Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Курсовая работа

по дисциплине «Математическое моделирование» Вариант 61

Выполнил: Симоненко И. С.

Группа: 5130904/20002

№ зач. Книжки: 22350270

Преподаватель: Устинов С. М.

Оглавление

Постановка задачи	3
• •	
Код программы варианта В)	
Таблицы вычисленных значений	11
Графики и точки бифуркации	19
Блок проверки	23
	Преобразование системы уравнений

1 Постановка задачи

61.В **МОДЕЛИ 11** построить зависимость стационарных решений от параметра $\mathbf{p2}$: $x2(\mathbf{p2})$, $x1(\mathbf{p2})$. На графиках отметить устойчивые и неустойчивые стационарные точки, а также точки вещественной бифуркации и бифуркации Андронова-Хопфа (если они есть!). Априорно известно, что $\mathbf{p2} > 0$, 0 < x1 < 1, а значения x2 могут быть различных знаков. А) p1=1, p3=20, p4=10, p5=0.6, p6=-5. В) p1=0.5, $p3=\to\infty$, p5=0.8, p6=0, p4=8, 10, 12, 14. $\frac{dx_1}{dt} = -p_1x_1 + p_2(1-x_1)\exp\left(\frac{x_2}{1+x_2/p_3}\right);$ $\frac{dx_2}{dt} = -p_1x_2 + p_2p_4(1-x_1)\exp\left(\frac{x_2}{1+x_2/p_3}\right) - p_5(x_2-p_6).$

2 Преобразование системы уравнений

3 Описание кода программ

Для подсчёта значений по выраженным уравнениям и собственных значений матрицы Якоби в точках написаны 2 программы на языке Python. Одна программа для варианта A), а вторая программа для варианта B). В варианте B) отличаются входные данные (отсутствует точка p3, т. к. по условию p3 $\rightarrow \infty$), и соответственно изменяется вид уравнения для подсчёта параметра p2 (описано в пункте 2). Также во входных данных варьируются значения параметра p4 (по условию p4 = 8, 10, 12, 14). На выходе получаем по 2 набора точек для построения графиков, т. е. 10 графиков.

Преподавателем задан интервал для x2: [-1.9; 4.5], а также контрольная точка для проверки правильности вычислений программы: x2 = -1, x1 = 0.14, p2 = 0.466, а собственные значения в точке должны быть равны -0.846 и -0.365. На первых этапах разработки программы точка была проверена, и она совпала с вычисленными значениями:

1	x2	x1	p2	eigv1	eigv2
2	-1,9	-0,004	-0,033	-0,996	-1,649
3	-1,9	0,012	0,088	-1,016	-1,451
4	-1,7	0,028	0,185	-1,081	-1,213
5	-1,6	0,044	0,262	-1,063+0,154j	-1,063-0,154j
6	-1,5	0,06	0,323	-0,981+0,195j	-0,981-0,195j
7	-1,4	0,076	0,371	-0,902+0,199j	-0,902-0,199j
8	-1,3	0,092	0,407	-0,824+0,173j	-0,824-0,173j
9	-1,2	0,108	0,434	-0,749+0,099j	-0,749-0,099j
10	-1,1	0,124	0,453	-0,817	-0,536
11	-1	0,14	0,466	-0,846	-0,365
12	-0,9	0,156	0,474	-0,859	-0,216
13	-0,8	0,172	0,478	-0,865	-0,076
14	-0,7	0,188	0,478	-0,868	0,056

В качестве шага было выбрано значение step = 0.1, т. к. получается оптимальное число точек (65) для построения и удобного анализа графика.

На основе этих параметров программа вычисляет значения x1 с использованием функции calculate_x1. Затем, для каждого значения x2 она рассчитывает значение p2 с помощью функции calculate_p2. Для проверки условий равновесия используется функция check equilibrium.

Для каждого значения x2 программа также вычисляет элементы матрицы Якоби и определяет её собственные значения. Эти собственные значения используются для анализа устойчивости.

Далее программа определяет точки бифуркации, где происходит изменение устойчивости. Эти точки выводятся вместе с соответствующими значениями параметров и собственными значениями.

Далее строятся графики зависимости x2(p2) и x1(p2), на которых отмечаются устойчивые и неустойчивые точки.

Основные функции, используемые в программе:

numpy:

- numpy.arange(start, stop, <u>step):</u> создает массив значений в заданном диапазоне с определенным шагом.
- numpy.array(): создает массивы из списков или других структур данных.
- numpy.linalg.eigvals(matrix): вычисляет собственные значения матрицы Якоби.
- numpy.isclose(a, b, atol=1e-5): проверяет, являются ли два значения близкими друг к другу в пределах заданной абсолютной погрешности.

math:

• math.exp(x): возвращает значение экспоненты e^x .

