

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

51

= FR 2425233 Int.Cl. 2

19 BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

A 61 B 17/22

DE 28 21 048 B 1

11

Auslegeschrift 28 21 048

21

Aktenzeichen: P 28 21.048.2-35

22

Anmeldetag: 13. 5. 78

43

Offenlegungstag: —

44

Bekanntmachungstag: 8. 11. 79

30

Unionspriorität:

32 33 31

54

Bezeichnung:

Medizinisches Instrument

71

Anmelder:

Willy Rüsch GmbH & Co KG, 7053 Kernen

72

Erfinder:

Rüsch, Heinz, Ing.(grad.), 7050 Waiblingen

55

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

FR 13 72 274

FR 11 97 808

US 35 40 431

US 25 56 783

DE 28 21 048 B 1

Patentansprüche:

1. Medizinisches Instrument zum Entfernen von Körpern aus physiologischen Kanälen, wie Harnleitern und Gallengängen, Arterien, Venen, Bronchien, Luft- und Speiseröhren u. dgl., mit einem flexiblen, in den betreffenden physiologischen Kanal einzuführenden Rohr, das an seinem applikatorseitigen Ende ein Bedienungsglied und an seinem einführende Ende ein aufweitbares, gegebenenfalls federndes Element aufweist, das einerseits an dem Rohrende und andererseits an einem Ende eines Stellelementes befestigt ist und über das durch das Rohr hindurchgeführte und mit dem Bedienungsglied verbundene Stellelement aufzuweiten bzw. zusammenzulegen ist, dadurch gekennzeichnet, daß das aufweitbare Element (6) aus einem Geflecht-Schlauchabschnitt besteht, dessen einzelne Fäden einen Abstand voneinander aufweisen.

2. Medizinisches Instrument nach Anspruch 1, dadurch gekennzeichnet, daß über das einführende Ende von Stellelement (4) und aufweitbarem Element (6) ein Kopfstück (7) in Form eines Röhrchens mit geschlossenem, abgerundetem freiem Ende (8) geschoben ist.

3. Medizinisches Instrument nach Anspruch 1, dadurch gekennzeichnet, daß am einführende Ende die Fäden (10) des Gewebes oder Geflechtes des das aufweitbare Element (6) bildenden Schlauchabschnittes miteinander verschmolzen sind und an dem Schmelzkopf das Ende des Stellelementes (4) befestigt, beispielsweise eingeschmolzen, ist.

4. Medizinisches Instrument nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Stellelement (4) ein Federdraht verwendet ist.

5. Medizinisches Instrument nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Rohr (1) durch eine eingeschobene Schraubenfeder (9) versteift ist, die eine Führung für das Stellelement (4) bildet.

6. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rohr (1) durch einen Schrumpfschlauch gebildet ist.

7. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehr als ein aufweitbares Element (6) vorgesehen ist und die einzelnen aufweitbaren Elemente im Abstand voneinander angeordnet sind.

8. Medizinisches Instrument nach Anspruch 7, dadurch gekennzeichnet, daß zwischen den aufweitbaren Elementen (6) jeweils ein steifer Rohrabschnitt (11) vorgesehen und sie durch ein gemeinsames Stellelement (4) aufweitbar sind, das mit dem Einführende (8) nächsten Element (6) verbunden ist.

9. Medizinisches Instrument nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die aufweitbaren Elemente (6) in aufgeweittem Zustand unterschiedliche und insbesondere in einer Richtung zunehmende Durchmesser aufweisen.

10. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das das aufweitbare Element (6) bildende Gewebe oder Geflecht eine Maschenweite aufweist, die das Drei- bis Zehnfache der Dicke der das Gewebe oder Geflecht bildenden Fäden (10) ist.

11. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gewebe oder Geflecht aus Kunststofffäden, insbesondere aus massiven Polyester-, Polyamid- oder PVC-Fäden besteht.

12. Medizinisches Instrument nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Gewebe oder Geflecht aus einem Naturmaterial, insbesondere aus Silk, Leinen oder Baumwolle besteht.

13. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gewebe oder Geflecht in Körperbindung und insbesondere als $K^{\frac{2}{3}}$ hergestellt ist.

14. Medizinisches Instrument nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das aufweitbare Element (6) sich beim Aufweiten unsymmetrisch zu einer Quermittellebene des Stellelementes (4) verformt und aufgeweitet die Form eines gespannten Regenschirms aufweist.

