Network Theorems

Voltage and Current Sources and Transformations

Voltage Sources

- Ideal voltage sources can produce as much current as is needed to provide power to the rest of the circuit.
- An ideal voltage source has zero internal resistance.
- A real voltage source is modeled as an ideal voltage source in series with a resistor.
- There are limits to the current and output voltage from the source.

Voltage Sources....continued

- When $R_L = \infty$ no current flows through the load, the practical source is open-circuited and the terminal voltage, or open-circuit voltage, is $V_{oc} = v_s$.
- When $R_L = 0$, short-circuiting the load terminals, then a load current or short-circuit current, $I_{LSC} = \infty$, would flow.

$$v_L = v_S - i_L R_S$$

Current Sources

- An ideal current source can produce as much voltage as is needed to provide power to the rest of circuit
- An ideal current source has infinite internal resistance connected in parallel.
- A real current source is modeled as an ideal current source in parallel with a resistor.
- Limitations on the maximum voltage and current.

Current Sources....continued

- When $R_L = \infty$ no current flows through the load, the practical source is open-circuited and the open circuit current is zero.
- When $R_L = 0$, short-circuiting the load terminals, then a load current or short-circuit current, $I_{LSC} = \infty$, would flow.

$$i_L = i_S - \frac{v_L}{R_P}$$

Source Transformations

- An equivalent circuit is one in which the i-v characteristics are identical to that of the original circuit.
- R₁ in both circuits must be identical.

$$I_L = \frac{V_S}{R_S + R_{Load}}$$

$$I_{L} = \frac{V_{S}}{R_{S} + R_{Load}} \qquad I_{L} = \frac{R_{P}}{R_{P} + R_{Load}} I_{S}$$

The two practical sources are electrically equivalent if

$$R_S = R_P$$

and

$$V_S = R_P I_S$$

Problem1. Use source transformations to reduce the circuit to a single voltage source in series with a single resistor.

Hints: First convert voltage sources into current sources Req= 5.714Ω , Veq=22.856 V

Thevenin's Theorem

- Any two-terminal, linear bilateral dc network can be replaced by an equivalent circuit consisting of a voltage source and a series resistor.
- Thevenin's theorem establishes an equivalence at the terminals.
- Internal construction and characteristics of the original network and the Thevenin equivalent are generally entirely different.

To Find R_{TH}

- 1. Find that portion of the network across which the Thevenin equivalent circuit needs to be found.
- 2. Load resistor R₁ is temporarily removed from the network.
- 3. Mark the terminals of the remaining two-terminal network (say A and B).
- 4. Identify all voltage and current sources and retain their internal resistances if any.
- 5. Replace the voltage sources by short circuits.
- 6. Replace the current sources by open circuits.
- 7. Find the resistance between terminal **A** and **B.**

The resistance between **A** and **B** is called as Thevenin's resistance R_{TH}

To Find V_{TH}

- 1. In the original circuit, remove the load resistor (R_L) connected between the marked terminals (\boldsymbol{A} and \boldsymbol{B}).
- 2. Find the open-circuit voltage (V_{TH}) between the marked terminals (\boldsymbol{A} and \boldsymbol{B}). V_{AB} is Thevenin voltage, denoted by symbol V_{TH} .
- 3. Draw the Thevenin equivalent circuit by keeping V_{TH} , R_{TH} and the load resistor (R_L) in series

Problem1 Using Thevenin's theorem, find the voltage across and current through the 12 Ω resistor.

To Find R_{TH}

Step 1: Find that portion of the network across which the Thevenin equivalent circuit needs to be found. (Identifying the load as 12 Ω resistor, marking the nodes **A** and **B**)

Step 2: Load resistor RL is temporarily removed from the network.

Step 3: Mark the terminals of the remaining two-terminal network (say **A** and **B**).

