

Minería de datos

Trabajo análisis discriminante de bd iris

Kevin Heberth Haquehua Apaza

30 de julio del 2025

Table of Contents

Análisis de base de datos iris mediante análisis discriminante	
Con el análisis realizado en clases se observo algunos resultados que sugerían realizar transformación o buscar alguna otra solución. Desarrolle la solución e interprete los resultados	
Solución	4

Análisis de base de datos iris mediante análisis discriminante

Con el análisis realizado en clases se observo algunos resultados que sugerían realizar una transformación o buscar alguna otra solución. Desarrolle la solución e interprete los resultados

Primeramente veamos el resultado original

Librerias a utilizar

Cargamos los datos

```
data("iris")
```

Realizamos la partición de la data

```
#dividir la data
set.seed(12345)
muestra = createDataPartition(iris$Species, p =0.8, list =F)
train = iris[muestra,]
test = iris[-muestra,]
```

Ahora ejecutemos el modelo lineal discriminante


```
## Prior probabilities of groups:
## setosa versicolor virginica
## 0.3333333 0.3333333 0.3333333
##
## Group means:
       Sepal.Length Sepal.Width Petal.Length Petal.Width
             4.9925 3.4050
                                1.4775
                                         0.245
## setosa
## versicolor 5.9675 2.7625
                                 4.2575
                                          1.345
## virginica
             6.6000 3.0050 5.5700
                                         2.060
## Coefficients of linear discriminants:
##
           LD1
                  LD2
## Sepal.Length 0.8090913 0.2925911
## Sepal.Width 1.9393787 -2.4494212
## Petal.Length -2.2164336 0.6391380
## Petal.Width -3.1630675 -2.4130658
##
## Proportion of trace:
## LD1 LD2
## 0.9916 0.0084
```

Evaluemos y veamos la matriz de confusión

```
#evaluacion
prediccion = predict(discrim_l, test)
prediccion$class
## [1] setosa setosa setosa setosa setosa
## [7] setosa setosa setosa versicolor versicolor
## [13] versicolor versicolor versicolor versicolor versicolor
## [19] versicolor versicolor virginica virginica virginica virginica
## [25] virginica virginica virginica virginica virginica virginica
## Levels: setosa versicolor virginica
prediccion$posterior
##
       setosa versicolor virginica
## 5 1.000000e+00 2.553396e-26 2.395489e-49
## 7 1.000000e+00 9.349809e-22 5.479903e-43
## 15 1.000000e+00 7.077285e-35 8.290507e-61
## 18 1.000000e+00 2.013902e-24 1.093475e-46
## 21 1.000000e+00 8.818530e-23 6.234255e-45
## 23 1.000000e+00 6.017800e-29 8.656654e-53
## 27 1.000000e+00 7.660503e-20 2.775055e-40
## 34 1.000000e+00 9.239481e-34 6.757276e-59
## 42 1.000000e+00 6.580155e-12 5.591279e-31
## 47 1.000000e+00 1.423772e-26 1.847393e-49
## 51 1.705622e-20 9.999837e-01 1.628641e-05
## 52 7.795853e-22 9.998520e-01 1.480127e-04
## 56 1.754090e-25 9.994334e-01 5.666046e-04
## 58 3.388938e-16 1.000000e+00 2.412084e-08
## 68 3.033131e-18 9.999998e-01 1.594068e-07
## 70 3.994890e-20 9.999991e-01 8.638759e-07
```



```
## 74 7.933651e-25 9.998675e-01 1.325017e-04
## 85 3.556083e-27 9.830436e-01 1.695644e-02
## 91 8.574268e-26 9.997294e-01 2.705795e-04
## 100 1.743526e-21 9.999807e-01 1.925693e-05
## 111 1.105697e-35 1.685661e-02 9.831434e-01
## 113 5.855433e-44 1.303059e-04 9.998697e-01
## 119 3.309200e-67 1.459771e-10 1.000000e+00
## 124 7.464250e-36 8.877668e-02 9.112233e-01
## 127 6.998661e-34 2.034541e-01 7.965459e-01
## 130 4.002543e-36 1.433569e-01 8.566431e-01
## 133 1.100827e-51 8.955581e-07 9.999991e-01
## 135 1.335121e-39 4.990247e-02 9.500975e-01
## 138 7.892275e-39 6.398729e-03 9.936013e-01
## 143 4.514135e-43 5.304245e-04 9.994696e-01
prediccion$x
##
       LD1
               LD2
## 5 8.8267271 -0.63889692
## 7 7.7989081 -0.50735568
## 15 10.6930384 -1.51242015
## 18 8.3973917 -0.60600227
## 21 8.0975579 0.15976515
## 23 9.3896640 -1.01158854
## 27 7.3629512 -0.50379824
## 34 10.3949000 -1.96225412
## 42 5.8063258 2.09383477
## 47 8.8522253 -0.97169446
## 51 -1.4407535 0.13953005
## 52 -1.7992283 -0.40515877
## 56 -2.5087302 0.85240913
## 58 -0.3231142 1.55505895
## 68 -0.7862653 1.59487492
## 70 -1.2089793 1.65710678
## 74 -2.3120736 1.33857974
## 85 -2.9961954 -0.20786560
## 91 -2.5204741 1.46116795
## 100 -1.6221568 0.59675395
## 111 -4.6297131 -1.19894979
## 113 -5.9777416 -0.60693961
## 119 -9.7609314 1.04834084
## 124 -4.6853205 0.32202818
## 127 -4.3506484 -0.01608684
## 130 -4.7375014 0.90837111
## 133 -7.2272040 -0.41148458
## 135 -5.3273531 1.92107499
## 138 -5.1585200 -0.24499842
## 143 -5.8494596 0.06225366
#matriz de confusion
confusionMatrix(test$Species, prediccion$class)
```



```
## Confusion Matrix and Statistics
##
##
       Reference
## Prediction setosa versicolor virginica
## setosa 10
                   0
                        0
                   10
                         0
## versicolor 0
## virginica 0
                   0 10
##
## Overall Statistics
##
##
        Accuracy: 1
##
         95% CI: (0.8843, 1)
## No Information Rate: 0.3333
    P-Value [Acc > NIR]: 4.857e-15
##
##
          Kappa: 1
##
## Mcnemar's Test P-Value: NA
## Statistics by Class:
##
##
           Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000 1.0000
## Specificity 1.0000
                             1.0000
                                        1.0000
## Pos Pred Value 1.0000 1.0000 1.0000 ## Neg Pred Value 1.0000 1.0000 1.0000
## Prevalence
                    0.3333
                               0.3333
                                         0.3333
## Detection Rate 0.3333
                                0.3333
                                           0.3333
## Detection Prevalence 0.3333
                                   0.3333
                                              0.3333
## Balanced Accuracy 1.0000 1.0000
                                              1.0000
```

