

Rail-to-rail high output current dual operational amplifier

Features

■ Rail-to-rail input and output

■ Low noise: 9nV/√Hz

Low distortion

 High output current: 80mA (able to drive 32Ω loads)

High-speed: 4MHz, 1V/μs

■ Operating from 2.7V to 12V

■ Low input offset voltage: 900µV max (TS922A)

ESD internal protection: 2kV

Latch-up immunity

Macromodel included in this specification

■ Dual version available in flip-chip package

Applications

■ Headphone amplifier

■ Sound cards, multimedia systems

Line driver, actuator driver

Servo amplifier

Mobile phone and portable equipment

Instrumentation with low noise as key factor

Piezoelectric speaker driver

Description

The TS922 is a rail-to-rail dual BiCMOS operational amplifier optimized and fully specified for 3V and 5V operation.

The device's high output current allows low-load impedances to be driven.

Very low noise, low distortion, low offset and a high output current capability make this device an excellent choice for high quality, low voltage or battery operated audio systems.

The device is stable for capacitive loads up to 500pF.

TS922 Pin diagrams

1 Pin diagrams

Figure 1. Pin connections (top view)

Figure 2. Pinout for flip-chip package (top view)

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	14	V
V _{id}	Differential input voltage (2)	±1	V
V _{in}	Input voltage (3)	V _{DD} -0.3 to V _{CC} +0.3	V
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾ SO-8 TSSOP8 DIP8 Flip-chip	125 120 85 90	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁴⁾ SO-8 TSSOP8 DIP8	40 37 41	°C/W
T _j	Maximum junction temperature	150	°C
ESD	HBM: human body model ⁽⁵⁾ MM: machine model ⁽⁶⁾ CDM: charged device model ⁽⁷⁾	2000 100 1500	V
	Output short circuit duration	see note ⁽⁸⁾	
	Latch-up immunity	200	mA
	Soldering temperature (10sec), leaded version Soldering temperature (10sec), unleaded version	250 260	°C

- 1. All voltage values, except differential voltage are with respect to network ground terminal.
- Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If V_{id} > ±1V, the maximum input current must not exceed ±1mA. In this case (V_{id} > ±1V), an input series resistor must be added to limit input current.
- 3. Do not exceed 14V.
- Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. These values are typical.
- 5. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between
 two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of
 connected pin combinations while the other pins are floating.
- 7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.
- There is no short-circuit protection inside the device: short-circuits from the output to V_{CC} can cause
 excessive heating. The maximum output current is approximately 80mA, independent of the magnitude of
 V_{CC}. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.7 to 12	V
V _{icm}	Common mode input voltage range	V _{DD} -0.2 to V _{CC} +0.2	V
T _{oper}	Operating free air temperature range	-40 to +125	°C