Die Erfindung betrifft ein medizinisches Instrument zum Entfernen von Körpern aus physiologischen Kanälen, wie Harnleitern und Gallengängen, Arterien, Venen, Bronchien, Luft- und Speiseröhren u. dgl., mit einem flexiblen, in den betreffenden physiologischen Kanal einzuführenden Rohr, das an seinem applikatorseitigen Ende ein Bedienungsglied und an seinem einführende Ende ein aufweitbares, gegebenenfalls federndes Element aufweist, das einerseits an dem Rohrende und andererseits an einem Ende eines Stellelementes befestigt ist und über das durch das Rohr hindurchgeführte und mit dem Bedienungsglied verbundene Stellelement aufzuweiten bzw. zusammenzulegen ist.

Derartige Instrumente sind in Gestalt von Grätenfängern seit vielen Jahrzehnten bekannt. Diese bekannten Grätenfänger umfassen ein Rohr, durch das ein biegsamer Stab hindurchgeführt ist, der an seinem applikatorseitigen Ende mit einem Ring versehen ist.

Das applikatorseitige Rohrende ist mit einem Haltegriff versehen. An dem einführende Rohrende sind ein Kranz von Schweinsborsten in Längsausrichtung, also entlang von Mantellinien verlaufend, aufgebunden, deren Enden zusammengebunden und an dem Ende des durch das Rohr hindurchlaufenden bewegsamen Stabes angebunden sind. Zur Erleichterung des Einführens ist am freien Ende noch ein kleiner, kugelförmiger Schwamm- oder ein abgerundeter Gummi- oder Metallkopf angebracht. Durch Ziehen an dem ringförmigen Bedienungsglied werden die nahezu gestreckten, nur geringfügig nach außen gewölbten und eine Art Rohr bildenden Schweinsborsten gekrümmmt und damit stärker nach außen gewölbt, bis sie eine Art Kugel bilden. Dadurch ist die aus dem Oesophagus zu entfernde Gräte erfäßbar und kann zwischen den Schweinsborsten gefangen und entfernt werden, wobei zum Herausziehen durch völliges oder teilweises Loslassen des Bedienungsgliedes ein Entspannen der Schweinsborsten und damit deren zu federndes Zurückverformen bewirkt werden (Rüsch-Katalog von 1910, Seite 48, 49).

Es ist ferner auch ein Instrument zur Entfernung von Fremdkörpern aus physiologischen Kanälen bekannt

(DE-PS 10 99 126, FR-PS 11 97 808), das aus einem biegsamen Röhrchen besteht, durch das ein Stellelement hindurchgeführt ist, das am applikatorseitigen Ende mit einem Bedienungsglied versehen ist. Am einfür seitigen Ende ist an dem Stellelement eine Hülse befestigt, in die von der Einführseite her mehrere schraubenlinienförmig gewundene Federdrähte eingesteckt sind, deren freie Enden in einen spitzbogenförmigen Kopf zusammenlaufen, in dem sie befestigt sind. Durch Zug am Bedienungsglied werden die Federdrähte in das Rohr hereingezogen. Nach dem Einführen in den physiologischen Kanal wird das Bedienungsglied, das dabei einen Abstand vom applikatorseitigen Rohrende aufweist, zu diesem Rohrende hin verschoben, wodurch die Federdrähte aus dem Rohrende austreten und sich aufgrund ihrer federnden Eigenschaften aufwölben, wodurch sie einen den Umriß einer Zwiebel aufweisenden Korb bilden, der einen Nierenstein oder sonstigen Fremdkörper zu erfassen vermag. Durch teilweises Zurückziehen des Bedienungsgliedes wird der Korb verengt und umschließt den Fremdkörper, der nachher durch Herausziehen des Rohres entfernt werden kann.

Es sind auch Gallenstein-Extraktoren bekannt (Rüsch-Katalog Nr. 328000), die aus einem flexiblen Rohr bestehen, an dessen einfür seitigem Ende ein Ballon angebracht ist, der durch das Rohr hindurch mittels einer Luer-Lok-Spritze od. dgl. aufblasbar ist. Der Extraktor wird in den physiologischen Kanal, beispielsweise in den Harnleiter eingeführt, bis sich der Ballon jenseits des zu entfernenden Steines befindet. Nach dem Aufblasen des Ballons löst sich durch die dadurch bedingte Erweiterung des verformbaren physiologischen Kanals der Stein und kann durch Herausziehen des Extraktors entfernt werden.

