WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Aäron van den Oord Sander Dieleman Heiga Zen[†]

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com Google DeepMind, London, UK

ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition.

1 Introduction

This work explores raw audio generation techniques, inspired by recent advances in neural autoregressive generative models that model complex distributions such as images (van den Oord et al., 2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables (e.g. 64×64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses is whether similar approaches can succeed in generating wideband raw audio waveforms, which are signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces *WaveNet*, an audio generative model based on the PixelCNN (van den Oord et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never before reported in the field of text-to-speech (TTS), as assessed by human raters.

[†] Google, London, UK