Optimal Redistribution: Rising Inequality vs. Rising Living Standards

Axelle Ferriere¹ Philipp Grübener² Dominik Sachs³

¹Sciences Po, CNRS & CEPR

²Washington University in St. Louis

³University of St. Gallen & CEPR

September 2025

- Large increase in **income inequality** in the US from 1950 to 2010
 - Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

- Large increase in **income inequality** in the US from 1950 to 2010
 - Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

⇒ More redistribution

Workhorse models of optimal income taxation

Mankiw, Weinzierl, and Yagan (2009), Diamond and Saez (2011)

- Large increase in **income inequality** in the US from 1950 to 2010
 - Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

⇒ More redistribution

Workhorse models of optimal income taxation

Mankiw, Weinzierl, and Yagan (2009), Diamond and Saez (2011)

- Large increase in **standard of living**
 - Income per capita tripled, spending share on necessities dropped

- Large increase in **income inequality** in the US from 1950 to 2010
 - Larger top income shares, thicker Pareto tail

Piketty and Saez (2003)

⇒ More redistribution

Workhorse models of optimal income taxation

Mankiw, Weinzierl, and Yagan (2009), Diamond and Saez (2011)

- Large increase in **standard of living**
 - Income per capita tripled, spending share on necessities dropped
- \Rightarrow How does the standard of living affect the optimal tax-and-transfer (t&T) system?

What We Do

- This paper: Optimal taxation with non-homothetic preferences
 - Heterogeneous income elasticities of demand across sectors (Engel's law)
 NH CES Comin, Lashkari, and Mestieri (2021), IA Preferences Alder, Boppart, and Müller (2022)
 - Changes in levels ("growth") \Rightarrow Rising living standards

What We Do

- This paper: Optimal taxation with non-homothetic preferences
 - Heterogeneous income elasticities of demand across sectors (Engel's law)
 NH CES Comin, Lashkari, and Mestieri (2021), IA Preferences Alder, Boppart, and Müller (2022)
 - Changes in levels ("growth") ⇒ Rising living standards
- Formalize the effects of rising living standards in a static Mirrlees setup
 - Distribution vs. efficiency concerns

Heathcote and Tsujiyama (2021)

What We Do

- This paper: Optimal taxation with non-homothetic preferences
 - Heterogeneous income elasticities of demand across sectors (Engel's law)
 NH CES Comin, Lashkari, and Mestieri (2021), IA Preferences Alder, Boppart, and Müller (2022)
 - Changes in levels ("growth") ⇒ Rising living standards
- Formalize the effects of rising living standards in a static Mirrlees setup
 - Distribution vs. efficiency concerns
 Heathcote and Tsuiivama (2021)
- Quantify the relative effects of rising inequality vs. rising living standards in Aiyagari setup
 - Calibrated 1950 t&T sytem with inverse optimum Pareto weights
 - Optimal 2010 t&T system with: 1. only rising inequality; and 2. also rising living standards

What We Find

- Non-homotheticities ⇒ decreasing relative risk aversion (DRRA)
 - Intratemporal allocations informative on intertemporal properties of utility function

What We Find

- Non-homotheticities ⇒ decreasing relative risk aversion (DRRA)
 - Intratemporal allocations informative on intertemporal properties of utility function
- Mirrlees setup: two main effects of rising living standards
 - Lowers dispersion in marginal utilities ⇒ Lower distribution gains from redistribution
 - Lowers income effects ⇒ Ambiguous effects on efficiency costs of redistribution

What We Find

- Non-homotheticities ⇒ decreasing relative risk aversion (DRRA)
 - Intratemporal allocations informative on intertemporal properties of utility function
- Mirrlees setup: two main effects of rising living standards
 - Lowers dispersion in marginal utilities ⇒ Lower distribution gains from redistribution
 - Lowers income effects ⇒ Ambiguous effects on efficiency costs of redistribution
- Quantitatively large effects of rising living standards
 - Rising living standards calls for less redistribution
 - Dampens by about 30% the optimal increase in redistribution due to rising inequality

Literature

■ Optimal taxation

- Stationary economies and business cycle fluctuations in homothetic one sector economies Mirrlees (1971), Diamond (1998), Saez (2001); Ramsey (1927), Werning (2007), Heathcote, Storesletten, and Violante (2017)
- Optimal tax system over time in homothetic economies
 Mankiw, Weinzierl, and Yagan (2009), Diamond and Saez (2011), Scheuer and Werning (2017), Heathcote,
 Storesletten, and Violante (2020), Brinca, Duarte, Holter, and Oliveira (2022)
- Optimal taxation with non-homothetic preferences
 Oni (2023), Jaravel and Olivi (2024)

■ Consumption patterns, Engel curves, and non-homothetic preferences

Geary (1950), Herrendorf, Rogerson, and Valentinyi (2013), Boppart (2014), Herrendorf, Rogerson, and Valentinyi (2014), Aguiar and Bils (2015), Comin, Lashkari, and Mestieri (2021), Alder, Boppart, and Müller (2022)

.

Mirrleesian Optimal Nonlinear Income Taxation

with Non-Homothetic Preferences

Households

- lacktriangle Continuum of heterogeneous households with labor productivity heta
 - Pre-tax labor income $y=\theta n$, where n is labor; distribution $f(\theta)$

Households

- lacktriangle Continuum of heterogeneous households with labor productivity heta
 - Pre-tax labor income $y=\theta n$, where n is labor; distribution $f(\theta)$
- lacktriangle Separable utility over consumption and leisure: U(c)-v(n)
 - Isoelastic labor preferences $v(n) = Bn^{1+\varphi}/(1+\varphi)$
 - $c=(c_1,\ldots,c_J)$ denotes a basket of consumption goods

Households

- lacktriangle Continuum of heterogeneous households with labor productivity heta
 - Pre-tax labor income $y=\theta n$, where n is labor; distribution $f(\theta)$
- Separable utility over consumption and leisure: U(c) v(n)
 - Isoelastic labor preferences $v(n) = Bn^{1+\varphi}/(1+\varphi)$
 - $-c = (c_1, \ldots, c_J)$ denotes a basket of consumption goods
- Let u denote the indirect utility function

$$u(e;\Lambda,ar{p}) \equiv \max_{\{c_j\}_j} \ U(c)$$
 s.t. $\sum_j p_j c_j = e,$ where $p_j \equiv rac{ar{p}_j}{\Lambda}$

- e: nominal expenditures
- $-\bar{p}$: vector of relative prices, kept constant (drop it!)
- $-\Lambda$: **level** of the economy

Optimal Taxation Problem

■ Household's static maximization problem:

$$V(\theta; \mathcal{T}(\cdot; \Lambda), \Lambda) \equiv \max_{e, n} \ u(e; \Lambda) - B \frac{n^{1+\varphi}}{1+\varphi} \ \text{ s.t. } \ e = n\theta - \mathcal{T}\left(n\theta; \Lambda\right)$$

- $-\mathcal{T}(\cdot;\Lambda)$: fully nonlinear tax-and-transfer schedule
- Let $n(\theta;\mathcal{T}(\cdot),\Lambda)$ denote the labor policy

Optimal Taxation Problem

■ Household's static maximization problem:

$$V(\theta; \mathcal{T}(\cdot; \Lambda), \Lambda) \equiv \max_{e, n} \ u(e; \Lambda) - B \frac{n^{1+\varphi}}{1+\varphi} \ \text{s.t.} \ e = n\theta - \mathcal{T}(n\theta; \Lambda)$$

