Affine Objects

Mohamed Hashi

May 19, 2016

1.1 Topology

Definition 1 (Sieve). Let C be a category and $a \in C$. A sieve S on a is a subpresheaf of h(a). Explicitly, for each $c \in C$, S(c) is a subset of Hom(c, a) such that $fg \in S(Dom(g))$ for all $f \in S(c)$ and for all $g \in h(c)$.

The maximal sieve on a, which is h(a), will be denoted by max(a).

Definition 2 (Sieve category). Let C be a category and $a \in C$. The sieve category Sieves(a) is the subobject poset of the presheaf h(a).

Definition 3 (Pullback of sieve). Let C be a category and $a, b \in C$. Let S be a sieve on a. Let $f: b \to a$.

For any $c \in C$ the sieve f^*S on b is given by $f^*S(c) = \{g \in Hom(c,b) : fg \in S(c)\}.$

To show that this is actually a subpresheaf of h(b), let $k: c \to c'$ and $h \in f^*S(c')$. Hence $fh \in S(c')$ and so $fhk \in S(c)$. Conclude that $hk \in f^*S(c')$.

This defines a functor f^* : Sieves(a) \rightarrow Sieves(b).

Definition 4 (Grothendieck Topology). A Grothendieck topology \mathcal{T} is a family $\mathcal{T}(a)$ of 'covering' sieves for every $a \in C$ with the following conditions:

- $\max(a) \in \mathfrak{T}(a)$
- $f^*R \in \mathfrak{T}(\alpha')$ if $R \in \mathfrak{T}(\alpha)$ for all $f : \alpha' \to \alpha$
- if $f^*R \in \mathfrak{T}(\mathfrak{a}')$ for all $f \in S$ with $S \in \mathfrak{T}(\mathfrak{a})$ then $R \in \mathfrak{T}(\mathfrak{a})$

Definition 5 (Basis). Let C be a category with pullbacks. A Grothendieck pretopology \mathcal{B} is a collection $\mathcal{B}(a)$ of families $\{f_i:a_i\to a\}$ of 'covering' morphisms for every $a\in C$ with the following conditions.

Are these colleges of some they should be should be

- every isomorphism is a covering singleton family,
- (Stability) The pullback of a covering family is a covering family. If $\{f_i : a_i \to a\}$ is covering and $g:b\to a$, then $\{f_i':a_i\times_ab\to b\}$ is covering.
- (Transitivity) If $\{f_i : a_i \to a\}$ is a covering family and $\{f_{ij} : a_{ij} \to a_i\}$ for every i, then $\{f_{ij}: a_{ij} \to a\}$ is a covering family.

Generating a topology from a basis: take any sieve containing a covering family to be a covering sieve.

1.1.1 Sheaves

Does this mean I is a Grothendieck topology?

Definition 6 (Sheaves). Let (C,T) be a site. Let $\mathfrak{F} \in \hat{C}$.

A presheaf that admits a unique amalgamation for every matching family is called a sheaf. The category Shv(C) is the full subcategory in \hat{C} all sheaves. Let i be the inclusion functor $Shv(C) \rightarrow \hat{C}$.

In other words, we call & a sheaf if the map

namespace collision.

 $\mathfrak{F}(a) + \mathfrak{F}(R) \qquad \qquad \text{try an align} \\ \text{environment wit} \\ \text{s an isomorphism... for each acc and } R \in \mathcal{T}(a) ? \qquad \text{k inapsto} .$

Definition 7 (Plus construction). Let (C, T) be a site. Let $a, a' \in C$ and $f: a \to a'$. Again, Let $\mathfrak{F} \in \hat{C}$. Define the functor $(-)^+: \hat{C} \to \hat{C}$ as follows which notation these are two On objects: $(\mathfrak{F})^+(a) = \frac{\{(R, \phi) \mid R \in T(a), \phi \in \Gamma(R; \mathfrak{F})\}}{R}, \qquad \text{Better:}$

 $(\mathfrak{F})^+(f)([(R,\varphi)])=[(f^*R,\varphi h(f))].$ for all morphisms sidefined as:

The equivalence relation is defined as:

 $(R, \varphi) \sim (S, \varphi)$

if $\varphi = \varphi$ on some $Q \subset R \cap S$

Let $L: \mathfrak{F} \to \mathfrak{F}'$. Then

$$((L)^+)_{\mathfrak{a}}([(R,\varphi)]) = [(R,L\circ\varphi)]$$

This functor comes with a natural transformation $\omega: \mathrm{Id} \to (-)^+$ defined by

$$\omega_{\mathfrak{F},\mathfrak{a}}(x)=[(\mathtt{max}(\mathfrak{a}),y]$$

$$y(i) = \mathfrak{F}(i)(x).$$

Lemma 8. Let \mathfrak{F} be a presheaf, \mathfrak{G} a sheaf and $g:\mathfrak{F}\to\mathfrak{G}$ a morphism in $\hat{\mathsf{C}}$. Then g factors through $\omega_{\mathfrak{F}}$ via a unique g'.

