

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 February 2001 (22.02.2001)

PCT

(10) International Publication Number WO 01/12660 A2

(51) International Patent Classification⁷: C07K 14/00

(21) International Application Number: PCT/JP00/05356

(22) International Filing Date: 10 August 2000 (10.08.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

 11/230344
 17 August 1999 (17.08.1999)
 JP

 11/252551
 7 September 1999 (07.09.1999)
 JP

 11/281132
 1 October 1999 (01.10.1999)
 JP

 11/301624
 22 October 1999 (22.10.1999)
 JP

 11/313877
 4 November 1999 (04.11.1999)
 JP

- (71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032 (JP).

- (74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DESCRIPTION

Human Proteins Having Hydrophobic

Domains and DNAs Encoding These Proteins

5

10

15

20

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs encoding these proteins, eukarvotic for these DNAs, vectors expressing these DNAs and antibodies directed to these proteins. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies directed to these proteins. The human cDNAs of the present invention can be utilized as probes for genetic diagnosis and gene sources for gene therapy. Furthermore, the cDNAs can be utilized as gene sources for producing the proteins encoded by these cDNAs in large quantities. Cells into which these genes are introduced to express secretory proteins or membrane proteins in large quantities can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibodies of the present invention can be utilized for the detection, quantification, purification and the like of the proteins of the present invention.

10

15

20

25

BACKGROUND ART

Cells secrete many proteins extracellularly. These secretory proteins play important roles in the proliferation control, the differentiation induction, the transport, the biophylaxis, and the like of the cells. Unlike intracellular proteins, the secretory proteins exert their actions outside the cells. Therefore, they can be administered in the intracorporeal manner such as so that they possess injection or the drip, potentialities as pharmaceuticals. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents and the like currently employed as pharmaceuticals. In addition, secretory proteins other than those described above are undergoing clinical trials for developing their use pharmaceuticals. It is believed that the human cells produce many unknown secretory proteins. Availability of these secretory proteins as well as genes encoding them expected to lead to development of novel pharmaceuticals utilizing them.

On the other hand, membrane proteins play signal receptors, ion important roles, as channels, transporters and the like in the material transport and the signal transduction through the cell membrane. Examples thereof include receptors for various cytokines, ion

10

15

20

25

channels for the sodium ion, the potassium ion, the chloride ion and the like, transporters for saccharides and amino acids and the like. The genes for many of them have already been cloned. It has been clarified that abnormalities in these membrane proteins are involved in a number of previously cryptogenic diseases. Therefore, discovery of a new membrane protein is expected to lead to elucidation of the causes of many diseases, so that isolation of new genes encoding the membrane proteins has been desired.

Heretofore, due to difficulty in the purification from human cells, many of these secretory proteins and membrane proteins have been isolated by genetic approaches. A general method is the so-called expression cloning method, in which a cDNA library is introduced into eukaryotic cells to express cDNAs, and the cells secreting, or expressing on the surface of membrane, the protein having the activity of interest are then screened. However, only genes for proteins with known functions can be cloned by using this method.

In general, a secretory protein or a membrane protein possesses at least one hydrophobic domain within the protein. After synthesis on ribosomes, such domain works as a secretory signal or remains in the phospholipid membrane to be entrapped in the membrane. Accordingly, if the existence of a highly hydrophobic domain is observed in the amino acid sequence of a protein encoded by a cDNA when the

whole base sequence of the full-length cDNA is determined, it is considered that the cDNA encodes a secretory protein or a membrane protein.

5 OBJECTS OF INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells that are capable of expressing these DNAs and antibodies directed to these proteins. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

15

20

25

10

SUMMARY OF INVENTION

As the result of intensive studies, the present inventors have successfully cloned cDNAs encoding proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. Thus, the present invention provides a human protein having hydrophobic domain(s), namely a protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. Moreover, the present invention provides a DNA

encoding said protein, exemplified by a cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150, an expression vector that is capable of expressing said DNA by in vitro translation or in eukaryotic cells, a transformed eukaryotic cell that is capable of expressing said DNA and of producing said protein and an antibody directed to said protein.

10 BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03171.

Fig. 2 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03424.

Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03444.

20 Fig. 4 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03478.

Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03499.

6 illustrates the Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03500. Fig. 7 illustrates the 5 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10691. Fig. 8 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10703. 9 10 Fig. illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10711. 10 Fig. illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10712. 15 the Fig. 11 illustrates hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03010. 12 illustrates the Fig. 20 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03576. Fig. 13 the illustrates hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03611. 25 illustrates the Fig. 14

20

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03612.

Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10407.

Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10713.

Fig. 17 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10714.

Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10716.

15 Fig. 19 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10717.

Fig. 20 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10718.

Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03745.

Fig. 22 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded

by clone HP03747.

Fig. 23 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded

by clone HP10719.

5 Fig. 24 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10720.

Fig. 25 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10721.

Fig. 26 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10725.

Fig. 27 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10727.

Fig. 28 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10728.

20 Fig. 29 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10730.

Fig. 30 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10742.

Fig.

9

illustrates . Fig. 31 the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03800. Fig. 32 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded 5 by clone HP03831. Fig. 33 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03879. 10 Fig. 34 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03880. Fig. 35 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded 15 by clone HP10704. Fig. 36 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10715. 37 illustrates the Fig. hydrophobicity/hydrophilicity profile of the protein encoded 20 by clone HP10724. 38 illustrates the Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10733.

39

illustrates

the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10734.

Fig. 40 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10756.

Fig. 41 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03670.

Fig. 42 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03688.

Fig. 43 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03825

Fig. 44 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03877.

Fig. 45 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded 20 by clone HP10765.

Fig. 46 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10766.

Fig. 47 illustrates the

25 hydrophobicity/hydrophilicity profile of the protein encoded

10

15

20

25

by clone HP10770.

Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10772.

Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10773.

Fig. 50 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10776.

DETAILED DESCRIPTION OF THE INVENTION

obtained, for example, by a method for isolating proteins from human organs, cell lines or the like, a method for preparing peptides by the chemical synthesis based on the amino acid sequences of the present invention, or a method for producing proteins by the recombinant DNA technology using the DNAs encoding the hydrophobic domains of the present invention. Among these, the method for producing proteins by the recombinant DNA technology is preferably employed. For example, the proteins can be expressed in vitro by preparing an RNA by in vitro transcription from a vector having the cDNA of the present invention, and then carrying out in vitro translation using this RNA as a

template. Alternatively, incorporation of the translated region into a suitable expression vector by the method known in the art may lead to expression of a large amount of the encoded protein in prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and eukaryotic cells such as yeasts, insect cells, mammalian cells, etc.

5

10

15

20

25

In the case where the protein of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro by incorporating the translated region of this cDNA into a vector having an RNA polymerase promoter, and then adding the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a wheat germ extract, which contains an RNA polymerase corresponding to the promoter. The RNA polymerase promoters are exemplified by T7, T3, SP6 and the like. The vectors containing promoters for these RNA polymerases are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II and the like. Furthermore, the protein of the present invention can be expressed in the secreted form or the form incorporated in the microsome membrane when a canine pancreas microsome or the like is added to the reaction system.

In the case where the protein of the present invention is produced by expressing the DNA in a microorganism such as Escherichia coli etc., a recombinant

10

15

20

25

expression vector in which the translated region of the cDNA of the present invention is incorporated into an expression vector having an origin which is capable of replicating in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator and the like is constructed. After transformation of the host cells with this expression vector, the resulting transformant is cultivated, whereby the protein encoded by the cDNA can be produced in large quantities in the microorganism. In this case, a protein fragment containing any translated region can be obtained by adding an initiation codon and a termination codon in front of and behind the selected translated region to express the protein. Alternatively, the protein can be expressed as a fusion protein with another protein. Only the portion of the protein encoded by the cDNA can be obtained by cleaving this fusion protein with a suitable protease. The expression vectors for Escherichia coli are exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system and the like.

In the case where the protein of the present invention is produced by expressing the DNA in eukaryotic cells, the protein of the present invention can be produced as a secretory protein, or as a membrane protein on the surface of cell membrane, by incorporating the translated region of the cDNA into an expression vector for eukaryotic

cells that has a promoter, a splicing region, a poly(A) addition site and the like, and then introducing the vector into the eukaryotic cells. The expression vectors are exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vectors, pRS, pYES2 and the like. Examples of eukaryotic cells to be used in general include mammalian cultured cells such as monkey kidney COS7 cells, Chinese hamster ovary CHO cells and the like, budding yeasts, fission yeasts, silkworm cells, Xenopus oocytes and the like. Any eukaryotic cells may be used as long as they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eukaryotic cells by using a method known in the art such as the electroporation method, the Calcium phosphate method, the liposome method, the DEAE-dextran method and the like.

5

10

15

20

25

After the protein of the present invention is expressed in prokaryotic cells or eukaryotic cells, the protein of interest can be isolated and purified from the culture by a combination of separation procedures known in the art. Examples of the separation procedures include treatment with a denaturing agent such as urea or detergent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic

10

15

20

25

chromatography, affinity chromatography, reverse phase chromatography and the like.

The proteins of the present invention also include peptide fragments (of 5 amino acid residues or more) containing any partial amino acid sequences in the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP-A 8-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secreted forms. Such proteins or peptides in the secreted forms shall also come within the scope of the protein of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences of the proteins, expression of the proteins in appropriate eukaryotic cells affords the proteins to which sugar chains are added. Accordingly, such proteins or peptides to which sugar chains are added shall also come

within the scope of the protein of the present invention.

5

10

15

20

25

The DNAs of the present invention include all the DNAs encoding the above-mentioned proteins. These DNAs can be obtained by using a method for chemical synthesis, a method for cDNA cloning and the like.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human The cDNAs are synthesized by using poly(A) RNAs extracted from human cells as templates. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method such as the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. Hoffman, J., Gene 25: 263-269 (1983)] and the like. However, it is desirable to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available human cDNA libraries can be utilized. The cDNAs of the present invention can be cloned libraries by synthesizing from the CDNA oligonucleotide on the basis of base sequences of portion in the cDNA of the present invention and screening the cDNA libraries using this oligonucleotide as a probe for colony or plaque hybridization according to a method known in the art. In addition, the cDNA fragments of the present invention can be prepared from an mRNA isolated from human cells by the RT-PCR method in which oligonucleotides which hybridize with both termini of the cDNA fragment of interest are synthesized, which oligonucleotides are then used as the primers.

5

10

15

present invention the are The cDNAs of characterized in that they comprise any one of the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Tables 1 and 2 summarizes the clone number (HP number), the cell from which the cDNA clone was obtained, the total number of bases of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

Table	<u> </u>					
SEQ	ID NO).	HP number	Cell	Number of bases	Number of amino acid residues
1,	11,	21	HP03171	Thymus	2042	267
2,	12,		HP03424	Liver	1433	419
3,	13,		HP03444	Kidney	1917	415
4,	14,	24	HP03478	Umbilical cord blood	2258	380
5,	15,	25	HP03499	Kidney	1973	585
6,	16,	26	HP03500	kidney	1606	331
7,	17,	27	HP10691	Umbilical cord blood	2380	345
8,	18,	28	HP10703	Kidney	2017	89
9,	19,	29	HP10711	Kidney	1606	406
10,	20,	30	HP10712	Kidney	1695	192
31,	41,	51	HP03010	Kidney	1551	377
32,	42,	52	нР03576	Kidney	1713	81
33,	43,	53	HP03611	Kidney	1758	487
34,	44,	54	HP03612	Kidney	1550	375
35,	45,	55	HP10407	Stomach cancer	1485	350
36,	46,	56	HP10713	Kidney	2694	667
37,	47,	57	HP10714	Umbilical cord blood	3297	464
38,	48,	58	HP10716	Umbilical cord blood	2126	470
39,	49,	59	HP10717	Kidney	1781	243
40,	50,	60	HP10718	Umbilical cord blood	1788	270
61,	71,	81	HP03745	Kidney	1376	389
62,	72,	82	HP03747	Umbilical cord blood	2392	348
63,	73,	83	HP10719	Kidney	1416	261
64,	74,	84	HP10720	Kidney	1347	222
65,	75,	85	HP10721	Kidney	2284	183

Table 2

Table	-			·		
SEQ	ID 1	10	HP number	Cell	Number of bases	Number of amino acid residues
66,	76,	86	HP10725	Kidney	1737	
67,	77,	87	HP10727	Umbilical cord blood	1556	168
68,	78,	88	HP10728	Umbilical cord blood	1855	243
69,	79,	89	HP10730	Umbilical cord blood	2530	428
70,	80,	90	HP10742	Umbilical cord blood	1911	283
91,	101,	111	нр03800	Umbilical cord blood	1633	476
92,	102,	112	HP03831	Kidney	1095	226
93,	103,	113	HP03879	Kidney	1602	305
94,	104,	114	нр03880	Kidney	897	227
95,	105,	115	HP10704	Kidney	1866	441
96,	106,	116	. HP10715	Umbilical cord blood	2198	265
97,	107,	117	HP10724	Umbilical cord blood	2180	208
98,	108,	118	HP10733	Umbilical cord blood	1527	400
99,	109,	119	HP10734	Umbilical cord blood	1905	192
100,	110,	120	HP10756	Kidney	998	260
121,	131,	141	HP03670	Umbilical cord blood	1622	337
122,	132,	142	HP03688	Umbilical cord blood	2475	236
123,	133,	143	HP03825	Kidney	1739	560
124,	134,	144	HP03877	Kidney	2005	406
125,	135,	145	HP10765	Umbilical cord blood	1558	453
126,	136,	146	HP10766	Kidney	1005	59
127,	137,	147	HP10770	Kidney	969	210
128,	138,	148	HP10772	Kidney	1241	165
129,	139,	149	HP10773	Kidney	1174	162
130,	140,	150	HP10776	Kidney	1012	221

The same clones as the cDNAs of the present invention can be easily obtained by screening the cDNA libraries constructed from the human cell lines or human

20

tissues utilized in the present invention using an oligonucleotide probe synthesized on the basis of the base sequence of the cDNA provided in any one of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150.

