Métodos Estatísticos Básicos

Aula 6 - Întrodução à probabilidade

Prof. Regis Augusto Ely

Departamento de Economia Universidade Federal de Pelotas (UFPel)

Maio de 2014

Experimento

- Experimento aleatório (E): é um experimento que pode ser repetido indefinidamente sob condições essencialmente inalteradas.
- Embora não possamos descrever um resultado particular do experimento, podemos descrever o conjunto de todos os possíveis resultados e as probabilidades associadas a eles. Isso porque repetindo o experimento um grande número de vezes, uma regularidade surgirá.
- A descrição de um experimento envolve um procedimento a ser realizado e uma observação a ser constatada.
 - Ex 1: Jogue um dado e observe o número mostrado na face de cima.
 - Ex 2: Jogue uma moeda 4 vezes e observe o número de caras obtido.
 - Ex 3: Receba duas cartas de um baralho e observe quantos ases foram obtidos.
 - Ex 4: Um míssil é lançado. Em momentos específicos $t_1t_2,...,t_n$, a altura do míssil acima do solo é registrada.

Espaço Amostral

- Espaço amostral (Ω): é o conjunto de todos os resultados possíveis de um experimento E.
- Note a semelhança do espaço amostral com o conjunto fundamental
 U. Um espaço amostral está sempre associado a um experimento e este conjunto nem sempre é composto de números.

```
Ex 1: \Omega = \{1, 2, 3, 4, 5, 6\}.

Ex 2: \Omega = \{0, 1, 2, 3, 4\}.

Ex 3: \Omega = \{0, 1, 2\}.

Ex 4: \Omega = \{h_1, h_2, ..., h_n | h_i \ge 0, i = 1, 2, ..., n\}.
```

Ex 5: Jogue uma moeda 2 vezes e obtenha a sequência de caras e coroas obtidas. $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}.$

• O número de elementos de um espaço amostral pode ser finito, infinito enumerável ou infinito não-enumerável. Todo resultado possível de um experimento corresponde a um, e somente um ponto $w \in \Omega$, sendo que resultados distintos correspondem a pontos distintos.

Eventos

- **Evento**: um evento $A \subset \Omega$ é um conjunto de resultados possíveis do experimento E, mas não necessariamente todos.
 - Ex 1: Um número par ocorre, $A = \{2, 4, 6\}$.
 - Ex 2: Duas caras ocorrem, $A = \{2\}$.
 - Ex 3: Obtemos apenas um Ás, $A = \{1\}$.
 - Ex 5: Obtemos pelo menos uma cara, $A = \{(H, H), (H, T), (T, H)\}.$
- Qualquer um desses eventos é um subconjunto de Ω . O evento Ω é chamado *evento certo*; o evento \emptyset é chamado *evento impossível*, e o evento $\{\omega\}$ é dito *elementar*.

Operações com eventos

- Eventos compostos: A ∪ B é o evento "A ou B", A ∩ B é o evento "A e B" e Ā é o evento "não A".
- Se A₁, ..., A_n for qualquer coleção finita de eventos, então ∪_{i=1}ⁿA_i será o evento que ocorrerá se, e somente se, ao menos um dos eventos A_iocorrer. Já ∩_{i=1}ⁿA_i será o evento que ocorrerá se, e somente se, todos os eventos A_i ocorrerem.
- Os mesmos resultados se estendem para coleções infinitas enumeráveis $A_1, A_2, ..., A_n, ...$, sendo $\bigcup_{i=1}^{\infty} A_i$ e $\bigcap_{i=1}^{\infty} A_i$ os respectivos conjuntos.
- Dependência: A ⊂ B significa que a ocorrência do evento A implica a ocorrência do evento B.
- Eventos mutuamente excludentes: A∩B = Ø significa que A e
 B são eventos que nunca ocorrem juntos, ou disjuntos.

