

Multi-Agent Coordination

Interaction-Centric Coordination

Outline

- Introduction
 - Definitions, Principles
- Speech Act Theory
- Agent Communication Language
 - KQML, FIPA-ACL
- Ontologies
- Interaction Protocol
 - Formalism
 - Contract Net

Definition

- General [Morin 77]
 - Interactions are reciprocal actions modifying the behavior or nature of elements, bodies, objects, phenomena in presence or influence.

Definition

- General [Morin 77]
 - Interactions are reciprocal actions modifying the behavior or nature of elements, bodies, objects, phenomena in presence or influence.

Object-Oriented Paradigm

Definition

General [Morin 77]

• Interactions are reciprocal actions modifying the behavior or nature of elements, bodies, objects, phenomena in presence or influence.

Object-Oriented Paradigm

Multi-Agent Systems Paradigm

- General [Morin 77]
 - Interactions are reciprocal actions modifying the behavior or nature of elements, bodies, objects, phenomena in presence or influence.
- Multi-Agent [Ferber 95]
 - Dynamic linking of two or more agents through reciprocal actions.

Definition

General [Morin 77]

 Interactions are reciprocal actions modifying the behavior or nature of elements, bodies, objects, phenomena in presence or influence.

Multi-Agent [Ferber 95]

 Dynamic linking of two or more agents through reciprocal actions.

Autonomous Vehicles interact through

- 1. their **perceptions** of others
- 2. their communications

Four ways of interacting between agents [Werner 89]

- No communication: agents do not communicate, they either interact by perceiving the environment or achieve their goal without any external help.
- Sending signals: agents synchronize by sending coded messages.
- Sending plans: agents transfer information concerns their tasks and beliefs.
- **Sending messages**: the most used in the MAS community, enable agents to exchange their intentions and needs via message passing.

Four ways of interacting between agents [Werner 89]

- No communication: agents do not communicate, they either interact by perceiving the environment or achieve their goal without any external help.
- Sending signals: agents synchronize by sending coded messages.
- Sending plans: agents transfer information concerns their tasks and beliefs.
- **Sending messages**: the most used in the MAS community, enable agents to exchange their intentions and needs via message passing.

No communication: positions, movements, turn signal

Four ways of interacting between agents [Werner 89]

- No communication: agents do not communicate, they either interact by perceiving the environment or achieve their goal without any external help.
- Sending signals: agents synchronize by sending coded messages.
- Sending plans: agents transfer information concerns their tasks and beliefs.
- Sending messages: the most used in the MAS community, enable agents to exchange their intentions and needs via message passing.

No communication: positions, movements, turn signal

Sending signals: honk the horn

Four ways of interacting between agents [Werner 89]

- No communication: agents do not communicate, they either interact by perceiving the environment or achieve their goal without any external help.
- Sending signals: agents synchronize by sending coded messages.
- Sending plans: agents transfer information concerns their tasks and beliefs.
- Sending messages: the most used in the MAS community, enable agents to exchange their intentions and needs via message passing.

No communication: positions, movements, turn signal

Sending signals: honk the horn

Sending plans: send its direction at a junction

Four ways of interacting between agents [Werner 89]

- No communication: agents do not communicate, they either interact by perceiving the environment or achieve their goal without any external help.
- Sending signals: agents synchronize by sending coded messages.
- Sending plans: agents transfer information concerns their tasks and beliefs.
- Sending messages: the most used in the MAS community, enable agents to exchange their intentions and needs via message passing.

No communication: positions, movements, turn signal

Sending signals: honk the horn

Sending plans: send its direction at a junction

Sending messages: share its intention to overtake

Communication

Problematic [Shannon 48]

Definition: Communication is the intentional exchange of information brought about by the production and perception of signs drawn from a shared system of conventional signs [Russel & Norvig 10].

