Enrique R. Aznar García eaznar@ugr.es

RANGO DE UN NÚMERO PARA UNA SUC. DE LUCAS

Dados $P,Q \in \mathbb{Z}$, con $d=P^2-4Q$ no cuadrado perfecto, sus s.L. se definen por las ecuaciones QV = PV

$$\begin{cases} V_n = PV_{n-1} - QV_{n-2} \\ U_n = PU_{n-1} - QU_{n-2} \end{cases}$$

con las condiciones iniciales $V_0 = 2$, $U_0 = 0$, $V_1 = P$, $U_1 = 1$.

Dado un entero n, se define su **rango** w(n) para $P,Q\in\mathbb{Z}$, con $d=P^2-4Q$ no cuadrado perfecto, como el primer índice e distinto de cero tal que $U_e\equiv 0\pmod n$.

La primera propiedad del rango es que si existe w(n), entonces $n|U_r \Leftrightarrow w(n)|r$.

Por tanto, si $p \in \mathbb{Z}$ es primo, el TPF para enteros cuadráticos nos asegura que existe w(p) para todo P, Q, con $d = P^2 - 4Q$ no cuadrado perfecto, y debe ser un divisor de $p - \left(\frac{d}{p}\right)$.

A continuación demostraremos que existe w(n) para todo $n \in \mathbb{Z}$ y que si existe una s.L., $\{U_i\}_{i \in \mathbb{N}}$, tal que $w(n) = n - \left(\frac{d}{n}\right)$ entonces n es primo (la s.L. es el análogo a un elemento primitivo para n).

RANGO DE UNA POTENCIA DE PRIMO

Por inducción, para $t \geq 2$, suponemos que $w(p^{t-1})$ existe y que divide a $e = p^{t-2} \left(p - \left(\frac{d}{n} \right) \right)$. Como $\left(\frac{V_e + U_e \sqrt{d}}{2} \right)^p = \alpha^{ep} = \frac{V_{ep} + U_{ep} \sqrt{d}}{2} \Leftrightarrow 2^{p-1} \left(V_{ep} + U_{ep} \sqrt{d} \right) = \left(V_e + U_e \sqrt{d} \right)^p$

Si desarrollamos la potencia p-ésima, vemos que el coeficiente de \sqrt{d} es

$$pV_e^{p-1}U_e + \binom{p}{3}V_e^{p-3}U_e^3d + \binom{p}{5}V_e^{p-5}U_e^5d^2 + \dots + U_e^pd^{(p-1)/2}$$

como cada coeficiente binomial es múltiplo de p (por ser primo), entonces cada sumando es múltiplo de p^t .

Como p no divide a 2^{p-1} , entonces p^t divide a U_{ep} y hemos demostrado el

TEOREMA

Sea $\{U_i\}_{i\in\mathbb{N}}$ la s.L. determinada por P,Q y sea p primo, (p,2Q)=1. Entonces, $w(p^t)$ existe y divide a $p^{t-1}\left(p-\left(\frac{d}{n}\right)\right)$.

RANGO DE UN NÚMERO COMPUESTO

Si $\{U_i\}_{i\in\mathbb{N}}$ es una s.L. determinada por P,Q y $n=p_1^{e_1}\cdots p_r^{e_r}$, $\operatorname{con}(n,2Q)=1$. Entonces, para cada i por el teorema anterior, $p_i^{e_i}$ divide a $U_{kp_i^{e_i-1}\left(p_i-\left(\frac{d}{n}\right)\right)}$ para todo k>1.

Como son primos diferentes, n divide a U_s , donde s es el mínimo común múltiplo de los $p_i^{e_i-1}\left(p_i-\left(\frac{d}{n}\right)\right)$.

Por tanto, w(n) existe y divide a ese mcm y hemos demostrado el

COROLARIO

Para cualquier s.L., si $n = p_1^{e_1} \cdots p_r^{e_r}$ es compuesto, w(n) existe y divide al mcm de los $p_i^{e_i-1} \left(p_i - \left(\frac{d}{n}\right)\right)$.

COROLARIO

Si encontramos una s.L. $\{U_i\}_{i\in\mathbb{N}}$ determinada por P,Q, con $d=P^2-4Q$ no cuadrado perfecto y $n\in\mathbb{Z}$ satisface (n,2Qd)=1 y $w(n)=n\pm1$. Entonces, n es primo.

