Lab5: Tables and OLS

Introduction to Econometrics, Fall 2020

Yi Wang

Nanjing University

21/10/2020

Section 1

Matrix

Subsection 1

Definition of Matrix

• 基本定义方式

- ▶ Stata中的数据可以视为矩阵。
- ▶ 规则:【,】分列,【\】分行。

Subsection 2

Management of Matrix

- 矩阵的管理
 - ▶ 1.矩阵的名称
 - ▶ 可以内存中的变量同名。
 - ▶ 不可以和单值重名(一旦重名, 会自动覆盖)。
 - ▶ 注意:

数学运算中,同时为**变量名称**和**矩阵名称**的名称,Stata会将其解释 为变量名称。

• 矩阵的管理

▶ 1.矩阵的名称

• 矩阵的管理

▶ 2.矩阵的列式

```
. mat list b
b[1,2]
  c1 c2
r1 2 3
. mat list b, format(%3.1f)
b[1,2]
    c1 c2
r1 2.0 3.0
mat d = J(3,3,2)
. mat list d, nohalf nonames title("一个3*3的对称矩阵")
symmetric d[3,3]: 一个3*3的对称矩阵
```

• 矩阵的管理

- ▶ 2.矩阵的列式
- ▶ 更加灵活的设定方式-matlist-(了解即可)
- . matrix $x = (1, 2 \setminus 3, 4 \setminus 5, 6)$
- . matlist x, border(rows) rowtitle(rows) left(4)

rows	c1	c2
r1	1	2
r2 r3	3	4
r3	5	6

. matlist 2*x, border(all) format(%6.1f) names(rows) twidth(8) title(x)

х

r1	2.0	4.0
r2	6.0	8.0
r3	10.0	12.0

• 矩阵的管理

- ▶ 2.矩阵的列式
- ▶ 更加灵活的设定方式-matlist-(了解即可)

• 矩阵的管理

- ▶ 2.矩阵的列式
- ▶ 更加灵活的设定方式-matlist-(了解即可)

```
. matlist Htest, title("检验结果") rowtitle("变量名称") /// cspec(o4& %12s | %8.0g & %5.0f & %8.4f o2&) rspec(&-&&-) 检验结果
```

变量名称	chi2	df	р
trunk length weight	12.3 2.17 8.81	2 1 3	0.0004 0.3533 0.0402
overall	20.05	6	0.0011

- *cspec()特指列的格式和列的分隔符:
- *Sep (分隔符):
- * | 指定绘制一条垂直线。
- * & 指定不画线。
- * o# 指定分隔符之前和之后的空格数,默认为一个空格,但第一列之前和最后一列之后不包含空格。

• 矩阵的管理

- ▶ 2.矩阵的列式
- ▶ 更加灵活的设定方式-matlist-(了解即可)

```
. matlist Htest, title("检验结果(New)") rowtitle("变量名称") /// > cspec( o4&o2 %10s | b t %8.0g & %4.0f & i c %7.4f o2& ) /// > rspec( & - & & - & )
```

检验结果(New)

变量名称	chi2	df	р
trunk length weight	12.3 2.17 8.81	2 1 3	0.0004 0.3533 0.0402
overall	20.05	6	0.0011

- * b 加粗(bold)
- * t 绿色(text color)
- * i 斜体(italic)
- * c 白色(command color)

• 矩阵的管理

▶ 3.矩阵的行数和列数

```
. matrix x = (1, 2 \ 3, 4 \ 5, 6)
. display colsof(d)
3
. display rowsof(c)
2
```

▶ 4.矩阵的行名和列名

• 矩阵的管理

▶ 5.矩阵的查找和删除

```
. mat dir
            x[3,2]
        Htest[4,3]
            d[3,3]
            c[2,3]
            b[1,2]
```

- . mat drop b c d x
- . mat drop _all

Subsection 3

Operation of Matrix

矩阵的操作

▶ 1.选取1个元素

```
. matrix e = (1,2,3,4,5 \setminus 2,3,4,5,6 \setminus 3,4,5,6,7 \setminus 4,5,6,7,8 \setminus 5,6,7,8,9)
 . mat list e, nohalf
symmetric e[5,5]
     c1 c2 c3 c4 c5
r1 1 2 3 4 5 6 r2 2 3 4 5 6 7 r4 4 5 6 7 8 9
 . mat e1 = e[2,3]
 . mat list e1
symmetric e1[1,1]
     c1
r1 4
```

