明細書

π 共役系芳香環含有化合物及び有機エレクトロルミネッセンス素子 技術分野

[0001] 本発明は、π共役系芳香環含有化合物に関し、さらに詳述すると、例えば、有機エレクトロルミネッセンス素子用の発光材料として好適に用いることができるπ共役系芳香環含有化合物に関する。

背景技術

- [0002] 従来、平面型光源としては、無機エレクトロルミネッセンス素子が使用されてきたが 、この素子を駆動させるためには、交流高電圧が必要であるとともに、青色発光が難 しいことから、RGBの三原色によるフルカラー化は困難であった。
- [0003] 一方、有機材料を用いたエレクトロルミネッセンス素子についても、これまで様々な検討が行われてきている。例えば、蛍光性有機化合物として単結晶アントラセン等を用いたもの(特許文献1:米国特許第3,530,325号明細書)、正孔輸送層と発光層とを組み合わせたもの(特許文献2:特開昭59-194393号公報)、正孔輸送層と発光層と電子輸送層とを組み合わせたもの(非特許文献1:ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス)等が報告されている。
- [0004] しかしながら、有機エレクトロルミネッセンス素子は、エネルギー変換効率、発光効率及び発光材料の安定性が求められるものであるところ、上記各有機エレクトロルミネッセンス素子では、これらの各特性が十分であるとは言えないことから、さらなる改良が求められている。

ところで、フルカラーディスプレイ用の場合、三原色を構成する赤、緑、青それぞれ の発光材料が必要となる上、それらの色純度が問題となるが、現在知られている有機 エレクトロルミネッセンス素子の赤色発光効率は不充分であることが知られている。

この欠点を補うべく、有機発光材料からの青色又は青緑色の発光を、蛍光色素で 色変調して赤色を発光させる有機エレクトロルミネッセンス素子が開発されている(特 許文献4:特開平3~152897号公報)。

[0005] この特許文献4の技術では、有機発光材料から生じる青色又は青緑色の光を吸収

し、さらに赤色に蛍光を有する色素が少ないことから、青から赤色への色変換を一段 階で行うことは困難である。そこで、特許文献4の技術では、複数の色素で段階的に 行う手法を採用しているが、この手法では、素子の発光効率が低下してしまうという問 題があった。

[0006] さらに、この点に鑑み、青紫領域の光を発生する有機発光材料と、青紫領域の光を 吸収する蛍光色素とを組み合わせた有機エレクトロルミネッセンス素子が開発されて いる(特許文献5:欧州特許第1067165公開公報)。

この特許文献5の技術では、青紫領域に吸収を有し、さらに赤色の蛍光を持つ色素を用いるものであることから、一段階で赤色への変換が可能となり、2段階の変換に比べれば、その効率を高めることができる。しかしながら、この方法でもやはり青紫色を赤色に変換している以上、発光効率の低下を避けることができず、また、従来の有機発光材料では、赤色に変換後の発光強度が充分であるとは言えなかった。

また、有機エレクトロルミネッセンス素子の有機発光材料においては、優れた電荷 輸送性を有する安定な発光材料が望まれている。

[0007] 特許文献1:米国特許第3,530,325号明細書

特許文献2:特開昭59-194393号公報

特許文献3:特開昭63-295695号公報

特許文献4:特開平3-152897号公報

特許文献5:欧州特許第1067165公開公報

非特許文献1:「ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス(Jpn. J.

Appl. Phys.)」、日本、社団法人 応用物理学会、1988年、第27巻、p. L269-L27

発明の開示

発明が解決しようとする課題

[0008] 本発明は、このような事情に鑑みてなされたものであり、青紫色領域から赤色領域の発光材料として有用であるとともに、比較的安定な元共役系芳香環含有化合物及びこの化合物を含んで構成された有機薄膜層を備える有機エレクトロルミネッセンス素子を提供することを目的とする。

課題を解決するための手段

[0009] 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、エンーイン型、 好ましくはエンージイン型のπ共役鎖及び芳香環部位を有するπ共役系芳香環含有 化合物が、青紫領域において比較的高い蛍光強度を有すること、複素芳香環の種 類によっては赤色の発光材料となり得ること、及び優れた電荷輸送性を有する安定 な発光材料となり得ることを見出すとともに、有機エレクトロルミネッセンス素子用の発 光材料として好適であることを見出し、本発明を完成した。

[0010] すなわち、本発明は、

 式(1)で表されることを特徴とする π 共役系芳香環含有化合物、 [化1]

$$R^{1} \xrightarrow{A} \xrightarrow{R^{2}} Q \xrightarrow{R^{4}} Q \xrightarrow{R^{4}}$$

(式中、R¹は、水素原子、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、フッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基、下記式(2)で示される基、又は下記式(3)で示される基を表し、

[1<u>k</u>2]

【式中、Eは、水素原子、置換シリル基、フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、チェニル基(該フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラブリル基、イミダゾリル基、又はチェニル基は、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしく

は塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で 任意に置換されていてもよい。)を表し、R⁷及びR⁸は、互いに独立して炭素数1~10 のアルキル基を表す。]、 R^2 、 R^3 、 R^4 及U R^5 は、互いに独立して水素原子又は炭素数 1~10のアルキル基を表し、R⁶は、水素原子、置換シリル基、フェニル基、ナフチル 基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル 基、ピラブリル基、イミダブリル基、チエニル基(該フェニル基、ナフチル基、ピリジル 基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリ ル基、イミダゾリル基、又はチエニル基は、ハロゲン原子、シアノ基、ニトロ基、ジメチ ルアミノ基、ジフェニルアミノ基、炭素数1-3のアルコキン基、炭素数1-10のアル キル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1〜 10のハロゲン化アルキル基で任意に置換されていてもよい。)、前記式(2)で示され る基、又は前記式(3)で示される基を表し、A及びDは、互いに独立して、ナフタレン 環、アントラセン環、フェナントレン環、フェナレン環、フルオレン環、トリフェニレン環、 ピレン環、ペリレン環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、フラン環、 ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベンゾチアジアゾール環 、チエノ[3, 4-b]ピラジン環、フロ[3, 4-b]ピラジン環、又は6H-ピロロ[3, 4-b]ピ ラジン環(これらの各環は、フェニル基、ハロゲン原子、シアノ基、ニトロ基、ジメチル アミノ基、ジフェニルアミノ基、炭素数1ー3のアルコキシ基、炭素数1ー10のアルキ ル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~1 0のハロゲン化アルキル基で任意に置換されていてもよい。)を表し、a、a。及びa。は 、互いに独立して0又は1を表し、n、及びn。は互いに独立して1~5の整数を表す。} 2. 式(4)で示されることを特徴とするπ共役系芳香環含有化合物、

[化3]

【式中、R²、R³、R⁴、R⁵、及びR⁶は、上記と同じ意味を示す。Z¹、Y¹及びY²はそれぞ

れ独立してベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フェナレン環、フルオレン環、トリフェニレン環、ピレン環、ペリレン環、ピリジン環、ピリミジン環、ピリダン環、ピリジン環、アラン環、ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベングチアジアゾール環、チエノ[3,4-b]ピラジン環、フロ[3,4-b]ピラジン環、又は6H-ピロロ[3,4-b]ピラジン環(これらの各環は、フェニル基、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)を表し、R⁹は、単結合、一〇一、一Sー、一S(O)一、一C(O)〇一、一C(S)〇一、一C(S)〇一、一C(O)NH一、一NHC(O)一、一C(S)NH一、一NHC(S)一、一NH一、又は炭素数1~8の分岐していてもよい2価の飽和若しくは不飽和炭化水素基を表し、b及びbは、互いに独立して0又は1を表し、cは、0~3の整数を表し、m₁及びm₂は、互いに独立して1~5の整数を表す。〕
3. 式(5)で表されることを特徴とするπ共役系芳香環含有化合物、[化4]

$$R^{6} \xrightarrow{Y^{3}} R^{2}$$

$$R^{6} \xrightarrow{Y^{3}} R^{2}$$

$$R^{7} \xrightarrow{Q^{2}} R^{4} \xrightarrow{Q^{2}} R^{5}$$

$$R^{7} \xrightarrow{Q^{2}} R^{7}$$

$$R^{8} \xrightarrow{Q^{2}} R^{7}$$

$$R^{8} \xrightarrow{Q^{2}} R^{11}$$

$$R^{8} \xrightarrow{Q^{2}} R^{11}$$

$$R^{8} \xrightarrow{Q^{2}} R^{11}$$

$$R^{8} \xrightarrow{Q^{2}} R^{11}$$

$$R^{10} \xrightarrow{Q^{2}} R^{11}$$

$$R^{4} \xrightarrow{Q^{2}} R^{5}$$

$$R^{5} \xrightarrow{R^{2}} R^{5}$$

{式中、R²、R³、R⁴、R⁵、及びR⁶は、上記と同じ意味を示す。R¹⁰及びR¹¹は、互いに独立して水素原子又は炭素数1~10のアルキル基を表し、Y³~Y⁵はそれぞれ独立してベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フェナレン環、フルオ

レン環、トリフェニレン環、ピレン環、ペリレン環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベンゾチアジアゾール環、チエノ[3,4-b]ピラジン環、フロ[3,4-b]ピラジン環、又は6H-ピロロ[3,4-b]ピラジン環(これらの各環は、フェニル基、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1-3のアルコキシ基、炭素数1-10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1-10のハロゲン化アルキル基で任意に置換されていてもよい。)を表し、Z²は、3価のアリール基、下記式(6)で示される基、又は式(7)で示される基を表し、

[化5]

 \mathbf{d}_1 ー \mathbf{d}_3 は、互いに独立して $\mathbf{0}$ 又は $\mathbf{1}$ を表し、 \mathbf{k}_1 ー \mathbf{k}_3 は、互いに独立して $\mathbf{1}$ ー $\mathbf{5}$ の整数を表す。}

4. 前記R¹が、水素原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、プロポキシ基、メチル基、トリフルオロメチル基、下記式(8)で示される基、又は下記式(9)で示される基であることを特徴とする1のπ共役系芳香環含有化合物、

[1<u>k</u>6]

[式中、E' は、水素原子、トリメチルシリル基、トリーiープロピルシリル基、フェニル基、 ピリジル基、チエニル基(該フェニル基、ピリジル基、又はチエニル基は、シアノ基、ニ トロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、nープロポキシ基、メチル基 、又はトリフルオロメチル基で任意に置換されていてもよい。)を表す。]

- 5. 前記 R^2 、 R^3 、 R^4 及 UR^5 が、互いに独立して水素原子、メチル基、エチル基、又はn-プロピル基であることを特徴とする1 -4のいずれかの π 共役系芳香環含有化合物、
- 6. 前記R⁶が、水素原子、トリメチルシリル基、トリーiープロピルシリル基、フェニル基、 ピリジル基、チエニル基(該フェニル基、ピリジル基、又はチエニル基は、シアノ基、ニ トロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、nープロポキシ基、メチル基 、又はトリフルオロメチル基で任意に置換されていてもよい。)、下記式(8)で示される 基、又は下記式(9)で示される基であることを特徴とする1~5のいずれかのπ共役 系芳香環含有化合物、

[化7]

$$E = \begin{array}{c} CH_3 \\ OH \\ (8) \end{array}$$

(式中、E'は、上記と同じ意味を示す。)

- 7. 前記A及びDが、互いに独立して、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベンゾチアジアゾール環、チエノ[3,4-b]ピラジン環、フロ[3,4-b]ピラジン環、又は6H-ピロロ[3,4-b]ピラジン環(これらの各環は、フェニル基、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原了もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)であることを特徴とする1のπ共役系芳香環含有化合物、
- 8. 前記A及びDが、互いに独立してピリジン環、ピリダジン環、チオフェン環、ベン ゾチアジアゾール環、又はチエノ[3,4-b]ピラジン環(これらの環は、フェニル基、シ アノ基、メトキシ基、n-プロポキシ基、メチル基、又はトリフルオロメチル基で任意に置 換されていてもよい。)であることを特徴とする7のπ共役系芳香環含有化合物、
- 9. 前記Z¹、Y¹及びY²が、互いに独立してベンゼン環、ナフタレン環、アントラセン環、ピリジン環、ピリダジン環、チオフェン環、ピロール環、ベングチアジアゾール環、

又はチェノ[3, 4-b]ピラジン環(これらの環は、フェニル基、シアノ基、メトキシ基、nープロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)であり、R⁹が、単結合又は一O-であり、b₁及びb₂が、全て1であり、cが、0または1であることを特徴とする2,5又は6のπ共役系芳香環含有化合物、

10. 前記 Y^3 ~ Y^5 が、互いに独立してフェニレン基、ナフタレン環、アントラセン環、ピリジン環、ピリダジン環、チオフェン環、ピロール環、ベンプチアジアゾール環、又はチエノ[3,4-b]ピラジン環(これらの環は、フェニル基、シアノ基、メトキシ基、n-プロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)であり、 Z^2 が、下記式(10)で示される基、又は式(11)で示される基であり、 d_1 ~ d_3 が全て1であることを特徴とする3、5又は6の π 共役系芳香環含有化合物、

[458]

11. 陽極と陰極と、これら両極間に介在させた有機薄膜層とを有する有機エレクトロルミネッセンス素子であって、前記有機薄膜層が、1~10のいずれかの π 共役系 芳香環含有化合物を含んで構成された層であることを特徴とする有機エレクトロルミネッセンス素子

を提供する。

発明の効果

[0011] 本発明のπ共役系芳香環含有化合物は、上記(1)、(4)又は(5)で示されるように、エンーイン型(エンージイン型)の鎖状構造を有しており、金属錯体ではないため、比較的安定性に優れたものである。複素芳香環部位を有している場合、青紫領域において比較的高い蛍光強度を有するとともに、複素芳香環の種類によっては、従来、単一の有機材料では達成することが困難であった赤色の蛍光を有するものである。また、式(5)で示される化合物は、共役系が3方に広がった構造を有しているため、

優れた電荷輸送性を有している。

これらの理由から、本発明の π 共役系芳香環含有化合物は、有機エレクトロルミネッセント素子用の発光材料として好適に用いることができる。 当該 π 共役系芳香環含有化合物を用いた有機エレクトロルミネッセント素子は、バックライトとしての面状光源、発光光源、照明装置、フラットパネルディスプレイ等の表示デバイス等として好適に利用することができる。

図面の簡単な説明

[0012] [図1]図1は化合物36の蛍光スペクトルである。

[凶2]凶2は化合物43の蛍光スペクトルである。

[図3]図3は化合物56の蛍光スペクトルである。

[図4]図4は化合物77の蛍光スペクトルである。

発明を実施するための最良の形態

[0013] 以下、本発明についてさらに詳しく説明する。

本発明に係るπ共役系芳香環含有化合物は、上記式(1)、(4)又は(5)で表されることを特徴とする。

式(1)、(4)及び(5)において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

炭素数1-3のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基が挙げられる。

炭素数1~10のアルキル基としては、直鎖、分岐、環状のいずれでもよく、例えば、メチル、エチル、nープロピル、iープロピル、nーブチル、iーブチル、sーブチル、tーブチル、nーペンチル、iーアミル、tーアミル、neoーペンチル、nーヘキシル、ヘプチル、オクチル、ノニル、デシル基等が挙げられる。

[0014] フッ素原子又は塩素原子で任意に置換されていてもよい炭素数1〜10のハロゲン 化アルキル基としては、トリフルオロメチル、2, 2, 2ートリフルオロエチル、1, 1, 2, 2 , 2〜ペンタフルオロエチル、2, 2, 3, 3, 3〜ペンタフルオロプロピル基等が挙げられ る。

置換シリル基としては、トリメチルシリル、トリエチルシリル、トリーnープロピルシリル、ト

リーiープロピルシリル、トリーnーブチルシリル、トリーiーブチルシリル、トリーnーへキシルシリル、ジメチルエチルシリル、ジメチルーnープロピルシリル、ジメチルーnープチルシリル、ジメチルーiープチルシリル、ジメチルーtーブチルシリル、ジメチルーnーペンチルシリル、ジメチルーnーオクチルシリル、ジメチルシクロへキシルシリル、ジメチルー2、3ージメチルプロピルシリル、ジメチルー2ー(ビシクロへプチル)シリル、ジメチルベンジルシリル、ジメチルフェニルシリル、ジメチルーpートリルシリル、ジメチルブロフェメシルシリル、ジスチルジフェニルシリル、ドリフェニルシリル、ジフェニルーtーブチルシリル、トリベンジルシリル、ジフェニルビニルシリル、ジフェニルーnーブチルシリル、フェニルメチルビニルシリル等が挙げられる。

