# TDA357/DIT621 - Databases

Lecture 6 and 7 – Design using Functional Dependencies and normal forms

Jonas Duregård

### Another high level design approach

- This week we will look at functional dependencies (FDs) and normal forms
- This is an alternative (and to some degree complementary) approach to ER that we studied last week
  - We start in a domain description and end in a database schema
- Two lectures, and Friday exercises as usual



#### Normalisation in a nutshell

- Extract a bunch of formal statements from the domain description
- Compute a normalised database schema from the formal statements



- Highly systematic, almost mechanical process
- By a carefully constructed normalization algorithm, the normal form the schema ends up in will satisfy some important properties

### Functional Dependencies (FDs)

- A functional dependency is written as <set of attributes> → <attribute>
- Example: room time -> course ------- Do not confuse with references!
- Pronounced "room and time determines course"
- It is a statement that can be true or false
- A few ways of understanding the meaning of the statement above:
  - If we know room and a time, we can uniquely determine course
  - There can be at most one course value for each (room, time)-pair
  - There exists a partial function f that takes a room and a time and yields a course
- In a domain it might have said something like "courses can book rooms at any free times"

# Three ways we can use functional dependencies

- Check if they hold for a specific data set
- Check if a design ensures they hold for all data sets
- Express desired properties of a design
- I will explain each of these in turn

### Functional dependency as a property of data

- One way of formally defining functional dependency  $x_1 x_2 ... \rightarrow y$ : For R(y  $x_1 x_2 ...$ ), if two rows agree on  $x_1$ ,  $x_2$  ... they must also agree on y
- In other words, there cannot exist two rows where the left-hand side attributes are the same, but the right-hand side attribute differs
  - " $X \rightarrow y = rows that agree on X must agree on y"$

Two rows "agreeing on x" just means the x-column(s) have the same value

**Table: Bookings** 

Which FDs hold for this data?

| courseCode | name         | day     | timeslot | room | seats |
|------------|--------------|---------|----------|------|-------|
| TDA357     | Databases    | Tuesday | 0        | GD   | 236   |
| TDA357     | Databases    | Tuesday | 1        | GD   | 236   |
| ERE033     | Reglerteknik | Tuesday | 0        | НВ4  | 224   |
| ERE033     | Reglerteknik | Friday  | 0        | GD   | 236   |

#### courseCode → name?

Yes! (TDA357 maps to Databases, ERE033 to Reglerteknik)

#### $day \rightarrow timeslot?$

No! (Tuesday maps to both 0 and 1)

day timeslot room → courseCode?

LHS = Left-hand side (of arrow)

RHS = Right-hand side

Yes! (There are no rows where all three LHS columns match)

#### seats $\rightarrow$ room?

- Yes! 236 for GD, 224 for HB4,
- This might not be intentional given what we know of the domain...

#### FDs on small tables

- Relation R(a,b,c) has a single row. Does a  $\rightarrow$  b hold for that table?
  - Yes! In fact, all FDs hold for tables with fewer than two rows.
- Consider: For an FD not to hold on a relation, there needs to be two conflicting rows.
- More general: For fd  $x_1 x_2 ... x_n \rightarrow y$ , there needs to be two rows that agree on all the  $x_i$  values (but not on y) for the FD to not hold.

## Thinking about attributes in FD analysis

Consider this relational schema with courses and teachers:

```
Teachers (email, tname)
Courses (code, cname, teacher)
teacher -> Teachers.email
```

- The domain only has four attributes, teacher emails and names and course codes and names.
- The teacher attribute of Courses and email attribute of Teachers are two names for the same attribute, not two independent attributes

#### FDs as a properties of designs

- Knowing what it means for an FD to hold for a data set, we can determine if a design (schema) guarantees that it holds for all valid data sets
- Example: Does the schema below guarantee that ...

 $code \rightarrow cname?$ 

Yes! (by primary key constraint in courses)

cname  $\rightarrow$  code?

