SCI 1.102: Classical Mechanics

Quiz: 21 Apr 2022

Time: 45 minutes

Max. marks = 25

- (a) Find suitable values of values of a and b for the vectors depicted, $\vec{V} = a\hat{i} + b\hat{j}$;
- (b) Obtain the magnitudes of the gradient and the curl for each case.

2 + 3

- 2. For a particle rotating in a 2-D space
 - (2) Derive the expression for kinetic energy in polar coordinates;
 - Construct the Lagrangian, and write Hamilton's equations of motion for generalised coordinates for the system.
 - Using Hamilton's equations, show that angular momentum for the problem is a conserved quantity.
- % Show that the Hamiltonian of a system is a Legendre transform of its Lagrangian.
- 4. A particle is subjected to the potential $V(x) = -C_i x$, where C_i is a constant. The particle travels from x = 0 to x = a in a time interval t_0 . Assume that the motion can be expressed as $x(t) = A + Bt + Ct^2$, Find A, B and C, such that the action is a minimum.
- 5. An object of 100 N suspended from the end of a vertical spring of negligible mass stretches it by 0.16m. (mg = 100N) g = 100N
 - (a) Write an equation of motion for the variable z [Hint: remember gravity and use Hooke's law].
 - (b) Determine the position of the object at any time if it is pulled down 0.05m and then released.
 - (c) Find the amplitude, period and frequency of the motion.
 - (d) If in part (b) above, while releasing the object, it is given an initial velocity of 0.05 m/s, how will the results in (b) and (c) change?

