Shortest Paths in the Plane with Obstacle Violations

John Hershberger, Neeraj Kumar and Subhash Suri

^{*}Mentor Graphics Corporation

[†]University of California, Santa Barbara

Input: A polygonal domain P with h convex obstacles, n vertices, source s and target t

Input: A polygonal domain P with h convex obstacles, n vertices, source s and target t

Classical Shortest Path Problem : Obstacles Impenetrable

Input: A polygonal domain P with h convex obstacles, n vertices, source s and target t

Classical Shortest Path Problem : Obstacles Impenetrable

What if shortest paths can go through obstacles?

Input: A polygonal domain P with h convex obstacles, n vertices, source s and target t

Allowed to cross one obstacle

What if shortest paths can go through obstacles?

Input: A polygonal domain P with h convex obstacles, n vertices, source s and target t

Allowed to cross two obstacles

What if shortest paths can go through obstacles?

Input: A polygonal domain P with h convex obstacles, n vertices, source s and target t

What if shortest paths can go through obstacles?

Compute shortest s-t path that can go through at most k obstacles

Input: A polygonal domain P with h convex obstacles, n vertices, source s and target t

What if shortest paths can go through obstacles?

Compute shortest s-t path that can go through at most k obstacles

k-path π_k

Input: A polygonal domain P with h convex obstacles, n vertices, source s and target t

Shortest *k*-paths

Compute shortest s-t path that can go through at most k obstacles

A 'less restricted' version of classical shortest path problem

A 'less restricted' version of classical shortest path problem

Lots of Related work

```
Visibility Graph [GM '91, KM'88...]
```

Continuous Dijkstra [HS '97, RS'94, M'87 ...]

A 'less restricted' version of classical shortest path problem

What if feasible shortest path is too long?

A 'less restricted' version of classical shortest path problem

What if feasible shortest path is too long?

Optimization Problem with constraints that can be violated

A 'less restricted' version of classical shortest path problem What if feasible shortest path is too long?

Optimization Problem with constraints that can be violated

⇒ Robot Motion Planning

For example, obstacles are doors that can be opened

A 'less restricted' version of classical shortest path problem What if feasible shortest path is too long?

Optimization Problem with constraints that can be violated

- ⇒ Robot Motion Planning
 For example , obstacles are doors that can be opened
- ⇒ Path Planning
 Paying for a toll bridge vs a longer route?

A 'less restricted' version of classical shortest path problem What if feasible shortest path is too long?

Optimization Problem with constraints that can be violated

- ⇒ Robot Motion Planning
 For example , obstacles are doors that can be opened
- ⇒ Path Planning
 Paying for a toll bridge vs a longer route?
- ⇒ Geometric Network Augmentation
 Removing Obstacles ≡ Adding Edges to Visibility Graph

Key Idea: Shortest k-path turns only at obstacle vertices

Key Idea: Shortest k-path turns only at obstacle vertices

Construct k-visibility graph G_k

Key Idea: Shortest k-path turns only at obstacle vertices

Construct k-visibility graph G_k

- $-\overline{pq}$ is an edge if it crosses $\leq k$ obstacles
- Label edges with crossing number
- Weight of an edge is its Euclidean length

O(n) vertices; $O(n+h^2)$ edges

Key Idea: Shortest k-path turns only at obstacle vertices

Construct k-visibility graph G_k

- $-\overline{pq}$ is an edge if it crosses $\leq k$ obstacles
- Label edges with crossing number
- Weight of an edge is its Euclidean length

O(n) vertices; $O(n+h^2)$ edges

Find shortest s-t path such that sum of labels on its edges is $\leq k$

Transform G_k to G'_k

-k copies of each vertex

Transform G_k to G'_k

- -k copies of each vertex
- For edge (u, v) with j crossings

 Add edges $(u_0, v_j), (u_1, v_{j+1}) \ldots (u_{k-j}, v_k)$
- Connect s,t to all respective copies in G_k^\prime

Transform G_k to G'_k

- -k copies of each vertex
- For edge (u, v) with j crossings
 Add edges $(u_0, v_j), (u_1, v_{j+1}) \ldots (u_{k-j}, v_k)$
- Connect s,t to all respective copies in G'_k

