图像去畸变 (3 分,约 1 小时)

现实生活中的图像总存在畸变。原则上来说,针孔透视相机应该将三维世界中的直线投影成直线,但 是当我们使用广角和鱼眼镜头时,由于畸变的原因,直线在图像里看起来是扭曲的。本次作业,你将尝试 如何对一张图像去畸变,得到畸变前的图像。

图 1: 测试图像

图 1 是本次习题的测试图像 (code/test.png),来自 EuRoC 数据集 [1]。可以明显看到实际的柱子、箱 子的直线边缘在图像中被扭曲成了曲线。这就是由相机畸变造成的。根据我们在课上的介绍,畸变前后的 坐标变换为:

$$\begin{cases} x_{\text{distorted}} = x \left(1 + k_1 r^2 + k_2 r^4 \right) + 2p_1 xy + p_2 \left(r^2 + 2x^2 \right) \\ y_{\text{distorted}} = y \left(1 + k_1 r^2 + k_2 r^4 \right) + p_1 \left(r^2 + 2y^2 \right) + 2p_2 xy \end{cases}$$
 (1)

其中 x, y 为去畸变后的坐标, $x_{distorted}, y_{distroted}$ 为去畸变前的坐标。现给定参数:

$$k_1 = -0.28340811, k_2 = 0.07395907, p_1 = 0.00019359, p_2 = 1.76187114e - 05.$$

以及相机内参

$$f_x = 458.654, f_y = 457.296, c_x = 367.215, c_y = 248.375.$$

请根据 undistort_image.cpp 文件中内容,完成对该图像的去畸变操作。

注:本题不要使用 OpenCV 自带的去畸变函数,你需要自己理解去畸变的过程。我给你准备的程序中 已经有了基本的提示。作为验证,去畸变后图像如图 2 所示。如你所见,直线应该是直的。

图 2: 验证图像

作业的代码部分均见附件。 image_undistorted

3 双目视差的使用 (2分,约1小时)

双目相机的一大好处是可以通过左右目的视差来恢复深度。课程中我们介绍了由视差计算深度的过程。本题,你需要根据视差计算深度,进而生成点云数据。本题的数据来自 Kitti 数据集 [2]。

Kitti 中的相机部分使用了一个双目模型。双目采集到左图和右图,然后我们可以通过左右视图恢复出深度。经典双目恢复深度的算法有 BM(Block Matching), SGBM(Semi-Global Block Matching)[3, 4] 等,但本题不探讨立体视觉内容(那是一个大问题)。我们假设双目计算的视差已经给定,请你根据双目模型,画出图像对应的点云,并显示到 Pangolin 中。

本题给定的左右图见 code/left.png 和 code/right.png, 视差图亦给定, 见 code/right.png。双目的参数如下:

 $f_x = 718.856, f_y = 718.856, c_x = 607.1928, c_y = 185.2157.$

且双目左右间距(即基线)为:

d = 0.573 m.

