## Introduction to Bayesian record linkage

Brenda Betancourt and Andee Kaplan

Duke University
Department of Statistical Science

February 8, 2018

## What is "Bayesian"?

1. Setting up a *full probability model* – a joint probability distribution for all observable and unobservable quantities

$$p(\mathbf{x}|\mathbf{ heta})$$
 — likelihood  $p(\mathbf{ heta})$  — prior

2. Conditioning on observed data – calculating and interpreting the appropriate *posterior distribution* 

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}, \theta)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})} \propto p(\mathbf{x}|\theta)p(\theta)$$

## Why Bayesian Record Linkage?

A Bayesian framework is suitable to solve the following problems:

- Exact computation of the probability that each pair of records is a match, conditional on the observed data.
  - Posterior distribution of linkage structure.
- Propagating linkage error as an added component of uncertainty in the estimation process.
  - Relevant for subsequent modeling.

#### Clustering Approaches

- Note: Reliable and accurate linkage depends greatly on the quantity and quality of the identifying information.
- Record linkage can be naturally seen as a clustering problem.
  - Supervised and unsupervised approaches.
- Records representing the same individual are clustered to a latent entity producing a partition of the data.

### Record Linkage and Clustering

Which records correspond to the same person?



### Record Linkage and Clustering

Each entity is associated with one or more records and the goal is to recover the latent entities (clusters).



### Record Linkage and Clustering

Eight latent entities: One cluster of size 4, one of size 2, six of size 1



## Partition-based Bayesian clustering models

Goal: cluster N data points into K clusters.

- Let  $C_N$  be a random partition of  $[N] = \{1, \dots, N\}$
- Place a prior distribution over the random partitions  $\{C_N\}$
- A partition  $C_N$  is represented by a set of cluster assignments i.e linkage structure.
- The number of clusters K does not need to be specified a priori
   → Non-parametric latent variable approach.

#### Notation

- $X_{ij\ell}$ : observed value of the lth field for the jth record in the ith data set,  $1 \le i \le k$  and  $1 \le j \le n_i$ .
- $Y_{j'\ell}$ : true value of the lth field for the j'th latent individual.
- $\lambda_{ij}$ : latent individual to which the jth record in the ith list corresponds.  $\Lambda$  is the collection of these values.
  - e.g. Five records in one list  $\Lambda = \{1, 1, 2, 3, 3\} \rightarrow 3$  latent entities or clusters.
- $z_{ij\ell}$ : indicator of whether a distortion has occurred for record field value  $X_{ij\ell}$

## Graphical Record Linkage

Graphical model representation of Steorts et al. (2016):



- $\Lambda_{ij}$  represents the linkage structure  $\rightarrow$  uniform prior.
- Requires information about the number of latent entities a priori and it is very informative.

## Record Linkage and Microclustering

 Enumeration of victims of killings in Syria merging four databases.

 The number of data points in each cluster should remain small even for large data sets → Large number of singletons and small clusters.

#### Dirichlet Process Mixture Models

Other clustering tasks require models that assume cluster sizes grow linearly with the size of the data set.

- Λ ~ DP(α), Dirichlet Process prior with concentration parameter α
- Chinese Restaurant Process (CRP)
- Carmona C., Nieto-Barajas L., Canale A. (2017), Model-based approach for household clustering with mixed scale variables https://arxiv.org/abs/1612.00083.

#### Microclustering models

- Prior distributions on partitions that are suitable for the microclustering problem
  - Miller et al, 2015 and Zanella et al, 2016
- Scalable sampling algorithm in combination with blocking techniques.
- NBNB model: Prior distribution on partitions that exhibits the microclustering property:
  - K represents the number of latent entities or clusters
  - $N_k$  represents the size of cluster k i.e.  $N = \sum_{k=1}^K N_k$

$$K \sim \text{Neg-Bin}(a,q)$$
 and  $N_1, \dots, N_k \mid K \sim \text{Neg-Bin}(r,p)$ 



### **Empirically Motivated Priors**

- The prior for the latent entities is the empirical distribution of the data (Steorts R., 2015).
  - Avoids the problem of specifying a prior but requires specification of K in advance.
- This approach allows us to include both categorical and string-valued variables.
- The clustering approaches in Steorts et al. (2016) and Zanella et al. (2016) only handle categorical data.
  - Prior specification involving string data is very difficult!

