Tema 13 Introducción al caos Sistemas Dinámicos Discretos y Continuos

Dra. Neus Garrido Sàez

Máster en Ingeniería Matemática y Computación Escuela Superior en Ingeniería y Tecnología

Contenido

- Introducción
- 2 Análisis gráfico de sistemas caóticos
 - Diagrama orbital
 - La familia cuadrática
- Formulación matemática de sistemas caóticos
 - Definiciones previas
 - Sistemas caóticos
 - Ejemplos de sistemas caóticos

1

Introducción

Introducción

Sistemas caóticos

- Pueden ser tanto discretos como continuos
- "Impredecible o desordenado"

Objetivos

- Identificar las características de un sistema caótico
- Describir comportamientos anómalos o no esperados
- Relación entre el diagrama orbital y los sistemas caóticos

Conceptos previos

■ Diagramas de bifurcación

- Los puntos críticos x^C de un sistema dinámico $x_{n+1} = f(x_n)$ son los puntos que satisfacen $f'(x^C) = 0$
 - $lacksquare x^C$ es un punto crítico degenerado cuando $f''(x^C)=0$
 - x^C es un punto crítico no degenerado cuando $f''(x^C) \neq 0$

2

Análisis gráfico de sistemas caóticos

Contenidos

- Introducción
- 2 Análisis gráfico de sistemas caóticos
 - Diagrama orbital
 - La familia cuadrática
- 3 Formulación matemática de sistemas caóticos

Análisis gráfico de sistemas caóticos >> Diagrama orbital

Diagrama orbital

Diagrama de bifurcación en el cual la semilla es uno de los puntos críticos del sistema

- Eje de abscisas: rango de valores del parámetro
- Eje de ordenadas: últimas iteraciones de la órbita del punto crítico para cada valor del parámetro (de la 501 a la 700)

Figura: Diagrama orbital de $f_{\lambda}(x) = x^2 + \lambda$

Contenidos

- Introducción
- 2 Análisis gráfico de sistemas caóticos
 - Diagrama orbital
 - La familia cuadrática
- Formulación matemática de sistemas caóticos

-1.15

-1.25 --1.35 -

-1.45

-1.15

-1.25 --1.35 -

-1.45

- Ventanas de periodo 3 (marcas azules en las regiones verticales blancas)
- A partir de estas ventanas, hay bifurcaciones en las que el periodo se duplica
- La estructura inicial se va repitiendo ⇒ autosemejanza

$$x_0 = x^C = 0$$

$$\lambda = \frac{1}{4}$$

- Punto de silla
- Gráfica tangente a y = x

$$x_0 = x^C = 0$$

$$\lambda = -\frac{3}{4}$$

- Punto de bifurcación
- El periodo se duplica

$$x_0 = x^C = 0$$

- $\lambda = -1$
- El punto crítico tiene periodo 2

$$x_0 = x^C = 0$$

- $\lambda = -2$
- Comportamiento caótico

3

Formulación matemática de sistemas caóticos

Contenidos

- Introducción
- 2 Análisis gráfico de sistemas caóticos
- 3 Formulación matemática de sistemas caóticos
 - Definiciones previas
 - Sistemas caóticos
 - Ejemplos de sistemas caóticos

Sensible a las condiciones iniciales

Un sistema dinámico F es sensible a las condiciones iniciales si existe un $\delta>0$ tal que para todo $x\in F$ y todo $\varepsilon>0$, existe un $y\in F$ tal que la distancia entre x e y es menor que ε , y para $n\in\mathbb{N}$, la distancia entre $F^n(x)$ y $F^n(y)$ es menor que δ .

Para cada x existen puntos próximos cuyas órbitas se alejan eventualmente al menos una cantidad δ . No importa ni la semilla ni la región entorno a x.

