Fundamentele limbajelor de programare

C02

Denisa Diaconescu Traian Serbănută

Departamentul de Informatică, FMI, UB

Lambda calcul - elemente de bază

Lambda calcul

- Un model de calculabilitate
- Limbajele de programare funcțională sunt extensii ale sale
- Un limbaj formal
- Expresiile din acest limbaj se numesc lambda termeni
- Vom defini reguli pentru a îi manipula

Lambda termeni

Fie V o mulțime infinită de variabile, notate x, y, z, \ldots

Multimea lambda termenilor este dată de următoarea formă BNF:

```
lambda termen = variabilă | aplicare | abstractizare | M, N := x \mid (MN) \mid (\lambda x.M)
```

Example

- X, y, z
- (x y), (y x), (x (yx))
- $(\lambda x.x), \lambda x.(xy), \lambda z.(xy)$

- $((\lambda x.x) y), ((\lambda x.(x z)) y)$
- $(\lambda f.(\lambda x.(f(fx))))$
- (λx.x) (λx.x)

Funcții anonime în Haskell

```
lambda termen = variabilă | aplicare | abstractizare | M, N := x \mid (MN) \mid (\lambda x.M)
```

În Haskell, \ e folosit în locul simbolului λ și -> în locul punctului:

$$\lambda x.x * x \text{ este } \x -> x * x$$

 $\lambda x.x > 0 \text{ este } \x -> x > 0$

Lambda termeni - definiție alternativă

Fie V o mulțime infinită de variabile, notate x, y, z, \ldots

Fie A un alfabet format din elementele din V, și simbolurile speciale "(", ")", " λ " si "."

Fie A* multimea tuturor cuvintelor finite pentru alfabetul A.

Mulțimea lambda termenilor este cea mai mică submulțime $\Lambda \subseteq A^*$ astfel încât:

[Variabilă] V ⊆ Λ

[Aplicare] dacă $M, N \in \Lambda$ atunci $(M N) \in \Lambda$

[Abstractizare] dacă $x \in V$ și $M \in \Lambda$ atunci $(\lambda x.M) \in \Lambda$

Convenții

- Se elimină parantezele exterioare
- Aplicarea este asociativă la stânga
 - MNP înseamnă (MN) P
 - $f \times y \times z$ înseamnă $((f \times x) \times y) \times z$
- Corpul abstractizării (partea de după punct) se extinde la dreapta cât se poate
 - $\lambda x.MN$ înseamnă $\lambda x.(MN)$, nu $(\lambda x.M)N$
- Mai mulți
 λ pot fi comprimați
 - λxyz.M este o abreviere pentru λx.λy.λz.M

Aceste convenții nu afectează definiția lambda termenilor.

Exercițiu. Scrieți termenii de mai jos cu cât mai puține paranteze și folosind convențiile de mai sus, fără a schimba sensul termenilor:

- 1. $(\lambda x.(\lambda y.(\lambda z.((xz)(yz)))))$
- 2. (((ab)(cd))((ef)(gh)))

- 1. *xxxx*
- 2. $\lambda x.x \lambda y.y$

Exercițiu. Scrieți termenii de mai jos cu cât mai puține paranteze și folosind convențiile de mai sus, fără a schimba sensul termenilor:

- 1. $(\lambda x.(\lambda y.(\lambda z.((xz)(yz)))))$ Corect: $\lambda xyz.xz(yz)$
- 2. (((ab)(cd))((ef)(gh)))

- 1. *xxxx*
- 2. $\lambda x.x \lambda y.y$

Exercițiu. Scrieți termenii de mai jos cu cât mai puține paranteze și folosind convențiile de mai sus, fără a schimba sensul termenilor:

- 1. $(\lambda x.(\lambda y.(\lambda z.((xz)(yz)))))$ Corect: $\lambda xyz.xz(yz)$
- 2. (((ab)(cd))((ef)(gh))) Corect: ab(cd)(ef(gh))

- 1. *xxxx*
- 2. $\lambda x.x \lambda y.y$

Exercițiu. Scrieți termenii de mai jos cu cât mai puține paranteze și folosind convențiile de mai sus, fără a schimba sensul termenilor:

- 1. $(\lambda x.(\lambda y.(\lambda z.((x z)(y z)))))$ Corect: $\lambda xyz.x z (y z)$
- 2. (((ab)(cd))((ef)(gh))) Corect: ab(cd)(ef(gh))

