PHYS 170

Week 8: Kinematics 2

Section 201 (Mon Wed Fri 12:00 – 13:00)

Exam: Thursday, March 9th, 6 pm

- Prepare a useful information sheet
 - ❖ 1 double-sided 8½ x 11 in hand-written sheet of your own notes
 - No sample problems or solutions. Can contain formulas, strategies, information...
 - Purpose: review and prioritization
 - You will hand it in, it won't be returned (make a copy?)

W7-5. The car is travelling at 25 m/s at A. The brakes are applied at and its speed is reduced by $t^{1/2}/4$ m/s² where t is in seconds.

- a) Determine how long it takes the car to travel from A to C.
- **b)** Determine the car's speed and acceleration when it reaches C.

$$s(t) = \left(25t - \frac{1}{15} \cdot t^{\frac{5}{2}}\right) = 200 + 130.9 \,\text{m}$$

$$v(t) = 25 - \frac{1}{6}t^{3/2} = 14.39 \frac{m}{s}$$

$$a_t(t) = -\frac{1}{4}\sqrt{t} = 0.988 \frac{m}{s^2}$$

$$a_t(t) = -\frac{1}{4}\sqrt{t} = 0.988 \frac{m}{s^2}$$
 $a_n(t) = \frac{v^2(t)}{\rho} = 0.8284 \frac{m}{s^2}$ $a = \sqrt{a_t^2 + a_n^2} = 1.30 \frac{m}{s^2}$

$$a = \sqrt{a_t^2 + a_n^2} = 1.30 \ \frac{m}{s^2}$$

Last Time

Polar Coordinates

Text: 12.8

Content:

- Polar and cylindrical coordinate systems
- Velocity and acceleration in polar coordinates
- Applications

POLAR COORDINATES

Polar coordinates: One more coordinate system, in which the particle "carries" the coordinate system with it

• We can characterize a point in 2D by two Cartesian components:

$$\vec{r} = r_x \vec{i} + r_y \vec{j}$$

• Another representation:

$$\vec{r} = (r\cos\theta)\vec{i} + (r\sin\theta)\vec{j}$$

• We can adopt r and θ as two new coordinates, and introduce the corresponding unit vectors, \vec{u}_r and \vec{u}_θ

POLAR COORDINATES

- Between two representation:
- $\triangleright \theta = \arctan(r_y/r_x) \qquad \triangleright r_y = r \sin \theta$

- Polar components are defined with the help of two numbers:
 - \triangleright Radial coordinate (r)
 - Angular coordinate (θ) , measured counterclockwise from some axis, usually the horizontal
- Polar unit vectors:
 - $ightharpoonup ec{u}_r$ (along r) and $ec{u}_{\theta}$ (perpendicular to $ec{u}_r$, in the direction of increasing θ).
- We can work out the following connections:

$$(\vec{u}_r)_x = \underline{u}_r \cdot \cos\theta$$
 $(\vec{u}_r)_y = \underline{u}_r \sin\theta$

Between the unit vectors of these two systems:

$$(\vec{u}_{\theta})_{x} = -\underline{u}_{\theta} \sin \theta \qquad (\vec{u}_{\theta}) = \underline{u}_{\theta} \cos \theta$$

$$\vec{u}_{r} = \cos \theta \vec{i} + \sin \theta \vec{j} \qquad \vec{i}$$

$$\vec{u}_{\theta} = -\sin \theta \vec{i} + \cos \theta \vec{j} \qquad \vec{j}$$

$$\vec{i} = \cos \theta \, \vec{u}_r - \sin \theta \, \vec{u}_\theta$$
$$\vec{j} = \sin \theta \, \vec{u}_r + \cos \theta \, \vec{u}_\theta$$

