Package 'hrqglas'

January 30, 2023

Title Group Variable Selection for Quantile and Robust Mean Regression

Type Package

Version 1.1.0
Date 2023-01-29
Maintainer Shaobo Li <shaobo .li@ku.edu=""></shaobo>
Description A program that conducts group variable selection for quantile and robust mean regression (Sherwood and Li, 2022). The group lasso penalty (Yuan and Lin, 2006) is used for group-wise variable selection. Both of the quantile and mean regression models are based on the Huber loss. Specifically, with the tuning parameter in the Huber loss approaching to 0, the quantile check function can be approximated by the Huber loss for the median and the tilted version of Huber loss at other quantiles. Such approximation provides computational efficiency and stability, and has also been shown to be statistical consistent.
<pre>URL GitHub: https://github.com/shaobo-li/hrqglas</pre>
License GPL (>= 2)
Imports Rcpp (>= 1.0.4), stats, MASS, Matrix, graphics, quantreg
LinkingTo Rcpp
RoxygenNote 7.1.1
Encoding UTF-8
NeedsCompilation yes
Author Shaobo Li [aut, cre], Ben Sherwood [aut]
Repository CRAN
Date/Publication 2023-01-30 08:30:06 UTC
R topics documented:
coef.cv.hrq_glasso

2 coef.hrq_glasso

Index	•	
	predict.hrq_glasso	
	predict.cv.hrq_glasso	
	plot.cv.hrq_glasso	
	hrq_glasso	

coef.cv.hrq_glasso

Extract coefficients from cv.hrq_glasso object

Description

Extract coefficients from cv.hrq_glasso object

Usage

```
## S3 method for class 'cv.hrq_glasso'
coef(object, s, ...)
```

Arguments

object The model object cv.hrq_glasso object.

s Value of lambda.

... other input parameters.

Value

The function extract estimated coefficients from cv.hrq_glasso object.

coef.hrq_glasso

Extract coefficients from hrq_glasso object

Description

Extract coefficients from hrq_glasso object

Usage

```
## S3 method for class 'hrq_glasso'
coef(object, s, ...)
```

Arguments

object The model object hrq_glasso object.

s Value of lambda.

... other input parameters.

cv.hrq_glasso 3

Value

The function extract estimated coefficients from hrq_glasso object.

cv.hrq_glasso

Cross-validation for quantile regression with group lasso

Description

K fold cross-validation is conducted. Four types of loss (squared error (se), absolute error (ae) quantile check loss (check) and huber loss (he)) can be specified as the CV criterion.

Usage

```
cv.hrq_glasso(
    x,
    y,
    group.index,
    tau = 0.5,
    k = 5,
    loss = "check",
    method = "quantile",
    folds = NULL,
    ...
)
```

Arguments

X	Design matrix
у	Response variable
group.index	A vector of group index, e.g., (1,1,1,2,2,2,3,3)
tau	Percentage
k	Number of folders.
loss	The loss function used for computing the cross-validation error. Supported losses include squared error (se), absolute error (ae), quantile check loss (check) and huber loss (he).
method	Choice for mean or quantile regression. Default is quantile.
folds	A vector of folder index for all observations. The procedure random splits if this argument is not specified.
	Other inputs of function hrq_glasso().

hrq_glasso

Value

The full solution path is returned. It also returns the vector of CV score as well as the optimal values in terms of min and 1se. Corresponding lambda values are also returned.

beta	The estimated coefficients for all lambdas, stored in sparse matrix format, where each column corresponds to a lambda.
lambda	The sequence of lambdas.
lambda.min	The optimal lambda that minimizes the CV error
lambda.1se	The largest lambda such that CV error is within 1 standard error of the minimum CV error.
cv.all	The vector of all values of CV error for all lambdas.
cv.min	The value of CV error corresponding to lambda.min.
cv.1se	The value of CV error corresponding to lambda.1se.
folds	The vector of indices for k folds split.
cvup	CV error + 1 standard error
cvlo	CV error + 1 standard error
n.grp	The number of selected groups for each lambda.

Examples

```
n<- 100
p<- 10
x0<- matrix(rnorm(n*p),n,p)
X<- cbind(x0, x0^2, x0^3)[,order(rep(1:p,3))]
y<- -2+X[,1]+0.5*X[,2]-X[,3]-0.5*X[,7]+X[,8]-0.2*X[,9]+rt(n,2)
group<- rep(1:p, each=3)
fitcv<- cv.hrq_glasso(x=X, y=y, group.index=group, method="quantile")
plot(fitcv)</pre>
```

hrq_glasso

Robust group variable selection for quantile and mean regression

Description

This function conducts group-wise (with known groups) variable selection for quantile and robust mean regression with the group lasso penalty. The Huber loss is used for both types of regression model, where the quantile check function is approximated by Huber loss. A full solution path is generated unless a single value of the shrinkage parameter is specified.

