Probability Theory

Exercise Sheet 3

Exercise 3.1 Assume that $X_k = -\frac{1}{k^{1.5}} + \frac{Z_k}{k^{\alpha}}$, for $k \ge 1$, where Z_k are i.i.d random variables with $P[Z_k = 1] = P[Z_k = -1] = P[Z_k = 0] = \frac{1}{3}$ and $\alpha > 0$. Discuss the convergence of the random series $\sum_{k \ge 1} X_k$.

Exercise 3.2 Let \mathcal{M} be the set of the real-valued random variables on the probability space (Ω, \mathcal{A}, P) . We define on \mathcal{M} an equivalence relation as follows:

$$X \sim Y \quad : \iff \quad P(X = Y) = 1$$

We denote by \mathcal{M}/\sim the set of equivalence classes in \mathcal{M} with respect to \sim and we denote by [X] the equivalence class of $X \in \mathcal{M}$.

(a) Show that

$$d: (\mathcal{M}/\sim) \times (\mathcal{M}/\sim) \to \mathbb{R}$$
$$([X], [Y]) \mapsto E[|X - Y| \wedge 1]$$

is a metric on \mathcal{M}/\sim .

(b) Let $(X_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{M} and let X be an element of \mathcal{M} . Show that $([X_n])_{n\in\mathbb{N}}$ converges to [X] with respect to the metric d if and only if $(X_n)_{n\in\mathbb{N}}$ converges to X in probability.

Exercise 3.3 Let X_i , $i \ge 1$, be identically distributed, integrable random variables and define $S_n = \sum_{i=1}^n X_i$ for each $n \in \mathbb{N}$. Show that:

$$\lim_{M \to \infty} \sup_{n \geq 1} E \left[\frac{|S_n|}{n} \mathbf{1}_{\left\{\frac{|S_n|}{n} > M\right\}} \right] = 0.$$

Note: This family $\left\{\frac{|S_n|}{n}, n \in \mathbb{N}\right\}$ is thus so-called "uniformly integrable". See (3.6.14) in the lecture notes. Thanks to Theorem 3.41 and the strong law of large numbers, one has that: if $X_i, i \geq 1$, are also pairwise independent, (in addition to being identically distributed as in the question), then $\frac{S_n}{n}$ converges P-a.s. and in L^1 towards $E[X_1]$ for $n \to \infty$.

Submission: until 14:15, Oct 15., during exercise class or in the tray outside of HG G 53.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
Afa-Fül	Tue 13-14	HG F 26.5	Angelo Abächerli
Gan-Math	Tue 13-14	ML H 41.1	Zhouyi Tan
Meh-Schu	Tue 14-15	HG F 26.5	Angelo Abächerli
Schü-Zur	Tue 14-15	ML H 41.1	Dániel Bálint

Solution 3.1 Note first that the event $\{\sum_{k\geq 1} X_k \text{ converges}\}\$ belongs to the asymptotic σ -algebra \mathcal{F}_{∞} associated with independent random variables X_k , $k\geq 1$. Therefore it follows from Theorem 1.30 (Kolmogorov's 0-1 law) that we have either $P[\sum_{k\geq 1} X_k \text{ converges}] = 0$ or $P[\sum_{k\geq 1} X_k \text{ converges}] = 1$.

Using now the same notation as in the statement of Theorem 1.37 (Kolmogorov's three-series theorem), we choose A=2 and define $Y_k:=X_k1_{\{|X_k|\leq A\}}$ for $k\geq 1$. From the definition of X_k and the fact that $|Z_k|\leq 1$ we actually have $|X_k|\leq 2$ and thus $Y_k=X_k$ for all $k\geq 1$. This means in particular that condition i) in (1.4.17) is satisfied. Moreover, $\mathrm{E}[Y_k]=-\frac{1}{k^{1.5}}$, so $\sum_{k\geq 1}\mathrm{E}[Y_k]$ converges and hence condition i) is also satisfied.

Now for condition iii), since $Var(Z_k) = \frac{2}{3}$ for all $k \ge 1$, we have

$$\operatorname{Var}(X_k) = \operatorname{Var}\left(-\frac{1}{k^{1.5}} + \frac{Z_k}{k^{\alpha}}\right) = \frac{1}{k^{2\alpha}}\operatorname{Var}(Z_k) = \frac{2}{3k^{2\alpha}}.$$

If $\alpha \leq \frac{1}{2}$, then we have $\sum_{k\geq 1} \operatorname{Var}(Y_k) = \sum_{k\geq 1} \frac{2}{3k^{2\alpha}} = \infty$, which implies that condition iii) fails. Hence by Theorem 1.37, we obtain that $\sum_{k\geq 1} X_k$ cannot converge P-a.s., or in other words, $P[\sum_{k\geq 1} X_k \text{ converges}] < 1$. So by the intoductury remark it follows that $P[\sum_{k\geq 1} X_k \text{ converges}] = 0$. Similarly, if $\alpha > \frac{1}{2}$, $\sum_{k\geq 1} \operatorname{Var}(Y_k) < \infty$ and hence condition iii) is satisified. Hence by Theorem 1.37, we obtain that $\sum_{k\geq 1} X_k$ converges P-a.s., or in other words, $P[\sum_{k\geq 1} X_k \text{ converges}] = 1$.

