Les suites numériques

Maxime Forriez^{1,2,a}

¹ Sorbonne université, 2, rue Francis de Croisset, 75 018 Paris

² Institut de géographie, 191, rue Saint-Jacques, Bureau 105, 75 005 Paris,

amaxime.forriez@sorbonne-universite.fr

19 octobre 2025

Définition 1

Une suite numérique est une fonction u de \mathbb{N} vers \mathbb{R} . De fait, on peut écrire toutes les images les unes à la suite des autres.

$$u: \begin{cases} \mathbb{N} \to \mathbb{R} \\ n \mapsto C_n \end{cases} \Leftrightarrow (u_n)_{n \in D_u}$$
 (1)

Une suite numérique est définie si on connaît :

- soit son terme général, noté u_n ;
- soit sa relation de récurrence, notée u_{n+1} , et le premier terme de la suite, notée u_0 .

Dans une suite, on remplace f(x) par u_n .

1.1 Les variations

Une suite u_n est **croissante** sur \mathbb{N} , si $\forall n \in \mathbb{N}, u_n \leq u_{n+1}$. De fait, il suffit de :

- 1. calculer $u_{n+1} u_n$;
- 2. démontrer que le résultat est positif.

Par ailleurs, une suite u_n est croissante si et seulement si $\frac{u_{n+1}}{u_n} \geq 1$. Une suite u_n est **décroissante** sur \mathbb{N} , si $\forall n \in \mathbb{N}, u_n \geq u_{n+1}$. De fait, il suffit de:

- 1. calculer $u_{n+1} u_n$;
- 2. démontrer que le résultat est négatif.

Par ailleurs, une suite u_n est décroissante si et seulement si $\frac{u_{n+1}}{u_n} \leq 1$.

1.2 Les suites majorée, minorée et bornée

Une suite est majorée si $\exists M \in \mathbb{R} \ \forall n \in \mathbb{N}, u_n \leq M. M$ est appelé le majorant et est indépendant de n.

Une suite est **minorée** si $\exists m \in \mathbb{R} \ \forall n \in \mathbb{N}, u_n \geq m$. m est appelé le **minorant** et est indépendant de n.

Une suite est **bornée** si elle est à la fois majorée et minorée.

1.3 La convergence d'une suite

Une suite est **convergente** si u_n admet une **limite finie** lorsque n tend vers $+\infty$.

$$\lim_{n \to +\infty} u_n = l \tag{2}$$

avec $l \in \mathbb{R}$.

Si u_n n'est pas convergente, elle est **divergente**.

$$\lim_{n \to +\infty} u_n = +\infty \tag{3}$$

 u_n n'a aucune limite.

Remarque. $\lim_{n\to-\infty}u_n$ et $\lim_{n\to l}u_n$ n'ont aucun sens puisque $n\in\mathbb{N}$ et que u_n est une suite.

1.4 L'étude d'une suite définie par récurrence

Pour illustrer l'étude, on utilise :

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{1 + u_n} \tag{4}$$

1.4.1 Étude graphique d'une suite définie par récurrence

1. On cherche une fonction dont l'image u_n donne u_{n+1} tel que $f(x) = \sqrt{1+u_n}$.

$$\forall x \in [-1, +\infty[, f(x) = \sqrt{1 + u_n} = u_{n+1}]$$
 (5)

On étudie les variations de la fonction.

2. On trace la courbe de la fonction f et on trace la droite d'équation y = x.

— Le point d'intersection, l, entre la droite et la courbe de f représente la limite lorsque x devient aussi grand que l'on veut.

$$f\left(u_{0}\right) = u_{1} \tag{6}$$

- Par conséquent, $f(u_1) = u_2$. On passe des antécédents aux image par la droite y = x.
- 3. Ici, la suite est croissante, majorée et convergente en l.

1.4.2 Étude par le calcul d'une suite définie par récurrence

On commence par étudier les variations de u_{n+1} .

Méthode 1

$$u_{n+1} - u_n = \sqrt{1 + u_n} - \sqrt{1 + u_{n-1}} \Leftrightarrow \sqrt{1 + u_n} - \sqrt{1 + u_{n-1}} \ge 0$$
 (7)

$$\Leftrightarrow \frac{\left(\sqrt{1+u_{n}} - \sqrt{1+u_{n-1}}\right)\left(\sqrt{1+u_{n}} + \sqrt{1+u_{n-1}}\right)}{\sqrt{1+u_{n}} + \sqrt{1+u_{n-1}}} \ge 0 \tag{8}$$

$$\Leftrightarrow \frac{u_n - u_{n-1}}{\sqrt{1 + u_n} + \sqrt{1 + u_{n-1}}} \ge 0 \tag{9}$$

Le signe revient à étudier $u_n-u_{n-1}\geq 0$ qui est le même signe que $u_{n-1}-u_{n-2}$, ou $u_{n-2}-u_{n-3},\ldots$, ou u_1-u_0 , or $u_1-u_0=\sqrt{2}-1$, donc $u_1-u_0\geq 0$, donc $u_n-u_{n-1}\geq 0$.

Méthode 2 : le raisonnement par récurrence

- 1. Initialisation : On sait que $u_1 \ge u_0$.
- 2. Hérédité : Soit N un entier naturel quelconque fixé. Si $u_{N+1} \ge u_N$, alors $1 + u_{N+1} \ge 1 + u_N$, alors $\sqrt{1 + u_{N+1}} \ge \sqrt{1 + u_N}$, car la fonction racine carrée est croissante, alors $u_{N+2} \ge u_{N+1}$.
- 3. Conclusion: D'après 1 et 2, $u_1 \ge u_0$ et $u_2 \ge u_1$, donc $\forall n \in \mathbb{N}, u_{N+1} \ge u_N$.

