(9日本国特許庁(JP)

①特許出願公開

@公開特許公報(A)

昭54—72468

⑤Int. Cl.² H 05 K 1/16

H 05 K

識別記号 移日本分類

59 G 403 59 G 41 庁内整理番号 43公開 昭和54年(1979)6月9日

6370-5 F 7638-5 F

発明の数 1 審査請求 有

(全 7 頁)

の抵抗付きプリント回路基板

3/02

创特

願 昭52-140525

@出

願 昭52(1977)11月21日

仰発 明 者 角橋武

茨木市下穂積1丁目1番2号

日東電気工業株式会社内

⑫発 明 者 三宅康文

茨木市下穂積1丁目1番2号 日東電気工業株式会社内

⑪出 願 人 日東電気工業株式会社

八 口来电对工来休式云红

茨木市下穂積1丁目1番2号

明 細 智

1. 発明の名称

抵抗付きプリント回路惹板

2. 特許請求の範囲

(1) 絶球支持体の少くとも片面に抵抗膜を内側に して高導電材料層が接合されている回路基板にお いて、抵抗膜がスポーニッケル合金からなること を特徴とする抵抗付きアリント回路基板。

②抵抗機が約50万至85重量光好ましくは64万至70重量光のスズを含む合金からなる特許額水の範囲第1項配額の抵抗付きプリント回路

茲板。

回抵抗膜がスメーニッケル合金メッキにより設けられている特許調求の範囲第1項記載の抵抗付きアリント回路基板。

3. 発明の詳細な説明

本 若明は、 プリント 抵抗回路 板の 製作に 有用な抵抗付き プリント 回路 基板に関するものである。

抵抗体を内滅するプリント回路基板は、一般に 納破支持体と該支持体上に接合された抵抗材料層、 及び該抵抗材料層に複合された網角の如き高導電材料層からなる段層体の形態で提供され、アリント抵抗回路の製作に際しては、目的とする回路のパターンに従って絶線領域(支持体上に全層が除去される)、抵抗領域(高導電材料層が除去される)並びに導体領域(各れの層も除去されない)が、サブトラクティブ法(マスクーエッチング法)により形成されている。

而して、当該技術分野における抵抗材料は、カーボン系の抵抗材料が一般的であるが、近時金属 膜を利用したものとしてリンを含む電気メッキニッケルの使用(特開昭 4 8 - 73762 号)、或は各 種の二元系合金の使用(特開昭 5 0 - 71513 号) が扱彩されている。しかし、上記提案に係る金属 や合金は、プリント抵抗個路用の抵抗材料として は特性並びに作案性の面で種々の問題があること が判明した。

この他の金属海線抵抗の場合、腕厚を薄くすると とによりシート抵抗の高い膜を得ることが出来る が、一般に膜厚を薄くして行くと金属膜のミクロ

٠

的な均一性、所謂平滑性(レベリング)が突質的に失われ一定のシート抵抗が得られない線摩の限度がある。例とは、現在工業的に採用されているニッケルーリン電気メッキ膜の場合、数百 A 程度が線摩の限度で、得られるシート抵抗は約 100 Ω/□程度であって、更に高いシート抵抗の線を得ることは困難である。

一方、金銭郡級抵抗としての金銭殴は、網箔の如き高導電材料刷に対して全面に設って約一方膜であることが特に強まれるが、この金銭殴のマクロ的な物一性所謂物一電管性は、上配ニッケルーリン電気メッキ酸ではあまり良好ではなく、網箔の政準で中央部より降くなり、従って周辺部のシート抵抗が低くなって、実質的に均一なシート抵抗の得られる可効面積が40~60多に過きず、材料コスト及び加工コストの面で者過出来ない欠点がある。

更に、この電気メッキ膜からなる抵抗酸はアリント回路基板からサブトラティブ法により抵抗回路板を形成する加工工程においても重大な欠陥を有

5

洗浄除法して抵抗回路板が得られる。

上記工程において、抵抗パターン領域に相当する 形状の網箔をエッチング除去する際、使用するエ ッチング低に対して抵抗線の材質は安定で、全く 取は治んどエッチングされないことが必須条件と なる。

