



Europäisches Patentamt

(19)

European Patent Office

Office européen des brevets

(11) Publication number:

0 057 891

A2

(12)

## EUROPEAN PATENT APPLICATION

(21) Application number: 82100690.5

(61) Int.Cl.<sup>3</sup>: C 08 L 23/08

(22) Date of filing: 01.02.82

(30) Priority: 30.01.81 JP 14038/81  
30.01.81 JP 14039/81  
30.01.81 JP 14040/81  
30.01.81 JP 14041/81  
30.01.81 JP 14042/81  
30.01.81 JP 14043/81  
30.01.81 JP 14044/81

(43) Date of publication of application:  
18.08.82 Bulletin 82/33

(84) Designated Contracting States:  
BE DE FR IT NL

(71) Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED  
15 Kitahama 5-chome Higashi-ku  
Osaka-shi Osaka-fu(JP)

(72) Inventor: Fukushima, Nobuo  
4396-14, Sakamotohonmachi  
Ootsu-shi(JP)

(72) Inventor: Kitamura, Shuji  
7-3, Funakicho  
Ibaraki-shi(JP)

(72) Inventor: Nakae, Kiyohiko  
2-305, Ryodocho-4-chome  
Nishimoniya-shi(JP)

(72) Inventor: Ogawa, Tadatoshi  
1-1-730, Chiyodacho  
Takatsuki-shi(JP)

(72) Inventor: Kotani, Kozo  
6-8, Shiroyamacho-1-chome  
Toyonaka-shi(JP)

(72) Inventor: Hosono, Hidekazu  
10-3-335, Sonehigashinocho-2-chome  
Toyonaka-shi(JP)

(74) Representative: PATENTANWÄLTE HENKEL - KERN -  
FEILER - HÄNZEL  
Möhlstrasse 37  
D-8000 München 80(DE)

(54) Ethylene-alpha-olefin copolymer composition.

(57) An ethylene-alpha-olefin copolymer composition comprising two ethylene-alpha-olefin copolymers which are different in density, intrinsic viscosity and the number of short chain branching per 1000 carbon atoms. Extrusion processed materials, injection molded materials and films obtained from said composition are excellent in strength.

EP 0 057 891 A2

1 therefore, cause occasional troubles and are susceptible  
to attack by chlorine water. Further, they are not  
sufficient in creep characteristics, which makes them  
unusable in pipes of high internal pressure. When high  
5 pressure polyethylenes are used as coating materials for  
steel pipes, their low temperature resistance is not  
satisfactory, which makes their use in very cold climatic  
areas improper. In their use as coating materials for  
electric wires, troubles occur at times due to improper  
10 environmental stress cracking resistance and water-tree  
resistance.

To improve these defects, some attempts have  
been proposed. However, their quality is still not in  
a satisfactory level.

15 On the other hand, for improvement of these  
defects, the following polymerization methods have been  
adopted.

(1) Polymerization of ethylene and other polymerizable monomer such as vinyl acetate.

20 (2) Method in which ethylene and acrylic acid (or methacrylic acid) are polymerized followed by conversion to a salt with a metal, namely an ionomer.

The former method still has many problems such as (a) reduction of tear strength, rigidity and heat  
25 resistance of films, (b) occurrence of corrosion of extruder and smell in processing due to liberation of acetic acid and (c) occurrence of blocking due to sticky film surface and cold flow. The latter method has

1 problems of reduction of thermal stability and weather -  
resistance and of high cost.

Also for improvement of the defects of high pressure polyethylenes, there were made proposals in  
5 which a high pressure polyethylene is mixed with an other  $\alpha$ -olefin polymer such as high density polyethylene, polypropylene, polybutene, or a rubber. However, an improvement in one defect causes another problem and no satisfactory answer has been attained.

10 As resins which have low densities about equal to those of high pressure polyethylenes, there are known resins which are prepared by co-polymerizing ethylene and an  $\alpha$ -olefin under a medium to low pressure using a transition metal catalyst. (Hereinafter, are abbreviated  
15 as "ethylene- $\alpha$ -olefin copolymers"). The copolymers produced with a vanadium catalyst are low in degree of crystallization, and have problems in heat resistance, weather resistance and mechanical strengths. The ethylene- $\alpha$ -olefin copolymers produced under normal poly-  
20 merization conditions with a titanium catalyst, having generally narrow molecular weight distributions (narrower than those of high pressure polyethylenes), are relative-  
ly excellent in mechanical strengths but poor in melt rheology characteristics and have many problems in  
25 processing. In blown film processing, a large quantity of electricity is needed, output is reduced or bubble stability is lost. In high speed processing, shark skin appears on film surfaces thereby losing product values.

1 Also in blow molding, parison stability is lost, or  
surfaces of molded products turn to shark skin and pro-  
duct values are lost. In injection molding, processing  
temperatures need to be largely raised because of poorer  
5 flow property under high pressures as compared with high  
pressure polyethylenes, which requires more heat energy  
and moreover causes resin deterioration.

Trials have been made in recent years for  
solving these problems by improving extruders, screws  
10 and dies. These approaches require a large amount of  
expenditures and moreover techniques have not been fully  
developed. Further, various other problems such as the  
following:

(1) with respect to mechanical strengths of films  
15 produced, balancing of machine direction (MD) and trans-  
verse direction (TD) is difficult and the tear strength  
of MD is poorer than that of high pressure polyethylenes,  
and

(2) film transparency is inferior to that of high  
20 pressure polyethylenes, because the ethylene- $\alpha$ -olefin  
copolymer of narrow molecular weight distribution has a  
faster crystallization speed than high pressure poly-  
ethylenes and causes melt fracture more easily.

Low density ethylene- $\alpha$ -olefin copolymers are  
25 difficult to obtain under normal polymerization conditions  
using a chromium catalyst, because copolymerizability  
between ethylene and  $\alpha$ -olefin is generally lower with  
chromium catalysts than with titanium catalysts. When

- 1 a chromium-titanium catalyst is used in order to overcome  
this problem, ethylene- $\alpha$ -olefin copolymers obtained have  
wider molecular weight distributions than copolymers  
produced with a titanium catalyst and have slightly im-  
5 proved processability. However, their mechanical strengths  
largely worsen and their physical properties are not much  
different from those of high pressure polyethylenes and  
these copolymers provide film sheets and bottles inferior  
in transparency.
- 10 For improving the transparency of these copoly-  
mers, when the quantity of an  $\alpha$ -olefin is largely  
increased in polymerization and the density of a copoly-  
mer obtained is reduced, only a sticky copolymer having  
much deteriorated mechanical strengths is produced.
- 15 According to the knowledge of the present in-  
ventors, ethylene- $\alpha$ -olefin copolymers polymerized under  
a medium to low pressure using a transition metal cata-  
lyst, have non-uniform component distributions. Namely  
in these copolymers, the number of short chain branching  
20 per 1000 carbon atoms (excluding methyl groups at the  
ends) (hereinafter referred to as "S.C.B." for brevity)  
varies depending upon molecular weight, and generally  
lower molecular weight components have larger S.C.B. and  
higher molecular weight components have smaller S.C.B.
- 25 This phenomenon is considered to be due to that  $\alpha$ -olefins  
tend to act as a chain transfer agent or act even to  
active sites of catalyst to which molecular weight  
regulators such as hydrogen tend to act. (cf. Reference

1 example 1.)

Because of the above phenomenon, ethylene- $\alpha$ -olefin copolymers polymerized with the  $\alpha$ -olefin concentration increased with an aim to reduce to a large extent the density of copolymers produced, only give such products as those having increased S.C.B. in their lower molecular weight components thereby having increased solubility in solvents and poor mechanical strengths and causing surface stickiness. This tendency is particularly remarkable in those ethylene- $\alpha$ -olefin copolymers which are polymerized with a catalyst giving wider molecular weight distributions. One of the reasons for poor mechanical strengths of ethylene- $\alpha$ -olefin copolymers having wide molecular weight distributions will be explained by the above fact.

As described above, ethylene- $\alpha$ -olefin copolymers having densities about equal to those of high pressure polyethylenes and synthesized under a medium to low pressure with a transition metal catalyst, can not satisfy all of processability, mechanical strengths and transparency. For instance, lowering of molecular weight for improvement of processability results in large reduction in mechanical strengths and disappearance of said copolymer characteristics. Broadening of molecular weight distribution leads to large reduction in mechanical strengths as well (cf. Reference example 2.), and moreover transparency worsens and surfaces of molded products get sticky. Thus, both of processability and physical

- 8 -

1 properties are not met together yet, and any low density  
ethylene- $\alpha$ -olefin copolymer excellent in processability  
and mechanical strengths have not yet been provided.

As described above, high pressure polyethylenes  
5 are excellent in rheology characteristics and processa-  
bility but relatively poor in mechanical strengths. On  
the other hand, ethylene- $\alpha$ -olefin copolymers polymerized  
under a medium to low pressure with a transition metal  
catalyst and having densities about equal to those of  
10 high pressure polyethylenes, have excellent mechanical  
strengths due to their narrower molecular weight distri-  
butions but are poor in processability. These property  
differences are considered to originate from molecular  
structures of polymers.

15 High pressure polyethylenes are obtained from  
radical polymerization under a pressure of about 1500 to  
4000 kg/cm<sup>2</sup> at a temperature of about 150° to 350°C in  
an autoclave or a tubular reactor. Their molecular  
structures are very complicated and, in spite of being  
20 homopolymers of ethylene, have short chain branches  
which are alkyl groups of 1 to 6 carbon atoms. These  
short chain branches affect crystallinities and therefore  
densities of polymers. The distribution of short chain  
branching of high pressure polyethylenes is relatively  
25 even, and both lower molecular weight components and  
higher molecular weight components have almost similar  
numbers of branches.

Another important feature of high pressure

1 polyethylenes is that the polyethylenes have also long  
chain branches in complicated structures. Identification  
of these long chain branches is difficult, but these  
branches are considered to be alkyl groups of which  
5 lengths vary from about lengths of main chains to lengths  
having carbon atoms of over several thousands. The pre-  
sence of these long chain branches largely affects melt  
rheology characteristics of polymers and this is one of  
the reasons for excellent processability of high pressure  
10 method polyethylenes.

On the other hand, ethylene- $\alpha$ -olefin copolymers  
synthesized under a medium to low pressure with a transi-  
tion metal catalyst and having densities about equal to  
those of high pressure polyethylenes, are obtained by co-  
15 polymerizing ethylene and an  $\alpha$ -olefin under a medium to  
low pressure of about 5 to 150 kg/cm<sup>2</sup> and at 0° - 250°C  
normally at a relatively low temperature of 30° to 200°C  
with a transition metal catalyst in an autoclave or a  
tubular reactor. Their molecular structures are relatively  
20 simple. These ethylene- $\alpha$ -olefin copolymers seldom possess  
long chain branches and have only short chain branches.  
These short chain branches are not formed through compli-  
cated reaction processes as so in high pressure poly-  
ethylenes, but are controlled by the kind of an  $\alpha$ -olefin  
25 to be used in the copolymerization. As an example, in a  
copolymerization between ethylene and butene-1, short  
chain branches formed are normally ethyl branches. These  
branches could be hexyl branches as a result of dimeriza-

1 tion of butene-1. Short chain branches formed control  
crystallinities and densities of polymers.

Distribution of short chain branches is also  
affected by the nature of a transition metal catalyst  
5 used in the copolymerization, the type of polymerization  
and the temperature of polymerization. Different from  
the case of high pressure polyethylenes, the distribu-  
tion is wide. Namely, as a general trend, lower molecular  
weight components have larger S.C.B. and higher molecular  
10 weight components have smaller S.C.B. (cf. Reference  
exmaple 1.)

Ethylene- $\alpha$ -olefin copolymers obtained by copoly-  
merizing ethylene and an  $\alpha$ -olefin under a medium to low  
pressure with a transition metal catalyst and having  
15 densities about equal to those of high pressure poly-  
ethylenes, have come to be practically used. Therefore,  
the conventional classification that polyethylene resins  
having densities of 0.910 to 0.935 g/cm<sup>3</sup> fall in a ca-  
tegory of high pressure polyethylenes, is improper and  
20 a new classification should be developed mainly based on  
whether or not a polymer or resin has long chain branches.  
As low density polyethylenes substantially not having  
long chain branches, there are resins which are obtained  
by polymerization using a transition metal catalyst under  
25 a same high pressure and temperature as employed in the  
manufacture of high pressure method polyethylenes. These  
resins are also included in "ethylene- $\alpha$ -olefin copolymers"  
as defined by the present invention.

1           Presence or absence of long chain branches is  
clarified to a considerable extent by a theory of solu-  
tion. As an example, the presence of long chain branches  
in an ethylene polymer can be known by using  $[\eta]/[\eta]_g$   
5 namely  $g^*_\eta$ . Herein,  $[\eta]$  is the intrinsic viscosity of the  
ethylene polymer, and  $[\eta]_g$  is the intrinsic viscosity of  
a reference linear polyethylene (high density poly-  
ethylene produced from homopolymerization of ethylene  
under a medium to low pressure with a Ziegler catalyst)  
10 having the same weight average molecular weight by the  
light scattering method. Molecules having more long  
chain branches have less spread in a solution, and there-  
fore, their  $g^*_\eta$  is small. Normally,  $g^*_\eta$  of high pressure  
polyethylenes is 0.6 or less.

15           This method is useful, but practically presence  
of long chain branches can be known more easily and  
clearly by a correlation between melt index and intrinsic  
viscosity of polymer. This correlation was shown in  
Reference example 3. In there, the intrinsic viscosity  
20 of a high pressure polyethylene is far lower than that  
of the ethylene- $\alpha$ -olefin copolymer according to medium  
to low pressure method having the same melt index,  
because the former polyethylene has long chain branches.

25           Due to difference of presence or absence of  
long chain branches, high pressure polyethylenes and  
ethylene- $\alpha$ -olefin copolymers give largely differed  
properties in melt rheology characteristics, crystallini-  
ty, solid mechanical properties and optical properties.

1       The present inventors made strenuous efforts  
with an aim to obtain polyethylenes which will solve the  
above-mentioned defects of polyethylenes, will have  
processability equal to or better than that of high  
5      pressure polyethylenes, and will be excellent in tear  
strength, impact strength, environmental stress cracking  
resistance, low temperature resistance, creep character-  
istics, chemicals resistance, transparency and heat-  
sealing characteristics. As a result, the present in-  
10     ventors have found that, by mixing (a) an ethylene- $\alpha$ -  
olefin copolymer having a relatively higher molecular  
weight and of which density, intrinsic viscosity, S.C.B.,  
kind of  $\alpha$ -olefin and (weight average molecular weight)/  
(number average molecular weight) are specified and (b)  
15     another ethylene- $\alpha$ -olefin copolymer having a relatively  
lower molecular weight and of which density, intrinsic  
viscosity, S.C.B., kind of  $\alpha$ -olefin and (weight average  
molecular weight)/(number average molecular weight) are  
specified, in such a way that the ratio of S.C.B. of the  
20     former copolymer over S.C.B. of the latter copolymer is  
in a specified range, ethylene copolymer compositions can be  
obtained which composition has extremely good processa-  
bility compared with the conventional polyethylenes as  
well as very excellent physical and chemical properties  
25     such as tear strength, impact strength, environmental  
stress cracking resistance, low temperature resistance,  
creep characteristics, chemicals resistance, transparency,  
and heat-sealing characteristics. The present inventors

1 have also found that ethylene- $\alpha$ -olefin copolymer compositions substantially not having long chain branches and having  
5 a specific distribution of S.C.B. provide extremely good properties such as tensile strength, impact strength, environmental stress cracking resistance, low temperature  
resistance, creep characteristics, chemicals resistance, transparency and heat-sealing characteristics, compared with the conventional polyethylenes, and therefore, with such  
10 ethylene- $\alpha$ -olefin copolymer compositions, improvement of processability by broadening of molecular weight distribution can be attained without deterioration of properties described above. Thus, the present invention has been achieved.

According to the present invention, there is provided an ethylene- $\alpha$ -olefin copolymer composition excellent in strength and having a density of 0.910 to 15 0.940 g/cm<sup>3</sup>, a melt index of 0.02 to 50 g/10 min. and a melt flow ratio of 35 to 250, which comprises 10 to 70% by weight of an ethylene- $\alpha$ -olefin copolymer A and 90 to 30% by weight of an ethylene- $\alpha$ -olefin copolymer B; said 20 copolymer A being a copolymer of ethylene and an  $\alpha$ -olefin of 3 to 18 carbon atoms and having a density of 0.895 to 0.935 g/cm<sup>3</sup>, an intrinsic viscosity of 1.2 to 6.0 dl/g, and the number of short chain branching per 1000 carbon atoms (S.C.B.) of 7 to 40; said copolymer B 25 being a copolymer of ethylene and an  $\alpha$ -olefin of 3 to 18 carbon atoms and having a density of 0.910 to 0.955 g/cm<sup>3</sup>, an intrinsic viscosity of 0.3 to 1.5 dl/g, and S.C.B. of 5 to 35; said copolymer A and said copolymer

1 B being selected in order to satisfy a condition that  
5 (S.C.B. of said copolymer A)/(S.C.B. of said copolymer  
B) is at least 0.6.

The present invention also provides a composition of copolymers of ethylene and an  $\alpha$ -olefin of 3 to  
5 18 carbon atoms, having the following properties:

- (1) density of 0.910 to 0.940 g/cm<sup>3</sup>,
- (2) intrinsic viscosity  $[\eta]$  of 0.7 to 4.0 dl/g,
- (3) melt index of 0.02 to 50 g/10 min,
- 10 (4) the number of short chain branching per 1000 carbon atoms (S.C.B.) being 5 to 45,
- (5)  $[\eta]/[\eta]_L$  namely  $g^*_\eta$  being at least 0.8, where  $[\eta]_L$  is an intrinsic viscosity of a linear polyethylene having the same weight average molecular weight measured  
15 by a light scattering method, and
- (6) (S.C.B. of the higher molecular weight components)/(S.C.B. of the lower molecular weight components) being at least 0.6, wherein these two component groups are obtained by a molecular weight fractionation method.

20 The first feature of this invention is to provide an ethylene copolymer composition of which processability is about equal to or better than that of high pressure polyethylenes and of which physical and chemical properties such as tensile strength, impact strength, environmental stress cracking resistance,  
25 creep characteristics, tear strength, transparency, heat-sealing characteristics and chemicals resistance are very excellent.

1           The second feature of this invention is that,  
because the product of this invention is excellent in  
mechanical strengths, has a rigidity higher than those  
of high pressure polyethylenes and has a transparency  
5 about equal to that of high pressure polyethylenes,  
material saving can be expected with the product of this  
invention; for instance, when this product is used for  
films, the same performance can be obtained with the  
thickness 10 to 20% thinner than that of high pressure  
10 polyethylenes.

The third feature of this invention is that,  
because the product of this invention has extrusion  
processability superior to that of relatively low density  
ethylene- $\alpha$ -olefin copolymers by the conventional  
15 technique, conventional extruders being used for high  
pressure polyethylenes can be utilized for the present  
product without any modification.

The fourth feature of this invention is that,  
because the present product, even if possesses a melt  
20 index lower than those of low density ethylene- $\alpha$ -olefin  
copolymers by the conventional technique, shows satisfactory  
flow properties in actual processing, it gives  
excellent bubble stability and mechanical strengths of  
machine and transverse directions can be easily balanced,  
25 whereby molded products can have a uniform quality.

The fifth feature of this invention is that,  
because a resin composition less sticky than low density  
ethylene- $\alpha$ -olefin copolymers by the conventional

1 technique is obtained even when the density of the composition is lowered, the composition can be applied even for the usages where transparency, flexibility and impact characteristics are required.

5 In the attached drawings, Figs. 1 to 6 show curves of molecular weight distributions obtained from gel permeation chromatography. Broken lines in these figures are for dividing lower molecular weight components and higher molecular weight components into two respective  
10 territories.

Fig. 7 is a typical example showing "distribution of S.C.B. against molecular weight" of an ethylene- $\alpha$ -olefin copolymer of the conventional technique.

Fig. 8 shows correlations between melt indices  
15 (MI) and tensile impact strengths of ethylene- $\alpha$ -olefin copolymers of the conventional technique, with their melt flow ratios (MFR) used as a parameter.

Fig. 9 shows correlations between MI and intrinsic viscosities [ $\eta$ ] of a high pressure polyethylene  
20 and a linear polyethylene of the medium to low pressure method as a method for distinguishing these two polymers.  
In the figure, a broken line is drawn to separate two territories, the left side territory is for the high pressure polyethylene of the conventional technique and  
25 the right side territory is for the linear polyethylene of the medium to low pressure method.

The present invention will be explained in more detail below.

- 1 An ethylene- $\alpha$ -olefin copolymer of a relatively,  
high molecular weight (hereinafter referred to as "co-  
polymer A") which is used in the present invention as  
one mixing component, is a copolymer of ethylene and an  
5  $\alpha$ -olefin of 3 to 18 carbon atoms. This  $\alpha$ -olefin is a  
one represented by a general formula R-CH=CH<sub>2</sub> wherein R  
is an alkyl group of 1 to 16 carbon atoms. Examples of  
the  $\alpha$ -olefin include propylene, butene-1, pentene-1,  
hexene-1, heptene-1, octene-1, nonene-1, decene-1, 4-  
10 methyl-pentene-1, 4-methyl-hexene-1 and 4, 4-dimethyl-  
pentene-1. Among these olefins,  $\alpha$ -olefins of at least  
4 carbon atoms are preferred. Particularly, butene-1,  
pentene-1, hexene-1, octene-1 and 4-methyl-pentene-1 are  
preferred from the standpoints of monomer availability,  
15 copolymerizability and quality of polymer obtained.  
These  $\alpha$ -olefins can be used alone or in combination of  
two or more. The density of the copolymer A is influenced  
by the kind of an  $\alpha$ -olefin used, the content of the  
olefin and the intrinsic viscosity of the copolymer.  
20 For the object of this invention, the density is required  
to be 0.895 to 0.935 g/cm<sup>3</sup> and more preferably 0.895 to  
0.930 g/cm<sup>3</sup>. In the density smaller than 0.895 g/cm<sup>3</sup>,  
copolymers stick to the reactor walls causing polymeri-  
zation difficult, or, the density of the relatively  
25 lower molecular weight copolymer (namely "copolymer B"  
which is described later and used as another mixing  
component in the present invention) is required to be  
raised, resulting in formation of polymer compositions

1 of undesirable qualities such as films of poor trans-  
parency. In the density higher than  $0.930 \text{ g/cm}^3$ , the  
content of the  $\alpha$ -olefin in the copolymer A becomes very  
low, and the copolymer A of such a high density does  
5 not give satisfactory mechanical strengths. For instance,  
in films, balancing of MD and TD strengths becomes  
difficult and heat-sealing characteristics get worse.  
S.C.B. in the copolymer A is preferably 7 to 40 and more  
preferably 10 to 40. (When R in the above  $\alpha$ -olefin  
10 formula is a linear alkyl group, the number of methyl  
groups at branch ends per 1000 carbon atoms is S.C.B.  
When R is an alkyl group with a branch or branches, for  
instance, the  $\alpha$ -olefin is 4-methyl-pentene-1, the branch  
. is isobutyl group and the half number of methyl groups  
15 at the branch ends is S.C.B.) Short chain branching in  
ethylene- $\alpha$ -olefin copolymers occurs due to  $\alpha$ -olefins and  
it hinders crystallization mainly of ethylene sequences  
and lowers densities. These effects vary depending upon  
the kind of  $\alpha$ -olefin. Short chain branching is con-  
20 sidered to also make some contribution to formation of  
interlamella molecules, and ultimately affects mechanical  
strengths and thermal properties of copolymers obtained.  
Therefore, when S.C.B. is below 7, mechanical strengths  
and heat-sealing properties of the composition become  
25 poor. For instance, in films, balancing of MD and TD  
strengths is difficult. When S.C.B. is over 40, there  
occur problems in polymerization of the copolymer A and  
also the transparency of polymer compositions obtained

1 from the copolymer becomes poor.

The molecular weight of the copolymer A is generally preferred to be 1.2 to 6.0 dl/g as intrinsic viscosity and more preferred to be 1.2 to 4.5 dl/g.

