

Méthodes régime sinusoïdale

La loi d'ohm s'écrit, en notation complexe : $\underline{\mathbf{U}} = \underline{\mathbf{Z}} \cdot \underline{\mathbf{I}}$

 \underline{Z} est l'impédance complexe d'un dipôle notée : $\underline{Z} = [Z; \varphi]$

Z est l'impédance simple du dipôle Z = U/I en Ω

φ est le déphasage introduit par le dipôle, entre la tension u à ses bornes, et le courant i qui le traverse.

Dipôle	Impédance	Impédance complexe	Comportement BF $f \longrightarrow 0$	Comportement HF $f \longrightarrow \infty$
Résistance linéaire i _R R u _R	$Z_R = R$	$\underline{Z}_{R} = R$ $\underline{Z}_{R} = [R;0]$	$Z_R = R$	$Z_R = R$
Bobine parfaite $\begin{matrix} \mathbf{i}_L & \mathbf{L} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{matrix}$	$\mathbf{Z_L} = \mathbf{L}\boldsymbol{\omega}$	$\underline{Z}_{L} = jL\omega$ $\underline{Z}_{L} = [L\omega; +\pi/2]$	$\begin{array}{c} Z_L \longrightarrow 0 \\ \hline L \end{array}$	$Z_L \longrightarrow \infty$
Condensateur parfait ic C uc	$Z_{\rm C} = \frac{1}{{ m C}\omega}$	$\underline{\mathbf{Z}}_{\mathbf{C}} = -\mathbf{j} \frac{1}{\mathbf{C}\omega}$ $\underline{\mathbf{Z}}_{\mathbf{C}} = \left[\frac{1}{\mathbf{C}\omega}; -\pi/2\right]$	$\mathbf{z}_{\mathbf{c}} \longrightarrow \infty$	$\begin{array}{c} Z_{C} \longrightarrow 0 \\ \hline C \end{array}$