Ein medizinisches Instrument der eingangs genannten Art ist aber auch aus der US-PS 25 56 783 bekannt. Während bei dem zuvor erläuterten medizinischen Instrumenten als federnd aufweitbares Element ein Kranz von entlang von Mantellinien angeordneten Borsten bzw. ein aufblasbarer Ballon dient, ist bei letzterer das federnd aufweitbare Element durch Längsabschnitte des Rohres gebildet, die durch entlang von Mantellinien verlaufenden Schlitten erzeugt und begrenzt sind. Es sind lediglich die einzelnen Teile des aufweitbaren Elementes mit dem Rohr einstückig und nicht an diesem festgebunden und es ist ihr Querschnitt rechteckförmig und nicht kreisrund; außerdem sind ihre Querschnittsbemaßungen um ein Vielfaches größer als die Querschnittsbemaßungen der Borsten des bekannten Grätenfängers. In beiden Fällen erstrecken sich jedoch die das aufweitbare Element bildenden Borsten oder Bänder achsparallel zum flexiblen Rohr. Ein solches Instrument läßt sich zwar einfach herstellen, doch ist sein Anwendungsbereich und die Skala der unterschiedlich erzeugbaren Eigenschaften sehr begrenzt, weil Material und Querschnitt der einzelnen Bänder unmittelbar von dem verwendeten flexiblen Rohr abhängig, weil mit diesem einstückig sind. Auch sind die Zwischenräume zwischen den einzelnen Bändern in gespreiztem Zustand sehr groß. Von Nachteil dürfte ferner noch sein, daß sich die einzelnen Bänder in Achsrichtung erstrecken, weil ein zu erfassender Stein, wofür dieses Instrument gedacht ist, entlang dem Schnitt zwischen zwei Bändern hindurchgleiten kann.

Schließlich ist auch ein Universal-Embolus- und Thrombus-Extraktor bekannt (Rüsch-Katalog Nr. 327000), der im wesentlichen gleich aufgebaut und

lediglich anders dimensioniert ist als der mit einem Ballon versehene und zuvor erwähnte Gallenstein-Extraktor. Er dient zum Entfernen von Thromben und Embolien aus Arterien bzw. Venen.

