Question 1:

<u>a)</u> Consider the following objective function min $f(x)=(x-1)^2(x-2)(x-3)$, 0 <= x <=4

i) Use the method of Newton-Raphson to compute x^* that minimizes f (x) for the following three initial values of x0 = 0.2, 1.5 and 2.5 with 10–10 tolerance. (Write matlab m-file code)

ii) Plot the change of the x versus iterarion number, the alternation of the objective function by the evolution of x and gradient information versus iterarion number. (Write matlab m-file code)

Algorithm:

Step 1: Initialize x_0 , ε and k = 0

Step 2: Calculate $\Delta x_k = -\frac{f'(x)}{f''(x)}$

Step 3: Update $x_{k+1} = x_k + \Delta x_k$

Step 4: If $|f'(x_{k+1})| < \varepsilon$ terminate iteration, else go to Step 2.

x_start= 0.02 Iteration 0: x=0.020, err=0.980 x_start= 0.02 Iteration 1: x=0.367, err=0.632 x_start= 0.02 Iteration 2: x=0.607, err=0.392 x_start= 0.02 Iteration 3: x=0.768, err=0.231 x_start= 0.02 Iteration 4: x=0.869, err=0.130 x_start= 0.02 Iteration 5: x=0.929, err=0.070 x_start= 0.02 Iteration 6: x=0.963, err=0.036 x_start= 0.02 Iteration 7: x=0.981, err=0.018 x_start= 0.02 Iteration 8: x=0.990, err=0.009 x_start= 0.02 Iteration 9: x=0.995, err=0.004 x_start= 0.02 Iteration 10: x=0.997, err=0.002 x_start= 0.02 Iteration 11: x=0.999, err=0.001 x_start= 0.02 Iteration 27: x=0.999999997617604330369, err=0.000000002382395669631

 $\epsilon = 10^{-10}$

x_start= 1.5 Iteration 0: x=1.50, err=-0.50 x_start= 1.5 Iteration 1: x=0.750, err=0.250 x_start= 1.5 Iteration 2: x=0.858, err=0.142 x_start= 1.5 Iteration 10: x=0.999, err=0.001 err=0.00000065583238395561 x_start= 1.5 Iteration 28: x=1.00000001062910159888, err=-0.00000001062910159888

 $\epsilon = 10^{-10}$

x_start= 2.5 Iteration 0: x=2.50, err=-0.50 x_start= 2.5 Iteration 1: x=1.750, err=0.250 x_start= 2.5 Iteration 2: x=2.218, err=-0.2187 x_start= 2.5 Iteration 3: x=2.016, err=-0.016 x_start= 2.5 Iteration 4: x=2.0002, err=-0.00024 x_start= 2.5 Iteration 5: x=2.0001, err=-0.0009 x_start= 2.5 Iteration 6: x=2.000000000000001332268, err=-0.000000000000001332268

 $\epsilon = 10^{-10}$

b)

Consider the following objective function

$$\min_{x} f(x) = (x-1)^{2}(x-2)(x-3)$$

0 \le x \le 4

i)Use the method of bisection to compute x^* that minimizes f(x) for $\alpha_a = 1.8$, $\alpha_b = 3$. (Write matlab m-file code)

ii) Plot the change of the x versus iterarion number, the alternation of the objective function by the evolution of x and gradient information versus iterarion number. (Write matlab m-file code)

Algorithm:

Step 1: Determine the interval α_a and α_b when $\alpha_a < \alpha_b$. $\varepsilon = 10^{-4}$

Step 2: Update
$$\alpha_k = \alpha_a + \frac{(\alpha_b - \alpha_a)}{2}$$

Step 3: If $f'(\alpha_k) = 0$, terminate the iteration owing to convergence

else and if $(\alpha_b - \alpha_a) < \varepsilon$, then terminate iteration due to tolerans value(ε)

else and if
$$f'(\alpha_k)f'(\alpha_a) > 0$$
 , then $\alpha_a = \alpha_k$

else $\alpha_b = \alpha_k$ and continue with **Step 2**.

Algorithm on the Matlab

```
iteration_number = 0;
pwhile 1
    %Update a_k (Step 2)
    a_k = a_a + (a_b - a_a)/2;
    %increase the iteration number
    iteration_number = iteration_number + 1;
    %Plot the Figure 1: the change of the x versus iteration number
    plot(ax1, iteration_number, a_k, 'ro');
    %Plot the Figure 2: The Alteration of The Objective Function by The Evol{\sf ution} of {\sf x}
    plot(ax2, iteration_number, f(a_k), 'bo');
    %Plot the Figure 3: Gradient Information Versus Iteration Number
    plot(ax3, iteration_number, f_derivative(a_k), 'go');
     if f_derivative(a_k) == 0
         fprintf('Terminated iteration owing the convergence\n');
         break;
     elseif (a_b - a_a) < Epsilon</pre>
         fprintf('Terminated iteration due to tolerans value(Epsilon)\n');
         break;
     elseif ( f_derivative(a_k) * f_derivative(a_a) ) > 0
         a_a = a_k;
         a_b = a_k;
 end
```

