Section 7

1. According to
$$\hat{Y} = \begin{bmatrix} 0.6 \\ 0.7 \end{bmatrix}$$
, $0.6 > 0.5$, then $\hat{y}_1 = 1 = y_1$

0.7 > 0.5, then $\hat{y}_2 = 1 = y_2$

0.4 < 0.5, then $\hat{y}_3 = -1 = y_3$
 \therefore then accuracy is look.

- 2. No. Because $\hat{Y}_3 = 0.4$, which is not very smaller than 05, i-e. the confidence to classify x_3 as a fregative sample is still small. We expect $\hat{Y}_3 \rightarrow 0$.
- 3. The output of Logistic legiession is [0,1], which can be used as probability to identify different sample's confidence / score.
- 4. 1) For classes i and j. their decision boundary $y_i(x) = y_j(x)$, i.e. $(\theta_i \theta_j)^{\top} x + (\theta_{i0} \theta_{j0}) = 0$

If $\theta_i = \theta_j$, $\theta_i = \theta_j$, then any $\forall x \in \mathbb{R}^n$, $(\theta_i - \theta_j)^T \times f(\theta_i - \theta_j)$ with close to 0. 1'e, lies on the boundary.

- 2) Because: O the Scales of features might be different,

 (2) The ground truth label vector has length 1, we need to

 scale our prediction labels for better couping
- b. No. If GTX >0, y=0, GTXCO, y=1, the prediction is not continuous.

