K – поле $\leadsto K[x]$ – кольцо многочленов от переменной x

$$K[x] = \{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \mid a_i \in K\}$$

Для каждого ненулевого многочлена $f \in K[x]$ определена его *степень* $\deg f = \{n \mid a_n \neq 0\}$. Полагаем, что $\deg 0 = -\infty$.

Свойства степеней многочлена:

- (a) $\deg(f \cdot g) = \deg f + \deg g$
- (6) $\deg(f+g) \leq \max\{\deg f, \deg g\}$

Обратимые элементы в K[x] – ненулевые константы, то есть элементы в $K[x] \setminus \{0\}$. Делителей нуля в K[x] нет.

Определение. $f, g \in K[x], g \neq 0 \Rightarrow$ говорят, что f делится g (или g делит f), если $\exists h \in K[x]$, такой что $f = g \cdot h$.

Теорема (деление с остатком в кольце K[x]). Для любых двух многочленов $f, g \in K[x], g \neq 0$, существуют единственные многочлены $q, r \in K[x]$, для которых $f = q \cdot g + r$ и либо r = 0, либо $\deg r < \deg g$.

Определение. Наибольший общий делитель многочленов $f, g \in K[x]$ – это многочлен $h \in K[x]$ со следующими свойствами:

- (a) $f \vdots g$ и $g \vdots f$
- (б) h имеет наибольшую возможную степень

Замечание. НОД(f,g) существует, если $(f,g) \neq (0,0)$, и определён однозначно с точностью до умножения на ненулевую константу.

Теорема. Пусть $(f,g) \neq (0,0)$, тогда:

- (a) $\exists HOД(f,g) = h$
- (б) $\exists u, v \in K[x]$, такие что h = uf + vg

Определение. Многочлен $h \in K[x]$ называется henpusodumum, если $\deg h > 0$ и h нельзя представить в виде $h = h_1 \cdot h_2$, где $\deg h_1 < \deg h$ и $\deg h_2 < \deg h$. Иначе h называется npusodumum.

Замечание. Верны следующие утверждения:

- (a) $h \in K[x]$, $\deg h = 1 \Rightarrow h$ неприводим
- (б) $h \in K[x], \ \deg h > 1$ и h неприводим $\Rightarrow h$ не имеет коней в K
- (в) $h \in K[x], \ \deg h \in \{2,3\} \Rightarrow h$ неприводим $\Leftrightarrow h$ не имеет корней в K

Лемма. h – неприводим и делит $g_1 \cdot \ldots \cdot g_k$ для некоторых $g_1, \ldots, g_k \in K[x] \Rightarrow$ существует i, такое что h делит g_i .

Теорема (факториальность кольца K[x]). Пусть $f \in K[x]$ и $\deg f \geqslant 1$. Тогда

- (a) существует разложение $f = h_1 \cdot \ldots \cdot h_k$, где все $h_i \in K[x]$ неприводимые
- (б) это разложение единственно с точностью до перестановки множителей и пропорциональности, точнее, если $f = h_1' \cdot \ldots \cdot h_m'$ другое такое разложение, то m = k и после подходящей перестановки множителей имеем $h_i' = C_i h$, где $C_i \in K \setminus \{0\}$

Замечание. Кольцо $K[x_1, ..., x_n]$ при $n \ge 2$ тоже факториально.

Определение. Кольцо R без делителей нуля называется *кольцом главных идеалов (КГИ)*, если все идеалы в R – главные.

Предложение. K[x] является КГИ.

Пусть $h = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ многочлен $\deg h = n > 0$. Множество (h) – главный идеал K[x]. Рассмотрим фактор кольцо F = K[x]/(h). Элементы этого кольца $\bar{f} = f + (h) \in F$, причём $\bar{f} = \bar{0} \Leftrightarrow f : h$.

Предложение. F является полем $\Leftrightarrow h$ – неприводим.

Рассмотрим отображение $K \to F$, $\alpha \to \bar{\alpha}$. Это отображение инъективно $\Rightarrow K$ отождествляется с подполем в $F \Rightarrow F$ становится векторным пространством над K.

