Aalberg Audio

EMC TEST REPORT FOR

Wireless Guitar Equipment
Models: EKKO EK-1 and AERO AE-1

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207 & 15.249

Report No.: 96887-5

Date of issue: August 11, 2015

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 80 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	
Report Authorization	
Test Facility Information	2
Software Versions	2
Site Registration & Accreditation Information	
Summary of Results	
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	6
FCC Part 15 Subpart C	5
15.207 AC Conducted Emissions	
15.215(c) -20dB Bandwidth	25
15.249(a) Field Strength of Fundamental	
15.31(e) Voltage Variation	
15.249(a)&(d) Radiated Spurious Emissions / Band Edge	54
Supplemental Information	79
Emissions Test Details	70

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Aalberg Audio Terri Rayle

Postboks 645 CKC Laboratories, Inc.
Norway 5046 Sierra Pines Drive
Mariposa, CA 95338

REPRESENTATIVE: Rune Aalberg Alstad Project Number: 96887

DATE OF EQUIPMENT RECEIPT: August 4, 2015 **DATE(S) OF TESTING:** August 4-5, 2015

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Stew 7 Be

Page 3 of 80 Report No.: 96887-5

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.02.00
EMITest Immunity	5.02.00

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Brea D	US0060	SL2-IN-E-1146R	3082D-2	100638	A-0147

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Test Procedure	Description	Modifications	Results
15.207	AC Conducted Emissions	NA	Pass
15.215(c)	-20dB Bandwidth	NA	Pass
15.249(a)	Field Strength of Fundamental	NA	Pass
15.31(e)	Voltage Variation	NA	Pass
15.249(a)&(d)	Field Strength of Spurious Emissions / Band Edge	NA	Pass

NA = Not applicable.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

in the first of the first meaning that the equipment dating testing.
Summary of Conditions
No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions		
None		

Page 5 of 80 Report No.: 96887-5

EQUIPMENT UNDER TEST (EUT)

The following model has been tested by CKC Laboratories: Wireless Guitar Equipment

Models: EKKO EK-1 AERO AE-1

The manufacturer states that the following additional models are identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they meet the level of testing equivalent to the tested models.

ROM RO-1 TRYM TR-1 KOR KO-1 FLNG FL-1

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
Wireless Guitar Equipment	Aalberg Audio	EKKO EK-1	1510010033

Support Equipment:

Transfer to the second				
Device	Manufacturer	Model #	S/N	
Power Supply	Xantrex	XTS 30-2X	58738	

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
Wireless Guitar Equipment	Aalberg Audio	AERO AE-1	1510020051

Support Equipment:

Device	Manufacturer	Model #	S/N
USB charger	Generic	TGR-025	8110 123 0176

Configuration 3

Equipment Tested:

Device	Manufacturer	Model #	S/N
Wireless Guitar Equipment	Aalberg Audio	AERO AE-1	1510020051

Support Equipment:

Device	Manufacturer	Model #	S/N
USB charger	Samsung	EP-TA20JWE	R37G2EZOML1RT3

Page 6 of 80 Report No.: 96887-5

FCC PART 15 SUBPART C

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: 15.207 AC Mains - Average

Work Order #: 96887 Date: 8/5/2015
Test Type: Conducted Emissions Time: 1:28:21 PM

Tested By: Don Nguyen Sequence#: 2

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The EUT is placed flat on the wooden table as intended in normal application.

All I/O ports of the EUT are connected to section of unterminated 1/4" TRS audio cables.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is powered by 9V power supply.

The manufacturer declares that the EUT is not marketed with power supply.

Operating frequency = 2.400-2.4835 GHz

Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)

The EUT is set to continuously transmit at low CH 2.402GHz

Frequency range of measurement = 150kHz-30MHz

0.15MHz to 30MHz RBW=VBW=9kHz

Test environment conditions:

Temperature: 25°C Relative Humidity: 47%

Pressure: 100kPa

Site D

Test Method: ANSI C63.4 (2009)

Data represents worst case emission.

Page 7 of 80 Report No.: 96887-5

CKC Laboratories, Inc. Date: 8/5/2015 Time: 1:28:21 PM Aalberg Audio WO#: 96887 15.207 AC Mains - Average Test Lead: L1 120V 60Hz Sequence#: 2 Ext ATTN: 0 dB

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01910	Cable	RG-142	1/8/2014	1/8/2016
T2	AN00969A	50uH LISN-Line 1 (L1) (dB)	3816/2NM	3/12/2015	3/12/2017
	AN00969A	50uH LISN-Line 2 (L2) (dB)	3816/2NM	3/12/2015	3/12/2017
	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016
Т3	AN02343	High Pass Filter	HE9615-150K- 50-720B	1/8/2015	1/8/2017
T4	ANP06084	Attenuator	SA18N10W-06	12/17/2014	12/17/2016

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				a: LI	Test Lea			ırgin.	ted by ma	eading lis	Re	Measurement Data: # Freq F	
1 16.094M 37.3 +0.3 +0.5 +0.2 +5.7 +0.0 44.0 50.0 -6.0 2 15.977M 37.1 +0.3 +0.5 +0.2 +5.7 +0.0 43.8 50.0 -6.2 3 16.625M 37.1 +0.3 +0.5 +0.2 +5.7 +0.0 43.8 50.0 -6.2 4 16.373M 36.5 +0.3 +0.5 +0.2 +5.7 +0.0 43.2 50.0 -6.8 5 15.932M 36.2 +0.3 +0.5 +0.2 +5.7 +0.0 42.9 50.0 -7.1 6 16.319M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 7 16.544M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 8 16.725M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.7 10 15.616M 35.3 +0.3 +0.5 +0	Polar	ı F	Margin		Corr						Rdng		#
2 15.977M 37.1 +0.3 +0.5 +0.2 +5.7 +0.0 43.8 50.0 -6.2 3 16.625M 37.1 +0.3 +0.5 +0.2 +5.7 +0.0 43.8 50.0 -6.2 4 16.373M 36.5 +0.3 +0.5 +0.2 +5.7 +0.0 43.2 50.0 -6.8 5 15.932M 36.2 +0.3 +0.5 +0.2 +5.7 +0.0 42.9 50.0 -7.1 6 16.319M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 7 16.544M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 8 16.725M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 9 16.202M 35.6 +0.3 +0.5 +0.2 +5.7 +0.0 42.3 50.0 -7.7 10 15.616M 35.3 +0.3 +0.5 +0	Ant		dB	dΒμV	dΒμV	Table	dB			dB	$dB\mu V$	MHz	
3 16.625M 37.1 +0.3 +0.5 +0.2 +5.7 +0.0 43.8 50.0 -6.2 4 16.373M 36.5 +0.3 +0.5 +0.2 +5.7 +0.0 43.2 50.0 -6.8 5 15.932M 36.2 +0.3 +0.5 +0.2 +5.7 +0.0 42.9 50.0 -7.1 6 16.319M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 7 16.544M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 8 16.725M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 9 16.202M 35.6 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.7 10 15.616M 35.3 +0.3 +0.5 +0.2 +5.7 +0.0 42.0 50.0 -8.0 11 15.959M 35.1 +0.3 +0.5 +	L1		-6.0	50.0	44.0	+0.0	+5.7	+0.2	+0.5	+0.3	37.3	16.094M	1
4 16.373M 36.5 +0.3 +0.5 +0.2 +5.7 +0.0 43.2 50.0 -6.8 5 15.932M 36.2 +0.3 +0.5 +0.2 +5.7 +0.0 42.9 50.0 -7.1 6 16.319M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 7 16.544M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 8 16.725M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 9 16.202M 35.6 +0.3 +0.5 +0.2 +5.7 +0.0 42.3 50.0 -7.7 10 15.616M 35.3 +0.3 +0.5 +0.2 +5.7 +0.0 42.0 50.0 -8.0 11 15.959M 35.1 +0.3 +0.5 +0.2 +5.7 +0.0 41.8 50.0 -8.2	L1		-6.2	50.0	43.8	+0.0	+5.7	+0.2	+0.5	+0.3	37.1	15.977M	2
5 15.932M 36.2 +0.3 +0.5 +0.2 +5.7 +0.0 42.9 50.0 -7.1 6 16.319M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 7 16.544M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 8 16.725M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 9 16.202M 35.6 +0.3 +0.5 +0.2 +5.7 +0.0 42.3 50.0 -7.7 10 15.616M 35.3 +0.3 +0.5 +0.2 +5.7 +0.0 42.0 50.0 -8.0 11 15.959M 35.1 +0.3 +0.5 +0.2 +5.7 +0.0 41.8 50.0 -8.2	L1		-6.2	50.0	43.8	+0.0	+5.7	+0.2	+0.5	+0.3	37.1	16.625M	3
6 16.319M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 7 16.544M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 8 16.725M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 9 16.202M 35.6 +0.3 +0.5 +0.2 +5.7 +0.0 42.3 50.0 -7.7 10 15.616M 35.3 +0.3 +0.5 +0.2 +5.7 +0.0 42.0 50.0 -8.0 11 15.959M 35.1 +0.3 +0.5 +0.2 +5.7 +0.0 41.8 50.0 -8.2	L1		-6.8	50.0	43.2	+0.0	+5.7	+0.2	+0.5	+0.3	36.5	16.373M	4
7 16.544M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 8 16.725M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 9 16.202M 35.6 +0.3 +0.5 +0.2 +5.7 +0.0 42.3 50.0 -7.7 10 15.616M 35.3 +0.3 +0.5 +0.2 +5.7 +0.0 42.0 50.0 -8.0 11 15.959M 35.1 +0.3 +0.5 +0.2 +5.7 +0.0 41.8 50.0 -8.2	L1		-7.1	50.0	42.9	+0.0	+5.7	+0.2	+0.5	+0.3	36.2	15.932M	5
8 16.725M 35.9 +0.3 +0.5 +0.2 +5.7 +0.0 42.6 50.0 -7.4 9 16.202M 35.6 +0.3 +0.5 +0.2 +5.7 +0.0 42.3 50.0 -7.7 10 15.616M 35.3 +0.3 +0.5 +0.2 +5.7 +0.0 42.0 50.0 -8.0 11 15.959M 35.1 +0.3 +0.5 +0.2 +5.7 +0.0 41.8 50.0 -8.2	L1		-7.4	50.0	42.6	+0.0	+5.7	+0.2	+0.5	+0.3	35.9	16.319M	6
9 16.202M 35.6 +0.3 +0.5 +0.2 +5.7 +0.0 42.3 50.0 -7.7 10 15.616M 35.3 +0.3 +0.5 +0.2 +5.7 +0.0 42.0 50.0 -8.0 11 15.959M 35.1 +0.3 +0.5 +0.2 +5.7 +0.0 41.8 50.0 -8.2	L1		-7.4	50.0	42.6	+0.0	+5.7	+0.2	+0.5	+0.3	35.9	16.544M	7
10 15.616M 35.3 +0.3 +0.5 +0.2 +5.7 +0.0 42.0 50.0 -8.0 11 15.959M 35.1 +0.3 +0.5 +0.2 +5.7 +0.0 41.8 50.0 -8.2	L1		-7.4	50.0	42.6	+0.0	+5.7	+0.2	+0.5	+0.3	35.9	16.725M	8
11 15.959M 35.1 +0.3 +0.5 +0.2 +5.7 +0.0 41.8 50.0 -8.2	L1		-7.7	50.0	42.3	+0.0	+5.7	+0.2	+0.5	+0.3	35.6	16.202M	9
	L1		-8.0	50.0	42.0	+0.0	+5.7	+0.2	+0.5	+0.3	35.3	15.616M	10
12 16 227M 24 9 10 2 10 5 10 2 15 7 10 0 41 5 50 0 9 5	L1		-8.2	50.0	41.8	+0.0	+5.7	+0.2	+0.5	+0.3	35.1	15.959M	11
12 10.55/W 54.8 ±0.5 ±0.5 ±0.2 ±5.7 ±0.0 41.5 50.0 -8.5	L1		-8.5	50.0	41.5	+0.0	+5.7	+0.2	+0.5	+0.3	34.8	16.337M	12
13 16.274M 34.4 +0.3 +0.5 +0.2 +5.7 +0.0 41.1 50.0 -8.9	L1		-8.9	50.0	41.1	+0.0	+5.7	+0.2	+0.5	+0.3	34.4	16.274M	13
14 16.598M 34.3 +0.3 +0.5 +0.2 +5.7 +0.0 41.0 50.0 -9.0	L1		-9.0	50.0	41.0	+0.0	+5.7	+0.2	+0.5	+0.3	34.3	16.598M	14
15 15.688M 34.0 +0.3 +0.5 +0.2 +5.7 +0.0 40.7 50.0 -9.3	L1		-9.3	50.0	40.7	+0.0	+5.7	+0.2	+0.5	+0.3	34.0	15.688M	15
16 16.770M 33.8 +0.3 +0.5 +0.2 +5.7 +0.0 40.5 50.0 -9.5	L1		-9.5	50.0	40.5	+0.0	+5.7	+0.2	+0.5	+0.3	33.8	16.770M	16
17 16.743M 33.1 +0.3 +0.5 +0.2 +5.7 +0.0 39.8 50.0 -10.2	L1		-10.2	50.0	39.8	+0.0	+5.7	+0.2	+0.5	+0.3	33.1	16.743M	17
18 15.743M 32.8 +0.3 +0.5 +0.2 +5.7 +0.0 39.5 50.0 -10.5	L1		-10.5	50.0	39.5	+0.0	+5.7	+0.2	+0.5	+0.3	32.8	15.743M	18

