PolarFire FPGA Macro Library Guide

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2018 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions; voice processing devices; RF solutions; discrete components; enterprise storage and communications solutions, security technologies, and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees worldwide. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Table of Contents - All Macros

AND2	13
AND3	13
AND4	14
ARI1	22
BIBUF	47
BIBUF_DIFF	47
BUFD	17
BUFF	18
CFG1/2/3/4 and LUTs (Look-Up Tables)	15
CFG2	15
CFG3	16
CFG4	16
CLKBUF	
CLKINT	
CLKINT PRESERVE	
DFN1	
DFN1C0	
DFN1E1	
DFN1E1C0	
DFN1E1P0	
DFN1P0	
DLN1	
DLN1C0	
DLN1P0	
FCEND BUFF	
FCINIT BUFF	
GCLKINT	19
INBUF	48
INBUF_DIFF	48
INV	31
INVD	31
MACC_PA	63
MACC_PA_BC_ROM	69
MX2	32
MX4	32
NAND2	33
NAND3	
NAND4	
NOR2	34
NOR3	35
NOR4	35
OR2	36
	36
OR3	
OR4	37 49
OUTBUF	49 49
	_
PF_SPI	45 51

RAM64X12	bι
RCLKINT	20
RGCLKINT	20
SLE	21
TRIBUFF !	50
TRIBUFF_DIFF	50
UJTAG	41
UJTAG_SEC	
XOR2	37
XOR3	38
XOR4	39
XOR8	4۲

Table of Contents - Combinatorial Logic

AND2	13
AND3	13
AND4	14
ARI1	22
BUFD	17
BUFF	18
CFG1/2/3/4 and LUTs (Look-Up Tables)	15
CFG2	15
CFG3	16
CFG4	16
INV	31
INVD	31
MX2	32
MX4	32
NAND2	33
NAND3	33
NAND4	34
NOR2	34
NOR3	35
NOR4	35
OR2	36
OR3	36
OR4	37
XOR2	37
XOR3	38
XOR4	39
XOR8	40

Table of Contents - Sequential Logic

DFN1														. 2	25
DFN1C0														. 2	26
DFN1E1														. 2	26
DFN1E10	20													. 2	27
DFN1E1F															
DFN1P0.															
DLN1															
DLN1C0															
DLN1P0															
SLE															1

Table of Contents - RAM Blocks

RAM1K20	 												51
RAM64x12	 												60

Table of Contents - Math Blocks

MACC_	PA.					 						63
MACC	PA	ВС	RC	M		 		 				69

Table of Contents - I/Os

BIBUF	47
BIBUF_DIFF	47
CLKBUF	48
INBUF	48
INBUF_DIFF	48
OUTBUF	49
OUTBUF_DIFF	49
TRIBUFF	50
TRIBUFF_DIFF	50
UJTAG	41
UJTAG SEC	42

Table of Contents - Clocking

CLKBUF	48
CLKINT	18
CLKINT_PRESERVE	19
GCLKINT	19
RCLKINT	20
RGCLKINT	20

Table of Contents - Special

FCEND_BUFF	24
FCINIT_BUFF	25
PF SPI	45

Introduction

This macro library guide supports the PolarFire FPGA family. See the Microsemi website for macro guides for other families.

This guide follows a naming convention for sequential macros that is unambiguous and extensible, making it possible to understand the function of the macros by their name alone.

The first two mandatory characters of the macro name will indicate the basic macro function:

- · DF D-type flip-flop
- · DL D-type latch

The next mandatory character indicates the output polarity:

- I output inverted (QN with bubble)
- N output non-inverted (Q without bubble)

The next mandatory number indicates the polarity of the clock or gate:

- 1 rising edge triggered flip-flop or transparent high latch (non-bubbled)
- 0 falling edge triggered flip-flop or transparent low latch (bubbled)

The next two optional characters indicate the polarity of the Enable pin, if present:

- E0 active low enable (bubbled)
- E1 active high enable (non-bubbled)

The next two optional characters indicate the polarity of the asynchronous Preset pin, if present:

- P0 active low asynchronous preset (bubbled)
- P1 active high asynchronous preset (non-bubbled)

The next two optional characters indicate the polarity of the asynchronous Clear pin, if present:

- C0 active low asynchronous clear (bubbled)
- C1 active high asynchronous clear (non-bubbled)

All sequential and combinatorial macros (except MX4 and XOR8) use one logic element in the PolarFire FPGA family.

As an example, the macro DFN1E1C0 indicates a D-type flip-flop (DF) with a non-inverted (N) Q output, positive-edge triggered (1), with Active High Clock Enable (E1) and Active Low Asychronous Clear (C0). See Figure 1.

Figure 1 • Naming Convention

Truth Table Notation

The truth table states in this User Guide are defined as follows:

State	Meaning
0	Logic "0"
1	Logic "1"
X	Don't Care (for Inputs), Unknown (for Outputs)
Z	High Impedance

AND2

2-Input AND

Figure 2 • AND2

Inputs	Output
A, B	Υ

Truth Table

Α	В	Υ
Х	0	0
0	Χ	0
1	1	1

AND3

3-Input AND

Figure 3 • AND3

Input	Output
A, B, C	Y

Truth Table

Α	В	С	Υ
Х	Χ	0	0
Х	0	Х	0
0	Χ	Χ	0
1	1	1	1

AND4

4-Input AND

Figure 4 • AND4

Input	Output
A, B, C, D	Υ

Truth Table

Α	В	С	D	Υ
Х	Χ	Χ	0	0
Х	Х	0	Χ	0
Х	0	Χ	Χ	0
0	Х	Χ	Χ	0
1	1	1	1	1

CFG1/2/3/4 and LUTs (Look-Up Tables)

CFG1, CFG2, CFG3, and CFG4 are post-layout LUTs (Look-up table) used to implement any 1-input, 2-input, 3-input, and 4-input combinational logic functions, respectively. Each of the CFG1/2/3/4 macros has an INIT string parameter that determines the logic functions of the macro. The output Y is dependent on the INIT string parameter and the values of the inputs.

CFG₂

Post-layout macro used to implement any 2-input combinational logic function. Output Y is dependent on the INIT string parameter and the value of A and B. The INIT string parameter is 4 bits wide.

Figure 5 • CFG2

Input	Output
A,B	Y = f(INIT, A, B)

Table 1 • CFG2 INIT String InterpretationI

ВА	Υ
00	INIT[0]
01	INIT[1]
10	INIT[2]
11	INIT[3]

CFG3

Post-layout macro used to implement any 3-input combinational logic function. Output Y is dependent on the INIT string parameter and the value of A,B, and C. The INIT string parameter is 8 bits wide.

Figure 6 • CFG3

InputOutputA, B, CY = f(INIT, A,B, C)

Table 2 • CFG3 INIT String Interpretation

СВА	Y
000	INIT[0]
001	INIT[1]
010	INIT[2]
011	INIT[3]
100	INIT[4]
101	INIT[5]
110	INIT[6]
111	INIT[7]

CFG4

Post-layout macro used to implement any 4-input combinational logic function. Output Y is dependent on the INIT string parameter and the value of A,B, C, and D. The INIT string parameter is 16 bits wide.

Figure 7 • CFG4

Input	Output
A, B, C, D	Y = f(INIT, A,B, C, D)

Table 3 • CFG4 INIT String Interpretation

DCBA	Y
0000	INIT[0]
0001	INIT[1]
0010	INIT[2]
0011	INIT[3]
0100	INIT[4]
0101	INIT[5]
0110	INIT[6]
0111	INIT[7]
1000	INIT[8]
1001	INIT[9]
1010	INIT[10]
1011	INIT[11]
1100	INIT[12]
1101	INIT[13]
1110	INIT[14]
1111	INIT[15]

BUFD

Buffer. Note that Compile optimization will not remove this macro.

Figure 8 • BUFD

Input	Output
Α	Y

Truth Table

Α	Υ
0	0
1	1

BUFF

Buffer

Figure 9 • BUFF

Input	Output
Α	Y

Truth Table

Α	Υ
0	0
1	1

CLKINT

Macro used to route an internal fabric signal to global network.

Figure 10 • CLKINT

Input	Output	
Α	Υ	

Truth Table

Α	Υ
0	0
1	1

CLKINT_PRESERVE

Macro used to route an internal fabric signal to global network. It has the same functionality as CLKINT except that this clock always stay on the global clock network and will not be demoted during design implementation.

Figure 11 • CLKINT_PRESERVE

Input	Output	
Α	Υ	

Truth Table

Α	Y
0	0
1	1

GCLKINT

Gated macro used to route an internal fabric signal to global network. The Enable signal can be used to turn off the global network to save power.

Figure 12 • GCLKINT

Input	Output
A, EN	Υ

Truth Table

Α	EN	q (Internal Signal)	Output
0	0	0	0
0	1	1	0
1	Χ	q	q

RCLKINT

Macro used to route an internal fabric signal to a row global buffer, thus creating a local clock.

Figure 13 • RCLKINT

Input	Output	
A	Y	

Truth Table

Α	Υ
0	0
1	1

RGCLKINT

Gated macro used to route an internal fabric signal to a row global buffer, thus creating a local clock. The Enable signal can be used to turn off the local clock to save power.

Figure 14 • RGCLKINT

Input	Output	
A, EN	Υ	

Truth Table

Α	EN	q (Internal Signal)	Output
0	0	0	0
0	1	1	0
1	Χ	q	q

SLE

Sequential Logic Element

Figure 15 • SLE

	Input	
Name	Function	
D	Data	
CLK	Clock	
EN	Enable	
ALn	ALn Asynchronous Load (Active Low)	
ADn*	Asynchronous Data (Active Low)	
SLn Synchronous Load (Active Low)		
SD*	Synchronous Data	
LAT*	Latch Enable	

^{*}Note: ADn, SD and LAT are static signals defined at design time and need to be tied to 0 or 1.

