11/10/2006

Random Normal Numbers, Tolerances and Component Values

T =	-0.02	-0.01	-0.02
	0.02	0.02	0.01
Nominal	resistor va	alues R2	R3
	1000	100	10
7. =	or R1	For R2	For R3
-0.	.46497		0.72828
			-1.0226
			-1.3813
	.31354 1.9574	1.5532 0.50454	1.8645
-	1.93/4	0.30434	1.0045
Random resistor values per Z and T			
	R1	R2	R3
	996.9	100.69	9.9864
1	1014.1	99.821	9.8989
1006.9			9.8809
1	1002.1		9.9854
	1013	100.75	10.043
»			


```
% Generating Gaussian random numbers with MATLAB
% File: c:\M files\bookupdate\genorm.m
% updated 11/\overline{10/06}
% Added color to heavier plot traces;
\ensuremath{\,\%\,} Added legend to plot and explanatory headers
 % Consistent symbols used, e.g., Nc, Nk, etc.
% Deleted output file output.txt
% updated 11/10/06
clear; clc;
Nk=5; % number random samples
Nc=3; % number of components (resistors)
\mbox{\ensuremath{\$}} Resistor (component) values:
R1=1000; R2=100; R3=10;
% Tolerance array T for R1, R2, & R3:
\ensuremath{\,^{\circ}} R2 and R3 have asymmetric tolerances
T=[-0.02 -0.01 -0.02; 0.02 0.02 0.01]
disp(' ');
disp('Nominal resistor values');
disp('
                                                                                                                                                                                 R3')
                                                         R1
                                                                                                         R2
disp([R1 R2 R3]);
disp(' ')
% Generate random Normal (Gaussian) numbers Z with
% 0 mean and standard deviation (sigma) of 1.
for k=1:Nk
             for w=1:Nc
                          Z(k,w)=randn; % MATLAB's Gaussian RNG
             end
end
% output Z to screen. (Z will be different for each run.)
% Display column headers for Z
disp('
                                                  For R1 For R2
                                                                                                                                                                        For R3');
% Gaussian random tolerances
for i=1:7
             x(i)=i-4; % x varies from -3 sigma to +3 sigma
             T1(i) = ((T(2,1)-T(1,1))/6)*(x(i)+3)+T(1,1); % symmetric tolerances of +/- 2% (x(i)+3)+T(1,1); % symmetric tolerances of +/- 2% (x(i)+3)+T(1,1);
             T2(i) = ((T(2,2) - T(1,2))/6) * (x(i)+3) + T(1,2); % asymmetric tolerances of +2% & -1% (i) = ((T(2,2) - T(1,2))/6) * (x(i)+3) + T(1,2); % asymmetric tolerances of +2% & -1% (i) = ((T(2,2) - T(1,2))/6) * (x(i)+3) + T(1,2); % asymmetric tolerances of +2% & -1% (i) = ((T(2,2) - T(1,2))/6) * (x(i)+3) + T(1,2); % asymmetric tolerances of +2% & -1% (i) = ((T(2,2) - T(1,2))/6) * (x(i)+3) + T(1,2); % asymmetric tolerances of +2% & -1% (i) = ((T(2,2) - T(1,2))/6) * (x(i)+3) + T(1,2); % asymmetric tolerances of +2% & -1% (i) = ((T(2,2) - T(1,2))/6) * (x(i)+3) + T(1,2); % asymmetric tolerances of +2% & -1% (i) = ((T(2,2) - T(1,2))/6) * (x(i)+3) + T(1,2); % asymmetric tolerances of +2% & -1% (i) = ((T(2,2) - T(1,2))/6) * (x(i)+3) + ((T(2,2) - T(2,2))/6) * (x(i)+3) + ((T(2,2) - T(2,2))
             T3(i) = ((T(2,3)-T(1,3))/6)*(x(i)+3)+T(1,3); % asymmetric tolerances of +1% & -2% (x(i)+3)+T(1,3); % asymmetric tolerances of +1% & -2% (x(i)+3)+T(1,3) 
end
 for k=1:Nk
             r1(k) = R1*((T(2,1)-T(1,1))/6*(Z(k,1)+3)+T(1,1)+1);
             r2(k) = R2*((T(2,2)-T(1,2))/6*(Z(k,2)+3)+T(1,2)+1);
             r3(k) = R3*((T(2,3)-T(1,3))/6*(Z(k,3)+3)+T(1,3)+1);
end
disp(' ')
disp('Random resistor values per Z and T')
disp(' ')
disp('
                                                              R1
                                                                                                                      R2
                                                                                                                                                                               R3')
disp('')
disp([r1' r2' r3'])
% plot T1, T2, & T3
h=plot(x,T1,'r',x,T2,'b',x,T3,'k');
set(h,'LineWidth',2);
set(gca,'FontSize',8);
axis([-3 \ 3 \ -0.02 \ 0.02])
grid on
xlabel('Sigma');ylabel('Decimal %');
title('Fig 17. Decimal Tolerances')
legend('+2% -2%','+2% -1%','+1% -2%',4);
```