KU LEUVEN

Toegepaste Mechanica 2

DEEL DYNAMICA

CASE 2014-2015

Auteurs: Laurent Dossche Jakob Festraets Peter Lacko

Begeleiders:
Wim Desmet
Jos Vander Sloten

27 november 2014

Inhoudsopgave

1	Gro	epsleden
2	Tra	nsformatiematrices
3	Kin	ematica
	3.1	Opgave 1
		3.1.1 Rotatiesnelheid
		3.1.2 Rotatieversnelling
	3.2	
		3.2.1 Snelheid
		3.2.2 Versnelling
	3.3	Opgave 3
	3.4	Opgave 4
Į	Dyr	namica
	4.1	Opgave 1
	4.2	Opgave 2
	4.3	Opgave 3
	4.4	Opgave 4
	4.5	Opgave 5

1 Groepsleden

Onze groep bestaat uit de volgende leden.

- 1. Laurent DOSSCHE, Bachelor in de ingenieurswetenschappen, 2de jaar.
- 2. Jakob FESTRAETS, Bachelor in de ingenieurswetenschappen, 2de jaar.
- 3. Peter LACKO, Bachelor in de ingenieurswetenschappen, 2de jaar.

2 Transformatiematrices

• De matrix in (1) is de transformatiematrix om coördinaten van het bewegend x'y'z'-assenstelsel naar het wereldassenstelsel om te zetten. Dit bewegend assenstelsel heeft een draaing met een hoek α rond de x-as.

$$R^{x'y'z'\to xyz} = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\alpha) & -\sin(\alpha)\\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$
(1)

- Het x''y''z''-assenstelsel heeft dezelfde oriëntatie als het x'y'z'-assenstelsel. Hier is dus geen transformatiematrix vereist.
- De matrix in (2) is de transformatiematrix om coördinaten van het x'''y'''z'''-assenstelsel naar het x''y''z''-assenstelsel om te zetten. Dit eerste bewegend assenstelsel heeft een draaing met een hoek β rond de x-as.

$$R^{x'''y'''z''' \to x''y''z''} = \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix}$$
(2)

- Het x''''y''''z''''-assenstelsel heeft dezelfde oriëntatie als het x'''y'''z'''-assenstelsel. Hier is dus geen transformatiematrix vereist.
- De matrix in (3) is de transformatiematrix om coördinaten van het x'''y'''z'''-assenstelsel of van het x''''y''''z''''-assenstelsel naar het wereldassenstelsel (xyz) om te zetten. Hierbij worden de coördinaten eerst omgezet naar het x'y'z'-assenstelsel en pas daarna naar het wereldassenstelsel. Dit kan met volgende matrixvermenigvuldiging.

$$R^{x'''y'''z''' \to xyz} = R^{x'y'z' \to xyz} \cdot R^{x'''y'''z''' \to x''y''z''}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix} \cdot \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix}$$
(3)
$$= \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ \sin(\alpha)\sin(\beta) & \cos(\alpha) & -\sin(\alpha)\cos(\beta) \\ -\cos(\alpha)\sin(\beta) & \sin(\alpha) & \cos(\alpha)\cos(\beta) \end{bmatrix}$$

• De transpose van bovenstaande matrices geeft vanzelfsprekend de transformatiematrices om coördinaten in de omgekeerde richting te transformeren.

e

3 Kinematica

3.1 Opgave 1

3.1.1 Rotatiesnelheid

Om de ogenblikkelijke totale rotatiesnelheidsvector $\vec{\omega}_{tot}$ te berekenen zetten we eerst alle rotatiesnelheidsvectoren om naar het x'y'z'-assenstelsel. $\vec{\omega}_g$ en $\vec{\omega}_i$ staan hier al in, dus we moeten enkel $\vec{\omega}_w$ nog omzetten.

$$\vec{\omega}_{w}' = R^{x'''y'''z''' \to x'y'z'} \cdot \vec{\omega}_{w}'''$$

$$= \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix} \cdot \begin{bmatrix} -\omega_{w} \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} -\omega_{w} \cdot \cos(\beta) \\ 0 \\ \omega_{w} \cdot \sin(\beta) \end{bmatrix}$$
(4)

Als we al deze vectoren optellen krijgen we $\vec{\omega}_{tot}^{'}{}^{1}$

$$\vec{\omega}'_{tot} = \vec{\omega}'_g + \vec{\omega}'_i + \vec{\omega}'_w$$

$$= \begin{bmatrix} 0 \\ 0 \\ \omega_g \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_i \\ 0 \end{bmatrix} + \begin{bmatrix} -\omega_w \cdot \cos(\beta) \\ 0 \\ \omega_w \cdot \sin(\beta) \end{bmatrix}$$

$$= \begin{bmatrix} -\omega_w \cdot \cos(\beta) \\ \omega_i \\ \omega_g + \omega_w \cdot \sin(\beta) \end{bmatrix}$$
(5)

