

Vectors

For some quantities (mass, time, distance, ...) we only need a number. For some quantities (velocity, force, ...) we need a number and a direction.

A vector is an object which has a size (length) and a direction.

Definition

The vector \overrightarrow{AB} has initial point A and terminal point B.

The length of \overrightarrow{AB} is written $\left\|\overrightarrow{AB}\right\|$.

Two vectors are equal if they have the same length and the same direction.

We can say that

$$\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF} = \overrightarrow{OP}.$$

Note that $\overrightarrow{AB} \neq \overrightarrow{GH}$ because the lengths are different, and $\overrightarrow{AB} \neq \overrightarrow{IJ}$ because the directions are different.

Notation

When we use a computer, we use bold letters for vectors: \mathbf{u} , \mathbf{v} , \mathbf{w} , When we use a pen, we use underlined letters for vectors: \underline{u} , \underline{v} , \underline{w} ,

If we type $a\mathbf{u} + b\mathbf{v}$ or write $a\underline{u} + b\underline{v}$, then

- \blacksquare a and b are numbers; and
- \mathbf{u} , \mathbf{v} , \underline{u} and \underline{v} are vectors.

Definition

In \mathbb{R}^2 : If **v** has initial point (0,0) and terminal point (v_1, v_2) , then the component form of **v** is $\mathbf{v} = (v_1, v_2)$. In \mathbb{R}^3 : If **v** has initial point (0,0,0) and terminal point (v_1, v_2, v_3) , then the component form of **v** is $\mathbf{v} = (v_1, v_2, v_3)$.

$$(v_1, v_2, v_3) = \mathbf{v} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

Definition

In \mathbb{R}^2 : The norm (or length) of $\mathbf{v} = (v_1, v_2)$ is

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}$$

In \mathbb{R}^3 : The *norm* of $\mathbf{v} = \overrightarrow{PQ}$ is

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

= $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$.

The vectors $\mathbf{0} = (0,0)$ and $\mathbf{0} = (0,0,0)$ have norm $\|\mathbf{0}\| = 0$. If $\mathbf{v} \neq \mathbf{0}$, then $\|\mathbf{v}\| > 0$.

Example

Find (a) the component form; and (b) the norm of the vector with initial point P(-3,4,1) and terminal point Q(-5,2,2).

solution:

10
$$\mathbf{v} = (v_1, v_2, v_3) = Q - P = (-5, 2, 2) - (-3, 4, 1) = (-2, -2, 1).$$

(b)
$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(-2)^2 + (-2)^2 + 1^2} = \sqrt{9} = 3.$$

Vector Algebra

$$\mathbf{v} + (\mathbf{u} - \mathbf{v}) = \mathbf{u}$$

Let $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ be vectors. Let k be a number. Then

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

and

$$k\mathbf{u} = (ku_1, ku_2, ku_3).$$

Note that

$$||k\mathbf{u}|| = ||(ku_1, ku_2, ku_3)|| = \sqrt{(ku_1)^2 + (ku_2)^2 + (ku_3)^2}$$

$$= \sqrt{k^2 u_1^2 + k^2 u_2^2 + k^2 u_3^2} = \sqrt{k^2 (u_1^2 + u_2^2 + u_3^2)}$$

$$= \sqrt{k^2} \sqrt{u_1^2 + u_2^2 + u_3^2} = |k| ||\mathbf{u}||.$$

The vector $-\mathbf{u} = (-1)\mathbf{u}$ has the same length as \mathbf{u} , but points in the opposite direction.

Example

Let $\mathbf{u} = (-1, 3, 1)$ and $\mathbf{v} = (4, 7, 0)$. Find (a) $2\mathbf{u} + 3\mathbf{v}$, (b) $\mathbf{u} - \mathbf{v}$, and (c) $\left\| \frac{1}{2}\mathbf{u} \right\|$.

solution:

a
$$2\mathbf{u} + 3\mathbf{v} = 2(-1, 3, 1) + 3(4, 7, 0) = (-2, 6, 2) + (12, 21, 0) = (10, 27, 2);$$

b
$$\mathbf{u} - \mathbf{v} = (-1, 3, 1) - (4, 7, 0) = (-5, -4, 1);$$

$$\|\frac{1}{2}\mathbf{u}\| = \frac{1}{2}\|\mathbf{u}\| = \frac{1}{2}\sqrt{(-1)^2 + 3^2 + 1^2} = \frac{1}{2}\sqrt{11}.$$

Properties of Vector Operations

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors. Let a and b be numbers. Then

$$1 u+v=v+u;$$

$$(u + v) + w = u + (v + w);$$

$$u + 0 = u;$$

4
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0};$$

5
$$0\mathbf{u} = \mathbf{0};$$

6
$$1u = u;$$

$$a(b\mathbf{u}) = (ab)\mathbf{u};$$

$$\mathbf{8} \ a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v};$$

$$(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}.$$

Remark

We can not multiply vectors. Never never never never write " $\mathbf{u}\mathbf{v}$ ".

