PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-021977

(43)Date of publication of application: 23.01.1996

(51)Int.CL

602B 27/18 602B 26/08 603B 21/14 6096 3/00 HO4N 5/74

(21)Application number: 07-073952

(71)Applicant:

TEXAS INSTR INC <TD

(22)Date of filing:

30.03.1995

(72)Inventor:

AUSTIN L FANG

JAMES M FLORENCE

(30)Priority

Priority number: 94 221739

Priority date: 31.03.1994

Priority country: US

(54) METHOD AND DEVICE FOR CONTROLLING ILLUMINATION FOR IMAGE DISPLAY SYSTEM

(57)Abstract:

PURPOSE: To provide an illumination control device for a projection display system that generates an image using a digital mirror device DMD. CONSTITUTION: The illumination control device 17 is provided with a first set of lens 23 that receives light from a light source 16 to converge on a color filter 24. A second set of lens 25 receives colored light to direct it to a prism 28. The prism 28 refracts the light to the reflection mirror 30 of DMD 15, while a collimator lens 28a imparts a light beam nearly equal to the size of the mirror array of DMD 15. With an optical shutter 26 arranged between the second set of lens 25 and the prism 28a, the system 10 can attain either a 'black condition' between image displays or an illumination level in which an image to be displayed is modulated.

LEGAL STATUS

[Date of request for examination]

26.03.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-21977

(43)公開日 平成8年(1996)1月23日

(51) Int.Cl. ⁶	識別配号	庁内整理番号	FΙ	技術表示箇所
G02B 27/18	Z			
26/08	Е			
G03B 21/14	Α			
G 0 9 G 3/00	Z	4237-5H		
H 0 4 N 5/74	Α			
			審査請求	未請求 請求項の数2 OL (全 7 頁)
(21)出願番号	特頤平7-73952		(71)出願人	590000879
				テキサス インスツルメンツ インコーポ
(22)出願日	平成7年(1995)3月30日			レイテツド
				アメリカ合衆国テキサス州ダラス,ノース
(31)優先権主張番号	221739			セントラルエクスプレスウエイ 13500
(32) 優先日	1994年3月31日		(72)発明者	オースチン エル・ファング
(33)優先権主張国	米国 (US)			アメリカ合衆国テキサス州ダラス,スプリ
				ング パレー ロード 5801, アパートメ
				ント 1904 ダブリュ.
	•		(72)発明者	ジェームズ エム. フローレンス
				アメリカ合衆国テキサス州リチャードソ
				ン, ウォルナット クリーク プレース
		•		4
	·		(74)代理人	弁理士 浅村 皓 (外3名)

(54) 【発明の名称】 画像ディスプレイシステム用照光制御装置及び制御方法

(57) 【要約】

【目的】 デジタルミラーデパイスDMDを使用して画像を発生する投写ディスプレイシステム用照光制御装置を提供する。

【構成】 照光制御装置17は光源16からの光を受光してカラーフィルター24へ収束する第1組のレンズ23を有している。第2組のレンズ25が有色光を受光してプリズム28へ向ける。プリズム28はDMD15の反射鏡30へ向けて光を曲げ、コリメートレンズ28aがDMD15のミラーアレイのサイズにほぼ等しい光線を与える。光シャッター26が第2組のレンズ25とプリズム28aとの間に配置されていて、システム10は画像ディスプレイ間に"プラック状態"を達成するかもしくはディスプレイされる画像の変調された照光レベルを達成することができる。

