Orders

Alon Gurny

February 18, 2025

1 Properties

Definition 1. A property **P** of linear orders is a class of linear orders which is closed under isomorphism.

Definition 2. A property **P** of linear orders is monotone if for every linear order $L, L \in \mathbf{P}$ implies that every suborder of L is in **P**.

Definition 3. A property **P** of linear orders is symmetric if for every linear order $L, L \in \mathbf{P}$ iff $L^R \in \mathbf{P}$.

Definition 4. A property **P** of linear orders is an additive property if for every linear orders L_1 and L_2 , $L_1 + L_2 \in \mathbf{P}$ iff $L_1, L_2 \in \mathbf{P}$.

Definition 5. A property **P** of linear orders is a star property if for every family \mathcal{F} of linear orders in **P** such that $\bigcap \mathcal{F} \neq \emptyset$, $\bigcup \mathcal{F} \in \mathbf{P}$.

Definition 6. Let **P** be a property of linear orders.

We define **bounded** $-\mathbf{P}$ to be the class of linear orders L such that for every $x, y \in L$, the bounded subinterval [x, y] is in \mathbf{P} .

Definition 7. A property **P** of linear orders is almost anti-symmetric if for every linear order $L, L \in \mathbf{P}$ and $L^R \in \mathbf{P}$ imply that L is finite.

Definition 8. A property **P** of linear orders is good if it is monotone, additive and contains at least one infinite linear order.

Lemma 1. Let \mathbf{P} be an additive property of linear orders. Then the property **bounded** $-\mathbf{P}$ is has the star property.

2 Hausdorff Rank

Definition 9. Let \mathbf{Q} be a good property of linear orders. We define a property \mathbf{Q}^{α} for every ordinal α as follows:

• \mathbf{Q}^0 is the class of finite linear orders.

• For $\alpha > 0$, \mathbf{Q}^{α} is the class of linear orders L such that $L = \sum_{i \in I} L_i$ for some $I \in \mathbf{Q}$ where for all $i \in I$, $L_i \in \mathbf{Q}^{\beta_i}$ for some $\beta_i < \alpha$

We define $\mathbf{hrank}_{\mathbf{Q}}(L) = \alpha$ iff α is the least ordinal such that $L \in \mathbf{Q}^{\alpha}$. This is a partial map from linear orders to ordinals.

Observations 1. We claim the following without proof:

- $\bullet \mathbf{Q}^1 = \mathbf{Q}.$
- For all α , \mathbf{Q}^{α} is a good property.
- $\mathbf{Q}^{\alpha} \subsetneq \mathbf{Q}^{\beta}$ iff $\alpha < \beta$.

Notations 1. Let \mathcal{H}_{α} be the class of linear orders of Hausdorff rank $< \alpha$ and $\mathcal{H}_{=\alpha}$ be the class of linear orders of Hausdorff rank $= \alpha$.

Let \mathcal{B}_{α} be the class of linear orders of Hausdorff rank $< \alpha$ on bounded subintervals.

```
Let Q_{\alpha} = \{L : 1 + L \in \mathcal{B}_{\alpha}\}.

Let \mathcal{R}_{\alpha} = \{L : L + 1 \in \mathcal{B}_{\alpha}\}.

Clearly, \mathcal{H}_{\alpha}, Q_{\alpha}, \mathcal{R}_{\alpha} \subseteq \mathcal{B}_{\alpha}.

Clearly, \mathcal{H}_{\alpha+1} = \{L : \mathbf{hrank}_{\mathbf{Q}}(L) \leq \alpha\}.
```

Claim 1. The following are equal:

- 1. \mathcal{H}_{α}
- 2. $\{L: 1+L+1 \in \mathcal{B}_{\alpha}\}.$
- 3. $Q_{\alpha} \cap \mathcal{R}_{\alpha}$

Proof. The equivalence of 1 and 2 is clear, and obviously 2 implies 3.

The other direction (3 implies 2) follows from the star property of \mathcal{B}_{α} .

