1. Permutacijske grupe

DEFINICIJA: Naj bo G množica nekaterih permutacij nad množico X. Če G tvori grupo za komponiranje, pravimo, da je G **permutacijska grupa**, ki deluje na X.

Naj grupa G deluje na X. Definiramo relacijo: $x \sim y \Longleftrightarrow \exists g \in G : g(x) = y$.

Trditev: \sim je ekvivalenčna relacija na X.

DEFINICIJA: **Orbite** (glede na delovanje G na X) so ekvivalenčni razredi relacije \sim , velja torej: $Gx = \{y \in X; g(y) = x\}$.

Gx...orbita elementa x

 $G(x \to y) = \{g \in G; g(x) = y\}$

 $G_x...$ stabilizator elementa $x\colon\thinspace G(x\to x)$

IZREK: Če je G končna permutacijska grupa, ki deluje na X, tedaj je za vsak $x \in X$: |G| = |Gx||Gx|.

DEFINICIJA: Naj bo G grupa, ki deluje na X. Za $g \in G$ je $F(g) = \{x \in X; g(x) = x\}$ množica negibnih točk permutacije g.

IZREK: Število orbit pri delovanju G na X je enako: $\frac{1}{|G|} \sum_{g \in G} |F(g)|$.

DEFINICIJA: Naj bo G grupa in X množica. **Reprezentacija** G s permutacijami nad X je predpis $g \in G \mapsto \hat{g}$ permutacija X, tako da je $\widehat{g_1g_2} = \widehat{g_1}\widehat{g_2}$ za vse $g_1, g_2 \in G$.

 $\widehat{G} = \{\widehat{g}; g \in G\}$ je (permutacijska) grupa.

Definicija: Reprezentacija je **zvesta**, če je $\widehat{g_1} = \widehat{g_2} \iff g_1 = g_2$.

Trditev: Vsaka končna grupa premore zvesto reprezentacijo.

2. Simetrije in štetje

Naj bo α_i število disjunktnih ciklov dolžine i v π zapisanem kot produkt disjunktnih ciklov. (α_1 = število negibnih točk π .)

Če $|\pi| = n$, potem $\alpha_i + 2\alpha_2 + \ldots + n\alpha_n = n$.

 $z(\pi;x_1,\ldots,x_n)=x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}$ imenujemo ciklični indeks permutacije π

Definicija: G permutacijska grupa, tedaj je **ciklični indeks grupe** G:

$$Z(G; x_1, \dots, x_n) = \frac{1}{|G|} \sum_{g \in G} z(g; x_1, \dots, x_n).$$

Vrtiljaku ustreza ciklična grupa, ogrlici pa diedrska. D_{2n} je grupa simetrij pravilnega n-kotnika.

IZREK:
$$Z(C_n; x_1, ..., x_n) = \frac{1}{n} \sum_{d|n} \phi(d) x_d^{\frac{n}{d}}, \quad \phi(2^n) = 2^n - 1.$$

IZREK:
$$Z(D_{2n}; x_1, \dots, x_n) = \frac{1}{2} Z(C_n; x_1, \dots, x_n) + \begin{cases} \frac{1}{4} (x_1^2 x_2^{\frac{n}{2} - 1} + x_2^{\frac{n}{2}}); & n \text{ sod} \\ \frac{1}{2} x_1 x_2^{\frac{n-1}{2}}; & n \text{ lih} \end{cases}$$

Delovanje na ploskve nekega telesa je enako kot delovanje na oglišča dualnega telesa. Telesa in njihovi duali:

- \bullet kocka \leftrightarrow oktaeder
- ullet tetraeder \leftrightarrow tetraeder
- ullet ikozaeder (12 oglišč, ploskve trikotniki) \leftrightarrow dodekaeder (20 oglišč, ploskve petkotniki)

polieder	X	G	Z
tetraeder	4	12	$\frac{1}{12}(x_1^4 + 8x_1x_3 + 3x_2^2)$
oktaeder	6	24	$\frac{1}{24}(x_1^6 + 6x_1^2x_4 + 3x_1^2x_2^2 + 6x_2^3 + 8x_3^2)$
kocka	8	24	$\frac{1}{24}(x_1^8 + 8x_1^2x_2^2 + 9x_2^4 + 6x_4^2)$
ikozaeder	12	60	$\frac{1}{60}(x_1^{12} + 24x_1^2x_5^2 + 15x_2^6 + 20x_3^4)$
dodekaeder	20	60	$\frac{1}{60}(x_1^{20} + 20x_1^2x_3^6 + 15x_2^{10} + 24x_5^4)$

