

JD AI Research at Visual Domain Adaptation Challenge 2018 — Open-set Image Classification

Yingwei Pan, Yehao Li, Qi Cai, Yiheng Zhang, Zhaofan Qiu, Ting Yao and Tao Mei

JD AI Research

Outline

- Task
- Framework
- Results

Task — Open-set Image Classification

Framework

Two-stage system

Source Domain

Images

Target Domain

Images

12 Categories

- Assign pseudo labels to unlabeled target samples
- Fine-tune the classification module over labeled source data and target samples with pseudo labels

Others

SENet

SENet

Share

Parameters

Classification Module

- Backbone: SE-ResNeXt101 (ImageNet pre-trained)
- AM-Softmax [1]: Learn large-margin feature representations
- Noise adaptation layer [2]: Make the classifier resistant to the noise of pseudo labels
- Generalized cross entropy loss [3]: Further make the optimization procedure more robust to noisy labels.

- [1] Wang F, Liu W, Liu H, et al. Additive Margin Softmax for Face Verification, ICLR workshop, 2018.
- [2] Goldberger, J., Ben-Reuven, E. Training deep neural-networks using a noise adaptation layer, ICLR, 2017.
- [3] Zhang Z, Sabuncu M R. Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels. arXiv preprint arXiv:1805.07836, 2018.

Classification Module

- Backbone: SE-ResNeXt101 (ImageNet pre-trained)
- AM-Softmax [1]: Learn large-margin feature representations
- Noise adaptation layer [2]: Make the classifier resistant to the noise of pseudo labels
- Generalized cross entropy loss [3]: Further make the optimization procedure more robust to noisy labels.

- [1] Wang F, Liu W, Liu H, et al. Additive Margin Softmax for Face Verification, ICLR workshop, 2018.
- [2] Goldberger, J., Ben-Reuven, E. Training deep neural-networks using a noise adaptation layer, ICLR, 2017.
- [3] Zhang Z, Sabuncu M R. Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels. arXiv preprint arXiv:1805.07836, 2018.

Pseudo Label Assignment

- Initial iteration: Train the Assign and Transform Iteratively (ATI) model [4] on open-set training data and achieve the pseudo labels of target samples through ATI
- Next iterations: Directly predict the pseudo labels through the fine-tuned classification module

[4] Busto, P.P., Gall, J. Open set domain adaptation, ICCV, 2017.

Pseudo Label Assignment

- Initial iteration: Train the Assign and Transform Iteratively (ATI) model [4] on open-set training data and achieve the pseudo labels of target samples through ATI
- Next iterations: Directly predict the pseudo labels through the fine-tuned classification module
- A clustering based strategy for filtering the pseudo labels
 - K-means is firstly leveraged to produce 500 clusters over the whole target domain.
 - For each cluster, only the target samples with the same pseudo label whose proportion in this cluster is larger than a threshold are selected for training.

[4] Busto, P.P., Gall, J. Open set domain adaptation, ICCV, 2017.

Results

#	Setting	Per Category Accuracy													Vnown	Mean
		plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbd	train	truck	unknown	Known	iviean
1	Source Only	6.3	10.5	20.7	32.1	53.0	1.5	66.8	13.4	17.5	6.5	59.0	3.7	66.0	24.3	27.5
2	Adapt, iteration 2	90.2	82.9	87.1	95.5	66.6	90.4	80.8	80.2	95.3	77.6	84.0	93.6	82.2	85.4	85.1
3	Adapt, iteration 4	89.0	86.7	88.5	95.6	80.1	89.5	84.2	82.3	94.2	87.0	87.6	93.6	78.9	88.2	87.5
4	Adapt, iteration 7	87.5	89.0	90.7	96.2	83.9	93.5	85.9	76.3	94.9	88.4	90.0	92.3	82.0	89.0	88.5
5	Adapt, iteration 10	92.5	90.0	92.5	96.8	86.1	94.7	89.0	81.5	96.5	88.4	91.6	93.9	84.5	91.1	90.6
6	Adapt, iteration 20	95.8	93.5	94.3	98.6	93.5	98.5	91.5	82.3	97.2	91.7	93.3	92.3	77.2	93.5	92.3

#	Team Name	Affiliation	Per Category Accuracy												Known	Moon	
#	ream Name	Ailillation	plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbd	train	truck	unknown	Mown	Weam
1	VARMS	JD AI Research, CV Lab	95.8	93.5	94.3	98.6	93.5	98.5	91.5	82.3	97.2	91.7	93.3	92.3	77.2	93.5	92.3
2	Diggers	University of Electronic Science and Technology of China	91.0	76.6	86.5	94.5	83.1	36.9	83.4	69.8	90.0	40.8	69.1	65.4	9.8	73.9	69.0
3	THUML	Tsinghua University	94.0	79.2	90.5	97.4	63.2	36.0	81.1	45.6	93.0	35.4	84.5	46.2	42.2	70.5	68.3

- Source only: 27.5%, Full system: 92.3%
- Involving more iterations with pseudo labels tends to achieve better performance.

