Dynamics - Practice

Click on a question number to see how your answers were marked and, where available, full solutions.

Question Number	Score		
Question 1	20	/	20
Total	20	/	20 (100%)

Performance Summary

Dynamics - Practice
01567142943
Tue Jan 04 2022 05:38:39
Tue Jan 04 2022 05:44:27
0:05:48

Question 1

In the system shown in Figure 1, a generator is connected to the infinite bus through two lines. The system information is shown in Table 1.

Figure 1: A generator connected to the infinite bus

Generator reactance	X_G	0.1	p.u.
Transformer reactance	X_T	0.25	p.u.
Reactance of each line	X_L	0.2	p.u.
Generated voltage	E	1.04	p.u.

Table 1: System information

The generator is protected with an overcurrent relay with an inverse-time relationship given by:

$$t=rac{K}{\left(rac{I}{I_0}
ight)^p-1}$$

The relay parameters are shown in **Table 2**.

K	3.58
p	1
I_P	0.35

Table 2: Relay parameters

Maximum Load Current I_L

If the load angle at maximum load is $\delta=11^o$ calculate the maximum load current.

$$I_L$$
 = 0.441 \blacktriangleright Expected answer: 0.4434180283 $p.u.$

✓ Your answer is correct. You were awarded 5 marks.

You scored 5 marks for this part.

Score: 5/5 ✔

Critical Current I_{CC}

A fault occurs halfway along line L2, with a critical clearing angle of $\delta_{CC}=65^o$. Calculate the current flow at this critical point.

✓ Your answer is correct. You were awarded 7 marks.You scored 7 marks for this part.

Score: 7/7 **✓**

Relay Suitability

The critical clearing time for this fault is $t_{CC}=0.93s$. Sketch the time-inverse curve and determine whether the relay's protection settings are adequate.

- Yes, this relay is suitable
- No, the relay trips for normal current flow
- No, the system goes unstable before the relay trips

~

Expected answer:

- Yes, this relay is suitable
- No, the relay trips for normal current flow
- No, the system goes unstable before the relay trips
 - ✓ You chose a correct answer. You were awarded 8 marks.You scored 8 marks for this part.

Score: 8/8 **◆**