Modular Virtual Commissioning - A learning factory approach focussing on modularity and integration of component models.

Master Thesis

In partial fulfillment of the requirements for the degree

"Master of Science in Engineering"

Master program:

Mechatronics & Smart Technologies

Management Center Innsbruck

Supervisor: **Benjamin Massow, B.Sc. M.Sc.**

Author: **Dominique Mathäus Geiger**2010620012

Declaration in Lieu of Oath

I hereby declare, under oath, that this master thesis has been my independent work and
has not been aided with any prohibited means. I declare, to the best of my knowledge and belief, that all passages taken from published and unpublished sources or docments
have been reproduced whether as original, slightlychanged or in thought, have been mentioned as such at the corresponding placesof the thesis, by citation, where the extend of the original quotes is indicated."

Place, Date	Signature

Abstract

In the modern industry automatization is an essential part of many manufacturing companies. When it is used correctly automatization helps saving costs with an increase of quality and quantity in processing products at the same time. Those enormous advantages result in a great demand for well-trained professionals. However, these professionals need qualifications in a wide range of areas like mechanical and electrical engineering, metrology and coding of the control systems. An intense training of theory and its practical realization is needed in order to fulfill the requirements. The purpose of this bachelor thesis aims at developing a Teaching Factory in a laboratory scale so as to improve the training of automatization with a programmable logic controller (PLC!). Relevant learning contents should be prepared clearly and with practical orientation leading to an increased learning success of the users. In addition, this improved knowledge of automatization will result in better chances on the job marked. For the purpose of optimizing the benefit of the Teaching Factory, the relevant learning content has to be identified in the first step. Next, an overall concept is created from the learning content, which then gets separated into small stations. Finally, a sample solution of the control system and a simulation of a virtual commissioning is created. With the finished design, the sample solution and the simulation the Teaching Factory represents a platform for teaching automatization. Using this platform will enable future professionals to gain practical experience in handling programmable logic controllers. As a result of splitting the learning content into individual stations, the user will be able to acquire learning goals more flexibly and consequently with fast learning success.

Keywords: Programmable logic controll, PLC, education, automatization, university

Contents

1.		Introduction														1							
	1.1. Motivation																1						
		Aim of this 7																					
	1.3.	Structure of	this T	hes	is																		1
2.		e of the Art																					2
	2.1.	Software 1																					2
	2.2.	Software 2																					2
Bil	oliog	raphy																					Ш
Lis	st of	Figures																					IV
List of Tables															٧								
Lis	st of	Code																					V
Α.	Exa	mple Appen	dix																				A 1

1. Introduction

- 1.1. Motivation
- 1.2. Aim of this Thesis
- 1.3. Structure of this Thesis

2. State of the Art

- 2.1. Software 1
- 2.2. Software 2

Bibliography

List of Figures IV

List of Figures

List of Tables V

List of Tables

List of Code VI

List of Code

A. Example Appendix