Ejemplo 1. La función $f(x) = \cos(x)$ no es sensible a las condiciones iniciales

- Semilla: $x_0 = 0.01$
- La órbita de $f(x) = \cos(x)$ siempre tiende al valor 0.739 independientemente de las condiciones iniciales

Ejemplo 2. La función $f(x) = \sqrt{x}$ es sensible a las condiciones iniciales en x=0

- Semilla: $x_0 = 0.01$
- Partiendo de un punto muy próximo al punto fijo $x^*=0$, la órbita tiende al otro punto fijo $x^*=1$.

Transitividad

Un sistema dinámico F es transitivo si para dos subconjuntos $U,V\in F$, existe un $n\in\mathbb{N}$ tal que $F^n(U)\cap V\neq\emptyset$.

Dados dos puntos, se puede encontrar una órbita que arbitrariamente permanece cerca de ambos puntos

Densidad

Sea X un conjunto e Y un subconjunto de X. Decimos que Y es denso en X si para cada $x \in X$ existe un punto $y \in Y$ arbitrariamente próximo a x.

Ejemplo 3.

- lacksquare $\Bbb O$ es denso en $\Bbb R$
- \blacksquare $\mathbb Q$ es denso en $\mathbb Q$
- \blacksquare \mathbb{Z} no es denso en \mathbb{R}

Contenidos

- Introducción
- 2 Análisis gráfico de sistemas caóticos
- 3 Formulación matemática de sistemas caóticos
 - Definiciones previas
 - Sistemas caóticos
 - Ejemplos de sistemas caóticos

Sistemas caóticos

Definición

Un sistema dinámico F es caótico si:

- 1. Es sensible a las condiciones iniciales
- 2. Es topológicamente transitivo
- 3. Sus puntos periódicos son densos en F

Definición (v2)

Un sistema dinámico caótico es:

- 1. Parcialmente impredecible
- 2. Parcialmente irreducible
- 3. Regular

Sistemas caóticos

Un sistema es caótico si y solo si para cualesqueira U, V abiertos existe una órbita periódica que visita ambos.

Contenidos

- Introducción
- 2 Análisis gráfico de sistemas caóticos
- 3 Formulación matemática de sistemas caóticos
 - Definiciones previas
 - Sistemas caóticos
 - Ejemplos de sistemas caóticos

Operador shift

Operador shift

 $S:[0,1]\longrightarrow [0,1]$

$$S(x) = \begin{cases} 2x, & 0 \le x < \frac{1}{2} \\ 2x - 1, & \frac{1}{2} \le x \le 1 \end{cases}$$

Función shift

Órbitas periódicas de la función shift

Dada cualquier semilla, la órbita va a tener un comportamiento caótico

La tienda de campaña

Función tienda de campaña

 $T:[0,1]\longrightarrow [0,1]$

$$T(x) = \begin{cases} 2x, & 0 \le x < \frac{1}{2} \\ 2(1-x), & \frac{1}{2} \le x < 1 \end{cases}$$

Al iterar sobre diferentes semillas siempre se obtienen órbitas periódicas

Efecto mariposa

https://www.youtube.com/watch?v=XZ7Ly7dDCzo

"El aleteo de una mariposa en Brasil puede producir un tornado en Texas"

Edward Norton Lorenz (1917-2008)

El sistema de Lorenz

Modeliza el fenómeno de convección en forma de circulación circular:

- $x \Rightarrow$ intensidad del movimiento de convección
- $y \Rightarrow$ variación horizontal de temperaturas
- $z \Rightarrow$ variación vertical de temperaturas
- $\sigma \equiv \text{número de Prandtl}$
- $\rho \equiv \text{número de Rayleigh}$
- $m{\beta} \equiv {\sf tama\~no} \; {\sf del} \; {\sf sistema} \; (\sigma > eta + 1)$

El sistema de Lorenz

$$\left\{ \begin{array}{lcl} x' & = & \sigma(y-x) \\ y' & = & \rho x - y - xz \\ z' & = & xy - \beta z \end{array} \right.$$

Para finalizar...

■ Lección magistral: Sistema logístico ⇒ Campus virtual

...Y por supuesto:

TEST DE APRENDIZAJE!!

