```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import cross val score
from sklearn.metrics import root_mean_squared_error
from bayes opt import BayesianOptimization
#df = pd.read_csv('../data/sample submission.csv')
df = pd.read_csv('../data/data.csv', sep=';', encoding='latin1')
print(df)
₹
              Ιd
                     Category
                                Manufacturer
                                                 Model Prod. year Gear box type
            2680
                         Jeep
                                     HYUNDAI
                                                    H1
                                                              2014
                                                                       Automatic
            5960
                        Sedan
                                  MITSUBISHI
                                                Mirage
                                                              2002
                                                                       Automatic
    2
            2185
                                     HYUNDAI
                                                              2014
                         Jeep
                                              Santa FE
                                                                       Automatic
    3
            15905
                        Sedan
                               MERCEDES-BENZ
                                                 E 260
                                                              1992
                                                                         Manual
            15337
                                       HONDA
                                                   FIT
                                                              2015
    4
                    Universal
                                                                       Automatic
    . . .
             . . .
                                         . . .
                                                   . . .
                                                              . . .
           19198
                                      TOYOTA
                                                 RAV 4
                                                              2015
                                                                       Automatic
    16346
                         Jeep
    16347
            3583
                        Sedan
                                      TOYOTA
                                                 Prius
                                                              2009
                                                                       Automatic
    16348
           18497
                         Jeep
                                   SSANGYONG
                                                REXTON
                                                              2015
                                                                       Automatic
    16349
            4565
                  Goods wagon
                                        OPEL
                                                 Combo
                                                              2011
                                                                         Manual
           11586
                                        FORD
                                                Fusion
                                                              2013
    16350
                         Sedan
                                                                       Automatic
           Leather interior Fuel type Engine volume Drive wheels Cylinders \
    0
                       Yes
                              Diesel
                                               2.5
                                                          Front
                        No
                              Petrol
                                                          Front
    1
                                               1.8
    2
                       Yes
                              Diesel
                                                          Front
    3
                        No
                                 CNG
                                                           Rear
                                                                         6
                                               2.6
    4
                       Yes
                              Hybrid
                                               1.5
                                                          Front
                                                                         4
                       . . .
    16346
                       Yes
                              Petrol
                                               2.5
                                                            4x4
    16347
                                               1.5
                       Yes
                              Hybrid
                                                          Front
    16348
                       Yes
                              Diesel
                                                2
                                                          Front
                                                                         4
    16349
                        No
                              Diesel
                                         1.3 Turbo
                                                          Front
    16350
                       Yes
                              Hybrid
                                                          Front
             Mileage Doors
                            Airbags
                                          Wheel
                                                 Color Sales Fee
                                                                  price
    0
            74210 km
                        4
                                  4 Left wheel Silver
                                                              777 22433
            160000 km
    1
                                  2 Left wheel
                                                                - 7500
                                                  White
    2
            51106 km
                                  4 Left wheel
                                                              639 27284
    3
                0 km
                                  4 Left wheel
                                                  Beige
                                                                   3450
            35624 km
    4
                                  4 Left wheel
                                                  Black
                                                              308 26644
                                                              . . .
                                                                     . . .
    . . .
    16346
           149019 km
                                                                  28225
                                  0 Left wheel
                                                   Grey
                                                              934
    16347
            142426 km
                                 12 Left wheel
                                                  White
                                                              746
                                                                   1882
    16348
           123303 km
                         4
                                  4 Left wheel
                                                  Black
                                                              765 36219
            95000 km
                                  4 Left wheel
                                                  White
                                                              490
                                                                   9408
    16349
    16350 174619 km
                         4
                                  0 Left wheel
                                                   Grey
                                                              640
                                                                   1646
```

```
[16351 rows x 18 columns]
```

DATOS FALTANTES

```
# verificar datos faltantes
for col in df.columns.to_list():
 calc = (df[col].isna().sum()/df.shape[0])*100
 print(f'{col} missing Values: {calc}%')
→ Id missing Values: 0.0%
     Category missing Values: 0.0%
    Manufacturer missing Values: 0.0%
     Model missing Values: 0.0%
    Prod. year missing Values: 0.0%
     Gear box type missing Values: 0.0%
    Leather interior missing Values: 0.0%
     Fuel type missing Values: 0.0%
     Engine volume missing Values: 0.0%
     Drive wheels missing Values: 0.0%
     Cylinders missing Values: 0.0%
     Mileage missing Values: 0.0%
     Doors missing Values: 0.0%
     Airbags missing Values: 0.0%
     Wheel missing Values: 0.0%
     Color missing Values: 0.0%
     Sales Fee missing Values: 0.0%
     price missing Values: 0.0%
```

