Exercise 1.1

```
In [ ]: import pandas as pd
```

1. Data Preparation

```
In []: # load the dataset and display the first 5 rows
df = pd.read_csv('Files_For_A2/cancer_data.csv')
df.head()
```

Out[]:		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	sr
	0	842302	М	17.99	10.38	122.80	1001.0	
	1	842517	М	20.57	17.77	132.90	1326.0	
	2	84300903	М	19.69	21.25	130.00	1203.0	
	3	84348301	М	11.42	20.38	77.58	386.1	
	4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 32 columns

We first need to check for missing values and convert non-numeric to numeric

```
In []: # display the number of missing values for each column
missing_values = df.isnull().sum()
missing_values
```

df.info()

```
Out[]: id
                                     0
         diagnosis
                                     0
                                     0
         radius_mean
                                     0
         texture_mean
         perimeter_mean
                                     0
         area_mean
                                     0
         smoothness_mean
                                     0
         compactness_mean
                                     0
         concavity_mean
         concave_points_mean
                                     0
         symmetry_mean
                                     0
         fractal_dimension_mean
                                     0
         radius se
                                     0
         texture_se
         perimeter_se
                                     0
         area_se
                                     0
                                     0
         smoothness_se
                                     0
         compactness_se
                                     0
         concavity_se
         concave_points_se
                                     0
         symmetry_se
                                     0
                                     0
         fractal_dimension_se
                                     0
         radius_worst
                                     0
         texture_worst
         perimeter worst
                                     0
                                     0
         area_worst
         smoothness_worst
                                     0
                                     0
         compactness_worst
                                     0
         concavity_worst
                                     0
         concave_points_worst
                                     0
         symmetry_worst
         fractal_dimension_worst
                                     0
         dtype: int64
In [ ]: # display key information about the dataset
```

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 32 columns):

#	Column		-Null Count	Dtype
0	id	569	non-null	int64
1	diagnosis	569	non-null	object
2	radius_mean	569	non-null	float64
3	texture_mean	569	non-null	float64
4	perimeter_mean	569	non-null	float64
5	area_mean	569	non-null	float64
6	smoothness_mean	569	non-null	float64
7	compactness_mean	569	non-null	float64
8	concavity_mean	569	non-null	float64
9	concave_points_mean	569	non-null	float64
10	symmetry_mean	569	non-null	float64
11	<pre>fractal_dimension_mean</pre>	569	non-null	float64
12	radius_se	569	non-null	float64
13	texture_se	569	non-null	float64
14	perimeter_se	569	non-null	float64
15	area_se	569	non-null	float64
16	smoothness_se	569	non-null	float64
17	compactness_se	569	non-null	float64
18	concavity_se	569	non-null	float64
19	concave_points_se	569	non-null	float64
20	symmetry_se	569	non-null	float64
21	<pre>fractal_dimension_se</pre>	569	non-null	float64
22	radius_worst	569	non-null	float64
23	texture_worst	569	non-null	float64
24	perimeter_worst	569	non-null	float64
25	area_worst	569	non-null	float64
26	smoothness_worst	569	non-null	float64
27	compactness_worst	569	non-null	float64
28	concavity_worst	569	non-null	float64
29	concave_points_worst	569	non-null	float64
30	symmetry_worst	569	non-null	float64
31	<pre>fractal_dimension_worst</pre>	569	non-null	float64
	es: float64(30), int64(1) ry usage: 142.4+ KB	, ob:	ject(1)	

We can see that there is only 1 categorical attribute, so we need to convert in to a numeric attribute and save it for later use. We will also remove the 'id' attribute as it would skew our results.

```
In [ ]: # drop the id column
        df.drop('id', axis=1, inplace=True)
In [ ]: # display the counts of the categorical data
        df['diagnosis'].value_counts()
Out[]: diagnosis
             357
             212
        Name: count, dtype: int64
```

```
In []: # convert the categorical data to numerical data
from sklearn.preprocessing import LabelEncoder

# initialize LabelEncoder
labelencoder = LabelEncoder()

# convert the categorical data to numerical data and display the first 5 row
df['diagnosis'] = labelencoder.fit_transform(df['diagnosis'])
diagnosis = df['diagnosis']
df.drop('diagnosis', axis=1, inplace=True)
df.head()
```

