Introducción al aprendizaje automático

•••

#3. Funciones de costo y optimización. Árboles de decisión

Regresión polinomial

Función de predicción lineal:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$

Función de costo: error cuadrático
 medida del error en la predicción de t mediante y(x; w)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Admite una solución en forma cerrada

Regresión logística

- Dados $\{(x_1, y_1), \dots, (x_N, y_N)\}$, con $x_i \in \mathbb{R}^n, y_i \in \{0, 1\}$
- Modelo: $p(y=1|x)=h_{yy}(x)$

$$h_w(x) = \frac{1}{1 + exp(-w^T x)}$$

Función de costo

 $h_{w}(x)$ no lineal \rightarrow no admite solución en forma cerrada

Optimización y aprendizaje

Un problema típico en ML se puede escribir como:

"Aprender" significa resolver:

$$w^* = \arg\min_{w} L(w)$$

... y que $f_{w*}(.)$ pueda generalizar a ejemplos no vistos.

- ullet Recordemos. Caso de funciones 1D, $f:\mathbb{R} o\mathbb{R}$
 - o f tiene un **punto estacionario** en x_0 cuando $\frac{\partial f}{\partial x}(x_0) = 0$
 - la derivada segunda determina el tipo de punto estacionario

- ullet Recordemos. Caso de funciones nD, $f:\mathbb{R}^n o\mathbb{R}$
 - o f tiene un **punto estacionario** en x_0 cuando

$$\nabla f(\mathbf{x}_0) \equiv \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right)(\mathbf{x}_0) = \mathbf{0}$$

o el **tipo** de punto estacionario lo determina la matriz Hessiana

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^{\top} = \mathbf{0}$$

el gradiente en un punto da la dirección de máximo crecimiento

Idea general de los métodos (iterativos) de descenso: i) partir de algún w, ii)
 avanzar en direcciones de f decrecientes

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \Delta \mathbf{w}^{(t)}$$

- Variantes:
 - \circ Descenso de gradiente: $\Delta \mathbf{w}^{(t)} = -\eta_t
 abla L(\mathbf{w}^{(t)})$
 - \circ Descenso de gradiente estocástico: $\Delta \mathbf{w}^{(t)} = -\eta_t
 abla \ell_n(\mathbf{w}^{(t)})$
 - Newton-Raphson (segundo orden), etc.

Descenso de gradiente

Algorithm 1 Gradient Descent

- 1: **procedure** GD(\mathcal{D} , $\boldsymbol{\theta}^{(0)}$)
- 2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
- 3: **while** not converged **do**
- 4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \lambda \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- 5: return θ

- Convergencia:
 - no hay cambio (norma del gradiente menor a un épsilon)
 - número de iteraciones (early stopping)

Descenso de gradiente

- ¿La solución es única?
- ¿Depende del punto de inicio?

Funciones y conjuntos convexos

• Una **función** f es **convexa** si para cualquier x_0 , x_1 en el dominio de f,

$$f((1-\lambda)x_0 + \lambda x_1) \le (1-\lambda)f(x_0) + \lambda f(x_1), \quad 0 \le \lambda \le 1$$

• Un **conjunto** S es **convexo** si para cualquier x_0, x_1 en S,

$$(1 - \lambda)x_0 + \lambda x_1 \in S$$

 Intuitivamente la función tiene forma de "cuenco"

Ejemplo de funciones convexas

La suma no negativa de funciones convexas es convexa

Ejemplo de funciones convexas

SVM

$$\min_{\mathbf{w} \in \mathbb{R}^d} C \sum_{i=1}^{N} \max (0, 1 - y_i f(\mathbf{x}_i)) + ||\mathbf{w}||^2 \qquad \text{convex}$$

Porque es importante?

