Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
S1	2	"731256".ap.	US-PGPUB	ADJ	ON	2007/05/08 11:26

S2	234	("2015864" "2593146" "20020149656" "20030082237" "20030099718" "200	US-PGPUB; USPAT	ADJ	ON	2007/05/08 11:26
		30203991" "20040120904" "3266973"				
		"3338992" "3381688" "3494821" "35 02538" "3502763" "3507269" "354261				
		5" "3615478" "3692618" "3794497" "3				
		802817" "3849241" "3919437" "39604				
		94" "3971665" "4006030" "4041203" "				
		4078029" "4100324" "4101638" "4172		1		
		781" "4297233" "4313820" "4340563"				
		"4375448" "4407960" "4467012" "44				
		69746" "4488969" "4494278" "449462				
		9" "4517308" "4522203" "4525410" "4				
		575556" "4604313" "4640810" "46438				
		01" "4655757" "4701218" "4715983" " 4725415" "4734324" "4775585" "4780				
		448" "4781858" "4783220" "4798603"				
		"4802473" "4818464" "4823404" "48				
		23803" "4904304" "4969457" "497861				
		5" "4988505" "5000746" "5020533" "5				
		057302" "5064473" "5100581" "51007				
		02" "5108739" "5122418" "5133803" "				
		5145518" "5145727" "5169706" "5178				
		931" "5183656" "5188885" "5196177"				
		"5204111" "5204429" "5209998" "52 20000" "5221497" "5225374" "523095				
		3" "5238518" "5245117" "5266289" "5	•			
		284703" "5292868" "5294717" "53003]
		65" "5314855" "5322061" "5332432" "				
		5338713" "5342876" "5350624" "5366]
		947" "5382400" "5383450" "5397667"				
		"5407442" "5407600" "5420090" "54			:	
		27844" "5429628" "5451450" "545886				
		4" "5472775" "5480636" "5486356" "5				
		487938" "5488126" "5527171" "55385 48" "5539124" "5540916" "5547607" "				
		5553608" "5554775" "5580655" "5583				
		219" "5591797" "5597512" "5616315"				
		"5661198" "5663224" "5679138" "56			j	
		79724" "5695868" "5733272" "574700				
		3" "5773227" "5795985" "5813398" "5				
		817300" "5837352" "5843509" "58557				
		88" "5858503" "5861144" "5871872" "				
		5874067" "5880176" "5880309" "5882				
		638" "5885599" "5897541" "5902226" "5905101" "5916596" "5948398" "59				
		48483" "5962566" "5972389" "598522				
		9" "5989510" "5989515" "5998222" "6				
		004625" "6007592" "6007795" "60247				
		86" "6045900" "6047413" "6060410" "				
1		6073771" "6075179" "6096299" "6111				
		163" "6172173" "6177608" "6190814"				
		"6193844" "6200555" "6210625" "62				
		25524" "6238767" "6254894" "626461 5" "6277346" "6277489" "6277772" "6				
		291535" "6294222" "6299867" "63097				
	7 4:18:20 PM		1077175			Page 2
C:\Docu	ments and Set	36" "6315864" "6334988" "6344218" " ttipgs\\\schlient\My1J3cumen s\FAS \\Worksr 6344272" "6358537" "6358909" "6361	aces\10731256 	triggerable o	elivery sys	stem.wsp
		780"1"6369390"1"6376741"1"6387495"			ļ	

			T			1 1
S3	1	("5767115").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 11:27
S4	1	("6007795").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 11:27
S5	1	("6537665").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 11:27
S6	1	("3,252,917").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 11:27
S7	1	("7141518").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 11:27
S8	2	("3007878").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 11:27
S9	2	("2,574,902").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 11:28
S10	1	("5631365").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 11:28
S11	1	"20030099718"	US-PGPUB	ADJ	ON	2007/05/08 11:28
S12	1	"20060222670"	US-PGPUB	ADJ	ON	2007/05/08 11:29
S13	3	"20030082237"	US-PGPUB	ADJ	ON	2007/05/08 11:29
S14	3	"2004060378"	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S15	308	alumina coated silica	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON .	2007/05/08 11:29
S16	179	(alumina coated silica) same (particle or nanoparticle)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S17	9241	silica with alumina with (coat or coated or coating)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ .	ON	2007/05/08 11:29

				·		
S18	523	S17 same (stability or stable)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S19	9241	silica with alumina with (coat or coated or coating)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S20	3404	S19 same (particle or particulate or nanoparticle or nanoparticulate or microparticulate)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S21	465544	alumina or aluminum oxide	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S22	64442	S21 with (particle or nanoparticle or microparticle)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S23	732727	silica or silicon dioxide	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S24	102673	S23 with (particle or nanoparticle or microparticle)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S25	3143	S24 same (S21 with (coat or coating or coated))	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29

S26	2003	snowtex	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S27	25	(S16).clm.	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S28	. 15	S16 and (pharmaceutical or drug)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S29	42	S20 and drug delivery	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S30	41	S25 and drug delivery	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S31	154	silica same alumina same (coat or coated or coating) same nanoparticle	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 11:29
S32	179	(alumina coated silica) same (particle or nanoparticle)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	ADJ	ON	2007/05/08 12:08
S33	1	"20030022783"	US-PGPUB	ADJ	ON	2007/05/08 15:41
S34	1	("5611829").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 16:00
S35	1	("4451388").PN.	USPAT; EPO; JPO	OR	OFF	2007/05/08 16:00

STN SEARCH HISTORY

=> d his

(FILE 'HOME' ENTERED AT 15:02:23 ON 08 MAY 2007)

FILE 'CAPLUS' ENTERED AT 15:02:33 ON 08 MAY 2007 E ALUMINA+ALL/CT

				•						•
L1	355322	S	("ALUMINA"	OR	"ALUMINUM	OXIDE"	OR	MIMIMITALIA	OXIDE	(11.203.14)
			STLTCA+ALL						0.1.1.0.0	(1111200)

L2 563120 S ("SILICA" OR "AEROSIL" OR "SILICON DIOXIDE" OR "SILICON OXIDE

L3 92893 S L1 AND L2

L4 25046 S L3 AND (COAT OR COATING OR LAYER OR LAYERING)

L5 50 S ALUMINA COATED SILICA

ANSWER 1 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

2006:32382 CAPLUS ACCESSION NUMBER:

144:92454 Silica sol and its production method for grinding DOCUMENT NUMBER: Nishida, Hiroyasu; Wakamiya, Yoshinori; Taguma,

TITLE: INVENTOR(S):

Catalysts and Chemicals Industries Co., Ltd., Japan PATENT ASSIGNEE(S):

Jpn. Kokai Tokkyo Koho, 19 pp.

CODEN: JKXXAF

Patent DOCUMENT TYPE: Japanese LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

SOURCE:

Na

LVIDI				APPLICATION NO.	DATE
	PATENT NO.	KIND	DATE	APPLICATION	
				JP 2004-184947	20040623
	JP 2006012969	Α	20000112	0004 104947	20040623
DRIOE	TTY APPLN. INFO.:			weight% (as solids)	spherical SiO
PRIOR	cilias sol for gri	nding	comprises 5-50	weights (as soliton,	$\sqrt{1203}$, and an

Silica sol for grinding comprises 5-50 weight% (as solids) spherical SiO2 particulate, which has been surface treated with SiO2 and Al2O3, and an AΒ aqueous dispersion medium, wherein (a) the average particle diameter of the spherical

SiO2 particulate is 20-110 nm, (b) number of coarse particles having particle diameter of ≥800 nm is ≤3000 particles/mL per the spherical SiO2 particulate concentration of 1 weight*, (c) the pH is 1-4 or 8-11, and (d) inorg. anion content is ≤ 20 ppm. The production method includes adding simultaneously an acidic silica solution or a silicate aqueous solution and a

aluminate aqueous solution to an aqueous silica sol to obtain SiO-alumina coated silica sol, cation exchange treating and/or anion exchange treating the silica sol, adjusting the pH to 1-4 or 8-11, and centrifugally separating the silica sol to recover the supernatant.

ANSWER 2 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

2005:953531 CAPLUS ACCESSION NUMBER:

Conformal coating of nanoparticles using atomic layer DOCUMENT NUMBER: TITLE:

deposition in a fluidized bed reactor

Hakim, Luis F.; Portman, Julie L.; Casper, Michelle AUTHOR (S):

D.; Weimer, Alan W.

Department of Chemical and Biological Engineering, CORPORATE SOURCE:

Engineering Center, University of Colorado, Boulder,

CO, 80309, USA

AICHE Annual Meeting, Conference Proceedings, Austin, SOURCE:

TX, United States, Nov. 7-12, 2004 (2004),

337AU/1-337AU/21. American Institute of Chemical

Engineers: New York, N. Y.

