Stephan Kreutzer
 Logik
 WS 2022/2023
 39 / 57

Eine relationale Datenbank ist eine endliche Menge von "Tabellen".

Z. B. könnte eine Filmdatenbank wie imdb.org wie folgt aussehen

Schauspieler				
Schausp.	ID	Geburtsdatum		
George Clooney	1	6. Mai 1961		
Scarlett Johansson	2	22. November 1984		
Jeff Daniels	3	19. Februar 1955		

Flime			
Titel	Regie	Schau.	
Good night and good luck	George Clooney	1	
Good night and good luck	George Clooney	3	
Lost in translation	Sofia Coppola	2	

Die Menge τ von Tabellennamen heißt Datenbankschema.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 40 / 57

Relationale Datenbanken.

 Jede Spalte einer Tabelle in der Datenbank enthält Einträge vom selben Typ, z.B. Wörter oder Zahlen.

In Datenbankterminologie werden Spaltenname Attribute genannt.

Jedes Attribut i hat einen Typ D_i , genannt domain.

• Jede Zeile der Tabelle enthält ein Tupel $(x_1, \ldots, x_n) \in D_1 \times D_2 \times \cdots \times D_n$.

Stephan Kreutzer Logik WS 2022/2023 41 / 57

Beispiel: Relationale Datenbanken

Relationale Datenbanken.

 Jede Spalte einer Tabelle in der Datenbank enthält Einträge vom selben Typ, z.B. Wörter oder Zahlen.

In Datenbankterminologie werden Spaltenname Attribute genannt.

Jedes Attribut i hat einen Typ D_i , genannt domain.

• Jede Zeile der Tabelle enthält ein Tupel $(x_1, \ldots, x_n) \in D_1 \times D_2 \times \cdots \times D_n$.

Eine Datenbanktabelle kann daher als *n*-stellige Relation über der Menge $D := D_1 \cup \cdots \cup D_n$ aufgefasst werden.

Eine relationale Datenbank mit Schema τ kann also als τ -Struktur $\mathcal D$ wie folgt geschrieben werden:

- Das Universum A := D ist die Vereinigung aller Domains.
- für jede Tabelle $R \in \tau$ enthält die Struktur eine Relation $R^{\mathcal{D}}$, die alle Tupel der Tabelle enthält.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 41 / 57

Beispiel: Relationale Datenbanken

Der domain aller Einträge sind Zeichenketten. Sei Σ^* die Menge aller Zeichenketten über dem Alphabet $\{a,\ldots,z,A,\ldots,Z,0,\ldots,9\}$.

Die Filmdatenbank entspricht folgender Struktur $\mathcal D$ über der Signatur

```
\sigma := \{ \text{ Actors, Movies } \}:
```

- Das Universum ist $D := \Sigma^*$
- Die Relation

```
(George Clooney, 1, 6 May 1961),

Actors ^{\mathcal{D}} := \{ (Scarlett Johansson, 2, 22 November 1984), \} (Jeff Daniels, 3, 19 February 1955)
```

• Die Relation (Good night ... and good luck, George Clooney, 1), Movies $^{\mathcal{D}} := \{$ (Good night ... and good luck, George Clooney, 3), $\}$ (Lost in translation, Sofia Coppola, 2)

 Stephan Kreutzer
 Logik
 WS 2022/2023
 42 / 57

Datenbankanfragen

Datenbank als Struktur.

Die Filmdatenbank entspricht der Struktur $\mathcal{D} = (D, Actors^{\mathcal{D}}, Movies^{\mathcal{D}})$ mit

```
Actors<sup>D</sup> := { (George Clooney, 1, 1.5.1961),
 (Scarlett Johansson, 2, 22.11.1984),
 (Jeff Daniels, 3, 19.2.1955) }
```

Datenbankanfragen als Formeln.

Die Menge der Paare von Filmtiteln und SchauspielerInnen, die in dem Film mitspielen, wird durch folgende Formel definiert:

$$\varphi(F,S) := \exists x_{id} \big(\exists x_{dat} \mathsf{Actors}(S, x_{id}, x_{dat}) \land \exists x_{reg} \mathsf{Movies}(F, x_{reg}, x_{id}) \big)$$

"Gib alle Paare (*Filmtitel*, *Schausp.*) aus, wobei Filmtitel der Titel eines Films ist, in dem Schausp. mitspielt"

 Stephan Kreutzer
 Logik
 WS 2022/2023
 43 / 57

Datenbanken vs. Logik

Datenbanken	Logik
Datenbankschema $ au$	(Relationale) Signatur $ au$
Datenbank ${\cal D}$	$ au$ -Struktur ${\mathcal A}$
SQL-Abfrage Q(Title) SELECT Title	Formel $arphi(x_{title}) \in FO[au]$
FROM Movies WHERE Director=''G. Cl	ooney"
durch Q definierte <i>View</i>	$\varphi(\mathcal{A}) := \{ a \in \mathcal{A} : (\mathcal{A}, [x_{title}/a]) \models \varphi \}$
(materialisiert oder nicht)	(die durch φ in ${\cal A}$ definierte Relation)
Stephan Kreutzer	Logik WS 2022/2023 44 / 57

7.6 Substrukturen und Homomorphismen

 Stephan Kreutzer
 Logik
 WS 2022/2023
 46 / 57

Substrukturen

Definition.

