Искуственный интеллект и машинное обучение

Руководитель группы разработки ООО «Квантрон групп», к.т.н., доцент кафедры ЭВМ РГРТУ, Тарасов А.С.

Искусственный интеллект

Artificial Intelligence

Искусственный интеллект (ИИ) — это область компьютерной науки, которая занимается созданием систем и алгоритмов, способных выполнять задачи, традиционно требующие человеческого интеллекта.

Несмотря на широкое применение данного термина, нет чёткой границы между тем, что можно отнести к ИИ, а что нет. В разные году развития данной области в неё включались (а некоторые и исключались) такие задачи как: решение дифференциальных уравнений, шахматные задачи, генерация речи, нейронные сети, техническое зрение и многие другие.

Искусственный интеллект

Ключевые даты

1943 год – Уоррен Мак-Каллок и Уолтер Питтс создают первую математическую модель нейрона

1950 год – Алан Тьюринг пишет статью под названием «Может ли машина мыслить?»

1956 год – Дартмутская конференция: термин «искусственный интеллект» впервые официально введён (Джон Маккарти, Марвин Мински и др.

1974 – 1980 Первая «Зима искусственного интеллекта»

1980 год – появление LISP-машин, рост заинтересованности в экспертных системах, развитие оптимизаторов

1987 год – достижение границы возможностей современных вычислителей

1987 – 1993 Вторая «Зима искусственного интеллекта»

1995 год – резкое развитие процессорной техники

2012 год – Появление первой глубокой сверточной сети AlexNet

2018 год – сети трасформеры, GPT 1.0

Настоящее время – взрывной рост развития генеративных сетей, работающих «на лету» с различными видами информации

Машинное обучение

Machine Learning

Машинное обучение является подразделом искусственного интеллекта.

Оно предназначено для обучения компьютеров тому, как учиться на основе данных и совершенствоваться при помощи опыта, а не работать на основе явно запрограммированных алгоритмов. В процессе машинного обучения алгоритмы учатся поиску закономерностей и корреляций в больших наборах данных, а также принятию оптимальных решений и созданию прогнозов на основе этого анализа.

Приложения машинного обучения улучшаются по мере использования и становятся точнее по мере роста объема доступных данных.

Уровни взаимодействия с ML

- 1. Эксплуатация готовых решений (ChatGPT, MidJourney, Kandinsky, Github Copilot)
- 2. Разработка своих решений на основе обученных моделей (DLIB, YOLO Pose Detector, Каскады Хаара)
- 3. Обучение существующих моделей (LR, VGG19, MobileNet, YOLO)
- 4. Построение своих моделей на основе существующих
- 5. Построение своих фундаментальных архитектур

Принцип работы алгоритмов ML


```
model = Sequential()

model.add(Dense(3))
model.add(Activation('sigmoid'))

model.add(Dense(2))
model.add(Activation('sigmoid'))

model.add(Dense(3))
model.add(Activation('sigmoid'))

model.add(Dense(1))
model.add(Dense(1))
model.add(Activation('softmax'))
```

- собой Модель представляет некоторую неизменяемую математическую функцию, которая принимает данных значения входных фиксированной размерности формирует фиксированной выходной результат, также размерности.
- 2. В модели содержатся также весовые коэффициенты значения, которые будут подобраны в ходе обучения модели, и зафиксированы в процессе её эксплуатации.

Опыт. Набор данных

Dataset

```
data = np.loadtxt('data.csv', delimiter=';', dtype=np.float32)

X = data[:, [4, 5, 6]]
Y = data[:, [10]]
```

Датасет, опыт, выборка, набор данных — это структурированная коллекция данных, используемая для обучения, тестирования и оценки моделей машинного обучения.

Обучающая выборка (Training set) — используется для обучения модели. Обычно 80-85% от всего набора

Валидационная выборка (Validation set) — для оценки модели в процессе обучения. Обычно 10-15% от всего набора

Тестовая выборка (Test set) — для финальной оценки модели. Обычно от 0 до 5% от всего набора

X (input values)

Υ (οι

Passengerid M Pclass	_	Name	Sex	Age		Sinsb 🔽	Parch		пскет 💌	rare 💌	Cabin Ke Embarke
892	3	Kelly; Mr, James	male		34,5	0		0	330911	7,8292	Q
893	3	Wilkes; Mrs, James (Ell female		47	1		0	363272	7	S
894	2	Myles; Mr, Thomas F	rarmale		62	0		0	240276	9,6875	Q
895	3	Wirz; Mr, Albert	male		27	0		0	315154	8,6625	S
896	3	Hirvonen; Mrs, Alexa	nd female		22	1		1	3101298	12,2875	S
897	3	Svensson; Mr, Johan	Ce male		14	0		0	7538	9,225	S
898	3	Connolly; Miss, Kate	female		30	0		0	330972	7,6292	Q
899	2	Caldwell; Mr, Albert	Fra male		26	1		1	248738	29	S
900	3	Abrahim; Mrs, Josep	h (female		18	0		0	2657	7,2292	С
901	3	Davies; Mr, John San	nu male		21	2		0	A/4 48871	24,15	S
902	3	Ilieff; Mr, Ylio	male			0		0	349220	7,8958	S

kvantron

ווק

Обучение

Fitting (training) model

Обучение – процесс подстройки весов \overline{W} на основе данных **обучающей выборки**.

Алгоритм обучения принято называть **оптимизатором** (англ. Optimizer) (Adam, SGD, RMSProp). Задача оптимизатора — минимизировать ошибку между предсказанными данными и истинными. Определяет ошибку между данными функция потерь (англ. Loss) (MSE, MAE, BCE, CCE). Эпоха (англ. Epoch) — однократная подстройка весов модели на

основе всех примеров обучающей выборки.

```
model.compile(optimizer='adam', loss='mse')
model.fit(X, Y, epochs=50, batch size=32, validation split=0.2)
```


Применение

Inference model

В процессе эксплуатации модели её структура и веса не изменяются. Таким образом, при идентичных входных данных, такие модели будут всегда давать одинаковый результат. Исключение — сети с ячейками памяти и трансформеры.

```
test = np.asarray([[0.17, 1.42, 0.39]])
model.predict(test)
```


Что нужно, чтобы начать?

Основной язык разработки ML – Python. На нём разрабатывается большинство решений

Pandas, Numpy, OpenCV, Matplotlib — полезные инструменты для загрузки и обработки данных

TensorFlow, PyTorch, Onnx — популярные платформы (Backend) для обучения нейронных сетей

Ultralytics, Keras, Dlib, Sklearn — популярные надстройки для запуска и обучения своих моделей

```
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
data = np.loadtxt('data.csv', delimiter=';',
     dtype=np.float32)
X = data[:, [0, 1, 2]]
Y = data[:, [10]]
model = Sequential()
model.add(Dense(3))
model.add(Activation('sigmoid'))
model.add(Dense(2))
model.add(Activation('sigmoid'))
model.add(Dense(3))
model.add(Activation('sigmoid'))
model.add(Dense(1))
model.add(Activation('softmax'))
model.compile(optimizer='adam', loss='MSE')
model.fit(X, Y, epochs=50, batch size=32)
test = np.asarray([[0.17, 1.42, 0.39]])
model.predict(test)
```


Спасибо за внимание!

Переходи по ссылке, чтобы получить доступ к материалам:

https://github.com/vb2005/keras-quickstart

Tarasov.a.s@kvantron.com

