I. Fonction $x \mapsto |x|$

<u>Définition 1</u>

Pour tout $x \in \mathbb{R}$, on définit la fonction valeur absolue $x \mapsto |x|$ par :

$$|x| = \begin{cases} x & \text{si} \quad x \geqslant 0 \\ -x & \text{si} \quad x < 0 \end{cases}$$

La définition nous permet de déduire immédiatement le résultat suivant :

Propriété 1

Pour tout $x \in \mathbb{R}^*$, la fonction valeur absolue est strictement positive et |0| = 0. Son minimum (la plus petite des images) est donc égal à 0.

D'après la définition, on constate que la fonction valeur absolue est une fonction affine par morceaux. En effet, pour x < 0, elle est égale à la fonction affine $x \mapsto -x$ et elle est donc décroissante. Pour $x \geqslant 0$, elle est égale à la fonction affine $x \mapsto x$ et elle est donc croissante. On en déduit alors sa représentation graphique ainsi que ses variations.

Propriété 2

Sur l'intervalle $]-\infty$; 0], la fonction valeur absolue est strictement décroissante. Sur l'intervalle $[0; +\infty[$, la fonction valeur absolue est strictement croissante.

x	$-\infty$	0	+∞
Variations de x		0	

<u> Remarque</u>

La fonction valeur absolue étant toujours positive ou nulle, sa représentation graphique est au-dessus de l'axe des abscisses.

En enfin, toujours grâce aux fonctions affines, on a le résultat graphique suivant :

Propriété 3

La représentation graphique de la fonction valeur absolue est symétrique par rapport à l'axe des ordonnées.

II. Somme et fonctions composées

On se place dans un repère orthonormé nommé (O,I,J). On considère une fonction $\mathfrak u$ définie sur $\mathscr D_{\mathfrak u}$ dont voici la représentation graphique $\mathscr C_{\mathfrak u}$ sur un intervalle A.

A. Fonction $t \mapsto u(t) + k$

Propriété 4 (admise)

La représentation graphique de la fonction $t\mapsto u(t)+k$ est l'image de \mathscr{C}_u par la translation de vecteur $k\times\overrightarrow{OI}$.

Propriété 5 (admise)

Les fonctions $t \mapsto u(t)$ et $t \mapsto u(t) + k$ ont le même ensemble de définition.

B. Fonction $t \mapsto u(t + \lambda)$

Propriété 6 (admise)

La représentation graphique de la fonction $t\mapsto u(t+\lambda)$ est l'image de \mathscr{C}_u par la translation de vecteur $-\lambda\times\overrightarrow{Ol}$.

λŌΪ $\lambda < 0$

)<u>Remarque</u>

L'intervalle de définition de la fonction $\mathfrak u$ subit également une translation. Il faut donc faire attention à cela.

La fonction inverse $f: x \mapsto \frac{1}{x}$ est défini sur $\mathbb{R}^* = \mathbb{R} \setminus \{0\} =]-\infty; 0[\cup]0; +\infty[$. Exemple •

On pose maintenant la fonction g définie sur \mathscr{D}_g par $g(x)=f(x+\alpha)=\dfrac{1}{x+\alpha}$ où α est un nombre réel. La représentation graphique de g sera l'image de la représentation graphique de la fonction f par le vecteur $-\alpha\overrightarrow{OI}$. On aura donc : $\mathscr{D}_g=\mathbb{R}\setminus\{-\alpha\}=]-\infty$; $-\alpha[\cup]-\alpha$; $+\infty[$.

C. Fonction $t \mapsto |\mathfrak{u}(t)|$

Propriété 7 (admise)

Deux cas se présentent :

- 1°) Sur la réunion de tous les intervalles où la fonction u est positive, alors \mathscr{C}_u est confondue avec la courbe de |u|.
- 2°) Sinon, la courbe représentative de la fonction $|\mathfrak{u}|$ est l'image de $\mathscr{C}_\mathfrak{u}$ par la symétrie d'axe (OI).

Propriété 8 (admise)

Les fonctions $t\mapsto u(t)$ et $t\mapsto |u(t)|$ ont le même domaine de définition.