HOMEWORK 1

1.

When using TV features θ_0 =10.112710892564584 θ_1 =8.270487601013034

The picture below shows the value which I calculated from my machine

theta_0: 10.112710892564584 theta_1: 8.270487601013034

tv training set rmse: 3.640927580697203 tv testing set rmse: 3.915380045994121

2.

By using plot function from 'matplotlib.pyplot' module, I could obtain this graph representing the change of cost function in TV features, which x-axis stands for the iteration times and y-axis stands for the change of J_{θ} .

3.

tv training set rmse: 3.640927580697203 tv testing set rmse: 3.915380045994121

RMSE for training set(TV feature): 3.640927580697203

4.

RMSE for test set(TV feature): 3.915380045994121

5.

radio training set rmse: 4.356969917198693 radio testing set rmse: 4.191474116494009 RMSE for test set(Radio feature): 4.191474116494009

6.

newspaper training set rmse: 5.0689288625698 newspaper testing set rmse: 5.431003333502994

RMSE for test set(newspaper feature): 5.431003333502994

7.TV > Radio > Newspaper.

The performance of models depend on the value of RMSE. The model which has lower rmse value has the better performance, so the rank is like that.

	TV	RATIO	NEWSPAPER
Training_set	3.640927580697203	4.356969917198693	5.0689288625698
Test_set	3.915380045994121	4.191474116494009	5.431003333502994

Coding part

```
import numpy as np
import matplotlib.pyplot as plt
import math
with open('Advertising.csv','r') as file:
    tv = []
    radio = []
    newspaper = []
    sales =[]
    splited = []
    for row in file:
         row = row.strip('\n')
         splited = row.split(',')#[tv,ratio,]
         if splited[1] != 'TV':
              tv.append(float(splited[1]))
         if splited[2] != 'Radio':
               radio.append(float(splited[2]))
         if splited[3] != 'Newspaper':
               newspaper.append(float(splited[3]))
         if splited[4] != 'Sales':
              sales.append(float(splited[4]))
def zero_one_format(tempp):
    changed = []
    for i in tempp:
         num = (i-min(tempp))/(max(tempp)-min(tempp))
         changed.append(round(num,2))
    return changed
newspaper = zero one format(newspaper)
newspaper_training = newspaper[:190]
newspaper_testing = newspaper[190:]
```

```
print(sales)
theta_0 = -1
theta_1 = -0.5
learning_rate = 0.01
loss = []
for i in range(500):
     error = []
     error_1 = []
     for j in range(190):
          predicted = theta_0 +theta_1 * newspaper_training[j]
          error.append(sales[j] - predicted)
          error_1.append((sales[j] - predicted)*newspaper_training[j])
     theta_0 = theta_0 + learning_rate * (np.mean(error))
     theta_1 = theta_1 + learning_rate * (np.mean(error_1))
     loss.append([np.mean(error)])
###print(theta_1)
plt.plot(loss)
plt.show()
print(f'The third time:\ntheta_0: {theta_0}')
print(f'theta_1: {theta_1}')
###rmse
###for test set
error_rmse = []
for i in range(len(newspaper_training)):
     predicted = theta_0 + theta_1 * newspaper_training[i]
     temp = (sales[i] - predicted)**2
     error_rmse.append(temp)
print(f'newspaper training set rmse: {math.sqrt(np.mean(error_rmse))}')
```