IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: M. SAITO, et al.

Serial No.: 09/703,548

Filed:

November 1, 2000

For: OPTICAL DISK RECORDING PAPARATUS HAVING PUSH-PULL SIGNAL PROCESSING CIRCUIT, WOBBLE EXTRACTION CIRCUIT AND PRE-PIT DETECTION CIRCUIT

Group No.: Unknown

Examiner:

Unknown

PATENT UNK

51270-245664

Assistant Commissioner for Patents Washington, D.C. 20231

TRANSMITTAL OF PRIORITY DOCUMENT

Dear Sir:

Enclosed herewith is a certified copy of Japanese patent application No. 11-314568 which was filed November 5, 1999, from which priority is claimed under 35 U.S.C. §119 and Rule 55.

Acknowledgment of the priority document is respectfully requested to ensure that the subject information appears on the printed patent.

Respectfully submitted,

PILLSBURY MADISON & SUTRO LLP

Dated: December 4, 2000

ROGER ROWISE (Reg. No. 31,204)

Attorney for Applicants

725 South Figueroa Street, Suite 2800

Los Angeles, CA 90017

Telephone: (213) 488-7100; Facsimile: (213) 629-1033

Ву:

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Assistant Conniglissioner for Patents, Washington D.C. 20231, on as first class mail in an envelope addressed to: Asc 12/04/00.

20280205V1

本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1999年11月 5日

出 類 番 号 Application Number:

平成11年特許願第314568号

ヤマハ株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

2000年10月13日

特許庁長官 Commissioner, Patent Office

特平11-314568

【書類名】 特許願

【整理番号】 C27949

【提出日】 平成11年11月 5日

【あて先】 特許庁長官殿

【国際特許分類】 G11B 7/00

【発明者】

【住所又は居所】 静岡県浜松市中沢町10番1号 ヤマハ株式会社内

【氏名】 斎藤 稔

【発明者】

【住所又は居所】 静岡県浜松市中沢町10番1号 ヤマハ株式会社内

【氏名】 藤原 一伸

【発明者】

【住所又は居所】 静岡県浜松市中沢町10番1号 ヤマハ株式会社内

【氏名】 本多 和彦

【特許出願人】

【識別番号】 000004075

【氏名又は名称】 ヤマハ株式会社

【代理人】

【識別番号】 100090228

【弁理士】

【氏名又は名称】 加藤 邦彦

【電話番号】 03(3359)9553

【手数料の表示】

【予納台帳番号】 062422

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 光ディスク記録装置のプッシュプル信号処理回路およびウォ ブル抽出回路ならびにプリピット検出回路

【特許請求の範囲】

【請求項1】

ウォブルした記録トラックを有する光ディスクに記録信号に応じてビームパワーが変調された記録用光ビームを照射して情報の記録を行う光ディスク記録装置において、

前記記録用光ビームの戻り光の受光信号からプッシュプル信号を生成するプッシュプル信号生成回路と、

該プッシュプル信号を生成する前または後の信号のゲインを、前記記録用光ビームの変調に連動して変更して、該光ビームの変調に伴う該プッシュプル信号のレベル変動を抑制する可変ゲイン回路と

を具備してなる光ディスク記録装置のプッシュプル信号処理回路。

【請求項2】

前記可変ゲイン回路が、前記記録信号のマーク形成部とブランク形成部とでゲインを変更する請求項1記載の光ディスク記録装置のプッシュプル信号処理回路

【請求項3】

前記可変ゲイン回路が、さらに前記記録信号のマーク形成部で該マーク形成部の長さに応じてゲインを変更する請求項2記載の光ディスク記録装置のプッシュプル信号処理回路。

【請求項4】

請求項1から3のいずれかに記載のプッシュプル信号処理回路の出力信号から ウォブル信号成分の帯域を抽出するフィルタ回路を具備してなる光ディスク記録 装置のウォブル抽出回路。

【請求項5】

請求項1から3のいずれかに記載のプッシュプル信号処理回路の出力信号を適 宜のしきい値で比較して、前記光ディスクに形成されているプリピットを検出す る比較器を具備してなる光ディスク記録装置のプリピット検出回路。

