Introduction

Course structure:

- (i) Preliminary toolbox: inequalities
- (ii) Normed vector spaces (NVS)
- (iii) (Recalls on) finite-dimensional case
- (iv) Hahn-Banach Theorems (how big is the dual?)
- (v) Completeness: Baire's Theorem & consequences for NVS
- (vi) Detailed study of the topology of C(K)
- (vii) The Hilbert space
- (viii) Projection & duality
- (ix) Introduction to operators and spectral theory

1 Preliminary toolbox: Young's, Hölder's & Minkowski's inequalities for vectors & sequences

Proposition (Young's inequality for products). Let $p, q \in (1, \infty)$ be such that $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\forall a, b \ge 0, \ ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Proof. The result is clear for a=0 or b=0. Assume a,b>0 and note $L:(0,\infty)\to\mathbb{R},\,t\mapsto \ln t$ is strictly concave: $L''(t)=-\frac{1}{t^2}<0$.

Therefore for all $A, B > 0, \lambda \in (0, 1)$

$$\ln(\lambda A + (1 - \lambda)B) \ge \lambda \ln A + (1 - \lambda) \ln B$$

with equality iff A = B. Apply this to $A = a^p$, $B = b^q > 0$ and $\lambda = \frac{1}{p}$. This gives

$$\ln\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \ge \frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q) = \ln(ab)$$

so applying exp to both sides gives the result and furthermore we have equality iff $a^p = b^q$.

Proposition (Hölder's inequality for vectors & sequences). Let $p,q\in(1,\infty)$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Then

(i) for any $n \in \mathbb{N} \setminus \{0\} = \mathbb{N}^*, \, \forall x, y \in \mathbb{R}^n$

$$\sum_{k=1}^{n} |x_k y_k| \le ||x||_p ||y||_q \tag{*}$$

with $||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$ and similarly for $||y||_q$.

(ii) define

$$\ell^p = \{ x \in \mathbb{R}^{\mathbb{N}^*} : \sum_{k=1}^{\infty} |x_k|^p < \infty \}$$

then $\forall x \in \ell^p, y \in \ell^q$

$$\sum_{k=1}^{\infty} |x_k y_k| \le ||x||_{\ell^p} ||y||_{\ell^q}$$

where $||x||_{\ell^p} = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}}$ and similar for $||y||_{\ell^q}$.

Proof. To show (i) implies (ii): take $n \to \infty$ in (i) so

$$\sum_{k=1}^{n} |x_k|^p \to ||x||_{\ell^p}^p$$

and similarly

$$\sum_{k=1}^{n} |y_k|^q \to ||y||_{\ell^q}^q$$

By (i)

$$\sum_{k=1}^{n} |x_k y_k| \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |y_k|^q\right)^{1/q}$$

so

$$\sum_{k=1}^{\infty} |x_k y_k| = \lim_{n \to \infty} \left(\sum_{k=1}^n |x_k y_k| \right) \le \lim_{n \to \infty} \left(\sum_{k=1}^n |x_k|^p \right)^{1/p} \left(\sum_{k=1}^n |y_k|^q \right)^{1/q}$$

$$= ||x||_{\ell^p} ||y||_{\ell^q}$$

Proof of (i): if $||x||_{\ell^p}$ or $||y||_{\ell^q}=0$, result is clear. Otherwise define \tilde{x} , \tilde{y} sequences in ℓ^p and ℓ^q by

$$\tilde{x}_k = \frac{x_k}{||x||_{\ell^p}}, \ \tilde{y}_k = \frac{y_k}{||y||_{\ell^q}}$$

Then $||\tilde{x}||_{\ell^p} = 1$, $||\tilde{y}||_{\ell^q} = 1$. Then (*) is equivalent to showing

$$\sum_{k=1}^{n} |\tilde{x}_k \tilde{y}_k| \le 1 \tag{**}$$

Apply Young's inequality on each k = 1, ..., n so

$$|\tilde{x}_k \tilde{y}_k| \le \frac{1}{p} |\tilde{x}_k|^p + \frac{1}{q} |\tilde{y}_k|^q$$

Summing over k:

$$\sum_{k=1}^{n} |\tilde{x}_k \tilde{y}_k| \le \frac{1}{p} \left(\sum_{k=1}^{n} |\tilde{x}_k|^p \right) + \frac{1}{q} \left(\sum_{k=1}^{n} |\tilde{y}_k|^q \right) \le \frac{1}{p} + \frac{1}{q} = 1$$

Remark: Equality in (*) is equivalent to equality in (**) which is equivalent to equality in Young's for each k so $|\tilde{x}_k|^p = |\tilde{y}_k|^q$ for $k = 1, \ldots, n$. Also, the p = 1, $q = \infty$ case is easy.

Proposition (Minkowski's inquality for vectors & sequences). Let $p \in [1, \infty)$, then

(i) for all $x, y \in \mathbb{R}^n$

$$||x+y||_p \le ||x||_p + ||y||_p$$

(ii) for all $x, y \in \ell^p$

$$||x+y||_{\ell^p} = ||x||_{\ell^p} + ||y||_{\ell^p}$$

Proof. To show (i) implies (ii): by taking $n \to \infty$ as before

$$\sum_{k=1}^{\infty} |x_k|^p \to ||x||_{\ell^p}^p$$

$$\sum_{k=1}^{\infty} |y_k|^p \to ||y||_{\ell^p}^p$$

$$\sum_{k=1}^{n} |x_k + y_k|^p \to ||x + y||_{\ell^p}^p$$

Proof of (i): if p = 1 this is just the usual triangle inequality on each coordinate. So let $p \in (1, \infty)$ and

$$\begin{split} \sum_{k=1}^{n}|x_k+y_k|^p &= \sum_{k=1}^{n}|x_k+y_k|\cdot|x_k+y_k|^{p-1} \\ &\leq \sum_{k=1}^{n}|x_k||x_k+y_k|^{p-1} + \sum_{k=1}^{n}|y_k||x_k+y_k|^{p-1} \\ &\underset{\text{H\"older: }q = \frac{p}{p-1}}{\leq} ||x||_p \left(\sum|x_k+y_k|^{(p-1)\frac{p}{p-1}}\right)^{\frac{p-1}{p}} + ||y||_p \left(\sum|x_k+y_k|^{(p-1)\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \end{split}$$

$$\leq (||x||_p + ||y||_p) ||x + y||_p^{p-1}$$

so we have proved

$$||x+y||_p^p \le (||x||_p + ||y||_p) ||x+y||_p^{p-1}$$

If $||x+y||_p = 0$, result is clear. Otherwise divide by $||x+y||_p^{p-1}$ to get

$$||x+y||_p \le ||x||_p + ||y||_p$$

Remark: equality occurs iff there is equality in the triangle inequality and Hölder's.