- When does an agent decide to communicate with another?
 - Theory of Speech Act [Austin 62, Searle 69]
- What language does the agent use to communicate?
 - Agent communication languages like KQML [Finin et al. 93], FIPA-ACL [FIPA 01]
- What does an agent communicate about?
 - Ontologies
- How is the communication structured?
 - Interaction protocols

Outline

- Introduction
 - Definitions, Principles
- Speech Act Theory
- Agent Communication Language
 - KQML, FIPA-ACL
- Ontologies
- Interaction Protocol
 - Formalism
 - Contract Net

Introduction

- Initial hypothesis: A common language constitutes an interface between agents.
 - Syntax: The way symbols are structured,
 - Semantics: meaning of the symbols used,
 - Conversation: Management of message sequences.

Introduction

- Most treatments of communication in (multi-) agent systems borrow their inspiration from speech act theory
- Speech act theories are pragmatic theories of language, i.e., theories of language use: they attempt to account for how language is used by people every day to achieve their goals and intentions
- The origin of speech act theories are usually traced to Austin's 1962 book, How to Do Things with Words
- Sources of the Theory of Speech Acts [Austin 62, Searle 69, Vanderveken 88]

Expanded from Rosenschein's slides on Wooldridge's book http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/distrib/powerpoint-slides/

Introduction

- Austin noticed that some utterances are rather like 'physical actions' that appear to change the state of the world
- Paradigm examples would be:
 - declaring war
 - christening
 - 'I now pronounce you man and wife' :-)
- But more generally, everything we utter is uttered with the intention of satisfying some goal or intention

Based on Rosenschein's slides on Wooldridge's book http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/distrib/powerpoint-slides/

Introduction

- A theory of how utterances are used to achieve intentions is a speech act theory
- In speech act theory, verbal actions are called performative verbs
- Performative verbs constitute the building blocks of natural language

Based on Rosenschein's slides on Wooldridge's book http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/distrib/powerpoint-slides/

Performative Taxonomy

Taxonomy [Searle 69]

- Assertives/Representatives are used to give information about the world by asserting something. Paradigm case is *informing*.
 - I inform you that I'm married
- Directives are used to give instructions to the recipient. Paradigm case requesting.
 - I request you to come to my wedding
- Commissives commit speakers to perform certain acts. Paradigm case promising.
 - I promise to be faithful
- **Expressives** are used to give the addressee information about the speaker's mental state. Paradigm case *thanking*.
 - I apologize to miss your wedding
- Declarations perform an act by the very fact of pronouncing the utterance. Paradigm case declaring war.
 - I marry you

Performatives

- The same content may have different interpretations according to the used speech act
- A says to B "go to the position p1"

Assertion B knows that A goes to the position p1

Directive A asks B to go to position p1

Commissive Not sure that A will go to p1

Expressive A thinks to go to p1

Declaration ???

Performative Components

- Performative verb are composed by
 - Locutionary component: production of a sentence using a given grammar and lexicon.
 - Illocutionary component: effect that the sender of the message wants to produce on the recipient.
 - Perlocutionary component: effect of the message on the recipient.

Performative Components

- From "A Dictionary of Philosophical Terms and Names":
- "Locutionary act: the simple speech act of generating sounds that are linked together by grammatical conventions so as to say something meaningful. Among speakers of English, for example, 'It is raining' performs the locutionary act of saying that it is raining, as 'Grablistrod zetagflx dapu' would not."
- Act of making an utterance
 - e.g., 'Please make some tea'

Based on Rosenschein's slides on Wooldridge's book http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/distrib/powerpoint-slides

Performative Components

- "Illocutionary act: the speech act of doing something else – offering advice or taking a vow, for example – in the process of uttering meaningful language. Thus, for example, in saying 'I will repay you this money next week,' one typically performs the illocutionary act of making a promise."
- Action performed in saying something
 - e.g., 'He requested me to make some tea'

Performative Components

- "Perlocutionary act: the speech act of having an effect on those who hear a meaningful utterance. By telling a ghost story late at night, for example, one may accomplish the cruel perlocutionary act of frightening a child."
- Effect of the act
 - e.g., 'He got me to make the tea'

