STATS 331

Credit: John Kruschke

Introduction to Bayesian Statistics Semester 2, 2016

Bayesian parameter estimation

 Today we'll do two examples of Bayesian parameter estimation, and one with a prediction

 For both, we'll get the likelihood by defining the sampling distribution first.

 Will look at a different "non-informative" prior distribution that isn't uniform

Bayes' Rule for Parameter Estimation

$$\begin{array}{rcl} p(\theta|x) & = & \frac{p(\theta)p(x|\theta)}{p(x)} \\ p(\theta|x) & \propto & p(\theta)p(x|\theta) \\ \\ \text{posterior} & \propto & \text{prior} \times \text{likelihood.} \end{array}$$

This works for discrete and continuous distributions

Taxi Problem

You fall asleep in a foreign city

 When you wake up in the morning, you see a taxi drive by, that says

"This is taxi number 42"

How many taxies are in the city?

Image credit: wikipedia

Let's calculate the posterior in R

Auckland Volcano Example

Image is in Public domain

The Problem (based on STATS 210)

• In the last 20,000 years (call this 1 time unit), there have been 20 volcanic eruptions.

 What's the probability of an eruption in the next 50 years (0.0025 time units)?

Volcanoes and Poisson Processes

We don't need to know much detail about the Poisson process

Except

 If we ask the question "how many events" we need the Poisson distribution

$$p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Poisson Distribution

This is a probability distribution for the data (in this problem).

- Can predict the count x
- Could even predict the count in the future

• But useless if we don't know the value of the parameter $\lambda!!!!$

The Data

$$x = 20$$

(and we will need to remember this occurred over a period of 20,000 years)

Let's Estimate λ

Set of possible values? Units are volcanoes per 20,000 years. Let's go from 1 to 100 in steps of 1.

• This discreteness is an approximation

Bayes Box: Possible Values

Possible Values	Prior	Likelihood	Prior x Likelihood	Posterior
λ	p(λ)	p(x))	$p(\lambda)p(x \lambda)$	p(\(\lambda \ \x)
1	0.01			
2	0.01			
3	0.01			
4	0.01			
	• • •			
97	0.01			
98	0.01			
99	0.01			
100	0.01			
Totals	1		p(x)	1

Likelihood

Compare with Lab 1, Question 2

 In parameter estimation problems, the likelihood is obtained from the sampling distribution but with the observed values of the data plugged in

Let's calculate the posterior in R

Posterior Distribution for λ

Another Prior: Log-Uniform

Q: How long is a piece of string?

Another Prior: Log-Uniform

A: Twice the distance from the middle to one end.

The Log-Uniform Prior

- Useful for a parameter θ:
 - a) known to be positive
 - b) uncertain by orders of magnitude

 $p(\theta)$ proportional to $1/\theta$.

Probability vs. Probability Density

```
lambda = seq(1, 100,
by=1)

prior = 1/lambda

prior = prior/sum(prior)

prior = prior/sum(prior)

prior = prior/
(step*sum(prior))

Z = sum(prior*likelihood)

Z =
step*sum(prior*likelihood)
```

• Let's redo the problem using the log-uniform prior, and using probability densities (prior and posterior for λ) instead of probabilities.

Prediction

• Our original question was not "what is λ " but rather "what is the probability of an eruption in the next 50 years"

Prediction: Classical Approach (210)

 Step 1: use an estimator (single number guess) to estimate the value of the parameter

 Step 2: use the sampling distribution to make the prediction, assuming your parameter estimate was perfectly correct.

Prediction: Bayesian Approach (331)

- Step 1: get the posterior distribution for the parameter(s)
- Step 2: For all possible values of the parameter, calculate the probability you're interested in *if that value were true* (i.e. conditional on the parameter)
- Step 3: Calculate the posterior expected value of the results from Step 2.

:-)

This procedure is not *invented* - it is derivable from the sum rule.

The two results

Classical

```
> 1 - dpois(0, lambda=0.0025*20)
[1] 0.04877058
```

Bayesian

```
> # Conditional probabilities
> prob = 1 - dpois(0, 0.0025*lambda)
> # Marginal probability
> sum(step*posterior*prob)
[1] 0.04871122
```

In this case, the results were very similar. But that's not always the case.

Food for thought:

When would you expect the two methods to give different results?