Lecture 9 - Cryptography: asymmetric encryption

- Introduction
 - So far: how two users can protect data using a shared secret key
 - One shared secret key per pair of users that want to communicate
 - Our goal now: how to establish a shared secret key to begin with?
 - Trusted Third Party(TTP)
 - Diffie-Hellman (DH) protocol
 - RSA
 - ElGamal (EG)
- Online Trusted Third Party (TTP)
 - Users $U_1, U_2, U_3, ..., U_n, ...$
 - ullet Each user U_i has a shared secret key K_i with the TTP
 - ullet Ui and U_j can establish a key $K_{i,j}$ with the help of the TTP
 - $\{m\}_k$ denotes the symmetric encryption of m under the key k
 - Example: using Paulson's variant of the Yahalom protocol

- Question: can we establish a shared secret key without a TTP?
- Answer: Yes! Using public key cryptography
- Goal of public-key encryption

- Alice put the secret inside the box
- Alice lock the box using Bob's padlock then send it to Bob
- Bob unlock the padlock using his key and read the secret
- Public-key encryption Definition
 - ullet Key generation algorithm: G: o K imes K
 - ullet Encryption algorithm E:K imes M o C
 - ullet Decryption algorithm D:K imes C o M
 - * st. $orall (sk,pk) \in G$, and $orall m \in M, D(sk,E(pk,m)) = m$

- * The decryption key sk_{Bob} is secret (only known to Bob). The encryption key pk_{Bob} is known to everyone. And $sk_{Bob}
 eq pk_{Bob}$
- Primes
 - Definition
 - $p \in \mathbb{N}$ is a **prime** if its only divisors are 1 and p
 - Ex: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
 - Theorem

- Every $n \in \mathbb{N}$ has a **unique factorization** as a product of prime numbers (which are called its factors)
- Ex: 23244 = 2 x 2 x 3 x 13 x 149
- Relative primes
 - Definition
 - ullet a and b in $\mathbb Z$ are **relative primes** if they have no common factors
 - Euler function
 - The Euler function $\phi(n)$ is the number of elements that are relative primes with n:
 - $oldsymbol{\phi}(n) = |\{m|0 < m < n ext{ and } \gcd(m,n)$ = 1 $\}|$
 - For p prime: $\phi(p)=p-1$
 - For ${\it p}$ and ${\it q}$ primes: $\phi(p\cdot q)=(p-1)(q-1)$
- \mathbb{Z}_n
 - ullet Let $n\in\mathbb{N}$. We define $\mathbb{Z}_n=\{0,...,n-1\}$
 - $orall a \in \mathbb{Z}, orall b \in \mathbb{Z}_n, a \equiv b (mod \ n) \iff \exists k \in \mathbb{N}. \ a = b + k \cdot n$
 - Modular inversion:
 - the inverse of $x\in \mathbb{Z}_n$ is $y\in \mathbb{Z}_n$ s.t. $x\cdot y\equiv 1 (mod\ n)$. We denote x^{-1} the inverse of x mod n
 - Example:
 - 7^{-1} in \mathbb{Z}_{12} : 7 7 * 7 = 49 mod 12 = 1
 - 4^{-1} $in \mathbb{Z}_{12}:$ 4 has no inverse in \mathbb{Z}_{12}
 - Theorem
 - Let $n \in \mathbb{N}$. Let $x \in \mathbb{Z}_n$. x has a inverse in \mathbb{Z}_n , iff gcd (x, n) = 1
- ullet \mathbb{Z}_n^*
 - ullet Let $n\in\mathbb{N}.$ We define $\mathbb{Z}_{n}^{st}=\{x\in\mathbb{Z}_{n}|gcd(x,n)=1\}$
 - Example: $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$
 - Note that $|\mathbb{Z}_n^*| = \phi(n)$

Number of prime numbers

Theorem (Euler)

•
$$orall n \in \mathbb{N}, orall x \in \mathbb{Z}_n^*$$
 , if $\gcd(\mathsf{x},\mathsf{n})$ = 1 then $x^{\phi(n)} \equiv 1 (mod \ n)$

Ex:

•
$$11^{12} \mod 12 = 1$$

•
$$7^{12} \mod 12 = 1$$

•
$$5^{12} \mod 12 = 1$$

•
$$1^{12} \mod 12 = 1$$

• $\forall p$ prime, \mathbb{Z}_p^* is a cyclic group, i.e.

$$\exists g \in \mathbb{Z}_p^*, \{1, g, g^2, g^3, ..., g^{p-2}\} = \mathbb{Z}_p^*$$

• Ex:

• p=7,
$$\mathbb{Z}_7^* = \{1,2,3,4,5,6\}$$

• g=3, s.t.
$$\mathbb{Z}_7^*=\{1,3\ mod\ 7,3^2\ mod\ 7,3^3\ mod\ 7,3^4\ mod\ 7,3^5\ mod\ 7\}=1,3,2,6,4,5$$