Sei τ eine Signatur und seien \mathcal{A}, \mathcal{B} τ -Strukturen.

- 1. \mathcal{A} ist eine Substruktur von \mathcal{B} , geschrieben als $\mathcal{A} \subseteq \mathcal{B}$, wenn $A \subseteq B$ und
 - für alle k-stelligen Relationssymbole $R \in \tau$ und alle $\bar{a} \in A^k$ gilt $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$
 - für alle k-stelligen Funktionssymbole $f \in \tau$ und alle $\overline{a} \in A^k$ gilt

$$f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$$

- für alle Konstantensymbole $c \in \tau$ gilt $c^{\mathcal{A}} = c^{\mathcal{B}}$.
- 2. Wenn $\mathcal{A} \subseteq \mathcal{B}$, dann ist \mathcal{B} eine Erweiterung von \mathcal{A} .

Stephan Kreutzer Logik WS 2022/2023

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\overline{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

Definition.

Further distributions for all e R $\in \mathcal{P}$ und $\overline{a} \in A^k$, $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\overline{a} \in A^k$, $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$ für alle $c \in \tau$, $c^{\mathcal{A}} = c^{\mathcal{B}}$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 48 / 57

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\bar{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\bar{a}) \in A$.

Beispiele. Sei $\mathcal{Z} := (\mathbb{Z}, \langle \mathcal{Z}, +\mathcal{Z})$, wobei $\langle \mathcal{Z} \rangle$ und $\mathcal{Z} \rangle$ die natürliche Ordnung und Addition auf 7 ist.

Frage. Ist die Menge $N := \{0, 1,\}$ τ -abgeschlossen?

Definition $\mathcal{A} \subseteq \mathcal{B}$, wenn $\mathcal{A} \subseteq \mathcal{B}$ und für alle $R \in \tau$ und $\overline{a} \in A^k$. $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\bar{a} \in A^k$, $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$

für alle $c \in \tau$, $c^{\mathcal{A}} = c^{\mathcal{B}}$.

Stephan Kreutzer Logik WS 2022/2023

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\overline{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

Beispiele. Sei $\mathcal{Z} := (\mathbb{Z}, <^{\mathcal{Z}}, +^{\mathcal{Z}})$, wobei $<^{\mathcal{Z}}$ und $+^{\mathcal{Z}}$ die natürliche Ordnung und Addition auf \mathbb{Z} ist.

Frage. Ist die Menge $N := \{0, 1,\}$ τ -abgeschlossen?

Ja.

Antwort. Ja, denn wenn $a, b \in N$, dann ist auch $a +^{\mathcal{Z}} b \in N$.

Definition.

 $\mathcal{A} \subseteq \mathcal{B}$, wenn $A \subseteq B$ und für alle $R \in \tau$ und $\overline{a} \in A^k$ $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\overline{a} \in A^k$,

 $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$ für alle $c \in \tau$, $c^{\mathcal{A}} = c^{\mathcal{B}}$.

fur alle $c \in \tau$, $c^{-1} = c^{-1}$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 48 / 57

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\bar{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

Beispiele. Sei $\mathcal{Z} := (\mathbb{Z}, \langle \mathcal{Z}, +\mathcal{Z})$, wobei $\langle \mathcal{Z} \rangle$ und $\mathcal{Z} \rangle$ die natürliche Ordnung und Addition auf 7 ist.

Frage. Ist die Menge $N := \{0, 1,\} \tau$ -abgeschlossen?

Ja.

Frage. Ist die Menge $M := \{-1, 0, 1, 2, ...\}$ τ -abgeschlossen?

Definition

 $\mathcal{A} \subseteq \mathcal{B}$, wenn $\mathcal{A} \subseteq \mathcal{B}$ und für alle $R \in \tau$ und $\overline{a} \in A^k$. $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\bar{a} \in A^k$, $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$

für alle $c \in \tau$. $c^{\mathcal{A}} = c^{\mathcal{B}}$.

Stephan Kreutzer Logik WS 2022/2023

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\bar{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

 $\mathcal{A} \subseteq \mathcal{B}$, wenn $\mathcal{A} \subseteq \mathcal{B}$ und für alle $R \in \tau$ und $\overline{a} \in A^k$. $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\bar{a} \in A^k$, $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$ für alle $c \in \tau$, $c^{\mathcal{A}} = c^{\mathcal{B}}$.

Definition

Beispiele. Sei $\mathcal{Z} := (\mathbb{Z}, \langle \mathcal{Z}, +\mathcal{Z})$, wobei $\langle \mathcal{Z} \rangle$ und $\mathcal{Z} \rangle$ die natürliche Ordnung und Addition auf 7 ist.