Lemma 2. Let L be a linear order. Then there exists a largest subinterval $M \subseteq L$ such that $x \in M$ and $M \in \mathcal{B}_{\alpha}$.

Definition 10. Let L be a linear order. Let $x \in L$. We define $M_{\alpha}[x]$ to be the largest subinterval $M \subseteq L$ such that $x \in M$ and $M \in \mathcal{B}_{\alpha}$.

We define \sim_{α} to be the equivalence relation on L such that $x \sim_{\alpha} y$ iff $M_{\alpha}[x] = M_{\alpha}[y]$.

Lemma 3. Let L be a linear order. Let $P, Q, R \subseteq L$ be relations, such that:

- P represents \sim_{α} on L.
- Q is such that $x \in Q$ iff $M_{\alpha}[x] \in \mathcal{Q}_{\alpha}$.
- R is such that $x \in R$ iff $M_{\alpha}[x] \in \mathcal{R}_{\alpha}$.

Then for some linear order I there exists a decomposition $L = \sum_{i \in I} L_i$ such that $L_i \in \mathcal{B}_{\alpha}$ for all $i \in I$, L_i is monochromatic with respect to P, Q and R.

Furthermore, let τ_i be the n-type of L_i, p_i, q_i, r_i in $\mathbf{MSO}[p, q, r]$, where $p_i = 1_{L_i \subseteq P}, \ q_i = 1_{L_i \subseteq Q}$ and $r_i = 1_{L_i \subseteq R}$. Then the following hold

- if i has a successor, $p(\tau_i) \neq p(\tau_{i+1})$
- if i has a successor, either $r(\tau_i) = 0$ or $q(\tau_{i+1}) = 0$

Proof. Take $I = L/\sim_{\alpha}$.

Then $L = \sum_{i \in I} L_i$ where L_i is the \sim_{α} -equivalence class of i.

Then L_i is monochromatic with respect to P, Q and R.

The only thing left to prove is the last two conditions. The first follows from the fact that P represents \sim_{α} .

The second follows because if it were not the case, then L_i and L_{i+1} would be the same \sim_{α} -equivalence class.

Lemma 4. Let I be a linear order. Let $n \in \mathbb{N}$. Let p, q, r be boolean variables. Let τ_i be an assignment of satisfiable n-types in $\mathbf{MSO}[p, q, r]$ for all $i \in I$. Assume that

- if i has a successor, $p(\tau_i) \neq p(\tau_{i+1})$
- if i has a successor, either $r(\tau_i) = 0$ or $q(\tau_{i+1}) = 0$

Then there exists a linear order L and $P, Q, R \subseteq L$ such that:

- P represents \sim_{α} on L.
- Q is such that $x \in Q$ iff $M_{\alpha}[x] \in \mathcal{Q}_{\alpha}$.
- R is such that $x \in R$ iff $M_{\alpha}[x] \in \mathcal{R}_{\alpha}$.

such that for all $i \in I$, L_i is a \sim_{α} -equivalence class of L, and is thus monochromatic with respect to P, Q and R.

Furthermore, the n-type of L_i, p_i, q_i, r_i in $\mathbf{MSO}[p, q, r]$ is τ_i , where $p_i = 1_{L_i \subseteq P}, \ q_i = 1_{L_i \subseteq Q}$ and $r_i = 1_{L_i \subseteq R}$,

Proof. Since τ_i is satisfiable, we can take L_i to be a linear order of *n*-type τ_i such that:

- If $q(\tau_i) = r(\tau_i) = 1$, then $L_i \in \mathcal{Q}_{\alpha} \cap \mathcal{R}_{\alpha}$.
- If $q(\tau_i) = 1$ and $r(\tau_i) = 0$, then $L_i \in \mathcal{Q}_{\alpha} \mathcal{R}_{\alpha}$.
- If $q(\tau_i) = 0$ and $r(\tau_i) = 1$, then $L_i \in \mathcal{R}_{\alpha} \mathcal{Q}_{\alpha}$.
- If $q(\tau_i) = r(\tau_i) = 0$, then $L_i \in \mathcal{B}_{\alpha} (\mathcal{Q}_{\alpha} \cup \mathcal{R}_{\alpha})$.

