Conditional Probability

6/30/2006

Example

Three candidates A, B, and C are running for office. We decided that A and B have an equal chance of winning and C is only 1/2 as likely to win as A. Let A be the event "A wins," B that "B wins," and C that "C wins." Hence, we assigned probabilities P(A) = 2/5, P(B) = 2/5, and P(C) = 1/5.

Suppose that before the election is held, A drops out of the race. What are the values for $P(B|\tilde{A})$ and $P(C|\tilde{A})$?

Definition

Let $\Omega=\{\omega_1,\omega_2,\ldots,\omega_r\}$ be the original sample space with distribution function $m(\omega_j)$ assigned. Suppose we learn that the event E has occurred.

- If a sample point ω_j is not in E, we want $m(\omega_j|E)=0$.
- For ω_k in E, we should have the same relative magnitudes that they had before we learned that E had occurred:

$$m(\omega_k|E) = c \ m(\omega_k).$$

Definition ...

But we must also have

$$\sum_{E} m(\omega_k | E) = c \sum_{E} m(\omega_k) = 1.$$

Thus,

$$c = \frac{1}{\sum_{E} m(\omega_k)} = \frac{1}{P(E)} .$$

Definition ...

Definition 1. The conditional distribution given E is the distribution on Ω defined by

$$m(\omega_k|E) = \frac{m(\omega_k)}{P(E)}$$

for ω_k in E, and $m(\omega_k|E)=0$ for ω_k not in E.

Then, for a general event F,

$$P(F|E) = \sum_{F \cap E} m(\omega_k|E) = \sum_{F \cap E} \frac{m(\omega_k)}{P(E)} = \frac{P(F \cap E)}{P(E)}.$$

We call P(F|E) the conditional probability of F occurring given that E occurs.

Example

Let us return to the example of rolling a die. Recall that F is the event X=6, and E is the event X>4. Note that $E\cap F$ is the event F. So, the above formula gives

$$P(F|E) = \frac{P(F \cap E)}{P(E)}$$
$$= \frac{1/6}{1/3}$$
$$= \frac{1}{2}.$$

Example

We have two urns, I and II. Urn I contains 2 black balls and 3 white balls. Urn II contains 1 black ball and 1 white ball. An urn is drawn at random and a ball is chosen at random from it. We can represent the sample space of this experiment as the paths through a tree.

- Let B be the event "a black ball is drawn," and I the event "urn I is chosen." Then the branch weight 2/5, which is shown on one branch in the figure, can now be interpreted as the conditional probability P(B|I).
- What is P(I|B)?

Bayes Probabilities

We have just calculated the *inverse probability* that a particular urn was chosen, given the color of the ball. Such an inverse probability is called a *Bayes probability*.

The Monty Hall problem

Suppose you're on Monty Hall's *Let's Make a Deal!* You are given the choice of three doors, behind one door is a car, the others, goats. You pick a door, say 1, Monty opens another door, say 3, which has a goat. Monty says to you "Do you want to pick door 2?" Is it to your advantage to switch your choice of doors?

Question: What is the conditional probability that you win if you switch, given that you have chosen door 1 and that Monty has chosen door 3.

Problem

Assume that E and F are two events with positive probabilities. Show that if P(E|F)=P(E), then P(F|E)=P(F).

In this case, we say that the events E and F are independent.

It is also equivalent to the fact that $P(E\cap F)=P(E)P(F)$

Problem

A die is rolled twice. What is the probability that the sum of the faces is greater than 7, given that

- 1. the first outcome was a 4?
- 2. the first outcome was greater than 3?
- 3. the first outcome was a 1?
- 4. the first outcome was less than 5?