Características dos eventos

- **Produto cartesiano de eventos:** se executarmos um experimento E duas vezes, então nosso espaço amostral será $\Omega x \Omega$ e os eventos AxA. Isso pode ser estendido para n vezes.
- **Proposição**: se o espaço amostral Ω for finito, com n elementos, entao existirá exatamente 2^n subconjuntos de Ω , ou seja, eventos. Ex: lançar uma moeda e verificar o resultado. $\Omega = \{H, T\}$. Número de subconjuntos é $2^2 = 4$, sendo eles $\{\emptyset\}, \{H\}, \{T\}, \{H, T\}$.
- $\it Dica:$ para enumerar subconjuntos de um espaço amostral basta pensar em termos matemáticos quais são os subconjuntos de $\Omega.$ Não pensem em termos dos resultados do experimento.

Definição clássica de probabilidade

• A <u>definição clássica de probabilidade</u> aplica-se apenas se o espaço amostral é finito e os resultados do experimento, $\omega \in \Omega$, são igualmente verossímeis:

$$P(A) = \frac{n^{Q} \text{ de resultados favoráveis à } A}{n^{Q} \text{ de resultados possíveis}} = \frac{n^{Q} \text{ de elementos de } A}{n^{Q} \text{ de elementos de } \Omega}.$$

 Esta definição de probabilidade é aplicável apenas a um número restrito de problemas (que envolvem escolha ao acaso e resultados finitos do experimento).

Exemplo

 $E = \text{jogar um dado e observar o número de cima} \Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\};$ $A = \text{obter um número par} \Rightarrow A = \{2, 4, 6\};$

$$P(A) = \frac{3}{6} = \frac{1}{2} = 50\%.$$

Definição frequentista de probabilidade

• Repetindo n vezes um experimento E, podemos definir a frequência relativa do evento A como $f_A = \frac{n_A}{n}$. Se repetirmos muitas vezes E, de modo que $n \to \infty$, teremos a <u>definição frequentista de</u> probabilidade.

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}.$$

 Apenas podemos utilizar esta definição quando temos a possibilidade de realizar o experimento muitas vezes, sendo o resultado suscetível ao valor de n.

Probabilidade geométrica

 A <u>definição de probabilidade geométrica</u> nos diz que dois eventos tem a mesma probabilidade se, e somente se, eles têm a mesma área.

$$P(A) = rac{ ext{área de A}}{ ext{área de }\Omega}.$$

Exemplo

E =escolher um ponto ao acaso no círculo unitário;

$$\Omega = \{(x, y) \in \mathbb{R} | x^2 + y^2 \le 1\};$$

 $A=1^{\frac{1}{2}}$ coordenada do ponto escolhido é maior que a $2^{\frac{1}{2}}$;

$$A = \{(x, y) \in \Omega | x > y\};$$

$$P(A) = \frac{\pi/2}{\pi} = \frac{1}{2}$$
. (Lembre que a área de um círculo é $A = \pi \times r^2$).

 Essa probabilidade é mais utilizada com espaços amostrais infinitos não-enumeráveis.

Definição matemática de probabilidade

- A probabilidade de um evento $A \subset \Omega$ associado à E, e denotada por P(A), é um número real que satisfaz as seguintes propriedades:
- **1** $0 \le P(A) \le 1$;
- $P(\Omega) = 1;$
- Se $A \cap B = \emptyset$ (eventos mutuamente excludentes), então $P(A \cup B) = P(A) + P(B)$;
- Se $A_1, A_2, ..., A_n, ...$, forem, dois a dois, eventos mutuamente excludentes, então $P(U_{i=1}^{\infty}A_i) = P(A_1) + ... + P(A_n) + ...$
 - A propriedade 3 também vale para um número finito de uniões, $P(U_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$.
- Da propriedade 3 decorre que $P(\emptyset)=0$, pois $P(A \cup \emptyset) = P(A) + P(\emptyset) = P(A)$.
- Das propriedades 2 e 3 decorre que $P(\bar{A}) = 1 P(A)$, pois $P(A \cup \bar{A}) = P(A) + P(\bar{A}) = P(\Omega) = 1$.

