20 марта 2025 г.

Содержание

1	Зад	цание по алгоритмам	1
	1.1	Постановка задачи	1
	1.2	Требования к реализации	1
2	Зад	цание по физике	2
	•	цание по физике Постановка задачи	_

1 Задание по алгоритмам

1.1 Постановка задачи

- 1. Построй граф в виде квадратной решетки размером $N \times N$, где N является параметром.
- 2. Выбери произвольную вершину в этом графе.
- 3. Реализуй алгоритм Дейкстры для нахождения кратчайших путей от выбранной вершины до всех остальных вершин графа. **Важно:** алгоритм должен быть реализован с нуля, без использования готовых библиотечных функций (разговор именно про дейкстру).
- 4. Измерь и выведи время выполнения алгоритма для нахождения кратчайших путей.
- 5. Опционально: реализуй следующие алгоритмы для решения той же задачи:
 - Поиск в глубину (DFS)
 - Поиск в ширину (BFS)
 - Алгоритм А*

Проведи сравнительный анализ их производительности и эффективности.

1.2 Требования к реализации

- Реализацию можно выполнить на языке программирования по твоему выбору.
- Код должен быть снабжён комментариями.
- Результаты (время выполнения, найденные кратчайшие пути) необходимо выводить в консоль или сохранять в виде отчёта(на твое усмотрение)

• В случае реализации опциональных алгоритмов прокомментируй, в каких случаях они могут показывать лучшие или худшие результаты по сравнению с алгоритмом Дейкстры.

2 Задание по физике

2.1 Постановка задачи

1. Рассмотри одномерное стационарное уравнение Шредингера для частицы в потенциальной яме:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x),$$

где потенциал определяется как:

$$V(x) = \begin{cases} 0, & 0 \le x \le L, \\ \infty, & x < 0 \text{ или } x > L. \end{cases}$$

- 2. Используя метод конечных разностей, найди численное решение уравнения Шредингера для определения стационарных состояний $\psi(x)$ и соответствующих уровней энергии E.
- 3. Сравни полученные численные результаты с аналитическими решениями для бесконечной потенциальной ямы(можно нагуглить)

2.2 Требования к реализации

- Реализацию можно выполнить на языке программирования по твоему выбору.
- Код должен быть снабжён комментариями, поясняющими используемые методы.
- Результаты численного решения (графики волновых функций, уровни энергии) необходимо представить в виде изображений и/или таблиц.

Успехов!