8. DENEY RAPORU

Adı ve Soyadı: Egemen Özden

Öğrenci No: 2025 3074

Bölüm: Bilgiseyer Micherdisligi Sube No: 22

Deneyden Önce Yapılanlar:

Deneyin adı: ...Ozdicenç.

Deneyin amacı: Bir iletzenin özdirencini belirlemek

Araç-gereç: Deney seti, hesop makinesi mikrometre, grafik kağıdı, kursun kalen ve silgi

Kılavuzda verilen deneyle ilgili teorik bilgi ve deneyin yapılışı bölümlerine çalışılmıştır.

Deney Saatinde Yapılanlar:

Aşağıdaki değerler (telin uzunluğuna göre direnç değerleri) ölçülmüştür.

$L_1 = $ cm	$R_1 =Q$, Ω
$L_2 =2$ cm	$R_2 =Q_1 \cdot 2 \Omega$
$L_3 = $ cm	$R_3 =0, 5. \Omega$
$L_4 = G_{}$ cm	$R_4 =0, .6 \Omega$
$L_5 =5$ cm	$R_5 =$ Ω

Direncin uzunluğa göre R(L) grafiği çizilmiş ve en iyi doğrunun eğimi alınmıştır:

$$m = 0.117$$
 Ω/cm

Bu eğim değeri ile telin cetvelinin üzerinde yazan değeri (Cr-Ni için 5,8 Ω/m) karşılaştırılmıştır.

Telin yarıçapı: r = 0,05.... cm olarak ölçülmüş

Kesit alanı: $A = \pi r^2 = 0.007$... cm² şeklinde hesaplanmıştır.

Telin özdirencini hem: $\rho = m.A = 0.008$ $\Omega \cdot \text{cm}$ hem de: $\rho = 5.8 \times A = 0.045$ $\Omega \cdot \text{cm}$ şeklinde hesaplanmış ve bu iki değer karşılaştırılmıştır.

En iyi doğrunun eğimi: $m = \frac{(R_2 - R_1)}{(L_2 - L_1)} \rightarrow m = \frac{O_1 M^2}{M^2} \Omega/\text{cm}$

Deney Hakkında Yorum ve Düşünceler: En iyi dağırının eğimini bulup verilen deneylerle carptığımızda forməlle arası hata payının oranının fazla olduğunu gərdük.