- 5 Aufgabe der vorliegenden Erfindung ist es, ein verbessertes, universell einsetzbares Instrument zum Entfernen von Körpern aus physiologischen Kanälen zu schaffen, das vom Arzt problemlos in Einsatz gebracht werden kann.
 - 10 Gelöst wird diese Aufgabe, ausgehend von einem medizinischen Instrument der eingangs genannten Art, erfindungsgemäß dadurch, daß das aufweitbare Element aus einem Geflecht-Schlauchabschnitt besteht, dessen einzelne Fäden einen Abstand voneinander aufweisen.
 - 15 Auf diese bei nachträglicher Betrachtung verblüffend einfache Weise gelingt es, ein universell einsetzbares medizinisches Instrument zum Entfernen von Fremdkörpern aus physiologischen Kanälen zu schaffen, das je nach Dimensionierung für die unterschiedlichsten Zwecke vorteilhaft eingesetzt werden kann. Es kann einerseits als Grätenfänger dienen und kann ebenso auch zum Entfernen von Gallensteinen u. dgl. verwendet werden. Im letzteren Fall ist vor allem von Vorteil, daß weder ein Einfangen des Steines in einen Korb erforderlich ist, was viel Glück und Geschick erfordert, noch die Gefahr besteht, daß der Ballon des Extraktors durch einen scharfkantigen Stein zum Platzen gebracht wird. Von Vorteil ist nämlich bei dem erfindungsgemäß Instrument, daß sich durch das Spreizen des aufweitbaren Elementes ein Schirm bilden läßt, der nicht nur den physiologischen Kanal aufweitet und dadurch ein leichteres Lösen des Steines ergibt, sondern der auch nicht zum Festklemmen des Steines in dem spitzen Winkel zwischen Ballon und Kanalaufwand neigt,
 - 20
 - 25
 - 30
 - 35
 - 40
 - 45
 - 50
 - 55
 - 60
 - 65
- sondern der wie ein Schneeschieber den Stein vor sich herschiebt. Die Handhabung des erfindungsgemäß Instrumentes ist daher denkbar einfach, wodurch die Erfolgsaussichten des Eingriffes sehr stark erhöht und die Risiken für den Patienten erheblich vermindert werden. Das erfindungsgemäß Instrument eignet sich jedoch in gleicher Weise auch zum Entfernen von Thromben und Embolien aus Venen und Arterien, wobei ebenfalls die bereits erwähnte Schieber-Wirkung von großem Vorteil ist. Von Vorteil ist schließlich ferner noch, daß das ungespreizte Element einen relativ kleinen und das gespreizte Element einen vielfach vergrößerten Durchmesser aufweist. Dabei ist das ungespreizte Element sehr elastisch und das gespreizte Element überraschend steif und widerstandsfähig gegen Verformung. In manchen Anwendungsfällen ist ferner noch von Vorteil, daß das spreizbare Element sowohl im ungespreizten als auch im gespreizten Zustand eine gitterförmige Struktur aufweist, die den Durchtritt von Flüssigkeit zuläßt.
- Das einfür seitige Ende des Instrumentes kann unterschiedlich ausgebildet sein. Beispielsweise kann das einfür seitige Ende durch Verschmelzen der das Gewebe oder Geflecht des Schlauchabschnittes bildenden Fäden gebildet sein. In diesen Schmelzkopf ist das Ende des Stellelementes eingeführt und befestigt, beispielsweise umschmolzen. Bei bevorzugten anderen Ausführungsformen der Erfindung ist jedoch über das einfür seitige Ende von Stellelement und Schlauchabschnitt ein Röhrchen mit geschlossenem, abgerundetem, freiem Ende geschoben. Beide Ausführungsformen haben den Vorteil, daß sie ein bequemes Einführen des Instrumentes ermöglichen, wie es auch von Kathetern her bekannt und jedem Arzt geläufig ist.

Als Stellelement ist bevorzugt ein Federdraht verwendet. Ein derartiger Draht ist einerseits ausreichend stabil und andererseits genügend verformbar. Er bietet ferner den Vorteil, daß das medizinische Instrument dadurch röntgenfähig ist, also für den Arzt feststellbar ist, wie weit das Instrument eingeschoben ist und welchen Verlauf es hat bzw. wo sich das einführende Ende im Körper des Patienten befindet.

Das Rohr kann aus unterschiedlichen Werkstoffen hergestellt sein. Bevorzugt besteht es aus einem Kunststoff. In weiterer Ausgestaltung ist eine Schraubenfeder eingeschoben, die das Rohr verstellt und eine Führung für das Stellelement bildet. Dennoch ist das Rohr elastisch federnd verformbar. Es ist in seinem Aufbau vergleichbar mit einer Bowenzughülle.

Insbesondere bei einem relativ langen und sehr dünnen Instrument, wie es beispielsweise zum Entfernen von Thromben und Embolien erforderlich ist, kann die Herstellung Schwierigkeiten bereiten. Bei bevorzugten Ausführungsformen der Erfindung ist daher das Rohr durch einen Schrumpfschlauch gebildet. Dieser kann aufgrund seines vergrößerten Durchmessers bequem über die Schraubenfederhülle geschoben werden, an die er sich nach entsprechender Erwärmung und dadurch bedingter Schrumpfung stramm und praktisch fugenlos abschließend anlegt.

In einer bevorzugten Ausgestaltung der Erfindung ist das medizinische Instrument mit mehr als einem spreizbaren Element versehen und es sind die einzelnen spreizbaren Elemente im Abstand voneinander angeordnet. Diese Ausführungsform der Erfindung hat erhebliche Vorteile. Sie ermöglicht es beispielsweise, einen Fremdkörper zwischen zwei gespreizten Elementen wie in einem Käfig einzufangen und entlang des physiologischen Kanals zu verschieben. Dabei entfernt das in Bewegungsrichtung vordere Spreizelement aufgrund seiner Schieber-Wirkung andere, in dem Kanal befindliche Ablagerungen oder Körper, die ein Entfernen des in dem Käfig befindlichen Fremdkörpers erschweren oder durch Zusammenklumpen mit diesem sogar verhindern könnten. Schließlich können auch die spreizbaren Elemente in gespreiztem Zustand unterschiedliche und insbesondere in einer Richtung zunehmende Durchmesser aufweisen. Auch dies kann bei entsprechender Dimensionierung zu einer zuverlässigen und sichereren Wirkungsweise des erfindungsgemäßen medizinischen Instrumentes führen.