请根据以上参数,计算相机数据对应的点云,并显示到 Pangolin 中。程序请参考 code/disparity.cpp 文件。

图 3: 双目图像的左图、右图与视差

作为验证,生成点云应如图 4 所示。

图 4: 双目生成点云结果

R stereo_vision

4 矩阵	运算微分 (2 分, 约 1.5 小时)	
为矩阵微分 ————————————————————————————————————	中经常会遇到矩阵微分的问题。例如,当自变量为向量 \mathbf{x} ,求标量。通常线性代数教材不会深入探讨此事,这往往是矩阵论的内容。究生课的矩阵论课件(仅矩阵微分部分)。阅读此 ppt ,回答下列为 $\mathbf{x} \in \mathbb{R}^N$,那么: $\mathbf{A} \in \mathbb{R}^{N \times N}$,那么 $\mathrm{d}(\mathbf{A}\mathbf{x})/\mathrm{d}\mathbf{x}$ 是什么 1 ?	我在 ppt/目录下为你准备了
2. 矩阵	$\mathbf{A} \in \mathbb{R}^{N \times N}$,那么 $d(\mathbf{x}^T \mathbf{A} \mathbf{x}) / d\mathbf{x}$ 是什么?	
3. 证明	$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathrm{tr}(\mathbf{A}\mathbf{x}\mathbf{x}^{\mathrm{T}}).$	(2)
1. x = [x] E IRN	, $A = \begin{bmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{bmatrix}$, $Ax = \begin{bmatrix} \alpha_{11}x_1 + \alpha_{12} \\ \vdots & \ddots & \vdots \\ \alpha_{n1}x_1 + \alpha_{n2} \end{bmatrix}$	412X2 + · · · + O(1 n Xn)
d (Ax) /o	$C_{\infty} = \begin{bmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{1n} & \cdots & \alpha_{nn} \end{bmatrix}$	
$2 / 2 / x = x^{T} A x = [x,]$		ut + &n ani,, Xiaint xxamt+xnann)
$= x_{i} (x_{i} a_{i} + x_{i})$	(2021 + · · · + Xnan) + X2 (X, a12+ X20122+ · · · + Xnan2) +	+ + Xn(X1ain+ + xnann)
$ol(x^TAx)$	$f(x) = \left[\frac{3 \times 1}{3 + 100}, \dots, \frac{3 \times n}{3 + 100} \right]^{T}$	
- dx	$\left[\begin{array}{cccc} 9x^{1} & , & , 9x^{u} \end{array}\right]$	
= (anx, +··+anx	1) + (a11X1 + a12X2 + ··· + a11X1), ···, ((amx1+···tannxn) + (an, x1+···+annxn)
$= A^{T} \times + A \times$		_
3. 证: x Ax =	$tr(Axx^T)$	
$\chi^T A_X = X_1 \left(X_1 a_{11} + X_2 a_{12} \right)$	121 ++ XMAN) + X2 (X1 A12+ X20122+ + X MAN2) +	+ Xn (X1 ain + + xnann)
L (A) T) /	$T_{i,j}$	
$(\sqrt{ec} \cdot \vec{A})^T = [\alpha_n]$	$= (A)) \text{ vec } (XX^*)$ $\cdots, a_{11}, \cdots, a_{nn}] \qquad XX^{\overline{1}} = \begin{bmatrix} XX_{11} \\ \vdots \\ X_{1N} \end{bmatrix}$	X18n
	,···, Xi×n,···, XnX1,···XxXn]	q · · · · • • • · · · · · · · · · · · ·
(vec(A)) ^T vec(XX ^T	$) = \begin{bmatrix} a_{11} x_1 x_1 + a_{12} x_1 x_2 + \cdots + a_{1N} x_1 x_N \\ + a_{21} x_2 x_1 + a_{22} x_2 x_2 + \cdots + a_{2N} x_2 x_N \\ + \cdots \\ + a_{N1} x_N x_1 + a_{N2} x_N x_2 + \cdots + a_{NN} x_N x_N \end{bmatrix}$	
	Tanixuxi tanzxuxzt ··· + annxuxu	

 $= \chi J \Lambda^{X}$

5 高斯牛顿法的曲线拟合实验 (3分,约2小时	†)
我们在课上演示了用 Ceres 和 g2o 进行曲线拟合的实验,可以看到本题中你需要自己实现一遍高斯牛顿的迭代过程,求解曲线的参数。我们是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	
$y = \exp(ax^2 + bx + c) + w.$	(3)
————————————————————————————————————	比 N 个点来拟合 a,b,c 。实验中取 ————————————————————————————————————
N=100。 	优解可通过解以下最小二乘获得:
$\min_{a,b,c} \frac{1}{2} \sum_{i=1}^{N} \ y_i - \exp\left(ax_i^2 + bx_i + c\right)\ ^2.$	(4)
现在请你书写 Gauss-Newton 的程序以解决此问题。程序框架见 cooper 内容以完成作业。作为验证,按照此程序的设定,估计得到的 a,b,c 应为	
a = 0.890912, b = 2.1719, c = 0.943629).
这和书中的结果是吻合的。	
2 Gaussian_ Neuton 24	 夫
	<i>,</i>

	考虑离散时间系统:
	$x_k = x_{k-1} + v_k + w_k, \qquad w \sim \mathcal{N}(0, Q)$ $y_k = x_k + n_k, \qquad n_k \sim \mathcal{N}(0, R)$
	$y_k = x_k + n_k$, $n_k \sim N(0, R)$ 这可以表达一辆沿 x 轴前进或后退的汽车。第一个公式为运动方程, v_k 为输入, w_k 为噪声;第二个公式
	为观测方程, y_k 为路标点。取时间 $k=1,\ldots,3$,现希望根据已有的 v,y 进行状态估计。设初始状态 x_0 已 知。
	请根据本题题设,推导批量(batch)最大似然估计。首先,令批量状态变量为 $\mathbf{x} = [x_0, x_1, x_2, x_3]^{\mathrm{T}}$,令批量观测为 $\mathbf{z} = [v_1, v_2, v_3, y_1, y_2, y_3]^{\mathrm{T}}$,那么: 1. 可以定义矩阵 \mathbf{H} ,使得批量误差为 $\mathbf{e} = \mathbf{z} - \mathbf{H}\mathbf{x}$ 。请给出此处 \mathbf{H} 的具体形式。 2. 据上问,最大似然估计可转换为最小二乘问题:
	$\mathbf{x}^* = \arg\min \frac{1}{2} (\mathbf{z} - \mathbf{H}\mathbf{x})^{\mathrm{T}} \mathbf{W}^{-1} (\mathbf{z} - \mathbf{H}\mathbf{x}), \qquad (5)$
	其中 W 为此问题的信息矩阵,可以从最大似然的概率定义给出。请给出此问题下 W 的具体取值。 3. 假设所有噪声相互无关,该问题存在唯一的解吗?若有,唯一解是什么?若没有,说明理由。
/. x	$ \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} V = \begin{bmatrix} x_1 \\ x_2 \\ x_3 - x_2 \end{bmatrix} J = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_3 \end{bmatrix} $ $ H = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $
3. 7	$z-H_X=e~NCO,W$)((