Detección de Fallos Utilizando Deep Learning Análisis de Datos de Vibraciones para un Diagnóstico Preciso de Fallos

Ávalos, Silvio Orzusa, Emanuel Parodi, Giulio

29 de mayo de 2024

Introducción

- Importancia de la detección de fallos en entornos industriales.
- ▶ Breve introducción al conjunto de datos: 39 escenarios con 25 pruebas cada uno, total 975 archivos CSV.

Figura: Dataset original sin descomprimir.

Planteamiento del Problema

- Descripción del problema: Detección temprana de fallos en maquinaria industrial.
- Pregunta clave: ¿Cómo podemos aprovechar el deep learning para detectar fallos con precisión en maquinaria basada en datos de vibración?

Figura: Detección temprana de fallas en máquinas rotativas mediante deep learning en un entorno industrial.

Descripción de los Datos

Visualización de muestra de datos: cada uno de los archivos contaba con 64,000 datos tomados por un acelerómetro en un periodo de 10 segundos.

Figura: Visualización de los primeros datos de uno de los archivos originales.

Preprocesamiento de Datos

- ▶ Pasos realizados para el preprocesamiento de datos:
 - Eliminación de las tres primeras filas.
 - Eliminación de columnas innecesarias (3, 5, 7, 9, 11, 13, 15, 17).
 - Renombrar columnas a: Tiempo, Tacómetro, Motor, Rodamiento 1 Z, Rodamiento 1 Y, Rodamiento 1 X, Rodamiento 2 Z, Rodamiento 2 Y, Rodamiento 2 X, Caja de engranajes.
- Herramientas utilizadas para el preprocesamiento.

of.head()										
		Tachometer								
0										
1										
2										
3	0.00046875	0.0011453666549999996	0.0070648247821782084		-0.0040864292970297037			-0.028526592435643573		0.012583309509999988
4										

Figura: Visualización de primeros datos de uno de los archivos optimizados.

Extracción de Características

- Explicación del proceso de extracción de características.
- Características clave consideradas para el análisis:
 Características en el dominio del tiempo, características en el dominio de la frecuencia.
- Importancia de cada característica en la detección de fallos.

Figura: Extracción de features de los 975 archivos para un régimen de 25 RPM.

Modelo Preliminar CNN

▶ Resumen de las capas y parámetros del modelo.

Layer (type)	Output Shape	Param #					
conv1d_4 (Conv1D)	(None, 98, 64)	256					
max_pooling1d_4 (MaxPoolin g1D)	(None, 49, 64)	0					
conv1d_5 (Conv1D)	(None, 47, 128)	24704					
max_pooling1d_5 (MaxPoolin g1D)	(None, 23, 128)	0					
flatten_2 (Flatten)	(None, 2944)	0					
dense_4 (Dense)	(None, 100)	294500					
dense_5 (Dense)	(None, 1)	101					
Total params: 319561 (1.22 MB) Trainable params: 319561 (1.22 MB) Non-trainable params: 0 (0.00 Byte)							

Figura: Estructura del modelo en formato de texto

Entrenamiento y Evaluación del Modelo

- Proceso de entrenamiento: División de datos, épocas de entrenamiento, técnicas de optimización.
- ▶ Resultados preliminares y métricas de rendimiento.

Figura: Pérdida y exactitud vs. cantidad de épocas, para los conjuntos de validación y entrenamiento.

Conclusión

- Resumen de los hallazgos.
- Eficacia del modelo preliminar.
- Trabajo futuro: Mejoras, pruebas adicionales, posible implementación.

Figura: Matriz de confusión para el segundo conjunto de datos seleccionado.

Preguntas y Respuestas

Espacio para preguntas y discusión adicional.