【請求項6】

前記プッシュプル信号処理回路の出力信号のピーク値を検出する第1のピーク 値検出回路と、

該プッシュプル信号処理回路の出力信号からウォブル信号成分の帯域を抽出するフィルタ回路と、

該フィルタ回路の出力信号のピーク値を検出する第2のピーク値検出回路と、 前記第1のピーク値検出回路で検出された第1のピーク値と、前記第2のピー ク値検出回路で検出された第2のピーク値の間の適宜の値を求めて前記しきい値 として設定するしきい値演算回路と

を具備してなる請求項5記載の光ディスク記録装置のプリピット検出回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、ウォブル(蛇行)した記録トラックを有する光ディスクに情報を 記録する光ディスク記録装置に関し、記録時にウォブル抽出やプリピット検出等 を高精度に行えるようにしたものである。

[0002]

【従来の技術】

CD-R, CD-RW等の記録可能型CDやDVD-R、DVD+RW、DVD-RAM、DVD-RW等の記録可能型DVD等の記録可能型光ディスクは一定周期でウォブルした記録トラックを有し、記録時に記録用レーザ光の戻り光受光信号から作成したプッシュプル信号(記録トラックの延在方向に対し左右に対称配置された受光素子の受光出力の差信号)に含まれるウォブル信号を抽出し、該ウォブル信号に基づきスピンドル制御、アドレス情報の再生、記録信号の基準クロック生成等が行われる。また、光ディスクにプリピット(記録トラックの中心線に対し側方にずれてトラック方向に間欠的に形成された凹凸等のマーク)が形成されいる場合には、該プッシュプル信号からプリピット信号を検出し、該プリピット信号に基づき記録信号の基準クロック生成、アドレス情報の再生、スピ

ンドル制御等が行われる。

[0003]

【発明が解決しようとする課題】

プッシュプル信号は記録時に記録信号による記録用レーザ光の変調の影響を受けてレベルが変動する。ウォブル信号はプッシュプル信号をフィルタで濾波して抽出できるが、ウォブル信号と記録信号の周波数帯域が近接している場合には記録信号成分をフィルタで除去しきれず、抽出したウォブル信号に記録信号が雑音成分として残留し、スピンドル制御等に悪影響を及ぼす。また、プリピット信号はプッシュプル信号にパルス状に突出した信号として現れるので、プッシュプル信号を適宜のしきい値で比較することにより検出できるが、プッシュプル信号は記録信号による記録用レーザ光の変調の影響を受けてレベルが変動しているので、プリピット信号のピーク値は一定していない。このため、しきい値の設定が難しく、プリピットの誤検出や検出漏れを生じやすい。

[0004]

この発明は上述の点に鑑みてなされたもので、光ディスクの記録時にウォブル 抽出やプリピット検出等を高精度に行えるようにした光ディスク記録装置のプッ シュプル信号処理回路およびウォブル抽出回路ならびにプリピット検出回路を提 供しようとするものである。

[0005]

【課題を解決するための手段】

この発明のプッシュプル信号処理回路は、ウォブルした記録トラックを有する 光ディスクに記録信号に応じてピームパワーが変調された記録用光ピームを照射 して情報の記録を行う光ディスク記録装置において、前記記録用光ピームの戻り 光の受光信号からプッシュプル信号を生成するプッシュプル信号生成回路と、該 プッシュプル信号を生成する前または後の信号のゲインを、前記記録用光ピーム の変調に連動して変更して、該光ピームの変調に伴う該プッシュプル信号のレベ ル変動を抑制する可変ゲイン回路とを具備してなるものである。これによれば、 記録時にプッシュプル信号を生成する前または後の信号のゲインを、記録用レー ザの変調に連動して変更するようにしたので、記録信号による記録用レーザ光の 変調に伴うプッシュプル信号のレベル変動が抑制され、これによりレーザパワーの変動によるウォブル信号成分の変動が抑制され(正規化され)、記録信号の影響を回避してウォブル抽出やプリピット検出等を高精度に行うことができる。可変ゲイン回路は、例えば記録信号のマーク形成部とブランク形成部とでゲインを変更することができる。可変ゲイン回路は、さらにマーク形成部でマーク形成部の長さに応じてゲインを変更することができる。

