

Physik

1. Einführung

Physikalische Größen und ihre Messung

Prof. Dr.-Ing. Tatsiana Malechka

Physikalische Größen und ihre Messung

- 1. Maßeinheiten
- 2. Der Umgang mit Maßzahlen
- 3. Messung beendet was nun?

Physikalische Größen und ihre Messung

beschreiben

- Eigenschaften
- Zustände,
- Vorgänge physikalischen Objekte/Systeme
- messbar → Quantitativer Vergleich mit einem Normal/ einer Referenz

$$G = \{G\} \cdot [G]$$

Masse eines Holzklotzes

$$m = 602 \text{ g}$$

Standard-Gewichte

Länge eines Tischs

Lineal l = 74, 9 cm = 29, 5 inch

FH MÜNSTER University of Applied Sciences

SI-Einheiten

7 Basisgrößen sind die Grundlage des Internationalen Einheitssystems **SI-Basiseinheiten** (SI = Systeme International d'unites)

Größe	Einheitenname	Zeichen	Naturkonstante(n); Messinstrument
Länge	Meter	m	Schwingungsfrquenz eines bestimmten Strahlungsübergangs im Cs-Atom $f_{cs} pprox 9 \cdot 10^9 \; m s^{-1}$
Zeit	Sekunde	S	Lichtgeschwindigkeit (im Vakuum) $c pprox 3 \cdot 10^8 \; \mathrm{m \cdot s^{-1}}$
Masse	Kilogramm	kg	Planck-Konstante $E=hf$ $h \approx 6, 6 \cdot 10^{-34} \ kg \cdot m^2 \cdot s^{-1}$
Temperatur	Kelvin	K	Bolzmann-Konstante: $k \approx 1,38 \cdot 10^{-23}~J \cdot K^{-1}$
Stoffmenge	Mol	mol	Avogadro-Zahl: $N_A \approx 6 \cdot 10^{23} \ mol^{-1}$
Stromstärke	Ampere	Α	Elementarladung: $e \approx 1, 6 \cdot 10^{-16} \ A \cdot s$
Lichtstärke	Candela	cd	Photometrisches Strahlungsäquivalent

Abgeleitete Einheiten: Geschwindigkeit wird in $\frac{m}{s}$ angegeben.

SI-Normale: Atomuhr

Maßeinheit der **Zeit** t ist die Sekunde (s)

• 1 s = 9.192.631.770 Schwingungen des Lichts das ein Cäsium-133 Atom (Atomuhr) aussendet

Gemessene Größe	Dauer in Sekunden
Lebensdauer eines Protons (vorhergesagt)	1 · 10 ³⁹
Alter des Universums	5 · 10 ¹⁷
Alter der Pyramide des Cheops	1 · 10 ¹¹
Menschliche Lebenserwartungen	2 · 10 ⁹
Dauer eines Tages	9 · 10 ⁴
Zeit zwischen zwei Herzschlägen beim Menschen	8·10 ⁻¹
Lebensdauer des Myons	2·10 ⁻⁶
Kürzester im Labor erzeugte Lichtpuls	6·10 ⁻¹⁵
Lebensdauer des instabilsten Teilchens	1·10 ⁻²³
Planck-Zeit	1.10-43

FH MÜNSTER
University of Applied Sciences

SI-Normale: Länge

Maßeinheit der **Länge** ist das Meter (m)

1 m ist die Länge der Strecke, die Licht im Vakuum während der Dauer von 1/299.792.458
 Sekunden durchläuft

Gemessene Größe	Länge in Metern
Entfernung der ältesten Galaxien	2 · 10 ²⁶
Entfernung der Andromeda-Galaxien	2 · 10 ²²
Entfernung des nächstgelegenen Sterns	$4 \cdot 10^{16}$
Entfernung von Pluto	6 · 10 ¹²
Erdradius	6 · 10 ⁶
Höhe des Mount Everests	9.10^{3}
Radius eines Wasserstoffatoms	5·10 ⁻¹¹
Radius eines Protons	1·10 ⁻¹⁵

