Set 02: Tools for Asymptotic Analysis CS240: Data Structures and Data Management

Jérémy Barbay

Comparison of Three Sorting Algorithms

How do we find out which of these algorithms is the best?

- Selection Sort
- ► Merge Sort
- ► Counting Sort

Outline

Three Sorting Algorithms

 ${\sf Definitions}$

First Asymptotic Notation

Example

Experimental results

Asymptotic Notations

Big-C

 $\mathsf{Big} ext{-}\Omega$

Little-o and ω

Overview

Running Time

- ▶ The **running time** $T_A(x)$ of an algorithm A for a particular input x is the time that the algorithm requires to solve the input x.
- ▶ The worst-case running time $T_A(n)$ of an algorithm A is a function of the size n of the input, where $T_A(n)$ is the *largest time* required to solve an input of size n:

$$T_A(n) = \max\{T_A(x) | |x| = n\}.$$

▶ The average-case running time $T_A^{(avg)}(n)$ of an algorithm A is a function of the size n of the input, where $T_A(n)$ is a average of times required to solve all inputs of size n:

$$T_A^{(avg)}(n) = avg\{T_A(x) | |x| = n\}.$$

How to measure time?

Elementary operation

An *Elementary operation* is an operation whose time can be bounded by a constant.

Examples:

- ▶ arithmetic operation: elementary.
- maximum:
 - of an array: non elementary,
 - of two numbers: elementary.
- comparison: elementary.
- pattern matching: non elementary.
- program flow control: elementary.
- concatenation of strings: non elementary (in general).
- ► factorial: non elementary.

Random Access Machine (RAM) Model

Definition (RAM model)

- ▶ Memory consists of an unbounded number of cells.
- ► Each cell holds a number or a character.
- ▶ Basic operations take one unit of time.
- ▶ Other operations are described in terms of basic operations.
- ▶ Instructions are executed in sequence (no parallelism).

First Asymptotic Notation

Definition

```
A function f(n) is in O(g(n)) iff
there exist c > 0 and n_0 > 0,
such that \forall n > n_0, 0 \le f(n) \le cg(n).
```

```
Notation:

f(n) \in O(g(n)),

or f(n) = O(g(n)).
```

Selection sort

```
for i:=1 to n
| min:=i;
| for j:=i+1 to n
| | if a[min]>a[j] min:=j;
| tmp:=a[i]; a[i]:=a[min]; a[min]:=tmp;
```

$$\sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} 1 \right) = n + \sum_{i=1}^{n} (n-i) \le n^2 + n$$

The running time of selection sort is $O(n^2)$.

Merge sort

```
function merge(from,mid,to)
| copy a[from..mid] to a new array b
| copy a[mid+1..to] to a new array c
| add infinity to both b and c as the last element
| k:=1; m:=1;
| for j:=from to to
| | if b[k] < c[m] then
| | a[j]:=b[k]; k++;
| | else
| | | a[j]:=c[m]; m++;</pre>
```

The running time of the function merge is O(to - from).

Merge sort

```
function sort(from,to)
| if (from>to)
| | mid:=floor((from+to)/2);
| | sort(from,mid); sort(mid+1,to);
| | merge(from,mid,to);
```

The running time of merge sort is $O(n \log n)$.

Counting sort

```
1. clear array count[1..1000];
2. for i:=1 to n
3. | count[a[i]]++;
4. k:=1;
5. for i:=1 to 1000
6. | for j:=1 to count[i];
7. | | a[k]:=i; k++;
```

The running time of counting sort is O(n). The algorithm assumes that the values in the array are in $\{1, \dots, 1000\}$.

Comparison of Three Sorting Algorithms

How do we find out which of these algorithms is the best?

- Selection Sort
- Merge Sort
- ► Counting Sort

This analysis seems to suggest that:

- "counting sort" is better than "merge sort"
- ▶ which is better than "selection sort".

Does this analysis have any relationship to the actual running times on a real computer?