- $-\mathcal{T}(\cdot;\Lambda)$: fully nonlinear tax-and-transfer schedule
- Let $n(\theta; \mathcal{T}(\cdot), \Lambda)$ denote the labor policy
- Government's maximization problem:

$$\max_{\mathcal{T}(\cdot;\Lambda)} \int_{\underline{\theta}}^{\overline{\theta}} V(\theta;\mathcal{T}(\cdot;\Lambda),\Lambda) w(\theta) f(\theta) d\theta \quad \text{s.t.} \quad \int_{\underline{\theta}}^{\overline{\theta}} \mathcal{T}(n(\theta;\mathcal{T}(\cdot;\Lambda),\Lambda)\theta;\Lambda) f(\theta) d\theta \geq 0$$

- Pareto weights distribution $\{w(\theta)\},$ balanced budget with no spending

Nonlinear Taxes: General Formula

Heathcote and Tsujiyama (2021)

lacktriangle Optimal marginal rate equates efficiency costs of taxation to distribution gains $\forall heta^*$

Efficiency Redistribution

Nonlinear Taxes: General Formula

■ Optimal marginal rate equates efficiency costs of taxation to distribution gains $\forall \theta^*$ Heathcote and Tsujiyama (2021)

$$\underbrace{1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}_{E(\theta^*; \mathcal{T}, \Lambda)}}_{E(\theta^*; \mathcal{T}, \Lambda)} = \underbrace{1 - \underbrace{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}_{\underline{\theta}} \underbrace{\int_{\theta}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}_{D(\theta^*; \mathcal{T}, \Lambda)}}_{D(\theta^*; \mathcal{T}, \Lambda)}$$

- Let $\eta(\theta;\Lambda) \equiv dy(\theta;\Lambda)/d\mathcal{T}(0;\Lambda)$ denote the income effect of type- θ worker
- Let $u_e(heta;\Lambda)$ denote the marginal utility of expenditure of type-heta worker
- Changes in Λ can alter: $\eta(\theta; \Lambda)$, $u_e(\theta; \Lambda)$; $y(\theta; \Lambda)$, $e(\theta; \Lambda)$

Efficiency Redistribution

Homothetic Benchmark Neutrality Result

■ Assume homothetic CRRA preferences

$$U(c) = \frac{\mathcal{C}(c)^{1-\gamma}}{1-\gamma}, \text{ where } \mathcal{C}(c) = \left(\sum_{j} \Omega_{j}^{\frac{1}{\sigma}} c_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{1-\sigma}{\sigma}}$$

Details

Homothetic Benchmark Neutrality Result

■ Assume homothetic CRRA preferences

$$U(c) = rac{\mathcal{C}(c)^{1-\gamma}}{1-\gamma}, ext{ where } \mathcal{C}(c) = \left(\sum_j \Omega_j^{rac{1}{\sigma}} c_j^{rac{\sigma-1}{\sigma}}
ight)^{rac{1-\sigma}{\sigma}}$$

- Proposition When $u(e; \Lambda)$ satisfies CRRA
 - $D_{\Lambda}(\theta, \Lambda) = E_{\Lambda}(\theta, \Lambda) = 0$
 - Expenditures and incomes grow at same constant rate
 - \Rightarrow Optimal marginal and average tax rates are independent of Λ $\forall \theta$

Details

В

- Consumption patterns across goods require non-homothetic preferences
 - Service shares are rising over time and with income in the cross-section

- Consumption patterns across goods require non-homothetic preferences
 - Service shares are rising over time and with income in the cross-section
- Nonlinear Engel curves ⇒ non-constant relative risk aversion Stiglitz (1969), Hanoch (1977), Crossley and Low (2011)

- Consumption patterns across goods require non-homothetic preferences
 - Service shares are rising over time and with income in the cross-section
- Nonlinear Engel curves ⇒ non-constant relative risk aversion Stiglitz (1969), Hanoch (1977), Crossley and Low (2011)
- + Decreasing relative risk aversion (DRRA), or "Luxuries Are Easier to Postpone" Atkeson and Ogaki (1996), Browning and Crossley (2000)

- Consumption patterns across goods require non-homothetic preferences
 - Service shares are rising over time and with income in the cross-section
- Nonlinear Engel curves ⇒ non-constant relative risk aversion Stiglitz (1969), Hanoch (1977), Crossley and Low (2011)
- + Decreasing relative risk aversion (DRRA), or "Luxuries Are Easier to Postpone" Atkeson and Ogaki (1996), Browning and Crossley (2000)
- + DRRA supported by empirical evidence
 Ogaki and Zhang (2001), Blundell, Browning, and Meghir (1994), Attanasio and Browning (1995), ...

Non-Homothetic CES Comin, Lashkari, and Mestieri (2021)

■ Utility from aggregated consumption:

$$\frac{\mathcal{C}(c)^{1-\gamma}}{1-\gamma}$$

■ Consumption aggregator C(c) implicitly defined by

$$\sum_{j}^{J} \left(\Omega_{j} (\mathcal{C}(c))^{\varepsilon_{j}} \right)^{\frac{1}{\sigma}} c_{j}^{\frac{\sigma-1}{\sigma}} = 1$$

- $arepsilon_j$ governs income elasticity of demand for good $j,\,\sigma$ is elasticity of substitution btw. goods

$$\Rightarrow \frac{\partial c_j}{\partial e} = \sigma + (1 - \sigma) \frac{\varepsilon_j}{\bar{\varepsilon}}$$

■ Focus on gross complements $\sigma < 1$

IA Preferences

$$\mathsf{RRA}(e;\Lambda) = \gamma \times \underbrace{\frac{\mathcal{C}_e(e;\Lambda)e}{\mathcal{C}(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C} \; \mathsf{w.r.t.} \; e} - \underbrace{\frac{\mathcal{C}_{ee}(e;\Lambda)e}{\mathcal{C}_e(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C}_e \; \mathsf{w.r.t.} \; e}$$

$$\mathsf{RRA}(e;\Lambda) = \gamma \times \underbrace{\frac{\mathcal{C}_e(e;\Lambda)e}{\mathcal{C}(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C} \; \mathsf{w.r.t.} \; e} - \underbrace{\frac{\mathcal{C}_{ee}(e;\Lambda)e}{\mathcal{C}_e(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C}_e \; \mathsf{w.r.t.} \; e}$$

- Homothetic: $\mathcal{C}(e;\Lambda) \propto e \Rightarrow \mathsf{RRA} = \gamma$

$$\mathsf{RRA}(e;\Lambda) = \gamma \times \underbrace{\frac{\mathcal{C}_e(e;\Lambda)e}{\mathcal{C}(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C} \; \mathsf{w.r.t.} \; e} - \underbrace{\frac{\mathcal{C}_{ee}(e;\Lambda)e}{\mathcal{C}_e(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C}_e \; \mathsf{w.r.t.} \; e}$$

- Non-homothetic: $\varepsilon_i \neq \varepsilon_j \Rightarrow$ Elasticity of \mathcal{C} w.r.t. e decreasing in e \Rightarrow The larger γ the stronger DRRA

$$\mathsf{RRA}(e;\Lambda) = \gamma \times \underbrace{\frac{\mathcal{C}_e(e;\Lambda)e}{\mathcal{C}(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C} \; \mathsf{w.r.t.} \; e} - \underbrace{\frac{\mathcal{C}_{ee}(e;\Lambda)e}{\mathcal{C}_e(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C}_e \; \mathsf{w.r.t.} \; e}$$

- Non-homothetic: $\varepsilon_i \neq \varepsilon_j \Rightarrow$ Elasticity of \mathcal{C} w.r.t. e decreasing in e \Rightarrow The larger γ the stronger DRRA

Empirically:

- Consumption baskets govern ${\mathcal C}$
- How to discipline γ ? Level of RRA at one point in time, or dynamics of labor supply

$$\mathsf{RRA}(e;\Lambda) = \gamma \times \underbrace{\frac{\mathcal{C}_e(e;\Lambda)e}{\mathcal{C}(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C} \; \mathsf{w.r.t.} \; e} - \underbrace{\frac{\mathcal{C}_{ee}(e;\Lambda)e}{\mathcal{C}_e(e;\Lambda)}}_{\mathsf{Elasticity of } \mathcal{C}_e \; \mathsf{w.r.t.} \; e}$$

- Non-homothetic: $\varepsilon_i \neq \varepsilon_j \Rightarrow$ Elasticity of \mathcal{C} w.r.t. e decreasing in e \Rightarrow The larger γ the stronger DRRA

Empirically:

- Consumption baskets govern \mathcal{C}
- $-\,$ How to discipline $\gamma?$ Level of RRA at one point in time, or dynamics of labor supply
 - · Closed-form NH CES (Bohr, Mestieri, and Yavuz 2023): DRRA \Leftrightarrow labor supply falls with growth
 - · Quantitative model with 3 goods: DRRA

- 1. **DRRA** \Rightarrow Dispersion of marginal utilities decreases with Λ
 - ightarrow Redistribution should decrease with rising living standards

- 1. **DRRA** \Rightarrow Dispersion of marginal utilities decreases with Λ
 - ightarrow Redistribution should decrease with rising living standards
- 2. **DRRA** \Rightarrow **Income effect** η decreases with Λ

- 1. **DRRA** \Rightarrow Dispersion of marginal utilities decreases with Λ
 - \rightarrow Redistribution should decrease with rising living standards
- 2. **DRRA** \Rightarrow **Income effect** η decreases with Λ
 - (a) Efficiency cost of taxes increases → Redistribution should decrease
 - (b) Efficiency cost of lump-sum transfer decreases \rightarrow Redistribution should increase

- 1. **DRRA** \Rightarrow Dispersion of marginal utilities decreases with Λ
 - → Redistribution should decrease with rising living standards
- 2. **DRRA** \Rightarrow **Income effect** η decreases with Λ
 - (a) Efficiency cost of taxes increases → Redistribution should decrease
 - (b) Efficiency cost of lump-sum transfer decreases \rightarrow Redistribution should increase
- 3. **DRRA** \Rightarrow Low- θ hours worked typically decrease more with $\Lambda \rightarrow$ **Higher inequality**
 - → Redistribution should increase

Non-Homothetic Preferences & Rising Living Standards

- 1. **DRRA** \Rightarrow Dispersion of marginal utilities decreases with Λ
 - \rightarrow Redistribution should decrease with rising living standards
- 2. **DRRA** \Rightarrow **Income effect** η decreases with Λ
 - (a) Efficiency cost of taxes increases → Redistribution should decrease
 - (b) Efficiency cost of lump-sum transfer decreases \rightarrow Redistribution should increase
- 3. **DRRA** \Rightarrow Low- θ hours worked typically decrease more with $\Lambda \rightarrow$ **Higher inequality**
 - → Redistribution should increase
- **Proposition:** Consider an economy at the Laissez-Faire at a given level Λ .
 - A marginal increase in Λ implies an optimal t&T schedule that becomes regressive.

Quantification in a Dynamic Model

with Private Insurance

Quantification in a Dynamic Model

- Dynamic incomplete markets model with private saving
 - To disentangle inequality in expenditure, income, and wealth
 - To discipline DRRA with dynamic savings decisions
- Parametric tax-and-transfer system

Ferriere, Grübener, Navarro, and Vardishvili (2023)

Households: Value Function

■ Household's value function with productivity θ and assets a:

$$V(a, \theta; \Lambda, p) = \max_{e, a', n} \left\{ u(e; \Lambda, p) - B \frac{n^{1+\varphi}}{1+\varphi} + \beta \mathbb{E}_{\theta'} \left[V(a', \theta'; \Lambda, p) | \theta \right] \right\}$$
$$e + a' \le \theta n + (1+r)a - \mathcal{T}(\theta n), \quad a' \ge 0$$

- Productivity θ follows a stochastic process
- Discount factor β

s.t.

- Fixed interest rate r (partial equilibrium)

14

Calibration Overview

- Calibration to the US economy in 1950 and 2010 with three sectors
 - Growth; Government; Inequality; Preferences

Calibration Growth

- Calibration to the US economy in 1950 and 2010 with three sectors
 - Growth; Government; Inequality; Preferences
- Growth: Fall in prices
 - Aggregate growth in GDP per capita: 3.3
 NIPA
 - Prices relative to goods

Computed based on Herrendorf, Rogerson, and Valentinyi (2013) [NIPA]

- + Agriculture (food) \rightarrow 1.00, 1.87
- + Services \rightarrow 1.00, 3.16

Calibration Growth

- Calibration to the US economy in 1950 and 2010 with three sectors
 - Growth; Government; Inequality; Preferences
- Growth: Fall in prices
 - Aggregate growth in GDP per capita: 3.3
 NIPA
 - Prices relative to goods

Computed based on Herrendorf, Rogerson, and Valentinyi (2013) [NIPA]

```
+ Agriculture (food) \rightarrow 1.00, 1.87 + Services \rightarrow 1.00, 3.16
```

- Interest rate fixed at 2%; discount factor to match wealth-to-income ratio of 4.1 in 2010 Piketty and Zucman (2014) [NIPA]
 - Untargeted wealth-to-income ratio in 1950 of 3.2 [data: 3.65]

Calibration Government

Functional form

Parametric tax function plus lump-sum transfer

Ferriere, Grübener, Navarro, and Vardishvili (2023)

$$\mathcal{T}(y) = \exp\left[\log(\lambda)\left(y^{-2\tau}\right)\right]y - T$$

+ λ : level of the tax rates; τ : progressivity; T: transfers

Calibration Government

■ Functional form

- Parametric tax function plus lump-sum transfer

Ferriere, Grübener, Navarro, and Vardishvili (2023)

$$\mathcal{T}(y) = \exp\left[\log(\lambda)\left(y^{-2\tau}\right)\right]y - T$$

 $+\lambda$: level of the tax rates; τ : progressivity; T: transfers

■ Changes over time

 T to match spending on means-tested transfers NIPA

$$+~T/Y=1.2\%$$
 in 1950 $ightarrow$ 4.0% in 2010

- au to match difference in average marginal tax rate between top 10% and bottom 90% Mertens and Montiel Olea (2018)
 - + AMTR is 13% in 1950 \rightarrow 9% in 2010
- Exogenous government spending to capture all remaining spending
 - + Constant over time: $G/Y \approx 22.0\%$

Calibration Inequality

- Wages follow AR(1) in logs, with appended Pareto tail
 - Persistence ρ fixed at 0.9
 - Time-varying Pareto tail parameter Aoki and Nirei (2017)
 - Shock innovation set to match variance of log income from SCF+ Kuhn, Schularick, and Steins (2020)

Calibration Inequality

- Wages follow AR(1) in logs, with appended Pareto tail
 - Persistence ρ fixed at 0.9
 - Time-varying Pareto tail parameter Aoki and Nirei (2017)
 - Shock innovation set to match variance of log income from SCF+ Kuhn, Schularick, and Steins (2020)

1950	Income Share by Quintile						
Model	6%	10%	14%	21%	50%		
Data (SCF+)	6%	11%	15%	21%	48%		
2010	Income Share by Quintile						
Model	4%	8%	12%	19%	56%		
Data (SCF+)	4%	9%	13%	21%	53%		