Unit Vectors

Definition

 \mathbf{u} is called a *unit vector* \iff $\|\mathbf{u}\| = 1$.

Example

 ${\bf u}=(2^{-\frac{1}{2}},\frac{1}{2},-\frac{1}{2})$ is a unit vector because

$$\|\mathbf{u}\| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^2} = \sqrt{\frac{1}{2} + \frac{1}{4} + \frac{1}{4}} = 1.$$

In \mathbb{R}^2 : The standard unit vectors are $\mathbf{i} = (1,0)$ and $\mathbf{j} = (0,1)$. In \mathbb{R}^3 : The standard unit vectors are $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$ and $\mathbf{k} = (0,0,1)$. Any vector $\mathbf{v} \in \mathbb{R}^3$ can be written

$$\mathbf{v} = (v_1, v_2, v_3) = (v_1, 0, 0) + (0, v_2, 0) + (0, 0, v_3)$$

= $v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$.

If $\|\mathbf{v}\| \neq 0$, then $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector because

$$\left\| \frac{\mathbf{v}}{\|\mathbf{v}\|} \right\| = \left\| \frac{1}{\|\mathbf{v}\|} \mathbf{v} \right\| = \frac{1}{\|\mathbf{v}\|} \|\mathbf{v}\| = 1.$$

Clearly $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ and \mathbf{v} point in the same direction.

Example

Find a unit vector **u** which points in the same direction as $\overline{P_1P_2}$, where $P_1(1,0,1)$ and $P_2(3,2,0)$.

solution:

We calculate that
$$\overline{P_1P_2} = P_2 - P_1 = (3,2,0) - (1,0,1) = (2,2,-1) = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$$
 and that $\left\| \overline{P_1P_2} \right\| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$. The required unit vector is

$$\mathbf{u} = \frac{\overrightarrow{P_1P_2}}{\left\|\overrightarrow{P_1P_2}\right\|} = \frac{2\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{3} = \frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k}.$$

Definition

In
$$\mathbb{R}^2$$
, the dot product of $\mathbf{u} = (u_1, u_2) = u_1 \mathbf{i} + u_2 \mathbf{j}$ and $\mathbf{v} = (v_1, v_2) = v_1 \mathbf{i} + v_2 \mathbf{j}$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2.$$

Definition

In
$$\mathbb{R}^3$$
, the dot product of $\mathbf{u} = (u_1, u_2, u_3) = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ and $\mathbf{v} = (v_1, v_2, v_3) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Theorem

The angle between \mathbf{u} and \mathbf{v} is

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right).$$

Example

$$(1, -2, -1) \cdot (-6, 2, -3) = (1 \times -6) + (-2 \times 2) + (-1 \times -3)$$

= $-6 - 4 + 3 = -7$.

Example

$$(\frac{1}{2}\mathbf{i} + 3\mathbf{j} + \mathbf{k}) \cdot (4\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = (\frac{1}{2} \times 4) + (3 \times -1) + (1 \times 2)$$

= 2 - 3 + 2 = 1.

Example

Find the angle between $\mathbf{u} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$. solution: Since $\mathbf{u} \cdot \mathbf{v} = (1, -2, -2) \cdot (6, 3, 2) = (1 \times 6) + (-2 \times 3) + (-2 \times 2) = 6 - 6 - 4 = -4$, $\|\mathbf{u}\| = \sqrt{1^2 + (-2)^2 + (-2)^2} = \sqrt{9} = 3$ and $\|\mathbf{v}\| = \sqrt{6^2 + 3^2 + 2^2} = \sqrt{49} = 7$, we have that

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right) = \cos^{-1}\left(-\frac{4}{21}\right) \approx 1.76 \text{ radians} \approx 98.5^{\circ}.$$

Example

If A(0,0), B(3,5) and C(5,2), find $\theta = \angle ACB$.

