E(-1000, 2000)

Opening

CSCI 3022 Intro to Data Science Regression Inference

- Lne /

Consider the graph below. Do either of the candidate "best fit" lines violate the 4 big assumptions?

Announcements and Reminders

- ▶ I forgot to post the minute forms :(. How are you?
- Home stretch! About 4 weeks left, (3 of lecture) with one thing per week! HW 6 and 7 are short and shorter, respectively. Exam 2 follows. Practicum 2 is due at the end of our scheduled "final exam slot."
- ▶ We will drop *two* homeworks, not one. Since I said that on a Piazza post. (Oops?... but not really)
- Notebook day Wednesday, this week

Do either of the candidate "best fit" lines violate the 4 big assumptions? One thing to do: plot the errors as a function of X:

Errors are the values given by "data minus estimated line." Black line the errors clump and move up/down as X moves left-right.

Blue line the errors increase in $\emph{magnitude}$ as X goes right.

We've looked at the following test statistics for hypothesis testing.

1. To compare proportions against a baseline or against each other, we use Z-statistics.

$$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \ \mathbf{OR} \ \frac{(\hat{p_1} - \hat{p_2}) - \Delta_0}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n_1} + \frac{\hat{p}(1 - \hat{p})}{n_2}}}$$

2. To compare means when the samples are large **or** underlying normal with *known* variances, we also use Z-statistics.

$$\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \ \ \mathbf{OR} \ \frac{\bar{X} - \mu_0}{s/\sqrt{n}} \ \ \mathbf{OR} \ \frac{\left(\bar{X} - \bar{Y}\right) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \ \ \mathbf{OR} \ \frac{\left(\bar{X} - \bar{Y}\right) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{m}}}$$

3. To compare means when the samples are small ${\bf and}$ underlying normal, we use t-statistics.

$$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} \ \ \mathbf{OR} \ \frac{\left(\bar{X} - \bar{Y}\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{m}}}$$

Definition: Simple Linear Regression (SLR)

The Simple Linear Regression model is a model of the form

With 3 assumptions on ε :

Definition: Simple Linear Regression (SLR)

The Simple Linear Regression model is a model of the form

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

With 3 assumptions on ε :

Definition: Simple Linear Regression (SLR)

The Simple Linear Regression model is a model of the form

1.

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

With 3 assumptions on ε :

$$\mathsf{Cov}[arepsilon_i, arepsilon_j] = 0 \qquad orall i,$$
 bendence of errors

Independence of errors

Definition: Simple Linear Regression (SLR)

The Simple Linear Regression model is a model of the form

1.

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

With 3 assumptions on ε :

2

$$\mathsf{Cov}[\varepsilon_i, \varepsilon_j] = 0 \qquad \forall i, j$$

Independence of errors

3.

$$Var(\varepsilon_i) = \sigma^2 \qquad \forall \epsilon$$

Homoskedasticity of errors

Definition: Simple Linear Regression (SLR)

The Simple Linear Regression model is a model of the form

1.

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

With 3 assumptions on ε :

2

$$\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0 \quad \forall i, j$$

Independence of errors

3.

$$Var(\varepsilon_i) = \sigma^2 \qquad \forall i$$

Homoskedasticity of errors

4.

Simple Linear Regression Model

The β estimators in the model are:

1.
$$\hat{\beta_0} = \bar{Y} - \hat{\beta_1} \bar{X}$$

2.
$$\hat{\beta}_1 = \frac{Cov[X,Y]}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

best line = least-squares

data distance from data

Yi- (Bot B, Xi) j

Important Terminology:

- > x: the independent variable, predictor, or explanatory variable (usually known). x is not random.
- ightharpoonup Y: The dependent variable or response variable. For fixed x, Y is random. $ightharpoonup
 ho_s +
 ho_s$
- ightharpoonup ε : The random deviation or random error term. For fixed x, ε is random. Has variance σ^2 .
- > β: the regression coefficients. (GOAL, how does x help predict y)
- r: the *residuals* or observed errors. Used to estimate σ^2 .

