Système de cryptographie RSA

Exercice 1. Dans un cryptosystème utilisant la méthode RSA, déterminer la clef secrète $(\varphi(n), d)$ et le message envoyé $M \in \mathbf{Z}/n\mathbf{Z}$ pour les clefs publiques (n, e) et les messages reçus $C = M^e$ suivants :

```
1. n = 35, e = 5, C = 10.

2. n = 265, e = 139, C = 10.

3. n = 667, e = 493, C = 10.

4. n = 3599, e = 31, C = 60.
```

Exercice 2. 1. On considère le cryptosystème (sans clef) suivant. Un grand nombre premier p est public et les unités de message sont des entiers m, $1 \le m < p$. Si Alice veut envoyer un message m à Bob, elle procède comme suit (on suppose que les transmissions s'effectuent sans erreurs) :

- (i) Alice choisit un entier a tel que $1 \le a < p$ et $\operatorname{pgcd}(a, p) = 1$. Elle calcule l'inverse a' de a dans $\mathbf{Z}/(p-1)\mathbf{Z}$ et envoie $C = m^a \mod p$ à Bob.
- (ii) Bob choisit un entier b tel que $1 \le b < p$ et $\operatorname{pgcd}(b, p) = 1$. Il calcule l'inverse b' de b dans $\mathbf{Z}/(p-1)\mathbf{Z}$ et renvoie $D = C^b \mod p$ à Alice.
- (iii) Alice envoie $E = D^{a'} \mod p$ à Bob.

Bob calcule $E^{b'}$ mod p et retrouve m. Pourquoi?

- **2.** Soit p = 31.
- a) Quels sont les ordres multiplicatifs possibles des éléments de $U_{31} = (\mathbf{Z}/31\mathbf{Z})^*$? Donner les ordres multiplicatifs de 2 et 4.
- b) Soit \mathcal{A} l'ensemble des entiers x, $1 \le x < 31$, tels que $\operatorname{pgcd}(x,30) = 1$. Calculer le cardinal de \mathcal{A} puis énumérer tous ses éléments, ainsi que leurs inverses modulo 30.
 - c) Trouver $b \in \mathcal{A}$, $b \neq 1$ tel que $4^b \equiv 4 \pmod{31}$.
- d) On utilise le cryptosystème du 1. avec p=31. Un *pirate* intercepte les échanges entre Alice et Bob et connait C=4, D=4 et E=8. Montrer qu'il peut facilement retrouver m, dont on donnera la valeur.

Exercice 3. Alice et Bob communiquent en utilisant la méthode RSA. Bob cherche donc deux nombres premiers p et q, et calcule leur produit n = 253. Il rend public le couple (n, 13).

- 1. Quelle est la clef secrète de Bob?
- 2. Alice veut transmettre le message m=2 à Bob; quel message M ce dernier va-t-il recevoir?
- **3.** Pour chacun des messages M' suivants reçus par Bob, quel est le message m' initial qu'Alice lui a envoyé?
 - a) M' = 22;
 - **b)** M' = 18.

Exercice 4. 1. Soient p et q deux nombres premiers distincts tels que $p \equiv q \equiv 2 \pmod{3}$. Montrer que 2(p-1)(q-1) + 1 est divisible par 3.

- On pose $k = \varphi(pq)$. Calculer l'inverse d dans $\mathbb{Z}/k\mathbb{Z}$ de $e = \frac{2(p-1)(q-1)+1}{3}$. 2. Soient p = 17, q = 11 On pose n = pq. Alice et Bob communiquent en utilisant la méthode RSA. La clef publique de Bob est (n, 107).
 - a) Quelle est sa clef secrète?
- b) Alice veut transmettre le message M à Bob. Bob reçoit C=9. Quel était le message Menvoyé par Alice?