Report on Parameters and characteristics of transistors

Ashish Pundir

to

Mgr inz. Amadeusz Gasiorek Electrical engineering and electronics Laboratory [LAB], group no. 4 4th Semester Summer semester 2023/2024

 $\mathrm{May}\ 2024$

Poznan University of Technology

• FACULTY OF ENGINEERING MANAGEMENT

Exercise - 3

Parameters and characteristics of transistors

Contents

1	Pur	of the exercise	1				
2	Theoretical basics						
	2.1	Bipola	ar transistor	2			
		2.1.1	Static characteristics of the NPN transistor	4			
	2.2	Field-	effect transistor	5			
3	The	cours	e of the exercise	6			
	3.1 Determination of the static characteristics of a bipolar transistor						
		3.1.1	Input characteristics	6			
		3.1.2	Transient characteristics	7			
		3.1.3	Output characteristics	8			
	3.2	Deteri	mination of the static characteristics of the field effect transistor	9			
		3.2.1	Transient characteristics	9			
		3.2.2	Output characteristics	10			
4	Rep	ort		11			
5	Necessary equipment						
Ρı	otoc	col		12			
	Measurements						
	Cha	racteris	etics of a bipolar transistor	14			
			etics of a field-effect transistor	15			

1 Purpose of the exercise

• Understanding the properties of bipolar and field effect transistors.

2 Theoretical basics

2.1 Bipolar transistor

The transistor is an element with three terminals: C - collector, B - base and E - emitter. The bipolar transistor comes in two types: npn and pnp. The following considerations are valid for npn transistors. When considering pnp transistors, all voltages and currents change sign.

Figure 1: Symbol of npn and pnp transistor

For the transistor **npn** the following rules apply:

- the collector potential must be greater than the emitter potential,
- base-emitter and base-collector circuits behave like diodes, in normal operation the base-emitter junction is forward biased, and the base-collector junction is reverse biased,

Figure 2: Interpretation of the base-emitter junction and the collector base of the npn and pnp transistor

- each transistor is characterized by the maximum values of currents and voltages I_{Cmax} , I_{Bmax} , U_{CEmax} , exceeding which leads to damage. The limitation is also the power losses on the transistor P_{max} , the junction temperature and the voltage U_{BEmax} .
- if the above conditions are met, the base current controls the collector current and approximately the collector current is proportional to the base current:

$$I_C = \beta I_B = h_{FE} I_B$$
,

where β or h_{FE} are called current gain, typical low power transistors have a gain of more than 100.

When the base current I_B in the layout shown in the picture 3 equals to 0, then the transistor is in **clogged state**. Then the collector current does not flow $(I_C = 0)$, voltage $U_{CE} = U$.

When in the circuit in the drawing ?? the base current increases to the value $I_B = 10\mu A$, then:

- collector current: $I_C = \beta I_B = 100 \cdot 10 \cdot 10^{-6} = 10^{-3} A = 1 mA$,
- voltage across the R resistor: $U_R = I_C R = 10^{-3} \cdot 10^3 = 1V$,
- collector-emitter voltage: $U_{CE} = U U_R = 10 1 = 9V$.

For the base current $I_B=50\mu A$ we get the following values:

- collector current: $I_C = \beta I_B = 100 \cdot 50 \cdot 10^{-6} = 5 \cdot 10^{-3} A = 5mA$,
- voltage across the R resistor: $U_R = I_C R = 5 \cdot 10^{-3} \cdot 10^3 = 5V$,
- collector-emitter voltage: $U_{CE} = U U_R = 10 5 = 5$ V.

For the base current $I_B = 90\mu A$ we get the following values:

- collector current: $I_C = \beta I_B = 100 \cdot 90 \cdot 10^{-6} = 9 \cdot 10^{-3} A = 9mA$,
- voltage across the R resistor: $U_R = I_C R = 9 \ cdot 10^{-3} \cdot 10^3 = 9V$,
- collector-emitter voltage: $U_{CE} = U U_R = 10 9 = 1$ V.

Assuming the current $I_B = 100 \mu A$ theoretically we will get the following values: $I_C = 10 \text{mA}$, $U_R = 10V$ and $U_{CE} = 0V$. The transistor will be fully open. Practically, when the transistor conducts the collector-emitter voltage, it cannot reach zero. The minimum collector-emitter voltage is $U_{CE \ sat} \approx 0.2V$. So for the system from the drawing 3 when the current $I_B \geq 10 \mu A$ is $U_{CE} = U_{C \ sat} \approx 0.2V$, $U_R = U - U_{CE} = 10 - 0.2 = 9.8V$ and $I_C = I_R = \frac{U_R}{R} = \frac{9.8}{10^3} = 9.8\text{mA}$. A further increase in the base current will not increase the collector current since the maximum collector current is limited by the R resistor.