Truth Table

ALn	ADn	LAT	CLK	EN	SLn	SD	D	Q _{n+1}
0	ADn	Χ	Х	Χ	Х	Χ	Χ	!ADn
1	X	0	Not rising	Χ	X	Χ	Χ	Qn
1	X	0		0	X	Χ	Χ	Qn
1	Х	0	↑	1	0	SD	Χ	SD
1	X	0		1	1	Χ	D	D
1	X	1	0	Χ	X	Χ	Χ	Qn
1	Х	1	1	0	Х	Χ	Χ	Qn
1	X	1	1	1	0	SD	Χ	SD
1	Х	1	1	1	1	Х	D	D

ARI1

The ARI1 macro is responsible for representing all arithmetic operations in the pre-layout phase.

Figure 16 • ARI1

Input	Output
A, B, C, D, FCI	Y, S, FCO

The ARI1 cell has a 20bit INIT string parameter that is used to configure its functionality. The interpretation of the 16 LSB of the INIT string is shown in the table below. F0 is the value of Y when A = 0 and F1 is the value of Y when A = 1.

Table 4 • Interpretation of 16 LSB of the INIT String for ARI1

ADCB	Y	
0000	INIT[0]	F0
0001	INIT[1]	
0010	INIT[2]	
0011	INIT[3]	
0100	INIT[4]	
0101	INIT[5]	
0110	INIT[6]	
0111	INIT[7]	
1000	INIT[8]	F1
1001	INIT[9]	
1010	INIT[10]	
1011	INIT[11]	
1100	INIT[12]	
1101	INIT[13]	
1110	INIT[14]	
1111	INIT[15]	

Table 5 • Truth Table for S

Υ	FCI	S
0	0	0
0	1	1
1	0	1
1	1	0

Figure 17 • ARI1 Logic

The 4 MSB of the INIT string controls the output of the carry bits. The carry is generated using carry propagation and generation bits, which are evaluated according to the tables below.

Table 6 • ARI1 INIT[17:16] String Interpretation

INIT[17]	INIT[16]	G
0	0	0
0	1	F0
1	0	1
1	1	F1

Table 7 • ARI1 INIT[19:18] String Interpretation

INIT[19]	INIT[18]	Р
0	0	0
0	1	Y
1	Х	1

Table 8 • FCO Truth Table

Р	G	FCI	FCO
0	G	Х	G
1	Х	FCI	FCI

FCEND_BUFF

Buffer, driven by the FCO pin of the last macro in the Carry-Chain.

Figure 18 • FCEND_BUFF

Input	Output
Α	Υ

Truth Table

Α	Υ
0	0
1	1

FCINIT_BUFF

Buffer, used to initialize the FCI pin of the first macro in the Carry-Chain.

Figure 19 • FCINIT_BUFF

Input	Output
Α	Υ

Truth Table

Α	Υ
0	0
1	1

DFN1

D-Type Flip-Flop

Figure 20 • DFN1

Input	Output
D, CLK	Q

Truth Table

CLK	D	Q _{n+1}
not Rising	X	Q _n
↑	D	D

DFN1C0

D-Type Flip-Flop with active low Clear

Figure 21 • DFN1C0

Input	Output
D, CLK, CLR	Q

Truth Table

CLR	CLK	D	Q_{n+1}
0	X	Х	0
1	not Rising	Х	Q _n
1	↑	D	D

DFN1E1

D-Type Flip-Flop with active high Enable

Figure 22 • DFN1E1

Input	Output
D, E, CLK	Q

Truth Table

E	CLK	D	Q _{n+1}
0	X	Х	Q _n
1	not Rising	Х	Q _n
1	↑	D	D

DFN1E1C0

D-Type Flip-Flop, with active high Enable and active low Clear.

Figure 23 • DFN1E1C0

Input	Output	
CLR, D, E, CLK	Q	

Truth Table

CLR	E	CLK	D	Q _{n+1}
0	X	X	X	0
1	0	Х	X	Q _n
1	1	not Rising	X	Q _n
1	1	↑	D	D

DFN1E1P0

D-Type Flip-Flop with active high Enable and active low Preset.

Figure 24 • DFN1E1P0

Input	Output
D, E, PRE, CLK	Q

Truth Table

PRE	Е	CLK	D	Q _{n+1}
0	Х	Х	Х	1
1	0	X	X	Q_n
1	1	not Rising	Х	Q_n
1	1	↑	D	D

DFN1P0

D-Type Flip-Flop with active low Preset.

Figure 25 • DFN1P0

Input	Output
D, PRE, CLK	Q

Truth Table

PRE	CLK	D	Q _{n+1}
0	Х	Х	1
1	not Rising	X	Qn
1	↑	D	D

DLN1

Data Latch

Figure 26 • DLN1

Input	Output
D, G	Q

Truth Table

G	D	Q
0	Χ	Q
1	D	D

DLN1C0

Data Latch with active low Clear

Figure 27 • DLN1C0

Input	Output
CLR, D, G	Q

Truth Table

CLR	G	D	Q
0	Х	X	0
1	0	Х	Q
1	1	D	D

DLN1P0

Data Latch with active low Preset

Figure 28 • DLN1P0

Input	Output	
D, G, PRE	Q	

Truth Table

PRE	G	D	Q
0	Х	Х	1
1	0	Х	Q
1	1	D	D

Inverter

Figure 29 • INV

Input	Output
Α	Υ

Truth Table

Α	Y
0	1
1	0

INVD

Inverter; note that Compile optimization will not remove this macro.

Figure 30 • INVD

Input	Output	
Α	Υ	

Truth Table

Α	Υ
0	1
1	0

MX2

2 to 1 Multiplexer

Figure 31 • MX2

Input	Output
A, B, S	Y

Truth Table

Α	В	S	Y
Α	Χ	0	Α
Х	В	1	В

MX4

4 to 1 Multiplexer

This macro uses two logic modules.

Figure 32 • MX4

Input	Output
D0, D1, D2, D3, S0, S1	Υ

Truth Table

D3	D2	D1	D0	S1	S0	Υ
Χ	Х	Χ	D0	0	0	D0
Χ	Х	D1	Χ	0	1	D1
Х	D2	Χ	Χ	1	0	D2
D3	Х	Х	Х	1	1	D3

NAND2

2-Input NAND

Figure 33 • NAND2

Input	Output
A, B	Υ

Truth Table

Α	В	Y
Х	0	1
0	Χ	1
1	1	0

NAND3

3-Input NAND

Figure 34 • NAND3

Input	Output
A, B, C	Υ

Truth Table

Α	В	С	Υ
Х	Х	0	1
Х	0	Χ	1
0	Х	Х	1
1	1	1	0

NAND4

4-input NAND

Figure 35 • NAND4

Input	Output
A, B, C, D	Υ

Truth Table

Α	В	С	D	Y
Х	Х	Χ	0	1
Х	Х	0	Χ	1
Х	0	X	X	1
0	Х	Χ	Χ	1
1	1	1	1	0

NOR₂

2-input NOR

Figure 36 • NOR2

Input	Output
A, B	Y

Truth Table

Α	В	Υ
0	0	1
Х	1	0
1	Χ	0

NOR3

3-input NOR

Figure 37 • NOR3

Input	Output
A, B, C	Υ

Truth Table

Α	В	С	Υ
0	0	0	1
Х	Х	1	0
Х	1	Χ	0
1	Х	Х	0

NOR4

4-input NOR

Figure 38 • NOR4

Input	Output
A, B, C, D	Y

Truth Table

Α	В	С	D	Υ
0	0	0	0	1
1	Х	Χ	Χ	0
Х	1	Χ	Χ	0
Х	Х	1	Х	0
Х	Х	Х	1	0

OR2

2-input OR

Figure 39 • OR2

Input	Output
A, B	Υ

Truth Table

Α	В	Υ
0	0	0
Х	1	1
1	Х	1

OR3

3-input OR

Figure 40 • OR3

Input	Output
A, B, C	Υ

Truth Table

Α	В	С	Υ
0	0	0	0
Х	Χ	1	1
Х	1	Х	1
1	Χ	Χ	1

OR4

4-input OR

Figure 41 • OR4

Input	Output
A, B, C, D	Υ

Truth Table

Α	В	С	D	Y
0	0	0	0	0
1	X	X	X	1
Х	1	Χ	Χ	1
Х	X	1	X	1
Х	Х	Х	1	1

XOR2

2-input XOR

Figure 42 • XOR2

Input	Output
A, B	Υ

Truth Table

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

XOR3

3-input XOR

Figure 43 • XOR3

Input	Output
A, B, C	Υ

Truth Table

Α	В	С	Υ
0	0	0	0
1	0	0	1
0	1	0	1
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	0
1	1	1	1

XOR4

4-input XOR

Figure 44 • XOR4

Input	Output
A, B, C, D	Υ

Truth Table

Α	В	С	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

XOR8

8-input XOR

This macro uses two logic modules.

Figure 45 • XOR8

Input	Output
A, B, C, D, E, F, G, H	Y

Truth Table

If you have an odd number of inputs that are High, the output is High (1). If you have an even number of inputs that are High, the output is Low (0). For example:

Α	В	С	D	E	F	G	Н	Y
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	1	0

UJTAG

The UJTAG macro is a special purpose macro. It allows access to the user JTAG circuitry on board the chip. You must instantiate a UJTAG macro in your design if you plan to make use of the user JTAG feature. The TMS, TDI, TCK, TRSTB and TDO pins of the macro must be connected to top level ports of the design.

