# Validitetstypologi

Erik Gahner Larsen

Kausalanalyse i offentlig politik

# Dagsorden

- Kausalitet og validitet
- Typologi
- Validitetsudfordringer
- Validitet og potentielle udfald

# Seminaropgaven

- ▶ Næste deadline: 29. februar
- Omkring 5 sider
- ► Indhold:
  - Kort beskrivelse af emne
  - Gerne én eller to konkrete ideer
  - ▶ En reference eller to til relevant litteratur
- ► Send til: egl@sam.sdu.dk

# Sidste uge og i dag

- Sidste uge: Rubins kausalmodel
  - ► Fokus på potentielle udfald
  - Definition af en kausaleffekt
  - Antagelser (SITA, SUTVA)
- ▶ I dag: Campbells kausalmodel
  - Validitetstypologi
  - Forskellige validitetsbegreber
  - Validitetstrusler

# Validitet og potentielle udfald

- Flere ligheder end forskelle
  - Eksperimentel logik til observationsstudier
  - ► Fremhæver manipulation som afgørende for kausal inferens
  - Prioriterer simple deskriptive kausaludsagn over komplekse kontekstuelle kausalforklaringer
  - Fokuserer på en ukendt effekt af et kendt stimuli snarere end en kendt effekt af et ukendt stimuli
- Fundamentale forskelle
  - ▶ Rubin: Formel definition af en kausal effekt
  - Campbell: Generel typologi med validitetstrusler

# Validitetstypologi

- Hvad er validitet?
  - Gyldighed
  - Den appromikserede sandhed af en inferens
- Validitet
  - Vi taler ofte om validiteten af et studie som værende lav eller høj
  - Men: validitet er ikke endimensionelt
- Typologi
  - Forskellige validitetsbegreber
  - Trusler til validitet (alternative forklaringer, plausible rivaliserende hypoteser)

# Fire typer af validitet

- Statistisk validitet
- ► Intern validitet
- Konstruktionsvaliditet
- Ekstern validitet

# Statistisk validitet

- ▶ På engelsk: Statistical conclusion validity
- ► Validiteten af inferensen relateret til korrelationen (kovariation) mellem stimuli (uafhængig variabel) og udfald (afhængig variabel)
- To aspekter:
  - 1. Fr der en korrelation?
    - Hypotesetests
  - 2. Hvor stærkt korrelerer de?

- 1. Lav statistisk styrke (statistical power)
  - Type I og II fejl
  - Lav stikprøve: svært at finde en statistisk signifikant effekt
  - Tommelfingerregel (husk lektion 2): Jo flere observationer, desto bedre
  - ► Statistisk signifikans ≠ substantiel signifikans
  - ► Forskellige måder at øge den statistiske styrke
    - Større stikprøve
    - ▶ Bedre mål (flere målinger, undgå floor effects etc.)
    - Forøg styrken i stimuli
    - ▶ Brug et within-participants design
    - osv.

# 2. Forudsætningsbrud

- Alle statistiske tests bygger på forudsætninger
  - Nogle tests bygger på flere forudsætninger end andre
- ► Har vi specificeret vores model korrekt?
- Kræver vi linearitet i vores parametre?
- Kræver vi normalfordelte fejlled?
- Tænk tilbage på Metode II

# 3. P-value fishing

- Hvis vi kun rapporterer signifikante resultater, kan konklusionerne være misvisende
- Ofte kører forskere statistiske tests til der kommer noget signifikant
  - "If you torture the data long enough, it will confess." Ronald Coase
- Kan også finde sted kun med én test
  - ► The garden of forking paths (Gelman)
- Flere løsninger
  - Bonferroni korrektionen
  - Preregistreret studie
  - Gør negative fund teoretisk interessante

# 4. Målefejl

- Reliabilitet
- Intet empirisk mål er perfekt
- Latent variabel, indekskonstruktion, faktoranalyse
- Løsning:
  - ► Flere mål (flere items, flere kodere)
  - Bedre mål (bedre items, træning af kodere)
- Mere i lektion 7

