Cloud Computing – Lecture 5
Cloud Computing & Getting to Grips with the
University of Melbourne Research Cloud
Professor Richard O. Sinnott & Yao Pan
rsinnott@unimelb.edu.au

Overview

- Cloud benefits
 - Cloud marketing!?
- The various flavours of cloud computing
 - Introduction to #aaS?
- Break
 - Demonstration of University of Melbourne Research Cloud

Life before cloud computing

Capacity vs Utilization curves 8

Life before cloud computing...ctd

Figure 2. (a) Even if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. (c) Underprovisioning case 2: some users desert the site permanently after experiencing poor service; this attrition and possible negative press result in a permanent loss of a portion of the revenue stream.

Cloud-busting? (~2009)

- To buy or not to buy that is the question...?
 - ScotGrid (www.scotgrid.ac.uk)

On-Demand Instances United States Europe Standard On-Demand Instances Linux/UNIX Usage Windows Usage 1.7Gb memory/160GB disk \$0.11 per hour \$0.135 per hour 7.5Gb memory/850GB disk \$0.44 per hour \$0.54 per hour \$0.88 per hour \$1.08 per hour 15Gb memory/1690GB disk Linux/UNIX Usage Windows Usage riigii CEO Oli Delliuliu fiistulices Medium \$0.32 per hour \$0.22 per hour Extra Large \$0.88 per hour \$1.28 per hour Amazon Flastic Block Store United States Europe Amazon EBS Volumes \$0.11 per GB-month of provisioned storage \$0.11 per 1 million I/O requests

Data Transfer

Internet Data Transfer

The pricing below is based on data transferred "in" and "out" of Amazon EC2.

Data Transfer In	
All Data Transfer	\$0.10 per GB
Data Transfer Out	
First 10 TB per Month	\$0.17 per GB
Next 40 TB per Month	\$0.13 per GB
Next 100TB per Month	\$0.11 per GB
Over 150 TB per Month	\$0.10 per GB

• \$1=£0.69 (back then!)

Amazon EBS Snapshots to Amazon S3 (priced the same as Amazon S3)

- £0.30*6,700,676 CPU hours
 - = £2,010,202 for just compute on-demand + data + networking + ...?
- Now...???

\$0.18 per GB-month of data stored

\$0.012 per 1,000 PUT requests (when saving a snapshot)
\$0.012 per 10,000 GET requests (when loading a snapshot)

- https://aws.amazon.com/ec2/pricing/

Cloud Computing: A Definition

- NIST definition: "Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."
 - » National Institute of Standards and Technology (http://dx.doi.org/10.6028/NIST.SP.800-145)
- Focus of today is to get you up and running on the Cloud and explore the technologies related to the underlined
 - Later lecture will do compare/contrast with AWS
 - ...and then how do Clouds actually work (hypervisors etc)

Organizing the Clouds

The Most Common Cloud Models

Deployment Models

Delivery Models Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Essential Characteristics

- On-demand self-service
- Broad network access
- Resource pooling
- Rapid elasticity
- Measured service

Public Clouds

Pros

- Utility computing
- Can focus on core business
- Cost-effective
- "Right-sizing"
- Democratisation of computing

Cons

- Security
- Loss of control
- Possible lock-in
- Dependency of Cloud provider continued existence

Pros

- Control
- Consolidation of resources
- Easier to secure
- More trust

Cons

- Relevance to core business?
 - e.g., Netflix ->Amazon
- Staff/management overheads
- Hardware obsolescence
- Over/under utilisation challenges

Hybrid Clouds

Examples

Eucalyptus, VMWare vCloud Hybrid Service

Pros

- Cloud-bursting
 - Use private cloud, but burst into public cloud when needed

Cons

- How do you move data/resources when needed?
- How to decide (in real time?) what data can go to public cloud?
- Is the public cloud compliant with PCI-DSS (Payment Card Industry – Data Security Standard)?

