

طراحی کامپیوتری سیستم های دیجیتال استاد درس: دکتر محسن راجی پروژه پایانی

توابع مثلثاتی نقش به سزایی در پردازش سیگنال های دیجیتال دارند و روش های متنوعی برای محاسبه آن ها ارائه شده مثل بسط تیلور و میانگین گیری استفاده از این روش ها احتیاج به ضرب کننده ها دارد و سطح زیادی از سخت افزار را اشخال می کند و به لحاظ علمی فاقد ارزش پیاده سازی هست یکی از بهترین روش های پیاده سازی این توابع در FPGA، الگوریتم CORDICاست که به سادگی قابل پیاده سازی روی FPGA ست و تعداد گیت های منطقی مورد استفاده را نسبت به روش هایی مانند بسط تیلور به شدت کاهش می دهد.

هدف از این پروژه پیاده سازی حالت circular-rotation mode این الگوریتم هست. ورودی و خروجی را طبق استاندارد $Q_{m.n}$ در نظر بگیرید سپس با استفاده از یک شبیه ساز (هر زبان برنامه نویسی ترجیحا متلب) تعداد iteration های مورد نظر را پیدا کنید . بعد از مشخص شدن تعداد verilog بیاده سیازی کنید . به بیاده سیازی کنید . پیاده سیازی کنید .

Alternative Forms of the CORDIC Algorithm

· Alternative modes of the CORDIC algorithm include:

Туре	m	w_k	$d_n = \text{sign} z_n$ (Rotation Mode)	$d_n = -\operatorname{sign} y_n$ (Vectoring Mode)
circular	1	arctan 2 ^{-k}	$x_n \to K (x_0 \cos z_0 - y_0 \sin z_0)$ $y_n \to K (y_0 \cos z_0 + x_0 \sin z_0)$ $z_n \to 0$	$x_n \rightarrow K \sqrt{x_0^2 + y_0^2}$ $y_n \rightarrow 0$ $z_n \rightarrow z_0 + \arctan \frac{y_0}{x_0}$
linear	0	2^{-k}	$x_n \rightarrow x_0$ $y_n \rightarrow y_0 + x_0 z_0$ $z_n \rightarrow 0$	$x_n \rightarrow x_0$ $y_n \rightarrow 0$ $z_n \rightarrow z_0 + \frac{y_0}{x_0}$
hyperbolic	-1	$\tanh^{-1}2^{-k}$	$x_n \to K'(x_1 \cosh z_1 + y_1 \sinh z_1)$ $y_n \to K'(y_1 \cosh z_1 + x_1 \sinh z_1)$ $z_n \to 0$	$x_n \rightarrow K' \sqrt{x_1^2 - y_1^2}$ $y_n \rightarrow 0$ $z_n \rightarrow z_1 + \tanh^{-1} \frac{y_1}{x_1}$

$$\begin{cases} x_{n+1} = x_n - m d_n y_n 2^{-\sigma(n)} \\ y_{n+1} = y_n + d_n x_n 2^{-\sigma(n)} \\ z_{n+1} = z_n - d_n w_{\sigma(n)}, \end{cases}$$

Circular $(m = 1)$	$\sigma(n) = n$	
Linear $(m = 0)$	$\sigma(n) = n$	
Hyperbolic ($m = -1$)	$\sigma(n) = n - k$ where k is the largest integer such that $3^{k+1} + 2k - 1 \le 2n$	

Note: The implementation of CORDIC on FPGA requires attention in word length selection and number representation

مواردی که باید ارسال شوند:

- کد شبیه سازی برای یافتن تعداد iteration ها
 - کد وریلاگ و تست پیاده سازی
- گزارش پروژه شامل توضیحات شبیه سازی و پیاده سازی