81.1	74.5	64.7	68.8	68.7	72.5	73.2	65.7	74.4	80.0	89.4	82.4

OIP (mM) 1.68 1.97 2.23 2.45 2.66 1.61 2.03 2.29 2.50 2.50 1.25 1.24 1.23 1.80 2.07 2.34 2.63 2.63 37 NO2+NO3 (MI) 0.10 0.12 0.12 0.24 0.26 0.39 0.36 0.12 0.19 0.11 0.13 0.27 0.12 0.73 0.35 0.97 0.29 NH2 (EM) 27.0 28.0 30.6 32.0 34.0 25.9 25.7 25.7 25.7 26.4 27.8 28.7 31.6 33.4 35.7 29.2 30.8 31.4 33.2 VIAL A 67 73 73 83 65 73 73 81 8 2 2 8 8 8 (md/L) 0.13 0.06 0.05 0.04 0.04 0.12 0.09 0.06 0.19 0.06 0.05 0.04 0.04 0.27 0.13 0.09 0.09 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME SUM (min) 60 120 180 240 0 120 180 240 0 120 180 240 TIME DELTA (min) 0 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 Numerical Water Quality and Contaminant Modeling (EL-22) min) 45 45 45 45 45 45 45 45 45 45 45 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem 12 2 4 4 5 12 2 2 4 5 5 5 5 4 5 11 2 2 2 4 4 5 5 5 α က 0 DATE 14JUL94 STATION **R-64**

Mn (µM)	2.20	2.13	2.24	2.13	2.17	2.20	2.18	2.26	2.28	2.26	2.17	2.18	2.38	2.28	2.28	2.26	2.22	2.22	2.33	231
Fe (µM)	3.76	3.40	3.40	3.22	3.22	3.76	3.76	3.76	3.76	3.94	3.94	3.40	3.40	3.58	3.76	3.94	3.58	3.40	3.40	3.58
Hd	7.32	7.23	7.31	7.33	7.42	7.37	7.36	7.40	7.46	7.53	7.35	7.33	7.37	7.42	7.49	7.40	7.40	7.45	7.51	7.59
TDP (µg/L)	1.69	1.65	1.61	1.67	1.65	1.90	2.28	2.67	2.95	3.17	2.13	2.47	2.70	3.25	3.44	2.16	2.54	2.72	2.91	3.35
DOP (μg/L)	0.38	0.28	0.36	0.43	0.42	0.22	0.31	0.44	0.50	0.51	0.52	0.44	0.41	0.75	0.71	0.36	0.47	0.38	0.28	0.64
TDN (µg/L)	49.6	48.6	48.3	48.7	53.8	51.2	54.5	54.8	59.1	62.4	52.2	53.9	55.9	64.4	64.9	51.9	52.8	92.0	58.7	60.5
DON (µg/L)	23.6	22.4	22.7	22.9	27.3	24.0	26.2	23.8	26.7	28.3	24.2	25.1	24.2	30.9	28.9	24.4	22.9	23.9	26.3	27.0
TCO2 (µM)	1689.9	1691.3	1688.2	1680.8	1675.3	1709.0	1722.2	1730.1	1737.2	1731.2	1701.8	1722.8	1735.4	1743.4	1745.2	1708.5	1722.0	1730.5	1730.1	1726.9
DOC (mg/L)	2.00	1.97	2.02	1.96	1.94	1.99	2.00	2.03	2.02	2.07	2.02	2.20	2.05	1.94	2.08	2.01	2.10	2.00	2.07	2.03
SI(OH)4 (μM)	39.4	39.5	40.2	39.9	39.9	42.1	45.3	47.6	49.4	50.9	41.8	44.2	46.6	47.9	49.4	43.1	49.3	52.4	53.6	55.1

DIP (mM) 0.26 0.27 0.26 0.26 0.31 0.28 0.27 0.29 0.26 0.25 0.25 0.28 0.29 0.31 0.33 0.29 0.30 0.29 107.60 105.10 NO2+NO3 EM) 108.10 80.90 103.70 102.70 04.70 109.70 109.40 105.40 103.70 109.40 NH4 (EM) 9.4 17.2 21.4 24.8 27.1 13.9 20.3 26.9 31.9 37.6 3.7 3.7 3.6 3.7 3.9 21.0 25.6 29.6 33.2 A A S 178 183 191 171 175 179 184 25 176 186 193 193 173 177 181 186 194 8 (mg/L) 7.30 6.48 5.99 5.57 5.21 7.48 7.24 7.19 7.12 7.10 7.21 6.50 6.02 5.62 5.27 7.12 6.46 6.06 5.70 5.41 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME SUM (min) 0 120 180 240 240 0 8 2 8 5 TIME (min) 0 0 0 0 0 0 2 2 2 2 0 8 8 8 8 0 8 8 8 8 Numerical Water Quality and Contaminant Modeling (EL-22) min) 2222 2222 2222 2022 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem 5 T S E 4 5 1 2 5 4 5 5 4 **5** € ₹ Ē 2 æ က N DATE **9AUG94** STATION HGNK

TDP pH Fe Mn (μg/L) (μM) (μM)	7.64 0.72	0.18	7.71 0.18	7.66 0.18	.62 7.65 0.18 0.02	7.52 0.00	7.47 0.00	7.43 0.18	7.36 0.36	0.18	7.49 0.18	7.41 0.18	7.36 0.18	7.28 0.18	0.18	·	7.47 0.00	7.40 0.00	7.37 0.00		
DOP Т (µg/L) (µ		0.35 0.					0.40 0.				0.33 0.					0.46 0.					
TDN (μg/L)	138.3	138.3	137.8	138.5	137.0	147.5	149.6	157.1	156.2	165.6	145.5	151.2	156.2	159.5	163.2	144.0	143.7	150.5	152.1	161.2	
DON (µg/L)	25.2	24.8	24.5	25.4	23.4	25.6	23.2	56.9	22.9	29.9	23.5	20.0	24.6	23.9	23.0	27.0	20.5	24.0	23.8	31.4	
ТСО2 (µM)	1738.4		1714.9		1717.8	1807.1	1853.2	1872.6	1903.4	1943.7	1777.6	1837.8	1867.0	1903.2	1931.1	1780.0	1815.6	1849.9	1872.9	1901.4	
DOC (mg/L)	3.59	3.67	3.66	3.68	3.51	3.57	3.67	3.69	3.78	3.75	3.62	3.70	3.70	3.72	3.66	3.68	3.76	3.73	3.72	3.73	
SI(OH)4 (µM)	10.1	10.9	11.3	10.9	10.6	13.6	15.9	17.9	19.3	18.7	12.4	15.1	16.9	18.0	19.3	13.4	16.0	17.1	17.4	17.6	

DIP (EM) 0.78 0.79 0.71 0.68 0.55 0.95 0.83 0.70 0.99 0.78 0.65 0.76 0.71 0.78 0.89 0.93 0.94 0.91 NO2+NO3 (EM) 58.40 58.70 54.60 57.40 57.00 48.40 58.60 58.60 58.40 58.20 58.50 58.70 58.40 57.80 58.20 57.90 58.30 57.50 58.40 56.70 EM EM EM EM 1.5 2.7 4.0 5.3 6.7 3.3 6.3 9.8 12.2 11.9 4.4 8.1 12.0 15.0 16.9 0.5 0.7 0.6 0.9 NO VA 188 196 200 205 210 189 197 201 206 211 187 195 199 204 209 190 198 202 207 212 8 (mg/L) 7.64 7.18 6.78 8.76 8.02 7.43 6.69 6.19 8.89 8.68 8.57 8.47 8.51 7.76 7.23 6.70 6.23 8.83 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers SUM (min) 0 65 125 185 245 0 65 125 185 245 0 65 125 185 245 0 65 125 185 245 TIME (min) 0 8 8 8 8 0 80 80 0 8 8 8 8 0 8 8 8 8 Numerical Water Quality and Contaminant Modeling (EL-22) min) 888 88882 22222 88888 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem غ 14 15 16 17 18 4 15 15 15 18 15 15 16 17 18 9 α 0 က DATE **9AUG94** STATION GNCV

SI(OH)4 (µM)	DOC (mg/L)	TCO2 (μM)	DON (µg/L)	TDN (µg/L)	DOP (µg/L)	TDP (mg/L)	H	Fe (m)	Mη (Mμ)
2.5	3.90	1572.4	22.6	81.3	0.25	0.88	8.32	000	50.0
2.3	3.98	1497.5	23.0	81.3	0.15	0.93	8.29	0.00	0.05
1.5	4.23		22.3	81.4	0.16	0.95	8.27	0.00	0.05
2.3	3.97	1513.4	22.4	81.7	0.28	0.99	8.23	0.00	0.05
1.6	3.89	1528.3	25.3	80.8	0.23	0.91	8.16	0.00	0.05
2.9	4.00	1552.5	22.5	84.1	0.43	0.98	8.23	0.18	0.13
5.6	4.48	1602.0	23.8	87.6	0.12	1.07	8.10	0.18	0.31
9.9	4.20	1646.5	21.4	88.6	0.29	1.12	7.96	0.18	0.47
8.5	4.49	1695.6	24.3	93.5	0.48	1.18	7.79	0.00	0.58
9.6	4.36	1742.9	33.0	93.3	0.22	1.21	7.69	0.36	0.71
2.7	4.00	1545.9	23.3	83.4	0.13	0.91	8.31	0.00	0.09
3.6	4.35	1569.7	24.8	86.1	0.39	1.04	8.22	0.00	60.0
4.0	4.18	1625.4	21.7	84.1	0.26	1.02	8.15	0.18	0.11
4.8	4.14	1636.1	23.3	86.8	0.39	1.10	8.05	0.00	0.07
5.4	4.34	1665.3	21.5	86.7	0.32	1.10	8.00	0.00	0.13
4.9	4.00	1552.2	22.3	85.4	0.11	0.92	8.27	0.18	0.44
6.1	4.31	1639.6	21.6	88.1	0.13	1.02	8.13	0.00	0.53
8.0	4.25	1669.1	21.5	91.3	0.15	1.08	7.91	0.18	0.87
10.2	4.25		23.2	9.96	0.16	1.10	7.80	0.00	0.86
10.1	4.40	1768.0	23.5	97.1	0.25	1.16	7.74	0.72	1 07

