

SEQUENCE LISTING

<110> Penttila, Merja E.
 Ward, Michael
 Wang, Huaming
 Valkonen, Mari J.
 Saloheimo, Markku

<120> Increased Production of Secreted
 Proteins by Recombinant Eukaryotic Cells

<130> GC590-2

<140> US 09/816,227
 <141> 2001-03-23

<150> US 09/534,692
 <151> 2000-03-24

<160> 63

<170> FastSEQ for Windows Version 4.0

<210> 1
 <211> 2417
 <212> DNA
 <213> Trichoderma reesei

<400> 1		
cgagaggcca ctctgtcctc ttctgcctga ctcatcactc ctcgacagca tcaccaaggg	60	
gaacgcactg cacttggaca cagccacgcc gcttcccact gactcatttg ggactggcgc	120	
cgttgcctgt catgactgtt cgcatcgctg tcatcaacca tcgactgaca cgcttcgctt	180	
tgatttgatt gcttctctc ccactctctc tcttcgtc tctctactac tactactact	240	
ctctcttctg catctccacc ggcctgtgac cgaaaaaacc aactccgtct cctttcgaag	300	
aagaaacagt tggccgacg tcacaagcac attcacaaaa atcaaacaac atatccccat	360	
ctttcatata caccacacgc ttatgcagt agagagcacg agagaagcat cgtcataatc	420	
aacacatcag tcaaagcgaa ctgcgctcg caacacgaca cggcaggcaa catggcggtc	480	
cagcagtcgt ctccccctgt caagtttgag gcctctcccg cgcgcattt cctctccgccc	540	
ccggcgaca acttcacatc cctttcgcgc gactcaacac cctcaacact taaccctcgg	600	
gacatgatga cccctgacag cgtcgccgac atcgactctc gcctgtccgt catccccgaa	660	
tcacaggacg cggaaagatga cgaatcacac tccacatccg ctaccgcacc ctctaccta	720	
gaaaagaagc ccgtcaagaa gaggaaatca tggggccagg ttcttcctga gcccaagacc	780	
aacctccctc ctcggtatgt cactgcaaca cggctcactt gatacaactt gcatcctaac	840	
caaacgttac tgttagaaaac gtgcaaagac ggaagatgaa aaggaggcagc gccgcgtcga	900	
gcgtgttctc cgcaacgcgc gcgcgcgc gtcctcgcc gagcgcaga ggctcgaggt	960	
cgaggctctc gagaaggcga acaaggagct cgagacgctc ctcataacg tccagaagac	1020	
caacctgtatc ctcgtcgagg actcaaccgc ttccgacgca gctcaggcgt cgtcaccgc	1080	
tcttcctccc ccctcgactc tctccaggac agcatcactc tctcccgaca actctttggc	1140	
tcgcgggatg gccaaaccat gtccaaacccc gagcagtct tgatggacca gatcatgaga	1200	
tctgcgcgcta accctaccgt taacccggcc tcttttccc cctccctccc ccccatctcg	1260	
gacaaggagt tccagaccaa ggaggaggac gaggaacagg cgcacgaaga tgaagagatg	1320	
gagcagacat ggcacgagac caaagaagcc gcccgcgc aggagaagaa cagcaagcag	1380	
tcccgctct ccactgattc gacacaacgt cctgcagaga tttgtgcga cccgcagtgt	1440	
caatcggtgg agatgcgcgt gtccctgtct tctcagacga cgcgcgcga aactgccttg	1500	
gcctggaccc ttttcatcag gatgtggtc ctttcagcat cggccattt ttcggcctgt	1560	

cagcggccct	tgatgcagat	cgttatctcc	tcgaaagcca	acttctcgct	tcgcccacg	1620
cctcaactgt	tgacgacgat	tatctggctg	gtgactctgc	cgcctgcttc	acgaatcctc	1680
tcccctccga	ctacgacttc	gacatcaacg	acttcctcac	agacgacgca	aaccacgccc	1740
cctatgacat	tgtggcagcg	agcaactatg	ccgctgcgga	ccgcgagctc	gacctcgaga	1800
tccacgaccc	tgagaatcag	atcccttcgc	gacattctat	ccagcagccc	cagtctggcg	1860
cgtcctctca	tggatgcgac	gatggcggca	ttgcgggtgg	tgtctgaggg	acgcgacgat	1920
cggggcggga	tcccggccctc	cgagtcttgt	gcgacgcgcg	gcgactgcga	gctgaaacgg	1980
tgcctacgca	gcgtgacett	gccgtctcga	gaagtctca	tcaccctgtg	gtggccgtg	2040
aagggtggagg	agaggaggat	tcgcctgagg	cagcacaaga	agcaggccgc	ggctctcgac	2100
cccgagaagc	gcccctcctt	ggcagacaag	aagaaccgac	aacaacaaca	acaacaacac	2160
cagtatcaga	ttccttcgtt	ttcaaaaatag	ttagcatatg	tgtttttta	atggcaatg	2220
ggcggatgg	caacacggta	gaggcaacaa	gggttgacta	cacctcccaa	agggatacgg	2280
cgcacagcga	ggttaatgac	aaggctaaga	tggccctttt	tttttatga	tatgagaacc	2340
tcttcatctc	ccttacact	tctctctaga	tggttagtcat	gatatactgt	accaaaaatac	2400
aacgtctacc	tagtgct					2417

<210> 2
<211> 451
<212> PRT
<213> Trichoderma reesei

<400> 2						
Met Ala Phe Gln Gln Ser Ser Pro Leu Val Lys Phe Glu Ala Ser Pro						
1	5	10	15			
Ala Glu Ser Phe Leu Ser Ala Pro Gly Asp Asn Phe Thr Ser Leu Phe						
20	25	30				
Ala Asp Ser Thr Pro Ser Thr Leu Asn Pro Arg Asp Met Met Thr Pro						
35	40	45				
Asp Ser Val Ala Asp Ile Asp Ser Arg Leu Ser Val Ile Pro Glu Ser						
50	55	60				
Gln Asp Ala Glu Asp Asp Glu Ser His Ser Thr Ser Ala Thr Ala Pro						
65	70	75	80			
Ser Thr Ser Glu Lys Lys Pro Val Lys Lys Arg Lys Ser Trp Gly Gln						
85	90	95				
Val Leu Pro Glu Pro Lys Thr Asn Leu Pro Pro Arg Lys Arg Ala Lys						
100	105	110				
Thr Glu Asp Glu Lys Glu Gln Arg Arg Val Glu Arg Val Leu Arg Asn						
115	120	125				
Arg Arg Ala Ala Gln Ser Ser Arg Glu Arg Lys Arg Leu Glu Val Glu						
130	135	140				
Ala Leu Glu Lys Arg Asn Lys Glu Leu Glu Thr Leu Leu Ile Asn Val						
145	150	155	160			
Gln Lys Thr Asn Leu Ile Leu Val Glu Glu Leu Asn Arg Phe Arg Arg						
165	170	175				
Ser Ser Gly Val Val Thr Arg Ser Ser Pro Leu Asp Ser Leu Gln						
180	185	190				
Asp Ser Ile Thr Leu Ser Gln Gln Leu Phe Gly Ser Arg Asp Gly Gln						
195	200	205				
Thr Met Ser Asn Pro Glu Gln Ser Leu Met Asp Gln Ile Met Arg Ser						
210	215	220				
Ala Ala Asn Pro Thr Val Asn Pro Ala Ser Leu Ser Pro Ser Leu Pro						
225	230	235	240			
Pro Ile Ser Asp Lys Glu Phe Gln Thr Lys Glu Glu Asp Glu Glu Gln						
245	250	255				
Ala Asp Glu Asp Glu Glu Met Glu Gln Thr Trp His Glu Thr Lys Glu						
260	265	270				
Ala Ala Ala Ala Lys Glu Lys Asn Ser Lys Gln Ser Arg Val Ser Thr						

275	280	285
Asp Ser Thr Gln Arg Pro Ala Val Ser Ile Gly	Gly Asp Ala Ala Val	
290	295	300
Pro Val Phe Ser Asp Asp Ala Gly Ala Asn Cys	Leu Gly Leu Asp Pro	
305	310	315
Val His Gln Asp Asp Gly Pro Phe Ser Ile Gly	His Ser Phe Gly Leu	
325	330	335
Ser Ala Ala Leu Asp Ala Asp Arg Tyr Leu	Leu Glu Ser Gln Leu Leu	
340	345	350
Ala Ser Pro Asn Ala Ser Thr Val Asp Asp Asp	Tyr Leu Ala Gly Asp	
355	360	365
Ser Ala Ala Cys Phe Thr Asn Pro Leu Pro Ser	Asp Tyr Asp Phe Asp	
370	375	380
Ile Asn Asp Phe Leu Thr Asp Asp Ala Asn His	Ala Ala Tyr Asp Ile	
385	390	395
Val Ala Ala Ser Asn Tyr Ala Ala Asp Arg	Glu Leu Asp Leu Glu	
405	410	415
Ile His Asp Pro Glu Asn Gln Ile Pro Ser Arg	His Ser Ile Gln Gln	
420	425	430
Pro Gln Ser Gly Ala Ser Ser His Gly Cys Asp	Asp Gly Gly Ile Ala	
435	440	445
Val Gly Val		
450		

