

Min, max et quotient Énoncé

Les deux parties sont indépendantes.

Partie I

Une gare dispose de deux guichets. Trois clients notés C_1 , C_2 , C_3 arrivent en même temps. Les clients C_1 et C_2 se font servir tandis que le client C_3 attend puis effectue son opération dès que l'un des deux guichets se libère.

On définit X_1, X_2, X_3 les variables aléatoires égales à la durée de l'opération des clients C_1, C_2, C_3 respectivement. Ces durées sont mesurées en minutes et arrondies à l'unité supérieure ou égale. On suppose que les variables aléatoires X_1, X_2, X_3 suivent la loi géométrique de paramètre $p, p \in]0; 1[$ et qu'elles sont indépendantes. On note q = 1 - p. On note A l'événement, : « C_3 termine en dernier son opération ».

Ainsi l'événement A est égal à l'événement : $(\min(X_1, X_2) + X_3) > \max(X_1, X_2)$. On se propose de calculer la probabilité de A.

- 1. Rappeler la loi de X_1 ainsi que son espérance $E(X_1)$ et sa variance $V(X_1)$. On définit la variable aléatoire Δ par $\Delta = |X_1 X_2|$.
- 2. Calculer la probabilité P ($\Delta = 0$).
- 3. Soit n un entier naturel non nul.

(a) Justifier:
$$P(X_1 - X_2 = n) = \sum_{k=1}^{+\infty} P(X_2 = k) P(X_1 = n + k)$$

(b) En déduire : P
$$(\Delta=n)=2\frac{pq^n}{1+q}$$

- 4. (a) Montrer que Δ admet une espérance $E(\Delta)$ et la calculer.
 - (b) Montrer : $E\left(\left(X_{1}-X_{2}\right)^{2}\right)=2V\left(X_{1}\right)$. En déduire que Δ admet une variance $V\left(\Delta\right)$ et la calculer.
- 5. Montrer que l'événement A est égal à l'événement $(X_3 > \Delta)$.

6. (a) En déduire :
$$P(A) = \sum_{k=0}^{+\infty} P(\Delta = k) P(X_3 > k)$$

(b) Exprimer P(A) à l'aide de p et q.

Partie II

Dans cette partie, X est une variable aléatoire suivant la loi géométrique de paramètre $p, p \in]0;1[$ et Y est une variable aléatoire suivant la loi exponentielle de paramètre $\lambda, \lambda \in]0;+\infty[$.

On note
$$q = 1 - p$$
.

On suppose que X et Y sont indépendantes, c'est à dire :

$$\forall k \in \mathbb{N}^*, \quad \forall t \in [0; +\infty[, \quad P(X = k, Y \leq t) = P(X = k) P(Y \leq t)]$$

- 7. Rappeler une densité de Y ainsi que son espérance et sa variance.
- 8. On définit la variable aléatoire Z par $Z=\frac{Y}{X}$

(a) Montrer:
$$\forall t \in [0; +\infty[$$
, $P(Z > t) = \sum_{k=1}^{+\infty} P(X = k) P(Y > tk)$

(b) En déduire :
$$\forall t \in [0; +\infty[$$
, $P(Z > t) = \frac{pe^{-\lambda t}}{1 - qe^{-\lambda t}}$

(c) Montrer que la variable aléatoire Z admet une densité et déterminer une densité de Z.