Quiz 5 (Sections 2.3)

You will have 30 minutes to complete the quiz.

Name:

Student Number:

- Q1 (a) What are the two essential properties that make a transformation linear? (1 Point)
 - (b) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that for any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ and scalars $r, s \in \mathbb{R}$, we have $T(r\vec{u} + s\vec{v}) = rT(\vec{u}) + sT(\vec{v})$. (2 Points)
- Q2 Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that the following holds.

$$T(\vec{e}_1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad T(\vec{e}_2) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad T\left(2\vec{e}_1 + 3\vec{e}_2 + \vec{e}_3\right) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Find the standard matrix representation of the transformation T. (3 Points)

HINT: Consider the domain and codomain to ensure you have the correct matrix dimensions.

- Q3 Determine whether the following statements are true or false. You do not need to justify your work. (2 Points)
 - (a) If $S, T : \mathbb{R}^n \to \mathbb{R}^n$ are linear transformations, then $T \circ S(\vec{x}) = S \circ T(\vec{x})$. (0.5 Points)
 - (b) There exists a linear transformation T such that Im(T) cannot be written as a span of vectors. (0.5 Points)
 - (c) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is invertible if and only if n = m. (0.5 Points)
 - (d) For any subspace $S \subseteq \mathbb{R}^n$ and linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, the set $T(S) = \{T(\vec{x}) \in \mathbb{R}^m | \vec{x} \in S\}$ is a subspace of \mathbb{R}^m . (0.5 Points)

Q1

Q2

Q3

(a)	TRUE	FALSE
()		

(b) TRUE FALSE

(c) TRUE FALSE

(d) TRUE FALSE

MAT188 – Winter 2025 Page 2 of 2