Efficient and Scalable Bayesian Bipartite Matching through Fast Beta Linkage (fabl)

Brian Kundinger, Jerome Reiter, Rebecca Steorts

Duke University

November 8, 2021

Table of Contents

- 1 Introduction to Record Linkage
 - 2 Fast Beta Linkage
- 3 Simulation Studies
- 4 Conclusion
- 5 Appendix

What is Record Linkage?

- Record linkage is the task of identifying duplicate records over noisy datasets.
- Easy with unique identifiers, difficult when faced with errors
- **Bipartite matching** is the specific goal of matching one record in one dataset to most one match in another dataset

Record Linkage in Practice

Duke TODAY

MAKING SENSE OF SYRIA'S MURKY DEATH TOLL

DNC Announces New National Record Linkage System

APRIL 24, 2020

Algorithm developed by DNC expert in the field of record linkage will increase organizing efficiency by 9 percent and provide campaigns with more comprehensive view of the overall electorate

Linkage for Downstream Analysis

Response Variable	Personal Identification Information		

Persona Identific Informa	ation	Covaria	tes

Linkage for Downstream Analysis

Response Variable	Personal Identification Information	2	Personal Identification Information	Covariates
		•		

- n_A, n_B records in A, B
- \bullet F=4 features for comparison
 - First name
 - Last name
 - City
 - Gender
- $L = \{3, 3, 2, 2\}$ levels of comparison

Represent linkage structure through vector $\mathbf{Z} = \{Z_1, \dots, Z_{n_B}\}$, where

$$Z_j = egin{cases} i, & ext{if records } i \in A ext{ and } j \in B ext{ match;} \\ n_A + 1, & ext{if record } j \in B ext{ has no match in } A; \end{cases}$$

$$Z_1 = 2$$

$$Z_2 = n_A + 1$$

 $n_A n_B$ independent decisions

 $n_A n_B$ independent decisions

 scalable to large datasets (fastlink, Enamorado et al 2019)

 $n_A n_B$ independent decisions

- scalable to large datasets (fastlink, Enamorado et al 2019)
- not bipartite, requires post-processing

 $n_A n_B$ independent decisions

- scalable to large datasets (fastlink, Enamorado et al 2019)
- not bipartite, requires post-processing
- overmatches, leading to inaccurate parameter estimation

Beta Record Linkage (BRL)

Beta Record Linkage (BRL)

Beta Record Linkage (BRL)

- Beta Record Linkage (BRL)
- strictly enforces one-to-one matching, no post-processing

- Beta Record Linkage (BRL)
- strictly enforces one-to-one matching, no post-processing
- high accuracy for linkage and other parameters

- Beta Record Linkage (BRL)
- strictly enforces one-to-one matching, no post-processing
- high accuracy for linkage and other parameters
- inherently serial, not scalable to large linkage tasks

- relaxation proposed by Heck Wortman (2019)
- minimal loss of accuracy, large computational gains

- relaxation proposed by Heck Wortman (2019)
- minimal loss of accuracy, large computational gains
- allows for "one to many" matchings

- relaxation proposed by Heck Wortman (2019)
- minimal loss of accuracy, large computational gains
- allows for "one to many" matchings
- simple
 postprocessing to
 obtain bipartite
 matching

Table of Contents

- 1 Introduction to Record Linkage
- 2 Fast Beta Linkage
- 3 Simulation Studies
- 4 Conclusion
- 5 Appendix

Fast Beta Linkage (fabl)

$$P(\Gamma | \mathbf{Z}, \mathbf{m}, \mathbf{u}) = \prod_{j=1}^{n_B} \prod_{i=1}^{n_A} \left[\prod_{f=1}^F \prod_{I=1}^{L_f} m_{fI}^{I(Z_j=i)} u_{fI}^{I(Z_j\neq i)} \right]^{I(\gamma_{ij}^f=I)}$$

$$\mathbf{m_f} \sim \mathsf{Dirichlet}(\alpha_{f1}, \dots, \alpha_{fL_f})$$

$$\mathbf{u_f} \sim \mathsf{Dirichlet}(\beta_{f1}, \dots, \beta_{fL_f})$$

$$Z_j | \pi \begin{cases} \frac{\pi}{n_A} & z_j \leq n_A; \\ 1 - \pi & z_j = n_A + 1 \end{cases}$$

$$\pi \sim \mathsf{Beta}(\alpha_{\pi}, \beta_{\pi})$$

Model specification allows for **hashing** of comparison vectors, **distributed** computing, and **storage efficient indexing (SEI)**

Recognize there are at most $P = \prod_{f=1}^{F} L_f$ unique agreement patterns, regardless of number of records (Enamorado et al 2019).

