CHAPTRE TWO

VECTORS

- A vector is a physical quantity which has both magnitude and direction.
- Example are
 - a. A force of 20N acting North.
 - b. A velocity of 5km/h East.

Types of vectors:

- In general the are two types and these are
 - i. Free vector.
 - ii. Position vector.

Free vector:

- A free vector is a vector which does not pass through any specific position.
- They are usually represented by small letters e.g $e.g \stackrel{a.b}{\sim} and \stackrel{c}{\sim}$

Position vector:

This is a vector which passes through the origin or a specified point.

Vector notation:

- A vector may be represented by a line segment as shown next:

A — → B

- This given vector can be represented by \overrightarrow{AB} , \overrightarrow{AB}

The Triangle law:

According to the triangle law,

$$\overline{AC} = \overline{AB} + \overline{BC} \Longrightarrow \overline{AB} = \overline{AC} - \overline{BC} \text{ and } \overline{BC} = \overline{AC} - \overline{AB}$$

The unit vector:

- This is a vector whose magnitude is one in the direction under consideration.
- The unit vector along a vector \vec{a} is written as \hat{a}
- Also the unit vector along a vector \vec{b} is written as \hat{b}
- The unit vector along the vector \overline{BC} is written as \widehat{BC}
- Consider the vector $A \longrightarrow B = 1$
- The vector is written as \overrightarrow{AB} and its unit vector is written as \widehat{AB} .

Equal vectors:

- Two vectors are said to be equal if their magnitudes and directions are equal
- Example are $\overline{AB} = 50km/hE$ and $\overline{CD} = 50km/h$ E.

The negative vector:

- The negative of the vector $\frac{a}{\sim}$ is written as -a
- If $\stackrel{a}{\sim}$ is the negative vector of the vector $\stackrel{a}{\sim}$, then $\stackrel{a}{\sim} + (\stackrel{a}{\sim}) = \stackrel{o}{\sim}$.
- The vector $\stackrel{a}{\sim}$ is a vector of the same magnitude as $\stackrel{a}{\sim}$, but it is opposite in direction.
- It must be noted that $\overline{AB} + \overline{BA} = {}^{o}_{\sim}$.
- Also if $\stackrel{b}{\sim} = \overrightarrow{CD}$, then $\stackrel{-b}{\sim} = \overrightarrow{DC}$, and $\overrightarrow{CD} + \overrightarrow{DC} = \stackrel{o}{\sim}$.
- If we consider a vector \overline{CD} , then its negative vector is \overline{DC} .

The zero vector (null vector):

- This is a vector where magnitude is zero and its direction is undefined.
- It is represented by $Q = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Notation of the magnitude of a vectors:

- If \overline{AB} is a vector, then its magnitude is written as $|\overrightarrow{AB}|$
- Similarly the magnitude of the vector \vec{b} is written as $|\vec{b}|$

- If $\overline{OP} = \binom{a}{b}$, then its magnitude = $|\overline{OP}| = \sqrt{a^2 + b^2}$

Q1. i. If OP = $\binom{6}{5}$, find the magnitude of \overline{OP} .

ii. Find \emptyset the angle between \overline{OP} and the x – axis

Soln.

i.
$$\overrightarrow{OP} = \sqrt{6^2 + 5^2} = \sqrt{61} = 7.8$$

ii.
$$\tan \emptyset = \frac{5}{6} \Rightarrow \tan \emptyset = 0.83 \Rightarrow \emptyset = \tan^{-1} 0.83 \Rightarrow \emptyset = 40.$$

Scalar multiplication of vector:

- If $^{\land}$ is the scalar and \overline{a} is the vector, then the scalar x the vector = $^{\land} \vec{a}$
- When a scalar multiplies a vector, the product is also a vector, and for this reason $^{\wedge}\bar{a}$ is also a vector.
- The vector $\stackrel{\wedge a}{\sim}$ is parallel to $\stackrel{a}{\sim}$, and is in the same direction as $\stackrel{a}{\sim}$, but has $\stackrel{\wedge}{\sim}$ times the magnitude of $\stackrel{a}{\sim}$.
- For example the vectors \vec{a} and $2\vec{a}$ have the same direction.

i.e
$$|\vec{a}|$$
 $|2\vec{a}|$

- But the vectors \vec{a} and and $-2\vec{a}$ are opposite in direction.
- $(\vec{a} + \vec{b}) = \vec{a} + \vec{b}$, e.g $6(\vec{a} + \vec{b}) = 6\vec{a} + 6\vec{b}$
- Also $(2+4) \vec{a} = 2\vec{a} + 4\vec{a}$
- Finally $^{\land}_{1}(^{\land}_{2}\vec{a}) = ^{\land}_{1} ^{\land}_{2}\vec{a}$, e.g $3(2\vec{a}) = 6\vec{a}$

N/B:

- If $P(x_1, y_1)$ is a point in the x y plane, then the position vector of P relative to the origin, O is defined by $\overrightarrow{OP} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$
- Also if A = (0,6), then $\overrightarrow{OA} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$
- Q2. Find the numbers m and n such that

$$M\binom{3}{5} + n\binom{2}{1} = \binom{4}{9}$$

Soln.

$$M\binom{3}{5} + n\binom{2}{1} = \binom{4}{9} \Longrightarrow \binom{3m}{5m} + \binom{2n}{n} = \frac{4}{9}$$

$$\Rightarrow$$
 3m + 2n = 4 eqn(1).

$$5m + n = 9 \dots eqn(2)$$

Solve eqns (1) and (2) simultaneously

$$\Rightarrow$$
 $m = 2$ and $n = -1$

Q3. If mp + nq = $\binom{4}{3}$, find m and n where m and n are scalar, given that p = $\binom{2}{3}$ and $q = \binom{2}{5}$

Soln.

$$p = {2 \choose 3}$$
 and $q = {2 \choose 5}$ but $mp + nq = {4 \choose 3}$

$$\Rightarrow m \binom{2}{3} + n \binom{2}{5} = \binom{4}{3} \Rightarrow \binom{2m}{3m} + \binom{2n}{5n} = \binom{4}{3}$$

$$\Rightarrow 2m + 2n = 4 - (1)$$

$$3m + 5n = 3 - (3)$$

Solve eqns (1) and (2) simultaneously to get the values of m and n.

Q4. If
$$r = \binom{3}{1}$$
 and $s = \binom{-2}{1}$, evaluate $6(r + 25)$

Consider 6(r + 2s), solve what is inside the bracket first

$$\Rightarrow r + 2s = \binom{3}{1} + \binom{-2}{1} = \binom{3}{1} + 2\binom{-4}{2} \Rightarrow r + 2s = \binom{3+\overline{4}}{1+2} = \binom{-1}{3} \Rightarrow 6(r+2s) = 6\binom{-1}{3} = \binom{-6}{18}$$

Q5. If
$$p = \binom{1}{2}$$
, $q = \binom{-2}{3}$ and $r = \binom{1}{1}$, find $2p - q + r$

Soln.

$$2p - q + r = 2\binom{1}{2} - \binom{-2}{3} + \binom{1}{1} = \binom{2}{4} - \binom{-2}{3} + \binom{1}{1} = \binom{2+2+1}{4-3+1} = \binom{5}{2} \Longrightarrow 2p - q + r = \binom{5}{2}.$$

Q6. If the vector
$$p = {2 \choose 3}$$
, $q = {2 \choose 5}$ and $r = \frac{1}{2}(q - p)$,

Find the vector r.

Soln.

r =

$$\frac{1}{2}(q-p) \Longrightarrow r = \frac{1}{2}\left\{\binom{2}{5} - \binom{2}{3}\right\} \Longrightarrow r = \frac{1}{2}\left\{\binom{2-2}{5-3}\right\} = \frac{1}{2}\left\{\binom{0}{2}\right\} = \left\{\binom{1}{2}(0)\right\} = \left\{\binom{0}{1}\right\} \Longrightarrow r = \left\{\binom{0}{1}\right\}$$

N/B: Given the points A and B, then $\overrightarrow{AB} = B - A$.

Examples: If A =

$$\binom{5}{2}$$
 and $B = \binom{10}{6}$, then $\overrightarrow{AB} = B - A = \binom{10}{6} - \binom{5}{2} = \binom{10-5}{6-2} = \binom{5}{4}$

Also if C =

$$\binom{4}{2} \ and \ D = \binom{6}{1}, then \ \overrightarrow{CD} = D - C = \binom{6}{1} - \binom{4}{2} = \binom{6-4}{1-2} = \binom{2}{-1} \Longrightarrow \overrightarrow{CD} = \binom{2}{-1}$$

Q7. If A = (4, 5) and B = (6, 2), find \overline{AB}

Soln

$$A = (4,5) \Rightarrow A = {4 \choose 5}$$
. Also $B = (6, 2)$
 $\Rightarrow B = {6 \choose 2}$. $\overline{AB} = B - A = {6 \choose 2} - {4 \choose 5} = {6-4 \choose 2-5} = {2 \choose -3} \Rightarrow \overline{AB} = {2 \choose -3}$.