Figure 46 • UJTAG

Table 9: Ports and Descriptions

Port	Direction	Polarity	Description
UIREG[7:0]	Output	_	This 8-bit bus carries the contents of the JTAG instruction register of each device. Instruction values 16 to 127 are not reserved and can be employed as user- defined instructions
URSTB	Output	Low	URSTB is an Active Low signal and is asserted when the TAP controller is in Test-Logic-Reset mode. URSTB is asserted at power-up, and a power-on reset signal resets the TAP controller state.
UTDI	Output	_	This port is directly connected to the TAP's TDI signal
UTDO	Input	_	This port is the user TDO output. Inputs to the UTDO port are sent to the TAP TDO output MUX when the IR addess is in user range.
UDRSH	Output	High	Active High signal enabled in the Shift_DR TAP state.
UDRCAP	Output	High	Active High signal enabled in the Capture_DR_TAP state.
UDRCK	Output	_	This port is directly connected to the TAP's TCK signal. Note: UDRCK must be connected to a global macro such as CLKINT. If this is not done, Synthesis/Compile will add it to the netlist to legalize it.
UDRUPD	Output	High	Active High signal enabled in the Update_DR_TAP state.

Table 9: Ports and Descriptions (Continued)

Port	Direction	Polarity	Description
TCK	Input	_	Test Clock. Serial input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/pull- down resistor. Connect TCK to GND or +3.3 V through a resistor (500-1 KΩ) placed closed to the FPGA pin to prevent totem-pole current on the input buffer and TMS from entering into an undesired state. If JTAG is not used, connect it to GND.
TDI	Input	_	Test Data In. Serial input for JTAG boundary scan. There is an internal weak pull-up resistor on the TDI pin.
TDO	Output	_	Test Data Out. Serial output for JTAG boundary scan. The TDO pin does not have an internal pull-up/pull-down resistor.
TMS	Input	_	Test mode select. The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, and TRST). There is an internal weak pull- up resistor on the TMS pin.
TRSTB	Input	Low	Test reset. The TRSTB pin is an active low input. It synchronously initializes (or resets) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRSTB pin. To hold the JTAG in reset mode and prevent it from entering into undesired states in critical applications, connect TRSTB to GND through a 1 $\mathrm{K}\Omega$ resistor (placed close to the FPGA pin).

UJTAG_SEC

The UJTAG_SEC macro is a special purpose macro. It allows access to the user JTAG circuitry on board the chip. You must instantiate a UJTAG_SEC macro in your design if you plan to make use of the user JTAG feature. The TMS, TDI, TCK, TRSTB and TDO pins of the macro must be connected to top level ports of the design.

Figure 47 • UJTAG_SEC

Table 10: Ports and Descriptions

Port	Direction	Polarity	Description
UIREG[7:0]	Output	_	This 8-bit bus carries the contents of the JTAG instruction register of each device. Instruction values 16 to 127 are not reserved and can be employed as user- defined instructions
URSTB	Output	Low	URSTB is an Active Low signal and is asserted when the TAP controller is in Test-Logic-Reset mode. URSTB is asserted at power-up, and a power-on reset signal resets the TAP controller state.
UTDI	Output	_	This port is directly connected to the TAP's TDI signal
UTDO	Input	_	This port is the user TDO output. Inputs to the UTDO port are sent to the TAP TDO output MUX when the IR addess is in user range.
UDRSH	Output	High	Active High signal enabled in the Shift_DR TAP state.
UDRCAP	Output	High	Active High signal enabled in the Capture_DR_TAP state.

Table 10: Ports and Descriptions (Continued)

Port	Direction	Polarity	Description
UDRCK	Output	_	This port is directly connected to the TAP's TCK signal. Note: UDRCK must be connected to a global macro such as CLKINT. If this is not done, Synthesis/Compile will add it to the netlist to legalize it.
UDRUPD	Output	High	Active High signal enabled in the Update_DR_TAP state.
ТСК	Input	_	Test Clock. Serial input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/pull- down resistor. Connect TCK to GND or +3.3 V through a resistor (500-1 K Ω) placed closed to the FPGA pin to prevent totem-pole current on the input buffer and TMS from entering into an undesired state. If JTAG is not used, connect it to GND.
TDI	Input	_	Test Data In. Serial input for JTAG boundary scan. There is an internal weak pull-up resistor on the TDI pin.
TDO	Output	_	Test Data Out. Serial output for JTAG boundary scan. The TDO pin does not have an internal pull-up/pull-down resistor.
TMS	Input	_	Test mode select. The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, and TRST). There is an internal weak pull- up resistor on the TMS pin.
TRSTB	Input	Low	Test reset. The TRSTB pin is an active low input. It synchronously initializes (or resets) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRSTB pin. To hold the JTAG in reset mode and prevent it from entering into undesired states in critical applications, connect TRSTB to GND through a 1 K Ω resistor (placed close to the FPGA pin).
EN_SEC	Input	High	Enable Security. Enables the user design to override the external TDI and TRSTB input to the TAP. Need to tie LOW in the design when not used.
TDI_SEC	Input	_	TDI Security override. Overrides the external TDI input to the TAP when SEC_EN is HIGH.
TRSTB_SEC	Input	Low	TRSTB Security override. Overrides the external TRSTB input to the TAP when SEC_EN is HIGH.

PF_SPI

The PF_SPI macro allows your design access to the dedicated System Controller SPI port, when SPI-Master mode is enabled, by tying both SC_SPI_EN and IO_CFG_INTF to high.

Note: In the figure below, blue indicates inout ports.

Figure 48 • PF_SPI

Table 11: Ports and Descriptions

Port	Direction	Polarity	Description
D_I	Output	_	This port is connected to the SPI DI pin
FAB_SPI_OWNER	Output	High	Indicator to the Fabric SPI-Master if the SPI Port is available.
CLK_OE	Input	High	Enables the SPI CLK output.
CLK_O	Input	_	This port drives the SPI Clock pin. CLK_OE must be HIGH to drive.
D_OE	Input	High	Enables the Data output.
D_O	Input	_	This port drives the SPI DO pin. D_OE must be HIGH to drive.
SS_OE	Input	High	Enables the Slave Select output
SS_O	Input	High	This port drives the SPI Slave Select (SS) pin. SS_OE must be HIGH to drive.
CLK	Inout	_	SPI Clock output pin.

Table 11: Ports and Descriptions (Continued)

Port	Direction	Polarity	Description
DI	Input	_	SPI Serial Data input pin.
DO	Output	_	SPI Serial Data output pin.
SS	Inout	High	SPI Slave Select output pin
IFACE	Input	High	This port is mapped to the IO_CFG_INTF pin. This pin must be tied to high together with the SC_SPI_EN pin to enable SPI port for the fabric macro to work.
FLASH	Input	High	This port is mapped to the SC_SPI_EN pin. This pin must be tied to high together with the IO_CFG_INTF pin to enable the SPI port for fabric macro to work.

BIBUF

Bidirectional Buffer

Figure 49 • BIBUF

Input	Output
D, E, PAD	PAD, Y

Truth Table

MODE	E	D	PAD	Y
OUTPUT	1	D	D	D
INPUT	0	X	Z	Х
INPUT	0	Х	PAD	PAD

BIBUF_DIFF

Bidirectional Buffer, Differential I/O

Figure 50 • BIBUF_DIFF

Input	Output	
D, E, PADP, PADN	PADP, PADN, Y	

Truth Table

MODE	Е	D	PADP	PADN	Υ
OUTPUT	1	0	0	1	0
OUTPUT	1	1	1	0	1
INPUT	0	Х	Z	Z	Х
INPUT	0	Х	0	0	Х
INPUT	0	Х	1	1	X
INPUT	0	Х	0	1	0
INPUT	0	Х	1	0	1

CLKBUF

Input Buffer to global network

Figure 51 • CLKBUF

Input	Output
PAD	Υ

Truth Table

PAD	Υ
0	0
1	1

INBUF

Input Buffer

Figure 52 • INBUF

Input	Output	
PAD	Y	

Truth Table

PAD	Υ
Z	Х
0	0
1	1

INBUF_DIFF

Input Buffer, Differential I/O

Figure 53 • INBUF_DIFF

Input	Output	
PADP, PADN	Y	

Truth Table

PADP	PADN	Y
Z	Z	Χ
0	0	Х
1	1	Х
0	1	0
1	0	1

OUTBUF

Output buffer

Figure 54 • OUTBUF

Input	Output	
D	PAD	

Truth Table

D	PAD
0	0
1	1

OUTBUF_DIFF

Output buffer, Differential I/O

Figure 55 • OUTBUF_DIFF

Input	Output	
D	PADP, PADN	

Truth Table

D	PADP	PADN
0	0	1
1	1	0

TRIBUFF

Tristate output buffer

Figure 56 • TRIBUFF

Input	Output	
D, E	PAD	

Truth Table

D	E	PAD
Х	0	Z
D	1	D

TRIBUFF_DIFF

Tristate output buffer, Differential I/O

Figure 57 • TRIBUFF_DIFF

Input	Output
D, E	PADP, PADN

Truth Table

D	E	PADP	PADN
Х	0	Z	Z
0	1	0	1
1	1	1	0

RAM1K20

The RAM1K20 block contains 20,480 (16,896 with ECC) memory bits and is a true dual-port memory. The RAM1K20 memory can also be configured in two-port mode. All read/write operations to the RAM1K20 memory are synchronous. To improve the read-data delay, an optional pipeline register at the output is available. In addition to the feed-through write mode option to enable immediate access to the write-data, RAM1K20 has a Read-before-write option in the dual-port mode. RAM1K20 also includes a Read-enable control for both dual-port and two-port modes. The RAM1K20 memory has two data ports which can be independently configured in any combination shown below.

