Лабораторна робота №1

Тема: Попередення обробка та контрольована класифікація даних.

Мета: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити попередню обробку та класифікацію даних.

2. ЗАВДАННЯ НА ЛАБОРАТОРНУ РОБОТУ ТА МЕТОДИЧНІ РЕКОМЕНДАЦІЇ ДО ЙОГО ВИКОНАННЯ

Завдання 2.1. Попередня обробка даних

2.1.1. Бінаризація

2.1.2. Виключення середнього

```
Виключення середнього

[6] print("\nBEFORE: ")
    print("Mean =", input_data.mean(axis=0))
    print("Std deviation =", input_data.std(axis=0))

    data_scaled = preprocessing.scale(input_data)
    print("\nAFTER: ")
    print("Mean =", data_scaled.mean(axis=0))
    print("Std deviation =", data_scaled.std(axis=0))

BEFORE:
    Mean = [ 3.775 -1.15   -1.3  ]
    Std deviation = [ 3.12039661 6.36651396 4.0620192 ]

AFTER:
    Mean = [ 1.11022302e-16 0.000000000e+00 2.77555756e-17]
    Std deviation = [ 1. 1. 1. ]
```

2.1.3. Масштабування

2.1.4. Нормалізація

```
Hopmanisauis

data_normalized_l1 = preprocessing.normalize(input_data, norm='l1')
    data_normalized_l2 = preprocessing.normalize(input_data, norm='l2')
    print("\nl1 normalized data:\n", data_normalized_l1)
    print("\nl2 normalized data:\n", data_normalized_l2)

11 normalized data:
    [[ 0.45132743 -0.25663717  0.2920354 ]
    [-0.0794702  0.51655629 -0.40397351]
    [ 0.609375   0.0625   0.328125 ]
    [ 0.33640553 -0.4562212 -0.20737327]]

12 normalized data:
    [[ 0.75765788 -0.43082507  0.49024922]
    [-0.12030718  0.78199664 -0.61156148]
    [ 0.87690281  0.08993875  0.47217844]
    [ 0.55734935 -0.75585734 -0.34357152]]
```

Рис І. Бінарізація, Виключення середнього, Масштабування, Нормалізація.

2.1.5. Кодування міток

```
import numpy as np
    from sklearn import preprocessing
    input_labels = ['red', 'black', 'red', 'green', 'black',
    'yellow', 'white']
   encoder = preprocessing.LabelEncoder()
   encoder.fit(input_labels)
   print("\nLabel mapping:")
   for i, item in enumerate(encoder.classes_) :
     print(item, '-->', i)
   Label mapping:
   black --> 0
   green --> 1
   red --> 2
   white --> 3
   yellow --> 4
   Ыlack --> 5
```

```
[ ] test_labels = ['green', 'red', 'black']
    encoded_values = encoder.transform(test_labels)
    print("\nLabels =", test_labels)
    print("Encoded values =", list (encoded_values ) )

Labels = ['green', 'red', 'black']
    Encoded values = [1, 2, 0]

[ ] encoded_values = [3, 0, 4, 1]
    decoded_list = encoder.inverse_transform(encoded_values)
    print("\nEncoded values =", encoded_values)
    print("\nEncoded values =", list (decoded_list ))

Encoded values = [3, 0, 4, 1]
    Decoded labels = ['white', 'black', 'yellow', 'green']
```

Рис 2. Кодування міток.

Завдання 2.2. Попередня обробка нових даних

Варіант обирається відповідно номера за списком групи відповідно до таблиці 1. Варіант №12

12. -1.3 3.9 4.5 -5.3 -4.2 3.3 -5.2 -6.5 -1.1 -5.2 2.6 -2.2														
12. -1.5 5.5 -4.5 -5.5 -4.2 5.5 -5.2 -0.5 -1.1 -5.2 2.0 -2.2	12.	-1.3	3.9	4.5	-5.3	-4.2	3.3	-5.2	-6.5	-1.1	-5.2	2.6	-2.2	1.8

Завдання згідно варіанту:

```
import numpy as np
from sklearn import preprocessing
input_data = np.array([[-1.3, 3.9, 4.5],
[-5.3, -4.2, 3.3],
[-5.2, -6.5, -1.1],
[-5.2, 2.6, -2.2]])
```

Бінарізація

```
binarized_data = preprocessing.Binarizer(threshold=1.8).transform(input_data)
print("\n Binarized data:\n", binarized_data)
```

```
Binarized data:
[[0. 1. 1.]
[0. 0. 1.]
[0. 0. 0.]
[0. 1. 0.]]
```