Die konstruktive Ausbildung des Instrumentes mit mehreren spreizbaren Elementen kann unterschiedlich gelöst sein. Beispielsweise kann zu jedem spreizbaren Element ein eigenes Stellelement geführt sein, das jeweils mit einem eigenen Bedienungsglied versehen ist. Das hat jedoch sowohl einen relativ komplizierten Aufbau und damit eine teure Herstellung als auch eine relativ komplizierte Anwendung zur Folge. Bei bevorzugten Ausführungsformen der Erfindung ist daher zwischen den spreizbaren Elementen jeweils ein steifer Rohrabschnitt vorgesehen und es sind die spreizbaren Elemente durch ein gemeinsames Stellelement spreizbar, das mit dem dem Einführende nächsten Spreizelement verbunden ist. Die auf das einführende Ende durch das Stellelement ausgeübte Zugkraft wirkt sich über das nächstliegende spreizbare Element und den anschließenden Rohrabschnitt jeweils auf das nächste spreizbare Element aus und bewirkt, daß alle Spreizelemente in gleicher Weise gespreizt werden.

Bei bevorzugten Ausführungsformen der Erfindung weist das Gewebe oder Geflecht eine Maschenweite

auf, die das etwa Dreifache bis Zehnfache der Dicke der das Gewebe oder Geflecht bildenden Fäden ist. Ein derartiges Größenverhältnis ergibt eine gute Verformbarkeit des spreizbaren Elementes bei ausreichender Durchlässigkeit und andererseits genügender Engmaschigkeit für das Entfernen auch relativ kleiner Körper oder Fremdkörper. Die Engmaschigkeit ergibt sich bei gespreiztem Element vor allem dadurch, daß der durch das Spreizen gebildete Schirm aus zwei Gewebe- oder Geflechtlagen besteht, die aneinander anliegen, wodurch die wirksame Maschengröße vermindert wird. Die relativ große Maschenweite bei ungespreiztem Element hat den Vorteil einer guten Flexibilität. Die Maschen weisen bei ungespreiztem Element die Form von Rauten auf, deren in Längsrichtung des Instruments weisende Diagonale sehr viel größer ist als deren zum Rohr tangentiale Diagonale. Die einzelnen Fäden verlaufen annähernd entlang einer Schraubenlinie, wobei allerdings zu berücksichtigen ist, daß der Schlauchabschnitt in Längsrichtung keinen konstanten Durchmesser aufweist, sondern sich von den Enden zur Mitte hin im Durchmesser etwas vergrößert. Beim Spreizen des Elementes verschieben sich die einzelnen Fäden zueinander und es ändert sich das Längenverhältnis der beiden Diagonalen einer jeden Raute, bis in einer mittleren Stellung die Rauten etwa quadratisch sind. Beim weiteren Verformen bildet das Spreizelement eine kreisförmige Scheibe von zwei unter Vorspannung aneinanderliegenden Gewebelagen, die im Zentrum trichterförmig in das angrenzende Rohrende übergehen. Der Trichter weist dabei die Gestalt auf, die ein Wasserablaufwirbel hat. Die Fäden nehmen in dieser gespreizten Lage in dem Bereich, in dem sie die Scheibe bilden, annähernd eine Kreiskontur ein. Die Gestalt der Maschen kann von der soeben erläuterten Form abweichen, wenn entsprechend anderen Gewebebindungen verwendet sind, wie es nachher noch näher besprochen wird.

Bei bevorzugten Ausführungsformen der Erfindung besteht das Gewebe oder Geflecht aus Kunststofffäden, insbesondere aus massiven Polyester-, Polyamid- oder PVC-Fäden. Die Verwendung von massiven Fäden gegenüber gesponnenen oder geflochtenen Fäden hat den Vorteil einer besseren Beweglichkeit der Fäden zueinander, was die Verformung und Rückverformung des spreizbaren Elementes begünstigt.