Solución

El caso es que las variables o clases estan bien separadas y debido a las pocas observaciones 120, puede ser el caso de necesitar una tranformación de datos (normal o log) o tambien realizar una validacion cruzada

Tranformación de datos

Por la normal

```
#dividir la data
iris_tran_norm <- scale(iris[,1:4])
iris_st <- data.frame(cbind(iris_tran_norm, iris[,5]))
muestra = createDataPartition(iris_st$V5, p =0.8, list =F)
train = iris[muestra,]
test = iris[-muestra,]</pre>
```

Ahora ejecutemos el modelo lineal discriminante


```
discrim 1 = lda(Species ~ Sepal.Length + Sepal.Width +Petal.Length + Petal.Width,
                 data =train)
discrim_l
## Call:
## Ida(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
## data = train)
##
## Prior probabilities of groups:
## setosa versicolor virginica
## 0.3416667 0.3250000 0.3333333
## Group means:
##
       Sepal.Length Sepal.Width Petal.Length Petal.Width
## setosa 4.982927 3.382927 1.426829 0.2317073
## versicolor 5.928205 2.756410 4.276923 1.3230769
## virginica 6.632500 2.987500 5.600000 2.0675000
## Coefficients of linear discriminants:
           LD1
                LD2
## Sepal.Length 0.8894355 -0.5731198
## Sepal.Width 1.4058731 -1.6483956
## Petal.Length -2.2963444 1.5021688
## Petal.Width -2.7175171 -3.4276176
## Proportion of trace:
## LD1 LD2
## 0.9903 0.0097
```

