C>ONSTRUCTOR UNIVERSITY

Data Mining Spring 2025

Academic Lecturer: Dr. A. Schelle, Constructor University

C>ONSTRUCTOR UNIVERSITY

Overview

Lecture 1: Introduction to Data Mining

Lecture 2: Big Data Processes Lecture 3: Statistical Processes

Lecture 4: Big Data Methods and Technologies

Lecture 5: Basic IT Law Lecture 6: Principles of Machine Learning

Lecture 7: Some Elements of Logic

Lecture 8: Uniform Search Principle

Lecture 9: Neuronal Network Models

Lecture 10: Data Mining und ML Lecture 11: Development of Al Methods Lecture 12: Selected AI Methods

Lecture 13: Elementary Quantum Field Models

Data Mining in Sprint 2025

Academic Lecturer: Dr. A. Schelle, Constructor University

Lecture 1

Data Mining

Introduction to Data Mining

Data Mining Spring 2025

Academic Lecturer: Dr. A. Schelle, Constructor University

Data Mining Spring 2025

C>ONSTRUCTOR UNIVERSITY

Academic Lecturer: Dr. A. Schelle, Constructor University

HISTORICAL DEVELOPMENT OF DATA SCIENCE AND AI

Zeitrahmen

10th century
15th century
17th century
19th centrury
19th century
20th century
1960s
1970s

HISTORICAL DEVELOPMENT OF DATA SCIENCE AND AI

Zeitrahmen

Data Mining	1990s	
Cloud Computing	2000s	
Künstliche Intelligenz & Machine Learning	2010s	
Internet of Things	2020s	

Data Science Life Cycle

C>ONSTRUCTOR
UNIVERSITY

Academic Lecturer: Dr. A. Schelle, Constructor University

Find Data

Prepare Data

Model Data

Model Training

Test Data

Analyse Data

Data Science Life Cycle – Find Data

Academic Lecturer: Dr. A. Schelle, Constructor University

Kaggle.com

Web Scraping

World Bank Data

U.S. Government Data

APIs

Examples include:

- Twitter API: For social media data analysis.
- Google Maps API: For location-based data.
- OpenWeather API: For weather-related data.

Compare also Kaggle.com or Github.com.

Data Science Life Cycle – Prepare Data

Academic Lecturer: Dr. A. Schelle, Constructor University

Data Cleaning

Data Transformation

Data Splitting

Data Integration

Feature Engineering

Data Science Life Cycle – Model Data

Academic Lecturer: Dr. A. Schelle, Constructor University

Linear Regression

Clustering

Decision Tree

Compare Sklearn at ScikitLearn.com.

Neuronal Networks

Data Science Life Cycle – Model Training

Academic Lecturer: Dr. A. Schelle, Constructor University

Supervised Learning

Gradient Descent

Ensemble Learning

Cross-Validation

Transfer Learning

Compare Sklearn at ScikitLearn.com.

Data Science Life Cycle – Test Data

Academic Lecturer: Dr. A. Schelle, Constructor University

Train-Test Split

Confusion Matrix

Performance Metrics

Classification

Cross-Validation

ROC Curve and AUC

For Regression

Data Science Life Cycle – Analyse Data

Academic Lecturer: Dr. A. Schelle, Constructor University

Model Evaluation
Metrics

Feature Importance Cross Validation
Analysis

Residual Analysis

Learning Curves

Compare Sklearn at ScikitLearn.com.

Decisions, Informations, Data

0 1
DATA

Structured And Unstructured Data. Data Lakes.

02

Extraction of Knowledge from Data Mining.

INFORMATION

DATA MINING

Exploration of Data Daten from Data Mining.

O4

DECISIONS

Influence of work and processes through information from data analysis. OFINIONS

Subsequent opinions after decision and presentation of information.

Structured Data - Metadata

C>ONSTRUCTOR
UNIVERSITY

Academic Lecturer: Dr. A. Schelle, Constructor University

A simple example of metadata in English could be:

For a photo:

Filename: sunset.jpgDate Taken: 2025-01-01Resolution: 1920x1080

•File Size: 2.5 MB

•Camera Model: Nikon D3500

•GPS Location: 34.0522° N, 118.2437° W

```
{ "filename": "sunset.jpg", "dateTaken": "2025-01-01", "resolution": { "width": 1920, "height": 1080 }, "fileSizeMB": 2.5, "cameraModel": "Nikon D3500", "gpsLocation": { "latitude": 34.0522, "longitude": - 118.2437 } }
```

