מטלת מנחה 16 - אלגברה לינארית 1

328197462

31/01/2023

שאלה 1

סעיף א

$$A = egin{pmatrix} 0 & a & 1 \ a & 0 & -1 \ 0 & 0 & a \end{pmatrix}$$
 נביע באמצעות a את הפולינום האופייני של

$$p(t) = |tI - A| = \begin{vmatrix} t & -a & -1 \\ -a & t & 1 \\ 0 & 0 & t-a \end{vmatrix} \stackrel{R_3 \text{ 'einin be}}{=} (t-a) \begin{vmatrix} t & -a \\ -a & t \end{vmatrix} = (t-a)(t^2-a^2) = (t-a)^2(t+a)$$

הערכים העצמיים של המטריצה יהיו $\lambda=a$ בריבוי אלגברי 3 כאשר a=0, ובמקרה אחר יהיו $\lambda=a$ בריבוי אלגברי 2 בריבוי אלגברי 3 בריבוי אלגברי 1.

- A כדון בריבוי הגיאומטרי של $\lambda=0$ כאשר $\lambda=0$ כאשר $\lambda=0$ אוו ממד מרחב האפס של בריבוי הגיאומטרי של בריבוי $\lambda=0$

11.5.4 לפי 1.6.4 מסדר A נקבל A=0 נקבל פוי A=0 לפי הגיאומטרי של A=0 הריבוי הגיאומטרי של A=0 לפי 1.5.4 לפי a=0 המטריצה לא לכסינה כאשר

כעת נדון בריבויים הגיאומטריים של הערכים העצמיים של A במקרה הנוסף. הריבוי הגיאומטרי של הערכים העצמיים של A במקרה הנוסף. יש בממד העצמי וקטור שאינו וקטור האפס) ולכל היותר (לפי 11.5.3) כריבוי האלגברי - 1. נסיק כי בסך הכל הריבוי הגיאומטרי של

הריבוי הגיאומטרי של $aI-A=\begin{pmatrix} a & -a & -1 \\ -a & a & 1 \\ 0 & 0 & 0 \end{pmatrix}$ מחשב את דרגת המטריצה: $\lambda=a$ הוא ממד מרחב האפס של המטריצה

$$\rho(aI - A) = \rho \begin{pmatrix} a & -a & -1 \\ -a & a & 1 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \to R_2 + R_1} \rho \begin{pmatrix} a & -a & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 1$$

ושוב אווה האלגברי העצמיים הריבוי הגיאומטרי של $\lambda=a$ הוא 2. במקרה זה, קיבלנו שעבור כל הערכים העצמיים הריבוי האלגברי שווה $a \neq 0$ לכסינה עבור A לריבוי הגיאומטרי ולכן לפי 11.5.4 לפינה עבור

סעיף ב

 $\lambda=-1$ נקבל $\lambda=-1$ נקבל $\lambda=-1$ הערכים העצמיים של המטריצה $\lambda=1$ הם $\lambda=1$ בר"א ור"ג 1, ור"ג 2. $\lambda=-1$ נקבל $\lambda=-1$ נקבל $\lambda=-1$ הערכים העצמיים של המטריצה $\lambda=-1$ הערכים העצמיים העצמיים

$$D=egin{pmatrix}1&0&0\\0&-1&0\\0&0&-1\end{pmatrix}$$
 לכן, A לכסינה ודומה למטריצה

כמו כן, קיים במרחב העצמי של 1=1 וקטור השונה מאפס v_1 כך ש $v_1=v_1$, וקיימים במרחב העצמי של $\lambda=1$ שני וקטורים בלתי $Av_2 = -v_2, Av_3 = -v_3$ תלויים לינארית ושונים מאפס (כי ממד המרחב הוא v_2, v_3 (2 המקיימים

. הוקטור עצמיים שנה לא תלוי לינארית ב v_2,v_3 לפי 11.2.4 ולכן השלשה (v_1,v_2,v_3) בת"ל בת שלושה וקטורים עצמיים. $AD = P^{-1}AP$ 11.3.7 המטריצה $P = (v_1 \mid v_2 \mid v_3)$ הפיכה ומתקיים לפי נמצא ערכים מתאימים ל v_1 . עלינו למצוא פתרון לא טריוואלי v_1 למערכת ההומוגנית v_1 . עלינו למצוא פתרון לא טריוואלי v_1 למערכת ההומוגנית ודרג.

