ERRATA

COMPUTER-AIDED ANALYSIS OF MECHANICAL SYSTEMS Parviz E. Nikravesh Prentice-Hall, 1988

(Corrections as of November 2014)

Address to an error is given in the first column by the page number and in the second column by a line number, or a figure number, or an equation number. For example: "line 2" means the second line from the top of the page; "line -3" means the third line from the bottom of the page; "Eq. 2.30, +2" means the second line following Eq. 2.30; Eq. 6.48, line 1 means the first line in Eq. 6.48.

Page	Line, Fig.,	Error	Correction	
10	Eq. 1.6	correct to:		
		$(r^2 + l^2 + s^2 - d^2) - 2s$	$rl\cos\phi - 2ls\cos\theta_1 + 2rs\cos(\phi + \theta_1) = 0$	
	Eq. 1.7	correct to:		
		$(r^2 + l^2 - s^2 - d^2) - 2rl\cos\phi + 2ds\cos\theta_2 = 0$		
11, 12	_	frame = l	$\operatorname{crank} = r$, $\operatorname{coupler} = d$, $\operatorname{follower} = s$,	
12	Eq. 1.12, 4 th line	$\cdots - \frac{d}{2}\sin\phi_2 = 0$	$\cdots + \frac{d}{2}\sin\phi_2 = 0$	
23	Eq. 2.30, +3	$a_{ij} = 0$	$a_{ii} = 0$	
	Eq. 2.33, +1	correct to: where I is	a 3 x 3 identity matrix. The	
25	Eq. 2.42	0	0	
28	Eq. 2.61	$\dot{\alpha}\dot{a}$	$\dot{\alpha}a$	
29	line 2	$\dots = \mathbf{c}$	= c	
30	Ex. 2.5, +4	$6x_2x_4^2$	$6x_2x_4$	
32	Eq. 2.75, -2	n-vector	3-vector	
34	Eq. 2.75, +1 Prob. 2.16	n x m matrix make the following co	3 x m matrix	
J T	$\begin{bmatrix} \cos \phi & -\sin \phi \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	$\begin{bmatrix} -0.3 \end{bmatrix} \begin{bmatrix} r - r \end{bmatrix}$	
	$\mathbf{L} = \begin{bmatrix} \cos \phi_i & \sin \phi_i \\ \cdot & \cdot \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{c}_1 = \begin{bmatrix} 1.2 \\ -0.5 \\ 0 \end{bmatrix} \mathbf{c}_2 = \begin{bmatrix} 1.2 \\ 0 \end{bmatrix} \mathbf{c}_3 = \begin{bmatrix} 1.2 \\ 0 \end{bmatrix} \mathbf{c}_4 = \begin{bmatrix} 1.2 \\ 0 \end{bmatrix} \mathbf{c}_5 $	$\begin{bmatrix} 0.5 \\ 0.9 \end{bmatrix}$ $\begin{bmatrix} \lambda_2 & \lambda_1 \\ 1 & 1 \end{bmatrix}$	
	$\mathbf{A}_i = \sin \phi_i - \cos \phi_i $	$0 \mid \mathbf{c}_1 = -0.5 \mathbf{c}_2 =$	$0.8 \mathbf{d} = y_2 - y_1$	
		1 $\begin{bmatrix} 0 \end{bmatrix}$		
42	Eq. 3.4, +5	$m = 4 \times 3 = 12$	$m = 6 \times 2 = 12$	
45	Fig. 3.9	$l_3 = 3 \text{ m}$	$l_3 = 0.3 \text{ m}$	
	Eq. a	v^{i}	\mathbf{v}^{l}	
	Eq. a footnote, line 1 line -3 Eq. 3.15, 1 st Eq. 3.15, 2 nd	$[\mathbf{u}^{i^t}, \mathbf{v}^{i^t}]$	$[\mathbf{u}^{i^{\mathrm{T}}},\mathbf{v}^{i^{\mathrm{T}}}]$	
48	line −3	$\ddot{\phi}_3 = 5.39$	$\ddot{\phi}_3 = -5.39$	
49	Eq. 3.15, 1 st	$(\cdots)_{\dot{a}}$	$\dot{\mathbf{q}}$	
	Eq. 3.15, 2 nd	$(\cdots)^{1} + (\cdots)_{a}\dot{q} + \cdots$	(\cdots) + (\cdots) _a $\dot{\mathbf{q}}$ + \cdots	
60	last equation	$\begin{bmatrix} 1 \\ 3.5 \\ -7 \\ 17 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 3.5 \\ -7 \\ -17 \end{bmatrix}$	

```
67
         Fig. 3.11
                                      infection
                                                                  inflection
69
         Ex. 3.13, +2
                                      \Phi_2
                                                                   \phi_2
         Ex. 3.13, +2
                                      \Phi_{_1}
                                                                   \phi_{\scriptscriptstyle 1}
                                      [\Phi_{\gamma},d]^{\mathrm{T}}
                                                                   [\phi_2,d]^{\mathrm{T}}
         Ex. 3.13, +7
                                      [\Phi_1]
         Ex. 3.13, +8
                                                                   [\phi_1]
                                        \Phi_1
