OpenCV acceleration battle:

OpenCL on Firefly-RK3288(MALI-T764)

VS.

FPGA on ZedBoard(Zynq-7020)

Noritsuna Imamura noritusna@siprop.org

- OpenCV for OpenCL
- OpenCV for FPGA

!!!!!!ATTENTION!!!!!!

- This Slide is NOT
 - OpenCL for GPU vs. FPGA

OpenCL for FPGA

- Today's Agenda
 - OpenCV for OpenCL
 - OpenCV for FPGA

OpenCL SDK for FPGA

- Altera SDK for OpenCL
 - http://www.altera.com/products/software/opencl/op

encl-index.html

- Xilinx SDAccel
 - http://www.xilinx.com/products/design-

tools/sdx/sdaccel.htm

SDAccel - CPU/GPU Development Experience on FPGAs

Advantage of FPGA

- Direct connect Peripherals to FPGA.
 - GPGPU must bypass CPU/Memory bus.

About OpenCL for FPGA

- Programming Language for FPGA
 - OpenCL Compiler for RTL(Register Transfer Level)
 - OpenCL Runtime Library

- Why for usage?
 - For "Software Engineers"
 - Easy to Program for FPGA

Advantage of OpenCL for FPGA

- High-Level Synthesis
 - C/C++/Java/Python for HDL

- FPGA features
 - No Memory
 - FPGA has SRAM/SDRAM. But small size & big overhead.
 - Parallel Processing
 - Input number is Parallel number.

Streaming Processing for No Memory Prop

Ex. Effect(pixel by pixel)

Pipeline Processing for Parallel

Ex. OpenGL Architecture

Existing Fixed Function Pipeline

OpenCV for OpenCL

About OpenCL for OpenCV 1/2

- OpenCL Functions for OpenCV
 - cv::ocl::xxx
 - Wrapped Functions as OpenCV Functions
- 1. #include <opencv2/ocl/ocl.hpp>
- 2. int main(int argc, char** argv) {
- 3. cv::Mat matIn = cv::imread("hoge.png"), matDisp;
- 4. cv::ocl::oclMat oclIn(matIn), oclOut;
- 5. cv::ocl::cvtColor(oclIn, oclOut, cv::COLOR_BGR2GRAY);
- oclOut.download(matDisp);
- 7. return 0;
- 8. }

About OpenCL for OpenCV 2/2

- Customized OpenCL for OpenCV
 - Header
 - opencv2/ocl/ocl.hpp
 - modules/core/src/opencl/runtime/generator/
 - Source Code
 - modules/core/src/opencl/*.C
- OpenCL feature
 - NOT Binary Compatibility

Problem on Android

- Required put *.CL files on same place of App
 - But Android App is APK file. Not single binary.
 - > MUST build OpenCV.so w/your CL file
- "OpenCV with OpenCL for Android NDK"
 - How to Build OpenCV for Android System
 - https://github.com/noritsuna/OpenCVwithOpenCL4Android NDK

OpenCV for FPGA

Zynq-7000 Series

Dual ARM Cortex-A9 + FPGA

Zynq + FPGA(IP Core)

Zynq + PWM IP Core

Zynq Development Board

- ZedBoard
 - USD495, Zynq-7020
- ZYBO
 - USD189, Zynq-7010

- With Vivado(IDE) License?
 - http://www.digilentinc.com/

Advantage of ARM + FPGA

- Full Functions of OpenCV
 - Required Super Large FPGA

OpenCV Sample App for Zynq

- "Accelerating OpenCV Applications with Zynq-7000 All Programmable SoC using Vivado HLS Video Libraries"
 - http://www.xilinx.com/support/documentation/application_n otes/xapp1167.pdf

- Development Tools
 - Vivado HLS(High-Level Synthesizer)
 - Developing Environment for HLS
 - Vivado
 - IP Designer for Xilinx FPGA
 - ISE
 - Expired