ところで、上記ニッケルーリン酸は高速質材料値として最も一般的な網路とのエッチング選択性が一般に悪く、網路のエッチングを行なう際、部分的に表面からエッチングされ抵抗値が大幅に増加し、希望する抵抗値をオーバーしてはずれてしまい、抵抗薬子を安定に製作することが困難である。

又、上述した如く各種の二元系合金が提案されているが、これは単一成分のメッキ膜よりも合金メッキ数の方が一般に高い抵抗値が得られるい等の理由によるものであるが、上記のニッケルーリン膜以外は工業的に採用されるに至っていない。この理由は、合金メッキの一般的な傾向として、 領板、 動物頻板等の外線、耐食性、 微被的特性の付与を目的とする一般用途には特に問題はないか、 特別昭54-72468(2)

している。この他のブリント回路基板からの抵抗 回路板の製作は、下記の如き加工工程を経て行な われる。

該益板の網箔袋面をフォトレジストで被機後、導体及び抵抗の組合せパターン(導体領域と抵抗領域に相当するパターンの両方が付いた)のフェトマスクを介して減光し、現象して、このパターン領域にレジストを残し、レジスト被殺されていた。 近に縄 出した 抵抗 疑を専用のエッチング 液にてエッチング 除去し、 更に縄 出した する。 その下から 絶縁 支持 体の 歯が 現われる。 次に 料庫 液に て 後存する レジストを洗浄して 除去する。

更に、新たにフォトレジストで被覆後、導体パターンのフォトマスクを介して離光し、現像して、導体パターン領域にレジストを残し、レジスト被優されていない領域の削消(抵抗パターン領域に相当する形状の領洛)をエッチング除去する。その下から抵抗パターン領域に相当する抵抗終の面が現われる。次に剥職液にて残存するレジストを

6

合金メッキ級を金属海級抵抗として採用するには前記の均一電理性、平滑性、エッチング選択性等のパランスをとりにくいことの他に、抵抗値のパラッキのない一定組成の合金メッキ験をメッキ浴から安定に製造することが非常に困難であることに基因している。

例えば、上記の特別昭 5 0 - 71513 号に記載の二元素合金の一つであるニッケルーモリブデン合金メッキの場合、ニッケル及びモリブデン浴組成が 1/1 (Mo/N1 原子比;塩化ニッケル 0.25 mol/s) のメッキ浴から得られる合金メッキ族の組成は、電磁密度の広い範囲にわたって 0.15/1 (Mo/N1 原子比)程度で、モリブデン低温度に偏っており、メッキ操策時間と共にメッキ浴組成が変動して来る。つまり侵時間にわたって設組成の安定なメッキを行なうことが実質的に因解である。

抵抗架子の如き高性能が要求されるメッキ 臓では、メッキ酸の験厚及び組成の変動によりその特性が微妙に変化することを考慮しなければならな

い。 前紀公報に配数の他の二元系合金の組成について、各組成の数値をかかげることは 控えるが、これらの二元系で一定組成の合金メッキ級を安定して製造することは非常な困難を伴う。

本希明者避は、上述の技術的欠点並びに困避性を解決すべく種々研究検討の結果、抵抗腺材料としてスズーニッケル合金を用いることにより、金属河吸抵抗としての均一混智性、平滑性、エッチング選択性、合金メッキ組成の安定性等の特性が順答であるという減くべき事実を見出し、本発明を完成するに至ったものである。

スズーニッケル合金をメッキ手段により飼習の 如き高導電材料はに設ける場合、他の合金メッキ と異なる著しい特徴は、メッキ浴中の金属イオン の最度比が変化しても、合金メッキ膜の組成に与 える影響が非常に少ないことである。一般に合金 メッキ浴では、長時間のメッキにより、浴中の金 はイオンの過度比が変化しても陽極の形解退がこ の変化量を補えないため、合金メッキ膜の組成が 変動して来ることは前述した適りである。

