Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A power device, comprising:
2	a semiconductor substrate of first conductivity having an upper surface and a
3	lower surface;
4	a first electrode terminal coupled to a first conductive region provided proximate
5	the upper surface of the substrate, the first electrode terminal being provided over the upper
6	surface of the substrate;
7	a second electrode terminal coupled to a second conductive region provided
8	proximate the lower surface of the substrate, the second electrode terminal being provided below
9	the lower surface of the substrate;
10	an isolation diffusion region of second conductivity provided at a periphery of the
11	substrate and extending from the upper surface to the lower surface of the substrate, the isolation
12	diffusion region having a first surface corresponding to the upper surface of the substrate and a
13	second surface corresponding to the lower surface;
14	a peripheral junction region of second conductivity formed at least partly within
15	the isolation diffusion region and formed proximate the first surface of the isolation diffusion
16	region; and
17	a passivation layer provided over the upper surface of the substrate, the first
18	surface of the isolation diffusion region, and the peripheral junction region, the passivation layer
19	comprising a polyimid layer over and oxide layer;
20	wherein the peripheral junction region is different than the first and second
21	conductive regions, and
22	wherein the first and second electrode terminals define a vertical electrical current
23	path therebetween.

1	2. (Original) The device of claim 1, wherein the peripheral junction region is a
2	P+ region and the isolation diffusion region is a P region.
1	3. (Previously presented) The device of claim 1, wherein the peripheral junction
2	region is provided to compensate the surface depletion of dopants in the isolation diffusion
3	region.
	4-25. (Canceled)
1	26. (Previously presented) The device of claim 1, wherein the passivation layer
2	includes an oxide layer and contacts the upper surface of the substrate, the first surface of the
3	isolation diffusion region, and the peripheral junction region.
	27. (Canceled)
1	28. (Previously presented) The device of claim 1, wherein the peripheral
2	junction region is provided to compensate the surface depletion of dopants in the isolation
3	diffusion region and increase a reverse blocking voltage of the device by reducing an electric
4	field at the first surface of the isolation diffusion region.
	29. (Canceled)
1	30. (Previously presented) The device of claim 1, wherein the device is a diode
2	and the first electrode terminal being separated from the isolation diffusion region.