May, 2002

建模

钢管订购与运输问题一的数学模型与求解

杨振华1, 胡国雷2, 郭跃华2

(1. 南京邮电学院应用数理系,南京 210003)

(2. 南通工学院, 南通 226007)

摘要: 本文针对 2000 年全国大学生数学建模竞赛 B 题 - 钢管订购与运输问题的问题,建立了数学模型,并给出了该数学模型的精确求解。

关键词: 数学模型,订购;运输;钢管

记铺设管道 A_1A_{15} 上任一点到 A_1 的管道距离为 x,令 $f_i(x)$ 为钢厂 S_i 生产并运输单位钢管至 x 处的最小总费用·记 A_j 坐标为 a_j , S_i 生产并运输单位钢管至 A_j 的最小费用为 $q_{ij}(a_i)$ 与 q_{ij} 的数据由表 1 给出) .

	\mathcal{X}^{\perp} Si 土) 开色初手位的旨土 A_j 的取り心気の (q_{ij}) \mathcal{X}								
	S1	S^2	S 3	S^4	s 5	S 6	s7		
A 1(0)	330.7	370.7	385.7	420.7	410.7	415.7	435.7		
A 2(104)	320.3	360.3	375.3	410.3	400.3	405.3	425.3		
A 3(405)	300.2	345.2	355.2	395.2	380.2	385.2	405.2		
A 4(1155)	258.6	326.6	336.6	376.6	361.6	366.6	386.6		
A 5(1761)	198	266	276	316	301	306	326		
A 6(1955)	180.5	250.5	260.5	300.5	285.5	290.5	310.5		
A7(2160)	163.1	241	251	291	276	281	301		
A 8(2361)	181.2	226.2	241.2	276.2	266.2	271.2	291.2		
A 9(3041)	224.2	269.2	203.2	244.2	234.2	234.2	259.2		
A 10(3521)	252	297	237	222	212	212	236		
A 11(3821)	256	301	241	211	188	201	226		
A 12(4041)	266	311	251	221	206	195	216		
A 13(4251)	281.2	326.2	266.2	236.2	226.2	176.2	198.2		
A 14(4671)	288	333	273	243	228	161	186		
A 15(5171)	302	347	287	257	242	178	162		

表 1 S_i 生产并运输单位钢管至 A_j 的最小总费用 (q_{ij}) 表

注:表中第一列给出了 A_i 的坐标

若 $x \in A_{j}A_{j+1}$,易知:

 $f_{i(x)} = \min(q_{ij} + 0.1([x - a_{i}] + 1), q_{i,j+1} + 0.1([a_{i} + 1 - x] + 1)$ $f_{i(x)}(i = 1, 2, ..., 7)$ 的图形见图 1. 其中 $[x - a_{i}]$ 表示取 $[x - a_{i}]$ 的整数部分.

方案的区间表示

到达 A_i 的钢管的铺设费用,只与由 A_i 向左向右铺设的长度有关,不受其铺设中任一段使用何厂的钢管影响,故可将同一厂运来的钢管向左或向右铺成一个区间以简化方案,因而任一方案可表示为 $\bigcup_{i=1}^7\bigcup_{j=1}^{15}[a_{ij},b_{ij}]$

引理 问题 1 的最优解中,一定存在一组可表示为 $\bigcup_{i=1}^{7}\bigcup_{j=1}^{15} [a_{ij},b_{ij}]$ 形式的最优解,其中 a_{ij} , b_{ij} 均为整数. (证明见[1])

我们称长度为 1,且端点值为整数的区间为单位区间. 若 e 为单位区间, 记 $f_i(e)$ 为 $f_i(x)$ 在 e 内任一点的取值, 显然 $f_i(e) = \int f_i(x) \, \mathrm{d}x$.