[0006]

この発明のウォブル抽出回路は、前記プッシュプル信号処理回路の出力信号からウォブル信号成分の帯域を抽出するフィルタ回路を具備してなるものである。また、この発明のプリピット検出回路は、前記プッシュプル信号処理回路の出力信号を適宜のしきい値で比較して前記光ディスクに形成されているプリピットを検出する比較器を具備してなるものである。このプリピット検出回路は例えば、前記プッシュプル信号処理回路の出力信号のピーク値を検出する第1のピーク値検出回路と、該プッシュプル信号処理回路の出力信号からウォブル信号成分の帯域を抽出するフィルタ回路と、該フィルタ回路の出力信号のピーク値を検出する第2のピーク値検出回路と、前記第1のピーク値検出回路で検出された第1のピーク値と、前記第2のピーク値検出回路で検出された第2のピーク値の間の適宜の値を求めて前記しきい値として設定するしきい値演算回路とを具備して構成することができる。

[0007]

【発明の実施の形態】

この発明の実施の形態を説明する。はじめにこの発明が適用された光ディスク 記録装置によって情報が記録される光ディスクのトラックの構成例を図2の模式 平面図を参照して説明する。この光ディスク10は、例えばDVD-Rとして構成されたもので、記録トラックとしてグルーブ12が一定周期でウォブルして形成されている。隣接するグルーブ12,12間のランド14には、該光ディスク 10の製造工程で予め、アドレス情報等を表すプリピット16が間欠的に形成されている。DVD-Rではグルーブ12の外周側に隣接するランド14に形成されたプリピット16が、該グルーブ12に対するプリピット16として形成され

ている。光ピックアップ(図示せず)から出射される記録用あるいは再生用レーザビームのビームスポット18は、その中心位置がグルーブ12の中心線上に乗ってトレースするようにトラッキング制御される。このとき、ビームスポット18は、その左右両側の部分がランド14に掛かり、プリピット16にも照射される。ビームスポット18の戻り光は光ピックアップ内の光検出器で受光されて、トラッキング制御、フォーカス制御および記録情報の再生等が行われる。光検出器の構成例を図3に平面図で示す。この光検出器20は4分割受光素子(例えばPINフォトダイオード)で構成され、光ディスク10に形成されたビームスポット18の戻り光が照射されてビームスポット22を形成する。以下に説明する実施の形態では光検出器20の各分割領域A,B,C,Dがトラック進行方向に対し、図3に示すように配列されているものとする。プッシュプル信号はA,B,C,Dの各領域の受光出力を(A+D)-(B+C)の演算をすることにより求められる。

[0008]

(実施の形態1)

この発明の第1の実施の形態を図1に示す。これは、プッシュプル信号を作成した後の信号についてウォブル信号成分の正規化を行うようにしたものである。4分割受光素子の受光出力A, B, C, Dは演算回路24で(A+D) - (B+C)の演算がされてプッシュプル信号が作成される。プッシュプル信号はスイッチ回路26(アナログスイッチ)を介して可変ゲイン回路28に入力される。可変ゲイン回路28はオペアンプ30を有する反転増幅器で構成され、反転入力端に接続された抵抗R1,R2をスイッチ回路26で切り換えることにより回路のゲインが切り換えられる。抵抗R3に接続されたコンデンサC1は、プリピット検出に不要な高域成分を除去するものである。スイッチ回路26は記録信号のマーク形成部(記録パワーのレーザ光が出射されてピットが形成される区間)とブランク形成部(再生パワーのレーザ光が出射されてブランクが形成される)とブランク形成部(再生パワーのレーザ光が出射されてブランクが形成されるによりで切り換えられる。抵抗R1をマーク形成部用、抵抗R2をブランク形成部用とすると、抵抗値はR1>R2に設定され、これにより可変ゲイン回路28のゲインは、マーク形成部のゲイン<ブランク形成部