9

定して製作出来る特徴の他に、金属薄膜抵抗として欠くことの出来ない重要な特徴を有している。

数メッキ版は薄膜化が可能で、疑摩を薄くしても約100Å程度でもミクロ的な均一性(平滑性)が失われず、約300~400Ω/□の高いシート抵抗の顔を製作出来る優れた平滑性を有しているのである。勿論、凝摩を輝くすることも可能で、一般に誤摩約70~2000Åの範囲で使用される、又、該メッキ膜は均一電源性が非常に良好であるため、網箔等の高導電材料解に対して均一な誤摩が広い面積(実質的に75~85%)にわたって得られ易く、材料コスト及び加工コストの前で非常に有利である。

更に、高導電材料として最も一般的な網とのエッチング選択性も、 通々のエッチング液に対して姿しく高いという有意性を有している。

例えば、現在工薬的に採用されている高導電材料 層及び抵抗膜を各々網箔及びニッケルーリン合金 メッキ膜とするアリント回路基板の加工では、網 腐食用エッチング被としてアンモニアキレート系 特別以54-72468(3)

ところでスズーニッケル合金メッキの場合、メッキ浴組成の非常に広い範囲にわたって、スズとニッケルとの等原子の組成に略相当するメッキ機が得られる。スズの原子量 118.7、ニッケルは 58.7であるから、合金の重像比はそれぞれ約 6 7%(64~70%)及び約33%(30~36%)に保つことが出来る。これらの実質的に等原子の合金組成は、特にフッ化ナトリウムや酸性フッ化アンモニウム等を用いた所謂フッ化物浴において得られ易く、これは NiSn Px CLy の鍵塩の形成を経てメッキされるためと考えられる。

又、比較的新しいタイプであるが、腐食性の上記ファ化物浴に替って、ピロリン酸カリ等を用いたピロリン酸治を使用することにより、共析剤の共存によりメッキ浴根式の広い範囲にわたり、 突質的に等原子の合金組成からなるメッキ錠を得ることが出来る。

以上のように、スポーニッケルメッキ鰻は合金組成が安定して得られ易いため、鎮厚を調整することにより、一定のシート銀統を有する紙統婦を安

3 0

(例えばシッアレイ社製ニュートラエッチ V ~ 1)を用いる場合、網の適正顧食時間よりも 5 0 %過剰にエッチングを続けると、ニッケルーリンメッキ膜の適正シート抵抗が 2 5 Ω □のもので 2 8 Ω □ (1 1 1 %増加) 程度となり、又 100 Ω □ のもので 126 Ω □ (2 5 %増加) 程度に増加する。これは貿出したニッケルーリンメッキ膜がその設めたり網膜食用のエッチング液により網膜食が進むたりのによる。そのため抵抗値のパラッキを発生させりのである。そのため抵抗値のパラッキを発生させりのである。そのため抵抗値のパラッキを発生させりである。そのため抵抗値のパラッキを発生させりである。そのため抵抗値のパラッキを発生させりである。とのになる。クロムー健慢系エッチング液では、アンモニアキレート系に比して、抵抗値の上昇は若干緩和されるがな実的な欠陥は避けられず、又公害防止対策上このエッチング液の使用は出来るだけ控えることが望まれる。

而して、本発明に使用されるスポーニッケル合金メッキ線は、シート抵抗20~450 Ω (1)の範囲のものについて、アンモニアキレート系のエッチング 依を使用して、網の選正腐食時間を2倍にしても、シート抵抗増加率は1~2%程度に抑えることが出来、加工工程における抵抗値上昇による

13

不良の発生を突貫的に防ぐことが出来る。

本発明の抵抗付きアリント国路基板を構成する 高導電材料別としては、調用の他にアルミニウム 箔、編メッキ網角、亜鉛箔及び銀箔等が用いられ

抵抗級の材質がスズーニッケル合金からなることが、本発明の最も値要な点であり、 跛合金は高 準電材料層に対して本質的にメッキ手段により設

合金中のスズとニッケルの組成割合は、スズが50~85 重量%の場合に、抵抗膜としての特性が良好であること、均一電管性及び平滑性に好結果を与えること、並びに糾箔類とのエッチング選択性が高いことから推奨されるが、特にスグッケルが実質的に等原子比の合金組成は、上記週由の64~70 重貨%を含む合金組成は、上記週由の付き抵抗膜を安定して製作出来るため、特に好ま

