BEST PRACTICES

Physical Networking

Legal

© 2024 Nutanix, Inc. All rights reserved. Nutanix, the Enterprise Cloud Platform, the Nutanix logo and the other Nutanix products, features, and/or programs mentioned herein are registered trademarks or trademarks of Nutanix, Inc. in the United States and other countries. All other brand and product names mentioned herein are for identification purposes only and are the property of their respective holder(s), and Nutanix may not be associated with, or sponsored or endorsed by such holder(s). This document is provided for informational purposes only and is presented "as is" with no warranties of any kind, whether implied, statutory or otherwise.

Nutanix, Inc. 1740 Technology Drive, Suite 150 San Jose, CA 95110

Contents

1.	Executive Summary	4
2	Choosing a Physical Switch	7
۷.	Oncooning a range of the contract of the contr	
3.	Network Design Requirements and Recommendations	10
	Maximum of Three Switch Hops	
	Same Switch Fabric	
	Wide Area Network Links	11
	Multicast	
	VLANs	11
	Firewall Best Practices	12
	Stretched Layer 2 Networking	13
	Rack Awareness and Block Awareness	13
	Oversubscription	14
	Host Connections	14
	Remote Direct Memory Access	16
4.	Nutanix-Recommended Network Designs	18
	Leaf-Spine Network Design	
	Core-Aggregation-Access Design	
	Multisite Designs	
_	Canalysian	0.4
ე.	Conclusion	24
6	Appendix	25
•	Physical Networking Best Practices Checklist	
	References	
ΑI	bout Nutanix	28
Lia	et of Figures	20

1. Executive Summary

Nutanix uses modern datacenter network technology to provide a highly available virtualization, compute, and storage platform. The network is a key component in ensuring high performance and availability, and successful Nutanix deployments combine the right physical switches with the right network designs. At the same time, certain physical switches and network designs can lead to poor performance or poor availability, and this guide can help you avoid those risks.

Well-designed networks are central to Nutanix Cloud Platform resilience and performance. A Nutanix cluster can tolerate multiple simultaneous failures because it maintains a set replication factor and offers features like block and rack awareness. However, this level of resilience requires a highly available, redundant network between the cluster's nodes. Protecting the cluster's read and write storage capabilities also requires highly available connectivity between nodes. Even with intelligent data placement strategies, if network connectivity between more than the allowed number of nodes breaks down, VMs on the cluster might experience write failures and enter readonly mode.

To optimize I/O speed, Nutanix clusters send each write to another dynamically selected node in the cluster. As a result, a fully populated cluster sends storage replication traffic in a full mesh, using network bandwidth between all Nutanix nodes. Because storage write latency directly correlates to the network latency between Nutanix nodes, any network latency increase adds to storage write latency.

This best practice guide is part of the Nutanix Solutions Library. We intend it for network and virtualization administrators and architects responsible for designing networks for a Nutanix environment. Readers of this document should already be familiar with top-of-rack networking concepts for datacenter environments and basic hypervisor networking.

This document covers the following topics:

Choosing physical switches

- Network design requirements and recommendations:
 - > Switch fabric scale
 - > VLANs
 - > Stretched networks and WANs
 - Oversubscription
 - > Rack awareness and block awareness
- Recommended network designs:
 - > Leaf-spine
 - > Core-aggregation-access (multitier)
 - > Multisite designs

Table: Document Version History

Version Number	Published	Notes
1.0	March 2019	Original publication.
2.0	November 2019	QoS and VLAN updates.
2.1	March 2020	Updated the Nutanix Enterprise Cloud Overview and Choosing a Physical Switch sections.
2.2	January 2021	Updated the Choosing a Physical Switch section.
2.3	May 2021	Added spanning tree warning.
2.4	April 2022	Added proxy ARP warning.
2.5	February 2023	Added VLAN scope and flood guidance. Other minor text updates.
2.6	March 2023	Clarified proxy ARP warning.

Version Number	Published	Notes
2.7	April 2024	Updated the Stretched Layer 2 Networking section and added the Remote Direct Memory Access and Multicast sections.
2.8	May 2024	Updated the Choosing a Physical Switch and Maximum of Three Switch Hops sections.
2.9	October 2024	Added the Firewall Best Practices section.

2. Choosing a Physical Switch

For Nutanix environments, use datacenter switches designed for transmitting large amounts of server and storage traffic at low latency. Don't use switches meant for deployment at the campus access layer. Campus access switches might have 10 Gbps ports like datacenter switches, but they aren't usually made to transport a large amount of bidirectional storage replication traffic.