19	16.166M	32.0	+0.3	+0.5	+0.2	+5.7	+0.0	38.7	50.0	-11.3	L1
20	14.139M	29.0	+0.3	+0.4	+0.1	+5.7	+0.0	35.5	50.0	-14.5	L1
21	14.121M	28.2	+0.3	+0.4	+0.1	+5.7	+0.0	34.7	50.0	-15.3	L1
22	18.175M	26.6	+0.4	+0.6	+0.2	+5.7	+0.0	33.5	50.0	-16.5	L1
23	18.472M	26.0	+0.4	+0.6	+0.2	+5.7	+0.0	32.9	50.0	-17.1	L1
24	13.571M	26.0	+0.3	+0.4	+0.1	+5.7	+0.0	32.5	50.0	-17.5	L1
25	19.625M	25.3	+0.4	+0.6	+0.2	+5.7	+0.0	32.2	50.0	-17.8	L1
26	13.409M	25.6	+0.3	+0.4	+0.1	+5.7	+0.0	32.1	50.0	-17.9	L1
27	13.292M	24.8	+0.3	+0.4	+0.1	+5.7	+0.0	31.3	50.0	-18.7	L1
28	20.643M	24.3	+0.4	+0.7	+0.2	+5.7	+0.0	31.3	50.0	-18.7	L1
29	19.688M	24.1	+0.4	+0.6	+0.2	+5.7	+0.0	31.0	50.0	-19.0	L1
30	13.238M	24.0	+0.3	+0.4	+0.1	+5.7	+0.0	30.5	50.0	-19.5	L1

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: 15.207 AC Mains - Average

Work Order #: 96887 Date: 8/5/2015
Test Type: Conducted Emissions Time: 1:31:35 PM

Tested By: Don Nguyen Sequence#: 3

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The EUT is placed flat on the wooden table as intended in normal application.

All I/O ports of the EUT are connected to section of unterminated 1/4" TRS audio cables.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is powered by 9V power supply.

The manufacturer declares that the EUT is not marketed with power supply.

Operating frequency = 2.400-2.4835 GHz

Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)

The EUT is set to continuously transmit at low CH 2.402GHz

Frequency range of measurement = 150kHz-30MHz

0.15MHz to 30MHz RBW=VBW=9kHz

Test environment conditions:

Temperature: 25°C Relative Humidity: 47%

Pressure: 100kPa

Site D Test Method: ANSI C63.4 (2009)

Data represents worst case emission.

Page 11 of 80 Report No.: 96887-5

CKC Laboratories, Inc. Date: 8/5/2015 Time: 1:31:35 PM Aalberg Audio WO#: 96887 15.207 AC Mains - Average Test Lead: L2 120V 60Hz Sequence#: 3 Ext ATTN: 0 dB

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01910	Cable	RG-142	1/8/2014	1/8/2016
	AN00969A	50uH LISN-Line 1 (L1) (dB)	3816/2NM	3/12/2015	3/12/2017
T2	AN00969A	50uH LISN-Line 2 (L2) (dB)	3816/2NM	3/12/2015	3/12/2017
	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016
Т3	AN02343	High Pass Filter	HE9615-150K- 50-720B	1/8/2015	1/8/2017
T4	ANP06084	Attenuator	SA18N10W-06	12/17/2014	12/17/2016

Measur	ement Data:	Re	ading lis	ted by ma	argin.			Test Lead	d: L2		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBμV	dB	dB	dB	dB	Table	dBμV	dBμV	dB	Ant
1	16.553M	41.0	+0.3	+0.6	+0.2	+5.7	+0.0	47.8	50.0	-2.2	L2
2	16.382M	40.6	+0.3	+0.6	+0.2	+5.7	+0.0	47.4	50.0	-2.6	L2
3	16.824M	40.6	+0.3	+0.6	+0.2	+5.7	+0.0	47.4	50.0	-2.6	L2
4	16.869M	40.1	+0.3	+0.6	+0.2	+5.7	+0.0	46.9	50.0	-3.1	L2
5	16.472M	39.9	+0.3	+0.6	+0.2	+5.7	+0.0	46.7	50.0	-3.3	L2
6	17.004M	39.6	+0.3	+0.6	+0.2	+5.7	+0.0	46.4	50.0	-3.6	L2
7	16.427M	39.5	+0.3	+0.6	+0.2	+5.7	+0.0	46.3	50.0	-3.7	L2
8	15.950M	39.0	+0.3	+0.6	+0.2	+5.7	+0.0	45.8	50.0	-4.2	L2
9	16.643M	38.7	+0.3	+0.6	+0.2	+5.7	+0.0	45.5	50.0	-4.5	L2
10	15.878M	38.5	+0.3	+0.6	+0.2	+5.7	+0.0	45.3	50.0	-4.7	L2
11	16.625M	38.4	+0.3	+0.6	+0.2	+5.7	+0.0	45.2	50.0	-4.8	L2
12	16.310M	38.3	+0.3	+0.6	+0.2	+5.7	+0.0	45.1	50.0	-4.9	L2
13	16.103M	38.1	+0.3	+0.6	+0.2	+5.7	+0.0	44.9	50.0	-5.1	L2
14	15.770M	38.0	+0.3	+0.5	+0.2	+5.7	+0.0	44.7	50.0	-5.3	L2
15	16.238M	37.6	+0.3	+0.6	+0.2	+5.7	+0.0	44.4	50.0	-5.6	L2
16	15.517M	36.8	+0.3	+0.5	+0.2	+5.7	+0.0	43.5	50.0	-6.5	L2
17	16.220M	36.7	+0.3	+0.6	+0.2	+5.7	+0.0	43.5	50.0	-6.5	L2
18	16.013M	36.6	+0.3	+0.6	+0.2	+5.7	+0.0	43.4	50.0	-6.6	L2

19	16.130M	36.0	+0.3	+0.6	+0.2	+5.7	+0.0	42.8	50.0	-7.2	L2
20	15.697M	35.8	+0.3	+0.5	+0.2	+5.7	+0.0	42.5	50.0	-7.5	L2
21	15.842M	35.5	+0.3	+0.6	+0.2	+5.7	+0.0	42.3	50.0	-7.7	L2
22	15.652M	35.2	+0.3	+0.5	+0.2	+5.7	+0.0	41.9	50.0	-8.1	L2
23	15.580M	35.0	+0.3	+0.5	+0.2	+5.7	+0.0	41.7	50.0	-8.3	L2
24	15.310M	34.7	+0.3	+0.5	+0.2	+5.7	+0.0	41.4	50.0	-8.6	L2
25	15.634M	34.7	+0.3	+0.5	+0.2	+5.7	+0.0	41.4	50.0	-8.6	L2
26	15.562M	34.4	+0.3	+0.5	+0.2	+5.7	+0.0	41.1	50.0	-8.9	L2
27	15.184M	32.7	+0.3	+0.5	+0.2	+5.7	+0.0	39.4	50.0	-10.6	L2
28	18.193M	30.3	+0.4	+0.6	+0.2	+5.7	+0.0	37.2	50.0	-12.8	L2
29	18.274M	29.8	+0.4	+0.7	+0.2	+5.7	+0.0	36.8	50.0	-13.2	L2
30	14.193M	28.8	+0.3	+0.5	+0.2	+5.7	+0.0	35.5	50.0	-14.5	L2

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: 15.207 AC Mains - Average

 Work Order #:
 96887
 Date:
 8/5/2015

 Test Type:
 Conducted Emissions
 Time:
 13:58:13

Tested By: Don Nguyen Sequence#: 6

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

The EUT is placed flat on the wooden table as intended in normal application.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is charged from support USB charger. When charging, the EUT can still transmit.

The manufacturer declares that the EUT is not marketed with power supply.

Operating frequency = 2.400-2.4835 GHz

Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)

The EUT is set to continuously transmit at low CH 2.402GHz

Frequency range of measurement = 150kHz-30MHz

0.15MHz to 30MHz RBW=VBW=9kHz

Test environment conditions:

Temperature: 25°C Relative Humidity: 45%

Pressure: 100kPa

Site D Test Method: ANSI C63.4 (2009)

Data represents worst case emission.

