

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE MATHEMATICS

H

Higher Tier

Paper 1 Non-Calculator

Thursday 25 May 2017

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

mathematical instruments.

You must **not** use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.

Advice

• In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Pages	Mark
2–3	
4–5	
6–7	
8–9	
10–11	
12–13	
14–15	
16–17	
18–19	
20–21	
22–23	
24–25	
TOTAL	

Answer all questions in the spaces provided

1 Simplify $2^5 \times 2^3$ Circle your answer.

[1 mark]

4⁸

2⁸

2¹⁵

4¹⁵

2

Not drawn accurately

Circle the reason why these triangles are congruent.

[1 mark]

SSS

SAS

ASA

RHS

Which of these is a geometric progression?
Circle your answer.

[1 mark]

2, 4, 6, 8, 10

2, 3, 5, 8, 12

2, 6, 18, 54, 162

2, 6, 10, 14, 18

4 a:b = 4:3

Circle the correct statement.

[1 mark]

$$b$$
 is $\frac{4}{7}$ of a

$$b$$
 is $\frac{3}{7}$ of a

$$b ext{ is } \frac{4}{7} ext{ of } a$$
 $b ext{ is } \frac{3}{7} ext{ of } a$ $b ext{ is } \frac{4}{3} ext{ of } a$

$$b$$
 is $\frac{3}{4}$ of a

5 Write 36 as a product of prime factors.

Give your answer in index form.

[3 marks]

Answer

Turn over for the next question

6 The table shows information about the times for 10 people to complete a task.

Time, t (minutes)	Frequency
0 < <i>t</i> ≤ 20	1
20 < <i>t</i> ≤ 40	6
40 < <i>t</i> ≤ 60	3

These statements are about the mean and range of the actual times. Tick the correct box for each statement.

[4 marks]

	True	False
The mean could be less than 20 minutes		
The mean could be more than 40 minutes		
The mean could be less than 40 minutes		
The range could be more than 40 minutes		
The range could be less than 40 minutes		
The range could be more than 60 minutes		

7	$\frac{3}{5}$ of a number is 162	
	Work out the number.	[2 marks]
	Answer	
8	x km/h = y mph	
	Use 8 km/h = 5 mph to write a formula for y in terms of x .	[2 marks]
	Answer	
	Turn over for the next question	

8

9 (a) Density =
$$\frac{\text{mass}}{\text{volume}}$$

The mass of solid A is 6 times the mass of solid B.

The volume of solid A is 3 times the volume of solid B.

Complete the sentence.

[1 mark]

9 (b) Average speed =
$$\frac{\text{distance}}{\text{time}}$$

If the distance is halved and the time is doubled, what happens to the average speed? Circle your answer.

[1 mark]

$$\times$$
 2 \times 4 no change \div 2 \div 4

10	Solve the simultaneous	equations
----	------------------------	-----------

$$2x + y = 18$$

$$x - y = 6$$

[3 marks]

Turn over for the next question

5

1	Billy wants to buy these tickets for a show. 4 adult tickets at £15 each	
	2 child tickets at £10 each	
	A 10% booking fee is added to the ticket price.	
	3% is then added for paying by credit card.	
	Work out the total charge for these tickets when paying by credit card.	[5 marks]
	Answer £	

12	Here is a circle touching a square.
----	-------------------------------------

Not drawn accurately

The area of the square is 64 \mbox{cm}^2

Work out the area of the circle.

Give your answer in terms of $\boldsymbol{\pi}.$

[3	marks]
----	--------

Answer	cm

Turn over for the next question

8

Write the number six million five thousand two hundred in standard form.

[2 marks]

Answer _____

14 Solve -3x > 6

[1 mark]

Answer _____

 $\frac{1}{6}$, $\frac{1}{7}$, $\frac{1}{8}$ and $\frac{1}{9}$ are four fractions.

How many of these fractions convert to a recurring decimal? Circle your answer.

[1 mark]

0 1 2 3

4

A fair spinner has five equal sections numbered 1, 2, 3, 4 and 5

A fair six-sided dice has five red faces and one green face.

The spinner is spun.

If the spinner shows an even number, the dice is thrown.

16 (a) Complete the tree diagram for the spinner and the dice.

[2 marks]

Spinner Dice

16 (b) Work out the probability of getting an even number and the colour green.

[2 marks]

Answer _____

8

17	A is the point $(2, -5)$ B is the point $(4, -9)$	
17 (a)	Show that the gradient of the straight line passing through A and B is -2	[2 marks]
17 (b)	C is the point (-301, 601) Does C lie on the straight line passing through A and B? You must show your working.	
	Answer	[2 marks]

Bottles of drink are for sale at three shops.The normal price of a bottle is the same at each shop.

Shop A

Buy 1 bottle

Get 2 more bottles at half price

Shop B

Buy 2 bottles
Get 3 more bottles at half price

Shop C

30% off a bottle

What is the cheapest way to buy exactly 8 bottles?	
You can buy from more than one shop.	
You must show your working.	[3 marks]

Answer

19 Here is some information about the marks of 60 students in a test.

Mark, m	Frequency
40 < <i>m</i> ≤ 50	9
50 < <i>m</i> ≤ 60	16
60 < <i>m</i> ≤ 70	20
70 < m ≤ 80	8
80 < m ≤ 90	7

19 (a) On the grid, draw a cumulative frequency graph.