solution: θ is the angle between \overrightarrow{CA} and \overrightarrow{CB} . We calculate that $\overrightarrow{CA} = A - C = (0,0) - (5,2) = (-5,-2),$ $\overrightarrow{CB} = B - C = (3,5) - (5,2) = (-2,3),$ $\overrightarrow{CA} \cdot \overrightarrow{CB} = (-5,-2) \cdot (-2,3) = 4,$ $\left\| \overrightarrow{CA} \right\| = \sqrt{(-5)^2 + (-2)^2} = \sqrt{29}$ and $\left\| \overrightarrow{CB} \right\| = \sqrt{(-2)^2 + 3^2} = \sqrt{13}$. Therefore

$$\theta = \cos^{-1}\left(\frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{\left\|\overrightarrow{CA}\right\| \left\|\overrightarrow{CB}\right\|}\right) = \cos^{-1}\left(\frac{4}{\sqrt{29}\sqrt{13}}\right)$$

$$\approx 78.1^{\circ} \approx 1.36 \text{ radians.}$$

Definition

 \mathbf{u} and \mathbf{v} are $orthogonal \iff \mathbf{u} \cdot \mathbf{v} = 0$.

Remark

Note that

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

by Theorem 9. Therefore

$$\mathbf{u}$$
 and \mathbf{v} are orthogonal $\iff \begin{pmatrix} \mathbf{u} = \mathbf{0} \\ \text{or} \\ \mathbf{v} = \mathbf{0} \\ \text{or} \\ \theta = 90^{\circ}. \end{pmatrix}$

Example

 $\mathbf{u} = (3, -2)$ and $\mathbf{v} = (4, 6)$ are orthogonal because

$$\mathbf{u} \cdot \mathbf{v} = (3, -2) \cdot (4, 6) = (3 \times 4) + (-2 \times 6) = 12 - 12 = 0.$$

Example

$$\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$$
 and $\mathbf{v} = 2\mathbf{j} + 4\mathbf{k}$ are orthogonal because $\mathbf{u} \cdot \mathbf{v} = (3 \times 0) + (-2 \times 2) + (1 \times 4) = 0 - 4 + 4 = 0$.

Example

 ${f 0}$ is orthogonal to every vector ${f u}$ because

$$\mathbf{0} \cdot \mathbf{u} = (0,0,0) \cdot (u_1, u_2, u_3) = 0u_1 + 0u_2 + 0u_3 = 0.$$

Properties of the Dot Product

Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors. Let k be a number. Then

- $\mathbf{1} \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u};$
- $(k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v}) = k(\mathbf{u} \cdot \mathbf{v});$
- $\mathbf{3} \ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \cdot \mathbf{v}) + (\mathbf{u} \cdot \mathbf{w});$
- $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2; \text{ and }$
- **5** $0 \cdot \mathbf{u} = 0$.

Vector Projections

Definition

The $vector\ projection$ of ${\bf u}$ onto ${\bf v}$ is the vector

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u}=\overrightarrow{PR}.$$

Now

$$\begin{aligned} \operatorname{proj}_{\mathbf{v}} \mathbf{u} &= \left(\operatorname{length of } \operatorname{proj}_{\mathbf{v}} \mathbf{u} \right) \left(\begin{array}{c} \operatorname{a unit } \operatorname{vector in} \\ \operatorname{the same} \\ \operatorname{direction as } \mathbf{v} \end{array} \right) \\ &= \left\| \operatorname{proj}_{\mathbf{v}} \mathbf{u} \right\| \left(\frac{\mathbf{v}}{\|\mathbf{v}\|} \right) \\ &= \left\| \mathbf{u} \right\| \left(\cos \theta \right) \left(\frac{\mathbf{v}}{\|\mathbf{v}\|} \right) \\ &= \left(\frac{\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta}{\|\mathbf{v}\|^2} \right) \mathbf{v} \\ &= \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \right) \mathbf{v}. \end{aligned}$$

Since this is an important formula, we write it as a theorem.