In general, the polymorphism due to the individual differences is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are added, deleted and/or substituted with other nucleotides in SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150 shall come within the scope of the present invention.

5

10

15

20

25

Similarly, any protein in which one or plural amino acids are added, deleted and/or substituted with other amino acids resulting from the above-mentioned changes shall come within the scope of the present invention, as long as the protein possesses the activity of the protein having any one of the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.

The cDNAs of the present invention also include cDNA fragments (of 10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or in the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can

21

be utilized as the probes for the genetic diagnosis.

5

10

20

25

The antibody of the present invention can be obtained from a serum after immunizing an animal using the protein of the present invention as an antigen. A peptide that is chemically synthesized based on the amino acid sequence of the present invention and a protein expressed in eukaryotic or prokaryotic cells can be used as an antigen. Alternatively, an antibody can be prepared by introducing the above-mentioned expression vector for eukaryotic cells into the muscle or the skin of an animal by injection or by using a gene gun and then collecting a serum therefrom (JP-A 7-313187). Animals that can be used include a mouse, a rat, a rabbit, a goat, a chicken and the like. A monoclonal antibody directed to the protein of the present invention can be produced by fusing B cells collected from the spleen of the immunized animal with myelomas to generate hybridomas.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for

22

introduction of DNA).

Research Uses and Utilities

polynucleotides provided by the The present invention can be used by the research community for various 5 The polynucleotides can be used purposes. to protein for recombinant analysis, characterization therapeutic use; as markers for tissues in which corresponding protein is preferentially expressed constitutively or at а particular stage of 10 differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA identify potential sequences in patients to 15 disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making 20 oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a 25 protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell '75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

5

10

15

20

25

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for highthroughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

5

10

15

20

25

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Activity

5

10

15

20

25

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol.

145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

- 5 for cytokine Assays production and/or proliferation of spleen cells, lymph node cells thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology, J.E.e.a. Coligan 10 eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.
- Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology.

 J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a.

10

15

Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

20

10

15

20

25

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania malaria spp. and various fungal infections candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune

WO 01/12660

5

10

15

20

25

pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia graft-versus-host disease and autoimmune gravis, inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. suppression is desired which immune conditions, in (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an may in progress or response already The preventing the induction of an immune response. may be inhibited functions of activated T cells suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by WO 01/12660

5

10

15

20

25

30

PCT/JP00/05356

the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will situations useful in of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant.

10

15

20

25

Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases.

Many autoimmune disorders are the result of inappropriate

10

15

20

activation of T cells that are reactive against self tissue which promote and the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents block costimulation of Т cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking induce reagents may antigen-specific tolerance autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents alleviating autoimmune disorders can preventing or determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.

33

Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

5

10

15

20

25

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte

34

antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

5

10

15

20

25

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a

10

15

20

25

cytoplasmic-domain truncated portion) of an MHC class I lphachain protein and β , microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated the invariant chain, can also protein, such as cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19;

20

25

Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Thl and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.

WO 01/12660 PCT/JP00/05356

Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

5

25

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without 10 limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., 15 Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 20 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those

10

described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

15 A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines 20 involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells in combination with other cytokines, thereby alone or indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to 25 stimulate the production of erythroid precursors and/or

10

15

20

erythroid cells; in supporting the growth and proliferation such of myeloid cells as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting proliferation of megakaryocytes growth and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complementary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or conjunction ex-vivo (i.e., in with bone marrow transplantation with peripheral progenitor cell or transplantation (homologous or heterologous)) as cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

25 Suitable assays for proliferation and

differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

10 Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those Methylcellulose colony forming assays, described in: Freshney, M.G. In Culture of Hematopoietic Cells. R.I. 15 Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. 20 Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New 25 York, NY. 1994; Long term bone marrow cultures in the WO 01/12660 PCT/JP00/05356

41

presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

5

10

15

20

25

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth

10

15

20

25

repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or

ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, differentiation of progenitors of induce ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be in the treatment of tendinitis, carpal useful tendon or ligament defects. The and other syndrome compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

5

10

15

The protein of the present invention may also be proliferation of neural cells useful for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein 20 may be used in the treatment of diseases of the peripheral nerve injuries, such as peripheral nervous system, localized neuropathies, neuropathy and peripheral nervous system diseases, such as Alzheimer's, central Parkinson's disease, Huntington's disease, amyotrophic 25

15

20

lateral sclerosis, and Shy-Drager syndrome. conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to

10 promote better or faster closure of non-healing wounds,
including without limitation pressure ulcers, ulcers
associated with vascular insufficiency, surgical and
traumatic wounds and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be

WO 01/12660 PCT/JP00/05356

5

10

15

20

25

45

useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of

10

15

20

25

follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et

WO 01/12660 PCT/JP00/05356

al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

5

10

15

20

25

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, endothelial cells. and/or epithelial eosinophils, Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized lymphocytes, infections. For example, attraction of monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell

10

15

25

chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

20 <u>Hemostatic and Thrombolytic Activity</u>

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other

10

15

20

25

hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen

10

15

20

presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity

may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the promoting inflammatory process, inhibiting or extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

5

10

15

20

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly

10

15

20

(such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, funqi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, augmentation or diminution, change in bone form or shape); effecting biorhythms or cardiac cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or

nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulinlike activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

5

10

15

in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic procedures with regard to the recombinant DNA and the enzymatic reactions were carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold

15

20

25

Spring Harbor Laboratory, 1989]. Unless otherwise stated. restriction enzymes and various modifying enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: (1994)].

(1) Selection of cDNAs Encoding Proteins HavingHydrophobic Domains

Human liver cDNA library (WO 98/21328) and human stomach cancer cDNA library (WO 98/21328), as well as the cDNA libraries constructed from human kidney mRNA (Clontech), human thymus mRNA (Clontech) and human umbilical cord blood mRNA were used as cDNA libraries.

Full-length cDNA clones were selected from the respective libraries and the whole base sequences thereof determined to construct a homo-protein cDNA of the full-length CDNA clones. The hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic domain. A clone that has a hydrophobic region

10

15

20

25

being assumed as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a TT rabbit reticulocyte lysate kit (Promega). In this case, [35S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of T_NT rabbit reticulocyte lysate, $0.5~\mu l$ of a buffer solution (attached to the kit), 2 µl of an amino acid mixture (without methionine), 2 μ l of [35S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 µl of T7 RNA polymerase, and 20 U of RNasin. The experiment in the presence of a membrane system was carried out by adding 2.5 µl of a canine pancreas microsome fraction (Promega) to the reaction system. To 3 µl of the reaction solution was added 2 µl of the SDS sampling buffer (125 mM Tris-hydrochloride buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes

and then subjected to SDS-polyacrylamide gel electrophoresis.

10

15

20

25

The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression in COS7

Escherichia coli cells harboring the expression vector for the protein of the present invention were cultured at 37°C for 2 hours in 2 ml of the 2 x YT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ 1) was added thereto, and the cells were then cultured at 37°C overnight. Single-stranded phage particles were obtained by polyethylene glycol precipitation from a supernatant separated by centrifugation. The particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from monkey kidney, COS7, were cultured at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum. 1 x 10° COS7 cells were inoculated into a 6-well plate (Nunc, well diameter: 3 cm) and cultured at 37°C for 22 hours in the presence of 5% CO₂. After the medium was removed, the cell surface was washed with a phosphate buffer solution followed by DMEM containing 50 mM Trishydrochloride (pH 7.5) (TDMEM). A suspension containing 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM medium and 3 µl of TRANSFECTAMTM (IBF) was added to the cells and the cells were cultured at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed,

the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37°C for 2 days in the presence of 5% CO₂. After the medium was exchanged for a medium containing [35S]cysteine or [35S]methionine, the cells were cultured for one hour. After the medium and the cells were separated each other by centrifugation, proteins in the medium fraction and the cell membrane fraction were subjected to SDS-PAGE.

(4) Preparation of Antibodies

5

A plasmid vector containing the cDNA of the 10 present invention was dissolved in a phosphate buffer solution (PBS: 145 mM NaCl, 2.68 mM KCl, 8.09 mM Na2HPO4, 2 mM KH,PO4, pH 7.2) to a concentration of 2 μ g/ μ l. 25 μ l each (a total of 50 µl) of the thus-prepared plasmid solution in PBS was injected into the right and left musculi quadriceps 15 femoris of three mice (ICR line) using a 26 guage needle. After similar injections were repeated for one month at intervals of one week, blood was collected. The collected blood was stored at 4°C overnight to coagulate the blood, and then centrifuged at $8,000 \times g$ for five minutes to obtain 20 a supernatant. NaN, was added to the supernatant to a concentration of 0.01% and the mixture was then stored at 4°C. The generation of an antibody was confirmed by immunostaining of COS7 cells into which the corresponding vector had been introduced or by Western blotting using a 25

25

cell lysate or a secreted product.

(5) Clone Examples

<HP03171> (SEQ ID NOS: 1, 11 and 21)

Determination of the whole base sequence of the 5 cDNA insert of clone HP03171 obtained from cDNA library of human thymus revealed the structure consisting of a 90-bp 5'-untranslated region, a 804-bp ORF, and a 1148-bp 3'untranslated region. The ORF encodes a protein consisting of amino acid residues and there existed one putative 10 transmembrane domain. Figure 1 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 34 kDa that was somewhat larger than the molecular weight 15 of 30,234 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 38 kDa. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Thr-Thr at position 169).

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to chicken putative transmembrane protein E3-16 (Accession No. AAB70816). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and chicken putative

transmembrane protein E3-16 (GG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.0% in the entire region.

Table 3

5

HP MVKISFQPAVAGIKGDKADKASASAPAPASATEILLTPAREEQPPQHRSKRGSSVGGVCY 10 . *. *. *.. . .. GG MVKVSFNSALAH--KEAANKEEENSQVL-ILPPDAKEPEDVVVPAGHKRAWCWCM---CF HP LSMGMVVLLMGLVFASVYIYRYFFLAQLARDNFFRCGVLY-EDSL----SSQVRTQM--*.. .* *.....*. *. ** .. * . . . * **. * **. * 15 GG ---GLAFMLAGVILGGAYLYKYFAFQQ--GGVYF-CGIKYIEDGLSLPESGAQLKSARYH HP ELEEDVKIYLDENYERINVPVPQFGGGDPADIIHDFQRGLTAYHDISLDKCYVIELNTTI 20 GG TIEQNIQILEEEDVEFISVPVPEFADSDPADIVHDFHRRLTAYLDLSLDKCYVIPLNTSV HP VLPPRNFWELLMNVKRGTYLPQTYIIQEEMVVTEHVSDKEALGSFIYHLCNGKDTYRLRR GG VMPPKNFLELLINIKAGTYLPQSYLIHEQMIVTDRIENVDQLGFFIYRLCRGKETYKLQR WO 01/12660

HP RATRRINKRGAKNCNAIRHFENTFVVETLICGVV

GG KEAMKGIQKREAVNCRKIRHFENRFAMETLICEQ

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AL036384) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03424> (SEQ ID NOS: 2, 12 and 22)

Determination of the whole base sequence of the cDNA insert of clone HP03424 obtained from cDNA library of human liver revealed the structure consisting of a 4-bp 5'-untranslated region, a 1260-bp ORF, and a 169-bp 3'-untranslated region. The ORF encodes a protein consisting of 419 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was somewhat larger than the molecular weight

of 46,375 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein six sites at which N-glycosylation may occur (Asn-Ala-Ser at position 29, Asn-Val-Thr at position 40, Asn-Cys-Thr at position 112, Asn-Lys-Ser at position 135, Asn-Ile-Ser at position 172 and Asn-Phe-Ser at position 189). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from aspartic acid at position 28.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH protein (Accession No. Q06003). Table shows comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 40.8% in the intermediate region of 218 amino acid residues.

20

5

10

15

	Table 4
	HP MSCAGRAGPARLAALALLTCSLWPARADNASQEYYTALINVTVQEPGRGAPLTFRIDRGR
5	HP YGLDSPKAEVRGQVLAPLPLHGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTFKEKIS
	HP RAAFHNAVAVVIYNNKSKEEPVTMTHPGTGDIIAVMITELRGKDILSYLEKNISVQMTIA
	DM MQLEKMQIKGKTRNIAAVITYQNIGQDLSLTLDKGYNVTISII
10	HP VGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAA * **. * * * * * * * * * * * * *
15	HP KKAISKLTTRTVKKGDKETDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEH **** **. * * .* * .* * .* * * * * *
	DM KKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKHEFHKNCIDPWLIEH HP CTCPMCKLNILKALGIVPNLPCTDNVAFDMERLTRTQAVNRRSALGDLAGDNSLGLEPLR
20	********** * * *.**. DM RTCPMCKLDVLKFYGYVVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQPLQPLQ
	HP TSGISPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLNANEVEW .**

 ${\tt DM} \ \ {\tt ASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMPHAITAS}$

HP F

DM HQVTDV

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA082118) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03444> (SEQ ID NOS: 3, 13 and 23)

15

20

25

10

Determination of the whole base sequence of the cDNA insert of clone HP03444 obtained from cDNA library of human kidney revealed the structure consisting of a 209-bp 5'-untranslated region, a 1248-bp ORF, and a 460-bp 3'-untranslated region. The ORF encodes a protein consisting of 415 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 43 kDa that was somewhat smaller than the molecular

10

15

weight of 45,691 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 42 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 24.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human type I procollagen C-proteinase enhancer protein (Accession No. BAA23281). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human type I procollagen C-proteinase enhancer protein (CP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.6% in the entire region.