• No! (Counterexample: any two courses with the same name)

 $code \rightarrow email$ 

Yes! (teacher is just another name for email)

code → tname

• Yes! (by primary key + reference)

Teachers (email, tname)
Courses (code, cname, teacher)
teacher -> Teachers.email

#### Bookings (<u>courseCode</u>, name, <u>day</u>, <u>timeslot</u>, room, seats) (day, timeslot, room) UNIQUE

- Does the schema above guarantee ...
- day timeslot room → courseCode
  - Yes (through UNIQUE constraint)
- day timeslot room coursCode → seats
  - Yes (through primary key and/or UNIQUE)
- room → seats
  - No ⊗
- courseCode → name
  - No ☺

Counterexample of room  $\rightarrow$  seats and courseCode  $\rightarrow$  name

| <u>courseCode</u> | name | day     | timeslot | room | seats |
|-------------------|------|---------|----------|------|-------|
| CC1               | N1   | Tuesday | 0        | R1 / | 0     |
| CC1               | N2   | Tuesday | 1        | R1   | 1     |

Different timeslot, so no key violation

### Creating counterexamples

- A good exercise (and exam question) for FDs is to given a schema with constraints and one or several FDs, show that the FDs are not guaranteed by the schema
- We need to construct a relation that has:
  - For each FD at least two rows that agree on its left hand side
  - ... but disagree on its right hand side
  - ... and respects the constraints of the schema
- We'll need at least two rows, possibly more

- Given the relation  $R(\underline{a}, \underline{b}, c)$ , construct a counterexample to both  $a \rightarrow c$  and  $b \rightarrow c$
- This doesn't work because it violates the key constraint:

a1 b1 c1 a1 b1 c2

This doesn't work because b→c holds:

a1 b1 c1 a1 b2 c2

• This is a valid counterexample:

a1 b1 c1 a1 b2 c2 a2 b2 c1 a1 related to both c1 and c2, same for b2

No two rows have the same value for both a and b

#### So far we can ...

- Verify/disprove that an FD holds for a specific data set
- Verify/disprove that an FD always hold for all valid data in a schema

#### FDs as intention for designs

- Since we can verify that an FD holds for a schema, we can also use them to specify desired properties of our schema
- This is what makes FDs a design tool
- A sentence like "every course has a teacher" can be modelled as the FD course → teacher (or whatever attributes we use)
  - If this FD does not hold for our design, maybe the design is bad?

# Side note: Single/Multiple FDs

Notation: I use lowercase x/y/z for single attributes and uppercase X/Y/Z for attribute sets

- It is common to have multiple attributes on the right-hand side of FDs x y z → a b c
- This means exactly the same as these three FDs:
  - $xyz \rightarrow a$
  - $xyz \rightarrow b$
  - $x y z \rightarrow c$
- I find it most useful to think of the first as a convenient way of writing multiple FDs, rather than thinking of it as single FD with multiple attributes
- It is <u>not</u> the same with the left-hand side!  $x y \rightarrow a$  does <u>not</u> mean  $x \rightarrow a$ !

### Formal properties of FDs

Warning: Things may get slightly mathsy from this point

- FDs have lots of interesting mathematical properties
- I will explain some of the more useful ones:
  - Transitivity
  - Augmentation
  - Reflexivity
- These three are commonly referred to as Armstrong's axioms and they can be formulated in a few different but equivalent ways\*

\*But the way I formulate them is -of course- the best way

Recall:  $X \rightarrow y = rows$  that agree on X must agree on y

### Transitivity of functional dependencies

- Functional dependency is a transitive relation
  - This means that if  $X \rightarrow Y$  and  $Y \rightarrow Z$  then  $X \rightarrow Z$
- Note that Y is an attribute set here, so X → Y may be multiple FDs with the same LHS
- Proof sketch: Look at any rows that agree on X. Since  $X \rightarrow Y$ , they must also agree on Y, and since  $Y \rightarrow Z$  they must further agree on Z. Thus  $X \rightarrow Z$ .

Recall:  $X \rightarrow y = rows$  that agree on X must agree on y

#### Augmentation

- If  $x_1 x_2 ... \rightarrow y$ , then for all z:  $z x_1 x_2 ... \rightarrow y$
- Intuitively: You can add any attributes you want to the LHS of a valid FD and still get a valid FD
  - Think: "knowing an extra attribute never prevent us from finding y"
- Proof sketch: Since all rows that agree on the xs must agree on y, then
  particularly all rows that agree on z as well as the xs must do so.