[0015] 式(4)において、炭素数1〜8の分岐していてもよい2価の飽和若しくは不飽和炭化 $\mathsf{CH}_2^-, -\mathsf{CHMe}^-, -\mathsf{CMe}_2^-, -\mathsf{CHEt}^-, -\mathsf{CEt}_2^-, -\mathsf{CMeEt}^-, -\mathsf{CHMeCH}_2^-, -\mathsf$ $-CH_2CHMe-$, $-CMe_2CH_2-$, $-CH_2CMe_2-$, -CHMeCHMe-, $-CMe_2CHMe$ -, -CHMeCMe₂-, -CMe₂CMe₂-, -CHEtCH₂-, -CH₂CHEt-, -CEt₂CH₂ -, -CH₂CEt₃-, -CHEtCHEt-, -CEt₃CHEt-, -CHEtCEt₂-, -CMeEtCH₃ -, -CH, CMeEt-, -CHMeCHEt-, -CHEtCHMe-, -CMeEtCHEt-, CEt, CHMe-, -CHMeCEt₂-, -CHEtCMeEt-, -CH=CH-, -CH=CHCH₂-, $-\mathsf{CH}_{\mathsf{C}}\mathsf{CH} = \mathsf{CH}_{\mathsf{-}}, -\mathsf{CH}_{\mathsf{C}}\mathsf{CH}_{\mathsf{-}}\mathsf{CH}_{\mathsf{-}}, -\mathsf{CH}_{\mathsf{C}}\mathsf{CH}_{\mathsf{-}}\mathsf$ =CH-,-CH=CHCH=CH-,-CMe=CH-,-CH=CMe-,-CMe=CMe -, -CEt=CH-, -CH=CEt-, -CMe=CEt-, -CMe=CH CH_{2}^{-} , $-CH=CMeCH_{2}^{-}$, -CH=CHCHMe-, $-CMe=CMeCH_{2}^{-}$, -CMe=CHCHMe-, -CH=CMeCHMe-, -CH=CHCMe, -, -CMe=CMeCHM $e-,-CMe=CHCMe_2-,-CH=CMeCMe_2-,-CMe=CMeCMe_2-,-CHMe$ CH=CH-,-CH₂CMe=CH-,-CH₂CH=CMe-,-CHMeCMe=CH-,-C HMeCH=CMe-, -CH₂CMe=CMe-, -CMe₂CH=CH-, -CHMeCMe=C Me-,-CMe₂CMe=CH-,-CMe₂CH=CMe-,-CMe₂CMe=CMe-,-CM e=CHCH=CH-,-CH=CMeCH=CH-,-CH=CHCMe=CH-,-CH= CHCH=CMe-、-CMe=CMeCH=CH-、-CMe=CHCMe=CH-、-CMe

=CHCH=CMe-、-CH=CMeCMe=CH-、-CH=CMeCH=CMe-、-CH=CHCMe=CMe-、-CH=CMeCMe=CMe-、-C=C-、-C=CCH $_2$ -、-CHCMe=CMe-、-CHCCH $_2$ -、-CHCCHCH $_2$ -、-CHCCHCH $_2$ -、-CHCCHCH $_2$ -、-CHCCHCCHCH $_2$ -、-CHCCCCHCHCHC-、-CHMeC=C-、-C=CCHEt-、-CHEtC=C-、-C=CCMe $_2$ -、-CMeC=C-、-C=CCEt $_2$ -、-CEt $_2$ C=C-、-C=CCMeEt-、-CMeEtC=C-等が挙げられる。

- [0016] 式(5)において、3価のアリール基の具体例としては、3価のベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フェナレン環、フルオレン環、トリフェニレン環、ピレン環、ペリレン環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベンゾチアジアゾール環、チェノ[3,4-b]ピラジン環、フロ[3,4-b]ピラジン環、又は6H-ピロロ[3,4-b]ピラジン環等が挙げられる。
- [0017] 式(1)において、R¹としては、水素原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、プロポキシ基、メチル基、トリフルオロメチル基、下記式(8)で示される基、又は下記式(9)で示される基が好ましい。

[0018] [化9]

$$E' = CH_3 - CH_3$$

$$OH$$

$$(8) \qquad (9)$$

- [0019] 式(8)において、E' は水素原了、トリメチルシリル基、トリーiープロピルシリル基、フェニル基、ピリジル基、チエニル基(該フェニル基、ピリジル基、又はチエニル基はシアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、nープロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)である。
- [0020] 式(1)、(4)及び(5)において、R²〜R⁵としては、互いに独立して水素原子、メチル、nープロピル基であることが好ましい。

式(1)、(4)及び(5)において、R⁶としては、水素原子、トリメチルシリル基、トリーiープロピルシリル基、フェニル基、ピリジル基、チエニル基(該フェニル基、ピリジル基、 又はチエニル基は、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキ シ基、n-プロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)、上記式(8)で示される基、又は式(9)で示される基が好ましい。

式(4)において、R⁹としては、単結合、又は一〇一が好ましい。

式(5)において、R¹⁰及びR¹¹としては、互いに独立して、水素原子、メチル、エチル、n-プロピル基であることが好ましい。

- [0021] 式(1)において、A及びDとしては、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベンゾチアジアゾール環、チェノ[3,4-b]ピラジン環、フロ[3,4-b]ピラジン環、又は6H-ピロロ[3,4-b]ピラジン環(これらの各環は、フェニル基、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原了もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)が好ましく、特に、ピリジン環、ピリダジン環、チオフェン環、ベンゾチアジアゾール環、又はチェノ[3,4-b]ピラジン環(これらの環は、フェニル基、シアノ基、メトキシ基、nープロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)が好ましい
- [0022] 式(4)において、Z¹、Y¹及びY²としては、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、ピリダジン環、チオフェン環、ピロール環、ベングチアジアグール環、又はチエノ[3,4-b]ピラジン環(これらの環は、フェニル基、シアノ基、メトキシ基、n-プロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)が好ましい。

式(5)において、Y³ーY⁵としては、フェニレン基、ナフタレン環、アントラセン環、ピリジン環、ピリダジン環、チオフェン環、ピロール環、ベンゾチアジアゾール環、又はチエノ[3,4-b]ピラジン環(これらの環は、フェニル基、シアノ基、メトキシ基、n-プロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)であることが好ましい。

Z²としては、下記式(10)で示される基、又は式(11)で示される基が好ましい。

WO 2005/085176

[0023] [化10]

[0024] 式(1)において、 a_1 、 a_2 及び a_3 は、互いに独立して0又は1であるが、 a_1 が1、 a_2 及び a_3 がどちらも0の組み合わせ、又は a_1 、 a_2 及び a_3 がすべて0の組み合わせが好ましい。 a_1 及び a_2 としては、1〜5の整数であるが、特に1〜3の整数が好ましい。

式(4)において、 b_1 及び b_2 は、互いに独立して0又は1を表し、cは、0 -3の整数を表すが、 b_1 及び b_2 が、全て1であり、cが、0または1であることが好ましい。 m_1 及び m_2 は、互いに独立して1 -5の整数を表すが、特に1 -3の整数が好ましい。

式(5)において、 $d_1 - d_3$ は、互いに独立して0又は1を表すが、 $d_1 - d_3$ が全て1であることが好ましい。 $k_1 - k_5$ は、互いに独立して1~5の整数を表すが1~3の整数が好ましい。

なお、以上の説明において、nはノルマルを、iはイソを、sはセカンダリーを、tはターシャリーをそれぞれ表す。

[0025] 式(1)、(4)及び(5)で示される π 共役系 芳香環含 有化合物は、例えば、以下の製 法1~7により得ることができる。

なお、以下の製法における反応溶媒としては、当該反応条件下において安定であり、かつ不活性で反応を妨げないものであれば、特に限定されるものではない。例えば、水、アルコール類(例えばメタノール、エタノール、プロパノール、ブタノール、オクタノール等)、セロソルブ類(例えばメトキシエタノール、エトキシエタノール等)、非プロトン性極性有機溶媒類(例えばジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、テトラメチルウレア、スルホラン、Nーメチルピロリドン、N, Nージメチルイミダブリジノン等)、エーテル類(例えばジエチルエーテル、ジイソプロピルエーテル、ナープチルメチルエーテル、テトラヒドロフラン、ジオキサン等)、脂肪族炭化水素類(例えばペンタン、ヘキサン、cーヘキサン、オクタン、デカン、デカリン、石油エーテ

ル等)、芳香族炭化水素類(ベンゼン、クロロベンゼン、o-ジクロロベンゼン、ニトロベンゼン、トルエン、キシレン、メシチレン、テトラリン等)、ハロゲン化炭化水素類(例えばクロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、ケトン類(アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン等)、低級脂肪族酸エステル(例えば酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等)、アルコキシアルカン類(例えばジメトキシエタン、ジエトキシエタン等)、ニトリル類(例えばアセトニトリル、プロピオニトリル、ブチロニトリル等)等の溶媒が挙げられる。

これらの溶媒は、反応の起こり易さ等を考慮して適宜選択することができ、この場合 、上記溶媒は一種単独で又は二種以上混合して用いることができる。また場合によっ ては、適当な脱水剤や乾燥剤を用いて非水溶媒として用いることもできる。

[0026] (1)製法1

製法1は、下記スキーム1に示されるように、芳香環を含む末端アセチレン(A)と、ハロゲン化ビニル誘導体(B)とをパラジウム触媒存在下、菌頭反応を行うことにより中間体(C)を合成し、さらにハロゲン化複素芳香族化合物(D)と菌頭反応を行う方法である。

[0027] [化11]

$$R^{-A} = + \times \xrightarrow{\mathbb{R}^{2}} \text{SiMe}_{3}$$

$$(A) \qquad (B) \qquad (C) + \times D = \begin{pmatrix} \mathbb{R}^{4} \\ \mathbb{R}^{5} \end{pmatrix}_{a_{3}} \times \mathbb{R}^{6}$$

$$(B) \qquad \mathbb{R}^{1} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{2}$$

$$(C) + \times \mathbb{R}^{4} \xrightarrow{\mathbb{R}^{5}} \mathbb{R}^{3} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{6}$$

$$(C) + \times \mathbb{R}^{5} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{6}$$

$$(C) + \times \mathbb{R}^{5} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{6}$$

(式中 R^1 〜 R^6 、A、D、a、及びa は上記と同じ。Xは塩素原子、臭素原子、又はヨウ素原子を表す。)

[0028] ここで、パラジウム触媒としては、種々の構造のものを用いることができるが、いわゆる低原子価のパラジウム錯体を用いることが好ましく、特に3級ホスフィンや3級ホスファイトを配位子とするゼロ価錯体が好ましい。また、反応系中で容易にゼロ価錯体に変換される適当な前駆体を用いることもできる。さらに、反応系中で、3級ホスフィンや

3級ホスファイトを配位子として含まない錯体と、3級ホスフィンや3級ホスファイトとを 混合し、3級ホスフィンや3級ホスファイトを配位子とする低原子価錯体を発生させることもできる。

- [0029] 配位子である3級ホスフィン又は3級ホスファイトとしては、例えば、トリフェニルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、1,2ービス(ジフェニルホスフィノ)エタン、1,3ービス(ジフェニルホスフィノ)プロパン、1,4ービス(ジフェニルホスフィノ)ブタン、1,1'ービス(ジフェニルホスフィノ)フェロセン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等が挙げられ、これらの配位子の2種以上を混合して含む錯体も好適に用いられる。
- [0030] 触媒として、3級ホスフィンや3級ホスファイトを含まないパラジウム錯体及び/又は 3級ホスフィンや3級ホスファイトを含む錯体と、前記した配位子と、を組み合わせて用 いることも好ましい態様である。

上記配位子に組み合わせて用いられる、3級ホスフィンや3級ホスファイトを含まない錯体としては、ビス(ベンジリデンアセトン)パラジウム、酢酸パラジウム等が挙げられ、また3級ホスフィンや3級ホスファイトを既に配位子として含む錯体としては、ジメチルビス(トリフェニルホスフィン)パラジウム、ジメチルビス(ジフェニルメチルホスフィン)パラジウム、(エチレン)ビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム等が挙げられるが、これらに限定されるものではない。

[0031] これらパラジウム触媒の使用量は、いわゆる触媒量で良く、一般的には、基質(B又はD)に対して20モル%以下で十分であり、通常5モル%以下である。

反応溶媒としては、反応に関与しないものであれば特に制限はなく、上記した溶媒 を用いることができる。

反応温度は、通常、-100℃から使用する溶媒の沸点まで可能であるが、好ましくは-50~50℃の範囲で行うのがよい。

反応時間は、通常、0.1~1000時間である。

反応終了後は、適当な溶媒により目的物を抽出し、溶媒を減圧濃縮して粗物を得ることができる。

さらに、蒸留、再結晶及びシリカゲルカラムクロマトグラフィー等の常法による精製を

行うことで、純粋な目的物(1)を単離することができる。

[0032] (2)製法2

製法2は、下記スキーム2に示されるように、芳香環を含むハロゲン化ビニル誘導体 (E)と、芳香環を含む末端アセチレン誘導体(F)とをパラジウム触媒存在下、薗頭反 応を行う方法である。反応は、製法1と同様な条件で行うことができる。

[0033] [化12]

スキーム2

$$R^{1} - A = \underbrace{\sum_{R^{3}}^{R^{2}}}_{R^{3}} \times + \underbrace{= D - \underbrace{\sum_{R^{6}}^{R^{6}}}_{Q_{3}} \underbrace{\left(- \right)_{a_{2}}}_{Q_{3}} R^{6}}_{(F)} \longrightarrow R^{1} - A - \underbrace{= R^{2}}_{R^{5}} \underbrace{= D - \underbrace{\left(- \right)_{A_{2}}}_{R^{6}} \underbrace{\left(- \right)_{a_{2}}}_{Q_{3}} R^{6}}_{(D)}$$

(式中R¹~R⁶、Λ、D、a¸、a¸、及びXは上記と同じ。)

[0034] なお、上記中間休(E)の合成は以下の方法で合成できる。

すなわち、2価チタン反応剤Ti(O-i-Pr) / 2i-PrMgClによる芳香族含有末端アセチレン(A)と内部アセチレン(H)とのクロスカップリング反応により得られるチタナペンタジエン中間体(J)を、ヨウ素又は臭素で処理し中間体(K)を得ることができる(ジャーナル・オブ・オーガニック・ケミストリー(J. Org. Chem.),(米), 1998年, 第63巻, p. 10060、及びジャーナル・オブ・アメリカン・ケミカル・ソサイアティー(J. Am. Chem.Soc.)」,(米), 1999年, 第121巻, p. 7342)。

中間体(K)を脱ハロゲン化反応して得られた中間体(L)をアルキル置換し、さらに シリル基をハロゲン置換することにより目的とする中間体(E)を製造することができる

[0035] [化13]

$$R^{\frac{1}{2}} = \frac{1}{R^{\frac{1}{2}}} + \frac{R^{\frac{1}{2}} = \frac{1}{R^{\frac{1}{2}}} + \frac{1}{R^{\frac{1}{2}}} + \frac{1}{R^{\frac{1}{2}}} = \frac{1}{R^{\frac{1}{2}}} + \frac{1}{R^{\frac{1}{2}}} = \frac{1}{R^{\frac{1}{2$$

(式中R1-R3、A、及びXは上記と同じ。)

[0036] (3)製法3

製法3は、下記スキーム3に示されるように、芳香環を含む末端アセチレン(A)と、 芳香環を含むハロゲン化ビニル誘導体(G)とをパラジウム触媒存在下、菌頭反応を 行う方法である。反応は、製法1と同様な条件で行うことができる。

[0037] [化14]

スキーム3

$$R^{\perp} = + \underbrace{X \xrightarrow{\mathbb{R}^{2}}}_{\mathbb{R}^{3}} \underbrace{\left(= \right)_{a_{1}}}_{a_{1}} \underbrace{\left(= \right)_{a_{2}}}_{\mathbb{R}^{5}} \underbrace{\left(= \right)_{a_{1}}}_{\mathbb{R}^{3}} \underbrace{\left(= \right)_{a_{1}}}_{\mathbb{R}^{3}}$$