Let $L = \sum_{i \in I} L_i$.

By definition each L_i is in \mathcal{B}_{α} . We need to prove that each L_i is a largest \mathcal{B}_{α} -subinterval in L.

On the contrary, suppose that there exist $i' \neq i$ such that $[L_i, L_{i'}] \in \mathcal{B}_{\alpha}$. WLOG, $L_i < L_{i'}$.

Since I is scattered, take some $i \le a < b \le i'$ such that there is no element between a and b in I.

Then $L_a \in \mathcal{R}_{\alpha}$ and $L_b \in \mathcal{Q}_{\alpha}$, in contradiction.

Lemma 5. Let L be a countable linear order.

Let $J \subseteq L$ be some subinterval in \mathcal{B}_{α} .

Then $\mathbf{hrank}_{\mathbf{Q}}(J) \leq \alpha$.

Furthermore, $\operatorname{hrank}_{\mathbf{Q}}(J) < \alpha \text{ iff } J \in \mathcal{Q}_{<\alpha} \cap \mathcal{R}_{<\alpha}.$

Proof. Let $\{x_i\}_{i\in I}\subseteq J$ be a bidirectional, cofinal, weakly monotone I-sequence in J, i.e, $x_i\leq x_j$ if $i\leq j$ for $I\subseteq \mathbb{Z}$.

Write $J = \sum_{i \in I} [x_i, x_{i+1}]$. Then every $[x_i, x_{i+1}]$ is of Hausdorff rank $< \alpha$.

Thus, $\mathbf{hrank}_{\mathbf{Q}}(J) \leq \alpha$.

Suppose $\mathbf{hrank}_{\mathbf{Q}}(J) < \alpha$, then obviously $J \in \mathcal{Q}_{<\alpha} \cap \mathcal{R}_{<\alpha}$.

Conversely, suppose $J \in \mathcal{Q}_{<\alpha} \cap \mathcal{R}_{<\alpha}$.

Then $1+J+1 \in \mathcal{B}_{\alpha}$. But it is a bounded interval, so $\mathbf{hrank}_{\mathbf{Q}}(1+J+1) < \alpha$ and thus $\mathbf{hrank}_{\mathbf{Q}}(J) < \alpha$.

Lemma 6. Let $J \subseteq L$ be a subinterval.

Then $\mathbf{hrank}_{\mathbf{Q}}(J) \leq \alpha$ iff J is a finite sum of \mathcal{B}_{α} -subintervals.

Note: this lemma does not work if we take a general **Q** property.

Proof. From the previous lemma, it is clear that if J is a finite sum of \mathcal{B}_{α} -subintervals, then $\mathbf{hrank}_{\mathbf{Q}}(J) \leq \alpha$, since the rank bound is preserved under finite sums.

Conversely, suppose $\operatorname{hrank}_{\mathbf{Q}}(J) \leq \alpha$.

If $J = \sum_{i \in \mathbb{Z}} J_i$ for some J_i of Hausdorff rank $< \alpha$, take $x, y \in J$. Then let $x \in J_{i_1}$ and $y \in J_{i_2}$.

Then $[x,y] \subseteq \sum_{i \in [i_1,i_2]} J_i$. But the last sum is of rank $< \alpha$ and thus [x,y] is of rank $< \alpha$. That is, $J \in \mathcal{B}_{\alpha}$.

Since every subinterval of rank $\leq \alpha$ is a finite sum of \mathbb{Z} -sums of intervals of rank $< \alpha$, we are done.

Corollary 1. Let $J \subseteq L$ be a subinterval.

