DATA DRIVEN
ANALYSIS AND
STUDENT
PERFORMANCE
PREDICTION

Open University learning Analytics Dataset

By: Lara Onipede

ANALYTICAL OBJECTIVES

- Analyze Student Information and performance factors:
 - Data Exploration
 - Data Integration
 - Visual EDA
 - Data Preprocessing and Feature Engineering
- Build Predictive Models to predict student performance in the final exams
 - Build Predictive Models: Random Forest,
 Gradient boosting, Decision Tree and SVM
 - Evaluate Models
 - Create a Flask API to deploy Model
 - Test Model for prediction

PROJECT FLOW

DATASET Open University Learning Analytics Dataset

Courses

Assessments

Student_Information

Student_Regis tration

Student_Asses sments

Vle

Student_Vle

DATA EXPLORATORY AND CLEANING

VISUAL EXPLORATORY ANALYSIS

DATA PREPROCESSING

Merged Dataframes

Converted categorical features to numerically encoded integers

PREDICTIVE MODELS

ML Model/Accuracy	Decision Tree	Random Forest	Gradient Boosting	SVM
Train Accuracy	99%	99%	99.9%	65%
Test Accuracy	93%	95%	94.5%	62%

EVALUATING PREDICTIVE MODELS

Accuracy Plot Model's Performance

PREDICTIVE MODELS

ML Model/Accuracy	Decision Tree	Random Forest	Gradient Boosting	SVM
Train Accuracy	99%	99%	99.9%	65%
Test Accuracy	96%	94%	94.5%	60%

Confusion Matrix for Decision Tree

EVALUATING PREDICTIVE MODELS

EVALUATING PREDICTIVE MODELS

Confusion Matrix for SVM

RESULTS

Success factors Identification

Age-band

Highest education level

Number of previous attempts

Time Management Insights

Optimal time for best student performance is 1 hour 45 Min

Assessment Effectiveness

The Tutor Marked Assessments have the strongest Correlation with student Performance

Model Performance

Decision Tree, Random forest and Gradient Boosting all Performed well with the data while SVM isn't a suitable one

DATA DRIVEN EDUCATION

Educational Institutions

- Early Intervention
- Tailored Learning
- Resource Allocation
- Institutional Improvement

Students

- Motivation and Goal Setting
- Enhanced Student Experience
- Time Management
- Career Readiness

FUTURE WORK

Incorporating the model directly into an application on the most suitable platform.

THANK YOU