## 2013 IMO P4

Lin Liu

October 15, 2021

## **Problem**

Let ABC be an acute triangle with orthocenter H, and let W be a point on the side BC, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by  $\omega_1$  is the circumcircle of BWN, and let X be the point on  $\omega_1$  such that WX is a diameter of  $\omega_1$ . Analogously, denote by  $\omega_2$  the circumcircle of triangle CWM, and let Y be the point such that WY is a diameter of  $\omega_2$ . Prove that X, Y and H are collinear.

## **Solution**



Claim 1. (AMN), (BNW), (CMW) concur at a point D.

*Proof.* Notice that D is the miquel point of the triangle, so we are done.  $\Box$ 

Claim 2. AMDHN is a cyclic pentagon.

*Proof.* Notice that AMHN is cyclic because  $\angle ANH = \angle AMH = 90^{\circ}$ .

Claim 3. A, D, W are collinear.

*Proof.* Notice that

$$\angle MDA = \angle MNA = \angle ACB = 180 - \angle WDM$$

Claim 4. X, H, Y are collinear.

*Proof.* We know that  $\angle WDY = 90^{\circ}$  and  $\angle ADH = 90^{\circ}$  and because Claim 3, we know that H, D, Y are collinear. Analogously, we know that X, H, D are collinear. Thus X, H, Y are collinear.