高雄中學 109 學年度第一學期 期末考 二年級社會組數學科試題 【注意】: 將答案寫在答案卷上, 只繳交答案卷即可。

- 一、**多重選擇題:16**% (每題至少有一個選項是正確的,選出正確選項,每題答對得8分,答錯不倒扣,未答者不給分。 只錯一個選項可獲得5分,錯兩個或兩個以上不給分。)
- 1. 下列敘述何者恆真?
 - (A) 一直線L交一平面E於A點,若在E上過A的每一直線M與L均垂直,則L垂直平面E。
 - (B) 相異兩平面 $E \cdot F$ 交於一線 L, 若 L 垂直於一平面 G, 則 $E \cdot F$ 均垂直於 $G \circ$
 - (C) 三相異平面 E_1 , E_2 , E_3 兩兩交於一直線, 則此三直線平行。
 - (D) 空間中, 若平面 $E \stackrel{.}{\rightarrow} \overline{AB}$ 之垂直平分面, 若點 P 滿足 $\overline{PA} = \overline{PB}$, 則點 P 在平面 $E \stackrel{.}{\rightarrow}$ 。
 - (E) 兩歪斜線在一平面 E 上之正射影有可能是二平行線。
- **2.** 給定向量 $\vec{u} = (2, 2, 1)$, 請選出正確的選項:
 - (A)可找到向量 \overrightarrow{v} 使得 $\overrightarrow{u} \cdot \overrightarrow{v} = \sqrt{2}$
 - (B)可找到向量 \overrightarrow{v} 使得 $\overrightarrow{u} \times \overrightarrow{v} = (1, 3, 4)$
 - (C)若非零向量 \overrightarrow{v} 滿足 $|\overrightarrow{u} \cdot \overrightarrow{v}| = 2 |\overrightarrow{v}|$, 則 $\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{0}$
 - (D)若非零向量 \overrightarrow{v} 滿足 $|\overrightarrow{u} \times \overrightarrow{v}| = 3 |\overrightarrow{v}|$, 則 $|\overrightarrow{u} \cdot \overrightarrow{v}| = 0$
 - (E)若向量 \overrightarrow{v} 滿足 $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ 且 $\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{0}$,則 $\overrightarrow{v} = \overrightarrow{0}$.

二、填充題:84% (答案須化為最簡分數, 最簡根式, 否則不計分)

- **1.** 一三角錐 A-BCD,若 $\overline{AB} = \overline{AC} = \overline{AD} = 5$, $\overline{BC} = \overline{CD} = \overline{DB} = 6$,求此錐體:
 - (1) 體積=_____,
 - (2) 內切球半徑=____,
 - (3) 平面 ABC 與平面 BCD 的二面角 θ , 則 $\sin \theta =$ _____。
 - (4) 直線與 CD 與直線 AB 的距離為_____。

2. 如右圖 ,有一長方體 。 $\overline{AB}=1$, $\overline{AD}=2$, $\overline{AR}=3$, A(0,0,0),點 T 於正 z 軸上 ,則頂點 R 之 z 坐標

1	
□ ,	0
/动	

3. 已知 $\triangle ABC$ 中,其三邊長為 $\overline{AB} = 4$, $\overline{BC} = 6$, $\overline{CA} = 8$,如圖所示,且 P 為 $\triangle ABC$ 內部一點,到三邊之距離分別為 $x \cdot y \cdot z$, 試求 $\frac{2}{x} + \frac{3}{y} + \frac{4}{z}$ 之最小值為_____。

4. 正四面體 ABCD, \overline{AP} 上平面 BCD 於 P, E 在 \overline{AC} 上且 $\overline{AE} = 2\overline{EC}$, F 為 \overline{AD} 中點, \overline{AP} 與平面 BEF 交點為 Q, 求 \overline{AQ} : $\overline{QP} =$ _______。

5. 將長方形 ABCD 沿著對角線 AC 摺起, 使平面 ABC 與平面 ADC 互相垂直, 若 \overline{AB} =3,

6. \overrightarrow{a} 、 \overrightarrow{b} 為空間中兩向量,滿足 $|\overrightarrow{a}|=3$, $|\overrightarrow{b}|=4$, $|\overrightarrow{3}\overrightarrow{a}+\overrightarrow{b}|=9$,求 $|\overrightarrow{3}\overrightarrow{a}\times\overrightarrow{b}|=$ ______.

8. 設 $a, b, c \in R, a^2 + b^2 + c^2 = 12$,求 $\triangle = \begin{vmatrix} a & b & c \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{vmatrix}$ 之最大值=_____。

9. 空間中四點 A(0,-1,2), B(-1,-1,3), C(3,0,1), D(k,2,1), 若四面體 ABCD 的體積 為 4, 求 k 值=_____。(全對才給分)

10. 設 \vec{a} , \vec{b} , \vec{c} 三向量所決定的平行六面體體積為 2, 求三向量 $3\vec{a}-\vec{b}$, $2\vec{b}+3\vec{c}$, $\vec{a}+\vec{b}-\vec{c}$, 所決定的平行六面體體積為_____。

高雄中學 109 學年度第一學期 期末考 二年級社會組數學科 答案卷

高二 ____班 座號: _____ 姓名: _____

一、多重選擇題:16% (每題至少有一個選項是正確的,選出正確選項,每題答對得8分,答錯不倒扣,未答者不給分。 只錯一個選項可獲得5分,錯兩個或兩個以上不給分。)

1.	2.
ABDE	ADE

二、填充題:84% (答案須化為最簡分數, 最簡根式, 有理化分母, 否則不計分)

答對 格數	1	2	3	4	5	6	7	8	9	10	11	12	13
得分	10	20	30	40	50	55	60	65	70	75	78	81	84

1.(1)	1.(2)	1.(3)	1.(4)
$3\sqrt{39}$	$\frac{4\sqrt{39}-3\sqrt{13}}{13}$	$\frac{\sqrt{13}}{4}$	$\frac{3\sqrt{39}}{5}$

2.	3.	4.	5.
$\frac{9\sqrt{14}}{14}$	$\frac{9\sqrt{15}}{5}$	2:1	$\frac{\sqrt{337}}{5}$

6.	7.	8.	9.
$4\sqrt{77}$	$\frac{3\sqrt{2}}{2}$	$6\sqrt{2}$	31,-17

10.	
36	