Overview: Switching Algebra & Combinational Logic Design

- * Switching Algebra
- * Combinational Circuit Analysis & Synthesis

Chapters 4 & 6 – "Digital Design: Principles and Practices" book

Combinational Circuit Analysis

- Analysis of combinational circuits:
 - It requires a formal description of their logic function.
 - Logic function description allows:
 - Determination of circuit behaviour for different input combinations.
 - Manipulation of an algebraic description to derive different circuit structures for the logic function.
 - *Transformation* of an algebraic description into a form corresponding to an available circuit structure.

Karnaugh Maps

Karnaugh Map:

- Another approach to represent (and simplify) Boolean equations.
- Example (Karnaugh map for a 2-input AND gate):

Karnaugh Map Simplification

Why use Karnaugh map simplification:

- Working with algebraic equations is often tedious and errorprone.
- A mapping technique can be used to reduce an algebraic equation to its simplest form.
- Simplification approaches used (consisting of grouping adjacent
 1s or 0s in powers of 2) are minterm or maxterm.
- Equations of up to 5 variables can be easily simplified by hand.
 However, it becomes complicated to simplify equations with more than 5 variables.

2-Variable Map (1/2)

- How to build a 2-variable Karnaugh map:
 - There will be 4 minterms for a 2-variable equation, so use a Karnaugh map with 4 squares (i.e., a 2x2 table).
 - 1's and 0's on the left side and top of the map designate the values of the variable.
 - Variable X is complemented in row 0 and uncomplemented in row 1.

 Variable Y appears complemented in column 0 and uncomplemented in column 1.

0

2-Variable Map (2/2)

- How a 2-variable Karnaugh map works:
 - The concept is to put a 1 in each square that has a corresponding minterm in the boolean equation.
 - Only four terms are possible if in Sum of Products form.

Example: 2-Variable Map

Simplify the boolean equation:

$$F = X \cdot Y' + X' \cdot Y + X \cdot Y$$

- Function F is in Sum of Products form.
- Put 1's in boxes of corresponding terms and put 0's in all other boxes.

- Simplified expression for F is obtained by grouping adjacent 1's (in powers of 2) and eliminating unnecessary variables.
- Here, there are two ways of grouping 1's: one way is to circle the row where X=1; the other way is to circle the column where Y=1.
- **Y** is eliminated from the two product terms where *X*=1 and **X** is eliminated from the two product terms where *Y*=1.

Answer: F = X + Y

3-Variable Map (1/2)

- How to build a 3-variable Karnaugh map:
 - There will be 8 minterms for a 3-variable equation, so use a Karnaugh map with 8 squares (usually, a 2x4 table).
 - The *minterm* numbers do not follow the normal binary counting order sequence.
 - Only 1 bit changes from one adjacent column to the next.

3-Variable Map (2/2)

How a 3-variable Karnaugh map works:

Example 1: 3-Variable Map

Simplify: $F(X, Y, Z) = \Sigma m(1, 2, 5, 6) = 001, 010, 101, 110$

Note: Circle 1's in horizontal or vertical groups of 1, 2, 4 or 8 only (*powers of 2*)!

m1 + m5 = X'Y'Z + XY'Z

=
$$(X' + X)(Y'Z)$$
 $\therefore X \text{ is redundant}$

m2 + m6 = X'YZ' + XYZ'

= $(X' + X)(YZ)$
 $\therefore X \text{ is redundant}$
 $\therefore X \text{ is redundant}$

ANSWER: F = Y'Z + YZ'

Simplify, using a Karnaugh map:

$$F(X, Y, Z) = \Sigma m(3, 4, 5, 6, 7)$$

4-Variable Map

Example 1: 4-Variable Map

Example 2: 4-Variable Map

 This is an example of a Karnaugh map with all possible groupings (except circles with a single value):

wx	Z 00	01	11	10
00	1	1	0	0
01	1	1	0	0
11	0	1	1	0
10	0	0	1	1

Prime Implicants

- Challenge when using K-maps: To select the right groups.
 - IF the number of groups is not minimised AND
 - the size of each group is not maximised THEN,
 - Resulting expression will still be equivalent to the original one.
 BUT
 - Resulting expression will not be a *minimal* sum of products (or MSP).
- Good approach to finding an actual MSP:
 - Find all of the largest possible groupings of 1's (these are called the prime implicants); but only in powers of 2!
 - The final MSP will contain a subset of these prime implicants.