POLAR COORDINATES

$$\vec{u}_{\theta} = -\sin\theta \, \vec{i} + \cos\theta \, \vec{j}$$

$$\vec{u}_r = \cos\theta \, \vec{i} + \sin\theta \, \vec{j}$$

- Using these equations for \vec{u}_r and \vec{u}_{θ} , you can:
 - ightharpoonup Show that, indeed, $\vec{u}_r \perp \vec{u}_\theta$ (Hint: calculate $\vec{u}_r \cdot \vec{u}_\theta$)
 - Prove that:

$$\frac{d}{dt} \vec{u}_r = \frac{d}{dt} \left[\cos \theta \cdot \vec{i} + \sin \theta \vec{j} \right] = \left(\frac{d \cos \theta}{dt} \cdot \vec{i} + \cos \theta \vec{j} \right) + \left(\frac{d \sin \theta}{dt} \cdot \vec{j} + \sin \theta \vec{j} \right)$$
(*)

$$dt = \frac{1}{4t} + \frac{1}{3t} + \frac{1}$$

POLAR COORDINATES: \vec{r} , \vec{v} , \vec{a}

$$\dot{\vec{u}}_r = \dot{\theta}\vec{u}_\theta \qquad \dot{\vec{u}}_\theta = -\dot{\theta}\vec{u}_r \quad (*)$$

•
$$\vec{r} = r \cdot \vec{u}_r$$

•
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt}(\vec{r} \cdot \vec{u}_r) = \frac{d\vec{r}}{dt} \cdot \vec{u}_r + r \frac{d\vec{u}_r}{dt} = (\vec{r})\vec{u}_r + (r\dot{\theta})\vec{u}_{\theta}$$

•
$$\vec{a} = \frac{\vec{d}}{dt}\vec{v} = \frac{\vec{d}}{dt}\left[\dot{r}\vec{u}_r + r\dot{\theta}\vec{u}_{\theta}\right] = \left(\ddot{r}\vec{u}_r + \dot{r}\dot{\vec{u}}_r\right) + \left(\dot{r}\dot{\theta}\vec{u}_{\theta} + r\ddot{\theta}\vec{u}_{\theta} + r\dot{\theta}\vec{u}_{\theta}\right)$$

$$= \ddot{r}\vec{u}_r + \dot{r}\dot{\theta}\vec{u}_{\theta} + \dot{r}\dot{\theta}\vec{u}_{\theta} + r\ddot{\theta}\vec{u}_{\theta} + r\ddot{\theta}\vec{u}_{\theta} - r\dot{\theta}^2\vec{u}_r$$

$$= (\ddot{r} - r\dot{\theta}^2)\vec{u}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{u}_{\theta}$$

$$\vec{a}_r$$

POLAR COORDINATES: \vec{r} , \vec{v} , \vec{a} (Summary)

$$\dot{\vec{u}}_r = \dot{\theta}\vec{u}_{\theta}$$
 $\dot{\vec{u}}_{\theta} = -\dot{\theta}\vec{u}_r$ (*)

$$\vec{r} = r\vec{u}_r$$
 (1)

• ...and using (*) we can find \vec{v} and \vec{a} :

• Note that:

$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{r}\vec{u}_r + r\dot{\theta}\vec{u}_\theta \tag{2}$$

$$v = \sqrt{v_r^2 + v_\theta^2}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = (\ddot{r} - r\dot{\theta}^2)\vec{u}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{u}_{\theta}$$

0, 0, 0, 7, 7, 7

$$egin{align} v_r &= \dot{r}, & v_ heta &= r\dot{ heta} \ a_r &= \ddot{r} - r\dot{ heta}^2, & a_ heta &= r\ddot{ heta} + 2\dot{r}\dot{ heta} \ \end{pmatrix}$$

• Note that:

$$a = \sqrt{a_r^2 + a_\theta^2}$$

 $\dot{\theta}$ = angular velocity $\ddot{\theta}$ = angular acceleration

CYLINDRICAL COORDINATES

• Polar coordinates with a cartesian z-axis added:

$$\vec{r} = \rho \vec{u}_{\rho} + z \vec{k}$$

$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{\rho}\vec{u}_{\rho} + \rho\dot{\theta}\vec{u}_{\theta} + \dot{z}\vec{k}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = (\ddot{\rho} - \rho\dot{\theta}^2)\vec{u}_{\rho} + (\rho\ddot{\theta} + 2\dot{\rho}\dot{\theta})\vec{u}_{\theta} + \ddot{z}\vec{k}$$

