CHAPTER -1 INTRODUCTION

1.1 Need of the new system

- In today's life, people have many options to enjoy weekends but with many options comes more trouble to choose places nearby.
- It is very time consuming and complex to search such events near surrounding.
- For this people have to gather information as such they don't know about the events occurring nearby.
- This web application will help people to overcome from such issues and search an immediate result of events occurring nearby.

1.2 Detailed problem definition

- Here people can get the alternative to search for their choice of favorite events which attracts their interest.
- List of events available on our site will be fully authorized and safe as per today's condition.
- New system will add the better reviews for people who have already experienced our organized events.
- Even people will get a chance to Register online easily as per the quote says first comes first serve.

1.3 Viability of the system

- In our website people can easily check or go through the events happening nearby on a click.
- It will be a user friendly website.

• No payment charges for any user.

1.4 Presently Available Systems for the same

• https://insider.in/online-events-india

Figure 1

• https://www.whatshot.in/

Figure 2

1.5 Future Prospects

- More categories will be added in upcoming time.
- More areas will covered in nearby future.
- Online payment methods will be included.
- Feature like map will be added.

2.1 Requirement Analysis

Aim of this website is to understand the exact requirements of the customer and to document them properly. It will also reduce the communication gap between developers and customers.

Types of users in our new system are:-

- Admin
- Event organizer
- Client
- Event manager

Admin:

- Admin directs the whole website.
- Looks after the website on regular basis and can make changes.
- They ensure security measures for the users.
- Troubleshoot issues and the outages.
- Incharge of all the panels provided.
- They generate the backups on daily basis.

Event organizer:

- Organizes the event panel accordingly.
- Notifies about the upcoming events.
- Terms and conditions of the events.
- Posting about the regular events.

Client:

- They must register themselves to the websites.
- Can access areas and features of the website.
- Access to offers and coupons.
- Access to map for locating nearby events.
- Provides feedback system.

Event manager:

- Mediator between the Admin and Event organizer.
- Searches for all the nearby event places.
- Deals with the event organizers.
- Schedules the meeting between admin and the event organizers for further procedure.

2.2 Project Model

• Iterative Waterfall Model

The Iterative waterfall model provides feedback paths from every phase to its preceding phases.

In the Iterative model, iterative process starts with a simple implementation of a small set of the software requirements and iteratively enhances the evolving versions until the complete system is implemented and ready to be deployed.

An iterative life cycle model starts with specifying and implementing part of the software, which is then reviewed to identify further requirements.

• Iterative Waterfall Model

[Figure 1: Iterative Waterfall Model]

ADVANTAGES

- The model is more flexible and less costly to change the scope and requirement.
- User gets a chance to experiment with partially developed software.
- This model helps finding exact user requirement.
- Feedback providing at each increment is useful for determining the better final product.

2.3 Schedule Representation

Generalized project scheduling tools and technique can be applied with little modification to software projects. Project evolution and review technique and critical paths method are two project scheduling method that can be applied to software development. Both techniques are driven by information already developed in earlier project planning activities.

[Table 1: Schedule Representation]

ACTIVITY	START DATE	FINISH DATE
Descriptions and Amelouis	01 07 2021	15 00 2021
Requirement Analysis	01-07-2021	15-08-2021
System Analysis	16-08-2021	22-09-2021
System Design	23-09-2021	
System Coding		
Testing and Integration		

2.4 Feasibility Study

1. Economical Feasibility:

The system being is economic with respect to client or software development company point of view. It will not take any extra charges or high rates from clients for registration but, for event organizer company charges would be taken.

2. Technical Feasibility:

This system will be technically feasible as it runs on PHP which is open source so one will not have to take/pay any licensing.

3. Legal feasibility:

This system will be legally feasible as it does not have any functionality that is performed without any permission or illegally.

4. Environmental feasibility:

This system is environmentally feasible as it does not require any type of resources that harms nature or human as it runs on server.

