

- **✓ GEOMETRIC SERIES**
- ✓ HARMONIC SERIES
- ✓ p-SERIES
- ✓ TELESCOPING SERIES

**Geometric Series** 

GEOMETRIC SERIES: 
$$\sum_{n=1}^{+\infty} a r^{n-1}$$

$$s_n = \frac{a(1-r^n)}{1-r}$$

If |r| < 1: CONVERGENT

with a sum of  $\frac{a}{1-r}$ 

If  $|r| \ge 1$ : DIVERGENT

**Harmonic Series** 

**HARMONIC SERIES:** 

 $\sum_{n=1}^{+\infty} \frac{1}{n}$ 

is DIVERGENT

Compare  $\sum_{n=1}^{+\infty} \frac{1}{n}$  with  $\int_{1}^{+\infty} \frac{1}{x} dx$ 

p-Series

**p-SERIES:**  $\sum_{n=1}^{+\infty} \frac{1}{n^p}$  or  $\sum_{n=1}^{+\infty} \left(\frac{1}{n}\right)^p$ 

If p > 1: CONVERGENT

If  $p \le 1$ : DIVERGENT

ILLUSTRATIONS Determine whether  $\sum ar^{n-1}$ convergent or divergent.  $\frac{n-1}{n-1}$ 

$$\sum_{n=1}^{+\infty} ar^{n-1}$$

**1.** 
$$\sum_{n=1}^{+\infty} \frac{2}{3^{n-1}}$$
  $a=2, r=\frac{1}{3}$ 

Since |r| < 1, the series converges with sum

$$\sum_{n=1}^{+\infty} ar^{n-1}$$

2. 
$$\sum_{n=2}^{+\infty} 3(2^{n-1}) = \sum_{n=1}^{+\infty} 3(2^n) = \sum_{n=1}^{+\infty} 3(2)(2^{n-1})$$
$$= \sum_{n=1}^{+\infty} 6(2^{n-1}) \qquad a = 6, r = 2$$

Since  $|r| \ge 1$ , the series diverges.

$$\sum_{n=1}^{+\infty} ar^{n-1}$$

3. 
$$\sum_{n=0}^{+\infty} e^{-2n} = \sum_{n=1}^{+\infty} e^{-2(n-1)} = \sum_{n=1}^{+\infty} \left( e^{-2} \right)^{n-1}$$
$$a = 1, r = \frac{1}{e^2}$$

Since |r| < 1, the series Converges with sum  $\frac{1}{1 - \frac{1}{e^2}} = \frac{e^2}{e^2 - 1}$ 

$$\sum_{n=1}^{+\infty} ar^{n-1}$$

**4.** 
$$\sum_{n=1}^{+\infty} \left(\frac{4}{5}\right)^{n+2} = \sum_{n=1}^{+\infty} \left(\frac{4}{5}\right)^3 \left(\frac{4}{5}\right)^{n-1} \qquad a = \frac{4^3}{5^3}, \ r = \frac{4}{5}$$

Since |r| < 1, the series

Converges with sum  $\frac{4^3}{5^3} = \frac{1}{4}$ 

$$\frac{\frac{4^3}{5^3}}{1 - \frac{4}{5}} = \frac{64}{25}$$

$$5. \quad \sum_{n=1}^{+\infty} \frac{1}{n^e} \qquad p-series$$

Since p=e>1, the series

Converges

**6.** 
$$\sum_{n=1}^{+\infty} n^{-\frac{3}{4}}$$
  $\sum_{n=1}^{+\infty} \frac{1}{n^{\frac{3}{4}}}$   $p-serie$ 

Since  $p = \frac{3}{4} < 1$ , the series diverges

## **Examples. Determine whether convergent or divergent.**

- 1.  $\sum_{n=1}^{+\infty} \frac{4}{3^{n-1}}$  is convergent.
- 2.  $\sum_{n=1}^{+\infty} \frac{2^{n-1}}{5}$  is divergent.
- 3.  $\sum_{n=1}^{+\infty} 5\left(-\frac{1}{4}\right)^{n-1}$  is convergent.

