W15_LSTMConsumptionSimpleV13

January 12, 2021

```
[1]: version = "13"

stationary = False
scaling = True
resetting = True

hardcode = False
train_for = 1501 #2001
learningrate = 1e-3 #1e-3
```

1 TO DO:

- Revisit train/validate/split
- Create dummy variables of the hour and day
- Add features
 - isPeak
 - Mean of previous Day
 - Mean of previous Week

2 Simpler form of the LSTM (from Week 14)

```
Jefry el Bhwash 16095065 (Created v01 and onward)

Niels van Drunen (joined from 03m left@05 for the production variant)

Levy Duivenvoorden (joined @03, left @05)

Using: - DL Lectures: 6.3 RNN Stationary - W14_Simple_LSTM_Consumption - W13_LSTM_Start_shaping - Help session of mr Vuurens

Data: - House 28
```

Versions:

nr	Date	Changes
01	10/12/'20	First draft, does not work
02	11/12/'20	Added validation (valid set,
		no actual tests yet) and
		visualization
03	14/12/'20	Added this notebook to the
		server, added Levy and
		Niels, to try and understand
	14/19/200	LSTM's better as a group Added Validation and
04	14/12/'20	
05	15/12/'20	visualization during training Quick look at the test set to
	19/12/20	see if something weird is
		going on
06	15/12/'20	Removed Test, because
	,,	that's what validation is
		for.Changed print while
		training. Added
		visualizations on the bottom
		and made the usage of
		stationary variable on the
		top of this notebook
07	Skipped	NvD added his own beautiful
	17/10/100	version of 07 to the server
08	15/12/'20	Scaled the dataframes going
	16/19/200	in
09	16/12/'20	Changed where Scaling
10	16/12/'20	happens Changed dim3 function
11	17/12/20	Added multiple features,
	11/12/20	dataloader
12	18/12/'20	Inverse scaling fixed, added
	10, 12, 20	learningrate schedular +
		resetting, better training
		visualization

3 Initialization

```
[2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
from IPython.display import display, HTML
```

4 Data Preparation

torch.manual_seed(1337)

#Random Seed
random.seed(1337)

def det(tensor):

```
[5]: df = pd.read_pickle('consumptionOf28').drop(['production'], axis=1)
#adding hour feature
df['hour'] = df.index.hour
df['weekday'] = df.index.dayofweek
#df['day'] = df.index.day

#AUTOMATE THIS
cols = ['hour', 'weekday', 'consumption']
df = df[cols]
display(df.head(2))
```

return tensor.detach().cpu().numpy()

4.1 Data Split

```
[6]: # Split
    trdf = df.loc['2019-01':'2019-08']
    vadf = df.loc['2019-09':'2019-11']
    tedf = df.loc['2019-12':]

[7]: plt.plot(trdf.index, trdf.consumption, '.-', alpha=0.5)
    plt.plot(vadf.index, vadf.consumption, '.-', alpha=0.5)
    plt.plot(tedf.index, tedf.consumption, '.-', alpha=0.5)
```

[7]: [<matplotlib.lines.Line2D at 0x7f1b1a6e7358>]

4.2 Scaling

```
[8]: dftr = trdf.copy()
    dfva = vadf.copy()
    dfte = tedf.copy()
    if scaling:
        print('Scaling: On')

        scaler_X = StandardScaler()
        scaler_y = StandardScaler()
```

```
scaler_X.fit(dftr.iloc[:,:-1])
    scaler_y.fit(dftr.iloc[:,-1:])
    #train
    dftr.iloc[:,:-1] = scaler_X.transform(dftr.iloc[:,:-1])
    dftr.iloc[:,-1:] = scaler_y.transform(dftr.iloc[:,-1:])
    print('Train')
    display(dftr.head())
    #Valid
    dfva.iloc[:,:-1] = scaler X.transform(dfva.iloc[:,:-1])
    dfva.iloc[:,-1:] = scaler_y.transform(dfva.iloc[:,-1:])
    print(f'\nValidation')
    display(dfva.head())
    #Test
    dfte.iloc[:,:-1] = scaler_X.transform(dfte.iloc[:,:-1])
    dfte.iloc[:,-1:] = scaler_y.transform(dfte.iloc[:,-1:])
    print(f'\nTest')
    display(dfte.head())
Scaling: On
Train
                         hour
                                weekday consumption
2019-01-01 00:00:00 -1.661325 -1.005184
                                           -0.305184
2019-01-01 01:00:00 -1.516862 -1.005184
                                           -0.739154
2019-01-01 02:00:00 -1.372399 -1.005184
                                           -0.999535
2019-01-01 03:00:00 -1.227936 -1.005184
                                            2.293371
2019-01-01 04:00:00 -1.083473 -1.005184
                                           -0.473512
Validation
                               weekday consumption
2019-09-01 00:00:00 -1.661325 1.507776
                                           -1.002165
2019-09-01 01:00:00 -1.516862 1.507776
                                           -0.999535
2019-09-01 02:00:00 -1.372399 1.507776
                                           -0.802276
2019-09-01 03:00:00 -1.227936 1.507776
                                          -0.313075
2019-09-01 04:00:00 -1.083473 1.507776
                                           1.675294
Test
                         hour
                              weekday consumption
2019-12-01 00:00:00 -1.661325 1.507776
                                            0.802095
2019-12-01 01:00:00 -1.516862 1.507776
                                            0.441769
2019-12-01 02:00:00 -1.372399 1.507776
                                            0.483851
2019-12-01 03:00:00 -1.227936 1.507776
                                            0.660069
2019-12-01 04:00:00 -1.083473 1.507776
                                            1.186092
```