- Non-ECC Dual-Port RAM with the following configurations:
 - Any of 1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1 on each port
- · Non-ECC Two-Port RAM with the following configurations:
 - Any of 512x40, 1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1 on each port
- ECC Two-Port RAM with the following configuration:
 - 512x33 on both ports

Functionality

The main features of the RAM1K20 memory block are as follows:

- A RAM1K20 block has 16,896 bits with ECC and 20,480 bits without ECC.
- A RAM1K20 block provides two independent data ports A and B.
- In non-ECC dual-port mode, each port can be independently configured to any of the following depth/width: 1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1. There are 25 unique combinations of non-ECC dual-port aspect ratios:

1Kx20/1Kx20	1Kx20/2Kx10	1Kx20/4Kx5	1Kx16/8Kx2	1Kx16/16Kx1
2Kx10/1Kx20	2Kx10/2Kx10	2Kx10/4Kx5	2Kx8/8Kx2	2Kx8/16Kx1
4Kx5/1Kx20	4Kx5/2Kx10	4Kx5/4Kx5	4Kx4/8Kx2	4Kx4/16Kx1
8Kx2/1Kx16	8Kx2/2Kx8	8Kx2/4Kx4	8Kx2/8Kx2	8Kx2/16Kx1
16Kx1/1Kx16	16Kx1/2Kx8	16Kx1/4Kx4	16Kx1/8Kx2	16Kx1/16Kx1

- RAM1K20 also has a two-port mode. In this case, Port A will become the read port and Port B becomes the
 write port.
- In non-ECC two-port mode, each port can be independently configured to any of the following depth/width: 512x40, 1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1. There are 36 unique combinations of non-ECC two-port aspect ratios:

512x40/512x40	512x40/1Kx20	512x40/2Kx10	512x40/4Kx5	512x32/8Kx2	512x32/16Kx1
1Kx20/512x40	1Kx20/1Kx20	1Kx20/2Kx10	1Kx20/4Kx5	1Kx16/8Kx2	1Kx16/16Kx1
2Kx10/512x40	2Kx10/1Kx20	2Kx10/2Kx10	2Kx10/4Kx5	2Kx8/8Kx2	2Kx8/16Kx1
4Kx5/512x40	4Kx5/1Kx20	4Kx5/2Kx10	4Kx5/4Kx5	4Kx4/8Kx2	4Kx4/16Kx1
8Kx2/512x32	8Kx2/1Kx16	8Kx2/2Kx8	8Kx2/4Kx4	8Kx2/8Kx2	8Kx2/16Kx1
16Kx1/512x32	16Kx1/1Kx16	16Kx1/2Kx8	16Kx1/4Kx4	16Kx1/8Kx2	16Kx1/16Kx1

RAM1K20 has an ECC two-port mode, for which both ports have word widths equal to 33 bits.

There is one unique combination of ECC two-port aspect ratio:

- 512x33/512x33
- RAM1K20 performs synchronous operation for setting up the address as well as writing and reading the data.
- RAM1K20 has a Read-enable control for both dual-port and two-port modes.
- The address, data, block-port select, write-enable and read-enable inputs are registered.
- An optional pipeline register with a separate enable, synchronous-reset and asynchronous-reset is available at the read-data port to improve the clock-to-out delay.

- · There is an independent clock for each port. The memory is triggered at the rising edge of the clock.
- The true dual-port mode supports an optional Read-before-write mode or a feed-through write mode, where the write-data also appears on the corresponding read-data port.
- · Read from both ports at the same location is allowed.
- · Read and write on the same location at the same time results in unknown data to be read.
 - There is no collision prevention or detection. However, correct data is expected to be written into the memory.
- When ECC is enabled, each port of the RAM1K20 memory can raise flags to indicate single-bit- correct and double-bit-detect.

Figure 58 shows a simplified block diagram of the RAM1K20 memory block. The simplified block illustrates the two independent data ports, ECC, the read-data pipeline registers, read-before-write selection, and the feed-through multiplexors.

Figure 58 • Simplified Block Diagram of RAM1K20

Port List

Table 12 • Port List for RAM1K20

Pin Name	Pin Direction	Type ¹	Description	Polarity
A_ADDR[13:0]	Input	Dynamic	Port A address	
A_BLK_EN[2:0]	Input	Dynamic	Port A block selects	High
A_CLK	Input	Dynamic	Port A clock	Rising
A_DIN[19:0]	Input	Dynamic	Port A write-data	
A_DOUT[19:0]	Output	Dynamic	Port A read-data	
A_WEN[1:0]	Input	Dynamic	Port A write-enables (per byte)	High
A_REN	Input	Dynamic	Port A read-enable	High
A_WIDTH[2:0]	Input	Static	Port A width/depth mode select	
A_WMODE[1:0]	Input	Static	Port A Read-before-write and Feed-through write selects	High
A_BYPASS	Input	Static	Port A pipeline register select	Low
A_DOUT_EN	Input	Dynamic	Port A pipeline register enable	High
A_DOUT_SRST_N	Input	Dynamic	Port A pipeline register synchronous- reset	Low
A_DOUT_ARST_N	Input	Dynamic	Port A pipeline register asynchronous- reset	Low
			T	
B_ADDR[13:0]	Input	Dynamic	Port B address	
B_BLK_EN[2:0]	Input	Dynamic	Port B block selects	High
B_CLK	Input	Dynamic	Port B clock	Rising
B_DIN[19:0]	Input	Dynamic	Port B write-data	
B_DOUT[19:0]		Dynamic	Port B read-data	
B_WEN[1:0]	Input	Dynamic	Port B write-enables (per byte)	High
B_REN	Input	Dynamic	Port B read-enable	High
B_WIDTH[2:0]	Input	Static	Port B width/depth mode select	
B_WMODE[1:0]	Input	Static	Port B Read-before-write and Feed-through write selects	High
B_BYPASS	Input	Static	Port B pipeline register select	Low
B_DOUT_EN	Input	Dynamic	Port B pipeline register enable	High
B_DOUT_SRST_N	Input	Dynamic	Port B pipeline register synchronous-reset Lo	
B_DOUT_ARST_N	Input	Dynamic	Port B pipeline register asynchronous- reset	Low

Table 12 • Port List for RAM1K20 (Continued)

Pin Name	Pin Direction	Type ¹	Description	Polarity
ECC_EN	Input	Static	Enable ECC	High
ECC_BYPASS	Input	Static	ECC pipeline register select	Low
SB_CORRECT	Output	Dynamic	Single-bit correct flag	High
DB_DETECT	Output	Dynamic	Double-bit detect flag	High
BUSY_FB	Input	Static	Lock access to FCB	High
ACCESS_BUSY	Output	Dynamic	Busy signal from FCB	High

Note: Static inputs are defined at design time and need to be tied to 0 or 1.

A_WIDTH and B_WIDTH

Table 13 lists the width/depth mode selections for each port. Two-port mode is in effect when the width of at least one port is greater than 20, and A_WIDTH indicates the read width while B_WIDTH indicates the write width.

Table 13 • Width/Depth Mode Selection

Depth x Width	A_WIDTH/B_WIDTH
16Kx1	000
8Kx2	001
4Kx4, 4Kx5	010
2Kx8, 2Kx10	011
1Kx16, 1Kx20	100
512x32 (Two-port), 512x40 (Two-port), 512x33 (Two-port ECC)	101

A_WEN and B_WEN

Table 14 lists the write/read control signals for each port. Two-port mode is in effect when the width of at least one port is greater than 20, and read operation is always enabled.

Table 14 • Write/Read Operation Select

Depth x Width	A_WEN/B_WEN	Result
16Kx1, 8Kx2, 4Kx5, 2Kx10	x0	Perform a read operation
21010	x1	Perform a write operation
	00	Perform a read operation
1Kx16	01	Write [8:5], [3:0]
INXIO	10	Write [18:15], [13:10]
	11	Write [18:15], [13:10], [8:5], [3:0]

Table 14 • Write/Read Operation Select (Continued)

Depth x Width	A_WEN/B_WEN	Result
	00	Perform a read operation
1Kx20	01	Write [9:0]
TKX20	10	Write [19:10]
	11	Write [19:0]
	B_WEN[0] = 1	Write B_DIN[8:5], B_DIN[3:0]
512v32 (Two port write)	B_WEN[1] = 1	Write B_DIN[18:15], B_DIN[13:10]
512x32 (Two-port write)	A_WEN[0] = 1	Write A_DIN[8:5], A_DIN[3:0]
	A_WEN[1] = 1	Write A_DIN[18:15], A_DIN[13:10]
	B_WEN[0] = 1	Write B_DIN[9:0]
512v40 (Two port write)	B_WEN[1] = 1	Write B_DIN[19:10]
512x40 (Two-port write)	A_WEN[0] = 1	Write A_DIN[9:0]
	A_WEN[1] = 1	Write A_DIN[19:10]
512v33 (Two-port ECC)	B_WEN[1:0] = 11	Write B_DIN[16:0]
512x33 (Two-port ECC)	A_WEN[1:0] = 11	Write A_DIN[15:0]

A_ADDR and B_ADDR

Table 15 lists the address buses for the two ports. 14 bits are needed to address the 16K independent locations in x1 mode. In wider modes, fewer address bits are used. The required bits are MSB justified and unused LSB bits must be tied to 0. A_ADDR is synchronized by A_CLK while B_ADDR is synchronized to B_CLK. Two-port mode is in effect when the width of at least one port is greater than 20, and A_ADDR provides the read-address while B_ADDR provides the write-address.

Table 15 • Address Bus Used and Unused Bits

	A_ADDR/B_ADDR			
Depth x Width	Used Bits	Unused Bits (must be tied to 0)		
16Kx1	[13:0]	None		
8Kx2	[13:1]	[0]		
4Kx4, 4Kx5	[13:2]	[1:0]		
2Kx8, 2Kx10	[13:3]	[2:0]		
1Kx16, 1Kx20	[13:4]	[3:0]		
512x32 (Two-port), 512x40 (Two-port), 512x33 (Two-port ECC)	[13:5] [4:0]			

A_DIN and B_DIN

Table 5 lists the data input buses for the two ports. The required bits are LSB justified and unused MSB bits must be tied to 0. Two-port mode is in effect when the width of at least one port is greater than 20, and A_DIN provides the MSB of the write-data while B_DIN provides the LSB of the write-data.