Find shortest path from s to t in this transformed graph

Transform G_k to G'_k

- -k copies of each vertex
- For edge (u, v) with j crossings

 Add edges $(u_0, v_j), (u_1, v_{j+1}) \ldots (u_{k-j}, v_k)$
- Connect s,t to all respective copies in G'_k

Find shortest path from s to t in this transformed graph

 $O(kn^2)$ worst case using Dijkstra's Algorithm

Simulates propagation of unit-speed wavefront starting at \boldsymbol{s}

Wavefront at time $T \equiv \operatorname{all}$ points at distance T from s

Simulates propagation of unit-speed wavefront starting at s

Wavefront turns at obstacle vertices

Adds new wavelet identified by its source (v, δ)

Simulates propagation of unit-speed wavefront starting at s

- Wavefront turns at obstacle vertices
- Reaches t by a shortest path

Adds new wavelet identified by its source (v, δ)

Simulates propagation of unit-speed wavefront starting at s

- Wavefront turns at obstacle vertices
- Reaches t by a shortest path
- Challenge is to keep track of events

Wavelet-Obstacle collisions Wavelet-Wavelet collisions

Simulates propagation of unit-speed wavefront starting at s

- Wavefront turns at obstacle vertices
- Reaches t by a shortest path
- Challenge is to keep track of events Wavelet-Obstacle collisions Wavelet-Wavelet collisions

Shortest Path Map (SPM)

- Computes a planar subdivision of P: Shortest Path Map

 $O(n \log n)$ algorithm known [Hershberger-Suri, '97]

Simulates propagation of unit-speed wavefront starting at s

- Wavefront turns at obstacle vertices
- Reaches t by a shortest path
- Challenge is to keep track of events
 Wavelet-Obstacle collisions
 Wavelet-Wavelet collisions

- Computes a planar subdivision of P: Shortest Path Map

 $O(n \log n)$ algorithm known [Hershberger-Suri, '97]

Works because of one key property of shortest 0-paths

Simulates propagation of unit-speed wavefront starting at s

If they did, can locally reconnect to obtain a shorter path

Shortest 0-paths do not cross each other

Works because of one key property of shortest 0-paths

Simulates propagation of unit-speed wavefront starting at s

If they did, can locally reconnect to obtain a shorter path

Shortest 0-paths do not cross each other

NOT true for shortest k-paths for k > 0

Works because of one key property of shortest 0-paths

Shortest *k*-Paths may Cross!

Shortest k-Paths may Cross!

Shortest *k*-Paths may Cross!

→ Shortest 0-path: $D + 2\sqrt{2} + 2\delta$

Shortest 0-path: $D + 2\sqrt{2} + 2\delta$

→ Shortest 2-path: $D + 2\sqrt{2}$

Shortest 0-path: $D + 2\sqrt{2} + 2\delta$

Shortest 2-path: $D + 2\sqrt{2}$

→ 1-path crossing obstacle in upper group $> D + 2\sqrt{2} + 3\delta/2$

Setting $D=10,\,\delta=0.4$ makes this path shortest 1-path

Shortest 0-path: $D + 2\sqrt{2} + 2\delta$

Shortest 2-path: $D + 2\sqrt{2}$

1-path crossing obstacle in upper group $> D + 2\sqrt{2} + 3\delta/2$

→ Shortest 1-path crossing obstacle in lower group : $2\sqrt{2} + \sqrt{D^2 + 4} + \delta$

Cross obstacle in other lower group

Shortest 0-path: $D + 2\sqrt{2} + 2\delta$

Shortest 2-path: $D + 2\sqrt{2}$

1-path crossing obstacle in upper group $> D + 2\sqrt{2} + 3\delta/2$

→ Shortest 1-path crossing obstacle in lower group : $2\sqrt{2} + \sqrt{D^2 + 4} + \delta$

Observation

Prefix of crossing k-paths cross different number of obstacles

Observation

Prefix of crossing k-paths cross different number of obstacles

k-Paths as Non-crossing Subpaths

Prefix count of a k-path π_k at some point p on π_k

 \equiv Number of obstacles crossed by subpath of π_k until p

k-Paths as Non-crossing Subpaths

Prefix count of a k-path π_k at some point p on π_k

 \equiv Number of obstacles crossed by subpath of π_k until p

If they did, can locally reconnect to obtain a shorter k-path

Subpaths with same prefix count do not cross!

k-Paths as Non-crossing Subpaths

Prefix count of a k-path π_k at some point p on π_k

 \equiv Number of obstacles crossed by subpath of π_k until p

If they did, can locally reconnect to obtain a shorter k-path

Subpaths with same prefix count do not cross!

