Making Do with Less: An Introduction to Compressed Sensing 3

Kurt Bryan

July 7, 2023

Consider a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Consider a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$.

For a vector \mathbf{w} the quantity $\|\mathbf{A}\mathbf{w} - \mathbf{b}\|$ is called the *residual error* and provides one way to measure the extent to which \mathbf{w} is a solution.

Consider a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$.

For a vector \mathbf{w} the quantity $\|\mathbf{A}\mathbf{w} - \mathbf{b}\|$ is called the *residual error* and provides one way to measure the extent to which \mathbf{w} is a solution.

If $\|\mathbf{A}\mathbf{w} - \mathbf{b}\| = 0$ then $\mathbf{x} = \mathbf{w}$ is a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Consider a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$.

For a vector \mathbf{w} the quantity $\|\mathbf{A}\mathbf{w} - \mathbf{b}\|$ is called the *residual error* and provides one way to measure the extent to which \mathbf{w} is a solution.

If $\|\mathbf{A}\mathbf{w} - \mathbf{b}\| = 0$ then $\mathbf{x} = \mathbf{w}$ is a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

If we have two approximate solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$, the solution with smaller residual is generally preferred.

Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}.$$

Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}.$$

Conditions for uniqueness of 1-sparse solutions are met $(\mu(\mathbf{A}) \approx 0.95 < 1$, so no two columns are parallel).

Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}.$$

Conditions for uniqueness of 1-sparse solutions are met $(\mu(\mathbf{A}) \approx 0.95 < 1$, so no two columns are parallel).

We're looking for a single nonzero x_k so that

$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}.$$

Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}.$$

Conditions for uniqueness of 1-sparse solutions are met $(\mu(\mathbf{A}) \approx 0.95 < 1$, so no two columns are parallel).

We're looking for a single nonzero x_k so that

$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}.$$

The true solution is $\mathbf{x}^* = \langle 0, 0, 3, 0 \rangle$.

If a 1-sparse solution exists then **b** is parallel to some column \mathbf{a}_k of **A**. Then $\mu(\mathbf{a}_k, \mathbf{b}) = 1$.

If a 1-sparse solution exists then **b** is parallel to some column \mathbf{a}_k of **A**. Then $\mu(\mathbf{a}_k, \mathbf{b}) = 1$.

Also since no two columns of **A** are parallel, $\mu(\mathbf{a}_j, \mathbf{b}) < 1$ for $j \neq k$.

If a 1-sparse solution exists then **b** is parallel to some column \mathbf{a}_k of **A**. Then $\mu(\mathbf{a}_k, \mathbf{b}) = 1$.

Also since no two columns of **A** are parallel, $\mu(\mathbf{a}_j, \mathbf{b}) < 1$ for $j \neq k$.

Solution Strategy: Compute $\mu(\mathbf{a}_j, \mathbf{b})$ for each $j = 1, \ldots, n$, choose the j = k so that $\mu(\mathbf{a}_k, \mathbf{b}) = 1$, then find x_k so that $x_k \mathbf{a}_k = \mathbf{b}$.

With

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

and $\mathbf{b} = \langle 3, 3 \rangle$ we find coherences 0.707, 0.707, 1.00, 0.949.

With

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

and $\mathbf{b} = \langle 3, 3 \rangle$ we find coherences 0.707, 0.707, 1.00, 0.949.

Then **b** is a multiple of \mathbf{a}_3 , so solve $x_3\mathbf{a}_3 = \mathbf{b}$ to find $x_3 = 3$.

With

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

and $\mathbf{b} = \langle 3, 3 \rangle$ we find coherences 0.707, 0.707, 1.00, 0.949.

Then **b** is a multiple of \mathbf{a}_3 , so solve $x_3\mathbf{a}_3 = \mathbf{b}$ to find $x_3 = 3$.

The recovered 1-sparse solution is then

$$\mathbf{x} = 3\mathbf{e}_3 = \langle 0, 0, 3, 0 \rangle$$

where \mathbf{e}_k means the kth standard basis vector.

But suppose the data is a bit off, say $\mathbf{b} = \langle 3.1, 3 \rangle$, and we want the best possible 1-sparse solution.

But suppose the data is a bit off, say $\mathbf{b} = \langle 3.1, 3 \rangle$, and we want the best possible 1-sparse solution.

Which column of

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

should we use?

But suppose the data is a bit off, say $\mathbf{b} = \langle 3.1, 3 \rangle$, and we want the best possible 1-sparse solution.

Which column of

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

should we use?

It seems natural to use the column \mathbf{a}_3 (again) since it is "most parallel" to \mathbf{b} .

