Zee Recommender Systems

Akanksha Trivedi

Table of Contents

Define Problem Statement and Formatting the Data	2
Problem Definition:	
Perform Exploratory Data Analysis (EDA), Data Cleaning, and Feature Engineering Data Inspection and Cleaning:	
Build a Recommender System Based on Pearson Correlation	
Item-Based Recommender Using Pearson Correlation	
Build a Recommender System Based on Cosine Similarity Cosine Similarity:	
Build a Recommender System Based on Matrix Factorization	4
Matrix Factorization:	
User-Based Approach	
User-Based Recommender Using Pearson Correlation:	
Questionaries	6
Users of which age group have watched and rated the most number of movies?	
Users belonging to which profession have watched and rated the most movies?	
Most of the users in our dataset who've rated the movies are Male. (T/F)	
The movie with the maximum number of ratings is	
Name the top 3 movies similar to 'Liar Liar' on the item-based approach. The Pearson Correlation	
Give the sparse 'row' matrix representation for the following dense matrix	8

Define Problem Statement and Formatting the Data

Problem Definition:

We are tasked with building a movie recommendation system using user ratings and movie metadata. We will format the data, clean it, and merge the datasets into one consolidated dataframe to perform further analysis.

```
import pandas as pd
    users = pd.read_csv('/content/zee-users.dat', sep='::', engine='python', header=None, names=['UserID', 'Gender', 'Age', 'Occupation', 'Zip-code'])
movies = pd.read_csv('/content/zee-movies.dat', encoding='ISO-8859-1', sep='::', engine='python', header=None, names=['Movie ID', 'Title', 'Genres
ratings = pd.read_csv('/content/zee-ratings.dat', sep='::', engine='python', header=None, names=['UserID', 'Movie ID', 'Rating', 'Timestamp'])
    merged_df = pd.merge(pd.merge(ratings, users, on='UserID'), movies, on='Movie ID')
    print(merged df.head())
 \overline{\Rightarrow}
         UserID Movie ID Rating Timestamp Gender Age Occupation Zip-code \
                                                                         F 1 10 F 1 10
                            1193
                                       5 978300760
                                             3 978302109
                                                                                                           48067
        1
                              661
                   1
                              914 3 978301968
3408 4 978300275
2355 5 978824291
                                                                                                           48067
        3
                             3408
                                                                                                10
                                                                                                           48067
                   1
                                                                                               10
        4
                             2355
                                                                                                           48067
                                                                  Title
                                                                                                                 Genres
           One Flew Over the Cuckoo's Nest (1975)
                                                                                                                  Drama
                 James and the Giant Peach (1996) Animation|Children's|Musical
                                           My Fair Lady (1964)
                                                                                                  Musical|Romance
                                      Erin Brockovich (2000)
        3
                                                                                                                   Drama
        4
                                          Bug's Life, A (1998) Animation|Children's|Comedy
```

Perform Exploratory Data Analysis (EDA), Data Cleaning, and Feature Engineering

Data Inspection and Cleaning:

We will check for any missing values, duplicates, and perform feature engineering (like extracting release year from the movie title).

```
# Checking for missing values
    merged_df.isnull().sum()
    # Removing duplicates
    merged_df.drop_duplicates(inplace=True)
    # Extracting the release year from the movie title
    merged_df['Release_Year'] = merged_df['Title'].str.extract(r'(\d{4})')
    # Convert Release_Year to integer
    merged_df['Release_Year'] = pd.to_numeric(merged_df['Release_Year'], errors='coerce')
    #replace NaN values with the mean or median rating if needed
    merged_df['Rating'] = pd.to_numeric(merged_df['Rating'], errors='coerce')
    #replace NaN values with the mean or median rating if needed
    merged_df['Rating'].fillna(merged_df['Rating'].mean(), inplace=True)
    # Grouping by average rating and number of ratings
    rating_stats = merged_df.groupby('Title').agg(avg_rating=('Rating', 'mean'), num_ratings=('Rating', 'count')).reset_index()
    print(rating_stats.head())
₹
                               Title avg rating num ratings
           $1,000,000 Duck (1971)
                'Night Mother (1986)
                                        3.571429
         'Til There Was You (1997)
'burbs, The (1989)
                                        3.111111
                                        3.000000
      ...And Justice for All (1979)
```

Build a Recommender System Based on Pearson Correlation

Item-Based Recommender Using Pearson Correlation

We will create a pivot table of movie titles and user IDs, and then calculate the item similarity using Pearson Correlation.

```
# Create a pivot table of movies and users
    pivot_table = merged_df.pivot_table(index='UserID', columns='Title', values='Rating')
    # Calculate the Pearson Correlation for movie similarities
    item_similarity = pivot_table.corr(method='pearson')
    # Get recommendations based on Pearson correlation
    movie_name = "Toy Story (1995)"
    similar_movies = item_similarity[movie_name].sort_values(ascending=False).head(6)
    similar_movies
₹
                                     Toy Story (1995)
                              Title
          Mr. & Mrs. Smith (1941)
                                                   1.0
        Children of the Corn III (1994)
                                                   1.0
             Raw Deal (1948)
                                                   1.0
               Bent (1997)
                                                   1.0
      Slipper and the Rose, The (1976)
                                                   1.0
     Blow-Out (La Grande Bouffe) (1973)
                                                   1.0
```

