Statistica I

Unità O: tabelle di contingenza

Tommaso Rigon

Università Milano-Bicocca

Anno Accademico 2020-2021

Unità O

Argomenti affrontati

- Tabelle di contingenza
- Distribuzione congiunta, marginale e condizionata
- Indipendenza in distribuzione
- \blacksquare Frequenze attese, indice χ^2 di Pearson

Riferimenti al libro di testo

■ §7.1 — §7.5

Descrizione del problema

- Dopo il disastro del Titanic, una commissione d'inchiesta del British Board of Trade ha compilato una lista di tutti i 1316 passeggeri includendo le seguenti aggiuntive:
 - l'esito (salvato, non salvato)
 - la classe (I, II, III) in cui viaggiavano
 - il sesso. l'età, etc.
- In questa unità ci limitiamo a considerare le informazioni sull'esito e la classe. I dati sono quindi costituiti da una lunga lista del tipo:

Passeggero	Classe	Esito
Nome 1	П	Salvato
Nome 2	Ш	Non salvato
Nome 3	1	Non salvato
:	:	:
Nome 1316	Ш	Salvato

Le frequenze marginali

■ La variabile Classe ha la seguente distribuzione di frequenza marginale:

Classe	Frequenze assolute	Frequenze relative
I	325	0.247
П	285	0.216
Ш	706	0.537

■ La variabile Esito ha la seguente distribuzione di frequenza marginale:

Esito	Frequenze assolute	Frequenze relative
Salvato	499	0.379
Non salvato	817	0.621

Le frequenze congiunte

 Una sintesi che possiamo operare consiste nel costruire una tabella, detta tabella di contingenza oppure tabella a doppia entrata.

Esito	l	П	Ш	Totale
Salvato	203	118	178	499
Non salvato	122	167	528	817
Totale	325	285	706	1316

- In questa tabella sono riportate le frequenze congiunte, ad esempio, il valore 203 rappresenta il numero di passeggeri che viaggiavano in I classe e che sono sopravvissuti.
- È quindi evidente che viaggiatori della I classe hanno ricevuto un trattamento preferenziale.
- La frazione di individui della I classe che si sono salvati è $203/325 \approx 0.63$.
- Invece, la frazione di viaggiatori della III classe che si sono salvati è $178/706 \approx 0.25$.

Le frequenze congiunte relative

■ Possiamo anche considerare le frequenze congiunte relative, ottenute dividendo le frequenze congiunte per il numero totale n = 1316.

		Classe		
Esito	1	Ш	Ш	Totale
Salvato	0.154	0.090	0.135	0.38
Non salvato	0.093	0.127	0.401	0.62
Totale	0.247	0.217	0.536	1

- La frazione di individui della I classe che si sono salvati è $0.154/0.247 \approx 0.63$.
- Invece, la frazione di viaggiatori della III classe che si sono salvati è $0.135/0.536 \approx 0.25$.

Tabella di contingenza

- Siano x ed y due variabili aventi modalità c_1, \ldots, c_k e d_1, \ldots, d_h , rispettivamente.
- Una tabella di contingenza (a due variabili) per le coppie di dati $(x_1, y_1), \ldots, (x_n, y_n)$ si presenta nella seguente forma:

Variabile x	d_1	 d_j	 d_k	Totale
<i>c</i> ₁	n ₁₁	 n_{1j}	 n_{1k}	n_{1+}
:	:	:	:	:
Ci	n _{i1}	 n _{ij}	 n _{ik}	n_{i+}
•	:	:	:	÷
C_h	n_{h1}	 n_{hj}	 n_{hk}	n_{h+}
Totale	n ₊₁	 n_{+j}	 n_{+k}	n

■ La frequenza n_{ij} è il numero di unità statistica che presentano contemporaneamente le modalità c_i e d_i .

Tabella di contingenza, frequenze relative

■ Dividendo per *n* ciascun termine della precedente tabella, si ottiene inoltre:

		Variabile y						
Variabile x	d_1		d_{j}		d_k	Totale		
<i>C</i> ₁	f ₁₁		f_{1j}		f_{1k}	f_{1+}		
:	:		:		:	:		
Ci	f _{i1}		f_{ij}		f_{ik}	f_{i+}		
:	:		:		:	:		
Ch	f_{h1}		f_{hj}		f_{hk}	f_{h+}		
Totale	f_{+1}		f_{+j}		f_{+k}	1		

■ La frequenza relativa $f_{ij} = n_{ij}/n$ è quindi la frazione di osservazioni che presentano contemporaneamente le modalità c_i e d_j .