Out[]:		radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
	0	17.99	10.38	122.80	1001.0	0.11840	
	1	20.57	17.77	132.90	1326.0	0.08474	
	2	19.69	21.25	130.00	1203.0	0.10960	
	3	11.42	20.38	77.58	386.1	0.14250	
	4	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 30 columns

Now we have:

- B == 0
- M == 1

Now we can scale the data using the z-score method

Out[]:		radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	CC
	0	1.096100	-2.071512	1.268817	0.983510	1.567087	
	1	1.828212	-0.353322	1.684473	1.907030	-0.826235	
	2	1.578499	0.455786	1.565126	1.557513	0.941382	
	3	-0.768233	0.253509	-0.592166	-0.763792	3.280667	
	4	1.748758	-1.150804	1.775011	1.824624	0.280125	
	•••						
	564	2.109139	0.720838	2.058974	2.341795	1.040926	
	565	1.703356	2.083301	1.614511	1.722326	0.102368	
	566	0.701667	2.043775	0.672084	0.577445	-0.839745	
	567	1.836725	2.334403	1.980781	1.733693	1.524426	
	568	-1.806811	1.220718	-1.812793	-1.346604	-3.109349	

569 rows × 30 columns

We can see that the data is normalized by checking if the mean and standard deviation are 0, and 1 respectively

```
In []: normalized_df.std().mean(), round(normalized_df.mean().mean())
Out[]: (1.0, 0)
```

2. PCA Application

Here we will use the sklearn PCA class to perform the PCA

```
In []: from sklearn.decomposition import PCA
    num_components = 10
    pca = PCA(n_components=num_components)
    pca.fit(normalized_df)

principalComponents = pca.fit_transform(normalized_df)
    pca_df = pd.DataFrame(data=principalComponents, columns=[f"PC{i+1}" for i ir
    pca_df
```

Out[]:		PC1	PC2	PC3	PC4	PC5	PC6	PC7
	0	9.184755	1.946870	-1.122179	3.630536	-1.194059	1.410184	2.157471 -
	1	2.385703	-3.764859	-0.528827	1.117281	0.621228	0.028631	0.013347
	2	5.728855	-1.074229	-0.551263	0.911281	-0.176930	0.540976	-0.667580
	3	7.116691	10.266556	-3.229948	0.152413	-2.958275	3.050738	1.428653
	4	3.931842	-1.946359	1.388545	2.938054	0.546267	-1.225416	-0.935389
	•••							
	564	6.433655	-3.573673	2.457324	1.176279	-0.074759	-2.373105	-0.595606
	565	3.790048	-3.580897	2.086640	-2.503825	-0.510274	-0.246493	-0.715697
	566	1.255075	-1.900624	0.562236	-2.087390	1.808400	-0.533977	-0.192589
	567	10.365673	1.670540	-1.875379	-2.353960	-0.033712	0.567437	0.222885 -
	568	-5.470430	-0.670047	1.489133	-2.297136	-0.184541	1.616415	1.697457

569 rows × 10 columns

3. Variance Analysis

```
In []: import matplotlib.pyplot as plt
import numpy as np

explained_variance = pca.explained_variance_ratio_

cumulative_explained_variance = np.cumsum(explained_variance)

# plot the explained variance and the cumulative explained variance
plt.figure(figsize=(10, 6))
plt.title('Explained Variance by Different Principal Components')
plt.plot(range(len(explained_variance) + 1), [0] + list(cumulative_explained
plt.bar(range(len(explained_variance)), explained_variance, alpha=0.5, align
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.tight_layout()
plt.show()
```