1

【特許請求の範囲】

【請求項1】 ミラーエレメントのアレイを有し各ミラ ーエレメントの傾斜及び非傾斜状態に従って画像を発生 するデジタルマイクロミラーデパイス(DMD)を使用 する画像ディスプレイシステム用照光制御装置であっ て、眩制御装置は、光源から光を受光してカラーフィル ターへ通す第1組のレンズと、前配光の一つ以上の色を **進波するカラーフィルターと、前記カラーフィルターか** ら前記光を受光してプリズムへ集束する第2組のレンズ と、前配第2組のレンズから前配光を受光して前記ミラ ーエレメントの反射面へ向けて曲げるプリズムと、前配 アレイとほぼ同面積の実質的にコリメートされた光線を 供給する前記プリズムレンズの一面におけるコリメート レンズと、前記第1組のレンズと前記プリズムとの間に 配置され前配光を前配プリズムへ送るべきかどうかを決 定するシャッターと、前記ミラーエレメントからの反射 光を受光し前配光により形成される画像をディスプレイ 面へ投写する投写レンズと、を具備する照光制御装置。

【請求項2】 ミラーエレメントのアレイを有し各ミラーエレメントの傾斜及び非傾斜状態に従って画像を発生 20 するデジタルマイクロミラーデバイス (DMD) の入射 照光制御方法であって、該方法は、光線を発生するステップと、第1組のレンズを使用して前配光線をカラーフィルターを介して集束するステップと、第2組のレンズを使用して違波された光を受光しプリズムへ集束するステップと、プリズムを使用して前配アレイの表面へ所望する入射角度で光を向けるステップと、コリメートレンズを使用してほぼ前配アレイのサイズに等しい実質的にコリメートされた光線へ整形するステップと、光シャッターを使用して前配コリメートされた光線を前配プリズ 30 ムへ送るべきかを制御するステップと、からなる照光制御方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は画像ディスプレイシステムに関し、特に空間光変調器を使用するディスプレイシステムに関する。

[0002]

【従来の技術】空間光変調器(SLM)に基づくリアルタイムディスプレイシステムが陰極線管(CRT)を使 40 用したディスプレイシステムに替わるものとして次第に使用されている。SLMシステムはCRTシステムのように表示する前にデジタルデータをアナログ形式へ変換することなく高い解像度のディスプレイを提供する。

【0003】デジタルマイクロミラーデバイス(DMD)はSLMの一種であり、投写ディスプレイ応用に使用することができる。DMDは各々がメモリセル上に載置されたマイクロメカニカルミラーエレメントのアレイを有している。各ミラーは電子データにより個別にアドレスすることができる。そのアドレス包含の比較に広じ

て、各ミラーは傾斜されて光軸上ディスプレイ画面へ向 けて光を反射させたり光軸を外してディスプレイ画面へ 光を反射させなかったりする。ミラーがオン状態となる

各ピデオフレーム期間の時間的割合によりゼロオンタイムに対する完全黒色から100%オンタイムに対する完全生ののグレーのシェードが決定される。

【0004】一種のDMDディスプレイシステムとして 投写システムがある。 "オン" ミラーからの光は投写レンズを通過して大型画面上に画像を生成する。 "オフ" ミラーからの光は投写レンズから離れるように反射され て捕捉される。カラーホイールもしくは各DMDが赤、 緑、もしくは青色光成分を画面上へ映し出す3次元DM D構成のいずれかの方法により色を付加することができ る。

[0005]

【発明が解決しようとする課題】動作中に、完全黒色像を欲しくなることがある。しかしながら、既存のシステムではたとえ全てのDMDミラーエレメントがオフ状態であっても、投写レンズの入口関口へ到達し続ける光がある。

[0006]

【課題を解決するための手段】本発明の一つの特徴は可 動ミラーエレメントのアレイを有し、各ミラーエレメン トの傾斜"オン"もしくは"オフ"状態に従って画像を 発生するデジタルマイクロミラーデパイス(DMD)を 使用する画像ディスプレイシステム用照光制御装置であ る。このシステムはミラーエレメントへの入射光を濾波 するカラーホイールも使用している。第1組のレンズが 光源からの光を受光してカラーホイールを介して集束さ せる。第2組のレンズがカラーホイールからの光を受光 してDMDの表面へ光を曲げるプリズムの表面へ集束さ せる。このプリズム面のコリメートレンズによりほぼミ ラーエレメントアレイのサイズのコリメートされた光線 が供給される。第2組のレンズとプリズムとの間に光シ ャッターが配置され、オンオフされてプリズムへ光を送 るべきかどうかが決められる。適切な光シャッターは印 加電圧に従って光を透過もしくは阻止する液晶エレメン トにより構成される。