Alcune proprietà

■ Proprietà. Per definizione, vale quindi che

$$n_{i+} = \sum_{j=1}^{k} n_{ij}, \qquad n_{+j} = \sum_{i=1}^{h} n_{ij}, \qquad n = \sum_{i=1}^{h} \sum_{j=1}^{k} n_{ij}.$$

Proprietà. Sempre per definizione, vale quindi che

$$f_{i+} = \frac{n_{i+}}{n} = \sum_{j=1}^{k} f_{ij}, \qquad f_{+j} = \frac{n_{+j}}{n} = \sum_{i=1}^{h} f_{ij}, \qquad \sum_{i=1}^{h} \sum_{j=1}^{k} f_{ij} = 1.$$

<u>Esercizio</u>. Si verifichino le proprietà precedenti nel caso del Titanic.

Terminologia & notazione

Distribuzione congiunta

- Una tabella di contingenza nel suo complesso ci mostra la distribuzione congiunta di x ed y. Le n_{ij} per $i=1,\ldots,h$ e $j=1,\ldots,k$ sono chiamate frequenze congiunte.
- I valori f_{ij} per $i=1,\ldots,h$ e $j=1,\ldots,k$ sono chiamate frequenze congiunte relative.

Distribuzione marginale

■ Le distribuzioni marginali per x e per y sono invece pari a

Variabile x	c_1	 Ci	 Ch	Totale
Frequenze assolute Frequenze relative	n_{1+}	 n_{i+}	 n_{h+}	n
Frequenze relative	f_{1+}	 f_{i+}	 f_{h+}	1

Variabile y	d_1	 d_j	 d_k	Totale
Frequenze assolute	n_{+1}	 n_{+j}	 n_{+k}	n
Frequenze relative	f_{+1}	 f_{+j}	 f_{+k}	1

Terminologia & notazione

Distribuzione condizionata $(x \mid y = d_j)$

■ La j-esima colonna mostra la distribuzione di x condizionata ad $y = d_j$ oppure, equivalentemente, la distribuzione di x dato $y = d_j$.

Distribuzione $x \mid y = d_j$	c_1	 Ci	 Ch	Totale
Frequenze assolute Frequenze relative	n_{1j} n_{1j}/n_{+j}	 n_{ij} n_{ij}/n_{+j}	 n_{hj} n_{hj}/n_{+j}	n_{+j} 1

Distribuzione condizionata $(y \mid x = c_i)$

■ La *i*-esima colonna mostra la distribuzione di y condizionata ad $x = c_i$ oppure, equivalentemente, la distribuzione di y dato $x = c_i$.

Distribuzione $y \mid x = c_i$	d_1	 d_{j}	 d_k	Totale
Frequenze assolute Frequenze relative	n_{i1} n_{i1}/n_{i+}	 $n_{ij} \ n_{ij}/n_{i+}$	 $n_{ik} \ n_{ik}/n_{i+}$	n_{i+} 1

Il disastro del Titanic, distribuzioni condizionate

(Esito Classe = I)	Salvato	Non Salvato	Totale
Frequenze assolute	203	122	325
Frequenze relative	0.625	0.375	1

$(Esito \mid Classe = \mathit{II})$	Salvato	Non Salvato	Totale
Frequenze assolute	118	167	285
Frequenze relative	0.41	0.59	1

(Esito Classe = ///)	Salvato	Non Salvato	Totale
Frequenze assolute	178	528	706
Frequenze relative	0.25	0.75	1

Il disastro del Titanic, distribuzioni condizionate

$(\textbf{Classe} \mid \textbf{Esito} = Salvato)$	1	Ш	Ш	Totale
Frequenze assolute	203	118	178	499
Frequenze relative	0.41	0.24	0.36	1

	1	Ш	Ш	Totale
Frequenze assolute Frequenze relative	122	167 0.20	528 0.65	817
- requerize relative	0.13	0.20	0.05	1

Sommario

Distribuzione congiunta

 La distribuzione congiunta è il "nucleo" della tabella. Comprende il numero di osservazioni che presentano una modalità della prima variabile contemporaneamente (congiuntamente) ad una modalità della seconda variabile.

Distribuzione condizionata

■ Le distribuzioni condizionate considerano le frequenze della prima variabile solamente (condizionatamente) per certi valori della seconda variabile.

