Text Processing

Dr. Demetrios Glinos University of Central Florida

CAP6640 – Computer Understanding of Natural Language

Today

- Regular Expressions
- Word Tokenization
- Word Normalization and Stemming
- Sentence Segmentation and Decision Trees

Build an NLP Pipeline

- NLP programs are often built as pipelines of components that act as filters or transducers
- Typical components
 - 1. Sentence splitting
 - Tokenization (optional: stopword removal)
 - 3. Lemmatization
 - 4. Part-of-speech tagging
 - 5. Named entity recognition
 - Parsing (constituency or dependency)
 - 7. Coreference resolution
 - 8. Semantic analysis (sentiment, QA, summarization, etc.)

Regular Expressions

- A formal language for matching text strings
- We can use a single RegEx to match any of these words
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

Regular Expressions: Disjunctions

Characters within square brackets []

Pattern	Matches
[wW]oodchuck	<u>W</u> oodchuck, <u>w</u> oodchuck
[1234567890]	Any digit

Ranges of characters

Pattern	Matches	Examples
[A-Z]	An upper case letter	Monty Python
[a-z]	A lower case letter	<u>a</u> ny time
[0-9]	A single digit	Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunctions

- Negations [^Ss]
 - Carat means negation only when first in []

Pattern	Matches	Examples
[^A-Z]	Not an upper case letter	Monty Python
[^Ss]	Neither 'S' nor 's'	In the morning
[^e^]	Neither 'e' nor '^'	Look h <u>e</u> re
[a^b]	The pattern 'a^b'	Look up <u>a^b</u> now

Regular Expressions: More Disjunctions

We can also use the pipe ('|') for disjunction

Pattern	Matches
groundhog woodchuck	groundhog woodchuck
yours mine	yours mine
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	groundhog Groundhog Woodchuck woodchuck

Regular Expressions: ? * + .

Pattern	Meaning	Matches
colou?r	previous character is optional	color colour
oo*h!	0 or more of the previous character	oh! ooh! ooooh!
o+h!	1 or more of the previous character	oh! ooh! ooooh!
baa+		baa baaaa baaaaa
beg.n	any character (wildcard)	begin began begun beg3n

Regular Expressions: Anchors ^ \$ and Escape \

Pattern	Meaning	Matches
^[A-Z]	begins with upper case letter	New York
^[^A-Za-z]	does not begin with a letter	<u>1</u> "Hello"
\.\$	ends with a period (backslash is escape character)	The end.
.\$	any character followed by anything	'T', 'h', 'e', ' ', 'e', 'n', 'd', '.'

Example

• Want: Find all instances of the word "the" in some text

• Try regular expression: the \rightarrow misses upper case The

• Try regular expression: [tT]he \rightarrow returns "other", "theology", etc.

Try regular expression: ^[tT]he\$ -> returns only "The" and "the"

Errors

- We just went through a process of fixing two kinds of errors
 - False positive (Type I) errors
 - Matching strings that we should not have matched
 - "there", "then", "other"
 - False negative (Type II) errors
 - Not matching strings that we should have matched
 - "The"

Errors (cont.)

- In NLP, we are always dealing with these kinds of errors
- Reducing the error rate for an application often involves two competing goals
 - increasing accuracy or precision (minimizing false positives)
 - increasing coverage or recall (minimizing false negatives)

Recall and Precision

- Traditional measure for IR systems
 - compute recall and precision based on human relevance judgments

recall: the proportion of relevant documents that are returned (found)

$$R = \frac{|\operatorname{Re} levant \cap \operatorname{Re} turned|}{|\operatorname{Re} levant|}$$

precision: the proportion of returned documents that are relevant

$$P = \frac{|\operatorname{Re} levant \cap \operatorname{Re} turned|}{|\operatorname{Re} turned|}$$

"f-measure": the harmonic mean or recall and precision

$$F_1 = \frac{2PR}{(P+R)}$$

Regular Expressions in NLP

- Regular expressions play a surprisingly large role
 - Often, sophisticated sequences of regular expressions are the first model for any text processing task (i.e., prototyping)
- For many difficult tasks, we typically use machine learning classifiers
 - However, regular expression results are often used as features
 - Regular expressions can be very useful in capturing general properties

Today

- Regular Expressions
- Word Tokenization
- Word Normalization and Stemming
- Sentence Segmentation and Decision Trees

Text Normalization

- Every NLP task needs to do text normalization (preprocessing)
 - 1. Segmenting/tokenizing words in running text
 - 2. Normalizing word forms
 - 3. Segmenting sentences in running text

These tasks are not as simple as they may appear

How many words?

