# STATE OF THE PARTY OF THE PARTY

# Università degli Studi di Verona

#### Dipartimento di Informatica

#### Laboratorio di Architettura degli Elaboratori A.A. 2015/16

#### Elaborato SIS

#### Descrizione del circuito da realizzare

Si progetti un dispositivo per il monitoraggio di un motore a combustione interna basato su un circuito sequenziale che riceve come input il numero di giri/minuto del motore (RPM) e, una volta impostate delle soglie minima e massima per il funzionamento ottimale, fornisce in uscita una modalità di funzionamento del motore: sotto-giri (SG), in regime ottimale (OPT) o fuori-giri (FG). Si vuole inoltre avere in uscita da quanto tempo il sistema si trova nello stato attuale ed un ulteriore output di allarme che vale 1 se e soltanto se il sistema è in stato FG da più di 15 secondi (cicli di clock).

Il circuito è composto da un *controllore* e da un *datapath* con i seguenti ingressi e uscite.

- INIT[1]: quando vale 1 indica che il circuito ha iniziato la rilevazione del numero di giri. Il controllore deve passare nello stato conteggio dei secondi trascorsi nell'attuale modalità. Finché vale 0 non deve essere fatto alcun conteggio né indicato alcun valore in uscita.
- RESET[1]: se posto a 1 il controllore deve essere resettato, ovvero il contatore dei secondi deve essere posto a zero.
- RPM[XX]: valore del numero di giri ricevuto dal rilevatore (valore massimo 6500).
- MOD[2]: indica in quale modalità di funzionamento si trova l'apparecchio al momento corrente (00 spento, 01 SG, 10 OPT, 11 FG).
- NUMB[8]: indica i secondi trascorsi nell'attuale modalità.
- ALM[1]: segnala il superamento del tempo limite in FG.
- Il controllore è collegato al datapath con tre segnali che hanno il seguente significato:
  - START[1]: messo a 1 fa iniziare al datapath la lettura dei RPM, il set dello stato di soglia, e l'inizio del conteggio secondi in soglia.
  - SA[2]: imposta il controllore allo stato di soglia attuale.
  - TS[1]: segnala al controllore il superamento della soglia di tempo.



Si consideri che il rilevatore manda un valore RPM al secondo. Tale valore deve ovviamente essere simulato e fa parte degli ingressi impostati durante la simulazione. Ad ogni valore RPM in ingresso, il circuito controlla l'attuale soglia, imposta lo stato corrispondente e inizia a contare (o incrementa il contatore). Nel momento in cui il valore RPM non fa parte dell'attuale soglia, il circuito cambia stato e inizia da zero il conteggio. Ad ogni inserimento di RPM, se INIT è attivo e non vi è reset, il circuito riporta i valori aggiornati delle uscite. I valori delle soglie sono i seguenti:

- RPM  $< 2000 \rightarrow SG$
- $2000 \le RPM \le 4000 \rightarrow OPT$
- RPM  $> 4000 \rightarrow FG$

# Università degli Studi di Verona

#### Dipartimento di Informatica

#### Modalità di consegna dell'elaborato

#### Materiale da consegnare:

- 1. Codice BLIF del circuito
- 2. Relazione in formato pdf contenente:
  - l'architettura generale del circuito;
  - il diagramma degli stati del controllore;
  - l'architettura del datapath;
  - le statistiche del circuito prima e dopo l'ottimizzazione <u>per area;</u>
  - il numero di gate e ritardo ottenuti mappando il design sulla libreria tecnologica **synch.genlib**;
  - la descrizione delle scelte progettuali effettuate.

#### Modalità di consegna:

- Il codice e la relazione vanno compressi in un file sis\_cognome1\_nome1\_cognome2\_nome2.tgz (rinominare la cartella contenente tutto il materiale con il nome sis\_cognome1\_nome1\_cognome2\_nome2, uscire dalla cartella e lanciare il comando tar cvfz sis\_cognome1\_nome1\_cognome2\_nome2.tgz sis\_cognome1\_nome1\_cognome2\_nome2).
- 2) Entrare nella pagina di e-learning del corso di Architettura degli Elaboratori.
- 3) Nella sezione Elaborati, cliccare sul link "Consegna elaborati Scadenza xx xx xx".
- 4) Cliccare su "Sfoglia" e selezionare l'archivio dal proprio file system.
- 5) Cliccare ora su "Trasferisci file"
  - a. Se il trasferimento file è andato a buon fine, apparirà una schermata di conferma. Cliccare su "Continua".
  - b. Altrimenti, contattare il docente.
- 6) Si ricorda che ogni nuova sottomissione cancella la precedente.
- 7) Dopo la scadenza di ogni consegna, non sarà più possibile effettuare l'upload dell'elaborato e quindi la presentazione in quella sessione.

#### Tempi di consegna:

- L'upload comporta l'iscrizione automatica all'esame di laboratorio (orale di presentazione elaborato).
- Nelle seguenti date (Scadenze\_xx\_xx\_xx):
  - o 18 Febbraio 2015
  - o 07 Luglio 2015
  - o 15 Settembre 2015

verranno messe assieme le iscrizioni (upload) e rilasciato un calendario (negli avvisi per studenti e su e-learning) in cui gli studenti dovranno sostenere l'orale di presentazione dell'elaborato. Ogni calendario degli orali può includere i giorni della settimana seguente le date sopra descritte. Gli studenti dovranno presentarsi all'orale con la relazione stampata.



# Università degli Studi di Verona

### Dipartimento di Informatica

L'esame di laboratorio sarà valutato considerando l'elaborato e la presentazione. La valutazione deve essere sufficiente per poter registrare il voto di Architettura degli Elaboratori. In particolare, la valutazione sufficiente avrà un punteggio che va da 1 a 3 (da 1 a 4 solo per la prima scadenza del 19 Febbraio). Il punteggio di questo elaborato farà media con quello del secondo elaborato (Assembly) ed i punti ottenuti saranno sommati al voto dello scritto di Architettura degli Elaboratori (Prof. Fummi).

Gli elaborati possono essere svolti in gruppi di **2 studenti**. E' possibile consegnare una sola relazione di gruppo ma **entrambi gli studenti** verranno interrogati sui dettagli del progetto. Sono ammessi scambi di turno purché autogestiti e segnalati al docente.