N/B: If
$$\overline{AB} = \binom{4}{2} \Longrightarrow \overline{BA} = -\overline{AB} = -\binom{4}{2} = \binom{-4}{-2}$$

Also if
$$\overrightarrow{CD} = {\binom{-2}{5}} \Longrightarrow \overrightarrow{DC} = -\overrightarrow{CD} = -{\binom{-2}{5}} = {\binom{2}{-5}}$$

Q8. If A and B are the points (2, 1) and (1, 2) respectively, find \overline{AB} and \overline{BA} Soln.

$$A = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Longrightarrow \overrightarrow{AB} = B - A = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1-2 \\ 2-1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\overline{BA} = -\overline{AB} = -\begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Q9. Given $A = {4 \choose 1}$ and $B = {-5 \choose 4}$ and the scalar as 2,

evaluate i. $\overrightarrow{2A}$ ii. $2\overrightarrow{AB}$ iii. 2(A - B)

Soln.

i.
$$A = \binom{4}{1} \Longrightarrow 2A = 2\binom{4}{1} = \binom{8}{2}$$

ii. $A = \binom{4}{1}$ and $B = \binom{-5}{4}$, then
$$\overline{AB} = B - A = \binom{-5}{4} - \binom{4}{1} = \binom{-5-4}{4-1} = \binom{-9}{3} \Longrightarrow \overline{AB} = \binom{-9}{3}$$
Since $\overline{AB} = \binom{-9}{3}$, then $2\overline{AB} = 2\binom{-9}{3} = \binom{-18}{6}$
iii. $2(A - B) = ?$ but $A = \binom{4}{1}$ and $B = \binom{-5}{4}$

iii.
$$2(A - B) = ?$$
 but $A = {4 \choose 1}$ and $B = {-5 \choose 4}$
 $A - B = {4 \choose 1} - {-5 \choose 4} = {4+5 \choose 1-4} = {9 \choose -3}$
Since $A - B = {9 \choose -3} \Rightarrow 2(A - B) = 2{9 \choose -3} = {18 \choose -6}$

Q10. If A = (2, 4) and B = (4, 9), find $|\overline{AB}|$ ie the magnitude of AB.

Soln.

A =
$$\binom{2}{4} \text{ and } B = \binom{4}{9} \Longrightarrow \overline{AB} = B - A = \binom{4}{9} - \binom{2}{4} = \binom{2}{5} \Longrightarrow \overline{AB} = \binom{2}{5}. \ \overline{AB} = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} \Longrightarrow AB = \sqrt{29} = 5.4$$

Q11. If A = (-5, 2) and B(-8 - -9),

- i. Find the vector \overrightarrow{BA}
- ii. Calculate the length of \overline{BA}

i.
$$A = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$$
 and $B \begin{pmatrix} -8 \\ -9 \end{pmatrix} \Rightarrow AB = B - A = \begin{pmatrix} -8 \\ -9 \end{pmatrix} - \begin{pmatrix} -5 \\ 2 \end{pmatrix} = \begin{pmatrix} -8+5 \\ -9-2 \end{pmatrix} = \begin{pmatrix} -3 \\ -11 \end{pmatrix} \Rightarrow \overline{AB} = \begin{pmatrix} -3 \\ -11 \end{pmatrix}$, but $\overline{BA} = -AB \Rightarrow \overline{BA} = \begin{pmatrix} 3 \\ 11 \end{pmatrix}$

ii. The length of
$$\overline{BA}$$
 = the magnitude of \overline{BA} \Rightarrow length of \overline{BA} = $\sqrt{3^2 + 11^2}$ = $\sqrt{9 + 121}$ = $\sqrt{130}$ = 11.4 \Rightarrow the length of \overline{BA} = 11.4

Q12. If
$$C = (4, 1)$$
 and $D = (2, 6)$,

- a. find the vector \overline{CD}
- b. calculate the length of \overline{DC}

Soln.

$$\overline{CD} = D - C = \binom{2}{6} - \binom{4}{1} = \binom{2-4}{6-1} = \binom{-2}{5}.\overline{DC} = -\binom{-2}{5} = \binom{2}{-5} \Longrightarrow \overline{DC} = \binom{2}{-5}$$
a. $\binom{2}{-5}$

b. The length of $\overline{DC} = \sqrt{2^2 + (-5)^2} = \sqrt{4 + 25} = \sqrt{29} = 5.4$

Q13. If
$$C = (1, 3)$$
 and $D = (2, 4)$ find \overline{CD}

Soln.

$$\vec{C} = \binom{1}{3} \text{ and } \vec{D} = \binom{2}{4} \Longrightarrow \vec{C}\vec{D} = \vec{D} - \vec{C} = \binom{2}{4} - \binom{1}{3} = \binom{1}{1} : :$$

$$\vec{C}\vec{D} = \binom{1}{1} \Longrightarrow \vec{C}\vec{D} = \sqrt{1+1} = \sqrt{2} = 1.4$$

Q14. If
$$\vec{p} = \binom{2}{1}$$
 and $\vec{q} = \binom{-3}{2}$, evalute

i.
$$\vec{P} + \vec{q}$$
 | ii. $\vec{p}\vec{q}$ |

i.
$$\vec{P} + \vec{q} = \binom{2}{1} + \binom{-3}{2} = \binom{-1}{3}, \therefore \vec{p} + \vec{q} = \binom{-1}{3} \implies \vec{p} + \vec{q} = \sqrt{(-1)^2 + 3^2} = \sqrt{1 + 9} = \sqrt{10} = 3.2$$

ii.
$$\overrightarrow{pq} = q - p = \binom{-3}{2} - \binom{2}{1} = \binom{-5}{1} \Longrightarrow \overrightarrow{pq} = \binom{-5}{1}$$
.

$$|pq = \sqrt{(-5)^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} = 5.1$$

Q15. If Q is the point (2,4) and $\overrightarrow{QR} = \binom{1}{3}$, find the coordinates of R.

Soln.

Q = (2, 4) and
$$\overrightarrow{QR} = \binom{1}{3}$$
, then the coordinates of R
= (2+1, 4+3) = (3, 7)

The coordinates of R = (3, 7)

Q16. If z = (1,2) and $\overline{zy} = {-1 \choose 3}$, find the coordinates of y.

Soln.

Since z = (1,2) and $\overline{zy} = {-1 \choose 3}$, then the coordinates of

$$y = (1 + \overline{1}, 2 + 3) = (0,5) \Rightarrow \text{the coordinates of } y = (0,5) \text{ or } {0 \choose 5}.$$

Q17. If A = (1, 5) and $\overline{BA} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$, find the coordinates of B.

N/B: Since the point given is A and the vector given is \overline{BA} , then \overline{BA} must first be changed into \overline{AB}

Soln.

Since A is given as (1, 5), we must find \overrightarrow{AB} , but $since \overline{BA} = {-2 \choose -3}$, then $\overrightarrow{AB} = -\overline{BA} \Longrightarrow \overline{AB} = -{-2 \choose -3} \Longrightarrow \overline{AB} = {2 \choose 3}$.

Now since A = (1, 5) and $\overline{AB} = \binom{2}{3}$, then

$$B = (1+2, 5+3)$$
: $B = (3,8)$.

Q18. If Q = (4, 1) and $\overline{RQ} = \binom{2}{-3}$, find the coordinates of R.

Soln.

Since Q = (4, 1) and $\overline{RQ} = \binom{2}{-3}$, we must first find \overline{QR} .

$$\overline{QR} = -\overline{RQ} \Longrightarrow \overline{QR} = -\binom{2}{-3} \Longrightarrow \overline{QR} = \binom{-2}{3}$$

Now Q = (4, 1) and $\overline{QR} = {\binom{-2}{3}}$, then the

coordinates of R = (-2 + 4,1 + 3) = (2,4)

Q19. If $C = \binom{1}{3}$ and $\overline{DC} = \binom{-1}{2}$, find the

coordinates of D.

Soln.

$$C = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \Rightarrow C = (1,3).Since \overline{DC} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \Rightarrow \overline{CD} = -\overline{DC} \Rightarrow \overline{CD} = -\begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Now $C = \binom{1}{3}$ and $\overline{CD} = \binom{1}{-2}$ \Longrightarrow the coordinates of D

$$=(1+1,3+\overline{2})=(2,1)$$

Q20. If A = (1,2), $\overline{AB} = \binom{3}{4}$ and $\overline{AC} = \binom{5}{-3}$, find the coordinates of B and C.

