Keep $A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{2}{3} \end{pmatrix}$ and consider a general lattice Γ . How can we construct Wic A-1(U) such that each W_{ij} packs by translations & $\sum m(A^{j}(W_{ij})) = \infty$. First, note that for \$00, we get no help. $m(W_i) \leq C$ $\exists Z m(A^{-j}(W_{-j})) < \infty$. We must look at $W_j \subset A^{-j}(u)$ for j > 0. I dea: Let B be a Euclidean ball contained in U, 50

Idea: Let B be a Euclidean ball contained in U, 50 $A^{-j}(B) \subset A^{-j}(U)$. If $W_j \subset A^{-j}(B)$ is the largest subset of $A^{-j}(B)$ that packs by translations, what must be true about $m(V_j)$ to get \emptyset ?