A Discussion

Naganand Y

• CNNs: state-of-the art on image, speech, video recognition tasks

- CNNs: state-of-the art on image, speech, video recognition tasks
 - (Shared) Filters are translation invariant

Naganand Y

- CNNs: state-of-the art on image, speech, video recognition tasks
 - (Shared) Filters are translation invariant
 - $\bullet~\#$ Parameters independent of input size

- CNNs: state-of-the art on image, speech, video recognition tasks
 - (Shared) Filters are translation invariant
 - # Parameters independent of input size
 - Local dependencies dominate

Naganand Y

- CNNs: state-of-the art on image, speech, video recognition tasks
 - (Shared) Filters are translation invariant
 - # Parameters independent of input size
 - Local dependencies dominate
- Limitation: Convolution, pooling defined only for regular grids

- CNNs: state-of-the art on image, speech, video recognition tasks
 - (Shared) Filters are translation invariant
 - # Parameters independent of input size
 - Local dependencies dominate
- Limitation: Convolution, pooling defined only for regular grids
 - Not defined for irregular/non-Euclidean domains

- CNNs: state-of-the art on image, speech, video recognition tasks
 - (Shared) Filters are translation invariant
 - # Parameters independent of input size
 - Local dependencies dominate
- Limitation: Convolution, pooling defined only for regular grids
 - Not defined for irregular/non-Euclidean domains
- Contribution: Define convolution, pooling on graphs

- CNNs: state-of-the art on image, speech, video recognition tasks
 - (Shared) Filters are translation invariant
 - # Parameters independent of input size
 - Local dependencies dominate
- Limitation: Convolution, pooling defined only for regular grids
 - Not defined for irregular/non-Euclidean domains
- Contribution: Define convolution, pooling on graphs
 - User data on social networks
 - Gene data on biological regulatory networks
 - Log data on telecommunication networks
 - Text documents on word embeddings

Convolutional Neural Networks on Graphs

- Convolutional Neural Networks on Graphs
 - Define convolution and pooling operations on graphs

- Convolutional Neural Networks on Graphs
 - Define convolution and pooling operations on graphs
- Fast

- Convolutional Neural Networks on Graphs
 - Define convolution and pooling operations on graphs
- Fast: same complexity as CNNs

- Convolutional Neural Networks on Graphs
 - Define convolution and pooling operations on graphs
- Fast: same complexity as CNNs
 - Linear computational complexity

- Convolutional Neural Networks on Graphs
 - Define convolution and pooling operations on graphs
- Fast: same complexity as CNNs
 - Linear computational complexity
 - Constant learning complexity

- Convolutional Neural Networks on Graphs
 - Define convolution and pooling operations on graphs
- Fast: same complexity as CNNs
 - Linear computational complexity
 - Constant learning complexity
- Localized Spectral Filtering

- Convolutional Neural Networks on Graphs
 - Define convolution and pooling operations on graphs
- Fast: same complexity as CNNs
 - Linear computational complexity
 - Constant learning complexity
- Localized Spectral Filtering
 - Ideas from spectral graph theory

- Convolutional Neural Networks on Graphs
 - Define convolution and pooling operations on graphs
- Fast: same complexity as CNNs
 - Linear computational complexity
 - Constant learning complexity
- Localized Spectral Filtering
 - Ideas from spectral graph theory
 - Filters provable to be strictly localized in a ball of radius K

1 Design of localized convolutional filters on graphs

- 1 Design of localized convolutional filters on graphs
- 2 Graph coarsening

- 1 Design of localized convolutional filters on graphs
- 2 Graph coarsening
 - Group similar vertices together

- 1 Design of localized convolutional filters on graphs
- 2 Graph coarsening
 - Group similar vertices together
 - Build condensed, smaller graphs through these groups

- 1 Design of localized convolutional filters on graphs
- 2 Graph coarsening
 - Group similar vertices together
 - Build condensed, smaller graphs through these groups
- 3 Pooling operation

