Last name	
First name	

LARSON—MATH 310-CLASSROOM WORKSHEET 14 Vector Subspace, Homogeneous Linear System		
Review: Chapter 3 of Klein's Coding the Matrix text		
1. For a field \mathbb{F} and finite set D why is the collection of functions \mathbb{F}^D a vector space?		
New		
1. If $\hat{v_1}, \hat{v_2}, \dots, \hat{v_n}$ are vectors in a vector space \mathcal{V} , why is $\mathrm{Span}(\{\hat{v_1}, \hat{v_2}, \dots, \hat{v_n}\})$ a vector space?		
2. What is a homogeneous linear system?		
3. Why are the solutions of a homogeneous linear system a vector space?		

The Matrix: Chapter 4 of Klein's Coding the Matrix text

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \end{bmatrix}$$

4. What is a *matrix* (traditionally)?

5. How can we view a matrix as a list of rows?

6. How can we view a matrix as a list of columns?

7. The entries of a traditional matrix are indexed by a pair of integers. How can we generalize the matrix idea to allow for matrices which are indexed any pairs (where each pair entry comes from a set $R \times C$, where R and C are finite sets)?

8. How can we view a (generalized) matrix as a dict-of-rows?

9. How can we view a (generalized) matrix as a dict-of-columns?