Performative Components

Agent A sends the message «please, close the window, I'm cold» to the agent B

Performative Components

- Agent A sends the message «please, close the window, I'm cold» to the agent B
 - Locutionary component: Production of a sentence using a given grammar and lexicon.
 - A writes the message
 - Illocutionary component: effect that the sender of the message wants to produce on the recipient
 - A wants B to close the window, the strength of the message is enforced by "please"
 - Perlocutionary component: effect of the message on the recipient
 - B should close the window or propose an alternative to the justification of the demand "I'm cold" for instance B could give a coat to A

General Perspective

- In general, a speech act can be seen to have two components:
- a performative verb: (e.g., request, inform, promise, ...)
- a propositional content: (e.g., "the door is closed")

General Perspective

Consider

- performative = request content = "the door is closed" speech act = "please close the door"
- performative = inform content = "the door is closed" speech act = "the door is closed!"
- performative = inquire content = "the door is closed" speech act = "is the door closed?"

Outline

- Introduction
 - Definitions, Principles
- Speech Act Theory
- Agent Communication Language
 - KQML, FIPA-ACL
- Ontologies
- Interaction Protocol
 - Formalism
 - Contract Net

Introduction

- Message is the most used form of interaction among agents
- Messages are performatives combined with a data structure
- Agent Communication Languages (ACLs) are standard formats for the exchange of messages
- An ACL is defined by
 - the definition of a set of performatives
 - the data structure of the message

Introduction

- ACL uses at least a data structure composed of the following fields
 - Sender
 - Receiver
 - Language of the content
 - Ontology
 - Message content
- The most well known ACL are
 - KQML
 - FIPA-ACL

KQML – Introduction

- Knowledge Query and Manipulation Language
- Define a common format for messages
- The principle is to separate
 - the **semantics** of the **communication protocol** (independent of the application domain)
 - from the **semantics** of the **message content** (application-dependent).

Historic

- Result of the 1993 DARPA Knowledge Sharing Initiative
- Designed to exchange information among agents
- Goal was to develop generic tools to promote the interoperability of heterogeneous agents

KQML – Introduction

- KQML is an 'outer' language, that defines various acceptable 'communicative verbs', or performatives
- Example performatives:
 - ask-if ('is it true that...')
 - perform ('please perform the action. . . ')
 - tell ('it is true that...')
 - reply ('the answer is . . . ')
- KIF is a language for expressing message content

KQML – **Syntax**

```
(KQML-performative
      Message Layer
                              :language
                                             <text>
                              :ontology
                                             <text>
                              :reply-with
                                             <text>
Communication Layer-
                              :sender
                                             <text>
                              :receiver
                                             <text>
                              :content
                                             <expression>
       Content Layer
         Example:
                           (ask-one
                             :language LPROLOG
                             :ontology NYSE-TICKS
                             :reply-with ibm-stock
                             :sender joe
                             :receiver stock-server
                             :content (PRICE IBM ?price)
```


KQML – Performatives

Category	Name
Simple request	evaluate, ask-if, ask-about, ask-one, ask-all
Request with several answer	stream-about, stream-all, eos
Response	reply, sorry
Generic Information	tell, achieve, cancel, untell, unachieve
Generator	standby, ready, next, rest, discard, generator
Skills definition	advertise, subscribe, monitor, import, export
Network management	register, unregister, forward, broadcast, route

See https://jmvidal.cse.sc.edu/talks/agentcommunication/kqmlperformatives.html for the complete list of performatives and their meanings.

KQML – Semantic

A performative is defined with

- **Preconditions** (Pre) define the required **states of the agents** for the creation of the message
- Postconditions (Post) define the states of the agents after the message processing
- Completion describes the expected result of the message

Representation of the knowledge of the agent

- Bel(A,X): A believes X
- Know(A,X): A knows X
- Intend(A,X) A intends to do X
- Want(A,X) A wants X

KQML – Example

- Pre(A): bel(A,X) ∧
 know(A,want(B,know(B,bel(A,X))∨know(B,¬bel(A,X))))
- Pre(B): intend(B, know(B,bel(A,X))∨know(B,¬bel(A,X)))
- Post(A): know(A,know(B,bel(A,X)))
- Post(B): know(B,bel(A,X))
- Completion: know(B,bel(A,X))