5 When the intrinsic viscosity is below 1.2 dl/g, mechanical strengths of polymer compositions of the present invention are reduced. In over 6.0 dl/g, mixing with the copolymer B becomes difficult, and polymer compositions obtained have fish eyes and further

10 worsened flow properties as well as reduced transparency.

In injection molding, the intrinsic viscosity is preferably 1.2 to 4.0 dl/g and more preferably 1.2 to 3.0 dl/g. If it is less than 1.2 dl/g, mechanical strengths of compositions are lowered. If it is over 4.0 dl/g,

15 mixing with the copolymer B becomes insufficient, and polymer compositions obtained have Fish eyes, deteriorated flow properties (tend to cause flow marks) and reduced transparency.

(Weight average molecular weight)/(number

20 average molecular weight) of the copolymer A which is a measure for the molecular weight distribution of the copolymer obtained from gel permeation chromatography (hereinafter abbreviated as "GPC"), is preferably 2 to 10 and more preferably 3 to 8. If it is less than 2,

25 such a copolymer A is difficult to produce. If it is over 10, polymer compositions have lower mechanical strengths and, when processed into films, cause blocking.

An ethylene- $\alpha$ -olefin copolymer of a relatively

- 20 -

1 low molecular weight (hereinafter abbreviated as "co-  
polymer B") which is used in the present invention as  
another mixing component, is a copolymer of ethylene and  
an  $\alpha$ -olefin of 3 to 18 carbon atoms. As  $\alpha$ -olefins, there  
5 may be selected from  $\alpha$ -olefins used in the copolymer A.  
The density of the copolymer B is normally preferred to  
be 0.910 to 0.955 g/cm<sup>3</sup>. More preferably, it is 0.915  
to 0.953 g/cm<sup>3</sup>. When the density is below 0.910 g/cm<sup>3</sup>,  
copolymer compositions possess reduced mechanical streng-  
10 ths and cause blocking due to bleeding of lower molecular  
weight components of low density on film surfaces. When  
the density is over 0.955 g/cm<sup>3</sup>, copolymer compositions  
of this invention possess worsened transparency and too  
high densities. In the area of injection molding, the  
15 density of the copolymer B is preferred to be 0.910 to  
0.950 g/cm<sup>3</sup> and more preferred to be 0.915 to 0.948 g/cm<sup>3</sup>.  
When the density is below 0.910 g/cm<sup>3</sup>, mechanical streng-  
ths of compositions are reduced and surface tackiness  
occurs. When the density is over 0.950 g/cm<sup>3</sup>, composi-  
20 tions have too high densities. S.C.B. of the copolymer  
B is preferred to be 5 to 35 and more preferred to be  
7 to 30. When S.C.B. is below 5, the copolymer B has a  
lower molecular weight as a whole and its crystalliza-  
tion speed is fast, resulting in poor transparency of  
25 compositions. In case of over 35, reduction in mechani-  
cal strengths as well as blocking in films occurs.

The molecular weight of the copolymer B is 0.3  
to 1.5 dl/g preferably 0.4 to 1.5 dl/g as intrinsic

1 viscosity. When the intrinsic viscosity is less than  
0.3 dl/g, mechanical strengths and transparency of com-  
positions are reduced. In case of over 1.5 dl/g,  
fluidity of compositions is poor. In the area of injec-  
5 tion molding, the molecular weight of the copolymer B  
is preferably 0.3 to 1.2 dl/g as intrinsic viscosity  
and more preferably 0.4 to 1.2 dl/g. When the intrinsic  
viscosity is below 0.3 dl/g, mechanical strengths and  
transparency of compositions are reduced. In case of  
10 over 1.2 dl/g, fluidity of compositions is poor.

The value of (weight average molecular weight)/  
(number average molecular weight), namely,  $\bar{M}_w/\bar{M}_n$  of the  
copolymer B determined by gel permeation chromatography  
(GPC) is preferably 2 to 10 and more preferably 3 to 8.  
15 When  $\bar{M}_w/\bar{M}_n$  is below 2, the copolymer B is difficult to  
produce. In case of over 10, mechanical strengths of  
compositions are reduced and surface tackiness of films  
occurs.

The copolymer A and the copolymer B as men-  
20 tioned above can be obtained by copolymerizing ethylene  
and an  $\alpha$ -olefin of 4 to 18 carbon atoms under a medium  
to low pressure using a transition metal catalyst.  
For instance, catalysts such as Ziegler type catalyst  
25 and Phillips type catalyst as well as polymerization  
methods such as slurry polymerization, gas phase poly-  
merization and solution polymerization are used. As  
catalysts, a Ziegler type catalyst system using a  
carrier-supported Ziegler catalyst component is

1 convenient in this invention from its activity and co-polymerizability. Specific examples of an effective carrier of this carrier-supported Ziegler catalyst component include oxides, hydroxides, chlorides and  
5 carbonates of metals and silicon and their mixtures as well as inorganic complexes. More specifically, they are magnesium oxides, titanium oxides, silica, alumina, magnesium carbonates, divalent metal hydroxychlorides, magnesium hydroxides, magnesium chlorides, magnesium alkoxides, magnesium haloalkoxides, double oxides of magnesium and aluminum and double oxides of magnesium and calcium. Among these compounds, magnesium compounds are particularly preferred. The following magnesium compounds are particularly preferred. The following  
10 magnesium compound carrier is most preferred in the production of the low density polyethylene type resin composition of this invention, because it gives a satisfactory slurry with no abnormal tackiness and there occurs no sticking of polymers to the reactor wall.  
15 (Reference is made to Japanese Patent Publication No. 23561/1980.) Namely, it is the carrier obtained by (a) reacting in a solvent an aluminum halide represented by the general formula  $R_nAlX_{3-n}$  ( $R$  is an alkyl, aryl or alkenyl group of 1 to 20 carbon atoms and  $X$  is a halogen atom and  $n$  is an integer of 0 to 3) and/or a silicon  
20 halide represented by the general formula  $R_m^{\prime}SiX_{4-m}$  ( $R'$  is an alkyl, aryl or alkenyl group of 1 to 20 carbon atoms and  $X$  is a halogen atom and  $m$  is an integer of 0  
25 to 4).

1 to 4) with an organomagnesium compound represented by the general formulas  $R''MgX$  and/or  $R_2''Mg$  ( $R''$  is an alkyl, aryl or alkenyl group of 1 to 20 carbon atoms and  $X$  is a halogen atom), and (b) isolating the solid product  
5 formed.

As a transition metal catalyst component supported on carriers, there are, for instance, titanium compounds, vanadium compounds and zirconium compounds. Their specific examples are titanium tetrachloride,  
10 titanium tetrabromide, titanium tetraiodide, titanium trichloride, titanium alkoxy halides or titanium aryloxy halides represented by the general formula  $Ti(OR^1)_{4-p}X_p$  (where  $R^1$  is a hydrocarbon group,  $X$  is a halogen atom and  $p$  is an integer of  $0 < p < 4$ ), vanadium tetra-  
15 chloride, vanadium oxy trichloride, zirconium tetra-chloride and zirconium alkoxy halides or zirconium aryloxy halides represented by the general formula  $Zr(OR^2)_{4-q}X_q$  (where  $R^2$  is a hydrocarbon group,  $X$  is a halogen atom and  $q$  is an integer of  $0 < q < 4$ ). Among  
20 these compounds, titanium compounds and/or vanadium compounds are particularly preferred in the production of the low density polyethylene type resin composition of this invention, because they give satisfactory slurries with no abnormal tackiness and there occurs almost no  
25 sticking of polymers to the reactor wall. (Reference is made to Japanese Patent Publication No.23561/1980.) Titanium compounds are most preferred from the standpoints of weather resistance and heat resistance.

1 As a component of carrier-supported Ziegler  
catalysts used in this invention, there are also reaction  
products between an organomagnesium compound and a  
transition metal compound. Here, the transition metal  
5 compound is represented by the general formula  
 $Ti(OR^3)_{4-r}X_r$  (where  $R^3$  is a hydrocarbon group, X is a  
halogen atom and r is an integer of  $0 \leq r \leq 4$ , and  
includes titanium tetrahalides, titanium alkoxides,  
titanium aryloxides, titanium alkoxy halides and titanium  
10 aryloxy halides.

As an organometal compound component which  
forms the catalyst system of this invention together with  
the carrier-supported Ziegler catalyst component, there  
are organoaluminum compounds such as trialkyl aluminums  
15 (triethyl aluminum, tri-n-propyl aluminum, tri-i-butyl  
aluminum, tri-n-butyl aluminum, tri-n-hexyl aluminum,  
etc.), dialkyl aluminum monohalides (diethyl aluminum  
monochloride, di-n-propyl aluminum monochloride, di-i-  
butyl aluminum monochloride, di-n-butyl aluminum mono-  
20 chloride, di-n-hexyl aluminum monochloride, etc.), alkyl  
aluminum dihalides (ethyl aluminum dichloride, n-propyl  
aluminum dichloride, i-butyl aluminum dichloride, n-butyl  
aluminum dichloride, n-hexyl aluminum dichloride, etc.),  
ethyl aluminum sesquichloride, i-propyl aluminum sesqui-  
25 chloride, i-butyl aluminum sesquichloride, n-butyl  
aluminum sesquichloride and n-hexyl aluminum sesqui-  
chloride as well as other organometal compounds such as  
organozinc compounds. These organometal compounds may

1 be used alone or in combination of two or more.

In compounding the composition of this invention using the ethylene- $\alpha$ -olefin copolymer A of relatively higher molecular weight and the ethylene- $\alpha$ -olefin 5 copolymer B of relatively lower molecular weight both of which are obtained with the above catalyst system under a normal medium to low pressure polymerization method, the following matters must be obeyed.

(1) From the standpoint of mechanical strengths,

10 the copolymers A and B must be selected in order that (S.C.B. of copolymer A)/(S.C.B. of copolymer B) becomes at least 0.6, preferably at least 0.8 and more preferably at least 1.0. Meanwhile, from the standpoint of transparency, it is necessary that (S.C.B. of copolymer 15 A)/(S.C.B. of copolymer B) is 0.6 to 1.7. When this ratio is below 0.6, mechanical strengths of the copolymer composition obtained is reduced. In films, for instance, balancing of MD and TD strengths is difficult, heat-sealing characteristics worsen and tackiness is seen.

20 In case of over 1.7, transparency of the copolymer composition is reduced.

(2) The density of the copolymer composition is normally preferred to be 0.910 to 0.940 g/cm<sup>3</sup> and more preferred to be 0.915 to 0.935 g/cm<sup>3</sup> and most preferred 25 to be 0.915 to 0.929 g/cm<sup>3</sup>. When the density is below the above lower limit, mechanical strengths of the composition is reduced and, in case of films, tackiness is seen. When the density is above the upper limit, transparency of the composition worsens.

1        In the field of extrusion processing, the  
density of the copolymer composition is preferred to be  
0.910 to 0.930 g/cm<sup>3</sup> and more preferred to have 0.915 to  
0.929 g/cm<sup>3</sup>. When the density is below the lower limit,  
5        mechanical strengths of the composition is reduced and  
products have tackiness. When the density is above the  
upper limit, transparency worsens.

In the field of film processing, the density of  
the copolymer composition is preferred to be 0.910 to 0.940  
10      g/cm<sup>3</sup> and more preferred to be 0.915 to 0.935 g/cm<sup>3</sup> and most  
preferred to be 0.915 to 0.929 g/cm<sup>3</sup>. When the density is  
below the lower limit, mechanical strengths of the compo-  
sition is reduced and films possess tackiness. When the  
density is above the upper limit, transparency worsens.

15        In the filed of injection molding, the density  
of the copolymer composition is preferred to be 0.910 to  
0.935 g/cm<sup>3</sup> and more preferred to be 0.915 to 0.929  
g/cm<sup>3</sup>. When the density is below the lower limit,  
mechanical strengths of the composition is reduced and  
20      molded products have tackiness. When the density is  
above the upper limit, transparency worsens.

(3)       The melt index of the copolymer composition is  
normally preferred to be 0.02 to 50 g/10 min. and more  
preferred to be 0.05 to 40 g/10 min. and most preferred  
25      to be 0.1 to 30 g/10 min. In addition, the melt flow  
ratio is preferred to be 35 to 250 and more preferred  
to be 35 to 200 and most preferred to be 35 to 150.  
Furthermore, the product of the melt index and the

1 melt flow ratio is preferred to be at least 4 and  
more preferred to be at least 7. When the melt index  
and the melt flow ratio are below the lower limits,  
extrusion processability worsens. When they are above  
5 the upper limits, bubble stability in blown film proces-  
sing is lost and mechanical strengths are reduced.

In the field of extrusion processing, the MI  
of the copolymer composition is preferred to be 0.02 to  
2.0 g/10 min. and more preferred to be 0.05 to 2.0 g/  
10 10 min. and most preferred to be 0.10 to 2.0 g/10 min.  
Further, the MFR is preferred to be 35 to 250 and more  
preferred to be 35 to 200 and most preferred to be 35 to  
150. Furthermore, the product of MI and MFR is preferred  
to be at least 4 and more preferred to be at least 7.  
15 When the MI and the MFR are below the lower limits,  
extrusion processability worsens. When they are above  
the upper limits, mechanical strengths are reduced.

In the field of film processing, the MI of the  
composition is preferred to be 0.02 to 5 g/10 min. and  
20 more preferred to be 0.05 to 4 g/10 min. and most pre-  
ferred to be 0.1 to 3 g/10 min. Further, its MFR is  
preferred to be 35 to 250 and more preferred to be 35 to  
200 and most preferred to be 35 to 150. Furthermore,  
the product of the MI and the MFR is preferred to be  
25 at least 4 and more preferred to be at least 7. When  
the MI and the MFR are below the lower limits, extrusion  
processability worsens. When they are above the upper  
limits, bubble stability in blown film processing is

1 insufficient and mechanical strengths are reduced.

In the field of injection molding, the MI of the composition is preferred to be 2.0 to 50 g/10 min. and more preferred to be 2.0 to 30 g/10 min. Further, 5 the MFR is preferred to be 35 to 80 and more preferred to be 35 to 70. When the MI is below the lower limit, moldability worsens and flow marks are produced. When it is above the upper limit, mechanical strengths are reduced.

10 In order to provide the composition of this invention excellent in processability and mechanical strengths, it is also important to adequately balance its MI and MFR. A lower MI requires a higher MFR. This requirement is expressed by the product of MI and MFR. 15 For instance, a composition having a MI of about 1 g/10 min, even if its MFR is as low as 50 to 60, has processability about equal to that of a high pressure polyethylene having the same MI. On the other hand, a composition having a MI of about 0.05 g/10 min. 20 and a MFR of 50 possesses extremely poor processability and, in order to have satisfactory processability, a MFR of at least 80 is required. The product of MI and MFR of a composition is designed appropriately to meet the requirement of its final application. The designed 25 value of the product of MI and MFR can be achieved in the composition by using (a) intrinsic viscosities of the copolymer A of relatively higher molecular weight, and the copolymer B of relatively lower molecular weight,

- 1 (b) values of (weight average molecular weight)/(number average molecular weight) of these copolymers and (c) their mixing ratio. If intrinsic viscosities of the copolymer A and the copolymer B are put as  $[\eta]_A$  (dl/g)
- 5 and  $[\eta]_B$  (dl/g), respectively, and their ratios by weight basis are put as  $w_A$  and  $w_B$  ( $w_A + w_B = 1$ ), respectively the intrinsic viscosity of the composition obtained by mixing the two copolymers namely  $[\eta]_T$  (dl/g) is approximately given by the following formula.

10

$$[\eta]_T = [\eta]_A w_A + [\eta]_B w_B$$

- MI is governed by  $[\eta]_T$  unequivocally. Meanwhile, MFR is generally larger when  $[\eta]_A / [\eta]_B$  is larger, and depends upon  $w_A$  and  $w_B$ . Therefore, it is difficult to express MFR unequivocally and, based on preliminary tests,  $[\eta]_A$ ,
- 15  $[\eta]_B$ ,  $w_A$  and  $w_B$  are determined to give an intended MFR.
- (4) In order to obtain a composition which satisfy the above (1) to (3) conditions, the copolymer A and the copolymer B are preferred to be mixed at a ratio of 10 to 70% by weight (copolymer A) to 90 to 30% by weight
- 20 (copolymer B). The ratio of 20 to 65% by weight to 80 to 35% by weight is more preferred and the ratio of 30 to 60% by weight to 70 to 40% by weight is most preferred. The mixing ratio of the two copolymers must be adequately selected by considering S.C.B., densities, intrinsic
- 25 viscosities and molecular weight distributions of the copolymers A and B as well as the density, MI and MFR

1 of an intended composition. When the ratio of the  
copolymer A is below its lower limit and the ratio of the  
copolymer B is above its upper limit, the ESCR, impact  
strength, tear strength and low temperature resistance  
5 of the composition obtained are poor, and the high  
strength of the composition of this invention which is  
obtained when the value of (S.C.B. of copolymer A)/(S.C.B.  
of copolymer B) is selected to be at least 0.6 as well  
as the good transparency of the composition of this  
10 invention which is obtained when the value of (S.C.B. of  
copolymer A)/(S.C.B. of copolymer B) is selected to be  
0.6 to 1.7, are not achieved. When the ratio of the  
copolymer A is above its upper limit and the ratio of  
the copolymer B is below its lower limit, the processa-  
15 bility of the composition obtained worsens.

As long as the scope of this invention is  
obeyed, mixing of the ethylene- $\alpha$ -olefin copolymer A of  
relatively higher molecular weight and the ethylene- $\alpha$ -  
olefin copolymer B of relatively lower molecular weight  
20 is not necessarily limited to mixing of each one kind.  
The mixing may be also done by using each two or more  
kinds of the copolymer A and the copolymer B.

There is no particular limitation to mixing  
methods of the copolymers A and B, and known methods can  
25 be used in mixing of these two polymers. Commonly used  
are a batch type melt kneading method which employs a  
twin roll or a Banbury mixer after separate production  
of the copolymers A and B, a continuous melt kneading

1 method employing a twin rotor mixer such as CIM (manufactured by the Japan Steel Works) or FCM (manufactured by Kobe Steel) or a single screw extruder and a solution mixing method in which a mixture is obtained by dissolving the copolymers A and B in a solvent separately or together, blending and finally removing the solvent.

When the copolymers A and B are produced by a high temperature solution polymerization method, it is advantageous from the process standpoint that their

10 composition is obtained by mixing A and B in a solution state at high temperatures and removing the solvent.

Mixing by a two- or multi-stage polymerization method is also possible. In this method, in the first stage, the copolymer A is polymerized for a certain length of time and, successively in the second stage, the copolymer B is polymerized using the same catalyst but changing other polymerization conditions until the composition containing the copolymers A and B at an intended ratio is obtained. In this case, the order of

20 polymerization of A and B is not restricted.

The above two- or multi-stage polymerization method is an ideal mixing method, because the copolymers A and B undergo molecular dispersion.

The most effective mixing method can be selected from above various mixing methods, in order to obtain a uniform composition, which meets intended requirements.

The intrinsic viscosity  $[\eta]$  of the ethylene- $\alpha$ -

- 32 -

1 olefin copolymer composition of this invention is preferred to be 0.7 to 4 dl/g and more preferred to be 0.8 to 3.5 dl/g and most preferred to be 0.9 to 3 dl/g. When the intrinsic viscosity is below the lower limit, 5 mechanical strengths are reduced and, in blown film processing, bubble stability is insufficient. In case of above the upper limit, extrusion processability worsens.

S.C.B. of the composition is preferred 10 to be 5 to 45 and more preferred to be 7 to 40 and most preferred to be 10 to 40. When S.C.B. is below its lower limit, transparency worsens. When S.C.B. is above its upper limit, mechanical strengths are reduced and molded products have tackiness.

15 Next, the "index of long chain branching" of the copolymer composition of this invention is described. When the intrinsic viscosity of a copolymer composition of this invention is put as  $[\eta]$  and the intrinsic viscosity of a linear polyethylene having the same  $\bar{M}_w$  measured by 20 light scattering method (a high density polyethylene obtained by homopolymerization of ethylene under a medium to low pressure using a Ziegler catalyst) is put as  $[\eta]_L$ ,  $[\eta]/[\eta]_L$  namely  $g^*_\eta$  is called the "index of long chain branching" of the composition and indicates the extent 25 of presence of long chain branching in the composition. Now, intrinsic viscosities of two polymers are compared. One polymer X is a polyethylene having long chain branches of which index of branching is unknown (for

1 instance, a high pressure polyethylene) and the other  
polymer is a linear polyethylene containing no long  
chain branches but having the same  $\bar{M}_w$  measured by light  
scattering method. When these two polymers are made into  
5 respective very dilute solutions with one same solvent,  
the polymer X gives a less-viscous solution because the  
spread of its molecular chain is smaller than that of the  
linear polyethylene. Accordingly, by measuring the  
intrinsic viscosities of the two polymers and calculating  
10 their ratio namely  $g_{\eta}^*$ , the index of long chain branching  
can be known. When a polymer has no long chain branches,  
its  $g_{\eta}^*$  is almost 1 within the range of experimental  
errors. When the polymer has long chain branches,  $g_{\eta}^*$  is  
smaller than 1. In most cases, high pressure polyethylenes  
15 show  $g_{\eta}^*$  of below 0.6 and have considerable quantities of  
long chain branches.

The ethylene- $\alpha$ -olefin copolymer composition of  
this invention is preferred to have  $g_{\eta}^*$  of at least 0.8  
and more preferably at least 0.9 and practically has no  
20 long chain branches. When  $g_{\eta}^*$  is below 0.8 and contain  
a large quantity of long chain branches, the copolymer  
is poor in tensile strength, impact strength, environ-  
mental stress cracking resistance, low temperature  
resistance and chemicals resistance.

25 (S.C.B. of higher molecular weight components)/  
(S.C.B. of lower molecular weight components) of the  
copolymer composition of this invention is preferred to  
be at least 0.6 and more preferred to be at least 0.8

1 and most preferred to be at least 1.0. In applications  
where transparency is required, 0.6 to 0.8 is preferred.  
Here, these S.C.B. are obtained by dividing the compo-  
sition of this invention into two groups of lower mole-  
5 cular weight components and higher molecular weight  
components using molecular weight fractionation and then  
measuring S.C.B. of each group. When the ratio is below  
0.6, mechanical strengths of the composition are poor,  
and when the composition is subjected to extrusion proces-  
10 sing and injection molding, balancing of MD and TD  
strengths is difficult and molded products have sticky  
surfaces, and in films, heat-sealing characteristics  
worsen. When the ratio is over 0.8, transparency worsens  
and therefore such a polymer is not suitable for appli-  
15 cations where transparency is required. The above mole-  
cular weight fractionation of the ethylene- $\alpha$ -olefin  
copolymer into two groups of lower and higher molecular  
weight components refers to the following method.

(1) A curve of molecular weight distribution is  
20 obtained by gel permeation chromatography.

In this case, the abscissa is the logarithm of  
chain length (unit Å) calibrated with a standard poly-  
styrene sample, and the ordinate is relative weight  
fraction. The standard measurement method is described  
25 later.

(2) An example of cases where curves of molecular  
weight distributions have one peak was shown in Fig. 1.  
This pattern is seen most typically in ethylene- $\alpha$ -olefin

1 copolymers. In this case, a lower molecular weight  
components side and a higher molecular weight components  
side are divided by a line drawn between the peak of the  
curve and the midpoint of a line drawn between the end  
5 of lower molecular weight components in the curve and  
the end of higher molecular weight components; and the  
ratio of areas of these two sides is the weight ratio of  
lower and higher molecular weight components. Separately,  
fractions of the same sample are prepared by column  
10 fractionation. These fractions are consolidated into  
two portions of lower and higher molecular weight com-  
ponents, in order that the weight ratio of these two  
portions become closest to the weight ratio obtained  
above.