(式中 $R^1 \sim R^6$ 、 Λ 、D、 $a_1 \sim a_3$ 、 $n_1 及 UXは上記と同じ。)$

[0038] (4)製法4

製法4は、下記スキーム4に示されるように、芳香環を含む末端アセチレン(1a:R⁶ が水素原子のもの。)と、ハロゲン化芳香環(X-R¹²)とをパラジウム触媒存在下、薗頭 反応を行う方法である。反応は、製法1と同様な条件で行うことができる。

[0039] [化15]

スキームム

$$R^{1} = R^{2} = R^{2} = R^{3} = R^{3$$

(式巾R¹ーR⁵、A、D、a ーa、n、n及びXは上記と同じ。R¹²は、フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、又はチェニル基(該フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、又はチェニル基はハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1ー3からなるアルコキシ基、炭素数1ー10からなるアルキル基、又はフッ素又は塩素で任意に置換されてもいい炭素数1ー10からなるハロゲン化アルキル基で任意に置換されていてもよい。)を表す。)

[0040] (5)製法5

製法5は、下記スキーム5に示されるように、複素芳香環を含むハロゲン化ビニル誘導体(E)と、複素芳香環を含むビス末端アセチレン誘導体(J)とをパラジウム触媒存

スキーム5

$$R^{6}-Y^{1} = \underbrace{\begin{array}{c} R^{2} \\ \times \\ \times \end{array}}_{R^{3}} + \underbrace{= \left(Z^{1}-R^{9}\right)}_{C}Z^{1} = \underbrace{\begin{array}{c} \times \\ \times \\ \times \end{array}}_{R^{3}} + \underbrace{= \left(Z^{1}-R^{9}\right)}_{C}Z^{1} = \underbrace{\begin{array}{c} \times \\ \times \\ \times \end{array}}_{R^{3}} = A-R^{6}$$

(式中 R^2 、 R^3 、 R^6 、 R^9 、 Y^1 、 Z^1 、c及びXは上記と同じ。)

[0042] (6)製法6

製法6は、下記スキーム6に示されるように、複素芳香環を含むハロゲン化ビニル誘導体(E)と、芳香環を含むトリス末端アセチレン誘導体(F)とをパラジウム触媒存在下、薗頭反応を行う方法である。反応は、製法1と同様な条件で行うことができる。

[0043] [化17]

スキーム6

(式中、R²、R³、R⁶、Y³、Z²及びXは上記と同じ。)

[0044] (7)製法7

製法7は、下記スキーム7に示されるように、複素芳香環を含むハロゲン化ビニル誘導体(E)と、トリ(エチニルフェニル)アミン誘導体(L)とをパラジウム触媒存在下、菌頭反応を行う方法である。反応は、製法1と同様な条件で行うことができる。

[0045] [化18]

スキーム7

$$R^{5}-Y^{3} = R^{2}$$

$$(E)$$

$$(K)$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{5}$$

(式中、 R^2 、 R^3 、 R^5 、 Y^3 、 Z^2 及びXは上記と同じ。Nは窒素原子を表す。)

- [0046] 本発明に係る有機エレクトロルミネッセンス素子(以下、有機EL素子という)は、陽極と陰極と、これら両極間に介在させた有機薄膜層とを有する有機エレクトロルミネッセンス素子であって、有機薄膜層として、上述のπ共役系芳香環含有化合物を含んで構成されたものであり、π共役系芳香環含有化合物以外の材料としては、公知の有機EL素子用の材料を用いることができる。
- [0047] 素子構成の具体例としては、π共役系芳香環含有化合物からなる発光層の両面に一対の電極が積層されてなる素子、π共役系芳香環含有化合物と電荷輸送材料(電子輸送材料と正孔輸送材料の総称を意味する)との混合物からなる発光層の両面に一対の電極が積層されてなる素子等が挙げられる。この場合、電子輸送材料又は正孔輸送材料としては、特に限定されるものではなく、公知のものから適宜選択して用いることができる。
- [0048] なお、発光層の形成にあたっては、上記π共役系芳香環含有化合物以外の公知の種々の発光材料を、その目的に応じて適宜混合することもできる。

また、上記各素子は、陰極と発光層との間に電子輸送材料を含む電子輸送層を備えていてもよく、陽極と発光層との間に正孔輸送材料を含む正孔輸送層を備えていてもよい。

さらに、発光層及び電荷輸送層は、それぞれ1層でもよく、複数層でもよい。

[0049] 本発明のπ共役系芳香環含有化合物を用いた有機EL素子の作製方法としては、 特に限定されるものではないが、例えば、以下の方法が挙げられる。

まず、ガラス, 透明プラスチック等の透明基板の上に、陽極材料からなる透明又は 半透明電極を形成する。ここで、陽極材料としては、導電性の金属酸化物膜、半透 明の金属薄膜等が用いられ、具体的にはインジウム・スズ・オキサイド(ITO)、酸化ス ズ等からなる導電性ガラス、Au、Pt、Ag、Cu等が用いられる。電極の形成方法とし ては、真空蒸着法、スパッタリング法、メッキ法などにより薄膜を形成する方法が挙げ られる。

[0050] 得られた陽極上に、発光材料として、π共役系芳香環含有化合物、又はπ共役系 芳香環含有化合物と電荷輸送材料とを含む発光層を形成する。

形成方法としては、これら材料の溶融液、溶液又は混合液を用いたスピンコーティング法、キャスティング法、ディッピング法、バーコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法等が挙げられる。

ここで、スピンコーティング法などの塗布法により薄膜化した場合には、溶媒を除去するため、減圧下又は不活性雰囲気下、加熱乾燥することが望ましい。

- [0051] なお、発光層と電荷輸送層とを積層する場合には、上記の成膜方法で発光層を設ける前に陽極の上に正孔輸送層を形成したり、発光層を設けた後にその上に電子輸送層を形成したりする方法により、正孔輸送層及び/又は電子輸送層を作成すればよい。この場合、電荷輸送層の成膜方法としては、特に限定されないが、粉末状態からの真空蒸着法や、電荷輸送材料溶液を用いたスピンコーティング法、キャスティング法、ディッピング法、バーコート法、ロールコート法等が挙げられる。
- [0052] 続いて、発光層(又は電子輸送層)の上に、陽極と同様の基板上に、陰極材料からなる電極を形成してなる陰極を積層して有機EL素子を得ることができる。この場合、陰極材料としては、特に限定されないが、イオン化エネルギーの小さい材料が好ましい。例えば、Al、In、Mg、Ca、Li、Mg—Ag合金、In—Ag合金、Mg—In合金、Mg—Al合金、Mg—Li合金、Al—Li合金、Al—Ca合金、グラファイト薄膜等が挙げられる。基板上に陰極材料を積層する方法としては、真空蒸着法、スパッタリング法等が挙げ

られる。

実施例

[0053] 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施 例に限定されるものではない。

なお、実施例にて採用した分析条件等は、下記のとおりである。

¹H NMR(300MHz)及び¹³C NMR(75MHz)測定条件:

装置:Varian Gemini-300

測定溶媒:CDCl

基準物質:テトラメチルシラン(TMS)(δ0.0ppm for ¹H)

 $CDCl_3(\delta 77.0ppm for ^{13}C)$

IR測定装置; JASCO A-100

UV/Vis測定装置:HITACHI U-2000

MALDI-TOF-MS測定装置;SHIMADZU MALDI-TOFMS AXIMA-CFR

融点測定装置:Yanaco MP-J3

元素分析装置:Elementar Vario-EL

[0054] [1] π 共役系芳香環含有化合物の合成

[実施例1] トランスーシリル化(チオフェンーエンジイン)化合物8の合成

(a) 4-チエニルー1, 4-ジョードー1, 3-ジェン化合物3の合成

[化19]

(式中、Meはメチル基、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0055] 1-トリメチルシリル-1-ペンチン<u>1</u>(0.534g, 3.81mmol)のエーテル(46mL)溶液に、テトラ-i-プロポキシチタン(1.24mL, 4.19mmol)を加えた後、-78℃に冷

却し、i-プロピルマグネシウムクロライド(1.95M/エーテル溶液、4.30mL, 8.38 mmol)をゆっくり加えた。

1時間かけて-50℃に昇温し、その温度で4時間撹拌した。

末端アセチレン化合物2(0.896g, 3.05mmol)のエーテル(5mL)溶液を加え、 -50℃で3時間撹拌した。

ョウ素 (2.41g, 9.53mmol)を加えて、-50℃で30分間撹拌した後、さらに室温で2時間撹拌した。

反応液にO℃で水を加え、30分間撹拌した後、セライト濾過を行った。濾液に飽和 チオ硫酸ナトリウム水溶液を加えて、過剰のヨウ素がなくなるのを確認した後、分液後 の水層をさらにヘキサンで抽出し、合わせた有機層を無水硫酸マグネシウムで乾燥 した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に用いた。

[0056] 1 H NMR (300 MHz, CDCl₃) δ 7.15 (d, J=3.9 Hz, 1H), 7.12 (d, J=3.9 Hz, 1H), 6.73 (s, 1H), 2.56 – 2.46 (m, 2H), 1.65 – 1.50 (m, 2H), 1.20 – 1.05 (m, 21H), 0.91 (t, J=7.5 Hz, 3H), 0.36 (s, 9H).

[0057] (b)シスーチエニルヨードエンイン化合物4の合成 [化20]

(式中、Meはメチル基、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0058] 上記で得られた4-チエニル-1, 4-ジョード-1, 3-ジエン化合物3の粗物のTHF (6mL)溶液を0℃に冷却し、ピロリジン(1. 27mL, 15. 3mmol)を加え、12時間撹拌した後、反応液に水を0℃で加え、クエンチした。

分液後、水層をさらにヘキサンで抽出し、合わせた有機層を飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

23

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に用いた。

- [0059] 1 H NMR (300 MHz, CDCl₃) δ 7.10 (d, J=3.6 Hz, 1H), 7.08 (d, J=3.6 Hz, 1H), 2.44 2.32 (m, 2H), 1.72 1.55 (m, 2H), 1.20 1.05 (m, 21H), 0.94 (t, J=6.9 Hz, 3H), 0.33 (s, 9H).
- [0060] (c)チエニルシリルエンイン化合物5の合成

[化21]

(式中、Meはメチル基、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0061] 上記で得られたシスーチエニルヨードエンイン化合物4の粗物をエーテル(7mL)に 容解し、-78℃に冷却した。

tープチルリチウム(1.50M/ペンタン溶液、2.83mL, 4.24mmol)を加えて、そのまま40分間撹拌した。

ョードプロパン(0. 640mL, 6. 06mmol)を滴下し、室温で終夜撹拌した後、反応液に水を0℃で加えてクエンチした。

水層からエーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に使用した。

[0062] 1 H NMR (300 MHz, CDCl₃) δ 7.06 (d, J=3.9 Hz, 1H), 6.96 (d, J=3.9 Hz, 1H), 2.38 (t, J=7.5 Hz, 2H), 2.25 (d, J=7.5 Hz, 2H), 1.70 – 1.50 (m, 4H), 1.20 – 1.05 (m,

21H), 0.97 (t, J=7.5 Hz, 6H), 0.19 (s, 9H).

[0063] (d)トランスーチエニルョードエンイン化合物<u>6</u>の合成 [化22]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0064] 上記で得られたチエニルシリルエンイン化合物5の粗物をジクロロメタン(10mL)に 溶解し、N-ヨードコハク酸イミド(0.893g, 4.04mmol)を加え、遮光下、室温で2 時間撹拌した後、反応液に、飽和チオ硫酸ナトリウム水溶液を0℃で加えてクエンチした。

水層から反応生成物をジクロロメタンで抽出した有機層を飽和食塩水で洗浄した後、これを無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、トランスーチエニルヨードエンイン化合物<u>6</u>を4工程((a)ー(d))で収率39%(0.616g)で得た。

[0065] H NMR (300 MHz, CDCl₃) δ 7.08 (d, J=3.9 Hz, 1H), 7.01 (d, J=3.9 Hz, 1H), 2.90 (t, J=7.5 Hz, 2H), 2.42 (t, J=7.5 Hz, 2H), 1.70 – 1.58 (m, 4H), 1.19 – 1.06 (m, 21H), 1.01 (t, J=7.5 Hz, 3H), 0.98 (t, J=7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 132.31, 131.00, 127.71, 125.06, 124.43, 118.17, 98.81, 97.08, 90.73, 86.74, 45.75, 43.16, 22.59, 21.17, 18.52, 13.43, 12.70, 11.17. IR (neat) 2959, 2866, 2142, 1462, 883, 736, 675 cm⁻¹.

Anal. Calcd for C₂₅ H₃₇ ISSi: C, 57.24; H, 7.11. Found: C, 57.40; H, 7.46.

[0066] (e)トランスーシリル化(チオフェンーエンジイン)化合物<u>8</u>の合成 [化23]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0067] 上記で得られたトランスーチエニルヨードエンイン化合物6(0.943g, 1.80mmol) を脱気したTHF(5mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(52.0 mg, 0.0450mmol)、ヨウ化第一銅(17.1mg, 0.0900mmol)及びジエチルアミン(3.7mL)を室温下で加えた後、チオフェンアセチレン化合物7(0.285g, 1.50 mmol)の脱気したTHF(10mL)溶液を滴下した。

室温下で反応液を6時間撹拌した後、反応液に水を加えてクエンチした。

水層から、反応生成物をエーテルで抽出した有機層を飽和食塩水で洗浄した後、 これを無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリルカラムクロマトグラフィー (ヘキサン)で精製し、トランスーシリル化(チオフェンーエンジイン)化合物<u>8</u>を89%(0.784g)で得た。

[0068] H NMR (300 MHz, CDCl₂) δ 7.09 (d, J=3.9 Hz, 1H), 7.06 - 6.95 (m, 3H), 2.50 (t, J=7.5 Hz, 4H), 2.16 (br. s, 1H), 1.72 - 1.56 (m, 4H), 1.61 (s, 6H), 1.23 - 1.05 (m, 21H), 0.98 (t, J=7.2 Hz, 6H).

¹⁵C NMR (75 MHz, CDCl₃) δ 132.39, 132.11, 131.29, 131.21, 129.92, 129.78, 125.19, 124.74, 124.53, 124.25, 98.80, 98.67, 97.31, 94.08, 93.90, 91.84, 91.68, 75.13, 65.72, 36.83 (x2), 31.15, 21.75 (x2), 18.50, 13.52 (x2), 11.14.

IR (neat) 3373, 2957, 2866, 2141, 1461, 1164, 884, 802, 752, 674 cm⁻¹.

UV/Vis (CHCl₃): λ_{me} (ϵ) [nm]= 385 (23 400).

MALDI-TOF-MS (DHB): 586.3 (Calcd for $C_{36}^{H} + O_{2}^{OS}$ Si: 586.3).

Anal. Calcd for C₃₆ H₄₆ OS₂Si: C, 73.66; H, 7.90. Found: C, 73.48; H, 7.83.

[0069] [実施例2]トランスー(チオフェンーエンジイン)化合物9の合成

[1224]

$$(i Pr)_3 Si \longrightarrow S$$

$$S \longrightarrow OH$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0070] 実施例1で得られたトランスーシリル化(チオフェンーエンジイン)化合物8(0.729g , 1.24mmol)をTHF(4mL)に溶解し、テトラブチルアンモニウムフルオリド(1.0M /THF溶液、1.87mL, 1.87mmol)を0℃で加えた後、3分間撹拌した。 反応液をエーテルと水で希釈し、分液後、水層をさらにエーテルで抽出した。合わ せた有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に使用した。

[0071] [実施例3]トランスーシリル化(チオフェンーエンジイン)ダイマー化合物10の合成 [化25]

$$(i - Pr)_3 S i \qquad S \qquad Pr \qquad Pr \qquad Pr \qquad OH$$

$$\frac{6}{S} \qquad (i - Pr)_3 S i \qquad S \qquad OH$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0072] 実施例1-(d)で得られたトランスーチエニルヨードエンイン化合物<u>6</u>(0. 780g, 1. 4 9mmol)を脱気したTHF(4mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(43. 0mg, 0. 0372mmol)、ヨウ化第一銅(14. 0mg, 0. 0740mmol)及びジェチルアミン(3. 1mL)を室温下で加えた後、実施例2で得られたトランスー(チオフェンーエンジイン)化合物9の粗物の脱気したTHF(8mL)溶液を滴下した。

反応液をそのまま室温下、6時間撹拌した後、反応液に、水を加えてクエンチした。

水層から、エーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグ ネシウムで乾燥した。

27

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリルカラムクロマトグラフィー (ヘキサン)で精製し、トランスーシリル化(チオフェン-エンジイン)ダイマー化合物10 を2工程で収率69%で得た。

[0073] m.p.= 73-77 ℃.