[3 marks]

19 (b)	Use your graph to estimate the lowest mark of the top 20% of students
--------	---

[2 marks]

Answer

Work out the diameter of the circle $x^2 + y^2 = 64$ Circle your answer.

[1 mark]

8

16

32

128

Turn over for the next question

6

21 (a) The diagram shows rectangles A and B.

Rectangle A can be mapped to rectangle B by a **single** transformation.

Javed says,

"The **only** single transformation is a reflection in the y-axis because the rectangles are on opposite sides of the y-axis."

Is he correct?

Tick a box.

Yes		No	
-----	--	----	--

Give a reason t	or your	answer.
-----------------	---------	---------

[1 mark]

21 (b) This diagram shows triangles *CDE* and *PQR*.

CDE is mapped to PQR by combining two single transformations.

The first is a rotation of 90° anticlockwise about *E*.

Describe fully the second transformation.

[3 marks]

Turn over for the next question

22 PRT and QRS are similar triangles.

Not drawn accurately

Which of these is equivalent to $\frac{QR}{PR}$?

Circle your answer.

[1 mark]

$$\frac{RS}{ST}$$

$$\frac{QS}{PT}$$

$$\frac{PT}{QS}$$

$$\frac{RT}{RS}$$

Here is a velocity-time graph of a motorbike for 25 seconds.

23 (a) After how many seconds was the acceleration zero?

[1 mark]

Answer seconds

23 (b) Work out the distance travelled in the last 15 seconds.

[2 marks]

Answer _____ metres

24 (a)	Work out $\sqrt{12\frac{1}{4}}$ as an improper fraction.	[1 mark]
	Answer	
24 (b)	Work out $\sqrt[3]{16}$ as a power of 2	[2 marks]
	Answer	

In an office there are twice as many females as males.	
$\frac{1}{4}$ of the females wear glasses.	
$\frac{3}{8}$ of the males wear glasses.	
84 people in the office wear glasses.	
Work out the number of people in the office.	marks
Answer	

Turn over for the next question

7

26	Expand and simplify	$(x-4)(2x+3y)^2$	[4 marks]
	Answer		

27 P(-1, 4) is a point on a circle, centre O

Work out the equation of the tangent to the circle at *P*.

Answer

Give your answer in the form y = mx + c

[4	marks]
----	--------

Volume of cone = $\frac{1}{3}\pi r^2 h$ where r is the radius and h is the perpendicular height.

A cone has a

horizontal base of radius 5 cm

height of 15 cm

The cone contains water to a depth of 9 cm

Work out the volume of the water, in cm³

Give your answer in terms of π .

	[4 marks]
Answer	cm ³

29	Simplify	$\frac{2\sin 45^{\circ} - \tan 45^{\circ}}{4\tan 60^{\circ}}$			
	Give you	r answer in the form	$\frac{\sqrt{a}-\sqrt{b}}{c}$	where a , b and c are integers.	
					[4 marks]
		Ansv	ver		

END OF QUESTIONS

8

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

GCSE Mathematics

Paper 1 Higher Tier

Mark scheme

8300 June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments	
1	2 ⁸	B1		
2	ASA	B1		
3	2, 6, 18, 54, 162	B1		
4	$b ext{ is } \frac{3}{4} ext{ of } a$	B1		
	Any correct product of 36 using a prime factor	M1	2 and 18 2 and 2 and 9 3 and 12 3 and 3 and 4 2 and 3 and 6 May be on a factor tree or rep	peated division
	2 and 2 and 3 and 3 A1 Oe May be on a factor tree or repe		peated division	
	$2^2 \times 3^2 \text{ or } 3^2 \times 2^2$ A1			
	Additional Guidance			
5	Allow any number of 1s included as factors up to M1A1 only			
	$2^{2} \cdot 3^{2}$ M1A1 $2 + 2 + 3 + 3$ M1A1		M1A1A0	
			M1A1A1	
			M1A1A0	
			M1A1A0	
	2 ² 3 ² or 2 ² , 3 ²			M1A1A0
	$2 \times 2 \times 3 \times 3$ and $2^2 \times 3^2$ on answer line M1A1A			M1A1A0
	but $2 \times 2 \times 3 \times 3 = 2^2 \times 3^2$ on answer line M1A1A1		M1A1A1	
	$2^2 \times 3^2 = 6^4$ M1A1A0		M1A1A0	
	6 × 6 with no prime factorisation M0A0A0			M0A0A0

Question	Answer	Mark	Commen	ts
6	False True True True True True True False	B4	B3 for 5 correct B2 for 4 correct B1 for 3 correct	
	Additional Guidance			
Accept any clear indication as their answer				
or 162	$162 \times \frac{5}{3}$ or $162 \div \frac{3}{5}$ or 162×5 or 810 or $162 \div 3$ or 54	M1	oe 162 ÷ 0.6	
	270	A1		
7	7 Additional Guidance		Guidance	
For $162 \times \frac{5}{3}$ as a decimal, allow 162×1.66 or better truncation		petter truncation or		
	rounding or 162 × 1.67 for M1			
	97.2			M0A0