Soln.

Since A = (1, 2) and

$$\overline{AB} = \binom{3}{4}$$
, then the coordinates of $B = (1+3,2+4) = (4,6)$

Also Since A = (1, 2) and

$$\overline{AC} = \binom{5}{-3}$$
 then the coordinates of $C = (1+5,2+\overline{3}) = (6,-1)$

Q21. Given B(4,2),
$$\overline{BC} = {\binom{-1}{5}}$$
 and $\overline{BD} = (1,3)$,

determine the coordinates of C and D.

Since B = (4, 2) and
$$\overline{BC} = {1 \choose -5} \Rightarrow$$
 the coordinates
of $C = (4 + \overline{1}, 2 + \overline{5}) = (4 - 1, 2 - 5) = (3, -3).B = (4, 2) and BD = (1, 3)$
 \Rightarrow coordinates of $D = (4 + 1, 2 + 3) = (5, 5)$

Q22. If A is the point (2, 3),

$$\overline{BA} = \binom{2}{-3}$$
 and $\overline{CA} = \binom{-1}{-5}$, determine the coordinates of B and C

N/B: Since the point given is point A, then \overline{BA} must be changed into \overline{AB} . Also \overline{CA} must be changed into \overline{AC} .

Soln.

$$\overline{BA} = \binom{2}{-3} \Longrightarrow \overline{AB} = -\overline{BA} = -\binom{2}{-3} \Longrightarrow \overline{AB} = \binom{-2}{3}.$$

Also
$$\overline{AC} = -\overline{CA} = -\begin{pmatrix} -1 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}, \therefore \overline{AC} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

Now since A = (2, 3) and $\overline{AB} = {-2 \choose 3}$, then the coordinates of

$$B = (2 + \overline{2}, 3 + 3) = (0,6)$$

Also since A = (2,3) and $\overline{AC} = \binom{1}{5}$, then the coordinates of C = (2+1, 3+5)= (3, 8)

Q23. The point C is given as (4, 1),

$$\overline{CD} = \binom{1}{2}$$
 and $\overline{DE} = \binom{3}{5}$, find the coordinates of D and E.

Soln.

Since C = (4, 1) and $\overline{CD} = \binom{1}{2}$, the the coordinates of

$$D = (4 + 1,1 + 2) \Longrightarrow D(5,3)$$

Now D = (5, 3) and $\overline{DE} = \binom{3}{5} \Longrightarrow$ the coordinates of E

$$= (5+3,3+5) \Rightarrow E = (8,8)$$

Q24. If the point A is given as

$$\binom{3}{4}$$
 and $\overrightarrow{AB} = \binom{-2}{1}$ and $\overrightarrow{BC} = \binom{5}{1}$, find the coordinates of B

and C.

Soln.

$$A = \binom{3}{4}$$
 and $\overline{AB} = \binom{-2}{1}$ \Longrightarrow the coordinates of B = $(3+\overline{2},4+1) = (1,5)$.

Now B = (1, 5) and $\overline{BC} = \binom{5}{1} \Longrightarrow$ the coordinates of C

$$=(1+5,5+1)=(6,6)$$

Q25. Given A(4, 1), $\overline{BA} = \binom{1}{6}$ and $\overline{BC} = \binom{2}{2}$, find the coordinates of B and C.

N/B: The point given is point A and the vector given is \overline{BA} .

First find \overline{AB} .

Soln.

$$\overline{BA} = \begin{pmatrix} 1 \\ 6 \end{pmatrix} . \overline{AB} = -\overline{BA} = -\begin{pmatrix} 1 \\ 6 \end{pmatrix} \Longrightarrow \overline{AB} = \begin{pmatrix} -1 \\ -6 \end{pmatrix}$$

Now A = (4, 1) and $\overline{AB} = \begin{pmatrix} -1 \\ -6 \end{pmatrix} \Longrightarrow$ the coordinates of B

$$=(4+\overline{1},1+\overline{6})=(3,-5)$$

Now B = (3, -5) and $\overline{BC} = \binom{2}{2} \Longrightarrow$ the coordinates of C

$$=(3+2,-5+2)=(5,-3)$$

Q26. B is given as the point (4, 8),

 $\overline{CD} = \binom{1}{1}$ and $\overline{BC} = \binom{1}{7}$, find the coordinates of C and D.

Soln.

Since B = (4, 8) and $\overline{BC} = \binom{1}{7} \Longrightarrow$ the coordinates of C

$$= (4+1,8+7) = (5,15) \Rightarrow C(5,15)$$

Now since C = (5, 15) and CD =

$$\binom{1}{1}$$
, then the coordinates of $D = (5 + 1, 15 + 1) = (6, 16) \Rightarrow D(6, 16)$

Q27. If A = (1, 3), $\overline{CB} = \binom{5}{5}$ and $\overline{BA} = \binom{1}{2}$, find the coordinates of B and C.

Soln.

$$\overline{BA} = \binom{1}{2} but \overline{AB} = -\overline{BA} = -\binom{1}{2} = \binom{-1}{-2} s$$

Now A = (1, 3) and $\overline{AB} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \implies$ the coordinates

of
$$B = (1 + \overline{1}, 3 + \overline{2}) = (0,1) \Longrightarrow B = (0,1)$$

Since CB =
$$\binom{5}{5}$$
 $\Longrightarrow \overline{BC} = -\overline{CB} = -\binom{5}{5}$ $\Longrightarrow \overline{BC} = \binom{-5}{-5}$.

Now B(0, 1) and $\overline{BC} = \begin{pmatrix} -5 \\ -5 \end{pmatrix} \Longrightarrow$ the coordinates of

$$C = (-5 + 0, -5 + 1) = (-5, -4) \Longrightarrow C(-5, -4)$$
.

Q28. P is the point (4, 1) and Q is (-3, 2). If $\overline{PS} = {-1 \choose 2}$ and $\overline{QT} = {-2 \choose -3}$,

- i. find the coordinates of S and T.
- ii. find also \overline{ST} .

Soln.

i. Since
$$P = (4, 1)$$
 and $\overline{PS} = {-1 \choose 2}$, then the coordinates of $S = (4 + \overline{1}, 1 + 2) = (3, 3) \Rightarrow S(3, 3)$. Also since $Q = (-3, 2)$ and $\overline{QT} = {-2 \choose -3} \Rightarrow$ the coordinates of $T = (-3 + \overline{2}, 2 + \overline{3}) = (-5, -1)$

ii.
$$\overrightarrow{ST} = T - S = {\binom{-5}{-1}} - {\binom{3}{3}} = {\binom{-5-3}{-1-3}} = {\binom{-8}{-4}}$$

Q29. If A = (4, 3) and B = (1, 1),
$$\overline{CA} = \binom{2}{1}$$
 and $\overline{DB} = \binom{-3}{-4}$, find \overline{CD} .

N/B: Before we can find \overline{CD} , we must first determine the coordinates of C and D.

Soln.

$$\overline{AC} = -\overline{CA} = -\binom{2}{1} = \binom{-2}{-1}$$
 $\therefore \overline{AC} = \binom{-2}{-1}$. since $A = (4,3)$ and $\overline{AC} = \binom{-2}{-1}$,

then the coordinates of
$$C = (-2+4, -1+3) \Rightarrow C(2,2) = {2 \choose 2}$$

Also

$$\overline{BD} = -\overline{DB} = -\binom{-3}{-4} = \binom{3}{4} \Longrightarrow \overline{BD} = \binom{3}{4}. Since B = (1,1) \Longrightarrow$$

the coordinates of $D = (1+3,1+4) = (4,5). \overline{CD} = D - C = \binom{4}{5} - \binom{2}{2} = \binom{2}{3}$

N/B:

i. M

$$O \longrightarrow P$$

In the figure drawn, moving from M to O, and then from O to P is the same as moving from M directly to P, since in both cases we end at the same point, which is $P \Rightarrow \overline{MO} + \overline{OP} = \overline{MP}$

ii.

In the given figure $\overline{YX} = \overline{YO} + OX$

Q1. If
$$\overline{xo} = {4 \choose 3}$$
 and $0\overline{y} = {2 \choose -1}$ find $|xy|$.

Soln.

$$\overline{xy} = \overline{xo} + \overline{oy} \Rightarrow xy = \binom{4}{3} + \binom{2}{-1} = \binom{6}{2} \Rightarrow |xy| = \sqrt{6^2 + 2^2} \Rightarrow |xy| = \sqrt{36 + 4} = \sqrt{40} = 6.3$$

Q2. If
$$\overline{ox} = {\binom{-2}{3}}$$
 and $\overline{oy} = {\binom{4}{1}}$, find $|xy|$

Soln.

