Calculus Made Easy

> SPT, MG, KM

Functions

Summary

Calculus Made Easy - 02 Beautiful Ideas Presented Simply

Silvanus P. Thompson¹ Martin Gardner²

 $^1{
m Original~Author}$

²Annotator

Aug 2025 / Free Learner's School Conversations

Outline

Calculus Made Eas

SPT, MG, KM

Functions

Summary

1 Functions

2 Summary

Thompson's Lively Treatise for Beginners

ide Easy

SPT, MG, KM

- Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Boo To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's¹ Thoughtful Recommendation Provided The Biggest Stimulus.
- We Also Go on 'Excursions' Outside The Book.
- Each Chapter Is A Separate Slide-deck to Keep Its Size Manageable.
- This Is Supposed to Be Your "Ready Reckoner".
 - Ideally, You Should Just Read The Book
 - Use It as a Reference to Bring It All Back Later
- New Words Are Introduced Slowly And Carefully, But Thought Experiments & Worthwhile Problems Are Often Introduced.

Thompson's Lively Treatise for Beginners

Calculus Made Eas

SPT, MG, KM

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's¹ Thoughtful Recommendation Provided The Biggest Stimulus.
- We Also Go on 'Excursions' Outside The Book.
- Each Chapter Is A Separate Slide-deck to Keep Its Size Manageable.
- This Is Supposed to Be Your "Ready Reckoner".
 - Ideally, You Should Just Read The Book
 - Use It as a Reference to Bring It All Back Later
- New Words Are Introduced Slowly And Carefully, Bu Thought Experiments & Worthwhile Problems Are Often Introduced.
 - Let's Take the Leap of Guided Imagination Fearlessly!

Thompson's Lively Treatise for Beginners

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.

- - Let's Take the Leap of Guided Imagination Fearlessly!

Thompson's Lively Treatise for Beginners

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's Thoughtful Recommendation Provided The Biggest Stimulus.

¹A Master Expositor

Thompson's Lively Treatise for Beginners

Calculus Made Easy SPT, MG, KM

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's¹ Thoughtful Recommendation Provided The Biggest Stimulus.
- We Also Go on 'Excursions' Outside The Book.
- Each Chapter Is A Separate Slide-deck to Keep Its Size Manageable.
- This Is Supposed to Be Your "Ready Reckoner".
 - Ideally, You Should Just Read The Book!
 - Use It as a Reference to Bring It All Back Later
- New Words Are Introduced Slowly And Carefully, But Thought Experiments & Worthwhile Problems Are Often Introduced.

¹A Master Expositor

Thompson's Lively Treatise for Beginners

Calculus Made Easy SPT, MG, KM

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's¹ Thoughtful Recommendation Provided The Biggest Stimulus.
- We Also Go on 'Excursions' Outside The Book.
- Each Chapter Is A Separate Slide-deck to Keep Its Size Manageable.
- This Is Supposed to Be Your "Ready Reckoner".
 - Ideally, You Should Just Read The Book
 - Use It as a Reference to Bring It All Back Later
- New Words Are Introduced Slowly And Carefully, But Thought Experiments & Worthwhile Problems Are Often Introduced.
- Let's Take the Leap of Guided Imagination Fearlessly!

Thompson's Lively Treatise for Beginners

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's Thoughtful Recommendation Provided The Biggest Stimulus.
- We Also Go on 'Excursions' Outside The Book.
- Each Chapter Is A Separate Slide-deck to Keep Its Size Manageable.
- This Is Supposed to Be Your "Ready Reckoner".
- 4D + 4B + 4B + B + 990

Thompson's Lively Treatise for Beginners

Calculus Made Easy SPT, MG, KM

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's¹ Thoughtful Recommendation Provided The Biggest Stimulus.
- We Also Go on 'Excursions' Outside The Book.
- Each Chapter Is A Separate Slide-deck to Keep Its Size Manageable.
- This Is Supposed to Be Your "Ready Reckoner".
 - Ideally, You Should Just Read The Book!
 - Use It as a Reference to Bring It All Back Later
- New Words Are Introduced Slowly And Carefully, But Thought Experiments & Worthwhile Problems Are Often Introduced.
- ¹A Master Expositor

Thompson's Lively Treatise for Beginners

Calculus Made Easy SPT, MG, KM

Functions
Summary

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's¹ Thoughtful Recommendation Provided The Biggest Stimulus.
- We Also Go on 'Excursions' Outside The Book.
- Each Chapter Is A Separate Slide-deck to Keep Its Size Manageable.
- This Is Supposed to Be Your "Ready Reckoner".
 - Ideally, You Should Just Read The Book!
 - Use It as a Reference to Bring It All Back Later.
- New Words Are Introduced Slowly And Carefully, But Thought Experiments & Worthwhile Problems Are Often Introduced.

4D + 4B + 4B + B + 990

¹A Master Expositor

Thompson's Lively Treatise for Beginners

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's Thoughtful Recommendation Provided The Biggest Stimulus.
- We Also Go on 'Excursions' Outside The Book.
- Each Chapter Is A Separate Slide-deck to Keep Its Size Manageable.
- This Is Supposed to Be Your "Ready Reckoner".
 - Ideally, You Should Just Read The Book!
 - Use It as a Reference to Bring It All Back Later.
- New Words Are Introduced Slowly And Carefully, But Thought Experiments & Worthwhile Problems Are Often Introduced.

