

THỰC TẬP CNTT5: TRIỂN KHAI ỨNG DỤNG AI, IOT

ĐỀ TÀI: HỆ THỐNG TƯƠNG TÁC THÔNG MINH DỰA TRÊN NHẬN DIỆN CẢM XÚC

Giảng viên hướng dẫn:

Trình bày:

ThS. Lê Trung Hiếu

ThS. Nguyễn Thái Khánh

Nhóm 11 – Lê Văn Việt

- 1. Giới thiệu/Đặt vấn đề
- 2. Mục tiêu và đề xuất
- 3. Nghiên cứu liên quan
- 4. Phương pháp triển khai
- 5. Sơ đồ hệ thống
- 6. Thiết kế và triển khai
- 7. Thực nghiệm và đánh giá
- 8. Ưu điểm và hạn chế
- 9. Kết luận và hướng phát triển

Smart IoT Solutions Shaping the Business and Future

1. GIỚI THIỆU / ĐẶT VẤN ĐỀ

- Cảm xúc là một phần quan trọng trong giao tiếp giữa con người.
- Máy tính thông thường không có khả năng nhận biết cảm xúc.
- Ứng dụng AI-IOT xây dựng hệ thống có khả năng nhận diện cảm xúc qua khuôn mặt, tương tác, điều khiển thiết bị IoT theo ngữ cảnh cảm xúc.

2. MỤC TIÊU VÀ ĐỀ XUẤT

- Xây dựng hệ thống nhận diện cảm xúc khuôn mặt theo thời gian thực
- Kết hợp nhận diện cảm xúc với khả năng tương tác bằng giọng nói
- Điều khiển các thiết bị IoT dựa trên cảm xúc và lệnh thoại
- Tạo một môi trường thông minh thích ứng với trạng thái cảm xúc người dùng

3. NGHIÊN CỨU LIÊN QUAN

 FER (Facial Emotion Recognition): Phát triển từ phương pháp truyền thống (Haar Cascade) đến CNN

Github: https://github.com/justinshenk/fer

 DeepFace: Framework cho nhận diện khuôn mặt sâu, cung cấp các mô hình pre-trained

Github: https://github.com/serengil/deepface

3. NGHIÊN CỨU LIÊN QUAN

EmotiEffLib:

- Thư viện nhận diện cảm xúc khuôn mặt sử dụng Deep Learning, hỗ trợ Python và C++, tối ưu cho ứng dụng thời gian thực.
- Sử dụng các framework như PyTorch, ONNX
 Runtime để tối ưu hóa hiệu suất.

Github: https://github.com/av-savchenko/EmotiEffLib

4. PHƯƠNG PHÁP TRIỂN KHAI

Dataset:

- FER2013: Bộ dữ liệu 35.887 ảnh 7 cảm xúc, 48x48
 pixel, ở dạng grayscale (thang độ xám)
- CK+: 593 chuỗi biểu hiện cảm xúc từ 123 đối tượng
- AFEW: Dữ liệu từ các đoạn phim.
- AffectNet: 400.000 ảnh được gán nhãn thủ công.
- KDEF: 4.900 ảnh cảm xúc từ 70 người.

4. PHƯƠNG PHÁP TRIỂN KHAI

sadfearangry

t-SNE:

4. PHƯƠNG PHÁP TRIỂN KHAI

- Thu nhận hình ảnh từ webcam theo thời gian thực
- Phát hiện khuôn mặt và trích xuất vùng mặt
- Phân tích cảm xúc bằng DeepFace
- Đề xuất hành động dựa trên cảm xúc phát hiện
- Tương tác giọng nói nhận lệnh điều khiển
- Gửi lệnh điều khiển đến thiết bị loT qua WiFi

5. SƠ ĐỒ HỆ THỐNG

Sơ đồ luồng hoạt động của hệ thống:

Emotion Detection → Generate Suggestion → Voice Command Recognition → IoT Device Control → ESP32 Status Update

Client System:

- Emotion Service: Sử dụng DeepFace và MTCNN để phân tích cảm xúc
- Voice Service: Xử lý lệnh giọng nói tiếng Việt

```
Đang phát hiện cảm xúc...
Đã phát hiện cảm xúc: neutral (59.5%)
Đang gửi cập nhật cảm xúc neutral (59.5%) đến server
Phản hồi từ server: {'confidence': 59, 'emotion': 'neutral', 'message': 'Đã cập nhật
cảm xúc: neutral (độ tin cậy: 59%)', 'status': 'success', 'suggestions': []}
Đang phát âm (kết hợp): Phát hiện cảm xúc BÌNH THƯỜNG
```


Server System:

- Flask API Endpoints: Cung cấp các endpoint cho việc điều khiển thiết bị
- Emotion Handler: Xử lý và đề xuất dựa trên cảm xúc

```
Đã cập nhật cảm xúc: neutral (độ tin cậy: 59%)

172.20.10.3 - - [09/Mar/2025 16:30:52] "POST /emotion/update HTTP/1.1" 200 -
Đã cập nhật cảm xúc: happy (độ tin cậy: 96%)

172.20.10.3 - - [09/Mar/2025 16:31:56] "POST /emotion/update HTTP/1.1" 200 -
Đã cập nhật cảm xúc: fear (độ tin cậy: 95%)

172.20.10.3 - - [09/Mar/2025 16:32:01] "POST /emotion/update HTTP/1.1" 200 -
Đã BẬT đèn

172.20.10.3 - - [09/Mar/2025 16:32:11] "GET /light/on HTTP/1.1" 200 -
Đã cập nhật cảm xúc: fear (độ tin cậy: 53%)

172.20.10.3 - - [09/Mar/2025 16:32:13] "POST /emotion/update HTTP/1.1" 200 -
```


ESP32 IoT Device:

- Kết nối WiFi và HTTP Client
- Điều khiển đèn LED theo lệnh từ server
- DHT11/DHT22
- Đồng bộ trạng thái với server

Dataset và Training:

- Sử dụng mô hình pre-trained DeepFace
- Mô hình nhận diện 7 cảm xúc: happy, sad, angry, neutral, surprise, fear, disgust

Giao diện:

- Hiển thị trực quan cảm xúc phát hiện
- Tương tác trực quan

Thực nghiệm hệ thống:

- Nhận diện cảm xúc: Test với các biểu cảm khác nhau
- Tương tác giọng nói: Test các lệnh điều khiển thiết bị
- Đề xuất dựa trên cảm xúc: Đánh giá độ phù hợp của đề xuất
- Điều khiển loT: Kiểm tra độ trễ và độ tin cậy

Đánh giá:

- Độ chính xác nhận diện: ~85% trong điều kiện ánh sáng tốt (thử nghiệm trên tập test 100 ảnh).
- Độ nhận diện giọng nói: ~80% với các lệnh đơn giản
- Độ trễ hệ thống: ~500ms cho nhận diện cảm xúc, ~1 2s cho xử lý giọng nói.
- Tích hợp loT: Hoạt động ổn định trong mạng LAN.

ĐANG LẮNG NGHE Lệnh: bật đèn Kết quả: Đèn đã được bật ĐỀ XUẮT: 1. Bạn có vẻ vui vẻ! Bạn có muốn bật đèn... 2. Bật nhạc vui để tiếp thêm năng lượng ...

Model:

So sánh mô hình:

Model	Accuracy	Precision	Recall	F1-score
	(%)	(%)	(%)	(%)
cnn_model	70.75	74.59	70.75	71.53
efficientnet_model	74.75	75.58	74.75	74.96
emotiefflib_model	70.22	73.03	70.25	71.04
deepface	85.00	85.58	85.34	85.12

Nguồn: paperswithcode.com

8. ƯU ĐIỂM VÀ HẠN CHẾ

Ưu điểm:

- Nhận diện cảm xúc theo thời gian thực
- Tương tác tiếng Việt
- Mở rộng cao

Hạn chế:

- Phụ thuộc vào nhiều điều kiện (ánh sáng,..)
- Độ chính xác nhận diện giọng nói trong môi trường ồn kém
- Chức năng loT cơ bản

9. KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN

Kết luận:

- Đã xây dựng hệ thống nhận diện cảm xúc và tương tác người máy
- Kết hợp hiệu quả computer vision, speech recognition và IoT

Hướng phát triển:

- Mở rộng với nhiều thiết bị IoT
- Mở rộng khả năng LLM cho hệ thống

Thank You