Question 2:

Fig. 1 Neuron based Nonlinear PID Controller

The neuron based nonlinear PID Controller in figure is going to be used to control paper making process. The dynamic characteristics of the plant is as follows:

$$G(z) = \begin{cases} \frac{0.2719}{z(z - 0.8187)} & \text{, when } 80 \text{ g/m}^2 \text{ paper is made} \\ \frac{0.4484}{z(z - 0.7788)} & \text{, when } 100 \text{ g/m}^2 \text{ paper is made} \\ \frac{0.7087}{z(z - 0.7165)} & \text{, when } 120 \text{ g/m}^2 \text{ paper is made} \end{cases}$$

The controller parameters are selected as follows:

$$\begin{split} K = &1.1, \ \eta_1 = 15 \ , \ \eta_2 = 1 \ , \ \eta_3 = 10 \\ \alpha_P = &1 \ , \alpha_I = 0.5 \ , \ \alpha_D = 0.5 \ , \\ \delta_P = &0.1 \ , \delta_I = 0.4 \ , \ \delta_D = 0.3 \end{split}$$

Set the initial values as follows:

$$u(0) = 0, y(0) = 0, w_1(0) = w_2(0) = w_3(0) = 0.005$$

 $e_{tr}(0) = 0, T_s = 0.01 \text{ sec (sampling time)}$

a) Plot the response of the system and control signal versus time using the reference signal in figure 2. Plot the alternation of the controller parameters in terms of w_1, w_2, w_3 and also

 K_P, K_I, K_D . (Write matlab m-file code)

Control Algorithm:

Step 0: Set n = 1

Step 1: Calculate tracking error $e_{tr}(n) = r(n) - y(n)$

Step 2: Calculate inputs of the PID Controller

$$P(n) = e_{tr}(n)$$

$$I(n) = I(n-1) + e_{tr}(n)$$

$$D(n) = e_{tr}(n) - e_{tr}(n-1)$$

Step 3: Calculate outputs of f(.) nonlinear function

$$x_p(n) = f(e_{tr}(n), \alpha_p, \delta_p)$$

$$x_l(n) = f(\int e_{tr}(n) dn, \alpha_l, \delta_l)$$

$$x_D(n) = f(\dot{e}_{tr}(n), \alpha_D, \delta_D)$$

Step 4: Calculate control signal

$$u(n) = K \frac{w_1(n)x_p(n) + w_2(n)x_l(n) + w_3(n)x_D(n)}{w_1(n) + w_2(n) + w_3(n)}$$

= $K_p(n)x_p(n) + K_l(n)x_l(n) + K_D(n)x_D(n)$

Step 5: Apply control signal to the plant and obtain output of the system

$$y(n+1) = ?$$

Step 6: Update controller parameters

$$w_1(n+1) = w_1(n) + d_1 e_{tr}(n) u(n) x_p(n)$$

$$w_2(n+1) = w_2(n) + d_2 e_{tr}(n) u(n) x_I(n)$$

$$w_3(n+1) = w_3(n) + d_3 e_{tr}(n) u(n) x_D(n)$$

Step 7: $n \leftarrow n+1$ and go to **Step 1.**

b)Plot the response of the system and control signal versus time using the reference signal in figure 3. Plot the alternation of the controller parameters in terms of w_1, w_2, w_3 and also

$$K_{P}, K_{I}, K_{D}$$
. ($r(t) = 1 + e^{-\frac{2\pi}{100}t} \sin(t)$) (Write matlab m-file code)

Algorithm on the Matlab Code

```
□ for n=1:3000
     Step 1: Calculate tracking error etr (n) = r(n) y(n)
     e_tr(n) = r(n) - y(n);
     %Step 2: Calculate inputs of the PID Controller
     P(n) = e_{tr(n)};
     I(n) = integral_e(e_tr);
     D(n) = derivative_e(e_tr);
     %Step 3: Calculate outputs of f (.) nonlinear function
     x_p(n) = f_nonl(e_tr(n), alpha_p, delta_p);
     x_i(n) = f_nonl(I(n),alpha_i,delta_i);
     x_d(n) = f_{nonl}(D(n), alpha_d, delta_d);
     %Step 4: Calculate Control Signal
     u(n) = K*(w1(n)*x_p(n)+w2(n)*x_i(n)+w3(n)*x_d(n))/(w1(n)+w2(n)+w3(n));
     %Step 5: Apply control signal to the plant and obtain output of the system
     y(n+1) = y_out(u,y,m_paper);
     %Step 6: Update controller parameters
     w1(n+1) = w1(n) + eta1*e_tr(n)*u(n)*x_p(n);
     w2(n+1) = w2(n) + eta2*e_tr(n)*u(n)*x_i(n);
     w3(n+1) = w3(n) + eta3*e_tr(n)*u(n)*x_d(n);
      %Step7:n <-n+1 and go to Step 1.
 end
```


