SAM Shares Data Request

Georgia Country Climate and Development Report

Renato Vargas

Table of contents

1	Introduction	1
	1.1 Objectives	. 2
	1.2 Preliminaries	. 2
	1.3 Datasets and correspondence tables	
	1.4 Population totals	
2	Generating descriptor variables (SAM disaggregates)	6
	2.1 Skill level	. 6
	2.2 Labor status and Economic Activities	. 8
	2.3 Types of income	
3	Multidimensional Tables	10
	3.1 Wages and Surplus income	. 10
	3.2 Filling out the templates	. 12
4	Household Consumption	17
	4.1 Datasets (ILCS 2022)	. 17
	4.2 Template	
5	Exports to Excel	21

1 Introduction

In this data request, we estimate shares to disaggregate the Social Accounting Matrix for the Macroeconomic team.

1.1 Objectives

- 1. HH split: Split our representative household into income quintiles and rural/urban households
- 2. Labor split: Split labor into 6 types according to gender and skill level.
- 3. Economic activity split: Split wages and capital by economic activities.
- 4. Split household consumption by urban/rural, quintiles and economic activity.

1.2 Preliminaries

```
# Clean workspace
rm(list = ls())

# Georgia country ISO code
iso <- "GEO"

# Survey year
survey_year <- 2023

# Exchange rate USD per GEL
er <- 0.37

# Years of interest for our macroeconomic scenario analysis
# analysis_years <- c(2030, 2050)</pre>
```

We will use the following libraries for this exercise.

```
library(tidyverse)
library(haven)
library(readxl)
library(openxlsx)
library(gt)
```

1.3 Datasets and correspondence tables

We use data from the 2023 survey for the Labor Split and data from the 2022 survey for the household expenditure and capital shares in In mil. GEL per year per household type.

```
#| lst-label: original-datasets
# Household Unique ID, Weights, Location and other basic variables
hh_basics <- read_sav(</pre>
  "data/ilcs 2023/sysschedule.sav") |>
  mutate(
    UID = as.integer(UID))
# Household size (includes no. of family members)
hh_size <- read_sav(</pre>
  "data/ilcs_2023/familysize.sav")|>
  mutate(
    UID = as.integer(UID))
# Processed income at household level
hh income <- read sav(
  "data/ilcs_2023/tblincomes.sav")|>
  mutate(
    UID = as.integer(UID))
# Consumption aggregate at household level
hh_expenditure <- read_sav(</pre>
  "data/ilcs 2023/tblexpenditures.sav")|>
  rename(# rename total expenditure variables
         total_expenditure = MTlianixarjebi_,
         total_expenditure_aeq06 = MTlianimoxmareba_EqAdScale,
         total_expenditure_aeq08 = Mtlianimoxmareba_EqAdScale_08) |>
  mutate(
    UID = as.integer(UID))
# Characteristics of the dwelling
hh_chars <- read_sav(</pre>
  "data/ilcs 2023/tblshinda01.sav")|>
  mutate(
    UID = as.integer(UID))
# Persons (pp)
pp <- read_sav(</pre>
  "data/ilcs_2023/tblshinda02.sav") |>
  mutate(
    UID = as.integer(UID),
    MemberNo = as.integer(MemberNo))
```

```
# Labor (pp)
pp_labor <- read_sav(</pre>
  "data/ilcs_2023/tblshinda05_1.sav") |>
  mutate(
    UID = as.integer(UID),
    MemberNo = as.integer(MemberNo),
    Q5 = as.integer(Q5),
    Q12 = as.integer(Q12)
# Poverty
poverty <- read_dta(</pre>
  "data/ilcs_2023/POVERTY_stata.dta") |>
  mutate(
    UID = as.integer(UID))
# Ind. Poverty
ind_poverty <- read_dta(</pre>
  "data/ilcs_2023/IND_POVERTY_stata.dta") |>
  rename(MemberNo = memberno) |>
  mutate(
    UID = as.integer(UID),
    MemberNo = as.integer(MemberNo))
```

