BST 6200 Spatial Statistics and Disease Mapping

Steven E. Rigdon

©2020

Spring 2020

Chapter 6: Point Pattern Analysis in R

A **point process** is a set of point locations (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) in some domain.

A marked point process is a set of point locations $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ in some domain together with some "marked" variable z_i .

6.3 Kernel Density Estimation

Objective: estimate the probability density of points.

$$\hat{f}(x,y) = \frac{1}{n h_x h_y} \sum_{i=1}^n k\left(\frac{x - x_i}{h_x}, \frac{y - y_i}{h_y}\right)$$

k is called the **kernel**. Often k is the PDF of the bivariate normal distribution with mean $\mu[0,0]$ and covariance matrix

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Other choices: UNIF(-1, 1), t(1).

Multivariate Normal Distribution

 $\pmb{X} = [X_1, X_2, \dots, X_p]^t$. $X \sim \mathsf{N}(\pmb{\mu}, \pmb{\Sigma})$ means that \pmb{X} has a multivariate normal distribution with mean vector $\pmb{\mu}$ and covariance matrix $\pmb{\Sigma}$ with PDF

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Choice of h_x and h_y

Usually $h_x = h_y$.

Larger h_x and h_y lead to smoother density estimates.

Smaller h_x and h_y lead to "choppier" density estimates.

Scott's (1997) rule:

$$h_{x} = \sigma_{x} \left(\frac{2}{3n}\right)^{1/6}$$

$$h_{y} = \sigma_{y} \left(\frac{2}{3n}\right)^{1/6}$$

Trial and error can be used to get appropriate h_x and h_y .

Using R for KDE

 $BC_Chapter 6.R$

Tesselations (or Tiling the Plane)

A tesselation or a tiling of a plane is a set of geometric objects that cover the plane with no gaps and no overlap.

A regular tesselation or tiling of a plane is a set of identical (congruent) regular polygons that cover the plane with no gaps and no overlap.

There are only three regular tesselations of the plane:

- 1. triangles
- 2. squares
- 3. hexagons

Why are there only three?

Shape	Sides	Sum of Interior Angles	If it is a <u>Regular Polygon</u> (all sides are equal, all angles are equal)	
			Shape	Each Angle
Triangle	3	180°	\triangle	60°
Quadrilateral	4	360°		90°
<u>Pentagon</u>	5	540°	\bigcirc	108°
Hexagon	6	720°	\bigcirc	120°
Heptagon (or Septagon)	7	900°	\bigcirc	128.57°
Octagon	8	1080°	0	135°
Any Polygon	n	(n-2) × 180°	n	(n-2) × 180° / n

Source: https://www.dominatethegmat.com/2013/11/gmat-geometry-polygons/

Why Pentagonal Tiling Won't Work

Hexagonal Binning

 $BC_Chapter 6.R$

6.5 Second-Order Analysis of Point Patterns

 N_d = number of events within a distance of d from a randomly selected event point

Ripley's K function

$$K(d) = \frac{E(N_d)}{\lambda}, \qquad d > 0$$

Complete Spatial Randomness (CSR)

The point process exhibits **complete spatial randomness** if the joint (bivariate) distribution of event locations is uniform across the domain.

Book's definition (equivalent to above only in the case of a rectangular domain). The point process exhibits **complete spatial randomness** if the x and y components are independent and the marginal distributions are uniform across the domain.

See BC_Chapter6.R

CSR is also called a **Poisson process** because the number of events that fall in a region A has a Poisson distribution with mean equal to $\lambda |A|$, where |A| denotes the area of A.

K Function under CSR

If we have complete spatial randomness, then

$$K_{\mathsf{CSR}}(d) = rac{E(N_d)}{\lambda} = rac{\lambda imes \mathsf{Area}(\mathsf{circle\ of\ rad.}\ d)}{\lambda} \ = \pi d^2$$

If $K(d) > K_{\rm CSR}(d)$ for some d this "suggests that there is an excess of nearby points – or to put it another way, there is clustering at the spatial scale associated with the distance d.

If $K(d) < K_{\rm CSR}(d)$ for some d this "suggests spatial dispersion at this scale – the presence of one point suggests other points are less likely to appear nearby ..."

Estimating K

Let d_{ij} denote the distance between points x_i and x_j .

Let
$$\hat{\lambda} = \frac{n}{|A|}$$
.

$$\hat{K}(d) = \frac{1}{\hat{\lambda}} \sum_{i=1}^{n} \sum_{i=1; i \neq i}^{n} \frac{I(d_{ij} < d)}{n(n-1)}$$

Here I(logical) = 1 if logical is true and 0 if logical is false. This is called an indicator function.

Edge Effects

If points are close to the edge of the region A part of the circle of radius d may be outside of A, so fewer points should be expected within d.

Modified estimator:

$$\hat{K}(d) = \frac{1}{\hat{\lambda}} \sum_{i=1}^{n} \sum_{j=1; j \neq i}^{n} \frac{2I(d_{ij} < d)}{n(n-1)w_{ij}}$$

where w_{ij} is the area of that part of the circle centered at x_i passing through x_j that lies within the region A.

Explanation of w_{ij}

Is there evidence that the process is anything but CSR (Poisson process)

To test this, follow these steps

- 1. Simulate CSR on the same region A with the same number of points.
- 2. Compute $\hat{K}(d)$ for the simulated data set.
- 3. Repeat steps 1 and 2 many (say 100) times.
- 4. Plot the lower and upper (2.5% and 97.5%) percentiles; this is called the envelope.
- 5. Plot $\hat{K}(d)$ for the actual data on the same graph and see where it is not contained in the envelope.

Bramblecane Data

Bramblecane Data

K Function Estimate with Envelope

Multiple Tests

If we compare $\hat{K}(d)$ with the envelope obtained by simulation, we are doing multiple tests. Thus the overall α (the probability of rejecting at least one test given CSR) is unknown.

Method 1 to compare $\hat{K}(d)$ with that expected under CSR (πd^2)

$$MAD = \max_{d} |\hat{K}(d) - K_{CSR}(d)| = \max_{d} |\hat{K}(d) - \pi d^{2}|$$

Method 2 finds the average squared deviation between $\hat{K}(d)$ and $K_{\text{CSR}}(d)$. This is called the dclf test (Diggle, Cressie, Loosmore, Ford).

The L Function

$$L(d) = \sqrt{\frac{K(d)}{\pi}}$$

This is just a transformation of the K(d) so it seems to offer no new information, but under CSR

$$L_{\mathsf{CSR}}(d) = \sqrt{\frac{\kappa_{\mathsf{CSR}}(d)}{\pi}} = \sqrt{\frac{\pi d^2}{\pi}} = d$$

The G Function

The G Function

$$\hat{G}(d) = rac{\# ext{ of pairs where min distance is } \leq d}{ ext{number of points}}$$

$$= ext{empirical CDF of shortest distances}$$

The probability of at least one event within a distance d is

$$P(\text{nearest point is within }d)=1-P(X=0)$$

$$=1-\frac{(\lambda A)^0\exp(-(\lambda A))}{0!}=1-\exp(-\lambda\pi d^2)$$

Notice error in equation (6.11) in textbook.

The Cross K Function

For a marked point process with objects of type i and j, consider how many points of type i are within d units of points of type j.

$$\hat{K}_{ij}(d) = \frac{1}{\hat{\lambda}_j} \sum_{k=1}^{n_i} \sum_{\ell=1}^{n_j} \frac{I(d_{k\ell} < d)}{n_i n_j}$$

Notes:

- 1. This is not symmetric in i and j.
- 2. There is an error in equation (6.12) in the book. The first expression to the right of the equal sign should be λ_j .

Example of Cross K Function

Most type 2s are near a type 1, but not conversely.

Most type 2s are near a type 1, but not conversely.

 K_{12} : Do 2s tend to be near a type 1? Yes.

 K_{21} : Do 1s tend to be near a type 2? Not necessarily.

K_{12}

Diggle-Cressie-Loosmore-Ford test of CSR Monte Carlo test based on 500 simulations Summary function: Kcross["1", "2"](r) Reference function: theoretical

Alternative: two.sided

Interval of distance values: [0, 0.5]
Test statistic: Integral of squared absolute deviation
Deviation = observed minus theoretical

data: crossEx.ppp
u = 0.011543, rank = 21, p-value = 0.04192

K_{21}

Diggle-Cressie-Loosmore-Ford test of CSR Monte Carlo test based on 500 simulations Summary function: Kcross["2", "1"](r) Reference function: theoretical

Alternative: two.sided

Interval of distance values: [0, 0.5]
Test statistic: Integral of squared absolute deviation
Deviation = observed minus theoretical

data: crossEx.ppp
u = 0.0047363, rank = 82, p-value = 0.1637