

Cost Minimization Through Manufacturing Scheduling

Haval Amedi

Suyoun Choi

Camille George

Mallory Herrmann

Jin Soo Kim

Maryam Moshrefi

Nicholas She

Overview

- Suwanee facility dedicated to precision slitting of carbon fiber composite materials
- · Used in the construction of aircraft
- · Subject to strict regulations due to the nature of the aerospace industry

Spool of carbon fiber composite material

System

Arrival

Web

supplier

Industries' customer is also the

Freezer

- Temperature sensitive material Time out of
- the freezer must be tracked

 Machine thaw for at least Processing times are highly variable

Slitting

Packaging

Exceed out time incident: material surpasses the maximum out time and must be sent for testing.

Opportunity

Minimize cost through improved scheduling

Unplanned Downtime

Processing times are

- highly variable. When processing times vary. Web
- Industries incurs costs due to down time and out time.
- Recalculate pull times to balance the trade-

- Planned Downtime Switching between
- work orders requires a set-up. Currently ordered by
- earliest due date.
- Order jobs to minimize set-up costs while maintaining on-time job completion.

Reducing Unplanned Downtime

Objective: Calculate new pull intervals (p*) to minimize cost by balancing the trade off between downtime and out time.

Ouantifying Costs

X: Random variable of processing time with distribution F p: Allotted processing time

Newsvendor Formulation

 $p^* = F^{-1}(\frac{\delta}{\theta + \delta})$

p* is calculated for each of the 12 distributions

Value

36 hours

Multifunctional Scheduling Tool

Inputs

- 1. List of work orders with due dates
- 2. Cost of out time (δ) 3. Cost of downtime (8)

Outputs 1. Order of jobs

- 2. Required set-ups
- 3. Scheduled pull time of each job

Reducing Planned Downtime

Objective: Formulate a constraint program that minimizes the length of set-ups required between work orders.

Formulation Pi = processing time of job i Cii = time penalty of going from job i to job j

- D_i = due date of job I 2. Decision Variables
- B_i= start time of job i Ei= end time of job i
- 1 if transitioning from job i to j
- 3. Objective: minimize makespan
- min[(max(E_i)] 4. Constraints:
- Subject to setup matrix and system constraints.

- 2. Minimizes Set-up Time

- 4 Hour Set-up 2 Hour Set-up
 - 8 Hour Set-up