15 (3) An example of cases where curves of molecular  
weight distributions have two peaks was shown in Fig. 2.  
Also, an example having one peak but showing a shoulder  
at higher molecular weight components side was shown in  
Fig. 3. Examples having three or more peaks are handled  
20 as modifications of two peaks and are treated similarly  
to two peaks. In the case of two or more peaks including  
shoulders, a tangent line is drawn between main two peaks  
of the higher molecular weight components side or between  
one peak and a shoulder of the same side, and then a  
25 perpendicular is drawn from a point where the distance  
between the GPC curve and the tangent line becomes largest.  
This perpendicular splits the lower molecular weight  
components side and the higher molecular weight components

1 side, and the ratio of areas of these two sides becomes  
the weight ratio of these two components portions. When  
peaks are continuous and can not be detected (case of  
somewhat square curve), the technique of one peak  
5 distribution is applied. Separately, fraction of the  
same sample are prepared by column fractionation. These  
fractions are consolidated into two portions of lower  
and higher molecular weight components, in order that  
the weight ratio of these two portions becomes closest  
10 to the weight ratio thus obtained.

Molecular weight fractionation is conducted by  
the known column fractionation method. Its detailed  
explanation is made in "Polymer Fractionation" (compiled  
by M.J.R. Cantow, Academic Press, published in 1967),  
15 and therefore, only the outline of the method is described  
below.

About 5 g of a sample is adsorbed on a carrier,  
Celite 745, in xylene and the carrier is charged into a  
column. The column is heated to 130°C and a mixed solvent  
20 of butyl cellosolve and xylene is passed through the  
column with their mixing ratio being gradually changed  
(namely with the solvency of the mixed solvent being  
gradually changed). This lower molecular weight fractions  
to higher molecular weight fractions are successively  
25 fractionated. To each eluate is added methanol to cause  
precipitation. After recovery of each polymer, they are  
dried under reduced pressure to be used as each fraction.  
To prevent the decomposition of polymers during

1 fractionation, 100 ppm of Irganox® 1076 is added to  
the original sample as a stabilizer, and also nitrogen  
is passed through the column to shut off oxygen. The  
polymer fractions obtained are divided into two groups  
5 of lower and higher molecular weight components so that  
the weight ratio of these two groups become the above-  
mentioned weight ratio. Each group is made into a press  
sheet of about 100 to 300μ thickness and these sheets  
are subjected to Fourier-transform infra-red absorption  
10 spectroscopy.

Further, it is preferable that the characteristic values of the sample obtained by dividing the ethylene- $\alpha$ -olefin copolymer of this invention into two fractions such as a higher molecular weight component  
15 and a lower molecular weight component are same to the characteristic values of copolymer A and copolymer B, respectively, as previously defined.

When compared with low density ethylene- $\alpha$ -olefin copolymers obtained from the conventional medium  
20 to low pressure method (normally called "linear low density polyethylene or LLDPE"), the polyethylene type resin composition of this invention has the following advantages.

In the field of extrusion processing, the composition of this invention is largely excellent in  
25 processability (about equal even to high pressure polyethylenes) and moreover has excellent mechanical strengths (ESCR, tensile strength, impact strength and

1 tear strength) as well as excellent low temperature  
resistance. Therefore, reduction in thicknesses of  
molded products becomes possible. The composition of  
this invention has wide applications and can be used.  
5 even in the application where transparency is required.

In case of films, the present composition is  
far superior in processability (about equal even to high  
pressure polyethylenes). Further, the composition has  
excellent mechanical strengths such as tensile strength,  
10 impact strength and tear strength, by which reduction  
in thicknesses of films becomes possible. Moreover, the  
present composition has excellent transparency and heat-  
sealing characteristics, by which it is used as a high  
quality film in wide applications including high speed  
15 bag manufacturing.

In the field of injection molding, the present  
composition is largely excellent in processability (about  
equal even to high pressure polyethylenes). Moreover,  
there occurs no flow marks, there is no warpage with  
20 molded products, and transparency, low temperature  
resistance and mechanical strengths such as environmental  
stress cracking resistance, tensile strength and impact  
strength are excellent. Thereby, reduction in thicknesses  
of molded products is possible and the present composition  
25 has wide applications including the case where transparency  
is required.

To the composition of this invention, can be  
added if necessary various additives being commonly used

1 in the industries such as oxidation inhibitors, lubricants, anti-blocking agents, anti-static agents, photostabilizers, and coloring pigments. Also, other polymers can be added in small quantities as long as the scope of this invention  
5 is kept.

Next, the definitions of physical and chemical properties used in this invention are explained below.

(1) Intrinsic viscosity

This implies  $[\eta]$  in tetralin of 135°C.

10  $[\eta] = 11.65 \times \log R$

$$R = t/t_0$$

t : Seconds of dropping in a concentration of  
0.2. dl/g

$t_0$ : Seconds of dropping of tetralin itself

15 (2) Density

According to the specification in JIS-K-6760.

With respect to the copolymer B of lower molecular weight, when it has a large S.C.B., it is regarded as a low density product, and according to the specification, it must be subjected to annealing of 100°C and 20 1 hour. However, the copolymer B was conformed in all cases to the specification for high density products and was not subjected to the above annealing.

(3) S.C.B.

25 Using the C<sub>14</sub> labelled product described in the following literature, the subject property was calculated by employing the FT-IR spectrum subtraction method.

**0057891**

- 40 -

1

"Characterization and Properties of Polymers"

Published by KAGAKU DOJIN

Compiled by Mitsuru Nagasawa et al.

Issued on July 10, 1970

5

Pages 131 to 146

Determination formulas for various branches are given  
below.

| Branch              | Determination formula           |
|---------------------|---------------------------------|
| Methyl              | Branches/1000 C = 0.49·K 7.25 μ |
| Ethy1               | " = 0.70·K 7.25 μ               |
| n-Butyl             | " = 0.80·K 7.25 μ               |
| n-Decyl             | " = 0.78·K 7.25 μ               |
| Other linear chains | " = 0.80·K, 7.25 μ              |
| 1-Butyl             | " = 0.45·K 7.23 μ               |

- 42 -

1 -  $K_{7.25\mu}$  (absorptivity) was obtained by using as  
a reference a linear ethylene homopolymer having the  
almost same molecular weight and molecular weight distri-  
bution and the same  $[\eta]$  as those of a given sample and  
5 employing the spectrum subtraction method. Therefore,  
effects of methyl groups at the ends were cleared.

When R of an  $\alpha$ -olefin  $R-CH=CH_2$  is a linear  
alkyl, (the number of methyl groups at the branch ends)/  
1000C is S.C.B. When R is a branched alkyl group, for  
10 instance, an  $\alpha$ -olefin is 4-methyl-pentene-1, the branch  
is the i-butyl group and half number of methyl groups  
at the branch ends per 1000 carbon atoms is S.C.B.

(4) Weight average molecular weight by light  
scattering method

15 This item was measured at 125°C by the normal  
method, with  $\alpha$ -chloronaphthalin used as a solvent and  
employing a photoelectric type light scattering photo-  
meter (manufactured by SHIMAZU SEISAKUSHO).

(5) Melt index (MI)

20 According to the condition E of ASTM D 1238.

(6) Melt flow ratio (MFR)

Firstly,  $MI_{21.6}$  (grams per 10 min. under a load  
of 21.6 kg at 190°C) is measured according to ASTM D 1238  
condition F. Then, MFR is calculated using the following  
25 formula.

$$MFR = MI_{21.6}/MI$$

(7) Rigidity (expressed by Olsen's flexural modulus)  
According to ASTM D 747.

- 43 -

- 1 Press condition: ASTM D 1898 method C  
Test piece: 25 x 70 x 1 mm thickness  
Span: 25 mm  
Measurement temperature: 20°C
- 5 (8) Tensile impact strength: According to ASTM D 1822  
Press condition: ASTM D 1898 method C  
Test piece: S type dumbbell, 1 mm thickness  
Annealing: 1 hour in boiling water  
Measurement temperature: 20°C
- 10 (9) Molecular weight distribution ( $\bar{M}_w/\bar{M}_n$ )  
GPC method (gel permeation chromatography  
method)  
HLC-811 (manufactured by TOYO SODA)  
Column: TSK-GEL (GMSP + G<sub>7000</sub>H<sub>4</sub> + GMHx2)
- 15 Solvent: 1,2,4-trichlorobenzene (TCB)  
Temperature: 145°C  
Detector: Differential refractometer  
Flow quantity: 1 ml/min.  
Concentration: 15 mg/10 ml TCB
- 20 Measurement data on standard polystyrenes are  
shown below.

**0057891**

- 44 -

| Polystyrene             | Nominal value      |                    |                       | Measured value |             |                       |
|-------------------------|--------------------|--------------------|-----------------------|----------------|-------------|-----------------------|
|                         | $\bar{M}_w$        | $\bar{M}_n$        | $\bar{M}_w/\bar{M}_n$ | $\bar{A}_w$    | $\bar{A}_n$ | $\bar{A}_w/\bar{A}_n$ |
| #41955<br>(Waters')     | $9.82 \times 10^4$ | $9.62 \times 10^4$ | 1.02                  | 2083           | 1744        | 1.19                  |
| A 5000<br>(TOYO SODA's) | $6.2 \times 10^3$  | $5.96 \times 10^3$ | 1.04                  | 140            | 112         | 1.25                  |

- 45 -

- 1 (10) Environmental stress-cracking resistance (ESCR)  
According to ASTM D 1693.  
Expressed in F<sub>50</sub> (hr).  
The following exceptions were adopted.
- 5 Concentration of Antarox-C0630: 10% by weight  
Sample: 3 mm thickness, 0.5 mm notch
- (11) Tensile strength  
According to ASTM D 638.
- (12) Resistance to chlorine water  
Test solution: 0.2% chlorine water  
Solution quantity: A quantity which gives  
1.2 ml/cm<sup>2</sup> against a pressed  
sample. The solution is  
replaced daily.
- 10 Temperature: 40°C  
Evaluation: 10 stage evaluation on a sample  
after 72 hours.  
1: Excellent,  
10: Overall surface like "foam"
- 15 Transparency (haze value)  
Press condition: 180°C x 10 min, rapid cooling  
in ice water  
Sample: 100μ thickness  
Haze measurement: Internal haze
- 20 (13) Brabender torque  
Brabender plastograph ® was used.  
Jacket: W 50 model, 45 g filled  
Temperature: 190°C
- 25 (14)

- 46 -

1 Rotor revolution: 60 rpm  
A torque after 30 min. is expressed in kg-m.

(15) Spiral flow length  
Injection molding machine: 5 ounce injection

5 molding machine manufactured by the  
Japan Steel Works, Ltd.

Mold: Spiral mold (7.5 mmØ semicircle, 2000 mm  
length)

Molding condition: Resin temperature 250°C

10 Mold temperature 40°C

Injection pressure 840 kg/cm<sup>2</sup>

Injection molding is carried out with this mold-  
ing condition and spiral flow length is measured.

15 The present invention is explained below in more  
detail by the following examples, but it is not restricted  
by these examples.

#### Example 1

(1) Synthesis of Organomagnesium Compound  
20 In a 500 ml four-necked flask equipped with a  
stirrer, a reflux condenser, and a dropping funnel was  
placed 16.0 g of flake-shaped magnesium to be used for  
the production of Grignard reagents. The air and mois-  
ture inside the flask were completely replaced by  
25 nitrogen. Into the dropping funnel were charged 68 ml  
(0.65 mol) of n-butyl chloride and 30 ml of n-butyl  
ether. About 30 ml of this solution was dropped into

1 the flask to initiate a reaction, and thereafter the rest  
of the solution was dropped in 4 hours at 50°C. After  
the completion of dropping, the reaction was continued  
for further 1.5 hours at 60°C. Then, the reaction system  
5 was cooled to room temperature and the unreacted magnesium  
was filtered off by the use of a glass filter.

n-Butyl magnesium chloride in the n-butyl ether  
was measured for its concentration by hydrolyzing with 1 N  
sulfuric acid and back-titrating with 1 N sodium hydroxide  
10 using phenolphthalein as an indicator. The concentration  
was 1.96 mol/l.

(2)       Synthesis of Solid Catalyst Component

The air and moisture inside a 500 ml four-necked flask equipped with a stirrer, a dropping funnel  
15 and a thermometer was completely replaced by nitrogen.  
In the flask was placed 130 ml of the n-butyl ether  
solution containing 0.26 mol of n-butyl magnesium chloride  
synthesized in the above step (1). From the dropping  
funnel was dropped 30 ml (0.26 mol) of silicon tetra-  
20 chloride over 2 hours at 50°C. The reaction was con-  
tinued for further 1 hour at 60°C. The formed white  
solid was separated, washed with n-heptane and dried  
under reduced pressure to obtain 31.5 g of a white solid.

Ten grams of this white solid was placed in a 100 ml  
25 four-necked flask and 50 ml of titanium tetrachloride  
was added. They were allowed to react with stirring for  
1 hour at 100°C. After the completion of the reaction,  
n-heptan washing was applied until the washings became

1 free from titanium tetrachloride. After drying under  
reduced pressure, 7.9 g of a solid catalyst component  
was obtained. Each 1 g of this solid catalyst component  
supported 14 mg of titanium.

5 Example 2

Ethylene- $\alpha$ -olefin copolymers A were polymerized,  
using the catalyst produced in Example 1 and organoaluminum  
compounds (co-catalyst) and employing various  $\alpha$ -olefins  
and other polymerization conditions as shown in Table 1.

10 Densities, intrinsic viscosities, S.C.B. and (weight  
average molecular weight/number average molecular weight)  
of these polymers obtained were also shown in Table 1.

These copolymers are used in the following  
examples as mixing components.

15 Example 3

Ethylene- $\alpha$ -olefin copolymers B were polymerized,  
using the catalyst produced in Example 1 and organoalumi-  
num compounds (co-catalyst) and employing various  $\alpha$ -olefins  
and other polymerization conditions as shown in Table 2.

20 Densities, intrinsic viscosities, S.C.B. and (weight  
average molecular weight/number average molecular weight)  
of these ethylene- $\alpha$ -olefin copolymers were also shown in  
Table 2.

These copolymers are used in following examples  
25 as mixing components.

Table 1

| No.   | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg)        | $\alpha$ -olefin (kg)  | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|-------|-----------------------|------------------------------------|------------------------|--------------------|---------------------|------------------------|-------------------------------------------------------|
| A1-1  | Slurry                | 65                                 | 134                    | TEA 100            | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 0.84                                                  |
| A1-2  | Solution              | 1                                  | 25.3                   | DEAC 2.5           | C <sub>7</sub> 0.25 | 4-MP-1 0.110           | 0.1                                                   |
| A1-3  | Slurry                | 65                                 | 130                    | TEA 50             | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 0.25                                                  |
| A1-4  | "                     | 65                                 | 310                    | TEA 100            | "                   | "                      | 0.86                                                  |
| A1-5  | "                     | 65                                 | 102                    | TEA 50             | "                   | "                      | 0.059                                                 |
| A1-6  | Solution              | 1                                  | 26.0                   | DEAC 2.5           | C <sub>7</sub> 0.30 | C <sub>6</sub> ' 0.060 | 0.1                                                   |
| A1-7  | "                     | 1                                  | 327                    | TEA 100            | "                   | "                      | 1.8                                                   |
| A1-8  | "                     | 1                                  | 24.5                   | DEAC 2.5           | "                   | 4-MP-1 0.050           | 0.15                                                  |
| A1-9  | Slurry                | 65                                 | 330                    | TEA 100            | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 1.1                                                   |
| A1-10 | "                     | 65                                 | 309                    | TEA 100            | "                   | "                      | 1.2                                                   |
| A1-11 | "                     | 65                                 | 121                    | TEA 50             | "                   | "                      | 0.98                                                  |
| A1-12 | "                     | 65                                 | 320                    | TEA 100            | "                   | "                      | 3.0                                                   |
| A1-13 | Solution              | 1                                  | 25.0                   | DEAC 2.5           | C <sub>7</sub> 0.25 | C <sub>8</sub> ' 0.140 | 0.1                                                   |

- Cont'd -

Table 1 (Cont'd)

| Properties                                               |                                                 |                                 |     |                  |           | Note                             |
|----------------------------------------------------------|-------------------------------------------------|---------------------------------|-----|------------------|-----------|----------------------------------|
| $C_2'$ -<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeriza-<br>tion<br>tempera-<br>ture<br>(°C) | Density<br>(g/cm <sup>3</sup> ) | [η] | S.C.B.<br>(dl/g) | $M_w/M_n$ |                                  |
| 5.6                                                      | 50                                              | 0.900                           | 2.2 | 38               | 5.9       | TEA = Triethyl aluminum          |
| 20                                                       | 140                                             | 0.904                           | 2.5 | 23               | 3.6       | DEAC = Diethyl aluminum chloride |
| 6.0                                                      | 50                                              | 0.905                           | 3.2 | 30               | 5.8       | 4-MP-1: 4-Methylpentene-1        |
| 9.5                                                      | 50                                              | 0.915                           | 2.5 | 1.9              | 5.5       | $C_2'$ = Ethylene                |
| 4.5                                                      | 50                                              | 0.908                           | 4.4 | 25               | 6.0       | $C_4'$ = n-Butane                |
| 20                                                       | 140                                             | 0.903                           | 2.5 | 25               | 3.7       | $C_4'$ = Butene-1                |
| 12.0                                                     | 140                                             | 0.922                           | 2.2 | 13               | 5.3       | $C_6'$ = Hexene-1                |
| 20                                                       | 140                                             | 0.920                           | 2.5 | 10               | 3.7       | $C_8'$ = Octene-1                |
| 12.0                                                     | 50                                              | 0.921                           | 2.5 | 13               | 5.5       | $C_7'$ = n-Heptane               |
| 8.0                                                      | 50                                              | 0.911                           | 2.2 | 25               | 5.7       |                                  |
| 6.5                                                      | 50                                              | 0.907                           | 2.2 | 30               | 5.7       |                                  |
| 20                                                       | 50                                              | 0.928                           | 2.2 | 8                | 5.3       |                                  |
| 20                                                       | 140                                             | 0.903                           | 2.5 | 24               | 3.9       |                                  |

Table 2

| No.   | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg)        | $\alpha$ -olefin (kg)  | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|-------|-----------------------|------------------------------------|------------------------|--------------------|---------------------|------------------------|-------------------------------------------------------|
| B1-1  | Slurry                | 65                                 | 345                    | TEA 100            | C <sub>4</sub> 15.2 | C <sub>4</sub> ' 1.2   | 11.5                                                  |
| B1-2  | Solution              | 1                                  | 25.5                   | DEAC 2.5           | C <sub>7</sub> 0.28 | 4-MP-1 0.030           | 3.0                                                   |
| B1-3  | Slurry                | 65                                 | 415                    | TEA 50             | C <sub>4</sub> 15.2 | C <sub>4</sub> ' 1.6   | 11.0                                                  |
| B1-4  | "                     | 65                                 | 425                    | "                  | "                   | C <sub>4</sub> ' 2.0   | 10.5                                                  |
| B1-5  | "                     | 65                                 | 286                    | "                  | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 9.4                                                   |
| B1-6  | "                     | 65                                 | 410                    | TEA 100            | C <sub>4</sub> 12.0 | C <sub>4</sub> ' 3.0   | 11.0                                                  |
| B1-7  | Solution              | 1                                  | 25.7                   | DEAC 2.5           | C <sub>7</sub> 0.25 | 4-MP-1 0.050           | 2.5                                                   |
| B1-8  | Slurry                | 65                                 | 250                    | TEA 100            | C <sub>4</sub> 15.2 | C <sub>4</sub> ' 0.4   | 13.5                                                  |
| B1-9  | "                     | 65                                 | 407                    | "                  | "                   | C <sub>4</sub> ' 0.5   | 13.0                                                  |
| B1-10 | "                     | 65                                 | 422                    | TEA 50             | "                   | C <sub>4</sub> ' 1.8   | 11.0                                                  |
| B1-11 | "                     | 65                                 | 405                    | "                  | "                   | C <sub>4</sub> ' 1.4   | 11.0                                                  |
| B1-12 | Solution              | 1                                  | 26                     | DEAC 2.5           | C <sub>7</sub> 0.25 | C <sub>8</sub> ' 0.040 | 3.0                                                   |

- Cont'd -

Table 2 (Cont'd)

| $C_2'$ -<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeriza-<br>tion<br>tempera-<br>ture<br>(°C) | Properties                      |               |        |                       | Note                             |
|-----------------------------------------------|-------------------------------------------------|---------------------------------|---------------|--------|-----------------------|----------------------------------|
|                                               |                                                 | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. | $\bar{M}_w/\bar{M}_n$ |                                  |
| 5.0                                           | 70                                              | 0.943                           | 0.63          | 15     | 5.5                   |                                  |
| 10                                            | 140                                             | 0.938                           | 0.50          | 13     | 3.5                   | TEA = Triethyl aluminum          |
| 5.0                                           | 70                                              | 0.936                           | 0.62          | 20     | 5.6                   | DEAC = Diethyl aluminum chloride |
| 5.0                                           | 70                                              | 0.929                           | 0.65          | 25     | 5.7                   | $4-MP-1$ = 4-Methylpentene-1     |
| 8.5                                           | 50                                              | 0.927                           | 1.1           | 25     | 5.8                   | $C_2'$ = Ethylene                |
| 3.0                                           | 50                                              | 0.910                           | 0.60          | 35     | 5.9                   | $C_4$ = n-Butane                 |
| 10                                            | 140                                             | 0.912                           | 0.52          | 22     | 3.6                   | $C_4'$ = Butene-1                |
| 1.5                                           | 50                                              | 0.930                           | 0.28          | 25     | 5.7                   | $C_6'$ = Hexane-1                |
| 5.0                                           | 70                                              | 0.954                           | 0.62          | 8      | 5.2                   | $C_8'$ = Octene-1                |
| 5.0                                           | 70                                              | 0.934                           | 0.61          | 22     | 5.6                   | $C_7$ = n-Heptane                |
| 5.0                                           | 70                                              | 0.939                           | 0.62          | 18     | 5.5                   |                                  |
| 10                                            | 140                                             | 0.937                           | 0.49          | 14     | 3.6                   |                                  |

## 1 Example 4

Ethylene- $\alpha$ -olefin copolymers A were polymerized, using the catalyst produced in Example 1 and organo-aluminum compounds (co-catalyst) and employing various 5  $\alpha$ -olefins and other polymerization conditions shown in Table 3. Densities, intrinsic viscosities, S.C.B. and (weight average molecular weight/number average molecular weight) of these ethylene/ $\alpha$ -olefin copolymers were also shown in Table 3.

10 These copolymers are used in the following examples as mixing components.

## Example 5

Ethylene- $\alpha$ -olefin copolymers B were polymerized, using the catalyst produced in Example 1 and organoaluminum compounds (co-catalyst) and employing various  $\alpha$ -olefins and other polymerization conditions as shown in 15 Table 4. Densities, intrinsic viscosities, S.C.B. and (weight average molecular weight/number average molecular weight) of these ethylene/ $\alpha$ -olefin copolymers were also 20 shown in Table 4.

These copolymers are used in the following examples as mixing components.