Delivery Models

Separation of Responsibilities

Public SaaS examples

- Gmail
- Sharepoint
- Salesforce.com CRM
- On-live
- Gaikai
- Microsoft Office 365
- Some definitions include those that do not require payment, e.g. ad-supported sites

Public PaaS Examples

Cloud Name	Language and Developer Tools	Programming Models Supported by Provider	Target Applications and Storage Options
Google App Engine	Python, Java, Go, PHP + JVM languages (scala, groovy, jruby)	MapReduce, Web, DataStore, Storage and other APIs	Web applications and BigTable storage
Salesforce.com's Force.com	Apex, Eclipsed- based IDE, web- based wizard	Workflow, excel- like formula, web programming	Business applications such as CRM
Microsoft Azure	.NET, Visual Studio, Azure tools	Unrestricted model	Enterprise and web apps
Amazon Elastic MapReduce	Hive, Pig, Java, Ruby etc.	MapReduce	Data processing and e-commerce
Aneka	.NET, stand-alone SDK	Threads, task, MapReduce	.NET enterprise applications, HPC

Infrastructure As A Service (IaaS)

- Primary focus of this course...
- Many providers
 - Amazon Web Services (Market leader)
 - http://aws.amazon.com
 - Oracle Public Cloud
 - https://cloud.oracle.com/
 - Azure
 - https://azure.microsoft.com/
 - RackSpace, CenturyLink, CloudSigma, DigitalOcean, DimensionData, GoGrid, Helio, Internap, Joyent, ProfitBricks, Verizon, ...
 - Melbourne Research Cloud
 - https://dashboard.cloud.unimelb.edu.au

Cost Comparison

On-Demand Pricing							
Instance Type	AWS	Azure	Google	AWS pricing (per hour)	Azure Pricing (per hour)	Google pricing (per hour)	MRC
General purpose	m6g.xlarge	B4MS	e2-standard-4	\$0.154	\$0.166	\$0.134	\$0
Compute optimized	c6g.xlarge	F4s v2	c2-standard-4	\$0.136	\$0.169	\$0.208	\$0
Memory optimized	r6g.xlarge	E4a v4	m1-ultramem-40	\$0.202	\$0.252	\$6.293	\$0
Accelerated computing	p2.xlarge	NC4as T4 v3	a2-highcpu-1g	\$0.90	\$0.526	\$3.678	\$0
						SIMFORM	

https://www.simform.com/blog/compute-pricing-comparison-aws-azure-googlecloud/

NeCTAR Research Cloud

 National eResearch Collaboration Tools and Resources (NeCTAR –

www.nectar.org.au)

- \$50m+\$10m+\$10m+\$72m... federal funding
- Lead by University of Melbourne
- Had four key strands
 - National Servers Program
 - Research Cloud Program
 - OpenStack IaaS
 - 4Gb-64Gb (mostly Linux flavours)
 - 30,000 physical servers available across different availability zones
 - » Being upgraded continually!
 - eResearch Tools Program
 - Virtual Laboratories Program
 - Astro,
 - Genomics,
 - Humanities,
 - Climate,
 - Nano-,
 - ...endocrine genomics

Data Infrastructures

- Research Data Services (RDS)
- \$50m+\$10m+\$72m project to establish data storage resources across Australia
 - ~100 Petabytes national data storage
 - Victoria Node (VicNode)
 - UniMelb, UniMonash for Vic-wide "nationally significant data sets"
 - Used by many diverse communities

NeCTAR Research Cloud

- Based on OpenStack
 - Open source cloud technology (more later lecture)
- Many associated/underpinning services
 - Compute Service (code-named Nova)
 - Image Service (code-named Glance)
 - Block Storage Service (code named Cinder)
 - Object Storage Service (code-named Swift)
 - Security Management (code-named Keystone)
 - Orchestration Service (code-named Heat)
 - Network Service (code-named Neutron)
 - Metering Service (code-named Ceilometer)

– ...

