# Wu\_Youzhi\_lab\_1

February 19, 2019

# 1 Lab 1: Probability Theory

#### 1.1 W203: Statistics for Data Science

Student Name: Youzhi Wu Section Number: 05

### 1.2 1. Meanwhile, at the Unfair Coin Factory...

You are given a bucket that contains 100 coins. 99 of these are fair coins, but one of them is a trick coin that always comes up heads. You select one coin from this bucket at random. Let T be the event that you select the trick coin. This means that P(T) = 0.01.

- a. Suppose you flip the coin once and it comes up heads. Call this event  $H_1$ . If this event occurs, what is the conditional probability that you have the trick coin? In other words, what is  $P(T|H_1)$ ?
- b. Suppose instead that you flip the coin k times. Let  $H_k$  be the event that the coin comes up heads all k times. If you see this occur, what is the conditional probability that you have the trick coin? In other words, what is  $P(T|H_k)$ .
- c. How many heads in a row would you need to observe in order for the conditional probability that you have the trick coin to be higher than 99%?
- a. what is  $P(T|H_1)$

$$P(T|H_1) = \frac{P(T \cap H_1)}{P(H_1)}$$

 $\leftarrow$   $P(T \cap H_1)$  equals to P(T) because the trick coin will always come up heads.

 $\leftarrow$   $P(H_1)$  equals to (1) either flipping a fair coin to get heads, (2) or flipping the trick coin to get heads,

$$= \frac{0.01}{0.99 * 0.5 + 0.01}$$
$$= 0.0198$$

b. what is  $P(T|H_k)$ 

$$P(T|H_k) = \frac{P(T \cap H_k)}{P(H_k)}$$

 $\leftarrow P(T \cap H_k)$  equals to the possibility of flipping trick coin which would be P(T).

 $\leftarrow P(H_k)$  equals to the possibility of getting event  $H_1$  k times, which would be  $P(H_1)^k$ .

$$=\frac{0.01}{0.99\cdot0.5^k+0.01}$$

c. what is the k in order for  $P(T|H_k)$  to be higher than 99%

Because we have  $P(T|H_k) = \frac{0.01}{0.99 \cdot 0.5^k + 0.01}$  which needs to be higher than 99%, therefore

$$\frac{0.01}{0.99 \cdot 0.5^k + 0.01} > 0.99$$
$$k > 2\log_2 99$$
$$k > 13.259$$

Therefore, you need to observe at least 14 times heads in a row in order for the conditional probability that you have the trick coin to be higher than 99%.

#### 1.3 2. Wise Investments

You invest in two startup companies focused on data science. Thanks to your growing expertise in this area, each company will reach unicorn status (valued at \\$1 billion) with probability 3/4, independent of the other company. Let random variable X be the total number of companies that reach unicorn status. X can take on the values 0, 1, and 2. Note: X is what we call a binomial random variable with parameters n = 2 and p = 3/4.

- a. Give a complete expression for the probability mass function of *X*.
- b. Give a complete expression for the cumulative probability function of *X*.
- c. Compute E(X).
- d. Compute var(X).
- a. Give a complete expression for the probability mass function of *X*.

Because the distribution follows binomial distribution with parameters n=2 and p=3/4, the pmf of X, P(X), is:

$$P(X) = \begin{cases} \frac{1}{16} & \text{if } X = 0\\ \frac{3}{8} & \text{if } X = 1\\ \frac{9}{16} & \text{if } X = 2\\ 0 & \text{if otherwise} \end{cases}$$

b. Give a complete expression for the cumulative probability function of *X*.

The cmf of X, B(X), is:

$$B(X) = \begin{cases} \frac{1}{16} & \text{if } X \le 0\\ \frac{7}{16} & \text{if } X \le 1\\ 1 & \text{if } X \le 2\\ 1 & \text{if } x > 2 \end{cases}$$

c. Compute E(X).

$$E(X) = \sum_{x=0}^{x=2} x \cdot P(X = x)$$

$$= 0 \cdot \frac{1}{16} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{9}{16}$$

$$= 0 + \frac{3}{8} + \frac{9}{8}$$

$$= \frac{3}{2}$$

d. Compute var(X).

