$$I_g = \frac{b-a}{2} [w_1 g(z_1) + w_2 g(z_2)]$$

$$b-a = b+a$$

$$x = \frac{b-a}{2}z + \frac{b+a}{2} = 2z$$

Therefore,

$$g(z) = e^{-2z/2} = e^{-z}$$

For a two-point formula

$$w_1 = w_2 = 1$$

$$z_1 = -\frac{1}{\sqrt{3}}$$

$$z_2 = \frac{1}{\sqrt{3}}$$

Upon substitution of these values, we get

$$I_g = 2 \left[\exp(-1/\sqrt{3}) + \exp(1/\sqrt{3}) \right]$$

= 4.6853922

Higher-Order Gaussian Formulae

By using a procedure similar to the one applied in deriving two-point formula, we can obtain the parameters w_i and z_i for higher-order versions of Gaussian quadrature. These parameters for formulae up to an order of six are tabulated in Table 12.2.

Table 12.2 Parameters for Gaussian integration

n	i	w_i	z_i
2	1	1.00000	- 0.57735
_	2	1.00000	0.57735
3	1	0.55556	- 0.77460
	2	0.88889	0.00000
	3	0.55556	- 0.77460
4	1	0.34785	- 0.86114
	2	0.65215	-0.33998
	3	0.65215	+ 0.33998
	4	0.34785	0.86114
5	1	0.23693	- 0.90618
3	2	0.47863	- 0.53847
1 1, 1	3	0.56889	0.00000
7 487	4	0.47863	0.53847
1	-	0.00000	0.00010

Scanned with CamScanner