TEA013 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P01A, 29 out 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Sabendo que

Prof. Nelson Luís Dias

$$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a},$$

$$\mathcal{L}\left\{t\right\} = \frac{1}{s^2},$$

$$\mathcal{L}\left\{f'(t)\right\} = s\overline{f}(s) - f(0),$$

e utilizando obrigatoriamente a transformada de Laplace, resolva a equação diferencial

$$\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{x}{T} = \frac{x_0 t}{T^2}, \qquad x(0) = x_0.$$

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{x}{T} = \frac{x_0 t}{T^2}$$

$$\overline{x} - x_0 + \frac{\overline{x}}{T} = \frac{x_0}{(sT)^2}$$

$$\overline{x} \left(\frac{sT+1}{T}\right) = x_0 \left[\frac{(sT)^2 + 1}{(sT)^2}\right]$$

$$\overline{x} = x_0 \frac{1 + (sT)^2}{Ts^2(sT+1)} = x_0 \left[\frac{2T}{sT+1} + \frac{1}{Ts^2} - \frac{1}{s}\right]$$

$$= x_0 \left[\frac{2}{s + \frac{1}{T}} + \frac{1}{Ts^2} - \frac{1}{s}\right] \Rightarrow$$

$$x(t) = x_0 \left[2e^{-\frac{t}{T}} + \frac{t}{T} - 1\right] \blacksquare$$

2 [25] Utilizando **obrigatoriamente** o Teorema da Convolução, calcule

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+a)}\frac{a}{(s^2+a^2)}\right\}.$$

SOLUÇÃO DA QUESTÃO:

$$\mathcal{L}\left\{f(t)*g(t)\right\} = \overline{f}(s)\overline{g}(s),$$

$$\overline{f}(s) = \frac{1}{s+a} \Rightarrow f(t) = e^{-at},$$

$$\overline{g}(s) = \frac{a}{(s^2+a^2)} \Rightarrow g(t) = \operatorname{sen}(at),$$

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+a)}\frac{a}{(s^2+a^2)}\right\} = f(t)*g(t)$$

$$= \int_{\tau=0}^{t} e^{-a(t-\tau)} \operatorname{sen}(a\tau) d\tau$$

$$= e^{-at} \int_{\tau=0}^{t} e^{a\tau} \operatorname{sen}(a\tau) d\tau$$

$$= \frac{1}{2a} \left[\operatorname{sen}(at) - \cos(at) + e^{-at}\right] \blacksquare$$

 ${f 3}$ [25] O loop principal de um método explícito de solução da equação da onda cinemática

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

Preencha as aproximações de derivadas utilizadas:

$$\frac{\partial u}{\partial t} \approx \dots,$$
$$\frac{\partial u}{\partial x} \approx \dots,$$

onde o lado direito deve conter (no máximo) $u_i^n, u_{i-1}^n, u_{i+1}^n, u_i^{n+1}, \Delta t$, e Δx .

SOLUÇÃO DA QUESTÃO:

$$\begin{split} \frac{\partial u}{\partial t} &\approx \frac{u_i^{n+1} - u_i^n}{\Delta t}, \\ \frac{\partial u}{\partial x} &\approx \frac{u_i^{n} - u_{i-1}^n}{\Delta x}. \end{split}$$

4 [25] Considere a seguinte discretização de

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

(onde c > 0 é constante) ($t_n = n\Delta t$; $x_i = i\Delta x$):

$$\frac{u_i^{n+1} - u_i^n}{\Lambda t} = -c \frac{u_{i+1} - u_i}{\Lambda x}.$$

Faça uma análise completa de estabilidade de von Neumann do esquema em função do número de Courant Co = $(c\Delta t)/\Delta x$. Descubra se o esquema é incondicionalmente instável, condicionalmente estável, ou incondicionalmente estável. Se o esquema for condicionalmente estável, para que valores de Co ele é estável?

SOLUÇÃO DA QUESTÃO:

A equação é linear. O esquema é explícito, e temos

$$u_i^{n+1} - u_i^n = -\text{Co}\left[u_{i+1}^n - u_i^n\right],$$

$$u_i^{n+1} = u_i^n - \text{Co}\left[u_{i+1}^n - u_i^n\right],$$

$$u_i^{n+1} = [1 + \text{Co}]u_i^n - \text{Co}u_{i+1}^n.$$

Substituindo um modo do erro de arredondamento

$$\epsilon_i^n = \sum_l \xi_l e^{at} e^{ik_l x_i}$$

no esquema de diferenças,

$$\begin{aligned} \xi_l \mathrm{e}^{a(t_n + \Delta t)} \mathrm{e}^{\mathrm{i}k_l \mathrm{i}\Delta x} &= [1 + \mathrm{Co}] \, \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l \mathrm{i}\Delta x} - \mathrm{Co} \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l (i+1)\Delta x}, \\ \mathrm{e}^{a\Delta t} &= [1 + \mathrm{Co}] - \mathrm{Co} \mathrm{e}^{\mathrm{i}k_l \Delta x}. \end{aligned}$$

Faça

$$\theta = k_l \Delta x$$
.

Então,

$$\begin{split} \mathrm{e}^{a\Delta t} &= [1+\mathrm{Co}] - \mathrm{Co}[\cos(\theta) + \mathrm{i} \, \mathrm{sen}(\theta)] \\ &= [1+\mathrm{Co}(1-\cos(\theta))] - \mathrm{i} \mathrm{Co} \, \mathrm{sen}(\theta); \\ \left| \mathrm{e}^{a\Delta t} \right|^2 &= \left[1 + 2\mathrm{Co}(1-\cos(\theta)) + \mathrm{Co}^2(1-\cos(\theta))^2 \right] + \mathrm{Co}^2 \, \mathrm{sen}^2(\theta) \\ &= 1 + 2\mathrm{Co}(1-\cos(\theta)) + \mathrm{Co}^2(1-2\cos(\theta) + \cos^2(\theta)) + \mathrm{Co}^2 \, \mathrm{sen}^2(\theta) \\ &= 1 + 2\mathrm{Co}(1-\cos(\theta)) - 2\cos(\theta)\mathrm{Co}^2 + 2\mathrm{Co}^2 \\ &= 1 + 2\mathrm{Co} + 2\mathrm{Co}^2 - \cos(\theta) \left[2\mathrm{Co} + 2\mathrm{Co}^2 \right] \\ &= 1 + 2 \left[\mathrm{Co} + \mathrm{Co}^2 \right] \left[1 - \cos(\theta) \right]. \end{split}$$

Desejamos

$$\left| e^{a\Delta t} \right|^2 = 1 + 2 \left[\text{Co} + \text{Co}^2 \right] \left[1 - \cos(\theta) \right] \le 1;$$

 $2 \left[\text{Co} + \text{Co}^2 \right] \left[1 - \cos(\theta) \right] \le 0.$

 $Isso \, \acute{e} \, imposs\'{i} vel: \, \left[1-cos(\theta)\right] \geq 0 \, sempre, \, assim \, como \left[Co+Co^2\right]. \, \, O \, esquema \, \acute{e}, \, portanto, \, incondicionalmente \, inst\'{a} vel \, cos(\theta) \, della \, cos(\theta) \, dell$