# 5. Intervalbegrænsning

- ▶ Ofte undersøger vi kun forskelle inden for et begrænset interval
  - Både i forhold til stimuli (uafhængig variabel) og udfald (afhængig variabel)
- Undgå at begrænse antallet af intervaller
- Gulv og loft effekter
- Løsning:
  - Flere doser af stimuli (i bedste fald "fuld dosis" versus "ingen dosis")
  - ▶ Item response theory analysis
  - Arbejd på afhængige variable der indfanger al relevant variation

- 6. Manglende overholdelse af stimulitildeling
  - ► Implementeringen af stimuli er afgørende
    - ► Er der forskelle i sandsynligheden for at få stimuli?
    - Er der selvselektion?
  - Får personer samme stimuli?
  - Overholder personerne deres tildeling af stimuli?
    - Se lektion 3 slides

# Kontekststøj

- ► Konteksten for et studie er fyldt med faktorer, der kan påvirke relationen mellem stimuli og udfald
- Der er tilfældigheder, der kan påvirke den statistiske korrelation mellem to variable
- Løsning:
  - Jo mere kontrol over konteksten, desto bedre
  - Mål forhold ved konteksten

# 8. Enhedsheterogenitet

- ▶ Jo mere enheder varierer inden for et stimuli på udfaldsvariablen, desto større vil standardafvigelsen være på den variabel
- Dette vil gøre det vanskeligere at estimere en systematisk korrelation mellem stimuli og udfald
  - Især hvis folk reagerer forskelligt på et stimuli
- Løsning:
  - Reducer enhedsheterogenitet i designstadiet
  - Mål og brug relevante kovariate
  - Interaktionsmodeller

- 9. Unøjagtig kalkulation af effektstørrelse
  - Når effektstørrelsen er kalkuleret dårligt, får vi upræcise resultater
  - Problemer med ekstreme observationer
  - Karakteren af udfaldsvariablen (odds ratios for binære variable)
  - Løsning: Brug den korrekte statistiske test
    - Med de rigtige forudsætninger (jvf. punkt 2)

#### Intern validitet

- Validiteten af en inferens omkring hvorvidt et stimuli har en kausal effekt på en udfaldsvariabel
- ► Fokus på kausalitet, ikke blot en korrelation
  - Årsag og virkning
- Jo stærkere intern validitet, desto mere tiltro til at der er tale om en kausal relation
- ► Forskellige forhold, der kan problematisere den interne validitet

- 1. Uklar tidsmæssig rækkefølge
  - ▶ Hvilken variabel ændrede sig først?
  - Hvad er årsag og hvad er effekt?
  - Der kan være tale om reciprokke effekter
  - Det er ikke altid klart, om en ændring i stimuli kommer før ændringen i udfaldsvariablen

#### Selektionseffekt

- Systematiske forskelle mellem stimuligrupper
- Forskellige sandsynligheder for at modtage et stimuli
- ► Ikke muligt at afgøre om det er stimuli eller de systematiske forskelle, der fører til ændringer i udfaldsvariablen

#### 3. Historieeffekt

- Alle begivenheder der foregår mellem et stimuli og målingen af et udfald kan have bestemte effekter
- Begivenheder, der foregår samtidig med stimulitildelingen, kan drive en effekt
- ► Mindre problematisk i laboratorieeksperimenter, hvor man kan udelukke ændringer i bestemte forhold

# 4. Modningseffekter

- Naturlige hændelser over tid
- Mange ting finder sted
  - ► Ældre, sulten, klogere, stærkere, erfaren
- Ikke et problem hvis de ikke er systematisk relateret til stimuli eller udfaldsvariablen
- Undersøg om bestemte forhold betinger effekterne

# 5. Regressionsartefakter

- Ofte vælges forsøgspersoner på baggrund af lave eller høje værdier på en variabel
- Jo mere ekstrem værdi på én måling, desto større er sandsynligheden for at der vil være en meget lavere værdi på næste måling
- Regression toward the mean
- ▶ Tommelfingerregel: Vær opmærksom på dette når observationer er valgt på baggrund af bestemte værdier (eller kan selektere sig ind på baggrund af bestemte værdier), der afviger substantielt fra gennemsnittet

