第六讲图(上)

浙江大学 陈 越

6.1 什么是图

从陈家庄到张家村,怎么走最快呢? 怎么修公路使得村村通的花费最少呢?

什么是"图"(Graph)

- 表示"多对多"的关系
- ■包含
 - □ 一组顶点:通常用 V (Vertex) 表示顶点集合
 - □ 一组边:通常用 E (Edge) 表示边的集合
 - 边是顶点对: (v, w) ∈ E , 其中 v, w ∈ V

- 有向边 < v, w> 表示从v指向w的边(单行线)
- $\overline{\mathbf{v}}$

■ 不考虑重边和自回路

抽象数据类型定义

- 类型名称:图(Graph)
- 数据对象集: G(V,E)由一个非空的有限顶点集合v和一个有限边集合E组成。
- 操作集: 对于任意图 G ∈ Graph, 以及 v ∈ V, e ∈ E
 - □ Graph Create(): 建立并返回空图;
 - □ Graph InsertVertex(Graph G, Vertex v): 将v插入G;
 - □ Graph InsertEdge(Graph G, Edge e): 将e插入G;
 - □ void DFS(Graph G, Vertex v): 从顶点v出发深度优先遍历图G;
 - □ void BFS(Graph G, Vertex v):从顶点v出发宽度优先遍历图G;
 - void ShortestPath(Graph G, Vertex v, int Dist[]): 计算图G中顶点v到任意其他顶点的最短距离;
 - □ void MST(Graph G): 计算图G的最小生成树;
 - **.....**

常见术语

还有好多,用到再说......

■ 邻接矩阵G[N][N]—N个顶点从0到N-1编号

$$G[i][j] = \begin{cases} 1 & \text{若} < v_i, v_j > \text{是G中的边} \\ 0 & \text{否则} \end{cases}$$

	v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
v_0	8	1	0	1	0	0	0	0	0	0
v_1	1	8	1	1	0	1	0	0	0	0
v_2	0	1	8	0	1	1	0	0	0	0
v_3	1	1	0	8	0	0	1	1	0	0
v_4	0	0	1	0	8	1	0	0	0	1
v_5	0	1	1	0	1	8	1	0	1	1
v_6	0	0	0	1	0	1	8	1	1	0
v_7	0	0	0	1	0	0	1	8	0	0
v_8	0	0	0	0	0	1	1	0	8	1
v_9	0	0	0	0	1	1	0	0	1	8

■邻接矩阵

□ 问题:对于无向图的存储,怎样可以省一半空间?

用一个长度为N(N+1)/2的1维数组 A存储 $\{G_{00}, G_{10}, G_{11}, \dots, G_{n-10}, \dots, G_{n-1n-1}\}$,则 G_{ij} 在A中对应的下标是:

$$(i*(i+1)/2 + j)$$

对于网络,只要把G[i][j]的值定义为边 $\langle v_i, v_i \rangle$ 的权重即可。

问题: v_i和v_i之间若没有边该怎么表示?

- 邻接矩阵 有什么好处?
 - ☑ 直观、简单、好理解
 - ☑方便检查任意一对顶点间是否存在边
 - ☑ 方便找任一顶点的所有"邻接点"(有边直接相连的顶点)

行和列

- ☑ 方便计算任一顶点的"度"(从该点发出的边数为"出度",指向该点的边数为"入度")
 - 无向图:对应行(或列)非0元素的个数
 - 有向图: 对应行非0元素的个数是"出度";对应列非0元素的个数是"入度"

- 邻接矩阵 有什么不好?
 - ☑ 浪费空间 存稀疏图(点很多而边很少) 有大量无效元素
 - 对稠密图(特别是完全图)还是很合算的
 - ☑ 浪费时间 统计稀疏图中一共有多少条边

■ 邻接表: G[N]为指针数组,对应矩阵每行一个链表, 只存非0元素

对于网络,结构中要增加权重的域。

-定要够稀疏才合算啊~~~~

不区分顺 序

- 邻接表
 - ☑ 方便找任一顶点的所有"邻接点"

每条边存 储两遍

- ☑ 节约稀疏图的空间
 - 需要N个头指针 + 2E个结点(每个结点至少2个域)
- ☑ 方便计算任一顶点的"度"?
 - 对无向图:是的
 - 对有向图:只能计算"出度";需要构造"逆邻接表"(存指向自己的边)来方便计算"入度"
- ☑ 方便检查任意一对顶点间是否存在边?
 - \odot No