Seit 1960 hat Urmeter keine Funktion

Diebe stehlen Urmeter aus Museumsvitrine

Ø 60 nm...140 nm

SI-Einheiten: Masse

Maßeinheit der Masse ist das Kilogramm (kg)

SI-Normal für die Masse ist ein Kugel aus hochreinem Silizium (1 kg = 2,15x10²⁵ Silizium 28-Atome)

• Das Urkilogramm geht in Rente

Objekt	Masse in Kilogramm
Bekanntes Universum	1 · 10 ⁵³
Unsere Galaxis	2 · 10 ⁴¹
Sonne	$2 \cdot 10^{30}$
Mond	$7 \cdot 10^{22}$
Elefant	5 · 10 ³
Weintraube	3·10 ⁻³
Staubkorn	7·10 ⁻¹⁰
Penizillinmolekül	5·10 ⁻¹⁷
Uranatom	4·10 ⁻²⁵
Proton	2·10-27
Elektron	9·10 ⁻³¹

SI-Einheiten: Masse

12,0 g Kohlenstoff enthalten $6,02 \cdot 10^{23}$ Kohlenstoffatome (dies ist die Avogadro-Konstante n_A). Wie viele Jahre würden Sie benötigen, um die Atome in 1,00 g Kohlenstoff zu zählen, wenn es 1 s dauert, ein Atom zu zählen?

FH MÜNSTER University of Applied Sciences

Präfixe für Einheiten

Faktor	Präfix	Zeichen
10 ³⁰	Quenna	Q
10 ²⁷	Ronna R	
10 ²⁴	Yotta	Υ
10 ²¹	Zetta	Z
10 ¹⁸	Exa	Е
10 ¹⁵	Peta	Р
10 ¹²	Tera	Т
10 ⁹	Giga	G
10 ⁶	Mega	M
10 ³	Kilo	k
10 ²	Hekto	h
10¹	Deka	da

Faktor	Präfix	Zeichen
10-30	Quecto	q
10 ⁻²⁷	Ronto	r
10-24	Yocto	У
10 ⁻²¹	Zepto	Z
10-18	Atto	а
10 ⁻¹⁵	Femto	f
10 ⁻¹²	Piko	р
10 ⁻⁹	Nano	n
10 ⁻⁶	Mikro	μ
10 ⁻³	Milli	m
10 ⁻²	Zenti	С
10 ⁻¹	Dezi	d

neue Präfixe seit Nov. 2022

Einige abgeleitete Einheiten

Größe	Definition	Einheitenname	Zeichen
Winkel	$\varphi = \frac{\text{Bogenmass}}{\text{Radius}}$	Radiant	$\frac{m}{m}$ = rad
Kraft	$F = \text{Masse} \cdot \text{Beschleunigung}$	Newton	$\frac{kg \cdot m}{s^2} = N$
Energie, Arbeit	$W = \text{Kraft} \cdot \text{Weg}$	Joule	$\frac{kg \cdot m^2}{s^2} = J$
Leistung	$P = \frac{\text{Arbeit}}{\text{Zeitintervall}}$	Watt	$\frac{kg \cdot m^2}{s^3} = W$
Ladung	$Q = \operatorname{Strom} \cdot \operatorname{Zeit}$	Coulomb	$A \cdot s = C$
Spannung	$U = \frac{\text{Arbeit}}{\text{Ladung}}$		$\frac{\mathrm{kg} \cdot \mathrm{m}^2}{\mathrm{A} \cdot \mathrm{s}^3} = \frac{\mathrm{J}}{\mathrm{C}} = \mathrm{V}$
Widerstand	$R = \frac{\text{Spannung}}{}$		
Magnetischer Fluss	$\Phi = \text{ind. Spannung} \cdot \text{Zeit}$	Weber	$V \cdot s = Wb$
Magn. Induktion	$B = \frac{\text{Spannung}}{\text{Fläche}}$	Tesla	$\frac{Wb}{m^2} = T$

Kohärenz der SI-Einheiten

 Kohärenz der SI-Einheiten: Alle anderen Einheiten können aus den Basiseinheiten abgeleitet werden.

$$G = A^{\alpha}B^{\beta}$$

 Vorteil der SI-Einheiten: Verwendet man nur SI-Einheiten, so kürzen sich Einheiten und Vorsilben passend weg.

