Exercises 10

These used to be called "Fundamental Questions". Do not hand the solutions to these exercises in; they are just to make sure you can have some practice with the current material.

- 1. Let Q be an $n \times n$ matrix with orthonormal columns. Show that $\det Q = \pm 1$.
- 2. A is the matrix with eigenvalue $\lambda_1 = 5$ and corresponding eigenvector $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $\lambda_1 = -1$ and corresponding eigenvector $\mathbf{x}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
 - (a) Write down A explicitly.
 - (b) Write down A^{10} explicitly (scalars to the power 10 in your answer are fine).
- 3. Let $A = \begin{bmatrix} 8 & 20 \\ 4 & -12 \end{bmatrix}$ and $B = \begin{bmatrix} -14 & 36 \\ 1 & 10 \end{bmatrix}$.
 - (a) What are trace A and det A?
 - (b) What are trace B and $\det B$?
 - (c) Do A and B have the same eigenvalues? Explain your answer.
- 4. Let $A = \begin{bmatrix} \sqrt{6} & 1\\ 0 & \sqrt{6} \end{bmatrix}$.
 - (a) Give all distinct eigenvalues of A with their algebraic and geometric multiplicities.
 - (b) Is A diagonalizable?
 - (c) Find a singular value decomposition of A.
- 5. Let $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$.
 - (a) What is the size of $\mathbf{u}\mathbf{v}^T$?
 - (b) What is the rank of $\mathbf{u}\mathbf{v}^T$?
 - (c) Give an orthonormal basis for $Span\{u\}$.
 - (d) Give a singular value decomposition of $\mathbf{u}\mathbf{v}^T$.
- 6. Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
 - (a) Find a singular value decomposition of A.
 - (b) Recall that $\mathbf{x} \mapsto A\mathbf{x}$ is the linear transformation rotating every vector 90° about the origin.

Explain that the singular value decomposition you found makes intuitive sense.

1

7. Suppose
$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 0 & 0 & -1\\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0\\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 7 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0\\ 0 & 0 & 1\\ -1 & 0 & 0 \end{bmatrix}.$$

- (a) What is the size of A?
- (b) What is $\operatorname{rank} A$?
- (c) What is $\operatorname{Col} A$?
- (d) What is Row A?
- (e) What is Null A?
- (f) What is Null A^T ?
- (g) What is Ae_1 ?
- (h) What is $A \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$?
- (i) Find \mathbf{y} so that $||A\mathbf{y}||$ is maximized.
- (j) Give the best rank-1 approximation of A.