Algoritmos de ordenação

Vinicius A. Matias

May 18, 2021

1 Introdução

Ordnear elementos de uma estrutura de dados é uma das tarefas mais curiosas e da computação. Diferentes implementações podem ser realizadas, das mais triviais às mais eficientes, assumindo heurísticas dos algoritmos ou não, e cada um dos algoritmos tem seu valor para um melhor entendimento da complexidade computacional.

2 Insertion Sort

O método de ordenação por inserção é um dos maios simples. Ele consiste em verificar de dois em dois elementos se o valor corrente é maior que o valor antecessor no arranjo, e se for, trocar e repetir o processo até o arranjo ficar ordenado.

Esse algoritmo pode ser pensado no caso de segurarmos um conjunto de cartas em uma mão e queiramos ordená-las. Aplicando o algoritmo da ordenação por inserção, verificamos a segunda carta, vemos se a primeira é maior que ela e se sim, trocamos as cartas. Na terceira carta vemos se a segunda é maior, e se for, vericamos se ela também é maior que a primeira. Esse processo é repetido para todas as cartas, passando por cada carta da esquerda para a direita e comparando da direita para a esquerda.

2.1 Implementação iterativa

A implementação do algoritmo iterativo pode ser vista na Listing 1.

Como a operação de interesse desse algoritmo é a comparação entre elementos do arranjo e o valor corrente, devemos identificar que existem dois laços envolvidos para computar essa operação. O laço mais externo roda entre i=0 e i<len(A), ou seja, n-1 vezes. No melhor dos casos não haverá necessidade de trocar os elementos pois o arranjo já está ordenado, e nesse

caso só será realizada uma verificação por volta do laço, levando à $n\!-\!1$ iterações no melhor caso.

Listing 1: Insertion Sort iterativo

```
def insertion_sort(A):
        end = len(A)
        i = 0
        j = 0
        while i < end:
             value = A[i]
             while j>0 and A[j-1] > value:
                 A[j] = A[j{-}1]
10
                 j = j-1
11
             A[j] = value
12
13
14
        return A
```

No pior caso, para cada uma das n-1 voltas do laço será necessário verificar todos os elementos anteriores à posição atual (segundo laço). Isso implica que a primeira execução fará uma verificação, a segunda duas, a terceira três até a enésima, realizando n comparações. Somando o número de comparações teremos algo como 1+2+3+...+n-1, que pode ser vista como uma soma de Progressão Aritmética. A soma desta PA que cresce de 1 em um pode ser definida como $\frac{n(0+n-1)}{2} = \frac{n^2-n}{2}$, isto é, o algoritmo de ordenação por inserção iterativo tem crescimento assintótico $\mathcal{O}(n^2)$

2.2 Demonstração de crescimento assintótico $\mathcal{O}(n^2)$

 $f(n) = \frac{n^2 - n}{2} \in \mathcal{O}(n^2)$ se existem constantes $n_0 \ge 0$ e $c \ge 0$ que satisfazem a inequação: $0 \le \frac{n^2 - n}{2} \le cn^2$

Resolvendo $0 \leq \frac{n^2-n}{2}$ notamos que a inequação é verdadeira para qualquer $n \in \mathcal{R}$

Resolvendo $\frac{n^2-n}{2} \le cn^2$:

$$\begin{array}{l} \frac{n(n-1)}{2} \leq cn^2 \\ \frac{n-1}{2} \leq cn \\ \frac{-1}{2} \leq cn - \frac{n}{2} \\ \frac{-1}{2} \leq n(c - \frac{1}{2}) \end{array}$$

Para a inequação ser verdadeira, $c - \frac{1}{2} \ge 0$

deve ser verdade, logo, $c \ge \frac{1}{2}$. Assim, a inequação $\frac{-1}{2} \le n(c-\frac{1}{2})$ é verdadeira para qualquer valor $n \ge 0$ e $c \ge \frac{1}{2}$, como exem-

$$n_0 = 1 e c = 1$$

Isso prova que $\frac{n^2-n}{2} \in \mathcal{O}(n^2)$

2.3 Implementação recursiva

A listing 2 apresenta uma implementação recursiva do Insertion Sort.