# Nedslidningseffekt

- ▶ Ikke alle personer i et studie vil være med hele vejen
- ▶ Nogle personer er mere tilbøjelige til at være med
- Kan være relateret til stimuli
  - Selektionsbias efter stimulitildeling
- ► Tab af respondenter kan være systematisk korreleret med stimuli og udfaldsvariablen
  - ▶ Især hvis stimuli kan motivere deltagerne til at deltage i studiet

#### 7. Testeffekt

- ▶ Det at blive udsat for en test kan påvirke senere målinger
- ▶ En test vil påvirke resultaterne på en senere test
- Eksempel: At veje nogen kan få dem til at tabe sig
- Løsning: Item response theory

#### 8. Instrumentering

- ▶ Den måde hvorpå vi måler noget, eller virkningen heraf, kan ændre sig over tid
- Kodere kan blive mere erfarne over tid
  - Mere præcise kodninger
  - Kan være systematisk korreleret med stimuli

# 9. Additive effekter og interaktionseffekter

- Trusler til den interne validitet opererer ikke uafhængigt af hinanden
  - Det at der er én trussel, gør ikke, at vi kun skal adressere denne
- En trussel til den interne validitet kan tilføjes til andre trusler til den interne validitet
- ► Effekten af én trussel kan være betinget af omfanget af andre trusler til den interne validitet

# Relationen mellem intern og statistisk validitet

- Intern og statistisk validitet er tæt relateret
- Statistisk validitet er interesseret i fejl i den statistiske korrelation
- ▶ Intern validitet er interesseret i fejl i vores kausale inferens
- Selv ved høj statistisk validitet, ikke garanti for kausalitet
- Med andre ord: korrelation (statistisk validitet) er ikke det samme som kausalitet (intern validitet)

# Konstruktionsvaliditet

- Kausal generalisering som representation
  - Operationalisering af det koncept, der studeres
- ► Validiteten i den inferens vi drager mellem vores operationalisering og de teoretiske koncepter, de repræsenterer
- Processen fra konkrete enheder, stimuli og observationer til de koncepter, de repræsenterer

# 1. Mangelfuld beskrivelse af koncept

- Hvad er vores koncept, der skal operationaliseres?
- Mangelfuld beskrivelse gør det vanskeligt at generalisere fra operationalisering til koncept
- Problemer:
  - ► For generelle koncepter
  - For specifikke koncepter
  - Forkerte operationaliseringer
  - Forkerte koncepter

# 2. Operationaliseringsuafhængighed

- Operationaliseringer kan være relateret til andre fænomener
  - ► En operationalisering kan korrellere med en anden
- Eksempel: Operationaliseringen af en arbejdsløs
- En operationalisering kan være relateret til andre operationaliseringer, der ikke er meningsfulde indikatorer for ens koncept

# 3. Operationaliseringshomogenitet

- Én operationalisering underrepresenterer konceptet
  - Én operationalisering = mindre konstruktionsvaliditet
- Operationalisering kan også måle andre/ireelevante koncepter
- ▶ Jo flere forskellige indikatorer, desto bedre
  - Skal indfange relevant variation, representere koncept

#### 4. Metodehomogenitet

- Vi har sjældent variation på den anvendte metode
- Når alle operationaliseringer anvender samme metode, er metoden en del af det koncept, man studerer
- ► Et stimuli præsenteres ofte på én bestemt måde
- Eksempel: selvrapporterede mål
  - Løsning: adfærdsmål

# 5. Intervalbegrænsning

- Ofte indfanger vi kun variation i vores operationalisering inden for et bestemt interval
  - Uklart hvor repræsentativt dette interval er for andre intervaller
- ▶ De indikatorer der bedst beskriver vores koncept, kan indfange et begrænset antal af niveauer
- Løsning: Forskellige niveauer ved forskellige stimuli

