104165 - Real functions

Baruch Solel

November 5, 2018

Abstract

1 Introduction

If $\forall x \quad f_n(x) \to f(x)$ (pointwise) does $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$? Define $f_n(x) = \chi_{r_1, r_2, \dots r_n}$, where $\{r_i\} = \mathbb{Q} \cap [0, 1]$, i.e., first n rational numbers. Those functions are integrable since they are non-zero in finite number of points. However, $f(x) = \chi_{\mathbb{Q} \cap [0, 1]}$ is not integrable.

Riemann integral: limit We defined Riemann integral as limit of Riemann sum:

By dividing on y, we bound the error by the size of each interval, ϵ :

$$g(x) = s\chi_{A_1} + (s + \epsilon)\chi_{A_2} + \dots$$

$$\forall x \quad |g(x) - f(x)| \le \epsilon$$

2 Measure

For $A \subseteq \mathbb{R}$ we want to define size of A which we will denote $\lambda(A)$. What do we require from λ ?

- 1. $\lambda([a,b]) = b a$
- $2. \ 0 \le \lambda(A) \le \infty$
- 3. $\lambda(\emptyset) = 0$
- 4. If $A = \bigcup_{k=1}^{\infty} A_k$ and $\forall i, j \quad A_i \cap A_j = \emptyset$, then $\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_k)$.
- 5. $\lambda(A+x) = \lambda(A)$, where $A + x = \{s + x : a \in A\}$.

From those properties we get additional properties:

• Additivity:

$$A = \bigcup_{i=1}^{n} A_i \Rightarrow \lambda(A) = \sum_{i=1}^{n} \lambda(A_i)$$

• If $A \subseteq B$, then $\lambda(A) \leq \lambda(B)$.

Theorem 2.1. Function λ fulfilling 1-5 and defined on every subset of \mathbb{R} doesn't exist.

Proof. Suppose there exists such λ .

Define equivalence relation $x \sim y$ iff $x - y \in \mathbb{Q}$. Define E choose from each equivalence class one representative from $\left[0, \frac{1}{2}\right]$. Note that if $q_1 \neq q_2$, then $q_1 + E \cap q_2 + E = \emptyset$, since else $e_1 - e_2 = q_1 - q_2$ and $e_1 \sim e_2$, in contradiction.

From definition $E \subset [0, \frac{1}{2}]$. Take a look at

$$\bigcup_{k=2}^{\infty} \left(\frac{1}{k} + E \right) \subseteq [0, 1]$$

Thus

$$\lambda \left(\bigcup_{k=2}^{\infty} \left(\frac{1}{k} + E \right) \right) \le \lambda([0,1]) = 1$$

On the other hand

$$\lambda\!\left(\bigcup_{k=2}^{\infty}\left(\frac{1}{k}+E\right)\right) = \sum_{k=2}^{\infty}\lambda\!\left(\frac{1}{k}+E\right)) = \lambda(E))$$

Thus $\lambda(E) = 0$. However,

$$\mathbb{R} = \bigcup_{r \in \mathbb{Q}} r + E$$

From sigma-additivity

$$\lambda(\mathbb{E}) = \sum_{r \in \mathbb{Q}} \lambda(r + E) = 0$$

But $\lambda(\mathbb{R}) \geq \lambda([0,1])$, in contradiction.

Regirements for measure in \mathbb{R}

- 1. $0 \le \lambda(E) \le \infty$
- $2. \ \lambda(\emptyset) = 0$
- 3. $\lambda([a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]) = \prod_{i=1}^n (b_i a_i)$
- 4. If $A = \bigcup_{k=1}^{\infty} A_k$, then $\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_k)$.
- 5. If C is acquired from A by rotation or translation $\lambda(C) = \lambda(A)$.

Note In \mathbb{R}^3 it is impossible to define measure that fulfills those requirements eve if we replace sigma-additivity with additivity.

Banach–Tarski paradox Denote B – unit ball in \mathbb{R}^3 . We can write

$$B = \bigcup_{i=1}^{5} A_i$$

and find C_i by rotation or translation of A_i such that $\bigcup_{i=1}^5 C_i$ is two unit balls.