$$I - A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

-I-A פותר משוואה זו. באופן דומה נדרג את $v_1 = (-1,1,0)$ הוקטור

$$-I - A = \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $.v_2=(1,1,0),v_3=(-1,0,1)$ נסמן $.v_2=(1,1,0),v_3=(-1,0,1)$ ויה פתרונות למשוואה. ניקח למשו

נמצא את המטריצה ההופכית P^{-1} . מציאתה תסייע לנו בחישוב.

$$(P|I) = \begin{pmatrix} -1 & 1 & -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \to R_1 + R_3} \begin{pmatrix} -1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{pmatrix} -1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \to \frac{R_1 \to R_1}{R_2 \to \frac{1}{2}R_2} \begin{pmatrix} 1 & -1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \to R_1 + R_2} \begin{pmatrix} 1 & 0 & 0 & -0.5 & 0.5 & -0.5 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (I|P^{-1})$$

(נקבל $A = PDP^{-1}$ נקבל $A = PDP^{-1}$ ולכן:

$$\begin{split} A^{2023} &= (PDP^{-1})^{2023} = (PDP^{-1})(PDP^{-1}) \cdots (PDP^{-1}) \underset{\text{Tiching}}{=} PD(P^{-1}P)D(P^{-1}P) \cdots (P^{-1}P)DP^{-1} = PD^{2023}P^{-1} = \\ &= \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}^{2023} \begin{pmatrix} -0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \end{split}$$

שאלה 2

סעיף א

נניח בשלילה כי קיימת מטריצה A מדרגה B עם פולינום אופייני $p(x)=x^7-x^5+x^3$ נניח בשלילה כי קיימת מטריצה A מטריצה מסדר A בהכרח, שכן אחרת הפולינום האופייני של המטריצה היה ממעלה שאינה A. נסיק כי A מטריצה מסדר A ולכן ערך עצמי של המטריצה עם ריבוי אלגברי A. פמו כן, A0 שורש של הפולינום האופייני של A1 ולכן ערך עצמי של המטריצה עם ריבוי אלגברי A1.

Ax = 0, וערכו, לפי Ax = 0, יהיה Ax = 0, נדון בריבוי הגיאומטרי של Ax = 0, ערך זה שווה למימד מרחב הפתרונות של המשוואה Ax = 0, וערכו, לפי Ax = 0, יהיה Ax = 0, יהיה Ax = 0 מצד שני, לפי 11.5.3 ידוע לנו שהריבוי הגיאומטרי של Ax = 0 לא עולה על הריבוי האלגברי (במקרה זה 3) וזו סתירה!

סעיף ב

 x^2+2x-3 נתונה לנו ה"ל $T:\mathbb{R}^2 o\mathbb{R}^2$ עם פולינום אופייני

|3T+I|
eq 0 עלינו להוכיח כי ההעתקה 3T+I היא איזומורפיזם

שורשי הפולינום האופייני של ההעתקה T, שהם $I=-3, x_2=1$, מהווים הערכים העצמיים היחידים של ההעתקה, זאת לפי 11.4.1. $|x_1=-3,x_2=1|$ מתקיים $|x_1=-1,x_2=1|$, ובפרט עבור $|x_1=-1,x_2=1|$ מקבלים $|x_1=-1,x_2=1|$ מתקיים $|x_1=-1,x_2=1|$, ובפרט עבור $|x_1=-1,x_2=1|$ מכאן נובע לפי שאלה 10.7.7 כי ההעתקה $|x_1=-1,x_2=1|$ ומ $|x_1=-1,x_2=1|$ איזומורפיזם.

קל להיווכח שההעתקה המבוקשת T+I, שהיא כפל בסקלר של איזומורפיזם, היא איזומורפיזם בעצמה - תכונות העל והחח"ע מתקיימות באופן מיידי.