- Recognize there are at most $P = \prod_{f=1}^{F} L_f$ unique agreement patterns, regardless of number of records (Enamorado et al 2019).
 - $L = \{3, 3, 2, 2\}$ implies 36 unique patterns

\underline{p}	h_p
1	[1, 1, 1, 1]
2	[1, 1, 1, 2]
:	÷
36	[3, 3, 2, 2]

- Recognize there are at most $P = \prod_{f=1}^{F} L_f$ unique agreement patterns, regardless of number of records (Enamorado et al 2019).
 - *L* = {3,3,2,2} implies 36 unique patterns
- When (i,j) pair exhibits agreement pattern p, say $(i,j) \in h_p$.

$$\underline{p}$$
 $\underline{h_p}$

- 1 [1, 1, 1, 1]
- [1, 1, 1, 2]
- :
- 36 [3,3,2,2]

- Recognize there are at most $P = \prod_{f=1}^{F} L_f$ unique agreement patterns, regardless of number of records (Enamorado et al 2019).
 - $L = \{3, 3, 2, 2\}$ implies 36 unique patterns
- When (i,j) pair exhibits agreement pattern p, say $(i,j) \in h_p$.
- Allows us to compute sufficient statistics and reduce computational complexity from $O(n_A \times n_B)$ to $O(P \times n_B)$

- \underline{p} $\underline{h_p}$
- 1 [1, 1, 1, 1]
- 2 [1, 1, 1, 2]
- :
- [3,3,2,2]

Γ

Sample by record

$$Z_j|\Phi,\Gamma,\pi \propto \begin{cases} \frac{\pi}{n_A}w_{ij} & z_j \leq n_A; \\ 1-\pi & z_j = n_A+1 \end{cases}$$

$$\begin{split} \Phi &= \{\mathbf{m}, \mathbf{u}\} \\ w_{ij} &= \prod_{f=1}^F \prod_{l=1}^{L_f} \left(\frac{m_{fl}}{u_{fl}}\right)^{I(\gamma_{ij}^f = l)} \\ &= \frac{P(\gamma_{ij}|Z_j = i)}{P(\gamma_{ij}|Z_j \neq i)} \end{split}$$

Sample by record

$$Z_j|\Phi,\Gamma,\pi \propto \begin{cases} \frac{\pi}{n_A}w_{ij} & z_j \leq n_A; \\ 1-\pi & z_j = n_A+1 \end{cases}$$

Complexity depends on n_A

$$\begin{split} \Phi &= \{\mathbf{m}, \mathbf{u}\} \\ w_{ij} &= \prod_{f=1}^{F} \prod_{l=1}^{L_f} \left(\frac{m_{fl}}{u_{fl}}\right)^{I(\gamma_{ij}^f = l)} \\ &= \frac{P(\gamma_{ij}|Z_j = i)}{P(\gamma_{ij}|Z_i \neq i)} \end{split}$$

Sample by record

$$Z_j|\Phi,\Gamma,\pi \propto \begin{cases} \frac{\pi}{n_A}w_{ij} & z_j \leq n_A; \\ 1-\pi & z_j = n_A+1 \end{cases}$$

Complexity depends on n_A

Sample by agreement pattern

$$h\left(Z_{j}\right)\mid\Phi,\tilde{\Gamma},\pi\propto\begin{cases}\frac{\pi}{n_{A}}w_{p}\times H_{j_{p}} & p\leq P;\\1-\pi & p=P+1\end{cases}$$

$$\begin{split} \Phi &= \{\mathbf{m}, \mathbf{u}\} \\ w_{ij} &= \prod_{f=1}^{F} \prod_{l=1}^{L_f} \left(\frac{m_{fl}}{u_{fl}}\right)^{I(\gamma_{ij}^f = l)} \\ &= \frac{P(\gamma_{ij}|Z_j = i)}{P(\gamma_{ij}|Z_i \neq i)} \end{split}$$

Sample by record

$$Z_j|\Phi,\Gamma,\pi \propto \begin{cases} \frac{\pi}{n_A}w_{ij} & z_j \leq n_A; \\ 1-\pi & z_j = n_A+1 \end{cases}$$

Complexity depends on n_A

Sample by agreement pattern

$$h\left(Z_{j}\right)\mid\Phi,\tilde{\Gamma},\pi\propto\begin{cases}\frac{\pi}{n_{A}}w_{p}\times H_{j_{p}} & p\leq P;\\1-\pi & p=P+1\end{cases}$$

Complexity does not depend on n_A

$$\begin{split} \Phi &= \{\mathbf{m}, \mathbf{u}\} \\ w_{ij} &= \prod_{f=1}^{F} \prod_{l=1}^{L_f} \left(\frac{m_{fl}}{u_{fl}}\right)^{I(\gamma_{ij}^f = l)} \\ &= \frac{P(\gamma_{ij}|Z_j = i)}{P(\gamma_{ij}|Z_i \neq i)} \end{split}$$