絶縁支持体としては、エポキン樹脂・ガラスクロス、ポリエステルーガラスクロス、ポリイミドーガラスクロス、ポリアミドイミドーガラスクロス、ア・ノール樹脂ー紙及びエポキシ樹脂ー紙等の環層板。ポリイミド、ポリエステル、ポリアミドイミド、可焼性のエポキン樹脂ーガラスクロス及び可焼性のポリアミドー紙等の可強性絶縁シート又はフィルム、更にヒートシンクとしてアルミニウム板や鉄板を接合した(抵抗パターン膜が結合される面とは反対側の面に接合される)上記の

けられる。スズーニッケル合金メッキは、産元剤 としてヒドプジン水和物や次亜リン酸ソーダ等を 用いる化学メッキ法、改はフッ化ナトリウムや酸

特別 昭54-72 468(4)

用いる化学メッキ法、或はフッ化ナトリウムや酸性ファ化アンモニウム等を用いるファ化物浴、及びピロリン酸第一スズやピロリン酸カリ等を用いるピロリン酸浴等からの電気メッキ法により行わ

しかし、ピロリン酸浴は適当な共析剤の共存により、ファ化物浴の場合と同様に浴組成の広い範囲にわたって災質的に等原子の合金組成のメッキ膜を与えること、並びにファ化物浴と比較して腐食性でないことから推奨される。

14

各種絶線性の問題板及びシート又はフィルム類が 用いられる。

又、絶縁支持体として、エポキシ歯脂、ポリエステル、ポリウレタン、ポリアミドイミド、ポリイミド及びゴム等の歯脂やゴム類を提替剤脂として 故けたセフミックス板、ガラス板等の無機質の材料も使用することが出来る。

以上の説明では簡略のため、絶縁支持体の片面に抵抗級及び高減退材料層が接合されている網造に近れてきたが、本発明に係る抵抗付きてリント回路延抜は、報造的改良、変更が可能であって、例えば絶縁支持体の両面に抵抗験及び高減電材料層が接合され、他の片面に抵抗験及び高減電材料層が接合され、他面に高減電材料層(エッチング等により導体及びノスは退極を形成する為の)を接合した構造のものを含む。

本発明に係る抵抗付きプリント回路基板からの プリント抵抗回路板への加工において、高導電材 料器のエッチング液としては公知のものを使用す 17

ることができ、例えばそれが倒箔等の場合、従来 網箱のエッチングに広く用いられてきた塩化部二 飲、過硫酸アンモニウム、塩化第二銅、クロム酸 - 硫酸混液及びアンモニアキレート来のエッチン グ厳等が使用される。これら通常のエッチング液 に対して、抵抗膜としてのスポーニッケル合金膜 は安定であって、脳食されて抵抗値が上昇或は変 動することは殆んどない。

又、抵抗機としてのスポーニッケル合金膜からの 抵抗案子形成のためのエッチング加工は、特に限 定するものではないが例えば先ず下記の仏座に浮 波後、更に角液に及びすることにより行われる。 協合により、この順序ではエッチングが殆んど進 行しないことがあるが、そのときは先才四依、次 いで仏依に設促することによりエッチングが進行 する。これは、スズーニッケル合金膜の成分組成 と構造とに関連する現象ではないかと思われるが その詳細は不明である。

特別昭54-72468(5)

·エッチング液(A): 35 % 塩酸水

エッチング液因:配合 95% H2SO4 10.04

60% HNO: 540 #

6.0 4 水

次に、本発明を実施例により説明するが、本発 明は実施例に限定するものではない。

奥施例1

厚さ35 M の網箔を所定寸法(18×15 mm) に切断し、これを洗浄板(シップレイ社製ニュー :トラ・クリーン68の濃縮液1容量に対し、水1 容益の割合で希釈した液、温度40℃)に3分間 没谈した後、水洗し、更に10%硫酸水に3分間 及ば後、水洗して乾燥する。この鍋箱の片面をマ スキング用接着シート(日東電気工業社製 SPV £ 224) で被覆し、20 %塩酸水に3分間浸漉し、 脱イオン水で洗浄した後、第1表のファ化物系の メッキ俗【、【、【を用いて袋中に記畝の条件で 置気メッキした。

