Санкт-Петербургский политехнический университет имени Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и физики

Математическая статистика Отчёт по лабораторной работе №9

Выполнил:

Студент: Парусов Владимир

Группа: 5030102/90201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание	
1.	Постановка задачи
2.	Теория
	2.2. Простая линейная регрессия
	2.2.1. Описание модели
	2.2.2. Метод наименьших модулей
	2.3. Простая линейная регрессия
	2.3.1. Описание модели
	2.3.2. Метод наименьших модулей
3.	Реализация
4.	Результаты
5.	Обсуждение
	$5.1.$ Гистограммы w_1 и w_2
	5.2. Коэффициент Жаккара
6.	Литература
7.	Приложения
\mathbf{C}	писок иллюстраций
1.	
2.	Выборки полученные в ходе эксперимента
3.	Интервальное представление данных с первой выборки
4.	I_1^f и Lin_1
5.	Гистограмма значений w_1
6.	Интервальное представление данных со второй выборки
	I_2^f и Lin_2
	Γ истограмма значений w_2
9.	I_1^c
10	. I_2^c
11	. Значение коэффициента жаккара от калибровочного множителя 10

Список таблиц

1. Постановка задачи

Исследование из области солнечной энергетики. На Рис. 1 показана схема установки для исследования фотоэлектрических характеристик.

Рис. 1

Калибровка датчика $\Phi\Pi1$ производится по эталону $\Phi\Pi2$. Зависимость между квантовыми эффективностями датчиков предполагается постоянной для каждой пары наборов измерений

$$QE_2 = \frac{I_2}{I_1} * QE_1 \tag{1}$$

 QE_2 , QE_1 – эталонная эффективность эталонного и исследуемого датчика, I_2 , I_1 – измеренные токи. Данные с датчиков находятся в файлах $Ch2_800nm_0.03.csv$ и $Ch1_800nm_0.03.csv$. Требуется определить коэффициент калибровки

$$R_{21} = \frac{I_2}{I_1} \tag{2}$$

при помощи линейной регрессии на множестве интервальных данных и коэффициента Жаккара.

2 ТЕОРИЯ

2. Теория

2.1. Представление данных

В первую очередь представим данные таким образом, чтобы применить понятия статистики данных с интервальной неопределённостью. Один из распространённых способов получения интервальных результатов в первичных измерениях — это «обинтерваливание» точечных значений, когда к точечному базовому значению \dot{x} , которое считывается по показаниям измерительного прибора прибавляется интервал погрешности ϵ .

$$x = \dot{x} + \epsilon \tag{3}$$

Интервал погрешности зададим как

$$\epsilon = [-\xi, \xi] \tag{4}$$

В конкретных измерениях примем $\xi = 10^{-4} \text{ мB}.$

Согласно терминологии интервального анализа, рассматриваемая выборка - это вектор интервалов. или интервальный вектор $x = (x_1, x_2, x_3, x_4, ...)$.

Информационным множеством в случае оценивания единичной физической величины по выборке интервальных данных будет также интервал, который называют информационным интервалом. Неформально говоря, это интервал, содержащий значения оцениваемой величины, которые «совместны» с измерениями выборки («согласуются» с данными этих измерений).

2.2. Простая линейная регрессия

2.2.1. Описание модели

Регрессионную модель описания данных называют простой линейной, если заданный набор данных аппроксимируется прямой с внесённой добавкой в виде некоторой нормально распределённой ошибки:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i \in \overline{1, n}$$
 (5)

где

 $\{x_n\}_{n\in\mathbb{N}}$ – заданные значения,

 $\{y_n\}_{n\in\mathbb{N}}$ – параметры отклика,

 $\{\varepsilon_n\}_{n\in\mathbb{N}}$ — независимые, центрированные, нормально распределённые случайные величины с неизвестной дисперсией δ , суть предполагаемые погрешности,

 β_0, β_1 – параметры, подлежащие оцениванию.

В данной модели мы считаем, что у заданных значений нет погрешности (пренебрегаем ей). Полагаем, что основная погрешность получается при измерении $\{y_n\}_{n\in\mathbb{N}}$.

4 2 TЕОРИЯ

2.2.2. Метод наименьших модулей

Данный метод основан на минимизации l^1 -нормы разности последовательностей полученных экспериментальных данных $\{y_n\}$ и значений аппроксимирующей функции $f(\{x_n\})$. Увы, автору данного отчёта неизвестно метода, позволяющего решить, как в случае МНК, данную задачу минимизации для линейной комбинации заданного количества базисных функций, действующих на \mathbb{R} , однако метод позволяет решать задачу для линейной функции любой размерности:

$$\|[\boldsymbol{a}, \{x_n\}] - \{y_n\}\|_{l^1} \xrightarrow{\{\lambda_i\}} min$$
 (6)

Данную задачу минимизации можно решать точно, например, используя алгоритм спуска по узловым направлениям. Метод основан на теореме о том, что точка минимума искомой функции лежит в одной из точек нарушения дифференцируемости минимизируемой функции (в точке, где какой-либо модуль обращается в ноль), заданного данными и реализует направленный перебор всех таких точек [2].