- 54 -

Table 3

| No.   | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg)        | $\alpha$ -olefin (kg)  | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|-------|-----------------------|------------------------------------|------------------------|--------------------|---------------------|------------------------|-------------------------------------------------------|
| A2-1  | Slurry                | 65                                 | 145                    | TEA 100            | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 1.38                                                  |
| A2-2  | Solution              | 1                                  | 25.5                   | DEAC 2.5           | C <sub>7</sub> 0.25 | 4-MP-1 0.11            | 0.5                                                   |
| A2-3  | Slurry                | 65                                 | 141                    | TEA 50             | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 0.59                                                  |
| A2-4  | "                     | 65                                 | 307                    | TEA 100            | "                   | "                      | 2.3                                                   |
| A2-5  | "                     | 65                                 | 311                    | "                  | "                   | "                      | 1.84                                                  |
| A2-6  | "                     | 65                                 | 321                    | "                  | "                   | "                      | 3.2                                                   |
| A2-7  | Solution              | 1                                  | 26.5                   | DEAC 2.5           | C <sub>7</sub> 0.3  | 4-MP-1 0.05            | 0.9                                                   |
| A2-8  | Slurry                | 65                                 | 315                    | TEA 100            | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 2.6                                                   |
| A2-9  | "                     | 65                                 | 118                    | "                  | "                   | "                      | 4.6                                                   |
| A2-10 | Solution              | 1                                  | 24.5                   | DEAC 2.5           | C <sub>7</sub> 0.3  | C <sub>6</sub> ' 0.025 | 0.9                                                   |

- Cont'd -

Table 3 (Cont'd)

| $C_2'$ -<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymer-<br>ization<br>temperature<br>(°C) | Properties                      |               |        |                       | Note                             |
|----------------------------------------------------------|--------------------------------------------|---------------------------------|---------------|--------|-----------------------|----------------------------------|
|                                                          |                                            | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. | $\bar{M}_w/\bar{M}_n$ |                                  |
| 6.0                                                      | 50                                         | 0.902                           | 1.8           | 38     | 5.9                   | TEA = Triethyl aluminum          |
| 20                                                       | 140                                        | 0.908                           | 1.8           | 23     | 3.8                   | DEAC = Diethyl aluminum chloride |
| 6.5                                                      | 50                                         | 0.907                           | 2.5           | 30     | 5.8                   | 4-MP-1 = 4-Methylpentene-1       |
| 11                                                       | 50                                         | 0.918                           | 1.8           | 17     | 5.4                   | $C_2'$ = Ethylene                |
| 8.4                                                      | 50                                         | 0.914                           | 1.8           | 25     | 5.7                   | $C_4$ = n-Butane                 |
| 14                                                       | 50                                         | 0.925                           | 1.8           | 13     | 5.3                   | $C_4'$ = Butene-1                |
| 20                                                       | 140                                        | 0.923                           | 1.8           | 10     | 3.6                   | $C_6'$ = Hexene-1                |
| 8.5                                                      | 50                                         | 0.914                           | 1.6           | 25     | 5.5                   | $C_7$ = n-Heptane                |
| 17                                                       | 50                                         | 0.929                           | 1.6           | 10     | 5.3                   |                                  |
| 20                                                       | 140                                        | 0.918                           | 1.8           | 13     | 3.8                   |                                  |

Table 4

| No.  | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg) | $\alpha$ -olefin (kg) | $H_2$ partial pressure ( $kg/cm^2$ ) |
|------|-----------------------|------------------------------------|------------------------|--------------------|--------------|-----------------------|--------------------------------------|
| B2-1 | Slurry                | 65                                 | 348                    | TEA 100            | $C_4$ 15.2   | $C_4'$ 1.0            | 12                                   |
| B2-2 | Solution              | 1                                  | 26.5                   | DEAC 2.5           | $C_7$ 0.28   | 4-MP-1 0.03           | 3.0                                  |
| B2-3 | Slurry                | 65                                 | 405                    | TEA 50             | $C_4$ 15.2   | $C_4'$ 1.6            | 8.8                                  |
| B2-4 | "                     | 65                                 | 421                    | "                  | "            | "                     | 12                                   |
| B2-5 | "                     | 65                                 | 407                    | TEA 100            | $C_4$ 12.0   | $C_4'$ 2.5            | 12                                   |
| B2-6 | Solution              | 1                                  | 25.7                   | DEAC 2.5           | $C_7$ 0.25   | 4-MP-1 0.05           | 2.5                                  |
| B2-7 | Slurry                | 65                                 | 245                    | "                  | $C_4$ 15.2   | $C_4'$ 0.3            | 12                                   |
| B2-8 | "                     | 65                                 | 420                    | TEA 50             | "            | $C_4'$ 1.2            | 12                                   |
| B2-9 | Solution              | 1                                  | 23.9                   | DEAC 2.5           | $C_7$ 0.30   | $C_6'$ 0.017          | 3.0                                  |

- Cont'd -

Table 4 (Cont'd)

| $C_2'$ -<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeri-<br>zation<br>tempera-<br>ture<br>(°C) | Properties                      |                      |        |           |                                  |
|----------------------------------------------------------|-------------------------------------------------|---------------------------------|----------------------|--------|-----------|----------------------------------|
|                                                          |                                                 | Density<br>(g/cm <sup>3</sup> ) | [ $\eta$ ]<br>(dl/g) | S.C.B. | $M_w/M_n$ | Note                             |
| 3.0                                                      | 70                                              | 0.943                           | 0.51                 | 15     | 5.9       | TEA = Triethyl aluminum          |
| 10                                                       | 140                                             | 0.938                           | 0.50                 | 13     | 3.5       | DEAC = Diethyl aluminum chloride |
| 5.0                                                      | 70                                              | 0.935                           | 0.73                 | 20     | 5.9       | 4-MP-1 = 4-methylpentene-1       |
| 3.0                                                      | 70                                              | 0.929                           | 0.54                 | 25     | 5.9       | $C_2'$ = Ethylene                |
| 3.0                                                      | 50                                              | 0.910                           | 0.51                 | 35     | 6.0       | $C_4$ = n-Butane                 |
| 10                                                       | 140                                             | 0.912                           | 0.52                 | 22     | 3.6       | $C_4'$ = Butene-1                |
| 1.0                                                      | 50                                              | 0.931                           | 0.25                 | 25     | 5.9       | $C_6'$ = Hexene-1                |
| 3.0                                                      | 70                                              | 0.938                           | 0.50                 | 18     | 5.4       | $C_7$ = n-Heptane                |
| 10                                                       | 140                                             | 0.937                           | 0.52                 | 18     | 3.4       |                                  |

## 1 Example 6

A composition of ethylene- $\alpha$ -olefin copolymers was prepared in two stage polymerization.

The first stage polymerization was carried out 5 for 90 min. by using the catalyst produced in Example 1 and triethyl aluminum (co-catalyst) and employing other polymerization conditions as shown in Table 5. Successively, the second stage polymerization was conducted for 123 min. by changing only the hydrogen 10 partial pressure and the ethylene partial pressure as shown in Table 5. In both polymerization stages, the liquid phase molar ratio of ethylene/butene-1/hydrogen was maintained at respective fixed levels. The polymerized quantities in each stage were examined from the 15 quantities of fed ethylene. The result indicated that the total polymer consisted of about 45% by weight of higher molecular weight components and about 55% by weight of lower molecular weight components. The sample polymer of the former stage was taken out immediately 20 before the completion of the polymerization and was measured for its density, intrinsic viscosity, S.C.B. and (weight average molecular weight/number average molecular weight). Also, similar measurements were made 25 for the whole polymer obtained after the two-stage polymerization. Using the values of the former stage polymer and the whole polymer, the intrinsic viscosity and S.C.B. for the polymer formed in the latter stage alone were calculated. These calculated values are also shown in

1 Table 5. The whole polymer gave: density 0.920 g/cm<sup>3</sup>, melt index 0.7 g/10 min, melt flow ratio 65, intrinsic viscosity 1.6 dl/g, S.C.B. 25. The whole polymer was measured for its fluidity and solid physical properties.

5 Results are shown in Table 9.

The below-described are mixing methods of an ethylene- $\alpha$ -olefin copolymer A having a relatively higher molecular weight and an ethylene- $\alpha$ -olefin copolymer B having a relatively lower molecular weight.

10 (a) Mixing with a Banbury mixer (hereinafter referred to as Banbury mixing)

A copolymer A and a copolymer B are mixed in a fixed ratio and in order to give a total quantity of 1.0 kg. The mixture is kneaded in a Banbury mixer for 5 min.

15 with a rotar revolution of 150 to 230 rpm. At that time, nitrogen replacement should be made sufficiently and the polymer temperature must not exceed 250°C.

(b) Mixing in a solution state (hereinafter referred to as solution mixing)

20 A copolymer A and a copolymer B are mixed in a fixed ratio and in order to give a total quantity of 100 g. This mixture is charged into a 3 liter autoclave. Two liters of xylene is added as a solvent. With stirring, the mixture is heated up to 200°C and is subjected to

25 1 hour of solution mixing. Then, it is cooled below the boiling point, and is added into 10 liters of methanol to cause precipitation. The precipitate is dried for 48 hours in a vacuum drier of 80°C to obtain an intended.

## 1 polymer composition.

## Example 7

A composition of ethylene- $\alpha$ -olefin copolymers was prepared in two stage polymerization.

5       The first stage polymerization was carried out for 100 min. by using the catalyst produced in Example 1 and triethyl aluminum (co-catalyst) and employing other polymerization conditions as shown in Table 6. Successively the second stage polymerization was conducted for  
10 150 min. by changing only the hydrogen partial pressure and the ethylene partial pressure as shown in Table 6. In both polymerization stages, the liquid phase molar ratio of ethylene/butene-1/hydrogen was maintained at respective fixed levels. The polymerized quantitites  
15 in each stage were examined from the quantities of fed ethylene. The result indicated that the total polymer consisted of about 50% by weight of higher molecular weight components and about 50% by weight of lower molecular weight components. The sample polymer of the  
20 former stage was taken out immediately before the completion of the polymerization and was measured for its density, intrinsic viscosity, S.C.B. and (weight average molecular weight / number average molecular weight). Similar measurements were made also for the whole polymer  
25 obtained after the two stage polymerization. Using the values of the former stage polymer and the whole polymer, the intrinsic viscosity and S.C.B. for the polymer formed

- 61 -

1 in the latter stage alone were calculated. These-cal-  
culated values are also shown in Table 6. The whole  
polymer gave: density  $0.923 \text{ g/cm}^3$ , melt index 6 g/10 min.,  
melt flow ratio 55, intrinsic viscosity 1.10 dl/g, S.C.B.  
5 25. The whole polymer was subjected to injection molding  
and the molded composition was measured for its physical  
properties. Results are shown in Table 10.

Table 5

| No.       | Polymerization method | Polymerization vessel capacity ( $\lambda$ ) | Catalyst quantity (mg) | Co-catalyst TEA (mg) | Solvent (g) | $\alpha$ -olefin (g) | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|-----------|-----------------------|----------------------------------------------|------------------------|----------------------|-------------|----------------------|-------------------------------------------------------|
| 1st stage | Slurry                | 5                                            | 18.5                   | 5                    | $C_4$ 1000  | $C_4'$ 250           | 0.3                                                   |
| 2nd stage | Slurry                |                                              |                        |                      |             |                      | 1.7                                                   |

- Cont'd -

Note  $C_4$  = n-Butane $C_4'$  = Butene-1 $C_2'$  = Ethylene

TEA = Triethyl aluminum

Values in parenthesis are calculated values.

Table 5 (Cont'd)

| $C_2'$ -<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeri-<br>zation<br>tempera-<br>ture<br>(°C) | Polymeri-<br>zation<br>time<br>(min) | Properties                      |               |        |                       |
|----------------------------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------|---------------|--------|-----------------------|
|                                                          |                                                 |                                      | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. | $\bar{M}_w/\bar{M}_n$ |
| 3                                                        | 50                                              | 90                                   | 0.902                           | 2.8           | 35     | 6.1                   |
| 8                                                        |                                                 | 123                                  | -                               | (0.62)        | (15)   | -                     |

Table 6

| No.       | Polymerization method | Polymerization vessel capacity ( $\lambda$ ) | Catalyst quantity (mg) | Co-catalyst TEA (mmol) | Solvent (g) | $\alpha$ -olefin (g) | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|-----------|-----------------------|----------------------------------------------|------------------------|------------------------|-------------|----------------------|-------------------------------------------------------|
| 1st stage | Slurry                |                                              | 25                     | 5                      | $C_4$ 1000  | $C_4'$ 120           | 0.45                                                  |
| 2nd stage | Slurry                |                                              |                        |                        |             |                      | 16                                                    |

Note       $C_4$  = n-Butane  
 $C_4'$  = Butene-1  
 $C_2'$  = Ethylene

TEA = Triethyl aluminum

Values in parenthesis are calculated values.

- Cont'd -

Table 6 (Cont'd)

| $C_2'$ -<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeri-<br>zation<br>tempera-<br>ture<br>(°C) | Polymeri-<br>zation<br>time<br>(min) | Properties                      |                    |        |                       |
|----------------------------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------|--------------------|--------|-----------------------|
|                                                          |                                                 |                                      | Density<br>(g/cm <sup>3</sup> ) | $[\eta]$<br>(dl/g) | S.C.B. | $\bar{M}_w/\bar{M}_n$ |
| 20                                                       | 50                                              | 100                                  | 0.910                           | 1.75               | 30     | 5.8                   |
|                                                          |                                                 | 150                                  | -                               | (0.5)              | (20)   | -                     |
| 4.0                                                      |                                                 |                                      |                                 |                    |        |                       |

## 1 Example 8

The ethylene- $\alpha$ -olefin copolymer Al-1 obtained in Example 2 and the ethylene- $\alpha$ -olefin copolymer Bl-1 obtained in Example 3 were mixed at a 50/50 weight ratio 5 and kneaded in a Banbury mixer. A composition having a density, MI and MFR shown in Table 7 was prepared. Physical properties of the composition were also shown in Table 7. For the purpose of comparison, in Table 7 were also shown Comparative example 1 using a high pressure 10 polyethylene based on the conventional technique (commercial product: Sumikathene <sup>(R)</sup> F101-1 manufactured by Sumitomo Chemical Co., Ltd.) as well as Comparative example 2 using a low density ethylene- $\alpha$ -olefin copolymer of the conventional technique.

15 As is obvious from Table 7, the polymer composition of this invention is excellent, compared with the high pressure polyethylene, with its lower Brabender torque (excellent in processability) and higher tensile impact strength, ESCR, rigidity and tensile strength.

20 It is also obvious from Table 7 that, compared with the low density ethylene- $\alpha$ -olefin copolymer of the conventional technique, the polymer composition of this invention has a much lower Brabender torque (very excellent in processability) and a much higher tensile impact 25 strength and tensile strength.

Table 7

| Mixing method         | Copolymer A |             | Copolymer B |             |                              |               | Properties of composition |                               |     |
|-----------------------|-------------|-------------|-------------|-------------|------------------------------|---------------|---------------------------|-------------------------------|-----|
|                       | Designation | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/10 min) | MFR                       | Distribution index of S.C.B.* |     |
| Example 8             | Banbury     | A1-1        | 5.0         | B1-1        | 50                           | 0.921         | 1.1                       | 65                            | 2.5 |
| Comparative Example 1 | -           | -           | -           | -           | 0.922                        | 0.3           | 65                        | -                             | -   |
| Comparative Example 2 | -           | -           | -           | -           | 0.920                        | 1.0           | 30                        | -                             | -   |

- Cont'd -

\* Distribution index of S.C.B. = (S.C.B. of copolymer A)/(S.C.B. of copolymer B)

Table 7 (Cont'd.)

| Physical properties of composition               |                                                |               |                                        |                         |                           |
|--------------------------------------------------|------------------------------------------------|---------------|----------------------------------------|-------------------------|---------------------------|
| Tensile impact strength (kg-cm/cm <sup>2</sup> ) | Olsen's flexural modulus (kg/cm <sup>2</sup> ) | ESCR F50 (hr) | Tensile strength (kg/cm <sup>2</sup> ) | Brabender torque (kg.m) | Chlorine water resistance |
| 340                                              | 2600                                           | 1000          | 290                                    | 1.9                     | 1                         |
| 200                                              | 2200                                           | 30            | 180                                    | 2.2                     | 5                         |
| 230                                              | 3200                                           | 1000          | 250                                    | 2.9                     | 2                         |

## 1 Example 9

The ethylene- $\alpha$ -olefin copolymer A2-1 obtained in Example 4 and the ethylene- $\alpha$ -olefin copolymer B2-1 obtained in Example 5 were mixed at a 50/50 weight ratio 5 and kneaded in a Banbury mixer. A composition having a density, melt index and melt flow ratio shown in Table 8 was prepared. Physical properties of the composition were also shown in Table 8. For the purpose of comparison, in Table 8 were also shown Comparative example 3 10 using a high pressure method polyethylene based on the conventional technique (commercial product: Sumikathene<sup>RG</sup> 701 manufactured by Sumitomo Chemical Co., Ltd.) as well as Comparative example 4 using a low density ethylene- $\alpha$ -olefin copolymer of the conventional technique. As is 15 obvious from Table 8, the polymer composition of this invention has a better fluidity at injection molding than the high pressure polyethylene and, moreover, has a much higher tensile impact strength, rigidity, ESCR and tensile strength. Also, the polymer composition of the 20 present invention is largely excellent in fluidity at injection molding, compared with the low density ethylene- $\alpha$ -olefin copolymer of the conventional technique, and further has a much higher tensile impact strength and ESCR.

## 25 Examples 10 to 14

Ethylene- $\alpha$ -olefin copolymers A obtained in Example 2 and ethylene- $\alpha$ -olefin copolymers B obtained in

- 70 -

1 Example 3 were mixed in various ratios and the compositions having densities, MIs and MFRs shown in Table 9 were obtained. Their physical properties were also shown in Table 9.

5 In Table 9 was also shown a similar composition obtained from two stage polymerization (Example 6). For the purpose of comparison, in Table 9 were also shown Comparative examples 5, 6 and 7 as examples of low density ethylene- $\alpha$ -olefin copolymers of the conventional technique  
10 of which molecular weight distributions are made wider and of which lower molecular weight components have larger S.C.B. and of which higher molecular weight components have smaller S.C.B.

As is obvious from Table 9, in the compositions of this invention, S.C.B. in higher molecular weight components is more than or about equal to that in lower molecular weight components as seen in distribution index of S.C.B. (compare Examples 6, 10 and 14 with Comparative examples 5 and 6, and Example 13 with Comparative example 7). Therefore, the compositions of this invention have much higher tensile impact strengths and tensile strengths than the comparative compositions of the conventional technique do. By comparison of Comparative example 2 in Table 7 with Comparative example 5 in Table 9, it is seen that widening of molecular weight distribution in the manufacture of a low density ethylene- $\alpha$ -olefin copolymer of the conventional technique maintaining density and MI (larger MFR gives wider distribution)

**0057891**

- 71 -

- 1 results in large reduction in tensile impact strength  
and tensile strength.

Table 8

|                       | Mixing method | Copolymer A        |             | Copolymer B |             | Properties of composition    |               |     |
|-----------------------|---------------|--------------------|-------------|-------------|-------------|------------------------------|---------------|-----|
|                       |               | Design-% by weight | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/10 min) | MFR |
| Example 9             | Banbury       | A2-1               | 50          | B2-1        | 50          | 0.924                        | 5             | 50  |
| Comparative Example 3 | -             | -                  | -           | -           | -           | 0.920                        | 6             | 35  |
| Comparative Example 4 | -             | -                  | -           | -           | -           | 0.924                        | 5             | 30  |

- Cont'd -

\* Distribution index of S.C.B. = (S.C.B. of copolymer A)/(S.C.B. of copolymer B)

Table 8 (Cont'd)

| Tensile impact strength<br>(kg-cm/cm <sup>2</sup> ) | Olsen's flexural modulus<br>(kg/cm <sup>2</sup> ) | ESCR F <sub>50</sub><br>(hr) | Tensile strength<br>(kg/cm <sup>2</sup> ) | Spinal blow length<br>(mm) |
|-----------------------------------------------------|---------------------------------------------------|------------------------------|-------------------------------------------|----------------------------|
| 190                                                 | 2900                                              | 100                          | 220                                       | 130                        |
| 120                                                 | 2100                                              | 2                            | 150                                       | 120                        |
| 110                                                 | 3500                                              | 30                           | 180                                       | 80                         |

Table 9

|                                               | Mixing method | Copolymer A |             | Copolymer B |             | Properties of composition    |               |     |
|-----------------------------------------------|---------------|-------------|-------------|-------------|-------------|------------------------------|---------------|-----|
|                                               |               | Designation | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/10 min) | MFR |
| <b>Example 6 - Two stage polymerization -</b> |               |             |             |             |             |                              |               |     |
| Example 10                                    | Solution      | A1-2        | 60          | B1-2        | 40          | 0.920                        | 0.5           | 70  |
| Example 11                                    | Banbury       | A1-3        | 50          | B1-3        | 50          | 0.920                        | 0.25          | 80  |
| Example 12                                    | "             | A1-4        | 50          | B1-4        | 50          | 0.920                        | 0.8           | 50  |
| Example 13                                    | "             | A1-11       | 50          | B1-9        | 50          | 0.929                        | 1.2           | 70  |
| Example 14                                    | Solution      | A1-13       | 60          | B1-12       | 40          | 0.919                        | 0.5           | 70  |
| Comparative Example 5                         | Banbury       | A1-7        | 50          | B1-6        | 50          | 0.920                        | 1.1           | 65  |
| Comparative Example 6                         | Solution      | A1-8        | 60          | B1-7        | 40          | 0.919                        | 0.5           | 70  |
| Comparative Example 7                         | Banbury       | A1-12       | 50          | B1-10       | 50          | 0.930                        | 1.2           | 70  |

- Cont'd -

(S.C.B. of copolymer A)  
\* Distribution index =  $\frac{(S.C.B. \text{ of copolymer A})}{(S.C.B. \text{ of copolymer B})}$

Table 9 (Cont'd)

Physical properties of composition

| Tensile impact strength (kg-cm/cm <sup>2</sup> ) | Olsen's flexural modulus (kg/cm <sup>2</sup> ) | Tensile strength (kg/cm <sup>2</sup> ) | Tackiness |
|--------------------------------------------------|------------------------------------------------|----------------------------------------|-----------|
| 370                                              | 2700                                           | 300                                    | o         |
| 480                                              | 2600                                           | 320                                    | o         |
| 480                                              | 2700                                           | 320                                    | o         |
| 300                                              | 2900                                           | 260                                    | o         |
| 250                                              | 3700                                           | 250                                    | o         |
| 500                                              | 2500                                           | 310                                    | o         |
| 110                                              | 3200                                           | 180                                    | x         |
| 200                                              | 3100                                           | 200                                    | x         |
| 70                                               | 4500                                           | 200                                    | o         |

## 1 Examples 15 to 17

Ethylene- $\alpha$ -olefin copolymers A obtained in Example 4 and ethylene- $\alpha$ -olefin copolymers B obtained in Example 5 were mixed in various ratios and the compositions having densities, melt indices and melt flow ratios shown in Table 10 were obtained. Their physical properties were also shown in Table 10.

In Table 10 was also shown a similar composition obtained from two stage polymerization (Example 7).

- 10 For the purpose of comparison, in Table 10 were also shown Comparative examples 8, 9 and 10 as examples of low density ethylene- $\alpha$ -olefin copolymers of the conventional technique of which molecular weight distributions are made wider, and of which lower molecular weight components have larger S.C.B. and of which higher molecular weight components have smaller S.C.B.

As is obvious from Table 10, in the compositions of this invention, the higher molecular weight components have larger S.C.B. than the lower molecular weight components do, as seen in distribution index of S.C.B. (compare Examples 7, 15, 16 with Comparative examples 8 and 9, and Example 17 with Comparative example 10). Therefore, the compositions of this invention have much higher tensile impact strengths ESCRs and tensile strengths than the comparative compositions of the conventional technique do. By comparison of Comparative example 4 in Table 8 with Comparative example 9 in Table 10, it is seen that widening of molecular weight

1 distribution in the manufacture of a low density ethylene-  
α-olefin copolymer of the conventional technique maintaining density and MI (larger MFR gives wider distribution)  
results in large reduction in tensile impact strength,  
5 ESCR and tensile strength.

Examples 18 to 20

Ethylene-α-olefin copolymers A obtained in Example 2 and ethylene-α-olefin copolymers B obtained in Exmaple 3 were mixed in various ratios and the compositions having densities, MIs and MFRs shown in Table 11 were obtained. Their physical properties were also shown in Table 11.

For the purpose of comparison, in Table 11 were also shown an example (Comparative example 1) of 15 high pressure polyethylenes of the conventional technique; an example (Comparative example 11) of low density ethylene-α-olefin copolymers of the conventional technique of which molecular weight distributions are made wider, and of which lower molecular weight components 20 have larger S.C.B. and of which higher molecular weight components have smaller S.C.B.; and an example (Comparative example 12, to be compared with Example 19) of ethylene-α-olefin copolymers compositions of which 25 distribution indices of S.C.B. meet the object of this invention but of which lower molecular weight components have a too low intrinsic viscosity.

It is clearly seen from Table 11 that proper

1 selection of distribution index of S.C.B. gives good  
transparency about equal to that of high pressure poly-  
ethylenes as well as a much more excellent tensile impact  
strength and tensile strength than those of high pressure  
5 polyethylenes.