Example: K-Map with Prime Implicants

 Here is an example of a Karnaugh map with prime implicants (all of the marked groups are prime implicants):

Essential Prime Implicants (EPIs)

If any group contains a minterm that isn't also covered by another overlapping group, then that is an EPI.

• **EPIs** appear in the MSP, since they contain **minterms** that no other groups include.

• Example:

11 10 **EPI**: because no other group covers *m*0, *m*1, and *m*4. 01 0**EPI**: because no other group covers m10.

Another Example : Covering the other *Minterms*

Example from previous slide:

 Pick as few other prime implicants as necessary, to ensure that all the *minterms* are covered.

- After choosing the green rectangles in the example, there are just two minterms left to be covered: m13 and m15.
- These are both included in the red implicant, WXZ.
- The resulting equation is,

Relationships: F, F', Σ , Π

Karnaugh Map for F

Karnaugh Map for F'

Minimal Sum of Products for F	Minimal Product of Sums for F	Minimal Sum of Products for F'	Minimal Product of Sums for F'
What to do: Loop 1's and read as minterms.	What to do: Loop 0's and read as maxterms (or complement SOP for F).	What to do: Loop 1's.	What to do: Loop 0's and read as maxterms (or complement SOP for F).

Converting to Negative Logic

Three different (but equivalent) circuits that implement the equation
 F = AB + CD:

Example: SOP of F (1/2)

 Find the minimal sum of products and draw the NAND gate implementation for:

$$F = X'Y'Z + X'YZ' + X'YZ + XY'Z' + XY'Z$$

- What to do:
 - ✓ First look for the largest possible group.
 - ✓ If there are still 1's to cover, keep circling until all are covered.
 - ✓ Read off essential prime implicants necessary for minimal cover.

Example: SOP of F (2/2)

To be completed in class ...

- Draw the NAND gate implementation of: F = XY' + X'Y + Y'Z
 - ✓ 1. Draw the normal circuit: ✓ 2. Apply DeMorgan's theorems graphically:

✓ 3. Convert the 3-inverted input gate to NAND:

Example: SOP of F'

To be completed in class ...

Find the minimal sum of products for F' where,

$$F = X'Y'Z + X'YZ' + X'YZ + XY'Z' + XY'Z$$

$$F' = (X+Y+Z')(X+Y'+Z)(X+Y'+Z')(X'+Y+Z')$$

- What to do:
 - ✓ Map F'. ✓ Circle the 1's.

F is as in previous example.

✓ Read off essential prime implicants as minterms.

Summary: Karnaugh Maps (1/2)

- Karnaugh maps are an alternative to Switching Algebra for simplifying expressions:
 - The result is an MSP (or MPS) that leads to a minimal 2-level circuit.
 - It is easy to handle *don't-care conditions*.

 Karnaugh maps are really only good for manual simplification of fairly small expressions.

in a few slides.

Summary: Karnaugh Maps (2/2)

- Things to keep in mind:
 - Remember the correct order of minterms on the K-map.
 - When grouping, it is possible to wrap around all sides of the K- map, and the groups can overlap.
 - Make as few groups (of adjacent 1s or 0s) as possible, but make each of them as large as possible (only in powers of 2 i.e., 1, 2, 4, 8, ...).
 - There may be more than one valid solution!!

Map Manipulation

- Often a truth table will be generated that has several combinations that the designer doesn't care about.
- Expressions can be simplified by using DON'T CARE cases:
 - Sometimes it is possible to eliminate essential prime implicants.
- Example:

– Consider the following incompletely specified function:

```
\begin{cases} F(W,X,Y,Z) = \Sigma m(1, 3, 7, 11, 15) \\ d(W,X,Y,Z) = \Sigma m(0, 2, 5) & \to \text{ These are DON'T CARE cases.} \end{cases}
```


4-Variable Karnaugh Map

$$F(W,X,Y,Z) = \Sigma m(1, 3, 7, 11, 15)$$

 $d(W,X,Y,Z) = \Sigma m(0, 2, 5)$

Answer:

$$F = YZ + W'X'$$

Example (1/9): Design Procedure

Problem Specification

Design a code converter to decode from BCD to a 7-segment display.

