Strumentazione ed elettronica industriale

angeloperotti 7

February 2025

0.1 Introduzione al corso

obiettivo del corso:

- provide students with key concepts in power electronics and power systems, in order to create a link between them
- suddivisione lezioni:
 - $-\ 40$ h lezioni teoriche
 - \ast introduction to concepts
 - * Power systems basics
 - * power electronics devices
 - * data acquisition systems for industrial applications
 - * Power converters
 - 20 h lezioni pratiche
 - * labview programming
 - * lab experiments on three-phases systems, power electronics devices and power converters
- references:
 - Power system Stability and Control, Mcgraw Hill
 - Power Electronics: Converters, application and design N Mohan, TM Undeland

esame: parziale: crocette + orale, esercizio labview + orale totale: fare un progetto a casa + orale

Chapter 1

introduction to concepts

1.1 Power systems and electronic issues

mission: transfer, process and control the flow of electrical power both within and between systems in a way which is optimally suited for user loads

Primary goals:

- avoid or mitigate major faults as well as safety hazards for users and staff
 - reliability/protection issues
 - power quality issues
- Maximize efficiency
 - excessive cost of wasted energy
 - reducing equipment size, weight and cost
 - heat dissipation issues
 - energy conservation policies for green house gas emussui abd sustainability

types of power systems:

- Direct Current (DC)
 - constant (regulated) magnitude
 - Adjustable magnitude
- Alternating Current (AC)
 - Single-phase
 - * constant frequency, adjustable magnitude
 - * adjustable frequency and magnitude
 - Three-phase
 - * constant frequency, adjustable magnitude
 - * adjustable frequency and magnitude

Power Converters: systems based on power electronics devices and controlled by embedded processing platforms one of the following transformations for adapting generators to loads:

- DC/DC
- AC/DC
- DC/AC

overview of the powergrid:

- \bullet Electrical power is transferred at High voltage to reduce th ohmic losses due to currents
- As the power is distributed the maximum rated power is decreased and the voltage is progressively reduced by multiple transformers to make it more suitable for final users

- most of electricity still generated at the transmission level, but the generation due to distributed energy resources (DERs) is growing (solar farms etc)
- in future significant bidirectional power flows between prosumers are also envisioned at the distribution level

joule effect of a single wire: $\frac{1}{2}RI^2$ the higher is the length the higher the tension should be to lower the joule effect

power grid basic features

- an electricity grid consists of buses and lines
- a bus is the point of a power system where feeders, generators and loads re connected
- a line consists of overhead or underground three-phase confuctors
 - Transmission Grids (HV)
 - * mesh topology
 - * lines inductance more significant than resistance > large X/R ratio
 - * symmetric and balanced systems -> single phase power flow analysis is usually enough
 - Distribution Grids (MV and LV)
 - * radial topology (ad albero inverso)

*

1.2 AC power transfer criteria

$$P(t) = e(t) \cdot i(t) = EI \cos(\omega_0 t + \varphi_e) \cos(\omega_0 t + \varphi_I) \qquad e(t) = E \cos(\omega_0 t + \varphi_e)$$

$$i(t) = I \cos(\omega_0 t + \varphi_I)$$

$$\tilde{E} = Ee^{I\varphi_e}$$

$$\tilde{I} = Ee^{I\varphi_I} = \frac{\tilde{E}}{Z_L} \qquad = \left(\frac{Ee^{J(\omega_0 t + \varphi_e)} + Ee^{-J(\omega_0 t + \varphi_e)}}{2}\right) \left(\frac{Ie^{J(\omega_0 t + \varphi_I)} + Ie^{-J(\omega_0 t + \varphi_I)}}{2}\right) =$$

$$= \frac{1}{4} \left(EIe^{J(\varphi_e \cdot \varphi_I)} + EIe^{-J(\varphi_e \cdot \varphi_I)}\right) + \frac{1}{4} \left(EIe^{J(2\omega_0 t + \varphi_e + \varphi_I)} + EIe^{-J(2\omega_0 t + \varphi_e + \varphi_I)}\right) =$$

$$\frac{1}{4} (\tilde{E}\tilde{I}^* \cdot \tilde{E}^*\tilde{I}) + \frac{1}{2}EI \cos(2\omega_0 + \varphi_e + \varphi_I) = P + \frac{1}{2}\Re{\{\tilde{E}\tilde{I}^*\}} \cos 2\omega_0 t + 2\varphi_I - \frac{1}{2}\Im{\{\tilde{E}\tilde{I}^* \sin 2\omega_0 t + 2\varphi_I\}} =$$

$$= P + P \cos(2\omega_0 t + 2\varphi_I) - Q \sin(2\omega_0 t + 2\varphi_I)$$