Por reducción al absurdo, si n es divisible por 2 o mas primos, el corolario anterior nos dice que $w(n) < n-1 \le n \pm 1$ que contradice la hipótesis.

Si $n=p^t$, con t>1, por un teorema anterior w(n) es un divisor de $p^{t-1}\left(p-\left(\frac{d}{n}\right)\right)=p^t\pm p^{t-1}$. Pero $n\pm 1=p^t\pm 1$ no puede dividirlo. Y también contradice la hipótesis.

PRIMOS EN ENTEROS CUADRÁTICOS

Si p es un primo impar y d no es un residuo cuadrático módulo p (i.e. $\left(\frac{d}{p}\right)=-1$). Si p divide a $(a+b\sqrt{d})(f+g\sqrt{d})=af+bgd+(bf+ag)\sqrt{d}$), entonces también divide a $(a-b\sqrt{d})(f-g\sqrt{d})=af+bgd-(bf+ag)\sqrt{d}$).

Por tanto, p^2 divide a $(a^2-db^2)(f^2-dg^2)$ y así p divide a uno de los dos, por ej a a^2-db^2 . Ahora, si p no divide a b, existe el inverso de $b\pmod p$ y en consecuencia $(ab^{-1})^2\equiv d\pmod p$ lo que contradice la hipótesis. Necesariamente, p divide a b y como divide a a^2-db^2 , también dividirá a a como queríamos. Así,

LEMA

Si p primo impar con $\left(\frac{d}{p}\right) = -1$. Entonces, si p divide a $(a + b\sqrt{d})(f + g\sqrt{d})$ divide a uno de los dos factores.

COROLARIO

Si p primo impar con $\left(\frac{d}{p}\right)=-1$. Entonces, p sigue siendo primo en el anillo $A=O_{\sqrt{d}}=\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$, de enteros cuadráticos en $\mathbb{Q}[\sqrt{d}]$. En particular, el anillo cociente K=A/pA es cuerpo.

EL CUERPO COCIENTE

Si p primo impar con $\left(\frac{d}{p}\right)=-1$. Entonces, como existe $2^{-1}\pmod{p}$, todo elemento del cuerpo cociente

$$K = \frac{O_{\sqrt{d}}}{(p)}$$

tiene un representante
$$a+b\sqrt{d}$$
, con $a,b\in\{0,1,\dots,p-1\}$. Además, si $a+b\sqrt{d}\equiv f+g\sqrt{d}\pmod{p}\Leftrightarrow (a-f)+(b-g)\sqrt{d}=p(s+t\sqrt{d})\Leftrightarrow$

$$\Leftrightarrow \left\{ \begin{array}{l} a-f=st\Leftrightarrow a\equiv f\pmod p\\ b-g=pt\Leftrightarrow b\equiv g\pmod p \end{array} \right.$$

COROLARIO

Si p primo impar con $\left(\frac{d}{p}\right)=-1$. Entonces, el anillo cociente $K=O_{\sqrt{d}}/(p)$ es un cuerpo finito con p^2 elementos.

Por lo anterior, el conjunto

$$K = \{a + b\sqrt{d} \in \mathbb{C} : 0 \le a, b < p\}$$

con el producto usual módulo p es un modelo concreto para este cuerpo.

EXISTENCIA DE ELEMENTOS PRIMITIVOS EN CUERPOS FINITOS

Como el grupo multiplicativo es $U(K)=K-\{0\}$, para $K=\frac{O\sqrt{d}}{(p)}$ con p primo impar, $\left(\frac{d}{p}\right)=-1$ tenemos

$$|U(K)| = p^2 - 1 = (p-1)(p+1)$$

Por el teorema de Lagrange, el orden multiplicativo de cada elemento de K, debe ser un un divisor de $p^2 - 1$.

Si existe $\alpha \in K$ de orden multiplicativo r, entonces sus r potencias distintas $1, \alpha, \ldots, \alpha^{r-1} \in K$, todas satisfacen la ecuación $x^r - 1 = 0$. Esos son exactamente los elementos que tienen de orden un divisor de r ya que la ecuación $x^r - 1 \in K[x]$ tiene como máximo r raíces en K. Entre ellos $\varphi(r)$ tienen exactamente orden r.