• 矩阵的操作

▶ 2.选取子矩阵

• 矩阵的操作

▶ 2.选取子矩阵

• 矩阵的操作

▶ 2.选取子矩阵

• 矩阵的操作

▶ 3.矩阵元素的修改

• 矩阵的操作

▶ 4.分块矩阵的操作

```
. mat a1 = (1, 2, 3 \ 42, 50, 63)
. mat a2 = (-3,-5,-7 \ -9 , -11, -13)
. mat list a1
a1[2,3]
        c1       c2      c3
r1        1       2       3
r2        42       50      63
. mat list a2
a2[2,3]
        c1       c2      c3
r1        -3       -5      -7
r2        -9      -11      -13
```

• 矩阵的操作

▶ 4.分块矩阵的操作

Subsection 4

Common Matrixes

• 常用矩阵的定义

▶ 1.单位矩阵

```
. mat I = I(4)
. mat list I
symmetric I[4,4]
          c1     c2     c3     c4
r1          1
r2          0     1
r3          0     0     1
r4          0     0     0     1
```

- 常用矩阵的定义
 - ▶ 2.常数矩阵

• 常用矩阵的定义

▶ 3.对角矩阵

```
. mat g = (1, 2, 3, 4, 5)
. mat list g
g[1,5]
    c1 c2 c3 c4 c5
r1 1 2 3 4 5
. mat dg = diag(g) // 取出对角元素
. mat list dg
symmetric dg[5,5]
    c1 c2 c3 c4 c5
c1 1
c2 0 2
c3 0 0 3
c4 0 0 0 4
c5 0 0 0 0 5
```

Subsection 5

Conversion Between Variables and Matrices

• 变量与矩阵的转换

▶ 1.变量—>矩阵-mkmat-

```
. sysuse auto, clear
(1978 Automobile Data)
. mkmat price, mat(Y)
. gen cons= 1
. mkmat cons weight length foreign, mat(X)
. mat list Y
Y[74,1]
     price
      4099
 r1
 r2
     4749
 r3
    3799
 r4
    4816
 r5
    7827
     5788
 r6
 r7
    4453
 r8
     5189
    10372
 r9
r10
    4082
r11
    11385
     14500
r12
```

• 变量与矩阵的转换

▶ 1.变量—>矩阵-mkmat-

. mat 1	ist X			
X[74,4]				
	cons	weight	length	foreign
r1	1	2930	186	0
r2	1	3350	173	0
r3	1	2640	168	0
r4	1	3250	196	0
r5	1	4080	222	0
r6	1	3670	218	0
r 7	1	2230	170	0
r8	1	3280	200	0
r9	1	3880	207	0
r10	1	3400	200	0
r11	1	4330	221	0
r12	1	3900	204	0
r13	1	4290	204	0
r14	1	2110	163	0
r15	1	3690	212	0
r16	1	3180	193	0
r17	1	3220	200	0
r18	1	2750	179	0
r19	1	3430	197	0
r20	1	2120	163	0

- 变量与矩阵的转换
 - ▶ 1.变量—>矩阵-mkmat-
 - ▶ 实例: OLS系数估计

• 变量与矩阵的转换

- ▶ 1.变量—>矩阵-mkmat-
- ▶ 实例: OLS系数估计

. reg price we	eight length f	oreign				
Source	SS	df	MS	Number of	obs =	74
				F(3, 70)	=	28.39
Model	348565467	3	116188489	Prob > F	=	0.0000
Residual	286499930	70	4092856.14	R-squared	=	0.5489
				Adj R-squa	red =	0.5295
Total	635065396	73	8699525.97	Root MSE	=	2023.1
	I					
price	Coef.	Std. Err.	t	P> t [95	% Conf.	Interval]
price	Coef.	Std. Err.			% Conf.	Interval] 7.688208
<u> </u>			6.02	0.000 3.8		
weight	5.774712	.9594168	6.02 -2.78	0.000 3.8 0.007 -156	61215	7.688208
weight length	5.774712 -91.37083	.9594168 32.82833	6.02 -2.78 5.59	0.000 3.8 0.007 -156 0.000 229	61215 .8449	7.688208 -25.89679