设 E_i \subset [0,5171]为 S_i 生产、运输钢管的集合,其总费用为 $\int_{\mathcal{L}_i} f_i(x) dx$,因此原问题的数学模型为模型 1.

$$\begin{split} \min \sum_{i=1}^{7} \int_{E_{i}} f_{i}(x) \, \mathrm{d}x \\ \mathbf{s} \cdot \mathbf{t} \cdot & \mathbf{H} E_{i} \in \{0\} \bigcup [500, s_{i}]_{(i} = 1, 2, ..., 7) \\ & \mathbf{H} (E_{i} \cap E_{j}) = 0, (i, j = 1, 2, ..., 7, i \neq j), \ \bigcup_{i=1}^{7} E_{i} = [0, 5171]. \end{split}$$

注 $1_{i} \bowtie E_{i} \cap E_{i} = 0$,即 $E_{i} \cap E_{i} = \bigoplus$ 表示钢厂 S_{i} 与 S_{i} 铺设的钢管无重叠部分.

2) 在解集中,区间是开区间或闭区间对原问题是同一个解:

我们先取消 S_5 , S_6 生产的上下限的限制,建立模型2:

$$\min \sum_{i=1}^{7} \int_{E_i} f_i(x) dx$$

 $\mathbf{s} \cdot \mathbf{t} \cdot \mathbf{u} E_i \in \{0\} \cup [500, s_i] (i = 1, 2, 3, 4, 7)$
 $\mathbf{u} E_5 \geqslant 0$, $\mathbf{u} E_6 \geqslant 0$, $\mathbf{u} (E_i \cap E_j) = 0$, $\mathbf{u} (i, j = 1, 2, ..., 7, i \neq j)$, $\bigcup_{i=1}^{7} E_i = [0, 5171]$.
冷题 1 若模型 2 的最优解是模型 1 的可行解,则必是模型 1 的最优解。

证明 由模型 1 的可行域为模型 2 的可行域的子集易得.

定理 2(差价控制定理) 在 A_i 与 A_{i+1} 之间任一点 x 处 S_m 与 S_n 钢管单价之差 牱 x) = $f_m(x) = f_n(x)$ 一定位于两厂在 A_i 的差价与在 A_{i+1} 的差价之间,即令 轲= $f_m(a_i) = f_n(a_i)$,

证明 $x \in [a_i, a_{i+1}]$ 时, $\forall x$) 的表达式为

$$\frac{4\pi x}{1} = \min(q_{mj} + 0.1([x - a_j] + 1), q_{m,j+1} + 0.1([a_{j+1} - x] + 1))
- \min(q_{nj} + 0.1([x - a_j] + 1), q_{n,j+1} + 0.1([a_{j+1} - x] + 1))$$

1) 若

且

则

且

Ħ.

则

Ħ.

$$q_{mj} + 0.1([x - a_j] + 1) \leq q_{m,j+1} + 0.1([a_{j+1} - x] + 1)$$

$$q_{nj} + 0.1([x - a_j] + 1) \leq q_{n,j+1} + 0.1([a_{j+1} - x] + 1)$$

$$\forall [x] = (q_{nj} + 0.1([x - a_j] + 1)) - (q_{nj} + 0.1[x - a_j] + 1))$$

$$= q_{mj} - q_{nj} = \forall [n].$$

2) 若

$$q_{mj} + 0.1([x - a_j] + 1) \geqslant q_{m,j+1} + 0.1([a_{j+1} - x] + 1)$$

 $q_{nj} + 0.1([x - a_j] + 1) \geqslant q_{n,j+1} + 0.1([a_{j+1} - x] + 1)$,

类似于情形 1) 可得 (x) = (x

3) 若

$$q_{mj} + 0. \ 1([x - a_j] + 1) \leq q_{m,j+1} + 0. \ 1([a_{j+1} - x] + 1)$$

$$q_{nj} + 0. \ 1([x - a_j] + 1) \geq q_{n,j+1} + 0. \ 1([a_{j+1} - x] + 1)$$

$$\mathfrak{M}(x) = (q_{mj} + 0. \ 1([x - a_j] + 1) - (q_{n,j+1} + 0. \ 1([a_{j+1} - x] + 1))$$

$$\leq (q_{m,j+1} + 0. \ 1([a_{j+1} - x] + 1)) - (q_{n,j+1} + 0. \ 1([a_{j+1} - x] + 1))$$

$$= \mathfrak{M}_{+1}$$

另一方面

4) 若

$$q_{mj} + 0.1([x - a_j]) + 1) \geqslant q_{m,j+1} + 0.1([a_{j+1} - x] + 1)$$

 $q_{nj} + 0.1([x - a_j]) + 1) \leqslant q_{n,j+1} + 0.1([a_{j+1} - x] + 1)$

类似于 3) 的情况可证 轲+1≤轲≤轲, 定理 2 证毕.