Page 15 of 80 Report No.: 96887-5

CKC Laboratories, Inc. Date: 8/5/2015 Time: 13:58:13 Aalberg Audio WO#: 96887 15:207 AC Mains - Average Test Lead: L1 120V 60Hz Sequence#: 6 Ext ATTN: 0 dB

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01910	Cable	RG-142	1/8/2014	1/8/2016
T2	AN00969A	50uH LISN-Line 1 (L1) (dB)	3816/2NM	3/12/2015	3/12/2017
	AN00969A	50uH LISN-Line 2 (L2) (dB)	3816/2NM	3/12/2015	3/12/2017
	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016
Т3	AN02343	High Pass Filter	HE9615-150K- 50-720B	1/8/2015	1/8/2017
T4	ANP06084	Attenuator	SA18N10W-06	12/17/2014	12/17/2016

Measur	rement Data:	Re	ading lis	ted by ma	argin.			Test Lead	d: L1		
#	Freq MHz	Rdng	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr	Spec	Margin	Polar Ant
1	165.998k	dBμV 45.8	+0.0	+0.1	+0.3	+5.7	+0.0	dBμV 51.9	dBμV 55.2	-3.3	L1
2	1.052M	36.5	+0.0	+0.1	+0.1	+5.7	+0.0	42.4	46.0	-3.6	L1
3	671.406k	36.3	+0.0	+0.1	+0.2	+5.7	+0.0	42.3	46.0	-3.7	L1
4	484.514k	36.3	+0.0	+0.1	+0.2	+5.7	+0.0	42.3	46.3	-4.0	L1
5	581.233k	36.0	+0.0	+0.1	+0.2	+5.7	+0.0	42.0	46.0	-4.0	L1
6	1.141M	35.3	+0.0	+0.1	+0.1	+5.7	+0.0	41.2	46.0	-4.8	L1
7	480.151k	35.4	+0.0	+0.1	+0.2	+5.7	+0.0	41.4	46.3	-4.9	L1
8	940.995k	35.0	+0.0	+0.1	+0.1	+5.7	+0.0	40.9	46.0	-5.1	L1
9	915.479k	34.2	+0.0	+0.1	+0.1	+5.7	+0.0	40.1	46.0	-5.9	L1
10	584.141k	34.0	+0.0	+0.1	+0.2	+5.7	+0.0	40.0	46.0	-6.0	L1
11	554.326k	33.9	+0.0	+0.1	+0.2	+5.7	+0.0	39.9	46.0	-6.1	L1
12	537.600k	33.8	+0.0	+0.1	+0.2	+5.7	+0.0	39.8	46.0	-6.2	L1
13	1.430M	33.9	+0.0	+0.1	+0.1	+5.7	+0.0	39.8	46.0	-6.2	L1
14	449.608k	34.2	+0.0	+0.1	+0.2	+5.7	+0.0	40.2	46.9	-6.7	L1
15	331.074k	36.7	+0.0	+0.1	+0.2	+5.7	+0.0	42.7	49.4	-6.7	L1
16	339.800k	36.4	+0.0	+0.1	+0.2	+5.7	+0.0	42.4	49.2	-6.8	L1
17	322.347k	36.7	+0.0	+0.1	+0.2	+5.7	+0.0	42.7	49.6	-6.9	L1
18	283.078k	37.6	+0.0	+0.1	+0.1	+5.7	+0.0	43.5	50.7	-7.2	L1

19	1.336M	32.8	+0.0	+0.1	+0.1	+5.7	+0.0	38.7	46.0	-7.3	L1
20	1.171M	32.5	+0.0	+0.1	+0.1	+5.7	+0.0	38.4	46.0	-7.6	L1
21	1.183M	32.2	+0.0	+0.1	+0.1	+5.7	+0.0	38.1	46.0	-7.9	L1
22	1.256M	32.1	+0.0	+0.1	+0.1	+5.7	+0.0	38.0	46.0	-8.0	L1
23	1.515M	31.9	+0.1	+0.1	+0.1	+5.7	+0.0	37.9	46.0	-8.1	L1
24	1.872M	30.9	+0.1	+0.1	+0.1	+5.7	+0.0	36.9	46.0	-9.1	L1
25	595.050k	30.8	+0.0	+0.1	+0.2	+5.7	+0.0	36.8	46.0	-9.2	L1
26	1.587M	30.7	+0.1	+0.1	+0.1	+5.7	+0.0	36.7	46.0	-9.3	L1
27	2.276M	30.4	+0.1	+0.1	+0.1	+5.7	+0.0	36.4	46.0	-9.6	L1
28	3.948M	29.6	+0.2	+0.2	+0.1	+5.7	+0.0	35.8	46.0	-10.2	L1
29	640.864k Ave	19.5	+0.0	+0.1	+0.2	+5.7	+0.0	25.5	46.0	-20.5	L1
^	640.864k	40.2	+0.0	+0.1	+0.2	+5.7	+0.0	46.2	46.0	+0.2	L1
31	701.949k Ave	18.3	+0.0	+0.1	+0.2	+5.7	+0.0	24.3	46.0	-21.7	L1
^	701.949k	41.6	+0.0	+0.1	+0.2	+5.7	+0.0	47.6	46.0	+1.6	L1

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: 15.207 AC Mains - Average

 Work Order #:
 96887
 Date:
 8/5/2015

 Test Type:
 Conducted Emissions
 Time:
 14:02:28

Tested By: Don Nguyen Sequence#: 7

Software: EMITest 5.02.00 120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

The EUT is placed flat on the wooden table as intended in normal application.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is charged from support USB charger. When charging, the EUT can still transmit.

The manufacturer declares that the EUT is not marketed with power supply.

Operating frequency = 2.400-2.4835 GHz

Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)

The EUT is set to continuously transmit at low CH 2.402GHz

Frequency range of measurement = 150kHz-30MHz

0.15MHz to 30MHz RBW=VBW=9kHz

Test environment conditions:

Temperature: 25°C Relative Humidity: 45%

Pressure: 100kPa

Site D Test Method: ANSI C63.4 (2009)

Data represents worst case emission.

Page 19 of 80 Report No.: 96887-5

CKC Laboratories, Inc. Date: 8/5/2015 Time: 14:02:28 Aalberg Audio WO#: 96887 15.207 AC Mains - Average Test Lead: L2 120V 60Hz Sequence#: 7 Ext ATTN: 0 dB

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01910	Cable	RG-142	1/8/2014	1/8/2016
	AN00969A	50uH LISN-Line 1 (L1) (dB)	3816/2NM	3/12/2015	3/12/2017
T2	AN00969A	50uH LISN-Line 2 (L2) (dB)	3816/2NM	3/12/2015	3/12/2017
	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016
Т3	AN02343	High Pass Filter	HE9615-150K- 50-720B	1/8/2015	1/8/2017
T4	ANP06084	Attenuator	SA18N10W-06	12/17/2014	12/17/2016

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: L2		
#	Freq MHz	Rdng dBµV	T1 dB	T2 dB	T3 dB	T4 dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	710.675k	39.1	+0.0	+0.1	+0.1	+5.7	+0.0	45.0	46.0	-1.0	L2
2	706.312k	38.7	+0.0	+0.1	+0.2	+5.7	+0.0	44.7	46.0	-1.3	L2
3	707.767k	38.8	+0.0	+0.1	+0.1	+5.7	+0.0	44.7	46.0	-1.3	L2
4	726.674k	38.1	+0.0	+0.1	+0.1	+5.7	+0.0	44.0	46.0	-2.0	L2
5	171.816k	45.7	+0.0	+0.1	+0.3	+5.7	+0.0	51.8	54.9	-3.1	L2
6	173.997k	45.3	+0.0	+0.1	+0.3	+5.7	+0.0	51.4	54.8	-3.4	L2
7	195.813k	44.1	+0.0	+0.1	+0.1	+5.7	+0.0	50.0	53.8	-3.8	L2
8	730.310k	36.3	+0.0	+0.1	+0.1	+5.7	+0.0	42.2	46.0	-3.8	L2
9	618.320k	35.5	+0.0	+0.1	+0.2	+5.7	+0.0	41.5	46.0	-4.5	L2
10	572.506k	35.0	+0.0	+0.1	+0.2	+5.7	+0.0	41.0	46.0	-5.0	L2
11	659.044k	34.9	+0.0	+0.1	+0.2	+5.7	+0.0	40.9	46.0	-5.1	L2
12	496.877k	34.4	+0.0	+0.1	+0.2	+5.7	+0.0	40.4	46.1	-5.7	L2
13	667.770k	34.2	+0.0	+0.1	+0.2	+5.7	+0.0	40.2	46.0	-5.8	L2
14	1.132M	34.0	+0.0	+0.1	+0.1	+5.7	+0.0	39.9	46.0	-6.1	L2
15	619.775k	33.5	+0.0	+0.1	+0.2	+5.7	+0.0	39.5	46.0	-6.5	L2
16	279.442k	38.3	+0.0	+0.1	+0.1	+5.7	+0.0	44.2	50.8	-6.6	L2
17	504.876k	33.4	+0.0	+0.1	+0.2	+5.7	+0.0	39.4	46.0	-6.6	L2
18	508.512k	33.3	+0.0	+0.1	+0.2	+5.7	+0.0	39.3	46.0	-6.7	L2

19	1.039M	33.2	+0.0	+0.1	+0.1	+5.7	+0.0	39.1	46.0	-6.9	L2
20	471.425k	33.5	+0.0	+0.1	+0.2	+5.7	+0.0	39.5	46.5	-7.0	L2
21	662.680k	32.9	+0.0	+0.1	+0.2	+5.7	+0.0	38.9	46.0	-7.1	L2
22	488.150k	32.9	+0.0	+0.1	+0.2	+5.7	+0.0	38.9	46.2	-7.3	L2
23	533.237k	32.7	+0.0	+0.1	+0.2	+5.7	+0.0	38.7	46.0	-7.3	L2
24	1.052M	32.7	+0.0	+0.1	+0.1	+5.7	+0.0	38.6	46.0	-7.4	L2
25	1.158M	32.5	+0.0	+0.1	+0.1	+5.7	+0.0	38.4	46.0	-7.6	L2
26	603.776k	32.2	+0.0	+0.1	+0.2	+5.7	+0.0	38.2	46.0	-7.8	L2
27	829.210k	32.3	+0.0	+0.1	+0.1	+5.7	+0.0	38.2	46.0	-7.8	L2
28	821.211k	32.2	+0.0	+0.1	+0.1	+5.7	+0.0	38.1	46.0	-7.9	L2
29	640.864k Ave	13.2	+0.0	+0.1	+0.2	+5.7	+0.0	19.2	46.0	-26.8	L2
^	640.864k	39.2	+0.0	+0.1	+0.2	+5.7	+0.0	45.2	46.0	-0.8	L2
^	643.045k	38.5	+0.0	+0.1	+0.2	+5.7	+0.0	44.5	46.0	-1.5	L2

Test Setup Photos

EKKO EK-1

EKKO EK-1

AERO AE-1

AERO AE-1

15.215(c) -20 dB Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: -20dBc Occupied Bandwidth

Work Order #: 96887 Date: 8/4/2015
Test Type: Maximized Emissions Time: 10:37:53
Tested By: Don Nguyen Sequence#: 0

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

All I/O ports of the EUT are connected to section of unterminated 1/4" TRS audio cables.

