Lec 15 CS241

Graham Cooper

June 24th, 2015

```
Nullable[A] <- false and A
repeat
-- for each rule B -> B1 ... Bk
-- -- Nullable[B]<- true
until nothing changes
First[A] <- empty and A</pre>
repeat
-- for each B1 ... Bk
-- -- for i = 1 ... k
-- -- if Bi is a terminal a
-- -- -- First[B] += {a}; break
-- -- else
-- -- -- First[B] += First[Bi]
-- -- -- If not Nullable[Bi] break
until nothing changes
Follow[A] <- empty for all not equal to s'
repeat
-- for each B -> B1...Bk
-- -- for i = 1 ... k
-- -- if Bi in N
-- -- -- Follow[Bi] += First*(Bi +1 ... Bk)
-- -- -- if all of Bi+1 ... Bk Nullable (incl. i = k)
-- -- -- Follow[Bi] += Follow[B]
```

Example:

- 1. S' $\rightarrow \vdash S \dashv$
- 2. $S \rightarrow b S d$
- 3. $S \rightarrow p S q$
- 4. $S \rightarrow C$
- 5. $C \rightarrow l C$

6.
$$C \to \epsilon$$

Nullable Iteration	0		1	4	2		3	
S'	false		false	fa	false		se	
S	false		false	tr	true		ue	
\mathbf{C}	fals	е	true	tr	true		true	
First	'		•	'				
Iteration	0		1		2		3	
S'	{}	{⊢}		{	{⊢}		{⊢}	
\mathbf{S}	{}	{b,p}		$\{b,p,l\}$		{	[b,p,l]	
\mathbf{C}	{}	{1}		{	{l}		{l}	
Follow				_	-	'		
Iteration	0	1					2	
S	{}	$\{\dashv, d, q\} \{\dashv, d, q\}$			q }			
\mathbf{C}	{}	$\mid \{\dashv, d, q \} \mid \{\dashv, d, q \}$			(p,			
D 1: //A	`\	۲.	. т	. .	_ T	٦.	(*(D))	

 $Predict(A,a) = \{A \rightarrow B \mid a \in First^*(B)\} \cup \{A \rightarrow B \mid Nullable(B), a \in Follow(A) \}$

Pred	lictor	Tab	le				
	\vdash	\dashv	b	d	p	q	l
S'	{1}						
\mathbf{S}		4	2	4	3	4	4
С		6		6		6	5

For S, we can use rule 4 to make an l, or to make dissapear!

A grammar is LL(1) it:

- \bullet no two distinct productions with the same LHS can generate the same first terminal symbol
- no nullable symbol A has the same terminal symbol a in both its first set and its follow set
- \bullet there is only one way to send a nullable symbol to ϵ

Eg:
$$\begin{split} & E \to E + T \mid T \\ & T \to T * F \mid F \end{split}$$

 $F \to id$

The above is not LL(1)

Why?

- Left recursion.
- Left recursion is never LL(1), here is why:

$$E \implies E+T \implies T+T \implies F+T \implies id+T$$

$$E \implies T \implies F \implies id$$

These have the same first symbol!!!!! AHHH OH NOOOOO

How to fix it:

Make it right-recursion

$$E \rightarrow T + E \mid T$$

$$T \rightarrow F * T \mid F$$

$$F \to id$$

(still not LL(1), we need to factor)

Factor:

$$E \to TE'$$

$$E' \rightarrow \epsilon | + E$$

$$T \to F T$$

$$T' \to \epsilon | * T$$

$$F\to id$$

LL(1) conflicts with left-associativity

Bottom Up Parsing

Stack stores partially reduced input read so far.

$$\mathbf{w} \leftarrow \alpha_k \leftarrow \alpha_{k-1} \leftarrow \dots \leftarrow \alpha_1 \leftarrow \mathbf{S}$$

Invariant: Stack and unread input = α_i (or w or s)

 $\underline{\mathrm{EX}}$

$$S' \rightarrow \vdash S \dashv S \rightarrow A y B$$

$$A \rightarrow ab$$

$$A \rightarrow cd$$

$$B \rightarrow z$$

$$B \rightarrow wx$$

 $w = \vdash abywx \dashv$

Stack	Read Input	Unread Input	Action
	ϵ	⊢abywx⊣	Shift ⊢
\vdash	\vdash	$abyw \dashv$	shift a
\vdash_{a}	$\vdash_{\mathbf{a}}$	$bywx \dashv$	shift b
$\vdash ab$	⊢ab	$ywx \dashv$	REduct $A \to ab$, pop b, pop a, push A
$\vdash A$	⊢ab	$ywx \dashv$	shift y
$\vdash Ay$	\vdash aby	$_{ m WX}\dashv$	shift w
$\vdash Ayw$	$\vdash abyw$	$_{\mathrm{X}}\dashv$	$\mathbf{shift} \ \mathbf{x}$
$\vdash Aywx$	\vdash abywx	\dashv	reduct $B \to wz$; pop x, pop w, push B
$\vdash AyB$	\vdash abywx	\dashv	reduce S \rightarrow AyB, pop B,y,a, Push S
$\vdash S \dashv$	$\vdash abywx \dashv$	ϵ	Reduce $S' \to \vdash S \dashv$
S'	$\vdash abywx \dashv$	ϵ	Accept

We have a choice at each step:

- 1. shift a char from input to stack
- 2. Reduce TOS is the RHS of a grammar rule replace it with LHS

Accept if Stack contains S' when the input is ϵ (could equiv. \vdash S \dashv on empty input) (But that is the same as being at the end of file, so we could accept at \dashv)

How dowe know whether to shift or reduce?

- Use the next character to help us decide
- But the problem is still hard