O algoritmo é baseado na indução fraca, garantindo que sabe-se ordenar um arranjo com um elemento, pois ele já está ordenado (caso base). Cada chamada recursiva um dos n-1sub arranjos possíveis.

Listing 2: Insertion Sort recursivo

```
def insertion_sort_rec(A, n):
1
            if n == 1: return
2
3
            insertion\_sort\_rec(A, n-1)
            \mathsf{i}=\mathsf{n}-\mathsf{1}
            \mathsf{aux} = \mathsf{0}
6
            while i > 0 and A[i-1] > A[i]:
                   aux = A[i]
                   \mathsf{A}[\mathsf{i}] = \mathsf{A}[\mathsf{i}{-}1]
10
                   A[i-1] = aux
11
12
13
            return A
```

Considerando que a operação de interesse é a comparação entre elementos do arranjo A[i -1 > A[i], podemos definir duas equações de recorrência, uma para o melhor caso e outra para o pior caso.

Melhor caso: O arranjo está ordenado, portanto serão feitas n-1 chamadas recursivas para um arranjo de tamanho n, e uma comparação em cada uma dessas chamadas. Para o caso base não é feita nenhuma comparação entre elementos do arranjo.

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + 1, & n > 1 \end{cases}$$

A resolução dessa equação de recorrência diz que T(n) = n - 1

Pior caso: São feitas n-1 comparação para cada n passado na recorrência.

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + n - 1, & n > 1 \end{cases}$$

E a resolução dessa equação de recorrência resulta em $T(n) = (n^2 - n)/2$, e que $T(n) \in$ $\mathcal{O}(n^2)$

Equação de recorrência para o pior caso

Demonstraremos que o resultado da equação de recorrência abaixo é $T(n) \in \mathcal{O}(n^2)$

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + n - 1, & n > 1 \end{cases}$$

Notando que T(n) varia as chamadas recursivas de 1 em 1, calcularemos as equações de recorrência para n-1, n-2 e n-3

$$T(n) = T(n-1) + n - 1$$

$$T(n-1) = T(n-1-1) + n - 1 - 1 = T(n-2) + n - 2$$

$$T(n-2) = T(n-2-1) + n - 2 - 1 = T(n-3) + n - 3$$

$$T(n-3) = T(n-3-1) + n-3-1 = T(n-4) + n-4$$

Podemos aplicar esses valores na equação de recorrência T(n):

$$\begin{split} T(n) &= T(n-1) + n - 1 \\ T(n) &= T(n-2) + n - 2 + n - 1 \\ T(n) &= T(n-2) + 2n - 2 - 1 \\ T(n) &= T(n-3) + n - 3 + 2n - 2 - 1 \\ T(n) &= T(n-3) + 3n - 3 - 2 - 1 \\ T(n) &= T(n-4) + n - 4 + 3n - 3 - 2 - 1 \\ T(n) &= T(n-4) + 4n - 4 - 3 - 2 - 1 \end{split}$$

$$T(n) = T(n-i) + in + \sum_{j=1}^{i} -j$$

 $T(n) = T(n-i) + in + \sum_{j=1}^{i} -j$ A operação $\sum_{j=1}^{i} -j$ é uma soma de Progressão Aritmética, podendo ser reescrita como $\frac{i*(-1-i)}{2}$

Assim,
$$T(n) = T(n-i) + in + \frac{i*(-1-i)}{2}$$

Quando $i = n$:

$$T(n) = T(n-i) + in + \frac{i*(-1-i)}{2}$$

$$T(n) = T(n-n) + n^2 + \frac{n*(-1-n)}{2}$$

$$T(n) = T(0) + n^2 + \frac{(-n-n^2)}{2}$$

$$T(n) = n^2 + \frac{(-n-n^2)}{2}$$

$$T(n) = \frac{(-n-n^2+2n^2)}{2}$$

 $T(n) = \frac{(n^2-n)}{2}$

E como foi demonstrado no item 2.2, $\frac{(n^2-n)}{2} \in \mathcal{O}(n^2)$, portanto:

$$T(n) \in \mathcal{O}(n^2)$$

3 Selection Sort

A ordenação por seleção parte do último elemento de um arranjo e compara com todos os anteriores para verificar se há um elemento maior que ele e, caso exista, capturar o maior de todo o subarranjo. O índice do maior valor do subarranjo é capturado e é comparado com o índice elemento que se partiu a ordenação (da direita para a esquerda, então, o último, penúltimo etc) para verificar se são iguais, caso forem iguais não há necessidade de trocar de posições pois ho maior elemento do subarranjo já está mais à direita do arranjo. Caso sejam diferentes, o algoritmo troca a posição do então último elemento do arranjo pelo maior elemento encontrado.

