Quanying Liu

BME, SUSTech

2024.3.26

- 1 Recap
- 2 Kernel Method
- 8 Positive Definite Kernel
- 4 Some Basic Kernels
- **5** Summary

- Recap
- 2 Kernel Method
- 3 Positive Definite Kerne
- 4 Some Basic Kernels
- Summary

Non-separable Cases

Recall: Two classes of data are **linearly separable**, if and only if there exists a hyperplane $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ that separates two classes.

In reality, there are non-separable cases. How to classify these two classes?

图 1: Non-separable cases

Soft Margin & Kernel Method

1. Find the optimal hyperplane to minimize classification error with some tolerance (Soft Margin).

2. Transform data into a higher dimension space where two classes are separable (Kernel Method).

Introduce an **non-negative slack variable** ξ_i for $i = \{1, \dots, N\}$ that satisfies:

- $\xi_i = 0$: Data point i is not inside the margin of separation
- 2 $0 \le \xi_i \le 1$: Data point is inside the margin of separation and on the <u>correct</u> side of the hyperplane (e.g., ξ_1 and ξ_2)
- § $\xi_i > 1$: Data point is inside the margin of separation but on the <u>wrong</u> side of the hyperplane (e.g., ξ_3 and $\overline{\xi_4}$)

Recap

SVM Soft Margin: the new loss function

The optimal hyperplane must penalize the classification error $\sum_{i=1}^{N} \xi_i$.

The new loss function $\mathcal{L}(\mathbf{w}, \boldsymbol{\xi})$ is:

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\xi}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \lambda \sum_{i=1}^{\mathsf{N}} \xi_i$$

- λ is a hyperparameter, reflecting the cost of violating the margin constraints.
 - f 0 A large λ generally leads to a smaller margin but also fewer misclassification of training data
 - 2 A small λ generally leads to a larger margin but more misclassification of training data
- As a design parameter, λ can be set by user with $\lambda > 0$.

4 D > 4 A > 4 B > 4 B > B 9 Q C

SVM Soft Margin: the new constraints

Given a data x_i , we have

$$d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \ge 1 - \xi_i$$

If $\xi_i = 0$, then the constraint is the same as that in basic version (Hard Margin).

SVM with soft margin:

Primal problem:
$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \lambda \sum_{i=1}^{N} \xi_i$$

$$s.t. \ d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 + \xi_i \ge 0$$

$$\xi_i > 0$$
(1)

SVM Soft Margin: the dual problem

Let α_i and β_i be the Lagrange multipliers for the two constraints.

The generalized Lagrangian function is: $\mathcal{L}(\mathbf{w},b,\pmb{\xi},\pmb{\alpha},\pmb{\beta})$

$$= \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \lambda \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} \left(d_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \right) - 1 + \xi_{i} \right) - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

$$= \frac{\mathbf{w}^{\mathsf{T}} \mathbf{w}}{2} + \lambda \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - b \sum_{i=1}^{N} \alpha_{i} d_{i} + \sum_{i=1}^{N} \alpha_{i} - \sum_{i=1}^{N} \alpha_{i} \xi_{i} - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

The constrained Primal problem becomes the **dual problem**:

$$\min_{\mathbf{w},b,\xi} \max_{\alpha,\beta} \quad \mathcal{L}(\mathbf{w},b,\boldsymbol{\xi},\alpha,\boldsymbol{\beta})
s.t. \quad \alpha_i \ge 0, \quad \beta_i \ge 0$$
(2)

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \lambda \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i d_i \mathbf{w}^T \mathbf{x}_i - b \sum_{i=1}^{N} \alpha_i d_i + \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \alpha_i \xi_i - \sum_{i=1}^{N} \beta_i \xi_i$$

