Peer-to-Peer Practical Exercise

Lab Work

Matthias Wichtlhuber, Fabian Kaup, Jeremias Blendin, Leonhard Nobach

Department of Electrical Engineering and Information Technology Technische Universität Darmstadt

E-Mail: [mwichtlh|fkaup|jblendin|Inobach]@ps.tu-darmstadt.de

http://www.ps.tu-darmstadt.de/teaching/p2p

Problem 3.2, Task A

Describe how you can set up a Peer-to-Peer connection between host A and B by only cexchanging four messages.

- What is the problem?
- A sends message to NAT-B
- Wrong port number due to NAT!

Problem 3.2, Task A Symmetric NAT

P2P Packet P2P B**→**C

UDP Session Describe how you can set up a Peer-to-Peer A:33 - C:84 connection between host A and B by only B:44 - C:84 exchanging four messages. Notation: <IP Address>:<TCP/UDP Port Number> > A⇒C, C⇒B Packet Packet > B→C, C→A WAN NAT-B:44 → C:84 NAT-A:33 **→** C:84 The connection between A and B is 497 NAT Table **NAT Table** established by B:22,NAT:44: → C:84 A:11;NAT:33: → C:84 relaying packets through C Packet **Packet** A:11 → C:84 B 22 → C:84 **UDP Session UDP Session** A:22 - B:84 A:11 - B:84

Problem 3.2, Task A Full-cone NAT

Describe how you can set up a Peer-to-Peer connection between host A and exchanging four messages.
Peelot

C distributes address and port information between A and B

Packet

NAT-B:44**⇒**C:84

Notation: <IP Address>:<TCP/UDP Pd</p>

A → C, C stores NAT-A:33

B → C, C stores NAT-B:44

C distributes information

C⇒B NAT-A:33

C⇒A NAT-B:44

The connection between
 A and B is established.

Packet

Packet

NAT-A:33 → C:84

C

Problem 3.2, Task B

Students deploying an RB-HORST access point have to enable port forwarding to get a working system. How does port forwarding interact

with the NAT table?

A manually enabled port forwarding is a static entry in the NAT table

Peer-to-Peer Practical Exercise

Lab Work

Matthias Wichtlhuber, Fabian Kaup, Jeremias Blendin, Leonhard Nobach

Department of Electrical Engineering and Information Technology Technische Universität Darmstadt

E-Mail: [mwichtlh|fkaup|jblendin|Inobach]@ps.tu-darmstadt.de

http://www.ps.tu-darmstadt.de/teaching/p2p

Wireshark

- Packet capturing
 - Capture and store all frames received or transmitted through a given network interface
 - Wireshark does packet capturing using libpcap
 - Wireshark provides a nice GUI for investigating and analyzing the captured data
- Installation
 - Windows & Mac OS:
 - https://www.wireshark.org/download.html
 - Linux:
 - Use your favorite package manager
 - E.g. for Ubuntu:
 - aptitude install wireshark

Using Wireshark

- ▶ Frame 269: 62 bytes on wire (496 bits), 62 bytes captured (496 bits) on interface 0
- ▼ Ethernet II, Src: Dell_51:72:22 (f0:1f:af:51:72:22), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
 - ▶ Destination: Broadcast (ff:ff:ff:ff:ff)
 - Source: Dell_51:72:22 (f0:1f:af:51:72:22)
 - Type: IP (0x0800)
- ▼ Internet Protocol Version 4, Src: 130.83.139.58 (130.83.139.58), Dst: 130.83.139.255 (130.83.139.255)
 - Version: 4
 - Header Length: 20 bytes
 - ▶ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))
 - Total Length: 48
 - Identification: 0x6fed (28653)
 - ▶ Flags: 0x00
 - Fragment offset: 0
 Time to live: 128
 Protocol: UDP (17)
 - ▶ Header checksum: 0xaeef [validation disabled]
 - Source: 130.83.139.58 (130.83.139.58)
 - Destination: 130.83.139.255 (130.83.139.255)
 - [Source GeoIP: Unknown]
 - [Destination GeoIP: Unknown]
- ▼ User Datagram Protocol, Src Port: 2007 (2007), Dst Port: 2007 (2007)