【0007】本発明の技術的利点はDMDベースディスプレイシステムの"オールオフ" 黒色状態が改善されることである。本発明による光シャッターを光路に配置して光の強さを入射光の1%以下に低減することができる。その結果DMDの全てのミラーエレメントがオフとされる時により暗い投写"黒色" 画面が得られる。この暗い状態により高いコントラスト比が得られ"オールオフ"状態中に白色欠陥ミラーエレメントがマスクされる。

[0008]

を有している。各ミラーは電子データにより個別にアド 【実施例】DMDペースデジタルディスプレイシステム レスすることができる。そのアドレス信号の状態に応じ *50* の包括的な説明が米国特許第5,079,544号"標 準独立デジタル化ビデオシステム"及び米国特許出願第 08/147,249号(アトニードケット番号第TI-17855号)"デジタルテレビジョンシステム"及び米国特許出願第08/146,385号(アトニードケット番号第TI-17671号)"DMDディスプレイシステム"に記載されており、これらの各特許及び特許出願をテキサスインスツルメンツ社が譲り受けており参照としてここに組み入れられている。

【0009】米国特許出願第07/678,761号 "パルス幅変調ディスプレイシステムに使用するDMD 10アーキテクチュア及びタイミング" (アトニードケット番号第TI-15721号) にはDMDペースディスプレイシステムで使用するビデオデータのフォーマット化方法及びデータのピットプレーンを変調して変化するピクセル輝度を与える方法が配載されている。DMDペースディスプレイシステムにカラーホイールを使用して逐次カラー画像を得る一般的な方法が米国特許出顧第07/809,816号(アトニードケット番号第TI-16573号) "白色光強化カラーフィールド逐次投写" に配載されている。これらの特許出願はテキサスインス 20ツルメンツ社が譲り受けており、参照としてここに組み入れられている。

【0010】図1に投写ディスプレイシステム10を示し、それはデジタルマイクロミラーデパイス(DMD)15を使用してリアルタイム画像を発生する。ディスプレイ10は本発明による照光制御装置17を有し、それは"ブラックフレーム"状態を提供する。主画面ピクセルデータ処理にとって重要な部品しか示されていない。同期化及びオーディオ信号や閉キャブショニング等の2次画面特徴の処理に使用する他の部品は示されていない。入力信号の性質は本発明にとって重要ではなく、本明細書のシステムはアナログテレビジョン入力信号で表現されているが、入力信号はデジタルでもよい。

【0011】ディスプレイシステム10の動作の概観として、信号インターフェイスユニット11がアナログビデオ信号を受信してビデオ、同期化、及びオーディオ信号を分離する。それはビデオ信号をA/Dコンパータ12a及びY/Cセパレータ12bへ送り、そこでデータはピクセルデータサンプルへ変換されまた色差("C")データから輝度("Y")データを分離する。図1において、信号はデジタルデータへ変換された後でY/C分離されるが、別の実施例ではアナログフィルターを使用してA/D変換の前にY/C分離を実施することができる。

【0012】プロセッサーシステム13はさまざまなピクセルデータ処理タスクを実施することによりディスプレイデータを準備する。プロセッサーシステム13は、フィールド及びラインパッファーのような、処理中にピクセルデータを記憶するのに適した何らかの処理メモリを含んでいる。プロセッサーシステム13が実施するタ 50