FH MÜNSTER University of Applied Sciences

Dimensionsanalyse

- Pendellänge, l
- Masse, *m*
- Auslenkwinkel, θ
- Erdbeschleunigung, g

Das Modell legt nahe:

$$T = T(l, m, \theta, \ldots)$$

Das Experiment zeigt:

$$T \neq T(m, \theta)$$
 für kleine θ

$$T = T(l, g)$$

Der Umgang mit Maßzahlen

Wissenschaftliche Schreibweise

$$\{G\} = a \cdot 10^{b^{\prime}}$$
 Exponent

Mantisse, $1 \le a < 10$

• Signifikante Stellen → wir geben so viele Stellen an, wie zuverlässig bekannt ist Bestimmung der Durchmesser einer Kugel mit Messgeräten verschiedener Präzision

$$D=2 cm$$

$$D = 1.8 \ cm$$

$$D = 1,80 \ cm$$

Der Umgang mit Maßzahlen

Eine berechnete (abgeleitete) Größe ist höchstens so präzise bestimmt wie die Eingangsgrößen.

- Exakte Werte haben eine unbegrenzte Anzahl an signifikanten Stellen.
- Führende Nullen zählen nicht als signifikante Stellen.
- Ob nachlaufende Nullen signifikant sind, muss fallweise entschieden werden. (wiss. Notation!)
- Zahlen in wissenschaftlicher Notation haben so viele signifikante Stellen wie ihre Mantisse.

```
2,50 → 3 signifikante Stellen
2,503 → 4 signifikante Stellen
0,00130 → 3 signifikante Stellen
2300,0 → 5 signifikante Stellen
2300 → unbestimmt
```

Der Umgang mit Maßzahlen

Faustregel

Die Anzahl der signifikanten Stellen im Ergebnis einer **Multiplikation oder Division** ist nie größer als die der Größe mit den wenigsten *signifikanten Stellen*.

$$12,09 \cdot 1,69 = 20,4321 = 20,4$$

Faustregel

Die Anzahl der Dezimalstellen bei der Addition oder Subtraktion mehrerer Größen entspricht der des Terms mit der kleinsten Anzahl von Dezimalstellen (Nachkommastellen).

$$1,21342 - 1,040 = 0,17342 = 0,173$$

Signifikante Stellen

Berechnen Sie unter Verwendung der zutreffenden Faustregel für die signifikanten Stellen:

b.
$$1,4 + 2,53 =$$

c.
$$2,456 - 2,453 =$$

d.
$$2,34 \cdot 10^2 + 4,93 =$$

bislang: Messergebnis = bester Schätzwert

 $l = 74,9 \ cm$

 implizite Angabe der Messunsicherheit (möglicher Wertebereich, Digitalisierung)

$$74,85 \ cm \le l < 74,95 \ cm$$

• besser: Messergebnis = bester Schätzwert ± Unsicherheit

$$l = (74, 9 \pm 0, 1) \ cm$$

$$G = \bar{g} \pm u$$

beim Ablesen von Skalen i.d.R. ein Skalenteil

FH MÜNSTER University of Applied Sciences

Messabweichungen

Jede Messung ist fehlerbehaftet!

- Systematische Messfehler: alle Messwerte einseitig "verfälscht": systematisch zu groß oder zu klein (z.B. falsche Kalibrierung, Einflüsse der Umgebung/ Apparatur, Parallaxe)
 - → nicht durch wiederholtes Messen zu beseitigen
 - → durch sorgfältiges Experimentieren möglichst vermeiden
- Statistische Messfehler: zufällig verteilte Schwankungen durch viele kleine, unkorrelierte und unkontrollierte Störeinflüsse (z.B. Änderungen von Temperatur oder Luftdruck)
 → durch wiederholtes Messen quantifizierbar

Auswertung einer Messreihe

n Messwerte: $x_1, x_2, ..., x_n$ bzw. x_i mit i = 1, ..., n

Histogramm

Messwerte als Stichprobe:

Wir nutzen die Kenngrößen der bekannten Verteilung der Messwerte um die unbekannten Parameter der Dichtefunktion abzuschätzen, den "wahren" Wert μ und die Standardabweichung des Messverfahrens σ .