#### 6. Stimulisensitiv faktorstruktur

- ▶ Strukturen af et mål kan ændres som et resultat af et stimuli
- Dem der har fået et stimuli, kan se mere kompliceret på et spørgsmål
- Forskellige indikatorers relation kan få en mere kompleks struktur

- 7. Reaktiv selvrapporterede ændringer
  - Selvrapporteringer kan blive påvirket af stimulitildelingen
    - Selv før stimuli tildeles (dem der gerne vil have stimuli, rapporterer større behov for at få stimuli)
  - ► Motivationen *efter* stimuli kan stoppe for dem der har fået stimuli, men forsætte for dem, der ikke har fået det
  - Løsninger:
    - Adfærdsmål
    - Incitamenter til at svare rigtigt

### 8. Opfattelse af studiesituation

- ► Forsøgsdeltagere påvirkes ikke alene af stimuli og mål, men også deres opfattelse af studiesituationen
  - Også (og måske især) hvis de ved, at de er en del af et eksperiment
  - Forsøgsdeltagere vil forsøge at "gætte eksperimentet"
- Løsninger:
  - Udfaldsvariablen skal ikke være åbenlys (mål udfaldsvariablen flere gange - og gerne senere i tid)
  - Undgå premålinger
  - Test hvor stor en effekt viden om eksperimentet har
  - Lyv om forsøgets formål
  - OSV.

### 9. Forsøgsforventninger

- Forskeren (eller anden der driver et studie), kan påvirke deltagernes svar ved at give dem forventninger til ønskede/hensigtsmæssige svar
- Placeboeffekter, social desirability
- Løsninger for forskere der gennemfører forsøget:
  - ▶ Brug flere forskere
  - Observer forskeradfærd
  - Undgå at forskerne kender hypotesen
  - Reducer interaktion med forsøgsdeltagere
  - ▶ Brug kontrolgrupper til at undersøge om det er et problem

### 10. Forstyrrelseseffekt

- ▶ De svar der gives, påvirkes af rutiner og brud på disse
- Nyt stimuli (en innovation) kan medføre entusiasme, beundring m.v.
  - ► Tænk nudging
- Nyt stimuli kan også medføre irritation
- Hvis der aldrig har været foretaget ændringer, vil en ændring kunne forstyrre mere

### 11. Kompenserende udligning

- Når ikke alle får stimuli, kompenseres der nogle gange til dem, der ikke får det
- Vi måler ikke effekten af et stimuli, men effekten af et stimuli og en kompensation
- Dette kan udligne forskelle mellem grupperne, når begge får en service
- Udligning kan også finde sted ved at reducere et stimuli
- Især relevant i forhold til randomiserede studier, hvor markarbejdere skal stå for tildelingen af stimuli

### 12. Kompenserende rivalisering

- Social konkurrence
- Dem der ikke modtager et stimuli kan være motiveret til at vise, at de kan klare sig lige så godt, som dem der har modtaget stimuli
- Potentielle løsninger:
  - Kvalitative metoder (interviews)
  - Difference-in-difference

### 13. Uønsket stimulitildeling

- ▶ Ikke alle forsøgspersoner får det ønskede stimuli
  - Mere negative svar
- Løsning:
  - ▶ Undgå at informere om stimulitildelingsmekanismen
  - Undersøg frafaldsrater

#### 14. Stimulidiffusion

- Forsøgsdeltagere kan modtage stimuli som de ikke er tildelt
- ▶ Især aktuelt når der er lille geografisk distance mellem enheder
- Tænk SUTVA
- Løsninger:
  - Undgå at dem der står for at implementere stimuli kender til kontrol
  - Undgå kontakt mellem enheder
  - Test for ligevægtseffekter

### Ekstern validitet

- ▶ De fleste studier er foretaget i en specifik kontekst
- Hvor meget kan resultaterne fra ét studie generaliseres?
- Kausal generalisering som ekstrapolation
- Aspekter af ekstern validiet
  - Enheder
  - Stimuli
  - Udfald
  - Kontekst
- ► Ekstern validitet kan omhandle variationer i personer, kontekst, stimuli og udfald der er og ikke er en del af studiet

