Unsupervised Image Object Removal in the Street View House Numbers Dataset

Machine Learning II Final Project
Bill Grieser

The Project

Using the Street View House Numbers dataset,

- Classify the digits in the images
- Use the by-products of the image classification network to remove the digits from the test images

The Data

Images culled from Google Street View that contain digits (with digit locations already identified in metadata):

Data Includes:

- Parent images
- Metadata for bounding box around each digit
- Label for each digit

Reference: Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading Digits in Natural Images with Unsupervised Feature Learning. NIPS Workshop on Deep Learning and Unsupervised Feature Learning. Retrieved November 18, 2018, from http://ufldl.stanford.edu/housenumbers

Unsupervised Digit Removal from Images

Not supervised: No labeled training data

Approach:

- Train a model in PyTorch to classify digit images
- Use by-products of the model to identify key pixels for an image
 - Key Pixel: represents the background without the digit
- Create a Generalized Regression NN, trained with the key pixels, to generate an image

Goal is when the generated image is returned to the parent, a photorealistic image without the digit results

The PyTorch Model

- Preprocessing:
 - Resize to 40 x 40
 - Grayscale
- Optimizer: SGD
- Batch Size: 32
- Learning rate: 0.005
- Architecture:
 - 3 Convolution-BatchNorm-Relu-Maxpool, layers, Dropout, and Fully Connected Layer
 - Number of kernels: 48 –
 64 32
 - Kernel size 5x5
 - Dropout p=0.50

```
313 class ConvNet48 Dropout5(BaseNet):
      def __init (self, num classes, channels, image size):
                (ConvNet48 Dropout5, self). init (num classes, channels, image size)
           self.layer1 = nn.Sequential(
               nn.Conv2d(1, 48, kernel size=5, padding=2),
               nn.BatchNorm2d(48),
               nn.ReLU(),
               nn.MaxPool2d(2))
           self.layer2 = nn.Sequential(
               nn.Conv2d(48, 64, kernel_size=5, padding=2),
               nn.BatchNorm2d(64),
               nn.ReLU(),
               nn.MaxPool2d(2))
           self.layer3 = nn.Sequential(
               nn.Conv2d(64, 32, kernel_size=5, padding=2),
              nn.BatchNorm2d(32),
               nn.ReLU(),
              nn.MaxPool2d(2))
           self.calculate conv layer output size((self.layer1, self.layer2, self.layer3))
           self.drop1 = nn.Dropout(0.5)
           self.fc1 = nn.Linear(self.num conv outputs, self.num classes)
      def forward(self, x):
           in size = x.size(0)
           out = self.layer1(x)
           out = self.layer2(out)
           out = self.layer3(out)
341
           out = out.view(in size, -1)
342
           out = self.drop1(out)
343
           out = self.fc1(out)
344
           return out
```

Overfitting Countermeasures

- Used dropout at 50%
- Monitored performance metrics over epochs to look for tell-tale loss decreasing while validation accuracy increasing

Batch Size

- Used a small batch size of 32 to get frequent weight updates
- Performed as well as 16
- Larger batch sizes ran faster, did not perform as well

Experimental Approach

- Main python code accepted command line arguments to select different network architectures and hyper-parameters
- Each run results run written file
- Bash scripts to kick off runs in the background
- Used cloud GPU way too slow on a CPU-only machine
- Performance measures collected each epoch:
 - Loss
 - Val Accuracy
- Weights saved for later visualization

```
ubuntu@ip-172-31-21-233:~/code/Final-Project-Group-7/code/pytorch$ python3 train predictor.py -h
usage: train predictor.py [-h] [--batch BATCH] [--epochs EPOCHS] [--opt OPT]
                          [--net NET] [--lr LR] [--cpu] [--id ID]
Train SVHN predictor.
optional arguments:
                  show this help message and exit
 -h, --help
 --batch BATCH
                  Batch Size
 --epochs EPOCHS Epochs
                  Optimizer (SGD, Adagrad, Adadelta, Adam, ASGD)
 --opt OPT
                   Network architecture (ConvNet32, ConvNet48, Convnet32_753,
  --net NET
                   ConvNet48_333, ConvNet48_Dropout, ConvNet48_Dropout2,
                   ConvNet48 Dropout3)
 --lr LR
                  Learning rate
                  Force to CPU even if GPU present
                  Optional ID to prepend to results files.
ubuntu@ip-172-31-21-233:~/code/Final-Project-Group-7/code/pytorch$
```

Results

- Accuracy is the performance metric
- Achieved 91.6% on the test data

Digit	Precision	Recall	F1	# Samples
0	0.93	0.94	0.93	1744
1	0.94	0.94	0.94	5099
2	0.96	0.95	0.96	4149
3	0.91	0.92	0.92	2882
4	0.94	0.95	0.95	2523
5	0.95	0.93	0.94	2384
6	0.90	0.93	0.92	1977
7	0.94	0.92	0.93	2019
8	0.93	0.88	0.90	1660
9	0.90	0.92	0.91	1595
Avg / total	0.93	0.93	0.93	26032

Training Metrics

"Winning" network did not show overfitting signs but networks without dropout did

Identifying Key Pixels

- Goal: Find Pixels likely to be in the background
- First thought, gradients of predicted output class with respect to input for each pixel
- Very noisy
- Promising, perhaps better suited to a supervised approach

Image: 445 Parent: 236.png Actual: 2 Predicted: 2

Next Try: Feature Maps from first Conv Layer

- First layer set up with stride, padding to have same Feature Map size as the image
- 48 Feature Maps from the first layer, reduced using mean() and std()
 across the pixel dimension results in a tensor dimensioned the same
 as the image

Feature Map for the first digit . . .