KQML – Discussion

Advantages

- First agent communication «standard»
- Several applications support KQML
- Extensible Language
 - New performatives
 - New parameters

Limitations

- Ambiguity and imprecision
- Does not take into account conversation
- Absence of performatives like Commissive performatives

FIPA – Introduction

- Fondation for Intelligent Physical Agents (FIPA)
- Benefited from the research results of KQML
- Basic structure is quite similar to KQML
 - performative
 - 20 performatives in FIPA
 - housekeeping
 - e.g., sender, etc.
 - content
 - the actual content of the message
- Explicit protocols for message exchange

FIPA – Performatives

performative	passing	requesting	negotiation	performing	error
	info	info		actions	handling
accept-proposal			х		
agree				x	
cancel		x		x	
cfp			x		
confirm	х				
disconfirm	х				
failure					Х
inform	х				
inform-if	х				
inform-ref	х				
not-understood					Х
propose			x		
query-if		x			
query-ref		x			
refuse				x	
reject-proposal			х		
request				х	
request-when				x	
request-whenever				x	
subscribe		x			

FIPA – Message

Parameter	Category of Parameters
performative	Type of communicative acts
sender	Participant in communication
receiver	Participant in communication
reply-to	Participant in communication
content	Content of message
language	Description of Content
encoding	Description of Content
ontology	Description of Content
protocol	Control of conversation
conversation-id	Control of conversation
reply-with	Control of conversation
in-reply-to	Control of conversation
reply-by	Control of conversation

```
(inform
:sender A
:receiver B
:content (price (bid goood02) 150)
:in-reply-to round-4
:reply-with bid04
:envelope 1000
:language s1
:ontology hpl-auction
:reply-by 10
:protocol offer
:conversation-id conv02
```


FIPA – Semantic Language

- Based on **mental attitudes** (beliefs, desires, etc...)
- For each act
 - Feasibility Condition (FR): Condition(s) that must be satisfied before planning to perform an speech act
 - Rational Effect (RE): Effect that the agent expects, i.e., attempts to achieve, with the processing of the speech act

Receiver mental state is not taken into account as an initial condition

FIPA – Semantic Language

Examples

<i, inform(k, p)>

- FP: $B_i p \wedge \neg B_i (Bif_K p \vee Uif_k p)$

 $-RE: B_k p$

<i, request(j, a)>

- FP: B_i Agent(a, j) $\wedge \neg B_i I_i$ Done(a)

-RE: Done(a)

FIPA – Semantic Language

Each performative is related to a protocol

- Sender agent knows it has to wait an answer
- Receiver knows how to react

Example

- Request
- Auction
- ContractNet

Agent Communication Language Comparison of KQML & FIPA ACL

Similarities

- Both are identical in concepts and principles
- Both support different content languages
- Both are syntactically identical
- Both are capable of parsing messages, compose and channel them using low-level network protocol
- Both are based on the speech act theory

Agent Communication Language Comparison of KQML & FIPA ACL

KQML	FIPA ACL
Semantic description includes preconditions,	Semantic description includes feasibility
postconditions and completion conditions	preconditions and rational effect
KQML has facilities for agent management	FIPA ACL considers these as services
and communication agent	offered by basic agents rather than
	message layer
KQML has facilities for multiple solutions	FIPA ACL does not express these
like ask-all, stream-all, etc and goal	concepts in ACL, but in the context of
definition like achieve and unachieve	ACL messages
KQML has facility for direct belief	FIPA ACL does not have this facility
manipulation	
KQML uses 'sorry' for both failure and	FIPA ACL has facilities like 'failure' and
refusal	'refuse'.

https://people.ucalgary.ca/~far/Lectures/SENG697/PDF/tutorials/2002/Agent_Communication_Languages_and_Protocols.pdf

Outline

- Introduction
 - Definitions, Principles
- Speech Act Theory
- Agent Communication Language
 - KQML, FIPA-ACL
- Ontologies
- Interaction Protocol
 - Formalism
 - Contract Net

Ontologies

Introduction

- In order to be able to communicate, agents must have agreed on a common set of terms
- A formal specification of a set of terms is known as an ontology
- An ontology is intended to provide a common basis of understanding about some domain

An ontology is a **formal definition** of a **body of knowledge**. The most typical type of ontology used in
building agents involves a **structural component**.

