

2024 FS CAS PML - Supervised Learning 3 Regression 3.2 Klassisch

Werner Dähler 2024

3 Regression - AGENDA

- 31. Einleitung
- 32. Regression klassisch (OLS)
 - 321.LinearRegression
 - 322.Ridge & Lasso
 - 323. Logistische Regression
- 33. Regression mit ML
- 34. Vergleiche über alle Modelle

3.2 Regression - Regression klassisch

"klassische" Methode: bereits im Einsatz lange vor Machine Learning

- der Begriff Regression wurde im 19. Jahrhundert von <u>Francis Galton</u>, geprägt
- beschrieb damit ein biologisches Phänomen, bekannt als Regression zur Mitte, wonach Nachfahren grosser Eltern dazu tendieren, nur durchschnittlich gross zu werden
- für Galton hatte der Begriff Regression nur diese biologische Bedeutung [Wikipedia]

3.2.1.1 Theorie

- nebenstehende Darstellung zeigt als Scatterplot den nummerischen Zusammenhang zwischen den eingangs genannten Merkmalen X und y des Demo Datasets
- Konvention bei derartigen Darstellungen:
 - X-Achse: Feature (unabhängige Variable)
 - Y-Achse: Target (abhängige Variable) quantitative Beschreibung des Zusammenhangs liefert der Korrelationskoeffizient, der aber in diesem Kontext von untergeordneter Bedeutung ist

(dies impliziert, bei der statistischen Anwendung der Methode, dass X die Ursache ist, y die Wirkung, welche erzielt wird: geklärte Kausalität)

3.2.1.1 Theorie

- die eingezeichnete Linie wird als Regressionsgerade bezeichnet
- sie bezeichnet die beste mögliche (lineare) Anpassung (fit) von X und y
- anhand dieser Geraden kann für jeden beliebigen Wert des Features X der wahrscheinlichste Wert des Targets y vorausgesagt werden
- die Regressionsgerade ist in diesem Beispiel damit ein prädiktives Modell, d.h. ein Modell zur Vorhersage der Werte von y aufgrund jener von X

3.2.1.1 Theorie

Vorgehen

eine Gerade kann in der Geometrie mit der folgenden linearen Beziehung beschrieben werden:

$$y = ax + b$$

übertragen auf das vorliegende Beispiel sowie auf die Schreibweise in der Statistik:

$$y = \beta_0 + \beta_1 \cdot X$$

dabei bedeuten

- β_0 (b): der Nullstellendurchgang (intercept), d.h. der Wert von y an der Stelle X=0
- eta_1 (a): die Steigung der gesuchten Geraden: $\frac{\Delta y}{\Delta X}$

3.2.1.1 Theorie

- $m{\rho}_0$ und $m{\beta}_1$ werden so gesucht, dass die Summe der **quadrierten vertikalen** Abstände der einzelnen Punkte zur Geraden minimal wird
- die Abstände selber werden als "Residuen" (auch Fehler) bezeichnet (vgl. orange Linien)
- das oben genannte Verfahren wird in der Literatur auch als Methode der kleinsten Quadrate bezeichnet (Ordinary least squares, OLS)
- die Lineare Regression ist ein geschlossenes Verfahren, d.h. es existieren Formeln, mit denen β_0 und β_1 direkt aus den Daten berechnet werden können
- Formeln (1 Feature)

$$\beta_1 = \frac{\sum (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\beta_0 = \bar{y} - \beta_1 \cdot \bar{x}$$

(Details dazu allenfalls <u>hier</u>)

3.2.1.1 Theorie

- die Herleitung der Formeln ersparen wir uns hier, wir werden im Folgenden mit scikit-learn Methoden arbeiten, welche die gesuchten Koeffizienten direkt ermitteln (und noch einiges mehr)
- in der nebenstehenden Abbildung sind die gesuchten Parameter bereits eingetragen: β_0 =-0.348, β_1 =0.414
- (die Grafik wurde so parametrisiert, dass die X-Achse bei 0 beginnt, damit kann der Wert für β_0 dort direkt abgelesen werden)

3.2.1.1 Theorie (Extra)

wieso eigentlich den quadratischen Fehler minimieren und nicht den absoluten?

