MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> January 12, 2024 Lecture 4 D3

Recap

- We discussed how number of pivots and solution set is related.
- Last class we discussed various matrix operations.
- We can add any two matrices of same size.
- We can multiply two matrices only if the number of columns in first matrix is same as the number of rows in the second matrix.
- Matrix multiplication is associative. It is distributive with matrix addition.
- Matrix multiplication is not commutative.

Matrix Multiplication: Examples

Examples:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (Identity)

- *AB* = ??
- size of *BA* is ___×___
- $BA = \begin{pmatrix} 4 & 10 & 7 \\ 4 & 18 & 10 \end{pmatrix}$,
- and IA = A = AI.

Matrix Multiplication: Examples

Examples:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(Permutation)
$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} e_2 & e_1 & e_3 \end{pmatrix}$$

Then
$$AP = (Ae_2 \ Ae_1 \ Ae_3) = (A_{*2} \ A_{*1} \ A_{*3})$$

Exercise: Find EA and PA.

Question: Can you obtain EA and PA directly from A? How?

Rekha Santhanam Lecture 4 D3

Transpose A^T of a Matrix A

Defn. The *i*-th row of A is the *i*-th column of A^T , the transpose of A and vice-versa. Hence if $A_{ii} = a$, then $(A^T)_{ii} = a$.

Example: If
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \end{pmatrix}$$
, then $A^T = \begin{pmatrix} 1 & 0 \\ 2 & -2 \\ 3 & 1 \end{pmatrix}$.

- If A is $m \times n$, then A^T is $n \times m$.
- If A is upper triangular, then A^T is lower triangular.

•
$$(A^T)^T = A$$
, $(A+B)^T = A^T + B^T$.

• $(AB)^T = B^T A^T$. Proof. Exercise.

Symmetric Matrix

Defn. If $A^T = A$, then A is called a *symmetric* matrix.

Note: A symmetric matrix is always $n \times n$.

Examples:
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are symmetric.

- If A, B are symmetric, then AB may NOT be symmetric. In the above case, $AB = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$.
- If A and B are symmetric, then A + B is symmetric. Why?
- If A is a $n \times n$ matrix, $A + A^T$ is symmetric. Why?
- For any $m \times n$ matrix B, BB^T and B^TB are symmetric. Why?

Exercise: If $A^T = -A$, we say that A is *skew-symmetric*. Verify if similar observations are true for skew-symmetric matrices.

Rekha Santhanam

Inverse of a Matrix

Defn. Given A of size $n \times n$, we say B is an inverse of A if AB = I = BA. If this happens, we say A is *invertible*.

- What would be the inverse of $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$?
- An inverse may not exist. Find an example. Hint: n = 1.
- An inverse of A, if it exists, has size $n \times n$.
- If the inverse of A exists, it is unique, and is denoted A^{-1} . Why unique?

Proof. Let B and C be inverses of A.

⇒
$$BA = I$$
 by definition of inverse.
⇒ $(BA)C = IC$ multiply both sides on the right by C .
⇒ $B(AC) = IC$ by associativity.
⇒ $BI = IC$ since C is an inverse of A .
⇒ $B = C$ by property of the identity matrix I .

Inverse of a Matrix

• If A and B are invertible, what about AB? AB is invertible, with inverse $(AB)^{-1} = B^{-1}A^{-1}$.

Proof. Exercise.

• If A, B are invertible, what about A + B? A + B may not be invertible.

Example: I + (-I) = (0).

• If A is invertible, what about A^T ? A^T is invertible with inverse $(A^T)^{-1} = (A^{-1})^T$.

Proof. Use $AA^{-1} = I$. Take transpose.

• If A is symmetric and invertible then, is A^{-1} symmetric?

Yes. Proof. Exercise!

• (Identity) $I^{-1} = I$.

Inverses and Linear Systems

- If A is invertible then the system Ax = b has a solution, for every constant vector b, namely $x = A^{-1}b$. Is this unique?
- Since x = 0 is always a solution of Ax = 0, if Ax = 0 has a non-zero solution, then A is not invertible by the last remark.
- ullet If A is invertible, then the Gaussian elimination of A produces n pivots.

Exercise:

- 1. A diagonal matrix *A* is invertible if and only if (Hint: When are the diagonal entries pivots?)
- 2. When is an upper triangular matrix invertible?
- Since $AB = (AB_{*1} \ AB_{*2} \cdots AB_{*n})$ and $I = (e_1 \ e_2 \cdots e_n)$, if $B = A^{-1}$, then B_{*j} is a solution of $Ax = e_j$ for all j.
- Strategy to find A^{-1} : Let A be an $n \times n$ invertible matrix. Solve $Ax = e_1$, $Ax = e_2$, ..., $Ax = e_n$.

Things to think about

- Complete the proofs left as exercise.
- Currently we can are unable to show that if AB = I then BA = I for square matrices A and B. Why so?
- Can you rephrase what we proved about transposes as a property of the transpose function from the set of $m \times n$ matrices to $n \times m$ matrices?