CODEN: 69GSKT; ISBN: 0-8169-0965-2 Conference; (computer optical disk)

DOCUMENT TYPE:

The fluidization behavior of a variety of ultrafine powders was studied at LANGUAGE: increased and reduced pressures. Characteristics of stationary and fluidizing agglomerates of nanoparticles were described as well as the dynamic behavior of agglomerates during fluidization. The effect of different particle interactions such as adhesion, liquid bridging, and electrostatic on various fluidization parameters was studied. When interparticle forces are reduced, min. fluidization velocity (Umf) and agglomerate size decrease and bed expansion increases. The fluidization characteristics were found to be mainly controlled by characteristics of agglomerates such as size and d. Modification in the fluidization behavior can be obtained by altering the surface chemical of ultrafine particles. Coated particles via atomic layer deposition (ALD) showed lower min. fluidization velocity due to weaker interparticle attractions. The application of mech. vibration to the fluidized bed reduces the

agglomerate size and improves the fluidization quality. THERE ARE 53 CITED REFERENCES AVAILABLE FOR THIS 53 REFERENCE COUNT:

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 3 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN L5

2005:729835 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

143:391615

TITLE:

Novel Amorphous Functional Materials for Trapping

Nitrosamines

AUTHOR (S):

Cao, Yi; Shi, Li Ying; Zhou, Chun Fang; Yun, Zhi Yu;

Wang, Ying; Zhu, Jian Hua

CORPORATE SOURCE:

Department of Chemistry, Nanjing University, Nanjing,

210093, Peop. Rep. China

SOURCE:

Environmental Science and Technology (2005), 39(18),

7254-7259

CODEN: ESTHAG; ISSN: 0013-936X

American Chemical Society

PUBLISHER: DOCUMENT TYPE:

Journal

English Novel amorphous functional materials are designed to modify amorphous LANGUAGE: silica with alumina. They are first presented as efficient adsorbents to ΔR trap both volatile nitrosamines and bulky tobacco-specific nitrosamines in the environment. Selective adsorption, temperature-programmed surface reaction

(TPSR), and Fourier-transform IR methods are employed to study the impact of alumina modification on the ability of silica to adsorb and catalytically degrade nitrosamines. Due to the special interaction between the N-NO group of nitrosamines and the aluminum ion in the composite, nitrosamines can be very easily trapped by the composite. Moreover, this cost-efficient material first shows a remarkable adsorptive capability and catalytic activity in reduction of NNN (N-nitrosonornicotine) in the liquid phase. The new concept of designing a multifunctional trap for carcinogenic pollutants, which combines the amorphous silica's pore structure with the specific adsorbing/catalyzing features of metal ions,

proves feasible.

THERE ARE 33 CITED REFERENCES AVAILABLE FOR THIS 33 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 4 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2005:346672 CAPLUS

DOCUMENT NUMBER:

REFERENCE COUNT:

142:397836

TITLE:

Reducing odor using metal-modified particles with

chelating agents

INVENTOR (S):

Mcgrath, Kevin P.; Do, Bao Trong; MacDonald, John

Gavin

PATENT ASSIGNEE(S):

Kimberly-Clark Worldwide, Inc., USA

SOURCE:

U.S. Pat. Appl. Publ., 13 pp. CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

1

PATENT INFORMATION:

DAMENTE NO	KIND	DATE	APPLICATION NO.	DATE
PATENT NO.	1022.2			
		20050421	us 2003-686939	20031016
US 2005084464	A1	20030421	US 2003-686939	20031016
PRIORITY APPLN. INFO.:			1 To and ambodiment	the method

A method for reducing odor is provided. In one embodiment, the method comprises forming a coordination complex between particles having a pos. zeta potential and a transition metal. The method further comprises contacting the coordination complex with an odorous compound, the transition metal providing one or more active sites for capturing the odorous compound For example, in one embodiment, the particles are formed from alumina-coated silica. In addition, the coordination complex may be formed using a bifunctional chelating agent.

For example, paper towel containing the absorbent composition of Snowtex AK (colloidal silica nanoparticles coated with alumina), dyes and copper chloride was able to absorb chemical odor effectively.

ANSWER 5 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN L5

2004:999643 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

141:414622

TITLE:

Chemical mechanical polishing (CMP) compositions for

copper with improved materials selectivity

Darsillo, Michael; Wrschka, Peter; Boggs, Karl INVENTOR (S):

PATENT ASSIGNEE(S):

SOURCE:

U.S. Pat. Appl. Publ., 15 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND DATE		APPLICATION NO.	DATE
PATENT NO.				
US 2004229461	A1	20041118	US 2003-436381	20030512 20040510
CN 1787895	A	20060614	CIA 5004 0001722	20040510
PRIORITY APPLN. INFO.:				
AB A CMP composition	containin	g a rheol.	agent, e.g., in combina	CIOII WICH

AB oxidizing

agent, chelating agent, corrosion inhibitor, abrasive, and solvent. Such CMP composition advantageously increases the materials selectivity in the CMP process and is useful for polishing surfaces of copper conductors on semiconductor substrates, without the occurrence of dishing or other adverse planarization deficiencies in the polished copper. In one embodiment, the polishing composition contains 0.1 weight% of hydroxypropylcellulose with 1,000,000 MW, 4 weight% of glycine, 0.8 weight% aminotetrazole, 5 weight% hydrogen peroxide, and 1 weight% of Nyacol DP6243 alumina coated silica composite abrasive. The copper polish rate remained the same as without the addition of the rheol. agent at approx. 4000 A/min. However, tantalum (liner) polishing rate decreased from 40 Å/min to 30 Å/min, increasing selectivity from 100:1 to 133:1.

ANSWER 6 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2004:664523 CAPLUS

DOCUMENT NUMBER:

141:338318

TITLE:

Heteroaggregation, repeptization and stability in

mixtures of oppositely charged colloids Rasa, M.; Philipse, A. P.; Meeldijk, J. D.

AUTHOR(S): CORPORATE SOURCE: Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University,

Utrecht, 3584 CH, Neth.

SOURCE:

Journal of Colloid and Interface Science (2004),

278(1), 115-125

CODEN: JCISA5; ISSN: 0021-9797

Elsevier PUBLISHER: Journal DOCUMENT TYPE: English

LANGUAGE: We report a study of mixts. of initially oppositely charged particles with similar size. Dispersions of silica spheres (neg. charged) and alumina-coated silica spheres (pos. charged) at low ionic strength, mixed at various volume ratios, exhibited a surprising stability up to compns. of 50% neg. colloids as well as spontaneous repeptization of particles from the early-stage formed aggregates. The other mixts were found to contain large heteroaggregates, which were imaged using cryogenic electron microscopy. Electrophoretic mobility, elec. conductivity, static and dynamic light

scattering

and sedimentation were studied as a function of volume fraction of the mixed dispersions to investigate particle interactions and elucidate the repeptization phenomenon.

REFERENCE COUNT:

THERE ARE 19 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 7 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2004:513359 CAPLUS

DOCUMENT NUMBER:

141:55165

TITLE:

Polymer nucleating agents

INVENTOR(S):

Xu, Wen-Qing; Grabiec, Damon; Nehring, Robert J.

Nyacol Nano Technologies, Inc., USA PATENT ASSIGNEE(S):

U.S. Pat. Appl. Publ., 8 pp.

SOURCE:

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA	rent :	ΝΟ.			KINI)	DATE		Ì	APPLI	CAT.	ION N	10.		DF			
	2004		32		A1	-	2004		1	JS 20	002-3	32485	55		20	0212	220	
	6913 2004		73		B2 A1		2005 2004		1	WO 20	003-1	US41:	138		20	0312	222	
WO	W:	AF.	AG.	AL.	AM.	AT.	AU,	AZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
		GE.	GH.	GM,	HR,	HU	DE,	IL,	IN,	IS,	JP,	KΕ,	KG,	KΡ,	KR,	KZ,	LC,	
		ŭΚ.	LR.	LS.	LT.	LU	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NΙ,	NO,	
		NZ,	OM,	PG, TR.	PH,	PL TZ	PT, UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW,	10,	
	RW:	BW.	GH.	GM,	KE.	LS	MW,	MZ,	SD,	SL,	SZ,	TZ,	ŪĠ,	ZM,	ZW,	AM,	AZ,	
•		BY,	KG,	KZ, FR.	MD, GB.	RU GR	TJ,	TM, IE,	AT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	
	•	TR.	BF.	ВJ,	CF,	CG	, CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,	SN, 0031	TD,	TG
AU PRIORIT	2003				A1		2004	0722		AU 2 US 2	003- 002-	2975 3248	10 55					
PRIORII	1 APF	. 1714 •	TMEO	• •						WO 2					W 2			

A polymer nucleating agent is composed of alumina-coated AB silica particles having a surface coating of benzoic acid. Thus, 2250 g a silica sol with mean size 85 nm and 107 g 50% aluminum chlorohydrol were mixed and stirred, 167 g IR 67 an ion exchange resin was added therein and heated at 85°, 107 g 50% an aluminum chlorohydrol solution was added therein and stirred for 10 min, 167 g the ion exchange resin was added therein and heated at 85° to give alumina -coated silica with mean particle size 110 nm, 2000 g of which was added into a mixture of 84 g benzoic acid and 84 g sodium benzoate at 95° and stirred, and spray-dried to give benzoic acid-treated aluminum-coated silica, 10% of the resulting nucleating agent was mixed with 90% Profax 6523, kneaded, extruded, blended with Profax 6523, and injection moded to give a test piece (nucleating agent concentration 0.50%) with haze 21% and flexural modulus 190,000.

REFERENCE COUNT:

THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 8 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

16

ACCESSION NUMBER:

2003:77525 CAPLUS

DOCUMENT NUMBER:

138:110942

TITLE:

Oxide-based sol-gel ceramic matrix composites with

superior high temperature properties

INVENTOR(S):

Dichiara, Robert A.

PATENT ASSIGNEE(S):

USA

SOURCE:

U.S. Pat. Appl. Publ., 5 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

APPLICATION NO. DATE KIND DATE PATENT NO. -----_____ _ _ _ _ _ ----_____ US 2001-918158 20010730 20030130 A1 US 2003022783 EP 2002-77758 20030205 A1 EP 1281697 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK US 2005-134876 A1 20051006 US 2005218565 US 2001-918158 PRIORITY APPLN. INFO.: Oxide based ceramic matrix composites (CMC) having superior properties at high temps. exhibit a sol gel matrix with mixed or blended metal oxide particles. The sol-gel matrix is an aqueous colloidal suspension of a metal oxide, preferably from about 10 weight % to about 25 weight % of the metal oxide, and preferably containing a metal oxide such as alumina (Al2O3), silica (SiO2) or alumina-coated silica. The mixture is then infiltrated into a ceramic fabric, gelled, dried and sintered to form the CMC. Methods for making the CMC are also provided.