Es kann jedoch auch, wie es bei anderen Ausführungsformen vorgesehen ist, das Gewebe oder Geflecht aus einem Naturmaterial bestehen, insbesondere aus Silk, Leinen oder Baumwolle (Silk wird aus Seidenraupendarm gewonnen).

Die Bindung des Gewebes oder Geflechts kann unterschiedlich gewählt sein. Beispielsweise kann Leinenbindung oder auch Atlasbindung verwendet sein. Bei bevorzugten Ausführungsformen der Erfindung ist jedoch das Gewebe oder Geflecht in Körperbindung und insbesondere als K_2^2 -Bindung hergestellt. Diese Bindung hat sich besonders bewährt, weil sie eine leichte Verformung des spreizbaren Elementes zuläßt und andererseits eine gute Rückstellkraft ergibt. Darüber hinaus lassen sich gleichzeitig günstige Maschenweiten realisieren.

Das ungespreizte Element weist bevorzugt jeweils etwa die gleiche Gestalt auf, wie sie auch vom ungespreizten Grätenfänger her bekannt ist, nämlich die Gestalt einer Spindel oder eines in seiner Mitte leicht aufgebauchten Rohres auf. Trotzdem ist es möglich,

ohne daß sich das äußere Aussehen des ungespreizten Elementes ändert, daß das gespreizte Element unterschiedliche Gestalt aufweist. Im allgemeinen weist es die zuvor beschriebene Gestalt einer Scheibe mit beidseitigem Trichteransatz auf. Dabei ist das gespreizte Element symmetrisch zu einer in der Scheibenmitte liegenden Ebene, auf der das Rohr und das Stellelement zentral senkrecht stehen. Bei bevorzugten anderen Ausführungsformen der Erfindung ist jedoch das spreizbare Element bei dem Spreizen unsymmetrisch zu einer Quermittelebene verformt und weist gespreizt die Form eines gespannten Regenschirmes auf. Die beiden in gespreiztem Zustand von einem radial äußeren gemeinsamen Rand ausgehenden und aneinander anliegenden oder einander benachbarten Bereiche des Geflechtes oder Gewebes sind also nicht entgegengesetzt, sondern in gleicher Richtung gewölbt. Dabei kann die offene Seite der Wölbung zum einführende Ende weisen. Bevorzugt bildet jedoch das gespreizte Element einen zur Applikatorseite hin offenen, konkaven Schirm. Dies hat den Vorteil, daß beim Entfernen von Fremdkörpern diese eine Tendenz zu einer Bewegung zur Schirmmitte hin zeigen, also von der Wand des physiologischen Kanals entfernt werden. Dies erleichtert nicht nur das Entfernen, es verhindert auch, daß beispielsweise beim Entfernen von scharfkantigen Steinen aus relativ engen Kanälen die Kanalwand durch den Stein beschädigt wird. Das schirmförmige gespreizte Element weitet dabei nicht nur den Kanal örtlich und reversibel auf, sondern es sorgt auch gleichzeitig noch für ein Abhalten des Körpers von der Kanalwand.

Die Verwirklichung des spreizbaren Elementes in der Weise, daß es in gespreiztem Zustand die Form eines Schirmes aufweist, erfolgt durch eine Art »mechanisches Gedächtnis« des Gewebe- oder Geflecht-Schluchabschnittes. Dieses mechanische Gedächtnis kann beispielsweise durch erzwungene mechanische Verformung bei der erstmaligen Spreizung eingeprägt werden. Es kann auch an Stelle oder zusätzlich zu dieser mechanischen Behandlung eine thermische Behandlung treten. Auch wäre es möglich, das Geflecht aus sich in einer Richtung verjüngenden Fäden zu bilden, wodurch ebenfalls eine Vorzugsverformung erzielt werden könnte. Allerdings wäre die Herstellung eines Geflechtes aus sich verjüngenden Fäden sehr aufwendig, so daß die zuvor erläuterten Methoden bevorzugt angewandt werden.

