First Sets

Dr. Mattox Beckman

Illinois Institute of Technology Department of Computer Science

Objectives

- Be able to explain the purpose of a first set.
- Be able to compute the first set.

The Problem

- Given a grammar for a language *L*, how can we recognize a sentence in *L*?
- Solution: Divide and Conquer: Given a symbol *E*...
 - What symbols indicate that the symbol *E* is just starting? (First Set)
 - What symbols should we expect to see after we have finished parsing an E?

Misleadingly simple example:
$$S \rightarrow xEy$$
 First $(E) = \{z, q\}$ $E \rightarrow zE$ Follow $(E) = \{y\}$ $E \rightarrow q$

• Important because a parser can see only a few tokens at once.

Algorithm

We can compute the FIRST set by a simple iterative algorithm. For each symbol *X*.

- if *X* is a terminal, then $First(X) = \{X\}$
- ② if there is a production $X \to \epsilon$, then add ϵ to First(X).
- **1** if there is a production $X \to Y_1 Y_2 \cdots Y_n$, then add $First(Y_1 Y_2 \cdots Y_n)$ to First(X):
 - If $First(Y_1)$ does not contain ϵ , then $First(Y_1Y_2\cdots Y_n)=First(Y_1)$.
 - Otherwise, $First(Y_1Y_2\cdots Y_n) = First(Y_1)/\epsilon \cup First(Y_2\cdots Y_n)$
 - If all of $Y_1, Y_2, \dots Y_n$ have ϵ then add ϵ to First(X).

Dr. Mattox Beckman (IIT)

Diagram

$$X \rightarrow Y_0 Y_1 Y_2$$

- if there is a production $X \to Y_1 Y_2 \cdots Y_n$, then add $First(Y_1 Y_2 \cdots Y_n)$ to First(X):
 - If $First(Y_1)$ does not contain ϵ , then $First(Y_1Y_2\cdots Y_n)=First(Y_1)$.
 - Otherwise, $First(Y_1Y_2\cdots Y_n) = First(Y_1)/\epsilon \cup First(Y_2\cdots Y_n)$
 - If all of $Y_1, Y_2, \dots Y_n$ have ϵ then add ϵ to First(X).

4□▶4圖▶4분▶ 분 9Q@

Small Examples

Example 1

$$S \rightarrow x A B$$

First set of S is $\{x\}$

Example 3

$$B \rightarrow A q$$

$$B \rightarrow r$$

First set of *B* is $\{y, z, q, r\}$

Example 2

$$A \rightarrow \epsilon$$

$$A \rightarrow y$$

$$A \rightarrow z q$$

First set of *A* is $\{y, z, \epsilon\}$

Example 4

$$C \rightarrow A A$$

$$C \rightarrow B$$

First set of *C* is $\{y, z, q, r, \epsilon\}$

Grammar

$$\begin{split} S &\rightarrow \text{ if } E \text{ then } S \,; \\ S &\rightarrow \text{ print } E; \\ E &\rightarrow E + E \\ E &\rightarrow P \text{ id} \\ P &\rightarrow * P \\ P &\rightarrow \epsilon \end{split}$$

Result

Action

Step 1: Create a list of symbols.

Grammar

$$S \rightarrow \text{if } E \text{ then } S \; ; \Leftarrow S \rightarrow \text{print } E ; \Leftarrow E \rightarrow E + E$$
 $E \rightarrow P \text{ id}$
 $P \rightarrow * P \Leftarrow P \rightarrow \epsilon \Leftarrow E \rightarrow E$

Result

$$S=\{if, print\}$$

 $E=\{\}$
 $P=\{\epsilon, *\}$

Action

Step 2: Add terminals starting productions, and all ϵ .

Grammar

$$S
ightarrow$$
 if E then S ; $S
ightarrow$ print E ; $E
ightarrow E + E$ $E
ightarrow P$ id $ightharpoonup P
ightarrow *P$ $P
ightarrow \epsilon$

Result

$$S=\{if, print \}$$

$$E=\{*, id\}$$

$$P=\{\epsilon, *\}$$

Action

Step 3: Check productions. Add *First*(*P*id) to *First*(*E*).

Grammar

$$S o ext{if } E ext{ then } S ext{;}$$
 $S o ext{print } E ext{;}$
 $E o E + E \Leftarrow$
 $E o P ext{id}$
 $P o * P$
 $P o \epsilon$

Result

$$S=\{if, print\}$$

 $E=\{*, id\}$
 $P=\{\epsilon, *\}$

Action

Step 4: Check productions: $E \rightarrow E + E$ adds nothing. We're done.

