Fire Detecting Surveillance Drone

ME 102B

Leon Guo, Yelena Sukhanov, Hams Laeeq, Andy Reddy, Jeffrey Tsang

Introduction

Wildfire Results in Tens of Billions of Damage

Analyzed Current Detection Systems for their Weaknesses

Satellites, Watchtowers, Onground Sensors

Designed an Automated Drone Fire Detection System to Address Vulnerabilities

Automated Flight and Path Planning, Image Processing, Predictions, Communication, Mitigation

Video Processing

Image preprocessing pipeline to conform to input specs

Experimentally defined, reduced complexity deep convolutional neural network (CNN) architectures (Credit to T. Breckon for architecture reference)

Automatic detection of fire pixel regions in video imagery within real-time bounds

Live fire localization in video using superpixel localization

Dependencies: Tensorflow and OpenCV in Python

Video Processing

Drone Controls

DJI Tello

Camera, IMU, Optical Flow, PIR, Barometer

Mixer to Reduce Noise for Stabilization

Location Tracking

Python

Wireless Communication

Drone Controls

Release Mechanism

Release Mechanism

Future

California's \$536 Million Wildfire Prevention Package

Fire Prediction

- Data Analysis
- Borders, Wind Velocity, Data Acquisition, Smart Targeting

Controlled Burns

Full Size Model

- Commercial Quality
- Wireless Charging
- Heat Shield
- Upgrade Al

Questions?