## Model Specification: String model

 The distortion of string-valued variables is modeled using a probabilistic mechanism based on some measure of distance between the true and distorted strings.

$$P(X_{ij\ell} = w | \lambda_{ij}, Y_{\lambda_{ij}\ell}, z_{ij\ell}) = \frac{\alpha_{\ell} \exp[-cd(w, Y_{\lambda_{ij}\ell})]}{\sum_{w \in S_{l}} \alpha_{\ell} \exp[-cd(w, Y_{\lambda_{ij}\ell})]}$$

where c is a parameter that needs to be specified and d represents a string metric distance e.g. Levenshtein or Jaro-Winkler.

#### Model Specification: Likelihood Function

$$X_{ij\ell} = w | \lambda_{ij}, \, Y_{\lambda_{ij}\ell}, \, z_{ij\ell} \overset{iid}{\sim} egin{dcases} \delta(Y_{\lambda_{ij}\ell}), & ext{if } z_{ij\ell} = 0 \ F_\ell(Y_{\lambda_{ij}\ell}), & ext{if } z_{ij\ell} = 1 ext{ and } \ell \leq p_s \ G_\ell, & ext{if } z_{ij\ell} = 1 ext{ and } \ell > p_s \end{cases}$$

- $z_{ij\ell}=0$ , then  $X_{ij\ell}=Y_{\lambda_{ij\ell}}$
- $F_{\ell}$  is the string model in the last slide.
- $G_{\ell}$  is the empirical distribution function of the categorical data.

#### Model Specification: Hierarchical Model

$$egin{aligned} Y_{\lambda_{ij}\ell} &\stackrel{iid}{\sim} G_{\ell} \ z_{ij\ell} | eta i \ell \stackrel{iid}{\sim} \operatorname{Bernoulli}(eta i \ell) \ eta i \ell \stackrel{iid}{\sim} \operatorname{Beta}(a,b) \ \lambda_{ij} &\stackrel{iid}{\sim} \operatorname{DiscreteUniform}(1,\ldots, \mathbb{N}) \end{aligned}$$

- $\beta_{i\ell}$  represent the distortion probabilities of the fields.
- The parameters a and b for the Beta prior need to be specified.
- The number of latent entities or clusters needs to be specified in advance.

#### blink package

R package that removes duplicate entries from multiple databses using the empirical Bayes graphical method:

```
install.packages("blink")
```

- Formatting data for use with blink
- Tuning parameters
- Running the Gibbs sampler (estimate model parameters)
- Output

#### RLdata500 data

We will continue with the RLdata500 dataset in the RecordLinkage package consisting of 500 records with 10% duplication.

```
library(blink) # load blink library
library(RecordLinkage) # load data library
data("RLdata500") # load data
head(RLdata500) # take a look
```

```
##
     fname_c1 fname_c2 lname_c1 lname_c2 by bm bd
## 1
     CARSTEN
                 <NA>
                         MEIER
                                   <NA> 1949 7 22
## 2
        GERD
                 <NA>
                         BAUER
                                   <NA> 1968 7 27
## 3
      ROBERT
                 <NA> HARTMANN
                                   <NA> 1930 4 30
## 4
      STEFAN
                 <NA>
                         WOLFF
                                   <NA> 1957 9 2
## 5
        RALF
                 <NA> KRUEGER
                                   <NA> 1966 1 13
     JUERGEN.
                 <NA>
                        FRANKE.
                                   < NA > 1929 7 4
## 6
```

#### Formatting the data

```
# categorical variables
X.c <- as.matrix(RLdata500[, c("by","bm","bd")])
# string variables
X.s <- as.matrix(RLdata500[, c("fname_c1", "lname_c1")])</pre>
```

X.c and X.s include all files stacked on top of each other, for categorical and string variables respectively

```
# keep track of which rows of are in which files
file.num <- rep(c(1, 2, 3), c(200, 150, 150))</pre>
```

#### Tuning parameters

#### Hyperparameters

```
# Subjective choices for distortion probability prior
# parameters of a Beta(a,b)
a <- 1
b <- 999</pre>
```

#### Distortion

```
# string distance function example
d <- function(s1, s2) {
   adist(s1, s2) # approximate string distance
}
# steepness parameter
c <- 1</pre>
```

## Running the Gibbs sampler

#### Output

```
# count how many unique latent individuals
size_est <- apply(lam.gs, 1, function(x) {
  length(unique(x))
})</pre>
```



