INF2010 - ASD

Algorithmes sur les chaînes de caractères

Plan

Recherche de patron

Problématique

Rabin Karp

Automate FSM

PLSC

Problématique

Solution par programmation dynamique

Plan

Recherche de patron

Problématique

Rabin Karp

Automate FSM

PLSC

Problématique

Solution par programmation dynamique

Problématique

Problématique:

Chercher la chaîne de caractères P[1..m] dans un texte T[1..n]. où m ≤ n.

Ayant m ≤ n, on traduit le problème par chercher tous les s ≤ n-m+1 pour lesquels T[s+1...s+m] = P[1..m]

Exemples:

- Chercher un mot dans un fichier
- Chercher un fichier dans un volume (HDD, Clé Flash, CD-ROM)
- Chercher un mot dans des fichiers
- Chercher un mot dans le web (google, yahoo)

```
Pour s=0 à n-m
Pour j= 1 à m
Si T[s+j] != P[j]
Reprendre au s suivant
Sinon Si j=m
Inclure s dans S
Retourner S
```


$$s=0, j=1$$

$$s=0, j=2$$

$$s=0, j=3$$

$$s=1, j=1$$

$$s=2, j=1$$

$$s=3, j=2$$

Complexité de l'algorithme?

$$O(m(n-m+1))$$

Idée intéressante: réutiliser les résultats et analyser la chaîne de caractère P

Plan

Recherche de patron

Problématique

Rabin Karp

Automate FSM

PLSC

Problématique

Solution par programmation dynamique

Rabin-Karp

Objectif: battre l'algorithme naïf de complexité

O(m(n-m+1))

Analyser la chaîne de caractère: pétraîtement (*preprocessing*)

Réutiliser les résultats précédent: accélération

Idée:

Pour un alphabet Σ , écrire P sous forme d'un nombre p dans la base $d=|\Sigma|$

Analyser la chaîne de caractère: Trouver une fois la valeur p associée à P

Pour l'exemple, on utilise les chiffre 0-9:

Pour un alphabet Σ ={0, 1, 2, ..., 8, 9}, écrire P sous forme d'un nombre dans la base d=| Σ |=10

Exemple:

$$p = 1235$$

$$p = 1235$$

$$p = 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 5 \cdot 10^0$$

Pour une longueur quelconque m, la phase de prétraîtement peut s'avérer ardue.

$$p = 1235$$

$$p = ((1.10^{1} + 2).10^{1} + 3).10^{1} + 5.10^{0}$$

En utilisant l'algorithme de Horner, on réduit le nombre d'opérations pour le prétraîtement.

```
Calculer par Horner p de P[1..m]

Pour s=0 à n-m

Calculer par Horner t_s de T[s+1..s+m]

Si t_s = p

Inclure s dans S
```

Retourner S

	1	2	3	4	5	6	7	8	9	10	11	12
Т	1	3	2	3	4	1	2	3	5	1	2	3

$$p = 1235$$

$$s=0$$

$$t_s = 1 323$$

$$p = 1235$$

1323
1 sort
4 entre
$$3234 = (1323 - 1 \times 10^{m-1}) \times 10 + 4$$

$$p = 1235$$

$$p = 1235$$

$$s=3$$

$$p = 1235$$

$$p = 1235$$

$$p = 1235$$

p = 1235

p = 1235

$$p = 1235$$

Réutiliser les résultats précédent:

accélération

$$t_{s+1} = d(t_s - d^{m-1}T[s]) + T[m+s+1]$$

$$s=0$$

$$p = 1235$$

$$t_s = 10(1 \ 323-1000\cdot 1)+4=3 \ 234$$

$$p = 1235$$

$$t_s = 10(3\ 234-1000\cdot3)+1=2\ 341$$

$$p = 1235$$

$$s=3$$

$$p = 1235$$

T
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 1 & 3 & 2 & 3 & 4 & 1 & 2 & 3 & 5 & 1 & 2 & 3 \\ \hline t_s = 10(3\ 412-1000\cdot3)+3=4\ 123$$

$$p = 1235$$

$$p = 1235$$

S=6
$$S=\{5\}$$
T
1 2 3 4 5 6 7 8 9 10 11 12
$$t_s = 10(1\ 235-1000\cdot 1)+1= 2\ 351$$

$$p = 2351$$

$$p = 1235$$

$$S={5}$$

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

 T
 1
 3
 2
 3
 4
 1
 2
 3
 5
 1
 2
 3

$$t_s = 10(3\ 512-1000\cdot3)+3=5\ 123$$

$$p = 1235$$

Problème:

L'alphabet Σ n'est pas celui des chiffres 0-9 et la base d=|Σ|≠10

ASCII étendu : 256 charactères d = 256

UNICODE: 65536 charactères d = 65536

Utiliser Horner et la technique itérative sur t_s risque de poser problème quand même. Les nombres vont être grands...