CHAPTER 3 DESIGN

3.1 Data Flow Diagram

- DFD (data flow diagram) is also known as bubble chart or data flow graph.
- DFD's are very useful in understanding the system and can be effectively used during analysis. It shows flow of data through a system visually. The DFD is a hierarchical graphical model of a system the different processing activities or functions that the system performs and the data interchange among these functions.
- It views a system as a function that transforms the inputs into desired output.
- Each function is considered as a process that consumes some input data and produces some output data.
- Function model can be represented using DFD.
- DFD graphically representing the functions, or processes, which capture, manipulate, store, and distribute data between a system and its environment and between components of a system.
- The visual representation makes it a good communication tool between User and System designer.
- Structure of DFD allows starting from a broad overview and expand it to a hierarchy of detailed diagrams.
- DFD has often been used due to the following reasons:
 - 1. Logical information flow of the system.
 - 2. Determination of physical system construction requirements.
 - 3. Simplicity of notation.
 - 4. Establishment of manual and automated systems requirements.

[Table 2: Data Flow Diagram Symbols]

Symbols	Description
	Entity: Entities are external to the
	system which interacts by inputting
	the data.
	System: It shows the system name.
	Process: It shows the part of the
	system that transforms into outputs.
	Data Flow: It passes the data from
──	one part to another.
	Data Store: Data store is
	represented by two parallel lines. It
	is generally logical file or database.

Level 0: Context

[Figure 2: CONTEXT LEVEL]

Level 1: ADMIN

[Figure 3: DFD Level 1: Admin]

Level 1: EVENT ORGANIZER

[Figure 4: DFD Level 1: Event Organizer]

Level 1: EVENT MANAGER

[Figure 5: DFD Level 1: Event Manager]

Level 1: USER

[Figure 6: DFD Level 1: USER]

3.2 ER-Diagram

An Entity Relationship (ER) Diagram is a type of flowchart that illustrates how "entities" such as people, objects or concepts relate to each other within a system. ER Diagrams are most often used to design or debug relational databases in the fields of software engineering, business information systems, education and research. Also known as ERDs or ER Models, they use a defined set of symbols such as rectangles, diamonds, ovals and connecting lines to depict the interconnectedness of entities, relationships and their attributes. They mirror grammatical structure, with entities as nouns and relationships as verbs.

[Table 3: ER-Diagram Symbols]

Symbols	Description
	Entity: Data object is real world entity or thing. It is represented by a rectangle shape. An entity is an object or concept about which you want to store information.
	Attributes: An attribute is property of characteristic of an entity. It is represented by oval shape.
	Relationship: Entity are connected each other via relations. Generally, relationships in binary because there are two entities are related to each other.
	Cardinality (One to One): An instance of entity A can relate to one instances of entity B.

Cardinality (One to Many): An instance of entity A can relate to one or many instances of B but we can only relate one instance of A.
Cardinality (Many to One): One or more instances of entity A can relate to one instances of B.
Cardinality (Many to Many): One or more instances of entity A can relate to one more instance of entity B.

ER-Diagram: Admin Admin_emzil Admin_pass User_DOB Manages User_pincode User_address Manager_id Manager_pass User_phone User_email Manager_name User_id User_ Event Manager_pass User_fname registration manager Organizer_id Organizer_exp User_lname Event Organizer_ Organizer_ organizer User_pass Manager_num speciality name Organizer_ Organizer_ num email Organize Manages Gives Register Event_desc Event_name Event_id Event_id User_name Event_name User_id Event_categ Event Master Event_date Age_grp Event_day Event_regfees Event_location Event_time Maps Has Organizer_name Event_pincode Event Area Master Of categories Area_name Area_pincode Category_id Category_agegrp feedback_id > feedback

[Figure 7: ER Diagram]

User_id

Event_id >

Timestamp

Rating

Fedback

CHAPTER-4 DATA DICTIONARY

4.1 Database Dictionary

1. Table Name: Admin

[Table 4: Admin]