Calibration Inequality

- Wages follow AR(1) in logs, with appended Pareto tail
 - Persistence ρ fixed at 0.9
 - Time-varying Pareto tail parameter Aoki and Nirei (2017)
 - Shock innovation set to match variance of log income from SCF+ Kuhn, Schularick, and Steins (2020)

1950	Wealth Share by Quintile						
Model	0%	2%	7%	17%	74%		
Data (SCF+)	0%	1%	4%	11%	84%		
2010	Wealth Share by Quintile						
Model	0%	1%	5%	14%	80%		
Data (SCF+)	-1%	1%	3%	10%	87%		

Calibration Preferences

- Non-homothetic CES parameters
 - Income elasticities of demand and elasticity of substitution between goods Estimates of Comin, Lashkari, and Mestieri (2021) based on CEX micro data

$$+ \ \sigma = 0.3; \ \varepsilon_A = 0.1, \varepsilon_G = 1.0, \varepsilon_S = 1.8$$

Calibration Preferences

■ Non-homothetic CES parameters

- Income elasticities of demand and elasticity of substitution between goods Estimates of Comin, Lashkari, and Mestieri (2021) based on CEX micro data $+ \sigma = 0.3$; $\varepsilon_A = 0.1$, $\varepsilon_C = 1.0$, $\varepsilon_S = 1.8$
- $-\Omega_{j}$: match aggregate sector shares in 2010 Computed based on Herrendorf, Rogerson, and Valentinyi (2013) [NIPA]
 - + Agriculture (food) 8%, goods 26%, services 67%
 - + Untargeted 1950: agriculture 17% [data 22%], goods 49% [39%], services 34% [39%]

Calibration Preferences

■ Non-homothetic CES parameters

- Income elasticities of demand and elasticity of substitution between goods Estimates of Comin, Lashkari, and Mestieri (2021) based on CEX micro data $+ \sigma = 0.3$; $\varepsilon_A = 0.1$, $\varepsilon_C = 1.0$, $\varepsilon_S = 1.8$

 $-\Omega_{j}$: match aggregate sector shares in 2010 Computed based on Herrendorf, Rogerson, and Valentinyi (2013) [NIPA]

- + Agriculture (food) 8%, goods 26%, services 67%
- + Untargeted 1950: agriculture 17% [data 22%], goods 49% [39%], services 34% [39%]
- Remaining preference parameters
 - Fix Frisch elasticity $1/\varphi$ to standard value of 0.5
 - Consumption curvature γ to match RRA = 1 in 2010

■ Calibrated non-homothetic preferences imply DRRA

- Calibrated non-homothetic preferences imply DRRA
 - RRA falls from 1.07 in 1950 to 1, small dispersion

- Calibrated non-homothetic preferences imply DRRA
 - RRA falls from 1.07 in 1950 to 1, small dispersion
- Implied labor supply dynamics
 - Falling labor supply over time: 7\% Ramev and Francis (2009), Boppart and Krusell (2020)
 - Cross-section correlation between hours and wages Costa (2000), Mantovani (2022)

- Calibrated non-homothetic preferences imply DRRA
 - RRA falls from 1.07 in 1950 to 1, small dispersion
- Implied labor supply dynamics
 - Falling labor supply over time: 7\% Ramev and Francis (2009), Boppart and Krusell (2020)
 - Cross-section correlation between hours and wages Costa (2000), Mantovani (2022)
- Relation between RRA, wealth effects, and MPC
 - Wealth effects: 0.02 in 2010 Golosov, Graber, Mogstad, and Novgorodsky (2023)
 - Model MPC: 17% in 2010 Johnson, Parker, and Souleles (2006), Kaplan and Violante (2022), ...

Rising Living Standards vs. Rising Inequality

■ Use dynamic model to quantify effect of rising living standards relative to rising inequality

Rising Living Standards vs. Rising Inequality

- Use dynamic model to quantify effect of rising living standards relative to rising inequality
- Pareto weights
 - Inverse optimum in 1950
 - Bourguignon and Spadaro (2012), Lockwood and Weinzierl (2016), Hendren (2020)
 - Weights as a function of the expenditure percentile

$$\omega(p_i) = \exp(\mu p_i(e_i) + \nu p_i(e_i)^2)$$

Rising Living Standards vs. Rising Inequality

- Use dynamic model to quantify effect of rising living standards relative to rising inequality
- Pareto weights
 - Inverse optimum in 1950
 - Bourguignon and Spadaro (2012), Lockwood and Weinzierl (2016), Hendren (2020)
 - Weights as a function of the expenditure percentile

$$\omega(p_i) = \exp(\mu p_i(e_i) + \nu p_i(e_i)^2)$$

- Experiment in two steps
 - First add inequality only
 - Second compare optimal 2010 with inequality and growth
 - + Growth: fall in prices and changes in relative prices
 - Look at two measures: T/Y and \mathcal{R}

■ Calibration in 1950: T/Y = 1.2%

■ 1950: $T/Y = 1.2\% \Rightarrow$ 2010 higher inequality: T/Y = 4.7%

■ 1950: $T/Y = 1.2\% \Rightarrow$ 2010 higher ineq & living standards: T/Y = 3.7%

 \blacksquare \mathcal{R} in 1950: 24p.p.

■ \mathcal{R} in 1950: 24p.p. \Rightarrow 53p.p. with higher inequality

- \mathcal{R} in 1950: 24p.p. \Rightarrow 53p.p. with higher inequality \Rightarrow 45p.p. with higher living standards
 - Rising Living Standards reduce increase in \mathcal{R} by 30%

- Calibration following a partial-insurance approach
 - Target consumption dispersion of the quantitative model in 1950 and 2010
- Replicate the main quantitative exercise
 - Obtain similar effects of rising living standards relative to rising inequality

- Calibration following a partial-insurance approach
 - Target consumption dispersion of the quantitative model in 1950 and 2010
- Replicate the main quantitative exercise
 - Obtain similar effects of rising living standards relative to rising inequality
- Decompose the different channels using the optimal tax formula
 - Rising living standards reduce the increase in \mathcal{R} by 7p.p.

- Calibration following a partial-insurance approach
 - Target consumption dispersion of the quantitative model in 1950 and 2010
- Replicate the main quantitative exercise
 - Obtain similar effects of rising living standards relative to rising inequality
- Decompose the different channels using the optimal tax formula
 - Rising living standards reduce the increase in \mathcal{R} by 7p.p.
 - Marginal utilities vs. Income effects vs. new hours and expenditures

- Calibration following a partial-insurance approach
 - Target consumption dispersion of the quantitative model in 1950 and 2010
- Replicate the main quantitative exercise
 - Obtain similar effects of rising living standards relative to rising inequality
- Decompose the different channels using the optimal tax formula
 - Rising living standards reduce the increase in \mathcal{R} by 7p.p.
 - Marginal utilities vs. Income effects vs. new hours and expenditures
 - -9p.p.

- vs. -9p.p. vs. -7p.p.

- Calibration following a partial-insurance approach
 - Target consumption dispersion of the quantitative model in 1950 and 2010
- Replicate the main quantitative exercise
 - Obtain similar effects of rising living standards relative to rising inequality
- Decompose the different channels using the optimal tax formula
 - Rising living standards reduce the increase in \mathcal{R} by 7p.p.
 - Marginal utilities vs. Income effects vs. new hours and expenditures
 - -9p.p. vs. -9p.p. vs. -7p.p.
- Robustness

Conclusion

- Optimal taxation with rising living standards
 - Affect efficiency and distribution concerns
- Dampen optimal increase in redistribution due to rising inequality

Conclusion

- Optimal taxation with rising living standards
 - Affect efficiency and distribution concerns
- Dampen optimal increase in redistribution due to rising inequality

Thank you!