- 1 Design of localized convolutional filters on graphs
- 2 Graph coarsening
 - Group similar vertices together
 - Build condensed, smaller graphs through these groups
- 3 Pooling operation
 - Trade spatial details for higher filter details

- 1 Design of localized convolutional filters on graphs
- 2 Graph coarsening
 - Group similar vertices together
 - Build condensed, smaller graphs through these groups
- 3 Pooling operation
 - Trade spatial details for higher filter details

• Input: An undirected, connected, weighted G = (V, E, W)

- Input: An undirected, connected, weighted G = (V, E, W)
 - Signal $x: V \to \mathbb{R}$ regarded as $x \in \mathbb{R}^n$

- Input: An undirected, connected, weighted G = (V, E, W)
 - Signal $x: V \to \mathbb{R}$ regarded as $x \in \mathbb{R}^n$
- **Graph Laplacian**: $L = I_n D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$

- Input: An undirected, connected, weighted G = (V, E, W)
 - Signal $x: V \to \mathbb{R}$ regarded as $x \in \mathbb{R}^n$
- Graph Laplacian: $L = I_n D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ where $D = diag(\sum_j W_{ij})$

Naganand Y

- Input: An undirected, connected, weighted G = (V, E, W)
 - Signal $x: V \to \mathbb{R}$ regarded as $x \in \mathbb{R}^n$
- Graph Laplacian: $L = I_n D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ where $D = diag(\sum_j W_{ij})$
 - Non-negative eigenvalues $\{\lambda_l\}_{l=0}^{n-1}$

- Input: An undirected, connected, weighted G = (V, E, W)
 - Signal $x: V \to \mathbb{R}$ regarded as $x \in \mathbb{R}^n$
- Graph Laplacian: $L = I_n D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ where $D = diag(\sum_i W_{ii})$
 - Non-negative eigenvalues $\{\lambda_I\}_{I=0}^{n-1}$ Orthonormal (Fourier) basis $\{u_I\}_{I=0}^{n-1}$

- Input: An undirected, connected, weighted G = (V, E, W)
 - Signal $x: V \to \mathbb{R}$ regarded as $x \in \mathbb{R}^n$
- Graph Laplacian: $L = I_n D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ where $D = diag(\sum_j W_{ij})$
 - Non-negative eigenvalues $\{\lambda_l\}_{l=0}^{n-1}$
 - Orthonormal (Fourier) basis $\{u_l\}_{l=0}^{n-1}$
 - Diagonalization $L = U \Lambda U^T$

- Input: An undirected, connected, weighted G = (V, E, W)
 - Signal $x: V \to \mathbb{R}$ regarded as $x \in \mathbb{R}^n$
- Graph Laplacian: $L = I_n D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ where $D = diag(\sum_j W_{ij})$
 - Non-negative eigenvalues $\{\lambda_l\}_{l=0}^{n-1}$
 - Orthonormal (Fourier) basis $\{u_l\}_{l=0}^{n-1}$
 - Diagonalization $L = U \Lambda U^T$
- **GFT**: $\hat{x} = U^T x$

- Input: An undirected, connected, weighted G = (V, E, W)
 - Signal $x: V \to \mathbb{R}$ regarded as $x \in \mathbb{R}^n$
- Graph Laplacian: $L = I_n D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ where $D = diag(\sum_j W_{ij})$
 - Non-negative eigenvalues $\{\lambda_l\}_{l=0}^{n-1}$
 - Orthonormal (Fourier) basis $\{u_l\}_{l=0}^{n-1}$
 - Diagonalization $L = U \Lambda U^T$
- **GFT**: $\hat{x} = U^T x$
 - Inverse, $x = U\hat{x}$

Spectral Filtering of Graph Signals

• Convolution operator: $a * b = U((U^T a) \odot (U^T b))$

Spectral Filtering of Graph Signals

- Convolution operator: $a * b = U((U^T a) \odot (U^T b))$
 - Defined on fourier domain rather than vertex domain

- Convolution operator: $a * b = U((U^T a) \odot (U^T b))$
 - Defined on fourier domain rather than vertex domain
- **Filtering**: A signal x is filtered by g_{θ} as