Na omvorming naar het wereldassenstelsel krijgen we de ogenblikkelijke totale rotatiesnelheidsvector $\vec{\omega}_{tot}$.

$$\vec{\omega}_{tot} = R^{x'y'z' \to xyz} \cdot \vec{\omega}_{tot}'$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix} \cdot \begin{bmatrix} -\omega_w \cdot \cos(\beta) \\ 0 \\ \omega_g + \omega_i + \omega_w \cdot \sin(\beta) \end{bmatrix}$$

$$= \begin{bmatrix} -\omega_w \cdot \cos(\beta) \\ -(\omega_g + \omega_i + \omega_w \cdot \sin(\beta)) \cdot \sin(\alpha) \\ (\omega_g + \omega_i + \omega_w \cdot \sin(\beta)) \cdot \cos(\alpha) \end{bmatrix}$$
(6)

¹Notatie: het aantal accenten als superscript bij vectoren duidt op het assenstelsel waar de vector in is uitgedrukt.

3.1.2 Rotatieversnelling

Om de ogenblikkelijke totale rotatieversnellingsvector $\vec{\alpha}_{tot}$ te berekenen maken we gebruik van formule (7).

$$\vec{\alpha} = \sum_{i=1}^{k} \frac{\mathrm{d}\omega_i}{\mathrm{d}t} \vec{e}_{\omega_i} + \sum_{i=1}^{k} \vec{\omega}_i \frac{\mathrm{d}\vec{e}_{\omega_i}}{\mathrm{d}t}$$
 (7)

met:

$$\vec{\omega}_i \frac{\mathrm{d}\vec{e}_{\omega_i}}{\mathrm{d}t} = \sum_{i=1}^{i-1} \vec{\omega}_j \times \vec{\omega}_i \tag{8}$$

Concreet wordt dit:

$$\vec{\alpha}_{tot} = \vec{\alpha}_g + \vec{\alpha}_i + \vec{\alpha}_w + \vec{\omega}_g \times \vec{\omega}_i + \vec{\omega}_g \times \vec{\omega}_w + \vec{\omega}_i \times \vec{\omega}_w$$
 (9)

 $\vec{\omega}_g \times \vec{\omega}_w$ en $\vec{\omega}_i \times \vec{\omega}_w$ zijn termen die duiden op de verandering van oriëntatie van $\vec{\omega}_w$. Zijn oriëntatie in namelijk is afhankelijk van $\vec{\omega}_g$ en $\vec{\omega}_i$. $\vec{\omega}_g \times \vec{\omega}_i$ is om dezelfde reden toegevoegd.

 $\vec{\alpha}_g$, $\vec{\alpha}_i$, $\vec{\omega}_g$ en $\vec{\omega}_i$ zijn reeds uitgedrukt in het x'y'z'-assenstelsel. $\vec{\omega}_w$ werd al in (4) naar dit assenstelsel getransformeerd. Hieronder wordt $\vec{\alpha}_w$ getransformeerd.

$$\vec{\alpha}_{w}' = R^{x'''y'''z''' \to x'y'z'} \cdot \vec{\alpha}_{w}'''$$

$$= \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix} \cdot \begin{bmatrix} -\alpha_{w} \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} -\alpha_{w} \cdot \cos(\beta) \\ 0 \\ \alpha_{w} \cdot \sin(\beta) \end{bmatrix}$$
(10)

Uitgewerkt wordt $\vec{\alpha}_{tot}$:

$$\vec{\alpha}'_{tot} = \vec{\alpha}'_g + \vec{\alpha}'_i + \vec{\alpha}'_w + \vec{\omega}'_g \times \vec{\omega}'_i + \vec{\omega}'_g \times \vec{\omega}'_w + \vec{\omega}'_i \times \vec{\omega}'_w$$

$$= \begin{bmatrix} 0 \\ 0 \\ \alpha_g \end{bmatrix} + \begin{bmatrix} 0 \\ \alpha_i \\ 0 \end{bmatrix} + \begin{bmatrix} -\alpha_w \cdot \cos(\beta) \\ 0 \\ \alpha_w \cdot \sin(\beta) \end{bmatrix} + \begin{bmatrix} e_x & e_y & e_z \\ 0 & 0 & \omega_g \\ 0 & \omega_i & 0 \end{bmatrix}$$