Question	Answer	Mark	Comment	S
	$\frac{y}{x} = \frac{5}{8} \text{ or } \frac{x}{y} = \frac{8}{5}$ or $8y = 5x$ or $\frac{5x}{8}$ or $0.625x$ or $(x =) \frac{8y}{5}$ or $(x =) 1.6y$ or $y = kx$ and $k = \frac{5}{8}$ or $8 \div 5$ incorrectly evaluated and then $y = \frac{x}{\text{their incorrect evaluation}}$	M1	oe	
8	$y = \frac{5x}{8}$	A1	oe in form $y = f(x)$ or $f(x) = y$ eg $y = 0.625x$ or $y = \frac{x}{1.6}$ or $y = 5x \div 8$ or $y = x \div (8 \div 5)$ or $y = x \div 8 \times 5$	
	Additional Guidance			
	$y = \frac{5}{8} \times x$ or $y = \frac{x}{8} \times 5$ or $y = x \div 1.6$			M1A1
	$y8 = x5$ or $(y =) \frac{x5}{8}$ or $(y =) x\frac{5}{8}$ or y	= $x5$ or $(y =) \frac{x5}{8}$ or $(y =) x\frac{5}{8}$ or $y = \frac{5}{8}$ of x		M1A0
	Condone units for M1 only			
	Do not ignore further work eg $y = x \div (8 \div 5)$ then $y = x \div 8 \div 5$			M1A0
9(a)	2 or two B1 Allow words which imply to eg double, twice		wo times	
9(b)	÷ 4	B1		

Question	Answer	Mark	Comments	
	Alternative method 1			
	2x + x = 18 + 6	M1	oe Eliminates a variable Implied by $3x = n$, where $n > 18$	
	3x = 24 or $x = 8$	A1	oe	
	x = 8 and y = 2	A1		
	Alternative method 2			
	$y - 2y = 18 - 2 \times 6$ or $y - 2y = 18 - 12$ or $y + 2y = 18 - 2 \times 6$ or $y + 2y = 18 - 12$	M1	oe Eliminates a variable Implied by $2x - 2y = 12$ followed by $3y = m$, where $m < 18$	
10	3y = 6 or $-3y = -6ory = 2$ or $-y = -2$	A1	oe	
	x = 8 and y = 2	A1		
	Alternative method 3			
	$\frac{18 - y}{2} = y + 6$ or $18 - 2x = x - 6$	M1	oe Eliminates a variable	
	3x = 24 or $x = 8$ or $3y = 6$ or $y = 2$	A1	oe Collects terms	
	x = 8 and y = 2	A1		

Question	Answer	Mark	Comments		
	Alternative method 4				
	Correctly evaluated trial of at least one pair of values in one equation for which they do not work	M1	eg 9 – 2 = 7 The pair of values must no answer	ot be given as the	
	Correctly evaluated trial of at least three pairs of values in one equation for which they do not work	M1dep	eg $9-2=7$ $2 \times 11 + 5 = 27$ $10 - (-2) = 12$ With none of the three pairs of values given as the answer		
	x = 8 and y = 2	A1			
10 cont	Additional Guidance				
	One correct value with one incorrect value (or no second value) and no working			M1A1A0	
	eg x = 6 and y = 2			M1A1A0	
	eg $y = 2$			M1A1A0	
	(8, 2) or 8, 2 on answer line (with or without working)			M1A1A1	
	(2, 8) or 2, 8 on answer line with no working			M0A0A0	
	Embedded correct values in one equation only eg $2 \times 8 + 2 = 18$ Embedded correct values in both equations			M1A0A0	
	ie $2 \times 8 + 2 = 18$ and $8 - 2 = 6$			M1A1A0	
	Please check crossed out work, which may indicate correct rejection of a trial in this question, as covered in alternative method 4				

Question	Answer	Mark	Comments
	Alternative method 1		
	4 x 15 or 60 or 2 x 10 or 20 or 80	M1	oe
11	$\frac{10}{100}$ × their 80 or 8 or 1.1 and working for first M1 seen	M1dep	oe $\frac{10}{100}$ × their 60 or 6 or 66 or $\frac{10}{100}$ × their 20 or 2 or 22
	their 80 + their 8 or 1.1 × their 80 or 88	M1dep	oe their 60 + their 6 + their 20 + their 2 or 1.1 × their 60 + 1.1 × their 20 or their 66 + their 22
	0.03 × their 88 or 2.64 or their 88 × 1.03	M1dep	oe
	90.64(p)	A1	

Question	Answer	Mark	Comments
	Alternative method 2		
	$\frac{10}{100} \times 15 \text{ or } 1.5(0)$ and $\frac{10}{100} \times 10 \text{ or } 1$	M1	oe
	or 1.1 seen		
	15 + their 1.5(0) or 15 × 1.1 or 16.5(0) and 10 + their 1 or 10 × 1.1 or 11	M1dep	oe 27.5(0) implies M2
11 cont	their $16.5(0) \times 0.03$ or 0.495 and their 11×0.03 or 0.33 or their $16.5(0) \times 1.03$ or 16.995 and their 11×1.03 or 11.33	M1dep	oe 4 × their 16.5(0) + 2 × their 11 or their 66 + their 22 or 88
	their 0.495 × 4 + their 0.33 × 2 or 1.98 + 0.66 or 2.64 or their 16.995 × 4 or 67.98 and their 11.33 × 2 or 22.66	M1dep	oe 0.03 × their 88 or 2.64 or their 88 × 1.03
	90.64(p)	A1	