It is learned from comparison of Example 19  
with Comparative example 12 that a too low intrinsic  
viscosity of lower molecular weight components badly  
affects the tensile impact strength and transparency of  
10 the copolymer composition.

Table 10

|                                               | Mixing method | Copolymer A |             | Copolymer B |             | Properties of composition    |               |          |
|-----------------------------------------------|---------------|-------------|-------------|-------------|-------------|------------------------------|---------------|----------|
|                                               |               | Designation | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/10 min) | MFR      |
| <b>Example 7</b> - Two stage polymerization - |               |             |             |             |             |                              |               |          |
| Example 15                                    | Solution      | A2-2        | 50          | B2-2        | 50          | 0.923                        | 6             | 55 (1.5) |
| Example 16                                    | "             | A2-3        | 30          | B2-3        | 70          | 0.924                        | 3             | 60 1.5   |
| Example 17                                    | Banbury       | A2-8        | 45          | B2-8        | 55          | 0.929                        | 10            | 45 1.4   |
| Comparative Example 8                         | Solution      | A2-7        | 50          | B2-6        | 50          | 0.922                        | 5             | 50 0.45  |
| Comparative Example 9                         | Banbury       | A2-4        | 50          | B2-5        | 50          | 0.920                        | 5             | 50 0.49  |
| Comparative Example 10                        | "             | A2-9        | 45          | B2-4        | 55          | 0.930                        | 10            | 45 0.40  |

- Cont'd -

$$\text{Distribution index} = \frac{(\text{S.C.B. of copolymer A})}{(\text{S.C.B. of copolymer B})}$$

Table 10 (Cont'd)  
 Physical properties of composition

| Tensile impact strength (kg-cm/cm <sup>2</sup> ) | Olsen's flexural modulus (kg/cm <sup>2</sup> ) | ESCR F <sub>50</sub> (hr) | Tensile strength (kg/cm <sup>2</sup> ) | Tackiness |
|--------------------------------------------------|------------------------------------------------|---------------------------|----------------------------------------|-----------|
| 170                                              | 3000                                           | 50                        | 220                                    | o         |
| 240                                              | 3000                                           | 100                       | 250                                    | o         |
| 190                                              | 3000                                           | 30                        | 230                                    | o         |
| 120                                              | 4000                                           | 5                         | 200                                    | o         |
| 100                                              | 3600                                           | 15                        | 150                                    | x         |
| 80                                               | 3200                                           | 13                        | 130                                    | x         |
| 40                                               | 4500                                           | 1                         | 110                                    | o         |

Table 11

| Mixing method          | Copolymer A |             | Copolymer B |             | Properties of composition    |               |     |                               |     |
|------------------------|-------------|-------------|-------------|-------------|------------------------------|---------------|-----|-------------------------------|-----|
|                        | Designation | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/10 min) | MFR | Distribution index of S.C.B.* |     |
| Example 18 Solution    | A1-5        | 30          | B1-5        | 70          | 0.920                        | 0.15          | 100 | 1.0                           |     |
| Example 19 "           | A1-6        | 50          | B1-11       | 50          | 0.920                        | 0.8           | 50  | 1.0                           |     |
| Example 20 Banbury     | A1-1        | 50          | B1-4        | 50          | 0.916                        | 1.1           | 65  | 1.6                           |     |
| Comparative Example 1  | -           | -           | -           | -           | 0.922                        | 0.3           | 65  | -                             |     |
| Comparative Example 11 | Banbury     | A1-9        | 50          | B1-6        | 50                           | 0.920         | 0.8 | 50                            | 0.4 |
| Comparative Example 12 | "           | A1-10       | 65          | B1-8        | 35                           | 0.920         | 0.8 | 50                            | 1.0 |

\*Distribution index of S.C.B. = (S.C.B. of copolymer A)/(S.C.B. of copolymer B)

- Cont'd -

Table 11 (Cont'd)  
 Physical properties of composition

| Tensile impact strength (kg-cm/cm <sup>2</sup> ) | Olsen's flexural modulus (kg/cm <sup>2</sup> ) | Tensile strength (kg/cm <sup>2</sup> ) | Tackiness | Haze (%) |
|--------------------------------------------------|------------------------------------------------|----------------------------------------|-----------|----------|
| 480                                              | 2800                                           | 320                                    | 0         | 5        |
| 400                                              | 2800                                           | 250                                    | 0         | 5        |
| 420                                              | 2100                                           | 250                                    | 0         | 5        |
| 200                                              | 2200                                           | 180                                    | 0         | 5        |
| 150                                              | 3300                                           | 200                                    | x         | 12       |
| 130                                              | 2800                                           | 220                                    | 0         | 15       |

## 1 Examples 21, 22, 23

Ethylene- $\alpha$ -olefin copolymers A obtained in Example 4 and ethylene- $\alpha$ -olefin copolymers B obtained in Example 5 were mixed at various ratios, and the compositions having densities, MIs and MFRs shown in Table 12 were obtained. Their physical properties were also shown in Table 12. For the purpose of comparison, in Table 12 were also shown Comparative example 3 using a high pressure polyethylene of the conventional technique; Comparative example 13 using a composition of low density ethylene- $\alpha$ -olefin copolymers of the conventional technique of which molecular weight distribution is made wider and of which lower molecular weight components have more S.C.B. and of which higher molecular weight components have less S.C.B.; and Comparative example 14 (to be compared with Example 22) using a composition of ethylene- $\alpha$ -olefin copolymers of which distribution index of S.C.B. meets the scope of the present invention but of which lower molecular weight components have a too low intrinsic viscosity. It is obvious from Table 12 that proper selection of distribution index of S.C.B. gives good transparency about equal to that of high pressure polyethylenes and much more excellent tensile impact strength, tensile strength and ESCR than those of high pressure polyethylenes. From comparison of Example 22 with Comparative example 14, it is learned that a too low intrinsic viscosity of lower molecular weight components badly affects tensile impact strength and transparency.

Table 12

| Mixing method          | Copolymer A |             | Copolymer B |             | Properties of composition    |               |     |                               |
|------------------------|-------------|-------------|-------------|-------------|------------------------------|---------------|-----|-------------------------------|
|                        | Designation | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/10 min) | MFR | Distribution index of S.C.B.* |
| Example 21 Solution    | A2-10       | 50          | B2-9        | 50          | 0.923                        | 5             | 50  | 0.72                          |
| Example 22 Banbury     | A2-5        | 50          | B2-4        | 50          | 0.922                        | 5             | 50  | 1.0                           |
| Example 23 "           | A2-1        | 50          | B2-4        | 50          | 0.920                        | 5             | 50  | 1.6                           |
| Comparative Example 13 | "           | A2-6        | 50          | B2-5        | 50                           | 0.923         | 5   | 0.37                          |
| Comparative Example 14 | "           | A2-8        | 65          | B2-7        | 35                           | 0.922         | 5   | 50 1.0                        |
| Comparative Example 3  | -           | -           | -           | -           | 0.920                        | 6             | 35  | -                             |

- Cont'd -

# Distribution index of S.C.B. = (S.C.B. of copolymer A)/(S.C.B. of copolymer B)

Table 12 (Cont'd)

| Physical properties of composition                  |                                                   |                  |                                           |             |          |
|-----------------------------------------------------|---------------------------------------------------|------------------|-------------------------------------------|-------------|----------|
| Tensile impact strength<br>(kg-cm/cm <sup>2</sup> ) | Olsen's flexural modulus<br>(kg/cm <sup>2</sup> ) | ESCR F50<br>(hr) | Tensile strength<br>(kg/cm <sup>2</sup> ) | Tacki- ness | Haze (%) |
| 200                                                 | 3100                                              | 20               | 250                                       | 0           | 7        |
| 170                                                 | 2900                                              | 30               | 220                                       | 0           | 7        |
| 260                                                 | 2500                                              | 200              | 230                                       | 0           | 7        |
| 50                                                  | 3600                                              | 10               | 130                                       | x           | 12       |
| 80                                                  | 3200                                              | 30               | 190                                       | 0           | 12       |
| 120                                                 | 2100                                              | 2                | 150                                       | 0           | 7        |

-1 Comparative Example 1

A commercial high pressure polyethylene (Sumikathene<sup>®</sup> F101-1 manufactured by Sumitomo Chemical Co., Ltd.) was measured for its physical properties and 5 subjected to blow molding.

Results were shown in Table 7 and 11.

Comparative Example 2

An ethylene- $\alpha$ -olefin copolymer of the conventional technique was synthesized employing polymerization 10 conditions as shown in Table 13 in which the catalyst prepared in Example 1 and triethyl aluminum (co-catalyst) were used. The copolymer gave: density 0.920 g/cm<sup>3</sup>, MI 1.0 g/10 min., MFR 30. Its physical properties were shown in Table 7.

Table 13

| Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst TEA (mmol) | Solvent (kg) | $\alpha$ -olefin (kg) | $H_2$ partial pressure ( $kg/cm^2$ ) | $C_2'$ partial pressure ( $kg/cm^2$ ) | Polymerization temperature ( $^{\circ}C$ ) | Polymerization time (min) |
|-----------------------|------------------------------------|------------------------|------------------------|--------------|-----------------------|--------------------------------------|---------------------------------------|--------------------------------------------|---------------------------|
| Slurry                | 65                                 | 197                    | 100                    | $C_4$ 7.0    | $C_4'$ 7.16           | 4.2                                  | 10                                    | 50                                         | 100                       |

Note      TEA = Triethyl aluminum

$C_4$  = n-Butane

$C_2'$  = Ethylene

$C_4'$  = Butene-1

## 1 Comparative Example 3

A commercial high pressure polyethylene (Sumikathene<sup>®</sup> G701 manufactured by Sumitomo Chemical Co., Ltd.) was measured for its physical properties and sub-  
5 jected to injection molding.

Results were shown in Table 8 and 12.

## Comparative Example 4

A low density ethylene- $\alpha$ -olefin copolymer of the conventional technique was synthesized employing polymerization conditions shown in Table 1<sup>4</sup> in which the  
10 catalyst prepared in Example 1 and triethyl aluminum (co-catalyst) were used. The copolymer gave: density 0.924 g/cm<sup>3</sup>, melt index 5 g/10 min., melt flow ratio 30. Its physical properties were shown in Table 8.

Table 14

| Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst TEA (mmol) | Solvent (kg) | $\alpha$ -olefin (kg) | $H_2$ partial pressure (kg/cm <sup>2</sup> ) | $C_2'$ partial pressure (kg/cm <sup>2</sup> ) | Polymerization temperature (°C) | Polymerization time (min) |
|-----------------------|------------------------------------|------------------------|------------------------|--------------|-----------------------|----------------------------------------------|-----------------------------------------------|---------------------------------|---------------------------|
| Slurry                | 65                                 | 199                    | 25                     | 6.0          | $C_4'$<br>6.14        | 10.2                                         | 11.3                                          | 50                              | 90                        |

Note: TEA = Triethyl aluminum

 $C_2'$  = Ethylene $C_4$  = n-Butane $C_4'$  = Butene-1

- 90 -

1 Comparative Examples 5, 6, 7 and 11

Compositions of ethylene- $\alpha$ -olefin copolymers of the conventional technique were prepared by blending ethylene- $\alpha$ -olefin copolymers A obtained in Example 2 and 5 ethylene- $\alpha$ -olefin copolymers B obtained in Example 3 at ratios shown in Table 9 or 11. However in these copolymer compositions, molecular weight distributions are made wider and lower molecular weight components have larger S.C.B. and higher molecular weight components have 10 smaller S.C.B. Densities, MIs, MFRs and physical properties of these compositions were shown in Table 9 or 11.

Comparative Example 12

By blending an ethylene- $\alpha$ -olefin copolymer A obtained in Example 2 and an ethylene- $\alpha$ -olefin copolymer 15 B obtained in Example 3 at a mixing ratio shown in Table 11, a composition of ethylene- $\alpha$ -olefin copolymers was prepared of which distribution index of S.C.B. meets the scope of the present invention but of which lower molecular weight components have a too low intrinsic viscosity. Its density, MI, MFR and physical properties were 20 shown in Table 11.

Comparative Examples 8, 9, 10 and 13

Compositions of ethylene- $\alpha$ -olefin copolymers of the conventional technique were prepared by blending 25 ethylene- $\alpha$ -olefin copolymers A obtained in Example 4 and ethylene- $\alpha$ -olefin copolymers B obtained in Example 5 at

1 mixing ratios shown in Table 10 or 12. However in these  
compositions, molecular weight distributions are made  
wider and lower molecular weight components have larger  
S.C.B. and higher molecular weight components have smaller  
5 S.C.B. Densities, MIs, MFRs and physical properties of  
these compositions were shown in Table 10 or 12.

Comparative Example 1<sup>4</sup>

By blending an ethylene- $\alpha$ -olefin copolymer A obtained in Example 4 and an ethylene- $\alpha$ -olefin copolymer B obtained in Example 5 at a mixing ratio shown in Table 10 12, a composition of ethylene- $\alpha$ -olefin copolymers was prepared of which distribution index of S.C.B. meets the scope of this invention but of which lower molecular weight components have too low an intrinsic viscosity. Its density, MI, MFR and physical properties were shown 15 in Table 12.

Example 2<sup>4</sup>

Ethylene- $\alpha$ -olefin copolymers A were polymerized using the catalyst produced in Example 1 and organoaluminum compounds (co-catalyst) and employing  $\alpha$ -olefins and other polymerization conditions as shown in Table 15. 20 Their densities, intrinsic viscosities, S.C.B. and (weight average molecular weight/number average molecular weight) were shown in Table 15.

These polymers are used in the following examples as mixing components.

Table 15

| No.  | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg)        | $\alpha$ -olefin (kg)  | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|------|-----------------------|------------------------------------|------------------------|--------------------|---------------------|------------------------|-------------------------------------------------------|
| A3-1 | Slurry                | 65                                 | 131                    | TEA 100            | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 0.45                                                  |
| A3-2 | Solution              | 1                                  | 25.1                   | DEAC 2.5           | C <sub>7</sub> 0.22 | 4-MP-1 0.130           | 0.10                                                  |
| A3-3 | "                     | 1                                  | 24.8                   | "                  | C <sub>7</sub> 0.30 | C <sub>6</sub> ' 0.055 | 0.10                                                  |
| A3-4 | Slurry                | 65                                 | 307                    | TEA 100            | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 0.9                                                   |
| A3-5 | "                     | 65                                 | 130                    | TEA 50             | "                   | "                      | 0.22                                                  |
| A3-6 | "                     | 65                                 | 125                    | "                  | "                   | "                      | 1.8                                                   |
| A3-7 | "                     | 65                                 | 301                    | TEA 100            | "                   | "                      | 1.2                                                   |
| A3-8 | "                     | 65                                 | 318                    | "                  | "                   | "                      | 2.0                                                   |
| A3-9 | "                     | 65                                 | 308                    | "                  | "                   | "                      | 1.4                                                   |

Note TEA = triethyl aluminum

DEAC = Diethyl aluminum chloride

- Cont'd -

4-MP-1 = 4-Methylpentene-1

C<sub>2</sub>' = EthyleneC<sub>4</sub> = n-ButaneC<sub>4</sub>' = Butene-1C<sub>6</sub>' = Hexene-1C<sub>7</sub> = n-Heptane

Table 15 (Cont'd)

| C <sub>2</sub> '-<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeriza-<br>tion<br>tempera-<br>ture<br>(°C) | Properties                      |               |        |                                |
|-------------------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------|--------|--------------------------------|
|                                                                   |                                                 | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. | M <sub>w</sub> /M <sub>n</sub> |
| 5.0                                                               | 50                                              | 0.899                           | 2.6           | 38     | 5.9                            |
| 20                                                                | 140                                             | 0.899                           | 2.6           | 27     | 3.5                            |
| 20                                                                | 140                                             | 0.902                           | 2.6           | 24     | 3.7                            |
| 9.0                                                               | 50                                              | 0.914                           | 2.4           | 22     | 6.0                            |
| 5.5                                                               | 50                                              | 0.906                           | 3.2           | 28     | 5.8                            |
| 18                                                                | 50                                              | 0.923                           | 2.6           | 9      | 5.5                            |
| 12                                                                | 50                                              | 0.919                           | 2.4           | 16     | 5.8                            |
| 20                                                                | 50                                              | 0.928                           | 2.4           | 8      | 5.4                            |
| 9.0                                                               | 50                                              | 0.914                           | 2.2           | 22     | 5.7                            |

1 Example 25

Ethylene- $\alpha$ -olefin copolymers B were polymerized using the catalyst produced in Example 1 and organoaluminum compounds (co-catalyst) and employing  $\alpha$ -olefins and 5 other polymerization conditions shown in Table 16. Their densities, intrinsic viscosities, S.C.B. and (weight average molecular weight/number average molecular weight) were shown in Table 16.

These copolymers are used in the following 10 examples as mixing components.

Table 16

| No.  | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg)        | $\alpha$ -olefin (kg)  | $H_2$ partial pressure ( $kg/cm^2$ ) |
|------|-----------------------|------------------------------------|------------------------|--------------------|---------------------|------------------------|--------------------------------------|
| B3-1 | Slurry                | 65                                 | 405                    | TEA 50             | C <sub>4</sub> 12.0 | C <sub>4</sub> ' 2.0   | 10.8                                 |
| B3-2 | Solution              | 1                                  | 25.5                   | DEAC 2.5           | C <sub>7</sub> 0.30 | 4-MP-1 0.025           | 2.4                                  |
| B3-3 | "                     | 1                                  | 24.2                   | "                  | C <sub>7</sub> 0.32 | C <sub>6</sub> ' 0.013 | 2.4                                  |
| B3-4 | Slurry                | 65                                 | 330                    | TEA 100            | C <sub>4</sub> 15.2 | C <sub>4</sub> ' 0.7   | 7.5                                  |
| B3-5 | "                     | 65                                 | 391                    | "                  | "                   | C <sub>4</sub> ' 1.8   | 7.2                                  |
| B3-6 | "                     | 65                                 | 408                    | "                  | C <sub>4</sub> 12.0 | C <sub>4</sub> ' 4.0   | 5.2                                  |
| B3-7 | "                     | 65                                 | 350                    | "                  | C <sub>4</sub> 15.2 | C <sub>4</sub> ' 1.3   | 7.5                                  |
| B3-8 | "                     | 65                                 | 405                    | TEA 50             | "                   | C <sub>4</sub> ' 1.6   | 8.8                                  |
| B3-9 | "                     | 65                                 | 390                    | TEA 100            | "                   | C <sub>4</sub> ' 0.20  | 15.0                                 |

- Cont'd -

Note TEA = triethyl aluminum DEAC = Diethyl aluminum chloride

4-MP-1 = 4-Methylpentene-1 C<sub>2</sub>' = Ethylene C<sub>4</sub> = n-ButaneC<sub>6</sub>' = Hexene-1 C<sub>7</sub> = n-Heptane

Table 16 (Cont'd)

| $C_2'$ -<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeri-<br>zation<br>tempera-<br>ture<br>(°C) | Properties                      |               |        |                       |
|----------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------|--------|-----------------------|
|                                                          |                                                 | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. | $\bar{M}_w/\bar{M}_n$ |
| 8.3                                                      | 70                                              | 0.942                           | 0.83          | 15     | 5.5                   |
| 10                                                       | 140                                             | 0.943                           | 0.81          | 10     | 3.7                   |
| 10                                                       | 140                                             | 0.940                           | 0.82          | 12     | 3.8                   |
| 5.0                                                      | 70                                              | 0.949                           | 0.75          | 11     | 5.3                   |
| 8.0                                                      | 70                                              | 0.941                           | 0.92          | 14     | 5.4                   |
| 4.0                                                      | 50                                              | 0.910                           | 0.82          | 35     | 5.9                   |
| 5.0                                                      | 70                                              | 0.942                           | 0.75          | 16     | 5.8                   |
| 5.0                                                      | 70                                              | 0.935                           | 0.74          | 20     | 5.9                   |
| 1.5                                                      | 70                                              | 0.949                           | 0.27          | 11     | 5.6                   |

## 1 Example 26

A composition of ethylene- $\alpha$ -olefin copolymers was prepared from a two stage polymerization. The first stage polymerization was carried out for 90 min. using 5 the catalyst obtained in Example 1 and triethyl aluminum (co-catalyst) and employing other polymerization conditions shown in Table 17.

Successively the second stage polymerization was conducted for 150 min. by changing only the hydrogen 10 partial pressure and the ethylene partial pressure as shown in table 17. In both stages, the liquid phase molar ratio of ethylene, butene-1 and hydrogen were kept at respective fixed levels. Polymerized quantities in each stage were calculated from quantities of fed ethylene. 15 The total polymer consisted of about 50% by weight of lower molecular weight components. Immediately before the completion of the first stage polymerization, a part of the polymer formed was taken out as a polymer sample 20 of the first stage and measured for its density, intrinsic viscosity, S.C.B. and (weight average molecular weight/ number average molecular weight). Similar measurements were also made for the whole polymer of this two stage polymerization. From the values of the first stage polymer and the whole polymer, the intrinsic viscosity and S.C.B. 25 of the polymer formed in the second stage along were calculated, and they were shown in Table 17. The whole polymer gave: density 0.919 g/cm<sup>3</sup>, melt index 0.5 g/10 min., melt flow ratio 70, intrinsic viscosity 1.70 dl/g,

- 98 -

1 S.C.B. 27. The flow characteristics and the solid  
physical properties of the whole polymer were shown in  
Table 19.

Example 27

5 By mixing the ethylene- $\alpha$ -olefin copolymer A3-1  
obtained in Example 24 and the ethylene- $\alpha$ -olefin copoly-  
mer B3-1 obtained in Example 25 at a 50/50 weight ratio  
and kneading the mixture in a Banbury mixer, a composi-  
tion having the density, MI and MFR as shown in Table 18  
10 was prepared. The physical properties of this composi-  
tion were also shown in Table 18.

For the purpose of comparison, in Table 18  
were also shown Comparative examples 15 and 16 using high  
pressure polyethylenes of the conventional technique  
15 (commercial products Sumikathene® F208-1, F101-1 manu-  
factured by Sumitomo Chemical Co., Ltd.) as well as  
Comparative example 17 using a low density ethylene- $\alpha$ -  
olefin copolymer of the conventional technique.

It is obvious from Table 18 that the copolymer  
20 composition of this invention has a Brabender torque about  
equal to those of high pressure polyethylenes (good in  
processability) and is quite excellent in tensile impact  
strength, rigidity, ESCR and tensile strength, compared  
with these polyethylenes.

25 When compared with the low density ethylene- $\alpha$ -  
olefin copolymer of the conventional technique, this  
composition has a much smaller Brabender torque

**0057891**

- 99 -

1 (processability is much better), a superior tensile  
impact strength and tensile strength.

