Soutenance de Stage Florian LEON

Sommaire

Le Groupe SII

Présentation rapide

Les objectifs

Au sein du lab Embarqué

Mes réalisations

Et mon analyse

Conclusion du stage

Bilan des 6 mois

Le Groupe SII

Présentation du groupe et de ses activités

5 métiers

En chiffres

secteurs

Acteur majeur des métiers de l'ingénieur

5 métiers nécessitant des compétences technologiques fortes

Infrastructures

Ingénierie scientifique

Un fort maillage local et international

Positionnement Hybride de Conseil en technologies et Services numériques

Carte

France agences et implémentations

Les objectifs

Au sein du lab embarqué

Données clés du projet,

Positionnement fin

Contexte,

Le lab Embarqué

Le lab embarqué au sein de la R&D

Exploitation de nouvelles technologies

Développement de solutions de logiciel embarqué

Simplification du développement de système complexe

© Groupe SII 2022 Usage interne SII

Contexte

Le projet positionnement fin

Longue distance

Technologie UWB

Positionnement à plus de 20 cm

4 ancres utilisées

3 sur un robot et 1 sur une base

Plusieurs méthodes testées

Dont la trilatération

Positionnement peu précis

De l'ordre de la vingtaine de cm

Courte distance

Capteur à effet hall

Mesure les champs électromagnétiques

Un aimant en néodyme

Positionné sur la base

Courte portée du capteur

De l'ordre de la vingtaine de cm

Bonne précision

Inférieure au cm

Objectif initial

Retour d'information sur la position du robot

Fusion de données

Entre un accéléromètre et un gyroscope

Retour sur le déplacement du robot

Sur l'angle et la distance

Par fusion de données

De combien de degrés le robot a tourné?

Dépend d'un mouvement

Filtrage et intégration des accélérations

De quelle distance s'est déplacé le robot ?

Et a quelle vitesse?

Capteur à disposition

6 degrés de liberté

Accéléromètre 3 axes et gyroscope 3 axes

C++ / Arduino

Pour les tests

Rust

Implémentation finale

ESP32 et STM32

Pour faciliter les tests

Raspberry Pi

Pour grouper toutes les fonctions

Causes et solutions trouvés

Causes

Solution

Bonus

- Peu précis
- Mesure de l'angle trop dépendante du mouvement
- Donc manque d'indépendance pour la mesure de l'angle

- IMU 9 axes avec magnétomètre
- Nouvelle implémentation de la solution
- Indépendance totale du mouvement

- Intervention en complément du capteur à effets hall
- Librairie open source au nom de SII

Intégration au projet

Skippy

Réalisations

Et analyse

Mesure de la distance

Condition de départ

Signal très bruitéPas utilisable en l'état

Double intégration nécessaireDonc erreur quadratique au final

Conséquence Résultat qui diverge

Mesure de la distance

Solutions testées

Moyenne glissante

Sur 30 valeurs

Intéressant

Pas très efficace seul

Filtres numériques

D'ordre 1, 2 et 3

Résultats non homogènes

Comportement étrange dans les sens négatifs

Filtre de Butterworth

+ moyenne glissante

Peu concluant

Mouvement mal retranscrit

Sii

Mesure de la distance

Solutions testées

Filtre passe-haut

Fc = 0.05 Hz

A creuser

Recentre le signal sur 0 et retranscrit bien le mouvement même s'il y a un petit retard

Filtre passe-bas

Fc = 20 Hz

Simple et efficace

Mouvement relativement bien retranscrit

Mesure de la distance

Solutions retenue

Mesure de la distance

Conclusion et analyse de la solution

- Sur ou sous estimation de la distance
- Peut dériver très rapidement
- Manque de précision du capteur

- Trop de dépendance à la vitesse
- Inclinaison du capteur
- Capteur trop grand public

- Pas de solutions viables pour l'instant
- Filtre passe haut mais délai induit
- Pas de solutions dans la gamme de prix

Condition de départ

Dérive du gyroscope Tend vers -∞ Accéléromètre sur le long terme OK mais bruité **Gyroscope sur le court terme**Dérive rapidement

Filtre de Kalman

Estimer

Les paramètres d'un système à partir de mesures bruitées

Prédire

Les paramètres du système

Rectifier

Les erreurs du capteur mais aussi des modèles

Principale utilisation

Fusion de données

entre capteurs

GY521: Accéléromètre et Gyroscope

Ordre de 45°

Déplacement manuel

Ordre de 45°

Déplacement manuel

Réponse de 44°

Intégration de la partie noire + | partie jaune |

Réponse de 44°

Intégration de la partie noire + | partie jaune |

GY521: Accéléromètre et Gyroscope

Angle en degrés sur l'axe X et Y

En sortie du filtre de Kalman

Précision

Inférieure au degré

GY521: Impact du mouvement linéaire

Adafruit NXP : Accéléromètre, Gyroscope et Magnétomètre

Erreur moyenne

Inférieure à 0,5 %

Adafruit NXP: Résultats

Erreur moyenne, ordre de 45°

Inférieure à 4 %

Erreur moyenne, ordre de 90°

Inférieure à 3 %

Autres activités

Impression 3D

Conception 3D

Pour bancs de tests

Conclusion

Bilan des 6 mois

Conclusion

Mon bilan sur le projet

Points positifs

Projet intéressant

Qui permet de manipuler

Approche moderne

Nouvelles technologies

Liberté d'action

Pour aborder le problème

Points négatifs

Intégration limitée

Par les problèmes de capteurs

Conclusion

Bilan des compétences

Compétences améliorées

Développement embarqué

Notamment en C++

Travail en équipe

6 à 8 personnes

Nouvelles compétences

Nouveau langage

Rust

Développement de drivers

Dans un contexte embarqué

 Clement PENE et surtout Romain Saboret mon tuteur pour leur aide et leur confiance

• A toute l'équipe, grâce à qui ce stage s'est bien déroulé

Remerciements

Merci

Imagine the world of tomorrow with us

Développer ensemble un monde numérique et durable