4 Код программы варианта А)

```
import numpy as np
from math import e, exp
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
p1 = 1
p3 = 20

p4 = 10
p6 = -5
def calculate_x1(x2, p1, p4, p5, p6):
    rhs = (1 - x1) * p2 * exp(x2 / (1 + x2 / p3))
    return np.isclose(lhs, rhs, atol=1e-5)
x2 values = []
x1 values = []
p2 values = []
eigenvalues list = []
for x2 in np.arange(x2 start, x2 end + step, step):
    x2 values.append(x2)
```

```
x1 = calculate x1(x2, p1, p4, p5, p6)
    x1 values.append(x1)
    p2 = calculate p2(x2, x1, p1, p3)
    p2 values.append(p2)
    right btm = -p1 + p2 * p4 * (1 - x1) * (e ** ((p3 * x2)/(p3 + x2)) * p3**2)
    A = np.array([[left top, right top],
    eigenvalues = np.linalg.eigvals(A)
    eigenvalues list.append(eigenvalues)
stable points = []
unstable points = []
for x2, x1, p2, eigenvalues in zip(x2_values, x1_values, p2 values, eigenval-
ues list):
    if all(eig.real < 0 for eig in eigenvalues):</pre>
        stable points.append((p2, x2, x1, eigenvalues))
        unstable points.append((p2, x2, x1, eigenvalues))
bifurcation indices = []
for i in range(1, len(eigenvalues list)):
    prev stable = all(eig.real < 0 for eig in eigenvalues list[i-1])</pre>
    curr stable = all(eig.real < 0 for eig in eigenvalues list[i])</pre>
        bifurcation indices.append(i)
for idx in bifurcation indices:
    if idx < len(eigenvalues list):</pre>
        print(f"p2 = {p2 values[idx-1]:.{signs}f}, x2 = {x2 values[idx-1]}
1]:.{signs}f}, собств. знач. = {eigenvalues list[idx-1]}")
ues[idx]:.{signs}f}, собств. знач. = {eigenvalues_list[idx]}")
    if idx < len(eigenvalues_list):</pre>
        print(f"p2 = {p2\_values[idx-1]:.{signs}f}, x1 = {x1\_values[idx-1]:.}
1]:.{signs}f}, собств. знач. = {eigenvalues_list[idx-1]}")
ues[idx]:.{signs}f}, собств. знач. = {eigenvalues_list[idx]}")
if stable points:
   stable p2, stable x2, stable x1, = zip(*stable points)
```

```
if unstable points:
print("Проверка равновесия для устойчивых точек:")
for p2, x2, x1, eigenvalues in stable points:
           f"-> Равновесие: {is equilibrium}")
print("Проверка равновесия для неустойчивых точек:")
for p2, x2, x1, eigenvalues in unstable points:
    is equilibrium = check equilibrium(x2, x1, p2, p1, p3, p4, p5)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
ax1.plot(p2 values, x2 values, label='x2(p2)', color='blue')
ax1.scatter(stable_p2, stable_x2, color='green', label='Устойчивые точки', s=50)
ax1.scatter(unstable_p2, unstable x2, color='red', label='Неустойчивые точки',
ax1.set xlabel('p2', fontsize=14)
ax1.set ylabel('x2', fontsize=14)
ax1.set title('x2(p2)', fontsize=16)
ax1.legend(fontsize=12)
ax1.grid(True, linestyle='--', alpha=0.7)
ax2.plot(p2 values, x1 values, label='x1(p2)', color='purple')
ax2.scatter(unstable p2, unstable x1, color='red', label='Неустойчивые точки',
ax2.set_ylabel('x1', fontsize=14)
ax2.set_title('x1(p2)', fontsize=16)
ax2.legend(fontsize=12)
ax2.grid(True, linestyle='--', alpha=0.7)
plt.tight layout()
plt.show()
```

5 Код программы варианта В)

```
import numpy as np
from math import exp
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

# Входные данные
p1 = 0.5
p4 = 8 # 8, 10, 12, 14
p5 = 0.8
p6 = 0
x2_start = -1.9
x2_end = 4.5
```

```
step = 0.1
    x1 = (p1 * x2 + p5 * (x2 - p6)) / (p1 * p4)
def calculate_p2(x2, x1, p1):
    p2 = (p1 \times x1) / ((1 - x1) \times exp(x2))
def check equilibrium(x2, x1, p2, p1, p4, p5):
    dp2 dt = (p1 * x1) - ((1 - x1) * p2 * exp(x2))
    return np.isclose(dx1 dt, 0, atol=1e-5) and np.isclose(dp2 dt, 0, atol=1e-5)
x2 values = []
x1 values = []
p2 values = []
eigenvalues list = []
bifurcation points = []
for x2 in np.arange(x2 start, x2 end + step, step):
    x2 values.append(x2)
    x1 values.append(x1)
    p2 values.append(p2)
    left top = -p1 - p2 * exp(x2)
    left_btm = -p2 * p4 * exp(x2)
    right_top = p2 * (1 - x1) * exp(x2)
right_btm = -p1 + p2 * p4 * (1 - x1) * exp(x2) - p5
    A = np.array([[left top, right top],
                                     btm]])
    eigenvalues = np.linalg.eigvals(A)
    eigenvalues list.append(eigenvalues)
    if len(eigenvalues list) > 1:
        previous eigenvalues = eigenvalues list[-2]
        if any((e.real < 0) != (pe.real < 0) for e, pe in zip(eigenvalues, pre-
vious eigenvalues)):
            bifurcation points.append((p2, x2, x1))
stable points = []
unstable points = []
for x2, x1, p2, eigenvalues in zip(x2 values, x1 values, p2 values, eigenval-
ues list):
    if all(eig.real < 0 for eig in eigenvalues):</pre>
        stable points.append((p2, x2, x1, eigenvalues))
        unstable points.append((p2, x2, x1, eigenvalues))
bifurcation indices = []
```

```
prev_stable = all(eig.real < 0 for eig in eigenvalues_list[i-1])</pre>
   curr stable = all(eig.real < 0 for eig in eigenvalues list[i])</pre>
       bifurcation indices.append(i)
print("Бифуркация для x2(p2)")
    if idx < len(eigenvalues_list):</pre>
1]:.{signs}f}, собств. знач. = {eigenvalues list[idx-1]}")
ues[idx]:.{signs}f}, собств. знач. = {eigenvalues list[idx]}")
print("Бифуркация для x1(p2):")
for idx in bifurcation indices:
ues[idx]:.{signs}f}, собств. знач. = {eigenvalues list[idx]}")
if stable points:
   unstable p2, unstable x2, unstable x1, = zip(*unstable points)
for p2, x2, x1, eigenvalues in stable points:
    is equilibrium = check equilibrium(x2, x1, p2, p1, p4, p5)
for p2, x2, x1, eigenvalues in unstable points:
    is_equilibrium = check_equilibrium(x2, x1, p2, p1, p4, p5)
   print(f"p2 = {p2:.{signs}f}, x2 = {x2:.{signs}f}, x1 = {x1:.{signs}f},
ax1.plot(p2_values, x2_values, label='x2(p2)', color='blue')
ax1.scatter(stable_p2, stable_x2, color='green', label='Устойчивые точки', s=50)
ax1.scatter(unstable_p2, unstable x2, color='red', label='Неустойчивые точки',
ax1.set_xlabel('p2', fontsize=14)
ax1.set_ylabel('x2', fontsize=14)
ax1.set_title('x2(p2)', fontsize=16)
ax1.legend(fontsize=12)
```

```
ax1.grid(True, linestyle='--', alpha=0.7)

ax2.plot(p2_values, x1_values, label='x1(p2)', color='purple')
ax2.scatter(stable_p2, stable_x1, color='green', label='Устойчивые точки', s=50)
ax2.scatter(unstable_p2, unstable_x1, color='red', label='Heyстойчивые точки', s=50)
ax2.set_xlabel('p2', fontsize=14)
ax2.set_ylabel('x1', fontsize=14)
ax2.set_title('x1(p2)', fontsize=16)
ax2.legend(fontsize=12)
ax2.grid(True, linestyle='--', alpha=0.7)

plt.tight_layout()
plt.show()
```