<210> 3

<211> 1615

<212> DNA

<213> Aspergillus nidulans

<400> 3

gccatccttg	gtgactgagc	ccaaacactt	tcactggtcg	ggatagtagc	ctctggcttc	60
gattcgctat	gacaccgtgg	cctctgtcct	aagtgactca	ggcaaggcaa	tcccagttcc	120
aactccaaac	ttcgcaacct	catcaaccac	ctgcttccgt	.ctagttgcag	ttatcagact	180
tgagttgtat	gaaatcagca	gaccggttt	cgccagtgaa	aatggaggac	gctttcgcaa	240
actcttgc	tactacccc	tcattggagg	ttcctgtgct	cactgtctcc	ccggctgaca	300
catctctcg	qacgaagaat	gtggtgtgctc	agacaaaagcc	tgaggagaag	aagccagcga	360
agaaaaagaaa	gtcctggggc	caggaattac	cagttccaa	gacaaaactta	cctccaagg	420
gtgtgatacc	tcaagagtca	actccttact	cctgctaata	actaccacag	aaaacgcgc	480
aagacagaag	atgagaaaaga	gcagcgccgg	attgagcag	ttcttcgcaa	ccgcgcagcc	540
gcacaaacct	ctcgcgagcg	caagagactt	gaaatggaga	atttagaaaag	cgagaagatt	600
gatatgaaac	aacaaaacca	gttccttctt	cagcgtctcg	cccagatgga	ggctgagaac	660
aaccgtttaa	gtcagcaagt	tgctcagcta	tccggggagg	ttcggggatc	ccgccccacagc	720
actccaaactt	ccagttcccc	cgcgtcagtt	tcgccaactc	tcacaccgac	tcttttaag	780
caggaagggg	atgaggttcc	tctggaccgc	atccctttc	caactccctc	cgtgaccgac	840
tactcccaa	ctcttaagcc	ttcatctctg	gctgagttccc	ccgatttgac	acaacatcct	900
gcagcgatgt	tgtgcgacct	gcagtgtcag	tcggcgggct	cgaaggagat	gaaagtgccc	960
tcacgctttt	cgacctcgga	gccagcatta	agcatgagcc	tacacatgac	cttacagctc	1020
ctcttctga	cgatgacttc	cgccgcctat	tcaacggtg	ttcatccctt	gagtcagatt	1080
ttcactcct	tgaagacggg	ttcgccctt	acgttctcg	ctcaggagat	ttatcagcat	1140
ttccatttga	ttctatggtt	gatttgaca	ccgaggctgt	caccctcgaa	gatctcgagc	1200
aaaccaacgg	ccttceggat	tcagttctt	gcaaggctgc	tagttgcaa	cccagccatg	1260
gcmcgtccac	ttcgcgatgc	gacgggcagg	gcattgcagc	tggcagtgcg	tgagaggttt	1320
tcgacgaaag	accgtcttgt	tcccgtgtt	gtagagggtc	gatggagctg	ggaatccttg	1380
ttaacgctag	cgtcggcgat	aaatcttctt	gagaaaccgg	agcgacgaag	aagaaccttg	1440
aggggtcttg	attcgtaaaa	gccccgtcgg	cgtattgatt	cggggaaagcg	gtacagggtc	1500
atacggagtt	cacggagttc	aactagccca	agagaggcgt	tgacgtctcg	gagaaagggc	1560
ttatgataat	ttgtatatta	gcgtgtccac	tattcaatgt	aagagcgagc	aatttg	1615

<210> 4
<211> 349
<212> PRT
<213> Aspergillus nidulans

<400> 4
Met Lys Ser Ala Asp Arg Phe Ser Pro Val Lys Met Glu Asp Ala Phe
1 5 10 15
Ala Asn Ser Pro Thr Thr Pro Ser Leu Glu Val Pro Val Leu Thr Val
20 25 30
Ser Pro Ala Asp Thr Ser Leu Arg Thr Lys Asn Val Val Ala Gln Thr
35 40 45
Lys Pro Glu Glu Lys Lys Pro Ala Lys Lys Arg Lys Ser Trp Gly Gln
50 55 60
Glu Leu Pro Val Pro Lys Thr Asn Leu Pro Pro Arg Lys Arg Ala Lys
65 70 75 80
Thr Glu Asp Glu Lys Glu Gln Arg Arg Ile Glu Arg Val Leu Arg Asn
85 90 95
Arg Ala Ala Ala Gln Thr Ser Arg Glu Arg Lys Arg Leu Glu Met Glu
100 105 110
Lys Leu Glu Ser Glu Lys Ile Asp Met Glu Gln Gln Asn Gln Phe Leu
115 120 125
Leu Gln Arg Leu Ala Gln Met Glu Ala Glu Asn Asn Arg Leu Ser Gln
130 135 140
Gln Val Ala Gln Leu Ser Ala Glu Val Arg Gly Ser Arg His Ser Thr
145 150 155 160
Pro Thr Ser Ser Ser Pro Ala Ser Val Ser Pro Thr Leu Thr Pro Thr
165 170 175
Leu Phe Lys Gln Glu Gly Asp Glu Val Pro Leu Asp Arg Ile Pro Phe
180 185 190
Pro Thr Pro Ser Val Thr Asp Tyr Ser Pro Thr Leu Lys Pro Ser Ser
195 200 205
Leu Ala Glu Ser Pro Asp Leu Thr Gln His Pro Ala Val Ser Val Gly
210 215 220
Gly Leu Glu Gly Asp Glu Ser Ala Leu Thr Leu Phe Asp Leu Gly Ala
225 230 235 240
Ser Ile Lys His Glu Pro Thr His Asp Leu Thr Ala Pro Leu Ser Asp
245 250 255
Asp Asp Phe Arg Arg Leu Phe Asn Gly Asp Ser Ser Leu Glu Ser Asp
260 265 270
Ser Ser Leu Leu Glu Asp Gly Phe Ala Phe Asp Val Leu Asp Ser Gly
275 280 285
Asp Leu Ser Ala Phe Pro Phe Asp Ser Met Val Asp Phe Asp Thr Glu
290 295 300
Pro Val Thr Leu Glu Asp Leu Glu Gln Thr Asn Gly Leu Ser Asp Ser
305 310 315 320
Ala Ser Cys Lys Ala Ala Ser Leu Gln Pro Ser His Gly Ala Ser Thr
325 330 335
Ser Arg Cys Asp Gly Gln Gly Ile Ala Ala Gly Ser Ala
340 345

<210> 5
<211> 451
<212> PRT
<213> Trichoderma reesei

<400> 5

Met Ala Phe Gln Gln Ser Ser Pro Leu Val Lys Phe Glu Ala Ser Pro
1 5 10 15
Ala Glu Ser Phe Leu Ser Ala Pro Gly Asp Asn Phe Thr Ser Leu Phe
20 25 30
Ala Asp Ser Thr Pro Ser Thr Leu Asn Pro Arg Asp Met Met Thr Pro
35 40 45
Asp Ser Val Ala Asp Ile Asp Ser Arg Leu Ser Val Ile Pro Glu Ser
50 55 60
Gln Asp Ala Glu Asp Asp Glu Ser His Ser Thr Ser Ala Thr Ala Pro
65 70 75 80
Ser Thr Ser Glu Lys Lys Pro Val Lys Lys Arg Lys Ser Trp Gly Gln
85 90 95
Val Leu Pro Glu Pro Lys Thr Asn Leu Pro Pro Arg Lys Arg Ala Lys
100 105 110
Thr Glu Asp Glu Lys Glu Gln Arg Arg Val Glu Arg Val Leu Arg Asn
115 120 125
Arg Arg Ala Ala Gln Ser Ser Arg Glu Arg Lys Arg Leu Glu Val Glu
130 135 140
Ala Leu Glu Lys Arg Asn Lys Glu Leu Glu Thr Leu Leu Ile Asn Val
145 150 155 160
Gln Lys Thr Asn Leu Ile Leu Val Glu Glu Leu Asn Arg Phe Arg Arg
165 170 175
Ser Ser Gly Val Val Thr Arg Ser Ser Pro Leu Asp Ser Leu Gln
180 185 190
Asp Ser Ile Thr Leu Ser Gln Gln Leu Phe Gly Ser Arg Asp Gly Gln
195 200 205
Thr Met Ser Asn Pro Glu Gln Ser Leu Met Asp Gln Ile Met Arg Ser
210 215 220
Ala Ala Asn Pro Thr Val Asn Pro Ala Ser Leu Ser Pro Ser Leu Pro
225 230 235 240
Pro Ile Ser Asp Lys Glu Phe Gln Thr Lys Glu Glu Asp Glu Glu Gln
245 250 255
Ala Asp Glu Asp Glu Glu Met Glu Gln Thr Trp His Glu Thr Lys Glu
260 265 270
Ala Ala Ala Ala Lys Glu Lys Asn Ser Lys Gln Ser Arg Val Ser Thr
275 280 285
Asp Ser Thr Gln Arg Pro Ala Val Ser Ile Gly Gly Asp Ala Ala Val
290 295 300
Pro Val Phe Ser Asp Asp Ala Gly Ala Asn Cys Leu Gly Leu Asp Pro
305 310 315 320
Val His Gln Asp Asp Gly Pro Phe Ser Ile Gly His Ser Phe Gly Leu
325 330 335
Ser Ala Ala Leu Asp Ala Asp Arg Tyr Leu Leu Glu Ser Gln Leu Leu
340 345 350
Ala Ser Pro Asn Ala Ser Thr Val Asp Asp Asp Tyr Leu Ala Gly Asp
355 360 365
Ser Ala Ala Cys Phe Thr Asn Pro Leu Pro Ser Asp Tyr Asp Phe Asp
370 375 380
Ile Asn Asp Phe Leu Thr Asp Asp Ala Asn His Ala Ala Tyr Asp Ile
385 390 395 400
Val Ala Ala Ser Asn Tyr Ala Ala Ala Asp Arg Glu Leu Asp Leu Glu
405 410 415
Ile His Asp Pro Glu Asn Gln Ile Pro Ser Arg His Ser Ile Gln Gln
420 425 430
Pro Gln Ser Gly Ala Ser Ser His Gly Cys Asp Asp Gly Gly Ile Ala
435 440 445