## Examples. Determine whether convergent or divergent.

4. 
$$\sum_{n=1}^{+\infty} \frac{1}{n^{\frac{3}{2}}}$$
 is convergent.

5. 
$$\sum_{n=1}^{+\infty} n^{-1/2}$$
 is divergent.



## **TELESCOPING SERIES:**

$$\sum_{n=1}^{+\infty} \frac{k}{f(n) \cdot f(n+1)}$$

$$= \sum_{n=1}^{+\infty} \frac{a}{f(n)} + \frac{b}{f(n+1)}$$



ILLUSTRATION 
$$\sum_{n=1}^{+\infty} \frac{k}{f(n) \cdot f(n+1)} = \sum_{n=1}^{+\infty} \frac{a}{f(n)} + \frac{b}{f(n+1)}$$

1. 
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$
 is a telescoping series with  $f(n) = n$ .

Using partial fractions...

$$\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}$$

$$\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}$$

$$1 = (n+1)A + nB$$

$$let \ n = 0 \qquad \Rightarrow 1 = A$$

$$let \ n = -1 \qquad \Rightarrow 1 = -B \ or \ B = -1$$

$$Thus, \quad \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{+\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) \qquad u_n = \frac{1}{n} - \frac{1}{n+1}$$

$$\Rightarrow s_n = u_1 + u_2 + u_3 + \dots + u_n$$

$$= \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \dots + \left( \frac{1}{n} - \frac{1}{n+1} \right)$$

$$= 1 - \frac{1}{n+1}$$

$$\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \left( 1 - \frac{1}{n+1} \right) = 1$$
Thus, 
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$$
.
Also, 
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$
 is CONVERGENT.

ILLUSTRATION 
$$\sum_{n=1}^{+\infty} \frac{k}{f(n) \cdot f(n+1)} = \sum_{n=1}^{+\infty} \frac{a}{f(n)} + \frac{b}{f(n+1)}$$

2. 
$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)}$$
 is a telescoping series With  $f(n)=2n-1$ .

Using partial fractions...

$$\frac{1}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1}$$

$$\frac{1}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1}$$

$$1 = (2n+1)A + (2n-1)B$$

$$let \ n = \frac{1}{2} \qquad \Rightarrow 1 = 2A \qquad \Rightarrow A = \frac{1}{2}$$

$$let \ n = -\frac{1}{2} \qquad \Rightarrow 1 = -2B \ or \ B = -\frac{1}{2}$$

$$Thus, \qquad \frac{1}{(2n-1)(2n+1)} = \frac{1}{2(2n-1)} - \frac{1}{2(2n+1)}$$

$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)} = \sum_{n=1}^{+\infty} \left( \frac{1}{2(2n-1)} - \frac{1}{2(2n+1)} \right)$$

$$\Rightarrow s_n = u_1 + u_2 + u_3 + \dots + u_n$$

$$= \left( \frac{1}{2} - \frac{1}{2(3)} \right) + \left( \frac{1}{2(3)} - \frac{1}{3(4)} \right) + \left( \frac{1}{3(4)} - \frac{1}{4(5)} \right) + \dots + \left( \frac{1}{2(2n-1)} - \frac{1}{2(2n+1)} \right)$$

$$= \frac{1}{2} - \frac{1}{2(2n+1)}$$

$$\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \left( \frac{1}{2} - \frac{1}{2(2n+1)} \right) = \frac{1}{2}$$

**Thus,** 
$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}$$
.

Also, 
$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)}$$
 is CONVERGENT.

## Example. Determine whether convergent or divergent. If convergent, find the sum

$$\sum_{n=1}^{+\infty} \frac{1}{(3n+1)(3n-2)}$$

$$S_n = \frac{n}{3n+1} \qquad Sum = \frac{1}{3}$$