We also need look-up tables.

```
sam_activities <- read_excel(
    "data/sam/classifications.xlsx",
    sheet = "SAM-REV2",
    col_names = T,
    col_types = "text",
)

sam_factors <- read_excel(
    "data/sam/classifications.xlsx",
    sheet = "SAM factors",
    col_names = T,
    col_types = "text",
)

coicop <- read_excel(
    "data/sam/classifications.xlsx",</pre>
```

```
sheet = "COICOP",
    col_names = T,
    col_types = "text",
) |>
    mutate(simple_code = as.integer(gsub("\\.", "", Coicop)))

coicop_filtered <- coicop |>
    filter( nchar(as.character(simple_code)) >= 5)
```

1.4 Population totals

First we check that our dataset amounts to population totals.

```
weights <- hh_basics |>
    select(UID, QuartNo, Weights)

hh_size |>
    left_join(weights, join_by(UID)) |>
# filter(QuartNo == 110) |>
    summarize(
    "Population" = sum(FamilySize * Weights, na.rm = T),
    "Households" = sum(Weights, na.rm = T)) |>
    gt()
```

Population	Households
14861930	4499690

Upon first exploration, we see that the population amounts to 14,861,930 individuals, living in 4,499,690 households, when in reality we have a total population estimate of 3,702,130 individuals, living in 1,109,130 households. This is because the survey covers four quarters and households are interviewed four times in the year. So we need to drop households for our estimates and keep only those related to one quarter. Since we need information for 2022, but our dataset is for 2023, we will use the first quarter (Q1), which is closer to the required year.

```
pop_by_quarter <- hh_size |>
  left_join(weights, join_by(UID)) |>
  group_by(QuartNo) |>
  summarize(
```

```
"Population" = sum(FamilySize * Weights, na.rm = T),
   "Households" = sum(Weights, na.rm = T))

pop_by_quarter |>
   gt()
```

Quarter ID	Population	Households
107	3713876	1122110
108	3654991	1114584
109	3729558	1130628
110	3763505	1132368

2 Generating descriptor variables (SAM disaggregates)

2.1 Skill level

For skill level, we will use information on schooling from pp\$Education (TblShindaO2), which has the following levels:

- 1. Illiterate
- 2. Do not have primary education but can read and write
- 3. Pre-primary education
- 4. Primary education
- 5. Lower secondary education
- 6. Upper secondary education
- 7. Vocational education without secondary general education
- 8. Vocational education on the base of lower secondary education with secondary general education certificate
- 9. Vocational education on the base of secondary general education (except higher professional education)
- 10. Higher professional program
- 11. Bachelor or equivalent
- 12. Master or equivalent
- 13. Doctor or equivalent

We need three skill levels for our SAM template, so we map these levels to:

Low skill (1 - 5): Illiterate through lower secondary. Medium skill (6 - 9): Upper secondary through vocational education. High skill (10 - 13): Higher professional program through Doctor.

```
pp_factor_descriptors <- pp |>
  select(UID, MemberNo, Gender, Age, Education) |>
  mutate(
    MemberId =
      paste0(sprintf("%06d", UID), sprintf("%02d", MemberNo))) |>
  mutate(Gender = factor(
    Gender,
    levels = c(1, 2),
    labels = c("Female", "Male")
  )) |>
  mutate(
    SkillLevel = case_when(
      Education >= 0 & Education <= 5 ~ 1,
      Education > 5 & Education <= 9 ~ 2,
      Education > 9 & Education <= 13 ~ 3,
      TRUE ~ NA ) ) |>
  mutate(
    SkillLevel = factor(
      SkillLevel,
      levels = c(1, 2, 3),
      labels = c( "Low Skill", "Medium Skill", "High Skill"))
```

