NASA Technical Paper 1399

COMPLETED

Performance of Two-Stage Fan With Larger Dampers on First-Stage Rotor

Donald C. Urasek, Walter S. Cunnan, and William Stevans

MAY 1979

NASA Technical Paper 1399

Performance of Two-Stage Fan With Larger Dampers on First-Stage Rotor

Donald C. Urasek, Walter S. Cunnan, and William Stevans Lewis Research Center Cleveland, Ohio

Scientific and Technical Information Office

1979

SUMMARY

The performance of a two-stage, high-pressure-ratio fan having large part-span vibration dampers on the first-stage rotor is presented. The same fan with smaller dampers had been tested earlier. Apparently, high stresses in the root region of these small dampers caused them to fail. The first-stage rotor blades were then refabricated to the same aerodynamic design but with larger dampers. The use of these larger dampers significantly affected the performance. Comparisons of the performances of the two fan configurations shows that the use of larger dampers (1) produced very high losses in the damper region, which reduced the overall efficiency of the first-stage rotor by approximately 3 points, (2) did not significantly alter the overall performances of each blade row downstream of the damper, although appreciable differences in the radial distributions of various performance parameters were noted, and (3) decreased the overall fan efficiency more than 1 percentage point as a result of the lower performance of the first-stage rotor. (The actual decrease in efficiency is not known because the peak efficiency of the small dampered fan configuration was not established at design speed.)

INTRODUCTION

The NASA Lewis Research Center is engaged in a comprehensive research program on fans and compressors. Because fan noise must be considered in the design of most advanced fans, an advanced, two-stage, high-pressure-ratio fan having widely spaced blade rows (for noise considerations) was built and tested (ref. 1). Even though the design-speed peak efficiency was not established for that fan, it was apparent that it would not meet its design efficiency and was somewhat low in weight flow. An attempt was made to improve performance by resetting the stators, and the fan was tested at 80 percent of design speed. The efficiency increase was on the order of 3 percentage points along with an increase of weight flow of 1.3 kilograms per second. However, before the effect of stator-blade reset could be evaluated at design speed, three vibration dampers failed.

Because of the performance improvement potential, the first-stage rotor was rebuilt to the same aerodynamic design, except for the inclusion of larger vibration dampers, and the fan was retested. This report presents the performance of the two-

stage, high-pressure-ratio fan with larger dampers on the first-stage rotor. Because the dampers significantly influenced performance, the results are compared with the original configuration (ref. 1). The data in this report are presented in both tabular and plotted form. The symbols and equations are defined in appendixes A and B. The definitions and units used for the tabular data are presented in appendix C.

TWO-STAGE FAN DESIGN

The aerodynamic and mechanical design of the two-stage fan is discussed in detail in reference 1. The flow path of the fan is shown in figure 1, and an assembly photograph of the two-stage fan is shown in figure 2. All significant blade design parameters are listed in tables I to III.

Part-span dampers on the first-stage rotor were located approximately 42 percent of span from the rotor tip to minimize blade vibrations. The meanline of the damper forms a conical surface that lies along the design streamline. Photographs and sketches of the original small damper and the redesigned large damper are presented in figure 3. The inner and outer surfaces of both dampers were formed by circular-arc sections passing through the leading and trailing edges, and the maximum thickness points for both dampers were located at midchord.

APPARATUS AND PROCEDURE

Compressor Test Facility

The two-stage fan was tested in the Lewis multistage compressor facility, which is described in reference 1. A schematic diagram of the facility is shown in figure 3. Atmospheric air enters the test facility at an inlet located on the roof of the building and flows through the flow measuring orifice, through the inlet butterfly throttle valves, and into the plenum chamber upstream of the test compressor. The air then passes through the test fan into the collector and is then exhausted either to the atmosphere or to an altitude exhaust system. Weight flow is controlled with a sleeve valve in the collector. For this series of tests the large inlet butterfly throttle valve remained fully open with the small valve fully closed, and the air was exhausted to the atmosphere.

Instrumentation

Radial surveys of the flow conditions were made at the fan inlet and behind the two stator-blade rows (see fig. 1). Total pressure, total temperature, and flow angle were measured with a combination probe (fig. 4). Each probe was positioned with a null-balancing, stream-direction-sensitive control system that automatically alined the probe to the direction of flow. The thermocouple material was iron-constantan. All pressures were measured with calibrated transducers. Two combination probes were used at the compressor inlet and behind the first-stage stator, and four combination probes were used behind the second-stage stator. The circumferential locations of the probes at each measuring station are shown in figure 5. The probes behind the stators were circumferentially traversed one stator-blade passage clockwise from the nominal values shown.

The fan weight flow was determined by means of a calibrated thin-plate orifice. An electronic speed counter, in conjunction with a magnetic pickup, was used to measure rotative speed (rpm).

The estimated errors in the data based on inherent accuracies of the instrumentation and recording system are as follows:

Weight flow, kg/sec	. 3
Rotative speed, rpm	30
Flow angle, deg	±1
Temperature, K	. 6
Total pressure, N/cm ² , at -	
Station 1	07
Station 2	10
Station 3	17

Test Procedure

The data were taken over a range of weight flows from maximum to near stall at equivalent rotative speeds of 80 and 100 percent of design speed. At each selected flow data were recorded at 11 radial positions at each of the 3 measuring stations. At each radial position the combination probes behind the stators (stations 2 and 3) were circumferentially traversed to 10 equally spaced locations across a stator-blade gap. Values of pressure, temperature, and flow angle were measured at each circumferential position. At the fan inlet (station 1) radial traverses were made to measure pressure, temperature, and flow angle at each radial position.

Calculation Procedure

At each radial position behind the two stator-blade rows, circumferential arrays of total pressure, total temperature, and flow angle were generated across a stator-blade gap by arithmetically averaging the measurements from the combination probes at each circumferential position.

At each radial position the arithmetically averaged values making up the circumferential arrays of total pressure, total temperature, and flow angle across one blade gap were again averaged as follows to obtain the representative values behind each stator-blade row. The total-pressure array was energy averaged; the total-temperature array was mass averaged; and the flow-angle array was arithmetically averaged. Those averaged values are presented herein.

Representative radial values of total pressure and total temperature between the rotor- and stator-blade rows (necessary for individual rotor and stator performance evaluation) were obtained from the arithmetically averaged circumferential arrays of total pressure and total temperature obtained downstream of the adjoining stator and translated upstream of the stator along design streamlines as follows: At each radial position total temperature was selected as the mass-averaged value of the arithmetically averaged values making up the circumferential array, and the highest value of total pressure was selected from the arithmetically averaged values making up the circumferential array.

Data were reduced using a computer program that calculates the radial distributions of static pressure at each measuring station and the radial distributions of flow angle at stations behind the rotors. Radial distributions of static pressure are calculated within the program from equations of continuity of mass flow and full radial equilibrium, which includes gradients of entropy and enthalpy and uses design streamline curvature, slope, and endwall blockage. Inputs to this program include equivalent weight flow, corrected speed, and radial distributions of total pressure and total temperature behind a rotor-blade row and equivalent weight flow along with radial distributions of total pressure, total temperature, and flow angle behind a stator-blade row.

To obtain overall performance for each rotor and stage, the radial values of total temperature were mass averaged, and the radial values of total pressure were energy averaged.

All data reported herein have been translated to the leading and trailing edges of each blade row by the method presented in reference 2. All pressures and temperatures were corrected to sea-level conditions based on the inlet conditions of the first-stage rotor. Weight flow and rotative speed were corrected to sea-level conditions based on the rotor-inlet conditions of each stage.

RESULTS AND DISCUSSION

The experimental results of the two-stage fan with large dampers on the first-stage rotor are presented in two sections: Overall Performance and Radial Distributions. The plotted data, along with additional parameters not shown in the figures, are also presented in tabular form (tables IV to IX). The definitions and units used in the tables appear in appendix C.

The experimental results from this two-stage fan are then compared with the experimental results from the same fan having small dampers on the first stage rotor and reported in reference 1.

Preliminary testing of the large-dampered configuration was conducted to determine the effect of stator reset on performance. Data were obtained at 80 and 100 percent of design speed over a wide combination of setting angles. The improvement in performance at 80 percent of design speed with the stators reset, was similar to that which was demonstrated with the small-dampered configuration. However, no improvement materialized with the large-dampered configuration at design speed. Optimum efficiency at design speed was obtained with design stator settings, and the data of this report are presented for that setting.

Overall Performance

<u>Two-stage fan</u>. - The overall performance of the two-stage fan at both 80 and 100 percent of design speed is presented in figure 7(a). Total-pressure ratio, total temperature ratio, and adiabatic efficiency are plotted as functions of equivalent weight flow. Several pertinent design-speed values follow:

	Stage peak efficiency performance	Design
Adiabatic efficiency	0.79	0.846
Weight flow, kg/sec	32.2	33.248
Total-pressure ratio	2.30	2.400
Total-temperature ratio	1.34	1.338

<u>First stage</u>. - The overall performance of the first stage and rotor are presented in figures 7(b) and (c). The design speed peak efficiency and several other peak efficiency values are given in the following table:

	Stage peak efficiency performance	Design
Stage		
Adiabatic efficiency	0.776	0.838
Weight flow, kg/sec	31.9	33.248
Total-pressure ratio	1.53	1.591
Rotor		
Adiabatic efficiency	0.81	0.886
Weight flow, kg/sec	31.9	33.248
Total-pressure ratio	1.56	1.632
Total-temperature ratio	1.168	1.169

Nondimensional stage performance. - Nondimensional performance of the first stage and rotor and the second stage and rotor are presented in figure 8, where head-rise coefficient, temperature-rise coefficient, and adiabatic efficiency are plotted as functions of stage flow coefficient. The spread in the data between the two speed lines (80 and 100 percent of design) is attributed to compressibility effects. The spread reveals the necessity that these effects be properly accounted for in any stage stacking technique used to predict off-design performance.

First stage:

	Stage peak efficiency performance	Design
Stage		
Adiabatic efficiency	0.776	0.838
Flow coefficient	0.43	0.453
Head-rise coefficient	0.215	0.226
Rotor		
Adiabatic efficiency	0.81	0.886
Flow coefficient	0.43	0.453
Head-rise coefficient	0.225	0.239
Temperature-rise coefficient	0.278	0.270

Second stage:

	Stage peak efficiency performance	Design
Stage		
Adiabatic efficiency	0.825	0.861
Flow coefficient	0.475	0.463
Head-rise coefficient	0.267	0.257
Rotor		
Adiabatic efficiency	0.865	0.902
Flow coefficient	0.475	0.463
Head-rise coefficient	0.283	0.268
Temperature-rise coefficient	0.325	0.298

Radial Distributions

The radial distributions of selected flow and performance parameters are shown for the first rotor and stator and for the second rotor and stator in figure 9. The results are presented for three fan weight flows at design speed. Design values are shown by the solid symbols. The performance results are compared to design values at a fan weight flow of 32.7 kilograms per second.

<u>First stage</u>. - The effect of the damper on rotor performance (fig. 9(a)) is evident at all three weight flows. Very low efficiencies are noted between 20 and 70 percent of blade span. The total-temperature ratio is significantly less than design over the outer 50 percent of the rotor blade. Total-pressure ratio is low over the outer 70 percent of blade span. The low pressure in the outer 20 percent of blade span is primarily attributed to the low energy addition. However, the low pressure ratio between 20 and 70 percent of span is attributed to both low energy addition and very high damper losses.

The stator blade (fig. 9(b)) operates at much lower-than-design incidence angles except locally in the damper and hub region. In the damper region of the rotor the combination of low meridional velocity and high deviation angles resulted in near-design incidence angle to the stator. In the hub region of the rotor the combination of high meridional velocity and low deviation angles also result in near-design incidence to the stator.

<u>Second stage</u>. - The radial gradients of flow and performance, attributed to the first-stage rotor damper are carried through the first stage and are influencing the

radial distributions of the second stage rotor (fig. 9(c)). Rather steep radial gradients of the second-stage rotor, particularly in the midsection of the blade behind the first-stage rotor damper, are noted in the radial distributions of total-pressure ratio, efficiency, incidence angle, meridional-velocity ratio, and loss. These induced gradients hamper the achievement of design matching of flow parameters, needed for good performance.

Rotor total-pressure ratio was equal to design values for the outer 30 percent of span, higher than design in the midspan region, and lower than design in the inner 30 percent of span. Total-temperature ratio was greater than design over the outer 40 percent of blade span. Efficiency is less than design at both the inner and outer 30 percent sections of blade span and higher in the midportion of the blade. Deviation angles are lower than design except at the hub and tip. Incidence angles were low in the inner 30 percent of span. Losses are high in the inner and outer 30 percents of span except locally at the hub.

The stator performance (fig. 9(d)) approached design values over most of the blade span. Local exceptions are noted particularly in the hub region where the stator is operating at very low off-design incidence angles and meridional velocity ratios with very high losses.

EFFECT OF DAMPER SIZE ON PERFORMANCE

Overall Performance

The overall performances of the two-stage fan with both large and small dampers are shown in figure 10. Averaged values of total-pressure ratio, total-temperature ratio, and adiabatic efficiency are plotted as functions of equivalent weight flow. The overall performances of the first rotor and stage are shown in figures 11(a) and (b) and of the second rotor and stage in figures 11(c) and (d). In figure 11 head-rise coefficient, temperature-rise coefficient, and adiabatic efficiency are plotted as functions of flow coefficient at design speed. The large-damper fan performance data are from figures 7 and 8, and small-damper fan performance from reference 1.

Two-stage fan. - As was noted in reference 1 and earlier in this report, this fan did not attain its design performance with either damper size (fig. 10). The small damper fan failed before the complete design speed performance at the low flow end of the design speed curve could be obtained. The highest measured efficiency for the small dampers was 0.795, and it still appeared to be increasing as flow decreased. The efficiency with large dampers peaked at 0.79. Maximum flow was 33.2 kilograms per second with small dampers and 32.8 kilograms per second with the large dampers.

<u>First stage</u>. - The first-stage rotor performance is presented in figure 11(a). Use of large dampers caused a further decrease in rotor performance. The large dampers increased the blockage, which apparently limited the maximum flow coefficient to 0.448 as compared with the 0.455 of the small dampers. High losses around the large dampers, as discussed in the section Radial Distributions, resulted in lower overall total-pressure ratio and, consequently, lower overall efficiencies. At a flow coefficient of approximately 0.45 rotor efficiency was 3-percentage-point lower with large dampers.

The performance of the first stage (fig. 11(b)) shows the same differences for the two rotor damper sizes, which fact indicates that the first-stage stator overall performance was not noticeably affected. At the flow coefficient of approximately 0.45, the stage, like the rotor, was 3 points lower in efficiency with the large dampers.

<u>Second stage</u>. - The overall performances of the second rotor and stage (figs. 11(c) and (d)) indicate that the damper size made no difference in the overall performance of the second stage.

Radial Distributions of Performance

The radial distributions of selected fan performance parameters for the two damper sizes are presented in figure 12. The plots are made at design speed and at fan equivalent weight flows of 32.7 kilograms per second for the large damper and 32.9 kilograms per second for the small damper.

First stage. - The differences in rotor performance for the two damper sizes are clearly evident in the damper region, where much higher losses were experienced with large dampers resulting in lower total-pressure ratio, and local losses in efficiency of up to 10 points (fig. 23). The meridional velocity behind the large-dampered rotor decreased because of the increased blockage, and the flow was redistributed through the outer 30 percent of the blade. The first-stage stator (fig. 12(b)) accepted this higher throughflow in the outer portion of the blade with no noticeable difference in performance, even though incidence angles decreased approximately 5° because of the higher flow.

Second stage. - Small differences in the second-stage rotor radial distributions of performance parameters (fig. 12(c)) occur in the midspan region of the blade. Here, the total-pressure ratio of the large damper configuration is higher, with locally higher efficiencies. In addition, incidence angles and meridional velocity ratio are higher and losses are lower. There are no appreciable differences in stator radial distributions (fig. 12(d)), with the exception of lower incidence and deviation angles noted in the inner 50 percent of the blade with the large damper configuration.

CONCLUDING REMARKS

For both the large and small dampered fan configurations, the reset stators produced increased weight flow, pressure ratio, and overall efficiency at 80 percent of design speed. At design speed, however, the small dampered configuration's performance with reset stators was not tested because of damper failure. The performance gains achieved at part speed with stator reset for the small dampered fan configuration was a factor in deciding to rebuild the rotor with larger dampers. At design speed the fan overall efficiency of the large dampered configuration tended to be insensitive to stator reset. To help understand why, an examination of the radial distributions of suction-surface incidence angles at design speed was made for both configurations and compared with those at 80 percent of design speed. (The data were compared at design stator blade settings.) At 80 percent of design speed the radial gradients of incidence angle were approximately the same for both configurations, and using stator reset to improve the matching resulted in similar improvements. At design speed, however, large radial gradients occurred in the damper region of the large dampered configuration. We suspect that the inability to optimize the stator incidence angles along the entire blade span must have a significant effect on the sensitivity of overall performance to stato: reset. With the less-pronounced radial gradients in incidence angle for the small dampered configuration at design speed, this configuration would be more sensitive to stator reset.

SUMMARY OF RESULTS

A two-stage fan having part-span dampers on the first-stage rotor was tested and reported earlier. The dampers on the original rotor failed before completion of testing, and a new set of rotor blades were machined with dampers that were larger than those of the original. The aerodynamic design of the blade rows was not altered from the original. This report presents the overall performance and the radial distributions of performance parameters for the enlarged damper configuration and then compares the performance of the fan with the two damper sizes. The following principal results were obtained:

- 1. With the first-stage, large-dampered rotor, local losses in efficiency of up to 10 points were noted from that of the small damper. These high losses in the damper region reduced the rotor overall efficiency by 3 points.
- The large dampered fan's two-stage efficiency was reduced at least 1 point, and its maximum weight flow was reduced by about 0.4 kilogram per second.

3. The overall performance of each blade row downstream of the damper was not significantly altered, even though the radial distributions of various performance parameters do show appreciable differences.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, November 8, 1978,
505-04.

APPENDIX A

SYMBOLS

annulus area at rotor leading edge, m2

- frontal area at rotor leading edge, m2 A_f Cp specific heat at constant pressure, 1004 (J/kg) K D diffusion factor mean incidence angle, angle between inlet-air direction and line tangent to blade ime mean camber line at leading edge, deg suction-surface incidence angle, angle between inlet-air direction and line tangent iss to blade suction surface at leading edge, deg rotative speed, rpm N total pressure, N/cm² P static pressure, N/cm2 p r radius, om SM stall margin T total temperature, K U wheel speed, m/sec V air velocity, m/sec
 - α_c slope of streamline, deg $\alpha_{\rm s}$

cone angle, deg

weight flow, kg/sec

- air angle, angle between air velocity and axial direction, deg B
- relative meridional air angle based on cone angle, $\arctan (\tan \beta_m^i \cos \alpha_c/\cos \alpha_s)$, $\beta_{\mathbf{c}}'$ deg

axial distance referenced from first-stage rotor-blade-hub leading edge, cm

- ratio of specific heats (1.40) Y
- ratio of rotor-inlet total pressure to standard pressure of 10.13 N/cm2 δ

W

Z

Aan

 δ^{0} deviation angle, angle between exit-air direction and tangent to blade mean camber line at trailing edge, deg efficiency η θ ratio of rotor-inlet total temperature to standard temperature of 288,2 K angle between blade-element mean camber line on the conical surface and Kmc meridional plane, deg angle between blade-element suction-surface leading edge tangent line on Kss conical surface and meridional plane, deg solidity, ratio of chord to spacing σ flow coefficient 0 head-rise coefficient $\psi_{\mathbf{p}}$ temperature-rise coefficient $\psi_{\mathbf{T}}$ $\overline{\omega}$ total-loss coefficient $\overline{\omega}_{\mathbf{p}}$ profile-loss coefficient $\overline{\omega}_{\mathbf{s}}$ shock-loss coefficient Subscripts: ad adiabatic (temperature rise) id ideal LE blade leading edge meridional direction m mom momentum rise p polytropic TE blade trailing edge axial direction Z tangential direction instrumentation plane upstream of first rotor 1 instrumentation plane between first stator and second rotor 2

instrumentation plane downstream of second stator

Superscript:

3

' relative to blade

APPENDIX B

EQUATIONS FOR CALCULATING OVERALL AND BLADE-ELEMENT

PERFORMANCE PARAMETERS

Suction-surface incidence angle -

$$i_{ss} = (\beta_c')_{LE} - \kappa_{ss}$$
 (B1)

Mean incidence angle -

$$i_{mc} = (\beta_c')_{LE} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle -

$$\delta^{O} = (\beta_{c}')_{TE} - (\kappa_{mc})_{TE}$$
 (B3)

Diffusion factor -

$$D = 1 - \frac{\mathbf{V_{TE}'}}{\mathbf{V_{LE}'}} + \left| \frac{(\mathbf{rV_{\theta}})_{TE} - (\mathbf{rV_{\theta}})_{LE}}{(\mathbf{r_{TE} + r_{LE}})\sigma(\mathbf{V_{LE}'})} \right|$$
(B4)

Total-loss coefficient -

$$\overline{\omega} = \frac{(P'_{id})_{TE} - P'_{TE}}{P'_{LE} - P_{LE}}$$
(B5)

Profile-loss coefficient -

$$\overline{\omega}_{p} = \overline{\omega} - \overline{\omega}_{s}$$
 (B6)

Total-loss parameter -

$$\frac{\overline{\omega}\cos(\beta_{\mathbf{m}}')_{\mathbf{TE}}}{2\sigma} \tag{B7}$$

Profile-loss parameter -

$$\frac{\overline{\omega}_{\mathbf{p}} \cos (\beta'_{\mathbf{m}})_{\mathbf{TE}}}{2\sigma}$$
 (B8)

Adiabatic (temperature rise) efficiency -

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1}$$
(B9)

Equivalent weight flow -

$$\frac{\mathbf{w}\sqrt{\theta}}{\delta}$$
 (B10)

Equivalent rotative speed -

$$\frac{N}{\sqrt{\theta}}$$
 (B11)

Weight flow per unit annulus area -

$$\frac{\mathbf{W}\sqrt{\theta}}{\frac{\delta}{\mathbf{A}_{\mathbf{an}}}} \tag{B12}$$

Weight flow per unit frontal area -

$$\frac{\underline{\mathbf{w}}\sqrt{\theta}}{\frac{\delta}{\mathbf{A_f}}} \tag{B13}$$

Head-rise coefficient -

$$\psi_{\mathbf{p}} = \frac{C_{\mathbf{p}}^{\mathbf{T}}_{\mathbf{LE}}}{U_{\mathbf{tip}}^{2}} \left[\left(\frac{P_{\mathbf{TE}}}{P_{\mathbf{LE}}} \right)^{(\gamma-1)/\gamma} - 1 \right]$$
(B14)

Flow coefficient -

$$\varphi = \left(\frac{\mathbf{v_z}}{\mathbf{U_{tip}}}\right)_{\mathbf{LE}} \tag{B15}$$

Temperature-rise coefficient -

$$\psi_{\mathbf{P}} = \frac{\mathbf{C_p}}{\mathbf{U_{tip}^2}} (\mathbf{T_{TE}} - \mathbf{T_{LE}})$$
 (B16)

Polytropic efficiency -

$$\eta_{\mathbf{p}} = \frac{\ln\left(\frac{\mathbf{P}_{\mathbf{TE}}}{\mathbf{P}_{\mathbf{LE}}}\right)^{(\gamma-1)/\gamma}}{\ln\left(\frac{\mathbf{T}_{\mathbf{TE}}}{\mathbf{T}_{\mathbf{LE}}}\right)}$$
(B17)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

BETAM meridional air angle, deg

CHOKE MARGIN ratio of flow area greater than critical area to critical area

CONE ANGLE angle between axial direction and conical surface representing

blade element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (Bl) and mean

by eq. (B2)), deg

KIC angle between blade-element mean camber line on conical surface

at leading edge and meridional plane, deg

KOC angle between blade-element mean camber line on conical surface

at trailing edge and meridional plane, deg

KTC angle between blade-element mean camber line on conical surface

at transition point and meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile by eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile by eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip referenced to first-stage-rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between blade-element aerodynamic chord on conical surface

and meridional plane, deg

SOLIDIT ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE slope of streamline, deg

SLOPE

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade-element angles on mean

camber lines, deg (KIC-KOC)

TURNING RATIO ratio of mean camber line curvatures upstream and downstream of

transition point

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

ZI axial distance to blade leading edge, cm

ZMC axial distance to blade maximum thickness point, cm

ZO axial distance to blade trailing edge, cm

ZTC axial distance to transition point, cm

REFERENCES

- Cunnan, Walter S.; Stevans, William; and Urasek, Donald C.: Design and Performance of a 427-Meter-per-Second Tip Speed Two-Stage Fan Having a 2.40 Pressure Ratio. NASA TP-1344, 1978.
- Ball, Calvin L.; Janetzke, David C.; and Reid, Lonnie: Performance of 1380 Foot-Per-Second-Tip-Speed Axial-Flow Compressor Rotor with Blade Tip Solidity of 1.5. NASA TM X-2379, 1972.

TABLE I. - DESIGN OVERALL FAN PERFORMANCE

(a) Two-stage fan

TOTAL PRESSURE RATIO 2.400
TOTAL TEMPERATURE RATIO
ADIABATIC EFFICIENCY 0.846
POLYTROPIC EFFICIENCY 0.863
RPM (BASED ON FAN INLET)
WT FLOW 33.248
(b) First stage
ROTOR TOTAL PRESSURE RATIO 1.632
STAGE TOTAL PRESSURE RATIO
ROTOR TOTAL TEMPERATURE RATIO
STAGE TOTAL TEMPERATURE RATIO
OTOR ADIABATIC EFFICIENCY 0.886
STAGE ADIABATIC EFFICIENCY
ROTOR POLYTROPIC EFFICIENCY
STAGE POLYTROPIC EFFICIENCY 0.848
ROTOR HEAD RISE COEFFICIENT
STAGE HEAD RISE COEFFICIENT
FLOW COEFFICIENT
WT FLOW PER UNIT FRONTAL AREA 164.041
WT FLOW PER UNIT ANNULUS AREA 195.287
TIP SPEED 426.720
(c) Count store
(c) Second stage
(c) Second stage
(- /
ROTOR TOTAL PRESSURE RATIO 1.537
ROTOR TOTAL PRESSURE RATIO

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS

(a) First-stage rotor

RP 11P 12 33 44 55 67 99 10 111 HUB	RAD 25.400 24.704 23.977 22.538 21.091 20.219 19.343 18.137 15.134 11.953 10.160	11 24.938 24.266 23.594 22.250 20.907 20.101 19.294 15.532 14.188 12.845 11.501	ABS 1N .0 .0 .0 .0 .0 .0 .0	BETAM DUT 41.7 41.8 41.8 42.1 42.5 43.2 44.9 48.7 50.2 50.2	REL 68 . 5 66 . 9 65 . 4 63 . 7 59 . 4 58 . 1 51 . 9 49 . 3 44 . 3	BETAM OUT 52.1 61.2 60.1 57.1 148.2 43.5 14.5 .5 6.4 -12.8	1N 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	RATIO 1.194 1.189 1.189 1.187 1.177 1.167 1.166 1.160 1.160 1.160 1.160	IN	PRESS RATIO 1.632 1.532 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632
RP T1P 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 168.0 177.1 184.5 192.9 198.6 200.8 202.8 199.5 195.3 189.1 181.3	VEL DUT 201.7 201.5 205.3 209.2 212.3 216.2 226.2 243.5 258.8 278.9 278.9	IN	VEL 0UT 322.0 311.8 282.0 261.9 249.4 236.2 219.4 185.8 176.5 178.4 195.6	MERI 168.0 177.1 184.5 192.9 198.6 200.8 202.8 199.5 195.3 185.0 181.3		IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	G VEL OUT 134.3 134.4 136.9 140.3 143.5 148.1 155.1 177.9 194.3 214.4 225.3 236.4	WHEEL IN 426.7 415.0 402.6 378.6 354.3 339.7 305.2 254.3 227.4 199.1 1184.4	SPEED OUT 419.0 41
RP TIP 12 34 45 67 89 10 11 HUB	ABS MI IN .506 .535 .559 .605 .612 .618 .608 .594 .574 .574	ACH NO OUT .559 .560 .563 .574 .588 .598 .610 .629 .696 .744 .810 .850	REL M. 1.382 1.364 1.342 1.291 1.202 1.167 1.117 .984 .912 .833 .791 .753	ACH NO OUT -893 -866 -840 -736 -702 -666 -621 -531 -508 -518 -518 -575	1N .506 .535 .559 .586	ACH NO OUT .417 .417 .418 .428 .436 .441 .440 .475 .491 .518 .561	-11.06 -9.47 -8.01 -5.71 -3.49 -2.17 86 .90 5.82 8.91 12.90	OUT -12.78		PEAK SS HACH NO 1.505 1.473 1.445 1.402 1.372 1.356 1.344 1.295 1.225 1.129
RP 11P 1 2 7 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN .00 5.00 20.00 30.00 36.00 42.00 50.00 70.00 90.00 95.00 100.00	HEAN 2.1 2.3 2.5 3.0 3.4 3.9 4.9	DENCE 55 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	DEV 2.8 2.9 3.1 3.4 3.7 4.5 6.6 7.1 10.0	D-FACT .410 .420 .429 .447 .467 .481 .498 .520 .557 .552 .447 .376	2FF .773 .794 .814 .849 .882 .935 .916 .936 .939 .944 .948	107 177 160 115 119 1096 1086 1076 1076 1087	COEFF PROF .098 .091 .084 .073 .061 .056 .057 .058 .058 .058 .070	TOT .032 .029 .026 .022 .018 .017 .016 .015	PARAM PROF .018 .016 .015 .014 .012 .011 .012 .012 .014 .014 .015

TABLE II. - Continued. DESIGN BLADE-ELEMENT PARAMETERS

(b) First-stage stator

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	RADI 1N 24.384 2 23.758 2 23.167 2 21.981 2 20.787 2 20.070 2 19.350 1 18.388 1 15.962 1 14.733 1 13.493 1 12.868 1	1 0 0 T 24 3 3 8 4 23 . 7 6 : 23 . 200 8 20 . 9 2 7 20 . 24 3 9 . 5 5 8 8 6 . 3 8 8 5 . 2 6 3 4 . 1 4 4 3 . 5 8 6 2 . 9 3 1	ABS 18 38.5 38.2 37.9 38.1 38.5 39.2 40.3 45.9 48.7 50.1	BETAH OUT .0 .0 .0 .0 .0 .0 .0	REL 1N 38.5 38.2 37.9 38.1 38.5 39.2 40.3 43.6 45.9 48.7 50.1	DETAM DUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	341.3 339.1 337.2 336.4 335.9 335.4 334.2 334.2	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54	.982
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS 1N 221.0 222.1 223.3 225.8 228.7 230.9 233.6 237.7 251.2 260.6 271.7 277.6 284.2	VEL 0UT 174.2 174.2 174.7 175.2 175.5 175.6 1770.8 166.8 162.0	REL 1N 221.0 222.1 223.3 225.8 228.7 230.9 233.6 251.2 260.6 271.7 271.7 284.2	VEL 0UT 174.2 174.2 174.7 175.2 175.5 175.6 175.6 175.8 179.8 166.8 162.0	173.0 174.7 176.1 178.3 180.0 180.7 181.0	D VEL DUT 174.2 174.2 174.3 175.5 175.5 175.6 175.6 175.6 175.6 166.6 162.0	TAN 18 137.6 137.2 137.3 138.6 141.1 143.7 147.7 147.7 173.1 187.1 204.0 213.0 223.0	OUT	IN	. 0
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS MA 1N .616 .621 .626 .636 .647 .654 .667 .720 .750 .780 .828	ACH NO 0 479 480 481 484 487 489 489 489 489 489 451	REL M. 616 621 626 636 647 654 667 720 750 786 805	0UT 479 481 481 487 489 489 489 484 477 465 459 451	1 W .482 .489 .494 .502 .509 .514 .516 .522 .519 .516 .513	007 479 480 481 489 489 489 489 489 489 489 485 451	1 N -1 22 - 81 - 25 - 21 - 93 1 38 1 85 2 51 4 34 5 37 6 43 6 97 7 5 4	. 46 . 50 . 59 . 90 1 . 33 1 . 65 2 . 01 2 . 50 3 . 75 4 . 25 4 . 42 4 . 30	VEL R 1.007 .997 .990 .980 .973	.839 .822 .811
RP 11P 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN .00 5.00 10.00 20.00 30.00 36.00 42.00 50.00 70.00 80.00 95.00 100.00	3.0 3.0 3.0 2.9 2.8	DENCE -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0	DEV 17.0 13.9 11.9 10.0 9.3 9.0 8.8 8.6 9.0 9.7 11.7	D-FACT 457 453 449 444 441 446 454 486 514 549 565 583	EFF .000 .000 .000 .000 .000 .000 .000 .	LOSS TOT .094 .086 .082 .077 .073 .072 .077 .075 .115 .150 .173	094 .096 .082 .077 .073 .072 .072 .077 .095 .1150	101 .037 .033 .031 .027 .025 .023	PARAM PROF .037 .033 .031 .027 .025 .023 .023 .023 .023 .023 .037 .040

TABLE II. - Continued. DESIGN BLADE-ELEMENT PARAMETERS

(c) Second-stage rotor

RP TIP 1 2 3 4 5 6 7 8 9 10 11: HUB	RADII 1W 0UT 24.127 23.71 23.533 23.18 23.002 22.70 21.951 21.74 20.900 20.77 20.272 20.20 19.646 19.63 18.813 18.88 16.721 17.07 15.652 16.19 14.537 15.35 13.951 14.93	ABS IN 77 .00 77 .00 11 .00 99 .00 66 .00 89 .00 10 .00 11 .00 10 .00 10 .00	BETAM OUT 39.2 39.8 40.0 40.7 41.3 42.1 44.6 46.6 49.3 50.7 52.4	REL 15 63.5 64.4 63.5 62.1 60.0 59.2 58.5 56.1 56.7 57.7		1N 344.3	1.147 1.143 1.141 1.140 1.139 1.140 1.142 1.147 1.150	TGTA 1N 16.20 16.21 16.22 16.24 16.24 16.20 16.08 15.94 15.71 15.55 15.36	PRESS RATIO 1.530 1.529 1.528 1.527 1.527 1.527 1.527 1.542 1.555 1.578 1.578 1.614
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS VEL IN OUT 185.0 216.1 189.4 214.1 192.3 213.1 196.7 214.1 197.0 216.1 196.6 216.1 195.2 221.1 186.0 233.1 176.6 242.1 160.2 253.1 147.9 269.1 133.2 269.1	9 445.6 438.4 431.7 417.3 6 402.5 1 393.4 2 384.2 384.2 384.2 384.2 371.4 8 336.9 316.7 7 292.1	VEL 0UT 310.7 302.3 294.9 280.5 266.3 257.4 247.9 192.2 178.0 167.3	MER II 1 N 185 . 0 189 . 4 192 . 2 196 . 7 197 . 0 196 . 6 196 . 6 160 . 2 147 . 9 133 . 2	D VEL OUT 168.0 165.5 164.0 163.5 163.8 164.0 164.4 166.6 165.5 165.1 164.8	TAIIN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	NG VEL OUT 137.1 136.6 136.4 137.3 138.9 140.9 144.0 148.6 164.1 176.0 192.4 202.0 213.6	HHEEL IN 405.3 395.3 386.4 368.8 351.1 340.6 330.1 316.1 280.9 262.9 2234.4 223.3	SPEED OUT 398.5 309.5 381.5 365.3 349.1 339.5 329.3 286.8 272.1 257.0 242.8
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS MACH NI OUT .511 .55525 .55534 .55545 .55561 .562 .561 .552 .561 .552 .561 .552 .561 .494 .644 .446 .679 .369 .721	IN 9 1.230 1.214 4 1.199 7 1.164 3 1.127 1.103 5 1.078 1.042 9.44 .8813 .770	ACH NO OUT .801 .782 .732 .699 .677 .653 .622 .549 .511 .479	HERID H. 18 .511 .525 .534 .545 .551 .552 .552 .548 .521 .494 .446 .411 .369	ACH NO OUT .433 .428 .425 .427 .427 .431 .432 .434 .442 .443 .440	IN -8.36 -6.98 -5.85 -3.92 -2.14 -1.12 -11 1.22 4.72 6.62 8.58 9.57	NE SLOPE OUT -6.25 -5.15 -4.24 -2.71 -1.24 -38 -47 1.62 4.68 6.36 8.20 9.21 10.40	VEL R .908 .874 .853 .837 .832 .834 .843 .896 .943 1.033 1.116 1.237	HACH NO 1.414 1.386 1.366 1.343 1.324 1.314 1.304 1.298 1.260 1.222 1.184 1.165 1.143
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT 1 SPAN ME .00 2 10.00 2 20.00 2 30.00 3 36.00 3 42.00 3 50.00 4 70.00 5 80.00 5 95.00 4	.50 .50 .50	2.4 2.5 2.6	D-FACT .421 .437 .433 .444 .455 .463 .474 .488 .520 .539 .553 .553	.819 .835 .849 .873	.124 .114 .097 .081	COEFF PROF .095 .089 .074 .063 .059 .059 .057 .058 .064 .076	.017	.013 .012 .012 .012 .013 .014 .017

TABLE II. - Concluded. DESIGN BLADE-ELEMENT PARAMETERS

(d) Second-stage stator

RP 11P 1 2 3 4 5 6 7 8 9 10 11 HUB	20.924 20. 20.287 20. 19.757 19. 19.060 19.	00T 1 .622 39 .129 38 .686 38 .802 38 .923 38 .400 36	.8 .0 .5 .0 .1 .0 .3 .0 .8 .0 .5 .0 .5 .0	1 N 39 . 2 38 . 5 38 . 5 38 . 1 38 . 8 39 . 5 42 . 1 44 . 0 50 . 3 52 . 9	.0	1 N 398 - 4 395 - 4 395 - 9 388 - 8 385 - 3 83 - 0 382 - 0 382 - 0 383 - 3 83 - 3 84 - 2 385 - 3	TEMP RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL 1N 24.79 24.79 24.79 24.79 24.79 24.79 24.79 24.79 24.79 24.79 24.79	PRESS RATIO .983 .984 .985 .985 .985 .985 .987 .975 .967 .963 .959
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	217.8 17 218.8 17 219.8 17 222.1 17 224.5 17 226.3 17 228.3 17 231.4 17 240.3 16 245.9 16 255.7 16	L 1 10.2 217 10.3 218 10.3 219 10.3 224 10.3 226 10.3 228 10.3 226 10.3 226 10.3 226 10.3 226 10.3 226 10.3 227 10.3 228 10.3 228 1	.8 170.2 .8 170.3 .8 170.3 .1 170.3 .5 170.3 .3 170.3 .4 170.3 .4 170.3 .4 170.1 .3 169.5 .9 168.5 .7 167.5	MER II 168.C 170.6 172.0 174.5 176.6 177.5 178.5 178.5 168.8 153.4	D VEL OUT 170.2 170.3 170.3 170.3 170.3 170.3 170.3 170.3 170.5 169.5 167.5 167.5	TAN: 137.7 137.0 136.8 137.4 138.6 140.4 143.1 147.3 161.3 172.3 187.6 196.7	G VEL OUT	HHEEL IN .0 .0 .0 .0 .0 .0	SPEED
RP T1P 1 23 4 5 6 7 8 9 10 11 HUB	.562 .567 .571 .581 .591 .597 .603 .613 .639 .655 .672	NO REI 1 NO REI 1 NO REI 1 NO REI 2 434 .5 435 .5 437 .5 441 .5 442 .5 443 .6 442 .6 443 .6 435 .6 435 .6	62 .434 67 .435 71 .437 81 .439 91 .441 97 .442 03 .443 13 .443 39 .442 55 .439 81 .435	MERID HI IN .435 .442 .447 .457 .465 .468 .470 .473 .474 .467 .435 .417	ACH NO DUT 434 435 437 441 442 443 443 442 439 435 435	1N - 10 - 19 - 44 - 88 1 . 32 1 . 58 1 . 86 2 . 23	NE SLOPE DUT03 .18 .35 .65 .90 1.01 1.11 1.24 1.45 1.53 1.55 1.55	VEL R	PEAK SS 787 .775 .767 .759 .763 .763 .787 .838 .884 .954
RP TIP 1 2 3 4 5 6 7 8 9 15 11 HUB	5.00 5.00 10.00 20.00 30.00 36.00	INCIDENCE HEAN SS 2.8 -3. 2.7 -3. 2.6 -3. 2.6 -3. 2.6 -3. 2.5 -3. 2.1 -3. 2.1 -3. 2.1 -3. 2.1 -3. 2.1 -3. 2.1 -3.	0 16.2 0 14.0 0 12.4 0 10.4 0 7.5 0 9.3	D-FACT 471 466 463 461 459 460 464 470 492 511 533 544	.000 .000 .000 .000 .000 .000 .000 .00	.086 .083 .080 .073 .069 .088 .089 .072 .086 .102 .125	DEFF PROF .086 .083 .089 .069 .068 .069 .072 .086 .102 .125	LOSS F TOT .034 .032 .031 .027 .023 .023 .023 .023 .029 .034 .036 .039	PARAM PROF - 034 - 032 - 032 - 027 - 024 - 023 - 023 - 023 - 023 - 029 - 036 - 039

TABLE III. - BLADE GEOMETRY

(a) First-stage rotor

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	90.	RAD11 R1 R1 R0 25.400 24.938 24.704 24.266 23.977 23.594 22.538 22.250 21.091 20.907 20.219 20.101 19.343 19.294 11.091 15.532 13.534 14.188 11.053 12.845 10.973 12.173 10.160 11.501	64.50 61.99 62.80 60.43 60.02 57.21 57.33 53.66 55.77 51.46 54.23 49.15 52.18 45.94 46.99 36.89 44.35 31.92 41.73 27.08	KOC 59.36 58.37 57.16 54.03 50.21 47.46 44.18 39.01 19.96 6.51	1NC 2.04 -12 2.246 -11 2.46 -6 3.01 -6 3.40 -7 3.64 -7 4.21 4.88 5 4.78 12 4.53 14	ONE NGLE .624 .279 .342 .371 .288 .891 .898 .684 .621 .240 .626 .866
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	BL ADI 11 - 047 - 056 - 065 - 074 - 079 - 085 - 093 - 113 - 124 - 143 - 149	TH TO .135 .04/ .148 .051 .161 .055 .187 .066 .212 .076 .228 .081 .244 .081 .265 .095 .320 .116 .350 .126 .350 .126 .350 .136	21 ZMC 1.337 2.318 1.268 2.320 5 1.202 2.322 5 1.088 2.324 5 .973 2.325 7 .932 2.324 6 .732 2.324 6 .439 2.293 6 .439 2.293 7 .117 2.265 8 .054 2.293	2.688 2.647 2.544 2.412 2.319 2.215 2.057 1.555 1.254 .952 .816	3.401 3.466 3.531 3.531 3.659 3.795 3.879 3.879 4.094 4.437 4.589 4.687 4.706 4.719	
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	AERO CHC	63 .84 6 .9 62 .23 6 .1 60 .60 5 6 .5 6 .5 6 .5 6 .5 6 .5 6 .5	7 1.268 .298 1 1.328 .338 2 1.328 .338 2 1.367 .403 9 1.450 .621 2 1.544 .935 1 1.608 1.089 5 1.678 1.178 7 1.782 1.251 3 2.119 1.356 4 2.355 1.467 8 2.674 1.668	PHISS 3.56 3.13 2.92 3.16 3.72 4.13 4.63 5.39 7.99 9.56 10.79	.040	

TABLE III. - Continued. BLADE GEOMETRY

(b) First-stage stator

RP 1 1 2 3 4 5 6 7 8 9 1 1 1 HUB	PERCENT RI SPAN RI 0. 24.384 5. 23.751 10. 23.161 20. 21.981 30. 20.781 36. 20.071 42. 19.351 50. 18.381 70. 15.967 80. 14.733 90. 13.493 95. 12.866 100. 12.185	22.068 20.927 20.243 19.558	34.96 35.24 35.69 36.45 37.60	21.01 21.89 22.52 23 26 24.34	-10.04 -9.30 -9.97 -8.80	5.91 5.84 5.80 5.75	CONE ANGLE .057 .057 .331 1.434 1.778 2.141 2.702 4.427 5.527 6.797 7.754
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	.131 .436 .122 .425 .117 .416 .111 .411 .103 .402	TO .150 .146 .141 .131 .131 .115 .110 .102 .084 .074 .065	ZI 10.457 10.474 10.486 10.497 10.507 10.515 10.524 10.541 10.613 10.639 10.647	ZMC 13.179 13.178 13.175 13.175 13.176 13.172 13.171 13.161 13.156	12.198 12.181 12.131 12.077 12.054 12.034 12.011	20 16.112 15.106 16.101 16.094 16.092 16.089 16.089 16.089 16.088 16.098	
RP TIP 12 3 4 5 6 7 8 9 10 11		52.52 49.12 46.85 45.00 44.55 46.45 46.22 50.07 53.29 58.14	SOLIDIT 1.271 1.305 1.337 1.408 1.487 1.539 1.594 1.676 1.921 2.075 2.256 2.260	1.000 1.000 1.000 1.000	PHISS 10.86 9.79 9.02 8.17 7.69 7.57 7.64 7.74 8.19 8.64 9.33 9.72	.112	

TABLE III. - Continued. BLADE GEOMETRY

(c) Second-stage rotor

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT RADII SPAN RI RD 0. 24.127 23.719 5. 23.533 23.187 10. 23.002 22.707 20. 21.951 21.741 30. 20.900 20.779 36. 20.272 20.206 42. 19.646 19.636 50. 18.813 18.808 70. 16.721 17.072 80. 15.652 16.198 90. 14.55. 15.351 95. 13.951 14.938 100. 13.289 14.455	BLADE ANGLES KIC KTC KOC 62.90 58.37 54.69 61.90 5.70 54.18 61.04 56.96 53.48 59.42 55.00 51.31 57.67 52.82 48.70 56.59 51.42 46.79 55.52 50.00 44.57 54.14 48.02 41.14 51.30 42.93 29.92 50.65 40.51 22.09 51.37 38.55 11.58 52.58 37.90 5.04	DELTA CONE INC ANGLE 2.57 -8.911 2.50 -6.131 2.69 -4.123 3.07 -2.246 3.37 -1.186 3.70 -1.83 4.17 1.26 5.19 5.162 5.41 7.585 5.23 10.660 4.95 12.566 4.58 14.381
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE THICKNESSES TI TH TO .060 .173 .0.0 .065 .175 .065 .070 .179 .071 .079 .196 .080 .089 .222 .090 .094 .241 .096 .100 .261 .102 .107 .289 .110 .126 .357 .129 .135 .385 .138 .146 .406 .147 .152 .413 .153 .159 .419 .159	AXIAL DIMENSION ZIC 22.053 23.285 23.731 22.019 23.291 23.694 21.987 23.295 23.657 21.917 23.300 23.571 21.836 23.299 23.462 21.786 23.299 23.312 21.667 23.296 23.199 21.486 23.299 23.297 21.393 23.264 22.702 21.299 23.232 22.878 21.393 23.264 22.702 21.299 23.232 22.517 21.251 23.220 22.421 21.197 23.196 22.312	20 24.661 24.699 24.737 24.826 24.919 24.980 25.044 25.134 25.500 25.623 25.679 25.744
RP T1P 1 2 3 4 5 6 7 8 9 10 11 HUB	AERO SETTING TOTAL CHORD ANGLE CAMBER 5.111 59.28 8.21 5.105 58.46 7.72 5.105 55.57 8.11 5.096 53.25 8.97 5.095 51.71 9.80 5.095 50.05 10.95 5.096 47.66 13.30 5.105 40.67 21.37 5.118 36.49 28.56 5.146 31.70 39.79 5.171 29.12 47.54 5.203 25.97 56.96	TURNING SOLIDITY RATIO PHISS 1.292 .599 5.12 1.322 .631 4.68 1.350 .676 4.48 1.412 .814 4.68 1.479 .948 4.96 1.523 .996 5.16 1.569 1.000 5.36 1.635 1.001 5.73 1.827 1.000 7.13 1.944 1.000 8.40 2.082 1.000 10.65 2.165 1.000 12.34 2.269 1.000 14.36	CHOKE MARGIN .040 .040 .040 .040 .040 .040 .042 .054 .069 .108 .146

TABLE III. - Concluded. BLADE GEOMETRY

(d) Second-stage stator

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	5. 2 10. 2 20. 2 30. 2 36. 2 42. 1 50. 1 70. 1 80. 1 90. 1	RADII RI RO 3.622 23.622 3.108 23.125 2.646 22.686 1.728 21.802 0.824 20.922 0.287 .3.400 9.757 19.884 9.757 19.884 9.757 17.566 6.547 16.786 5.739 16.044 5.338 15.686 4.869 15.237	KIC 36.44 36.03 35.76 35.50 35.54 36.24 37.03 39.81 42.24 48.24		K0C -16.16 -14.04 -12.44 -10.38 -9.53 -9.30 -9.20 -9.11 -9.53 -10.46 -12.81	5.75 5.75 5.74 5.69 5.64 5.59 5.55 5.49 5.33 5.23 5.11 5.02	CONE ANGLE .057 .531 .975 1 .318 1 .504 1 .688 1 .925 2 .663 3 .211 4 .058 4 .648
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE 11 .125 .121 .117 .109 .102 .097 .092 .087 .072 .066 .059 .055	THICKNESSES TH TO .356 .129 .350 .127 .345 .111 .335 .109 .326 .100 .321 .09 .315 .092 .308 .000 .290 .077 .281 .066 .273 .058 .269 .055	21 30.141 30.150 7 30.156 7 30.166 2 30.172 30.176 2 30.181 30.188 30.234 30.224 30.259 30.272	32.233	21C 31.540 31.526 31.512 31.479 31.442 31.425 31.412 31.368 31.368 31.368 31.368	20 34.500 34.497 34.494 34.488 34.486 34.486 34.485 34.485 34.485 34.501 34.501	
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	CHORD 4.426 4.426 4.427 4.427 4.427 4.428 4.428 4.430 4.430 4.432 4.438	ETTING TOTAL ANGLE CAMBER 10.14 52.6 11.00 50.01 11.67 48.2 12.59 45.90 13.00 45.0 13.24 45.0 13.54 45.4 13.99 46.1 13.99 46.1 15.18 49.34 15.95 52.7 16.88 62.9 17.13 68.2	SOLIDIT 1.253 1.280 1.305 1.316 2.1.418 1.455 1.493 1.695 1.778 1.866 1.866	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	PHISS 12.03 11.07 10.34 9.35 8.75 8.60 8.75 9.47 10.52 12.52 13.93 15.66	.216 .199 .197 .211	

TABLE IV. - OVERALL PERFORMANCE AT 100 PERCENT OF DESIGN SPEED

(a) Two-stage fan

READING NUMBER. TOTAL PRESSURE RATIO. TOTAL TEMPERATURE RATIO. ADIABATIC EFFICIENCY. POLYTROPIC EFFICIENCY. WEIGHT FLOW. WHEEL SPEED, RPM. PERCENT OF DESIGN SPEED. DELTA. THETA.	16 2.315 1.346 0.782 0.806 31.86 15995.8 99.7 0.922 0.963	27 2.347 1.354 0.777 0.802 31.69 16073.3 100.2 0.923 0.964	38 2.230 1.330 0.779 0.803 32.66 16057.4 100.1 0.920 0.964	49 2.638 1.301 0.749 0.773 32.81 16030.3 99.9 0.919 0.965
(b) First	stage			
READING NUMBER. ROTOR TOTAL PRESSURE RATIO. STAGE TOTAL PRESSURE RATIO. ROTOR TOTAL TEMPERATURE RATIO. STAGE TOTAL TEMPERATURE RATIO. STAGE TOTAL TEMPERATURE RATIO. STAGE ADIABATIC EFFICIENCY. STAGE ADIABATIC EFFICIENCY. ROTOR POLYTROPIC EFFICIENCY. STAGE POLYTROPIC EFFICIENCY. STAGE HEAD RISE COEFFICIENT. STAGE HEAD RISE COEFFICIENT. FLOW COEFFICIENT. **EQUIVALENT VALUES BASED ON STAGE INLET* WEIGHT FLOW. WEIGHT FLOW PER UNIT ANNULUS AREA. WEIGHT FLOW PER UNIT FRONTAL AREA.	16 1.561 1.533 1.168 1.167 0.810 0.776 0.822 0.789 0.225 0.215 0.430 ************************************	27 1.581 1.549 1.173 1.172 0.810 0.774 0.822 0.787 0.230 0.219 0.425 31.73 186.34 156.53	38 1.523 1.496 1.159 1.159 0.806 0.770 0.817 0.783 0.210 0.201 0.445 32.70 192.06 161.33	49 1.505 1.480 1.155 0.803 0.768 0.814 0.780 0.205 0.196 0.448 32.85 192.93 162.05
(c) Second	stage			
READING NUMBER. ROTOR TOTAL PRESSURE RATIO. STAGE TOTAL PRESSURE RATIO. ROTOR TOTAL TEMPERATURE RATIO. STAGE TOTAL TEMPERATURE RATIO. ROTOR ADIABATIC EFFICIENCY. STAGE ADIABATIC EFFICIENCY. ROTOR POLYTROPIC EFFICIENCY. STAGE POLYTROPIC EFFICIENCY. ROTOR HEAD RISE COEFFICIENT. STAGE HEAD RISE COEFFICIENT. **EQUIVALENT VALUES BASED ON STAGE INLET*		27 1.551 1.555 1.155 0.862 0.810 0.870 0.821 0.284 0.268 0.453	38 1.522 1.491 1.148 1.148 0.861 0.869 0.826 0.269 0.255 0.490	49 1.405 1.377 1.127 0.805 0.755 0.814 0.766 0.215 0.202 0.500
WEIGHT FLOW PER UNIT ANNULUS AREA WEIGHT FLOW PER UNIT FRONTAL AREA	22.49 176.50 122.95	22.17 174.05 121.25	23.52 184.66 128.64	23.84 187.16 130.38

TABLE V. - OVERALL PERFORMANCE AT 80 PERCENT OF DESIGN SPEED

(a) Two-stage fan

READING NUMBER. TOTAL PRESSURE RATIO. TOTAL TEMPERATURE RATIO. ADIABATIC EFFICIENCY. POLYTROPIC EFFICIENCY. WEIGHT FLOW. WHEEL SPEED. RPM. PERCENT OF DESIGN SPEED. DELTA. THETA.	65 1.712 1.202 0.823 0.825 25.34 12909.8 80.5 0.948 0.969	76 1.770 1.226 0.785 0.801 22.69 12914.6 80.5 0.955 0.971	87 1.754 1.215 0.808 0.823 24.01 12919.4 80.5 0.951 0.971	98 1.646 1.187 0.819 0.831 26.26 12879.1 80.3 0.943 0.975	109 1,551 1,174 0,770 0,783 26,86 12933,9 80,6 0,942 0,972
(b) I	First stag	ge			
READING NUMBER. ROTOR TOTAL PRESSURE RATIO. STAGE TOTAL PRESSURE RATIO. ROTOR TOTAL TEMPERATURE RATIO. STAGE TOTAL TEMPERATURE RATIO. ROTOR ADIABATIC EFFICIENCY. STAGE ADIABATIC EFFICIENCY. ROTOR POLYTROPIC EFFICIENCY. STAGE POLYTROPIC EFFICIENCY. ROTOR HEAD RISE COEFFICIENT. STAGE HEAD RISE COEFFICIENT. STAGE HEAD RISE COEFFICIENT. **EQUIVALENT VALUES BASED ON STAGE INLET* WEIGHT FLOW. WEIGHT FLOW PER UNIT ANNULUS AREA. WEIGHT FLOW PER UNIT FRONTAL AREA.	65 1.348 1.333 1.105 1.105 0.853 0.818 0.859 0.826 0.227 0.218 0.395 25.35 148.92 125.09	76 1.368 1.346 1.115 1.115 0.813 0.769 0.821 0.779 0.238 0.225 0.347 22.70 133.34 112.01	87 1.359 1.342 1.110 0.830 0.795 0.838 0.804 0.233 0.223 0.371 24.02 141.11 118.53	98 1.330 1.318 1.099 1.099 0.857 0.827 0.863 0.834 0.217 0.210 0.414 26.28 154.35 129.65	109 1.324 1.311 1.097 1.098 0.858 0.826 0.864 0.833 0.212 0.204 0.424 26.87 157.85 132.59
(a) 5	econd sta	ge.			
(-/-					
READING NUMBER ROTOR TOTAL PRESSURE RATIO. STAGE TOTAL PRESSURE RATIO. ROTOR TOTAL TEMPERATURE RATIO. STAGE TOTAL TEMPERATURE RATIO. ROTOR ADIABATIC EFFICIENCY. STAGE ADIABATIC EFFICIENCY. ROTOR POLYTROPIC EFFICIENCY. STAGE POLYTROPIC EFFICIENCY. ROTOR HEAD RISE COEFFICIENT. STAGE HEAD RISE COEFFICIENT. FLOW COEFFICIENT. **EQUIVALENT VALUES BASED ON STAGE INLET*		76 1.335 1.315 1.099 1.099 0.867 0.822 0.872 0.829 0.270 0.255 0.416	87 1.325 1.307 1.095 1.095 0.884 0.840 0.889 0.846 0.261 0.248 0.444	98 1.270 1.249 1.080 1.080 0.887 0.824 0.891 0.829 0.220 0.204 0.505	109 1.212 1.182 1.069 1.069 0.816 0.709 0.821 0.715 0.174 0.151
WEIGHT FLOW	19.99 156.94 109.33	17.81 139.82 97.40	18.86 148.07 103.15	20.91 164.11 114.32	21.47 168.52 117.39

TABLE VI. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

FIRST-STAGE ROTOR

(a) 100 Percent of design speed; reading 16

RP 1 2 3 4 5 6 7 8 9 10 11	23.978 22.537 21.092	23.594 22.250 20.907 20.102 19.294 18.219 15.532 14.188	-1.7 -0.9 -1.5 -1.4 -1.4 -1.6 -1.3	39.3 38.8 40.1 42.4 44.4 45.4 45.6 46.9	67.1 64.2 62.3 61.0 59.7 58.1 53.5 50.9	59.6 56.3 54.0 52.9 51.4 46.9 27.8	288.3 288.0 288.0 287.8 287.9 288.0 287.9	1.183 1.172 1.167 1.166 1.164	10.13 10.15 10.15 10.16 10.16 10.16 10.15	1.566 1.572 1.554 1.525 1.502 1.503 1.586 1.598 1.618
RP 1 25 4 5 6 7 8 9 0 1 1	1N 155.3 172.4 184.7 188.9 191.0 192.2 193.0 189.5 186.3 186.4	203.1 208.2 206.6 204.4 202.8 208.9 239.1 256.6 281.0 292.0	1N 446.9 442.8 424.1 405.6 393.4 381.2 364.9 319.2 295.3 269.6 255.4	0UT 315.8 310.3 292.6 268.9 250.0 232.5 214.4 189.2 182.4 177.7 179.2	IN 155.2 172.4 184.7 188.8 191.0 192.1 192.9 189.8 186.2 180.6	0UT 151.9 157.2 162.2 158.0 150.9 144.9 146.5 167.5 175.5 177.6	-5.0 -4.6 -4.8 -5.3 -4.2 -3.3 -2.1	0UT 130.9 128.7 130.5 133.1 138.0 141.9 148.2 170.8 187.2 217.7 232.4	IN 415.1 402.7 379.0 353.9 339.3 324.5 304.4 252.4 252.6 198.0 183.0	00T 407.7 396.3 374.1 350.8 337.4 323.7 305.3 259.1
RP 1 2 3 4	ABS M IN 0.465 0.520 0.559	0.556 0.566 0.584	REL M IN 1.339 1.335 1.284	0.876 0.864 0.821	MERID M IN 0.465 0.520 0.559	0.421 0.438 0.455			MERID VEL R 0.979 0.912 0.878	1.497
23 4 5 6 7 8 9 10	ABS M IN 0.465 0.520 0.559 0.573 0.584 0.586 0.576 0.565 0.546 0.533	0.815	1.250 1.194 1.158 1.109 0.969 0.895 0.815	0.515	0.580 0.584 0.586 0.576 0.565 0.546 0.532	0.444 0.424 0.408 0.413 0.478 0.505 0.515 0.515			0.837 0.790 0.754 0.760 0.882 0.942 0.983	1.420 1.404 1.394 1.386 1.378 1.320 1.239

TABLE VI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR

FIRST-STAGE ROTOR

(b) 100 Percent of design speed; reading 27

RP 1 2 3 4 5 6 7 8 9 10 11	IN 24.704 24. 23.978 23. 22.537 22. 21.092 20. 20.218 20. 19.342 19. 18.166 18. 15.133 14. 11.854 12.	594 -1.8 250 -1.2 907 -1.7 102 -1.6 294 -1.6 219 -1.7 532 -1.3	0UT 41.9 40.9 39.9 41.0 43.1 45.2 46.6 47.5 51.2	IN 69.8 67.3 64.5 62.6 61.2 60.1 58.4 54.0 51.4	00T 61.2 59.5 56.4 53.9 52.6 51.4 47.1	IN 289.0 288.5 288.4 287.9 288.0 287.8 287.8 287.8 288.1 288.2	RATIO 1.196 1.191 1.178 1.173 1.171 1.169 1.167 1.160 1.160	IN 9.93 10.14 10.13 10.15 10.15 10.16 10.16 10.15	1.640
RP 1 23 4 5 6 7 8 9 10 11	154.5 20 171.3 20 183.2 20 187.3 20 189.5 20 190.6 20 191.3 20 188.3 23 184.9 25 179.2 28	DUT IN 12.2 448.2 14.5 442.9 18.4 424.7 18.2 406.4 16.2 393.5 14.3 382.2 19.2 365.3 367.9 296.0 131.5 270.1	312.4 305.1 289.0 266.6 248.0 230.8 211.2 186.0 180.9	183.1 187.2 189.5 190.6 191.2 188.2	0UT 150.5 154.6 159.8 157.1 150.7 144.0 143.8 165.6 174.2 176.3	IN -4.63 -5.8 -5.6 -5.3 -5.6 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5	0UT 135.0 133.8 133.8 136.6 140.8 144.9 151.9 173.0 190.1 219.4	305.6 254.9 227.7 199.6	0UT 408.8 396.8 374.6 352.0 357.8 325.2 306.5 261.6 238.7 216.3
RP 1	ABS MACH	UT IN	ACH NO	MERID M				MERID I	PEAK SS
234567891011	0.516 0. 0.554 0. 0.568 0. 0.575 0. 0.579 0. 0.581 0. 0.571 0. 0.560 0.	568 1.335 583 1.285 584 1.232 579 1.194 574 1.160 589 1.109 679 0.972 741 0.897 816 0.817	0.748 0.696 0.648 0.594 0.531 0.520	0.463 0.516 0.554 0.568 0.575 0.578 0.581 0.571 0.560	0.429 0.447 0.441 0.423 0.404 0.405 0.467			0.974 0.903 0.873 0.859 0.795 0.756 0.752 0.869 0.943 0.984	1.554 1.503 1.446 1.432 1.413 1.408 1.399 1.400 1.336 1.255 1.199

TABLE VI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR

FIRST-STAGE ROTOR

(c) 100 Percent of design speed; reading 38

10	IN 00T 24.704 24.265 23.978 23.594 22.537 22.250 21.092 20.907 20.218 20.102 19.342 19.294 18.166 18.219	IN OUT -1.9 36.3 -2.0 35.0 -1.5 34.6 -1.9 36.7 -1.8 39.3 -1.6 41.7 -1.8 42.7 -1.5 42.8 -1.2 44.7 -0.9 48.6	IN 00T 69.1 61.6 66.5 60.1 63.5 57.1 61.5 54.9 60.3 54.1 59.0 52.9 57.3 48.1 52.8 27.3 50.1 15.0 47.2 -0.6	288.9 1.170 268.5 1.165 298.3 1.156 268.0 1.155 268.0 1.155 267.9 1.153 268.0 1.154 267.8 1.156 268.0 1.158 268.0 1.165	IN RATIO 9.92 1.515 10.13 1.499 10.14 1.514 10.16 1.490 10.15 1.463 10.15 1.435 10.16 1.447 10.16 1.590 10.16 1.615 10.15 1.614
RP 1 23 4 5 6 7 8 9 10 11	161.1 196.0 178.7 198.8 191.5 203.6 196.0 202.2 198.2 199.1 199.4 196.5 200.2 204.5 197.1 247.2 193.4 266.5 187.6 290.3 185.1 304.4	447.1 326.6 429.4 308.5 410.8 281.8 399.3 262.4 386.4 243.0 370.4 225.0 326.2 203.9 301.6 196.1 275.9 196.1 275.9 199.3	178.6 162.9 191.5 167.7 195.8 162.1 198.1 153.9 199.3 146.7 200.1 150.2 197.1 181.2 193.4 189.4 187.6 189.4 187.1 197.4	-5.3 115.9 -6.4 113.9 -5.1 115.5 -6.6 120.9 -6.1 126.2 -5.7 130.8 -6.4 138.7 -5.3 168.1 -4.1 187.5 -3.1 217.7 -2.8 231.8	403.5 397.0 379.3 374.4 354.5 351.4 340.7 338.7 325.3 324.5 305.3 306.2 254.7 261.4 227.3 238.3 199.2 215.9 184.2 204.3
10	ABS MACH NO IN OUT 0.484 0.547 0.540 0.557 0.581 0.574 0.596 0.571 0.603 0.561 0.607 0.554 0.610 0.578 0.600 0.709 0.588 0.770 0.569 0.845 0.554 0.892	REL MACH NO IN OUT 1.352 0.927 1.350 0.916 1.303 0.870 1.249 0.795 1.215 0.740 1.177 0.685 1.129 0.636 0.993 0.585 0.916 0.567 0.836 0.559 0.792 0.584	MERID MACH NO IN OUT 0.483 0.441 0.540 0.457 0.581 0.473 0.596 0.458 0.603 0.434 0.607 0.414 0.610 0.425 0.600 0.520 0.588 0.547 0.569 0.559 0.554 0.578	\	MERID PEAK SS VEL R MACH NO 0.982 1.536 0.912 1.490 0.876 1.431 0.828 1.412 0.777 1.398 0.736 1.382 0.751 1.373 0.920 1.389 0.980 1.327 1.024 1.250 1.078 1.196

TABLE VI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR

FIRST-STAGE ROTOR

(d) 100 Percent of design speed; reading 49

RP 1 2 3 4 5 6 7 8 9 10 11	IN 24.704 23.978 22.537 21.092 20.218 19.342 18.166 15.133 13.533 11.854	24, 265 23, 594 22, 250 20, 907 20, 102 19, 294 18, 219 15, 532 14, 188 12, 845	IN -1.8 -2.1 -1.5 -1.8 -1.7 -1.6 -1.9 -1.5 -1.2	BETAM 0UT 34.8 33.6 33.2 35.4 38.0 40.5 41.7 42.1 44.1 49.2	68.9 66.3 63.3 61.3 60.0 58.7 57.1 52.6 50.0 47.0	BETAM OUT 61.7 60.2 57.1 54.9 54.1 27.1 14.8 -0.5	269.0 288.5 268.3 267.9 287.9 288.0 287.9 288.0 288.0	1.163 1.158 1.150 1.149 1.149 1.148 1.151 1.155 1.158	9.92 10.13 10.14 10.15 10.16 10.16 10.16 10.15	1.487 1.471 1.441 1.413 1.430 1.582 1.612 1.613
8-254567-8901	IN 162.6 180.1 192.8 197.3 199.6 200.9 201.6 198.2 194.4 188.6	194.5 197.2 202.5 201.7 197.9 195.0 204.1 248.3 269.0	447.3 428.8 410.4 398.9 386.7 370.7 326.4 302.3 276.7	VEL 0UT 337.0 331.1 312.4 285.8 266.0 246.9 228.1 207.0 199.7 195.4 200.8	180.0 192.8 197.2 199.5 200.8 201.5 198.1 194.4 188.6	0UT 159.7 164.3 169.5 164.4 155.9 148.3 152.4 184.2 193.0 195.4	1N -5.2 -6.6 -5.2 -6.0 -5.8 -6.6 -5.2 -4.2 -3.3	109.0 110.7 116.7 121.9 126.6 135.8 166.5 187.3 217.5	1N 415.2 402.9 377.9 363.6 339.4 324.8 304.6 254.2	00T 407.8 396.4 373.1 350.5 337.5 323.9 305.5 260.9 238.3 215.9
RP 1 23 4 5 6 7 8 9 10 11	IN 0.488 0.544 0.585 0.600 0.608 0.612 0.614 0.603 0.591	0.554 0.573 0.571 0.559 0.551 0.578 0.713 0.778	1N 1.353 1.352 1.302 1.249 1.215 1.178 1.130 0.994 0.919	0.931 0.883 0.809 0.752 0.698 0.646 0.594 0.578	0.585 0.600 0.608 0.612 0.614 0.603 0.591	0.447 0.462 0.479 0.465 0.441 0.419 0.431 0.529 0.558 0.570			VEL R 1 0.982 0.913 0.879 0.834 0.781 0.739 0.756 0.930 0.993	1.531

FIRST-STAGE ROTOR

(e) 80 Percent of design speed; reading 65

80 1 2 3 4 5 6 7 8 9 10 11	24.704 24.265 23.978 23.594 22.537 22.250 21.092 20.907 20.218 20.102 19.342 19.294 18.166 18.219 15.133 15.532 13.533 14.188 11.854 12.845	-1.1 -2.0 -2.0 -1.9 -1.9 -1.6 -1.1	37.6 68.6 35.5 66.1 37.4 64.2 39.9 65.0 42.2 61.9 44.0 60.3 44.8 56.0	61.0 26 58.1 26 55.3 26 53.2 26 50.7 26 45.7 26 28.2 26 15.0 26 -3.3 26	89.1 1.108 88.2 1.101 87.9 1.100 87.8 1.103	10.12 1 10.14 1 10.15 1 10.15 1 10.15 1 10.15 1 10.15 1 10.15 1	.336 .336 .332 .329 .328 .332 .361 .380 .409
RP 1 234 567 89011	128.1 156.4 137.5 159.5 140.1 160.5 141.6 162.8 142.4 165.8 142.8 171.9 140.7 193.8 138.2 210.9	353.7 25 351.0 25 358.7 24 321.4 22 311.6 20 302.4 19 288.1 17 251.6 15 231.2 15 209.9 14	7.7 115.0 5.7 128.1 5.3 137.4 4.3 140.0 8.5 141.5 3.8 142.3 7.3 142.7 6.0 140.7 0.8 138.2 9.5 134.0 1.8 130.7	116.1 123.9 129.8 127.6 124.9 122.8 123.7 137.5 145.6 149.2	-4.9 92.7 -4.9 97.4 -4.6 104.4 -4.8 111.4 -4.6 119.4 -3.8 136.5 -2.6 152.6 -1.4 182.1 -0.9 193.8	334.1 3.324.3 3 304.7 3 284.4 20 273.0 2 262.0 20 245.6 20 204.8 2 182.8 19160.1 1148.7 16	28.1 19.1 00.8 81.9 71.4 61.3 46.3 10.2 91.7 73.5 64.9
	ABS MACH NO IN OUT 0.341 0.430 0.381 0.444 0.411 0.456 0.419 0.459 0.424 0.466 0.426 0.474 0.427 0.492 0.421 0.560 0.413 0.612 0.400 0.687 0.390 0.716	!N 01 1.049 0.1 1.044 0.1 1.012 0.1 0.961 0.6 0.932 0.5 0.905 0.5 0.862 0.5 0.753 0.4	NO MERID MA UT IN 730 0.341 727 0.381 701 0.410 642 0.419 596 0.423 554 0.426 550 0.427 451 0.421 438 0.413 436 0.400 444 0.390	0.329 0.352 0.352 0.357 0.365 0.357 0.351 0.354 0.397 0.423 0.435		MERID PE VEL R MA 1.010 1 0.967 1 0.945 1 0.911 1 0.863 1 0.863 1 1.054 1 1.114 1	AK SS CH NO .358 .316 .302 .284 .263 .250 .217 .135 .075 .003 .960

FIRST-STAGE ROTOR

(f) 80 Percent of design speed; reading 76

	RADII IN 0017 24.704 24.26 23.978 23.59 22.537 22.537 21.092 20.90 20.218 20.10 19.342 19.29 18.166 18.21 15.133 15.53 13.533 14.16 11.854 12.84 10.973 12.17	4 -1.0 -2.2 -2.2 -2.3 4 -2.2 9 -2.2 52 -1.9 -1.4 -5.8	0UT 45.7 45.4 44.0 46.0 48.1 49.7 50.9 48.9 49.3 52.9	1N 73.3 71.0 68.7 67.1 65.9 64.8 63.3 59.4 56.9 54.0	00T 63.7 62.4 59.8 57.2 55.4 52.2 46.5	1N 289.6 289.0 288.0 287.9 287.9 288.0 287.8 287.8 287.8	RATIO 1.126 1.124 1.118 1.116 1.116 1.116 1.117 1.107 1.107	IN	RAT10 1.383 1.369 1.365 1.357 1.348 1.350 1.354 1.364 1.390 1.401
254567 89011	ABS VEL IN OUT 100.5 154. 112.6 155. 121.0 156. 123.2 157. 124.4 158. 125.6 170. 123.7 169. 121.4 208. 117.7 227. 114.9 235.	7 350.6 7 346.3 6 333.2 9 316.2 7 304.6 7 293.3 2 279.3 7 242.5 1 222.0 6 200.1	00T 243.8 236.3 223.6 202.6 186.3 171.7 156.2 141.4 139.9 137.5	124.3 125.0 125.5 123.6 121.3 117.7	0UT 108.1 109.4 112.6 109.6 105.9 105.2 107.4 124.6 135.7	1N -0.6 -2.1 -4.6 -4.8 -4.9 -4.9 -4.9 -4.1 -3.0	108.8 113.6 118.2 124.1 132.0 143.1 157.8 181.6	IN 335.3 325.4 305.9 286.5 273.1	271.5 259.8 245.4 209.9 191.8 173.4
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH N IN OUT 0.297 0.43 0.334 0.43 0.360 0.44 0.367 0.44 0.371 0.45 0.373 0.46 0.374 0.48 0.368 0.54 0.361 0.60 0.350 0.66	1N 6 1.037 9 1.027 4 0.992 8 0.942 1 0.908	0.686 0.666 0.666 0.575 0.529 0.445 0.445 0.407 0.405 0.400 0.396	MERID M IN 0.297 0.334 0.360 0.370 0.373 0.374 0.368 0.361 0.350 0.341	0.304 0.309 0.319 0.311 0.301			MERID VEL R 1.075 0.971 0.931 0.891 0.852 0.842 0.856 1.008 1.118 1.166	MACH NO 1.434 1.394 1.383 1.354 1.322 1.292 1.260 1.171 1.109
RP 1 23 4 5 6 7 8 9 10 11	SPAN ME 5.00 8 10.00 8 20.00 8	AN SS .8 6.5 .2 5.7 .7 5.7 .8 6.4 .1 6.5 .5 6.6 .1 6.9 .4 7.5 .5 7.6 .3 7.5	DEV 5.3 5.7 7.0 7.9 8.0 7.5 8.5 5.3 8.5 5.3	0.423	0.773	LOSS COTOT 0.170 0.183 0.161 0.195 0.207 0.218 0.149 0.098 0.131 0.203	PROF 0.148 0.166 0.148 0.163 0.191 0.205 0.218 0.149 0.098	LOSS P TOT 0.028 0.031 0.038 0.034 0.038 0.042 0.031 0.020 0.024	

FIRST-STAGE ROTOR

(g) 80 Percent of design speed; reading 87

RP 1 23 4 5 6 7 8 9 10 11		-0.5 -1.2 -2.2 -2.2 -2.1 -2.1 -2.0 -1.7 -1.2 -0.8	42.8 72.2 41.6 69.8 39.6 67.5 41.5 65.7 43.8 64.5 45.8 63.4 47.4 62.0 47.2 57.6 48.2 55.0 52.1 52.1	63.0 61.6 59.1 56.3 53.9	289.7 289.0 288.0 287.9 287.8 287.8 287.9 287.8 287.9	1.120 1.117 1.109 1.108 1.110 1.111 1.112 1.104 1.105	10.01 10.13 10.14 10.14 10.14 10.15 10.14 10.14	1.366 1.353 1.352 1.344 1.343 1.343 1.346 1.362 1.382
RP 1 254567 89011	107.8 155.2 120.2 156.3 129.0 157.0 131.4 158.8 132.7 161.7 133.5 165.3 133.9 171.9 132.1 190.5 129.7 208.4	352.6 25 348.7 24 336.4 23 319.3 21 308.4 19 297.8 18 284.7 16	UT 1N 10.9 107.8 5.5 120.2 5.1 128.9 4.2 131.3 6.1 132.6 13.0 133.4 17.5 133.9 7.5 132.0 7.5 129.7 1.3 125.8 8.5 122.8	0UT 113.9 116.9 120.9 118.9 116.6 115.2 116.2 129.5 139.0 141.1	-2.4 -5.0 -5.1 -4.8 -4.8 -4.8 -3.9 -2.7 -1.7	105.4 105.4 105.2 105.2 112.0 118.5 126.6 139.7 155.3 181.5	324.9 305.7 265.9 273.6 261.4 246.5 204.4 182.4 160.1	0UT 328.9 319.7 301.8 283.4 272.0 260.7 247.2 209.8 191.2 173.5
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.319 0.438 0.357 0.442 0.385 0.447 0.392 0.452 0.396 0.471 0.400 0.491 0.394 0.549 0.387 0.604 0.375 0.670 0.366 0.688		00T IN 708 0.319 695 0.357 669 0.384 611 0.392 564 0.396 522 0.398 478 0.400 424 0.394 416 0.387 412 0.375	MACH NO OUT 0.321 0.331 0.344 0.339 0.332 0.332 0.373 0.403 0.411 0.395			MERID F VEL R 1.057 0.973 0.938 0.905 0.879 0.864 0.868 0.981 1.071 1.121	PEAK SS MACH NO 1.397 1.356 1.351 1.297 1.297 1.297 1.298 1.151 1.088 1.015 0.964
RP 1 23 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 7.6 10.00 7.0 20.00 7.4 30.00 8.4 36.00 8.8 42.00 9.2 50.00 9.8 70.00 10.6 80.00 10.7 90.00 10.5 95.00 10.2	SS 5.4 4.5 4.4 5.0 5.1 5.3 5.6 5.8 5.7 5.7	DEV D-FACT 4.6 0.401 4.4 0.406 5.0 0.408 6.1 0.440 6.5 0.475 6.8 0.509 7.1 0.541 8.4 0.542 8.0 0.517 6.4 0.484 4.5 0.466		LOSS CO TOT 0.159 0.160 0.125 0.137 0.158 0.178 0.190 0.125 0.096 0.111		LOSS PATOT 0.027 0.028 0.025 0.029 0.033 0.037 0.026 0.020 0.021 0.032	

FIRST-STAGE ROTOR

(h) 80 Percent of design speed; reading 98

	24.704 2 23.978 2 22.537 2 21.092 2 20.218 2 19.342 1 18.166 1 15.133 1	0UT 24.265 23.594 22.250 20.907 20.102 19.294 18.219 15.532 14.188	IN -0.8 -1.3 -2.2 -2.3 -2.1 -2.0 -1.9 -1.6 -1.1	0UT 36.1 33.8 32.1 33.8 36.4 39.0 40.9 42.6 44.9 49.5	1N 70.2 67.7 65.1 63.2 61.9 60.8 59.2 54.8 52.3 49.2	0UT 62.7 60.9 57.8 54.8 52.7 50.2 45.5 28.3 15.8 -2.7	289.4 288.9 288.0 288.1 287.9 287.8 287.9 287.8 287.9 288.0	RATIO 1.103 1.098 1.094 1.094 1.096 1.099 1.100 1.098 1.101	IN	1.311 1.314 1.311 1.308 1.312 1.351 1.370 1.400
RP 1 23 4 5 6 7 8 9 10 11	143.6 146.4 147.9 148.7 149.2 147.0 144.3 139.9	0UT 151.7 155.6 160.0 162.2 163.9 166.3	341.0 324.4 314.0 304.6 290.8 254.6 235.7 213.9	00T 266.8 265.7 254.0 233.7 217.5 202.0 185.8 163.3 156.1 154.5	143.5 146.3 147.8 148.6 149.1 146.9 144.2 139.8	OUT 122.6 1, 9,4 135.5 134.7 131.9 129.2 130.2 143.8 150.2 154.3	IN -1.7 -3.0 -5.6 -5.8 -5.2 -5.2 -4.0 -2.8 -1.8	86.5 85.0 90.2 97.2 104.7 112.8 132.0 149.9 180.8	IN 332.3 323.7 303.8 283.7 271.8 260.6 244.7 204.0 183.6	318.6 299.9 281.2 270.2 260.0 245.4 209.4 192.5 173.5
RP 1 23 4 5 6 7 C 9	0.418	OUT	1N 1.054 1.052 1.020 0.971 0.941 0.913 0.872 0.763 0.705 0.640	0UT 0.759 0.759 0.729 0.671 0.624 0.579 0.533 0.472 0.454	MERID M IN 0.357 0.398 0.429 0.438 0.445 0.445 0.447 0.440 0.432 0.418 0.407	0UT 0.349 0.369 0.389 0.387 0.379 0.374 0.416 0.437 0.451			VEL R	1.351 1.283 1.270 1.263 1.240 1.224 1.195 1.118 1.073 0.999

FIRST-STAGE ROTOR

(i) 80 Percent of design speed; reading 109

RP 1 23 4 5 6 7 8 9 10 11	24.704 24.265 25.978 23.594 22.537 22.250 21.092 20.907 20.218 20.102 19.342 19.294 18.166 18.219 15.133 15.532 13.533 14.188 11.854 12.845	-0.9 -1.3 -2.1 -2.3 -2.1 -2.0 -1.8 -1.5 -1.0	OUT IN 34.2 69.8 32.0 67.2 30.6 64.5 32.3 62.8 34.5 61.5 37.3 60.3 39.6 58.5 41.3 54.1 43.9 51.5 48.4 48.5	0UT 62.8 60.8 57.6 54.7 52.4 50.1 45.4 28.1 15.5 -2.0	IN RATI 289.4 1.09 289.0 1.09 288.1 1.09 288.0 1.09 287.9 1.09 287.8 1.09 287.6 1.09 287.9 1.10	10.12 1.295 11 10.15 1.299 12 10.15 1.304 14 10.15 1.304 17 10.15 1.297 19 10.15 1.301 18 10.15 1.354 11 10.15 1.374 19 10.14 1.406
RP 1 23 4 5 67 8 9 0 11	145.8 240.7	358.1 27 355.0 27 342.9 25 328.6 24 317.9 22 308.1 20 293.7 19 257.3 16 238.2 16 217.0 16 205.8 16	UT IN 3.6 123.8 0.8 137.5 8.5 147.5 0.1 150.4 4.6 151.9 8.4 152.7 0.4 153.3 8.4 151.0	125.0 132.2 138.5 138.9 137.1 133.6 133.7 148.6 155.5 159.9 161.8	-5.4 101. -4.9 110. -4.0 130. -2.6 149. -1.6 179.	8 334.2 328.2 6 324.2 319.0 0 304.1 300.2 8 286.2 283.7 3 273.7 272.1 8 202.3 261.6 7 245.6 246.3 4 204.3 209.7 5 183.8 192.7 9 160.9 174.3
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.368 0.431 0.410 0.446 0.442 0.462 0.456 0.472 0.456 0.478 0.459 0.460 0.459 0.453 0.573 0.444 0.628 0.430 0.704 0.419 0.738	REL MACH IN 0 1.064 0.1 1.059 0.1 1.027 0.0 1.027 0.0 1.027 0.0 1.025	NO MERID M 1 N 780 0.368 775 0.410 743 0.442 690 0.451 645 0.456 598 0.456 598 0.458 547 0.460 488 0.453 470 0.444 468 0.430 482 0.419	0.356 0.378 0.398 0.399 0.394 0.384 0.384 0.430 0.453 0.468 0.475		MERIO PEAK SS VEL R MACH NO 1.010 1.322 0.961 1.272 0.939 1.250 0.924 1.265 0.903 1.240 0.875 1.223 0.872 1.189 0.984 1.112 1.049 1.067 1.112 0.999 1.153 0.959

FIRST-STAGE STATOR

(a) 100 Percent of design speed; reading 16

RP 1 23 4 5 6 7 8 9 10 11		IN 37.1 100 35.4 168 34.8 27 36.1 144 38.5 168 40.5 169 41.6 168 42.2 163 44.0 163 49.2	2.1 0.6 0.9 1.0 -0.6 -1.0	IN OUT 37.1 2.5 35.4 2.1 34.8 0.6 56.1 0.9 38.5 1.0 40.5 -0.6 41.6 -1.0 42.2 0.9 44.0 1.0 49.2 3.8	IN RATIO 343.6 1.000 541.2 1.000 537.8 1.000 536.1 1.000 534.9 1.000 534.7 1.000 533.4 1.000 535.1 1.000 535.1 1.000 535.1 1.000	IN RAT10 15.71 0.982 15.86 0.985 15.93 0.986 15.78 0.987 15.49 0.987 15.26 0.984 15.26 0.985 16.11 0.986 16.23 0.984 16.43 0.959
R-254567-890:	ABS VEL IN 0U1 221.6 170. 226.2 177. 231.5 180. 227.2 175. 222.0 167. 217.7 159. 222.1 159. 247.6 179. 259.6 185. 274.0 180. 278.6 161.	8 221.6 0 226.2 7 251.5 4 227.2 3 222.0 0 217.7 4 222.1 0 247.6 9 259.6 0 274.0	170.8 177.0 180.7 175.4 167.3 159.0 159.4 179.0 185.9	MERID VEL IN OUT 176.7 170.7 184.4 176.9 190.0 180.7 183.5 175.4 173.7 167.3 165.5 159.0 166.0 159.4 183.5 178.9 186.8 185.8 179.1 179.6 171.2 161.3	141.5 -1.8 147.5 -2.7 166.2 2.8 180.3 3.2 207.3 11.8	
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH N IN 001 0.619 0.47 0.635 0.48 0.655 0.50 0.643 0.48 0.628 0.46 0.616 0.44 0.710 0.50 0.748 0.52 0.792 0.50 0.806 0.44	1 N 0 0.619 9 0.635 3 0.655 9 0.643 0.628 2 0.616 3 0.629 1 0.710 2 0.748 3 0.792	0.503 0.489 0.465 0.442 0.443 0.501 0.522	MERID MACH NO IN OUT 0.493 0.469 0.518 0.469 0.537 0.505 0.520 0.489 0.491 0.465 0.468 0.442 0.470 0.443 0.526 0.501 0.538 0.522 0.518 0.502 0.495 0.448		MERID PEAK SS VEL R MACH NO 0.966 0.760 0.959 0.743 0.951 0.724 0.956 0.751 0.963 0.762 0.961 0.781 0.960 0.801 0.995 0.844 1.002 1.030 0.942 1.103

FIRST-STAGE STATOR

(b) 100 Percent of design speed; reading 27

RP 1 23 4 5 6 7 8 9 10 11	RP 1 23 4 5 6 7 8 9 10 11	R1 234567-89011	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 36.00 42.00 50.00 70.00 80.00 90.00 95.00	IN 0.620 0.634 0.651 0.645 0.631	1N 222.7 226.7 230.9 228.4 223.5 218.9 221.6 245.7 260.5 274.3	IN 23.757 23.167 21.981 20.787 20.071 19.350 18.387 15.961 14.732 13.492
	0UT 0.467 0.482 0.495 0.482 0.460 0.437 0.435 0.488 0.507	157.7 156.9 174.8 181.0	23.762 23.200 22.068 20.927 20.244 19.558 18.649 16.388 15.263 14.143
DENCE SS -3.5 -4.6 -5.6 -4.7 -3.0 -1.5 -1.1 -4.0 -4.9 -2.7 -0.3	IN 0.620 0.634 0.651 0.645 0.631 0.617 0.627 0.703 0.750	226.7 230.9 228.4 223.5 218.9 221.6 245.7 260.5 274.3	IN 38.3 37.0 35.9 37.0 39.1 41.3 42.8 43.2 44.6 49.6
DEV 15.7 13.4 10.6 9.9 9.6 7.7 7.2 9.3 10.5 15.3	0UT 0.467 0.482 0.495 0.482 0.460 0.437 0.435 0.488 0.507	0UT 170.2 175.1 178.4 173.7 165.9 157.7 156.9 174.8 181.0	2.5 2.2 1.2 1.3 -0.5 -0.8
D-FACT 0.460 0.441 0.430 0.436 0.456 0.467 0.496 0.462 0.467 0.520 0.600		IN 174.9 181.1 187.0 182.4 173.4 164.4 162.7 179.0 185.4 177.7	38.3 37.0 35.9 37.0 39.1 41.3 42.8 43.2 44.6 49.6
EFF 0. 0. 0. 0. 0.	0UT 0.466 0.482 0.495 0.482 0.460 0.437 0.435 0.488 0.507 0.483	170.1 175.0 178.4 173.6 165.9 157.7 156.9 174.8 181.0 173.2	2.5 2.2 1.2 1.3 -0.5 -0.8 1.0 1.4 4.3
LOSS C TOT 0.085 0.072 0.060 0.064 0.063 0.072 0.059 0.048 0.064 0.155 0.203		IN 137.9 136.3 135.5 137.4 141.0 144.5	345.7 343.5 339.7 337.2 336.6 335.8 333.9 334.0 335.8
PROF 0.085		7.3 6.7 3.6 3.6 3.7 -1.3 -2.1 2.9 4.4 13.2	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOSS P TOT 0.033 0.027 0.021 0.022 0.021 0.023 0.018 0.012 0.015 0.034 0.043	MERID VEL R 0.973 0.966 0.954 0.952 0.957 0.959 0.964 0.976 0.975 0.947	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	15.97 16.10 16.14
	MACH NO	0.	0.983 0.985 0.984 0.985 0.984 0.986 0.987 0.980

FIRST-STAGE STATOR

(c) 100 Percent of design speed; reading 38

RP 1 2334 5 6 7 8 9 10 11	23.757 23. 23.167 23. 21.981 22. 20.787 20. 20.071 20. 19.350 19. 18.387 18. 15.961 16. 14.732 15.	068 30.6 927 32.8 244 35.4 558 37.9 649 38.9 388 39.3 263 41.7 143 46.9	1.2 0.8 -0.4 -0.1 0.0 -1.4 -1.4 0.6	32.7 31.2 30.6 32.8 35.4 37.9 38.9 39.3 41.7 46.9	1.2 0.8 -0.4 -0.1 0.0 -1.4 0.6 0.8	338.2 336.0 333.2 332.6 332.6 332.0 332.2 332.9 333.5	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	15.02 15.19 15.34 15.13 14.85 14.58 14.70 16.15 16.40 16.39	0.984 0.989 0.991 0.989 0.986 0.983 0.979 0.982 0.965
RP123456789011	219.2 17	OUT IN 73.4 219.2 80.7 224.2 86.5 229.3 80.8 224.6 71.7 218.0	173.4 180.7 186.5 180.8 171.7	191.8 197.3 188.9 177.6	173.4 180.7 186.4 180.8 171.7	IN 118.4 116.0 116.9 121.6 126.4	2.6 -1.2 -0.4 0.1	0. 0. 0.	0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH IN 0 0.617 0. 0.634 0. 0.653 0. 0.639 0. 0.619 0. 0.602 0. 0.622 0. 0.745 0. 0.786 0. 0.823 0.	UT IN 481 0.617 504 0.634 523 0.653 507 0.639 480 0.619	0 401	0.519 0.543 0.562 0.537 0.504	0.504 0.523 0.507 0.480			MERID VEL R 0.940 0.942 0.945 0.957 0.967 0.969 0.987 1.036 1.036	0.634 0.653 0.639 0.665
					0.55-				

FIRST-STAGE STATOR

(d) 100 Percent of design speed; reading 49

RP 1 23 4 5 6 7 8 9 10 11	RADII IN OU 23.757 23.7 23.167 23.2 21.981 22.0 20.787 20.9 20.071 20.2 19.350 19.5 18.387 18.6 15.961 16.3 14.732 15.2 15.492 14.1 12.868 13.5	62 31.3 60 29.8 68 29.3 27 31.5 44 34.1 58 36.6 49 37.8 68 38.5	0.9 0.5 -0.9 -0.6 -0.5 -1.7 -1.3	31.3 29.8 29.3 31.5 34.1 36.6 37.8 38.5	-0.9 -0.6 -0.5 -1.7 -1.3	336.2 334.1 331.5 330.9 330.9 330.6 331.3	1.000 1.000 1.000 1.000 1.000 1.000	14.74 14.91 15.08 14.94 14.63 14.35 14.52 16.07	0.986 0.989 0.990 0.990 0.989 0.988 0.982
R1254567.89011	218.3 174 223.3 181 229.1 187 225.0 182 217.5 173 211.6 165 219.3 168 260.3 202 274.3 216 285.9 214	1 IN 1.6 218.3 1.4 223.3 1.4 229.1 1.5 225.0 1.6 217.5 1.2 211.6 1.2 219.3 1.2 260.3 1.3 260.3 1.4 285.9	0UT 174.6 181.4 187.4 182.5 173.6 165.2 168.2 202.9 216.7 214.4	186.6 193.7 199.8 191.9 180.0 169.8 173.1 203.7 206.7 197.1	00T 174.6 181.4 187.4 182.5 173.6 165.2	IN 113.4 111.0 112.1 117.4 122.1 126.2 134.5 162.0 180.4 207.0	2.6 1.6 -2.9 -2.0 -1.5 -4.8 -3.7 2.0 3.3 5.8	0. 0. 0. 0. 0.	o. o. o.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH IN 0U 0.616 0.44 0.633 0.5 0.654 0.5 0.642 0.5 0.619 0.44 0.601 0.46 0.751 0.5 0.796 0.6 0.831 0.6 0.847 0.5	N 1N 86 0.616 0.633 28 0.654 13 0.642 87 0.619 63 0.601 71 0.624 73 0.751 14 0.796 05 0.831	0.486 0.508 0.528 0.513 0.487 0.463 0.471 0.573 0.614 0.605 0.559	MERID MA IN 0.526 0.549 0.570 0.547 0.512 0.493 0.588 0.599 0.573 0.559	0.486 0.508 0.528 0.513 0.487 0.463 0.471 0.605 0.559			MERID VEL R 0.936 0.936 0.938 0.951 0.964 0.971 0.996 1.087 1.037	0.751 0.818 0.993

FIRST-STAGE STATOR

(e) 80 Percent of design speed; reading 65

RP 1 23 4 5 6 7 8 9 10 11	RADII 1N OUT 23.757 23.762 23.167 23.200 21.981 22.068 20.787 20.927 20.071 20.244 19.350 19.558 18.387 18.649 15.961 16.388 14.732 15.263 13.492 14.143 12.868 13.586		IN OUT 37.0 1.2 34.2 1.0 32.1 -1.8 33.8 -2.5 36.3 -1.0 38.6 -0.1 40.4 0.1 41.5 -0.7 43.5 -0.2 48.9 2.7	TOTAL TEMP IN RATIO 321.7 1.000 320.2 1.000 317.4 1.000 318.0 1.000 318.2 1.000 317.1 1.000 317.5 1.000 319.8 1.000 319.8 1.000 320.0 1.000	TOTAL PRESS IN RATIO 13.38 0.990 13.53 0.989 13.56 0.992 13.51 0.994 13.49 0.995 13.47 0.993 13.51 0.991 13.81 0.991 14.00 0.987 14.29 0.971 14.23 0.943
RP 1 23 4 5 67 8 9 10 11	ABS VEL 1N OUT 166.4 131.3 172.8 137.8 176.5 142.4 175.9 142.6 176.6 142.3 178.1 141.7 182.6 142.7 200.3 152.2 213.4 161.4 230.2 161.6 234.3 143.5				0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.473 0.370 0.493 0.390 0.507 0.405 0.505 0.406 0.511 0.403 0.525 0.406 0.580 0.434 0.620 0.461 0.670 0.465 0.683 0.407	REL MACH NO IN OUT 0.473 0.370 0.493 0.390 0.507 0.405 0.505 0.406 0.507 0.405 0.511 0.403 0.525 0.406 0.580 0.434 0.620 0.461 0.670 0.460 0.683 0.407	MERID MACH NO 1N OUT 0.376 0.370 0.408 0.390 0.405 0.409 0.405 0.399 0.403 0.400 0.406 0.434 0.434 0.449 0.461 0.426 0.407		MERID PEAK SS VEL R MACH NO 0.988 0.604 0.964 0.563 0.952 0.507 0.975 0.525 1.000 0.581 1.018 0.620 1.026 0.654 1.016 0.684 1.043 0.734 1.066 0.878 0.983 0.932

FIRST-STAGE STATOR

(f) 80 Percent of design speed; reading 76

RP 1 23 4 5 6 7 8 9 10 11	RAD 1N 23.757 23.167 21.981 20.787 20.071 19.350 18.387 15.961 14.732 13.492 12.868	23.200 22.068 20.927 20.244 19.558 18.649	41.9 40.5 42.5 44.6 46.2 47.4 45.8	1.9 0.3 0.5 1.1 0.5 1.3	41.9 40.5 42.5 44.6 46.2 47.4 45.8	1.9 0.3 0.5 1.1 0.5 1.3	324.8 322.0 321.2 321.2 321.5 321.4	1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 13.86 13.84 13.77 13.67 13.69 13.73 13.84 14.10	0.990 0.988 0.989 0.985 0.985
R1254567.89011	1N 167.4 168.8 169.6 169.2 168.5 171.4 177.6 194.1 209.2 221.9	128.7 127.8 123.8 120.7 119.3 121.1 133.0 139.4 135.5	168.8 169.6 169.2 168.5 171.4 177.6 194.1 209.2 221.9	127.3 128.7 127.8 123.8 120.7 119.3 121.1 133.0 139.4 135.5	125.4 125.6 128.9 124.7 119.9 118.6 120.2 135.3 143.8 139.1	127.2 128.7 127.8 123.7 120.7 119.3 121.0 133.0 139.3 134.7	113.1 112.8 110.2 114.3 118.4 123.8 130.8 139.2 151.9	4.2 0.7 1.1 2.3 1.1 2.8 2.8 6.1	0. 0. 0.	000000000000000000000000000000000000000
RP 1 23 4 5 6 7 8 9 10 11	0.475 0.478 0.482 0.482 0.480 0.488	0.07 0.356 0.361 0.360 0.349 0.340 0.336 0.341 0.377 0.396 0.384	0.4/3 0.478 0.482 0.482 0.480 0.488 0.507 0.559 0.606 0.644	0.377	MERID M IN 0.349 0.355 0.367 0.355 0.341 0.338 0.343 0.343 0.417 0.404 0.377	0.356 0.361 0.360 0.360 0.349 0.340 0.341 0.377 0.395 0.381 0.345			MERID VEL R 1.031 1.024 0.991 0.992 1.007 1.006 1.007 0.983 0.969 0.968	PEAK SS MACH NO 0.695 0.684 0.654 0.674 0.698 0.726 0.758 0.750 0.896 0.965

FIRST-STAGE STATOR

(g) 80 Percent of design speed; reading 87

RP 1 23 4 5 6 7 8 9 10 11	RADII 1N 0UT 23.757 23.762 23.167 23.200 21.981 22.068 20.787 20.927 20.071 20.244 19.350 19.558 18.387 18.649 15.961 16.388 14.732 15.263 13.492 14.143 12.868 13.586	39.6 38.2 36.2 - 37.9 - 40.2 - 42.2 43.9 44.0 - 45.4 50.4	JT IN 1.4 39.6 1.5 38.2 1.4 36.2 1.7 37.9 0.1 40.2 0.4 42.2 1.1 43.9 0.3 44.0 0.9 45.4	-0.3 0.9 4.4	1N 324.5 322.8 319.5 318.9 319.5 319.9 320.1 317.9 318.1	RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	IN 13.67 13.70 13.71 13.63 13.63 13.62 13.65 13.82 14.02	0.992 0.994 0.993 0.989 0.988 0.991 0.987 0.966
R-125456789911	ABS VEL IN OUT 169.1 129.9 171.0 132.8 171.8 134.5 172.1 133.3 173.6 132.1 175.9 130.6 195.8 141.9 210.0 149.5 224.4 146.6 225.7 128.6	171.0 132 171.8 134 172.1 133 173.6 132 175.9 130 180.9 131 195.8 141 210.0 149 224.4 146	T [N .9 130.3 .8 134.5 .5 138.7 .3 135.7 .1 132.5 .8 130.3 .6 130.4 .9 140.8 .5 147.4	141.9 149.5 146.1		3.1 3.4 -3.2 -3.9 -0.2 0.8 2.5 -0.8 2.3	0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.479 0.365 0.486 0.374 0.491 0.378 0.496 0.374 0.503 0.370 0.518 0.372 0.565 0.403 0.609 0.426 0.652 0.416 0.656 0.363	0.486 0.37 0.491 0.38 0.492 0.37 0.496 0.37 0.503 0.37 0.518 0.37 0.565 0.40 0.609 0.42	1 IN 55 0.369 74 0.382 81 0.396 78 0.388 74 0.379 70 0.372 72 0.373 73 0.406 76 0.427 76 0.416	0UT 0.364			MERID VEL R 0.996 0.987 0.982 0.997 1.003 1.009 1.007 1.014 1.021 0.968	0.655 0.631 0.585 0.608 0.646 0.678 0.712 0.720 0.766 0.889
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT IN SPAN MEAN 5.00 4.10.00 3.20.00 1.30.00 2.036.00 4.042.00 5.00 6.00 70.00 2.180.00 1.90.00 5.00 95.00 5.00	N SS -1.7 15.1 -2.9 13.1 -4.8 8.6 -3.3 7.4 -1.4 8.6 -0.1 9.2 0.5 9.8 -2.7 8.7 -3.6 10.8 -1.4 15.	2 0.469 2 0.447 5 0.433 5 0.439 8 0.465 0 0.465 5 0.454 5 0.454 9 0.502	EFF 0. 0. 0. 0. 0.	LOSS CO TOT 0.079 0.061 0.050 0.037 0.048 0.070 0.070 0.045 0.060 0.137 0.197	DEFF PROF 0.079 0.061 0.050 0.037 0.048 0.070 0.070 0.045 0.060 0.137 0.197	LOSS P TOT 0.030 0.023 0.018 0.012 0.015 0.022 0.021 0.012	PROF 0.030 0.023 0.012 0.012 0.015 0.021 0.021 0.015 0.030 0.042

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR FIRST-STAGE STATOR

(h) 80 Percent of design speed; reading 98

RP 1 23 4 5 6 7 8 9 10 11	25.757 25.167 21.981 20.787 20.071 19.350 18.387 15.961 14.732	23.200 22.068 20.927 20.244	IN 33.0 30.5 28.8 30.4 32.9 35.4 37.3 39.3	OUT 0.1 -0.5 -2.9 -2.8 -1.5 -0.6 -0.5 -1.0	1N 33.0 30.5 28.8 30.4 32.9 35.4 37.3 39.3	0.1 -0.5 -2.9 -2.8 -1.5 -0.6 -0.5 -1.0	IN 319.1 317.3 315.1 315.1 315.6 316.3 316.7	RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	IN 13.09 13.24 13.30 13.33 13.30 13.27 13.31 13.71 13.90 14.20	RATIO 0.989 0.990 0.994 0.995 0.995 0.995 0.992 0.990 0.978
R-284501-0901	IN 167.7 173.6 178.7 179.4 179.5 180.2 184.5 202.8 215.3 232.7	141.5 148.4 149.9 149.5 149.1 150.8 161.9 172.4 175.3	IN 167.7 173.6 178.7 179.4 179.5 180.2 184.5 202.8 215.3 232.7	134.3 141.5 148.4 149.9 149.5 149.1 150.8 161.9 172.4 175.3	149.6 156.5 154.8 150.8 146.8 146.8	0UT 134.3 141.5 148.2 149.7 149.4 149.1 150.8 161.9 172.4 175.2	IN 91.3 88.1 86.1 90.7 97.4 104.4 111.8 128.4 144.3	0.3 -1.1 -7.5 -7.5 -3.9 -1.5 -1.2 -2.7 -2.0 4.5	0. 0. 0.	0.00.00.00.00.00.00.00.00.00.00.00.00.0
RP 1 23 4 5 6 7 8 9 10 11	0.479 0.498 0.515 0.518 0.517 0.519 0.531 0.588 0.626 0.679	0UT 0.380 0.403 0.425 0.429 0.427 0.426 0.431 0.464 0.495	0.588 0.626 0.679	0.1 0.380 0.403 0.425 0.429 0.427	0.455	0UT 0.360 0.403 0.424 0.428 0.427 0.426 0.431 0.464 0.495 0.501			VEL R 0.955 0.946 0.947 0.967 0.991 1.016 1.028 1.031	0.517 0.554 0.593 0.629 0.701 0.860
RP 1 23 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 20.00 30.00 36.00 42.00 50.00 70.00 80.00 90.00	INCI MEAN -2.3 -4.6 -6.3 -5.0 -2.9 -1.1 -0.4 -1.9	DENCE SS -8.3 -10.6 -12.2 -10.8 -8.7 -6.9 -6.1 -7.4 -6.9 -4.1 -3.4	DEV 13.9 11.3 7.0 6.3 7.4 8.1 8.0 7.9 8.9 13.0	D-FACT 0.407 0.377 0.355 0.348 0.356 0.364 0.368 0.368 0.403 0.403	EFF 0. 0. 0. 0.	LOSS C TOT 0.073 0.063 0.034 0.032 0.031 0.041 0.045 0.045 0.084	OEFF PROF 0.073 0.063 0.034 0.034 0.031 0.041 0.041 0.045 0.084 0.201	LOSS P TOT 0.028 0.023 0.012 0.011 0.010 0.012 0.011 0.019 0.043	PROF 0.028 0.023 0.012 0.011 0.010 0.010 0.010 0.011 0.019 0.043

TABLE VII. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR FIRST-STAGE STATOR

(i) 80 Percent of design speed; reading 109

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 23.757 2: 23.167 2: 21.98: 2: 20.787 2: 20.071 2: 19.350 1: 18.387 1: 15.961 1: 14.732 1: 13.492 1: 12.868 1:	OUT 3.762 3.200 2.068 0.927 0.244 9.558 8.649 6.388 5.263 4.143	ABS IN 31.1 28.8 27.4 28.9 31.0 33.7 36.0 38.0 41.0 46.5 49.0	BETAM OUT -0.6 -0.9 -3.1 -2.8 -1.7 -1.2 -0.5 -0.9 -1.1	IN 31.1 28.8 27.4 28.9 31.0 33.7 36.0 38.0 41.0	BETAM OUT -0.6 -0.9 -3.1 -2.8 -1.7 -1.2 -0.5 -0.9 -0.8 0.9 -1.1	IN 317.8 316.3 514.4 514.4 314.9 315.8 316.2 316.0 317.0 319.4	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	13.18 13.23 13.23 13.17 13.20 13.74 13.94 14.26	RAT10 0.990 0.992 0.995 0.995 0.993 0.994 0.994 0.990 0.988 0.976
R-1254567.89011	167.7 174.6 180.4 182.6 183.3 182.9 186.6 206.2 219.5 236.0	VEL 0UT 135.4 144.4 152.3 154.5 154.2 155.3 169.2 180.4 184.5 170.6	180.4 182.6 183.3 182.9 186.6 206.2 219.5	0UT 135.4 144.4 152.3 154.5 154.2 153.2 155.3 169.2 180.4 184.5	160.2 159.8 157.1 152.1 150.9 162.5 165.7 162.3	0UT 135.4 144.4 152.1 154.3 154.1 153.2 155.3 169.2 180.4 184.5	101.5 109.7 126.9 144.0 171.3	OUT -1.4 -2.3 -8.3 -7.6 -4.6 -3.1 -1.3 -2.7 -2.4 3.0	0.	0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	0.480 0.502 0.521 0.528 0.529 0.527 0.538 0.599 0.640	CH NO 0UT 0.384 0.412 0.437 0.443 0.442 0.438 0.444 0.486 0.519 0.529 0.487	1N 0.480 0.502 0.521 0.528 0.529 0.527 0.538 0.599	0.443 0.442 0.443 0.443 0.444 0.486 0.519 0.529 0.487	0.435 0.472 0.483 0.474	0.412 0.436 0.442 0.442 0.442 0.438 0.444 0.486 0.519				0.502 0.521 0.528 0.529 0.527 0.560 0.599 0.678 0.842
RP 1 2 3 4 5 6 7	PERCENT SPAN 5.00 10.00 20.00 30.00	INCI MEAN -4.2 -6.3 -7.7 -6.4	DENCE SS -10.1 -12.2 -13.6 -12.3	DEV 13.2 10.8 6.8 6.4	D-FACT 0.394 0.358 0.335 0.330 0.334	EFF 0. 0. 0.	LOSS CO TOT 0.068 0.052 0.032 0.030 0.041	0EFF PROF 0.068 0.052 0.032 0.030	LOSS P TOT 0.026 0.019 0.012 0.010 0.013	PROF 0.026 0.019 0.012 0.010 0.013

SECOND-STAGE ROTOR

(a) 100 Percent of design speed; reading 16

RP 1 23 4 5 6 7 8 9 10 11	23.533 23.002 21.951 20.899 20.272 219.647 18.814 16.721 15.651	OUT 23.188 22.708 21.742 20.780 20.206 19.637 18.887 17.071 16.198 15.352	1N 2.3 1.9 0.5 0.8 0.9 -0.6 -0.9 0.8 0.9	0UT 44.4 43.3 43.5 43.7 43.0 42.6 44.0 46.8 49.2	IN 64.4 62.7 61.1 60.5 61.0 61.9 61.0 55.2 53.3	0UT 55.3 54.3 52.3 49.8 48.1 46.7 43.7 34.1 27.9 19.5	IN 343.6 341.2 337.8 336.1 335.7 334.9 334.7 333.4 333.0	RAT10 1.168 1.167 1.162 1.157 1.154 1.152 1.148 1.140 1.143 1.141	15.43 15.63 15.71 15.57 15.29	RAT10 1.560 1.544 1.537 1.543 1.568 1.590 1.586 1.515 1.498 1.510
RP 1 234567 8 9 10 11	185.9 195.9 202.7 197.0 187.0 176.7 176.2 192.3	0UT 225.1 225.2 224.5 225.4 226.5 226.1 229.1 240.8 247.8 259.4	419.4 399.8 385.6 375.5 363.4 336.5 322.2	00T 282.5 275.6 267.4 253.2 245.1 240.8 253.4 209.2 192.1	195.8 202.7 197.0 187.0 176.7 176.1 192.2 192.7	0UT 161.0 160.8 163.4 163.4 163.6 165.3 168.6 173.1	IN 7.5 6.5 1.9 2.7 3.0 -1.8 -2.7 2.8 3.1	00T 157.4 157.6 153.9 155.2 156.6 154.3 155.1 167.4	369.1 350.6 340.2 329.6 315.3	0UT 389.6 381.4 365.6 348.6 339.1 329.4 316.5 284.8 270.5
RP	ABS MA IN 0.513	0.579	REL M IN 1.188 1.188	0UT 0.727		0.414			VEL R	PEAK SS MACH NO 1.363
23345 6789 1011	0.523 0.493 0.492 0.540 0.542 0.482	0.584 0.590 0.594 0.594 0.604 0.641 0.661	1.175 1.121 1.078 1.048 1.015 0.946 0.906 0.804	0.696 0.663 0.643 0.633 0.616 0.557	0.542	0.428 0.429 0.434 0.445 0.461 0.453			0.822	1.327 1.316 1.310 1.334 1.384 1.383 1.216 1.157 1.075

SECOND-STAGE ROTOR

(b) 100 Percent of design speed; reading 27

RP 1 2 3 4 5 6 7 8 9 10 11	23.533 23.188 23.002 22.708 21.951 21.742 20.899 20.780 20.272 20.206 19.647 19.637 18.814 18.887 16.721 17.071 15.651 16.196 14.536 15.352	ABS BETAM IN OUT 2.3 45.3 2.0 44.9 1.0 44.1 1.1 44.5 1.1 44.6 -0.4 44.0 -0.7 43.0 0.9 45.1 1.3 47.3 4.4 50.5 0.4 48.7	IN OUT 5 64.6 55.6 6 63.0 54.2 61.4 52.2 6 60.8 50.0 6 61.2 48.6 6 62.2 47.3 6 61.5 44.0 5 61.5 34.3 7 54.1 27.5 5 54.3 18.7	345.7 1.170 343.5 1.169 339.7 1.164 337.7 1.159 337.2 1.155 336.6 1.153 335.8 1.150 333.9 1.144	1N RAT10 15.66 1.567 15.82 1.560 15.90 1.543 15.78 1.555 15.52 1.567 15.24 1.590 15.23 1.594 15.97 1.516 16.07 1.510 15.77 1.523
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 185.2 224.6 193.6 226.1 199.8 225.8 194.8 225.7 185.3 224.7 173.3 228.7 187.5 241.5 187.6 250.1 166.9 262.0 140.9 261.9	REL VEL IN 0UT 430.9 280.0 426.4 273.8 416.8 264.4 399.0 250.2 384.5 241.4 375.8 238.3 362.7 230.2 336.0 206.3 319.8 189.8 285.5 176.1 272.9 181.3	175.1 161.7 173.3 165.6 187.5 170.4 187.5 168.4 166.4 166.8 140.9 172.9	6.8 159.7 3.7 157.1 3.6 158.3 3.7 158.5 -1.3 156.0 -2.1 157.8 2.9 171.2 4.2 184.9 12.8 202.1 1.1 196.8	281.6 287.5 263.3 272.5 244.8 258.5 234.8 251.4
RP	ABS MACH NO	REL MACH NO	MERID MACH NO		MERID PEAK SS VEL R MACH NO
1 2 3 4 5 6 7 8 9 10	0.510 0.575 0.536 0.582 0.557 0.586 0.544 0.589 0.517 0.589 0.487 0.589 0.483 0.601 0.526 0.642 0.526 0.666 0.464 0.699 0.389 0.697	1.186 0.718 1.180 0.705 1.163 0.686 1.115 0.653 1.072 0.631 1.046 0.624 1.010 0.605 0.942 0.548 0.897 0.505 0.794 0.470 0.753 0.483	MERID MACH NO IN OUT 0.509 0.405 0.535 0.412 0.557 0.421 0.544 0.420 0.517 0.418 0.487 0.424 0.483 0.435 0.526 0.453 0.526 0.448 0.463 0.445 0.389 0.460		0.854 1.367 0.827 1.331 0.812 1.316 0.826 1.316 0.862 1.338 0.923 1.393 0.956 1.398 0.909 1.243 0.909 1.243 1.002 1.090 1.227 1.169

SECOND-STAGE ROTOR

(c) 100 Percent of design speed; reading 38

8P 1 23 4 5 6 7 8 9 10 11	IN 23.553 25.002 21.951 20.899 20.272 19.647 18.814 16.721 15.651	22.708 21.742 20.780 20.206 19.637 18.887 17.071 16.198 15.352	IN 1.1 0.7 -0.3 -0.1 0.0 -1.3 -1.3 0.6 0.8 1.8	BETAM OUT 42.4 42.1 40.6 40.4 40.9 40.6 40.2 40.6 42.2 43.3 41.7	IN 64.3 62.5 60.5 59.9 60.6 61.5 60.3 52.6 49.9		1N 338.2 336.0 333.2 332.6 332.6 332.2 332.2 332.9 335.5	1.139	IN 14.77 15.00 15.18 14.99 14.68 14.38 14.45 15.81 16.10 15.82	1.524 1.506 1.522 1.553 1.581 1.588 1.489 1.465
RP 1 23 4 5 6 7 8 9 10 11	IN 189.0 200.5 210.0 203.8 192.4 181.4 183.1 213.7 218.7	223.2 224.0 230.3 249.6 259.3	REL 1N 435.1 435.6 426.0 406.4 392.0 380.5 369.0 351.7 339.6 309.1 290.8	278.5 266.0 257.2 251.1 244.0 227.2 215.4 210.6	IN 189.0 200.5 210.0 203.8 192.4 181.4 183.1 213.7 218.7 197.1	198.0	IN 3.8 2.6 -1.2 -0.4 0.1 -4.1 -4.1 2.1	174.3 186.3	IN 395.7 387.1 369.4 351.2 341.6 330.4 316.2 281.4 262.9 244.3	389.8 382.1 365.9 349.2 340.4 330.3 317.5 287.3 272.0 258.0
RP 1 2 3 4 5 6 7 8 9 10 11	1N 0.527 0.563 0.594 0.576 0.542 0.509 0.514	0.611 0.668 0.695 0.731	IN 1.215 1.217 1.205 1.148 1.103 1.068 1.036 0.996 0.963 0.867	0.679	0.562 0.594 0.576 0.542 0.509 0.514 0.605 0.620 0.553	0.417 0.428 0.441 0.445 0.445 0.450 0.467			VEL R 0.851 0.819 0.801 0.828 0.876 0.938 0.961 0.888 0.878 1.005	1.337 1.381 1.365 1.181 1.100
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 20.00 30.00 36.00 42.00 50.00 70.00 80.00 90.00	INCI MEAN 2.3 1.4 1.0 2.2 4.0 6.1 1.3 -0.8 -1.2	DENCE SS -0.2 -1.1 -1.7 -0.8 0.6 2.3 1.9 -3.9 -6.2 -6.4 -3.6	DEV 2.2 1.3 1.5 1.9 2.2 2.8 2.7 3.5 4.8 8.2	D-FACT 0.453 0.465 0.466 0.465 0.465 0.465 0.465 0.498 0.463 0.406	0.793 0.777 0.785 0.848 0.904 0.945 0.975 0.878 0.829 0.872 0.951	LOSS CO TOT 0.162 0.175 0.166 0.120 0.080 0.047 0.022 0.110 0.162 0.142 0.062	DEFF PROF 0.129 0.146 0.102 0.063 0.008 0.008 0.108 0.162 0.142 0.062	LOSS F TOT 0.034 0.037 0.036 0.026 0.017 0.010 0.005 0.025 0.037	PROF 0.027 0.031 0.030 0.022 0.014 0.006 0.002 0.025 0.037 0.032

SECOND-STAGE ROTOR

(d) 100 Percent of design speed; reading 49

RP 1 23 4 5 6 7 8 9 10 11	23.002 21.951 20.899 20.272 19.647 18.814 16.721 15.651 14.536	OUT 23.188 22.708 21.742 20.780 20.206 19.637 18.887 17.071	0.8 0.5 -0.8 -0.6 -1.5 -1.1 0.5 0.8	35.3 34.1 31.9 32.2 33.1 35.2 34.0 36.0 37.5	64.1 62.4 60.3 59.7 60.3 61.2 59.7 51.7 48.9	58.5 56.1 53.4 51.6 50.3 49.1 46.5 35.4	336.2 334.1 331.5 330.9 330.9 330.6 331.3 332.4 333.3	1.132 1.133 1.129 1.123 1.123 1.123 1.121 1.122 1.129 1.135	TOTAL IN 14.54 14.75 14.78 14.47 14.18 14.26 15.72 16.07 15.78 15.15	1.371 1.385 1.388 1.401 1.429 1.454 1.446 1.364 1.384 1.443
RP 1 2 3 4 5 6 7 8 9 10 11	IN 190.4 201.4 211.3 205.9 194.8 184.1 186.7 220.2 226.3 204.4	204.0 212.9 217.9 217.7 218.3 218.0 220.9 246.5 266.9 289.8 297.7	434.4 426.9 408.1 393.4 381.9 369.7 355.3 344.4 314.2 294.4	0UT 318.7 315.9 310.5 296.6 286.2 278.4 266.4 244.7 238.6 238.1 246.2	201.4 211.3 205.9 194.8 184.1 186.6 220.2 226.2 204.4 177.0	0UT 166.5 176.3 185.0 184.3 182.9 182.4 183.3 199.4 211.9 225.6 236.3	IN 2.7 1.6 -2.9 -2.0 -1.5 -4.7 -3.7 2.0 3.2 5.6 -1.3	117.9 119.4 115.2 116.0 119.1 119.4 123.4 144.9 162.3 181.9	IN 395.5 386.5 368.1 350.4 340.3 329.9 315.5 280.9 262.8 244.4 233.9	389.7 381.5 364.6 348.4 339.2 329.7 316.7 286.7 272.0 258.1 250.5
RP 1 23 4 5 6 7 8 9 10 11	ABS Mi IN 0.532 0.567 0.599 0.584 0.550 0.519 0.526 0.626 0.623 0.575 0.493	0.537 0.563 0.581 0.582 0.584 0.584 0.592 0.664 0.721 0.786 0.809	REL M 1.221 1.223 1.211 1.157 1.111 1.076 1.041 1.010 0.979 0.884 0.821	0.838 0.835 0.835 0.828 0.793 0.766 0.745 0.714 0.659 0.645 0.646 0.669	MERID M IN 0.532 0.567 0.599 0.584 0.550 0.518 0.525 0.626 0.643 0.575 0.493	0.438 0.466 0.463 0.493 0.493 0.493 0.499 0.488 0.491 0.537 0.573 0.612 0.642			MERID VEL R 0.875 0.876 0.876 0.895 0.939 0.991 0.982 0.906 1.104 1.335	PEAK SS MACH NO 1.382 1.346 1.320 1.310 1.332 1.373 1.347 1.150 1.071 1.052

SECOND-STAGE ROTOR

(e) 80 Percent of design speed; reading 65

RP 1 23 4 5 6 7 8 9 10 11	23.533 23 23.002 22 21.951 21 20.899 20 20.272 20 19.647 19 18.814 18 16.721 17 15.651 16 14.536 15	0UT I .188 1 .709 0 .742 -1 .780 -2 .206 -0 .637 -0 .887 0 .071 -0 .198 -0	N OUT .1 35.0 .9 34.5 .6 31.7 .3 31.2 .9 32.5 .1 33.6 .1 34.6	IN 65.8 56 64.0 56 62.4 54 61.3 56 60.3 56 59.5 46 54.5 33 51.8 25 50.6 16	3.6 320.2 4.1 317.4 1.9 316.7 0.1 317.3 3.3 318.0 4.9 318.2 5.4 317.1 5.5 317.5 5.9 319.8	RATIO 1.088 1.089 1.085 1.085 1.083 1.083 1.083 1.093 1.095 1.094	IN 13.24 13.38 13.45 13.43 13.42 13.38 13.39 13.68	RAT10 1.274 1.279 1.283 1.289 1.293 1.300 1.307 1.308 1.325 1.325
R - 23456789111	141.6 16 150.6 16 157.4 17 158.1 17 157.7 17 156.7 17 157.1 16 162.6 20 166.9 21 155.4 23 129.7 23	52.7 345 69.3 345 72.8 339 74.0 328 76.3 317 78.9 309 83.8 298 95.1 280 19.2 269 34.6 244 59.7 231	.9 257.6 .4 253.3 .8 250.7 .6 241.4 .9 232.1 .0 224.1 .8 213.6 .1 197.2 .7 189.2 .6 194.1	141.6 133 150.6 139 157.4 147 158.0 148 157.7 148 156.7 149 157.1 151 162.5 164 166.9 170 155.2 173 129.7 187		93.2 95.8 90.9 90.1 94.6 98.7 104.4 122.3 137.5 153.3	281.8 273.7 266.1 254.3 226.3 211.4 196.3 189.0	313.6 307.1 294.0 260.2 272.8 266.0 255.3 231.0 218.8 207.4 202.4
RP	ABS MACH	NO RE	L MACH NO	MERID MACH	NO T		MERID	PEAK SS
1 2 3 4 5 6 7 8 9	0.400 0. 0.427 0. 0.450 0. 0.452 0. 0.451 0. 0.447 0. 0.448 0. 0.465 0. 0.478 0. 0.442 0. 0.367 0.	442 0.9 462 0.9 474 0.9 479 0.9 486 0.9 493 0.8 506 0.8 568 0.8 608 0.7 652 0.6 667 0.6	77 0.700 75 0.691 71 0.688 80 0.664 88 0.639 81 0.617 82 0.589 91 0.546 72 0.525 95 0.516 94 0.540	MERID MACH IN OU 0.400 0.3 0.427 0.3 0.449 0.4 0.452 0.4 0.452 0.4 0.465 0.4 0.465 0.4 0.478 0.4 0.478 0.4 0.441 0.4 0.367 0.5	63 81 03 10 10 11 17 56 74 93		0.942 0.942 0.934 0.942 0.943 0.952 0.963 1.013 1.023 1.145	1.268 1.222 1.219 1.198 1.157 1.130 1.093 1.012 0.942 0.860 0.950

SECOND-STAGE ROTOR

(f) 80 Percent of design speed; reading 76

RP 1 234 567 891011	RADI 1N 23.533 2 23.002 2 21.951 2 20.899 2 20.272 1 19.647 1 18.814 1 16.721 1 15.651 1 14.536 1	OUT 23.188 22.708 21.742 20.780 20.206 19.637 18.887 17.071 16.198	1.9 1.7 0.3 0.4 1.0 0.5 1.2 1.1 2.4 6.2	40.2 40.8 41.1 42.2 42.8 42.2 42.8 44.8 47.0	66.5 65.5 64.7 64.2 63.9 63.6 62.1 57.6 55.0 54.5	56.9 55.7 53.7 51.9 50.4 48.5 45.3 34.4 26.3	324.8 322.0 321.2 321.2 321.5 321.4 318.7 318.5 319.7	1.102 1.103 1.104 1.101 1.098 1.096 1.094 1.096 1.099	13.69 13.72 13.68 13.60 13.53 13.49 13.53 13.67 13.82 13.67	1.326 1.330 1.331 1.335 1.336 1.37J 1.337 1.337 1.347
RP 1 234 5 67 8 9 10 11	137.2 140.4 10.6 136.5 133.0 131.1 132.4 141.5 143.8 130.7	00T 173.1 174.9 175.3 174.5 174.4 175.5 179.0 194.0 204.9 219.8 222.0	338.4 328.8 314.0 302.3 294.3 283.4 264.3 250.8 223.8 218.4	00T 242.2 234.8 223.3 209.7 200.7 195.9 186.8 166.8 155.9 149.9 161.9	140.3 140.6 136.4 132.9 131.1 132.4 141.5 143.7 129.9 111.2	0UT 132.2 132.4 132.2 129.3 128.0 129.8 131.4 137.7 139.7 144.1	1N 4.5 4.3 0.7 1.1 2.8 2.8 6.0 14.1	115.1 117.2 118.4 117.8 121.6 136.6 149.9 166.0 158.1	IN 319.4 312.2 297.9 283.9 273.8 264.6 253.4 226.0 211.6 196.3 188.2	308.2 295.1 282.3 272.9 264.4 254.3 230.7 219.0 207.3 201.5
RF 1 2 3 4	ABS MA IN 0.385 0.395	CH NO OUT 0.465 0.471	REL M IN 0.963 0.951	0.651 0.632	MERID M IN 0.384 0.394	0UT 0.355			MERID VEL R 0.964	PEAK SS MACH NO 1.271 1.245
5 6 7 8 9 10	ABS MA IN 0.385 0.395 0.397 0.385 0.375 0.370 0.374 0.402 0.409 0.370 0.313	0.474 0.475 0.476 0.476 0.488 0.532 0.564 0.606 0.613	0.928 0.887 0.853 0.830 0.799 0.750 0.713 0.633 0.615	0.604 0.569 0.545 0.532 0.509 0.458 0.429 0.414 0.447	0.397 0.365 0.375 0.370 0.374 0.402 0.408 0.367 0.313	0.358 0.351 0.348 0.353 0.358 0.378 0.384 0.398 0.430			0.944 0.940 0.948 0.963 0.991 0.993 0.974 0.972 1.109	1.245 1.225 1.198 1.182 1.135 1.031 0.956 0.873 0.965

SECOND-STAGE ROTOR

(g) 80 Percent of design speed; reading 87

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 23.533 : 23.002 : 21.951 : 20.899 : 20.272 : 19.647 : 18.814 : 16.721 : 15.651 : 14.536 : 13.952	23.188 22.708 21.742 20.780 20.206 19.637 18.887 17.071 16.198 15.352	1.3 1.4 -1.3 -1.5 -0.1 0.3 1.0 -0.3 0.8 4.4	37.9 38.1 36.5 36.5 37.7 38.3 39.2 41.3 44.0	66.1 64.8 63.8 62.8 62.0 61.4 60.3 56.3 53.5	57.3 55.9 53.6 51.6 49.8 47.9 44.8 34.7 26.9	324.5 322.8 319.5 318.9 319.5 319.9 320.1 317.9 318.1 319.6	1.097 1.098 1.095 1.095 1.092 1.091 1.090 1.094 1.096 1.097	13.61 13.56 13.53 13.47 13.49 13.69	1.309 1.311 1.318 1.320 1.323 1.329 1.332 1.327 1.324 1.343
RP 1 23 4 5 6 7 8 9 10 11	140.0 145.0 148.3 147.4 145.9 144.1 144.4 151.2 154.4 141.2	0UT 170.5 172.9 174.9 175.1 176.7 178.4 182.8 195.5 206.0 221.6 223.1	340.7 335.5 322.9 310.9 301.3 291.1 272.4 259.6 232.8 222.0	249.2 242.7 237.0 226.7 216.7 208.7 199.6 178.6 166.3 160.8 168.3	140.0 145.0 148.3 147.4 145.9 144.1 151.1 154.4 140.8 116.6	134.6 136.0 140.6 140.8 139.9 140.0 141.6 146.9 146.2 153.6 161.5	1N 3.2 -3.4 -3.9 -0.8 -0.8 2.5 -0.8 10.9 -0.7	OUT 104.7 106.7 104.1 104.0 107.9 110.6 115.6 128.9 143.1 159.8 153.9	IN 319.0 311.7 297.8 283.3 274.4 265.5 255.3 225.8 211.0 196.4 188.1	00T 314.3 307.7 294.9 281.7 273.5 265.4 256.3 230.6 218.3 207.4 201.4
	ABS MA	ACH NO	REL M	ACH NO	MERID M	ACH NO			MERID I	PEAK SS
RP 1 23 4 5 6 7 8 9 10 11	0.394 0.409 0.421 0.419 0.414 0.409 0.409 0.431 0.440	0UT 0.460 0.468 0.476 0.478 0.483 0.501 0.538 0.568 0.612 0.616	IN 0.972 0.962 0.953 0.918 0.883 0.854 0.825 0.776 0.740 0.660 0.626	0UT 0.673 0.657 0.645 0.619 0.592 0.571 0.546 0.492 0.458 0.444 0.465	IN 0.394 0.409 0.421 0.419 0.414 0.408 0.409 0.431 0.440 0.399 0.329	0UT 0.365 0.368 0.583 0.385 0.382 0.383 0.388 0.404 0.409 0.424 0.446			MERID (VEL R) 0.961 0.938 0.948 0.956 0.972 0.981 0.972 0.960 1.091 1.385	MACH NO 1,270 1,235 1,245 1,222 1,180 1,154 1,118 1,030 0,952 0,870 0,959

SECOND-STAGE ROTOR

(h) 80 Percent of design speed; reading 98

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.533 23.188 23.002 22.708 21.951 21.742 20.899 20.780 20.272 20.206 19.647 19.637 18.814 18.887 16.721 17.071 15.651 16.198 14.536 15.352 13.952 14.938	ABS BETAM IN OUT 0.1 29.8 -0.4 28.8 -2.6 25.7 -2.6 25.9 -1.3 27.4 -0.5 28.6 -0.4 29.8 -0.9 31.9 -0.6 34.1 1.5 37.0 -1.3 36.0	IN 001 65.4 58.7 63.6 56.6 61.6 54.3 60.0 52.4 59.0 50.6 50.2 48.5 56.8 45.4 52.8 34.2 50.2 26.5 48.8 17.2	TOTAL TEMP IN RATIO 319.1 1.078 317.3 1.079 315.1 1.074 315.6 1.073 316.3 1.073 316.7 1.075 316.2 1.082 317.0 1.088 319.4 1.092 319.8 1.094	TOTAL PRESS IN RATIO 12.95 1.237 13.11 1.244 13.23 1.247 13.26 1.247 13.23 1.254 13.20 1.263 13.22 1.270 13.60 1.277 13.76 1.304 13.89 1.310 13.43 1.349
RP1234567-89011	ABS VEL IN OUT 144.9 162.0 154.9 169.5 164.4 173.4 166.6 174.2 166.1 176.4 165.3 179.8 166.4 184.9 173.3 208.3 178.6 225.7 168.2 244.3 143.9 249.6	REL VEL 1N OUT 347.9 270.8 348.1 269.6 345.0 268.2 333.2 256.8 322.4 246.7 313.4 238.4 304.2 228.2 286.4 213.9 278.9 209.0 255.3 240.0 209.6	MERID VEL 1N 0UT 144.9 140.6 154.9 148.6 164.2 156.3 166.5 156.7 166.1 156.6 165.3 157.9 166.4 160.4 173.3 176.9 178.6 187.0 168.2 195.2 143.9 262.1	-1.2 92.0 -2.7 109.9 -2.0 126.5 4.3 146.9	
RP 1 234 567 8 9 10 11	ABS MACH NO IN OUT 0.411 0.444 0.442 0.467 0.472 0.483 0.477 0.459 0.474 0.499 0.477 0.513 0.498 0.581 0.513 0.630 0.480 0.682 0.408 0.698	REL MACH NO 1N OUT 0.988 0.743 0.994 0.743 0.991 0.743 0.953 0.712 0.926 0.685 0.899 0.662 0.872 0.633 0.823 0.596 0.802 0.583 0.729 0.571 0.681 0.586	MERID MACH NO IN OUT 0.411 0.385 0.442 0.409 0.472 0.435 0.477 0.435 0.477 0.445 0.498 0.498 0.513 0.522 0.480 0.565		MERID PEAK SS VEL R MACH NO 0.970 1.265 0.959 1.230 0.952 1.212 0.941 1.175 0.943 1.134 0.955 1.105 0.964 1.070 1.021 0.982 1.047 0.925 1.160 0.847 1.404 0.922

SECOND-STAGE ROTOR

(i) 80 Percent of design speed; reading 109

RP 1 25 4 5 6 7 8 9 10 11		-0.6 -0.8 -2.8 -2.5 -1.5 -1.0 -0.4 -0.8	OUT IN 25.3 65.4 22.3 65.2 19.5 61.0 19.6 59.4 21.0 58.4 22.3 57.7 24.1 56.1 27.3 51.5 29.7 49.0 32.7 47.7	57.7 54.5 52.3 50.5 48.7 45.6 34.3 26.9	IN 317.8 316.3 314.4 314.4 314.9 315.8 316.2 316.0 317.0	1.062 1.064 1.074 1.082 1.088	IN 12.79 12.99 13.11 13.16 13.14 13.09 13.12 13.60 13.77 13.93	1.179 1.189 1.198 1.206 1.212 1.223 1.254 1.272
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 146.1 151.6 158.2 166.8 169.0 177.3 172.1 181.1 171.7 183.6 170.1 185.7 171.7 190.4 181.5 216.4 187.1 235.0 176.8 257.9 153.0 268.8	351.6 26 351.0 26 348.1 26 338.2 27 327.6 26 318.7 26 308.0 24 291.7 23 284.9 22 262.7 22	DUT 1N 199.4 146.1 188.4 158.2 17.9 168.7 19.2 171.9 19.4 171.7 10.6 170.1 108.5 171.7 12.7 181.5 128.9 187.1 177.9 176.8 166.6 153.0	0UT 139.3 154.2 167.2 170.6 171.4 171.9 173.8 192.2 204.2 217.1 228.4	TAN 1N -1.4 -2.3 -8.3 -7.6 -4.6 -3.1 -1.3 -2.3 -2.3 -2.3 -2.3	00T 60.0 63.4 59.1 60.9 65.8 70.4 77.7 99.4 116.5 139.1	311.0 296.2 283.6 274.4 266.4 254.4 225.7 212.6 197.3 189.9	0UT 313.7 307.1 293.4 282.0 273.5 266.3 255.3 230.4 220.0 208.4 203.3
RP 1 2 3 4	ABS MACH NO IN OUT 0.416 0.419 0.453 0.463 0.486 0.496		NO MERID N UT IN 800 0.416 801 0.453 805 0.486	0.385 0.428 0.467			MERID VEL R 0.953 0.975	PEAK SS MACH NO 1.203 1.224 1.201
5 6 7 8 9 10	0.496 0.507 0.494 0.514 0.489 0.520 0.493 0.532 0.523 0.607 0.539 0.660 0.506 0.725 0.435 0.758	0.916 0. 0.885 0. 0.841 0. 0.821 0. 0.752 0.	782 0.495 754 0.494 729 0.489 695 0.493 653 0.523 643 0.539 641 0.506 667 0.435	0.480 0.480 0.470 0.478 0.480 0.481 0.486 0.539 0.573 0.611 0.644			0.991 0.992 0.999 1.010 1.013 1.059 1.091 1.228 1.493	1.175 1.153 1.111 1.061 0.958 0.899 0.837 0.909

TABLE IX. - BLADE-ELEMENT DATA AT BLADE EDGES FOR

SECOND-STAGE STATOR

(a) 100 Percent of design speed; reading 16

RP 1 23 4 5 6 7 8 9 10 11	RADII IN OUT 23.109 23.129 22.647 22.685 21.727 21.801 20.823 20.922 20.287 20.401 19.756 19.883 19.060, 19.205 17.369 17.567 16.548 16.787 15.740 16.040 15.339 15.682	ABS BETAM IN OUT 43.6 0.6 43.2 2.6 41.4 2.3 41.3 1.8 41.4 0.9 40.5 -0.1 40.0 -0.2 41.6 -1.9 44.6 0.4 47.9 1.6 47.0 0.7	IN OUT 43.6 0.6 43.2 2.6 41.4 2.3 41.3 1.8 41.4 0.9 40.5 -0.1 40.0 -0.2 41.6 -1.9 44.6 0.4	TOTAL TEMP IN RATIO 401.2 1.000 398.2 1.000 392.6 1.000 387.3 1.000 385.9 1.000 384.2 1.000 380.7 1.000 380.7 1.000 382.4 1.000 383.4 1.000	IN RATIO 24.08 0.976 24.13 0.977 24.15 0.976 24.02 0.983 23.98 0.985 23.86 0.985 24.06 0.981 23.92 0.981
RP 1 2 5 4 5 6 7 8 9 10 11	ABS VEL IN OUT 229.0 171.2 251.1 172.9 252.7 175.2 234.7 172.9 236.1 171.8 236.1 170.4 259.2 170.8 248.0 176.1 251.6 172.0 258.1 152.6 255.8 136.0		179.4 170.4 183.2 170.8 185.6 176.0	191.5 4.9	0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3	ABS MACH NO IN OUT 0.590 0.435 0.598 0.441 0.607 0.445	REL MACH NO IN OUT 0.590 0.435 0.598 0.441 0.607 0.445 0.616 0.446	MERID MACH NO IN OUT 0.427 0.435 0.436 0.440 0.455 0.444 0.463 0.446		MERID PEAK SS VEL R MACH NO 1.033 0.908 1.024 0.901 0.992 0.865
2345678910	0.616 0.446 0.621 0.444 0.623 0.442 0.633 0.444 0.662 0.460 0.672 0.449 0.689 0.396 0.681 0.351	0.621 0.444 0.623 0.442 0.633 0.444 0.662 0.460 0.672 0.449 0.689 0.396 0.681 0.351	0.466 0.444 0.473 0.442 0.485 0.444 0.495 0.460		0.980 0.864 0.969 0.865 0.950 0.837 0.932 0.827 0.949 0.858 0.960 0.913 0.881 0.978 0.779 0.925

SECOND-STAGE STATOR

(b) 100 Percent of design speed; reading 27

RP 1 234 567 8 9 10 11	23.109 22.647 21.727 20.823 20.287 19.756 19.060	00T 23.129 22.685 21.801 20.922 20.401 19.883 19.205 17.567 16.787	IN 44.5 43.7 42.3 42.4 41.5 41.0 42.7 45.5	0.1 2.1 2.3 2.0 1.1 0.1 -0.0	IN 44.5 43.7 42.3 42.4 41.5 41.0 42.7 45.5	0.1 2.1 2.3 2.0 1.1 0.1 -0.0 -1.6	IN 404.4 401.4 395.3 391.3 389.4 388.1 386.2 381.9 382.9	RATIO 1.000 1.000 1.000 1.000 1.000 1.000	24.68 24.53 24.54 24.32 24.24 24.28 24.21 24.27 24.02	RATIO 0.974 0.972 0.975 0.978 0.982 0.984 0.981
R-254567-89011	1N 228.3 251.9 253.8 254.6 254.0 254.1 258.2 248.2 253.5 260.4	171.0 172.5 172.3 171.0 168.8 167.4 167.4 170.7 167.8 148.6 130.4	228.3 231.9 233.8 234.6 234.0 234.1 238.2 248.2 253.5 260.4 257.1	171.0 172.5 172.3 171.0 168.8 167.4 167.4 170.7 167.8 148.6 130.4	162.8 167.7 173.0 173.5 172.8 175.4 179.7 182.5 177.6 170.1	171.0 172.3 172.1 170.9 168.7 167.4 167.4 170.6 167.7 148.5 130.4	160.1 160.1 157.3 157.9 157.9 155.0 156.3 168.2 181.0 197.1	0.2 6.4 7.0 6.0 3.2 0.3 -0.1 -4.7 2.9 5.7	o. o. o.	0.
RP 1 2 3 4 5 6 7 8 9 10 11	IN 0.586 0.598 0.608 0.614 0.615 0.628 0.661 0.675	ACH NO OUT 0.432 0.438 0.441 0.440 0.435 0.432 0.433 0.445 0.436 0.384 0.335	REL M IN 0.586 0.598 0.608 0.614 0.615 0.628 0.661 0.675 0.694 0.683	ACH NO OUT 0.432 0.438 0.441 0.440 0.435 0.432 0.433 0.445 0.336 0.384 0.335	MERID M. IN 0.418 0.453 0.450 0.454 0.453 0.461 0.474 0.486 0.473 0.455	0.432 0.438 0.441 0.440 0.435 0.432 0.433 0.444 0.436 0.384 0.335				PEAK \$5 MACH NO 0.919 0.912 0.884 0.882 0.877 0.850 0.844 0.883 0.940 1.016 0.957

TABLE IX. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR

SECOND-STAGE STATOR

(c) 100 Percent of design speed; reading 38

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OU 23.109 23.1 22.647 22.6 21.727 21.8 20.823 20.9 20.287 20.4 19.756 19.8 19.060 19.2 17.369 17.3 16.548 16.1 15.740 16.0 15.339 15.6	0T II 129 41 585 40 901 38 922 38 401 38 883 38 205 37 567 38 787 40	.6 0.0 .9 1.9 .7 0.9 .2 -0.0 .5 -0.8 .0 -1.4 .5 -1.2 .0 -1.6 .0 -1.6	IN 41.6 40.9 38.7 38.2 - 38.5 - 38.0 - 37.5 - 38.0 - 40.0 -	OUT IN 0.0 393.4 1.9 391.3 0.9 385.8 -0.0 382.5 -0.8 381.8 -1.4 381.1 -1.2 380.3 -1.9 378.5 -1.6 379.8 0.6 381.7	RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 22.63 22.87 22.86 22.81 22.80 22.73 22.94 23.53 23.60 23.53 23.43	RAT10 0.978 0.976 0.964 0.986 0.986 0.987 0.985 0.985 0.985
P12545678901	221.6 168 227.6 173 230.3 17 231.9 17 233.8 17 235.0 17 241.7 18 259.2 19 265.7 20	UT 18.3 2213.5 2277.3 23077.6 23177.2 23377.0 23590.8 2418.6 25900.2 26544.4 273	7.6 173.5 7.6 177.3 7.9 177.6 7.8 177.2 7.0 177.0 7.7 180.8 7.2 198.6 7.7 200.2 7.8 184.4	165.6 16 172.1 17 179.7 17 182.3 17 182.9 17 185.1 17 191.7 18 204.3 19 203.6 20 202.8 18	DUT IN 58.3 147.2 73.4 148.9 77.3 144.0 77.6 143.3 77.2 145.6 77.0 144.7 98.5 159.5 100.1 170.7 84.4 181.7	0.1 5.8 2.8 -0.1 -2.3 7 -4.3 1 -3.8	o. o. o.	0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	0.594 0.4 0.606 0.4 0.615 0.4 0.620 0.4 0.624 0.4 0.644 0.4 0.696 0.5 0.714 0.5	UT 11 431 0.5 446 0.5	594 0.446 506 0.460 513 0.463 520 0.462 524 0.462 544 0.473 596 0.523 714 0.527 732 0.482	0.545 0.	001 ,431 ,446 ,460 ,463 ,462 ,462 ,473 ,523		VEL R 1.016 1.007 0.986 0.974 0.968 0.956 0.943	0.806 0.792 0.800 0.784 0.781 0.804 0.846 0.877

SECOND-STAGE STATOR

(d) 100 Percent of design speed; reading 49

RP 1 23 4 5 6 7 8 9 10 11	22.647 22.685 21.727 21.801 20.823 20.922 20.287 20.401 19.756 19.883 19.060 19.205 17.369 17.567 16.548 16.787 15.740 16.040	34.6 -2.6 32.9 -0.7 30.1 -1.2 30.0 -1.5 30.7 -1.4 30.8 -1.9 31.4 -2.6 33.4 -3.2 35.1 -1.7 37.4 0.4	32.9 -0.7 30.1 -1.2 30.0 -1.5 30.7 -1.4 30.8 -1.9 31.4 -2.6 33.4 -3.2 35.1 -1.7 37.4 0.4	580.7 1.000 578.7 1.000 574.3 1.000 571.8 1.000 571.5 1.000 571.3 1.000 571.3 1.000	19.94 0.983 20.42 0.979 20.73 0.985 20.71 0.988 20.68 0.987 20.62 0.987 20.62 0.987 21.43 0.985 22.24 0.984 22.78 0.951
RP 1 2 3 4 5 6 7 8 9 10 11	232.1 193.6 234.8 194.5 258.6 219.6 276.5 239.1 292.1 238.4	220.6 182.5 229.7 193.3 231.3 195.3 232.1 194.6 232.1 193.6 234.8 194.5 258.6 219.6 276.5 239.1	200.4 194.3	119.7 -2.2 115.3 -4.0 115.7 -5.1 118.6 -4.9 118.7 -6.5 122.3 -9.0	0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	0.621 0.519 0.624 0.517 0.624 0.514 0.632 0.517 0.700 0.587 0.750 0.640 0.793 0.634	0.585 0.479 0.614 0.512 0.621 0.519 0.624 0.517 0.624 0.514 0.632 0.517 0.700 0.587 0.750 0.640	MERID MACH NO IN OUT 0.452 0.447 0.491 0.479 0.532 0.511 0.538 0.519 0.536 0.517 0.536 0.514 0.539 0.517 0.584 0.586 0.614 0.639 0.630 0.634 0.634 0.578	158.9 -7.1 177.4 1.5 176.4 0.7	MERID PEAK SS VEL R MACH NO 0.998 0.669 0.985 0.659 0.973 0.614 0.975 0.621 0.975 0.624 0.970 0.632 1.016 0.750 1.056 0.750 1.027 0.793 0.937 0.794

SECOND-STAGE STATOR

(e) 80 Percent of design speed; reading 65

RP 1 23 4 5 6 7 8 9 10 11	23.109 23.129 22.647 22.685 21.727 21.801 20.823 20.922 20.287 20.401 19.756 19.883 19.060 19.205 17.369 17.567	ABS BETAM IN OUT 34.3 -2.1 33.3 -0.5 30.1 -1.7 29.3 -2.6 30.4 -2.5 31.2 -2.3 32.2 -2.4 34.2 -3.4 36.6 -1.8 39.4 0.7 38.2 0.4	33.3 -0.5 30.1 -1.7 29.3 -2.6 30.4 -2.5 31.2 -2.3 32.2 -2.4 34.2 -3.4 36.6 -1.8	TOTAL TEMP IN RATIO 349.9 1.000 348.7 1.000 345.3 1.000 345.6 1.000 344.7 1.000 344.7 1.000 345.6 1.000 347.6 1.000 350.0 1.000 350.0 1.000	IN RATIO 16.87 0.989 17.11 0.995 17.26 0.992 17.31 0.993 17.35 0.993 17.39 0.992 17.50 0.990 17.90 0.990 18.30 0.985 18.38 0.963
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 166.0 136.2 174.8 148.1 181.2 155.5 183.9 157.4 186.5 159.3 189.1 160.8 194.0 163.6 213.7 182.4 225.4 192.1 235.6 166.7 236.5 174.1	213.7 182.4 225.4 192.1	164.0 163.5 176.6 182.1 180.9 192.0 182.1 186.7	96.0 -1.3 91.0 -4.6 89.9 -7.2 94.2 -6.9 98.1 -6.4 103.5 -6.9 120.2 -10.7 134.6 -5.9 149.5 2.3	0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	0.655 0.511	REL MACH NO IN OUT 0.452 0.368 0.478 0.402 0.498 0.425 0.508 0.431 0.515 0.437 0.522 0.441 0.536 0.449 0.536 0.449 0.593 0.502 0.627 0.528 0.655 0.511 0.657 0.474	0.453 0.448 0.490 0.501		MERID PEAK SS VEL R MACH NO 0.993 0.546 1.014 0.549 0.992 0.498 0.980 0.508 0.989 0.515 0.994 0.522 0.997 0.536 1.031 0.593 1.062 0.627 1.025 0.713 0.937 0.657

SECOND-STAGE STATOR

(f) 80 Percent of design speed; reading 76

RP 1 23 4 5 6 7 8 9 10 11	RAD IN 23.109 22.647 21.727 20.823 20.287 19.756 19.060 17.369 16.548 15.740 15.339	00T 23.129 22.685 21.801 20.922 20.401 19.883 19.205 17.567 16.787 16.040	ABS IN 39.5 39.6 39.4 40.1 40.6 39.9 40.3 42.4 44.9 47.7 44.8	0UT -0.1 1.6 0.9 0.0 -0.2 -0.6 -1.2 -2.4 -0.2	IN 39.5 39.6 39.4 40.1 40.6 39.9 40.3 42.4 44.9 47.7	BETAM OUT -0.1 1.6 0.9 0.0 -0.2 -0.6 -1.2 -2.4 -0.2 0.8 -0.6	IN 359.3 358.4 355.4 353.7 352.7 352.3 351.6 349.4 349.9 351.2	RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	IN 18.16 18.25 18.22 18.16 18.07 18.08 18.10 18.17 18.42 18.41	PRESS RATIO 0.980 0.983 0.987 0.989 0.989 0.994 0.994 0.988 0.964 0.953
R125456789011	1N 176.2 179.7 181.7 181.5 181.4 182.6 186.1 199.0 207.8 218.8	VEL 0UT 133.1 138.2 141.3 138.9 136.5 136.3 138.0 150.0 153.5 141.9 129.7	IN 176.2 179.7 181.7 181.5 181.4 182.6 186.1 199.0 207.8 218.8	VEL 0UT 133.1 138.2 141.3 138.9 136.5 136.3 138.0 150.0 153.5 141.9 129.7	1N 135.9 138.4 140.5 138.7 137.8 140.1 141.9 146.9 147.1	149.9 153.5 141.9	TAN IN 112.1 114.6 115.2 116.9 117.1 120.5 134.2 146.7 161.9 153.9	-0.3 3.8 2.3 0.0 -0.6 -1.5 -2.8 -6.3 -0.4 2.0	0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	0.474 0.485 0.492 0.493 0.494 0.497	0UT 0.355	0.547 0.572 0.604	0.355 0.369 0.379 0.374 0.368 0.367 0.372	0.406	0.355			MERID VEL R 0.980 0.999 1.006 1.001 0.973 1.021 1.044 0.964 0.836	0.664
RP 1 23 4 5 6 7 8	PERCENT SPAN 5.00	INCI MEAN 3.7	DENCE SS -2.1	DEV	D-FACT 0.493 0.467	EFF 0. 0.	LOSS C TOT 0.138 0.114	0EFF PROF 0.138 0.114	LOSS P TOT 0.054 0.044	PROF 0.054 0.044

SECOND-STAGE STATER

(g) 80 Percent of design speed; reading 87

23456789	RADII IN OUT 23.109 23.129 22.647 22.685 21.727 21.801 20.823 20.922 20.287 20.401 19.756 19.883 19.060 19.205 17.369 17.567 16.548 16.787 15.740 16.040 15.339 15.682	37.0 0.6 34.9 -0.5 34.4 -1.7 35.5 -1.8 36.0 -1.5 36.8 -1.1 38.9 -2.6 41.9 -1.3 44.8 0.5	37.0 0.6 34.9 -0.5 34.4 -1.7 35.5 -1.8 36.0 -1.5 36.8 -1.1 38.9 -2.6 41.9 -1.3 44.8 0.5	354.3 1.000 350.9 1.000 349.1 1.000 348.9 1.000 348.9 1.000 348.8 1.000 347.7 1.000 348.8 1.000 350.5 1.000	17.81 0.988 17.94 0.968 17.89 0.992 17.90 0.992 17.91 0.990 17.97 0.989 18.17 0.990 18.31 0.991 18.50 0.962
RP 1 25 4 5 6 7 8 9 10 11	IN OUT 173.7 136.4 178.0 141.9 182.3 147.0 183.7 148.3 185.3 148.3 187.1 148.1 191.3 149.7 201.8 162.6 209.8 168.0 221.3 159.3 219.7 145.5	IN OUT 173.7 136.4 178.0 141.9 182.3 147.0 183.7 148.3 185.3 148.3 187.1 148.1 191.3 149.7 201.8 162.6 209.8 168.0 221.3 159.3 219.7 145.5	149.6 147.0 151.5 148.2 150.9 148.2 151.4 148.1 153.2 149.7 157.0 162.5 156.3 168.0 157.1 159.3 160.6 145.5	1N OUT 105.0 -3.1 107.0 1.6 104.2 -1.2 103.8 -4.4 107.5 -4.6 109.9 -3.9 114.6 -3.0 126.7 -7.3 140.0 -3.7 155.8 1.4 149.9 -1.3	IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	0.508 0.403 0.513 0.402 0.525 0.407 0.556 0.444 0.579 0.458 0.611 0.433	0.508 0.405 0.513 0.402 0.525 0.407 0.556 0.444 0.579 0.458	MERID MACH NO IN OUT 0.374 0.365 0.386 0.381 0.408 0.415 0.402 0.415 0.402 0.415 0.402 0.420 0.420 0.433 0.433 0.433 0.433 0.433 0.433 0.443 0.393		MERID PEAK SS VEL R MACH NO 0,985 0.619 0.998 0.625 0.982 0.590 0.978 0.575 0.982 0.596 0.978 0.604 0.977 0.623 1.035 0.636 1.075 0.731 1.014 0.802 0.906 0.736

SECOND-STAGE STATOR

(h) 80 Percent of design speed; reading 98

RP 1 23 4 5 6 7 8 9 10 11	RAD IN 23.109 22.647 21.727 20.823 20.287 19.756 19.060 17.369 16.548 15.740 15.339	OUT 23.129 22.685 21.801 20.922 20.401 19.883 19.205 17.567 16.787	29.2 27.7 24.3 24.2 25.4 26.5 27.6 29.5 31.9	BETAM OUT -2.9 -1.7 -2.9 -3.3 -2.9 -2.4 -2.4 -4.0 -2.5 0.5	IN 29.2 27.7 24.3 24.2 25.4 26.5 27.6 29.5 31.9 35.5	-2.9 -3.3 -2.9 -2.4 -2.4 -4.0 -2.5 0.5	1N 344.0 342.5 339.3 338.4 338.6 339.3 340.3 342.0 344.9 348.9	1.000 1.000 1.000 1.000 1.000 1.000 1.000	IN 16.02 16.31 16.50 16.54 16.58 16.68 16.79 17.37 17.93	0.989 0.987 0.990 0.991 0.989 0.990 0.987 0.979
RP 1 254567 89011	IN 165.6 175.8 183.1 185.5 188.0 191.8 196.9 219.2 234.4 246.5	178.7 199.6	175.8 183.1 185.5 188.0 191.8 196.9 219.2 234.4 246.5	0UT 145.9 157.9 166.0 168.6 171.1 173.9 178.7 199.6	174.5 190.7 199.0 200.6	0UT 145.7 157.8 165.8 168.3 170.9 173.8 178.5 199.2	IN 80.7 81.8 75.2 76.0 80.7 85.5 91.2 108.1 123.8	G VEL 0UT -7.3 -4.8 -8.5 -9.6 -8.7 -7.4 -7.5 -13.8 -9.4 1.9 0.6	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	IN 0.455 0.485 0.509 0.516 0.524 0.534 0.613 0.656	0.459	IN 0.455 0.485 0.509 0.516 0.524 0.534 0.548 0.613 0.656	0.434 0.459 0.467 0.474 0.482	MERID M IN 0.397 0.429 0.464 0.471 0.473 0.478 0.486 0.534 0.557 0.561	0UT 0.398 0.433 0.459 0.466 0.474 0.481 0.494 0.554 0.595				0.485 0.509 0.516 0.524 0.534 0.648 0.613 0.656 0.689

SECOND-STAGE STATOR

(i) 80 Percent of design speed; reading 109

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.109 23.129 22.647 22.685 21.727 21.801 20.823 20.922 20.287 20.401 19.756 19.883 19.060 19.205 17.369 17.567 16.548 16.787 15.740 16.040 15.339 15.682	21.5 -3.7 18.3 -3.8 18.2 -3.9 19.3 -3.4 20.4 -3.1 22.1 -3.0 25.1 -3.6 27.5 -2.2 31.2 1.4	IN OUT 22.8 -4.5 21.5 -3.7 18.3 -3.8 18.2 -3.9 19.3 -3.4 20.4 -3.1 22.1 -3.0 25.1 -3.6 27.5 -2.2	TOTAL TEMP IN RATIO 357.0 1.000 356.4 1.000 354.2 1.000 355.6 1.000 355.2 1.000 356.4 1.000 359.4 1.000 359.4 1.000 342.9 1.000 349.0 1.000	IN RATIO 14.64 0.986 15.11 0.987 15.47 0.981 15.65 0.975 15.74 0.976 15.79 0.980 15.90 0.981 16.64 0.982 17.26 0.977 17.71 0.955
RP 1 234 567 8 9 10 11	ABS VEL IN OUT 155.4 151.8 173.7 170.0 188.6 182.5 194.8 185.9 198.0 189.5 200.4 193.3 205.1 198.9 230.3 224.0 246.6 242.6 262.0 248.5 265.6 236.1		218.7 242.4 224.1 248.4	77.0 -10.3 97.7 -14.0 114.0 -9.3	0. 0. 0. 0. 0. 0. 0. 0.
	IDC MICH NO	BE: MACU NO			
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.430 0.420 0.484 0.473 0.529 0.511 0.548 0.521 0.557 0.531 0.563 0.542 0.576 0.558 0.649 0.630 0.696 0.683 0.738 0.697 0.748 0.657	REL MACH NO !N OUT 0.430 0.426 0.484 0.473 0.529 0.511 0.549 0.521 0.557 0.531 0.563 0.542 0.576 0.558 0.649 0.630 0.696 0.685 0.738 0.697 0.748 0.657	MERIO MACH NO IN OUT 0.396 0.419 0.450 0.472 0.502 0.510 0.521 0.520 0.526 0.551 0.528 0.541 0.534 0.557 0.588 0.629 0.617 0.683 0.631 0.696 0.639 0.657		MERID PEAK SS VEL R MACH NO 1.056 0.430 1.049 0.484 1.017 0.529 1.002 0.548 1.012 0.567 1.028 0.563 1.045 0.576 1.072 0.649 1.108 0.696 1.109 0.738 1.040 0.748

Flow path coordinates Axial Radius, r, cm

Outer Inner

distance

Z, cm

Figure 1. - Flow path for two-stage fan.

Figure 2. - Two-stage fan assembly.

Figure 3. - Comparison of damper size.

Figure 4. - Multistage compressor test facility.

Figure 5. - Combination total-pressure, total-temperature, and flow-angle probe (double barrel).

Figure 6, - Circumferential locations of combination probes (looking downstream; clockwise rotation).

Figure 7. - Overall performance.

Figure 8. - Nondimensional overall performance.

Figure 9. - Radial distributions of performance parameters at design speed.

Figure 9. - Concluded. Radial distributions of performance parameters at design speed.

Figure 10. - Effect of damper size on overall performance.

Figure 11. - Effect of damper size on nondimensional overall performance.

Figure 11. - Concluded.

Figure 12. - Effect of damper size on radial distributions of performance parameters at design speed.

Figure 12. - Concluded. Effect of damper size on radial distributions of performance parameters of design speed.

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalo	g No.		
NASA TP-1399			5. Report Date			
4. Title and Subtitle	Title and Subtitle PERFORMANCE OF TWO-STAGE FAN WITH LARGER					
	ARGER	May 1979 6. Performing Organi	antino Codo			
DAMPERS ON FIRST-STAGE		6. Performing Organi	zation Code			
7. Author(s) Donald C. Urasek, Walter S.	am Stevans	8. Performing Organia E-8958	zation Report No.			
		10. Work Unit No				
9. Performing Organization Name and Address			505-04			
National Aeronautics and Space	e Administration	+	11. Contract or Grant	A		
Lewis Research Center		1	11. Contract or Grant	NO.		
Cleveland, Ohio 44135		-				
12. Sponsoring Agency Name and Address			13. Type of Report a			
National Aeronautics and Space	Administration		Technical Pa	per		
· ·	e Autimistration		14. Sponsoring Agence	y Code		
Washington, D.C. 20546						
15. Supplementary Notes						
16. Abstract						
The performance of a two-stage	e, high-pressure	-ratio fan, having l	arge, part-span	vibration		
dampers on the first-stage ro						
designed fan having smaller d						
tions show that with increased						
overall efficiency of first-stag						
each blade row, downstream of	•					
differences in the radial distr	butions of various	s performance para	meters were not	ted, and (3) the		
lower performance of the firs	-stage rotor decr	eased the overall fa	an efficiency mo	re than 1 per-		
centage point.						
17. Key Words (Suggested by Author(s))		18. Distribution Statement	1			
Turbomachinery		Unclassified - u	unlimited			
•		STAR Category	07			
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*		
Unclassified		lassified	80	A05		
Uliciassified	l one	assined	00	7100		

June 18, 1981