Addition

2	y)	sum cout
0	٥٥	0 0
Ø)	10
l	0	10
1	1	01

$$\frac{01}{100}$$
 $\frac{1}{4}$

carry out of one pour of bits is the carry in of the next pair of bits.

χ	y	cin	sum	cont
0	00	- O	0	0
0 0	Ĭ	0	ì	0
0	l)	0)
<i>b</i>	Ø)	0	Ī
ı	1	Ó	0	i
l	1	1))

Sum = x & y & = Snow know for cout.

cout = y cin +x cin +xy

= xy + cin (x + y)

= xy + cin (x + y)

Think about how to ould n-bits.

(i.e., we want a circuit that an add unsignal integers represented in n bits.

$$\frac{1010101}{+00,1100,1} \frac{85}{+25}$$

$$\frac{0,1100,1}{0,1100}$$

$$\frac{0,1100,1}{100}$$

$$\frac{100}{100}$$

$$\frac{100}{100}$$

$$\frac{100}{100}$$

