

DS-prof-2022-08

Меня хорошо видно && слышно?

Защита проекта Тема: Прогнозирование электропотребления предприятия с применением искусственных нейронных сетей

Здесь могла бы быть ваша реклам а

Здесь могла бы быть ваша реклам

Дьяконов Семен

Начальник управления балансов и энергоресурсов ООО «НОВОГОР-Прикамье» г. Пермь

План защиты

Цели проекта

Что планировалось

Используемые технологии

Что получилось

Выводы

Здесь могла бы быть ваша реклама

Цели проекта

1. Исследование применения искусственных нейронных сетей для краткосрочного прогнозирования потребления электроэнергии предприятием;

Методы проекта

- 1. Применение Рекуррентных нейронных сетей (РНС, англ. Recurrent neural network, RNN), Длинные цепи элементов краткосрочной памяти (англ. Long short-term memory; LSTM)
- **2.** Сравнить базовый прогноз и прогноз построенный с применением искусственных нейронных сетей;

Что планировалось

Используемые технологии

- Файлы в формате *.xlsx
- 2. Excel, python стандартные библиотеки, pytorch, RNN, LSTM
- 3. Ноутбук MSI GF63 Thin

Что получилось. Репозиторий на github.

1. Ссылка на репозиторий с исходным кодом:

https://github.com/smddyakonov/otus_ds_dyakonov/tree/main/hw-19

Функционирование почасового планирования

Ценообразование РСВ

РСВ за сутки до поставки определяет плановые объемы производства и потребления, однако фактическое потребление неизбежно отличается от планового. Торговля отклонениями фактических объемов производства/потребления от плановых осуществляется в режиме реального времени на балансирующем рынке.

Отклонения фактического потребления от планового квалифицируются собственными или внешними инициативами. Отклонение по собственной инициативе возникает из-за действий участника рынка (потребителя или поставщика), по внешней - в результате команд Системного оператора. Покупатель, потребивший больше планового объема РСВ, покупает электроэнергию на БР, а потребивший меньше - продает. Стоимость отклонений формируется так, чтобы стимулировать участников к более исполнению планового потребления точному производства электроэнергии, определенного на РСВ, и к выполнению команд Системного оператора. Таким образом, на БР «штрафуются» участники рынка, допускающие наибольшие отклонения фактических объемов потребления и выработки от плановых по собственной инициативе, и «премируются» участники, придерживающиеся планового потребления и максимально точно выполняющие команды Системного оператора. На основе стоимости отклонений определяются предварительные требования и предварительные обязательства БР, разница между которыми формирует небаланс балансирующего рынка. Отрицательный небаланс распределяется между участниками пропорционально их собственным Положительный небаланс инициативам. распределяется между пропорционально поставшиками. величине исполнения внешних инициатив, и потребителями, максимально точно придерживающимися планового потребления. Такая система распределения небаланса является дополнительным стимулирующим и дисциплинирующим фактором для участников рынка.

Водоснабжение и водоотведение в г.Пермь

Источники: https://www.novogor.perm.ru/watersnab/7614 https://www.novogor.perm.ru/water_o/7616

Водоснабжение

Вода в городскую сеть Перми с Чусовских очистных сооружений (Чусовской водозабор (ЧОС)) подается в среднем около 240 тысяч кубометров воды в сутки, 8-9 тысяч кубометров ежесуточно принимает сеть г. Краснокамска. Общая протяженность водопроводных сетей в Перми —1349.70 км.

Транспортировка сточных вод Общая протяженность сетей водоотведения составляет 1259 км.

- . Б*ОС Гляденово* очистка городских канализационных сточных вод. Пропускная способность БОС составляет 440 тыс. м³/сут.
- •БОС пос. Новые Ляды очистка хозяйственно-бытовых сточных вод. Фактическая мощность составляет 2,5-3,5 тыс. м³/сут. при максимальной потребности в 5 тыс. м³/сут.

LSTM (долговременная краткосрочная память)

Источники: https://pro.arcgis.com/ru/pro-app/latest/tool-reference/geoai/how-time-series-forecasting-models-work.htm

Данные временных рядов носят временной или последовательный характер и могут обрабатываться рекуррентной нейронной сетью (RNN). RNN запоминают прошлую информацию и передают ее в текущее состояние ввода. Однако обычные RNN не способны запоминать долгосрочные зависимости из-за исчезающих градиентов. LSTM — это модернизированный тип RNN, решающий эту проблему. LSTM состоит из блоков, каждый из которых состоит из четырех нейронных сетей, они используются для обновления состояния своей ячейки с использованием информации из новых входных данных и прошлых выходных данных.