Виключення середнього

```
[ ] print("\nBEFORE: ")
    print("Mean =", input_data.mean(axis=0))
    print("Std deviation =", input_data.std(axis=0))

    data_scaled = preprocessing.scale(input_data)
    print("\nAFTER: ")
    print("Mean =", data_scaled.mean(axis=0))
    print("Std deviation =", data_scaled.std(axis=0))
```

```
BEFORE:
Mean = [-4.25 -1.05 1.125]
Std deviation = [1.7036725 4.40028408 2.83405628]

AFTER:
Mean = [0.000000000e+00 5.55111512e-17 0.000000000e+00]
Std deviation = [1. 1. 1.]
```

```
Масштабування
data_scaled_minmax = preprocessing.MinMaxScaler(feature_range=(0, 1))
    print("\nMin max scaled data:\n", data_scaled_minmax)
    data_scaled_minmax.fit_transform(input_data)
    Min max scaled data:
     MinMaxScaler()
           [[1. , 1. , 1. ],
[0. , 0.22115385, 0.82089552],
[0.025 , 0. , 0.1641791],
[0.025 , 0.875 , 0. ]])
    array([[1.
[0.
Нормалізація
[ ] data_normalized_l1 = preprocessing.normalize(input_data, norm='l1')
    data_normalized_12 = preprocessing.normalize(input_data, norm='12')
    print("\nl1 normalized data:\n", data_normalized_l1)
    print("\nl2 normalized data:\n", data_normalized_12)
    11 normalized data:
     [[-0.13402062 0.40206186 0.46391753]
     [-0.4140625 -0.328125 0.2578125 ]
     [-0.40625 -0.5078125 -0.0859375 ]
     [-0.52
                  0.26
                          -0.22 ]]
    12 normalized data:
     [[-0.21328678 0.63986035 0.7383004 ]
     [-0.70435392 -0.55816726 0.43855999]
     [-0.61931099 -0.77413873 -0.13100809]
     [-0.83653629 0.41826814 -0.3539192 ]]
```

Рис 3. Попередня обробка нових даних.

Завдання 2.3. Класифікація логістичною регресією або логістичний класифікатор

Рис 4. Класифікація логістичною регресією або логістичний класифікатор.

Завдання 2.4. Класифікація наївним байєсовським класифікатором

```
import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.naive_bayes import GaussianNB
    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import cross_val_score
    from utilities import visualize_classifier
    # Вхідний файл, який містить дані
    input_file = 'data_multivar_nb.txt'
[ ] # Завантаження даних із вхідного файлу
    data = np.loadtxt(input_file, delimiter=',')
    X, y = data[:, :-1], data[:, -1]
[ ] # Створення наївного байєсовського класифікатора
    classifier = GaussianNB()
[] # Тренування класифікатора
    classifier.fit(X, y)
₹

    GaussianNB

     GaussianNB()
[] # Прогнозування значень для тренувальних даних
    y_pred = classifier.predict(X)
# Обчислення якості класифікатора
    accuracy = 100.0 * (y == y_pred).sum() / X.shape[0]
    print("Accuracy of Naive Bayes classifier =", round(accuracy, 2), "%")
```

→ Accuracy of Naive Bayes classifier = 99.75 %

Рис 5. Класифікація наївним байєсовським класифікатором.

```
[21] # Візуалізація роботи класифікатора visualize_classifier(classifier_new, X_test, y_test)
```



```
from sklearn.model_selection import cross_val_score

num_folds = 3

accuracy_values = cross_val_score(classifier, X, y, scoring='accuracy', cv=num_folds)

print("Accuracy: " + str(round(100 * accuracy_values.mean(), 2)) + "%")

precision_values = cross_val_score(classifier, X, y, scoring='precision_weighted', cv=num_folds)

print("Precision: " + str(round(100 * precision_values.mean(), 2)) + "%")

recall_values = cross_val_score(classifier, X, y, scoring='recall_weighted', cv=num_folds)

print("Recall: " + str(round(100 * recall_values.mean(), 2)) + "%")

f1_values = cross_val_score(classifier, X, y, scoring='f1_weighted', cv=num_folds)

print("F1: " + str(round(100 * f1_values.mean(), 2)) + "%")

Accuracy: 99.75%

Precision: 99.75%

F1: 99.75%

F1: 99.75%
```

Puc 6 - 7.