- dazu ein kleines konstruiertes Zahlenbeispiel zur Illustration:
- gegeben ist ein Vektor mit den Werten 1, 2, 3, 5, 8
- gesucht der Wert x so, dass die Summe der absoluten Abstände minimal wird (z.B. optimaler Standort eines Marktfahrers an einer Strasse, mit potentiellen Kunden an den genannten Adressen)
- durch Ausprobieren verschiedener Werte von x findet man den Wert 3 als besten Wert
 - zwar gerade der Median der Ausgangswerte, ist aber nicht trivial, mathematisch zu "beweisen"
- alternativer Vorschlag: minimieren der quadrierten Abstände führt zu einer quadratischen Funktion

(i)

3.2.1.1 Theorie (Extra)

- im Gegensatz zum ersten Ansatz kann der zweite direkt (d.h. ohne Ausprobieren) gelöst werden
 - geschlossene Lösung
 - mittels Methoden der Linearen Algebra
- die nebenstehende Darstellung visualisiert diese beiden Ansätze
 - oben: minimieren der Summe der absoluten Abstände
 - der Funktionsgraph weist Ecken auf (Singularitäten) und kann daher nicht differenziert werden, d.h.: auf den Ecken kann die Steigung nicht eindeutig bestimmt werden
 - unten: minimieren der Summe der quadrierten Abstände
 - die Funktion ist differenzierbar
 - die erste Ableitung einer quadratischen Funktion ist eine Gerade
 - Nullsetzen dieser Geraden markiert gerade das Maximum Ausgangsfunktion (klassisches Optimierungsverfahren)

3.2.1.1 Theorie

Multiple Lineare Regression

- Lineare Regression wird im Machine Learning dann besonders interessant, wenn mehrere Features gleichzeitig berücksichtigt werden
- bei beispielsweise zwei Features, kann man sich das Regressionsmodell als Ebene im Raum vorstellen, so dass alle Datenpunkte der Trainingsdaten minimale (vertikale!)
 Abstände zu dieser Ebene aufweisen

3.2.1.1 Theorie

Multiple Lineare Regression

- bei mehr als zwei Features wäre es dann eine n-1-dimensionale Hyperebene im ndimensionalen Raum
- dabei wird folgendes berechnet
 - die Koeffizienten für jedes Feature (β_i)
 - intercept (β_0)
- Modellbeschreibung

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_p x_p$$

$$=\beta_0+\sum_{j=1}^p(\beta_jx_j)$$

3.2.1.1 Theorie

Multiple Lineare Regression

dabei werden die Koeffizienten eta_0 bis eta_n derart gesucht, dass die Summe der quadrierten Residuen minimal wird

RSS =
$$argmin \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = argmin \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j \cdot x_{i,j} \right)^2$$

- dabei bedeuten
 - RSS: Summe der Residuenquadrate (Residual Sum of Squares, hier farbig, da später wieder verwendet)
 - y_i : wahrer Targetwert der i-ten Beobachtung
 - \hat{y}_i : geschätzter (vom Modell vorhergesagter) Targetwert der i-ten Beobachtung
 - n: Anzahl Beobachtungen (Index: i)
 - p: Anzahl Features (Index: j)

3.2.1.1 Theorie

Multiple Lineare Regression

- die zu minimierende Funktion wird auch Straffunktion (loss function) genannt
- die eigentliche Minimierung erfolgt unter anderem durch Auflösen eines Gleichungssystems mit p Unbekannten (unter Zuhilfenahme des Matrix-Kalkül der Linearen Algebra, mehr Details: CAS DA)

3.2.1.1 Theorie

Performance Metriken (ein Ausblick auf Kap. 4.4.2)

- wie bei Klassifikation stehen verschiedene Performance Metriken zur Verfügung
- dabei werden jeweils zwei Vektoren einander gegenübergestellt:
 - y_true: wahrer Wert des Targets der Testdaten (auch als y_test bezeichnet)
 - y_pred: vom Modell aufgrund der Features der Testdaten vorhergesagter Wert des Targets
- b die zwei populärsten Metriken werden hier (schon einmal) kurz vorgestellt
 - R2 (sklearn.metrics.r2_score): Bestimmtheitsmass (oder Determinationskoeffizient), zugleich interne Scorer Methode bei allen Regressionsklassen (default Scorer) Wertebereich 0-1, wobei 1 für perfekte Anpassung (<0 bei falschen Voraussetzungen)</p>
 - MSE (sklearn.metrics.mean_squared_error): mittlere Quadratische Abweichung der wahren Werte vom Modell und somit der Mittelwert der quadrierten Residuen Wertebereich 0-∞, wobei 0 für perfekte Anpassung
- eine detaillierte Zusammenstellung weiterer Metriken erfolgt im Kapitel 4.4.2 (Performance Metriken Regression)