Thompson's Lively Treatise for Beginners

Functions

- These Slides Are Based on Silvanus Thompson's Good Little Book, Calculus Made Easy.
- After Quite Some Deliberation, [KM] Chose This Book To Introduce Calculus to Rujuta, A High Schooler.
 - Martin Gardner's Thoughtful Recommendation Provided The Biggest Stimulus.
- We Also Go on 'Excursions' Outside The Book.
- Each Chapter Is A Separate Slide-deck to Keep Its Size Manageable.
- This Is Supposed to Be Your "Ready Reckoner".
 - Ideally, You Should Just Read The Book!
 - Use It as a Reference to Bring It All Back Later.
- New Words Are Introduced Slowly And Carefully, But Thought Experiments & Worthwhile Problems Are Often Introduced.
- Let's Take the Leap of Guided Imagination Fearlessly! ¹A Master Expositor

4 D > 4 P > 4 B > 4 B > B 9 Q P

An Everyday Word That Is Redefined ...

Calculus Made Eas

SPT, MG, KM

Functions

Summary

- In Math, We Precisely Define And Redefine Many Everyday Words!
- 'Function' Isn't An Exception.
- Different 'Views' to Look at Functions:
 - A Discrete (Relation, Table) View
 - A Continuous (Formula, Curve) View
 - A Transformation (Black-box) View

An Everyday Word That Is Redefined ...

Calculus Made Easy

SPT, MG, KM

- In Math, We Precisely Define And Redefine Many Everyday Words!
- 'Function' Isn't An Exception.
- Different 'Views' to Look at Functions:
 - A Discrete (Relation, Table) View
 - A Continuous (Formula, Curve) View
 - A Transformation (Black-box) View

An Everyday Word That Is Redefined

Calculus Made Easy

SPT, MG, KM

- In Math, We Precisely Define And Redefine Many Everyday Words!
- 'Function' Isn't An Exception.
- Different 'Views' to Look at Functions:
 - A Discrete (Relation, Table) View
 - A Continuous (Formula, Curve) View
 - A Transformation (Black-box) View

An Everyday Word That Is Redefined ...

Calculus Made Easy

SPT, MG, KM

- In Math, We Precisely Define And Redefine Many Everyday Words!
- 'Function' Isn't An Exception.
- Different 'Views' to Look at Functions:
 - A Discrete (Relation, Table) View
 - A Continuous (Formula, Curve) View
 - A Transformation (Black-box) View

An Everyday Word That Is Redefined ...

Calculus Made Easy

SPT, MG KM

- In Math, We Precisely Define And Redefine Many Everyday Words!
- 'Function' Isn't An Exception.
- Different 'Views' to Look at Functions:
 - A Discrete (Relation, Table) View
 - A Continuous (Formula, Curve) View
 - A Transformation (Black-box) View

An Everyday Word That Is Redefined

Calculus Made Easy

SPT, MG KM

- In Math, We Precisely Define And Redefine Many Everyday Words!
- 'Function' Isn't An Exception.
- Different 'Views' to Look at Functions:
 - A Discrete (Relation, Table) View
 - A Continuous (Formula, Curve) View
 - A Transformation (Black-box) View

An Everyday Word That Is Redefined ...

Calculus Made Easy

SPT, MG KM

- In Math, We Precisely Define And Redefine Many Everyday Words!
- 'Function' Isn't An Exception.
- Different 'Views' to Look at Functions:
 - A Discrete (Relation, Table) View
 - A Continuous (Formula, Curve) View
 - A Transformation (Black-box) View

The Discrete View of A Function The < 1-Arrow Out Property

Functions

• One View: A Binary Relation with The "≤ 1 Arrow Out" Property Between Elements of Sets, Say, A, B (on The Relation Diagram).

The \leq 1-Arrow Out Property

Calculus Made Easy SPT, MG, KM

Functions

Figure: Examples of Function

• This Is Discrete (Table) View of A Function: Each Discrete Point of Domain (A) Corresponds to A Discrete Point of Codomain² (B):(a, 1), (b, 3), (e, 3)

The \leq 1-Arrow Out Property

Calculus Made Easy SPT, MG, KM

Functions

Figure: Examples of Function

• This Is Discrete (Table) View of A Function: Each Discrete Point of Domain (A) Corresponds to A Discrete Point of Codomain² (B):(a, 1), (b, 3), (e, 3),....

²Some Call It 'Range'.

The \leq 1-Arrow Out Property

Calculus Made Easy

SPT, MG, KM

Functions

Summary

- Relation Diagram Arrows: Leave Domain Points (Out)
 - •-->, Reach Codomain Points (In) -->•.
- When No Point of Its Domain Has More Than 1 Arrow Out of Any Point, The Relation Becomes A Function.
 - IOW, One Domain Point Never Corresponds to More Than One Codomain Point.
 - It's Okay If A Domain Point Has No ≡ Codomain Point. ∴ ≤ 1-Arrow Out (of Each Domain Point).
- Given A Relation Diagram, It's Straightforward to Prove If It Is A Function, Right?