$$var(X) = E(X^{2}) - [E(X)]^{2}$$

$$= \sum_{x=0}^{x=2} x^{2} \cdot P(X = x) - [E(X)]^{2}$$

$$= 0^{2} \cdot \frac{1}{16} + 1^{2} \cdot \frac{3}{8} + 2^{2} \cdot \frac{9}{16} - \left[\frac{3}{2}\right]^{2}$$

$$= 0 + \frac{3}{8} + \frac{9}{4} - \frac{9}{4}$$

$$= \frac{3}{8}$$

## 1.4 3. A Really Bad Darts Player

Let X and Y be independent uniform random variables on the interval [-1,1]. Let D be a random variable that indicates if (X,Y) falls within the unit circle centered at the origin. We can define D as follows:

$$D = \begin{cases} 1, & X^2 + Y^2 < 1 \\ 0, & otherwise \end{cases}$$

Note that *D* is a Bernoulli variable.

- a. Compute the expectation E(D). Hint: it might help to remember why we use area diagrams to represent probabilities.
- b. Compute the standard deviation of *D*.

- c. Write an R function to compute the value of *D*, given a value for *X* and a value for *Y*. Use R to simulate a draw for *X* and a draw for *Y*, then compute the value of *D*.
- d. Use R to simulate the previous experiment 1000 times, resulting in 1000 samples for *D*. Compute the sample mean and sample standard deviation of your result, and compare them to the true values in parts a. and b.
- a. Compute the expectation E(D).

The total area of the sample space is  $(1+1)^2 = 4$  since X and Y follows uniform distribution on the interval of [-1,1]. Then the pmf of D, P(D), is:

$$P(D) = \begin{cases} \frac{\pi \cdot 1^2}{4} & \text{if } D = 1\\ 1 - \frac{\pi \cdot 1^2}{4} & \text{if } D = 0\\ 0 & \text{if otherwise} \end{cases}$$

Therefore, P(D) could be written as follows:

$$P(D) = \begin{cases} \frac{\pi}{4} & \text{if } D = 1\\ 1 - \frac{\pi}{4} & \text{if } D = 0\\ 0 & \text{if otherwise} \end{cases}$$

Therefore, E(D) can be computed as follows:

$$E(D) = \sum_{d=0}^{d=1} d \cdot P(D = d)$$
$$= 0 \cdot (1 - \frac{\pi}{4}) + 1 \cdot \frac{\pi}{4}$$
$$= \frac{\pi}{4}$$
$$\approx 0.785$$

b. Compute the standard deviation of *D*.

The standard deviation of D, S(D) equals to the positive square root of the var(D). The var(D) equals to  $E(D^2) - [E(D)]^2$ . Therefore, the S(D) can be computed as follows:

$$\begin{split} S(D) &= \sqrt{var(D)} \\ &= \sqrt{E(D^2) - [E(D)]^2} \\ &= \sqrt{\sum_{d=0}^{d=1} d^2 \cdot P(D = d) - [E(D)]^2} \\ &= \sqrt{0^2 \cdot (1 - \frac{\pi}{4}) + 1^2 \cdot \frac{\pi}{4} - \left[\frac{\pi}{4}\right]^2} \\ &= \frac{\sqrt{4\pi - \pi^2}}{4} \\ &\approx 0.411 \end{split}$$

c. Write an R function to compute the value of *D*, given a value for *X* and a value for *Y*. Use R to simulate a draw for *X* and a draw for *Y*, then compute the value of *D*.

d. Use R to simulate the previous experiment 1000 times, resulting in 1000 samples for *D*. Compute the sample mean and sample standard deviation of your result, and compare them to the true values in parts a. and b.

```
In [5]: # set seed
        set.seed(89)
        reps = 0
        d_vector <- c()</pre>
        repeat{
             # Take Draws
             n = 1
             x \leftarrow runif(n, min = -1, max = 1)
             y \leftarrow runif(n, min = -1, max = 1)
             # compute the value of D
             if((x^2 + y^2) > 1) {
                 d <- 1
             } else {
                 d <- 0
             # store the value of D in a vector
             d_vector <- c(d_vector, d)</pre>
             # count the # of experiments, if over 1000 times, break from repeat
```

```
reps = reps + 1
    if(reps > 1000) {
        break
    }
}

mean_obs <- mean(d_vector)
    sd_obs <- sd(d_vector)
    print(mean_obs)
    print(sd_obs)

[1] 0.2227772
[1] 0.416318</pre>
```

# 2 4. Relating Min and Max

Continuous random variables X and Y have a joint distribution with probability density function,

$$f(x,y) = \begin{cases} 2, & 0 < y < x < 1 \\ 0, & otherwise. \end{cases}$$

You may wonder where you would find such a distribution. In fact, if  $A_1$  and  $A_2$  are independent random variables uniformly distributed on [0,1], and you define  $X = max(A_1, A_2)$ ,  $Y = min(A_1, A_2)$ , then X and Y will have exactly the joint distribution defined above.

