第七次作业参考

- 13. Let f and g be the permutations in Exercise 1. Consider the coloring c = (R, B, B, R, R, R) of 1, 2, 3, 4, 5, 6 with the colors R and B. Determine the following actions on c:
 - (a) f * c
 - (b) $f^{-1} * c$
 - (c) g * c
 - (d) $(g \circ f) * c$ and $(f \circ g) * c$
 - (e) $(g^2 \circ f) * c$

Solution:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 2 & 1 & 5 & 3 \end{pmatrix} \qquad g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 2 & 4 & 1 \end{pmatrix}$$

(b)
$$f^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 56 \\ 4 & 3 & 6 & 2 & 51 \end{pmatrix}$$

(d)
$$g \cdot f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 3 & 4 & 6 \end{pmatrix}$$

 $f \cdot g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 4 & 1 & 6 \end{pmatrix}$

20. Use Theorem 14.2.3 to determine the number of nonequivalent colorings of the corners of a triangle that is isoceles, but not equilateral, with the colors red and blue. Do the same with p colors (cf. Exercise 4).

Solution:

Answer:

The group of symmetries of an isoceles triangle is the dihedral group $D = \{1, r\}$.

The identity l fix all colors, thus $|C(l)| = 2^3$

The reflection r is like below. as the cide 12 = side 13

In order that a coloring be fixed by r.corners 2 and 3 must have the same color Hence. the colorings fixed by r are picking a color for 1 and picking one 3 color for 2 and $3.|C(r)|=2^2$

Therefore, the number of inequivalent colorings is: $N(D,C) = (2^3 + 2^2)/2 = 6$ When there are P colors, $N(D,C) = \frac{p^3 + p^3}{2}$

26. How many different necklaces are there that contain four red and three blue beads?

Solution:

The coefficient of r4b3 is 4

So there are 4 different necklaces which workings four red and three blue beads

44. Determine the generating function for nonequivalent colorings of the edges of a square with the colors red and blue. How many nonequivalent colorings are there with k colors (cf. Exercise 43)?

Solution:

The edge permutation group of a square (As shown in the figure on the right. Without loss of generality, name the four edges as 1,2,3 and 4) is the dihedral group:

$$D_4 = \{\rho_4^0 = \iota, \rho_4, \rho_4^2, \rho_4^3, \tau_1, \tau_2, \tau_3, \tau_4\}$$

Among them, τ_1 and τ_2 are reflections about the lines connecting the midpoints of two opposite edges respectively;

We provide the types of each permutation and their corresponding monomials in the table below:

D_4	Cycle factorization	Туре	Monomials
$\rho_4^0 = \iota$	$[1]\circ[2]\circ[3]\circ[4]$	(4, 0, 0, 0)	Z_1^4
ρ_4	[1 2 3 4]	(0,0,0,1)	Z_4^1
$ ho_4^2$	[13] • [24]	(0, 2, 0, 0)	z_2^2
$ ho_4^3$	[1 4 3 2]	(0,0,0,1)	Z_4^1
τ_1	[1] \circ [3] \circ [2 4]	(2, 1, 0, 0)	$z_1^2 z_2^1$
τ_2	[2] \circ [4] \circ [1 3]	(2, 1, 0, 0)	$z_1^2 z_2^1$
τ_3	[14] • [23]	(0, 2, 0, 0)	Z_2^2
$ au_4$	[12] • [34]	(0, 2, 0, 0)	z_2^2

The cycle index of D_4 is

$$P_{D_4}(z_1, z_2, z_3, z_4) = \frac{1}{8}(z_1^4 + 2z_4 + 3z_2^2 + 2z_1^2z_2)$$

If two colors are denoted as r and b, then the generating function is:

$$P_{D_4}(r+b,r^2+b^2,r^3+b^3,r^4+b^4) = \frac{1}{8}(8r^4+8r^3b+16r^2b^2+8rb^3+8b^4)$$

Hence, we get

$$P_{D_4}(r+b,r^2+b^2,r^3+b^3,r^4+b^4)=r^4+r^3b+2r^2b^2+rb^3+b^4$$

If we use k different colors, according to **Theo.14.3.2**, the number of non-equivalent colorings is

$$P_{D_4}(k,k,k,k) = \frac{k^4 + 2k + 3k^2 + 2k^2k}{8} = \frac{k^4 + 2k^3 + 3k^2 + 2k}{8}$$