- Consider: "I do, uh main- mainly business data processing"
 - Here, there are fragments and filled pauses

- Consider: "Seuss's cat in the hat is different from other cats!"
 - Wordform
 - the full inflected surface form
 - cat and cats are different wordforms
 - Lemma
 - same stem, part-of-speech, rough word sense
 - cat and cats have the same lemma

How many words?

- Consider: "He said he will return in a New York minute"
 - Type
 - an element of the vocabulary
 - Token
 - an instance of a type in running text

- Number of tokens: 10 or 9?
- Number of types: 10, 9, or 8?

How many words?

- Let N = number of tokens
 V = set of types (vocabulary), so that |V| = size of vocabulary
- Then $|V| = O(N^{\frac{1}{2}})$ (per Church and Gale, 1990)

• Some relevant data points:

Domain	# Tokens = N	# Types = V
Switchboard phone conversations	2.4 million	20,000
Shakespeare	884,000	31,000
Google N-grams	1 trillion	13 million

Simple tokenization in UNIX

• Given a text file, output the word tokens and their frequencies (inspired by Ken Church's "Unix for Poets")

```
tr —sc 'A—Za—z' '\n' < shakes.txt ← change all non-alpha to newlines

| sort ← sort in alphabetical order
| uniq —c ← merge and count each type
```

Step 1: tokenizing

Command:

```
tr -sc 'A-Za-z' '\n' < shakes.txt | head
```

Console output:

THE SONNETS

by

William

Shakespeare

From

fairest

creatures

we

desire

. . .

Step 2: sorting

Command:

```
tr -sc 'A-Za-z' '\n' < shakes.txt | sort | head
```

Console output:

A A A A A A

. . .

More counting

Merging upper and lower case

```
[Demetrioss-MBP:resources glinosd$ tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' '\n' | sort | uniq -c
14725 a
97 aaron
1 abaissiez
10 abandon
2 abandoned
2 abase
1 abash
14 abate
3 abated</pre>
```

And sorting the counts

```
Demetrioss-MBP:resources glinosd$ tr 'A-Z' 'a-z' < shakes.txt | tr -sc 'A-Za-z' '\n' | sort | uniq -c | sort -n -r 27597 the 26738 and 22538 i 19771 to 18138 of 14725 a 13826 you 12489 my 11536 that 11112 in  

What happened here?

What happened here?
```

Tokenization Issues

• Finland's capital \rightarrow Finland, Finlands, or Finland's ?

what're, I'm, isn't → what are, I am, is not ?

Hewlett-Packard → Hewlett Packard ?

state-of-the-art → state of the art?

• Lowercase → lower-case, lowercase, or lower case ?

San Francisco → one token or two?

• m.p.h., PhD. \rightarrow how many tokens?

Tokenization: language issues

- French
 - L'ensemble → one token or two?
 - L, L', or Le?
 - We want *l'ensemble* to match with *un ensemble*

- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

Tokenization: language issues

Chinese and Japanese – no spaces between words

莎拉波娃现在居住在美国东南部的佛罗里达。 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达 Sharapova now lives in US southeastern Florida

Japanese also allows intermingling of multiple alphabets

- Query to match can be in any of the alphabets!
- Note also: dates and amounts are in multiple formats

Word Tokenization in Chinese

- Also called word segmentation
- Chinese words are composed of characters
 - characters are generally 1 syllable and 1 morpheme
 - average word is 2.4 characters long
- Baseline word segmentation algorithm for Chinese is called "Maximum Matching"

Maximum Matching algorithm:

Given a wordlist of Chinese, and a string to segment:

- 1. Start a pointer at the beginning of the string
- 2. Find the longest word in dictionary that matches the string starting at the pointer
- 3. Move the pointer to the end of the word
- 4. Go to step 2

Example: Maximum Matching

- Doesn't generally work for English
 - Thecatinthehat \longrightarrow the cat in the hat
 - Thetabledownthere \longrightarrow theta bled own there the table down there
- Maximum matching works surprisingly well for Chinese

莎拉波娃现在居住在美国东南部的佛罗里达。 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

Modern probabilistic segmentation algorithms work even better

Today

- Regular Expressions
- Word Tokenization
- Word Normalization and Stemming
- Sentence Segmentation and Decision Trees

Normalization

- Why?
 - For Information Retrieval to work, query terms and indexed text must have the same forms
 - e.g., to match U.S.A. and USA
- How?
 - We implicitly define equivalence classes of terms
 - e.g., deleting periods in terms
 - Alternative: asymmetric expansion

Query: window
 Search: window, windows

Query: windows
 Search: Windows, windows, windows

Query: Windows
 Search: Windows

potentially more powerful, but less efficient

Case folding

- For applications like IR
 - reduce all letters to lower case
 - users tend to use lower case
 - possible exception: upper case in mid-sentence?
 - General Motors
 - Fed v. fed
 - SAIL v. sail
- For sentiment analysis, MT, information extraction
 - case is helpful
 - US v. us