The deployment size and purpose also influence physical switch choice. Datacenter switches with large buffers are critical in a large AOS cluster that grows beyond eight nodes or hosts storage-intensive applications. In smaller clusters or ROBO deployments that have fewer than eight nodes or don't host write-intensive applications, the switch might not experience buffer contention and you can relax these switch restrictions.

Datacenter switches have the following characteristics:

- Line rate: Ensures that all ports can simultaneously achieve advertised throughput
- Low latency: Minimizes port-to-port latency, measured in microseconds or nanoseconds
- Large per-port buffers: Handle speed mismatch from uplinks without dropping frames
- Nonblocking, with low or no oversubscription: Reduces the chance of drops during peak traffic periods
- 10 Gbps or faster links for Nutanix Controller VM (CVM) traffic

Only use 1 Gbps links either for additional user VM traffic or when 10 Gbps or faster connections are not available, such as in a ROBO deployment. Limit Nutanix clusters using 1 Gbps links to eight nodes.

The switch manufacturer's datasheets, specifications, and white papers can help identify these characteristics. For example, a common datacenter switch datasheet might show a per-port buffer of 1 MB, while an access layer or fabric extension device has a per-port buffer of around 150 KB. During periods of high traffic or when using links with a speed mismatch (such as 40 Gbps uplinks to 10 Gbps edge ports), a smaller buffer can lead to frame drops, increasing storage latency. While some network designs can achieve high

throughput and low latency with very small switch buffers, these designs are generally very expensive or specialized environments, such as high-frequency stock trading, that aren't part of a common datacenter network.

The following list isn't exhaustive, but it gives some examples of model lines that meet the requirements for high-performance or large clusters:

- Arista 7050X3, 7160, 7170, 7280: larger buffer models
- Aruba CX 8325 and CX 8360
- Cisco Nexus 9000, 7000, and 5000
- Dell S5200-ON
- HPE FM3810, FM3132Q
- Juniper QFX5100, QFX5200, QFX10K
- Lenovo NE2580O
- NVIDIA Mellanox SN2410, SN2100, and SN2010
- Ruckus ICX 7850 (any variant)

Models similar to the ones listed are also great choices. We recommend using switches like these for large or high-performing clusters, but you can use them for smaller clusters and ROBO as well.

The following are examples of switches that don't meet the high-performance datacenter switch requirements but are acceptable for ROBO clusters and clusters with low performance requirements or fewer than eight nodes. Avoid using these switches for the data path of large or high-performing clusters:

- Arista 7050 and 7150s: smaller buffer models
- Cisco Nexus 3000: smaller buffer model
- Cisco Catalyst 9300 and 9500: campus access switch
- Cisco Catalyst 3850: stackable multigigabit switch
- HPE FM2072
- Ruckus ICX 7550-48F

The following are examples of switches that are never acceptable for any Nutanix data path connection but are acceptable for out-of-band management:

- Cisco Nexus 2000 (Fabric Extender): highly oversubscribed with small per-port buffers
- 10 Gbps expansion cards in a 1 Gbps access switch: provide uplink bandwidth for the switch, not server connectivity
- Ruckus ICX 7150 models
- Ruckus ICX 8200-24FX

Each Nutanix node also has an out-of-band connection for IPMI, iLO, iDRAC, or similar management. Because out-of-band connections don't have the latency or throughput requirements of VM networking or storage connections, they can use any access layer switch.

Note: Nutanix recommends an out-of-band management switch network separate from the primary network for high availability.

Nutanix maintains close partnerships with several networking vendors. For more information on the network integration and automation capabilities available with Nutanix, review our list of partners in the Networking and Security section of our Technology Alliances page.

Regardless of the switch vendor you choose, follow the general recommendations in this document. For vendor-specific configuration recommendations, see the References section in the Appendix.

3. Network Design Requirements and Recommendations

The following sections contain specific requirements and recommendations for Nutanix network design.

Maximum of Three Switch Hops

Nutanix nodes send storage replication traffic to each other in a distributed fashion over the top-of-rack network. One Nutanix node can therefore send replication traffic to any other Nutanix node in the cluster. Use a network that provides low and predictable latency for this traffic. Nutanix recommends no more than three switches between any two Nutanix nodes in the same cluster. A leaf-spine topology satisfies this recommendation and is a popular choice.

