Chapter A: Review of Topology

Theorem Properties of Compact Spaces

Figure 1: Closed sets A and B within open sets U and V, respectively.

Proposition 1.1

Let X and Y be topological spaces.

- (a) If $F \in C(X, Y)$, and X is compact, then F(X) is compact.
- (b) If **X** is compact and $F \in C(\mathbf{X}, \mathbb{R})$, then $F(\mathbf{X})$ is bounded, and F attains its supremum and infimum on **X**.
- (c) A finite union of compact subspaces of X is again compact.
- (d) If \mathbf{X} is Hausdorff, and A, B are disjoint, compact subspaces of \mathbf{X} , there exists open U and V, (see fig. 1).
- (e) Every closed subset of a compact space is compact.
- (f) Every compact subset of a Hausdorff space is closed.
- (g) Every compact subset of a metric space is bounded.
- (h) Every finite product of compact spaces is compact.

Contents Manifolds Theorem Properties of Compact Spaces

(i) Every quotient of a compact space is compact.

Proof of Proposition 1.1 Part A. Let $f \in C(\mathbf{X}, \mathbf{Y})$ with \mathbf{X} compact. Fix an open cover of $f(\mathbf{X})$ in the relative topology,

$$\{U_{\alpha} \cap f(\mathbf{X})\}_{\alpha \in A}$$
 covers \mathbf{X} , U_{α} open in \mathbf{Y}

So that $\bigcup f^{-1}(U_{\alpha}) = \bigcup f^{-1}(U_{\alpha} \cap f(\mathbf{X})) = \mathbf{X}$. Since $\{f^{-1}(U_{\alpha})\}_{\alpha \in A}$ is an open cover for \mathbf{X} , this induces a finite subcollection of indices $\{\alpha_1, \ldots, \alpha_n\}$ with

$$\bigcup_{j=1}^n f^{-1}(U_{\alpha_j}) = \bigcup_{j=1}^n f^{-1}(U_{\alpha_j} \cap f(\mathbf{X}))$$

The direct image commutes with unions, therefore

$$f(\mathbf{X}) = f\left(\bigcup_{j=1}^n f^{-1}(U_\alpha \cap f(\mathbf{X}))\right) = \bigcup_{j=1}^n f\left(f^{-1}(U_{\alpha_j})\right) = \bigcup_{j=1}^n U_{\alpha_j}$$

Proof of Proposition 1.1 Part B. Let X be compact, and $f \in C(X, \mathbb{R})$, so that $f(X) \subseteq \mathbb{R}$ is compact. Compact subsets are closed and bounded in \mathbb{R} , let $A = \sup f(X)$ and $B = \inf f(X)$. Both A and B are accumulation points of f(X), so A = f(x) and B = f(y) for some x, y in X.

Proof of Proposition 1.1 Part C. Let X be a topological space, and $K_1, \ldots K_n$ be compact subspaces. Denote $K = \bigcup_{j=1}^n K_j$. Let $\{U_\alpha \cap K\}_{\alpha \in A}$ be an open cover for K, where U_α is open in X. We can pass the argument to each individual K_j as follows. Let $1 \leq j \leq n$, then $\{U_\alpha \cap K_j\}_{\alpha \in A}$ is an open cover for K_j , so there exists as finite subcollection of indices $I_j \subseteq A$, (a finite subset of A) whose open sets cover K_j . Repeat this process for each j and

$$I = \bigcup_{j=1}^{n} I_j$$
 is a finite subset of A

with $K_j \subseteq \bigcup_{\alpha \in I_j} (U_\alpha \cap K_j) \subseteq \bigcup_{\alpha \in I_j} (U_\alpha \cap K)$. Taking the union over all K_j reads

$$K = \bigcup_{j=1}^{n} K_j \subseteq \bigcup_{j=1}^{n} \bigcup_{\alpha \in I_j} (U_{\alpha} \cap K) = \bigcup_{\alpha \in I} U_{\alpha} \cap I$$

Figure 2: In a Hausdorff space, any two distinct points x and y can be separated by disjoint open neighbourhoods U and V.

Proof of Proposition 1.1 Part D. Let X be Hausdorff. We first prove that compact subspaces of X are closed. Indeed, if K is compact in X, fix any $x \in K^c$. Let y range through the elements of K, then $x \neq y$ induces a pair of disjoint open sets U_y and V_y , such that

- $x \in U_u$
- $y \in V_y$
- $U_y \cap V_y = \varnothing$
- See fig. 2

Figure 3: Compact sets are closed in Hausdorff spaces

Let V_y range through all possible $y \in K$, So that $\{V_y\}_{y \in K}$ is an open cover. There exists a finite subcollection of 'anchor points' of K, y_1, \ldots, y_n that corresponds with $\{V_{y_j}\}_{j=1}^n$.

Contents Manifolds Theorem Properties of Compact Spaces

A finite intersection of open sets is again open, so

$$U = \bigcap_{j=1}^{n} U_{y_j}$$
 is open

Define $V = \bigcup_{j=1}^n V_{y_j}$, so $V \subseteq K$ and $U \cap V = \emptyset$ and $x \in U \subseteq K^c$ (see fig. 3). Therefore K is closed.

Figure 4: Closed sets A and B, point x in A, and disjoint neighbourhoods U around x and V around B.

Finally, if A and B are disjoint compact sets, then each $x \in A \subseteq B^c$ induces neighbourhoods $x \in U_x$, and $B \subseteq V_x$ (see fig. 4), let x range through all the elements of A. By compactness of A, this produces a finite subcover, and

$$U = igcup_{j=1}^n U_{x_j} \quad V = igcap_{j=1}^n V_{x_j}$$

are disjoint open sets that contain A and B respectively.

Proof of Proposition 1.1 Part E. Let $K \subseteq \mathbf{X}$ be a closed set of a compact space. Let $\{U_{\alpha} \cap K\}$ be an open cover for K, where each U_{α} is open in \mathbf{X} . We can append an extra set K^c which is open in \mathbf{X} . The collection

$$W = \{U_{\alpha}\} \cup \{K^c\} \text{ covers } \mathbf{X}$$

so there exists a finite subcollection of W_1, \ldots, W_n that cover **X** (since **X** is comapct by itself). Remove K^c from this finite subcollection if it exists, and take the intersection with K for each element W_j , and

$$\{W_1 \cap K, \dots, W_n \cap K\} = \{U_1 \cap K, \dots, U_n \cap K\}$$
 covers K

so K is compact.

Proof of Proposition 1.1 Part F. Proven in Part D.

Proof of Proposition 1.1 Part G. let $K \subseteq \mathbf{X}$ be a compact subset of the metric space (\mathbf{X}, d) . Compact subsets of \mathbf{X} are totally bounded, and hence bounded.

Proof of Proposition 1.1 Part H. See Tynchonoff's Theorem in Folland Chapter 4.

Proof of Proposition 1.1 Part I. Let X and Y be topological spaces and π : $X \to Y$ be a quotient map. So that Y is endowed with the quotient topology. So that π is a surjective continuous map. and $\pi(X) = Y$. Apply Part A, and we see that Y is compact.