

### Model output and classification

| Class 0 | Class 1 | Class 2 |
|---------|---------|---------|
| 0.8     | 0.15    | 0.05    |
| 0.2     | 0.3     | 0.5     |
| 0.2     | 0.6     | 0.2     |
| 0.1     | 0.8     | 0.1     |

The models ouput an array with probabilities for each class.



### Model output and classification

| Class 0 | Class 1 | Class 2 | Pred |
|---------|---------|---------|------|
| 0.8     | 0.15    | 0.05    | 0    |
| 0.2     | 0.3     | 0.5     | 2    |
| 0.2     | 0.6     | 0.2     | 1    |
| 0.1     | 0.8     | 0.1     | 1    |

The prediction is the class with the highest probability



### **Confusion Matrix**

#### **Predicted**

|   | 0         | 1         | 2         | 3         |
|---|-----------|-----------|-----------|-----------|
| 0 | Correct   | Incorrect | Incorrect | Incorrect |
| 1 | Incorrect | Correct   | Incorrect | Incorrect |
| 2 | Incorrect | Incorrect | Correct   | Incorrect |
| 3 | Incorrect | Incorrect | Incorrect | Correct   |

- In the diagonal: correctly classified observations
- Sum of diagonal: # of correctly classified observations
- Outside diagonal: incorrectly classified observations
- Sum of matrix: total # of observations
- We can't speal of positive and negative class any more.
- Now we talk about classes, referencing each class.
- One or more classes can be the minority class or classes.



# Accuracy in multiclass

#### **Predicted**

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

$$Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$$

- Correctly classified = 12
- > Total observations = 20
- $\triangleright$  Accuracy = 12 / 20 \* 100 = 60%



#### **Predicted**

Real / Actual

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

True Positive Rate (Recall or Sensitivity)

✓ TP rate = TP / 
$$(TP + FN)$$

Positive Predictive Value (Precision)

$$\checkmark$$
 PP value = TP / (TP + FP)



#### True Positive Rate (Recall or Sensitivity)

$$\checkmark$$
 TP rate = TP / (TP + FN)

Positive Predictive Value (Precision)

#### **Predicted**

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

**Recall:** from the total class, how many correctly classified?

Class 
$$0 = 5 / (5 + 1 + 1 + 1) = 5 / 8 = 0.625$$

Class 
$$1 = 4 / (4 + 1 + 2) = 4 / 7 = 0.571$$

Class 
$$2 = 2 / (2 + 1) = 2 / 3 = 0.667$$

Class 
$$3 = 1 / (1 + 1) = 1 / 2 = 0.5$$



#### True Positive Rate (Recall or Sensitivity)

Positive Predictive Value (Precision)

#### **Predicted**

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

Recall: from the total class, how many correctly classified?

Class 
$$0 = 5 / (5 + 1 + 1 + 1) = 5 / 8 = 0.625$$

Class 
$$1 = 4 / (4 + 1 + 2) = 4 / 7 = 0.571$$

Class 
$$2 = 2 / (2 + 1) = 2 / 3 = 0.667$$

Class 
$$3 = 1 / (1 + 1) = 1 / 2 = 0.5$$

Class 
$$0 = 5 / (5 + 1) = 5 / 6 = 0.833$$

Class 
$$1 = 4 / (4 + 1 + 1) = 4 / 6 = 0.667$$

Class 
$$2 = 2 / (2 + 1 + 1) = 2 / 4 = 0.5$$

Class 
$$3 = 1 / (1 + 2 + 1) = 1 / 4 = 0.25$$

Precision: from the total predicted class, how many were true?



#### True Positive Rate (Recall or Sensitivity)

✓ TP rate = TP / 
$$(TP + FN)$$

Positive Predictive Value (Precision)

#### **Predicted**

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

Recall: from the total class, how many correctly classified?

