```
from google.colab import drive
drive.mount('/content/drive')
       Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force remount=True).
# Mengimpor library
from sklearn.model selection import train test split
from \ sklearn.ensemble \ import \ Random Forest Classifier
from sklearn.preprocessing import OneHotEncoder
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, classification_report,confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import mean_squared_error, r2_score
import pandas as pd
# import dataset kedalam pandas dataframe
df = pd.read_csv('drive/MyDrive/dataset/Storms_2020.csv')
        <ipython-input-5-ed4cb0b307e4>:2: DtypeWarning: Columns (21,22,25) have mixed types. Specify dtype option on import or set low_memor
          df = pd.read_csv('drive/MyDrive/dataset/Storms_2020.csv')
# Menamnilkan attribut dari dataset
df.columns
       'injuries_indirect', 'deaths_direct', 'deaths_indirect', 'damage_property', 'damage_crops', 'source', 'magnitude', 'magnitude_type', 'flood_cause', 'tor_f_scale', 'tor_length', 'tor_width', 'tor_other_wfo', 'location_index', 'event_range', 'event_azimuth', 'reference_location', 'event_latitude', 'event_longitude', 'event_point'],
                dtype='object')
df['event_type'].unique()
        array(['hail', 'heat', 'flood', 'sleet', 'drought', 'tornado', 'blizzard', 'wildfire', 'avalanche', 'dense fog', 'high surf', 'high wind', 'hurricane', 'ice storm', 'lightning', 'dust devil', 'dust storm',
                  'heavy rain', 'heavy snow', 'waterspout', 'debris flow', 'flash flood', 'marine hail', 'rip current', 'strong wind', 'freezing fog', 'frost/freeze', 'funnel cloud', 'winter storm', 'coastal flood', 'excessive heat', 'tropical storm', 'winter weather', 'cold/wind chill', 'lakeshore flood', 'lakes offert storm', 'manine dense for', 'manine bigh wind'
                  'lake-effect snow', 'marine dense fog', 'marine high wind', 'storm surge/tide', 'thunderstorm wind', 'marine strong wind',
                  'tropical depression', 'astronomical low tide', 'marine tropical storm', 'extreme cold/wind chill'
                  'marine hurricane/typhoon', 'marine thunderstorm wind'],
                dtype=object)
```

```
# Menghapus attribute yang tidak perlukan
df = df.drop([
   "episode_id",
   "event_id",
   "cz_name",
   "wfo",
   "cz_type",
   "event_begin_time",
   "event_timezone",
   "event_end_time",
   "injuries_direct",
   "injuries_indirect",
   "deaths_direct",
   "deaths_indirect",
   "damage_crops",
   "flood_cause",
   "tor f scale",
   "tor_length",
   "tor_width",
   "tor_other_wfo",
   "event_point",
   "location_index",
   ], axis=1)
# Menampilkan attribut yang sudah dibersihkan
df.columns
    'event_range', 'event_azimuth', 'reference_location', 'event_latitude',
          'event_longitude'],
         dtype='object')
df.columns
    'event_longitude'],
         dtype='object')
# menfilter attribute eventy_type yang berisi thunderstorm wind
df = df.loc[df['event_type'] == 'thunderstorm wind']
df = df.drop(["event_type"], axis=1)
# drop data dengan value NaN
df = df.dropna()
df
```

	state	state_fips_code	cz_fips_code	damage_property	source	magnitu	
23374	Oklahoma	40	135	2000.0	Emergency Manager	61	
23375	Ohio	39	1	1000.0	Emergency Manager	50	
23376	Ohio	39	145	20000.0	Emergency Manager	60	
23377	Ohio	39	25	3000.0	Law Enforcement	50	
23378	Ohio	39	1	4000.0	Law Enforcement	50	
37829	Illinois	17	19	0.0	Emergency Manager	52	
37830	Illinois	17	167	100000.0	Emergency Manager	61	
37831	Illinois	17	19	175000.0	Emergency Manager	52	
37832	Illinois	17	167	70000.0	Emergency Manager	61	
37833	Illinois	17	21	0.0	Public	52	
9723 rows × 12 columns							

```
df.dtypes
    state
                         object
    state_fips_code
                          int64
    cz_fips_code
                          int64
    damage_property
                        float64
                         object
    magnitude
                        float64
    magnitude_type
                         object
                        float64
    event range
    event azimuth
                        obiect
    reference_location
                         object
    event_latitude
                        float64
    event_longitude
                        float64
    dtype: object
df['state'].unique()
    'Maine'], dtype=object)
a = df['state'].astype('category')
b = df['source'].astype('category')
c = df['magnitude_type'].astype('category')
d = df['event_azimuth'].astype('category')
e = df['reference_location'].astype('category')
df['state'] = df['state'].astype('category')
df['source'] = df['source'].astype('category')
df['magnitude_type'] = df['magnitude_type'].astype('category')
df['event_azimuth'] = df['event_azimuth'].astype('category')
df['reference_location'] = df['reference_location'].astype('category')
cat_columns = df.select_dtypes(['category']).columns
df[cat_columns] = df[cat_columns].apply(lambda x: x.cat.codes)
```

```
1/8/24, 10:04 PM
```

```
category_mapping = dict(zip(a, df['state']))
print(category_mapping)

category_mapping = dict(zip(b, df['source']))
print(category_mapping)

category_mapping = dict(zip(c, df['magnitude_type']))
print(category_mapping)

category_mapping = dict(zip(d, df['event_azimuth']))
print(category_mapping)

category_mapping = dict(zip(e, df['reference_location']))
print(category_mapping)
```