Lemmatization

- Reduce inflections or variant forms to base form
 - am, are, $is \rightarrow be$
 - car, cars, car's, cars' → car
 - the boys' cars are different colors → the boy car be different color

- Lemmatization for MT
 - more difficult since often words don't map 1:1
 - e.g., Spanish quiero ('I want'), quires ('you want') have same lemma as querer ('want')

Morphology

Morphemes

the small, meaningful units that make up words

stems

the core meaning-bearing units

affixes

- bits and pieces that adhere to stems, often with grammatical functions
- prefixes, suffixes, infixes, circumfixes
- e.g., in German: verb sagen (to say)

past tense uses circumfix: gesagt

Stemming

- Reduce terms to their stems for information retrieval
- **Stemming** is crude chopping of affixes
 - language dependent
 - e.g., automate(s), automatic, $automation \rightarrow automat$

for example compressed and compression are both accepted as equivalent to compress

for exampl compressed and compress ar both accept as equival to compress

Porter's algorithm

The most commonly used English stemmer: https://tartarus.org/martin/PorterStemmer/

NOTE: We show a simplified version

Step 1a

sses → ss	caresses → caress
ies → i	ponies → poni
$ss \rightarrow ss$	caress → caress
$s \longrightarrow \varnothing$	cats → cat

Step 2 (for long stems)

ational \rightarrow ate	$relational \rightarrow relate$
izer → ize	digitizer → digitize
ator \rightarrow ate	operator → operate

Step 1b

(*v*)ing → ∅	walking → walk
	$sing \rightarrow sing$
(*v*)ed → ∅	plastered → plaster
	$bled \rightarrow bled$

Step 3 (for longer stems)

al →∅	revival → reviv
able $\longrightarrow \emptyset$	adjustable → adjust
ate → ∅	activate → activ

Viewing morphology in a corpus

Why strip –ing only if there is a preceding vowel?

$(*v*)$ ing $\longrightarrow \emptyset$	walking → walk
	sing → sing

```
1312 King
       548 being
       541 nothing
       388 king
       375 bring
       358 thing
                                         13080
       307 ring
       152 something
       145 coming
       130 morning
       127 sing
       122 having
Demetrioss-MBP:resources glinosd$ tr −sc 'A−Za−z' '\n' < shakes.txt | grep '[aeiou].*ing$' | sort | uniq −c | sort −nr
 548 being
541 nothing
152 something
145 coming
 130 morning
122 having
                                  9730
120 living
117 loving
116 Being
 102 going
 100 anything
```

Demetrioss-MBP:resources glinosd\$ tr -sc 'A-Za-z' '\n' < shakes.txt | grep 'ing\$' | sort | uniq -c | sort -nr

Dealing with complex morphology

- Some languages require complex morpheme segmentation
 - Turkish
 - Uygarlastiramadiklarimizdanmissinizcasina
 - '(behaving) as if you are among those whom we could not civilize'

```
    Uygar ('civilized') + las ('become')

            tir ('cause') + ama ('not able')
             dik ('past) + lar ('plural')
             imiz ('people') + dan ('able')
             mis ('past') + siniz ('people')
             casina ('as if')
```

Today

- Regular Expressions
- Word Tokenization
- Word Normalization and Stemming
- Sentence Segmentation and Decision Trees

Sentence Segmentation

- ! and ? are relatively unambiguous
- Period (".") is quite ambiguous
 - sentence boundary
 - abbreviations like "Inc." or "Dr."
 - numbers like .02%, 12. , or 4.3
- Solution: build a binary classifier
 - examines each instance of a "." and decides whether or not end of sentence
 - classifier
 - hand-written rules
 - regular expressions
 - machine-learning

Decision tree: is a word at end-of-sentence

More sophisticated decision tree features

- Case of word with ".": upper, lower, capitalized, number
- Case of word after ".": upper, lower, capitalized, number

- Numeric features
 - length of the word with "."
 - Probability(word with "." occurs at end-of-sentence)
 - Probability(word after "." occurs at beginning-of-sentence)

Implementing Decision Trees

- A decision tree can be implemented by simple if-then-else constructs
- The interesting part is choosing the order in which to test the features
- Setting up the structure is often too difficult to do by hand
 - Hand-building only possible for very simple features and problem domains
 - For numeric features, it is generally too difficult to choose each threshold by hand
 - Structure is usually learned by machine learning from a training corpus
 - e.g., ID3 algorithm, which uses concept of "information gain" for choosing features

Decision Trees and other Classifiers

- The questions in a decision tree are features that could be exploited by any kind of classifier
 - Naive Bayes
 - Logistic regression
 - SVM
 - Neural Net
 - etc.