		I		. #
y.	Snc &2 2H2O	48.09/2	. 同左	向左
'n	Nice: 6H:O	150.0 "	200.0 9/6	300.0 9/8
华俗	NeP	28.0 "	同左	同左
組	NH+ HP+	35.0 //	同左	岗左
땞	28 %アンモニア	少量(PH調整用)	同左	问 左
,	EL AC	6 5 °C	同左	尚宏
7	Р Н	3.0(250)	同左	同左
条	電液密度	0.14A/an	同左	. 岗左
4	機 摔	2 L	同左	简左
	155 to:	ニッケル板	同左	间左

メッキ時間については、各メッキ俗について 1 2 5 秒、200秒、300秒の3種(第3波線 照)に設定して行ない、電療後は網箔を取出して マスキング用整御シートを剥離し、洗浄ののち飲 燥した。

上記メッキ操作において、網箔周辺相当部分はメ ッキ終が部分的に厚くなりシート抵抗が低くなる 傾向が現われるが、前記各メッキ浴を使用した本 例では各れの場合も均一電御性は良好で、抵抗額 としての有効血機は約80%であった。

次に、メッキ処理済みの網箔の有効面積部分を 切取り、飼洛の抵抗機(メッキ膜)面側に、エポ キシロ脂含浸ガラスクロス(通称アリアレグ)を 重ね合わせ、フミネーション用アレスにより加熱 加圧して接合することにより、抵抗付きアリント 间路兹板をねた。

このようにして得た回路基板は、本文に既述し た契領で加工してプリント抵抗国路板に形成した。 但し、鍋箔のエッチング条件及び抵抗膜のエッチ ング条件は、夫々下記条件で実施した。

調点エッチング条件

エッチング液:シップレイ社製ニュートラエフ

+ V - 1

温度 : 5 2 0

РН : 7.5 (2 5 0) 6.0 4

時間

: 3分(網箔厚さ35 4)

抵抗験エッチング条件(28℃の30液に浸液後、 25℃の四液に浸渍する。)

エッチング液(A):

エッチング液四: 配合 95 % H2SO4 10.0%

60 % HNOs 540 mt

*

時間

第2表の通り

-	* #	(2) 放表点	四年提出
	1 3 500 £ 1 .	1 #	3 9
	2000028	• ⊕	* #
	3 4 0 DO E 8	1 0 49	• 9:

2回目の飼箔エッチング(抵抗パターン領域に相 当する形状の網箔エッチング)は、上記の網箔エ **ッチング条件と同様に行なった。この協合、エッ** ナングが過剰になっても、その下の抵抗機の脳食 は殆んど遊行せず、それが原因でシート抵抗が大 特別則54-72 468(6)

22

幅に上昇する不都合は金く見られず、エッチング 選択性が非常に良好であった。

例えば、適正エッチング時間が3分程度の場合、 意識的に過剰に6分間エッチングを続けても、シ ~ ト抵抗の上昇は1~2%程度である。

2回目の釧箔のエッチング後、充分に水洗して 乾燥し、抵抗部分にソルダーレジストインクをス クリーン印刷により独布後、加熱硬化してプリン ト抵抗回路板を完成させた。

このプリント抵抗回路板の抵抗特性を、第3段 に前記メッキ条件に対応させて示した。

21

用 自		ı			1		<u> </u>		
≠7年時間 (分)	120	100	340	128	200	240	125	208	340
亜抗卓接成 スポ (重度等)	44.6		**.*	45.4		05.0	45.2	44.4	45.3
ドート版版 (ロ人门) (ドート版版パラッキ) (市)	400 (±7)	300 (±8)		400 (±7)	200 (±8)	(±2)	840 (±7)		100 (±3)
抵抗基度保險 (P P M / C)	+150	"+ • •	+50	+180	+#0	+#0	+180	+80	+50
(-85~+1880)	以下	RI T	# F	N F	N F	M T	M F	DI F	Q F
NEWS (#)	40.9		, ,	i	40.4	40.5	+0.7	+0.7	+0.6
(40°C 相対程度 98年 無負責34°C 時間後の長純変化率)		ыт			DI F		IJŦ		B T
		ž.					,		
平田耐熱性 (※)									
(2000年田府氏	+1.0	+0.7	+0.1	+1.0	+0.7	+0.3	+1.0	+0.7	+0,8
3 6 砂間浸透装の最終変化率)	纵下	H F	DE F	MT	H F	ÞТ	IJ F	H F	N F
(3)									
'									