3.1 Implementação iterativa

Uma implementação em Python do algoritmo de seleção pode ser vista na Listing 3.

Listing 3: Selection Sort iterativo

```
def selection_sort(A):
1
        n = len(A)
2
        fim = n-1
3
4
        while fim > 0:
5
            max = fim
6
            for j in range(fim):
                 if A[j] > A[max]:
                     max = j
            if fim != max:
10
                 temp = A[fim]
11
                 A[fim] = A[max]
                 A[max] = temp
            fim -= 1
14
15
        return A
16
```

A operação de interesse aqui é a comparação entre cada elemento de um subarranjo com o máximo encontrado até então. Note que tanto o loop mais externo quanto o mais interno (que compreende a comparação A[j] > A[max]) são

executados sempre a mesma quantidade de vezes para um mesmo n, implicando que o melhor e o pior caso sejam iguais.

O loop externo é executado n-1 vezes e a quantidade de iterações do loop interno segue um progressão aritmética (n-1, n-2, ..., 2, 1). A soma dessas iterações é dada por $\frac{(n-1)*(n-1+1)}{2}$, logo, $\frac{n^2-n}{2}$ comparações para qualquer caso. Isso implica que esta implementação $\Theta(n^2)$

3.2 Implementação recursiva

Uma implementação recursiva do algoritmo de ordenação por seleção é exibido na Listing 4.

Listing 4: Selection Sort recursivo

```
def selection_sort_rec(A, n):
        if n == 1: return A
2
        \max = n-1
        for i in range(n):
            if A[i] > A[max]:
                max = i
        if max != n-1:
            temp = A[max]
10
            A[max] = A[n-1]
11
            A[n-1] = temp
12
13
        return selection_sort_rec(A, n-1)
14
```

Partindo do caso base, sabe-se ordenar um arranjo de apenas um elemento (é o próprio arranjo). Para se ordenar para mais um elemento devem ser seguidas as diretrizes do algoritmo, como foi exibido acima. A equação de recorrência para esse ordenador (para o número de comparações entre elementos do arranjo) pode ser definida como:

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + n - 1, & n > 1 \end{cases}$$

Levando à $T(n)=\frac{n^2-n}{2}$ e, tanto no melhor quanto no pior caso, à uma implementação $\in \Theta(n^2).$

4 Bubble Sort

O Bubble Sort é possivelmente o método de ordenação mais simples dos aqui estudados, contudo também o método que tem pior desempenho em aplicações reais. O algoritmo consiste em passar por todos os possíveis pares de elementos e comparar se um é maior que o outro.

4.1 Implementação iterativa

O método bolha consiste apenas em uma troca de elementos em pares, uma das implementações iterativas possíveis está na Listing 5.

Listing 5: Bubble Sort iterativo

```
def bubble_sort(A, n):
        i = n-1
2
3
        while i > 0:
4
             j = 1
5
             while j \le i:
                 if A[j-1] > A[j]:
                      temp = A[j-1]
                      A[j-1] = A[j]
9
10
                      A[j] = temp
                 j += 1
11
             i -= 1
12
13
        return A
14
```

Sendo a comparação de interesse destacada em A[j-1] > A[j], assim como no selection sort essa operação será realizada n-1, n-2, ..., 2, 1 vezes, mudando agora quais pares de elementos são comparados. A complexidade assintótica se mantém como $\Theta(n^2)$, pois a quantidade de operações segue a mesma soma de PA que resulta em $\frac{(n^2-n)}{2}$.

4.2 Implementação recursiva

Listing 6: Bubble Sort recursivo

Ainda que não seja comum, o bubble sort pode ser implementado recursivamente, trocando o laço mais externo por um chamada à própria função para n-1. A equação de recorrência é a mesma do selection sort recursivo, levando à uma complexidade $\mathcal{O}(n^2)$.