Evaluemos y veamos la matriz de confusión

```
#evaluacion
prediccion = predict(discrim_l, test)
prediccion$class
## [1] setosa setosa setosa setosa setosa
## [7] setosa setosa setosa versicolor versicolor versicolor
## [13] versicolor versicolor versicolor versicolor versicolor
## [19] versicolor versicolor virginica virginica virginica virginica
## [25] virginica versicolor virginica virginica virginica virginica
## Levels: setosa versicolor virginica
prediccion$posterior
       setosa versicolor virginica
## 6 1.000000e+00 2.097159e-21 3.466670e-41
## 7 1.000000e+00 5.374213e-19 1.176329e-38
## 16 1.000000e+00 6.507967e-28 1.739622e-49
## 19 1.000000e+00 6.625233e-23 1.356711e-43
## 25 1.000000e+00 1.165094e-15 1.201821e-34
## 27 1.000000e+00 1.462511e-17 2.158562e-36
## 40 1.000000e+00 6.360550e-21 1.425099e-41
## 45 1.000000e+00 1.591946e-17 3.925905e-36
```



```
## 48 1.000000e+00 1.176630e-18 1.080951e-38
## 52 5.780022e-20 9.995983e-01 4.016895e-04
## 60 6.827737e-21 9.998176e-01 1.823868e-04
## 64 3.470490e-24 9.974901e-01 2.509901e-03
## 65 5.749231e-14 9.999994e-01 6.310440e-07
## 73 4.349109e-29 8.887511e-01 1.112489e-01
## 75 5.997405e-18 9.999887e-01 1.126670e-05
## 82 9.577287e-16 9.999999e-01 9.154007e-08
## 87 1.773827e-21 9.989378e-01 1.062208e-03
## 92 1.651432e-22 9.991603e-01 8.396657e-04
## 98 9.744756e-19 9.999799e-01 2.005247e-05
## 99 1.677313e-10 1.000000e+00 5.502406e-09
## 112 5.361968e-38 2.017101e-03 9.979829e-01
## 113 1.742297e-39 1.794787e-04 9.998205e-01
## 125 2.965705e-40 8.876413e-05 9.999112e-01
## 127 5.613504e-30 2.423146e-01 7.576854e-01
## 129 1.576487e-44 1.326397e-05 9.999867e-01
## 134 3.511930e-29 8.405248e-01 1.594752e-01
## 135 3.649642e-36 1.477824e-01 8.522176e-01
## 138 8.866543e-36 9.145141e-03 9.908549e-01
## 140 8.197673e-37 7.165453e-04 9.992835e-01
## 150 7.860080e-34 2.882195e-02 9.711781e-01
```

prediccion\$x

LD1 LD2 ## 6 7.6707503 -1.48738652 ## 7 7.2169204 -0.31258177 ## 16 9.0997864 - 2.78395401 ## 19 8.0687453 -1.15172115 ## 25 6.5183870 0.66664042 ## 27 6.8416740 -0.58415768 ## 40 7.7037554 -0.10616303 ## 45 6.8040635 -0.85017727 ## 48 7.2074975 0.35985911 ## 52 -1.8429584 -0.47093614 ## 60 -1.9636592 0.48246590 ## 64 -2.7190682 0.83871398 ## 65 -0.3660554 -0.18435002 ## 73 -3.8345509 1.34112026 ## 75 -1.2619481 0.40867229 ## 82 -0.5723148 1.87566190 ## 87 -2.1759840 -0.17759877 ## 92 -2.3488464 0.52365755 ## 98 -1.4398352 0.52329625 ## 99 0.5481876 0.54579036 ## 112 -5.4699773 0.18394965 ## 113 -5.6952135 -0.92490670 ## 125 -5.8216639 -1.06167964 ## 127 -4.0873532 -0.27458858 ## 129 -6.5617967 -0.21576279 ## 134 -3.8720578 1.14703534 ## 135 -5.2075400 2.68518456


```
## 138 -5.0951452 0.16778693
## 140 -5.2360482 -1.29727512
## 150 -4.7619125 0.01831887
#matriz de confusion
confusionMatrix(test$Species, prediccion$class)
## Confusion Matrix and Statistics
##
##
       Reference
## Prediction setosa versicolor virginica
## setosa 9 0 0
## versicolor 0 11
                       0
## virginica 0 1
## Overall Statistics
##
##
        Accuracy: 0.9667
##
        95% CI: (0.8278, 0.9992)
## No Information Rate: 0.4
## P-Value [Acc > NIR]: 5.303e-11
##
##
         Kappa: 0.9497
##
## Mcnemar's Test P-Value: NA
## Statistics by Class:
##
##
          Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0
                         0.9167 1.0000
                 1.0
                                   0.9524
## Specificity
                        1.0000
## Pos Pred Value 1.0 1.0000 0.9000
## Neg Pred Value
                    1.0
                            0.9474
                                      1.0000
                  0.3
## Prevalence
                          0.4000
                                    0.3000
## Detection Rate 0.3
                            0.3667
                                      0.3000
## Detection Prevalence 0.3
                               0.3667
                                         0.3333
## Balanced Accuracy 1.0 0.9583
                                        0.9762
```