Что получилось. Описание исходных данных

Почасовое потребление электрической энергии представлено

- •за период с 2018 по июнь 2023 г.;
- •в разрезе точек поставки;
- •в разрезе дата-время

Предварительные преобразования для моделирования

Сделано в отдельном ноутбуке

- •сформирован список исходных файлов
- •проверено, что во всех исходных файлах есть лист "Данные эл.эн.". В листе "Данные эл.эн." хранятся почасовые расходы электроэнергии по точкам поставки
- •объединить точки поставки (ТП) по годам и найти перечень всех ТП за период с 2019 2023 гг
- •добавить привязки ТП Объект группа точек поставки (ГТП)

Что получилось.

Оut[7]: Дата время (мск) ГТП_ВС ГТП_ВО 0 2019-01-01 00:00:00 6344.080 8562.00 1 2019-01-01 01:00:00 6311.008 8170.24 2 2019-01-01 02:00:00 6345.960 7837.36 3 2019-01-01 03:00:00 6190.032 7835.24 4 2019-01-01 04:00:00 6354.032 7821.12 39379 2023-06-29 19:00:00 7132.000 6772.00 39380 2023-06-29 20:00:00 7058.000 6860.00 39381 2023-06-29 21:00:00 6967.000 7041.00 39382 2023-06-29 22:00:00 6265.000 6772.00 39383 2023-06-29 23:00:00 5696.000 6664.00	Ввод [7]:	1	df	ee		
0 2019-01-01 00:00:00 6344.080 8562.00 1 2019-01-01 01:00:00 6311.008 8170.24 2 2019-01-01 02:00:00 6345.960 7837.36 3 2019-01-01 03:00:00 6190.032 7835.24 4 2019-01-01 04:00:00 6354.032 7821.12 39379 2023-06-29 19:00:00 7132.000 6772.00 39380 2023-06-29 20:00:00 7058.000 6860.00 39381 2023-06-29 21:00:00 6967.000 7041.00 39382 2023-06-29 22:00:00 6265.000 6772.00	Out[7]:					
1 2019-01-01 01:00:00 6311.008 8170.24 2 2019-01-01 02:00:00 6345.960 7837.36 3 2019-01-01 03:00:00 6190.032 7835.24 4 2019-01-01 04:00:00 6354.032 7821.12 39379 2023-06-29 19:00:00 7132.000 6772.00 39380 2023-06-29 20:00:00 7058.000 6860.00 39381 2023-06-29 21:00:00 6967.000 7041.00 39382 2023-06-29 22:00:00 6265.000 6772.00				Дата время (мск)	LTL_BC	гтп_во
2 2019-01-01 02:00:00 6345.960 7837.36 3 2019-01-01 03:00:00 6190.032 7835.24 4 2019-01-01 04:00:00 6354.032 7821.12 39379 2023-06-29 19:00:00 7132.000 6772.00 39380 2023-06-29 20:00:00 7058.000 6860.00 39381 2023-06-29 21:00:00 6967.000 7041.00 39382 2023-06-29 22:00:00 6265.000 6772.00			0	2019-01-01 00:00:00	6344.080	8562.00
3 2019-01-01 03:00:00 6190.032 7835.24 4 2019-01-01 04:00:00 6354.032 7821.12 39379 2023-06-29 19:00:00 7132.000 6772.00 39380 2023-06-29 20:00:00 7058.000 6860.00 39381 2023-06-29 21:00:00 6967.000 7041.00 39382 2023-06-29 22:00:00 6265.000 6772.00			1	2019-01-01 01:00:00	6311.008	8170.24
4 2019-01-01 04:00:00 6354.032 7821.12 39379 2023-06-29 19:00:00 7132.000 6772.00 39380 2023-06-29 20:00:00 7058.000 6860.00 39381 2023-06-29 21:00:00 6967.000 7041.00 39382 2023-06-29 22:00:00 6265.000 6772.00			2	2019-01-01 02:00:00	6345.960	7837.36
			3	2019-01-01 03:00:00	6190.032	7835.24
39379 2023-06-29 19:00:00 7132.000 6772.00 39380 2023-06-29 20:00:00 7058.000 6860.00 39381 2023-06-29 21:00:00 6967.000 7041.00 39382 2023-06-29 22:00:00 6265.000 6772.00			4	2019-01-01 04:00:00	6354.032	7821.12
39380 2023-06-29 20:00:00 7058.000 6860.00 39381 2023-06-29 21:00:00 6967.000 7041.00 39382 2023-06-29 22:00:00 6265.000 6772.00						
39381 2023-06-29 21:00:00 6967.000 7041.00 39382 2023-06-29 22:00:00 6265.000 6772.00		3937	79	2023-06-29 19:00:00	7132.000	6772.00
39382 2023-06-29 22:00:00 6265.000 6772.00		3938	30	2023-06-29 20:00:00	7058.000	6860.00
2020 00 20 22:00:00		3938	31	2023-06-29 21:00:00	6967.000	7041.00
39383 2023-06-29 23:00:00 5696,000 6664.00		3938	32	2023-06-29 22:00:00	6265.000	6772.00
		3938	33	2023-06-29 23:00:00	5696.000	6664.00