- 2. $\lambda x.x \lambda y.y$

Exercițiu. Scrieți termenii de mai jos cu cât mai puține paranteze și folosind convențiile de mai sus, fără a schimba sensul termenilor:

- 1. $(\lambda x.(\lambda y.(\lambda z.((x z)(y z)))))$ Corect: $\lambda xyz.x z (y z)$
- 2. (((ab)(cd))((ef)(gh))) Corect: ab(cd)(ef(gh))

- 2. $\lambda x.x \lambda y.y$ Corect: $(\lambda x.(x(\lambda y.y)))$

Variabile libere și variabile legate

- λ_._ se numește operator de legare (binder)
- x din λx._ se numește variabilă de legare (binding)
- N din λx.N se numește domeniul (scope) de legare a lui x
- toate aparițiile lui x în N sunt legate
- O apariție care nu este legată se numește liberă.
- Un termen fără variable libere se numește închis (closed).
- Un termen închis se mai numește și combinator.

De exemplu, în termenul

$$M \equiv (\lambda x.xy)(\lambda y.yz)$$

- x este legată
- z este liberă
- y are și o apariție legată, și una liberă
- mulțimea variabilelor libere ale lui M este {y, z}

Variabile libere

Mulțimea variabilelor libere dintr-un termen M este notată FV(M) și este definită formal prin:

$$FV(x) = \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

Exemplu de definiție recursivă pe termeni. Adică în definiția lui FV(M) am presupus că am definit deja FV(N) pentru toți subtermenii lui M.

Example

- $FV(\lambda x. x y) = FV(x y) \setminus \{x\} = (FV(x) \cup FV(y)) \setminus \{x\}$ = $(\{x\} \cup \{y\}) \setminus \{x\} = \{y\}$
- $FV(x \lambda x. x y) = \{x, y\}$

Redenumire de variabile

Ce înseamnă să redenumim o variabilă într-un termen?

Dacă x, y sunt variabile și M este un termen, $M\langle y/x\rangle$ este rezultatul obținut după redenumirea lui x cu y în M.

$$x\langle y/x\rangle \equiv y,$$
 $z\langle y/x\rangle \equiv z,$ dacă $x \neq z$
 $(MN)\langle y/x\rangle \equiv (M\langle y/x\rangle)(N\langle y/x\rangle)$
 $(\lambda x.M)\langle y/x\rangle \equiv \lambda y.(M\langle y/x\rangle)$
 $(\lambda z.M)\langle y/x\rangle \equiv \lambda z.(M\langle y/x\rangle),$ dacă $x \neq z$

Observați că acest tip de redenumire înlocuiește toate aparițiile lui x cu y, indiferent dacă este liberă, legată, sau de legare.

Se folosește doar în cazuri în care y nu apare deja în M.

α -echivalență

Ce înseamnă că doi termeni sunt egali, modulo redenumire de variabile legate?

Definim α -echivalența ca fiind cea mai mică relație de congruență $=_{\alpha}$ pe mulțimea lambda termenilor, astfel încât pentru orice termen M și orice variabilă y care nu apare în M, avem

$$\lambda x.M =_{\alpha} \lambda y.(M\langle y/x\rangle)$$

α -echivalență

lpha-echivalența $=_{lpha}$ este cea mai mică relație pe lambda termeni care satisface regulile:

$$\begin{array}{lll} \textit{(reft)} & \overline{M} = M & \textit{(cong)} & \underline{M} = M' & N = N' \\ \hline \textit{(symm)} & \underline{M} = N & \\ \hline \textit{(xymm)} & N = M & \\ \hline \textit{(trans)} & \underline{M} = N & N = P \\ \hline \textit{(M)} & \underline{N} = N & \underline{N} = P & \\ \hline \textit{(A)} & \underline{M} = M' & \underline{N} = M' \\ \hline \textit{(A)} & \underline{M} = M' & \underline{N} = M' \\ \hline \textit{(A)} & \underline{M} = M' & \underline{N} = M' \\ \hline \textit{(A)} & \underline{M} = M' & \underline{N} = M' \\ \hline \textit{(A)} & \underline{M} = M' & \underline{M} = M' & \underline{M} \\ \hline \textit{(A)} & \underline{M} = M' & \underline{M} = M' & \underline{M} \\ \hline \textit{(A)} & \underline{M} = M' & \underline{M} = M' & \underline{M} \\ \hline \textit{(A)} & \underline{M} = M' & \underline{M} = M' & \underline{M} \\ \hline \textit{(A)} & \underline{M} = M' & \underline{M} = M' & \underline{M} \\ \hline \textit{(A)} & \underline{M} = M' & \underline{M} = M' & \underline{M} \\ \hline \textit{(A)} & \underline{M} = M' & \underline{M}$$

Conventia Barendregt:

variabilele legate sunt redenumite pentru a fi distincte.