3.2.1.2 Lineare Regression mit Matrix-Operationen (Extra)

- Lineare Regression lässt sich als System von mehreren linearen Gleichungen mit ebenso vielen Unbekannten formulieren
- die <u>Lineare Algebra</u>, ein Teilgebiet der Mathematik, entstand aus zwei konkreten Anforderungen heraus, wie
 - dem Lösen von linearen Gleichungssystemen
 - der rechnerischen Beschreibung geometrischer Objekte
- die heute noch gültigen Ansätze dazu gehen auf Arbeiten namhafter Mathematiker des 19. Jahrhunderts zurück (u.a. <u>Legendre</u> und <u>Gauss</u>)
- um den Schreibaufwand zu reduzieren, werden die Gleichungssysteme im Folgenden in der <u>Matrixform</u> dargestellt
- numpy und numpy.linalg enthalten zahlreiche Funktionen (Operationen) zur Behandlung von Matrizen (und Vektoren)

3.2.1.2 Lineare Regression mit Matrix-Operationen (Extra)

- die für Lineare Regression relevanten Matrix-Operationen, sowie die entsprechenden Funktionen aus numpy sind dabei:
 - transponieren: numpy.matrix.transpose(M)
 - multiplizieren: numpy.matmul(M1, M2)
 - invertieren: numpy.linalg.inv(M)
- diese sollen im Folgenden anhand eines einfachen Zahlenbeispiels kurz vorgestellt werden
- folgende Bezeichnungen
 - X: Feature Matrix
 - y: Target Vektor

3.2.1.2 Lineare Regression mit Matrix-Operationen (Extra)

die Matrix-Darstellung der Linearen Regression:

$$y = X\beta + \epsilon$$

wobei

$$\frac{\beta}{(n\times 1)} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}$$

$${\varepsilon \atop (n \times 1)} = {\begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}}$$

Schätzer:

$$\boldsymbol{b} = (\boldsymbol{X}^T \cdot \boldsymbol{X})^{-1} \cdot \boldsymbol{X}^T \cdot \boldsymbol{y}$$

$$\widehat{\mathbf{y}} = \mathbf{X} \cdot \mathbf{b}$$

$$e = y - \hat{y}$$

$$s^{2} = \frac{\boldsymbol{e}^{T} \cdot \boldsymbol{e}}{n - K} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}^{i})^{2}}{n - K}$$

3.2.1.2 Lineare Regression mit Matrix-Operationen (Extra)

- dabei bedeuten
 - M^T: transponierte Matrix von M, d.h. Vertauschen von Zeilen und Spalten (in der Literatur auch gelegentlich M') (numpy.matrix.transpose())

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

 $M_1 \cdot M_2$: Matrix-Multiplikation, Details dazu unter <u>Matrizenmultiplikation</u> (numpy.matmul())

► M⁻¹: invertiere Matrix von M, d.h. multiplizieren von M⁻¹ und M führt zu Einheitsmatrix E (vgl. rechts)

Details dazu unter Gauss-Jordan-Algorithmus (numpy.linalg.inv())

$$E = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

3.2.1.2 Lineare Regression mit Matrix-Operationen (Extra)

$$\beta = (X^T \cdot X)^{-1} \cdot X^T \cdot y$$

 ausgeführt mit Operationen von numpy, hier als Funktion codiert (vgl. extra_3.2.1.2_linear_regression_with_matrix_operations.ipynb)

