Computer Graphics

Lecture 11: Sampling I

Kartic Subr

What is sampling?

Function reconstruction problem

Interpolate samples using a fixed function g(x)

Convolution with a 'reconstruction kernel'

$$f_r(x) = \int f_s(x-y)g(y)dy$$

How to reduce reconstruction error?

Some preliminaries: this lecture

Recall: 'Operate on' a vector?

Which vector — unaffected by operator?

Which vector — unaffected by operator?

Continuous - Eigenfunctions

 $\frac{d}{dx}$

Eigenfunction of differential operator?

Fourier analysis: origin and intuition

• Eigenfunction of the differential operator

$$\frac{\mathrm{d}}{\mathrm{d}x}e^{\lambda x} = \lambda e^{\lambda x}$$
scaling

Use this to solve differential equations

• Eigenfunction of the differential operator

$$\frac{\mathrm{d}}{\mathrm{d}x}e^{\lambda x} = \lambda e^{\lambda x}$$
scaling

differential equations -> algebraic equations

$$f(x) = \sum_{i=1}^{N} e^{\lambda_i x}, \quad \frac{\mathrm{d}}{\mathrm{d}x} f(x) = \sum_{i=1}^{N} \lambda_i e^{\lambda_i x}$$

If λ is complex, then sinusoids ...

Euler's Formula

$$e^{i\phi} = \cos\phi + i\sin\phi$$

The Fourier domain

Image credits: Wikipedia

A special trigonometric series which could represent any arbitrary function

The continuous Fourier transform

$$\hat{f}(\omega) = \int\limits_{-\infty}^{\infty} f(x)e^{-2\pi\imath\omega x}\mathrm{d}x$$
 Fourier domain (space, time, etc.) domain

The Fourier transform: `frequency' domain

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-2\pi\imath\omega x}\mathrm{d}x$$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)\cos(2\pi\omega x)\mathrm{d}x + \imath\int_{-\infty}^{\infty} f(x)\sin(2\pi\omega x)\mathrm{d}x$$
 frequency domain
$$f(x) = \int_{-\infty}^{\infty} f(x)\cos(2\pi\omega x)\mathrm{d}x + \iota\int_{-\infty}^{\infty} f(x)\sin(2\pi\omega x)\mathrm{d}x$$

projection onto sin and cos

A single sample:

$$f(x) = \delta(x - x_k)$$

$$\hat{f}(\omega) = e^{-\frac{2\pi \imath x_k \omega}{\text{phase}}}$$
 amplitude = 1

$$\hat{f}(\omega) = \cos(2\pi \imath x_k \omega) + \imath \sin(2\pi \imath x_k \omega)$$

Fourier spectrum of the sampling function

sampling function

amplitude (sampling spectrum)

phase (sampling spectrum)

$$S(x) = \sum_{k=1}^{N} \delta(x - x_k) \qquad \hat{S}(\omega) = \sum_{k=1}^{N} e^{-2\pi i x_k \omega}$$

$$\hat{S}(\omega) = \sum_{k=1}^{N} e^{-2\pi i x_k \omega}$$

sampling function = sum of Dirac deltas

In the Fourier domain ...

Review: in the Fourier domain ...

The Fourier Transform

Fourier "duals"

What can you take the Fourier transform of?

Remember convolution?

$$h(x) = \int f(x - y)g(y)dy$$
$$h(x) = f(x) \otimes g(x)$$

Fourier Transform of Convolution ?

$$h(x) = f(x) \otimes g(x)$$

Fourier Transform of Convolution ?

$$h(x) = f(x) \otimes g(x)$$

$$\mathcal{F}(h(x)) = \mathcal{F}(f(x) \otimes g(x))$$

Fourier Transform of Convolution ?

$$h(x) = f(x) \otimes g(x)$$

$$\mathcal{F}(h(x)) = \mathcal{F}(f(x) \otimes g(x))$$

$$H(\xi) = F(\xi) G(\xi)$$

Convolution theorem

$$\mathcal{F}(f(x) \otimes g(x)) = F(\xi) G(\xi)$$

Fourier transform of a convolution

product of Fourier transformed functions

Alternative way to calculate convolutions

$$h(x) = \int f(x - y)g(y)dy$$

Fast Fourier Transform 1. Obtain Fourier transforms F and G

2. Multiply, so H = F.G

Fast Fourier Transform 3. Take the inverse Fourier transform of H

4. $h = H^{-1}$

What if we apply the Fourier transform?

$$f_r(x) = \int f_s(x-y)g(y)dy$$

$$F_r(\xi) = F_s(\xi) G(\xi)$$

How to assess sampling and reconstruction error?

Focus on the sampling operation first:

What are these in the Fourier domain?

Intuition: Sampling function

Intuition: Sampling function

Sampling in the Fourier Domain

How to remove aliases?

Sparse sampling (squeezed in Fourier domain)

Sparse sampling (squeezed in Fourier domain)

Nyquist-Shannon Sampling theorem

If a function x(t) contains no frequencies higher than B hertz,

it is completely determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart.

Multiplication by a box in the Fourier (frequency) domain...

... convolution with a reconstruction kernel (in x)

Is a convolution with a reconstruction kernel (in the primal, or x)

To be continued ...