```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm
```

!gdown '1q5L_yeBEhoAWHJmYHzoGtLkgfUWyW7fM'

→ Downloading...

From: https://drive.google.com/uc?id=1q5L_yeBEhoAWHJmYHzoGtLkgfUWyW7fM

To: /content/walmart_data.txt

100% 23.0M/23.0M [00:00<00:00, 64.2MB/s]

```
df = pd.read_csv('/content/walmart_data.txt')
df.head()
```

→		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_
	0	1000001	P00069042	F	0- 17	10	А	
	1	1000001	P00248942	F	0- 17	10	А	
	2	1000001	P00087842	F	0- 17	10	А	
	4							•

Insight: There are total 550068 rows accross 10 columns.

df.shape

→ (550068, 10)

Insight:- The number of unique users given in the dataset.

```
df['User_ID'].nunique()
```

→ 5891

Insight: There is no missing data in the dataset.

df.isna().sum()

→	User_ID	0
	Product_ID	0
	Gender	0
	Age	0
	Occupation	0

City_Category 0
Stay_In_Current_City_Years 0
Marital_Status 0
Product_Category 0
Purchase 0

dtype: int64

df.describe()

max

1.000000

20.000000

23961.000000

Insight: The data given is not Normal / Gausian.

20.000000

1.006040e+06

sns.histplot(x='Purchase',data = df,kde =True)

<Axes: xlabel='Purchase', ylabel='Count'>


```
# Individual data for male and female
male = df[df['Gender'] == 'M']['Purchase']
female = df[df['Gender'] == 'F']['Purchase']
```

Test 1:-

Assumptions:-

- 1. We are taking sample sizes as 5000.
- 2. We are taking confidence level as 90 %

```
male_samp_mean = [np.mean(male.sample(5000)) for i in range(5000)]
female_samp_mean = [np.mean(female.sample(5000)) for i in range(5000)]
```

```
# Ploting the histplot of samp. means for male data.
sns.histplot(x= male_samp_mean,kde =True)
```


Ploting the histplot of the samp. means for female data.
sns.histplot(x=female_samp_mean,kde= True)

→ <Axes: ylabel='Count'>

Ploting the histplot of the samp. means for male and female data simultaneously.
sns.histplot(x= male_samp_mean,kde =True)
sns.histplot(x = female_samp_mean,kde =True)


```
#Calcualting the mean of sample means of the male data.
mean_of_samp_mean_male = np.mean(male_samp_mean)

#Calcualting the mean of sample means of the female data.
mean_of_samp_mean_female = np.mean(female_samp_mean)
```

```
# calculating the standard error for building a confidence interval
se_m = np.std(male_samp_mean)/np.sqrt(len(male_samp_mean))
se_f = np.std(female_samp_mean)/np.sqrt(len(female_samp_mean))
```

Insight: Everytime a male vists the store, he will buy in the range of 9437 to 9440 with 90% confidence level.

```
# critical z-score for 90 % confidence level is 1.64
z = 1.64
# confidence interval for male is :-
print(round(mean_of_samp_mean_male - (z *se_m )), round(mean_of_samp_mean_male + (z *se_m ))
→ 9437 9440
```

Insight :- Everytime a female vists the store, he will buy in the range of 8733 to 8736 with 90% confidence level.

```
# confidence interval for female is :-
print(round(mean_of_samp_mean_female - (z *se_f )), round(mean_of_samp_mean_female + (z *
```

→ 8733 8736

Test 2:-

Assumptions:-

- 1. We are taking sample sizes as 5000.
- 2. We are taking confidence level as 95 %

Insight: Everytime a female vists the store, he will buy in the range of 8733 to 8736 with 90% confidence level.

```
# critical z-score for 90 % confidence level is 1.64
z = 1.96
# confidence interval for male is :-
print(round(mean_of_samp_mean_male - (z *se_m )), round(mean_of_samp_mean_male + (z *se_m ))
```

→ 9436 9440

Insight: Everytime a female vists the store, he will buy in the range of 8733 to 8736 with 90% confidence level.

```
# confidence interval for female is :-
print(round(mean_of_samp_mean_female - (z *se_f )), round(mean_of_samp_mean_female + (z *se_f ))
```

→ 8733 8737