CS 221 Numbers Evaluation Assignment

Lily Larsen

October 1, 2022

a.

 $\min:0$

 $\max:2^{43}-1$

Ь.

 $\mathsf{min}:-2^{42}$

 $\max:2^{42}-1$

c.

 $\min:0$

 $\max:2^{11}-1$

d.

 $\begin{aligned} &\min: -2^{10}\\ &\max: 2^{10}-1 \end{aligned}$

a.

The largest tiny floating point would have a sign of 0, an exponent of 7 (or $1110_2-7)$ and a mantissa of 1.875 (or 1.111_2), and so would equal $(-1)^0\cdot 1.875\cdot 2^7=240.$ The second-largest tiny floating point would have the same sign and exponent and a mantissa of 1.75 (or 1.111_2) which would equal $(-1)^0\cdot 1.75\cdot 2^7=224.$ So, the difference between the largest non-infinite number representable with tiny floating points and the second largest would be 240-224=16.

Ь.

The smallest positive tiny floating point would have a sign of 0, an exponent of -6 (or 0000_2) and a mantissa of 0.125 (or 0.001_2 due to denormalized encoding), and so would equal $(-1)^0 \cdot 0.125 \cdot 2^{-6} \approx 0.001953125 = 0.000000001_2.$ The second smallest would have the same sign and exponent and a mantissa of 0.25 (or 0.010_2) which would equal $(-1)^0 \cdot 0.25 \cdot 2^{-6} \approx 0.00390625$ or exactly 0.00000001_2 . So the difference between the two would approximately be $0.00390625 - 0.001953125 \approx 0.001953125 = 0.0000000001_2.$