Appendix

Theory Appendix

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\theta}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

■ Efficiency costs of taxes and transfers depend on elasticities φ^{-1} and income effects η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}
 - + Increases labor supply of workers with $y>y(\theta^*)$: income effect η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}
 - + Increases labor supply of workers with $y>y(\theta^*)$: income effect η
- **Denominator:** Effects of higher lump-sum transfer. . .

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}
 - + Increases labor supply of workers with $y>y(\theta^*)$: income effect η
- **Denominator:** Effects of higher lump-sum transfer. . .
 - + Decreases labor supply of all workers: income effect η

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1}{1 + \varphi} \frac{\theta^* f(\theta^*)}{1 - F(\theta^*)} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}
 - + Increases labor supply of workers with $y > y(\theta^*)$: income effect η
- Denominator: Effects of higher lump-sum transfer. . .
 - + Decreases labor supply of all workers: income effect η
- No behavioral responses: $\eta = 0$

$$E(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{1 - \frac{\mathcal{T}'(y(\theta^*; \Lambda); \Lambda)}{1 - \mathcal{T}'(y(\theta^*; \Lambda); \Lambda)} \frac{1 - \theta^* f(\theta^*)}{1 + \varphi} + \int_{\theta^*}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \frac{dF(\theta)}{1 - F(\theta^*)}}{1 + \int_{\underline{\theta}}^{\bar{\theta}} \mathcal{T}'(y(\theta; \Lambda); \Lambda) \eta(\theta; \Lambda) dF(\theta)}$$

- **Numerator:** Fiscal effect of higher marginal rate at $y(\theta^*)$...
 - + Decreases labor supply of worker with $y(\theta^*)$: elasticity φ^{-1}
 - + Increases labor supply of workers with $y > y(\theta^*)$: income effect η
- Denominator: Effects of higher lump-sum transfer. . .
 - + Decreases labor supply of all workers: income effect η
- No behavioral responses: $\eta = 0$, $\varphi^{-1} = 0 \Rightarrow E = 0$

lacktriangle Distribution gains of taxes and transfers depend on dispersion of marginal utilities u_e

$$D(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\theta}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}$$

lacktriangle Distribution gains of taxes and transfers depend on dispersion of marginal utilities u_e

$$D(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}$$

- **Numerator:** Welfare loss from taxing workers with $y > y(\theta^*)$

lacktright Distribution gains of taxes and transfers depend on dispersion of marginal utilities u_e

$$D(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\underline{\theta}}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}$$

- **Numerator:** Welfare loss from taxing workers with $y > y(\theta^*)$
- Denominator: Welfare gains from increasing lump-sum transfer

lacktright Distribution gains of taxes and transfers depend on dispersion of marginal utilities u_e

$$D(\theta^*; \mathcal{T}, \Lambda) = 1 - \frac{\int_{\theta^*}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) \frac{dF(\theta)}{1 - F(\theta^*)}}{\int_{\theta}^{\bar{\theta}} u_e(\theta; \Lambda) w(\theta) dF(\theta)}$$

- **Numerator:** Welfare loss from taxing workers with $y > y(\theta^*)$
- Denominator: Welfare gains from increasing lump-sum transfer
- No heterogeneity: $\mathbb{E}[u_e(\theta;\Lambda)|\theta \geq \theta^*] = \mathbb{E}[u_e(\theta;\Lambda)] \ \forall \theta^* \Rightarrow D = 0$

Homothetic Benchmark Neutrality Result

■ Assume homothetic CRRA preferences

$$U(c) = \frac{\mathcal{C}(c)^{1-\gamma}}{1-\gamma}, \text{ where } \mathcal{C}(c) = \left(\sum_{j} \Omega_{j}^{\frac{1}{\sigma}} c_{j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{1-\sigma}{\sigma}}$$

Indirect utility function reads

$$\frac{\left(e/p^{\star}\right)^{1-\gamma}}{1-\gamma}-B\frac{n^{1+\varphi}}{1+\varphi}, \text{ with } p^{\star}=\frac{1}{\Lambda}\left(\sum_{j}\Omega_{j}\hat{p}_{j}^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

Homothetic Benchmark Neutrality Result

 \square **Proposition:** The level Λ is irrelevant to the optimal level of redistribution.

Under the optimal tax-and-transfer system:

- Expenditures and incomes grow at constant rate $\alpha \equiv (1 - \gamma)/(\gamma + \varphi) \ \forall \theta$

$$y(\theta; \Lambda(1+g)) = (1+\alpha g)y(\theta; \Lambda), \ e(\theta; \Lambda(1+g)) = (1+\alpha g)e(\theta; \Lambda),$$

- Marginal and average tax rates are constant $\forall \theta$:

$$\begin{split} \mathcal{T}'(y(\theta;\Lambda(1+g));\Lambda(1+g)) &= \mathcal{T}'(y(\theta;\Lambda);\Lambda),\\ \frac{\mathcal{T}(y(\theta;\Lambda(1+g));\Lambda(1+g))}{y(\theta;\Lambda(1+g))} &= \frac{\mathcal{T}(y(\theta;\Lambda),\Lambda)}{y(\theta;\Lambda)}. \end{split}$$

- T also grows at rate α .
- Sketch of a proof: Ratios of marginal utilities are constant; Income effects are constant
- \blacksquare Extends to G>0 as long as G also grows at constant rate α

Evidence: Risk Aversion and IES

- DRRA supported by consumption data from Indian villages
 Ogaki and Zhang (2001), Zhang and Ogaki (2004)
- IES increasing in consumption/wealth, based on estimating consumption Euler equation Blundell, Browning, and Meghir (1994), Attanasio and Browning (1995), Atkeson and Ogaki (1996)
- Low interest elasticity of savings in poor countries

 Rebelo (1992), Ogaki, Ostry, and Reinhart (1996), Chatterjee and Ravikumar (1999)
- DRRA powerful in matching portfolio choices across the wealth distribution Wachter and Yogo (2010), Straub (2019), Cioffi (2021), Meeuwis (2022)

- Infer intertemporal properties of utility from intratemporal allocations
 - Cardinalization?
 - One can always add a monotonic V(.) function to $u(e;\Lambda)-B\frac{n^{1+\varphi}}{1+\varphi}$

- Infer intertemporal properties of utility from intratemporal allocations
 - Cardinalization?
 - One can always add a monotonic V(.) function to $u(e;\Lambda) B \frac{n^{1+\varphi}}{1+\varphi}$
- Intratemporal allocations do rule out constant RRA

Stiglitz (1969), Hanoch (1977), Crossley and Low (2011)

- Infer intertemporal properties of utility from intratemporal allocations
 - Cardinalization?
 - One can always add a monotonic V(.) function to $u(e;\Lambda) B \frac{n^{1+\varphi}}{1+\varphi}$
- Intratemporal allocations do rule out constant RRA Stiglitz (1969), Hanoch (1977), Crossley and Low (2011)
- lacktriangle Theory: Conditions on V(.) such that NH implies more DRRA
- Quantitative: Dynamic model with dynamic policy functions

- Infer intertemporal properties of utility from intratemporal allocations
 - Cardinalization?
 - One can always add a monotonic V(.) function to $u(e;\Lambda) B \frac{n^{1+\varphi}}{1+\varphi}$
- Intratemporal allocations do rule out constant RRA Stiglitz (1969), Hanoch (1977), Crossley and Low (2011)
- Theory: Conditions on V(.) such that NH implies more DRRA
- Quantitative: Dynamic model with dynamic policy functions
- Atkeson and Ogaki (1996): "There exist at least two intuitive reasons why the IES might be smaller for the poor than it is for the rich [...]" ... "This intuition is based entirely on our own introspection."

