

Sciences Industrielles de l'ingénieur Interrogation de cours 4 – A

[Aucun document - Calculatrice interdite - Répondre directement sur le sujet]

Nom:.....

Cours

Question 1 Après avoir dessiné une liaison pivot de centre 0 et d'axe \vec{z} , paramétrer le mouvement de la liaison.

Question 2 Après avoir dessiné une liaison sphère – cylindre (linéaire annulaire) de centre 0 en 2D, paramétrer les mouvements de la liaison.

EXERCICE

On donne le mélangeur suivant :

On note $\mathcal{R}_0 = (O, \vec{X}, \vec{Y}, \vec{Z})$, $\mathcal{R}_2 = (O, \overrightarrow{X_2}, \vec{Y}, \overrightarrow{Z_2})$, $\mathcal{R}_3 = (D, \overrightarrow{X_2}, \overrightarrow{Y_3}, \overrightarrow{Z_3})$ et $\mathcal{R}_4 = (D, \overrightarrow{X_4}, \overrightarrow{Y_4}, \vec{Z})$. Par ailleurs:

- $(\widehat{\vec{x}}, \widehat{\vec{x}_2}) = \beta(t)$
- $(\widehat{z_2}, \widehat{z_3}) = \gamma$ constante
- $(\widehat{\vec{x}}, \widehat{\vec{x}_4}) = \theta(t)$

On a : $(\overrightarrow{DC}, \overrightarrow{DE}) = \frac{\pi}{2}$ constamment.

Question 1 Question 2	Resituer $\beta(t)$, γ et $\theta(t)$ sur les figures planes. Écrire l'équation traduisant $(\overrightarrow{DC}, \overrightarrow{DE}) = \frac{\pi}{2}$.
	`
Question 3 le produit sca	Après avoir exprimé les vecteurs de l'équation précédente dans \mathcal{R}_0 , calculer laire.
Question 4	Exprimer $\boldsymbol{\theta}(\boldsymbol{t})$ en fonction de $\beta(t)$ et γ .
Question 5 $\beta(t) et \gamma.$	Dériver $\theta(t)$ en fonction du temps pour obtenir $\theta(t)$ en fonction de $\beta(t)$,
F (1) 33 /1	