Finite element method - weak solutions

Definition $u \in H_{\Xi}^{l}(a, b)$ such that

(6)
$$\forall v \in H_0(a_1b)$$
 $A(u_1v) = \langle f, v \rangle$

is called a weak solution of the boundary-value problem

(7)
$$\begin{cases} -\frac{d}{dt} \left[p(t) \frac{du}{dt} \right] + r(t)u(t) = f(t) \\ u(a) = A, \quad u(b) = B \end{cases}$$

and (6) is the weak formulation of problem (7).

Theorem on week solutions

Suppose $u \in H^2(a_1b) \cap H_E^1$ is a solution of problem (7). Then, $\forall v \in H_0^1(a_1b) \quad A(u_1v) = \langle f_1 v \rangle$

(that is, u is a weak solution of (7)).

Proof. Let $u \in H^2(a_1b) \cap H^1_E$ be a solution of (7). Then the differential equation

$$-\frac{d}{dt}\left[p(t)\frac{du}{dt}\right] + \alpha(t)u(t) = f(t)$$

is satisfied almost everywhere in (a,b). Let vEH (a,b) be arbitrary. Then, we multiply both sides of the differential equation by v(t) and integrate from a to b

by
$$a(t)$$
 and $a(t)$ and $a(t)$ and $a(t)$ by $a(t)$ and $a(t)$ are integralion by parts

 $a(t) = 0$ because $a(t) = 0$ because $a(t) = 0$ because $a(t) = 0$

So,
$$\int_{a}^{b} p(t) \frac{du}{dt} \frac{dv}{dt} dt + \int_{a}^{b} r(t)u(t)v(t)dt = \int_{a}^{b} f(t)v(t)dt$$

$$= A(u,v) = \langle f,v \rangle$$

Therefore,

$$\forall v \in H_o(a_1b)$$
 $\mathcal{A}(u,v) = \langle f, v \rangle$

which finishes the prof of the theorem.

Remark The opposite statement is not true, that is, it is not true fund if n is a weak solution of problem (7) then it is a solution of (7).

Conclusion: by the theorem on equivalency of Rayleigh-Ritz and Galerkin methods and by the definition of week solutions, we conclude that

 $NGH'_{E}(a_{1}b)$ is a weak solution of (7) $\angle = 7 \mathcal{F}(u) = \min \mathcal{F}(w)$ $WGH'_{E}(a_{1}b)$