 $\lambda=-3,1$ נבנה את הפולינום האופייני של T^3 בעזרת מידע הידוע לנו על ההעתקה. לפי שאלה 11.3.2 עבור הערכים העצמיים T^3 בעזרת מידע הידוע לנו על ההעתקה. לפי שאלה $(-3)^3=-27,1^3=1$ ערכים עצמיים של T^3

לפי 11.2.6 לא ייתכנו ערכים עצמיים נוספים עבור T^3 מממד T^3 , ולכן הערכים העצמיים שמצאנו הם שורשיו היחידים של הפולינום האופייני: האופייני. כמו כן, לפי שאלה 11.4.5 הפולינום האופייני הוא פולינום מתוקן ממעלה T^3 . משתי מסקנות אלה נקבל את הפולינום האופייני

$$p(t) = (t+27)(t-1) = t^2 + 26t - 27$$

סעיף ג

נסמן p(x) = |xI - A| ונדון בערכים העצמיים של המטריצה p(x) = |xI - A| נסמן נטמן שלפי שאלה 11.4.5 מעלת הפולינום היא 4 בדיוק.

תחילה, היות I סינגולית, נקבל ש $\lambda=0$ הוא ערך עצמי של A ושורש של הפולינום האופייני שלה. הריבוי הגיאומטרי של ערך עצמי זה הוא לכל הפחות 1 (אחרת לא היה ערך עצמי) ומכך נקבל לפי 11.5.3 כי הריבוי האלגברי של $\lambda=0$, שנסמנו ב α , הוא לכל הפחות 1 נסיק כי α מתחלק ב α ותוצאת החלוקה היא פולינום ממעלה $\alpha=0$

כעת, מהנתון $\lambda=2$ עצמי נוסף של המטריצה בעל ריבוי $|-2I+A|=(-1)^4|2I-A|=|2I-A|=0$ הוא ערך עצמי נוסף של המטריצה בעל ריבוי p מתוצאה לעיל נסיק כי $\beta\geq 1$. מתוצאה זו והתוצאה לעיל נסיק כי p מתחלק באומטרי של לכל הפחות 1. נסמן את הריבוי האלגברי של ערך עצמי זה ב $1\geq 2-\alpha-\beta$ ותוצאת החילוק היא פולינום ממעלה 1

. כעת, מהנתון 2I+A אינה הפיכה 2I+A מטריצה מסדר 4, נקבל ש $\rho(2I+A)=2$ אינה הפיכה

בפרט A ולכן A בוי ולכן A בפרט A בפרט A בפרט A בפרט A בפרט A בפרט בוי הגיאומטרי של ערך עצמי זה הוא A בפרט בפרט A בפרט A בפרט בפרט בוי ולכן בוי באפט של (A

$$\dim P(-2I - A) = 4 - \rho(-2I - A) = 4 - \rho(2I + A) = 2$$

נסמן את הריבוי האלגברי של הערך העצמי ב $2 \ge \gamma$. אז מתוצאה זו ותוצאות לעיל נסיק כי p מתחלק ב $(x-2)^{\beta}(x+2)^{\gamma}$, ותוצאת החילוק תהיה פולינום ממעלה $(x-2)^{\beta}(x+2)^{\beta}$. אז מתוצאה זו ותוצאות לעיל נסיק כי $(x-2)^{\beta}(x+2)^{\gamma}$ ותוצאת החילוק תהיה פולינום ממעלה $(x-2)^{\beta}(x+2)^{\beta}$.

היות וp אינו פולינום האפס, תוצאת החלוקה חייבת להיות פולינום ממעלה 0 ולכן α,β,γ מכך ש α,β,γ מכך ש α,β,γ מספרים α,β,γ מכך ש α,β,γ מכך ש α,β,γ נקבל כי האפשרות היחידה לפתרון תהיה $\alpha=\beta=1,\gamma=2$ הפולינום α הומכאן נקבל $\alpha=\alpha$ ומכאן נקבל $\alpha=\alpha$ ומכאן נקבל $\alpha=\alpha$ ומכאן נקבל $\alpha=\alpha$

הערכים העצמיים $\lambda=0,\lambda=2$ בעלי ריבוי אלגברי 1 וריבוי גיאומטרי החסום מלמעלה (ע"י הריבוי האלגברי) ומלמטה (הסברנו $\lambda=0,\lambda=2$ בעלי ריבוי אלגברי וגיאומטרי 2. נקבל לפי 11.5.4 כי λ לכסינה ובכך סיימנו את ההוכחה.