4. Visualization

```
In [ ]: pca_df['diagnosis'] = diagnosis
        # separate the data into two categories
        category_M = pca_df[pca_df['diagnosis'] == 1]
        category_B = pca_df[pca_df['diagnosis'] == 0]
        # plot the first two principal components
        plt.figure(figsize=(10, 6))
        plt.scatter(category_M['PC1'], category_M['PC2'], c='red', label='M', marker
        plt.scatter(category_B['PC1'], category_B['PC2'], c='blue', label='B', marke
        # add title and labels
        plt.title('Scatter Plot of First Two Principal Components')
        plt.xlabel('PC1')
        plt.ylabel('PC2')
        # add legend
        plt.legend(title='Diagnosis')
        # display the plot
        plt.show()
```



```
In []: # create a 3D scatter subplot
    fig = plt.figure(figsize=(10, 6))
    ax = fig.add_subplot(111, projection='3d')

# plot the first three principal components
    ax.scatter(category_M['PC1'], category_M['PC2'], category_M['PC3'], c='red',
    ax.scatter(category_B['PC1'], category_B['PC2'], category_B['PC3'], c='blue'

# add title and labels
    ax.set_xlabel('PC1')
    ax.set_ylabel('PC2')
    ax.set_zlabel('PC3')

ax.set_title('Scatter Plot of First Three Principal Components')

ax.legend()
plt.show()
```

Scatter Plot of First Three Principal Components

5. Interpretation

Based on the visualizations, it does appear that a predictive model could be developed to distinguish between malignant and benign tumors with a resonable degree of accuracy.

The 3D scatter plot shows a clear distintion between malignent and benign tumors, this suggests that the principle components have captured significant features which differenciate the 2 types of tumors. We can also observe that both tumors form distinct clusters, which indicates that there is a pattern a predictive model could learn from.

Overall, since there is a clear distinction in the data and we are using PCA which implies these components retain most of the variance in the dataset, we can say that a predictive model should perform well.

Exercise 1.2

1. Model Construction:

```
In []: import pandas as pd

df = pd.read_csv('Files_For_A2/cancer_data.csv')
    df.head()
```

Out[]:		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	sr
	0	842302	М	17.99	10.38	122.80	1001.0	
	1	842517	М	20.57	17.77	132.90	1326.0	
	2	84300903	М	19.69	21.25	130.00	1203.0	
	3	84348301	М	11.42	20.38	77.58	386.1	
	4	84358402	М	20.29	14.34	135.10	1297.0	

5 rows × 32 columns

```
In []: df.drop('id', axis=1, inplace=True)
In []: # convert the categorical data to numerical data
    from sklearn.preprocessing import LabelEncoder
    # initialize LabelEncoder
    labelencoder = LabelEncoder()

# convert the categorical data to numerical data and display the first 5 row
    df['diagnosis'] = labelencoder.fit_transform(df['diagnosis'])
    df
```

Out[]:		diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
	0	1	17.99	10.38	122.80	1001.0	
	1	1	20.57	17.77	132.90	1326.0	
	2	1	19.69	21.25	130.00	1203.0	
	3	1	11.42	20.38	77.58	386.1	
	4	1	20.29	14.34	135.10	1297.0	
	•••		•••	•••		•••	
	564	1	21.56	22.39	142.00	1479.0	
	565	1	20.13	28.25	131.20	1261.0	
	566	1	16.60	28.08	108.30	858.1	(
	567	1	20.60	29.33	140.10	1265.0	
	568	0	7.76	24.54	47.92	181.0	

569 rows × 31 columns

```
DecisionTreeClassifier □ □ □
DecisionTreeClassifier()
```

Out[]:

	importance	cumsum
radius_worst	0.695594	0.695594
concave_points_worst	0.138938	0.834532
texture_worst	0.095005	0.929537
concave_points_mean	0.014410	0.943947
radius_se	0.012955	0.956901
area_worst	0.011086	0.967987
concavity_worst	0.008727	0.976715
smoothness_worst	0.007388	0.984103
smoothness_mean	0.007017	0.991120
symmetry_worst	0.005831	0.996951

```
In [ ]: import matplotlib.pyplot as plt
        # Create a figure and axis objects
        fig, ax1 = plt.subplots()
        # Plot the bar chart on the first y-axis
        ax1.bar(feature_importances.index[:10], feature_importances['importance'][:1
        # Set the x-axis label
        ax1.set_xlabel('Features')
        # Set the first y-axis label
        ax1.set_ylabel('Importance')
        # Set the title
        ax1.set_title('Top 10 Feature Importances')
        ax1.set_xticklabels(feature_importances.index[:10], rotation=60)
        # Create a second y-axis
        ax2 = ax1.twinx()
        # Plot the line graph on the second y-axis
        ax2.plot(feature_importances.index[:10], feature_importances['cumsum'][:10],
        # Set the second y-axis label
        ax2.set_ylabel('Cumulative Importance')
        # Set the limits of the second y-axis based on the minimum and maximum value
        ax2.set_ylim(feature_importances['cumsum'][:10].min(), feature_importances['
        # Add a legend
        ax1.legend(loc='upper left')
        ax2.legend(loc='upper center')
```

```
# Show the plot
plt.show()
```