Weitere Einzelheiten und Ausgestaltungen der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung in der Zeichnung dargestellter und anschließend erläuterter Ausführungsformen im Zusammenhang mit den Ansprüchen. Es zeigt

Fig. 1 eine Seitenansicht eines erfundungsgemäßen medizinischen Instrumentes mit ungespreiztem Element,

Fig. 2 einen Schnitt nach der Linie II-II der Fig. 1,

Fig. 3 das Instrument gemäß Fig. 1 mit teilweise gespreiztem Element,

Fig. 4 das Instrument gemäß Fig. 1 mit völlig gespreiztem Element,

Fig. 5 ein Instrument, das bei ungespreiztem Element von dem Instrument nach Fig. 1 nicht unterscheidbar ist, mit gespreiztem Element,

Fig. 6 ein Instrument mit zu anderer Form gespreiztem Element,

Fig. 7 ein Instrument mit zwei ungespreizten spreizbaren Elementen,

Fig. 8 das Instrument nach Fig. 7 mit gespreizten

Elementen,

Fig. 9 ein Instrument ähnlich Fig. 8, jedoch mit unsymmetrisch gespreizten Elementen, und

Fig. 10 und 11 schematisch dargestellte Instrumente mit einer Vielzahl von unterschiedlichen Durchmesser aufweisenden Elementen.

Die Darstellung gemäß der Zeichnung ist teils vergrößert, um Einzelheiten deutlicher darstellen zu können.

Das in Fig. 1 dargestellte medizinische Instrument umfaßt ein biegbares Rohr 1, das vorzugsweise aus Kunststoff besteht und dessen Durchmesser zwischen etwa 2 bis 3 mm und 50 bis 100 mm je nach Anwendungsfall sein kann. An dem applikatorseitigen Ende des Rohres 1 ist ein Feststeller 2 vorgesehen, der eine Hülse mit radial eindrehbarer Schraube 3 umfaßt, mittels der ein durch die Hülse geführter Draht, der als Stellelement 4 dient, festklemmbar ist. Am freien Ende des Stellelementes 4 ist ein Bedienungsglied 5, beispielsweise in Form eines Schlauchabschnittes oder eines kleinen Betätigungsnapfes, angebracht. An dem gegenüberliegenden Ende des Rohres 1 schließt ein spreizbares Element 6 an, das aus einem Gewebe- oder Geflecht-Schluchabschnitt besteht, dessen eines Ende in das Ende des Rohres 1 eingeführt ist, wogegen das gegenüberliegende einführende Ende in ein hohles Kopfstück 7 mit verjüngtem und abgerundetem geschlossenen Ende 8 eingeführt und befestigt ist. Innerhalb des Rohres 1 und auch des im Rohr 1 befindlichen Teiles des spreizbaren Elementes 6 ist eine Schraubenfeder 9 (Fig. 2) eingesetzt, deren dicht an dicht liegende Windungen eine Art Rohrführung wie bei einem Bowdenzug bilden. Das Stellelement 4, das als Draht ausgebildet ist, erstreckt sich bis zum Kopfstück 7, in dem sein Ende befestigt ist.

Der das spreizbare Element 6 bildende Gewebe- oder Geflecht-Schluchabschnitt besteht aus miteinander in Körperbindung verwobenen Fäden 10, wobei vorzugsweise eine K^2 -Bindung verwendet ist. Bei dieser Bindung führt jeder Kettfaden jeweils über zwei Schußfäden und anschließend unter zwei Schußfäden hindurch, wogegen umgekehrt die Schußfäden in gleicher Weise jeweils über zwei Kettfäden hinweg und unter zwei Kettfäden hindurchgeführt sind. Benachbarnte Kett- und Schußfäden sind jeweils um eine Fadenteilung zueinander versetzt. Die Fäden 10 bestehen jeweils aus einem einzigen Faden, bestehen also nicht aus einer Vielzahl von miteinander verseilten, verflochtenen oder verwobenen oder verfilzten Fäden. Sie bestehen vorzugsweise aus Kunststoff und weisen eine möglichst glatte Oberfläche auf, damit sie sich bei der Verformung des spreizbaren Elementes 6 zueinander bewegen können. Es können jedoch die Fäden 10 auch aus Naturfasern oder aus Seide hergestellt sein.