Step 4: Identify all voltage and current sources and retain their internal resistances if any. There is only one voltage source 18 V, with zero internal resistance

Step 5: Replace the voltage sources are replaced by short circuits (as there is only one voltage source in this example, replace it with a short circuit)

Step 6: Replace the current sources by open circuits (as there are no current sources, we won't act on this step)

Step 7: Find the resistance between terminal **A** and **B**

$$R_{TH} = 4 + (6 | | 3) = ?$$

To Find V_{TH}

Step 1: In the original circuit, remove the load resistor (R_L) connected between the marked terminals (\boldsymbol{A} and \boldsymbol{B}).

Step 2: Find the open-circuit voltage (V_{TH}) between the marked terminals (\boldsymbol{A} and \boldsymbol{B}). Vab is Thevenin voltage, denoted by symbol V_{TH} .

- 1. Voltage across 3 Ω resistance is equal to voltage between terminals **A** and **B**.
- 2. This is due to the fact that current through 4 Ω is zero. Hence voltage across is 4 Ω zero.
- 3. Use voltage divider formula to get voltage across 3 Ω resistor.

$$V_{3\Omega} = V \frac{R_1}{R_1 + R_2} = 18 \frac{3\Omega}{3\Omega + 6\Omega} = 6 V = V_{AB} = V_{TH}$$

Step 3: Draw the Thevenin equivalent circuit by keeping VTH, RTH and the load resistor (RL) in series

1. Use voltage divider formula to get voltage across 12 Ω resistor. (what was asked in the

$$V_{12\Omega} = V \frac{R_1}{R_1 + R_2} = 6 \frac{12\Omega}{12\Omega + 6\Omega} = 4V$$

2. Current through the 12 Ω resistor. (what was asked in the question)

$$I_{12\Omega} = \frac{4V}{12\Omega} = 0.33 A$$

Problem2 Using Thevenin's theorem, find the voltage across and current through the 7 k Ω resistor.

To Find R_{TH}

Step 1: Find that portion of the network across which the Thevenin equivalent circuit needs to be found. (Identifying the load as 7 k Ω resistor, marking the nodes **A** and **B**)

Step 2: Load resistor R₁ is temporarily removed from the network.

Step 3: Mark the terminals of the remaining two-terminal network (say **A** and **B**).

Step 4: Identify all voltage and current sources and retain their internal resistances if any. There is only one current source 18 mA, with zero internal resistance

Step 5: Replace the voltage sources are replaced by short circuits (as there are no voltage sources, we won't act on this step)

Step 6: Replace the current sources by open circuits (as there is only one current source, in this example, replace it with a open circuit)

Step 7: Find the resistance between terminal **A** and **B**

To Find V_{TH}

Step 1: In the original circuit, remove the load resistor (R_L) connected between the marked terminals (\boldsymbol{A} and \boldsymbol{B}).

Step 2: Find the open-circuit voltage (V_{TH}) between the marked terminals (\boldsymbol{A} and \boldsymbol{B}). Vab is Thevenin voltage, denoted by symbol V_{TH} .

- 1. Voltage across 4 $k\Omega$ resistance is equal to voltage between terminals **A** and **B**.
- 2. This is due to the fact that current through 2 k Ω is zero. Hence voltage across 2 k Ω is zero.
- 3. Voltage across 12 k Ω and 4 k Ω is given by

$$V=IR=18mAx(4 k\Omega+12 k\Omega)=288V$$

4. Using voltage divider formula, voltage across 4 k Ω is given by

$$V_{4k\Omega} = 288 \frac{4 k\Omega}{4 k\Omega + 12 k\Omega} = 72 V = V_{AB} = V_{TH}$$

Step 3: Draw the Thevenin equivalent circuit by keeping VTH, RTH and the load resistor (RL) in series

1. Use voltage divider formula to get voltage across 7 k resistor. (what was asked in the question)

$$V_{7k\Omega} = V \frac{R_1}{R_1 + R_2} = 72 \frac{7 k\Omega}{7 k\Omega + 6 k\Omega} = 38.77 V$$

asked in the question)

$$I_{7k\Omega} = \frac{38.77}{7} = 5.54mA$$