• Intractable problem

• Factoring:

- input: $n \in \mathbb{N}$
- ullet output: $p_1,...,p_m$ primes s.t. $n=p_1,...,p_m$

RSAP

- input
 - $oldsymbol{n}$ st. $n=p\cdot q$ with 2 $\leq p,q$ primes
 - $oldsymbol{e}$ st. $gcd(e,\phi(n))=1$
 - ullet m^e mod n
- output:
 - m

• Discrete Log:

- ullet Input: prime p, generator g of $\mathbb{Z}_p^*, y \in \mathbb{Z}_p^*$
- ullet Output: x such that $y=g^x (mod\ p)$
- DHP (Diffie-Hellman problem)

- Input: prime p, generator g of \mathbb{Z}_p^* , $g^a (mod \ p)$, $g^b (mod \ p)$
- Output: $g^{ab} (mod \ p)$
- The Diffie-Hellman (DH) Protocol
 - ullet Assumption: the DHP is hard in \mathbb{Z}_p^*
 - ullet Fix a very large prime p, and $g \in \{1,...,p-1\}$

- ullet It is hard to know $g^{ab}(mod\ p)$ because of DHP
- Man-in-the-middle attack

- Attacker create number a' and b'.
- Send them to Alice and Bob. Create keys that attacker knows
- RSA trapdoor permutation

$$G_{RSA}()=(pk,sk)$$

- ullet Where pk=(N,e) and sk=(N,d)
- $N = p \cdot q$ with p, q random primes
- $egin{aligned} ullet e,d \in \mathbb{Z} ext{ st. } e \cdot d = 1 + k \cdot \phi(N) \equiv 1 (mod \ \phi(N)) \end{aligned}$
- $^{ullet} \quad M=C=\mathbb{Z}_N$

- ullet $RSA(rac{poldsymbol{k}}{poldsymbol{k}},x)=x^e(mod\ N)$
- $^ullet RSA^{-1}(\, oldsymbol{sk} \, , x) = x^d (mod \, N)$
- Consistency:
 - $egin{array}{ll} iglet (pk,sk) = \ G_{RSA}(), orall x, RSA^{-1}(sk,RSA(pk,x)) = x \end{array}$
 - Proof:
 - Let pk=(N,e), sk=(N,d) and $x\in \mathbb{Z}_N.$ Easy case where x and N are relatively prime

$$RSA^{-1}(sk, RSA(pk, x)) = (x^e)^d \pmod{N}$$

$$= x^{e \cdot d} \pmod{N}$$

$$= x^{1+k\phi(N)} \pmod{N}$$

$$= x \cdot x^{k\phi(N)} \pmod{N}$$

$$= x \cdot (x^{\phi(N)})^k \pmod{N}$$

$$\stackrel{\text{Euler}}{=} x \pmod{N}$$

- How Does it work
 - ullet choose two large prime numbers $p\ and\ q$
 - $N = p \cdot q$
 - $\phi(N) = (p-1) \cdot (q-1)$ Euler function
 - Choose e (encryption key)
 - $1 < e < \phi(N)$
 - ullet e coprime with $N,\phi(N)$
 - $oldsymbol{e}$ is public
 - Choose d (decryption key)
 - $e \cdot d(mod \ \phi(N)) = 1$
 - d is private
- How **NOT** to use RSA
 - (G_{RSA},RSA,RSA^{-1}) is called raw RSA. Do not use raw RSA directly as an asymmetric cipher
 - RSA is deterministic

 not secure against chosen

 plaintext attacks

No randomness at all

ISO Standard

- Goal:
 - ullet Build a CPA secure asymmetric cipher using (G_{RSA},RSA,RSA^{-1})
- Let (E_s,D_s) be a symmetric encryption scheme over (M,C,K)
- ullet Let $H:Z_N^* o K$

Hash function produce the Key

- Build $(G_{RSA}, E_{RSA}, D_{RSA})$ as follows
 - ullet G_{RSA} as described above
 - $E_{RSA}(pk,m)$:
 - ullet pick random $x\in \mathbb{Z}_N^*$
 - $y \leftarrow RSA(pk,x) (= x^e \ mod \ N)$

Encrypt x produce y

• $k \leftarrow H(x)$

produce key by putting x into the hash function

- $ullet E_{RSA}(pk,m) = y || E_s(k,m) |$
- $egin{aligned} D_{RSA}(sk,y||c) &= D_s(H(RSA^{-1}(sk,y)),c) \end{aligned}$

