DDS₂

Les ptits devoirs du soir

Xavier Pessoles

Exercice 169 - Pompe à pistons radiaux ** **B2-12** Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} =$ \overrightarrow{R}_{j_0} . De plus, e = 10 mm et R = 20 mm. Le contact entre 1 et 2 en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre 0 et 2.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad.$

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 2.

Corrigé voir 169.

Exercice 168 - Suspension automobile **

B2-14

C1-05

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort

extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Peut-on résoudre complètement le système? Pourquoi?

Corrigé voir 168.

Exercice 167 - Parallélépipède* B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overline{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

Xavier Pessoles 1

La matrice d'inertie d'un parallélépipède de cotés a, b et c et de masse m est donnée en son centre d'iner-

tie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec $A = m \frac{b^2 + c^2}{12}$, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$.

Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{2} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir 167.

Exercice 166 - Suspension automobile **

Xavier Pessoles

C2-07 Pas de corrigé pour cet exercice.

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe des liaisons en faisant apparaître les actions mécaniques. Exprimer les torseurs des actions mécaniques de chacune des liaisons.

Question 2 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions d_0 , d_3 et d_4 .

Question 3 Résoudre littéralement le système.

Corrigé voir 166.

Exercice 165 - Parallélépipède percé*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

Soit la pièce suivante

2

La matrice d'inertie d'un parallélépipède rectangle de cotés $a,\ b$ et c et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec
$$A = m \frac{b^2 + c^2}{12}, B = m \frac{a^2 + c^2}{12}, C = m \frac{a^2 + b^2}{12}.$$

On pose
$$\overrightarrow{OA} = \frac{a}{3}\overrightarrow{x} + \frac{c}{2}\overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 *Déterminer la matrice d'inertie du solide en G*, *en A puis O*.

Corrigé voir 165.

Exercice 163 - Pèse camion **

C1-05 Pas de corrigé pour cet exercice.

On considère un bâti $\mathbf{0}$ auquel est attaché le repère $\mathcal{R} = (O; \overrightarrow{x_0}; \overrightarrow{y_0}; \overrightarrow{z_0})$. Le champ de pesanteur est $g = -g \overrightarrow{y_0}$. La barre $\mathbf{1}$ est liée au bâti $\mathbf{0}$ par une liaison pivot parfaite d'axe $(A, \overrightarrow{z_0})$. Le plateau porte camion $\mathbf{2}$ est lié à la barre $\mathbf{1}$ par une liaison pivot parfaite d'axe $(C, \overrightarrow{z_0})$. Le levier $\mathbf{3}$ est lié au bâti $\mathbf{0}$ par une liaison pivot parfaite d'axe $(B, \overrightarrow{z_0})$. Ce levier est également lié au plateau $\mathbf{2}$ par une liaison pivot parfaite d'axe $(D, \overrightarrow{z_0})$. Le camion $\mathbf{4}$, de centre de masse G et de masse G inconnue, repose sur le plateau $\mathbf{2}$. L'action mécanique connue est caractérisée par :

$$\{\text{ext} \to 3\} = \left\{ \begin{array}{c} -F \overrightarrow{y_0} \\ \overrightarrow{0} \end{array} \right\}_E.$$

Question 1 *Tracer le graphe de structure. Définir le nombre d'inconnues statiques.*

Question 2 Donner la stratégie permettant de déterminer la valeur de F en fonction de M.

Corrigé voir 163.

Exercice 159 - Banc Balafre *

B2-10 Pas de corrigé pour cet exercice.

La figure suivante représente le paramétrage permettant de modéliser les actions mécaniques s'exerçant sur l'ensemble $S = \{JR + CB\}$. On nommera G le centre d'inertie de l'ensemble S.

Données et hypohèses

- On note $\overrightarrow{BM} = z \overrightarrow{z_0} + R_J \overrightarrow{u}(\theta)$ où R_J est le rayon du joint avec $R_J = 175$ mm;
- la longueur du joint est $L_J = 150 \,\mathrm{mm}$. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \, \overrightarrow{z_0}$ avec $z_B = 425 \,\mathrm{mm}$;
- Le coeur de butée a une masse $M_{CB} = 40 \,\mathrm{kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}} = L_{CB} \,\overrightarrow{z_0}$ avec $L_{CB} = 193 \,\mathrm{mm}$;
- L'ensemble $JR = \{ \text{Joint(rotor)} + \text{Butée double} \}$ a une masse $M_{JR} = 100\,\text{kg}$ et la position de son centre d'inertie G_{JR} est paramétrée par $\overrightarrow{OG_{JR}} = L_{JR} \overrightarrow{z_0}$ avec $L_{JR} = 390\,\text{mm}$. On notera $I_{G_{JR}}(JR) =$

$$\begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \\ -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}_{\mathscr{B}_{JR}}$$
 la matrice d'inertie de

l'ensemble JR au point G_{JR} exprimée dans une base $\mathcal{B}_{JR} = (\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0})$ liée à JR;

• Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280 \, \mathrm{mm}$ et $R_{CB} = 150 \, \mathrm{mm}$.

