Metody Optymalizacj	ji, Lab 4, zadanie	, Data	Grupa	
Imiona i nazwiska:				

Sekcja 1:

Dla zadanych:

wskaźnika jakości:

$$J = 0.5 \sum_{i=0}^{N-1} \left(\left(3x'_{1,i} - 6x'_{2,i} \right)^2 + 15u_i^2 \right)$$

• równań stanu:

$$x_{1,i+1} = x_{1,i} + u_i$$

$$x_{2,i+1} = 3x_{2,i} + 2u_i$$

- 20 iteracji
- początkowych wartości $x_{\mathbf{1_0}} = 10$ i $x_{\mathbf{2_0}} = 15$

- 1. Sprawdź założenia problemu liniowo-kwadratowego oraz sterowalność układu.
- 2. Napisz skrypt wyznaczający wartości x_i i u_i . Dodatkowo, skrypt powinien wyznaczać wartość J_0 .
- 3. Zbadaj wpływ warunków początkowych x_0 na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość R. Przedstaw na wykresie przebiegi czasowe x_i oraz u_i dla różnych warunków początkowych.
- 4. Zbadaj wpływ wartości R na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość x_0 . Przedstaw na wykresie przebiegi czasowe dla różnych wartości R.
- 5. Dla przykładowych wartości x_0 oraz R pokaż na wykresie ustalanie się elementów macierzy K.

Metody Optymalizacj	ji, Lab 4, zadanie	, Data	Grupa	
Imiona i nazwiska:				

Sekcja 2:

Dla zadanych:

wskaźnika jakości:

$$J = 0.5 \sum_{i=0}^{N-1} \left(\left(4x'_{1,i} - 6x'_{2,i} \right)^2 + 10u_i^2 \right)$$

• równań stanu:

$$x_{1,i+1} = 2x_{1,i} + 2u_i$$

$$x_{2,i+1} = 5x_{2,i} + 2u_i$$

- 20 iteracji
- ullet początkowych wartości $x_{\mathbf{1_0}}=10$ i $x_{\mathbf{2_0}}=15$

- 1. Sprawdź założenia problemu liniowo-kwadratowego oraz sterowalność układu.
- 2. Napisz skrypt wyznaczający wartości x_i i u_i . Dodatkowo, skrypt powinien wyznaczać wartość J_0 .
- 3. Zbadaj wpływ warunków początkowych x_0 na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość R. Przedstaw na wykresie przebiegi czasowe x_i oraz u_i dla różnych warunków początkowych.
- 4. Zbadaj wpływ wartości R na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość x_0 . Przedstaw na wykresie przebiegi czasowe dla różnych wartości R.
- 5. Dla przykładowych wartości x₀ oraz R pokaż na wykresie ustalanie się elementów macierzy K.

Metody Optymalizacj	ji, Lab 4, zadanie	, Data	Grupa	
Imiona i nazwiska:				

Sekcja 3:

Dla zadanych:

wskaźnika jakości:

$$J = 0.5 \sum_{i=0}^{N-1} \left(\left(3x'_{1,i} - 5x'_{2,i} \right)^2 + 28u_i^2 \right)$$

• równań stanu:

$$x_{1,i+1} = x_{1,i} + u_i$$

$$x_{2,i+1} = 4x_{2,i} + 3u_i$$

- 20 iteracji
- ullet początkowych wartości $x_{\mathbf{1_0}}=10$ i $x_{\mathbf{2_0}}=15$

- 1. Sprawdź założenia problemu liniowo-kwadratowego oraz sterowalność układu.
- 2. Napisz skrypt wyznaczający wartości x_i i u_i . Dodatkowo, skrypt powinien wyznaczać wartość J_0 .
- 3. Zbadaj wpływ warunków początkowych x_0 na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość R. Przedstaw na wykresie przebiegi czasowe x_i oraz u_i dla różnych warunków początkowych.
- 4. Zbadaj wpływ wartości R na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość x_0 . Przedstaw na wykresie przebiegi czasowe dla różnych wartości R.
- 5. Dla przykładowych wartości x_0 oraz R pokaż na wykresie ustalanie się elementów macierzy K.