# Ekstern validitet og forskellige typer af generaliseringer

- Fra smal til smal generalisering
  - Eksempel: Er resultaterne fra én kommune generaliserbare til nabokommunen?
- Smal til bred generalisering
  - Eksempel: Er resultaterne fra én kommune generaliserbare til alle kommuner?
- Fra bred til smal generalisering
  - Eksempel: Er resultaterne for alle kommuner generaliserbare til én bestemt kommune?
- Fra lignende/forskellige til lignende/forskellige
  - ► Eksempel: Er resultaterne fra en kommune generaliserbare til en region?
- Tilfældig udvælgelse
  - ▶ Eksempel: Er 1000 vælgere generaliserbare til alle vælgere?



#### 1. Interaktion med enheder

- ▶ En effekt kan være betinget af, hvem man studerer
- Måske ikke samme effekt med andre enheder
- Talrige typer af forskelle, der kan betinge effekter
  - Alder
  - Land
  - Indkomst
  - Studerende

### Ekstern validitet: Fem trusler, WEIRD

- ▶ "Most people are not WEIRD" (Henrich et al. 2010)
  - Western
  - Educated
  - Industrialized
  - Rich
  - Democratic
- "The sample of contemporary Western undergraduates that so overwhelms our database is not just an extraordinarily restricted sample of humanity; it is frequently a distinct outlier vis-a-vis other global samples. It may represent the worst population on which to base our understanding of Homo sapiens." (Henrich et al. 2010, 82)

# Dagens øvelse #1

- Diskuter:
  - 1. Hvilke spørgsmål kan vi undersøge med universitetsstuderende, hvor vi med rimelighed kan sige, at resultaterne er generaliserbare?
- ▶ To minutter
- Alene eller med sidemanden

#### 2. Interaktion med stimulivariation

- En effekt kan være betinget af, hvilken udgave af et stimuli, man anvender
- Interaktion med andre stimuli
  - ► Eksempel: Mindre skoleklasser
  - ► Eksempel: Negative kampagner

#### 3. Interaktion med udfald

- En effekt kan være betinget af, hvilken variabel man måler det på
- Måske forskellige effekter
  - Positiv effekt på en udfaldsvariabel
  - ▶ Ingen effekt på en anden
  - Negativ effekt på en tredje

- 4. Interaktion med kontekst
  - ▶ En effekt kan være fundet i en kontekst
- 5. Kontekstafhængig mediator
  - ► En mediator i en kontekst er ikke nødvendigvis en mediator i en anden kontekst (det samme gælder for moderatorer)

## Ekstern validitet og konstruktionsvaliditet

### Ligheder

- Begge vedrører generalisationer
- Teoretisk viden omkring koncepter og indikatorer besvarer spørgsmål relateret til den eksterne validitet

#### Forskelle

- Det ene garanterer ikke det andet!
- Inferens i forhold til forskellige spørgsmål
  - Konstruktionsvaliditet er i forhold til det koncept, man undersøger
  - Ekstern validitet er i forhold til personer, stimuli, udfald og kontekst
- ▶ Ekstern validitet er direkte relateret til den interne validitet
- ▶ Forskellige metoder til at styrke validiteten

## Intern validitet og ekstern validitet

- Intern validitet er sine qua non
- "It makes no sense to say that some empirical research is low on internal validity but high on external validity." (Morton and Williams 2010, 275)
- ▶ Intern og ekstern validitet vedrører begge teoretiske spørgsmål

# Andre validitetsbegreber

- Økologisk validitet (ecological validity)
- Overfladevaliditet (face validity)
- Indholdsvaliditet (content validity)
- Kriterievaliditet (criterion-related validity)
- OSV.

# Dagens øvelse #2

- ► To opgaver:
  - 1. Find en hypotese (gerne fra seminaropgaven)
  - 2. Diskuter den eksterne validitet

# Næste gang

- Sidste gang om kausale modeller
  - Directed acyclic graphs (DAGs)
- Mandag, samme tid og sted