- Convolution operator: $a * b = U((U^T a) \odot (U^T b))$
 - Defined on fourier domain rather than vertex domain
- **Filtering**: A signal x is filtered by g_{θ} as

$$y = g_{\theta}(L)x$$

- Convolution operator: $a * b = U((U^T a) \odot (U^T b))$
 - Defined on fourier domain rather than vertex domain
- Filtering: A signal x is filtered by g_{θ} as

$$y = g_{\theta}(L)x = g_{\theta}(U\Lambda U^{T})x$$

- Convolution operator: $a * b = U((U^T a) \odot (U^T b))$
 - Defined on fourier domain rather than vertex domain
- Filtering: A signal x is filtered by g_{θ} as

$$y = g_{\theta}(L)x = g_{\theta}(U \Lambda U^{T})x = Ug_{\theta}(\Lambda)U^{T}x$$

- Convolution operator: $a * b = U((U^T a) \odot (U^T b))$
 - Defined on fourier domain rather than vertex domain
- Filtering: A signal x is filtered by g_{θ} as

$$y = g_{\theta}(L)x = g_{\theta}(U \Lambda U^{T})x = Ug_{\theta}(\Lambda)U^{T}x$$

• Could use a non-parametric filter i.e. $g_{\theta}(\Lambda) = diag(\theta)$. But

Naganand Y

- Convolution operator: $a * b = U((U^T a) \odot (U^T b))$
 - Defined on fourier domain rather than vertex domain
- Filtering: A signal x is filtered by g_{θ} as

$$y = g_{\theta}(L)x = g_{\theta}(U \Lambda U^{T})x = Ug_{\theta}(\Lambda)U^{T}x$$

- Could use a non-parametric filter i.e. $g_{\theta}(\Lambda) = diag(\theta)$. But
 - Not localized in space

- Convolution operator: $a * b = U((U^T a) \odot (U^T b))$
 - Defined on fourier domain rather than vertex domain
- Filtering: A signal x is filtered by g_{θ} as

$$y = g_{\theta}(L)x = g_{\theta}(U \Lambda U^{T})x = Ug_{\theta}(\Lambda)U^{T}x$$

- Could use a non-parametric filter i.e. $g_{\theta}(\Lambda) = diag(\theta)$. But
 - Not localized in space
 - Learning complexitiy is O(n)

Polynomial Filter:

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$$

¹Hammond et. al, Wavelets on Graphs via Spectral Graph Theory, Applied and Computational Harmonic Analysis 2011

Polynomial Filter:

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$$

 $\theta \in \mathbb{R}^K$

¹Hammond et. al, Wavelets on Graphs via Spectral Graph Theory, Applied and Computational Harmonic Analysis 2011

Polynomial Filter:

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$$

 $\theta \in \mathbb{R}^K$

• ¹If minimum # edges between i and j is > K then $(L^K)_{i,j} = 0$

¹Hammond et. al, Wavelets on Graphs via Spectral Graph Theory, Applied and Computational Harmonic Analysis 2011

Polynomial Filter:

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$$

 $\theta \in \mathbb{R}^K$

- ¹If minimum # edges between i and j is > K then $(L^K)_{i,j} = 0$
 - Filters are K-localized

¹Hammond et. al, Wavelets on Graphs via Spectral Graph Theory, Applied and Computational Harmonic Analysis 2011

Polynomial Filter:

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$$

 $\theta \in \mathbb{R}^K$

- 1If minimum # edges between i and j is > K then $(L^K)_{i,j} = 0$
 - Filters are K-localized
- Learning complexity is O(K) where K is support size of filter

¹Hammond et. al, Wavelets on Graphs via Spectral Graph Theory, Applied and Computational Harmonic Analysis 2011

Polynomial Filter:

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$$

 $\theta \in \mathbb{R}^K$

- 1If minimum # edges between i and j is > K then $(L^K)_{i,j} = 0$
 - Filters are K-localized
- Learning complexity is O(K) where K is support size of filter
 - Same as classical CNNs