Metody Optymaliz	zacji, Lab 4, zadanie, Data .	Grupa
Imiona i nazwiska:		

Sekcja 4:

Dla zadanych:

• wskaźnika jakości:

$$J = 0.5 \sum_{i=0}^{N-1} \left(\left(6x'_{1,i} + 4x'_{2,i} \right)^2 + 30u_i^2 \right)$$

• równań stanu:

$$x_{1,i+1} = x_{1,i} + u_i$$

$$x_{2,i+1} = 4x_{2,i} + u_i$$

- 20 iteracji
- ullet początkowych wartości $x_{\mathbf{1_0}}=10$ i $x_{\mathbf{2_0}}=15$

- 1. Sprawdź założenia problemu liniowo-kwadratowego oraz sterowalność układu.
- 2. Napisz skrypt wyznaczający wartości x_i i u_i . Dodatkowo, skrypt powinien wyznaczać wartość J_0 .
- 3. Zbadaj wpływ warunków początkowych x_0 na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość R. Przedstaw na wykresie przebiegi czasowe x_i oraz u_i dla różnych warunków początkowych.
- 4. Zbadaj wpływ wartości R na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość x_0 . Przedstaw na wykresie przebiegi czasowe dla różnych wartości R.
- 5. Dla przykładowych wartości x_0 oraz R pokaż na wykresie ustalanie się elementów macierzy K.

Metody Optymaliz	zacji, Lab 4, zadanie, Data .	Grupa
Imiona i nazwiska:		

Sekcja 5:

Dla zadanych:

wskaźnika jakości:

$$J = 0.5 \sum_{i=0}^{N-1} \left(\left(8x'_{1,i} + 5x'_{2,i} \right)^2 + 42u_i^2 \right)$$

• równań stanu:

$$x_{1,i+1} = x_{1,i} + u_i$$

$$x_{2,i+1} = 3x_{2,i} + u_i$$

- 20 iteracji
- początkowych wartości $x_{\mathbf{1_0}} = 10$ i $x_{\mathbf{2_0}} = 15$

- 1. Sprawdź założenia problemu liniowo-kwadratowego oraz sterowalność układu.
- 2. Napisz skrypt wyznaczający wartości x_i i u_i . Dodatkowo, skrypt powinien wyznaczać wartość J_0 .
- 3. Zbadaj wpływ warunków początkowych x_0 na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość R. Przedstaw na wykresie przebiegi czasowe x_i oraz u_i dla różnych warunków początkowych.
- 4. Zbadaj wpływ wartości R na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość x_0 . Przedstaw na wykresie przebiegi czasowe dla różnych wartości R.
- 5. Dla przykładowych wartości x_0 oraz R pokaż na wykresie ustalanie się elementów macierzy K.

Metody Optymalizacj	ji, Lab 4, zadanie	, Data	Grupa	
Imiona i nazwiska:				

Sekcja 6:

Dla zadanych:

wskaźnika jakości:

$$J = 0.5 \sum_{i=0}^{N-1} \left(\left(3x'_{1,i} - 2x'_{2,i} \right)^2 + 12u_i^2 \right)$$

• równań stanu:

$$x_{1,i+1} = x_{1,i} + u_i$$

$$x_{2,i+1} = 2x_{2,i} + 3u_i$$

- 20 iteracji
- ullet początkowych wartości $x_{\mathbf{1_0}}=10$ i $x_{\mathbf{2_0}}=15$

- 1. Sprawdź założenia problemu liniowo-kwadratowego oraz sterowalność układu.
- 2. Napisz skrypt wyznaczający wartości x_i i u_i . Dodatkowo, skrypt powinien wyznaczać wartość J_0 .
- 3. Zbadaj wpływ warunków początkowych x_0 na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość R. Przedstaw na wykresie przebiegi czasowe x_i oraz u_i dla różnych warunków początkowych.
- 4. Zbadaj wpływ wartości R na przebiegi "czasowe" x_i oraz u_i . Przyjmij stałą wartość x_0 . Przedstaw na wykresie przebiegi czasowe dla różnych wartości R.
- 5. Dla przykładowych wartości x_0 oraz R pokaż na wykresie ustalanie się elementów macierzy K.