5 Merge Sort

O Merge Sort é um método de ordenação que utliza a técnica de Divisão e Conquista também chamado de ordenação por intercalação. Ele parte da hipótese de indução forte de que sabemos ordenar um conjunto de elementos no intevalo [1,n]. A ordenação é feita dividindo o arranjo no meio para gerar dois subarranjos (esquerdo e direito). Para cada subarranjo será feito o mesmo processo de dividir entre esquerdo e direito até uma chamada para um arranjo de apenas um elemento, neste caso armazenaremos o valor e poderemos partir para a chamada do lado direito. Após algumas chamadas recursivas, teremos um elemento do arranjo esquerdo e um elemento do arranjo direito. Estes dois serão passados para a função merge, que será responsável por comparar os dois elementos e ordená-los.

Esse processo cresce conforme a pilha é desempilhada, havendo comparações dos elementos do arranjo esquerdo com o direito até um limite de n/2 comparações, que é o caso da primeira chamada recursiva realizada. O Merge Sort permite que ordenemos arranjos "da esquerda" e "da direita", e isso permite que na próxima comparação, os dois subarranjos passados para o merge estejam ordenados, cabendo à cada chamada do merge comparar o novo esquerdo e direito e ordená-los.

O Merge Sort normalmente é implementado em duas funções: uma para a ordenação de dois arranjos diferentes e gerar um único (merge()) e uma para realizar as chamadas recursivas para dividir os arranjos $(merge_sort())$.

Listing 7: Função merge sort

```
def merge_sort(A):

if len(A) > 1:

meio = len(A) // 2

esq = merge_sort(A[:meio])

dir = merge_sort(A[meio:])

A = merge(esq, dir)

return A
```

Diferentes implemementações podem ser obtidas para retornar o mesmo resultado. Muitos materias utilizam variáveis de inicio e fim para gerir o meio do arranjo, e sendo passadas nas chamadas recursivas. Dependendo das estruturas que a linguagem fornece, a implementação pode ser mais sucinta, como é o caso de Python. O pseudocódigo do livro Algoritmos (Cormen et al.), já mencionados em outro relatório fornece

um pseudocódigo do Merge Sort que tipicamente rege as implementações em Java e C. Em Python podemos utilizar os recursos da linguagem para pegar os índices que separam o arranjo esquerdo e o arranjo direito quando temos o meio calculado.

Listing 8: Função merge

```
def merge(esq, dir):
         i, j = 0, 0
2
         ordenados = list()
3
4
         while i < len(esq) and j < len(dir):
5
             if esq[i] \le dir[j]:
6
                  ordenados.append(esq[i])
                  i += 1
             else:
                  ordenados.append(dir[j])
                 i += 1
11
        if i < len(esq):
13
             ordenados += esq[i:]
14
15
         elif j < len(dir):
16
             ordenados += dir[j:]
17
18
         return ordenados
19
```

O merge funciona verificando o arranjo esquerdo e o direito para identificar quais valores são menores (do arranjo esquerdo ou do direito) e até quando. Os valores são armazenados em uma lista quer será retornada ao no método merge_sort(). Também são verificados se houveram valores que não foram inseridos na comparação, ou seja, os valores do arranjo esquerdo ou direito que eram maiores que o maior valor do outro subarranjo.

Para analisar a complexidade do merge sort precisamos notar que ele realiza duas chamadas recursivas para n/2 e uma chamada ao merge para cada n. Considerando a operação de interesse a comparação esq[i] <= dir[j] do laço da função merge, teremos um custo para essa função de n-1 no pior caso e n/2 no melhor caso. A equação de recorrência para o pior caso é:

$$T(n) = \begin{cases} 0, & n \le 1\\ 2T(n/2) + n - 1, & n > 1 \end{cases}$$

E calculando essa equação de divisão e conquista pelo Teorema Mestre (cláusula 2) descobrimos que a complexidade assintótica do merge sort para todos os casos $\in \Theta(n*logn)$. Vale lembrar que para a generalização é necessário calcular a equação de recorrência para o melhor

caso também, que terá a mesma complexidade que o pior caso.

É impotante observar que ainda que a complexidade do Merge Sort seja menor que o dos outros estudados até então, esse algoritmo tem um custo de criar novos arranjos para manipular os elementos durante a execução do método.