Universidade Federal do Ceará

Centro de Ciências

Departamento de Estatística e Matemática Aplicada

Coordenação do Curso de Estatística

Professor: Maurício Mota

Lista 01- CC0288- Inferência Estatística I -30/03/2023.

1. Responda:

- a. O que é Inferência Estatística?
- b. Por que é importante que uma amostra extraída de uma população seja aleatória?
- c. Por que é necessário entender as propriedades de uma distribuição teórica de médias de amostras de tamanho n quando na prática você selecionará somente uma única amostra desse tamanho?
- d. O que é erro padrão de uma média amostral? Como ele se compara ao desvio padrão da população?
- e. Explique o teorema do Limite Central.
- f. O que acontece com a variabilidade da amostra de um conjunto de médias amostrais $\{\bar{X}^{(1)}, \bar{X}^{(2)}, \bar{X}^{(3)} \ldots\}$, conforme o tamanho da amostra aumenta?
- g. O que é população do ponto de vista estatístico? O que é amostra?
- h. O que é estatística do ponto de vista inferencial?
- i. O que é um parâmetro?
- j. O que é espaço paramétrico?
- k. O que é um estimador T de um parâmetro θ ? O que é uma estimativa?
- l. Quando um estimador T de um parâmetro θ é não viciado?
- m. Quando uma sequência de estimador $\{T_n\}$ de um parâmetro θ é dita consistente?
- n. Sejam T_1 e T_2 dois estimadores não viciados de um mesmo parâmetro θ . Quando se diz que T_1 é mais eficiente do que T_2 ?
- o. Sejam T um estimador de um parâmetro θ e $E=T-\theta$. O que representa E?
- p. Seja T um estimador de um parâmetro θ . Defina erro quadrático médio (EQM) de T?

- q. Seja T um estimador de um parâmetro θ . Como a quantidade $B=E(T)-\theta$ é chamada? Mostre que $EQM(T,\theta)=Var(T)+B^2$.
- r. Seja T um estimador de um parâmetro θ . Defina erro padrão de T. Como é dado o erro padrão estimado de T?
- s. Compare os termos:estatística e estimador.
- t. Qual o problema da estimação paramétrica segundo Bussab & Morettin?
- u. O que mede a acurácia de uma observação? e a precisão de uma observação?
- v. O que é consistência de um estimador T de um estimador de um parâmetro θ ?
- x. Seja T um estimador não viciado de um parâmetro θ . Quando é que T é dito de variância mínima uniforme?
- y. Quando é dito que T um estimador não viciado de um parâmetro θ baseado em uma amostra aleatória X_1, X_2, \ldots, X_n é o melhor estimador linear não tendencioso de θ ?

2. Responda:

- a. Para que serve os cinco valores $x_{[1]}$, q_1,q_2 , q_3 e $x_{[n]}$ obtidos de uma amostra aleatória X_1,X_2,\ldots,X_n . Note que $x_{[1]}=min(x_1,x_2,\ldots,x_n)$, $x_{[n]}=max(x_1,x_2,\ldots,x_n)$ e q_i , i=1,2,3, é o *i*-ésimo quartil.
- b. Qual a importância da construção de um boxplot para se entender um conjunto de dados x_1, x_2, \ldots, x_n ?
- c. O que é um histograma? Que tipo de informação ele fornece?
- d. Que procedimento se usa como alternativa a um histograma? Diga uma vantagem do procedimento escolhido sobre o histograma.
- e. Qual a utilidade do gráfico de quantis?
- f. Qual a finalidade de se efetuar uma transformação nas observações de um estudo estatístico?
- g. Que tipo de gráfico se usa para investigar a associação entre duas variáveis quantitativas?
- h. Para que serve um gráfico do tipo $q \times q$ (quantis-quantis)?
- i. Para se analisar descritivamente a associação entre uma variável qualitativa e uma outra quantitativa o que se faz na prática?

- j. Quais as principais medidas de associação entre duas variáveis qualitativas?
- k. Como se estimam a covariância $\gamma = cov(X,Y)$ e o coeficiente de correlação $\rho = cor(X,Y)$ baseado em uma amostra aleatória $(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$ de um vetor aleatório bidimensional (X,Y)?
- 3. Para se estimar a média μ desconhecida de uma população foram propostos dois estimadores não viesados independentes, $\hat{\mu}_1$ e $\hat{\mu}_2$, de tal sorte que

$$Var(\hat{\mu}_1) = \frac{Var(\hat{\mu}_2)}{3}.$$

Considere os seguintes estimadores ponderados de μ :

$$T_1 = \frac{\hat{\mu}_1 + \hat{\mu}_2}{2}, \quad T_2 = \frac{4\hat{\mu}_1 + \hat{\mu}_2}{5} \quad e \quad T_3 = \hat{\mu}_1.$$

Quais estimadores são não viciados? Disponha esses estimadores em ordem crescente de eficiência.

4. Uma população é descrita através de uma variável aleatória X com média μ e variância σ^2 . Duas amostras aleatórias independentes de tamanhos n_1 e n_2 foram extraídas dessa população. Dois estimadores par μ fotam propostos:

$$T_1 = \frac{\bar{X}_1 + \bar{X}_2}{2} \ e \ T_2 = \frac{n_1 \bar{X}_1 + n_2 \bar{X}_2}{n_1 + n_2},$$

em que \bar{X}_i , i=1,2, é a média amostral da amostra de tamanho n_i . Mostre que ambos são imparciais. Qual o mais eficiente?

5. Sejam X_1, X_2, \cdots, X_n variáveis aleatórias independentes e identicamente distribuídas segundo uma mesma distribuição comum X com função de probabilidade ou função densidade de probabilidade $f(x|\theta)$. Pede-se a função densidade conjunta de X_1, X_2, \cdots, X_n , depois calcular a f.g.m. (função geradora de momentos) de $S = \sum_{i=1}^{n} X_i$ identificando a distribuição de S.

a.
$$X \sim B(\theta)$$
;

b.
$$X \sim Bin(3, \theta)$$
;

c.
$$X \sim Poisson(\theta)$$
;

d.
$$X \sim geometrica(\theta)$$
;

- e. $X \sim Pascal(5, \theta)$;
- f. $X \sim N(\theta, 1)$;
- **g.** $X \sim N(0, \theta^2)$;
- h. $X \sim \chi^2(\theta)$.
- i. $X \sim Gama(3, \theta)$
- j. $X \sim Gama(\theta, 2)$;
- 6. Para cada distribuição da questão 5:
 - a. Qual o espaço paramétrico?
 - b. Qual o suporte da distribuição?
 - c. Mostre que a f.p ou a f.d.p. pertence à família exponencial de densidades. Ache E[T(X)].
 - d. Ache a função escore associada a X.
 - e. Ache a Informação de Fisher associada a X. Ache Var[T(X)].
 - f. Ache o limite inferior de Cramer-Rao para a variância dos estimadores não viciados de θ .
 - g. Ache o limite inferior de Cramer-Rao para a variância dos estimadores não viciados de e^{θ} .
 - h. Encontre uma estatística suficiente e completa para θ . Ache um estimador não viciado de variância mínima uniforme para θ .