

Research Institute for Future Media Computing Institute of Computer Vision 未来媒体技术与研究所

计算机视觉研究所

Image Retrieval

Background

- Necessity of retrieval
 - Information is of no use, unless you can actually access it.

[from the TREC homepage: trec.nist.gov]

- Why do we need image retrieval?
 - "A Picture is worth thousand words"
 - Not everything can be described in text
 - Not everything is described in text

Background

Background

Content based image retrieval

 Potential applications of content-based image retrieval

Image Retrieval

Illustration of different query schemes with the corresponding retrieval results

Why is Image Retrieval Hard?

- What is the topic of this image
- What are right keywords to index image
- What words would you use to retrieve this image?
- ◆ The *Semantic Gap*

- A picture is worth a thousand words
- The meaning of an image is highly individual and subjective

Framework

The general framework of content-based image retrieval

Problems with Image Retrieval

Basic Problems

- ◆ 图像检索基本问题之一: 如何计算图像间的内容相关性?
 - 图像表征: 非结构化图像数据的结构化表达
 - SIFT + BoW/VLAD/FV
 - 神经网络中间层
 - 相似性度量: 基于图像表征的相关性计算

Based on Hand-Crafted Features

◆ The retrieval pipeline

Global Features

- Color (histograms, gridded layout, wavelets)
- ◆ Texture (Laws, Gabor filters, LBP, polarity)
- ◆ Shape (What preprocessing must occur to get shape?)
- Objects and their Relationships

Local Features

- Find features that are invariant to transformations
 - geometric invariance: translation, rotation, scale
 - photometric invariance: brightness, exposure, ...

Local Features

- ◆ SIFT
- ◆ LBP
- **♦** SURF
- **♦** BRISK
- ♦ And so on

Image Retrieval & Image Classification

Query: This chair

Image Retrieval

Results from dataset ranked by similarity to the query

Query: This chair

Image Classification

Results from dataset classified as "chair"

Based on Deep Learning

- ◆ 深度学习在计算机视觉领域取得巨大成功
 - ImageNet Grand Challenge

- ◆ 深度学习: 时势造英雄
 - 大规模图像视频数据
 - 强大的计算能力: GPU/TPU

研究背景:深度学习

◆ 面向图像分类的深度学习模型

AlexNet, 2012

GoogLeNet, 2014

研究背景: 深度学习

◆ 深度学习本质: 层次化的表征学习

[Courtesy of Yann Le Cun]

研究背景: 深度学习

◆ 图像分类 vs. 图像检索

如何将深度学习用于图像检索?

◆ 关键: 大规模的标注的训练数据

深度特征

Option 2:

- 面向检索任务,设计监督信息
- fine-tune预训练好的CNN模型