Definitions:

stimating SLR Parameters

Vi: "Ync" y - value

Definitions:

1. The fitted (or predicted) values are obtained by plugging in X; to the equation of the estimated regression line:

2. The residuals are the differences between the observed and fitted y values:

Residuals are estimates of the true error. Why?
$$Y_i = (3i + 3i)$$

Definitions:

1. The fitted (or predicted) values $\underline{\hat{Y}_i}$ are obtained by plugging in $\underline{\hat{X}_i}$ to the equation of the estimated regression line:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

2. The *residuals* are the differences between the observed and fitted y values:

Definitions:

1. The *fitted (or predicted) values* __ are obtained by plugging in __ to the equation of the estimated regression line:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

2. The *residuals* are the differences between the observed and fitted y values:

$$\hat{\varepsilon_i} = r_i = \hat{e_I} = Y_i - \hat{Y_i} = Y_i - \hat{\beta_0} + \hat{\beta_1} X_i$$

Definitions:

1. The *fitted (or predicted) values* __ are obtained by plugging in __ to the equation of the estimated regression line:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

2. The *residuals* are the differences between the observed and fitted y values:

$$\hat{\varepsilon_i} = r_i = \hat{e_I} = Y_i - \hat{Y_i} = Y_i - \hat{\beta_0} + \hat{\beta_1} X_i$$

Residuals are estimates of the true error. Why?

We don't have the true values of β_0, β_1 , so when we estimate them we get variance and error in our estimates.

Estimating SLR Parameters: Results

For a model of the form $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$; $\varepsilon \sim N(0, \sigma^2)$

1.
$$\hat{\beta_0} =$$

2.
$$\hat{\beta_1} =$$

What happens if $\beta_0 \approx 0$? If $\beta_1 \approx 0$?

Estimating SLR Parameters: Results

For a model of the form $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$; $\varepsilon \sim N(0, \sigma^2)$

1.
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

2.
$$\hat{\beta}_1 = \frac{Cov[X,Y]}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

What happens if $\beta_0 \approx 0$? If $\beta_1 \approx 0$?

Estimating SLR Parameters: Results

9-40= m(x-x0)

line though (xo, yo). Slope m For a model of the form $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$; $\varepsilon \sim N(0, \sigma^2)$

1.
$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1}\overline{X}$$

$$Y \cdot \beta_{0} + \beta_{1}X = \overline{Y} - \beta_{1}\overline{X}$$
2. $\hat{\beta}_{1} = \frac{Cov[X,Y]}{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}} = \frac{\sum_{i=1}^{n}(X_{i}-\overline{X})(Y_{i}-\overline{Y})}{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}}$

$$y \cdot \overline{Y} = \hat{\beta}_{1}(X - \overline{X})$$

What happens if $\beta_0 \approx 0$? If $\beta_1 \approx 0$?

One result: the regression line goes through $(0,\underline{\beta}_0)$. It also goes through $(\bar{X},\bar{Y})!$

Spring 2021

Definitions:

1. The *fitted (or predicted) values* __ are obtained by plugging in __ to the equation of the estimated regression line:

2. The *residuals* are the differences between the observed and fitted y values:

Definitions:

1. The fitted (or predicted) values $\underline{\hat{Y}_i}$ are obtained by plugging in $\underline{\hat{X}_i}$ to the equation of the estimated regression line:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

2. The *residuals* are the differences between the observed and fitted y values:

Definitions:

2. The residuals are the differences between the observed and fitted y values:

Definitions:

1. The *fitted (or predicted) values* __ are obtained by plugging in __ to the equation of the estimated regression line:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

2. The *residuals* are the differences between the observed and fitted y values:

$$\hat{\varepsilon_i} = r_i = \hat{e_I} = Y_i - \hat{Y_i} = Y_i - \hat{\beta_0} + \hat{\beta_1} X_i$$

Residuals are estimates of the true error. Why?