记($E_1^*, E_2^*, \dots, E_7^*$) 是模型 2 的一个最优解.

证明 否则 **Æ**7^{*}≥500.

根据表 1 在 A_1 , A_2 ···· A_{14} 处均有 $f_7(x) - f_6(x) \ge 20$, 由差价控制定理知, 当 $x \in [0, 1]$ 4671]时, $f_7(x) = f_6(x) \ge 20$. 当 $x \in [4671, 5171]$ 时,

$$f_{6}(x) = \begin{cases} 161 + 0.1([x - 4671] + 1), & 4671 \le x < 5006 \\ 178 + 0.1([5171 - x] + 1), & 5006 \le x \le 5171 \end{cases}$$

$$f_{7}(x) = \begin{cases} 186 + 0.1([x - 4671] + 1), & 4671 \le x < 4801 \\ 162 + 0.1([5171 - x] + 1), & 4801 \le x \le 5171 \end{cases}$$

中国知网

易知, 当
$$x \in [4671, 4826]$$
时, $f_7(x) - f_6(x) \ge 20$, 当 $x \in [4826, 5171]$ 时, $-16 \le f_7(x)$ $-f_6(x) \le 20$, 且 $\int_{826}^{677} (f_7(x) - f_6(x)) dx = -2280$. 设 $g(x) = f_7(x) - f_6(x) - 20$, 则
$$\int_{\mathcal{E}_7^*} g(x) dx = \int_{\mathcal{E}_7^* \cap [0.4826]} g(x) dx + \int_{\mathcal{E}_7^* \cap [4826, 5171]} g(x) dx \ge \int_{\mathcal{E}_7^* \cap [4826, 5171]} g(x) dx$$
 $\ge \int_{926}^{677} g(x) dx = -20(5171 - 4826) - 2280 = -9180$

从而

$$\int_{E_7^*} (f_7(x) - f_6(x)) dx = 20 \, \text{HE}_7^* + \int_{E_7^*} g(x) dx \geqslant 20 \cdot 500 - 9180 = 820$$
取 $E_6^* = E_6^* \cup E_7^*$, $E_7^* = S_6$ 的产量无上限, 故变化后仍为模型 2 可行解), 则
$$\left(\int_{E_6^*} f_6(x) dx + \int_{E_7^*} f_7(x) dx \right) - \left(\int_{E_6^*} f_6(x) dx + \int_{E_7^*} f_7(x) dx \right)$$

$$= \int_{E_6^* \cup E_7^*} f_6(x) dx - \int_{E_6^*} f_6(x) dx - \int_{E_7^*} f_7(x) dx$$

$$= \int_{E_7^*} (f_6(x) - f_7(x)) dx \leqslant -820.$$

目标函数值减少,与 E_6^* , E_7^* 为最优解矛盾.

定理 4 | | | | | | | | | | | | | |

证明 由于 $q^{4,j} - q^{5,j} \ge 10$ (j = 1, 2, ..., 15), 根据差价控制定理, 在[0, 5171]上有 $f_4(x) - f_5(x) \ge 10$, 又 S_5 无产量上限, 类似于定理 3 的证明可证 $\operatorname{HE}_4^* = 0$

设 $A_1 = [0, 3325], A_2 = [3325, 5171],$ 由于当 $x \in A_2$ 时,

$$\min(f_{5}(x), f_{6}(x)) \le \min(f_{1}(x), f_{2}(x), f_{3}(x)),$$

我们可将模型 2 分解为两个模型:记 $\{1, 2, 3, 5, 6\} = J$

模型 3:

模型 4:

$$\min \bigoplus_{i \in J} \oint_{\mathcal{E}_i} f_i(x) \, \mathrm{d}x$$

$$\min \bigoplus_{i \in J} \oint_{\mathcal{E}_i} f_i(x) \, \mathrm{d}x$$

$$\mathrm{s.t.} \ 0 \leqslant \mathsf{LE}_i \leqslant s_i (i = 1, 2, 3)$$

$$\mathsf{LE}_5 \geqslant 0, \ \mathsf{LE}_6 \geqslant 0$$

$$\mathsf{LE}_5 \geqslant 0, \ \mathsf{LE}_6 \geqslant 0$$

$$\mathsf{LE}_5 \geqslant 0, \ \mathsf{LE}_6 \geqslant 0$$

$$\mathsf{LE}_6 \geqslant 0$$

命题 5 设(E_{1k}^* , E_{2k}^* , E_{3k}^* , E_{5k}^* , E_{6k}^*) (k = 3, 4) 分别是模型 3 与模型 4 的最优解,若(E_{13}^* \cup E_{14}^* , E_{23}^* \cup E_{24}^* , E_{33}^* \cup E_{34}^* , \bigcirc E_{53}^* \cup E_{54}^* , E_{63}^* \cup E_{64}^* , \bigcirc 为模型 2 的可行解,则其必为模型 2 的最优解.

证明 设(E_1 , E_2 , E_3 , $\bigcirc E_5$, E_6 , \bigcirc 是模型 2 的任一可行解,则 ($E_1 \cap A_k$, $E_2 \cap A_k$, $E_3 \cap A_k$, $\bigcirc E_5 \cap A_k$, $E_6 \cap A_k$, \bigcirc (k = 1, 2)

分别是模型3与4的可行解.从而

$$\bigoplus_{i \in \mathcal{I}} \int_{\mathcal{E}_{\beta}} f_i(x) dx = \bigoplus_{i \in \mathcal{I}} \int_{\mathcal{E}_{\beta}} f_i(x) dx + \bigoplus_{i \in \mathcal{I}} \int_{\mathcal{E}_{\beta}} f_i(x) dx \geqslant \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx$$

$$+ \coprod_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_i(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx + \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx = \bigoplus_{j \in \mathcal{I}} \int_{\mathcal{E}_{\beta}^*} f_j(x) dx + \bigoplus_{j$$

$$= \bigoplus_{i \in J} \int_{E_{\beta}^* \cup E_{\beta}^*} f_{i}(x) \, \mathrm{d}x$$

从而命题 5 成立.

模型 4 是容易求解的. 取 $\{x \mid f_{5}(x) < f_{6}(x)\} \subseteq E_{5}^{*}, \{x \mid f_{6}(x) < f_{5}(x)\} \subseteq E_{6}^{*}, 对 \{x \mid f_{5}(x) = f_{6}(x)\}$ 中的点,可任意置于 E_{5}^{*} 或 E_{6}^{*} 中.

以下我们来求解模型 3.

在[0,3325]上,
$$f_{5(x)} \leq f_{6(x)}$$
,因此可设 $E_{6}^{*} \cap [0,3325] = \Phi$ 否则 E_{6}^{*} 并入 E_{5}^{*} 中)

定理 6 $\Psi_{i}^{*} =_{s_{i}(i} = 1, 2, 3)$

证明 在[0,2600]上有 $f_{i(x)} < f_{5(x)} (i=1,2,3)$

$$\left(\int_{E_{i}^{*}} f_{i}(x) dx + \int_{E_{5}^{*}} f_{5}(x) dx\right) - \left(\int_{E_{i}^{*}} f_{i}(x) dx + \int_{E_{5}^{*}} f_{5}(x) dx\right)
= \int_{E_{i}^{*}} f_{i}(x) dx + \int_{E_{5}^{*}} f_{5}(x) dx + \int_{E_{5}^{*}} f_{5}(x) dx - \int_{E_{i}^{*}} f_{i}(x) dx - \int_{E_{5}^{*}} f_{5}(x) dx
= \int_{E_{i}^{*}} f_{i}(x) - f_{5}(x) dx < 0$$

从而目标函数值减小,与最优解矛盾.

根据定理 6,模型 3 的产量约束实际上已成为等式约束,为给出模型 3 在等式约束下的最优解,我们给出如下的几个准则.