 The combinational circuit must accept a BCD digit and generate the appropriate outputs to display the digit in a 7-segment format as shown here.

Example (2/9): BCD and I/O

- BCD numbers are 4 digits long, so
 - e.g., $1_{10} = 0001_2$ and $10_{10} = 00010000_2$.

Inputs:

— We only have to output decimal digits 0-9 on the 7-segment display, so only 4 inputs are needed!

Outputs:

- Need one for each segment a-g.
- Output for each function a-g should be:
 - 1 if that segment should be on.
 - 0 if it should be off.

Example (3/9): BCD

Example (3/3). BCD										
7-Segment Truth Ta	able	ABCD	а	b	С	d	е	f	g	
	0 ⇒	0000	1	1	1	1	1	1	0	
	1 ⇒	0001	0	1	1	0	0	0	0	
а	2 ⇒	0 0 1 0	1	1	0	1	1	0	1	
	3 ⇒	0 0 1 1	1	1	1	1	0	0	1	
f b	4 ⇒	0 1 0 0	0	1	1	0	0	1	1	
' g g	5 ⇒	0 1 0 1	1	0	1	1	0	1	1	
	6 ⇒	0 1 1 0	1	0	1	1	1	1	1	
e c	7 ⇒	0 1 1 1	1	1	1	0	0	0	0	
U	8 ⇒	1000	1	1	1	1	1	1	1	
d	9 ⇒	1001	1	1	1	1	0	1	1	
u		1 0 1 0	0	0	0	0	0	0	0	
		1 0 1 1	0	0	0	0	0	0	0	
		1 1 0 0	0	0	0	0	0	0	0	
		1 1 0 1	0	0	0	0	0	0	0	
		1 1 1 0	0	0	0	0	0	0	0	
		1 1 1 1	0	0	0	0	0	0	0	

Example (4/9): Karnaugh Map for 'a'

Example (5/9): Karnaugh Map for 'b'

Example (6/9): BCD 7-Segment Decoder (for a & b)

Example (7/9): Karnaugh Map for 'c'

ABCD	а	b	С	d	е	f	g			c =			
0 0 0 0	1	1	1	1	1	1	0					}	
0001	0	1	1	0	0	0	0		חי			(
0 0 1 0	1	1	0	1	1	0	1	10	CD	Λ1	11	10	
0 0 1 1	1	1	1	1	0	0	1	AB \	00	01	11	10	_
0 1 0 0	0	1	1	0	0	1	1	7 12					
0 1 0 1	1	0	1	1	0	1	1	00	1	1	1	0	
0 1 1 0	1	0	1	1	1	1	1	00					
0 1 1 1	1	1	1	0	0	0	0)
1000	1	1	1	1	1	1	1	01	1	1	1 1	1	
1 0 0 1	1	1	1	1	0	1	1			•	•	•	ll
1010	0	0	0	0	0	0	0						_
1 0 1 1	0	0	0	0	0	0	0	111	0	١	0	0	$I \mid B$
1 1 0 0	0	0	0	0	0	0	0	1 1	U	0	U	U	
1 1 0 1	0	0	0	0	0	0	0	_ ~					
1 1 1 0	0	0	0	0	0	0	0	$A \mid_{A \cap A}$	4		^		
1 1 1 1	0	0	0	0	0	0	0	~ 10	1	1	0	0	
•													

Example (8/9): Karnaugh Map for 'd'

Example (9/9): BCD 7-Segment Decoder (for c & d)

c =

d =

Example (1/2): Parity Generators

- Problem Specification: Build a circuit that will generate the appropriate even parity bit for the 3-bit input.
 - Inputs: $X = 1^{st}$ bit, $Y = 2^{nd}$ bit; $Z = 3^{rd}$ bit
 - Outputs: F = parity bit

Remember: In a 4-bit number, there will be even parity, if there is an even number of 1's.