OpenCV is included in Vivado HSL SIProp

C:/Xilinx/Vivado_HLS/2014.4/include/ap_s

```
ि Explorer ⊠
                                             h hls_video_fast.

    *top.cpp 
    □ top.h

                                                              c test.cpp
                                                                                                  h opencv_top.h
        #include "opency/cv.h"
        50
                                              51@ void test cv() {
        cv::Mat image(1080, 1920, CV 8UC3);
        C:/Xilinx/Vivado_HLS/2014.4/include/fi
                                              53 }
        54
        C:/Xilinx/Vivado_HLS/2014.4/include/o
                                              55
             h cv.h
             h cv.hpp
             h cvaux.h
             h cvaux.hpp
                                             □ Console \(\mathbb{Z}\)\(\)
                                                        🔪 💇 Errors 🐧 Warnings 🔗 Search
             h cvwimage.h
                                             Vivado HLS Console
             h cxcore.h
                                             @I [HLS-10] Opening project 'C:/Data/MyDocuments/Device/FPGA/ZedBoard/OpenCV/
             h cxcore.hpp
                                             @I [HLS-10] Adding design file 'hls sources/top.h' to the project
             h cxeigen.hpp
                                             @I [HLS-10] Adding design file 'hls sources/top.cpp' to the project
             h cxmisc.h
                                             @I [HLS-10] Adding test bench file 'hls sources/test 1080p.bmp' to the projec
             ի highqui.h
                                             @I [HLS-10] Adding test bench file 'hls sources/test.cpp' to the project
             h ml.h
                                             @I [HLS-10] Adding test bench file 'hls sources/opencv top.h' to the project
        C:/Xilinx/Vivado_HLS/2014.4/include/o
                                             @I [HLS-10] Adding test bench file 'hls sources/opencv top.cpp' to the projec
          h clc.h
                                             @I [HLS-10] Opening solution 'C:/Data/MyDocuments/Device/FPGA/ZedBoard/OpenCV
          floating_point_v6_1_bitacc_cmodel.h
                                             @I [SYN-201] Setting up clock 'default' with a period of 6.66667ns.
          floating_point_v6_2_bitacc_cmodel.h
                                             @I [LIC-101] Checked out feature [VIVADO HLS]
          n floating_point_v7_0_bitacc_cmodel.h
                                             @I [HLS-10] Setting target device to 'xc7z020clg484-1'
          li gmp.h
                                             @I [HLS-10] Amaryzing design file 'hls sources/top.cpp' ...
                                              As sources/top.cpp:49:10: fatal error: 'opencv/cv.h' file not found
          h hls_fft.h
                                             #include "opency/cv.h"
          h hls fir.h
          h hls_fpo.h
                                             1 error generated.
          h hls_linear_algebra.h
                                             C preprocessor failed.
          h hls_math.h
                                                 while executing
          h hls opency.h
                                             "csynth design"
          h hls stream.h
                                                 (file "C:/Data/MyDocuments/Device/FPGA/ZedBoard/OpenCV/ZynqVision/2013 3/
          h hls_video.h
                                             @I [LIC-101] Checked in feature [VIVADO HLS]
          h mpfr.h
```

Can't Use…

I guess "hls_opencv.h" is OpenCV for HLS.

Not Synthesizable…


```
h hls_opencv.h ⋈
                        h top.h
                                  h opencv_top.h
c test.cpp
            c top.cpp
  3⊕ *
            Author: Xilinx, Inc.
 31
  32 - /*
  * HLS OpenCV Image Translation File, Not Synthesizable.
  34
  35
     #ifndef
                HLS VIDEO OPENCV
  36
     #define
                HLS VIDEO OPENCV
  38
     #ifndef cplusplus
  39
     #error C++ is required to include this header file
  41
     #endif
 42
  43
     //hls opency.h is only valid in testbench.
  44
     #ifndef SYNTHESIS
  45
     //OpenCV Header Files
     #include "opencv2/opencv.hpp"
  47
 48
     //HLS Video Header File
  50
     #include "hls video.h"
  51
  52
     /* From/To hls::Mat */
  53
  54@template<int ROWS int COIS
```