Question	Answer	Mark	Comments
	Alternative method 3		
	4 x 15 or 60 or 2 x 10 or 20 or 80	M1	oe
11 cont	$\frac{10}{100}$ × their 80 or 8 or $\frac{13}{100}$ × their 80 or 10.4(0) or 1.13 and working for first M1 seen	M1dep	oe $ \frac{13}{100} \times \text{ their } 60 \text{ or } 7.8(0) $ or $\frac{13}{100} \times \text{ their } 20 \text{ or } 2.6(0)$
	their 80 + their 10.4(0) or 1.13 × 80 or 90.4(0) or 0.03 × their 8 or 0.24	M1dep	oe 60 + their 7.8(0) + 20 + their 2.6(0) or 67.8(0) + 22.6(0)
	their 80 + their 10.4(0) or 1.13 × 80 or 90.4(0) and 0.03 × their 8 or 0.24	M1dep	oe
	90.64(p)	A1	

Question	Answer	Mark	Comment	s
	$\sqrt{64}$ or 8 or 64 = 8 × 8	M1	Implied by a diameter or side length o stated or shown on the diagram, or ra 4 stated or used or shown on the diag	
	$\pi \times (\text{their } 8 \div 2)^2$ or $\pi \times 4^2$ or $\pi 4^2$ or [50.24, 50.272]	M1dep	oe Allow [3.14, 3.142] for π	
12	16π	A1	Condone $16 \times \pi$ or $\pi \times 16$	or π 16
	Ac	lditional	Guidance	
	$64 - 16\pi$			M1M1A0
	Beware of incorrect methods which lead eg $r = 8$, $2 \times \pi \times 8 = 16\pi$ $\sqrt{64} = 8$, $8^2 = 16$, 16π	d to the c	correct answer	M0M0A0 M1M0A0
	6.005 2(00) × 10 ⁶	B2	B1 for their 6 005 200 writted correctly converted to stand or no number written normally 6.() × 10 ⁶	dard form
	Additional Guidance			
13	(6 500 200 and) 6.500 2(00) × 10 ⁶			B1
	65 200 and 6.52 × 10 ⁴			B1
	$10^6 \times 6.005 \ 2(00)$			B2
	Correct value of 6 005 200 with no conversion to standard form			В0
	6 × 10 ⁶ with no number written normal	ly		B1
14	x < -2 or -2 > x	B1		
15	3	B1		

Question	Answer	Mark	Commen	ts
	$\frac{2}{5}$ Even and $\frac{3}{5}$ Odd	B1	oe fractions, decimals or p	ercentages
	Two branches from Even labelled Red $\frac{5}{6}$ Green $\frac{1}{6}$	B1	oe fractions, decimals or p Branches from Odd is B0 Allow equivalent labelling eg R and G Green and Not Green	ercentages
	Ad	ditional	Guidance	
16(a)	In decimals, allow for $\frac{5}{6}$ and $\frac{1}{6}$ 0.83 and 0.17 or 0.833 and 0.167 or	0.834 an	d 0.166 or 0.84 and 0.16	
	or better truncation or rounding (sum of pair must equal 1) In percentages, allow for $\frac{5}{6}$ and $\frac{1}{6}$			
	83% and 17% or 83.3% and 16.7% or 8 or better truncation or rounding (sum of			
	Ignore any attempts to combine probab			
	their $\frac{2}{5}$ × their $\frac{1}{6}$	een) abilities < 1		
	$\frac{2}{30}$ or $\frac{1}{15}$	A1ft	oe fraction or decimal ft from (a) if 0 < both proba	abilities < 1
	Ad			
16(b)	Allow 0.06 or 6% or better truncation or rounding or 0.07 or 7% for $\frac{2}{30}$			
	If the dice branches are not labelled th			
	If (a) has no attempt or an incorrect answer full marks can still be gained here for correct working (and answer)			
	Ignore further attempts to simplify or coafter a correct fraction is seen	onvert to	a decimal or percentage	
	eg $\frac{2}{30} = \frac{1}{10}$ or $\frac{4}{60} = 0.165$			M1A1

Question	Answer	Mark	Comments			
	Alternative method 1					
17(a)	Alternative method 1 $\frac{-95}{4-2}$ or $\frac{-59}{2-4}$ or $(2,-5)-(4,-9)=(-2,4)$ or $(4,-9)-(2,-5)=(2,-4)$ or $\frac{\text{change in }y}{\text{change in }x}$ or $\frac{\Delta y}{\Delta x}$ or triangle drawn with points A and B and side lengths of 4 and (-)2 identified or correct explanation of pattern of graph and $\frac{-4}{2}=-2 \text{ or } \frac{4}{-2}=-2$	B2	oe fraction eg $\frac{-9+5}{4-2}$ or $\frac{-5+9}{2-4}$ B1 for $\frac{-95}{4-2}$ or $\frac{-59}{2-4}$ or $(2,-5)-(4,-9)=(-2,4)$ or $(4,-9)-(2,-5)=(2,-4)$ or change in $\frac{y}{\Delta x}$ or triangle drawn with points A and B and side lengths of 4 and $(-1)^2$ identified or correct explanation of pattern of graph or $\frac{-4}{2}=-2$ or $\frac{4}{-2}=-2$			