Lemma 9. For every presheaf \mathfrak{F} , $(\mathfrak{F})^+$ is separated.

Lemma 10. If F is separated, then is a sheaf.

Definition 11. Define $sh = (-)^+ \circ (-)^+$.

reference proofs, e.g. M-M (sheares in geometry, logic)

Definition 13 (Relative topology). Let (C, \mathcal{T}) be a site. Let $a \in C$.

Set $\mathcal{T}_a(f) = \{R^f\}$ $R \in \mathcal{T}(b)$. Define the induced topology \mathcal{T}_a on C_a by, for each $f \in C_a$ What is this?

Lemma 14. T_a defines a Grothendieck topology

Proof. Axiom 1: Qf is an equivalence of posets. So the terminal object is send to the terminal object. Hence $\max(f) \in \mathcal{T}_a(f)$.

Axiom 2 & 3 are consequences of: Qf is an equivalence and Qf commutes with sieve pullback.

Definition 15 (Oversite). Let Y = (C, T) be a site. Let $a \in C$. Define the site Y_a to be the category C_a with the induced topology T_a .

Definition 16 (Natural transformation s). Let (C, T) be a site. Let $a, b \in C$ and $f: b \to a$.

Let $\{x_i\}$ be a compatible family indexed by a sieve R on b. The same set $\{x_i\}$ is a compatible family on f indexed by $Q^f(R)$. Define the natural transformation

$$s: \mathfrak{u} \circ (-)^+ \to (\mathfrak{u} \circ -)^+$$

"by

$$s_{\mathfrak{F}}:\mathfrak{u}\circ(\mathfrak{F})^{+}\to(\mathfrak{u}\circ\mathfrak{F})^{+}$$

$$s_{\mathfrak{F},f}([(x_i)_{i\in R}]) = [(x_i)_{i\in O^f(R)}].$$

Lemma 17 (Restriction commutes with plus). The transformation $s_{\mathfrak{F}}$ is an isomorphism of functors.

Proof. We use the variables from definition? The morphism $s_{\mathfrak{F},f}$ has an inverse, again sending the set to itself and applying Q^f on the indexing sieve. These are mutual inverses, so $s_{\mathfrak{F},f}$ is an isomorphism for each f.

Lemma 18 (s and ω commute). Let \mathfrak{F} be a presheaf on (C,T). Let $f:b\to a\in C$. Then $\omega_{\mathfrak{A}\mathfrak{F}}=s_{\mathfrak{F}}\circ(\overline{u}\circ\omega_{\mathfrak{F}})$. Maybe better expressed diagrammatically.

Proof. For any section $x \in \Gamma(b; \mathfrak{F})$. Let $x_i = \mathfrak{F}(i)(x)$ for any morphism $i \in C$. Note that $Q^f(\max(f)) = \max(b)$. This implies that the compatible family $\{x_i\}$ indexed by the maximal sieve on f is sent by s to the same set $\{x_i\}$ indexed by the maximal sieve on b. In diagram form, that

$$\begin{array}{c}
u \circ \mathfrak{F} \\
\downarrow^{u \circ \omega_{\mathfrak{F}}} \\
u \circ (\mathfrak{F})^{+} \xrightarrow{s} (u \circ \mathfrak{F})^{+}
\end{array}$$

commutes.

Corollary 19. Let (C, T, D) be a ringed site. Let $b \in C$. Let M be a $\Gamma(1; D)$ -module. The morphism $(w^2, \dots, D) \in A(M)(h)$ is isomorphis to

The morphism $\omega^2_{\lambda(M)(b)}$: $\lambda(M)(b) \to \Lambda(M)(b)$ is isomorphic to $\omega^2_{\lambda(M\otimes \mathcal{D}(b)),b}$: $\lambda(\lambda(M\otimes \mathcal{D}(b)) \to \Lambda(\lambda(M\otimes \mathcal{D}(b)))$.

Definition 20. Let P be the plus functor and $U = u \circ -$. Define $s^2 : U \circ P \circ P \to P \circ P \circ U$ as $s^2 : U \circ P \circ P \to P \circ P \circ U$ $s^2 : U \circ P \circ P \to P \circ P \circ U$ $s^2 : U \circ P \circ P \to P \circ P \circ U$ Uhere do these functors as?

Lemma 21. Let \mathfrak{F} be a presheaf on (C, \mathfrak{T}) . Let $f : b \to a \in C$. Let \mathfrak{F} be a presheaf on C. Then $\omega_{u\circ\mathfrak{F}}^2 = s_{\mathfrak{F}}^2 \circ (u \circ \omega_{\mathfrak{F}}^2)$.