But suppose the data is a bit off, say $\mathbf{b} = \langle 3.1, 3 \rangle$, and we want the best possible 1-sparse solution.

Which column of

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

should we use?

It seems natural to use the column \mathbf{a}_3 (again) since it is "most parallel" to \mathbf{b} .

We can put this reasoning on a firmer footing.

Suppose no 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ exists. That is, in

$$x_1\mathbf{a}_1+\cdots+x_n\mathbf{a}_n=\mathbf{b}$$

no \mathbf{a}_j is parallel to \mathbf{b} .

Suppose no 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ exists. That is, in

$$x_1\mathbf{a}_1+\cdots+x_n\mathbf{a}_n=\mathbf{b}$$

no \mathbf{a}_j is parallel to \mathbf{b} .

We can still construct a "best" 1-sparse solution.

Suppose no 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ exists. That is, in

$$x_1\mathbf{a}_1+\cdots+x_n\mathbf{a}_n=\mathbf{b}$$

no \mathbf{a}_i is parallel to \mathbf{b} .

We can still construct a "best" 1-sparse solution.

Suppose we decide to use a solution with support $S = \{k\}$. That is, $\mathbf{x} = \langle 0, 0, \dots, 0, x_k, 0, \dots, 0 \rangle$. This means we need

$$x_k \mathbf{a}_k = \mathbf{b}$$
.

Suppose no 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ exists. That is, in

$$x_1\mathbf{a}_1+\cdots+x_n\mathbf{a}_n=\mathbf{b}$$

no \mathbf{a}_j is parallel to \mathbf{b} .

We can still construct a "best" 1-sparse solution.

Suppose we decide to use a solution with support $S = \{k\}$. That is, $\mathbf{x} = \langle 0, 0, \dots, 0, x_k, 0, \dots, 0 \rangle$. This means we need

$$x_k \mathbf{a}_k = \mathbf{b}$$
.

We will choose x_k to minimize the squared residual $||x_k\mathbf{a}_k - \mathbf{b}||^2$.

To minimize $||x_k \mathbf{a}_k - \mathbf{b}||^2$ with respect to x_k write

To minimize $||x_k \mathbf{a}_k - \mathbf{b}||^2$ with respect to x_k write

$$||x_k \mathbf{a}_k - \mathbf{b}||^2 = (x_k \mathbf{a}_k - \mathbf{b}) \cdot (x_k \mathbf{a}_k - \mathbf{b})$$
$$= ||\mathbf{a}_k||^2 x_k^2 - 2(\mathbf{a}_k \cdot \mathbf{b}) x_k + ||\mathbf{b}||^2.$$

To minimize $||x_k \mathbf{a}_k - \mathbf{b}||^2$ with respect to x_k write

$$||x_k \mathbf{a}_k - \mathbf{b}||^2 = (x_k \mathbf{a}_k - \mathbf{b}) \cdot (x_k \mathbf{a}_k - \mathbf{b})$$
$$= ||\mathbf{a}_k||^2 x_k^2 - 2(\mathbf{a}_k \cdot \mathbf{b}) x_k + ||\mathbf{b}||^2.$$

Minimizing with respect to x_k is pure Calc 1: Differentiate with respect to x_k , set the derivative to 0, then solve to find minimizer

$$x_k = \frac{\mathbf{a}_k \cdot \mathbf{b}}{\|\mathbf{a}_k\|^2}.$$

To minimize $||x_k \mathbf{a}_k - \mathbf{b}||^2$ with respect to x_k write

$$||x_k \mathbf{a}_k - \mathbf{b}||^2 = (x_k \mathbf{a}_k - \mathbf{b}) \cdot (x_k \mathbf{a}_k - \mathbf{b})$$
$$= ||\mathbf{a}_k||^2 x_k^2 - 2(\mathbf{a}_k \cdot \mathbf{b}) x_k + ||\mathbf{b}||^2.$$

Minimizing with respect to x_k is pure Calc 1: Differentiate with respect to x_k , set the derivative to 0, then solve to find minimizer

$$x_k = \frac{\mathbf{a}_k \cdot \mathbf{b}}{\|\mathbf{a}_k\|^2}.$$

If you substitute this back into $||x_k \mathbf{a}_k - \mathbf{b}||^2$ and simplify you find the minimized squared residual can be written as

$$\operatorname{residual} = \|\mathbf{b}\|^2 \left(1 - \left(\frac{\mathbf{a}_k \cdot \mathbf{b}}{\|\mathbf{a}_k\| \|\mathbf{b}\|}\right)^2\right)$$