hrq_glasso 5

Usage

```
hrq_glasso(
  Х,
 у,
  group.index,
  tau = 0.5,
  lambda = NULL,
 weights = NULL,
 w.lambda = NULL,
  gamma = 0.2,
 max_iter = 200,
  apprx = "huber",
  lambda.discard = TRUE,
  method = "quantile",
  scalex = TRUE,
  epsilon = 1e-04,
 beta0 = NULL
)
```

Arguments

x Design matrix (in matrix format)

y Response variable

group.index A vector of group index, e.g., (1,1,1,2,2,2,3,3)

tau Percentile

lambda Shrinkage parameter, default is NULL so that the algorithm chooses a sequence.

weights Observation weights, default is NULL

w.lambda Weights for Shrinkage parameter of each group, default is NULL

gamma Huber parameter. An initial value is 0.2, while the algorithm adaptively tunes

the value in each iteration.

max_iter Maximum number of iteration

apprx Approximation method. Default is huber. The other option is tanh which uses

the hypertangent function to approximate the first order derivative of absolute

loss.

lambda.discard Default is TRUE, meaning that the solution path stops if the relative deviance

changes sufficiently small. It usually happens near the end of solution path.

However, the program returns at least 70 models along the solution path.

method Choice for mean or quantile regression. Default is quantile.

scalex Standardize design matrix. Default is TRUE.

epsilon The epsilon level convergence. Default is 1e-4.

beta0 Initial estimates. Default is NULL.

6 plot.cv.hrq_glasso

Value

It returns a sequence of estimated coefficients for quantile regression with group feature selection corresponding to a sequence of lambda. The estimated coefficients are in the sparse matrix format. Returned values also include the sequence of lambda, the null deviance, values of penalized loss, and unpenalized loss across the sequence of lambda.

beta The estimated coefficients for all lambdas, stored in sparse matrix format, where

each column corresponds to a lambda.

lambda The sequence of lambdas.

null.dev The null deviance.

pen.loss The value of penalized loss for each lambda.

loss The value of unpenalized loss for each lambda.

index.grp Group indices that correspond to the estimated coefficient matrix beta.

n.grp The number of selected groups for each lambda.

References

Sherwood, B., and Li, S. (2021) An Efficient Approach to Feature Selection and Estimation for Quantile Regression with Grouped Variables. *Working paper*.

Yang, Y., and Zou, H., (2015) A Fast Unified Algorithm for Solving Group-lasso Penalize Learning Problems, *Statistics and Computing*, 25 1129-1141. doi: 10.1007/s1122201494985.

Examples

```
n<- 100
p<- 10
x0<- matrix(rnorm(n*p),n,p)
X<- cbind(x0, x0^2, x0^3)[,order(rep(1:p,3))]
y<- -2+X[,1]+0.5*X[,2]-X[,3]-0.5*X[,7]+X[,8]-0.2*X[,9]+rt(n,2)
group<- rep(1:p, each=3)
fit<- hrq_glasso(X, y, group)
fit$beta[,8]</pre>
```

plot.cv.hrq_glasso

Generating plots for cross-validation

Description

Generating plots for cross-validation

Usage

```
## S3 method for class 'cv.hrq_glasso'
plot(x, ...)
```

predict.cv.hrq_glasso 7

Arguments

x The object of function cv.hrq_glasso.... other input parameters for the generic function plot.

Value

Cross-validation plot for the entire solution path.

```
predict.cv.hrq_glasso Prediction for cv.hrq_glasso object
```

Description

Prediction for cv.hrq_glasso object

Usage

```
## S3 method for class 'cv.hrq_glasso'
predict(object, newX, s, ...)
```

Arguments

object The model object of cv.hrq_glasso.

newX New design matrix.

s Value of lambda. If missing, the default is the lambda.min.

... other input parameters.

Value

The function returns predicted values based on the fitted model from cv.hrq_glasso.

```
predict.hrq_glasso Prediction for the hrq_glasso object
```

Description

This function provides the prediction of the hrq_glasso object.

Usage

```
## S3 method for class 'hrq_glasso'
predict(object, newX, s = NULL, ...)
```

8 predict.hrq_glasso

Arguments

object The model object of hrq_glasso.

newX New design matrix.

s Value of lambda. Default is NULL, so that the function provides prediction at

all lambdas used in hrq_glasso.

... other input parameters.

Value

The function returns predicted values based on the fitted model from hrq_glasso.

Examples

```
n<- 100
p<- 10
x0<- matrix(rnorm(n*p),n,p)
X<- cbind(x0, x0^2, x0^3)[,order(rep(1:p,3))]
y<- -2+X[,1]+0.5*X[,2]-X[,3]-0.5*X[,7]+X[,8]-0.2*X[,9]+rt(n,2)
group<- rep(1:p, each=3)
fit<- hrq_glasso(X, y, group)
pred<- predict(fit, newX=X, s=0.3)</pre>
```

Index

```
coef.cv.hrq_glasso, 2
coef.hrq_glasso, 2
cv.hrq_glasso, 3
hrq_glasso, 4
plot.cv.hrq_glasso, 6
predict.cv.hrq_glasso, 7
predict.hrq_glasso, 7
```