Proof. Let $a \in C$. We have

$$\omega_{\mathsf{uo}\mathfrak{F}}^2 = \omega_{(\mathsf{uo}\mathfrak{F})^+} \circ \omega_{\mathsf{uo}\mathfrak{F}},$$

 $w_{u\circ\mathfrak{F}}^2=w_{(u\circ\mathfrak{F})^+}\circ w_{u\circ\mathfrak{F}},$ are you using P or t? $s_{\mathfrak{F}}^2=(s_{\mathfrak{F}})^+\circ (s_{(\mathfrak{F})^+})$ with t everywhere.

 $u \circ \omega_{\mathfrak{F}}^2 = u \circ (\omega_{(\mathfrak{F})^+} \circ \omega_{\mathfrak{F}}).$

Let $x \in \Gamma(b; u \circ \mathfrak{F})$.

Then

$$\omega^2_{u\circ\mathfrak{F},f}(x)=((x_i)_{i\in max(Dom(\mathfrak{j}))_{\mathfrak{f}}})_{\mathfrak{f}\in max(f)}$$

with $x_i = \mathfrak{F}i(x)$. We also have

$$u \circ w_{\mathfrak{F},f}^2(x) = ((x_i)_{i \in max(Dom(\mathfrak{j}))_{\mathfrak{j}}})_{\mathfrak{j} \in max(\mathfrak{b})},$$

where $Dom(j) \in C_a$. Apply $s_{(\mathfrak{F})^+}$ on this to get

$$((x_i)_{i \in max(Dom(j))_j})_{j \in max(f)}$$

where $Dom(j) \in C$. Lastly, apply $(s_{(\mathfrak{F})^+})^+$ to get

$$((x_i)_{i \in \max(Dom(j))_j})_{j \in \max(f)}$$

where $Dom(j) \in C_a$. The statement of the lemma is established.

Corollary 22. Let Y = (C, T). Let $a, b \in C$. Let $f : b \to a$. Sheafifying and restricting commute via the iso

$$s^2: \operatorname{sh}_b \circ *|_b \to *|_b \circ \operatorname{sh}_a.$$

Lemma 23 (λ commutes with restriction). Let $(C, \mathcal{T}, \mathfrak{O})$ be a ringed site. Let $f: b \to \mathcal{T}$ $a \in C$. The functors $u \circ \lambda$ and $\lambda \circ (- \otimes \Gamma(a; \mathfrak{O}))$ are the same functor.

Lemma 24 (λ counit commute with restriction). Let C be a category. Let $a \in C$. Let ϵ be the counit of the adjunction $\lambda \dashv \Gamma(1,-)$ on C. Let ϵ_a be the counit of the adjunction $\lambda_a \dashv \Gamma(1;-)$ on C_a . Let \mathfrak{F} be a presheaf module on C. By lemma ?, $\lambda(\Gamma(1;\mathfrak{F}))\big|_{\alpha}=\lambda(\Gamma(1;\mathfrak{F})\otimes\Gamma(\alpha;\mathfrak{O})). \ \ \textit{We have $u\circ(\varepsilon)=\varepsilon_{\alpha}$ on this presheaf module.}$

Proof. Let $f: b \to a \in C_a$. Let $m \otimes r \in \lambda(\Gamma(1; \mathfrak{F}) \otimes \Gamma(a; \mathfrak{D}))(f) = \Gamma(1; \mathfrak{F}) \otimes \Gamma(b; \mathfrak{D})$. Then both maps do $m \otimes r \mapsto rm$.

Lemma 25 (λ commutes with restriction). Let $(C, \mathcal{T}, \mathcal{D})$ be a ringed site. Let $f: b \to \mathcal{D}$ $a \in C$. The functors $u \circ A$ and $A \circ (- \otimes \Gamma(a; \mathfrak{D}))$ are isomorphic functors.

Lemma 26 (Λ counit commute with restriction). Let C be a category. Let $a \in C$. Let ϵ be the counit of the adjunction $\Lambda \dashv \Gamma(1;-)$ on C. Let ϵ_{α} be the counit of the adjunction $\Lambda_a \dashv \Gamma(1;-)$ on C_a . Let $\mathfrak F$ be a presheaf module on C. By lemma ?, adjunction $\Lambda_a \dashv \Gamma(1; -)$ on C_a . Let v be a provide $\Lambda(\Gamma(1; \mathfrak{F}))|_a = \Lambda(\Gamma(1; \mathfrak{F}) \otimes \Gamma(a; \mathfrak{D}))$. We have $u \circ (\varepsilon) = \varepsilon_a$ on this presheaf module.

Lemma 27. Let (C, T) be a site. Let $a \in C$. Consider the contunit ϵ of $\Gamma(1; -) \dashv \Lambda(-)$ on C and the counit ϵ_a of the same adjunction on C_a . Then $\epsilon\big|_a=\epsilon_a$.