We have derived:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{N} \alpha_i d_i \mathbf{x}_i = \mathbf{0} \qquad \Longrightarrow \mathbf{w} = \sum_{i=1}^{N} \alpha_i d_i \mathbf{x}_i$$
$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^{N} \alpha_i d_i = 0 \qquad \Longrightarrow \sum_{i=1}^{N} \alpha_i d_i = 0$$
$$\frac{\partial \mathcal{L}}{\partial \xi_i} = \lambda - \alpha_i - \beta_i = 0 \qquad \Longrightarrow \lambda = \alpha_i + \beta_i$$

$$\mathbf{w}^T \mathbf{w} = \sum_{i=1}^N \sum_{j=1}^N \alpha_i d_i \alpha_j d_j \mathbf{x}_i^T \mathbf{x}_j$$

$$\sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{T} \mathbf{x}_{i} = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} d_{j} \alpha_{j} d_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} = 0$$

Recap

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \lambda \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i d_i \mathbf{w}^T \mathbf{x}_i - b \sum_{i=1}^{N} \alpha_i d_i + \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \alpha_i \xi_i - \sum_{i=1}^{N} \beta_i \xi_i$$

$$= \frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{T} \mathbf{x}_{i} + \lambda \sum_{i=1}^{N} \xi_{i} + \sum_{i=1}^{N} \alpha_{i} - \sum_{i=1}^{N} \alpha_{i} \xi_{i} - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

$$= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} d_{i} \alpha_{j} d_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + \sum_{i=1}^{N} (\underline{\alpha_{i} + \beta_{i}}) \xi_{i} + \sum_{i=1}^{N} \alpha_{i} - \sum_{i=1}^{N} \alpha_{i} \xi_{i} - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

$$= -\frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^{N} \alpha_{i} d_{i} \alpha_{j} d_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + \sum_{i=1}^{N} \alpha_{i} \triangleq Q(\alpha)$$

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q Q

Recap

Solving the dual problem: Step 3

Formulate the Dual Problem (with soft margin):

Subject to:
$$\sum_{i=1}^{N} \alpha_i d_i = 0 \quad \text{and} \quad 0 \le \alpha_i \le \lambda$$

- Note: $Q(\alpha)$ is same as the dual problem without soft margin.
- The effect of the error penalty $\sum_{i=1}^{N} \xi_i$ on the optimization problem is to set an upper bound for Lagrange multipliers α_i .
- In KKT conditions, $\lambda = \alpha_i + \beta_i$ with $\alpha_i \ge 0$ and $\beta_i \ge 0$. $\implies 0 < \alpha_i < \lambda$.

Solving α^* with Quadratic programming

$$\boldsymbol{\alpha}^* = \arg\min_{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j - \sum_{i=1}^{N} \alpha_i$$

s.t.
$$\sum_{i=1}^{N} \alpha_i d_i = 0$$
 and $0 \le \alpha_i \le \lambda$

Solving with Linear Quadratic Solver:

$$\arg\min_{\boldsymbol{\alpha}} \frac{1}{2} \boldsymbol{\alpha}^T \begin{bmatrix} d_1 d_1 \mathbf{x}_1^T \mathbf{x}_1 & d_1 d_2 \mathbf{x}_1^T \mathbf{x}_2 & \cdots & d_1 d_n \mathbf{x}_1^T \mathbf{x}_n \\ d_2 d_1 \mathbf{x}_2^T \mathbf{x}_1 & d_2 d_2 \mathbf{x}_2^T \mathbf{x}_2 & \cdots & d_2 d_n \mathbf{x}_2^T \mathbf{x}_n \\ \vdots & \vdots & \ddots & \vdots \\ d_n d_1 \mathbf{x}_n^T \mathbf{x}_1 & d_n d_2 \mathbf{x}_n^T \mathbf{x}_2 & \cdots & d_n d_n \mathbf{x}_n^T \mathbf{x}_n \end{bmatrix} \boldsymbol{\alpha} + (-1)^T \boldsymbol{\alpha}$$

s.t. $\mathbf{d}^T \alpha = 0$ and $\mathbf{0} \le \alpha \le [\lambda, \lambda, \dots, \lambda]^T$