Use this to 'separate' relevant k-paths with different prefix counts and apply Continuous Dijkstra.

- Stack (k+1) copies of P

– Stack (k+1) copies of P Connect at corresponding vertices

- Stack (k+1) copies of P Connect at corresponding vertices

Paths ascend floors by going inside obstacles (elevators)

– Stack (k+1) copies of P Connect at corresponding vertices

- Paths ascend floors by going inside obstacles (elevators)
- Floors correspond to prefix counts

All paths reaching floor i have the prefix count $i \Rightarrow$ non-crossing

- Stack (k+1) copies of PConnect at corresponding vertices

- Paths ascend floors by going inside obstacles (elevators)
- Floors correspond to prefix counts

All paths reaching floor i have the prefix count $i \Rightarrow$ non-crossing Propagate wavefronts across floors starting at s

- Stack (k+1) copies of PConnect at corresponding vertices

- Paths ascend floors by going inside obstacles (elevators)
- Floors correspond to prefix counts

All paths reaching floor i have the prefix count $i \Rightarrow$ non-crossing Propagate wavefronts across floors starting at s

– Stack (k+1) copies of P Connect at corresponding vertices

Wavelets move up floors by entering obstacles

- Paths ascend floors by going inside obstacles (elevators)
- Floors correspond to prefix counts

All paths reaching floor i have the prefix count $i \Rightarrow$ non-crossing Propagate wavefronts across floors starting at s

– Stack (k+1) copies of P Connect at corresponding vertices

- Paths ascend floors by going inside obstacles (elevators)
- Floors correspond to prefix counts

All paths reaching floor i have the prefix count $i \Rightarrow$ non-crossing Propagate wavefronts across floors starting at s

- Stack (k+1) copies of PConnect at corresponding vertices

Continue wavefront propagation as usual

- Paths ascend floors by going inside obstacles (elevators)
- Floors correspond to prefix counts

All paths reaching floor i have the prefix count $i \Rightarrow$ non-crossing Propagate wavefronts across floors starting at s

– Stack (k+1) copies of ${\cal P}$ Connect at corresponding vertices

- Paths ascend floors by going inside obstacles (elevators)
- Floors correspond to prefix counts

All paths reaching floor i have the prefix count $i \Rightarrow$ non-crossing Propagate wavefronts across floors starting at s

- Planar subdivision at floor k is shortest (=k)-path map $SPM_{=k}$.

For wavefront propagation at floor i, sources from floor i-1 suffice

For wavefront propagation at floor i, sources from floor i-1 suffice

Why?

For wavefront propagation at floor i, sources from floor i-1 suffice

Why? Path Decomposition

For wavefront propagation at floor i, sources from floor i-1 suffice

Why? Path Decomposition

Shortest k-path can be decomposed into

Shortest 0-Path

Prefix count : k

For wavefront propagation at floor i, sources from floor i-1 suffice

Why? Path Decomposition

Shortest k-path can be decomposed into

- Shortest 0-Path
- Segment inside an obstacle

Prefix count : (k-1)

