Traces and level Curves 9th January.
Surfaces $10x + 3y + 5z = 2$ (Plane) $10x^2 + 3y + 5z = 2$ (In general)
How to understand a Surface?
Traces level curves Traces parallel to one of the coordinate
Traces Intersection of a plane, and plane as Surface. Xy trace: Intersection of surface and
y 2 trace: Intersection of surface and x=0 x 2 trace: Intersection of surface and In general x=a, y=a or z=a, for Some manumber a
In Jeneral 7 = a, y = a or z = a, for Some menumber a. Traw traces of x2+y2-2=0.

Multiv Functions of two variables
Examples: 1) $f(x,y) = x^2 + y^2$ Also watten as 2) $f(x,y) = \ln xy$ $2 = x^2 + y^2$. 3) $f(x,y) = \sin x + \sin y$.
Domain = set of (x,y) where the function is defined. Range = set of all possible values of flx,y)
For domain o Denominator Should not be 0(40) 10g can only be taken of Positive numbers (>0) Square not can be taken only of non-neg alive numbers (>0) A range = Remember range of general functions So for to fly, y=1n xy domain is
The for the formain is the formain is all for flags = x2 ty2 domain is everything. Find domain and range of x-y. (a) flags = (0s(\(\frac{x^2+63^2-2}{x^2+63^2-2}\)).

Domain: x-y+0 i.e. & (x,y) such that Range general technique it X-y=Z Choose x=Z
So z com take any value. Range is $(-\infty, \infty)$ (6) from = cos (127+3-2) $x^2+y^2-2>0$. $\Rightarrow x^2+y^2>2$. that is if (x,y) such that $x^2+y^2>2$. Domain: Range: Range of cosine function is [-1,1]. (x. Graph of cos(x) Range of (4,4) is [-1, 1].

Level curves

Given a number 20.

(x,y) such that f(x,y)=20 18 called a hered curve of f.

(trace at z=20 of Surface f(x,y)=2)

· Picka number k. · Pin flygj=2 replace z by k. · Plot the curve flygj=k. · Repeat for some other numbers k.

Draw level curves of.

flx,y = y-x?-1.

E Level Craver for 25 0.

Level Crave for 25 1

1 - x2 - 1 = 1

2 - x2 - 1 = 1

3 - x2 - 1 = 1

Closer level curves: Chan function changing septidly slowly Wider spaced level curve: function changing stocky.

=> \frac{\frac{1}{2} - 3}{\frac{1}{2} + \frac{1}{2}} = \frac{1}{2} \\
= \frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \\
= \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \\
= \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \\
= \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \\
= \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \\
= \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \\
= \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \\
= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1

2 2 - 1 u(x + 3 - 3)

· Next ela week: derivatives of

functions $f(x,y) = x^2 + y^2$ Take derivative with respect to x and y

Separately. [Review derivatives.] $f_{\chi}(x,y) = 2x$ $f_{\chi}(x,y) = 2y$

Name	Standard Equation	on Features	
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	All traces are ellipses.	Graph
Elliptic paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Traces with $z = z_0 > 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are parabolas.	
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ are ellipses for all z_0 . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.	x
Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ with $ z_0 > c $ are ellipses. Traces with $x = x_0$ and $y = y_0$ are hyperbolas.	Z A
Elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	Traces with $z = z_0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are hyperbolas or intersecting lines.	X y
Dyperbolic Taboloid	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.	