- 变量与矩阵的转换
 - ▶ 2.矩阵—>变量-svmat-
 - . svmat b, names(coef)
 - . list coef in 1/5

	coef1
1. 2. 3. 4. 5.	4838.021 5.774712 -91.37083 3573.092

- . svmat X, names(var) //自行定义统一的变量名
- . drop weight length foreign cons
- . svmat X, names(col) //用矩阵的列名作为变量的名称

Subsection 6

Simple Calculation of Matrices

• 矩阵的简单计算

help matrix operators

▶ 1.加(+)

- 矩阵的简单计算
 - ▶ 2.减(-)

• 矩阵的简单计算

▶ 3.乘(*)

• 矩阵的简单计算

▶ 4.矩阵与单值的运算

• 矩阵的简单计算

▶ 5.矩阵的转置

```
. matrix F = (-1, 2 \setminus 3, 4)
. matrix H = (4, 1 \setminus 2, 5)
. mat P = (F*H)^{\prime}
. mat Q = H'*F'
. mat list P
P[2,2]
  r1 r2
c1 0 20
c2 9 23
. mat list Q
Q[2,2]
   r1 r2
c1 0 20
c2 9 23
```

- 矩阵的简单计算
 - ▶ 6.矩阵的行列式

• 矩阵的简单计算

▶ 7.矩阵的逆

▶ 8.矩阵的迹(trace)

• 矩阵的简单计算

▶ 9.矩阵的秩(rank)

Section 2

Return Values

- Stata命令分为三种类型:
 - ▶ r-class 与模型估计无关的命令,e.g.sum
 - ▶ e-class 与模型估计有关的命令,e.g.reg
 - ▶ s-class 其它命令,e.g.list
 - ▶ c-class 存储系统参数
- 内存中结果的显示方法:
 - r-class:

return list

e-class:

ereturn list

s-class:

sreturn list

c-class:

creturn list

• 留存值分为四种类型:

- scalars: r(mean), r(N), e(r2), e(F)
- ► matrices: e(b), e(V)
- ► macros: e(cmd), e(depvar)
- ► functions: e(sample)

r-class

```
. sysuse auto, clear
(1978 Automobile Data)
. sum price
                                       Std. Dev.
   Variable
                    Obs
                               Mean
                                                      Min
                                                                Max
      price
                     74
                           6165.257
                                       2949.496
                                                     3291
                                                              15906
. return list
scalars:
                r(N) = 74
             r(sum w) = 74
              r(mean) = 6165.256756756757
               r(Var) = 8699525.974268788
               r(sd) = 2949.495884768919
               r(min) = 3291
               r(max) = 15906
               r(sum) = 456229
. dis "汽车的平均价格是: " in g r(mean) //或者写成`r(mean) */
汽车的平均价格是: 6165.2568
```

e-class

```
. sysuse auto, clear (1978 Automobile Data)
```

Source

. regress price weight length foreign

SS

					г(Э,	10)	_	20.39
	Model	348565467	3	116188489	Prob	> F	=	0.0000
	Residual	286499930	70	4092856.14	R-squ	ared	=	0.5489
-					Adj R	-squared	=	0.5295
	Total	635065396	73	8699525.97	Root	MSE	=	2023.1
_								
	price	Coef.	Std. Err.	t I	P> t	[95% Con	f.	Interval]
-								
	weight	5.774712	.9594168	6.02	0.000	3.861215		7.688208
	length	-91.37083	32.82833	-2.78	0.007	-156.8449		-25.89679
	foreign	3573.092	639.328	5.59 (0.000	2297.992		4848.191
	_cons	4838.021	3742.01	1.29	0.200	-2625.183		12301.22

MS

Number of obs

F(3 70)

df

. ereturn list

scalars:

$$e(N) = 74$$

 $e(df_m) = 3$
 $e(df_r) = 70$
 $e(F) = 28.38811943068357$
 $e(r2) = .5488654690386703$
 $e(rmse) = 2023.080852875841$
 $e(F) = 2023.080852875843$