Distribuzione marginale

 Le distribuzioni marginali considerano le frequenze della prima variabile a prescindere (marginalmente) dall'esito della seconda variabile.

La dipendenza tra variabili

- Ri-consideriamo i dati del disastro del Titanic.
- Abbiamo notato che la sopravvivenza dipende dalla classe in cui viaggiava il passeggero visto che la frazione di sopravvissuti all'incidente varia al variare della classe.
- Indichiamo con y la Classe e con x l'Esito. Diremo quindi che la variabile x dipende dalla variabile y.
- Dipendenza di x dato y. La variabile x dipende dalla variabile y se le distribuzioni condizionate di x dato y sono tra loro diverse in termini di frequenze relative.
- La dipendenza di *y* dato *x* ovviamente è definita in maniera speculare.

L'indipendenza tra variabili

■ Supponiamo che la distribuzione congiunta sia la seguente.

	Classe			
Esito	I	П	Ш	Totale
Salvato	150	200	300	650
Non salvato	300	400	600	1300
Totale	450	600	900	1950

■ Nonostante le frequenze assolute delle distribuzioni condizionate (Esito | Classe) siano diverse tra loro, le frequenze relative risultano invece uguali.

	Classe				
Esito	1	П	Ш		
Salvato	0.33	0.33	0.33		
Non salvato	0.67	0.67	0.67		
Totale	1	1	1		

Indipendenza tra variabili

- Nel caso della tabella precedente è quindi ragionevole affermare non esiste dipendenza di x da y.
- Si ricordi che n_{ij}/n_{+j} è la frequenza relativa di c_i nella distribuzione di x condizionata a $y=d_j$.
- Indipendenza di x da y. La variabile x è indipendente in distribuzione da y se per ogni i = 1, ..., h vale che

$$\frac{n_{i1}}{n_{+1}} = \cdots = \frac{n_{ij}}{n_{+j}} = \cdots = \frac{n_{ik}}{n_{+k}}.$$

Viceversa, diremo che x dipende in distribuzione da y.

■ In altri termini, x è indipendente da y se tutte le distribuzioni condizionate $(x \mid y = d_j)$ sono uguali in termini di frequenze relative, per ogni j = 1, ..., k.

Indipendenza, distribuzione marginale

Proprietà. Se x è indipendente da y, allora le distribuzioni condizionate sono tutte uguali e pari alla distribuzione marginale di x. In altri termini

$$f_{i+} = \frac{n_{i+}}{n} = \frac{n_{ij}}{n_{+i}}, \qquad i = 1, \dots, h,$$

per ogni valore di $j = 1, \ldots, k$.

■ Per dimostrare questa proprietà, si noti anzitutto che l'indipendenza implica che

$$\frac{n_{ij'}}{n_{+j'}} = \frac{n_{ij}}{n_{+j}} \implies n_{ij'} = n_{ij} \frac{n_{+j'}}{n_{+j}},$$

per ogni $j, j' = 1, \dots, k$ e $i = 1, \dots, h$. Quindi:

$$\frac{n_{i+}}{n} = \frac{1}{n} \sum_{j'=1}^{k} n_{ij'} = \frac{1}{n} \sum_{j'=1}^{k} \frac{n_{ij} n_{+j'}}{n_{+j}} = \frac{n_{ij}}{n_{+j}} \sum_{j'=1}^{k} \frac{n_{+j'}}{n} = \frac{n_{ij}}{n_{+j}} \frac{n}{n} = \frac{n_{ij}}{n_{+j}}.$$

Tommaso Rigon (Milano-Bicocca)

Indipendenza tra variabili

Proprietà. Se x è indipendente in distribuzione da y, allora y è indipendente in distribuzione da x. In altri termini, per ogni j = 1, ..., k vale anche che

$$\frac{n_{1j}}{n_{1+}} = \cdots = \frac{n_{ij}}{n_{i+}} = \cdots = \frac{n_{hj}}{n_{h+}} = \frac{n_{+j}}{n} = f_{+j}.$$

- Nota. L'indipendenza è pertanto un concetto simmetrico. Possiamo quindi parlare di indipendenza tra x ed y senza dover indicare necessariamente una direzione.
- lacktriangle Per dimostrare questa proprietà, si noti che se x è indipendente da y, allora per la proprietà precedente

$$f_{i+} = \frac{n_{i+}}{n} = \frac{n_{ij}}{n_{+i}}, \qquad i = 1, \dots, h, \quad j = 1, \dots, k.$$