De la misma forma manda una clasificación perfecta

Por una tranformación log

```
#dividir la data
iris_tran_norm <- log(iris[,1:4])
iris_st <- data.frame(cbind(iris_tran_norm, iris[,5]))
muestra = createDataPartition(iris_st$iris...5., p =0.8, list =F)
train = iris[muestra,]
test = iris[-muestra,]</pre>
```

Ahora ejecutemos el modelo lineal discriminante


```
discrim 1 = lda(Species ~ Sepal.Length + Sepal.Width +Petal.Length + Petal.Width,
                 data =train)
discrim_l
## Call:
## Ida(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
## data = train)
##
## Prior probabilities of groups:
## setosa versicolor virginica
## 0.3333333 0.3333333 0.3333333
## Group means:
##
       Sepal.Length Sepal.Width Petal.Length Petal.Width
           5.0550 3.4575 1.485
                                      0.2500
## versicolor 5.9325 2.7550
                                4.225 1.3100
## virginica 6.6425 2.9675 5.580 2.0125
## Coefficients of linear discriminants:
          LD1
                LD2
## Sepal.Length 0.9460727 0.2486590
## Sepal.Width 1.4378567 -2.4054054
## Petal.Length -2.1536775 0.5667747
## Petal.Width -2.9228834 -2.3718011
## Proportion of trace:
## LD1 LD2
## 0.991 0.009
```

Evaluemos y veamos la matriz de confusión

```
#evaluacion
prediccion = predict(discrim_l, test)
prediccion$class
## [1] setosa setosa setosa setosa setosa
## [7] setosa setosa setosa versicolor versicolor
## [13] versicolor versicolor versicolor versicolor virginica versicolor
## [19] versicolor versicolor virginica virginica virginica virginica
## [25] virginica virginica virginica virginica virginica virginica
## Levels: setosa versicolor virginica
prediccion$posterior
       setosa versicolor virginica
## 3 1.000000e+00 2.381151e-18 1.427106e-37
## 14 1.000000e+00 2.276706e-18 5.826960e-38
## 23 1.000000e+00 2.568319e-23 7.119152e-44
## 28 1.000000e+00 1.947829e-20 3.196435e-40
## 29 1.000000e+00 1.201699e-20 1.181126e-40
## 31 1.000000e+00 2.126094e-15 1.197358e-33
## 38 1.000000e+00 5.870451e-22 2.619143e-42
## 44 1.000000e+00 1.499597e-14 4.219721e-31
```



```
## 46 1.000000e+00 2.012025e-15 1.325645e-33
## 48 1.000000e+00 4.222626e-17 8.393340e-36
## 55 3.598246e-22 9.956920e-01 4.308033e-03
## 57 1.679528e-21 9.773464e-01 2.265364e-02
## 63 2.090457e-17 9.999990e-01 1.041136e-06
## 65 7.617010e-14 9.999974e-01 2.581030e-06
## 67 2.902764e-23 9.573845e-01 4.261549e-02
## 68 1.161688e-15 9.999987e-01 1.295455e-06
## 84 3.451829e-31 9.201352e-02 9.079865e-01
## 85 5.083644e-24 9.084536e-01 9.154645e-02
## 86 3.671968e-20 9.878405e-01 1.215950e-02
## 88 2.303788e-22 9.995640e-01 4.359835e-04
## 103 4.331736e-41 2.530827e-05 9.999747e-01
## 111 2.849617e-31 9.038320e-03 9.909617e-01
## 114 6.021280e-40 1.094791e-04 9.998905e-01
## 115 4.682142e-45 5.004826e-07 9.999995e-01
## 122 6.896112e-37 3.689448e-04 9.996311e-01
## 126 4.420358e-35 2.397433e-03 9.976026e-01
## 129 8.242230e-43 8.907395e-06 9.999911e-01
## 138 4.197174e-34 3.592734e-03 9.964073e-01
## 144 1.533634e-44 6.985928e-07 9.999993e-01
## 149 4.272782e-40 5.460057e-06 9.999945e-01
```