Then $\operatorname{hrank}_{\mathbf{Q}}(J) \leq \alpha$ iff J is a finite sum of largest \mathcal{B}_{α} -subintervals in L

Lemma 7. There exists a global computable function $f : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, $\mathbf{type}_n \left[\mathcal{H}_{f(n)+1} \right] = \mathbf{type}_n \left[\mathcal{H}_{f(n)} \right]$.

Equivalently, every linear order of finite rank is n-equivalent to some linear order of rank $\leq f(n)$.

Proof. Since there exist only a finite number of n-types, and the ω -sequence $\{\mathbf{type}_n [\mathcal{H}_k]\}_{k\in\omega}$ is monotone, it must stabilize at some point.

This point is computable as a function of n, because $\mathbf{type}_n[\mathcal{H}_k]$ is computable for every finite k.

Lemma 8. There exist global computable functions $a, b : \mathbb{N} \to \mathbb{N}$ such that for all $n, c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 \geq a(n)$ and $c_1 \equiv c_2 \mod b(n)$,

$$\mathbf{type}_{n}\left[\mathcal{H}_{c_{1}}
ight]=\mathbf{type}_{n}\left[\mathcal{H}_{c_{2}}
ight]$$

Equivalently, the sequence $\{\mathbf{type}_n [\mathcal{H}_k]\}_{k\in\omega}$ is ultimately periodic for all $n\in\mathbb{N}$. Furthermore, the starting point and the period itself can be computed as a function of n.

Proof. Let $n \in \mathbb{N}$.

Since there exist only a finite number of possible sets of n-types, there exist (and can be computed) some a(n) > f(n), a(n) + b(n) such that

$$\mathbf{type}_n\left[\mathcal{H}_{a(n)}
ight] = \mathbf{type}_n\left[\mathcal{H}_{a(n)+b(n)}
ight]$$

We shall prove by induction that for all $c \ge a(n) + b(n)$,

$$\mathbf{type}_n \left[\mathcal{H}_c \right] = \mathbf{type}_n \left[\mathcal{H}_{c+b(n)} \right]$$

This will complete the proof.

The base case c = a(n) has been proven in the beginning.

Suppose the induction hypothesis holds for c.

Let L be of rank c+1.

Write $L = \sum_{i \in I} L_i$ where $\mathbf{hrank_Q}(L_i) < c + 1$, and $\mathbf{hrank_Q}(L_i) = c$ infinitely many times.

By the induction hypothesis, if $\mathbf{hrank}_{\mathbf{Q}}(L_i) = c$, we can find $N_i \equiv_n L_i$ with $\mathbf{hrank}_{\mathbf{Q}}(N_i) = c + b(n)$. Setting $N_i := L_i$ for all other i, we conclude that $N := \sum_{i \in I} N_i$ is n-equivalent to L.

However, clearly $\mathbf{hrank}_{\mathbf{Q}}(N) = c + b(n) + 1$. So overall,

$$\mathbf{type}_{n}\left[\mathcal{H}_{c+1}\right]\subseteq\mathbf{type}_{n}\left[\mathcal{H}_{c+b(n)+1}\right]$$

Conversely, suppose L is of rank c + b(n) + 1. Write $L = \sum_{i \in I} L_i$ where $\mathbf{hrank}_{\mathbf{Q}}(L_i) < c + b(n) + 1$, and $\mathbf{hrank}_{\mathbf{Q}}(L_i) = c + b(n)$ infinitely many times.

By the induction hypothesis, we can find for all i such that $\mathbf{hrank_Q}(L_i) = c + b(n)$ some $N_i \equiv_n L_i$ with $\mathbf{hrank_Q}(N_i) = c$. Furthermore, since $c \geq a(n) > f(n)$, we can find $N_i \equiv_n L_i$ with $\mathbf{hrank_Q}(N_i) \leq f(n) < c$ for all other i.