First recover the x, then decrypt the ciphertext

- PKCS1 v2.0: RSA-OAEP
 - Goal: build a CCA (chosen ciphertext attacks) secure asymmetric cipher using (G_{RSA},RSA,RSA^{-1})

ElGamal (EG)

- Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $^{ullet} \quad M=\{0,...,p-1\}$ and C=M imes M
- $G_{EG}()=(pk,sk)$
 - $ullet pk = g^d (mod \ p)$
 - ullet sk=d and $d\stackrel{r}{\longleftarrow}\{1,...,p-2\}$
- $oldsymbol{E}_{EG}(pk,x) = (g^r (mod \ p), m \cdot (g^d)^r (mod \ p))$
 - $oldsymbol{r} \leftarrow oldsymbol{r} \mathbb{Z}$
- $D_{EG}(sk,x) = e^{-d} \cdot c (mod \ p)$
 - x=(e,c)
- Consistency:
 - $egin{array}{ll} ullet (pk,sk) = \ G_{EG}(), orall x, D_{EG}(sk,E_{EG}(pk,x)) = x \end{array}$
 - Proof:
 - Let $pk = g^d (mod \ p)$ and sk = d

$$D_{EG}(sk, E_{EG}(pk, x)) = (g^r)^{-d} \cdot m \cdot (g^d)^r \pmod{p}$$

= $m \pmod{p}$

Lecture 10 - Cryptography: digital signatures

Goal

 Data integrity and origin authenticity in the public-key setting

- ullet Key generation algorithm: G: o K imes K
- ullet signing algorithm S:K imes M o S

- ullet Verification algorithm $V:K imes M imes S o \{ op, ot\}$
- s.t. $orall (sk,vk) \in G,$ and $orall m \in M, V(vk,m,S(sk,m)) = op$
- Advantages of digital signatures over MACs
 - MACs

- are not publicly verifiable (and so not transferable)
 - No one else, except Bob, can verify t.
- do not provide non-repudiation
 - $oldsymbol{t}$ is not bound to Alice's identity only. Alice could later claim she didn't compute t herself. It could very well have been Bob since he also knows the key $oldsymbol{k}$
- Digital signatures

- are publicly verifiable -anyone can verify a signature
- are transferable due to public verifiability
- provide non-repudiation if Alice signs a document with her secret key, she cannot deny it later

Security

- A good digital signature schemes should satisfy existential unforgeabitliy.
- What is Existential unforgeability
 - Given $(m_1, S(sk, m_1)), ..., (m_n, S(sk, m_n))$ (where $m_1, ..., m_n$ chosen by the adversary)

- ullet It should be hard to compute a valid pair (m,S(sk,m)) without knowing sk for any $m
 otin\{m_1,...,m_n\}$
- Textbook RSA signatures

$$G_{RSA}()=(pk,sk)$$

- ullet Where pk=(N,e) and sk=(N,d)
- $oldsymbol{N} = p \cdot q$ with p,q random primes
- $egin{aligned} oldsymbol{e}, d \in \mathbb{Z} ext{ st. } e \cdot d = 1 + k \cdot \phi(N) \equiv \ 1 (mod \ \phi(N)) \end{aligned}$
- $^{ullet} \quad M=C=\mathbb{Z}_N$
- ullet Signing: $S_{RSA}(sk,x)=(x,x^d (mod\ N))$
- ullet Verifying $V_{RSA}(pk,m,x)=$
 - ullet op if $m=x^e (mod\ N)$
 - ⊥ otherwise
- s.t. $orall (pk,sk) = \ G_{RSA}(), orall x, V_{RSA}(pk,x,S_{RSA}(sk,x)) = op$
- Proof: exactly as proof of consistency of RSA encryption/decryption
- Problems with "Textbook RSA signatures"

Textbook RSA signatures are not secure

- The "textbook RSA signature" scheme does not provide existential unforgeabitlity
- Suppose Eve has two valid signatures $\sigma_1=M_1^d \ mod \ n$ and $\sigma_2=M_2^d \ mod \ n$ from Bob, on messages M_1 and M_2 .
- Then Eve can exploit the homomorphic properties of RSA and produce a new signature
 - $\sigma = \sigma_1 \cdot \sigma_2 \ mod \ n = M_1^d \cdot \ M_2^d \ mod \ n = (M_1 \cdot M_2)^d \ mod \ n$

- ullet which is a valid signature from Bob on message $M_1 \cdot M_2$
- How to use RSA for signatures
 - Solution
 - Before computing the RSA function, apply a hash function H
 - ullet Signing: $S_{RSA}(sk,x)=(x,H(x)^d\ (mod\ N))$
 - ullet Verifying: $V_{RSA}(pk,m,x)=$
 - ullet $oxed{ op}$ if $H(M)=x^e \; (mod \; N)$
 - \perp otherwise

以上内容整理于 幕布文档