Dynamic texture modeling and synthesis using Multi-kernel Gaussian process

MAKSIM KOPTELOV

University of Jean Monnet Master 1 MLDM 2015/2016

Academic Supervisors:

Assoc. prof. Marianne CLAUSEL Assoc. prof. Rémi EMONET Prof. Olivier ALATA

DYNAMIC TEXTURES

What is a definition of texture?

For a single imageRealization from stationary stochastic process

What is a definition of texture?

- For a single imageRealization from stationary stochastic process
- For a sequence of images
 Stochastic process of interest defined over space and time.

Why is it important?

Applications in Computer vision:

- video surveillance
- object tracking
- etc.

Application in video processing fields:

- video indexing
- video animation
- etc.

What we are doing

Input – video t1 seconds

Output – new videos t2 seconds, t2 > 0

- Dynamic texture can be captured from a video
- It can be used then to synthesize new videos with necessary length of time

Existing dynamic textures modeling and synthesis methods:

- physics based costly, not universal
- sampling based memory demanding, mostly manual
- learning based methods more universal, automatic

CONTRIBUTION

Contribution

First mission – understand the model

Reimplementation of the method in Python – understand things:

- Gaussian process
- MK-GPDM
- sequence of steps of learning algorithm
- functions which must be optimized
- functions gradients derivation
- dimensionality analysis

Learning based methods

- high dimensionality curse of dimensionality
 dimensionality reduction process must be applied infers by Gaussian process
- most of dynamic textures are not linear learning algorithm cannot be linear more flexible model must be found based of Gaussian process
- big computational cost of optimization necessary to have a good performance first-order Markov model based on Gaussian process

Why Gaussian process? Not many approaches can be used for modeling and synthesis

GAUSSIAN PROCESS

Definition

Gaussian processes – infinite-dimensional generalization of multivariate normal distributions

Initially we have:

- \blacksquare d random variables ($X_{t1},...,X_{td}$) not equally spaced
- timeline t_i
- d = 100
- 100 time indexes t_i
- i₀ index when space is increased
- not regular sampling

Characterized by mean and covariance

- all the vector of interest are centered zero mean initially
- **a** assume a specific form for the covariance of any subsample $(X_{t1},...,X_{td})$

$$k(t_i, t_j) = cov(X_{t_i}, X_{t_j}) = \alpha \exp(-\frac{\|t_i - t_j\|^2}{2l^2})$$

Parameters:

a - scale parameter,

I - dispersion parameter

From one covariance matrix and one sequence of time $(t_1,...,t_k)$ possible Gaussian distribution $(X_{t1},...,X_{tk})$ with zero mean and covariance C

On the axis:

x_{ti} – values of random variables

t_i – time indexes

Trend of samples is not spoiled by not equally spaced time indexes and can be easily seen

Now assume that we are conditioning our stochastic process for example:

$$x_{t1} = 1$$
, $x_{t2} = 1$ with $t_1 = 40$, $t_2 = 80$

Compute new mean vector and covariance matrix (multivariate conditional density):

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}(\mathbf{f}_*|\mu, \Sigma), \ \mu = \mathbf{K}_{*,\mathbf{f}} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{f}, \ \Sigma = \mathbf{K}_{*,*} - \mathbf{K}_{*,\mathbf{f}} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f},*}$$

 f_* – Gaussian vector $x_* = x_{\{t \in T \setminus T'\}}$

f – Gaussian vector $x_f = x_{\{t \in T'\}}$

K – covariance matrices associated to two random variable sets $X_* = X_{\{t \in T \setminus T'\}}, X_f = X_{\{t \in T'\}}$

New set of realizations of multivariate conditional distribution:

Important property of Gaussian processes
Interpolation can be performed using this approach

GP with latent variables

- new class of models
- mappings from a latent space $X \in R^Q$ to an observed space $Y \in R^D$, Q << D
- through a set of parameters W
- one kernel function is used

$$K_{Y} = k_{Y}(x_{i}, x_{j}) = \sum_{l=1}^{M} w_{l}k_{l}(x_{i}, x_{j}) + w_{\delta}\delta_{x_{i}, x_{j}}$$

- X, Y multivariate Gaussian processes
- In a simplest case probabilistic version of PCA
- Iikelihood of the full data set is given by: $p(\mathbf{Y}|\mathbf{W},\beta) = \prod p(\mathbf{y}_n|\mathbf{W},\beta)$
- W can then be found through maximizing:

Dynamic system

In this work dynamical texture modeling consists of two steps:

- dimensionality reduction
- dynamic texture learning

They can be expressed as:

$$x_{t+1} = f(x_t, A) + n_{x,t}$$
 - dynamic model $y_t = g(x_t, B) + n_{y,t}$ - dimensionality reduction

 x_t - latent variable which affects dynamic behavior, $x_t \in R^Q$

 y_t - column vector unfolded from the frame at time t, $y_t \in R^D$, D – large, Q<<D $n_{x,t}$, $n_{y,t}$ - represent the noise