/var/folders/2v/mcgfxq4d2_n2639c1xhyd92w0000gn/T/ipykernel_35793/1564416163. py:18: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ticks() or using a FixedLocator.

ax1.set_xticklabels(feature_importances.index[:10], rotation=60)

4. Analysis

From the Top 10 Feature Importances graph it is clear that the radius_worst feature has the most significant influence of the models predictions. After that, the importance scores decrease significantly, with concave_points_worst and texture_worst being the next 2 most important features. The cumulative importance curve shows us that adding more features beyond the top 1 - 3 will provide diminishing returns in terms of the models performance.

To develop more accurate models using these insights, we can focus on the most important features and ensure they are accurate and well-preprocessed because errors

in these feautures will have a greater impact on model performance. Also, since there is a steep dropoff in feature importance we can use dimensionality reduction techniques such as PCA without losing significant reliability.

Overall, it is clear that the insights from the Feature Importance graph suggest that there is a significant drop in the influence of features beyond 1-3. This would have a significant impact on the development of more accurate predictive models because we can allocate resources and focus on optimizing the most predictive features.

Assignment 2

Brady Mitchelmore - 202112249

Question 2.1:

min_sup = 0.60 min_conf = 0.80

TID	items_purchased
T1	{A, B, C, D, E, F}
T2	{G, B, C, D, E, F}
Т3	{A, H, D, E}
T4	{A, I, J, D, F}
T5	{J, B, B, D, K, E}

Exercise 2.1.1:

Apriori:

Itemset

{J}

First we scan the table for count of each candidate

{A} 0.60 {B} 4 0.80 {C} 2 0.40 {D} 5 1.00 {E} 4 0.80 {F} 3 0.60 1 {G} 0.20 {H} 1 0.20 {|} 1 0.20

2

Support Count

Support

0.40

Next compare relative candidate support with the minimum support of 0.60. Here only 5 candidates in the first table satisfy the minimum support

Itemset	Support Count	Support
{A}	3	0.60
{B}	4	0.80
{D}	5	1.00
{E}	4	0.80
{F}	3	0.60
{F}	3	0.60

Assignment 2

Itemset	Support Count	Support
{K}	1	0.20

Next we generate frequent 2-itemsets from the table above

Next we compare relative candidate support with the minimum support of 0.60. Here only 5 candidates in the table above satisfy the minimum support

Itemset	Support Count	Support
{A, B}	1	0.20
{A, D}	3	0.60
{A, E}	1	0.20
{A, F}	2	0.40
{B, D}	3	0.60
{B, E}	3	0.60
{B, F}	2	0.40
{D, E}	4	0.80
{D, F}	3	0.60
{E, F}	2	0.40

Itemset	Support Count	Support
{A, D}	3	0.60
{B, D}	3	0.60
{B, E}	3	0.60
{D, E}	4	0.80
{D, F}	3	0.60

Next we generate frequent 3-itemsets from the table above.

Next we compare relative candidate support with the minimum support of 0.60. Here only 1 candidate in the table above satisfy the minimum support

Itemset	Support Count	Support
{B, D, E}	3	0.60
{D, E, F}	2	0.40

Itemset	Support Count	Support
{B, D, E}	3	0.60

No frequent 4-itemsets can be generated so we stop here with a frequent itemset of **{B, D, E}** which has a support count of 6

FPGrowth:

First we scan the table for count of each candidate sorted in descending order

Itemset	Support Count	Support
{D}	5	1.00
{B}	4	0.80
{E}	4	0.80
{A}	3	0.60
{F}	3	0.60

Assignment 2

Itemset	Support Count	Support
{C}	2	0.40
{J}	2	0.40
{G}	1	0.20
{H}	1	0.20
{1}	1	0.20
{K}	1	0.20