#### **Evaluation**

```
# estimated pairwise links
est_links_pair <- pairwise(links(lam.gs[-(1:25000), ]))</pre>
# true pairwise links
true_links_pair <- pairwise(links(matrix(identity.RLdata500, nrow = 1)))</pre>
#comparison
comparison <- links.compare(est_links_pair, true_links_pair, counts.only = TRUE</pre>
# precision
precision <- comparison$correct/(comparison$incorrect + comparison$correct)</pre>
# recal.1.
recall <- comparison$correct/(comparison$correct + comparison$missing)</pre>
# results
c(precision, recall)
```

```
## [1] 1.00 0.96
```

#### Your turn

Using the title, authors, year, and journal columns in the cora dataset from the RLdata package,

- 1. Let's only use data with **complete cases** (for simplicity):
- 2. Format the data to use with blink
  - Which columns are string vs. categorical?
  - Of the remaining data, assume that the rows 1-200 are from database 1, 201-400 are from database 2, and 401-560 are from database 3
- 3. Create tuning parameters for your model
  - Think about prior hyperparameters as well as the string distortion function
- 4. Run the Gibbs sampler 50 times to update the linkage structure
- 5. **Extra:** Evaluate your estimated linkage structure using precision and recall

#### Your turn (solution)

```
# 1. complete cases of data onl
# load data
library(RLdata)
data("cora")
data("cora_gold")
not_missing <- complete.cases(cora[, c("year", "journal", "title", "authors")])</pre>
# 2. formatting data
# categorical variables
X.c <- as.matrix(cora[not_missing, c("year", "journal")])</pre>
# string variables
X.s <- as.matrix(cora[not_missing, c("title", "authors")])</pre>
# keep track of which rows of are in which files
file.num \leftarrow rep(c(1, 2, 3), c(200, 200, 160))
```

## Your turn (solution, cont'd)

```
# 3. hyperparameters
# Subjective choices for distortion probability prior
# parameters of a Beta(a,b)
a <- 1
b <- 999
# string distance function example
d <- function(s1, s2) {
  adist(s1, s2) # approximate string distance
# steepness parameter
c <- 1
# 4. run the gibbs sampler
lam.gs <- rl.gibbs(file.num = file.num, # file</pre>
                   X.s = X.s, X.c = X.c, # data
                   num.gs = 10, # iterations
                   a = a, b = b, # prior params
                   c = c, d = d, # distortion
                   M = nrow(X.s) # max # latents
```

#### Your turn (extra solution)

```
# 5. (extra) evaluation
# estimated pairwise links
est links pair <- pairwise(links(lam.gs))
# true pairwise links, only for those included
# get true number
included idx <- seg len(sum(not missing))
names(included_idx) <- cora[not_missing, "id"]</pre>
included_pairs <- subset(cora_gold, id1 %in% names(included_idx) & id2 %in% names(included_idx))
# get index for graphmaking
included pairs <- apply(included pairs, 2, function(col) {
 names <- as.character(col)
 included idx[names]
1)
# need list of pairs to compare
true_links_pair <- split(included_pairs, seq(nrow(included_pairs)))
#comparison
comparison <- links.compare(est_links_pair, true_links_pair, counts.only = TRUE)
# precision
precision <- comparison$correct/(comparison$incorrect + comparison$correct)</pre>
# recall.
recall <- comparison$correct/(comparison$correct + comparison$missing)
# results
c(precision, recall)
```

# Your turn (extra solution, cont'd)



#### References

- Steorts, R. (2015), Entity Resolution with Empirically Motivated Priors, Bayesian Analysis 10(4), pp. 849–875.
- Steorts et al. (2016). A Bayesian Approach to Graphical Record Linkage and De-duplication, Journal of the American Statistical Association, 111:516, pp.1660-1672.
- Sadinle, M. (2014). Detecting duplicates in a homicide registry using a bayesian partitioning approach. The Annals of Applied Statistics 8(4), pp. 2404–2434
- Zanella et al. (2016). Flexible Models for Microclustering with Applications to Entity Resolution, Advances in Neural Information Processing Systems (NIPS) 29, pp. 1417-1425.
- Miller et al. (2015). The Microclustering Problem: When the Cluster Sizes Don't Grow with the Number of Data Points. NIPS Bayesian Nonparametrics: The Next Generation Workshop Series.