                                                                    -\Phi_1
         Eq. 5
                                       -\Phi_2
                                                                    -Ф,
70
                                      move the thick line from before the table to below the table
         line 11
         2<sup>nd</sup> row in the table
                                      326°
                                                                   320°
103
         line 2
                                                                   \ddot{\mathbf{r}}_{i}
         line 3
                                                                  -\xi_i^P \sin \phi_i - \eta_i^P \cos \phi_i
                                      -\xi_i^P \sin\phi_i + \eta_i^P \cos\phi_i
         line –7, circled 2
                                                                  \Phi_3 \equiv \phi_1 = 0
         Eq. f, line 3
109
                                      \Phi_3 \equiv \Phi_1 = 0
                                      (y_1 - 100\sin\phi_1 - y_4)
110
         line 5
                                                                  (y_1 - y_4)
                                      (x_1 - 100\cos\phi_1 - x_4) (x_1 - x_4) replace the statement for circled 30 with:
         line 22, circled 30
                                      circled 7, circled 11, circled 21, circled 25, circled 30 = 0
         line 25, circled 33
                                      (y_1 - 100\sin\phi_1 - y_4)
                                                                  (y_1 - y_4)
                                      (x_1 - 100\cos\phi_1 - x_4) (x_1 - x_4)
                                      redundant data (it could be removed)
114
         before last parag.
127
         Sub. INPOIN, +6
                                      centroid
                                                                  origin
         Sub. SMPL, +4
                                      NG>0 and NS>0
                                                                  NG>0 or NS>0
133
141
         top line
                                      Program Expansion
                                                                  Problems
                                      Program Expansion
143
         top line
                                                                  Problems
         top line
145
                                      Program Expansion
                                                                  Problems
147
         top line
                                      Program Expansion
                                                                  Problems
149
         top line
                                      Program Expansion
                                                                  Problems
                                                                  Problems
151
         top line
                                      Program Expansion
                                      "z" is missing on the axis
154
         Fig. 6.2
155
         line 11
                                      (\vec{u})_{(z)}
                                                                   \vec{u}_{(z)}
                                      replace with the following figure
158
         Fig. 6.4
                                   (a)
                                                                              (b)
                                                                   \mathbf{e}^{\mathrm{T}}
                                      e^{\mathrm{T}}
```

160

Eq. 6.22

```
165
             -7
                                                        \mathbf{A} = \begin{bmatrix} \cdots & \cdots & -0.293 \end{bmatrix}
              -5
                                                         \mathbf{p} = [0.810, -0.029, -0.543, 0.191]^{T}
              -4
                                                                                                   \mathbf{p} = [0.810, -0.1103, -0.543, 0.191]^T
             Eq. 6.48, line 1
168
171
             Eq. b
             line 4
                                                         \cdots = \dot{a}\dot{p}
                                                        (\mathbf{s})^{P}
174
             footnote, +2
175
             Eq. 6.109, +1
                                                         \cdots + 2Gp
             last equation
176
                                                          e_{0j}
178
             Eq. 6.118, line 1
181
             PROBLEMS, -2
                                                        missing Eq. #
                                                                                                   \boldsymbol{\omega}_{i} = \boldsymbol{\omega}_{i} + \boldsymbol{\omega}_{ii}
                                                                                                                                              (6.128)
                                                        ... Eqs. 6.73, 6.54, ... Eqs. 6.73, 6.55, ...
201
             Eq. 5, +1
                                                                                                   \cdots \dot{\mathbf{G}}_{i} \dot{\mathbf{L}}_{i}^{T} \cdots (\underline{\text{correct twice}})
             Ex. 7.3, last equation \cdots \mathbf{G} \mathbf{L} \cdots
202
203
             TABLE 7.2
             col. 3, row 5
             col. 5, row 3
                                                                                                   \mathbf{s}_{i}^{\mathbf{T}}(\mathbf{h}_{j}^{B}-\mathbf{h}_{i}^{B})\cdots
                                                        -\mathbf{s}_{i}^{\mathrm{T}}(\mathbf{h}_{i}^{B}-\mathbf{h}_{i}^{B})\cdots
             col. 6, row 3
                                                                                                   \tilde{\mathbf{s}}_i (\mathbf{h}_j^B - \mathbf{h}_i^B) \cdots
                                                        -\tilde{\mathbf{s}}_{i}(\mathbf{h}_{i}^{B}-\mathbf{h}_{i}^{B})\cdots
                                                                                            \mathbf{\tilde{s}}_{i} (\mathbf{n}_{j} \\ 2\mathbf{d}^{\mathsf{T}} (\mathbf{h}_{j}^{P} - \mathbf{h}_{i}^{P}) \cdots
             col. 6, row 5
                                                        2\mathbf{d}^{\mathrm{T}}(\mathbf{h}_{i}^{P}-\mathbf{h}_{i}^{P})\cdots
             col. 6, row 7
                                                        missing caption
             top figure
206
209
             Eq. (a), -1
                                                        body i
                                                                                                   particle i
                                                                                                   \vec{\mathbf{f}}_p
                                                        f_{p}
210
             Fig. 8.2
                                                                                                   \mathbf{n}^O = \cdots
                                                         n^O = \cdots
213
             line 4
                                                         \mathbf{n} = \tilde{\mathbf{s}}^A \mathbf{f} + \tilde{\mathbf{s}}^B (-f)
                                                                                                   \mathbf{n} = \tilde{\mathbf{s}}^A \mathbf{f} + \tilde{\mathbf{s}}^B (-\mathbf{f})
             line –6
216
             Eq. i
                                                        subscript (v) for the integral is missing
219
             Eq. 8.27, line 3
                                                                                                   \mathbf{h}_i = [\dot{\mathbf{r}}^T, \boldsymbol{\omega}^T]_i^T
223
                                                         \mathbf{h}_i = [\dot{\mathbf{r}}^T, \boldsymbol{\omega}']_i^T
             parag. 2, +6
                                                                                                   \mathbf{S}_{i}^{P} = \mathbf{A}_{i} \mathbf{S}_{i}^{P}
                                                        \mathbf{s}^P = \mathbf{A}_i \mathbf{s}^{P}_i
229
             line −5
250
             Prob. 9.7 (c)
                                                         ... 0.05, determine ... ... 0.05 (other velocities are zero),
                                                        determine ...
             Prob. 9.7
                                                         add the following:
                                                        (e) Find the accelerations in this configuration.
                                                                                                   (let \dot{x}_1 = \dot{y}_1 = \dot{y}_2 = 0)
             Prob. 9.8 (d)
                                                        add to the end:
```

256 line 20 correct to: C....N must be greater than or equal to M 257 M10, Length N + M $\mathbf{M} \quad \Phi_{\mathbf{q}}^{\mathrm{T}}$... Ф M10, Description ..., ETA, P-J'... ..., Sec. 5.1.1 260 line 9 ..., ETA-P-J'... **Sub. TRANSF** ..., Sec. 5.1.2 Following Sub. TRIG, before Sub. MASS ... 262 missing statement for Sub. MASS (add the following:)

Subroutine MASS. This subroutine generates the square matrix to the left of Eq. 10.5 containing the mass and the moment of inertia for each body, the

Jacobian matrix and its transpose.

Subroutine MASS is as follows:

263	Sub. FUNCT	Sec. 5.2.3	Sec. 5.1.3
	Sub. RVLT	Sec. 5.2.3	Sec. 5.1.3
	Sub. TRAN Sub. SMPL	Sec. 5.2.3 Sec. 5.2.3	Sec. 5.1.3 Sec. 5.1.3
269	line 6 data	1,2,0,-1,0	1,2,0,0,-1,0
275	line 14	2,3,38	2,3,38,0,0
	line –3	3.669.2	3669.2
	Prob. 10.24, line 3	, as can that	, as that
286	last line	axial	radial
289	line –7	n	n ',
	line –5	$\vec{\mathbf{n}}_{i}$	$\mathbf{n'}_{i}^{'}$
200			$\frac{\partial (\mathbf{A}_{i}\mathbf{s'}_{i})}{\partial \mathbf{p}_{i}}$
290	Eq. (b) line 1	-:	-:
	line −5	$\mathbf{p}_i^T \mathbf{p}_i^{-1} = 0$	$\mathbf{p}_i^T \mathbf{p}_i - 1 = 0$
296	Eq. 11.40	$\tilde{\boldsymbol{\omega}}_{1}^{\prime}\mathbf{J}_{1}^{\prime}\boldsymbol{\omega}_{i}^{\prime}$	$\widetilde{\boldsymbol{\omega}}_{1}^{\prime}\widetilde{\mathbf{J}}_{1}^{\prime}\boldsymbol{\omega}_{1}^{\prime}$
299	Eq. 3	$\cdots + (\dot{\mathbf{s}}_{j}^{T} \mathbf{A}_{i} \tilde{\mathbf{s}}'_{i} - \mathbf{s}_{j}^{T} \dot{\mathbf{A}}_{i} \tilde{\mathbf{s}}'_{i})$	$\boldsymbol{\omega}'_{i} + \cdots$
			$\cdots + (-\dot{\mathbf{s}}_{j}^{T}\mathbf{A}_{i}\tilde{\mathbf{s}}_{i}^{T} - \mathbf{s}_{j}^{T}\dot{\mathbf{A}}_{i}\tilde{\mathbf{s}}_{i}^{T})\boldsymbol{\omega}_{i}^{T} + \cdots$
	following Eq. 4	a thick line is needed	
	parag. following Eq. 4	the paragraph should not be indented	
	TABLE 11.1	me paragraph should	not be indented
		$-2\mathbf{d}^T\mathbf{d} + \cdots$	$-2\dot{\mathbf{d}}^T\dot{\mathbf{d}}+\cdots$
	,		-2 a a + ···
		remove the thick line	Eg. 11.16
200	Prob. 11.3	Eq. 11.6	1
300	Fig. P.11.7	the vecor for n ₂ should	
302	Eq. 12.5	$\varepsilon^i = y(t^i) - y^i) $	•
311	Eq. 12.24	$\Delta \mathbf{y}^{i+1} = \left(\mathbf{I} - b_{-1} \frac{\dots}{\dots}\right)^{-1}.$	$\cdots \qquad \Delta \mathbf{y}^{i+1} = -\left(\mathbf{I} - h b_{-1} \frac{\cdots}{\cdots}\right)^{-1} \cdots$
314	line before footnote	time t° to a final	\dots time t^0 to a final \dots
316	line 7	Method 1.	Method I.
333	parag. 3, +3	the for of	the form of
334	line (a.3)	$\ddot{ heta}$	$\dot{ heta}$

352	Eq. A.7	$\cos \phi_1 \cos \phi_3$	$\cos \phi_2 \cos \phi_3$
357	Ref. 15	Wehave	Wehage
368	Sparse matrix	100, 144	110, 144