¹Hammond et. al, Wavelets on Graphs via Spectral Graph Theory, Applied and Computational Harmonic Analysis 2011

• Multiplication with U in $y = Ug_{\theta}(\Lambda)U^{T}x$ costs $O(n^{2})$ operations

- Multiplication with U in $y = Ug_{\theta}(\Lambda)U^{T}x$ costs $O(n^{2})$ operations
- Solution: Exploit sparsity of L

- Multiplication with U in $y = Ug_{\theta}(\Lambda)U^Tx$ costs $O(n^2)$ operations
- Solution: Exploit sparsity of L
 - Idea: Compute polynomial recursively from L

- Multiplication with U in $y = Ug_{\theta}(\Lambda)U^{T}x$ costs $O(n^{2})$ operations
- Solution: Exploit sparsity of L
 - Idea: Compute polynomial recursively from L
 - Use Chebyshev expansion

- Multiplication with U in $y = Ug_{\theta}(\Lambda)U^{T}x$ costs $O(n^{2})$ operations
- Solution: Exploit sparsity of L
 - Idea: Compute polynomial recursively from L
 - Use Chebyshev expansion
 - $T_k(x) = 2xT_{k-1}(x) T_{k-2}(x)$ with $T_0 = 1$ and $T_1 = x$

- Multiplication with U in $y = Ug_{\theta}(\Lambda)U^Tx$ costs $O(n^2)$ operations
- Solution: Exploit sparsity of L
 - Idea: Compute polynomial recursively from L
 - Use Chebyshev expansion
 - $T_k(x) = 2xT_{k-1}(x) T_{k-2}(x)$ with $T_0 = 1$ and $T_1 = x$

•

$$g_{\theta}(L) = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L})$$

- Multiplication with U in $y = Ug_{\theta}(\Lambda)U^{T}x$ costs $O(n^{2})$ operations
- Solution: Exploit sparsity of L
 - Idea: Compute polynomial recursively from L
 - Use Chebyshev expansion
 - $T_k(x) = 2xT_{k-1}(x) T_{k-2}(x)$ with $T_0 = 1$ and $T_1 = x$

•

$$g_{\theta}(L) = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L})$$

• $\widetilde{L} = 2L/\lambda_{max} - I_n$

- Multiplication with U in $y = Ug_{\theta}(\Lambda)U^{T}x$ costs $O(n^{2})$ operations
- Solution: Exploit sparsity of L
 - Idea: Compute polynomial recursively from L
 - Use Chebyshev expansion
 - $T_k(x) = 2xT_{k-1}(x) T_{k-2}(x)$ with $T_0 = 1$ and $T_1 = x$

•

$$g_{\theta}(L) = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L})$$

- $\widetilde{L} = 2L/\lambda_{max} I_n$
- Entire filtering takes O(K|E|) operations (linear in |E|)

- Multiplication with U in $y = Ug_{\theta}(\Lambda)U^{T}x$ costs $O(n^{2})$ operations
- Solution: Exploit sparsity of L
 - Idea: Compute polynomial recursively from L
 - Use Chebyshev expansion
 - $T_k(x) = 2xT_{k-1}(x) T_{k-2}(x)$ with $T_0 = 1$ and $T_1 = x$

•

$$g_{\theta}(L) = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L})$$

- $\widetilde{L} = 2L/\lambda_{max} I_n$
- Entire filtering takes O(K|E|) operations (linear in |E|)
- $y = g_{\theta}(L)x = \left[x'_0, \cdots, x'_{K-1}\right]\theta$ where $x'_k = T_k(\widetilde{L})x$

• Use mini-batch GD (S samples in each batch)

- Use mini-batch GD (S samples in each batch)
 - \bullet *j*-th feature of sample s is

$$y_{s,j} = \sum_{i=1}^{F_{in}} g_{\theta_{i,j}}(L) x_{s,i}$$

9 / 19

Naganand Y GraphConvnets 6 Feb 2017

- Use mini-batch GD (S samples in each batch)
 - ullet j-th feature of sample s is

$$y_{s,j} = \sum_{i=1}^{F_{in}} g_{\theta_{i,j}}(L) x_{s,i}$$

Backprop requires

$$\frac{\partial J}{\partial \theta_{i,j}} = \sum_{s=1}^{S} \left[x'_{s,i,0}, \cdots, x'_{s,i,K-1} \right] \frac{\partial J}{\partial y_{s,j}}$$