Theorem

The vector projection of \mathbf{u} onto \mathbf{v} is

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right) \mathbf{v}.$$

Example

Find the vector projection of $\mathbf{u} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ onto $\mathbf{v} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$.

solution:

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right) \mathbf{v} = \left(\frac{6 - 6 - 4}{1 + 4 + 4}\right) (\mathbf{i} - 2\mathbf{j} - 2\mathbf{k})$$
$$= -\frac{4}{9}\mathbf{i} + \frac{8}{9}\mathbf{j} + \frac{8}{9}\mathbf{k}.$$

Example

Find the vector projection of $\mathbf{F} = 5\mathbf{i} + 2\mathbf{j}$ onto $\mathbf{v} = \mathbf{i} - 3\mathbf{j}$.

solution:

$$\operatorname{proj}_{\mathbf{v}} \mathbf{F} = \left(\frac{\mathbf{F} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right) \mathbf{v} = \left(\frac{5-6}{1+9}\right) (\mathbf{i} - 3\mathbf{j})$$
$$= -\frac{1}{10}\mathbf{i} + \frac{3}{10}\mathbf{j}.$$

Let **n** be a unit vector which satisfies

- \mathbf{I} \mathbf{n} is orthogonal to \mathbf{u} $\left(\stackrel{\mathbf{h}}{ \bigsqcup} \mathbf{u} \right)$;
- **2 n** is orthogonal to $\mathbf{v} \left(\stackrel{\mathbf{n}}{\sqsubseteq} \mathbf{v} \right)$; and
- 3 the direction of n is chosen using the left-hand rule.

Definition

The $cross\ product\ of\ {\bf u}$ and ${\bf v}$ is

$$\mathbf{u} \times \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| (\sin \theta) \mathbf{n}.$$

Remark

- **u**•**v** is a number.
- $\mathbf{u} \times \mathbf{v}$ is a vector.

Remark

$$\begin{pmatrix} \mathbf{u} \text{ and } \mathbf{v} \\ \text{are} \\ \text{parallel} \end{pmatrix} \iff \theta = 0^{\circ} \text{ or } 180^{\circ}$$
$$\implies \sin \theta = 0 \implies \mathbf{u} \times \mathbf{v} = \mathbf{0}.$$

Properties of the Cross Product

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors. Let r and s be numbers. Then

$$\mathbf{2} \ \mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w});$$

$$\mathbf{0} \times \mathbf{u} = \mathbf{0}$$
; and

$$\mathbf{6} \ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}.$$

Property (iii)

$$\mathbf{v} \times \mathbf{u} = -\mathbf{u} \times \mathbf{v}$$

Area of a Parallelogram

area = (base) (height) =
$$\|\mathbf{u}\| \|\mathbf{v}\| \sin \theta = \|\mathbf{u} \times \mathbf{v}\|$$
.

Area of a Triangle

area of triangle =
$$\frac{1}{2}$$
 (area of parallelogram)
= $\frac{1}{2} \|\mathbf{u} \times \mathbf{v}\|$.

A Formula for $\mathbf{u} \times \mathbf{v}$

Note first that

$$\mathbf{i} \times \mathbf{i} = \|\mathbf{i}\| \|\mathbf{i}\| \sin 0^{\circ} \mathbf{n} = \mathbf{0}.$$

Similarly $\mathbf{j} \times \mathbf{j} = \mathbf{0}$ and $\mathbf{k} \times \mathbf{k} = \mathbf{0}$ also.

Next note that $\mathbf{i} \times \mathbf{j}$ must point in the same direction at \mathbf{k} by the left-hand rule. Thus

$$\mathbf{i} \times \mathbf{j} = \|\mathbf{i}\| \|\mathbf{j}\| \sin 90^{\circ} \mathbf{k} = \mathbf{k}.$$

We then immediately also have

$$\mathbf{j} \times \mathbf{i} = -(\mathbf{i} \times \mathbf{j}) = -\mathbf{k}.$$

It is left for you to check that

$$\mathbf{j} \times \mathbf{k} = \mathbf{i}, \qquad \mathbf{k} \times \mathbf{j} = -\mathbf{i}, \qquad \mathbf{i} \times \mathbf{k} = -\mathbf{j} \quad \text{and} \quad \mathbf{k} \times \mathbf{i} = \mathbf{j}.$$

Now suppose that $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. Then we can calculate that

$$\mathbf{u} \times \mathbf{v} = (u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}) \times (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k})$$

$$= u_1 v_1 \mathbf{i} \times \mathbf{i} + u_1 v_2 \mathbf{i} \times \mathbf{j} + u_1 v_3 \mathbf{i} \times \mathbf{k} + u_2 v_1 \mathbf{j} \times \mathbf{i} + u_2 v_2 \mathbf{j} \times \mathbf{j}$$

$$+ u_2 v_3 \mathbf{j} \times \mathbf{k} + u_3 v_1 \mathbf{k} \times \mathbf{i} + u_3 v_2 \mathbf{k} \times \mathbf{j} + u_3 v_3 \mathbf{k} \times \mathbf{k}$$

$$= \mathbf{0} + u_1 v_2 \mathbf{k} - u_1 v_3 \mathbf{j} - u_2 v_1 \mathbf{k} + \mathbf{0} + u_2 v_3 \mathbf{i} + u_3 v_1 \mathbf{j} - u_3 v_2 \mathbf{i} + \mathbf{0}$$

$$= (u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}.$$

Theorem

If
$$\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$$
 and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, then

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2)\mathbf{i} - (u_1 v_3 - u_3 v_1)\mathbf{j} + (u_1 v_2 - u_2 v_1)\mathbf{k}$$

If you studied matrices and determinants at high school, then you may prefer to use the following symbolic determinant formula instead.