Remarks:

1. Equality case: p = 1: $|x_k + y_k| \le |x_k| + |y_k|$, i.e the usual triangle inequality

2. For p=2 there's another proof: define $\mathcal{P}:\mathbb{R}\to\mathbb{R},\,\lambda\mapsto||x+\lambda y||^2$. Then $\mathcal{P}(\lambda)=a\lambda^2+2b\lambda+c$ and $\mathcal{P}\geq0$. So

$$\langle x,y\rangle=b^2\leq ac=||x||^2||y||^2$$
, Hölder's inequality

2 Normed Vector Spaces (NVS)

Remark: this is not the most general structure for linear analysis - topological vector spaces (TVS).

Recall:

Definition. A vector space V over a field \mathbb{F} is a set (of elements called vectors) with two operations:

$$A: V \times V \to V, (v, w) \mapsto v + w$$
 addition

$$M: \mathbb{F} \times V \to V, \ (\lambda, v) \mapsto \lambda v \text{ scalar multiplication}$$

such that

- (V, +) is an abelian group with identity 0.
- M is compatible with $(\mathbb{F},0)$ in the sense that $\lambda_1(\lambda_2 v) = \lambda_1 \lambda_2 v$
- M distributes over (V, +) and $(\mathbb{F}, +)$.

In this course \mathbb{F} will be \mathbb{R} or \mathbb{C} unless stated otherwise.

Definition. Given a vector space V over \mathbb{F} :

- a subspace $W \subseteq V$ is a vector space over \mathbb{F} included in V
- for a set $S \subseteq V$, a linear combination of elements of S is a finite sum of elements of S with coefficients in \mathbb{F}
- for a set $S \subseteq V$, the span of S, span(S) is the smallest subspace of V containing S, and is also the set of linear combinations of S.

Definition. Given V a vector space over \mathbb{F} and a set $S \subseteq V$:

- S is linearly independent if for all $m \in \mathbb{N}^*$ and for all $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$, for all $s_1, \ldots, s_m \in S$, $\sum_{i=1}^m \alpha_i s_i = 0$ if and only if $\alpha_1 = \alpha_2 = \ldots = \alpha_m$.
- S is a basis of V if it is linearly independent and span(S) = V.
- If there exists a finite basis S of V, then V has finite dimension, otherwise it is infinite-dimensional.

Remark: later we'll prove with Zorn's lemma that any vector space has a basis.

Definition. A normed vector space (NVS) V over \mathbb{F} is a vector space over \mathbb{F} together with a function $N: V \to \mathbb{R}_+, v \mapsto ||v||$ (the norm), with

- 1. $||v|| \ge 0$ for all $v \in V$, with equality only at v = 0 (positive definiteness)
- 2. For all $\lambda \in \mathbb{F}$, $v \in V$ $||\lambda v|| = |\lambda|||v||$ (compatibility between N and M)

3. For all $v, w \in V$, $||v + w|| \le ||v|| + ||w||$ (compatibility between N and A)

Example.
$$V = \mathbb{R}^n$$
, $v = (v_1, \dots, v_n)$, $||v|| = (v_1^2 + \dots + v_n^2)^{1/2}$ or

$$\begin{cases} ||v||_p = (|v_1|^p + \dots + |v_n|^p)^{1/p} & \text{for } p \in [1, \infty) \\ ||v||_{\infty} = \sup_{i=1}^n |v_i| & \text{for } p = \infty \end{cases}$$

Definition. Given a set X, a topology τ on X is a collection of subsets of X ("open sets") such that

- $\emptyset \in \tau, X \in \tau$
- τ is stable under any union
- τ is stable under finite intersections

Definition.

- For (X, d) a metric space, the *induced topology* is the smallest topology that contains open balls in d
- For a NVS $(V, ||\cdot||)$, the induced topology is that associated with d(v, w) = ||v w||

Natural question: \mathbb{F} field, V vector space over \mathbb{F} . Norm on V, $\tau_{||\cdot||}$. Continuity of operations M and A?

Proposition. Let $(V, ||\cdot||)$ be a NVS over \mathbb{F} (\mathbb{F} either \mathbb{R} or \mathbb{C}), then

- (i) A, M are continuous for the following topologies: $\tau_{||\cdot||}$ on V, then product topology of it on $V \times V$, $\tau_{|\cdot|}$ over \mathbb{F} , then product topology of $\tau_{|\cdot|}$ and $\tau||\cdot||$ on $\mathbb{F} \times V$
- (ii) Translations $T_{v_0}: V \to V, v \mapsto v + v_0, v_0 \in V$ and dilations $D_{\lambda_0}: V \to V, v \mapsto \lambda_0 v, \lambda_0 \in \mathbb{F}^*$ are homeomorphisms

Proof.

(i) Let us prove that $A: V \times V \to V$ is continuous: consider an open set $\emptyset \neq U \subseteq V$ and $(v_1, v_2) \in A^{-1}(U)$, i.e $v_1 + v_2 \in U$. Since U is open, there is $\varepsilon > 0$ such that $B_V(v_1 + v_2, \varepsilon) \subseteq U$.

open ball

We have that $A(B(v_1, \varepsilon/2), B_V(v_2, \varepsilon/2)) \subseteq B_V(v_1+v_2, \varepsilon)$ (triangle inequality). Note also that $B(v_1, \varepsilon/2) \times B(v_2, \varepsilon/2)$ is open (product topology), so $A^{-1}(U)$ is open and A is continuous.

Now we show $M: \mathbb{F} \times V \to V$ is continuous. Consider an open set $U \neq \emptyset$ in V, $(\lambda, v) \in M^{-1}(U)$. Since U is open, there exists $\varepsilon > 0$ such that $B_V(\lambda v, \varepsilon) \subseteq U$ (WLOG $\varepsilon < 1$). Then (check)

$$M\left(B_{\mathbb{F}}\left(\lambda, \frac{\varepsilon}{3\max(1, ||v||)}\right), B_V\left(v, \frac{\varepsilon}{3\max(1, |\lambda|)}\right)\right) \subseteq B_V(\lambda v, \varepsilon)$$

(ii) T_{v_0} and D_{λ_0} are linear, continuous with inverses T_{-v_0} and $D_{\lambda_0^{-1}}$ respectively, so are homeomorphisms.