We conclude that $N := \sum_{i \in I} N_i$ is n-equivalent to L. However, clearly $\mathbf{hrank}_{\mathbf{Q}}(N) = c + 1$. So overall,

$$\mathbf{type}_n\left[\mathcal{H}_{c+b(n)+1}\right]\subseteq\mathbf{type}_n\left[\mathcal{H}_{c+1}\right]$$

So we have proven the induction step, and the lemma follows. \Box

Lemma 9. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

Then,

$$\mathbf{type}_{n}\left[\mathcal{H}_{lpha}
ight] = igcup_{c < b(n)} \mathbf{type}_{n}\left[\mathcal{H}_{c + b(n)}
ight]$$

In particular, $\mathbf{type}_n[\mathcal{H}_{\alpha}]$ can be computed, and is independent of the choice $\alpha \geq \omega$.

Proof. TBC.
$$\Box$$

Proof. By induction on $\alpha \geq f(n)$ suppose that for all $f(n) \leq \beta < \alpha$,

$$\mathbf{type}_n\left[\mathcal{H}_{\beta+1}\right] = \mathbf{type}_n\left[\mathcal{H}_{f(n)}\right]$$

Let L be a scattered linear order of rank α .

Then $L = \sum_{i \in I} L_i$ where $\mathbf{hrank}_{\mathbf{Q}}(L_i) < \alpha$. By the induction hypothesis, we can find $N_i \equiv_n L_i$ with $\mathbf{hrank}_{\mathbf{Q}}(N_i) < f(n)$.

Let $N = \sum_{i \in I} N_i$. Then $L \equiv_n N$.

Additionally, $\operatorname{\mathbf{hrank}}_{\mathbf{Q}}(N) < f(n) + 1$ by the rank definition. However, that means that we can find $N' \equiv_n N$ with $\operatorname{\mathbf{hrank}}_{\mathbf{Q}}(N') \leq f(n)$ by the definition of f(n).

Corollary 2. The following sequences stabilize at f(n):

- $\mathbf{type}_n\left[\mathcal{H}_{\alpha}\right]$
- $\mathbf{type}_n\left[\mathcal{B}_{\alpha}\right]$
- type_n $[Q_{\alpha}]$
- type_n $[\mathcal{R}_{\alpha}]$
- $\mathbf{type}_n \left[\mathcal{Q}_{\alpha} \mathcal{R}_{\alpha} \right]$
- type_n $[\mathcal{R}_{\alpha} \mathcal{Q}_{\alpha}]$
- type_n $[\mathcal{B}_{\alpha} (\mathcal{Q}_{\alpha} \cup \mathcal{R}_{\alpha})]$

Proof. Let A_k be the set of all satisfiable n-types of rank < k. Then A_{k+1} is the closure of A_k under finite sums of $\subseteq \mathbb{Z}$ -sums.

The sequence $A_0\subseteq A_1\subseteq\ldots$ stabilizes at some point. Suppose $A_{f(n)}=A_{f(n)+1}.$

Suppose L has rank $\beta \geq f(n)$.

Write $L = \sum_{i \in I} L_i$ where $\mathbf{hrank}_{\mathbf{Q}}(L_i) < \beta$, and I is a finite sum of $\subseteq \mathbb{Z}$.

If β is a limit ordinal, then there must be a bi-cofinal sequence i_k such that $\mathbf{hrank}_{\mathbf{Q}}(L_{i_k}) \to \beta$.

If β is a successor ordinal, then $\mathbf{hrank}_{\mathbf{Q}}(L_i) = \beta - 1$ must hold infinitely many times.

Now we proceed by induction on $\alpha \geq f(n)$.

1. If $C = \mathcal{H}_{\alpha}$, we take $L' \in A_{f(n)}$, which necessarily has rank $< f(n) \le \alpha$.

- 2. If $C = Q_{\alpha} \mathcal{R}_{\alpha}$, we take an ω -sequence α_k such that $\alpha_k \to \alpha$ (if α is a limit ordinal) or $\alpha_k = \alpha 1$ (if α is a successor ordinal).
 - Then we take $L' = \sum_{i \in \omega} L'_i$ where $\mathbf{hrank_Q}\left(L'_{i_k}\right) = \alpha_k$ (and $\mathbf{hrank_Q}\left(L'_i\right) = \mathbf{hrank_Q}\left(L_i\right)$ for every other i). Then $L' \in \mathcal{Q}_{\alpha} \mathcal{R}_{\alpha}$, but also $L' \equiv_n L$.

