100PbSO ₄	yield	109*2444	PbN	$_{3}O_{6}=b$
100Рb	,,	109'307 159'98 159'9743	,,	Turner
100 $\mathrm{PbN_3O_6} =$	ъ,	67:3799	PbO	= I Svanberg
100ΛgCl corr to	espond }			
100Ag corresp		29.584	,,	Mallet, Troost
$100LiCl = \frac{1}{b}$	yield		LiN ₃	$O_6 = c$
IooTl yield Experiment Mean of Ioo	8	162 · 5953 130 · 3896 130 · 3897	TIN ,	$_{3}O_{6} = b$ Crookes
100G ₃ O ₃ (SO ₃)	,			
3-3(3/	a	14.1694	GO	Nilson and Pettersson
$100 \mathrm{MgC_2O_4H}$	$_{2}O_{2}=c$			
100MgCO ₃ =4	contain	27.338 N 27.3665 47.6	,,	Svanberg & Nordenfeldt
Mean of 19 ments	experi-	47.627	,,	Marchand and Scheere
100H ₄ N ₃ .SO ₄				
	-	11.5814	AIO	
Mean of 10 ments	experi- }	11.5293	,,	Mallet
$100\mathrm{H_4N_3SO_4}.$		3.24HO =	= <i>cb</i> c	ontain—
		18.9596 18.9325		Lecoq de Boisbaudran

These determinations include the most classical labours on record, and the general agreement with the calculated numbers is surprising, and the more conspicuous in the cases in which the efforts of the experimenters to exclude error have been pushed to the utmost limits, as in Stas's syntheses and in Prof. Crookes's synthesis of thallium nitrate. Notwithstanding the difficulty in this case, because the element is the heaviest of all so far discovered, one experiment has yielded the identical calculated number, and the mean of all deviates from it only by 0.00131. Moreover the same weights recur in similar compounds; all nitrates, for instance, have a lower value than the corresponding chlorides and sulphates, and the value is the lower the greater the composition, as in the alums. The evidence is such that no doubt seems to be admissible as to the reality of a variation of the atomic weights. This conclusion is independent of any value of the atomic weights for the discrepancies exhibited in the results of Prof. Clarke's recalculations from the same experimental data above quoted are inevitable if the variation of the atomic weights is not taken into account. In ϵ units Ag is 108 109679 if H = 1, calculated from the weights of column t; Cl in the gaseous state is = 35.66; the calculated weights correspond therefore, within the limits of experimental errors, to the atomic, but the weights are those of different states.

The difference between the weights of the gaseous and the other states is very considerable; the weight of 3 molecules of $H_4N_3I.HgI_1$, for instance, is = 378 in the state of gas, 354/734 in t units, 352/847 in units = c; the discrepancies are so great that they exceed by far the limits of possible errors, and as from the comparisons made it appears certain that the different values are realities, the only explanation is that the atomic weights vary. If in new experiments, in which the possibility of variation is kept in view, all discrepancies which actually exist should disappear, variation will be established beyond all doubt. It will then be in order to inquire into its cause. How the weights of the table have been obtained is, for the present, unessential; it is only necessary to add that column v contains Prof. Clarke's recalculated weights, and column t the same values calculated from the weights of column t, column t giving the number of atoms represented in each instance. Column t shows the corresponding weights of the gaseous state. These columns have been added for the sake of comparison.

			s t		и	2	טז	x
Li			22	2*36559	7'412	7.0235	7:333	3
Ca			58	6.23656	39'0824	40.082	38.666	3 6
Na			70	7.52688	23.5842	23.051	23,333	3
K			118	12.68817	39.7564	39.109	30,333	3
Rb			256	27.5269	86.2424	85.529	85'333	3
Mg			36	3.8537	24.12	24.014	24	6
Sr	• • •		132	14.1303	88.5498	87.575	88	6
Ba		• • • •	206	20.02183	138.1912	137.007	137.333	6
Pb	• • • •	• • • •	306	32.7566	205.2748	206.946	204	6
Ag	•••	• • •	324	34.683467		107.923	108	3
Çs H	• • •	• • • •	398	42.605	133 . 496	1,0053	132.666	3 3 3
N			3 14	0'31915	14	14.029	14	3
Ô			24	2.25319	16	16	16	9
F			58	6.04166	18.93	19'027	19'333	3
C1			107	11.14583	34.9236	35.451	35.666	3
$_{\mathrm{Br}}$			243	25'3125	79:3125	79.951	8 r	3
Ι			387	40'3125	126.313	126.848	129	3
В	• • •		11	1.14283	10.441	10.966	11	9 6
G C	• • •	• • •	14	1.45833	9.072	9.106	9.333	
C Si		•••	18	2.20166	11.75	12.0011 28.50	12	6 12
Al	• • • •		22 28	2.0166	28.722	27.075	29.333	9
P	***		32	3.3333	31.33	31.029	32	9
Ti			42	4.375	54.833	49.961	56	12
La			44	4.2833	143.61	138.844	146.666	30
$^{\rm S}$		٠.	48	5	31.33	32.058	32	6
Di		• • •	50	5.50833	146.875	144.906	150	27
Yt	• • •	• • •	60	6.52	88.125	90.023	90	13'5
Yb Ce	• • •	• • • •	62	6.45833 6.6666	182.125	173.128	186	27
Sc	• • • •	•••	64 66	6.875	139.26	140.747	142'222 44	20 6
Zr	• • • •		68	7.0833	88.7777	89.573	90.666	12
Ga			72	7.5	70.2	68.963	72	9
As			76	7.0166	74.417	75.09	76	9
\mathbf{v}			78	8.125	50.9166	51.373	52	
Cr	• • •	• • •	80	8.3333	52.222	52.129	53.333	6
Mn	. • .	•••	84	8.75	54.833	54.029	56	6
Fe	• • •		86	8.9583	56.139	56.042	57.333	6 6
Ni Co	•••		90	9:375	58.75 59.403	58.062	60 666	6
Sn	• • • •		91 92	9'4792 9'5833	120'11	117 968	122.666	12
Cu			96	10	62.666	63.318	64	6
Nb			98	10'20833	95.95833		98	9
Zn			100	10,4166	65.278	65.054	66.666	6
Ta			106	11'04166	184.2186	182.265	188.444	16
Se	• • •		120	12.2	78.333	78.978	80	6
$_{\rm Sb}$	•••	••••	126	13'125	123.375	120'231	126	9
$_{ m Mo}$	• • • •		142	14.79166	185.3888	184.032	189,333	12 6
Cd			150 170	15.625 17.7083	97.9166 110.972	95.747 112.092	100	6
In			176	18.3333	114.888	113.629	113.333	6
Th			178	18.54166	232.389	233.921	237·333	12
U			184	19.1999	240.222	239'03	245 333	I 2
Te				20.4166	127'945	128.254	130.666	6
Αu			204	21.22	199.75	196.606	204	9
Bi	• • •		216	22.2	211.2	208.001	216	9 6
Ir Da	•••		300	31.22	195.833	193.094	200	
Pt Ha	• • •	•••	304	31.824	198.444	194.867	202.666	6 6
Hg Os	•••	•••	306 308	31.875 32.0833	199.75 201.026	198'951	205.333	6
Ru	• • •	.,,	318	33.152	103.7916	104.457	106	
Rh			320	33.3333	104'444	104 437	106.666	3
Pd			326	33.95833	106,403	105.981	108.666	3 3 3 3
Tl			618	64.375	201.708		206	3
						. [

San Francisco, California, July 24

E. Vogel

UNIVERSITY AND EDUCATIONAL INTELLIGENCE

CAMBRIDGE.—The following gentlemen were on Monday, November 3, elected to Fellowships at St. John's College:—C. M. Stewart, M.A., First Class in Natural Sciences Tripos of 1879, author of several papers on chemical subjects, and Master

