Assignment-5

perelop the simple linear regression model for the following dataset using MBGD. Where no of samples-4

[Sample Ci)	/ X: 1	/ Y: 9
1	0.2	3.4
2	0.4	3. %
3	0.6	4.2
4.	0.8	4.6.

- Do manual calculations for 2 sterations with batch size 2.

Batch-	1
0-2	3.4
0.8	u.6
X	11

Batch-	-2	3 9 37 3
6.4	3.8	bs = 2
0.6	10.2	

Step 2: Split training data on batch size,
$$n_b = \frac{n_s}{b_s}$$
 $\Rightarrow n_b = \frac{y}{2} = 2$

stepu: batch=1

$$E = \frac{1}{2bs} \sum_{i=1}^{bs} Cy_i - mn_i - c_i^2$$

=
$$-\frac{1}{2} \left[(y_1 - m x_1 - C) x_1 + (y_2 - m x_2 - C) x_2 \right]$$

$$\frac{\partial C}{\partial m} = + \cos (-1.3) .$$

$$\frac{\partial C}{\partial c} = -\frac{1}{2} \frac{3}{2} (y_1 - m x_1 - c)$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_1 - m x_1 - c) + (y_2 - m x_2 + c) \right] .$$

$$= -\frac{1}{2} \left[(y_$$

= - ((y,-mn,-c) n1+(y2-mn2-c) 12

$$= \frac{1}{2} \left[(44.2 - (1.13)(0.6) + 0.57)(0.6) + (44.6 - (1.13)(0.7) + 0.57)(0.8) \right]$$

$$= -2.934 ||$$

$$\frac{1}{36} = -\frac{1}{2} \sum_{b=1}^{2} (4y_1 - m_{b} - c)$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) + (4y_2 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) + (4y_2 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(4y_1 - m_{b} - c) + (4y_2 - m_{b} - c) + (4y_2 - m_{b} - c) + (4y_2 - m_{b} - c) \right]$$

$$= -\frac{1}{2} \left[(3y_1 - (1y_2 - 3y_1)(0.4) + (4y_2 - c)(0.4) \right]$$

= -1.00329//

$$16 = \frac{1}{2} [(y_1 - mn_1 - c) + (y_2 + mn_2 - c)]$$

= -3.32508//

Step 7: $\Delta m = -\frac{1}{1} = -(0.0)(-1.00329) = 0.100329$

Step 8: $\Delta c = -\frac{1}{1} = -(0.1)(-3.32508) = 0.332508/$

Step 8: $M = mt\Delta m = 1.4234 + 0.100329 = 2.523729/$
 $C = C + \Delta C = -0.1521 + 0.332508 = 0.180408/$

Step 19: $\int bat da = 1+1=2$

Step 10: $\int (bat da + c) = 0$, $\int da = 0$ of $\int da = 0$. $\int (bat da + c) = 0$. $\int (bat da +$

C= C+ ΔC = 0.180408 + 0.31529817 = 0.49570617/ (4090: batch = 2+1 = 3. (4090: if Chatch > No) yes, go to step 16. (5tep 11: ites = 2+1 = 3 (5tep 12: if Cites > cpochy) yes, go to not step.

(tep13: print (M) [M=1.74491399]

[6 = 0.49570617