Frage. Ist die Menge $N := \{0, 1,\} \tau$ -abgeschlossen?

Ja.

Frage. Ist die Menge $M := \{-1, 0, 1, 2, ...\}$ τ -abgeschlossen?

Nein.

Antwort. Nein, denn $-1 \in M$ aber $-1 + \mathcal{Z} - 1 = -2 \notin M$.

Stephan Kreutzer Logik WS 2022/2023

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

 $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$ 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und für alle $c \in \tau$, $c^{\mathcal{A}} = c^{\mathcal{B}}$. 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\bar{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

Beispiele. Sei $\mathcal{Z} := (\mathbb{Z}, \langle \mathcal{Z}, +\mathcal{Z})$, wobei $\langle \mathcal{Z} \rangle$ und $\mathcal{Z} \rangle$ die natürliche Ordnung und Addition auf 7 ist.

Frage. Ist die Menge $N := \{0, 1,\} \tau$ -abgeschlossen? Ja.

Frage. Ist die Menge $M := \{-1, 0, 1, 2, ...\}$ τ -abgeschlossen? Nein.

Frage. Ist die Menge $G := \{..., -4, -2, 0, 2, 4, ...\}$ τ -abgeschlossen?

Definition $\mathcal{A} \subseteq \mathcal{B}$, wenn $\mathcal{A} \subseteq \mathcal{B}$ und für alle $R \in \tau$ und $\overline{a} \in A^k$. $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\overline{a} \in A^k$,

Stephan Kreutzer Logik 48 / 57 WS 2022/2023

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\bar{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

Beispiele. Sei $\mathcal{Z} := (\mathbb{Z}, \langle \mathcal{Z}, +\mathcal{Z})$, wobei $\langle \mathcal{Z} \rangle$ und $\mathcal{Z} \rangle$ die natürliche Ordnung und Addition auf 7 ist.

Frage. Ist die Menge $N := \{0, 1,\}$ τ -abgeschlossen?

Ja.

Frage. Ist die Menge $M := \{-1, 0, 1, 2, ...\}$ τ -abgeschlossen?

Nein.

Frage. Ist die Menge $G := \{..., -4, -2, 0, 2, 4, ...\}$ τ -abgeschlossen?

Antwort. Ja, denn wenn $a, b \in G$, dann sind a, b gerade Zahlen und die Summe zweier gerader Zahlen ist gerade.

Definition

 $\mathcal{A} \subseteq \mathcal{B}$, wenn $\mathcal{A} \subseteq \mathcal{B}$ und für alle $R \in \tau$ und $\overline{a} \in A^k$. $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\bar{a} \in A^k$, $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$

für alle $c \in \tau$, $c^{\mathcal{A}} = c^{\mathcal{B}}$.

Stephan Kreutzer Logik 48 / 57 WS 2022/2023

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\bar{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

Lemma. Wenn $A \subseteq B$, dann ist $A \tau$ -abgeschlossen.

Beweis. Per Definition gilt:

- $c^{\mathcal{A}} = c^{\mathcal{B}}$ also $c^{\mathcal{B}} \in A$
- $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$, also ist $f^{\mathcal{B}}(\overline{a}) \in A$, für alle $\overline{a} \in A^k$.

Definition

 $\mathcal{A} \subseteq \mathcal{B}$, wenn $\mathcal{A} \subseteq \mathcal{B}$ und für alle $R \in \tau$ und $\overline{a} \in A^k$. $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\bar{a} \in A^k$, $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$ für alle $c \in \tau$, $c^{\mathcal{A}} = c^{\mathcal{B}}$.

Stephan Kreutzer Logik WS 2022/2023

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\bar{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

Lemma. Wenn $\mathcal{A} \subseteq \mathcal{B}$, dann ist $\mathcal{A} \tau$ -abgeschlossen.

Umgekehrt. Für iede τ -abgeschlossene Menge $A \subseteq B$ existiert genau eine Substruktur $\mathcal{A} \subseteq \mathcal{B}$ mit Universum \mathcal{A} .

Definition

 $\mathcal{A} \subseteq \mathcal{B}$, wenn $\mathcal{A} \subseteq \mathcal{B}$ und für alle $R \in \tau$ und $\overline{a} \in A^k$. $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\bar{a} \in A^k$, $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$ für alle $c \in \tau$, $c^{\mathcal{A}} = c^{\mathcal{B}}$.

Stephan Kreutzer Logik WS 2022/2023

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\bar{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

Lemma. Wenn $A \subseteq B$, dann ist $A \tau$ -abgeschlossen.

Umgekehrt. Für iede τ -abgeschlossene Menge $A \subseteq B$ existiert genau eine Substruktur $\mathcal{A} \subseteq \mathcal{B}$ mit Universum \mathcal{A} .

Definition. Der τ -Abschluss einer Menge $A \subseteq B$ ist die kleinste τ -abgeschlossene Menge $\operatorname{cl}_{\tau}(A)$ mit $A \subseteq \operatorname{cl}_{\tau}(A)$.

