Espaces vectoriels

FICHE DE T D Nº 4 : ESPACES VECTORIELS

Exercice 1.

Parmi les ensembles suivants reconnaître ceux qui sont des sev de \mathbb{R}^2 ou \mathbb{R}^3 ou $\mathcal{F}(\mathbb{R},\mathbb{R})$:

1.
$$E_1 = \{(x, y, z) \in \mathbb{R}^3 / x + 2y - 3z = 0\}$$

2.
$$E_2 = \{(x, y, z) \in \mathbb{R}^3 / xy = 0\}$$

3.
$$E_3 = \{(x,y) \in \mathbb{R}^2 / 2x - 2y > 0\}$$

4.
$$E_4 = \{(x, y, z) \in \mathbb{R}^3 / x^2 + xy + y^2 \le 0\}$$

5.
$$E_5 = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) / f(0) = 1 \}$$

6.
$$E_6 = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) / f(1) = 0 \}$$

Exercice 2.

- 1. Dans \mathbb{R}^2 , montrer que (1,2); (2,3); (2,2) forme un système générateur.
- 2. Montrer que $\mathbb{R}^2 = Vect\{(1,1); (2,3)\}$
- 3. Les familles de vecteurs suivantes sont-elles libres ? $A_1 = \{(1,2,3); (4,5,6); (-1,2,3)\}$; $A_2 = \{1,1+x,x^2\}$; $A_3 = \{(1,0,3); (2,1,-1); (3,1,2)\}$

Exercice 3.

Montrer que les vecteurs suivants de \mathbb{R}^3 sont linéairement dépendants et préciser leur relation de dépendance :

1.
$$u = (1, 2, -1)$$
; $v = (1, 0, 1)$; $w = (-1, 2, -3)$

2.
$$u = (-1, 2, 5)$$
; $v = (2, 3, 4)$; $w = (7, 0, -7)$.

Exercice 4.

Préciser si les familles constituées des vecteurs suivants sont liés ou libres.

1.
$$u = (7, 12)$$
; $v = (18, -13)$; $w = (-4, 17)$

2.
$$u = (-1, 0, 2)$$
; $v = (1, 3, 1)$; $w = (0, 1, -1)$

3.
$$u = (15, -27, -6, 12)$$
; $v = (\frac{-5}{2}, \frac{9}{2}, 1, -2)$.

Exercice 5.

 $\overline{\mathbb{R}^3}$ est muni de sa base canonique (e_1, e_2, e_3) .

Soient les vecteurs $u_1 = (1, 1, 1)$; $u_2 = (-1, 1, 0)$; $u_3 = (1, 0, -1)$.

- 1. Montrer que $B_1 = \{u_1, u_2, u_3\}$ est une base de \mathbb{R}^3 .
- 2. Calculer les coordonnées respectives des vecteurs (1,0,0); (1,0,1) et (0,0,1) dans B_1 .
- 3. Soit $B_2 = \{v_1 = (0, 1, 1), v_2 = (1, 0, 1), v_3 = (1, 1, 0)\}.$
 - a) Montrer que B_2 est une base de \mathbb{R}^3 .

b) Trouver dans B_1 et B_2 les composantes du vecteur (1, 2, 1).

Exercice 6.

 \mathbb{R}^4 est muni de sa base canonique (t_1,t_2,t_3,t_4) . On considère les vecteurs : $e_1=(1,2,3,4)$; $e_2=(1,1,1,3)$; $e_3=(2,1,1,1)$; $e_4=(-1,0,-1,2)$; $e_5=(2,3,0,1)$ Soient E l'espace vectoriel engendré par e_1 , e_2 , e_3 et F par e_4 et e_5 . Calculer les dimensions respectives de E, F, $E\cap F$ et E+F.

Exercice 7.

Soit
$$E = \{(x, y, z, t) \in \mathbb{R}^4; x + y - z + 2t = 0 \text{ et } x + y + z = 0\}.$$

- 1. a) Montrer que E est un sous-espace vectoriel de \mathbb{R}^4 .
 - **b)** Donner une base et la dimension de E.
- 2. Déterminer les équations caractérisant les éléments du sous-espaces vectoriels $F \subset \mathbb{R}^4$ défini par :

$$F = vect((-1, 2, 1, -1); (3, 1, 0, -1)) = <(-1, 2, 1, -1); (3, 1, 0, -1) >.$$

Exercice 8.

Soient
$$F = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3; x - y = 0 \text{ et } z = 0\}.$

Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de \mathbb{R}^3 .

Exercice 9.

Soient E_1 le sous-espace vectoriel de \mathbb{R}^4 engendré par (1,2,0,1) et (0,1,1,3) et E_2 le sous-espace vectoriel de \mathbb{R}^4 engendré par (1,1,1,0).

- 1. Déterminer $E_1 \cap E_2$.
- 2. Donner une base de $E_1 + E_2$.