DERIVATIVES
$$\dot{r}$$
, \ddot{r}

$$\Gamma(\theta) = 15 \cos^2\theta - e^{\theta}$$

$$\theta = \theta(\theta)$$

$$egin{align} v_r &= \dot{r}, & v_ heta &= r\dot{ heta} \ a_r &= \ddot{r} - r\dot{ heta}^2, & a_ heta &= r\ddot{ heta} + 2\dot{r}\dot{ heta} \ \end{pmatrix}$$

- To find \vec{v} and \vec{a} , we need to know \dot{r} , \ddot{r} , $\dot{\theta}$, $\ddot{\theta}$.
- Often r will be given as a function of θ , not as a function of time. How can we find \dot{r} and \ddot{r} then?
 - Using chain rule

$$\dot{r} = \frac{dr(\theta)}{dt} = \frac{dr}{d\theta}\frac{d\theta}{dt} = \frac{dr}{d\theta}\dot{\theta}; \qquad \ddot{r} = \frac{d\dot{r}(\theta)}{dt} = \frac{d\dot{r}}{d\theta}\frac{d\theta}{dt} = \cdots$$

$$\ddot{r} = \frac{d\dot{r}(\theta)}{dt} = \frac{d\dot{r}}{d\theta} \frac{d\theta}{dt} = \cdots$$

- ightharpoonup Using $r = f(\theta)$ to connect derivatives
 - Example: Path is given by $r^2 = 6\theta^3$, and θ , $\dot{\theta}$, $\ddot{\theta}$ are known. Find \dot{r} , \ddot{r} .

$$\dot{r} : \frac{d}{dt} \left[r^2 = 6\theta^3 \right]$$

$$2r \cdot \dot{r} = 6 \cdot 3\theta^2 \cdot \dot{\theta}$$

$$\Rightarrow r \dot{r} = 9\theta^2 \dot{\theta} / r$$

$$\Rightarrow \dot{r} = 9\theta^2 \dot{\theta} / r$$

$$\frac{d}{dt} \left[c_{s} = 6\theta_{3} \right] \qquad \frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{s} = 6 \cdot 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

$$\frac{d}{dt} \left[c_{t} = 3\theta_{s} \dot{\theta} + 3\theta_{s} \dot{\theta} \right]$$

- **W8-1.** The motion of ball is constrained by the curved slot in OB and by the slotted arm OA. OA rotates counterclockwise with angular speed $3t^{3/2}$ rad/s where t is in seconds and $\theta = 0$ when t = 0.
- a) Determine the time when $\theta = 30^{\circ}$.
- **b)** Determine the radial and transverse components of the ball's velocity and acceleration when $\theta=30^{\circ}$.

- **W8-1.** The motion of ball is constrained by the curved slot in OB and by the slotted arm OA. OA rotates counterclockwise with angular speed $3t^{3/2}$ rad/s where t is in seconds and $\theta = 0$ when t = 0.
- a) Determine the time when $\theta = 30^{\circ}$.
- **b)** Determine the radial and transverse components of the ball's velocity and acceleration when $\theta=30^{\circ}$.

W8-1. $\dot{\theta}=3t^{3/2}$ rad/s where t is in seconds, and $\theta=0$ when t=0. Also, $r^2=(4\cos 2\theta)m^2$.

- a) Determine the time when $\theta = 30^{\circ}$.
- **b)** Determine the radial and transverse components of the ball's velocity and acceleration when $\theta=30^{\circ}$.

$$\frac{d\theta}{dt} = 3t^{3/2} \qquad \Rightarrow \int_{\theta=0}^{\theta} d\theta = \int_{0}^{4} t^{3/2} dt$$

$$t \qquad \qquad t \qquad \qquad t^{5/2}$$

$$\theta(t) = \theta_0 + \int_0^t 3t^{-3/2} dt = 3 \frac{t^{5/2}}{5/2} \int_0^{t=t} = \frac{6}{5} t^{5/2}$$

$$t: \quad \theta(t) = \frac{6}{5}t^{5/2} = \frac{\pi}{6}$$

$$+ \frac{5/2}{36} = \frac{5\pi}{36}$$

$$t = \left(\frac{5\pi}{36}\right)^{2/5} = 0.7/77 \text{ s}$$