"hls_video.h" has OpenCV for HLS SIProp


```
<u></u> □ □
                                                                        h top.h
a Explorer ⊠
                                                                                   h hls_opencv.h
                                               c test.cpp
                                                            c top.cpp
                                                                                                   hls vid
                                                    #if (defined(ROWS)|| defined(COLS) || defined(SRC T)
          #error One or more of the following is defined: ROWS
          C:/Xilinx/Vivado_HLS/2014.4/includ
                                                 46
                                                    #endif
          47
          C:/Xilinx/Vivado_HLS/2014.4/include
                                                    #include "hls/hls axi io.h"
                                                 48
          C:/Xilinx/Vivado_HLS/2014.4/include
                                                    #include "hls math.h"
            C:/Xilinx/Vivado_HLS/2014.4/includ
                                                    #include "hls stream.h"
                                                 50
          C:/Xilinx/Vivado_HLS/2014.4/includ
                                                51
          C:/Xilinx/Vivado_HLS/2014.4/include
                                                 52
                                                    #include "hls/utils/x hls utils.h"
          C:/Xilinx/Vivado_HLS/2014.4/include
                                                    #include "hls/utils/x hls traits.h"
                                                 53
          C:/Xilinx/Vivado_HLS/2014.4/include
                                                    #include "hls/utils/x hls defines.h"
            C:/Xilinx/Vivado HLS/2014.4/includ
                                                    #include "hls/hls video types.h"
          C:/Xilinx/Vivado_HLS/2014.4/include
                                                    #include "hls/hls video mem.h"
          C:/Xilinx/Vivado_HLS/2014.4/include
                                                    #include "hls/hls video core.h"
                                                    #include "hls/hls video imgbase.h"
             h opency_modules.hpp
                                                    #include "hls/hls video io.h"
            h opency.hpp
          h clc.h
                                                 60
                                                    #include "hls/hls video arithm.h"
          h floating_point_v6_1_bitacc_cmodel.h
                                                    #include "hls/hls video imgproc.h"
          floating_point_v6_2_bitacc_cmodel.h
                                                    #include "hls/hls video histogram.h"
            floating_point_v7_0_bitacc_cmodel.h
                                                    #include "hls/hls video fast.h"
            gmp.h
                                                    #include "hls/hls video undistort.h"
            hls_fft.h
                                                    #include "hls/hls video hough.h"
            hls fir.h
                                                    #include "hls/hls video harris.h"
          ւհ hls fpo.h
                                                    #include "hls/hls video haar.h"
            hls linear algebra.h
                                                    #include "hls/hls video stereobm.h"
          h hls_math.h
                                                 70
          h hls opency.h
                                                    #endif
                                                71
          h hls stream.h
                                                72
          ւհ hls video.h
```

OpenCV Sample App for Zynq

- "Accelerating OpenCV Applications with Zynq-7000 All Programmable SoC using Vivado HLS Video Libraries"
 - http://www.xilinx.com/support/documentation/application_n otes/xapp1167.pdf

- Detail
 - Dilate Filter with FAST feature point for FullHD Video(1920x1080) Streaming

void image_filter(AXI_STREAM& input, AXI_STREAM& output, int rows, int cols) 2. //Create AXI streaming interfaces for the core #pragma HLS RESOURCE variable=input core=AXIS metadata="-bus_bundle **INPUT STREAM**" 5. #pragma HLS RESOURCE variable=output core=AXIS metadata="-bus_bundle **OUTPUT STREAM"** 6. #pragma HLS interface ap stable port=rows **#pragma HLS interface ap_stable port=cols** hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> 8. _src(rows,cols); hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> dst(rows,cols); 10. #pragma HLS dataflow hls::AXIvideo2Mat(input, src); 11. hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> 12. src0(rows,cols); hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> src1(rows,cols); 13. 14. #pragma HLS stream depth=20000 variable=src1.data stream hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC1> **15.** mask(rows,cols); hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC1> 16. dmask(rows,cols); **17.** hls::Scalar<3,unsigned char> color(255,0,0); 18. hls::Duplicate(_src,src0,src1); gray(rows,cols); 19. hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC1> hls::CvtColor<HLS_BGR2GRAY>(src0,gray); 20. 21. hls::FASTX(gray,mask,20,true); 22. hls::Dilate(mask,dmask); 23. hls::PaintMask(src1,dmask,_dst,color); 24. hls::Mat2AXIvideo(dst, output); 25.}

FAST() function

- FAST (Features from Accelerated Segment Test) algorithm
 - One of the features detection algorithm

Dilate() function

- - One of the filter function out[1]= Distion

How to Implement ARM + FPGA?

