Mice Data Management System

Group 3

Siman Huang, Computer Science Department
Danlu Liu, Computer Science Department
Yang Liu, MU Informatics Institute
Peng Zhao, MU Informatics Institute

Outline

- Background
- Method
- Demo
- Future work

Introduction

- Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord
- Videofluoroscopic swallowing study (VFSS) method -> tons of videos

Teresa Lever, PhD

Assistant Professor,
Otolaryngology Department,
School of Medicine,
University of Missouri,
Columbia, MO
levert@health.missouri.edu
(573) 882-8174

Raw Data Collection

- Mouse behavior recorded under X-ray conditions.
- Behavior data were manually collected by reviewing videos(Time frame).

P	Positio	on	File #	Swallow onset frame	PTT end frame	Pharyngeal residue (Y/N)	2 nd Swallow onset frame	Tongue cycles per swallow	Jaw cycles per swallow	2 sec from swallow onset frame	Swallows per 2 seconds	Lick onset frame (jaw max open)	Lick end frame (30 frames)	# Tongue cycles	# Jaw cycles
	R	1													
	, R	2	Χ												
	· _ /)	Χ												
	R	1													
	, R	2	Х												
2	-	•	V												

Data Extraction

- Extract consented records and do some calculations in excel
- Raw data were calculated using excel and input into SPSS.

Ро	Position 1		Swallow onset frame	PTT end frame	Pharyngeal residue (Y/N)	2 nd Swallow onset frame	Tongue cycles per swallow	Jaw cycles per swallow	2 sec from swallow onset frame
	R1								
1	R2	X							
Ľ	С	X							
	R1								
2	R2	Χ							
	С	X							
	R1								
3	R2	Χ							
3	С	Χ							
	R1								
4	R2	Χ							
-	С	Х							
	R1								
_	R2	Χ							
5	С	Χ							

Thin Liquid	Swallow Delay	ISI	PTT	Tongue Cycles per swallow	Jaw Cycles per swallow	Swallow Rate	Lick Rate	Jaw Rate
POSITION 1	Time sec	Time sec	Time sec	# LICK Cycles	# JAW Cycles	# swallows in 2 seconds	# lick cycles/30 seconds	# jaw cycles/30 seconds
		0.00	0.00		0	0		0
		0.00	0.00		0	0		0
		0.00	0.00		0	0		0
		0.00	0.00		0	0		0
		0.00	0.00		0	0		0
Average		0.00	0.00	#DIV/0!	0.00	0.00	#DIV/0!	0.00

Objective

- •Design a robust database performing good management various types of data and future extension.
 - Raw time frame data
 - Raw video recordings
 - Consensus confirmation
 - Historical data of management
 - Extension availability.
- •Developed a user-friendly webpage for easily data browsing, analyzing and managing.

Mice Data Management

Mice Datamanagement

Home

Search

Data Collection

Video Upload

Data Management

Data Input

Data Analysis

Logout

Send Mail

Mice Data Management

This is the web for data search and collection

This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research.

Read more

Welcome to our WEBSITE!

Latest News

Our lab investigates dysphagia in amyotrophic lateral sclerosis (ALS), predominantly

Website development

- •LAMP
 - •Linux
 - Apache
 - •MySQL
 - •PHP
 - Javascript
 - •Json

Data Browsing

Data Analyzing

Data Management

URL: cs4380-group3.centralus.cloudapp.azure.com/lever/

Design

- There are 3 main components in our system:
 - Data collection (data input and upload)
 - Data management (data processing, consensus)
 - Data analytics (queries, study progress, visualizations)

ERD

Normalization

Our client's "paper-based" database has redundancy issues

Mouse ID #	Cage # To	est Date:	Study Nar	ne:	
DOB:	Sex:M	F	Chronological Age:years	months	days
Colony:C57SOD1	1-HCNSOD1-LCN	OPMD	Pax7-DTAOther:		
Fiducial marker implants:N	oYes				
Test item:					
Thin Liquid, administered by	y:spout		Food (dry, crunchy)	Other:	
Reviewer #1: Name:	Date:		Reviewer #2: Name:		Date:
Consensus Members:					Date:

FDs:

- Mouse ID -> Cage #,
- Mouse ID -> DOB,
- Mouse ID -> Sex,
- Mouse ID -> Colony type,
- Mouse ID, Test Date -> Age

Decompose into BCNF

MySQL Tables

Indexing

The reason for the slow search speed can be reduced to 'order by', 'group by', '>,<,=', 'like', 'is null' clause. Thus, we contains some indexes in our database to speed up.

 CREATE INDEX rate_id_index ON consensus (Jaw_rate,m_id);

Reason:

SELECT DISTINCT(m_id), count(*) FROM consensus WHERE Jaw_rate IS NULL GROUP BY (m_id);

Indexing

CREATE INDEX test_date_index ON consensus
 (test_date);
 Reason:
 SELECT COUNT(*)
 ,MONTH(test_date),YEAR(test_date) FROM
 consensus GROUP BY
 YEAR(test_date),MONTH(test_date) ORDER BY
 YEAR(test_date) ASC;

Indexing

 CREATE INDEX tdate dob index ON review record(test date, DOB); Reason: SELECT mouse id FROM review record WHERE abs(DATEDIFF(test_date, DOB))<105 AND abs(DATEDIFF(test_date, DOB))>75 AND mouse id NOT IN (SELECT mouse id FROM review record WHERE abs(DATEDIFF(test_date, DOB))<195 AND abs(DATEDIFF(test date, DOB))>165);

Query AND Analysis

In this part, I use some sql sentences contains:

- ABS, DATEDIFF, COUNT(*), AVG, ROUND, MONTH, YEAR, is NULL.
- NOT IN, LEFT JOIN, NATURAL JOIN, GROUP BY, ORDER BY, DISTINCT.
- Nested Query, 'AS' sentences

Query AND Analysis

- The weight of number of mice tested in different time periods
- Help their lab to control the tests frequency and times on different years and months, let them have a visual understanding

Analysis

Analysis

Query AND Analysis

- Number of mice in different gender and different geno type.
- Analyze gender, age, geno type's effects on the Jaw rate.

Optimization and Tuning

- Besides mouse, our client has other types of animal models, such as dog, pig, and horse
- Most of the experiments use mice and only a few are done on other animal models
- Querying the records for models other than mouse will be inefficient
- Non-human subject table (sub_id, category) is horizontally decomposed into sub-tables
- The sub-tables are masked by a view non_human_view

Security

- Discretionary access control mechanism is used
- Two types of account: supervisor and student

Name	Account Type	Privileges	Other Privileges
Teresa	Supervisor	All	Create User, Grant Option
Kate	Supervisor	All	
Peng	Student	Select, Insert in data collection tables	
Siman	Student	Select, Insert in data collection tables	

- Dr. Lever can keep control of everything
- Students are not allowed to create their own accounts

Security

- Students are allowed to insert on raw data tables
- Reviewer 2 should not have access to reviewer 1's record
 Students are not allowed to select on raw data tables (Pos1_record, Pos2_record, Bolus_record)
- Students are not allowed to delete or update on any tables to ensure data safety and research ethics
- Students are not allowed to select on "student", "supervisor", "observer" tables because these tables contain other group member's information and only supervisors can access these tables

Security

- Students can select on other remaining tables
- The following view can show the progress of the project while hiding details of each underlying tables

test_date A	Mouse# 🏺	DOB ϕ	Sex ∳	R1.P1	R1.P2 ≑	R1.BA ≑	R2.P1	R2.P2 	R2.BA ≑	Consensus
2011 01 10	11002	03-27	maio							120
2014-09-01	L124	2014- 04-17	Female							NO
2014-10-05	L124	2014- 04-17	Female	3	3	3				NO
2014-11-02	L124	2014- 04-17	Female	3	3	3	4	4	4	NO
2015-01-10	L124	2014- 04-17	Female	3	3	3	4	4	4	YES

Everyone can access this view to know the progress

Triggers

- Archive old information
- E.g., If a student graduates and leaves Dr. Lever's group, his/her information and privileges will be deleted and revoked. The student's information should be saved into a data archiving table
- Triggers can automatically save the deleted data into data archiving tables

DEMO

http://cs4380group3.centralus.cloudapp.azure.com/lever/index.php

Future work

- Add more features to our client's experiments setting.
- Data mining and pattern detection.
- Database extension on other species.