L5 ANSWER 9 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2002:183801 CAPLUS

DOCUMENT NUMBER:

136:233053

TITLE:

Raw material dispersion for the manufacture of polyester, process for the preparation thereof, and process for the preparation of polyester products

using the dispersion

INVENTOR (S):

Mangold, Helmut; Ochiai, Mitsuru

PATENT ASSIGNEE(S): SOURCE: Degussa AG, Germany Eur. Pat. Appl., 16 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	-			
EP 1186628	A2	20020313	EP 2001-117426	20010719
EP 1186628	A3	20030521		
P. AT. BE. CH.	DE. DK	, ES, FR, GB	, GR, IT, LI, LU, NL,	SE, MC, PT,
IE, SI, LT,	LV. FT	. RO		
JP 2002080573	Δ,	20020319	JP 2000-268662	20000905
	A	20020317	JP 2000-268662	A 20000905
PRIORITY APPLN. INFO.:			UF 2000-200002	horoin 1 to 60 parts
AB Raw material disper	sion fo	r the manura	cture of polyester, w	nerein i co oo parcs
by weight of silication	a powder	with an ave	rage particle size of	5 to 50 nm with
gurface layer done	l with A	.1203 are uni	formly dispersed in g	Tycols based on
surface rayer doper	e of the	alveols T	he raw material dispe	rsion for the
100 parts by weight	or the	giyodib. i	terephthalic acid or	di-Me terephthalate
manufacture of poly	ymers is	mixed with	terephthatic acid of	ture of 200 to
and subjected to e	sterific	ation under	pressure at a tempera	ture or 200 to
300°C to produce a	polyest	er polymer.	In case of that poly	rester
fiber or polyester	film is	produced fr	om the polyester poly	mer, the
riber or poryester	ailian	nowder addle	omerate contained in s	aid polvester
particle size of a	SIIICa	Powaci aggic		1 1
fiber or polyester	tilm is	s less than s	, μ	

L5 ANSWER 10 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2002:113212 CAPLUS

DOCUMENT NUMBER:

136:136045

TITLE:

Chloroprene polymer latex compositions with good light

resistance and water-thinned adhesives

INVENTOR(S):
PATENT ASSIGNEE(S):

Sunada, Kiyoshi; Yamaguchi, Mikio Denki Kagaku Kogyo Co., Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent Japanese LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

APPLICATION NO. DATE KIND PATENT NO. ______ _ _ _ _ _ _ ----_____ JP 2000-232745 20000801 Α 20020212 JP 2002047377 JP 2000-232745 PRIORITY APPLN. INFO.:

The compns. contain chloroprene polymers, silica scales, and metal oxide microparticles. Thus, a latex containing 100 parts ALX 600 (chloroprene latex) and 6.25 parts aqueous dispersion containing Sunlovely TZ 824 (silica

scale

coated with TiO2 and Al2O3) and Poiz 530 (dispersant) showed yellowness index 14 and 50 before and after light exposure for 4 h.

ANSWER 11 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2001:829656 CAPLUS

DOCUMENT NUMBER:

136:103822

TITLE:

Aggregation and photophysics of rose bengal in

alumina-coated colloidal suspensions

AUTHOR(S):

Daraio, Marta E.; San Roman, Enrique

CORPORATE SOURCE:

INQUIMAE/Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y

Naturales, Universidad de Buenos Aires, Laboratorio de Quimica de Sistemas Heterogeneos, Departamento de Quimica, Facultad de Ingenieria, Buenos Aires, 1428,

Argent.

SOURCE:

Helvetica Chimica Acta (2001), 84(9), 2601-2614

CODEN: HCACAV; ISSN: 0018-019X Verlag Helvetica Chimica Acta

PUBLISHER:

Journal

DOCUMENT TYPE: LANGUAGE:

English The absorption and emission properties of Rose Bengal (RB) have been

studied in colloidal suspensions of pos. charged aluminacoated silica nanoparticles (Sil). Exptl. spectra can be rationalized by the existence of an equilibrium between aqueous monomers and only one adsorbed species. However, a simple partition or a Langmuir-type adsorption-aggregation equilibrium do not explain the observed results. No evidence regarding the existence of adsorbed monomers is found even at low surface coverage. Aggregation stops at the dimer level, though, at high enough dye concns., the surface coverage is almost complete. Comparative expts. performed on neg. charged silica nanoparticles show that monomers are the only species present in this case. Fluorescence expts. on Sil indicate that dimers are fluorescent. Laser excitation of adsorbed dye leads to the formation of RB radical cations, while the dye triplet state

is not observed REFERENCE COUNT:

THERE ARE 30 CITED REFERENCES AVAILABLE FOR THIS 30 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

CAPLUS COPYRIGHT 2007 ACS on STN ANSWER 12 OF 50

ACCESSION NUMBER:

2001:802727 CAPLUS

DOCUMENT NUMBER:

136:138929

TITLE:

Plasma-facilitated SCR of NOx in heavy-duty diesel

exhaust

AUTHOR (S):

Rappe, K. G.; Aardahl, C. L.; Habeger, C. F.; Tran, D.

N.; Delgado, M. A.; Wang, L.-Q.; Park, P. W.; Balmer,

CORPORATE SOURCE:

Pacific Northwest National Laboratory, Richland, WA,

92352, USA

SOURCE:

Society of Automotive Engineers, [Special Publication] SP (2001), SP-1639(Non-Thermal Plasma Emission Control

Systems), 105-110

CODEN: SAESA2; ISSN: 0099-5908

Society of Automotive Engineers

PUBLISHER: Society
DOCUMENT TYPE: Journal
LANGUAGE: English

Two independent studies of γ -Al203 as a plasma-activated catalyst are discussed. γ -Al203 (2.5-4.3 weight percent) was coated onto the surface of meso-porous SiO2 to determine the importance of Al surface coordination on NOx conversion in conjunction with non-thermal plasma. Results indicated the presence of 5- and 6-fold Al coordination sites in γ -Al203 could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined: propene, propane, isooctane, methanol, and acetaldehyde. It was demonstrated that methanol was the most effective reducing agent of those tested for a

plasma-facilitated reaction over γ -Al203.

REFERENCE COUNT: 19 THERE ARE 19 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 13 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2000:735003 CAPLUS

DOCUMENT NUMBER:

133:310846

TITLE:

Dyeing color yield improving agents for fibers comprising aqueous mixtures of positively charged metal oxide particles, cationic acrylic polymers and

silicone compounds

INVENTOR(S):

Inaya, Shuichi; Ikeda, Reiko

PATENT ASSIGNEE(S):

Kao Corp., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	JP 2000290884	A B2	20001017	JP 1999-99292	19990406
PRIO AB	JP 3478758 RITY APPLN. INFO.: The agents comprise particles or alumin particles, cationic glass transition to or the agents compritrimethylstearylamm copolymd. with iso-N-methylolacrylamic-22° and refractive immersed in an agus	B2 pos. clarcoate polyme mperaturise 5-5 monium clarcoate bu meth de 0.4 p	20031215 charged metal cd silica ers (B) with ere (Tg) ≤110 es A, 5-80% chloride (Coa eacrylate 4.4 eart to give 1.47. A bla espersion cont	oxide (A) particles or refractive index ≤1.50 °, and silicone compds. B, and 15-85% C. Thus, tamine 86W, solids 28%), Bu acrylate 15.2, and a cationic copolymer (Ick-dyed polyester fabriaining 2 parts 20% (sol	and (C), 6 parts was) with Tg c was ids, as Al2O3), 10
	parts I, and 8 part [(2-aminoethyl)amin pickup 100%, dried fabric exhibiting	s trimenolpropy, and he	ethylsilyl-te /l]silanediol eat-treated 1 ield L value	erminated dimethylsilane copolymer for 5 s, squ min at 170° to give a (spectroscopic photomet best, 1 worst) 4.5 (dry	diol-methyl[3- leezed to black cric value)

L5 ANSWER 14 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2000:637813 CAPLUS

DOCUMENT NUMBER:

133:355700

TITLE:

Fractal Heteroaggregation of Oppositely Charged

Colloids

AUTHOR(S):

Kim, Anthony Y.; Berg, John C.

CORPORATE SOURCE:

Department of Chemical Engineering, University of

Washington, Seattle, WA, 98195, USA

SOURCE:

Journal of Colloid and Interface Science (2000),

229(2), 607-614

CODEN: JCISA5; ISSN: 0021-9797

Academic Press PUBLISHER:

DOCUMENT TYPE:

Journal

English LANGUAGE: Floc structures resulting from selective heteroaggregation of pos. and neg. charged colloids are studied as a function of number ratio and shear conditions at pH 6. Neg. charged SiO2 and pos. charged alumina-coated SiO2 undergo rapid aggregation due to attractive electrostatic interactions. At either extreme in number ratio, growth is terminated at an early stage, presumably because the aggregates acquire the same sign of charge, eliminating the driving force for further aggregation. For intermediate number ratios, extensive growth occurs, since the distribution of pos. and neg. charges is more uniform. Structure evolution of large heteroaggregates is assessed by static light scattering. Shear strongly influences the packing geometry and the tendency for the aggregates to undergo restructuring. At high shear (NRe>2000), heteroaggregates show

relatively dense packing and do not restructure. Fractal dimension Df decreases from 2.64 to 2.26 as the number of pos. particles is increased. low shear (NRe<200), packing of the particles is more open and restructuring occurs. The lowest observed fractal dimension is 1.79.

absence of applied shear, heteroaggregates with Df = 1.79 rearrange to more compact structures with Df = 1.88. (c) 2000 Academic Press.

THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS 17 REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 15 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1998:614149 CAPLUS

DOCUMENT NUMBER:

129:220054

TITLE:

Alumina-coated silica

filler powder and high-expansion glass ceramics using

it for IC packaging

INVENTOR (S):

Hikata, Hajime; Yamanaka, Toshiro

PATENT ASSIGNEE(S):

Nippon Electric Glass Co., Ltd., Japan Jpn. Kokai Tokkyo Koho, 9 pp.

SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PRIOF AB	JP 10251042 RITY APPLN. INFO.: The filler powder i with Al203-based ce 20-90, SiO2 filler The SiO2 filler pow	A crysteramics. powder has ic coatent, can	19980922 al SiO2 (e.g The glass 10-80, and r high thermaling. The glase	JP 1997-74600 JP 1997-74600 , cristobalite) par ceramics consist of efractory filler pow l expansion coefficiass ceramics, having sealing materials a	der 0-40 weight%. ent and a high thermal

CAPLUS COPYRIGHT 2007 ACS on STN ANSWER 16 OF 50

ACCESSION NUMBER:

1997:711095 CAPLUS

DOCUMENT NUMBER:

128:93535

TITLE:

A comparison of the interaction forces between model alumina surfaces and their colloidal properties Karaman, M. E.; Pashley, R. M.; Waite, T. D.; Hatch,

AUTHOR (S):

S. J.; Bustamante, H.

CORPORATE SOURCE:

Department of Chemistry, The Faculties, The Australian National University, Canberra, ACT, 0200, Australia

SOURCE:

Colloids and Surfaces, A: Physicochemical and

Engineering Aspects (1997), 129,130, 239-255

CODEN: CPEAEH; ISSN: 0927-7757

PUBLISHER: DOCUMENT TYPE: LANGUAGE:

Elsevier Journal English

Previous work has demonstrated that alumina dispersions are only AB destabilized by monovalent electrolytes such as KCl at concns. <0.1M over a wide pH range. This unusual stability has been qual. attributed to a repulsive hydration force that operates at distances <5nm. Intermol. forces, measured between an aluminum coated colloidal silica sphere and a flat alumina substrate, carried out using an atomic force microscope demonstrates that the addnl. repulsion is due to short range forces not expected in DLVO theory. The origin of these forces is postulated to be due to a combination of surface gel formation, probably due to polymeric Al species, and the natural hydration of the surface. The gel layer thickness determined at pH 8 was at least 15nm. At pH \leq 7 (i.e. ≤isoelec. point) the forces obtained conformed to DLVO behavior. down to separation distances of ca 3-5 nm, at smaller sepns. an addnl. repulsive force was detected. A thin gel-layer may be formed even at lower pH values which would contribute to this short range repulsion. These results may partially explain the difficulty encountered in dewatering aluminum hydroxide rich sludges generated during water treatment.

THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 25 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 17 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1997:436076 CAPLUS

DOCUMENT NUMBER:

127:52302

TITLE:

Antifogging coatings based on silica particles coated

with a metal oxide

INVENTOR(S):

Huang, Tzu-li J.

PATENT ASSIGNEE(S):

Minnesota Mining and Manufacturing Company, USA

SOURCE:

PCT Int. Appl., 33 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

1

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

								DATE			APPI	LICAT	I NOI	10.		D.	ATE	
							•	- -								_		
	WO	97174	113			A1		1997	0515		WO :	1996-1	US156	570		1	9960	930
		W:	ΔT.	AM.	AT.	AU.	AZ.	BA,	BB,	BG,	BR,	, BY,	CA,	CH,	CN,	CU,	CZ,	DE,
		•••	DK.	EE.	ES.	FI.	GB,	GE,	HU,	IL,	IS,	, JP,	KΕ,	KG,	ΚP,	KR,	ΚZ,	LC,
			T.K	T.P	LS.	ът.	LU.	LV.	MD.	MG,	MK	, MN,	MW,	MX,	NO,	ΝZ,	PL,	PT,
			PO.	דום	SD,	SE.	SG.	SI.	SK.	TJ.	TM	, TR,	TT,	UA,	UG,	UΖ,	VN	
		DM.	KU,	T.C	MW.	SD,	57	UG.	AT.	BE.	CH	, DE,	DK,	ES,	FI,	FR,	GB,	GR,
		KW:	TE,	IIS,	TIT.	MC.	NL.	PT.	SE,	BF,	ВJ	, CF,	CG,	CI,	CM,	GA,	GN,	ML,
						TD,												
	CA	2234	-	112,	,	A1		1997	0515		CA	1996-	2234	959		1	9960	930
	-	9673				A		1997				1996-					9960	930
		7090				B2		1999										
		8598				A1					EP	1996-	9360	72		1	9960	930
						B1		2002										
•	EP	8598						GB,		MT.	CF							
			AT,	DE,	DK,	-		1000	1200	1410,	CM	1996-	1981	51		1	9960	930
	-	1201				A						1997-					9960	
		2000				T		2000			UP	1991-	3101	0,		-		,,,,
	JP	3811	741			В2		2006					0260	-		-	9960	030
	AT	2144	20			${f T}$		2002				1996-						
,	ES	2170	279			Т3		2002	0801			1996-					9960	
PRIO	RIT	Y APP	LN.	INFO	. :							1995-						
												1996-					.9960	_
										232.				ana+	- A - 1.	i th	2 ma	+ = 1

oxide and optionally contains a polymer binder. The metal may be aluminum, gallium, germanium, tin, indium, arsenic, antimony or vanadium. The coating exhibits durability such that ≥35% of the absorbance of the SiO stretching at 1108 cm-1 remains after soaking for 3 days in water at 160°F and that the static contact angle of water droplets on the coating is <20°. The antifogging coating may be applied to a plastic retroreflective sheeting a traffic sign. A typical composition contained water 942, NH4+-stabilized silica dispersion 50, NaAlO2 4, γ -glycidyloxypropyltrimethoxysilane 2, and K perfluoroalkylsulfonate

ANSWER 18 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1997:420552 CAPLUS ACCESSION NUMBER:

127:112938 DOCUMENT NUMBER:

A new approach for modeling potential effects in TITLE:

cation adsorption onto binary (hydr)oxides

Luetzenkirchen, J.; Behra, Ph. AUTHOR (S):

Institut de Mecanique des Fluides de l'Universite CORPORATE SOURCE:

Louis Pasteur, URA CNRS 854, 2 rue Boussingault,

67000, Strasbourg, Fr.

Journal of Contaminant Hydrology (1997), 26(1-4), SOURCE:

257-268

CODEN: JCOHE6; ISSN: 0169-7722

Elsevier PUBLISHER: Journal DOCUMENT TYPE: English LANGUAGE:

The current approach for modeling ion adsorption onto binary (hydr)oxides AB using homogeneous surface complexation models involves the assumption of either an ideal mixture of the two surfaces (i.e. two surface sites on one surface) or a patchwise surface (i.e. two surfaces with one surface site on each surface). As the phys. truth should be between these two limiting cases, a model which assumes a patchwise surface constituted of three patches is proposed. Two patches represent the distinct (hydr)oxides, and the third one a mixture of these distinct (hydr)oxides. Using the diffuse layer model, the three approaches are applied to literature data for Cd adsorption onto binary mixts. of alumina-coated silica at total constant Cd concentration and varying amts. of alumina coatings. For Cd adsorption onto these binary (hydr)oxide systems, the new approach explains the observed potential effects. The proposed model, which contains two addnl. adjustable parameters in terms of site concns. or one adjustable parameter in terms of sp. surface area, is more successful than the two limiting cases. The new model is then validated by predicting Ca and Zn behavior on the same binary (hydr)oxide system. THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS

REFERENCE COUNT: 17 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 19 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1997:208135 CAPLUS ACCESSION NUMBER:

126:296650 DOCUMENT NUMBER:

Silica- and iron oxide-containing α-alumina-TITLE:

based abrasive grains

Monroe, Larry D.; Wood, Thomas E. INVENTOR(S):

Minnesota Mining and Manufacturing Co., USA PATENT ASSIGNEE(S):

U.S., 22 pp., Cont.-in-part of U.S. Ser. No. 492,898, SOURCE:

abandoned.

CODEN: USXXAM

Patent DOCUMENT TYPE: English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5611829	Α	19970318	US 1996-670890	19960626

PRIORITY APPLN. INFO.: US 1995-492898 B2 19950620

AB α-Al2O3-based ceramic abrasive grains comprising, on theor. oxide basis, Al2O3, SiO2, and .gtorsim.0.25 weight% Fe2O3, and containing α-Al2O3 crystallites having average size .ltorsim.0.5 μm, have surface roughness height .gtorsim.200 nm and d. .gtorsim.3.5 g/cm3. Alternatively, the α-Al2O3-based ceramic abrasive grain comprise, on theor. oxide basis, Al2O3, Fe2O3, SiO2, and .gtorsim.0.05 weight% alkali metal oxide. The abrasive articles comprise a binder, and multiple abrasive grains. The presence of SiO2, in combination with Fe2O3 increases the amount of transgranular fracture of the abrasive grains, reduces α-Al2O3 crystallite growth during sintering, dilates ≥1 of the unit cell dimensions of the grains, and generally improves grinding performance of the grains.