prediccion\$x

LD1 LD2 ##3 7.2894036 0.32455916 ## 14 7.3464271 0.83000180 ## 23 8.4160423 -0.83250129 ## 28 7.7630615 -0.15937801 ## 29 7.8346436 0.02448506 ## 31 6.5941220 0.75999799 ## 38 8.1306814 -0.29401361 ## 44 6.1893259 -1.10115280 ## 46 6.5887835 0.65000349 ## 48 6.9794286 0.35637072 ## 55 -2.4896924 0.52132248 ## 57 -2.4676347 -0.91161466 ## 63 -1.0717946 2.68607195 ## 65 -0.4591180 -0.03542562 ## 67 -2.8382187 -0.24022919 ## 68 -0.7574485 1.49031492 ## 84 -4.4756415 0.68374072 ## 85 -3.0274333 -0.28996100 ## 86 -2.1769353 -1.34010784 ## 88 -2.3825231 2.03529865 ## 103 -6.1879882 -0.49683679 ## 111 -4.4528302 -1.34335290 ## 114 -6.0008203 0.08482617 ## 115 -6.8593771 -1.50397252 ## 122 -5.4487028 -0.71833881 ## 126 -5.1443124 -0.18483417 ## 129 -6.4917072 -0.35984944


```
## 138 -4.9681174 -0.42660818
## 144 -6.7688154 -1.52687580
## 149 -5.9720489 -2.44053962
#matriz de confusion
confusionMatrix(test$Species, prediccion$class)
## Confusion Matrix and Statistics
##
##
       Reference
## Prediction setosa versicolor virginica
## setosa 10 0
## versicolor 0
                       1
                   9
## virginica 0
                  0
## Overall Statistics
##
##
        Accuracy: 0.9667
         95% CI: (0.8278, 0.9992)
##
## No Information Rate: 0.3667
## P-Value [Acc > NIR]: 4.476e-12
##
##
          Kappa: 0.95
##
## Mcnemar's Test P-Value: NA
## Statistics by Class:
##
          Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 1.0000
                                      0.9091
                1.0000 0.9524
## Specificity
                                      1.0000
## Pos Pred Value 1.0000 0.9000
                                         1.0000
## Neg Pred Value
                   1.0000
                               1.0000
                                         0.9500
## Prevalence
                   0.3333
                             0.3000
                                       0.3667
## Detection Rate 0.3333
                               0.3000
                                         0.3333
## Detection Prevalence 0.3333
                                  0.3333
                                            0.3333
## Balanced Accuracy 1.0000 0.9762
                                           0.9545
```

En este caso ya muestra un mejor accuracy, y la especificidad del modelo bajo, siendo un resultado más real

Realizando validación cruzada

Definir el control de validación cruzada de 10

```
ctrl <- trainControl(method = "cv", number = 10)</pre>
```

Ahora entremos los datos con validaciones cruzadas

```
set.seed(12345)
muestra = createDataPartition(iris$Species, p =0.8, list =F)
train = iris[muestra,]
test = iris[-muestra,]
```


Ahora ejecutar el modelo lineal con validación cruzada

Veamos los resultados

```
## Linear Discriminant Analysis
##
## 120 samples
## 4 predictor
## 3 classes: 'setosa', 'versicolor', 'virginica'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 108, 108, 108, 108, 108, 108, ...
## Resampling results:
##
## Accuracy Kappa
## 0.975 0.9625
```

Se observa un accuracy no exacto. Veamos ahora la predicción

```
#evaluacion
prediccion = predict(discrim_l_cv, test)
confusionMatrix(prediccion, test$Species)
## Confusion Matrix and Statistics
##
##
       Reference
## Prediction setosa versicolor virginica
## setosa 10 0
## versicolor 0
                  10 0
## virginica 0
                  0 10
##
## Overall Statistics
##
##
        Accuracy: 1
##
         95% CI: (0.8843, 1)
##
   No Information Rate: 0.3333
## P-Value [Acc > NIR]: 4.857e-15
##
##
          Kappa: 1
## Mcnemar's Test P-Value: NA
##
## Statistics by Class:
```



```
Class: setosa Class: versicolor Class: virginica
## Sensitivity
                 1.0000 1.0000 1.0000
                 1.0000
                           1.0000
                                     1.0000
## Specificity
## Pos Pred Value 1.0000 1.0000
## Neg Pred Value 1.0000 1.0000
                                        1.0000
                                         1.0000
## Prevalence
                  0.3333
                             0.3333
                                       0.3333
## Detection Rate 0.3333
                              0.3333
                                        0.3333
## Detection Prevalence 0.3333
                                 0.3333
                                           0.3333
## Balanced Accuracy 1.0000 1.0000 1.0000
```

De la misma forma manda una clasificación perfecta a pesar de que el modelo una clasificación exacta con la data de prueba a pesar de que con la data de entrenamiento arroja un accuracy menor.

CONCLUSIÓN

La mejor forma de evitar los errores de ajuste y clasificación es con la tranformación