Greedy Algorithms: Minimizing Lateness

Reminders/Logistics

- CS256 URL: https://williams-cs.github.io/cs256-s21-www/
- Graded HW 1 will be returned today; solution on GLOW
- Feedback question response: Question 5 was a prime culprit

Minimizing Lateness: Exchange Argument

- You have n homework assignments of different lengths, with different deadlines
- How should you schedule your time to minimize lateness?
- Example:

Let's formalize the problem. The input is:

- A list of assignments or "jobs" that need to be scheduled
- Each job j has a length t_j and a deadline d_j

The output is a schedule of all jobs, what does it look like?

- s_i = start time for job j (selected by the algorithm)
- $f_j = s_j + t_j$ finish time
- Restrictions on the schedule:
 - Only one job can be scheduled at a given time
 - A job must run to completion before another can be executed

What makes a schedule good?

• Let us define lateness of job j as

$$\ell_j = \begin{cases} 0 & \text{if } f_j \le d_j \\ f_j - d_j & \text{if } f_j > d_j \end{cases}$$

. Maximum lateness $L = \max_j \ell_j$

Goal: Make maximum lateness as small as possible, minimize maximum lateness

• Let us define lateness of job j as

$$\ell_j = \begin{cases} 0 & \text{if } f_j \le d_j \\ f_j - d_j & \text{if } f_j > d_j \end{cases}$$

. Maximum lateness $L = \max_j \ell_j$

	1	2	3	4	5	6
t_j	3	2	1	4	3	2
d_{j}	6	8	9	9	14	15

- Observation:
 - Never hurts to schedule jobs consecutively with no "idle time" in between
 - Can start the first job at time 0
 - Schedule is then determined by order of jobs
 - What order should we pick?

- Possible strategies:
 - Shortest jobs first (get more done faster!)
 - Do jobs with shortest "slack" time first (slack of job i is d_i-t_i)
 - Earlier deadlines first (triage!)

Shortest job first (Counter-example)

	1	2
tj	1	10
dj	100	10

Gives max lateness: I OPT max lateness: 0

- Possible strategies:
 - Shortest jobs first (get more done faster!)
 - Do jobs with shortest "slack" time first (slack of job i is d_i-t_i)
 - Earlier deadlines first (triage!)

Shortest slack first (Counter-example)

	1	2
tj	1	10
dj	2	10

Gives max lateness: 9
OPT max lateness: 1

Earliest deadline first?

- How all computer scientists schedule their work
- Order jobs by their deadline $d_1 \leq d_2 \leq \ldots \leq d_n$ and schedule them in that order
 - Intuition: get the jobs due first done first
- This approach is optimal (We will show this)

Greedy Solution

Assuming jobs are ordered by deadline $d_1 \le d_2 \le ... \le d_n$ the greedy ordering is simply G = 1, 2, ..., n

All jobs are scheduled consecutively (no idle time)

Claim: G is optimal, that is, the earliest-deadline-first algorithm produces a schedule that minimizes maximum lateness

- Will prove this through proof by exchange argument
- High level idea: assume G is not optimal, then there exists an optimal solution $O \neq G$ that produces a different ordering or jobs; we will show that we can modify O to produce G one job at a time, without ever increasing lateness

Exchange Argument: I

Let O be an optimal solution, such that $O \neq G$.

- Since $G = \{1,2,\ldots,n\}$, where $d_1 \leq d_2 \leq \ldots \leq d_n$ and $O \neq G$, O must have an inversion
 - A pair of jobs (i,j) is an **inversion** if job j is scheduled before i but i's deadline is earlier $(d_j > d_i)$

recall: we assume the jobs are numbered so that $d_1 \le d_2 \le ... \le d_n$

Adjacent Inversions

Observation. If an idle-free schedule has an inversion, then it has an adjacent inversion.

Recall. i, j is an inversion if job j is scheduled before i but i's deadline is earlier ($d_i < d_j$)

Proof. [Contradiction]

- Let i, j be any two **closest** non-adjacent inversions
- Let k be element immediately to the right of j.
- . Case 1. $[d_j > d_k]$ Then j,k is an adjacent and closer inversion ($\Rightarrow \leftarrow$)
- Case 2. $[d_j < d_k]$ Since $d_i < d_j$, this means that i,k is a closer inversion ($\Rightarrow \Leftarrow$)

$$j$$
 k i

Exchange Argument: II

Let O be an optimal solution, such that $O \neq G$.

- Since $G = \{1,2,...,n\}$, and $O \neq G$, O must have an inversion
- O must have at least one adjacent inversion
- Claim: We can swap adjacent inverted jobs without increasing maximum lateness.

recall: we assume the jobs are numbered so that $d_1 \le d_2 \le ... \le d_n$

Swapping Inversions

Claim: We can swap adjacent inverted jobs without increasing maximum lateness.

Proof. Let i, j be adjacent inverted jobs with i < j. Let ℓ be the lateness before swapping them and ℓ' after the swap.

