Attorney Docket No.: CIS0199US

WHAT IS CLAIMED IS:

I	1. A method comprising.		
2	transmitting a first data stream to a switch fabric, said first data stream having		
3	a first priority; and		
4	at any time during said transmission, interrupting said transmission of said		
5	first data stream to transmit a second data stream to said switch fabric,		
6	said second data stream having a second priority.		
1	2. The method of claim 1, further comprising:		
2	resuming transmission of said first data stream if there is no data of said		
3	second data stream to transmit.		
1	3. The method of claim 1, further comprising:		
2	stopping said transmission of said first data stream;		
3	transmitting a switch code; and		
4	transmitting said second data stream.		
1	4. The method of claim 3, further comprising:		
2	transmitting a switch code; and		
3	resuming transmission of said first data stream.		
1	5. The method of claim 1, wherein		
2	said first priority is a low priority; and		
3	said second priority is a high priority.		
1	6. The method of claim 1, further comprising:		
2	stopping transmission of a frame of said first data stream after detection of a		
3	start of frame and prior to detection of an end of frame.		
1	7. The method of claim 6, further comprising:		
2	transmitting data of said second data stream; and		
3	resuming transmission of data of said first data stream.		
1	8. The method of claim 6, further comprising:		
2	transmitting a second priority switch code;		

3	transmitting data of said second data stream;			
4	transmitting a first priority switch code; and			
5	transmitting data of said first data stream.			
1	9. The method of claim 1, further comprising:			
2	storing data of said first data stream in a first FIFO; and			
3	storing data of said second data stream in a second FIFO.			
1	10. The method of claim 9, wherein said interrupting comprises:			
2	upon detection of data in said second FIFO, interrupting said first data stream			
1	11. The method of claim 9, further comprising:			
2	receiving a data stream at a line card, said data stream comprising frames of			
3	said first data stream and frames of said second data stream; and			
4	detecting the priority of said frames of said data stream.			
1	12. The method of claim 1, further comprising:			
2	at periodic intervals during transmission of said second data stream,			
3	transmitting an amount of bytes of data of said first data stream.			
1	13. An apparatus comprising:			
2	a first buffer configured to store data of a first data stream, said data of said			
3	first data stream having a first priority;			
4	a second buffer configured to store data of a second data stream, said data of			
5	said second data stream having a second priority;			
6	a priority switch circuit coupled to said first buffer and said second buffer,			
7	wherein said priority switch circuit is configured to			
8	upon detection of data of said second data stream, interrupt a			
9	transmission of data of said first data stream at any time during			
10	said transmission and transmit data of said second data stream.			
1	14. The apparatus of claim 13, wherein said priority switch circuit is			
2	further configured to resume transmission of said first data stream if there is no data			
3	of said second data stream to transmit.			

i	15. The apparatus of claim 14, wherein said priority switch circuit is				
2	further configured to transmit a first switch code after the second buffer has				
3	transmitted data of said second data stream and prior to transmission of data of said				
4	first data stream.				
1	16. The apparatus of claim 13, wherein said priority switch circuit is				
2	configured to transmit a second switch code upon detection of data of said second				
3	data stream.				
l	17. The apparatus of claim 13 wherein said priority switch circuit is further	er			
2	configured to interrupt transmission of said first data stream during transmission of a	l			
3	packet of said first data stream from said first buffer.				
1	18. The apparatus of claim 13 wherein said priority switch circuit is further	er			
2	configured to transmit an amount of bytes from said first data stream at periodic				
3	intervals during transmission of said second data stream from said second buffer.				
1	19. The apparatus of claim 13 further comprising:				
2	a port coupleable to a network device; and				
3	a forwarding engine coupled between said port and each of said first and				
4	second buffers, said forwarding engine configured to forward frames				
5	of said first data stream to said first buffer and forward second frames	;			
6	of said second data stream to said second buffer.				
1	20. The apparatus of claim 13 further comprising:				
2	a serial link configured to serialize data received from said first and said				
3	second buffers and said priority switch circuit and transmit said				
4	serialized data to a switching fabric.				
1	21. The apparatus of claim 20 further comprising:				
2	a plurality of buffers, each buffer configured to store data of a data stream,				
3	each data stream having a priority level, wherein said priority switch				
4	circuit is further configured to				

)	interrupt a transmission of one of said data streams from one of said
6	buffers upon detection of data having a highest priority level,
7	and
8	transmit data having said highest priority level.
1	22. The apparatus of claim 13 further comprising:
2	a switch fabric coupled to said first and second buffers.
1	23. An apparatus comprising:
2	a first buffer configured to store data of a first data stream, said data of said
3	first data stream having a first priority;
4	a second buffer configured to store data of a second data stream, said data of
5	said second data stream having a second priority; and
6	means for, upon detection of data in said second buffer, interrupting a
7	transmission of said first data stream at any time and transmitting said
8	second data stream to a switch fabric.
1	24. The apparatus of claim 23, further comprising:
2	means for resuming transmission of said first data stream if there is no data of
3	said second data stream to transmit.
1	25. The apparatus of claim 23, wherein said means for interrupting
2	comprises:
3	means for stopping said transmission of said first data stream; and
4	means for transmitting a switch code.
1	26. The apparatus of claim 23, wherein said means for interrupting
2	comprises:
3	means for stopping transmission of a packet of said first data stream after
4	detection of a start of frame and prior to detection of an end of frame.
1	27. The apparatus of claim 26, wherein said means for interrupting
2	comprises:
3	means for transmitting a second priority switch code; and
4	means for transmitting a first priority switch code.

1	28.	The apparatus of claim 23, further comprising:
2		at periodic intervals during transmission of said second data stream,
3		means for transmitting an amount of bytes of data of said first
4		data stream.