のゲイン、に可変制御される。これにより、記録時にマーク形成部とブランク形成部でのレーザパワーの変動によるプッシュプル信号のレベル差が抑制され、ウォブル信号成分が正規化される。なお、再生時はスイッチ回路26は抵抗R2側(ブランク形成部側)に固定されて、プリピット検出およびウォブル抽出が行われる。

[0009]

可変ゲイン回路28から出力されるプッシュプル信号はしきい値設定回路32に入力される。しきい値設定回路32はプッシュプル信号に基づき、プリピットを検出する適宜のしきい値を設定する。比較器34はプッシュプル信号を設定されたしきい値で比較して、比較結果をプリピット信号として出力する。検出されたプリピット信号は適宜の用途(記録信号の基準クロック生成、アドレス情報の再生、スピンドル制御等)に利用するため、各該当する回路に送られる。また、プッシュプル信号は、ローパスフィルタ36に入力されて、ウォブル信号が抽出される。抽出されたウォブル信号は適宜の用途(スピンドル制御、アドレス情報の再生、記録信号の基準クロック生成等)に利用するため、各該当する回路に送られる。

[0010]

図1の回路を有する光ディスク記録装置の記録時の動作を図4を参照して説明する。(a)は形成しようとするピットで、(b)はこれに対応した記録信号である。記録信号はマーク形成部とブランク形成部が交互に入れ替わる。(c)は(b)の記録信号を記録ストラテジ回路(レーザ照射制御回路)に入力して得られるレーザ駆動信号波形である。レーザ駆動信号は、(c)ではDVD-R用を示しており、ピークパワーが一定の分割パルスで構成される。この分割パルスは、先頭パルスが後続パルスよりもパルス幅が長く設定され、形成しようとするピット長に応じて後続パルスのパルス数が定められている。(d)は(c)のレーザ駆動信号により駆動される記録用レーザ光の照射によってグルーブ12に形成されたピットである。(e)は記録用レーザ光の戻り光の受光出力によるプッシュプル信号波形である。プッシュプル信号にはウォブル信号成分が含まれている。プッシュプル信号のレベルはレーザパワーにより変動し、マーク形成部で大き

なレベルとなり、ブランク形成部で小さなレベルとなる。(f)は可変ゲイン回路28のゲインで、(b)の記録信号に応じてマーク形成部で低くブランク形成部で高く設定される。両者のゲイン比は、マーク形成部でのウォブル信号成分のエンベロープとブランク形成部でのウォブル信号成分のエンベロープがほぼ等しくなるように設定される。(g)は可変ゲイン回路28から出力されるプッシュプル信号で、レーザパワーの切り換えによるプッシュプル信号のレベル変動が抑制され(正規化され)ている。(h)はローパスフィルタ36から出力されるウォブル信号である。

[0011]

図1の回路によるプリピット検出およびウォブル抽出の動作を図5を参照して 説明する。(a)に示すように、ビームスポット18をグルーブ12に沿ってト レースして記録を行うものとする。なお、(a)のトラック構成におけるグルー ブとプリピットの配置は説明の都合上便宜的に表したものであり、DVD-Rに おける実際の配置とは相違する。グルーブ12の内周に隣接するランド14aに プリピット16aが形成され、外周に隣接するランド14bにプリピット16b が形成されている。外周に隣接するランド14bのプリピット16bがグルーブ 12に対するプリピットである。(b)は記録時に得られるプッシュプル信号波 形である。記録用レーザ光がプリピットを通過するときプッシュプル信号にはパ ルス状の波形が現れる。このパルス状の波形は、ウォブル信号成分の波形のピー ク位置付近に現れる。また、このパルス状の波形は、外周側のプリピットによる 場合と内周側のプリピットによる場合とでは極性が互いに逆になる。また、この パルス状の波形のピーク値は、マーク形成部でプリピットを通過した場合は高く なり((b)の拡大図A。なお、分割パルスの場合はマーク形成部の中でも記録 パワーと再生パワーに切り替わっているが、この切り替わりの時間間隔は極めて 短いので、マーク形成部の中の再生パワーの区間内だけでプリピットが通過する ことはなく、必ず高いピーク値が生じる。)、ブランク形成部でプリピットを通 過した場合は低くなる((b)の拡大図B)。このため、プリピットを検出する しきい値を拡大図Aに示す場合に合わせて髙く設定すれば拡大図Bに示すプリピ ットが検出できなくなり、逆に拡大図Bに示す場合に合わせて低く設定すれば、

