Buckling-1

Title

Buckling analyses of a column

Description

Determine the buckling modes and the corresponding critical loads of a column subjected to a vertical load with various boundary conditions.

Structural geometry and boundary conditions

Model

Analysis Type

Buckling analysis

Unit System

m, tonf

Dimension

Length 15 m

Element

Beam element and plate element (Thick type)

Material

Modulus of elasticity $E = 10000 \text{ tonf/m}^2$

Section Property

Beam element Solid rectangular 0.25×0.25 m

Plate element Thickness 0.25m

Boundary Condition

Case 1: The top end is a roller and the bottom is a pin support.

Case 2: The top end is free and the bottom is a fixed support.

Case 3: Lateral displacement and rotational displacement of the top end are constrained and the bottom is a fixed support.

Case 4: The top end is a roller and the bottom is a fixed support.

Results

Buckling Analysis Results

Case 1: The top end is a roller and the bottom is a pin support.

BUCKLING ANALYSIS					
	Mode	Eigenvalue	Tolerance		
	1	0,570845	1,9060e-014		
	2	2,279632	3,8182e-014		
	3	5,115187	2,0992e-010		
	4	9,059105	3,7871e-009		
	5	14,086072	3,8813e-007		

beam element model

E	вискі	ING ANA	LYSIS
	Mode	Eigenvalue	Tolerance
	1	0,571158	4,4708e-015
	2	2,284631	9,7191e-016
	3	5,140428	3,2829e-015
	4	9,138571	4,6010e=013
	5	14,279127	2,0922e-009

plate element model

Case 2: The top end is free and the bottom is a fixed support.

BUCKLING ANALYSIS					
	Mode	Eigenvalue	Tolerance		
	1	0,142770	5,1518e-014		
	2	1,283521	8,6498e-016		
	3	3,557547	2,4729e=012		
	4	6,950026	3,7908e-009		
	5	11,439048	8,0757e-008		

Beam element model

BUCKLING ANALYSIS			
Mode	Eigenvalue	Tolerance	
1	0,142789	6,2202e-015	
2	1,285105	5,8746e-015	
3	3,569738	1,0574e-014	
4	6,996703	2,5388e-015	
5	11,566041	8,9668e-010	

Plate element model

Case 3: Lateral and rotational displacement of the top end are constrained and the bottom is a fixed support

BUCKLING ANALYSIS				
	Mode	Eigenvalue	Tolerance	
	1	2,279632	1,8896e-014	
	2	4,650850	3,2179e-013	
	3	9,059105	2,6082e-011	
	4	13,628078	3,4804e-009	
	5	20,164291	1,0699e=007	

Beam element model

	вискі	LING ANA	LYSIS
	Mode	Eigenvalue	Tolerance
	1	2,284631	4,0820e-015
	2	4,673787	1,3302e-015
	3	9,138571	5,8314e-016
	4	13,814874	2,6925e-013
	5	20,562229	3,4113e-010

Plate element model

Case 4: The top end is a roller and the bottom is a fixed support.

вискі	LING ANA	LYSIS
Mode	Eigenvalue	Tolerance
1	1,167006	2,0549e-014
2	3,441884	5,3082e-012
3	6,834895	4,2946e-010
4	11,324475	4,3389e-008
5	16.882067	4.3357e=007

Beam element

E	искі	ING ANA	LYSIS
	Mode	Eigenvalue	Tolerance
	1	1,168445	4,9409e-015
	2	3,453678	2,4431e-015
	3	6,880800	7,7448e-016
	4	11,450201	2,4567e-010
	5	17,162037	1,7251e-007

Plate element

Comparison of Results

Unit: tonf

Case	Critical load for 1 st buckling		
	Theoretical	MIDAS/Civil	
		Beam element	Plate element
1	0.5712	0.5708	0.5712
2	0.1428	0.1428	0.1428
3	2.2846	2.2796	2.2846
4	1.1684	1.1670	1.1684

* Critical load : Load applied in the Load Case × Eigenvalue

Case 1 :
$$P_{cr} = \frac{\pi^2 EI}{L^2}$$

Case 2 :
$$P_{cr} = \frac{\pi^2 EI}{4L^2}$$

Case 3 :
$$P_{cr} = \frac{4\pi^2 EI}{L^2}$$

Case 4 :
$$P_{cr} = \frac{2.046\pi^2 EI}{L^2}$$

Reference

Gere & Timoshenko "Mechanics of Materials" Chapter 11