Val Gly Val
450

<210> 6
<211> 349
<212> PRT
<213> Aspergillus nidulans

<400> 6
Met Lys Ser Ala Asp Arg Phe Ser Pro Val Lys Met Glu Asp Ala Phe
1 5 10 15
Ala Asn Ser Pro Thr Thr Pro Ser Leu Glu Val Pro Val Leu Thr Val
20 25 30
Ser Pro Ala Asp Thr Ser Leu Arg Thr Lys Asn Val Val Ala Gln Thr
35 40 45
Lys Pro Glu Glu Lys Lys Pro Ala Lys Lys Arg Lys Ser Trp Gly Gln
50 55 60
Glu Leu Pro Val Pro Lys Thr Asn Leu Pro Pro Arg Lys Arg Ala Lys
65 70 75 80
Thr Glu Asp Glu Lys Glu Gln Arg Arg Ile Glu Arg Val Leu Arg Asn
85 90 95
Arg Ala Ala Ala Gln Thr Ser Arg Glu Arg Lys Arg Leu Glu Met Glu
100 105 110
Lys Leu Glu Ser Glu Lys Ile Asp Met Glu Gln Gln Asn Gln Phe Leu
115 120 125
Leu Gln Arg Leu Ala Gln Met Glu Ala Glu Asn Asn Arg Leu Ser Gln
130 135 140
Gln Val Ala Gln Leu Ser Ala Glu Val Arg Gly Ser Arg His Ser Thr
145 150 155 160
Pro Thr Ser Ser Ser Pro Ala Ser Val Ser Pro Thr Leu Thr Pro Thr
165 170 175
Leu Phe Lys Gln Glu Gly Asp Glu Val Pro Leu Asp Arg Ile Pro Phe
180 185 190
Pro Thr Pro Ser Val Thr Asp Tyr Ser Pro Thr Leu Lys Pro Ser Ser
195 200 205
Leu Ala Glu Ser Pro Asp Leu Thr Gln His Pro Ala Val Ser Val Gly
210 215 220
Gly Leu Glu Gly Asp Glu Ser Ala Leu Thr Leu Phe Asp Leu Gly Ala
225 230 235 240
Ser Ile Lys His Glu Pro Thr His Asp Leu Thr Ala Pro Leu Ser Asp
245 250 255
Asp Asp Phe Arg Arg Leu Phe Asn Gly Asp Ser Ser Leu Glu Ser Asp
260 265 270
Ser Ser Leu Leu Glu Asp Gly Phe Ala Phe Asp Val Leu Asp Ser Gly
275 280 285
Asp Leu Ser Ala Phe Pro Phe Asp Ser Met Val Asp Phe Asp Thr Glu
290 295 300
Pro Val Thr Leu Glu Asp Leu Glu Gln Thr Asn Gly Leu Ser Asp Ser
305 310 315 320
Ala Ser Cys Lys Ala Ala Ser Leu Gln Pro Ser His Gly Ala Ser Thr
325 330 335
Ser Arg Cys Asp Gly Gln Gly Ile Ala Ala Gly Ser Ala
340 345

<210> 7
<211> 1265
<212> DNA

<213> Aspergillus nidulans

<400> 7

tttgaacagc	agatcggtac	tgcctaccca	gacgttacag	tccacgagct	cacggaggac	60
gatgaattct	tagtaatcgc	ttgcgatgg	gggtttcccc	tcaactttgc	cgctctgttc	120
cacaatctga	tatactacag	aatctggg	ttgccagtct	tcccaagccg	tggtcgaatt	180
cgttcgccgc	ggtatcgccg	ccaagcagga	tctctatcgg	atttgtaaa	acatgatgga	240
caactgtctc	gttccaaca	gtgagactgg	tggagttggc	tgtgacaaca	tgacaatgg	300
cattataggt	ctcctaata	gaaaaactaa	ggaagagtgg	tacaaccaga	tcgcggagcg	360
ggttgcta	ggcgcacggcc	cttgcgtcc	gcccgaatac	ggcaagtctc	tcgaggaacc	420
cacggcctcc	aatccctact	gactgaaccg	tgggggttgc	agctgaattc	cgaggacctg	480
gaatccataa	ccatTTGAA	gagaaccgg	acgagtacga	gatcgaccac	gatcgctccc	540
gcccattcaa	cgtgcgttct	ggtagaataa	ttcttttggg	agatggcagc	acgttaattc	600
caggaaaaca	gaatgacgag	gaactctttg	accaaaccgg	ggaggagaat	cacccagacc	660
aagtgcAACG	ccagaataacc	gacacagaaa	gaaatgaccg	tgaaggacg	cctgggcctc	720
aatCCGCGC	tccccagacg	aacacgtccg	cttcggatgg	ctcagacgc	tctaacadac	780
cgcagaaacc	cgcctttcg	tagttcg	atgagattt	cgcctgattc	ccttcatttt	840
ggttcctgaa	acgactcg	atttcacgat	ccacacccgc	cgcgcgcgc	ccacgcgcgc	900
tgccgaagcc	tcacaattct	gccccatac	ggtcgc	tgcattttctg	tttctcacga	960
tttgaaggcg	cattgggtct	tgtgaccgcg	aagatgcgaa	agagacggac	catacatcc	1020
ccttctatct	tttgttttaa	tcccatcttc	ttactttta	cgagctc	cagatcaa	1080
cacccctcg	ttactccagg	atggatatct	ttgagaattc	gccgaatggg	tggaggcatc	1140
ttctttccct	gtcatcttc	ttctctatgt	ttgcacatgc	cgcaagcggc	aggcctc	1200
agagtacgtt	tgtttcatgt	ctcgacataa	gataccgcaa	caaccactat	tgacgaactt	1260
tataa						1265

<210> 8

<211> 130

<212> PRT

<213> Aspergillus nidulans

<400> 8

Phe	Glu	Gln	Gln	Ile	Val	Thr	Ala	Tyr	Pro	Asp	Val	Thr	Val	His	Glu
1				5				10					15		
Leu	Thr	Glu	Asp	Asp	Glu	Phe	Leu	Val	Ile	Ala	Cys	Asp	Gly	Gly	Ile
						20			25				30		
Trp	Asp	Cys	Gln	Ser	Ser	Gln	Ala	Val	Val	Glu	Phe	Val	Arg	Arg	Gly
						35			40			45			
Ile	Ala	Ala	Lys	Gln	Asp	Leu	Tyr	Arg	Ile	Cys	Glu	Asn	Met	Met	Asp
						50			55			60			
Asn	Cys	Leu	Ala	Ser	Asn	Ser	Glu	Thr	Gly	Gly	Val	Gly	Cys	Asp	Asn
							65		70		75			80	
Met	Thr	Met	Val	Ile	Ile	Gly	Leu	Leu	Asn	Gly	Lys	Thr	Lys	Glu	Glu
						85			90			95			
Trp	Tyr	Asn	Gln	Ile	Ala	Glu	Arg	Val	Ala	Asn	Gly	Asp	Gly	Pro	Cys
						100			105			110			
Ala	Pro	Pro	Glu	Tyr	Gly	Lys	Ser	Leu	Glu	Glu	Pro	Thr	Ala	Ser	Asn
						115			120			125			
Pro	Tyr														
	130														

<210> 9

<211> 1824

<212> DNA

<213> Trichoderma reesei

<400> 9

gacgagcctc	gatccgcctc	gacggcgctg	gttccccct	tctttctccc	cccttcagcc	60
acgtcctcg	gtcctataac	ctttcgacg	ctacggcccc	gcctccagag	gtctcgcg	120
cctgagtacc	aaacgataga	aacaagactg	ctatcttgc	cgtgctgcct	cctccctcc	180
tcgacgctt	tcctccccct	cgatcgctt	cccgccctc	gtgagacg	gcagccatgg	240
gccaaaccct	ctcgagccc	gttgcgaaa	agacttccga	aaaggcgag	gatgacagac	300
tcatctacgg	cgtgtccccc	atgcaggc	ggcgcatcg	catggaggac	gctcacacgg	360
ctgagctgaa	tctccccca	cctgacaacg	acaccaagac	gcaccccgac	aggctgtcct	420
tttcggagt	tttcgacgga	cacggaggag	acaaaatgc	gttattcgca	ggcgagaaca	480
ttcacaacat	tgtttcaag	caggagagct	tcaaattccgg	tgattacgct	cagggtctca	540
aggacggctt	tctcgctacg	gatcgccc	ttctcaacga	ccccaaatac	gaagaggaag	600
tctctggctg	cactgcctgc	gtcaccctga	ttgcccggaaa	caaactata	gtcgccaacg	660
cccggtattc	tcgaagcgtg	ctgggcatca	agggacgggc	caaacccta	tccaaacgacc	720
acaaggcctca	gcttgaacg	gagaagaacc	gaatcacagc	cgctggcggt	ttcgtcgact	780
ttggccgagt	caacggcaat	ctggctctgt	cgcgtgccat	tggcgactt	gaattcaaga	840
agagcggcga	gctgtcccc	gaaaaccaga	tcgttaccgc	cttcccgat	gtcgagggtgc	900
acgagcttac	agaggaggac	gagttcctgg	tgattgcctg	tgacggat	tgggattgcc	960
aatcttcca	ggctgttgtt	gagtttgtc	gacgaggcat	cgccgccaag	caggaccttgc	1020
acaagatctg	cgagaacatg	atggacaact	gccttgcgtc	caactcagaa	acgggtggcg	1080
tcggctgcga	caacatgacc	atggcatca	tcggcttcct	gcacggcaag	accaaggagg	1140
agtgttatga	cgaaattgcc	aagagagtgg	ccaaacggaga	cggccctgt	gcccccccg	1200
aatatgccga	gttccgcgtt	cccgccgttc	accacaacta	cgaagacagc	gacagcggct	1260
acgacgtcga	cggcgcac	ggcggcaagt	ttagcctgc	cggatcccgg	gtcgcacatca	1320
tcttcctggg	cgacggcacc	gaagtccgt	cgggctccga	cgacacggag	atgtttgaca	1380
atgctgacga	ggacaaggac	cttgcgagcc	aggtgccc	gagctccggc	aagaccatg	1440
caaaggagga	gacagaggcc	aagccggcac	cagaggcgg	gtcgtccaaa	cccgccggatg	1500
ggtcggagaa	gaagcaagac	gaaaagacac	ccgaggagag	taagaaggat	taggtggtcc	1560
tcttgaattc	tttggctcg	tctcctgaa	gcccccgct	ggtgttgg	atggcgtgt	1620
tttgtgtgt	cgtgtggcat	aattctttt	tcttccatc	accgctactc	aaaaaacccc	1680
aggcgtgagg	gcattttaa	atcgcatagg	gagtgggg	gagacggag	aggctctgga	1740
acgaaacatt	ctgggagaca	aggcagagag	cgtagggcg	gttagacat	tgagtgttgc	1800
tcgttaaaaaa	aaaaaaaaaa	aaaaaa	aaaa			1824