- a. Draw a graph of the region for which *X* and *Y* have positive probability density.
- b. Derive the marginal probability density function of X,  $f_X(x)$ . Make sure you write down a complete expression.
- c. Derive the unconditional expectation of *X*.
- d. Derive the conditional probability density function of Y, conditional on X,  $f_{Y|X}(y|x)$
- e. Derive the conditional expectation of Y, conditional on X, E(Y|X).
- f. Derive E(XY). Hint 1: Use the law of iterated expectations. Hint 2: If you take an expectation conditional on X, X is just a constant inside the expectation. This means that E(XY|X) = XE(Y|X).
- g. Using the previous parts, derive cov(X, Y)
- a. Draw a graph of the region for which *X* and *Y* have positive probability density.

The graph is shown as below. The skyblue region is where *X* and *Y* have postive prbability density.

```
In [9]: x \leftarrow c(0, 1, 1) # The x-coordinate of the vertices y \leftarrow c(0, 1, 0) # The y-coordinate of the vertices plot(c(0,1), c(0,1), type = "n", xlab = "X", ylab = "Y") polygon(x, y, col = 'skyblue')
```



b. Derive the marginal probability density function of X,  $f_X(x)$ .

The marginal probability density function of *X* can be written as below:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$\forall x \in (0, 1) = \int_{0}^{x} 2 dy$$

$$= [2y]_{0}^{x}$$

$$= 2x$$

> Therefore, we have

$$f_X(x) = \begin{cases} 2x & \text{if } x \in (0,1) \\ 0 & \text{if otherwise} \end{cases}$$

c. Derive the unconditional expectation of X.

The the unconditional expectation of *X* can be computed as below:

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$
$$= \int_{0}^{1} x \cdot 2x dx$$
$$= \left[ \frac{2x^3}{3} \right]_{0}^{1}$$
$$= \frac{2}{3}$$

d. Derive the conditional probability density function of Y, conditional on X,  $f_{Y|X}(y|x)$ .

The the conditional probability density function can be computed as follows:

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$
$$= \frac{2}{2x}$$
$$= \frac{1}{x}$$

e. Derive the conditional expectation of Y, conditional on X, E(Y|X).

The conditional expectation can be computed as follows:

$$E_Y(Y|X) = \int_Y y \cdot f_{Y|X}(y|x) dy$$

$$= \int_0^x y \cdot \frac{1}{x} dy$$

$$= \frac{1}{x} \cdot \int_0^x y dy$$

$$= \frac{1}{x} \cdot \left[ \frac{y^2}{2} \right]_0^x$$

$$= \frac{1}{x} \cdot \frac{x^2}{2}$$

$$= \frac{x}{2}$$

f. Derive E(XY).

The expectation can be computed as below:

$$E(XY) = E_X[E_Y(XY|X)]$$

$$= E_X[X \cdot E_Y(Y|X)]$$

$$= E_X[X \cdot \frac{X}{2}]$$

$$= E_X[\frac{X^2}{2}]$$

$$= \int_0^1 \frac{x^2}{2} \cdot 2x dx$$

$$= \left[\frac{x^4}{4}\right]_0^1$$

$$= \frac{1}{4}$$

g. Using the previous parts, derive cov(X, Y)

$$cov(X,Y) = E(XY) - E(X)E(Y)$$

$$= E(XY) - E(X)E_X[E_Y(Y|X)]$$

$$= E(XY) - E(X) \cdot E_X[\frac{X}{2}]$$

$$= E(XY) - E(X) \cdot \int_0^1 \frac{x}{2} \cdot 2x dx$$

$$= E(XY) - E(X) \cdot \left[\frac{x^3}{3}\right]_0^1$$

$$= \frac{1}{4} - \frac{2}{3} \cdot \frac{1}{3}$$

$$= \frac{1}{36}$$

In []: