Lazy Learners

- The classification algorithms presented before are eager learners
 - Construct a model before receiving new tuples to classify
 - Learned models are ready and eager to classify previously unseen tuples

Lazy learners

- The learner waits till the last minute before doing any model construction
- In order to classify a given test tuple
 - Store training tuples
 - Wait for test tuples
 - Perform generalization based on similarity between test and the stored training tuples

Łazy vs Eager

Eager Learners	Lazy Learners
De lot of work on training data	Do less work on training data
 Do less work when test tuples are 	 Do more work when test tuples are
presented	presented

Basic k-Nearest Neighbor Classification

- Given training data $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$
- Define a distance metric between points in input space
 D(x₁,x₂)
 - E.g., Eucledian distance, Weighted Eucledian, Mahalanobis distance, TFIDF, etc.
- Training method:
 - Save the training examples
- At prediction time:
 - Find the k training examples $(x_1, y_1), ... (x_k, y_k)$ that are closest to the test example x given the distance $D(x_1, x_i)$
 - \sim Predict the most frequent class among those y_i 's.

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- 10 classify an unknown record:
 - Compute distance to other training records
 - Identify *k* nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

K-Nearest Neighbor Model

• Classification:

1 multinomial Chulli liash

 $\hat{y} = \text{most common class in set } \{y_1, ..., y_K\}$

• Regression:

$$y = \frac{1}{K} \sum_{k=1}^{K} y_{k}$$

CK headest

K-Nearest Neighbor Model: Weighted by Distance

Classification:

 $\hat{y} = \text{most common class in wieghted set}$

$$\{D(\mathbf{x},\mathbf{x}_1)y_1,...,D(\mathbf{x},\mathbf{x}_K)y_K\}$$

• Regression:

$$\hat{y} = \frac{\sum_{k=1}^{K} D(x, x_k) y_k}{\sum_{k=1}^{K} D(x, x_k)}$$

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Voronoi Diagram

Opcision Boundany

Decision surface formed by the training examples

- Each line segment is equidistance between points in opposite classes.
- The more points, the more complex the boundaries.

multinomial Christian.

The decision boundary implemented by 3NN

The boundary is always the perpendicular bisector of the line between two points (Voronoi tessellation)

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Determining the value of k

- In typical applications k is in units or tens rather than in hundreds or thousands
- Higher values of k provide smoothing that reduces the risk of overfitting due to noise in the training data
 - value of k can be chosen based on error rate measures
 - We should also avoid over-smoothing by choosing k=n, where n is the total number of tuples in the training data set

Low Ling

high vaniand

Determining the value of k

- Given training examples $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$
- Use N fold cross validation
 - Search over K = (1,2,3,...,Kmax). Choose search size Kmax based on compute constraints
 - Calculated the average error for each K:
 - Calculate predicted class for each training point

$$(\mathbf{x}_{i}, y_{i}), i = 1,...,N$$

(using all other points to build the model)

- Average over all training examples
- Pick K to minimize the cross validation error

Example

RID	Income(\$000's)	lot Size (000's sq.ft)	class: Owners =1 Non-Owners=2
1	60	18.4	1
2	85.5	16.8	1
3	64.8	21.6	1 mower
4	61.5	20.8	1
5	87	23.6	1
6	110.1	19.2	
7	108	17.6	1
8	82.8	22.4	1
9	69	20	1
10	93	20.8	1 We randomly divide
11	51	22	the data into
12	81	20	2 1116 data into
13	75	19.6	2
14	52.8	20.8	2 18 training cases
15	64.8	17.2	2
16	43.2	20.4	2 2 6 test cases:
17	84	17.6	6 test cases:
18	49.2	17.6	2 tuples 6,7,12,14,19, 20
19	59.4	16	2
20	66	18.4	2 Use training eases
21	47.4	16.4	2 Use training cases
22	33	18.8	2 to classify test cases
23	51	14	2 and compute error rates
24	63	14.8	2

Choosing k

- If we choose k=1 we will classify in a way that is very sensitive to the local characteristics of our data
- of data points and average out the variability due to the noise associated with data points
- If we choose k=18 we would simply predict the most frequent class in the data set in all cases
 - Very stable but completely ignores the information in the independent variables

k	1	3	5	7	9	11	13	18
Misclassification error %	33	33	33	33	33	17	17	50

→ We would choose k=11 (or possibly 13) in this case

Nearest neighbor Classification...

- * K-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rulehased systems
- Adv: No training time
- Disadv.
 - Testing time can be long, classifying unknown records are relatively expensive
 - Curse of Dimensionality: Can be easily fooled in high dimensional spaces
 - Dimensionality reduction techniques are often used

Ensemble Methods

- One of the eager methods => builds model over the training set
- Construct a set of classifiers from the training data
 - by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=1}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Examples of Ensemble Methods

How to generate an ensemble of classifiers?

Random Forests

Bagging: Bootstrap AGGregatING

- Bootstrap: data resampling
 - Generate multiple training sets
 - Resample the original training data
 - With replacement
 - Data sets have different "specious" patterns
- Sampling with replacement
 - Each sample has probability (1 1/n)ⁿ of being selected

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
 - Specious patterns will not correlate
- Underlying true pattern will be common to many
- Combine the classifiers: Label new test examples by a majority vote among classifiers

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - boosting round
- The final classifier is the weighted combination of the weak classifiers.

Boosting

mischessified worked world w

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

Example 4 is hard to classify

Its weight is increased, therefore it is mere likely to be chosen again in subsequent rounds

AdaBoost (Freund and Schapire, 1996)

- Initialize distribution over the training set $D_1(i) = 1/m$
- For t = 1, ..., T:
 - 1. Train Weak Learner using distribution D_t .
 - 2 Choose a weight (or confidence value) $\alpha_t \in \mathbf{R}$.
- Update the distribution over the training set:

$$D_{t+1}(i) = \frac{D_t(i)e^{-\alpha_t y_i h_t(x_i)}}{Z_t}$$
 (2)

Where Z_t is a normalization factor chosen so that D_{t+1} will be a distribution

• Final vote H(x) is a weighted sum:

$$H(x) = \operatorname{sign}(f(x)) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$
(3)

Example: AdaBoost

Base classifiers (weak learners):

$$C_1, C_2, ..., C_T \quad h_t : X \to \{-1, +1\}$$

• Error rate:

$$\varepsilon_{i} = \frac{1}{N} \sum_{j=1}^{N} w_{j} \delta(C_{i}(x_{j}) \neq y_{j})$$

$$\epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Example: AdaBoost

• Weight update:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$

where Z_i is the normalization factor

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))$$

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification: $C*(x) = \arg\max_{y} \sum_{j=1}^{T} \alpha_{j} \delta(C_{j}(x) = y)$ $H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$

Round 1

Round 2

Round 3

2D Example – Final hypothesis

See demo at: www.research.att.com/~yoav/adaboost