Now that we have skill levels, we need to add information on urban/rural (from hh_basics) and quintile (from ind_poverty), and type of income earner (from pp_labor).

```
urb_rur <- hh_basics |>
    select(UID, UrbanOrRural, RegNo, Weights) |>
    mutate(
        UrbanOrRural = factor(
            UrbanOrRural,
            levels = c(2,1),
            labels = c("Rural", "Urban")
        )
    )

quintiles <- poverty |>
    select(UID, quintilc) |>
    rename(Quintile = quintilc) |>
    mutate(
        Quintile = factor(
        Quintile,
```

```
levels = c(1:5),
    labels = c("Q1", "Q2", "Q3", "Q4", "Q5")
)

pp_factor_descriptors <- pp_factor_descriptors |>
    left_join(urb_rur, join_by(UID)) |>
    left_join(quintiles, join_by(UID))
```

2.2 Labor status and Economic Activities

We work with labor status from Shinda05_1. Since, upon import NACE 1 codes are converted to numbers, we need to convert them back to text, so that we can keep zeros to the left for proper order. We then extract the first two digits and match with 2-digit NACE Rev. 1 and find the correspondence to Rev. 2 from the SAM using the look-up table sam_activities. For proper order, we convert the SAM activities columns for job 1 and job 2 to factor, using the order from the dataset sam_factors.

```
pp_emstatus <- pp_labor |>
  mutate(
    MemberId =
      pasteO(sprintf("%06d", UID), sprintf("%02d", MemberNo))) |>
  mutate(
    # Job 1 NACE Rev 1 code.
    Q5 = if_else(!is.na(Q5),paste0(sprintf("%04d", Q5)), NA),
    # Job 2 NACE Rev 1 code.
    Q12 = if_else(!is.na(Q12),paste0(sprintf("%04d", Q12)), NA)) |>
  mutate(
    job1 = if_else(!is.na(Q5),substr(Q5, 1, 2), NA),
    job2 = if_else(!is.na(Q12),substr(Q12, 1, 2), NA)
  ) |>
  # We match to Rev 2 and SAM classifications (for job 1 and job 2)
  left_join(
    sam_activities[,c(1,3)],
    join_by(job1 == rev2_2d)) |>
  left_join(
    sam_activities[,c(1,3)],
    join_by(job2 == rev2_2d),
    suffix =
      c("_job1", "_job2")) |>
  # And convert to factors for proper order
```

```
mutate(
    SAM_job1 = factor(
        SAM_job1,
        levels = sam_factors$SAM,
        # labels = sam_factors$SAM_description
        ),
    SAM_job2 = factor(
        SAM_job2,
        levels = sam_factors$SAM,
        # labels = sam_factors$SAM
        # labels = sam_factors$SAM_description
        )
    )

head(
    pp_emstatus[c(18, 34, 40, 41, 67),
        c("UID", "MemberNo", "SAM_job1", "SAM_job2")]) |>
    gt()
```

UID	MemberNo	SAM_job1	SAM_job2
386848	1	a-trd	a-agri
386855	1	a-agri	a-agri
386856	1	a-food	a-agri
386856	2	a-agri	a-agri
386866	2	a-educ	a-educ

2.3 Types of income

Before making our multi-dimensional tables, we need to identify different types of income. f-lab (wages) and f-surp (capital income). The instruction is that f-surp needs to be split into wages to entrepreneurs/self employed and capital income.

```
pp_emstatus <- pp_emstatus |>
  mutate(
    # We add accross three months for each source (and coalesce the NAs to 0)
  flab_job1 =
    rowSums(
        across(starts_with("Q8_faqti_"), \(x) coalesce(x, 0))),
  flab_job2 =
    rowSums(
```

```
across(starts_with("Q14_faqti_"), \(x) coalesce(x, 0))),
 fsurp =
   rowSums(
      across(starts_with("Q10_faqti_"), \(x) coalesce(x, 0)))
) |>
# We also add factor labels to Employment Status
mutate(
  Q7 = factor(
    Q7,
    levels = c(1:6),
   labels = c(
      "Employee", "Employer", "Own Account (Non-Ag.)",
      "Own Account (Ag.)", "Unpaid Worker", "Other"))
  ) |>
mutate(
  Q13 = factor(
    Q13,
   levels = c(1:6),
    labels = c(
      "Employee", "Employer", "Own Account (Non-Ag.)",
      "Own Account (Ag.)", "Unpaid Worker", "Other"))
  )
```