Question	Answer	Mark	Comment	ts
	Alternative method 2			
	Gives $y = -2x + c$ and substitutes (2, -5) or $(4, -9)$ to find $c = -1ory5 = -2(x - 2)$ or $y + 5 = -2(x - 2)ory9 = -2(x - 4)$ or $y + 9 = -2(x - 4)andgives y = -2x - 1andcorrectly substitutes and evaluateswith the other pair of coordinates to$	B2	B1 for $(2, -5)$ or $(4, -9)$ to find $c = 0$ or $y5 = -2(x - 2)$ or $y + 5$ or $y9 = -2(x - 4)$ or $y + 9$ or gives $y = -2x - 1$ and correctly substitutes and e or both pair(s) of coordinate	= -2(x - 2) $= -2(x - 4)$ valuates with one
47(0)	check Alternative method 3 $-5 = 2m + c$ and $-9 = 4m + c$		oe equations	
17(a) cont	and works out $m = -2$ using a correct algebraic method	B2	B1 for $-5 = 2m + c$ and -9	= 4 <i>m</i> + <i>c</i>
	Alternative method 4			
	-5 = -2(2) + c and $-9 = -2(4) + cand works out c = -1 for both$	B2	oe equations B1 for $-5 = -2(2) + c$ and	−9 = −2(4) + <i>c</i>
	Additional Guidance			
	In alt 1, examples of correct explanation are: 2 left and 4 up 2 right and 4 down			
	In alt 1, points A and B can be identified on a diagram by their coordinates			
	In alt 2, accept rearrangements of $y = -2x - 1$ eg $2x + y = -1$			
	$\frac{-5-9}{2-4}$ or $\frac{-9-5}{4-2}$ (= -2 or = 2)			В0

Question	Answer	Mark	Commen	ts	
	Alternative method 1 – uses given point with one from (a) to show gradient = −2				
	$\frac{601 - 9}{-301 - 4}$ or $\frac{601 - 5}{-301 - 2}$	M1	oe eg $\frac{610}{-305}$ or $\frac{606}{-303}$		
	–2 and Yes	A1	Must see working for M1		
	Alternative method 2 – correct or no equation shown in (a)				
	Correct method to find $y = -2x - 1$	M1	May be seen in part (a)		
	y = -2x - 1 and shows that $601 = -2(-301) - 1$ and Yes	A1			
	Alternative method 3 – incorrect equa	ation show	vn in (a)		
	Substitutes –301 and 601 into their equation from (a)	M1	equation must involve x ar	nd y	
	Correct evaluation and No	A1ft			
17(b)	Alternative method 4 – have gained two marks in (a) by any method				
	uses $(2, -5)$ or $(4, -9)$ to work out $c = -1$	M1			
	601 = -2(-301) + c and $c = -1$ and Yes	A1			
	Alternative method 5 – have shown that $c = -1$ for both points in (a)				
	601 = -2(-301) + <i>c</i>	M1			
	601 = -2(-301) + c and $c = -1$ and Yes	A1			
	Additional Guidance				
	y = -2x - 1 given in (a) but not used in (b)			M0 for equation	
	Correct method in (a) to show that the gradient is –2, but followed by incorrect equation. Incorrect equation then used correctly in (b)			B2 in (a) M1A0 in (b)	

Question	Answer	Mark	Comments
	Alternative method 1 – price for 8 bot	tles	
18	Any two (including at least one combination) of Single shops Method to work out cost using one shop Shop A $3 \times 1 + 5 \times 0.5$ or 5.5 or $4 \times 1 + 4 \times 0.5$ or 6 or Shop B $4 \times 1 + 4 \times 0.5$ or 6 or $5 \times 1 + 3 \times 0.5$ or 6.5 or Shop C 8×0.7 or 5.6 Combinations Method to work out cost using two shops A and B $(1 + 2 \times 0.5) + (2 \times 1 + 3 \times 0.5)$ or 5.5 or B and C $(2 \times 1 + 3 \times 0.5) + (3 \times 0.7)$ or 5.6 or A and C $(2 \times 1 + 4 \times 0.5) + (2 \times 0.7)$ or 5.4 or $(1 \times 1 + 2 \times 0.5) + (5 \times 0.7)$ or 5.5	M2	oe Values may be in £ throughout M1 for any one single shop or combination
	6 bottles from A and 2 bottles from C with M2 awarded	A1	Condone 2 from A and 2 from C with M2 awarded SC2 6 bottles from A and 2 bottles from C with M1M0 awarded SC1 6 bottles from A and 2 bottles from C
			with M0M0 awarded

Question	Answer	Mark	omments	5
	Alternative method 2 – best average	cost per b	pottle	
	A is $\frac{2}{3}$ or B is 0.7 or C is 0.7	M1	Accept 0.66 or 66(p) or berrounding or 0.67 or 67(p)	tter truncation or
	A is $\frac{2}{3}$ and B is 0.7 and C is 0.7	M1		
18 cont	6 bottles from A and 2 bottles from C with M2 awarded	A1	Condone 2 from A and 2 from C with M2 awarded SC2 6 bottles from A and 2 bottles from C with M1M0 awarded SC1 6 bottles from A and 2 bottles from C with M0M0 awarded	
	Additional Guidance			
	In both methods, if a price or variable is respective multiples of that price or varia	oth methods, if a price or variable is chosen, values would be the ective multiples of that price or variable		
	For SC2, the M1 may have been awarded for the correct method or price for a different selection of 8 bottles or for the 6 from A and 2 from C			SC2
	eg only working is 6 from A and 2 from C and £5.40			
	Calculations or total costs may not be labelled, but shops may be implied by prices			
	An incorrect evaluation of the total cost of 6 from A and 2 from C leads to a maximum of M1M1A0			
	Ignore other incorrect evaluations which do not affect the award of marks			