> 1 H NMR (300 MHz, CDCl) δ 7.13 – 6.95 (m, 6H), 2.51 (t, J=7.5 Hz, 8H), 2.26 (br. s, 1H), 1.75 - 1.53 (m, 8H), 1.61 (s, 6H), 1.18 - 1.05 (m, 21H), 1.00 (t, J=7.2 Hz, 12H).

 13 C NMR (75 MHz, CDCl₂) δ 132.39, 132.08, 131.63 (x2), 131.29, 131.19, 129.88 (x2), 129.81, 129.80, 125.19, 125.07, 125.03, 124.69, 124.53, 124.30, 98.80, 98.73, 97.30, 94.63, 94.59, 94.08, 93.94, 91.91, 91.90, 91.87, 91.76, 75.09, 65.67, 36.81 (x4), 31.12, 21.75 (x4), 18.48, 13.50 (x4), 11.13.

IR (KBr) 3397, 2959, 2866, 1460, 801, 752 cm⁻¹.

UV/Vis (CHCl₃): λ_{mex} (ϵ) [nm] = 407 (52 000).

MALDI-TOF-MS (DHB): 826.4 (Calcd for C $_{\epsilon 2}^{}H_{62}^{}OS_3^{}Si:$ 826.4).

Anal. Calcd for $C_{52}H_{62}OS_3Si: C$, 75.49; H, 7.55. Found: C, 75.07; H, 7.19.

[0074] [実施例4]トランスー(チオフェンーエンジイン)ダイマー化合物11の合成 [化26]

$$(i-Pr)_{3}Si = \begin{cases} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

実施例3で得られたトランスーシリル化(チオフェンーエンジイン)ダイマー化合物10 [0075]を用いて、実施例2と同様にしてトランス-(チオフェン-エンジイン)ダイマー化合物1 1を得た。この粗生成物は、NMRを確認し、そのまま次の反応に使用した。

[0076] [実施例5]トランスーシリル化(チオフェンーエンジイン)トリマー化合物<u>12</u>の合成 [化27]

$$(i-Pr)_3Si \longrightarrow S \longrightarrow I \longrightarrow I$$

$$(i-Pr)_3Si \longrightarrow S \longrightarrow I$$

$$(i-Pr)_3Si \longrightarrow I$$

$$(i-Pr)_3Si \longrightarrow I$$

$$I$$

$$OH$$

$$I$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

- [0077] 実施例4で得られたトランスー(チオフェンーエンジイン)ダイマー化合物<u>11</u>を用いて、 、実施例3と同様にして、トランスーシリル化(チオフェンーエンジイン)トリマー化合物<u>1</u> 2を2工程で収率63%で得た。
- [0078] ¹H NMR (300 MHz, CDCl₃) δ 7.13 6.95 (m, 8H), 2.58 2.44 (m, 12H); 2.15 (br. s, 1H), 1.75 1.54 (m, 12H), 1.62 (s, 6H), 1.17 1.06 (m, 21H), 1.03 0.95 (m, 18H).

¹³C NMR: δ 132.40, 132.11, 131.67 (x4), 131.32, 131.21, 129.88 (x3), 129.85 (x2), 129.81, 125.19, 125.09 (x2), 125.06 (x2), 124.71, 124.53, 124.29, 98.80, 98.71, 97.32, 94.65 (x3), 94.09, 93.97, 93.94, 91.97, 91.95, 91.92 (x2),91.90, 91.77, 75.10, 65.71, 36.83 (x6), 31.15, 21.77 (x6), 18.50, 13.53 (x6), 11.14.

IR (neat) 3375, 2959, 2866, 1461, 1378, 1199, 1162, 800, 751 cm⁻¹.

UV/Vis (CHCl₃): λ_{max} (ϵ) [nm] = 427 (58 200).

MALDI-TOF-MS (DHB): 1066.2 (Calcd for C_{68}^{H} OS Si: 1066.5).

Anal. Calcd for $C_{68}^{H}_{78}OS_{4}Si: C, 76.49; H, 7.36.$ Found: C, 76.55; H, 7.53.

[0079] [実施例6]トランスーシリル化(ピリジンーエンジイン)化合物<u>19</u>の合成 (a)4ーピリジルー1,4ージョードー1,3ージエン化合物<u>14</u>の合成 [化28]

(式中、Meはメチル基、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0080] 1ートリメチルシリルー1ーペンチン1(2.94g, 20.9mmol)のエーテル(250mL)溶液に、テトラーiープロポキシチタン(7.40mL, 25.1mmol)を加えた後、一78℃に冷却し、iープロピルマグネシウムクロライド(2.10M/エーテル溶液、24.0mL, 50.2mmol)をゆつくり加えた。

1時間かけて-50℃に昇温し、その温度で4時間撹拌した。

末端アセチレン化合物<u>13</u>(5.34g, 18.9mmol)のエーテル(20mL)溶液を加え、-50℃で3時間撹拌した。

ョウ素 (13. 3g, 52. 3mmol)を加えて、-50℃で30分間撹拌した後、さらに室温で2時間撹拌した。

反応液に0℃で水を加え、30分間撹拌した後、セライト濾過を行った。濾液に飽和 チオ硫酸ナトリウム水溶液を加えて、過剰のヨウ素がなくなったのを確認した後、分液 後の水層をさらにヘキサンで抽出し、合わせた有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に用いた。

- [0081] ¹H NMR (300 MHz, CDCl₃) δ 8.77 (d, J=2.1 Hz, 1H), 7.79 (dd, J=2.1, 8.1 Hz, 1H), 7.42 (d, J=8.1 Hz, 1H), 6.68 (s, 1H), 2.60 2.48 (m, 2H), 1.60 1.45 (m, 2H), 1.20 1.10 (m, 21H), 0.94 (t, J=6.9 Hz, 3H), 0.36 (s, 9H).
- [0082] (b)シスーピリジルヨードエンイン化合物15の合成 [化29]

30

(式中、Meはメチル基、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0083] 上記で得られた4-ピリジル-1, 4-ジョード-1, 3-ジェン化合物<u>14</u>の粗物のTHF (38mL)溶液を0℃に冷却し、ピロリジン(7. 90mL, 94. 5mmol)を加え、3時間撹拌した。反応液に水を0℃で加え、クエンチした。

分液後、水層をさらにヘキサンで抽出し、合わせた有機層を飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に用いた。

- [0084] 1 H NMR (300 MHz, CDCl₃) δ 8.69 (dd, J=0.9, 2.1 Hz, 1H), 7.73, (dd, J=2.1, 8.1 Hz, 1H), 7.41 (dd, J=0.9, 8.1 Hz, 1H), 2.44 2.36 (m, 2H), 1.75 1.60 (m, 2H), 1.20 1.10 (m, 21H), 0.96 (t, J=7.2 Hz, 3H), 0.34 (s, 9H).
- [0085] (c)ピリジルシリルエンイン化合物16の合成

[化30]

(式中、Meはメチル基、n-Prはn-プロピル基、i-Prはi-プロピル基、n-Buはn-ブチル基を表す。)

[0086] チオフェノール(6.30mL, 61.5mmol)のTHF(150mL)溶液に、nープチルリチウム(1.58M/ヘキサン溶液、38.9mL, 61.5mmol)を0℃で滴下し、30分間撹拌してリチウムチオフェノレートを調製した。

別に、ヨウ化第一銅(11.7g, 61.5mmol)のTHF(150mL)懸濁液を0℃に冷却し、調製したリチウムチオフェノレートのTHF溶液を加えた。0℃で反応溶液が黄色透明になるまで撹拌した。反応溶液を-78℃に冷却後、n-ブチルリチウム(1.58M/ヘキサン溶液、36.7mL, 58.0mmol)を加えて、10分間撹拌した。この反応溶液に上記で得られたシスーピリジルヨードエンイン化合物15の粗物のTHF(20mL)溶液を-78℃で加え、その温度のまま1時間撹拌した。さらに、0℃に昇温し、終夜撹拌した後、飽和炭酸水素ナトリウム水溶液を加え、クエンチした。

分液後、水層をさらにエーテルで抽出し、合わせた有機層を飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に用いた。

[0087] ¹H NMR (300 MHz, CDCl₃) δ 8.60 – 8.58 (m, 1H), 7.61 (dd, J=2.1, 8.1 Hz, 1H), 7.39 (dd, J=0.9, 8.1 Hz, 1H), 2.46 – 2.40 (m, 2H), 2.31 – 2.24 (m, 2H), 1.75 – 1.55 (m, 4H), 1.40 – 1.30 (m, 2H), 1,20 – 1,10 (m, 21H), 0.97 (t, J=7.2 Hz, 3H), 0.94 (t, J=7.5 Hz, 3H), 0.19 (s, 9H).

[0088] (d)トランスーピリジルヨードエンイン化合物<u>17</u>の合成 [化31]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基、n-Buはn-ブチル基を表す。
)

TLCでピリジルシリルエンイン化合物<u>16</u>の消失(約5日間)を確認した後、反応液に、飽和チオ硫酸ナトリウム水溶液を0℃で加えてクエンチした。

水層からジクロロメタンで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マ グネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/エーテル=30/1)で精製し、トランスーピリジルヨードエンイン化合物17を4工程で収率32%(3.25g)で得た。

[0090] ¹H NMR (300 MHz, CDCl) δ 8.57 (d, J=2.1 Hz, 1H), 7.61 (dd, J=2.1, 7.8 Hz, 1H), 7.38 (d, J=7.8 Hz, 1H), 2.91 (t, J=7.2 Hz, 2H), 2.38 (t, J=6.9 Hz, 2H), 1.66 – 1.50 (m, 4H), 1.40 – 1.28 (m, 2H), 1.20 – 1.10 (m, 21H), 0.97 (t, J=7.2 Hz, 3H), 0.92 (t, J=6.9 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 151.84, 141.63, 137.72, 127.08, 126.89, 119.50, 119.36, 105.53, 93.74, 90.92, 90.35, 43.63, 43.18, 31.36, 21.36, 21.18, 18.56, 13.94, 13.48, 11.12.

IR (neat) 2957, 2866, 2200, 2160, 1583, 1540, 1465, 1365, 1249, 1017, 995, 882, 837, 676 cm^{-1} .

Anal. Calcd for $C_{27}^{}H_{40}^{}INSi: C$, 60.77; H, 7.56. Found: C, 60.69; H, 7.73.

[0091] (e)トランスーシリル化(ピリジン-エンジイン)化合物19の合成 [化32]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基、n-Buはn-ブチル基を表す。

)

[0092] 上記で得られたトランスーピリジルヨードエンイン化合物17(0.1635g, 0.311mm ol)を脱気したTHF(1mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(18 .0mg, 0.0160mmol)、ヨウ化第一銅(6.00mg, 0.0320mmol)及びジエチルアミン(0.162mL, 5.28mmol)を室温下で加えた後、ピリジルアセチレン化合物18(52.0mg, 0.280mmol)の脱気したTHF(2mL)溶液を滴下した。

反応液をそのまま室温下で3時間撹拌した後、反応液に水加えてクエンチした。 水層から、エーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリルカラムクロマトグラフィー (ヘキサン/エーテル=3/1)で精製し、トランスーシリル化(ピリジンーエンジイン)化合物19を67%(0.110g)で得た。

[0093] m.p.= 76−83 °C.

¹H NMR (300 MHz, CDCl₂) δ 8.65-8.61 (m, 2H), 7.66 (dd, J=2.1, 8.1 Hz, 1H), 7.64 (dd, J=2.1, 8.1 Hz, 1H), 7.42 (d, J=8.1 Hz, 1H), 7.37 (d, J=8.1 Hz, 1H), 2.69 (br. s, 1H), 2.59 (t, J=7.5 Hz, 4H), 1.76-1.60 (m, 4H), 1.63 (s, 6H), 1.44 - 1.32 (m, 2H), 1.20 - 1.10 (m, 21H), 0.99 (t, J=8.0 Hz, 3H), 0.94 (t, J=7.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 152.64, 152.15, 142.10, 141.94, 138.65, 138.03, 131.27, 130.60, 127.11, 126.54, 119.65, 118.96, 105.65, 99.23, 97.88, 95.81, 94.14, 93.76, 90.68, 78.73, 65.47, 36.89, 34.73, 31.23, 30.59, 22.08, 21.70, 18.52, 13.80, 13.47, 11.10.

IR (KBr) 3375, 2928, 2866, 2153, 1909, 1658, 1505, 1462, 1378, 1164, 883, 836 cm^{-1} .

UV/Vis (CHCl₃): λ_{abs} (ϵ) [nm]= 312 (21 400), 337 (38 300), 359 (53 100), 386 (34 400).

MALDI-TOF-MS (DHB): 590.4 (Calcd for: 590.4).

Anal. Calcd for: C, 79.27; H, 8.53; N, 4.74. Found: C, 79.08; H, 8.45; N, 4.61. [0094] [実施例7]トランスー(ピリジンーエンジイン) 化合物20の合成

[化33]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基、n-Buはn-ブチル基を表す。)

[0095] 実施例6で得られたトランスーシリル化(ピリジンーエンジイン)化合物19(61.5mg, 0.104mmol)をTHF(6mL)に溶解し、テトラブチルアンモニウムフルオリド(1.0M/THF溶液, 0.156mL, 0.156mmol)を0℃で加えた後、30分間撹拌した。反応液をエーテルと水で希釈し、分液後、水層をさらにエーテルで抽出した。合わせた有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に使用した。

[0096] [実施例8]トランスーシリル化(ピリジンーエンジイン)ダイマー化合物21の合成 [化34]

$$(i-Pr)_3Si$$
 $N=$
 $N=$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基、n-Buはn-ブチル基を表す。)

[0097] 実施例6-(d)で得られたトランスーピリジルヨードエンイン化合物17(84.0mg, 0. 156mmol)を脱気したTHF(0.5mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(6.07mg, 0.00525mmol)、ヨウ化第一銅(2.00mg, 0.0105mmol)

及びジェチルアミン(0.05mL)を室温下で加えた後、実施例7で得られたトランスー(ピリジンーエンジイン)化合物20の粗物の脱気したTHF(1.5mL)溶液を滴下した。 反応液をそのまま室温下で終夜撹拌した後、反応液に水を0℃で加えてクエンチした。

水層から、クロロホルムで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリルカラムクロマトグラフィー (ヘキサン/エーテル=2/1)で精製し、トランスーシリル化(ピリジンーエンジイン)ダイマー化合物21を2工程で収率75%(65.6mg)で得た。

[0098] m.p.= 120−123 °C.

¹H NMR (300 MHz, CDCl₃) δ 8.65–8.61 (m, 3H), 7.72 – 7.63 (m, 3H), 7.44 – 7.35 (m, 3H), 2.60 (t, J=7.2 Hz, 8H), 2.23 (br. s, 1H), 1.76 – 1.57 (m, 8H), 1.64 (s, 6H), 1.48 – 1.34 (m, 4H), 1.20 – 1.10 (m, 21H), 1.00 (t, J=7.5 Hz, 6H), 0.95 (t, J=7.8 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 152.65, 152.37, 152.15, 142.09, 142.08, 141.95, 138.63, 138.09, 138.01, 131.29, 131.24, 130.65, 130.63, 127.09, 126.62, 126.51, 119.64, 119.46, 118.96, 105.68, 99.21, 98.16, 97.97, 95.90, 95.87, 94.10, 93.92, 93.79, 90.88, 90.61, 78.70, 65.44, 36.92, 36.89, 34.74, 34.71, 31.24, 30.61 (x2), 22.08 (x2), 21.70 (x2), 18.51, 13.81 (x2), 13.47 (x2), 11.10.

IR (KBr) 3427, 2925, 2862, 2198, 1654, 1540, 1465, 1365, 1255, 1018, 836, 676 cm⁻¹.

UV/Vis (CHCl): λ_{abs} (ϵ) [nm]= 336 (49 800), 354 (70 500), 385 (94 200), 415 (55 700).

MALDI-TOF-MS (DHB): 839.6 (Calcd for C $_{57}^{}$ H $_{69}^{}$ N O $_{1}^{}$ Si: 839.5).

Anal. Calcd for C₅₇ H_M N₃OSi: C, 81.48; H, 8.28. Found: C, 81.37; H, 8.42.