Substituții

Vrem să substituim variabile cu lambda termeni.

M[N/x] este rezultatul obținut după înlocuirea lui x cu N în M.

Trebuie să fim atenti la următoarele cazuri:

1. Vrem să înlocuim doar variabile libere.

Numele variabilelor legate este considerat imaterial, și nu ar trebui să afecteze rezultatul substituției.

De exemplu, $x(\lambda xy.x)[N/x]$ ar trebui să fie $N(\lambda xy.x)$, nu $N(\lambda xy.N)$ sau $N(\lambda Ny.N)$.

Substituții

2. Nu vrem să legăm variabile libere neintenționat.

De exemplu, fie $M \equiv \lambda x.y x$ și $N \equiv \lambda z.x z$.

Variabila x este legată în M și liberă în N.

Ce ar trebui să obținem dacă am substitui y cu N în M? Naiv, ne-am gândi la

$$M[N/y] = (\lambda x.y x)[N/y] = \lambda x.N x = \lambda x.(\lambda z.x z) x.$$

Totuși, nu este ceea ce am vrea să obținem, deoarece x este liber în N, iar în timpul "substituției" a devenit legată.

Trebuie să luăm în calcul că x-ul legat din M nu este x-ul liber din N, și de aceea redenumim variabilele legate înainte de substituție.

$$M[N/y] = (\lambda x'.y x')[N/y] = \lambda x'.N x' = \lambda x'.(\lambda z.x z) x'.$$

Substituții

Substituția aparițiilor libere ale lui x cu N în M, notată cu M[N/x], este definită prin:

```
 \begin{split} x[N/x] &\equiv N \\ y[N/x] &\equiv y & \text{dacă } x \neq y \\ (MP)[N/x] &\equiv (M[N/x]) \left(P[N/x]\right) \\ (\lambda x.M)[N/x] &\equiv \lambda x.M \\ (\lambda y.M)[N/x] &\equiv \lambda y.(M[N/x]) & \text{dacă } x \neq y \text{ și } y \notin FV(N) \\ (\lambda y.M)[N/x] &\equiv \lambda y'.(M\langle y'/y\rangle[N/x]) & \text{dacă } x \neq y, y \in FV(N) \\ &\text{si } y' \text{ variabilă nouă} \end{split}
```

Deaorece nu specificăm ce variabilă nouă alegem, spunem că substituția este bine-definită modulo α -echivalențe.

Exercițiu. Calculați următoarele substituții:

- 1. $(\lambda z.x)[y/x]$
- 2. $(\lambda y.x)[y/x]$
- 3. $(\lambda y.x)[(\lambda z.z w)/x]$

Exercițiu. Calculați următoarele substituții:

- 1. $(\lambda z.x)[y/x]$
- 2. $(\lambda y.x)[y/x]$
- 3. $(\lambda y.x)[(\lambda z.z w)/x]$

Corect: $\lambda z.y$

Exercițiu. Calculați următoarele substituții:

1.
$$(\lambda z.x)[y/x]$$
 Corect: $\lambda z.y$

2.
$$(\lambda y.x)[y/x]$$
 Corect: $\lambda y'.y$, Greșit: $\lambda y.y$

3. $(\lambda y.x)[(\lambda z.z w)/x]$

Exercițiu. Calculați următoarele substituții:

1.
$$(\lambda z.x)[y/x]$$
 Corect: $\lambda z.y$

2.
$$(\lambda y.x)[y/x]$$
 Corect: $\lambda y'.y$, Greşit: $\lambda y.y$

3.
$$(\lambda y.x)[(\lambda z.z w)/x]$$
 Corect: $\lambda yz.zw$

Quiz time!

https://tinyurl.com/C02-Quiz

β -reducții

Convenție. Spunem că doi termeni sunt egali, notat M = N, dacă sunt α -echivalenți.