The EUT is set in operational mode, exercising the intended functionalities. •

The EUT is powered by 9V power supply located on the ground plane. •

The manufacturer declares that the EUT is not marketed with power supply. •

The EUT is tested in three orthogonal axes. •••

Operating frequency = 2.400-2.4835 GHz••

Frequency range of measurement = Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)• RBW=1MHz, VBW=1MHz.•

Test environment conditions:

Temperature: 28°C Relative Humidity: 51% Pressure: 100kPa••

Site D• Test Method: ANSI C63.4 (2009)•

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T2	AN01646	Horn Antenna	3115	3/18/2014	3/18/2016
T3	ANP04382	Cable	LDF-50	7/30/2014	7/30/2016
T4	ANP06360	Cable	L1-PNMNM-48	7/29/2014	7/29/2016
T5	ANP06554	Cable	32022-29094K-	3/19/2014	3/19/2016
			29094K-24TC		
T6	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016

Page 25 of 80 Report No.: 96887-5

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: -20dBc Occupied Bandwidth

Work Order #: 96887 Date: 8/4/2015
Test Type: Maximized Emissions Time: 14:32:05
Tested By: Don Nguyen Sequence#: 1

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is charged from support USB charger. When charging, the EUT can still transmit. •

The manufacturer declares that the EUT is not marketed with power supply.

The EUT is tested in three orthogonal axes. •••

Operating frequency = 2.400-2.4835 GHz••

Frequency range of measurement = Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)• RBW=1MHz, VBW=1MHz•

Test environment conditions:

Temperature: 29°C Relative Humidity: 51% Pressure: 100kPa••

Site D• Test Method: ANSI C63.4 (2009)•

Test Equipment:

T1 AN00787 Preamp 83017A 6/10/2015 6/10/2017 T2 AN01646 Horn Antenna 3115 3/18/2014 3/18/2016	Description Model Calibration Date Ca	#/Serial # Description Model Ca	e Cal Due Date
T2 ANO1646 Horn Antonno 2115 2/19/2014 2/19/2016	Preamp 83017A 6/10/2015 6/	787 Preamp 83017A 6/	6/10/2017
12 ANO1040 HOTTI ATTENTIA 3115 3/16/2014 3/16/2010	Horn Antenna 3115 3/18/2014 3/	646 Horn Antenna 3115 3/	3/18/2016
T3 ANP04382 Cable LDF-50 7/30/2014 7/30/2016	Cable LDF-50 7/30/2014 7/	4382 Cable LDF-50 7/	7/30/2016
T4 ANP06360 Cable L1-PNMNM-48 7/29/2014 7/29/2016	Cable L1-PNMNM-48 7/29/2014 7/	6360 Cable L1-PNMNM-48 7/	7/29/2016
T5 ANP06554 Cable 32022-29094K- 3/19/2014 3/19/2016	Cable 32022-29094K- 3/19/2014 3/	6554 Cable 32022-29094K- 3/	3/19/2016
29094K-24TC	29094K-24TC	29094K-24TC	
T6 AN02869 Spectrum Analyzer E4440A 7/17/2015 7/17/2016	Spectrum Analyzer E4440A 7/17/2015 7/	869 Spectrum Analyzer E4440A 7/	7/17/2016

Page 26 of 80 Report No.: 96887-5

Plots

EKKO EK-1, Low Channel

EKKO EK-1, Middle Channel

EKKO EK-1, High Channel

AERO AE-1, Low Channel

AERO AE-1, Middle Channel

AERO AE-1, High Channel

Test Setup Photos

EKKO EK-1 Test Setup

EKKO EK-1 Test Setup

EKKO EK-1, X axis

EKKO EK-1, Y axis

EKKO EK-1, Z axis

AERO AE-1 Test Setup

AERO AE-1 Test Setup

AERO AE-1, X axis

AERO AE-1, Y axis

AERO AE-1, Z axis

15.249(a) Field Strength of Fundamental

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

 Work Order #:
 96887
 Date:
 8/4/2015

 Test Type:
 Maximized Emissions
 Time:
 10:37:53

Tested By: Don Nguyen Sequence#: 0

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

All I/O ports of the EUT are connected to section of unterminated 1/4" TRS audio cables.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is powered by 9V power supply located on the ground plane.

The manufacturer declares that the EUT is not marketed with power supply.

The EUT is tested in three orthogonal axes.

Operating frequency = 2.400-2.4835 GHz

Frequency range of measurement = Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz) RBW=1MHz, VBW=1MHz

Test environment conditions:

Temperature: 28°C Relative Humidity: 51%

Pressure: 100kPa

Site D Test Method: ANSI C63.4 (2009)

Page 35 of 80 Report No.: 96887-5

CKC Laboratories, Inc. Date: 8/4/2015 Time: 10:37:53 Aalberg Audio WO#: 96887
15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Sequence#: 0 Ext ATTN: 0 dB

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.02.00

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter).

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T2	AN01646	Horn Antenna	3115	3/18/2014	3/18/2016
T3	ANP04382	Cable	LDF-50	7/30/2014	7/30/2016
T4	ANP06360	Cable	L1-PNMNM-48	7/29/2014	7/29/2016
T5	ANP06554	Cable	32022-29094K-	3/19/2014	3/19/2016
			29094K-24TC		
Т6	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2402.000M	90.2	-39.6	+25.4	+6.5	+3.2	+0.0	86.1	94.0	-7.9	Horiz
			+0.4	+0.0					Z axis		
2	2440.000M	89.3	-39.7	+25.4	+6.5	+3.3	+0.0	85.2	94.0	-8.8	Horiz
			+0.4	+0.0					Z axis		
3	2402.000M	88.6	-39.6	+25.4	+6.5	+3.2	+0.0	84.5	94.0	-9.5	Vert
			+0.4	+0.0					Y axis		
4	2480.000M	88.4	-39.7	+25.5	+6.5	+3.4	+0.0	84.5	94.0	-9.5	Horiz
			+0.4	+0.0					Z axis		
5	2402.000M	87.9	-39.6	+25.4	+6.5	+3.2	+0.0	83.8	94.0	-10.2	Horiz
			+0.4	+0.0					Y axis		
6	2402.000M	87.5	-39.6	+25.4	+6.5	+3.2	+0.0	83.4	94.0	-10.6	Horiz
			+0.4	+0.0					X axis		
7	2402.000M	87.0	-39.6	+25.4	+6.5	+3.2	+0.0	82.9	94.0	-11.1	Vert
			+0.4	+0.0					X axis		
8	2440.000M	86.5	-39.7	+25.4	+6.5	+3.3	+0.0	82.4	94.0	-11.6	Vert
			+0.4	+0.0					X axis		
9	2440.000M	86.3	-39.7	+25.4	+6.5	+3.3	+0.0	82.2	94.0	-11.8	Vert
			+0.4	+0.0					Y axis		
10	2480.000M	86.1	-39.7	+25.5	+6.5	+3.4	+0.0	82.2	94.0	-11.8	Vert
			+0.4	+0.0					Y axis		
11	2479.975M	85.6	-39.7	+25.5	+6.5	+3.4	+0.0	81.7	94.0	-12.3	Vert
			+0.4	+0.0					X axis		
12	2439.975M	85.5	-39.7	+25.4	+6.5	+3.3	+0.0	81.4	94.0	-12.6	Horiz
			+0.4	+0.0					X axis		
13	2440.000M	84.5	-39.7	+25.4	+6.5	+3.3	+0.0	80.4	94.0	-13.6	Horiz
			+0.4	+0.0					Y axis		
14	2402.000M	84.5	-39.6	+25.4	+6.5	+3.2	+0.0	80.4	94.0	-13.6	Vert
			+0.4	+0.0					Z axis		
15	2479.975M	84.1	-39.7	+25.5	+6.5	+3.4	+0.0	80.2	94.0	-13.8	Horiz
			+0.4	+0.0					X axis		
16	2440.000M	83.4	-39.7	+25.4	+6.5	+3.3	+0.0	79.3	94.0	-14.7	Vert
			+0.4	+0.0					Z axis		
17	2480.000M	82.5	-39.7	+25.5	+6.5	+3.4	+0.0	78.6	94.0	-15.4	Horiz
			+0.4	+0.0					Y axis		
18	2480.000M	81.7	-39.7	+25.5	+6.5	+3.4	+0.0	77.8	94.0	-16.2	Vert
			+0.4	+0.0					Z axis		

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

 Work Order #:
 96887
 Date:
 8/4/2015

 Test Type:
 Maximized Emissions
 Time:
 14:32:05

Tested By: Don Nguyen Sequence#: 1

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is charged from support USB charger. When charging, the EUT can still transmit.

The EUT is tested in three orthogonal axes.

The manufacturer declares that the EUT is not marketed with power supply.

Operating frequency = 2.400-2.4835 GHz

 $Frequency\ range\ of\ measurement = Low\ CH\ (2.402GHz),\ Middle\ CH\ (2.440GHz)\ ,\ High\ CH\ (2.480GHz)$

RBW=1MHz, VBW=1MHz

Test environment conditions:

Temperature: 29°C Relative Humidity: 51% Pressure: 100kPa

Site D Test Method: ANSI C63.4 (2009)

Page 38 of 80 Report No.: 96887-5

CKC Laboratories, Inc. Date: 8/4/2015 Time: 14:32:05 Aalberg Audio WO#: 96887 15.249 Carrier and Spurious Emissions (2400-2483,5 MHz Transmitter) Test Distance: 3 Meters Sequence#: 1 Ext ATTN: 0 dB

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.02.00

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter).