Grammar

 $S \rightarrow Ax$

 $S \to By$

 $S \rightarrow z$

 $A \rightarrow 1CB$

A
ightarrow 2B

B
ightarrow 3B

 $B \to C$

 $C \rightarrow 4$ $C \rightarrow \epsilon$

Result

 $S = {}$

A={}

 $B = {}$

 $C={}$

Action

Create a chart.

Grammar

$$S \to Ax$$

$$S \to By$$

$$S \rightarrow z \Leftarrow$$

$$A \rightarrow 1CB \Leftarrow$$

$$A \rightarrow 2B \Leftarrow$$

$$B o 3B \Leftarrow$$

$$B \to C$$

$$C \rightarrow 4 \Leftarrow$$

$$C \rightarrow \epsilon \Leftarrow$$

Result

$$S = \{ z \}$$

$$A = \{ 1, 2 \}$$

$$B = {3}$$

$$C = \{ \epsilon, 4 \}$$

Action

Add initial terminals and ϵ s.

Grammar

$$S \rightarrow Ax \Leftarrow$$

$$S \to By$$

$$S \to \mathsf{z}$$

$$A \rightarrow 1CB$$

$$A \rightarrow 2B$$

$$B \rightarrow 3B$$

$$B \rightarrow C$$

$$C \rightarrow 4$$

$$C \rightarrow \epsilon$$

Result

$$S = \{z, 1, 2\}$$

$$B = {3}$$

$$C = {\epsilon, 4}$$

Action

Add First(Ax) to First(S).

Grammar

$$S \rightarrow Ax$$

$$S \rightarrow By \Leftarrow$$

$$S \rightarrow z$$

$$A \rightarrow 1CB$$

$$A \rightarrow 2B$$

$$B \rightarrow 3B$$

$$B \rightarrow C$$

$$C \rightarrow 4$$

Result

S ={z, 1, 2, 3}
A={1, 2}
B={3}
C={
$$\epsilon$$
, 4}

Action

 $C \rightarrow \epsilon$

Add First(By) to First(S). Note that there is still more to be added to First(B)! We will have to revisit this step later.

Grammar

$$S \rightarrow Ax$$

$$S \rightarrow By$$

$$S \rightarrow z$$

$$A \rightarrow 1CB$$

$$A \rightarrow 2B$$

$$B \rightarrow C \Leftarrow$$

$$C \rightarrow 4$$

$$C \rightarrow \epsilon$$

Result

$$S = \{z, 1, 2, 3\}$$

$$A=\{1, 2\}$$

$$B = \{3, \mathbf{4}, \boldsymbol{\epsilon}\}$$

$$C = \{\epsilon, \, 4\}$$

Action

Add First(C) to First(B). At this point we should iterate again to see if anything changes.

Grammar

$$S \rightarrow Ax \Leftarrow$$

$$S \to By$$

$$S \rightarrow z$$

$$A \rightarrow 1CB$$

$$A \rightarrow 2B$$

$$B \rightarrow C$$

$$C \rightarrow 4$$

$$C \rightarrow \epsilon$$

Result

$$S = \{z, 1, 2, 3\}$$

$$A=\{1, 2\}$$

B =
$$\{3, 4, \epsilon\}$$

$$C=\{\epsilon, 4\}$$

Action

Add First(Ax) to First(S) again. Nothing happens...

Grammar

$$S \rightarrow Ax$$

$$S \rightarrow By \Leftarrow$$

$$S \rightarrow z$$

$$A \rightarrow 1CB$$

$$A \rightarrow 2B$$

$$B \rightarrow 3B$$

$$B \rightarrow C$$

$$C \rightarrow 4$$

Result

S ={z, 1, 2, 3, 4, y}
A={1, 2}
B={3, 4,
$$\epsilon$$
}
C={ ϵ , 4}

Action

 $C \rightarrow \epsilon$

Add $\mathit{First}(B\mathsf{y})$ to $\mathit{First}(S)$ again. The 4 gets propagated. Since B could be ϵ we need to add y .

Grammar

$$S \rightarrow Ax$$

$$S o B$$
y

$$S \rightarrow z$$

$$A \rightarrow 1CB$$

$$A \rightarrow 2B$$

$$B \rightarrow 3B$$

$$B \rightarrow C \Leftarrow$$

$$C \rightarrow 4$$

$$C \rightarrow \epsilon$$

Result

$$S = \{z, 1, 2, 3, 4, y\}$$

$$A = \{1, 2\}$$

$$B = \{3, 4, \epsilon\}$$

$$C=\{\epsilon, 4\}$$

Action

Add First(C) to First(B) again. We are done.