Deployments like the super-spine topology are extensions of the leaf-spine topology in high-performance datacenter networks. If enough bandwidth exists between pods in the super spine to support intracluster traffic and latency is low and consistent across pods, you can deploy a Nutanix cluster across different pods in the same super-spine topology, even though it has more than three switch hops.

Same Switch Fabric

A switch fabric is either a single leaf-spine topology or all switches connected to the same switch aggregation layer. The Nutanix VLAN shares a common broadcast domain in the fabric. Connect all Nutanix nodes that form a cluster to the same switch fabric. Don't stretch a single Nutanix cluster across multiple, disconnected switch fabrics.

Every Nutanix node in a cluster must be in the same layer 2 (L2) broadcast domain and share the same IP subnet.

Wide Area Network Links

A wide area network (WAN) or metro link connects different physical sites over a distance. As an extension of the switch fabric requirement, don't place Nutanix nodes in the same cluster if they're separated by a WAN. When Nutanix nodes are separated by a WAN, create multiple clusters and use disaster recovery replication between sites.

Multicast

AHV treats multicast traffic without IGMP the same as broadcast traffic and forwards it to all end hosts in the VLAN. This process increases the AHV host CPU usage because the multicast packets must be replicated to all attached virtual network interfaces (vNICs) in the VLAN, which can negatively impact cluster operations if the multicast traffic load is high. To handle multicast traffic more efficiently, Nutanix recommends using IGMP snooping in the top-of-rack switches and the Nutanix AHV virtual switches. IGMP snooping tracks the active multicast listeners by listening for IGMP packets and only forwarding the multicast traffic to the end hosts that are interested in it.

To be as effective as possible, configure IGMP at the physical layer and on the AHV hosts:

- To configure IGMP in the physical switches, check with your networking vendor.
- To configure IGMP in the Nutanix virtual switch, see the IGMP Snooping section in the AHV Administration Guide.

Nutanix also recommends VLAN pruning in the physical switches according to the physical switch vendor's best practices. This practice reduces the number of active VLANs to the minimum number required by each host, decreasing unnecessary traffic.

VLANs

To protect the Nutanix CVM and hypervisor traffic, place them together in their own dedicated VLAN, separate from other VM traffic. Don't place the CVM and hypervisor hosts in a VLAN shared with other VMs.

Nutanix recommends that you configure the CVM and hypervisor host VLAN as the native, or untagged, VLAN on the connected switch ports. This native VLAN

configuration allows easy node addition and cluster expansion while placing traffic in a VLAN when it enters the switch. By default, new Nutanix nodes send and receive untagged traffic. If you use a tagged VLAN for the CVM and hypervisor hosts instead, you must configure that VLAN while you provision the new node, before you add that node to the Nutanix cluster.

Within the Nutanix VLAN, nodes use IPv6 neighbor discovery protocol and IPv6 UDP broadcast messages. To simplify cluster expansion, disable multicast and broadcast flood optimizations that block unsolicited discovery messages in the Nutanix VLAN. Consult your network team before making these changes, as multicast and broadcast flood optimizations can limit potentially harmful traffic. If these protocols are blocked, you can add nodes manually from the command line.

Use tagged VLANs for all guest VM traffic and add the required guest VM VLANs to all connected switch ports for hosts in the Nutanix cluster. Limit VLANs for guest VM traffic to the smallest number of physical switches and switch ports possible to reduce broadcast network traffic load. If you no longer need a VLAN, remove it. Removing unnecessary VLANs helps prevent accidental flooding or excessive broadcast and multicast traffic.

Nutanix AHV network automation streamlines VLAN provisioning for guest VMs. For a list of partners that support network automation, visit the Technology Alliances site and filter on networking and security.

Disable proxy Address Resolution Protocol (ARP) in the Nutanix VLAN before configuring network segmentation and other AHV virtual switch operations. Several Nutanix processes use ARP as a method to detect whether a connection or endpoint is active before proceeding. Proxy ARP replies to all ARP requests and invalidates the results of these checks, causing unexpected failures for operations such as virtual switch updates and other tasks.

Firewall Best Practices

Protect the Nutanix management network with a stateful firewall, and only allow access from known management endpoints.

For more information on the ports required to manage a Nutanix system, see the Ports and Protocols guide.

Stretched Layer 2 Networking

Datacenters have traditionally shared a VLAN with an L2 broadcast domain between different racks. Modern designs sometimes terminate this L2 boundary at the top of the rack so that each rack is a separate L2 domain and a different IP subnet. Because all nodes in a Nutanix cluster must share the same L2 broadcast domain, this approach presents a challenge.