20 Table 5

CP MLPAATASLLGPLLTACALLPFA-Q-GQTPNYTRPVFLCGGDVKGESGYVASEGFPNLYP

HP MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYP

* **. * * **** ***... *****... *****... *****...**

	НР	PNSKCTWKITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGH-ANGQRIGRFCGTFRPG
		**. * * * * * * * * * * * * * * * * * *
	CP	${\tt PNKECIWTITVPEGQTVSLSFRVFDLELHPACRYDALEVFAGSGTSGQRLGRFCGTFRPA}$
5	НР	ALVSSGNKMMVQMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDR
		·**. **. · . *. · *. · *. · *. · . · · · ·
	CP	PLVAPGNQVTLRMTTDEGTGGRGFLLWYSGRATSGTEHQFCGGRLEKAQGTLTTPNWPES
	HP	DYPAGVTCVWHIVAPKNQLIELKFEKFDVERDNYCRYDYVAVFNGGEVNDARRIGKYCGD
10		***. *. * ***. ** . *. *. *. *****. *. *
	СР	DYPPGISCSWHIIAPPDQVIALTFEKFDLEPDTYCRYDSVSVFNGAVSDDSRRLGKFCGD
	ΗР	SPPAPIVSERNELLIQFLSDLSLTADGFIGHYIFRPKKLPTTTE
		*. * ** *** *** ** * * * *
15	CP	AVPGSISSEGNELLVQFVSDLSVTADGFSASYKTLPRGTAKEGQGPGPKRGTEPKVKLPP
	HP	QPVTTTFPVTTGLKTTVALCQQKCRRTGTLEGNYCSSDFVLAGTVITTITRDG-SLHATV
		* * * * * . * . *
	CP	KSQPPEKTEESPSAPDAPTCPKQCRRTGTLQSNFCASSLVVTATVKSMVREPGEGLAVTV
20		
	ΗР	SIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRRGLNYIIMGQVGEDGRGKIM-PNSF
		*. *. **. *. * * * ***** * *. *
	CD	SLIGAYKTGGLDLPSPPTGASLKFYVPCKQCPPMKKGVSYLLMGQV-EENRGPVLPPESF
	Cr	PTTAVIVIAGENELSI I TAVOPULIAL OLÆGELMUVAASIFFWAÄA-EGMUVALAPELESI.

10

15

20

25

...*..*..*

CP VVLHRPNQDQILTNLSKRKCPSQPVRAAASQD

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D78874) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03478> (SEQ ID NOS: 4, 14 and 24)

Determination of the whole base sequence of the cDNA insert of clone HP03478 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 224-bp 5'-untranslated region, a 1143-bp ORF, and a 891-bp 3'-untranslated region. The ORF encodes a protein consisting of 380 amino acid residues and there existed five putative transmembrane domains. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the

10

protein was similar to Halocynthia roretzi HrPET-1 protein (Accession No. BAA81907). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Halocynthia roretzi HrPET-1 protein (HR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.8% in the entire region.

Table 6

	HP	Q-YWYYMIELSFYWSLLFSIASDVKRKDFKEQIIHHVATIILISFSWFANYIRAGTLIMA
		. *. **. ***. ** ****** * . *** *. *
	HR	KIYYYYLIELAFYSATTLTQFFDVKRKDFWEMFIHHIVTIILLCGSYTLNYTKMGAFILV
5	НР	LHDSSDYLLESAKMFNYAGWKNTCNNIFIVFAIVFIITRLVILPFWILHCTLVYPLELYP
		.***.** *** .** * ** * *****. ** * . *
	HR	VHDSADFYIEFAKMGKYANNSLVTNVGFISFTISFFLSRLVILPLWIVPSIWFYGIYTYN
	НР	AFFGYYFFNSMMGVLQLLHIFWAYLILRMAHKFITGKLVEDERSDREETESSEGEEAAAG
10		********************************
	HR	CAMA-WLFCALL-ILQLLHFYWFSHIVKAAYASILVGVIERDTRSESEDSSAEDETAKYS
	HP	GGAKSRPLANGHPILNNNHRKND
		*.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T27334) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

15

HR VGSGDYTESNGIHKRVVTAR

10

15

Determination of the whole base sequence of the cDNA insert of clone HP03499 obtained from cDNA library of human kidney revealed the structure consisting of a 129-bp 5'-untranslated region, a 1758-bp ORF, and a 86-bp 3'untranslated region. The ORF encodes a protein consisting of 585 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 63 kDa that was almost identical with the molecular weight of 63,987 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 82 kDa. In addition, there exist in the amino acid sequence of this protein five sites at which N-glycosylation may occur (Asn-Ile-Thr at position 89, Asn-Glu-Thr at position 106, Asn-Ala-Thr at position 189, Asn-Arg-Thr at position 220 and Asn-Ala-Thr at position 315).

The search of the protein database using the amino acid sequence of the present protein revealed that the 20 protein was similar to Chinese hamster hypothetical protein No. 7 (Accession A30227). Table shows 2BE2121 comparison between amino acid sequences of the human protein Chinese hamster invention (HP) and of the present hypothetical protein 2BE2121 (CH). Therein, the marks of -, 25

*, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.8% in the entire region.

Table 7

5

10

15

20

25

HP MVCREQLSKNQVKWVFAGITCVSVVVIAAIVLAITLRRPGCELEACSPDADMLDYLLSLG
..***.*.

CH SWSENILDYFLRNS

- HP QISRRDALEVTWYHAANSKKAMTAALNSNITVLEADVNVEGLGTANETGVPIMAHPPTIY

 . *. ***** *.. * .*****

 CH QITTEDGAEIIWYHAANHKSQMQEALRSAAHMIEADVLLPS—DGSEHGQPIMAHPPEMN

HP NMLISTEVNATQFLALVQEKYPKATLSPGWTTFYMSTSPNRTYTQAMVEKMHELVGGVPQ

* *. *. *. **. * . . *. * * ***** . . . * . . * *

CH NG-SSKVVDAKAFLDTVTSFFPDVTFSLGWTTGWHPEKVNEGYSWTMVKEMDYICSGLTQ

HP RVTFPVRSSMVRAAWPHFSWLLSQSERYSLTLWQAASDPMSVEDLLYVRDNTAVHQVYYD

PCT/JP00/05356

.*****...**... ***...*. ... ***...*. ... ***...*. ... **...*... **...**

CH PVTFPVRAALVRQSCSQLLWLLKKSNRYSLTVWTGKDDSYPTEDLLYIRDYFNKTQVFYD

HP IFEPLLSQFKQLALNATRKPMYYTGGSLIPLLQLPGDDGLNVEWLVPDVQGSGKTATMTL

5 *.** .***

20

25

CH ILEPQSHEFKQAIGI

base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R92398) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03500> (SEQ ID NOS: 6, 16 and 26)

Determination of the whole base sequence of the cDNA insert of clone HP03500 obtained from cDNA library of human kidney revealed the structure consisting of a 134-bp 5'-untranslated region, a 996-bp ORF, and a 476-bp 3'-untranslated region. The ORF encodes a protein consisting of 331 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 6 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro

20

25

translation resulted in formation of a translation product of 38 kDa that was almost identical with the molecular weight of 37,694 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the amino acid sequence of the protein matched with that of human hypothetical protein (Accession No. AAC05803) in which a region of 62 amino acid residues from glycine at position 88 to lysine at position 149 was deleted.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA340631) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10691> (SEQ ID NOS: 7, 17 and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10691 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 246-bp 5'-untranslated region, a 1038-bp ORF, and a 1096-bp 3'-untranslated region. The ORF encodes a protein consisting of 345 amino acid residues and there existed at least two putative transmembrane domains. Figure 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the

Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human BB1 protein (Accession No. AAB37433). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human BB1 protein (BB). Therein, the marks of -, *, and . 10 represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The C-terminal region of 215 amino acid residues of the present protein shared a homology of 15 81.9% with the N-terminal region of human BB1 protein.

Table 8

HP MSPEEWTYLVVLLISIPIGFLFKKAGPGLKRWGAAAVGLGLTLFTCGPHTLHSLVTILGT

20

5

HP WALIQAQPCSCHALALAWTFSYLLFFRALSLLGLPTPTPFTNAVQLLLTLKLVSLASEVQ

HP DLHLAQRKEMASGFSKGPTLGLLPDVPSLMETLSYSYCYVGIMTGPFFRYRTYLDWLEQP

BB

BB LPRGSASLRPLLRRAWPAPLFGLLFLLSSHLFPLEAVREDAFYARPLPARLFYMIPVFFA

5

10

HP NIDCYSTDFCVRVRDGMRYWNMTVQWWLAQYIYKSAPARSYVLRL

BB NIDCYSTDFCVRVRDGMRYWNMTVQWWLAQYIYKSAPARSYVLRTAWTMLLSAYWHGLHP

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W48653) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10703> (SEQ ID NOS: 8, 18 and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10703 obtained from cDNA library of human kidney revealed the structure consisting of a 359-bp

10

15

20

25

5'-untranslated region, a 270-bp ORF, and a 1388-bp 3'-untranslated region. The ORF encodes a protein consisting of 89 amino acid residues and there existed one putative transmembrane domain. Figure 8 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 18 kDa that was larger than the molecular weight of 10,469 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T08343) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10711> (SEQ ID NOS: 9, 19 and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10711 obtained from cDNA library of human kidney revealed the structure consisting of a 29-bp 5'-untranslated region, a 1221-bp ORF, and a 356-bp 3'-untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the N-terminus. Figure 9 depicts the

WO 01/12660 PCT/JP00/05356

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 44 kDa that was almost identical with the molecular weight of 43,836 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein seven sites at which N-glycosylation may occur (Asn-Ser-Thr at position 65, Asn-Trp-Ser at position 95, Asn-Val-Ser at position 134, Asn-Ile-Thr at position 159, Asn-Gly-Ser at position 187, Asn-Arg-Ser at position 230 and Asn-Leu-Thr at position 333). Application of the (-3,-1)rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 36.

5

10

15

20

25

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse kidney predominant protein (Accession No. BAA92527). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse kidney predominant protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The

both proteins shared a homology of 79.9% in the entire region.

Table 9

5

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA362394) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10712> (SEQ ID NOS: 10, 20 and 30)

Determination of the whole base sequence of the cDNA insert of clone HP10712 obtained from cDNA library of human kidney revealed the structure consisting of a 52-bp 5'-untranslated region, a 579-bp ORF, and a 1064-bp 3'-untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed four putative transmembrane domains. Figure 10 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

10

15

25

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse calcium channel gamma 5 subunit (Accession No. CAB86387). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse calcium channel gamma 5 subunit (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 75.0% in the entire region.

Table 10

HS HSQCKWVMGSILLLVSFVLSSGGLLGFVILLRNQVTLIGFTLMFWCEFTASFLLFLNAIS

MM RSRRKWAIGSYLLLVAFILSSGGLLTFIILLKNQINLLGFTLMFWCEFTASFLFFLNAAS

5

HS GLHINSITHPWE

*****. *. **.

MM GLHINSLTQPWDPPAGTLAYRKRGYDGTSLI

10

15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA910339) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03010> (SEQ ID NOS: 31, 41 and 51)

Determination of the whole base sequence of the

CDNA insert of clone HP03010 obtained from cDNA library of
human kidney revealed the structure consisting of a 97-bp

5'-untranslated region, a 1134-bp ORF, and a 320-bp 3'untranslated region. The ORF encodes a protein consisting of
377 amino acid residues and there existed at least eight

putative transmembrane domains. Figure 11 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 42 kDa that was almost identical with the molecular weight of 41,462 predicted from the ORF as well as a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Arabidopsis thaliana hypothetical protein (Accession No. AAC34490). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Arabidopsis thaliana hypothetical protein (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 42.0% in the entire region other than the N-terminal region.

20

15

5

10

Table 11

HP MDSALSDPHNGSAEAGGPTNSTTRPPSTPEGIALAYGSLLLMALLPIFFGALRSVRCARG

AT

	нР	KNASDMPETITSKDAARFPITASCILLGLYLFFKIFSQEYINLLLSMYFFVLGILALSHT
		** * *** * **.*. **
	ΑT	VKDTPPTETMSKEHAMRFPLVGSAMLLSLFLLFKFLSKDLVNAVLTAYFFVLGIVALSAT
5		
	HP	ISPFMNKFFPASFPNRQYQLLFTQGSGENKEEIINYEFDTKDLVCLGLSSIVGVWYLLRK
		. * *
	AT	LLPAIRRFLPNPWNDNLIVWRFPYFKSLEVEFTKSQVVAGIPGTFFCAWYAWKK
10	HP	HWIANNLFGLAFSLNGVELLHLNNVSTGCILLGGLFIYDVFWVFGTNVMVTVAKSFEAPI
		. *. * * * * . * . * . * . *
	AT	HWLANNILGLSFCIQGIEMLSLGSFKTGAILLAGLFFYDIFWVFFTPVMVSVAKSFDAPI
	HP	KLVFPQDLLEKGLEANNFAMLGLGDVVIPGIFIALLLRFDISLKKNTHTYFYTSFAAYIF
15		**. **
	AT	KLLFPTGDALRPYSMLGLGDIVIPGIFVALALRFDVSRRRQPQ-YFTSAFIGYAV
	UD	GLGLTIFIMHIFKHAQPALLYLVPACIGFPVLVALAKGEVTEMFSYEESNPKDPAAVTES
	пг	
20	ΛТ	*. *** .*. *. ******* ***
20	ΛI	OVILIIVVMENT QAAQIALLIIVIAVIGILASHCIMNGDIRPLLAPDESKIEE KIIDES
	НР	KEGTEASASKGLEKKEK
	•••	**.
	ΔТ	KTSEEVNKAHDE
25	111	

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA380429) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03576> (SEQ ID NOS: 32, 42 and 52)

Determination of the whole base sequence of the cDNA insert of clone HP03576 obtained from cDNA library of human kidney revealed the structure consisting of a 88-bp 5'-untranslated region, a 246-bp ORF, and a 1379-bp 3'untranslated region. The ORF encodes a protein consisting of 81 amino acid residues and there existed two putative 12 depicts the domains. Figure transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 20 kDa that was larger than the molecular weight of 9,178 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human vacuolar proton ATPase 9 kDa (Accession No. NP 003936). Table 12 shows the comparison

between amino acid sequences of the human protein of the present invention (HP) and human vacuolar proton ATPase 9 kDa (VP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 71.2% in the entire region.