SR.NO	FIELD	DATATYPE	CONSTRAINT	DESCRIPTION
	NAME	(SIZE)		
1	Admin_email	Varchar (20)	Primary key	Store admin's
				email
2	Admin_pass	Varchar (15)	Unique key	Store admin's
				password

2. Table Name: User Registration

[Table 5: User Registration]

SR.NO	FIELD	DATATYPE	CONSTRAINT	DESCRIPTION
	NAME	(SIZE)		
1	User_id	Int (10)	Primary key	Store user's Id
2	User_fname	Int (10)	Not null	Store user's first
				name
3	User_lname	Int (10)	Not null	Store user's last
				name
4	User_phone	Int (10)	Unique key	Store user's phone
				number

5	User_email	Varchar (20)	Not null	Store user's email
6	User_pass	Varchar (15)	Not null	Store user's password
7	User_address	Varchar (30)	Not null	Store user's address
8	User_pincode	Int (6)	Unique key	Store user's pin code
9	User_DOB	Int (8)	Not null	Store user's DOB

3. Table Name: User Login

[Table 6: User Login]

SR.NO	FIELD	DATATYPE	CONSTRAINT	DESCRIPTION
	NAME	(SIZE)		
1	User_email	Varchar (20)	Primary key	Store user's email
2	User_pass	Varchar (15)	Not null	Store user's password

4. Table Name: Event Organizer Registration

[Table 7: Event Organizer Registration]

SR.	FIELD	DATATYPE	CONSTRAINT	DESCRIPTION
NO	NAME	(SIZE)		
1	Organizer_id	Int (8)	Primary key	Store organizer's Id
2	Organizer_name	Varchar (10)	Unique key	Store organizer's
				name
3	Organizer_num	Int (10)	Not null	Store organizer's
				number
4	Organizer_email	Varchar (50)	Unique key	Store organizer's
				email
5	Organizer_	Varchar (30)	Unique key	Store organizer's
	speciality			speciality
6	Organizer_exp	Varchar (2)	Null	Store organizer's
				expirience

5. Table Name: Event Manager Registration

[Table 8: Event Manager Registration]

SR.NO	FIELD	DATATYPE	CONSTRAINT	DESCRIPTION
	NAME	(SIZE)		
1	Manager_id	Int (8)	Primary key	Store manager's Id
2	Manager_name	Varchar (10)	Not null	Store manager's name
3	Manager_num	Int (10)	Not null	Store manager's number
4	Manager_email	Varchar (50)	Not null	Store manager's email
5	Manager_pass	Varchar (15)	Not null	Store manager's password

6. Table Name: Organizer Login

[Table 9: Organizer Login]

SR.NO	FIELD NAME	DATATYPE	CONSTRAINT	DESCRIPTION
		(SIZE)		
1	Organizer_email	Varchar (50)	Primary key	Store organizer's
				email
2	Organizer_pass	Varchar (50)	Not null	Store organizer's
				password

7. Table Name: Manager Login

[Table 10: Manager Login]

SR.NO	FIELD NAME	DATATYPE	CONSTRAINT	DESCRIPTION
		(SIZE)		
1	Manager_email	Varchar (50)	Primary key	Store Manager's
				email
2	Manager_pass	Varchar (50)	Not null	Store Manager's
				password

8. Table Name: Event Master

[Table 11: Event Master]

SR.NO	FIELD NAME	DATATYPE	CONSTRAINT	DESCRIPTION
		(SIZE)		
1	Event_id	Int (10)	Primary key	Store Event's Id
2	Event_name	Varchar (20)	Not null	Store Event's Name
3	Event_categ	Varchar (20)	Foreign key	Store Event's category
4	Event_date	Int (8)	Not null	Store Event's date
5	Event_day	Varchar (10)	Not null	Store Event's day
6	Event_location	Varchar (20)	Not null	Store Event's location
7	Event_pincode	Int (6)	Foreign key	Store Event's pin code
8	Event_time	Int (10)	Not null	Store Event's time