- Full Functions of OpenCV
 - Required Super Large FPGA

Generated "IP Core + Header"="Drisper"

Zynq + FPGA(IP Core)

■ Zynq + PWM IP Core on Vivado(≠Vivado HSL)

25.}

void image_filter(AXI_STREAM& input, AXI_STREAM& output, int rows, int cols) 2. //Create AXI streaming interfaces for the core #pragma HLS RESOURCE variable=input core=AXIS metadata="-bus_bundle **INPUT STREAM**" **#pragma HLS RESOURCE variable=output core=AXIS metadata="-bus_bundle** OUTPUT STREAM" 6. #pragma HLS interface ap stable port=rows #pragma HLS interface ap_stable port=cols hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> 8. _src(rows,cols); hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> dst(rows,cols); 10. #pragma HLS dataflow hls::AXIvideo2Mat(input, src); 11. hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> src0(rows,cols); 12. hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> src1(rows,cols); 13. 14. #pragma HLS stream depth=20000 variable=src1.data stream hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC1> mask(rows,cols); **15.** hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC1> 16. dmask(rows,cols); **17.** hls::Scalar<3,unsigned char> color(255,0,0); 18. hls::Duplicate(_src,src0,src1); gray(rows,cols); 19. hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC1> hls::CvtColor<HLS_BGR2GRAY>(src0,gray); 20. 21. hls::FASTX(gray,mask,20,true); 22. hls::Dilate(mask,dmask); hls::PaintMask(src1,dmask,_dst,color); 23. hls::Mat2AXIvideo(dst, output); 24.

How to USE "IP Core & Headers"

- Build Binaries
 - FSBL(1st Boot Loader) = x-loader, u-boot
 - Linux Kernel for Your System
 - Ubuntu/Android for System (Option)
- How to Build Android 5.0 for ZedBoard
 - http://www.slideshare.net/noritsuna/zedroidandroid-50-and-later-on-zedboard

void image_filter(AXI_STREAM& input, AXI_STREAM& output, int rows, int cols) 2. 3. //Create AXI streaming interfaces for the core #pragma HLS RESOURCE variable=input core=AXIS metadata="-bus_bundle **INPUT STREAM**" #pragma HLS RESOURCE variable=output core=AXIS metadata="-bus_bundle **OUTPUT STREAM" #pragma HLS interface ap stable port=rows** #pragma HLS interface ap_stable port=cols 8. hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> _src(rows,cols); hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> dst(rows,cols); 10. #pragma HLS dataflow hls::AXIvideo2Mat(input, src); 11. hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> 12. src0(rows,cols); hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC3> 13. src1(rows,cols); 14. #pragma HLS stream depth=20000 variable=src1.data stream hls::Mat<MAX_HEIGHT,MAX_WIDTH,HLS_8UC1> **15.** mask(rows,cols); hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC1> 16. dmask(rows,cols); hls::Scalar<3,unsigned char> color(255,0,0); **17.** 18. hls::Duplicate(_src,src0,src1); gray(rows,cols); 19. hls::Mat<MAX HEIGHT,MAX WIDTH,HLS 8UC1> hls::CvtColor<HLS_BGR2GRAY>(src0,gray); 20. hls::FASTX(gray,mask,20,true); 21. 22. hls::Dilate(mask,dmask); 23. hls::PaintMask(src1,dmask,_dst,color); 24. hls::Mat2AXIvideo(dst, output); 25.}

Can't Use All Standard C/C++ LibssiProp

OpenCV acceleration battle:

OpenCL on Firefly-RK3288(MALI-T764)

VS.

FPGA on ZedBoard(Zynq-7020)

Noritsuna Imamura noritusna@siprop.org

Which way is faster?

- A. OpenCV for FPGA >>>> OpenCV for OpenCL
 - According to Xilinx "1000 times over faster".
 - Clock Speed
 - FPGA = 150MHz, ARM-T764 = 650MHz
- Direct connect Peripherals to FPGA.
 - GPGPU must bypass CPU/Memory bus.

