# Übungen zu Physik V: Kerne und Teilchen (2)

Abgabetermin: bis 05.11.2024, 10:00 Uhr

## Aufgabe 1: Massenspektroskopie, q/m-Bestimmung nach Thomson

(10 Punkte)

Bei der Parabelmethode von Thomson durchläuft ein Ionenstrahl das elektrische Feld  $\vec{E}$  eines Kondensators und das parallel dazu orientiere Magnetfeld  $\vec{B}$ . Zeigen Sie, dass man für Teilchen mit gleicher Ladung und Masse aber unterschiedlicher Geschwindigkeit v eine parabelförmige Projektion erhält (siehe Abbildung), deren Ursprung im Durchstoßpunkt des unabgelenkten Strahles liegt.

Hinweis: Gehen Sie davon aus, dass die Teilchen nur für sehr kurze Zeit t den Feldern ausgesetzt sind und dadurch Richtungsänderungen der Beschleunigung vernachlässigt werden können.



### Aufgabe 2: Bindungsenergie von Kernen

[LA: komplette Aufgabe] (4 Punkte)

Berechnen Sie die experimentell gemessene Bindungsenergie  $E_{\rm B}$  und die Bindungsenergie pro Nukleon  $E_{\rm B}/A$  für folgende Kerne:

- Deuterium
- <sup>4</sup>He
- <sup>6</sup>Li
- <sup>56</sup>Fe

Die hierzu benötigten Massen finden Sie in der folgenden Tabelle.

|                 | Masse [MeV]  | Masse [u]    |
|-----------------|--------------|--------------|
| Elektron        | 0,511        | 0,000549     |
| Proton          | $938,\!27$   | 1,007276     |
| Neutron         | $939,\!56$   | $1,\!008665$ |
| Deuterium       | $1876,\!14$  | $2,\!014101$ |
| $^4\mathrm{He}$ | 3728,39      | 4,00260      |
| $^6\mathrm{Li}$ | 5603,05      | $6,\!01512$  |
| $^{56}$ Fe      | $52102,\!10$ | 55,934       |

#### Aufgabe 3: Tröpfchenmodell

# [LA: nur Teilaufgaben 1-4] (16 Punkte)

- 1. Benutzen Sie die Weizsäcker-Massenformel und berechnen Sie für eine Isobarenreihe A = const die Masse M(Z). Um welche Kurvenform handelt es sich? (3 Punkte)
- 2. Wie viele Kurven erhalten Sie für
  - a) A ungerade?
  - b) A gerade?

Begründen Sie ihre Antworten.

(2 Punkte)

- 3. Bestimmen Sie, mit A als Parameter, das Minimum  $Z_{\min}$  der jeweiligen Kurven. Tragen Sie Ihr Ergebnis in ein N-Z-Diagramm ein und vergleichen Sie es mit der Geraden N=Z. (5 Punkte)
- 4. Wie viele stabile *ug*-Kerne gibt es in einer Isobarenreihe? Warum ist das für *gg*- und *uu*-Kerne anders? (4 Punkte)
- 5. Gibt es stabile *uu*-Kerne? Begründen Sie Ihre Antwort. (2 Punkte)

## Aufgabe 4: Kernzerfälle im Tröpfchenmodell

(8 Punkte)

- 1. Berechnen Sie die kinetische Energie eines von  $^{239}_{94}$ Pu emittierten  $\alpha$ -Teilchens (experimentell gemessener Wert:  $E_{\alpha}=5,245\,\mathrm{MeV}$ ). Benutzen Sie die Weizsäcker-Massenformel für die schweren Kerne, aber den experimentell gemessenen und in Aufgabe 2 berechneten Wert für die Bindungsenergie des  $\alpha$ -Teilchens. Warum sollten Sie diesen Wert nicht über die Weizsäcker-Massenformel berechnen? Hinweis: Sie können die Rückstoßenergie des Tochterkerns vernachlässigen. (3 Punkte)
- 2. Berechnen Sie die Energiebilanz für  $\beta^+$  und  $\beta^-$ -Zerfall, Elektroneneinfang, sowie Proton- und Neutron-Emission von <sup>239</sup>Pu. (5 Punkte)

#### Aufgabe 5: Plutonium-Handwärmer

[LA: nur Teilaufgaben 1&2] (6 Punkte)

Wäre eine  $m=200\,\mathrm{g}$  schwere Kugel aus reinem <sup>239</sup>Pu (Dichte  $\rho=19.84\,\mathrm{g/cm^3}$ , Halbwertszeit  $\tau_{1/2}=24\,110\,\mathrm{a}$ ,  $E_\alpha=5.245\,\mathrm{MeV}$ ) als Handwärmer geeignet?

- 1. Berechnen Sie die Aktivität einer solchen Kugel. (2 Punkte)
- 2. Berechnen Sie die Wärmeleistung P. (2 Punkte)
- 3. Berechnen Sie die Temperatur T der Kugel. Nehmen Sie hierzu an, dass die gesamte Leistung der Kugel durch Schwarzkörperstrahlung in einer 5 °C kalten Umgebung abgegeben wird. (Hinweis: Stefan-Boltzmann-Gesetz:  $P = \sigma A T^4$ , mit  $\sigma = 5.67 \cdot 10^{-8} \text{ W/m}^2/\text{K}^4$ ) (2 Punkte)