The state where the collector current is proportional to the base current is called **active** state (the collector current is β times the base current). When active, a small base current controls a much higher collector current.

The state in which the base current is so large that the collector circuit is unable to deliver β times the base current is **saturation state**. The value of the saturation voltage $(U_{CE\ sat})$ is about 0.2V, the collector current is limited by the R resistor.

In addition, we can also distinguish **inverse active state**, in which the base-emitter junction is biased in the reverse direction and the base-collector junction in the forward direction.

Figure 4: Marking the directions of currents and voltages of the NPN transistor

Summary, a bipolar transistor can be in one of four states:

- clogged state (cut-off) BE and BC connectors are polarized in the reverse direction, i.e. $U_{BE} \leq 0$, $U_{BC} < 0$, $I_B = 0$, $I_C = 0$,
- saturation state BE and CB junctions are forward biased, i.e. $U_{BE} > 0$, $U_{BC} > 0$, $I_B \neq 0$, $I_C \neq 0$,
- active state forward biased BE connector, reverse biased BC connector, i.e. $U_{BE} > 0$, $U_{BC} < 0$, $I_C = \beta I_B$,
- inverse active state reverse biased BE connector, forward biased BC connector, ie $U_{BE} < 0$, $U_{BC} > 0$.

The use of a bipolar transistor in electronic circuits:

- active state is the basic operating state of the transistor used in amplifiers,
- saturation and cut-off state are used in pulse technology and digital circuits,
- inverse active state is rarely used because the transistor has worse parameters than in the active state.

2.1.1 Static characteristics of the NPN transistor

We distinguish the following static characteristics of a bipolar transistor:

- input characteristic $I_B = f(U_{BE})$ while $U_{CE} = const$,
- transient characteristic $I_C = f(I_B)$ while $U_{CE} = const$,
- output characteristics $I_C = f(U_{CE})$ while $I_B = const.$

Figure 5: Transistor output characteristics BC546

2.2 Field-effect transistor

See lecture materials and literature .

3 The course of the exercise

3.1 Determination of the static characteristics of a bipolar transistor

Use the plate for measurements E3 with BC546 transistor.

3.1.1 Input characteristics

Connect the circuit as shown in the picture ??. On the first channel of the power supply (CH1), set the current limit to $I_{CH1max} = 150mA$ and the supply voltage $U_{CH1} = 12V$.

CAUTION! - before switching on the system: set the maximum resistance in the collector circuit - potentiometer VR2 (upper terminals) turn right and set the minimum base current - source potentiometers J turn left.

By changing the base current $I_B \in (15\mu A; 300\mu A)$ determine the input characteristics $U_{BE} = f(I_B)$ at $U_{CE} = 3.5V = const$.

To perform a single measurement point, set the I_B current, then, by changing the resistance with the VR1 potentiometer, set the $U_{CE} = 3.5V$ voltage and save the I_B and U_{BE} measurements.

Save the results in the table 1 and mark in the picture 10a.

3.1.2 Transient characteristics

Connect the circuit as shown in the picture ??. On the first channel of the power supply (CH1), set the current limit to $I_{CH1max} = 150mA$ and the supply voltage $U_{CH1} = 12V$.

ATTENTION! - before switching on the system: set the maximum resistance in the collector circuit - potentiometer VR2 (upper terminals) turn right and set the minimum base current - source potentiometers J turn left.

By changing the base current $I_B \in (15\mu A; 300\mu A)$ determine the transition characteristic $I_C = f(I_B)$ at $U_{CE} = 3.5V = const$.

To perform a single measurement point, set the I_B current, then by changing the resistance with the VR1 potentiometer, set the $U_{CE} = 3.5V$ voltage and save the I_B and I_C measurements.

Save the results in the table 1 and mark in the picture 10b.

3.1.3 Output characteristics

Connect the circuit as shown in the picture ??. On the first channel of the power supply (CH1), set the supply voltage $U_{+15} = 15V$ and the current limit to $I_{CH1max} = 100mA$.

ATTENTION! - before switching on the system: set the maximum resistance in the collector circuit - potentiometer VR2 (upper terminals) turn right and set the minimum base current - source potentiometers J turn left.

For a constant base current, by reducing the collector resistance with a potentiometer, measure the collector current I_C and the voltage U_{CE} . Make 3 curves for the following base currents:

- $I_{B1} = 25 \mu A$,
- $I_{B2} = 50 \mu A$,
- $I_{B3} = 75 \mu A$.

