Lecture 12

Name: Harsh Sanjay Roniyar

Roll Number: 22B3942

Continuing from where we left in Lecture 11,

$$\frac{dL}{dw} = \frac{dL}{dy} \frac{dy}{dh} \frac{dh}{dw};$$

where,
$$h=wx$$
, $y=\sigma(h)=\frac{1}{1+e^{-h}}$ and $L=-t\log(y)-(1-t)\log(1-y)$ Therefore, $\frac{dL}{dy}=\left(-\frac{t}{y}+\frac{1-t}{1-y}\right)$, $\frac{dy}{dh}=y(1-y)$.

Hence, we get

$$\frac{dL}{dw} = (y - t)x.$$

In linear as well as logistic regression, the model is still linear and loss functions are also convex.

Now, considering regularization, for L2 Regularization, the total loss comes out to be $L_{\mathrm{error}} + \frac{\lambda}{2} w^T w$, whereas in L1 regularization, it is $L_{\mathrm{error}} + \lambda \sum_j |w_j|$.

Also, L2 regularization has some sort of weight stabilization effect, i.e. it tries to correct the deviations of w_i 's such that the loss is minimized, whereas L1 has no such effect.

Elastic Net

Best of both L1 and L2 (but there's obviously a catch)

$$ext{Total Loss } = L_{ ext{error}} + rac{\lambda_2}{2} \sum_j |w_j|^2 + \lambda_1 \sum_j |w_j|$$

The catch here is - Now we need to tune two hyperparameters instead of just one.

Confusion Matrix

Predicted \ Actual	0	1
0	TN	FN
1	FP	TP

Symmetric Risk

(0,0),(1,1) - Low Risk

Predicted \ Actual	0	1
0	low	high
1	high	low

Asymmetric Risk

Different risks for Type I (FP) and Type II (FN) errors.

Predicted \ Actual	0	1
0	low	higher
1	high	low

Some metrics for binary classification

Single Threshold

$$\label{eq:accuracy} \begin{split} \operatorname{Accuracy} &= \frac{TP + TN}{\operatorname{Total}} \\ \operatorname{Precision} \left(\mathbf{P} \right) &= \frac{TP}{TP + FP} \\ \operatorname{Recall Sensitivity} \left(\mathbf{R} \right) &= \frac{TP}{TP + FN} \\ \operatorname{Specificity} &= \frac{TN}{TN + FP} \\ \\ \operatorname{Balanced Metric} &: F1 \operatorname{score} &= \frac{2PR}{P + R} \end{split}$$

All the metrics defined above are threshold dependent, depending on the boundary condition set for classification between the classes 0 and 1, the values for all metrics will change accordingly.

Threshold-free Metric

AUC (Area Under (receiver operating characteristic) Curve)

The plot is made between sensitivity and (1 - specificity). The farther the threshold point from the origin, the lower the threshold (variation of both values on the axes from 0 to 1).

Accuracy is meaningful only when we have balanced classes otherwise preferable to use other metrics like AUC and F1-score.

Jensen's Inequality

Similar to what we did in Lecture 9.

A function f is convex iff $\forall~0\leq\lambda\leq1$ -

$$\lambda f(x_1) + (1-\lambda)f(x_2) \geq f(\lambda x_1 + (1-\lambda)x_2)$$