Ch 3.1: Linear Regression Lecture 3 - CMSE 381

Prof. Rongrong Wang

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

January 17, 2024

Covered in this lecture

- Least squares coefficient estimates for linear regression
- Residual sum of squares (RSS)

(MSU-CMSE) January 17, 2024

Section 1

Simple Linear Regression

MSU-CMSE) January 17, 2024

Setup

 Predict Y on a single predictor variable X

$$Y \approx \beta_0 + \beta_1 X$$

• "≈" "is approximately modeled as"

(MSU-CMSE) January 17, 2024

Example

1		TV	Radio	Newspaper	Sales
2		230.1	37.8	69.2	22.1
3	2	44.5	39.3	45.1	10.4
4		17.2	45.9	69.3	9.3
5		151.5	41.3	58.5	18.5
6	5	180.8	10.8	58.4	12.9
7	6	8.7	48.9	75	7.2
8		57.5	32.8	23.5	11.8
9	8	120.2	19.6	11.6	13.2
10	9	8.6	2.1		4.8
11	10	199.8	2.6	21.2	10.6
12	11	66.1	5.8	24.2	8.6

sales $\approx \beta_0 + \beta_1 TV$

- β_0 intercept; β_1 slope
- Coefficients or parameters : $\{\beta_0, \beta_1\}$
- Once we have good guesses for $\hat{\beta}_i$, model is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Least squares criterion: Setup

How do we estimate the coefficients?

- Given $(x_1, y_1), \dots, (x_n, y_n)$
- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be prediction for Y on ith value of X.
- $e_i = y_i \hat{y}_i$ is the *i*th residual

6 / 17

Least squares criterion: RSS

Residual sum of squares RSS is

RSS =
$$e_1^2 + \dots + e_n^2$$

= $\sum_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$

7 / 17

sales
$$\approx \beta_0 + \beta_1 TV$$

Least squares criterion

Find β_0 and β_1 that minimize the RSS.

Least squares coefficient estimates

Minimizing RSS:

$$(\hat{eta}_0,\hat{eta}_1) = rg\min_{eta_0,eta_1} \sum_i (y_i \!-\! eta_0 \!-\! eta_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \beta_0} = \sum_{i} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial RSS}{\partial \beta_1} = \left(2\sum_{i} x_i (y_i - \beta_0 - \beta_1 x_i)\right) = 0$$

8 / 17

Closed form!

$$X = \frac{\sum x_i}{n} \quad y = \frac{\sum y_i}{n}$$

Group work

Derive the closed form expression of $\hat{\beta}_0$ and $\hat{\beta}_1$ by yourself. $\begin{cases} \sum y_i - \beta_0 - \beta_1 x_i' = 0 & 0 \\ \sum x_i (y_i - \beta_0 - \beta_1 x_i') = 0 & 0 \end{cases}$ $(y_1 - y_2 - y_3)$ $() \quad \sum (x_i - \overline{x}) y_i - \beta y \sum (x_i - \overline{x}) x_i = 0$

MSU-CMSE)

January 17, 2024

Section 2

Assessing Coefficient Estimate Accuracy

MSU-CMSE) January 17, 2024

Bias in estimation

Analogy with mean

Everything here is about determining if linear model is doing a good job

11 / 17

Sample mean is unbiased for population mean:

$$E(\hat{\mu}) = E\left(\frac{1}{n}\sum_{i}X_{i}\right) = \mu$$

- An estimate from training data $\hat{\mu}$
- The estimate is unbiased if $E(\hat{\mu}) = \mu^*$

• Assume a true value μ^*

• Standard variance estimate is biased

$$E(\hat{\sigma}^2) = E\left[\frac{1}{n}\sum_{i}(X_i - \overline{X})^2\right] \neq \sigma^2$$

Linear regression is unbiased

- 100 data points drawn from $Y = 2 + 3X + \varepsilon$
- ε drawn from normal distribution with mean 0
- Red line is true relationship, blue is least squares estimate
- Repeat this 10 times and plot all the found lines (in variations of blue)
- The resulting models are slightly different but are all around the red true relationship

MSU-CMSE) January 17, 2024 12 / 17

Variance in estimation

Continuing analogy with mean

- True value μ^*
- Estimate from training data $\hat{\mu}$
- Variance of sample mean $Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{n}$

- Standard error
- The more data you have, the smaller variance, the better the estimate

Variance of linear regression estimates

Variance of linear regression estimates:

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

where $\sigma^2 = \operatorname{Var}(\varepsilon)$

ullet Residual standard error is an estimate of σ

$$RSE = \sqrt{RSS/(n-2)}$$

(MSU-CMSE) January 17, 2024

Variance of linear regression estimates

- the Standard errors can be used to compute confdence intervals.
- A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter.
- For linear regression, the 95% confidence interval for β_0 β_1 approximately take the form

$$\hat{\beta}_0 \pm 2SE(\hat{\beta}_0), \quad \hat{\beta}_1 \pm 2SE(\hat{\beta}_1)$$

Coding group work

Work on the in-class assignment titled "LinRegLab"

(MSU-CMSE) January 17, 2024

Next time

Announcements

- Quiz 1 is on Friday!
- Homework 2 is to be released on Friday.
- next time: Linear regression (II)

(MSU-CMSE) January 17, 2024 17 / 17