Class 
$$0 = 5 / (5 + 1 + 1 + 1) = 5 / 8 = 0.625$$

Class 
$$1 = 4 / (4 + 1 + 2) = 4 / 7 = 0.571$$

Class 
$$2 = 2 / (2 + 1) = 2 / 3 = 0.667$$

Class 
$$3 = 1 / (1 + 1) = 1 / 2 = 0.5$$

Class 
$$0 = 5 / (5 + 1) = 5 / 6 = 0.833$$

Class 
$$1 = 4 / (4 + 1 + 1) = 4 / 6 = 0.667$$

Class 
$$2 = 2 / (2 + 1 + 1) = 2 / 4 = 0.5$$

Class 
$$3 = 1 / (1 + 2 + 1) = 1 / 4 = 0.25$$

# How do we make sense of all these values?

**Precision:** from the total predicted class, how many were true?

# Macro: take the average

#### **Predicted**

Real / Actual

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

**Recall:** from the total class, how many correctly classified?

Class 
$$0 = 5 / (5 + 1 + 1 + 1) = 5 / 8 = 0.625$$

Class 
$$1 = 4 / (4 + 1 + 2) = 4 / 7 = 0.571$$

Class 
$$2 = 2 / (2 + 1) = 2 / 3 = 0.667$$

Class 
$$3 = 1 / (1 + 1) = 1 / 2 = 0.5$$

Class 
$$0 = 5 / (5 + 1) = 5 / 6 = 0.833$$

Class 
$$1 = 4 / (4 + 1 + 1) = 4 / 6 = 0.667$$

Class 
$$2 = 2 / (2 + 1 + 1) = 2 / 4 = 0.5$$

Class 
$$3 = 1 / (1 + 2 + 1) = 1 / 4 = 0.25$$



# Macro: take the average

#### **Predicted**

Real / Actual

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

**Recall:** from the total class, how many correctly classified?

Class 
$$0 = 5 / (5 + 1 + 1 + 1) = 5 / 8 = 0.625$$

Class 
$$1 = 4 / (4 + 1 + 2) = 4 / 7 = 0.571$$

Class 
$$2 = 2 / (2 + 1) = 2 / 3 = 0.667$$

Class 
$$3 = 1 / (1 + 1) = 1 / 2 = 0.5$$

Mean Recall = **0.59** 

Class 
$$0 = 5 / (5 + 1) = 5 / 6 = 0.833$$

Class 
$$1 = 4 / (4 + 1 + 1) = 4 / 6 = 0.667$$

Class 
$$2 = 2 / (2 + 1 + 1) = 2 / 4 = 0.5$$

Class 
$$3 = 1 / (1 + 2 + 1) = 1 / 4 = 0.25$$



# Macro: take the average

#### **Predicted**

Real / Actual

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

**Recall:** from the total class, how many correctly classified?

Class 
$$0 = 5 / (5 + 1 + 1 + 1) = 5 / 8 = 0.625$$

Class 
$$1 = 4 / (4 + 1 + 2) = 4 / 7 = 0.571$$

Class 
$$2 = 2 / (2 + 1) = 2 / 3 = 0.667$$

Class 
$$3 = 1 / (1 + 1) = 1 / 2 = 0.5$$



Mean Recall = 0.59

Class 
$$0 = 5 / (5 + 1) = 5 / 6 \neq 0.833$$

Class 
$$1 = 4 / (4 + 1 + 1) = 4 / 6 \neq 0.667$$

Class 
$$2 = 2 / (2 + 1 + 1) = 2 / 4 = 0.5$$

Class 
$$3 = 1 / (1 + 2 + 1) = 1 / 4 = 0.25$$



Mean Precision = **0.563** 



### Weight the average

# Take the mean of each metric weighted by the support

#### **Predicted**

|     |   | 0 | 1 | 2 | 3 |
|-----|---|---|---|---|---|
|     | 0 | 5 | 1 | 1 | 1 |
| 7   | 1 | 0 | 4 | 1 | 2 |
| 5   | 2 | 0 | 1 | 2 | 0 |
| שמט | 3 | 1 | 0 | 0 | 1 |

| Recall          | Support |  |
|-----------------|---------|--|
| Class 0 = 0.625 | 8       |  |
| Class 1 = 0.571 | 7       |  |
| Class 2 = 0.667 | 3       |  |
| Class 3 = 0.5   | 2       |  |

Class 
$$0 = 5 / (5 + 1) = 5 / 6 \neq 0.833$$
  
Class  $1 = 4 / (4 + 1 + 1) = 4 / 6 \neq 0.667$   
Class  $2 = 2 / (2 + 1 + 1) = 2 / 4 \neq 0.5$   
Class  $3 = 1 / (1 + 2 + 1) = 1 / 4 \neq 0.25$ 



### Weight the average

# Take the mean of each metric weighted by the support

#### **Predicted**

|               |   | 0 | 1 | 2 | 3 |
|---------------|---|---|---|---|---|
| Real / Actual | 0 | 5 | 1 | 1 | 1 |
| Ac            | 1 | 0 | 4 | 1 | 2 |
| <u>_</u>      | 2 | 0 | 1 | 2 | 0 |
| Rec           | 3 | 1 | 0 | 0 | 1 |

| Recall          | Support |
|-----------------|---------|
| Class 0 = 0.625 | 8       |
| Class 1 = 0.571 | 7       |

Class 
$$2 = 0.667$$
 3
Class  $3 = 0.5$  2

Weighted Recall =

$$(0.625*8 + 0.571*7 + 0.667*3 + 0.5*2)$$

$$(8 + 7 + 3 + 2) =$$

0.599

Class 
$$0 = 5 / (5 + 1) = 5 / 6 = 0.833$$

Class 
$$1 = 4 / (4 + 1 + 1) = 4 / 6 \neq 0.667$$

Class 
$$2 = 2 / (2 + 1 + 1) = 2 / 4 = 0.5$$

Class 
$$3 = 1 / (1 + 2 + 1) = 1 / 4 = 0.25$$



Weighted Precision =

$$(0.833*8 + 0.667*7 + 0.5*3 + 0.25*2)$$

$$(8 + 7 + 3 + 2) =$$

0.665



### Micro:

#### **Predicted**

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

- Micro-averaging uses a 1 vs rest approach
- Considers all TP, TN and FP together



### Micro:

#### **Predicted**

Real / Actual

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 5 | 1 | 1 | 1 |
| 1 | 0 | 4 | 1 | 2 |
| 2 | 0 | 1 | 2 | 0 |
| 3 | 1 | 0 | 0 | 1 |

True Positive Rate (Recall or Sensitivity)

Positive Predictive Value (Precision)

• TP = 
$$5 + 4 + 2 + 1 = 11$$

• 
$$FP = 1 + 1 + 1 + 1 + 1 + 1 + 2 = 8$$

• 
$$FN = 1 + 1 + 1 + 1 + 2 + 1 + 1 = 8$$

Recall = 
$$11 / (11 + 8) = 0.57$$





# THANK YOU

www.trainindata.com