L5 ANSWER 20 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1996:167912 CAPLUS

DOCUMENT NUMBER:

124:217911

TITLE:

Polishing compound for fabrication of semiconductor

device

INVENTOR (S):

Sato, Junichi Sony Corp., Japan

PATENT ASSIGNEE(S): SOURCE:

Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
				-	
JP 08008218	Α	19960112	JP 1994-320714		19941222
PRIORITY APPLN. INFO.:			JP 1994-320714	Α	19941222
PRIORITI AFFIIN. INIO			JP 1994-82937		19940421

AB A polishing compound for chemical mech. polishing of semiconductor IC device comprises an alumina-coated silica particles.

L5 ANSWER 21 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1995:710174 CAPLUS

DOCUMENT NUMBER:

123:90941

TITLE:

Scattering characteristics of fibrous media containing

D 2 III I

closely spaced parallel fibers Lee, Siu-Chun; Grzesik, Jan A.

CORPORATE SOURCE:

Applied Sci. Lab. Inc., Hacienda Heights, CA, 91745,

USA

SOURCE:

AUTHOR (S):

Journal of Thermophysics and Heat Transfer (1995),

9(3), 403-9

CODEN: JTHTEO; ISSN: 0887-8722

PUBLISHER:

American Institute of Aeronautics and Astronautics

DOCUMENT TYPE: Journal LANGUAGE: English

The theor. formulation for scattering by a semi-infinite medium containing closely spaced, parallel fibers at oblique incidence is presented. The fibers can be either coated or uncoated, and their diams. are comparable to the wavelength of the incident radiation and spacing between the fibers. The radiative propagation characteristics, which include the propagation constant and amplitude of the effective wave in the medium, are derived by a rigorous solution of Maxwell's relations by accounting for the multiple dependent scattering effects. Formulas are also developed for the coherent and incoherent scattered intensities. Numerical results are presented to illustrate the scattering behavior of dense fibrous media containing alumina-coated silica fibers and Rayleigh limit silica fibers.

ANSWER 22 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1994:566708 CAPLUS · ACCESSION NUMBER:

121:166708 DOCUMENT NUMBER:

Reductive Quenching of Novel Mixed-Ligand TITLE:

Tris(bipyridyl)ruthenium(II) Complexes in Aqueous

Solution and Inert Colloidal Suspensions Kelly, Lisa A.; Rodgers, Michael A. J.

AUTHOR(S): Center for Photochemical Sciences, Bowling Green State CORPORATE SOURCE:

University, Bowling Green, OH, 43403, USA

Journal of Physical Chemistry (1994), 98(25), 6377-85 SOURCE:

CODEN: JPCHAX; ISSN: 0022-3654

DOCUMENT TYPE: Journal English LANGUAGE:

The reductive quenching of the lowest energy electronically excited state of four mixed-ligand tris(bipyridyl)ruthenium(II) complexes by anionic AB ascorbate and N-phenylglycine electron donors was investigated in aqueous solution at pH \geq 5.0. The central ruthenium(II) metal atom is coordinated to either two 2,2'-bipyridine (bpy) or two 4,4'-dicarboxy-2,2'-bipyridine (dcbpy) ligands to render the complexes a net 2+ ([Ru(bpy)2(L)]2+) or 2- ([Ru(dcbpy)2(L)]2-) charge. Reductive quenching was found to proceed with a larger bimol. rate constant (kq = $\vec{1.2-7.4}$ + 108 M-1 s-1) than that previously measured for the quenching of the parent Ru(bpy)32+ by ascorbate. Moderate yields (¢ce = 0.20-0.40) of the reduced metal complex were formed in the process. reductive quenching of the dianionic complexes in homogeneous solution was compared with that in suspensions (pH 5.0) of inert colloidal alumina-coated silica particles, where both the anionic donor and the chromophore are coadsorbed to the cationic particles. The apparent bimol. rate consts. were found to be enhanced by more than 1 order of magnitude in these colloidal systems, with a

concomitant decrease in the yield of redox products escaping from the

solvent cage. ANSWER 23 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN 1994:521524 CAPLUS

ACCESSION NUMBER:

121:121524 DOCUMENT NUMBER:

Photoreduction of Methyl Viologen Mediated by TITLE: Tris(bipyridyl)ruthenium(II) in Inert Colloidal

Suspensions

Kelly, Lisa A.; Rodgers, Michael A. J. AUTHOR(S):

Center for Photochemical Sciences, Bowling Green State CORPORATE SOURCE:

University, Bowling Green, OH, 43403, USA

Journal of Physical Chemistry (1994), 98(25), 6386-91 SOURCE:

CODEN: JPCHAX; ISSN: 0022-3654

Journal DOCUMENT TYPE: English LANGUAGE:

The photoredn. of Me viologen, covalently attached to a tris(bipyridyl)ruthenium(II) chromophore, in suspensions of pos. charged alumina-coated colloidal silica particles, via N-phenylglycine electron donor, is reported. In the tris(bipyridyl)ruthenium(II) complexes, the central metal atom is coordinated to two 4,4'-dicarboxy-2,2'-bipyridine ligands and thus carries a net 2- charge at pH 5.0. Coadsorption of the N-phenylglycine and ruthenium chromophore to the colloidal particles results in rapid production of reduced viologen following visible laser flash excitation of the tris(bipyridyl)ruthenium(II) complex. The yield of the radical was dependent upon the concentration of the electron donor added to the system, but its multiphasic decay was independent of both the

N-phenylglycine concentration and the initial concentration of the viologen radical

cation. Furthermore, both the yield and decay kinetics of the viologen radical cation were relatively independent of the number of intervening methylene units between the ruthenium complex and viologen electron acceptor. The results represent a significant improvement in charge separation yield over those previously reported for the reductive quenching of the

carboxylated tris(bipyridyl)ruthenium(II) complex, absent of the covalently attached viologen, by N-phenylglycine in aluminacoated silica colloidal suspensions.

ANSWER 24 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1992:496126 CAPLUS

DOCUMENT NUMBER:

117:96126

TITLE:

Alumina-graphite-based immersion nozzles for

continuous steel casting

INVENTOR(S):

Sasai, Katsuhiro; Mizukami, Yoshimasa

PATENT ASSIGNEE(S):

Nippon Steel Corp., Japan Jpn. Kokai Tokkyo Koho, 4 pp.

SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PAIDNI NO.				
JP 04127944	Α		JP 1990-246315	19900918
PRIORITY APPLN. INFO.:		E_EO weight%	JP 1990-246315 (as SiO2) Al203-coated	19900918 SiO2. The
nozzles have incre	eased se	rvice life an	d corrosion and spallin	g resistance.

ANSWER 25 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1992:411324 CAPLUS

DOCUMENT NUMBER:

117:11324

TITLE:

Electroviscous fluids

INVENTOR (S):

Fukuyama, Yoshiki; Ishino, Yuichi; Saito, Tasuku

PATENT ASSIGNEE(S):

Bridgestone Corp., Japan Jpn. Kokai Tokkyo Koho, 5 pp.

SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
0.65-1000 cSt at ro	oom temp cticles and mo	weight parts erature) and having avera isture conte	JP 1990-132540 JP 1990-132540 of an elecinsulating 1-60 weight parts of a ge particle size 0.01-1 nt 1-10 weight%, which	morphous 00 μm, Si/Al

ANSWER 26 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1992:197479 CAPLUS

DOCUMENT NUMBER:

116:197479

TITLE:

Preparation of FCC catalyst composition

INVENTOR(S):

Culross, Claude C.; Stuntz, Gordon F.; Winter, William

E., Jr.

PATENT ASSIGNEE(S):

Exxon Research and Engineering Co., USA

SOURCE:

U.S., 10 pp. Cont.-in-part of U.S. Ser. No. 288,829,

abandoned. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

DATE KIND

APPLICATION NO.

DATE

PATENT NO.

_____ 19901221 US 1990-631561 19911203 A US 5070053 B2 19871030 US 1987-114835 PRIORITY APPLN. INFO.: B2 19881223 US 1988-288829

A FCC catalyst composite comprising an alumina-on-silica additive, an inorg. refractory oxide, and optionally a zeolite material is prepared by AB coating silica particles with an aluminum compound capable of being thermally converted to an alumina surface phase, treating the coated silica material in a heat soak at 90-300° for an effective amount of time and calcining the alumina-coated silica material at 300-1000°.

ANSWER 27 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1992:180466 CAPLUS

DOCUMENT NUMBER:

116:180466

TITLE:

Method for detackification of paint spray booth wastes

Hunter, W. Eugene; Morse, Lewis D. INVENTOR(S): Calgon Corp., USA

PATENT ASSIGNEE(S):

SOURCE:

U.S., 6 pp.

CODEN: USXXAM Patent

DOCUMENT TYPE:

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5076939 CA 2058406	A A1	19911231 19921103 19921111	US 1991-694694 CA 1991-2058406 EP 1992-300292	19910502 19911223 19920114
EP 512665 R: AT, BE, C	A1 H, DE, DI A			, PT, SE 19920117
JP 05253574 JP 06065396	В	19940824	US 1991-694694	A 19910502

Over-sprayed paint in paint spray booths is detackified by contacting with circulating water that has been treated by adjusting the alkalinity to 20-600 ppm (e.g. with Na2CO3/NaHCO3 and Na silicate) and then by adding an alumina-coated silica soluble Subsequently, an effective flocculant (polyacrylamide or acrylamide-acrylic acid copolymer) is added. The paint forms a flocculated sludge which is removed.

ANSWER 28 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1992:162273 CAPLUS

DOCUMENT NUMBER:

116:162273

TITLE:

Photochemistry on surfaces. Excited state behavior of ruthenium tris(bathophenanthroline disulfonate) on

colloidal alumina-coated

silica particles

AUTHOR(S):

Kamat, Prashant V.; Ford, William E.