2.1 Construction of λ

Definition 2.1 (Special boxes). Let E box with edges parallel to axes:

$$E = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$$

For E we define

$$\lambda(E) = \prod_{i=1}^{n} (b_i - a_i)$$

Definition 2.2 (Special polygons). is a finite union of special boxes.

Note Each special polygon is a finite union of special boxes with disjoint interior.

Let P is special polygon written as $P = \bigcap_{i=1}^k A_i$ where A_i is special box and their interior is disjoint.

$$\lambda(P) = \sum_{i=1}^{k} \lambda(A_i)$$

Proposition 2.2. The definition is independent on choice of A_i .

Proof. Let $P = \bigcap A_i = \bigcap B_i$.

If we continue edges of both A_i and B_i we'll get net which divides P into C_i which refines both A_i and B_i and thus

$$\lambda(P) = \sum_{i} \lambda(A_i) = \sum_{i} \lambda(B_i) = \sum_{i} \lambda(C_i)$$

Proposition 2.3. If P_1 , P_2 are special polygons and $P_1 \subseteq P_2$ then $\lambda(P_1) \leq \lambda(P_2)$.

Proof. Let $P_2 = \bigcap A_i$ and choose the refinement which divides P_1 .

Proposition 2.4. If P_1 , P_2 are special polygons with disjoint interior then

$$\lambda(P_1 \cup P_2) = \lambda(P_1) + \lambda(P_2)$$

Proof. Find A_i which divides both P_1 and P_2 .

Proposition 2.5. For all $x \in \mathbb{R}^n$

$$\lambda(x+P) = \lambda(P)$$

Alternative proof. For special boxes

$$\lambda(E) = \lim_{N \to \infty} \frac{1}{N^n} \left| E \cap \frac{1}{N} \mathbb{Z}^n \right|$$

For n = 1, $I = [a, b] \subseteq \mathbb{R}$. We claim

$$b - a = \lim_{N \to \infty} \frac{1}{N} \left| E \cap \frac{1}{N} \mathbb{Z} \right|$$

First of all

$$b - a - 1 \le |[a, b] \cap \mathbb{Z}| \le b - a + 1$$

To find $|[a,b] \cap \frac{1}{2}\mathbb{Z}|$, we can use $|[2a,2b] \cap \mathbb{Z}|$, which means

$$2b-2a-1 \leq \left|E \cap \frac{1}{2}\mathbb{Z}\right| \leq 2b-2a+1$$

And for any N:

$$Nb-Na-1 \leq \left|[a,b] \cap \frac{1}{N}\mathbb{Z}\right| \leq Nb-Na+1$$

$$b-a-\frac{1}{N} \leq \frac{1}{N} \bigg| [a,b] \cap \frac{1}{N} \mathbb{Z} \bigg| \leq b-a+\frac{1}{N}$$

By sandwich rule, we get the equality.

We can do the same for higher dimension and for open sets, and then we can easily proof the claim.

If P is special polygon and we take $\lim_{N\to\infty} \frac{1}{N^n} |P \cap \frac{1}{N} \mathbb{Z}^n| = \sum \lambda(A_i)$ when $P = \bigcap A_i$

Open sets

Definition 2.3. G is open if $\forall x \in G$ exists ball B(x,r) such that $B \subset G$. Alternatively we can replace ball with special box.

Thus for any open $G \neq \emptyset$

$$G = \bigcup \{ P \text{ special polygon} \}$$

And we can define

$$\lambda(G) = \sup \left\{ \lambda(P) | P \subseteq G \right\}$$

Lemma 2.1. Let $K \subseteq \mathbb{R}^n$ compact set and $\{G_i\}_{i \in I}$ open cover $(K \subseteq \bigcup G_i)$. Then exists $\epsilon > 0$ such that $\forall x \in K$ exists $i \in I$ such that $B(x, \epsilon) \subseteq G_i$.