STATION DATE CORE TIME OF TIME OF TIME TIME OF TIME TIME OF TIME OF TIME OF TIME TIME OF	Numerical Wat Tidal Fresh Poi Core Data: Dis	Numerical Water Quality and Contaminant Modeling (EL-22) Tidal Fresh Potomac River and Maryland Mainstem Core Data: Dissolved nutrient and oxygen concentrations in	ntaminant IV Maryland Ma nd oxygen o	lodeling ainstem oncentra	(EL-22) ations in s	g (EL-22) ations in sediment - water flux chambers	flux chamber	S				
10AUG94 B 11 0 0 0 6.38 214 3.8 8.71 8.53 8.71 8.53 8.71 8.53 8.72 8.53 8.62 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95	STATION	DATE	CORE	TIME O SAMPL (hr	F E min)	TIME DELTA (min)	TIME SUM (min)	DO (mg/L)	AA VIAL NO	NH4 (µM)	NO2+NO3 (µM)	OID (Mt)
12 0 60 60 5.33 218 3.7 8.53 13 0 60 120 5.31 222 3.9 8.62 14 0 60 120 5.31 222 3.9 8.62 14 0 60 180 5.31 226 4.6 8.65 11 0 60 180 5.37 215 4.8 8.68 12 0 60 120 4.76 223 8.6 9.37 14 0 60 180 4.53 227 8.6 9.07 15 0 60 180 4.32 221 11.2 9.59 11 0 60 120 4.32 221 11.2 9.59 11 0 60 180 4.75 224 10.4 9.59 12 0 60 180 4.40 232 12.8 9.91 <t< td=""><td>MDPT</td><td>10AUG94</td><td>В</td><td>11</td><td>0</td><td>0</td><td>0</td><td>5.38</td><td>214</td><td>3.8</td><td>8.71</td><td>1.95</td></t<>	MDPT	10AUG94	В	11	0	0	0	5.38	214	3.8	8.71	1.95
13 0 60 120 5.31 222 3.9 8.62 14 0 60 180 5.35 226 4.6 8.95 15 0 60 180 5.31 226 4.6 8.65 11 0 60 240 5.31 215 4.8 8.68 12 0 60 120 4.76 223 8.6 9.37 14 0 60 120 4.75 223 8.6 9.07 15 0 60 240 4.53 227 8.6 9.07 15 0 60 240 4.32 221 11.2 9.59 15 0 60 120 4.75 224 10.4 9.29 14 0 60 120 4.55 228 11.5 9.91 15 0 60 120 4.76 221 10.4 9.29 <				12	0	09	09	5.33	218	3.7	8.53	1.96
14 0 60 180 5.35 226 4.6 8.95 15 0 60 240 5.31 230 6.4 8.68 11 0 60 240 5.31 230 6.4 8.68 12 0 60 120 4.76 223 8.6 9.37 14 0 60 120 4.76 223 8.6 9.37 15 0 60 120 4.73 227 8.6 9.37 15 0 60 240 4.32 227 8.6 9.59 12 0 60 60 4.75 224 10.4 9.29 14 0 60 120 4.75 224 10.4 9.29 15 0 60 120 4.76 228 11.5 9.91 11 0 0 0 5.34 217 6.6 8.45				13	0	09	120	5.31	222	3.9	8.62	1.96
15 0 60 240 5.31 230 6.4 8.68 11 0 0 0 5.37 215 4.8 8.62 12 0 60 60 5.02 219 6.0 8.97 13 0 60 120 4.76 223 8.6 9.07 14 0 60 180 4.53 227 8.6 9.07 15 0 60 180 4.53 227 8.6 9.07 12 0 60 240 4.32 221 11.2 9.59 11 0 0 0 0 5.26 216 6.2 8.71 12 0 0 0 0 4.73 224 10.4 9.29 14 0 60 180 4.76 232 11.5 10.06 15 0 60 180 4.76 221 10.4				14	0	09	180	5.35	226	4.6	8.95	1.88
11 0 0 6.37 215 4.8 8.62 12 60 60 5.02 219 6.0 8.97 13 0 60 120 4.76 223 8.6 9.39 14 0 60 180 4.53 227 8.6 9.07 15 0 60 240 4.32 221 8.71 9.59 11 0 0 60 4.95 220 8.9 9.01 12 4.95 220 8.9 9.01 14 0 60 180 4.55 228 11.5 10.06 15 0 60 180 4.40 232 12.8 9.91 11 0 60 240 4.76 222 14.4 8.30 12 0 60 120 4.76 221 10.3 8.33 14 0 60 180 4.05 </td <td></td> <td></td> <td></td> <td>15</td> <td>0</td> <td>09</td> <td>240</td> <td>5.31</td> <td>230</td> <td>6.4</td> <td>8.68</td> <td>2.00</td>				15	0	09	240	5.31	230	6.4	8.68	2.00
12 0 60 60 60 60 60 8.97 13 0 60 120 4.76 223 8.6 9.39 14 0 60 180 4.53 227 8.6 9.07 15 0 60 180 4.32 231 11.2 9.59 11 0 0 60 4.32 226 8.9 9.01 12 0 60 60 4.95 220 8.9 9.01 13 0 60 120 4.73 224 10.4 9.29 14 0 60 180 4.55 228 11.5 10.06 15 0 60 240 4.40 232 12.8 9.91 11 0 0 60 4.76 221 10.4 9.29 12 0 60 120 4.40 232 12.8 9.91			-	Ξ	0	0	0	5.37	215	4 8:	8.62	1.95
13 0 60 120 4.76 223 8.6 9.39 14 0 60 180 4.53 227 8.6 9.07 15 0 60 240 4.53 227 8.6 9.07 11 0 60 240 4.55 220 8.9 9.01 12 0 60 120 4.73 224 10.4 9.29 14 0 60 180 4.55 228 11.5 10.06 15 0 60 180 4.40 232 12.8 9.91 11 0 0 0 5.34 217 6.6 8.45 12 0 60 60 4.76 221 10.3 8.33 13 0 60 120 4.76 221 14.4 8.77 14 0 60 180 4.05 229 17.4 8.77 <t< td=""><td></td><td></td><td></td><td>12</td><td>0</td><td>09</td><td>09</td><td>5.02</td><td>219</td><td>0.9</td><td>8.97</td><td>1.99</td></t<>				12	0	09	09	5.02	219	0.9	8.97	1.99
14 0 60 180 4.53 227 8.6 9.07 15 0 60 240 4.32 231 11.2 9.59 11 0 60 240 4.35 226 8.9 9.01 12 0 60 120 4.73 224 10.4 9.29 14 0 60 120 4.55 228 11.5 10.06 15 0 60 240 4.40 232 12.8 9.91 11 0 0 60 4.40 232 12.8 9.91 12 0 60 4.40 232 12.8 9.91 12 0 60 4.76 221 10.3 8.33 13 0 60 4.05 229 14.4 8.30 14 0 60 240 3.75 233 24.9 7.95				13	0	09	120	4.76	223	8.6	9.39	2.04
15 0 60 240 4.32 231 11.2 9.59 11 0 0 0 5.26 216 6.2 8.71 12 0 60 60 4.95 220 8.9 9.01 13 0 60 120 4.73 224 10.4 9.29 14 0 60 180 4.55 228 11.5 10.06 15 0 60 240 4.40 232 12.8 9.91 11 0 0 0 5.34 217 6.6 8.45 12 0 60 60 4.76 221 10.3 8.33 13 0 60 120 4.37 225 14.4 8.30 14 0 60 180 240 3.75 233 24.9 7.95				14	0	09	180	4.53	227	8.6	9.07	1.99
11 0 0 5.26 216 6.2 8.71 12 0 60 60 4.95 220 8.9 9.01 13 0 60 120 4.73 224 10.4 9.29 14 0 60 180 4.55 228 11.5 10.06 15 0 60 240 4.40 232 12.8 9.91 11 0 0 0 5.34 217 6.6 8.45 12 0 60 60 4.76 221 10.3 8.33 13 0 60 120 4.76 221 10.3 8.30 14 0 60 180 4.05 229 17.4 8.77 15 0 60 180 4.05 229 17.4 8.77 15 0 60 240 3.75 233 24.9 7.95				15	0	09	240	4.32	231	11.2	9.59	1.92
12 0 60 60 4.95 220 8.9 9.01 13 0 60 120 4.73 224 10.4 9.29 14 0 60 180 4.55 228 11.5 10.06 15 0 60 240 4.40 232 12.8 9.91 11 0 0 0 5.34 217 6.6 8.45 12 0 60 60 4.76 221 10.3 8.33 13 0 60 120 4.37 225 14.4 8.30 14 0 60 180 4.05 229 17.4 8.37 15 0 60 240 3.75 233 24.9 7.95			2	Ξ	0	0	0	5.26	216	6.2	8.71	2.07
13 0 60 120 4.73 224 10.4 9.29 14 0 60 180 4.55 228 11.5 10.06 15 0 60 240 4.40 232 12.8 9.91 11 0 0 0 5.34 217 6.6 8.45 12 0 60 60 4.76 221 10.3 8.33 13 0 60 120 4.37 225 14.4 8.30 14 0 60 180 4.05 229 17.4 8.77 15 0 60 240 3.75 233 24.9 7.95				12	0	09	09	4.95	220	8.9	9.01	2.12
14 0 60 180 4.55 228 11.5 10.06 15 0 60 240 4.40 232 12.8 9.91 11 0 0 0 5.34 217 6.6 8.45 12 0 60 60 4.76 221 10.3 8.33 13 0 60 120 4.37 225 14.4 8.30 14 0 60 180 4.05 229 17.4 8.77 15 0 60 240 3.75 233 24.9 7.95				5	0	9	120	4.73	224	10.4	9.29	2.11
15 0 60 240 4.40 232 12.8 9.91 11 0 0 0 5.34 217 6.6 8.45 12 0 60 4.76 221 10.3 8.33 13 0 60 120 4.37 225 14.4 8.30 14 0 60 180 4.05 229 17.4 8.77 15 0 60 240 3.75 233 24.9 7.95				4	0	09	180	4.55	228	11.5	10.06	2.20
11 0 0 6.34 217 6.6 8.45 12 0 60 60 4.76 221 10.3 8.33 13 0 60 120 4.37 225 14.4 8.30 14 0 60 180 4.05 229 17.4 8.77 15 0 60 240 3.75 233 24.9 7.95				15	0	9	240	4.40	232	12.8	9.91	2.11
0 60 60 4.76 221 10.3 8.33 0 60 120 4.37 225 14.4 8.30 0 60 180 4.05 229 17.4 8.77 0 60 240 3.75 233 24.9 7.95			ဇ	1	0	0	0	5.34	217	9.9	8.45	2.05
0 60 120 4.37 225 14.4 8.30 0 60 180 4.05 229 17.4 8.77 0 60 240 3.75 233 24.9 7.95				12	0	09	9	4.76	221	10.3	8.33	2.04
0 60 180 4.05 229 17.4 8.77 0 60 240 3.75 233 24.9 7.95				5	0	09	120	4.37	225	14.4	8.30	2.03
0 60 240 3.75 233 24.9 7.95				14	0	09	180	4.05	229	17.4	8.77	2.03
				15	0	09	240	3.75	233	24.9	7.95	2.11

	Mn (µM)	0.20	0.20	0.18	0.18	0.16	1.15	2.17	2.97	3.82	4.59	1 67	3.00	111	1.62	5.28	1.87	3.31	1 73	26.5	7.12
	Fe (µM)					0.18					0.18					-0.18					0.72
	Hd	7.30	7.25	7.34	7.27	7.23	7.30	7.31	7.28	7.21	7.19	7.32	7.44	7.30	7.33	7.25	7.34	7.39	7.30	7.33	7.23
	ТDР (µg/L)	2.15	2.18	2.26	2.21	2.21	2.25	2.13	2.22	2.28	2.23	2.31	2.37	2.38	2.43	2.43	2.30	2.33	2.32	2.49	2.43
	DOP (µg/L)	0.20	0.22	0.30	0.33	0.21	0.30	0.14	0.18	0.29	0.31	0.24	0.25	0.27	0.23	0.32	0.25	0.29	0.29	0.46	0.32
	TDN (µg/L)	33.9	35.8	34.9	34.8	84.8 8	34.7	36.0	38.2	42.2	43.5	36.8	39.4	42.8	44.3	45.5	39.4	41.9	44.7	52.3	57.8
	DON (µg/L)	21.4	23.6	22.4	21.3	19.7	21.3	21.0	20.2	24.5	22.7	21.9	21.5	23.1	22.7	22.8	24.4	23.3	22.0	26.1	25.0
_	TCO2 (µM)	1261.6		1262.8		1271.6	1279.9	1279.7	1292.0	1303.7	1316.5	1282.1	1308.8	1343.0	1363.1	1388.1	1273.6	1287.6	1310.0	1347.8	1345.4
MDPT AUGUST 1994 continued	DOC (mg/L)	3.22	3.13	3.19	3.30	3.45	3.23	3.50	3.23	3.58	3.52	3.27	3.50	3.26	3.33	3.48	3.24	3.55	3.28	3.47	3.56
ot August 1	SI(OH)4 (µM)	50.4	48.7	50.3	50.6	20.7	50.2	50.0	55.3	55.9	57.0	53.1	55.1	59.9	62.0	67.8	53.0	52.1	59.0	65.3	72.2

E DE 3.16 3.40 3.57 3.68 3.68 2.99 3.29 3.35 3.64 3.69 2.51 2.51 2.50 2.49 2.48 2.87 3.20 3.39 3.54 3.72 0.14 0.18 0.16 0.16 0.14 0.14 0.30 EM) 0.14 0.16 0.19 0.16 NO2+NO3 0.16 0.15 0.13 0.16 0.21 0.24 NH4 (mM) 27.9 29.6 31.9 31.6 33.6 28.5 29.6 30.4 31.6 26.3 28.9 29.5 30.6 32.0 26.8 24.9 24.9 24.8 25.0 25.3 A A S 68 72 76 80 85 67 73 73 84 84 85 73 82 73 82 74 83 00 (mg/L) 0.04 0.04 0.03 0.02 0.02 0.06 0.03 0.02 0.02 0.08 0.05 0.04 0.03 0.07 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers 0 65 125 187 247 TIME (min) 0 65 125 187 247 0 65 125 187 247 0 65 125 187 247 TIME DELTA (min) 65 60 60 60 60 9 6 8 9 0 62 63 63 9888 Numerical Water Quality and Contaminant Modeling (EL-22) min) 22222 22222 22222 22222 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem **+ 4 5 4 4 + 4 5 4 5** Ţ 5 5 4 5 12 2 2 4 5 Ē 9 മ က N DATE 11AUG94 STATION **R-64**

	DOC (mg/L)	ТСО2 (µM)	DON (µg/L)	TDN (µg/L)	DOP (µg/L)	TDP (μg/L)	Hd	Fe (µM)	Mn (µM)
	1.85	1882.2	24.94	20.0	47.49	2.77	7.31	5.73	0.87
	1.94	1878.0	28.54	53.6	51.09	2.84	7.35	5.01	0.62
	1.94	1877.9	23.57	48.5	46.00	2.83	7.33	5.37	0.55
•	1.91	1877.7	24.14	49.3	46.81	2.79	7.37	5.37	09.0
•	1.87	1871.6	22.39	47.9	45.42	2.76	7.37	5.19	0.56
	1.94	1897.4	22.76	49.3	46.43	3.02	7.35	4.66	0.56
	1.97	1922.7	25.55	54.6	51.40	3.48	7.36	4.83	09.0
•	1.96	1934.7	26.86	56.5	53.11	3.69	7.37	3.76	0.91
	1.94	1937.4	25.74	56.5	52.96	3.74	7.39	4.83	1.55
	1.97	1946.7	27.41	59.6	55.88	4.03	7.41	5.01	1.66
	1.97	1900.6	24.54	51.5	48.51	3.29	7.36	5.01	0.53
•	1.87	1920.8	25.44	54.1	50.81	3.60	7.36	4.48	0.71
•	1.88	1930.9	25.46	55.2	51.85	3.73	7.37	4.83	1.06
+ 4	2.00	1932.3	28.42	59.0	55.36	3.94	7.39	4.83	1.60
	1.96	1941.0	30.74	62.5	58.81	3.98	7.42	4.83	0.49
4	1.89	1912.9	24.94	53.0	49.84	3.48	7.37	4.66	0.78
•	1.88	1929.3	25.66	55.4	52.00	3.65	7.36	4.66	0.86
•	1.96	1939.6	26.26	58.3	54.73	3.75	7.37	4.83	1.37
, -	1.92	1942.6	25.70	9.75	53.92	3.90	7.38	5.01	1.66
•-	1.95	1950.9	31.71	65.5	61.77	4.19	7.43	5.19	1.51

EM) 0.34 0.34 0.59 0.35 0.35 0.36 0.35 0.38 0.37 0.35 0.35 0.37 0.35 0.34 0.35 0.34 0.35 0.35 NO2+NO3 EM) 198.00 197.00 219.00 203.00 202.00 198.00 204.00 203.00 202.00 204.00 201.00 208.00 204.00 203.00 202.00 201.00 193.00 NH4 (FIM) 12.2 11.9 11.8 12.3 18.3 22.3 26.0 29.0 31.1 19.5 23.5 27.1 29.6 32.9 18.9 23.8 26.0 30.0 32.3 N M A 180 184 188 172 176 181 185 189 173 177 182 186 190 174 178 183 187 191 (mg/L) 8.05 8.07 8.08 8.06 7.61 7.27 6.99 6.76 7.78 7.44 7.15 6.93 6.71 7.86 7.53 7.27 7.06 6.88 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME (min) 0 122 182 240 240 60 122 182 240 240 8 2 2 2 3 4 3 5 4 5 4 5 7 TIME DELTA (min) 60 60 58 28 60 0 28 60 80 0 28 60 80 0 Numerical Water Quality and Contaminant Modeling (EL-22) さ む た た た む 15 17 17 15 t5 17 15 15 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem Ē 5 t 5 t 4 5 1 2 5 4 5 t 5 t 4 a N က DATE 130CT94 STATION HGNK

