PROJECT: SENTIMENT ANALYSIS FOR MARKETING

PRESENTED BY
S. SAHANA
821021104038

PHASE 3: DEVELOPMENT PART

Start building the Sentiment Analysis for Marketing to analysis customers sentiments for competitor products.

Sentiment analysis is a marketing tool that helps you examine the way people interact with a brand online. This method is more comprehensive than traditional online marketing tracking, which measures the number of online interactions that customers have with a brand, like comments and shares.

APPLICABILITY:

Al powered to enhance products by understanding customers likes and dislikes.

TABLE OF CONTENTS:

- Introduction
- Training Al Models for Sentiment Analysis
- Importing Essential Libraries
- Necessary Steps to Follows
- Import Datasets

> INTRODUCTION:

- Sentiment Analysis, often referred to as opinion mining, is a powerful technique within the field of Natural Language Processing (NLP).
- At its core, sentiment analysis involves teaching machines to understand and interpret human emotions and opinions expressed within text data.
- By analyzing the sentiment behind words and phrases, Al models can classify text as positive, negative, or neutral, thus providing valuable insights into people's attitudes, feelings, and reactions.

TRAINING AL MODELS FOR SENTIMENT ANALYSIS:

Training Al models for sentiment analysis involves these steps:

Data Collection:

Gather a labeled dataset with text samples and sentiment labels (positive negative).

> Text Preprocessing:

Clean text by removing punctuation, special characters, and lowercase conversion.

> Tokenization:

Break text into smaller units (tokens) like words.

Feature Extraction:

Convert tokens into numerical representations using techniques like TF-IDF.

Model Selection:

Choose an algorithm like Naive Bayes, SVM, or RNN.

Model Training:

Train the model on labeled data to learn sentiment patterns.

Model Evaluation:

Measure model performance with metrics like accuracy and precision.

> Deployment:

Deploy the model to predict sentiment in new text data.

IMPORTING ESSENTIAL LIBRARIES:

Data Analysis and Visualization Libraries:

Pandas

- NumPy
- Seaborn and Matplotlib

Text Preprocessing Libraries:

- NLTK (Natural Language Toolkit)
- String and Word Cloud
- TidfVectorizer

Data Splitting and Model Training Libraries:

- train_test_split
- Logistic Regression and MultinomialNB
- Naive Bayes

Model Evaluation Libraries

- Metrics and Display Tools
- Classification reports and confusion matrices.

NECESSARY STEPS TO FOLLOWS: IN [1]:

Data Analysis and Visualization

import pandas as pd

import numpy as no

import seaborn as ins

import matplotlib.pyplot as plt

Text Preprocessing

import string from nitk.corpus

import stopwords from nitk. stem import

PorterStemme from wordcloud

import WordCloud from sklearn. feature

extraction.text

import TfidfVectorizer

Data Splitting and Model Training

from sklearn.model selection import train_test_split

from sklearn.linear model import LogisticRegression

from sklearn.naive_bayes import MultinomialNB

#Model Evaluation

from sklearn.metrics import (
accuracy score,
precision score,
recall score,
f1_score,
classification report,
confusion_matrix,
ConfusionMatrixDisplay)

IMPORT DATASETS:

IN [2]:

df pd.read_csv('amazon_reviews.csv')

IN [3]:

df.head(5)

OUTPUT:

feedback	verified_reviews	variation	date	rating	
1	Love my Echol	Charcoal Fabric	31-Jul-18	5	0
1	Loved it!	Charcoal Fabric	31-Jul-18	5	1
1	Sometimes while playing a game, you can answer	Walnut Finish	31-Jul-18	4	2
1	I have had a lot of fun with this thing. My 4	Charcoal Fabric	31-Jul-18	5	3
1	Music	Charcoal Fabric	31-Jul-18	5	4

DATA INSPECTION:

IN [4]:

df.info()

Data Information

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3150 entries, 0 to 3149
Data columns (total 5 columns):
    Column
                      Non-Null Count
                                      Dtype
 #
                      3150 non-null
                                      int@4
0 rating
1 date
                      3150 non-null
                                      object
 2 variation
                                      object
                      3150 non-null
 3 verified reviews 3150 non-null
                                      object
                      3150 non-null
4 feedback
                                      int64
dtypes: int64(2), object(3)
memory usage: 123.2+ KB
```

Display the first 5 full reviews with a space in between

IN [5]:

```
for index, row in df.head (5).iterrows():
    print (f"Review {index + 1}: {row[
'verified_reviews"]}\n")
```

Review 1: Love my Echo!

Review 2: Loved it!

Review 3: Sometimes while playing a game, you can answer a question correctly but Alexa says you got it wrong and answers the s ame as you. I like being able to turn lights on and off while away from home.

Review 4: I have had a lot of fun with this thing. My 4 yr old learns about dinosaurs, i control the lights and play games like categories. Has nice sound when playing music as well.

Review 5: Music

DATA PREPROCESSING:

IN [6]:

```
null_mask = df.isnull()
```

null_values = null_mask.sum().sum()

print ("Number of null values:", null_values)

EXPLORATORY DATA ANALYSIS:

IN [7]:

print("\nSummary Statistics:")

summary_stats = df.describe()

print (summary_stats)

Summar	y Statistics:	
	rating	feedback
count	3150.000000	3150.000000
mean	4.463175	0.918413
std	1.068506	0.273778
min	1.000000	0.000000
25%	4.000000	1.000000
50%	5.000000	1.000000
75%	5.000000	1.000000
max	5.000000	1.000000

DISTRIBUTION OF SENTIMENTS:

IN [8]:

Print ("\n Distribution of Sentiments:")

```
sentiment_counts =
df['feedback'].value_counts()
```

print (sentiment_counts)

```
Distribution of Sentiments:
1 2893
0 257
Name: feedback, dtype: int64
```

DISTRIBUTION OF RATINGS: IN [9]:

```
Print ("\nDistribution of Ratings:")
rating_counts =
df['rating'].value_counts().sort_index()
print (rating_counts)
```

```
Distribution of Ratings:
1 161
2 96
3 152
4 455
5 2286
Name: rating, dtype: int64
```

IN [9.1]:

```
#plt.figure(figsize-(8, 6))
sns.countplot (data=df, x='rat Ing')
plt.title('Distribution of Ratings')
plt.xlabel('Rating')
plt.ylabel('Count')
plt.show()
```


DISTRIBUTION OF VARIATIONS: IN [10]:

```
Print ("\nDistribution of Variations:")

variation_counts=df["variation"]

.value_counts()

print (variation_counts)
```

```
Distribution of Variations:
Black Dot
Charcoal Fabric
                                  430
Configuration: Fire TV Stick
                                  265
                                  261
       Spot
Meather Gray Fabric
                                  157
       Spot
                                   91
Sandstone Fabric
                                   90
                                   78
Name: variation, dtype: int64
```

In [10.1]:

```
#plt.figure(figsize=(12, 6))
sns.countplot (data=df, x='variation',
order=df['variation'].value_counts().index)
plt.title('Distribution of Variations')
plt.xlabel('Variation')
plt.ylabel('Count')
```

plt.xticks (rotation=45, ha='right')
plt.tight_layout()
plt.show()

<u>DISTRIBUTION OF SENTIMENTS</u>: IN [11]:

#plt.figure(figsize=(8, 6))

sns.countplot (data=df, x='feedback')

plt.title ('Distribution of Sentiments')

plt.xlabel ('Sentiment')
plt.ylabel ('Count')
plt.xticks ([0, 1], ['Negative', 'Positive'])
plt.show()

#Distribution of Sentiments (Feedback)

<u>DISTRIBUTION OF REVIEW LENGTHS:</u> IN [12]:

Calculate the Length of each review df['review_length']=df['verified_reviews']. apply(len)

```
#plt.figure(figsize=(10, 6))
plt.hist(df['review_length'],bins=50,
alpha=0.8)
plt.xlabel('Review Length')
plt.ylabel('Frequency')
plt.title('Distribution of Review Lengths')
plt.show()
```


TEXT PREPROCESSING:

- Tokenization
- Punctuation Removal and Lowercasing

- Stopword Removal
- Stemming

FEATURE EXTRACTION USING TF-IDF IN SENTIMENT ANALYSIS

- In sentiment analysis, feature extraction is a crucial step that converts processed text data into numbers, suitable for machine learning.
- One common technique is TF-IDF (Term Frequency-Inverse Document Frequency), which assigns weights to words in text documents.
- It measures word importance within a document while considering its frequency across all documents.

MODEL SELECTION AND TRAINING:

- The models employed in this project-Logistic Regression and Multinomial Naive Bayes-and their significance in sentiment analysis.
 - Logistic Regression
 - Multinomial Naive Bayes

MODEL EVALUATION METRICS:

In the field of sentiment analysis, assessing how well our trained models perform is crucial. We use model evaluation metrics to measure their classification accuracy.

IMPORTANT MODEL EVALUATION METRICS:

- Accuracy
- Precision
- Recall (Sensitivity)

> F1-Score

LOGISTIC REGRESSION CONFUSION MATRIX:

plot_confusion_matrix(logistic_regression
model, X_test, y_test, title='Logistic Regression
Confusion Matrix')

MULTINOMIAL NAIVE BAYES CONFUSION MATRIX

plot_confusion_matrix(multinomial_nb_
model, X_test, y_test, title='Multinomial
Naive Bayes Confusion Matrix')