Then we construct the node links between the itemsets and nodes

Mining the FP-tree by creating conditional pattern bases

Item	Conditional Pattern Base	Conditional FP- tree	Frequent Patterns Generated
{K}	{{D, B, E, J: 1}}	{}	{}
{ }	{{D, A, F, J: 1}}	{}	{}
{H}	{{D, E, A: 1}}	{}	{}
{G}	{{D, B, E, F, C: 1}}	{}	{}
{J}	{{D, B, E: 1}, {D, A, F: 1}}	{}	{}
{C}	{{D, B, E, A, F: 1}, {D, B, E, F: 1}}	{}	{}
{F}	{{D, B, E, A: 1}, {D, B, E: 1}, {D, A: 1}}	{D: 3}	{D, F: 3}
{A}	{{D, B, E: 1}, {D, E: 1}, {D: 1}}	{D: 3}	{D, A: 3}
{E}	{{D, B: 3}, {D: 1}}	{D: 4}	{D, E: 4}
{B}	{{D: 4}}	{D: 4}	{D, B: 4}
{D}	{{}}	{}	{}

Exercise 2.1.2:

From Exercise 2.1.1 we have the following frequent 3-itemset.

Itemset	Support Count	Support
{B, D, E}	3	0.60

With $\{B, D\} = 3$, and $\{B, D, E\} = 3$, we can calculate the confidence.

$$confidence = \{\,B,D,E\,\}/\{\,B,D\,\} = 3/3 = 1.00$$

Itemset	Support Count	Support	Confidence
{B, D, E}	3	0.60	1.00

This is the only strong association rule with support 0.60 and confidence 0.80 which matches the metarule {B, D} \rightarrow {E}.

Assignment 2

Frequent Itemset and Association Rules Mining using Apriori Algorithm

In this part, you will build a system which can help make recommendations using the Apriori algorithm.

To solve this assignment you will need to go though these pages:

- https://rasbt.github.io/mlxtend/user_guide/preprocessing/TransactionEncoder/
- https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/
- https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/
- https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/fpgrowth/

The apply function in pandas can prove very useful for this assignment. See https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html

Source: Online Retail. (2015). UCI Machine Learning Repository. https://doi.org/10.24432/C5BW33.

```
In []: import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
```

Load and Inspect Data

```
In []: invoices = pd.read_csv('apriori_data.csv')
    invoices.head()
```

2/28/24, 6:57 PM ex_2.2

Out[]:	InvoiceNo		StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0
	1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0

Data Transformation

Drop everything except InvoiceNo and StockCode since we can use InvoiceNo for transaction id and StockCode for item name

```
In [ ]: data = invoices[['InvoiceNo', 'StockCode']]
        data.head()
In [ ]:
Out[]:
           InvoiceNo StockCode
        0
             536365
                         85123A
         1
             536365
                          71053
         2
             536365
                        84406B
         3
             536365
                        84029G
        4
             536365
                         84029E
```

Group the data by InvoiceNo and create a list of StockCode for each invoice

```
In [ ]: transactions = data.groupby(['InvoiceNo'])['StockCode'].apply(list).values.t
```

```
transactions[0:4]
Out[]: [['85123A', '71053', '84406B', '84029G', '84029E', '22752', '21730'],
          ['22633', '22632'],
          ['84879',
           '22745',
           '22748',
           '22749'.
           '22310'
           '84969',
           '22623',
           '22622',
           '21754',
           '21755'.
           '21777',
           '48187'],
          ['22960', '22913', '22912', '22914']]
```

Using TransactionEncoder, convert the transactions into a dataset where each row represents a transaction and each column represents an item. The values will be True or False depending on whether the item is present in that specific transaction.

In []:	te.	<pre>te = TransactionEncoder() te_ary = te.fit(transactions).transform(transactions) transactions_df = pd.DataFrame(te_ary, columns=te.columns_)</pre>										
In []:	tra	transactions_df.head()										
Out[]:		10002	10080	10120	10123C	10123G	10124A	10124G	10125	10133	10134	
	0	False	False	False	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	False	False	False	

5 rows × 4070 columns

Use Apriori to get the frequent itemsets and inspect the results

Use apriori to find the frequent_itemsets for min_sup = 1%

```
In [ ]: frequent_itemsets = apriori(transactions_df, min_support=0.01, use_colnames
In [ ]: frequent_itemsets.shape
```

2/28/24, 6:57 PM ex_2.2

```
Out[]: (1087, 2)
In [ ]: frequent itemsets head()
```

