2 Parametric Bootstrap

In a nonparametric bootstrap, we resample the obsered data

Create a bootstrapped scaple yt, -, yt iid from expirial dan fr. iid can, equivalet to resempling original docta V/ replacement.

In a parametric bootstrap, Assume a parametric model.

Key idea: use a fitted parametric model $\hat{F}(y) = F(y|\hat{\gamma})$ to estimate F where $\hat{\Psi}$ estimate using MLE (orange method) from data.

Create a bootstrapped sample $y_1^*,..,y_n^*$ iid from $F(y_1)\hat{\Psi}$. i.e. resample from a model u/ parenters estimated using original data.

For both methods,

- (1) Comprote of for each bootstrapped scaple of \$(5), 1, 1, 1, 100
- a report procedure B times to get 1 * (1) 1*(10) and make informers using the result.

25

2.1 Bootstrapping for linear regression

Consider the regression model $\underline{Y_i} = \boldsymbol{x}_i^T \boldsymbol{\beta} + \epsilon_i, i = 1, \dots, n \text{ with } \epsilon_i \overset{iid}{\sim} N(0, \sigma^2).$

Y, ... , not iid! They have differt conditional means.

Rescapling in the bootstap must be completed on its questives.

Two approaches for bootstrapping linear regression models —

- 1. Bootstapping the residuals (model based, parametric).
- 2. Paired bootstrapping (case resampling, non parametric)

2.1.1 Bootstrapping the residuals (made -based).

- 1. Fit the regression model using the original data $\,$
- 2. Compute the residuals from the regression model, errors & one assured itd.

$$\hat{m{\epsilon}}_i = y_i - \hat{y}_i = y_i - m{x}_i^T \hat{m{eta}}, \quad i = 1, \dots, n$$

- 3. Sample $\hat{\epsilon}_1^*, \dots, \hat{\epsilon}_n^*$ with replacement from $\hat{\epsilon}_1, \dots, \hat{\epsilon}_n$.
- 4. Create the bootstrap sample $y_i^* = x_i^T \hat{\beta} + \epsilon_i^*, \quad i = 1, \dots, n \quad \Rightarrow \text{ at} \quad \begin{bmatrix} y_i^*, z_i \end{bmatrix}$ 5. Estimate $\hat{\beta}^*$ fit regression model on bootstrapped data to at $\hat{\beta}^*$
- 6. Repeat steps B times to create B bootstrap estimates of $\hat{\beta}$.

Assumptions:

- design matrix X is fixed.

2.1.2 Paired bootstrapping (case resampling).

Resample $z_i^* = (y_i, \boldsymbol{x}_i)^*$ from the empirical distribution of the pairs (y_i, \boldsymbol{x}_i) .

Fit regression model w/ n bootstrapped pairs
$$(y_i, Z_i)^k$$
.
 $y_i^* = (x_i^*)^T \beta + \xi_i^* \quad i=1,...,n$

Assumptions:

2.1.3 Which to use?

1. Standard inferences - I.e. corber part of this class, likelihood approaches.

- 2. Bootstrapping the residuals -
 - Most appropriate for designed experiments where X is fixed in advance.
 - model based, model must be reasonable fit for the data.
 - useful if complex sampley den for Br maybe some wind nonlinear function maybe.
- 3. Paired bootstrapping -
 - robust To model misspecification.
 - useful for observational studies where values of predictors gen't fixed in advance

 bootstrap mirrors data generating process.

Your Turn

This data set is the Puromycin data in R. The goal is to create a regression model about the rate of an enzymatic reaction as a function of the substrate concentration.

```
head(Puromycin)
```

```
## conc rate state
## 1 0.02 76 treated
## 2 0.02 47 treated
## 3 0.06 97 treated
## 4 0.06 107 treated
## 5 0.11 123 treated
## 6 0.11 139 treated
```

```
dim(Puromycin)
```

```
## [1] 23 3
```

```
ggplot(Puromycin) +
  geom_point(aes(conc, rate))

ggplot(Puromycin) +
  geom_point(aes(log(conc), (rate)))
```