Пример вывода результатов программы для варианта А):

6 Таблицы вычисленных значений

1. Значения варианта A) p1 = 1, p3 = 20, p4 = 10, p5 = 0.6, p6 = -5:

p2	x2	x1	eigv1	eigv2
-0,033	-1,9	-0,004	-0,996	-1,649
0,088	-1,9	0,012	-1,016	-1,451
0,185	-1,7	0,028	-1,081	-1,213
0,262	-1,6	0,044	-1,063+0,154j	-1,063-0,154j
0,323	-1,5	0,06	-0,981+0,195j	-0,981-0,195j
0,371	-1,4	0,076	-0,902+0,199j	-0,902-0,199j
0,407	-1,3	0,092	-0,824+0,173j	-0,824-0,173j
0,434	-1,2	0,108	-0,749+0,099j	-0,749-0,099j
0,453	-1,1	0,124	-0,817	-0,536
0,466	-1	0,14	-0,846	-0,365
0,474	-0,9	0,156	-0,859	-0,216
0,478	-0,8	0,172	-0,865	-0,076

0,478	-0,7	0,188	-0,868	0,056
0,476	-0,6	0,204	-0,87	0,182
0,471	-0,5	0,22	-0,87	0,302
0,465	-0,4	0,236	-0,869	0,418
0,457	-0,3	0,252	-0,868	0,528
0,448	-0,2	0,268	-0,866	0,634
0,439	-0,1	0,284	-0,863	0,735
0,429	0	0,3	-0,86	0,831
0,418	0,1	0,316	-0,856	0,922
0,408	0,2	0,332	-0,852	1,009
0,397	0,3	0,348	-0,847	1,091
0,387	0,4	0,364	-0,842	1,168
0,376	0,5	0,38	-0,836	1,24
0,366	0,6	0,396	-0,829	1,306
0,356	0,7	0,412	-0,822	1,368
0,347	0,8	0,428	-0,815	1,424
0,338	0,9	0,444	-0,806	1,474
0,329	1	0,46	-0,797	1,517
0,32	1,1	0,476	-0,787	1,555
0,312	1,2	0,492	-0,775	1,586
0,305	1,3	0,508	-0,763	1,609
0,298	1,4	0,524	-0,748	1,624
0,291	1,5	0,54	-0,732	1,631
0,285	1,6	0,556	-0,714	1,629
0,279	1,7	0,572	-0,693	1,616
0,274	1,8	0,588	-0,67	1,591
0,269	1,9	0,604	-0,642	1,554
0,265	2	0,62	-0,609	1,501
0,261	2,1	0,636	-0,569	1,43
0,258	2,2	0,652	-0,519	1,337
0,256	2,3	0,668	-0,455	1,216
0,254	2,4	0,684	-0,369	1,057
0,253	2,5	0,7	-0,237	0,834
0,253	2,6	0,716	0,062	0,424
0,253	2,7	0,732	0,175+0,507j	0,175–0,507j
0,255	2,8	0,748	0,094+0,765j	0,094-0,765j
0,257	2,9	0,764	-0,005+0,976j	-0,005-0,976j
0,261	3	0,78	-0,124+1,166j	-0,124-1,166j
0,266	3,1	0,796	-0,268+1,343j	-0,268-1,343j
0,274	3,2	0,812	-0,442+1,510j	-0,442-1,510j
0,283	3,3	0,828	-0,657+1,664j	-0,657-1,664j
0,296	3,4	0,844	-0,922+1,800j	-0,922-1,800j
0,312	3,5	0,86	-1,257+1,903j	-1,257-1,903j
0,334	3,6	0,876	-1,687+1,941j	-1,687-1,941j
0,364	3,7	0,892	-2,254+1,840j	-2,254-1,840j
0,405	3,8	0,908	-3,029+1,344j	-3,029-1,344j
			-,0=0 2,0 1 1	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0,465	3,9	0,924	-5,752	-2,535
0,559	4	0,94	-9,652	-2,086
0,723	4,1	0,956	-15,866	-1,877
1,079	4,2	0,972	-28,93	-1,746
2,391	4,3	0,988	-76,587	-1,654
-6,813	4,4	1,004	256,73	-1,584
-1,295	4,5	1,02	56,727	-1,53