[0099] [実施例9]トランスー(ピリジンーエンジイン)ダイマー化合物<u>22</u>の合成 [化35]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基、n-Buはn-ブチル基を表す。)

- [0100] 実施例8で得られたトランスーシリル化(ピリジンーエンジイン)ダイマー化合物21を 用いて、実施例7と同様にして、トランスー(ピリジンーエンジイン)ダイマー化合物22を 得た。この粗生成物は、NMRを確認し、そのまま次の反応に使用した。
- [0101] [実施例10]トランスーシリル化(ピリジンーエンジイン)トリマー化合物23の合成 [化36]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基、n-Buはn-ブチル基を表す。)

- [0102] 実施例9で得られたトランス-(ピリジン-エンジイン)ダイマー化合物22を用いて、 実施例8と同様にして、トランス-シリル化(ピリジン-エンジイン)トリマー化合物23を2 工程で収率69%で得た。
- [0103] m.p.= 173-175 °C.

¹H NMR (300 MHz, CDCl₃) δ 8.66 – 8.61 (m, 4H), 7.70 – 7.65 (m, 4H), 7.44 – 7.37 (m, 4H), 2.64 – 2.57 (m, 12H), 2.13 (br. s, 1H), 1.76 – 1.58 (m, 12H), 1.64 (s, 6H), 1.48 – 1.36 (m, 6H), 1.20 – 1.10 (m, 21H), 1.03 – 0.92 (m, 18H).

¹³C NMR (75 MHz, CDCl₃) δ 152.48, 152.22 (x2), 151.99, 141.91, 141.89,

141.88, 141.79, 138.53, 137.99 (x2), 137.91, 131.18 (x2), 131.12, 130.56, 130.53, 130.51, 127.00, 126.54 (x2), 126.43, 119.53, 119.36, 119.35, 118.91, 105.56, 99.33, 98.14, 98.07, 97.87, 95.90, 95.83, 95.80, 94.04, 93.88 (x2), 93.72, 90.83 (x2), 90.58, 78.58, 65.35, 36.96 (x2), 36.92, 34.78 (x3), 31.30, 30.66 (x3), 22.17 (x3), 21.79 (x3), 18.60, 13.93 (x3), 13.58 (x3), 11.18.

IR (KBr) 3428, 2925, 2861, 2199, 1465, 1366, 1260, 1099, 1019, 835, 670 cm⁻¹. UV/Vis (CHCl₃): λ_{abs} (ϵ) [nm]= 335 (74 300), 373 (141 000), 394 (158 000), 415 (122 000).

MALDI-TOF-MS (DHB): 1089.7 (Calcd for $C_{75}H_{88}N_{4}OSi: 1088.7$).

Anal. Calcd for $C_{75} H_{88} N_{4} OSi$: C, 82.67; H, 8.14. Found: C, 82.86; H, 8.06.

[0104] [実施例11]シアノチエニル (チオフェン-エンジイン) 化合物25の合成 [化37]

(式中、n-Prはn-プロピル基を表す。)

[0105] ブロモシアノチオフェン<u>24</u>を用いて、実施例3と同様にして、シアノチエニル(チオフェンーエンジイン)化合物25を2工程で収率57%で得た。

¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, J=3.9 Hz, 1H), 7.221 (d, J=3.9 Hz, 1H), 7.216 (d, J=3.9 Hz, 1H), 7.09 (d, J=3.9 Hz, 1H), 7.05 (d, J=3.9 Hz, 1H), 7.03 (d, J=3.9 Hz, 1H), 2.51 (t, J=7.2 Hz, 4H), 1.71 – 1.51 (m, 4H), 0.99 (t, J=7.2 Hz, 6H). UV/Vis (CHCl₃): λ_{max} [nm] = 372.

 $\lambda_{\rm em}$ [nm] = 475.

[0106] [実施例12]ピス[シリル化(チエニルーエンジイン)ベンプチアデアゾール]化合物30 の合成

(a) ジシリル化チエニルエンジイン化合物27の合成

[化38]

$$\frac{6}{5} = \frac{\frac{7}{1} + \frac{1}{1}}{\frac{26}{1}} + \frac{1}{1} + \frac$$

(式中、Meはメチル基、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0107] エチニルトリメチルシラン<u>26</u>を用いて、実験例5と同様にして、ジシリル化チエニル エンジイン化合物27を収率95%で得た。

¹H NMR (300 MHz, CDCl₃) δ 7.07 (d, J=3.9 Hz, 1H), 6.99 (d, J=3.9 Hz, 1H), 2.46 (t, J=7.4 Hz, 2H), 2.40 (t, J=7.5 Hz, 2H), 1.63 – 1.55 (m, 4H), 1.18 – 1.02 (m, 21H), 0.93 (t, J=6.9 Hz, 6H), 0.20 (s, 9H).

[0108] (b)シリル化チエニルエンジイン化合物28の合成 [化39]

$$(iPr)_3Si \longrightarrow SiMe_3$$

$$iPr \longrightarrow SiMe_3$$

$$2I$$

$$28$$

(式中、Meはメチル基、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0109] 上記で得られたジシリル化チエニルエンジイン化合物27(0.934mg, 1.89mmol)をメタノール/THF/水(3.8mL/1.9mL/3滴)に溶解し、炭酸カリウム(523mg, 3.78mmol)を加えた後、室温下で1時間撹拌した。

TLCで原料のジシリル化チエニルエンジイン化合物27の消失を確認した後、反応 液に、エーテル及びヘキサンを加えて抽出し、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に使用した。

[0110] 1 H NMR (300 MHz, CDCl₃) δ 7.08 (d, J=3.9 Hz, 1H), 7.00 (d, J=3.9 Hz, 1H), 3.46 (s, 1H), 2.48 (t, J=7.5 Hz, 2H), 2.43 (t, J=7.8 Hz, 2H), 1.66 - 1.52 (m, 4H),

1.17 - 1.03 (m, 21H), 0.96 (t, J=7.2 Hz, 6H).

[0111] (c)ビス[シリル化(チエニルーエンジイン)ベングチアジアゾール]化合物<u>30</u>の合成 [化40]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0112] ジブロモチアジアゾール29(118mg, 0. 401mmol)を脱気したクロロホルム(1mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(116mg, 0. 100mmol)、ヨウ化第一銅(38. 2mg, 0. 201mmol)及びジイソプロピルアミン(1. 3mL)を室温下で加えた後、上記で得られたシリル化チエニルエンジイン化合物28(372mg, 0. 882mmol)の脱気したクロロホルム(4mL)溶液を滴下した。

加熱還流下、反応液を24時間撹拌した後、反応液に水を室温で加えてクエンチした。

水層から、クロロホルムで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マ グネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1)で精製し、ビス[シリル化(チエニルーエンジイン)ベンゾチアジアゾール]化合物30を2工程で収率94%で得た。

[0113] H NMR (300 MHz, CDCl₃) δ 7.64 (s, 2H), 7.10 (d, J=3.6 Hz, 2H), 7.04 (d, J=3.6 Hz, 2H), 2.72 (t, J=7.2 Hz, 4H), 2.60 (t, J=7.5 Hz, 4H), 1.82 – 1.64 (m, 8H), 1.16 – 0.97 (m, 54H).

UV/Vis (CHCl₃): λ_{max} [nm] = 371, 473. λ_{mn} [nm] = 569.

[0114] [実施例13]ジ(チエニルエンジイン)チエノ[3,4-b]ピラジン化合物36の合成

(a)シリルチエニルエンジイン化合物<u>33</u>の合成

[化41]

(式中、Meはメチル基、n-Prはn-プロピル基を表す。)

[0115] トランスヨードエンイン化合物31(0.340g, 1.02mmol)のTHF(2mL)溶液に、 テトラキストリフェニルホスフィンパラジウム(1118mg, 0.102mmol)、ヨウ化第一銅 (38.8mg, 0.204mmol)及びジエチルアミン(2.6mL)を室温で加えた後、エチ ニルチオフェン32(132mg, 1.22mmol)のTHF(8mL)溶液を滴下した。

室温下で反応液を終夜時間撹拌した後、反応液に水を加えてクエンチした。 水層からエーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮し、シリルチエニルエンジイン化合物<u>33</u>を収率55%(174mg)で得た。

[0116] H NMR (300 MHz, CDCl₃) δ 7.27 (dd, J=1.2, 5.1 Hz, 1H), 7.18 (dd, J=1.2, 3.6 Hz, 1H), 6.99 (dd, J=3.6, 5.1 Hz, 1H), 2.48 (t, J=7.7 Hz, 2H), 2.43 (t, J=7.8 Hz, 2H), 1.70 – 1.56 (m, 4H), 0.98 (t, J=7.2 Hz, 6H), 0.22 (s, 9H).

13 C NMR (75 MHz, CDCl₂) δ –0.141, 13.54 (x2), 21.59, 21.66, 36.76, 36.82,

91.69, 92.98, 103.98, 104.65, 123.71, 127.23, 127.36, 129.81, 130.47, 131.49.

[0117] (b)チエニルエンジイン化合物34の合成

[化42]

(式中、Meはメチル基、n-Prはn-プロピル基を表す。)

[0118] 上記で得られたシリルチエニルエンジイン化合物33を用いて、実施例12-(b)と同様にして、チエニルエンジイン化合物34を得た。この粗生成物は、NMRで確認し、そ

のまま次の反応に使用した。

¹H NMR (300 MHz, CDCl₃) δ 7.28 (dd, J=1.2, 5.1 Hz, 1H), 7.20 (dd, J=1.2, 3.6 Hz, 1H), 7.00 (dd, J=3.6, 5.1 Hz, 1H), 3.44 (s, 1H), 2.56 – 2.43 (m, 4H), 1.72 – 1.57 (m, 4H), 0.98 (t, J=6.9 Hz, 6H).

[0119] (c)ジ(チエニルエンジイン)チエノ[3, 4-b]ピラジン化合物<u>36</u>の合成 [化43]

(式中、n-Prはn-プロピル基を表す。)

[0120] 上記で得られたチエニルエンジイン化合物34及びジプロモチエノ[3, 4-b]ピラジン化合物35を用いて、実施例12-(c)と同様にして、ジ(チエニルエンジイン)チエノ [3, 4-b]ピラジン化合物36を2工程で収率72%で得た。

¹H NMR (300 MHz, CDCl₃) δ 7.60 – 7.24 (m, 12H), 7.23 (dd, J=0.9, 3.6 Hz, 2H), 7.02 (dd, J=3.6, 5.4 Hz, 2H), 2.71 (t, J=7.5 Hz, 4H), 2.62 (t, J=7.5 Hz, 4H), 1.87 – 1.65 (m, 8H), 1.12 – 0.92 (m, 12H).

UV/Vis (CHCl₃): λ_{max} [nm] = 372, 541.

 λ [nm] = 647.

[0121] [実施例14]シリル化(ピリジンーエンイン)化合物43の合成 (a)アルケニルアルキニルピリジン化合物38の合成

[1244]

$$Me_3Si \longrightarrow SiMe_3 \longrightarrow Me_3Si \longrightarrow N$$

$$37 \longrightarrow Me_3Si \longrightarrow N$$

(式中、Meはメチル基を表す。)

[0122] ジアルキニルピリジン化合物37(6.71g, 24.8mmol)のエーテル(250mL)溶液に、テトラーiープロポキシチタン(7.31mL, 24.8mmol)を加えた後、-78℃に冷却し、iープロピルマグネシウムクロライド(1.94M/エーテル溶液、28.0mL, 54.5mmol)をゆっくり加えた。

1時間かけて-50℃に昇温し、その温度で4時間撹拌した。

反応液に水を加え、30分間撹拌した後、セライト濾過を行った。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/エーテル=100/1)で精製し、アルケニルアルキニルピリジン化合物38を収率95%で得た。

[0123] ¹H NMR (300 MHz, CDCl₃) δ 8.66 (d, J=1.5 Hz, 1H), 7.67 (dd, J=2.1, 8.1 Hz, 1H), 7.17 (d, J=14.4 Hz, 1H), 7.09 (d, J=8.1 Hz, 1H), 6.13 (d, J=14.4 Hz, 1H), 0.28 (s, 9H), 0.190 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ -0.136, 0.562, 98.24, 102.11, 118.22, 122.62, 138.91, 139.85, 142.94, 151.33, 154.99.

IR (neat): 2957.30, 2159.40, 1585.68, 1539.40, 1474.79, 1363.43, 1251.09, $1023.53.839.37 \text{ cm}^{-1}$.

[0124] (b)ジブロモアルキニルピリジン化合物39の合成

[化45]

$$Me_3Si \longrightarrow Me_3Si \longrightarrow Me_3Si \longrightarrow Br$$

$$38$$

$$39$$

(式中、Meはメチル基を表す。)

[0125] 上記で得られたアルケニルアルキニルピリジン化合物38(4.91g, 17.8mmol)の ジクロロメタン(36mL)溶液を-78℃に冷却した後、臭素(1.15mL, 22.5mmol) のジクロロメタン(11mL)溶液を滴下し、10分間撹拌した。

反応溶液に、メタノール(200mL)及び亜硫酸ナトリウム(9g)を加えてクエンチした。クエンチ後、さらに10%亜硫酸ナトリウム水溶液を加えた後、水層をペンタンで抽

出した。さらに、水層をペンタン/エーテル=1/1で抽出し、合わせた有機層を水で 洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に使用した。

- [0126] 1 H NMR (300 MHz, CDCl₃) δ 8.61 (dd, J=0.9, 2.1 Hz, 1H), 7.74 (dd, J=2.1, 8.1 Hz, 1H), 7.44 (dd, J=0.9, 8.1 Hz, 1H), 5.35 (d, J=8.4 Hz, 1H), 4.06 (d, J=8.4 Hz, 1H), 0.263 (s, 9H), 0.024 (s, 9H).
- [0127] (c)アルキニルブロモアルケニルピリジン化合物<u>40</u>の合成 [化46]

(式中、Meはメチル基を表す。)

[0128] 上記で得られたジブロモアルキニルピリジン化合物39の粗物のメタノール(180mL)及びTHF(45mL)溶液に、0℃でナトリウムメトキシド(1.0M/メタノール溶液、26.7mL, 26.7mmol)を加え、1時間撹拌した。さらに、室温に昇温した後、2時間撹拌した。

反応溶液を、ペンタン及び水で希釈し、分液後、有機層を無水硫酸マグネシウムで 乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/エーテル=50/1)で精製し、アルキニルブロモアルケニルピリジン化合物40を2工程で収率66%で得た。

- [0129] 1 H NMR (300 MHz, CDCl₃) δ 8.63 8.62 (m, 1H), 7.72 (dd, J=2.1, 8.1 Hz, 1H), 7.44 (d, J=13.8 Hz, 1H), 7.12 (d, J=13.8 Hz, 1H), 7.11 (dd, J=0.9, 8.1 Hz, 1H), 3.26 (s, 1H).
- [0130] (d)シリルアルキニルブロモアルケニルピリジン化合物<u>41</u>の合成 [化47]

(式中、Meはメチル基を表す。)

[0131] 上記で得られたアルキニルブロモアルケニルピリジン化合物40(1,51g,7.26m mol)をTHF(24mL)に溶解し、-78℃に冷却した。ナトリウムビス(トリメチルシリル)アミド(1.0M/THF溶液、9.44mL,9.44mmol)を滴下し、2時間撹拌した。反応液に、その温度のままクロロトリメチルシラン(1.38mL,10.9mmol)を加えた後、室温に昇温し、終夜撹拌した。

反応溶液に、O℃で水を加えてクエンチした。水層からエーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/エーテル=100/1)で精製し、シリルアルキニルブロモアルケニルピリジン化合物41を収率86%で得た。

[0132] H NMR (300 MHz, CDCl₃) δ 8.58 (d, J= 1.8 Hz, 1H), 7.66 (dd, J=2.1, 8.4 Hz, 1H), 7.40 (d, J=13.8, Hz, 1H), 7.09 (d, J=13.8 Hz, 1H), 7.06 (d, J=7.8 Hz, 1H), 0.25 (s, 9H)

¹³C NMR (75 MHz, CDCl₃) δ 0.23, 99.07, 101.54, 113.98, 119.08, 120.77, 135.94, 139.44, 152.52, 152.75.

IR (neat): 2959.23, 2159.40, 1472.87, 1249.65, 1162.87, 1022.57, 935.79, 843.22.