Recall:  $X \rightarrow y = rows$  that agree on X must agree on y

#### Reflexivity and trivial FDs

- For all x: x → x
   (x determines itself)
- By augmentation,  $X \rightarrow y$  whenever  $y \in X$ 
  - Example: a b c  $\rightarrow$  b
  - We call these depencies trivial
  - Rule of thumb: Ignore trivial dependencies
- Proof sketch: Any values that agree on x will agree on x ☺

### Example: Deriving functional dependencies

- For any attributes x, y, z, w, and q:  $x \rightarrow y$ ,  $z \rightarrow w$ , and  $y w \rightarrow q$  implies  $x z \rightarrow q$
- Proof:
  - $x \rightarrow y$  implies  $x z \rightarrow y$  (by augmentation)
  - $z \rightarrow w$  implies x z  $\rightarrow w$  (by augmentation)
  - $x z \rightarrow y w$  and  $y w \rightarrow q$  implies  $x z \rightarrow q$  (by transitivity)



• Note that in the third step we merge  $x z \rightarrow y$  and  $x z \rightarrow w$  into  $x z \rightarrow y$  w (See slide on Single/Multiple FDs)

### Minimal basis (a.k.a. minimal cover)

- A minimal basis F<sup>-</sup> of a set of functional dependencies F is a set equivalent to F but with the following conditions:
  - F<sup>-</sup> has no trivial dependenices
  - No dependency in F<sup>-</sup> follow from other dependencies in F<sup>-</sup> through transitivity or augmentation
- Used for a lot of algorithms and to express a set of FDs in a compact form

#### Minimal basis

- Suppose we are given this set of FDs (5 total), what is a minimal basis?
  - $a \rightarrow b$
  - $b \rightarrow c$
  - $ad \rightarrow b c d$
- a d  $\rightarrow$  d is removed because it is trivial
- a d  $\rightarrow$  b is removed because it is implied by a  $\rightarrow$  b (augmentation)
- a d  $\rightarrow$  c is removed because it is implied by a  $\rightarrow$  b and b  $\rightarrow$  c (transitivity and augmentation)
- Final set:  $a \rightarrow b$ ,  $b \rightarrow c$

#### Transitive closure

- The transitive closure X<sup>+</sup> of a set of attributes X, is the set of attributes that can be functionally determined by X
- In other words,  $X^+ = All$  attributes y such that  $X \rightarrow y$ 
  - Includes ALL derived functional dependencies
  - Includes trivial dependencies
  - X<sup>+</sup> is closed in the sense that attributes in X<sup>+</sup> never determine attributes outside X<sup>+</sup>
- Can be computed by a simple algorithm from any set of FDs:
  - Start with X<sup>+</sup> = X (an under-approximation)
  - Repeat until done: For any FD Y  $\rightarrow$  z such that Y  $\subseteq$  X<sup>+</sup>, add z to X<sup>+</sup>

#### Transitive closure, example

 $x \rightarrow y$   $y w \rightarrow q$   $z \rightarrow w$   $q \rightarrow x$  $q r \rightarrow s$ 

- Given these FDs, compute the closure {x,z}+
- Initially we know  $\{x,z\} \subseteq \{x,z\}^+$  (from trivial FDs)
- Add y because  $x \rightarrow y$  and  $\{x\} \subseteq \{x,z\}^+$

$$\{x,z,y\}\subseteq \{x,z\}^+$$

• Add w because  $z \rightarrow w$  and  $\{z\} \subseteq \{x,z\}^+$ 

$$\{x,z,y,w\}\subseteq \{x,z\}^+$$

• Add q because y w  $\rightarrow$  q and  $\{y,w\} \subseteq \{x,z\}^+$ 

$$\{x,z,y,w,q\}\subseteq \{x,z\}^+$$

- No more FDs add attributes, so  $\{x,z\}^+ = \{x,z,y,w,q\}$  is our result
- This proves all these non-trivial FDs:

$$xz \rightarrow y$$
  $xz \rightarrow w$   $xz \rightarrow q$ 

# Closure {x,z}+, visually

Red arrow indicates a "non-closed" FD





q r → s is irrelevant since r is not in {x,z}+

$${x,z}^+ = {x,z,y,w,q}$$

#### What it means to be closed

- Study the set  $\{x,z\}^+ = \{x,z,y,w,q\}$
- If we "follow the arrow" for any FD on attributes, we end up back in {x,z}+.