Essentially a taxonomy of **class** and **subclass relations**coupled with **definitions of the relationships** between
these things. (Jim Hendler) [Woodridge 09]

Ontologies

Illustration

Ontologies

Languages

Traditional Ontology Languages

- First-order predicate logic
 - KIF, CycL
- Frame-based languages
 - Ontolingua, F-logic, and OCML
- Description Logic (DL) based languages
 - Loom

Web-based Ontology Languages

- RDF + Description Logic
 - OWL DL

[Kalibatiene & Vasilecas 11]

Outline

- Introduction
 - Definitions, Principles
- Speech Act Theory
- Agent Communication Language
 - KQML, FIPA-ACL
- Ontologies
- Interaction Protocol
 - Formalism
 - Contract Net

Introduction

Definition

 A protocol specifies who can say what to whom and possible reactions to the message it receives

Objective

- Structure conversations
- Allow agents to know how to use speech acts

Consequences

- Restriction on the use of the speech acts
- Protocol engineering
 - Predefined protocols
 - Protocol definition formalism
 - Methodology for defining protocols

Interaction Formalism – AUML

- A protocol define a set of ordered messages exchanged between roles
- Notation
 - A vertical dimension that represents time
 - A horizontal dimension that represents the different roles
 - Logical operator : and / or
 - Temporal sequence
 - Message: alternative

[Odell et al. 03]

FIPA

- Notation: AUML [http://www.fipa.org/specs/fipa00025/XC00025E.html]
- Existing protocols
 [http://www.fipa.org/repository/ips.php3]

Identifier	Title
SC00026	FIPA Request Interaction Protocol Specification
SC00027	FIPA Query Interaction Protocol Specification
SC00028	FIPA Request When Interaction Protocol Specification
SC00029	FIPA Contract Net Interaction Protocol Specification
SC00030	FIPA Iterated Contract Net Interaction Protocol Specification
XC00031	FIPA English Auction Interaction Protocol Specification
XC00032	FIPA Dutch Auction Interaction Protocol Specification
SC00033	FIPA Brokering Interaction Protocol Specification
SC00034	FIPA Recruiting Interaction Protocol Specification
SC00035	FIPA Subscribe Interaction Protocol Specification
SC00036	FIPA Propose Interaction Protocol Specification

FIPA – Request Protocol

http://www.fipa.org/specs/fipa00026/SC00026H.html

FIPA – Contract Net Protocol

- How does a group of agents work together to solve a problem?
- There are two main modes of cooperative problem solving:
 - Task Sharing: components of a task are distributed to component agents
 - Result Sharing: information (partial results, etc.) is distributed
- The Contract Net Protocol is a well-known task sharing protocol for task allocation

FIPA – Contract Net Protocol

- The Contract Net Protocol is a high-level protocol for achieving efficient cooperation through task sharing [Wooldridge 09]
- Task distribution viewed as a kind of contract negotiation
- "Protocol" specifies content of communication, not just form
- Two-way transfer of information is natural extension of transfer of control mechanisms

FIPA – Contract Net Protocol

- The Contract Net Protocol is carried out in 5 stages
 - 1. Recognize
 - 2. Announce
 - 3. Bid
 - 4. Award
 - 5. Expect

Contract Net Protocol – Recognize

- In this stage, an agent recognizes it has a problem it wants help with.
- Agent has a goal, and either...
 - realizes it cannot achieve the goal in isolation does not have capability
 - realizes it would prefer not to achieve the goal in isolation (typically because of solution quality, deadline, etc.)

