

Distributed Loads on Beams

How to find the Net Force (R) acting on the beam

- \blacksquare R = Area under the loading diagram
- R acts through the centroid of the area

Uniformly distributed load (UDL) Area under the loading diagram, R = wLR, acts at L/2, i.e. the centroid of the area

Uniformly varying load (UVL)
Area under the loading diagram, $R = \frac{1}{2}wL$ and R acts at 2L/3, i.e. the centroid of the area

Types of Beams on the Basis of Support Conditions

Types of Beams on the Basis of Support Conditions

Types of Beams on the Basis of Support Conditions

Find reactions at the fixed subject.

$$25luhun$$
 $25luhun$
 $25fx=0$
 $H_{4}-40 cn30=0$
 $H_{4}=34.64 kN$
 $E_{1}f_{2}=0$
 $V_{4}-20x3-40 x0.5=0$
 $V_{4}=80 kN$
 $E_{1}M_{4}=0$
 $-M_{4}+20x3x1.5+40x0.5 x4=0$
 $M_{4}=90+80=170 kNm$

Magnitude of UDL 2 100 x 5=500N

THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY (Deemed to be University)

Ruslen: Find reactions at the supports.

Solution: ZFx=0

Ha = - 60 KN

 $\Sigma F_{\gamma}=0$ $V_{A}+V_{C}=0$ $V_{A}=-V_{C}-T$

 $5M_{A}=0$ $20\times3\times1.5-V(\times2=0)$ $V_{c}=90/2=45KM$ $V_{A}=-45KM$ 444444

anno

4 + 1 P

Determine the reaction forces at the fixed support **A** for the rigid body loaded and supported as shown in the figure. Given that the vertical upward reaction at support **D** is 10 kN.

Rolled Sin Am -

THANK YOU