Summary of prelimitary task | Big Data Boys

Step 1

We have **deleted the key variables** that were not useful for modeling: *transaction_id*, *merchant_id*, *user_id* and the geographic coordinates (*location_latitude* and *location_longitude*).

Step 2

We then performed **several variable transformations**: timestamp and signup_date. Additionally, we **created new variables**, including transaction_to_spending_ratio and has_fraud_history_merchant.

Step 3

Although we visualized the data, unfortunately, it did not provide any clear insights into how to detect fraudulent transactions (details are in the final notebook).

Outliers were identified but were not dropped, as they may still be valuable for detection. We also created a correlation matrix, but no significant correlation between regressors was observed.

Step 4

It was evident that class imbalance was present in the data, with 91.52% of the observations being non-fraudulent. To address this, we applied oversampling, SMOTE (Synthetic Minority Oversampling Technique), and undersampling. The best-fitting technique for this dataset was undersampling.

Step 5

After label encoding, we proceeded to create models to predict our target variable. We experimented with various combinations of training datasets and machine learning models with different hyperparameters, including Random Forest, Decision Trees, SVC, XGBoost, and others. The best model was XGBoost, with slightly higher performance metrics.

Summary of final models | Big Data Boys

Metric	Value				- 45000
Accuracy	0.52842	0	48095	43675	- 40000 - 35000
Precision	0.10004	peq			- 30000
MER	0.47152	True label			- 25000
Recall	0.57571	1	3578	4855	- 20000 - 15000
F1 Score	0.17046				- 10000
Specificity	0.52408		0	1	- 5000
AUC-ROC	0.57150	Predicted label			
AUC-PR	0.10412				

Feature	Importance		
has_fraud_history _merchant	0.185169		
trust_score	0.073373		
risk_score	0.049449		
is_international	0.027050		
session_length_se conds	0.003379		
sum_of_monthly _installments	0.001855		
account_age_mo nths_user	0.001808		
avg_transaction_ amount	0.001070		

Explanation

Based on the confusion matrix and performance metrics, the **XGBoost model demonstrates highest effectiveness** in detecting fraudulent transactions among all models. Both **the AUC-ROC and AUC-PR scores indicate only moderate performance**. We've explained the situation more deeply in our jupyter notebook.

Explanation

The SHAP analysis shows that the most influential factor in fraud prediction is <code>has_fraud_history_merchant</code>, followed by <code>trust_score</code>, <code>risk_score</code>, and <code>is_international</code>. Other features like <code>session_length_seconds</code>, <code>sum_of_monthly_installments</code>, and <code>avg_transaction_amount</code> have minor importance, while all other features show no impact.