Structured Data – RDFa Daten

Academic Lecturer: Dr. A. Schelle, Constructor University


```
Copy code
<html lang="en" xmlns="http://www.w3.org/1999/xhtml" xmlns:dc="http://purl.org/dc/elements</pre>
   <title>RDFa Example</title>
</head>
   <div vocab="http://schema.org/" typeof="Book">
        <h1 property="name">To Kill a Mockingbird</h1>
            Author: <span property="author">Harper Lee</span>
       Published: <span property="datePublished">1960</span>
       ISBN: <span property="isbn">978-0061120084</span>
        <img property="image" src="mockingbird_cover.jpg" alt="To Kill a Mockingbird Book</pre>
            Description: <span property="description">A novel about racial injustice in the
       </div>
</body>
</html>
```

Compare Schema.org.

Structured Data - Example CSV-Data

Academic Lecturer: Dr. A. Schelle, Constructor University

Example Data in Excel Format (with Image)

1. Data Table:

ID	Name	Age	City	Email	Image
1	John Doe	28	New York	johndoe@example.com	
2	Jane Smith	34	Los Angeles	janesmith@example.com	

Structured Data - Microdata with Image and HTML

Academic Lecturer: Dr. A. Schelle, Constructor

```
Example of Microdata with Image
                                                                                  Copy code
   <!DOCTYPE html>
   <html lang="en">
  <head>
      <meta charset="UTF-8">
      <meta name="viewport" content="width=device-width, initial-scale=1.0">
      <title>Microdata Example</title>
   </head>
  <body>
      <div itemscope itemtype="http://schema.org/ImageObject">
          <h1 itemprop="name">Sunset Over the Mountains</h1>
          <img itemprop="contentUrl" src="https://example.com/images/sunset.png" alt="Sunset</pre>
          <meta itemprop="description" content="A breathtaking view of the sun setting behind</pre>
          <meta itemprop="creator" content="John Doe">
          <meta itemprop="dateCreated" content="2024-07-15">
          <meta itemprop="width" content="1920">
          <meta itemprop="height" content="1080">
          <meta itemprop="fileFormat" content="image/png">
      </div>
   </body>
   </html>
```



```
Beispiel für Microdata im HTML:
                                                                           Copy code
  <!DOCTYPE html>
  <html lang="de">
     <meta charset="UTF-8">
     <meta name="viewport" content="width=device-width, initial-scale=1.0">
     <title>Beispiel für Microdata</title>
  <body>
     <div itemscope itemtype="https://schema.org/Product">
         <h1 itemprop="name">Schöne Sonnenbrille</h1>
         <img itemprop="image" src="sonnenbrille.jpg" alt="Schöne Sonnenbrille" />
         Eine stilvolle Sonnenbrille, die Ihren Sommerlook vervol
         <span itemprop="brand" itemscope itemtype="https://schema.org/Brand">
            Marke: <span itemprop="name">LuxSun</span>
         Preis: <span itemprop="price" content="49.99">49,99 €</span>
         <meta itemprop="sku" content="12345" />
         Verfügbarkeit: <span itemprop="availability" content="InStock">Auf Lager</span>
  </body>
  </html>
```

Structured Data - JSON Daten

Academic Lecturer: Dr. A. Schelle, Constructor University

Beispiel für JSON-Daten:

```
Copy code
json
  "name": "Max Mustermann",
  "alter": 29,
  "adresse": {
    "straße": "Musterstraße 1",
    "stadt": "Musterstadt",
    "postleitzahl": "12345"
  "telefonnummern": [
    "+49 123 456789",
   "+49 987 654321"
  ],
  "hobbys": ["Fußball", "Lesen", "Reisen"]
```


Structured Data - Python Dictionary

Academic Lecturer: Dr. A. Schelle, Constructor University

Beispiel für ein Python Dictionary:

```
Copy code
python
person = {
    "name": "Anna Müller",
    "alter": 30,
    "beruf": "Webentwicklerin",
    "adresse": {
        "straße": "Beispielstraße 12",
        "stadt": "Berlin",
        "postleitzahl": "10115"
    "telefonnummern": [
        "+49 170 1234567",
        "+49 30 9876543"
    "verheiratet": False,
    "hobbys": ["Joggen", "Lesen", "Fotografie"]
```


Unstructured Data

Academic Lecturer: Dr. A. Schelle, Constructor University

Audio and Video Data Lakes Raw Data Data **Collection of** Representative **Unbiased Data** Data Data

Big Data, IoT and Data Mining

BIG DATA

Large Data Volume.

INTERNET OF THINGS

Collect, Exchange and Edit Data.

DATA MINING

Extraction of Knwoledge from Data.