<210> 10

<211> 438

<212> PRT

<213> Trichoderma reesei

<400> 10

Met	Gly	Gln	Thr	Leu	Ser	Glu	Pro	Val	Val	Glu	Lys	Thr	Ser	Glu	Lys
1				5				10			15				
Gly	Glu	Asp	Asp	Arg	Leu	Ile	Tyr	Gly	Val	Ser	Ala	Met	Gln	Gly	Trp
				20					25				30		
Arg	Ile	Ser	Met	Glu	Asp	Ala	His	Thr	Ala	Glu	Leu	Asn	Leu	Pro	Pro
				35				40				45			
Pro	Asp	Asn	Asp	Thr	Lys	Thr	His	Pro	Asp	Arg	Leu	Ser	Phe	Phe	Gly
				50				55			60				
Val	Phe	Asp	Gly	His	Gly	Gly	Asp	Lys	Val	Ala	Leu	Phe	Ala	Gly	Glu
				65				70			75			80	
Asn	Ile	His	Asn	Ile	Val	Phe	Lys	Gln	Glu	Ser	Phe	Lys	Ser	Gly	Asp
					85			90			95				
Tyr	Ala	Gln	Gly	Leu	Lys	Asp	Gly	Phe	Leu	Ala	Thr	Asp	Arg	Ala	Ile
				100				105			110				
Leu	Asn	Asp	Pro	Lys	Tyr	Glu	Glu	Val	Ser	Gly	Cys	Thr	Ala	Cys	
				115				120			125				
Val	Thr	Leu	Ile	Ala	Gly	Asn	Lys	Leu	Tyr	Val	Ala	Asn	Ala	Gly	Asp
				130				135			140				
Ser	Arg	Ser	Val	Leu	Gly	Ile	Lys	Gly	Arg	Ala	Lys	Pro	Leu	Ser	Asn

145	150	155	160
Asp His Lys Pro Gln Leu Glu Thr Glu Lys Asn Arg Ile Thr Ala Ala			
165	170	175	
Gly Gly Phe Val Asp Phe Gly Arg Val Asn Gly Asn Leu Ala Leu Ser			
180	185	190	
Arg Ala Ile Gly Asp Phe Glu Phe Lys Lys Ser Ala Glu Leu Ser Pro			
195	200	205	
Glu Asn Gln Ile Val Thr Ala Phe Pro Asp Val Glu Val His Glu Leu			
210	215	220	
Thr Glu Glu Asp Glu Phe Leu Val Ile Ala Cys Asp Gly Ile Trp Asp			
225	230	235	240
Cys Gln Ser Ser Gln Ala Val Val Glu Phe Val Arg Arg Gly Ile Ala			
245	250	255	
Ala Lys Gln Asp Leu Asp Lys Ile Cys Glu Asn Met Met Asp Asn Cys			
260	265	270	
Leu Ala Ser Asn Ser Glu Thr Gly Gly Val Gly Cys Asp Asn Met Thr			
275	280	285	
Met Val Ile Ile Gly Phe Leu His Gly Lys Thr Lys Glu Glu Trp Tyr			
290	295	300	
Asp Glu Ile Ala Lys Arg Val Ala Asn Gly Asp Gly Pro Cys Ala Pro			
305	310	315	320
Pro Glu Tyr Ala Glu Phe Arg Gly Pro Gly Val His His Asn Tyr Glu			
325	330	335	
Asp Ser Asp Ser Gly Tyr Asp Val Asp Ala Asp Ser Gly Gly Lys Phe			
340	345	350	
Ser Leu Ala Gly Ser Arg Gly Arg Ile Ile Phe Leu Gly Asp Gly Thr			
355	360	365	
Glu Val Leu Thr Gly Ser Asp Asp Thr Glu Met Phe Asp Asn Ala Asp			
370	375	380	
Glu Asp Lys Asp Leu Ala Ser Gln Val Pro Lys Ser Ser Gly Lys Thr			
385	390	395	400
Asp Ala Lys Glu Glu Thr Glu Ala Lys Pro Ala Pro Glu Ala Glu Ser			
405	410	415	
Ser Lys Pro Ala Asp Gly Ser Glu Lys Lys Gln Asp Glu Lys Thr Pro			
420	425	430	
Glu Glu Ser Lys Lys Asp			
435			

<210> 11
 <211> 1570
 <212> DNA
 <213> Aspergillus nidulans

<400> 11

cggaggcaag	agtcatagac	gcgggaagaa	gaaaatttag	agttagaaaa	aggaatctga	60
tca	cgtcccttgc	aacccccccgc	tggcccgat	gccgggttag	ctctcacccg	120
cactgc	atctatct	aatgagggtgt	ttgaagcgg	cgggttcatc	cagattggcc	180
cttacgg	ctt	gacgttctgg	gtcatggaag	ccacggaca	gttgttacc	240
tgacggccg	gacgtcg	tcaaacgtat	gctgggtgg	ttcttatgata	ttgcacatcg	300
cgaagtgg	ttgttg	cgaggaa	aaagcgatga	tcataacaac	gttatccgat	360
ttagcaagcc	aagggttct	tctacatcg	ccttgaactg	tgtccggct	ctttgcagg	420
tgtggtagaa	cgaccagacg	cgttcccgc	gcttagtcaat	ggggcttgg	atatgccg	480
cgtcttgcgt	caaattgtcg	ccgggtgtcc	gtacctacac	tctctaaaa	tcgtacaccg	540
tgacttgaag	cctcaaaaata	tcctggtcgc	cgctcctcga	ggccgtatcg	gttctcg	600
catccggctt	ctgatttcgg	acttggctt	gtgcaagaaa	cttggggata	accagagttc	660
attcaggggca	accacggccc	atgctgtgg	tactccgggt	gggggctcc	cgaactgctt	720
gtggatgacg	acaagagccg	gtaatcaggg	ttcagagtct	caaaatacgg	agtcatctga	780

gccggcggtc	gtcgatcccc	agacgaatcg	acgagccacc	cgagccattg	atatcttctc	840
cctggatgt	gtcttctact	acgcctaac	tcgaggatgt	catccttttg	acaagaatgg	900
caagttcatg	cgcgaagcaa	atacgtcaa	gggaaatttc	aatctcgatg	agttacagcg	960
tctaggagag	tatgcgttg	aagcagacga	tcttatccga	tcaatgttgg	cacttgatcc	1020
acgtcaacgg	tatgtcccaa	caacatctc	cttgccttg	tggctagcg	tactaatctc	1080
cacagccccg	acgcaagcgc	tgtgttaacc	catccttct	tctggaatcc	gtccgaccgc	1140
cttagcttcc	tctgtgacgt	ttcggaccac	ttcgagttcg	aaccgagaga	tcctccatct	1200
gacgcttcc	tgtgtctaga	gtctgttagcc	tctgatgtca	ttggccctga	aatgaatcct	1260
caaactcctg	ccaaaggact	tcaaagacag	tctcgaaagc	agcgaaaata	caccgctcc	1320
aaaatgctgg	acttgatgcg	agccctgcgg	aacaagcgca	accactacaa	tgatatgccg	1380
gagcatttga	aagctcatat	tggtgggctg	ccggagggtt	acttgaattt	ctggaccgtg	1440
cgttcccg	gtttgctgat	gagttgtcat	tgggtgattt	ttgaactggg	attgacgaag	1500
acggatcggt	tccaagagat	attttacgcc	attggagtag	gttggttgcgt	actggttcag	1560
aaatatattg						1570

<210> 12
<211> 504
<212> PRT
<213> Aspergillus nidulans

Gly	Gly	Lys	Ser	His	Arg	Arg	Gly	Lys	Lys	Ile	Glu	Ser	Glu	Lys	
1								5		10				15	
Glu	Glu	Ser	Asp	His	Ala	Pro	Gly	Thr	Leu	Gln	Pro	Pro	Ala	Gly	Pro
									20		25				30
Asp	Ala	Gly	Leu	Ala	Leu	Thr	Arg	Thr	Ala	Ser	Asn	Glu	Val	Phe	Glu
									35		40				45
Ala	Asp	Gly	Val	Ile	Gln	Ile	Gly	Arg	Leu	Lys	Val	Phe	Thr	Ala	Asp
									50		55				60
Val	Leu	Gly	His	Gly	Ser	His	Gly	Thr	Val	Val	Tyr	Arg	Gly	Ser	Phe
									65		70				80
Asp	Gly	Arg	Asp	Val	Ala	Val	Lys	Arg	Met	Leu	Val	Glu	Phe	Tyr	Asp
									85		90				95
Ile	Ala	Ser	His	Glu	Val	Gly	Leu	Leu	Gln	Glu	Ser	Asp	Asp	His	Asn
									100		105				110
Asn	Val	Ile	Arg	Cys	Tyr	Cys	Arg	Glu	Gln	Ala	Lys	Gly	Phe	Phe	Tyr
									115		120				125
Ile	Ala	Leu	Glu	Leu	Cys	Pro	Ala	Ser	Leu	Gln	Asp	Val	Val	Glu	Arg
									130		135				140
Pro	Asp	Ala	Phe	Pro	Gln	Leu	Val	Asn	Gly	Gly	Leu	Asp	Met	Pro	Asp
									145		150				160
Val	Leu	Arg	Gln	Ile	Val	Ala	Gly	Val	Arg	Tyr	Leu	His	Ser	Leu	Lys
									165		170				175
Ile	Val	His	Arg	Asp	Leu	Lys	Pro	Gln	Asn	Ile	Leu	Val	Ala	Ala	Pro
									180		185				190
Arg	Gly	Arg	Ile	Gly	Ser	Arg	Ala	Ile	Arg	Leu	Leu	Ile	Ser	Asp	Phe
									195		200				205
Gly	Leu	Cys	Lys	Lys	Leu	Glu	Asp	Asn	Gln	Ser	Ser	Phe	Arg	Ala	Thr
									210		215				220
Thr	Ala	His	Ala	Ala	Gly	Thr	Pro	Gly	Gly	Leu	Pro	Asn	Cys	Leu	
									225		230				240
Trp	Met	Thr	Thr	Arg	Ala	Gly	Asn	Gln	Gly	Ser	Glu	Ser	Gln	Asn	Thr
									245		250				255
Glu	Ser	Ser	Glu	Pro	Ala	Val	Val	Asp	Pro	Gln	Thr	Asn	Arg	Arg	Ala
									260		265				270
Thr	Arg	Ala	Ile	Asp	Ile	Phe	Ser	Leu	Gly	Cys	Val	Phe	Tyr	Tyr	Val
									275		280				285