[0133] (e)シリル化(ピリジン-エンイン)化合物43の合成

[化48]

(式中、Mcはメチル基を表す。)

[0134] 上記で得られたシリルアルキニルブロモアルケニルピリジン化合物41(0.373g, 1

. 33mmol)の脱気したTHF(2mL)溶液に、ジクロロビストリフェニルホスフィンパラジウム(47.0mg, 0.0667mmol)、ヨウ化第一銅(25.0mg, 0.133mmol)及びジエチルアミン(0.690mL, 6.67mmol)を室温で加えた後、エチニルピリジン化合物42(0.274g, 1.47mmol)の脱気したTHF(10mL)溶液を滴下した。

室温下で反応液を2時間撹拌した後、反応液に水を加えてクエンチした。

水層からエーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=100/1)で精製し、シリル化(ピリジンーエンイン)化合物43を収率78%(0.403g)で得た。

[0135] ¹H NMR (300 MHz, CDCl₃) δ 8.632 (s, 1H), 8.626 (s, 1H), 7.69 (d, J=2.1, 8.1 Hz, 1H), 7.66 (dd, J=2.1, 8.1 Hz, 1H), 7.19 (d, J= 8.1 Hz, 1H), 7.12 (d, J= 8.1 Hz, 1H), 7.04 (d, J= 15.6 Hz, 1H), 6.97 (d, J= 15.6 Hz, 1H), 2.79 (t, J= 7.8 Hz, 2H), 1.79 - 1.64 (m, 2H), 1.42 - 1.23 (m, 6H), 0.876 (t, J= 6.9 Hz, 3H), 0.265 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ -0.331, 13.91, 22.44, 28.91, 29.57, 31.57, 38.34, 91.10, 91.41, 99.39, 101.81, 113.33, 117.39, 119.47, 121.56, 122.20, 138.79, 139.41, 139.85, 151.88, 152.81, 153.03, 162.36.

UV/Vis (CHCl₃): λ_{max} [nm] (ϵ [M⁻¹cm⁻¹]) = 345 (56 800).

[0136] [実施例15](ピリジン-エンイン)化合物<u>44</u>の合成 「化49]

$$Me_3Si \longrightarrow N \qquad \qquad N \qquad \qquad Me_3Si \longrightarrow N \qquad Me_3Si \longrightarrow N \qquad Me_3Si \longrightarrow N \qquad \qquad Me$$

(式中、Meはメチル基を表す。)

[0137] 上記で得られたシリル化(ピリジン-エンイン)化合物43(0.390g, 1.01mmol)を 用いて、実施例2と同様にして、(ピリジン-エンイン)化合物44を得た。 この粗生成物は、NMRを確認し、そのまま次の反応に使用した。 ¹H NMR (300 MHz, CDCl₂) δ 8.67 (d, J=2.4 Hz, 1H), 8.63 (d, J=2.4 Hz, 1H), 7.73 (dd, J=2.4, 8.1 Hz, 1H), 7.66 (dd, J=2.4, 8.1 Hz, 1H), 7.21 (d, J=8.1 Hz, 1H), 7.12 (d, J=8.1 Hz, 1H), 7.06 (d, J=15.9 Hz, 1H), 6.99 (d, J=15.9 Hz, 1H), 3.27 (s, 1H), 2.79 (t, J=7.8 Hz, 2H), 1.78 - 1.62 (m, 2H), 1.42 - 1.23 (m, 6H), 0.875 (t, J=6.9 Hz, 3H).

[0138] [実施例16]シリル化(ピリジン-エンイン)ダイマー化合物<u>45</u>の合成 [化50]

(式中、Meはメチル基を表す。)

[0139] 実施例14-(d)で得られたシリルアルキニルブロモアルケニルピリジン化合物41(0.423g, 1.51mmol)の脱気したTHF(3mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(58.3mg, 0.0505mmol)、ヨウ化第一銅(10.0mg, 0.0505mmol)及びジエチルアミン(0.522mL, 5.05mmol)を室温下で加えた後、上記で得られた(ピリジンーエンイン)化合物44の粗物の脱気したTHF(10mL)溶液を滴下した。

室温下で反応液を2時間撹拌した後、反応液に水を加えてクエンチした。 水層から、クロロホルムで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マ グネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物を再結晶(ヘキサンークロロホルム)で精製し、シリル化(ピリジンーエンイン)ダイマー化合物45を2工程で収率75%(0.390g)で得た。

[0140] H NMR (300 MHz, CDCl₃) δ 8.67 (d, J=2.1 Hz, 1H), 8.64 (d, J=2.1 Hz, 2H), 7.72 (dd, J=2.1, 8.1 Hz, 1H), 7.70 (dd, J=2.1, 8.1 Hz, 1H), 7.67 (dd, J=2.1, 8.4 Hz, 1H), 7.23 (d, J=8.1 Hz, 1H), 7.20 (d, J=8.4 Hz, 1H), 7.13 (d, J=8.1 Hz, 1H), 7.07 (d, J=15.9 Hz, 1H), 7.06 (d, J=15.9 Hz, 1H), 6.99 (d, J=15.9 Hz, 2H), 2.79 (ι, J=7.5)

Hz, 2H), 1.78 – 1.62 (m, 2H), 1.38 – 1.22 (m, 6H), 0.876 (t, J=6.9 Hz, 3H), 0.267 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ -0.346, 13.90, 22.43, 28.90, 29.55, 31.55, 38.32, 91.17, 91.37, 91.53, 93.02, 99.51, 101.75, 113.05, 113.34, 117.37, 119.50, 119.59, 121.69, 121.78, 122.20, 138.78, 139.00, 139.41, 139.82, 140.29, 151.86, 152.49, 152.81, 152.84, 153.01, 162.34.

UV/Vis (CHCl₃): λ_{max} [nm] (ϵ [M⁻¹cm⁻¹]) = 376 (74 800).

[0141] [実施例17] (ピリジン-エンイン)ダイマー化合物46の合成 [化51]

(式中、Mcはメチル基を表す。)

[0142] 実施例16で得られたシリル化(ピリジン-エンイン)ダイマー化合物<u>45</u>(93.9 mg, 0.183 mmol)を用いて、実施例2と同様にして、(ピリジン-エンイン)ダイマー化合物<u>4</u>6を得た。

この粗生成物は、NMRを確認し、そのまま次の反応に使用した。

¹H NMR (300 MHz, CDCl₃) δ 8.69 – 8.62 (m, 3H), 7.74 (dd, J=2.4, 8.1 Hz, 1H), 7.72 (dd, J=2.1, 8.1 Hz, 1H), 7.67 (dd, J=2.1, 8.1 Hz, 1H), 7.23 (d, J=8.1 Hz, 1H), 7.22 (d, J=8.1 Hz, 1H), 7.13 (d, J=8.1 Hz, 1H), 7.12 – 7.04 (m, 2H), 7.01 (d, J=15.6 Hz, 1H), 7.00 (d, J=15.3 Hz, 1H), 3.28 (s, 1H), 2.79 (t, J=7.8 Hz, 2H), 1.79 – 1.60 (m, 1H), 1.41 – 1.22 (m, 6H), 0.877 (t, J=6.9 Hz, 3H).

[0143] [実施例18]シリル化(ピリジンーエンイン)トリマー化合物<u>47</u>の合成 [化52]

(式中、Meはメチル基を表す。)

[0144] 実施例17で得られた(ピリジン-エンイン)ダイマー化合物<u>46</u>を用いて、実施例16 と同様にして、シリル化(ピリジン-エンイン)トリマー化合物<u>47</u>を2工程で収率42%(49. Omg)で得た。

¹H NMR (300 MHz, CDCl₃) δ 8.69 – 8.65 (m, 2H), 8.64 – 8.61 (m, 2H), 7.76 – 7.64 (m, 4H), 7.27 – 6.96 (m, 10H), 2.79 (t, J=7.8 Hz, 2H), 1.78 – 1.61 (m, 2H), 1.38 – 1.20 (m, 6H), 0.93 – 0.84 (m, 3H), 0.269 (s, 1H).

UV/Vis (CHCl₃): λ_{max} [nm] (ϵ [M⁻¹cm⁻¹]) = 394 (80 900).

[0145] [実施例19]シアノピリジル(ピリジン-エンイン)化合物<u>49</u>の合成 [化53]

[0146] プロモシアノピリジン化合物48を用いて、実施例16と同様にしてシアノピリジル(ピリジンーエンイン)化合物49を2工程で収率77%で得た。

¹H NMR (300 MHz, CDCl₃) δ 8.89 (dd, J=0.9, 2.1 Hz, 1H), 8.78 (d, J=2.1 Hz, 1H), 8.66 – 8.63 (m, 1H), 7.97 (dd, J=2.1, 8.1 Hz, 1H), 7.85 (dd, J=2.1, 8.1 Hz, 1H), 7.69 – 7.61 (m, 2H), 7.32 – 7.22 (m, 1H), 7.13 (d, J=8.1 Hz, 1H), 7.15 – 6.96 (m, 2H), 2.80 (t, J=7.5 Hz, 2H), 1.78 – 1.64 (m, 2H), 1.45 – 1.15 (m, 6H), 0.868 (t, J=7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 13.89, 22.40, 28.85, 29.30, 31.51, 38.32, 90.72, 91.01, 91.39, 92.09, 108.80, 114.40, 116.25, 117.42, 117.25, 121.85, 122.27, 126.95, 138.84, 139.47, 139.42, 139.75, 146.14, 151.89, 152.76, 152.90, 154.26, 162.46.

UV/Vis (CHCl₃): λ_{max} [nm] = 366.

[0147] [実施例20]ピリジルシリル化(ピリジンーエンイン)化合物51の合成

[化54]

(式中、Meはメチル基を表す。)

[0148] エチニルピリジン<u>50</u>を用いて、実施例14-(e)と同様にして、ピリジルシリル化(ピリ ジン-エンイン)化合物<u>51</u>を収率73%で得た。

¹H NMR (300 MHz, CDCl₃) δ 8.71 (br. s, 1H), 8.62 (d, J=2.1 Hz, 1H), 8.52 (br. s, 1H), 7.74 (d, J=7.8 Hz, 1H), 7.67 (dd, J=2.1, 8.1 Hz, 1H), 7.25 (dd, J=5.1, 7.8 Hz, 1H), 7.17 (d, J=8.1 Hz, 1H), 7.04 (d J=15.9 Hz, 1H), 6.96 (d, J=15.9 Hz, 1H), 0.250 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ -0.369, 90.81, 91.82, 99.45, 101.71, 112.98, 119.55, 120.40, 121.64, 123.08, 138.49, 139.38, 140.26, 148.78, 152.37, 152.75 (x2).

[0149] [実施例21]ピリジル(ピリジン-エンイン)化合物<u>52</u>の合成 [化55]

$$Me_3SI \longrightarrow N$$

$$51$$

$$52$$

(式中、Meはメチル基を表す。)

[0150] 実施例20で得られたピリジルシリル化(ピリジンーエンイン)化合物<u>51</u>を用いて、実施例2と同様にして、ピリジル(ピリジンーエンイン)化合物<u>52</u>を得た。

この粗生成物は、NMRを確認し、そのまま次の反応に使用した。

¹H NMR (300 MHz, CDCl₃) δ 8.74 – 8.71 (m, 1H), 8.69 – 8.66 (m, 1H), 8.56 – 8.53 (m, 1H), 7.80 – 7.71 (m, 2H), 7.31 – 7.21 (m, 2H), 7.08 (d, J=15.9 Hz, 1H), 7.00 (d, J=15.9 Hz, 1H), 3.28 (s, 1H).

[0151] [実施例22]アルコキシピリジル(ピリジン-エンイン)化合物54の合成

[化56]

(式中、Meはメチル基を表す。)

- ョードプロポキシピリジン化合物53と実施例21で得られたアルコキシピリジル(ピリ [0152]ジン-エンイン) 化合物52を用いて、実施例16と同様にしてアルコキシピリジル(ピリ ジン-エンイン) 化合物54を2工程で収率65%で得た。
- ¹H NMR (300 MHz, CDCl₂) δ 8.79 8.77 (m, 1H), 8.74 8.71 (m, 1H), 8.55 (dd, [0153]J=1.8, 5.1 Hz, 1H), 8.23 (dd, J=1.8, 4.2 Hz, 1H), 7.84 (dd, J=2.1, 8.4 Hz, 1H), 7.78 (dd, J=1.8, 8.1 Hz, 1H), 7.32 - 7.21 (m, 4H), 7.10 (d, J=15.6 Hz, 1H), 7.02 (d, J=15.6 Hz, 1H), 4.05 (t, J=6.3 Hz, 2H), 1.98 - 1.86 (m, 2H), 1.13 (t, J=7.5 Hz 3H). 13 C NMR (75 MHz, CDCl₂) δ 10.38, 22.38, 70.25, 89.79, 90.39, 90.93, 91.90, 113.09, 118.96, 119.38, 120.41, 121.95, 123.12, 124.15, 133.25, 138.59, 139.33, 140.32, 141.94, 148.85, 152.41, 152.74, 153.03, 156.87.

UV/Vis (CHCl): λ [nm] = 339.

[0154] [実施例23] ピス[シリル化エチニル(チエニルーエンジイン)] ベンゼン化合物56の合 成

[化57]

$$(i \cdot Pr)_3 Si \longrightarrow Si$$

$$(i \cdot Pr)_3 Si \longrightarrow Si$$

$$(i \cdot Pr)_3 Si \longrightarrow Si$$

$$Si \longrightarrow Si$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0155]トランスーチエニルヨードエンイン化合物6(311mg, 0.594mmol)を脱気したTHF (1.3mL)に溶解し、テトラキストリフェニルホスフィンパラジウム (11.5mg, 0.0099 1mmol)、ヨウ化第一銅(3.77mg, 0.0198mmol)、及びジエチルアミン(0.62mL)を室温下で加えた後、1,4-ジエチニルベンゼン<u>55(25.0mg, 0.198mmol)の</u>脱気したTHF溶液(1.3mL)を滴下した。

室温下で反応液を12時間撹拌した後、反応液に水を加えてクエンチした。

水層から、エーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/エーテル=3/1)で精製し、ビス[シリル化エチニル(チエニルーエンジイン)]ベンゼン化合物56を収率89%(163mg)で得た。

[0156] ¹H NMR δ 7.41 (s, 4H), 7.10 (d, J=3.9 Hz, 2H), 7.03 (d, J=3.9 Hz, 2H), 2.57 (t, J=7.5 Hz, 4H), 2.54 (t, J=7.5 Hz, 4H), 1.78–1.58 (m, 8H), 1.20–1.10 (m, 42H), 1.02 (t, J=7.5 Hz, 12H).

¹³C NMR: δ 132.29, 131.27, 131.04, 130.21, 129.55, 125.04, 124.58, 123.27, 98.92, 98.82, 97.21, 94.00, 91.53, 91.24, 37.13, 36.86, 21.88 (x 2), 18.61, 13.67, 13.59, 11.28.

UV/Vis (CHCl) λ_{abs} [nm]= 395.

[0157] [実施例24]ビス[シリル化エチニル(フェニル-エンジイン)]ベンゼン化合物<u>58</u>の合成

[化58]

$$(i \cdot Pr)_3 SI \longrightarrow \bigcap_{n \cdot Pr} + \longrightarrow \bigcup_{n \cdot Pr} \longrightarrow \bigcup_{n \cdot Pr} Si(i \cdot Pr)$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0158] トランス--フェニルョードエンイン化合物<u>57</u>と、1,4-ジエチニルベンゼン<u>55</u>とを用いて、実施例23と同様にしてビス「シリル化エチニル(フェニル-エンジイン)]ベンゼ

ン化合物58を収率65%で得た。

[0159] m.p. = 73-80 °C.

¹H NMR δ 7.50–7.30 (m, 12H), 2.60 (t, J=7.5 Hz, 8H), 1.82–1.62 (m, 8H), 1.20–1.10 (m, 42H), 1.03 (t, J=7.5 Hz, 12H).

¹³C NMR δ 131.94, 131.26, 131.08, 129.97, 129.93, 123.41, 123.28, 123.21, 106.69, 98.57, 98.52, 92.81, 91.28, 91.13, 37.08 (x 2), 21.89 (x 2), 18.66, 13.73 (x 2), 11.31

IR (KBr) 2957, 2864, 2151, 1654, 1503, 1458, 1260, 1099, 1016, 881, 833, 759, 672 cm^{-1} .

UV/Vis (CHCl₂) λ [nm]= 379.