GP dynamic model

- latent variable model
- 2 mappings: from a latent space X to the observation space Y and dynamic behavior of latent variables
- 2 kernel functions
- X sequence of row-vectors of artificial frames, Y sequence of row-vectors of observed frames
- A K_Y parameters θ , B K_X kernel weights W

Y_i is a multivariate Gaussian process indexed by X_i expressed by likelihood

$$p(\mathbf{Y}|\mathbf{X},\boldsymbol{\theta}) = \prod_{t=1}^{N} p(y_t|x_t,\boldsymbol{\theta}) = \frac{1}{(2\pi)^{DN/2} |\mathbf{K}_Y|^{D/2}} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}_Y^{-1} \mathbf{Y} \mathbf{Y}^T\right)\right)$$

Multi-kernel GP dynamic model¹

The likelihood extends to the following equation:

$$p(\mathbf{X}|\lambda, \mathbf{W}) = p(x_1) \prod_{t=2}^{N} p(x_t|x_{t-1}, \lambda, \mathbf{W}) = p(x_1) \frac{1}{(2\pi)^{Q(N-1)/2} |\mathbf{K}_X|^{Q/2}} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}_X^{-1} \mathbf{X}_{2:N} \mathbf{X}_{2:N}^T\right)\right)$$

X – latent variable vector

Y – observed dynamic texture sequence vector

N – number of frames in original sample

Q – latent dimensionality

W – vector of weights of kernel functions $K = k_I$, $I \in [1,M]$

M – number of different kernel functions used

Reference [1]:

Multi-kernel GP dynamic model¹

To achieve nonlinear mapping from a latent space X to the observation space Y special squared exponential covariance function is used

$$K_Y = k_Y(x_i, x_j) = \theta_1 \exp(-\frac{\theta_2}{2}(x_i - x_j)(x_i - x_j)^T) + \theta_3 \delta_{x_i, x_j}$$

To map dynamic behavior of latent variables

- Latent dynamic behavior varies greatly among different types of dynamic textures
- Difficult to design the most suitable kernel for a dynamic texture empirically

Multi-kernel dynamic model for dynamic texture modeling is proposed

$$K_X = k_X(x_i, x_j) = \sum_{l=1}^{M} w_l k_l(x_i, x_j) + w_{\delta} \delta_{x_i, x_j}$$

Reference [1]:

Algorithm understanding

Maximum a posteriori estimation – main method. In Matlab specific library for optimization is used.

In general two main steps:

■ fix W and perform optimization with respect to X, θ and λ using SCG (Scaled conjugate gradient)

$$F(X,\theta,\lambda) = -lnP(X,\theta,\lambda|Y) = \frac{D}{2}ln|K_Y| + \frac{1}{2}tr(K_Y^{-1}YY^{-1}) + \frac{Q}{2}ln|K_X| + \frac{1}{2}tr(K_X^{-1}X_{2:N}X_{2:N}^T) + \sum_i \theta_i + \sum_{i,j} (\lambda_i)_j + C_i + C_i$$

W – weights vector

X – latent variable

 θ – vector of hyperparameters of kernel K_Y

 Λ – vector of parameters of kernel K_x

 \blacksquare fix obtained X, θ and λ and perform optimization with respect to W using gradient descent

$$F(W) = \frac{Q}{2} ln |K_X^{-1}| + \frac{1}{2} tr(K_X^{-1} X_{2:N} X_{2:N}^T) + \alpha ||W||_2$$

Functions are not convex - repeat these two main steps for I times, I - fixed

RESULTS

Matlab implementation properties

Implementation given in Matlab has problems:

- Inexplicable instability often crashes with SVD computation error
- Static result sometimes generated dynamic texture does not move at all
- Repetition of original sequences of frames

Attempt	Linear	RBF	Poly	RatQuad	MLP	Matern32
1	0.040278	0.682626	0	0	0	0.277096
3	0.067891	0.720069	0	0	0.212038	0
7	0.003638	0.368365	0	0.345235	0.069727	0.213032

Python implementation properties

Implementation in Python:

- GPLVM does not have specific kernel function to capture the dynamic behavior
- Temporal structure is included in covariance

The results are quite surprising:

- it is stable
- it is able to generate new sequences of dynamic textures without visible repetitions
- it takes a lot of time to perform optimization
- visible result is still not good due to some random noise

EXAMPLE

Examples

Matlab implementation:

- Input videos **sunshade.avi** and **straw.avi**
- Example of a good result (sunshade.avi)
- Example of a bad result (straw.avi)

Python implementation

Example of a good result (straw.avi)

PERSPECTIVES

Perspectives

- MK-GPLVM reimplementation in Python is not finished problems with gradients
- no numerical criteria for quality measuring implement an evaluation method
- GPLVM implementation in Python is done and provides quite interesting result improve the results
- try wavelets to reduce dimensionality of original input to decrease time for optimization

THANK YOU!