- 1. Déterminer les matrices A_1 de s_1 et A_2 de s_2 .
- 2. Calculer les produits A_1A_2 et A_2A_1 .
- 3. En déduire $s_1 \circ s_2$ et $s_2 \circ s_1$.

If l'application
$$S_1(x,y,z) \mapsto (x,y,-z)$$

et $S_2(x,y,z) \mapsto (-x,y,z)$

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2/ et on a que
$$A_1 A_2 = A_2 A_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Ry 31 A,B 2 matrices diagonales AB=BA

$$S_1 \circ S_2 = S_2 \circ S_1$$
 $(x, y, z) \mapsto (-x, y, -z)$
L'objet est de déterminer la transformation
associée à $S_1 \circ S_2$ comme dans exo $S_1 \circ S_2$ $(x, y, z) \mapsto (-x, y, -z)$
 $S_1 \circ S_2 \circ S_1 \circ S_2 \circ$

En emvant le schēma d'exo 8 s, o sz est une rotation d'angle IT d'axe o4 On considère la rotation $r_1: \mathbb{R}^3 \to \mathbb{R}^3$ d'axe Oz (orienté par le vecteur (0,0,1)) et d'angle $\frac{\pi}{2}$ et la rotation $r_2: \mathbb{R}^3 \to \mathbb{R}^3$ d'axe Ox et d'angle π .

- 1. Déterminer les matrices A_1 de r_1 et A_2 de r_2 .
- 2. Calculer les produits A_1A_2 et A_2A_1 .

So the seplace dans
$$\mathbb{R}^7$$
 alors more rotation de $\mathbb{T}/_2$ contour de \mathbb{C}

est l'application (x , y) \mapsto ($-y$, x)

I' s'ensuit que r , (x , y , z) \mapsto ($-y$, x , z)

De même me notation d'angle \mathbb{T} claims \mathbb{R}^7

est l'application (x , y , z) \mapsto ($-x$, $-y$)

et l'application (x , y , z) \mapsto ($-x$, $-y$, z)

et me rotation d'axe $\mathbb{C}z$

Il est facilit à voir que

 V_2 (x , y , z) \mapsto (x , $-y$, $-z$)

[or il a $\mathbb{C}x$ powr axe

I' $A_1 = \begin{pmatrix} 0 & -1 & 6 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

et $A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

2/ $A_1A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
 $A_2A_1 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

- 3. Calculer l'ensemble Δ des points fixes de $r_1 \circ r_2$ et l'ensemble Δ' des points fixes de $r_2 \circ r_1$.
- 4. Choisir un vecteur v orthogonal à Δ et déterminer sont image par $r_1 \circ r_2$. En déduire $r_1 \circ r_2$.
- 5. Choisir un vecteur w orthogonal à Δ' et déterminer sont image par $r_2 \circ r_1$. En déduire $r_2 \circ r_1$.

$$(x, y, z) \in \Delta \iff \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 31 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 31 \\ 2 \\ 2 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 31 \\ 2 \\ 2 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 31 \\ 2 \\ 2 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 3 \\ -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 31 \\ 2 \\ 2 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 31 \\ 2 \\ 2 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 3 \\ -2 \\ 2 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 \\ 2 \\ 2 \\ 2 \end{pmatrix}$$

rzor, est me rotation d'angle π d'axe Δ' Exo 9

Calculer AB, BA, tr(AB), tr(BA) pour les matrices suivantes.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array}\right), B = \left(\begin{array}{cc} 2 & 1 \\ 3 & -1 \end{array}\right).$$

Que remarquez vous?

$$AB = \begin{pmatrix} 8 & -1 \\ 4 & 2 \end{pmatrix} BA = \begin{pmatrix} 4 & 4 \\ 1 & 6 \end{pmatrix}$$

$$tr \left(\frac{a_{11}}{a_{21}}, \frac{a_{12}}{a_{22}}\right) = a_{11} + a_{22} = srmme d'ēlts$$

$$sur la diugonale$$

Exercice 10 :

Soit $A \in M_2(\mathbb{R})$, $B \in M_2(\mathbb{R})$. Montrer que tr(AB) = tr(BA).

Somet
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$

On calcul que les ēlts sur la diagonale traces

$$AB = \begin{pmatrix} aa' + bc' & ?? \\ ?? & cb' + da' \end{pmatrix}$$

$$BA = \begin{pmatrix} aa' + b'c & ?? \\ ?? & c'b + da' \end{pmatrix}$$

On voit facilement que tr AB = + BA

$$AB = \begin{pmatrix} aa' + bc' & ?? \\ ?? & cb' + da' \end{pmatrix}$$

$$AB = \begin{pmatrix} aa' + b'c & ?? \\ ?? & c'b + da' \end{pmatrix}$$

$$AB = \begin{pmatrix} aa' + b'c & ?? \\ ?? & c'b + da' \end{pmatrix}$$

$$AA' + b'c' + bc' + da'$$

Exo II
$$S_1 A = (a b) \text{ alors } {}^{\dagger}A = (a c)$$

et $A^{\dagger}A = (a^2+b^2 ??)$
 $\Rightarrow \text{ tr } A^{\dagger}A = a^2+b^2+c^2+d^2$
 $\Rightarrow \text{ o cav } a^2 \geqslant 0 \ c^2 \geqslant 0$

Exo 12 (cows)

 $S_1 A = (a_{11})_{11} \text{ alors } AB = (\sum_{s} a_{11}b_{1s})_{1s}$
 $B = (b_{rs})_{rs}$
 $BA = (\sum_{s} b_{rs}a_{s1})_{r1}$

to
$$AB = \sum_{i} \left(\sum_{j} \alpha_{ij} b_{ji}\right)$$
 som la diagonale $i=s$

$$= \sum_{j} \left(\sum_{i} b_{ji} \alpha_{ij}\right)$$

$$= \sum_{j} \left(\sum_{s} b_{js} \alpha_{sj}\right)$$
 som la diagonale $i=s$

$$= to BA$$