UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2022/2 Prova da área IIB

1 - 4	5	6	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro. Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$		
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F} \{f'(t)\} = iw\mathcal{F} \{f(t)\}$		
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$		
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$		
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$		
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$		
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$		
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$		
		$(F * G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$		
8.	Conjugação	$\overline{F(w)} = F(-w)$		
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$		
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$		
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a } F\left(\frac{w}{a}\right), \qquad a \neq 0$		
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$		
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_{0}^{T} f(t) ^{2} dt = \sum_{n=-\infty}^{\infty} C_{n} ^{2}$		

	Forma trigonométrica	Forma exponencial	
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(w_n t) + b_n \sin(w_n t)] \text{ onde } w_n = \frac{2\pi n}{T}$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$	
	T é o período de $f(t)$, $a_0=\frac{2}{T}\int_0^T f(t)dt=\frac{2}{T}\int_{-T/2}^{T/2} f(t)dt,$	onde $C_n = \frac{a_n - ib_n}{2}$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$		
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$		
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real,}$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw$	
	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	$F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$	

Tabela de integrais definidas:

1a	abela de integrais definidas:	
1.	$\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3.	$\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5.	$\int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases}$	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0 \\ 0, & m = 0 \\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7.	$\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9.	$\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
		$= \frac{m(a^2 + m^2 - n^2)}{(a^2 + (m-n)^2)(a^2 + (m+n)^2)} (a > 0)$
11.	$\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13.	$\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15.	$\int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases}$	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $
17.	$\int_0^\infty x^2 e^{-ax} \sin(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19.	$\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21.	$\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty x e^{-a^2 x^2} \operatorname{sen}(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó ‡	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais:

Integrals:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

Questão 1.(2.0pt) Considerando a expan			
coluna sua representação trigonométrica e	e na segunda sua r	representação exponencial.	Aqui $i^2 = -1$.

 $(\) \ \sec(2t) - \sec(6t) \\ (\) \ 3 \sec(2t) - \sec(6t) \\ (\) \ 3 \sec(2t) - \sec(6t) \\ (\) \ 3 \sec(2t) + \sec(6t) \\ (\) \ 2 \sec(2t) - \sec(4t) + \sec(6t) \\ (\) \ 4 \sum_{n=1}^{\infty} \frac{\sin(nt)}{1+4/n} \\ (\) \ nenhuma das anteriores$ $(\) \ 2i \sum_{n=-\infty}^{\infty} \frac{(-1)^n n e^{nit}}{n+4} \\ (\) \ -\frac{i}{2} e^{-6it} + \frac{3i}{2} e^{-2it} - \frac{3i}{2} e^{2it} + \frac{i}{2} e^{6it} \\ (\) \ -\frac{i}{2} e^{-6it} + \frac{i}{2} e^{-2it} - \frac{i}{2} e^{2it} + \frac{i}{2} e^{6it} \\ (\) \ \frac{i}{2} e^{-6it} - \frac{i}{2} e^{-4it} + i e^{-2it} - i e^{2it} + \frac{i}{2} e^{4it} - \frac{i}{2} e^{6it} \\ (\) \ nenhuma das anteriores$

Questão 2. (1.0pt) Considere a função periódica $f(t) = \cos(2t) + \cos(3t) + \cos(4t)$. Marque na primeira coluna seu período fundamental e na segunda sua frequência angular fundamental.

() $\frac{\pi}{12}$ () $\frac{\pi}{12}$ () $\frac{\pi}{12}$

() nenhuma das anteriores

Questão 3. (2.0pt) Considere $f(t) = e^{-t}u(t)$ e g(t) = f(t) - f(-t), onde $u(\cdot)$ é a função degrau unitário. Assinale na primeira coluna a transformada de Fourier $\mathcal{F}(f)$, e na segunda $\mathcal{F}(g)$. Aqui $i^2 = -1$.

() $\frac{2+2iw}{1+w^2}$ () $\frac{-2iw}{1+w^2}$

() nenhuma das anteriores

Questão 4.(1.0pt) Considere os diagramas de espectro de módulo e de fase da série de Fourier de uma função f(t) de período T=2.

Marque, na primeira coluna, o valor de $\int_0^T f(t)dt$; na segunda, o valor de $\int_0^T |f(t)|^2 dt$.

- $\begin{array}{c} 70 \\ (\) -\frac{1}{4} \\ (\) -\frac{1}{2} \\ (\) -1 \\ \end{array}$ $\begin{array}{c} (\) \frac{1}{4} \\ (\) \frac{1}{16} \\ (\) \frac{27}{16} \\ \end{array}$
- () $\frac{1}{4}$ () $\frac{2}{4}$
- () nenhuma das anteriores

() nenhuma das anteriores

Questões abertas (discursivas): entregue desenvolvimento em folhas avulsas, com seu nome.

Questão 5A.(1.0pt) Obtenha a expressão de f(t) da Questão 4. (deve conter apenas constante, senos e cossenos)

Questão 5B.(1.0pt) Obtenha a transformada de Fourier $H(\cdot)$ da função h(x) definida abaixo.

Questão 6 Considere o problema

$$\left\{\begin{array}{l} u_t+2u_x=-u, \text{ para todos } x\in\mathbb{R}, t>0\\ u(x,0)=f(x), x\in\mathbb{R} \end{array}\right.$$

 $\mathbf{6A.}(0.8\mathrm{pt})$ Obtenha a transformada de Fourier $F(\cdot)$ de $f(x)=e^{-|x|}, x\in\mathbb{R}$

6B.(1.2pt) Encontre a solução u(x,t) (e a respectiva transformada de Fourier $U(\cdot,t)$) do problema do enunciado para f(x) conforme definida em **6A**.

Bom Trabalho.