Name:

Do Now: Graphing inequalities

Show your work. For graphs, use a pencil and straight edge. Graph the inequality after filling in the values in the blanks and circling the correct types.

1.
$$y > -\frac{3}{4}x + 2$$

y-intercept = _____

Line:

Solid (=) Dashed (\neq)

Slope

Shading:

Above (y >) Below (y <)

2. Solve for y, then complete. $\frac{1}{2}x + y \ge -4$

y-intercept = _____

Line:

Solid (=)Dashed (\neq)

Slope

Shading:

Above (y >) Below (y <)

3. Graph the two lines after filling in the values in the blanks.

Label both lines and the solution to the system, the intersection, as a coordinate pair.

$$y = 2x - 5$$

$$y = \frac{1}{2}x + 4$$

(a)
$$y$$
-intercept = _____

(a)
$$y$$
-intercept = _____

Rate of change

4. Find the slope of the function from the ratio of the line differences.

(a)	x	f(x)
	-2	-2
	-1	0
	0	2
	1	4
	2	6

(b)
$$\begin{vmatrix} x & f(x) \\ -4 & 9 \\ -2 & 6 \\ \hline 0 & 3 \\ 2 & 0 \\ \hline 4 & -3 \end{vmatrix}$$

Change in y =

Change in $y = \underline{\hspace{1cm}}$

Change in $x = \underline{\hspace{1cm}}$

Change in $x = \underline{\hspace{1cm}}$

Slope = _____

Slope = _____

5. Find the slope of the function. If the rate of change is not constant, write, "Non-linear. The rate of change is not constant."

(a)	x	f(x)
	-3	0
	-1	-2
	0	-3
	1	-4
	3	-6

(b)
$$\begin{vmatrix} x & f(x) \\ -4 & 7 \\ -2 & 5 \\ 0 & 3 \\ 2 & 5 \\ 4 & 7 \end{vmatrix}$$

Slope = _____

Slope = _____

Graphing quadratic functions

6. Given the quadratic function $f(x) = x^2 - 2$, find the row differences.

x	f(x)
-3	7
-2	2
-1	-1
0	-2
1	-1
2	2
3	7

Graph the function as a line over the domain $-3 \le x \le 3$.