Предложение. Элементы $\bar{1}, \bar{x}, \dots, \bar{x}^{n-1}$ образуют базис в F над K. В частности, $\dim_K F = n$.

Пусть теперь F – поле (то есть h – неприводим). Поле $K \subseteq F \Rightarrow$ можно считать, что $h \in F[x]$.

Предложение. Элемент \bar{x} является корнем многочлена h над полем F. В частности, h имеет корни в F.

Замечание. Говорят, что поле F получается из K присоединением корня неприводимого многочлена.

Утверждение. Пусть число $\frac{p}{q} \in \mathbb{Q}$ – корень многочлена $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \ a_i \in \mathbb{Z},$ тогда $a_n \ \vdots \ q$ и $a_0 \ \vdots \ p$.

Задание 1. Найдите наибольший общий делитель многочленов $f, g \in K[x]$, а также его линейное выражение через f и g в следующих случаях:

(a)
$$K = \mathbb{R}$$
, $f = x^5 + x^4 - x^3 - 2x - 1$, $q = 3x^4 - 2x^3 + x^2 - 2x - 2$

(6)
$$K = \mathbb{Z}_5$$
, $f = x^5 + 3x^4 + 4x^3 + 3x^2 + 1$, $g = 3x^3 + 2x^2 + 3x + 2$

- 1. Наибольший общий делитель многочленов находится с помощью прямого хода алгоритма Евклида, а его линейное выражение через эти многочлены с помощью обратного хода алгоритма Евклида.
- 2. Найдем НОД многочленов и его линейное представление через эти многочлены для первого случая.

$$-\underbrace{x^{5} + x^{4} - x^{3} + 0x^{2} - 2x - 1}_{x^{5} - \frac{2}{3}x^{4} + \frac{1}{3}x^{3} - \frac{2}{3}x^{2} - \frac{2}{3}x} = \frac{3x^{4} - \frac{4}{3}x^{3} + \frac{2}{3}x^{2} - \frac{4}{3}x - 1}{\frac{1}{3}x + \frac{5}{9}}$$

$$-\underbrace{\frac{5}{3}x^{4} - \frac{40}{9}x^{3} + \frac{5}{9}x^{2} - \frac{10}{9}x - \frac{10}{9}}_{r_{1}} = \underbrace{-\frac{2}{9}x^{3} + \frac{1}{9}x^{2} - \frac{2}{9}x + \frac{1}{9}}_{r_{1}} = \underbrace{-\frac{2}{9}x^{3} + \frac{1}{9}x^{2} - \frac{2}{9}x + \frac{1}{9}}_{r_{1}} = \underbrace{-\frac{2}{9}x^{3} + \frac{1}{9}x^{2} - \frac{2}{9}x + \frac{1}{9}}_{r_{2}} = \underbrace{-\frac{27}{2}x^{3} + \frac{1}{4}x^{2} - \frac{1}{2}x + \frac{1}{4}}_{r_{2}} = \underbrace{-\frac{9}{4}x^{2} - \frac{9}{4}}_{r_{2}} = \underbrace{-\frac{2}{9}x^{3} + \frac{1}{9}x^{2} - \frac{9}{2}x + \frac{9}{4}}_{r_{2}} = \underbrace{-\frac{2}{9}x^{3} + \frac{1}{9}x^{2} - \frac{9}{4}}_{r_{2}} = \underbrace{-\frac{2}{9}x^{3} + \frac{1}{9}x^{2} - \frac{9}{4}}_{r_{2}} = \underbrace{-\frac{2}{9}x^{3} + \frac{1}{9}x^{2} - \frac{9}{4}}_{r_{2}} = \underbrace{-\frac{9}{9}x^{3} + 0x^{2} - \frac{2}{9}x + \frac{1}{9}}_{r_{2}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}} = \underbrace{-\frac{9}{9}x^{2} + \frac{1}{9}}_{s_{1}}}_{s_{1}} = \underbrace{$$

Получаем, что r_2 – это последний ненулевой остаток в алгоритме \Rightarrow НОД $(f,g)=r_2=-\frac{9}{4}x^2-\frac{9}{4}$. Линейно выразим его через многочлены f и g:

$$r_{2} = g - r_{1} \cdot \left(-\frac{27}{2}x + \frac{9}{4} \right) = g - \underbrace{\left(f - g \cdot \left(\frac{1}{3}x + \frac{5}{9} \right) \right)}_{=r_{1}} \cdot \left(-\frac{27}{2}x + \frac{9}{4} \right) =$$

$$= f \cdot \left(\frac{27}{2}x - \frac{9}{4} \right) + g \cdot \left(1 + \left(\frac{1}{3}x + \frac{5}{9} \right) \left(-\frac{27}{2}x + \frac{9}{4} \right) \right) = \boxed{f \cdot \left(\frac{27}{2}x - \frac{9}{4} \right) + g \cdot \left(-\frac{9}{2}x^{2} - \frac{27}{4}x + \frac{9}{4} \right)}$$

3. Аналогично найдем НОД многочленов и его выражение через эти многочлены для второго случая.

Заметим, что в этом пункте поле уже $K = \mathbb{Z}^5$, поэтому все получаемые в процессе алгоритма числа будем брать по модулю 5.

Получаем, что r_2 – это последний ненулевой остаток в алгоритме \Rightarrow НОД $(f,g)=r_2=2x+1$. Линейно выразим его через многочлены f и g:

$$r_{2} = g - r_{1} \cdot (4x + 2) = g - \underbrace{(f - g \cdot (2x^{2} + 3x + 4)) \cdot (4x + 2)}_{=r_{1}} =$$

$$= -f \cdot (4x + 2) + g \cdot (1 + (2x^{2} + 3x + 4) \cdot (4x + 2)) =$$

$$= -f \cdot (4x + 2) + g \cdot (8x^{3} + 16x^{2} + 22x + 9) =$$

$$= \underbrace{f \cdot (x + 3) + g \cdot (3x^{3} + x^{2} + 2x + 4)}_{=r_{1}}$$

4. Заметим, что в первом случае можно было получить более «красивый» вид НОД, поделив итоговый многочлен на $-\frac{9}{4}$. Тогда НОД будет выглядеть, как x^2+1 , а его представление будет просто умножено на $-\frac{4}{9}$. По определению НОД – эти два вида одно и то же.

Ответ: (a) НОД
$$(f,g) = -\frac{9}{4}x^2 - \frac{9}{4}$$

 $-\frac{9}{4}x^2 - \frac{9}{4} = f \cdot \left(\frac{27}{2}x - \frac{9}{4}\right) + g \cdot \left(-\frac{9}{2}x^2 - \frac{27}{4}x + \frac{9}{4}\right)$
(б) НОД $(f,g) = 2x + 1$
 $2x + 1 = f \cdot (x + 3) + g \cdot (3x^3 + x^2 + 2x + 4)$

Задание 2. Разложите многочлен f в произведение неприводимых в кольце K[x] в следующих случаях:

(a)
$$K \in \{\mathbb{R}, \mathbb{C}\}, f = x^5 + 3x^3 - 4x^2 - 12$$

(6)
$$K = \mathbb{Z}_7$$
, $f = x^5 + 5x^4 + x^3 + 6x^2 + 6$

1. Разложим первый многочлен на произведение неприводимых в $\mathbb{R}[x]$:

$$f = x^5 + 3x^3 - 4x^2 - 12 = x^3(x^2 + 3) - 4(x^2 + 3) = (x^3 - 4)(x^2 + 3) =$$
$$= (x - \sqrt[3]{4})(x^2 + \sqrt[3]{4}x + 2\sqrt[3]{2})(x^2 + 3)$$

В разложении получены многочлены первой и второй степени. Многочлен первой степени неприводим. Многочлены второй степени в найденном разложении также неприводимы: они не имеют корней в \mathbb{R} , а это равносильно тому, что они неприводимы над \mathbb{R} .

$$D_1=2\sqrt[3]{2}-8\sqrt[3]{2}=-6\sqrt[3]{2}<0\Rightarrow$$
 у $x^2+\sqrt[3]{4}x+2\sqrt[3]{2}$ нет корней в $\mathbb R$
$$D_2=-12<0\Rightarrow$$
 у x^2+3 нет корней в $\mathbb R$

2. Разложим этот же многочлен уже над полем \mathbb{C} :

$$f = x^5 + 3x^3 - 4x^2 - 12 = x^3(x^2 + 3) - 4(x^2 + 3) = (x^3 - 4)(x^2 + 3) =$$
$$= (x - \sqrt[3]{4})(x^2 + \sqrt[3]{4}x + 2\sqrt[3]{2})(x^2 + 3)$$

Многочлен второй степени приводим над $K \Leftrightarrow$ он имеет корни в K. Найдем корни многочленов второй степени в полученном разложении:

$$x^{2} + \sqrt[3]{4}x + 2\sqrt[3]{2} = 0 \Rightarrow D = 2\sqrt[3]{2} - 8\sqrt[3]{2} = -6\sqrt[3]{2} \Rightarrow x_{1,2} = \frac{-\sqrt[3]{4} \pm i\sqrt{6}\sqrt[6]{2}}{2} = \frac{-1 \pm i\sqrt{3}}{\sqrt[3]{2}}$$
$$x^{2} + 3 = 0 \Rightarrow x^{2} = -3 \Rightarrow x = \pm\sqrt{-3} = \pm i\sqrt{3}$$

Получаем, что в \mathbb{C} описанный многочлен разлагается в произведение следующих неприводимых многочленов (они неприводимы, так как их степень равна 1):

$$f = x^5 + 3x^3 - 4x^2 - 12 = \left(x - \sqrt[3]{4}\right)\left(x^2 + \sqrt[3]{4}x + 2\sqrt[3]{2}\right)\left(x^2 + 3\right) =$$
$$= \left(x - \sqrt[3]{4}\right)\left(x + \frac{1 + i\sqrt{3}}{\sqrt[3]{2}}\right)\left(x + \frac{1 - i\sqrt{3}}{\sqrt[3]{2}}\right)\left(x + i\sqrt{3}\right)\left(x - i\sqrt{3}\right)$$

3. Разложим второй многочлен на произведение неприводимых в $\mathbb{Z}_7[x]$. Заметим, что число 3 – корень многочлена f. Действительно, $f(3) = 243 + 405 + 27 + 54 + 6 = 735 = 105 \cdot 7 = 0$. Поделим многочлен f на одночлен x - 3:

Получаем, что $f = (x-3)(x^4+x^3+4x^2+4x+5) = (x+4)(x^4+x^3+4x^2+4x+5).$

Число 5 также корень рассматриваемого многочлена: $f(5) = 2 \cdot (625 + 125 + 100 + 20 + 5) = 2 \cdot 125 \cdot 7$. Поделим многочлен $x^4 + x^3 + 4x^2 + 4x + 5$ на одночлен x - 5. Этот многочлен делится на x - 5, так как многочлены x - 3 и x - 5 взаимнопросты, а f : (x - 5).

Таким образом, $f = (x-3)(x-5)(x^3+6x^2+6x+6) = (x+4)(x+2)(x^3+6x^2+6x+6)$. Нетрудно увидеть, что 3 – корень x^3+6x^2+6x+6 .

Многочлен $g = x^2 + 2x + 5$ – неприводим над \mathbb{Z}_7 , так как не имеет корней в \mathbb{Z}_7 :

$$g(0) = 0^{2} + 2 \cdot 0 + 5 = 5$$

$$g(1) = 1^{2} + 2 \cdot 1 + 5 = 8$$

$$g(2) = 2^{2} + 2 \cdot 2 + 5 = 13$$

$$g(3) = 3^{2} + 2 \cdot 3 + 5 = 20$$

$$g(4) = 4^{2} + 2 \cdot 4 + 5 = 29$$

$$g(5) = 5^{2} + 2 \cdot 5 + 5 = 40$$

$$g(6) = 6^{2} + 2 \cdot 6 + 5 = 53$$

Все полученные значения не кратны 7, то есть при каждом $\alpha \in \mathbb{Z}_7$ многочлен g от этого числа не обращается в 0. Таким образом, $f = (x+2)(x+4)(x+4)(x^2+2x+5)$ – искомое разложение на неприводимые многочлены.

Otber: (a)
$$f = (x - \sqrt[3]{4})(x^2 + \sqrt[3]{4}x + 2\sqrt[3]{2})(x^2 + 3)$$
 b $\mathbb{R}[x]$
 $f = (x - \sqrt[3]{4})(x + \frac{1+i\sqrt{3}}{\sqrt[3]{2}})(x + \frac{1-i\sqrt{3}}{\sqrt[3]{2}})(x + i\sqrt{3})(x - i\sqrt{3})$ b $\mathbb{C}[x]$
(6) $f = (x + 2)(x + 4)(x + 4)(x^2 + 2x + 5)$ b $\mathbb{Z}_7[x]$

Задание 3. Рассмотрим факторкольцо $F = \mathbb{Q}[z]/(z^3 - z^2 - 1)$ и обозначим через α класс элемента z в нём. Докажите, что F является полем, и представьте в нём элемент $\frac{5\alpha^2 - 10\alpha + 6}{\alpha^2 - \alpha - 2} \in F$ в виде $f(\alpha)$, где $f(z) \in \mathbb{Q}[z]$ и $\deg f \leqslant 2$.

1. Докажем, что F — поле. Известно, что F = K[x]/(h) — поле $\Leftrightarrow h$ — неприводим, поэтому достаточно доказать, что $z^3 - z^2 - 1$ неприводим в $\mathbb{Q}[x]$.

Единственные возможные рациональные корни $\frac{p}{q}$ многочлена z^3-z^2-1 – это ± 1 , так как p и q должны быть делителями единицы. Проверим, что ± 1 не являются корнями z^3-z^2-1 :

$$(z^3 - z^2 - 1)(1) = -1 \neq 0$$
$$(z^3 - z^2 - 1)(-1) = -3 \neq 0$$

Таким образом, z^3-z^2-1 — многочлен степени 3, не имеющий корней $\Leftrightarrow z^3-z^2-1$ — неприводим $\Leftrightarrow F$ — поле.

2. Класс элемента $f \in \mathbb{Q}[z]$ в F – это $\bar{f} = f + (z^3 - z^2 - 1) = r + (z^3 - z^2 - 1)$, где r – остаток деления f на $z^3 - z^2 - 1$. Все остатки по модулю $z^3 - z^2 - 1$ имеют вид $a_2 z^2 + a_1 z + a_0$, $a_i \in \mathbb{Q}$. Тогда получаем, что факторкольцо F отождествляется с $\{b_2\alpha^2 + b_1\alpha + b_0\}$ – многочленами от α степени не выше 2.

В описанном факторкольце выполняется соотношение $\alpha^3 - \alpha^2 - 1 = 0 \Leftrightarrow \alpha^3 = \alpha^2 + 1$, которое воспринимается как формула понижения степени.

3. Элемент $\frac{5\alpha^2-10\alpha+6}{\alpha^2-\alpha-2} \in F$ существует, в силу того, что F – поле, и $\alpha^2-\alpha-2 \neq \bar{0}$. Он представляется в виде многочлена $A\alpha^2+B\alpha+C$, так как $F=\{b_2\alpha^2+b_1\alpha+b_0\}$, значит

$$\frac{5\alpha^2-10\alpha+6}{\alpha^2-\alpha-2}=A\alpha^2+B\alpha+C$$
для некоторых $A,B,C\in\mathbb{Q}$

Обе части равенства домножим на $\alpha^2-\alpha-2$, получим

$$5\alpha^{2} - 10\alpha + 6 = (A\alpha^{2} + B\alpha + C)(\alpha^{2} - \alpha - 2) =$$

$$= A\alpha^{4} + (-A + B)\alpha^{3} + (-2A - B + C)\alpha^{2} + (-2B - C)\alpha - 2C$$

Используя формулу понижения степени, получим

$$A\alpha^{4} + (-A+B)\alpha^{3} + (-2A-B+C)\alpha^{2} + (-2B-C)\alpha - 2C =$$

$$= A\alpha(\alpha^{2}+1) + (-A+B)(\alpha^{2}+1) + (-2A-B+C)\alpha^{2} + (-2B-C)\alpha - 2C =$$

$$= A\alpha^{3} + (-3A+C)\alpha^{2} + (A-2B-C)\alpha + (-A+B-2C) =$$

$$= A(\alpha^{2}+1) + (-3A+C)\alpha^{2} + (A-2B-C)\alpha + (-A+B-2C) =$$

$$= (-2A+C)\alpha^{2} + (A-2B-C)\alpha + (B-2C)$$

Так как два многочлена равны тогда и только тогда, когда у них совпадают коэффициенты при одинаковых степенях переменной, получаем систему

$$\begin{cases}
-2A + C = 5 \\
A - 2B - C = -10 \\
B - 2C = 6
\end{cases}$$

Решим эту систему:

$$\begin{pmatrix} -2 & 0 & 1 & | & 5 \\ 1 & -2 & -1 & | & -10 \\ 0 & 1 & -2 & | & 6 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & -4 & -1 & | & -15 \\ 1 & -2 & -1 & | & -10 \\ 0 & 1 & -2 & | & 6 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & 0 & -9 & | & 9 \\ 1 & 0 & -5 & | & 2 \\ 0 & 1 & -2 & | & 6 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & 0 & 1 & | & -1 \\ 1 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & | & 4 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & | & 4 \\ 0 & 0 & 1 & | & -1 \end{pmatrix}$$

Получаем, что $\frac{5\alpha^2-10\alpha+6}{\alpha^2-\alpha-2}=-3\alpha^2+4\alpha-1$

Ответ: $-3\alpha^2 + 4\alpha - 1$

Задание 4. Пусть K – поле и $h \in K[x]$ – многочлен положительной степени. Докажите, что всякий ненулевой необратимый элемент факторкольца K[x]/(h) является делителем нуля.

- 1. Элемент $f + (h) \in K[x]/(h)$ делитель нуля \Leftrightarrow существует такой ненулевой $g + (h) \in K[x]/(h)$, то есть $g \not h$, что (f + (h))(g + (h)) = fg + (h) = 0 + (h), что равносильно fg : 0.
- 2. Пусть f+(h) ненулевой необратимый элемент в $K[x]/(h) \Rightarrow f \not h$. Рассмотрим два случая: HOД(f,h)=1 и $HOД(f,h)\neq 1$.
- 3. HOД(f,h)=1, тогда существуют такие $u,v\in K[x]$, что uf+vh=1. Значит, верны следующие равенства для элементов факторкольца:

$$1 + (h) = uf + vh + (h) = (uf + (h)) + (vh + (h)) = (uf + (h)) + (0 + (h)) = uf + (h)$$

Последний элемент факторкольца представляется в виде uf+(h)=(u+(h))(f+(h)). Получаем, что 1+(h)=(u+(h))(f+(h)), то есть элемент f+(h) обратим в K[x]/(h) – противоречие.

4. НОД $(f,h) \neq 1$, тогда возьмём многочлены $g,l \in K[x]$, такие что многочлены $h = g \cdot \text{НОД}(f,h)$ и $f = l \cdot \text{НОД}(f,h)$. Рассмотрим элемент g + (h) в факторкольце. Заметим, что $g \neq 0$ и $g \not : h$, так как иначе при g = 0 многочлен $h = 0 \Rightarrow \deg h < 0$ – противоречие, а при g : h следует, что НОД(f,h) = 1 – противоречие.

Из $g \not h$ получаем, что $g + (h) \neq 0$. Рассмотрим произведение f + (h) и g + (h):

$$(f+(h))(g+(h)) = fg+(h) = l \cdot HO \coprod (f,h) \cdot g+(h) = lh+(h) = 0+(h)$$

Таким образом, f + (h) – делитель нуля по определению.

5. Получаем, что всякий ненулевой необратимый элемент факторкольца K[x]/(h) является делителем нуля.