CORPORATE SOURCE:

Radiat. Lab., Univ. Notre Dame, Notre Dame, IN, 46556,

USA

SOURCE:

Photochemistry and Photobiology (1992), 55(2), 159-63

CODEN: PHCBAP; ISSN: 0031-8655

DOCUMENT TYPE:

Journal

LANGUAGE:

English

The excited state behavior of an anionic Ru(II) complex, RuL34- (L = bathophenanthroline disulfonate), that is electrostatically bound to pos. charged alumina-coated silica particles is investigated. The apparent association constant for the binding of RuL34- to the particles is 1.2 + 104 M-1. Surface photochem. processes result in decreased emission yields and multiexponential excited state decay. Excited state quenching by ground-state mols. is evident at high surface coverages. The non-exponential decay kinetics observed at low surface coverages can be attributed either to clustering of the RuL34- mols. or

photoionization promoted by Lewis acid sites on the particle surface.

ANSWER 29 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1989:505513 CAPLUS

DOCUMENT NUMBER:

111:105513

TITLE:

Photochemistry on surfaces. 3. Spectral and

photophysical properties of monomeric and dimeric

anthracenesulfonates adsorbed by colloidal

alumina-coated silica

particles

AUTHOR(S):

Ford, William E.; Kamat, Prashant V.

CORPORATE SOURCE:

Radiat. Lab., Univ. Notre Dame, Notre Dame, IN, 46556,

SOURCE:

Journal of Physical Chemistry (1989), 93(17), 6423-8

CODEN: JPCHAX; ISSN: 0022-3654

DOCUMENT TYPE:

Journal English

LANGUAGE: Anthracene-2-sulfonate (2AS) mols. dimerized upon adsorption from aqueous solution by pos. charged Al203-coated Si particles (25-nm diameter). This ground-state dimerization was accompanied by an intensification and red shift (from 370 to 401 nm) of the 0-0 absorption band and a large decrease in fluorescence quantum yield. Anthracene-1,5-disulfonate (1,5AS) and anthracene-1-sulfonate mols. was also adsorbed by the particles but did not dimerize. Triplet states of the adsorbed mols. were characterized by laser flash photolysis. Direct photoexcitation of the 2AS dimer failed to produce an observable triplet state, but photosensitization yielded a triplet state of the dimer resembling that of the monomer. The triplet state of the adsorbed 1,5AS mol. was obtained by either direct or sensitized excitation. Binding capacities of the particles for 2AS and 1,5AS indicated that at maximal coverage the 2AS mols. were tilted with respect to the surface while the 1,5AS mols. were coplanar. Dimerization

ANSWER 30 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

occupied.

1989:104651 CAPLUS

DOCUMENT NUMBER:

110:104651

TITLE:

Photochemistry on surfaces. 2. Intermolecular

electron transfer on colloidal alumina-

coated silica particles

AUTHOR(S):

Kamat, Prashant V.; Ford, William E.

of 2AS occurred even when fewer than 1% of available adsorption sites was

CORPORATE SOURCE:

Radiat. Lab., Univ. Notre Dame, Notre Dame, IN, 46556,

USA

SOURCE:

Journal of Physical Chemistry (1989), 93(4), 1405-9

CODEN: JPCHAX; ISSN: 0022-3654

DOCUMENT TYPE:

Journal

LANGUAGE:

English Reductive quenching of 2 photoexcited Ru(II) complexes by an anionic

electron donor, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS2-), in aqueous solution was examined by laser flash photolysis before and after adding pos. charged colloidal (250-Å diameter) alumina-

coated silica particles. The kinetics and quantum yields of electron transfer with an anionic sensitizer, RuL4- (L = bathophenanthroline disulfonate), and a cationic one, Ru(bpy)32+ (bpy = 2,2'-bipyridine), were compared. Coadsorption of ABTS2- and RuL34- by the particles greatly enhanced the rate of quenching such that only the reaction occurring on the surfaces of the particles was observed Electron transfer from ABTS2- to RuL34-* occurred by a static (nondiffusional) process, and the quenching efficiency was maximal when there was close to

monolayer coverage of the reactants on the particles. Ru(bpy)32+ was not adsorbed by the particles and served as a luminescent probe for the

determination

of the binding capacity of the particles for ABTS2-.

ANSWER 31 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1984:440610 CAPLUS ACCESSION NUMBER:

101:40610 DOCUMENT NUMBER:

Aluminum oxide-coated silica sols using TITLE:

ultrafiltration Payne, Charles C.

INVENTOR(S): Nalco Chemical Co. , USA PATENT ASSIGNEE(S):

U.S., 4 pp. SOURCE: CODEN: USXXAM

DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
			US 1981-317041	19811102
US 4451388	Α	19840529		19811102
DIODITY APPIN INFO.:			US 1981-317041	19011102

PRIORITY APPLN. INFO.:

Alumina-coated silica sols having improved chemical and phys. characteristics are prepared by treating hydrophilic colloidal silica sols (e.g., Nalcoag 1034 A) with a trivalent acidic Al salt (e.g., chlorhydrol). A mixture of concentrated deionized silica sol and a concentrated solution of the Al salt is heated to >90° for 1-15 min to form an alumina reacted silica sol solution, the solution is cooled, diluted with deionized water to .apprx.10 weight% solids and the diluted silica sol

solution is subjected to ultrafiltration through a membrane having a mol. weight cutoff of 30,000. The sol is washed with deionized water to remove dissolved salts. The diluted alumina-coated silica sol

having a pH 4-5 and a conductivity 2000-4000 $\mu\Omega$ is concentrated to >30

solids to obtain a stable soluble

ANSWER 32 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1984:211960 CAPLUS ACCESSION NUMBER:

100:211960 DOCUMENT NUMBER:

Silica-coated absorbent fibers TITLE:

Weisman, Paul Thomas; Retzsch, Herbert Louis INVENTOR(S):

Procter and Gamble Co., USA PATENT ASSIGNEE(S): Eur. Pat. Appl., 27 pp.

SOURCE:

CODEN: EPXXDW

Patent DOCUMENT TYPE: English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 95922 EP 95922	A1 B1	19831207 19860903	EP 1983-303098	19830531

R: BE, DE, FR, GB, IT, NL 19820601 US 1982-383685 19840904 Α US 4469746 A 19820601 US 1982-383685 PRIORITY APPLN. INFO.:

Treating thermoplastic or cellulosic fibers with pos. charged SiO2 and crosslinkable, cationic polyelectrolytes gave absorbent webs with improved wicking. Thus, sulfite pulp was dispersed in aquasols of Al2O3-deposited colloidal silica (100 lb/ton pulp), formed into a web, and dried for 2 h at 65° to give a specimen with 2.52 mL/g min wicking rate and 4.5 mL/g adsorption capacity at 25 cm hydrostatic pressure.

ANSWER 33 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1984:64508 CAPLUS ACCESSION NUMBER:

100:64508 DOCUMENT NUMBER:

Clotting assay and reagent for this method TITLE:

Finnerty, Suja P.; Hangos, Russell A. INVENTOR(S):

Cooper Laboratories, Inc., USA PATENT ASSIGNEE(S):

PCT Int. Appl., 15 pp. SOURCE:

CODEN: PIXXD2

Patent DOCUMENT TYPE: English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.		KIND	DATE	APPLICATION NO.	DATE
WO 8304105		A1	19831124	WO 1983-US645	19830504
US 4455377 AU 8316053	BE, CH,	Α	FR, GB, LU, 19840619 19831202 19851017	AU 1983-16053	19820507 19830504
AU 547448 JP 59500736		T B	19840426 19920325	JP 1983-502015	19830504
JP 04017389 EP 108131 EP 108131			19840516 19871021	EP 1983-901990	19830504
R: AT, AT 30358 CA 1192823 ES 522158 DK 8305967 DK 160904 DK 160904 ES 535986	ве, сн		FR, GB, LI, 19871115 19850903 19841201 19831223 19910429 19911014 19851016	AT 1983-901990 CA 1983-427554 ES 1983-522158 DK 1983-5967	19830504 19830505 19830506 19831223 19840917 A 19820507
PRIORITY APPLN.	INFO.:			US 1982-375936 EP 1983-901990 WO 1983-US645	A 19830504 A 19830504

An improved activated thromboplastin time test (APTT) is described which ΑB uses colloidal silica or alumina-coated silica particles (diameter 4-100 $m\mu)$ as Hageman factor activators. The particles are prepared by contacting an alkali silicate solution with ion-exchange material for removing alkali metal ions from the silicate solution and recovering the colloidally dispersed particles from the ion-exchange material. In 1 example, a reagent was prepared containing colloidal silica, cephalin (for platelet factor-like activity), buffer, and antimicrobial agent. An APTT was preformed with the reagent, plasma, and CaCl2 with satisfactory reproducibility.

ANSWER 34 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1983:603567 CAPLUS ACCESSION NUMBER: 99:203567

DOCUMENT NUMBER:

Electrostatographic developers TITLE:

Canon K. K., Japan PATENT ASSIGNEE(S):

SOURCE:

Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 57158656	A	19820930	JP 1981-43434 JP 1981-43434	19810325 19810325
RIORITY APPLN. INFO.:	partic	les are coat	ted on electrostatog.	toner particl

PR :les Al203-coated silica particles are coated or by using organic Si compds. to give pos.-chargable toners. Thus, toner AB particles composed of polystyrene and carbon black were mixed with Ludox AM (an alumina-coated silica, from du Pont) in H2O, then α -aminopropyltriethoxysilane was added to the

dispersion, and the dispersion was filtered to give coated toner particles.