定理7 模型1与模型3的最优解的必要条件是

$$\min_{x \in E_{j}^{*}} [f_{i}(x) - f_{j}(x)] \ge \max_{x \in E_{j}^{*}} [f_{i}(x) - f_{j}(x)]$$

证明 若定理不成立,则存在单位区间 ei, ej, 使得:

$$e_i \subseteq E_i^*$$
, $e_j \subseteq E_j^*$, $f_i(e_j) = f_j(e_j) \leq f_i(e_i) = f_j(e_i)$

令 $E_i^* = e_i \cup (E_i^* \setminus e_i)$, $E_j^* = e_i \cup (E_j^*) \setminus e_j$. 其余不变.

显然 $\mathbf{w}_{i}^{*} = \mathbf{w}_{i}^{*}, \mathbf{w}_{i}^{*} = \mathbf{w}_{i}^{*},$ 仍是可行解

$$\left(\int_{E_{i}^{*}} f_{i}(x) dx + \int_{E_{j}^{*}} f_{j}(x) dx \right) - \left(\int_{E_{i}^{*}} f_{i}(x) dx + \int_{E_{j}^{*}} f_{j}(x) dx \right) = (f_{i}(e_{j}) - f_{j}(e_{j})) - (f_{i}(e_{i}) - f_{j}(e_{i})) < 0$$

目标函数值减小,与最优解矛盾.

推论 8 设 $B \subseteq H = [0, 3325], \ \mathsf{LB} <_{s_i}$, 若

$$\min_{x \in H} [f_{i}(x) - f_{j}(x)] > \max_{x \in B} [f_{i}(x) - f_{j}(x)], \text{ } \bigcup E_{j}^{*} \cap B = \blacksquare$$

证明 否则,存在 $x_i \in E_i^* \cap B$,由 $\mathsf{U}_B <_{g_i}$,存在 $x_i \in E_i^* \cap (H \setminus B)$,使得

$$f_{i(x_{i})} - f_{j(x_{i})} > f_{i(x_{j})} - f_{j(x_{j})}$$
,与定理 7矛盾.

由推论8易得:

推论 9 设
$$B \subseteq H = [0, 3325]$$
, $PB <_{s_i}$, 若对任意 $j \neq_i$ 有
$$\min_{x \in H} [f_i(x) - f_j(x)] > \max_{x \in R} [f_i(x) - f_j(x)]$$

则 新知 https://www.cnki.net

-67,13注(2)

-112, -0.1

表 2	羊 伀i	不米/	的取值
7 ₹ 4	ᅎᄞ	ለባ 	םו אתוים

$c^2 - c^1$ $c^3 - c^1$ $c^5 - c^1$ $c^6 - c^1$ $c^3 - c^2$							
FO 1703	$\frac{f^2-f^1}{40.44.0}$	f 3-f 1	f^{5-f1}	f 6-f 1	f^{3-f^2}		
[0,179]	40,44.9	55	80	85	10.1,15		
[179,687]	45,67.9	55,77.9	80,102.9	85,107.9	10		
[687,1771]	68	78	103	108	10		
[1771,2236]	38.1,77.9	78.2,87.9	103.2,112.9	108.2,117.9	10,15		
[2236,2262]	62.9,67.9	77.9,82.9	102.9,107.9	107.9,112.9	15		
[2262,2536]	45,62.7	55.1,77.7	85,102.7	86.1,107.7	10.1,15		
[2536,2600]	45	42.3,54.9	73.3,85	73.3,85.9	-2.7,9.9		
[2600,3200]	45	-21,42.1	4.1,73.1	4.1,73.1	- 66, - 2.9		
[3200,3325]	45	-21	-20.9,3.9	-20.9,3.9	- 66		
[3325,5171]	45	- 21, - 15	-68,21.1	-127, -21.1	-66, -60		
	f 5 -f 2	f 6 -f 2	f 5 -f 3	f 6 -f 3	f6-f5		
[0,179]	35.1,40	40.1,45	25	30	5		
[179,687]	35	40	25	30	5		
[687,1771]	35	40	25	30	5		
[1771,2236]	35,40	40,45	25	30	5		
[2236,2262]	40	45	25	30	5		
[2262,2536]	40	41.1,45	$25,29.9$ 注 $^{(1)}$	30,31	1.1,5		
[2536,2600]	28.3,40	28.3,40.9	30.1,31	31	0,0.9		
[2600,3200]	-40.9,28.1	- 40.9,28.1	25.1,31	25.1,31	0		
[3200,3325]	-65.9, -41.1	-65.9, -41.1	0.1,24.9	0.1,24.9	0		

