Finite volume schemes

An introduction

PART 2

http://woolshed1.blogspot.co.uk/2010/02/sheep-yards-design-and-construction.html

Note that the entire derivation until now was *exact*, if we can guarantee that the fluid quantities are continuous inside a cell, and that the cell volume does not change with time.

$$\frac{\partial Q_i}{\partial t} = -\iint \underline{F}(U).\,\mathrm{d}\underline{S_i}$$

To convert the equation above into a useful numerical method, we will need to make some *approximations*

about how to obtain useful fluxes

about how to approximate the surface integral

about how to deal with discontinuities in the fluid quantities (shocks, contact discontinuities)

about how to discretize time

Obtaining useful fluxes

We need to evaluate the fluxes at the boundary between cells.

However, our integration scheme will only be *stable* if we respect the natural flow direction of the fluid, a so called *upwind* scheme.

This means we cannot simply use the average of the fluid quantities on both sides of the boundary.

Obtaining useful fluxes: the Riemann problem

What is the natural flow direction in a two state problem?

Physical acceptable solutions contain three distinct waves:

- a left rarefaction or shock wave
- a central contact discontinuity
- a right rarefaction or shock wave

Wave types: shock wave

Strong discontinuity in density, pressure and fluid velocity. *Supersonic* movement caused by a strong pressure or velocity gradient.

Wave types: contact discontinuity

Discontinuity in density, pressure and fluid velocity are constant. Moving with the local fluid velocity.

Wave types: rarefaction wave

Continuous change in density, pressure and fluid velocity. Moving with the sound speed relative w.r.t. the local fluid velocity. Normal flow, described by the *Euler equations*.

Obtaining useful fluxes: the Riemann problem

Exact solution to Riemann problem can be found using an iterative procedure Good approximate solvers exist that do not require an iteration (more efficient) The solution of the Riemann problem is then used to obtain fluxes that respect the natural direction of the flow.

Since the Riemann problem explicitly deals with discontinuities, our integration scheme can handle discontinuous fluid quantities, as long as they coincide with cell boundaries!

Approximating the surface integral

The integral over the entire cell boundary surface is a sum over boundaries between the cell and its neighbouring cells:

$$\frac{\partial Q_i}{\partial t} = -\iint \underline{F}(U). \, d\underline{S_i} \approx -\sum_j \underline{F_{ij}}. \, \underline{A}_{ij}$$

Time integration

A first order accurate integration scheme is a simple Euler scheme:

$$\Delta Q_i = -\left(\sum_j \underline{F}_{ij}.\underline{A}_{ij}\right) \Delta t$$

If we use upwind fluxes, this scheme will be conditionally stable, if

$$\Delta t < C_{CFL} \frac{\Delta x}{v_{signal}}$$

 Δx is the size of a single cell

 v_{signal} is the velocity of the flow

 \mathcal{C}_{CFL} is the Courant-Friedrichs-Lewy number, $0<\mathcal{C}_{CFL}<1$ for a stable solution

Summary: first order finite volume scheme

1

Convert conserved to primitive variables

$$\rho_i = \frac{m_i}{V_i} \qquad p_i = (\gamma - 1)\rho_i \left(e_{tot,i} - \frac{1}{2} u_i^2 \right)$$

2

Use primitive variables across cell boundaries as input for Riemann solver

$$\text{RiemannSolver}(\rho_L, \underline{u}_L, p_L, \rho_R, \underline{u}_R, p_R) \longrightarrow \rho_{sol}, \underline{u}_{sol}, p_{sol}$$

3

Use Riemann problem solution to obtain upwind fluxes

$$\underline{F}_{ij} = \underline{F}(\rho_{sol}, \underline{u}_{sol}, p_{sol})$$

4

Use fluxes to update conserved variables

$$\Delta Q_i = -\left(\sum_j \underline{F}_{ij}.\underline{A}_{ij}\right) \Delta t$$

```
# the cell class
class Cell:
  def init (self):
     self. volume = 0.
     self. mass = 0.
     self. momentum = 0.
     self._energy = 0.
     self. density = 0.
     self. velocity = 0.
     self. pressure = 0.
     self._right_ngb = None
     self. surface area = 1.
```

```
# the constant adiabatic index
GAMMA = 5./3.
# the constant time step
timestep = 0.001
```

```
# set up the cells
cells = []
for i in range(100):
  cell = Cell()
  cell._volume = 0.01
  if i < 50:
     cell. mass = 0.01
     cell. energy = 0.01 / (GAMMA - 1.)
  else:
     cell. mass = 0.00125
     cell.energy = 0.001 / (GAMMA - 1.)
  cell._momentum = 0.
  # set the neighbour of the previous cell
  cells(-1)._right_ngb = cell
  cells.append( cell )
```

Convert conserved to primitive variables

$$\rho_i = \frac{m_i}{V_i} \qquad p_i = (\gamma - 1)\rho_i \left(e_{tot,i} - \frac{1}{2} u_i^2 \right)$$

```
for cell in cells:
  volume = cell. volume
  mass = cell. mass
  momentum = cell._momentum
  energy = cell._energy
  density = mass / volume
  velocity = momentum / mass
  pressure = (GAMMA - 1) * (energy / volume - 0.5 * density * velocity * velocity)
  cell._density = density
  cell. velocity = velocity
  cell_pressure = pressure
```

Use primitive variables across cell boundaries as input for Riemann solver

RiemannSolver
$$(\rho_L, \underline{u}_L, p_L, \rho_R, \underline{u}_R, p_R) \longrightarrow \rho_{sol}, \underline{u}_{sol}, p_{sol}$$

```
for cell in cells:
  cell right = cell. right ngb
  densityL = cell. density
  velocityL = cell._velocity
  pressureL = cell. pressure
  densityR = cell_right._density
  velocityR = cell right. velocity
  pressureR = cell_right._pressure
  densitysol, velocitysol, pressuresol = RiemannSolver(densityL, velocityL, pressureL,
                                                          densityR, velocityR, pressureR)
  # ... continued in step 3 ...
```

$$\underline{F}_{ij} = \underline{F}(\rho_{sol}, \underline{u}_{sol}, p_{sol})$$

4

$$\Delta Q_i = -\left(\sum_j \underline{F}_{ij}.\underline{A}_{ij}\right) \Delta t$$

```
# for cell in cells:
# ...
A = cell._surface_area
cell._mass = cell._mass - flux_mass * A * timestep
cell. momentum = cell. momentum - flux momentum * A * timestep
cell. energy = cell. energy - flux energy * A * timestep
# flux exchange: what goes out of cell has to go into cell_right
cell_right._mass = cell_right._mass + flux_mass * A * timestep
cell_right._momentum = cell_right._momentum + flux momentum * A * timestep
cell_right._energy = cell_right._energy + flux_energy * A * timestep
```

Reference solution at t = 0.2 (after 200 steps)

Solution without Riemann solver at t = 0.1

EXTRA: Improving the result

The method we have seen so far is first order in space and time.

This means that the accuracy of the solution improves linearly with the number of cells used to discretize the fluid.

We can do better by using a second order method.

Second order schemes

Use linear interpolation to obtain more accurate values at cell boundaries

Requires the computation of *gradients* across cells

Second order in space

Second order schemes

Gradients can also be used to predict variables forward in time:

$$\rho' = \rho - \frac{1}{2}\Delta t \left(\rho \underline{\nabla} \cdot \underline{u} + \underline{u} \cdot \underline{\nabla}\rho\right)$$

$$\underline{u'} = \underline{u} - \frac{1}{2}\Delta t \left(\underline{u} \,\underline{\nabla} \cdot \underline{u} + \frac{1}{\rho} \underline{\nabla}p\right)$$
 (these are just the Euler equations)
$$p' = p - \frac{1}{2}\Delta t \left(\gamma p \,\underline{\nabla} \cdot \underline{u} + \underline{u} \cdot \underline{\nabla}p\right)$$

Second order in time

Reference solution at t = 0.2 (first order)

Reference solution at t = 0.2 (second order)

Lagrangian schemes

We have imposed no restrictions on the shape of a cell

However, we have required the cell volume to be independent of time

This requirement can be relaxed by adding correction terms to the fluxes:

$$\underline{F}(U) = \begin{pmatrix} \rho(\underline{u} - \underline{w}) \\ \rho\underline{u}(\underline{u} - \underline{w}) + p\underline{1} \\ \rho e_{tot}(\underline{u} - \underline{w}) + p\underline{u} \end{pmatrix}$$

 \underline{w} is the velocity of the surface boundary of the cell

This also means we can solve the Riemann problem in the rest frame of the boundary surface, cancelling out large flow velocities that might affect the accuracy of the solver.

Reference solution at t = 0.2 (Eulerian)

Reference solution at t = 0.2 (Lagrangian)