$$+ \begin{bmatrix} e_x & e_y & e_z \\ 0 & 0 & \omega_g \\ -\omega_w \cdot \cos(\beta) & 0 & \omega_w \cdot \sin(\beta) \end{bmatrix} + \begin{bmatrix} e_x & e_y & e_z \\ 0 & \omega_i & 0 \\ -\omega_w \cdot \cos(\beta) & 0 & \omega_w \cdot \sin(\beta) \end{bmatrix} + \begin{bmatrix} e_x & e_y & e_z \\ 0 & \omega_i & 0 \\ -\omega_w \cdot \cos(\beta) & 0 & \omega_w \cdot \sin(\beta) \end{bmatrix}$$

$$= \begin{bmatrix} -\alpha_w \cos(\beta) - \omega_i \omega_g + \omega_i \omega_w \sin\beta \\ \alpha_i - \omega_g \omega_w \cos\beta \\ \alpha_g + \alpha_w \sin(\beta) + \omega_i \omega_w \cos\beta \end{bmatrix}$$
(11)

$$\vec{\alpha}_{tot} = R^{x'y'z' \to xyz} \cdot \vec{\alpha}_{tot}'$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix} \cdot \begin{bmatrix} -\alpha_w \cos(\beta) - \omega_i \omega_g + \omega_i \omega_w \sin\beta \\ \alpha_i - \omega_g \omega_w \cos\beta \\ \alpha_g + \alpha_w \sin(\beta) + \omega_i \omega_w \cos\beta \end{bmatrix}$$
(12)

De uitwerking wordt hier achterwege gelaten wegens te complex.

3.2 Opgave 2

3.2.1 Snelheid

Om de ogenblikkelijke snelheid \vec{v}_c van het punt C te berekenen hebben wij voor een combinatie van methodes gekozen. Ten eerste is er een samengestelde beweging met het x'y'z'-assenstelsel als bewegend assenstelsel. Hierdoor heeft de sleepsnelheid in (16) een component veroorzaakt door de translatie van het vliegtuig met snelheid \vec{v}_v en een component veroorzaakt door de rotatie van het vliegtuig met rotatiesnelheid $\vec{\omega}_g$. Ten tweede maken we gebruik van de methode van som van rotaties om de relatieve snelheid in (17) van de eerder vermelde samengestelde beweging te berekenen. We moeten eerst echter de afstandsvectoren berekenen.

$$\vec{r}_{AB}' = \begin{bmatrix} l_1 \\ 0 \\ l_2 \end{bmatrix} \tag{13}$$

$$\vec{r}_{BC}' = \begin{bmatrix} -(l_3 \sin \beta + l_4 \cos \beta) \\ 0 \\ -l_3 \cos \beta + l_4 \sin \beta \end{bmatrix}$$
(14)

$$\vec{r}_{AC}' = \begin{bmatrix} l_1 - (l_3 \sin \beta + l_4 \cos \beta) \\ 0 \\ l_2 - l_3 \cos \beta + l_4 \sin \beta \end{bmatrix}$$
 (15)

De sleepsnelheid uitgedrukt in het x'y'z'-assenstelsel.

$$\vec{v}_{sleep} = \vec{v}_v' + \vec{\omega}_g' \times \vec{r}_{AC}' \\
= \begin{bmatrix} 0 \\ \vec{v}_v \\ 0 \end{bmatrix} + \begin{vmatrix} e_x & e_y & e_z \\ 0 & 0 & 0 & \omega_g \\ l_1 - (l_3 \sin \beta + l_4 \cos \beta) & 0 & l_2 - l_3 \cos \beta + l_4 \sin \beta \end{vmatrix}$$
(16)

Ook de relatieve snelheid wordt in het x'y'z'-assenstelsel uitgedrukt. $\vec{\omega}_w$ is niet opgenomen in de formule omdat deze geen bijdrage bij de snelheid van C levert.

$$\vec{v}'_{rel} = \vec{\omega}'_{i} \times \vec{r}'_{BC}$$

$$= \begin{vmatrix} e_{x} & e_{y} & e_{z} \\ 0 & \omega_{i} & 0 \\ -(l_{3}\sin\beta + l_{4}\cos\beta) & 0 & -l_{3}\cos\beta + l_{4}\sin\beta \end{vmatrix}$$
(17)

- 3.2.2 Versnelling
- 3.3 Opgave 3
- 3.4 Opgave 4
- 4 Dynamica
- 4.1 Opgave 1
- 4.2 Opgave 2
- 4.3 Opgave 3
- 4.4 Opgave 4
- 4.5 Opgave 5