Question	Answer	Mark	Commen	ts
	(9) 25 45 53 60	B1	cumulative frequencies May be implied by points p (± 0.5 square)	plotted
	Points plotted with upper class boundaries and cf values (±0.5 square)	B1ft	ft their cumulative frequence Must be increasing and no line	
	Smooth curve or polygon starting at correct point for their points and going through all their points (±0.5 square)	B1ft	ft their cumulative frequence Must be increasing and no line	
19(a)	Additional Guidance			
	Graphs may start from their first plotted point or from (40, 0) If they have plotted their points at mid-points, with point at (45, 9), their graph may start at (35, 0)			
	Graph starting at (0, 0), but otherwise	correct		B1B1B0
	Curve plotted at mid-points or lower classification	B1B0B1		
	Ignore the graph after $m = 90$			
	Bars drawn as well as correct graph			B1B1B0
	Bars drawn without the correct graph			max B1

Question	Answer	Mark	Comments		
	Alternative method 1				
	60 – 0.2 × 60 or 60 × 0.8 or 48	M1	oe implied by horizontal li vertical axis	ne from 48 on	
	Correct reading from their increasing graph	A1ft	$\pm \frac{1}{2}$ square		
19(b)	Alternative method 2				
	$70 + \frac{3}{8} \times 10$	M1			
	[73, 75]	A1			
	Ac	lditional	Guidance		
	The correct answer is likely to be [73, 7	75] from a	correct graph		
20	16	B1			
	Ticks No and gives valid reason		Examples of valid reasons	·	
	The state of the s		translation (by $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$)		
		B1	$\begin{pmatrix} 6 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$ or $(6, 0)$		
			rotation (of 180°), (centre	(0, 2.5))	
			enlargement (of scale fact (about (0, 2.5))	or) –1	
21(a)	Additional Guidance				
()	Full descriptions are not needed, but if given must be correct For the enlargement, the scale factor of –1 must be given				
	Transformation (6, 0)			B1	
	Moved 6 to the right			B1	
	Moved 6 squares			В0	
	Condone 'turn' with full description of 180°, (centre) (0, 2.5)			B1	
	2 or more single transformations given, with at least 1 correct			B1	

Question	Answer	Mark	Commen	ts
	Enlargement, scale factor –2, centre (–1, 0)	В3	B2 Enlargement, scale factor enlargement centre (–1 or scale factor –2, centre (B1 (Triangle with) vertices and (3, –2) or enlargement or scale factor –2 or scale	, 0) -1, 0) s at (0, -1) (0, -3)
	'Scale factor' and 'centre' may be impli			
21(b)	eg enlargement, –2, (–1, 0)		В3	
	Allow '-1 on the <i>x</i> -axis' for (-1, 0)			
	No triangle on diagram, but vertices stamarks awarded	ated as c	oordinates and no other	B1
	A combination of transformations can striangle drawn or vertices identified	score a m	naximum of 1 mark for the	
	Correct triangle drawn and 'enlargeme	nt', with r	no other marks awarded	B1
	Enlargement, (scale factor) $-\frac{1}{2}$, centre	e (-1, 0)		B2
22	QS PT	B1		

Question	Answer	Mark	Comments		
23(a)	[6, 6.5]	B1			
	Alternative method 1				
	$\frac{1}{2}$ × (22 + 18) × (25 – 10)		oe		
	or	M1			
	$15 \times 18 + \frac{1}{2} \times 15 \times 4$				
23(b)	300	A1			
	Alternative method 2				
	20 × 15	M1			
	300	A1			
	Additional Guidance				
	Alternative method 2 uses average velocity × time				
	7		oe improper fraction		
	$\frac{7}{2}$	B1	eg $\frac{14}{4}$		
24(a)					
	Additional Guidance				
	Condone ± on numerator and/or denon	ninator			
	$(16 =) 2^4 \text{ or } (\sqrt[3]{16} =) 16^{\frac{1}{3}} \text{ or } \sqrt[4]{16} = 2$		oe		
	or $4^{\frac{2}{3}}$ or $2\sqrt[3]{2}$	M1			
	or 4³ or 2∛2				
24(b)	$2^{\frac{4}{3}}$ or $2^{1\frac{1}{3}}$ or $2^{1.3}$	A1			
	Additional Guidance				
	$\sqrt[3]{16} = 2^4$ not recovered			M0A0	