4.3 3 dimensional

```
batch | sequence | features
```

```
[9]: def dim3(dft, window=7, gap=24):
          #Get time shifted values and apply a moving window
         X = np.concatenate([ dft[i:i+window].to_numpy().reshape(1, window, dft.
       →shape[1]) for i in range(len(dft)-window-gap) ], axis=0)
          #Get the target value (which is the next one in the sequence)
         y = dft.to_numpy()[window + gap:, -1]
         print(f"X_shape: {X.shape}")
         print(f"y_shape: {y.shape}")
         return X.astype(np.float32), y.astype(np.float32)
[10]: wsize = 168
      gsize = 24
      print("Train")
      train_X, train_y = dim3(dftr, wsize, gsize)
      print("\nValid")
      valid_X, valid_y = dim3(dfva, wsize, gsize)
      print("\nTest")
      test_X, test_y = dim3(dfte, wsize, gsize)
     Train
     X_shape: (5640, 168, 3)
     y_shape: (5640,)
     Valid
     X_shape: (1992, 168, 3)
     y_shape: (1992,)
     Test
     X_shape: (551, 168, 3)
     y shape: (551,)
[11]: display(train_X[0][:10])
      print("...")
      display(train_y[0])
     array([[-1.6613247 , -1.005184 , -0.30518422],
            [-1.5168618, -1.005184, -0.7391535],
            [-1.3723987, -1.005184, -0.9995351],
            [-1.2279357 , -1.005184 , 2.2933714 ],
            [-1.0834727, -1.005184, -0.4735117],
            [-0.93900967, -1.005184, 0.64954823],
            [-0.7945466, -1.005184, 0.49700147],
```

```
[-0.6500836 , -1.005184 , 1.2781461 ],
[-0.5056206 , -1.005184 , -0.71285236],
[-0.36115757 , -1.005184 , -1.0626578 ]], dtype=float32)
...
-0.85487866
```

5 Tensors and Dataloader

Dataloader for train

Tensor for valid and test

```
[12]: train_ds = TensorDataset(torch.tensor(train_X), torch.tensor(train_y))
    train_dl = DataLoader(train_ds, batch_size=64, num_workers=3)

valid_X_t = torch.from_numpy(np.array(valid_X)).to(device)
valid_y_t = torch.from_numpy(np.array(valid_y)).to(device)

test_X_t = torch.from_numpy(np.array(test_X)).to(device)
test_y_t = torch.from_numpy(np.array(test_y)).to(device)
```

6 LSTM Class

```
[13]: class lstm(nn.Module):
          def __init__(self, feature_size=1, hidden_state_size = 100):
              super().__init__()
              self.hidden_state_size = hidden_state_size
              self.lstm1 = nn.LSTM(feature_size, self.hidden_state_size,_
       →batch_first=True)
              self.linear2 = nn.Linear(self.hidden_state_size, 1)
          def forward(self, X): #tensor X
              h, _ = self.lstm1( X )
                                               # h shaped (batch, sequence,
       \rightarrow hidden_layer)
                                               # only need the output for the last_
              h = h[:,-1, :]
       \rightarrow sequence
              y = self.linear2(h)
                                               # make a prediction
              if stationary:
                  y = y + X[:,-1,-1:]
                                               # make the output stationary
              return y.view(-1)
                                               # like always
```