Feature maps for Actual: 1 Predicted: 1 Parent: 400

. . . And the second

Feature maps for Actual: 9 Predicted: 9 Parent: 400

Feature Map Reductions

Select pixels from largest histogram bucket of Feature Maps mean – standard deviation

Key Pixel Identification

Image Generation

- With key pixels identified, use these to train a new Neural Network to generate a new image based on the background alone
- One Neural Network trained on each image
- The networks accept a pixel co-ordinate as input and output RGB pixel values
- Based on a paper about image infill after removing overlays:

Alilou, V., & Yaghmaee, F. (2015). Application of GRNN neural network in non-texture image inpainting and restoration. *Pattern Recognition Letters*, 24-31.

Architecture

- Input: x,y co-ordinate
- Output: Pixel value (range[0..1])
- Pattern layer outputs distance from input X to every node to itself
- Weights between pattern layer nodes and top summation layer are learned
- Weights to bottom note in summation layer always 1
- Output layer transfer function is a radial basis function

Radial Basis Function for summation and output layers

$$y = \hat{f}(X) = \frac{\sum_{i=1}^{n} y_i \cdot \exp\left(\frac{-D_i^2}{2\sigma^2}\right)}{\sum_{i=1}^{n} \exp\left(\frac{-D_i^2}{2\sigma^2}\right)}$$

- Gaussain: Nearby pattern nodes have greater influence than distant ones when predicting a pixel value
- Sigma "spread" or "bias: determines how quickly the influence of a pattern node diminishes with distance

PyTorch Module (excerpt)

```
def rbf(self, W2, Dsquared):
    return W2 * (torch.exp(-1.0 * Dsquared / (2.0 * self.sigmaSq)))
def forward(self, X):
    self.X = X
    out = torch.<u>zeros</u>(len(X), dtype=torch.<u>float</u>, device=self.device)
    self.Dsquared = torch.\frac{zeros}{(len(X), len(self.pattern_layer))}, \frac{dtype=torch.float}{loat}.to(device=self.device)
    for idx in range(len(X)):
       # Get sqaured distances to all pattern layer points from this X by
       # getting them from the precomputed values
       self.Dsquared(idx) = self.Dsquares(tuple(X(idx).cpu().numpy()))
    self.channel_out = []
    for cidx in range(self.channels):
        self.channel_out.append(self.rbf(self.W2[cidx], self.Dsquared).sum(dim=1) / self.rbf(1, self.Dsquared).sum(dim=1))
    # Repackage the channels so that all channels for a pixel are on the same row
    out = torch.cat(self.channel_out, dim=0).view(self.channels, -1).transpose(0,1)
```

Results digit-by-digit

Actual: 1 Predicted: 1 Parent: 400 Actual: 9 Predicted: 9 Parent: 400

Final Results

After pasting the generated images back into the parent, replacing the digit

Parent Images before and digit replacement (Image 400)

Original

Altered

Hits and Misses

Hit (7607)

Actual: 2 Predicted: 2 Parent: 7607

Actual: 2 Predicted: 3 Parent: 7607

59 49 49

Parent Images before and digit replacement (Image 7607)

Altered

Hit (1201)

Actual: 5 Predicted: 5 Parent: 1201

Actual: 4 Predicted: 4 Parent: 1201

Parent Images before and digit replacement (Image 1201)

Near Hit (577)

Actual: 1 Predicted: 1 Parent: 577

Actual: 8 Predicted: 8 Parent: 577

Parent Images before and digit replacement (Image 577)

Miss (1360)

Actual: 3 Predicted: 3 Parent: 1360 Actual: 4 Predicted: 4 Parent: 1360 Actual: 2 Predicted: 2 Parent: 1360

Parent Images before and digit replacement (Image 1360)

Miss (10766)

Actual: 6 Predicted: 6 Parent: 10766

Actual: 2 Predicted: 2 Parent: 10766

Parent Images before and digit replacement (Image 10766)

Altered

Hit (7686)

Image for digit

Actual: 4 Predicted: 4 Parent: 7686

Key Pixels

Filled Image for digit

Actual: 6 Predicted: 6 Parent: 7686

Parent Images before and digit replacement (Image 7686)

Altered

Conclusion

- The approach has promise
- The image infill algorithm is very powerful
 - If a few stray pixels are selected inside the digit (instead of the background) the algorithm does a remarkable job of recreating the digit (unwanted in this case)
- Identifying key background pixels to use as seed for the generated image is key
 - Fair number of misses; need to refine the key pixel selection
- Perhaps this method could be used to bootstrap training data for a supervised approach
- Combined with using gradients to identify key pixels, that could give could results