Für $A \subseteq B$ definieren wir die durch A induzierte Substruktur von \mathcal{B} als die Substruktur von \mathcal{B} mit Universum $\operatorname{cl}_{\tau}(A)$.

Definition

 $\mathcal{A} \subseteq \mathcal{B}$, wenn $\mathcal{A} \subseteq \mathcal{B}$ und für alle $R \in \tau$ und $\overline{a} \in A^k$. $\overline{a} \in R^{\mathcal{A}}$ gdw. $\overline{a} \in R^{\mathcal{B}}$ für alle $f \in \tau$ und $\bar{a} \in A^k$, $f^{\mathcal{A}}(\overline{a}) = f^{\mathcal{B}}(\overline{a})$ für alle $c \in \tau$, $c^{\mathcal{A}} = c^{\mathcal{B}}$.

Definition.

Sei τ eine Signatur und \mathcal{B} eine τ -Struktur mit Universum \mathcal{B} .

Eine Menge $A \subseteq B$ heißt τ -abgeschlossen in \mathcal{B} , wenn

- 1. $c^{\mathcal{B}} \in A$ für alle Konstantensymbole $c \in \tau$ und
- 2. wenn $f \in \tau$ ein k-stelliges Funktionssymbol ist und $\overline{a} \in A^k$ ein k-Tupel von Elementen, so ist $f^{\mathcal{B}}(\overline{a}) \in A$.

Lemma. Wenn $A \subseteq B$, dann ist $A \tau$ -abgeschlossen.

Umgekehrt. Für jede τ -abgeschlossene Menge $A \subseteq B$ existiert genau eine Substruktur $A \subseteq B$ mit Universum A.

Definition. Der τ -Abschluss einer Menge $A \subseteq B$ ist die kleinste τ -abgeschlossene Menge $\operatorname{cl}_{\tau}(A)$ mit $A \subseteq \operatorname{cl}_{\tau}(A)$.

Für $A \subseteq B$ definieren wir die durch A induzierte Substruktur von \mathcal{B} als die Substruktur von \mathcal{B} mit Universum $\operatorname{cl}_{\mathcal{T}}(A)$.

Definition. $A \subseteq B$ und für alle $R \in \tau$ und $\overline{a} \in A^k$, $\overline{a} \in R^A$ gdw. $\overline{a} \in R^B$ für alle $f \in \tau$ und $\overline{a} \in A^k$, $f^A(\overline{a}) = f^B(\overline{a})$ für alle $c \in \tau$, $c^A = c^B$.

Beispiel. Sei $Z := (\mathbb{Z}, <^{\mathbb{Z}}, +^{\mathbb{Z}})$, wobei $<^{\mathbb{Z}}, +^{\mathbb{Z}}$ die natürliche Ordnung und Addition auf \mathbb{Z} sind.

 $\begin{array}{l} \text{Die von } \{0,1\} \text{ induzierte Substruktur von } \mathcal{Z} \text{ ist } \mathcal{N} := (\mathbb{N},<^{\mathcal{N}},+^{\mathcal{N}}). \end{array}$

Denn: \mathcal{N} muss 0 und 1 enthalten, und wegen des Abschlusses unter $+^{\mathbb{Z}}$ auch 1+1=2 und daher auch 1+2=3 etc.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 48 / 57

Expansionen und Redukte

T={Grin, Blau, F}
6-in, Blau 1-shell Rolly

Definition. Sei $\sigma \subseteq \tau$ eine Signatur und sei \mathcal{B} eine τ -Struktur.

Das σ -Redukt $\mathcal{B}_{|\sigma}$ von \mathcal{B} ist definiert als die σ -Struktur $\mathcal{B}_{|\sigma}$ mit

- Universum B und
- $S^{\mathcal{B}_{|\sigma}} = S^{\mathcal{B}}$ für jedes (Relations-, Funktions-, Konstanten-) Symbol $S \in \sigma$.

 \mathcal{B} heißt Expansion von $\mathcal{B}_{|\sigma}$.

Beispiel

Beispiel. Eine $\sigma := \{E, Blue, Green\}$ -Struktur, Substruktur und Redukte.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 50 / 57

Homomorphismen

 Stephan Kreutzer
 Logik
 WS 2022/2023
 51 / 57

Wann sind zwei Strukturen gleich?

Frage. Sind die folgenden zwei Graphen verschieden?

 Stephan Kreutzer
 Logik
 WS 2022/2023
 52 / 57

Wann sind zwei Strukturen gleich?

Frage. Sind die folgenden zwei Graphen verschieden?

Mogliche Antworten.

Ja wenn wir daran interessiert sind, wie sie gezeichnet sind.

Nein wenn wir uns nur für ihre Knoten und Verbindungen dazwischen interessieren.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 52 / 57

Homomorphismen

Definition. Seien \mathcal{A} , \mathcal{B} zwei σ -Strukturen.