- 4 ロ ト 4 回 ト 4 直 ト 4 直 ト 9 Q C

Solving SVM with Hinge loss

Hinge loss:
$$\mathcal{L}_i = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))$$

gradient: $\nabla_{\mathbf{w}} \mathcal{L} = \lambda \mathbf{w} - y_i \mathbf{x}_i$, $\nabla_b \mathcal{L} = -y_i$, if $1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$
 $\nabla_{\mathbf{w}} \mathcal{L} = \lambda \mathbf{w}$, $\nabla_b \mathcal{L} = 0$, if $1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \leq 0$

Solving with **Gradient Descent**:

```
for epoch in range(epochs):
for i, x in enumerate(X):
Calculate the condition for the hinge loss
condition = y[i] * (np.dot(x, weights) + bias)

Check if the data point is misclassified or within the margin
if condition < 1:
Update for misclassified points or points within the margin
weights -= learning_rate * (2 * lambda_param * weights - y[i] * x)
bias -= learning_rate * (-y[i])
else:
Update only based on the regularizer for correctly classified points outside the margin
weights -= learning_rate * (2 * lambda_param * weights)
```

- 2 Kernel Method
- 3 Positive Definite Kerne
- 4 Some Basic Kernels
- Summary

Cover's Theorem: [by Thomas M. Cover, in 1965]

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in a low-dimensional space, provided that the space is not densely populated.

Given a set of training data that is not linearly separable, one can with high probability transform it into a training set that is linearly separable by projecting it into a higher-dimensional space via some non-linear transformation.

Transformation into a higher-D space

Given a transformation $\varphi()$, we search for an optimal hyperplane in higher-D feature space to separate the two classes,

$$g(\mathbf{x}) = \mathbf{w}^{*T} \varphi(\mathbf{x}) + b^* = 0 \tag{3}$$

For the training data x_i , using the <u>sign function</u> (符号函数) for classification as

$$\begin{cases} \operatorname{sign}(\mathbf{x}_i) = \mathbf{w}^{*T} \boldsymbol{\varphi}(\mathbf{x}_i) + b^* \ge +1 & \text{for } d_i = +1 \\ \operatorname{sign}(\mathbf{x}_i) = \mathbf{w}^{*T} \boldsymbol{\varphi}(\mathbf{x}_i) + b^* \le -1 & \text{for } d_i = -1 \end{cases}$$

or, in a compact form:

$$d_i(\mathbf{w}^{*T}\boldsymbol{\varphi}(\mathbf{x}_i) + b^*) \ge 1 \tag{4}$$

Q: How to design a good $\varphi()$, and to find \mathbf{w}^{*T} and b^{*} ?

ロト 4回 ト 4 恵 ト 4 恵 ト 「恵 一夕久(

Dual problem in Kernel Method

Recall the generalized Lagrangian function for SVM Hard Margin,

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{N} \alpha_i \left(d_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right)$$
$$= \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{N} \alpha_i d_i \mathbf{w}^T \mathbf{x}_i - b \sum_{i=1}^{N} \alpha_i d_i + \sum_{i=1}^{N} \alpha_i$$

The Dual Problem for SVM Kernel Method:

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} \left(d_{i} \left(\mathbf{w}^{T} \boldsymbol{\varphi} \left(\mathbf{x}_{i} \right) + b \right) - 1 \right)$$

$$= \frac{1}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{T} \boldsymbol{\varphi} \left(\mathbf{x}_{i} \right) - b \sum_{i=1}^{N} \alpha_{i} d_{i} + \sum_{i=1}^{N} \alpha_{i} d_{i}$$

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}_{i}) - b \sum_{i=1}^{N} \alpha_{i} d_{i} + \sum_{i=1}^{N} \alpha_{i}$$

From KKT conditions, we have $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0$ and $\frac{\partial \mathcal{L}}{\partial b} = 0$. Then, we can derive:

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i d_i \boldsymbol{\varphi}(\mathbf{x}_i)$$
 and $\sum_{i=1}^{N} \alpha_i d_i = 0$