10 Table 12

HP MTAHSFALPVIIFTTFWGLVGIAGPWFVPKGPNRGVIITMLVATAVCCYLFWLIAILAQL

*. *... *, *... ***. **. ***. ********* * *******

VP MAYHGLTVPLIVMSVFWGFVGFLVPWFIPKGPNRGVIITMLVTCSVCCYLFWLIAILAQL

15

5

HP NPLFGPQLKNETIWYVRFLWE

VP NPLFGPQLKNETIWYLKYHWP

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W22566) among ESTs. However, since they are partial sequences, it can not be judged

PCT/JP00/05356

5

10

15

20

25

whether or not they encode the same protein as the protein of the present invention.

<HP03611> (SEQ ID NOS: 33, 43 and 53)

Determination of the whole base sequence of the cDNA insert of clone HP03611 obtained from cDNA library of human kidney revealed the structure consisting of a 189-bp 5'-untranslated region, a 1464-bp ORF, and a 105-bp 3'untranslated region. The ORF encodes a protein consisting of 487 amino acid residues and there existed eleven putative domains. Figure 13 depicts transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. Doolittle method, In of translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human cystine/glutamate transporter (Accession No. BAA82628). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human cystine/glutamate transporter (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

of 43.8% in the entire region other than the N-terminal region.

Table 13

5

10

15

- HP MGDTGLRKRREDEKSIQSQEPKTTSLQKELGLISGISIIVGTIIGS CG MVRKPVVSTISKGGYLQGNVNGRLPSLGNKEPPGQEKVQLKRKVTLLRGVSIIIGTIIGA HP GIFVSPKSVLSNTEAVGPCLIIWAACGVLATLGALCFAELGTMITKSGGEYPYLMEAYGP CG GIFISPKGVLQNTGSVGMSLTIWTVCGVLSLFGALSYAELGTTIKKSGGHYTYILEVFGP HP IPAYLFSWASLIVIKPTSFAIICLSFSEYVCAPFYVGCKPPQIVVKCLAAAAILFISTVN CG LPAFVRVWVELLIIRPAATAVISLAFGRYILEPFFIQCEIPELAIKLITAVGITVVMVLN HP SLSVRLGSYVQNIFTAAKLVIVAIIIISGLVLLAQGNTKNFDNSFEGAQLSVGAISLAFY CG SMSVSWSARIQIFLTFCKLTAILIIIVPGVMQLIKGQTQNFKDAFSGRDSSITRLPLAFY

- - HP ISKPITMHLQMLMEVVPPEEDPE
 .*. **. **...**** *.
- 15 CG MSEKITRTLQIILEVVPEEDKL

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R07056) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

Determination of the whole base sequence of the cDNA insert of clone HP03612 obtained from cDNA library of human kidney revealed the structure consisting of a 153-bp 5'-untranslated region, a 1128-bp ORF, and a 269-bp 3'untranslated region. The ORF encodes a protein consisting of 375 amino acid residues and there existed seven putative transmembrane domains. Figure 14 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 39 kDa that was somewhat larger than the molecular weight of 37,930 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human monocarboxylate transporter (Accession No. AAC70919). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human monocarboxylate transporter (MC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the N-terminal region of 192 amino acid residues.

5

10

15

Table 14

	НР	MTPQPAGPPDGGWGWVVAAAAFAINGLSYGLLRSLGLAFPDLAEHFDRSAQDTAW
		·*· ******** *·* *·** · · · · · · · · ·
5	MC N	MPPMPSAPPVHPPPDGGWGWIVVGATFISIGFSYAFPKAVTVFFKEIQQIFHTTYSEIAW
		ISALALAVQQAASPVGSALSTRWGARPVVMVGGVLASLGFVFSAFASGLLHLYLGLGLLA
		. * ***.* *. ***** **. * .**. * * *** ** ** *** ** ***.
10		GFGWALVFAPALGTLSRYFSRRRVLAVGLALTGNGASSLLLAPALQLLLDTFGWRGALLL *.* * *** * * ***. *
		. ****** *. * .* *****
15		LGAITLHLTPCGALLLPLVLPGDPPAPPRSPLAALGLSLFTRRAFSIFALGTALVGGGYF
		** *. *.** LGSLLLNACVAGSLMRPLGPNQTTSKSKNKTGKTEDDSSPKKIKTKKSTWEKVNKYLDFS
	НР	VPYVHLAPRFRPGPGGIRSSAGGGRGCDGGCGRPAGLRVAGRPRLGAPPAAAGRIRGSDW
20	МС	LFKHRGFLIYLSGNVIMFLGFFAPIIFPAPYAKDQGIDEYSAAFLLSVMAFVDMFARPSV
	НР	AGAVGGGAGARGGRRELGGSPAGRGCGLWAERGELRPAGFRCTPRAGGRRRCGAGHRAG
25	МС	GLIANSKYIRPRIQYFFSFAIMFNGVCHLLCPLAQDYTSLVLYAVFFGLGFGSVSSVLFE

HP DDADEPRGAPGPSPVRLPKG

MC TLMDLVGAPRFSSAVGLVTIVECGPVLLGPPLAGKLVDLTGEYKYMYMSCGAIVVAASVW

5

10

15

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI742291) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10407> (SEQ ID NOS: 35, 45 and 55)

Determination of the whole base sequence of the

cDNA insert of clone HP10407 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 100-bp 5'-untranslated region, a 1053-bp ORF, and a 332-bp 3'-untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed at least four putative transmembrane domains. Figure 15 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-

Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the

protein was longer by 35 amino acid residues at the N-terminus than human hypothetical protein (Accession No. CAB43375).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of a clone beginning from the 117th base of the present cDNA (Accession No. AL050274).

<HP10713> (SEQ ID NOS: 36, 46 and 56)

Determination of the whole base sequence of the cDNA insert of clone HP10713 obtained from cDNA library of 10 human kidney revealed the structure consisting of a 79-bp 5'-untranslated region, a 2004-bp ORF, and a 611-bp 3'untranslated region. The ORF encodes a protein consisting of 667 amino acid residues and there existed nine putative depicts domains. Figure 16 15 transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. In Doolittle method, of translation resulted in formation of a translation product of high molecular weight.

20 The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse retinoic acid-responsive protein (Accession No. AAC16016). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse retinoic acid-

responsive protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.1% in the entire region.

Table 15

	HР	SKGLQSSYSEEYLRNLLCRKKLGSSYH-TSKHGFLSWARVCLRHCIYTPQPGFHLPLKLV
		*. ***. ****. ***. ***. * . ** **
	MM	SQGLQTSYSEKYLRTLLCPKKLDSCSHPASKRSLLSRAWAFSHHSIYTPQPGFRLPLKLV
5	HP	LSATLTGTAIYQVALLLLVGVVPTIQKVRAGVTTDVSYLLAGFGIVLSEDKQEVVELVKH
		·*************************************
	MM	ISATLTGTATYQVALLLLVSVVPTVQKVRAGINTDVSYLLAGFGIVLSEDRQEVVELVKH
	HP	${\tt HLWALEVCYISALVLSCLLTFLVLMRSLVTHRTNLRALHRGAALDLSPLHRSPHPSRQAIDLSPLHRSPHPSPHPSRQAIDLSPLHRSPHPSRQAIDLSPLHRSPHPSRQAIDLSPLHRSPHPSPHPSRQAIDLSPLHRSPHPSPHPSRQAIDLSPLHRSPHPSPHPSPHPSPHPSPHPSPHPSPHPSPHPSPHPSP$
10		***. *. ******** ***. *. ***. **. ******
	MM	HLWTVEACYISALVLSCASTFLLLIRSLRTHRANLQALHRGAALDLDPPLQSIHPSRQAI
	HP	FCWMSFSAYQTAFICLGLLVQQIIFFLGTTALAFLVLMPVLHGRNLLLFRSLESSWPFWL
		· ****· ****** ******* ****** ****** ******
15	ММ	VSWMSFCAYQTAFSCLGLLVQQVIFFLGTTSLAFLVFVPLLHGRNLLLLRSLESTWPFWL
	HP	TLALAVILQNMAAHWVFLETHDGHPQLTNRRVLYAATFLLFPLNVLVGAMVATWRVLLSA
		*. ********. **. *. ** **. *. *. *****. *.
	ММ	TVALAVILQNIAANWIFLRTHHGYPELTNRRMLCVATFLLFPINMLVGAIMAVWRVLISS
20		
	НР	LYNAIHLGQMDLSLLPPRAATLDPGYYTYRNFLKIEVSQSHPAMTAFCSLLLQAQSLLPR
		. ******** ***. ***. ***. **. **.
	ММ	LYNTVHLGQMDLSLLPQRAASLDPGYHTYQNFLRIEASQSHPGVIAFCALLLHAPSPQPR

WO 01/12660

PCT/JP00/05356

94

HP ALLGANGAQP

5 ****** . *****. .

20

25

MM ALTSAKANGTQP

The search of the GenBank using the base sequences

of the present cDNA has revealed the registration of
sequences that shared a homology of 90% or more (for example,
Accession No. AI760170) among ESTs. However, since they are
partial sequences, it can not be judged whether or not they
encode the same protein as the protein of the present

invention.

<HP10714> (SEQ ID NOS: 37, 47 and 57)

Determination of the whole base sequence of the cDNA insert of clone HP10714 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 82-bp 5'-untranslated region, a 1395-bp ORF, and a 1820-bp 3'-untranslated region. The ORF encodes a protein consisting of 464 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

10

15

20

25

vitro translation resulted in formation of a translation product of 49 kDa that was somewhat smaller than the molecular weight of 52,340 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 52 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Ala-Thr at position 164 and Asn-Asp-Ser at position 320). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from threonine at position 22.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA861134) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10716> (SEQ ID NOS: 38, 48 and 58)

Determination of the whole base sequence of the cDNA insert of clone HP10716 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 60-bp 5'-untranslated region, a 1413-bp ORF, and a 653-bp 3'-untranslated region. The ORF encodes a protein consisting of 470 amino acid residues and there existed one

10

15

putative transmembrane domain at the N-terminus. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 61 kDa that was larger than the molecular weight of 52,086 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein CGI-90 (Accession No. AAD34085). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein CGI-90 (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the entire region.

20 Table 16

HP MSRLGALGGARAGLGLLLGTAAGLGFLCLLYSQRWKRTQRHGRSQSLPNSLDYTQTSDPG

HP RHVMLLRAVPGGAGDASVLPSLPREGQEKVLDRLDFVLTSLVALRREVEELRSSLRGLAG

	HP EIVGEVRCHMEENQRVARRRRFPFVRERSDSTGSSSVYFTASSGATFTDAESEGGYTTAN
	CG MALAARLWRLLPFRRGAAPGSRLPA
5	HP AESDNERDSDKESEDGEDEVSCETVKMGRKDSLDLEEEAASGASSALEAGGSSGLEDVLP
	CG GPSGSRGIAAPARFRGFEVMGNPGTFNRGLLLSALSYLGFETYQVISQAAVVHATAKVEE
10	HP LLQQADELHRGDEQGKREGFQLLLNNKLVYGSRQDFLWRLARAYSDMCELT-EEVSEKKS .*.*** ** .* .********* .*****
	CG ILEQADYLYESGETEKLYQLLTQYKESEDAELLWRLARASRDVAQLSRTSEEEKKL
	HP YALDGKEEAEAALEKGDESADCHLWYAVLCGQLAEHESIQRRIQSGFSFKEHVDKAIALQ * * *****. * ****. * * ***. ***.
15	CG LVYEALEYAKRALEKNESSFASHKWYAICLSDVGDYEGIKAKIANAYIIKEHFEKAIELN
	HP PENPMAHFLLGRWCYQVSHLSWLEKKTATALLESPLSATVEDALQSFLKAEELQPGFSKA
	* *. *. * *** * * * *. * * . * * . * * . * * . *
20	
	HP GRVYISKCYRELGKNSEARWWMKLALELPDVTKEDLAIQKDLEELEVILRD
	* * . * . * . * . * . * . * . * .
	CG NLLLLGKTYLKLHNKKLAAFWLMKAKDYPAHTEEDKQIQTEAAQLLTSFSEKN

10

15

20

25

PCT/JP00/05356

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA852295) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10717> (SEQ ID NOS: 39, 49 and 59)

Determination of the whole base sequence of the cDNA insert of clone HP10717 obtained from cDNA library of human kidney revealed the structure consisting of a 73-bp 5'-untranslated region, a 732-bp ORF, and a 976-bp 3'untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed two putative domains. 19 transmembrane Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 36 kDa that was larger than the molecular weight of 26,270 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI478174) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

Ų,

5

10

15

20

25

encode the same protein as the protein of the present invention.

<HP10718> (SEQ ID NOS: 40, 50 and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10718 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 86-bp 5'-untranslated region, a 813-bp ORF, and a 889bp 3'-untranslated region. The ORF encodes consisting of 270 amino acid residues and there existed three putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. Doolittle method, In of translation resulted in formation of a translation product of 28 kDa that was smaller than the molecular weight of 31,116 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y53C10A (Accession No. CAA22139). Table 17 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y53C10A (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the

present invention, respectively. The both proteins shared a homology of 54.8% in the entire region other than the N-terminal region.