Proof. Let \mathfrak{F} be a sheaf module on C. Let $f:b\to a\in C$. We want to show that $\epsilon_{\mathfrak{F},a,f}:\Lambda(\Gamma(1;\mathfrak{F}))\to\mathfrak{F}$ is the same map as $\epsilon_{\mathfrak{F}}\big|_{af}:\Lambda(\Gamma(1;\mathfrak{F}))\to\mathfrak{F}$

$$\alpha: \lambda(\Gamma(1;\mathfrak{F})) \to \mathfrak{F},$$

 $m \otimes r \mapsto mr$

composed with $\omega^2_{\lambda(\Gamma(1;\mathfrak{F}))}$.

2 Caffine objects

2.1 Caffine objects

Definition 28 (Caffine object). Let $Y = (C, \mathcal{T}, \mathfrak{D})$ be a ringed site. Let $a \in C$ be an object. We call a caffine if the unit η and co-unit ϵ of the adjunction $C(1;-) \dashv \Lambda(-)$ on Y_a are natural isomorphisms.

Example 29 (Examples of caffine objects). The main example to keep in mind is $Spec(R) \in Sch$.

Definition 30 (caffine cover). Let $(X, \mathcal{T}, \mathcal{D})$ be a ringed site. A family of maps $\{a_i \to a\}$ is called a caffine covering of a if every a_i is caffine and the family is a covering family.

Definition 31. We say that a ringed site $(C, \mathcal{O}, \mathfrak{T})$ has enough affines if any object admits a caffine covering.

Lemma 32. Let $(C, \mathcal{T}, \mathfrak{O})$ be a ringed site. Let $a \in C$. Let $\{b_i \to a\}$ be a caffine covering on a. Assume every map $b_i \to a$ is restrictive. Then the counit ϵ of the adjunction $\Gamma(1;-) \dashv \Lambda(-)a$ is a natural isomorphism.

Proof. Let \mathfrak{F} be a quasi-coherent sheaf module. Set $M = \Gamma(a;\mathfrak{F})$. Set $M_i = \Gamma(b_i;\mathfrak{F})$. Set $\beta_i = \varepsilon_{\mathfrak{F},a}\big|_{b_i}$. By lemma ? $\beta_i \cong \varepsilon_{b_i}$, hence beta is an isomorphism.

Lemma 33. Let $(C, \mathfrak{T}, \mathfrak{O})$ be a ringed site. Let $a \in C$. Let M be a $\Gamma(a; \mathfrak{O})$ -module. The component

 $\omega^2_{\lambda(M),a}:\lambda(M)\to\Lambda(M)$

at Id_{α} of the sheafification morphism

 $\omega^2_{\Lambda(M)}:\lambda(M)\to\Lambda(M)$

these have the domain?

8

which ist adjoint? see P.8.

2 Caffine objects

is equal to the unit of $\Lambda \dashv \Gamma(1;-)$ in C_a .

Proof. Consider the following maps, which you get by repeatedly calling on an adjunction.

Id:
$$\Lambda(M) \rightarrow \Lambda(M)$$

 $\omega^2_{\Lambda(M)}:\lambda(M)\to\Lambda(M)$ use sheafification adjunction, see lemma .. $\omega^2_{\lambda(M),\alpha}M\to\Gamma(\alpha;\Lambda(\mathfrak{M})) \text{ take sections at } \alpha$

We took the adjunct of Id with respect to the sheafification adjunction as the first step. Then we took the adjunct of the result wrt the λ ajunction. Hence we get the adjunct of Id wrt the Λ adjunction. so the last map is actually the unit of the Λ adjunction.

Corollary 34. Let (C,T,\mathfrak{O}) be a ringed site. Let $a\in C$ be caffine. Then $\omega^2_{\lambda(M),a}$ is an isomorphism for any $\mathfrak{O}(a)$ -module M.

Theorem 35 (Morphism between caffines is restrictive). Let Y = (C, T, D). Let $f : b \to a \in C$ be a morphism between caffine objects, then f is restrictive.

Proof. Let \mathfrak{F} be a quasi-coherent module on Y_a . Let $M = \Gamma(a; \mathfrak{F})$. Since a is caffine, we have $\mathfrak{F} = \Lambda(M)$.

We have to show that the adjunct, along the extension of scalars adjunction, of $\mathfrak{F}(f)$

$$\Gamma(a;\mathfrak{F})\otimes_{\Gamma(a;\mathfrak{O})}\Gamma(b;\mathfrak{O})\to\Gamma(b;\mathfrak{F})$$

is an isomorphism.

This adjunct is the component at b of the natural transformation $\omega^2_{\lambda(\Gamma(1;\mathfrak{F})),a}$. Since b is caffine, this component is an isomorphism.