And we add our labor market variables to our pp_factor_descriptors dataset.

```
pp_emstatus <- pp_emstatus |>
    select(-UID,-MemberNo) |>
    left_join(pp_factor_descriptors, join_by(MemberId)) |>
    relocate(c(UID, MemberNo, MemberId), .before = 1)
```

3 Multidimensional Tables

Now we can put together our tables.

3.1 Wages and Surplus income

```
flab1 <- pp_emstatus |>
select(
```

```
Q7,
    UrbanOrRural,
    Quintile,
    SkillLevel,
    Gender,
   flab_job1,
   SAM_job1,
    Weights) |>
  filter(!is.na(flab_job1) & flab_job1 > 0) |>
  rename(
   EmStatus = Q7,
   FLab = flab_job1,
    SAM = SAM_job1
  ) |>
  mutate(
   FLab = coalesce(FLab, 0) * Weights,
   FactorType = "f-lab"
  )
flab2 <- pp_emstatus |>
  select(
    Q13,
    UrbanOrRural,
    Quintile,
    SkillLevel,
    Gender,
   flab_job2,
   SAM_job2,
    Weights) |>
  filter(!is.na(flab_job2) & flab_job2 > 0) |>
  rename(
    EmStatus = Q13,
   FLab = flab_job2,
    SAM = SAM_job2
  ) |>
  mutate(
    FLab = coalesce(FLab, 0) * Weights,
    FactorType = "f-lab"
  )
fsurp <- pp_emstatus |>
  select(
```

```
Q7,
    UrbanOrRural,
    Quintile,
    SkillLevel,
    Gender,
    fsurp,
    SAM_job1,
    Weights) |>
  filter(!is.na(fsurp)) |>
  rename(
    EmStatus = Q7,
    FLab = fsurp,
    SAM = SAM_job1
  ) |>
  mutate(
    FLab = coalesce(FLab, 0) * Weights,
    FactorType = "f-surp"
  )
flab <- rbind(flab1, flab2, fsurp)</pre>
is.na(flab$FLab) <- 0
```

3.2 Filling out the templates

We first get a table with all the possible combinations, so we can make sure f-lab and f-surp have the data that we need.

```
factor_income <- flab |>
  filter(
    as.numeric(EmStatus) < 6
) |>
  group_by(
    FactorType,
    EmStatus,
    UrbanOrRural,
    Quintile,
    SkillLevel,
    Gender) |>
  summarize(FLab = sum(FLab, na.rm = T)) |>
  ungroup() |>
  pivot_wider(
```

```
id_cols = c(FactorType, EmStatus, UrbanOrRural, Quintile, SkillLevel),
  names_from = c(Gender),
  values_from = FLab ) |>
pivot_wider(
  id_cols = c(FactorType, EmStatus, UrbanOrRural, Quintile),
  names_from = c(SkillLevel),
  values_from = c(Female, Male) ) |>
mutate(across(5:10, ~replace_na(., 0)))
```