Table 17

| No.       | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst TEA (mmol) | Solvent (g) | $\alpha$ -olefin (g) | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|-----------|-----------------------|------------------------------------|------------------------|------------------------|-------------|----------------------|-------------------------------------------------------|
| 1st stage | Slurry                | 5                                  | 24.3                   | 5                      | $C_4$       | 1000                 | $C_4'$ 250                                            |
| 2nd stage | Slurry                |                                    |                        |                        |             |                      | 14                                                    |

- Cont'd -

Note       $C_4$  = n-Butane      TEA = Triethyl aluminum  
 $C_4'$  = Butene-1      ( ) = Calculated values

$C_2'$  = Ethylene

Table 17 (Cont'd)

|                                                                   |                                            | Properties                           |                                 |               |        |                       |
|-------------------------------------------------------------------|--------------------------------------------|--------------------------------------|---------------------------------|---------------|--------|-----------------------|
| C <sub>2</sub> '-<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeri-<br>zation<br>temperature<br>(°C) | Polymeri-<br>zation<br>time<br>(min) | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. | $\bar{M}_w/\bar{M}_n$ |
| 3                                                                 |                                            | 90                                   | 0.900                           | 2.6           | 37     | 5.8                   |
| 8                                                                 | 50                                         | 150                                  | -                               | (0.8) (17)    | -      |                       |

Table 18

| Mixing method          | Copolymer A |             | Copolymer B |             | Properties of composition    |               |     |                               |     |
|------------------------|-------------|-------------|-------------|-------------|------------------------------|---------------|-----|-------------------------------|-----|
|                        | Designation | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/10 min) | MFR | Distribution index of S.C.B.* |     |
| Example 27             | Banbury     | A3-1        | 50          | B3-1        | 50                           | 0.920         | 0.5 | 70                            | 2.5 |
| Comparative Example 15 | -           | -           | -           | -           | 0.923                        | 1.4           | 50  | -                             |     |
| Comparative Example 16 | -           | -           | -           | -           | 0.922                        | 0.3           | 65  | -                             |     |
| Comparative Example 17 | -           | -           | -           | -           | 0.920                        | 0.5           | 30  | -                             |     |

- Cont'd -

$$\text{* Distribution index of S.C.B.} = \frac{(\text{S.C.B. of copolymer A})}{(\text{S.C.B. of copolymer B})}$$

Table 18 (Cont'd)

| Physical properties of composition                  |                                                   |                              |                                           |                            |
|-----------------------------------------------------|---------------------------------------------------|------------------------------|-------------------------------------------|----------------------------|
| Tensile impact strength<br>(kg-cm/cm <sup>2</sup> ) | Olsen's flexural modulus<br>(kg/cm <sup>2</sup> ) | ESCR F <sub>50</sub><br>(hr) | Tensile strength<br>(kg/cm <sup>2</sup> ) | Brabender torque<br>(kg·m) |
| 450                                                 | 2600                                              | >1000                        | 320                                       | 2.0                        |
| 130                                                 | 2400                                              | 0.3                          | 160                                       | 1.9                        |
| 200                                                 | 2200                                              | 30                           | 180                                       | 2.2                        |
| 280                                                 | 3200                                              | >1000                        | 260                                       | 3.5                        |

## 1 Examples 28 to 31

Compositions having densities, MIs and MFRs shown in Table 19 were obtained, by blending ethylene- $\alpha$ -olefin copolymers A obtained in Example 24 and ethylene- $\alpha$ -olefin copolymers B obtained in Example 25 at mixing ratios as shown in Table 19. The physical properties of these compositions were shown in Table 19.

In Table 19 were also shown a composition of similar ethylene- $\alpha$ -olefin copolymers synthesized in two stage polymerization (Example 26) as well as, for comparison, ethylene- $\alpha$ -olefin copolymers compositions (Comparative examples 18, 19, 20) of which higher molecular weight components have smaller S.C.B. than lower molecular weight components do or have relatively few S.C.B. Also as shown in Table 19 an ethylene- $\alpha$ -olefin copolymers composition (Comparative example 21, to be compared with Examples 30 and 31) of which distribution index of S.C.B. meets the scope of the presen invention but of which lower molecular weight components have too low an intrinsic viscosity.

As is obvious from Table 19, in the compositions of this invention, higher molecular weight components have larger S.C.B. than lower molecular weight components do. (Comparison should be made between Examples 26, 28 and 29 and Comparative example 18, and also between Example 30 and 31 and Comparative examples 19 and 20.) The compositions of this invention are also far superior in tensile impact strength and tensile strength to the Comparative examples.

Table 19

|                        | Mixing method | Copolymer A |             | Copolymer B |             | Properties of composition    |               |          |
|------------------------|---------------|-------------|-------------|-------------|-------------|------------------------------|---------------|----------|
|                        |               | Designation | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/10 min) | MFR      |
| Example 26             | -             | -           | -           | -           | -           | 0.919                        | 0.5           | 70 (2.2) |
| Example 28             | Solution      | A3-2        | 50          | B3-2        | 50          | 0.920                        | 0.5           | 70 2.7   |
| Example 29             | "             | A3-3        | 50          | B3-3        | 50          | 0.920                        | 0.5           | 70 2.0   |
| Example 30             | Banbury       | A3-4        | 50          | B3-4        | 50          | 0.929                        | 0.8           | 50 2.0   |
| Example 31             | Solution      | A3-5        | 30          | B3-5        | 70          | 0.929                        | 0.8           | 50 2.0   |
| Comparative Example 18 | Banbury       | A3-6        | 50          | B3-6        | 50          | 0.920                        | 0.5           | 70 0.26  |
| Comparative Example 19 | "             | A3-7        | 50          | B3-7        | 50          | 0.929                        | 0.8           | 50 1.0   |
| Comparative Example 20 | "             | A3-8        | 50          | B3-8        | 50          | 0.929                        | 0.8           | 50 0.4   |
| Comparative Example 21 | "             | A3-9        | 65          | B3-9        | 35          | 0.929                        | 0.8           | 50 2.0   |

- Cont'd -

\*Distribution index = (S.C.B. of copolymer A)/(S.C.B. of copolymer B)  
S.C.B.

**0057891**

- 106 -

Table 19 (Cont'd)

| Tensile impact strength (kg-cm/cm <sup>2</sup> ) | Olsen's flexural modulus (kg/cm <sup>2</sup> ) | Tensile strength (kg/cm <sup>2</sup> ) | Tackiness |
|--------------------------------------------------|------------------------------------------------|----------------------------------------|-----------|
| 470                                              | 2500                                           | 320                                    | o         |
| 550                                              | 2600                                           | 340                                    | o         |
| 520                                              | 2600                                           | 320                                    | o         |
| 300                                              | 4000                                           | 300                                    | o         |
| 280                                              | 4000                                           | 290                                    | o         |
| 150                                              | 3300                                           | 210                                    | x         |
| 200                                              | 4200                                           | 240                                    | o         |
| 90                                               | 4500                                           | 200                                    | o         |
| 120                                              | 4000                                           | 230                                    | o         |

## 1 Example 32

The composition prepared in Example 27 and the low density ethylene- $\alpha$ -olefin copolymer of the conventional technique used in Comparative example 17 were subjected 5 to film processing under the following conditions.

## Processing conditions

Extruder: Tanabe 30 mm $\phi$  extruder

Screw: Full flight L/D = 28, C.R. = 2.5

Die: Diameter 50 mm, die gap 2.0 mm

10 Temperature control: C<sub>1</sub> 170°, C<sub>2</sub> 220°, C<sub>3</sub> 220°,  
HD 220°C

Screw revolution: 35 rpm

Output: 3.2 kg/hr

Blow up ratio: 2.5

15 Frost line height: 180 mm

Take-off speed: 5 m/min

Film thickness: 35  $\mu$

Also, the commercial high pressure polyethylenes used in Comparative examples 15 and 16 were subjected to 20 film processing under the following conditions.

Die gap: 1.0 mm

Temperature control: C<sub>1</sub> 140°, C<sub>2</sub> 160°, C<sub>3</sub> 160°,  
HD 160°C

(Other conditions were same as those applied above.)

25 In the case of the low density ethylene- $\alpha$ -olefin copolymer of the conventional technique used in Comparative example 17, a satisfactory film was not obtained with too much load put on the motor and with

1 shark skin formed on the film surface.

In the cases of the composition prepared in Example 27 and the commercial high pressure polyethylenes used in Comparative examples 15 and 16, satisfactory 5 films were obtained with no excessive motor loads. The physical properties of these films were shown in Table 20. The film of the composition prepared in Example 27 is far superior to those of the high pressure polyethylenes, in dart impact strength, Elmendorf tear 10 strengths (absolute value and MD/TD balance), tensile strength, heat-sealing characteristics, hot tack property and heat sealing strength in contaminated condition.

In the film of the composition prepared in Example 27, heat-sealing strength and heat sealing 15 strength in contaminated condition had about same values, while, in the films of Comparative examples 15 and 16, heat sealing strength in contaminated condition were slightly lower than heat-sealing strength.

The measurement methods of the physical properties shown in table 20 are described below.

Dart impact strength: In accordance with ASTM D 1709A.

Elmendorf tear strength: In accordance with JIS Z 1702.

Tensile strength: In accordance with JIS K 6732-62

25 Heat-sealing characteristics: Heat-sealing strength of a film heat-sealed with a heat sealer of bar type. The maximum heat-sealing strength was obtained when pulled under conditions

1           of film thickness of 35 $\mu$ , width of 15 mm  
and pulling speed of 200 mm/min. after heat-  
sealing under sealing pressure of 1 kg/cm<sup>2</sup>,  
0.5 sec. and each incremental 5°C.

5       Hot tack property: A test sample (25 mm wide and  
400 mm long) was folded into two, and the one  
end was fixed to the upper clamp and a stripping  
weight was placed on the other end.  
The area near the crease was inserted between  
10      heating bars and heat-sealed under a sealing  
pressure of 1 kg/cm<sup>2</sup> for 0.5 sec., and then  
the length of the stripped surface was measured.

Heat Sealing strength in contaminated condition:  
This is a test method for evaluating the heat-  
15      sealing characteristics in the condition that  
the heat-sealed surface is soiled with contents  
such as mayonaise, edible oils and flours.  
Specifically, a test film sample was folded in  
such a way that the surface soiled with an  
20      edible oil came inside, and was heat-sealed  
under the same conditions as used in heat-  
sealing characteristics. Then, its heat-  
sealing strength was measured.

## Comparative Example 15

25       A commercial high pressure polyethylene  
(Sumikathene<sup>®</sup> F208-1 manufactured by Sumitomo Chemical  
Co., Ltd.) was subjected to measurements of physical

1 properties and film processing. Results were shown in  
Tables 18 and 20.

Comparative Example 16

A commercial high pressure polyethylene  
5 (Sumikathene<sup>®</sup> F 101-1 manufactured by Sumitomo Chemical  
Co., Ltd.) was subjected to measurements of physical  
properties and film processing. Results were shown in  
Tables 18 and 20.

Comparative Example 17

10 A low density ethylene- $\alpha$ -olefin copolymer of  
the conventional technique was synthesized, using the  
catalyst produced in Example 1 and triethyl aluminum  
(co-catalyst) and employing the other polymerization  
conditions shown in Table 21. The copolymer gave:  
15 density 0.920 g/cm<sup>3</sup>, MI 0.5 g/10 min., MFR 30. The  
physical properties of this polymer were shown in  
Table 18.

Comparative Examples 18, 19, 20

Compositions of ethylene- $\alpha$ -olefin copolymers  
20 of the conventional technique were prepared, by mixing  
ethylene- $\alpha$ -olefin copolymers A obtained in Example 24  
and ethylene- $\alpha$ -olefin copolymers B obtained in Example  
25 at ratios shown in Table 19. In these compositions,  
molecular weight distributions are made wider and lower  
25 molecular weight components have larger S.C.B. and higher

1 molecular weight components have smaller S.C.B. Densities, MIs, MFRs and physical properties of these compositions were shown in Table 19.

Comparative Example 21

5 By mixing an ethylene- $\alpha$ -olefin copolymer A obtained in Example 24 and an ethylene- $\alpha$ -olefin copolymer B obtained in Example 25 at a ratio as shown in Table 19, a composition of ethylene- $\alpha$ -olefin copolymers were prepared of which distribution index of S.C.B., meets the  
10 scope of this invention but of which lower molecular weight weight components have a too low intrinsic viscosity. Its density, MI, MFR and physical properties were shown in Table 19.

Table 20

|                        | Dart impact strength (kg.cm/mm) | Elmendorf tear strength MD/TD (kg/cm) | Tensile strength MD/TD (kg/cm <sup>2</sup> ) | Heat-sealing strength (kg/15mm width) | Hot tack property (mm) | Heat sealing strength in contaminated condition; |
|------------------------|---------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------|------------------------|--------------------------------------------------|
| Example 27             | 700                             | 120/150                               | 450/410                                      | 1.5                                   | 1.0                    | ○                                                |
| Comparative Example 15 | 270                             | 80/50                                 | 250/210                                      | 0.7                                   | 4.0                    | △                                                |
| Comparative Example 16 | 250                             | 70/70                                 | 280/250                                      | 0.7                                   | 3.0                    | △                                                |

Table 21

| Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst TEA (mmol) | Solvent (kg)       | $\alpha$ -olefin (kg) | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) | C <sub>2</sub> ' partial pressure (kg/cm <sup>2</sup> ) | Polymerization temperature (°C) | Polymerization time (min) |
|-----------------------|------------------------------------|------------------------|------------------------|--------------------|-----------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------|---------------------------|
| Slurry                | 65                                 | 202                    | 100                    | C <sub>4</sub> 7.0 | C <sub>4</sub> ' 7.16 | 3.0                                                   | 10                                                      | 50                              | 90                        |

Note      TEA = Triethyl aluminum

C<sub>4</sub> = n-Butane

C<sub>4</sub>' = Butene-1

C<sub>2</sub>' = Ethylene

## 1 Example 33

Ethylene- $\alpha$ -olefin copolymers A were synthesized using the catalyst produced in Example 1 and organo-aluminum compounds (co-catalyst) and employing  $\alpha$ -olefins and other polymerization conditions as shown in Table 22. Densities, intrinsic viscosities, S.C.B. and (weight average molecular weight/number average molecular weight) of these copolymers were shown in Table 22.

These copolymers are used in the following examples as mixing components.

## Example 34

Ethylene- $\alpha$ -olefin copolymers B were synthesized using the catalyst produced in Example 1 and organo-aluminum compounds (co-catalyst) and employing  $\alpha$ -olefins and other polymerization conditions as shown in Table 23. Densities, intrinsic viscosities, S.C.B. and (weight average molecular weight/number average molecular weight) of these copolymers were shown in Table 23.

These copolymers are used in the following examples as mixing components.

Table 22

| No.   | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg)        | $\alpha$ -olefin (kg)  | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|-------|-----------------------|------------------------------------|------------------------|--------------------|---------------------|------------------------|-------------------------------------------------------|
| A4-1  | Slurry                | 65                                 | 310                    | TEA 100            | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 0.70                                                  |
| A4-2  | Solution              | 1                                  | 24.3                   | DEAC 2.5           | C <sub>7</sub> 0.27 | 4-MP-1 0.090           | 0.15                                                  |
| A4-3  | Slurry                | 65                                 | 83                     | TEA 50             | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 0.09                                                  |
| A4-4  | "                     | 65                                 | 309                    | TEA 100            | "                   | "                      | 1.2                                                   |
| A4-5  | "                     | 65                                 | 145                    | TEA 50             | "                   | "                      | 0.59                                                  |
| A4-6  | Solution              | 1                                  | 25.2                   | DEAC 2.5           | C <sub>7</sub> 0.30 | C <sub>6</sub> ' 0.035 | 0.2                                                   |
| A4-7  | Slurry                | 65                                 | 303                    | TEA 100            | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 0.36                                                  |
| A4-8  | "                     | 65                                 | 125                    | "                  | "                   | "                      | 1.8                                                   |
| A4-9  | Solution              | 1                                  | 24.5                   | DEAC 2.5           | C <sub>7</sub> 0.40 | 4-MP-1 0.040           | 0.25                                                  |
| A4-10 | Slurry                | 65                                 | 121                    | TEA 100            | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 3.7   | 1.2                                                   |
| A4-11 | "                     | 65                                 | 302                    | "                  | "                   | C <sub>4</sub> ' 6.14  | 1.4                                                   |

- Cont'd -

Table 22 (Cont'd)

| C <sub>2</sub> '-<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeri-<br>zation<br>tempera-<br>ture<br>(°C) | Properties                      |               |        |                                | Note                             |
|-------------------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------|--------|--------------------------------|----------------------------------|
|                                                                   |                                                 | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. | M <sub>w</sub> /M <sub>n</sub> |                                  |
| 7.8                                                               | 50                                              | 0.912                           | 2.6           | 24     | 5.6                            | TEA = Triethyl aluminum          |
| 20                                                                | 140                                             | 0.912                           | 2.5           | 17     | 3.4                            | DEAC = Diethyl aluminum chloride |
| 7.0                                                               | 50                                              | 0.912                           | 4.4           | 20     | 5.8                            | C <sub>4</sub> = n-Butane        |
| 3.0                                                               | 50                                              | 0.911                           | 2.2           | 25     | 5.7                            | C <sub>4'</sub> = Butene-1       |
| 6.7                                                               | 50                                              | 0.906                           | 2.6           | 29     | 5.8                            | C <sub>6'</sub> = Hexene-1       |
| 20                                                                | 140                                             | 0.909                           | 2.2           | 18     | 3.4                            | C <sub>7</sub> = n-Heptane       |
| 9.0                                                               | 50                                              | 0.917                           | 3.3           | 16     | 5.6                            |                                  |
| 18                                                                | 50                                              | 0.923                           | 2.6           | 9      | 5.5                            |                                  |
| 20                                                                | 140                                             | 0.923                           | 2.5           | 8      | 3.3                            |                                  |
| 20                                                                | 50                                              | 0.925                           | 3.3           | 6      | 5.5                            |                                  |
| 8.5                                                               | 50                                              | 0.913                           | 2.1           | 23     | 5.4                            |                                  |

Table 23

| No.   | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg)        | $\alpha$ -olefin (kg)  | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|-------|-----------------------|------------------------------------|------------------------|--------------------|---------------------|------------------------|-------------------------------------------------------|
| B4-1  | Slurry                | 65                                 | 402                    | TEA 50             | C <sub>4</sub> 12.0 | C <sub>4</sub> ' 3.2   | 7.8                                                   |
| B4-2  | Solution              | 1                                  | 24.2                   | DEAC 2.5           | C <sub>7</sub> 0.80 | 4-MP-1 0.045           | 2.2                                                   |
| B4-3  | Slurry                | 65                                 | 405                    | TEA 50             | C <sub>4</sub> 12.0 | C <sub>4</sub> ' 3.2   | 7.0                                                   |
| B4-4  | "                     | 65                                 | 425                    | "                  | C <sub>4</sub> 15.2 | C <sub>4</sub> ' 2.0   | 10.5                                                  |
| B4-5  | "                     | 65                                 | 411                    | "                  | "                   | C <sub>4</sub> ' 1.6   | 6.5                                                   |
| B4-6  | Solution              | 1                                  | 25.1                   | DEAC 2.5           | C <sub>7</sub> 0.82 | C <sub>6</sub> ' 0.017 | 2.7                                                   |
| B4-7  | Slurry                | 65                                 | 346                    | TEA 100            | C <sub>4</sub> 15.2 | C <sub>4</sub> ' 1.1   | 12                                                    |
| B4-8  | "                     | 65                                 | 408                    | "                  | C <sub>4</sub> 12.0 | C <sub>4</sub> ' 4.0   | 5.2                                                   |
| B4-9  | Solution              | 1                                  | 24.9                   | DEAC 2.5           | C <sub>7</sub> 0.28 | 4-MP-1 0.055           | 2.0                                                   |
| B4-10 | Slurry                | 65                                 | 250                    | TEA 100            | C <sub>4</sub> 15.2 | C <sub>4</sub> ' 0.4   | 13.5                                                  |
| B4-11 | "                     | 65                                 | 410                    | TEA 50             | "                   | C <sub>4</sub> ' 1.4   | 12                                                    |
| B4-12 | "                     | 65                                 | 290                    | "                  | C <sub>4</sub> 6.0  | C <sub>4</sub> ' 6.14  | 8.1                                                   |

- Cont'd -

Table 23 (Cont'd)

| $C_2'$ -<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymer-<br>ization<br>tempera-<br>ture<br>(°C) | Properties                      |               |        |                       | Note                             |
|----------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------|--------|-----------------------|----------------------------------|
|                                                          |                                                 | Density<br>(g/cm <sup>3</sup> ) | [n]<br>(dl/g) | S.C.B. | $\bar{M}_w/\bar{M}_n$ |                                  |
| 6                                                        | 70                                              | 0.929                           | 0.85          | 24     | 5.8                   | TEA = Triethyl aluminum          |
| 10                                                       | 140                                             | 0.929                           | 0.81          | 17     | 3.6                   | DEAC = Diethyl aluminum chloride |
| 6                                                        | 70                                              | 0.928                           | 0.90          | 24     | 5.7                   | 4-MP-1 = 4-Methylpenten-1        |
| 5                                                        | 70                                              | 0.929                           | 0.65          | 25     | 5.7                   | $C_4$ = n-Butane                 |
| 5                                                        | 70                                              | 0.935                           | 0.83          | 20     | 5.5                   | $C_4'$ = Butene-1                |
| 10                                                       | 140                                             | 0.926                           | 0.63          | 18     | 3.5                   | $C_6'$ = Hexene-1                |
| 3                                                        | 70                                              | 0.941                           | 0.52          | 16     | 5.4                   | $C_7$ = n-Heptane                |
| 4                                                        | 50                                              | 0.910                           | 0.82          | 35     | 5.9                   |                                  |
| 10                                                       | 140                                             | 0.912                           | 0.85          | 22     | 3.7                   |                                  |
| 1.5                                                      | 50                                              | 0.930                           | 0.28          | 25     | 5.7                   |                                  |
| 3                                                        | 70                                              | 0.934                           | 0.53          | 22     | 5.8                   |                                  |
| 9                                                        | 50                                              | 0.927                           | 1.2           | 23     | 5.7                   |                                  |

## 1 Example 35

A composition of ethylene- $\alpha$ -olefin copolymers was prepared in two stage polymerization. The first stage polymerization was carried out for 70 min. using 5 the catalyst produced in Example 1 and triethyl alminum (co-catalyst) and other polymerization conditions as shown in Table 24. Successively the second stage polymerization was conducted for 180 min. by changing only the hydrogen partial pressure and the ethylene partial 10 pressure as shown in Table 24. In both stages, the liquid phase molar ratio of ethylene, butene-1 and hydrogen was kept at respective fixed levels. The polymerized quantities in each stage were calculated from the quantities of fed ethylene. The copolymers consisted of about 50% 15 by weight of higher molecular weight components and about 50% by weight of lower molecular weight components.

Immediately before the completion of the first stage polymerization, a part of the polymer was taken out and measured for its density, intrinsic viscosity, S.C.B. 20 and (weight average molecular weight/number average molecular weight). The whole polymer obtained after the second stage was also measured for the same test items. From the values of the first stage polymer and the whole polymer, the intrinsic viscosity and S.C.B. of the poly- 25 mer formed in the second stage alone were calculated. These values were shown in Table 24. The whole polymer gave: density 0.921 g/cm<sup>3</sup>, MI 0.5 g/10 min., MFR 70, intrinsic viscosity 1.7 dl/g, S.C.B. 24. Flow

1 characteristics and solid physical properties of the whole  
polymer were shown in Table 26.

Example 36

By mixing the ethylene- $\alpha$ -olefin copolymer A4-1  
5 obtained in Example 33 and the ethylene- $\alpha$ -olefin copolymer  
B4-1 obtained in Example 34 at a 50/50 weight ratio and  
kneading the mixture in a Banbury mixer, a composition  
of ethylene- $\alpha$ -olefin copolymers having the density, MI  
and MFR shown in Table 25 was prepared. Physical pro-  
10 perties of this composition were also shown in Table 25.

For comparison, in Table 25 were also shown Comparative  
examples 15 and 16 using high pressure polyethylenes of  
the conventional technique (commercial product

15 Sumikathene<sup>®</sup> F 208-1, F 101-1 manufactured by Sumitomo  
Chemical Co., Ltd.) as well as Comparative example 17  
using a low density ethylene- $\alpha$ -olefin copolymer of the  
conventional technique.

As is obvious from Table 25, the polymer com-  
position of the present invention, when compared with high  
20 pressure polyethylenes, has about an equal Brabender  
torque (satisfactory in processability), and is much  
superior in tensile impact strength, rigidity, ESCR and  
tensile strength, and further is about equally satis-  
factory in transparency.

25 Compared with the low density ethylene- $\alpha$ -olefin  
copolymer of the conventional technique, this polymer  
composition has a much lower Brabender torque (far

1 excellent in processability) and a higher tensile impact  
strength and tensile strength.

Examples 38, 39, 40, 41, 42, 43

By mixing the ethylene- $\alpha$ -olefin copolymers A  
5 obtained in Example 33 and the ethylene- $\alpha$ -olefin copoly-  
mers B obtained in Example 34 at ratios as shown in  
Table 26, compositions having densities, MIs and MFRs  
shown in Table 26 were obtained. Physical properties of  
these compositions were also shown in Table 26.