VARIABLES CATEGÓRICAS

✓ ENCODING

```
def label_encoding(dataset, column_name):
    label_encoder = LabelEncoder()
    dataset[column_name] = label_encoder.fit_transform(dataset[column_name])
    return dataset, label_encoder

def frequency_encoding(dataset, col):
    freq = dataset[col].value_counts(normalize=True)
    dataset[col] = dataset[col].map(freq)
    return dataset, freq

df2 = df
def to_zero(n):
    if n == '-': return 0
    return n
```

```
def mileage_km(n):
 return n.replace(' km', '')
def turbo(n):
 if 'Turbo' in n: return 1
 return 0
def engine_volume(n):
 return n.replace(' Turbo', '')
def doors(n):
 if n == '>5': return 6
 return n
df2['Turbo'] = df2['Engine volume'].map(turbo)
df2['Sales Fee'] = df2['Sales Fee'].map(to_zero)
df2['Mileage'] = df2['Mileage'].map(mileage_km)
df2['Engine volume'] = df2['Engine volume'].map(engine_volume)
df2['Doors'] = df2['Doors'].map(doors)
df2.head(20)
```

16/11/24, 21:10 10.ipynb - Colab

	-	_	
-	→	₩	
٠	_	_	

•	Id	Category	Manufacturer	Model	Prod. year	Gear box type	Leather interior	Fuel type	Engine volume	Drive wheels	Cylinders	Mileage	Doors	Airbags	Wheel	Color	Sales Fee	price	Turbo
0	2680	Jeep	HYUNDAI	H1	2014	Automatic	Yes	Diesel	2.5	Front	4	74210	4	4	Left wheel	Silver	777	22433	0
1	5960	Sedan	MITSUBISHI	Mirage	2002	Automatic	No	Petrol	1.8	Front	4	160000	4	2	Left wheel	White	0	7500	0
2	2185	Jeep	HYUNDAI	Santa FE	2014	Automatic	Yes	Diesel	2	Front	4	51106	4	4	Left wheel	White	639	27284	0
3	15905	Sedan	MERCEDES-BENZ	E 260	1992	Manual	No	CNG	2.6	Rear	6	0	4	4	Left wheel	Beige	0	3450	0
4	15337	Universal	HONDA	FIT	2015	Automatic	Yes	Hybrid	1.5	Front	4	35624	4	4	Left wheel	Black	308	26644	0
5	13792	Hatchback	HONDA	FIT	2014	Automatic	Yes	Petrol	1.5	Front	4	78000	4	4	Left wheel	White	501	25638	0
6	12015	Microbus	FORD	Transit	2007	Manual	No	Diesel	2.4	Rear	4	165000	4	2	Left wheel	Blue	0	17249	0
7	307	Sedan	TOYOTA	Camry	2015	Automatic	Yes	Hybrid	2.5	Front	4	35000	4	10	Left wheel	Grey	456	39201	0
8	1054	Sedan	TOYOTA	Camry	2012	Automatic	Yes	Hybrid	2.5	Front	4	156518	4	12	Left wheel	White	781	3607	0
9	7945	Sedan	HYUNDAI	Elantra	2012	Automatic	Yes	Petrol	1.6	Front	4	165294	4	4	Left wheel	Silver	531	16308	0
10	15234	Minivan	MERCEDES-BENZ	Vito	2007	Tiptronic	Yes	Diesel	3.0	Rear	6	250000	4	4	Left wheel	Black	0	30640	1
11	2277	Jeep	LEXUS	RX 450	2010	Automatic	Yes	Hybrid	3.5	4x4	6	167222	4	12	Left wheel	Black	1399	5018	0
12	1660	Sedan	HYUNDAI	Sonata	2016	Automatic	Yes	LPG	2	Front	4	287140	4	4	Left wheel	White	891	18817	0
13	15966	Sedan	FORD	F150	2016	Automatic	Yes	Petrol	3.5	Front	4	33543	4	4	Left wheel	White	1493	126322	0
14	11541	Coupe	HYUNDAI	Genesis	2010	Automatic	Yes	Petrol	3.8	Front	4	151977	4	4	Left wheel	Blue	1511	16621	0
15	1579	Jeep	TOYOTA	RAV 4	2010	Variator	Yes	Petrol	2	4x4	4	167300	6	8	Left wheel	Blue	0	23207	0
16	3011	Jeep	HYUNDAI	Tucson	2016	Automatic	Yes	Diesel	2	Front	4	27243	4	4	Left wheel	Grey	891	29633	0
17	4573	Jeep	MERCEDES-BENZ	ML 350	2009	Automatic	Yes	Diesel	3.5	4x4	6	274088	4	12	Left wheel	Black	1624	6272	0
18	6342	Jeep	MERCEDES-BENZ	GL 450	2006	Automatic	Yes	LPG	4.5	4x4	6	181000	4	6	Left wheel	Black	0	21000	1
19	15558	Sedan	HYUNDAI	Sonata	2015	Automatic	Yes	Petrol	2	Front	4	59150	4	4	Left wheel	Grev	765	42692	0

```
df2, freq_category = frequency_encoding(df2, 'Category')
df2, freq_manufacturer = frequency_encoding(df2, 'Manufacturer')
df2, freq_model = frequency_encoding(df2, 'Model')
# Prod. Year
df2, freq_gear_box_type = frequency_encoding(df2, 'Gear box type')
df2, label_leather_interior = label_encoding(df2, 'Leather interior')
df2, freq_fuel_type = frequency_encoding(df2, 'Fuel type')
# Engine volume: quitar el turbo y crear variable aparte
df2, freq_drive_wheels = frequency_encoding(df2, 'Drive wheels')
# Cylinders
df2, freq_mileage = frequency_encoding(df2, 'Mileage') # quitar km
# Doors: cambiar >5 por 4
# Airbags
df2, freq_wheel = frequency_encoding(df2, 'Wheel')
df2, freq_color = frequency_encoding(df2, 'Color')
# Sales Fee: cambiar '-' por '0'
df2.head()
```