スクには線形化、色空間変換、及びライン発生が含まれている。これらのタスクが実施される順序は変動することがある。

[0013] ディスプレイメモリ14はプロセッサーシ ステム13から処理されたピクセルデータを受信する。 ディスプレイメモリ14は入力もしくは出力のデータを "ピットプレーン"フォーマットへフォーマット化し て、ピットプレーンを一時に一つづつDMD15へ送 る。ピットプレーンフォーマットによりDMD 15の各 ピクセルエレメントは一時にデータの1ピットの値に応 答してオンオフすることができる。代表的なディスプレ イシステム10では、ディスプレイメモリ14は"ダブ ルパッファー"メモリであり、少なくとも2ディスプレ イフレームの容量を有することを意味する。一つのディ スプレイフレームのパッファーはDMD15に対して読 み取られもう一つのディスプレイフレームのパッファー は書き込まれる。二つのパッファーは"ピンポン"方式 で制御されDMD15が連続的にデータを利用できるよ うにされる。

② 【0014】ディスプレイメモリ14からのデータはD MD15へ送られ、それはディスプレイメモリ14から のデータを使用してミラーエレメントをアドレスする。 各ミラーエレメントの"オン"もしくは"オフ"状態に より各画像が形成される。DMD15とその動作につい ては図3に関連して後配する。

【0015】DMD15の表面へ入射する光は光源16から供給される。照光制御装置17がこの光を受光し、図2に関連して後配するように、DMD15へ光を向ける光学部品を有している。カラーディスプレイの場合には、各色のピットプレーンは光学ユニット17の一部であるカラーホイールへシーケンスかつ同期化することができる。あるいは、さまざまな色のデータを3個のDMD上へ同時に表示して、各DMD15が異なる色の光を与えるそれ自体の光学ユニット17を有するようにすることができる。照光制御装置17はDMD15からの反射光を画像として画面等のディスプレイ面へ投写する手段も有している。マスタータイミングユニット18がさまざまなシステム制御機能を提供する。

【0017】光源16は白色光を供給し、それはカラー

5

フィルター 24 で違波された後でDMD 15 の表面から 反射される。 適切な光源 16 の一例は 100 W、キセノンアーク光源である。

【0018】 照光制御装置17は光源16からの光線を 第1組のレンズ23へ向ける第1のミラー21により構 成される。ヒートシンク22が熱を捕捉する。

【0019】第1組のレンズ23はモータ24aにより回転するカラーフィルター24を介して光を集束する。カラーフィルター24により違波された光は第2組のレンズ25により受光されほぼDMD15のミラーエレメ 10ントアレイのサイズへ疑似コリメートされる。

【0020】光シャッター26がこの疑似コリメートされた光の光路にある。光シャッター26はガラス支持体間に液晶層が挟持された液晶デバイスである。液晶ディスプレイ及び光スイッチング技術で周知の原理を使用して、電圧を印加して液晶層内の分子を揃える。するとシャッター26の一方側から他方側へ光を通すことができる。

【0021】印加電圧により光が透過できない場合に光シャッター26は"オフ"とされる。光が透過すると光 20シャッター26は"オン"とされる。

【0022】 "オールブラック"フレームを提供するために、光シャッター26が"オフ"とされ光はDMD15へ到達するのを防止される。本発明のこの特徴において、光シャッター26のオンオフ状態はフレームーパイーフレームペースで決定され、フレーム長に対応している。例えば、NTSCテレビジョンディスプレイの場合には、60フレーム/秒ディスプレイ速度に対するフレーム期間は16.7mSである。

【0023】画像を表示する場合には、光シャッター2 306はDMD15へ光を到達させミラーエレメントのアドレスされた状態に従って画像が形成される。より詳細には、光シャッター26が"オン"とされると、第2のミラー27がプリズム28へ光を向け、光はDMD15の反射面へ向けて曲げられる。プリズム28の面のコリメートレンズ28aによりミラーエレメントアレイの面積にほぼ等しいコリメートされた光線が得られる。説明の目的で、数個のミラーエレメント30が図示されている。しかしながら、実際の応用では、DMD15はこのような数百もしくは数千個のミラーエレメント30のア 40レイを有している。投写レンズ29がDMD15からの反射光を受光し、シーンサイズ及び距離に適切なサイズへ画像を再集束し、それをディスプレイ画像として画面等の表面へ仕向ける。