2.1.4 Standard regression

```
m0 <- lm(rate ~ conc, data = Puromycin)</pre>
plot(m0)
summary(m0)
##
## Call:
## lm(formula = rate ~ conc, data = Puromycin)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -49.861 -15.247 -2.861 15.686 48.054
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 93.92 8.00 11.74 1.09e-10 ***
## conc
               105.40 16.92 6.23 3.53e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.82 on 21 degrees of freedom
## Multiple R-squared: 0.6489, Adjusted R-squared: 0.6322
## F-statistic: 38.81 on 1 and 21 DF, p-value: 3.526e-06
confint(m0)
##
                  2.5 %
                         97.5 %
## (Intercept) 77.28643 110.5607
## conc
             70.21281 140.5832
m1 <- lm(rate ~ log(conc), data = Puromycin)</pre>
plot(m1)
summary(m1)
##
## Call:
## lm(formula = rate ~ log(conc), data = Puromycin)
```

```
##
## Residuals:
              1Q Median 3Q
      Min
                                      Max
## -33.250 -12.753 0.327 12.969 30.166
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 190.085 6.332 30.02 < 2e-16 ***
## log(conc)
              33.203
                           2.739 12.12 6.04e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.2 on 21 degrees of freedom
## Multiple R-squared: 0.875, Adjusted R-squared: 0.869
## F-statistic: 146.9 on 1 and 21 DF, p-value: 6.039e-11
confint(m1)
                                   e based on asymptotic hamility of MLE
+ Fisher Information.
##
                  2.5 %
                          97.5 %
```

(Intercept) 176.91810 203.2527 ## log(conc) 27.50665 38.8987

2.1.5 Paired bootstrap

```
# Your turn
library(boot)

reg_func <- function(dat, idx) {
    # write a regression function that returns fitted beta
}

er write your our is fire.

# use the boot function to get the bootstrap samples

# examing the bootstrap sampling distribution, make histograms

# get confidence intervals for beta_0 and beta_1 using boot.ci
```

2.1.6 Bootstrapping the residuals

```
# Your turn
library(boot)

reg_func_2 <- function(dat, idx) {
    # write a regression function that returns fitted beta
    # from fitting a y that is created from the residuals
}

# use the boot function to get the bootstrap samples
# examing the bootstrap sampling distribution, make histograms
# get confidence intervals for beta_0 and beta_1 using boot.ci</pre>
```

3 Bootstrapping Dependent Data

Suppose we have dependent data $\mathbf{y} = (y_1, \dots, y_n)$ generated from some unknown distribution $F = F_{\mathbf{Y}} = F_{(Y_1, \dots, Y_n)}$.

Goal:

To approximate den of a statistic
$$\theta = T(y)$$
.

Challenge:

We will consider 2 approaches

- (1) Model -based (parametric).
- 2) Block bootstrap (nonparametric).

Example 3.1 Suppose we observe a time series $Y = (Y_1, ..., Y_n)$ which we assume is generated by an AR(1) process, i.e.,

Why not just move forward with our nonparametric bootstrap procedure? Failure of nonparametric vide bootstrap for Ts data. Let's suppose $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary, m-dependent process with $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary, m-dependent process with $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary of the state of nonparametric vide bootstrap for Ts data.

Let's suppose $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary of m-dependent process with $\{X_t\}_{t\in\mathbb{Z}}$ in $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary of m-dependent process with $\{X_t\}_{t\in\mathbb{Z}}$ in $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary of m-dependent process with $\{X_t\}_{t\in\mathbb{Z}}$ in $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary of m-dependent process with $\{X_t\}_{t\in\mathbb{Z}}$ in $\{X_t\}_{t\in\mathbb{Z}}$ in $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary of m-dependent process with $\{X_t\}_{t\in\mathbb{Z}}$ in $\{X_t\}_{t\in\mathbb{Z}}$ in

 $(X_{t_1},...,X_{t_k}) \stackrel{d}{=} (X_{t_1+h},...,X_{t_k+h})$ for any $t_1,...,t_k$, h

This a stronger assumption than AR(1) in the dependent.

Say we want to approximate den of $T_n = J_n(\overline{X}_n - M)$. Say we apply iid bootstrap: $D_n = J_n(\overline{X}_n - M)$. Say we apply iid bootstrap: $D_n = J_n(\overline{X}_n^* - E_n \times M) = J_n(\overline{X}_n^* - E_n \times M) = J_n(\overline{X}_n^* - \overline{X}_n)$ and approximate $P(T_n \leq x)$ with $P_n(T_n^* \leq x)$, $x \in \mathbb{R}$.

Thin: If X_1, X_2, \dots stationary, m-dependent process of $Var(X_1) = 6^2 < \infty$, then $\sup_{X \in R} \left| P_*(T_n^* \leq x) - \overline{\Phi}\left(\frac{x}{6}\right) \right| \equiv A_n \longrightarrow 0 \text{ as } n \to \infty \text{ a.s.}$

Proof is very similar to iid version (pg. 6-7). Just relies on M-Z SLLN to hold for m-dependent process, which it does.