16/11/24, 21:10 10.ipynb - Colab

₹		Id	Category	Manufacturer	Model	Prod. year	Gear box type	Leather interior	Fuel type	Engine volume	Drive wheels	Cylinders	Mileage	Doors	Airbags	Wheel	Color	Sales Fee	price	Turbo
	0	2680	0.287567	0.196869	0.022567	2014	0.702832	1	0.211363	2.5	0.670907	4	0.000061	4	4	0.922512	0.195951	777	22433	0
	1	5960	0.453183	0.015106	0.000428	2002	0.702832	0	0.528286	1.8	0.670907	4	0.006483	4	2	0.922512	0.233380	0	7500	0
	2	2185	0.287567	0.196869	0.027521	2014	0.702832	1	0.211363	2	0.670907	4	0.000122	4	4	0.922512	0.233380	639	27284	0
	3 1	15905	0.453183	0.105315	0.000061	1992	0.096875	0	0.024524	2.6	0.118097	6	0.036817	4	4	0.922512	0.006850	0	3450	0
	4 1	15337	0.018592	0.050028	0.022690	2015	0.702832	1	0.185065	1.5	0.670907	4	0.000061	4	4	0.922512	0.261941	308	26644	0

OUTLIERS

```
for col in df2.columns:
   df2[col] = pd.to_numeric(df[col])
# Tratar con outliers
def cuantificaOutliers(dataset):
 for col in dataset.columns:
   q1, q3 = np.percentile(dataset[col],[25,75])
   iqr = q3-q1
   lower\_bound = q1 - (1.5*iqr)
   upper_bound = q3 + (1.5*iqr)
   outlier = dataset[(dataset[col]<lower_bound)|(dataset[col]>upper_bound)]
   print(col, ' ', outlier.shape[0], ' ', outlier.shape[0]/dataset.shape[0]*100, '%')
cuantificaOutliers(df2)
→ Id 0 0.0 %
    Category 0 0.0 %
    Manufacturer 0 0.0 %
    Model 0 0.0 %
    Prod. year 824 5.039447128615987 %
    Gear box type 0 0.0 %
    Leather interior 0 0.0 %
    Fuel type 0 0.0 %
    Engine volume 1184 7.241147330438505 %
    Drive wheels 0 0.0 %
    Cylinders 4140 25.31955232095896 %
    Mileage 2015 12.323405296312153 %
    Doors 763 4.666381261084949 %
    Airbags 0 0.0 %
    Wheel 1267 7.7487615436364745 %
    Color 0 0.0 %
    Sales Fee 136 0.831753409577396 %
    price 901 5.510366338450248 %
    Turbo 1618 9.89541924041343 %
""" def Modifica_Outliers (dataset,columna):
 q1, q3 = np.percentile(dataset[columna], [25, 75])
 # Calculate the interquartile range
 iqr = q3 - q1
```