Ein Homomorphismus von \mathcal{A} in \mathcal{B} ist eine Funktion $h: A \to B$, so dass

- für alle k-stelligen Relationssymbole $R \in \sigma$ und $\bar{a} := a_1, \dots, a_k \in A^k$ gilt wenn $\overline{a} \in R^{\mathcal{A}}$ dann auch $(h(a_1), \dots, h(a_k)) \in R^{\mathcal{B}}$.
- für alle k-stelligen Funktionssymbole $f \in \sigma$ und $\bar{a} := a_1, \dots, a_k \in A^k$ gilt $h(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(h(a_1), \dots, h(a_k)).$
- für alle Konstantensymbole $c \in \sigma$ gilt $h(c^{A}) = c^{B}$.

Notation. $h: A \to_{hom} B: h$ ist ein Homomorphismus von A nach B.

Stephan Kreutzer Logik 53 / 57 WS 2022/2023

Beispiel

Homomorphismus $h: A \rightarrow_{hom} B$. Funktion $h: A \rightarrow B$, so dass

- 1. für alle $R \in \sigma$ und $a_1, \dots, a_k \in A^k$: wenn $\overline{a} \in R^A$ dann $(h(a_1), \dots, h(a_k)) \in R^B$.
- 2. für alle $f \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $h(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(h(a_1), \ldots, h(a_k)).$
- 3. für alle $c \in \sigma$ gilt $h(c^A) = c^B$.

Beispiel

Wir betrachten die folgenden Graphen G und H.

Homomorphismus $h: A \rightarrow_{hom} B$. Funktion $h: A \rightarrow B$, so dass

- 1. für alle $R \in \sigma$ und $a_1, \ldots, a_k \in A^k$: wenn $\overline{a} \in R^A$ dann $(h(a_1), \ldots, h(a_k)) \in R^B$.
- 2. für alle $f \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $h(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(h(a_1), \ldots, h(a_k)).$
- 3. für alle $c \in \sigma$ gilt $h(c^{A}) = c^{B}$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 54 / 57

Wir betrachten die folgenden Graphen G und H.

Es gilt $G \rightarrow_{homH}$ und $H \rightarrow_{homG}$.

Homomorphismus $h: A \rightarrow_{hom} B$. Funktion $h: A \rightarrow B$, so dass

- 1. für alle $R \in \sigma$ und $a_1, \ldots, a_k \in A^k$: wenn $\overline{a} \in R^A$ dann $(h(a_1), \ldots, h(a_k)) \in R^B$.
- 2. für alle $f \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $h(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(h(a_1), \ldots, h(a_k)).$
- 3. für alle $c \in \sigma$ gilt $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 54 / 57

Isomorphismen

Definition. Seien A, B zwei σ -Strukturen.

Ein Isomorphismus von \mathcal{A} in \mathcal{B} ist eine Funktion $I: A \to B$, so dass

- I eine Bijektion zwischen A und B ist
- für alle k-stelligen Relationssymbole $R \in \sigma$ und alle

$$\overline{a} := a_1, \ldots, a_k \in A^k$$
 gilt

$$\overline{a} \in R^{\mathcal{A}}$$
 gdw. $(I(a_1), \dots, I(a_k)) \in R^{\mathcal{B}}$.

• für alle k-stelligen Funktionssymbole $f \in \sigma$ und alle

$$\overline{a} := a_1, \ldots, a_k \in A^k$$
 gilt

$$I(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(I(a_1), \ldots, I(a_k)).$$

• für alle Konstantensymbole $c \in \sigma$ gilt $I(c^{A}) = c^{B}$.

Notation. $I: A \cong B$: I ist ein Isomorphismus von A nach B.

 Stephan Kreutzer
 Logik
 W5 2022/2023
 55 / 57

Isomorphismen

Definition. Seien A, B zwei σ -Strukturen.

Ein Isomorphismus von \mathcal{A} in \mathcal{B} ist eine Funktion $I: A \to B$, so dass

- I eine Bijektion zwischen A und B ist
- für alle k-stelligen Relationssymbole $R \in \sigma$ und alle $\overline{a} := a_1, \dots, a_k \in A^k$ gilt

$$\overline{a} \in R^{\mathcal{A}}$$
 gdw. $(I(a_1), \dots, I(a_k)) \in R^{\mathcal{B}}$.

• für alle k-stelligen Funktionssymbole $f \in \sigma$ und alle $\overline{a} := a_1, \dots, a_k \in A^k$ gilt

$$I(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(I(a_1), \dots, I(a_k)).$$

• für alle Konstantensymbole $c \in \sigma$ gilt $I(c^{\mathcal{A}}) = c^{\mathcal{B}}$.

Notation. $I: A \cong B$: I ist ein Isomorphismus von A nach B.

Homomorphismus $h: A \rightarrow_{hom} B$. Funktion $h: A \rightarrow B$, so dass

- 1. für alle $R \in \sigma$ und $a_1, \ldots, a_k \in A^k$: wenn $\overline{a} \in R^A$ dann $(h(a_1), \ldots, h(a_k)) \in R^B$.
- 2. für alle $f \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $h(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(h(a_1), \ldots, h(a_k)).$
- 3. für alle $c \in \sigma$ gilt $h(c^A) = c^B$.