NeCTAR Research Cloud Instance Types

Instance Type	VCPUs	Memory (GB)	Instance Storage (GB)
m1.small	1	4	10GB + 1 x 30
m1.medium	2	8	10GB + 1 x 60
m1.large	4	16	10GB + 1 x 120
m1.xlarge	8	32	10GB + 1 x 240
m1.xxlarge	16	64	10GB + 1 x 480

+500Gb Volume storage (more if required)

BREAK

UniMelb/NeCTAR Demo (Crib Sheets LMS)

- NeCTAR (https://dashboard.rc.nectar.org.au)
- MRC (https://dashboard.cloud.unimelb.edu.au)
- Note that there are some differences
 - e.g., limited number of IP addresses

MRC Demo (Crib Sheets LMS)

Dashboard

- Overview (Resource allocation)
- Instances (Create, terminate and configure instances)
- Volumes (Create, terminate, attach and backup)
- Images (Create image, list image)
- Access & Security (Security groups, key pairs, API access)
- Object store (Store data as an object)

Launching a new VM

- Flavor (defines the compute, memory, and storage capacity)
- Ephemeral disk (not persistent storage!!!)
- Create key pair
 - ssh-keygen -t rsa -f cloud.key (Unix/Linux/MacOS, see Putty for Windows)
 - chmod 600 cloud.key (or get UNPROTECTED PRIVATE KEY FILE! error)

- Launching a new VM (continue)
 - Copy pub key (cloud.pub)
 - Select key pair
 - Select security group
 - Availability zone
- Connecting to VM via SSH
 - Private key (your secret key to keep secure)
 - ssh -i <private-key> <username>@<hostname>
 - E.g. ssh -i cloud.key <u>ubuntu@example.com</u>
- Create a Volume
 - Must be in the same availability zone as the instance

Note: you can't create volumes until you have some (=assignment 2)!

Attach a volume

- Check the device name: sudo fdisk -l
 - *sudo* = runs commands with security privileges of another user
 - (by default: superuser)
- Create the mounting point: sudo mkdir /mnt/demo
- Format the volume: sudo mkfs.ext4 /dev/vdb
- Mount the volume: sudo /dev/vdb /mnt/demo
- Check the result: df -h
- Installing an application
 - sudo apt-get install vim
- Create snapshots
 - Snapshot for an instance
 - Snapshot for a volume

Note: if you don't know Linux or what commands like df - h do, then google is your friend! See later too...

MRC Demo (Crib Sheets LMS)

- Restore a snapshot
 - Create an instance from an instance snapshot
 - Create a volume from a volume snapshot
- Setting up security groups
 - Security groups act as a virtual firewall that controls the traffic for one or more instances
 - It contains a set of security rules
 - Default security group only allows SSH (from anywhere)
 - Create a security group
 - Create a rule

Note: be careful with security.

Only open ports that are needed!

- CIDR (https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing)
 - 128.250.0.0/16 (All IPs from UoM)
 - x.x.x.x/32 (x.x.x.x only, use CIDR calculate for IP range calculation)
- Security Groups

Basic recipes to follow...

SSH

- ssh-keygen -t rsa -f cloud.key (Unix/Linux/MacOS, see Putty for Windows)
- chmod 600 cloud.key (or get UNPROTECTED PRIVATE KEY FILE! error)
- ssh -i cloud.key ubuntu@<instance_ip> (Ubuntu)
- ssh -i cloud.key ec2 user@<instance ip> (Amazon Linux, RHEL)

Volume

- sudo fdisk -l
 - sudo = runs commands with security privileges of another user (by default: superuser)
- sudo mkdir /mnt/demo
- sudo mkfs.ext4 /dev/vdb
 - *mkfs* = make file system
 - ext4 = type of file system (ext2, ext3, ext4)
 - See http://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/ for details on differences
- sudo mount /dev/vdb /mnt/demo
- df -h

Basic recipes to follow...

- Install software
 - sudo apt-get install vim
 - apt-get installs/removes packages on Ubuntu installations
- Common Shell Commands
 - http://www.dummies.com/computers/operating-systems/linux/commonlinux-commands/