5 Table 17

10

HP MAGAEDWPGQ

- CE MTSSSAASSSTTTSSTMMPDENECLKKEEERFKSPDPAPTLDEEVDIDTLPSMLEDDPNG
- HP QLELDEDEASCCRWGAQHAGARELAALYSPGKRLQEWCSVILCFSLIAHNLVHLLLLARW
 - CE NVVECDLGFKGPRWGPQHAGAKKLASMYSKEKRLQEKVSLFAAIFLFSIVFIN-LLLS-W
- - CE ESSIWVSVLVSAVLGIMTADFASGLVHWAADTFGSVE-TWFGRSFIRPFREHHVDPTAIT
 - HP RHDFIETNGDNCLVTLLPLLNMAYKFRTHSPEALEQ-LYPWECFVFCLIIFGTFTNQIH
- 20 ***..*.****... *** . *. . * ... * * ... * * ... ***
 - CE RHDIVEVNGDNCMLCVGPLLWILYQQMTYQRDAITQWATFHW--YILLLGIYVALTNQIH
- 25 CE KWSHTYFGLPTWVVFLQKAHIILPRSHHKIHHISPHACYYCITTGWLNWPLEYIGFWRKM

PCT/JP00/05356

101

HP EDLIQGLTGEKPRADDMKWAQKIK

* ** . **. **. *** *..

CE EWYVTTVTGMQPREDDLKWATKLQ

5

10

WO 01/12660

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA176107) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. In addition, the region from position 466 to position 778 of the cDNA of the present invention matched with the region from position 2 to position 314 of human ubiquitin-conjugating enzyme E2 variant 1 (Accession NO. NM_003349) although no match was observed in another region.

<HP03745> (SEQ ID NOS: 61, 71 and 81)

20

25

15

Determination of the whole base sequence of the cDNA insert of clone HP03745 obtained from cDNA library of human kidney revealed the structure consisting of a 99-bp 5'-untranslated region, a 1170-bp ORF, and a 107-bp 3'-untranslated region. The ORF encodes a protein consisting of 389 amino acid residues and there existed at least nine

10

15

putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human solute carrier family 7 (Accession No. NP_003974). Table 18 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human solute carrier family 7 (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.0% in the N-terminal region of 397 amino acid residues.

Table 18

20

HP

MDRGEKIQLKRVFGYWWGTSFLLINIIG

.*. ***. .. *. *. *. *. **

SC MEAREPGRPTPTYHLVPNTSQSQVEEDVSSPPQRSSETMQLKKEISLLNGVSLVVGNMIG

	· *********** · · · · · · · · · · · · ·
	SC SGIFVSPKGVLVHT-ASYGMSLIVWAIGGLFSVVGALCYAELGTTITKSGASYAYILEAF
	HP GSTVAFLNLWTSLFLGSGVVAG-QALLLAEYSIQPFFPSCSVPKLPKKCLALAMLWIVGI
5	* ** **
	SC GGFIAFIRLWVSLLVVEPTGQAIIAITFANYIIQPSFPSCDPPYLACRLLAAACICLLTF
	HP LTSRGVKEVTWLQIASSVLKVSILSFISLTGVVFLIRGKKENVERFQNAFDAELPDISHL
	** ** . ** * * . *.* . *.**. ** **
10	SC VNCAYVKWGTRVQDTFTYAKVVALIAIIVMGLVKLCQGHSEHFQDAFEGSSWDMGNL
	HP IQAIFQGYFAYSGELKKPRTTIPKCIFTALPLVTVVYLLVNISYLTVLTPR
	.*
	SC SLALYSALFSYSGWDTLNFVTEEIKNPERNLPLAIGISMPIVTLIYILTNVAYYTVLNIS
15	
	HP EILSSDAVAITWADRAFPSLAWIMPFAISTSLFSNLLISIFKSSRPIYLASQEGQLPLLF
	··************************************
	SC DVLSSDAVAVTFADQTFGMFSWTIPIAVALSCFGGLNASIFASSRLFFVGSREGHLPDLL
20	HP NTLNSHS-SPFTAVLLLVTLGSLAIILTSLIDLINYIFFTGSLWSILLMIGILRRRYQEF
	SC SMIHIERFTPIPALLFNCTMALIYLIVEDVFQLINYFSFSYWFFVGLSVVGQLYLRWKEF
	HP NLSIPYKVKLDF
25	* * *

10

15

20

25

SC KRPRPLKLSVFFPIVFCICSVFLVIVPLFTDTINSLIGIGIALSGVPFYFMGVYLPESRR

<HP03747> (SEQ ID NOS: 62, 72 and 82)

Determination of the whole base sequence of the cDNA insert of clone HP03747 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 21-bp 5'-untranslated region, a 1047-bp ORF, and a 1324-bp 3'-untranslated region. The ORF encodes a protein consisting of 348 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 22 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,685 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from proline at position 39.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human endoplasmic reticulum glycoprotein (Accession No. NP_006807). Table 19 shows the comparison between amino acid sequences of the human protein

of the present invention (HP) and human endoplasmic reticulum glycoprotein (ER). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.1% in the entire region.

Table 19

10

- ER MAAEGWIWRWGWGRRCLGRPGLLGPGPGPTTPLFLLLL-LGSVTADITDGNS-EHLK
- HP VHFKIHGQGKKNLHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVF

 ****. ** ********. *. ******. *. * **. * **. * ****

 ER VHFKVHGTGKKNLHGDGIALWYTRDRLVPGPVFGSKDNFHGLAIFLDTYPNDET-TERVF

10

25

ER RFY

15 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA262924) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10719> (SEQ ID NOS: 63, 73 and 83)

Determination of the whole base sequence of the cDNA insert of clone HP10719 obtained from cDNA library of human kidney revealed the structure consisting of a 54-bp

WO 01/12660 PCT/JP00/05356

107

5'-untranslated region, a 786-bp ORF, and a 576-bp 3'-untranslated region. The ORF encodes a protein consisting of 261 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 33 kDa that was larger than the molecular weight of 27,435 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from asparagine at position 19.

acid sequence of the present protein revealed that the protein was similar to mouse endomucin (Accession No. AAD05208). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse endomucin (MM). Therein, the marks of -, *, and .

20 represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 47.9% in the entire region.

5

Table 20

	НР	MELLQVTIL-FLLP-SIC-SSNSTGVL-EAANNSLVVTTTKPSITTPNTESLQKNVVTPT
		* ***. *. * ***. *. *
5	MM	MRLLQATVLFFLLSNSLCHSEDGKDVQNDSIPTPAETSTTKASVTIPGIVSV-TNPNKPA
	НР	TGTTPKGTITNELLKMSLMSTATFLTSKDEGLKATTTDVRKNDSIISNVTVTSVTLPNAV
		.**.*.** ************
	MM	DGTPPEGTTKSDVSQTSLVTTINSLTTPKHEVGTTTEGPLRNESSTMKITVPNTPTSNAN
10		
	НР	STLQSSKPKTETQSSIKTTEIPGSVLQPDASPSKTGTLTSIPVTIPENTSQSQVIGTEGG
		****. *** ***.
	ММ	STLPGSQNKITTQLLDALPKITATPSASLTTAHTMSLLQDTEDR
15	HP	KNASTSATSRSYSSIILPVVIALIVITLSVFVLVGLYRMCWKADPGTPENGNDQPQSDKE
		* *. * * ************************
	MM	KIATTPSTTPSYSSIILPVVIALVVITLLVFTLVGLYRICWKRDPGTPENGNDQPQSDKE
	HP	SVKLLTVKTISHESGEHSAQGKTKN
20		***********
	ММ	SVKLLTVKTISHESGEHSAQGKTKN

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of

109

sequences that shared a homology of 90% or more (for example, Accession No. AA486620) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10720> (SEQ ID NOS: 64, 74 and 84)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10720 obtained from cDNA library of human kidney revealed the structure consisting of a 25-bp 5'-untranslated region, a 669-bp ORF, and a 653-bp @3'untranslated region. The ORF encodes a protein consisting of 222 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,219 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 35 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Val-Thr at position 76 and Asn-His-Thr at position 93). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to

110

expect that the mature protein starts from glutamic acid at position 15.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792241) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP10721> (SEQ ID NOS: 65, 75 and 85)

5

Determination of the whole base sequence of the cDNA insert of clone HP10721 obtained from cDNA library of human kidney revealed the structure consisting of a 74-bp 5'-untranslated region, a 552-bp ORF, and a 1658-bp 3'-15 untranslated region. The ORF encodes a protein consisting of amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the 20 Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 19,989 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 22 kDa. 25 Application of the (-3,-1) rule, a method for predicting the

111

cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 25.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R27187) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10725> (SEQ ID NOS: 66, 76 and 86)

Determination of the whole base sequence of the cDNA insert of clone HP10725 obtained from cDNA library of human kidney revealed the structure consisting of a 235-bp 5'-untranslated region, a 789-bp ORF, and a 713-bp 3'untranslated region. The ORF encodes a protein consisting of 262 amino acid residues and there existed one putative depicts the 26 domain. Figure transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. In Doolittle method, of translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example,

5

10

15

20

25

Accession No. AI127782) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10727> (SEQ ID NOS: 67, 77 and 87)

Determination of the whole base sequence of the cDNA insert of clone HP10727 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 102-bp 5'-untranslated region, a 507-bp ORF, and a 947-3'-untranslated region. The ORF encodes a protein consisting of 168 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was larger than the molecular weight of 17,822 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 23 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 29.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of

113

sequences that shared a homology of 90% or more (for example, Accession No. R80316) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10728> (SEQ ID NOS: 68, 78 and 88)

5

10

15

Determination of the whole base sequence of the cDNA insert of clone HP10728 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 221-bp 5'-untranslated region, a 732-bp ORF, and a 902-bp 3'-untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 26,534 predicted from the ORF.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H23535) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10730> (SEQ ID NOS: 69, 79 and 89)

Determination of the whole base sequence of the cDNA insert of clone HP10730 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 27-bp 5'-untranslated region, a 1287-bp ORF, and a 1216-bp 3'-untranslated region. The ORF encodes a protein consisting of 428 amino acid residues and there existed one putative transmembrane domain. Figure 29 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 50 kDa that was somewhat larger than the molecular weight of 48,992 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C19105) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10742> (SEQ ID NOS: 70, 80 and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10742 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 231-bp 5'-untranslated region, a 852-bp ORF, and a 828-

115

bp 3'-untranslated region. The ORF encodes a protein consisting of 283 amino acid residues and there existed two putative transmembrane domains. Figure 30 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was smaller than the molecular weight of 31,629 predicted from the ORF.

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T35949) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03800> (SEQ ID NOS: 91, 101 and 111)

Determination of the whole base sequence of the cDNA insert of clone HP03800 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 67-bp 5'-untranslated region, a 1431-bp ORF, and a 135-bp 3'-untranslated region. The ORF encodes a protein consisting of 476 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 31 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

vitro translation resulted in formation of a translation product of 55 kDa that was almost identical with the molecular weight of 54,110 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Lys-Thr at position 81, Asn-Met-Thr at position 132, Asn-Val-Thr at position 307 and Asn-Gln-Thr at position 346). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 23.

5

10

15

20

25

The search of the protein database using the amino acid sequence of the present protein revealed that the similar protein was to mosquito vitellogenic carboxypeptidase (Accession No. P42660). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mosquito vitellogenic carboxypeptidase (VC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.5% in the entire region. In addition, the C-terminal portion beginning from alanine at position 182 matched with human probable carboxypeptidase (Accession No. AAC23787) except one amino acid residue.

Table 21

5

10

15

20

- HP DLYSALIQFFQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGD
 .*..***.**...**...** *... ****.***
 VC NLMKFIQQFFVLFPNLLKHPFYISGESYGGKFVPAFGYAIH--NSQSQPKINLQGLAIGD

- HP AEKKVWKIFKSDSEVAGYIRQAGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDP

 *... *.. *. *** ... *** ... * *** ... ****

 VC ANRE---IYRVDGEIAGYKKRAGRLQEVLIRNAGHMVPRDQPKWAFDMITSFTHKNYL

HP YVG

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA095665) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03831> (SEQ ID NOS: 92, 102 and 112)

Determination of the whole base sequence of the cDNA insert of clone HP03831 obtained from cDNA library of

119

human kidney revealed the structure consisting of a 191-bp 5'-untranslated region, a 681-bp ORF, and a 223-bp 3'-untranslated region. The ORF encodes a protein consisting of 226 amino acid residues and there existed four putative transmembrane domains. Figure 32 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human claudin-10 (Accession No. NP_008915). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human claudin-10 (CD). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 76.2% in the entire region. The C-terminal region downstream from glycine at position 72 completely matched with that sequence.

20

5

10

15

20

25

	HP	MSRAQIWALVSGVGGFGALVAATTSNEWKVTTRASSVITATWVYQGLWMNCAGNALGS
		* ** ***.* ***. * *
	CD	MASTASEIIAFMVSISGWVLVSSTLPTDYWKVSTIDGTVITTATYWANLWKACVTDSTGV
5	HP	FHCRPHFTIFKVAGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA
		. * ***************************
	CD	SNCKDFPSMLALDGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA
	HP	GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC
10		*****************
	CD	GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC
	НР	FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV

15	CD	FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N41613) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

121

Determination of the whole base sequence of the cDNA insert of clone HP03879 obtained from cDNA library of human kidney revealed the structure consisting of a 33-bp 5'-untranslated region, a 918-bp ORF, and a 651-bp 3'-untranslated region. The ORF encodes a protein consisting of 305 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was almost identical with the molecular weight of 34,073 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human NADH-cytochrome b5 reductase (Accession No. Y09501). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human NADH-cytochrome reductase (CT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 63.5% in the entire region other than the N-terminal region.