Build a Recommender System Based on Cosine Similarity

Cosine Similarity:

dtype: float64

We will calculate the similarity between items (movies) and users using Cosine Similarity and visualize the user-item similarity matrix.

```
import seaborn as sns
import matplotlib.pyplot as plt

# Heatmap for item-item similarity
plt.figure(figsize=(10, 8))
sns.heatmap(cosine_sim_df, cmap='coolwarm', xticklabels=False, yticklabels=False)
plt.title('Item-Item Cosine Similarity Matrix')
plt.show()
```


Build a Recommender System Based on Matrix Factorization

Matrix Factorization:

We will use the **Surprise** library to build a recommendation model using matrix factorization (SVD). We'll also evaluate the model using RMSE and MAPE.

```
!pip install scikit-surprise
from surprise import SVD, Dataset, Reader
from surprise, model_selection import train_test_split
from surprise import accuracy

# Prepare data for Surprise library
reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(merged_df[['UserID', 'Title', 'Rating']], reader)

# Train-test split
trainset, testset = train_test_split(data, test_size=0.2)

# Build the SVD model
model = SVD()
model.fit(trainset)

# Make predictions
predictions = model.test(testset)

# Evaluate performance using RMSE and MAPE
rmse = accuracy.rmse(predictions)
print(f"MRSE: {rmse}")

# Calculate MAPE
mape = np.mean(np.abs((np.array([pred.est for pred in predictions])) - np.array([pred.r_ui for pred in predictions]))) * 100
print(f"MAPE: (ange)")
```

```
Collecting scikit-surprise

Downloading scikit_surprise-1.1.4.tar.gz (154 kB)

Installing build dependencies ... done

Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Requirement already satisfied; joblib>=1.2.0 in /usr/local/lib/python3.11/dist-packages (from scikit-surprise) (1.4.2)
Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.11/dist-packages (from scikit-surprise) (1.26.4)
Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.11/dist-packages (from scikit-surprise) (1.13.1)
Building wheels for collected packages: scikit-surprise
Building wheel for scikit-surprise (pyproject.toml) ... done
Created wheel for scikit-surprise (pyproject.toml) ... done
Created wheel for scikit-surprise: filename=scikit_surprise-1.1.4-cp311-cp311-linux_x86_64.whl size=2505174 sha256=0615c040bd933aba97efe38159b4510d5a987e91681ee887b9ccb7d7ea054012
Stored in directory: /root/.cache/pip/wheels/2a/8f/6e/7e2899163e2d85d8266daab4aa1cdabec7a6c56f83c015b5af
Successfully built scikit-surprise
Installing collected packages: scikit-surprise
Successfully installed scikit-surprise-1.1.4
RMSE: 0.9180541540076876
MAPE: 28.487686781979882
```

RMSE: 0.9181 MAPE: 28.49

Embeddings and Visualization:

```
# Getting embeddings from the SVD model for item-item similarities
item_embeddings = model.qi

# Visualizing the embeddings using PCA
from sklearn.decomposition import PCA

pca = PCA(n_components=2)
reduced_embeddings = pca.fit_transform(item_embeddings)

# Plot the reduced embeddings
plt.figure(figsize=(10, 8))
plt.scatter(reduced_embeddings[:, 0], reduced_embeddings[:, 1])
plt.title("PCA Embeddings of Movies")
plt.xlabel("PCA Component 1")
plt.ylabel("PCA Component 2")
plt.show()
```


Pearson Correlation: -1 to +1

Cosine Similarity: 0 to 1

User-Based Approach

User-Based Recommender Using Pearson Correlation:

We will calculate the Pearson Correlation between users and recommend movies based on similar users.

```
# Create a pivot table where the index is UserID and columns are MovieID
    pivot_table = merged_df.pivot_table(index='UserID', columns='Movie ID', values='Rating')
    # Create user similarity matrix
    user_similarity = pivot_table.corr(method='pearson')
    similar_users = user_similarity['1'].sort_values(ascending=False).head(6)
    print(similar_users)

→ Movie ID
           1.0
    2477
           1.0
    3731
           1.0
    3734
          1.0
    2704
           1.0
    2678
           1.0
    Name: 1, dtype: float64
```

Questionaries

Users of which age group have watched and rated the most number of movies?

```
merged_df.groupby('Age')['Rating'].count().sort_values(ascending=False)
→*
          Rating
     Age
     25
           50790
      18
           32458
           24102
      35
      45
           11234
      50
            7743
            3963
      56
            2678
```

Users belonging to which profession have watched and rated the most movies?

Most of the users in our dataset who've rated the movies are Male. (T/F)

Most of the movies present in our dataset were released in which decade?

The movie with the maximum number of ratings is

Name the top 3 movies similar to 'Liar Liar' on the item-based approach. The Pearson Correlation

```
similar_movies = item_similarity['Liar Liar (1997)'].sort_values(ascending=False).head(5).index[1:5].tolist()
print(similar_movies)]

['Liar Liar (1997)', "Those Who Love Me Can Take the Train (Ceux qui m'aiment prendront le train) (1998)", 'Voyage of the Damned (1976)', 'Sacco and Vanzetti (Sacco e Vanzetti) (1971)']
```

Give the sparse 'row' matrix representation for the following dense matrix [[1 0] [3 7]]

Sparse representation (0, 0) 1 (1, 0) 3 (1, 1) 7