For wavefront propagation at floor i, sources from floor i-1 suffice

Why? Path Decomposition

Shortest k-path can be decomposed into

- Shortest 0-Path
- Segment inside an obstacle
- Shortest (k-1)-path

Decompose recursively into 2k-1 disjoint subpaths

Partition of *free space* into regions with same k-predecessor

Partition of *free space* into regions with same k-predecessor

- Identify k-predecessor of p as (v,i)

v is adjacent to p on $\pi_k(p)$ and \overline{vp} crosses (k-i) obstacles

Partition of *free space* into regions with same k-predecessor

- Identify k-predecessor of p as (v,i)

v is adjacent to p on $\pi_k(p)$ and \overline{vp} crosses (k-i) obstacles

(v,0) is 1-predecessor of p

Partition of *free space* into regions with same k-predecessor

- Identify k-predecessor of p as (v,i)

v is adjacent to p on $\pi_k(p)$ and \overline{vp} crosses (k-i) obstacles

$$|\pi_k(p)| = |\pi_i(v)| + |\overline{vp}|$$

(v,0) is 1-predecessor of p

Partition of *free space* into regions with same k-predecessor

- Identify k-predecessor of p as (v,i)

v is adjacent to p on $\pi_k(p)$ and \overline{vp} crosses (k-i) obstacles

$$|\pi_k(p)| = |\pi_i(v)| + |\overline{vp}|$$

Total O(kn) predecessors

(v,0) is 1-predecessor of p

Partition of *free space* into regions with same k-predecessor

- Identify k-predecessor of p as (v,i)

v is adjacent to p on $\pi_k(p)$ and \overline{vp} crosses (k-i) obstacles

$$|\pi_k(p)| = |\pi_i(v)| + |\overline{vp}|$$

Total O(kn) predecessors

$$\not\Rightarrow O(kn)$$
 regions

Multiple regions can have the same k-predecessor

Partition of *free space* into regions with same k-predecessor

- Identify k-predecessor of p as (v,i)

v is adjacent to p on $\pi_k(p)$ and \overline{vp} crosses (k-i) obstacles

$$|\pi_k(p)| = |\pi_i(v)| + |\overline{vp}|$$

Total O(kn) predecessors

$$\not\Rightarrow O(kn)$$
 regions

Multiple regions can have the same k-predecessor

- Comprises of two distinct regions

 V_{k-1} region visible from s by crossing fewer than k obstacles

Computing Shortest k-path map (SPM_k)

Partition of *free space* into regions with same k-predecessor

- Identify k-predecessor of p as (v,i)

v is adjacent to p on $\pi_k(p)$ and \overline{vp} crosses (k-i) obstacles

$$|\pi_k(p)| = |\pi_i(v)| + |\overline{vp}|$$

Total O(kn) predecessors

$$\Rightarrow O(kn)$$
 regions

Multiple regions can have the same k-predecessor

Comprises of two distinct regions

 V_{k-1} region visible from s by crossing fewer than k obstacles $SPM_{=k}$ Rest of free space

Computes both V_{k-1} and $SPM_{=k}$ one level at a time

Computes both V_{k-1} and $SPM_{=k}$ one level at a time

Uses algorithm by Hershberger and Suri for wavefront propagation

Computes both V_{k-1} and $SPM_{=k}$ one level at a time

Uses algorithm by Hershberger and Suri for wavefront propagation

Can be adapted to handle boundary sources

Computes both V_{k-1} and $SPM_{=k}$ one level at a time

Uses algorithm by Hershberger and Suri for wavefront propagation

Can be adapted to handle boundary sources

Propagate wavefront

⇒ At each garage floor

Computes both V_{k-1} and $SPM_{=k}$ one level at a time

Uses algorithm by Hershberger and Suri for wavefront propagation

Can be adapted to handle boundary sources

Propagate wavefront

- ⇒ At each garage floor
- ⇒ Inside the obstacles (elavators)

Computes both V_{k-1} and $SPM_{=k}$ one level at a time

Uses algorithm by Hershberger and Suri for wavefront propagation

Can be adapted to handle boundary sources

Propagate wavefront

- ⇒ At each garage floor
- ⇒ Inside the obstacles (elavators)

Computes both V_{k-1} and $SPM_{=k}$ one level at a time

Uses algorithm by Hershberger and Suri for wavefront propagation

Can be adapted to handle boundary sources

Propagate wavefront

- ⇒ At each garage floor
- ⇒ Inside the obstacles (elavators)

1. Set $M = \{s\}$ and $V = \emptyset$.

Sources passed to HS-algorithm

1. Set $M=\{s\}$ and $V=\emptyset$.

Visibility region V_{i-1}

1. Set $M=\{s\}$ and $V=\emptyset$. Call HS-algorithm to compute SPM_0

Sources claim intervals on domain boundary

- 1. Set $M=\{s\}$ and $V=\emptyset$. Call HS-algorithm to compute SPM_0
- 2. For $i \in {1, 2, ..., k}$

