HQS-107US

Appln. No.: 10/810,768

Amendment Dated June 22, 2009

Reply to Office Action of January 22, 2009

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Appin. No:

10/810,768

Applicant:

William F. Niland et al.

Filed:

March 26, 2004

Title:

APPARATUS AND METHOD FOR DELIVERING

WATER VAPOR TO A GAS

T.C./A.U.:

3771

Examiner:

Danton DeMille

Confirmation No.: 9079

Docket No.: HQS-107US

<u>AMENDMENT</u>

Mail Stop Amendment Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Responsive to the Office Action dated January 22, 2009, please amend the aboveidentified application as follows:

		,			
	Amendments to the Spo	ecification begin on page	e of this pa	per.	
\boxtimes	Amendments to the Claims are reflected in the listing of claims which begins on page 2 of this paper.				
\boxtimes	Amendments to the Drawings begin on page 8 of this paper and include an attached replacement sheet(s).				
	Amendments to the Abstract are on page Abstract is on page of this paper.		of this paper. A	clean version of t	he
\square	Remarks/Arguments begin on page 9 of this paper.				

 $(1, \dots, \gamma_{k-1}, r_k)^{\frac{1}{k}} = \epsilon$