TC02	NOO	NOT	DOP	TDP	Æ	e g	Mn
(mm)	 (µg/L)	(hg/L)	(mg/L)	(µg/L)		(mm)	(mm)
1931.2	24.9	239	0.23	0.57	7.74	0.36	99.0
	27.8	242	0.27	0.61	7.72	-0.18	0.05
1934.2	19.1	229	0.25	0.59	7.64	-0.18	0.55
	25.2	234	-0.03	0.56	7.62	-0.36	0.51
1968.3	27.7	233	0.22	0.57	7.74	-0.18	0.56
963.8	5.7	243	0.23	0.58	7.69	0.00	1.22
1974.0	18.7	244	0.27	0.63	7.61	-0.18	1.40
2000.7	22.0	250	0.23	0.58	7.50	-0.36	1.60
2018.5	24.0	251	0.23	0.61	7.50	-0.36	1.69
2039.5	22.9	252	0.27	0.64	7.57	-0.36	1.73
1975.5	26.5	250	0.22	0.59	79.7	-0.36	1.20
1980.5	20.5	247	0.23	0.58	7.59	-0.36	1.35
1995.5	21.9	251	0.25	0.62	7.50	-0.54	1.47
2014.7	20.4	254	0.23	0.58	7.50	-0.54	1.58
2026.6	21.1	255	0.25	0.59	7.55	-0.72	1.67
1952.4	16.1	243	0.27	0.59	7.70	-0.18	1.11
1974.5	18.2	246	0.25	0.61	7.59	-0.54	1.33
1998.5	19.0	248	0.25	0.59	7.56	-0.54	1.37
2008.3	19.0	251	0.25	09.0	7.54	-0.72	1.46
2024.0	21.7	255	0.26	0.61	7.57	-0.54	1.51

E P 0.15 0.15 0.13 0.14 0.14 0.17 0.16 0.17 0.18 0.15 0.19 0.18 0.37 0.21 0.16 0.15 0.17 0.20 0.17 (EM NO2+NO3 136.00 135.00 134.00 135.00 132.00 137.00 137.00 137.00 137.00 36.00 136.00 36.00 134.00 136.00 36.00 136.00 135.00 134.00 0.6 0.1 0.3 0.3 2.1 2.9 3.7 4.0 4.2 6.1 7.5 9.6 9.6 4.4 3.2 3.2 3.8 3.5 3.5 A A S 192 196 200 205 210 193 197 201 206 211 194 198 202 207 212 195 199 203 208 213 8 (mg/L) 9.91 9.83 9.79 9.76 9.71 9.36 8.92 8.66 8.42 8.17 9.08 8.63 8.32 8.01 7.73 9.63 9.22 8.92 8.67 8.42 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers TIME SUM (min) 0 2 2 2 2 3 2 3 3 TIME DELTA (min) 0 8 8 8 0 0 2 2 2 2 0 2 2 2 3 0 20 00 00 Numerical Water Quality and Contaminant Modeling (EL-22) min) 22222 55 55 55 55 55 55 55 55 55 SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem 15 16 17 15 16 17 13 15 16 17 13 15 15 17 (hr 13 2 B Q က DATE 130CT94 STATION GNCV

рн Fe Mn (μM) (μM)	-0.72	-0.72	-0.90	-0.72	-0.72	-0.54	-0.72	-0.90	-0.90	-0.72	-0.54	-0.90	-0.90	-0.72		-0.54	-0.72	-0.72	-0.72	-0.72	
TDP (µg/L)	0:30	0.31	0.41	0.38	0.31	0.36	0.39	0.40	0.39	0.46	0.46	1.56	0.38	0.43	0.39	0.35	0.40	0.50	0.40	0.48	
DOP (μg/L)	0.15	0.16	0.28	0.24	0.17	0.19	0.23	0.24	0.22	0.28	0.31	1.37	0.20	90.0	0.18	0.19	0.25	0.33	0.20	0.31	
TDN (µg/L)	163.0	161.0	162.0	160.0	162.0	161.0	163.0	161.0	161.0	163.0	165.0	175.0	168.0	163.0	165.0	164.0	161.0	163.0	159.0	164.0	
DON (µg/L)	25.4	23.9	24.4	22.9	25.7	22.9	24.1	21.3	22.0	24.4	25.8	32.9	26.5	21.4	24.4	26.6	22.8	23.8	20.2	26.5	
TCO2 (µM)	1648.7	1729.4	王	1650.4	1664.4	1691.7	1723.7	1741.4	1774.3	1789.3	1715.5	1765.4	1795.1	1844.8	1866.7	1684.1	1715.7	1737.1	1777.7	1779.6	
DOC (mg/L)	3.42	3.47	3.46	3.54	3.46	3.52	3.58	3.48	3.54	3.53	3.64	4.00	3.48	4.12	3.55	3.55	3.48	3.65	3.60	3.52	
SI(OH)4 (µM)	27.4	26.3	27.6	26.6	29.5	27.9	27.8	29.6	27.9	28.2	29.7	33.2	34.8	35.6	37.5	27.9	27.8	26.9	26.7	27.7	

STATION	DATE	CORE	TIME OF SAMPLE	OF ?LE	TIME	TIME	Od	A P	NHV	EON+2ON	g
			Ţ.	min)	(min)	(min)	(mg/L)	8	(mm)	(m _H)	(m)
MDPT	14OCT94	B	Ξ	10	0	0	7.54	215	7.5	40.10	1.84
			12	20	20	20	7.49	219	8.0	39.80	1.87
			13	20	09	130	7.51	223	7.8	40.00	1.83
			14	20	09	190	7.50	227	7.6	40.20	1.92
			15	20	09	250	7.49	231	7.9	40.10	1.86
		-	Ξ	10	0	0	7.63	216	8.4	39.80	1.90
			12	20	70	70	7.28	220	9.3	40.40	1.90
			13	20	09	130	7.06	224	9.6	40.40	1.96
			14	20	09	190	6.88	228	12.4	40.80	1.91
			15	20	9	250	6.68	232	11.4	41.10	1.81
		2	Ξ	10	0	0	7.36	217	9.8	39.10	1.71
			12	50	20	20	6.58	221	10.9	37.90	1.78
			13	20	09	130	6.77	225	12.6	37.30	1.67
			14	20	09	190	6.63	229	14.3	35.90	1.68
			15	50	09	250	6.50	233	13.5	35.30	1.65
		ဧ	Ξ	10	0	0	7.41	218	9.0	40.10	1.85
			12	20	92	20	7.04	222	10.1	39.80	1.84
			13	8	9	130	98.9	226	10.4	39.90	1.94
			4	20	09	190	6.75	230	11.1	40.30	1.91
			15	20	9	250	6.57	234	11.0	40.10	1.79

Mn (µM)	0 66	0.62	0.64	0.64	0.62	1.60	2.20	2.44	2.58	2.62	1.97	3.11	3.80	4.04	4.17	1.69	2.09	2.24	2.33	2.40
Fe (µM)	-036	-0.36	-0.18	-0.54	-0.36	-0.36	-0.36	-0.18	-0.36	-0.18	-0.18	-0.54	-0.36	-0.36	-0.36	-0.54	-0.54	-0.36	-0.54	-0.54
H	7.46	7.45	7.46	7.46	7.45	7.53	7.49	7.44	7.41	7.42	7.53	7.53	7.50	7.51	7.52	7.54	7.51	7.48	7.47	7.49
TDP (µg/L)	2.04	2.02	2.01	2.06	2.02	2.05	2.09	2.15	2.13	2.15	2.02	1.94	1.98	1.85	1.79	2.13	2.23	2.06	2.11	2.07
DOP (µg/L)	0.20	0.15	0.18	0.14	0.16	0.15	0.19	0.19	0.22	0.34	0.31	0.16	0.31	0.17	0.14	0.28	0.39	0.12	0.20	0.28
TDN (µg/L)	72.2	6.69	69.5	69.3	71.1	71.6	74.2	75.0	75.8	77.0	70.8	71.0	78.3	70.5	67.9	74.7	78.5	71.1	71.6	73.2
DON (µg/L)	24.6	22.1	21.7	21.5	23.1	23.4	24.5	25.0	22.6	24.5	21.9	22.2	28.4	20.3	19.1	25.6	28.6	20.8	20.2	22.1
ТСО2 (µM)	1451.2	壬	1472.8	Ŧ	S	1468.4	1476.7	1496.4	1502.3	တ	1468.4	1509.9	1565.4	1612.7	1657.8	1462.3	1474.2	1495.4	1500.2	1517.9
DOC (mg/L)	3.63	3.61	3.57	3.64	3.58	3.58	3.67	3.81	3.62	3.62	3.55	3.48	3.42	3.51	3.36	3.62	3.62	3.58	3.63	3.57
SI(OH)4 (µM)	46.4	46.6	47.6	42.2	44.0	46.3	48.2	48.4	49.8	50.1	51.2	56.8	83.0	88.3	106.4	47.4	46.8	49.0	48.5	50.5

OID (ITM) 0.15 0.18 0.14 0.17 0.27 0.28 0.28 0.29 0.36 0.39 0.40 0.47 0.58 0.67 1.04 1.13 1.17 1.24 NO2+NO3 E E 2.14 1.92 1.94 2.11 1.95 1.91 1.79 1.75 86. 8. 1.86. 8. 1.80. 1. 1.85 1.80 1.75 1.70 1.61 NH4 (µM) 13.3 15.0 17.0 8.2 10.5 13.2 14.9 16.7 14.9 17.3 19.9 VIAL A 129 133 137 141 131 135 139 143 147 8 (mg/L) 7.39 7.39 7.45 7.44 7.44 6.94 6.33 6.03 5.76 6.84 6.52 6.21 5.97 5.79 6.92 6.38 5.89 5.54 5.21 Core Data: Dissolved nutrient and oxygen concentrations in sediment - water flux chambers SUM (min) 0 120 180 240 0 120 180 240 TIME (min) 0 0 0 0 0 0 8 8 8 8 0 8 8 8 8 08888 Numerical Water Quality and Contaminant Modeling (EL-22) E र र र 5 5 5 5 **रा** रा रा रा **5 1 2 1 2 1 2 1** SAMPLE CORE TIME OF Tidal Fresh Potomac River and Maryland Mainstem Ē 19 19 20 15 15 16 17 19 19 16 13 14 15 15 15 16 17 18 19 20 9 α N က DATE 170CT94 STATION **R-64**

Mn (µM)	1.1	1.09	1.11	1:1	1.09	1.15	1.16	1.16	1.15	1.15	1.15	1.20	1.16	1.22	1.22	1.38	1.37	1.35	1.35	
Fe (µM)	2.15	2.15	2.33	2.33	2.15	2.69	2.33	2.15	2.33	2.15	2.15	2.51	2.51	2.33	2.51	2.69	2.33	2.33	2.15	
Hd	7.73	7.74	7.72	7.75	7.61	7.85	7.84	7.78	7.75	69.2	7.88	7.89	7.79	7.78	7.74	7.87	7.89	7.74	7.76	111
TDP (µg/L)	0.38	0.41	0.34	0.37	0.35	0.48	0.47	0.47	09.0	0.51	0.57	0.59	0.64	0.76	0.81	1.21	1.27	1.32	1.40	4 43
DOP (µg/L)	0.23	0.23	0.20	0.20	0.19	0.21	0.19	0.19	0.31	0.15	0.18	0.19	0.17	0.18	0.14	0.17	0.20	0.19	0.23	010
TDN (µg/L)	31.2	34.2	30.1	27.8	26.2	34.5	36.4	38.2	40.6	41.2	32.7	35.1	38.4	38.2	39.4	41.1	40.4	45.6	45.4	45.2
DON (µg/L)	23.9	27.3	23.3	21.1	19.2	24.0	23.5	23.1	23.8	22.5	22.6	22.7	23.4	21.5	20.9	27.5	23.7	26.6	23.8	20 6
ТСО2 (µM)	1638.9	1646.8		1634.0	1644.8	1641.8	1679.6	1686.6	1718.1	1741.5	1635.7	1679.7	1701.3	1725.4	1738.3	1689.6	1732.7	1745.4	1756.4	1779 4
DOC (mg/L)	2.26	2.44	2.27	2.30	2.26	2.32	2.31	2.32	2.33	2.30	2.28	2.27	2.33	2.26	2.33	2.37	2.32	2.31	2.37	231
SI(OH)4 (μ M)	34.2	35.4	35.8	37.2	39.1	35.9	38.2	40.3	41.8	43.2	35.7	38.8	41.2	43.3	45.1	37.7	40.4	42.2	43.6	45.6

		TIME	REPLICATE	SO4	SO4
STATION	MONTH	DAYS	NUMBER*	(μM)	(mg/L)
				V	<u> </u>
HGNK	MAY	0	1:1	31.95	3.07
HGNK	MAY	0	1:2	50.93	4.89
HGNK	MAY	0	1:3	51.79	4.97
HGNK	MAY	2	2:1	9.49	0.91
HGNK	MAY	2	2:2	9.82	0.94
HGNK	MAY	2	2:3	12.64	1.21
HGNK	MAY	4	3:1	5.44	0.52
HGNK	MAY	4	3:2	5.32	0.51
HGNK	MAY	4	3:3	5.23	0.50
HGNK	MAY	6	4:1	8.42	0.81
HGNK HGNK	MAY	6	4:2	6.06	0.58
HGNA	MAY	6	4:3	4.39	0.42
GNVC	MAY	0	1:1	31.80	3.05
GNVC	MAY	0	1:2	34.82	3.34
GNVC	MAY	0	1:3	35.82	3.44
GNVC	MAY	2	2:1	10.29	0.99
GNVC	MAY	2	2:2	9.24	0.89
GNVC	MAY	2	2:3	10.33	0.99
GNVC	MAY	4	3:1	3.51	0.34
GNVC	MAY	4	3:2	s	s
GNVC	MAY	4	3:3	5.27	0.51
GNVC	MAY	6	4:1	5.37	0.52
GNVC	MAY	6	4:2	7.11	0.68
GNVC	MAY	6	4:3	6.92	0.66
MDPT	MAY	0	1:1	257.30	24.70
MDPT	MAY	0	1:2	303.76	29.16
MDPT	MAY	0	1:3	254.14	24.40
MOPT	MAY	2	2:1	67.34	6.46
MDPT MDPT	MAY MAY	2 2	2:2	31.72	3.04
MDPT	MAY	4	2:3	27.14	2.61
MDPT	MAY	4	3:1 3:2	5.41 6.40	0.52
MOPT	MAY	4	3:2	6.33	0.61 0.61
MDPT	MAY	6	4:1	6.73	0.65
MDPT	MAY	6	4:2	5.75 S	0.03 S
MOPT	MAY	6	4:3	8.40	0.81
			4.0	0.40	0.01
D.64	MAY	-		7707 07	
R 64 R 64	MAY	0	1:1	7737.05	742.76
R 64	MAY	0	1:2	6020.26	577.94
R 64	MAY		1:3	7946.50	762.86
R 64	MAY	2	2:1 2:2	7596.75 6405.87	729.29 614.96
R 64	MAY	2	2:2	6996.70	671,68
R 64	MAY	4	3:1	8896.74	854.09
R 64	MAY	4	3:2	4266.83	409.62
R 64	MAY	4	3:3	5641.48	541.58
R 64	MAY	6	4:1	6645.33	637.95
R 64	MAY	6	4:2	5138.13	493.26
R 64	MAY	6	4:3	2676.10	256.91

^{*}Note: Replicate number denotes time point and replicate (2:1 is the first replicate of the second time point).