Di conseguenza, avremo che

$$\frac{n_{ij}}{n_{j+}} = \frac{n_{+j}}{n} = f_{+j}, \qquad i = 1, \dots, h, \quad j = 1, \dots, k.$$

Le frequenze attese

- Supponiamo siano note le distribuzioni marginali delle variabili x ed y.
- Inoltre, supponiamo che x ed y siano indipendenti in distribuzione. Le frequenze congiunte pertanto devono essere necessariamente pari a $n_{ij} = (n_{i+}n_{+j})/n$.
- Frequenze attese. Le frequenze attese (assolute e relative) sono definite a partire dalle frequenze marginali come segue

$$\hat{n}_{ij} = \frac{n_{i+}n_{j+}}{n}, \qquad \hat{f}_{ij} = \frac{\hat{n}_{ij}}{n} = f_{i+}f_{+j}, \qquad i = 1, \ldots, h, \quad j = 1, \ldots, k.$$

■ In altri termini, le frequenze attese sono le frequenze congiunte che è lecito attendersi sotto l'ipotesi di indipendenza tra le variabili x ed y.

Disastro del Titanic, frequenze attese

Frequenze attese

		Classe		
Esito	I	П	Ш	Totale
Salvato	123.2	108.1	267.7	499
Non salvato	201.8	176.9	438.3	817
Totale	325	285	706	1316

■ Frequenze attese relative

		Classe		
Esito	I	Ш	Ш	Totale
Salvato	0.094	0.082	0.203	0.38
Non salvato	0.153	0.134	0.333	0.62
Totale	0.247	0.217	0.536	1

■ Esercizio. Si verifichi che le frequenze condizionate relative sono tutte uguali.

La massima dipendenza

- La massima dipendenza di x dato y si verifica, viceversa, quando la conoscenza della variabile y determina univocamente la variabile x.
- Supponiamo di osservare il seguente insieme di dati

		Classe		
Esito	1	П	Ш	Totale
Salvato	325	285	0	610
Non salvato	0	0	706	706
Totale	325	285	706	1316

- Condizionatamente alla variabile Classe, la variabile Esito è univocamente determinata.
- Il viceversa non è vero. Conoscere l'Esito non determina univocamente la Classe.
- Nota. La (perfetta) dipendenza è quindi un concetto asimmetrico. La perfetta dipendenza di x dato y non implica il contrario.

Connessione e indice χ^2

- Siamo interessati a trovare un indice di connessione, ovvero un indice utilizzato per quantificare la dipendenza tra due variabili x ed y.
- È ragionevole basare tale indice sulle contingenze, ovvero sulle differenze

$$(contingenza_{ii}) = n_{ij} - \hat{n}_{ij}, \qquad i = 1, \dots, h, \quad j = 1, \dots, k.$$

■ Indice χ^2 di Pearson. L'indice di connessione χ^2 è definito come

$$\chi^2 = \sum_{i=1}^h \sum_{j=1}^k \frac{(n_{ij} - \hat{n}_{ij})^2}{\hat{n}_{ij}} = n \left(\sum_{i=1}^h \sum_{j=1}^k \frac{f_{ij}^2}{f_{i+}f_{+j}} - 1 \right).$$

L'indice χ^2 è pertanto sempre maggiore o uguale a zero. È pari a zero in particolare in caso di indipendenza.

Indice χ^2 normalizzato

Teorema (senza dimostrazione)

L'indice χ^2 di Pearson è tale che

$$\chi^2 \leq n \min\{h-1,k-1\}.$$

- Se $k \le h$ l'indice raggiunge il suo massimo in caso di dipendenza perfetta di x dato y.
- Se $h \le k$ l'indice raggiunge il suo massimo in caso di dipendenza perfetta di y dato x.
- Il precedente teorema consente di definire un indice χ^2 normalizzato, ovvero

$$\chi^2_{\text{norm}} = \frac{\chi^2}{\text{(massimo valore di } \chi^2\text{)}} = \frac{\chi^2}{n \min\{h-1, k-1\}},$$

che è ovviamente tale che $0 \le \chi^2_{norm} \le 1$.

■ Utilizzando i dati del Titanic, si ottiene $\chi^2=133.05$ e $\chi^2_{\text{norm}}=0.1011$.