3. ŠTEVILO NEEKVIVALENTNIH BARVANJ

 $G \text{ grupa, ki deluje na } X, \, |X| = n, \, K \text{ naj bo množica } r\text{-barv, } w: X \longrightarrow K \text{ je } r\text{-barvanje } X, \, \Omega = \{w: X \longrightarrow K\}, \, |\Omega| = r^n$

 $\widehat{g}:\Omega\longrightarrow\Omega\ (w\mapsto \widehat{g}(w)).$ g je avtomorfizem grafa. Velja: $(\widehat{g}(w))(x)=w(g^{-1}(x)).$

Lema: Preslikava $\widehat{\,\cdot\,}$ je zvesta reprezentacija grupe G.

Grupi G in $\widehat{G} = \{\widehat{g} : \Omega \longrightarrow \Omega\}$ sta izomorfni.

DEFINICIJA: Barvanji sta **ekvivalentni**, če sta v isti orbiti grupe \hat{G} , oz. število neekvivalentnih barvanj X glede na G je število orbit G.

IZREK: Naj bo G grupa, ki deluje na X in $r \geq 2$. Tedaj je število neekvivalentnih barvanj X enako $Z(G; r, \ldots, r)$.

 $K = \{a,b,\dots k\},\ U(a,b,\dots,k)$... rodovna funkcija za vsa neekvivalentna barvanja glede na delovanje grupe G na n-množico X.

IZREK POLYA: Če G deluje na n-množico X in je $K = \{a, b, \dots, k\}$ množica barv, tedaj je

$$U(a,b,\ldots,k) = Z(G;\sigma_1,\ldots,\sigma_n)$$
, kjer je $\sigma_i = a^i + b^i + \cdots + k^i$ $(1 \le i \le n)$

4. Ramseyeva teorija

Trditev: Naj bodo povezave K_n pobarvane z dvema barvama in naj bo r_i število povezav iz i-tega vozlišča barve 1. Tedaj je število monokromatičnih trikotnikov enako $\binom{n}{3} - \frac{1}{2} \sum_{i=1}^{n} r_i (n-1-r_i)$.

Posledica: V situaciji iz zadnje trditve imamo vsaj $\binom{n}{3} - \lfloor \frac{n}{2} \lfloor (\frac{n-1}{2})^2 \rfloor \rfloor$ monokromatičnih trikotnikov.

RAMSEYEV IZREK: Naj bo $r \ge 1$ in $a_1, a_2 \ge r$. Tedaj obstaja tako najmanjše naravno število $N(a_1, a_2; r)$, da velja naslednje: naj bo S n-množica, kjer je $n \ge N(a_1, a_2; r)$ in recimo, da smo vse njene r-podmnožice pobarvali z barvo 1 oz. barvo 2. Tedaj S premore a_1 -podmnožico, tako da so vse njene r-podmnožice barve 1, ali pa S premore a_2 -podmnožico, da so vse njene r-podmnožice barve 2.

POSLEDICA: $N(a_1, a_2; r) \le N(N(a_1 - 1, a_2; r), N(a_1, a_2 - 1; r); r - 1) + 1.$

IZREK: $N(a_1, a_2; 2) \le \binom{a_1 + a_2 - 2}{a_1 - 1}$.

	· -1 - ·										
	$a_1 \backslash a_2$	3	4	5	6	7	8	9	10		
	3	6	9	14	18	23	28	36	40/42		
r=2:	4		18	25	36/41	49/61	58/84	73/115	92/149		
	5			43/49	58/87	80/143	101/216	126/316	144/442		
	6				102/165	113/298	132/495	169/780	179/1171		

IZREK: Če je $a \geq 3$, tedaj je $N(a, a; 2) \geq 2^{\frac{a}{2}}$.

IZREK (ERDŐS, SZEKERES): Za vsak $n \ge 3$ obstaja tako najmanjše naravno število N, tako da če imamo N točk v ravnini v splošni legi (nobene 3 niso kolinearne), potem med njimi obstaja n točk, ki določajo konveksen n-kotnik.

DEFINICIJA: Naj bodo G_1, \ldots, G_k grafi. **Grafovsko Ramseyevo število** $N(G_1, \ldots, G_k)$ je najmanjši tak N, da če povezave polnega grafa K_N pobarvamo poljubno z barvami $1, 2, \ldots, k$, tedaj v tem K_N najdemo vsaj en G_i , ki je barve i.

IZREK: Če je T drevo z n vozlišči, tedaj je $N(T, K_n) = (n-1)(n-1) + 1$.

Avtor: Klemen Sajovec, manjši popravki: Jure Slak