74

28 30

e-class

- c-class
 - ▶ 提供了大量提供系统参数的返回值

```
. dis `c(pi)´
3.1415927
. dis "`c(sysdir_plus)´"
D:\Stata16\ado\plus/
. dis "`c(current_date)´"
17 Oct 2020
```

Section 3

T-Test and Table

Review the Theory

An Beef Review of Basic Statistics $egin{array}{ll} \mbox{Hypothesis Testing(假设检验)} \mbox{} \mbox{}$

• Specify H_0 and H_1

$$H_0: E[Y] = \mu_{Y,0} H_1: E[Y] \neq \mu_{Y,0}$$

- ullet Choose the significance level lpha and define a decision rule (critical region or critical value)
 - eg. if we choose $\alpha=0.05$, then the critical value is 1.96, then the region is $(-\infty,-1.96]$ and $[1.96,+\infty)$

Review the Theory

Review the Theory

An Brief Review of Basic Statistics Hypothesis Testing(假设检验) Hypothesis Test of of \bar{Y}

- Given the data compute the test statistic
 - ullet Step1: Compute the sample average $ar{Y}$
 - ullet Step2: Compute the **standard error** of $ar{Y}$

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

Step3: Compute the t-statistic

$$t^{act} = \frac{\bar{Y} - \mu_{Y,0}}{SE\left(\bar{Y}\right)}$$

- Step4: Reject the null hypothesis if
 - \bullet | t^{act} |> $critical\ value$
 - $\bullet \ \ \text{or if} \ p-value < significance \ level \\$

Zhaopeng Qu (Nanjing University)

Review the Theory

Hypothesis Tests for the Difference Between Two Means

- ullet To illustrate a test for the difference between two means, let μ_w be the mean hourly earning in the population of women recently graduated from college and let μ_m be the population mean for recently graduated men.
- Then the null hypothesis and the two-sided alternative hypothesis are

$$H_0: \mu_m = \mu_w$$

$$H_1: \mu_m \neq \mu_w$$

• Consider the null hypothesis that mean earnings for these two populations differ by a certain amount, say d_0 . The null hypothesis that men and women in these populations have the same mean earnings corresponds to $H_0: H_0: d_0 = \mu_m - \mu_w = 0$

Zhaopeng Qu (Nanjing University)

Review the Theory

Comparing Means from Different Populations

The Difference Between Two Means

- Suppose we have samples of n_m men and n_w women drawn at random from their populations. Let the sample average annual earnings be \overline{Y}_m for men and \overline{Y}_w for women. Then an estimator of $\mu_m \mu_w$ is $\overline{Y}_m \overline{Y}_w$.
- ullet Let us discuss the distribution of $\overline{Y}_m \overline{Y}_w$.

$$\sim N(\mu_m - \mu_w, \frac{\sigma_m^2}{n_m} + \frac{\sigma_w^2}{n_w})$$

- if σ_m^2 and σ_w^2 are known, then the this approximate normal distribution can be used to compute p-values for the test of the null hypothesis. In practice, however, these population variances are typically unknown so they must be estimated.
- ullet Thus the *standard error* of $\overline{Y}_m \overline{Y}_w$ is

$$SE(\overline{Y}_m - \overline{Y}_w) = \sqrt{\frac{s_m^2}{n_{m-1}} + \frac{s_w^2}{n_{w_{m-1}}}}$$

Zhaopeng Qu (Nanjing University)

ntroduction to Econ

Sep. 24th, 20

Review the Theory

Comparing Means from Different Populations

The Difference Between Two Means

 The t-statistic for testing the null hypothesis is constructed analogously to the t-statistic for testing a hypothesis about a single population mean, thus t-statistic for comparing two means is

$$t_{act} = \frac{\overline{Y}_m - \overline{Y}_w - d_0}{SE(\overline{Y}_m - \overline{Y}_w)}$$

• If both n_m and n_m are large, then this t-statistic has a standard normal distribution when the null hypothesis is true,thus $\overline{Y}_m - \overline{Y}_w = 0$.