Table 16 • Data Input Buses Used and Unused Bits

	A_DIN/B_DIN			
Depth x Width	Used Bits	Unused Bits (must be tied to 0)		
16Kx1	[0]	[19:1]		
8Kx2	[1:0]	[19:2]		
4Kx4	[3:0]	[19:4]		
4Kx5	[4:0]	[19:5]		
2Kx8	[8:5] is [7:4] [3:0] is [3:0]	[19:9] [4]		
2Kx10	[9:0]	[19:10]		
1Kx16	[18:15] is [15:12] [13:10] is [11:8] [8:5] is [7:4] [3:0] is [3:0]	[19] [14] [9] [4]		
1Kx20	[19:0]	None		
A_DIN[13:10] is [27:24]		A_DIN[19] A_DIN[14] A_DIN[9] A_DIN[4] B_DIN[19] B_DIN[14] B_DIN[14] B_DIN[9] B_DIN[4]		
512x40 (Two-port write) A DIN[19:0] is [39:20] B DIN[19:0] is [19:0] None		None		
512x33 (Two-port ECC)	A_DIN[15:0] is [32:17] B_DIN[16:0] is [16:0]	A_DIN[19:16] B_DIN[19:17]		

A_DOUT and **B_DOUT**

Table 17 lists the data output buses for the two ports. The required bits are LSB justified. Two-port mode is in effect when the width of at least one port is greater than 20, and A_DOUT provides the MSB of the read-data while B_DOUT provides the LSB of the read-data..

Table 17 • Data Output Buses Used and Unused Bits

	A_DOUT/B_DOUT		
Depth x Width	Used Bits	Unused Bits (must be tied to 0)	
16Kx1	[0]	[19:1]	
8Kx2	[1:0]	[19:2]	

Table 17 • Data Output Buses Used and Unused Bits (Continued)

	A_DOUT/B_DOUT			
Depth x Width	Used Bits	Unused Bits (must be tied to 0)		
4Kx4	[3:0]	[19:4]		
4Kx5	[4:0]	[19:5]		
2Kx8	[8:5] is [7:4] [3:0] is [3:0]	[19:9] [4]		
2Kx10	[9:0]	[19:10]		
1Kx16	[18:15] is [15:12] [13:10] is [11:8] [8:5] is [7:4] [3:0] is [3:0]	[19] [14] [9] [4]		
1Kx20	[19:0] None			
512x32 (Two-port write)	write) A_DIN[18:15] is [31:28] A_DIN[13:10] is [27:24] A_DIN[8:5] is [23:20] A_DIN[8:5] is [23:20] A_DIN[3:0] is [19:16] A_DIN[4] B_DIN[18:15] is [15:12 B_DIN[13:10] is [11:8] B_DIN[8:5] is [7:4] B_DIN[8:5] is [3:0] A_DIN[9] B_DIN[9]			
512x40 (Two-port write)	A_DOUT[19:0] is [39:20] B_DOUT[19:0] is [19:0] None			
		A_DOUT[19:16] B_DOUT[19:17]		

A_BLK_EN and B_BLK_EN

Table 18 lists the block-port select control signals for the two ports. A_BLK is synchronized by A_CLK while B_BLK is synchronized to B_CLK. Two-port mode is in effect when the width of at least one port is greater than 20, and A_BLK_EN controls the read operation while B_BLK_EN controls the write operation.

Table 18 • Block-port Select

Block-port Select Signal	Value	Result
A_BLK_EN[2:0]	111	Perform read or write operation on Port A, unless the width is greater than 20 and a read is performed from both ports A and B.
A_BLK_EN[2:0]	Any one bit is 0	No operation in memory from Port A. Port A read-data will be forced to 0. If the width is greater than 20, the read-data from both ports A and B will be forced to 0.
B_BLK_EN[2:0]	111	Perform read or write operation on Port B, unless the width is greater than 20 and a write is performed to both ports A and B.
B_BLK_EN[2:0]	Any one bit is 0	No operation in memory from Port B. Port B read-data will be forced to 0, unless the width is greater than 20 and write operation to both ports A and B is gated.

A WMODE and B WMODE

In true dual-port write mode, each port has a feed-through write or read-before-write option.

- Logic 00 = Read-data port holds the previous value.
- Logic 01 = Feed-through, i.e. write-data appears on the corresponding read-data port. This setting is invalid when the width of at least one port is greater than 20 and the two-port mode is in effect.
- Logic 10 = Read-before-write, i.e. previous content of the memory appears on the corresponding read-data port before it is overwritten. This setting is invalid when the width of at least one port is greater than 20 and the twoport mode is in effect.

A_CLK and B_CLK

All signals in ports A and B are synchronous to the corresponding port clock. All address, data, block- port select, write-enable and read-enable inputs must be set up before the rising edge of the clock. The read or write operation begins with the rising edge. Two-port mode is in effect when the width of at least one port is greater than 20, and A_CLK provides the read clock while B_CLK provides the write clock.

A_REN and B_REN

Enables read operation from the memory on the corresponding port. Two-port read mode is in effect when the width of port A is greater than 20, and A_REN controls the read operation.

Read-data Pipeline Register Control Signals

A_BYPASS and B_BYPASS A_DOUT_EN and B_DOUT_EN A_DOUT_SRST_N and B_DOUT_SRST_N A DOUT_ARST_N and B_DOUT_ARST_N

Two-port mode is in effect when the width of at least one port is greater than 20, and the A_DOUT register signals control both the MSB and LSB of the read-data, and the B_DOUT register signals are "don't-cares".

Table 19 describes the functionality of the control signals on the A_DOUT and B_DOUT pipeline registers.

Table 19 • Truth Table for A_DOUT and B_DOUT Registers

ARST_N	_BYPASS	_CLK	_EN	_SRST_N	D	Q _{n+1}
0	Х	Х	Х	Х	Х	0
1	0	Not rising	Х	Х	Х	Q _n
1	0	1	0	Х	Х	Q _n
1	0	1	1	0	Х	0
1	0	1	1	1	D	D
1	1	Х	Х	Х	D	D

ECC_EN and ECC_BYPASS

ECC operation is only allowed in Two-port mode and the width of both ports is greater than 20.

- ECC EN = 0: Disable ECC.
- ECC EN = 1, ECC BYPASS= 0: Enable ECC Pipelined.
 - ECC Pipelined mode inserts an additional clock cycle to Read-data.
 - In addition, Write-feed-thru and Read-before-write modes add another clock cycle to Read- data.
- ECC_EN = 1, ECC_BYPASS= 1: Enable ECC Non-pipelined.

SB_CORRECT and DB_DETECT

Error detection and correction flags become available when ECC operation is enabled in Two-port mode and the width of both ports is greater than 20. Table 20 describes the functionality of the error detection and correction flags.

Table 20 • Error detection and correction flags

DB_DETECT	SB_CORRECT	Flag
0	0	No errors have been detected.
0	1	A single bit error has been detected and corrected in the data output.
1	1	Multiple bit errors have been detected, but have not been corrected.

BUSY_FB

Control signal, when 1 locks the entire RAM1K20 memory from being accessed by the FCB.

ACCESS_BUSY

This output indicates that the RAM1K20 memory is being accessed by the FCB.

RAM64x12

The RAM64x12 block contains 768 memory bits and is a two-port memory providing one write port and one read port. Write operations to the RAM64x12 memory are synchronous. Read operations can be asynchronous or synchronous for setting up the address and reading out the data. Enabling synchronous operation at the read-address port improves setup timing for the read-address and its enable signals. Enabling synchronous operation at the read-data port improves clock-to-out delay. Each data port on the RAM64x12 memory is configured to a fixed configuration of 64x12.

Functionality

The main features of the RAM64x12 memory block are as follows.

- · There is one read-data port and one write-data port.
- Both read-data and write-data ports are configured to 64x12.
- The write operation is always synchronous. The write-address, write-data and write-enable inputs are registered.
- Setting up the read-address can be synchronous or asynchronous. The read-address registers have an independent enable, synchronous-load and asynchronous-load for synchronous mode operation, which can be bypassed for asynchronous mode operation.
- The read-data pipeline registers have an independent enable, synchronous-load and asynchronous-load for pipeline mode operation, which can be bypassed for asynchronous mode operation.
- · Therefore, there are four read operation modes:
 - Synchronous read-address without read-data pipeline registers (sync-async)
 - Synchronous read-address with read-data pipeline registers (sync-sync)
 - Asynchronous read-address with read-data pipeline registers (async-sync)
 - Asynchronous read-address without read-data pipeline registers (async-async)
- · There is an independent clock for each port. The memory will be triggered at the rising edge of the clock.
- · Read and write on the same location at the same time results in unknown data to be read.

There is no collision prevention or detection. However, correct data is expected to be written into the memory.

Figure 59 • Simplified Block Diagram of RAM64x12

Port List

Table 21 gives the port descriptions.