STATION	МОМТН	TIME DAYS	REPLICATE NUMBER*	SO4 (μM)	SO4 (mg/L)
HGNK	JULY	0	1:1	25.81	2.48
HGNK	JULY	0	1:2	20.70	1.99
HGNK	JULY	ŏ	1:3	20.70 S	1.99 S
HGNK	JULY	2	2:1	24.03	2.31
HGNK	JULY	2	2:2	18.51	1.78
HGNK	JULY	2	2:3	17.35	1.67
HGNK	JULY	4	3:1	24.93	2.39
HGNK	JULY	4	3:2	20.46	1.96
HGNK	JULY	4	3:3	24.74	2.38
HGNK	JULY	6	4:1	23.05	2.21
HGNK	JULY	6	4:2	31.35	3.01
HGNK	JULY	6	4:3	25.24	2.42
GNVC	JULY	0	1:1	65.93	6.33
GNVC	JULY	ō	1:2	S	S.00
GNVC	JULY	ō	1:3	73.44	7.05
GNVC	JULY	2	2:1	17.15	1.65
GNVC	JULY	2	2:2	21.95	2.11
GNVC	JULY	2	2:3	21.63	2.08
GNVC	JULY	4	3:1	16.35	1.57
GNVC	JULY	4	3:2	17.73	1.70
GNVC	JULY	4	3:3	15.92	1.53
GNVC	JULY	6	4:1	21.93	2.11
GNVC	JULY	6	4:2	16.45	1.58
GNVC	JULY	6	4:3	17.30	1.66
MDPT	JULY	o	1:1	1296.66	124.48
MDPT	JULY	0	1:2	1243.72	119.40
MDPT	JULY	0	1:3	1463.14	140.46
MOPT	JULY	2	2:1	848.44	81.45
MOPT	JULY	2	2:2	703.65	67.55
MDPT MDPT	JULY	2	2:3	720.67	69.18
MDPT	JULY	4	3:1	251.75	24.17
MDPT	JULY	4	3:2	676.84	64.98
MOPT	JULY	6	3:3 4:1	1063.89 22.27	102.13 2.14
MOPT	JULY	6	4:2	22.11	2.14
MDPT	JULY	6	4:3	397.74	38.18
R 64	JULY	0	1:1	6734.80	646.54
R 64	JULY	ō	1:2	6332.51	607.92
R 64	JULY	ő	1:3	5793.16	556.14
R 64	JULY	2	2:1	2810.01	269.76
R 64	JULY	2	2:2	3679.74	353.26
R 64	JULY	2	2:3	2606.45	250.22
R 64	JULY	4	3:1	1143.99	109.82
R 64	JULY	4	3:2	1481.78	142.25
R 64	JULY	4	3:3	770.91	74.01
R 64	JULY	6	4:1	188.38	18.08
R 64	JULY	6	4:2	226.82	21.77
R 64	JULY	6	4:3	296.62	28.48

*Note: Replicate number denotes time point and replicate (2:1 is the first replicate of the second time point).

STATION	MONTH	TIME	REPLICATE NUMBER*	SO4 (μΜ)	SO4 (mg/L)
HGNK	AUGUST	0	1:1	105.62	10.14
HGNK	AUGUST	0	1:2	99.19	9.52
HGNK	AUGUST	0	1:3	97.78	9.39
HGNK	AUGUST	2	2:1	91.73	8.81
HGNK	AUGUST	2	2:2	83.27	7.99
HGNK	AUGUST	2	2:3	91.64	8.80
HGNK	AUGUST	4	3:1	S	8.34
HGNK	AUGUST	4	3:2 3:3	86,85 90,26	8.66
HGNK	AUGUST		4:1	81.75	7.85
HGNK HGNK	AUGUST AUGUST	6	4:1	92.57	8.89
HGNK	AUGUST	6	4:2	94.16	9.04
rica W	AGGGGT		4.0	34.10	3.04
GNVC	AUGUST	o	1:1	131.37	12.61
GNVC	AUGUST	0	1:2	128.33	12.32
GNVC	AUGUST	0	1:3	137.23	13.17
GNVC	AUGUST	2	2:1	89.94	8.63
GNVC	AUGUST	2	2:2	93.45	8.97
GNVC	AUGUST	2	2:3	94.06	9.03
GNVC	AUGUST	4	3:1	97.82	9.39
GNVC	AUGUST	4	3:2	94.50	9.07 9.28
GNVC	AUGUST	6	3:3 4:1	96.65 92.29	9.26 8.86
GNVC	AUGUST	6	4:1	95.62	9.18
GNVC GNVC	AUGUST AUGUST	6	4:2	89.70	8.61
GNVC	AUGUST	•	4.5	03.70	0.01
MDPT	AUGUST	o	1:1	1603.00	153.89
MDPT .	AUGUST	0	1:2	1930.89	185.37
MDPT	AUGUST	0	1:3	1885.96	181.05
MDPT	AUGUST	2	2:1	1194.36	114.66
MDPT	AUGUST	2	2:2	1269.88	121.91
MDPT	AUGUST	2	2:3	1819.62	174.68
MDPT	AUGUST	4	3:1 3:2	856.11 1159.09	82.19 111.27
MDPT	AUGUST AUGUST	4	3:3	1356.02	130.18
MOPT	AUGUST	6	4:1	1060.91	101.85
MDPT	AUGUST	6	4:2	1698.10	163.02
MOPT	AUGUST	6	4:3	169.06	16.23
		_		WAAT 12	704.04
R 64	AUGUST	0	1:1	7927.16	761.01
R 64	AUGUST	0	1:2	8090.11	776.65
R 64	AUGUST	0	1:3	7735.00	742.56 553.53
R 64	AUGUST	2	2:1	5765.94 6192.51	594.48
R 64 R 64	AUGUST AUGUST	2	2:2	5860.96	562.65
R 64	AUGUST	4	3:1	4937.80	474.03
R 64	AUGUST	4	3:1	3540.61	339.90
R 64	AUGUST	4	3:3	3322.79	318.99
R 64	AUGUST	6	4:1	2752.21	264.21
R 64	AUGUST	6	4:2	2970.90	285.21
R 64	AUGUST	6	4:3	3005.65	288.54

^{*}Note: Replicate number denotes time point and replicate (2:1 is the first replicate of the second time point).

		TIME	REPLICATE	SO4	SO4
STATION	МОИТН	DAYS	NUMBER*	(μ M)	(mg/L)
HGNK	OCTOBER	0	4.4	75.50	
HGNK	OCTOBER	0	1:1	75.50	7.25
HGNK	OCTOBER	0	1:2 1:3	57.11	5.48
HGNK	OCTOBER	2	2:1	59.55 26.76	5.72
HGNK	OCTOBER	2	2:1	24.03	2.57
HGNK	OCTOBER	2	2:2	21.22	2.31 2.04
HGNK	OCTOBER	4	3:1	26.58	2.55
HGNK	OCTOBER	4	3:2	16.45	1.58
HGNK	OCTOBER	4	3:3	15.69	1.51
HGNK	OCTOBER	6	4:1	18.66	1.79
HGNK	OCTOBER	6	4:2	18.26	1.75
HGNK	OCTOBER	6	4:3	16.81	1.61
GNVC	OCTOBER	0	1:1	59.51	5.71
GNVC	OCTOBER	ŏ	1:2	41.51	3.98
GNVC	OCTOBER	ŏ	1:3	72.95	7.00
GNVC	OCTOBER	2	2:1	28.58	2.74
GNVC	OCTOBER	2	2:2	42.62	4.09
GNVC	OCTOBER	2	2:3	65.41	6.28
GNVC	OCTOBER	4	3:1	21.12	2.03
GNVC	OCTOBER	4	3:2	45.02	4.32
GNVC	OCTOBER	4	3:3	20.77	1.99
GNVC	OCTOBER	6	4:1	23.16	2.22
GNVC	OCTOBER	6	4:2	30.01	2.88
GNVC	OCTOBER	6	4:3	41.65	4.00
MDPT	OCTOBER	0	1:1	3265.59	313.50
MDPT	OCTOBER	0	1:2	2766.76	265.61
MDPT	CCTOBER	0	1:3	3281.43	315.02
MDPT	OCTOBER	2	2:1	3657.00	351.07
MDPT	OCTOBER	2	2:2	1744.53	167.48
MOPT	OCTOBER	2	2:3	3311.57	317.91
MDPT	OCTOBER	4	3:1	1994.45	191.47
MDPT	OCTOBER	4	3:2	2736.26	262.68
MDPT	OCTOBER	4	3:3	3494.82	335.50
MDPT	OCTOBER	6	4:1	3014.48	289.39
MDPT	OCTOBER	6	4:2	2679.15	257.20
MDPT	OCTOBER	6	4:3	1830.66	175.74
					,
R 64	OCTOBER	0	1:1	6247.23	599.73
R 64	OCTOBER	0	1:2	5566.24	534.36
R 64	OCTOBER	0	1:3	5712.76	548.43
R 64	OCTOBER	2	2:1	3227.08	309.80
R 64	OCTOBER	2	2:2	3270.83	314.00
R 64 R 64	OCTOBER COTOBER	2	2:3	3455.21	331.70
H 64 R 64	OCTOBER OCTOBER	4	3:1	1579.03	151.59
R 64	OCTOBER	4	3:2	1910.44	183.40
R 64	OCTOBER	6	3:3	1892.90	181.72
R 64	OCTOBER	6	4:1 4:2	439.38 707.15	42.18
R 64	OCTOBER	6	4:2	707.15 780.88	67.89 74.96
	33100011	Ü	4.3	700.00	74.90

*Note: Replicate number denotes time point and replicate (2:1 is the first replicate of the second time point).

Appendix E Sediment-Water Oxygen and Nutrient Flux Data Tables

Numerical Water Quality and Contaminant Modeling (EL-22)

Tidal Fresh Potomac River and Maryland Mainstem

Sediment-Water Flux: Net sediment-water exchanges of dissolved oxygen and nutrients

STATION	DATE	CORE NO	CORE H2O VOL	CORE DEPTH	DO SLOPE	DO FLUX	NUMBER OF CORES	DO FLUX MEAN	DO STANDARD DEVIATION
			(mL)	(m)	[mg/(L.min)]	[gO2/(m2.d	ay)]		
HGNK	19MAY94	1 2	2040 1940	0.147 0.140	-0.008009 -0.009082	-1.61 -1.74	3	-1.60	0.15
		3	1920	0.138	-0.007703	-1.45			
GNCV	19MAY94	1 2 3	1980 1720 2160	0.142 0.124 0.155	-0.008757 -0.009387 -0.007057	-1.66 -1.55 -1.43	3	-1.55	0.12
MDPT	20MAY94	1 2 3	2220 1700 1840	0.160 0.122 0.132	-0.005485 -0.009658 -0.008049	-1.26 -1.70 -1.53	3	-1.50	0.22
R 64	21MAY94	1 2 3	1550 1520 1560	0.112 0.109 0.112	-0.004316 -0.004733 -0.004520	-0.69 -0.75 -0.73	3	-0.72	0.03

STATION	CORE NO	NH4 SLOPE	NH4 FLUX	NUMBER OF CORES	NH4 FLUX MEAN	NH4 STANDARD DEVIATION	
	117	[μMN/(L.min)]	[µMN/(m2.hr)]			DETIMINON	
HGNK	1	0.084647	791.8	3	512.1	253.3	
	2	0.048007	446.1	ŭ	0.2	200.0	
	3	0.030719	298.3				
GNCV	1	0.032397	276.9	3	281.3	32.5	
	2	0.042533	315.8				
	3	0.026957	251.3				
MDPT	1	0.008871	85.0	3	96.8	13.0	
	2	0.015088	110.7		55.5	10.0	
	3	0.011926	94.7				
R 64	1	0.034137	228.4	3	181.7	41.9	
	2	0.025822	169.4				
	3	0.021890	147.4				

STATION	CORE NO	pH SLOPE	pH FLUX	NUMBER OF CORES	pH FLUX MEAN	pH STANDARD DEVIATION
	140	[-log H/(L.min)]	[-logH/(m2.hr)]			
101114		0.000700	6.0	2	-6.0	0.0001
HGNK	1	0.000789	-6.9	2	-0.0	0.0001
	2	-0.000598	-5.0			
	3	NI	NI			
,						
GNCV	1	-0.0005784	-4.9	3	-5.6	0.5983
	2	-0.0007895	-5.9			
	3	-0.0006507	-6.1			
LADOT	1	-0.00055318	-5.3	3	-5.9	0.7491
MDPT				5	-0.5	0.7451
	2	-0.00091644	-6.7			
	3	-0.00070627	-5.6			
(2.1)				•	0.4	0.4481
R 64	1	-0.00050575	-3.4	2	-3.1	0.4481
	2	N	N			
	3	-0.00040839	-2.8			