Lab5: Tables and OLS

Review the Theory

Confidence Intervals for the Difference Between Two Means

• the 95% two-sided confidence interval for d consists of those values of d within ± 1.96 standard errors of $\overline{Y}_m - \overline{Y}_w$, thus $d = \mu_m - \mu_w$ is

$$(\overline{Y}_m - \overline{Y}_w) \pm 1.96 SE(\overline{Y}_m - \overline{Y}_w)$$

88 / 106

• 单样本t检验

```
. sysuse auto, clear (1978 Automobile Data)
```

. ttest price == 6000 if foreign == 0 ,level(90)

One-sample t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[90% Conf	Interval]
price	52	6072.423	429.4911	3097.104	5352.903	6791.943

```
mean = mean(price) t = 0.1686

Ho: mean = 6000 degrees of freedom = 51
```

Ha: mean < 6000 Ha: mean != 6000 Ha: mean > 6000 Pr(T < t) = 0.5666 Pr(|T| > |t|) = 0.8668 Pr(T > t) = 0.4334

- * level默认95%的水平
- * 结果p值大于0.1, 不能拒绝HO

独立样本t检验

▶ 一个变量利用另一个变量来分组比较

. sdtest price, by(foreign)

Variance ratio test

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Domestic Foreign	52 22	6072.423 6384.682	429.4911 558.9942	3097.104 2621.915	5210.184 5222.19	6934.662 7547.174
combined	74	6165.257	342.8719	2949.496	5481.914	6848.6

Pr(F < f) = 0.7963 2*Pr(F > f) = 0.4073 Pr(F > f) = 0.2037

- * 方差齐性检验(F检验)
- * 对两个独立样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
- * 若两总体方差相等equal variances(方差齐),则直接用t检验;
- *若不等unequal variances(方差不齐),选择unequal variances(方差不齐)的均值T检验去做,加unequal选项。

• 独立样本t检验

▶ 一个变量利用另一个变量来分组比较

. ttest price, by(foreign)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Domestic Foreign	52 22	6072.423 6384.682	429.4911 558.9942	3097.104 2621.915	5210.184 5222.19	6934.662 7547.174
combined	74	6165.257	342.8719	2949.496	5481.914	6848.6
diff		-312.2587	754.4488		-1816.225	1191.708

diff = mean(Domestic) - mean(Foreign) t = -0.4139

Ho: diff = 0 degrees of freedom = 72

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.3401 Pr(|T| > |t|) = 0.6802 Pr(T > t) = 0.6599

- 独立样本t检验
 - ▶ 在两个变量间进行比较
 - . webuse fuel, clear

```
. sdtest mpg1 == mpg2
Variance ratio test
```

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
mpg1 mpg2	12 12	21 22.75	.7881701 .9384465	2.730301 3.250874	19.26525 20.68449	22.73475 24.81551
combined	24	21.875	.6264476	3.068954	20.57909	23.17091

• 独立样本t检验

▶ 在两个变量间进行比较

. ttest mpg1 == mpg2, unpaired
Two-sample t test with equal variances

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
mpg1 mpg2	12 12	21 22.75	.7881701 .9384465	2.730301 3.250874	19.26525 20.68449	22.73475 24.81551
combined	24	21.875	.6264476	3.068954	20.57909	23.17091
diff		-1.75	1.225518		-4.291568	.7915684

* unpaired 表示对两个不同变量检验,不是配对检验

- 配对样本t检验(单样本t检验的扩展)
 - ▶ 检验对象是配对样本观测值之差
 - . ttest mpg1==mpg2

Paired t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
mpg1 mpg2	12 12	21 22.75	.7881701 .9384465	2.730301 3.250874	19.26525 20.68449	22.73475 24.81551
diff	12	-1.75	.7797144	2.70101	-3.46614	0338602

- * 没有unpaired选项
- * 结果p值小于0.05, 拒绝HO

- -ttest-的局限
 - ▶ 每次只能对一个变量进行检验,无法批量对多个变量检验。
 - ► 汇报结果过于详细,有时我们只需要一个相对精简的结果,如两组 各自均值,均值差异,T-Statistic或者P-Value。
 - ▶ 当待检验变量增加、ttest 命令费时费力。

● 多变量均值比较表格输出-ttable2-

```
ssc install ttable2
```

- . sysuse auto, clear (1978 Automobile Data)
- . ttable2 price wei len mpg, by(foreign) f(%6.2f)

