Universidade Federal do ABC - Prof. André Fonseca $1^{\underline{a}}$ Avaliação de Introdução às Equações Diferenciais Ordinárias

Nome:

1) Considere o PVI:

$$\begin{cases} xy' - y = x^3 cos(x) \\ y(\pi) = 0 \end{cases} ; \quad x > 0.$$

- (a) Verifique as hipóteses do teorema de existência e unicidade. Qual a sua conclusão ? **Solução:** $f(x,y) = \frac{1}{x}(y+x^3cos(x))$ é descontínua para x=0 e $\frac{\partial f}{\partial y}(x,y) = \frac{1}{x}$ é descontínua para x=0.
- (b) Encontre a solução do PVI.

Solução: $y(x) = x^2 sen(x) + x cos(x) + x$.

- 2) Uma população de bactérias cresce numa uma taxa proporcional à população presente. Sabendo-se que após duas horas a população é 3 vezes a população inicial, determine:
 - (a) A população como função do tempo.

Solução: $B(t) = B_0 e^{\frac{\ln 3}{2}t} = B_0 3^{\frac{t}{2}}$.

(b) O tempo necessário para que a população quintuplique.

Solução: $t = \frac{2ln5}{ln3}$.

3) Encontre a solução geral da equação diferencial $y' = \frac{3xy - 2y^2}{3xy - 2x^2}$

Solução: $-\frac{2}{5}ln\left|\frac{y}{x}\right| - \frac{1}{5}\left|\frac{y}{x} - 1\right| = |x| + c$.

4) Considere a equação de Bernoulli:

$$xy' + y = \frac{1}{y^2}.$$

Utilize mudança de variável $y(x) = z(x)^k$ onde $k = \frac{1}{1-n}$ para $n \neq 1$. Essa mudança reduz a equação de Bernoulli a uma equação linear. Obtenha, por esse método, a solução y(x).

Solução: $z' + \frac{3}{x}z = \frac{3}{x}$; $x \neq 0$ e $y = \sqrt[3]{1 + cx^{-3}}$.

5) Verifique se $y_1(x)=1$ e $y_2(x)=x^{1/2}$ formam um conjunto fundamental de soluções da EDO:

$$yy'' + (y')^2 = 0$$
 ; $x > 0$.

Solução: Mostrar que y_1 e y_2 são soluções e $W(y_1,y_2)=\frac{1}{2}x^{-1/2}\neq 0$ se x>0.

Boa prova!