10 In Table 26 were also shown a similar composi-  
tion prepared by two stage polymerization (Example 35)  
and, for the purpose of comparison, compositions of low  
density ethylene- $\alpha$ -olefin copolymers of the conventional  
technique (Comparative examples 22, 23, 25) of which  
15 molecular weight distributions are made wider and of  
which lower molecular weight components have larger S.C.B.  
and of which higher molecular weight components have  
smaller S.C.B. In Table 26 was also shown a composition  
of ethylene- $\alpha$ -olefin copolymers (Comparative example 24,  
20 to be compared with Examples 40 and 42) of which distri-  
bution index of S.C.B. meets the scope of this invention  
but of which lower molecular weight components have a  
too low intrinsic viscosity.

As seen in Table 26, in the compositions of this  
25 invention, S.C.B. of higher molecular weight components  
are more than or about equal to those of lower molecular  
weight components. (Compare Examples 35, 38 and 41 with

1 Comparative examples 22 and 23, and Example 43 with Comparative example 25.) Therefore, compared with the compositions of the conventional technique, the compositions of this invention are far excellent in tensile  
5 impact strength and tensile strength, and are superior in transparency.

From the comparison between Comparative example 17 of Table 25 and Comparative example 22 of Table 26, it is learned that widening of molecular weight distribution (higher MFR gives wider distribution) in the manufacture of a low density ethylene- $\alpha$ -olefin copolymer of the conventional technique with its density and MI kept constant results in large reduction in tensile impact strength and tensile strength.

15 From the comparison of Examples 40 and 42 with Comparative example 24, it is learned that a too low intrinsic viscosity of lower molecular weight components badly affects its tensile impact strength, tensile strength and transparency.

Table 24

| No.       | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst TEA (mmol) | Solvent (g) | $\alpha$ -olefin (g) | $H_2$ partial pressure ( $kg/cm^2$ ) |
|-----------|-----------------------|------------------------------------|------------------------|------------------------|-------------|----------------------|--------------------------------------|
| 1st stage | Slurry                | 5                                  | 24.3                   | 5                      | $C_4$ 1000  | $C_4$ , 250          | 0.6                                  |
| 2nd stage | Slurry                |                                    |                        |                        |             |                      | 10                                   |

- Cont'd -

TEA = Triethyl aluminum

Note  $C_4$  = n-Butane $C_4'$  = Butene-1 ( ) = Calculated values $C_2'$  = Ethylene

Table 24 (Cont'd)

| $C_2'$ -<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeri-<br>zation<br>tempera-<br>ture<br>(°C) | Polymeri-<br>zation<br>time<br>(min.) | Properties                      |               |        |                       |
|----------------------------------------------------------|-------------------------------------------------|---------------------------------------|---------------------------------|---------------|--------|-----------------------|
|                                                          |                                                 |                                       | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. | $\bar{M}_w/\bar{M}_n$ |
| 4                                                        | 50                                              | 70                                    | 0.912                           | 2.6           | 24     | 5.7                   |
| 5                                                        |                                                 | 180                                   | -                               | (0.8)         | (23)   | -                     |

Table 25

| Mixing method          | Copolymer A                                                                    |             | Copolymer B |             | Properties of composition    |                |     |                               |
|------------------------|--------------------------------------------------------------------------------|-------------|-------------|-------------|------------------------------|----------------|-----|-------------------------------|
|                        | Designation                                                                    | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/10 min.) | MFR | Distribution index of S.C.B.* |
| Example 36             | Banbury                                                                        | A4-1        | 50          | B4-1        | 50                           | 0.920          | 0.5 | 70                            |
| Example 37             | "                                                                              | A4-11       | 50          | B4-12       | 50                           | 0.921          | 0.7 | 40                            |
| Comparative Example 15 | High pressure polyethylene (Sumikathene R F208-1)                              |             |             |             | 0.923                        | 1.4            | 50  | -                             |
| Comparative Example 16 | " (Sumikathene R F101-1)                                                       |             |             |             | 0.922                        | 0.3            | 65  | -                             |
| Comparative Example 17 | Low density ethylene/ $\alpha$ -olefin copolymer of the conventional technique |             |             |             | 0.920                        | 0.5            | 30  | -                             |

- Cont'd -

$$\text{* Distribution index} = \frac{(\text{S.C.B. of copolymer A})}{(\text{S.C.B. of copolymer B})}$$

Table 25 (Cont'd)  
Physical properties of composition

| Tensile impact strength<br>(kg-cm/cm <sup>2</sup> ) | Olsen's flexual modulus<br>(kg/cm <sup>2</sup> ) | ESCR<br>T <sub>50</sub><br>(hr) | Tensile strength<br>(kg/cm <sup>2</sup> ) | Haze<br>(%) | Brabender torque<br>(kg·m) |
|-----------------------------------------------------|--------------------------------------------------|---------------------------------|-------------------------------------------|-------------|----------------------------|
| 350                                                 | 2800                                             | >1000                           | 280                                       | 5           | 2.0                        |
| 370                                                 | 3000                                             | >1000                           | 290                                       | 5           | 2.6                        |
| 130                                                 | 2400                                             | 0.3                             | 160                                       | 4           | 1.9                        |
| 200                                                 | 2200                                             | 30                              | 180                                       | 6           | 2.2                        |
| 280                                                 | 3200                                             | >1000                           | 260                                       | 5           | 3.5                        |

Table 26

|                                                | Mixing method | Copolymer A |             | Copolymer B |             | Properties of composition    |                                  |          |
|------------------------------------------------|---------------|-------------|-------------|-------------|-------------|------------------------------|----------------------------------|----------|
|                                                |               | Designation | % by weight | Designation | % by weight | Density (g/cm <sup>3</sup> ) | MI (g/cm <sup>3</sup> , 10 min.) | MFR      |
| <b>Example 35 - Two stage polymerization -</b> |               |             |             |             |             |                              |                                  |          |
| Example 38                                     | Solution      | A4-2        | 50          | B4-2        | 50          | 0.920                        | 0.5                              | 70 (1.0) |
| Example 39                                     | "             | A4-3        | 30          | B4-3        | 70          | 0.921                        | 0.6                              | 70 1.0   |
| Example 40                                     | Banbury       | A4-4        | 50          | B4-4        | 50          | 0.920                        | 1.1                              | 65 0.8   |
| Example 41                                     | "             | A4-5        | 50          | B4-5        | 50          | 0.920                        | 0.5                              | 90 1.0   |
| Example 42                                     | Solution      | A4-6        | 50          | B4-6        | 50          | 0.920                        | 1.1                              | 65 1.5   |
| Example 43                                     | Banbury       | A4-7        | 50          | B4-7        | 50          | 0.929                        | 0.2                              | 100 1.0  |
| Comparative Example 22                         | "             | A4-8        | 50          | B4-8        | 50          | 0.920                        | 0.5                              | 70 0.26  |
| Comparative Example 23                         | Solution      | A4-9        | 50          | B4-9        | 50          | 0.920                        | 0.6                              | 65 0.36  |
| Comparative Example 24                         | Banbury       | A4-4        | 65          | B4-10       | 35          | 0.920                        | 0.8                              | 50 1.0   |
| Comparative Example 25                         | "             | A4-10       | 50          | B4-11       | 50          | 0.930                        | 0.2                              | 100 0.27 |

\* Distribution index of S.C.B. = (S.C.B. of copolymer A)/(S.C.B. of copolymer B)

- Cont'd -

Table 26 (Cont'd)

| Physical properties of composition               |                                                |                                        |          |           |
|--------------------------------------------------|------------------------------------------------|----------------------------------------|----------|-----------|
| Tensile impact strength (kg-cm/cm <sup>2</sup> ) | Olsen's flexural modulus (kg/cm <sup>2</sup> ) | Tensile strength (kg/cm <sup>2</sup> ) | Haze (%) | Tackiness |
| 340                                              | 2800                                           | 280                                    | 6        | o         |
| 430                                              | 2800                                           | 320                                    | .5       | o         |
| 370                                              | 2800                                           | 300                                    | 7        | o         |
| 290                                              | 2800                                           | 250                                    | 6        | o         |
| 400                                              | 2700                                           | 300                                    | 8        | o         |
| 360                                              | 2800                                           | 310                                    | 5        | o         |
| 370                                              | 4200                                           | 300                                    | 8        | o         |
| 150                                              | 3300                                           | 210                                    | 12       | x         |
| 180                                              | 3200                                           | 220                                    | 12       | Δ         |
| 130                                              | 2800                                           | 220                                    | 15       | o         |
| 170                                              | 4800                                           | 230                                    | 20       | o         |

## 1 Example 44

The compositions prepared in Examples 36 and 37 as well as the low density ethylene- $\alpha$ -olefin copolymer of the conventional technique used in Comparative example 5 17 were subjected to film processing in the same conditions as used in Example 32.

The commercial high pressure polyethylenes used in Comparative examples 15 and 16 were also subjected to film processing in the same conditions. A satisfactory 10 film was not obtained from the low density ethylene- $\alpha$ -olefin copolymer of the conventional technique used in Comparative example 17, with too much load put on the motor and with shark skin formed on the film surface.

Satisfactory films having good transparency 15 were obtained from the compositions prepared in Examples 36 and 37 and the commercial high pressure polyethylenes used in Comparative examples 15 and 16, with no problem of motor load. Physical properties of these films were shown in 'Table 27'. Compared with the films of the high 20 pressure method polyethylenes, the films of the compositions prepared in Examples 36 and 37 had about same transparency but were largely excellent in dart impact strength, Elmendorf tear strength (absolute value property and MD/TD balance), heat-sealing properties, tensile 25 strength, hot tack and heat sealing strength in contaminated condition. In case of the films of the compositions prepared in Examples 36 and 37, heat-sealing strengths and heat sealing strength in contaminated condition were at

1 about same levels, but in the films of the high pressure  
polyethylenes of Comparative example 16, heat sealing  
strength in contaminated condition were lower than heat-  
sealing strengths.

5 Comparative Examples 22, 23, 25

By mixing ethylene- $\alpha$ -olefin copolymers A obtained in Example 33 and ethylene- $\alpha$ -olefin copolymers B obtained in Example 34 at ratios as shown in Table 26, compositions of low density ethylene- $\alpha$ -olefin copolymers 10 of the conventional technique were prepared of which molecular weight distribution are made wider and of which lower molecular weight components have larger S.C.B. and of which higher molecular weight components have smaller S.C.B. Densities, MIs, MFRs and physical properties of 15 these compositions were shown in Table 26.

Comparative Example 24

By mixing an ethylene- $\alpha$ -olefin copolymer A obtained in Example 33 and an ethylene- $\alpha$ -olefin copolymer B obtained in Example 34 at a ratio shown in Table 26, 20 a composition of ethylene- $\alpha$ -olefin copolymers was prepared of which distribution index of S.C.B. meets the scope of this invention but of which lower molecular weight components have a too low intrinsic viscosity. Its density, MI, MFR and physical properties were shown in Table 26.

Table 27

|                           | Haze<br>(%) | Dart<br>impact<br>strength<br>(kg·cm/mm) | Elmendorf<br>tear<br>strength<br>MD/TD<br>(kg/cm) | Tensile<br>strength<br>MD/TD<br>(kg/cm <sup>2</sup> ) | Heat-sealing<br>strength<br>(kg/15mm<br>width) | Hot tack<br>property<br>(mm) | Heat sealing<br>strength in<br>contaminated<br>condition |
|---------------------------|-------------|------------------------------------------|---------------------------------------------------|-------------------------------------------------------|------------------------------------------------|------------------------------|----------------------------------------------------------|
| Example 36                | 5           | 500                                      | 90/120                                            | 410/380                                               | 1.2                                            | 2.0                          | 0                                                        |
| Example 37                | 5           | 450                                      | 60/120                                            | 420/370                                               | 1.3                                            | 2.0                          | 0                                                        |
| Comparative<br>Example 15 | 4           | 270                                      | 80/50                                             | 250/210                                               | 0.7                                            | 4.0                          | Δ                                                        |
| Comparative<br>Example 16 | 7           | 250                                      | 70/70                                             | 280/250                                               | 0.7                                            | 3.0                          | Δ                                                        |

## 1 Example 45

Ethylene- $\alpha$ -olefin copolymers were synthesized using the catalyst produced in Example 1 and organo-aluminum compounds (co-catalyst) and employing  $\alpha$ -olefins and other polymerization conditions as shown in Table 28. Densities, intrinsic viscosities, and S.C.B. of these copolymers were shown in Table 28.

These copolymers are used in the following examples as higher molecular weight components.

## 10 Example 46

Ethylene- $\alpha$ -olefin copolymers were synthesized using the catalyst produced in Example 1 and organoaluminum compounds (co-catalyst) and employing  $\alpha$ -olefins and other polymerization conditions as shown in Table 29. Densities, intrinsic viscosities and S.C.B. of these copolymers were shown in Table 29.

These copolymers are used in the following examples as lower molecular weight components.

Table 28

| No. | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg)         | $\alpha$ -olefin (kg) | H <sub>2</sub> partial pressure (kg) |
|-----|-----------------------|------------------------------------|------------------------|--------------------|----------------------|-----------------------|--------------------------------------|
| A-1 | Slurry                | 65                                 | 131                    | TEA 100            | C <sub>4</sub> ' 6.0 | C <sub>4</sub> ' 6.14 | 0.45                                 |
| A-2 | "                     | 65                                 | 145                    | TEA 50             | "                    | "                     | 0.59                                 |
| A-3 | "                     | 65                                 | 310                    | TEA 100            | "                    | "                     | 0.70                                 |
| A-4 | "                     | 65                                 | 125                    | "                  | "                    | "                     | 1.8                                  |
| A-5 | Solution              | 1                                  | 25.3                   | DEAC 2.5           | C <sub>7</sub> 0.25  | 4-MP-1 0.11           | 0.1                                  |
| A-6 | "                     | 1                                  | 24.5                   | "                  | C <sub>7</sub> 0.30  | 4-MP-1 0.05           | 0.15                                 |
| A-7 | Slurry                | 65                                 | 121                    | TEA 50             | C <sub>4</sub> ' 6.0 | C <sub>4</sub> ' 6.14 | 0.98                                 |
| A-8 | "                     | 65                                 | 320                    | TEA 100            | "                    | "                     | 3.0                                  |

Note TEA = Triethyl aluminum

C<sub>4</sub>' = n-Butane

DEAC = Diethyl aluminum chloride

C<sub>4</sub>' = Butene-1

4-MP-1 = 4-Methylpentene-1

C<sub>7</sub> = n-Heptane

- Cont'd -

Table 28 (Cont'd)

|                                                                   |                                                 | Properties                      |               |        |  |
|-------------------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------|--------|--|
| C <sub>2</sub> '-<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeri-<br>zation<br>tempera-<br>ture<br>(°C) | Density<br>(g/cm <sup>3</sup> ) | [n]<br>(dl/g) | S.C.B. |  |
| 5.0                                                               | 50                                              | 0.899                           | 2.6           | 38     |  |
| 6.7                                                               | 50                                              | 0.906                           | 2.6           | 29     |  |
| 7.8                                                               | 50                                              | 0.912                           | 2.6           | 24     |  |
| 18                                                                | 50                                              | 0.923                           | 2.6           | 9      |  |
| 20                                                                | 140                                             | 0.904                           | 2.5           | 23     |  |
| 20                                                                | 140                                             | 0.920                           | 2.5           | 10     |  |
| 6.5                                                               | 50                                              | 0.907                           | 2.2           | 30     |  |
| 20                                                                | 50                                              | 0.928                           | 2.2           | 8      |  |

Table 29

| No. | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst (mmol) | Solvent (kg) | $\alpha$ -olefin (kg) | $H_2$ partial pressure ( $kg/cm^2$ ) |
|-----|-----------------------|------------------------------------|------------------------|--------------------|--------------|-----------------------|--------------------------------------|
| B-1 | Slurry                | 65                                 | 405                    | TEA 50             | $C_4$ 50'    | $C_4'$ 2.0            | 10.8                                 |
| B-2 | "                     | 65                                 | 411                    | "                  | $C_4$ 15.2   | $C_4'$ 1.6            | 6.5                                  |
| B-3 | "                     | 65                                 | 402                    | "                  | $C_4$ 12.0   | $C_4'$ 3.2            | 7.8                                  |
| B-4 | "                     | 65                                 | 408                    | TEA 100            | "            | $C_4'$ 4.0            | 5.2                                  |
| B-5 | Solution              | 1                                  | 26.5                   | DEAC 2.5           | $C_7$ 0.28   | 4-MP-1 0.03           | 3.0                                  |
| B-6 | "                     | 1                                  | 25.7                   | "                  | $C_7$ 0.25   | 4-MP-1 0.05           | 2.5                                  |
| B-7 | Slurry                | 65                                 | 407                    | TEA 100            | $C_4$ 15.4   | $C_4'$ 0.5            | 13.0                                 |
| B-8 | "                     | 65                                 | 422                    | TEA 50             | $C_4$ 15.2   | $C_4'$ 1.8            | 11.0                                 |

- Cont'd -

 $C_4$  = n-Butane $C_4'$  = Butene-1 $C_7$  = n-Heptane

Note TEA = Triethyl aluminum

DEAC = Diethyl aluminum chloride

4-MP-1 = 4-Methylpentene-1

Table 29 (Cont'd)

| $C_2'$ -<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeriza-<br>tion<br>tempera-<br>ture<br>(°C) | Properties                      |               |        |
|----------------------------------------------------------|-------------------------------------------------|---------------------------------|---------------|--------|
|                                                          |                                                 | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. |
| 8.3                                                      | 70                                              | 0.912                           | 0.83          | 15     |
| 5                                                        | 70                                              | 0.935                           | 0.83          | 20     |
| 6                                                        | 70                                              | 0.929                           | 0.85          | 24     |
| 4                                                        | 50                                              | 0.910                           | 0.82          | 35     |
| 10                                                       | 140                                             | 0.938                           | 0.50          | 13     |
| 10                                                       | 140                                             | 0.912                           | 0.52          | 22     |
| 5                                                        | 70                                              | 0.953                           | 0.62          | 9      |
| 5                                                        | 70                                              | 0.934                           | 0.61          | 22     |

## 1 Example 47

A composition of ethylene- $\alpha$ -olefin copolymers was prepared in two stage polymerization. The first stage polymerization was carried out for 70 min. using 5 the catalyst produced in Example 1 and triethyl aluminum (co-catalyst) and other polymerization conditions as shown in Table 30. Successively, the second stage polymerization was conducted for 180 min. by changing only the hydrogen partial pressure and the ethylene partial 10 pressure as shown in Table 30. In both stages, the liquid phase molar ratio of ethylene, butene-1 and hydrogen was kept constant at respective fixed levels. The polymerized quantities in each stage were calculated from the quantities of fed ethylene. The copolymer com- 15 position consisted of about 50% by weight of higher molecular weight components and about 50% by weight of lower molecular weight components. Immediately before the completion of the first stage polymerization, a part of the polymer was taken out and measured for its density, 20 intrinsic viscosity and S.C.B. The whole polymer obtained after the second stage was also measured for the same test items. From the values of the first stage polymer and the whole polymer, the intrinsic viscosity and the number of branched short chains of the polymer formed in the 25 second stage alone were calculated. These values were shown in Table 30. The whole polymer gave: density 0.921 g/cm<sup>3</sup>, MI 0.5 g/10 min., MFR 70, intrinsic viscosity 1.7 dl/g, S.C.B. 24,  $g^*_\eta$  0.93. The whole polymer was subjected

1 to gel permeation chromatography and a curve of molecular  
weight distribution shown in Fig. 4 was obtained.

Because of bimodal distribution which has two peaks, the curve was divided into two parts using broken  
5 lines. The areas of each part were calculated, and the lower molecular weight components and the higher molecular weight components were determined to be 48 and 52% by weight, respectively.

The whole polymer was divided into 30 fractions  
10 using column chromatography. These fractions were divided into two parts (the lower molecular weight components and the higher molecular weight components) so that the former became 48% by weight and the latter 52% by weight.  
S.C.B., densities and intrinsic viscosities of each component were shown in Table 32.

Flow characteristics and solid physical properties of the whole polymer were shown in Table 33.

In the following examples, ethylene- $\alpha$ -olefin copolymers as higher molecular weight components and  
20 ethylene- $\alpha$ -olefin copolymers as lower molecular weight components were mixed at respective fixed ratios (total quantity 1 kg) and kneaded for 5 min. with a Banbury mixer (150 to 230 rpm). At that time, replacement by nitrogen was conducted completely and the polymer  
25 temperatures were controlled not to exceed 250°C.

When sample quantities were small, mixing was made in xylene. After mixing, the whole solution was added into methanol to cause precipitation. After

- 139 -

1 filtration, the precipitate was completely dried in a  
vacuum drier and used as a copolymers composition sample.

Examples 48, 49, 50

Ethylene- $\alpha$ -olefin copolymers obtained in  
5 Example 45 and ethylene- $\alpha$ -olefin copolymers obtained in  
Example 46 were kneaded with a Banbury mixer at ratios  
as shown in Table 31.

Thus, compositions of copolymers having densities,  
MIs, MFRs, intrinsic viscosities, S.C.B. and  $g_{\eta}^*$  shown in  
10 Table 32 were obtained. These compositions had molecular  
weight distribution curves about equal to Fig. 4. With  
the same technique as used in Example 47, quantities of lower  
molecular weight components and higher molecular weight com-  
ponents were calculated, and they were both approximately  
15 50% by weight as shown in Table 32. Physical properties of  
these compositions were shown in Table 33.

With the same technique as used in Example 47,  
column fractionation was applied in order to divide into  
higher molecular weight components and lower molecular  
20 weight components. Characteristics of the components  
were shown in Table 32.

In Tables 32 and 33 were also shown Example 47  
using a composition of ethylene- $\alpha$ -olefin copolymers pre-  
pared in two stage polymerization and, for comparison,  
25 Comparative example 26 using a high pressure method poly-  
ethylene of the conventional technique (commercial  
product Sumikathene<sup>®</sup> F 101-1 manufactured by Sumitomo

1 Chemical Co., Ltd.), Comparative example 27 using a com-  
position of low density ethylene- $\alpha$ -olefin copolymers of  
the conventional technique and Comparative example 28  
using a composition of low density ethylene- $\alpha$ -olefin  
5 copolymers of the conventional technique of which  
moelcular weight distribution is made wider and of which  
lower molecular weight components have larger S.C.B. and  
of which higher molecular weight components have smaller  
S.C.B.

10 As is obvious from Tables 32 and 33, when com-  
pared with the high pressure polyethylene, the copolymer  
compositions of this invention have about equivalent  
Brabender torques (excellent in processability), and are  
largely excellent in tensile impact strength, rigidity,  
15 ESCR and tensile strength. Transparency is equally good,  
because distribution index of S.C.B. is in a certain range  
as defined by the present invention. When compared with  
the composition of low density ethylene- $\alpha$ -olefin copoly-  
mers of the conventional technique, the compositions of  
20 this invention have far smaller Brabender torques (much  
better processability) and higher tensile impact  
strengths and tensile strengths.

From comparison between Comparative examples 27  
and 28 in Tables 32 and 33, it is learned that widening  
25 of molecular weight distribution (larger MFR gives wider  
distribution) in the manufacture of a low density  
ethylene- $\alpha$ -olefin copolymer of the conventional technique  
with density and MI fixed results in large reduction in  
tensile impact strength and tensile strength.