[0160] [実施例25]ビス[シリル化エチニル(フェニルーエンジイン)]チオフェン化合物<u>60</u>の 合成

[化59]

$$(i - Pr)_3 Si \longrightarrow \bigcap_{n - Pr} + \longrightarrow_{S} \longrightarrow \bigcap_{n - Pr} + \longrightarrow_{S} Si(i - Pr)_3$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

- [0161] トランスーフェニルヨードエンイン化合物<u>57</u>と、2,5ージエチニルチオフェンベン<u>59</u>とを用いて、実施例23と同様にしてビス[シリル化チエニル(フェニルーエンジイン)]チオフェン化合物<u>60</u>を収率30%で得た。
- [0162] ¹H NMR δ 7.45 (d, J=8.4 Hz, 4H), 7.38 (d, J=8.4 Hz, 4H), 7.08 (s, 2H), 2.58 (t, J=7.5 Hz, 4H), 2.55 (t, J=7.5 Hz, 4H), 1.80–1.62 (m, 8H), 1.20–1.10 (m, 42H), 1.024 (t, J=7.5 Hz, 6H), 1.019 (t, J=7.5 Hz, 6H).

¹³C NMR: δ 132.05, 131.58, 131.19, 130.35, 129.60, 125.10, 123.43, 123.38, 106.75, 98.95, 94.67, 92.91, 91.55, 91.10, 37.09, 36.79, 21.79 (x 2), 18.55, 13.57 (x 2), 11.19.

IR (neat) 2959, 2153, 1600, 1501, 1461, 1381, 1227, 995, 883, 835, 800, 735, 675 cm⁻¹.

UV/Vis (CHCl₂) λ _{1...} [nm]= 401.

[0163] [実施例26]シリル化エチニル(フェニル-エンジイン)]フェニル エーテル化合物62 の合成

[化60]

$$(i \cdot Pr)_3 Si \longrightarrow 0 \longrightarrow 0$$

$$57 \qquad \qquad 61$$

$$(i \cdot Pr)_3 SI \longrightarrow 0 \longrightarrow 0$$

$$n \cdot Pr \longrightarrow 0$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

- [0164] トランス-フェニルヨードエンイン化合物57と、4-エチニルフェニル エーテル61と を用いて、実施例23と同様にしてシリル化エチニル(フェニル-エンジイン)フェニル エーテル化合物62を収率49%で得た。
- [0165] m.p. = 47-50 °C.

¹H NMR δ 7.43 (d, J=8.7 Hz, 4H), 7.42 (d, J=8.7 Hz, 4H), 7.36 (d, J=8.7 Hz, 4H), 6.98 (d, J=8.7 Hz, 4H), 2.56 (t, J=7.5 Hz, 8H), 1.78–1.60 (m, 8H), 1.20–1.10 (m, 42H), 1.00 (t, J=7.2 Hz, 12H).

¹³C NMR δ 156.72, 133.04, 131.93, 131.06, 130.12, 129.24, 123.50, 123.14, 118.93, 118.58, 106.74, 98.19 (x 2), 92.72, 91.19, 88.96, 37.13, 37.02, 21.88 (x 2), 18.66, 13.72 (x 2), 11.31.

IR (KBr) 2957, 2864, 2151, 1654, 1594, 1496, 1459, 1239, 1099, 1015, 878, 832, 673 cm^{-1} .

UV/Vis (CHCl₃) λ_{abs} [nm]= 351.

[0166] [実施例27]ビス[シリル化エチニル(フェニルーエンジイン)]ビチオフェン化合物<u>64</u> の合成 [化61]

$$(i Pr)_3 Si \longrightarrow \bigcap_{n-Pr} i + \longrightarrow_{S} \underbrace{S}_{S} \longrightarrow \underbrace{Si(i Pr)_3}_{n-Pr}$$

$$(i Pr)_3 Si \longrightarrow \bigcap_{n-Pr} I - \underbrace{Si(i Pr)_3}_{n-Pr}$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

- [0167] トランス-フェニルヨードエンイン化合物<u>57</u>と、5, 5'-ジエチニル-2, 2'-ビチオフェン<u>63</u>とを用いて、実施例23と同様にしてビス[シリル化エチニル(フェニル-エンジイン)]ビチオフェン化合物<u>64</u>を収率58%で得た。
- [0168] m.p. = 60-63 °C.

¹H NMR δ 7.44 (d, J=8.4 Hz, 4H), 7.38 (d, J=8.4 Hz, 4H), 7.10 (d, J=3.9 Hz, 2H), 7.07 (d, J=3.9 Hz, 2H), 2.57 (t, J=7.5 Hz, 4H), 2.55 (t, J=7.5 Hz, 4H), 1.78–1.60 (m, 8H), 1.20–1.10 (m, 42H), 1.02 (t, J=7.2 Hz, 12H).

¹³C NMR: δ 138.32, 132.51, 132.05, 131.18, 130.03, 129.71, 124.13, 123.46, 123.35, 122.94, 106.75, 98.84, 95.00, 92.90, 91.78, 91.16, 37.07, 36.81, 21.80 (κ 2), 18.55, 13.58 (κ 2), 11.20.

IR (KBr) 2934, 2862, 2150, 1654, 1502, 1458, 1378, 1223, 994, 881, 833, 791, 759, 674 cm⁻¹.

UV/Vis (CHCl) λ_{abs} [nm]= 423.

[0169] [実施例28]ビス[シリル化エチニル(フェニルーエンジイン)]ナフタレン化合物<u>66</u>の 合成

[化62]

$$(i - Pr)_3 SI \longrightarrow n - Pr$$

$$57 \longrightarrow 65$$

$$(i - Pr)_3 SI \longrightarrow n - Pr$$

$$n - Pr \longrightarrow n - Pr$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

- [0170] トランス-フェニルョードエンイン化合物<u>57</u>と、2,6-ジエチニルナフタレン<u>65</u>とを用いて、実施例23と同様にしてビス[シリル化エチニル(フェニルーエンジイン)]ナフタレン化合物66を収率60%で得た。
- [0171] m.p. = 42-46 °C.

¹H NMR δ 7.93 (s, 2H), 7.76 (d, J=8.1 Hz, 2H), 7.52 (d, J=8.1 Hz, 2H), 7.45 (d, J=8.4 Hz, 4H), 7.39 (d, J=8.4 Hz, 4H), 2.74–2.52 (m, 8H), 1.85–1.65 (m,8H), 1.20–1.10 (m, 42H), 1.05 (t, J=7.2 Hz, 6H), 1.04 (t, J=7.2 Hz, 6H).

¹³C NMR δ 132.45, 132.03, 131.17, 130.87, 130.17, 130.00, 129.12, 127.87, 123.56, 123.31, 121.78, 106.82, 99.20, 98.60, 92.81, 91.24, 90.52, 37.09, 37.06, 21.83 (x 2), 18.55, 13.64 (x 2), 11.21.

IR (KBr) 2957, 2863, 2151, 1654, 1595, 1500, 1458, 1377, 1261, 1098, 1017, 883, 807, 670 cm^{-1} .

UV/Vis (CHCl₃) λ_{abc} [nm]= 384.

[0172] [実施例30]ビス[シリル化エチニル(フェニルーエンジイン)]アントラセン化合物<u>68</u>の 合成

[化63]

$$(i Pr)_3 SI \longrightarrow \underbrace{\frac{57}{n - Pr}}_{n - Pr} + \underbrace{\frac{67}{n - Pr}}_{n - Pr} \longrightarrow \underbrace{\frac{n - Pr}{n - Pr}}_{n - Pr} \longrightarrow Si(i - Pr)_3$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0173] トランス-フェニルヨードエンイン化合物<u>57</u>と、9, 10-ジエチニルアントラセン<u>67</u>とを 用いて、実施例23と同様にしてビス[シリル化エチニル(フェニル-エンジイン)]アント ラセン化合物<u>68</u>を収率39%で得た。 [0174] m.p. = 127-131 °C.

¹H NMR δ 8.59 (dd, J=3.3, 6.6 Hz, 4H), 7.63 (dd, J=3.3, 6.6 Hz, 4H), 7.47 (d, J=8.4 Hz, 4H), 7.42 (d, J=8.4 Hz, 4H), 2.84 (t, J=7.5 Hz, 4H), 2.82 (t, J=7.5 Hz, 4H), 2.02–1.76 (m, 8H), 1.20–1.10 (m, 42H), 1.14 (t, J=6.6 Hz, 6H), 1.12 (t, J=7.2 Hz, 6H).

¹³C NMR δ 131.99, 161.15, 130.30, 130.28, 127.15, 126.79 (x 2), 123.43, 123.35, 118.82, 106.74, 102.79, 99.11, 96.31, 92.94, 91.46, 37.87, 37.59, 22.31, 22.23, 18.67, 13.94, 13.83, 11.34.

UV/Vis (CHCl₃) λ_{abs} [nm]= 345, 363, 483, 506.

[0175] [実施例31]ビス[シリル化エチニル(フェニルーエンジイン)]ベングチアジアゾール化 合物70の合成

[化64]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

- [0176] トランス-フェニルヨードエンイン化合物57と、4,7-ジエチニル-2,1,3-ベングチアジアゾール69とを用いて、実施例23と同様にしてビス[シリル化エチニル(フェニル-エンジイン)]ベングチアジアゾール化合物70を収率39%で得た。
- [0177] m.p. = 191-193 °C.

¹H NMR δ 7.66 (s, 2H), 7.45 (d, J=8.4 Hz, 4H), 7.40 (d, J=8.4 Hz, 4H), 2.76 (t, J=7.2 Hz, 4H), 2.67 (t, J=7.2 Hz, 4H), 1.90–1.65 (m, 8H), 1.20–1.10 (m, 42H), 1.07 (t, J=7.5 Hz, 6H), 1.06 (t, J=7.2 Hz, 6H).

¹³C NMR δ 154.41, 131.96, 131.87, 131.65, 131.15, 129.64, 123.34, 123.27, 117.19, 106.65, 99.31, 97.71, 94.97, 92.92, 91.16, 37.29, 36.90, 22.05, 21.91,

18.65, 13.76 (x 2), 11.28.

UV/Vis (CHCl₂) λ [nm]= 351, 466.

[0178] [実施例32]ビス[シリル化エチニル(フェニルーエンジイン)]ピリダジン化合物72の 合成

[化65]

$$(PPr)_{3}Si \longrightarrow \bigcap_{n-Pr} Pr \longrightarrow \bigcap_{n-Pr} Pr \longrightarrow \bigcap_{n-Pr} Si(PPr)_{3}Si \longrightarrow \bigcap_{n-Pr} Pr \longrightarrow \bigcap_{$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0179] トランス-フェニルヨードエンイン化合物<u>57</u>と、3,6-ジエチニルピリダジン<u>71</u>とを用いて実施例23と同様にしてビス[シリル化エチニル(フェニルーエンジイン)]ピリダジン化合物<u>72</u>を収率60%で得た。

[0180] m.p. = 130-135 °C.

¹H NMR δ 7.47 (s, 2H), 7.44 (d, J=8.1 Hz, 4H), 7.38 (d, J=8.1 Hz, 4H), 2.68–2.52 (m, 8H), 1.80–1.62 (m, 8H), 1.20–1.10 (m, 42H), 1.01 (t, J=7.5 Hz, 12H).

¹³C NMR: δ 145.74, 133.52, 132.07, 131.29, 128.64, 128.49, 123.69, 123.11, 106.65, 99.92, 95.31, 94.98, 93.13, 90.55, 37.24, 36.69, 21.77 (x 2), 18.52, 13.55, 13.50, 11.18.

IR (KBr) 2955, 2863, 2151, 1654, 1501, 1458, 1393, 1261, 1099, 1017, 880, 833, 806, 671 cm⁻¹.

UV/Vis (CHCl₃) λ_{abs} [nm]= 386.

[0181] [実施例33]トリ[シリル化エチニル(フェニルーエンジイン)]ベンゼン化合物<u>75</u>の合成

(a)1,3,5-トリエチニルベンゼン化合物<u>74</u>の合成 [化66]

(式中、Mcはメチル基を表す。)

[0182] 1, 3, 5-トリス[(トリメチルシリル)エチニル]ベンゼン<u>73</u>(138mg, 0. 376mmol)をTHF(3. 8mL)に溶解し、テトラブチルアンモニウムフルオリド(1. 50mL, 1. 0m ol/L in THF, 1. 50mmol)を0℃で加えた。0℃で反応液を1時間撹拌した後、反応液に水を加えてクエンチした。

水層から、エーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に用いた。

[0183] (b)トリ[シリル化エチニル(フェニルーエンジイン)]ベンゼン化合物<u>75</u>の合成 [化67]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0184] トランス-フェニルヨードエンイン化合物<u>57</u>(780mg, 1.50mmol)を脱気したTHF (2.4mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(21.7mg, 0.0188 mmol)、ヨウ化第一銅(7.16mg, 0.0376mmol)、及びジエチルアミン(1.2mL)を室温下で加えた後、上記で得られた末端アセチレン化合物<u>74</u>の脱気したTHF溶液(2.4mL)を滴下した。

室温下で反応液を12時間撹拌した後、反応液に水を加えてクエンチした。 水層から、エーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/エーテル=50/1)で精製し、トリ[シリル化エチニル(フェニルーエンジイン)]ベンゼン化合物75を収率71%(354mg)で得た。

[0185] m.p. = 87-91 °C.

¹H NMR δ 7.431 (d, J=8.1 Hz, 6H), 7.427 (s, 3H), 7.37 (d, J=8.1 Hz, 6H), 2.57

(t, J=7.2 Hz, 12H), 1.80-1.60 (m, 12H), 1.20-1.10 (m, 63H), 1.02 (t, J=7.5 Hz, 9H), 1.01 (t, J=7.5 Hz, 9H).

¹³C NMR: δ 133.42, 132.05, 131.20, 130.60, 129.70, 124.46, 123.46, 123.41, 106.78, 98.72, 97.07, 92.87, 90.99, 90.48, 37.08, 37.00, 21.80 (x 2), 18.55, 13.58 (x 2), 11.22.

IR (KBr) 2958, 2863, 2151, 1658, 1576, 1502, 1461, 1260, 1099, 1016, 879, 832, 674 cm^{-1} .

UV/Vis (CHCl₃) λ_{abs} [nm]= 352.

[0186] [実施例34]トリ[シリル化エチニル(フェニルーエンジイン)フェニル]アミン化合物<u>77</u> の合成

[化68]

$$(i Pr)_3 Si \longrightarrow \bigcap_{n Pr} \bigcap_{n$$

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0187] トランス-フェニルヨードエンイン化合物<u>57</u>(510mg, 0. 984mmol)を脱気したTH F(1. 6mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(14. 2mg, 0. 012 3mmol)、ヨウ化第一銅(4. 69mg, 0. 0246mmol)、及びジエチルアミン(0. 77m L)を室温下で加えた後、トリ[(4-エチニル)フェニル]アミン<u>76</u>(78. 0mg, 0. 250 mmol)の脱気したTHF溶液(1. 6mL)を滴下した。

室温下で反応液を12時間撹拌した後、反応液に水を加えてクエンチした。 水層から、エーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/エーテル=10/1)で精製し、トリ[シリル化エチニル(フェニルーエンジイン)フェニル]アミン化合物77を収率71%(264mg)で得た。

[0188] m.p. = 128-131 °C.

¹H NMR δ 7.44 (d, J=8.1 Hz, 6H), 7.37 (d, J=8.1 Hz, 6H), 7.36 (d, J=8.4 Hz, 6H), 7.06 (d, J=8.4 Hz, 6H), 2.58 (t, J=7.2 Hz, 12H), 1.80–1.60 (m, 12H), 1.20–1.10 (m, 63H), 1.00 (t, J=7.2 Hz, 18H).

¹³C NMR δ 146.68, 132.65, 132.02, 131.14, 130.32, 129.19, 124.09, 123.62, 123.21, 118.36, 106.80, 98.76, 98.23, 92.77, 91.33, 89.36, 37.07, 36.96, 21.78 (x 2), 18.55, 13.61, 13.58, 11.19.

IR (KBr) 2955, 2862, 2150, 1651, 1595, 1501, 1459, 1316, 1264, 1173, 1100, 1015, 881, 833, 674 cm⁻¹.

UV/Vis (CHCI₃) λ_{abs} [nm]= 339, 399.