Iso- und Homomorphismen

Definition. Sei σ eine Signatur.

- 1. Zwei σ -Strukturen \mathcal{A} , \mathcal{B} sind isomorph, geschrieben $\mathcal{A} \cong \mathcal{B}$, wenn es einen Isomorphismus zwischen \mathcal{A} und \mathcal{B} gibt.
- 2. Zwei σ -Strukturen \mathcal{A} , \mathcal{B} sind homomorph, geschrieben $\mathcal{A} \to_{hom} \mathcal{B}$, wenn es einen Homomorphismus von \mathcal{A} nach \mathcal{B} gibt.

Homomorphismus $h: A \rightarrow_{hom} B$. Funktion $h: A \rightarrow B$, so dass

- 1. für alle $R \in \sigma$ und $a_1, \ldots, a_k \in A^k$: wenn $\overline{a} \in R^A$ dann $(h(a_1), \ldots, h(a_k)) \in R^B$.
- 2. für alle $f \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $h(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(h(a_1), \ldots, h(a_k)).$
- 3. für alle $c \in \sigma$ gilt $h(c^{A}) = c^{B}$.

Isomorphismus $h: A \cong \mathcal{B}$. Bijektion $I: A \rightarrow B$, so dass

- 1. für alle $R \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $\overline{a} \in R^A$ gdw $(I(a_1), \ldots, I(a_k)) \in R^B$.
- 2. für alle $f \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $I(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(I(a_1), \ldots, I(a_k)).$
- 3. für alle $c \in \sigma$ gilt $I(c^{A}) = c^{B}$.

Iso- und Homomorphismen

Definition. Sei σ eine Signatur.

- 1. Zwei σ -Strukturen \mathcal{A} , \mathcal{B} sind isomorph, geschrieben $\mathcal{A} \cong \mathcal{B}$. wenn es einen Isomorphismus zwischen \mathcal{A} und \mathcal{B} gibt.
- 2. Zwei σ -Strukturen \mathcal{A}, \mathcal{B} sind homomorph, geschrieben gibt.

 d

 iele. $\mathcal{A} \to_{hom} \mathcal{B}$, wenn es einen Homomorphismus von \mathcal{A} nach \mathcal{B}

Beispiele.

- Wenn A, B endliche Mengen der gleichen Kardinalität sind, dann sind die \emptyset -Strukturen $(A,\emptyset) \cong (B,\emptyset)$.
- Wenn A, B endliche Mengen gleicher Kardinalität und $<^{\mathcal{A}}$, $<^{\mathcal{B}}$ lineare Ordnungen auf A, B sind, dann $(A, <^A) \cong (B, <^B)$.

Aber: $(\mathbb{Z}, <) \ncong (\mathbb{N}, <)$

Homomorphismus $h: A \rightarrow_{hom} B$. Funktion $h: A \rightarrow B$, so dass

- 1. für alle $R \in \sigma$ und $a_1, \ldots, a_k \in A^k$: wenn $\overline{a} \in R^A$ dann $(h(a_1),\ldots,h(a_k))\in R^{\mathcal{B}}.$
- 2. für alle $f \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $h(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(h(a_1), \dots, h(a_k)).$
- 3. für alle $c \in \sigma$ gilt $h(c^{A}) = c^{B}$.

Isomorphismus $h: A \cong \mathcal{B}$. Bijektion $I: A \rightarrow B$, so dass

- 1. für alle $R \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $\overline{a} \in R^{\mathcal{A}} \text{ gdw } (I(a_1), \dots, I(a_k)) \in R^{\mathcal{B}}.$
- 2. für alle $f \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $I(f^{\mathcal{A}}(\overline{a})) = f^{\mathcal{B}}(I(a_1), \dots, I(a_k)).$
- 3. für alle $c \in \sigma$ gilt $I(c^{A}) = c^{B}$.

Beispiel

Frage. Sind die beiden folgenden Graphen gleich?

Isomorphismus $h: A \cong \mathcal{B}$. Bijektion $I: A \to B$, so dass

- 1. für alle $R \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $\overline{a} \in R^A$ gdw $(I(a_1), \ldots, I(a_k)) \in R^B$.
- 2. für alle $f \in \sigma$ und $a_1, \ldots, a_k \in A^k$: $I(f^A(\overline{a})) = f^B(I(a_1), \ldots, I(a_k)).$
- 3. für alle $c \in \sigma$ gilt $I(c^{A}) = c^{B}$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 57 / 57

Jan. 19 20 21 22 23 24 25 26 27 28 29 30 31

30 31

5

9 10 11 12 13 14 15 16 17 18 19 20 21 22 Feb. 23 24 25 26 27 28 29

> 9 10 11 12 13 14 15 16 17 18 19

Formeln mit freien Variablen vs. Sätze

Stephan Kreutzer Logik 2 / 21 WS 2022/2023

Formeln mit freien Variablen vs. Sätze

Formeln mit freien Variablen Sätze $\varphi_1(x) := \forall y \ \forall z \ (y*z=x \rightarrow (y=1 \ \forall z=1)) \qquad \varphi_2 := \forall y \ \exists x \ (y < x \land \varphi_1(x))$

$$\varphi_1(x) := \forall y \, \forall z (y * z = x \rightarrow (y = 1))^T$$

$$\varphi_4(x,y) := \exists z (x * x = y + z)$$

$$\varphi_3 := \forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$$

Formeln $\varphi(x)$.