【0024】光シャッター26のオンオフ状態はCTL 入力により制御される。オールブラックフレームに対し てはCTL信号によりシャッターは所望する数のフレー ム期間だけオフとされる。代表的には、カラーフィルタ ー24の回転はフレームレートに関連づけられ、それに よりシャッター26へのCTL信号はカラーホイールモ 50

ータ24aへのCTL信号と連係することができる。マスタータイミングユニット18がCTL信号の制御及びタイミングを司る。

【0025】オールプラックフレームを提供する他に、本発明のもう一つの特徴は光シャッター26を使用して画像のディスプレイ中に照光レベルを与えることである。例えば、シャッター26がフレーム期間の半分だけ"オフ"であれば、得られる画像は50%の明るさとなる。照光レベルの決定はシャッター26へ適切なCTL信号を与えるタイミングユユニット18へある種の入力を与えてユーザ制御もしくは自動制御とすることができる。さまざまな技術を使用してシャッター26のオンオフ時間を変調することができる。例えば、50%照光レベルの場合には、各フレーム期間を4つのタイムスライス、すなわち、オン、オフ、オフ、ヘ分割することができる。代表的な光シャッター26のスイッチング時間は1mS程度であり、したがって、16の照光レベルが可能である。

【0026】図2において、ミラー21及び27は光源 016、カラーフィルター24、及びDMD15の配置に より指示される光路へ光を再指向する。他の構成の場合 には、さまざまなミラーを使用することができ、照光制 御装置17の光路により使用するミラーを増やしたり減 らしたり、照光制御装置17の他の部品に対してさまざ まな位置でミラーを使用することができる。それにもか かわらず、全体光路の一つの特徴はDMD15の表面に 入射する光がミラーエレメント30の傾斜角により予め 定められる所望角度となることである。

【0027】図3にDMD15の1個のミラーエレメント30を示す。代表的なディスプレイ画像は、各々がロー当たり768個のミラーエレメントの576ローを有するアレイの1個のミラーエレメント30に対応する、ピクセルにより構成される。光源16からの光がミラーエレメント30の表面に入射すると、各ミラーエレメント30により画像の1ピクセルが与えられる。

【0028】図2及び図3を参照して、照光制御装置17はシャッター26に従ってDMD15の表面へ照光するかもしくはDMD15へ光が到達するのを防止する。各ミラーエレメント30は支柱33に取り付けられたねじりヒンジ32により支持された傾斜ミラー31を有している。ミラー31はシリコン基板上に作成されたアドレス/メモリ回路34のメモリセル内のデータに基づいた静電力により各ミラー31は+10°(オン)もしくは-10°(オフ)傾斜し、DMD15の表面に入射する光が変調される。"オン"ミラー31からの反射光は投写レンズ29を通過して画像面上に画像を生成する。オフミラーからの光は投写レンズ29を離れるように反射されて

【0029】次に特に図3を参照して、各メモリセル3

4のすぐ上に2個のアドレス電極36及び2個のランデ ィング電極37がある。ミラー31は3状態を有してい る。それは双安定モードで作動し、ヒンジ32周りを一 方もしくは他方の方向へ10°傾斜する。第3の状態は ディスプレイの非作動時にミラー31が戻る平坦位置で ある。

[0030] 実際上、ミラー31及びアドレス電極36 によりキャパシタが形成される。一方のアドレス電極3 6へ+5V(デジタル1)が印加され、他方のアドレス 31に負パイアスが加えられると、生成される静電荷に よりミラー31は+5V電極36に向かって傾斜する。 アドレス電極36の電圧によりミラー31が傾斜開始 し、ランディング電極37に突き当たるまでそれ自体の モーメントにより傾斜し続ける。