3.2.1.2 Lineare Regression mit Matrix-Operationen (Extra)

- das oben dargestellte Verfahren mit numpy Funktionen berechnet alle β Werte (Koeffizienten) der Features, nicht aber den Intercept β_0
- um diesen zu ermitteln ist ein kleiner Kunstgriff notwendig: auf der ersten Spalte wird ein Vektor der Länge k hinzugefügt, welcher überall den Wert 1 aufweist

$$\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}, \begin{bmatrix} x_{1,1} & \dots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{k,1} & \dots & x_{k,n} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{k,1} & \dots & x_{k,n} \end{bmatrix}$$

z.B. mit untenstehendem Code:

by danach ermitteln der β nach demselben Verfahren, der Koeffizient für die erste Spalte ist dann gerade β_0 , oder eben der Intercept

3.2.1.3 Praxis

- Schritt für Schritt mit dem Melbourne Housing Dataset (beachten Sie das analoge Vorgehen wie bei Klassifikation)
- Voraussetzungen:
 - Daten sind geladen
 - Features Target Split ausgeführt
 - Train Test Split ausgeführt (vgl. prep_data() in Modul bfh_cas_pml.py, in Kap 3.1.4 Vorbereiten der Umgebung)

3.2.1.3 Praxis

laden der Klasse, instanziieren, parametrisieren und trainieren des Modells

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
print(model.get_params())
{'copy_X': True, 'fit_intercept': True, 'n_jobs': None, 'positive': False}
```

- .get_params() zeigt die per Default eingestellten Parameterwerte
- hier einzig von Bedeutung: fit_intercept, veranlasst, dass Intercept berechnet wird, andernfalls wird dieser Wert auf 0 festgelegt

3.2.1.3 Praxis

die Attribute des trainierten Modells:

 X_train.columns gibt die Feature Namen aus, damit die ermittelten Koeffizienten zugeordnet werden können

3.2.1.3 Praxis

Modell score

```
print(model.score(X_test, y_test))
```

- 0.5601419746121148
 - gemäss Dokumentation wird hier r2_score ermittelt
- Kontrolle mit predict und expliziter Nutzung von r2_score aus sklearn.metrics:

```
from sklearn.metrics import r2_score
y_pred = model.predict(X_test)
print(r2_score(y_test, y_pred))
```

0.5601419746121148

3.2.1.3 Praxis

- ein visueller Vergleich der vorhergesagten (y_pred) und der wahren Targetwerte des Testsets (y_test)
- die eingezeichnete Diagonale wurde manuell hinzugefügt und markiert Identität

Fazit:

- dieses Modell erzeugt tatsächlich Vorhersagen mit negativen Werten, was doch recht unglaubwürdig erscheint
- der Zusammenhang zwischen Voraussagen und wahren Werten erscheint nicht linear, ev. aufgrund von Korrelationen in den Features
- welche Rolle spielen Extremwerte in den wahren Werten?

3.2.1.4 Lineare Regression in der Datenanalyse (Extra)

- R, SAS, Statista, etc. bieten im Output viel mehr Informationen zu Linearer Regression
- für Python gibt es dazu auch eine entsprechende Library: <u>statsmodels</u>