We don't have the true values of β_0, β_1 , so when we estimate them we get variance and error in our estimates.

Estimating SLR Parameters: $\sigma^2 \approx (\varepsilon)^2 e_{rrors}$

The parameter σ^2 determines the amount of spread about the true regression line. Two separate examples:

An estimate of σ^2 will be used in confidence interval formulas and hypothesis testing procedures presented in the next days. Recall that the residual sum of squares or sum of squared errors (SSE) is:

SSE=
$$\begin{cases} SSE & \text{of Squard} \\ SSE & \text{of } Squard \\ SSE & \text{of } Squard \\ S$$

 $(\hat{y}_{i} - \hat{y}_{i})$ $(\hat{y}_{i} - \hat{y}_{i})$ $(\hat{y}_{i} - \hat{y}_{i})$

So, our estimate of the variance of the model is like a measure for an average of this summand:

An estimate of σ^2 will be used in confidence interval formulas and hypothesis testing procedures presented in the next days. Recall that the residual sum of squares or sum of squared errors (SSE) is:

$$SSE = \sum (errors)^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i})^{2}$$

So, our estimate of the variance of the model is like a measure for an average of this summand:

An estimate of σ^2 will be used in confidence interval formulas and hypothesis testing procedures presented in the next days. Recall that the residual sum of squares or sum of squared errors (SSE) is:

$$SSE = \sum (errors)^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i})^{2}$$

So, our estimate of the variance of the model is like a measure for an average of this summand:

Wait, what? Why the n-2??

$$\hat{\sigma^2} = \frac{SSE}{n-2}$$
Not $n = 1$

An estimate of σ^2 will be used in confidence interval formulas and hypothesis testing procedures presented in the next days. Recall that the residual sum of squares or sum of squared errors (SSE) is:

$$\mathsf{SSE} = \sum_{i=1}^n \left(Y_i - \hat{Y}_i\right)^2 = \sum_{i=1}^n \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i\right)^2$$
 So, our estimate of the variance of the model is like a measure for an average of this

summand:

Wait. what? Why the n-2?? These are again degrees of freedom.

Degrees of Freedom Intuition

Suppose you have 3 (random) points on the XY plane.

2. Can you draw a parabola through them?

3. Can you draw a cubic function through them?

- 4. Can you draw a quartic function through them?

Degrees of Freedom Intuition

Suppose you have 3 (random) points on the XY plane.

- Can you draw a line through them?
 It's very unlikely. In fact, for truly random (normal) points, this result has probability zero!
- Can you draw a parabola through them? Yes, but there's only one such parabola.
- 3. Can you draw a cubic function through them? Yes. Not only that, you could choose any one of a,b,c,d in the $ax^3+bx^2+cx+d=0$ and then solve for the others. You have **one degree of freedom**.
- 4. Can you draw a quartic function through them? Yes. Not only that, you could choose any two of a,b,c,d,e in the $ax^4 + bx^3 + cx^2 + dx + e = 0$ and then solve for the others. You have **two degrees of freedom**.

Degrees of Freedom

The takeaway?

One property of mathematical estimation: the more you estimate, the more you risk overfitting. In this model we've estimated **2** "means" $(\hat{\beta}_0, \hat{\beta}_1)$ before we got to σ , which "costs" us two degrees of freedom.

The more we estimate, the less options - degrees of freedom - we get for the remaining terms.

Some properties of our estimate:

1. The divisor n-2 in is the number of degrees of freedom (df) associated with SSE and $\hat{\sigma}^2$.

2. This is because to obtain $\hat{\sigma}^2$, two parameters must first be estimated, which results in a loss of 2 df.

3. Replacing each
$$y_i$$
 in the formula for $\hat{\sigma}^2$ by the r.v. Y_i gives a random variable. Yealing: Centr $\frac{1}{8}$ $\frac{1}$

4. It can be shown that the r.v. $\hat{\sigma}^2$ is an unbiased estimator for σ^2 .

The Coefficient of Determination

way innech

The residual sum of squares SSR can be interpreted as a measure of how much variation in y is left unexplained by the model—that is, how much cannot be attributed to a linear relationship. In the first plot, SSE=0, and there is no unexplained variation, whereas unexplained variation is small for second, and large for the third plot.