From the diagram, $\overline{xy} = \overline{xo} + \overline{oy}$

Since
$$\overline{ox} = {\binom{-2}{3}} \Longrightarrow \overline{xo} = -\overline{ox} = -{\binom{-2}{3}} = {\binom{2}{-3}}$$
.

Since
$$\overline{xy} = \overline{xo} + \overline{oy} \Longrightarrow \overline{xy} = \binom{2}{-3} + \binom{4}{1} = \binom{6}{-2} \Longrightarrow |xy| = \sqrt{6^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40} = 6.3$$

Q3. Given that $\overline{ox} = {\binom{-2}{4}}$ and $\overline{yo} = {\binom{-1}{3}}$. find |xy|.

Soln.

$$\overline{xy} = \overline{xo} + \overline{oy}$$

Since
$$\overline{ox} = {-2 \choose 4} \Rightarrow \overline{xo} = -\overline{ox} = -{-2 \choose 4} = {2 \choose -4} \Rightarrow \overline{xo}$$

$$= {2 \choose -4} \text{ Also since } \overline{yo} = {-1 \choose 3} \Rightarrow \overline{oy} = -\overline{yo} = -{-1 \choose 3} = {1 \choose -3}$$

$$\Rightarrow \overline{oy} = {1 \choose -3}$$

$$\overline{xy} = \overline{xo} + \overline{oy} \Longrightarrow \overline{xy} = \begin{pmatrix} 2 \\ -4 \end{pmatrix} + \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 2+1 \\ -4+\overline{3} \end{pmatrix} = \begin{pmatrix} 3 \\ -7 \end{pmatrix} \cdot |xy| = \sqrt{3^2 + (-7)^2} = > |xy| = \sqrt{9 + 49} = \sqrt{58} = 7.6$$

Q4. Given that $\overline{PQ} = \binom{2}{3}$ and $\overline{QR} = \binom{4}{1}$, find

a. PR

b. PR

Soln.

a.
$$\overline{PR} = \overline{PQ} + \overline{QR} \Longrightarrow \overline{PR} = \binom{2}{3} + \binom{4}{1} = \binom{6}{4}$$

b. Since
$$\overline{PR} = \binom{6}{4} \Longrightarrow |\overline{PR}| = \sqrt{6^2 + 4^2} = \sqrt{36 + 16} = \sqrt{52} = 7.2$$

Q5. If
$$\overrightarrow{PQ} = \binom{3}{5}$$
 and $\overrightarrow{RQ} = \binom{-1}{-4}$, find \overrightarrow{PR}

$$\overline{PR} = \overline{PQ} + \overline{QR} \quad Since \quad \overline{RQ} = \begin{pmatrix} -1 \\ -4 \end{pmatrix} \Longrightarrow \overline{QR}, = -\begin{pmatrix} -1 \\ -4 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

$$\overline{PR} = \overline{PQ} + \overline{QR} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 9 \end{pmatrix} \Longrightarrow |\overline{PR}| = \sqrt{4^2 + 9^2} = \sqrt{16 + 81} = \sqrt{97} = 9.84$$

Q6. If
$$\overline{AB} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$
 and $\overline{BC} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$, find \overline{AC} .

Soln.

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} \Longrightarrow \overrightarrow{AC} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 + \overline{2} \\ -3 + 4 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

Q7. Given that $\overline{BA} = \binom{6}{3}$ and $\overline{BC} = \binom{1}{2}$, find \overline{AC} .

Soln.

$$\overline{AC} = \overline{AB} + \overline{BC}$$

Since AB is not given, we must find it.

Since
$$\overline{BA} = \binom{6}{3} \Longrightarrow \overline{AB} = -\binom{6}{3} = \binom{-6}{-3}$$
.

$$From \ \overline{AC} = \overline{AB} + \overline{BC} \Longrightarrow \overline{AC} = \begin{pmatrix} -6 \\ -3 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ -1 \end{pmatrix}$$

Q8. If
$$\overrightarrow{AB} = \binom{1}{3}$$
 and $\overrightarrow{CB} = \binom{-2}{5}$, find \overrightarrow{AC} .

$$AC = AB + BC$$

Since \overline{BC} is not given, we have to find it.

From
$$\overline{CB} = {\binom{-2}{5}} \Longrightarrow \overline{BC} = -{\binom{-2}{5}} = {\binom{2}{-5}}.$$

Now
$$\overline{AC} = \overline{AB} + \overline{BC} \Longrightarrow \overline{AC} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \Longrightarrow \overline{AC} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

Q9. If
$$\overrightarrow{xy} = {\binom{-2}{5}}$$
 and $\overrightarrow{zy} = {\binom{3}{2}}$, find $|\overrightarrow{xz}|$

Soln.

From the diagram, $\overline{xz} = \overline{xy} + yz$

Since
$$\overline{zy} = \binom{3}{2} \Longrightarrow \overline{yz} = -\overline{zy} = -\binom{3}{2} = \binom{-3}{-2}$$

But
$$\overline{xz} = \overline{xy} + \overline{yz} \Longrightarrow \overline{xz} = \begin{pmatrix} -2 \\ 5 \end{pmatrix} + \begin{pmatrix} -3 \\ -2 \end{pmatrix} = \begin{pmatrix} -5 \\ 3 \end{pmatrix}$$
.

$$|xz| = \sqrt{(-5)^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} = 5.8$$

The inverse of a vector or the negative vector.

- If $\overline{AB} = \begin{pmatrix} x \\ y \end{pmatrix}$ then $\overline{BA} = -\overline{AB}$ and $-\overline{AB} = \begin{pmatrix} -x \\ -y \end{pmatrix}$
- $\overline{AB} = \begin{pmatrix} -x \\ -y \end{pmatrix}$ is called the inverse or the negative vector of \overline{AB}
- A vector and its inverse have the same magnitude, but have opposite direction
- For example if $\overline{PQ} = \begin{pmatrix} -3 \\ -4 \end{pmatrix}$, then its inverse

or negative which is
$$\overline{QP} = -\begin{pmatrix} -3 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

- Also if $\overline{AB} = \binom{1}{-3}$, then its inverse or negative, which is $\overline{BA} = -\binom{1}{-3} = \binom{-1}{3}$

The direction of a vector:

- This is the angle φ , which the vector makes with the x-axis
- If P(x, y) and Q(x_2, y_2), then the direction of \overline{PQ} is given by $\tan \varphi = \frac{y_2 y_1}{x_2 x_1}$

Q1. Given A(5, 4) and B(3, 1), find the direction of \overline{AB}

Soln.

Let
$$(x_1, y_1) = (5, 4)$$
 and $(x_2, y_2) = (3, 1) \implies x_1 = 5, y_1 = 4, x_2 = 3$ and $y_2 = 1$.
 $\tan \theta = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 4}{3 - 5} = \frac{-3}{2} = -1.5$.

$$\tan \varphi = -1.5 \Rightarrow \varphi = tan^{-1} - 1.5 \Rightarrow \varphi = -56.$$

Q2.

- a. Find the magnitude and the direction of the displacement vector \overline{AB} , where A and B are the points (2, 1) and (8, 9) respectively.
- b. Determine the magnitude of the vector \overline{BA} .

Soln.
$$\overline{A} = \binom{2}{1} \text{ and } \overline{B} = \binom{8}{9}. \text{ But } \overline{AB} = \overline{B} - \overline{A} = \binom{8}{9} - \binom{2}{1} = \binom{6}{8}. \text{ Since } \overline{AB} = \binom{6}{8} \Longrightarrow |\overline{AB}| = \sqrt{6^2 + 8^2} = \sqrt{100} = 10$$

Let
$$(2, 1) = (x_1, y_1)$$
 and $(8, 9) = (x_2, y_2)$, then $\tan \varphi = \frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 1}{8 - 2} = \frac{8}{6} = 1.33 \implies \varphi = tan^{-1}1.33 = 53^{\circ}$
b. $\overline{A} = \binom{2}{1}$ and $\overline{B} = \binom{8}{9} \overline{BA} = \overline{A} - \overline{B} = \binom{2}{1} - \binom{8}{9} = \binom{-6}{-8}$
Since $\overline{BA} = \binom{-6}{-9} \implies \overline{BA} = \sqrt{(-6)^2 + (-8)^2} = \sqrt{100} = 10$

Parallel vectors:

- Two vectors are said to be parallel vectors, if one is the scalar multiplication of the other.
- Consider the vectors $\overline{A} = \binom{1}{3}$ and $\overline{B} = \binom{2}{6}$. These are parallel vectors, since one is the scalar multiple of the other, i.e 2 x $\overline{A} = \overline{B}$ or $2\binom{1}{3} = \binom{2}{6}$, where 2 is the scalar.
- If the scalar is positive or a positive number, as in the example just given, then the two given vectors are in the same direction.
- But if the scalar is negative, then the two vectors are in the opposite direction
- Also the vectors $\overline{C} = \binom{3}{5}$ and $\overline{D} = \binom{9}{15}$ are parallel vectors, since one is the scalar multiple of the other i.e $3 \times C = \overline{D}$ or $3 \times \binom{3}{5} = \binom{9}{15}$.
- In this case, the scalar is 3 and since it is positive, then the two vectors are in the same direction.