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T2	AN01646	Horn Antenna	3115	3/18/2014	3/18/2016
T3	ANP04382	Cable	LDF-50	7/30/2014	7/30/2016
T4	ANP06360	Cable	L1-PNMNM-48	7/29/2014	7/29/2016
T5	ANP06554	Cable	32022-29094K-	3/19/2014	3/19/2016
			29094K-24TC		
Т6	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2402.000M	93.6	-39.6	+25.4	+6.5	+3.2	+0.0	89.5	94.0	-4.5	Horiz
			+0.4	+0.0					Y axis		
2	2440.000M	92.3	-39.7	+25.4	+6.5	+3.3	+0.0	88.2	94.0	-5.8	Horiz
			+0.4	+0.0					Y axis		
3	2402.000M	91.5	-39.6	+25.4	+6.5	+3.2	+0.0	87.4	94.0	-6.6	Horiz
			+0.4	+0.0					X axis		
4	2480.000M	90.8	-39.7	+25.5	+6.5	+3.4	+0.0	86.9	94.0	-7.1	Vert
			+0.4	+0.0					X axis		
5	2440.000M	90.9	-39.7	+25.4	+6.5	+3.3	+0.0	86.8	94.0	-7.2	Horiz
			+0.4	+0.0					X axis		
6	2402.000M	90.1	-39.6	+25.4	+6.5	+3.2	+0.0	86.0	94.0	-8.0	Vert
			+0.4	+0.0					Z axis		
7	2440.000M	90.0	-39.7	+25.4	+6.5	+3.3	+0.0	85.9	94.0	-8.1	Vert
			+0.4	+0.0					X axis		
8	2480.000M	89.4	-39.7	+25.5	+6.5	+3.4	+0.0	85.5	94.0	-8.5	Horiz
	Ave		+0.4	+0.0					Y axis		
^	2480.000M	94.2	-39.7	+25.5	+6.5	+3.4	+0.0	90.3	94.0	-3.8	Horiz
			+0.4	+0.0					Y axis		
^	2480.000M	91.9	-39.7	+25.5	+6.5	+3.4	+0.0	88.0	94.0	-6.0	Horiz
			+0.4	+0.0					X axis		
^	2480.000M	86.5	-39.7	+25.5	+6.5	+3.4	+0.0	82.6	94.0	-11.4	Horiz
			+0.4	+0.0					Z axis		
12	2480.000M	89.2	-39.7	+25.5	+6.5	+3.4	+0.0	85.3	94.0	-8.7	Vert
			+0.4	+0.0					Z axis		

13	2440.000M	89.0	-39.7	+25.4	+6.5	+3.3	+0.0	84.9	94.0	-9.1	Vert
			+0.4	+0.0					Z axis		
14	2402.000M	88.4	-39.6	+25.4	+6.5	+3.2	+0.0	84.3	94.0	-9.7	Vert
			+0.4	+0.0					X axis		
15	2440.000M	88.0	-39.7	+25.4	+6.5	+3.3	+0.0	83.9	94.0	-10.1	Horiz
			+0.4	+0.0					Z axis		
16	2402.000M	87.1	-39.6	+25.4	+6.5	+3.2	+0.0	83.0	94.0	-11.0	Horiz
			+0.4	+0.0					Z axis		
17	2402.000M	86.6	-39.6	+25.4	+6.5	+3.2	+0.0	82.5	94.0	-11.5	Vert
			+0.4	+0.0					Y axis		
18	2480.000M	86.3	-39.7	+25.5	+6.5	+3.4	+0.0	82.4	94.0	-11.6	Vert
			+0.4	+0.0					Y axis		
19	2440.000M	85.7	-39.7	+25.4	+6.5	+3.3	+0.0	81.6	94.0	-12.4	Vert
			+0.4	+0.0					Y axis		

Test Setup Photos

EKKO EK-1 Test Setup

EKKO EK-1 Test Setup

EKKO EK-1, X axis

EKKO EK-1, Y axis

EKKO EK-1, Z axis

AERO AE-1 Test Setup

AERO AE-1 Test Setup

AERO AE-1, X axis

AERO AE-1, Y axis

AERO AE-1, Z axis

15.31(e) Voltage Variation

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: 15.31e

Work Order #: 96887 Date: 8/4/2015
Test Type: Maximized Emissions Time: 10:37:53
Tested By: Don Nguyen Sequence#: 0

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

All I/O ports of the EUT are connected to section of unterminated 1/4" TRS audio cables.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is powered by 9V power supply located on the ground plane. •

The manufacturer declares that the EUT is not marketed with power supply. •

The EUT is tested in three orthogonal axes. •••

Operating frequency = 2.400-2.4835 GHz••

Frequency range of measurement = Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)•

RBW=1MHz, VBW=1MHz•

Test environment conditions:

Temperature: 28°C Relative Humidity: 51% Pressure: 100kPa••

Site D• Test Method: ANSI C63.4 (2009)•

15.31(e) compliance: The supply voltage was varied between 85% and 115% of the nominal rated supply voltage, no change in the fundamental signal level was observed.

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T2	AN01646	Horn Antenna	3115	3/18/2014	3/18/2016
T3	ANP04382	Cable	LDF-50	7/30/2014	7/30/2016
T4	ANP06360	Cable	L1-PNMNM-48	7/29/2014	7/29/2016
T5	ANP06554	Cable	32022-29094K-	3/19/2014	3/19/2016
			29094K-24TC		
T6	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016

Page 47 of 80 Report No.: 96887-5

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: 15.31e

 Work Order #:
 96887
 Date: 8/4/2015

 Test Type:
 Maximized Emissions
 Time: 14:32:05

Tested By: Don Nguyen Sequence#: 1

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is charged from support USB charger. When charging, the EUT can still transmit.

The manufacturer declares that the EUT is not marketed with power supply. •

The EUT is tested in three orthogonal axes. •••

Operating frequency = 2.400-2.4835 GHz••

Frequency range of measurement = Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)• RBW=1MHz, VBW=1MHz•

Test environment conditions:

Temperature: 29°C Relative Humidity: 51% Pressure: 100kPa••

Site D• Test Method: ANSI C63.4 (2009)•

15.31(e) compliance: the EUT is tested with fully charged battery.

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T2	AN01646	Horn Antenna	3115	3/18/2014	3/18/2016
T3	ANP04382	Cable	LDF-50	7/30/2014	7/30/2016
T4	ANP06360	Cable	L1-PNMNM-48	7/29/2014	7/29/2016
T5	ANP06554	Cable	32022-29094K-	3/19/2014	3/19/2016
			29094K-24TC		
T6	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016

Page 48 of 80 Report No.: 96887-5

Test Setup Photos

EKKO EK-1 Test Setup

EKKO EK-1 Test Setup

EKKO EK-1, X axis

EKKO EK-1, Y axis

EKKO EK-1, Z axis

AERO AE-1 Test Setup

AERO AE-1 Test Setup

AERO AE-1, X axis

AERO AE-1, Y axis

AERO AE-1, Z axis

15.249(a)&(d) Radiated Spurious Emissions / Band Edge

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

 Work Order #:
 96887
 Date: 8/5/2015

 Test Type:
 Maximized Emissions
 Time: 13:11:25

Tested By: Don Nguyen Sequence#: 1

Software: EMITest 5.02.00

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N

Configuration 1

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

All I/O ports of the EUT are connected to section of unterminated 1/4" TRS audio cables.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is powered by 9V power supply located on the ground plane.

The manufacturer declares that the EUT is not marketed with power supply.

The EUT is tested in three orthogonal axes.

Operating frequency = 2.400-2.4835 GHz

Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)

Frequency range of measurement = 9k-25000MHz 0.009MHz to 0.15MHz RBW=VBW=0.2kHz 0.15MHz to 30MHz RBW=VBW=9kHz 30MHz to 1000MHz RBW=VBW=120kHz 1000MHz to 25000MHz RBW=VBW=1MHz

Test environment conditions:

Temperature: 28°C Relative Humidity: 51% Pressure: 100kPa

Site D Test Method: ANSI C63.4 (2009)

Data represents worst case emission.

Page 54 of 80 Report No.: 96887-5

CKC Laboratories, Inc. Date: 8/5/2015 Time: 13:11:25 Aalberg Audio WO#: 96887 15:249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Sequence#: 1 Ext ATTN: 0 dB

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.02.00

- 1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T2	AN01646	Horn Antenna	3115	3/18/2014	3/18/2016
T3	ANP06360	Cable	L1-PNMNM-48	7/29/2014	7/29/2016
T4	ANP06554	Cable	32022-29094K-	3/19/2014	3/19/2016
			29094K-24TC		
T5	AN03385	High Pass Filter	11SH10-	6/15/2015	6/15/2017
			3000/T10000-		
			0/0		
	AN01413	Horn Antenna	84125-80008	11/25/2014	11/25/2016
T6	ANP04382	Cable	LDF-50	7/30/2014	7/30/2016
T7	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016
T8	AN00010	Preamp	8447D	3/12/2014	3/12/2016
Т9	ANP05555	Cable	RG223/U	5/7/2014	5/7/2016
T10	ANP05569	Cable	RG-214/U	5/7/2014	5/7/2016
T11	AN01992	Biconilog Antenna	CBL6111C	12/4/2014	12/4/2016
	AN00314	Loop Antenna	6502	7/2/2014	7/2/2016

Meas	urement Data:	R	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	899.981M	43.5	+0.0	+0.0	+0.0	+0.0	+0.0	45.9	46.0	-0.1	Horiz
	QP		+0.0	+3.4	+0.0	-27.5					
			+0.5	+3.4	+22.6						
^	899.981M	43.7	+0.0	+0.0	+0.0	+0.0	+0.0	46.1	46.0	+0.1	Horiz
			+0.0	+3.4	+0.0	-27.5					
			+0.5	+3.4	+22.6						
3	273.980M	55.5	+0.0	+0.0	+0.0	+0.0	+0.0	45.8	46.0	-0.2	Vert
	QP		+0.0	+1.8	+0.0	-26.5					
			+0.3	+1.7	+13.0						
^	273.980M	55.8	+0.0	+0.0	+0.0	+0.0	+0.0	46.1	46.0	+0.1	Vert
			+0.0	+1.8	+0.0	-26.5					
			+0.3	+1.7	+13.0						
5	899.980M	42.7	+0.0	+0.0	+0.0	+0.0	+0.0	45.1	46.0	-0.9	Vert
	QP		+0.0	+3.4	+0.0	-27.5					
			+0.5	+3.4	+22.6						
^	899.980M	43.2	+0.0	+0.0	+0.0	+0.0	+0.0	45.6	46.0	-0.4	Vert
			+0.0	+3.4	+0.0	-27.5					
			+0.5	+3.4	+22.6						
7	609.395M	46.9	+0.0	+0.0	+0.0	+0.0	+0.0	44.8	46.0	-1.2	Vert
	QP		+0.0	+2.8	+0.0	-27.9					
			+0.5	+2.6	+19.9						
^	609.395M	47.1	+0.0	+0.0	+0.0	+0.0	+0.0	45.0	46.0	-1.0	Vert
			+0.0	+2.8	+0.0	-27.9					
			+0.5	+2.6	+19.9						
9		48.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.6	46.0	-3.4	Horiz
	QP		+0.0	+2.3	+0.0	-27.4					
			+0.3	+2.2	+16.7						