【0031】ミラー31はいずれかの方向へ傾斜する と、電気機械的にその状態へラッチされる。アドレス電 極36の状態を変えるだけではミラーは移動せず、各ミ ラー31のパイアスを取り除くとその非傾斜位置へ戻 る。再びパイアスが加えられると、ミラー31はその新 20 しいアドレス状態に従って傾斜する。

【0032】図3のミラーエレメント30は"ねじりビ ーム"設計とされている。しかしながら、本発明は他の DMD設計でも有用である。例えば、カンチレパー設計 の場合には、ミラーは一端がヒンジにより支持され自由 **端はそのアドレス電極に向かって傾斜する。さまざまな** 種類のDMDの詳細については米国特許第5,083, 857号"多値可変形ミラーデバイス"、米国特許第 5,061,049号"空間光変調器及び変調方法"、 及び米国特許第4,956,619号"空間光変調器" に記載されている。これらの各特許はテキサスインスツ ルメンツ社が譲り受けており、参照としてここに組み入 れられている。

【0033】 DMD15へ入射する光の角度とその動作 の関係を図4に示す。一方へ10°かつ他方へ10°傾 斜するミラーエレメントの場合には、入射光は反射面に 直角な軸に対しておよそ20°の角度へ向けられる。1 0 オン傾斜したミラーは到来する光をレンズ29を介 して-20°だけ反射する。-10°(オフ)傾斜した ミラーは入射光の光路を-60°だけ反射させて投写レ 40 ンズ29の開口を避けるようにする。同様に、ヒンジ3 2の表面等の、アレイの平坦面により入射光は-40° だけ再指向されて、投写レンズ29の開口を避けるよう にされる。

【0034】他の実施例

特定実施例について本発明を説明してきたが、本明細 は制約的意味合いを有するものではない。当業者であれ ば、別の実施例だけでなく、開示された実施例のさまざ まな修正が自明であると思われる。したがって、本発明 の真の範囲に入る修正は全て特許請求の範囲に入るもの 50

とする。

【0035】以上の説明に関して更に以下の項を開示す

.8

(1) . ミラーエレメントのアレイを有し各ミラーエレ メントの傾斜及び非傾斜状態に従って画像を発生するデ ジタルマイクロミラーデパイス(DMD)を使用する画 像ディスプレイシステム用照光制御装置であって、該制 御装置は、光源から光を受光してカラーフィルターへ通 す第1組のレンズと、前記光の一つ以上の色を濾波する 電極36に0V (デジタル0) が印加され、かつミラー 10 カラーフィルターと、前記カラーフィルターから前記光 を受光してプリズムへ集束する第2組のレンズと、前記 第2組のレンズから前記光を受光して前記ミラーエレメ ントの反射面へ向けて曲げるプリズムと、前記アレイと ほぼ同面積の実質的にコリメートされた光線を供給する 前記プリズムレンズの一面におけるコリメートレンズ と、前記第1組のレンズと前記プリズムとの間に配置さ れ前記光を前記プリズムへ送るべきかどうかを決定する シャッターと、前記ミラーエレメントからの反射光を受 光し前記光により形成される画像をディスプレイ面へ投 写する投写レンズと、を具備する照光制御装置。