Non-Homothetic Preferences Stone-Geary Preferences

Geary (1950)

■ One-sector Stone-Geary preferences

$$u(c) = \frac{(c - \bar{c})^{1 - \gamma}}{1 - \gamma}$$

- Subsistence consumption level $\bar{c} > 0$
- ⇒ Implies decreasing relative risk aversion (DRRA)
- Counterfactual: vanishing non-homotheticities

lacktriangle Preferences defined over expenditures e

$$u(e;\Lambda) = \frac{1-\iota}{\iota} \left(\frac{1}{\mathbf{B}(\Lambda)} \left(e - \underbrace{\sum_{j} \hat{p}_{j}}_{\mathbf{A}(\Lambda)} \bar{c}_{j} \right) \right)^{\iota} - \mathbf{D}(\Lambda), \text{ with } \iota > 0$$

$$- \ \ \text{Price function } \mathbf{B}(\Lambda) = \Big(\textstyle\sum_{j} \Omega_{j} p_{j}^{1-\sigma}\Big)^{\frac{1}{1-\sigma}} = \Lambda^{-1} \Big(\textstyle\sum_{j} \Omega_{j} \hat{p}_{j}^{1-\sigma}\Big)^{\frac{1}{1-\sigma}} = p^{\star}$$

Back

lacktriangle Preferences defined over expenditures e

$$u(e;\Lambda) = \frac{1-\iota}{\iota} \left(\frac{1}{\mathbf{B}(\Lambda)} \left(e - \underbrace{\sum_{j} \frac{\hat{p}_{j}}{\Lambda} \bar{c}_{j}}_{\mathbf{A}(\Lambda)} \right) \right)^{\iota} - \mathbf{D}(\Lambda), \text{ with } \iota > 0$$

- $\text{ Price function } \mathbf{B}(\Lambda) = \Big(\textstyle \sum_j \Omega_j p_j^{1-\sigma} \Big)^{\frac{1}{1-\sigma}} = \Lambda^{-1} \Big(\textstyle \sum_j \Omega_j \hat{p}_j^{1-\sigma} \Big)^{\frac{1}{1-\sigma}} = p^\star$
- Generalized Stone-Geary $A(\Lambda)$, $D(\Lambda)$ price function independent of e (PIGL)

Back

В

lacktriangle Preferences defined over expenditures e

$$u(e;\Lambda) = \frac{1-\iota}{\iota} \left(\frac{1}{\mathbf{B}(\Lambda)} \left(e - \underbrace{\sum_{j} \frac{\hat{p}_{j}}{\Lambda} \bar{c}_{j}}_{\mathbf{A}(\Lambda)} \right) \right)^{\iota} - \mathbf{D}(\Lambda), \text{ with } \iota > 0$$

- $\text{ Price function } \mathbf{B}(\Lambda) = \Big(\textstyle \sum_j \Omega_j p_j^{1-\sigma} \Big)^{\frac{1}{1-\sigma}} = \Lambda^{-1} \Big(\textstyle \sum_j \Omega_j \hat{p}_j^{1-\sigma} \Big)^{\frac{1}{1-\sigma}} = p^\star$
- Generalized Stone-Geary $A(\Lambda)$, $D(\Lambda)$ price function independent of e (PIGL)
- Relative risk aversion:

$$\mathsf{RRA}(e; \Lambda) = (1 - \iota) \times \frac{e}{e - \mathbf{A}(\Lambda)}$$

- Proposition: Decreasing in $e \Leftrightarrow A > 0$
- Falling labor supply $\Rightarrow A > 0$

Back

■ D(.) term defined as:

$$\mathbf{D}(\Lambda) = \frac{\nu(1-\iota)}{\eta} \left(\left[\left(\sum_{j \in J} \theta_j p_j^{1-\iota} \right)^{\frac{1}{1-\iota}} \mathbf{B}(\Lambda)^{-1} \right]^{\eta} - 1 \right)$$

 \blacksquare **D**(.) term defined as:

$$\mathbf{D}(\Lambda) = \frac{\nu(1-\iota)}{\eta} \left(\left[\left(\sum_{j \in J} \theta_j p_j^{1-\iota} \right)^{\frac{1}{1-\iota}} \mathbf{B}(\Lambda)^{-1} \right]^{\eta} - 1 \right)$$

 \blacksquare Consumption share $cs_j \equiv p_j c_j/e$

$$cs_{j} = \frac{\mathbf{A}_{j}p_{j}}{e} + \frac{\mathbf{B}_{j}p_{j}}{\mathbf{B}} \left(1 - \frac{\mathbf{A}}{e} \right) + \frac{\mathbf{D}_{j}}{\gamma} p_{j} \left(\frac{e}{\mathbf{B}} - \frac{\mathbf{A}}{\mathbf{B}} \right)^{\gamma} \left(\frac{e}{\mathbf{B}} \right)^{-1}$$

$$cs_{j} = \frac{\mathbf{A}_{j}p_{j}}{e} + \frac{\mathbf{B}_{j}p_{j}}{\mathbf{B}} \left(1 - \frac{\mathbf{A}}{e} \right) + \frac{\mathbf{D}_{j}}{\gamma} p_{j} \frac{\mathbf{B}^{1-\gamma}}{e^{1-\gamma}} \left(1 - \frac{\mathbf{A}}{e} \right)^{\gamma}$$

$$\mathbf{E} \mathbf{X} / \partial p_{j}.$$

where $\mathbf{X}_j = \partial \mathbf{X}/\partial p_j$.

Non-Homothetic CES DRRA with Two/Three Goods

Comin, Lashkari, and Mestieri (2021)

- Conditions for DRRA with two goods: $\varepsilon_1 < \varepsilon_2 = 1$
 - Necessary condition: $\gamma > \varepsilon_1$
 - Sufficient condition: $\gamma + \varepsilon_1 \geq 2$
- Typical calibration with three goods ⇒ quantitatively true

Data Appendix

Government Spending

- Data averaged for 1955-1958 (avoid Korean War) and 2004-2007 (avoid Great Recession)
- Programs included in transfers
 - Food stamps (SNAP)
 - Supplemental Security Income (SSI)
 - Refundable tax credits
 - Unemployment insurance, workers' compensation, temporary disability insurance
 - Other assistance
 - Medicaid
- Government spending
 - All remaining federal, state, and local spending
 - Purposefully chosen such that G/Y constant
 - + Spending has risen in the data, but largely deficit-financed

SCF+

- Long-run data on income and wealth inequality in the US Compiled by Kuhn, Schularick, and Steins (2020)
 - Based on historical waves of the Survey of Consumer Finances (SCF)
 - Time period 1949-2016
- Income components
 - Wages and salaries
 - Income from professional practice and self-employment
 - Business and farm income
 - Excluded: rental income, interest, dividends, transfers

SCF+ (cont.)

- Net worth/wealth components (assets debt)
 - Assets
 - + Liquid assets: checking, savings, call/money market accounts, certificates of deposit
 - + Housing and other real estate
 - + Bonds, stocks and business equity, mutual funds
 - + Cash value of life insurance
 - + Defined-contribution retirement plans
 - + Cars
 - Debt
 - + Housing debt: debt on owner-occupied homes, home equity loans and lines of credit
 - + Other debt: car loans, education loans, consumer loans

SCF+ (cont.)

