Pivot-based Transfer Learning for Neural Machine Translation between Non-English Languages

Yunsu Kim^{1*}, Petre Petrov^{1,2*}, Pavel Petrushkov², Shahram Khadivi², Hermann Ney¹

¹Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Aachen, Germany

²eBay Inc., Aachen, Germany

Plain Transfer

Non-English language pairs: small or no parallel data (e.g. German \rightarrow Czech)

► Pre-train source→English and English→target models (English as pivot)

Problem: Discrepancy between pre-trained encoder and decoder

Pivot Adapter

Solution 1: Insert an adapter between pre-trained encoder and decoder

Mapping \hat{M} : source encoder output $(h_{src}) o English$ encoder output (h_{En})

Trained with source-English parallel data

$$\hat{\mathbf{M}} = \underset{\mathbf{M}}{\operatorname{argmin}} \sum_{\mathbf{h}_{\mathbf{r}}} \|\mathbf{M}\mathbf{h}_{\operatorname{src}} - \mathbf{h}_{\operatorname{En}}\|^2$$

Effect: Make source encoder outputs compatible to target decoder

Step-wise Pre-training

Solution 2: Pre-train for source→English <u>and then</u> English→target

Effect: Target decoder directly sees the source encoder space in pre-training

Cross-lingual Encoder

Solution 3: Pre-train an encoder for both source language and English

Denoising autoencoder: English (noisy) → English (clean)

- ► Combined with the normal source→English cross entropy
- ► Noise: insertion, deletion, permutation

Effect: Encodes source/English inputs in the same space

Zero-shot / Zero-resource Results

Scenario: Given no source-target parallel data

- ► Zero-shot: no further tuning of the pre-trained parameters
- ➤ Zero-resource: fine-tune the pre-trained parameters with synthetic source-target parallel data (e.g. pivot-based forward translation)

Results in BLEU [%]		$French {\longrightarrow} German$		German-	$German{ o}Czech$	
		test2012	test2013	test2012	test2013	
Zero-shot	Pivoting (cascaded)	16.6	17.9	16.4	19.5	
	Multilingual many-to-many	14.1	14.6	5.9	6.3	
	Plain transfer	0.1	0.2	0.1	0.1	
	+ Pivot adapter	0.1	0.1	0.1	0.2	
	Step-wise pre-training	11.0	11.5	6.0	6.5	
	+ Cross-lingual encoder	17.3	18.0	14.1	16.5	
Zero-res	+ Synthetic data (10M)	19.3	20.9	16.5	19.1	

Conclusion: Built decent NMT models without any real parallel data

- Outperforms pivoting and multilingual systems
- ► German→Czech test2019: **17.2** (ours) vs. 15.5 (NICT, unsupervised)

Small-scale Fine-tuning Results

Scenario: Given **small** (\sim 250k) source-target parallel data for fine-tuning

Results in Bleu [%]	French→German		German-	German→Czech	
	test2012	test2013	test2012	test2013	
Direct source→target	14.8	16.0	11.1	12.8	
Multilingual many-to-many	18.7	19.5	14.9	16.5	
Plain transfer	17.5	18.7	15.4	18.0	
+ Pivot adapter	18.0	19.1	15.9	18.7	
Step-wise pre-training	18.6	19.9	15.6	18.1	
+ Cross-lingual encoder	19.5	20.7	16.2	19.1	

Conclusion: Effective gains from pivot adapter or cross-lingual encoder

▶ Up to +2.6 Bleu [%] against multilingual systems

Large-scale Fine-tuning Results

Scenario: Add large source-target synthetic data for fine-tuning

► Real + Synthetic: 12M (French→German), 5M (German→Czech)

Results in Bleu [%]	$French { ightarrow} German$		German	German→Czech		
	test2012	test2013	test2012	test2013		
Direct source→target	20.1	22.3	11.1	12.8		
+ Synthetic data	21.1	22.6	15.7	18.5		
Plain transfer	21.8	23.1	17.6	20.3		
+ Pivot adapter	21.8	23.1	17.6	20.9		
Step-wise pre-training	21.8	23.0	17.3	20.0		
+ Cross-lingual encoder	21.9	23.4	17.5	20.5		

Conclusion: Transfer helps greatly even with large data for the main task

- ► Less effects of the additional techniques
- ► Disadvantage: synthetic data generation is costly

Acknowledgments

Council (ERC) (under the European Union's Horizon 2020 research and innovation programme, grant agreement No 694537, project "SEQCLAS") and eBay Inc. The work reflects only the authors' views and none of the funding agencies is responsible for any use that may be made of the information it contains.

This work has received funding from the European Research

Paper Twitter