ANSWER 35 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN L5

ACCESSION NUMBER:

1983:118117 CAPLUS

DOCUMENT NUMBER:

98:118117

TITLE:

Sputtering apparatus with corrosion resistant

discharge tube

PATENT ASSIGNEE(S):

Toshiba Corp., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	7	19821126	JP 1981-74216	19810519
JP 57192266	A	17021120	JP 1981-74216	19810519
RIORITY APPLN. INFO.:				The same of a cobe

AB The sputtering apparatus is characterized by a corrosion resistant discharge tube which consists of SiO2 or hard glasses covered by Al2O3. Thus, a discharge tube made from SiO2 covered with Al2O3 did not show any damage after 3500 h sputtering in 1.0 torr CF4 at 2450 MHz and 500 W.

ANSWER 36 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1983:44174 CAPLUS

DOCUMENT NUMBER:

98:44174

TITLE:

Electrostatographic developers

PATENT ASSIGNEE(S):

Canon K. K., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PAIDIT NO.				
JP 57079951	Α	19820519	JP 1980-156320	19801106
PRICETEL ADDING INFO			JP 1980-156320	19801106
AB Electrostatog. dev	elopers	are describ	ed which contain alumin	ıa-
AB Electiostatog. dev	1110000	galt partic	les Thus Hi-sil	

coated silica or silicate salt particles. Thus, Hi-sil 233 was dispersed in H2O, then AlCl3 was added to the dispersion, the pH of the dispersion was adjusted to 8 with NH4OH, and the dispersion was then dried to give alumina-coated silica particles. The particles were then mixed (1.0 weight %) with a toner composed of Piccolastic D-150, carbon black, and Methylene Blue chloride to give an electrophotog. developer.

ANSWER 37 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1983:9986 CAPLUS

DOCUMENT NUMBER:

98:9986

TITLE:

Electrophotographic development method

Canon K. K., Japan PATENT ASSIGNEE(S):

SOURCE:

Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

APPLICATION NO. DATE KIND DATE PATENT NO. -----_____ _ _ _ _

19801106 JP 1980-156322 19820519 JP 57079963 19801106 JP 1980-156322

PRIORITY APPLN. INFO.: An electrophotog development method is claimed which uses a developer

containing elec. insulating toners and alumina-coated

silica or silicate powder. Thus, Hi-Sil coated with alumina was added (1 weight%) to a toner composed of Piccalstic D-150, carbon black,

Methylene Blue chloride, and magnetite to give an electrophotog.

developer.

ANSWER 38 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1981:626269 CAPLUS

DOCUMENT NUMBER:

95:226269

TITLE:

Silicon and aluminum hydrous oxide sols: 1. Studies

on the colloid chemistry of alumina-

coated silica sols. 2.

Precipitation and characterization of colloidal

aluminum hydrous oxide sols

Katsanis, Eleftherios Panagiotis AUTHOR (S):

CORPORATE SOURCE:

Clarkson Coll. Technol., Potsdam, NY, USA

(1981) 243 pp. Avail.: Univ. Microfilms Int., Order

No. 8121418

From: Diss. Abstr. Int. B 1981, 42(4), 1473

DOCUMENT TYPE:

Dissertation

LANGUAGE:

SOURCE:

English

Unavailable AΒ

ANSWER 39 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1981:624393 CAPLUS

DOCUMENT NUMBER:

95:224393

TITLE:

Heat-resistant material

PATENT ASSIGNEE(S):

Nissan Chemical Industries, Ltd., Japan

Jpn. Kokai Tokkyo Koho, 4 pp. SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
		 19810805	лр 1979-173510		19791227
JP 56096766 JP 62027021	В	19870611		_	10701227
			1000 100C10		

JP 1979-173510 PRIORITY APPLN. INFO.: Al2O3-coated SiO2 sol is mixed with inorg. fiber at pH 5-7.5 and dried. Thus, 150 g Al203-coated SiO2 sol was mixed with water 150 and SiO2-Al203 ceramic fiber 15 g at pH 6.8, shaped, and dried to obtain a plate-shaped heat-resistant material having tensile strength 0.337 kg/cm2 and modulus of elasticity 5.58 kg/cm2.

ANSWER 40 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1981:198080 CAPLUS

DOCUMENT NUMBER:

94:198080

TITLE:

Synthesis of inorganic multilayers on chromatographic

supports

AUTHOR (S):

Wickramanayake, Palitha P.; Chatt, Amares; Aue, Walter

Α.

CORPORATE SOURCE:

Trace Anal. Res. Cent., Dalhousie Univ., Halifax, NS,

B3H 4J3, Can.

SOURCE:

Canadian Journal of Chemistry (1981), 59(7), 1045-50

CODEN: CJCHAG; ISSN: 0008-4042

DOCUMENT TYPE:

Journal .

LANGUAGE:

English

Multilayers of various metal oxides were produced on typical chromatog. supports such as diatomaceous earth and silica gel. The layer thickness was characterized for phases based on Fe and Cr. These data, as well as chromatog. evidence obtained on chromium oxide, suggest that the layers are homogeneous. Similar, but less well characterized layers of aluminum and titanium oxides were obtained.

ANSWER 41 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 1975:587839 CAPLUS

83:187839 DOCUMENT NUMBER:

Determination of low oxygen activities by electromotive TITLE:

force

measurement

Kreyger, Pieter J.; Slangen, Bob; Den Hartog, Huib W.

Process Technol. Dep., Hoogovens Ijmuiden B. V., AUTHOR (S): CORPORATE SOURCE:

Ijmuiden, Neth.

Stahl und Eisen (1975), 95(9), 393-8 SOURCE:

CODEN: STEIA3; ISSN: 0340-4803

Journal DOCUMENT TYPE: German LANGUAGE:

The polarization of the electrochem. O cell by O enrichment or depletion of the boundary layer between the electrolyte surface and a molten steel sample caused relatively large errors in the determination of <50 ppm O in

steel.

To eliminate the polarization effects caused by parasitic O sources, the cell was improved by the following methods: selection of an electrolyte geometry providing a small surface to be exposed to the molten steel and a relatively large electrolyte wall thickness; use of a reference electrode with a O potential of the same order of magnitude as that in the steel melt; and coating oxide portions of the probe not inert to the steel melt, e.g. SiO2, with a stable oxide layer, e.g. Al2O3 or ZrO2. The improved probe can be used to determine Al directly in killed steel. The exptl. observed relation between dissolved Al and O in Al-killed steel at 1600° was compared with the thermodn. equilibrium

ANSWER 42 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1975:581064 CAPLUS ACCESSION NUMBER:

83:181064 DOCUMENT NUMBER:

Fabric for carpet and like materials containing a TITLE:

coating of colloidal silica with a layer of alumina Payne, Charles C.; Bloemke, Richard E.; Schaefer,

DATE

David P.

Nalco Chemical Co., USA PATENT ASSIGNEE(S):

U.S., 5 pp. SOURCE: CODEN: USXXAM

Patent DOCUMENT TYPE: English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

INVENTOR(S):

APPLICATION NO. KIND DATE PATENT NO. _____ ____ _____ 19731031 US 1973-411549 19750826 Α US 3901992 A 19731031 US 1973-411549 PRIORITY APPLN. INFO.: Antistatic and antisoil properties are imparted to bulk pile carpets, draperies, and upholstery materials by the application of 1-4% alumina [1344-28-1]-coated silica [7631-86-9]. For example, an alumina-coated aquasol was prepared by treating an acid silica sol produced through double deionization with Al2(OH)5Cl in the presence of an anion exchange resin. A nylon cloth, dipped in the alumina-coated

silica sol (pH 5) to a 3.2% silica add-on and dried, dissipated static charges rapidly (half-life time, 1 sec) and showed antisoil values comparable to fabrics treated with quaternary ammonium-coated silica.

ANSWER 43 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN 1974:18272 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

80:18272

TITLE:

Evaporated silver-coated with double layers of aluminum(III) oxide and silicon oxide to produce surface films with low solar absorptivity and high

thermal emissivity

AUTHOR(S):

Hass, G.; Heaney, J. B.; Triolo, J. J.

CORPORATE SOURCE:

Night Vision Lab., U. S. Army Electron. Command, Fort

Belvoir, VA, USA

SOURCE:

Optics Communications (1973), 8(3), 183-5

CODEN: OPCOB8; ISSN: 0030-4018

DOCUMENT TYPE:

Journal

English

LANGUAGE:

A technique is described for using evaporated Ag coated with double layers of Al203 and Si oxide to produce surface films having low solar absorptivity

 (α) and high total normal and hemispherical emissivities (ϵN

and ϵ). Value of α for the Ag+Al2O3+ Si oxide film

combination was <0.07 and $\alpha/\epsilon \ge 0.1$. The surface

films were extremely stable during simulated solar uv radiation.

ANSWER 44 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1973:470550 CAPLUS

DOCUMENT NUMBER:

79:70550

TITLE:

Stable, positively charged, alumina-

coated silica sols

INVENTOR(S):

Moore, Earl P., Jr.

PATENT ASSIGNEE(S):

du Pont de Nemours, E. I., and Co.

SOURCE:

U.S., 3 pp. Continuation-in-part of U.S. 3,620,978 (CA

76:47900c). CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 3745126	Α	19730710	US 1971-136577	19710422
US 3620978	A	19711116	US 1968-745715	19680718
PRIORITY APPLN. INFO.:			US 1968-745715 -icles were prepared b	A2 19680718
	~~4 ~~~	tad SiO2 part	-icles were prepareu i	y reacting

Improved pos. charged coated SiO2 particles were pr H3BO3-stabilized basic Al acetate with a SiO2 soluble The stability of aquasols of pos. charged colloidal SiO2 coated with Al dispersed in a AB solution containing acetate or formate counterions is improved when the Al is present as a borate-pos. charged Al complex. The preferred compound is Al(OH)2(CH3CO2).1/3H3BO3. The H3BO3-stabilized sols of the invention are useful as frictionizing agents for paper products.

