ТЕХНОЛОГИЯ LoRa КАК СРЕДСТВО ЦИФРОВОЙ РАДИОТЕЛЕМЕТРИИ ДЛЯ IoT УСТРОЙСТВ

Карманов А.А., Савостин А.А.

(СКУ им. М. Козыбаева)

Термин IoT, (Интернет вещей), подразумевает коллективную сеть, которая обеспечивает связь устройств с Интернетом, а также устройств друг с другом [1]. Благодаря разнообразию современных цифровых микросхем, датчиков и исполнительных устройств существуют десятки миллиардов устройств, подключенных к сети Интернет.

Взаимодействие этих устройств друг с другом и с сетью Интернет было бы невозможным без цифровых средств радиотелеметрии, комплексному обзору одного из которых посвящена настоящая статья.

Анализ технических возможностей современных технологий беспроводной связи (LTE-M, NB-IoT, EC-GSM-IoT, LoRa, Symphony Link, Sigfox и др.) позволяет сделать вывод, что с точки зрения оптимального баланса между энергопотреблением, скоростью обмена, используемым спектром частот, бюджетом канала связи и доступностью аппаратных решений, наиболее предпочтительным средством радиотелеметрии для IoT устройств является технология LoRa. Ниже изложены аргументы в пользу заявленного утверждения

На сегодняшний день LoRa является одной из самых универсальных технологий, принадлежащей к категории несотовых стандартов. Технология поддерживается консорциумом LoRa Alliance, состоящим более чем из 500 компаний, включая Cisco, IBM, SK Telecom и др., что обеспечивает разработчику средств радиотелеметрии широкий выбор доступных аппаратных решений, реализующих технологию, а также её непрерывное развитие и усовершенствование [2].

LoRa основывается на технологии модуляции с расширенным спектром и вариации линейной частотной модуляции (Chirp Spread Spectrum, CSS) с интегрированной прямой коррекцией ошибок (Forward Error Correction, FEC), что позволяет значительно повысить чувствительность приёмника. Аналогично другим методам модуляции с расширенным спектром, LoRa использует всю ширину полосы пропускания канала для передачи сигнала, что делает его устойчивым к канальным шумам и нечувствительным к смещениям, вызванным неточностями в настройке частот при использовании недорогих опорных кварцевых резонаторов [3].

Технология LoRa позволяет осуществлять демодуляцию сигналов с уровнями на 21 дБ ниже уровня шумов, в то время как для большинства систем с частотной манипуляцией (Frequency Shift Keying, FSK) для корректной демодуляции необходима мощность сигнала как минимум на 8-10 дБ выше уровня шума.

LoRa определяет физический уровень (Physical Layer, PHY, иногда его называют слой), который может быть использован с различными протоколами и в различных вариантах сетевой архитектуры, таких как сетка (Mesh), звезда (Star), точка-к-точке (point-to-point) [2].

Радиоинтерфейс LoRa представляет собой радиосигнал с линейной частотной модуляцией и основан на использовании широкополосных радиосигналов с большой базой B, много большей единицы. Данный вид радиосигналов имеет две главные особенности: ширина спектра радиосигнала BW значительно больше скорости передачи данных Rb (BW >> Rb), корреляционная функция существенно уже корреляционной функции узкополосного радиосигнала с базой $B \sim 1$.

Частотная избыточность широкополосного радиосигнала обуславливает его высокую помехоустойчивость, а узкая корреляционная функция высокую точность временной синхронизации. Широкополосный радиосигнал LoRa представляет собой сигнал с ЛЧМ или CSS (Chirp Spread Spectrum). Частота CSS радиосигнала может как увеличиваться (up-chirp), так и уменьшаться (down-chirp).

Коэффициент расширения спектра (SF) определяет разрядность символа данных (в битах), передаваемого через радиоинтерфейс за время, необходимое для передачи одного символа (Tsym).

На Рисунке 1 изображён вид ЛЧМ сигнала во временной области, а на Рисунке 2 и Рисунке 3 показан его спектр с BW=125 кГц и базой равной 128 (SF=7) и 4096 (SF=12) соответственно [4].

Рисунок 1. – Вид ЛЧМ сигнала во временной области

Рисунок 2. – Спектр ЛЧМ с SF=7

Рисунок 3. – Спектр ЛЧМ с SF=12

Взаимная синхронизация приёмника и передатчика, определяет временные границы приёма-передачи целого блока данных (или кадра) и единичных символов. Технология LoRa использует асинхронный режим приёма-передачи, при котором передатчик может начать генерацию радиосигнала в любой момент времени. В этом случае используется преамбула, предшествующая каждому сеансу связи. Преамбула включает в себя последовательность символов, позволяющих приёмнику обнаружить активность передатчика, определить используемый передатчиком

коэффициент расширения спектра (SF) и выполнить символьную синхронизацию.

Длительность преамбулы является конфигурируемой величиной и должна быть не менее, чем T1+2•T2, где T1 определяет максимальное время нахождения приёмника в состоянии "cha" (Sleep), T2 — определяет время поиска приёмником преамбулы.