3 Characterisation of NVS

Idea: in order to better understand the topology of NVS's, we ask how special is a "normable" topology among topologies compatible with vector space operations?

Definition (TVS). A topological vector space (TVS) over \mathbb{F} is a vector space over \mathbb{F} together with a topology τ such that

- (i) A and M are continuous
- (ii) every singleton $\{x_0\}$ is closed

Remark:

- 1. (i) says that T_{v_0} and D_{λ_0} , $\lambda_0 \neq 0$ are homeomorphisms
- 2. (ii) is called T_1 in the classification of seperation properties, and implies Hausforff for TVS

Definition. Given V a TVS

- $C \subseteq V$ is convex if $C = \{\lambda c_1 + (1 \lambda)c_2 : c_1, c_2 \in C, \lambda \in [0, 1]\}$
- \bullet V is $\mathit{locally\ convex}$ if every neighborhood of 0 contains a convex neighborhood of 0
- $B \subseteq V$ is bounded if for any U open around 0, there exists $t_0 > 0$ such that $\forall t > t_0, B \subseteq tU$
- V is locally bounded if there is $U \in \tau$ containing 0 and bounded

Example. Let $(V, ||\cdot||)$ be a NVS, then for all r > 0, U = B(0, r) (open ball) is open, bounded and convex. Indeed

- Convexity follows from the triangle inequality
- Boundedness: any other \tilde{U} open around 0 contains some open $\tilde{U}_0 = B(0, r_0) \in \tilde{U}$. Then for any $t > \frac{r}{r_0}$, $U \subseteq t\tilde{U}_0 \subseteq t\tilde{U}$.

Question: can we reverse-engineer the norm if we have these two properties?

Theorem (Kolmogorov 1934). Let (V, τ) be a TVS such that there is a bounded convex neighborhood of 0, say C. Then V is "normable" - there is a norm $||\cdot||$ on V that induces the topology τ .

Proof. Step 1: there is $\tilde{C} \subseteq C$ which is a balanced convex bounded neighborhood of 0. "Balanced" means that for all $\lambda \in \mathbb{F}$ such that $|\lambda| \leq 1$, $\lambda \tilde{C} \subseteq \tilde{C}$.

 $M: \mathbb{F} \times V \to V$ is continuous so $M^{-1}(C)$ is a neighburhood of (0,0). So there exists $B_{\mathbb{F}}(0,\varepsilon) \times U$ with $\varepsilon > 0$ and U open around 0 such that $M(B_{\mathbb{F}}(0,\varepsilon),U) \subseteq C$.

Define \tilde{C} to be the convex hull (i.e smallest convex set superset) of $M(B_{\mathbb{F}}(0,\varepsilon),U)$.

Then \tilde{C} is clearly convex, is a subset of C since C is convex and $M(B_{\mathbb{F}}(0,\varepsilon),U)\subseteq C$. \tilde{C} is also bounded since $\tilde{C}\subseteq C$ and C is bounded (obvious that boundedness is inherited by inclusion). Finally \tilde{C} is balanced since $\lambda B_{\mathbb{F}}(0,\varepsilon)\subseteq B_{\mathbb{F}}(0,\varepsilon)$ for $\lambda\in\mathbb{F}$ with $|\lambda|\leq 1$ and

$$\underbrace{\lambda M(B_{\mathbb{F}}(0,\varepsilon),U)}_{=M(\lambda B_{\mathbb{F}}(0,\varepsilon),U)} \subseteq M(B_{\mathbb{F}}(0,\varepsilon),U)$$

Notice $\lambda[\text{Convex Hull}(S)] = \text{Convex Hull}(\lambda S)$ (exercise). So deduce $\lambda \tilde{C} \subseteq \tilde{C}$.

Step 2: define the *Minkowski guage* (functional) of \tilde{C}

$$\mu_{\tilde{C}}: V \to \mathbb{R}_+, \ v \mapsto \inf\{t \ge 0 : v \in t\tilde{C}\}$$

 $\mu_{\tilde{C}}$ is well-defined in $[0,\infty)$ since: any v satisfies $\frac{v}{t} \to 0$ as $t \to \infty$ by continuity of M. So $\frac{v}{t}$ must "enter" the neighborhood \tilde{C} of 0 for t large enough.

Step 3: let us prove $v \mapsto \mu_{\tilde{C}}(v)$ is a norm:

- $\mu_{\tilde{C}}(v) \geq 0$ by construction
- if $\mu_{\tilde{C}} = 0$, then (assume $v \neq 0$ for contradiction) there exists U open around 0 with $v \notin U$ (since $V \setminus \{v\}$ is open). Since \tilde{C} is bounded, there exists $t_1 > 0$ such that $\tilde{C} \subseteq t_1 U$. Since $\mu_{\tilde{C}}(v) = 0$, there exists $t_2 \in (0, t_1^{-1})$ such that $v \in t_2 \tilde{C}$, then $v \in t_2 \tilde{C} \subseteq t_1^{-1} \tilde{C} \subseteq U$, a contradiction.
- Want to show $\mu_{\tilde{C}}(\lambda v) = |\lambda|\mu_{\tilde{C}}(v)$ for $\lambda \in \mathbb{F}^{\times}$, $v \in V$. Use \tilde{C} balanced: for all t > 0 such that $\lambda v \in t\tilde{C}$, we have

$$\frac{\lambda}{|\lambda|}v \in \frac{t}{|\lambda|}\tilde{C} \implies v \in \frac{t}{|\lambda|}\tilde{C} \implies \mu_{\tilde{C}}(v) \leq \frac{1}{|\lambda|}\mu_{\tilde{C}}(\lambda v)$$

The inequality in the other direction follows by reasoning with λ^{-1} . So $|\lambda|\mu_{\tilde{C}}(v)=\mu_{\tilde{C}}(\lambda v)$.

• Want to show $\mu_{\tilde{C}}(v_1 + v_2) \leq \mu_{\tilde{C}}(v_1) + \mu_{\tilde{C}}(v_2)$ for all $v_1, v_2 \in V$. Indeed, given $t_1, t_2 > 0$ such that $v_1 \in t_1\tilde{C}, v_2 \in t_2\tilde{C}$, we have

$$v_1 + v_2 \in t_1 \tilde{C} + t_2 \tilde{C} = (t_1 + t_2) \left[\frac{t_1}{t_1 + t_2} \tilde{C} + \frac{t_2}{t_1 + t_2} \tilde{C} \right] \subseteq (t_1 + t_2) \tilde{C} \text{ (convexity)}$$

so $\mu_{\tilde{C}}(v_1+v_2) \leq t_1+t_2$. By taking infima over t_1, t_2 :

$$\mu_{\tilde{C}}(v_1 + v_2) \le \mu_{\tilde{C}}(v_1) + \mu_{\tilde{C}}(v_2)$$

Step 4: prove $\mu_{\tilde{C}}$ induces the topology τ .