- Sample selection
 - Head of household aged 25 to 60
 - Minimum income restriction
 - + \$5,000 for 2010 (in 2016 dollars)
 - + In 1950 such that ratio of minimum income to median is the same (\$2,700)

Quantitative Model Appendix

Calibration Expenditure Inequality

- Variance of log expenditure in 2010: 0.42, top-quintile expenditure share of 44%
- Less expenditure inequality in 1950
- Variance of log expenditure in 1950: 0.33, top-quintile expenditure share of 38%

Implied RRA in the Model MPCs and Wealth Effects

■ Relation between RRA, wealth effects, and MPC: RRA × MPC = $\eta\left(\varphi\frac{e}{y} + \frac{e\mathcal{T}''(y)}{\mathcal{T}'(y)}\right)$

Implied RRA in the Model MPCs and Wealth Effects

lacksquare Relation between RRA, wealth effects, and MPC: RRA imes MPC $= \eta \left(\varphi rac{e}{y} + rac{e \mathcal{T}''(y)}{\mathcal{T}'(y)}
ight)$

- Model MPC: 18% in 2010 Johnson, Parker, and Souleles (2006), Fagereng, Holm, and Natvik (2021), Kaplan and Violante (2022)
- Wealth effects: 0.02 in 2010
 Golosov, Graber, Mogstad, and
 Novgorodsky (2023)

Wealth Effects: Evidence Golosov, Graber, Mogstad, and Novgorodsky (2023)

- How does income respond to unexpected wealth shocks?
 - Golosov, Graber, Mogstad, and Novgorodsky (2023) merge US tax data with lottery winnings
 - Compute earnings change over five years after lottery win
 - Earnings drop by on average 2.3\$ per 100\$ of win
- Replicate in model using mean post-tax win
 - Earnings drop by on average 2.2\$ per 100\$ of win

Weights

- More degrees of freedom in finding inverse optimum weights
- Restriction to functional form motivated by instruments: lump sum and progressivity
- Weights as function of percentiles of the expenditure distribution

$$\omega(p_i) = \exp(\mu p_i(e_i) + \nu p_i(e_i)^2), \text{ with } \mu = -16.46, \ \nu = 16.63.$$

■ See also Le Grand, Ragot, and Rodrigues (2025)

Calibration: Inequality

- A partial-insurance approach
 - Calibrate f(.) as exponentially modified Gaussian (EMG) to match dispersion in expenditures

Calibration: Inequality

- A partial-insurance approach
 - Calibrate f(.) as exponentially modified Gaussian (EMG) to match dispersion in expenditures
- In 2010, data on income and expenditure inequality
 - Dispersion: $\mathbb{V}[\log y] = 0.78$; $\mathbb{V}[\log e] \approx 0.36$ SCF+ (Kuhn, Schularick, and Steins 2020); Attanasio and Pistaferri (2014), Heathcote, Perri, and Violante (2010)
 - Pareto tail: $\lambda_y=1.65$; $\lambda_e\approx 3.3$ Aoki and Nirei (2017); Toda and Walsh (2015)

Calibration: Inequality

- A partial-insurance approach
 - Calibrate f(.) as exponentially modified Gaussian (EMG) to match dispersion in expenditures
- In 2010, data on income and expenditure inequality
 - Dispersion: $\mathbb{V}[\log y] = 0.78$; $\mathbb{V}[\log e] \approx 0.36$ SCF+ (Kuhn, Schularick, and Steins 2020); Attanasio and Pistaferri (2014), Heathcote, Perri, and Violante (2010)
 - Pareto tail: $\lambda_y=1.65$; $\lambda_e\approx 3.3$ Aoki and Nirei (2017); Toda and Walsh (2015)
- In 1950, data on income inequality only
 - Dispersion: $\mathbb{V}[\log y] = 0.57$; \Rightarrow infer $\mathbb{V}[\log e] \approx 0.26$ SCF+ (Kuhn, Schularick, and Steins 2020)
 - Pareto tail: $\lambda_y=2.2\Rightarrow$ infer $\lambda_e=4.4$ Aoki and Nirei (2017)

Calibration: Expenditure Inequality

1950	Expenditure Share by Quintile				
Dynamic model	8%	14%	18%	22%	38%
Static model	9%	13%	17%	23%	38%
2010	Expenditure Share by Quintile				
Dynamic model	7%	12%	16%	21%	44%
Static model	8%	12%	16%	22%	42%

Inverse Optimum Weights

- \blacksquare In Mirrlees environment, 1950 inverse optimum weights can be computed uniquely by θ
- Kept constant as a function of percentiles of the distribution for 2010 / inequality only
- Bottom and top weight (close to zero mass) kept constant across all cases

Optimal Marginal Rates Mirrlees

■ Calibration in 1950: T/Y = 1.2% $\Rightarrow T/Y = 3.9\%$ with higher inequality

Optimal Marginal Rates Mirrlees

■ Calibration in 1950: T/Y = 1.2% \Rightarrow T/Y = 1.9% with higher inequality and growth

- Rising Living Standards reduce increase in $\mathcal R$ by 32%

Optimal Marginal Rates Mirrlees Robustness

Optimal Marginal Rates Mirrlees Robustness

References

- Aguiar, Mark and Mark Bils (2015). "Has consumption inequality mirrored income inequality?" The American Economic Review 105.9, pp. 2725–56.
- Alder, Simon, Timo Boppart, and Andreas Müller (2022). "A theory of structural change that can fit the data". American Economic Journal: Macroeconomics 14.2, pp. 160–206.
- Aoki, Shuhei and Makoto Nirei (2017). "Zipf's Law, Pareto's Law, and the Evolution of Top Incomes in the United States". American Economic Journal: Macroeconomics 9.3, pp. 36–71.
- Atkeson, Andrew and Masao Ogaki (1996). "Wealth-varying intertemporal elasticities of substitution: Evidence from panel and aggregate data". Journal of Monetary Economics 38.3, pp. 507–534.
- Attanasio, Orazio P. and Martin Browning (1995). "Consumption over the Life Cycle and over the Business Cycle". The American Economic Review, pp. 1118–1137.
- Attanasio, Orazio P. and Luigi Pistaferri (2014). "Consumption inequality over the last half century: some evidence using the new PSID consumption measure". The American Economic Review 104.5, pp. 122–126.
- Blundell, Richard, Martin Browning, and Costas Meghir (1994). "Consumer demand and the life-cycle allocation of household expenditures". The Review of Economic Studies 61.1, pp. 57–80.

- Bohr, Clement, Marti Mestieri, and Emre Enes Yavuz (2023). "Aggregation and Closed-Form Results for Nonhomothetic CES Preferences". Working Paper.
- Boppart, Timo (2014). "Structural change and the Kaldor facts in a growth model with relative price effects and non-Gorman preferences". Econometrica 82.6, pp. 2167–2196.
- Boppart, Timo and Per Krusell (2020). "Labor supply in the past, present, and future: a balanced-growth perspective". Journal of Political Economy 128.1, pp. 118–157.
- Bourguignon, François and Amedeo Spadaro (2012). "Tax-benefit revealed social preferences". The Journal of Economic Inequality 10.1, pp. 75–108.
- Brinca, Pedro, João B Duarte, Hans Aasnes Holter, and João Henrique Barata Gouveia de Oliveira (2022). "Technological Change and Earnings Inequality in the US: Implications for Optimal Taxation". Working Paper.
- Browning, Martin and Thomas F. Crossley (2000). "Luxuries are easier to postpone: A proof". <u>Journal of Political Economy</u> 108.5, pp. 1022–1026.
- Chatterjee, Satyajit and B. Ravikumar (1999). "Minimum consumption requirements: Theoretical and quantitative implications for growth and distribution". Macroeconomic Dynamics 3.4, pp. 482–505.

