2 KIRCHHOFFOVA IZREKA

Omenili smo že, da pri reševanju elektrotehniških problemov, zelo pogosto uporabljamo Ohmov zakon. Prav tako pogosto, pa nam prideta prav še oba Kirchhoffova izreka.

2.1 1. Kirchhoffov izrek

Prvi Kirchhoffov izrek govori, da je **vsota električnih tokov v izbranem vozlišču enaka nič**. Ta izrek lahko predstavimo z en. **1**

$$I_1 + I_2 + (-I_3) + \dots = 0$$
 (1)

in nakazuje, da se naboj ne more kopičiti v vodnikih. To pomeni, da če po neki žici naboj priteče v vozlišče, ga bo od tam tudi prav toliko odteklo. Za en. 1 velja, da smo vse pritekajoče tokove v sumacijsko točko definirali kot pozitivne. Medtem ko imajo odtekajoči tokovi negativen predznak (npr.: I_3).

2.1.1 NALOGA: SUMACIJSKA TOČKA EL. TOKOV

Sestavite električno vezje s poljubno napajalno napetostjo. V to vezje vključi 3 upore različnih upornosti (npr.: $R_{1..3}=100\Omega..10k\Omega$) - izberete lahko isto električno vezje iz 1. vaje o Ohmovem zakonu. Vezava naj bo neka kombinacija vzporednih in zaporednih vezav. Za vsaj dva različna primera napajalnih napetosti predstavite, da velja 1. Kirchhoffov izrek. Odgovor naj vsebuje:

- 1. električno shemo vezja s ključnimi el. veličinami,
- 2. označite (kompleksnejšo) poljubno sumacijsko točko v vezju,
- 3. izmerite vse pritekajoče in odtekajoče tokove sumacijske točke in
- 4. pravilno zapišite en. 1 z vstavljenimi podatki.

2.2 2. Kirchhoffov izrek

Drugi Kirchhoffov izrek predpostavlja, da je **vsota vseh razlik napetostnih potencialov v zaključenem električnem tokokrogu enaka 0**. Za primer žepne svetilke, bi ta izrek lahko zapisali tudi z en. **2**

$$U_{G_1} + U_{G_2} + U_{G_3} + (-U_R) + (-U_{LED}) = 0 (2)$$

dr. David Rihtaršič

pri čemer velja, da če se napetostni potencial v izbrani smeri poveča, je razlika pozitivna in negativna, če se napetostni potencial v izbrani smeri zmanjša (npr.: napetost na žarnici U_{LED}).

Ta isti izrek boste večkrat našli zapisan tudi tako, da je: **vsota vseh gonilnih napetosti v zaključenem električnem krogu enaka vsoti vseh razlik napetostnih potencialov na porabnikih.** Ko imamo v vezju le en napetostni vir (v večini primerih), bi ta izrek lahko predstavili z en. 3:

$$U_{G_1} = U_{R_1} + U_{R_2} + \dots {3}$$

2.2.1 NALOGA: NAPETOSTNI POTENCIAL V TOKOKROGU

Na primeru vezja iz prejšnje naloge nastavi poljubno znano napajalno napetost (novo, ki je še nisi preskusil) :

- 1. sestavi zapise enačb 2. Kirchhoffovega izreka za vse tokokroge v vezju,
- 2. sestavite zapise enačb za vse sumacijske točke v vezju,
- 3. za vse upore sestavite enačbo Omovega
- 4. rešite sistem enačb ter izračunajte napetosti in tokove skozi vse elemente ter
- 5. jih primerjajte z izmerjenimi vrednostmi.

dr. David Rihtaršič