N.O.M.A.D.S.

•••

NOvel Method of Autonomous Detection for Synapses

Mission

To accelerate brain research by autonomously detecting and characterizing synapses, and to provide software that is readily useable for neuroscientists and computer scientists.

Motivation

- Central nervous system (CNS) synapses are poorly understood due to their diverse functions and patterns in gene expression, making identification and characterization difficult.
- Understanding synapses on individual level can elucidate pathology of neurological disorders.
- Conjugate array tomography (cAT) allows collection of high dimensional proteomic data and structural data with single synapse precision.
- Many well-developed image processing and machine learning frameworks can be leveraged for synapse analysis using data obtained through cAT.

Problem

- No standardized pipelines exist for autonomous synapse detection that are useable for neuroscientists who do not have expert knowledge in image processing and machine learning.
- Current state of the art algorithms developed by researchers are not readily accessible or available for use.

Causes

- Neuroscientists are not Computer Scientists
 - They don't know what computational resources they need
 - They don't know how to use the computational resources that others build
- Computer Scientists are not Neuroscientists
 - They don't know what kind of capabilities neuroscientists want
 - They don't know how to structure their resources so neuroscientists can use them

Current Best Practices

- Manual annotation of synapses via EM, IF, and conjugated EM-AT
 - Why it's useful:
 - Allows for detection/visualization of individual synapses
 - Reliable methodology
 - Why it isn't useful:
 - Time-consuming and labor-intensive
 - Requires significant expertise in identifying synapses just by looking at them
- openneuro.org
 - Why it's useful:
 - One click pipeline deployment
 - Multiple datasets
 - Why it isn't useful:
 - Currently has very few implemented pipelines
 - Specifically, no synapse pipelines

What's Missing?

A team of Neuroscientists and Computer Scientists working together to bridge the gap between the two disciplines.

<u>Solution</u>

- An end to end cAT analysis pipeline
 - Interfaces with openneuro.org for deployment
 - Performs both supervised and unsupervised synapse detection
 - Reduce reliance on manual annotations
 - Performs unsupervised synapse clustering
 - Assists in identification of synapse types
- A partial set of annotations for the Collman 15 data set:
 - Allows both our team and other teams to train supervised detection algorithms
 - Can be uploaded to openneuro.org as an additional dataset

<u>Impact</u>

Neuroscientists

- Readily usable pipeline that enables the autonomous detection of synapses without the need for an extensive background in computer science
- Provides a benchmark for which future algorithms can be judged against
- Decreases reliance on manual annotations

Computer Scientists

- Open source & well documented code base make extensibility easy
- Developed openneuro.org interface code lowers barrier for other computer scientists who want to write and deploy pipelines

Both

Fosters a collaborative environment for <u>reproducible science!</u>