Probabilidade da união de eventos

Teorema

Se A e B forem dois eventos quaisquer, não necessariamente excludentes, então:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Demonstração.

Note que $A \cup \bar{A} = \Omega$ e $A \cup B = (A \cup B) \cap (A \cup \bar{A}) = A \cup (B \cap \bar{A})$, sendo A e $(B \cap \bar{A})$ eventos excludentes, de modo que $P(A \cup B) = P(A) + P(B \cap \bar{A})$ (1). Analogamente, $B = B \cap (A \cup \bar{A}) = (B \cap A) \cup (B \cap \bar{A})$, de modo que $P(B) = P(A \cap B) + P(B \cap \bar{A})$ (2). Juntando (1) e (2), temos $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Probabilidade da união de eventos

Teorema

Se A, B e C forem 3 eventos quaisquer, então: $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$

Demonstração.

Escreva $A \cup B \cup C$ na forma $(A \cup B) \cup C$ e aplique o resultado do teorema anterior, de modo que $P((A \cup B) \cup C) = P(A \cup B) + P(C) - P((A \cup B) \cap C)$. Note que $P((A \cup B) \cap C) = P((A \cap C) \cup (B \cap C)) = P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)$, e $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Logo, $P((A \cup B) \cup C) = P(A) + P(B) - P(A \cap B) + P(C) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$. \square

• O teorema acima pode ser estendido para n eventos.

Probabilidade de subconjuntos

Teorema

Se $A \subset B$, então $P(A) \leq P(B)$.

Demonstração.

Como $A \cup B = B$, podemos decompor B em dois eventos mutuamente excludentes, $B = A \cup (B \cap \overline{A})$, de modo que $P(B) = P(A) + P(B \cap \overline{A}) \ge P(A)$.

- Note que quaisquer das definições de probabilidade vistas anteriormente devem respeitar as propriedades matemáticas que desenvolvemos.
- Quando atribuímos uma probabilidade a um evento A chamamos ele de evento aleatório.

Álgebra de eventos aleatórios

- Uma <u>álgebra de eventos</u> aleatórios, A, é a coleção (classe) de subconjuntos de Ω que possui algumas propriedades básicas:
 - 1 $\Omega \in \mathcal{A}$,
 - 2. $B \in \mathcal{A} \Rightarrow \bar{B} \in \mathcal{A}$;
 - 3. $A \in \mathcal{A}$ e $B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$.
- As seguintes propriedades decorrem de 1, 2 e 3:
 - 4 $\emptyset \in \mathcal{A}$.
 - 5. $\forall n \in \forall B_1, B_2, ...B_n \in \mathcal{A}$, temos $\bigcup_{i=1}^n B_i \in \mathcal{A}$ e $\bigcap_{i=1}^n B_i \in \mathcal{A}$.
- Dizemos que a álgebra é fechada para um número finito de aplicações das operações ∪ e ∩.
- Se estas propriedades forem válidas para um número infinito enumerável de aplicações de \cup e \cap , então chamamos $\mathcal A$ de σ álgebra.

Espaço de probabilidades

- O nosso modelo probabilístico estará situado dentro de um <u>espaço</u> de probabilidade (Ω, \mathcal{A}, P) , constituído de:
- Um conjunto não-vazio Ω de resultados possíveis do experimento E, chamado espaço amostral;
- Uma álgebra de eventos aleatórios A, composta por todos os subconjuntos de Ω;
- ullet Uma probabilidade P definida sobre os conjuntos de ${\cal A}$, com as propriedades matemáticas vistas anteriormente.
- È nesse espaço que trabalharemos, sendo sempre importante identificar Ω, \mathcal{A} e P.