Table 21 • Port List for RAM1K20

Pin Name	Pin Direction	Type ¹	Description	Polarity
W_EN	Input	Dynamic	Write port enable	High
W_CLK	Input	Dynamic	Write clock. All write-address, write-data and write-enable inputs must be set up before the rising edge of the clock. The write operation begins with the rising edge.	Rising
W_ADDR[5:0]	Input	Dynamic	Write address	
W_DATA[11:0]	Input	Dynamic	Write-data	
BLK_EN	Input	Dynamic	Read port block select. When High, read operation is performed. When Low, read-data will be forced to zero. BLK_EN signal is registered through R_CLK when R_ADDR_BYPASS is Low.	
R_CLK	Input	Dynamic	Read registers clock. All read-address, block- port select and read-enable inputs must be set up before the rising edge of the clock. The read operation begins with the rising edge.	Rising
R_ADDR[5:0]	Input	Dynamic	Read-address	
R_ADDR_BYPASS	Input	Static	Read-address and BLK_EN register select	Low
R_ADDR_EN	Input	Dynamic	Read-address register enable	High
R_ADDR_SL_N	Input	Dynamic	Read-address register synchronous load	Low
R_ADDR_SD	Input	Static	Read-address register synchronous load data	High
R_ADDR_AL_N	Input	Dynamic	Read-address register asynchronous load	Low
R_ADDR_AD_N	Input	Static	Read-address register asynchronous load data	Low
R_DATA[11:0]	Output	Dynamic	Read-data	
R_DATA_BYPASS	Input	Static	Read-data pipeline register select	Low
R_DATA_EN	Input	Dynamic	Read-data pipeline register enable	High
R_DATA_SL_N	Input	Dynamic	Read-data pipeline register synchronous load	Low
R_DATA_SD	Input	Static	Read-data pipeline register synchronous load data	High
R_DATA_AL_N	Input	Dynamic	Read-data pipeline register asynchronous load	Low

Table 21 • Port List for RAM1K20 (Continued)

Pin Name	Pin Direction	Type ¹	Description	Polarity
R_DATA_AD_N	Input	Dynamic	Read-data pipeline register asynchronous load data	Low
BUSY_FB	Input	Static	Lock access to FCB	High
ACCESS_BUSY	Output	Dynamic	Busy signal from FCB	High

Note: Static inputs are defined at design time and need to be tied to 0 or 1.

Read-address and Read-data Pipeline Register Control Signals

Table 22 describes the functionality of the control signals on the R_ADDR and R_DATA registers.

Table 22 • Truth Table for R_ADDR and R_DATA Registers

_AL_N	_AD_N	_BYPAS S	_CLK	_EN	_SL_N	_SD	D	Q _{n+1}
0	ADn	Х	Х	Х	Х	Х	Х	!ADn
1	Х	0	Not rising	Х	Х	Х	Х	Q _n
1	Х	0	1	0	Х	Х	Х	Q _n
1	Х	0	1	1	0	SD	Х	SD
1	Х	0	1	1	1	Х	D	D
1	Х	1	Х	Х	Х	Х	D	D

MACC PA

The MACC_PA macro implements multiplication, multiply-add, and multiply-accumulate functions. The MACC_PA block can accumulate the current multiplication product with a previous result, a constant, a dynamic value, or a result from another MACC_PA block. Each MACC_PA block can also be configured to perform a Dot-product operation. All the signals of the MACC_PA block have optional registers.

Features

The main features of the MACC PA block are as follows:

- Native 18 x 18 signed multiplication and supports 17 x 17 unsigned multiplication.
- Independent third input C of data width 48 bits along with a CARRYIN, optionally registered.
- · Pre-adder of B with an independent fourth input D of data width 18 bits, optionally registered.
- Internal cascade signals (48-bit CDIN and CDOUT) enable cascading of the Math blocks to support larger accumulator, adder, and subtracter without extra logic.
- Normal addition/subtraction: CARRYIN + C[47:0] + E[47:0] ± { (B[17:0] ± D[17:0]) x A[17:0] }.
- Dot product mode: (B[8:0] ± D[8:0]) x A[17:9] ± (B[17:9] ± D[17:9]) x A[8:0].
- SIMD mode for dual independent multiplication of two pairs of 9-bit operands.
- Supports both registered and unregistered inputs and outputs.
- · Arithmetic right-shift by 17 bits of the loopback of CDIN

Figure 60 shows a simplified block diagram of the MACC PA block.

Figure 60 • Simplified Block Diagram of MACC_PA

Port List

Table 23 • MACC_PA Pin Descriptions

Port Name	Direction	Туре	Polarity	Description
DOTP	Input	Static	High	Dot-product mode. When DOTP = 1, MACC_PA block performs Dot- product of two pairs of 9-bit operands. • SIMD must not be 1. • C[8:0] must be connected to CARRYIN.
SIMD	Input	Static	High	SIMD mode. When SIMD = 1, MACC_PA block performs dual independent multiplication of two pairs of 9-bit operands. • DOTP must not be 1. • ARSHF17 must be 0. • D[8:0] must be 0. • C[17:0] must be 0. • E[17:0] must be 0. Refer to Table 24 to see how operand E is obtained from P, CDIN or 0.
OVFL_CARRYOUT _SEL	Input	Static	High	Generate OVERFLOW or CARRYOUT with result P. OVERFLOW when OVFL_CARRYOUT_SEL = 0 CARRYOUT when OVFL_CARRYOUT_SEL = 1
				
СГК	Input	Dynamic	Rising edge	Clock for A, B, C, CARRYIN, D, P, OVFL_CARRYOUT, ARSHFT17, CDIN_FDBK_SEL, PASUB and SUB registers.
AL_N	Input	Dynamic	Low	Asynchronous load for A, B, P, OVFL_CARRYOUT, ARSHFT17, CDIN_FDBK_SEL, PASUB and SUB registers. Connect to 1, if none are registered. When asserted, A, B, P and OVFL_CARRYOUT registers are loaded with zero, while the ARSHFT17, CDIN_FDBK_SEL, PASUB and SUB registers are loaded with the complementary value of the respective _AD_N.
	T	T	T	
A [17:0]	Input	Dynamic	High	Input data A.
A_BYPASS	Input	Static	High	Bypass data A registers. Connect to 1, if not registered. See Table 28.
A_SRST_N	Input	Dynamic	Low	Synchronous reset for data A registers. Connect to 1, if not registered. See Table 28.
A_EN	Input	Dynamic	High	Enable for data A registers. Connect to 1, if not registered. See Table 28.
B [17:0]	Input	Dynamic	High	Input data B to Pre-adder with data D.
B_BYPASS	Input	Static	High	Bypass data B registers. Connect to 1, if not registered. See Table 28.
B_SRST_N	Input	Dynamic	Low	Synchronous reset for data B registers. Connect to 1, if not registered. See Table 28.

Table 23 • MACC_PA Pin Descriptions (Continued)

B_EN	Input	Dynamic	High	Enable for data B registers. Connect to 1, if not registered. See Table 28.
D [17:0]	Input	Dynamic	High	Input data D to Pre-adder with data B. When SIMD = 1, connect D[8:0] to 0.
D_BYPASS	Input	Static	High	Bypass data D registers. Connect to 1, if not registered. See Table 29.
D_ARST_N	Input	Dynamic	Low	Asynchronous reset for data D registers. Connect to 1, if not registered. See Table 29.
D_SRST_N	Input	Dynamic	Low	Synchronous reset for data D registers. Connect to 1, if not registered. See Table 29.
D_EN	Input	Dynamic	High	Enable for data D registers. Connect to 1, if not registered. See Table 29.
CARRYIN	Input	Dynamic	High	CARRYIN for input data C.
C [47:0]	Input	Dynamic	High	Input data C. When DOTP = 1, connect C[8:0] to CARRYIN. When SIMD = 1, connect C[8:0] to 0.
C_BYPASS	Input	Static	High	Bypass CARRYIN and C registers. Connect to 1, if not registered. See Table 29.
C_ARST_N	Input	Dynamic	Low	Asynchronous reset for CARRYIN and C registers. Connect to 1, if not registered. See Table 29.
C_SRST_N	Input	Dynamic	Low	Synchronous reset for CARRYIN and C registers. Connect to 1, if not registered. See Table 29.
C_EN	Input	Dynamic	High	Enable for CARRYIN and C registers. Connect to 1, if not registered. See Table 29.
CDIN [47:0]	Input	Cascade	High	Cascaded input for operand E. The entire bus must be driven by an entire CDOUT of another MACC_PA or MACC_PA_BC_ROM block. In Dot-product mode, the driving CDOUT must also be generated by a MACC_PA or MACC_PA_BC_ROM block in Dot- product mode. Refer to Table 24 to see how CDIN is propagated to operand E.
P [47:0]	Output		High	Result data. See Table 25.
OVFL_CARRYOUT	Output		High	OVERFLOW or CARRYOUT. See Table 26.
P_BYPASS	Input	Static	High	Bypass P and OVFL_CARRYOUT registers. Connect to 1, if not registered. See Table 28. P_BYPASS must be 0 when CDIN_FDBK_SEL[0] = 1. See Table 24.
P_SRST_N	Input	Dynamic	Low	Synchronous reset for P and OVFL_CARRYOUT registers. Connect to 1, if not registered. See Table 28
P_EN	Input	Dynamic	High	Enable for P and OVFL_CARRYOUT registers. Connect to 1, if not registered. See Table 28.