```
import statsmodels.api as sm
model = sm.OLS(y_train, X_train, hasconst=True)
results = model.fit()
print(results.summary())
```

der Aufruf liefert den folgenden umfangreichen Output vgl. extra_3.2.1.4_linear_regression_in_data_analytics.ipynb

3.2.1.4 Lineare Regression in der Datenanalyse (Extra)

- dieser Output ist natürlich viel ausführlicher als für ML tatsächlich notwendig
- Details: CAS DA

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.586	
Model:	OLS	Adj. R-squared:	0.585	
Method:	Least Squares	F-statistic:	752.8	
Date:	Fri, 26 May 2023	Prob (F-statistic):	0.00	
Time:	11:35:55	Log-Likelihood:	-1.7592e+05	
No. Observations:	12262	AIC:	3.519e+05	
Df Residuals:	12238	BIC:	3.521e+05	
Df Model:	23			

	coef	std err	t	P> t	[0.025	0.975]
const	-1.055e+08	1.99e+07	-5.300	0.000	-1.45e+08	-6.65e+07
Rooms	2.454e+05	5402.990	45.416	0.000	2.35e+05	2.56e+05
Туре	-1.414e+05	6342.919	-22.286	0.000	-1.54e+05	-1.29e+05
Distance	-4.038e+04	928.303	-43.503	0.000	-4.22e+04	-3.86e+04
Bathroom	1.613e+05	7004.805	23.032	0.000	1.48e+05	1.75e+05
Car	4.039e+04	4723.191	8.552	0.000	3.11e+04	4.96e+04
logLandsize	8.33e+04	5149.484	16.177	0.000	7.32e+04	9.34e+04
logBuildingArea	2.738e+05	2.27e+04	12.064	0.000	2.29e+05	3.18e+05
YearBuilt	-2484.2291	162.873	-15.253	0.000	-2803.486	-2164.972
CouncilArea	-4977.2245	674.748	-7.376	0.000	-6299.838	-3654.611
Lattitude	-5.15e+05	7.24e+04	-7.114	0.000	-6.57e+05	-3.73e+05
Longtitude	1.926e+05	5.94e+04	3.241	0.001	7.61e+04	3.09e+05

	==========		=========	
Omnibus:	6530.672	Durbin-Watson:	2.000	
Prob(Omnibus):	0.000	Jarque-Bera (JB):	95692.398	
Skew:	2.225	Prob(JB):	0.00	
Kurtosis:	15.942	Cond. No.	4.86e+07	

3.2.1.4 Lineare Regression in der Datenanalyse (Extra)

 sehr schönes Beispiel zum Aufzeigen der Unterschiede zwischen Datenanalyse und Machine Learning

Datenanalyse

- erkennen und herausarbeiten von Einflüssen ausgewählter Komponenten (unabhängige Variablen) auf eine Zielkomponente (abhängige Variable)
- modellieren von Wirkungsgefügen, wenn Kausalitäten geklärt sind
- testen, ob die geforderten Voraussetzungen in den Daten überhaupt gegeben sind, um gültige Aussagen machen zu können
- Akteure: Datenanalytiker, oft Fachspezialistinnen mit Datenanalyse-Skills
- Tools: Analyse Software wir R, SPSS, SAS, Statista etc.
- Ergebnisse: Modellkoeffizienten sowie ausführliche Diagnosemetriken zum Beurteilen der Gültigkeit von Modellen (aus Sicht der Datenanalyse)

3.2.1.4 Lineare Regression in der Datenanalyse (Extra)

- Machine Learning
 - erstellen, optimieren, testen und implementieren von Vorhersagemodellen
 - Akteure: ML Spezialistinnen, Data Scientists, oft etwas weiter vom Fach weg als Datenanalytiker
 - Tool(s): Python, Spark, R, etc.
 - Ergebnisse: ausschliesslich Modellkoeffizienten und ausgewählte Scorer

(i)

3.2.2.1 Theorie

- Schwächen der Linearen Regression:
 - untereinander korrelierte Features können einen ungewollten Einfluss auf Ergebnisse haben (<u>Multikollinearität</u>)
 - bei Vorliegen von mehr Features als Beobachtungen ist keine Lösung errechenbar
- Wiederholung von 3.2.1.1:

$$RSS = argmin \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

während bei der Linearen Regression die Summe der Quadrate der Residuen (loss) minimiert wird, kommt hier noch ein "Strafterm" dazu, welcher grosse Werte von β_i einzuschränken versucht (shrinking), idealerweise sogar auf 0

(i)

3.2.2.1 Theorie

durch Hinzufügen eines Strafterms - multipliziert mit einer Konstanten λ - zur Verlustfunktion, werden grosse Werte für die jeweiligen β zurückgebunden

RSS +
$$\lambda$$
 · penalty

- dadurch kann folgendes erreicht werden:
 - Störungen der Regression durch Multikollinearität wird reduziert
 - es können mehr Features als Beobachtungen eingesetzt werden
 - je nach Tuningparameter können Kandidaten zur Feature Selection identifiziert werden
- was hier schon sichtbar ist:
 - $\lambda = 0$ führt zum selben Resultat wie LinearRegression (der Strafterm wird ausgeschaltet)
 - $\lambda \to \infty$ schafft ein Übergewicht der Strafe und drängt die β Werte gegen 0
- $\triangleright \lambda$ ist somit ein Tuning Parameter

3.2.2.1 Theorie

- in den meisten Publikationen wird die oben verwendete Konstante mit λ bezeichnet, in neuerer Zeit auch mit α , letzteres wird auch bei scikit-learn als Parametername verwendet, in den folgenden Grafiken werden die Achsen trotzdem mit λ genennzeichnet
- Gegenüberstellung Lasso und Ridge Regression

	Lasso	Ridge
andere Bezeichnung	L1-Regulierung	L2-Regulierung
Strafterm	die Summe der absoluten β -Werte	die Summe der quadrierten β -Werte
zu minimierende Verlustfunktion	$RSS + \lambda \cdot \sum_{j=1}^{p} \beta_j $	$RSS + \lambda \cdot \sum_{j=1}^{p} \beta_j^2$

(*Lasso* steht für "least absolute shrinkage and selection operator", *Ridge* ist dagegen kein Akronym und verweist auf das hinterlegte Verfahren [Details])

(i)

3.2.2.1 Theorie

- Gemeinsamkeiten
 - kleines λ : der Strafterm hat kaum Einfluss, die Koeffizienten entsprechen annähernd jenen von LinearRegression
 - \triangleright (sehr) grosses λ : der Strafterm übernimmt den Lead, die Koeffizienten streben gegen 0
- Unterschiede
 - Lasso: die Annäherung an 0 bei grossen λ erfolgt mehr oder weniger direkt und wird früher oder später vollständig erreicht
 - Ridge: die Annäherung an 0 bei grossem λ erfolgt asymptotisch, wird aber nicht völlig erreicht

(i)

3.2.2.2 Praxis

0.5601427046293168

Lasso