### Keys and superkeys

- We can define the property of being a key of a relation using FDs
- Intuitively: A set of attributes is a *superkey* if it determines all other attributes
- Formally: The attribute set X is a *superkey* of R if X<sup>+</sup> contains all attributes of R
- X is a (minimal) key if removing any attribute from X makes it a non-superkey
  - Saying only "key" usually means minimal key
  - Each superkey is a superset of at least one minimal key
  - Each key is a superkey (but not the other way around)
  - Adding any attribute to a superkey makes a new superkey

### Finding a minimal key

- Find a minimal key for R(x,y,z,w,q,r,s) with the listed FDs
- Start with K={x,y,z,w,q,r}, it's trivially a superkey (K+=R)
- Remove one element from K at a time, and compute the closure of K, if it is no longer R, return the removed element
- When no element can be removed, we have a minimal key
- {x,z,r} is one such key, since {x,z,r}<sup>+</sup> = R and neither {x,z}<sup>+</sup>, {x,r}<sup>+</sup> nor {z,r}<sup>+</sup> are equal to R
- {q,z,r} is another minimal key, and possible result of the procedure



## Clever tricks for finding multiple keys

- We know r and z will be in ALL minimal keys, because no FD determines them (imagine removing r from K, how is it still in K<sup>+</sup>?)
- This means w and s will be in NO minimal keys (they are in  $\{r,z\}^+$  so in  $K^+$  for any K s.t.  $\{r,z\} \subseteq K$ )

```
x \rightarrow y

y w \rightarrow q

z \rightarrow w

q \rightarrow x

r \rightarrow s
```

#### Normal forms and normalization





Attributes + FDs



Ready-to-use schema

#### Normal forms and normalization

- Normal form is a very important concept in database design
- Identify all the attributes in the domain and place them in one big relation D(x, y, z, ...), collect FDs, then normalize D to get your design
- Normalizing is a recursive procedure, to normalize relation R:
  - Check if R is already a normal form, if it is we are done
  - Otherwise decompose R into relations R<sub>1</sub> and R<sub>2</sub> and normalize both
- Note: A normal form is not the same as a canonical form, there may be multiple normal forms derived from the same initial domain

### BCNF, the Boyce-Codd Normal Form

Probably the most well-known normal form

### BCNF Normalisation algorithm

To normalize relation R:

This FD is referred to as a BCNF-violation

Find a non-trivial FD X  $\rightarrow$  y such that X<sup>+</sup>  $\neq$  R (X is not a superkey)

If there is no such FD you are done, R is already in BCNF

Otherwise decompose R into R<sub>1</sub>(X<sup>+</sup>) and R<sub>2</sub>(X  $\cup$  (R - X<sup>+</sup>)) and normalize them

Note: R is replaced by R<sub>1</sub> and R<sub>2</sub> (so R is not present in the final schema)

#### Example

- 1. Find violation
- 2. Decompose
- 3. Repeat

courseCode → name  $room \rightarrow seats$ day timeslot courseCode → room day timeslot room → courseCode

Normalise this relation using the FDs above:

R(courseCode, name, day, timeslot, room, seats)

 $R_2(X \cup (R - X^+))$  Decompose on courseCode  $\rightarrow$  name courseCode<sup>+</sup> = {courseCode, name}

 $R_1$  (courseCode, name)  $R_2$  (courseCode, day, timeslot, room, seats)

 $R_{21}$  (room, seats)

 $R_{22}(X \cup (R - X^{+}))$  Decompose on room  $\rightarrow$  seats room<sup>+</sup> = {room, seats}

R<sub>22</sub> (courseCode, day, timeslot, room)

All of  $R_1$ ,  $R_{21}$ , and  $R_{22}$  are now BCNF!

## Wait, why not split on day timeslot course $\rightarrow$ room?

 $R_{22}$ (courseCode, day, timeslot, room) day timeslot courseCode  $\rightarrow$  room day timeslot room  $\rightarrow$  courseCode

Recall: Find a non-trivial FD X  $\rightarrow$  y such that  $X^+ \neq R$  (X is not a superkey)

{day, timeslot, courseCode}<sup>+</sup> = { day, timeslot, courseCode, room} =  $R_{22}$  {day, timeslot, room}<sup>+</sup> = { day, timeslot, room, courseCode} =  $R_{22}$ 

Both {day, timeslot, courseCode} and {day, timeslot, room} are keys!