https://colab.research.google.com/drive/1rpfHR9Hv9ETFszvx8hdHhzHuJa4x1EM5#printMode=true

```
lower_limit = q1 - (1.5 * iqr)

upper_limit = q3 + (1.5 * iqr)

dataset[columna] = np.where(dataset[columna]>upper_limit,upper_limit,np.where(dataset[columna]

Modifica_Outliers(df2, 'Engine volume')

Modifica_Outliers(df2, 'Prod. year')

Modifica_Outliers(df2, 'Wileage')

Modifica_Outliers(df2, 'Mileage')

Modifica_Outliers(df2, 'Sales Fee')

cuantificaOutliers(df2) """

The modifica_Outliers (dataset,columna):\n q1, q3 = np.percentile(dataset[columna], [25, 75])\n # Calculate the interquartile range\n iqr = q3 - q1\n # Calculate the lower and upper bounds\n lower_limit = q1 - (1.5 * iqr)\n upper_limit = q3 + (1.5 * iqr)\n upper_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lower_limit,lowe
```

ANÁLISIS DE CORRELACIÓN

Calculate the lower and upper bounds

```
# Realizar un análisis de correlación
corr = df2.corr(method='pearson')
mask = np.triu(np.ones_like(corr, dtype=bool))
f, ax = plt.subplots(figsize=(11,9))
cmap = sns.diverging_palette(230, 20, as_cmap=True)

plt.tight_layout()
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={'shrink':0.5}, annot=True)
```

16/11/24, 21:10 10.ipynb - Colab

→ <Axes: >

ld -

- -0.4

-0.5

```
correlations = df2.corr()['price'].abs().sort_values(ascending=False)
print("Correlación con la variable objetivo (Curado):\n", correlations)
→ Correlación con la variable objetivo (Curado):
     price
                        1.000000
    Doors
                        0.032986
                        0.021632
    Category
                        0.020325
    Gear box type
    Turbo
                        0.015388
    Wheel
                        0.013929
    Airbags
                        0.013830
    Model
                        0.012108
    Mileage
                        0.010075
    Prod. year
                        0.010010
    Id
                        0.009915
    Engine volume
                        0.007680
    Cylinders
                        0.006525
    Sales Fee
                        0.004929
    Color
                        0.004539
    Fuel type
                        0.003239
                        0.002938
    Manufacturer
    Leather interior
                        0.000998
    Drive wheels
                        0.000685
    Name: price, dtype: float64
```

VARIABLES

```
df3 = df2
df3 = df3.drop('Cylinders', axis=1)
df3 = df3.drop('Sales Fee', axis=1)
df3 = df3.drop('Color', axis=1)
df3 = df3.drop('Mileage', axis=1)
df3 = df3.drop('Fuel type', axis=1)
df3 = df3.drop('Manufacturer', axis=1)
df3 = df3.drop('Leather interior', axis=1)
df3 = df3.drop('Drive wheels', axis=1)
df3.head()
```

₹		Id	Category	Model	Prod. year	Gear box type	Engine volume	Doors	Airbags	Wheel	price	Turbo
	0	2680	0.287567	0.022567	2014	0.702832	2.5	4	4	0.922512	22433	0
	1	5960	0.453183	0.000428	2002	0.702832	1.8	4	2	0.922512	7500	0
	2	2185	0.287567	0.027521	2014	0.702832	2.0	4	4	0.922512	27284	0
	3	15905	0.453183	0.000061	1992	0.096875	2.6	4	4	0.922512	3450	0
	4	15337	0.018592	0.022690	2015	0.702832	1.5	4	4	0.922512	26644	0

```
df4 = df3
y = df4['price']
x = df4.drop('price', axis=1)
```