Table 23 • MACC_PA Pin Descriptions (Continued)

Output	Cascade	High	Cascade output of result P. See Table 25. Value of CDOUT is the same as P. The entire bus must either be dangling or drive an entire CDIN of another MACC_PA or MACC_PA_BC_ROM block in cascaded mode.
Input	Dynamic	High	Subtract operation for Pre-adder of B and D.
Input	Static	High	Bypass PASUB register. Connect to 1, if not registered. See Table 27.
Input	Static	Low	Asynchronous load data for PASUB register. See Table 27.
Input	Dynamic	Low	Synchronous load for PASUB register. Connect to 1, if not registered. See Table 27.
Input	Static	Low	Synchronous load data for PASUB register. See Table 27.
Input	Dynamic	High	Enable for PASUB register. Connect to 1, if not registered. See Table 27.
Input	Dynamic	High	Select CDIN, P or 0 for operand E. See Table 24.
Input	Static	High	Bypass CDIN_FDBK_SEL register. Connect to 1, if not registered. See Table 27.
Input	Static	Low	Asynchronous load data for CDIN_FDBK_SEL register. See Table 27.
Input	Dynamic	Low	Synchronous load for CDIN_FDBK_SEL register. Connect to 1, if not registered. See Table 27.
Input	Static	Low	Synchronous load data for CDIN_FDBK_SEL register. See Table 27.
Input	Dynamic	High	Enable for CDIN_FDBK_SEL register. Connect to 1, if not registered. See Table 27.
Input	Dynamic	High	Arithmetic right-shift for operand E. When asserted, a 17-bit arithmetic right-shift is performed on operand E. Refer to Table 24 to see how operand E is obtained from P, CDIN or 0. When SIMD = 1, ARSHFT17 must be 0.
Input	Static	High	Bypass ARSHFT17 register. Connect to 1, if not registered. See Table 27.
Input	Static	Low	Asynchronous load data for ARSHFT17 register. See Table 27.
Input	Dynamic	Low	Synchronous load for ARSHFT17 register. Connect to 1, if not registered. See Table 27.
Input	Static	Low	Synchronous load data for ARSHFT17 register. See Table 27.
Input	Dynamic	High	Enable for ARSHFT17 register. Connect to 1, if not registered. See Table 27.
Input	Dynamic	High	Subtract operation.
	Input	Input Dynamic Input Static Input Static Input Dynamic Input Static Input Dynamic Input Dynamic Input Static Input Static Input Static Input Static Input Dynamic Input Dynamic Input Dynamic Input Static Input Dynamic Input Static Input Dynamic Input Static Input Dynamic Input Dynamic Input Static Input Dynamic Input Static Input Static Input Static Input Static Input Static Input Static Input Dynamic	Input Dynamic High Input Static High Input Static Low Input Dynamic Low Input Dynamic High Input Dynamic High Input Static High Input Static Low Input Static Low Input Static Low Input Dynamic Low Input Dynamic Low Input Dynamic High Input Static Low Input Dynamic High Input Static Low Input Dynamic High Input Dynamic High Input Static Low Input Dynamic High Input Static Low Input Dynamic Low Input Dynamic Low Input Dynamic Low Input Static Low Input Dynamic High

Table 23 • MACC_PA Pin Descriptions (Continued)

SUB_BYPASS	Input	Static	High	Bypass SUB register. Connect to 1, if not registered. See Table 27.
SUB_AD_N	Input	Static	Low	Asynchronous load data for SUB register. See Table 27
SUB_SL_N	Input	Dynamic	Low	Synchronous load for SUB register. Connect to 1, if not registered. See Table 27.
SUB_SD_N	Input	Static	Low	Synchronous load data for SUB register. See Table 27.
SUB_EN	Input	Dynamic	High	Enable for SUB register. Connect to 1, if not registered. See Table 27.

Note: Static inputs are defined at design time and need to be tied to 0 or 1.

Table 24 • Truth Table—Propagating Data to Operand E

CDIN_FDBK_SEL[1]	CDIN_FDBK_SEL[0]	ARSHFT17	Operand E
0	0	Х	48'b0
0	1	0	P[47:0]
0	1	1	{{17{P[47]}},P[47:17]}
1	X	0	CDIN[47:0]
1	X	1	{{17{CDIN[47]}},CDIN[47:17]}

Table 25 • Truth Table - Computation of Result P and CDOUT

SIMD	DOTP	SUB	PASUB	Result P and CDOUT
0	0	0	0	CARRYIN + C[47:0] + E[47:0] + { (B[17:0] + D[17:0]) x A[17:0] }
0	0	0	1	CARRYIN + C[47:0] + E[47:0] + { (B[17:0] - D[17:0]) x A[17:0] }
0	0	1	0	CARRYIN + C[47:0] + E[47:0] - { (B[17:0] + D[17:0]) x A[17:0] }
0	0	1	1	CARRYIN + C[47:0] + E[47:0] - { (B[17:0] - D[17:0]) x A[17:0] }
0	1	0	0	CARRYIN + C[47:0] + E[47:0] + { (B[8:0] + D[8:0]) x A[17:9] + (B[17:9] + D[17:9]) x A[8:0] } x 29
0	1	0	1	CARRYIN + C[47:0] + E[47:0] + { (B[8:0] - D[8:0]) x A[17:9] + (B[17:9] - D[17:9]) x A[8:0] } x 29
0	1	1	0	CARRYIN + C[47:0] + E[47:0] + { (B[8:0] + D[8:0]) x A[17:9] - (B[17:9] + D[17:9]) x A[8:0] } x 29
0	1	1	1	CARRYIN + C[47:0] + E[47:0] + { (B[8:0] - D[8:0]) x A[17:9] - (B[17:9] - D[17:9]) x A[8:0] } x 29
1	0	0	0	P[17:0] = CARRYIN + { B[8:0] x A[8:0] } P[47:18] = C[47:18] + E[47:18] + { (B[17:9] + D[17:9]) x A[17:9] }

Table 25 • Truth Table - Computation of Result P and CDOUT (Continued)

1	0	0	1	P[17:0] = CARRYIN + { B[8:0] x A[8:0] } P[47:18] = C[47:18] + E[47:18] + { (B[17:9] - D[17:9]) x A[17:9] }
1	0	1	0	P[17:0] = CARRYIN + { B[8:0] x A[8:0] } P[47:18] = C[47:18] + E[47:18] - { (B[17:9] + D[17:9]) x A[17:9] }
1	0	1	1	P[17:0] = CARRYIN + { B[8:0] x A[8:0] } P[47:18] = C[47:18] + E[47:18] - { (B[17:9] - D[17:9]) x A[17:9] }

Table 26 • Truth Table - Computation of OVFL_CARRYOUT

OVFL_CARRYOUT_SEL OVFL_CARRYOUT		Description		
0	(SUM[49] ^ SUM[48]) (SUM[48] ^ SUM[47])	True if overflow or underflow occurred.		
1	C[47] ^ E[47] ^ SUM[48]	A signal that can be used to extend the final adder in the fabric.		

Note: SUM[49:0] is defined similarly to P[47:0] as shown in Table 25, except that SUM is a 50-bit quantity so that no overflow can occur. SUM[48] is the carry out bit of a 48-bit final adder producing P[47:0].

Table 27 • Truth Table for Control Registers ARSHFT17, CDIN_FDBK_SEL, PASUB and SUB

AL_	_AD_N	_BYPASS	CLK	_EN	_SL_N	_SD_N	D	Qn+1
0	AD_N	0	Х	Х	Х	Х	Х	!AD_
1	Х	0	Not rising	Х	Х	Х	Х	Qn
1	Х	0	↑	0	Х	Х	Х	Qn
1	Х	0	↑	1	0	SD_N	Х	!SD_
1	Х	0	↑	1	1	Х	D	D
Х	Х	1	X	0	Х	Х	Х	Qn
Х	Х	1	Х	1	0	SD_N	Х	!SD_
Х	Х	1	X	1	1	Х	D	D

Table 28 • Truth Table - Data Registers A, B, P and OVFL_CARRYOUT

AL_N	_BYPASS	CLK	_EN	_SRST_N	D	Qn+1
0	0	X	Х	Х	Х	0
1	0	Not rising	Х	Х	Х	Qn
1	0	↑	0	Х	Х	Qn
1	0	↑	1	0	Х	0
1	0	1	1	1	D	D

Table 28 • Truth Table - Data Registers A, B, P and OVFL_CARRYOUT (Continued)

>	(1	Х	0	X	Х	Qn
>	(1	Х	1	0	Х	0
>	(1	X	1	1	D	D

Table 29 • Truth Table - Data Registers C, CARRYIN and D

_ARST_N	_BYPASS	CLK	_EN	_SRST_N	D	Qn+1
0	0	X	Х	Х	Х	0
1	0	Not rising	Х	Х	Х	Qn
1	0	↑	0	Х	Х	Qn
1	0	↑	1	0	Х	0
1	0	↑	1	1	D	D
Х	1	X	0	Х	Х	Qn
Х	1	X	1	0	Х	0
Х	1	Х	1	1	D	D

MACC PA BC ROM

The MACC_PA_BC_ROM macro extends the functionality of the MACC_PA macro to provide a 16x18 ROM at the A input along with a pipelined output of B for cascading.

Features

The additional features of the MACC_PA_BC_ROM block are as follows:

- Selection of the A input from a 16x18 ROM.
- · Additional pipelining of the B input for cascading to the next Math block or output to the fabric.
- Due to routing bandwidth limitations, either result P or B2 output can be used in the same MACC_PA_BC_ROM block.

Figure 61 shows a simplified block diagram of the MACC_PA_BC_ROM block.

Figure 61 • Simplified Block Diagram of MACC_PA

Parameters

There is one parameter, INIT, to hold the 16x18 ROM content as a linear array. The first 18 bits is word 0, the next 18 bits is word 1, and so on.