2. Значения варианта B) p4 = 8, p1 = 0.5, $p3 \rightarrow \infty$, p5 = 0.8, p6 = 0:

p2	x2	x1	eigv1	eigv2
-1,276	-1,9	-0,617	-0,451	-3,628
-1,116	-1,8	-0,585	-0,451	-3,505
-0,974	-1,7	-0,552	-0,451	-3,381
-0,847	-1,6	-0,52	-0,45	-3,259
-0,734	-1,5	-0,487	-0,45	-3,136
-0,634	-1,4	-0,455	-0,45	-3,013
-0,545	-1,3	-0,422	-0,45	-2,891
-0,466	-1,2	-0,39	-0,451	-2,769
-0,396	-1,1	-0,357	-0,451	-2,647
-0,333	-1	-0,325	-0,452	-2,526
-0,278	-0,9	-0,292	-0,452	-2,404
-0,23	-0,8	-0,26	-0,454	-2,283
-0,187	-0,7	-0,227	-0,455	-2,162
-0,149	-0,6	-0,195	-0,458	-2,041
-0,115	-0,5	-0,162	-0,461	-1,919
-0,086	-0,4	-0,13	-0,465	-1,798
-0,06	-0,3	-0,097	-0,47	-1,676
-0,037	-0,2	-0,065	-0,477	-1,553
-0,017	-0,1	-0,032	-0,486	-1,428
0	0	0	-0,5	-1,3
0,015	0,1	0,033	-0,52	-1,167
0,028	0,2	0,065	-0,553	-1,021
0,04	0,3	0,098	-0,629	-0,835
0,05	0,4	0,13	-0,677+0,168j	-0,677-0,168j
0,059	0,5	0,163	-0,624+0,250j	-0,624-0,250j
0,066	0,6	0,195	-0,571+0,303j	-0,571-0,303j
0,073	0,7	0,228	-0,519+0,343j	-0,519-0,343j
0,079	0,8	0,26	-0,468+0,374j	-0,468-0,374j
0,084	0,9	0,293	-0,418+0,398j	-0,418-0,398j
0,089	1	0,325	-0,370+0,419j	-0,370-0,419j
0,093	1,1	0,358	-0,324+0,438j	-0,324-0,438j
0,096	1,2	0,39	-0,280+0,455j	-0,280-0,455j
0,1	1,3	0,423	-0,238+0,473j	-0,238-0,473j
0,103	1,4	0,455	-0,199+0,493j	-0,199-0,493j
0,106	1,5	0,488	-0,163+0,517j	-0,163-0,517j
0,109	1,6	0,52	-0,131+0,545j	-0,131-0,545j