שאלה 3

 $A=PDP^{-1}$ ומכאן ישירות $D=P^{-1}AP$ לכסינה, כלומר קיימת מטריצה הפיכה P ומטריצה אלכסונית כך ש $D=P^{-1}AP$ ומכאן ישירות מטריצה הפיכה נשים לב שלכל A טבעי מתקיים:

$$A^{k} = (PDP^{-1})^{k} = (PDP^{-1})(PDP^{-1}) \cdots (PDP^{-1}) =$$

$$= PD(P^{-1}P)D(P^{-1}P) \cdots (P^{-1}P)DP^{-1} = PD^{k}P^{-1}$$

מסמנים את הפולינום האופייני של A בתור $a_k t^k$ בתור ומגדירים $p(t) = \sum_{k=0}^n a_k t^k$ אז:

$$p(A) = \sum_{k=0}^{n} a_k A^k = \sum_{k=0}^{n} a_k P D^k P^{-1} \underset{\text{dist}}{=} P \sum_{k=0}^{n} a_k D^k P^{-1} = P p(D) P^{-1}$$

. פך ש
$$\lambda_1,\lambda_2,...,\lambda_n$$
 כך ש $D=\begin{pmatrix} \lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\0&0&\cdots&\lambda_n \end{pmatrix}$ סקלרים. D היות ו D אלכסונית, נסמן

סקלרים אלה הם איברי האלכסון במטריצה אלכסונית הדומה לA, ולכן לפי 11.2.3ג (בהתאמה למטריצות) נסיק כי אלו הם הערכים העצמיים של A (לא בהכרח כולם שונים), ולכן מהווים שורשים של הפולינום האופייני!

$$p(D) = \sum_{k=0}^{n} a_k D^k = \sum_{k=0}^{n} \left(a_k \begin{pmatrix} \lambda_2^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^k \end{pmatrix} \right) =$$

$$= \begin{pmatrix} a_0 + a_1 \lambda_1 + \cdots + a_n \lambda_1^n & 0 & \cdots & 0 \\ 0 & a_0 + a_1 \lambda_2 + \cdots + a_n \lambda_2^n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 + a_1 \lambda_n + \cdots + a_n \lambda_n^n \end{pmatrix} =$$

$$= \begin{pmatrix} p(\lambda_1) & 0 & \cdots & 0 \\ 0 & p(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p(\lambda_n) \end{pmatrix} \underset{p(\lambda_i)=0}{\overset{=}{=}} 0$$

$$p(A) = Pp(D)P^{-1} = 0$$
 ולכן

שאלה 4

סעיף א

הטענה לא נכונה. ניקח למשל $A=egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}, B=egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$ אותו פולינום אופייני:

$$p_A(x) = |xI - A| = \left| x \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right| = \left| x & 0 \\ 0 & x \right| = x^2$$

$$p_B(x) = |xI - B| = \left| x \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right| = \left| x & -1 \\ 0 & x \right| = x^2$$

סעיף ב

לפי 11.3.6 $A=\begin{pmatrix} 2&-\sqrt{3}\\-\sqrt{3}&-2\end{pmatrix}$ דומה למטריצה האלכסונית $B=\begin{pmatrix} -1&0\\0&1\end{pmatrix}$ אם $B=\begin{pmatrix} 2&-\sqrt{3}\\-\sqrt{3}&-2\end{pmatrix}$ לפי 11.3.6 לפי האופייני שלה. ואכן, הפולינום האופייני של A הוא:

$$p(x) = |xI - A| = \left| x \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & -\sqrt{3} \\ \sqrt{3} & -2 \end{pmatrix} \right| = \left| \begin{matrix} x - 2 & \sqrt{3} \\ -\sqrt{3} & x + 2 \end{matrix} \right| = (x - 2)(x + 2) + 3 = x^2 - 1 = (x - 1)(x + 1)$$

.Bשורשי הפולינום האופייני הם אכן ± 1 והמטריצה לכסינה ודומה ל

סעיף ג

הטענה שגויה.

נתחיל במציאות ערכים עצמיים למטריצות. הפולינומים האופייניים של המטריצות יהיו:

$$p_{A}(x) = |xI - A| = \begin{vmatrix} x+3 & -1 & -1 \\ -1 & x+3 & -1 \\ -1 & -1 & x+3 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & -1 & x+3 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & -1 & x+3 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & -1 & x+3 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & -1 & x+3 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & -1 & x+3 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & -1 \end{vmatrix} = \begin{vmatrix} x+1 & x+1 & x+1 & x+1 \\ -1 & x+3 & x+1 \end{vmatrix} = \begin{vmatrix}$$

למטריצות פולינומים אופייניים שונים ולכן לפי 11.4.3 אינן דומות.