- Los puntos críticos (derivada=0) son todos mínimos
- Descenso de gradiente encuentra la solución óptima

Gradiente en regresión logística*

$$\log P(Y = y | X = \mathbf{x}, \mathbf{w}) = \begin{cases} \log p & \text{if } y = 1\\ \log(1 - p) & \text{if } y = 0 \end{cases}$$
$$p \equiv \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{w}}} = \frac{1}{1 + \exp(-\sum_{i} x^{j} w^{j})}$$

We're going to dive into this thing here:
$$d/dw(p)$$
 $(\log f)' = \frac{1}{f}f'$

$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = \begin{cases} \frac{1}{p} \frac{\partial}{\partial w^j} p & \text{if } y = 1\\ \frac{1}{1-p} (-\frac{\partial}{\partial w^j} p) & \text{if } y = 0 \end{cases}$$

Gradiente en regresión logística*

$$\frac{\partial}{\partial w^{j}}p = \frac{\partial}{\partial w^{j}}(1 + \exp(-\sum_{j} x^{j}w^{j}))^{-1} \qquad (f^{n})' = nf^{n-1} \cdot f' \\ (e^{f})' = e^{f}f'$$

$$= (-1)(1 + \exp(-\sum_{j} x^{j}w^{j}))^{-2} \frac{\partial}{\partial w^{j}} \exp(-\sum_{j} x^{j}w^{j})$$

$$= (-1)(1 + \exp(-\sum_{j} x^{j}w^{j}))^{-2} \exp(-\sum_{j} x^{j}w^{j})(-x^{j})$$

$$= \underbrace{\frac{1}{1 + \exp(-\sum_{j} x^{j}w^{j})} \underbrace{\exp(-\sum_{j} x^{j}w^{j})}_{1 + \exp(-\sum_{j} x^{j}w^{j})} x^{j}}_{1 - \exp(-\sum_{j} x^{j}w^{j})} x^{j}$$

$$\frac{\partial}{\partial w^{j}}p = p(1 - p)x^{j} \qquad \text{1-p}$$

Gradiente en regresión logística*

$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = \begin{cases} \frac{1}{p} p(1 - p) x^j = (1 - p) x^j & \text{if } y = 1\\ \frac{1}{1-p} (-1) p(1 - p) x^j = -p x^j & \text{if } y = 0 \end{cases}$$
$$\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = (y - p) x^j$$

Regla de actualización en regresión logística:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \lambda(y - p)\mathbf{x}$$

Details: Picking learning rate

- Use grid-search in log-space over small values on a tuning set:
 - e.g., 0.01, 0.001, ...
- Sometimes, decrease after each pass:
 - e.g factor of 1/(1 + dt), t=epoch
 - sometimes 1/t2
- Fancier techniques I won't talk about:
 - Adaptive gradient: scale gradient differently for each dimension (Adagrad, ADAM,)

The Machine Learners Job

(1) Get the labeled data:
$$(x^1, y^1), \dots, (x^n, y^n)$$

(2) Choose a parametrization for hypothesis:
$$h_w(x)$$

(3) Choose a loss function:
$$\ell(h_w(x), y) \ge 0$$

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

(5) Test and cross-validate. If fail, go back a few steps

Parametrizing the Hypothesis

Linear:
$$h_w(x) = \sum_{i=0}^d w_i x_i$$

Choosing the Loss Function

Let
$$y_h := h_w(x)$$

Quadratic Loss
$$\ell(y_h, y) = (y_h - y)^2$$

Binary Loss
$$\ell(y_h, y) = \epsilon$$

$$\ell(y_h, y) = \begin{cases} 0 & \text{if } y_h = y \\ 1 & \text{if } y_h \neq y \end{cases}$$

Hinge Loss
$$\ell(y_h,y) = \max\{0,1-y_hy\}$$

Regularization

Exe: Ridge Regression

Linear hypothesis $h_w(x) = \langle w, x \rangle$

L2 regularizor $R(w) = ||w||_2^2$

$$\ell(y_h, y) = (y_h - y)^2$$

Ridge Regression

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n (y^i - \langle w, x^i \rangle)^2 + \lambda ||w||_2^2$$

Exe: Logistic Regression

Linear hypothesis

$$h_w(x) = \langle w, x \rangle$$

L2 regularizor

$$R(w) = ||w||_2^2$$

Logistic loss

$$\ell(y_h, y) = \ln(1 + e^{-yy_h})$$

Label encoding: $y \in \{-1, +1\}$

$$\mathbb{P}(y=1|z)=\sigma(z)=rac{1}{1+e^{-z}}$$

$$\mathbb{P}(y=0|z)=1-\sigma(z)=\frac{1}{1+e^z}$$

Logistic Regression

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$$

The Machine Learners Job

(1) Get the labeled data:
$$(x^1, y^1), \dots, (x^n, y^n)$$

(2) Choose a parametrization for hypothesis:
$$h_w(x)$$

(3) Choose a loss function:
$$\ell(h_w(x), y) \ge 0$$

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

Árboles de decisión

Hypotheses: decision trees $f: X \to Y$

- Each internal node tests an attribute x_i
- One branch for each possible attribute value x_i=v
- Each leaf assigns a class y
- To classify input x: traverse the tree from root to leaf, output the labeled y

Human interpretable!