Кроме того, можно решать численно, методом Вейсфельда [3]. Суть метода в том, что вместо решения негладкой задачи мы на каждой итерации минимизируем взвешенную l^2 -норму разности, где вес равен величине, обратной невязке на предыдущем шаге (таким образом, мы делим квадрат невязки на текущем шаге на невязку на предыдущем, и получаем "почти невязку" в первой степени, что соответствует l^1 -норме).

2.3. Простая линейная регрессия

2.3.1. Описание модели

Регрессионную модель описания данных называют простой линейной, если заданный набор данных аппроксимируется прямой с внесённой добавкой в виде некоторой нормально распределённой ошибки:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i \in \overline{1, n} \tag{7}$$

где

 $\{x_n\}_{n\in\mathbb{N}}$ – заданные значения,

 $\{y_n\}_{n\in\mathbb{N}}$ – параметры отклика,

 $\{\varepsilon_n\}_{n\in\mathbb{N}}$ — независимые, центрированные, нормально распределённые случайные величины с неизвестной дисперсией δ , суть предполагаемые погрешности,

 β_0, β_1 – параметры, подлежащие оцениванию.

В данной модели мы считаем, что у заданных значений нет погрешности (пренебрегаем ей). Полагаем, что основная погрешность получается при измерении $\{y_n\}_{n\in\mathbb{N}}$.

2.3.2. Метод наименьших модулей

Данный метод основан на минимизации l^1 -нормы разности последовательностей полученных экспериментальных данных $\{y_n\}$ и значений аппроксимирующей функции $f(\{x_n\})$. Увы, автору данного отчёта неизвестно метода, позволяющего решить, как в случае МНК, данную задачу минимизации для линейной комбинации заданного количества базисных функций, действующих на \mathbb{R} , однако метод позволяет решать задачу для линейной функции любой размерности:

$$\|[\boldsymbol{a}, \{x_n\}] - \{y_n\}\|_{l^1} \xrightarrow{\{\lambda_i\}} min$$
 (8)

Данную задачу минимизации можно решать точно, например, используя алгоритм спуска по узловым направлениям. Метод основан на теореме о том, что точка минимума искомой функции лежит в одной из точек нарушения дифференцируемости минимизируемой функции (в точке, где какой-либо модуль обращается в ноль), заданного данными и реализует направленный перебор всех таких точек [2].

Кроме того, можно решать численно, методом Вейсфельда [3]. Суть метода в том, что вместо решения негладкой задачи мы на каждой итерации минимизируем взвешенную l^2 -норму разности, где вес равен величине, обратной невязке на предыдущем шаге (таким образом, мы делим квадрат невязки на текущем шаге на невязку на предыдущем, и получаем "почти невязку" в первой степени, что соответствует l^1 -норме).

3. Реализация

Данная работа реализована на языке программирования Python с использованием редактора VIM и библиотек NumPy, MatPlotLib, Statsmodels, Scipy в OC Ubuntu 19.04.

Отчёт подготовлен с помощью компилятора pdflatex и среды разработки TeXStudio.

6 4 *РЕЗУЛЬТАТЫ*

4. Результаты

Рис. 2. Выборки полученные в ходе эксперимента

Рис. 3. Интервальное представление данных с первой выборки

4 *РЕЗУЛЬТАТЫ* 7

Рис. 4. I_1^f и Lin_1

Рис. 5. Гистограмма значений w_1

8 *4 РЕЗУЛЬТАТЫ*

Рис. 6. Интервальное представление данных со второй выборки

Рис. 7. I_2^f и Lin_2

4 РЕЗУЛЬТАТЫ

9

 ${f Puc.~8.}~~$ Гистограмма значений w_2

Рис. 9. I_1^c

10 4 *РЕЗУЛЬТАТЫ*

Рис. 10. I_2^c

Рис. 11. Значение коэффициента жаккара от калибровочного множителя

7 ПРИЛОЖЕНИЯ 11

5. Обсуждение

5.1. Гистограммы w_1 и w_2

Рассмотрим Рис.5 и Рис.8. По преобладанию множителя 1, можно сказать что примерно половина данных не требует коррекции. Этот факт свидетельствует о том, что линейная модель дрейфа данных является разумным приближением.

5.2. Коэффициент Жаккара

Рассмотрим Рис.11. Оптимальное значение параметра калибровки R_{21} можно принять равным 1.13175. Помимо этого можно сказать, что поведение коэффициента Жаккара как функции от параметров несёт в себе гораздо больше информации, чем просто значение этого коэффициента. Например, в нашем эксперименте, максимум индекса Жаккара имеет значение чуть большее чем 0.1, но совершенно не близкое к 1. Это связано с наличием различных погрешностей, которые на практике невозможно устранить, но несмотря на их наличие, поведение функции Жаккара позволило найти оптимальный калибровочный коэффициент.

6. Литература

- [1] А.Н. Баженов, С.И. Жилин, С.И.Кумков, С.П.Шарый. Обработка и анализ данных с интервальной неопределенностью 2022.
 - [2] Коэффициент Жаккара https://en.wikipedia.org/wiki/Jaccard_index

7. Приложения

1. Репозиторий с кодом программы:

https://github.com/sairsey/MathStats