Sources claim intervals on domain boundary

1. Set $M=\{s\}$ and $V=\emptyset$. Call HS-algorithm to compute SPM_0

2. For $i \in {1, 2, ..., k}$

'Boundary sources' for propagation within obstacles

 \Rightarrow Propagate 'claims' in SPM_{i-1} inside the obstacles

1. Set $M=\{s\}$ and $V=\emptyset$. Call HS-algorithm to compute SPM_0

2. For $i \in {1, 2, ..., k}$

Boundary sources for next level

 \Rightarrow Propagate 'claims' in SPM_{i-1} inside the obstacles Gives new boundary sources say M_{new}

1. Set $M=\{s\}$ and $V=\emptyset$. Call HS-algorithm to compute SPM_0

2. For
$$i \in {1, 2, ..., k}$$

- \Rightarrow Propagate 'claims' in SPM_{i-1} inside the obstacles Gives new boundary sources say M_{new}
- \Rightarrow Drop regions of SPM_{i-1} with s as predecessor from P k-visible from s, include this region to V.

1. Set $M=\{s\}$ and $V=\emptyset$. Call HS-algorithm to compute SPM_0

Continue propagation with new sources

- 2. For $i \in {1, 2, ..., k}$
 - \Rightarrow Propagate 'claims' in SPM_{i-1} inside the obstacles Gives new boundary sources say M_{new}
 - \Rightarrow Drop regions of SPM_{i-1} with s as predecessor from P k-visible from s, include this region to V.
 - \Rightarrow With M as M_{new} , call HS-algorithm on P to compute $SPM_{=i}$.

- 1. Set $M=\{s\}$ and $V=\emptyset$. Call HS-algorithm to compute SPM_0
- t

2. For $i \in {1, 2, ..., k}$

- Continue propagation with new sources
- \Rightarrow Propagate 'claims' in SPM_{i-1} inside the obstacles Gives new boundary sources say M_{new}
- \Rightarrow Drop regions of SPM_{i-1} with s as predecessor from P k-visible from s, include this region to V.
- \Rightarrow With M as M_{new} , call HS-algorithm on P to compute $SPM_{=i}$.
- 3. At this point we have V as V_{k-1} and $SPM_{=k}$. Merge them to obtain SPM_k

If S_i is the size of SPM_i

Total Running time
$$= \sum_{i=1,2,...k} O(S_i \log S_i)$$

If S_i is the size of SPM_i

Total Running time =
$$\sum_{i=1,2,...k} O(S_i \log S_i)$$

Calls HS-Algorithm

If S_i is the size of SPM_i

Total Running time
$$= \sum_{i=1,2,...k} O(S_i \log S_i)$$

$$\leq O(k \cdot S_k \log S_k)$$

If S_i is the size of SPM_i

Total Running time
$$= \sum_{i=1,2,...k} O(S_i \log S_i)$$

$$\leq O(k \cdot S_k \log S_k)$$

Compute an upper bound on size of SPM_k

Bound sizes of V_{k-1} and $SPM_{=k}$

Region V_0

Region V_1

Region V_2

The number of edges on boundary of V_k is O(n+h)

Vertex on ∂V_k is an obstacle vertex or projection of a tangent

The number of edges on boundary of V_k is O(n+h)

Vertex on ∂V_k is an obstacle vertex or projection of a tangent

at most n

at most 2h

The number of edges on boundary of V_k is O(n+h)

Vertex on ∂V_k is an obstacle vertex or projection of a tangent at most n at most 2h

Total complexity summed over all ∂V_i for $0 \le i \le k$ is O(n + hk)

Complexity of a map with m sources and n vertices is O(m+n)

Complexity of a map with m sources and n vertices is O(m+n)

 $SPM_{=k}$ may contain sources for wavelets from lower floor

Complexity of a map with m sources and n vertices is O(m+n)

 $SPM_{=k}$ may contain sources for wavelets from lower floor

Complexity of a map with m sources and n vertices is O(m+n)

