# MINING TEXT DATA

STQD6414 PERLOMBONGAN DATA



Assoc. Prof. Dr. Nurulkamal Masseran
Department of Mathematical Sciences
Universiti Kebangsaan Malaysia

## INTRODUCTION:

- Text data is a type of unstructured data.
- Computer need to interpret the unstructured data to understand human languages.
- Thus, some information can extracted.
- This procedure known as a natural language processing (NLP).

 Text mining uses NLP techniques to transform unstructured data into a structured format for the purpose of identifying meaningful patterns and

extracting information.





Social Media

Voice of the Customer

Blogs &

Talkwalker

**Focus Groups 8** 

### INTRODUCTION:

- Text data can be generated by many source of platform such as: emails, product reviews, social media posts, newspaper, customer compliant and feedback, document, file, and etc.
- However, common data analysis technique cannot be used to deal with these kind of data.
- Thus, here, text mining plays a major role.
- In particular, the text mining techniques are useful in:
- i) identifying trends, popular topics and themes related to some particular issue.
- ii) extract sentiment and people's emotions towards some particular issue.
- Example: In businesses, the feedback data from the customers help the companies to get information about the perception and opinions about their product or service.

#### A TEXT CORPUS:

- A plain text data need to be converted to a corpus format before a data mining analysis can be done.
- A corpus is as a collection of written texts.
- Based on corpus format, a data mining analysis, hypothesis testing, checking occurrences or validating linguistic rules can be done on a text data.

| CORPUS                              |
|-------------------------------------|
| Read fragmented                     |
| Read vertically                     |
| Read for formal patterning          |
| Read for repeated events            |
| Read as a sample of social practice |
| Not a coherent communicative event  |
|                                     |



#### DATA CLEANING ON TEXT DATA:

- Commonly, unstructured data does not organize in a proper way.
- Thus, it is difficult to analyze unstructured data directly from its original form.
- Data cleaning on text data is very important task of pre-processing prior to text mining.
- Some important steps of data cleaning on text data:
- i) Remove special characters from the text, where a symbol such as; /, @ and | will be replace by a space.
- ii) Convert the text to lower case.
- iii) Remove numbers
- iv) Remove the stopwords in text data. Example: Stopwords in English are "the, is, at, on". There is no single universal list of stopwords used by all NLP tools.
- v) Remove punctuation.
- vi) Eliminate extra unnecessary spaces in the text.



#### WORD TOKENIZATION:

- Tokenization is a technique used to represent text data into a numeric format that can then be used in text mining.
- Word tokenization involves splitting a text into individual words with each unique word being assigned a unique number.
- The tokens could be words, numbers or punctuation marks.
- In tokenization, smaller units are created by locating word boundaries.
- Word boundaries are the ending point of a word and the beginning of the next word.
- The tokenization is a first step for text stemming.





#### WORD TOKENIZATION:

#### Example:

- Consider the sentence, "I Love my cat". In tokenization, unique integer value will be assign to each unique word in that sentence.
- Such that, 1 to "I", 2 to "Love", 3 to "my" and 4 to "cat".
- If we have another sentence: "I Love my car", then, the words "I Love my", already have numbers 001 002 003.
- Thus, only a new word will be assign a new unique integer value. Here, we have integer 005 is assign for the word "car".
- The tokens of these two sentences are: 001 002 003 004, 001 002 003 005
- Using tokenization, similarity between the sentences can be evaluated.
- Intrinsically, a computer does not understand text or language in a human sense.
- By tokenization, computer able to transform text from a humanunderstandable form to a statistical pattern that can be mapped by a data mining technique.

#### TEXT STEMMING:

- Text stemming is the process of reducing the word to its root form.
- The stemming simplifies the word to its common origin.
- Stemming is important technique used in NLP to reduces the number of computations required.
- In a similar vein, stemming is also useful in reducing the dimensionality of a text data.
- Example: the stemming process reduces the words "fishing", "fished" and "fisher" to its stem "fish".
- The words are different but they actually similar in term of contextually.

|   | original_word | stemmed_words |
|---|---------------|---------------|
| 0 | connect       | connect       |
| 1 | connected     | connect       |
| 2 | connection    | connect       |
| 3 | connections   | connect       |
| 4 | connects      | connect       |



#### DOCUMENT- TERM MATRIX:

- A document-term matrix represents the relationship between terms and documents.
- The rows stand for a specific document or sentence.
- The columns represent a unique word.
- The entry in this matrix represent the number of occurrences of the term in the document.
- A document-term matrix also referred as a table containing the frequency of words.

|           | text | mining | is | to | find | useful | information | from | text | mined | dark | came |
|-----------|------|--------|----|----|------|--------|-------------|------|------|-------|------|------|
| <b>D1</b> | 1    | 1      | 1  | 1  | 1    | 1      | 1           | 1    | 1    | 0     | 0    | 0    |
| <b>D2</b> | 0    | 0      | 1  | 0  | 0    | 1      | 1           | 1    | 1    | 1     | 0    | 0    |
| <b>D3</b> | 0    | 0      | 0  | 0  | 0    | 0      | 0           | 0    | 0    | 0     | 1    | 1    |



#### WORD CLOUD:

- A word cloud is a visual representation of words.
- Word cloud use the information provided by word frequency table represented by document-term matrix.
- Word cloud are useful in highlighting the popular words and phrases based on the frequency and its relevance in a text data.
- Based on word cloud visualization, more in-depth analyses can be carried out.
- The word cloud image composed of keywords found within a body of text.
- The size of each word indicates its frequency in a text data.





