2

3

4

1

2

1

2

3

4

5

6

WHAT IS CLAIMED IS:

1.	A	method	for	controlling	a	phase	locked	loop	in	a	computer	system	clock
generat	tor	comprisi	ng t	he steps of:									

generating a lead error signal when a first signal leads a second signal and a lag error signal when said first signal lags said second signal;

generating a phase error signal in response to said lead error signal and said lag error signal;

generating a variable first gain signal in response to said phase error signal and said first signal;

generating a variable second gain signal in response to said lead error signal and said lag error signal;

generating a control signal in response to a first reference signal, a second reference signal, said first gain signal and said second gain signal; and

applying said control signal to a voltage controlled oscillator as a frequency control signal of an output of a voltage controlled oscillator generating said second signal.

- 2. The method of claim 1, wherein said lead error signal is a logic one pulse if said first signal leads said second signal during a cycle of said second signal and said lag error signal is a logic one pulse if said first signal lags said second signal during said cycle of said second signal.
- 3. The method of claim 1, wherein said phase error signal is increased on a transition of said lead error signal and decreased on a transition of said lag error signal.

1

2

1

2

3

1

2

- The method of claim 1, wherein said first gain signal is increased if an absolute value of said phase error signal reaches a first threshold value within a time window and decreased if said absolute value of said phase error signal does not reach said first threshold value in said time window.
 - 5. The method of claim 1, wherein said second gain signal is a value +K if said lead error signal is a logic one pulse and a value -K if said lag error signal is a logic one pulse, wherein K is a numerical value including the value one.
 - 6. The method of claim 1, wherein said first gain signal is limited to a magnitude between a predetermined maximum level and a predetermined minimum level.
 - 7. The method of claim 6, wherein a third signal is generated by adding said first reference signal to said second reference signal multiplied by said first gain signal.
 - 8. The method of claim 7, wherein said control voltage is generated in response to said third signal, an integral of said third signal, and said second gain signal.
 - 9. The method of claim 8, wherein said third signal is multiplied by said second gain signal generating a modified third signal.
 - 10. The method of claim 9, wherein said control voltage is generated by adding said modified third signal multiplied by a first constant to an integral of said modified third signal multiplied by a second constant.

- 1 11. The method of claim 1, wherein said first threshold value and said time window
- 2 are dynamically variable.

3

4

1

2

1

2

1

2

3

4

5

6

7

8

		1 (DIT	
12.	A phase locked	loon (PLL	i comprising:
٠ سند ل	1 1 pilabo locatou .	1000 (1 22	, •••••••

a phase comparator receiving a first signal and a second signal and generating a lead error signal when said first signal leads said second signal and a lag error signal when said first signal lags said second signal;

a phase error generator for generating a phase error signal in response to said lead error signal and said lag error signal;

a circuit for generating a variable first gain signal in response to said phase error signal and said first signal;

a circuit for generating a variable second gain signal in response to said lead error signal and lag error signal;

a circuit for generating a control signal in response to a first reference signal, a second reference signal, said first gain signal and said second gain signal; and

a voltage controlled oscillator receiving said control signal as a frequency control signal of an output of said voltage controlled oscillator generating said second signal.

- 13. The PLL of claim 12, wherein said lead error signal is a logic one pulse if said first signal leads said second signal during a cycle of said second signal and said lag error signal is a logic one pulse if said first signal lags said second signal during said cycle of said second signal.
- The PLL of claim 12, wherein said phase error signal is increased on a transition 14. of said lead error signal and decreased on a transition of said lag error signal.
- 15. The PLL of claim 12, wherein said first gain signal is increased if an absolute value of said phase error signal reaches a first threshold value within a time window and

2

1

- decreased if said absolute value of said phase error signal does not reach said first threshold value in said time window.
- 1 16. The PLL of claim 12, wherein said second gain signal is a value +K if said lead 2 error signal is a logic one pulse and a value -K if said lag error signal is a logic one pulse, 3 wherein K is a numerical value including the value one.
 - 17. The PLL of claim 12, wherein said first gain signal is limited to a magnitude between a predetermined maximum level and a predetermined minimum level.
 - 18. The PLL of claim 17, wherein a third signal is generated by adding said first reference signal to said second reference signal multiplied by said first gain signal.
 - 19. The PLL of claim 18, wherein said control voltage is generated in response to said third signal, an integral of said third signal, and said second gain signal.
 - 20. The PLL of claim 19, wherein said third signal is multiplied by said second gain signal generating a modified third signal.
- The PLL of claim 20, wherein said control voltage is generated by adding said modified third signal multiplied by a first constant to an integral of said modified third signal multiplied by a second constant.
- 1 22. The PLL of claim 12, wherein said first threshold value and said time window are dynamically variable.

1	23.	A data processing system comprising:				
2		a processor central processing unit (CPU);				
3		a random access memory (RAM);				
4		a read only memory (ROM); and				
5		a bus system coupling said CPU to said ROM and said RAM, said CPU further				
6	compr	ising a phase locked loop (PLL) in clock generator, said PLL comprising:				
7		circuitry for receiving a first signal and a second signal and generating a lead error				
8	signal	when said first signal leads said second signal and a lag signal when said first				
9	signal	lags said second signal;				
10		circuitry for generating a phase error signal in response to said lead error signal				
11	and sa	id lag error signal;				
12		circuitry for generating a variable first gain signal in response to said phase error				
13	signal					
14		circuitry for generating a variable second gain signal in response to said lead error				
15	signal	and lag error signal;				
16		circuitry for generating a control signal in response to a first reference signal, a				
17	secono	l reference signal, said first gain signal and said second gain signal; and				
18		a voltage controlled oscillator receiving said control signal as a frequency control				
19	signal	for an output of said voltage controlled oscillator generating said second signal.				
1	24.	The data processing system of claim 23, wherein said lead error signal is a logic				
2	one pu	alse if said first signal leads said second signal during a cycle of said second signal				
3	and sa	id lag error signal is a logic one pulse if said first signal lags said second signal				
4	during	during said cycle of said second signal.				

1

2

3

1

2

3

1

2

3

- The data processing system of claim 23, wherein said phase error signal is increased on a transition of said lead error signal and decreased on a transition of said lag error signal.
 - 26. The data processing system of claim 23, wherein said first gain signal is increased if an absolute value of said phase error signal reaches a first threshold value within a time window and decreased if said absolute value of said phase error signal does not reach said first threshold value in said time window.
 - 27. The data processing system of claim 23, wherein said second gain signal is a value +K if said lead error signal is a logic one pulse and a value -K if said lag error signal is a logic one pulse, wherein K is a numerical value including the value one.
 - 28. The data processing system of claim 23, wherein said first gain signal is limited to a magnitude between a predetermined maximum level and a predetermined minimum level.
 - 29. The data processing system of claim 28, wherein a third signal is generated by adding said first reference signal to said second reference signal multiplied by said first gain signal.
 - 30. The data processing system of claim 29, wherein said control voltage is generated in response to said third signal, an integral of said third signal, and said second gain signal.

- 1 31. The data processing system of claim 30, wherein said third signal is multiplied 2 by said second gain signal generating a modified third signal.
- 1 32. The data processing system of claim 31, wherein said control voltage is generated 2 by adding said modified third signal multiplied by a first constant to an integral of said 3 modified third signal multiplied by a second constant.