逻辑操作

逻辑操作

逻辑量子比特 逻辑算符 创造更多的逻辑比特 注释

2022-11-14

逻辑量子比特

图 3. 表面码阵列,含 41 个数据比特和 40 个测量比特。以 measure-X 比特为终止的左右边界为 X 边界或平滑边界(smooth boundaries),以 measure-Z 为终止的上下边界为 Z 边界或粗糙边界(rough boundaries)

逻辑量子比特由表面码阵列在镇定测量后剩余的自由度产生。

剩余的自由度
$$=2 \times$$
数据比特个数 $-2 \times$ 测量比特个数

注: 此处的自由度计算存疑。若以波函数的一个振幅为 2 个自由度计,每个镇定测量消去数据比特一半的自由度,所以剩余的自由度似乎应当为 2^{数据比特的个数} / 2^{测量比特的个数}。

逻辑算符

逻辑算符操作在未被镇定的自由度上。

逻辑算符需与所有镇定子对易: 共享一对数据比特的算符彼此对易。

逻辑 X 算符 $\hat{X}_L=\hat{X}_1\hat{X}_2\hat{X}_3\hat{X}_4\hat{X}_5$,连接两个 X 边界,与任意镇定子对易,将不动态 $|\psi\rangle$ 变为另一不动态 $|\psi_X\rangle=\hat{X}_L|\psi\rangle$, $|\psi_X\rangle$ 和 $|\psi\rangle$ 具有相同的镇定测量结果。

 $|\psi\rangle\neq|\psi_X\rangle$, 除非 $|\psi\rangle=|\pm_L\rangle$ 是 \hat{X}_L 的本征态。

任意连接两个 X 边界的 \hat{X} 链都构成逻辑 X 算符,且这种逻辑算符 $\hat{X}_L'|\psi\rangle=-$ + $X_L'|\psi\rangle=\pm|\psi_X\rangle$ 。

逻辑 Z 算符 $\hat{Z}_L = \hat{Z}_6 \hat{Z}_7 \hat{Z}_3 \hat{Z}_8 \hat{Z}_9$, 存在类似行为和结论。

逻辑 X 和 Z 算符共享一个数据比特,满足需要的反对易关系: $\hat{X}_L\hat{Z}_L = -\hat{Z}_L\hat{X}_L$ 。

创造更多的逻辑比特

如果测量比特 < 数据比特,镇定测量不能完全约束数据比特,因此

|数据比特上的不动态 $\psi
angle=|$ 完全镇定约束的 $Q
angle\otimes|$ 未能镇定约束的 $q_L
angle$

 $|Q\rangle$ 是 $2^{{
m MBL}}$ 维的希尔伯特空间的一个确定的态,不受逻辑算符影响。 $|q_L\rangle$ 代表逻辑比特状态,不受镇定子影响。

通过减少测量比特,增加 $|q_L\rangle$ 的自由度来创造更多的逻辑比特。

注释

	镇定测量	错误+镇定测量	逻辑操作
任意数据比特状 态	改变(可到不动 态)	改变	改变
不动态	不改变	改变(到新不动态)+不改变(回原不动 态)	改变(到新不动 态)
镇定测量结果	不改变	改变(可探测错误)+不改变(不可探测 错误)	不改变