## What about keys?

courseCode → name
room → seats
day timeslot courseCode → room
day timeslot room → courseCode

- Keys can be determined using FDs (and closures) after decomposing
- Much of it is already done as part of the algorithm (we found two keys for  $R_{22}$  for instance)

Multiple keys: Use one as primary key, the other(s) UNIQUE

#### What about references?

• In this case it's fairly easy to see that these are sensible references:

```
R_1 (courseCode, name) R_{21} (room, seats) R_{22} (courseCode, day, timeslot, room) (day, timeslot, room) UNIQUE courseCode -> R_1.courseCode room -> R_{21}.room
```

- General pattern: When decomposing R, add a reference  $X \rightarrow R_1 X$  to  $R_2$
- This will not always work, particularly if R<sub>1</sub> or R<sub>2</sub> is later decomposed 🕾

# Decomposition of data

#### No redundancy, no anomalies 😊

**Table: Bookings** 

| courseCode | name         | day     | timeslot | room | seats |
|------------|--------------|---------|----------|------|-------|
| TDA357     | Databases    | Tuesday | 0        | GD   | 236   |
| TDA357     | Databases    | Tuesday | 1        | GD   | 236   |
| ERE033     | Reglerteknik | Tuesday | 0        | НВ4  | 224   |
| ERE033     | Reglerteknik | Friday  | 0        | GD   | 236   |

Table: R<sub>1</sub> (Courses)

| courseCode | name         |  |
|------------|--------------|--|
| TDA357     | Databases    |  |
| ERE033     | Reglerteknik |  |

Table: R<sub>22</sub> (Bookings)

| <u>courseCode</u> | <u>day</u> | timeslot | room |
|-------------------|------------|----------|------|
| TDA357            | Tuesday    | 0        | GD   |
| TDA357            | Tuesday    | 1        | GD   |
| ERE033            | Tuesday    | 0        | HB4  |
| ERE033            | Friday     | 0        | GD   |

Table R<sub>21</sub> (Rooms)

| room | seats |
|------|-------|
| HB4  | 224   |
| GD   | 236   |

## Lossless join

• Note that if we join along the references, we get the original table

Table: R<sub>1</sub> (Courses)

| courseCode | name         |
|------------|--------------|
| TDA357     | Databases    |
| ERE033     | Reglerteknik |

Table: R<sub>22</sub> (Bookings)

| courseCode | day     | timeslot | room |
|------------|---------|----------|------|
| TDA357     | Tuesday | 0        | GD   |
| TDA357     | Tuesday | 1        | GD   |
| ERE033     | Tuesday | 0        | HB4  |
| ERE033     | Friday  | 0        | GD   |

Table R<sub>21</sub> (Rooms)

| room | seats |  |  |  |  |
|------|-------|--|--|--|--|
| HB4  | 224   |  |  |  |  |
| GD   | 236   |  |  |  |  |

#### Joins USING (courseCode) and USING (room)

#### Query: $R_1$ NATURAL JOIN $R_{22}$ NATURAL JOIN $R_{21}$

 Means we did not loose any data in the decomposition

|   | courseCode | name         | day     | timeslot | room | seats |
|---|------------|--------------|---------|----------|------|-------|
| / | TDA357     | Databases    | Tuesday | 0        | GD   | 236   |
|   | TDA357     | Databases    | Tuesday | 1        | GD   | 236   |
|   | ERE033     | Reglerteknik | Tuesday | 0        | HB4  | 224   |
|   | ERE033     | Reglerteknik | Friday  | 0        | GD   | 236   |

## Another example

- Normalizing R(a,b,c,d,e)
- Decompose R on a b  $\rightarrow$  c, {a,b}+={a,b,c,d}
  - R<sub>1</sub>(a,b,c,d) —
     R<sub>2</sub>(a,b,e)

 $a b \rightarrow c$   $c \rightarrow d$ 

Note: Not just (a,b,c)!

- Further normalize  $R_1$  on  $c \rightarrow d$ ,  $\{c\}^+=\{c,d\}$ 
  - R<sub>11</sub>(c,d) R<sub>12</sub>(a,b,c)
- End result with keys:
  - R<sub>11</sub>(<u>c</u>,d)
     R<sub>12</sub>(<u>a</u>,<u>b</u>,c)
     R<sub>2</sub>(<u>a</u>,<u>b</u>,<u>e</u>)

Try splitting on  $c \rightarrow d$  first, for this example that should give the same result

## Finding all FDs

- Consider this simple situation with four attributes R(x,y,z,w) and two functional dependencies:  $x \rightarrow z$  and  $y z \rightarrow w$
- When normalizing R it may be important to know that there is another FD that can be derived from these:  $x y \rightarrow w$
- In principle, you should consider all non-trivial derived FDs but sometimes this a large set and it is easy to miss FDs
  - Essentially you have to consider every LHS and compute closures

## Example where derived FDs matter

```
• R(a,b,c,d,e)

• Split on a \rightarrow b

• R_1(a,b)

• R_2(a,c,d,e)
```

- Now a c  $\rightarrow$  d is a BCNF violation in  $R_2$ !
- We cannot entirely ignore b c  $\rightarrow$  d even though b is not in R<sub>2</sub>.

