

planetmath.org

Math for the people, by the people.

axiom system for intuitionistic propositional logic

Canonical name AxiomSystemForIntuitionisticPropositionalLogic

Date of creation 2013-03-22 19:30:58 Last modified on 2013-03-22 19:30:58

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 38

Author CWoo (3771)

Entry type Axiom
Classification msc 03F55
Classification msc 03B20
Classification msc 03B55

Related topic TruthValueSemanticsForIntuitionisticPropositionalLogic SomeTheoremSchemasOfIntuitionisticPropositionalLogic Related topic KripkeSemanticsForIntuitionisticPropositionalLogic Related topic DeductionTheoremForIntuitionisticPropositionalLogic

Related topic DisjunctionProperty

There are several Hilbert-style axiom systems for intuitionistic propositional logic, or PL_i for short. One such a system is by Heyting, and is presented in http://planetmath.org/IntuitionisticLogicthis entry. Here, we describe another, based on the one by Kleene. The language of the logic consists of a countably infinite set of propositional letters p, q, r, \ldots , and symbols for logical connectives \rightarrow , \land , \lor . Well-formed formulas (wff) are defined recursively as follows:

- propositional letters are wff
- if A, B are wff, so are $A \to B$, $A \land B$, $A \lor B$, and $\neg A$.

In addition, $A \leftrightarrow B$ (biconditional) is the abbreviation for $(A \to B) \land (B \to A)$, like PL_c (classical propositional logic),

We also use parentheses to avoid ambiguity. The axiom schemas for PL_i are

1.
$$A \rightarrow (B \rightarrow A)$$
.

2.
$$A \to (B \to A \land B)$$
.

3.
$$A \wedge B \rightarrow A$$
.

4.
$$A \wedge B \rightarrow B$$
.

5.
$$A \rightarrow A \vee B$$
.

6.
$$B \rightarrow A \vee B$$
.

7.
$$(A \to C) \to ((B \to C) \to (A \lor B \to C))$$
.

8.
$$(A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))$$
.

9.
$$(A \to B) \to ((A \to \neg B) \to \neg A)$$
.

10.
$$\neg A \rightarrow (A \rightarrow B)$$
.

where A, B, and C are wff's. In addition, modus ponens is the only rule of inference for PL_i .

As usual, given a set Σ of wff's, a deduction of a wff A from Σ is a finite sequence of wff's A_1, \ldots, A_n such that A_n is A, and A_i is either an axiom,

a wff in Σ , or is obtained by an application of modus ponens on A_j to A_k where j, k < i. In other words, A_k is the wff $A_j \to A_i$. We write

$$\Sigma \vdash_i A$$

to mean that A is a deduction from Σ . When Σ is the empty set, we say that A is a theorem (of PL_i), and simply write $\vdash_i A$ to mean that A is a theorem.

As with PL_c , the deduction theorem holds for PL_i . Using the deduction theorem, one can derive the well-known theorem schemas listed below:

1.
$$A \wedge B \rightarrow B \wedge A$$
.

2.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

3.
$$A \wedge \neg A \rightarrow B$$

4.
$$A \rightarrow \neg \neg A$$

5.
$$\neg \neg \neg A \rightarrow \neg A$$

6.
$$(A \to B) \to (\neg B \to \neg A)$$

7.
$$\neg A \land \neg A$$

8.
$$\neg\neg(A \lor \neg A)$$

For example, the first schema can be proved as follows:

Proof. From the deduction,

1.
$$A \wedge B \rightarrow A$$
,

$$A$$
).

$$2. \ A \wedge B \to B, \qquad 5. \ B,$$

7.
$$A \rightarrow B \wedge A$$
.

3.
$$A \wedge B$$
,

6.
$$B \rightarrow (A \rightarrow B \land 8. B \land A,$$

8.
$$B \wedge A$$
.

we have $A \wedge B \vdash_i B \wedge A$, and therefore $\vdash_i (A \wedge B) \to (B \wedge A)$ by the deduction theorem.

Deductions of the other theorem schemas can be found http://planetmath.org/SomeTheoremS In fact, it is not hard to see that $\vdash_i X$ implies $\vdash_c X$ (that X is a theorem of PL_c). The converse is false. The following are theorems of PL_c , not PL_i :

1.
$$A \vee \neg A$$
. 4. $((A \to B) \to A) \to A$

2.
$$\neg \neg A \to A$$

3. $(\neg A \to \neg B) \to (B \to A)$
5. $(\neg A \to B) \to ((\neg A \to \neg B) \to A)$

Remark. It is interesting to note, however, if any one of the above schemas were added to the list of axioms for PL_i , then the resulting system is an axiom system for PL_c . In notation,

$$PL_i + X = PL_c$$

where X is one of the schemas above. When this equation holds for some X, it is necessary that $\vdash_c X$ and $\not\vdash_i X$. However, this condition is not sufficient to imply the equation, even if $\operatorname{PL}_i + X$ is consistent (that is, the schema $C \land \neg C$ of wff's are not theorems). One such schema is $\neg \neg A \lor \neg A$. A logical system PL such that $\operatorname{PL}_i \leq \operatorname{PL} \leq \operatorname{PL}_c$ is called an *intermediate logic*. It can be shown that there are infinitely many such intermediate logics.

Remark. Yet another popular axiom system for PL_i uses the symbol \bot (for falsity) instead of \neg . The wff's in this language consists of all propositional letters, the symbol \bot , and $A \land B$, $A \lor B$, and $A \to B$, whenever A and B are wff's. The axiom schemas consist of the first seven axiom schemas in the first system above, as well as

1.
$$(A \to (B \to C)) \to ((A \to B) \to (A \to C))$$
 (the second theorem schema above)

$$2. \perp \rightarrow A.$$

 $\neg A$ is the abbreviation for $A \to \bot$. The only rule of inference is modus ponens. Deductions and theorems are defined in the exact same way as above. Let us write $\vdash_{i1} A$ to mean wff A is a theorem in this axiom system. As mentioned, both axiom systems are equivalent, in that $\vdash_{i1} A$ implies $\vdash_i A$, and $\vdash_i A$ implies $\vdash_{i1} A^*$, where A^* is the wff obtained from A by replacing every occurrence of \bot by the wff $(p \land \neg p)$, where p is a propositional letter not occurring in A.