Literature Survey

Text Classification is the process of assigning tags or categories to text based on its content. It's one of the fundamental tasks in Natural Language Processing (NLP) and has a wide range of applications such as sentiment analysis and spam detection.

There are two main types of machine learning model for doing text classification:

- Traditional machine learning models:
 - Models such as logistic regression, support vector machines, naive bayes.
 - This type of models leverage feature representations such as Bag-of-Words (with Tf-Idf) and Word Embedding (with Word2Vec)
- Deep Learning based machine learning models:
 - Models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNS), Long Short Term Memory (LSTM), and language models such as Bidirectional Encoder Representations from Transformers (BERT)
 - Languages models overcome the biggest limitation of the classic Word Embedding approach: polysemy disambiguation, a word with different meanings (e.g. "bank" or "stick") is identified by just one vector.
 - ELMO (2018), which doesn't apply a fixed embedding, looks at the entire sentence and then assigns an embedding to each word using a bidirectional LSTM.
 - Google's BERT (Bidirectional Encoder Representations from Transformers, 2018) combines ELMO context embedding and several Transformers.
 Moreover, BERT is bidirectional, which was a big novelty for Transformers. The vector BERT assigns to a word is a function of the entire sentence. Hence, a word can have different vectors based on its contexts

The commonly used evaluation metrics are:

- * Accuracy: the percentage of texts that were predicted with the correct label.
- * Precision: the number of true positives over the number of true positives plus the number of false positives.
- * Recall: the number of true positives over the number of true positives plus the number of false negatives
- * F1 Score: the harmonic mean of precision and recall.

In the case of multi-class classification, to evaluate the overall model performance, we need to conduct either micro-average or macro-average:

- * A macro-average will compute the metric independently for each class and then take the average (gives each class equal weight).
- * A micro-average will aggregate the contributions of all classes to compute the average metric (gives each classification instance equal weight).

Citation

- Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019, October). How to fine-tune bert for text classification?. In *China National Conference on Chinese Computational Linguistics* (pp. 194-206). Springer, Cham.
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.
- Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2020). Deep learning based text classification: A comprehensive review. *arXiv* preprint *arXiv*:2004.03705.
- Pietro, M., (2020). Text Classification With NLP: Tf-Idf Vs Word2vec Vs BERT. Medium.
 Available at: https://towardsdatascience.com/text-classification-with-nlp-tf-idf-vs-word2vec-vs-bert-41ff868d1794
- Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. In *Advances in neural information processing systems* (pp. 649-657).
- Kim, Y. (2014). Convolutional neural networks for sentence classification. *arXiv* preprint *arXiv*:1408.5882.
- Wang, S. I., & Manning, C. D. (2012, July). Baselines and bigrams: Simple, good sentiment and topic classification. In *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)* (pp. 90-94).
- Ni, J., Li, J., & McAuley, J. (2019, November). Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In *Proceedings of the 2019* Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 188-197).