Leu Thr Arg Gly Cys His Pro Phe Asp Lys Asn Gly Lys Phe Met Arg
 290 295 300
 Glu Ala Asn Ile Val Lys Gly Asn Phe Asn Leu Asp Glu Leu Gln Arg
 305 310 315 320
 Leu Gly Glu Tyr Ala Phe Glu Ala Asp Asp Leu Ile Arg Ser Met Leu
 325 330 335
 Ala Leu Asp Pro Arg Gln Arg Pro Asp Ala Ser Ala Val Leu Thr His
 340 345 350
 Pro Phe Phe Trp Asn Pro Ser Asp Arg Leu Ser Phe Leu Cys Asp Val
 355 360 365
 Ser Asp His Phe Glu Phe Glu Pro Arg Asp Pro Pro Ser Asp Ala Leu
 370 375 380
 Leu Cys Leu Glu Ser Val Ala Ser Asp Val Ile Gly Pro Glu Met Asn
 385 390 395 400
 Pro Gln Thr Pro Ala Lys Gly Leu Gln Arg Gln Ser Arg Lys Gln Arg
 405 410 415
 Lys Tyr Thr Gly Ser Lys Met Leu Asp Leu Met Arg Ala Leu Arg Asn
 420 425 430
 Lys Arg Asn His Tyr Asn Asp Met Pro Glu His Leu Lys Ala His Ile
 435 440 445
 Gly Gly Leu Pro Glu Gly Tyr Leu Asn Phe Trp Thr Val Arg Phe Pro
 450 455 460
 Ser Leu Leu Met Ser Cys His Trp Val Ile Val Glu Leu Gly Leu Thr
 465 470 475 480
 Lys Thr Asp Arg Phe Gln Glu Ile Phe Tyr Ala Ile Gly Val Gly Cys
 485 490 495
 Cys Val Leu Val Gln Lys Tyr Ile
 500

<210> 13
 <211> 4528
 <212> DNA
 <213> Trichoderma reesei

<400> 13

gcacgagcaa	gatacggcct	ctcgcaccaa	ggagacacgc	atattcgtgg	taccatcgcc	60
tgagggtgaa	ggggggttca	acacagcaca	actcagcgac	cactggactg	gtggagccga	120
agcccacgat	cgaatccaca	gcctgcacca	ctttcttcctc	gtcatattcg	cggggactca	180
caagcggtt	ccgttgccctt	cgaattcgcac	agagctgcga	ctgcgagtca	tttcagcgcac	240
tctaaaccta	ctcccttggc	tgctgcgcgg	gactggttct	gcccagcctc	tcctactcga	300
ccaaccgcacg	tcctctttct	gcttcctcat	ccctttctcc	tttgacgtcc	gagcgtcaga	360
gcgaattttt	ccttgcttct	tcgtttggc	cgggaatggc	ttctctggca	tcgcaacagc	420
ctctacctct	ccgttggtag	agccatagcc	tgcagctccc	catgtgatcc	gctctccgtc	480
tctccggcac	cccgactttc	gtctcgatca	tgatgcggcg	accccccggagc	caaggacgat	540
gttccgcgtc	gcatcagaag	cttccttggc	ttttgcctt	attctcatac	catggctcca	600
acttgcgcgt	gctcagcagc	agcctcagca	gccccagatt	cgaattcact	cacaaggagg	660
cgacgcgc	cttgacaaaag	tcgcccacga	tgccaacacc	cgttggtagc	caacacatgc	720
tgaccacagac	gtgcaccccg	aagcgaagtt	cgacaccgtc	aacaggaagc	aaaaggcagca	780
gtcgaccgt	tcgccccagc	aacaccagaa	atatcgacga	gccccctatg	actacgcccag	840
caaggacaag	gcccagaacc	gatatgcgc	gcaccctatc	cgcgaatccg	agaaacccaaa	900
ctacgtaaaa	gtcccccaacg	atgcgagcgc	cctcgcaact	ttagctccgg	ctcagccccgt	960
ccgagcacca	cacacccac	gacatcaactg	gcccagcagc	agcgcgcgtt	ctgggctggc	1020
ctcgccgcac	aatgcgcgga	gtctggagga	ctgggaagtt	gaagactttt	ttcttctggc	1080
gaccgtcgat	ggagacctct	atgccagcga	ccgaaaagacc	ggtcggcacc	tctggcacct	1140
cgaggtcgac	cagccagtgg	ttgaaacccaa	acactaccga	acaaacaact	ccgtcctcgaa	1200
cgacgactat	cgccccgtcg	accactacat	ctggggcgtc	gagccgagcc	gcgatggagg	1260
gctctatgt	tggatccccg	actccggagc	gggcctcgtc	aggaccggct	tcaccatgaa	1320

gcaccccggtt	gaagaacttg	ctccatacgc	cggcgacgag	ccccccgttg	tctataccgg	1380
agacaagaag	acgaccatgg	tcaccctgga	cgccgcgtacc	gggcgcgttc	tcaaatggtt	1440
tggctctagc	ggctcccaag	tcaacgaagc	cgagagctgc	cttcggccca	atgccttga	1500
cgacaggat	accacagagt	gcaagctccat	gggcacaatac	acgctggaa	ggaccgagta	1560
cacggtgggc	atccagaggc	gagacggtgc	ccctatcgca	accttgaagt	acgcagaatg	1620
gggacccaac	accttgaca	g gcacctcta	ccagcaatac	cacgcctcgt	tggacaacca	1680
ttacatcacc	agttagcagacg	acgggagaat	ttacgcgtt	gacaagtcac	aggcagaaaa	1740
cgacccgtccc	ctctacaccc	acaagtttc	gtctccgtc	gcccggtct	tcgatgtctg	1800
tcgaccgtgg	gatgcgaatg	cgggaaagcaa	cccggagctg	gtgggtctcc	cccaacctcc	1860
aattccagcg	cttgcgtgaga	gcactgtcaa	gatgcgaagc	aacagcatct	tcctcaacca	1920
gactgaaagc	ggcgactgtgt	atgcgtctc	cgcccggtcg	tatccgttta	tactcgatgc	1980
ccccgtggcc	cagatctcgc	gggacgactt	gtggatatg	gcccatgcct	ttgattccat	2040
taacccaaat	aagctgtcca	aggccctggt	gggaacccac	tttctgaatc	ccgtcaagag	2100
caccggttac	catcagccgc	cgacgctccc	tgccggcgcc	ctcgacgagt	attacgagga	2160
cttggagaac	gcctcaaaca	atgctcacgc	cgtgacaaac	actgttccgg	aggagccac	2220
catcatcacc	aaagtcaagg	ctcttccgca	gagtgcgtcg	aacagcgtca	ttgactttgt	2280
cagcaacccc	attctcatca	ttttcttgcgt	aggctccttgc	atctacaacg	aaaagaagct	2340
gcgacggtgc	tatcatcggt	tccggactca	tggcacaatac	aaggacgtct	atcccttctt	2400
cgttatcgaa	tctgaggccg	gagatgaatc	aggtgtatgc	aaggacgggt	tgttccatc	2460
ttcgcgtct	ccgcgcagtc	aaccccagga	ccaaaatgcg	gaagaccacc	tgtccagaca	2520
caaggtggag	aggaatgccc	g cgaccaggc	caaggtcaag	gacaacaggc	gcctgcatga	2580
cgtttctgac	accttggAAC	cgagcaacaa	gactgttgag	aaaacggccg	atgtgtcaa	2640
gcaagtggat	gtagctggcc	ctgacgcacc	ctcgacggac	tccaatgggt	ctgcaccgg	2700
gaagaagaag	aaggctcacc	gaggccgtcg	tggcggtgtc	aagcacagaa	agggtcggcc	2760
caccgacggc	tcgcagtc	atgaaaacga	cccagctc	actacagtgg	acgaggtgt	2820
aagaatgcg	aagaagctgg	gtgacccggcc	aaggctggaa	cccgacgtca	tgaccatcta	2880
caacgacatg	caagccgtca	cgggctctgt	tatcagcatg	ggaaacatcg	aggtcgat	2940
ggtatgtcgag	cttgcgtatgg	gcagcaacgg	tactgtcgta	tttgcgtggc	gattcgatgg	3000
cagggacgtc	gccgtcaaga	gaatgacgt	tcagttctac	gacattgcca	cgcgagaaac	3060
taagttgtcg	cgcgagagt	acgaccaccc	caatgtaaat	cagccctcat	cgtttccatc	3120
attttccctt	cgctaacgt	accactgtct	gcacgtcatt	cggattact	cacaagtgc	3180
gcgaggcgcac	ttccgtata	ttgccttgg	acgctgcgt	gcttcattgg	cagatgtcat	3240
tgaaaagccg	tatgccttgc	gtgaattggc	caaggctgg	aaaaggacc	taccggcg	3300
cttgcaccaa	atcaccaacg	gcatcagcc	cttgcactct	ctgcggattt	ttcatcgaga	3360
cttgaaggct	caaaaacatct	ttgtcaactt	ggacaaggac	ggcagaccaa	ggcttttgtt	3420
gtcgacttt	ggcctgtgt	agaaaactgg	ggatagacag	tcttcgttgc	gagcaacgc	3480
agggcggcc	gctggAACGT	cgggatggcg	tgcccccggaa	ctgcttc	atgacgcacgg	3540
acagaatccc	gcagccatcg	atagcgtac	gcacagcggc	tccacacca	tcctcg	3600
agaccccaac	tcgcttcca	atggagggcg	agccacgagg	gccattgaca	tcttc	3660
tggccttgc	ttcttctacg	tgtccacaa	tggatcccac	ccgtttgact	gtggcgacag	3720
atatatgcgg	gaggtgaaca	ttcgaaaagg	caactacaat	ctcgatccat	tggacgtct	3780
gggcgacttt	gcctacgaag	ccaaggatct	gattgcgtcc	atgctccagg	cctctccaa	3840
ggcacacccc	gactcgcgag	aggcatggc	ccacccttcc	tctcgttctc	cgaagaagcg	3900
tctggcctt	ttgtgcacg	tgtccgattc	tctggagaag	gagggtgcgag	atcctccgtc	3960
gcctgcctt	gtcgagctgg	agcgacatgc	gccggagg	attaagggag	acttcttgaa	4020
ggtgctcacg	cgcgacttt	tcgagtcgt	gggcaagcag	cgcaagtaca	ccggaaacaa	4080
gctgctcgac	ctgttgcgc	cttcgtca	caagcgaaat	cactacgaa	acatgtcg	4140
ctcgctgaag	cgcagcgtgg	gatcactgc	tgtgggtat	cttgcattt	ggacggtaa	4200
gttcccgatg	ctgttgcgt	cgtgctggaa	cgtgggtat	aatctcgat	gggagaagac	4260
ggatcggttc	agggagact	atgacgcgtc	cggattgttag	aagaaaagaaa	aggaagagaa	4320
aagaaaaggcc	tcttgcgtt	ttgggtgt	tatatttt	tgctcgaaga	tggaaacgg	4380
aatatttggg	gaagttgc	ggaaagtgaa	caaagaggg	aaaaatgg	aatgtgaaa	4440
gcaaagtgcgg	ttagcggtg	ggcatgg	tcatccatgt	aattgtttca	gcttcgttgc	4500
catcaaaaagc	gttgcgtttt	cgttctt				4528