Variables	G1(Domestic)	Mean1	G2(Foreign)	Mean2	MeanDiff
price	52 52	6072.42 3317.12	22 22	6384.68 2315.91	-312.26 1001.21***
weight length	52 52	196.13	22	168.55	27.59***
mpg	52	19.83	22	24.77	-4.95***

• 多变量均值比较表格输出-ttable2-

. tab rep78

Repair Record 1978	Freq.	Percent	Cum.
1	2	2.90	2.90
2	8	11.59	14.49
3	30	43.48	57.97
4	18	26.09	84.06
5	11	15.94	100.00
Total	69	100.00	

. ttable2 price wei len mpg if rep78==3|rep78==4, by(rep78)

Variables	Variables G1(3)		G2(4)	Mean2	MeanDiff
price	30	6429.233	18	6071.500	357.733
weight	30	3299.000	18	2870.000	429.000*
length	30	194.000	18	184.833	9.167
mpg	30	19.433	18	21.667	-2.233*

* 当组类别大于两类时,可以通过指定样本范围进行比较

• 结果导出-logout-

```
ssc install logout
logout, save(ttable) excel replace : ttable2 price ///
    wei len mpg, by(foreign) f(%6.2f)
logout, save(ttable) word replace : ttable2 price ///
    wei len mpg, by(foreign) f(%6.2f)
logout, save(ttable) tex replace : ttable2 price ///
    wei len mpg, by(foreign) f(%6.2f)
```

• 结果导出-t2docx-

```
t2docx price weight length mpg ///
using ttable1.docx,replace ///
by(foreign) ///
title("表1: t检验")
```

• 结果导出-esttab-

```
. sysuse auto, clear
(1978 Automobile Data)
. local var price wei len mpg
. qui estpost ttest `var´, by(foreign)
. esttab ., cell("mu 1(fmt(2)) mu 2(fmt(2)) b(star fmt(2)) t(fmt(2))")
                                                                      111
           starlevels(* 0.10 ** 0.05 *** 0.01) replace noobs compress
                                                                      111
>
           title(esttab Table: T test)
esttab_Table: T_test by group
                (1)
               mu 1
                        mu 2
price
            6072.42
                     6384.68
                               -312.26
                                              -0.41
                                             6.25
weight
            3317.12
                     2315.91 1001.21***
length
             196.13
                     168.55
                                 27.59*** 5.89
              19.83
                     24.77 -4.95***
                                              -3.63
mpg
```

• 结果导出-esttab-

Section 4

Descriptive Statistics Table

Descriptive Statistics Table

- 描述性统计表格导出
 - ▶ -logout-

```
logout, save(Desc1) word replace: ///
tabstat price wei len mpg rep78, ///
  stats(mean sd min p50 max) c(s) f(%6.2f)
```

Descriptive Statistics Table

- 描述性统计表格导出
 - -sum2docx-

```
sum2docx price wei len mpg rep78 using Desc2.docx,replace ///
stats(N mean(%9.2f) sd(%9.3f) min(%9.2f) median(%9.2f) max(%9.2f)) ///
title(sum2docx_Table: Descriptive statistics)
```

- *仅sum2docx支持中文,其余命令不支持
- *能设置每个统计量的小数点位数

Descriptive Statistics Table

• 描述性统计表格导出

-outreg2-

- *若变量里有字符串变量,outreg2命令的处理最智能化:
- *会在窗口说明什么变量是字符型,并在报告列表中自动剔除该变量
- *支持变量排序

Descriptive Statistics Table

- 描述性统计表格导出
 - -esttab-

*能设置每个统计量的小数点位数

Section 5

Correlation Matrix Table

Correlation Matrix Table

• 相关系数矩阵导出

Section 6

Subsection 1

Data Analysis Flow

- Data Analysis Flow
 - ▶ Open the data, find the variables, and see the base case.
 - Data Cleaning.
 - Summary Statistics: Figures and Tables.
 - Model Estimation and Hypothesis Testing.
 - ▶ Report results, explain and analyze.