Salaries from employees, salaries paid to business owners, and own account workers (mixed income).

```
factor_income_comprehensive <- flab |>
  filter(
    as.numeric(EmStatus) < 6
  ) |>
  group_by(
    FactorType,
    EmStatus,
    UrbanOrRural,
    Quintile,
    SkillLevel,
    Gender) |>
  summarize(FLab = sum(FLab, na.rm = T)) |>
  ungroup() |>
  pivot_wider(
    id_cols = c(FactorType, EmStatus, UrbanOrRural, Quintile, SkillLevel),
    names_from = c(Gender),
    values_from = FLab ) |>
  pivot wider(
    id_cols = c(FactorType, EmStatus, UrbanOrRural, Quintile),
    names_from = c(SkillLevel),
    values_from = c(Female, Male) ) |>
  mutate(across(5:10, ~replace_na(., 0)))
# Sneak peak
head(factor_income_comprehensive[,c(3:7)]) |>
  gt()
```

UrbanOrRural Quintile Female Low Skill Female Medium Skill Female High Skill

Rural	Q1	6570741	73766574	40787523
Rural	Q2	3136840	68728533	61977982
Rural	Q3	3384631	66745137	62812282
Rural	Q4	2903820	89122463	101713498
Rural	Q5	3978437	66745042	211525604
Urban	Q1	10106489	140823577	74910641

Now we single out wages.

```
factor_income_wages <- flab |>
  filter(
    as.numeric(EmStatus) < 6,
    FactorType == "f-lab"
  ) |>
  group_by(
    UrbanOrRural,
    Quintile,
    SkillLevel,
    Gender) |>
  summarize(FLab = sum(FLab, na.rm = T)) |>
  ungroup() |>
  pivot_wider(
    id_cols = c(UrbanOrRural, Quintile, SkillLevel),
    names_from = c(Gender),
    values_from = FLab ) |>
  pivot_wider(
    id_cols = c(UrbanOrRural, Quintile),
    names_from = c(SkillLevel),
    values_from = c(Female, Male) ) |>
  mutate(across(3:8, ~replace_na(., 0)))
factor_income_wages |>
  gt()
```

UrbanOrRural	Quintile	Female_Low Skill	Female_Medium Skill	Female_High Skill	Male_Lc
Rural	Q1	7071449	73976896	40873369	13
Rural	Q2	3136840	69199593	62840081	21
Rural	Q3	3384631	68131258	62812282	9
Rural	Q4	2903820	89812175	101771027	9
Rural	Q5	3978437	67394473	213109248	6

Urban	Q1	10106489	140832561	74981955	9
Urban	Q2	14984587	143794440	180076456	23
Urban	Q3	3875826	251290586	353147864	5
Urban	Q4	3120367	236333189	531182422	2
Urban	Q5	10523005	215233168	1088737655	10

And Capital.

```
factor_income_capital <- flab |>
  filter(
    as.numeric(EmStatus) < 6,
    FactorType == "f-surp"
) |>
  group_by(
    UrbanOrRural,
    Quintile,
    ) |>
  summarize(Capital = sum(FLab, na.rm = T)) |>
  ungroup()

factor_income_capital |>
  gt()
```

${\bf Urban Or Rural}$	Quintile	Capital
Rural	Q1	57510741
Rural	Q2	77436983
Rural	Q3	104578879
Rural	Q4	124723382
Rural	Q5	203923504
Urban	Q1	91338334
Urban	Q2	172982396
Urban	Q3	303575257
Urban	Q4	397204825
Urban	Q5	762309667

And now, differentiated by economic activity.

```
factor_income_wages_activity <- flab |>
  filter(
    as.numeric(EmStatus) < 6,
    FactorType == "f-lab"
  ) |>
  group_by(
    Gender,
    SkillLevel,
    SAM) |>
  summarize(FLab = sum(FLab, na.rm = T)) |>
  ungroup() |>
  pivot_wider(
    #id_cols = c(Gender, SkillLevel),
   names_from = c(SAM),
   names_expand = T,
   names_sort = T,
    values_from = FLab ) |>
  mutate(across(3:39, ~replace_na(., 0)))
# factor_income_wages_activity |>
# gt()
```