Naganand Y GraphConvnets

9 / 19

- Use mini-batch GD (S samples in each batch)
 - j-th feature of sample s is

$$y_{s,j} = \sum_{i=1}^{F_{in}} g_{\theta_{i,j}}(L) x_{s,i}$$

Backprop requires

$$\frac{\partial J}{\partial \theta_{i,j}} = \sum_{s=1}^{S} \left[x'_{s,i,0}, \cdots, x'_{s,i,K-1} \right] \frac{\partial J}{\partial y_{s,j}}$$

and

$$\frac{\partial J}{\partial x_{s,i}} = \sum_{j=1}^{F_{out}} g_{\theta_{i,j}}(L) \frac{\partial J}{\partial y_{s,j}}$$

Naganand Y

- Use mini-batch GD (S samples in each batch)
 - ullet j-th feature of sample s is

$$y_{s,j} = \sum_{i=1}^{F_{in}} g_{\theta_{i,j}}(L) x_{s,i}$$

Backprop requires

$$\frac{\partial J}{\partial \theta_{i,j}} = \sum_{s=1}^{S} \left[x'_{s,i,0}, \cdots, x'_{s,i,K-1} \right] \frac{\partial J}{\partial y_{s,j}}$$

and

$$\frac{\partial J}{\partial x_{s,i}} = \sum_{j=1}^{F_{out}} g_{\theta_{i,j}}(L) \frac{\partial J}{\partial y_{s,j}}$$

ullet J is cross-entropy with I_2 regularization on weights

6 Feb 2017

9 / 19

Naganand Y GraphConvnets

- Use mini-batch GD (S samples in each batch)
 - ullet j-th feature of sample s is

$$y_{s,j} = \sum_{i=1}^{F_{in}} g_{\theta_{i,j}}(L) x_{s,i}$$

Backprop requires

$$\frac{\partial J}{\partial \theta_{i,j}} = \sum_{s=1}^{S} \left[x'_{s,i,0}, \cdots, x'_{s,i,K-1} \right] \frac{\partial J}{\partial y_{s,j}}$$

and

$$\frac{\partial J}{\partial x_{s,i}} = \sum_{i=1}^{F_{out}} g_{\theta_{i,j}}(L) \frac{\partial J}{\partial y_{s,j}}$$

- J is cross-entropy with I_2 regularization on weights
- Requires $O(K|E|F_{in}F_{out}S)$ operations

□ ► ←□ ► ←□ ► ←□ ► □ ♥ Q ← 9/19

• Pooling requires meaningful neighbourhoods on graphs

²Dhillon et. al, Weighted Graph Cuts Without Eigenvectors: A Multilevel Approach, PAMI 2007

- Pooling requires meaningful neighbourhoods on graphs
 - Cluster similar vertices together

²Dhillon et. al, Weighted Graph Cuts Without Eigenvectors: A Multilevel Approach, PAMI 2007

- Pooling requires meaningful neighbourhoods on graphs
 - Cluster similar vertices together
 - But graph clustering is NP-hard

²Dhillon et. al, Weighted Graph Cuts Without Eigenvectors: A Multilevel Approach, PAMI 2007

- Pooling requires meaningful neighbourhoods on graphs
 - Cluster similar vertices together
 - But graph clustering is NP-hard
- Graclus ²graph clustering software

²Dhillon et. al, Weighted Graph Cuts Without Eigenvectors: A Multilevel Approach, PAMI 2007

- Pooling requires meaningful neighbourhoods on graphs
 - Cluster similar vertices together
 - But graph clustering is NP-hard
- Graclus ²graph clustering software
 - Uses a greedy algorithm