- 3. This is just the same with $-\omega$ instead of ω .
- 4. This is just the same with \mathbb{Z} instead of $-\omega$.

Corollary 3. Over countable linear orders with interpretations of P, Q and R as above, the properties $\mathbf{hrank}_{\mathbf{Q}}(\cdot) \leq \alpha$, $\mathbf{hrank}_{\mathbf{Q}}(\cdot) < \alpha$ and $\mathbf{hrank}_{\mathbf{Q}}(\cdot) = \alpha$ over subintervals are all expressible in $\mathbf{MSO}[P, Q, R]$.

Proof. For $\mathbf{hrank}_{\mathbf{Q}}(\cdot) \leq \alpha$ and $\mathbf{hrank}_{\mathbf{Q}}(\cdot) < \alpha$, we can use the previous lemmas.

For $\mathbf{hrank}_{\mathbf{Q}}(\cdot) = \alpha$, we can use the previous two.

Theorem 1. There is a an algorithm solving satisfiability for MSO[P, Q, R] over countable linear orders, given an oracle which solves the satisfiability problem for MSO over countable linear orders.

Proof. By the decomposition theorem, there exists a translation, that given an $\mathbf{MSO}[P,Q,R]$ formula φ of quantifier-depth n. outputs an $\mathbf{MSO}[\{X_{\tau}\}_{\tau}]$ formula ψ .

Let P_L, Q_L, R_L be the interpretations of P, Q, R on L. Then

$$L,P:=P_L,Q:=Q_L,R:=R_L\models\varphi\iff I,\{X_\tau:=I_\tau\}_\tau\models\psi$$

Where $I_{\tau} = \{i \in I : L_i \models \tau\}$ for every *n*-type τ .

Let T be the set of n-types in $\mathbf{MSO}[p,q,r]$ which satisfy $q(\tau) = 1 \iff \tau \in \mathcal{Q}_{\alpha}$ and $r(\tau) = 1 \iff \tau \in \mathcal{R}_{\alpha}$.

Let
$$S = \{(\tau_1, \tau_2) : p(\tau_1) \neq p(\tau_2) \land (r(\tau_1) = 0 \lor q(\tau_2) = 0)\}.$$

Then T and S can be calculated using the oracle.

Then ψ is an $\mathbf{MSO}[T, S]$ formula.

Then we define an MSO[p, q, r] formula ψ' as follows:

 ψ' claims that there exists a partition (with possible empty sets) $\{Y_{\tau}\}_{\tau}$ of I such that

- Every $i \in I$ is in some Y_{τ} for $\tau \in T$.
- If i' = i + 1 in I, then for some $(\tau_1, \tau_2) \in S$, $i \in Y_{\tau_1}$ and $i' \in Y_{\tau_2}$.

Now we claim that φ is satisfiable in some linear order, iff ψ' is satisfiable in some linear order.

Suppose φ is satisfiable in some linear order L.

Take a decomposition $L = \sum_{i \in I} L_i$ as in lemma 2.

Then ψ holds over the assignment $X_{\tau} := I_{\tau}$. But by lemma 2, this assignment satisfies the condition required for ψ' to hold. Then ψ' holds over I.

Conversely, suppose ψ' holds in I.

Let $X_{\tau} := Z_{\tau}$ be the assignment that is guaranteed by ψ' .

Let tau_i be the unique τ such that $i \in \mathbb{Z}_{\tau}$.

Then the conditions for lemma 3 are guaranteed.

Thus, take L as in lemma 3. Then ψ holds over I when we set $X_i := Z_{\tau}$. But $Z_{\tau} = I_{\tau}$ for all τ , so φ holds over L.