39384 rows × 3 columns

В итоге получил дата-фрейм:

Колонка «Дата время (мск)» – дата-время, часовой пояс – «мск»

Колонка «ГТП_ВС» - потребление электрической энергии за каждый час, по группе точек поставок (ГТП) водоснабжение (ВС);

Колонка «ГТП_ВО» - потребление электрической энергии за каждый час, по группе точек поставок (ГТП) водоотведение (ВО);

Всего строк: 39 384

Тип данных: временной ряд с частотой 1 час

Что получилось. Предобработка данных (Data Preprocessing)

Профиль потребления электрической энергии за период наблюдения

Проверка на выбросы, обнаружено не характерно поведение данных: технологический останов сооружений. Заменю на среднее значение аналогичного года, месяца, часа. По ГТП_ВО выброс не обнаружено

Что получилось. EDA

Усредненный за час профиль потребления электрической энергии за период наблюдения по группам ГТП-Вс, ГТП-ВО

1 df_ee_eda.describe()				
	гтп_вс	гтп_во		
count	39384.000000	39384.000000		
mean	7025.898740	7667.255423		
std	1067.284958	989.238861		
min	4000.000000	4030.000000		
25%	6208.000000	6969.000000		
50%	7004.000000	7612.000000		
75%	7844.898000	8291.000000		
max	10493.112000	12312.840000		

Что получилось. «Чистые данные»

Профиль потребления электроэнергии ГТП_ВС, ГТП_ВО

Что получилось. «Чистые данные» ГТП_ВС

Усредненный профиль потребления электроэнергии ГТП_ВС, по годам

Наблюдается суточная неравномерность Снижение объема подаваемой воды в сеть – снижение нагрузки

Что получилось. «Чистые данные» ГТП_ВО

Усредненный профиль потребления электроэнергии ГТП_ВО, по годам

Наблюдается суточная неравномерность Снижение объема перекачки стоков – снижение нагрузки

Что получилось. Моделирование

Исследование применения искусственных нейронных сетей для краткосрочного прогнозирования потребления электроэнергии предприятием;

Прогнозирую 24 значения, то за основу возьму RNN интервальное прогнозирование

Базовая модель - прогноз на сутки вперед равен аналогичному дню предыдущей недели **Гипотеза: прогнозирование с помощью ИИ должно быть лучше, чем базовая модель**

Оценка подхода проводится по бизнес-метрике, БМ:

$$\mathbf{БM} = rac{\sum_{h}^{N} |\mathbf{\Phi} - \mathbf{OTKJ_abs}|}{\mathbf{N}}$$

Ф - фактический расход электрической энергии за час; П - плановый расход электрической энергии за час; Откл_abs = |Ф - П| отклонение фактического расхода за час от планового расхода за час N - число плановых значений за месяц.

Цель: БМ должна быть не более 4% за месяц.

Что получилось. Моделирование

```
Определение модели
class RNN(nn.Module):
  def __init__(self, input_size, hidden_size, output_size, num_layers):
    super(RNN, self).__init__()
    self.hidden size = hidden_size
    self.num_layers = num_layers
    self.rnn = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
    self.fc = nn.Linear(hidden_size, output_size)
  def forward(self, x, h0, c0):
    out, (hn, cn) = self.rnn(x, (h0, c0))
    out = self.fc(out[:, -1, :])
    return out
```

Что получилось. Моделирование. График сравнения предсказанных и фактических значений

	ИИ-модель	base-модель	откл
V 1	0.036947	0.056499	-0.019552
1/2	0.038417	V 0.038146	0.000271
√3	0.039063	0 .035011	0.004052
4	0.041340	0.030568	0.010772
5	0.041191	0.051436	-0.010245
6	0.042017	0. <mark>063</mark> 498	-0.021481

Вывод:

- 1.Для прогнозирования почасового потребления электрической энергии можно использовать искусственные нейросети
- 2.Для ГТП_ВС на тесте ИИ-модель показала себя лучше в зимние и летние месяцы.

Что получилось. Моделирование. График сравнения предсказанных и фактических значений

V 1	0.025748	0.062967 -0.037220
2	0.023967	0.037215 -0.013248
b	0.025988	0.061309 -0.035321
V 4	0.027216	0.062264 -0.035048
5	0.024656	0.041193 -0.016537
6	0.025323	0.064045 -0.038722

Вывод:

- 1.Для прогнозирования почасового потребления электрической энергии можно использовать искусственные нейросети
- 2.Для ГТП_ВО на тесте ИИ-модель показала себя лучше

Выводы и планы по развитию

- Цели достигнуты
- 2. Для прогнозирования почасового потребления электрической энергии можно использовать искусственные нейросети
- 3. Применение трансформеров для задачи

Спасибо за внимание!