²Dhillon et. al, Weighted Graph Cuts Without Eigenvectors: A Multilevel Approach, PAMI 2007

- Pooling requires meaningful neighbourhoods on graphs
 - Cluster similar vertices together
 - But graph clustering is NP-hard
- Graclus ²graph clustering software
 - Uses a greedy algorithm
 - Pick an umarked i and match with one of its unmarked neighbours j that maximizes normalized cut

$$W_{ij}\Big(\frac{1}{d_i}+\frac{1}{d_j}\Big)$$

²Dhillon et. al, Weighted Graph Cuts Without Eigenvectors: A Multilevel Approach, PAMI 2007

- Pooling requires meaningful neighbourhoods on graphs
 - Cluster similar vertices together
 - But graph clustering is NP-hard
- Graclus ²graph clustering software
 - Uses a greedy algorithm
 - Pick an umarked i and match with one of its unmarked neighbours j that maximizes normalized cut

$$W_{ij}\Big(\frac{1}{d_i}+\frac{1}{d_j}\Big)$$

Repeat until all nodes explored

²Dhillon et. al, Weighted Graph Cuts Without Eigenvectors: A Multilevel Approach, PAMI 2007

- Pooling requires meaningful neighbourhoods on graphs
 - Cluster similar vertices together
 - But graph clustering is NP-hard
- Graclus ²graph clustering software
 - Uses a greedy algorithm
 - Pick an umarked i and match with one of its unmarked neighbours j that maximizes normalized cut

$$W_{ij}\Big(\frac{1}{d_i}+\frac{1}{d_j}\Big)$$

- Repeat until all nodes explored
- Divides # nodes by approximately 2 (there may exist a few singletons, non-matched nodes)

²Dhillon et. al, Weighted Graph Cuts Without Eigenvectors: A Multilevel Approach, PAMI 2007

Graph Coarsening: Example

Graph Coarsening: Example

Graclus produces G_1 and G_2 on G_0 as input

Naganand Y

Suppose max pooling of size 4 needs to be carried out (Note: $x \in \mathbb{R}^8$)

Add fake nodes to pair with singleton nodes

Nodes in V_2 : ordered arbitrarily, nodes in V_1 , V_0 : ordered consequently

Observation: Node k has 2k and 2k + 1 as children

• $z = (max(x_0, x_1), max(x_4, x_5, x_6), max(x_8, x_9, x_{10})) \in \mathbb{R}^3$

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ◆ ② へ ○ 13/19

- $z = (max(x_0, x_1), max(x_4, x_5, x_6), max(x_8, x_9, x_{10})) \in \mathbb{R}^3$
 - x_2, x_3, x_7, x_{11} are set to a neutral value

 ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

- $z = (max(x_0, x_1), max(x_4, x_5, x_6), max(x_8, x_9, x_{10})) \in \mathbb{R}^3$
 - x_2, x_3, x_7, x_{11} are set to a neutral value
 - Analogous to pooling a regular 1D signal

◆□ ト ◆□ ト ◆ 章 ト ◆ 章 ト 章 かくで 13/19

- $z = (max(x_0, x_1), max(x_4, x_5, x_6), max(x_8, x_9, x_{10})) \in \mathbb{R}^3$
 - x_2, x_3, x_7, x_{11} are set to a neutral value
 - Analogous to pooling a regular 1D signal
 - Very efficient, satisfies parallel architectures such as GPUs as memory accesses are local

Architecture

• Construct an 8-NN graph

- Construct an 8-NN graph
 - ullet 70000 digits on 2D grid becomes graph with 976 (28 $^2+192$) nodes

- Construct an 8-NN graph
 - ullet 70000 digits on 2D grid becomes graph with 976 (28² + 192) nodes
 - Weights of k-NN similarity graph are

$$W_{ij} = exp(-\frac{||z_i - z_j||_2^2}{\sigma^2})$$

 z_i is 2D coordinate of pixel i

Naganand Y

- Construct an 8-NN graph
 - ullet 70000 digits on 2D grid becomes graph with 976 (28² + 192) nodes
 - Weights of k-NN similarity graph are

$$W_{ij} = exp(-\frac{||z_i - z_j||_2^2}{\sigma^2})$$

 z_i is 2D coordinate of pixel i

Model	Architecture	Accuracy
Classical CNN	C32-P4-C64-P4-FC512	99.33
Proposed graph CNN	GC32-P4-GC64-P4-FC512	99.14