0,117 1,8 0,585 -0,082+0,624j -0,082-0,624j 0,121 1,9 0,618 -0,069+0,678j -0,069-0,678j 0,126 2 0,65 -0,064+0,744j -0,064-0,744j 0,132 2,1 0,683 -0,072+0,823j -0,072-0,823j 0,139 2,2 0,715 -0,097+0,917j -0,097-0,917j 0,148 2,3 0,748 -0,145+1,029j -0,145-1,029j 0,161 2,4 0,78 -0,226+1,159j -0,226-1,159j 0,178 2,5 0,813 -0,358+1,309j -0,358-1,309j 0,202 2,6 0,845 -0,573+1,475j -0,573-1,475j 0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
0,121 1,9 0,618 -0,069+0,678j -0,069-0,678j 0,126 2 0,65 -0,064+0,744j -0,064-0,744j 0,132 2,1 0,683 -0,072+0,823j -0,072-0,823j 0,139 2,2 0,715 -0,097+0,917j -0,097-0,917j 0,148 2,3 0,748 -0,145+1,029j -0,145-1,029j 0,161 2,4 0,78 -0,226+1,159j -0,226-1,159j 0,178 2,5 0,813 -0,358+1,309j -0,358-1,309j 0,202 2,6 0,845 -0,573+1,475j -0,573-1,475j 0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273	0,113	1,7	0,553	-0,104+0,580j	-0,104-0,580j
0,126 2 0,65 -0,064+0,744j -0,064-0,744j 0,132 2,1 0,683 -0,072+0,823j -0,072-0,823j 0,139 2,2 0,715 -0,097+0,917j -0,097-0,917j 0,148 2,3 0,748 -0,145+1,029j -0,145-1,029j 0,161 2,4 0,78 -0,226+1,159j -0,226-1,159j 0,178 2,5 0,813 -0,358+1,309j -0,358-1,309j 0,202 2,6 0,845 -0,573+1,475j -0,573-1,475j 0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,125 3,	0,117	1,8	0,585	-0,082+0,624j	-0,082-0,624j
0,132 2,1 0,683 -0,072+0,823j -0,072-0,823j 0,139 2,2 0,715 -0,097+0,917j -0,097-0,917j 0,148 2,3 0,748 -0,145+1,029j -0,145-1,029j 0,161 2,4 0,78 -0,226+1,159j -0,226-1,159j 0,178 2,5 0,813 -0,358+1,309j -0,358-1,309j 0,202 2,6 0,845 -0,573+1,475j -0,573-1,475j 0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,125 3,5 1,138 7,786 -0,899 -0,024 3,6	0,121	1,9	0,618	-0,069+0,678j	-0,069-0,678j
0,139 2,2 0,715 -0,097+0,917j -0,097-0,917j 0,148 2,3 0,748 -0,145+1,029j -0,145-1,029j 0,161 2,4 0,78 -0,226+1,159j -0,226-1,159j 0,178 2,5 0,813 -0,358+1,309j -0,358-1,309j 0,202 2,6 0,845 -0,573+1,475j -0,573-1,475j 0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 <td>0,126</td> <td>2</td> <td>0,65</td> <td>-0,064+0,744j</td> <td>-0,064-0,744j</td>	0,126	2	0,65	-0,064+0,744j	-0,064-0,744j
0,148 2,3 0,748 -0,145+1,029j -0,145-1,029j 0,161 2,4 0,78 -0,226+1,159j -0,226-1,159j 0,178 2,5 0,813 -0,358+1,309j -0,358-1,309j 0,202 2,6 0,845 -0,573+1,475j -0,573-1,475j 0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,024 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,268 <td< td=""><td>0,132</td><td>2,1</td><td>0,683</td><td>-0,072+0,823j</td><td>-0,072-0,823j</td></td<>	0,132	2,1	0,683	-0,072+0,823j	-0,072-0,823j
0,161 2,4 0,78 -0,226+1,159j -0,226-1,159j 0,178 2,5 0,813 -0,358+1,309j -0,358-1,309j 0,202 2,6 0,845 -0,573+1,475j -0,573-1,475j 0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798	0,139	2,2	0,715	-0,097+0,917j	-0,097-0,917j
0,178 2,5 0,813 -0,358+1,309j -0,358-1,309j 0,202 2,6 0,845 -0,573+1,475j -0,573-1,475j 0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,	0,148	2,3	0,748	-0,145+1,029j	-0,145-1,029j
0,202 2,6 0,845 -0,573+1,475j -0,573-1,475j 0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,033 4,1 1,333 -0,737 6,271 <	0,161	2,4	0,78	-0,226+1,159j	-0,226-1,159j
0,241 2,7 0,878 -0,936+1,636j -0,936-1,636j 0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251	0,178	2,5	0,813	-0,358+1,309j	-0,358-1,309j
0,307 2,8 0,91 -1,608+1,678j -1,608-1,678j 0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0	0,202	2,6	0,845	-0,573+1,475j	-0,573-1,475j
0,451 2,9 0,943 -3,633 -2,593 0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,024 4,4 1,43 -0,696 6,279	0,241	2,7	0,878	-0,936+1,636j	-0,936-1,636j
0,971 3 0,975 -15,886 -1,514 -3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	0,307	2,8	0,91	-1,608+1,678j	-1,608-1,678j
-3,026 3,1 1,008 70,652 -1,255 -0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	0,451	2,9	0,943	-3,633	-2,593
-0,53 3,2 1,04 16,473 -1,113 -0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	0,971	3	0,975	-15,886	-1,514
-0,273 3,3 1,073 10,905 -1,019 -0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-3,026	3,1	1,008	70,652	-1,255
-0,176 3,4 1,105 8,833 -0,951 -0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,53	3,2	1,04	16,473	-1,113
-0,125 3,5 1,138 7,786 -0,899 -0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,273	3,3	1,073	10,905	-1,019
-0,094 3,6 1,17 -0,858 7,18 -0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,176	3,4	1,105	8,833	-0,951
-0,073 3,7 1,203 -0,825 6,804 -0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,125	3,5	1,138	7,786	-0,899
-0,059 3,8 1,235 -0,798 6,565 -0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,094	3,6	1,17	-0,858	7,18
-0,048 3,9 1,268 -0,774 6,413 -0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,073	3,7	1,203	-0,825	6,804
-0,04 4 1,3 -0,754 6,321 -0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,059	3,8	1,235	-0,798	6,565
-0,033 4,1 1,333 -0,737 6,271 -0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,048	3,9	1,268	-0,774	6,413
-0,028 4,2 1,365 -0,722 6,251 -0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,04	4	1,3	-0,754	6,321
-0,024 4,3 1,398 -0,708 6,256 -0,02 4,4 1,43 -0,696 6,279	-0,033	4,1	1,333	-0,737	6,271
-0,02 4,4 1,43 -0,696 6,279	-0,028	4,2	1,365	-0,722	6,251
	-0,024	4,3	1,398	-0,708	6,256
0.010 4.5 1.462 0.606 6.217	-0,02	4,4	1,43	-0,696	6,279
-0,010 4,3 1,403 -0,000 0,317	-0,018	4,5	1,463	-0,686	6,317