Kenngrößen von Messreihen

Mittelwert

bester Schätzwert des unbekannten wahren Werts

Standardabweichung

der einzelnen Messwerte vom Mittelwert; ein Maß für die Güte des Messverfahrens;

$$\bar{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Unsicherheit des Mittelwerts

Standardabweichung des Mittelwerts; ein Maß für die Güte des besten Schätzwerts

$$u = \frac{\sigma}{\sqrt{n}}$$

Messwerte sind (oft) normalverteilt.

Falls die zufälligen Messabweichungen als Summe der Beiträge vieler kleiner, unkorrelierter Störeinflüsse aufgefasst werden können, von denen keine dominiert, dann folgen die Messwerte einer Normalverteilung (Gauß)

Im Intervall $\langle h \rangle \pm \sigma$ liegen 68,3% aller Werte Im Intervall $\langle h \rangle \pm 2\sigma$ liegen 95,5% aller Werte Im Intervall $\langle h \rangle \pm 3\sigma$ liegen 99,7% aller Werte

Kenngrößen von Messreihen

Sie beobachten, wie das Pendel einer Pendeluhr hin und her schwingt und stoppen mit Ihrer Digitalarmbanduhr die Zeit, die das Pendel benötigt, um von einer Seite auf die andere und wieder zurück zu schwingen. Nach zehn Messungen der Schwingungsdauer erhalten Sie folgende Werte: $T_1 = 2,05$ s, $T_2 = 1,99$ s, $T_3 = 2,06$ s, $T_4 = 1,97$ s, $T_5 = 2,01$ s , $T_6 = 2,00$ s , $T_7 = 2,03$ s , $T_8 = 1,97$ s, $T_9 = 2,02$ s, $T_{10} = 1,96$ s

Wie groß ist die mittlere Schwingungsdauer $\langle T \rangle$, die Standardabweichung σ_T und die Standardabweichung des Mittelwerts ΔT ?

Unsicherheiten bei indirekter Messung

$$\bar{d} \pm \Delta d = (1, 80 \pm 0, 01) \ cm$$

$$V = \frac{4}{3}\pi r^3 = \frac{1}{6}\pi d^3 = V(d)$$

$$\Delta V - ?$$

Fortpflanzung von Unsicherheiten nach Gauß

Verallgemeinerung: gesuchte Größe R=f(x,y), hängt von mehreren Messgrößen $x\pm u_x$ und $y\pm u_y$ ab; Bsp.: Fadenpendel $T=T(l,\theta)$

$$u_R^2 = \left(\frac{\partial f}{\partial x}\right)^2 u_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 u_y^2$$

 $\frac{\partial f}{\partial x}$ heißt "partielle" Ableitung von f nach $x \to nimmt$ an, f hänge nur von x ab und y sei konstant.

Bsp.: Dichte der Kugel $\rho = \frac{m}{V}$

Volumen: $V = (3,05 \pm 0,05) \ cm^3$

Wiegen \rightarrow Masse: $m = (24 \pm 1) \ g$

Dichte: $\rho = \bar{\rho} \pm u_{\rho} =$

Physik News

100.000-mal präziser als eine Atomuhr: Wie funktionieren optische Uhren?

https://www.youtube.com/watch?v=gA4QTal9X94 https://www.weltderphysik.de/gebiet/technik/news/2021/optischeatomuhren-im-vergleich/

Immer größer, immer kleiner – die Welt bekommt neue Einheiten-Vorsätze

https://www.ptb.de/cms/presseaktuelles/journalisten/nachrichten-presseinformationen/presseinfo.html?tx_news_pi1%5Bnews%5D =12151&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bday%5D=22&tx_news_pi1%5Bmonth%5D=11&tx_news_pi1%5Byear%5D=2022&cHash=73b33f805059daf1225376039ca60e02

Vielen Dank für Ihre Aufmerksamkeit!

Prof. Dr.-Ing. Tatsiana Malechka Labor Autonome Systeme