YNE': 6023, '(HBR)HOBART AIRPORT': 86, 'AMBER': 311, 'WYNNEWOOD': 6295, 'REAGAN': 4799, 'THERESSA': 5683, 'SAPPVILLE': 5090, 'SAINT F

df.dtypes

state int8 state fips code int64 int64 cz_fips_code float64 damage_property source int8 ${\tt magnitude}$ float64 magnitude_type int8 event_range float64 event_azimuth int8 reference_location int16 event_latitude float64 float64 ${\tt event_longitude}$ dtype: object

df

	state	state_fips_code	cz_fips_code	damage_property	source	magnitude	magn
23374	34	40	135	2000.0	12	61.0	
23375	33	39	1	1000.0	12	50.0	
23376	33	39	145	20000.0	12	60.0	
23377	33	39	25	3000.0	15	50.0	
23378	33	39	1	4000.0	15	50.0	
37829	11	17	19	0.0	12	52.0	
37830	11	17	167	100000.0	12	61.0	
37831	11	17	19	175000.0	12	52.0	
37832	11	17	167	70000.0	12	61.0	
37833	11	17	21	0.0	26	52.0	
9723 rows × 12 columns							

```
bins = [0, 1000.0, 10000.0, 100000.0, 8000000.0]
labels = ["Minor", "Moderate", "Severe", "Catastrophic"]
df['damage_property'] = pd.cut(df['damage_property'], bins=bins, labels=labels, include_lowest=True)

df['damage_property'].value_counts()

Minor 6177
Moderate 2621
Severe 814
Catastrophic 111
Name: damage_property, dtype: int64
```

df

	state	state_fips_code	cz_fips_code	damage_property	source	magnitude	magn
23374	34	40	135	Moderate	12	61.0	
23375	33	39	1	Minor	12	50.0	
23376	33	39	145	Severe	12	60.0	
23377	33	39	25	Moderate	15	50.0	
23378	33	39	1	Moderate	15	50.0	
37829	11	17	19	Minor	12	52.0	
37830	11	17	167	Severe	12	61.0	
37831	11	17	19	Catastrophic	12	52.0	
37832	11	17	167	Severe	12	61.0	
37833	11	17	21	Minor	26	52.0	
9723 rows × 12 columns							

```
X = df.drop(['damage_property'],axis=1).values
y = df['damage_property'].values

from collections import Counter

plt.figure(figsize=(6, 4))
plt.bar(Counter(y).keys(), Counter(y).values())
plt.title('Class Distribution Before Resampling')
plt.xlabel('Class')
plt.ylabel('Number of Samples')
plt.show()
```



```
from imblearn.over_sampling import SMOTE

# Melakukan oversampling menggunakan SMOTE
smote = SMOTE(sampling_strategy='auto', random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)

print('After resampling:', Counter(y_resampled))

# Menunjukkan distribusi kelas setelah resampling
plt.figure(figsize=(6, 4))
plt.bar(Counter(y_resampled).keys(), Counter(y_resampled).values())
plt.title('Class Distribution After Resampling (SMOTE)')
plt.xlabel('Class')
plt.ylabel('Number of Samples')
plt.show()
```

After resampling: Counter({'Moderate': 6177, 'Minor': 6177, 'Severe': 6177, 'Catastro

```
Class Distribution After Resampling (SMOTE)

5000

5000

1000

Moderate

Minor

Severe

Catastrophic
```

model1 = RandomForestClassifier()
model1.fit(X_train, y_train)

* RandomForestClassifier
RandomForestClassifier()

damage_pred = model1.predict(X_test)

accuracy = accuracy_score(y_test, damage_pred)
print(accuracy)

0.8506677458518819

print(classification_report(y_test, damage_pred))

	precision	recall	f1-score	support
Catastrophic	0.95	0.99	0.97	1763
Minor Moderate	0.85 0.76	0.83 0.77	0.84 0.77	1911 1855
Severe	0.84	0.82	0.83	1884
accuracy			0.85	7413
macro avg	0.85	0.85	0.85	7413
weighted avg	0.85	0.85	0.85	7413

cm1 = confusion_matrix(y_test,damage_pred,labels=model1.classes_)

```
disp1 = ConfusionMatrixDisplay(confusion_matrix=cm1,display_labels=model1.classes_)
disp1.plot()
plt.show()
```


#Feature Importances

```
importances = model1.feature_importances_
cols = df.columns.tolist()
del cols[3]
f_importances = pd.Series(importances,cols)
f_importances.sort_values(ascending=False, inplace=True)
f_importances[:11].plot(x='Features', y='Importance', kind='bar', figsize=(16,9), rot=90, fontsize=12)
plt.tight_layout()
plt.show()
```