The *Discrete View* of A Function The < 1-Arrow Out Property

Calculus Made Easy

SPT, MG, KM

Functions

Summary

- Relation Diagram Arrows: Leave Domain Points (Out)
 - •-->, Reach Codomain Points (In) -->•.
- When No Point of Its Domain Has More Than 1 Arrow Out of Any Point, The Relation Becomes A Function.
 - IOW, One Domain Point Never Corresponds to More Than One Codomain Point.
 - It's Okay If A Domain Point Has No ≡ Codomain Point. ∴ ≤ 1-Arrow Out (of Each Domain Point).
- Given A Relation Diagram, It's Straightforward to Prove If It Is A Function, Right?

The \leq 1-Arrow Out Property

Calculus Made Easy

SPT, MG KM

Functions

~

- Relation Diagram Arrows: Leave Domain Points (Out)
 - •-->, Reach Codomain Points (In) -->•.
- When No Point of Its Domain Has More Than 1 Arrow Out of Any Point, The Relation Becomes A Function.
 - IOW, One Domain Point Never Corresponds to More Than One Codomain Point.
 - It's Okay If A Domain Point Has No ≡ Codomain Point. ∴ ≤ 1-Arrow Out (of Each Domain Point).
- Given A Relation Diagram, It's Straightforward to Prove If It Is A Function, Right?

The \leq 1-Arrow Out Property

Calculus Made Easy

SPT, MG KM

- Relation Diagram Arrows: Leave Domain Points (Out)
 - •-->, Reach Codomain Points (In) -->•.
- When No Point of Its Domain Has More Than 1 Arrow Out of Any Point, The Relation Becomes A Function.
 - IOW, One Domain Point Never Corresponds to More Than One Codomain Point.
 - It's Okay If A Domain Point Has No ≡ Codomain Point. ∴ ≤ 1-Arrow Out (of Each Domain Point).
- Given A Relation Diagram, It's Straightforward to Prove If It Is A Function, Right?

The \leq 1-Arrow Out Property

Calculus Made Easy

KM

- Relation Diagram Arrows: Leave Domain Points (Out)
 - •-->, Reach Codomain Points (In) -->•.
- When No Point of Its Domain Has More Than 1 Arrow Out of Any Point, The Relation Becomes A Function.
 - IOW, One Domain Point Never Corresponds to More Than One Codomain Point.
 - It's Okay If A Domain Point Has No ≡ Codomain Point. ∴ ≤ 1-Arrow Out (of Each Domain Point).
- Given A Relation Diagram, It's Straightforward to Prove If It Is A Function, Right?

The < 1-Arrow Out Property

- Relation Diagram Arrows: Leave Domain Points (Out)
 - •-->, Reach Codomain Points (In) -->•.
- When No Point of Its Domain Has More Than 1 Arrow Out of Any Point, The Relation Becomes A Function.
 - IOW, One Domain Point Never Corresponds to More Than One Codomain Point.
 - It's Okay If A Domain Point Has No \equiv Codomain Point. $\therefore \leq 1$ -Arrow Out (of Each Domain Point).
- Given A Relation Diagram, It's Straightforward to Prove If It Is A Function, Right?

Calculus Made Easy

SPT, MG KM

- Becomes Cumbersome When Domain and Codomain Become Too Big.
- Infinity Is Strange! What Happens When Domain and Codomain Are Infinite Sets?
- Although This View Is Self-Sufficient, It Deprives Us of A Connection between Sets.
- It's Well-suited for Computers. What about Humans :-)?

Calculus Made Easy

SPT, MG KM

- Becomes Cumbersome When Domain and Codomain Become Too Big.
- Infinity Is Strange! What Happens When Domain and Codomain Are Infinite Sets?
- Although This View Is Self-Sufficient, It Deprives Us of A Connection between Sets.
- It's Well-suited for Computers. What about Humans :-)?

Calculus Made Easy

SPT, MG KM

- Becomes Cumbersome When Domain and Codomain Become Too Big.
- Infinity Is Strange! What Happens When Domain and Codomain Are Infinite Sets?
- Although This View Is Self-Sufficient, It Deprives Us of A Connection between Sets.
- It's Well-suited for Computers. What about Humans :-\?

Calculus Made Easy

SPT, MG KM

- Becomes Cumbersome When Domain and Codomain Become Too Big.
- Infinity Is Strange! What Happens When Domain and Codomain Are Infinite Sets?
- Although This View Is Self-Sufficient, It Deprives Us of A Connection between Sets.
- It's Well-suited for Computers. What about Humans :-)?

Functions: Vocabulary Common Words Redefined, Oh My!

Calculus Made Easy

SPT, MG KM

Functions

Summary

- Domain, Codomain, Range
- Discrete, Continuous
- Function, Relation

What We Learned

A Summary of Sorts

Calculus Made Eas

> PT, MG, KM

Functions

Summary