And Capital.

```
factor_income_capital_activity <- flab |>
  filter(
    as.numeric(EmStatus) < 6,
    FactorType == "f-surp"
  ) |>
  group_by(
    SAM) |>
  summarize(
    Capital = "Capital",
    FLab = sum(FLab, na.rm = T)) |>
  ungroup() |>
  pivot_wider(
    id_cols = c(Capital),
   names_from = c(SAM),
   names_expand = T,
   names_sort = T,
   values_from = FLab ) |>
  mutate(across(2:38, ~replace_na(., 0)))
```

```
# factor_income_capital_activity |>
# gt()
```

4 Household Consumption

4.1 Datasets (ILCS 2022)

```
# Household Unique ID, Weights, Location and other basic variables
hh_basics_22 <- read_dta(</pre>
  "data/ilcs_2022/sysschedule.dta") |>
  mutate(
    UID = as.integer(UID))
# Household size (includes no. of family members)
hh_size_22 <- read_dta(</pre>
  "data/ilcs_2022/familysize.dta")|>
  mutate(
    UID = as.integer(UID))
# Processed income at household level
hh income 22 <- read dta(
  "data/ilcs_2022/tblincomes.dta")|>
  mutate(
    UID = as.integer(UID))
# Consumption aggregate at household level
hh_expenditure_22 <- read_dta(</pre>
  "data/ilcs_2022/tblexpenditures.dta")|>
  rename(# rename total expenditure variables
         total_expenditure = MTlianixarjebi_,
         total_expenditure_aeq06 = MTlianimoxmareba_EqAdScale,
         total_expenditure_aeq08 = Mtlianimoxmareba_EqAdScale_08) |>
  mutate(
    UID = as.integer(UID))
# Characteristics of the dwelling
hh_chars_22 <- read_dta(
  "data/ilcs_2022/tblshinda01.dta")|>
  mutate(
```

```
UID = as.integer(UID))

# Persons (pp)

pp_22 <- read_dta(
   "data/ilcs_2022/tblshinda02.dta") |>
   mutate(
    UID = as.integer(UID),
    MemberNo = as.integer(MemberNo))

# Poverty
poverty_22 <- read_dta(
   "data/ilcs_2022/POVERTY.dta") |>
   mutate(
    UID = as.integer(UID))
```

Here we have the issue that for Household Expenditures the documentation claims to use COICOP, but we have a simple 5 digit structure that doesn't match any of the forms of COICOP. There's a processed dataset that summarizes the following:

Total cash consumption expenditure - On food, beverages, tobacco - On clothing and footwear - On household goods - On health care - On fuel and electricity - On transport - On education

Other consumption expenditure - Non-consumption cash expenditure - On agricultural activity - On transfers - On saving and lending - On property acquisition

We will create pivot tables out of that with the 2022 Household Survey. ## Descriptors

```
urb_rur_22 <- hh_basics_22 |>
    select(UID, UrbanOrRural, RegNo, Weights) |>
    mutate(
        UrbanOrRural = factor(
            UrbanOrRural,
            levels = c(2,1),
            labels = c("Rural", "Urban")
        )
    )
    quintiles_22 <- poverty_22 |>
        select(UID, quintilc) |>
        rename(Quintile = quintilc) |>
        mutate(
```

```
Quintile = factor(
      Quintile,
      levels = c(1:5),
      labels = c("Q1", "Q2", "Q3", "Q4", "Q5")
    )
  )
hh_consumption_22 <- hh_expenditure_22 |>
  left_join(urb_rur_22, join_by(UID)) |>
  left_join(quintiles_22, join_by(UID)) |>
  rename(
    "CE. Food, beverages, and tobacco" = sursati_sasmeli_Tambaqo,
    "CE. Clothing and footwear" = tansacmeli,
    "CE. Household goods" = saojaxo,
    "CE. Health care" = samedicino,
    "CE. Fuel and electricity" = energia,
    "CE. Transport" = transporti,
    "CE. Education" = ganatleba,
    "CE. Other consumption expenditure" = sxva,
    "Total cash consumption expenditure" = samomxmXarjebi,
    "NC. Agricultural activity" = sasoflo,
    "NC. Transfers" = transferti,
    "NC. Saving and lending" = DazogvaAnCasesxeba,
    "NC. Property acquisition" = qonebis_seZena,
    "Non-consumption cash expenditure" = SxvaGasavlebi,
    "Non-cash expenditure" = Arafuladi_moxm_,
    "Cash expenditure, total" = fuladixarjebi,
    "Consumption expenditure, total" = MTlianimoxmareba_,
```