注:1) $f^{5}-f^{3}$ 在[2262,2511]上取值为 25,在[2511,2536]上取值为[25.1,29.9];2) $f^{6}-f^{5}$ 在[3325,3551]上取值为 0,在[3551,3966]上取值为[0.1,13],在[3966,5171]上取值为[-67,-0.1];3) 表中给出了差价函数在区间上的最小值与最大值。

-45, -0.1

-113, **-**66.1

[3325,5171]

证明 对于模型 3,取 $\mathbf{E}_{63}^* = 0$,令 $\mathbf{B} = (3200, 3325]$,由推论 9 可得.

-172, -66.1

定理 11 [2536, 3200] 二_{E3}*

证明 仍对模型 3中[2536,3200]段进行分析,由 $\max_{x \in [2536,3200]} [f_3(x)] = f_i(x)$] $< \min_{x \in [0,2536]} [f_3(x)] = f_i(x)$] (i = 1, 2),根据推论 8,可得

$$E_i^* \cap [2536, 3200] = \bullet_i = 1, 2$$

同理,根据表 2 及注 1) $\max_{x \in [2511,3200]} [f_3(x) - f_5(x)] \le \min_{x \in [0,2511]} [f_3(x) - f_5(x)]$ 可得 $E_5^* \cap [2511,3200] =$ 从而 [2536,3200] $\subseteq E_3^*$.

类似可得定理 12:

定理 12 [1711, 2236] $\subset_{E_1}^*$

Fi 13 Ei 687, 2236] cnki.net

证明 若 *E*₁* ⊄[687, 2236],

- 1) $E_{z}^{*} \cap [687, 2236] = \bigoplus \lim_{x \in [687, 2236]} [f_{1}(x) f_{2}(x)] >_{x \in [0, 687] \cup [2236, 2536]} [f_{1}(x) f_{2}(x)]$ 及定理 7 可得.
- 2) $E_2^* \cap [179, 687] \neq \oplus$ 由 1) 与前面的定理, $E_2^* \cap [0, 687] \cup [2236, 2536]$ (这是尚未确定分配的全部路线), 又 $\Psi_2^* = 800$ 可知.
- 3) $(E_3^* \cup E_5^*) \cap [687, 1771] \neq$ 模型 3 中 $\mathbf{\mu}_{E_{63}}^* = 0 = \mathbf{\mu}_{E_{43}}^* = \mathbf{\mu}_{E_{73}}^*$,由 $[687, 1771] \cup [1771, 2236] \subset E_1^* \cup E_3^* \cup E_5^*$,及 $\mathbf{\mu}_{E_1}^* = 800$ 可知.
- 4) 不妨设 $E_3^* \cap [687, 1771] \neq \oplus$ 若 $E_5^* \cap [687, 1771] \neq \oplus$ 类似可证) 取单位区间 e_1, e_2, e_3 , 使

$$e_1 \subseteq_{E_1^*} \setminus [687, 2236], e_2 \subseteq_{E_2^*} \cap [179, 687], e_3 \subseteq_{E_3^*} \cap [687, 1771],$$
令 $E_1^* \stackrel{\checkmark}{=} e_3 \cup (E_1^* \setminus_{e_1}), E_2^* \stackrel{\checkmark}{=} e_1 \cup (E_2^* \setminus_{e_2}), E_3^* \stackrel{\checkmark}{=} e_2 \cup (E_3^* \setminus_{e_3}), 其余不变,则$

$$\left(\int_{E_1^*} f_1(x) dx + \int_{E_2^*} f_2(x) dx + \int_{E_3^*} f_3(x) dx \right)$$

$$- \left(\int_{E_1^*} f_1(x) dx + \int_{E_2^*} f_2(x) dx + \int_{E_3^*} f_3(x) dx \right)$$