<210> 14

<211> 1232

<212> PRT

<213> Trichoderma reesei

<400> 14

Met Val Arg Val Ala Ser Glu Ala Leu Leu Ala Phe Ala Phe Ile Leu
1 5 10 15
Ile Pro Trp Leu Gln Leu Ala Asp Ala Gln Gln Gln Pro Gln Gln Pro
20 25 30
Gln Ile Arg Ile His Ser Gln Arg Gly Asp Ala Pro Leu Asp Lys Val
35 40 45
Ala Asp Asp Ala Asn Thr Arg Trp Tyr Ala Thr His Ala Ala Pro Asp
50 55 60
Val His Pro Glu Ala Lys Phe Asp Thr Val Asn Arg Lys Gln Lys Gln
65 70 75 80
Gln Ser Thr Ala Ser Pro Gln Gln His Gln Lys Tyr Arg Arg Ala Pro
85 90 95
Tyr Asp Tyr Ala Ser Lys Asp Lys Ala Gln Asn Arg Tyr Ala Gln His
100 105 110
Pro Ile Arg Glu Ser Glu Lys Pro Asn Tyr Val Lys Val Pro Asn Asp
115 120 125
Ala Ser Ala Leu Ala Thr Leu Ala Pro Ala Gln Pro Val Arg Ala Pro
130 135 140
His Thr Ser Arg His His Trp Pro Ser Ser Ala Ala Ser Gly Leu
145 150 155 160
Ala Ser Pro His Asn Ala Arg Ser Leu Glu Asp Trp Glu Val Glu Asp
165 170 175
Phe Val Leu Leu Ala Thr Val Asp Gly Asp Leu Tyr Ala Ser Asp Arg
180 185 190
Lys Thr Gly Arg His Leu Trp His Leu Glu Val Asp Gln Pro Val Val
195 200 205
Glu Thr Lys His Tyr Arg Thr Asn Asn Ser Val Leu Asp Asp Asp Tyr
210 215 220
Arg Pro Val Asp His Tyr Ile Trp Ala Val Glu Pro Ser Arg Asp Gly
225 230 235 240
Gly Leu Tyr Val Trp Ile Pro Asp Ser Gly Ala Gly Leu Val Arg Thr
245 250 255
Gly Phe Thr Met Lys His Leu Val Glu Glu Leu Ala Pro Tyr Ala Gly
260 265 270
Asp Glu Pro Pro Val Val Tyr Thr Gly Asp Lys Lys Thr Thr Met Val
275 280 285
Thr Leu Asp Ala Ala Thr Gly Arg Val Leu Lys Trp Phe Gly Ser Ser
290 295 300
Gly Ser Gln Val Asn Glu Ala Glu Ser Cys Leu Arg Pro Asn Ala Phe
305 310 315 320
Asp Asp Arg Asp Thr Thr Glu Cys Ser Ser Met Gly Thr Ile Thr Leu
325 330 335
Gly Arg Thr Glu Tyr Thr Val Gly Ile Gln Arg Arg Asp Gly Arg Pro
340 345 350
Ile Ala Thr Leu Lys Tyr Ala Glu Trp Gly Pro Asn Thr Phe Asp Ser
355 360 365
Asp Leu Tyr Gln Gln Tyr His Ala Ser Leu Asp Asn His Tyr Ile Thr
370 375 380
Ser Gln His Asp Gly Arg Ile Tyr Ala Phe Asp Lys Ser Gln Ala Glu
385 390 395 400
Asn Asp Leu Pro Leu Tyr Thr His Lys Phe Ser Ser Pro Val Ala Arg
405 410 415
Val Phe Asp Val Cys Arg Pro Trp Asp Ala Asn Ala Gly Ser Asn Pro

420	425	430
Glu Leu Val Val Leu Pro Gln Pro Pro Ile Pro Ala Leu Asp Glu Ser		
435	440	445
Thr Val Lys Met Arg Ser Asn Ser Ile Phe Leu Asn Gln Thr Glu Ser		
450	455	460
Gly Asp Trp Tyr Ala Leu Ser Gly Arg Ala Tyr Pro Leu Ile Leu Asp		
465	470	475
Ala Pro Val Ala Gln Ile Ser Arg Asp Asp Leu Trp Asp Met Ala His		
485	490	495
Ala Phe Asp Ser Ile Asn Pro Asn Lys Leu Ser Lys Ala Leu Val Gly		
500	505	510
Thr His Phe Leu Asn Pro Val Lys Ser Thr Gly Tyr His Gln Pro Pro		
515	520	525
Thr Leu Pro Ala Gly Ala Leu Asp Glu Tyr Tyr Glu Asp Leu Glu Asn		
530	535	540
Ala Ser Asn Asn Ala His Ala Val Thr Asn Thr Val Pro Glu Glu Pro		
545	550	555
Thr Ile Ile Thr Lys Val Lys Ala Leu Pro Gln Ser Ala Ala Asn Ser		
565	570	575
Val Ile Asp Phe Val Ser Asn Pro Ile Leu Ile Ile Phe Leu Ile Gly		
580	585	590
Ser Leu Ile Tyr Asn Glu Lys Lys Leu Arg Arg Ser Tyr His Arg Phe		
595	600	605
Arg Thr His Gly Thr Ile Lys Asp Val Tyr Pro Phe Phe Val Ile Glu		
610	615	620
Ser Glu Ala Gly Asp Glu Ser Gly Asp Asp Lys Asp Gly Val Phe Pro		
625	630	635
Ser Ser Pro Ser Pro Arg Ser Gln Pro Gln Asp Gln Asn Ala Glu Asp		
645	650	655
His Leu Ser Arg His Lys Val Glu Arg Asn Ala Gly Asp Gln Asp Lys		
660	665	670
Val Lys Asp Asn Arg Ser Leu His Asp Val Ser Asp Thr Leu Glu Pro		
675	680	685
Ser Asn Lys Thr Val Glu Lys Thr Ala Asp Val Val Lys Gln Val Asp		
690	695	700
Val Ala Gly Pro Asp Ala Pro Ser Thr Asp Ser Asn Gly Ala Ala Pro		
705	710	715
Glu Lys Lys Lys Ala His Arg Gly Arg Arg Gly Gly Val Lys His		
725	730	735
Arg Lys Gly Arg Pro Thr Asp Gly Ser Gln Ser His Glu Asn Asp Pro		
740	745	750
Ala Leu Thr Thr Val Asp Glu Ala Val Ser Asn Ala Lys Lys Leu Gly		
755	760	765
Asp Arg Pro Ser Leu Glu Pro Asp Val Met Thr Ile Tyr Asn Asp Met		
770	775	780
Gln Ala Val Thr Gly Ser Val Ile Ser Met Gly Asn Ile Glu Val Asp		
785	790	795
Thr Asp Val Glu Leu Gly Met Gly Ser Asn Gly Thr Val Val Phe Ala		
805	810	815
Gly Arg Phe Asp Gly Arg Asp Val Ala Val Lys Arg Met Thr Ile Gln		
820	825	830
Phe Tyr Asp Ile Ala Thr Arg Glu Thr Lys Leu Leu Arg Glu Ser Asp		
835	840	845
Asp His Pro Asn Val Ile Arg Tyr Tyr Ser Gln Val Gln Arg Gly Asp		
850	855	860
Phe Leu Tyr Ile Ala Leu Glu Arg Cys Ala Ala Ser Leu Ala Asp Val		
865	870	875
		880