4.2 Template

First we pivot our expenditures longer.

```
cols = c(
  "CE. Food, beverages, and tobacco",
  "CE. Clothing and footwear",
  "CE. Household goods",
  "CE. Health care",
  "CE. Fuel and electricity",
  "CE. Transport",
  "CE. Education",
  "CE. Other consumption expenditure",
  "NC. Agricultural activity",
  "NC. Transfers",
  "NC. Saving and lending",
  "NC. Property acquisition"
 ),
 names_to = "ConsumptionCategory",
  values_to = "Consumption"
) |>
mutate(
  ConsumptionCategory = factor(
    ConsumptionCategory,
    levels = c(
      "CE. Food, beverages, and tobacco",
      "CE. Clothing and footwear",
      "CE. Household goods",
      "CE. Fuel and electricity",
      "CE. Transport",
      "CE. Education",
      "CE. Health care",
      "CE. Other consumption expenditure",
      "NC. Agricultural activity",
      "NC. Transfers",
      "NC. Saving and lending",
      "NC. Property acquisition"
    )
  )
)
```

And now we can fill our template.

```
hh_consumption_pivot <- hh_consumption_22 |>
group_by(
   ConsumptionCategory,
```

```
UrbanOrRural,
  Quintile) |>
summarize(
  Consumption = sum((coalesce(Consumption, 0) * Weights), na.rm = T)) |>
ungroup() |>
pivot_wider(
  #id_cols = c(Capital),
  names_from = c(UrbanOrRural, Quintile),
  names_expand = T,
  names_sort = T,
  values_from = Consumption )
```

5 Exports to Excel

Here we export to the same Excel we are using as template, but we don't overwrite the original template, just so we can compare the result to the request.

```
wb <- loadWorkbook("data/sam/SAMshares_GEO.xlsx")
names(wb)</pre>
```

```
[1] "SAM_temporary 2022" "Accounts"
[3] "nace-rev2-en-divisions" "nace-rev1-en-divisions"
[5] "factor payments" "factor income"
[7] "factor income comprehensive" "HH Consumption"
[9] "transfers_incomplete"
```

```
writeData(
  wb,
  "factor income comprehensive",
  factor_income_comprehensive ,
  startRow = 1,
  startCol = 1,
  rowNames = FALSE)
writeData(
  wb,
  "factor income",
  factor_income_wages ,
  startRow = 21,
  startCol = 2,
  rowNames = FALSE)
```

```
writeData(
  wb,
  "factor income",
  factor_income_capital ,
  startRow = 5,
  startCol = 13,
  rowNames = FALSE)
writeData(
  wb,
  "factor payments",
  factor_income_wages_activity ,
  startRow = 27,
  startCol = 1,
  rowNames = FALSE)
writeData(
  wb,
  "factor payments",
  factor_income_capital_activity ,
  startRow = 37,
  startCol = 2,
  rowNames = FALSE)
writeData(
  wb,
  "HH Consumption",
 hh_consumption_pivot ,
  startRow = 45,
  startCol = 3,
  rowNames = FALSE)
saveWorkbook(
  wb,
  "data/sam/SAMshares_GEO.xlsx",
 overwrite = T)
```