• Want to prove

$$\underbrace{B(v_0,\varepsilon)}_{\text{open ball for }\mu_{\tilde{C}}} = \{v \in V : \mu_{\tilde{C}}(v-v_0) < \varepsilon\} \in \tau$$

Take $v \in B(v_0, \varepsilon)$ then by the triangle inequality

$$B(v, \varepsilon - |v|) \subseteq B(v_0, \varepsilon)$$

and $B(v, \varepsilon') \supseteq v + \frac{\varepsilon'}{2} \tilde{C}$ by definition of the ball for $\mu_{\tilde{C}}$. And (since translations, dilations continuous) $v + \frac{\varepsilon'}{2} \tilde{C}$ is a neighborhood of v.

 $B(v_0, \varepsilon)$ open (in τ) around its points, so is in τ .

• Take $U \in \tau$, and (wlog) $0 \in U$. Let us prove $0 \in B(0, \varepsilon_0) \subseteq U$ for some $\varepsilon_0 > 0$. Indeed \tilde{C} is bounded so there exists $\varepsilon_0 > 0$ such that $\tilde{C} \subseteq \varepsilon_0^{-1}U$ hence $U \supseteq \varepsilon_0 \tilde{C}$ and so $U \supseteq \varepsilon \tilde{C} \ \forall \varepsilon < \varepsilon_0$ and thus $U \supseteq B(0, \varepsilon_0)$.

Remarks:

- 1. $B(0,\varepsilon_0) \subseteq \bigcup_{0 \le \varepsilon \le \varepsilon_0} \varepsilon \tilde{C}$
- 2. T_1 implies Hausforff (T_2) . Consider $v_0 \neq v_1$ in V: so $0 \neq v_1 v_0$, T_1 implies there is U open around 0 with $v_1 v_0 \notin U$. Then (since A, M continuous) $(v, w) \mapsto v w$ is continuous and there exists \tilde{U} open around 0 such that $\tilde{U} \tilde{U} \subseteq U$. Then $v_0 + \tilde{U}$ and $v_1 + \tilde{U}$ are open disjoint neighborhoods of v_0 and v_1 respectively (disjoint since otherwise $v_1 v_0 \in \tilde{U} \tilde{U} \subseteq U$).

4 Some examples of NVS'

Definition. Let $(V, ||\cdot||)$ be an NVS (over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}). If (V, d), d distance induced by $||\cdot||$ is a complete metric space, then $(V, ||\cdot||)$ is called a *Banach space*.

Example. \mathbb{R}^n , \mathbb{C}^n , $n \geq 1$ are Banach spaces, for $||\cdot||_p$, $p \in [1, \infty)$.

Example. Given (X, τ) a general topological space, define

$$B_{\mathbb{F}}(X) = \{ \text{functions } : X \to \mathbb{F} \text{ bounded} \}$$

$$C_{\mathbb{F}}(X) = \{\text{functions } : X \to \mathbb{F} \text{ continuous}\}\$$

$$C_{\mathbb{F},b} = C_{\mathbb{F}}(X) \cap B_{\mathbb{F}}(X)$$

If X = K is compact, $C_{\mathbb{F}}(X) = C_{\mathbb{F},b}(X)$. These are vector spaces over \mathbb{F} with addition (f+g)(x) = f(x) + g(x) and multiplication (fg)(x) = f(x)g(x).

Norm on $C_{\mathbb{F},b}(X)$: the supremum norm, $||f||_{\infty} = \sup_{x \in X} |f(x)|$

Proposition. $(C_{\mathbb{F},b},||\cdot||_{\infty})$ is a Banach space over \mathbb{F} .

Proof.

- $||f||_{\infty}$ is well defined in \mathbb{R}^+ since f is bounded.
- $||f||_{\infty} = 0$ means f(x) = 0 for all $x \in X$ and so f = 0.
- Homogeneity and triangle inequality: inherited from $|\cdot|$ in \mathbb{F} (exercise).
- Completeness: let $(f_k)_{k\geq 1}$ be a Cauchy sequence under $||\cdot||_{\infty}$. For each $x\in X$ we have $|f_m(x)-f_n(x)|\leq ||f_m-f_n||_{\infty}\to 0$ as $n,m\to\infty$. So $(f_k(x))_{k\geq 1}$ is Cauchy in \mathbb{F} , so (since \mathbb{F} is complete) there exists a limit $f(x)=\lim_{k\to\infty} f_k(x)$. This defines a function $f:X\to\mathbb{F}$.
- For all $\varepsilon > 0$, there exists $n_0 \ge 1$ such that $\forall m, n \ge n_0, \forall x \in X$,

$$|f_m(x) - \underbrace{f_n(x)}_{\to f(x)}| \le \varepsilon$$

so for all $\varepsilon > 0$, there exists $n_0 \ge 1$ such that $\forall m \ge n_0, \, \forall x \in X$ we have

$$|f_m(x) - f(x)| \le \varepsilon$$

so $||f_m - f||_{\infty} \le \varepsilon$ and $f_m \to f$ uniformly, so $f \in C_{\mathbb{F},b}$ by properties of the uniform limit.

Example. Given $U \subseteq \mathbb{R}^n$ open, bounded and non-empty; $m \in \mathbb{N}^*$, consider

$$C^m(\overline{U}) = \{ f: U \to \mathbb{R} : f \text{ is } m \text{ times differentiable on } U, \forall \alpha \in \mathbb{N}^n \\ \text{s.t } |\alpha| = \alpha_1 + \ldots + \alpha_m \leq m \\ , \partial^{\alpha} f \text{ is continuous and bounded on } U \}$$

Then $(C^m(\overline{U}), ||\cdot||_{C^m})$ is a Banach space where

$$||f||_{C^m} = \sup_{\alpha \in \mathbb{N}^n, |\alpha| \le m} \underbrace{\sup_{x \in U} |\partial^{\alpha} f(x)|}_{||\partial^{\alpha} f||_{\infty}}$$

Exercise: check that this is complete and $\partial^{\alpha} f$, $\alpha \leq m-1$, extends continuously to \tilde{U} .

Example. $C_{\mathbb{R}}([0,1])$, the set of continuous functions from [0,1] to \mathbb{R} . This is a vector space over \mathbb{R} .

- $(C_{\mathbb{R}}([0,1]), ||\cdot||_{\infty})$ is a Banach space (Example sheet)
- Could take another norm such that

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{1/p}, \ p \in [1, \infty)$$

Study of $(C_{\mathbb{R}}([0,1]), ||\cdot||_p)$:

- $||\cdot||_p$ is well defined: Riemann and Lebesgue integrable.
- If $||f||_p = 0$ and $f \neq 0$ then there exists $\varepsilon > 0$ and $x_0 \in [0,1]$ such that $|f(x_0)| \geq \varepsilon$, so by continuity there exist $a < b \in [0,1]$ such that $\inf_{x \in [a,b]} |f(x)| \geq \frac{\varepsilon}{2}$. Then $\int_0^1 |f(x)|^p dx \geq \left(\frac{\varepsilon}{2}\right)^p (b-a) > 0$ which is impossible.
- Homogeneity is clear.
- Triangle inequality:

$$||f+g||_p^p = \int_0^1 |f+g|^p dx = \int_0^1 |f+g||f+g|^{p-1} dx$$

$$\leq \int_0^1 |f||f+g|^{p-1} \mathrm{d}x + \int_0^1 |g||f+g|^{p-1} \mathrm{d}x$$

$$\leq \inf_{\text{H\"older:}} ||f||_p ||f+g||_p^{p-1} + ||g||_p ||f+g||_p^{p-1}$$

If $||f+g||_p = 0$ then its clear. Otherwise this implies $||f+g||_p \le ||f||_p + ||g||_p$.

• Completeness? Define

$$f_k(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} - \frac{1}{4k} \\ \left[x - \left(\frac{1}{2} - \frac{1}{4k} \right) \right] 4k & \frac{1}{2} - \frac{1}{4k} \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} \le x \le 1 \end{cases}$$

then $(f_k)_{k\geq 1}$ is Cauchy for $||\cdot||_p$, and the limit is $1_{[1/2,1]}$ which is not continuous. So not complete.

Remark: what about the completion? In general, abstract completions are often not very useful; however in this case, it is: Lebesgue space $L^p([0,1])$, defined as equivalence classes for the "almost everywhere" equality.

Example. Take functions from $X = \mathbb{N} \to \mathbb{R}$ or \mathbb{C} , get $\ell_{\mathbb{F}}^p$ for $p \in [1, \infty]$, with norm $||(x_k)||_p = \left(\sum_{k\geq 1} |x_k|^p\right)^{1/p}$ for $p < \infty$ and $||(x_k)||_\infty = \sup_{k\geq 1} |x_k|$. Exercise: show this is indeed a norm and this is complete, hence Banach.

Remark: for $p \in (0,1)$, ℓ^p is similarly defined.

Non-examinable example of TVS:

- Define for $U \subseteq \mathbb{R}^n$ open & non-empty, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , $C_{\mathbb{F}}(U)$ the set of continuous functions $U \to \mathbb{F}$.
- TVS for the topology τ defined by the translations of the following basis of neighborhoods around 0: take $(K_n)_{n\geq 1}$ a sequence of increasing compact sets, $\bigcup_{n\geq 1} K_n = U$. Define

$$U_n = \left\{ f \in C_{\mathbb{F}}(U) : \sup_{K_n} |f| \le \frac{1}{n} \right\}$$

- Exercise: show this indeed a TVS and τ does not depend on the choice of the (K_n) .
- Proposition: $(C(U), \tau)$ is a locally convex, not locally bounded TVS (therefore not normable). Furthermore, it is metrizable with $d(f, g) = \sum_{k\geq 1} \frac{1}{2^n} \left(\frac{\sup_{K_n} |f-g|}{1+\sup_{K_n} |f-g|} \right)$. Also (C(U), d) is complete (Frechet space).

Remarks:

- 1. Not locally bounded: suppose there exists B bounded neighborhood of 0, then there exists $n_0 \geq 1$ such that $U_{n_0} \subseteq B$. B is bounded so there exists t>0 such that $B \subseteq tU_{n_0+1}$ so $U_{n_0} \subseteq tU_{n_0+1}$. But this is impossible since we can always construct $f \in U_{n_0}$ such that $\sup_{K_{n_0+1}} |tf| > 1/n$
- 2. Let $C_c(U)$ be the set of continuous functions with compact support. Then V is a neighborhood of 0 if and only if $V \cap C(K_n)$ is a neighborhood of 0 in $C(K_n)$. This is a non-countable topology.

5 Bounded linear maps & duality

Definition. Given (V, τ_V) and (W, τ_W) TVS', $T: V \to W$ linear is bounded if it maps bounded sets to bounded sets: for any $B_V \subseteq V$ bounded, then $T(B_V)$ is bounded in W.

Proposition. Given (V, τ_V) , (W, τ_W) TVS' which are locally bounded (note this includes NVS'), and $T: V \to W$ is linear, then T is bounded if and only if T is continuous.

Proof.

Step 1: T bounded $\Longrightarrow T$ continuous at 0. Let U_W be an open neighborhood of 0 in W, and U_V an open bounded neighborhood of 0 in V. Then $T(U_V)$ is bounded, so there exists t > 0 such that $T(U_V) \subseteq tU_W$. So $T^{-1}(U_W) \supseteq t^{-1}U_V$ and $t^{-1}U_V$ is open around 0 in V (using the fact dilations are continuous).

Step 2: T continuous at $0 \implies T$ is continuous everywhere. Let $w \in W$, U_W open around $w, v \in V$ such that T(v) = w. Then $U_W - w$ is open around 0 in W (translation continuous), so by Step 1, $T^{-1}(U_W - w)$ is a neighborhood of 0 in V. So

$$T^{-1}(U_W) = T^{-1}(\{w\}) + T^{-1}(U_W - w)$$

$$= \bigcup_{v' \in T^{-1}(\{w\})} (v' + T^{-1}(U_W - w))$$

$$\supseteq \underbrace{v + T^{-1}(U_W - w)}_{\text{ngbd around } v}$$

Step 3: T continuous \Longrightarrow T bounded. Let $B_V \subseteq V$ be bounded, and U_W an open neighborhood of 0 in W. Then $T^{-1}(U_W)$ is open around 0 in V. So (since B_V bounded) there exists t > 0 such that $B_V \subseteq tT^{-1}(U_W)$ and so $T(B_V) \subseteq tU_W$.