Eine Formel $\varphi(x)$ sagt etwas über ein Element innerhalb einer Struktur aus. D.h. $\varphi(x)$ beschreibt eine Eigenschaft eines Elements.

Wenn $\beta(x) = a$ eine Belegung von x ist, dann gilt $(A, \beta) \models \varphi(x)$, wenn a die Eigenschaft φ hat.

Sätze ψ .

Ein Satz ψ sagt etwas über die Struktur insgesamt aus.

Ohne freie Variablen brauchen wir keine Belegung β .

D.h. $\mathcal{A} \models \psi$, wenn die Struktur die Eigenschaft ψ hat.

Stephan Kreutzer Logik 3 / 21 WS 2022/2023

Formeln $\varphi(x)$. Eine Formel $\varphi(x)$ sagt etwas über ein Element innerhalb einer Struktur aus.

Sätze ψ . Ein Satz ψ sagt etwas über die Struktur insgesamt aus.

Oft interessieren wir uns für die "Menge" aller Objekte, die eine Formel bzw. einen Satz erfüllen.

Formeln. Bei Formeln $\varphi(x)$ ist diese "Menge" die Menge $\varphi(\mathcal{A})$ der Elemente einer Struktur \mathcal{A} , die die Formel erfüllen.

Sätze. Bei einem Satz ψ ist diese "Menge"' die Klasse aller Strukturen, in denen der Satz gilt.

Stephan Kreutzer Logik WS 2022/2023 4 / 21

Die Relation $\varphi(A)$

Definition. Sei \mathcal{A} eine σ -Struktur und $\varphi(x_1, \ldots, x_k) \in FO[\sigma]$. Wir definieren

$$\varphi(\mathcal{A}) := \{(a_1, \ldots, a_k) \in \mathcal{A}^k : (\mathcal{A}, [x_1/a_1, \ldots, x_k/a_k]) \models \varphi\}. \leq \mathcal{A}^k$$

Hinweis. Die Relation $\varphi(A)$ hängt nicht nur von A sondern auch von der Sequenz $(x_1, \ldots, x_k) \in Var^k$ ab.

Wir müssen daher diese Sequenz jeweils angeben, bevor wir die Notation benutzen können.

Vergleiche mit Methoden in Java.

Boolean phi(int
$$x_1, \ldots, int x_k$$
)

Mit x_1, \ldots, x_k wird eine Ordnung der Parameter festgelegt.

Wir können dann Boolean b = phi(3, 5, ..., 17); benutzen.

Stephan Kreutzer Logik WS 2022/2023 5 / 21

Modellklassen und definierbare Relationen

Definition (definierbare Relationen).

Sei \mathcal{A} eine σ -Struktur und $\varphi(x_1,\ldots,x_k)\in \mathsf{FO}[\sigma]$. Wir definieren

$$\varphi(\mathcal{A}) := \{(a_1, \ldots, a_k) \in A^k : (\mathcal{A}, [x_1/a_1, \ldots, x_k/a_k]) \models \varphi\}$$

und sagen, dass φ die Relation $\varphi(A)$ in A definiert. $R = \{ (o_1b) : b : ct \text{ vol } o \text{ out} \}$ Umgekehrt nennen wir eine Relation $R \subseteq A^k$ FO-definierbar in A, wenn es

eine Formel $\varphi(x_1,\ldots,x_k)\in FO$ gibt, so dass $\varphi(\mathcal{A})=R$.

Definition (Modellklassen).

Sei σ eine Signatur und $\Phi \subseteq FO[\sigma]$ eine Menge von σ -Sätzen.

Die Modellklasse von Φ , geschrieben $Mod(\Phi)$, ist die Klasse aller σ -Strukturen \mathcal{A} mit $\mathcal{A} \models \Phi$.

Falls $\Phi := \{ \varphi \}$ nur einen Satz enthält, schreiben wir kurz $\mathsf{Mod}(\varphi)$.

Stephan Kreutzer Logik 6 / 21 WS 2022/2023

Erfüllbarkeit und Allgemeingültigkeit

Definition. Sei $\varphi \in \mathsf{FO}[\sigma]$ eine Formel, $\Phi \subseteq \mathsf{FO}[\sigma]$ eine Formelmenge und \mathcal{I} eine σ -Interpretation.

