CSCI 544: Applied Natural Language Processing

Text Classification

Xuezhe Ma (Max)

Logistical Notes

- HW1 will be released today: start working early
- NLTK

Models

Course Organization

NLP Tasks

Classification

• Categorizing instances of data into "classes", where class members share some notion of similarity.

Recap: NLP System Pipeline

Outline

A Concrete Step-by-Step Example

- Text Classification, e.g., sentiment analysis

Preprocessing

- Tokenization
- Other optional methods

Feature Extraction

- Vocabulary Creation
- Feature Representations:
 - Bag of Words (BoW)
 - TF-IDF

Classification Algorithms

- Naive Bayes Classifier
- Linear Classifier

Evaluation

- Metrics

I don't like scary movies, but this movie is funny at the same time and that is why I liked it.

Pipeline

Training

Preprocessing

- Tokenization: splitting the text into units for processing
 - Removing extra spaces
 - Removing unhelpful tokens, e.g., external URL links
 - Removing unhelpful characters, e.g., non-alphabetical characters
 - Splitting punctuations: Happy New Year! -> Happy New Year!

Optional operations

- [optional] Contracting and standardizing: won't -> will not
- [optional] Converting capital letters to lowercase: New York -> new york
- [optional] Stemming or Lemmatization: tokenization -> token

Pipeline

Training

Feature Extraction

- Create a word vocabulary
 - A dictionary of all the words we care about
 - Excluding stop words from dictionary as they are useless for sentiment analysis
 - Mapping each word to a word id: are -> 2
 - Discarding words not included in the vocabulary
- Representing each data instance into a feature vector
 - Bag of Words (BoW)
 - Term Frequency Inverse Document Frequency (TF-IDF)

Feature Extraction

Create a word vocabulary

- A dictionary of all the words we care about
- Mapping each word to a word id: are -> 2
- Discarding words not included in the vocabulary

- Go through all the instances, calculating the counts of each word
- Select the top K (non-stop) words with the most counts
- Assign each word a unique ID

Bag of Words

- ullet With a word vocabulary of K words, BoW represents each doc/review X into a vector of integers
- $X = [x_1, ..., x_k], x_i \in \{0, 1, 2, ..., \}$
- $x_i = j$ indicates that word i appears j times in the doc/review X

Vocab = [good, bad, nice, expensive, love]

"I love this shirt because it is nice and worm. The color also is nice and matches my skin tone"

Bag of Words

Limitations

- Insensitive to language structure: all contextual information has been discarded
- Information in word dependencies is overlooked: new york vs new book
- The resulting vectors are just word counts and are highly sparse
- Dominant by common words

Why using BoW?

- Simple
- Leads to acceptable performance in some applications

TF-IDF

- Core Idea: reflect how important a word is to an instance in the dataset
- Term Frequency (TF): frequency of a term/word appears in an instance (document)

$$tf_{i,d} = \frac{\text{#word i in document } d}{\text{#all words in document } d}$$

• Inverse Document Frequency (IDF): measuring how informative a word is

$$idf_i = \log \frac{\text{#documents}}{\text{#documents with word i}}$$

• TF-IDF

$$tf_{i,d} \times idf_i$$

What are the TF-IDF scores for stop words?

Pipeline

Training

Statistical Classifier

- Learning/Training: learning a predictive function from an training dataset
 - $\tilde{Y} = f(X)$
- Testing: given the value of an input feature vector X, predicting the output class Y
- Statistical Classifier
 - P(Y|X)

$$\tilde{Y} = f(X) = \arg \max_{Y} P(Y|X)$$

Generative vs Discriminative

Generative

- Modeling the joint distribution: P(X, Y)
- Using Bayes' Rule to compute $P(Y|X) = \frac{P(X,Y)}{P(X)}$
- Returning the class that most likely to generate that instance
- Example: Naive Bayes

Discriminative

- Modeling the posterior distribution: P(Y|X)
- Finding the exact function that minimizes classification errors on the training dataset
- Example: Linear classifier, Logistic Regression, Support Vector Machine (SVM), and Neural Networks (NNs)

Generative vs Discriminative

- Discriminative classifiers are generally more effective, since they directly optimize the classification accuracy. But
 - They are all sensitive to the choice of features, and in traditional ML these features are heuristically designed/extracted
 - Overfitting can happen if datasets are small
- Generative classifiers directly model the joint probability, which is helpful when generating text is necessary. But
 - Modeling the joint probability is a harder problem than classification if classification is our goal
 - They are more vulnerable w.r.t outliers/noises

Generative Classifier

$$P(Y|X) = \frac{P(X,Y)}{P(X)} = \frac{P(X|Y)P(Y)}{P(X)}$$

$$\tilde{Y} = \arg \max P(Y|X)$$

$$= \arg \max_{Y} \frac{P(X|Y)P(Y)}{P(X)}$$

$$= \underset{Y}{\operatorname{arg max}} P(X \mid Y)P(Y)$$

Challenges:

- How to compute the prior distribution P(Y)
- How to compute the joint distribution $P(X_1, X_2, ..., X_k \mid Y)$

$$\tilde{Y} = \arg \max_{Y} P(X|Y)P(Y)$$

$$= \arg \max_{Y} P(X_1, X_2, ..., X_k|Y)P(Y)$$

Prior
$$P(Y=1) = \frac{\text{\#positive reviews}}{\text{\#all reviews}}$$
 $P(Y=0) = \frac{\text{\#negative reviews}}{\text{\#all reviews}}$

$$P(X_1, X_2, ..., X_k | Y) = \prod_{i=1}^k P(X_i | Y)$$

• How to compute $P(X_i | Y)$?

$$P(X_1, X_2, ..., X_k | Y) = \prod_{i=1}^k P(X_i | Y)$$

Bag of Words

$$P(X_i = m \mid Y = 1) = \frac{\text{\#positive documents with word i appears m times}}{\text{\#positive documents}}$$

TF-IDF?