[0189] [実施例35]

トリ[[(アニシルエチニル)フェニルーエンジイン]フェニル]アミン化合物80の合成(a)トリ[(フェニルーエンジイン)フェニル]アミン化合物78の合成[化69]

(式中、n-Prはn-プロピル基、i-Prはi-プロピル基を表す。)

[0190] トリ[シリル化エチニル(フェニルーエンジイン)フェニル]アミン化合物77(100mg, 0 . 0671mmol)を、THF(0. 67mL)に溶解し、テトラブチルアンモニウムフルオリド(0. 269mL, 1. 0mol/L in THF, 0. 269mmol)を0℃で加えた。
0℃で反応液を1時間撹拌した後、反応液に水を加えてクエンチした。
水層から、エーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物は、NMRを確認し、そのまま次の反応に用いた。

[0191] (b)トリ[[(アニシルエチニル)フェニルーエンジイン]フェニル]アミン化合物<u>80</u>の合成 [化70]

(式中、Meはメチル基、n-Prはn-プロピル基を表す。)

[0192] 4-ヨードアニソール79(62.8mg, 0.268mmol)を脱気したTHF(0.84mL)に溶解し、テトラキストリフェニルホスフィンパラジウム(3.88mg, 0.00336mmol)、ヨウ化第一銅(1.28mg, 0.00671mmol)、及びジエチルアミン(0.21mL)を室温下で加えた後、上記で得られた末端アセチレン化合物78の脱気したTHF溶液(0.84mL)を滴下した。

室温下で反応液12時間撹拌した後、反応液に水を加えてクエンチした。 水層から、エーテルで抽出し、飽和食塩水で洗浄した後、有機層を無水硫酸マグネシウムで乾燥した。

濾過後、濾液を減圧下濃縮して得られた粗生成物を、シリカゲルカラムクロマトグラフィー(ヘキサン/エーテル=5/1)で精製し、トリ[シリル化(フェニルーエンジイン)]

ベンゼン化合物80を収率47%(42.6mg)で得た。

[0193] H NMR δ 7.48 (d, J=8.7 Hz, 6H), 7.47 (d, J=8.7 Hz, 6H), 7.41 (d, J=8.7 Hz, 6H), 7.36 (d, J=8.4 Hz, 6H), 7.06 (d, J=8.4 Hz, 6H), 6.89 (d, J=8.7 Hz, 6H), 3.84 (s, 9H), 2.59 (t, J=7.2 Hz, 12H), 1.80–1.62 (m, 12H), 1.06–0.98 (m, 18H).

13 C NMR δ 159.75, 146.52, 133.07, 132.54, 131.31, 131.20, 130.11, 129.13, 124.00, 123.25, 123.06, 118.33, 115.10, 114.03, 98.68, 98.31, 91.34, 91.18, 89.34, 87.96, 55.28, 37.12, 37.04, 21.88 (x 2), 13.72 (x 2).

UV/Vis (CHCl) λ [nm]= 346, 401.

[0194] [2]蛍光スペクトルの測定

以下の実施例において、蛍光スペクトルは、F-4010 Fluorescence Spectrop hotometer((株)日立製作所製)を使用して測定した。

[実施例36]

実施例13で得られた化合物 $\underline{36}$ をクロロホルムに溶解 $(9.3 \times 10^{-6} \text{M})$ し、372 nm の光で励起したところ、647 nmの赤色蛍光が観測された(図1)。

[実施例37]

実施例14で得られた化合物<u>43</u>をクロロホルムに溶解(1.6×10⁻⁵M)し、347nmの光で励起したところ、380nmの紫色蛍光が観測された(図2)。

[0195] [実施例38]

実施例24で得られた化合物 $\underline{56}$ をクロロホルムに溶解 $(1.0 \times 10^{-5} \text{M})$ し、395 nmの光で励起したところ、451 nmの青色蛍光が観測された(図3)。

[実施例39]

実施例34で得られた化合物77をクロロホルムに溶解 $(1.0 \times 10^{-5} \text{M})$ し、399nmの光で励起したところ、459nmの青色蛍光が観測された(図4)。

[0196] [実施例40]

各々の実施例で得られた化合物をクロロホルムに溶解(約10⁻⁵M)し、適当な波長の励起光で励起したところ、それぞれ蛍光が観測された。各化合物の蛍光スペクトルにおける励起光と蛍光の発光極大(λ max)を表1に示す。

[0197] [表1]

cte Mr Pril	化合物	励起	蛍光λmax	
実施例		(nm)	(nm)	
1	8	385	434	
3	10	407	477	
5	12	427	494	
6	19	359	405	
8	21	386	436	
10	23	394	447	
11	25	375	479	
12	30	473	569	
13	36	541	647	
14	43	345	380	
16	45	376	432, 447	
18	47	393	438	
19	49	366	420	
20	51	340	377, 396	
22	54	363	399	
24	56	395	451	
25	58	379	431	
26	60	401	463	
27	62	351	398	
28	64	423	493	
29	66	384	431	
30	68	483	536	
31	70	466	552	
32	72	386	448	
33	75	352	394	
34	77	399	459	
35	80	401	463	

請求の範囲

[1] 式(1)で表されることを特徴とする π 共役系芳香環含有化合物。 [化1]

$$R^{1} = \begin{bmatrix} A & & & \\$$

(式中、R¹は、水素原子、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、フッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基、下記式(2)で示される基、又は下記式(3)で示される基を表し、

[化2]

$$E = \frac{\mathbb{R}^7}{\mathbb{C}H}$$
(2) (3)

〔式中、Eは、水素原子、置換シリル基、フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、チェニル基(該フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、又はチェニル基は、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)を表し、

R⁷及びR⁸は、互いに独立して炭素数1~10のアルキル基を表す。〕、

 R^2 、 R^3 、 R^4 及び R^5 は、互いに独立して水素原子又は炭素数1〜10のアルキル基を表し、

R⁶は、水素原子、置換シリル基、フェニル基、ナフチル基、ピリジル基、ピリミジニル 基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリ WO 2005/085176 66 PCT/JP2005/003950

ル基、チエニル基(該フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、又はチエニル基は、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)、前記式(2)で示される基、又は前記式(3)で示される基を表し、

A及びDは、互いに独立して、ナフタレン環、アントラセン環、フェナントレン環、フェナレン環、フルオレン環、トリフェニレン環、ピレン環、ペリレン環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベングチアジアゾール環、チエノ[3,4-b]ピラジン環、フロ[3,4-b]ピラジン環、又は6H-ピロロ[3,4-b]ピラジン環(これらの各環は、フェニル基、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1〜3のアルコキシ基、炭素数1〜10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1〜10のハロゲン化アルキル基で任意に置換されていてもよい。)を表し、

a、a及びa。は、互いに独立してO又は1を表し、 n及びn。は互いに独立して1~5の整数を表す。}

[2] 式(4)で示されることを特徴とするπ共役系芳香環含有化合物。

[化3]

 ${式中、R^2、R^3、R^4及びR^5は、互いに独立して水素原子又は炭素数1〜10のアルキル基を表し、$

R⁶は、水素原子、置換シリル基、フェニル基、ナフチル基、ピリジル基、ピリミジニル 基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラブリル基、イミダブリ ル基、チエニル基(該フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、又はチエニル基は、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)、式(2)で示される基、又は式(3)で示される基を表し、[化4]

〔式中、Eは、水素原子、置換シリル基、フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、チエニル基(該フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラブリル基、イミダゾリル基、又はチエニル基は、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)を表し、

R⁷及びR⁸は、互いに独立して炭素数1~10のアルキル基を表す。」、

Z¹、Y¹及びY²はそれぞれ独立してベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フェナレン環、フルオレン環、トリフェニレン環、ピレン環、ペリレン環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベンゾチアジアゾール環、チエノ[3, 4-b]ピラジン環、フロ[3, 4-b]ピラジン環、又は6H-ピロロ[3, 4-b]ピラジン環(これらの各環は、フェニル基、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)を表し、

 R^9 は、単結合、-O-、-S-、-S(O)-、 $-S(O_2)-$ 、-C(O)O-、-OC(O)-、-C(S)O-、-OC(S)-、-C(O)NH-、-NHC(O)-、-C(S)NH-、-NHC(S)-、-NH-、又は炭素数1~8の分岐していてもよい2価の飽和若しくは不飽和炭化水素基を表し、

b₁及びb₂は、互いに独立して0又は1を表し、

cは、0~3の整数を表し、

m 及びm は、互いに独立して1~5の整数を表す。}

[3] 式(5)で表されることを特徴とする π 共役系芳香環含有化合物。 [化5]

$$R^{6} \xrightarrow{y^{5}} P^{11}$$

$$R^{6} \xrightarrow{y^{5}} R^{11}$$

 ${ { | 式中、R^2,R^3,R^4及 UR^5 | は、互いに独立して水素原子又は炭素数1~10のアルキル基を表し、}$

R⁶は、水素原子、置換シリル基、フェニル基、ナフチル基、ピリジル基、ピリミジニル 基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリ ル基、チエニル基(該フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジ ニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、又はチ エニル基は、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基 、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしくは 塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任 • ...

意に置換されていてもよい。)、式(2)で示される基、又は式(3)で示される基を表し、 [化6]

〔式中、Eは、水素原子、置換シリル基、フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、チエニル基(該フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラブリル基、イミダゾリル基、又はチエニル基は、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)を表し、

R⁷及びR⁸は、互いに独立して炭素数1~10のアルキル基を表す。]

R¹⁰及びR¹¹は、互いに独立して水素原子又は炭素数1~10のアルキル基を表し、Y³~Y⁵はそれぞれ独立してベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フェナレン環、フルオレン環、トリフェニレン環、ピレン環、ペリレン環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベンゾチアジアゾール環、チエノ[3,4-b]ピラジン環、フロ[3,4-b]ピラジン環、又は6H-ピロロ[3,4-b]ピラジン環(これらの各環は、フェニル基、ハロゲン原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~10のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい。)を表し、

Z²は、3価のアリール基、下記式(6)で示される基、又は式(7)で示される基を表し

[化7]

d, 一d, は、互いに独立して0又は1を表し、

k,一k。は、互いに独立して1~5の整数を表す。}

[4] 前記R¹が、水素原子、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、プロポキシ基、メチル基、トリフルオロメチル基、下記式(8)で示される基、又は下記式(9)で示される基であることを特徴とする請求項1記載のπ共役系芳香環含有化合物。

[化8]

$$E' \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} OH (9)$$

【式中、E' は、水素原子、トリメチルシリル基、トリーiープロピルシリル基、フェニル基、 ピリジル基、チエニル基(該フェニル基、ピリジル基、又はチエニル基は、シアノ基、ニ トロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、nープロポキシ基、メチル基 、又はトリフルオロメチル基で任意に置換されていてもよい。)を表す。〕

- [6] 前記R⁶が、水素原子、トリメチルシリル基、トリーiープロピルシリル基、フェニル基、ピリジル基、チェニル基(該フェニル基、ピリジル基、又はチェニル基は、シアノ基、ニトロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、nープロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)、下記式(8)で示される基、又は下記式(9)で示される基であることを特徴とする請求項1~5のいずれか1項記載のπ共役系芳香環含有化合物。

[化9]

「式中、E'は、水素原子、トリメチルシリル基、トリーiープロピルシリル基、フェニル基、 ピリジル基、チエニル基(該フェニル基、ピリジル基、又はチエニル基は、シアノ基、ニ トロ基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、n-プロポキシ基、メチル基 、又はトリフルオロメチル基で任意に置換されていてもよい。)を表す。〕

- [7] 前記A及びDが、互いに独立して、ピリジン環、ピリミジン環、ピリダジン環、ピラジン 環、フラン環、ピロール環、ピラゾール環、イミダゾール環、チオフェン環、ベンゾチア ジアゾール環、チエノ[3, 4-b]ピラジン環、フロ[3, 4-b]ピラジン環、又は6H-ピロ ロ[3, 4-b]ピラジン環(これらの各環は、フェニル基、ハロゲン原子、シアノ基、ニトロ 基、ジメチルアミノ基、ジフェニルアミノ基、炭素数1~3のアルコキシ基、炭素数1~1 0のアルキル基、又はフッ素原子もしくは塩素原子で任意に置換されていてもよい炭 素数1~10のハロゲン化アルキル基で任意に置換されていてもよい。)であることを 特徴とする請求項1記載のπ共役系芳香環含有化合物。
- 前記A及びDが、互いに独立してピリジン環、ピリダジン環、チオフェン環、ベンゾチ [8] アジアゾール環、又はチエノ[3.4-b]ピラジン環(これらの環は、フェニル基、シアノ 基、メトキシ基、n-プロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換 されていてもよい。)であることを特徴とする請求項7記載のπ共役系芳香環含有化 合物。
- 前記Z¹、Y¹及びY²が、互いに独立してベンゼン環、ナフタレン環、アントラセン環、 [9] ピリジン環、ピリダジン環、チオフェン環、ピロール環、ベンゾチアジアゾール環、又は チエノ[3、4-b]ピラジン環(これらの環は、フェニル基、シアノ基、メトキシ基、n-プロ ポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)であ り、R⁹が、単結合又は一〇一であり、b_.及びb_.が、全て1であり、cが、0または1であるこ とを特徴とする請求項2,5又は6記載のπ共役系芳香環含有化合物。
- 前記Y³~Y⁵が、互いに独立してフェニレン基、ナフタレン環、アントラセン環、ピリジ [10] ン環、ピリダジン環、チオフェン環、ピロール環、ベングチアジアゾール環、又はチエ

ノ[3, 4-b]ピラジン環(これらの環は、フェニル基、シアノ基、メトキシ基、nープロポキシ基、メチル基、又はトリフルオロメチル基で任意に置換されていてもよい。)であり、 Z²が、下記式(10)で示される基、又は式(11)で示される基であり、

 $\mathbf{d}_1 - \mathbf{d}_3$ が全て1であることを特徴とする請求項3,5又は6記載の π 共役系芳香環含有化合物。

[化10]

[11] 陽極と陰極と、これら両極間に介在させた有機薄膜層とを有する有機エレクトロルミネッセンス素子であって、

前記有機薄膜層が、請求項1〜10のいずれかに記載のπ共役系芳香環含有化合物を含んで構成された層であることを特徴とする有機エレクトロルミネッセンス素子。

WO 2005/085176 PCT/JP2005/003950 1/4

[図1]

[図2]

[図3]

[図4]

発明の属する分野の分類(国際特許分類(IPC))

Int.CL7 C07C217/80, C07D213/53, 213/65, 213/85, 333/16, 333/24, 495/04, C07F7/08, 7/10, C09K11/06, H05B33/14

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.CL7 C07C217/80, C07D213/53, 213/65, 213/85, 333/16, 333/24, 495/04, C07F7/08, 7/10, C09K11/06, H05B33/14

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA (STN) REGISTRY (STN)

C. 関連する	関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
A	BESTMANN, Hans Juergen et al., Reactions with phosphinealkylenes. XXXIX. New methods for the preparation of 1-bromoacetylenes and aromatic and conjugated enynes, Liebigs Annalen der Chemie, 1980, (12), 2061-2071	1-11			
A	FOMINA, Lioudmila et al., Synthesis and polymerization of β , β -dibromo-4-ethynylstyrene; preparation of a new polyconjugated, hyperbranched polymer, Polymer, 1996, 37(9), 1723-1728	1-11			

▽ C棚の続きにも文献が列挙されている。

「パテントファミリーに関する別紙を参照。

引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に首及する文献
- 「P」国際出題目前で、かつ優先権の主張の基礎となる出題 「&」同一パテントファミリー文献

- の日の後に公表された文献
- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

・1 国際出版は同じ、ペーン図が指揮と主張の基礎となる国際 「②」同一パノンドノアミリー文献					
国際調査を完了した日 29.06.2005	国際調査報告の発送日 19.7.2005				
国際調査機関の名称及びあて先 日本国特許庁(I SA/JP) 郵便番号100-8915 東京都千代田区麓が関三丁目4番3号	特許庁審査官(権限のある職員) 本堂 裕司 電話番号 03-3581-1101 内線 3443				

4′′

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Р, Х	TAKAYAMA, Yuuki et al., Site-Selective Monotitanation of Dialkynylpyridines and Its Application for Preparation of Highly Fluorescent π -Conjugated Oligomers, Organic Letters, 2004, 6(23), 4253-4256	1-11
Р, Х	NAKANO, Yuuki et al., Synthesis of Conjugated Oligomers Having Aromatic and Enediyne Units Alternately in the Backbone that Show Intense Fluorescence Emission, Organic Letters, 2004, 6(14), 2373-2376	1-11
	•	
		•