- Volume
- Diversity
- Velocity
- Database Technologies:Hadoop,NoSQL_Datenbanken,Spark

- Data Stream
- Machine Current
- Location-based Data
- Health Monitoring
- Environmental Monitoring

- Statistics
- Machine Learning
- Artificial Intelligence
- − Data Mining
- Time Series Analysis

Performance Records for Big Data

Improvement of Forecasts

Enhancement of Visitors

ROC Diagrams

Value Increase

Faster Model Building

THE INTERNET OF THINGS

FUNCTIONALITY OF ARTIFICIAL INTELLIGENCE

OPEN SOURCE SOFTWARE LICENSES

MIT License

GNU License

Apache License

BSD

OPEN SOURCE SOFTWARE LICENSES – MIT LICENSE

Permits use, modification, distribution, with no warranties or liabilities attached.

OPEN SOURCE SOFTWARE LICENSES – APACHE LICENSE

Allows use, modification, distribution, with conditions and patent grant protections.

OPEN SOURCE SOFTWARE LICENSES – GNU LICENSE

Requires modifications to be open-source; ensures software freedom and sharing.

OPEN SOURCE SOFTWARE LICENSES – BSD LICENSE

Permits use, modification, distribution; minimal restrictions, with attribution required.

Praxisbeispiel 1

Tabelle 1: Tabellarisches Beispiel für die Anzahl der Verkäufe in einem Onlineshop

Praxisbeispiel: Analyse von Monatlichen Verkaufsdaten

Ein Einzelhandelsunternehmen namens "SuperMart" möchte seine Verkaufsdaten analysieren, um Einblicke in die monatlichen Verkaufstrends zu gewinnen. Das Unternehmen hat Daten über den Umsatz, die verkauften Produkte und die Verkaufszahlen für jeden Monat des letzten Jahres gesammelt.

Praxisbeispiel 1

Umsatzentwicklung

Die Tabelle zeigt den monatlichen Umsatzverlauf. Die höchsten Umsätze wurden in den Monaten Dezember und November verzeichnet, was auf das Weihnachtsgeschäft und mögliche Sonderangebote hinweisen könnte.

Verkaufszahlen

Die Anzahl der Verkäufe stieg von Januar bis Dezember kontinuierlich an. Dies könnte auf eine gesteigerte Kundennachfrage, saisonale Veränderungen oder Marketingkampagnen hinweisen.

Der durchschnittliche Warenkorb blieb im Großen und Ganzen konstant, jedoch gab es leichte Schwankungen. Dies könnte auf unterschiedliche Produktmixe in den verschiedenen Monaten zurückzuführen sein.

Erkenntnisse und Maßnahmen

Angesichts der höchsten Umsätze in den Monaten November und Dezember sollte "SuperMart" sich auf das Weihnachtsgeschäft vorbereiten, indem sie Sonderangebote, Werbeaktionen und Rabatte anbieten.

Praxisbeispiel 1

Saisonale Schwankungen nutzen

Die steigende Anzahl der Verkäufe von Januar bis Dezember könnte auf saisonale Trends hinweisen. Das Unternehmen könnte seine Inventar- und Marketingstrategien entsprechend anpassen, um von diesen Trends zu profitieren.

Warenkorb-Optimierung

Obwohl der durchschnittliche Warenkorb relativ stabil ist, könnten gezielte Werbemaßnahmen oder Produktbündelung dazu beitragen, den durchschnittlichen Warenkorbwert weiter zu erhöhen.

Marketingstrategien überprüfen

Die Daten könnten auch genutzt werden, um die Wirksamkeit von Marketingkampagnen in verschiedenen Monaten zu bewerten. Falls bestimmte Monate auffällige Umsatzsteigerungen aufweisen, könnten die zugrundeliegenden Marketingstrategien genauer analysiert und auf andere Monate übertragen werden.

In diesem Beispiel zeigt die Tabellendarstellung der Verkaufsdaten, wie die Analyse von Daten dem Unternehmen dabei hilft, fundierte Geschäftsentscheidungen zu treffen und seine Leistung zu optimieren.

Data Mining in Spring 2025

Academic Lecturer: Dr. A. Schelle, Constructor University

Summary: Lecture 1

Data Mining in Spring 2025

CONSTRUCTOR UNIVERSITY

Academic Lecturer: Dr. A. Schelle, Constructor University

Use Case I: Primary Data Mining of Energy Consumption Data.

Data Mining in Spring 2025

Academic Lecturer: Dr. A. Schelle, Constructor University

Task to Lecture 1:

Find a suitable Data Card to develop a Data Mining Model in Python.

Acknowledgements

See also LinkedIn.com