- Statistical Bias in Prior
 - Balance the Prior
- Sparsity
 - $P(X_i = m \mid Y) = 0$, then the whole probability $P(X \mid Y) = 0$, no matter the other helpful evidence!
 - Smoothing: adding small non-zero probabilities to each term

Prior
$$P(Y=1) = \frac{\text{\#positive reviews}}{\text{\#all reviews}}$$
 $P(Y=0) = \frac{\text{\#negative reviews}}{\text{\#all reviews}}$

Bag of Words

$$P(X_i = m \mid Y = 1) = \frac{\text{\#positive documents with word i appears m times}}{\text{\#positive documents}}$$

Linear Classifier

- Discriminative Model with learnable parameters
 - Assuming the data points are linearly separable in the feature space
 - The goal is to find a boundary

$$f(X) = W^T X = \sum_{i=1}^k w_i \cdot x_i$$

$$\hat{Y} = \begin{cases} 1, W^T X > 0 \\ 0, \text{ Otherwise} \end{cases}$$

How to learn the parameter W?

Perceptron

- First neural network learning model in 1960's, Inspired by the nervous system
- Simple and Limited (single layer models)
- Basic concepts are similar for multi-layer neural networks so it is a good learning tool

Perceptron Learning Algorithm

- ullet First initialize the model parameters W with random values
- Go through the training data one by one and update the weights

- For
$$X, Y \in \{ \langle X^1, Y^1 \rangle, \langle X^2, Y^2 \rangle, ..., \langle X^n, Y^n \rangle \}$$
:

- $f(X) = W^T X$, $\hat{Y} = 1$ if f(X) > 0 else 0
- $W \leftarrow W + \gamma (Y \hat{Y})X$

Only change parameters W if an error is there

Continue training until total training error ceases to improve

Perceptron Convergence Theorem:

guaranteed to find a solution in finite time if a solution exists

Optimal Boundary

Issues of Perceptron:

- What if the data points are NOT linearly separable?
- Are the perceptron solutions optimal?

Model Training

- Given the training data \mathbf{v}^1 \mathbf{v}^1 \mathbf{v}^2 \mathbf{v}^2 \mathbf{v}^2

$$< X^1, Y^1 > , < X^2, Y^2 > , ..., < X^n, Y^n > ,$$

$$W^* = \arg\min_{W} \sum_{j=1}^{n} L(Y^i, W^T X^i)$$

L is the loss function

Different L results in different algorithms: logistic regression, SVM, ...

Logistic Regression

- Statistical Classifier
 - -P(Y|X)
- Assuming that the likelihood function is a logistic function of the linear score

$$P(Y = 1 \mid X) = \frac{1}{1 + e^{-W^T X}}$$

Predictive Function

$$\tilde{Y} = f(X) = \arg \max_{Y} P(Y|X)$$

$$= \begin{cases} 1, W^T X > 0 \\ 0, \text{ Otherwise} \end{cases}$$

Logistic Regression: Learning Algorithm

Maximum Log-Likelihood

- Given the training data $< X^1, Y^1 > , < X^2, Y^2 > , ..., < X^n, Y^n > ,$
- Find $oldsymbol{W}$ that maximizes the likelihood on training data

$$W^* = \arg\max_{W} \sum_{i=1}^{n} \log P(Y^i | X^i)$$

where
$$P(Y = 1 | X) = \frac{1}{1 + e^{-W^T X}}$$

No closed-form solution

- Using numerical optimization methods, e.g, gradient descent or Newton method
- Convex function: unique global optimal solution of W^st

Support Vector Machines (SVMs)

- The margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint
- SVMs: maximize the margin to find the optimal boundary
 - Note: $Y \in \{1, -1\}$

$$\min W^T W$$
, s.t.

$$W^T X^i \cdot Y^i \ge 1, \forall \{ < X^i, Y^i > \}$$

- How to manage the case where the training data are not linearly separable?
 - Incorporating soft constraints

$$\min W^T W + c \sum_{j=1}^{\infty} \epsilon_j, s.t.$$

$$W^T X^i \cdot Y^i > = 1 - \epsilon_i, \forall \{ < X^i, Y^i > \}$$

$$0 < \epsilon_i < 1$$

Pipeline

Training

Model Evaluation

- We randomly split the annotated dataset into three subsets
 - Training set: learning model parameters
 - Validation set: selecting hyper-parameters
 - e.g. learning rate γ in perceptron; c in SVMs etc.
 - Test set: evaluating how well the learned model generalizes on unseen data
- Evaluation Metrics
 - Accuracy: proportion of correctly classified items
 - Sensitive w.r.t imbalance (1% positives vs. 99% negatives)
- Precision, Recall and F1-score

 #True Positives

 #True Positives + #False Positives

 #True Positive

 False Negative

 Y

 O

 False Positive

 True Negative

 True Negative

Problems of Traditional Text Classification

- Great efforts on classification algorithms/models
 - Assuming the features are given
- Insufficient attention on feature representations
 - Bag of words & TF-IDF
 - Only frequency information, not semantic meaning of each word
 - No contextual information

good nice bad

dist(good, nice) = dist(good, bad)

Bat

hit with bat

Q&A