Experimental results

Size	Counting	Merge	Selection	Exponential
of array	sort	sort	sort	algorithm
n	O(n)	$O(n \log n)$	$O(n^2)$	$O(2^{n})$
10	ε	arepsilon	arepsilon	arepsilon
50	arepsilon	arepsilon	arepsilon	2 weeks
100	arepsilon	arepsilon	arepsilon	2800 univ.
1000	0.01s	arepsilon	arepsilon	_
10000	0.01s	0.03s	0.27s	
100000	0.06s	0.15s	26.5s	_
1 mil.	0.74s	1.6s	44.2m	
10 mil.	7.4s	16.5s	3.1d	

(As measured on a Pentium 4 2Ghz computer.)

Outline

Three Sorting Algorithms

Definitions

First Asymptotic Notation

Example

Experimental results

Asymptotic Notations

Big-O

 $Big-\Omega$

Little-o and ω

Overview

Summary

- ▶ Even with today's fast processors, better algorithms matter.
- ▶ Asymptotic analysis allows us to easily analyze and compare algorithms without considering details specific to a particular computer.
- ► For a single problem there can be several solutions with different complexities.

Asymptotic Notations

- ▶ Function f(n) maps non-negative integers to real numbers.
- ► Group similarly growing functions together.
- ▶ Asymptotic analysis is not restricted to CS.
- ▶ In CS, *n* typically represents some size of the input.
- ► Characterize worst, best or average case for any of the algorithm comparison criteria.

Big-O formal Definition

Used to express an upper bound

Definition: f(n) is O(g(n)) iff \exists a real c > 0 and an integer $n_0 > 0$ such that $\forall n \geq n_0$, $f(n) \leq cg(n)$

- ▶ f grows no faster than g.
- ▶ Want tight bounds and simple terms.

Informal Terms

constant	O(1)	ex: 1, 2, 6,
logarithmic	$O(\log n)$	ex: $2 \log n$, $1 + \log n$,
linear	O(n)	ex: $2n$, $5n + 4$, $n + \log n$,
quadratic	$O(n^2)$	$(4n)^2$, $n^2 + 4n$, $n^2 + logn$,
polynomial	$O(n^k)$	for $k \ge 0$
exponential	$O(a^n)$	for $a > 1$

Example

▶ Show
$$2n + 100 \in O(n)$$

- ▶ You **must** provide a valid c and n_0 to prove formally.
- **Example**: Prove $(n+1)^5 \in O(n^5)$

Properties of O()

The following claims can be proven directly from the definition.

- 1. if $f(n) \in O(g(n))$ and c > 0 is a constant then $cf(n) \in O(g(n))$
- 2. **Maximum rule.** If $t(n) \in O(f(n) + g(n))$ then $t(n) \in O(\max(f(n), g(n)))$
- 3. Transitivity. If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$
- 4. $n^k \in O(a^n)$ for all constants k > 0 and a > 1
- 5. Similarly: $\log^k n \in O(n^a)$ for all constants k > 0 and a > 0
- 6. $n^k \in O(n^\ell)$ for all constants k > 0 and $\ell \ge k$
- 7. if $f(n) \in O(f'(n))$ and $g(n) \in O(g'(n))$ then $f(n)g(n) \in O(f'(n)g'(n))$

Examples:

- ► $3.8n^2 + 2.6n^3 + 10n \log n \in O(n^3)$? true
- ▶ $10^{100}n \in O(n)$? true
- ▶ $(n+1)! \in O(n!)$? false
- ▶ $2^{2n} \in O(2^n)$? false
- ▶ $n \in O(n^{10})$? true

Properties

Prove these from the definition

- 1. $f(n) \in O(af(n)), a > 0$
- 2. if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$
- 3. $[f(n) + g(n)] \in O(MAX\{f(n), g(n)\})$
- 4. $a_0 + a_1 x^1 + ... + a_n x^n \in O(x^n)$ in x for n fixed, $a_n > 0$.
- 5. $n^x \in O(a^n)$, x > 0, a > 1
- 6. $log^{x} n \in O(n^{y}), x > 0, y > 0$

$Big-\Omega$ Notation

▶ What if we want to express a lower bound?