- Now consider $\overline{A} = \binom{4}{5}$ and $\overline{B} = \binom{-16}{-20}$. These are parallel vectors, since one is the scalar multiple of the other i.e $-4 \times \overline{A} = \overline{B}$ or $-4\binom{4}{5} = \binom{-16}{-20}$.
- In this case, since the scalar is negative i.e 4, then the two given vectors are in the opposite direction, eventhough they are parallel.

Q1. Determine whether the vector $\overline{B} = \binom{1}{-2}$ and $\overline{C} = \binom{-3}{6}$ are parallel to each other, and determine whether they are in the same or opposite in direction.

Soln.

$$\overline{B} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} and \ \overline{C} = \begin{pmatrix} -3 \\ 6 \end{pmatrix} But - 3 \times \overline{B} = \overline{C} \ i.e - 3 \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \end{pmatrix} i.e$$

One is a scalar multiple of the other \Rightarrow they are parallel vectors. Since the scalar is negative or a negative number i.e -3, then the two vectors are opposite in direction.

Q2. Determine whether the vectors $\overline{x} = \binom{8}{10}$ and $\overline{y} = \binom{4}{5}$ are parallel to each other, and determine also whether they are in the same direction

Soln.

$$\overline{x} = {8 \choose 10}$$
 and $\overline{y} = {4 \choose 5}$. $2 \times \overline{y} = \overline{x}$ i. $e^{2} {4 \choose 5} = {8 \choose 10}$

Since one of the vectors is a scalar multiple of the other, the two given vectors are parallel. Since the scalar = 2 which is positive \implies the two given vectors are in the same direction.

Determination whether two vectors are parallel – method two:

Let $\vec{A} = \binom{a}{b}$ and $\vec{B} = \binom{c}{d}$ if ad – bc = 0, then the two vectors are parallel.

Q1. Show that the vectors $\vec{A} = {4 \choose 2}$ and $\vec{B} = {8 \choose 4}$ are parallel vectors.

If \vec{A} is parallel to \vec{B} , then $(4 \times 4) - (2 \times 8) = 0$ i.e if the left hand side is equal to zero, then they are parallel.

Now L.H.S = $(4 \times 4) - (2 \times 8) = 16 - 16 = 0$ \Longrightarrow the two vectors are parallel

Q2. Determine whether or not the vectors $\vec{M} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$ and \vec{N} are parallel vectors. If \vec{M} and \vec{N} are parallel vectors, then

$$(-2 \times 3) - (-3 \times 2) = 0$$

$$L.H.S = (-6) - (-6) = -6 + 6 = 0$$

Since L.H.S = $0 \Longrightarrow$ the two vectors are parallel vectors.

Q3. Determine whether or not $\vec{M} = \binom{4}{1}$ and $\vec{N} = \binom{8}{6}$ are parallel vectors.

Soln.

If
$$\vec{M} = \binom{4}{1}$$
 and $\vec{N} = \binom{8}{6}$ are parallel vectors, then

$$(4 \times 6) - (1 \times 8) = 0$$

$$L.H.S = 24 - 8 = 16.$$

Since the L.H.S $\neq o$ i.e not equal to zero, then the two vectors are not parallel.

Q4. Find the value of x, such that the vector $\overline{A}\binom{4}{9}$ will be parallel to the vector $\overline{B}\binom{8}{x}$.

Soln.

$$\overline{A} = \binom{4}{9}$$
 and $\overline{B} = \binom{8}{x}$. For them to be parallel, then $(4 \times x) - (9 \times 8) = 0 \Rightarrow 4x - 72 = 0 \Rightarrow 4x = 0 + 72 \Rightarrow 4x = 72 \Rightarrow x = \frac{72}{4} = 18 \Rightarrow x = 18$

Q5. Given $\vec{C}\binom{8}{x}$ and $\vec{D}\binom{-4}{-3}$, determine the value of x such that the two vectors become parallel.

$$\vec{C}\binom{8}{x}$$
 and $\vec{D}\binom{-4}{-3}$ are given. If they are parallel, then $(8 \times \overline{3}) - (-4 \times x) = 0 \Longrightarrow (-24) - (-4x) = 0 \Longrightarrow -24 + 4x = 0 \Longrightarrow 4x = 24 \Longrightarrow x = \frac{24}{4} = 6 \Longrightarrow x = 6$

Q6. Given $\overline{A} = \binom{y}{2}$ and $\overline{B} = \binom{9}{6}$, find the value of y such that the two vectors are parallel.

Soln.

 $\overline{A} = \binom{y}{2}$ and $\overline{B} = \binom{9}{6}$. For them to be parallel, then

$$(y \times 6) - (2 \times 9) = 0 \implies 6y - 18 = 0 \implies 6y = 18 \implies y = \frac{18}{6} = 3$$

Perpendicular vectors:

Consider the vectors $\overline{A} = {a \choose b}$ and $\overline{B} = {c \choose d}$ if these two vectors are perpendicular, then ac + db = 0

Q1. Show that the vectors $\overline{A}\binom{4}{-2}$ and $\overline{B}\binom{2}{4}$ are perpendicular

Soln.

For $\vec{A}\binom{4}{-2}$ and $\vec{B}\binom{2}{4}$ to be perpendicular, then

 $(4 \times 2) + (-2 \times 4) = 0$ i.e the L.H.S must be equal to zero.

L.H.S =
$$8 + \overline{8} = 8 - 8 = 0$$

Since L.H.S = $0 \Longrightarrow$ the two vectors are perpendicular.

Q2. Determine whether or not $\overline{B}\binom{8}{2}$ and $\overline{C}\binom{4}{5}$ are perpendicular vectors.

Soln.

Given $\overline{B}\binom{8}{2}$ and $\overline{C}\binom{4}{5}$. If these two vectors are perpendicular, then $(8 \times 4) + (2 \times 5) = 0$ i.e

The L.H.S must be equal to zero. L.H.S 32 + 10 = 42.

Since L.H.S $\neq 0$, then the two vectors are not perpendicular.

Q3. Given $\overline{A} = \binom{4}{2}$ and $\overline{B} = \binom{-3}{6}$, determine whether these two given vectors are perpendicular vectors.

 $\overline{A} = \binom{4}{2}$ and $\overline{B} = \binom{-3}{6}$. For these two vectors to be perpendicular, then $(4 \times \overline{3}) + (2 \times 6) = 0$

L.H.S = (-12) + (12) = 0. Since L.H.S = 0, then the two vectors are perpendicular.

Q4. Are the vectors $\overline{B} = {5 \choose -2}$ and $\overline{D} = {2 \choose -3}$ perpendicual vectors?

Soln.

 $\overline{B} = {-5 \choose -2}$ and $\overline{D} = {2 \choose -3}$. If these two vectors are perpendicular, then $(-5 \times 2) + (-2 \times \overline{3}) = 0$

$$L.H.S = (-10) + (6) = -4$$

Since L.H.S \neq 0, then the two given vectors are not perpendicular

Q5. Find the value of x such that the vectors

 $\vec{A} = \binom{9}{2}$ and $\vec{B} = \binom{x}{-18}$ will be perpendicular to each other.

Soln.

$$\vec{A} = \binom{9}{2}$$
 and $\vec{B} = \binom{x}{-18}$. If these two vectors are to be perpendicular, then $(9 \times x) + (2 \times \overline{18}) = 0 \Rightarrow 9x + (-36) = 0 \Rightarrow 9x - 36 = 0 \Rightarrow 9x = 36 \Rightarrow x = \frac{36}{9}$

$$=4 \Rightarrow x=4$$

Q6. If $\overline{C} = {\binom{-2}{y}}$ and $\overline{D} = {\binom{-8}{4}}$ are two vectors, determine the value of y, if these two vectors are perpendicular.

Soln.

If
$$\overline{C} = {-2 \choose y}$$
 and $\overline{D} = {-8 \choose 4}$ are perpendicular, then
$$(-2 \times \overline{8}) + (y \times 4) = 0 \Longrightarrow 16 + 4y = 0 \Longrightarrow 4y = -16 \Longrightarrow y = \frac{-16}{4} = -4 \Longrightarrow y = -4$$

Q7. A parallelogram ABCD has vertices A(1, 3), B(-2, 5) and C(1, 8). Find the coordinates of vertex D.

The position vectors of A, B and C are A = $\binom{1}{3}$, $B = \binom{-2}{5}$ and $C = \binom{1}{8}$ respectively.