Lemma 2.2. For all polygon of dimension P

$$\lambda(P) = \inf \{ \lambda(G) : P \subset G \}$$

Proof.

$$P \subseteq G \Rightarrow \lambda(P) \le \lambda(G)$$

Infimum would give

$$\lambda(P) \le \inf \{ \lambda(G) : P \subset G \}$$

Write $P = \bigcup_{k=1}^{N} I_k$. Then

$$\lambda(P) = \sum_{k=1}^{N} \lambda(I_k)$$

For ϵ find I_k^{ϵ} such that

$$\begin{cases} \inf I_k^{\epsilon} \supseteq I_k \\ \lambda(I_k^{\epsilon}) \le \lambda(I_k) + \frac{\epsilon}{N} \end{cases}$$

Denote $G = \bigcup_{k=1}^{N} \operatorname{int}(I_k^{\epsilon})$, then, from subadditivity

$$\lambda(G) \le \sum_{k=1}^{N} \lambda(\operatorname{int} I_k^{\epsilon}) = \sum_{k=1}^{N} \lambda(I_k^{\epsilon}) \le \epsilon + \sum_{k=1}^{N} \lambda(I_k)$$

In addition,

$$\inf \lambda(G) \leq \lambda(P)$$

Proposition 2.6.

$$0 \le \lambda(G) \le \infty$$

Proof. Obvious

Proposition 2.7.

$$\lambda(G) = 0 \iff G = \emptyset$$

Proof. If G is not empty, exists $x \in G$ and special box around x such that $P \subseteq G$ and thus $\lambda(G) \le \lambda(P) > 0$

Proposition 2.8.

Proposition 2.9.

$$\lambda(\mathbb{R}^n) = \infty$$

Proof. Any box is subset of \mathbb{R}^n thus $\lambda(\mathbb{R}^n) = \infty$

$$G_1 \subseteq G_2 \Rightarrow \lambda(G_1) \le \lambda(G_2)$$

Proof. Obvious

Proposition 2.10.

$$\lambda \left(\bigcup_{k=1}^{\infty} G_k \right) \le \sum \lambda(G_k)$$

Proof. Let P special polygon, $P \subseteq \bigcup_{k=1}^{\infty} G_k$. We'll show that it's possible to write

$$P = \bigcup_{j=1}^{N} I_j$$

finite union of special boxes with disjoint interior and for each j exists k such that $I_j \subset G_k$. Let ϵ from lemma for K = P. Write $P = \bigcup_{j=1}^N = I_j$ such that diameter of each $I_j < \epsilon$. If x_j is center of I_j , then $I_j \subseteq B(x_j, \epsilon) \subseteq G_k$. If this is possible, for such P denote

$$P_k = \bigcup_{i=1}^{\infty} I_j | I_j \subset G_k, \forall i < k \quad I_j \not\subset G_i$$

Obviously $\bigcup P_k = P$ and union is finite since for some m, for every k > m $P_m = \emptyset$, because there is finite number of I_j , and also internals of P_k are disjoint.

Thus $\lambda(P) = \sum \lambda(P_k) \leq \sum \lambda(G_k)$. This is right for any P, thus

$$\lambda\left(\bigcup(G_k)\right) = \sup\left\{\lambda(P)|P\subseteq\bigcup(G_k)\right\} \le \sum_{k=1}^{\infty}\lambda(G_k)$$

Proposition 2.11.

$$\lambda\left(\bigcup_{k=1}^{\infty} G_k\right) = \sum \lambda(G_k)$$

Proof. Since we have sigma-subadditivity, we need only one direction of inequality:

$$\lambda(G_k) = \sup \{\lambda(P) : P \subseteq G_k\}$$

For any N

$$\sum_{k=1}^{N} \lambda(G_k) = \sup \left\{ \sum_{k=1}^{N} \lambda(P_k) : P_k \subseteq G_k \right\} = \sup \left\{ \lambda \left(\bigcup_{k=1}^{N} P_k \right) : P_k \subseteq G_k \right\} \le \lambda \left(\bigcup_{k=1}^{N} G_k \right) \le \lambda \left(\bigcup_{k=1}$$

i.e.,

$$\sum_{k=1}^{\infty} \lambda(G_k) \le \lambda \left(\bigcup_{k=1}^{\infty} G_k \right)$$

Proposition 2.12.

$$\lambda(P) = \lambda(\operatorname{int} P) = \inf \{\lambda(G) : P \subseteq G\}$$