Problem? If $\{x_t\}$ is stationey of m-dependent, them controved converge theorem lim $Var(\sqrt{n} \ \overline{X}_n) = \lim_{n \to \infty} Var(T_n) = \sum_{k=-\infty}^{\infty} r(k) = \sum_{k=-\infty}^{\infty} r(k) = 6^{2}_{\infty}$.

If $\delta_{\infty}^2 > 0$, then $T_n = \sqrt{n}(\overline{X}_n - m) \to N(0, \delta_{\infty}^2)$ by a CLT.

So iid bootstrap will fail unless $\delta_{\infty}^2 = \delta^2 = r(0)$ In practice, $\delta_{\infty}^2 > r(0)$ holds most often \Rightarrow we are under estimating uncertainty of iid bootstrap!

This was for m-dependent process, which is a very strong assumption! Under more realistic process, may be even worse.

3.1 Model-based approach

If we assume an AR(1) model for the data, we can consider a method similar to bootstrapping residuals for linear regression.

 ${f Model-based}$ — the performance of this approach depends on the model being appropriate for the data.

3.2 Nonparametric approach

To deal with dependence in the data, we will employ a nonparametric *block* bootstrap.

Idea:

3.2.1 Nonoverlapping Blocks (NBB)

Consider splitting $\boldsymbol{Y}=(Y_1,\ldots,Y_n)$ in b consecutive blocks of length ℓ .

We can then rewrite the data as $Y = (B_1, \ldots, B_b)$ with $B_k = (Y_{(k-1)\ell+1}, \ldots, Y_{k\ell})$, $k = 1, \ldots, b$.

Note, the order of data within the blocks must be maintained, but the order of the blocks that are resampled does not matter.

3.2.2 Moving Blocks (MBB)

Now consider splitting $Y = (Y_1, \dots, Y_n)$ into overlapping blocks of adjacent data points of length ℓ .

We can then write the blocks as $oldsymbol{B}_k = (Y_k, \dots, Y_{k+\ell-1}), \, k=1,\dots,n-\ell+1.$

3.2.3 Choosing Block Size

If the block length is too short,

If the block length is too long,

Your Turn

We will look at the annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell & Davis (1991).

```
data(lynx)
plot(lynx)
```


Goal: Estimate the sample distribution of the mean

```
theta_hat <- mean(lynx)
theta_hat</pre>
```

```
## [1] 1538.018
```

3.2.4 Independent Bootstrap

```
library(simpleboot)
B <- 10000

## Your turn: perform the independent bootstap
## what is the bootstrap estimate se?</pre>
```

We must account for the dependence to obtain a correct estimate of the variance!

```
acf(lynx)
```

Series lynx

The acf (autocorrelation) in the dominant terms is positive, so we are *underestimating* the standard error.

3.2.5 Non-overlapping Block Bootstrap

```
# function to create non-overlapping blocks
nb <- function(x, b) {</pre>
  n <- length(x)</pre>
  1 <- n %/% b
  blocks <- matrix(NA, nrow = b, ncol = 1)</pre>
  for(i in 1:b) {
    blocks[i, ] \leftarrow x[((i - 1)*l + 1):(i*l)]
  }
  blocks
}
# Your turn: perform the NBB with b = 10 and l = 11
theta_hat_star_nbb <- rep(NA, B)</pre>
nb blocks <- nb(lynx, 10)</pre>
for(i in 1:B) {
 # sample blocks
 # get theta_hat^*
}
# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?
```

3.2.6 Moving Block Bootstrap

```
# function to create overlapping blocks
mb <- function(x, 1) {</pre>
 n <- length(x)</pre>
  blocks \leftarrow matrix(NA, nrow = n - 1 + 1, ncol = 1)
  for(i in 1:(n - 1 + 1)) {
    blocks[i, ] <- x[i:(i + 1 - 1)]
  }
 blocks
}
# Your turn: perform the MBB with 1 = 11
mb blocks <- mb(lynx, 11)</pre>
theta hat star mbb <- rep(NA, B)
for(i in 1:B) {
 # sample blocks
 # get theta_hat^*
# Plot your results to inspect the distribution
# What is the estimated standard error of theta hat? The Bias?
```

3.2.7 Choosing the Block size

```
# Your turn: Perform the mbb for multiple block sizes 1 = 1:12
# Create a plot of the se vs the block size. What do you notice?
```

4 Summary

Bootstrap methods are simulation methods for frequentist inference.

Bootstrap methods are useful for

Bootstrap methods can fail when