- β-reducție = procesul de a evalua lambda termeni prin "pasarea de argumente funcțiilor"
- β -redex = un termen de forma ($\lambda x.M$) N
- redusul unui redex $(\lambda x.M)$ N este M[N/x]
- reducem lambda termeni prin găsirea unui subtermen care este redex, și apoi înlocuirea acelui redex cu redusul său
- repetăm acest proces de câte ori putem, până nu mai sunt redex-uri
- formă normală = un lambda termen fără redex-uri

β -reducții

Un pas de β -reducție \rightarrow_{β} este cea mai mică relație pe lambda termeni care satisface regulile:

$$(\beta) \qquad \overline{(\lambda x.M)N \rightarrow_{\beta} M[N/x]}$$

$$(cong_1) \qquad \frac{M \rightarrow_{\beta} M'}{MN \rightarrow_{\beta} M'N}$$

$$(cong_2) \qquad \frac{N \rightarrow_{\beta} N'}{MN \rightarrow_{\beta} MN'}$$

$$(\xi) \qquad \frac{M \rightarrow_{\beta} M'}{\lambda x.M \rightarrow_{\beta} \lambda x.M'}$$

β -reducții

La fiecare pas, subliniem redexul ales în procesul de β -reducție.

$$(\lambda x.y) ((\underline{\lambda z.zz}) (\lambda w.w)) \longrightarrow_{\beta} (\lambda x.y) ((zz)[\lambda w.w/z])$$

$$\equiv (\lambda x.y) ((z[\lambda w.w/z]) (z[\lambda w.w/z])$$

$$\equiv (\lambda x.y) ((\underline{\lambda w.w}) (\lambda w.w))$$

$$\longrightarrow_{\beta} (\underline{\lambda x.y}) (\underline{\lambda w.w})$$

$$\longrightarrow_{\beta} y$$

Ultimul termen nu mai are redex-uri, deci este în formă normală.

$$(\lambda x.y) ((\lambda z.zz) (\lambda w.w)) \rightarrow_{\beta} (\lambda x.y) ((\lambda w.w) (\lambda w.w))$$

$$\rightarrow_{\beta} (\lambda x.y) (\lambda w.w)$$

$$\rightarrow_{\beta} y$$

$$(\lambda x.y) ((\lambda z.zz) (\lambda w.w)) \rightarrow_{\beta} y[(\lambda z.zz) (\lambda w.w)/x]$$

$$\equiv y$$

Observăm următoarele:

- reducerea unui redex poate crea noi redex-uri
- reducerea unui redex poate șterge alte redex-uri
- numărul de pași necesari până a atinge o formă normală poate varia, în funcție de ordinea în care sunt reduse redex-urile
- rezultatul final pare că nu a depins de alegerea redex-urilor

Confluența β -reducției

Notăm cu $M \to_{\beta} M'$ faptul că M poate fi β -redus până la M' în mai mulți pași (închiderea reflexivă și tranzitivă a relației \to_{β}).

Teorema Church-Rosser. Dacă $M woheadrightarrow_{\beta} M_1$ și $M woheadrightarrow_{\beta} M_2$ atunci există M' astfel încât $M_1 woheadrightarrow_{\beta} M'$ și $M_2 woheadrightarrow_{\beta} M'$.

Consecință. Un lambda termen poate avea cel mult o β -formă normală, modulo α -echivalență.

β -formă normală

Totuși, există lambda termeni care nu pot fi reduși la o β -formă normală (evaluarea nu se termină).

$$\frac{(\lambda x.xx)(\lambda x.xx)}{\rightarrow_{\beta}} \quad (\lambda x.xx)(\lambda x.xx)$$

Observați că lungimea unui termen nu trebuie să scadă în procesul de β -reducție; poate crește sau rămâne neschimbat.

Exercițiu. Verificați dacă termenii de mai jos pot fi aduși la o β -formă normală:

- 1. $(\lambda x.x) M$
- 2. $(\lambda xy.x) MN$
- 3. $(\lambda x.xx)(\lambda y.yyyy)$

Exercițiu. Verificați dacă termenii de mai jos pot fi aduși la o β -formă normală:

- 1. $(\lambda x.x)M$ Corect: M
- 2. $(\lambda xy.x) MN$ Corect: M
- 3. $(\lambda x.xx)(\lambda y.yyy)$ Corect: $(\lambda y.yyyy)(\lambda y.yyyy)(\lambda y.yyyy)...$

Pe săptămâna viitoare!