Table 30

| No.       | Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst TEA (mmol) | Solvent (g) | $\alpha$ -olefin (g) | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) |
|-----------|-----------------------|------------------------------------|------------------------|------------------------|-------------|----------------------|-------------------------------------------------------|
| 1st stage | Slurry                | 5                                  | 24.3                   | 5                      | $C_4$       | 1000                 | 0.6                                                   |
| 2nd stage | Slurry                |                                    |                        |                        | $C_4'$      | 250                  | 10                                                    |

- Cont'd -

Note     $C_4$  = n-Butane    TEA = Triethyl aluminum $C_4'$  = Butene-1    ( ) = Calculated values $C_2'$  = Ethylene

Table 30 (Cont'd)

| $C_2$ '-<br>partial<br>pressure<br>(kg/cm <sup>2</sup> ) | Polymeri-<br>zation<br>tempera-<br>ture<br>(°C) | Polymeri-<br>zation<br>time<br>(min) | Properties                      |               |        |
|----------------------------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------|---------------|--------|
|                                                          |                                                 |                                      | Density<br>(g/cm <sup>3</sup> ) | [η]<br>(dl/g) | S.C.B. |
| 4                                                        | 50                                              | 70                                   | 0.912                           | 2.6           | 24     |
|                                                          |                                                 | 180                                  | -                               | (0.8)         | (23)   |
| 5                                                        |                                                 |                                      |                                 |               |        |

**0057891**

- 143 -

Table 31

|                        | Higher molecular weight<br>component |             | Lower molecular weight<br>component |             |
|------------------------|--------------------------------------|-------------|-------------------------------------|-------------|
|                        | Designation                          | % by weight | Designation                         | % by weight |
| Example 48             | A-1                                  | 50          | B-1                                 | 50          |
| Example 49             | A-2                                  | 50          | B-2                                 | 50          |
| Example 50             | A-3                                  | 50          | B-3                                 | 50          |
| Comparative Example 28 | A-4                                  | 50          | B-4                                 | 50          |

Table 32

|                        | Properties of copolymer         |                   |     |      |                  |
|------------------------|---------------------------------|-------------------|-----|------|------------------|
|                        | Density<br>(g/cm <sup>3</sup> ) | MI<br>(g/10 min.) | MFR | [η]  | S.C.B.<br>(dl/g) |
| Example 47             | 0.921                           | 0.5               | 70  | 1.7  | 24               |
| Example 48             | 0.920                           | 0.5               | 70  | 1.7  | 26               |
| Example 49             | 0.920                           | 0.5               | 70  | 1.7  | 25               |
| Example 50             | 0.920                           | 0.5               | 70  | 1.7  | 24               |
| Comparative Example 26 | 0.922                           | 0.3               | 65  | 1.06 | 23               |
| Comparative Example 27 | 0.920                           | 0.5               | 30  | 1.7  | 23               |
| Comparative Example 28 | 0.920                           | 0.5               | 70  | 1.7  | 22               |

- Cont'd -

\* Distribution index =  $\frac{\text{Degree of S.C.B. of higher molecular weight component}}{\text{Degree of S.C.B. of lower molecular weight component}}$

Degree of S.C.B. of higher molecular weight component  
Degree of S.C.B. of lower molecular weight component

0057891

- 145 -

Table 32 (Cont'd)

| Length of main peak chain (A)    |                                   | Ratio (% by weight)              |                                   |
|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
| Lower molecular weight component | Higher molecular weight component | Lower molecular weight component | Higher molecular weight component |
| 1.7 x 10 <sup>3</sup>            | 3.4 x 10 <sup>3</sup>             | 48                               | 52                                |
| 1.7 x 10 <sup>3</sup>            | 3.4 x 10 <sup>3</sup>             | 48                               | 52                                |
| 1.6 x 10 <sup>3</sup>            | 3.5 x 10 <sup>3</sup>             | 47                               | 53                                |
| 1.9 x 10 <sup>3</sup>            | 3.4 x 10 <sup>3</sup>             | 48                               | 52                                |
| 1.05 x 10 <sup>3</sup>           | 6.5 x 10 <sup>3</sup>             | 36                               | 64                                |
| Uniform distribution (peak)      |                                   | 50                               | 50                                |
| 2.8 x 10 <sup>3</sup>            | 3.6 x 10 <sup>3</sup>             | 49                               | 51                                |
| 1.6 x 10 <sup>3</sup>            |                                   |                                  |                                   |

- Cont'd -

Table 32 (Cont'd)

| Characteristics of components fractionated by column fractionation |                              |                                   |        |                              |                               |     |
|--------------------------------------------------------------------|------------------------------|-----------------------------------|--------|------------------------------|-------------------------------|-----|
| Lower molecular weight component                                   |                              | Higher molecular weight component |        |                              | Distribution index of S.C.B.* |     |
| S.C.B.                                                             | Density (g/cm <sup>3</sup> ) | [n] (dl/g)                        | S.C.B. | Density (g/cm <sup>3</sup> ) | [n] (dl/g)                    |     |
| 30                                                                 | 0.920                        | 0.8                               | 18     | 0.915                        | 2.6                           | 0.6 |
| 27                                                                 | 0.924                        | 0.8                               | 25     | 0.910                        | 2.6                           | 0.9 |
| 28                                                                 | 0.923                        | 0.7                               | 20     | 0.914                        | 2.5                           | 0.7 |
| 30                                                                 | 0.920                        | 0.8                               | 18     | 0.915                        | 2.5                           | 0.6 |
| 27                                                                 | 0.916                        | 0.6                               | 19     | 0.926                        | 1.4                           | 0.7 |
| 38                                                                 | 0.906                        | 1.1                               | 8      | 0.925                        | 2.4                           | 0.2 |
| 37                                                                 | 0.907                        | 0.8                               | 7      | 0.926                        | 2.6                           | 0.2 |

Table 33

|                        | Physical properties of copolymer                 |                                                |                                        |          |               |               |           |
|------------------------|--------------------------------------------------|------------------------------------------------|----------------------------------------|----------|---------------|---------------|-----------|
|                        | Tensile impact strength (kg-cm/cm <sup>2</sup> ) | Olsen's Flexural modulus (kg/cm <sup>2</sup> ) | Tensile strength (kg/cm <sup>2</sup> ) | Haze (%) | Torque (kg-m) | ESCR F50 (hr) | Tackiness |
| Example 47             | 340                                              | 2800                                           | 280                                    | 5        | 2.0           | >1000         | 0         |
| Example 48             | 450                                              | 2600                                           | 320                                    | 20       | 2.0           | >1000         | 0         |
| Example 49             | 400                                              | 2700                                           | 300                                    | 8        | 2.0           | >1000         | 0         |
| Example 50             | 350                                              | 2800                                           | 280                                    | 5        | 2.0           | >1000         | 0         |
| Comparative Example 26 | 200                                              | 2200                                           | 180                                    | 6        | 2.2           | 30            | 0         |
| Comparative Example 27 | 280                                              | 3200                                           | 260                                    | 8        | 3.5           | >1000         | 0         |
| Comparative Example 28 | 150                                              | 3300                                           | 210                                    | 12       | 2.0           | >1000         | x         |

## 1 Examples 51, 52

Compositions of ethylene- $\alpha$ -olefin copolymers were prepared by mixing ethylene- $\alpha$ -olefin copolymers obtained in Example 45 and ethylene- $\alpha$ -olefin copolymers 5 obtained in Example 46 at ratios shown in Table 34. Densities, MIs, MFRs,  $[\eta]$ , S.C.B. and  $g_{\eta}^*$  of these compositions were shown in Table 35. Their physical properties were shown in Table 36.

Molecular weight distributions of Examples 51 10 and 52 showed "one almost symmetrical mountain" curves. The curve in Fig. 5 is that of Example 52. Column fractionation was applied with the same technique as used in Example 47. Its results were shown in Table 35.

In Tables 35 and 36 were also shown low density 15 ethylene- $\alpha$ -olefin copolymers of the conventional technique (Comparative examples 29 and 30) of which molecular weight distributions are made wider and of which lower molecular weight components have larger S.C.B. and of which higher molecular weight components have smaller 20 S.C.B.

Curves of molecular weight distributions of Comparative examples 29 and 30 were similar to those of Examples 51 and 52. As seen from Tables 35 and 36, in the compositions of this invention, S.C.B. of higher 25 molecular weight components and those of lower molecular weight components are nearly equal (compare Example 51 with Comparative example 29, and also Example 52 with Comparative example 30), therefore, the compositions

1 of the present invention are far superior to the copolymers  
of the conventional technique in tensile impact strength  
and tensile strength.

#### Comparative Example 26

5 A commercial high pressure polyethylene  
(Sumikathene<sup>®</sup> F 101-1 manufactured by Sumitomo Chemical  
Co., Ltd.) was subjected to measurements of physical  
properties and. Results were shown in Table 33.

This polyethylene has low  $\eta^*$  of 0.48 and it  
10 suggests that this sample has many long chain branches.  
Its molecular weight distribution curve was shown in  
Fig. 6. Column fractionation was applied with the same  
technique as used in Example 47. The fractions obtained  
were divided into two groups so that the lower molecular  
15 weight component group and the higher molecular weight  
component group became about 36 and 64% by weight, res-  
pectively. Densities, S.C.B. and intrinsic viscosity of  
each group were measured and results were shown in  
Table 32.

#### 20 Comparative Example 27

A low density ethylene- $\alpha$ -olefin copolymer of  
the conventional technique was synthesized using the  
catalyst produced in Example 1, triethyl aluminum (co-  
catalyst) and other polymerization conditions as shown  
25 in Table 37. The copolymer gave: density 0.920 g/cm<sup>3</sup>,  
MI 0.5 g/10 min., MFR 30, intrinsic viscosity 1.7 dl/g,

- 150 -

1 S.C.B. 23,  $\eta^*$  0.95. Its physical properties were shown  
in Table 33. Its molecular weight distribution showed  
"one almost symmetrical mountain" curve, as seen in  
Fig. 1. From the area ratio, the lower molecular weight  
5 components and the higher molecular weight components  
were determined to be both 50% by weight. Column frac-  
tionation was applied with the same technique as used  
in Example 47 and results were shown in Table 32.

Comparative Example 28

10 By mixing the ethylene- $\alpha$ -olefin copolymer A-4  
obtained in Example 45 and the ethylene- $\alpha$ -olefin copolymer  
B-4 obtained in Example 46 at the ratio as given in Table  
31, a composition of low density ethylene- $\alpha$ -olefin  
copolymers of the conventional technique was prepared of  
15 which molecular weight distribution is made wider and  
of which lower molecular weight components have larger  
S.C.B. and of which higher molecular weight components  
have smaller S.C.B. Its density, MI, MFR,  $[\eta]$ , and  $\eta^*$   
were shown in Table 32. The molecular weight distribu-  
20 tion curve of this composition was almost equal to that  
in Fig. 4. With the same technique as used in Example 47,  
the ratio of the lower and higher molecular weight com-  
ponents was determined. Column fractionation was also  
conducted. These results were shown in Table 32.  
25 Physical properties of this composition were shown in  
Table 33.

## 1 Comparative Examples 29, 30

By mixing ethylene- $\alpha$ -olefin copolymers obtained in Example 45 and ethylene- $\alpha$ -olefin copolymers obtained in Example 46 at ratios as shown in Table 34, compositions 5 of low density ethylene- $\alpha$ -olefin copolymers of the conventional technique were prepared of which molecular weight distributions are made wider and of which lower molecular weight components have larger S.C.B. and of which higher molecular weight components have smaller 10 S.C.B. Densities, MIs, MFRs,  $[n]$ , S.C.B. and  $g_n^*$  of these compositions were shown in Table 35. Physical properties of these compositions were shown in Table 36.

Table 34

|                        | Higher molecular weight component | Lower molecular weight component |             |             |
|------------------------|-----------------------------------|----------------------------------|-------------|-------------|
|                        | Designation                       | % by weight                      | Designation | % by weight |
| Example 51             | A-5                               | 60                               | B-5         | 40          |
| Example 52             | A-7                               | 50                               | B-7         | 50          |
| Comparative Example 29 | A-6                               | 60                               | B-6         | 40          |
| Comparative Example 30 | A-8                               | 50                               | B-8         | 50          |

0057891

- 154 -

Table 35 (Cont'd)

| Length of main peak chain (A)                        |                                   | Ratio (% by weight)              |                                   |
|------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
| Lower molecular weight component                     | Higher molecular weight component | Lower molecular weight component | Higher molecular weight component |
| Uniform distribution (peak)<br>2.5 x 10 <sup>3</sup> |                                   | 57                               | 43                                |
| Uniform distribution (peak)<br>1.6 x 10 <sup>3</sup> |                                   | 48                               | 52                                |
| Uniform distribution (peak)<br>2.5 x 10 <sup>3</sup> |                                   | 58                               | 42                                |
| Uniform distribution (peak)<br>1.6 x 10 <sup>3</sup> |                                   | 48                               | 52                                |

- Cont'd -

Table 35  
Properties of copolymer

|                        | Density<br>(g/cm <sup>3</sup> ) | MI<br>(g/10 min) | MFR<br>(dl/g) | [η] | S.C.B. | *<br>g <sub>η</sub> |
|------------------------|---------------------------------|------------------|---------------|-----|--------|---------------------|
| Example 51             | 0.920                           | 0.5              | 70            | 1.7 | 19     | 0.91                |
| Example 52             | 0.929                           | 1.2              | 70            | 1.4 | 20     | 0.95                |
| Comparative Example 29 | 0.919                           | 0.5              | 70            | 1.7 | 17     | 0.96                |
| Comparative Example 30 | 0.929                           | 1.2              | 70            | 1.4 | 17     | 0.93                |

- Cont'd -

$\frac{\text{Degree of S.C.B. of higher}}{\text{molecular weight component}}$   
 $\text{of S.C.B.} = \frac{\text{Degree of S.C.B. of lower}}{\text{molecular weight component}}$

0057891

- 155 -

Table 35 (Cont'd)  
 Characteristics of components fractionated  
 by column fractionation

| S.C.B.<br>Lower molecular weight<br>component | Higher molecular<br>weight component |               |        |                                 | Distribution<br>index of<br>S.C.B.* |
|-----------------------------------------------|--------------------------------------|---------------|--------|---------------------------------|-------------------------------------|
|                                               | Density<br>(g/cm <sup>3</sup> )      | [η]<br>(dl/g) | S.C.B. | Density<br>(g/cm <sup>3</sup> ) |                                     |
| 22                                            | 0.933                                | 0.5           | 15     | 0.920                           | 2.4                                 |
| 20                                            | 0.935                                | 0.6           | 20     | 0.915                           | 2.2                                 |
| 24                                            | 0.930                                | 0.5           | 7      | 0.927                           | 2.4                                 |
| 29                                            | 0.922                                | 0.6           | 6      | 0.930                           | 2.1                                 |

Table 36

|                        | Physical properties of copolymer                 |                                                |                                        |           |
|------------------------|--------------------------------------------------|------------------------------------------------|----------------------------------------|-----------|
|                        | Tensile impact strength (kg.cm/cm <sup>2</sup> ) | Olsen's Flexural modulus (kg/cm <sup>2</sup> ) | Tensile strength (kg/cm <sup>2</sup> ) | Tackiness |
| Example 51             | 480                                              | 2600                                           | 320                                    | o         |
| Example 52             | 250                                              | 3700                                           | 250                                    | o         |
| Comparative Example 29 | 200                                              | 3100                                           | 200                                    | x         |
| Comparative Example 30 | 70                                               | 4500                                           | 200                                    | o         |

\* Table 37

| Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Co-catalyst TEA (mmol) | Solvent (kg) | $\alpha$ -olefin (kg) | H <sub>2</sub> partial pressure (kg/cm <sup>2</sup> ) | $C_2'$ partial pressure (kg/cm <sup>2</sup> ) | Polymerization temperature (°C) | Polymerization time (min) |
|-----------------------|------------------------------------|------------------------|------------------------|--------------|-----------------------|-------------------------------------------------------|-----------------------------------------------|---------------------------------|---------------------------|
| Slurry                | 65                                 | 202                    | 100                    | $C_4$        | $C_4'$                | 7.0                                                   | 7.16                                          | 3.0                             | 10 50 ; 90                |

Note      TEA = Triethyl aluminum

$C_4$  = n-Butane

$C_2'$  = Ethylene

$C_4'$  = Butene-1

## 1 Reference Example 1

An ethylene- $\alpha$ -olefin copolymer was synthesized from ethylene and butene-1, using the catalyst produced in Example 1, diethyl aluminum monochloride (co-catalyst) 5 and other polymerization conditions as shown in Table 38. Properties of this copolymer were shown in Table 39. By applying column fractionation, the copolymer was fractionated into fractions of different molecular weights. Then, distribution of S.C.B. against molecular 10 weight was examined as shown in Fig. 7.

In column fractionation, about 5 g of the sample was placed in a fractionation column after being adsorbed on a carrier (Celite 745) in xylene. Then, the column was heated to 130°C, and butyl cellosolve and xylene 15 were passed through the column with the mixing ratio being gradually changed in order to obtain a gradual increase in solvency. Thus, all the copolymer fractions of lower to higher molecular weight were separated. To the eluates was added methanol to cause precipitation 20 of the copolymers. After recovery, the polymers were dried under reduced pressure and each copolymer fraction was obtained. In the above column fractionation process, in order to prevent the possible decomposition of the copolymers, 100 ppm of Irganox® 1076 was added to the 25 original sample and further air inside the column was replaced by nitrogen. Using each copolymer fraction, pressed sheets having about 100 to 300 $\mu$  thickness were prepared, and S.C.B. of each copolymer fraction were

1 calculated by conducting Fourier-transform infrared  
absorption spectroscopy. Molecular weights of each  
copolymer fraction were calculated, using intrinsic  
viscosities [ $\eta$ ] measured in tetralin of 135°C and the  
5 following formula.

$$[\eta] = 5.1 \times 10^{-4} : \bar{M}_n^{0.725}$$

#### Reference Example 2

With ethylene- $\alpha$ -olefin copolymers of the conventional technique, a relationship between melt index  
10 (MI) and tensile impact strength was examined with melt flow ratio (MFR) used as a parameter. Results were shown  
in Fig. 8. It is revealed that widening of molecular weight distribution results in remarkable reduction in  
tensile impact strength. (In the figure, molecular weight  
15 distribution was represented by MFR. Larger MFR means wider molecular weight distribution.). These ethylene- $\alpha$ -olefin copolymers were subjected to molecular weight fractionation with the same technique as used in  
Reference Example 1. All the copolymers showed trends  
20 similar to that of Reference Example 1. The fractions were divided into two groups (lower molecular weight group and higher molecular weight group) in such a way that each group became about 50% by weight, and (S.C.B. of higher molecular weight component/S.C.B. of lower  
25 molecular weight component) was calculated. It was below 0.5 in all the copolymers.

## 1 Reference Example 3

With a high pressure method polyethylene of the conventional technique and a linear, high density polyethylene of medium to low pressure method, correlations between melt index (MI) and intrinsic viscosity [ $\eta$ ] were examined and shown in Fig. 9. The correlation lines of each sample are clearly divided by a partition line (broken line). It is learned that the high pressure polyethylene has much lower intrinsic viscosity than that of the linear high density polyethylene of the same melt index.

A correlation between melt index and intrinsic viscosity was examined with the ethylene- $\alpha$ -olefin copolymers of the present invention. All of the copolymers of the present invention fell in the zone of the linear, high density polyethylene.

Table 38

| Polymerization method | Polymerization vessel capacity (l) | Catalyst quantity (mg) | Solvent (g) | $\alpha$ -olefin (g) | $H_2$ partial pressure (kg/cm <sup>2</sup> ) | $C_2'$ partial pressure (kg/cm <sup>2</sup> ) | Polymerization temperature (°C) | Polymerization time (min) |
|-----------------------|------------------------------------|------------------------|-------------|----------------------|----------------------------------------------|-----------------------------------------------|---------------------------------|---------------------------|
| Solution              | 1                                  | 25.1                   | $C_7$ 300   | $C_4$ 1              | 40                                           | 3.5                                           | 20                              | 140                       |

0057891

- 162 -

Table 39

| Properties                      |                  |     |        |
|---------------------------------|------------------|-----|--------|
| Density<br>(g/cm <sup>3</sup> ) | MI<br>(g/10 min) | MFR | S.C.B. |
| 0.924                           | 4                | 25  | 20     |

## WHAT IS CLAIMED IS:

1. An ethylene- $\alpha$ -olefin copolymer composition excellent in strength and having a density of 0.910 to 0.940 g/cm<sup>3</sup>, a melt index of 0.02 to 50 g/10 min. and a melt flow ratio of 35 to 250, which comprises 10 to 70% by weight of an ethylene- $\alpha$ -olefin copolymer A and 90 to 30% by weight of an ethylene- $\alpha$ -olefin copolymer B; said copolymer A being a copolymer of ethylene and an  $\alpha$ -olefin of 3 to 18 carbon atoms and having a density of 0.895 to 0.935 g/cm<sup>3</sup>, an intrinsic viscosity of 1.2 to 6.0 dl/g, and the number of short chain branching per 1000 carbon atoms (hereinafter referred to as "S.C.B.") of 7 to 40; said copolymer B being a copolymer of ethylene and an  $\alpha$ -olefin of 3 to 18 carbon atoms and having a density of 0.910 to 0.955 g/cm<sup>3</sup>, an intrinsic viscosity of 0.3 to 1.5 dl/g, and S.C.B. of 5 to 35; said copolymer A and said copolymer B being selected in order to satisfy a condition that (S.C.B. of said copolymer A)/(S.C.B. of said copolymer B) is at least 0.6.
2. An ethylene- $\alpha$ -olefin copolymer composition according to Claim 1, wherein both of said copolymers A and B have (weight average molecular weight)/(number average molecular weight) of 2 to 10.
3. An ethylene- $\alpha$ -olefin copolymer composition according to Claim 1 or 2, wherein at least one of said copolymer A and said copolymer B is one member selected from the group consisting of an ethylene-butene-1 copolymer, an ethylene-4-methyl-pentene-1 copolymer, an ethylene-

hexene-1 copolymer and an ethylene-octene-1 copolymer.

4. An ethylene- $\alpha$ -olefin copolymer composition excellent in transparency and strength according to Claim 1, 2, or 3, wherein said copolymers A and B are selected in order to satisfy a condition that (S.C.B. of copolymer A)/(S.C.B. of copolymer B) is 0.6 to 1.7.

5. An ethylene- $\alpha$ -olefin copolymer composition according to Claim 1, 2, 3, or 4, wherein said copolymer composition is prepared by a multi-stage polymerization.

6. An ethylene- $\alpha$ -olefin copolymer composition according to Claim 1, 2, 3, or 4, characterized in that said copolymer components are mixed as a result of a two stage polymerization wherein, in the first stage, said copolymer A is polymerized under certain polymerization conditions for a certain length of time and successively, in the second stage, said copolymer B is polymerized with the first stage polymerization conditions changed other than catalysts until an intended weight ratio of copolymers A and B is obtained.

7. A composition of copolymers of ethylene and an  $\alpha$ -olefin of 3 to 18 carbon atoms, having the following properties:

- (1) density of 0.910 to 0.940 g/cm<sup>3</sup>,
- (2) intrinsic viscosity  $[\eta]$  of 0.7 to 4.0 dl/g,
- (3) melt index of 0.02 to 50 g/10 min.,
- (4) S.C.B. being 5 to 45,
- (5)  $[\eta]/[\eta]_L$  namely  $g_{\eta}^*$  being at least 0.8, where  $[\eta]_L$  is an intrinsic viscosity of a linear polyethylene

- 3 -

having the same weight average molecular weight measured by a light scattering method, and

(6) (S.C.B. of the higher molecular weight components)/(S.C.B. of the lower molecular weight components) being at least 0.6, where these two components groups are obtained by a molecular weight fractionation method.

8. A copolymer composition according to Claim 7, wherein (S.C.B. of the higher molecular weight components)/(S.C.B. of the lower molecular weight components) is 0.6 to 0.8.

9. A copolymer composition according to Claim 7 which gives a two-peak or multi-peak molecular weight distribution curve when subjected to gel permeation chromatography, in which curve the total lower molecular weight components contain at least one component having a peak chain length of  $2 \times 10^2$  to  $3.0 \times 10^3$  Å and the total higher molecular weight components contain at least one component having a peak chain length of  $1 \times 10^3$  to  $6 \times 10^4$  Å and the former components occupy 70 to 30% by weight of the total copolymers and the latter components 30 to 70% by weight.

10. A copolymer composition according to Claims 7 to 9, wherein the α-olefin is butene-1 and/or 4-methyl-pentene-1 and/or hexene-1 and/or octene-1.

11. A copolymer composition according to Claims 7 to 10 which is obtained from a multi-stage polymerization using a carrier-supported Ziegler catalyst.

0057891

1/9

FIG. I



WEIGHT FRACTION

0057891

2/9

FIG. 2



WEIGHT FRACTION

0057891

3/9

FIG. 3



4/9

FIG. 4



WEIGHT FRACTION

0057891

5/9

FIG. 5



WEIGHT FRACTION

0057891

6/9

FIG. 6



0057891

7/9

FIG. 7



0057891

8/9

F I G. 8



0057891

9/9

FIG. 9