What is the requirement for having odd parity?

Example (2/2):

3-Bit Even Parity Generator

To be completed in class ...

5-Variable Karnaugh Map

Example (1/2): 5-Variable Karnaugh Map

 $F(A,B,C,D,E) = \Sigma m(0, 10, 11, 14, 15, 16, 20, 24, 26, 27, 28, 30, 31)$

= 00000, 01010, 01011, 01110, 01111, 10000, 10100 11000, 11010, 11011, 11100, 11110, 11111

A = 0									
вс	00	01	11	10					
00	1	0	0	0					
01	0	0	0	0					
11	0	0	1	1					
10	0	0	1	1					

Г	DE	Α		
BC \	00	01	11	10
00	1	0	0	0
01	1	0	0	0
11	1	0	1	1
10	1	0	1	1

Example (2/2): 5-Variable Karnaugh Map

Next step: Grouping ... Start with largest possible – in this map it's 32, down to 1. Don't circle smaller groups if they don't include uncovered 1's!

Cross-map (i.e., A=0 and A=1) so no A; but every other variable is the same, so B'C'D'E'.

Only in map A=1; B and C change, so AD'E'.

Remember the cross-map adjacency!

F = B'C'D'E' + AD'E' + BD

Cross-map (i.e., A=0 and A=1) so no A; in both maps C and E change, so BD.

General Procedure: Designing Combinational Circuits

- 1. Specification: Write specification for the circuit if not already available.
 - Specify/label input(s) and output(s).
- 2. Formulation: Derive *Truth Table* or *initial Boolean equations* defining the relationships between inputs and outputs, if not in the specification.
- 3. Optimisation: Minimise the design using Switching Algebra, Karnaugh Map, software.
 - Draw logic diagram for the resulting circuit using AND/ OR/ NOT gates.
- 4. Technology Mapping: Map the logic diagram to the implementation technology selected (e.g., map into NANDs).
- 5. Verification: Verify the correctness of the final design *manually* or *using simulation*.

Practical Considerations:

- Cost of gates (Number)
- Maximum allowed delay
- Fan-in/Fan-out

Example: Circuit Design (1/2)

- Question: Design a circuit that has a 3-bit input and a single output (F) specified as follows:
 - F = 0, when the input is less than $(5)_{10}$
 - *F* = 1, otherwise

Step 1: Specification

- Label the inputs (3 bits) as X, Y, Z: X is the most significant bit, Z is the least significant bit.
- The output (1 bit) is *F*:
 - $F = 1 \rightarrow (101)_2$, $(110)_2$, $(111)_2$
 - $F = 0 \rightarrow$ other inputs

Example: Circuit Design (2/2)

YZ

0

0

0

0

0

0

Step 2: Formulation

Obtain the Truth Table

Step 3: Optimisation

$$F = XZ + XY$$

<u>Step 4: Optimisation</u> (e.g., NAND implementation)

 F = F" = (XZ + XY)" = ((XZ)'-(XY)')', applying DeMorgan's theorem

Standard Pin Layout for Common Logic Gates

Quad 2-input gates

7400 quad 2-input NAND

7403 quad 2-input NAND with open collector outputs

7408 quad 2-input AND

7409 quad 2-input AND with open collector outputs

7432 quad 2-input OR

7486 quad 2-input XOR

74132 quad 2-input NAND with Schmitt trigger inputs

7402 quad 2-input NOR

Hex NOT gates / Inverters

NAND Gates in DIP Packages

Standard Pin Layout for Common Logic Gates

Triple 3-input gates

7410 triple 3-input NAND 7411 triple 3-input AND 7412 triple 3-input NAND with open collector outputs 7427 triple 3-input NOR

Dual 4-input gates

7420 dual 4-input NAND 7421 dual 4-input AND

+2 to +6V HC +5V LS/HCT input input NC 13 input input 7430 11 input input 5 10 NC input input NC 0V output