Idée:

Utiliser une écriture modulaRe. Pour un alphabet Σ , écrire P sous forme d'un nombre p dans la base $d=|\Sigma|$ modulo q

Choix de q:

On prend q de telle sorte que d·q tiennent dans un mot machine (32 bits) :

Raison: essayer d'exprimer p en fonction de Horner...

Pour illustrer l'algorithme, reprenons l'exemple, on utilise les chiffre 0-9: on traduit P sous la forme du nombre p dans la base $d=|\Sigma|=10$ modulo q=11

```
P 1 2 3 5
```

```
p = \{[\{[\{1\cdot10 + 2\} \mod 11]\cdot 10 + 3\} \mod 11]\cdot 10 + 5\} \mod 11
p = \{[\{[\{12\} \mod 11]\cdot 10 + 3\} \mod 11]\cdot 10 + 5\} \mod 11
p = \{[\{[1]\cdot10 + 3\} \mod 11]\cdot 10 + 5\} \mod 11
p = \{[2]\cdot10 + 5\} \mod 11
p = \{25\} \mod 11 = 3
```

Réutiliser les résultats précédent: accélération

$$t_{s+1} = \{d(t_s-hT[s]) + T[m+s+1]\} \mod q$$

$$h = d^{m-1} \mod q$$

	1	2	3	4	5	6	7	8	9	10	11	12
Т	1	3	2	3	4	1	2	3	5	1	2	3

$$p = 1 235 \mod 11 = 3$$

$$s=0$$

$$p = 3$$

$$s=0$$

$$t_s = 1 323 \mod 11 = 3$$

$$p = 3$$

$$s=0$$

$$t_s = 1 323 \text{mod } 11 = 3$$

$$p = 3$$

$$p = 3$$

$$p = 3$$

$$s=3$$

$$p = 3$$

$$p = 3$$

p = 3

p = 3

p = 3

p = 3

Rabin-Karp

Complexité de l'algorithme à cause des faux-positifs

O(n) en cas moyen et en meilleur cas

Néanmoins, l'exécution de Rabin Karp est **plus rapide** que l'algorithme naïf.

Plan

Recherche de patron

Problématique

Rabin Karp

Automate FSM

PLSC

Problématique

Solution par programmation dynamique

Objectif: meilleure complexité

Battre O(m(n-m+1))

Meilleure performances que Rabin-Karp

Analyser la chaîne de caractère:

Construire une machine à états (prétraîtement)

Réutiliser les résultats précédents:

L'automate possède une mémoire interne de son état (accélération)

Construire - Le nombre d'états est égal à m+1

Construire - Le dernier état valide l'entrée

Construire – Les arcs répondent aux unités

ConstruRe – Ajouter les arcs restants

Traîter – La chaîne T est traversée une fois

Quelques définitions

```
Ensemble des états Q=\{q_0, q_1, q_2,...\}
```

Les états peuvent être représentés par un entier (leur indice)

État initial: 0

État final: m

Fonction post-fixe est notée: ⊃

Fonction préfixe est notée:

Le préfixe de P de longueur i est noté P_i ($P_i \subset P$)

Alphabet: ∑

Alphabet réduit aux lettre du patron: ∑p

Fonction de transition $\delta: Q \times \sum_p \to Q$

Construction

Algorithme de construction de la fonction de transition

```
Initialiser \delta à 0

Pour q = 0 : m

Pour chaque caractère a dans \Sigma_P

k = min(m+1, q+2)

Répéter

k = k - 1

Tant que k>0 et ( (P_k \supset P_q a) est faux)

\delta(q, a) = k

Fin Pour
```

Exemple

Rechercher: aabab

$$Q = \{q0, q1, q2, q3, q4, q5\}$$

$$Q0 = 0$$

$$\Sigma_p = \{a, b\}$$

$$q_0 \leftrightarrow \epsilon$$

$$q_1 \leftrightarrow a$$

$$q_2 \leftrightarrow aa$$

$$q_3 \leftrightarrow aab$$

$$q_4 \leftrightarrow aaba$$

$$q_5 \leftrightarrow aabab$$

Exemple

Fonction de transition δ:

Exemple

Construction

Idée: chaque état a reconnu le préfixe de la chaîne à rechercher qui lui est associe

 $q_0 \leftrightarrow \epsilon$

 $q_1 \leftrightarrow a$

 $q_2 \leftrightarrow aa$

 $q_3 \leftrightarrow aab$

 $q_4 \leftrightarrow aaba$

 $q_5 \leftrightarrow aabab$

Exemple de construction

Position: 012345 Chaine: aabab

 $P_0 = \varepsilon$ $P_1 = a$ $P_2 = aa$ $P_3 = aab$ $P_4 = aaba$

 P_5 = aabab

P_i est le préfixe de P de i lettres

Exemple de construction

Algorithme Patron: aabab

```
Initialiser \delta à 0
Pour q = 0: m
Pour chaque caractère a dans \Sigma_P
k = min(m+1, q+2)
Répéter
k = k - 1
Tant que k > 0 et (P_k \supset P_q a) est faux)
\delta(q, a) = k
Fin Pour
```

_	а	b
q0	0	0
q1	0	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 0, a

1:
$$m \leftarrow 5$$

2: $q \leftarrow 0$
3: $a \leftarrow 'a'$
4: $k \leftarrow min(6, 2)$
 $k \leftarrow 2$
5: $k \leftarrow 1$
6: $a \supset \epsilon a$?
 $a \supset a \lor 1$
7: $\delta(0, a) \leftarrow 1$

	a	b
q0	0	0
q1	0	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 0, a

1:
$$m \leftarrow 5$$

2: $q \leftarrow 0$
3: $a \leftarrow 'a'$
4: $k \leftarrow min(6, 2)$
 $k \leftarrow 2$
5: $k \leftarrow 1$
6: $a \supset \epsilon a$?
 $a \supset a \quad \sqrt{}$
7: $\delta(0, a) \leftarrow 1$

	a	b
q0	1	0
q1	0	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 0, b

3: a ← 'b' 4: $k \leftarrow \min(6, 2)$ ← 2 5: k ← 1 6: a \supset εb $a \supset b$ $\leftarrow \mathsf{F}$ 5: k ← 0 6: $\epsilon \supset \epsilon b$ $\epsilon \supset b$ $\leftarrow \mathsf{T}$ 7: $\delta(0, b) \leftarrow 0$

	а	b
q0	1	0
q1	0	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 5, b

a	b
1	0
2	0
2	3
4	0
2	5
1	0
	1 2

Transition 5, b

Dans le meilleur des cas, l'automate FSM donne une complexité

$$O(n) = \Theta(n)$$

La construction de la machine à états peut être coûteuse: O(m³d). Ce qui peut devenR handicapant pour certains problèmes de recherche:

$$O(m^3d_p)+\Theta(n)$$
 vs. $O(m(n-m+1)+m)$
 $d_p = |\Sigma_p|$

Plan

Recherche de patron

Problématique

Rabin Karp

Automate FSM

PLSC

Problématique

Solution par programmation dynamique

Problématique

Problématique:

• Étant données deux chaînes de caractères, trouver la plus longue sous-séquence commune.

Exemples:

- Comparaison des séquences génétiques ACGT.
- Trouver des modifications dans deux fichiers dans une base de données.

Problématique

Approche:

La sous-séquence n'est pas continue dans les chaînes d'entrée

Problématique

Approche:

La solution n'est pas unique

Approche naïve

 Il serait possible d'énumérer toutes les sous-séquences de X et Y et de trouver la plus longue sous-séquence commune:

Approche naïve

Exemple:

X

Y

1110	ABB	0110	BB
1101	ABA	0101	BA
1011	ABA	0011	BA
0111	BBA	1000	Α
1100	AB	0100	В
1010	AB	0010	В
1001	AA	0001	Α

1110 ABA 0110 BA BT 1101 **ABT** 0101 1011 **AAT** 0011 **AT** 0111 **BAT** 1000 Α 1100 AB В 0100 Α 1010 0010 AA 1001 AT 0001

Approche naïve

Exemple:

Plan

Recherche de patron

Problématique

Rabin Karp

Automate FSM

PLSC

Problématique

Solution par programmation dynamique

Formulation récursive

- Pour deux séquences d'entrée X[1..n], Y[1..m], et une PLSC Z[1..k] de X et Y, on note:
 - Si X[n] = Y[m],
 - alors Z[k]=X[n] et Z[1..k-1] est PLSC de X[1..n-1] Y[1..m-1]
 - Si X[n] ≠ Y[m],
 - alors si Z[k]≠X[n], Z[1..k] est PLSC de X[1..n-1] Y[1..m]
 - Si X[n] \neq Y[m],
 - alors si Z[k]≠Y[m], Z[1..k] est PLSC de X[1..n] Y[1..m-1]