Let the coordinates of D be (a, b).

Since the given figure is a parallelogram, then

$$\overline{AB} = \overline{DC}$$
 and $\overline{AB} = B - A = \binom{-2}{5} - \binom{1}{3} = \binom{-3}{2}$

$$\overline{DC} = C - D = {1 \choose 8} - {a \choose b} = {1 - a \choose 8 - b}$$

Since
$$\overline{AB} = \overline{DC} \Longrightarrow \binom{-3}{2} = \binom{1-a}{8-b} \Longrightarrow -3 = 1 - a \Longrightarrow a = 1 + 3 \Longrightarrow a = 4$$
.

Also
$$2 = 8 - b \implies b = 8 - 2 = 6$$

 \therefore Coordinates of D are (4,6).

Q8. The points A (-2, 1), B (2, 1), C (1, 4) and D (p,q) are the vertices of a parallelogram ABCD. Find \overline{AB} and \overline{DC} and deduce the values of p and q.

Soln.

$$AB = B - 1 = \binom{2}{1} - \binom{-2}{1} = \binom{4}{0}$$

$$\overline{DC} = C - D = {1 \choose 4} - {p \choose q} = {1 - p \choose 4 - q}$$

Since ABCD is a parallelogram

$$\overrightarrow{AB} = \overrightarrow{DC} \Longrightarrow 4 = 1 - p \Longrightarrow 4 + p = 1 \Longrightarrow p = 1 - 4 = -3$$

Also
$$0 = 4 - q \Rightarrow 0 + q = 4 \Rightarrow q = 4$$

Q9. The coordinates of the vertexes of a parallelogram QRST are Q (1, 6), R (2, 2), S (5, 4) and T (x, y)

- i. Find \overline{QR} and \overline{TS} and hence find the values of x and y
- ii. Calculate the magnitude of \overline{RS}

Soln.

i.
$$\overrightarrow{QR} = R - Q = \binom{2}{2} - \binom{1}{6} = \binom{1}{-4}$$
 and $\overrightarrow{TS} = \binom{5}{4} - \binom{x}{y} = \binom{5-x}{4-y}$

Since ORST is a parallelogram

$$\Rightarrow \overrightarrow{QR} = \overrightarrow{TS} = > \binom{1}{-4} = \binom{5-x}{4-y} \Rightarrow 1 = 5 - x \Rightarrow 1 - 5 = -x \Rightarrow -4 = -x \Rightarrow x = 4$$

.

Also
$$-4 = 4 - y \Rightarrow -4 - 4 = -y \Rightarrow -8 = -y \Rightarrow 8 = y \Rightarrow y = 8$$
.

ii.
$$\overline{RS} = S - R = {5 \choose 4} - {2 \choose 2} = {3 \choose 2}$$

 $|RS| = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13} = 3.6$

Q10. Find the values of x and y such that $\binom{x+3}{2} - \binom{y}{x+y} = \binom{2}{-1}$.

Soln.

$$\binom{x+3}{2} - \binom{y}{x+y} = \binom{2}{-1} \Longrightarrow \binom{x+3-y}{2-x-y} = \binom{2}{-1}$$

Equating corresponding component $\Rightarrow x + 3 - y = 2$

$$\Rightarrow x - y = 2 - 3 \Rightarrow x - y = -1 \dots eqn(1)$$

Also
$$2 - x - y = -1 \Rightarrow -x - y = -1 - 2 \Rightarrow -x - y = -3 \dots eqn(2)$$

Solve eqn (1) and eqn (2) simultaneously $\Rightarrow x = 1$ and y = 2

Q11. If
$$p = \binom{2}{-2}$$
 and $q = \binom{3}{4}$, find r such that $\frac{1}{2}p - q - r = \binom{0}{0}$

Soln.

$$\frac{1}{2}p - q + r = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \frac{1}{2} \begin{pmatrix} 2 \\ -2 \end{pmatrix} - \begin{pmatrix} 3 \\ 4 \end{pmatrix} + r = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 3 \\ 4 \end{pmatrix} + r = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 - 3 \\ -1 - 4 \end{pmatrix} + r = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 \\ -5 \end{pmatrix} + r = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow r = \begin{pmatrix} 0 + 2 \\ 0 + 5 \end{pmatrix} \Rightarrow r$$

$$= \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

- Q12. Triangle ABC has vertices A(-2, -4), B(10, 1) and C(3, 8).
 - i. Find the length of the side AB
 - ii. Show that the triangle is isosceles

Soln.

i. A(-2, -4)
B(10, 1) C(3, 8)

The length of \overline{AB} is the same as the magnitude of \overline{AB} .

$$A = \begin{pmatrix} -2 \\ -4 \end{pmatrix} \text{ and } B \begin{pmatrix} 10 \\ 1 \end{pmatrix}$$

$$\overline{AB} = B - A = \begin{pmatrix} 10 \\ 1 \end{pmatrix} - \begin{pmatrix} -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 12 \\ 5 \end{pmatrix}$$

Since
$$\overline{AB} = \binom{12}{5}$$
, $\Longrightarrow |\overline{AB}| = \sqrt{12^2 + 5^2} = \sqrt{169} = 13$

Also C =
$$(3, 8) = \binom{3}{8}$$
 and $A = \binom{-2}{-4}$

$$\overline{AC} = C - A = \binom{3}{8} - \binom{-2}{-4} = \binom{5}{12} |\overline{AC}| = \sqrt{5^2 + 12^2} = \sqrt{169} = 13 : AC = 13$$

ii.
$$B = \binom{10}{1}$$
 and $C = \binom{3}{8}$

$$\overline{BC} = C - B = \binom{3}{8} - \binom{10}{1} = \binom{-7}{7}$$

$$|\overline{BC}| = \sqrt{(-7)^2 + 7^2} = \sqrt{49 + 49} = \sqrt{98} = 9.9$$

Now for the given triangle, $\overline{BC} \models 9.9$, $\overline{AC} \models 13$ and $\overline{AB} = 13$. Since two lengths of the given triangle are equal, (ie $\overline{AC} \models 13$ and $\overline{AB} \models 13$), then it is an isosceles triangle

Q13. Given $\overrightarrow{xT} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ and $\overrightarrow{YR} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$, x(4,1) and y(-3,2) Find \overline{TR} .

Soln.

We must first determine the coordinates of T and R

$$x = (4,1)$$
 and $\overline{xT} = {1 \choose 2} \Rightarrow T(4+T,1+2) \Rightarrow T(4-1,1+2) \Rightarrow T(3,3)$

Also
$$Y = (-3,2)$$
 and $\overline{YR} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$

$$\Rightarrow R = (-3 + \overline{2}, 2 + \overline{3}) \Rightarrow R(-5, -1) = \begin{pmatrix} -5 \\ -1 \end{pmatrix}$$

Now
$$T = \binom{3}{3}$$
 and $R = \binom{-5}{-1} \Rightarrow \overline{TR} = R - T = \binom{-5}{-1} - \binom{3}{3} = \binom{-8}{-4} \therefore TR = \binom{-8}{-4}$

Q14. A B

D

In the given figure, ABCD is a parallelogram. If $\overrightarrow{DA} = \binom{3}{5}$ and $\overrightarrow{CE} = \binom{2}{3}$, find \overrightarrow{BE} .

N/B: moving from B to E i.e \overline{BE} is equal to or the same as moving from B to C ie \overline{BC} plus or in addition to moving from C to E $\Longrightarrow \overline{BE} = \overline{BC} + \overline{CE} = \overline{BC} + \binom{2}{3}$.

We must find \overrightarrow{BC} . Since ABCD is a parallelogram, then

C

$$\overline{CB} = \overline{DA} \Longrightarrow \overline{BC} = -DA \Longrightarrow \overline{BC} = -\binom{3}{5}$$

$$\Longrightarrow \overline{BE} = \ \overline{BC} + \binom{2}{3}, \Longrightarrow \overline{BE} = \binom{-3}{-5} + \binom{2}{3} = \binom{-1}{-2} \ \therefore \ \overline{BE} = \binom{-1}{-2}$$

Q15. If $\overrightarrow{AB} = \binom{4}{-3}$ and $\overrightarrow{AC} = \binom{-1}{6}$ are vectors in the same plane, and A is the point (1, 2),

- i. Find the coordinates of B and C.
- ii. If D is the mid point of BC, show that $\overline{AB} + \overline{AC} = 2\overline{AD}$ Soln.

i.
$$A = (1, 2)$$
 and $\overline{AB} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \implies$ the coordinates of

$$B = (1 + 4, 2 + \overline{3}) \Longrightarrow B$$
 has coordinates (5, -1)

Also A = (1, 2) and
$$\overline{AC} = \binom{-1}{6} \implies the$$
 coordinates of

$$C = (1 + \overline{1}, 2 + 6) = (0, 8) \Longrightarrow$$
 the coordinates of

$$C = (0, 8)$$

Since D is the mind point of the line CB.