STATION	CORE NO	NO2 + NO3 SLOPE [μΜΝ/(L.min)]	NO2 + NO3 FLUX [μΜΝ/(m2.hr)]	NUMBER OF CORES	NO2 + NO3 FLUX MEAN	NO2 + NO3 STANDARD DEVIATION
HGNK	1 2 3	-0.02493 -0.02991 -0.05863	-219.53 -250.47 -485.91	3	-318.64	145.689
GNCV	1 2 3	-0.021644 -0.020585 -0.017571	-184.99 -152.83 -163.83	3	-167.22	16.342
MDPT	1 2 3	-0.016738 -0.035538 -0.037366	-181.69 -277.09 -314.43	3	-257.74	68.452
R 64	1 2 3	-0.011243 -0.012542 -0.01401	-75.22 -82.29 -94.34	3	-83.95	9.667

STATION	CORE NO	DIP SLOPE	DIP FLUX	NUMBER OF CORES	DIP FLUX MEAN	DIP STANDARD DEVIATION
O / / / I O / /	,,,,	[µMP/(L.min)]	μMP/(m2.hr)	1		
HGNK	1	0.000000	0.00	3	1.10	1.91
	2	0.000395	3.31			
	3	0.000000	0.00			
					0.00	0.00
GNCV	1	0.000000	0.00	3	0.00	0.00
	2	0.000000	0.00	4		
	3	0.000000	0.00			
MDPT	1	NI	Ni	2	4.19	0.26
(415)	2	0.000546	4.01	_		
	3	0.000550	4.37			
		,				
R 64	1	0.000690	4.62	3	4.05	0.70
	2	0.000498	3.27			
	3	0.000633	4.26			

	STATION	CORE	SILICATE SLOPE	SILICATE FLUX	NUMBER OF CORES	SILICATE FLUX MEAN	SILICATE STANDARD DEVIATION
_			[µMSi/(L.min)]	μMSi/(m2.hr)]			
	HGNK	1	0.07345	647	3	1040	661
		2	0.079978	670			
		3	0.2175	1803			
	GNCV	1	0.036147	196	2	99	137
		2	N	NI			
		3	0.013475	2			
	MOPT	1	0.057379	550	3	309	214
		2	0.019124	140			
		3	0.029853	237			
	R 64	1	0.041092	275	3	271	14
		2	0.038978	256			
		3	0.042065	283			

		CORE	TCO2	TCO2	NUMBER OF	TCO2 FLUX	TCO2 STANDARD	
	STATION	NO	SLOPE	FLUX	CORES	MEAN	DEVIATION	
		[μ	MCO2/(L.min)]	[μMCO2/(m2.	hr)]			
	HGNK	1	0.985	8924	. 2	9617	978.84	
		2	NI	N				
		3	1.215	10309				
	GNCV	1	0.958	7863	3	6018	2217.22	
		2	0.931	6631				
		3	0.419	3558				
	MDPT	1	0.182	1647	3	1404	299.62	
		2	0.156	1070				
		3	0.198	1497				
	R 64	Ħ	0.317	2123	3	1735	342.49	
		2	0.225	1475				
		3	0.238	1606				

STATION	CORE NO	DOC SLOPE	DOC FLUX	NUMBER OF CORES	DOC FLUX MEAN	DOC STANDARD DEVIATION
		[mg/(L.min)]	[gDOC/(m2.d	ay)]		
HGNK	1	0.000000	0.00	3	0.00	0.00
	2	0.000000	0.00			
	3	0.000000	0.00			
GNCV	1	0.002380	8.35	3	10.37	2.43
	2	0.002708	9.68			
	3	0.002805	13.07			
MOPT	1	0.000000	0.00	3	0.00	0.00
	2	0.000000	0.00			
	3	0.000000	0.00			
R 64	1	0.000000	0.00	3	0.00	0.00
	2	0.000000	0.00	3	0.00	0.00
		0.000000	-			
	3		0.00			

STATION	NO	DON SLOPE	DON FLUX	NUMBER OF CORES	DON FLUX MEAN	DON STANDARD DEVIATION
		[µMN/(L.min)]	[μMN/(m2.hr)]		
HGNK	1	NI	NI	0	NI	
	2	NI	NI	-		
	3	NI	NI			
GNCV	1	NI	Nł-	0	NI	
	2	NI	NI			
	3	NI	NI			
MDPT	1	0.01578	151.2	1	151.2	0
	2	NI	NI			
	3	Ni	N			
R 64	1	N	N	0	NI	
	2	N	NI			
	3	NI	NI			

STATION	CORE NO	DOP SLOPE	DOP FLUX	NUMBER OF CORES	DOP FLUX MEAN	DOP STANDARD DEVIATION
		[μMP/(L.min)][μ	MP/(m2.hr)]			DEVIATION
HGNK	1	0	0.00	3	0.00	0.00
	2	0	0.00			
	3	0	0.00			
GNCV	1	-0.00022086	-1.89	2	-2.33	0.63
	2	NI	N			
	3	-0.00029762	-2.77			
MDPT		KII	A.U	0	0.70	4.07
MIDE	1	NI	NI	2	-0.78	4.37
	2	-0.0005275	-3.87			
	3	0.0002907	2.31			
D 64	4	0.00050	0.57	•	0.00	4.05
R 64	1	0.00053	0.57	3	-0.82	1.85
	2	0	-2.92			
	3	0.00042667	-0.12			

STATION	CORE NO	Fe SLOPE	Fe FLUX	NUMBER OF CORES	Fe FLUX MEAN	Fe STANDARD DEVIATION
STATION		[µMFe/(L.min)][µ	ıMFe/(m2.h			
HGNK	1	0.006915	61	3	20	35.16
	2	0	0			
	3	0	0			
GNCV	1	Ō	0	2	1	0.87
	2	0.00016667	1			
	3	. NI	N			
				_		
MDPT	1	NI	NI	0	NI	
	2	NI	NI			
	3	NI	NI			
4		_			17	24.18
R 64	1	0	0	2	17	24.10
	2	NI	N			
	3	0.0050783	34			

STATION	CORE NO	MN SLOPE	MN FLUX	NUMBER OF CORES	MN FLUX MEAN	MN STANDARD DEVIATION
		[µMMn/(L.min)]	[μΜΜη/(m2.l			
HGNK	1	0.017607	165	3	118	51.54
HONK	2	0.017607	98	3	116	51.54
	3	0.00998	92			
GNCV	1	0.0051183	47	3	55	16.85
G. 101	2	0.0096983	74			, 0.00
	3	0.004405	44			
MDPT	1	0.0042378	41	3	41	0.71
	2	0.0056894	42			
	3	0.0052784	42			
R 64	1	0.0025583	17	3	15	2.20
	2	0.0019433	13			
	3	0.0021583	15			

STATION	CORE NO	BLANK DO	BLANK NH4 [μΜΝ/(L.min)]	BLANK pH	BLANK NO2+NO3 [μMN/(L.min)]	BLANK DIP	BLANK Si(OH)4 [μMSi/(L.min)]
Olivinois		[mg/(L.min)]		[-log H/(L.min)]	[μMP/(L.min)]
C					0.00000	0.00000	0.00000
HGNK	1	-0.00041	-0.00527	0.00000	0.00000		
	2	-0.00041	-0.00527	0.00000	0.00000	0.00000	0.00000
	3	-0.00041	-0.00527	0.00000	0.00000	0.00000	0.00000
GNCV	1	-0.00068	0.00000	0.00000	0.00000	0.00000	0.01326
	2	-0.00068	0.00000	0.00000	0.00000	0.00000	0.01326
	3	-0.00068	0.00000	0.00000	0.00000	0.00000	0.01326
	J	0.0000	0.0000				
MDPT	1	0.00000	0.00000	0.00000	0.00222	0.00000	0.00000
WIDT 1	2	0.00000	0.00000	0.00000	0.00222	0.00000	0.00000
	3	0.00000	0.00000	0.00000	0.00222	0.00000	0.00000
	3	0.00000	0.0000	0.0000	•		
R 64	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
17 04			0.00000	0.00000	0.00000	0.00000	0.00000
	2	0.00000		0.00000	0.00000	0.00000	0.00000
	3	0.00000	0.00000	0.00000	0.00000	3.00000	0.0000

STATION	CORE NO	BLANK TCO2	BLANK DOC [mg/(L.min)]	BLANK DON [µMN/(L.min)	BLANK DOP [µMP/(L.min)]	BLANK Fe μMFe/(L.mir	BLANK Mn [μΜΜη/(L.min)]
			-/		<u> </u>		-71
HGNK	1	-0.02875	0.00000	0.00000	0.00000	0.00000	-0.00108
	2	-0.02875	0.00000	0.00000	0.00000	0.00000	-0.00108
	3	-0.02875	0.00000	0.00000	0.00000	0.00000	-0.00108
GNCV	1	0.03750	0.00140	0.00000	0.00000	0.00000	-0.00033
	2	0.03750	0.00140	0.00000	0.00000	0.00000	-0.00033
	3	0.03750	0.00140	0.00000	0.00000	0.00000	-0.00033
MDPT	1	0.00992	0.00000	0.00000	0.00000	0.00000	0.00000
	2	0.00992	0.00000	0.00000	0.00000	0.00000	0.00000
	3	0.00992	0.00000	0.00000	0.00000	0.00000	0.00000
R 64	1	0.00000	0.00000	0.00000	0.00044	0.00000	0.00000
	2	0.00000	0.00000	0.00000	0.00044	0.00000	0.00000
	3	0.00000	0.00000	0.00000	0.00044	0.00000	0.00000

Numerical Water Quality and Contaminant Modeling (EL-22)

Tidal Fresh Potomac River and Maryland Mainstem

Sediment-Water Flux: Net sediment-water exchanges of dissolved oxygen and nutrients

		CORE	CORE	CORE	DO	DO	NUMBER	DO	DO
			H2O	DEPTH	SLOPE	FLUX	OF	FLUX	STANDARD
STATION	DATE	NO	VOL				CORES	MEAN	DEVIATION
			(mL)	(m)	[mg/(L.min)][g	O2/(m2.day)]			
HGNK	12JULY94	1	2020	0.145	-0.004316	-0.90	3	-0.99	0.08
		2	2160	0.155	-0.004733	-1.06			
		3	2140	0.154	-0.004520	-1.00			
GNCV	12JULY94	1	1680	0.121	-0.010427	-1.38	3	-1.61	0.21
		2	1670	0.120	-0.012402	-1.71			
		3	1760	0.127	-0.012135	-1.75			
MDPT	13JULY94	1	2060	0.148	-0.008839	-1.82	3	-1.73	0.32
		2	2000	0.144	-0.006931	-1.37			
		3	1820	0.131	-0.010842	-1.99			
,									
R 64	14JULY94	1	2090	0.150	-0.002227	-0.09	3	-0.02	0.13
		2	2200	0.158	-0.001267	0.13			
		3	2140	0.154	-0.002333	-0.11			

CORE NO	NH4 SLOPE	NH4 FLUX	NUMBER OF CORES	NH4 FLUX MEAN	NH4 STANDARD DEVIATION
	[µMN/(L.min)]	[μMN/(m2.h	r)]		
1	0.034137	297.7	3	246.9	48.0
2	0.025822	240.8			
3	0.021890	202.2			
	0.000010	000.0	•	000.0	04.0
			3	228.8	24.0
3	0.032723	233.2			
1	0.061140	543.7	3	554.8	437.0
2	0.014313	123.6			
3	0.126940	997.3			
1	0.032635	294 4	3	296.0	58.0
			3	200.0	55.0
	NO 1 2 3 1 2 3 1 2 2 3	SLOPE NO [μΜΝ/(L.min)] 1 0.034137 2 0.025822 3 0.021890 1 0.030010 2 0.036738 3 0.032723 1 0.061140 2 0.014313 3 0.126940 1 0.032635 2 0.037355	SLOPE FLUX NO [μΜΝ/(L.min)] [μΜΝ/(m2.h 1 0.034137 297.7 2 0.025822 240.8 3 0.021890 202.2 1 0.030010 203.0 2 0.036738 250.2 3 0.032723 233.2 1 0.061140 543.7 2 0.014313 123.6 3 0.126940 997.3 1 0.032635 294.4 2 0.037355 354.7	SLOPE FLUX OF CORES NO LµMN/(L.min)] [µMN/(m2.hr)] 1 0.034137 297.7 3 2 0.025822 240.8 3 3 0.021890 202.2 1 0.030010 203.0 3 2 0.036738 250.2 3 3 0.032723 233.2 1 0.061140 543.7 3 2 0.014313 123.6 3 3 0.126940 997.3 1 0.032635 294.4 3 2 0.037355 354.7	NO SLOPE [μMN/(L.min)] FLUX (CORES) FLUX (CORES) MEAN 1 0.034137 297.7 3 246.9 2 0.025822 240.8 3 0.021890 202.2 1 0.030010 203.0 3 228.8 2 0.036738 250.2 3 3 0.032723 233.2 1 0.061140 543.7 3 554.8 2 0.014313 123.6 3 0.126940 997.3 1 0.032635 294.4 3 296.0 2 0.037355 354.7

	CORE	pH SLOPE	pH FLUX	NUMBER OF	pH FLUX	pH STANDARD
STATION	NO	0.01	120/	CORES	MEAN	DEVIATION
		[-log H/(L.min)][-log H/(m2.h	ır)]		
1.103.114		0.0045000	40.0		44.7	4 4750
HGNK	1	-0.0015098	-13.2	3	-14.7	1.4750
	2	-0.001726	-16.1			
	3	-0.0016172	-14.9			
GNCV	1	-0.0011029	-8.0	3	-10.9	2.5266
	2	-0.0016941	-12.2			
	3	-0.001648	-12.5			
MDPT	1	-0.00061646	-5.5	3	-5.3	1.1011
11151	2	-0.00048123	-4.2		0.0	
	3	-0.00040120	-6.3			
		-0.00000701	0.0			
R 64	1	0.00075667	6.8	3	7.1	1.1125
	2	0.00064833	6.2			
	3	0.00090167	8.3			