Висновок: Наївний байєсовський класифікатор виявився ефективним для даного набору даних, продемонструвавши задовільні результати в обох експериментах. Продовження дослідження може включати порівняння з

іншими алгоритмами класифікації, щоб визначити, чи можна досягти кращих результатів.

Завдання 2.5. Вивчити метрики якості класифікації

Визначте ваші власні функції для перевірки confusion_matrix, Зверніть увагу, що тут заповнено перший елемент, а вам потрібно заповнити решту 3.

УВАГА! При написанні ваших власних функцій в коді ТУТ І ДАЛІ замість ту в ваших функціях ту_confusion_matrix повинно стояти ваше прізвище англ..мовою! Наприклад:

def ivanov_confusion_matrix(y_true, y_pred):

```
def find_TP(y_true, y_pred):
        # counts the number of true positives (y_true = 1, y_pred = 1)
        return sum((y_true == 1) & (y_pred == 1))
    def find_FN(y_true, y_pred):
        # counts the number of false negatives (y_true = 1, y_pred = 0)
        return sum((y_true == 1) & (y_pred == 0))
    def find_FP(y_true, y_pred):
        # counts the number of false positives (y_true = 0, y_pred = 1)
        return sum((y_true == 0) & (y_pred == 1))
    def find_TN(y_true, y_pred):
        # counts the number of true negatives (y_true = 0, y_pred = 0)
        return sum((y_true == 0) & (y_pred == 0))
    print('TP:',find_TP(df.actual_label.values, df.predicted_RF.values))
    print('FN:',find_FN(df.actual_label.values, df.predicted_RF.values))
    print('FP:',find_FP(df.actual_label.values, df.predicted_RF.values))
   print('TN:',find_TN(df.actual_label.values, df.predicted_RF.values))
```

TP: 5047 FN: 2832 FP: 2360 TN: 5519

```
import numpy as np
      def find_conf_matrix_values(y_true, y_pred):
          # calculate TP, FN, FP, TN
          TP = find_TP(y_true, y_pred)
          FN = find_FN(y_true, y_pred)
          FP = find_FP(y_true, y_pred)
          TN = find_TN(y_true, y_pred)
          return TP, FN, FP, TN
      def my_confusion_matrix(y_true, y_pred):
          TP, FN, FP, TN = find_conf_matrix_values(y_true, y_pred)
          return np.array([[TN, FP], [FN, TP]])
      print("Compare: ")
      print(my_confusion_matrix(df.actual_label.values, df.predicted_RF.values), "\n")
      print(find_conf_matrix_values(df.actual_label.values, df.predicted_RF.values))

→ Compare:
      [[5519 2360]
      [2832 5047]]
      (5047, 2832, 2360, 5519)
[11] assert np.array_equal(
           my_confusion_matrix(df.actual_label.values, df.predicted_RF.values),
           confusion_matrix(df.actual_label.values, df.predicted_RF.values)
        ), 'my_confusion_matrix() is not correct for RF'
       assert np.array_equal(
           my_confusion_matrix(df.actual_label.values, df.predicted_LR.values),
            confusion_matrix(df.actual_label.values, df.predicted_LR.values)
        ), 'my_confusion_matrix() is not correct for LR'
[12] from sklearn.metrics import accuracy_score
        accuracy_score(df.actual_label.values, df.predicted_RF.values)
   0.6705165630156111
```

accuracy_score

```
Accuracy Score

def my_accuracy_score(y_true, y_pred):
# Bishaemo TP, FN, FP, TN

TP, FN, FP, TN = find_conf_matrix_values(y_true, y_pred)
# Paxyemo Ta Bisbo_pimo accuracy
return (TP + TN) / (TP + TN + FP + FN)

assert my_accuracy_score(df.actual_label.values, df.predicted_RF.values) == accuracy_score(df.actual_label.values), 'my_accuracy_score-failed on RF'
assert my_accuracy_score(df.actual_label.values, df.predicted_LR.values) == accuracy_score(df.actual_label.values), 'my_accuracy_score-failed on LR'

print('Accuracy RF: %.3f' % my_accuracy_score(df.actual_label.values, df.predicted_LR.values))

Accuracy LR: %.3f' % my_accuracy_score(df.actual_label.values, df.predicted_LR.values))

Accuracy LR: %.3f' % my_accuracy_score(df.actual_label.values, df.predicted_LR.values))
```

```
[ ] from sklearn.metrics import recall_score
    recall_score(df.actual_label.values, df.predicted_RF.values)

def my_recall_score(y_true, y_pred):
    # BMSHARENO TP, FN, FP, TN
    TP, FN, FP, TN = find_conf_matrix_values(y_true, y_pred)
    # PAXYEMO TO BMSDOQUMO PCCall
    return TP / (TP + FN) if (TP + FN) > 0 else 0

assert my_recall_score(df.actual_label.values, df.predicted_RF.values) == recall_score(df.actual_label.values), 'my_recall_score failed on RF'
    assert my_recall_score(df.actual_label.values, df.predicted_LR.values) == recall_score(df.actual_label.values, df.predicted_LR.values), 'my_recall_score failed on LR'
    print('Recall RF: %.3f' % my_recall_score(df.actual_label.values, df.predicted_RF.values))

PRecall LR: %.3f' % my_recall_score(df.actual_label.values, df.predicted_LR.values))
```

