by (English-L1) L2 learners of Chinese:

What Predicts a Long-distance Interpretation?

Mengling Xu, Ekaterini Klepousniotou & Cecile De Cat

UNIVERSITY OF LEEDS

Introduction

1. A Cue-based Retrieval Approach on Antecedent Retrieval

Antecedent retrieval is constrained by multiple linguistic cues (i.e. syntactic-binding, semantic, discourse, etc.).

- multiple-constraint approaches to anaphor resolution (e.g. Badecker and Straub 2002)
- cue-based memory retrieval models (e.g. Lewis, Vasishth and Van Dyke 2006; Van Dyke and McElree 2011)

2. Different Retrieval Cues in English and Chinese Reflexive Binding

- English: local-binding only (syntactic constraint)
- e.g. Tomi asks Johnj to take care of himself*i/j.
- Chinese allows long-distance binding of 'ziji' (-self), depending on
- semantic properties of the embedded verb (3 verb types)
- context

VT1: introverted/self-oriented verbs allowing local binding only;

(1) Zhangsani rang Lisij tanbai ziji*i/j.

NAME ask NAME confess –self

'Zhangsan asks Lisi to confess himself.'

VT2: extroverted/other-oriented verbs allowing **long-distance** binding only;

(2) Zhangsanı rang Lisij huida zijii/*j.

NAME ask NAME answer -self

'Zhangsan asks Lisi to answer him.'

VT3: verbs allowing both local and long-distance binding;

(3) Zhangsani rang Lisij zhaogu zijii/j.

NAME ask NAME take care of -self

'Zhangsan asks Lisi to take care of him/himself.'

The **context** only has an effect on VT3.

3. Native and L2 Processing

- Native speakers (NS) don't consider contextual information with VT1 and VT2 (e.g. Li and Zhou 2010);
- L2 speakers (NNS) have greater reliance on discourse-based cues during antecedent retrieval (e.g. Clahsen and Fesler 2006; Felser and Cunnings 2012).

Research Questions

Q1: Do NNS allow a long-distance (LD) interpretation if it is ruled out by their L1? (parameter resetting)

Q2: Are NNS sensitive to verbal-semantic cues as well as contextual cues?

Q3: Are verbal-semantic and contextual cues weighted in the same way in NS and NNS?

Q4: Is any of the above modulated by proficiency?

Q5: Is any of the above modulated by working memory?

Participants

25 native Chinese speaker (NS);

29 (English-L1) learners of Chinese (NNS, low- to high- intermediate)

Participants	NS	NNS
Gender (F / M)	18 / 7	15 / 14
Age (in years)	25.0 (1.9)	22.0 (1.5)
Chinese Proficiency (Level IV&V HSK Grammar & Vocabulary Test)	100% (0)	82.5% (10.7)
Working Memory (Digit Span Test)	130 (10.3)	106(5.6)

Table 1: Participant-related variables: average and standard deviations. Working Memory measure is a standardized score, see Turner and Ridsdale 2004).

Figure 1: NNS Proficiency Scores

Figure 2: NS and NNS Memory Scores

(No significant correlation between Proficiency and Working Memory within NNS, p = 0.3354)

Experiment

Design: 3 (verb type: VT1, VT2, VT3) \times 2 (context: Local, Long-distance) design, 90 experimental items and 90 distractors (with the non-reflexive pronoun 'ta').

Task: self-paced reading task with non-cumulative movingwindow paradigm

- Context Sentence (first screen)
- (4) Lisi dui Zhangsan shuohuang.
- Lisi to Zhangsan tell a lie
- 'Lisi told a lie to Zhangsan.'
- Test Sentence (second screen: self-paced presentation):
- (5) Zhangsan rang Lisi tanbai ziji, dajia dou tongyi.
 - Zhangsan ask Lisi confess self, everyone all agree 'Zhangsan asks Lisi to confess himself and everyone agrees.'
- Forced Choice of antecedent for 'ziji' (final screen)
- (6) shui yinggai tanbai shishi?
 - Who should confess the truth
 - 'Who should confess the truth?'
 - A Zhangaan D Liai
 - A. Zhangsan B. Lisi

Antecedent choice analysis

Logistic Mixed-effects Modelling Analysis;

1) Analysis on Native speakers' Antecedent Choices

DV: Antecedent Choice (i.e. local or long-distance);

Random effects: Item (no significant individual variation);

Fixed effects: Verb Type, Context;

	Coefficient	Std. Error	Z	р
Intercept	-2.0008	0.3282	-6.097	1.08e-09***
VT1	-2.9648	0.4328	-6.849	7.42e-12***
VT2	3.1226	0.4439	7.034	2.01e-12***
Long-distance Context	4.9527	0.4080	12.138	< 2e-16***

Table 1: Summary of the fixed effects for a model predicting NS antecedent choice (Reference levels: VT3 and context favoring the local antecedent)

- VT1 strongly favors a local antecedent.
- VT2 strongly favors a long-distance antecedent.
- Context influences antecedent choice with all verb types.