- Cioffi, Riccardo A. (2021). "Heterogeneous Risk Exposure and the Dynamics of Wealth Inequality". Working Paper.
- Comin, Diego, Danial Lashkari, and Martí Mestieri (2021). "Structural change with long-run income and price effects". Econometrica 89.1, pp. 311–374.
- Crossley, Thomas F. and Hamish W. Low (2011). "Is the Elasticity of Intertemporal Substitution Constant?" Journal of the European Economic Association 9.1, pp. 87–105.
- Diamond, Peter A. (1998). "Optimal income taxation: an example with a U-shaped pattern of optimal marginal tax rates". The American Economic Review, pp. 83–95.
- Diamond, Peter A. and Emmanuel Saez (2011). "The case for a progressive tax: From basic research to policy recommendation". Journal of Economic Perspectives 25.4, pp. 165–190.
- Fagereng, Andreas, Martin B. Holm, and Gisle J. Natvik (2021). "MPC heterogeneity and household balance sheets". American Economic Journal: Macroeconomics 13.4, pp. 1–54.
- Ferriere, Axelle, Philipp Grübener, Gaston Navarro, and Oliko Vardishvili (2023). "On the Optimal Design of Transfers and Income Tax Progressivity". Journal of Political Economy Macroeconomics 1.2, pp. 276–333.

- Geary, Roy C. (1950). "A note on A constant-utility index of the cost of living". The Review of Economic Studies 18.1, pp. 65–66.
- Golosov, Mikhail, Michael Graber, Magne Mogstad, and David Novgorodsky (2023). "How Americans respond to idiosyncratic and exogenous changes in household wealth and unearned income". Forthcoming in the Quarterly Journal of Economics.
- Hanoch, Giora (1977). "Risk aversion and consumer preferences". Econometrica, pp. 413-426.
- Heathcote, Jonathan, Fabrizio Perri, and Giovanni L. Violante (2010). "Unequal we stand: An empirical analysis of economic inequality in the United States, 1967–2006". Review of Economic Dynamics 13.1, pp. 15–51.
- Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L. Violante (2017). "Optimal tax progressivity: An analytical framework". The Quarterly Journal of Economics 132.4, pp. 1693–1754.
- (2020). "Presidential Address 2019: How Should Tax Progressivity Respond to Rising Income Inequality?"
 Journal of the European Economic Association 18.6, pp. 2715–2754.
- Heathcote, Jonathan and Hitoshi Tsujiyama (2021). "Optimal income taxation: Mirrlees meets Ramsey". Journal of Political Economy 129.11, pp. 3141–3184.

- Hendren, Nathaniel (2020). "Measuring economic efficiency using inverse-optimum weights". <u>Journal of Public Economics</u> 187, p. 104198.
- Herrendorf, Berthold, Richard Rogerson, and Akos Valentinyi (2013). "Two perspectives on preferences and structural transformation". The American Economic Review 103.7, pp. 2752–2789.
- (2014). "Growth and structural transformation". Handbook of Economic Growth. Vol. 2. Elsevier, pp. 855–941.
- Jaravel, Xavier and Alan Olivi (2024). "Prices, Non-homotheticities, and Optimal Taxation". Working Paper.
- Johnson, David S., Jonathan A. Parker, and Nicholas S. Souleles (2006). "Household expenditure and the income tax rebates of 2001". The American Economic Review 96.5, pp. 1589–1610.
- Kaplan, Greg and Giovanni L. Violante (2022). "The marginal propensity to consume in heterogeneous agent models". Annual Review of Economics 14, pp. 747–775.
- Kuhn, Moritz, Moritz Schularick, and Ulrike I Steins (2020). "Income and wealth inequality in America, 1949–2016". Journal of Political Economy 128.9, pp. 3469–3519.
- Le Grand, François, Xavier Ragot, and Diego Rodrigues (2025). "From Homo Economicus to Homo Moralis: A Bewley Theory of the Social Welfare Function". Working Paper.

- Lockwood, Benjamin B. and Matthew Weinzierl (2016). "Positive and normative judgments implicit in US tax policy, and the costs of unequal growth and recessions". Journal of Monetary Economics 77, pp. 30–47.
- Mankiw, N. Gregory, Matthew Weinzierl, and Danny Yagan (2009). "Optimal taxation in theory and practice". Journal of Economic Perspectives 23.4, pp. 147–74.
- Mantovani, Cristiano (2022). "Hours-Biased Technological Change". Working Paper.
- Meeuwis, Maarten (2022). "Wealth fluctuations and risk preferences: Evidence from US investor portfolios". Working Paper.
- Mertens, Karel and José Luis Montiel Olea (2018). "Marginal tax rates and income: New time series evidence". The Quarterly Journal of Economics 133.4, pp. 1803–1884.
- Mirrlees, James A. (1971). "An exploration in the theory of optimum income taxation". The Review of Economic Studies 38.2, pp. 175–208.
- Ogaki, Masao, Jonathan D. Ostry, and Carmen M. Reinhart (1996). "Saving behavior in low-and middle-income developing countries: A comparison". Staff Papers 43.1, pp. 38–71.
- Ogaki, Masao and Qiang Zhang (2001). "Decreasing relative risk aversion and tests of risk sharing". Econometrica 69.2, pp. 515–526.

- Oni, Mehedi Hasan (2023). "Progressive income taxation and consumption baskets of rich and poor". Journal of Economic Dynamics and Control 157, p. 104758.
- Piketty, Thomas and Emmanuel Saez (2003). "Income inequality in the United States, 1913–1998". The Quarterly Journal of Economics 118.1, pp. 1–41.
- Piketty, Thomas and Gabriel Zucman (2014). "Capital is back: Wealth-income ratios in rich countries 1700–2010". The Quarterly Journal of Economics 129.3, pp. 1255–1310.
- Ramey, Valerie A. and Neville Francis (2009). "A century of work and leisure". American Economic Journal: Macroeconomics 1.2, pp. 189–224.
- Ramsey, Frank P. (1927). "A Contribution to the Theory of Taxation". The Economic Journal 37.145, pp. 47-61.
- Rebelo, Sergio (1992). "Growth in open economies". Carnegie-Rochester Conference Series on Public Policy. Vol. 36. Elsevier, pp. 5–46.
- Saez, Emmanuel (2001). "Using elasticities to derive optimal income tax rates". The Review of Economic Studies 68.1, pp. 205–229.

- Scheuer, Florian and Iván Werning (2017). "The Taxation of Superstars". The Quarterly Journal of Economics 132.1, pp. 211–270.
- Stiglitz, Joseph E. (1969). "Behavior towards risk with many commodities". Econometrica, pp. 660-667.
- Straub, Ludwig (2019). "Consumption, Savings, and the Distribution of Permanent Income". Working Paper.
- Toda, Alexis Akira and Kieran Walsh (2015). "The double power law in consumption and implications for testing Euler equations". Journal of Political Economy 123.5, pp. 1177–1200.
- Wachter, Jessica A. and Motohiro Yogo (2010). "Why do household portfolio shares rise in wealth?" The Review of Financial Studies 23.11, pp. 3929–3965.
- Werning, Ivan (2007). "Optimal fiscal policy with redistribution". The Quarterly Journal of Economics 122.3, pp. 925-967.
- Zhang, Qiang and Masao Ogaki (2004). "Decreasing relative risk aversion, risk sharing, and the permanent income hypothesis". Journal of Business & Economic Statistics 22.4, pp. 421–430.