

TERM END EXAMINATIONS (TEE) - December 2024 - January 2025

Programme	: B.Tech.	Semester	:	Interim Semester -2024-25
Course Title	: Applied Linear Algebra	Course Code	:	MAT3002
Date/Session	: 26 Dec 2024/Session I	Slot	:	A12+A13
Time	: 3 Hrs.	Max. Marks	:	100

Answer ALL the Questions

Q. No.	Question Description		
	PART A – (60 Marks)		
1	(a) By the Gauss elimination method Find the values of A, B, C in the following	12	
	partial fraction. $\frac{5x^2 + 23x - 58}{(x-1)(x-3)(x+4)} = \frac{A}{x-1} + \frac{B}{x-3} + \frac{C}{x+4}$		
	OR		
	(b) To infer the surface shape of an object from images taken of a surface from three different directions is given below	12	
	$x_1 + x_2 + x_3 = 1$		
	$4x_1 + 3x_2 - x_3 = 6$		
	$3x_1 + 5x_2 + 3x_3 = 4$		
	The unknowns are the incident intensities that will determine the shape of the object.		

The unknowns are the incident intensities that will determine the shape of the object. Find the values of x_1 , x_2 and x_3 using LU decomposition.

2 (a) Let a, b and c be fixed real numbers. Let V be the set of points in three-dimensional Euclidean space that lie on the plane P given by

$$ax + by + cz = 0$$

Define addition and scalar multiplication on V coordinate-wise. Verify that V is a vector space

OR

(b) Finding a basis for a row space and column subspace of the following matrices $\begin{bmatrix}
1 & 3 & 1 & 3 \\
0 & 1 & 1 & 0 \\
-3 & 0 & 6 & -1 \\
3 & 1 & -2 & 1
\end{bmatrix}$

3 (a) Let
$$T: R^3 \to R^3$$
 be a linear operator and $B = \{v_1, v_2, v_3\}$ is a basis for R^3 suppose 12 (a) Is $\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$ in $R(T)$

- (b) Find the basis for R(T)
- (c) Find the null space for N(T).

(b) Suppose that
$$T: P_2 \to P_2$$
 is a linear operator such that $T(x^2) = 2x - 1$, $T(-3x) = 6$
Is it possible to determine $T(2x^2 - 3x + 2)$? "If yes, find it; and if no, explain
(c) Let $V = R^2$ with $V = R^2$ w

(c) Let
$$V = R^2$$
 with bases $B = \{\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}\}$ and $B' = \{\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}\}$ 6

- I. Find the transition matrix from B and B'.
- II. Let $[v]_B = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and find $[v]_{B'}$.
- 4 (a) Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis and then an orthonormal basis for the subspace U of \mathbb{R}^4 spanned by $v_1 = (1,1,1,1), v_2 = (1,2,4,5), v_2 = (1,-3,-4,-2)$

OR

Given the orthonormal basis
$$S = \left\{ \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right), (0, 1, 0), \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) \right\}$$
 for \mathbb{R}^3 , write the vector $(1, 2, 3)$ as a linear combination of the vector in S.

(c) Show that u and v be vectors in \mathbb{R}^n . Then ||u+v|| = ||u|| + ||v|| if and if the vectors have the same direction.

5 (a) Let
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$$
, $b = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$

- I. Find the least square solution of Ax = b
- II. Find the orthogonal projection of b onto W = col(A), and decomposition of vector $b = W_1 + W_2$

OR

(b) Obtain the singular value decomposition of the matrix
$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$
.

PART B - (40 Marks)

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

8

9

Which of the following two subsets is a subspace of
$$R^2$$
?

- (a) The set of points on the line given by x+2y=0
- (b) The set of points on the line given by x+2y=1

Define a linear transformation,
$$T: P_2 \to P_3$$
 by

Define a linear transformation,
$$T: P_2 \to P_3$$
 by $T\{f(x)\} = x^2 f''(x) - 2 f'(x) + x f(x)$, Find the matrix representation of T relative to the standard bases for $P_2 \& P_3$.

8

8

- Let R^4 have the Euclidean inner product, If u = (1,3,-4,2),
- v = (4, -2, 2, 1), w = (5, -1, -2, 6) in R^4 , show that
 - a) $\langle 3u 2v, w \rangle = 3\langle u, w \rangle 2\langle v, w \rangle$
 - b) Normalize u and v

Find the QR – factorization of
$$A = \begin{bmatrix} -1 & 3 \\ 1 & 5 \end{bmatrix}$$
.