### WORD ASSOCIATION:

- Word association is a technique to analyzing the content of text data by determining a significant relationship between terms.
- This technique compute similarity among each words in context documents, after collecting the context through a bag of words
- Correlation measure is used to determine how strong a magnitude of pairs are related.
- Word association can be illustrated using word similarity chart and word correlation graph chart.





### SENTIWENT ANALYSIS:

- Sentiment Analysis is a process of extracting opinions that have different scores like positive, negative or neutral.
- Based on sentiment analysis, you can find out the nature of opinion or sentences in text.
- Sentiment Analysis is a type of classification where the data is classified into different classes like positive or negative or happy, sad, angry, etc.
- Sentiment analysis is used for many applications, especially in business intelligence.

#### For example:

- i) Analyzing the social media discussion around a certain topic.
- ii) Evaluating survey responses.
- iii) Determining whether product reviews are positive or negative



#### SENTIWENT ANALYSIS:

- However, sentiment analysis cannot tell you why some people are feeling a certain way.
- In spite of that, sentiment analysis provides an information about the words associated with strongly positive or negative sentiment.
- This information is being derived by a count of the number of positive and negative words in the text.
- Then, the analysis will be conducted to characterize this mix of positive and negative words.





#### SENTIWENT ANALYSIS:

- The first step in sentiment analysis is creating a lexicon text.
- Lexicon refer to a word list.
- In default, some lexicons are already exists.
- However, if your text is having some a specific topic, your lexicon need to add to or modify in prior to sentiment analysis

| Lexicon                    | Positive Words                             | Negative Words                           |
|----------------------------|--------------------------------------------|------------------------------------------|
| Simplest (SM)              | good                                       | bad                                      |
| Simple List (SL)           | good, awesome, great, fantastic, wonderful | bad, terrible, worst, sucks, awful, dumb |
| Simple List Plus (SL+)     | good, awesome, great, fantastic,           | bad, terrible, worst, sucks, awful,      |
|                            | wonderful, best, love, excellent           | dumb, waist, boring, worse               |
| Past and Future (PF)       | will, has, must, is                        | was, would, had, were                    |
| Past and Future Plus (PF+) | will, has, must, is, good, awesome,        | was, would, had, were, bad,              |
|                            | great, fantastic, wonderful, best,         | terrible, worst, sucks, awful, dumb,     |
|                            | love, excellent                            | waist, boring, worse                     |
| Bing Liu                   | 2006 words                                 | 4783 words                               |
| AFINN-96                   | 516 words                                  | 965 words                                |
| AFINN-111                  | 878 words                                  | 1599 words                               |
| enchantedlearning.com      | 266 words                                  | 225 words                                |
| MPAA                       | 2721 words                                 | 4915 words                               |
| NRC Emotion                | 2312 words                                 | 3324 words                               |



#### EMOTION CLASSIFICATION:

- Instead of two sentiments (negative and positive), the emotion classification is also providing useful information in sentiment analysis.
- Emotion classification is built on the NRC Word-Emotion Association Lexicon
- The NRC Emotion Lexicon is a list of English correspond to eight basic emotions:
- i) Anger
- ii) Fear
- iii) Anticipation
- iv) Trust
- v) Surprise
- vi) Sadness
- vii) Joy
- viii) Disgust



**SENTIMENT** 

**EMOTION** 

#### REFERENCES:

- Aggarwal, C. C., Zhai, C. (2012). Mining Text Data. Springer.
- Kwartler, T. (2017). Text Mining in Practice with R. Wiley.
- Lamba, M., Madhusudhan, M. (2022). *Text Mining for Information Professionals: An Uncharted Territory*. Springer.
- Silge, J., Robinson, D. (2017). *Text Mining with R: : A Tidy Approach*. O'Reilly Media, Inc.
- Zhai, C., Massung, S. (2016). Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining. ACM Books.
- Žižka, J., Darena, F., Svoboda, A. (2021). Text Mining with Machine Learning. CRC Press.
- Zong, C., Xia, R., Zhang, J. (2021). Text Data Mining. Springer.



#### **NEXT TOPIC:**

# Mining Spatial Data