Ile Glu Lys Pro Tyr Ala Phe Gly Glu Leu Ala Lys Ala Gly Gln Lys
 885 890 895
 Asp Leu Pro Gly Val Leu Tyr Gln Ile Thr Asn Gly Ile Ser His Leu
 900 905 910
 His Ser Leu Arg Ile Val His Arg Asp Leu Lys Pro Gln Asn Ile Leu
 915 920 925
 Val Asn Leu Asp Lys Asp Gly Arg Pro Arg Leu Leu Val Ser Asp Phe
 930 935 940
 Gly Leu Cys Lys Lys Leu Glu Asp Arg Gln Ser Ser Phe Gly Ala Thr
 945 950 955 960
 Thr Gly Arg Ala Ala Gly Thr Ser Gly Trp Arg Ala Pro Glu Leu Leu
 965 970 975
 Leu Asp Asp Asp Gly Gln Asn Pro Ala Ala Ile Asp Ser Ser Thr His
 980 985 990
 Ser Gly Ser His Thr Ile Leu Val Gly Asp Pro Asn Ser Leu Ser Asn
 995 1000 1005
 Gly Gly Arg Ala Thr Arg Ala Ile Asp Ile Phe Ser Leu Gly Leu Val
 1010 1015 1020
 Phe Phe Tyr Val Leu Thr Asn Gly Ser His Pro Phe Asp Cys Gly Asp
 1025 1030 1035 1040
 Arg Tyr Met Arg Glu Val Asn Ile Arg Lys Gly Asn Tyr Asn Leu Asp
 1045 1050 1055
 Pro Leu Asp Ala Leu Gly Asp Phe Ala Tyr Glu Ala Lys Asp Leu Ile
 1060 1065 1070
 Ala Ser Met Leu Gln Ala Ser Pro Lys Ala Arg Pro Asp Ser Arg Glu
 1075 1080 1085
 Val Met Ala His Pro Phe Phe Trp Ser Pro Lys Lys Arg Leu Ala Phe
 1090 1095 1100
 Leu Cys Asp Val Ser Asp Ser Leu Glu Lys Glu Val Arg Asp Pro Pro
 1105 1110 1115 1120
 Pro Ala Leu Val Glu Leu Glu Arg His Ala Pro Glu Val Ile Lys Gly
 1125 1130 1135
 Asp Phe Leu Lys Val Leu Thr Arg Asp Phe Val Glu Ser Leu Gly Lys
 1140 1145 1150
 Gln Arg Lys Tyr Thr Gly Asn Lys Leu Leu Asp Leu Leu Arg Ala Leu
 1155 1160 1165
 Arg Asn Lys Arg Asn His Tyr Glu Asp Met Ser Asp Ser Leu Lys Arg
 1170 1175 1180
 Ser Val Gly Ser Leu Pro Asp Gly Tyr Leu Ala Tyr Trp Thr Val Lys
 1185 1190 1195 1200
 Phe Pro Met Leu Leu Thr Cys Trp Asn Val Val Tyr Asn Leu Glu
 1205 1210 1215
 Trp Glu Lys Thr Asp Arg Phe Arg Glu Tyr Tyr Glu Pro Ala Gly Leu
 1220 1225 1230

<210> 15
 <211> 1669
 <212> DNA
 <213> Aspergillus niger

<400> 15
 ctttttattg ttctatggtt cttaaggaca cctgtccttc ttggccctat ctttcttggtt
 gtctggtaca cttgacccca ggcaccactt ggccaggcct ggccccccca gttcccccg 60
 ttatgacacg gtggcctgtg ttcctgtgac acgggcaagc agacgtcctc cacaagctgt 120
 gtcgacacctac atcaccgtcc tcccttgag tgcggttaag ataaggctca tagtaaatcg 180
 attgatccac aattaaagat caatcacctg tcacgcttga aatgatggaa gaagcattct 240
 ctccagtcga ctccctcgcc ggctccccga cgccctgagtt gccattgttg acagtgtccc 300
 360

cggcggacac	gtcgcttgat	gactcgtag	tacaggcagg	ggagaccaag	gcggaagaga	420
agaaggctgt	gaagaagaga	aagtcatggg	gccaggaatt	gccagtcgg	aagactaact	480
tgcggccaaag	gaaacgggccc	aagactgaag	atgagaaaaga	gcaacgtcg	atcgagcgcg	540
ttcttcgcaa	tcgtggcga	gcacaaacat	cacggcgacg	caagaggctc	aaaatggaga	600
agttggaaaa	tgagaagatt	cagatggAAC	agcaaaacca	gttccttctg	caacgactat	660
cccagatgga	agctgagaac	aatcgcttaa	accaacaagt	cgctcaacta	tctgtgagg	720
tccggggctc	ccgtggcaac	actccaaAGC	ccggctcccc	cgtctcagct	tctccatccc	780
taactccat	cctatTTAA	caagaacgcg	acggaaatccc	tcttgaacgg	attcccttcc	840
ccacaccctc	tatcaccgac	tactcccta	cottgaggcc	ttccactctg	gctgagtct	900
ccgacgtgac	acaacatcct	gcagcgggt	tgtgcacct	gcagtgtccg	tcgctggact	960
cgaaggagaa	ggaagtgcCC	tctctctt	tgacgtcgcc	tcaaaccctg	aacctcacgc	1020
tgccgatgat	cttgcagctc	ctctttctga	cgatgacttc	caccgcctat	tcaacgttga	1080
ttcacccgtt	gggtcagatt	cttcagtcct	tgaagacggg	ttcgcccttg	acgttctcg	1140
cgaggagat	ctatcagcat	ttccatttga	ttctatgggt	gatttcgacc	ccgaatctgt	1200
tggcttcgaa	ggcatcgagc	cggggcacgg	tcttcggat	gagacttctc	gccagacttc	1260
tagcgtgcaa	cccagcctt	gcccgtccac	ttcgcgtatgc	gacggcagg	gcattgcagc	1320
tggctgttag	cgagcagttt	cgccaggggag	atgcatcgcc	tgtcgatgg	aacggagttcc	1380
aatggagctg	ggagtctttg	ttgaccttgg	cgtggacgat	agacctactc	gaacagccgg	1440
gacgacgcaa	acgaatctt	agcggtttga	aatcagcgaa	aactgacgg	cgaagtaata	1500
ttggcaagtc	tcaaaggagt	acacggagtt	catggagttc	acgaagcacc	caagaggcgt	1560
tgacgtctct	ccttatgggc	aagcatagtt	gaggttccgg	ctgtaaatta	tcataaatcc	1620
ttataatttt	attcttagatt	tcaatacagc	agttgattgt	ctgctcatc		1669

<210> 16
<211> 386
<212> PRT
<213> Aspergillus niger

<400> 16
 Met Val Leu Lys Asp Thr Cys Pro Ser Trp Pro Tyr Pro Ser Cys Cys
 1 5 10 15
 Leu Val His Leu Thr Pro Gly Thr Thr Trp Pro Gly Leu Ala Pro Pro
 20 25 30
 Ala Ser Pro Val Met Thr Arg Trp Pro Val Phe Leu Met Met Glu Glu
 35 40 45
 Ala Phe Ser Pro Val Asp Ser Leu Ala Gly Ser Pro Thr Pro Glu Leu
 50 55 60
 Pro Leu Leu Thr Val Ser Pro Ala Asp Thr Ser Leu Asp Asp Ser Ser
 65 70 75 80
 Val Gln Ala Gly Glu Thr Lys Ala Glu Glu Lys Lys Pro Val Lys Lys
 85 90 95
 Arg Lys Ser Trp Gly Gln Glu Leu Pro Val Pro Lys Thr Asn Leu Pro
 100 105 110
 Pro Arg Lys Arg Ala Lys Thr Glu Asp Glu Lys Glu Gln Arg Arg Ile
 115 120 125
 Glu Arg Val Leu Arg Asn Arg Ala Ala Ala Gln Thr Ser Arg Glu Arg
 130 135 140
 Lys Arg Leu Glu Met Glu Lys Leu Glu Asn Glu Lys Ile Gln Met Glu
 145 150 155 160
 Gln Gln Asn Gln Phe Leu Leu Gln Arg Leu Ser Gln Met Glu Ala Glu
 165 170 175
 Asn Asn Arg Leu Asn Gln Gln Val Ala Gln Leu Ser Ala Glu Val Arg
 180 185 190
 Gly Ser Arg Gly Asn Thr Pro Lys Pro Gly Ser Pro Val Ser Ala Ser
 195 200 205
 Pro Thr Leu Thr Pro Thr Leu Phe Lys Gln Glu Arg Asp Glu Ile Pro
 210 215 220

Leu Glu Arg Ile Pro Phe Pro Thr Pro Ser Ile Thr Asp Tyr Ser Pro
 225 230 235 240
 Thr Leu Arg Pro Ser Thr Leu Ala Glu Ser Ser Asp Val Thr Gln His
 245 250 255
 Pro Ala Val Ser Val Ala Gly Leu Glu Gly Glu Gly Ser Ala Leu Ser
 260 265 270
 Leu Phe Asp Val Gly Ser Asn Pro Glu Pro His Ala Ala Asp Asp Leu
 275 280 285
 Ala Ala Pro Leu Ser Asp Asp Phe His Arg Leu Phe Asn Val Asp
 290 295 300
 Ser Pro Val Gly Ser Asp Ser Ser Val Leu Glu Asp Gly Phe Ala Phe
 305 310 315 320
 Asp Val Leu Asp Gly Gly Asp Leu Ser Ala Phe Pro Phe Asp Ser Met
 325 330 335
 Val Asp Phe Asp Pro Glu Ser Val Gly Phe Glu Gly Ile Glu Pro Pro
 340 345 350
 His Gly Leu Pro Asp Glu Thr Ser Arg Gln Thr Ser Ser Val Gln Pro
 355 360 365
 Ser Leu Gly Ala Ser Thr Ser Arg Cys Asp Gly Gln Gly Ile Ala Ala
 370 375 380
 Gly Cys
 385