尚、裏中の抵抗膜組成のスズ含量は、メッキ後 の鍋箔を削記抵抗膜エフチング液の及び四に投資 して、抵抗膜(スポーニッケル合金メッキ膜)を **俗解技、原子吸光法によりスズ及びニッケルを分** 折した値を示している。

貫る要から明らかなように、メッキ浴組成の異 なる3種類のメッキ浴(【、【、【)を使用して も、メッキ膜(抵抗膜)の合金組成は、非常に近 似しており且つ契賞的に等原子の合金組成のもの が得られ、抵抗験はほぼ同一の特性を示すことが 理解される。又、各メッキ浴について、メッキ辞 間125秒ではメッキ膜の膜厚は約100A 程度 であり、その数シート抵抗が約400Ω/口の高い 抵抗値が安定して得られることは、かかる薄膜化 によっても腱の平滑性が扱われないことを示して いる.

哭施例 2

本例は、網箔の片面に抵抗膜としてのスプーニ フケル合金メッキ膜を設けるに際して、ピロリン 酸果のメッキ浴を用いる以外は実施例1と同様に

して、 アリント回路基板を製造し、 更に加工して アリント抵抗回路板を製作した結果を示した。 本例の場合、抵抗膜の有効面積は約80%で均一 電費性は良好であり、エッチング選択性も実施例

メッキ条件及びそれに対応する抵抗回路の抵抗 特性を、第4表に示した。

1 と殆んど同じで非常に良好であった。

# 10.2a 6620 20.6 # 2	1 12.8 1/1	•			
# 10.22 6H20	河风风风河 河风河河				
# 11.0名 6430	发生之之 之之之之 之之之 之之之 之之之 之 之之 之 之 之 之 之 之 之				
# MAPROT 3H20 20 # 20 # 20 # 20 # 20 # 20 # 20 # 2					
様 タエン酸ニアンモニテム 18 ア タ金(2月間電用) A 最 度 80 で 8.2(2.8で) ・ 電路密度 8.3 A A C A C A C A C A C A C A C A C A C	月 克 克 克 克 克 克 克 克 克 克 克 克 克 克 克 克 克 克 克				
成 3 8 8 7 2 4 2 7 3 2 3 6 7 2 4 2 3 6 7 2 7 3 4 2 3 6 7 2 7 7 8 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	p E p E p E p E p E p E p E p E p E p E				
/ 単 度 80 ① 7 PE 8.2(25℃) 4 短距離度 9.3A/da ² 単 度	异立 异立 异左				
フ Pff 8.3(25℃) 中 電路放在 9.3A/4 a ² 森 県 併 2 L	月 立 月 左 月 左				
◆ 電路接度 0.1A/d m ² 条 数 押 を し	用 左 用 左				
# # E L	用左	·			
	角 左				
仲 湯 塩 ニアケル収		—			
ノフや時間(砂) 79 140 200 79	140	300			
選技術組成スポ(国産年) 65.2 45.8 46.9 46.2	66.8	44.4			
抵抗論エアテング時間 (A)限 8 4 T S		7			
(分) 任献 2 8 8 2	. •	•			
P-188(0/1) 300 100 50 300	110	50			
(アー) 提供パラアキ) (土ち) (土も) (土も) (土も)		(±4)			
(%)	1,7,7	1 12-7			
EMARGE (PPM/O) +70 +40 +40 +70	+40	+40			
MT NT NT NT	H F	E T			
(最高級一名 8~十 1 2 3 2)					
樹瀬特性(学)	+0.4	+0.4			
(* * O #4#K* * * * * * * * * * * * * * * * * * *	#0.4				
140時間接の推進配化率) 以下 以下 以下 以下	"	W. F			
平田副龍生(分)	1	+			
+0.7 +0.8 +0.8 +0.7		+0.8			
(\$\$0.0004回程K\$00間 以上 以上 以上	N T	M T			
表現後の差別数化率)	j	-			