Sample by record

$$Z_j|\Phi,\Gamma,\pi \propto \begin{cases} \frac{\pi}{n_A}w_{ij} & z_j \leq n_A; \\ 1-\pi & z_j = n_A+1 \end{cases}$$

Complexity depends on n_A

$$\begin{split} \Phi &= \{\mathbf{m}, \mathbf{u}\} \\ w_{ij} &= \prod_{f=1}^{F} \prod_{l=1}^{L_f} \left(\frac{m_{fl}}{u_{fl}} \right)^{I(\gamma_{ij}^f = l)} \\ &= \frac{P(\gamma_{ij}|Z_j = i)}{P(\gamma_{ij}|Z_j \neq i)} \end{split}$$

Sample by agreement pattern

$$h\left(Z_{j}\right)\mid\Phi,\tilde{\Gamma},\pi\propto\begin{cases}\frac{\pi}{n_{A}}w_{p}\times H_{j_{p}} & p\leq P;\\1-\pi & p=P+1\end{cases}$$

Complexity does not depend on n_A

Sample by record given pattern

$$Z_j \mid h(Z_j) \propto \begin{cases} 1 & i \in r_{j_p} \\ 0 & \text{otherwise} \end{cases}$$

Sample by record

$$Z_j|\Phi,\Gamma,\pi\propto\begin{cases} \frac{\pi}{n_A}w_{ij} & z_j\leq n_A;\\ 1-\pi & z_j=n_A+1 \end{cases}$$

Complexity depends on n_A

$$\begin{split} \Phi &= \{\mathbf{m}, \mathbf{u}\} \\ w_{ij} &= \prod_{f=1}^F \prod_{l=1}^{L_f} \left(\frac{m_{fl}}{u_{fl}}\right)^{I\left(\gamma_{ij}^f = l\right)} \\ &= \frac{P\left(\gamma_{ij}|Z_j = i\right)}{P\left(\gamma_{ij}|Z_j \neq i\right)} \end{split}$$

Sample by agreement pattern

$$h(Z_j) \mid \Phi, \tilde{\Gamma}, \pi \propto \begin{cases} \frac{\pi}{n_A} w_p \times H_{j_p} & p \leq P; \\ 1 - \pi & p = P + 1 \end{cases}$$

Complexity does not depend on n_A

Sample by record given pattern

$$Z_{j} \mid h\left(Z_{j}\right) \propto \begin{cases} 1 & i \in r_{j_{p}} \\ 0 & \text{otherwise} \end{cases}$$

Complexity does not depend on n_A

Table of Contents

- 1 Introduction to Record Linkage
- 2 Fast Beta Linkage
- 3 Simulation Studies
- 4 Conclusion
- 5 Appendix

Speed Simulation 1

- F = 5 comparison fields
- L = {2, 2, 2, 2, 2}, all binary comparisons
- 32 possible patterns
- Increase both n_A and n_B

Speed Simulation 2

- F = 5 comparison fields
- $L = \{2, 2, 2, 2, 2\},\$ all binary comparisons
- 32 possible patterns
- Fix $n_B = 500$, increase n_A

Accuracy Simulation

- Sadinle (2017) used 900 simulated linkage tasks to show accuracy of BRL
- Find matches across two datasets, each with 500 records and 4 fields in common.
- One, two or three errors across matching records
- 10% matching, 50% matching, or 90% matching
- Calculate recall, precision, and F-measure

Accuracy Simulation

Table of Contents

- 1 Introduction to Record Linkage
- 2 Fast Beta Linkage
- 3 Simulation Studies
- 4 Conclusion
- 5 Appendix

Benefits of fabl

- Faster computation for larger linkage tasks
- Accurate estimation of linkage structure Z, and additional parameters m and u
- Bayesian model with natural uncertainty quantification

Extensions and Future Directions

- Linkage when reliability of information and rates of matching differs by subgroup in the data
- Linkage when there are duplicates within datasets
- Linkage over blocked data (allows for much larger linkage tasks)

Table of Contents

- 1 Introduction to Record Linkage
- 2 Fast Beta Linkage
- 3 Simulation Studies
- 4 Conclusion
- 5 Appendix

Storage Efficient Indexing

- Storing $n_A \times n_B$ hashed values burdensome for large tasks
- Overwhelming majority of record pairs show nonagreement

Storage Efficient Indexing

- Storing $n_A \times n_B$ hashed values burdensome for large tasks
- Overwhelming majority of record pairs show nonagreement

Storage Efficient Indexing

- Storing $n_A \times n_B$ hashed values burdensome for large tasks
- Overwhelming majority of record pairs show nonagreement
- $lue{}$ Correct counts for calculations stored in ${\cal H}$

$$r_{j_p}^{
m SEI} =$$
 at most s many labels