TU	L]:	rrequent_itemsets.nead(

Out[]:		support	itemsets
		0	0.020193	(15036)
		1	0.012587	(15056BL)
		2	0.017876	(15056N)
		3	0.011236	(16237)
		4	0.012510	(20675)

Add an additional column called items_count to the dataframe which represents the number of items in the itemset.

```
In []:
        frequent_itemsets['items_count'] = frequent_itemsets['itemsets'].apply(lambo
        frequent_itemsets.head()
Out[]:
            support
                      itemsets items_count
         0 0.020193
                                         1
                       (15036)
         1 0.012587
                     (15056BL)
         2 0.017876
                      (15056N)
         3 0.011236
                       (16237)
         4 0.012510
                       (20675)
                                         1
```

Display the various itemsets generated sorted (descending) by the items_count.

```
frequent_itemsets.sort_values(by='items_count', ascending=False).head()
```

Out[]:		support	itemsets	items_count
	1086	0.011699	(22423, 22699, 22697, 22698)	4
	1085	0.010386	(21931, 22386, 85099B, 22411)	4
	1084	0.010077	(20719, 22355, 20723, 20724)	4
	1032	0.012548	(20725, 22384, 20728)	3
	1024	0.011042	(20725, 22384, 20726)	3

Show how many itemsets exist by items_count

```
frequent_itemsets.groupby('items_count')['itemsets'].count()
In []:
```

Generate association rules

Generate all association rules using the lift metric with a minimum value of 2

```
In []:
         rules = association_rules(frequent_itemsets, metric="lift", min_threshold=2)
In []:
         rules.shape
Out[]:
         (1338, 10)
         rules.head()
In []:
Out[]:
                                       antecedent consequent
            antecedents consequents
                                                                 support confidence
                                          support
                                                       support
         0
                 (20711)
                               (20712)
                                          0.020541
                                                      0.033668
                                                                 0.011158
                                                                            0.543233
                                                                                       16.1350
         1
                 (20712)
                               (20711)
                                         0.033668
                                                      0.020541
                                                                 0.011158
                                                                             0.331422
                                                                                       16.135C
         2
                 (21931)
                               (20711)
                                          0.046371
                                                      0.020541
                                                                 0.011506
                                                                             0.248127
                                                                                      12.0798
         3
                 (20711)
                               (21931)
                                          0.020541
                                                      0.046371
                                                                 0.011506
                                                                            0.560150
                                                                                      12.0798
         4
                 (20711)
                              (22386)
                                          0.020541
                                                      0.047529
                                                                0.010888
                                                                            0.530075
                                                                                       11.1526
        invoices.head()
```

2/28/24, 6:57 PM ex_2.2

Out[]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0
	1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0

Add the names of the items back in the data frame as save all rules in a csy file

```
In []:
         rules['consequents_description'] = rules['consequents'].apply(lambda x: [inv
         rules['antecedents_description'] = rules['antecedents'].apply(lambda x: [inv
In []:
         rules.head()
Out[]:
                                       antecedent consequent
            antecedents consequents
                                                                 support confidence
                                          support
                                                       support
         0
                 (20711)
                               (20712)
                                         0.020541
                                                      0.033668
                                                                 0.011158
                                                                            0.543233
                                                                                       16.135C
         1
                 (20712)
                               (20711)
                                         0.033668
                                                      0.020541
                                                                            0.331422
                                                                 0.011158
                                                                                       16.1350
         2
                 (21931)
                               (20711)
                                         0.046371
                                                      0.020541
                                                                0.011506
                                                                            0.248127 12.0798
         3
                 (20711)
                               (21931)
                                         0.020541
                                                      0.046371
                                                                0.011506
                                                                            0.560150
                                                                                      12.0798
         4
                 (20711)
                              (22386)
                                         0.020541
                                                      0.047529
                                                                0.010888
                                                                            0.530075
                                                                                       11.1526
In []:
         rules.shape
```

```
Out[]: (1338, 12)
In []: # I used the following line to create the rules_100.csv file which only give
# rules.sample(100).to_csv('rules_100.csv', index=False)

# You must submit the rules.csv file that contains all the 1338 rules by run
rules.to_csv('rules.csv', index=False)
In []:
```