To minimize $||x_k \mathbf{a}_k - \mathbf{b}||^2$ with respect to x_k write

$$||x_k \mathbf{a}_k - \mathbf{b}||^2 = (x_k \mathbf{a}_k - \mathbf{b}) \cdot (x_k \mathbf{a}_k - \mathbf{b})$$
$$= ||\mathbf{a}_k||^2 x_k^2 - 2(\mathbf{a}_k \cdot \mathbf{b}) x_k + ||\mathbf{b}||^2.$$

Minimizing with respect to x_k is pure Calc 1: Differentiate with respect to x_k , set the derivative to 0, then solve to find minimizer

$$x_k = \frac{\mathbf{a}_k \cdot \mathbf{b}}{\|\mathbf{a}_k\|^2}.$$

If you substitute this back into $||x_k \mathbf{a}_k - \mathbf{b}||^2$ and simplify you find the minimized squared residual can be written as

$$\mathrm{residual} = \|\mathbf{b}\|^2 \left(1 - \left(\frac{\mathbf{a}_k \cdot \mathbf{b}}{\|\mathbf{a}_k\| \|\mathbf{b}\|}\right)^2\right) \\ = \|\mathbf{b}\|^2 (1 - \mu^2(\mathbf{a}_k, \mathbf{b})).$$

In summary, if we construct a 1-sparse solution \mathbf{x} to $x_1\mathbf{a}_1+\cdots+x_n\mathbf{a}_n=\mathbf{b}$ with support index k, the best choice for x_k is $x_k=(\mathbf{a}_k\cdot\mathbf{b})/\|\mathbf{a}_k\|^2$.

In summary, if we construct a 1-sparse solution \mathbf{x} to $x_1\mathbf{a}_1+\cdots+x_n\mathbf{a}_n=\mathbf{b}$ with support index k, the best choice for x_k is $x_k=(\mathbf{a}_k\cdot\mathbf{b})/\|\mathbf{a}_k\|^2$. The resulting squared residual is

$$\|\mathbf{b}\|^2(1-\mu^2(\mathbf{a}_k,\mathbf{b})).$$

In summary, if we construct a 1-sparse solution \mathbf{x} to $x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ with support index k, the best choice for x_k is $x_k = (\mathbf{a}_k \cdot \mathbf{b})/\|\mathbf{a}_k\|^2$. The resulting squared residual is

$$\|\mathbf{b}\|^2(1-\mu^2(\mathbf{a}_k,\mathbf{b})).$$

Which column $1 \le k \le n$ gives the best 1-sparse solution (smallest residual)? The column that maximizes $\mu(\mathbf{a}_k, \mathbf{b})$.

In summary, if we construct a 1-sparse solution \mathbf{x} to $x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ with support index k, the best choice for x_k is $x_k = (\mathbf{a}_k \cdot \mathbf{b})/\|\mathbf{a}_k\|^2$. The resulting squared residual is

$$\|\mathbf{b}\|^2(1-\mu^2(\mathbf{a}_k,\mathbf{b})).$$

Which column $1 \le k \le n$ gives the best 1-sparse solution (smallest residual)? The column that maximizes $\mu(\mathbf{a}_k, \mathbf{b})$.

Note that if $\mu(\mathbf{a}_k, \mathbf{b}) = 1$ then the residual is 0 and we obtain a perfect solution, since \mathbf{b} is parallel to \mathbf{a}_k .

Consider the system

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3.10 \\ 3.00 \end{bmatrix}.$$

Consider the system

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3.10 \\ 3.00 \end{bmatrix}.$$

First, compute each coherence $\mu(\mathbf{a}_j, \mathbf{b})$ to find the column "most parallel" to \mathbf{b} . We find coherences 0.719, 0.695, 0.999, 0.943 for $1 \leq j \leq 4$.

Consider the system

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3.10 \\ 3.00 \end{bmatrix}.$$

First, compute each coherence $\mu(\mathbf{a}_j, \mathbf{b})$ to find the column "most parallel" to \mathbf{b} . We find coherences 0.719, 0.695, 0.999, 0.943 for $1 \leq j \leq 4$.

The best 1-sparse solution will come from support index 3. Also, from $x_k = (\mathbf{a}_k \cdot \mathbf{b})/\|\mathbf{a}_k\|^2$ we find optimal choice $x_3 = 3.05$.

Summary: Computing the Best 1-sparse solution

To find the best 1-sparse solution $\mathbf{x} = \mathbf{x}^1$ to $\mathbf{A}\mathbf{x} = \mathbf{b}$ we

To find the best 1-sparse solution $\mathbf{x} = \mathbf{x}^1$ to $\mathbf{A}\mathbf{x} = \mathbf{b}$ we

① Find the column index k that maximizes $\mu(\mathbf{a}_k, \mathbf{b})$.

To find the best 1-sparse solution $\mathbf{x} = \mathbf{x}^1$ to $\mathbf{A}\mathbf{x} = \mathbf{b}$ we

- **1** Find the column index k that maximizes $\mu(\mathbf{a}_k, \mathbf{b})$.
- ② The solution will have support index k, and so $\mathbf{x}^1 = x_k \mathbf{e}_k$ where \mathbf{e}_k is the kth standard basis vector.

To find the best 1-sparse solution $\mathbf{x} = \mathbf{x}^1$ to $\mathbf{A}\mathbf{x} = \mathbf{b}$ we

- **1** Find the column index k that maximizes $\mu(\mathbf{a}_k, \mathbf{b})$.
- ② The solution will have support index k, and so $\mathbf{x}^1 = x_k \mathbf{e}_k$ where \mathbf{e}_k is the kth standard basis vector.
- **3** Choose x_k to minimize $||x_k \mathbf{a}_k \mathbf{b}||^2$; this value is $x_k = (\mathbf{a}_k \cdot \mathbf{b})/||\mathbf{a}_k||^2$.

To find the best 1-sparse solution $\mathbf{x} = \mathbf{x}^1$ to $\mathbf{A}\mathbf{x} = \mathbf{b}$ we

- **1** Find the column index k that maximizes $\mu(\mathbf{a}_k, \mathbf{b})$.
- ② The solution will have support index k, and so $\mathbf{x}^1 = x_k \mathbf{e}_k$ where \mathbf{e}_k is the kth standard basis vector.
- **3** Choose x_k to minimize $||x_k \mathbf{a}_k \mathbf{b}||^2$; this value is $x_k = (\mathbf{a}_k \cdot \mathbf{b})/||\mathbf{a}_k||^2$.

This is a "greedy" algorithm: We choose the index support k to make $||x_k \mathbf{a}_k - \mathbf{b}||$ as small as possible.

To find the best 1-sparse solution $\mathbf{x} = \mathbf{x}^1$ to $\mathbf{A}\mathbf{x} = \mathbf{b}$ we

- **1** Find the column index k that maximizes $\mu(\mathbf{a}_k, \mathbf{b})$.
- ② The solution will have support index k, and so $\mathbf{x}^1 = x_k \mathbf{e}_k$ where \mathbf{e}_k is the kth standard basis vector.
- **3** Choose x_k to minimize $||x_k \mathbf{a}_k \mathbf{b}||^2$; this value is $x_k = (\mathbf{a}_k \cdot \mathbf{b})/||\mathbf{a}_k||^2$.

This is a "greedy" algorithm: We choose the index support k to make $||x_k \mathbf{a}_k - \mathbf{b}||$ as small as possible.

We can extend this greedy approach to iteratively construct 2-, 3-, 4-, or higher-sparsity solutions.

Consider finding a 2-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & -1 & 3 & 0 \\ 3 & 1 & -1 & 1 & 1 & 3 \\ 0 & 1 & -1 & 2 & 4 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}.$$

Consider finding a 2-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & -1 & 3 & 0 \\ 3 & 1 & -1 & 1 & 1 & 3 \\ 0 & 1 & -1 & 2 & 4 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}.$$

The sparsest solution is $\mathbf{x} = \langle 1, 0, -2, 0, 0, 0 \rangle$, support set $S = \{1, 3\}$ (but we don't know this).

Consider finding a 2-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & -1 & 3 & 0 \\ 3 & 1 & -1 & 1 & 1 & 3 \\ 0 & 1 & -1 & 2 & 4 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}.$$

The sparsest solution is $\mathbf{x} = \langle 1, 0, -2, 0, 0, 0 \rangle$, support set $S = \{1, 3\}$ (but we don't know this).

If we knew even the support of the 2-sparse solution things would be easy—but we don't.

Start by finding the best 1-sparse solution. The coherence of each column of ${\bf A}$ with ${\bf b}$ is

0.6156, 0.3746, 0.8609, 0.7947, 0.1273, 0.4949.

Start by finding the best 1-sparse solution. The coherence of each column of ${\bf A}$ with ${\bf b}$ is

0.6156, 0.3746, 0.8609, 0.7947, 0.1273, 0.4949.

Since column 3 is most highly correlated with **b**, we will take a 1-sparse solution of the form $\mathbf{x}^1 = x_3 \mathbf{e}_3$.

Start by finding the best 1-sparse solution. The coherence of each column of ${\bf A}$ with ${\bf b}$ is

0.6156, 0.3746, 0.8609, 0.7947, 0.1273, 0.4949.

Since column 3 is most highly correlated with **b**, we will take a 1-sparse solution of the form $\mathbf{x}^1 = x_3 \mathbf{e}_3$.

Choosing x_3 to minimize $||x_3\mathbf{a}_3 - \mathbf{b}||^2$ yields $x_3 = -13/6$. The best 1-sparse solution is $\mathbf{x}^1 = \langle 0, 0, -13/6, 0, 0, 0 \rangle$ with support set $S = \{3\}$.

Start by finding the best 1-sparse solution. The coherence of each column of ${\bf A}$ with ${\bf b}$ is

0.6156, 0.3746, 0.8609, 0.7947, 0.1273, 0.4949.

Since column 3 is most highly correlated with **b**, we will take a 1-sparse solution of the form $\mathbf{x}^1 = x_3 \mathbf{e}_3$.

Choosing x_3 to minimize $||x_3\mathbf{a}_3 - \mathbf{b}||^2$ yields $x_3 = -13/6$. The best 1-sparse solution is $\mathbf{x}^1 = \langle 0, 0, -13/6, 0, 0, 0 \rangle$ with support set $S = \{3\}$.

We'll now boost \mathbf{x}^1 to a 2-sparse solution \mathbf{x}^2 .

Try $\mathbf{x}^2 = \mathbf{x}^1 + x_j \mathbf{e}_j$ (j and x_j to be determined).

Try
$$\mathbf{x}^2 = \mathbf{x}^1 + x_j \mathbf{e}_j$$
 (j and x_j to be determined). Note that
$$\mathbf{A}\mathbf{x}^2 = \mathbf{A}\mathbf{x}^1 + x_j \mathbf{A}\mathbf{e}_j = \mathbf{A}\mathbf{x}^1 + x_j \mathbf{a}_j.$$

Try
$$\mathbf{x}^2 = \mathbf{x}^1 + x_j \mathbf{e}_j$$
 (j and x_j to be determined). Note that

$$\mathbf{A}\mathbf{x}^2 = \mathbf{A}\mathbf{x}^1 + x_j \mathbf{A}\mathbf{e}_j = \mathbf{A}\mathbf{x}^1 + x_j \mathbf{a}_j.$$

If we want $\mathbf{A}\mathbf{x}^2 = \mathbf{b}$ then we need $\mathbf{A}\mathbf{x}^1 + x_j \mathbf{a}_j = \mathbf{b}$ or

$$x_j \mathbf{a}_j = \mathbf{b} - \mathbf{A} \mathbf{x}^1$$
.

Try $\mathbf{x}^2 = \mathbf{x}^1 + x_j \mathbf{e}_j$ (j and x_j to be determined). Note that

$$\mathbf{A}\mathbf{x}^2 = \mathbf{A}\mathbf{x}^1 + x_j \mathbf{A}\mathbf{e}_j = \mathbf{A}\mathbf{x}^1 + x_j \mathbf{a}_j.$$

If we want $\mathbf{A}\mathbf{x}^2 = \mathbf{b}$ then we need $\mathbf{A}\mathbf{x}^1 + x_j \mathbf{a}_j = \mathbf{b}$ or

$$x_j \mathbf{a}_j = \mathbf{b} - \mathbf{A} \mathbf{x}^1$$
.

This is just the problem of finding the best 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{A}\mathbf{x}^1$ (instead of $\mathbf{A}\mathbf{x} = \mathbf{b}$), which we know how to do!

So we seek a 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{A}\mathbf{x}^1$. Note that

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & -1 & 3 & 0 \\ 3 & 1 & -1 & 1 & 1 & 3 \\ 0 & 1 & -1 & 2 & 4 & -2 \end{bmatrix}, \quad \mathbf{b} - \mathbf{A} \mathbf{x}^1 = \begin{bmatrix} 4/3 \\ 17/6 \\ -1/6 \end{bmatrix}.$$

So we seek a 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{A}\mathbf{x}^1$. Note that

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & -1 & 3 & 0 \\ 3 & 1 & -1 & 1 & 1 & 3 \\ 0 & 1 & -1 & 2 & 4 & -2 \end{bmatrix}, \quad \mathbf{b} - \mathbf{A} \mathbf{x}^1 = \begin{bmatrix} 4/3 \\ 17/6 \\ -1/6 \end{bmatrix}.$$

These coherence of $\mathbf{b} - \mathbf{A} \mathbf{x}^1$ with each column of \mathbf{A} is

$$0.9916, 0.7365, 0.0000, 0.1519, 0.3857, 0.7813$$

so we'll take k=1 and take $\mathbf{x}^2=x_1\mathbf{e}_1+x_3\mathbf{e}_3$ where we already have $x_3=-13/6$.

Choose x_1 to minimize $\|\mathbf{A}\mathbf{x}^2 - \mathbf{b}\|^2$ or equivalently, $\|x_1\mathbf{a}_1 - (\mathbf{b} - x_3\mathbf{a}_3)\|^2$, which leads to $x_1 = 59/60$.

Choose x_1 to minimize $\|\mathbf{A}\mathbf{x}^2 - \mathbf{b}\|^2$ or equivalently, $\|x_1\mathbf{a}_1 - (\mathbf{b} - x_3\mathbf{a}_3)\|^2$, which leads to $x_1 = 59/60$.

The best 2-sparse solution (by this algorithm) is estimated to be

$$\mathbf{x}^2 = \langle 59/60, 0, -13/6, 0, 0, 0 \rangle.$$

Choose x_1 to minimize $\|\mathbf{A}\mathbf{x}^2 - \mathbf{b}\|^2$ or equivalently, $\|x_1\mathbf{a}_1 - (\mathbf{b} - x_3\mathbf{a}_3)\|^2$, which leads to $x_1 = 59/60$.

The best 2-sparse solution (by this algorithm) is estimated to be

$$\mathbf{x}^2 = \langle 59/60, 0, -13/6, 0, 0, 0 \rangle.$$

Compare to the correct sparsest solution

$$\textbf{x}^* = \langle 1, 0, -2, 0, 0, 0 \rangle.$$

This process can be continued and yields an algorithm called *matching pursuit*.

This process can be continued and yields an algorithm called *matching pursuit*.

lacktriangle Construct a 1-sparse solution \mathbf{x}^1 using the above procedure.

This process can be continued and yields an algorithm called *matching pursuit*.

• Construct a 1-sparse solution x^1 using the above procedure.

2 Let
$$\mathbf{x}^2 = \mathbf{x}^1 + x_j \mathbf{e}_j$$
; we'd like $A\mathbf{x}^2 = \mathbf{b}$, or

$$x_j \mathbf{a}_j = \mathbf{b} - \mathbf{A} \mathbf{x}^1.$$

This is just the problem of finding a 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{A}\mathbf{x}^1$, so proceed as before.

This process can be continued and yields an algorithm called *matching pursuit*.

- Construct a 1-sparse solution x^1 using the above procedure.
- 2 Let $\mathbf{x}^2 = \mathbf{x}^1 + x_j \mathbf{e}_j$; we'd like $A\mathbf{x}^2 = \mathbf{b}$, or

$$x_j \mathbf{a}_j = \mathbf{b} - \mathbf{A} \mathbf{x}^1.$$

This is just the problem of finding a 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{A}\mathbf{x}^1$, so proceed as before.

3 Let $\mathbf{x}^3 = \mathbf{x}^2 + x_i \mathbf{e}_i$; we'd like $A\mathbf{x}^2 = \mathbf{b}$, or

$$x_j \mathbf{a}_j = \mathbf{b} - \mathbf{A} \mathbf{x}^2.$$

This is just the problem of finding a 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b} - \mathbf{A}\mathbf{x}^2$, so proceed as before.

Observation

In the 2-sparse example the true solution was

$$\textbf{x}^* = \langle 1, 0, -2, 0, 0, 0 \rangle$$

with support $S = \{1, 3\}$.

Observation

In the 2-sparse example the true solution was

$$\textbf{x}^* = \langle 1, 0, -2, 0, 0, 0 \rangle$$

with support $S = \{1, 3\}$.

The recovered solution was

$$\mathbf{x}^2 = \langle 59/60, 0, -13/6, 0, 0, 0 \rangle,$$

also with support $S = \{1, 3\}$.

Observation

In the 2-sparse example the true solution was

$$\mathbf{x}^* = \langle 1, 0, -2, 0, 0, 0 \rangle$$

with support $S = \{1, 3\}$.

The recovered solution was

$$\mathbf{x}^2 = \langle 59/60, 0, -13/6, 0, 0, 0 \rangle,$$

also with support $S = \{1, 3\}$.

Note that \mathbf{x}^2 has the correct support, but the component entries are off.

An improvement is this: we've identified a 2-sparse solution with support $S=\{1,3\}$ so we think the best 2-sparse solution is of the form

$$\mathbf{x}^2 = x_1 \mathbf{e}_1 + x_3 \mathbf{e}_3.$$

An improvement is this: we've identified a 2-sparse solution with support $S=\{1,3\}$ so we think the best 2-sparse solution is of the form

$$\mathbf{x}^2 = x_1 \mathbf{e}_1 + x_3 \mathbf{e}_3.$$

We don't settle for the x_1 and x_3 values obtained from matching pursuit. Instead, we go back and "re-choose" x_1 and x_3 simultaneously to minimize the residual quantity $\|\mathbf{A}\mathbf{x}^2 - \mathbf{b}\|^2$.

An improvement is this: we've identified a 2-sparse solution with support $S=\{1,3\}$ so we think the best 2-sparse solution is of the form

$$\mathbf{x}^2 = x_1 \mathbf{e}_1 + x_3 \mathbf{e}_3.$$

We don't settle for the x_1 and x_3 values obtained from matching pursuit. Instead, we go back and "re-choose" x_1 and x_3 simultaneously to minimize the residual quantity $\|\mathbf{A}\mathbf{x}^2 - \mathbf{b}\|^2$.

This leads to minimizing $||x_1\mathbf{a}_1 + x_3\mathbf{a}_3 - \mathbf{b}||^2$, an easy quadratic minimization in variables x_1 and x_3 (it also yields the correct 2-sparse solution here).

An improvement is this: we've identified a 2-sparse solution with support $S=\{1,3\}$ so we think the best 2-sparse solution is of the form

$$\mathbf{x}^2 = x_1 \mathbf{e}_1 + x_3 \mathbf{e}_3.$$

We don't settle for the x_1 and x_3 values obtained from matching pursuit. Instead, we go back and "re-choose" x_1 and x_3 simultaneously to minimize the residual quantity $\|\mathbf{A}\mathbf{x}^2 - \mathbf{b}\|^2$.

This leads to minimizing $||x_1\mathbf{a}_1 + x_3\mathbf{a}_3 - \mathbf{b}||^2$, an easy quadratic minimization in variables x_1 and x_3 (it also yields the correct 2-sparse solution here).

This modification yields *Orthogonal Matching Pursuit* (OMP), a standard computational algorithm in CS.

Convergence of OMP

Theorem

Suppose $\mu(\mathbf{A}) < 1/(2k-1)$ and let $\mathbf{x} = \mathbf{x}^*$ be the (unique) k-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$. Then OMP will recover \mathbf{x}^* exactly, and will recover the components of \mathbf{x}^* in descending order of magnitude.

Basis Pursuit

In the first lecture we saw some motivation that made it plausible that finding a sparse solution to an underdetermined linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ (which probably has many solutions) might be accomplished by solving the minimization problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1$$

where $\|\mathbf{x}\|_1 = \sum_{j=1}^n |x_j|$, subject to the constraint $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Basis Pursuit

In the first lecture we saw some motivation that made it plausible that finding a sparse solution to an underdetermined linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ (which probably has many solutions) might be accomplished by solving the minimization problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1$$

where $\|\mathbf{x}\|_1 = \sum_{j=1}^n |x_j|$, subject to the constraint $\mathbf{A}\mathbf{x} = \mathbf{b}$.

This would be a Calculus 3 problem if not for the fact that the objective function is not differentiable.

Linear Programming

One of the great accomplishments of 20th century mathematics was the development of techniques for solving optimization problems of the form

$$\min_{\mathbf{y}} \sum_{j=1}^{n} c_j y_j$$

(this function is linear) subject to equality constraints $\mathbf{A}\mathbf{y}=\mathbf{b}$ and inequality constraints $\mathbf{B}\mathbf{y}\leq\mathbf{d}$ (inequality taken component-by-component).

Linear Programming

One of the great accomplishments of 20th century mathematics was the development of techniques for solving optimization problems of the form

$$\min_{\mathbf{y}} \sum_{j=1}^{n} c_{j} y_{j}$$

(this function is linear) subject to equality constraints $\mathbf{A}\mathbf{y} = \mathbf{b}$ and inequality constraints $\mathbf{B}\mathbf{y} \leq \mathbf{d}$ (inequality taken component-by-component).

Two main classes of methods are the *simplex method* and *interior point methods*.

The problem of minimizing $\|\mathbf{x}\|_1$ subject to constraint $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be cast as a linear programming problems as follows:

1 Introduce new variables x_{n+1}, \ldots, x_{2n} (doubling the size of **x**).

- **1** Introduce new variables x_{n+1}, \ldots, x_{2n} (doubling the size of **x**).
- ② Add inequality constraints $x_j \le x_{j+n}$ and $-x_j \le x_{j+n}$ for $1 \le j \le n$, which are equivalent to $-x_{j+n} \le x_j \le x_{j+n}$ or $|x_j| \le x_{j+n}$.

- **1** Introduce new variables x_{n+1}, \ldots, x_{2n} (doubling the size of \mathbf{x}).
- ② Add inequality constraints $x_j \le x_{j+n}$ and $-x_j \le x_{j+n}$ for $1 \le j \le n$, which are equivalent to $-x_{j+n} \le x_j \le x_{j+n}$ or $|x_j| \le x_{j+n}$.
- **3** We replace minimizing $\|\mathbf{x}\|_1$ with the problem of minimizing $x_{n+1} + \cdots + x_{2n}$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$ and the new inequality constraints in step 2 above.

- **1** Introduce new variables x_{n+1}, \ldots, x_{2n} (doubling the size of \mathbf{x}).
- ② Add inequality constraints $x_j \le x_{j+n}$ and $-x_j \le x_{j+n}$ for $1 \le j \le n$, which are equivalent to $-x_{j+n} \le x_j \le x_{j+n}$ or $|x_j| \le x_{j+n}$.
- **3** We replace minimizing $\|\mathbf{x}\|_1$ with the problem of minimizing $x_{n+1} + \cdots + x_{2n}$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$ and the new inequality constraints in step 2 above.
- Then x_1, \ldots, x_n provide the solution to the original problem.

Consider minimizing $|x_1| + |x_2|$ subject to $x_1 + 2x_2 = 6$. We

Consider minimizing $|x_1| + |x_2|$ subject to $x_1 + 2x_2 = 6$. We

• Introduce new variables x_3, x_4 .

Consider minimizing $|x_1| + |x_2|$ subject to $x_1 + 2x_2 = 6$. We

- Introduce new variables x_3, x_4 .
- ② Add inequality constraints $x_1 \le x_3$ and $-x_1 \le x_3$ (equivalent to $|x_1| \le x_3$, and $x_2 \le x_4$ and $-x_2 \le x_4$ (equivalent to $|x_2| \le x_4$).

Consider minimizing $|x_1| + |x_2|$ subject to $x_1 + 2x_2 = 6$. We

- 1 Introduce new variables x_3, x_4 .
- ② Add inequality constraints $x_1 \le x_3$ and $-x_1 \le x_3$ (equivalent to $|x_1| \le x_3$, and $x_2 \le x_4$ and $-x_2 \le x_4$ (equivalent to $|x_2| \le x_4$).
- **③** The new problem is to minimize $x_3 + x_4$ subject to the inequalities $x_1 \le x_3$, $-x_1 \le x_3$, $x_2 \le x_4$, and $-x_2 \le x_4$, and the equality constraint $x_1 + 2x_2 = 6$.

Convergence of BP

Seeking a sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ by minimizing $\|\mathbf{x}\|_1$ is called basis pursuit (BP).

$\mathsf{Theorem}$

Suppose $\mu(\mathbf{A}) < 1/(2k-1)$ and let $\mathbf{x}^* = \mathbf{x}^*$ be the (unique) k-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$. Then BP will recover \mathbf{x}^* exactly.

Other Algorithms and Issues

Another class of algorithms for finding sparse solutions has also been developed, *iterative hard thresholding*.

Other Algorithms and Issues

Another class of algorithms for finding sparse solutions has also been developed, *iterative hard thresholding*.

If the vector \mathbf{b} is noisy then enforcing $\mathbf{A}\mathbf{x} = \mathbf{b}$ may be too restrictive (you're forcing a fit to noise). In this case we might minimize $\|\mathbf{x}\|_1$ subject to the constraint $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \epsilon$ for some ϵ . This is called *basis pursuit denoising*.

Other Algorithms and Issues

Another class of algorithms for finding sparse solutions has also been developed, *iterative hard thresholding*.

If the vector \mathbf{b} is noisy then enforcing $\mathbf{A}\mathbf{x} = \mathbf{b}$ may be too restrictive (you're forcing a fit to noise). In this case we might minimize $\|\mathbf{x}\|_1$ subject to the constraint $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \epsilon$ for some ϵ . This is called *basis pursuit denoising*.

In OMP we would iterate only until the residual $\|\mathbf{A}\mathbf{x}^p - \mathbf{b}\|$ is comparable to the noise level of \mathbf{b} .