Convex Optimization

Kontonis Vasilis

3 March, 2017

Corelab, NTUA

Contents

- 1. Vector Optimization
- 2. Duality

Vector Optimization

Dual Inequalities

Dual Cone

Let X be a vector space and X^* be its dual

• If $K \subseteq X$ is a cone then its dual cone is the set

$$K^* = \{ y \in X^* \mid y^T x \geqslant 0, \text{ for all } x \in K \}$$

- $(\mathbb{R}^n_+)^* = \mathbb{R}^n_+$
- $(S_{+}^{n})^{*} = S_{+}^{n}$
- K* is always convex.
- ullet K proper \Longrightarrow K* proper.

2

Minimal Elements

Dual Inequalities

 $x \leqslant_K y \Leftrightarrow \lambda^T x \leqslant \lambda^T y \text{ for all } \lambda \geqslant_{K^*} 0.$

Minimum Element

x is minimum in $S\Leftrightarrow$ for all $\lambda>_{K^*}0$, x is the unique minimizer of λ^Tz over $z\in S\Leftrightarrow$ The hyperplane $\{z\mid \lambda^T(z-x)=0\}$ is a strict supporting hyperplane to S at x for all $\lambda\in K^*$.

Minimal Elements

- If $\lambda^T >_{K^*} 0$ and x minimizes $\lambda^T z$ over $z \in S$, then x is minimal.
- If S is convex, for any minimal element x there exists nonzero $\lambda \geqslant_{K^*} 0$ s.t. x minimizes $\lambda^T z$ over $z \in S$.

3

Counterexamples

Convex Vector Optimization Problem

Let $f_0: \mathbb{R}^n \to \mathbb{R}^q$, $K \subseteq \mathbb{R}^q$ a proper cone.

minimize (with respect to K)
$$f_0(x)$$
 subject to
$$f_i(x) \leqslant 0$$

$$h_i(x) = 0$$

- f₀ is K-convex.
- fi are convex.
- h_i are affine.

A point x^* is optimal iff it is feasible and

$$f_0(D)\subseteq f_0(x^*)+K$$

Scalarization

Pareto Optimal Points

- A point x is Pareto optimal iff it is feasible and $(f_0(x) K) \cap f_0(D) = \{f_0(x)\}$
- The set of Pareto optimal values, \mathcal{P} satisfies $\mathcal{P} \subseteq f_0(D) \cap \partial f_0(D)$

Scalarization

Let $\lambda \geqslant_{K^*} 0$ be the weight vector.

$$\label{eq:f0} \begin{aligned} & \text{minimize} & & \lambda^T f_0(x) \\ & \text{subject to} & & f_i(x) \leqslant 0 \\ & & & h_i(x) = 0 \end{aligned}$$

If the problem is convex then **every** pareto optimal point is attainable via scalarization.

Minimal Matrix Upper Bound

$$\label{eq:minimize} \begin{array}{ll} \mbox{minimize (w.r.t } S^n_+) & X \\ \\ \mbox{subject to } X \geqslant A_i, \ i=1,\ldots,m \end{array}$$

Let $W \in S^n_{++}$ and form the equivalent **SDP**

$$\label{eq:minimize} \begin{array}{ll} \mbox{minimize (w.r.t } S^n_+) & \mbox{tr}(WX) \\ \\ \mbox{subject to } X \geqslant A_i, \ i=1,\ldots,m \end{array}$$

Ellipsoids and Positive Definiteness

$$\mathcal{E}_{A} = \{ \mathbf{u} \mid \mathbf{u}^{\mathsf{T}} A^{-1} \mathbf{u} \leqslant 1 \}$$
$$A \leqslant B \Leftrightarrow \mathcal{E}_{A} \subseteq \mathcal{E}_{B}$$

Duality

Langrangian

Langrangian

 $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with dom $L = D \times \mathbb{R}^m \times \mathbb{R}^p$.

$$L(x,\lambda,\mu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x)$$

Dual function

 $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda,\mu) = \inf_{x \in D} L(x,\lambda,\mu)$$

Dual function for $\lambda\geqslant 0$ underestimates the optimal value $g(\lambda,\mu)\leqslant p^*.$

Multicriterion Interpretation

Primal Problem without equality constraints:

$$\label{eq:f0} \begin{aligned} & \text{minimize} & & f_0(x) \\ & \text{subject to} & & f_i(x) \leqslant 0, \ i=1,\dots,m \end{aligned}$$

Scalarization of the multicreterion problem:

minimize
$$F(x) = (f_0(x), f_1(x), \dots, f_m(x))$$

Take $\widetilde{\lambda} = (1, \lambda)$ and then minimize

$$\widetilde{\lambda}^{T}F(x) = f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}f_{i}(x)$$

which is the Langrangian of the Primal Problem.