Picturing Sums of Squares

The goodness-of-fit of a regressive model is often decomposed into three components based on squared deviations. These are:

1. SSE: Sum of squared errors: (vertical) distances from the regression line to the data values.

2. SST: Sum of squares, total: total deviation in Y. Looks like Var[Y].

3. SSR: Sum of squares of regression line: the amount of variability tied to the model.

Picturing Sums of Squares

The goodness-of-fit of a regressive model is often decomposed into three components based on squared deviations. These are:

1. SSE: Sum of squared errors: (vertical) distances from the regression line to the data values.

$$\sum_{i} \left(\hat{Y} - Y_i \right)^2$$

2. SST: Sum of squares, total: total deviation in Y. Looks like Var[Y].

$$\sum_{i} (Y_i - \bar{Y})^2$$

3. SSR: Sum of squares of regression line: the amount of variability tied to the model.

$$\sum_{i} \left(\hat{Y}_{i} - \bar{Y} \right)^{2}$$

The Coefficient of Determination

The sum of squared deviations about the least squares line is smaller than the sum of squared deviations about any other line, i.e. SSE < SST unless the horizontal line itself is the least squares line.

The ratio SSE/SST is the proportion of total variation that cannot be explained by the simple linear regression model. The coefficient of determination is:

This coefficient is a number between 0 and 1 and is the proportion of observed y variation explained by the model.

The Coefficient of Determination

The sum of squared deviations about the least squares line is smaller than the sum of squared deviations about any other line, i.e. SSE < SST unless the horizontal line itself is the least squares line.

The ratio SSE/SST is the proportion of total variation that cannot be explained by the simple linear regression model. The coefficient of determination is:

$$R^2 = 1 - \underbrace{SSE}_{SST} = \underbrace{SSR}_{SST}$$

This coefficient is a number between 0 and 1 and is the proportion of observed y variation explained by the model.

The Coefficient of Determination

Again, \mathbb{R}^2 is the proportion of observed y variation explained by the model.

The higher the value of \mathbb{R}^2 , the more successful is the simple linear regression model in explaining y variation, assuming the linear model is correct.

The Coefficient of Determination

Again, \mathbb{R}^2 is the proportion of observed y variation explained by the model.

The higher the value of \mathbb{R}^2 , the more successful is the simple linear regression model in explaining y variation, assuming the linear model is correct.

Crucially, \mathbb{R}^2 is a measure of linear dependence between X and Y. If $\mathbb{R}^2=0$, X and Y may

still be related! Ex: $Y = X^2(+\varepsilon)$.

The parameters in SLR have distributions. From these distributions, we can conduct hypothesis tests (e.g., _____), compute confidence intervals, etc.

Distributions:

The parameters in SLR have distributions. From these distributions, we can conduct hypothesis tests (e.g., $\underline{H_0}$: $\beta_1=0$), compute confidence intervals, etc.

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}; \quad \hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

Distributions:

The parameters in SLR have distributions. From these distributions, we can conduct hypothesis tests (e.g., $\underline{H_0}$: $\beta_1 = 0$), compute confidence intervals, etc.

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}; \quad \hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

Distributions:

$$\hat{\beta}_0 \sim N \left(\beta_0, \frac{\sigma^2}{n} + \frac{\sigma^2 \bar{X}^2}{\left(X_i - \bar{X} \right)^2} \right)$$

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\left(X_i - \bar{X}\right)^2}\right)$$

... but of course, we don't know σ^2 , so we estimate with SSE/(n-2).