プリピット以外も検出してしまう。そこで、可変ゲイン回路28によりプッシュプル信号を正規化する。例えば、(b)に示すように、マーク形成部のウォブル信号成分のレベルをV1、ブランク形成部のウォブル信号成分のレベルをV2とすると、可変ゲイン回路28のゲインを、ブランク形成部ではマーク形成部のV1/V2倍に設定する(光ディスク記録装置の設計時にV1, V2を実験で求めてゲインを設定する。)。(c)は可変ゲイン回路28のゲインをこのように設定して正規化したプッシュプル信号である。レーザパワーの変動によるプッシュプル信号のレベル変動が抑制され、プリピットによるパルス状の波形のピーク値が一定化されている。したがって、しきい値を(c)に示すように適宜のレベルに設定して比較器34で比較することにより、(d)に示すように角側のプリピットを検出したプリピット信号が得られる。また、(c)の正規化されたプッシュプル信号をローパスフィルタ36に通すことにより、(e)に示すように記録信号成分を含まないウォブル信号が抽出される。

[0012]

ここで、図1のしきい値設定回路32の具体例を図6に示す。また、図6のa ~ eの各部の波形を図7に同符号でそれぞれ示す。図6において、可変ゲイン回路28から出力される正規化されたプッシュプル信号aはピーク値検出回路38で一方の極性(外周側プリピットによるパルスが現れる極性)のピーク値bが検出される。このピーク値bは外周側プリピット信号波形のピーク値に相当する。また、プッシュプル信号aはローパスフィルタ40でウォブル信号成分cが抽出され、ピーク値検出回路42で同じ極性のピーク値dが検出される。このピーク値dはウォブル信号波形のピーク値に相当する。しきい値演算回路44は、しきい値として両ピーク値b, dの間の適切な値、例えば両ピーク値b, dの平均値(b+d)/2を求めて出力する。

[0013]

(実施の形態2)

この発明の第2の実施の形態を図8に示す。これは、プッシュプル信号を作成する前のA+D, B+Cの信号についてそれぞれ正規化を行うようにしたものである。受光信号A+Dはスイッチ回路46を介して可変ゲイン回路48に入力さ

8

れる。受光信号B+Cはスイッチ回路50を介して可変ゲイン回路52に入力される。スイッチ回路46,50は図1のスイッチ回路26と同様に記録信号(図4(b))に連動して切り換えられる。可変ゲイン回路48,52は図1の可変ゲイン回路28と同様に構成される。可変ゲイン回路48,52でそれぞれ正規化された信号A+D,B+Cは演算回路54で(A+D)-(B+C)の演算がされて、図1の可変ゲイン回路28の出力と同じ正規化されたプッシュプル信号が出力される。このプッシュプル信号は図1と同じ構成の後段回路で処理される。すなわち、しきい値設定回路56と比較器58でプリピットが検出され、ローパスフィルタ60でウォブル信号が抽出される。

[0014]

(実施の形態3)

この発明の第3の実施の形態を図9に示す。これは、プッシュブル信号を作成する前のA, B, C, Dの信号についてそれぞれ正規化を行うようにしたものである。受光信号Aはスイッチ回路68を介して可変ゲイン回路70に入力される。受光信号Bはスイッチ回路72を介して可変ゲイン回路74に入力される。受光信号Cはスイッチ回路76を介して可変ゲイン回路78に入力される。受光信号Dはスイッチ回路80を介して可変ゲイン回路82に入力される。スイッチ回路68,72,76,80は図1のスイッチ回路26と同様に記録信号(図4(b))に連動して切り換えられる。可変ゲイン回路70,74,78,82は図1の可変ゲイン回路28と同様に構成される。可変ゲイン回路70,74,78,82は図1の可変ゲイン回路28と同様に構成される。可変ゲイン回路70,74,78,82でそれぞれ正規化された信号A,B,C,Dは演算回路84で(A+D)ー(B+C)の演算がされて、図1の可変ゲイン回路28の出力と同じ正規化されたプッシュプル信号が出力される。このプッシュプル信号は図1と同じ構成の後段回路で処理される。すなわち、しきい値設定回路86と比較器88でプリピットが検出され、ローパスフィルタ90でウォブル信号が抽出される。