MODELO

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# Separar Dataset en Training y Testing Sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# Definir función para calcular el RMSE
def root mean squared error(y true, y pred):
   return np.sqrt(mean_squared_error(y_true, y_pred))
# Función de evaluación para Random Forest
def random_forest_evaluate(max_depth, n_estimators, max_features, min_samples_split, min_samples_leaf):
   model = RandomForestRegressor(
       max_depth=int(max_depth),
       n_estimators=int(n_estimators),
       max_features=max_features,
       min_samples_split=int(min_samples_split),
       min_samples_leaf=int(min_samples_leaf),
       random state=42,
       n_jobs=-1 # Usar todos los procesadores disponibles
   model.fit(x_train, y_train)
   y_val_pred = model.predict(x_test)
   return -root_mean_squared_error(y_test, y_val_pred)
# Definir límites para los parámetros de optimización
param bounds = {
    'max_depth': (5, 15),
    'n_estimators': (100, 1000),
    'max_features': (0.1, 0.9),
    'min_samples_split': (2, 10),
    'min_samples_leaf': (1, 5)
# Ejecutar optimización bayesiana
optimizer = BayesianOptimization(f=random_forest_evaluate, pbounds=param_bounds, random_state=42, verbose=2)
optimizer.maximize(init points=10, n iter=25)
# Obtener los mejores parámetros
best_params = optimizer.max['params']
best_params['max_depth'] = int(best_params['max_depth'])
best_params['n_estimators'] = int(best_params['n_estimators'])
best_params['min_samples_split'] = int(best_params['min_samples_split'])
best_params['min_samples_leaf'] = int(best_params['min_samples_leaf'])
print("Mejores parámetros encontrados:")
print(best params)
# Inicializar y entrenar el modelo con los mejores parámetros
```

```
rf_regressor = RandomForestRegressor(**best_params, random_state=42, n_jobs=-1)
rf_regressor.fit(x_train, y_train)

# Hacer predicciones
y_pred = rf_regressor.predict(x_test)

# Calcular y mostrar el RMSE en el conjunto de prueba
test_rmse = root_mean_squared_error(y_test, y_pred)
print("RMSE en el conjunto de prueba:", test_rmse)
```

→ ▼	iter	target	max_depth	max_fe	min_sa	min_sa	n_esti	
	1	-4.601e+0	8.745	0.8606	3.928	6.789	240.4	1
į	2	-4.602e+0	6.56	0.1465	4.465	6.809	737.3	İ
Ì	3	-4.601e+0	5.206	0.8759	4.33	3.699	263.6	İ
1	4	-4.601e+0	6.834	0.3434	3.099	5.456	362.1	١
į	5	-4.601e+0	11.12	0.2116	2.169	4.931	510.5	İ
į	6	-4.601e+0	12.85	0.2597	3.057	6.739	141.8	İ
Ì	7	-4.601e+0	11.08	0.2364	1.26	9.591	969.1	İ
1	8	-4.601e+0	13.08	0.3437	1.391	7.474	496.1	I
1	9	-4.601e+0	6.22	0.4961	1.138	9.275	332.9	ĺ
1	10	-4.601e+0	11.63	0.3494	3.08	6.374	266.4	I
	11	-4.601e+0	11.05	0.2764	3.503	6.573	266.4	
1	12	-4.602e+0	8.277	0.1579	4.804	6.377	240.6	ĺ
į	13	-4.601e+0	9.172	0.6826	3.898	7.528	240.3	İ
Ì	14	-4.601e+0	9.425	0.1739	4.182	7.666	239.4	İ
1	15	-4.601e+0	13.74	0.796	1.816	7.824	496.2	ĺ
Ì	16	-4.601e+0	14.71	0.4103	2.075	7.176	497.0	İ
1	17	-4.601e+0	13.26	0.6539	1.308	8.534	497.7	١
	18	-4.601e+0	13.26	0.3725	2.301	8.577	498.9	ĺ
1	19	-4.601e+0	12.77	0.671	1.905	9.216	496.0	I
	20	-4.601e+0	13.63	0.5031	2.389	8.682	496.1	ĺ
į	21	-4.601e+0	12.67	0.5459	2.387	9.369	496.7	İ
Ì	22	-4.601e+0	14.93	0.3232	1.846	9.121	497.8	İ
į	23	-4.601e+0	11.28	0.8534	2.599	7.635	495.8	İ
Ì	24	-4.601e+0	12.03	0.6976	2.727	6.882	496.8	İ
1	25	-4.601e+0	11.56	0.7478	2.413	8.963	495.1	I
1	26	-4.601e+0	9.816	0.341	2.289	6.821	496.2	I
1	27	-4.601e+0	12.69	0.7902	3.725	8.146	494.2	I
	28	-4.601e+0	11.07	0.5848	3.033	7.542	494.4	
	29	-4.601e+0	7.94	0.8563	2.119	6.6	241.0	ĺ
Ì	30	-4.601e+0	11.17	0.4528	4.434	8.079	495.8	İ
1	31	-4.601e+0	12.18	0.2729	2.625	7.049	495.1	ĺ
Ì	32	-4.601e+0	12.99	0.4549	1.664	9.713	494.6	İ
Ì	33	-4.601e+0	10.12	0.2762	2.331	8.83	495.9	
Ì	34	-4.601e+0	14.13	0.7886	1.138	7.968	495.6	I
	35	-4.6e+05	12.56	0.8839	1.095	7.476	498.1	İ

Mejores parámetros encontrados:

{'max_depth': 12, 'max_features': 0.8839123375750104, 'min_samples_leaf': 1, 'min_samples_split': 7, 'n_estimators': 498}

RMSE en el conjunto de prueba: 460044.24015673326

EVALUACIÓN