What functions can be represented?

- Decision trees can represent any function of the input attributes!
- For Boolean functions, path to leaf gives truth table row
- Could require exponentially many nodes

(Figure from Stuart Russell)

Learning *simplest* decision tree is NP-hard

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Key idea: Greedily learn trees using recursion

Recursive Step

Splitting: choosing a good attribute

Would we prefer to split on X_1 or X_2 ?

Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

X ₁	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad
 - What about distributions in between?

P(Y=A) = 1/2 P(Y=B) = 1/4	P(Y=C) = 1/8	P(Y=D) = 1/8
---------------------------	--------------	--------------

P(Y=A) = 1/4	P(Y=B) = 1/4	P(Y=C) = 1/4	P(Y=D) = 1/4
--------------	--------------	--------------	--------------

Entropy

Entropy H(Y) of a random variable Y

$$P(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

High, Low Entropy

- "High Entropy"
 - Y is from a uniform like distribution
 - Flat histogram
 - Values sampled from it are less predictable
- "Low Entropy"
 - Y is from a varied (peaks and valleys) distribution
 - Histogram has many lows and highs
 - Values sampled from it are more predictable

Entropy Example

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

$$P(Y=t) = 5/6$$

 $P(Y=f) = 1/6$

$$H(Y) = -5/6 \log_2 5/6 - 1/6 \log_2 1/6$$

= 0.65

X ₁	X_2	Υ
Т	Т	T
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conditional Entropy

Conditional Entropy H(Y|X) of a random variable Y conditioned on a random variable X

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

Example:

= 2/6

$$P(X_1=t) = 4/6$$

 $P(X_1=t) = 4/6$
 $P(X_1=t) = 2/6$
 $Y=t: 4$
 $Y=t: 1$
 $Y=f: 0$
 $Y=f: 1$

$$H(Y|X_1) = -4/6 (1 log_2 1 + 0 log_2 0)$$

- 2/6 (1/2 log₂ 1/2 + 1/2 log₂ 1/2)

X ₁	X ₂	Υ
Т	T	T
Т	F	Т
Т	Т	Т
Т	F	Η
F	Т	Т
F	F	F

Information gain

Decrease in entropy (uncertainty) after splitting

$$IG(X) = H(Y) - H(Y \mid X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

= 0.65 - 0.33

 $IG(X_1) > 0 \rightarrow$ we prefer the split!

X ₁	X ₂	Υ
Т	Т	Т
Т	F	H
Т	T	H
Т	F	H
F	Т	Τ
F	F	F

Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_i) = \arg\max_{i} H(Y) - H(Y \mid X_i)$$

Recurse

Decision trees will overfit

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Minimum number of samples per leaf
- Random forests

Real-Valued inputs

What should we do if some of the inputs are real-valued?

Infinite number of possible split values!!!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	;	:	:	;
:	1:	:	:	:	:	:	:
:	1:	:	:	;	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Threshold splits

- Binary tree: split on attribute X at value t
 - One branch: X < t
 - Other branch: X ≥ t
 - Requires small change
 - Allow repeated splits on same variable along a path

The set of possible thresholds

- Binary tree, split on attribute X
 - One branch: X < t
 - Other branch: X ≥ t
- Search through possible values of t
 - Seems hard!!!
- But only a finite number of t's are important:

- Sort data according to X into {x₁,...,x_m}
- Consider split points of the form $x_i + (x_{i+1} x_i)/2$
- Morever, only splits between examples of different classes matter!

Picking the best threshold

- Suppose X is real valued with threshold t
- Want IG(Y | X:t), the information gain for Y when testing if X is greater than or less than t
- · Define:
 - H(Y|X:t) = p(X < t) H(Y|X < t) + p(X >= t) H(Y|X >= t)
 - IG(Y|X:t) = H(Y) H(Y|X:t)
 - IG*(Y|X) = max, IG(Y|X:t)

Use: IG*(Y|X) for continuous variables

What you need to know about decision trees

- Decision trees are one of the most popular ML tools
 - Easy to understand, implement, and use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Or, use ensembles of different trees (random forests)