

THE MOST EXCITING TIME IN TECH HISTORY

NVIDIA GPU

END-TO-END SYSTEM FOR AV

COLLECT DATA

TRAIN MODELS

SIMULATE

RE-SIMULATE

MAPPING

NVIDIA PERCEPTION INFRASTRUCTURE

LARGE-SCALE DEEP LEARNING MODEL DEVELOPMENT

Workflow, Tools, Supercomputing Infrastructure
Data Ingest, Labeling, Training, Validation, Adaptation
Automation, Best Model Discovery, Traceability,
Reproducibility

Purpose-built for Safety Standards of Automotive

"Data is the new source code"

DATA COLLECTION AND LABELING FOR AI

AI FOR SELF-DRIVING WORKFLOW

Model Selection

AI FOR SELF-DRIVING

Perception

Camera-based Mapping

Free Space Perception

Camera Localization to HD Map

Distance Perception

LIDAR Localization to HD Map

Weather

Path Perception

LIDAR Perception

Scene Perception

AI OUTSIDE AND INSIDE THE VEHICLE

Exterior Driver Recognition

Automatic Personalization

Device usage detection

Cyclist Alert

Distracted Driver Alert

Driver/Passenger Recognition

Customer Application

DRIVE AV

Object, Freespace, Path / Lane, Path Planning, Wait, Map, Sign, Lights, Road Markings, Surround

DRIVE IX

Gaze, Eye Openness, Head Pose, Gestures, Emotions Facial Recognition, Voice Recognition & Lip Reading

DRIVE OS

MANY THINGS TO LEARN

"Autonomous vehicles need to be driven more than 11 billion miles to be 20% better than humans. With a fleet of 100 vehicles, 24 hours a day, 365 days a year, at 25 miles per hour, this would take 518 years."

Rand Corporation, Driving to Safety

SIMULATION THE PATH TO BILLIONS OF MILES

AV VALIDATION SYSTEM

AV VALIDATION SYSTEM

Virtual Reality AV Simulator

Same Architecture as DRIVE Computer

Simulate Rare and Difficult Conditions, Recreate

Scenarios, Run Regression Tests, Drive Billions of Virtual Miles

AV VALIDATION SYSTEM

Virtual Reality AV Simulator

Same Architecture as DRIVE Computer

Simulate Rare and Difficult Conditions, Recreate

Scenarios, Run Regression Tests, Drive Billions of Virtual Miles

AV VALIDATION SYSTEM

Virtual Miles

Virtual Reality AV Simulator

Same Architecture as DRIVE Computer

Simulate Rare and Difficult Conditions, Recreate

Scenarios, Run Regression Tests, Drive Billions of

MULTI-SENSOR SIMULATION

Setting Up The Environment

NVIDIA DRIVE END-TO-END PLATFORM

370 PARTNERS DEVELOPING ON NVIDIA DRIVE

CARS

TRUCKS

MOBILITY SERVICES

SUPPLIERS

MAPPING

LIDAR

STARTUPS

CAMERA /

KEY TAKEAWAYS

- 1. Understand end-to-end requirements of autonomous vehicle development
- 2. Al demands data center design built on dense GPU compute-at-scale
- 3. Consider the complete workflow of Al from experimentation to training to inference
- 4. Carefully weigh cost of productivity vs hardware cost alone = true TCO of DL
- NVIDIA best practices leads to TSTADI reference platform (Training, Simulation, Testing for Autonomous Driving Infrastructure)