20

5

10

15

Table 23

	HP	MGIQTSPVLLASLGVGLVTLLGLAVGSYLVRRSRRPQVTLLDPNEKYLLRLLDKTTVSHN
		* . ** * ** . ** ***. * **.
5	CT	MGAQLSTLGHMVLFPVWFLYSLLMKLFQRS-TPAITLESPDIKYPLRLIDREIISHD
	HP	TKRFRFALPTAHHTLGLPVGKHIYLSTRIDGSLVIRPYTPVTSDEDQGYVDLVIKVYLKG
		*. ******* *. ******. *****. *****. **. **. **. *.
	CT	TRRFRFALPSPQHILGLPVGQHIYLSARIDGNLVVRPYTPISSDDDKGFVDLVIKVYFKD
10		
	HP	VHPKFPEGGKMSQYLDSLKVGDVVEFRGPSGLLTYTGKGHFNIQPNKKSPPEPRVAKKLG
		. *****. *******. * ** *******. * ***. *.
	CT	THPKFPAGGKMSQYLESMQIGDTIEFRGPSGLLVYQGKGKFAIRPDKKSNPIIRTVKSVG
15	HP	MIAGGTGITPMLQLIRAILKVPEDPTQCFLLFANQTEKDIILREDLEELQARYPNRFKLW

	CT	MIAGGTGITPMLQVIRAIMKDPDDHTVCHLLFANQTEKDILLRPELEELRNKHSARFKLW
	HP	FTLDHPPKDWAYSKGFVTADMIREHLPAPGDDVLVLLCGPPPMVQLACHPNLDKLGYSQK
20		. *** *. *. * *** ***. ***. * ** *
	СТ	YTLDRAPEAWDYGQGFVNEEMIRDHLPPPEEEPLVLMCGPPPMIQYACLPNLDHVGHPTE
	HP	MRFTY
		. *
25	СТ	RCFVF

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F06459) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

<HP03880> (SEQ ID NOS: 94, 104 and 114)

Determination of the whole base sequence of the cDNA insert of clone HP03880 obtained from cDNA library of human kidney revealed the structure consisting of a 98-bp 5'-untranslated region, a 684-bp ORF, and a 115-bp 3'untranslated region. The ORF encodes a protein consisting of 15 amino acid residues and there existed a putative 227 secretory signal at the N-terminus. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product 20 of 28 kDa that was somewhat larger than the molecular weight of 25,717 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 27 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to 25

5

10

15

expect that the mature protein starts from aspartic acid at position 23.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rat phosphatidylethanolamine-binding protein (Accession No. P31044). Table 24 shows comparison between amino acid sequences of the human protein of the invention present (HP) and rat phosphatidylethanolamine-binding protein (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.6% in the region of 133 amino acid residues other than the N-terminal region.

Table 24

HP MGWTMRLVTAALLLGLMMVVTGDEDENSPCAHEALLDEDTLFCQGLEVFYPELGNIGCKV

20

25

RN

MAADISQWAGPLSLQEVDEPPQHALRVDYGGVTV

HP VPDCNNYRQKITSWMEPIVKFPGAVDGATYILVMVDPDAPSRAEPRQRFWRHWLVTDIKG

... * * *.**..***** .*. * *.*.**

RN DELGKVLTPTQVMNRPSSISWDGLDPGKLYTLVLTDPDAPSRKDPKFREWHHFLVVNMKG

HP ADLKKGKIQGQELSAYQAPSPPAHSGFHRYQFFVYLQEGKV---ISLLP-KENKTRGSWK

. *. **. **. * .. ** .. **

RN NDISSGTV----LSEYVGSGPPKDTGLHRYVWLVYEQEQPLNCDEPILSNKSGDNRGKFK

5

HP MDRFLNRFHLGEPEASTQFMTQNYQDSPTLQAPRERASEPKHKNQAEIAAC

...* ... ***. * * * * *. *.

RN VESFRKKYHLGAPVAGTCFQAEWDDSVPKLHDQLAGK

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H83784) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10704> (SEQ ID NOS: 95, 105 and 115)

Determination of the whole base sequence of the

CDNA insert of clone HP10704 obtained from cDNA library of
human kidney revealed the structure consisting of a 141-bp
5'-untranslated region, a 1326-bp ORF, and a 399-bp 3'untranslated region. The ORF encodes a protein consisting of
441 amino acid residues and there existed eight putative
transmembrane domains. Figure 35 depicts the

5

10

15

20

25

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human unknown gene product (Accession No. AAC27544). Table 25 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human unknown gene product (UP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.1% in the entire region.

Table 25

HP MAIHKALVMCLGLPLFLFPG-AWAQGHVPPGCSQGLNPLYYNLCDRSGAWGIVLE

* **... * ... ** * * .*** .. ****.*

UN MFVASERKMRAHQVLTFLLLFVITSVASENASTSRGCGLDLLPQYVSLCDLDAIWGIVVE

UN AVAGAGALITLLLMLILLVRLPFIKEKEKKSPVGLHFLFLLGTLGLFGLTFAFIIQEDET

	HP	TCASRRFLFGVLFAICFSCLAAHVFALNFLARKNHGPRGWVIFTVALLLTLVEVIINTEW
		·*· ****·********** · · · · · * · * ** · · · · ** * ** · **
	UN	ICSVRRFLWGVLFALCFSCLLSQAWRVRRLVRHGTGPAGWQLVGLALCLMLVQVIIAVEW
5		
	HP	LIITLVRGSGEGGPQGNSSAGWAVASPCAIANMDFVMALIYVMLLLLGAFLGAWPALCGR
		*** *** . ******* *.** * .***.
	UN	LVLTVLRDTRPACAYEPMDFVMALIYDMVLLVVTLGLALFTLCGK
10	HP	YKRWRKHGVFVLLTTATSVAIWVVWIVMYTYGN-KQHNSPTWDDPTLAIALAANAWAFVL
		· ***. · *. *. *. ** ***. ** · · · · · ·
	UN	FKRWKLNGAFLLITAFLSVLIWVAWMTMYLFGNVKLQQGDAWNDPTLAITLAASGWVFVI
		•
	HP	FYVIPEVSQVTKSSPEQSYQGDMYPTRGVGY-ETILKEQ-KGQSMFVENKAFSMDEPVAA
15		**** * *
	UN	FHAIPEI-HCTLLPALQENTPNYFDTSQPRMRETAFEEDVQLPRAYMENKAFSMDEHNAA
	НР	KRPVS-PYSGYNGQLLTSVYQPTEMALMHKVPSEGAYDIILPRATANSQVMGSANSTLRA
		* *
20	UN	LRTAGFPNGSLGKRPSGSLGKRPSAPFRSNVYQPTEMAVVLNGGTIPTAPPSHTGRHLW
	HP	EDMYSAQSHQAATPPKDGKNSQVFRNPYVWD

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA346702) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10715> (SEQ ID NOS: 96, 106 and 116)

5

10

15

20

25

Determination of the whole base sequence of the cDNA insert of clone HP10715 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 49-bp 5'-untranslated region, a 798-bp ORF, and a 1351-3'-untranslated region. The ORF encodes a protein consisting of 265 amino acid residues and there existed two putative transmembrane domains. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of present protein. the In vitro translation resulted in formation of a translation product of 43 kDa that was larger than the molecular weight of 29,217 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI381750) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present

129

invention.

5

10

15

20

25

<HP10724> (SEQ ID NOS: 97, 107 and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10724 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 68-bp 5'-untranslated region, a 627-bp ORF, and a 1485-bp 3'-untranslated region. The ORF encodes a protein consisting of 208 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was almost identical with the molecular weight of 23,850 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T78035) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10733> (SEQ ID NOS: 98, 108 and 118)

Determination of the whole base sequence of the cDNA insert of clone HP10733 obtained from cDNA library of human umbilical cord blood revealed the structure consisting

WO 01/12660

5

10

15

20

25

of a 102-bp 5'-untranslated region, a 1203-bp ORF, and a 222-bp 3'-untranslated region. The ORF encodes a protein consisting of 400 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was larger than the molecular weight of 43,151 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Leu-Thr at position 52, Asn-Ala-Ser at position 131, Asn-Ile-Thr at position 145 and Asn-Leu-Ser at position 343). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from arginine at position 33.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH protein (Accession No. Q06003). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster

GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.0% in the entire region.

Table 26

5

10 HP MAWRREASVGARGVLALALLALALCVPGARGRALEWFSAVVNIEYVDPQTNLTVWSVSE

 $HP \ \ SGRFGDSSPKEGAHGLVGVPWAPGGDLEGCAPDTRFFVPEPGGRGAAPWVALVARGGCTF$

HP KDKVLVAARRNASAVVLYNEERYGNITLPMSHAGTGNIVVIMISYPKGREILEL-VQKGI

* *....**.

DM MQLEKMQIKGKTRNIAAVITYQNIGQDLSLTLDKGY

HP PVTMTIGVGTRHVQEF--ISGQSVVFVAIAFITMMIISLAWLIFYYIQRFLY-TGSQIGS

. * * * * *. . . **. **. * * ***** * . . . *

DM NVTISIIEGRRGVRTISSLNRTSVLFVSISFI--VDDILCWLIFYYIQRFRYMQAKDQQS

HP QSHRKETKKVIGQLLLHTVKHGEKGIDVDAENCAVCIENFKVKDIIRILPCKHIFHRICI

DM RNLCSYTKKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKHEFHKNCI

20

20

25

	HP	DPWLLDHRTCPMCKLDVIKALGYWGEPGDVQEMPAPESPPGRDPAANLSLALPDDDGSDE
		****. ********* **
	DM	DPWLIEHRTCPMCKLDVLKFYGY-VVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQ
5	HP	SSPPSASPAESEPQCDPSFKGDAGENTALLEAGRSDSRHGGPIS
		* * *
	DM	PLQPLQASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMP

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI286184) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10734> (SEQ ID NOS: 99, 109 and 119)

Determination of the whole base sequence of the cDNA insert of clone HP10734 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 124-bp 5'-untranslated region, a 579-bp ORF, and a 1202-bp 3'-untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino

acid sequence of the present protein revealed that the
protein was similar to human sodium channel ß2 subunit
(Accession No. AAD47196). Table 27 shows the comparison
between amino acid sequences of the human protein of the
present invention (HP) and human sodium channel ß2 subunit

(SC). Therein, the marks of -, *, and . represent a gap, an
amino acid residue identical with that of the protein of the
present invention, and an amino acid residue similar to that
of the protein of the present invention, respectively. The
both proteins shared a homology of 26.3% in the N-terminal
region of 152 amino acid residues.

Table 27

HP CIFKIDWTLSPGEHAKDE-YVLYYYSNLSVPIGRFQNRVHLMGDNLCNDGSLLLQDVQEA

*...*** **...*. . * *...**.

SC KQFSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPE

WO 01/12660

134

HP DQGTYICEIRLKGESQVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVE

SC DEGIYNCYIMNPPDRHRGHGKIHLQVLMEEPPERDFTVAVIVGASVGGFLAVVILVLMVV

5

HP WIFSGRRAKVTRRKHHCVREGSG

SC KCVRRKKEQKLSTDDLKTEEEGKTDGEGNPDDGAK

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C03216) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10756> (SEQ ID NOS: 100, 110 and 120)

cDNA insert of clone HP10756 obtained from cDNA library of human kidney revealed the structure consisting of a 49-bp 5'-untranslated region, a 783-bp ORF, and a 166-bp 3'-untranslated region. The ORF encodes a protein consisting of 260 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 40 depicts the

135

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 27,356 predicted from the ORF.

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW027769) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03670> (SEQ ID NOS: 121, 131 and 141)

Determination of the whole base sequence of the cDNA insert of clone HP03670 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 77-bp 5'-untranslated region, a 1014-bp ORF, and a 531-bp 3'-untranslated region. The ORF encodes a protein consisting of 337 amino acid residues and there existed at least seven putative transmembrane domains. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein KIAA0260

(Accession No. BAA13390). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein KIAA0260 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 57.6% in the entire region other than the N-terminal region. In addition, the C-terminal region beginning from leucine at position 77 matched with human putative Sqv-7-like protein (Accession No. AJ005866) except one amino acid residue.

Table 28

15

10

5

HP

MTAGGQAEAEGAGGEPG

- KI NSWSPLGAAAAGPRAARPRRQATAAAAAMAEVHRRQHARVKGEAPAKSSTLRDEEELGMA

PCT/JP00/05356

5

10

20

ΚT	LRVVKFPDLD	RNVPRKTFPL	PLLYFGNQITGI	FSTKKLNL	.PMFTVLR	RFSILF	TMFAEGV
----	------------	------------	--------------	----------	----------	--------	---------

HP ILGKQYSLNIILSVFAIILGAFIAAGSDLAFNLEGYIFVFLNDIFTAANGVYTKQKMDPK

KI LLKKTFSWGIKMTVFAMIIGAFVAASSDLAFDLEGYAFILINDVLTAANGAYVKQKLDSK

- HP ELGKYGVLFYNACFMIIPTLIISVSTGDLQQATEFNQWKNVVFILQFLLSCFLGFLLMYS KI ELGKYGLLYYNALFMILPTLAIAYFTGDAQKAVEFEGWADTLFLLQFTLSCVMGFILMYA
- HP TVLCSYYNSALTTAVVGAIKNVSVAYIGILIGGDYIFSLLNFVGLNICMAGGLRYSFLTL ****. ******. ** ***. . . ***. . . ****. **. **. **. **. **. **. * KI TVLCTQYNSALTTTIVGCIKNILITYIGMVFGGDYIFTWTNFIGLNISIAGSLVYSYITF
- HP SSQLKPKPVGEENICLDLKS 15*. .*. **.*. KI TEEQLSKQ-SEANNKLDIKGKGAV

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R24922) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present 25

138

invention.

