STAT 511A Homework 10

Kathleen Wendt
11/27/2019

Load packages

```
library(broom)
library(lawstat)
library(metafor)
library(readr)
```

Question 1

Bacillus Calmette-Guerin (BCG) is a vaccine for preventing tuberculosis. For this question, we will examine data from 3 studies (Vandiviere et al 1973, TPT Madras 1980, Coetzee & Berjak 1968). The data is summarized below.

A note about the BCG vaccine from Wikipedia: The most controversial aspect of BCG is the variable efficacy found in different clinical trials that appears to depend on geography. Trials conducted in the UK have consistently shown a protective effect of 60 to 80%, but those conducted elsewhere have shown no protective effect, and efficacy appears to fall the closer one gets to the equator.

Create data array

Part 1A

Calculate the odds ratio (corresponding to TBpos for Trt vs Ctrl) for each study separately. (4 pts)

tb_cmh <- broom::tidy(lawstat::cmh.test(tb))

Study 1 odds ratio

```
tb_cmh$^Odd Ratio of level 1`
## [1] 0.1951912
```

Study 2 odds ratio

```
tb_cmh$`Odd Ratio of level 2`
## [1] 1.012093
```

Study 3 odds ratio

```
tb_cmh$`Odd Ratio of level 3`
## [1] 0.6239119
```

Part 1B

Use the Breslow-Day test to test for equality of odds ratios across the 3 studies. State your p-value and conclusion. Can we conclude that the odds ratios are equal across the 3 studies? Based on this test, should we combine information across studies? (4 pts)

```
## [1] 0.0001456754
```

The Breslow-Day Test for equality of odds ratios of three tuberculosis studies yielded a p-value < .001. There is evidence to suggest a difference between odds ratios by study; it is not appropriate to combine information across studies.

Question 2

Problem 10.36 involves bomb hits during WWII. Bomb hits were recorded in n = 576 grids in a map of a region of South London.

Create data list

```
# observations
obs <- c(229, 211, 93, 35, 8)
y <- seq(from = 0, to = 4, by = 1)
bombs <- cbind(y, obs)</pre>
```

Part 2A

Find the sample mean $(\hat{\mu})$ bomb hits per grid.

```
# mean
muhat <- sum(obs*y)/sum(obs)
muhat</pre>
```

```
## [1] 0.9270833 \hat{\mu} = 0.9270833 \text{ bomb hits per grid.}
```

Part 2B

Use the GOF test to test whether the number of bomb hits per grid follows the Poisson distribution. Calculate the GOF test statistic, df, p-value and give a conclusion using $\alpha = 0.05$. (6 pts)

```
the GOF test statistic, df, p-value and give a conclusion using \alpha = 0.05. (6 pts)
# calculate the corresponding Poisson probabilities
prob <- dpois(y, muhat)</pre>
prob
## [1] 0.39570617 0.36685260 0.17005146 0.05255063 0.01217970
length(prob)
## [1] 5
sum(prob)
## [1] 0.9973406
# "fix" the final entry so that the probabilities sum to 1
prob[5] <- 1 - sum(prob[1:4])
prob
## [1] 0.39570617 0.36685260 0.17005146 0.05255063 0.01483914
length(prob)
## [1] 5
sum(prob)
## [1] 1
# calculate expected values and contributions to chi-square test statistic
exp <- prob*576
x2 <- (obs-exp)^2/exp
cbind(y, obs, prob, exp, x2)
        y obs
                    prob
                                 exp
## [1,] 0 229 0.39570617 227.926755 0.0050536183
## [2,] 1 211 0.36685260 211.307096 0.0004463069
## [3,] 2 93 0.17005146 97.949643 0.2501180049
## [4,] 3 35 0.05255063 30.269161 0.7393941810
## [5,] 4
            8 0.01483914
                           8.547345 0.0350502750
# run GOF test
gof_chi <- sum(x2)</pre>
gof_chi
## [1] 1.030062
gof_df <- 5-2
gof_p <- 1 - pchisq(gof_chi, gof_df)</pre>
gof_p
## [1] 0.7939783
```

We fail to reject the null hypothesis that data are from a Poisson distribution, $p = 0.7939783 > \alpha = 0.05$.

Question 3

The data "PoissonData.csv" gives observations Y (counts or events) for n = 50 (units) generated from the Poisson distribution, using the rpoiss() function.

```
poisson <- readr::read_csv("PoissonData.csv")

## Parsed with column specification:
## cols(
## Y = col_double()
## )</pre>
```

Part 3A

Calculate the sample mean and sample standard deviation. Also construct a histogram and qqplot of the data and include them in your assignment. (4 pts)

Sample mean

```
mu <- mean(poisson$Y)
mu
## [1] 48.38</pre>
```

Sample standard deviation

```
s <- sqrt(mu)
s
```

[1] 6.955573

Histogram

Histogram of poisson\$Y

Q-Q Plot

Normal Q-Q Plot

NOTE: Because the data comes from the Poisson distribution, you should find that the mean and the sample variance (s^2) are close; however, you should also find from the histogram and qqplot that the data looks approximately normal.

Part 3B

Give a standard t-based 95% confidence interval for μ .

```
t <- 2.009

n <- nrow(poisson)

t_ci_ub <- mu + t*(s/(sqrt(n)))

t_ci_lb <- mu - t*(s/(sqrt(n)))

(46.4038138, 50.3561862)
```

Part 3C

Following the example on CH10 Slide 106 (Death by Mule Kick CI), construct a 95% confidence interval for μ based on the normal approximation to the Poisson distribution. (4 pts) In order to do this, you will start by constructing a CI on the total number of events, then divide by the number of units.

NOTE: The CIs from parts B and C should be similar.

```
z <- 1.96
y <- sum(poisson$Y)
z_ci_ub <- (y + z*(sqrt(y)))/50
z_ci_lb <- (y - z*(sqrt(y)))/50</pre>
```

(46.4520134, 50.3079866)