To find the x component of D, we add the x components of C and B and divide the result by $2 \Rightarrow x$ component of $D = \frac{0+5}{2} = 2.5$

Also to find the y components of C and B, add their y components and divide the result by 2 \Longrightarrow the y component of D $\frac{8+T}{2} = \frac{7}{2} = 3.5$

The coordinates of D = $\binom{2.5}{3.5}$

To show that $\overline{AB} + \overline{AC} = 2\overline{AB}$, we evaluate the L.H.S and then the R.H.S, and check if they are equal.

L.H.S =
$$\overline{AB}$$
 + \overline{AC} = $\binom{4}{-3}$ + $\binom{-1}{6}$ = $\binom{3}{3}$

But R.H.S =
$$2\overline{AD}$$
 =?

$$\overline{AD} = D - A = {2.5 \choose 3.5} - {1 \choose 2} = {1.5 \choose 1.5}$$

Since
$$\overline{AD} = \begin{pmatrix} 1.5 \\ 1.5 \end{pmatrix} \Longrightarrow 2\overline{AD} = 2 \begin{pmatrix} 1.5 \\ 1.5 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

Now since $\overline{AD} + \overline{AC} = \binom{3}{3}$ and $2\overline{AD} = \binom{3}{3}$, then $\overline{AB} + \overline{AC} = 2\overline{AD}$

Q16. A (4, 7) is the vertex of triangle ABC. $\overrightarrow{BA} = \binom{5}{3}$ and $\overrightarrow{AC} = \binom{4}{-3}$.

- a. Find the coordinates of B and C.
- b. If M is the mid point of the line BC, find \overrightarrow{AM} .

Soln.

a. The point A is given as A(4, 7) and

$$\overrightarrow{BA} = \binom{5}{3} \Longrightarrow \overrightarrow{AB} = -BA \Longrightarrow \overrightarrow{AB} = -\binom{5}{3} \Longrightarrow \overrightarrow{AB} = \binom{-5}{-3}$$

Now A(4, 7) and $\overrightarrow{AB} = \begin{pmatrix} -5 \\ -3 \end{pmatrix}$ \Longrightarrow the coordinates of B is given by B $(4 + \overline{5}, 7 + \overline{3})$ $\therefore B(-1,4) \Longrightarrow B$ has coordinates (-1, 4)

Also A(4, 7) and $\overrightarrow{AC} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ \Longrightarrow the coordinates of

$$C = (4 + 4, 7 + \overline{3}) \Longrightarrow C(8,4) \Longrightarrow$$
coordinates of

$$C = (8, 4)$$

b. B(-1, 4) M C(8,4)

Let M be the mid point of the line BC. Then the coordinates of M = $\left(\frac{-1+8}{2}, \frac{4+4}{2}\right) = \left(\frac{7}{2}, \frac{8}{2}\right) \Longrightarrow M(3.5, 4) \Longrightarrow M$ has coordinates (3.5, 4), Now A = $\binom{4}{7}$ and M = $\binom{3.5}{4}$

But
$$\overrightarrow{AM} = M - A = {3.5 \choose 4} - {4 \choose 7} = {-0.5 \choose -3}$$

N/B:

i.

- Considering the given figure under vectors, movement from a particular point through a distance back to the starting point is considered as zero movement.
- Therefore moving from O to P, then from P to Y and finally from Y back to O, is considered as zero movement.
- For this reason $\overline{OP} + \overline{PY} + \overline{YO} = 0$, and this is known as the triangle law

Example (2).

- Consider the given figure
- According to the triangle law $\overrightarrow{BC} + \overline{CP} + \overline{PB} = 0$

Examples (3)

According to the triangle law $\overline{QM} + \overline{MP} + \overline{PQ}$

Q17. In $\triangle ABC$, $\overline{AB} = \binom{-2}{6}$ and $\overline{CA} = \binom{3}{-4}$. If P is the mid point of \overline{AB} , express \overline{CP} as a column vector.

Soln.

 C

From $\triangle ABC$, since P is the mid point of

$$\overline{AB}$$
, and $\overline{AB} = \binom{-2}{6}$, then $\overline{AP} = \frac{1}{2}(\overline{AB}) = \frac{1}{2}\binom{-2}{6} = \binom{-1}{3} \Longrightarrow \overline{AP} = \binom{-1}{3}$

From the triangle law,

$$\overline{AC} + \overline{CP} + \overline{PA} = 0 \Longrightarrow \overline{CP} + \overline{PA} = -\overline{AC} \Longrightarrow \overline{CP} = -\overline{AC} - \overline{PA}$$

But
$$\overline{AC} = -(CA) = -\binom{3}{-4} = \binom{-3}{4}$$
 and $\overline{PA} = -\overline{AP} = -\binom{-1}{3} = \binom{1}{-3}$. Since $\overline{CP} = -\overline{AC} - \overline{PA}$,

then
$$\overline{CP} = -\binom{-3}{4} - \binom{1}{-3} = \binom{3}{-4} - \binom{1}{-3} = \binom{3-1}{-4+3} = \binom{2}{-1}$$

Q18. $\triangle PQR$ i.e triangle PQR is an Isosceles triangle in which $|\overline{PQ}| = |\overline{QR}|$ and M is the mid point of PR.

- a. Show that $\overline{QP} + \overline{QR} = 2QM$
- b. If $\overline{PQ} = \binom{-3}{4}$ and $\overline{QR} = \binom{4}{3}$,
- i. express \overline{QM} as a column vector.
- ii. calculate \overline{QM}

Soln.

consider the figure above. As already given \overline{PQ}

$$=|\overline{QR}|$$

since M is the mid point of PR $\Longrightarrow |\overline{PM}| = \overline{MR}$ and $PM = \frac{1}{2}|\overline{PR}|$ From the above figure $\overline{QR} = \overline{QM} + \overline{MR}$... eqn(1)

Also
$$\overrightarrow{QP} = \overrightarrow{QM} + \overrightarrow{MP} \dots eqn (2)$$

Add eqn(1) and eqn(2)
$$\Rightarrow \overrightarrow{QR} + \overrightarrow{QP} = 2\overrightarrow{QM} + \overrightarrow{MR} + \overrightarrow{MP}$$

But $\overrightarrow{MR} + \overrightarrow{MP} = 0$, since they are of the same magnitude and one is the inverse or the negative of the other. From

$$\overline{QR} + \overline{QP} = 2\overline{QM} + \overline{MR} + \overline{MP} \Longrightarrow \overline{QR} + \overline{QP} = 2\overline{QM} + 0 \Longrightarrow \overline{QR} + \overline{QP} = 2\overline{QM}$$

b. Since
$$\overline{PQ} = \binom{-3}{4}$$
, then $\overline{QP} = -\binom{-3}{4} = \binom{3}{-4}$
But $\overline{QR} + \overline{QP} = 2\overline{QM} \Rightarrow \binom{4}{3} + \binom{3}{-4} = 2QM \Rightarrow \binom{7}{-1} = 2QM$
Multiply through using $\frac{1}{2}$

$$\Rightarrow \frac{1}{2} \binom{7}{-1} = \frac{1}{2} \times 2QM = 0.5 \binom{7}{-1} => 0.5 \times 2QM \Rightarrow \binom{3.5}{-0.5} = QM$$

$$|\overline{QM}| = \sqrt{3.5^2 + (-0.5)^2} = \sqrt{12.5} = 3.5$$

Questions:

Q1. Find the values of K and M such that

$$K\binom{2}{3} + M\binom{4}{5} = \binom{16}{21}$$

Ans: K = 2 and M = 3

Q2. Determine the values of Q and R such that

$$Q\binom{1}{3} + R\binom{2}{5} = \binom{5}{12}$$

Ans: Q = -1 and R = 3

Q3. Given that $x\binom{2}{3} - Y\binom{3}{1} = \binom{2}{10}$, find the values of x and y.

Ans: x = 4 and y = 2

Q4. Given A (6, 4) and B(3, 2), evaluate i. \overline{AB} ii. \overline{BA}

Ans: i.
$$\overline{AB} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$$
 ii. $\begin{pmatrix} 3 \\ 2 \end{pmatrix} = \overline{BA}$

Q5. If $x = \binom{-3}{4}$ and $y = \binom{6}{2}$, evaluate

i.
$$\overline{xy}$$
 Ans: $\binom{9}{-2}$

ii. The magnitude of \overline{xy} Ans: 9.2

iii.
$$\overline{yx}$$
 Ans: $\binom{-9}{2}$

Q6. Given that x = (2, 4) and y = (4, 9), determine the length of \overline{xy} Ans: 5.4

Q7. Given that $\overline{x} = \binom{3}{4}$ and $\overline{y} = \binom{-2}{1}$, evaluate

a.
$$3\overline{xy}$$
 Ans: $\binom{-15}{-9}$

- b. $4(\overline{x} \overline{y})$ Ans: $\binom{20}{12}$
- c. $|\overline{xy}|$ Ans: 5.8
- d. $|\overline{x} + \overline{y}|$ Ans: 5.1
- e. $|\overline{x} \overline{y}|$ Ans: 5.8

Q8. Given P(2,4) and $\overline{PQ} = \binom{3}{6}$, determine the coordinates of Q.