Proof. First, proof that $\lambda(P) = \lambda(\operatorname{int} P)$. If I = P is non-empty special box $I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$. For any $\epsilon > 0$, $I_{\epsilon} = [a_1 + \epsilon, b_1 - \epsilon] \times [a_2 + \epsilon, b_2 - \epsilon] \times \cdots \times [a_n + \epsilon, b_n - \epsilon]$. $I_{\epsilon} \subseteq \operatorname{int} I$. That means that $\lambda(I_{\epsilon}) \leq \lambda(\operatorname{int} I)$. Obviously, $\lambda(I_{\epsilon}) \to \lambda(I)$, i.e. $\lambda(I) \leq \lambda(\operatorname{int} I)$.

Generally, for $P = \bigcup_{k=1}^{N} I_k$,

$$int P \ge \bigcup_{k=1}^{N} int I_k$$

thus

$$\lambda(\operatorname{int} P) \ge \lambda\left(\bigcup_{k=1}^{N} \operatorname{int} I_{k}\right) = \sum_{k=1}^{N} \lambda(\operatorname{int} I_{k}) \ge \sum_{k=1}^{N} \lambda(I_{k}) = \lambda(P)$$

For any P

$$\lambda(\text{int }P) \ge \lambda P$$

However

$$\lambda(\operatorname{int} P) = \sum \{\lambda(Q) : Q \subseteq \operatorname{int} P\}$$

$$Q \subseteq P \Rightarrow \lambda(Q) \le \lambda(P) \Rightarrow \lambda(\operatorname{int} P) \le \lambda(P)$$

Second part is obvious from Lemma 2.2.

Proposition 2.13.

$$\lambda(x+G) = \lambda(G)$$

Proof. Obvious since it's right for polygons

2.2 Compact sets

Definition 2.4. For compact $K \subseteq \mathbb{R}^n$

$$\lambda(K) = \inf \{ \lambda(G) : K \subseteq G \mid G \text{ is open} \}$$

Proposition 2.14.

$$0 \le \lambda(K) < \infty$$

Proof. Each K is subset of open box A and $\lambda(A) < \infty$

Proposition 2.15.

$$K_1 \subseteq K_2 \Rightarrow \lambda(K_1) \leq \lambda(K_2)$$

Proof. Obvious

Proposition 2.16. Subadditivity

$$\lambda(K_1 \cup K_2) \le \lambda(K_1) + \lambda(K_2)$$

Proof.

$$K_i \subseteq G_i$$

$$K_1 \cup K_2 \subseteq G_1 \cup G_2$$

$$\lambda(K_1 \cup K_2) \le \lambda(G_1 \cup G_2) \le \lambda(G_1) + \lambda(G_2)$$

Thus

$$\lambda(K_1 \cup K_2) \le \lambda(K_1) + \lambda(K_2)$$

Proposition 2.17.

$$K_1 \cup K_2 = \emptyset \Rightarrow \lambda(K_1 \cup K_2) = \lambda(K_1) + \lambda(K_2)$$

Proof. For K_1 , K_2 exists $\epsilon > 0$ such that $\forall x \in K_1 \ y \in K_2$, $d(x,y) \ge \epsilon$. Denote

$$U_i = \bigcup_{x \in K_i} B\left(x, \frac{\epsilon}{2}\right) \supset K_i$$

Let $K_1 \cup K_2 \subset G_i$, since $K_i \subset U_i$,

$$K_i \subset G \cap U_i$$

i.e.,

$$\forall i \quad \lambda(K_i) \leq \lambda(G \cap U_i)$$

Since $U_1 \cap U_2 = \emptyset$ (from construction)

$$(G \cap U_1) \cap (G \cap U_2) = \emptyset$$

$$\lambda(G \cap U_1) + \lambda(G \cap U_2) = \lambda((G \cap U_1) \cap (G \cap U_2)) \le \lambda(G)$$