3. Значения варианта B) p4 = 10, p1 = 0.5, p3 $\rightarrow \infty$, p5 = 0.8, p6 = 0:

p2	x2	x1	eigv1	eigv2
-1,105	-1,9	-0,494	-0,458	-3,647
-0,964	-1,8	-0,468	-0,458	-3,523
-0,839	-1,7	-0,442	-0,458	-3,399
-0,728	-1,6	-0,416	-0,458	-3,275
-0,629	-1,5	-0,39	-0,458	-3,152
-0,541	-1,4	-0,364	-0,458	-3,029
-0,463	-1,3	-0,338	-0,458	-2,906
-0,395	-1,2	-0,312	-0,458	-2,783
-0,334	-1,1	-0,286	-0,459	-2,66
-0,28	-1	-0,26	-0,459	-2,537
-0,233	-0,9	-0,234	-0,46	-2,415
-0,192	-0,8	-0,208	-0,462	-2,292
-0,155	-0,7	-0,182	-0,463	-2,17

-0,123	-0,6	-0,156	-0,465	-2,047
-0,095	-0,5	-0,13	-0,468	-1,925
-0,07	-0,4	-0,104	-0,471	-1,802
-0,049	-0,3	-0,078	-0,475	-1,678
-0,03	-0,2	-0,052	-0,481	-1,554
-0,014	-0,1	-0,026	-0,489	-1,428
0	0	0	-0,5	-1,3
0,012	0,1	0,026	-0,516	-1,167
0,022	0,2	0,052	-0,542	-1,026
0,031	0,3	0,078	-0,595	-0,858
0,039	0,4	0,104	-0,669+0,134j	-0,669-0,134j
0,045	0,5	0,13	-0,612+0,217j	-0,612-0,217j
0,051	0,6	0,156	-0,556+0,266j	-0,556-0,266j
0,055	0,7	0,182	-0,501+0,298j	-0,501-0,298j
0,059	0,8	0,208	-0,446+0,320j	-0,446-0,320j
0,062	0,9	0,234	-0,391+0,332j	-0,391-0,332j
0,065	1	0,26	-0,338+0,338j	-0,338-0,338j
0,067	1,1	0,286	-0,285+0,338j	-0,285-0,338j
0,068	1,2	0,312	-0,233+0,332j	-0,233-0,332j
0,07	1,3	0,338	-0,183+0,322j	-0,183-0,322j
0,071	1,4	0,364	-0,133+0,307j	-0,133-0,307j
0,071	1,5	0,39	-0,085+0,289j	-0,085-0,289j
0,072	1,6	0,416	-0,038+0,268j	-0,038-0,268j
0,072	1,7	0,442	0,007+0,245j	0,007-0,245j
0,073	1,8	0,468	0,050+0,222j	0,050-0,222j
0,073	1,9	0,494	0,091+0,203j	0,091–0,203j
0,073	2	0,52	0,129+0,194j	0,129-0,194j
0,074	2,1	0,546	0,164+0,199j	0,164-0,199j
0,074	2,2	0,572	0,196+0,224j	0,196-0,224j
0,075	2,3	0,598	0,223+0,269j	0,223-0,269j
0,075	2,4	0,624	0,245+0,330j	0,245-0,330j
0,076	2,5	0,65	0,261+0,405j	0,261-0,405j
0,077	2,6	0,676	0,268+0,494j	0,268-0,494j
0,079	2,7	0,702	0,266+0,596j	0,266-0,596j
0,081	2,8	0,728	0,251+0,712j	0,251-0,712j
0,084	2,9	0,754	0,219+0,842j	0,219-0,842j
0,088	3	0,78	0,164+0,989j	0,164-0,989j
0,094	3,1	0,806	0,076+1,153j	0,076–1,153j
0,101	3,2	0,832	-0,058+1,336j	-0,058-1,336j
0,111	3,3	0,858	-0,266+1,537j	-0,266-1,537j
0,127	3,4	0,884	-0,595+1,743j	-0,595-1,743j
0,153	3,5	0,91	-1,153+1,902j	-1,153-1,902j
0,2	3,6	0,936	-2,216+1,704j	-2,216-1,704j
0,313	3,7	0,962	-7,751	-1,896
0,921	3,8	0,988	-36,615	-1,412
-0,733	3,9	1,014	40,688	-1,203

-0,238	4	1,04	17,478	-1,078
-0,134	4,1	1,066	12,599	-0,993
-0,089	4,2	1,092	10,525	-0,931
-0,064	4,3	1,118	-0,882	9,41
-0,049	4,4	1,144	-0,844	8,736
-0,038	4,5	1,17	-0,813	8,304

4. Значения варианта B) p4 = 12, p1 = 0.5, p3 $\rightarrow \infty$, p5 = 0.8, p6 = 0:

p2	x2	x1	eigv1	eigv2
-0,975	-1,9	-0,412	-0,463	-3,661
-0,849	-1,8	-0,39	-0,463	-3,537
-0,737	-1,7	-0,368	-0,463	-3,412
-0,638	-1,6	-0,347	-0,463	-3,288
-0,55	-1,5	-0,325	-0,463	-3,164
-0,472	-1,4	-0,303	-0,463	-3,04
-0,403	-1,3	-0,282	-0,464	-2,916
-0,343	-1,2	-0,26	-0,464	-2,793
-0,289	-1,1	-0,238	-0,465	-2,669
-0,242	-1	-0,217	-0,465	-2,546
-0,201	-0,9	-0,195	-0,466	-2,422
-0,164	-0,8	-0,173	-0,467	-2,299
-0,133	-0,7	-0,152	-0,469	-2,176
-0,105	-0,6	-0,13	-0,47	-2,052
-0,081	-0,5	-0,108	-0,473	-1,928
-0,059	-0,4	-0,087	-0,476	-1,805
-0,041	-0,3	-0,065	-0,479	-1,68
-0,025	-0,2	-0,043	-0,484	-1,555
-0,012	-0,1	-0,022	-0,491	-1,429
0	0	0	-0,5	-1,3
0,01	0,1	0,022	-0,513	-1,168
0,019	0,2	0,043	-0,534	-1,028
0,026	0,3	0,065	-0,575	-0,87
0,032	0,4	0,087	-0,664+0,106j	-0,664-0,106j
0,037	0,5	0,108	-0,605+0,194j	-0,605-0,194j
0,041	0,6	0,13	-0,547+0,240j	-0,547-0,240j
0,044	0,7	0,152	-0,490+0,267j	-0,490-0,267j
0,047	0,8	0,173	-0,432+0,282j	-0,432-0,282j
0,049	0,9	0,195	-0,376+0,285j	-0,376-0,285j
0,051	1	0,217	-0,319+0,279j	-0,319-0,279j
0,052	1,1	0,238	-0,263+0,263j	-0,263-0,263j
0,053	1,2	0,26	-0,208+0,235j	-0,208-0,235j
0,053	1,3	0,282	-0,153+0,191j	-0,153-0,191j
0,054	1,4	0,303	-0,099+0,115j	-0,099-0,115j
0,054	1,5	0,325	-0,164	0,073
0,054	1,6	0,347	-0,205	0,22
0,053	1,7	0,368	-0,223	0,341
5,000	±,,	0,000	0,220	0,041

0,053	1,8	0,39	-0,231	0,452
0,052	1,9	0,412	-0,235	0,555
0,052	2	0,433	-0,235	0,652
0,051	2,1	0,455	-0,232	0,744
0,05	2,2	0,477	-0,226	0,831
0,05	2,3	0,498	-0,219	0,912
0,049	2,4	0,52	-0,209	0,987
0,049	2,5	0,542	-0,196	1,055
0,048	2,6	0,563	-0,181	1,116
0,047	2,7	0,585	-0,162	1,167
0,047	2,8	0,607	-0,139	1,207
0,047	2,9	0,628	-0,11	1,235
0,046	3	0,65	-0,075	1,246
0,046	3,1	0,672	-0,029	1,236
0,046	3,2	0,693	0,033	1,196
0,046	3,3	0,715	0,122	1,114
0,047	3,4	0,737	0,272	0,949
0,047	3,5	0,758	0,591+0,257j	0,591-0,257j
0,048	3,6	0,78	0,554+0,555j	0,554-0,555j
0,05	3,7	0,802	0,494+0,792j	0,494-0,792j
0,052	3,8	0,823	0,405+1,022j	0,405–1,022j
0,055	3,9	0,845	0,272+1,259j	0,272-1,259j
0,06	4	0,867	0,075+1,506j	0,075-1,506j
0,066	4,1	0,888	-0,224+1,762j	-0,224-1,762j
0,076	4,2	0,91	-0,698+2,001j	-0,698-2,001j
0,092	4,3	0,932	-1,514+2,104j	-1,514-2,104j
0,125	4,4	0,953	-3,147+1,079j	-3,147-1,079j
0,217	4,5	0,975	-13,775	-1,675

5. Значения варианта B) p4 = 14, p1 = 0.5, $p3 \rightarrow \infty$, p5 = 0.8, p6 = 0:

p2	x2	x1	eigv1	eigv2
-0,872	-1,9	-0,353	-0,467	-3,672
-0,758	-1,8	-0,334	-0,467	-3,548
-0,657	-1,7	-0,316	-0,467	-3,423
-0,567	-1,6	-0,297	-0,467	-3,298
-0,488	-1,5	-0,279	-0,467	-3,174
-0,418	-1,4	-0,26	-0,468	-3,049
-0,357	-1,3	-0,241	-0,468	-2,925
-0,303	-1,2	-0,223	-0,468	-2,801
-0,255	-1,1	-0,204	-0,469	-2,676
-0,213	-1	-0,186	-0,469	-2,552
-0,176	-0,9	-0,167	-0,47	-2,428
-0,144	-0,8	-0,149	-0,471	-2,304
-0,116	-0,7	-0,13	-0,473	-2,18
-0,091	-0,6	-0,111	-0,474	-2,056
-0,07	-0,5	-0,093	-0,476	-1,931

-0,052	-0,4	-0,074	-0,479	-1,807
-0,036	-0,3	-0,056	-0,482	-1,681
-0,022	-0,2	-0,037	-0,486	-1,556
-0,01	-0,1	-0,019	-0,492	-1,429
0	0	0	-0,5	-1,3
0,009	0,1	0,019	-0,511	-1,168
0,016	0,2	0,037	-0,529	-1,03
0,022	0,3	0,056	-0,563	-0,877
0,027	0,4	0,074	-0,660+0,080j	-0,660-0,080j
0,031	0,5	0,093	-0,601+0,176j	-0,601-0,176j
0,034	0,6	0,111	-0,541+0,220j	-0,541-0,220j
0,037	0,7	0,13	-0,482+0,244j	-0,482-0,244j
0,039	0,8	0,149	-0,424+0,253j	-0,424-0,253j
0,041	0,9	0,167	-0,365+0,249j	-0,365-0,249j
0,042	1	0,186	-0,307+0,232j	-0,307-0,232j
0,043	1,1	0,204	-0,249+0,199j	-0,249-0,199j
0,043	1,2	0,223	-0,192+0,140j	-0,192-0,140j
0,043	1,3	0,241	-0,214	-0,056
0,043	1,4	0,26	-0,272	0,116
0,043	1,5	0,279	-0,294	0,251
0,043	1,6	0,297	-0,307	0,375
0,042	1,7	0,316	-0,314	0,494
0,042	1,8	0,334	-0,319	0,608
0,041	1,9	0,353	-0,321	0,718
0,04	2	0,371	-0,322	0,826
0,039	2,1	0,39	-0,321	0,932
0,038	2,2	0,409	-0,32	1,035
0,037	2,3	0,427	-0,318	1,135
0,036	2,4	0,446	-0,314	1,232
0,036	2,5	0,464	-0,31	1,327
0,035	2,6	0,483	-0,305	1,418
0,034	2,7	0,501	-0,3	1,507
0,033	2,8	0,52	-0,293	1,591
0,032	2,9	0,539	-0,285	1,671
0,031	3	0,557	-0,276	1,747
0,031	3,1	0,576	-0,266	1,817
0,03	3,2	0,594	-0,254	1,882
0,029	3,3	0,613	-0,24	1,939
0,029	3,4	0,631	-0,225	1,988
0,028	3,5	0,65	-0,206	2,028
0,028	3,6	0,669	-0,184	2,056
0,027	3,7	0,687	-0,158	2,07
0,027	3,8	0,706	-0,126	2,067
0,027	3,9	0,724	-0,087	2,043
0,026	4	0,743	-0,036	1,992
0,026	4,1	0,761	0,031	1,903