- Ck: Convolutional layer k feature maps
- GCk: Graph convolutional layer k feature maps
- FCk: Fully connected layer k hidden units
- Pk: Pooling layer size, stride k

• To demonstrate versatility of model to work with unstructured data

- To demonstrate versatility of model to work with unstructured data
 - Extract 10k most common words from 93k+ unique words

- To demonstrate versatility of model to work with unstructured data
 - Extract 10k most common words from 93k+ unique words
 - Represent doc x by bag-of-words model (normalized across words)

- To demonstrate versatility of model to work with unstructured data
 - Extract 10k most common words from 93k+ unique words
 - Represent doc x by bag-of-words model (normalized across words)
 - Construct a 16-NN graph with $W_{ij} = exp(-\frac{||z_i z_j||_2^2}{\sigma^2})$ where z_i is word2vec embedding of word i

- To demonstrate versatility of model to work with unstructured data
 - Extract 10k most common words from 93k+ unique words
 - Represent doc x by bag-of-words model (normalized across words)
 - Construct a 16-NN graph with $W_{ij} = exp(-\frac{||z_i z_j||_2^2}{\sigma^2})$ where z_i is word2vec embedding of word i

Model	Accuracy
Linear SVM	65.90
Multinomial Naive Bayes	68.51
Softmax	66.28
FC2500	64.64
FC2500-FC500	65.76
GC32	68.26

- To demonstrate versatility of model to work with unstructured data
 - Extract 10k most common words from 93k+ unique words
 - Represent doc x by bag-of-words model (normalized across words)
 - Construct a 16-NN graph with $W_{ij} = exp(-\frac{||z_i z_j||_2^2}{\sigma^2})$ where z_i is word2vec embedding of word i

Model	Accuracy
Linear SVM	65.90
Multinomial Naive Bayes	68.51
Softmax	66.28
FC2500	64.64
FC2500-FC500	65.76
GC32	68.26

 All models trained 20 epochs by Adam optimizer (initial learning rate = 0.001)

- To demonstrate versatility of model to work with unstructured data
 - Extract 10k most common words from 93k+ unique words
 - Represent doc x by bag-of-words model (normalized across words)
 - Construct a 16-NN graph with $W_{ij} = exp(-\frac{||z_i z_j||_2^2}{\sigma^2})$ where z_i is word2vec embedding of word i

Model	Accuracy
Linear SVM	65.90
Multinomial Naive Bayes	68.51
Softmax	66.28
FC2500	64.64
FC2500-FC500	65.76
GC32	68.26

- All models trained 20 epochs by Adam optimizer (initial learning rate = 0.001)
- Support of GC32 is K = 5

- To demonstrate versatility of model to work with unstructured data
 - Extract 10k most common words from 93k+ unique words
 - Represent doc x by bag-of-words model (normalized across words)
 - Construct a 16-NN graph with $W_{ij} = exp(-\frac{||z_i z_j||_2^2}{\sigma^2})$ where z_i is word2vec embedding of word i

Model	Accuracy
Linear SVM	65.90
Multinomial Naive Bayes	68.51
Softmax	66.28
FC2500	64.64
FC2500-FC500	65.76
GC32	68.26

- All models trained 20 epochs by Adam optimizer (initial learning rate = 0.001)
- Support of GC32 is K = 5
- Proposed model does not outperform multinomial Bayes but defeats FC networks which require much more parameters

- To demonstrate versatility of model to work with unstructured data
 - Extract 10k most common words from 93k+ unique words
 - Represent doc x by bag-of-words model (normalized across words)
 - Construct a 16-NN graph with $W_{ij} = exp(-\frac{||z_i z_j||_2^2}{\sigma^2})$ where z_i is word2vec embedding of word i