 $SPM_{=k}$ may contain sources for wavelets from lower floor

Complexity of a map with m sources and n vertices is O(m+n)

 $SPM_{=k}$ may contain sources for wavelets from lower floor

boundary sources: wavefront travel to obstacle boundary by ascending one or more elevators

Complexity of a map with m sources and n vertices is O(m+n)

 $SPM_{=k}$ may contain sources for wavelets from lower floor

boundary sources: wavefront travel to obstacle boundary by ascending one or more elevators

Need to bound the number of such sources at each level

Complexity of $SPM_{=k}$: Boundary Sources

Boundary sources on level i are created by 'claims' at level i-1 when propagated inside the obstacle

Complexity of $SPM_{=k}$: Boundary Sources

Boundary sources on level i are created by 'claims' at level i-1 when propagated inside the obstacle

Two types of claims

– On the same edge : Entry Claim Cluster

Complexity of $SPM_{=k}$: Boundary Sources

Boundary sources on level i are created by 'claims' at level i-1 when propagated inside the obstacle

 (v,δ,ℓ)

Two types of claims

- On the same edge: Entry Claim Cluster
- On another edge: Exit Claim Cluster

Complexity of $SPM_{=k}$: Boundary Sources

Boundary sources on level i are created by 'claims' at level i-1 when propagated inside the obstacle

Two types of claims

- On the same edge: Entry Claim Cluster
- On another edge : Exit Claim Cluster

Only exit claims need to be propagated inside obstacles

Lemma : The total number of exit claim clusters obtained by propagating m boundary sources in a domain is m+O(n)

Lemma : The total number of exit claim clusters obtained by propagating m boundary sources in a domain is m+O(n)

Proof sketch:

Connect exit claims of each of the m sources

Lemma : The total number of exit claim clusters obtained by propagating m boundary sources in a domain is m + O(n)

Proof sketch:

Connect exit claims of each of the m sources

Claims are non-crossing as k-paths at same level are non-crossing

Lemma : The total number of exit claim clusters obtained by propagating m boundary sources in a domain is m+O(n)

Proof sketch:

Connect exit claims of each of the m sources

Claims are non-crossing as k-paths at same level are non-crossing

With a planarity based 'technical' argument, we get the said bound

The complexity of SPM_k is O(kn)

The complexity of SPM_k is O(kn)

We construct SPM_k inductively one level at a time

The complexity of SPM_k is O(kn)

We construct SPM_k inductively one level at a time

If m is the number of sources at level i-1

The complexity of SPM_k is O(kn)

We construct SPM_k inductively one level at a time

If m is the number of sources at level i-1

m' = m + O(n) sources for propagation inside obstacles

By Previous Lemma

The complexity of SPM_k is O(kn)

We construct SPM_k inductively one level at a time

If m is the number of sources at level i-1

m' = m + O(n) sources for propagation inside obstacles

m'' = m' + O(n) sources for propagation at level i

By Previous Lemma

The complexity of SPM_k is O(kn)

We construct SPM_k inductively one level at a time

If m is the number of sources at level i-1

m' = m + O(n) sources for propagation inside obstacles

m'' = m' + O(n) sources for propagation at level i

By Previous Lemma

Number of sources at level k

The complexity of SPM_k is O(kn)

We construct SPM_k inductively one level at a time

If m is the number of sources at level i-1

m' = m + O(n) sources for propagation inside obstacles

m'' = m' + O(n) sources for propagation at level i

By Previous Lemma

Number of sources at level k

$$n + Cn + Cn + \ldots + Cn$$

k times, one per level; C is some constant

Computing SPM_k : Running Time

If S_i is the size of SPM_i

Total Running time
$$= \sum_{i=1,2,...k} O(S_i \log S_i)$$

$$\leq O(k \cdot S_k \log S_k)$$

Computing SPM_k : Running Time

If S_i is the size of SPM_i

Total Running time
$$= \sum_{i=1,2,...k} O(S_i \log S_i)$$

$$\leq O(k \cdot S_k \log S_k)$$

Theorem: SPM_k can be computed in $O(k^2n\log n)$ total time and $O(kn\log n)$ space