^ 419.997M	49.0	+0.0	+0.0	+0.0	+0.0	+0.0	43.1	46.0	-2.9	Horiz
		+0.0	+2.3	+0.0	-27.4					
		+0.3	+2.2	+16.7						
11 300.000M	51.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.3	46.0	-3.7	Horiz
QP		+0.0	+1.9	+0.0	-26.5					
		+0.3	+1.8	+13.3						
^ 300.000M	52.1	+0.0	+0.0	+0.0	+0.0	+0.0	42.9	46.0	-3.1	Horiz
		+0.0	+1.9	+0.0	-26.5					
		+0.3	+1.8	+13.3						
13 658.555M	43.9	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	46.0	-3.8	Vert
		+0.0	+2.9	+0.0	-27.9					
		+0.4	+2.8	+20.1						
14 633.970M	43.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.9	46.0	-4.1	Vert
		+0.0	+2.9	+0.0	-27.9					
		+0.4	+2.7	+20.0						
15 273.985M	51.5	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	46.0	-4.2	Horiz
QP		+0.0	+1.8	+0.0	-26.5					
		+0.3	+1.7	+13.0						
^ 273.985M	51.8	+0.0	+0.0	+0.0	+0.0	+0.0	42.1	46.0	-3.9	Horiz
		+0.0	+1.8	+0.0	-26.5					
		+0.3	+1.7	+13.0						
17 249.405M	51.2	+0.0	+0.0	+0.0	+0.0	+0.0	41.0	46.0	-5.0	Vert
		+0.0	+1.8	+0.0	-26.5					
		+0.2	+1.6	+12.7						
18 300.050M	50.0	+0.0	+0.0	+0.0	+0.0	+0.0	40.8	46.0	-5.2	Vert
		+0.0	+1.9	+0.0	-26.5					
		+0.3	+1.8	+13.3						
19 4804.000M	44.6	-40.5	+30.1	+4.7	+0.5	+0.0	48.7	54.0	-5.3	Vert
Ave		+0.1	+9.2	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 4804.000M	49.4	-40.5	+30.1	+4.7	+0.5	+0.0	53.5	54.0	-0.5	Vert
		+0.1	+9.2	+0.0	+0.0					
		+0.0	+0.0	+0.0						
21 4960.000M	43.5	-40.1	+30.4	+4.8	+0.5	+0.0	48.6	54.0	-5.4	Vert
Ave		+0.1	+9.4	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 4960.000M	48.3	-40.1	+30.4	+4.8	+0.5	+0.0	53.4	54.0	-0.6	Vert
		+0.1	+9.4	+0.0	+0.0					
		+0.0	+0.0	+0.0						
23 633.970M	42.2	+0.0	+0.0	+0.0	+0.0	+0.0	40.3	46.0	-5.7	Horiz
		+0.0	+2.9	+0.0	-27.9					
		+0.4	+2.7	+20.0						
24 732.265M	40.4	+0.0	+0.0	+0.0	+0.0	+0.0	40.0	46.0	-6.0	Vert
		+0.0	+3.1	+0.0	-27.8					
		+0.4	+3.0	+20.9						
25 7440.010M	35.5	-40.4	+33.8	+6.0	+0.7	+0.0	47.5	54.0	-6.5	Vert
		+0.3	+11.6	+0.0	+0.0					
		+0.0	+0.0	+0.0						
26 372.292M	46.4	+0.0	+0.0	+0.0	+0.0	+0.0	39.4	46.0	-6.6	Horiz
		+0.0	+2.1	+0.0	-27.0					
		+0.3	+2.0	+15.6						

27 298.550M	48.6	+0.0	+0.0	+0.0	+0.0	+0.0	39.4	46.0	-6.6	Vert
		+0.0	+1.9	+0.0	-26.5					
		+0.3	+1.8	+13.3						
28 420.000M	45.2	+0.0	+0.0	+0.0	+0.0	+0.0	39.3	46.0	-6.7	Vert
		+0.0	+2.3	+0.0	-27.4					
		+0.3	+2.2	+16.7						
29 7206.000M	36.3	-40.2	+33.3	+5.9	+0.6	+0.0	47.3	54.0	-6.7	Vert
		+0.2	+11.2	+0.0	+0.0					
		+0.0	+0.0	+0.0						
30 372.300M	46.2	+0.0	+0.0	+0.0	+0.0	+0.0	39.2	46.0	-6.8	Vert
		+0.0	+2.1	+0.0	-27.0					
		+0.3	+2.0	+15.6						
31 480.000M	43.8	+0.0	+0.0	+0.0	+0.0	+0.0	39.1	46.0	-6.9	Vert
		+0.0	+2.5	+0.0	-27.7					
		+0.4	+2.4	+17.7						
32 347.717M	46.7	+0.0	+0.0	+0.0	+0.0	+0.0	39.0	46.0	-7.0	Horiz
		+0.0	+2.1	+0.0	-26.8					
		+0.3	+1.9	+14.8						
33 660.005M	40.6	+0.0	+0.0	+0.0	+0.0	+0.0	38.9	46.0	-7.1	Vert
		+0.0	+2.9	+0.0	-27.9					
		+0.4	+2.8	+20.1						
34 4880.000M	41.8	-40.2	+30.2	+4.8	+0.5	+0.0	46.5	54.0	-7.5	Horiz
		+0.1	+9.3	+0.0	+0.0					
		+0.0	+0.0	+0.0						
35 4804.000M	42.0	-40.5	+30.1	+4.7	+0.5	+0.0	46.1	54.0	-7.9	Horiz
Ave		+0.1	+9.2	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 4804.000M	46.8	-40.5	+30.1	+4.7	+0.5	+0.0	50.9	54.0	-3.1	Horiz
		+0.1	+9.2	+0.0	+0.0					
		+0.0	+0.0	+0.0						
37 277.050M	47.8	+0.0	+0.0	+0.0	+0.0	+0.0	38.1	46.0	-7.9	Vert
		+0.0	+1.8	+0.0	-26.5					
		+0.3	+1.7	+13.0						
38 446.022M	43.5	+0.0	+0.0	+0.0	+0.0	+0.0	38.1	46.0	-7.9	Horiz
		+0.0	+2.4	+0.0	-27.6					
		+0.4	+2.3	+17.1						
39 1259.900M	56.5	-40.2	+22.4	+2.3	+0.3	+0.0	45.4	54.0	-8.6	Horiz
		+0.0	+4.1	+0.0	+0.0					
		+0.0	+0.0	+0.0						
40 659.995M	39.0	+0.0	+0.0	+0.0	+0.0	+0.0	37.3	46.0	-8.7	Horiz
		+0.0	+2.9	+0.0	-27.9					
		+0.4	+2.8	+20.1						
41 519.720M	41.3	+0.0	+0.0	+0.0	+0.0	+0.0	37.2	46.0	-8.8	Vert
		+0.0	+2.5	+0.0	-27.8					
		+0.4	+2.4	+18.4						
42 779.960M	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	36.9	46.0	-9.1	Vert
		+0.0	+3.2	+0.0	-27.7					
		+0.5	+3.1	+21.7						
43 7320.000M	33.4	-40.3	+33.5	+5.9	+0.7	+0.0	44.8	54.0	-9.2	Vert
		+0.3	+11.3	+0.0	+0.0					
		+0.0	+0.0	+0.0						

44 4960,033M 39.6											
+0.0	44 4960.033M	39.6	-40.1		+4.8		+0.0	44.7	54.0	-9.3	Horiz
A 4960.033M	Ave					+0.0					
Ho											
10	^ 4960.033M	45.4					+0.0	50.5	54.0	-3.5	Horiz
46 4880.000M Ave						+0.0					
Ave											
+0.0		39.7					+0.0	44.4	54.0	-9.6	Vert
^ 4880.000M 44.5 -40.2 +30.2 +4.8 +0.5 +0.0 49.2 54.0 -4.8 Vert 48 7320.000M 32.9 -40.3 +33.5 +5.9 +0.7 +0.0 44.3 54.0 -9.7 Horiz 49 806.055M 35.0 +0.0 +0.0 +0.0 +0.0 +0.0 -9.9 Horiz 50 7206.000M 32.8 +0.2 +33.3 +5.9 +0.6 +0.0 36.1 46.0 -9.9 Horiz 50 7206.000M 32.8 +0.2 +33.2 +0.0 -27.7 +0.6 +0.0 43.8 54.0 -10.2 Horiz 51 1260.000M 54.9 +0.2 +22.4 +2.3 +0.3 +0.0 43.8 54.0 -10.2 Vert 52 707.715M 36.7 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +	Ave					+0.0					
+0.1											
100 100	^ 4880.000M	44.5					+0.0	49.2	54.0	-4.8	Vert
48 7320.000M 32.9						+0.0					
House											
Ho	48 7320.000M	32.9					+0.0	44.3	54.0	-9.7	Horiz
19						+0.0					
+0.0											
10 10 10 10 10 10 10 10	49 806.055M	35.0					+0.0	36.1	46.0	-9.9	Horiz
S0 7206.000M 32.8						-27.7					
+0.2											
1260.000M	50 7206.000M	32.8					+0.0	43.8	54.0	-10.2	Horiz
51 1260.000M 54.9 -40.2 +22.4 +2.3 +0.3 +0.0 43.8 54.0 -10.2 Vert 52 707.715M 36.7 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 35.6 46.0 -10.4 Vert 52 707.715M 36.7 +0.0 +0.0 +0.0 +0.0 +0.0 35.6 46.0 -10.4 Vert 53 7440.033M 31.5 -40.4 +33.8 +6.0 +0.7 +0.0 43.5 54.0 -10.5 Horiz 54 1259.900M 54.3 -40.2 +22.4 +2.3 +0.3 +0.0						+0.0					
+0.0											
10	51 1260.000M	54.9					+0.0	43.8	54.0	-10.2	Vert
52 707.715M 36.7 +0.0 +0.0 +0.0 -40.0 -27.9 -35.6 46.0 -10.4 Vert 53 7440.033M 31.5 -40.4 +33.8 +6.0 +0.7 +0.0 43.5 54.0 -10.5 Horiz 54 1259.900M 54.3 -40.2 +22.4 +2.3 +0.3 +0.0						+0.0					
+0.0											
+0.5	52 707.715M	36.7					+0.0	35.6	46.0	-10.4	Vert
53 7440.033M 31.5 -40.4 +33.8 +6.0 +0.7 +0.0 43.5 54.0 -10.5 Horiz 54 1259.900M 54.3 -40.2 +22.4 +2.3 +0.3 +0.0 43.2 54.0 -10.8 Horiz 55 224.850M 47.2 +0.0 +0.0 +0.0 +0.0 +0.0 40.0 +0.0						-27.9					
+0.3											
+0.0 +0.0 +0.0 54 1259.900M 54.3 -40.2 +22.4 +2.3 +0.0 +3.2 54.0 -10.8 Horiz 55 224.850M 47.2 +0.0 +0.0 +0.0 +0.0 +0.0 35.0 46.0 -11.0 Vert 56 1139.900M 55.0 -40.7 +22.2 +2.1 +0.3 +0.0 42.8 54.0 -11.2 Horiz 56 1139.900M 55.0 -40.7 +22.2 +2.1 +0.3 +0.0 42.8 54.0 -11.2 Horiz 57 233.500M 46.3 +0.0 +0.0 +0.0 +0.0 40.0 -11.3 Vert 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz	53 7440.033M	31.5					+0.0	43.5	54.0	-10.5	Horiz
54 1259.900M 54.3 -40.2 +22.4 +2.3 +0.0 43.2 54.0 -10.8 Horiz 55 224.850M 47.2 +0.0 +0.0 +0.0 +0.0 +0.0 35.0 46.0 -11.0 Vert 56 1139.900M 55.0 -40.7 +22.2 +2.1 +0.3 +0.0 42.8 54.0 -11.2 Horiz 57 233.500M 46.3 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -11.2 Horiz 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -11.6 Horiz 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -10.0 +0.0 -12.0 Horiz 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -12.7 Horiz 60 359.992M 40.7 +0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>+0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>						+0.0					
+0.0											
+0.0	54 1259.900M	54.3					+0.0	43.2	54.0	-10.8	Horiz
55 224.850M 47.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 35.0 46.0 -11.0 Vert 56 1139.900M 55.0 -40.7 +22.2 +2.1 +0.3 +0.0 42.8 54.0 -11.2 Horiz 57 233.500M 46.3 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 34.7 46.0 -11.3 Vert 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 46.0 -12.0 Horiz 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -0.0 -12.7 Horiz +0.0 +2.1 +0.0 +0.0 +0.0 +0.0 +0.0 -12.7 Horiz +0.0 +2.1 +0.0 +0.0 +0.0 +0.0 -0.0 -12.7 Horiz						+0.0					
+0.0 +1.7 +0.0 -26.6 +0.2 +1.5 +11.0 56 1139.900M 55.0 -40.7 +22.2 +2.1 +0.3 +0.0 42.8 54.0 -11.2 Horiz +0.0 +3.9 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0											
+0.2 +1.5 +11.0 56 1139.900M 55.0 -40.7 +22.2 +2.1 +0.3 +0.0 42.8 54.0 -11.2 Horiz 57 233.500M 46.3 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 34.7 46.0 -11.3 Vert 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -1.0 -12.7 Horiz 40.0 +2.1 +0.0 +0.0 +0.0 +0.0 +0.0 -1.0 -12.7 Horiz	55 224.850M	47.2					+0.0	35.0	46.0	-11.0	Vert
56 1139.900M 55.0 -40.7 +22.2 +2.1 +0.3 +0.0 42.8 54.0 -11.2 Horiz 57 233.500M 46.3 +0.0 +0.0 +0.0 +0.0 +0.0 34.7 46.0 -11.3 Vert 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz						-26.6					
+0.0 +3.9 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 57 233.500M 46.3 +0.0 +0.0 +0.0 +0.0 +0.0 34.7 46.0 -11.3 Vert +0.0 +1.7 +0.0 -26.6 +0.2 +1.5 +11.6 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz +0.0 +2.8 +0.0 -27.9 +0.5 +2.6 +19.9 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz +0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5											
+0.0 +0.0 +0.0 +0.0 57 233.500M 46.3 +0.0 +0.0 +0.0 +0.0 +0.0 34.7 46.0 -11.3 Vert +0.0 +1.7 +0.0 -26.6 +0.2 +1.5 +11.6 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz +0.0 +2.8 +0.0 -27.9 +0.5 +2.6 +19.9 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz +0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9	56 1139.900M	55.0					+0.0	42.8	54.0	-11.2	Horiz
57 233.500M 46.3 +0.0 +0.0 +0.0 +0.0 +0.0 34.7 46.0 -11.3 Vert +0.0 +1.7 +0.0 -26.6 +0.2 +1.5 +11.6 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz +0.0 +2.8 +0.0 -27.9 +0.5 +2.6 +19.9 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz +0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9						+0.0					
+0.0 +1.7 +0.0 -26.6 +0.2 +1.5 +11.6 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz +0.0 +2.8 +0.0 -27.9 +0.5 +2.6 +19.9 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz +0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9						2 -		a . =			**
+0.2 +1.5 +11.6 58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz +0.0 +2.8 +0.0 -27.9 +0.5 +2.6 +19.9 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz +0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9	57 233.500M	46.3					+0.0	34.7	46.0	-11.3	Vert
58 609.387M 36.5 +0.0 +0.0 +0.0 +0.0 +0.0 34.4 46.0 -11.6 Horiz +0.0 +2.8 +0.0 -27.9 +0.5 +2.6 +19.9 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz +0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9						-26.6					
+0.0 +2.8 +0.0 -27.9 +0.5 +2.6 +19.9 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz +0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9	50 (00 00 - 7) -	2					. 0. 0	2.4.4	46.0	11.5	
+0.5 +2.6 +19.9 59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz +0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9	58 609.387M	36.5					+0.0	34.4	46.0	-11.6	Horiz
59 769.805M 33.8 +0.0 +0.0 +0.0 +0.0 +0.0 34.0 46.0 -12.0 Horiz +0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9						-27.9					
+0.0 +3.1 +0.0 -27.8 +0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9	50 5 000000	22.0						24.0	46.0	10.0	TT '
+0.4 +3.0 +21.5 60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9	59 769.805M	33.8					+0.0	34.0	46.0	-12.0	Horiz
60 359.992M 40.7 +0.0 +0.0 +0.0 +0.0 +0.0 33.3 46.0 -12.7 Horiz +0.0 +2.1 +0.0 -26.9						-27.8					
+0.0 +2.1 +0.0 -26.9	60 050 0000	40 =					. 0. 0	22.2	46.0	1	
	60 359.992M	40.7					+0.0	33.3	46.0	-12.7	Horiz
+0.5 +1.9 +15.2						-26.9					
			+0.3	+1.9	+15.2						

