实验目的

心观察等厚干涉现象,加深对光的波动性的认识

(1)熟悉英数显微教镜的调节和使用

的掌握用牛顿环测球面曲率半径的原理和方法。

实验原理

1. 牛顿环与等厚干涉

两末反射光相遇后发生干涉,在平凸透镜表面形成一系列以接触点,为中心的明暗相间,内疏外密的同心圆环,此圆环为牛板环, 若两末反射光在相圆时的光程差,仅取决于产生反射光时的薄膜厚度,在形成的干涉条纹中同一级干涉条纹对应的薄膜厚度相等。即为等厚平波。

2.测量平凸质镜的曲率半径

$$\partial = 20 + 2 = 1 \text{ KA} \qquad k = 1.2.3$$

$$12(k+1) 2 \qquad k = 0.1.2.3$$

图 2.6.1 牛顿环等厚干涉示意图

1 = Y2 = KRA

3.主要误差来源及相应处理办法。

小中心定位误差一改测半任为直任

D2 = 4KRX

(1)中心定级误差——改测一环为两环

R= Dm - Dn 4cm-n)入

实验仪器 No. 2/0903 知光灯(人= 589.3nm) 实验步骤与数据记录 個整测量装置 少点燃钠光灯预热 2~1分钟 少调节牛顿不发置。安轻堆较牛顿不发置的三颗锅钉,使干涉条纹的中心在 可调视场范围内, ②调节视场明亮度,将牛顿环放置在类数显微镜工能 毛玻璃中央,并使显微镜筒正对件顿不装置如心,调节钠光灯和半反射镜的位 35.667 30.019 30.069 5,588 Dm 3.处理数据并写出测量结果 R= R± DR =(3/9.6±22.64)mm. 4.整理实验器材并放回原住。

CSDN @执一抹浅笑

实验数据6	ık III	1-1-7//					
Y 34 30 30 30 30 30 30 30 30 30 30 30 30 30		测量中顿环的重任			文是:mm		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	34512	34,469	34,391	34,411	34,400	34406	
$D - 1 \times \times 1$	3/5/3	31.316	31.319	31.325	31,319	31.379	
$\frac{\sqrt{n-1}}{\sqrt{n-1}}$	2999	3:093	3,072	3.086	3.08	7,07	
<u></u>	~/ ~ ^		3.054			and when you	
7m	35,729	35,641	36,676	35.662	35.667	36.709	
7m	20120	30/26	30.069	30.069	30,079	30.249	
Dm = /Xm - Xm	5.609	5.515	5,607	5,593	6.588	6,890	
Dm	G 3 11 15 4	0 11 DEST.	11/21		2,1112		
			5.657				
Dn = 1 &	1/2 = 7	2999 +3.09	3+2.072+3.0	26+3021+	3.027) = 3	069 mm	
Dm = + 5	Dm = +1	16.49+6.61	++667+6	(93+6-6-22	+ (-290) -	6/70	
边海展可得	2 火焰	3,6 46,0-1	n + f	-7 67	1-6007	1-5-6007113	
$\Delta A = f D A$	Cx - 45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HA. 16-	-201.	1=587.3nm	1 = 0.5873x/0 mm	
434	- 4):	$\geq (\chi_i - \chi_i)$		A-ENCE	4 (1 4 2		
***************************************	-) [7]	12,999-2,069)	2+12.093-2.06	912+ BDT2-3	0697+12.02	(-20 (9)24(3)21-24(9)2	
Stable balance	- 2.2/2	-1-1	1 (200)	p 1 00123	10.00		
	0020-	74	666-	1) 19 19 1	1-1-21-12-13	3.02/30	
A - 1	= 0.037	mm	1765 E(0)	(1) - 5-15	TEAR W	101 65 33	
Ofm=tp60	三切	(Ki-1)	图为美国	19 12 P 3 19 18		ath Alatet	
->(7/	161.9 612	4)2+ (5-415-4	63412465,607-6	1242 + 16 16	0.40(1) 1 (G to	00 6 13 3	
= 2.5/x		6(6	(-1)	101515-5	516397-4 (5:5)	58 3.624) - (5.890-5634)	
= 0.036	67mm	4 1/5 × 1/2 ×	108 fe 12 an	Elaka -	100 Jan 1/19	72 010	
DB = Dins =	mund an	Suck DB	m = 18	= 0.0 mmm	13.77 . 14.2°		
$\Delta n = \sqrt{\Delta^2 + 1}$	ARI = A	All mm		- TALL	202 _ 20	618mm	
D - Pm - D	5- 15.	6349 - (3.05	9)2	1 - NOAm T	OBM - CH		
K = 4(m-n)	A - 901	1-1)×0.5813	X6-5 - 7/9	6 mm			
XR - IDR	12 1 1 I	1-2R	24 - 7	5 4 2	5 2		
1 1 0 Da	J. ZIII	(2 Um) 2	M -1(-2	以(人)	-20A) AM	12/1/2	
	······	7995	1. 1 30	259,20,0945.	6/3/02		
			N (- 20)	X0326(47) -	20×0190	(COSUPAIL	
i, R=R±.	DR =1919	(+)2,(4)	mm = 22.6	4 mm	70,005	(10)	
		ינון	mm - 220			CSDN @执一抹浅笑	

实验结论 实验讨论 的则量不准确。因于涉条终的级数人不能确定 就中心传图判定所料性的误差由Y2=长尺入变形为

CSDN @执一抹浅笑

原始记录						
Xn	111 205	106 26	t 46.2	25 (1)	725 46	214 46.25
Z'n	117 /76	42/10	0 62 6	10 43	(4) 43.	635 43.54
Dn=1xn-X1	7.770	7,761) 624	7.65	23 216	79 2.710
Da			7717		1. J	BANGED S
7)m	47.675	117/16	(17671	1076	> 10x	45 47.55
7m	(6) 2/64	(1) 767	(4).)(-	3 47.2	51 42.26	2 42,22
Dm= 1 Xm-Xn1	(-, 330	6.602	6. 797	6.2	34 6.27	33 5,331
Dm		31705	A719			
		E 21 12 12 13	By Extraction		學106至37	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
***************************************						***************************************
1	34-12	24 4/9	2/1 291	2/1/4/1	24.400	200001
1/2/2	31.513	31 376	77.711 71.21a	31.725	31 219	21.379
12=11/2-1	2.499	2092	2077	3026	7,21	7077
5.		2,012	2069	/1000	2.00	2.02
5m	36.779	24.641	26.176	26.117	2 1 1/7	71-709
Lan	20.170	20 17L	70 Mg	72002	70079	25/1/
Jail Xm - Xml	6.609	F. E. I.	(-607	1- (-GZ	6 600	30,47
5		+1	74			5.670

***************************************	***************************************	••••••••••••••••••••••••••••••••				
	***************************************				·····	111
	***************************************	***************************************				

	***************************************					***************************************
				***************************************		***************************************
	***************************************	***************************************	***************************************		***************************************	***************************************
The second second					***************************************	***************************************