#### A flaw of BCNF

- Consider this example (again): R(x,y,z,w) where  $x \rightarrow z$  and  $y z \rightarrow w$
- If we decompose on  $x \rightarrow z$  ( $\{x\}^+ = \{x,z\}$ ) we get
  - $R_1(\underline{x},z)$  {x} is the only key
  - $R_2(\underline{x},\underline{y},w)$  {x,y} is the only key

- Because  $x y \rightarrow w$
- Both of these relations are in BCNF w.r.t. the given FDs
- But now y z  $\rightarrow$  w is not guaranteed by the schema  $\odot$ 
  - Exercise: Construct a counterexample
- There is a weaker normal form called third normal form (3NF) that does not have this problem, but it has other problems instead...
  - There is no "silver bullet" for design work

#### Yet another issue with BCNF

• This relation has no non-trivial functional dependencies, so is in BCNF:

**Table: Courses** 

| course       | book  | author  | teacher  |
|--------------|-------|---------|----------|
| Databases    | DTCB  | Ullman  | Jonas    |
| Databases    | DTCB  | Ullman  | Ana      |
| Reglerteknik | RTB 1 | AuthorX | TeacherX |
| Reglerteknik | RTB 2 | AuthorX | TeacherX |

Deletion anomaly: Deleting all course books also deletes all teachers

Update anomaly: Changing some value can cause inconsistencies

- The domain said something like "each course has a number of teachers and a number of books with one or more authors" (no FDs at all!)
- The data above says Databases has one book and two teachers, and Reglerteknik has two books and one teacher
- Clearly there is redundancy here, and potential for anomalies

#### Looks like we need another normal form!

- This one is called the fourth normal form (4NF)
- Since the problematic table had no FDs at all, this form will need some additional source of facts
- We call these facts multivalued dependencies (MVDs)\*
- We write  $x_1 x_2 x_3 \dots \rightarrow y_1 y_2 y_3 \dots$ 
  - Note that both sides are sets of values and we cannot split the RHS

<sup>\*</sup>The term multivalued dependency is really quite unfortunate, but it is what it is

## Multivalued dependencies, informally

- For our example, we would say course → teacher
- This means that each course value has a set of teacher values that is independent from all other values (author and book)

**Table: Courses** 

| course       | book  | author  | teacher  |
|--------------|-------|---------|----------|
| Databases    | DTCB  | Ullman  | Jonas    |
| Databases    | DTCB  | Ullman  | Ana      |
| Databases    | DTCB  | Widom   | Jonas    |
| Databases    | DTCB  | Widom   | Ana      |
| Reglerteknik | RTB 1 | AuthorX | TeacherX |
| Reglerteknik | RTB 2 | AuthorX | TeacherX |

Databases has (independently): One book with two authors Two teachers

Reglerteknik has two books by the same author and one teacher

This is exactly the same as saying course → book author

## Multivalued dependencies, formally

The claim that X→Y holds for relation R means:

For every pair of rows row t and u in R that agree on X we can find a row v s.t:

v agrees with both t and u on X

**Table: Courses** 

v agrees with t on Y

v agrees with u on R - X - Y (all attributes not in the MVD)

• Example: course → teacher

If we remove any row, the MVD won't hold

|       |          | course    | book | author | teacher |
|-------|----------|-----------|------|--------|---------|
| Row t |          |           |      |        | teacher |
|       |          | Databases | DTCB | Ullman | Jonas   |
|       |          | Databases | DTCB | Ullman | Ana     |
|       | l        | Databases | DTCB | Widom  | Jonas   |
| Row u | <b>—</b> | Databases | DTCB | Widom  | Ana     |

Row v:

v.(book,author)=u.(book,author)
v.teacher = t.teacher

## MVDs, informally

- course → teacher means that every course has a list of teachers that is independent from its list of (book,author)-pairs
- Jonas and Ana are the teachers here, and if Jonas occurs with the row (DTCB, Ullman), Ana must do so as well.