This scenario—stretching an L2 network between two racks in the same datacenter—is the only case when using a stretched L2 network over a layer 3 (L3) network is acceptable for storage traffic within a Nutanix cluster, because the Nutanix cluster is still in the same switch fabric or aggregation layer.

Note: Placing the nodes that make up a Nutanix cluster in multiple datacenters or availability zones connected by stretched L2 networks, or in datacenters that have a remote link between the two locations isn't supported.

When you need compute and storage at multiple sites, use separate Nutanix clusters at each physical location. Use replication tools such as asynchronous disaster recovery, NearSync, and Metro Availability to share data between Nutanix clusters at different sites. These recommendations apply even if the two availability zones share close proximity or highly available network paths. Set up each site as a cluster boundary to protect against network, power, or other failures. The boundary can be a building, a firewall, or even different racks in the datacenter, depending on your availability requirements.

Flow Virtual Networking and Subnet Extension

With Flow Virtual Networking, you can use a Virtual Private Cloud (VPC) to extend the L2 network for user VMs across an L3 boundary. VPCs allow a subnet to exist on multiple Nutanix clusters, even if the clusters are in different L3 subnets. You can't use VPCs to extend the subnet used for Nutanix CVMs.

Rack Awareness and Block Awareness

Block awareness and rack awareness provide smart placement of Nutanix cluster services, metadata, and VM data to help maintain data availability even if you lose an

entire block or rack. The same network requirements for low latency and high throughput between servers in the same cluster still apply when you use block and rack awareness.

Note: Don't use features like block or rack awareness to stretch a Nutanix cluster between different physical sites.

Oversubscription

Oversubscription occurs when an intermediate network device or link doesn't have enough capacity to allow line rate communication between the systems connected to it. For example, if a single 10 Gbps link connects two switches and four hosts connect to each switch at 10 Gbps, the connecting link is oversubscribed. Oversubscription is often expressed as a ratio—in this case 4:1, as the environment might attempt to transmit 40 Gbps between the switches with only 10 Gbps available. Achieving a 1:1 ratio isn't always feasible, but keep the ratio as small as possible based on budget and available capacity.

In a typical deployment where Nutanix nodes connect to redundant top-of-rack switches, storage replication traffic between CVMs traverses multiple devices. To avoid packet loss caused by link oversubscription, ensure that the switch uplinks consist of multiple interfaces operating at a faster speed than the Nutanix host interfaces. For example, for nodes connected at 10 Gbps, the interswitch connection must consist of multiple 10 Gbps or faster links.

Host Connections

Connect Nutanix hosts to redundant top-of-rack switches. Use the active-active configuration available in the hypervisor when possible. With vSphere, follow the VMware vSphere Networking best practices, using Route based on Originating Virtual Port or Route based on Physical NIC Load. With AHV, follow the Nutanix AHV Networking best practices, using either the default active-backup configuration or LACP with balance-tcp.

On switch ports that face Nutanix hosts, designate the interfaces as spanning tree edge ports to minimize port downtime and prevent triggering spanning tree topology changes.

Figure 1: Host Network Connections

Quality of Service

When the network experiences traffic contention, quality of service (QoS) prioritizes traffic and reserves network resources for certain classes of traffic. QoS can mark important traffic with priority values or enable network switches to derive the traffic's class based on fields inside the traffic. After you define traffic classes, each network device can reserve resources for certain classes or decide which classes to prioritize and which to drop.

With a fabric that eliminates contention for storage traffic, you don't need a QoS configuration. Nutanix doesn't recommend configuring any top-of-rack QoS for storage traffic. Instead, configure a nonblocking, low-latency switch fabric with no oversubscription between Nutanix nodes.

As a precaution, use traffic policing on the physical switch ports to prevent excessive unicast, broadcast, or multicast flooding. The details of this configuration, sometimes called optimized multicast flood, differ between switch vendors, but it uses a pattern that matches all multicast and broadcast traffic. This configuration prevents excessive traffic from outside the Nutanix cluster from overwhelming the switch ports connecting the Nutanix cluster.

Nutanix doesn't recommend that you customize any QoS markings on traffic sourced from the CVM or the hypervisor host. If guest VMs pass frames with L2 class of service or L3 differentiated services code point markers on them, these values pass from the hypervisor to the physical switch.

Nutanix AHV doesn't support enforcement for QoS prioritization or reservations. To guarantee available bandwidth for guest VMs in AHV, create an additional virtual switch using a dedicated set of physical adapters. For more information, see the Nutanix AHV Networking best practice guide.

For Network I/O Control (NIOC) recommendations with Nutanix on ESXi, see the Nutanix on VMware vSphere Networking best practice guide. If you need QoS at the hypervisor level, Nutanix recommends using shares without hard limits, so QoS with NIOC only applies when the network experiences contention.

Spanning Tree

In traditional networks, using the spanning tree protocol prevents network loops and enforces a loop-free network switch topology. Not all networks use the spanning tree protocol, but if yours does, treat the switch ports facing Nutanix hosts as server or host ports, sometimes referred to as edge ports. A Nutanix server acts like an end host, not a switch. Nutanix recommends either disabling the spanning tree protocol on the ports facing Nutanix servers or configuring the Nutanix-facing ports with features such as type edge or portfast so that these ports skip the normal spanning tree phases and immediately forward traffic.

Note: Configure switch ports facing Nutanix servers as portfast or type edge. Failure to do so might cause service interruption while switch ports transition through the listening and learning phases, dropping all production traffic for up to 30 seconds during spanning tree topology changes.

Remote Direct Memory Access

Storage replication traffic between Nutanix nodes is transported over TCP/IP by default. For high-performance and low-latency environments, Nutanix supports Remote Direct Memory Access (RDMA) to bypass the TCP/IP stack and send storage replication traffic over a dedicated set of physical adapters between hosts in the same cluster. If the RDMA link fails, traffic falls back to the TCP/IP link.

High availability for the RDMA port and NIC using a second RDMA port and NIC isn't currently supported. If the RDMA port and NIC fail, traffic fails back to the TCP/IP link. RDMA also usually requires specific support from network switch vendors, typically called lossless ethernet or data center bridging (DCB) or priority-based flow control (PFC) depending on the switch vendor. Consult the switch vendor documentation for specific guidance on how to set up the relevant RDMA-compatible network. Map the PFC identifier value used in the network to the PFC value configured in the Nutanix Prism web interface. The most common value is 3, but you can configure the value. The value in the physical switch must match the value in the Nutanix interface.

AOS versions after 6.7 support Zero-Touch RDMA over Converged Ethernet (ZTR), which doesn't require the special switch configuration described previously because the NICs negotiate directly with each other. ZTR requires compatible Mellanox NICs; for a list of compatible NICs, see NIC Compatibility Matrix for RDMA Features.

In AOS versions after 6.6, you can use RDMA manageability to set up RDMA on NICs in brownfield scenarios after you deploy the cluster. Before AOS 6.6, you could only set up RDMA port passthrough during Foundation.

For more information on RDMA, see RDMA over Converged Ethernet (RoCE).

4. Nutanix-Recommended Network Designs

The following sections contain the network designs recommended by Nutanix.

Leaf-Spine Network Design

The leaf-spine network design is popular in new datacenter deployments because it's easy to deploy and easy to scale after deployment. A leaf-spine topology requires at least two spine switches and two leaf switches. Every leaf connects to every spine using uplink ports. The spine switches have no connections between them in the conventional leaf-spine design; neither do the leaf switches.

Use uplinks that are faster than the edge ports to reduce uplink oversubscription. To increase uplink capacity, add spine switches or uplink ports as needed.

Figure 2: Leaf-Spine Network

To scale the leaf-spine network, add leaf and spine switches. Because there are no more than three switch hops between any two Nutanix nodes in this design, a Nutanix cluster can easily span multiple racks and still connect to the same switch fabric.

Figure 3: Scaling the Leaf-Spine Network

Core-Aggregation-Access Design

The core-aggregation-access (or three-tier) design is a modular layout that allows you to upgrade and scale layers independently. Ensure that all nodes in a Nutanix cluster share the same aggregation layer to comply with the three-switch-hop rule.

Figure 4: Core-Aggregation-Access Network

Scaling the three-tier network design might require adding another aggregation and access layer to the core, which creates more than three switch hops between the two access layers. Ensure that you add Nutanix nodes in separate aggregation and access layers to separate clusters to keep the number of switch hops between nodes in the

Core Aggregation Aggregation Aggregation Aggregation Access Access Access Access Nutanix Cluster 1 Nutanix Cluster 2

same cluster to three or fewer. In the following example, Cluster 1 connects to one aggregation layer and Cluster 2 connects to another.

Figure 5: Scaling the Core-Aggregation-Access Network

You can connect switches in many different ways in the three-tier design, so your deployment might look slightly different than the one shown in the previous images.

Multisite Designs

When two or more physical sites or physical availability zones exist, don't use one Nutanix cluster to span them. Instead, create multiple Nutanix clusters (one per availability zone) and connect them with tools such as asynchronous disaster recovery, NearSync, and Metro Availability. This design provides high availability for data and applications and eliminates the possibility of a split-brain scenario in which a Nutanix cluster is partitioned when the two sites lose connectivity.

Figure 6: Multisite Network Design Using Replication

5. Conclusion

We often talk to customers concerned about the network for their datacenters and their individual Nutanix clusters. Although networking might seem daunting, it requires attention to only three key points:

- · Procure the right switches.
- · Select the right network design.
- Use the right replication technologies.

If you connect your Nutanix cluster to a well-designed datacenter network, your storage platform can be highly available while still providing you with excellent performance.

For feedback or questions, contact us using the Nutanix Community forums.

6. Appendix

Physical Networking Best Practices Checklist

Follow these physical networking best practices:

- Use a maximum of three switch hops between any two Nutanix nodes in the same cluster.
- Connect all Nutanix nodes in the same cluster to the same switch fabric (leaf-spine network) or aggregation layer.
- Avoid WAN or remote links between Nutanix nodes in the same Nutanix cluster.
- Enable IGMP snooping in both the physical network and the AHV virtual switches when multicast traffic is present.
- Separate Nutanix CVM and hypervisor hosts into a dedicated VLAN that doesn't include any VM traffic.
- After consulting your network team, disable flood optimization in this Nutanix VLAN to allow discovery.
- Trunk only the required VLANs to switch ports facing Nutanix servers and remove all other VLANs.
- Consider policing or flood optimization in non-Nutanix VLANs to prevent excessive broadcast or multicast traffic.
- Disable proxy ARP in the Nutanix VLAN before configuring network segmentation and other AHV virtual switch operations to prevent unexpected failures.
- Don't place Nutanix nodes in the same Nutanix cluster if the stretched L2 network spans multiple datacenters or availability zones or if there is a remote link between the two locations.

 Only use a stretched L2 network over L3 when the Nutanix cluster remains in the same switch fabric or aggregation layer, such as a L2 network stretched between two racks in the same datacenter.

Nutanix VPCs can stretch the L2 network for user VMs but not for CVMs.

- Don't use features like block or rack awareness to stretch a Nutanix cluster between different physical sites.
- Configure adequate uplinks between switches or interswitch links for east-west storage traffic to minimize port-to-port oversubscription.

For example, use multiple 40 Gbps or faster uplinks (or interswitch links).

- Connect hosts using redundant links.
- Configure switch ports facing Nutanix servers as spanning tree portfast or edge to skip the listening and learning phases and prevent cluster outages due to spanning tree topology changes.

These requirements and recommendations keep latency between nodes minimal and predictable. Networks that have too many switch hops or introduce WAN links between only some of the nodes introduce variable latency, which negatively affects storage latency, and variable throughput. Networks that are larger than required also add components (datacenters, zones, switches, and switch fabrics) that can all affect availability.

References

- 1. **Data Protection and Disaster Recovery**
- 2. Data Protection for AHV-Based VMs
- 3. Metro Availability
- 4. **Nutanix AHV Networking**
- 5. VMware vSphere Networking
- VMware NSX for vSphere 6.
- 7. Cisco ACI with Nutanix
- 8. **NVIDIA Networking with Nutanix**
- 9. Networking: Arista EOS Recommended Practices

10. Cisco Nexus Recommended Practices

About Nutanix

Nutanix offers a single platform to run all your apps and data across multiple clouds while simplifying operations and reducing complexity. Trusted by companies worldwide, Nutanix powers hybrid multicloud environments efficiently and cost effectively. This enables companies to focus on successful business outcomes and new innovations. Learn more at Nutanix.com.

List of Figures

Figure 1	1: Host Network Connections	5
Figure 2	2: Leaf-Spine Network	19
Figure 3	3: Scaling the Leaf-Spine Network	20
Figure 4	l: Core-Aggregation-Access Network	21
Figure 5	5: Scaling the Core-Aggregation-Access Network	22
Figure 6	S: Multisite Network Design Using Replication2	23