После завершения преамбулы следует слово синхронизации (Sync Word) и блок данных физического уровня. Длина слова синхронизации настраивается в диапазоне от 1 до 8 байт. Спецификацией LoRa определён ряд специфических значений Sync Word — 0х34 для публичных сетей (public networks), 0х12 — для частных сетей (private networks) и 0хС194С1 — для каналов с FSK модуляцией.

Основным преимуществом радиоканала LoRa является его высокая помехоустойчивость. На Рисунках 4 и 5 показано функционирование детектора сигнала LoRa в условиях аддитивного белого гаусовского шума.

Рисунок 4. – Исходный сигнал в условиях белого гаусовского шума

Рисунок 5. – Функция принятия решения

В ходе сравнительного анализа доступных аппаратных решений для реализации LoRa радиолинии рассмотрены наиболее распространённые микросхемы от ведущих производитлей: «Analog Device», «Granansen AS», «Honeywell Infineon Technologies AG», «Inova», «Maxim», «Microchip», «NEC Electronics», «RF Monolithics Inc.», «Semtech», «STMicroelectronics», «Texas Instruments», «Хетіся». В результате сделан вывод о том, что наиболее оптимальными по критерию отношения цена/функционал являются микросхемы приёмопередатчиков компании «Semtech» и их аналоги, построенные с использованием гибридных технологий и имеющие в своём составе модем и встроенный усилитель мощности.

Эти микросхемы имеют большую базу данных программного обеспечения с открытым исходным кодом для разработки приложений. Диапазон рабочих частот включает частоты 137 — 175 МГц, 410 — 525 МГц, 862 — 1020 МГц. Имеется возможность выбора видов модуляции и кодовых конструкций. Используются стандартные типы последовательных интерфейсов.

Экспериментальные радиолинии испытаны на микросхемах SX1276 с параметрами, рассчитанными с использованием фирменного ПО производителя SX1276 «Semtech Calculator» для оптимальных значений выходной мощности, вида модуляции, ширины полосы пропускания и скорости передачи данных (Таблица 1).

Таблица 1. – Расчётные параметры экспериментальной радиолинии

	Значение				
Параметр SX1276	для диапазона 137 – 175 МГц	для диапазонов 410-525 и 862-1020 МГц			
Spreading Factor (SF)	7	9			
Bandwidth (BW)	125 кГц	500 кГц			
Coding Rate (CR)	2				
Payload Length	32				
Low Data Rate Optimize (DE)	0				
Preamble Length (PL)	10 (total 14.25)				
Implicit Header Mode On (IH)	0				
	0 – широковещательный ID				
Sync Word	151; 53255 – избирательный ID				
	52 – зарезервирован производителем				
CRC On Payload	1				
Rx Payload CRC On	1				
Рассчитанные выходные результаты (на основе вышеуказанных настроек):					
Техническая скорость	~ 4,55729 кбит/с	~ 5,85938 кбит/с			
Информационная скорость	~ 3,278 кбит/с	~ 3,891 кбит/с			
Чувствительность приёмника	минус 123 дБ				
Бюджет канала связи (при	~150 дБ				
мощности 1 Вт)					

В Таблице 2 приведены результаты работы детектора экспериментальной радиолинии при различных отношениях сигнал/шум (SNR) и коэффициентах расширения спектра (SF).

Таблица 2. – Результаты обнаружения ошибок детектирования сигнала

SNR/SF	SF7	SF8	SF9	SF10	SF11	SF12
0 дБ	0,9%	0,5%	0,2%	0,1%	0,1%	0,0%
-3 дБ	0,9%	0,6%	0,2%	0,1%	0,1%	0,0%
-6 дБ	2,0%	0,6%	0,2%	0,1%	0,0%	0,0%
-9 дБ	6,9%	1,5%	0,2%	0,1%	0,1%	0,0%
-12 дБ	18,0%	5,8%	1,3%	0,1%	0,0%	0,0%
-15 дБ	42,2%	17,6%	5,4%	0,6%	0,1%	0,0%
-18 дБ	68,9%	44,2%	18,0%	5,1%	1,1%	0,1%
-21 дБ	87,5%	73,7%	49,3%	18,9%	5,2%	0,8%

Результаты обмена тестовым трафиком при коэффициенте расширения спектра SF=12 свидетельствуют о возможности корректного демодулирования сигнала, принимаемого на 21 дБ ниже уровня шума (уровень полезного сигнала более чем в 100 ниже уровня шума).

Подобным результатом не может похвастаться ни одна из других, существующих на сегодняшний день технологий беспроводной передачи данных.

Литература

- 1. Литвинов, А. В. (2018). Интернет вещей. Новосибирск: Новосибирский государственный университет.
- 2. Марков, А. А. (2020). Применение LoRaWAN технологии в Интернете вещей. Красноярск: Сибирский федеральный университет.
- 3. Карташов, С. В., Гуржий, А. С., & Смирнов, М. В. (2017). Исследование технологий беспроводной связи в системах Интернета вещей. Сборник трудов Международной конференции "Управление развитием сложных систем", 168-173.
- 4. Литвинов, А. В. (2019). Моделирование и анализ алгоритмов модуляции и коррекции ошибок в системах радиотелеметрии Интернета вещей. Вестник Новосибирского государственного университета. Серия: Информационные технологии, 17(2), 89-95.