1. Table

Line number	PC	Instruction	%rdi	%rsi	%rax	%rsp	*%rsp	Description
14	4004fb	callq	3	9	0	0x7fffffffe820		Call top(x,y)
6	4004dd	add	3	9	0	0x7fffffffe818	400500	Entry of top
7	4004e0	mov	12	9	0	0x7fffffffe818	400500	Move 0 to lower half of rax
8	4004e5	callq	12	9	0	0x7fffffffe818	400500	Call leaf(x,y)
2	4004d6	mov	12	9	0	0x7fffffffe810	4004ea	Entry of leaf
3	4004d9	sub	12	9	12	0x7fffffffe810	4004ea	Subtract y from z
4	4004dc	retq	12	9	3	0x7fffffffe810	4004ea	Return 3 from leaf
9	4004ea	repz retq	12	9	3	0x7fffffffe818	400500	Return 3 from top
15	400500	repz retq	12	9	3	0x7fffffffe820		Return 3 from main

2. Q&A

- 1. 32 Bytes
- 2. Line 24 (sub \$0x20, %rsp) allocates and line 8b (add \$0x20, %rsp) frees the local stack
- 3. %rbx d (mov %rax, %rbx), %rbp e (mov %rax, %rbp)
- 4. rdi mov %rdi,0x18(%rsp), rsi mov %rsi,0x10(%rsp), rdx mov %rdx,0x8(%rsp)
- 5. All of the local variables cannot be stored in callee-saved registers because there are a limited number of these and some of these are reserved for function return and arguments. Therefore, some of the local variables cannot be stored in the callee-stored variables.

4. Table

	Array declaration	Element size	Total size	Start address	Element i
(a)	char r[4];	1 byte	4 bytes	x_r	X_r + i
(b)	char *s[4];	8 bytes	32 bytes	x_s	X_s + 8i
(c)	short t[5];	2 bytes	10 bytes	x_t	$X_t + 2i$
(d)	short *u[5];	8 bytes	40 bytes	x_u	X_u + 8i
(e)	short **v[3];	8 bytes	24 bytes	x_v	X_v + 8i
(f)	int w[4];	4 bytes	16 bytes	x_w	X_w + 4i
(g)	long *x[5];	8 bytes	40 bytes	x_x	X_x + 8i
(h)	double *y[6];	8 bytes	48 bytes	x_y	X_y + 8i

5. Table

	Expression	Type	Value	Assembly code
(a)	S[2]	Short	$M[x_s+4]$	movw 4(%rdx), %ax
(b)	S+2	Short *	x_s + 4	leaq 4(%rdx), %rax
(c)	&S[i]	Short *	$x_s + 2i$	leaq (%rdx, %rcx, 2), %rax
(d)	S[2*i+1]	Short	$M[x_s + 4i + 2]$	movw 2(%rdx, %rex, 4), %ax
(e)	S+i-2	Short *	$x_s + 2i - 4$	leaq -4(%rdx, %rcx, 2), %rax
(f)	*(S+i-2)	Short	$M[x_s + 2i - 4]$	movw -4(%rdx, %rcx, 2), %ax
(g)	S+(++i)+2		$x_s + 2*(i+1) + 4$ $x_s + 2i + 6$	leaq 6(%rdx, %rcx, 2), %rax
(h)	*(S+(i++)+2)	Short	$M[x_s + 2i + 6)$	movw 6(%rdx, %rex, 2), %ax
(i)	*S	Short	M[x_s]	movw %rdx, %ax
(j)	*(S)	Short	M[x_s]	movw %rdx, %ax