STATION	COFFE NO	NO2 + NO3 SLOPE	NO2 + NO3 FLUX	NUMBER OF CORES	NO2 + NO3 FLUX MEAN	NO2 + NO3 STANDARD DEVIATION
		[μMN/(L.min)]	[µMN/(m2.hr)]			
HGNK	1 2	-0.057894 -0.04326	-416.4 -308.8	3	-342.5	64.11
	3	-0.042853	-302.2			
GNCV	1 2 3	-0.0061487 -0.0076662 -0.006072	-44.6 -55.3 -46.1	3	-48.7	5.77
MDPT	1	NI	N	0	NI	
	2	NI	NI			
	3	NI	NI			
R 64	1 2 3	NI NI NI	NI NI NI	0	NI	

STATION	CORE NO	DIP SLOPE	DIP FLUX	NUMBER OF CORES	DIP FLUX MEAN	DIP STANDARD DEVIATION
		[μMP/(L.min)][_]	μMP/(m2.hr)]			
1101114				_		
HGNK	1	0.000588	5.1	2	5.49	0.51
	2	NI	N			
	3	0.000633	5.8			
GNCV	1	0.001916	13.9	. 1	13.89	0.00
	2	NI	NI			
	3	NI	NI			
MDPT	1	-0.001082	-9.6		0.00	0.00
MIDE				1	-9.62	0.00
	2	NI	NI 			
	3	N	NI			
D 44	_			_		
R 64	1	0.004653	42.0	3	44.39	3.51
	2	0.005098	48.4			
	3	0.004632	42.8			

	CORE	SILICATE SLOPE	SILICATE FLUX	NUMBER OF	SILICATE FLUX	SILICATE STANDARD
STATION	NO	SLOPE	ILOX	CORES	MEAN	DEVIATION
STATION	100	[µMSi/(L.min)]	[μMSi/(m2.hr)]		WEST	DEVIATION
HGNK	1	0.055057	-124.9	3	-133.55	104
	2	0.065698	-34.3			
	3	0.043237	-241.5			
GNCV	1	0.018037	130.8	3	117.63	26
	2	0.01864	134.4			
	3	0.011547	87.7			
MDPT	1	Ni	NI	2	517.49	280
	2	0.037028	319.7			
	3	0.091053	715.3			
R 64	1	0.041295	350.3	3	383.33	89
	2	0.03566	315.3			
	3	0.054898	484.4			

STATION	NO	TCO2 SLOPE [μMCO2/(L.mir	TCO2 FLUX n)][uMCO2/(m	NUMBER OF CORES (2.hr)1	TCO2 FLUX MEAN	TCO2 STANDARD DEVIATION
		W. C. C.	746			
HGNK	1	0.317290	2767	3	2355	360.14
	2	0.224850	2096			
	3	0,238470	2203			
GNCV	1	0.814750	5656	3	5467	165.40
	2	0.777510	5354			
	3	0.744050	5389			
MDPT	1	0.205690	1970	3	2784	705.83
	2	0.357140	3220			
	3	0.386750	3163			
R 64	1	0.125540	1735	3	1953	556.08
	2	0.205340	2585			
	3	0.099672	1538			

	CORE	DOC SLOPE	DOC FLUX	NUMBER OF CORES	DOC FLUX MEAN	DOC STANDARD DEVIATION
STATION	NO	[mg/(L.min)][g	DOC/(m2.day)]	WHES	MEAN	DEVIATION
HGNK	1	0	0	3	8.12058993	7.23
	2	0.0014867	13.8616058			
	3	0.0011367	10.500164			
GNCV	1	0.001605	11.6391367	3	13.4477813	14.44
	2	0	0			
	3	0.0037783	28.7042072			,
MOPT	1	-0.00038071	3.43919223	3	5.36477669	1.69
	2	0	6.62572662			
	3	0	6.02941122			
R 64	1	0.00030833	4.76637281	3	2.96260388	1.56
	2	0	2.08920863			
	3	0	2.03223022			

STATION	CORE NO	DON SLOPE	DON FLUX	NUMBER OF CORES	DON FLUX MEAN	DON STANDARD DEVIATION
		(µMN/min)	[μMN/(m2.hr)]		
HGNK	1	-0.022052	-192.280748	2	-172.091568	28.6
4	2	-0.016292	-151.902388			
	3	NI	NI			
GNCV	1	NI	NI-	0	NI	
	2	NI	N			
	3	NI	NI			
MDPT	1	NI	N	0	NI	
	2	NI	NI			
	3	NI	NI			
R 64	1	NI	NI	0	NI	
	2	NI	N			
	3	NI	NI			

		CORE	DOP SLOPE	DOP FLUX	NUMBER OF	DOP FLUX	DOP STANDARD	
	STATION	NO	(uMP/(L.min))	[μMP/(m2.hr)]	CORES	MEAN	DEVIATION	
•	· · · · · · · · · · · · · · · · · · ·		1,	(,,,,,		· · · · · · · · · · · · · · · · · · ·	-	
	HGNK	1	0.002107	18.3718273	2	9.18591367	12.99	
		2	0	0				
		3	NI	NI				
	GNCV	1	NI	NI	0	NI		
		2	NI	NI				
		3	NI	N				
	MDPT	1	NI	NI	0	NI		
	WIDT 1	2	NI	NI	•	141		
			NI	NI.				
		3	INI	N				
	R 64	1	0.001275	11.502518	1	11.502518	0.00	
		2	NI	NI				
		3	NI	NI				

		CORE	Fe SLOPE	Fe FLUX	NUMBER OF	Fe FLUX	Fe STANDARD	
	STATION	NO	[uMFe/(L.min))][μMFe/(m2.hr)]	CORES	MEAN	DEVIATION	
•			(January)	///				
	HGNK	1	-0.0073167	-18.18	3	-15.5578273	6.69	
		2	-0.006085	-7.9559482				
		3	-0.007455	-20.5375338				
	GNCV	1	-0.006805	-26.2515108	3	-28.8351683	2.25	
		2	-0.0074	-30.3843885				
		3	-0.0071167	-29.8696058				
	MDPT	1	-0.0050633	-19.6070504	3	-27.6483367	40.52	
		2	-0.0019033	8.24460432				
		3	-0.01197	-71.582564				
	R 64	1	-0.002095	12.0591496	3	12.2706201	20.21	
		2	0	32.5888058				
		3	-0.00428	-7.83609496				

STATION	CORE NO	MN SLOPE [μΜΜη/(L.min	MN FLUX)][µMMn/(m2.hr)	NUMBER OF CORES	MN FLUX MEAN	MN STANDARD DEVIATION
HGNK	1	0.017352	151.299453	3	174.408518	28.13
	2	0.02793	260.412086	3	174.400310	20.13
	3	0.012072	111.514014			
GNCV	1	0	0	3	-1.71832863	5.71
	2	-0.0011224	-8.09096978			J., ,
	3	0.00038646	2.93598388			
MDPT	1	0.028147	250.285554	3	257.452115	145,42
	2	0.013408	115.752518			140.42
	3	0.05172	406.318273			
R 64	1	0	0 ·	3	0	0.00
	2	0	0	-	•	0.00
	3	0	0			

	CORE	BLANK	BLANK NH4	BLANK pH	BLANK NO2+NO3	BLANK DIP	BLANK Si(OH)4
STATION	NO	50	[µMN/(L.min)]	•	[µMN/(L.min)]	5	[µMSi/(L.min)]
		[mg/(L.min)]	• • • • • • • • • • • • • • • • • • • •	(-log H/(L.min)]	[µMP/(L.min)	1
HGNK	1	0.00000	0.00000	0.00000	-0.01014	0.00000	0.06938
	2	0.00000	0.00000	0.00000	-0.01014	0.00000	0.06938
	3	0.00000	0.00000	0.00000	-0.01014	0.00000	0.06938
GNCV	1	-0.00251	0.00202	0.00000	0.00000	0.00000	0.00000
	2	-0.00251	0.00202	0.00000	0.00000	0.00000	0.00000
	3	-0.00251	0.00202	0.00000	0.00000	0.00000	0.00000
MDPT	1	-0.00030	0.00000	0.00000	0.00357	0.00000	0.00000
	2	-0.00030	0.00000	0.00000	0.00357	0.00000	0.00000
	3	-0.00030	0.00000	0.00000	0.00357	0.00000	0.00000
R 64	1	-0.00183	0.00000	0.00000	0.00000	0.00000	0.00246
	2	-0.00183	0.00000	0.00000	0.00000	0.00000	0.00246
	3	-0.00183	0.00000	0.00000	0.00000	0.00000	0.00246

	CORE	BLANK TCO2	BLANK	BLANK DON	BLANK DOP	BLANK Fe	BLANK Mn
STATION	NO		[mg/(L.min)]		$[\mu MP/(L.min)]$	(i	μΜΜn/(L.min)]
		[μMCO2/(L	.min)]	[µMN/(L.min)]		[µMFe/(L.min)	1
HGNK	1	0.00000	0.00000	0.00000	0.00000	-0.00523	0.00000
	2	0.00000	0.00000	0.00000	0.00000	-0.00523	0.00000
	3	0.00000	0.00000	0.00000	0.00000	-0.00523	0.00000
GNCV	1	0.03474	0.00000	0.00000	0.00000	-0.00319	0.00000
	2	0.03474	0.00000	0.00000	0.00000	-0.00319	0.00000
	3	0.03474	0.00000	0.00000	0.00000	-0.00319	0.00000
MDPT	1	-0.01583	-0.00077	0.00000	0.00000	-0.00286	0.00000
	2	-0.01583	-0.00077	0.00000	0.00000	-0.00286	0.00000
	3	-0.01583	-0.00077	0.00000	0.00000	-0.00286	0.00000
R 64	1	-0.06682	-0.00022	0.00000	0.00000	-0.00343	0.00000
•	2	-0.06682	-0.00022	0.00000	0.00000	-0.00343	0.00000
	3	-0.06682	-0.00022	0.00000	0.00000	-0.00343	0.00000

Numerical Water Quality and Contaminant Modeling (EL-22)
Tidal Fresh Potomac River and Maryland Mainstem
Sediment-Water Flux: Net sediment-water exchanges of dissolved oxygen and nutrients

		CORE	CORE H2O	CORE	DO SLOPE	DO FLUX	NUMBER OF	DO FLUX	DO STANDARD
STATION	DATE	NO	VOL	DEPTH			CORES	MEAN	DEVIATION
			(mL)	(m)	[mg/(L.min)][gC	02/(m2.day)]			
HGNK	9AUG94	1	1900	0.137	-0.0088933	-1.4462417	3	-1.437	0.17
		2	1910	0.137	-0.0079333	-1.2638978			
		3	1960	0.141	-0.0094244	-1.5997526			
GNCV	9AUG94	1	2600	0.187	-0.010272	-2.2439758	3	-2.038	0.53
		2	2000	0.144	-0.0088753	-1.4367471			
		3	2500	0.18	-0.011332	-2.4322014			
MOPT	10AUG94	1	1960	0.141	-0.0046819	-0.9506615	3	-1.095	0.36
		2	2020	0.145	-0.0039486	-0.8263085			
		3	2060	0.148	-0.0070698	-1.5087665			
R 64	11AUG94	1	2040	0.147	-0.00011053	0.0127035	3	9E-04	0.01
		2	2120	0.153	-0.00017669	-0.0013287	-		
		3	2080	0.15	-0.00021136	-0.0087744			
		_							

STATION	CORE NO	NH4 SLOPE	NH4 FLUX	NUMBER OF CORES	NH4 FLUX MEAN	NH4 STANDARD DEVIATION
		[μMN/(L.min)] [μMN/(m2.hr)]			
HGNK	•	0.000100	750 000007			
INCINIC	1	0.092183	756.033237	3	802.820403	125.97
	2	0.11468	945.491223			
	3	0.083558	706.936748			
GNCV	1	0.043728	470 005151	•	100 017050	
GIVOV	•		472.305151	3	422.317353	217.24
	2	0.023009	184.44259			
	3	0.05819	610.204317			
MDPT	1	0.028222	152.304691	3	315.338475	050.00
	2	0.030802	179.463194	3	313.3384/5	259.22
	3					
	3	0.079298	614.24754			
R 64	1	0.024223	213.301813	3	214.438158	16.59
•	2	0.021686	198.450302	-	4.400 100	10.00
	3	0.025791	231.56236			
		0.023731	201.00200			

		CORE	pH	pH	NUMBER	pH	pH STANDARD
		110	SLOPE	FLUX	OF COORTS	FLUX	DEVIATION
	STATION	NO	* 1 11//1!\	11 lan 11//m2 ha\1	CORES	MEAN	DEVIATION
-			[-log H/(L.min)][-log H/(m2.hr)]			
	HGNK	1	-0.00097749	-8.01682446	3	-9.21625755	1.0864
		2	-0.0012292	-10.1342676			
		3	-0.0011226	-9.49768058			
	GNCV	1	-0.0025089	-21.0249842	3	-15.7174072	8.0927
		2	-0.0013772	-6.40299281			
		3	-0.0024633	-19.7242446			
			•				
	MDPT	1	-0.00054979	-4.65146072	3	-1.55048691	2.6855
		2	0	0			
		3	0	0			
		•					
	R 64	1	0.00028363	0.41343022	3	0.38597871	0.0841
	;	2	0.00028617	0.45288691			
		3	0.00026916	0.29161899			
		-					

	CORE	NO2 + NO3 SLOPE	NO2 + NO3 FLUX	NUMBER OF	NO2 + NO3 FLUX	NO2 + NO3 STANDARD
STATION	NO	T. 8481441 N		CORES	MEAN	DEVIATION
		[μΜΝ/(L.min)	[µMN/(m2.hr)]			
HGNK	1	-0.022315	-183.015108	2	-191.38295	11.00
	2	NI	NI	2	-191.36295	11.83
	3	-0.02361	-199.750791			
GNCV	1	-0.0069162	-77.6206619	2	-83.8410863	8.80
	2	NI	NI	-	00.0410000	0.00
	3	-0.0083457	-90.0615108			
MDPT	1	0.0036633	30.9930993	3	21.6671597	37.77
	2	0.0061817	53.9008662	•	2.1007.1007	07.77
	3	-0.0022371	-19.8924863			
R 64	1	NI	Ni	0	NI	
	2	NI	N	J	141	
	3	NI	N			