61 519.	762M	37.4	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	46.0	-12.7	Horiz
			+0.0	+2.5	+0.0	-27.8					
			+0.4	+2.4	+18.4						
62 658	545M	34.8	+0.0	+0.0	+0.0	+0.0	+0.0	33.1	46.0	-12.9	Horiz
			+0.0	+2.9	+0.0	-27.9					
			+0.4	+2.8	+20.1						
63 277.	044M	42.5	+0.0	+0.0	+0.0	+0.0	+0.0	32.8	46.0	-13.2	Horiz
			+0.0	+1.8	+0.0	-26.5					
			+0.3	+1.7	+13.0						
64 323.	150M	40.9	+0.0	+0.0	+0.0	+0.0	+0.0	32.5	46.0	-13.5	Horiz
			+0.0	+2.0	+0.0	-26.6					
			+0.3	+1.8	+14.1						
65 1140.	000M	52.4	-40.7	+22.2	+2.1	+0.3	+0.0	40.2	54.0	-13.8	Vert
			+0.0	+3.9	+0.0	+0.0					
			+0.0	+0.0	+0.0						
66 544	340M	35.1	+0.0	+0.0	+0.0	+0.0	+0.0	31.5	46.0	-14.5	Horiz
			+0.0	+2.6	+0.0	-27.9					
			+0.4	+2.5	+18.8						
67 1500.	000M	47.9	-39.7	+22.9	+2.5	+0.3	+0.0	38.4	54.0	-15.6	Vert
			+0.0	+4.5	+0.0	+0.0					
			+0.0	+0.0	+0.0						
68 744	565M	30.6	+0.0	+0.0	+0.0	+0.0	+0.0	30.4	46.0	-15.6	Vert
			+0.0	+3.1	+0.0	-27.8					
			+0.4	+3.0	+21.1						
69 249	395M	40.5	+0.0	+0.0	+0.0	+0.0	+0.0	30.3	46.0	-15.7	Horiz
			+0.0	+1.8	+0.0	-26.5					
			+0.2	+1.6	+12.7						
70 282.	639M	39.8	+0.0	+0.0	+0.0	+0.0	+0.0	30.2	46.0	-15.8	Horiz
			+0.0	+1.8	+0.0	-26.5					
			+0.3	+1.7	+13.1						
71 1500.	400M	47.7	-39.7	+22.9	+2.5	+0.3	+0.0	38.2	54.0	-15.8	Horiz
			+0.0	+4.5	+0.0	+0.0					
			+0.0	+0.0	+0.0						
72 114.	800M	40.9	+0.0	+0.0	+0.0	+0.0	+0.0	27.5	43.5	-16.0	Vert
			+0.0	+1.2	+0.0	-27.0					
			+0.1	+1.1	+11.2						
73 1319.	900M	48.3	-40.0	+22.6	+2.3	+0.3	+0.0	37.7	54.0	-16.3	Horiz
			+0.0	+4.2	+0.0	+0.0					
			+0.0	+0.0	+0.0						
74 1200.	000M	48.1	-40.4	+22.3	+2.2	+0.3	+0.0	36.5	54.0	-17.5	Vert
			+0.0	+4.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
75 1020.	000M	49.6	-41.4	+21.9	+2.0	+0.3	+0.0	36.0	54.0	-18.0	Vert
			+0.0	+3.6	+0.0	+0.0					
			+0.0	+0.0	+0.0						
76 1440.	000M	45.3	-39.8	+22.8	+2.4	+0.3	+0.0	35.4	54.0	-18.6	Vert
			+0.0	+4.4	+0.0	+0.0					
			+0.0	+0.0	+0.0						
77 1019.	900M	48.9	-41.4	+21.9	+2.0	+0.3	+0.0	35.3	54.0	-18.7	Horiz
			+0.0	+3.6	+0.0	+0.0					
			+0.0	+0.0	+0.0						

78	224.845M	39.4	+0.0	+0.0	+0.0	+0.0	+0.0	27.2	46.0	-18.8	Horiz
			+0.0	+1.7	+0.0	-26.6					
			+0.2	+1.5	+11.0						
79	320.050M	35.2	+0.0	+0.0	+0.0	+0.0	+0.0	26.7	46.0	-19.3	Horiz
			+0.0	+2.0	+0.0	-26.6					
			+0.3	+1.8	+14.0						
80	208.895M	37.8	+0.0	+0.0	+0.0	+0.0	+0.0	24.1	43.5	-19.4	Horiz
			+0.0	+1.6	+0.0	-26.7					
			+0.2	+1.4	+9.8						
81	1379.900M	44.3	-39.9	+22.7	+2.4	+0.3	+0.0	34.2	54.0	-19.8	Horiz
			+0.0	+4.4	+0.0	+0.0					
			+0.0	+0.0	+0.0						
82	1740.400M	41.6	-39.5	+24.0	+2.6	+0.3	+0.0	34.0	54.0	-20.0	Horiz
			+0.0	+5.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
83	160.820M	36.5	+0.0	+0.0	+0.0	+0.0	+0.0	23.2	43.5	-20.3	Horiz
			+0.0	+1.4	+0.0	-26.9					
			+0.2	+1.3	+10.7						
84	1067.400M	46.4	-41.1	+22.0	+2.1	+0.3	+0.0	33.4	54.0	-20.6	Horiz
			+0.0	+3.7	+0.0	+0.0					
			+0.0	+0.0	+0.0						
85	1042.900M	46.3	-41.3	+21.9	+2.0	+0.3	+0.0	32.9	54.0	-21.1	Horiz
			+0.0	+3.7	+0.0	+0.0					
			+0.0	+0.0	+0.0						
86	1043.500M	46.0	-41.3	+21.9	+2.0	+0.3	+0.0	32.6	54.0	-21.4	Vert
			+0.0	+3.7	+0.0	+0.0					
			+0.0	+0.0	+0.0						
87	239.995M	34.7	+0.0	+0.0	+0.0	+0.0	+0.0	23.8	46.0	-22.2	Horiz
			+0.0	+1.8	+0.0	-26.5					
			+0.2	+1.6	+12.0						
88	113.380M	33.6	+0.0	+0.0	+0.0	+0.0	+0.0	20.1	43.5	-23.4	Horiz
			+0.0	+1.2	+0.0	-27.0					
			+0.1	+1.1	+11.1						
89	233.445M	33.3	+0.0	+0.0	+0.0	+0.0	+0.0	21.7	46.0	-24.3	Horiz
			+0.0	+1.7	+0.0	-26.6					
			+0.2	+1.5	+11.6						

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: **Aalberg Audio**

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Work Order #: Date: 8/5/2015 96887 Time: 09:45:18 Test Type: **Maximized Emissions**

Tested By: Don Nguyen Sequence#: 2

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is charged from support USB charger. When charging, the EUT can still transmit.