Solution par programmation dynamique

La formulation récursive donne l'arbre d'exécution suivant:

Solution par programmation dynamique

La formulation récursive donne l'arbre d'exécution suivant:

La formulation récursive donne l'arbre d'exécution suivant:

La formulation récursive donne l'arbre d'exécution suivant:

La formulation récursive donne l'arbre d'exécution suivant:

La solution par programmation dynamique consiste à construire l'arbre de bas vers le haut, et de réutiliser les résultats redondants:

- Il est alors possible de formuler un algorithme de programmation dynamique:
 - On définit deux tables 2-D auxiliaires d (direction) et t (taille)
 - t a une taille (n+1) x (m+1) (initialisée à 0)
 - d a une taille n x m
 - On enregistre dans t[i+1, j+1] la taille de la PLSC de X[1..i], Y[1..j]
 - On enregistre dans d[i, j] la direction (HAUT, GAUCHE, DIAG) vers l'origine pour trouver la PLSC de X[1..i], Y[1..j]

```
Pour i = 1 : n
     Pour j = 1 : m
Si X[i] == Y[j]
       t [i+1, j+1] = t [i, j] + 1
       d [i, j] = DIAG (▼)
Sinon Si t[i, j+1] \ge t[i+1, j]
       t [i+1, j+1] = t [i, j+1]
       d [i, i] = HAUT ( ↑ )
Sinon
       t [i+1, j+1] = t [i+1, j]
       d [i, j] = GAUCHE (←)
```

d	Α	В	А	Т
Α				
В				
В				
Α				

t		А	В	Α	Т
	0	0	0	0	0
Α	0				
В	0				
В	0				
Α	0				

d	А	В	А	Т
Α	K			
В				
В				
Α				

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1			
В	0				
В	0				
Α	0				

d	Α	В	Α	Т
Α	*			
В				
В				
Α				

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1			
В	0				
В	0				
Α	0				

d	Α	В	Α	Т
Α	*			
В				
В				
Α				

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1			
В	0				
В	0				
Α	0				

d	Α	В	Α	Т
A	K	↓		
В				
В				
Α				

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1	1		
В	0				
В	0				
Α	0				

d	Α	В	А	Т
A	*	\		
В				
В				
Α				

t		Α	В	Α	Т
	0	0	0	0	0
Α	0	1	1		
В	0				
В	0				
Α	0				

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1	1	1	
В	0				
В	0				
Α	0				

t		Α	В	Α	Т
	0	0	0	0	0
Α	0	1	1	1	
В	0				
В	0				
Α	0				

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1	1	1	
В	0				
В	0				
Α	0				

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1	1	1	1
В	0				
В	0				
Α	0				

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1	1	1	1
В	0	1	2	2	2
В	0				
Α	0				

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1	1	1	1
В	0	1	2	2	2
В	0	1	2	2	2
Α	0				

t		Α	В	Α	Т
	0	0	0	0	0
Α	0	1	1	1	1
В	0	1	2	2	2
В	0	1	2	2	2
Α	0	1	2	3	3

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1	1	1	1
В	0	1	2	2	2
В	0	1	2	2	2
Α	0	1	2	3	3

En suivant la direction des flèches, on peut retrouver la PLSC

t		А	В	Α	Т
	0	0	0	0	0
Α	0	1	1	1	1
В	0	1	2	2	2
В	0	1	2	2	2
Α	0	1	2	3	3

Les caractères de la PLSC sont aux flèches diagonales

Γ						
	t		Α	В	Α	Т
l		0	0	0	0	0
	Α	0	1	1	1	1
	В	0	1	2	2	2
	В	0	1	2	2	2
	Α	0	1	2	3	3

On pourrait minimiser la mémoire de t à deux lignes

Appliquer l'algorithme pour l'exemple suivant:

t		0	V	Α	L	Е	S
	0	0	0	0	0	0	0
V	0	0	1	1	1	1	1
Α	0	0	1	2	2	2	2
L	0	0	1	2	3	3	3
- 1	0	0	1	2	3	3	3
S	0	0	1	2	3	3	4
Е	0	0	1	2	3	4	4
S	0	0	1	2	3	4	5