module3_part2

Andrew Estes

4/2/2022

```
library(tidyverse)
library(caret)
library(pROC)
```

```
set.seed(3287)
# Skip the first line of the file.
df.raw <- read.csv("default_of_credit_card_clients.csv", skip=1)</pre>
# We'll take out SEX and MARRIAGE, which seem like things you shouldn't base
# a decision on. If we don't take out ID, then we'll be training a model
# to basically use your "name" to predict your likelihood to default.
# Renaming and changing Default to a factor to make other code you might
# write happier later on.
df.raw <- df.raw %>%
  rename(Default = default.payment.next.month) %>% select(-ID) %>%
 select(-SEX, -MARRIAGE) %>%
 mutate(Default=factor(if_else(Default==1, "Yes", "No")))
# First, taking random 20% of entire data set, mostly to speed up your
# training runs. My test show we still have enough to get good prediction
# even with fewer data points.
df <- df.raw[sample(1:nrow(df.raw), round(0.2*nrow(df.raw))), ]</pre>
# The `downSample()` command from `caret` balances the data.
df <- downSample(x=select(df, -Default), y=df$Default, yname="Default")</pre>
# Then we make a training/testing split. You can do the whole assignment just
# with the training data set and cross-validation, but I put this in just in
# case you like to do one more verification of model accuracy.
ind <- createDataPartition(df$Default, p=0.70, list=FALSE)
df.train <- df[ind, ]</pre>
df.test <- df[-ind, ]</pre>
```

1

Use the train command with method="glm" to create a logistic regression model using your credit.train data set. Logistic regression is fast, so you can use repeated cross-validation to get a fairly reliable accuracy estimate. What is the accuracy you obtained? (Note: Since our SVM and neural network methods are, in a sense, both elaborations on what logistic regression does, this result is useful as a baseline to see whether those methods offer any benefit.)

```
fit.glm.train <-
train(Default ~ .,</pre>
```

[1] 0.6744708

Accuracy is 67.45%.

$\mathbf{2}$

Use the train command with method="svmRadialSigma" to tune a support vector machine model. You may need to try several runs, but try to end up with a tuning grid that seems to capture a set of optimal parameters and shows drop-off on either side. Because of variation in cross-validation, you may not every find "exactly" perfect optimal parameters, but try to get a range that shows significant drop-off from an optimal zone. Output should include a plot of accuracy vs. tuning parameters as well as a statement of which tuning parameters give the best accuracy and what that accuracy was. (Note: To get ready for Question 4 below, you might want to add the appropriate options to trControl at this stage.)

fit.svm.train\$bestTune

sigma C

3 0.01280831 1

#fit.sum.train\$finalModel

The best tuning parameters was at a cost of 0.50 and a sigma between .069. The actual number depends on how the CV divvied up the dataset. The accuracy was 70.9%.

This represents a 3% increase in accuracy over the GLM method even though the GLM had 50-fold CV repeated 50 times, while the SVM has 5-fold CV repeated 3 times.

Repeat the process above using method="nnet" and appropriate tuning parameters.

```
fit.nnet.train <-</pre>
  train(Default ~ .,
        data=df.train,
        method="nnet",
        trControl=trainControl(method="cv",
                               number=2,
                               savePredictions="final",
                               classProbs=TRUE),
        preProcess=c("scale", "center"),
        tuneGrid=expand.grid(size=c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
                    decay=c(.01, .1, .25, .5, .75, .9, .99)),
        trace=FALSE
  )
fit.nnet.train$bestTune
##
      size decay
## 33
       5 0.75
max(fit.nnet.train$results$Accuracy)
## [1] 0.7076053
plot(fit.nnet.train)
```


If doing it this way, increase the number of decay. .5 and .6 = 87% accuracy .5 and 5 = 95% accuracy .9 and 4 = 95% accuracy .4 and 4 = 95% accuracy .3 and 4 = 95% accuracy .3 and 5 = 95% accuracy .9 and 4.75 = 95% accuracy .7 and 4.25 = 94% accuracy .5 and 4.5 = 96% accuracy .1 and 4.2 = 95% accuracy .6 and 4.4 = 96% accuracy .7 and 4.6

Use the roc() command from the pROC package (along with plot() command) to create plots of the ROC curves for each model. (You can use the add=TRUE option to the plot command to superimpose the curves on each other. There are also ggplot-based solutions if you want to find them.)

?nnet
#I chose not to super-impose the graphs so we can see the AUC numbers

5

Write up a final conclusion based on the accuracy and ROC curves for each model. Do the support ## vector machine and neural network do better than logistic regression? By how much?

The SVM did slightly better than the GLM method. I am withholding comment on the neural network as it is tremendously better than the other models - this likely has something to do with choosing a node amount of less than one. However this will take more research to ascertain.