at the Newcastle School, Staffordshire; J. Brill, B.A., Fourth Wranger in 1882, Assistant Professor of Mathematics in University College, Aberystwith; W. F. R. Weldon, B.A., First Class in the Natural Sciences Tripos of 1881, author of a number of papers in Zoology and Comparative Anatomy, formerly Demonstrator to the Professor of Zoology and in the Morphological Laboratory in A. R. Lohnson, B.A., Sirth Wangder, and Comparative Mathematical Research of the Professor of Science and Comparative Anatomy of the Professor of Science and logical Laboratory; A. R. Johnson, B.A., Sixth Wrangler and First Division in the Mathematical Tripos of 1882-83 (new regulations), author of papers in the Messenger of Mathematics, &c.; G. F. Stout, B.A., First Class in the Chemical Tripos of 1881-82 (new regulations), and First Class (with distinction in Metaphysics) in the Moral Sciences Tripos of 1883; G. B. Mathews, B.A., Schior Wrangler in 1884, Professor of Mathematics in the University College of North Wales, Bangor. It is worth noting that Pure and Applied Mathematics, Chemistry, and Biology have been markedly recognised by this election.

Dr. Donald MacAlister has been appointed University Lecturer in Medicine, and Dr. Bushell Annington University Lecturer in Medical Jurisprudence.

Mr. Walter Heape has been approved by the Board for Biology and Geology as Demonstrator in Animal Morphology, on the nomination of the Lecturer in that subject, Mr. Sedgwick.

nomination of the Lecturer in that subject, Mr. Sedgwick.

Prof. Sidgwick, Prof. Adamson (Owens College), and
Messrs. James Ward and J. S. Nicholson are appointed Examiners for the Moral Sciences Tripos.

Mr. A. R. Forsyth of Trinity College is appointed Examiner
in the Mathematical Tripos (Third Part) in January next, in
the place of the late Mr. R. C. Rowe.

In reference to our note a fortnight ago (vol. xxx. p. 649), we should state that, at Trinity College, Major Scholarships of the value of 80% a year, which may be raised to 100% subsequently, are open for competition in Natural Sciences as well as in Classics and Mathematics to persons not yet in residence, with the usual restriction as to age.

Sheffield.—Another step has been taken in the formation of the new Engineering School at Firth College, Sheffield, in the appointment of Mr. W. H. Greenwood to be Professor of Metallurgy and Mechanical Engineering, and Mr. Ripper to be Assistant Professor of Engineering. It may be in the memory of our readers that the City and Guilds of London Institute made a grant about eighteen months ago of 300%. a year to the Firth College in aid of the establishment of a Chair of Engineering. of Engineering. Since then additional subscriptions have been promised for five years to the amount of 550l., together with a capital sum of over 10,000l. A site for laboratories and shops has been obtained, and these will be proceeded with as soon as possible. It is hoped that the special advantages of Sheffield will make it the central school of metallurgy, especially for iron and steel, in the kingdom, and the Committee intend to spare no efforts in rendering it a complete and effective one.

SCIENTIFIC SERIALS

The American Journal of Science, September.—On the amount of the atmospheric absorption, by S. P. Langley. From numerous observations taken at sea-level or at an altitude of nearly 15,000 feet, the author is led to infer that the mean absorption of light as well as of heat by our atmosphere is probably at least double the usual estimate of about 20 per cent. He also believes that fine dust particles, both near the surface and at a great altitude, play a more important part in this absorption, both general and selective, than has been hitherto supposed.—A study of tornadoes, by Henry A. Hazen. In this paper the author examines some of the ordinary theories that are advanced for explaining the origin and development of these destructive phenomena. After showing some of the seeming difficulties involved in these theories, he proceeds to point out a few of the characteristics of the outbursts, with a view to opening up fresh lines of investigation, upon which a further advance may be made towards a true knowledge of the forces underlying them. He is inclined to think that J. Allan Broun's theory, attributing tornadoes to the direct influence of the sun's electricity upon the moisture of the air, or possibly to the indirect effect from the sun's heat, is more satisfactory than the numerous theories of friction, evaporation, condensation, sudden changes of temperature, and the like.—On the absorption of radiant heat by carbon dioxide, by J. E. Keeler. The author considers it probable that to the action of CO2 in the atmosphere is due one or more of the

great gaps in the invisible part of the solar spectrum which the discoveries of Prof. Langley show to be much more extensive than had hitherto been supposed. He further regards it as certain that some other agent than this gas contributes essentially to the total absorptive power of the atmosphere, so that a method of analysis based on this power, in which the effect of the second agent is neglected, cannot lead to correct results. Note on the Triassic insects from Fairplay, Colorado, by Samuel N. Scudder. These fossil remains present an assemblage of forms altogether different from anything hitherto found in the Palæozoic series on the one hand, or in the Jurassic beds on the other. They seem to show a commingling of strict Jurassic forms with a larger proportion of types which may be called Upper Carboniferous or Permian, with a distinct Jurassic leaning. Hence the probability that the beds in which they occur belong to the Triassic or intermediate formation.—On the flexibility of Itacolumite, by Orville A. Derby. From observations made on this extensive series of quartzose rocks occurring in the gold and diamond regions of Minas Geraes, Brazil, the author infers that the peculiar property of flexibility attributed to them is not an original characteristic, but only a surface character, a phase of weathering or decay brought about by percolating waters.—
On the age of the glazed and contorted slaty rocks in the vicinity of Schodack Landing, Rensselaer County, New York, by S. W. Ford.—On the relations of the mineral belts of the Pacific slope to the great upheavals, by Geo. F. Becker. The views of H. P. Blake and Clarence King regarding the parallelism of the capital of the parallelism of the capital of the the series of mineral belts on the Pacific slope to the great mountain ranges, and attributing the deposits themselves to the solfateric action accompanying the ejection of igneous rocks, have since been mainly confirmed. But, independently of any theory, a conclusion of economical importance evidently follows from the fresh facts recently brought to light. A great majority of all the rich ores west of the Wahsatch Range occur in belts following the western edges of distinct geological areas—the Cretaceous in Utah, the Palæozoic and Carboniferous in Nevada and Arizona, the Jura-Trias in East California, &c. Hence analogy points to the neighbourhood of the still unexplored portions of these contacts as the most promising for future discoveries of the precious metals.—Notice of the remarkable narine fauna occupying the outer banks off the southern coast of New England, No. 9, by A. E. Verrill.—Brief contributions to zoology from the Museum of Yale College, No. lv.—Work of the steamer Albatross in 1883.—Geology of the Blue Ridge, near Balcony Falls, Virginia, by John L. Campbell.

October.—On the duration of colour-impressions upon the retina, by Edward I. Nichols. Taking up the subject where it was left fifty years ago by Plateau's researches, the author concludes, from a protracted series of experiments: (1) that the study of the duration of colour-impressions ago to the colour-impression of the duration of colour-impressions. sions produced by different portions of the spectrum tends to confirm Plateau's results; (2) that the persistence of the image is a function of the wave-length producing it, being greatest at the ends of the spectrum, and least in the yellow; (3) that it decreases with the intensity of the ray producing it; (3) that it is not the same for all eyes; (5) that the duration is in inverse order to the luminosity of the colours producing it; (6) that each wave-length of the visible spectrum produces three primary impressions, red, green, and violet, of which the green is the most evanescent, violet the most persistent; (7) that the is the most evanescent, violet the most persistent; (7) that the duration of the retinal image depends upon the length of time during which the eye has been exposed, decreasing as the exposure increases.—Description of a fulgurite from Mount Thielson, Oregon (one illustration), by J. S. Diller.—On the paramorphosis of pyroxene to hornblende in rocks (two illustrations), by Geo. H. Williams.—On the southward ending of a great synclinal in the Taconic Range (with a map and several illustrations), by James D. Dana. The section of the Taconic Range here dealt with extends about 150 miles along the western Range here dealt with extends about 150 miles along the western border of New England, mainly between Middlebury, in Central Vermont, and Salisbury, in North-Western Connecticut. conclusions arrived at regarding the synclinal character of the system and the Lower Silurian age of the rocks agree with those of Sir William Logan, except that he made the limestone to precede instead of to include the Trenton group.—On supposed glaciation in Pennsylvania, south of the terminal moraine (with a map), by Prof. H. Carville Lewis. The author considers that all the existing surface phenomena may be explained by the action of running waters and other causes independent of glaciation. - History and chemical analysis of a mass of meteoric iron