Como además, para todo $m \in \mathbb{N}$, $m = \sum_{r|m} \varphi(r)$, con $\varphi(r)$ la función de Euler, entonces la igualdad $p^2 - 1 = \sum_{r|p^2-1} \varphi(r) = \varphi(1) + \varphi(2) + \dots + \varphi(p^2-1)$

nos demuestra que tiene que haber en U(K) elementos de orden cualquier divisor de p^2-1 . En particular, existen $\varphi(p^2-1)$ elementos de orden máximo, p^2-1 , y estos generan al grupo multiplicativo U(K). O sea,

TEOREMA

Si p primo impar con $\left(\frac{d}{p}\right)=-1$, el grupo multiplicativo de $K=O_{\sqrt{d}}/(p)$ es cíclico de orden p^2-1 .

EXISTENCIA DE LUCAS-CERTIFICADO PARA UN PRIMO

Si p primo impar con $\left(\frac{d}{p}\right) = -1$, entre $\log p^2 - 1$ elementos de U(K), $a + b\sqrt{d} \in K$, $1 \le a < p, 0 \le b < p$

hay elementos de orden cualquier divisor de $p^2 - 1 = (p - 1)(p + 1)$.

Ahora, sea una s.L., $\{U_i\}_{i\in\mathbb{N}}$, definida por $P,Q\in\mathbb{Z}$, con $d=P^2-4Q$ no cuadrado perfecto, y $\alpha=\frac{P+\sqrt{d}}{2}$.

Sea también *p* primo impar con $\left(\frac{d}{p}\right) = -1$.

Por el TPF para ent. cuadr., la s.L. $\{U_i\}_{i\in\mathbb{N}}$ certifica que p es primo si y sólo si p+1 es la menor potencia de α que sale congruente, módulo p, con un entero racional. Esto es cierto, si en el cuerpo cociente la clase de α , módulo p, tiene de orden multiplicativo $(p^2-1)/t$ con t un divisor primo con p+1 (i.e., t divisor impar de p-1).

Recíprocamente, si $a + b\sqrt{d} \in K$ tiene de orden $(p^2 - 1)/t$ con t un divisor impar de p - 1, entonces la s.L. asociada a P = 2a, $Q = a^2 - b^2d \pmod{p}$ certifica la primalidad de p. Así

TEOREMA

Existen al menos tantas s.L. que certifican la primalidad de p como elementos en K tienen orden $(p^2 - 1)/t$ con t un divisor impar de p - 1.

PROBABILIDAD DE UN LUCAS-CERTIFICADO DE PRIMALIDAD

$$\sum_{t|p-1, \text{ t impar}} \varphi((p^2 - 1)/t) = (p - 1)\varphi(p + 1)$$

la probabilidad de encontrar una s.L.-certificado es $\frac{(p-1)\varphi(p+1)}{p^2-1}=\frac{\varphi(p+1)}{p+1}$

Ahora, si $\alpha = a + b\sqrt{d} \in K$ tiene orden $(p^2 - 1)/t$ con t un divisor impar de p - 1, como existe $a^{-1} \pmod{p}$, también el elemento

$$\beta = (2a)^{-1}\alpha = (2a)^{-1}(a+b\sqrt{d}) = \frac{1+a^{-1}b\sqrt{d}}{2} = \frac{1+\sqrt{a^{-2}b^2d}}{2}$$

tiene el mismo orden y su correspondiente s.L está asociada a P = 1,

$$Q \equiv (1 - a^{-2}b^2d)/4 \pmod{p}.$$

Por tanto, se tiene

COROLARIO

La probabilidad de encontrar una s.L.-certificado es $\frac{(p-1)\varphi(p+1)}{p^2-1}=\frac{\varphi(p+1)}{p+1}$ y basta buscar entre las s.L., $\{U_i\}_{i\in\mathbb{N}}$, definidas por $P=1,Q\in\mathbb{N}$, con d=1-4Q no cuadrado perfecto, para certificar la primalidad de p.

Enrique R. Aznar García eaznar@ugr.es