STATION	CORE NO	DIP SLOPE	DIP FLUX	NUMBER OF CORES	DIP FLUX MEAN	DIP STANDARD DEVIATION
		[µMP/(L.min)]	[µMP/(m2.hr)]			
110111		_	_		0.0704040	0.07
HGNK	1	0	0	3	0.2724646	2.07
	2	-0.00012833	-1.05803007			
	3	0.00022167	1.87542388			
GNCV	1	NI	NI.	1	6.2573741	0.00
OI TO	2	N	NI		0.2070741	0.00
	3	0.00057985	6.2573741			
MDPT	1	NI	N	1	0	0.00
	2	NI	N			
	3	0	0			
D 04		0.0000610	25 1740422	3	22 0010008	2 52
R 64	1	0.0038619	35.1749422	3	32.0919908	3.53
	2	0.0034576	32.8545704			
	3	0.0030134	28.2464599			

STATION	CORE NO	SILICATE SLOPE	SILICATE FLUX	NUMBER OF CORES	SILICATE FLUX MEAN	SILICATE STANDARD DEVIATION
		(print)][[###O#(1112:1117]			· · · · · · · · · · · · · · · · · · ·
HGNK	1	0.028155	230.911511	3	225.948417	63
•	2	0.032483	267.809482			
	3	0.021172	179.124259			
GNCV	1	0.026194	293.975827	3	227.47036	133
	2	0.01159	100.057554			
	3	0.026723	288.377698			
MOPT	.1	0.034388	290.937324	3	559.452345	164
	2	0.06625	577.661871			
	3	0.091065	809.757842			
R 64	1 2	0.046489 0.043254	409.370763 395.820777	3	353.132489	100
	3	0.028313	254.205928			

STATION	core No	TCO2 SLOPE [µMCO2/(L.m	TCO2 FLUX nin)][µMCO2/(m2	NUMBER OF CORES .hr)]	TCO2 FLUX MEAN	TCO2 STANDARD DEVIATION
HGNK	1 2 3	0.63967 0.71167 0.57435	5246.21439 5867.43755 4859.24892	3	5324.30029	508.61
GNCV	1 2 3	0.81757 0.51373 0.86848	9175.60576 4435.07914 9372.08633	3	7660.92374	2795.39
MDPT	1 2 3	0.18288 0.49471 0.37192	1193.84305 3949.3674 2935.71341	3	2692.97462	1393.71
R 64	1 2 3	0.21509 0.18045 0.18202	1894.02993 1651.31223 1634.25151	3	1726.53122	145.31

	STATION	CORE NO	DOC SLOPE	DOC FLUX	NUMBER OF CORES	DOC FLUX MEAN	DOC STANDARD DEVIATION
_			[mg/(L.min)][g	DOC/(m2.day	·)]		
	HGNK	1	0.000855	7.01	3	2.34	4.05
		2	0.000000	0.00			
		3	0.000000	0.00			
	GNCV	1	0.000000	0.00	3	5.12	8.87
		2	0.000000	0.00			
		3	0.001423	15.36			
	MDPT	1	0.000000	0.00	3	0.00	0.00
		2	0.000000	0.00			
		3	0.000000	0.00			
	R 64	1	0.000000	0.00	3	0.00	0.00
		2	0.000000	0.00			
		3	0.000000	0.00			
		_		2.30			

STATION	CORE NO	DON SLOPE	DON FLUX	NUMBER OF CORES	DON FLUX MEAN	DON STANDARD DEVIATION
		[µMN/(L.min)]	[μMN/(m2.hr)			
HGNK	1	NI	NI	0	NI	
•	2	NI	NI			
	3	NI	NI			
GNCV	1	NI	NI	0	NI	
	2	NI	NI			
	3	NI	N			
MDPT	1	NI	N	0	NI	
	2	NI	NI			
	3	NI	N			
R 64	1	0.015829	139.39	2	186.83	67.1
	2	0.025601	234.28			
	3	· NI	N			

	STATION	CORE NO	DOP SLOPE	DOP FLUX	NUMBER OF CORES	DOP FLUX	DOP STANDARD
_			[μΜΡ/(L.min)][μMP/(m2.hr)]	- CUNES	MEAN	DEVIATION
	HGNK	1	0.00013667	1.12	^		
		2	0.00013887	0.00	3	0.37	0.65
		3	0	_			
		3	U	0.00			
	GNCV	1	NI	NI.	1	4.70	0.00
		2	NI	NI	•	4.70	0.00
		3	0.00043589	4.70			
	MDPT	1	0.0010317	8.73	2	5.71	4.27
		2	0.00030848	2.69	-	3.71	4.27
		3	NI	NI NI			
	R 64	1	0.036043	317.39	3 .	390.57	65.75
		2	0.04859	444.65	3 .	390.57	65.75
		3	0.04563	409.69			
		-		. 00.00			

STATION	CORE NO	Fe SLOPE	Fe FLUX	NUMBER OF CORES	Fe FLUX MEAN	Fe STANDARD DEVIATION
STATION	140	[μMFe/(L.min)][μMFe/(m2.h			
HGNK	1	-0.005035	-10	3	-16	5.62
	2	-0.0062167	-20			
	3	-0.00614	-20			
011014		0.000754	0.7	3	-29	9.32
GNCV	1	-0.0060751	-37	3	-29	9.32
	2	-0.0049432	-18			
	3	-0.0056639	-31			
MDPT	1	-0.0050133	-24	3	-22	17.57
	2	-0.0064917	-38			
	3	-0.0024867	-3			
			0			
R 64	1	0	0	3	-5	17.50
	2	-0.0026483	-24			
	3	0.0010855	10			

STATION	CORE NO	MN SLOPE	MN FLUX	NUMBER OF CORES	MN FLUX MEAN	MN STANDARD DEVIATION
		[µMMn/(L.min)]	μ ΜΜ n/(m2.i	hr)]		
HGNK	1	0.0052817	43	3	55	6.19
	2	0.010598	87			
	3	0.004085	35			
GNCV	1	0.0026099	29	3	21	17.00
	2	0.00018484	2			
	3	0.0030125	33			
MDPT	1	0.016055	137	3	170	44.78
	2	0.017292	152			
	3	0.02471	221			
R 64	1	-0.035297	146	3	182	305.90
	2	-0.063332	-105			
	3	0.004240	504			

STATION	CORE NO	BLANK DO	BLANK NH4 [μΜΝ/(L.min)]	BLANK pH	BLANK NO2+NO3 [μΜΝ/(L.min)]	BLANK DIP	BLANK Si(OH)4 [μMSi/(L.min)]
	-110	[mg/(L.min)]		[-log H/(L.min		[μMP/(L.min	
HGNK	1	-0.0015	0.0000	0.0000	0.0000	0.0000	0.0000
710111	2	-0.0015	0.0000	0.0000	0.0000	0.0000	0.0000
	3	-0.0015	0.0000	0.0000	0.0000	0.0000	0.0000
GNCV	1	-0.0019	0.0016	-0.0006	0.0000	0.0000	0.0000
	2	-0.0019	0.0016	-0.0006	0.0000	0.0000	0.0000
	3	-0.0019	0.0016	-0.0006	0.0000	0.0000	0.0000
MDPT	1	0.0000	0.0102	0.0000	0.0000	0.0000	0.0000
	2	0.0000	0.0102	0.0000	0.0000	0.0000	0.0000
	3	0.0000	0.0102	0.0000	0.0000	0.0000	0.0000
R 64	1	-0.0002	0.0000	0.0002	0.0000	-0.0001	0.0000
	2	-0.0002	0.0000	0.0002	0.0000	-0.0001	0.0000
	3	-0.0002	0.0000	0.0002	0.0000	-0.0001	0.0000

	CORE	BLANK TCO2	BLANK DOC	BLANK DON	BLANK DOP	BLANK Fe	BLANK Mn
STATION	МО	[n [μMCO2/(L.min)]	ng/(L.min)]	[µMN/(L.min)]	[μMP/(L.r	nin)] [µMFe/(L.min	[µMMn/(L.min)]
					-		
HGNK	1	0.0000	0.0000	0.0000	0.0000	-0.0038	0.0000
	2	0.0000	0.0000	0.0000	0.0000	-0.0038	0.0000
	3	0.0000	0.0000	0.0000	0.0000	-0.0038	0.0000
GNCV	1	0.0000	0.0000	0.0000	0.0000	-0.0028	0.0000
	2	0.0000	0.0000	0.0000	0.0000	-0.0028	0.0000
	3	0.0000	0.0000	0.0000	0.0000	-0.0028	0.0000
MDPT	1	0.0418	0.0000	0.0000	0.0000	-0.0022	-0.0002
	2	0.0418	0.0000	0.0000	0.0000	-0.0022	-0.0002
	3	0.0418	0.0000	0.0000	0.0000	-0.0022	-0.0002
R 64	1	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0519
	2	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0519
	3	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0519

Numerical Water Quality and Contaminant Modeling (EL-22)

Tidal Fresh Potomac River and Maryland Mainstem

Sediment-Water Flux: Net sediment-water exchanges of dissolved oxygen and nutrients

		CORE	CORE H2O	CORE	DO SLOPE	DO FLUX	NUMBER OF	DO FLUX	DO STANDARD
STATION	DATE	NO	VOL	DEPTH		00404-33	CORES	MEAN	DEVIATION
			(mL)	(m)	[mg/(L.min)][g	O2/(m2.day)]			
							_		
HGNK	13OCT94	1	1880	0.135	-0.005906	-1.15	3	-1.03	0.11
		2	1810	0.130	-0.005068	-0.95			
		3	2080	0.150	-0.004559	-0.98			
GNCV	13OCT94	1	2000	0.144	-0.005638	-1.00	3	-1.05	0.11
		2	1960	0.141	-0.006605	-1.18			
		3	2000	0.144	-0.005555	-0.98			
MOOT	4.400T04		4000	0.110	0.004000	0.70	3	-0.69	0.10
MOPT	14OCT94	1	1980	0.142	-0.004002	-0.78	3	-0.69	0.10
		2	1820	0.131	-0.003324	-0.59			
		3	1960	0.141	-0.003615	-0.69			
R 64	17OCT94	1	1850	0.133	-0.005625	-1.13	3	-1.32	0.23
04	1,00134	2	2170	0.156	-0.005280	-1.25	-		
			1800	0.130	-0.003200	-1.57			
		3	1000	0.129	-0.000171	-1.57			

STATION	COPE NO	NH4 SLOPE	NH4 FLUX	NUMBER OF CORES	NH4 FLUX MEAN	NH4 STANDARD DEVIATION
STATION	140	[µMN/(L.min)]	[µMN/(m2.hr)		IVICATA	DEVIATION
HGNK	1	0.064022	519.5	3	536.4	36.33
	2	0.065477	511.6			
	3	0.064387	578.1			
GNCV	1	0.012189	105.2	3	148.1	81.41
	2	0.028597	241.9			
	3	0.011237	97.0			
MDPT	1	0.016607	141.9	3	130.7	39.82
MUPI		*	-	3	130.7	39.82
	2	0.020828	163.6			
•	3	0.010215	86.4			
R 64	1	0.039488	315.3	3	358.5	37.71
	2	0.041083	384.8			
	3	0.048325	375.5			
	-					

	CORE	pH SLOPE	pH FLUX	NUMBER OF	pH FLUX	pH STANDARD	
STATION	NO			CORES	MEAN	DEVIATION	
•		[-log H/(L.min)][-log H/(m2.hr)]					
HGNK	1	NI	NI	2	-5.6	0.1100	
HOINK				2	-3.6	0.1100	
	2	-0.00070314	-5.5				
	3	-0.00062919	-5.6				
GNCV	1	-0.0011411	-9.9	2	-11.9	2.9267	
	2	-0.0016536	-14.0				
	3	NI	NI				
MDPT	1	-0.00048003	-4.1	3	-2.3	2.1100	
	2	0	0.0				
	3	-0.00034361	-2.9				
R 64	1	-0.00062788	-5.0	3	-3.4	2.9618	
	2	-0.00055928	- 5 .2				
	3	0	0.0				

STATION	CORE NO	NO2 + NO3 SLOPE	NO2 + NO3 FLUX	NUMBER OF CORES	NO2 + NO3 FLUX MEAN	NO2 + NO3 STANDARD DEVIATION
		[µMN/(L.min)]	μ MN/(m2.hr)]			
HGNK	1	-0.075699	-298.5	3	13.9	274.23
1 Kalare	2	-0.011378	215.2	3	13.9	214.23
	3	-0.02501	124.9			
GNCV	1	-0.0092183	-79.6	3	-114.6	60.85
	2	-0.021854	-184.9	-		00.00
	3	-0.009199	-79.4			
MDPT	1	0.005074	43.4	2	-46.8	127.55
	2	-0.01744	-137.0			
	3	Ni	N			
R 64	1	-0.00089804	-7.2	3	-6.5	2.34
	2	-0.00041631	-3.9			
	3	-0.0010854	-8.4			

	CORE	DIP SLOPE	DIP FLUX	NUMBER OF	DIP FLUX	DIP STANDARD
STATION	NO		110// 01/01	CORES	MEAN	DEVIATION
		[μMP/(L.min)][MP/(m2.nr)]			· · · · · · · · · · · · · · · · · · ·
LIONIC		0.000000			0.00	2.22
HGNK	1	0.000000	0.0	3	0.00	0.00
	2	0.000000	0.0			
	3	0.000000	0.0			
GNCV	1	0.000000	0.0	3	0.77	1.64
•	2	0.000274	2.3			
	3	0.000000	0.0			
MDPT	1	0.000000	0.0	3	0.00	0.00
	2	0.000000	0.0			
	3	0.000000	0.0			
	-	0.00000	0.0			
R 64	1	0.000413	3.3	3	10.10	5.91
	2	0.001497	14.0			
	3	0.001670	13.0			