2) Analysis on Non-native speakers' Antecedent Choices

DV: Antecedent Choice (i.e. local or long-distance);

Random effects: Item, Working Memory;

Fixed effects: Verb Type*Context, Verb Type*Proficiency;

	Coefficient	Std. Error	Z	р
Intercept	-1.58381	0.22230	-7.125	1.04e-12***
VT1	-0.52665	0.28338	-1.858	0.06311.
VT2	1.38073	0.25919	5.327	9.98e-08***
Long-distance Context	2.53228	0.26293	9.631	< 2e-16***
Proficiency	2.45245	0.81265	3.018	0.00255**
VT1: Long-distance context	-0.05045	0.37646	-0.134	0.89340
VT2: Long-distance context	-1.08173	0.36312	-2.979	0.00289**
VT1: Proficiency	-4.71621	1.12901	-4.177	2.95e-05***
VT2: Proficiency	-0.45734	1.08213	-0.423	0.67257

Table 2: Summary of the fixed effects for a model predicting NNS' antecedent choice (reference levels: VT3 and local antecedent favoring the local antecedent)

NNS are sensitive to verb type (Q2):

- More long-distance antecedents with VT2 than VT3.
- Distinction between VT1 and VT3 only becomes significant at higher proficiency.

NNS are sensitive to the context (Q2):

- More long-distance antecedents in contexts that favor them.
- Significant interaction between Context and VT: lesser effect of context on VT2

As proficiency increases (Q4):

- Long-distance antecedents are allowed more often (main effect)
 (Q1).
- Long-distance antecedents are allowed less with VT1 (compared with VT3) in long-distance contexts.
- Increased sensitivity to verb type.

Memory effect (Q5):

Higher memory capacity increases the likelihood of a long-distance interpretation.

Cue choice analysis

Table 4: Cue Choice in case of Conflict between the two Cues

DV: Cue Choice (i.e. context or verb type) to determine antecedent

choice;

Random effects: Item, Participant;

Fixed effects: Verb Type*Group (NS vs NNS);

Figure 4: Tukey HSD contrasts (with Bonferroni correction) comparing NS and NNS reliance on Verb Type (against Context). (Intervals > 0 indicates a stronger reliance on Verb Type for the first term in the comparison (on the y axis), e.g. VT2.Native in the first comparison; Intervals < 0 indicates a stronger reliance on Context; Intervals crossing 0 indicates non-significant comparisons, i.e. no preference for either cue.)

Q3: cues weighted differently in NS and NNS. Specifically, when there is a conflict between the two cues,

- NS rely significantly more on verb type than context (most markedly with VT2);
- NNS rely more on context with both verb types.
- Proficiency levels investigated here did not have a significant effect on NNS' reliance on context.

Conclusion

- NNS are able to allow a long-distance interpretation of 'ziji', overcoming L1 transfer. This increases with proficiency.
- → Probabilistic approach to parameter (re)setting? (Yang, 2002).

 NNS are sensitive to both cues, but they are less sensitive to
- verbal-semantic cues, especially at lower proficiency.

 Reduced sensitivity to structural cues
 - rather than higher sensitivity to discourse cues (Cunnings, 2016).

 Substantial amount of individual variation in NNS but not in NS.

Individual variation (in NNS) in terms of working memory and

proficiency (distinct effects). SELECTED REFERENCES

Badecker, W., & Straub, K. 2002. The processing role of structural constraints on the interpretation of pronouns and anaphors. Journal of Experimental Psychology: Learning, Memory and Cognition, 28, 748-769.

Clahsen, H. and Felser, C. 2006. How native-like is non-native language processing? Trends in Cognitive Sciences. 10, 564-570.

Cunnings, (2016) xxx

Felser, C. and Cunnings, I. 2012. Processing reflexives in English as a second language: the role of structural and discourse-level constraints. Applied Psycholinguistics. 33, 571-603.

Lewis, R.L., Vasishth, S., and Van Dyke, J.A. 2006. Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10, 447-454.

Li, X. and Zhou, X. 2010. Who is ziji? ERP responses to the Chinese reflexive pronoun

during sentence comprehension. Brain Research. 1331, 96-104.

Van Dyke, J.A., and McElree, B. 2011. Cue-dependent interference in comprehension.

Journal of Memory and Language, 65, 247-263.

Yang, C. 2002. Knowledge and Learning in Natural Language. OUP.

Funding from China Council Scholarship associated with University of Leeds (No.201308060113).