5

10

<HP03688> (SEQ ID NOS: 122, 132 and 142)

Determination of the whole base sequence of the cDNA insert of clone HP03688 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 35-bp 5'-untranslated region, a 711-bp ORF, and a 1729bp 3'-untranslated region. The ORF encodes a protein consisting of 236 amino acid residues and there existed five putative transmembrane domains. Figure 42 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of present protein. the translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino

acid sequence of the present protein revealed that the
protein was similar to Caenorhabditis elegans hypothetical
protein W02D9 (Accession No. CAB03470). Table 29 shows the
comparison between amino acid sequences of the human protein
of the present invention (HP) and Caenorhabditis elegans

hypothetical protein W02D9 (CE). Therein, the marks of -, *,
and . represent a gap, an amino acid residue identical with
that of the protein of the present invention, and an amino
acid residue similar to that of the protein of the present
invention, respectively. The both proteins shared a homology
of 50.8% in the entire region other than the N-terminal

m -	able 29
10	ADIE 29
HF	MAEAE
CE	E MEILNLSSKFSLSDKPCQKFIFSLFSAVQNSRFKIISFPEIHQKPLPQEEMNSFGNASV
HI	P SPGDPGTASPRPLFAGLSDISISQDIPVEGEITIPMRSRIREFDSSTLNESVRNTIMRD
	** **. *. **. **. **.
Cl	E IDMLEQEMAAEQTANLSGNIAGMSAPKSSSNRRGPMQEVDLDAEFDTLEEPVWDTVKRD
H	P KAVGKKFMHVLYPR-KSNTLLRDWDLWGPLILCVTLALMLQRDSADSEKDGGPQFAEVF
	. ** ** **. * ********* **. **.
С	E LTVGAKFTHVVLPHGDKQQLLRDWDLWGPLFICVGLALLLQHNGGTESAPQFTQVF
Н	P IVWFGAVTITLNSKLLGGNISFFQSLCVLGYCILPLTVAMLICRLVLLADPGPVNFMVI
	.*.* * ***********************
C	E ITFFGSVIVTANIKLLGGNISFFQSLCVIGYCLLPPFVAAVLCSL-FLHGIAFPL
ŀ	IP FVVIVMFAWSIVASTAFLADSQPPNRRALAVYPVFLFYFVISWMILTFTPQ
	··· · * _· ** _· ** · *** _· · ** · · * * _· · ******* _· **** _· .
(CE LITSIGFVWSTYASMGFLAGCQPDKKRLLVIYPVFLFYFVVSWMIISHS

140

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T51465) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP03825> (SEQ ID NOS: 123, 133 and 143)

Determination of the whole base sequence of the cDNA insert of clone HP03825 obtained from cDNA library of human kidney revealed the structure consisting of a 20-bp 5'-untranslated region, a 1683-bp ORF, and a 36-bp 3'untranslated region. The ORF encodes a protein consisting of 560 amino acid residues and there existed seven putative transmembrane domains. Figure 43. depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytepresent protein. Doolittle method, of the translation resulted in formation of a translation product of 56 kDa that was smaller than the molecular weight of 64,047 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Mycobacterium tuberculosis hypothetical protein Rv0235c (Accession No. CAB07001).

Table 30 shows the comparison between amino acid sequences

of the human protein of the present invention (HP) and Mycobacterium tuberculosis hypothetical protein Rv0235c (MT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the entire region other than the N-terminal region. In addition, the region from alanine at position 293 to proline at position 502 matched with human putative novel protein c360B4.1 (Accession No. CAB56180).

Table 30

5

10

25

HP MAAPAESLRRRKTGYSDPEPESPPAPGRGPAGSPAHLHTGTFWLTRIVLLKALAFVYFVA
...**.*..*..*

MT MGWFSAPEYWLGRLALERGTAIIYLIA

HP LLALLGLGISSFVLITGCANMLLMAALWGLYMSLVNVGHVWYSFGWESQLLETGFLGIFL

* . * . *** . *. ** ** . ****** ***

MT --AAVVAGAASFVPLW--ATMLIWLTLWVLYLSIVNVGQAWYSFGWESLLLETGFLMIFL

	HP	CPLWTLSRLPQHTPTSR1VLWGFRWL1FR1MLGAGL1K1RGDRCWRDLTCMDFHYETQPM
		.* .**. ***.**. ****.***.****. ****
	MT	GNERTAPPILTLLLA-RWLLFRVEFGAGLIKMRGDSCWRSLTCLYYHHETQPM
5		
	HP	PNPVAYYLHHSPWWFHRFETLSNHFIELLVPFFLFLGRRACIIHGVLQILFQAVLIVSGN
		*. * ** * ** * * *
	MT	PGPLSWFFHHLPKPLHRIEVAGNHFAQLVVPFGLFTPQPAASIAAAIIVVTQLWLVASGN
10	HP	LSFLNWLTMVPSLACFDDATLGFLFPSGPGSLKDRVLQMQRDIRGARPEPRFGSVVRRAA
		.*.**** ********
	MT	FSWLNWLTILLACSAIDTSS-AAALLPMPAQPALSAPPQWFAGLVV
	HP	NVSLGVLLAWLSVPVVLNLLSSRQVMNTHFNSLHIVNTYGAFGSITKERAEVILQGTASS
15		*** ** . *****. * ** ** * ****** * ** *
	MT	VFTAAVLLLSYWPARNLLSSHQRMNMSFNPFHLVNTYGAFGSICRTRREVVIEGTDES
	HP	NASAPDAMWEDYEFKCKPGDPSRRPCLISPYHYRLDWLMWFAAFQTYEHNDWIIHLAGKL
		* . * * * * * * * * * * * * * *
20	MT	-PITEQTVWKAYEFKGKPGDPRRLPRQWAPYHLRLDWLMWFAAISPGYALPWMTPFLNRL
	HP	LASDAEALSLLAHNPFAGRPPPRWVRGEHYRYKFSRPGGRHAAEGKWWVRKRIGAYFPPL
		* . * * . * * * * * *
	MT	LRNDPATLKLLRHNPFP-QSPPRYVRAQLYQYRFTTVAELRRDRA-WWHRTLIGRYVPPM

143

HP SLEELRPYFRDRGWPLPGPL

** ..

MT SLRKVASPPAD

5

10

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA019047) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03877> (SEQ ID NOS: 124, 134 and 144)

Determination of the whole base sequence of the 15 cDNA insert of clone HP03877 obtained from cDNA library of human kidney revealed the structure consisting of a 106-bp 5'-untranslated region, a 1221-bp ORF, and a 678-bp 3'untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed four putative 20 transmembrane domains. Figure 44 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 49 kDa that was somewhat larger than the molecular weight 25 of 46,208 predicted from the ORF.

10

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y37D8A (Accession No. CAA21543). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y37D8A (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.2% in the intermediate region of 329 amino acid residues.

15 Table 31

HP

MAENG

CE MAKKQKKSTEKSERTVEFKEPPKPANSEERLVSTRQFLAKIGQKKLIKKKVKNFRFSKKT

20

HP KNCDQRRVAMNKEHHNGNFTDPSSVNEKKRREREERQNIVLWRQPLITLQYFSLEILVIL

.* **..**.* *...* .**

CE FIDFFSENQKKNCRLKPAGRGMKPSPSQNTLNRMERETIVFWRRPHIVIPYALMEIAHLA

25 HP KEWTSKLWHRQSIVVSFLLLLAVLIATYYVEGVHQQYVQRIEKQFLLYAYWIGLGILSSV

	* * * . * . * * * * * * * * . * * * * *
	CE VELFFKILAHKTVLLLTAISIGLAVYGYHAPGAHQEHVQTIEKHILWWSWWVLLGVLSSI
	HP GLGTGLHTFLLYLGPHIASVTLAAYECNSVNFPEPPYPDQIICPDEEGTEGTISLWSIIS
5	***. ******. *******. **. **. ***. * ** * * CE GLGSGLHTFLIYLGPHIAAVTMAAYECQSLDFPQPPYPESIQCPSTKSSI-AVTFWQIVA
	HP KVRIEACMWGIGTAIGELPPYFMARAARLSGAEPDDEEYQEFEEMLEHAESAQDFA-
10	***. *. ** ***. *********** **. **. ** *
	HP -SRAKLAVQKLVQKVGFFGILACASIPNPLFDLAGITCGHFLVPFWTFFGATLIGKAIIK
	. *** *** *** *******************
15	
	HP MHIQKIFVIITFSKHIVEQMVAFIGAVPGIGPSLQKPFQEYLEAQRQKLHHKSEMGTPQG **.*. ***. **. *
	CE MHVQMGFVILAFSDHHAENFVKILEKIPAVGPYIRQPISDLLEKQRKALHKTPGEHSEQD
20	HP ENWLSWMFEKLVVVMVCYFILSIINSMAQSYAKRIQQRLNSEEKTK
	CE LIDEENQSFEEEEEEAVTPPSSCPLLLSDGFEGVVVKK

WO 01/12660 PCT/JP00/05356

146

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T18977) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

<HP10765> (SEQ ID NOS: 125, 135 and 145)

Determination of the whole base sequence of the cDNA insert of clone HP10765 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 30-bp 5'-untranslated region, a 1362-bp ORF, and a 166-bp 3'-untranslated region. The ORF encodes a protein consisting of 453 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 48 kDa that was almost identical with the molecular weight of 47,724 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792834) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

25

encode the same protein as the protein of the present invention.

<HP10766> (SEQ ID NOS: 126, 136 and 146)

Determination of the whole base sequence of the 5 cDNA insert of clone HP10766 obtained from cDNA library of human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 180-bp ORF, and a 675-bp 3'untranslated region. The ORF encodes a protein consisting of amino acid residues and there existed two putative 10 transmembrane domains. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product kDa or less that was almost identical with the 15 molecular weight of 6,098 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T85491) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10770> (SEQ ID NOS: 127, 137 and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10770 obtained from cDNA library of

10

15

human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 633-bp ORF, and a 186-bp 3'-untranslated region. The ORF encodes a protein consisting of 210 amino acid residues and there existed two putative transmembrane domains. Figure 47 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was larger than the molecular weight of 22,156 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792771) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10772> (SEQ ID NOS: 128, 138 and 148)

cDNA insert of clone HP10772 obtained from cDNA library of human kidney revealed the structure consisting of a 19-bp 5'-untranslated region, a 498-bp ORF, and a 724-bp 3'-untranslated region. The ORF encodes a protein consisting of 165 amino acid residues and there existed four putative transmembrane domains. Figure 48 depicts the

10

15

20

25

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F11871) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10773> (SEQ ID NOS: 129, 139 and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10773 obtained from cDNA library of human kidney revealed the structure consisting of a 186-bp 5'-untranslated region, a 489-bp ORF, and a 499-bp 3'untranslated region. The ORF encodes a protein consisting of 162 amino acid residues and there existed four putative transmembrane domains. Figure 49 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of

10

15

sequences that shared a homology of 90% or more (for example, Accession No. N33828) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10776> (SEQ ID NOS: 130, 140 and 150)

Determination of the whole base sequence of the cDNA insert of clone HP10776 obtained from cDNA library of human kidney revealed the structure consisting of a 207-bp 5'-untranslated region, a 666-bp ORF, and a 139-bp 3'untranslated region. The ORF encodes a protein consisting of 221 amino acid residues and there existed three putative transmembrane domains. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 24,883 predicted from the ORF.

base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI929639) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

25

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs and eukaryotic cells expressing these DNAs. Since all of the proteins of the present invention are secreted or exist in the cell membrane, proteins controlling are considered to be proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents the proliferation and/or control to act differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the 15 diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for expressing these proteins in into which these genes large quantities. Cells introduced to express these proteins can be utilized for corresponding receptors or the detection of 20 screening of novel small molecule pharmaceuticals and the like. The antibody of the present invention can be utilized for the detection, quantification, purification and the like of the protein of the present invention.

> provides invention also present The

10

15

corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified 20 expression of the gene(s) corresponding to polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Pharmacol. 25 Morris, 1994, Trends Sci. 15(7): 250-254;

10

15

20

25

Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the are transformed cells and their progeny, provided. have modified genetic control Transgenic animals that regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination,

10

15

20

25

preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the identified in accordance with known invention can be techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed

protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

5

10

15

20

25

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As herein, "species homologue" is a protein used a polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is,

15

naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 32

Stringency	Poly-	Hybrid	Hybridization Temperature	Wash
Condition	nucleotide	Length	and Buffer [†]	Temperature
·	Hybrid	(bp) *		and Buffer'
A	DNA: DNA	≥50	65°C; 1×SSC -or-	65°C;
			42°C; 1×SSC,50%	0.3×SSC
			formamide	
В	DNA: DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
С	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C;
			45°C; 1×SSC,50%	0.3×SSC
			formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C;
			50°C; 1×SSC,50%	0.3×SSC
			formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA: DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50%	
			formamide	
H	DNA: DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA: RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
			45°C; 4×SSC,50%	
			formamide	
J	DNA: RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
			50°C; 4×SSC,50%	
			formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _t *; 2×SSC
М	DNA: DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50%	
			formamide	
N	DNA: DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
1			42°C; 6×SSC,50%	
			formamide	
P	DNA: RNA	<50	T _p *; 6×SSC	T _p *; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
			45°C; 6×SSC,50%	
<u> </u>			formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

- † : The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides.