$$= (f_2(e_3) - f_3(e_3)) - (f_2(e_2) - f_3(e_2)) + (f_2(e_1) - f_1(e_1)) - (f_2(e_3) - f_1(e_3))$$

$$e_2 \subseteq [179, 687], e_3 \subseteq [687, 1771], \text{在}[179, 1771] \text{L} f_2(x) - f_3(x) \text{为常数, 所以}$$

$$(f_2(e_3) - f_3(e_3)) - (f_2(e_2) - f_3(e_2)) = 0,$$

$$\mathbb{Z} \qquad e_1 \subseteq [0, 687] \cup [2236, 2536], f_2(e_3) - f_1(e_3)) > (f_2(e_1) - f_1(e_1)),$$

因此上式小于零,与最优性矛盾. 定理 13 证毕.

由于在[687,1771]上 $f_{i}(x) = f_{1}(x)$ (i = 2, 3, 5) 为常数,所以取其中任意区间为 E_{1}^{*} 不影响目标函数值,为使调运方案简单,我们可取 $E_{1}^{*} = [1436,2236]$

定理 14 [0, 179] ∪ [2236, 2536] ⊂_{E2}*

证明 由

及 易得.

$$\min_{x \in [0,179] \cup [2236,2536]} [f_i(x) - f_2(x)] > \max_{x \in [179,1771]} [f_i(x) - f_2(x)] (i = 3, 5)$$

$$\min_{x \in [0,179] \cup [2236,2536]} [f_1(x) - f_2(x)] > \max_{x \in [687,1771]} [f_1(x) - f_2(x)]$$

由于在区间[179,1771]上, $f_{i}(x) - f_{j}(x)$ (i,j=2,3,5) 为常数,在此区间上, E_{2}^{*} , E_{3}^{*} , E_{5}^{*} 选取,只要各自长度不变,总费用不变,为使调度方案简单,取最优解为:

 $E_1^* : [1436, 2236]$ $E_2^* : [0, 500], [2236, 2536]$ $E_3^* : [500, 836] \cup [2536, 3200]$ $E_5^* : [836, 1436] \cup [3200, 3966]$ $E_6^* : [3966, 5171]$

其中,在区间[3325,3551]上 $f_5(x) = f_6(x)$,所以这一部分的钢管可由 S_5 厂也可由 S_6 厂供应. 此时,目标函数值为 1. 2786316×10 万元.

注 $\frac{1}{2}$ 若在管道上取运输 x 单位钢管费用为 $\frac{x(x+1)}{2}$,进而求得单位费用为 $\frac{x+1}{2}$,于是中国知网 https://www.cnki.net

得

$$f_{i(x)} = \min \left(q_{ij} + 0.1 \left((x - a_i) + \frac{1}{2} \right), q_{i,j+1} + 0.1 \left((a_{j+1} - x) + \frac{1}{2} \right) \right)$$

所得最优解集与原问题的最优解集不完全一致,但上述最优解也是该费用函数之下的最优解,其最优函数值为 $1.27863155 \times 10^{\circ}$ 万元.

2) 若不考虑"不足一公里按一公里计算", 费用按连续函数计算, 取 $f_{i}(x) = \min(q_{ij} + 0.1(x - a_{i}), q_{i,j} + 1 + 0.1(a_{i+1} - a_{i}))$

所得最优解集与原问题的最优解集不完全一致,但上述最优解也是该费用函数之下的最优解,其最优函数值为 $1.278373 \times 10^{\circ}$ 万元.

参考文献:

[1] 郭跃华, 杨振华. 钢管订购与运输问题三的数学模型与灵敏度分析[J]. 数学的实践与认识, 2001, 1.

Mathematical Model and Solution of Problem One of Order and Transport of Steel Tube

YANG Zhen-hua¹, HU Guo-lei¹, GUO Yue-hua²

- (1. Nanjing University of Posts & Telecommunications, Nanjing 210003, China)
- (2. Nantong Institute of Technology, Nantong 226007, China)

Abstract: In this paper, we establish the mathematical model of problem one of problem B of 2000 Chinese Undergraduate Mathematical Contest in Modeling —— order and transport of steel tube. Then we give the exact solution of this model.

Keywords: mathematical model; order; transport; steel tube