Question	Answer	Mark	Comments			
	Alternative method 1 – based on a fraction of the number of males					
	$\frac{1}{4} \times 2x$ (+) $\frac{3}{8} \times x$ or $\frac{7}{8}x$ where x is the number of males	M1	$\frac{1}{4} \times 2 \text{ (+) } \frac{3}{8} \text{ (x 1)}$ or $\frac{7}{8}$			
	$\frac{1}{4} \times 2x + \frac{3}{8} \times x = 84$ or $\frac{7}{8}x = 84$ or $7x = 672$	M1dep	oe $\frac{1}{4} \times 2 + \frac{3}{8} \times 1$ linked to 84 or $\frac{7}{8}$ linked to 84			
	$x = 84 \div \text{their } \frac{7}{8}$ or $x = 84 \times \text{their } \frac{8}{7}$ or $x = 96$	M1dep	oe dep on M1M1 $84 \div \text{their } \frac{7}{8} \text{ or } 84 \times \text{their } \frac{8}{7}$ or 96			
25	288	A1				
	Alternative method 2 - based on a fraction of the number of females					
	$\frac{1}{4} \times y$ (+) $\frac{3}{8} \times \frac{y}{2}$ or $\frac{7}{16} y$ where y is the number of females	M1	$\frac{1}{4}$ (x 1) (+) $\frac{3}{8}$ x $\frac{1}{2}$ or $\frac{7}{16}$			
	$\frac{1}{4} \times y + \frac{3}{8} \times \frac{y}{2} = 84$ or $\frac{7}{16}y = 84$ or $7y = 1344$	M1dep	oe $\frac{1}{4}(\times 1) + \frac{3}{8} \times \frac{1}{2} \text{ linked to 84}$ or $\frac{7}{16}$ linked to 84			
	$y = 84 \div \text{their } \frac{7}{16}$ or $y = 84 \times \text{their } \frac{16}{7}$ or $y = 192$	M1dep	oe dep on M1M1 84 ÷ their $\frac{7}{16}$ or 84 × their $\frac{16}{7}$ or 192			
	288	A1				

Question	Answer	Mark	Comments	
	Alternative method 3 – based on a fraction of the total number of people			
	$\frac{1}{4} \times \frac{2}{3} \times z$ or $\frac{4z}{24}$ or $\frac{3}{8} \times \frac{1}{3} \times z$ or $\frac{3z}{24}$ where z is the number of people in the office	M1	oe $\frac{1}{4} \times \frac{2}{3} \text{ or } \frac{4}{24} \text{ or } \frac{3}{8} \times \frac{1}{3} \text{ or } \frac{3}{24}$	
	$\frac{1}{4} \times \frac{2}{3} \times z + \frac{3}{8} \times \frac{1}{3} \times z = 84$ or $\frac{7z}{24} = 84$	M1dep	oe $\frac{3}{8} \times \frac{1}{3} + \frac{1}{4} \times \frac{2}{3}$ linked to 84 or $\frac{7}{24}$ linked to 84	
	$z = 84 \div \text{their } \frac{7}{24}$ or $z = 84 \times \text{their } \frac{24}{7}$	M1dep	oe dep on M1M1 $84 \div \text{their } \frac{7}{24} \text{ or } 84 \times \text{their } \frac{24}{7}$	
	or $7z = 2016$	0.4		
	Alternative method 4 – chooses numbers of females and males and factors up or down			
25 cont	Chooses numbers for females and males in the ratio 2:1 and works out the numbers of females and males wearing glasses (which should be in the ratio 4:3)	M1	eg 32 females and 16 males and $\frac{1}{4} \times 32$ (+) $\frac{3}{8} \times 16$ or 8 and 6 or 14	
	Works out multiplying factor by 84 ÷ their total number of people wearing glasses	M1dep	eg $84 \div (\frac{1}{4} \times 32 + \frac{3}{8} \times 16)$ or $84 \div 14 (= 6)$	
	Multiplies their total of females and males by their multiplying factor	M1dep	eg 32 × their 6 + 16 × their 6 or (32 + 16) × their 6	
	288	A1		
	Additional Guidance			
	If more than one method is attempted: if an answer is given, mark the method leading to that answer if no answer is given, mark each method and award the best mark			

Question	Answer	Mark	Comments		
	Alternative method 1				
	$4x^2 + 6xy + 6xy + 9y^2$	M1	oe Allow one error Implied by $4x^2 + 12xy +$ or $ + 12xy + 9$		
	$4x^2 + 6xy + 6xy + 9y^2$ or $4x^2 + 12xy + 9y^2$	A1	oe Fully correct		
	$4x^{3} + 6x^{2}y + 6x^{2}y + 9xy^{2}$ or $4x^{3} + 12x^{2}y + 9xy^{2}$ or $-16x^{2} - 24xy - 24xy - 36y^{2}$ or $-16x^{2} - 48xy - 36y^{2}$	M1dep	oe ft correct multiplication of their expansion by x or by -4 if their expansion for first M1 has at least 3 terms after simplification		
	$4x^3 + 12x^2y + 9xy^2 - 16x^2 - 48xy - 36y^2$	A1ft	ft M1A0M1 if their first expansion has at least 3 terms after simplification		
	Alternative method 2				
	$2x^2 + 3xy - 8x - 12y$	M1	oe Allow one error eg $2x^2 + 3xy - 8x + 12y$		
26	$2x^2 + 3xy - 8x - 12y$	A1	oe Fully correct		
	$4x^3 + 6x^2y - 16x^2 - 24xy$ or (+) $6x^2y + 9xy^2 - 24xy - 36y^2$	M1dep	oe ft correct multiplication of their expansion by $2x$ or by $3y$ if their expansion for first M1 has at least 3 terms after simplification		
	$4x^3 + 12x^2y + 9xy^2 - 16x^2 - 48xy - 36y^2$	A1ft	ft M1A0M1 if their first expansion has at least 3 terms after simplification		
	Additional Guidance				
	Terms and variables may be in any order for M and A marks				
	For M1 A1 M1dep terms may be seen in a grid				
	$4x^3 - 16x^2 + 9xy^2 - 36y^2$ from $(x - 4)(4x^2 + 9y^2)$			M0A0M0A0	
	In alt 2, condone $(2x^2 + 3xy - 8x - 12y)^2$ for M1A1 only				
	One error can be one incorrect term or a missing or extra term				
	Do not ignore fw when awarding the final A mark				
	If $(x - 4)(2x + 3y)$ and $(2x + 3y)^2$ are both attempted and no answer is given, mark both and award the better mark				