Definition: f(n) is $\Omega(g(n))$ iff \exists a real c > 0 and an integer $n_0 > 0$ such that $\forall n \geq n_0, f(n) \geq cg(n)$

- ightharpoonup f grows no slower than g
- ▶ **Example**: Prove $n^3 \lg n \in \Omega(n^3)$

Big-⊖ Notation

▶ f grows at the same rate as g

Definition: f(n) is $\Theta(g(n))$ iff \exists reals c', c'' > 0 and an integer $n_0 > 0$ such that $\forall n \geq n_0, c'g(n) \leq f(n) \leq c''g(n)$

- ▶ g is an asymptotically tight bound
- ▶ $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$
- ▶ **Example**: Prove $3 \lg n + \lg \lg n \in \Theta(\log n)$

Little-o and ω Notation

▶ $f(n) \in o(g(n))$: f grows strictly slower than g

▶ it is not an asymptotically tight upper bound

Definition: f(n) is o(g(n)) iff \forall real c > 0, \exists an integer $n_0 > 0$ such that \forall $n \ge n_0$, f(n) < cg(n)

▶ Equivalently, $f(n) \in o(g(n))$ iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

- lacktriangleright Reciprocal for ω as a non-tight lower bound
- **Example**: Prove $\ln n \in o(n)$

Exercise:

Can rules similar to the ones we mentioned in case of *O* notation be applied in case of the other notations?

- ▶ if $f(n) \in \omega(g(n))$ then $f(n) \notin O(g(n))$
- ▶ if $f(n) \in O(g(n))$ then $f(n) \notin \omega(g(n))$
- ▶ but there are functions where $f(n) \notin O(g(n))$ and $f(n) \notin \Omega(g(n))$

Overview

Notation	Definition		
$f(n) \in O(g(n))$	There exists $c > 0$ and $n_0 > 0$ s.t.		
	$(\forall n > n_0)(0 \le f(n) \le cg(n))$		
$f(n) \in \Omega(g(n))$	There exists $c > 0$ and $n_0 > 0$ s.t.		
	$(\forall n > n_0)(f(n) \ge cg(n) \ge 0)$		
$f(n) \in \Theta(g(n))$	$f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$		
$f(n) \in o(g(n))$	For any $c > 0$ there exists $n_0 > 0$ s.t.		
	$(\forall n > n_0)(0 \le f(n) < cg(n))$		
$f(n) \in \omega(g(n))$	For any $c > 0$ there exists $n_0 > 0$ s.t.		
	$(\forall n > n_0)(f(n) > cg(n) \ge 0)$		

How to Prove Negative Results?

Definition

$$f(n) \in O(g(n))$$

$$\Leftrightarrow$$

$$\exists c > 0, \exists n_0 > 0, \forall n > n_0, 0 \le f(n) \le cg(n)$$

Negation:

$$f(n) \notin O(g(n))$$
 \Leftrightarrow
 $\forall c > 0, \forall n_0 > 0, \exists n > n_0, f(n) < 0 \text{ or } f(n) > cg(n))$

Example:

$$(n+1)! \notin O(n!)$$

We know $(n+1)! = (n+1) \cdot n!$. For any c > 0 and $n_0 > 0$, take $n = \lceil c \rceil \lceil n_0 \rceil$. Then:

$$(\lceil c \rceil \lceil n_0 \rceil + 1)(\lceil c \rceil \lceil n_0 \rceil)! > c(\lceil c \rceil \lceil n_0 \rceil)!$$

Summary

- ▶ f needs to be asymptotically non-negative
- ▶ What does it mean for an algorithm to be O(f)?
- $\triangleright \Omega$ does **not** mean best case!
- ► Caution: Asymptotic analysis is not always the whole story.