

University of Applied Sciences

Project Study (M25) Automatize Machine Learning Processes

PROF. DR. FRANK FUCHS-KITTOWSKI PAUL SCHULZE, M. SC.

Organizational matters

- Timetable: 01.04. 31.09.2023
- scheduled meetings (every 2 weeks)

• Tools?

What do we exect!

- Procedure according to CRISP-DM
- Using scientific methods!
- (1) Scientific Question
- (2) Hypothesis
- (3) Experimental design
- (4) Prepare the experiment
- (5) Conducting the experiment
- (6) Evaluation of the experiment
- (7) Conclusion

If there is a problem: Tell us!

It's aloud to fail in the experiment, if you can tell us why and how to avoid it the next time

- Prepare a short summary to every meeting with results und questions!
- A scientific report of 20 50 pages (with the points above)

What do you expect?

- "To become an expert in AutoML"
- What do you want to learn?

What can you expect from us

- We are the experts for air pollution
- We hopefully provide you with data
- If you have a problem, talk to us!

09.05.2023 5

Air pollution

- About 4.2 Mio. person died prematurely in 2016 (WHO)
- cause respiratory diseases such as asthma, COPD, lung cancer, ...
- many possible pollutants!
- → Air pollution is a major environmental health threat

WHAT ARE THE SOURCES OF AIR POLLUTION?

CLEAN AIR FOR HEALTH

#AirPollution

PM10 (particulate matter)

EFFECTS OF AIR POLLUTION ON HUMAN BODY

- Particles with diameter
 ≤ 10 μm
- no consideration of the chemical substance
- could deeply penetrate the lungs
- Sources:
 - dust from unsealed roads
 - smoke from fires
 - sea salt
 - car and truck exhausts
 - industry

Silvester: Fireworks!

München / Johanneskirchen

What can you do on a personal level when PM10 levels are high?

You can't see them!

- → Avoid the contract!
- wear a mask
- avoid being outside
- close your windows and door
- But:
 How can you tell that the air
 quality is bad?

Possible scientific questions?

- Can we forecast the concentration of PM10?
- Or can we forecast, when the concentration in the next hour is exceeding threshold?
- Or can we forecast, when the daily threshold is exceeding at the next day?

•

The question leads to the methods used for analysis!

Threshold for Germany: 50 μg/m³ within one day (24 Values per hour where averages to one Value per day)

First step: Data exploration!

Do we have the data to answer the question?

Is there missing data?

Error in the data? 1419 μg/m³ at 02:00 on 01.01.2023

Monitoring sites in NRW (Nordrhein-Westfalen)

Where are we?

Phase 1: Business Understanding

- Determination of the business problem
- Situation assessment
- Determination of analytical goals
- Preparation of the project plan

Phase 2: Data Understanding

- collect data
- decribe data
- analyse data
- · check data

50-70 % of the time needed for data preparation

Dataset

- data from all monitoring station (173) from NRW
- data is hourly
- ~ 500 Million datasets

Possible Approach: How to predict PM10 concentration?

- Data is hourly!
- We assume that the concentration of PM10 in the last 6 hours has an influence on the concentration in one hour.
- We assume that we can calculate the future concentration of PM10 from the data of the last 6 hours.

 The scientific question has an influence on the necessary data preparation!

"Bl_mst_lq_Q" description of measurement sites

German	English	Description	Example
idsatz	IdDataSet	identifier	2319, 2319,
idsrcobj	idsrcobj	site as Identifier (Bad Berleburg → BBER)	ACBU, ACMI,
idsrccls	idsrccls	objtyp as id numner	303211000
namowner	namowner	governmental organizational unit	FB 42 / FB43
idprz		table identifier	
objkey	objkey	same as idsrcobj	ACBU, ACMI,
objnam	objnam	objectname (adress of measurement site)	"Aachen – Burtscheid"
objbez	objdecs	object decsrition	{ empty }
objtyp	objtyp	type of measurement site (in all cases: air quality measurement sites)	Luftqualitätsmessstelle
objbem	objcom	object comment: Description of the area and surounding	

Datasets

"rx_param_4_lq_q" chemials / reagents

German	English	Description	Example
idsatz	IdDataSet	Identifier	73636, 73627
idcls		table identifier	
idsrcobj	idsrcobj	Multiple ids for measurement parameter e.g. 3024 = (chemial, reagent) Pentachlorbiphenyle 1 = type of measurement 13 = time interval of measurement 6 = place of measurement	3024_1_13_6
objkey	objkey	Chemical/reagent as key	PentaCB
objnam	objnam	Chemical/reagent descrition (long form)	Pentachlorbiphenyle
objbez	objdec	Place of measurement	deposition
objtyp	objtyp	chemial group	PCB, BTEX, PAK,
objbem	objcom	Object comment	{ empty }
einh	unit	measurement unit	μg/m³*h

"rx_param_4_lq_q" chemials / reagents

German	English	Description	Example
meth_erf	meas_plc	place of measurement	Staubniederschlag (dust collection)
meth_erf	meas_des	place of measurement description	{ description of meth_erf }
code		unknown identifier	{ empty }
t_bez	t_des	time interval description	
p_bez		unknown identifier	

Datasets

"mi_lqk_dq" measurement values

German	English	Description	Example
idsatz	iddataset	identifier	1598, 1599
idcls		unknown identifier	
idobj	idobj	Measurement site from file "Bl_mst_lq_Q" column "idsatz"	372 (Aachen-Burtscheid)
param	param	Measured parameter from file "rx_param_4_lq_q" column "idsatz"	2053 (4_1_1_1, Stickstoffmonooxid)
dtbeg		unknown identifier	
tmbeg	Date	Measurement date	2020-01-01
tmend	time		00:00:00
prefix	Prefix	Identifiert if value is below detection limit	{<}
Wert	Values	Measurement value	7
rohwert	Raw values	Raw value from measurement device	1.002154
Nwg	Limit	detection limit	7
Status	State	Is value confimed?	
Freigabe	access	Is values free for access?	
idprz		table identifier	

Next steps

Phase 1: Business Understanding

- Determination of the business problem (Scientific question?)
- Situation assessment (Do you have all the tools needed?)
- Determination of analytical goals (what do you want to aquire?)
- Preparation of the project plan (your time table)

Phase 2: Data Understanding

- describe data (get to know your data set)
- analyse data (frist statistical analysis)
- check data (is amount of data is sufficient and usable for the analysis?)

ToDos for the next meeting?

Determination of the business problem

- Describe possible Scientific questions or elaborate on the given questions.
- Search for literature

Situation assessment

Do you have all the tools needed?

Determination of analytical goals

what do you want to aquire?

Preparation of the project plan

Create a time table for your project with milestones

Describe data

- get to know your data set
- Write import script for data set and prepare data filtering (cities, pollutants, ...)

09/05/2023