We have proved that $T(B_V)$ is covered by a dilation of any neighborhood of 0, so is bounded.

Definition. Given $(V, ||\cdot||_V)$, $(W, ||\cdot||_W)$ NVS' on \mathbb{F} , and $T: V \to W$ linear, T is bounded iff T is continuous iff there exists t > 0 such that $T(B_V(0, 1)) \subseteq B_W(0, t)$. The infimum of such t's is denoted |||T|||.

Remark: can check that |||T||| is equivalently defined as

$$|||T||| = \sup_{||v||_{V} \le 1} ||Tv||_{W} = \sup_{||v||_{V} < 1} ||Tv||_{W} = \sup_{||v||_{V} = 1} ||Tv||_{W}$$
(*)

Definition. Given $(V, ||\cdot||_V), (W, ||\cdot||_W)$ NVS', denote

$$\mathcal{L}(V, W) = \{T : V \to W \text{ linear map}\}\$$

$$\mathcal{B}(V, W) = \{T : V \to W \text{ linear bounded map}\}\$$

Proposition. $(\mathcal{B}(V, W), ||| \cdot |||)$ is an NVS.

Proof.

- $\mathcal{L}(V, W)$ is a vector space via $(\lambda_1 T_1 + \lambda_2 T_2)(v) = \lambda_1 T_1(v) + \lambda_2 T_2(v)$.
- $\mathcal{B}(V, W)$: dilation/(finite) sums of bounded sets are bounded. So T bounded implies λT is bounded and T_1, T_2 bounded implies $T_1 + T_2$ bounded.

- |||T||| is well-defined in \mathbb{R}_+ for T bounded, |||0||| = 0 and if |||T||| = 0 then $T(B_V(0,1)) \subseteq B_W(0,t)$ for all t > 0 and so by continuity of dilation, $T(B_V(0,1)) = \{0\}$. By linearity, this implies T = 0.
- $|||\lambda T||| = |\lambda| |||T|||$ and $|||T_1 + T_2||| \le |||T_1||| + |||T_2|||$ follows from (*)

Proposition. Let $(V, ||\cdot||_V)$ be a NVS and $(W, ||\cdot||_W)$ a Banach space. Then $(\mathcal{B}(V, W), |||\cdot|||)$ is a Banach space.

Proof. We have proved that $(\mathcal{B}(V,W),|||\cdot|||)$ is an NVS above. So we prove completeness. Let $(T_k)_{k\geq 1}$ be a Cauchy sequence in $(\mathcal{B}(V,W),|||\cdot|||)$. Then

$$\sup_{k_1, k_2 \ge k_0} |||T_{k_1} - T_{k_2}||| \to 0 \text{ as } k_0 \to \infty$$
 (**)

$$\forall v \in V, \sup_{k_1, k_2 \ge k_0} ||T_{k_1}(v) - T_{k_2}(v)||_W \le ||v||_V |||T_{k_1} - T_{k_2}||| \xrightarrow{k_0 \to \infty} 0 \quad (***)$$

so $(T_k(v))_{k\geq 1}$ is a Cauchy sequence in W. Since W is complete, can let the associated limit be T(v).

Then T is linear by pointwise limits:

$$T(\lambda_1 v_1 + \lambda_2 v_2) = \lim_{k \to \infty} T_k(\lambda_1 v_1 + \lambda_2 v_2) = \lim_{k \to \infty} [\lambda_1 T_k(v_1) + \lambda_2 T_k(v_2)]$$

= $\lambda_1 T(v_1) + \lambda_2 T(v_2)$

Use (***), take $k_2 \to \infty$ so

$$\forall v \in V, \ \sup_{k_1 \geq k_0} ||T_{k_1}(v) - T(v)||_W \leq ||v||_V \left(\sup_{k_1, k_2 \geq k_0} |||T_{k_1} - T_{k_2}||| \right) \to 0 \text{ as } k_0 \to \infty$$

Hence for $v \in V$ such that $||v|| \le 1$ we have

$$\sup_{k_1 > k_0} ||T_{k_1}(v) - T(v)||_W \le \sup_{k_1, k_2 > k_0} |||T_{k_1} - T_{k_2}||| \tag{\dagger}$$

Then (for $v \in V$ with $||v|| \le 1$) by the triangle inequality

$$||T(v)||_{W} \leq ||\underbrace{T_{k_{0}}(v)}_{\text{bounded}}|| + \sup_{k_{1},k_{2} \geq k_{0}} |||T_{k_{1}} - T_{k_{2}}|||$$

$$\sup_{||v|| \leq 1} ||T(v)||_W \leq |||T_{k_0}||| + \sup_{k_1, k_2 \geq k_0} |||T_{k_1} - T_{k_2}|||$$

So T is bounded. Now (\dagger) implies

$$\sup_{k_1 \geq k_0} |||T_{k_1} - T||| \leq \sup_{k_1, k_2 \geq k_0} |||T_{k_1} - T_{k_2}||| \xrightarrow{k_0 \to \infty} 0$$

So
$$T_{k_1} \xrightarrow{|||\cdot|||} T$$
.

Remark: can deduce from (†) that for all $v \in V$ with $||v|| \le 1$,

$$||T_k(v)||_W - ||T_k - T||| \le ||T(v)||_W \le ||T_k(v)||_W + ||T_k - T|||$$

Then taking supremum over $||v|| \le 1$

$$\left| \sup_{||v|| \le 1} ||Tv||_W - \sup_{||v|| \le 1} ||T_k(v)||_W \right| \le |||T_k - T||| \xrightarrow{k \to \infty} 0$$

So $|||T_k||| \xrightarrow{k \to \infty} |||T|||$.

Definition. Let $(V, ||\cdot||_V)$ be a NVS over \mathbb{F} . Let

$$\mathcal{L}(V, \mathbb{F}) = \{ \text{linear maps } V \to \mathbb{F} \}, \text{ the algebraic dual }$$

$$\mathcal{B}(V,\mathbb{F}) = \{ \text{bounded linear maps } V \to \mathbb{F} \} \text{ denoted } (V^*, ||\cdot||_{V^*}) \}$$

Note that by the previous proposition $\mathcal{B}(V,\mathbb{F})$ is Banach (since $\mathbb{F} = \mathbb{R}$ or \mathbb{C} is complete).