Ans: (5, 10)

Q9. Given P(3,6) and $\overline{QP} = {-1 \choose -2}$, determine the coordinates of Q.

Ans: (4, 8).

Q10. Given A(3, 2), $\overline{AB} = \binom{1}{5}$ and $\overline{AC} = \binom{4}{6}$, determine the coordinates of

- a. the point B Ans: (4,7)
- b. The point C Ans: (7,8)

Q11. Given A(2, 1), $\overline{BA} = \binom{-2}{3}$ and $CA = \binom{4}{1}$, determine the coordinates of

- a. the point B Ans: $\binom{4}{-2}$
- b. the point C Ans: $\binom{-2}{0}$

Q12. Given x (-2, 1), $\overline{yx} = {-3 \choose 2}$ and $\overline{xz} = (-3, -4)$, determine the coordinates of

- a. the point Y. Ans: $\binom{1}{-1}$
- b. the point Z Ans: $\binom{-5}{-3}$

Q13. Given C(2, 3), $\overrightarrow{CD} = \binom{2}{1}$ and $\overrightarrow{DE} = \binom{5}{4}$, find the coordinates of

- i. point D. Ans: (4, 4)
- ii. point E. Ans: (9, 8)

Q14. Given A(3,2), $\overline{BA} = \binom{4}{-5}$ and $\overline{BC} = \binom{1}{2}$, determine the coordinates of

- a. point B. Ans: $\binom{-1}{7}$
- b. point C Ans: $\binom{0}{9}$

Q15. Given A(4,2), $\overline{CB} = \binom{1}{3}$ and $\overline{BA} = \binom{5}{6}$, determine the coordinates of

- a. the point B. Ans: (-1, -4)
- b. the point C Ans: (-2, -7)

Q16. Given x(2, 4), y = (3,6), $\overline{xp} = \binom{2}{1}$ and $\overline{yz} = \binom{1}{1}$. Determine the coordinate of

Q17. Given x(2, 3), y(4, 1),
$$\overrightarrow{Bx} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$
 and $\overrightarrow{ym} = \begin{pmatrix} -6 \\ 5 \end{pmatrix}$,

find the coordinates of

a. the point B. Ans:
$$(4, 4)$$

Q18. If
$$\overline{PQ} = \binom{1}{2}$$
 and $\overline{QR} = \binom{2}{5}$, find

i.
$$\overline{PR}$$
. Ans: $\binom{3}{7}$ ii. \overline{PR} Ans: 7.6

Q19. If
$$\overline{PQ} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\overline{RQ} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ find

i.
$$\overrightarrow{PR}$$
 | $Ans: \begin{pmatrix} -2 \\ -2 \end{pmatrix}$ ii. \overrightarrow{PR} $Ans: 2.8$

Q20. Given that
$$\overrightarrow{QO} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$
 and $\overrightarrow{OP} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$, find

i.
$$\overrightarrow{QP}$$
 Ans: $\binom{-4}{6}$

ii.
$$\overrightarrow{QP}$$
 | Ans: 7.2

Q21. Given that
$$\overline{xY} = \binom{2}{1}, \overline{OY} = \binom{4}{3}, find \overline{xO}$$
.

Ans:
$$\begin{pmatrix} -2 \\ -2 \end{pmatrix}$$

Q22. If
$$M = \binom{2}{1}$$
 and $k = \binom{5}{3}$, evaluate

i.
$$4(3M + 3k)$$
 Ans: $\binom{64}{36}$

ii.
$$2(2M - k)$$
 Ans: $\binom{-2}{-2}$

Q23. If
$$P = \binom{2}{3}$$
, $q = \binom{-2}{5}$ and $r = \binom{5}{1}$, evaluate $3p - 2q + r$. Ans: $\binom{15}{0}$

Q24. Given
$$P = \binom{1}{2}$$
, $q = \binom{-2}{-3}$ and $r = \frac{1}{3}(2p + q)$,

evaluate r. Ans:
$$r = \begin{pmatrix} 0 \\ 1/3 \end{pmatrix}$$

Q25. If
$$x = (4,10)$$
, $\overline{xy} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ and $\overline{x0} = \begin{pmatrix} -2 \\ -8 \end{pmatrix}$,

a. determine the coordinate of Y and O.

Ans: Y(10, 12) and O(2, 2)

b. If P is the mid point of the line YO, determine the coordinates of P. Ans: P (6, 7)

Q26. Find the direction of the displacement vector \overrightarrow{AB} , where A and B are the points (8, 4) and (6, 2) respectively. Ans:45°

Q27. Find the direction of the displacement vector \overline{AB} , where A and B are the points (2, -4) and (-6, -10) respectively. Ans: 37°

Q28. Determine whether or not these pairs of vectors and parallel.

a.
$$\overline{A} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
 and $\overline{B} = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$

Ans: They are parallel

b.
$$\overline{x} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 and $\overline{Y} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$

Ans: They are parallel

c.
$$\overline{x} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 and $\overline{Y} = \begin{pmatrix} 8 \\ 9 \end{pmatrix}$

Ans: They are not parallel

d.
$$\overline{A} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\overline{B} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$

Ans: They are parallel

Q29. Given that the vector $\overline{A} = {x \choose 2}$ and $\overline{B} = {16 \choose 8}$ are parallel vectors, determine the value of x. Ans: 4

Q30. If $\overline{P} = {5 \choose 3}$ and $\overline{Q} = {25 \choose y}$, find the value of y, so that P and Q become parallel vectors. Ans: 15

Q31. Determine whether or not the following pairs of vectors are perpendiculars

a.
$$\overline{x} = {8 \choose 2}$$
 and $\overline{Y} = {8 \choose 10}$

Ans: They are not perpendicular

b.
$$\overline{x} = {12 \choose 6}$$
 and $\overline{Y} = {-3 \choose 6}$

Ans: They are perpendicular

c.
$$\overline{A} = \begin{pmatrix} 4 \\ -18 \end{pmatrix}$$
 and $\overline{B} = \begin{pmatrix} 36 \\ 8 \end{pmatrix}$

Ans: They are perpendicualr

d.
$$\overline{A} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 and $\overline{B} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

Ans: They are not perpendicular

Q32. Given that $\overline{C} {-8 \choose 4}$ and $\overline{D} {x \choose -12}$ are two perpendicular vector, find x.

Ans: -6

Q33. A parallelogram ABCD has vertices

A(2, 6), B(-4, 10) and C(2, 16). Find the coordinates of vertice D. Ans: (8, 12)

Q34. The points A(-4, 2), B(4, 2), C(2, 8) and D(x,y)

are the vertices of a parallelogram ABCD.

i. Find \overline{AB} and \overline{DC} .

Ans:
$$\overline{AB} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$$
 and $\overline{DC} = \begin{pmatrix} 2 - x \\ 8 - y \end{pmatrix}$

ii. Determine the values of x and y

Ans:
$$(-6, 8)$$
 ie $x = -6$ and $y = 8$

Q35. The coordinates of the vertices of a parallelogram QRST are Q(2,12), R(4,4), S(10,8) and T(x,y).

a. Determine the values of x and y

Ans:
$$x = 8$$
 and $y = 16$ ie (8, 16)

b. Calculate the magnitude of \overrightarrow{RS} Ans: 7.2

Q36. Find the values of x and y such that $\binom{3x+1}{4} + \binom{y}{x-y} = \binom{6}{7}$

Ans:
$$x = 2$$
 and $y = -1$

Q37. The triangle ABC has vertices A(-4, -8), B(20, 2) and C(6, 16). Find the length of

a. AB Ans: 26

b. BC Ans: 19.8

Q38.

In $\triangle ABC$, $\overline{AB} = {-2 \choose 6}$ and $\overline{CA} = {3 \choose -4}$. If P is the mid point of \overline{AB} , express \overline{CP} as a column vector.

$$Ans: CP = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Q39.

In $\triangle ABC$, $\overline{AB} = \binom{4}{2}$, $\overline{AC} = \binom{3}{5}$ and P is the mid point of AB. Express CP as a column vector.

Ans:
$$CP = \begin{pmatrix} -1 \\ -4 \end{pmatrix}$$
.