Electrical characteristics TS922

3 Electrical characteristics

Table 3. Electrical characteristics measured at V_{CC} = +3V, V_{DD} = 0V, V_{icm} = V_{CC} /2, T_{amb} = 25°C, and R_L connected to V_{CC} /2 (unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		TS922 TS922A TS922IJ (flip-chip)			3 0.9 1.5	
V _{io}	Input offset voltage	$T_{min} \le T_{amb} \le T_{max}$ TS922 TS922A TS922IJ (flip-chip)			5 1.8 2.5	mV
DV _{io}	Input offset voltage drift			2		μV/°C
I _{io}	Input offset current	$\begin{aligned} &V_{out} = V_{CC}/2 \\ &T_{min} \leq T_{amb} \leq T_{max} \end{aligned}$		1	30 30	nA
I _{ib}	Input bias current	$\begin{aligned} &V_{out} = V_{CC}/2 \\ &T_{min} \le T_{amb} \le T_{max} \end{aligned}$		15	100 100	nA
		$R_{L}=10k\Omega$ $T_{min} \le T_{amb} \le T_{max}$	2.90 2.90			V
V _{OH}	High level output voltage	$R_{L} = 600\Omega$ $T_{min} \le T_{amb} \le T_{max}$	2.87 2.87			V
		$R_L = 32\Omega$		2.63		V
		$R_L = 10k\Omega$ $T_{min} \le T_{amb} \le T_{max}$			50 50	mV
V _{OL}	Low level output voltage	$R_{L} = 600\Omega$ $T_{min} \le T_{amb} \le T_{max}$			100 100	mV
		$R_L = 32\Omega$		180		mV
		$R_{L}=10k\Omega, \ \ V_{out}=2V_{p-p}$ $T_{min} \leq T_{amb} \leq T_{max}$	70	200		
A _{vd}	Large signal voltage gain	$\begin{aligned} R_L &= 600\Omega, \ \ V_{out} = 2V_{p\text{-}p} \\ T_{min} &\leq T_{amb} \leq T_{max} \end{aligned}$	15	35		V/mV
		$R_L = 32\Omega$, $V_{out} = 2V_{p-p}$		16		
Icc	Total supply current	No load, $V_{out} = V_{CC}/2$ $T_{min} \le T_{amb} \le T_{max}$		2	3 3.2	mA
GBP	Gain bandwidth product	$R_L = 600\Omega$		4		MHz
CMR	Common mode rejection ratio	$T_{min} \le T_{amb} \le T_{max}$	60 56	80		dB
SVR	Supply voltage rejection ratio	$V_{CC} = 2.7 \text{ to } 3.3V$ $T_{min} \le T_{amb} \le T_{max}$	60 60	85		dB
Io	Output short circuit current		50	80		mA
SR	Slew rate		0.7	1.3		V/µs

φm	Phase margin at unit gain	$R_L = 600\Omega$, $C_L = 100pF$	68	Degrees
G_{m}	Gain margin	$R_L = 600\Omega$, $C_L = 100pF$	12	dB
e _n	Equivalent input noise voltage	e f = 1kHz	9	
86				

Electrical characteristics TS922

Table 4. Electrical characteristics measured at V_{CC} = 5V, V_{DD} = 0V, V_{icm} = $V_{CC}/2$, T_{amb} = 25°C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		TS922 TS922A TS922IJ (flip-chip)			3 0.9 1.5	
V _{io}	Input offset voltage	$T_{min} \le T_{amb} \le T_{max}$ TS922 TS922A TS922IJ (flip-chip)			5 1.8 2.5	mV
DV _{io}	Input offset voltage drift			2		μV/°C
I _{io}	Input offset current	$\begin{aligned} &V_{out} = V_{CC}/2 \\ &T_{min} \leq T_{amb} \leq T_{max} \end{aligned}$		1	30 30	nA
l _{ib}	Input bias current	$\begin{aligned} &V_{out} = V_{CC}/2 \\ &T_{min} \leq T_{amb} \leq T_{max} \end{aligned}$		15	100 100	nA
		$R_{L}=10k\Omega$ $T_{min} \le T_{amb} \le T_{max}$	4.9 4.9			
V _{OH}	V _{OH} High level output voltage	$R_{L} = 600\Omega$ $T_{min} \le T_{amb} \le T_{max}$	4.85 4.85			V
		$R_L = 32\Omega$		4.4		
		$R_L = 10k\Omega$ $T_{min} \le T_{amb} \le T_{max}$			50 50	
V_{OL}	Low level output voltage	$R_{L} = 600\Omega$ $T_{min} \le T_{amb} \le T_{max}$			120 120	mV
		$R_L = 32\Omega$		300		
		$\begin{aligned} R_L &= 10k\Omega, \ \ V_{out} = 2V_{p-p} \\ T_{min} &\leq T_{amb} \leq T_{max} \end{aligned}$	70	200		V/mV
A _{vd}	Large signal voltage gain	$\begin{aligned} R_L &= 600\Omega, \ \ V_{out} = 2V_{p\text{-}p} \\ T_{min} &\leq T_{amb} \leq T_{max} \end{aligned}$	20	35		
		$R_L = 32\Omega$, $V_{out} = 2V_{p-p}$		16		
I _{cc}	Total supply current	No load, $V_{out} = V_{CC}/2$ $T_{min} \le T_{amb} \le T_{max}$		2	3 3.2	mA
GBP	Gain bandwidth product	$R_L = 600\Omega$		4		MHz
CMR	Common mode rejection ratio	$T_{min} \le T_{amb} \le T_{max}$	60 56	80		dB
SVR	Supply voltage rejection ratio	$V_{CC} = 4.5 \text{ to } 5.5V$ $T_{min} \le T_{amb} \le T_{max}$	60 60	85		dB
Io	Output short circuit current		50	80		mA
SR	Slew rate		0.7	1.3		V/µs

9/22

Table 4. Electrical characteristics measured at V = 5V, V = 0V, V

φm	Phase margin at unit gain	$R_L = 600\Omega$, $C_L = 100pF$	68	Degrees
G_{m}	Gain margin	$R_L = 600\Omega$, $C_L = 100pF$	12	dB
e _n	Equivalent input noise voltage	f = 1kHz	9	
THD	Total harmonic distortion	V_{out} = 2 V_{p-p} , f= 1kHz, A_{v} = 1, R_{L} =600 Ω	0.005	%
C_s	Channel separation		120	dB

Figure 9. THD + noise vs. frequency

Figure 10. THD + noise vs. output voltage

Figure 11. THD + noise vs. output voltage

Figure 12. THD + noise vs. output voltage

Figure 13. Open loop gain and phase vs. frequency

Macromodel TS922

4 Macromodel

4.1 Important note concerning this macromodel

Please consider the following remarks before using this macromodel.

- All models are a trade-off between accuracy and complexity (i.e. simulation time).
- Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
- A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product.

Data derived from macromodels used outside of the specified conditions (V_{CC} , temperature, for example) or even worse, outside of the device operating conditions (V_{CC} , V_{icm} , for example), is not reliable in any way.

Section 4.2 provides the electrical characteristics resulting from the use of this macromodel.

4.2 Electrical characteristics from macromodelization

Table 5. Electrical characteristics resulting from macromodel simulation at $V_{CC} = 3V$, $V_{DD} = 0V$, R_L , C_L connected to $V_{CC}/2$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Conditions	Value	Unit
V_{io}		0	mV
A _{vd}	$R_L = 10k\Omega$	200	V/mV
I _{CC}	No load, per operator	1.2	mA
V _{icm}		-0.2 to 3.2	V
V _{OH}	$R_L = 10k\Omega$	2.95	V
V _{OL}	$R_L = 10k\Omega$	25	mV
I _{sink}	V _O = 3V	80	mA
I _{source}	V _O = 0V	80	mA
GBP	$R_L = 600k\Omega$	4	MHz
SR	$R_L = 10k\Omega$, $C_L = 100pF$	1.3	V/µs
φm	$R_L = 600 k\Omega$	68	Degrees

TS922 Macromodel

4.3 Macromodel code

```
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS:
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS92X 1 2 3 4 5
.MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 8.125000E+00
RIN 15 16 8.125000E+00
RIS 11 15 2.238465E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 153.5u
VOFN 13 14 DC 0
IPOL 13 5 3.200000E-05
CPS 11 15 1e-9
DINN 17 13 MDTH 400E-12
VIN 17 5 -0.100000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.400000E+00
FCP 4 5 VOFP 1.865000E+02
FCN 5 4 VOFN 1.865000E+02
FIBP 2 5 VOFP 6.250000E-03
FIBN 5 1 VOFN 6.250000E-03
* GM1 STAGE **********
FGM1P 119 5 VOFP 1.1
FGM1N 119 5 VOFN 1.1
RAP 119 4 2.6E+06
RAN 119 5 2.6E+06
* GM2 STAGE *********
G2P 19 5 119 5 1.92E-02
G2N 19 5 119 4 1.92E-02
R2P 19 4 1E+07
R2N 19 5 1E+07
VINT1 500 0 5
GCONVP 500 501 119 4 19.38
VP 501 0 0
GCONVN 500 502 119 5 19.38
VN 502 0 0
```

13/22

Macromodel TS922

****** orientation isink isource ******

```
VINT2 503 0 5
FCOPY 503 504 VOUT 1
DCOPYP 504 505 MDTH 400E-9
VCOPYP 505 0 0
DCOPYN 506 504 MDTH 400E-9
VCOPYN 0 506 0
F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 0.5
F2PN 19 5 poly(2) VCOPYP VN 0 0 0 0.5
F2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 1.75
F2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 1.75
* COMPENSATION ********
CC 19 119 25p
* OUTPUT *******
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 6.250000E+02
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 6.250000E+02
VINM 5 27 5.000000E+01
VOUT 3 23 0
ROUT 23 19 6
COUT 3 5 1.300000E-10
DOP 19 25 MDTH 400E-12
VOP 4 25 1.052
DON 24 19 MDTH 400E-12
VON 24 5 1.052
.ENDS;TS92X
```

Package information TS922

Figure 17. Tape and reel specification (top view)

Note: **Device orientation**: the devices are oriented in the carrier pocket with bump number A1

TS922 Package information

5.2 DIP8 package

Figure 18. DIP8 package mechanical drawing

Table 6. DIP8 package mechanical data

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
С	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
E	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
е		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

Package information TS922

5.3 SO-8 package

Figure 19. SO-8 package mechanical drawing

Table 7. SO-8 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
Н	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	1°		8°	1°		8°
ccc			0.10			0.004

TS922 Package information

5.4 TSSOP8 package

Figure 20. TSSOP8 package mechanical drawing

Table 8. TSSOP8 package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.2			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1			0.039	

Ordering information TS922

6 Ordering information

Table 9. Order codes

Part number	Temperature range	Package	Packaging	Marking
TS922IN		DIP8	Tube	TS922IN
TS922AIN]	DIFO	Tube	TS922AIN
TS922ID TS922IDT		SO-8	Tube or	9221
TS922AID TS922AIDT	1	30-6	Tape & reel	922AI
TS922IYD TS922IYDT ⁽¹⁾	-40°C, +125°C	-40°C. +125°C SO-8 Tube or		922IY
TS922AIYD TS922AIYDT ⁽¹⁾	-40 0, +123 0	(Automotive grade)	Tape & reel	922AIY
TS922IPT	1	TSSOP8	Topo 9 rool	9221
TS922AIPT	1	155076	Tape & reel	922AI
TS922IYPT ⁽²⁾	TSSOP8 Total 8 and 1		Tana 8 maal	922IY
TS922AIYPT ⁽²⁾	1	(Automotive grade)	Tape & reel	922AY
TS922IJT/EIJT	1	Flip-chip	Tape & reel	922

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

TS922 Revision history

7 Revision history

Table 10. Document revision history

Date	Revision	Changes
1-Feb-2001	1	First release.
1-Jul-2004	2	Flip-chip package inserted in the document.
2-May-2005	3	Modifications in AMR <i>Table 1 on page 4</i> (explanation of V_{id} and V_{i} limits, ESD MM and CDM values added, R_{thja} added).
1-Aug-2005	4	PPAP references inserted in the datasheet, see <i>Table 6 on page 20</i> .
1-Mar-2006	5	TS922EIJT part number inserted in the datasheet, see Table 6 on page 20.
26-Jan-2007	Modifications in AMR <i>Table 1 on page 4</i> (R _{thjc} added), parame limits on full temperature range added in <i>Table 3 on page 6</i> ar <i>Table 4 on page 8</i> .	
12-Nov-2007	7	Added notes on ESD in AMR table. Re-formatted package information. Added notes for automotive grade in order codes table.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com