Question	Answer	Mark	Comments	
	$\frac{4-0}{-1-0}$ or -4	M1	oe	
	$-1 \div \text{their} -4 \text{ or } \frac{1}{4}$	M1	oe their –4 must be their gradient of OP	
	$y - 4 = \text{their } \frac{1}{4}(x1)$	M1dep	oe dep on second M1	
	$4 = \text{their } \frac{1}{4} (-1) + c$	·	oe $c = 4.25$	
27	$y = \frac{1}{4}x + \frac{17}{4}$ or $y = 0.25x + 4.25$	A1	oe eg $y = 0.25x + 4\frac{1}{4}$	
			Accept $y = \frac{x+17}{4}$	
	Additional Guidance			
	An answer of $4y = x + 17$, with or without the correct answer seen			M1M1M1A0
	For A1, allow a mixture of fractions, decimals and mixed numbers			
	$y - y_1 = m(x - x_1)$ stated, followed by $y - 4 = \frac{1}{4}(x1)$ oe			M1M1M1

Question	Answer	Mark	Comment	s	
Alternative method 1					
	$\frac{1}{3}$ (x) π (x) 5^2 (x) 15 or 125π or $[392.5, 392.8]$	M1	ое		
	$\frac{r}{5} = \frac{15-9}{15}$ or $r = 2$	M1	oe r is radius of small cone		
	$\frac{1}{3} \times \pi \times \text{their } 2^2 \times (15 - 9) \text{ or } 8\pi$ or [25.12, 25.14]	M1dep	dep on 2nd M1		
	117π	A1	Accept π 117 or $\frac{351\pi}{3}$		
	Alternative method 2				
	$\frac{1}{3}$ (x) π (x) 5^2 (x) 15 or 125π	M1	oe		
28	or [392.5, 392.8]				
20	volume sf = $\left(\frac{15 - 9}{15}\right)^3$ or $\frac{8}{125}$ or $\left(\frac{15}{15 - 9}\right)^3$ or $\frac{125}{8}$	M1	ое		
	(15-9) 8				
	their $125\pi \times \text{their } \frac{8}{125}$		dep on 2nd M1		
	or their $125\pi \div \text{their } \frac{125}{8}$	M1dep	Accept $1 - \frac{8}{125}$ or $\frac{117}{125}$		
	or 8π or [25.12, 25.14]				
	117π	A1	Accept π 117 or $\frac{351\pi}{3}$		
	Additional Guidance				
	Allow [3.14, 3.142] for π for M marks only				
	Answer of 367.()			M1M1M1A0	

Question	Answer	Mark	Comments	
	$\sin 45 = \frac{\sqrt{2}}{2} \text{ or } \frac{1}{\sqrt{2}}$ or $\tan 45 = 1 \text{ or } \frac{1}{1}$ or $\tan 60 = \sqrt{3} \text{ or } \frac{\sqrt{3}}{1}$	B1	oe stated or in correct place in implied by multiplier of 2 or	
	$\sin 45 = \frac{\sqrt{2}}{2} \text{ or } \frac{1}{\sqrt{2}}$ and $\tan 45 = 1 \text{ or } \frac{1}{1}$ and $\tan 60 = \sqrt{3} \text{ or } \frac{\sqrt{3}}{1}$	B1	oe stated or in correct place ir implied by multiplier of 2 or $eg \frac{2 \times \frac{1}{\sqrt{2}} - 1}{4 \times \frac{\sqrt{3}}{1}}$	-
29	$\frac{\sqrt{2}-1}{4\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}$	M1	oe rationalisation of their decomposition $eg \frac{\frac{2}{\sqrt{2}} - 1}{4\sqrt{3}} \times \frac{4\sqrt{3}}{4\sqrt{3}}$	enominator
	$\frac{\sqrt{6}-\sqrt{3}}{12}$	A1	oe in the form $\frac{\sqrt{6a^2} - \sqrt{3a^2}}{12a}$ positive integer eg $\frac{\sqrt{24} - \sqrt{12}}{24}$ (when $a = 2$	
	Ad	lditional	Guidance	
	$\frac{2 \times \frac{1}{\sqrt{2}} - 1}{4\sqrt{3}}$ or $\frac{\sqrt{2} - 1}{4\sqrt{3}}$ or $\frac{\sqrt{2} - 1}{\sqrt{48}}$			B1B1
	$\frac{\sqrt{48}(\sqrt{2}-1)}{\sqrt{48}\sqrt{48}}$ or $\frac{\sqrt{48}(\sqrt{2}-1)}{48}$			B1B1M1
	$\frac{\sqrt{96}-\sqrt{48}}{48}$			B1B1M1A1
	B1B1 awarded, incorrect simplification	, then co	rrect method to rationalise	B1B1M1