```
from sklearn.metrics import mean_squared_error, r2_score

mse = mean_squared_error(y_test, y_pred)

rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)

print("Root Mean Squared Error (RMSE):", rmse)
print("R^2 Score:", r2)

Root Mean Squared Error (RMSE): 460044.24015673326
    R^2 Score: 0.0002590831350839373

from sklearn.model_selection import cross_val_score

# cross-validation
cv_scores = cross_val_score(rf_regressor, x, y, cv=5, scoring='neg_mean_squared_error')
cv_rmse = np.sqrt(-cv_scores)

print("Cross-Validated RMSE:", cv_rmse.mean())

Cross-Validated RMSE: 130710.95869750933
```

OUTPUT FILE

```
df_eval = pd.read_csv('../data/Evaluation.csv', sep=';', encoding='latin1')
df_eval['Turbo'] = df_eval['Engine volume'].map(turbo)
df_eval['Sales Fee'] = df_eval['Sales Fee'].map(to_zero)
df eval['Mileage'] = df eval['Mileage'].map(mileage km)
df eval['Engine volume'] = df eval['Engine volume'].map(engine volume)
df_eval['Doors'] = df_eval['Doors'].map(doors)
df_eval['Category'] = df_eval['Category'].map(freq_category).fillna(0)
df_eval['Manufacturer'] = df_eval['Manufacturer'].map(freq_manufacturer)
df_eval['Model'] = df_eval['Model'].map(freq_model)
df_eval['Gear box type'] = df_eval['Gear box type'].map(freq_gear_box_type)
df_eval['Leather interior'] = label_leather_interior.transform(df_eval['Leather interior']
df_eval['Fuel type'] = df_eval['Fuel type'].map(freq_fuel_type)
df eval['Drive wheels'] = df eval['Drive wheels'].map(freq drive wheels)
df_eval['Mileage'] = df_eval['Mileage'].map(freq_mileage)
df_eval['Wheel'] = df_eval['Wheel'].map(freq_wheel)
df eval['Color'] = df eval['Color'].map(freq color)
df_eval = df_eval.drop('Cylinders', axis=1)
df eval = df eval.drop('Sales Fee', axis=1)
df_eval = df_eval.drop('Color', axis=1)
df_eval = df_eval.drop('Mileage', axis=1)
df_eval = df_eval.drop('Fuel type', axis=1)
df eval = df eval.drop('Manufacturer', axis=1)
```

```
df_eval = df_eval.drop('Leather interior', axis=1)
df_eval = df_eval.drop('Drive wheels', axis=1)
```

6 0.922512 12 0.922512

→ ▼		т.,	Catagoni	Madal	Prod. year	Coon how turns	Facina valuma
7		Id	Category	Model	Prod. year	Gear box type	cligine voiume
	0	15246	0.453183	0.048560	2014	0.702832	1.8
	1	5176	0.453183	0.049477	2013	0.702832	2.5
	2	3143	0.287567	0.002324	2009	0.702832	2.4
	3	3360	0.287567	0.000550	2011	0.096875	3.8
	4	3105	0.027093	0.001835	2013	0.702832	0
	2881	17665	0.453183	0.056021	2009	0.702832	1.5
	2882	6554	0.287567	0.027521	2015	0.702832	2.4
	2883	18661	0.453183	0.017369	2014	0.702832	1.5
	2884	6825	0.453183	0.000673	2014	0.702832	3.5
	2885	11266	0.015779	0.011009	1996	0.096875	2.5
		Doors	Airbags	Wheel T	urbo		

0