```
from sklearn.linear_model import Lasso
model = Lasso()
model.fit(X_train, y_train)
print(model.intercept )
print(model.coef )
print(model.score(X_test, y_test))
-105470886,17680839
[ 2.45382007e+05 -1.41353663e+05 -4.03813210e+04 1.61339539e+05
  4.03901128e+04 8.33016390e+04 2.73752966e+05 -2.48435395e+03
```

(i)

3.2.2.2 Praxis

0.5601387631837784

Ridge

```
from sklearn.linear_model import Ridge
model = Ridge()
model.fit(X_train, y_train)
print(model.intercept_)
print(model.coef_)
print(model.score(X_test, y_test))
-104848432.75507241
[ 2.45313734e+05 -1.41286745e+05 -4.03551367e+04  1.61451266e+05  4.03883258e+04  8.32645429e+04  2.73073082e+05 -2.48815619e+03 :
```

v zur Erinnerung, der Parameter alpha entspricht λ in der theoretischen Einführung

(i)

3.2.2.2 Praxis

Fazit zu Lasso und Ridge Regression

- als Kandidaten im Wettstreit der Regressoren nicht unbedingt Favorit
- ▶ **aber**: wichtige Instrumente für Feature Selection, insbesondere Lasso
- eine Darstellung der übrigbleibenden Feature Namen und Koeffizienten (nach trainieren mit dem Parameter alpha=10000) zeigt folgende Liste der verbleibenden Features an (vgl. [ipynb])
- von 23 Features bleiben also deren 7 übrig, aus dem Ergebnis könnte damit z.B. eine Filtermaske gebaut werden (vgl. [ipynb])

	cols	coefs
0	Rooms	253568.228957
3	Bathroom	168521.486901
4	Car	34293.196859
5	logLandsize	76942.997592
12	Method_S	18550.768445
17	Regionname_Southern_Metropolitan	286752.054486
22	day_of_week	781.020849

3.2.3 Regression - Regression klassisch - Logistische Regression

- wurde im Zuge der Klassifikationsmethoden eingeführt (Kap. 2.3.4)
- hier nur noch der Vollständigkeit halber erwähnt, da
 - von der Methodik her zwar Regression
 - von der Anwendung her dagegen Klassifikation

nebenstehend zur Erinnerung eine Visualisierung aus dem erwähnten Kapitel zu Klassifikation mit sklearn.linear_model.LogisticRegression

3.2 Regression - Regression klassisch

Workshop 08

Gruppen zu 2 bis 4, Zeit: 30'

- untersuchen Sie den Einfluss des Standardisierens der Features auf folgende Ergebnisse der Linearen Regression:
 - Modellkoeffizienten
 - Predictions
 - Score