Solution 3.2

- (a) We verify the criteria for d to be a metric
 - 1. It is clear that d is well-defined;
 - 2. From the definition of d we know that $\forall X, Y \ d([X], [Y]) = d([Y], [X]);$
 - 3. It also follows from the definition of d that $\forall X \ d([X], [X]) = 0$;
 - 4. That d([X], [Y]) = 0 for $X, Y \in L^0$ implies X = Y P-.a.s., which further implies [X] = [Y] in \mathcal{M}/\sim ;
 - 5. To prove that $\forall X, Y, Z \in L^0$ $d([X], [Z]) \leq d([X], [Y]) + d([Y], [Z])$, it is sufficient to note that for all $a, b, c \in \mathbb{R}$,

$$|a - c| \wedge 1 < |a - b| \wedge 1 + |b - c| \wedge 1.$$

(b) Assume $d([X_n], [X]) \to 0$. With Chebyshev's inequality it follows that

$$P[|X_n - X| > \varepsilon] = P[|X_n - X| \land 1 > \varepsilon] \le \frac{E[|X_n - X| \land 1]}{\varepsilon} \to 0.$$

For the converse, assume $P[|X_n - X| > \varepsilon] \to 0$ for each $\varepsilon > 0$. Then, it follows that

$$E[|X_n - X| \land 1] \le E[|X_n - X| \land 1, |X_n - X| < \varepsilon]$$

$$+ E[|X_n - X| \land 1, |X_n - X| \ge \varepsilon]$$

$$\le \varepsilon + P[|X_n - X| \ge \varepsilon] < 2\varepsilon,$$

for sufficiently large n.

Solution 3.3 Let $\widetilde{S}_n = \sum_{i=1}^n |X_i|$. Since $\widetilde{S}_n \geq |S_n|$, we have,

$$\left. \left\{ \frac{|S_n|}{n} > M \right\} \right. \le \left. \left\{ \frac{\widetilde{S}_n}{n} > M \right\} \right.$$

which implies that

$$E\bigg[\frac{|S_n|}{n} \mathbf{1}_{\left\{\frac{|S_n|}{n} > M\right\}}\bigg] \le E\bigg[\frac{\widetilde{S}_n}{n} \mathbf{1}_{\left\{\frac{\widetilde{S}_n}{n} > M\right\}}\bigg].$$

Hence we can assume, without loss of generality, that $X_i \ge 0$ for all i. Then we have that for A > 0:

$$E\left[\frac{S_{n}}{n}1_{\left\{\frac{S_{n}}{n}>M\right\}}\right] = E\left[\frac{1}{n}\left(\sum_{i=1}^{n}X_{i}1_{\left\{X_{i}>A\right\}}\right)1_{\left\{\frac{S_{n}}{n}>M\right\}}\right] + E\left[\frac{1}{n}\left(\sum_{i=1}^{n}X_{i}1_{\left\{X_{i}\leq A\right\}}\right)1_{\left\{\frac{S_{n}}{n}>M\right\}}\right]$$

$$\leq E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}1_{\left\{X_{i}>A\right\}}\right] + E\left[\frac{1}{n}\sum_{i=1}^{n}A1_{\left\{\frac{S_{n}}{n}>M\right\}}\right]$$

$$= E\left[X_{1}1_{\left\{X_{1}>A\right\}}\right] + AP\left[\frac{S_{n}}{n}>M\right]$$

$$\stackrel{(*)}{\leq} E\left[X_{1}1_{\left\{X_{1}>A\right\}}\right] + \frac{A}{M}E\left[\frac{S_{n}}{n}\right]$$

$$= E\left[X_{1}1_{\left\{X_{1}>A\right\}}\right] + \frac{A}{M}E[X_{1}],$$

where we have used the fact that $X_i \ge 0$ for all i and applied Chebyshev's inequality (1.2.13) at (*).

Now we take $A = \sqrt{M}$. Then:

$$\overline{\lim}_{M\to\infty}\sup_{n\geq 1}E\left[\frac{S_n}{n}1_{\{\frac{S_n}{n}>M\}}\right]\leq \overline{\lim}_{M\to\infty}E\left[X_11_{\{X_1>\sqrt{M}\}}\right]+\overline{\lim}_{M\to\infty}\frac{1}{\sqrt{M}}E[X_1]=0.$$

Where the last equality follows by dominated convergence and the fact that X_1 is integrable.