We can further derive

$$\mathbf{w}^{\mathsf{T}}\mathbf{w} = \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi} \left(\mathbf{x}_{i} \right) = \sum_{i=1}^{N} \sum_{i=1}^{N} \alpha_{i} \alpha_{j} d_{i} d_{j} \boldsymbol{\varphi}^{\mathsf{T}} \left(\mathbf{x}_{i} \right) \boldsymbol{\varphi} \left(\mathbf{x}_{j} \right)$$

◆□▶◆圖▶◆臺▶◆臺▶●●</li

Dual problem in Kernel Method

We define $Q(\alpha)$ as follows,

$$Q(\alpha) \triangleq \mathcal{L}(\mathbf{w}, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \underbrace{\boldsymbol{\varphi}^T(\mathbf{x}_i) \boldsymbol{\varphi}(\mathbf{x}_j)}_{K(\mathbf{x}_i, \mathbf{x}_j)}$$

The Kernel, $K(\mathbf{x}_i, \mathbf{x}_j)$, is defined as

$$\underbrace{\mathcal{K}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\mathcal{K}\left(\mathbf{x}_{j},\mathbf{x}_{i}\right)}_{\mathsf{symmetric}}=\boldsymbol{\varphi}^{\mathsf{T}}\left(\mathbf{x}_{i}\right)\boldsymbol{\varphi}\left(\mathbf{x}_{j}\right)=\boldsymbol{\varphi}^{\mathsf{T}}\left(\mathbf{x}_{j}\right)\boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)$$

Example:
$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2]^T \longrightarrow 2 \text{nd-order } \varphi$$

$$\varphi(\mathbf{x}) = [1, \ \sqrt{2} \mathbf{x}_1, \ \sqrt{2} \mathbf{x}_2, \ \mathbf{x}_1^2, \ \mathbf{x}_2^2, \ \mathbf{x}_1 \mathbf{x}_2]^T$$

$$\mathcal{K}(\mathbf{x}_i, \mathbf{x}_i) = ?$$

We define $Q(\alpha)$ as follows,

$$Q(\alpha) \triangleq \mathcal{L}(\mathbf{w}, b, \alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} d_{i} d_{j} \underbrace{\boldsymbol{\varphi}^{\mathsf{T}}(\mathbf{x}_{i}) \boldsymbol{\varphi}(\mathbf{x}_{j})}_{K(\mathbf{x}_{i}, \mathbf{x}_{j})}$$

The **Kernel**, $K(\mathbf{x}_i, \mathbf{x}_j)$, is defined as

$$\underbrace{\mathcal{K}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\mathcal{K}\left(\mathbf{x}_{j},\mathbf{x}_{i}\right)}_{\text{symmetric}}=\boldsymbol{\varphi}^{T}\left(\mathbf{x}_{i}\right)\boldsymbol{\varphi}\left(\mathbf{x}_{j}\right)=\boldsymbol{\varphi}^{T}\left(\mathbf{x}_{j}\right)\boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)$$

Example: $\mathbf{x} = [x_1, x_2]^T \longrightarrow 2$ nd-order φ

$$\varphi(\mathbf{x}) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, x_1x_2]^T$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = 1 + 2x_{i,1}x_{j,1} + 2x_{i,2}x_{j,2} + x_{i,1}^2x_{j,1}^2 + x_{i,2}^2x_{j,2}^2 + 2x_{i,1}x_{j,1}x_{i,2}x_{j,2}$$

- 4 D D 4 例 D 4 3 D 4 3 D 9 0 0 0

Dual Problem with Soft Margin

Maximize:
$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

Subject to:
$$\sum_{i=1}^{N} \alpha_i d_i = 0$$
 and $0 \le \alpha_i \le \lambda$

Dual Problem with Soft Margin and Transformation

$$\text{Maximize: } Q(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \boldsymbol{\varphi}^{\mathsf{T}} \left(\mathbf{x}_i \right) \boldsymbol{\varphi} \left(\mathbf{x}_j \right)$$

Subject to:
$$\sum_{i=1}^{N} \alpha_i d_i = 0$$
 and $0 \le \alpha_i \le \lambda$

assification in transformation space

If a data point $\mathbf{x}^{(sv)}$ is a Support Vector with its label $d^{(vs)}$, considering the solution of Lagrangian multipliers, α_i^* ,

$$\begin{cases} \mathbf{w}^* = \sum_{i=1}^{N} \alpha_i^* d_i \varphi(\mathbf{x}_i) \\ b^* = \frac{1}{d^{(sv)}} - \mathbf{w}^{*T} \varphi(\mathbf{x}^{(sv)}) \end{cases}$$

Discriminant function g(x) is defined as

$$g(\mathbf{x}) = \mathbf{w}^{*T} \varphi(\mathbf{x}) + b^* = \sum_{i=1}^{N} \alpha_i^* d_i \underbrace{\varphi^T(\mathbf{x}_i) \varphi(\mathbf{x})}_{K(\mathbf{x}_i, \mathbf{x})} + b^*$$

To classify a new data point x_{new}

$$d_{\mathsf{new}} = \operatorname{sgn}\left[g\left(\mathbf{x}_{\mathsf{new}}\right)\right]$$

Main issue: We need design $\varphi(\cdot)$

Kernel trick: Design the expression for $K(\cdot,\cdot)$ directly.

Kernel trick

Kernel trick: Design the expression for $K(\cdot, \cdot)$ directly. Example: $\mathbf{x} = [x_1, x_2]^T \longrightarrow 2\mathsf{nd}\text{-order }\varphi$

$$\varphi(\mathbf{x}) = [1, \ \sqrt{2}x_1, \ \sqrt{2}x_2, \ x_1^2, \ x_2^2, \ \sqrt{2}x_1x_2]^T$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = 1 + 2x_{i,1}x_{j,1} + 2x_{i,2}x_{j,2} + x_{i,1}^2x_{j,1}^2 + x_{i,2}^2x_{j,2}^2 + 2x_{i,1}x_{j,1}x_{i,2}x_{j,2}$$

Now, Let us design the kernel $K(\mathbf{x}_i, \mathbf{x}_j)$ directly.

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j})^{2}$$

$$= (1 + x_{i,1} x_{j,1} + x_{i,2} x_{j,2})^{2}$$

$$= 1 + 2x_{i,1} x_{j,1} + 2x_{i,2} x_{j,2} + x_{i,1}^{2} x_{j,1}^{2} + x_{i,2}^{2} x_{j,2}^{2} + 2x_{i,1} x_{j,1} x_{i,2} x_{j,2}$$

• The data $\mathbf{x} = [x_1, x_2, \ldots, x_p]^T \in \mathbb{R}^p$

- The data $\mathbf{x} = [x_1, x_2, \ldots, x_p]^T \in \mathbb{R}^p$
- The polynomial function: $\varphi(\mathbf{x})$ is polynomial of order q.

- The data $\mathbf{x} = [x_1, x_2, \dots, x_p]^T \in \mathbb{R}^p$
- The polynomial function: $\varphi(\mathbf{x})$ is polynomial of order \mathbf{q} .
- The 'equivalent' kernel $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}^T \mathbf{x})^q$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + x_{i,1}x_{j,1} + x_{i,2}x_{j,2} + \dots + x_{i,p}x_{j,p})^q$$

• The data $\mathbf{x} = [x_1, x_2, \dots, x_p]^T \in \mathbb{R}^p$

- The polynomial function: $\varphi(\mathbf{x})$ is polynomial of order q.
- The 'equivalent' kernel $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}^T \mathbf{x})^q$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + x_{i,1}x_{j,1} + x_{i,2}x_{j,2} + \dots + x_{i,p}x_{j,p})^q$$

 Q: Why can the kernel trick help us, compared with a nonlinear transformation of x?

- The data $\mathbf{x} = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^p$
- The polynomial function: $\varphi(\mathbf{x})$ is polynomial of order q.
- The 'equivalent' kernel $K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}^T \mathbf{x})^q$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + x_{i,1}x_{j,1} + x_{i,2}x_{j,2} + \dots + x_{i,p}x_{j,p})^{q}$$

 Q: Why can the kernel trick help us, compared with a nonlinear transformation of x?

Consider the situation:

Dimension of data: p = 10

Polynomial order: q = 100

- The data $\mathbf{x} = [x_1, x_2, \ldots, x_p]^T \in \mathbb{R}^p$
- The polynomial function: $\varphi(\mathbf{x})$ is polynomial of order \mathbf{q} .
- The 'equivalent' kernel $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}^T \mathbf{x})^q$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + x_{i,1}x_{j,1} + x_{i,2}x_{j,2} + \dots + x_{i,p}x_{j,p})^q$$

 Q: Why can the kernel trick help us, compared with a nonlinear transformation of x?

Consider the situation:

Polynomial order: q = 100

• We can define any function $K(\mathbf{x}_i, \mathbf{x}_j)$, but it should correspond to a nonlinear transformation $\varphi(\mathbf{x})$. $\Longrightarrow K(\mathbf{x}_i, \mathbf{x}_i) = \varphi^T(\mathbf{x}_i)\varphi(\mathbf{x}_i)$

- The data $\mathbf{x} = [x_1, x_2, \ldots, x_p]^T \in \mathbb{R}^p$
- The polynomial function: $\varphi(\mathbf{x})$ is polynomial of order q.
- The 'equivalent' kernel $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}^T \mathbf{x})^q$

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + x_{i,1}x_{j,1} + x_{i,2}x_{j,2} + \dots + x_{i,p}x_{j,p})^q$$

 Q: Why can the kernel trick help us, compared with a nonlinear transformation of x?

Consider the situation:

Polynomial order: q = 100

- We can define any function $K(\mathbf{x}_i, \mathbf{x}_j)$, but it should correspond to a nonlinear transformation $\varphi(\mathbf{x})$. $\Longrightarrow K(\mathbf{x}_i, \mathbf{x}_i) = \varphi^T(\mathbf{x}_i)\varphi(\mathbf{x}_i)$
- Q: what kind of $K(\cdot, \cdot)$ is a valid kernel?

< 마 > 4 를 > 4 를 > - 를 - 성익()

The requirement to design a kernel $K(\cdot,\cdot)$

For training set $S = \{(x_i, d_i)\}_{i=1}^N$, the Gram matrix K is

$$\mathbf{K} = \left[\begin{array}{ccc} \mathcal{K}\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \dots & \mathcal{K}\left(\mathbf{x}_{1}, \mathbf{x}_{N}\right) \\ \vdots & \ddots & \vdots \\ \mathcal{K}\left(\mathbf{x}_{N}, \mathbf{x}_{1}\right) & \dots & \mathcal{K}\left(\mathbf{x}_{N}, \mathbf{x}_{N}\right) \end{array} \right] \in \mathcal{R}^{N \times N}$$

Mercer's condition:

Gram matrix K is positive semi-definite (i.e., its eigenvalues are nonnegative).

A kernel satisfying the Mercer condition ensures the existence of a global optimum for the resulting optimization problem.

- 1 Recap
- 2 Kernel Method
- Ositive Definite Kernel
- 4 Some Basic Kernels
- Summary

For a square matrix $A \in \mathbb{R}^{n \times n}$, its eigenvalue λ and eigenvector \mathbf{x} :

$$A\mathbf{x} = \lambda \mathbf{x}$$

For all eigenvalues and eigenvectors, we can derive

$$A \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \mathbf{x}_1 & \lambda_2 \mathbf{x}_2 & \dots & \lambda_n \mathbf{x}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

If the n eigenvalues exist, the eigendecomposition of A is

$$A = S\Lambda S^{-1} \tag{5}$$

Watch Gilbert Strange 22:

https://www.bilibili.com/video/BV1zx411g7gq?p=22

<□> 4團 > 4를 > 4를 > 4를 > 9 Q G

Positive Definite Matrix (正定矩阵)

• For a **symmetric** matrix $A \in \mathbb{R}^{n \times n}$, the eigendecomposition

$$A = Q\Lambda Q^{-1},$$

Q is orthnormal $\Longrightarrow QQ^T = \mathbf{I}$ and ||Q|| = 1 and all eigenvalues λ_i are real (no complex part).

• Definition of Positive Definite matrix: If $A \in \mathbb{R}^{n \times n}$ is Positive Definite, then $X^T A X > 0$ for any matrix X. The eigendecomposition:

$$A = Q\Lambda Q^{-1},$$

Q is orthnormal $\Longrightarrow QQ^T = \mathbf{I}$ and ||Q|| = 1 and all eigenvalues λ_i are positive $(\lambda_i > 0)$.

Positive semi-Definite matrix?

Watch Gilbert Strange 26:

https://www.bilibili.com/video/BV1zx411g7gq?p=26

- 2 Kernel Method
- 3 Positive Definite Kerne
- 4 Some Basic Kernels
- Summary

The *i*th data: $\mathbf{x}_i = [x_1, x_2, \dots, x_p]^T \in \mathbb{R}^p$

• Linear Kernel 线性核函数: 主要用于线性可分的情形。参数 少,速度快,对于一般数据,分类效果已经很理想了。

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j + c$$

Polynomial Kernel 多项式核函数:

$$K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^q$$

Gaussian kernel 高斯核函数:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Radial Basis Function (RBF) kernel 径向基核函数: 主要用于线性不可分的情形。How to choose hyperparameter γ?

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2)$$

Laplace RBF kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{\sigma})$$

Sigmoid kernel :

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\kappa \mathbf{x}_i^T \mathbf{x}_j + c)^q$$

- 《ロ》《聞》《意》《意》 (意) から(で)

Choose kernel and tune hyperparameters (See Q&A)

Kernel 的选择, 吴恩达的建议如下:

- 如果 Feature 的数量很大,跟样本数量差不多,这时候选用 LR 或者是 Linear Kernel 的 SVM
- 如果 Feature 的数量比较小,样本数量一般,不算大也不算小,选用 SVM+Gaussian Kernel
- 如果 Feature 的数量比较小,而样本数量很多,需要手工添加一些 feature 变成第一种情况

Hyperparameters 的选择

- 验证曲线法 validation curve:
 https://www.jianshu.com/p/6d4b7f3b7c14
- 网格搜索法 grid search: https://www.jianshu.com/p/7701eab3bbc9

- 2 Kernel Method
- 3 Positive Definite Kerne
- 4 Some Basic Kernels
- **5** Summary

Given a training set $S = \{(x_i, d_i)\}_{i=1}^N$

- Design a suitable kernel and check Mercer's condition
- ullet Choose a value for the hyperparameter λ
- Solve α_i*
- Determine b* in

$$g(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i^* d_i K(\mathbf{x}, \mathbf{x}_i) + b^*$$

using the fact that for a support vector $\mathbf{x}^{(sv)}$

$$g\left(\mathbf{x}^{(sv)}\right) = \pm 1 = d^{(sv)}$$

For a valid kernel $K(\cdot, \cdot)$, the Gram matrix is positive semi-definite

For training set $S = \{(x_i, d_i)\}_{i=1}^N$, the Gram matrix K is

$$\mathbf{K} = \left[\begin{array}{ccc} \mathcal{K}\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \dots & \mathcal{K}\left(\mathbf{x}_{1}, \mathbf{x}_{N}\right) \\ \vdots & \ddots & \vdots \\ \mathcal{K}\left(\mathbf{x}_{N}, \mathbf{x}_{1}\right) & \dots & \mathcal{K}\left(\mathbf{x}_{N}, \mathbf{x}_{N}\right) \end{array} \right] \in R^{N \times N}$$

Mercer's condition:

Gram matrix K is positive semi-definite (i.e., its eigenvalues are nonnegative).

Proof: Mercer's condition $\Longrightarrow K(\mathbf{x}_i, \mathbf{x}_j) = \varphi^T(\mathbf{x}_i)\varphi(\mathbf{x}_j)$

Watch 机器学习白板推导 38 for the proof:

https://www.bilibili.com/video/BV1aE411o7qd?p=38

