Breast Cancer Classification Prediction

A project by Rafif

Project Overview

Goal

To predict whether a breast cancer case is benign or malignant based on the available features.

Dataset

This dataset is obtained from the Breast Cancer Wisconsin Dataset (<u>Kaggle</u>), and it is also one of the standard datasets in Scikit-learn.

Focus

This project focuses on standard data cleaning and EDA pipeline, hyperparameter tuning using grid search, dimensionality reduction using PCA, and classification using logistic regression and SVM.

Dataset

Contains 33 columns:

- 1 ID column and 1 NaN column
- 30 features:
 - 10 unique features: radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal dimension
 - o 3 measurements: mean, standard error, worst
- The target diagnosis: 357 benign, 212 malignant

10 'mean' columns

- 2 radius mean
- 3 texture mean
- 4 perimeter mean
- 5 area mean
- 6 smoothness mean
- 7 compactness_mean
- concavity mean
- 9 concave points mean
- 10 symmetry mean
- 11 fractal dimension mean

10 'standard error' columns

- 12 radius se
- 13 texture se
- 14 perimeter se
- 15 area se
- 16 smoothness se
- 17 compactness se
- 18 concavity se
- 19 concave points se
- 20 symmetry_se
- 21 fractal dimension se

10 'worst' columns

- 22 radius_worst
- 23 texture worst
- 24 perimeter_worst
- 25 area_worst
- 26 smoothness_worst
- 7 compactness_worst
- 28 concavity_worst
- 29 concave points_worst
 30 symmetry worst
- 31 fractal dimension worst

Features were directly computed from the cell nucleus

Preprocessing

Dropping unimportant columns: id and Unnamed: 32

```
df.drop(['id','Unnamed: 32'],axis=1,inplace=True)
```

No duplicated rows

```
df.duplicated().sum()
0
```

Binary encoding for diagnosis: benign (0), malignant (1)

```
# Binary encoding for target variable
df['diagnosis'] = df['diagnosis'].map({'M':1,'B':0})
```

EDA

Check the distribution of diagnosis

(20) 100 V (5.0	percentage
diagnosis	
0	62.741652
1	37.258348

More benign cases (1.5 times) than malignant cases \rightarrow severe cases are rarer

Slightly imbalanced, but not too extreme → balancing not needed

EDA

Visualize distribution and check outliers with boxplot and histogram

Malignant cases have systematically larger values for the features

No extreme outliers in the dataset

Feature Selection

Train-test split to prevent information leakage (70:30 ratio)

Feature Selection

Pick the one with an overall higher correlation with diagnosis

Using point-biserial correlation (special case of Pearson correlation)

	features	_mean	_worst
0	radius	0.712933	0.761693
1	texture	0.406121	0.455530
2	perimeter	0.726666	0.770895
3	area	0.688087	0.715231
4	smoothness	0.357168	0.405991
5	compactness	0.582411	0.581583
6	concavity	0.691392	0.674592
7	concave points	0.780350	0.791089
8	symmetry	0.351107	0.433798
9	fractal	-0.032082	0.290516

Overall, _worst features have higher correlation with diagnosis

Drop all mean features

Feature Selection

Check correlations within _worst features

radius is correlated with perimeter and area (also expected)

perimeter has the largest correlation with perimeter diagnosis → dropping radius and area

Building the Model: Logistic Regression

Linearly separable case \rightarrow using logistic regression and support vector machine (SVM)

Grid search method to optimize the hyperparameters

Best hyperparameters:

- C = 100
- Penalty = l2
- Solver = newton-cg

Evaluating the Model: Logistic Regression

Recall as metric \rightarrow as few false negatives as possible

 Better to falsely diagnose someone as having a malignant cancer (more treatment, potentially saving lives) than falsely diagnose a cancer as benign (less treatment, potentially losing lives)

Test data = 171		Prediction		
		0	1	
Antoni	0	105	3	
Actual	1	1	62	

Recall score = 98%

The model performs very well

Building the Model: SVM

Best hyperparameters:

- C = 100
- qamma = 1
- kernel = linear

Evaluating the Model: SVM

Test data = 171		Prediction	
		0	1
Actual	0	104	4
Actual	1	2	61

Recall score = $97\% \rightarrow$ slightly lower since there is 1 more false negative

Overall, logistic regression has better performance

PCA to reduce feature dimensions, and see if the results can be improved

Use the whole dataset again (minus id and Unnamed: 32) \rightarrow train-test split to prevent information leakage

Scale the features \rightarrow mean 0, variance 1 for all features

```
# Import standardscaler from sklearn
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)

# Scale the training and test set
X_train_std = scaler.transform(X_train)
X_test_std = scaler.transform(X_test)
```

Use 5 principal components (PC) as baseline

```
from sklearn.decomposition import PCA

# Let's try 5 components
pca = PCA(n_components=5)
pca.fit(X_train_std)
pcs = pca.transform(X_train_std)

pdf = pd.DataFrame(data = pcs, columns = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5'])
pdf['diagnosis'] = y_train['diagnosis'].values
pdf.head()
```

Top 5 rows in PC coordinates

	PC1	PC2	PC3	PC4	PC5	diagnosis
0	-3.084842	-2. <mark>15</mark> 8704	-0.339875	-0.216630	1.545359	0
1	-2.182647	-0.617571	0.447208	-0.150818	2.860346	0
2	2.049959	2.328953	1.169407	-1.814647	-0.115599	0
3	-2.809267	-0.950791	-0.305102	-0.380816	0.547114	0
4	-1.913537	-1.072582	0.498365	1.311554	-0.204212	0

Skree plot:

Needs at least 5 PC to preserve 80% information in the data

But is it really necessary?

Plot the data in 2 PC's

The separation between the cases is very clear

Two PC's are all we need!

Building the Model: PCA + Logistic Regression

Using only 2 PC's and transform the features into PC coordinates

```
# Using 2 PC's only
pca = PCA(n_components=2)
pca.fit(X_train_std)

# Transform the train and test set
X_train_pca = pca.transform(X_train_std)
X_test_pca = pca.transform(X_test_std)
```

Building the model again with similar method (grid search)

Best hyperparameters:

- C = 0.1
- penalty = l1
- solver = liblinear

Evaluating the Model: PCA + Logistic Regression

Test data = 171		Prediction		
		0	1	
Actual	0	106	2	
Actual	1	1	62	

The recall score has not improved

Accuracy increases to 98% since one false positive is removed

Building the Model: PCA + SVM

Best hyperparameters:

- \bullet C = 1
- gamma = 1
- kernel = linear

Evaluating the Model: PCA + SVM

Test data = 171		Prediction		
		0	1	
Actual	0	106	2	
Actual	1	3	60	

The recall score has slightly dropped to 95% (more false negatives)

Accuracy increases to 97% (more correct predictions)

Overall, logistic regression still performs better

Conclusion

- There are more benign cases than malignant cases in this dataset → normal since severe cases should be rarer.
- 2. Malignant cases have larger values on all of the features.
- 3. The _mean features are highly correlated with the _worst features, but _worst have higher correlations with diagnosis.
- 4. The target diagnosis in this dataset is linearly separable. Therefore, logistic regression and SVM perform very well.
- 5. Using PCA to reduce the dimension of the data does not improve model performance significantly, but it is very time-efficient and easy to implement for this dataset.