Confidence Intervals: The CIs for regression are two-sided, and because $\varepsilon \sim N(0, \sigma^2)$, we may use t statistics. Since we have written down the variances of the β s, we can also write down their standard errors:

$$s.e.(\hat{\beta}_0) = \sigma \sqrt{\frac{1}{n} \frac{\bar{X}^2}{(X_i - \bar{X})^2}}; \quad s.e.(\hat{\beta}_1) = \sigma \sqrt{\frac{1}{(X_i - \bar{X})^2}}$$

These lead to CIs of

where we replace σ with the estimate $s = \frac{SSE}{n-2}$

Confidence Intervals: The CIs for regression are two-sided, and because $\varepsilon \sim N(0, \sigma^2)$, we may use t statistics. Since we have written down the variances of the β s, we can also write down their standard errors:

$$s.e.(\hat{\beta}_0) = \sigma \sqrt{\frac{1}{n} \frac{\bar{X}^2}{(X_i - \bar{X})^2}}; \quad s.e.(\hat{\beta}_1) = \sigma \sqrt{\frac{1}{(X_i - \bar{X})^2}}$$

These lead to CIs of

$$\beta_i \in (\hat{\beta}_i \pm t_{\alpha/2, n-2} \cdot s.e.(\hat{\beta}_i))$$

where we replace σ with the estimate $s = \frac{SSE}{n-2}$

Confidence Intervals: The CIs for regression are two-sided, and because $\varepsilon \sim N(0, \sigma^2)$, we may use t statistics. Since we have written down the variances of the β s, we can also write down their standard errors:

$$s.e.(\hat{\beta}_0) = \sigma \sqrt{\frac{1}{n} \frac{\bar{X}^2}{\left(X_i - \bar{X}\right)^2}}; \qquad s.e.(\hat{\beta}_1) = \sigma \sqrt{\frac{1}{\left(X_i - \bar{X}\right)^2}}$$

These lead to CIs of

$$\beta_i \in (\hat{\beta}_i \pm t_{\alpha/2, n-2} \cdot s.e.(\hat{\beta}_i))$$

where we replace σ with the estimate $s=\frac{SSE}{n-2}$

Tests then result from comparing $t=\frac{\hat{\beta_i}}{s.e.(\hat{\beta_i})}$ to the corresponding critical t values for a one or two-tailed test.

Inferences about Y

There are more types on confidence intervals we may care about!

- 1. Last slide was how to perform inference on the **parameters** of the *line* β . We also might care about inference on values of Y!
- 2. A **confidence band** is how sure we are about the mean of Y at specific values of X, or E[Y|X].
- 3. A **prediction band** is how we estimate the distribution of new Y observations at specific values of X. It's the same as the confidence band, but also includes our estimate for ε . This is also known as a *forecast*.

Idea: If we want to **guess** the average $y=\beta_0+\beta_1 x$, (for a specified x) we have to combine our uncertainties for the β s. If we want to describe all the y's for a single value of x, we also would need to include the uncertainty $s^2\approx\sigma^2$ that accompanies ε .

See: nb accompanying lecture: SLR Prediction and Confidence

The usual inference:

The most common inference for linear regression is to answer the question "Does x affect y?" This is a hypothesis test asking about the value of the *slope* of the regression line. We have a CI for this of

$$\beta_1 \pm t_{\alpha/2,n-2} \cdot s.e.(\hat{\beta}_i)$$

where

$$s.e.(\hat{\beta_1}) = \sigma \sqrt{\frac{1}{\left(X_i - \bar{X}\right)^2}}$$

The corresponding hypothesis test is $t=\frac{\hat{\beta_i}}{s.e.(\hat{\beta_i})}$ with n=2 degrees of freedom. Two big things to notice

- 1. The error grows as σ grows: noisy/random data is harder to estimate.
- 2. The denominator *looks a lot* like the "standard deviation of x." We get more **confident** in our estimates if the predictor variable locations are spread out!

Daily Recap

Today we learned

1. Regression Inference!

Moving forward:

- nb day Friday

Next time in lecture:

- More Regression! More predictor!