> 【0036】(2). 第1項記載の照光制御装置であっ て、前記シャッターが液晶デハイスである、照光制御装

【0037】(3). 第1項記載の照光制御装置であっ て、更に前記光を所望する光路に沿って再指向する少な くとも1個のミラーを具備する、照光制御装置。

【0038】(4). 第1項配載の照光制御装置であっ て、前記カラーフィルターが回転カラーホイールであ る、照光制御装置。

【0039】(5). 第4項配載の照光制御装置であっ て、前記光シャッター及び前記カラーホイールが共通制 御信号により同期化される、照光制御装置。

【0040】(6). 第1項記載の照光制御装置であっ て、前記シャッターが前記第2組のレンズと前記プリズ ムとの間に配置されている、照光制御装置。

【0041】 (7). ミラーエレメントのアレイを有し 各ミラーエレメントの傾斜及び非傾斜状態に従って画像 を発生するデジタルマイクロミラーデパイス(DMD) の入射照光制御方法であって、該方法は、光線を発生す るステップと、第1組のレンズを使用して前記光線をカ ラーフィルターを介して集束するステップと、第2組の レンズを使用して濾波された光を受光しプリズムへ集束 するステップと、プリズムを使用して前記アレイの表面 へ所望する入射角度で光を向けるステップと、コリメー トレンズを使用してほぼ前記アレイのサイズに等しい実 質的にコリメートされた光線へ整形するステップと、光 シャッターを使用して前記コリメートされた光線を前記 プリズムへ送るべきかを制御するステップと、からなる 照光制御方法。

【0042】(8). 第7項記載の方法であって、前記

(6)

9

光シャッターを使用するステップはフレーム期間に従っ て実施される、照光制御方法。

【0043】(9). 第7項記載の方法であって、前配 光シャッターを使用するステップは1フレーム期間より も短いタイムスライスに従って実施される、照光制御方 法。

【0044】(10). 第7項記載の方法であって、前記カラーフィルターは回転カラーホイールであり光シャッターを使用する前記ステップは前記カラーホイールの回転に同期される、照光制御方法。

【0045】(11).第7項記載の方法であって、更に前記ミラーエレメントからの反射光を画像としてディスプレイ面へ投写するステップからなる、照光制御方法。

【0046】(12). デジタルミラーデバイス(DMD)(15)を使用して画像を発生する投写ディスプレイシステム(10)用照光制御装置(17)。照光制御装置(17)は光源からの光を受光してカラーフィルター(24)へ収束する第1組のレンズ(23)を有している。第2組のレンズ(25)が有色光を受光してプリンズム(28)へ向ける。プリズム(28)はDMD(15)の反射鏡(30)へ向けて光を曲げ、コリメートレンズ(28a)がDMD(15)のミラーアレイのサイズにほぼ等しい光線を与える。光シャッター(26)が第2組のレンズ(25)とプリズム(28a)との間に配置されていて、システム(10)は画像ディスプレイ間に"ブラック状態"を達成するかもしくはディスプレイされる画像の変調された照光レベルを達成することができる。

【図面の簡単な説明】

【図1】デジタルマイクロミラーデバイス(DMD)を使用してホログラフィック画像を発生するディスプレイシステム、及び本発明に従ってDMDへ光を与えるシャッター付レンズシステムを示す図。

[図1]

【図2】図1のDMD、光源、及びディスプレイ光学ユニットの詳細図。

10

【図3】DMDの1個のミラーエレメントを示す図。

【図4】DMDへ入射する光の角度とDMDの動作の関係を示す図。

【符号の説明】

- 10 投写ディスプレイシステム
- 11 信号インターフェイスユニット
- 12a A/Dコンパータ
- 10 12b Y/Cセパレータ
 - 13 プロセッサシステム
 - 14 ディスプレイメモリ
 - 15 デジタルミラーデバイス (DMD)
 - 16 光源
 - 17 照光制御装置
 - 18 マスタータイミングユニット
 - 21 第1のミラー
 - 22 ヒートシンク
 - 23 第1組のレンズ
- **0 24 回転カラーフィルター**
 - 24a モータ
 - 25 第2組のレンズ
 - 26 光シャッター
 - 27 第2のミラー
 - 28 プリズム
 - 28a コリメートレンズ
 - 29 投写レンズ
 - 30 ミラーエレメント
 - 31 傾斜ミラー
- 32 ねじりヒンジ
 - 33 支柱
 - 34 メモリセル
 - 36 アドレス電極
 - 37 ランディング電極

[図2]

【図3】

[図4]

