درس بازشناسایی آماری الگو (PRML)

تمرین (سری ششم)

مهلت تحويل:

هدف: میخواهیم برخی از مباحث طرح شده در 5-7 Lecture را در این سری تمرین مرور کنیم.

مساله یک: برای متغیر تصادفی دودویی x، با فرض تابع احتمال پیشینِ $p(\mu) = Beta(\mu|2,2)$ ، نشان دهید که با افزایش تعداد مشاهده ها، واریانس تابع احتمال پسین $p(\mu|D)$ کاهش می یابد.

مساله دو: نمونههای آموزشی از دو کلاس C1 و C2 با توابع چگالی احتمال درون کلاسی زیر داده شده است.

الف-مبتنی بر ML پارامترهای دو توزیع را بیابید.

ب-نمونههای آزمون از دو کلاس را به روش MAP برچسب زده و خطای دستهبندی را بیابید.

	Train			
C1	0.15	0.45	0.5	0.6
C2	0.5	0.6	0.8	0.9

Test				
0.2	0.5			
0.4	0.7			

مساله پیاده سازی: فرض کنید که دو کلاس با توزیع درون کلاسی نرمال $p(x|C_1)=N(0,1)$, $p(x|C_2)=N(1,1)$ داریم و $p(C_1)=\frac{1}{3}$ و $p(C_1)=\frac{2}{3}$

الف-بر پایه MAP Decision Rule مطلوب است تعیین یا رسم نمودارهای FNR ،FAR و نمودار ROC.

$$L = egin{bmatrix} 0 & 2 \ 1 & 0 \end{bmatrix}$$
 با فرض ماتریس هزینه

- به ازای $p(C_1)$ های گوناگون، مرز تصمیم گیری بهینه برای داشتن کمترین خطا (مبتنی بر تصمیم گیری (Bayesian) را تعیین کرده و نمودار خطا بر حسب $p(C_1)$ را رسم کنید.
- مرز تصمیم گیری را متناظر با $p(C_1) = \frac{2}{3}$ در نظر بگیرید. بدون تغییر این مرز، نمودار خطای حاصل از آن را به ازای $p(C_1) = \frac{2}{3}$ های گوناگون رسم کنید.
 - مرزی را تعیین کنید که خطای تصمیم گیری مبتنی بر آن به تغییرات $p(\mathcal{C}_1)$ حساس نباشد.