- 1. \mathcal{I} erfüllt φ , wenn \mathcal{I} zu φ passt und $\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$.
 - Wir sagen auch: \mathcal{I} ist ein *Modell* von φ und schreiben $\mathcal{I} \models \varphi$.
- 2. $\mathcal I$ passt zu Φ , wenn sie zu allen $\psi \in \Phi$ passt. $\mathcal I$ erfüllt Φ , wenn $\mathcal I$ zu Φ passt und alle $\psi \in \Phi$ erfüllt.
 - Wir sagen auch: \mathcal{I} ist ein Modell von Φ und schreiben $\mathcal{I} \models \Phi$.
- 3. Φ ist erfüllbar, wenn es ein Modell hat. Ansonsten ist Φ unerfüllbar.
- 4. Φ ist *allgemeingültig*, oder eine *Tautologie*, wenn alle zu Φ passenden Interpretationen Φ erfüllen.
- 5. φ ist *erfüllbar/unerfüllbar/allgemeingültig*, wenn $\{\varphi\}$ erfüllbar/unerfüllbar/allgemeingültig ist.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 7 / 21

Beispiel zu Erfüllbarkeit

Erinnerung. Satz $\varphi_{ord} \in FO[\{<\}]$ mit $\mathcal{A} \models \varphi_{ord}$ gdw. $<^{\mathcal{A}}$ ist lineare Ordnung.

Beispiele. Sei $\sigma := \{<\}$.

- 1. $\varphi := \varphi_{ord} \wedge \forall x \exists y \ y < x \ ist \ erf \ ill bar, \ z.B. \ durch (\mathbb{Z}, <),$ aber nicht allgemeingültig, da $(\mathbb{N}, <) \not\models \varphi$
- 2. $\psi := \varphi_{ord} (\forall x \forall y \neg (y < x \land x < y))$ ist allgemeingültig. φ_{ord} gilt nur in $\{<\}$ -Strukturen A, in denen $<^A$ eine strikte lineare Ordnung ist.

Wenn $<^{\mathcal{A}}$ aber eine strikte Ordnung ist, dann ist $<^{\mathcal{A}}$ auch immer anti-symmetrisch, d.h. es kann keine Elemente a, b geben, so dass a < b und b < a.

Stephan Kreutzer Logik WS 2022/2023 8 / 21

Logische Folgerung

Definition. Sei σ eine Signatur, $\Phi \subseteq FO[\sigma]$ und $\psi \in FO[\sigma]$.

 ψ ist eine Folgerung von Φ , geschrieben $\Phi \models \psi$, wenn für jede zu Φ und ψ passende σ -Interpretation \mathcal{I} gilt:

$$\mathcal{I} \models \Phi \implies \mathcal{I} \models \psi.$$

Notation. Statt $\emptyset \models \psi$ schreiben wir $\models \psi$.

Stephan Kreutzer Logik WS 2022/2023 9 / 21

Beispiel zu logischer Folgerung

Erinnerung. Satz $\varphi_{ord} \in FO[\{<\}]$ mit $\mathcal{A} \models \varphi_{ord}$ gdw. $<^{\mathcal{A}}$ ist lineare Ordnung.

Für einen Satz φ gilt also:

$$\varphi_{ord} \models \varphi \iff \varphi$$
 gilt in allen linearen Ordnungen.

Es gilt also z.B.

$$\varphi_{ord} \models \forall x \forall y \exists z (z \leq x \land z \leq y)$$

wobei t < t' für die Formel $(t < t' \lor t = t')$ steht.

Stephan Kreutzer Logik WS 2022/2023 10 / 21

Eigenschaften der Folgerungsbeziehung

Lemma.

1. Für alle $\Phi \subseteq FO[\sigma]$ und $\psi \in FO[\sigma]$:

$$\Phi \models \psi \iff \left(\Phi \cup \{\neg \psi\} \text{ ist unerfüllbar }\right)$$

2. Für alle $\psi \in FO[\sigma]$:

$$\models \psi \iff (\psi \text{ ist eine Tautologie})$$

Stephan Kreutzer Logik WS 2022/2023 11 / 21

Äquivalenz zwischen Formeln

Definition. Sei σ eine Signatur.

Zwei σ -Formeln $\varphi, \psi \in FO[\sigma]$ sind äquivalent, geschrieben $\varphi \equiv \psi$, wenn für alle σ -Interpretationen \mathcal{I} passend zu φ und ψ :

$$\mathcal{I} \models \varphi \iff \mathcal{I} \models \psi.$$

Bemerkung. Nach Definition gilt für alle Formeln $\varphi, \psi \in FO[\sigma]$

$$arphi \equiv \psi \quad \Longleftrightarrow \quad \left(arphi \leftrightarrow \psi \;\; ext{ist allgemeing\"{u}ltig} \;
ight)$$

Stephan Kreutzer Logik WS 2022/2023 12 / 21

Zusammenfassung

- 1. Formeln mit freien Variablen vs. Sätze
- 2. Definierbare Relationen $\varphi(A)$.
- 3. Modellklassen $Mod(\varphi)$.
- 4. Erfüllbarkeit und Allgemeingültigkeit
- 5. Logische Folgerung
- 6. Äquivalenz

Stephan Kreutzer Logik 13 / 21 WS 2022/2023