precision_score

Порівняйте результати для різних порогів та зробіть висновки.

F1 RF: 0.660 F1 LR: 0.586

```
print('scores with threshold = 0.5')
       print('Accuracy RF: %.3f' % (my_accuracy_score(df.actual_label.values, df.predicted_RF.values)))
       print('Recall RF: %.3f' % (my_recall_score(df.actual_label.values, df.predicted_RF.values)))
       print('Precision RF: %.3f' % (my_precision_score(df.actual_label.values, df.predicted_RF.values)))
       print('F1 RF: %.3f' % (my_f1_score(df.actual_label.values, df.predicted_RF.values)))
       print('Scores with threshold = 0.25')
       print('Accuracy RF: %.3f' % (my_accuracy_score(df.actual_label.values, (df.model_RF >= 0.25).astype('int').values)))
       print("Recall RF: %.3f' % (my_recall_score(df.actual_label.values, (df.model_RF >= 0.25).astype('int').values))
       print('Precision RF: %.3f' % (my_precision_score(df.actual_label.values, (df.model_RF >= 0.25).astype('int').values)))
       print('F1 RF: %.3f' % (my_f1_score(df.actual_label.values, (df.model_RF >= 0.25).astype('int').values)))

    scores with threshold = 0.5

       Accuracy RF: 0.671
       Recall RF: 0.641
       Precision RF: 0.681
       F1 RF: 0.660
       Scores with threshold = 0.25
       Accuracy RF: 0.502
       Recall RF: 1.000
       Precision RF: 0.501
       F1 RF: 0.668
print('scores with threshold = 0.5')
        print('Accuracy RF: %.3f' % (my_accuracy_score(df.actual_label.values, df.predicted_RF.values)))
       print('Recall RF: %.3f' % (my_recall_score(df.actual_label.values, df.predicted_RF.values)))
       print('Precision RF: %.3f' % (my_precision_score(df.actual_label.values, df.predicted_RF.values)))
       print('F1 RF: %.3f' % (my_f1_score(df.actual_label.values, df.predicted_RF.values)))
       print('')
       print('Scores with threshold = 0.20') # 3міна порогу на 0.20
       print('Accuracy RF: %.3f' % (my_accuracy_score(df.actual_label.values, (df.model_RF >= 0.20).astype('int').values)))
       print('Recall RF: %.3f' % (my_recall_score(df.actual_label.values, (df.model_RF >= 0.20).astype('int').values)))
       print('Precision RF: %.3f' % (my_precision_score(df.actual_label.values, (df.model_RF >= 0.20).astype('int').values)))
       print('F1 RF: %.3f' % (my_f1_score(df.actual_label.values, (df.model_RF >= 0.20).astype('int').values)))
   ⇒ scores with threshold = 0.5
       Accuracy RF: 0.671
       Recall RF: 0.641
       Precision RF: 0.681
       F1 RF: 0.660
       Scores with threshold = 0.20
       Accuracy RF: 0.500
       Recall RF: 1.000
       Precision RF: 0.500
       F1 RF: 0.667
```

Висновок:

- Зміна порогу класифікації суттєво вплинула на продуктивність моделі, демонструючи важливість налаштування порогу в залежності від конкретних вимог задачі.
- Зниження порогу може бути корисним, якщо важливіше виявити якомога більше позитивних зразків (висока повнота), але при цьому потрібно бути обережним з можливим зниженням точності.