- $\ell_k = \ell'_k$ $\forall k \neq i, j$ (swap doesn't affect other jobs)
- $\ell'_i \le \ell_i$ (lateness of i improves after swap)

$$\cdot \quad \mathcal{E}'_j = \qquad f'_j - d_j \qquad = f_i - d_j \qquad \leq f_i - d_i \qquad \leq \mathcal{E}_i \quad \blacksquare$$

Exchange Argument: III

Let O be an optimal solution, such that $O \neq G$.

- Since $G = \{1,2,...,n\}$, and $O \neq G$, O must have an inversion
- O must have at least one adjacent inversion (i,j)
- Claim: We can swap adjacent inverted jobs (i, j) without increasing maximum lateness.
- Let O' be the new solution with adjacent inversion swapped, then
 - Max lateness of O' is no bigger than that of O (still optimal)
 - O' has one less inversion than O
 - O (optimal) $\rightarrow O'$ (optimal) $\rightarrow O''$ (optimal) $\rightarrow \cdots \rightarrow G$ (optimal)

Exchange Argument: IV

Summarizing and final proof.

- We started with an optimal solution ${\it O}$ that is different than greedy solution ${\it G}$
- ullet Without loss of generality assume O has no idle time
- If O has an inversion, must be adjacent, exchanging them
 - decreases # of inversions by 1 without increasing max lateness, we repeat until no inversions
- G is a schedule with no idle time and no inversions
- Thus, we have transformed O to G without ever increasing maximum lateness
- Greedy is thus optimal

Exchange Argument

General Pattern. An inductive exchange argument

- You start with an arbitrary optimal solution, that is different from the greedy solution
- Find the "first" place where the two solutions differ
- Argue that we can exchange the optimal choice for the greedy choice without making the solution worse (although the exchange may make it better)
- Show that you can iteratively perform the exchange step until you get the greedy solution

Greedy: Takeaway

- Takeaway: greedy algorithms do not usually work
- When greedy algorithms work, it is because the problem has structure that greedy can take advantage of

Greedy Graph Algorithms: Minimum Spanning Trees

Minimum Spanning Trees

Problem. Given a connected, undirected graph G = (V, E) with edge costs w_e , output a minimum spanning tree, i.e., set of edges $T \subseteq E$ such that

- (a spanning tree of G): T connects all vertices
- (has minimum weight): for any other spanning tree T^\prime of G,

we have $\sum_{e \in T} w_e \le \sum_{e \in T'} w_e$

Minimum Cost Spanning Trees

MST: Applications

- Many applications!
 - Classic application:
 - Underground cable (Power, Telecom, etc)
 - Efficient broadcasting on a computer network
 - Approximate solutions to harder problems, such at TSP
 - Real-time face verification

Distinct Edge Weights

- Annoying subtlety in the problem statement is there may be multiple minimum spanning trees
 - If a graph has edges with same edge, e.g., all edges have weight 1: all spanning trees are min!
- To simplify discussion in our algorithm design, we will assume distinct edge weights

Lemma. If all edge weights in a connected graph are distinct, then it has a unique minimum spanning tree.

We will relax the distinct-edge-weight assumption later.

Spanning Trees and Cuts

A **cut** is a partition of the vertices into two **nonempty** subsets S and V-S. A **cut edge** of a cut S is an edge with one end point in S and another in V-S.

Spanning Trees and Cuts

Question. Consider the cut $S = \{1,4,6,7\}$. Which of the following edges are cut edges with respect to this cut?

- **A.** (1, 7)
- **B.** (5, 7)
- C.(2,3)

Fundamental Cycle

Let T be a spanning tree of G.

- For any edge $e \notin T$, $T \cup \{e\}$ creates a unique cycle C
- For any edge $f \in C : T \cup \{e\} \{f\}$ is a spanning tree

Fundamental Cut

Let T be a spanning tree of G.

- For any edge $f \in T$, $T \{f\}$ breaks the graph into two connected components, let D be the set of cut edges with end points in each component
- For any edge $e \in D : T \{f\} \cup \{e\}$ is a spanning tree

Spanning Trees and Cuts

Lemma (Cut Property). For any cut $S \subset V$, let e = (u, v) be the minimum weight edge connecting any vertex in S to a vertex in V - S, then every minimum spanning tree must include e.

Proof. (By contradiction)

Suppose T is a spanning tree that does not contain e = (u, v).

Main Idea: We will construct another spanning tree $T' = T \cup e - e'$ with weight less than $T (\Rightarrow \Leftarrow)$

How to find such an edge e'?

Spanning Trees and Cuts

Proof (Cut Property).

Suppose T is a spanning tree that does not contain e = (u, v).

- Adding e to T results in a unique cycle C
- C must "enter" and "leave" cut S, that is, $\exists e' = (u', v') \in C$ s.t. $u' \in S, v' \in V S$
- w(e') > w(e) (why?)
- $T' = T \cup e e'$ is a spanning tree (why?)
- w(T') < w(T)

$$(\Rightarrow \Leftarrow)$$

Acknowledgments

- The pictures in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)