

h= $\mathbb{E}[h|\mathcal{F}_{+}] = \lim_{n \to \infty} \mathbb{E}[h|\mathcal{F}_{h}]$ pointwise a.e. Let $h_n = \mathbb{E}[h|\mathcal{F}_{h}]$. By the Dob-Dynkin lemma, $h_n(\omega) = G_n$ B+, (ω) , ..., B+x(ω)

for some Borel function Gn, and where K=max} j: j:2-n < + >.
Since every Borel function $G: \mathbb{R}^K \to \mathbb{R}$ can be approximated pointwise a.e. by a continuous function $F: \mathbb{R}^K \to \mathbb{R}$, by the Stone-Weierstrass theorem applied on ItI_1, tkJ , F can be approximated by a polynomial function g_n , completing the proof.
Corollary C.9. Let $X \in L^1(P)$, let $\{\mathcal{N}_k\}_{k=1}^{\infty}$ be an increasing family of σ - algebras, $\mathcal{N}_k \subset \mathcal{F}$ and define \mathcal{N}_{∞} to be the σ -algebra generated by $\{\mathcal{N}_k\}_{k=1}^{\infty}$. Then
$E[X \mathcal{N}_k] \to E[X \mathcal{N}_\infty] \text{as } k \to \infty ,$ a.e. P and in $L^1(P)$.
Lemma 2.1.2. If $X, Y: \Omega \to \mathbf{R}^n$ are two given functions, then Y is \mathcal{H}_X - measurable if and only if there exists a Borel measurable function $g: \mathbf{R}^n \to \mathbf{R}^n$
such that $Y = g(X)$.