Can have at most k-i crossings before y^*

Can have at most k-i crossings before y^*

⇒ Each barrier creates one region to its right

Can have at most k-i crossings before y^*

⇒ Each barrier creates one region to its right

Creates $\Theta(n)$ sub-regions for every such region

k-path from s to y^* can have 0 to k crossings

k-path from s to y^* can have 0 to k crossings j crossings $\Rightarrow (k-j)$ detours

k-path from s to y^* can have 0 to k crossings j crossings $\Rightarrow (k-j)$ detours

k-path from s to y^* can have 0 to k crossings

 $j \text{ crossings} \Rightarrow (k-j) \text{ detours}$

Total $\Theta(k)$ regions per splitter opening, $\Theta(kn)$ regions in total.

 \Rightarrow Study the problem of Shortest paths that violate $\leq k$ obstacles

- \Rightarrow Study the problem of Shortest paths that violate $\leq k$ obstacles
- \Rightarrow Simple $O(kn^2)$ algorithm using visibility graphs

- \Rightarrow Study the problem of Shortest paths that violate $\leq k$ obstacles
- \Rightarrow Simple $O(kn^2)$ algorithm using visibility graphs
- \Rightarrow Decompose shortest k-paths into non-crossing subpaths

- \Rightarrow Study the problem of Shortest paths that violate $\leq k$ obstacles
- \Rightarrow Simple $O(kn^2)$ algorithm using visibility graphs
- \Rightarrow Decompose shortest k-paths into non-crossing subpaths

Use number of obstacles crossed by prefix path

- \Rightarrow Study the problem of Shortest paths that violate $\leq k$ obstacles
- \Rightarrow Simple $O(kn^2)$ algorithm using visibility graphs
- \Rightarrow Decompose shortest k-paths into non-crossing subpaths

Use number of obstacles crossed by prefix path Segregate relevant sub-paths on floors of k-garage

- \Rightarrow Study the problem of Shortest paths that violate $\leq k$ obstacles
- \Rightarrow Simple $O(kn^2)$ algorithm using visibility graphs
- \Rightarrow Decompose shortest k-paths into non-crossing subpaths

 Use number of obstacles crossed by prefix path

 Segregate relevant sub-paths on floors of k-garage
- \Rightarrow Apply Continuous Dijkstra at each floor with O(kn) sources

- \Rightarrow Study the problem of Shortest paths that violate $\leq k$ obstacles
- \Rightarrow Simple $O(kn^2)$ algorithm using visibility graphs
- \Rightarrow Decompose shortest k-paths into non-crossing subpaths

 Use number of obstacles crossed by prefix path

 Segregate relevant sub-paths on floors of k-garage
- \Rightarrow Apply Continuous Dijkstra at each floor with O(kn) sources
- \Rightarrow Establish a tight bound of $\Theta(kn)$ on size of map SPM_k .

- \Rightarrow Study the problem of Shortest paths that violate $\leq k$ obstacles
- \Rightarrow Simple $O(kn^2)$ algorithm using visibility graphs
- \Rightarrow Decompose shortest k-paths into non-crossing subpaths

 Use number of obstacles crossed by prefix path

 Segregate relevant sub-paths on floors of k-garage
- \Rightarrow Apply Continuous Dijkstra at each floor with O(kn) sources
- \Rightarrow Establish a tight bound of $\Theta(kn)$ on size of map SPM_k .
- \Rightarrow Running time is $O(kn\log n)$ per floor, $O(k^2n\log n)$ total.

- \Rightarrow Study the problem of Shortest paths that violate $\leq k$ obstacles
- \Rightarrow Simple $O(kn^2)$ algorithm using visibility graphs
- \Rightarrow Decompose shortest k-paths into non-crossing subpaths

 Use number of obstacles crossed by prefix path

 Segregate relevant sub-paths on floors of k-garage
- \Rightarrow Apply Continuous Dijkstra at each floor with O(kn) sources
- \Rightarrow Establish a tight bound of $\Theta(kn)$ on size of map SPM_k .
- \Rightarrow Running time is $O(kn\log n)$ per floor, $O(k^2n\log n)$ total.

Thanks!