CSSE 461 – Computer Vision Rose-Hulman Institute of Technology Computer Science and Software Engineering Department

Linear Algebra Review/Primer

1 Introduction

The goal of this review/primer is to refresh your memory of and/or expose you to some linear algebra concepts that will be needed as we move through the course. I will highlight some of the connections between linear algebra and computer vision and provide a number of relevant excercises, but I will not present in detail fundamental linear algebra concepts. For detailed information on these concepts see your linear algebra book or 18.06 Linear Algebra the MIT opencourseware.

2 Notation

 \mathbb{R} denotes the real numbers and \mathbb{R}^n denotes an n-tuple of real numbers. For example, [x, y] is an element of \mathbb{R}^2 .

Vectors (or points) in \mathbb{P}^2 are denoted by bold face lower case letters (e.g. \mathbf{x}). Vectors will by default be column vectors. Row vectors are denoted by the transpose of a column vector (e.g. \mathbf{x}^{\top}). Vectors (or points) in \mathbb{P}^3 are denoted by bold face upper case letters (e.g. \mathbf{X}).

Matrices are denoted by bold face upper case letters (e.g. \mathbf{H}). Matrices of a specific size are denoted by bold face upper case letters with a subscript indicating the size. For example, \mathbf{H}_2 indicates a 2×2 matrix and $\mathbf{H}_{2\times3}$ indicates a 2×3 matrix.

Planes are denoted by a bold face lower case pi (e.g. π).

3 General Matrix Properties

Composing Matrices: For the following expressions, what is the size of the resulting matrix if it exists.

- 1. $\mathbf{M}_{1\times 3}\mathbf{N}_{3\times 1}$
- 2. $\mathbf{N}_{3\times 1}\mathbf{M}_{1\times 3}$
- 3. $N_{3\times 2}M_{1\times 3}$
- 4. $\mathbf{M}_{1\times 3}\mathbf{N}_{3\times 2}$

Types of matrices: Describe the following types of matrices:

- 1. Orthogonal
- 2. Orthonormal
- 3. Diagonal
- 4. Symmetric
- 5. Skew Symmetric

Note: An orthonormal matrix is also known as a rotation matrix.

Interpreting Matrices

1. Let $\mathbf{R}_{3\times3}$ be a rotation matrix. Show that the matrix can be written as:

$$\left[egin{array}{c} \mathbf{r}_{\mathrm{x}}^{ op} \ \mathbf{r}_{\mathrm{y}}^{ op} \ \mathbf{r}_{\mathrm{z}}^{ op} \end{array}
ight]$$

Where \mathbf{r}_i is a vector, expressed in the global coordinate frame, defining the i^{th} axis in the transformed coordinate frame.

2. A conic can be expressed in algebraic form as:

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

The connic can also be expressed in matrix form as $\mathbf{x}^{\top}\mathbf{C}\mathbf{x} = 0$, where \mathbf{x} is a point in \mathbb{P}^2 and \mathbf{C} is a 3×3 matrix. Find the elements of \mathbf{C} in terms of a, b, c, d, e and f.

3. The crossproduct of two 3-vectors (e.g. $\mathbf{x} \times \mathbf{y}$ can be represented as the product of a matrix and a vector. Specifically:

$$[\mathbf{x}]_{\times} \mathbf{y}$$

where $[\mathbf{x}]_{\times}$ is a 3 × 3 matrix. Find the coefficients of $[\mathbf{x}]_{\times}$.

The Rank of a Matrix

- 1. Define the rank of a matrix.
- 2. What is the maximum rank of an $m \times n$ matrix?
- 3. If an $n \times n$ matrix is singular what is its maximum rank?

The Determinant of a Matrix

- 1. What is the determinant of a matrix?
- 2. How is the determinant calculated for a 2×2 matrix?
- 3. How is the determinant calculated for a 3×3 matrix?
- 4. What is the determinant of a singular matrix?

The Transpose of a Matrix

- 1. Define the transpose of a matrix.
- 2. What is the transpose of:
 - (a) **R**, an orthonormal matrix
 - (b) **D**, a diagonal matrix
 - (c) S, a symmetric matrix
 - (d) A, a skew symmetric matrix

Express the result in its simplest form.

3. Simplify $(\mathbf{M}\mathbf{N})^{\top}$.

The Inverse of a Matrix

- 1. Define the inverse of a matrix.
- 2. What is the inverse of:
 - (a) **R**, an orthonormal matrix
 - (b) **D**, a diagonal matrix

Express the result in its simplest form.

3. Simplify $(MN)^{-1}$.

The Null Space of a Matrix

- 1. Define the null space of a matrix.
- 2. What is the left null space of a matrix?
- 3. If a matrix is full rank what is its null space?
- 4. If matrix $\mathbf{M}_{4\times4}$ has a rank of 2 what is the dimensionality of the null space?
- 5. How does the null space of a matrix relate to the solutions of the equations $\mathbf{A}\mathbf{x} = \mathbf{0}$ and $\mathbf{A}\mathbf{x} = \mathbf{b}$.

The Condition Number of a Matrix

- 1. What is the condition number of a matrix?
- 2. What is preconditioning of a matrix?
- 3. What is data normalization?

Solving systems of linear equations

- 1. Explain how the following can be used to solve non-homogeneous equations (e.g. Ax = b):
 - (a) Matrix inverse
 - (b) Psuedo inverse
 - (c) Gaussian elimination
 - (d) Factorization (e.g. LU, QR, etc.)

Does whether the system is exactly determined or overdetermined change which strategies will work?

- 2. Explain how the following can be used to solve homogeneous equations (e.g. Ax = 0):
 - (a) The null space
 - (b) SVD (singular value decomposition)

Does whether the system is exactly determined or overdetermined change which strategies will work?

Singular Value Decomposition

- 1. Describe the singular value decomposition.
- 2. What is the significance of the columns of U?
- 3. What is the significance of the elements of D?
- 4. What is the significance of the columns of V?