	STATION	CORE NO	SILICATE SLOPE	SILICATE FLUX	NUMBER OF CORES	SILICATE FLUX MEAN	SILICATE STANDARD DEVIATION
	SIATION	140	[µMSi/(L.min)][μMSi/(m2.hr)]	WILD.	IVILAN	DEVIATION
-							
	HGNK	1	0.015614	-805.7	2	-891.67	122
		2	NI	N			
		3	0.0060144	-977.6			
	GNCV	1	N	NI	2	114.94	252
		2	0.034608	292.8			
		3	-0.0072879	-62.9			
	MDPT	1	0.016432	140.4	3	729.72	1041
		2	0.24595	1932.2			
		3	0.013771	116.5			
						•	
	R 64	1	0.033902	112.4	3	158.02	19
		2	0.043627	222.9			
		3	0.037682	138.7			

STATION	OOPIE NO	TCO2 SLOPE	TCO2 FLUX	NUMBER OF CORES	TCO2 FLUX MEAN	TCO2 STANDARD DEVIATION
		[μMCO2/(L.mir	n)][μMCO2/(m			527/////011
HGNK	1	0.276510	993	3	1447	397.20
	2	0.375610	1731			
	3	0.334330	1618			
GNCV	1	0.474470	4096	3	4772	1118.90
	2	0.716730	6064			
	3	0.481520	4157			
·						
MDPT	1	0.215830	425	3	2138	2753.33
	2	0.842610	5314			
	3	0.246080	676			
R 64	1	0.427830	3416	3	3663	555.31
	2	0.458920	4299			
	3	0.421280	3273			

STATION	CORE NO	DOC SLOPE	DOC FLUX	NUMBER OF CORES	DOC FLUX MEAN	DOC STANDARD DEVIATION
		[mg/(L.min)][g	DOC/(m2.day)]		
HGNK	1	0.000000	2.97	3	3.03	0.22
	2	0.000000	2.85			
	3	0.000000	3.28			
GNCV	1	0.000000	0.00	3	0.00	0.00
	2	0.000000	0.00			
	3	0.000000	0.00			
MDPT	1,	0.000000	0.00	3	-2.27	3.93
	2	-0.000866	-6.80			
	. 3	0.000000	0.00			
R 64	1	-0.015773	-125.96	3	-41.99	72.72
	2	0.000000	0.00			
	3	0.000000	0.00			

	CORE	DON	DON	NUMBER OF	DON	DON STANDARD
STATION	NO	SLOPE	FLUX	CORES	MEAN	DEVIATION
		[μΜΝ/(L.min)] [$[\mu MN/(m2.hr)]$			
				_		
HGNK	1	0.060296	489.31	2	311.04	252.115169
	2	N	N			
	3	0.014787	132.76			
011014		F11	A 10	_		
GNCV	1	NI	NI	0	NI	
	2	NI	NI			
	3	NI	NI			
MDPT	1	NI	Ni	1	-99.41	0
14101	2	-0.012654	-99.41	•	55.41	·
	3	NI	NI			
	J	131				
R 64	1	-0.0064273	-51.33	1	-51.33	0
	2	NI	NI			
	3	N	NI			

STATION	COPIE NO	DOP SLOPE [μΜΡ/(L.min)][μ	DOP FLUX MP/(m2.hr)]	NUMBER OF CORES	DOP FLUX MEAN	DOP STANDARD DEVIATION
LICAR				•	0.00	
HGNK	1 2	0 0	0.00	3	0.00	0.00
		-	0.00			
	3	0	0.00			
GNCV	1	0.00034144	2.95	1	2.95	0.00
	2	NI	NI			
	3	NI	NI			
MDPT	1	0.00064537	5.52	1	5.52	0.00
	2	NI	N	-		0.00
	3	NI	N			
R 64	1	-0.00024185	-0.43	3	0.33	1.00
	2	-0.00019279	-0.04			
	3	0	1.46			

STATION	CORE NO	Fe SLOPE	Fe FLUX	NUMBER OF CORES	Fe FLUX MEAN	Fe STANDARD DEVIATION		
SIATION		[µMFe/(L.min)][μMFe/(m2.h					
HGNK	1	-0.0054496	-5	2	4	13.99		
	2	-0.0029436	14					
	3	. NI	NI					
GNCV	1	N	N	2	43	14.25		
	2	0.0032867	53					
	3	0.00082667	33					
MOPT	1	-0.0021733	6	3	7	8.57		
	2	-0.0029239	0					
	3	-0.00091397	16					
R 64	1	-0.02779	-209	3	-262	46.95		
	2	-0.033605	-300					
	3	-0.037072	-276					

	CORE	MIN SLOPE	MN FLUX	NUMBER OF	MN FLUX	MN STANDARD
STATION	NO			CORES	MEAN	DEVIATION
		[µMMn/(L.min)]	[µMM n/(m2.l	hr)]		
HGNK	1	-0.016216	-132	3	-115	20.9873362
	2	-0.014384	-112	5	-113	20.90/3302
	3	-0.011351	-102			
GNCV	1	-0.0065504	-57	3	-62	11.1184415
	2	-0.0088666	-75	ū	02	11.1104410
	3	-0.0063769	-55			
MDPT	1	0.0044738	38	3	47	25.1826298
	2	0.0095557	75			
	3	0.0031802	27			
R 64	1	-0.010888	-87	3	-120	28.2174788
	2	-0.014430	-135	•	0	20.2.7.7700
	3	-0.017562	-136			

	CORE	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK
		DO	NH4	pН	NO2+NO3	DIP	Si(OH)4
STATION	NO		[µMN/(L.min)	1	[µMN/(L.min)]		[µMSi/(L.min)]
		[mg/(L.min)]		[-log H/(L.min)]	[μMP/(L.min)	1
HGNK	1	0.00000	0.00000	0.00000	-0.03892	0.00000	0.11490
	2	0.00000	0.00000	0.00000	-0.03892	0.00000	0.11490
	3	0.00000	0.00000	0.00000	-0.03892	0.00000	0.11490
GNCV	1	-0.00081	0.00000	0.00000	0.00000	0.00000	0.00000
	2	-0.00081	0.00000	0.00000	0.00000	0.00000	0.00000
	3	-0.00081	0.00000	0.00000	0.00000	0.00000	0.00000
MDPT	1	-0.00021	0.00000	0.00000	0.0000	0.00000	0.00000
	2	-0.00021	0.00000	0.00000	0.00000	0.00000	0.00000
	3	-0.00021	0.00000	0.00000	0.00000	0.00000	0.00000
R 64	1	0.00026	0.00000	0.00000	0.00000	0.00000	0.01983
	2	0.00026	0.00000	0.00000	0.00000	0.00000	0.01983
	3	0.00026	0.00000	0.00000	0.00000	0.00000	0.01983

STATION	CORE NO	BLANK TCO2 [μMCO2/(L.	BLANK DOC min)] [mg/(L.min)]	BLANK DON [μΜΝ/(L.min)]	BLANK DOP [µMP/(L.1	BLANK Fe [µMFe/(L.min	BLANK Mn)] [μΜΜη/(L.min)]
			[mg/(cmm/)]		[privit /(L.)	11111/1	[ptwilvii/(L.min)]
HGNK	1 2	0.15411 0.15411	-0.00037 -0.00037	0.00000	0.00000	-0.00477 -0.00477	0.00000 0.00000
	3	0.15411	-0.00037	0.00000	0.00000	-0.00477	0.00000
GNCV	1 2	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	-0.00303 -0.00303	0.00000 0.00000
	3	0.00000	0.00000	0.00000	0.00000	-0.00303	0.00000
MDPT	1 2	0.16615 0.16615	0.00000 0.00000	0.00000 0.00000	0.00000 0.00000	-0.00286 -0.00286	0.00000 0.00000
	3	0.16615	0.00000	0.00000	0.00000	-0.00286	0.00000
R 64	1 2 3	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	-0.00019 -0.00019 -0.00019	-0.00159 -0.00159 -0.00159	0.00000 0.00000 0.00000

Numerical Water Quality and Contaminant Modeling (EL-22) Tidal Fresh Potomac River and Maryland Mainstem Total Carbon Dioxide Corrections at R 64

		TCO2 FLUX	CaCO3	BIOTIC CO2	FLUX MEAN
CORE	DATE	[µMCO2/(m2.hr)]	[µMCa/(m2.hr)]	[μMCO2/(m2.hr)]	[μMCO2/(m2.nr)]
1	21MAY95	8924	-183	9107	
2	21MAY95	NI	104		9708
3	21MAY95	10309	NS	10309	
1	14JUL95	1735	NS	2767	
2	14JUL95	2585	NS	2096	1953
3	14JUL95	1538	NS	2203	
1	11AUG95	1894	-215	2109	
2	11AUG95	1651	NS	1651	1630
3	11AUG95	1634	503	1131	
1	17OCT95	3416	654	2762	
2	17OCT95	4299	783	3516	3067
3	17OCT95	3273	350	2923	
2	17OCT95	4299	783	3516	3067

Numerical Water Quality and Contaminant Modeling (EL-22) Tidal Fresh Potomac River and Maryland Mainstem Sulfate Flux: Sulfate depletion from sediment pore water

STATION	DATE	SO4 RATE OF CHANGE (mg/L*day) 9	AVERAGE POROSITY 6(wgt/wgt)	SEDIMENT VOLUME (L)	PROPERTY CONSTANT (cm2/m2)	SO4 FLUX (mg/m2*day)	SO4 DEPLETION FLUX (mM SO4 m-2*day)
HGNK	MAY	NI				NI	NI
GNCV	MAY	NI NI				NI	NI
MDPT	MAY	NI NI				NI	NI
R 64	MAY	NI NI				NI	NI
N 04	IVIA	M				•••	
HGNK	JULY	0	0.87	0.05	1972	0.00	0.0
GNCV	JULY	NI				NI	NI
MDPT	JULY	-21.408	0.90	0.05	1972	-1899.75	19.8
R 64	JULY	-24,742	0.88	0.05	1972	-2146.81	22.4
HGNK	AUGUST	0	0.87	0.05	1972	0.00	0.0
GNCV	AUGUST	NI				NI	NI
MDPT	AUGUST	-16,389	0.89	0.05	1972	-1438.20	15.0
R 64	AUGUST	-16,348	0.92	0.05	1972	-1482.96	15.4
HGNK	OCTOBER	R NI				NI	NI
GNCV	OCTOBER	R NI				NI	NI
MOPT	OCTOBER	R NI				· NI	Ni
R 64	OCTOBER	-16.438	0.87	0.05	1972	-1410.08	14.7

Numerical Water Quality and Contaminant Modeling (EL-22) Tidal Fresh Potomac River and Maryland Mainstem

Methane Flux: In-situ method

STATION	DATE	TRAP SET-TIME (hr)	CH4 (mL)	%CH4	MASS (μM)	CH4 FLUX [μΜ/(m2.hr)]
			-			
HGNK	MAY	20	9	23.2	93.2	54.2
	JULY	27.0	SS			
	AUG	25	4	4.6	8.2	3.8
	OCT		0			
GNCV	MAY	19.5	15	26.5	177.5	105.8
	JULY	26.9	44	20.1	394.8	170.5
	AUG	24.8	128	25.1	1434.3	671.7
	OCT	27.1	65	21.1	612.3	262.5
MDPT	MAY		0			
•	JULY		ō			
	AUG	25.9	8	57.7	206.1	92.5
	OCT		ō			
			_			

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

I. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPO	ORT TYPE AN	ID DATES COVERED
	July 1996	Final	report	
. TITLE AND SUBTITLE				5. FUNDING NUMBERS
Sediment-Water Fluxes and Sedi	mont Analyses in Chase	maalra Dann		
Tidal Fresh Potomac River and I		реаке вау:		
	viaryland Main Stem			1
. AUTHOR(S)				\mathbf{I}_{1}
Walter R. Boynton, Peter Sampo	Yamat M. Damas			
Barbara J. Weaver, L. L. Magde	.0			
. PERFORMING ORGANIZATION NAME	S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
Chesapeake Biological Laborator	y			JAT HUMBER
Box 38, Solomons, MD 20688-	0038;			
Horn Point Environmental Labor	ratory			
Cambridge, MD 21613-0775			9 (2)	
. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(E	5)		10. SPONSORING/MONITORING
				AGENCY REPORT NUMBER
U.S. Army Corps of Engineers	·		i	
Washington, DC 20314-1000;				Contract Report
U.S. Army Engineer Waterways	W-96-1			
3909 Halls Ferry Road, Vicksbu	rg, MS 39180-6199			
1. SUPPLEMENTARY NOTES	•			
Available from National Technic	al Information Service,	5285 Port I	Royal Road,	Springfield, VA 22161.
2a. DISTRIBUTION/AVAILABILITY STAT	EMENT		·	12b. DISTRIBUTION CODE
THE STATE OF THE S	E.WIEN I			126. DISTRIBUTION CODE
Ammounted for multiple releases that	allandian in antimite i			1.
Approved for public release; dist	ribution is unlimited.			1
				•

13. ABSTRACT (Maximum 200 words)

The report describes sediment-water flux measurements and associated observations in the water column and benthic sediments. Observations were conducted at four stations in the tidal Potomac River and adjoining Chesapeake Bay from May through October 1994. Measures were collected to provide data for development and improvement of a diagenetic model of sediment processes in freshwater and salt-freshwater transition regions.

Sediment-water flux measurements included ammonium, nitrate + nitrite, phosphate, silicate, dissolved organic nitrogen, dissolved organic phosphorus, dissolved organic carbon, dissolved oxygen, total CO2, total iron, total manganese, and methane.

Constituents measured in the water column included ammonium, nitrate + nitrite, phosphate, silicate, dissolved organic nitrogen, dissolved organic phosphorus, dissolved organic carbon, dissolved oxygen, total CO2, total iron, total manganese, sulfate, pH, and temperature.

Constituents measured in the sediments included ammonium, nitrate + nitrite, phosphate, silicate, dissolved organic nitrogen, dissolved organic phosphorus, dissolved organic carbon, alkalinity, total CO2, iron, manganese, chloride, sulfate, sulfide, and pH.

14. SUBJECT TERMS	*		15. NUMBER OF PAGES
Chesapeake Bay	Manganese	Nutrients	145
Dissolved oxygen	Mathematical models	Phosphorus	16. PRICE CODE
Iron	Nitrogen	Potomac River	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE		20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED		