

STM32F103x6

STM32F103x8 STM32F103xB

增强型,32位基于ARM核心的带闪存、USB、CAN的微控制器7个16位定时器、2个ADC、9个通信接口

功能

■ 内核: ARM 32位的Cortex™-M3 CPU

- 72MHz, 1.25DMips/MHz (Dhrystone2.1), 0等待周期的存储器
- 单周期乘法和硬件除法

■ 存储器

- 从32K字节至128K字节的闪存程序存储器
- 从6K字节至20K字节的SRAM

■ 时钟、复位和电源管理

- 2.0至3.6伏供电和I/O管脚
- 上电/断电复位(POR/PDR)、可编程电压监 测器(PVD)
- 内嵌4至16MHz高速晶体振荡器
- 内嵌经出厂调校的8MHz的RC振荡器
- 内嵌40kHz的RC振荡器
- PLL供应CPU时钟
- 带校准功能的32kHz RTC振荡器

■ 低功耗

- 睡眠、停机和待机模式
- VBAT为RTC和后备寄存器供电

■ 2个12位模数转换器,1us转换时间(16通道)

- 转换范围: 0至3.6V
- 双采样和保持功能
- 温度传感器

DMA

- 7通道DMA控制器
- 支持的外设:定时器、ADC、SPI、I2C和USART

■ 多达80个快速I/O口

- 26/37/51/80个多功能双向5V兼容的I/O口
- 所有I/O口可以映像到16个外部中断

■ 调试模式

- 串行线调试(SWD)和JTAG接口

■ 多达7个定时器

- 多达3个16位定时器,每个定时器有多达4 个用于输入捕获/输出比较/PWM或脉冲计数 的通道
- 16位6通道高级控制定时器
- -多达 6 路 PWM 输出
- -死区控制、边缘/中间对齐波形和紧急制动
- 2个看门狗定时器(独立的和窗口型的)
- 系统时间定时器: 24位自减型

■ 多达9个通信接口

- 多达2个I2C接口(SMBus/PMBus)
- 多达3个USART接口,支持ISO7816, LIN, IrDA接口和调制解调控制
- 多达2个SPI同步串行接口(18兆位/秒)
- CAN 接口(2.0B 主动)
- USB 2.0 全速接口

■ ECOPACK®封装(兼容RoHS)

表一 器件列表

参考	基本型号
STM32F103x6	STM32F103C6, STM32F103R6,
	STM32F103T6
STM32F103x8	STM32F103C8, STM32F103R8,
	STM32F103V8, STM32F103T8
STM32F103xB	STM32F103RB, STM32F103VB,
	STM32F103C8

1	1 介绍	3
2	2 规格说明	3
	2.1 器件一览	4
	2.2 概述	5
3	3 管脚定义	11
4	4 存储器映像	19
5	5 电气特性	20
6	6 封装参数	20
7	7 订货代码	20
	7.1 后续的产品系列	21
8	8 版本历史	21
附表	附录A 重要提示	22
	A.1 PD0和PD1在输出模式下	22
	A.2 ADC自动注入通道	22
	A.3 ADC的混合同步注入+交替模式	22
	A.4 ADC通道0	22

1 介绍

本文给出了STM32F103xx增强型的订购信息和器件的机械特性。

有关闪存存储器的编程、擦除和保护等信息,请参考《STM32F10x闪存编程参考手册》。

有关Cortex-M3的信息,请参考《Cortex-M3技术参考手册》

2 规格说明

STM32F103xx增强型系列使用高性能的ARM Cortex-M3 32位的RISC内核,工作频率为72MHz,内置高速存储器(高达128K字节的闪存和20K字节的SRAM),丰富的增强I/O端口和联接到两条APB总线的外设。所有型号的器件都包含2个12位的ADC、3个通用16位定时器和一个PWM定时器,还包含标准和先进的通信接口:多达2个I2C和SPI、3个USART、一个USB和一个CAN。

STM32F103xx增强型系列工作于-40°C至+105°C的温度范围,供电电压2.0V至3.6V,一系列的省电模式保证低功耗应用的要求。

完整的STM32F103xx增强型系列产品包括从36脚至100脚的五种不同封装形式;根据不同的封装形式,器件中的外设配置不尽相同。下面给出了该系列产品中所有外设的基本介绍。

这些丰富的外设配置, 使得STM32F103xx增强型微控制器适合于多种应用场合:

- 电机驱动和应用控制
- 医疗和手持设备
- PC外设和GPS平台
- 工业应用:可编程控制器、变频器、打印机和扫描仪
- 警报系统,视频对讲,和暖气通风空调系统

图一给出了该产品系列的框图。

2007年11月 第四版 第3页

2.1 器件一览

表二 器件功能和配置(STM32F103xx增强型)

外	外设		7103Tx	S'	ГМ32F103	BCx	S	TM32F103R	STM32F103Vx				
闪存()	闪存(K字节)		64	32	64	128	32	64 128		64	128		
RAM (K	(字节)	10	20	10	20	20	10	20)	20			
之 叶现	通用	2	3	2	3	3	2	3		3			
定时器	高级	1			1			1]	l		
	SPI	1	1	1	2	2	1	2		6	2		
	I^2C	1	1	1	2	2	1	2		6	2		
通信	USART	2	2	2	3	3	2	3		3			
	USB	1	1	1	1	1	1	1	1		1		
	CAN	1	1	1	1	1	1	1		1			
通用I	/0端口	2	6		37			51		8	0		
12位同	列步ADC	2 2 2 10通道 10通道 16通道											
CPU	CPU频率		72MHz										
工作电压						2. 0 =	€3.6V						
工作	工作温度				-40至	E+85° C /	/ -40至+	+105° C					
	装	VFQF	PN36		LQFP48		LQFP64			LQFP BGA			

2007年11月 第四版 第4页

2.2 概述

ARM®的Cortex™-M3核心并内嵌闪存和SRAM

ARM的Cortex-M3处理器是最新一代的嵌入式ARM处理器,它为实现MCU的需要提供了低成本的平台、缩减的管脚数目、降低的系统功耗,同时提供卓越的计算性能和先进的中断系统响应。

ARM的Cortex-M3是32位的RISC处理器,提供额外的代码效率,在通常8和16位系统的存储空间上得到了ARM核心的高性能。

STM32F103xx增强型系列拥有内置的ARM核心,因此它与所有的ARM工具和软件兼容。

图一是该系列产品的功能框图。

内置闪存存储器

● 高达128K字节的内置闪存存储器,用于存放程序和数据。

内置SRAM

多达20K字节的内置SRAM, CPU能以0等待周期访问(读/写)。

嵌套的向量式中断控制器(NVIC)

STM32F103xx增强型内置嵌套的向量式中断控制器,能够处理多达43个可屏蔽中断通道(不包括16个Cortex-M3的中断线)和16个优先级。

- 紧耦合的NVIC能够达到低延迟的中断响应处理
- 中断向量入口地址直接进入核心
- 紧耦合的NVIC接口
- 允许中断的早期处理
- 处理*晚到的*较高优先级中断
- 支持中断尾部链接功能
- 自动保存处理器状态
- 中断返回时自动恢复,无需额外指令开销

该模块以最小的中断延迟提供灵活的中断管理功能。

外部中断/事件控制器(EXTI)

外部中断/事件控制器包含19个边沿检测器,用于产生中断/事件请求。

每个中断线都可以独立地配置它的触发事件(上升沿或下降沿或双边沿),能够单独地被屏蔽;有一个挂起寄存器维持所有中断请求的状态。EXTI可以检测到脉冲宽度小于内部APB2的时钟周期。多达80个通用I/O口连接到16个外部中断线。

时钟和启动

系统时钟的选择是在启动时进行,复位时内部8MHz的RC振荡器被选为默认的CPU时钟,随后可以选择外部的、具失效监控的4~16MHz时钟;当外部时钟失效时,它将被隔离,同时会产生相应的中断。同样,在需要时可以采取对PLL时钟完全的中断管理(如当一个外接的振荡器失效时)。

具有多个预分频器用于配置AHB的频率、高速APB(APB2)和低速APB(APB1)区域。AHB和高速APB的最高频率是72MHz,低速APB的最高频率为36MHz。

自举模式

在启动时,自举管脚被用于选择三种自举模式中的一种:

2007年11月 第四版 第5页

- 从用户闪存自举
- 从系统存储器自举
- 从SRAM自举

自举加载器存放于系统存储器中,可以通过USART1对闪存重新编程。详细信息请参考AN2606。

供电方案

- $V_{DD} = 2.0 \pm 3.6 \text{V}$: V_{DD} 管脚提供I/O 管脚和内部调压器的供电。
- V_{SSA}, V_{DDA} = 2.0至3.6V: 为ADC、复位模块、RC振荡器和PLL的模拟部分提供供电。使用ADC时, V_{DD}不得小于2.4V。
- $V_{BAT} = 1.8 \pm 3.6 V$: 当(通过电源开关)关闭 V_{DD} 时,为RTC、外部32kHz振荡器和后备寄存器供电。

供电监控器

本产品内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电超过2V时工作;当 V_{DD} 低于设定的阀值($V_{POR/PDR}$)时,置器件于复位状态,而不必使用外部复位电路。

器件中还有一个可编程电压监测器(PVD),它监视 V_{DD} 供电并与阀值 V_{PVD} 比较,当 V_{DD} 低于或高于阀值 V_{PVD} 时将产生中断,中断处理程序可以发出警告信息或将微控制器转入安全模式。需要通过程序开启PVD。

有关V_{POR/PDR}和V_{PVD}数值,请参考表九"内置复位和电源控制模块特性"。

电压调压器

调压器有三个操作模式: 主模式(MR)、低功耗模式(LPR)和关断模式

- 主模式(MR)用于正常的运行操作
- 低功耗模式(LPR)用于CPU的停机模式
- 关断模式用于CPU的待机模式:调压器的输出为高阻状态,内核电路的供电切断,调压器处于零消耗状态(但寄存器和SRAM的内容将丢失)

该调压器在复位后始终处于工作状态,在待机模式下关闭处于高阻输出。

低功耗模式

STM32F103xx增强型支持三种低功耗模式,可以在要求低功耗、短启动时间和多种唤醒事件之间达到最佳的平衡。

● 睡眠模式

在睡眠模式,只有CPU停止,所有外设处于工作状态并可在发生中断/事件时唤醒CPU。

● 停机模式

在保持SRAM和寄存器内容不丢失的情况下,停机模式可以达到最低的电能消耗。在停机模式下,停止所有内部1.8V部分的供电,PLL、HSI和HSE的RC振荡器被关闭,调压器可以被置于普通模式或低功耗模式。

可以通过任一配置成EXTI的信号把微控制器从停机模式中唤醒,EXTI信号可以是16个外部I/O口之一、PVD的输出、RTC闹钟或USB的唤醒信号。

● 待机模式

在待机模式下可以达到最低的电能消耗。内部的电压调压器被关闭,因此所有内部1.8V部分的供电被切断; PLL、HSI和HSE的RC振荡器也被关闭; 进入待机模式后, SRAM和寄存器的内容将消失,但后备寄存器的内容仍然保留,待机电路仍工作。

从待机模式退出的条件是: NRST上的外部复位信号、IWDG复位、WKUP管脚上的一个上升 边沿或RTC的闹钟到时。 注: 在进入停机或待机模式时,RTC、IWDG和对应的时钟不会被停止。

DMA

灵活的7路通用DMA可以管理存储器到存储器、设备到存储器和存储器到设备的数据传输; DMA控制器支持环形缓冲区的管理,避免了控制器传输到达缓冲区结尾时所产生的中断。

每个通道都有专门的硬件DMA请求逻辑,同时可以由软件触发每个通道; 传输的长度、传输的源地址和目标地址都可以通过软件单独设置。

DMA可以用于主要的外设: SPI、I2C、USART、通用和高级定时器TIMx和ADC。

RTC(实时时钟)和后备寄存器

RTC和后备寄存器通过一个开关供电,在 V_{DD} 有效时该开关选择VDD供电,否则由 V_{BAT} 管脚供电。后备寄存器(10个16位的寄存器)可以用于在 V_{DD} 消失时保存数据。

实时时钟具有一组连续运行的计数器,可以通过适当的软件提供日历时钟功能,还具有闹钟中断和阶段性中断功能。RTC的驱动时钟可以是一个使用外部晶体的32.768kHz的振荡器、内部低功耗RC振荡器或高速的外部时钟经128分频。内部低功耗RC振荡器的典型频率为32kHz。为补偿天然晶体的偏差,RTC的校准是通过输出一个512Hz的信号进行。RTC具有一个32位的可编程计数器,使用比较寄存器可以产生闹钟信号。有一个20位的预分频器用于时基时钟,默认情况下时钟为32.768kHz时它将产生一个1秒长的时间基准。

独立的看门狗

独立的看门狗是基于一个12位的递减计数器和一个8位的预分频器,它由一个独立的32kHz的内部RC振荡器提供时钟,因为这个RC振荡器独立于主时钟,所以它可运行于停机和待机模式。它可以被当成看门狗用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选择字节可以配置成是软件看门狗或硬件看门狗。在调试模式,计数器可以被冻结。

窗口看门狗

窗口看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生问题时复位整个系统。它由主时钟驱动,具有早期预警中断功能;在调试模式,计数器可以被冻结。

系统时基定时器

这个定时器是专用于操作系统,也可当成一个标准的递减计数器。它具有下述特性:

- 24位的递减计数器
- 重加载功能
- 当计数器为0时能产生一个可屏蔽中断
- 可编程时钟源

通用定时器(TIMx)

STM32F103xx增强型系列产品中内置了多达3个同步的标准定时器。每个定时器都有一个16位的自动加载递加/递减计数器、一个16位的预分频器和4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单脉冲模式输出,在最大的封装配置中可提供最多12个输入捕获、输出比较或PWM通道。它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。

在调试模式下, 计数器可以被冻结。

任一标准定时器都能用于产生PWM输出。每个定时器都有独立的DMA请求机制。

2007年11月 第四版 第7页

高级控制定时器(TIM1)

高级控制定时器(TIM1)可以被看成是一个分配到6个通道的三相PWM发生器,它还可以被当成一个完整的通用定时器。四个独立的通道可以用于:

- 输入捕获
- 输出比较
- 产生PWM(边缘或中心对齐模式)
- 单脉冲输出
- 反相PWM输出,具程序可控的死区插入功能

配置为16位标准定时器时,它与TIMx定时器具有相同的功能。配置为16位PWM发生器时,它具有全调制能力(0~100%)。

在调试模式下, 计数器可以被冻结。

很多功能都与标准的TIM定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与TIM定时器协同操作,提供同步或事件链接功能。

I²C总线

多达2个I2C总线接口,能够工作于多主和从模式,支持标准和快速模式。

它们支持双从地址寻址(只有7位)和主模式下的7/10位寻址。内置了硬件CRC发生器/校验器。

它们可以使用DMA操作并支持SM总线2.0版/PM总线

通用同步/异步接受发送器(USART)

其中一个USART接口通信速率可达4.5兆位/秒,其他USART接口通信速率可达2.25兆位/秒。接口具有硬件的CTS和RTS信号管理、支持IrDA的 SIR ENDEC、与ISO7816兼容并具有LIN主/从功能。

USART接口可以使用DMA操作。

串行外设接口(SPI)

多达2个SPI接口,在从或主模式下,全双工和半双工的通信速率可达18兆位/秒。3位的预分频器可产生8种主模式频率,可配置成每帧8位或16位。硬件的CRC产生/校验支持基本的SD卡和MMC模式。

2个SPI接口都可以使用DMA操作。

控制器区域网络(CAN)

CAN接口兼容规范2.0A和2.0B (主动), 位速率达1兆位/秒。它可以接收和发送11位标识符的标准帧, 也接收和发送29位标识符的扩展帧。具有2个接收FIFOs, 3级14个可调节的滤波器。

通用串行总线(USB)

STM32F103xx增强型系列产品内嵌USB设备控制器,遵循全速USB设备(12兆位/秒)标准,端点可由软件配置,具有待机/恢复功能。USB专用的48MHz时钟由内部主PLL直接产生。

通用输入输出接口(GPIO)

每个GPIO管脚都可以由软件配置成输出(推拉或开路)、输入(带或不带上拉或下拉)或其它的外设功能口。多数GPIO管脚都与数字或模拟的外设共用。所有的GPIO管脚都有大电流通过能力。

在需要的情况下,I/O管脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入I/O寄存器。

在APB2上的I/O脚可达18MHz的翻转速度。

2007年11月 第四版 第8页

ADC(模拟/数字转换器)

STM32F103xx增强型产品内嵌2个12位的模拟/数字转换器(ADC),每个ADC有多达16个外部通道,可以实现单次或扫描转换。在扫描模式下,转换在选定的一组模拟输入上自动进行。

ADC接口上额外的逻辑功能允许:

- 同时采样和保持
- 交叉采样和保持
- 单次采样

ADC可以使用DMA操作。

模拟看门狗功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀值时,将产生中断。

由标准定时器(TIMx)和高级控制定时器(TIM1)产生的事件,可以分别内部级联到ADC的开始触发、外部触发和DMA触发,以使应用程序能同步AD转换和时钟。

温度传感器

温度传感器产生一个随温度线性变化的电压,转换范围在2V < VDDA < 3.6V之间。温度传感器在内部被连接到ADC12 IN16的输入通道上,用于将传感器的输出转换到数字数值。

串行线JTAG调试口(SWJ-DP)

内嵌ARM的SWJ-DP接口和JTAG接口,JTAG的TMS和TCK信号分别与SWDIO和SWCLK共用管脚,TMS脚上的一个特殊的信号序列用于在JTAG-DP和SWJ-DP间切换。

2007年11月 第四版 第9页

图一 STM32F103xx增强型模块框图

- 1. AF: 可作为外设功能脚的I/O口
- 2. 工作温度: -40°C至105°C (结温达125°C)

3 管脚定义

图二 STM32F103xx增强型VFQFPN36管脚

2007年11月 第四版 第11页

图三 STM32F103xx增强型LQFP100管脚

2007年11月 第四版 第12页

图四 STM32F103xx增强型LQFP64管脚

图五 STM32F103xx增强型LQFP48管脚

2007年11月 第四版 第13页

图六 STM32F103xx增强型BGA100管脚

	1	2	3	4	5	6	7	8	9	10
Α	∳C14-\ O€C32_IN _T	/PC13-) IAMPER-RTI	c (PE2)	(PB9)	(PB7)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	,PC15-, OSC32_QUT	(V _{BAT})	(PE3)	(PB8)	(PB6)	(PD5)	(PD2)	(PC11)	(PC10)	(PA12)
С	osc_in	(Vss_5)	(PE4)	(PE1)	(PB5)	(PD6)	(PD3)	(PC12)	(PA9)	(PA11)
D	osc_out	(VDD_5)	(PE5)	(PEO)	воото	(PD7)	(PD4)	(PD0)	(PA8)	(PA10)
Е	(NRST)	(PCD)	(PE6)	V _{SS_4}	(V _{SS_3})	(Vss_2	(V _{SS_1})	(PD1)	(PC9)	(PC7)
F	(PCO)	(PC1)	(PC3)	(V _{DD_4})	(V _{DD_3})	(√DD_2)	V _{DD_1}	(NC)	(PC8)	(PC6)
G	(VSSA)	PÁO-WKÚP	(PA4)	(PC4)	(PB2)	(PE10)	(PE14)	(PB15)	(PD11)	(PD15)
Н	(VREF-)	(PA1)	(PA5)	(PC5)	(PE7)	(PE11)	(PE15)	(PB14)	(PD10)	(PD14)
J	(VREF+)	(PA2)	(PA6)	(PB0)	(PE8)	(PE12)	(PB10)	(PB13)	(PD9)	(PD13)
К	(V _{DDA})	(PA3)	(PA7)	(PB1)	(PE9)	(PE13)	(PB11)	(PB12)	(PD8)	(PD12)

Al16001b

2007年11月 第四版 第14页

表三 管脚定义

]	脚位	÷						П	
BGA100		LQFP64	LQFP100	VFQFPN36	管脚名称	类 型 (1)	1/0电平(2)	主功能 (复位后) (3)	默认功能	重定义功能
А3	_	_	1	_	PE2	I/0	FT	PE2	TRACECK	
В3	_	_	2	_	PE3	I/0	FT	PE3	TRACED0	
С3	_	_	3	_	PE4	I/0	FT	PE4	TRACED1	
D3	_	_	4	_	PE5	I/0	FT	PE5	TRACED2	
E3	_	_	5	-	PE6	I/0	FT	PE6	TRACED3	
B2	1	1	6	_	VBAT	S		VBAT		
A2	2	2	7	_	PC13-TAMPER- RTC(4)	I/0		PC13 (5)	TAMPER-RTC	
A1	3	3	8	_	PC14- OSC32 IN(4)	I/0		PC14(5)	OSC32_IN	
В1	4	4	9	-	PC15- OSC32 OUT (4)	I/0		PC15(5)	OSC32_OUT	
C2	_	_	10	_	Vss_5	S		VSS_5		
D2	_	_	11	_	VDD_5	S		VDD_5		
C1	5	5	12	2	OSC_IN	Ι		OSC_IN		
D1	6	6	13	3	OSC_OUT	0		OSC_OUT		
E1	7	7	14	4	NRST	I/0		NRST		
F1	_	8	15	_	PC0	I/0		PC0	ADC12_IN10	
F2	_	9	16	_	PC1	I/0		PC1	ADC12_IN11	
E2	_	10	17	_	PC2	I/0		PC2	ADC12_IN12	
F3	_	11	18	_	PC3	I/0		PC3	ADC12_IN13	
G1	8	12	19	5	VSSA	S		Vssa		
H1	_	_	20	_	Vref-	S		Vref-		
J1	_	_	21	_	V _{REF+}	S		VREF+		
K1	9	13	22	6	VDDA	S		Vdda		
G2	10	14	23	7	PAO-WKUP	I/0		PA0	WKUP/USART2_C TS(7) ADC12_INO/TIM 2 CH1 ETR(7)	
Н2	11	15	24	8	PA1	I/0		PA1	USART2_RTS(7) /ADC12_IN1/TI M2_CH2(7)	
Ј2	12	16	25	9	PA2	I/0		PA2	USART2_TX(7) / ADC12_IN2/TIM 2 CH3(7)	
K2	13	17	26	10	PA3	I/0		PA3	USART2_RX(7)/ ADC12_IN3/TIM 2 CH4(7)	
E4	-	18	27	_	Vss_4	S		Vss_4		
F4	_	19	28	_	VDD_4	S		VDD_4		

表三 管脚定义 (续)

脚位							<u></u>		可	选功能
BGA100		LQFP64	LQFP100	VFQFPN36	管脚名称	类 型 (1)	1/0电平(2)	主功能 (复位后) (3)	默认功能	重定义功能
G3	14	20	29	11	PA4	I/0		PA4	SPI1_NSS(7)/US ART2_CK(7)/ADC 12 IN4	
НЗ	15	21	30	12	PA5	I/0		PA5	SPI1_SCK(7)/AD C12 IN5	
Ј3	16	22	31	13	PA6	1/0		PA6	SPI1_MISO(7)/A DC12_IN6/TIM3_ CH1(7)	TIM1_BKIN
К3	17	23	32	14	PA7	1/0		PA7	SPI1_MOSI(7)/A DC12_IN7/TIM3_ CH2(7)	TIM1_CHIN
G4	_	24	33	_	PC4	I/0		PC4	ADC12_IN14	
H4	_	25	34	_	PC5	I/0		PC5	ADC12_IN15	
J4	18	26	35	15	PB0	1/0		PB0	ADC12_IN8/TIM3 CH3(7)	TIM1_CH2N
K4	19	27	36	16	PB1	I/0		PB1	ADC12_IN9/TIM3 _CH4(7)	TIM1_CH3N
G5	20	28	37	17	PB2/B00T1	I/0	FT	PB2/B00T1		
Н5	_	_	38	_	PE7	I/0	FT	PE7		TIM1_ETR
J5	_	_	39	_	PE8	I/0	FT	PE8		TIM1_CH1N
K5	_	_	40	_	PE9	I/0	FT	PE9		TIM1_CH1
G6	_	_	41	_	PE10	I/0	FT	PE10		TIM1_CH2N
Н6	_	_	42	_	PE11	I/0	FT	PE11		TIM1_CH2
Ј6	_	_	43	_	PE12	I/0	FT	PE12		TIM1_CH3N
К6	_	_	44	_	PE13	I/0	FT	PE13		TIM1_CH3
G7	_	_	45	_	PE14	I/0	FT	PE14		TIM1_CH4
Н7	_	_	46	_	PE15	I/0	FT	PE15		TIM1_BKIN
Ј7	21	29	47	1	PB10	I/0	FT	PB10	12C2_SCL/USART 3 TX(6)(7)	TIM2_CH3
К7	22	30	48	1	PB11	S	FT	PB11	12C2_SDA/USART 3 RX(6)(7)	TIM2_CH4
E7	23		49	18	Vss_1	S		Vss_1		
F7	24	32	50	19	VDD_1	S		VDD_1		
K8	25	33	51	-	PB12	1/0	FT	PB12	SPI2_NSS(6)/I2 C2_SMBAI(6)/US ART3_CK(6)(7)/ TIM1_BKIN(7)	
Ј8	26	34	52	-	PB13	1/0	FT	PB13	SPI2_SCK(6)/US ART3_CTS(6)(7) /TIM1_CH1N(7)	
Н8	27	35	53	-	PB14	1/0	FT	PB14	SPI2_MISO(6)/U SART3_RTS(6)(7)/TIM1_CH2N(7)	

表三 管脚定义 (续)

脚位									可:	选功能
BGA100	LQFP48	LQFP64	LQFP100	VFQFPN36	管脚名称	类型	± 申0/Ι	主功能 (复位后)	默认功能	重定义功能
G8	28	36	54	_	PB15	I/0	FT	PB15	SP12_MOSI(6)/ TIM1_CH3N(7)	
К9	_	_	55	_	PD8	I/0	FT	PD8		USART3_TX
Ј9	-	_	56	_	PD9	I/0	FT	PD9		USART3_RX
Н9	-	_	57	_	PD10	I/0	FT	PD10		USART3_CK
G9	_	_	58	_	PD11	I/0	FT	PD11		USART3_CTS
K10	1		59		PD12	I/0	FT	PD12		TIM4_CH1/ USART3 RTS
J10	_	_	60	_	PD13	I/0	FT	PD13		TIM4_CH2
H10	_	_	61	_	PD14	I/0		PD14		TIM4_CH3
G10	_	_	62	_	PD15	I/0	FT	PD15		TIM4_CH4
F10	_	37	63	_	PC6	I/0	FT	PC6		TIM3_CH1
E10	-	38	64	_	PC7	I/0	FT	PC7		TIM3_CH2
F9	_	39	65	_	PC8	I/0	FT	PC8		TIM3_CH3
Е9	-	40	66	_	PC9	I/0	FT	PC9		TIM3_CH4
D9	29	41	67	20	PA8	I/0	FT	PA8	USART1_CK/TIM1_ CH1(7)/MCO	
С9	30	42	68	21	PA9	I/0	FT	PA9	USART1_TX(7)/TI M1 CH2(7)	
D10	31	43	69	22	PA10	I/0	FT	PA10	USART1_RX(7)/TI M1 CH3(7)	
C10	32	44	70	23	PA11	I/0	FT	PA11	USART1_CTS/CANR X(7)/TIM1_CH4(7)/USBDM	
B10	33	45	71	24	PA12	I/0	FT	PA12	USART1_RTS/CANT X(7)/TIM1_ETR(7)/USBDP	
A10	34	46	72	25	PA13/JTMS/SWDIO	I/0	FT	JTMS/SWDIO	PA13	
F8	_	_	73	_				未连	接	
Е6	35	47	74	26	Vss_2	S		Vss_2		
F6	36	48	75	27	VDD_2	S		VDD_2		
A9	37	49	76	28	PA14/JTCK/SWCLK	I/0	FT	JTCK/SWCLK	PA14	
A8	38	50	77	29	PA15/JTDI	I/0	FT	JTDI	PA15	TIM2_CH1_ETR/ SPI1 NSS
В9	-	51	78	_	PC10	I/0	FT	PC10		USART3_TX
В8	_	52	79	_	PC11	I/0	FT	PC11		USART3_RX
C8	_	53	80	_	PC12	I/0	FT	PC12		USART3_CK
D8	5	5	81	2	PD0	I/0	FT	OSC_IN(8)		CANRX
E8	6	6	82	3	PD1	I/0	FT	OSC_OUT(8)		CANTX

表三 管脚定义 (续)

	脚位								可說	达 功能
BGA100	LQFP48	LQFP64	LQFP100	VFQFPN36	管脚名称	类型	本 申0/I	主功能 (复位后)	默认功能	重定义功能
В7	_	84	83	-	PD2	I/0	FT	PD2	TIM3_ETR	
C7	_	_	84	-	PD3	I/0	FT	PD3		USART2_CTS
D7	_	_	85	-	PD4	I/0	FT	PD4		USART2_RTS
В6	_	_	86	-	PD5	I/0	FT	PD5		USART2_TX
C6	_	_	87	-	PD6	I/0	FT	PD6		USART2_RX
D6	_	_	88	-	PD7	I/0	FT	PD7		USART2_CK
A7	39	55	89	30	PB3/JTD0	I/0	FT	JTD0	PB3/TRACESWO	TIM2_CH2/ SPI1 SCK
A6	40	56	90	31	PB4/JNTRST	I/0	FT	JNTRST	PB4	TIM3_CH1/ SPI1 MISO
C5	41	57	91	32	PB5	I/0		PB5	I2C1_SMBAI	TIM3_CH1/ SPI1 MOSI
В5	42	58	92	33	PB6	I/0	FT	PB6	I2C1_SCL(7)/ TIM4 CH1(6)(7)	USART1_TX
A5	43	59	93	34	PB7	I/0	FT	PB7	I2C1_SDA(7)/ TIM4 CH2(6)(7)	USART1_RX
D5	44	60	94	35	В00Т0	Ι		B00T0		
В4	45	61	95	ı	PB8	I/0	FT	PB8	TIM4_CH3(6)(7)	I2C1_SCL/ CANRX
A4	46	61	96	-	PB9	I/0	FT	PB9	TIM4_CHR(6)(7)	I2C1_SDA/ CANTX
D4	_	_	97	-	PE0	I/0	FT	PE0	TIM4_ETR(6)	
C4	_	_	98	_	PE1	I/0	FT	PE1		
E5	47	63	99	36	Vss_3	S		Vss_3		
F5	48	64	100	1	VDD_3	S		VDD_3		

- 1. I: 输入, O: 输出, S: 电源, HiZ: 高阻
- 2. FT: 兼容5V
- 3. 有些功能仅在部分型号芯片中支持。外设的标号遵循由低到高的顺序,例如某个型号的芯片内嵌1个SPI和2个 USARTS功能,这些外设分别被称为SPI1, USART1和USART2。具体信息请参考表2。
- 4. PC13, PC14和PC15引脚通过电源开关进行供电,因此这三个引脚作为输出引脚时有以下限制:

作为输出脚时只能工作在2MHz模式下

最大驱动负载为30pF

同一时间, 三个引脚中只有一个引脚能作为输出引脚。

- 5. 这些引脚在备份区域第一次上电时处于主功能状态下,之后即使复位,这些引脚的状态仍由备份区域寄存器控制(这些寄存器不会被复位)。 关于如何控制这些IO口的具体信息,请参考STM32F10xxx参考手册的电池备份区域和BKP寄存器的相关章节。
- 6. 仅在内嵌大等于64K Flash的型号中支持此类功能。
- 7. 此类复用功能能够由软件配置到其他引脚上,详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。
- 8. VFQFPN36封装的2号,3号引脚和LQFP48,LQFP64封装的5号,6号引脚在芯片复位后默认配置为OSC_IN和OSC_OUT功能脚。软件可以重新设置这两个引脚为PD0和PD1功能脚。但对于LQFP100封装,由于PD0和PD1为固有的功能脚,因此没有必要再由软件进行设置。更多详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。PD0和PD1作为输出引脚只能工作在50MHz模式下。

2007年11月 第四版 第18页

4 存储器映像

图七 存储器图

5 电气特性

请参考英文版数据手册

6 封装参数

请参考英文版数据手册

7 订货代码

订货代码信息图示

例如:

xxx代表编程号

TR代表磁带式包装

关于更多的选项列表和其他相关信息,请与ST的销售处联络。

7.1 后续的产品系列

后续的STM32F103xx增强型系列产品将会有更广泛的型号选择,芯片将会有更大的封装尺寸并内嵌多达512KB的Flash和64KB的SRAM。同时,后续产品会提供可变静态存储控制器(FSMC),SDIO,I2S,DAC,更多的定时器和USARTS接口功能。

8 版本历史

请参考英文版数据手册

2007年11月 第四版 第21页

附录A 重要提示

附录所列的提示,仅对STM32F103xx增强型系列芯片的Z版本有效,关于芯片版本号的具体信息,请参考STM32F10xxx参考手册的20.6.1章节。

A.1 PDO和PD1在输出模式下

由于PD0和PD1仅工作在50MHz模式下,因此这两个引脚在用作输出模式时是限制的。

A.2 ADC自动注入通道

当ADC时钟使用4或8的预分频时,从普通模式转到注入转换时会自动插入一个ADC时钟的延迟,当ADC使用2预分频的时钟时,插入的延迟为2个ADC时钟。

A.3 ADC的混合同步注入+交替模式

当ADC使用4预分频的时钟时,交替采样的时间间隔并不平均,也就是说采样的间隔并不是标准的7个ADC时钟,而是8个ADC时钟和6个ADC时钟交替。

A.4 ADC通道0

当 ADC 处于注入触发模式时,在某些特殊情况下,ADC 通道 0 会产生一个低幅度的脉冲尖峰信号。

此脉冲由内部耦合器产生,与正在使用哪个 ADC 注入通道无关,在普通模式和注入模式切换时产生,并同步到注入序列的开头。

此脉冲的幅度小于 150mV,持续时间的典型值为 10ns。当数字输入和输出信号的负载 低于 $5k\Omega$ 时,不会产生影响。

0

2007年11月 第四版 第22页