Data Science & Heart Disease

Introduction

Data Science plays a critical role in healthcare. This presentation explores how data science aids in heart disease prediction and prevention.

Overview of Heart Disease

Heart disease is a leading cause of death worldwide. Early detection and preventive measures are crucial in reducing its impact.

The Role of Data Science in Heart Disease

Data science allows for better prediction models, personalized treatment plans, and improved patient outcomes in heart disease.

Dataset Description:

The dataset contains features such as cholesterol levels, age, and blood pressure that are used for model training.

Logistic Regression Overview

Logistic Regression is a classification model that predicts the likelihood of heart disease based on input features.

- Accuracy: 81.42%
- Confusion Matrix shown.

Decision Tree Overview

Decision Trees classify data by splitting it into branches, making predictions based on input features.

- Accuracy: 81.86%
- Confusion Matrix shown below.

Random Forest Overview

Random Forest is an ensemble learning method that builds multiple decision trees to improve model accuracy.

- Accuracy: 85.40%
- Confusion Matrix shown below.

Support Vector Machine (SVM)

SVM is a powerful model for binary classification that can handle both linear and non-linear data.

- Accuracy: 80.97%
- Confusion Matrix shown.

K-Nearest Neighbors (KNN)

KNN is a simple, instance-based learning algorithm used for classification and regression.

- Accuracy: 79.53%
- Confusion Matrix shown.

Naive Bayes

Naive Bayes is a probabilistic classifier based on applying Bayes' theorem with strong independence assumptions.

- Accuracy: 84.51%
- Confusion Matrix shown.

CONCLUSION

This study compared various models for heart disease prediction. The K-Nearest Neighbors model showed the highest accuracy.

