BB1 - Correction

Terminales Spécialité Maths

EXERCICE 1- SUJET A

4 points

Ecrire juste la lettre "réponse" sur votre copie, pour simplifier la lecture, je rajoute le texte "réponse" dans le corrigé.

1. La suite (q^n) n'admet pas de limite si :

Réponse D : $q \leq -1$.

2. La proposition exacte est:

Réponse D : Toute suite croissante est minorée.

3. La suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = -5 \times \left(\frac{3}{2}\right)^n$:

Réponse C: tend vers $-\infty$.

4. La suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 1 + 2 \times (-0.7)^n$:

Réponse B : tend vers 1.

EXERCICE 1- SUJET B

4 points

Ecrire juste la lettre "réponse" sur votre copie, pour simplifier la lecture, je rajoute le texte "réponse" dans le corrigé.

1. La propostion exacte est:

Réponse B : Toute suite décroissante est majorée.

2. La suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = -2 \times \left(\frac{4}{3}\right)^n$:

Réponse B: tend vers $-\infty$.

3. La suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 3 + 2 \times (-0.3)^n$:

Réponse A : tend vers 3.

4. La suite (q^n) n'admet pas de limite si :

Réponse D : $q \leq -1$.

EXERCICE 2

6 points

Partie I

On considère la fonction f définie sur $\mathbb R$ par

$$f(x) = x - e^{-2x}.$$

On appelle Γ la courbe représentative de la fonction f dans un repère orthonormé $\left(\mathbf{O};\vec{i},\vec{j}\right)$.

1. • On a $\lim_{x \to -\infty} x = -\infty$ et $\lim_{x \to -\infty} e^{-2x} = +\infty$ et donc $\lim_{x \to -\infty} -e^{-2x} = -\infty$; donc par somme de limites :

$$\lim_{x \to -\infty} f(x) = +\infty.$$

- On a $\lim_{x \to +\infty} x = +\infty$ et $\lim_{x \to +\infty} e^{-2x} = 0$; donc $\lim_{x \to -\infty} f(x) = +\infty$.
- 2. la fonction f est dérivable comme somme de fonctions dérivables sur $\mathbb R$ et :

$$f'(x) = 1 - (-2)e^{-2x} = 1 + 2e^{-2x}$$
.

On sait que quel que soit $x \in \mathbb{R}$, $e^{-2x} > 0$, donc $1 + 2e^{-2x} > 1 > 0$. La dérivée est positive donc la fonction f est strictement croissante.

x	$-\infty$	$+\infty$
f'(x)	+	
f	$-\infty$	$+\infty$

3. La fonction f est continue car dérivable et strictement croissante; comme $0 \in \mathbb{R}$, d'après le théorème de la bijection, il existe un réel unique $\alpha \in \mathbb{R}$ telle que $f(\alpha) = 0$.

La calculatrice donne:

$$f(0) = -1$$
 et $f(1) \approx 0.865$, donc $0 < \alpha < 1$;

$$f(0,4) \approx -0.05 \text{ et } f(0,5) \approx 0.13, \text{ donc } 0.4 < \alpha < 0.5;$$

$$f(0,42) \approx -0.01$$
 et $f(0,43) \approx 0.007$, donc $0.42 < \alpha < 0.43$.

- 4. On a donc:
 - sur $]-\infty$; $\alpha[,f(x)<0$;
 - sur $]\alpha$; $+\infty[, f(x) > 0$;
 - et $f(\alpha) = 0$.

x	$-\infty$		α		$+\infty$
f(x)		_	0	+	

Partie II

1.

$$h(t) = \sqrt{t^2 + e^{-2t}}$$

(a) Soit $u(t) = t^2 + e^{-2t}$, donc $h(t) = \sqrt{u(t)}$ est la fonction composée de deux fonctions u qui est dérivable (somme de fonctions carrées et exponentielle) est strictement positive sur \mathbb{R} , la fonction \sqrt{x} est dérivable sur \mathbb{R}^{+*} donc h est dérivable sur \mathbb{R} .

Donc
$$h'(t) = \frac{u'(t)}{2\sqrt{u(t)}} = \frac{2t - 2e^{-2t}}{2\sqrt{t^2 + e^{-2t}}} = \frac{t - e^{-2t}}{\sqrt{t^2 + e^{-2t}}} = \frac{f(t)}{\sqrt{t^2 + e^{-2t}}}$$

(b) Le dénominateur étant positif, le signe de h'(t) est le signe du numérateur soit f(t) dont on a vu le signe dans la partie I.

Donc:

- sur] $-\infty$; $\alpha[, f(t) < 0$ donc h'(t) < 0 : la fonction est strictement décroissante sur cet intervalle ;
- sur $]\alpha$; $+\infty[, f(x) > 0 \text{ donc } h'(t) > 0$: la fonction est strictement croissante sur cet intervalle;
- et $f(\alpha) = 0$, donc $h(\alpha)$ est le minimum de la fonction h.

t	$-\infty$		α		$+\infty$
h'(t)		_	0	+	
h			$h(\alpha)$		<i>,</i> *

La distance OM est donc minimale pour $t = \alpha$ et l'ordonnée de M est alors $e^{-\alpha}$. Le point de la courbe le plus proche de l'origine est donc le point $A(\alpha; e^{-\alpha})$. α est l'abscisse du point d'intersection de Γ avec l'axe des abscisses. Il suffit de tracer la parallèle à l'axe des ordonnées passant par ce point, elle coupe C au point A (cf. graphique)

- 2. (a) Le coefficient directeur de la tangente T au point d'abscisse α est $g'(\alpha) = -e^{-\alpha}$
 - (b) D'après le rappel le produit des coefficients directeurs est $-e^{-\alpha} \times \frac{e^{-\alpha}}{\alpha} = -\frac{e^{-2\alpha}}{\alpha}$. or on sait que $f(\alpha) = 0 \iff \alpha e^{-2\alpha} = 0 \iff e^{-2\alpha} = \alpha$, donc finalement le produit des coefficients directeurs est égal à $-\frac{e^{-2\alpha}}{\alpha} = -\frac{\alpha}{\alpha} = -1$. La droite (OA) et la tangente T sont perpendiculaires.

Annexe à compléter et à rendre avec la copie

Exercice 3

