Derivative Rules

This handout contains the derivative rule patterns.

1.
$$\frac{d}{d()}$$
constant = 0

2.
$$\frac{d}{d()}$$
 variable = 1

3.
$$\frac{d}{d(\cdot)}$$
 something $\frac{d}{d(\cdot)}$ something $\frac{d}{d(\cdot)}$ something

4.
$$\frac{d}{d()}$$
 (constant · something) = constant · $\frac{d}{d()}$ (something)

5.
$$\frac{d}{d()}$$
 (first \pm second) = $\frac{d}{d()}$ first \pm $\frac{d}{d()}$ second

6.
$$\frac{d}{d(\)}(\text{first} \cdot \text{second}) = \frac{d}{d(\)}\text{first} \cdot \text{second} + \text{first} \cdot \frac{d}{d(\)}\text{second}$$

7.
$$\frac{d}{d(\cdot)} \left(\frac{\text{top}}{\text{bottom}} \right) = \frac{\frac{d}{d(\cdot)} \text{top} \cdot \text{bottom} - \text{top} \cdot \frac{d}{d(\cdot)} \text{bottom}}{\text{bottom}^2}$$

8.
$$\frac{d}{d()}e^{\text{something}} = e^{\text{something}} \cdot \frac{d}{d()}$$
 something

9.
$$\frac{d}{d(\cdot)} \ln(\text{something}) = \frac{1}{\text{something}} \cdot \frac{d}{d(\cdot)} \text{something}$$

- 10. $\frac{d}{d(\cdot)}\sin(\text{something}) = \cos(\text{something}) \cdot \frac{d}{d(\cdot)}\text{something}$
- 11. $\frac{d}{d(\cdot)}\cos(\text{something}) = -\sin(\text{something}) \cdot \frac{d}{d(\cdot)}\text{something}$
- 12. $\frac{d}{d(\cdot)} \tan(\text{something}) = \sec^2(\text{something}) \cdot \frac{d}{d(\cdot)} \text{something}$
- 13. $\frac{d}{d(\cdot)}\csc(\text{something}) = -\csc(\text{something})\cot(\text{something}) \cdot \frac{d}{d(\cdot)}$ something
- 14. $\frac{d}{d(\cdot)}$ sec(something) = sec(something) tan(something) $\cdot \frac{d}{d(\cdot)}$ something
- 15. $\frac{d}{d(\cdot)} \cot(\text{something}) = -\csc^2(\text{something}) \cdot \frac{d}{d(\cdot)} \text{something}$
- 16. $\frac{d}{d()} \arcsin(\text{something}) = \frac{1}{\sqrt{1 \text{something}^2}} \cdot \frac{d}{d()} \text{something}$
- 17. $\frac{d}{d()} \arctan(\text{something}) = \frac{1}{1 + \text{something}^2} \cdot \frac{d}{d()} \text{something}$
- 18. $\frac{d}{d(\cdot)} \operatorname{arcsec}(\operatorname{something}) = \frac{1}{\operatorname{something} \cdot \sqrt{\operatorname{something}^2 1}} \cdot \frac{d}{d(\cdot)} \operatorname{something}$
- 19. $\frac{d}{d(\)} \arccos(\text{something}) = -\frac{d}{d(\)} \arcsin(\text{something})$
- 20. $\frac{d}{d()} \operatorname{arccot}(\operatorname{something}) = -\frac{d}{d()} \operatorname{arctan}(\operatorname{something})$
- 21. $\frac{d}{d(\)} \operatorname{arccsc}(\operatorname{something}) = -\frac{d}{d(\)} \operatorname{arcsec}(\operatorname{something})$