Nonconvex QCQP

Let
$$A \in S^n, A \ngeq 0, b \in \mathbb{R}^n$$
.

$$\label{eq:linear_maximize} \begin{aligned} & \text{maximize} & & x^\mathsf{T} A x + 2 b^\mathsf{T} x \\ & \text{subject to} & & x^\mathsf{T} x \leqslant 1 \end{aligned}$$

Langrangian:

$$L(x,\lambda) = x^\mathsf{T} A x + 2b^\mathsf{T} x + \lambda (x^\mathsf{T} x - 1) = x^\mathsf{T} (A + \lambda I) x + 2b^\mathsf{T} x - \lambda$$

Dual Function:

$$g(\lambda) = \begin{cases} -b^\mathsf{T} (A + \lambda I)^\dagger b - \lambda, & \quad A + \lambda I \geqslant 0, \quad b \in \mathcal{R}(A + \lambda I) \\ -\infty & \quad \text{otherwise} \end{cases}$$

Nonconvex QCQP

Dual Problem

maximize
$$-b^{\mathsf{T}}(A+\lambda I)^{\dagger}b-\lambda$$

subject to $A+\lambda I\geqslant 0, b\in \mathcal{R}(A+\lambda I)$

We can find an equivalent concave problem

$$\begin{array}{ll} \text{maximize} & -\sum_{i=1}^n \frac{(q_i^\mathsf{T} b)^2}{\lambda_i + \lambda} - \lambda \\ \\ \text{subject to} & \lambda \geqslant -\lambda_{\min}(A) \end{array}$$

For these problems strong duality obtains.

Rayleigh Quotient

Let $A \in S^n$

$$\text{maximize} \quad \frac{x^\mathsf{T} A x}{x^\mathsf{T} x}$$

Equivalent problem:

Lagrangian:
$$L(x,\mu) = x^TAx + \lambda(x^Tx - 1)$$

Derivative

Let E, F be Banach Spaces, that is complete normed spaces.

Derivative is a Linear Map

Let U be open in E, and let $x \in U$. Let $f: U \to F$ be a map. f is **differentiable** at x if there exists a continuous linear map $\lambda: E \to F$ and a map ψ defined for all sufficiently small h in E, with values in F, such that

$$\lim_{h\to 0} \psi(h) = 0, \text{ and } f(x+h) = f(x) + \lambda(h) + |h|\psi(h).$$

log(det(X))

 $\nabla f(X) = X^{-1}$

$$\begin{split} f(X): S^n_{++} &\to \mathbb{R}, \ f(X) = \log \det(X) \\ &\log \det(X+H) = \log \det(X+H) \\ &= \log \det \left(X^{1/2} (I + X^{-1/2} H X^{-1/2}) X^{1/2} \right) \\ &= \log \det X + \log \det(I + X^{-1/2} H X^{-1/2}) \\ &= \log \det X + \sum_{i=1}^n \log(1 + \lambda_i) \\ &\simeq \log \det X + \sum_{i=1}^n \lambda_i \\ &= \log \det X + \operatorname{tr}(X^{-1/2} H X^{-1/2}) \\ &= \log \det X + \operatorname{tr}(X^{-1/2} H X^{-1/2}) \\ &= \log \det X + \operatorname{tr}(X^{-1/2} H X^{-1/2}) \end{split}$$

14

Conjugate of logdet

Conjugate function:

$$f^*(y) = \sup_{x \in D} (y^T x - f(x))$$

$$f(X) = \log \det X^{-1}, X \in S_{++}^n$$

The conjugate of f is

$$f^*(Y) = \sup_{X>0} (tr(YX) + \log \det X)$$

- tr(YX) + log det X is unbounded if $Y \nleq 0$.
- \bullet If Y<0 then setting the gradient with respect to X to zero yields $X_0=-Y^{-1}$

$$\begin{split} f^*(Y) &= \log \det(-Y)^{-1} - n = -\log \det(-Y) - n \\ \text{dom } f^* &= -S^n_{++} \end{split}$$

Dual of Affine Constraints

$$\begin{split} Cx &= d \\ g(\lambda, \mu) &= \inf_x (f_0(x) + \lambda^T (Ax - b) + \mu^T (Cx - d)) \\ &= -b^T \lambda - d^T \mu + \inf_x (f_0(x) + (A^T \lambda - C^T \mu)) \\ &= -b^T \lambda - d^T \mu - f_0^* (-A^T \lambda - C^T \mu) \end{split}$$
 with domg = $\{(\lambda, \mu) \mid -A^T \lambda - C^T \mu \in \mathsf{dom} f_0^*\}$

minimize $f_0(x)$ subject to $Ax \le b$

Minimum Volume Covering Ellipsoid

Primal

minimize
$$f_0(X) = \log \det(X^{-1})$$

subject to $a_i^T X a_i \leq 1, i = 1, ..., m$

$$\alpha_i^T X \alpha_i \Leftrightarrow \mathsf{tr}(\alpha_i \alpha_i^T X) \leqslant 1$$

Dual Function

$$g(\lambda, \nu) = \begin{cases} \log \det \left(\sum_{i=1}^m \lambda_i \alpha_i \alpha_i^T \right) - \mathbf{1}^T \lambda + n, \ \sum_{i=1}^m \lambda_i \alpha_i \alpha_i^T > 0 \\ -\infty, & \text{otherwise} \end{cases}$$

Dual

$$\label{eq:minimize} \begin{array}{ll} \text{minimize} & \log \det \left(\sum_{i=1}^m \lambda_i \alpha_i \alpha_i^T \right) - \mathbf{1}^T \lambda + n \\ \\ \text{subject to} & \lambda \geqslant 0 \end{array}$$

The weaker Slater condition is satisfied ($\exists X \in S_{++}^n, \alpha_i^T X \alpha_i \leq 1, i \in [m]$) and therefore Strong Duality obtains.

The Perturbed Problem

The perturbed version of the convex problem:

minimize
$$\begin{split} f_0(x) \\ \text{subject to} \quad f_i(x) \leqslant u_i, \ i=1,\ldots,m \\ h_i(x) = \nu_i, \ i=1,\ldots,p \end{split}$$

The optimal value:

$$p^*(u,v) = \inf\{f_0(x) \mid \exists x \in D, f_i(x) \leqslant u_i, h_i(x) = v_i\}$$

- The optimal value of the unperturbed problem is $p^*(0,0) = p^*$
- When the perturbations result in infeasibility we have $p^*(u, v) = \infty$.
- $p^*(u,v)$ is convex when the original problem is convex.

A Global Inequality

Assume that the original problem is **convex** and Slater's condition is satisfied.

Let (λ^*, μ^*) be optimal for the dual of the original problem. Then

$$p^*(u,v) \geqslant p^*(0,0) - \lambda^{*T}u - \mu^{*T}v$$

Proof.

$$\begin{split} p^*(0,0) &= g(\lambda^*, \mu^*) \\ &\leqslant f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \mu_i^* h_i(x) \\ &\leqslant f_0(x) + {\lambda^*}^T u + {\mu^*}^T v \end{split}$$

Interpretation of the Global Inequality

$$p^*(u, v) \ge p^*(0, 0) - \lambda^{*T}u - \mu^{*T}v$$

- λ_i^* is large, $u_i < 0$ then $p^*(u, v)$ will increase greatly.
- μ_i^* is large and positive, $\nu_i < 0$ OR μ_i^* is large and negative, $\nu_i > 0$ then $p^*(u, v)$ will increase greatly.
- If λ_i^* is small, $u_i > 0$ then $p^*(u, v)$ will not decrease too much.
- If μ_i^* is small and positive $v_i > 0$ OR μ_i^* is small and negative and $v_i < 0$ then $p^*(u,v)$ will not decrease too much.

These results are **not symmetric** with respect to tightening or loosening a constraint.

Local Sensitivity Analysis

Assume strong duality and differentiability of $p^*(u, v)$ at (0, 0).

$$\lambda_i^* = -\frac{\partial p^*}{\partial u_i}\bigg|_{(0,0)}, \quad \mu_i^* = -\frac{\partial p^*}{\partial \nu_i}\bigg|_{(0,0)}$$

Differentiability of p^* allows a symmetric sensitivity result.

Proof.

$$\left.\frac{\partial p^*}{\partial u_i}\right|_{(0,0)} = \lim_{t\to 0} \frac{p^*(te_i,0) - p^*(0,0)}{t}$$

From the global inequality we have

$$\frac{p(u,\nu)-p^*(0,0)}{t}\geqslant -\lambda_i \text{ if } t>0 \text{ and } \frac{p(u,\nu)-p^*(0,0)}{t}\leqslant -\lambda_i \text{ if } t<0$$

Duality in SDP

Primal SDP:

minimize
$$c^Tx$$
 subject to $x_1F_1+\ldots+x_nF_n+G\leqslant 0$

Then

$$\begin{split} L(x,Z) &= c^{T}x + tr((x_{1}F_{1} + \ldots + x_{n}F_{n} + G)Z) \\ &= x_{1}(c_{1} + tr(F_{1}Z)) + \ldots + x_{n}(c_{n} + tr(F_{n}Z)) + tr(GZ) \end{split}$$

Dual function:

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} tr(GZ), & tr(F_iZ) + c_i = 0, \ i = 1, \dots, n \\ -\infty, & otherwise \end{cases}$$

Duality in SDP

Dual Problem:

minimize
$$\begin{array}{ll} \text{tr}(GZ) \\ \text{subject to} & \text{tr}(F_iZ) + c_i = 0, \ i = 1, \ldots, n \\ & Z \geqslant 0 \end{array}$$

Strong Duality obtains if the SDP is strictly feasible, namely there exists an \boldsymbol{x} with

$$x_1F_1 + \ldots + x_nF_n + G < 0$$

References i

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan.

Linear Matrix Inequalities in System and Control Theory.

Society for Industrial and Applied Mathematics, Philadelphia, June 1997.

S. Boyd and L. Vandenberghe.

Convex Optimization.

Cambridge University Press, Cambridge, UK; New York, Mar. 2004.