Model	Accuracy
Linear SVM	65.90
Multinomial Naive Bayes	68.51
Softmax	66.28
FC2500	64.64
FC2500-FC500	65.76
GC32	68.26

- All models trained 20 epochs by Adam optimizer (initial learning rate = 0.001)
- Support of GC32 is K = 5
- Proposed model does not outperform multinomial Bayes but defeats FC networks which require much more parameters

ullet The first formulation 3 of graph CNN defined filter as $g_{ heta}(\Lambda)=B heta$

 $^{^3}$ Bruna et. al, Spectral Networks and Deep Locally Connected Networks on Graphs $_{17/19}$

ullet The first formulation 3 of graph CNN defined filter as $g_{ heta}(\Lambda)=B heta$

 $^{^3}$ Bruna et. al, Spectral Networks and Deep Locally Connected Networks on Graphs $_{17/19}$

• The first formulation³ of graph CNN defined filter as $g_{\theta}(\Lambda) = B\theta$ where $B \in \mathbb{R}^{n \times K}$ is cubic B-spline basis

 $^{^3}$ Bruna et. al, Spectral Networks and Deep Locally Connected Networks on Graphs $_{17/19}$

• The first formulation³ of graph CNN defined filter as $g_{\theta}(\Lambda) = B\theta$ where $B \in \mathbb{R}^{n \times K}$ is cubic B-spline basis

		Accuracy		
Dataset	Architecture	Non-Param	Spline	Chebyshev
MNIST	GC10	95.75	97.26	97.48
MNIST	GC32-P4-GC64-P4-FC512	96.28	97.15	99.14

 $^{^3}Bruna$ et. al, Spectral Networks and Deep Locally-Conflected Networks on Graphs $_{17/19}$

• The first formulation³ of graph CNN defined filter as $g_{\theta}(\Lambda) = B\theta$ where $B \in \mathbb{R}^{n \times K}$ is cubic B-spline basis

		Accuracy		
Dataset	Architecture	Non-Param	Spline	Chebyshev
MNIST	GC10 GC32-P4-GC64-P4-FC512	95.75 96.28	97.26 97.15	97.48 99.14
1711 115 1	GC32 1 + GC0+ 1 + 1 C312	70.20	77.13	77.17

Figure 4: Plots of validation accuracy and training loss for the first 2000 iterations on MNIST.

Naganand Y GraphConvnets 6 Feb 2017 17 / 19

³Bruna et. al, Spectral Networks and Deep Locally Confected Networks on Graphs_{17/19}

Figure 3: Time to process a mini-batch of S=100 20NEWS documents w.r.t. the number of words n.

Figure 3: Time to process a mini-batch of S=100 20NEWS documents w.r.t. the number of words n.

 ${\sf Naganand}\ {\sf Y}$

Figure 3: Time to process a mini-batch of S=100 20NEWS documents w.r.t. the number of words n.

- O(n) vs. $O(n^2)$
- Measured runtime is total training time divided by #gradient steps

Figure 3: Time to process a mini-batch of S=10020NEWS documents w.r.t. the number of words n.

- O(n) vs. $O(n^2)$
- Measured runtime is total training time divided by #gradient steps

	Time (ms)			
Model	Architecture	CPU	GPU	Speedup
Classical CNN Proposed graph CNN	C32-P4-C64-P4-FC512 GC32-P4-GC64-P4-FC512	210 1600	31 200	6.77x 8.00x

Table 4: Time to process a mini-batch of S=100 MNIST images.

Conclusion

• Introduced mathematical and computational foundations of efficient generalization of CNNs on graphs

Conclusion

- Introduced mathematical and computational foundations of efficient generalization of CNNs on graphs
- Introduced model whose computational complexity linear with dimensionality of data

Conclusion

- Introduced mathematical and computational foundations of efficient generalization of CNNs on graphs
- Introduced model whose computational complexity linear with dimensionality of data
- Experiments have shown ability of model to extract local, stationary features through convolutional layers