<210> 17
 <211> 20
 <212> DNA
 <213> Aspergillus niger

<400> 17
 cggttgttg cgacctgcag 20

<210> 18
 <211> 44
 <212> PRT
 <213> Aspergillus niger

<400> 18
 Met Val Leu Lys Asp Thr Cys Pro Ser Trp Pro Tyr Pro Ser Cys Cys
 1 5 10 15
 Leu Val His Leu Thr Pro Gly Thr Thr Trp Pro Gly Leu Ala Pro Pro
 20 25 30
 Ala Ser Pro Val Met Thr Arg Trp Pro Val Phe Leu
 35 40

<210> 19
 <211> 342
 <212> PRT
 <213> Aspergillus niger

<400> 19
 Met Met Glu Glu Ala Phe Ser Pro Val Asp Ser Leu Ala Gly Ser Pro
 1 5 10 15
 Thr Pro Glu Leu Pro Leu Leu Thr Val Ser Pro Ala Asp Thr Ser Leu
 20 25 30
 Asp Asp Ser Ser Val Gln Ala Gly Glu Thr Lys Ala Glu Glu Lys Lys
 35 40 45
 Pro Val Lys Lys Arg Lys Ser Trp Gly Gln Glu Leu Pro Val Pro Lys

50	55	60
Thr Asn Leu Pro Pro Arg	Lys Arg Ala Lys	Thr Glu Asp Glu Lys Glu
65	70	75
Gln Arg Arg Ile Glu Arg Val	Leu Arg Asn Arg Ala Ala	Ala Gln Thr
85	90	95
Ser Arg Glu Arg Lys Arg	Leu Glu Met Glu Lys Leu	Glu Asn Glu Lys
100	105	110
Ile Gln Met Glu Gln Gln Asn	Gln Phe Leu Leu Gln Arg	Leu Ser Gln
115	120	125
Met Glu Ala Glu Asn Asn Arg	Leu Asn Gln Gln Val	Ala Gln Leu Ser
130	135	140
Ala Glu Val Arg Gly Ser Arg Gly Asn Thr	Pro Lys Pro Gly Ser Pro	
145	150	155
Val Ser Ala Ser Pro Thr Leu Thr Pro	Thr Leu Phe Lys Gln Glu Arg	
165	170	175
Asp Glu Ile Pro Leu Glu Arg Ile	Pro Phe Pro Thr Pro Ser	Ile Thr
180	185	190
Asp Tyr Ser Pro Thr Leu Arg Pro	Ser Thr Leu Ala Glu	Ser Ser Asp
195	200	205
Val Thr Gln His Pro Ala Val	Ser Val Ala Gly	Leu Glu Gly Glu Gly
210	215	220
Ser Ala Leu Ser Leu Phe Asp Val	Gly Ser Asn Pro Glu Pro His	Ala
225	230	235
Ala Asp Asp Leu Ala Ala Pro	Leu Ser Asp Asp Asp Phe His	Arg Leu
245	250	255
Phe Asn Val Asp Ser Pro Val	Gly Ser Asp Ser Ser Val	Leu Glu Asp
260	265	270
Gly Phe Ala Phe Asp Val Leu Asp	Gly Gly Asp Leu Ser Ala	Phe Pro
275	280	285
Phe Asp Ser Met Val Asp Phe Asp Pro	Glu Ser Val Gly Phe Glu Gly	
290	295	300
Ile Glu Pro Pro His Gly Leu Pro	Asp Glu Thr Ser Arg Gln	Thr Ser
305	310	315
Ser Val Gln Pro Ser Leu Gly Ala Ser	Thr Ser Arg Cys Asp Gly	Gln
325	330	335
Gly Ile Ala Ala Gly Cys		
340		

<210> 20
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 20
atcgaggat tccccacccatc gacaacaacc gccact

36

<210> 21
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 21		
tacagcggat ccctatggat tacgccaatt gtcaag		36
<210> 22		
<211> 72		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 22		
ccacacctacga caacaaccgc cactatggaa atgactgatt ttgaactact tgcctcggtcc	60	
ccggccgggtc ac	72	
<210> 23		
<211> 75		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 23		
aattatacc tcttgcgatt gtcttcatga agtgatgaag aaatcattga cactggatgg	60	
cggcgtagt atcga	75	
<210> 24		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 24		
gccatccttg gtgactgagc c	21	
<210> 25		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 25		
caattgctcg ctcttacatt gaat	24	
<210> 26		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		

<400> 26		
aattaaccct cactaaaggg		20
<210> 27		
<211> 40		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 27		
tggttatgtc cgacgatgcg aacagtcatg acaggcaacg		40
<210> 28		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> HAC1-specific oligonucleotide		
<400> 28		
gggagacgac tgctggaacg ccat		24
<210> 29		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 29		
ccccgagcag tccttgatgg		20
<210> 30		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 30		
gtcggtatg tcgaagt		17
<210> 31		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 31		
gtaatacgac tcactatagg gc		22

<210> 32		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 32		
ttaggacaga ggccacggtg t		21
<210> 33		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 33		
cccatccttg gtgactgagc c		21
<210> 34		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 34		
aagagtccgt gtcagagttt g		21
<210> 35		
<211> 72		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 35		
attaataattt tagcactttt gaaaaatgcgt ctacttcgaa gaaacatgct tgcctcggtcc		60
ccgcgggtc ac		72
<210> 36		
<211> 75		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 36		
aaggcagaggg gcatgaacat gttatgaata caaaaattca cgtaaaatgt cgacactgga		60
tggccggcggtt agtat		75

```

<210> 37
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 37
ccgcaacacg acacggcagg caac                                24

<210> 38
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 38
ctaggttagac gttgtatTTT g                                21

<210> 39
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 39
tcgaacggat ccgaaaagaa gcccgtaag aagagg                36

<210> 40
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 40
atcgcaggat ccctaggTTT ggccatCCCG cgagccaaa            39

<210> 41
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 41
cggctgaacc agcgccggcag ccagatgtgg ccaaaggG            38

<210> 42

```

<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> synthetic oligonucleotide		
<400> 42		
ggtacctgct aaccagcgcg gcatgattca ac		32
<210> 43		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> synthetic oligonucleotide		
<400> 43		
ggatcttgca tagccagatg tggcctcgat tgact		35
<210> 44		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> synthetic oligonucleotide		
<400> 44		
ggattagaaa acgccaacgt gtccataacg gtc		33
<210> 45		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> synthetic oligonucleotide		
<400> 45		
gggcgtggag aagcgagaag tggcctttc ttctcc		36
<210> 46		
<211> 11		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> binding consensus sequence		
<221> misc_feature		
<222> (1)...(11)		
<223> n = AW or C		
<400> 46		
gcsarngtgk c		11

```

<210> 47
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 47
gtggtaatat taccttaca g 21

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 48
caatttcaat acgggtggac 20

<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 49
tgtcatcaact gctccatctt 20

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 50
ttaaggccttg gcaacatatt 20

<210> 51
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 51
ttgaacagca gatcgttact g 21

<210> 52

```

<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 52		
tataaagttc gtcaatagtg g		21
<210> 53		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 53		
cggaggcaag agtcatagac g		21
<210> 54		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 54		
caatatattt ctgaaccagt acg		23
<210> 55		
<211> 45		
<212> RNA		
<213> Trichoderma reesei		
<400> 55		
acugauucga cacaacgucc ugcagagaug uugugcgacc cgcag		45
<210> 56		
<211> 45		
<212> RNA		
<213> Aspergillus nidulans		
<400> 56		
cccgauuuga cacaacaaucc ugcagcgaug uugugcgacc ugcag		45
<210> 57		
<211> 28		
<212> RNA		
<213> Saccharomyces cerevisiae		
<400> 57		
ccuuguacug uccgaagcgc agucaggu		28
<210> 58		

<211> 60
 <212> DNA
 <213> Trichoderma reesei

<400> 58
 ccactgattc gacacaacgt cctgcagaga tggcgatgttgcga cccgcagtgt caatcggtgg 60

<210> 59
 <211> 60
 <212> DNA
 <213> Aspergillus nidulans

<400> 59
 ccccccattt gacacaacat cctgcagcga tggcgatgttgcga cctgcagtgt cagtcggcgg 60

<210> 60
 <211> 68
 <212> PRT
 <213> Saccharomyces cerevisiae

<400> 60
 Lys Ser Thr Leu Pro Pro Arg Lys Arg Ala Lys Thr Lys Glu Glu Lys
 1 5 10 15
 Glu Gln Arg Arg Ile Glu Arg Ile Leu Arg Asn Arg Arg Ala Ala His
 20 25 30
 Gln Ser Arg Glu Lys Lys Arg Leu His Leu Gln Tyr Leu Glu Arg Lys
 35 40 45
 Cys Ser Leu Leu Glu Asn Leu Leu Asn Ser Val Asn Leu Glu Lys Leu
 50 55 60
 Ala Asp His Glu
 65

<210> 61
 <211> 12
 <212> DNA
 <213> Trichoderma reesei

<400> 61
 gccagatgtg gc 12

<210> 62
 <211> 11
 <212> DNA
 <213> Trichoderma reesei

<400> 62
 gccaacgtgt c 11

<210> 63
 <211> 12
 <212> DNA
 <213> Trichoderma reesei

<400> 63
 gcgagaagtgc 12