Question 1 Déterminer l'expression de la coordonnée z_G de \overrightarrow{OG} selon $\overrightarrow{z_0}$. Faire l'application numérique.

Question 2 Sachant que l'ensemble JR possède une symétrie de révolution par rapport à $(O, \overrightarrow{z_0})$, simplifier la matrice d'inertie $I_{G_{IR}}(JR)$.

Corrigé voir 159.

Exercice 169 - Pompe à pistons radiaux **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 2.

Exercice 168 - Suspension automobile **

B2-14

C1-05

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

- 1 Pivot de roue
- 2 Jante

Question 2 Peut-on résoudre complètement le système? Pourquoi?

Calculons le degré d'hyperstatisme :

- mobilités : m = 2 (rotations autour de \overrightarrow{a} et de \overrightarrow{z});
- inconnues statiques : $I_s = 3 \times 4 = 12$;
- équations : $E_s = 2 \times 6 = 12$.
- $h = m E_s + I_s = 2 12 + 12 = 2$.

On ne peut donc pas déterminer toutes les actions mécaniques.

Exercice 167 - Parallélépipède*

B2-10 Pas de corrigé pour cet exercice.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Exercice 166 - Suspension automobile **

C2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe des liaisons en faisant apparaître les actions mécaniques. Exprimer les torseurs des actions mécaniques de chacune des liaisons.

Question 2 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions F_{sol}^a et F_{sol}^a et F_{sol}^r et des dimensions F_{sol}^a et F_{sol}^a

Xavier Pessoles 4

Question 3 Résoudre littéralement le système.

Exercice 165 - Parallélépipède percé*

B2-10 Pas de corrigé pour cet exercice.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 *Déterminer la matrice d'inertie du solide en G*, *en A puis O*.

Exercice 163 - Pèse camion **

C1-05 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe de structure. Définir le nombre d'inconnues statiques.*

Question 2 Donner la stratégie permettant de déterminer la valeur de F en fonction de M.

Exercice 159 - Banc Balafre *

B2-10 Pas de corrigé pour cet exercice.

Données et hypohèses

- On note $\overrightarrow{BM} = z \overrightarrow{z_0} + R_J \overrightarrow{u}(\theta)$ où R_J est le rayon du joint avec $R_J = 175 \, \text{mm}$;
- la longueur du joint est $L_I = 150$ mm. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \overrightarrow{z_0}$ avec $z_B = 425$ mm;
- Le coeur de butée a une masse $M_{CB}=40\,\mathrm{kg}$ et la position de son centre d'inertie G_{CB} est paramétrée par $\overrightarrow{OG_{CB}}=L_{CB}\overrightarrow{z_0}$ avec $L_{CB}=193\,\mathrm{mm}$;
- L'ensemble $JR = \{\text{Joint(rotor)} + \text{But\'ee double}\}\$ a une masse $M_{JR} = 100\,\text{kg}$ et la position de son centre d'inertie

$$G_{JR} \text{ est paramétrée par } \overrightarrow{OG_{JR}} = L_{JR} \overrightarrow{z_0} \text{ avec } L_{JR} = 390 \, \text{mm. On notera } I_{G_{JR}}(JR) = \begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \\ -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}_{\mathscr{B}_{JR}}$$

la matrice d'inertie de l'ensemble JR au point G_{JR} exprimée dans une base $\mathscr{B}_{JR} = (\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0})$ liée à JR;

• Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280 \, \mathrm{mm}$ et $R_{CB} = 150 \, \mathrm{mm}$.

Question 1 Déterminer l'expression de la coordonnée z_G de \overrightarrow{OG} selon $\overrightarrow{z_0}$. Faire l'application numérique.

Question 2 Sachant que l'ensemble JR possède une symétrie de révolution par rapport à $(O, \overline{z_0})$, simplifier la matrice d'inertie $I_{G_{IR}}(JR)$.

5