#### **Table: Courses**

| course    | book | author | teacher |      |
|-----------|------|--------|---------|------|
| Databases | DTCB | Ullman | Jonas   | If w |
| Databases | DTCB | Ullman | Ana     | diff |
| Databases | DTCB | Widom  | Jonas   | the  |
| Databases | DTCB | Widom  | Ana     |      |

If we remove this row, Jonas has a different book list than Ana, and the MVD does not hold

## Verifying MVDs on data is hard

- To check if an FD holds: Just group values up by the LHS and check that all rows in each group have the same value for the RHS
- To check if an MVD holds: Check every individual pair of values with identical LHS and search for a row with correct values
- I find a more intuitive way of thinking is this: For X→Y, every X needs to have every possible combination of Y and other attributes (R-X-Y)
  - Essentially the rows for a given X must be a cartesian product!
  - If teacher Jonas occurs with one book/autor, it must occur with all book/author combinations for that course
  - This is what makes (book, author) independent from teacher

## MVDs and cartesian product

- Note how the rows for databases is the cartesian product of these sets:
  - {(DTCB, Ullman), (DTCB, Widom)}
  - {Jonas, Ana}
- This means that the MVD course → teacher holds for these rows (and equivalently, course → book author)

**Table: Courses** 

| course    | book | author | teacher |  |
|-----------|------|--------|---------|--|
| Databases | DTCB | Ullman | Jonas   |  |
| Databases | DTCB | Ullman | Ana     |  |
| Databases | DTCB | Widom  | Jonas   |  |
| Databases | DTCB | Widom  | Ana     |  |

#### Fourth normal form

- For a relation R to be in fourth normal:
  - R must be in BCNF
  - For all non-trivial MVDs X→Y on R, X is a superkey of R
- If  $X \rightarrow Y$  and X is not a superkey, we say  $X \rightarrow Y$  is a 4NF violation
- To normalize: Find a violation X→Y and break R into
  - $R_1(X \cup Y)$  ("every attribute in the MVD")
  - $R_2(R Y)$  ("LHS and every attribute <u>not</u> in the MVD")
  - Then normalize both R<sub>1</sub> and R<sub>2</sub>

#### 4NF normalisation

- Normalizing R(course, book, author, teacher) on course → teacher
  - Here X={course}, Y={teacher}



# Normalising the data

**Table: Courses** 

| course       | book  | author  | teacher  |  |
|--------------|-------|---------|----------|--|
| Databases    | DTCB  | Ullman  | Jonas    |  |
| Databases    | DTCB  | Ullman  | Ana      |  |
| Databases    | DTCB  | Widom   | Jonas    |  |
| Databases    | DTCB  | Widom   | Ana      |  |
| Reglerteknik | RTB 1 | AuthorX | TeacherX |  |
| Reglerteknik | RTB 2 | AuthorX | TeacherX |  |

Exercise: Find another

MVD here?



Table: R<sub>1</sub> (a.k.a. CourseTeacher)

| course       | teacher  |
|--------------|----------|
| Databases    | Jonas    |
| Databases    | Ana      |
| Reglerteknik | TeacherX |

Table: R2 (a.k.a. CourseBooks)

| course       | book  | author  |  |
|--------------|-------|---------|--|
| Databases    | DTCB  | Ullman  |  |
| Databases    | DTCB  | Widom   |  |
| Reglerteknik | RTB 1 | AuthorX |  |
| Reglerteknik | RTB 2 | AuthorX |  |

## Lossless join

Note that if we join the two tables using course ...

Table: R<sub>1</sub> (a.k.a. CourseTeacher)

| course       | teacher  |
|--------------|----------|
| Databases    | Jonas    |
| Databases    | Ana      |
| Reglerteknik | TeacherX |

Table: R2 (a.k.a. CourseBooks)

| course       | book  | author  |  |  |
|--------------|-------|---------|--|--|
| Databases    | DTCB  | Ullman  |  |  |
| Databases    | DTCB  | Widom   |  |  |
| Reglerteknik | RTB 1 | AuthorX |  |  |
| Reglerteknik | RTB 2 | AuthorX |  |  |



We get the original table back!

| course       | book  | author  | teacher  |  |
|--------------|-------|---------|----------|--|
| Databases    | DTCB  | Ullman  | Jonas    |  |
| Databases    | DTCB  | Ullman  | Ana      |  |
| Databases    | DTCB  | Widom   | Jonas    |  |
| Databases    | DTCB  | Widom   | Ana      |  |
| Reglerteknik | RTB 1 | AuthorX | TeacherX |  |
| Reglerteknik | RTB 2 | AuthorX | TeacherX |  |

Sanity check: We did not loose any information

## Functional dependencies vs. ER-design

- FDs can find some things that ER cannot find
- ER can find a lot of things that FDs cannot find
  - Most many-to-many relationships cannot be expressed using FDs
  - Sentences like "students can register for courses" do not express any FDs (but possibly some MVDs?)
- The two approaches complement eachother, and confirm eachother (or sometimes contradict eachother which may indicate a problem)
- So doing both an ER-design and a FD analysis may be useful
  - This is what you will do in Task 2

## Expressiveness of ER vs FDs

• What does a b → c mean formulated in ER?