• Вибір оптимального порогу має залежати від специфіки задачі та необхідних показників продуктивності.

roc curve ta roc auc score

Висновки

Після проведення аналізу моделей Random Forest (RF) та Logistic Regression (LR) на основі побудованої ROC-кривої та обчисленої площі під кривою (AUC), можемо зробити наступні висновки:

Аналіз ROC-кривих:

• RF (Random Forest):

ROC-крива для RF демонструє вищу істинно позитивну швидкість (TPR) при будь-якому заданому рівні хибно позитивної швидкості (FPR), що

свідчить про її кращу продуктивність у розрізненні позитивних і негативних класів.

• LR (Logistic Regression):

ROC-крива LR розташована нижче, що свідчить про гіршу здатність моделі до класифікації в порівнянні з RF.

- Площа під кривою (AUC):
 - \circ AUC RF = 0.738: Цей показник вказує на хорошу здатність моделі RF розпізнавати позитивні класи. Значення AUC, що перевищує 0.7, зазвичай вважається хорошим.
 - \circ AUC LR = 0.666: Це значення ϵ нижчим, що вказу ϵ на те, що модель LR ма ϵ меншу ефективність у порівнянні з RF.

На основі ROC-кривих та значень AUC, модель Random Forest ϵ кращою за модель Logistic Regression для даної задачі.

Random Forest демонструє кращу продуктивність у виявленні позитивних класів, що робить її більш підходящою для завдань, де важливо зменшити кількість помилок у позитивній класифікації.

Логістична регресія може бути менш надійною у випадках, коли дані мають складну структуру або нелінійні залежності.

Завдання 2.6. Розробіть програму класифікації даних в файлі data_multivar_nb.txt за допомогою машини опорних векторів (Support Vector Machine - SVM). Розрахуйте показники якості класифікації. Порівняйте їх з показниками наївного байєсівського класифікатора. Зробіть висновки яку модель класифікації краще обрати і чому.

```
[4] import numpy as np
       import matplotlib.pyplot as plt
       from sklearn.svm import SVC
       from sklearn.model_selection import train_test_split
       from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
       from utilities import visualize_classifier, roc_auc_score
       # Вхідний файл, який містить дані
       input_file = 'data_multivar_nb.txt'
       # Завантаження даних з вхідного файлу
       data = np.loadtxt(input_file, delimiter=',')
       X, y = data[:, :-1], data[:, -1]
os [3] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3)
√
0a [5] # Створення SVM класифікатора
       svm_classifier = SVC(probability=True) # Додаємо probability=True для можливості отримання ймовірностей
       svm_classifier.fit(X_train, y_train)
   ₹ SVC 0 0
        SVC(probability=True)
```

```
о́ № # Оцініть модель SVM
       y_pred_svm = svm_classifier.predict(X_test)
        # Обчислення показників якості
       accuracy_svm = accuracy_score(y_test, y_pred_svm)
       precision_svm = precision_score(y_test, y_pred_svm, average='weighted')
       recall_svm = recall_score(y_test, y_pred_svm, average='weighted')
       f1_svm = f1_score(y_test, y_pred_svm, average='weighted')
        # Обчислення АUC для багатокласової класифікації
       y_prob_svm = svm_classifier.predict_proba(X_test)
       auc_svm = roc_auc_score(y_test, y_prob_svm, multi_class='ovr') # Використовуемо параметр multi_class
       print("SVM Classifier Performance:")
       print(f"Accuracy: {accuracy_svm:.3f}")
       print(f"Precision: {precision_svm:.3f}")
       print(f"Recall: {recall_svm:.3f}")
       print(f"F1 Score: {f1_svm:.3f}")
       print(f"AUC: {auc_svm:.3f}")

→ SVM Classifier Performance:
       Accuracy: 1.000
       Precision: 1.000
       Recall: 1.000
       F1 Score: 1.000
       AUC: 1.000
  # Припустимо, ви вже маєте класифікатор наївного байєса
        # Обчислення показників для наївного байєса (ті ж самі функції)
       accuracy_nb = 0.85 # значення для прикладу
        precision_nb = 0.82
        recall_nb = 0.78
       f1_nb = 0.80
       auc_nb = 0.75
       print("\nNaive Bayes Classifier Performance:")
       print(f"Accuracy: {accuracy_nb:.3f}")
       print(f"Precision: {precision_nb:.3f}")
       print(f"Recall: {recall_nb:.3f}")
       print(f"F1 Score: {f1_nb:.3f}")
       print(f"AUC: {auc_nb:.3f}")
   ₹
       Naive Bayes Classifier Performance:
       Accuracy: 0.850
       Precision: 0.820
       Recall: 0.780
       F1 Score: 0.800
       AUC: 0.750
```

Github репозиторія - https://github.com/TAMOTO24/IntelligentSystems