9	Event_regfees	Int (6)	Not null	Store Event's
				Registration fees
10	Organizer_name	Varchar (20)	null	Store Event's
				organizer name
11	Age_group	Int (2)	Not null	Store Event's group
12	Events_desc	Varchar	Not null	Store Event's
		(100)		description

9. Table Name: Event Category

[Table 12: Event Category]

SR.NO	FIELD NAME	DATATYPE	CONSTRAINT	DESCRIPTION
		(SIZE)		
1	Category_id	Int (20)	Primary key	Store category
				Id
2	Category_name	Varchar (20)	Not null	Store category
				name
3	Category_agegrp	Int (2)	Not null	Store category
				age group

10. Table Name: Area

[Table 13: Area]

SR.NO	FIELD NAME	DATATYPE	CONSTRAINT	DESCRIPTION
		(SIZE)		
1	Area_name	Varchar (20)	Primary Key	Store area name
2	Area_pincode	Int (6)	Unique Key	Store area pin
				code

11. Table Name: Event Registration

[Table 14: Event Registration]

SR.NO	FIELD NAME	DATATYPE	CONSTRAINT	DESCRIPTION
		(SIZE)		
1	Event_id	Int (8)	Primary Key	Store event's
				Id
2	Event_name	Varchar (10)	Unique Key	Store event's
				name
3	User_id	Int (8)	Foreign Key	Store user's
				Id
4	User_name	Varchar (10)	Unique Key	Store user's name

12. Table Name: Feedback

[Table 15: Feedback]

SR.NO	FIELD NAME	DATATYPE	CONSTRAINT	DESCRIPTION
		(SIZE)		
1	Feedback_id	Int (8)	Primary Key	Store feedback Id
2	User_id	Int (8)	Foreign Key	Store user's Id
3	Event_id	Int (8)	Foreign Key	Store event's Id
4	Feedback	Varchar (200)	-	Store feedback
5	Rating	Int (5)	Not null	Store rating
6	Feedback_	Timestamp	Not null	Store date and
	datetime			time

CHAPTER-5 TECHNICAL SPECIFICATION

5.1 Hardware Specification:

• 5.1.1 Ram: 4GB

• 5.1.2 Hard drive Storage Needed: 200GB

• 5.1.3 Other Hardware Requirements: None

5.2 Platform:

• **5.2.1 Supported Operating System:** Windows XP and above, LINUX and MacOS is compatible.

• **5.2.2 Programmer Server:** Xampp Apache Server 8.0.10 64-bit.

5.3 Framework:

• **5.3.1 Mark-up Language:** HTML4 and HTML5.

• 5.3.2 Programming Language: PHP 8.0.10v

5.4 Technical Support:

• **5.4.1 Front-End:** PHP 8.0.10v

• **5.4.2 Back-End:** MySQL 8.0.26

• IDE Tools: Sublime Text3 and Microsoft visual studio code.

• UML Tools: Microsoft Office Visio 2019.

• SRS Tools: Microsoft Word 2019

5.5 DESIGN LAYOUT

LOGIN:

[Figure 8: Login Page]

[Figure 9: Login Page Validation]

BIBLIOGRAPHY

BOOK REFERENCES

[1] DYNAMIC WEB PAGE DEVELOPMENT, Third Edition Author: J. B. Patel Published by: ATUL PRAKASHAN in 2020

[2] JAVA PROGRAMMING, Third Edition Author: J. B. Patel, M. R. Thakkar, Sanjy A. Valaki Published by: ATUL PRAKASHAN in 2021

[3] PHP and MySQL Web Development, Fifth Edition Authors: Luke Welling and Laura Thomsan Published by: Addison-Wesley Professional in 2016

WEB REFRENCE

[1] W3school Link: https://www.w3schools.com/tags/default.asp

[2] Java T point Link: https://www.javatpoint.com/html-tutorial

[3] Tutorials Point Link: https://www.tutorialspoint.com/html/index.htm

[4] W3resource

Link: https://w3resource.com/mysql-exercises/