6.0.1 LSTM Object

```
[14]: model = lstm(df.shape[1]).to(device)
```

7 LSTM training

```
[15]: stime = time.time()
      show_every = 100
      reset_scheduler_after_n_epochs = 100
      if hardcode:
          train for = 2001
          learningrate = 1e-3
      #visualization parameters
      alijst = []; blijst = []; lrlijst = [];
      #Training parameters:
      optimizer = optim.AdamW(model.parameters(), lr=learningrate)
      scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=learningrate,_
      →steps_per_epoch=len(train_dl), epochs=train_for)
      criterion = nn.SmoothL1Loss()
      ttime = time.time()
      #Learning loop:
      for i in (range(train_for)):
          nnn
          Training
          11 11 11
          model.train()
          for X, y in train_dl:
              X, y = X.to(device), y.to(device)
              #train LSTM and reshape output:
              optimizer.zero_grad()
              output = model(X)
              #bereken de loss over de output en update de parameters:
              loss = criterion(output, y)
              lossT = mean_squared_error(det(output), det(y))
              loss.backward()
              optimizer.step()
              scheduler.step()
          11 11 11
          Evaluation
```

```
11 11 11
  model.eval()
   optimizer.zero_grad()
  dataV = valid_X_t;
  targetV = valid_y_t.view(-1);
  outputV = model(dataV)
   #bereken de loss over de output en update de parameters:
  lossV = mean_squared_error(det(outputV), det(targetV))
  alijst.append(lossT)
  blijst.append(lossV)
  lrlijst.append(scheduler.get_last_lr())
   #Plotting the prediction on the validation set and plotting the learningrate
   if i%show_every == 0:
       vtime = time.time()
       fig = plt.figure(figsize=(13,5))
       spec = gridspec.GridSpec(ncols=2, nrows=1,width_ratios=[4, 1])
       display(HTML(f'<h3 style="text-align:center"> {i} </h3>'))
       fig.suptitle(f"Consumption LSTM in {round(vtime-ttime, 2)} seconds")
       ax0 = fig.add subplot(spec[0],title=f'Epoch: {i} of {train for} | | |
→LSTMVersion: {version}\nPrediction LSTM model on the Validation set',
                             xlabel='datapoint [hr]', ylabel='Energy_
\hookrightarrowConsumption [kWh]', xlim=[1000,1072])
       ax0.plot(det(outputV), alpha=0.5, label="Prediction")
       ax0.plot(det(targetV), alpha=0.5, label = "Target")
       ax0.legend()
       ax1 = fig.add_subplot(spec[1], title=f'Learningrate scheduler\n',
                             xlabel= 'Epoch', ylabel='Rate' )
       ax1.plot([i for i in range(0,len(lrlijst))], lrlijst, alpha=0.5,
→label='learning rate', c='r')
       ax1.grid()
       ax1.legend() #loc=(1.01, 0.5))
       plt.tight_layout()
       plt.show()
       ttime = time.time()
   if resetting:
       if i % reset_scheduler_after_n_epochs == 0:
```


<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Consumption LSTM in 164.5 seconds

<IPython.core.display.HTML object>

Consumption LSTM in 165.41 seconds

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Consumption LSTM in 158.48 seconds

<IPython.core.display.HTML object>

Consumption LSTM in 155.59 seconds

<IPython.core.display.HTML object>

Consumption LSTM in 160.69 seconds

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Consumption LSTM in 167.67 seconds

<IPython.core.display.HTML object>

Consumption LSTM in 167.09 seconds

<IPython.core.display.HTML object>

Consumption LSTM in 166.09 seconds


```
[16]: print(f"Training Time for {train_for} epochs: {etime-stime}seconds")
```

Training Time for 1501 epochs: 2456.7592170238495seconds

8 Visualizing the results

```
[17]: model.eval()

//matplotlib inline
plt.plot([i for i in range(0,len(alijst))],alijst,label="Trainset")
plt.plot([i for i in range(0,len(blijst))],blijst, label="Validationset")

plt.title(f'{str(criterion)[:-2]} of house 28')
plt.xlabel("Epochs")
plt.ylabel(f"{str(criterion)[:-2]}") # Lossfunction
plt.legend()
plt.grid()
plt.show()
```



```
[18]: predictedvalue = det(outputV)
      targetvalue =det(targetV)
      if scaling:
          predictedvalue = scaler_y.inverse_transform(det(outputV))
          targetvalue = scaler_y.inverse_transform(det(targetV))
      plt.plot(predictedvalue, '.-', alpha=0.5, label="Prediction")
      plt.plot(targetvalue, '.-', alpha=0.5, label = "Target")
      plt.tight_layout()
      plt.title(f'LSTMVersion: {version} || Scaling: {"ON" if scaling else "OFF"} ||__
      →After {train_for} Epochs || LR: {learningrate}\n\nValidation Set Target and__
      →Prediction')
      plt.xlim([600, 672])
      #plt.ylim([0,2])
      plt.legend()
      plt.xlabel("datapoint [hr]")
      plt.ylabel("Energy [kWh]")
      plt.show()
```

LSTMVersion: 13 || Scaling: ON || After 1501 Epochs || LR: 0.001

Area under prediction: 1150.25244140625 Area under Target: 1196.030029296875 Difference: -45.777587890625

Difference percentage: -3.83%

```
[19]: y = det(valid_y_t)
yhat = det(model(valid_X_t))

r2 = round(r2_score(yhat, y),5)
lossV = round(mean_squared_error(yhat, y),5)

plt.scatter(y, yhat)
plt.plot(plt.xlim(), plt.xlim(), ls="--", c='r', label="$y$=$\hat{y}$")
```

R2: -0.33385 || MSE: 1.0618000030517578 || After 1501 Epochs || LR: 0.001 Stationary: OFF || Scaling: ON || LSTMVersion: 13 Criterion: SmoothL1Loss()


```
[20]: | %%javascript | Jupyter.notebook.session.delete()
```

<IPython.core.display.Javascript object>