[0015]

なお、実施の形態2(図8)、実施の形態3(図9)は、例えば次の場合に有用性がある。受光信号A、B、C、Dは、例えばPINフォトダイオードの感度に若干のばらつきがあるために、信号の大きさが揃わなかったり、マーク形成部

とブランク形成部との信号の大きさの比が異なったりする場合がある。そのとき、図8や図9の回路では、受光信号A, B, C, Dのばらつきを補正するために、受光信号A+D, B+Cの系統ごと(図8の場合)、または受光信号A, B, C, Dの系統ごと(図9の場合)に、可変ゲイン回路で抵抗R1, R2, R3の組合せを調整することができ(つまり、抵抗値の組合せは、必ずしも同一でなくてよい。)、実施の形態1(図1)に比べて補正が容易である。

[0016]

(実施の形態4)

前記各実施の形態では可変ゲイン回路のゲインを2段階に切り換えるようにし たが、レーザパワーが3段階以上になるなど受光波形のウォブル信号成分のレベ ル比が3段階以上に変動する場合には、可変ゲイン回路のゲインを3段階以上に 切り換えるように構成することができる。そのように構成した回路例を図10に 示す。これはラダー抵抗を用いてゲイン切り換えを行うようにしたものである。 受光信号は演算回路91で(A+D)-(B+C)の演算がされてラダー抵抗回 路92に入力される。ラダー抵抗回路92は抵抗値がr(rはある適切な抵抗値)の抵抗R11~R13と、抵抗値が2rの抵抗R14~R18と、スイッチ回 路94,96,98,100を組み合わせて構成され、スイッチ回路94,96 , 98, 100の切り換えにより全体の抵抗値を15段階に切り換えることがで きる。15段階の切り換えを指示する切換制御信号は2進化回路101で2進化 され、該2進化された信号はスイッチ回路94,96,98,100を指示され た状態に切り換えて15段階の切り換えを行う。可変ゲイン回路103は反転入 力端にラダー抵抗回路92が接続され、ラダー抵抗回路92の抵抗値の切り換え によってゲインが可変されてプッシュプル信号の正規化を行う。正規化されたプ ッシュプル信号は図1と同じ構成の後段回路で処理される。すなわち、しきい値 設定回路105と比較器107でプリピットが検出され、ローパスフィルタ10 9でウォブル信号が抽出される。

[0017]

図10の回路の適用例を説明する。同じ規格の光ディスクであっても記録材料 の違いやメーカの違い等によってマーク形成部とブランク形成部でのプッシュプ ル信号のウォブル信号成分のレベル比が異なる場合がある。そこで、ディスク種類ごとに最適な結果が得られる切換制御信号の値を求めてメモリに保存しておき、記録時にディスク種類を判別して、メモリから該当する切換制御信号を読み出してゲインの設定を行う。

[0018]

また、レーザ駆動信号が前記図4 (c)で示したような分割パルスの場合、1 つのマーク形成部内でプッシュプル信号のレベルは先頭パルス部分で高く後続パルス部分で低くなる。先頭パルスのパルス幅が、形成するピット長にかかわらずはぼ一定である場合には、1つのマーク形成部内でのプッシュプル信号の平均のレベルは、図11に示すように、ピット長が短い場合は高く、ピット長が長い場合は低くなる。したがって、ピット長に応じてラダー抵抗回路92を切り換えて、ピット長が短くなるほど可変ゲイン回路103のゲインを低くすれば、より正確に正規化することができる。

[0019]

