

Matemática 1

Volume de um gás em um pistão

(solução da tarefa)

Vamos mostrar que x=0 é uma assíntota vertical de V, verificando que $\lim_{p\to 0^+} V(p) = +\infty$. De fato, seja dado M>0. Como estamos interessado nos valores de V(p) para p próximo de zero (e positivo), vamos assumir que $p\leq 100$, de modo que V(p)=200/p. Desse modo

$$V(p) > M \Longleftrightarrow \frac{200}{p} > M \Longleftrightarrow p < \frac{200}{M}.$$

Assim, tomando $p_0 = 200/M$ temos que V(p) > M sempre que 0 .

Para mostrar que y=1/2 é uma assíntota horizontal vamos verificar que $\lim_{p\to+\infty}V(p)=1/2$. De fato, seja dado $\varepsilon>0$. Como estamos interessandos nos valores de V(p) para p muito grande, vamos assumir que p>150, de modo que V(p)=1/2. Desse modo

$$\left| V(p) - \frac{1}{2} \right| = \left| \frac{1}{2} - \frac{1}{2} \right| = 0 < \varepsilon,$$

e portanto, nesse caso, podemos tomar qualquer $N_0 > 150$ para concluir que $|V(p) - 1/2| < \varepsilon$ sempre que $p > N_0$.

Observamos que a reta y=1/2 é a única assíntota horizontal de V, visto que não faz sentido fazer $p \to -\infty$. Observamos ainda que, na definição de limite no infinito, o número N_0 em geral depende do tamanho de ε . No nosso caso ele não depende porque a função V é constante a partir de um determinado valor de p.