Laboratorium 10 — połaczone zbiorniki – linearyzacja

Modele nieliniowe — modele wiekszości systemów rzeczywistych sformułowane w postaci nieliniowych równań różniczkowych, różnicowych lub algebraicznych.

Modele liniowe — uproszczone modele nieliniowe, w których równania nieliniowe zostały zastapione równaniami liniowymi (główny cel - ułatwienie analizy działania modelu).

Liniowość i nieliniowość to własność systemu, które są związane ze strukturą równań opisujących ten system. Modele nieliniowe zawierają w swojej strukturze nieliniowości np. nieliniowe funkcje, mnożenie zmiennych, nieliniowe charakterystyki statyczne elementów.

Linearyzacja — proces tworzenia modelu liniowego, który aproksymuje (przybliża) model nieliniowy.

System liniowy stacjonarny można zapisać w postaci równania stanów i równania wyjścia w postaci wektorowo-macierzowej:

$$\begin{cases} \dot{X(t)} = AX(t) + BU(t), \\ Y(t) = CX(t) + DU(t), \end{cases}$$
(1)

Zadanie 1 (2 pkt)

Wczytaj model reprezentujący połączone zbiorniki, opisany poniższym układem równań różniczkowych, wykonaj jego kopie i zapisz jako zbiorniki_lin.

$$\begin{cases} \frac{\mathrm{d}h_1}{\mathrm{d}t} = \frac{Q_{we}}{S_1} - \frac{S_{wy1} \cdot \phi_1 \cdot \sqrt{2g(h_1 - h_2)}}{S_1} \\ \frac{\mathrm{d}h_2}{\mathrm{d}t} = \frac{S_{wy1} \cdot \phi_1 \cdot \sqrt{2g(h_1 - h_2)}}{S_2} - \frac{S_{wy2} \cdot \phi_2 \cdot \sqrt{2gh_2}}{S_2} \end{cases}$$

Upewnij się, ze opisane politica polit Upewnij się, że opisane poniżej parametry zostały zachowane. Czas symulacji = 150,

$$h_1(0) = 4,$$
 $S_1 = 1,$ $S_{wy1} = 0.2,$ $S_{wy1} = 0.2,$

Uwaga! Prosze nie wpisywać wartości parametrów na sztywno do bloczków — należy stosować nazwy zmiennych. Aby wprowadzać wartości dla danych zmiennych należy utworzyć tzw. maskę.

Zastap bloki:

- Scope blokami Out,
- Q_{we} musi zostać zastapiony blokiem In.

Uwaga! Bloki Out oraz blok In musza zostać dołaczone także do wejść Subsystemu.

Zadanie 2 (1 pkt)

Wykonaj kopie zmodyfikowanego modelu i zapisz jako zbiorniki_adrc Wyznacz wartość dopływu cieczy Q_{we} dla którego poziom wody w zbiorniku 1 (h_1) osiągnie zadany poziom. W tym celu stwórz układ regulacji oparty na regulatorze ADRC (układ ten na wejściu przyjmuje wartość oczekiwaną oraz wartość uzyskaną i zwraca obliczoną wartość sygnału sterującego).

UWAGA! W zależności od poszukiwanej wartości może być wymagane zwiększenie czasu symulacji.

Wymagane bloczki:

Qwe	In — pozwala na wprowadzenie danych z zewnątrz do podsystemu.
→ 1 h1	Out — pozwala na wyprowadzenie danych na zewnątrz podsystemu.
h1 — Qwe h2 — Zbiorniki	Podsystem z podpiętymi blokami in i out.
r u	Regulator Active Disturbance Rejection Control.
•	Display — wyświetla aktualną wartość na danej linii.

Zadanie 3 (2 pkt)

Dobierz parametry pasma w taki sposób aby dało się uzyskać zadany poziom wody z zbiorniku $2 (h_2)$.

Zadanie 4 (1 pkt)

Wykorzystując trójparametrowe wywołanie polecenia linmod, dla zapisanych wartości wektora stanów (czyli h_1 i h_2) oraz sygnału sterującego (czyli Q_{we}), przeprowadź linearyzację utworzonego w zadaniu 1 modelu. Efektem działania polecenia są cztery macierze A,B,C,D dla równania w przestrzeni stanów.

Zadanie 5 (4 pkt)

Utwórz nowy model zbiorniki_comp, który umożliwi porównanie działania modelu liniowego oraz nieliniowego. Narysuj wykresy ilustrujące poziomy wody w zbiornikach w czasie, uzyskane przez oba modele (na pierwszym wykresie porównaj poziom w zbiorniku 1, na drugim w zbiorniku 2). Przyjmij różne wartości Q_{we} równe kolejno: $Q_{we} \pm 0.1$; $Q_{we} \pm 1$; $Q_{we} + 5$ znalezionej wartości.