Contract Net Protocol – Announce

- In this stage, the agent with the task sends out an announcement of the task which includes a specification of the task to be achieved
- Specification must encode:
 - description of task itself (maybe executable)
 - any constraints (e.g., deadlines, quality constraints)
 - meta-task information (e.g., "bids must be submitted by...")
- The announcement is then broadcast

Contract Net Protocol – Bid

- Agents that receive the announcement decide for themselves whether they wish to bid for the task
- Factors:
 - agent must decide whether it is capable of expediting task
 - agent must determine quality constraints & price information (if relevant)
- If they do choose to bid, then they submit a tender

Contract Net Protocol – Award & Expect

- Agent that sent task announcement must choose between bids & decide who to "award the contract" to
- The result of this process is communicated to agents that submitted a bid
- The successful contractor then expedites the task
- May involve generating further manager-contractor relationships: sub-contracting

FIPA - Contract Net Protocol - Illustration

We need to arrive as soon as possible to the company but we do not have a car?

FIPA - Contract Net Protocol

https://www.fipa.org/specs/fipa00029/SC00029H.html

References

- [Austin 62] Austin, J. L. How to Do Things with Words. Clarendon Press: Oxford, 1962.
- [Ferber 95] Ferber, J. Les Systèmes Multi-Agents: Vers une Intelligence Collective. InterEditions, 1995.
- [Finin et al. 93] Finin, T., Weber, J., Wiederhold, G., Genesereth, M., Fritzson, R., McKay, D., McGuire, J., Pelavin, R., Shapiro, S., & Beck, C. Specification of the KQML agent communication language. DARPA Knowledge Sharing Initiative External Interfaces Working Group, 1993.
- [FIPA 01] FIPA The foundation for intelligent physical agents. See http://www.fipa.org, 2001.
- [Kalibatiene & Vasilecas 11] Kalibatiene D., Vasilecas O. Survey on Ontology Languages. In: Grabis J., Kirikova M. (eds) Perspectives in Business Informatics Research. BIR 2011. Lecture Notes in Business Information Processing, vol 90. Springer, Berlin, Heidelberg, 2011.
- [Kumar 00] Kumar, S., Huber, M. J., McGee, D., Cohen, P. R., & Levesque, H. J. Semantics of agent communication languages for group interaction. Dans Proceedings of the Seventeenth National Conference on Articial Intelligence, pages 42-47. AAAI Press / The MIT Press, 2000.
- [Morrin 77] Morrin, E., Le Système, Paradigme ou Theorie? Inaugural address to the Congrits de l'A.F.C.E.T., Versailles, November 21, 1977. Published in Science avec conscience, Paris: Fayard, 1982, pp. 172-189.
- [Odell et al. 03] Odell J., Parunak H.V. D., Bauer B. Extending UML for Agent-Based Systems. In Kilov H., Baclawski K. (eds) Practical Foundations of Business System Specifications. Springer, Dordrecht, 2003.

References

- [Russel et Norvig 10] Russell, S. J. et Norvig, P. Articial Intelligence: A modern approach. Prentice Hall, Upper Saddle River, N.J., 3rd edition, 2010.
- [Searle 69] Searle, J. R. Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press: Cambridge.
- [Shannon 48] Shannon, C. E. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379-423, 1948.
- [Smith 70] Smith, R. G. The Contract Net Protocol: High-level communication and control in a distributed problem solver. IEEE Transactions on Computers C-29(12), 1104-1113, 1970.
- [Sycara 00] Sycara, K. et Wong, H. A taxonomy of middle-agents for the internet. Proceedings of the Fourth International Conference on MultiAgent Systems (ICMAS-2000), pages 465-466. IEEE Computer Society, Washington, DC, USA, 2000.
- [Werner 89] Werner, E., Cooperating agents: A unified theory of communication and social structure, In L. Gasser and M. Huhns, editors, Distributed Artificial Intelligence Volume II, pages 3-36, Pitman Publishing: London and Morgan Kaufmann, San Mateo, CA, 1989.
- [Wooldridge 09] Wooldridge, M. J. An Introduction to Multiagent Systems. Wiley: Chichester, 2nd edition, 2009.
- [Vanderveken 88] Vanderveken, D. Les Acts de Discours. Pierre Mardaga Editeur, 1988.