Thus

$$\lambda(G) \ge \lambda(G \cap U_1) + \lambda(G \cap U_2) \ge \lambda(K_1) + \lambda(K_2)$$

i.e.,

$$\lambda(K_1 \cup K_2) \ge \lambda(K_1) + \lambda(K_2)$$

2.3 General sets

Define outer and inner measure similar to Darboux sums:

$$\lambda^*(A) = \inf \{ \lambda(G) : A \subset G, \text{ open} \}$$

$$\lambda_*(A) = \sup \{\lambda(K) : A \supset G, \text{ compact}\}\$$

Proposition 2.18.

$$\lambda_*(A) \le \lambda^*(A)$$

Proof. If G is open and K compact and $K \subset A \subset G$ then $K \subset G$, i.e. $\lambda(K) \leq \lambda(G)$. From that, taking supremum on K and infimum on G, we get the required result.

Proposition 2.19.

$$A \subset B \Rightarrow \lambda^*(A) \leq \lambda^*(B) \quad \lambda_*(A) \leq \lambda_*(B)$$

Proof. Obvious.

Proposition 2.20.

$$\lambda^* \left(\bigcup_{k=1}^{\infty} A_k \right) \le \sum_{k=1}^{\infty} \lambda^* (A_k)$$

Proof.

$$\lambda^*(A) = \inf \{ \lambda(G) : A \subset G, \text{ open} \}$$

Thus exists G_k such that

$$\lambda(G_k) < \lambda^*(A_k) + \frac{\epsilon}{2^k}$$

$$\lambda^* \left(\bigcup_{k=1}^{\infty} A_k \right) \leq \lambda \left(\bigcup_{k=1}^{\infty} G_k \right) \leq \sum_{k=1}^{\infty} \lambda(G_k) < \sum_{k=1}^{\infty} \left(\lambda^*(A_k) + \frac{\epsilon}{2^k} \right) = \lambda^*(A_k) + \epsilon$$

Proposition 2.21. For disjoint A_k

$$\lambda^* \left(\bigcup_{k=1}^{\infty} A_k \right) \ge \sum_{k=1}^{\infty} \lambda^* (A_k)$$

Proof. For all i choose $K_i \subseteq A_i$. Choose some N, then

$$\bigcup_{k=1}^{N} K_k \subseteq \bigcup_{k=1}^{\infty} A_k$$

Since $\bigcup_{k=1}^{N} K_k$ is compact,

$$\lambda_* \left(\bigcup_{k=1}^{\infty} A_n \right) \ge \lambda \left(\bigcup_{k=1}^{N} K_k \right) = \sum_{k=1}^{N} \lambda(K_k)$$

By taking supremum on K_i , we get

$$\lambda_* \left(\bigcup_{k=1}^{\infty} A_n \right) \ge \sum_{k=1}^{N} \lambda_* (A_n)$$

Proposition 2.22. If A is open or compact then

$$\lambda(A) = \lambda^*(A) = \lambda_*(A)$$

Proof. If A is compact, obviously $\lambda_*(A) = \lambda(A)$, and $\lambda^*(A) = \lambda(A)$ by definition. For open A, obviously $\lambda(A) = \lambda^*(A)$. In addition, for any special polygon $P \subset A$, $\lambda(P) \leq \lambda_*(A)$. However

$$\lambda^*(A) = \lambda(A) = \sup \{\lambda(P) : P \subseteq A\} \le \lambda_*(A)$$

meaning

$$\lambda^*(A) = \lambda(A) = \lambda_*(A)$$

Denote

$$\mathcal{L}_0 = \{ A \subset \mathbb{R}^n :: \lambda^* \} A_{=} \lambda_*(A) < \infty \}$$

All compact sets and all open set with finite measure are in \mathcal{L}_0 .

Proposition 2.23.

$$\lambda_*(A) = \lambda_*(A+x)$$

$$\lambda^*(A) = \lambda^*(A+x)$$

Definition 2.5. For set in \mathcal{L}_0 , $\lambda(A) = \lambda^*(A) = \lambda_*(A)$.