Table 30 • MACC_PA_BC_ROM Parameter Descriptions

Parameter	Dimensions	Description
INIT	parameter [287:0] INIT = { 18'h0, 18'h0 };	16x18 ROM content specified in Verilog
INIT	generic map(INIT => (B"00_0000_0000_0000_0000"& B"00_0000_0000_0000_0000"& B"00_0000_0000_00000_0000"& B"00_0000_0000_00000"& B"00_0000_0000_00000"& B"00_0000_0000_000000000000000000000000	16x18 ROM content specified in VHDL

Port List

Table 31 • MACC_PA_BC_ROM Pin Descriptions

Port Name	Direction	Туре	Polarity	Description
DOTP	Input	Static	High	Dot-product mode. When DOTP = 1, MACC_PA_BC_ROM block performs Dot-product of two pairs of 9-bit operands. • SIMD must not be 1. • C[8:0] must be connected to CARRYIN.
SIMD	Input	Static	High	SIMD mode. When SIMD = 1, MACC_PA_BC_ROM block performs dual independent multiplication of two pairs of 9-bit operands. • DOTP must not be 1. • ARSHF17 must be 0. • D[8:0] must be 0. • C[17:0] must be 0. • E[17:0] must be 0. Refer to Table 24 to see how operand E is obtained from P, CDIN or 0.
OVFL_CARRYOUT_ SEL	Input	Static	High	Generate OVERFLOW or CARRYOUT with result P. • OVERFLOW when OVFL_CARRYOUT_SEL = 0 • CARRYOUT when OVFL_CARRYOUT_SEL = 1
	<u> </u>			
CLK	Input	Dynamic	Rising edge	Clock for A, B, C, CARRYIN, D, P, OVFL_CARRYOUT, ARSHFT17, CDIN_FDBK_SEL, PASUB and SUB registers.
AL_N	Input	Dynamic	Low	Asynchronous load for A, B, B2, P, OVFL_CARRYOUT, ARSHFT17, CDIN_FDBK_SEL, PASUB and SUB registers. Connect to 1, if none are registered. When asserted, A, B, P and OVFL_CARRYOUT registers are loaded with zero, while the ARSHFT17, CDIN_FDBK_SEL, PASUB and SUB registers are loaded with the complementary value of the respective _AD_N.
				<u> </u>
USE_ROM	Input	Static (virtual)	High	Selection for operand A. • When USE_ROM = 0, select input data A. • When USE_ROM = 1, select ROM data at ROM_ADDR.
ROM_ADDR[3:0]	Input	Dynamic	High	Address of ROM data for operand A when USE_ROM = 1.
A [17:0]	Input	Static	High	Input data for operand A when USE_ROM = 0.
A_BYPASS	Input	Dynamic	High	Bypass data A registers. Connect to 1, if not registered. See Table 28.
A_SRST_N	Input	Dynamic	Low	Synchronous reset for data A registers. Connect to 1, if not registered. See Table 28.

Table 31 • MACC_PA_BC_ROM Pin Descriptions (Continued)

				I .
CARRYIN	Input	Dynamic	High	CARRYIN for input data C.
D_EN	Input	Dynamic	High	Enable for data D registers. Connect to 1, if not registered. See Table 29.
D_SRST_N	Input	Dynamic	Low	Synchronous reset for data D registers. Connect to 1, if not registered. See Table 29.
D_ARST_N	Input	Dynamic	Low	Asynchronous reset for data D registers. Connect to 1, if not registered. See Table 29
D_BYPASS	Input	Static	High	Bypass data D registers. Connect to 1, if not registered. See Table 29
D [17:0]	Input	Dynamic	High	Input data D to Pre-adder with data B. When SIMD = 1, connect D[8:0] to 0.
BCOUT [17:0]	Output	Cascade	High	B2. The entire bus must either be dangling or drive an entire B input of another MACC_PA or MACC_PA_BC_ROM block.
				Cascade output of B2. Value of BCOUT is the same as
B2_EN	Input	Dynamic	High	Enable for data B2 registers. Connect to 1, if not registered. See Table 28.
B2_SRST_N	Input	Dynamic	Low	Synchronous reset for data B2 registers. Connect to 1, if not registered. See Table 28.
B2_BYPASS	Input	Static	High	Bypass data B2 registers. Connect to 1, if not registered. See Table 28.
B2 [17:0]	Output	Dynamic	High	Pipelined output of input data B. Result P should be floating when B2 is used.
B_EN	Input	Dynamic	High	Enable for data B registers. Connect to 1, if not registered. See Table 28.
B_SRST_N	Input	Dynamic	Low	Synchronous reset for data B registers. Connect to 1, if not registered. See Table 28.
B_BYPASS	Input	Static	High	Bypass data B registers. Connect to 1, if not registered. See Table 28.
B[17:0]	Input	Dynamic	High	Input data B to Pre-adder with data D.
A_EN	Input	Dynamic	High	Enable for data A registers. Connect to 1, if not registered. See Table 28.

Table 31 • MACC_PA_BC_ROM Pin Descriptions (Continued)

6[47.0]				Input data C.
C [47:0]	Input	Dynamic	High	When DOTP = 1, connect C[8:0] to CARRYIN. When SIMD = 1, connect C[8:0] to 0.
C_BYPASS	Input	Static	High	Bypass CARRYIN and C registers. Connect to 1, if not registered. See Table 29.
C_ARST_N	Input	Dynamic	Low	Asynchronous reset for CARRYIN and C registers. Connect to 1, if not registered. See Table 29
C_SRST_N	Input	Dynamic	Low	Synchronous reset for CARRYIN and C registers. Connect to 1, if not registered. See Table 29.
C_EN	Input	Dynamic	High	Enable for CARRYIN and C registers. Connect to 1, if not registered. See Table 29.
CDIN [47:0]	Input	Cascade	High	Cascaded input for operand E. The entire bus must be driven by an entire CDOUT of another MACC_PA or MAC_PA_BC_ROM block. In Dot-product mode, the driving CDOUT must also be generated by a MACC_PA or MAC_PA_BC_ROM block in Dot-product mode. Refer to Table 24 to see how CDIN is propagated to operand E.
	T			
P [47:0]	Output		High	Result data. See Table 25. B2 output should be floating when P is used.
OVFL_CARRYOUT	Output		High	OVERFLOW or CARRYOUT. See Table 26.
P_BYPASS	Input	Static	High	Bypass P and OVFL_CARRYOUT registers. Connect to 1, if not registered. See Table 28. P_BYPASS must be 0 when CDIN_FDBK_SEL[0] = 1. See Table 24.
P_SRST_N	Input	Dynamic	Low	Synchronous reset for P and OVFL_CARRYOUT registers. Connect to 1, if not registered. See Table 28.
P_EN	Input	Dynamic	High	Enable for P and OVFL_CARRYOUT registers. Connect to 1, if not registered. See Table 28.
	T			1
CDOUT [47:0]	Output	Cascade	High	Cascade output of result P. See Table 25. Value of CDOUT is the same as P. The entire bus must either be dangling or drive an entire CDIN of another MACC_PA or MAC_PA_BC_ROM block in cascaded mode.
	T	<u>, </u>		
PASUB	Input	Dynamic	High	Subtract operation for Pre-adder of B and D.
PASUB_BYPASS	Input	Static	High	Bypass PASUB register. Connect to 1, if not registered. See Table 27.

Table 31 • MACC_PA_BC_ROM Pin Descriptions (Continued)

PASUB_AD_N	Input	Static	Low	Asynchronous load data for PASUB register. See Table 27.
PASUB_SL_N	Input	Dynamic	Low	Synchronous load for PASUB register. Connect to 1, if not registered. See Table 27.
PASUB_SD_N	Input	Static	Low	Synchronous load data for PASUB register. See Table 27.
PASUB_EN	Input	Dynamic	High	Enable for PASUB register. Connect to 1, if not registered. See Table 27.
CDIN_FDBK_SEL[1: 0]	Input	Dynamic	High	Select CDIN, P or 0 for operand E. See Table 24.
CDIN_FDBK_SEL_B YPASS	Input	Static	High	Select CDIN, P or 0 for operand E. See Table 24.
CDIN_FDBK_SEL_A D_N [1:0]	Input	Static	Low	Asynchronous load data for CDIN_FDBK_SEL register. See Table 27.
CDIN_FDBK_SEL_S L_N	Input	Dynamic	Low	Synchronous load for CDIN_FDBK_SEL register. Connect to 1, if not registered. See Table 27.
CDIN_FDBK_SEL_S D_N [1:0]	Input	Static	Low	Synchronous load data for CDIN_FDBK_SEL register. See Table 27.
CDIN_FDBK_SEL_E N	Input	Dynamic	High	Enable for CDIN_FDBK_SEL register. Connect to 1, if not registered. See Table 27.
ARSHFT17	Input	Dynamic	High	Arithmetic right-shift for operand E. When asserted, a 17-bit arithmetic right-shift is performed on operand E. Refer to Table 24 to see how operand E is obtained from P, CDIN or 0. When SIMD = 1, ARSHFT17 must be 0.
ARSHFT17_BYPASS	Input	Static	High	Bypass ARSHFT17 register. Connect to 1, if not registered. See Table 27.
ARSHFT17_AD_N	Input	Static	Low	Asynchronous load data for ARSHFT17 register. See Table 27.
ARSHFT17_SL_N	Input	Dynamic	Low	Synchronous load for ARSHFT17 register. Connect to 1, if not registered. See Table 27.
ARSHFT17_SD_N	Input	Static	Low	Synchronous load data for ARSHFT17 register. See Table 27.
ARSHFT17_EN	Input	Dynamic	High	Enable for ARSHFT17 register. Connect to 1, if not registered. See Table 27.
SUB	Input	Dynamic	High	Subtract operation.

Table 31 • MACC_PA_BC_ROM Pin Descriptions (Continued)

SUB_BYPASS	Input	Static	High	Bypass SUB register. Connect to 1, if not registered. See Table 27.
SUB_AD_N	Input	Static	Low	Asynchronous load data for SUB register. See Table 27.
SUB_SL_N	Input	Dynamic	Low	Synchronous load for SUB register. Connect to 1, if not registered. Table 27.
SUB_SD_N	Input	Static	Low	Synchronous load data for SUB register. See Table 27.
SUB_EN	Input	Dynamic	High	Enable for SUB register. Connect to 1, if not registered. See Table 27.

Note: Static inputs are defined at design time and need to be tied to 0 or 1.

A - Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call **800.262.1060**From the rest of the world, call **650.318.4460**Fax, from anywhere in the world, **650.318.8044**

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support.

Website

You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office.

Visit About Us for sales office listings and corporate contacts.

Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select **Yes** in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.