なお、前記各実施の形態では、4分割受光素子の受光信号からプッシュプル信号を作成する場合について説明したが、2分割光検出器その他の形式の光検出器の受光信号からプッシュプル信号を作成することもできる。また、前記実施の形態ではマーク形成部内全体でゲインを一定としたが、マーク形成部内で分割パルスに応じてゲインの細かい切り換えを行う(パルスが立ち上がっているときゲインを低くし、パルスが立ち下がっているときゲインを低くする、先頭パルスのレーザパワーが高く設定されている場合は先頭パルス時のゲインをより低くする等)こともできる。また、前記実施の形態では、分割パルスを用いて記録する場合について説明したが、連続パルスを用いて記録する場合にもこの発明を適用することができる。また、前記実施の形態では、DVDーRに記録をする場合について説明したが、DVDーR以外のウォブルした記録トラックを有する光ディスクあるいはウォブルした記録トラックとプリピットを有する光ディスクに記録をする場合にもこの発明を適用することができる。この場合、前記図1、図8、図9、図16等の回路を使用できる場合もある。また、前記実施の形態では、可変ゲイン回路の抵抗R1,R2の抵抗値をR1>R2に設定したが、これに限るもの

ではない。例えば、相変化型ディスクに記録する場合は、ブランク形成部は再生パワーでなく消去パワーとなり、プッシュプル信号の出力はマーク形成部よりもブランク形成部の方が大きい場合もある。そのような場合は、R1>R2でなく、R1<R2とした方がよい場合もある。

【図面の簡単な説明】

- 【図1】 この発明の第1の実施の形態を示す回路図である。
- 【図2】 記録可能型光ディスクのトラックの構成例を模式的に示す平面図である。
- 【図3】 光ディスクからの戻り光を受光する光検出器の配置を示す平面図である。
 - 【図4】 図1の回路の動作波形図である。
- 【図5】 図1の回路によるプリピット検出およびウォブル抽出動作を示す 動作波形図である。
 - 【図6】 図1のしきい値設定回路の具体例を示すブロック図である。
 - 【図7】 図6のしきい値設定回路の動作波形図である。
 - 【図8】 この発明の第2の実施の形態を示す回路図である。
 - 【図9】 この発明の第3の実施の形態を示す回路図である。
 - 【図10】 この発明の第4の実施の形態を示す回路図である。
- 【図11】 ピット長によるプッシュプル信号波形の違いを示す波形図である。

【符号の説明】

10…光ディスク、12…グルーブ(記録トラック)、16,16a,16b …プリピット、18…記録トラック上に形成されるレーザ光のビームスポット、20…光検出器、22…光検出器上に形成される戻り光のビームスポット、24,54,84,91…演算回路(プッシュプル信号生成回路)、28,48,52,70,74,78,82,103…可変ゲイン回路、34,58,88,107…比較器、36,60,90,109…ローパスフィルタ(フィルタ回路)、38…第1のピーク値検出回路、40…フィルタ回路、42…第2のピーク値検出回路、44…しきい値演算回路。

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

形成するピット長	レーサ"出力	戻り光 <i>受光</i> プッシュプッレ信号波形	toット形成期間内 のプラシュフシン信号 の平均レベル
3T			「事い
4T			
5T			
•	•	•	•
	•	•	•
14T			1 1 1 1 1 1 1 1 1 1

【要約】

【課題】 記録時にウォブル抽出やプリピット検出を髙精度に行えるようにする

【解決手段】 記録用レーザ光の戻り光を4分割受光素子で受光して得られる受光信号A, B, C, Dから、プッシュプル信号(A+D)-(B+C)を作成する。該プッシュプル信号を可変ゲイン回路28に入力する。可変ゲイン回路28のゲインを、記録信号に応じてマーク形成部では低ゲインに設定し、ブランク形成部では高ゲインに設定して、プッシュプル信号を正規化する。正規化されたプッシュプル信号に基づいてウォブル抽出やプリピット検出を行う。

【選択図】 図1

出願人履歷情報

識別番号

[000004075]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

静岡県浜松市中沢町10番1号

氏 名

ヤマハ株式会社