Definition. Let $(V, ||\cdot||_V)$, $(W, ||\cdot||_W)$ be NVS', $T \in \mathcal{B}(V, W)$. Then T^* (the adjoint of T) defined as $T^*: W^* \to V^*$, $\psi \mapsto \varphi = \psi \circ T$. i.e $T^*(\psi)(v) = \psi(T(v))$.

Proposition. T^* is well-defined $W^* \to V^*$, linear and bounded (for $||\cdot||_{W^*}$ and $||\cdot||_{V^*}$) with $|||T^*||| \le |||T|||$.

Remark: soon, with the help of the Hahn-Banach Theorem, we'll prove that the duals are "big enough" so that $|||T^*||| = |||T|||$.

Proof.

- Well-defined: follows since linearity and boundedness are stable under composition, i.e if $T:V\to W$ is linear and bounded, $\psi:W\to \mathbb{F}$ is linear and bounded, so is $\psi\circ T:V\to \mathbb{F}$. So $\psi\circ T\in V^*$
- Linearity:

$$T^* (\lambda_1 \psi_1 + \lambda_2 \psi_2) (v) = (\lambda_1 \psi_1 + \lambda_2 \psi_2) (Tv)$$

= $\lambda_1 [\psi_1 (Tv)] + \lambda_2 [\psi_2 (Tv)]$
= $\lambda_1 T^* (\psi_1) (v) + \lambda_2 T^* (\psi_2) (v)$

• Boundedness:

$$|||T^*||| = \sup_{||\psi||_{W^*}} ||T^*(\psi)||_{V^*} = \sup_{||\psi||_{W^*} \le 1} \sup_{||v||_{V} \le 1} |T^*(\psi)(v)|$$

$$\leq \sup_{||\psi||_{W^*} \leq 1} \sup_{||v||_{V} \leq 1} |\psi(Tv)| \leq \sup_{||\psi||_{W^*} \leq 1} \sup_{||v||_{V} \leq 1} ||\psi||_{W^*} |||T||| \cdot ||v||_{V} \leq |||T|||$$

Definition. Let $(V, ||\cdot||_V)$ be an NVS. Since $(V^*, ||\cdot||_{V^*})$ is a NVS (Banach), we can define its dual, denoted $(V^{**}, ||\cdot||_{V^{**}})$ the *bidual* of V (again Banach).

Proposition. Define $\Phi: V \to V^{**}, v \mapsto \Phi(v)$ by

$$\forall \varphi \in V^*, \ \Phi(v)(\varphi) = \varphi(v)$$

Then Φ is well-defined, linear and bounded with $|||\Phi||| \leq 1$. Φ is called the canonical bi-dual embedding.

Remark: with the Hahn-Banach Theorem, we'll prove Φ is an isometry. In particular, $|||\Phi||| = 1$ and Φ is injective. However, Φ is not always surjective. In fact, V and V^{**} are not always isomorphic.

Proof.

then

• Well-defined: given $v \in V$, $\phi \in V^*$ is linear, and bounded since

$$\sup_{||\varphi||_{V^*} \le 1} |\varphi(v)| \le ||v||_V$$

• Linearity:

$$\begin{split} \Phi(\lambda_1 v_1 + \lambda_2 v_2)(\varphi) &= \varphi(\lambda_1 v_1 + \lambda_2 v_2) \\ &= \lambda_1 \varphi(v_1) + \lambda_2 \varphi(v_2) \\ &= \lambda_1 \Phi(v_1)(\varphi) + \lambda_2 \Phi(v_2)(\varphi) \end{split}$$

• Boundedness:

$$\begin{split} |||\Phi||| &= \sup_{||v||_{V} \le 1} ||\Phi(v)||_{V^{**}} = \sup_{||v||_{V} \le 1} \sup_{||\varphi||_{V^{*}} \le 1} |\underline{\Phi(v)(\varphi)}| \\ &= \sup_{||v||_{V} \le 1} \sup_{||\varphi_{V^{*}}|| \le 1} \underline{|\varphi(v)|} \\ &\le 1 \\ &\le ||\varphi||_{V^{*}} ||v||_{V} \end{split}$$

Example. Let V, W be finite-dimensional NVS' with bases $(v_i)_{i=1}^m$ and $(w_j)_{j=1}^n$ respectively. Let $T: V \to W$ be linear (and thus bounded as finite dimensional). Take $(v_i^*)_{i=1}^m$ defined by $v_i^*(v_{i'}) = \delta_{ii'}$ and $(w_j^*)_{j=1}^n$ defined by $w_j^*(w_{j'}) = \delta_{jj'}$. Then V^*, W^* are finite-dimensional NVS' with bases (v_i^*) and (w_j^*) respectively. If T has a matrix $A = (a_{ij})_{i=1,j=1}^{i=m,j=n}$ in with respect to the bases (v_i) and (w_j) ,

$$Tv_i = \sum_{j=1}^n a_{ij} w_j$$

and T^* has matrix $A^T = (a_{ji})_{j=1,i=1}^{j=n,i=m}$ with respect to the bases (w_j^*) and (v_i^*) .

Example. Space of square summable spaces $\ell^2(\mathbb{F})$ (as usual $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) is infinite dimensional. There are linear maps on this space that are

- Bounded, injective but not surjective: $T(x_1, x_2,...) \mapsto (0, x_1, x_2,...)$ a "right shift" of the sequence
- Bounded, surjective but not injective: $T(x_1, x_2, ...) \mapsto (x_2, x_3, ...)$ a "left shift" of the sequence
- Linear but not bounded: find a basis $(e_i)_{i \in I}$, extract $(e_n)_{n \geq 1}$ a countable subset. Then define $T: e_n \mapsto ne_n$, $e_i \mapsto 0$ for $i \notin \mathbb{N}$.

Duality: $(\ell^2)^* = \ell^2$ (Hilbert representation theorem)

Example. For ℓ^p , $p \in (1, \infty)$, $p \neq 2$, we have duals

$$\ell^p \to (\ell^p)^* = \ell^q \to (\ell^q)^* = \ell^p \text{ where } \frac{1}{p} + \frac{1}{q}$$

$$\ell^1 \to (\ell^1)^* = \ell^\infty \to (\ell^\infty)^* \neq \ell^1$$

Example. (Question 8 Example sheet 1) $(C^1([0,1]), ||\cdot||_{C^0}) \to (C^1([0,1]), ||\cdot||_{C^1}), f \mapsto f$ is unbounded.

Zorn's Lemma

In a finite-dimensional NVS V, we have a "simple" dual V^* . In infinite-dimension, we have not even proved that if V is non-trivial (i.e not $\{0\}$) then V^* is non-trivial.