Subsection 2

Review the Theory

Review the Theory

OLS Estimation: Simple Regression

Terminology for Simple Regression Model

• The linear regression model with one regressor is denoted by

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- Where
 - Y_i is the **dependent variable**(Test Score)
 - X_i is the **independent variable** or regressor(Class Size or Student-Teacher Ratio)
 - $\beta_0+\beta_1 X_i$ is the population regression line or the population regression function

Review the Theory

Review for the previous lectures

The OLS Estimator

ullet The estimators of the slope and intercept that minimize the sum of the squares of \hat{u}_i , thus

$$\underset{b_0,b_1}{\arg\min} \sum_{i=1}^n \hat{u}_i^2 = \underset{b_0,b_1}{\min} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2$$

are called the ordinary least squares (OLS) estimators of β_0 and $\beta_1.$

OLS estimator of β_1 :

$$b_1 = \hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

Review the Theory

Least Squares Assumptions

Assumption 1: Conditional Mean is Zero

Properties of the OLS Estimators

- Assumption 2: Random Sample
 - Assumption 3: Large outliers are unlikely
 - If the 3 least squares assumptions hold the OLS estimators will be
 - unbiased
 - consistent
 - normal sampling distribution

Review the Theory

Multiple OLS Regression: Estimation

Multiple regression model with k regressors

The multiple regression model is

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_k X_{k,i} + u_i, i = 1, \dots, n \quad (4.1)$$

where

- Y_i is the **dependent variable**
- $X_1, X_2, ... X_k$ are the independent variables(includes one is our of interest and some control variables)
- β_i , j=1...k are slope coefficients on X_i corresponding.
- β_0 is the estimate *intercept*, the value of Y when all $X_i = 0, j = 1...k$
- \bullet u_i is the regression *error term*, still all other factors affect outcomes.

Review the Theory

Multiple Regression: Assumption

Multiple Regression: Assumption

 \bullet Assumption 1: The conditional distribution of u_i given $X_{1i},...,X_{ki}$ has mean zero,thus

$$E[u_{i}|X_{1i},...,X_{ki}]=0$$

- Assumption 2: $(Y_i, X_{1i}, ..., X_{ki})$ are i.i.d.
- Assumption 3: Large outliers are unlikely.
- Assumption 4: No perfect multicollinearity.

Review the Theory

- \bullet The OLS estimators $\hat{\beta_0}, \hat{\beta_1}...\hat{\beta_k}$ are unbiased.
- The OLS estimators $\hat{\beta}_0, \hat{\beta}_1...\hat{\beta}_k$ are consistent.
- \bullet The OLS estimators $\hat{\beta}_0,\hat{\beta}_1...\hat{\beta}_k$ are normally distributed in large samples.
- Multiple OLS estimator

$$\hat{\beta_j} = \frac{\sum_{i=1}^n \tilde{X}_{j,i} Y_i}{\sum_{i=1}^n \tilde{X}_{j,i}^2} \ for \ j=1,2,..,k$$

Subsection 3

OLS in stata

● 普通最小二乘法(OLS)

- . *help reg . *regress depvar [indepvars] [if] [in] [weight] [, options] //因变量, 自变量
- . sysuse auto, clear (1978 Automobile Data)
- . reg price weight mpg turn foreign

Source	SS	df	MS	Number of obs	=	74
				F(4, 69)	=	19.23
Model	334771309	4	83692827.3	Prob > F	=	0.0000
Residual	300294087	69	4352088.22	R-squared	=	0.5271
				Adj R-squared	=	0.4997
Total	635065396	73	8699525.97	Root MSE	=	2086.2
price	Coef.	Std. Err.	t	P> t [95% Co	nf.	Interval]
weight	4.284532	.7404967	5.79	0.000 2.80728	2	5.761783
mpg	4660076	73.51407	-0.01	0.995 -147.122	6	146.1905
turn	-229.2059	114.2423	-2.01	0.049 -457.113	1	-1.298676
foreign	3221.415	706.4847	4.56	0.000 1812.01	7	4630.813
_cons	1368.197	4887.597	0.28	0.780 -8382.29	2	11118.69

● 普通最小二乘法(OLS)

. regress wei	ght length, no	constant	//不包括截距	矩项(constan	t)	
Source	SS	df	MS	Number o	f obs =	74
				- F(1, 73)	=	3450.13
Model	703869302	1	70386930	2 Prob > F	=	0.0000
Residual	14892897.8	73	204012.29	9 R-square	d =	0.9793
				- Adj R-sq	uared =	0.9790
Total	718762200	74	9713002.	7 Root MSE	=	451.68
	T					
weight	Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
length	16.29829	.2774752	58.74	0.000 1	5.74528	16.8513