The manufacturer declares that the EUT is not marketed with power supply.

The EUT is tested in three orthogonal axes.

Operating frequency = 2.400-2.4835 GHz

Frequency range of measurement = 9k-25000MHz 0.009MHz to 0.15MHz RBW=VBW=0.2kHz 0.15MHz to 30MHz RBW=VBW=9kHz 30MHz to 1000MHz RBW=VBW=120kHz 1000MHz to 25000MHz RBW=VBW=1MHz

Test environment conditions:

Temperature: 29°C Relative Humidity: 51% Pressure: 100kPa

Site D

Test Method: ANSI C63.4 (2009)

Data represents worst case emission.

Page 62 of 80 Report No.: 96887-5

CKC Laboratories, Inc. Date: 8/5/2015 Time: 09:45:18 Aalberg Audio WO#: 96887
15.249 Carrier and Spurious Emissions (2400-2483,5 MHz Transmitter) Test Distance; 3 Meters Sequence#: 2 Ext ATTN: 0 dB

- --- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.02.00

1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter).

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T2	AN01646	Horn Antenna	3115	3/18/2014	3/18/2016
Т3	ANP06360	Cable	L1-PNMNM-48	7/29/2014	7/29/2016
T4	ANP06554	Cable	32022-29094K-	3/19/2014	3/19/2016
			29094K-24TC		
T5	AN03385	High Pass Filter	11SH10-	6/15/2015	6/15/2017
			3000/T10000-		
			0/0		
	AN01413	Horn Antenna	84125-80008	11/25/2014	11/25/2016
T6	ANP04382	Cable	LDF-50	7/30/2014	7/30/2016
	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016
T7	AN00010	Preamp	8447D	3/12/2014	3/12/2016
Т8	ANP05555	Cable	RG223/U	5/7/2014	5/7/2016
Т9	ANP05569	Cable	RG-214/U	5/7/2014	5/7/2016
T10	AN01992	Biconilog Antenna	CBL6111C	12/4/2014	12/4/2016
	AN00314	Loop Antenna	6502	7/2/2014	7/2/2016

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters	}	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4960.000M	48.3	-40.1	+30.4	+4.8	+0.5	+0.0	53.4	54.0	-0.6	Vert
	Ave		+0.1	+9.4	+0.0	+0.0					
			+0.0	+0.0							
^	4960.000M	53.1	-40.1	+30.4	+4.8	+0.5	+0.0	58.2	54.0	+4.2	Vert
			+0.1	+9.4	+0.0	+0.0					
			+0.0	+0.0							
3	4880.000M	46.3	-40.2	+30.2	+4.8	+0.5	+0.0	51.0	54.0	-3.0	Vert
	Ave		+0.1	+9.3	+0.0	+0.0					
			+0.0	+0.0							
^	4880.000M	51.3	-40.2	+30.2	+4.8	+0.5	+0.0	56.0	54.0	+2.0	Vert
			+0.1	+9.3	+0.0	+0.0					
			+0.0	+0.0							
5	4804.000M	45.6	-40.5	+30.1	+4.7	+0.5	+0.0	49.7	54.0	-4.3	Horiz
			+0.1	+9.2	+0.0	+0.0					
			+0.0	+0.0							
6	4960.000M	43.7	-40.1	+30.4	+4.8	+0.5	+0.0	48.8	54.0	-5.2	Horiz
	Ave		+0.1	+9.4	+0.0	+0.0					
			+0.0	+0.0							
^	4960.000M	48.9	-40.1	+30.4	+4.8	+0.5	+0.0	54.0	54.0	+0.0	Horiz
			+0.1	+9.4	+0.0	+0.0					
			+0.0	+0.0							
8	4880.000M	43.8	-40.2	+30.2	+4.8	+0.5	+0.0	48.5	54.0	-5.5	Horiz
	Ave		+0.1	+9.3	+0.0	+0.0					
	4000 0003 5	40.1	+0.0	+0.0	. 4.6	. 0 -	. 0. 0	52.1	5.4.0	0.0	
^	4880.000M	48.4	-40.2	+30.2	+4.8	+0.5	+0.0	53.1	54.0	-0.9	Horiz
			+0.1	+9.3	+0.0	+0.0					
			+0.0	+0.0							

10 480	04.000M	44.3	-40.5	+30.1	+4.7	+0.5	+0.0	48.4	54.0	-5.6	Vert
			+0.1	+9.2	+0.0	+0.0					
			+0.0	+0.0							
11 74	40.000M	35.8	-40.4	+33.8	+6.0	+0.7	+0.0	47.8	54.0	-6.2	Horiz
			+0.3	+11.6	+0.0	+0.0					
			+0.0	+0.0							
12 732	20.000M	35.6	-40.3	+33.5	+5.9	+0.7	+0.0	47.0	54.0	-7.0	Vert
			+0.3	+11.3	+0.0	+0.0					
			+0.0	+0.0							
13 732	20.000M	35.5	-40.3	+33.5	+5.9	+0.7	+0.0	46.9	54.0	-7.1	Horiz
			+0.3	+11.3	+0.0	+0.0					
			+0.0	+0.0							
14 74	40.000M	34.6	-40.4	+33.8	+6.0	+0.7	+0.0	46.6	54.0	-7.4	Vert
			+0.3	+11.6	+0.0	+0.0					
			+0.0	+0.0							
15 720	06.000M	35.2	-40.2	+33.3	+5.9	+0.6	+0.0	46.2	54.0	-7.8	Horiz
			+0.2	+11.2	+0.0	+0.0					
			+0.0	+0.0							
16 720	06.000M	33.5	-40.2	+33.3	+5.9	+0.6	+0.0	44.5	54.0	-9.5	Vert
			+0.2	+11.2	+0.0	+0.0					
			+0.0	+0.0							
17 21	19.780M	41.2	+0.0	+0.0	+0.0	+0.0	+0.0	28.6	46.0	-17.4	Vert
			+0.0	+1.7	-26.6	+0.2					
			+1.5	+10.6							
18 16	71.750M	44.5	-39.6	+23.7	+2.6	+0.3	+0.0	36.4	54.0	-17.6	Vert
			+0.0	+4.9	+0.0	+0.0					
			+0.0	+0.0							
19 11	10.430M	39.6	+0.0	+0.0	+0.0	+0.0	+0.0	25.7	43.5	-17.8	Vert
			+0.0	+1.1	-27.1	+0.1					
			+1.1	+10.9							
20 110	04.500M	48.7	-40.9	+22.1	+2.1	+0.3	+0.0	36.1	54.0	-17.9	Vert
			+0.0	+3.8	+0.0	+0.0					
			+0.0	+0.0							
21 22	20.000M	30.8	+0.0	+0.0	+0.0	+0.0	+0.0	18.2	46.0	-27.8	Horiz
			+0.0	+1.7	-26.6	+0.2					
			+1.5	+10.6							

Band Edge

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio Specification: Band Edge

Work Order #: 96887 Date: 8/4/2015
Test Type: Maximized Emissions Time: 10:37:53
Tested By: Don Nguyen Sequence#: 0

Software: EMITest 5.02.00

Equipment Tested:

zquipinent zesteut				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

All I/O ports of the EUT are connected to section of unterminated 1/4" TRS audio cables.

The EUT is set in operational mode, exercising the intended functionalities.•

The EUT is powered by 9V power supply located on the ground plane. •

The manufacturer declares that the EUT is not marketed with power supply. •

The EUT is tested in three orthogonal axes. •••

Operating frequency = 2.400-2.4835 GHz••

Frequency range of measurement = Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)• RBW=1MHz, VBW=1MHz•

Test environment conditions:

Temperature: 28°C Relative Humidity: 51% Pressure: 100kPa••

Site D• Test Method: ANSI C63.4 (2009)•

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T2	AN01646	Horn Antenna	3115	3/18/2014	3/18/2016
Т3	ANP04382	Cable	LDF-50	7/30/2014	7/30/2016
T4	ANP06360	Cable	L1-PNMNM-48	7/29/2014	7/29/2016
T5	ANP06554	Cable	32022-29094K-	3/19/2014	3/19/2016
			29094K-24TC		
Т6	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016

Page 66 of 80 Report No.: 96887-5

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Aalberg Audio Specification: **Band Edge**

Work Order #: 96887 Date: 8/4/2015
Test Type: Maximized Emissions Time: 14:32:05
Tested By: Don Nguyen Sequence#: 1

Software: EMITest 5.02.00

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The EUT is placed flat on the Styrofoam platform as intended in normal application.

The EUT is set in operational mode, exercising the intended functionalities.

The EUT is charged from support USB charger. When charging, the EUT can still transmit.

The manufacturer declares that the EUT is not marketed with power supply. •

The EUT is tested in three orthogonal axes. •••

Operating frequency = 2.400-2.4835 GHz••

Frequency range of measurement = Low CH (2.402GHz), Middle CH (2.440GHz), High CH (2.480GHz)• RBW=1MHz, VBW=1MHz•

Test environment conditions:

Temperature: 29°C Relative Humidity: 51% Pressure: 100kPa••

Site D• Test Method: ANSI C63.4 (2009)•

Test Equipment:

ID	Asset #/Serial #	Description	Model	Calibration Date	Cal Due Date
T1	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T2	AN01646	Horn Antenna	3115	3/18/2014	3/18/2016
T3	ANP04382	Cable	LDF-50	7/30/2014	7/30/2016
T4	ANP06360	Cable	L1-PNMNM-48	7/29/2014	7/29/2016
T5	ANP06554	Cable	32022-29094K-	3/19/2014	3/19/2016
			29094K-24TC		
T6	AN02869	Spectrum Analyzer	E4440A	7/17/2015	7/17/2016

Page 67 of 80 Report No.: 96887-5

Band Edge Plots

Test Setup Photos

EKKO EK-1 Test Setup, 30MHz – 1GHz

EKKO EK-1 Test Setup, 30MHz – 1GHz

EKKO EK-1 Test Setup, 1 – 25GHz

EKKO EK-1 Test Setup, 1 – 25GHz

EKKO EK-1, X axis

EKKO EK-1, Y axis

EKKO EK-1, Z axis

AERO AE-1 Test Setup, 30MHz – 1GHz

AERO AE-1 Test Setup, 30MHz – 1GHz

AERO AE-1 Test Setup, 1 – 25GHz

AERO AE-1 Test Setup, 1 – 25GHz

AERO AE-1, X axis

AERO AE-1, Y axis

AERO AE-1, Z axis

SUPPLEMENTAL INFORMATION

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 79 of 80 Report No.: 96887-5

SAMPLE CALCULATIONS				
	Meter reading	(dBμV)		
+	Antenna Factor	(dB)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBµV/m)		

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 80 of 80 Report No.: 96887-5