Problem 1. (Jackson 14.1) Verify by explicit calculation that the Liénard-Wiechert expressions for *all* components of E and B for a particle moving with constant velocity agree with the ones obtained in the text by means of a Lorentz transformation. Follow the general method at the end of Section 14.1.

Solution. The Liénard-Wiechert expressions for the fields are given by Jackson (14.13–14):

$$\mathbf{B} = [\hat{\mathbf{n}} \times \mathbf{E}]_{\text{ret}}, \qquad \mathbf{E}(\mathbf{x}, t) = e \left[\frac{\hat{\mathbf{n}} - \boldsymbol{\beta}}{\gamma^2 (1 - \boldsymbol{\beta} \cdot \hat{\mathbf{n}})^3 R^2} \right]_{\text{ret}} + \frac{e}{c} \left[\frac{\hat{\mathbf{n}} \times \{(\hat{\mathbf{n}} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}\}\}}{(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{n}})^3 R} \right]_{\text{ret}}, \qquad (1)$$

where $\boldsymbol{\beta} = \mathbf{v}/c$ with \mathbf{v} being the particle's velocity, R is the distance from the observation point to the particle's position, and $\hat{\mathbf{n}}$ is a unit vector defined by $\mathbf{x} - \mathbf{r}(\tau) = R \hat{\mathbf{n}}$. Here, $\mathbf{r}(\tau)$ is the particle's present position and τ the proper time.

The expressions for the components of \mathbf{E} and \mathbf{B} obtained by a Lorentz transformation are given by Jackson (11.152):

$$E_1 = -\frac{e\gamma vt}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}, \qquad E_2 = \frac{e\gamma b}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}, \qquad E_3 = B_1 = B_2 = 0, \qquad B_3 = \beta E_2, \qquad (2)$$

where the particle is moving in the x_1 direction at impact parameter b on the x_2 axis, as shown in Fig. (1).

For a particle moving with constant velocity in the x_1 direction with velocity v as shown in Fig. (1), $\beta = \beta \hat{\mathbf{x}}_1$ and $\dot{\beta} = 0$. From Jackson (14.16), note that

$$(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{n}})^2 R^2 = b^2 + v^2 t^2 - \beta^2 b^2 = \frac{b^2 + \gamma^2 v^2 t^2}{\gamma^2} \quad \Longrightarrow \quad (1 - \boldsymbol{\beta} \cdot \hat{\mathbf{n}})^3 R^2 = \frac{(b^2 + \gamma^2 v^2 t^2)^{3/2}}{R \gamma^3}.$$

This calculation comes from Fig. (2), where O is the observation point, P is the present position of the particle, and P' its retarded position. Also from Fig. 2,

$$\hat{\mathbf{n}} = \cos\theta \,\hat{\mathbf{x}}_1 + \sin\theta \,\hat{\mathbf{x}}_2 = \frac{\beta R - vt}{R} \,\hat{\mathbf{x}}_1 + \frac{b}{R} \,\hat{\mathbf{x}}_2.$$

Making these substitutions in the expression for $\mathbf{E}(\mathbf{x},t)$ in Eq. (1),

$$\mathbf{E}(\mathbf{x},t) = e \left[\frac{\hat{\mathbf{n}} - \boldsymbol{\beta}}{\gamma^2 (1 - \boldsymbol{\beta} \cdot \hat{\mathbf{n}})^3 R^2} \right]_{\text{ret}} = e \left[\frac{(\beta - vt/R - \beta) \,\hat{\mathbf{x}}_1 + (b/R) \,\hat{\mathbf{x}}_2}{\gamma^2 (b^2 + \gamma^2 v^2 t^2)^{3/2}} R \gamma^3 \right]_{\text{ret}} = e \gamma \frac{-vt \,\hat{\mathbf{x}}_1 + b \,\hat{\mathbf{x}}_2}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}.$$
(3)

Figure 1: (Jackson Fig. 11.8) Particle of charge q moving at constant velocity \mathbf{v} passes an observation point P at impact parameter b.

Figure 2: (Jackson Fig. 14.2) Present and retarded positions of a charge in uniform motion.

May 15, 2020

For $\mathbf{B}(\mathbf{x},t)$, note that

$$\hat{\mathbf{n}} \times \mathbf{E} \propto \left(\frac{\beta R - vt}{R} \,\hat{\mathbf{x}}_1 + \frac{b}{R} \,\hat{\mathbf{x}}_2\right) \times \left(-vt \,\hat{\mathbf{x}}_1 + b \,\hat{\mathbf{x}}_2\right) = \left(b \frac{\beta R - vt}{R} + \frac{bvt}{R}\right) \hat{\mathbf{x}}_3 = \beta b,$$

so

$$\mathbf{B}(\mathbf{x},t) = e\gamma \frac{\beta b \,\hat{\mathbf{x}}_3}{(b^2 + \gamma^2 v^2 t^2)^{3/2}}.$$

(4)

Writing Eqs. (3) and (4) in component notation, we find

$$E_{1} = -\frac{e\gamma vt}{(b^{2} + \gamma^{2}v^{2}t^{2})^{3/2}}, \qquad E_{2} = \frac{e\gamma b}{(b^{2} + \gamma^{2}v^{2}t^{2})^{3/2}}, \qquad E_{3} = 0,$$

$$B_{1} = 0, \qquad B_{3} = \frac{e\gamma \beta b}{(b^{2} + \gamma^{2}v^{2}t^{2})^{3/2}} = \beta E_{2},$$

which are identical to Eq. (2) as desired.

Problem 2. (Jackson 14.3) The Heaviside-Feynman expression for the electric field of a particle of charge e in arbitrary motion, an alternative to the Liénard-Wiechert expression (14.14) is

$$\mathbf{E} = e \left[\frac{\hat{\mathbf{n}}}{R^2} \right]_{\text{ret}} + e \left[\frac{R}{c} \right]_{\text{ret}} \frac{d}{dt} \left[\frac{\hat{\mathbf{n}}}{R^2} \right]_{\text{ret}} + \frac{e^2}{c^2} \frac{d^2}{dt^2} [\hat{\mathbf{n}}]_{\text{ret}},$$

where the time derivatives are with respect to the time at the observation point. The magnetic fields are given by (14.3).

Using the fact that the retarded time is t' = t - R(t')/c and that, as a result,

$$\frac{dt}{dt'} = 1 - \beta(t') \cdot \hat{\mathbf{n}}(t'),$$

show that the form above yields (14.14) when the time differentiations are performed.

May 15, 2020 2

Problem 3. (Jackson 14.4) Using the Liénard-Wiechart fields, discuss the time-averaged power radiated per unit solid angle in nonrelativistic motion of a particle with charge *e*. Sketch the angular distribution of the radiation and determine the total power radiated in each case.

- **3(a)** The particle is moving along the z axis with instantaneous position $z(t) = \alpha \cos \omega_0 t$.
- **3(b)** The particle is moving in a circle of radius R in the xy plane with constant angular frequency ω_0 .

May 15, 2020 3