 All of these ER-designs satisfy a b → c, but differ in what is considered an independent entity

#### Practical use of FDs combined with ER

- FDs can be used to verify the correctness of an ER-design
  - Is the result in BCNF w.r.t. the dependencies you have identified?
  - Are the primary keys you identified sensible from your FDs?
  - If not there may be an error in your ER-translation or your understanding/modelling of the domain
- Sometimes FDs can be used to patch things up in your ER-design, particularly they are useful for finding secondary keys (UNIQUE constraints)
  - Every (minimal) key of each relation should be either the primary key or unique

## Mining attributes (and FDs) from ER-design

- If you already have an ER-design, that may help you determine a useful set of attributes
- Looking at the relational schema is less helpful, because it contains multiple attributes that have different names but are conceptually the same (because of references)
- You can also extract some FDs by studying the diagram/schema, but that sort of misses the point of finding them since you will never find any FDs that can improve your design
  - We want to find FDs that express things our ER-design is missing
  - We should look for FDs in the domain description

## Finding functional dependencies

- Determine all attributes
- Discover FD's either by looking at each attribute and ask "what do i need to know to determine this?" and by looking at each fact in the domain description and asking "does this express a dependency?"
- You can find multiple FDs determining the same attribute

#### Other normal forms

- There is a whole little hierarchy of normal forms Higly simplified:
- 1NF: basically means "only has actual tables"
- 2NF: 1NF + no FDs from key attributes to non-key attributes
- 3NF: 2NF + no FDs between non-key attributes
- BCNF a.k.a. 3½NF: 3NF + attributes depend only on keys
- 4NF: BCNF + No violating MVDs
- 5NF, 6NF, DK/NF ...: Outside the scope of this course
   I expect you to know how to normalize to BCNF and 4NF



#### First normal form – 1NF

• First normal form means that table cells do not contain tables or other complex data structures

| col1 | stuff |    |    |   |  |      |   |    |    |
|------|-------|----|----|---|--|------|---|----|----|
|      |       | а  | b  |   |  |      |   |    |    |
| x    | a1    | a1 | b1 |   |  | col1 | а | b  |    |
|      |       | a2 | b2 |   |  |      | х | a1 | b1 |
|      |       |    |    |   |  |      | х | a2 | b2 |
| У    |       | а  | b  | ] |  |      | У | a3 | b3 |
|      |       | a3 | b3 | ] |  |      |   |    |    |

#### Second normal form - 2NF

- A table is in second normal form if there is no FD from a set of prime attributes (attributes that are a proper subset of any key) to a non-prime attribute
- Example:

Suppose R(a,b,c,d) has FDs a b  $\rightarrow$  c and a  $\rightarrow$  d

Here (a, b) is the only minimal key  $({a,b}^+ = R)$ 

That means a is a prime attribute and d is not, so a  $\rightarrow$  d is a 2NF violation

#### Third normal form - 3NF

- 3NF has this condition on non-trivial FDs:
   The LHS must be a superkey, unless the RHS is a prime attribute
- If you remove the "unless"-part, you get BCNF
  - BCNF is stronger than 3NF some BCNF violations are not 3NF violations
- Example:

Suppose R(a,b,c,d) has FDs a b  $\rightarrow$  c and c d -> a

Both FDs are BCNF violations, but neither are 3NF violations since c and a are both prime attributes (since {a,b,d} and {b,c,d} are minimal keys)

#### Non-exhaustive checklist for the exam

 You have a general understanding of what an FD or an MVD claims about a relation

#### You know how to:

- Construct counterexamples to an FD
- Find a minimal basis F- for a set of FDs F
- Compute the closure X<sup>+</sup> of an attribute set X
- Normalize to BCNF
- Check if an MVD holds and construct counterexamples
- Normalize to 4NF