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

Example

Find $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ if $\mathbf{u} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.

solution:

$$\mathbf{u} \times \mathbf{v} = (1-3)\mathbf{i} - (2-4)\mathbf{j} + (6-4)\mathbf{k} = -2\mathbf{i} - 6\mathbf{j} + 10\mathbf{k}$$

and

$$\mathbf{v} \times \mathbf{u} = -\mathbf{u} \times \mathbf{v} = 2\mathbf{i} + 6\mathbf{j} - 10\mathbf{k}.$$

Example

Find a vector perpendicular to the plane containing the three points P(1,-1,0), Q(2,1,-1) and R(-1,1,2).

solution: The vector $\overrightarrow{PQ} \times \overrightarrow{PR}$ is perpendicular to the plane

Example

Find the area of triangle PQR.

$$P(1,-1,0), Q(2,1,-1) \text{ and } R(-1,1,2)$$

solution: The area of the triangle is

$$\begin{aligned} \operatorname{area} &= \frac{1}{2} \left\| \overrightarrow{PQ} \times \overrightarrow{PR} \right\| = \frac{1}{2} \left\| 6\mathbf{i} + 6\mathbf{k} \right\| \\ &= \frac{1}{2} \sqrt{6^2 + 0^2 + 6^2} = 3\sqrt{2}. \end{aligned}$$

Example

Find a unit vector perpendicular to the plane containing P, Q and R.

$$P(1,-1,0), Q(2,1,-1) \text{ and } R(-1,1,2)$$

solution: We know that $\overrightarrow{PQ} \times \overrightarrow{PR}$ is perpendicular to the plane. We just need to normalise this vector to find a unit vector.

$$\mathbf{n} = \frac{\overrightarrow{PQ} \times \overrightarrow{PR}}{\left\|\overrightarrow{PQ} \times \overrightarrow{PR}\right\|} = \frac{6\mathbf{i} + 6\mathbf{k}}{6\sqrt{2}} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{k}.$$

Example

A triangle is inscribed inside a cube of side 2 as shown below. Use the cross product to find the area of the triangle.

solution: First we draw coordinate axes and assign coordinates to the vertices of the triangle.

Then we can calculate

$$\overrightarrow{AB} = B - A = (2, 2, 0) - (2, 0, 0) = (0, 2, 0) = 2\mathbf{j}$$

and

$$\overrightarrow{AC} = C - A = (0,0,2) - (2,0,0) = (-2,0,2) = -2\mathbf{i} + 2\mathbf{k}.$$

It follows that

$$\overrightarrow{AB} \times \overrightarrow{AC} = (2\mathbf{j}) \times (-2I \times 2\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 2 & 0 \\ -2 & 0 & 2 \end{vmatrix}$$
$$= \mathbf{i}(4-0) - \mathbf{j}(0-0) + \mathbf{k}(0-4) = 4\mathbf{i} + 4\mathbf{k}.$$

Therefore

area of triangle =
$$\frac{1}{2} \|\overrightarrow{AB} \times \overrightarrow{AC}\| = \frac{1}{2} \sqrt{4^2 + 0^2 + 4^2}$$

= $\frac{1}{2} \sqrt{32} = \frac{1}{2} \sqrt{4} \sqrt{8} = \sqrt{8} = 2\sqrt{2}$.

The Triple Scalar Product

Definition

The *triple scalar product* of \mathbf{u} , \mathbf{v} and \mathbf{w} is

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$
.

The Volume of a Parallelepiped

volume = (area of base) (height) =
$$\|\mathbf{u} \times \mathbf{v}\| \|\mathbf{w}\| \cos \theta = |(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$$

One Final Comment

We can do the dot product in both \mathbb{R}^2 and \mathbb{R}^3 . But we can only do the cross product in \mathbb{R}^3 . There is no cross product in \mathbb{R}^2 .

Next Time

- 14. Lines
- 15. Planes
- 16. Projections