Wird durch Ziehen am Bedienungsglied 5 das Stellelement 4 relativ zum Rohr 1 verschoben, also das Stellelement 4 aus dem Rohr 1 herausgezogen, so nimmt das Ende des Stellelementes 4 das Kopfstück 7 mit, wobei das Spreizelement 6 aufgespreizt wird; bis es etwa die Form gemäß Fig. 3 erreicht hat. Dabei ändert sich die Gestalt der Maschen, die durch die Fäden 10 gebildet sind. Wird das Kopfstück 7 weiter in Richtung auf das Rohr 1 bewegt, so wird schließlich die in Fig. 4 dargestellte Konfiguration des spreizbaren Elementes 6 erzielt, in der dessen Außendurchmesser auf das Zweibis Mehrfache gegenüber dem Durchmesser bei ungespreiztem Element 6 (Fig. 1) erreicht.

Bei der Benutzung des Instrumentes wird dieses mit dem Ende 8 voraus in den physiologischen Kanal, beispielsweise durch Harnröhre und Blase hindurch in den Harnleiter so weit eingeführt, bis sich das spreizbare Element 6 jenseits eines zu entfernenden Körpers, beispielsweise eines Gallen- oder Nierensteines befindet. Die Position des Instrumentes kann dabei durch Röntgenisierung festgestellt werden, da sowohl die Schraubenfeder 9 als auch der das Stellelement 4 bildende Draht sich deutlich abilden. Anschließend wird nun durch gegebenenfalls mehrmaliges Spannen und Wiederlösen des Stellelements 4 das spreizbare Element 6 gespreizt und entspreizt, um ein Lösen des Steines von der Wand des physiologischen Kanals zu erreichen. Anschließend wird mit gespreiztem Element 6 das Instrument herausgezogen, wobei das spreizbare Element 6 den Stein mitnimmt.

Zum Entfernen von Thromben, also Blutgerinnsel, oder Embolien, also Fetttröpfchen, Fremdkörpern od. dgl. aus Venen oder Arterien wird das Instrument in die entsprechende Vene eingeführt, bis das Ende 8 den Thrombus oder Embolus durchstößt und sich das spreizbare Element 6 hinter dem Embolus befindet. Anschließend wird durch Spreizen des Elementes 6, bis dessen Umfang unter Aufweitung der Vene an der Venenwand innen anliegt, das Instrument herausgezogen, wobei das spreizbare Element 6 den Embolus mitnimmt.

Durch entsprechende mechanische, thermische oder chemische Vorbehandlung des spreizbaren Elementes 6 ist es auch möglich, Spreizkonfigurationen zu erzielen, wie sie in den Fig. 5 und 6 dargestellt sind. Insbesondere

die Anordnung nach Fig. 6 eignet sich besonders gut zum Entfernen von Körperrn, weil bei dieser Ausführungsform beim Herausziehen des Instrumentes der zu entfernende Körper wie in einem Körbchen eingesammelt wird, wobei der Umfangsrund als Abstreifer dient, der an der Kanalwandung haftende Teilchen löst und sie in das Körbcheninnere fördert.

Es sind auch Mehrfachanordnungen wie in den Fig. 7 bis 11 dargestellt möglich. Dabei können die spreizbaren Elemente unterschiedliche Spreizformen und auch unterschiedliche Spreizdurchmesser aufweisen.

Ein wesentlicher Vorteil der erfundungsgemäßen Instrumente liegt darin, daß sie sehr universell einsetzbar sind und lediglich hinsichtlich ihrer Dimensionierung an den jeweiligen physiologischen Kanal angepaßt sein müssen, wobei jedoch die Anpassung auch durch entsprechend starke oder weniger starke Spreizung des spreizbaren Elementes erfolgen kann. In vielen Fällen ist auch die gitterartige Struktur des gespreizten Elementes 6 von Vorteil, weil sie einen Flüssigkeitsdurchfluß zuläßt.

Die erfundungsgemäßen Instrumente gestatten es, auch an schlecht zugänglichen Stellen befindliche Thromben und Embolien zu entfernen. Sie ermöglichen es, auf das Einsetzen von Filtern in Venen, beispielsweise die Vena cava inferior zu verzichten, deren Einsatz schon gelegentlich zu Komplikationen geführt hat, weil sich der dort eingesetzte Schirm aus seiner Verankerung löste und durch die Vene bis zum Herz und durch das Herz hindurch bis in die Aorta pulmonalis dislozierte.

Hierzu 3 Blatt Zeichnungen

Fig. 5

Fig. 6

Fig. 7

Fig. 9

Fig. 8

Fig. 10

Fig. 11