MINI PROJECT #2(B)

Task 4: MDS plots (numerical data dimensions only)

- (a) construct the data MDS plot (use the Euclidian distance) and visualize it via a scatterplot (use metric MDS – python sklearn.manifold.MDS)
- color the points by cluster ID (see task 3 in Lab 2(A))
- (b) construct the variables' MDS plot (use the (1-|correlation|) distance) and visualize it via a scatterplot (also here, use metric MDS)

Task 5: parallel coordinates plot (PCP)

- visualize the data in a parallel coordinates plot (all data dimensions, categorical and numerical)
- come up with a meaningful axes ordering by user interaction
- color the polylines by cluster ID (see task 3 in Lab 2(A))

Task 6: find a good PCP axes ordering from correlations

numerical values only: use the correlations observed in the variables'
MDS plot to help with the axis ordering – the user would click on points in sequence and the axes would be arranged in that sequence

SCORING AND DUE DATES

Each (task) bullet item carries 10 points

an extra 10 pts for overall elegant implementation and function

Don't forget to

- label the axes and tick marks where appropriate
- show color legends where appropriate
- provide a meaningful header on each plot

Due date

- due April 1, end of day
- no group project, single only

DELIVERABLES

Submit on Brightspace

- voice-narrated video file to show all features of your software in action
- in the video discuss any interesting observations you were able to make in the data
- 2-3 page report
 - describe interesting observations (beyond the video)
 - mention anything noteworthy about implementation (beyond the video)
- zip file with complete source code as well as the data
- submit video as an extra file

GRADING

Grading

- TA will pick students at random for thorough code review sessions
- you better know your code !!!
- so, please do not just copy code beyond the D3 templates
- or even worse, videotape someone else's program