The Hahn-Banach Theorem will answer several questions:

- $V \neq \{0\} \implies V^* \neq \{0\}$
- V^* separates points of V
- Φ (the bidual embedding) is isometric, $|||\Phi||| = 1$
- $|||T^*||| = |||T|||$

<u>Idea of Hahn-Banach</u>: extend linear bounded maps already defined on a subspace.

Strategy:

- 1. "Co-dimension 1" extension: any linear bounded map $V \to \mathbb{F}$ has an extension to $W \to \mathbb{F}$ where $V \subseteq W$ with codimension 1.
- 2. Transfinite induction: Zorn's Lemma (or equivalently the Axiom of Choice)

Remark: if $V = \bigcup_{n \geq 1} V_n$, V_n subspace, $V_n \subseteq V_{n+1}$, $\dim(V_n) = n$, could use step 1 above and standard (countable) induction. However, no Banach spaces are like this.

Definition. A set S is partially ordered (poset) if there is a binary relation " \leq " such that

- $\forall x, y \in S, x \leq y \text{ or not (partial order)}$
- $\forall x \in S, x < x \text{ (reflexive)}$
- $\forall x, y, z \in S$, if $x \leq y$ and $y \leq z$, then $x \leq z$ (transitive)
- $\forall x, y \in S$, if $x \leq y$ and $y \leq x$ then x = y (non-ambiguous)

Definition. A poset S is totally ordered if $\forall x, y \in S$, if $x \not\leq y$ then $x \geq y$.

Definition. Given $S' \subseteq S$ (where (S, \leq) is a poset), we say $l \in S$ is a upper bound of S' if $\forall x \in S'$, $x \leq l$. l is a least upper bound of S' if it is an upper bound and any other upper bound $l' \in S$ satisfies $l' \geq l$.

Definition. A subset S' of S ((S, \leq) a poset) that is totally ordered is called a *chain*.

Definition. A poset (S, \leq) has the *least upper bound property* if any non-empty chain has a least upper bound.

Definition. Given a poset (S, \leq) , $m \in S$ is said to be maximal if $\forall x \in S$, $x \geq m$ implies x = m.

Theorem (Zorn's Lemma). Any non-empty poset (S, \leq) with the least upper bound property has (at least one) maximal element.

Remarks:

- 1. In fact Zorn's Lemma is true just with "upper bound" property on chains.
- 2. Zorn's Lemma is equivalent to the Axiom of Choice

5.1 Finite dimension

Definition. Let V be a NVS with two norms $||\cdot||_1$ and $||\cdot||_2$. Then these norms are said to be *equivalent*, denoted $||\cdot||_1 \sim ||\cdot||_2$ if there are two constants, c, c' > 0 such that

$$\forall v \in V, \ C||v||_1 \le ||v||_2 \le C'||v||_1$$

Remarks:

- 1. This defines equivalence classes on norms.
- 2. $||\cdot||_1 \sim ||\cdot||_2$ implies that their induced topologies are the same. The converse is also true: indeed $B_{||\cdot||_1}(0,1)$ is open around 0 for τ_2 , so there exists $\varepsilon > 0$ such that $B_{||\cdot||_2}(0,\varepsilon) \subseteq B_{||\cdot||_1}(0,1)$, which implies that for all $v \in V \setminus \{0\}$

$$\frac{\varepsilon v}{2||v||_2} \in B_{||\cdot||_2}(0,\varepsilon) \subseteq B_{||\cdot||_1}(0,1) \implies ||v||_1 \leq \frac{2}{\varepsilon}||v||_2$$

and similarly for the opposite bound.

3. When 2 norms are equivalent, they generate te same notion of bounded linear maps, converging spaces & Cauchy sequences.

Proposition.

- (i) All norms are equivalent in finite-dimension
- (ii) Given $(V, ||\cdot||_V)$ a finite-dimensional NVS, $(W, ||\cdot||_W)$ a NVS, any linear map $T: V \to W$ is bounded
- (iii) Given $(V, ||\cdot||_V)$ an NVS, if $\overline{B}_V(0, 1)$ is compact, then V is finite dimensional.

Proof.

(i) Let us prove all norms are equivalent to $||\cdot||_{\infty}$, defined for a basis $(e_i)_{i=1}^n$ as $||v||_{\infty} = \sup_{1 \le i \le n} |v_i|$ for $v = \sum v_i e_i$.

Let $||\cdot||$ be a norm on V

$$||v|| = \left|\left|\sum_{i=1}^{n} v_i e_i\right|\right| \le \sum_{i=1}^{n} |v_i| ||e_i|| \le \underbrace{\left(\sum_{i=1}^{n} ||e_i||\right)}_{=C'} ||v||_{\infty}$$

Consider $\varphi:(V,||\cdot||_{\infty})\to\mathbb{R}_+$ defined by $v\mapsto ||v||$. Then φ is continuous:

$$|\varphi(v) - \varphi(w)| = |||v|| - ||w||| \le ||v - w|| \le C' ||v - w||_{\infty}$$

Define $S_{||\cdot||_{\infty}}(0,1)=\{v\in V:||v||_{\infty}=1\}$. Then $\varphi:S_{||\cdot||_{\infty}}(0,1)\to\mathbb{R}_+$ continuous, so attains its minimum: there exists $v_0\in S_{||\cdot||_{\infty}}(0,1)$ such that $\forall v\in S_{||\cdot||_{\infty}}(0,1),\, \varphi(v)\geq \varphi(v_0)$.

Then $v_0 \neq 0$ since $||v_0||_{\infty} = 1$ and so $\varphi(v_0) = ||v_0|| = C > 0$. This implies

$$\left| \left| \frac{v}{||v||_{\infty}} \right| \right| \ge C, \ \forall v \in V \setminus \{0\} \implies \forall v \in V, \ ||v|| \ge C||v||_{\infty}$$

(ii) Completeness and the fact closed bounded sets are compact follows from (i) since true with $(\mathbb{F}^n, ||\cdot||_i nfty)$.

$$||T(v)||_{W} = \left\| \sum_{i=1}^{n} v_{i} T(e_{i}) \right\|_{W} \le \sum_{i=1}^{n} |v_{i}|||T(e_{i})||_{W}$$

$$\le ||v||_{\infty} \left(\sum_{i=1}^{n} ||T(e_{i})||_{W} \right) \le \frac{1}{C} ||v||_{V} \left(\sum_{i=1}^{n} ||T(e_{i})||_{W} \right)$$

so T is bounded