Lemma 2.3. If $A, B \in \mathcal{L}_0$ and $A \cap B = \emptyset$ then $A \cup B \in \mathcal{L}_0$ and

$$\lambda(A \cup B) = \lambda(A) + \lambda(B)$$

Proof.

$$\lambda^*(A \cup B) \leq \lambda^*(A) + \lambda^*(B) = \lambda(A) + \lambda(B) == \lambda_*(A) + \lambda_*(B) \leq \lambda_*(A \cup B) \leq \lambda^*(A \cup B)$$

Theorem 2.24. $A \subseteq \mathbb{R}^n$ with $\lambda^*(A) < \infty$. $A \in \mathcal{L}_0$ iff for all $\epsilon > 0$ exists compact K and open $G, K \subseteq A \subseteq G$ and $\lambda(G \setminus K) < \epsilon$

Proof. \Rightarrow :

Let $A \in \mathcal{L}_0$. We can find compact K and open $G, K \subseteq A \subseteq G$ such that

$$\lambda(G) < \lambda^*(A) + \frac{\epsilon}{2}$$

$$\lambda(K) > \lambda_*(A) - \frac{\epsilon}{2}$$

Note that, by lemma

$$\lambda(G) = \lambda(K) + \lambda(G \setminus K)$$

$$\lambda(G \setminus K) = \lambda(G) - \lambda(K) < \epsilon$$

⇐:

$$\lambda^*(A) \le \lambda(G) = \lambda(K) + \lambda(G \setminus K) < \lambda(K) + \epsilon \le \lambda_*(A) + \epsilon$$

Thus $\lambda^*(A) = \lambda_*(A)$ and $A \in \mathcal{L}_0$.

Collary 2.1. If $A, B \in \mathcal{L}_0$, then $A \cup B, A \cap B, A \setminus B \in \mathcal{L}_0$

Proof. First, show that $A \setminus B \in \mathcal{L}_0$. Take $K_1 \subseteq A \subseteq G_1$ and $K_2 \subseteq A \subseteq G_2$.

$$\lambda(G_1 \setminus K_1) < \frac{\epsilon}{2}$$

$$\lambda(G_2 \setminus K_2) < \frac{\epsilon}{2}$$

Denote $K = K_1 \setminus G_2$ and $G = G_1 \setminus K_2$.

$$K \subseteq A \setminus B \setminus G$$

$$G \setminus K = (G_1 \setminus K_1) \cup (G_2 \setminus K_2)$$

$$\lambda(G \setminus K) \leq \lambda(G_1 \setminus K_1) + \lambda(G_2 \setminus K_2) < \epsilon$$

Now

$$A \cup B = (A \setminus B) \cup B \in \mathcal{L}_0$$

$$A \cap B = A \setminus (A \setminus B) \in \mathcal{L}_0$$

Theorem 2.25. Let $\{A_k\}$ set in \mathcal{L}_0 and $A\bigcup_{k=1}^{\infty} A_k$ such that $\lambda^*(A) < \infty$ then $A \in \mathcal{L}_0$ and

$$\lambda(A) \le \sum_{k=1}^{\infty} \lambda(A_k)$$

In addition, if $A_i \cap A_j = \emptyset$,

$$\lambda(A) = \sum_{k=1}^{\infty} \lambda(A_k)$$

Proof. Suppose $\{A_k\}$ are disjoint.

$$\lambda^*(A) \le \sum_{k=1}^{\infty} \lambda^*(A_k) = \sum_{k=1}^{\infty} \lambda_*(A_k) \le \lambda_*(A)$$

Thus $A \in \mathcal{L}_0$ and

$$\lambda(A) = \lambda^*(A) = \sum_{k=1}^{\infty} \lambda^*(A_k) = \sum_{k=1}^{\infty} \lambda(A_k)$$

Now generally, define

$$B_1 = A_1 \in \mathcal{L}_0$$
$$B_2 = A_2 \setminus A_1$$

and so on:

$$B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i \in \mathcal{L}_0$$

Now $\{B_k\}$ are disjoint and $A = \bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} B_k \in \mathcal{L}_0$. Thus

$$\lambda(A) = \lambda \left(\bigcup_{k=1}^{\infty} A_k \right) = \lambda \left(\bigcup_{k=1}^{\infty} B_k \right) = \sum_{k=1}^{\infty} \lambda(B_k) \le \sum_{k=1}^{\infty} \lambda(A_k)$$