ATTENTION! - before increasing the base current: set the maximum resistance in the collector circuit - VR2 (upper terminals) turn right.

ATTENTION! - do not exceed: on the collector do not exceed the voltage i .:

- $U_{CEmax} = 15V \text{ dla } I_{B1} = 25\mu A$,
- $U_{CEmax} = 10V \text{ dla } I_{B2} = 50 \mu A$,

Save the results in the table 2 and mark in the picture 11.

ⁱLimits result from the maximum permissible power of losses on the transistor, **exceeding this value causes** damage to the transistor.

3.2 Determination of the static characteristics of the field effect transistor

Use the board for measurements E3 with transistor BS170.

3.2.1 Transient characteristics

Connect the circuit as shown in the picture ??. On the first channel, set the current limit to $I_{CH1max} = 200mA$ and on the second channel $I_{CH2max} = 100mA$. On the first channel of the power supply set the voltage $U_{CH1} = 0V$ and on the second channel the voltage $U_{CH2} = 3.5V$.

By changing the voltage $U_{GS} \in (2V;3V)$ determine two transition characteristics $I_D = f(U_{GS})$ with

- $U_{DS1} = 2V = const$
- $U_{DS2} = 3V = const$,

In order to perform a single measurement point, set the U_{GS} voltage and then, by changing the voltage on the first channel of the power supply, set the U_{DS} voltage at the selected constant value. **ATTENTION!** - do not exceed: while taking measurements, do not exceed the current $I_{Dmax} = 75mA$.

Figure 9: Układ pomiarowy

Record the results in the table 3 and mark it in the picture 12.

3.2.2 Output characteristics

In the system from the previous point (figure 9) determine the output characteristic. On the first channel, set the current limit to $I_{CH1max} = 200mA$ and on the second channel $I_{CH2max} = 100mA$. On the first channel of the power supply, set the voltage $U_{CH1} = 0V$ and on the second channel the voltage $U_{CH2} = 4V$. For the constant voltage U_{GS} , by changing the voltage on the first channel, measure the drain current I_D and the drain-source voltage U_{DS} . Make 3 characteristics for the following voltages U_{GS} :

- $U_{GS1} = 2,5V$,
- $U_{GS2} = 2,75V$,
- $U_{GS3} = 3V$,

ATTENTION! - before increasing the U_{GS} voltage, set the $U_{CH1} = 0V$ voltage on the first channel. ATTENTION! - do not exceed: on the drain do not exceed the voltage ⁱⁱ:

- $U_{DSmax} = 15V$ dla $U_{GS1} = 2, 5V$,
- $U_{DSmax} = 6V \text{ dla } U_{GS2} = 2,75V$,
- $U_{DSmax} = 3,5V \text{ dla } U_{GS3} = 3V.$

Record the results in the table 4 and mark it in the picture 13.

ⁱⁱLimits result from the maximum permissible power of losses on the transistor, **exceeding this value causes** damage to the transistor.

4 Report

4.1 Static characteristics of a bipolar transistor

Plot and interpret the static characteristics of a bipolar transistor.

4.2 Static characteristics of a field effect transistor

Plot and interpret the static characteristics of the FET.

4.3 Comparison of bipolar and field effect transistors

5 Necessary equipment

- scientific calculator
- protokół

Protocol

Measurements

Tabela 1: Input and transition characteristics of a bipolar transistor

<i>UCE</i> =3.54				
IB[μA]	UBE[V]			
20	0.62			
22	0.625			
30	0.632			
40	0.641			
70	0.655			
130	0.674			
200	0.686			
230	0.691			
265	0.693			
300	0.694			

UCE =3.54				
IB[μA]	IC[mA]			
20	2.095			
40	3.605			
50	4.713			
120	11.895			
150	15.259			
195	20.196			
230	24.196			
270	28.307			
270	31.2			
350	38.644			

IB1 =	25μA	IB2 = 50μA		$IB3 = 75\mu A$	
UCE[V]	IC[mA]	UCE[V]	IC[mA]	UCE[V]	IC[mA]
1.4	2.29	1.6	4.7	0.6	7
2.1	2.2	2.4	4.7	1	7
3.6	2.2	3.2	4.7	1.3	7
4	2.2	4.4	4.7	1.8	7
5.1	2.2	5.2	4.7	2.2	7
6	2.2	6.1	4.7	2.5	7
7.1	2.2	7.4	4.7	3	7
8.5	2.2	8.9	4.7	3.5	7
9.3	2.2	9.4	4.8	4.5	7
11.9	2.2	9.9	4.8	5	7.1