● 普通最小二乘法(OLS)

```
. reg price weight mpg turn foreign, robust //穆健标准误(robust)
Linear regression Number of obs = 74
F(4,69) = 12.46
Prob > F = 0.0000
R-squared = 0.5271
Root MSE = 2086.2
```

price	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
weight	4.284532	.9164881	4.67	0.000	2.456188	6.112876
mpg	4660076	84.34373	-0.01	0.996	-168.7271	167.7951
turn	-229.2059	136.4962	-1.68	0.098	-501.5084	43.09658
foreign	3221.415	690.7001	4.66	0.000	1843.506	4599.324
cons	1368.197	6008.419	0.23	0.821	-10618.27	13354.66

• 回归结果

. regress prid	ce mpg weight	foreign				
Source	SS	df	MS	Number of obs	3 =	74
				F(3, 70)	=	23.29
Model	317252881	3	105750960	Prob > F	=	0.0000
Residual	317812515	70	4540178.78	R-squared	=	0.4996
				Adj R-squared	1 =	0.4781
Total	635065396	73	8699525.97	Root MSE	=	2130.8
price	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
mpg	21.8536	74.22114	0.29	0.769 -126.17	758	169.883
weight	3.464706	.630749	5.49	0.000 2.2067	717	4.722695
foreign	3673.06	683.9783	5.37	0.000 2308.9	909	5037.212
_cons	-5853.696	3376.987	-1.73	0.087 -12588	.88	881.4934

• 回归结果

回归结果

Subsection 4

OLS Result Table

- 回归结果输出-esttab-
 - ▶ word文档

```
reg wage age married occupation
est store m1
reg wage age married collgrad occupation
est store m2
xi: reg wage age married collgrad occupation i.race
est store m3

esttab m1 m2 m3 using ols.rtf, scalar(r2 r2_a N F) compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
b(%6.3f) t(%6.3f) r2(%9.3f) ar2 ///
mtitles("OLS-1" "OLS-2" "OLS-3") ///
title(esttab_Table: regression result)
```

- 回归结果输出-esttab-
 - ► Tex文档

```
esttab m1 m2 m3 using ols.tex, replace
                                             ///
      star( * 0.10 ** 0.05 *** 0.01 ) compress
                                            ///
      b(%6.3f) t(%6.3f) r2(%9.3f) ar2
                                            ///
      mtitles("OLS-1" "OLS-2" "OLS-3")
                                            ///
      title(esttab Table: regression result)
                                             ///
      booktabs page width(\hsize)
esttab 的 LaTeX 输出的专有选项:
1. booktabs: 用 booktabs 宏包输出表格(三线表格)。

    page[(packages)]: 创建完成的 LaTeX 文档以及添加括号里的宏包

3. 如果写了 booktabs 选项,则 page[(packages)] 将自动添加\usepackagebooktabs。
4. alignment(ccccc): 定义从第二列开始的列对齐方式(默认居中)。
5. width(\hsize): 可以使得表格宽度为延伸至页面宽度
6. fragment: 不输出表头表尾, 只输出表格本身内容, 其不能与 page「(packages)] 选项共存。
*/
```

表 1: esttab_Table: regression result

	(1)	(2)	(3)
	OLS-1	OLS-2	OLS-3
age	-0.064	-0.059	-0.067*
	(-1.637)	(-1.579)	(-1.796)
married	-0.469*	-0.472**	-0.629**
	(-1.873)	(-1.983)	(-2.578)
occupation	-0.284***	-0.384***	-0.370***
	(-8.055)	(-11.251)	(-10.756)
collgrad		4.220*** (15.444)	4.133*** (15.051)
_lrace_2			-0.784*** (-2.897)
_lrace_3			-0.224 (-0.210)
_cons	11.910***	11.168***	11.753***
	(7.654)	(7.545)	(7.878)
N	2237	2237	2237
R^2 adj. R^2	0.031	0.125	0.128
	0.030	0.123	0.126

t statistics in parentheses p < 0.10, ** p < 0.05, *** p < 0.01