

Universidade do Vale do Itajaí Escola do Mar, Ciência e Tecnologia - EMCT Ciência da Computação

Matemática Computacional

Álgebra Booleana

Prof. Thiago Felski Pereira, M.Sc.

Agenda

- A álgebra booleana permite apenas dois valores: 0 e 1
 - **Lógica 0** pode ser: falso, desligado, baixo, não, interruptor aberto
 - **Lógica 1** pode ser: verdadeira, ligado, alto, sim, interruptor fechado
- Três operações básicas:
 - Soma "+" (união ou OR) Ex: A + B
 - Produto "•" (intersecção ou AND) Ex: A B = AB
 - Negação "—" (complemento ou NOT) Ex: $A' = \overline{A}$

Lógico 0	Lógico 1
Falso	Verdadeiro
Desligado	Ligado
BAIXO	ALTO
Não	Sim
Aberto	Fechado

- Propriedades da Álgebra Booleana que são úteis para manipulação de expressões lógicas. Sendo A, B e C variáveis booleanas:
 - Propriedade Comutativa
 - $\blacksquare \quad A \bullet B = B \bullet A$
 - A + B = B + A
 - Propriedade Associativa
 - A(BC) = (AB)C = ABC
 - A + (B + C) = (A + B) + C = A + B + C

- Propriedade Distributiva
 - A(B+C) = AB + AC
 - A + BC = (A + B)(A + C)

- Postulados (leis fundamentais) regem a Álgebra Booleana
- Postulados Básicos:

$$1 - \operatorname{se} A \neq 0 \text{ então } A = 1$$

$$\operatorname{se} A \neq 1 \text{ então } A = 0$$

$$2 - 1 + 1 = 1$$
$$0 \cdot 0 = 0$$

$$3 - 0 + 0 = 0$$

 $1 \cdot 1 = 1$

$$4 - 0 + 1 = 1$$

$$1 \cdot 0 = 0$$

$$5 - \overline{0} = 1$$

$$\overline{1} = 0$$

Teoremas da Álgebra Booleana

$$1 - A + 0 = A$$
$$A \cdot 1 = A$$

$$2 - A + 1 = 1$$

$$A \cdot 0 = 0$$

$$3 - A + A = A$$

$$\underline{A \cdot A} = A$$

$$-4 - \overline{(\overline{A})} = A$$

$$5 - A + \overline{A} = 1$$

$$A \cdot \overline{A} = 0$$

■ 6 – Teoremas de De Morgan

$$\overline{A + B + C + \dots} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \dots$$

$$\overline{A \cdot B \cdot C \cdot \dots} = \overline{A + B + C} + \dots$$

■ 7 – Identidades auxiliares

$$A(A + B) = A + AB = A$$

$$A + \overline{A}B = A + B$$

$$(A + B) \bullet (A + C) = A + BC$$

8 – Substituição (não é um teorema)
 AB = X

- A tabela-verdade descreve a relação entre as entradas e as saídas de um circuito lógico
- O número de colunas corresponde ao número de entradas
 - Uma tabela de duas entradas teria $2^2 = 4$ linhas
 - Uma tabela de três entradas teria $2^3 = 8$ linhas

UNIVALI

■ Tabela-verdade da "+"

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

■ Tabela-verdade da " – "

A	Ā
0	1
1	0

■ Tabela-verdade da "•"

A	В	A•B
0	0	0
0	1	0
1	0	0
1	1	1

■ Tabela-verdade da operação " ⊕ " também conhecida como OU-exclusive ou XOR

Somente é "1" quando suas entradas forem opostas (quando a operação for

exclusiva OR = +)

A	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

- Outras tabelas verdades importantes
 - AND negado = NAND

A	В	A • B
0	0	1
0	1	1
1	0	1
1	1	0

lacktriangle OR negado = NOR

A	В	$\overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

- A simplificação de expressões booleanas permite simplificar circuitos digitais e, assim, reduzir custos
 - Utilização da Álgebra booleana ou Mapas de Veitch-Karnaugh

$$S = ABC + AC + AB$$

$$A(BC + \overline{C} + \overline{B})$$
 Deixando em evidência A
$$A[BC + (\overline{C} + \overline{B})]$$
 Aplicando a propriedade associativa
$$A[BC + (\overline{C} + \overline{B})]$$
 Aplicando De Morgan e propriedade comutativa
$$A[BC + (\overline{BC})]$$
 $\overline{A} = A$ e substituindo BC por X
$$A(X + \overline{X}) = A$$
 $A + \overline{A} = 1$

- As formas padrão que podemos escrever as expressões são duas
 - Soma dos produtos
 - Ex : $F(A,B,C) = \overline{A}BC + A\overline{B}C + AB\overline{C}$
 - Produto das somas
 - Ex: $F(A,B,C) = (\overline{A}+B+C)(A+\overline{B}+C)(A+B+\overline{C})$

- Cada termo da soma dos produtos é chamada de minitermo, sendo a expressão na sua forma mínima chamada de forma canônica de minitermos
- Essa forma tem que atender a seguinte propriedade F = 1 (ou F(A,B,C) = 1)
 - F = 1 se ao menos um dos minitermos for 1 e um minitermo será 1 somente se todas as suas variáveis forem 1
 - Podemos assumir que os minitermos corresponde a linha da tabela verdade que F=1

- Dada a tabela verdade
 - $F(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + ABC$ $= m_0 + m_2 + m_3 + m_7$ $= \sum m(0,2,3,7)$

A	В	С	F(A,B,C)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- Cada termo da produto das somas é chamada de maxitermo, sendo a expressão na sua forma mínima chamada de forma canônica de maxitermos
- Essa forma tem que atender a seguinte propriedade F = 0 (ou F(A,B,C) = 0)
 - F = 0 se ao menos um dos maxitermos for 0 e um maxitermo será 0 somente se todas as suas variáveis forem 0
 - Podemos assumir que os maxitermos corresponde a linha da tabela verdade que F=0

- Dada a tabela verdade
 - F(A,B,C) = (A+B+C)(A+B+C)(A+B+C)(A+B+C) $= M_1 \cdot M_4 \cdot M_5 \cdot M_6$ $= \prod M(1,4-6)$

A	В	С	F(A,B,C)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

UNIVALI

Relação dos minitermos e maxitermos

A	В	С	minitermo	maxitermo
0	0	0	$\overline{ABC} = m_0$	$\overline{A}+\overline{B}+\overline{C}=M_0$
0	0	1	ĀBC = m₁	$\overline{A} + \overline{B} + C = M_1$
0	1	0	$\overline{A}B\overline{C} = m_2$	$\overline{A}+B+\overline{C}=M_2$
0	1	1	ĀBC = m₃	$\overline{A}+B+C=M_3$
1	0	0	$A\overline{B}\overline{C} = m_4$	$A+\overline{B}+\overline{C}=M_4$
1	0	1	$A\overline{B}C = m_5$	$A+\overline{B}+C=M_5$
1	1	0	$AB\overline{C} = m_6$	$A+B+\overline{C}=M_6$
1	1	1	$ABC = m_7$	$A+B+C=M_7$