Remarque. On peut utiliser le raisonnement par récurrence pour trouver un majorant, un minorant ou même déterminer s'il existe une convergence ou une divergente. Pour démontrer qu'une propriété P est vraie pour tout entier naturel n, il faut :

- 1. démontrer l'initialisation, c'est-à-dire P est vraie pour l'entier n=0.
- 2. démontrer l'hérédité, c'est-à-dire si P est vraie pour un entier n, alors P est vraie pour l'entier suivant n+1.
- 3. conclure que la propriété est vraie.

2 Suite arithmétique

2.1 Définition

Une suite u_n est **arithmétique** si $\forall n \in \mathbb{N}, u_{n+1} = u_n + r$ avec $r \in \mathbb{R}$ et r est constant et indépendant par rapport à n. Par conséquent, r est l'écart entre deux termes. C'est la **raison** de la suite arithmétique.

2.2 Propriétés

Propriété 1. Les variations d'une suite arithmétique sont déterminées par la raison r.

- Si r > 0, alors la suite est croissante.
- Si r < 0, alors la suite est décroissante.
- Si r = 0, alors la suite est constante (ou stationnaire).

Propriété 2. $\forall n \in \mathbb{N}, u_n = u_0 + nr$

Propriété 3. $\forall n \in \mathbb{N}, \forall p \in \mathbb{N}, u_n = u_p + (n-p) r$

Propriété 4. La somme des termes S dépend du premier terme de la somme u_n , du second terme de la somme u_p , et du nombre de terme n.

$$S = \frac{\left(u_n + u_p\right)n}{2} \tag{10}$$

Propriété 5. Une suite u_n est arithmétique si et seulement si $\forall n \in \mathbb{N}, u_n + u_{n+2} = 2u_{n+1}$.

Propriété 6. Les suites arithmétiques sont toujours divergentes.

3 Suite géométrique

3.1 Définition

Une suite u_n est **géométrique** si $\exists q \in \mathbb{R} \ \forall n \in \mathbb{N}, u_{n+1} = qu_n$, avec q la **raison**, une constante indépendante de n.

3.2 Propriétés

Propriété 1. $\exists q \ \forall n \in \mathbb{N}, u_{n+1} = qu_n$

Propriété 2. Si $u_0 = 0$ ou si q = 0, alors tous les termes sont égaux à 0.

Propriété 3. $\forall n \in \mathbb{N}, q \neq 0, u_n = u_0 + q^n$

- **Propriété 4.** $\forall n \in \mathbb{N}, \forall q \in \mathbb{N}, u_n = u_p + q^{n-p} \text{ avec } q \neq 0 \text{ et } u_n \neq 0.$
- **Propriété 5.** La somme des termes S dépend une premier terme de la somme u_p et du nombre de terme n.

 $S = u_p \frac{q^{n+1}}{1 - q} \tag{11}$

- **Propriété 6.** Une suite u_n est géométrique si et seulement si $\forall n \in \mathbb{N}, u_n + u_{n+2} = u_{n+1}^2$
- **Propriété 7.** Une suite géométrique peut être convergente ou divergente. Le calcul de $\lim_{n\to+\infty}q^n$ peut donner quatre cas possibilités dépendant de la raison q.
 - Si $q \le 1$, alors la limite n'existe pas. La suite est divergente.
 - Si |q|<1, alors Si q>1, alors $\lim_{n\to+\infty}q^n=0$. La suite converge en 0.
 - Si q = 1, alors $\lim_{n \to +\infty} q^n = 1$. La suite converge en 1.
 - Si q > 1, alors $\lim_{n \to +\infty} q^n = +\infty$. La suite est divergente.

4 Démonstrations par récurrence

4.1 Démontrer que $\forall n \in \mathbb{N}, 7^n - 1$ est divisible par 6

- 1. Initialisation:
 - Pour n = 0, $7^0 1 = 1 1 = 0$
 - Pour $n = 0, 7^n 1|6$ est vraie.
- 2. Hérédité:
 - Pour n+1, $7^{n+1}-1=7\times 7^n-1=7$ $(7^n-1)+6$, or $7^n-1|6$ et 6|6, donc la proposition est vraie au rang n+1.
- 3. Conclusion:
 - La proposition $\forall n \in \mathbb{N}, 7^n 1 | 6$ est vraie.

4.2 Démontrer que $\forall n \in \mathbb{N}^*, 5^{2n} - 3^n$ est divisible par 11

- 1. Initialisation:
 - Pour n = 1, $5^2 3^1 = 25 3 = 22$
 - 22|11, donc pour $n = 1, 5^{2n} 3^n | 11$ est vraie.
- 2. Hérédité:

— Pour n + 1

$$5^{2(n+1)} - 3^{n+1} = 5^{2n+2} - 3^{n-1} = 25 \times 5^{2n} - 3 \times 3^n$$
 (12)

Pour factoriser l'équation obtenue, on la complète avec $25\times 3^n-25\times 3^n$

$$25 \times 5^{2n} - 3 \times 3^n + 25 \times 3^n - 25 \times 3^n = 25 \left(5^{2n} - 3^n \right) + 3^n \left(-3 + 25 \right) = 25 \left(5^{2n} - 3^n \right) + 22 \times 3^n$$
 (13) or $5^{2n} - 3^n | 11$ et $22 | 11$, donc la proposition est vraie au rang $n + 1$.

3. Conclusion:

— La proposition $\forall n \in \mathbb{N}^*, 5^{2n} - 3^n | 11$ est vraie.