ANSWER 45 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1972:77130 CAPLUS

DOCUMENT NUMBER:

76:77130

TITLE:

Alumina-coated silica catalyst material

INVENTOR(S):

Lindsley, John F.; Sanborn, Willian E.

PATENT ASSIGNEE(S):

American Cyanamid Co.

SOURCE:

U.S., 4 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

FAMILY ACC. NUM. COUNT:

English

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 3629152	Α	19711221	US 1967-672442	19671003

A 19671003 US 1967-672442

PRIORITY APPLN. INFO.: An aqueous Al salt solution is added to SiO2 hydrogel and homogenized prior to precipitation of Al203. The Al203-coated SiO2 hydrogel is dried to rigid solid containing a maximum 50 weight % H2O. The materials produced are suitable for use

in the preparation of cracking and hydrocracking catalysts.

ANSWER 46 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1972:47900 CAPLUS ACCESSION NUMBER:

76:47900 DOCUMENT NUMBER:

Preparing stable, positively charged, aluminia-coated TITLE:

silica particles from silica sols

Moore, Earl P., Jr. INVENTOR(S):

du Pont de Nemours, E. I., and Co. PATENT ASSIGNEE(S):

U.S., 3 pp. SOURCE: CODEN: USXXAM

Patent DOCUMENT TYPE: English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 3620978	Α	19711116	US 1968-745715	19680718
US 3745126	Α	19730710	US 1971-136577	19710422
PRIORITY APPLN. INFO.:			00 1000 715720	A2 19680718

Positively charged alumina-coated silica

particles are prepared from a silica sol by mixing the silica sol with a boric acid stabilized basic Al acetate or formate at pH 4.2-5. The silica is deionized before mixing with the Al compound

ANSWER 47 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

1970:492014 CAPLUS ACCESSION NUMBER:

73:92014 DOCUMENT NUMBER:

Catalysts from alumina-coated TITLE:

silica-alumina hydrogel

Colgan, Joseph D. INVENTOR(S):

American Cyanamid Co. PATENT ASSIGNEE(S): U.S., 6 pp.

SOURCE: CODEN: USXXAM

Patent DOCUMENT TYPE: English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APP	LICATION NO.		DATE
						•	
	3510574	Α	19700707	US	1967-652019		19670710
	US 3519574		19701125		1968-1213913		19680611
	GB 1213913	A	19/01125				
	SE 354790	В	19730326	SE	1968-8959		19680628
		_	19710604	FD	1968-95717		19680705
	FR 95717	E					19680709
	BE 717815	Α	19690109	ΒE	1968-717815		
		A	19690114	NT.	1968-9748		19680710
	NL 6809748	A					19680710
	JP 54019230	В	19790713		1968-48410		
				US	1967-652019	Α	19670710
	RITY APPLN. INFO.:		•		.apprx.300-950°F	ie	added
3 TO .	A matroleum fraction	ı with	a b.p. range	of	.apprx.300-330-r	ΤD	auucu

Р A petroleum fraction with a b.p. range of .apprx.300-950°F is added AR to a slurry of inorg. oxide hydrogel to form an oil-in-water emulsion which is mech. sheared to eliminate the fluidizing effect of the H2O. After extrusion, the catalyst is dried and calcined. Thus, a filter cake containing 0.038% Na2O and 0.44% SO4 on a dry basis was slurried with H2O to decrease solids level to 5.95% and pH to 7.7. A solution of 2.32 parts of Ni nitrate hexahydrate, 0.483 part of ammonium metatungstate, and 0.92 part of ammonium fluoride in 58 parts of water was added to 168 parts of the 5.95% slurry. The blend was mixed for 2 hr, filtered, and washed with

21/2 displacements of water. A portion of the recovered filter cake was reslurried at 6.9% solids. This slurry was formed into extrudates by pumping it through a homogenizing value of a Mantin-Gaulin homogenizer at 3000 psi and thence through nozzles, each with a 0.152 in. diameter orifice. The extrudates were collected, dried at 150°F, and calcined in a muffle furnace at 1100°F.

ANSWER 48 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN 1.5

ACCESSION NUMBER:

1970:418151 CAPLUS

DOCUMENT NUMBER:

73:18151

TITLE:

Refractory casting slurry using alumina-

coated silica sol binder and

hexamethylenetetramine as setting agent

Moore, Earl Phillip, Jr.

DATE

INVENTOR(S): PATENT ASSIGNEE(S):

du Pont de Nemours, E. I., and Co.

SOURCE:

U.S., 3 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

KIND

FAMILY ACC. NUM. COUNT:

PATENT NO.

PATENT INFORMATION:

	US 3507944	Α	19700421	US 1968-758612	19680909	
ם דמם	ADDIN THEO .			US 1968-758612	A 19680909 .	
	ORITI AFIEM. INTO.	- £ ~ b o	a. alurries	when noured into a	mold, were set (1) by	
AB	Previous aqueous i	erracto	th gratifes.	when poured theo d	(a) has showing 1	
	absorption of wate	r into a	a porous mol	d requiring 24-48 h	r; (2) by chemical	
	getting The latt	er metho	od often res	ulted in too slow s	etting or too last	
	action with rocal	ting ch	art not life	An improved ague	ous refractory slurry	
	setting with resul	.cing an	ore poe rrre	The all	urry comprises	
	provides a long po	ot life a	as well a fa	st setting. The sl	ully compliacs	
	finely divided Al	03 zir	con, mullite	or mica; a binder	of pos. charged	
	Al costed Si sol	as desc	ribed in U.S	. 3,007,878, 3,139,	406 and 3,252,917	
	AI-Coated 51 SOI,	10 0000	roe malida.	and enough hexamet	hylenetetramine	
	having a pH of 3-6	and 10	-204 SOTIOS!	and enough nexamed	ily tenecectament	
	(T) to raise the r	oH above	6 when full	y activated. The m	inxture including i	
	about d borro o pu	F E 1-5	7 Thus a	slurry was prepare	ed consisting of -325	
	should have a bu o	JL 3.4-3	.,. IIIab, a	100 33003 10. 14	20 71203 158 +	
	mullite 14.5; -325	5 A12O3	20.0; -28 +	100 Al203 10; -14 +	20 A1203 13, -0 +	
	14 Al203 29. binde	er 9.0:	water 2.4 an	d I 0.08 weight %.	The mixture, pH 5.65,	
	14 111200 20/ Dina.	/		الملمس مستسدد فيتنا	booted to	

ANSWER 49 OF 50 CAPLUS COPYRIGHT 2007 ACS on STN

60° the slurry set in 12 min.

ACCESSION NUMBER:

1970:59617 CAPLUS

had a pot life of 2 hr at 25°. When poured into a mold heated to

DOCUMENT NUMBER:

72:59617

TITLE:

Dehydration of ethyl alcohol on alumina-

coated silica

AUTHOR(S):

Fahim, R. B.

CORPORATE SOURCE:

Dep. Chem., Univ. Assiut, Assiut, Egypt

SOURCE:

Journal of Applied Chemistry (1969), 19(12), 356-8

APPLICATION NO.

DATE

CODEN: JACHAU; ISSN: 0021-8871

DOCUMENT TYPE:

LANGUAGE:

Journal English

Catalysts were prepared by precipitation of Al hydroxide on a wet silica gel. AB The

dehydration of EtOH on catalysts varying in alumina content was studied at 307° using a flow system. The products of dehydration were ethylene, ether and water. The kinetics of the formation of ethylene followed the Langmuir-Hinshelwood mechanism, while the formation of ether occurred according to the Langmuir-Hinshelwood mechanism and the Rideal-Eley mechanism simultaneously. The catalytic activity was controlled by the amount of Al on the surface. The rate consts. were correlated with the surface nature of the catalysts.

ACCESSION NUMBER:

1966:416351 CAPLUS

DOCUMENT NUMBER:

65:16351

ORIGINAL REFERENCE NO.:

65:3046h,3047a-b

TITLE:

Alumina-coated silica

INVENTOR(S): PATENT ASSIGNEE(S): Mindick, Morris; Thompson, Arthur C.

Nalco Chemical Co.

SOURCE:

8 pp.

DOCUMENT TYPE:

Patent

LANGUAGE:

Unavailable

AB

of

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 3252917 Stable aluminacoate silica sols with ba	d silic sic Al ontact w	a sol is pre halides, the rith a H2O in	US 1962-219725 pared by treating acid, n bringing the coated s sol. anion exchange res al. of a com. available 6 in. diameter column	in, to give a

a strong base anion exchange resin at the bottom of the column and 25 in. of a strong acid cation exchange resin. The flow rate was 0.75 gal./min. The effluent had a pH of 2.1 and a conductance of 650 micromhos. After, standing overnight, the material was passed through the column again. Its pH was 3.10 with a conductance of 395 micromhos. A 243-ml. portion of the salt-free acid silica sol was added to 64 ml. of a 50% solution of Al2(OH)5Cl, giving a viscous clear sol of pH 3.5 which was heated slowly to 180°F. over a period of one hour. The sol was diluted with 50 ml. H2O and was brought into contact with 98 g. of an anionic resin exchanger for 30 min. The final alumina-coated silica sol had a density of 1.135, a pH of 5.5, a sp. conductance of 3200, a solids concentration of 19%, and an Al2O3/SiO2 ratio of 0.2.