CS 512, Spring 2014

Assignment 7

Shan Sikdar

1 Problem 1.3.48 a,b,c,d

- (a) $\mathbf{AF}q$
 - s_0 : Yes: satisfies since q is true at s_0 .
 - s_2 : Yes: From s_2 you can only go to s_0 and s_3 where q is true
- (b) $\mathbf{AG}(\mathbf{EF}(p \lor r))$
 - s_0 : Yes: since in every state p or r is true
 - s_2 : Yes: since in every state p or r is true
- (c) $\mathbf{EX}(\mathbf{EX}r)$
 - s_0 : Yes: look at the path $s_0s_1s_1...$
 - s_2 : Yes: look at the path $s_2s_0s_1...$
- (d) $\mathbf{AG}(\mathbf{AF}q)$
 - s_0 : No: since we can have the path $s_0s_1s_1...$
 - s_2 : No: since we can have the path $s_2s_0s_1...$

2 **Problem 3.4.9**

new $\mathbf{AG}\phi$: $\mathbf{AX}(\mathbf{AG}\phi)$ new $\mathbf{EG}\phi$: $\mathbf{EX}(\mathbf{EG}\phi)$ new $\mathbf{AF}\phi$ ': $\mathbf{AXA}\phi$ new $\mathbf{EF}\phi$: $\mathbf{EXEF}\phi$

new $\mathbf{A}[\phi_1 \mathbf{U} \phi_2]$: $\phi_1 \wedge \mathbf{AXA}[\phi_1 \mathbf{U} \phi_2]$ new $\mathbf{A}[\phi_1 \mathbf{U} \phi_2]$: $\phi_1 \wedge \mathbf{EXE}[\phi_1 \mathbf{U} \phi_2]$

3 Problem 3.4.10 a,b,c,d,e

(a) $\mathbf{E}\mathbf{F}\phi$ and $\mathbf{E}\mathbf{G}\phi$

In the state transition system below note that: $\mathcal{M}, s_0 \models \mathbf{EF}\phi$ but not $\mathbf{EG}\phi$. So they are not equivelent.

(b) $\mathbf{EF}\phi \vee \mathbf{EF}\psi$ and $\mathbf{EF}(\phi \vee \psi)$

They are equivelent.

- 1. First, assume that $s \models \mathbf{EF}\phi \vee \mathbf{EF}\psi$. Without loss of generality, assume that $s \models \mathbf{EF}\phi$. This means that there is a future state s_n , reachable from s, such that $s_n \models \phi$. But then $s_n \models \phi \vee \psi$ follows. But this means that there is a state rechable from s which satisfies $\phi \vee \psi$. Thus, $s \models \mathbf{EF}(\phi \vee \psi)$ follows.
- 2. Second, assume that $s \models \mathbf{EF}(\phi \lor \psi)$. Then there exists a state $s_m \models \phi \lor \psi$ Withou loss of generality, we may assume that $s_m \models \psi$. Buth then we can conclude that $s \models \mathbf{EF}\psi$, as s_m is reachable from s. Therefore, we also have $s \models \mathbf{EF}\phi \lor \mathbf{EF}\psi$

(c) $\mathbf{AF}\phi \vee \mathbf{AF}\psi$ and $\mathbf{AF}(\phi \vee \psi)$

In the state transition system below, look at paths $\pi_1 = s_0 s_1 s_1 \dots$ and $\pi_2 = s_0 s_2 s_2 \dots$ They both statisy $\mathbf{AF}(\phi \lor \psi)$ but π_1 does not statisy $\mathbf{AF}\psi$ and π_2 does not statisfy $\mathbf{AF}\phi$ and therefore $\mathbf{AF}\phi \lor \mathbf{AF}\psi$ cannot hold

(d) $\mathbf{AF} \neg \phi$ and $\neg \mathbf{EG} \phi$

They are equivelent.

- 1. Assume $s \models \mathbf{EF} \neg \phi$ Then at some state along this path we have $s_m \models \neg \phi$ Then this path $s \not\models \mathbf{G}\phi$. Since was any arbitary path, then we know that $s \not\models EG\phi$. Then by definition we know $s \models \neg \mathbf{EG}\phi$.
- 2. Assume $s \models \neg \mathbf{E} \mathbf{G} \phi$. Then we know at some point that $s_m \models \neg \phi$ So we know for all paths at some point will have $\neg \phi$. Therefore $s \models \mathbf{A} \mathbf{F} \neg \phi$

(e) $\mathbf{EF} \neg \phi$ and $\neg \mathbf{AF} \phi$

Look at the state transition diagram below. The path $s_0s_1s_1...$ satisfies $\mathbf{EF}\neg\phi$ but not $\neg\mathbf{AF}\phi$

4 3.5.6 a,b,c

(a) $\mathbf{AFG}p$ and $\mathbf{AFAG}p$

Look at the transition digram below $\mathcal{M}, s_0 \models \mathbf{AFG}p$ but not $\mathbf{AFAG}p$.

(b) $\mathbf{AGF}p$ and $\mathbf{AGEF}p$

In the state transition system below note that: $\mathcal{M}, s_0 \models \mathbf{AGEF}p$ but not $\mathbf{AGF}p$. So they are not equivelent.

(c) $\mathbf{A}[(p\mathbf{U}r)\vee(q\mathbf{U}r)]$ and $\mathbf{A}[(p\vee q)\mathbf{U}r]$

Look at the transition diagram above. note that:

 $\mathcal{M}, s_0 \models \mathbf{A}[(p \lor q)\mathbf{U}r]$ but not $\mathbf{A}[(p\mathbf{U}r) \lor (q\mathbf{U}r)]$. so they are not equivelent.