0,027	4,2	0,78	0,128	1,76
0,027	4,3	0,799	0,283	1,524
0,027	4,4	0,817	0,718	0,968
0,028	4,5	0,836	0,753+0,681j	0,753-0,681j

7 Графики и точки бифуркации

На основе найденных точек было построено 5 графиков x2(p2) и 5 графиков x1(p2).

1. Графики варианта А):

Бифуркация 1:

p2	x2	x1	eigv1	eigv2
0,478	-0,8	0,172	-0,865	-0,076
0,478	-0,7	0,188	-0,868	0,056

Бифуркация 2:

p2	x2	x1	eigv1	eigv2
0,255	2,8	0,748	0,094+0,765j	0,094-0,765j
0,257	2,9	0,764	-0,005+0,976j	-0,005-0,976j

Бифуркация 3:

p2	x2	x1	eigv1	eigv2
2,391	4,3	0,988	-76,587	-1,654
-6,813	4,4	1,004	256,73	-1,584

2. Графики варианта B) p4 = 8:

Бифуркация 1:

p2	x2	x1	eigv1	eigv2
0,971	3	0,975	-15,886	-1,514
-3,026	3,1	1,008	70,652	-1,255

3. Графики варианта B) p4 = 10:

Бифуркация 1:

р2	x2	x1	eigv1	eigv2
0,072	1,6	0,416	-0,038+0,268j	-0,038-0,268j
0,072	1,7	0,442	0,007+0,245j	0,007-0,245j

Бифуркация 2:

p2	x2	x1	eigv1	eigv2
0,094	3,1	0,806	0,076+1,153j	0,076-1,153j
0,101	3,2	0,832	-0,058+1,336j	-0,058-1,336j

Бифуркация 3:

p2	x2	x1	eigv1	eigv2
0,921	3,8	0,988	-36,615	-1,412
-0,733	3,9	1,014	40,688	-1,203

4. Графики варианта B) p4 = 12:

Бифуркация 1:

p2	x2	x1	eigv1	eigv2
0,054	1,4	0,303	-0,099+0,115j	-0,099-0,115j
0,054	1,5	0,325	-0,164	0,073

Бифуркация 2:

p2	x2	x1	eigv1	eigv2
0,06	4	0,867	0,075+1,506j	0,075-1,506j
0,066	4,1	0,888	-0,224+1,762j	-0,224-1,762j

5. Графики варианта B) p4 = 14:

Бифуркация 1:

	1			
p2	x2	x1	eigv1	eigv2
0,043	1,3	0,241	-0,214	-0,056
0,043	1,4	0,26	-0,272	0,116

8 Блок проверки

В блоке проверки все найденные точки были проверены на стационарность. Для этого значения каждой точки подставлялись в уравнения, и проверялось, что они меньше машинного эпсилона. Для этого была использована функция numpy.isclose(a, b, atol=1e-5).

Пример вывода программы блока проверки для варианта В) р4 = 14

```
Проверка равновесия для устойчивых точек: p2 = -0.872, x2 = -1.900, x1 = -0.353, собств. знач.: [-0.46711416 -3.67247401] -> Равновесие: True p2 = -0.758, x2 = -1.800, x1 = -0.334, собств. знач.: [-0.4671172 -3.54761514] -> Равновесие: True p2 = -0.657, x2 = -1.700, x1 = -0.316, собств. знач.: [-0.4671614 -3.42286031] -> Равновесие: True Проверка равновесия для неустойчивых точек: p2 = 0.043, x2 = 1.400, x1 = 0.260, собств. знач.: [-0.27195211 0.11627643] -> Равновесие: True p2 = 0.043, x2 = 1.500, x1 = 0.279, собств. знач.: [-0.29443325 0.25136394] -> Равновесие: True p2 = 0.043, x2 = 1.600, x1 = 0.297, собств. знач.: [-0.30683671 0.37545459] -> Равновесие: True
```

9 Вывод

В данной работе были найдены стационарные точки заданной системы и была оценена их устойчивость. Было построено 10 графиков по 5 разным вариантам — зависимость значений х2 и х1 от параметра р2, найдены и отмечены точки бифуркации. Кроме этого, для проверки найденных стационарных точек был выполнен блок проверки.