CS 775: Advanced Computer Graphics

Lecture 19: Skinning

Skinning

http://www.okino.com/conv/skinning.htm

- Skinning
 - Binding

- Skinning
 - Binding
 - Always done in a standard rest or bind pose.

- Skinning
 - Binding
 - Always done in a standard rest or bind pose.
 - Associate all skin mesh vertices to some skeleton joint(s).

- Skinning
 - Moving the skin vertices when the skeleton is moved.
 - Blending the various parts of the mesh.

http://www.okino.com/conv/skinning.htm

Skinning

- The skin is a (polygonal) mesh.
- A mesh is a collection of connected (polygonal) primitives.

http://udn.epicgames.com/Three/UT3CustomCharacters.html

- Skinning
 - Binding
 - The skin mesh is defined in some local frame.

- Skinning
 - Binding
 - The skin mesh is defined in some local frame.
 - The skeleton joints are defined in their own local frames.
 - Let the transformation between any local frame { j} of the skeleton and the local frame of the skin be given

Parag Chaudhuri

- Skinning
 - Binding
 - The skin mesh is defined in some local frame.
 - The skeleton joints are defined in their own local frames.
 - Let the transformation between any local frame { j} of the skeleton and the local frame of the skin be given

Parag Chaudhuri

- Skinning
 - Binding
 - Associate a group of vertices to a single skeleton link
 - Every vertex of the mesh that is associated to the link $\{j\}$ is initially given, in the *bind* pose, in local skin space as v_k

- Skinning
 - Binding
 - Every vertex of the mesh that is associated to the link $\{j\}$ is initially given, in the *bind* pose, in local skin space as v_k
 - Binding expresses each skin vertex in the global frame

- Skinning
 - Deforming the mesh
 - When the skeleton links move, T_j changes.

- Skinning
 - Deforming the mesh

 But the relative position of the vertex in the local joint frame does not change.

- Skinning
 - Deforming the mesh
 - This is known as Rigid or Simple skinning.

- Skinning
 - Rigid Skinning
 - Simple but low quality skinning.
 - Large distortions happen at bends.

- Skinning
 - Linear Blend Skinning
 - Vertex Blend Skinning, Skeletal Subspace deformation
 - Associate multiple joints with vertices and blend the effect of each joint on the vertex using weights.

$${}^{0}v_{k} = \sum_{i} w_{i,k} T_{i} B_{i}^{-1} v_{k}$$

- Skinning
 - Linear Blend Skinning
 - Associate multiple joints with vertices and blend the effect of each joint on the vertex using weights.

$${}^{0}v_{k} = \sum_{i} w_{i,k} T_{i} B_{i}^{-1} v_{k}$$
For every k , $\sum_{i} w_{i,k}^{i} = 1$ and $0 < w_{i,k} \le 1$

Here i is the index over all joints associated with the vertex v_k

- Skinning
 - Linear Blend Skinning
 - Deforming the mesh

- Skinning
 - Linear Blend Skinning
 - Mesh normals

$${}^{0}n_{k} = \frac{\sum_{i} \mathbf{w}_{i,k} N_{i} n_{k}}{\|\sum_{i} \mathbf{w}_{i,k} N_{i} n_{k}\|}$$

where N_i is the first 3x3 submatrix of M_i

Here we have a N_i that is rigid. What if it was an Affine transformation?

Parag Chaudhuri

- Skinning
 - Algorithm
 - Skin::Update()
 - Compute $M_i = T_i B_i^{-1}$ for each joint. B_i^{-1} can be precomputed and stored.
 - Loop through the vertices and blend positions and normals.
 - Skin::Draw()
 - Set matrix state to Identity
 - Loop through skin polygons and draw using global vertex positions and normals

- Skinning
 - Algorithm
 - Skin::Update() (view independent processing)
 - Compute $M_i = T_i B_i^{-1}$ for each joint. B_i^{-1} can be precomputed and stored.
 - Loop through the vertices and blend positions and normals.
 - Skin::Draw() (view dependent processing)
 - Set matrix state to Identity
 - Loop through skin polygons and draw using global vertex positions and normals

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse Bending

Figure 1: The skeleton subspace deformation algorithm. The deformed position of a point p lies on the line p'p'' defined by the images of that point rigidly transformed by the neighboring skeletal coordinate frames, resulting in the characteristic 'collapsing elbow' problem (solid line).

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse Twisting (Candy Wrapper effect)

Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation, Lewis, Cordner and Fong, SIGGRAPH 2000

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse
 - A quick solution used to prevent collapse during bending is to dynamically add more bones

Was done in many games but does not solve the problem completely.

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse

A better solutions is to use dual quaternions

Geometric Skinning with Approximate Dual Quaternion Blending, Kavan Collins, Zara and O'Sullivan, ACMTOG 2008

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin Binding
 - Containment Binding

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin Binding
 - Containment Binding
 - Point-to-line Mapping
 - Manual (combined with adding weights)

- Skinning
 - Limitations of Vertex Blend Skinning
 - Indirect control via weights is non-intuitive
 - Weights are added either via simple heuristic rules like

$$w_{i,k} \propto \frac{1}{d_{i,k}}$$
 where $d_{i,k}$ is the distance from the skin vertex v_k to the skeleton joint i

- Added manually
- Demo/Video

- Skinning
 - Limitations of Vertex Blend Skinning
 - Skin collapse
 - Skin Binding is difficult
 - Indirect control via weights is non-intuitive
 - No anatomical basis
 - Advantages
 - It is simple to do and so is very widely used
 - Good starting point for more complex skinning
 - Implementation on hardware is easy