 When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- t: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
- *T_B T_R: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length,

 T_m(°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m(°C)=81.5 + 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

10

15

20

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

10

20

CLAIMS

- 1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.
- 2. An isolated DNA encoding the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140.
 - 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eukaryotic cells.
 - 6. A transformed eukaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.
 - 7. An antibody directed to the protein according to Claim 1.

Hydrophilicity/Hydrophobicity

-<u>i</u>g

L

Fig.3

۵۰۰۰ تنمس

.

1

Fig.4

5/50

Fig.5

Hydrophilicity/Hydrophobicity

6/50

Fig.6

Hydrophilicity/Hydrophobicity

Fig.7

Fig.8

9/50

Hydrophilicity/Hydrophobicity

Fig.9

Hydrophilicity/Hydrophobicity

-<u>1</u>8.10

Hydrophilicity/Hydrophobicity

Fig. 1

Fig. 1

Fig.13

Hydrophilicity/Hydrophobicity

Fig. 14

Fig.15

Fig.16

17/50

Hydrophilicity/Hydrophobicity

.lg.17

Fig. 18

Fig. 19

Hydrophilicity/Hydrophobicity

Hydrophilicity/Hydrophobicity

Fig.22

Fig.23

Fig.24

Fig.25

Fig.26

-ig.27

Fig.28

Hydrophilicity/Hydrophobicity

Fig. 30

WO 01/12660 PCT/JP00/05356

Hydrophilicity/Hydrophobicity

Fig.32

Hydrophilicity/Hydrophobicity

Fig.34

Fig.35

Fig.36

Fig.37

Fig.38

Fig.39

Fig.40

Fig.4

Hydrophilicity/Hydrophobicity

Fig.42

Fig.4

Hydrophilicity/Hydrophobicity

44/50

Fig.44

Fig.45

Fig.46

Hydrophilicity/Hydrophobicity

Fig.48

Fig.49

SEQUENCE LISTING

<110> Sagami Chemical Research Center,
Protegene Inc.

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> 662029

<150> JP 11-230344

<151> 1999−08−17

<150> JP 11-252551

<151> 1999-09-07

<150> JP 11-281132

<151> 1999−10−01

<150> JP 11-301624

<151> 1999−10−22

<150> JP 11-313877

<151> 1999-11-04

<160> 150

<210> 1

<211> 267

<212> PRT

<213> Homo sapiens

<400> 1

Met Val Lys Ile Ser Phe Gln Pro Ala Val Ala Gly Ile Lys Gly Asp

1 5 10 15

Lys Ala Asp Lys Ala Ser Ala Ser Ala Pro Ala Pro Ala Ser Ala Thr

20 25 30

Glu Ile Leu Leu Thr Pro Ala Arg Glu Glu Gln Pro Pro Gln His Arg

35 40 45

Ser Lys Arg Gly Ser Ser Val Gly Gly Val Cys Tyr Leu Ser Met Gly

50 55 60

Met Val Val Leu Leu Met Gly Leu Val Phe Ala Ser Val Tyr Ile Tyr

65 70 75 80

Arg Tyr Phe Phe Leu Ala Gln Leu Ala Arg Asp Asn Phe Phe Arg Cys

90 95

Gly Val Leu Tyr Glu Asp Ser Leu Ser Ser Gln Val Arg Thr Gln Met

100 105 110

Glu Leu Glu Glu Asp Val Lys Ile Tyr Leu Asp Glu Asn Tyr Glu Arg

115 120 125

Ile Asn Val Pro Val Pro Gln Phe Gly Gly Gly Asp Pro Ala Asp Ile

130 135 / 140

Ile His Asp Phe Gln Arg Gly Leu Thr Ala Tyr His Asp Ile Ser Leu Asp Lys Cys Tyr Val Ile Glu Leu Asn Thr Thr Ile Val Leu Pro Pro Arg Asn Phe Trp Glu Leu Leu Met Asn Val Lys Arg Gly Thr Tyr Leu Pro Gln Thr Tyr Ile Ile Gln Glu Glu Met Val Val Thr Glu His Val Ser Asp Lys Glu Ala Leu Gly Ser Phe Ile Tyr His Leu Cys Asn Gly Lys Asp Thr Tyr Arg Leu Arg Arg Arg Ala Thr Arg Arg Arg Ile Asn Lys Arg Gly Ala Lys Asn Cys Asn Ala Ile Arg His Phe Glu Asn Thr Phe Val Val Glu Thr Leu Ile Cys Gly Val Val <210> 2 <211> 419 <212> PRT <213> Homo sapiens <400> 2 Met Ser Cys Ala Gly Arg Ala Gly Pro Ala Arg Leu Ala Ala Leu Ala Leu Leu Thr Cys Ser Leu Trp Pro Ala Arg Ala Asp Asn Ala Ser Gln

			20					25					30		
Glu	Tyr	Tyr	Thr	Ala	Leu	Ile	Asn	Val	Thr	Val	Gln	Glu	Prọ	Gly	Arg
		35					40	•				45			
Gly	Ala	Pro	Leu	Thr	Phe	Arg	Ile	Asp	Arg	Gly	Arg	Tyr	Gly	Leu	Asp
	50					5 5					60				
Ser	Pro	Lys	Ala	Glu	Val	Arg	Gly	Gln	Val	Leu	Ala	Pro	Leu	Pro	Leu
65					70					7 5					80
His	Gly	Val	Ala	Asp	His	Leu	Gly	Cys	Asp	Pro	Gln	Thr	Arg	Phe	Phe
				85					90					95	
Val	Pro	Pro	Asn	Ile	Lys	Gln	Trp	Ile	Ala	Leu	Leu	Gln	Arg	Gly	Asn
			100					105					110		
Cys	Thr	Phe	Lys	Glu	Lys	Ile	Ser	Arg	Ala	Ala	Phe	His	Asn	Ala	Val
		115					120					125			
Ala	Val	Val	Ile	Tyr	Asn	Asn	Lys	Ser	Lys	Glu	Glu	Pro	Val	Thr	Met
	130				•	135					140				
Thr	His	Pro	Gly	Thr	Gly	Asp	Ile	Ile	Ala	Val	Met	Ile	Thr	Glu	Leu
145					150					155					160
Arg	Gly	Lys	Asp	Ile	Leu	Ser	Tyr	Leu	Glu	Lys	Asn	Ile	Ser	Val	Gln
				165					170					175	
Met	Thr	Ile	Ala	Val	Gly	Thr	Arg	Met	Pro	Pro	Lys	Asn	Phe	Ser	Arg
			180					185					190		
Gly	Ser	Leu	Val	Phe	Val	Ser	Ile	Ser	Phe	Ile	Val	Leu	Met	Ile	Ile
		195					200					205			
Ser	Ser	Ala	Trp	Leu	Ile	Phe	Tyr	Phe	Ile	Gln	Lys	Ile	Arg	Tyr	Thr
	210					215		/	ننمو		220				

Asn	Ala	Arg	Asp	Arg	Asn	Gln	Arg	Arg	Leu	Gly	Asp	Ala	Ala	Lys	Lys
225					230					235					240
Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	Lys	Glu
				245					250					255	
Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	Tyr	Lys
			260					265					270		
Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	His	Lys
		275					280					285			
Ser	Cys	Val	Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	Met	Cys
	290					295					300				
Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	Pro	Cys
305					310					315					320
Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	Gln	Ala
				325					330					335	
Val	Asn	Arg	Arg	Ser	Ala	Leu	Gly	Asp	Leu	Ala	Gly	Asp	Asn	Ser	Leu
			340					345					350		
Gly	Leu	G1u	Pro	Leu	Arg	Thr	Ser	Gly	Ile	Ser	Pro	Leu	Pro	Gln	Asp
		355					360					365			
Gly	Glu	Leu	Thr	Pro	Arg	Thr	Gly	Glu	Ile	Asn	Ile	Ala	Val	Thr	Lys
	370)			•	375					380				
Glu	Trp	Phe	: Ile	· Ile	Ala	Ser	Phe	Gly	Leu	Leu	Ser	Ala	Leu	Thr	Leu
385	5				390)				395					400
Cys	Tyr	Met	: 11	e Ile	Arg	, Ala	Thr	Ala	Ser	Leu	Asn	Ala	Asr	ı Glu	ı Val
				405	5				410)				415	5
								_							

Glu Trp Phe

<210)> 3						-								
<211	> 41	5													
<212	2> PF	T													
<213	3> Ho	omo s	sapie	ens											
<400)> 3										-				
Met	Arg	Gly	Ala	Asn	Ala	Trp	Ala	Pro	Leu	Cys	Leu	Leu	Leu	Ala	Ala
1				5					10					15	
Ala	Thr	Gln	Leu	Ser	Arg	Gln	Gln	Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr
			20					25					30		
Cys	Gly	Gly	Ile	Leu	Thr	Gly	Glu	Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly
		35					40					45			
Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr
	50					55					60				
Val	Pro	Glu	Gly	Lys	Val	Val	Val	Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu
65					70					75					80
Glu	Ser	Asp	Asn	Leu	Cys	Arg	Tyr	Asp	Phe	Val	Asp	Val	Tyr	Asn	Gly
				85					90					95	
His	Ala	Asn	Gly	G1n	Arg	Ile	Gly	Arg	Phe	Cys	Gly	Thr	Phe	Arg	Pro.
			100					105					110		
Gly	Ala	Leu	Val	Ser	Ser	Gly	Asn	Lys	Met	Met	Val	Gln	Met	Ile	Ser
		115					120					125			
Asp	Ala	Asn	Thr	Ala	Gly	Asn	Gly	Phe	Met	Ala	Met	Phe	Ser	Ala	Ala
	130					135					140				
Glu	Pro	Asn	Glu	Arg	Gly	Asp	G1n	Tyr	Čys	Gly	Gly	Leu	Leu	Asp	Arg

145					150					155					160
Pro	Ser	Gly	Ser	Phe	Lys	Thr	Pro	Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro
				165					170					175	
Ala	Gly	Val	Thr	Cys	Val	Trp	His	Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu
			180					185					190		
Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys
		195					200					205		•	
Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala
	210					215					220				
Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val
225					230					235					240
Ser	Glu	Arg	: Asn	Glu	Leu	Leu	Ile	Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu
				245	;				250					255	
Thr	Ala	Asp	Gly	Phe	· Ile	Gly	His	Tyr	Ile	Phe	Arg	Pro	Lys	Lys	Leu
			260)				265					270		
Pro	Thr	Thi	Thi	- Glu	ı Gln	Pro	Val	Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr
		275	5				280)				285	<u>,</u>		
Gly	Leu	ı Lys	s Thi	r Thr	. Val	Ala	Leu	ı Cys	Gln	Gln	Lys	Cys	Arg	Arg	Thr
	290)				298	5				300) .			
Gly	Thi	: Le	u Gli	u Gly	y Asr	ı Tyı	r Cys	s Ser	: Ser	- Asp	Phe	va]	l Leu	Ala	Gly
305	;				310)				315	5				320
Thr	· Va	l II	e Th	r Thi	r Ile	e Thi	r Arį	g Ası	p Gly	y Sei	: Lei	ı His	s Ala	Thi	. Val
				32					330					339	
Sei	- Il	e Il	e As	n Il	e Ty:	r Ly	s Gl	u G1;	y <u>A</u> sı	n Lei	ı Ala	a Il	e Gli	ı Glı	n Ala
			34					34	-				350		

Gly	Lys	Asn	Met	Ser	Ala	Arg	Leu	Thr	Val	Val	Cys	Lys	Gln	Cys	Pro
		355					360					365			
Leu	Leu	Arg	Arg	Gly	Leu	Asn	Tyr	Ile	Ile	Met	Gly	Gln	Val	Gly	Glu
	370					375					380				
Asp	Gly	Arg	Gly	Lys	Ile	Met	Pro	Asn	Ser	Phe	Ile	Met	Met	Phe	Lys
385					390					395					400
Thr	Lys	Asn	Gln	Lys	Leu	Leu	Asp	Ala	Leu	Lys	Asn	Lys	Gln	Cys	
				405					410					415	
<210)> 4														
<21	1> 38	30													
<212	2> PF	T7												٠	
<213	3> Ho	omo s	sapie	ens											
<400)> 4														
Met	Leu	Gln	Thr	Leu	Tyr	Asp	Tyr	Phe	Trp	Trp	Glu	Arg	Leu	Trp	Leu
1				5					10					15	
Pro	Val	Asn	Leu	Thr	Trp	Ala	Asp	Leu	Glu	Asp	Arg	Asp	Gly	Arg	Va1
			20					25					30		
Tyr	Ala	Lys	Ala	Ser	Asp	Leu	Tyr	Ile	Thr	Leu	Pro	Leu	Ala	Leu	Leu
		35					40					45			
Phe															
	Leu	Ile	Val	Arg	Tyr	Phe	Phe	Glu	Leu	Tyr	Val	Ala	Thr	Pro	Leu
	Leu 50	Ile	Val	Arg	Tyr	Phe 55	Phe	Glu	Leu	Tyr	Val 60	Ala	Thr	Pro	Leu
	50					55					60		Thr		
	50					55					60				

				85					90					95	
Gln	Val	Glu	Val_	Glu	Leu	Leu	Ser	Arg	G1n	Ser	Gly	Leu	Ser	Gly	Arg
			100			•	٠	105	٠				110		
Gln	Val	Glu	Arg	Trp	Phe	Arg	Arg	Arg	Arg	Asn	Gln	Asp	Arg	Pro	Ser
		115					120					125			
Leu	Leu	Lys	Lys	Phe	Arg	Glu	Ala	Ser	Trp	Arg	Phe	Thr	Phe	Tyr	Leu
	130					135					140				
Ile	Ala	Phe	Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe
145					150					155					160
Tyr	Asp	Met	Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile
				165					170					175	
Pro	Ser	Gln	Tyr	Trp	Tyr	Tyr	Met	Ile	Glu	Leu	Ser	Phe	Tyr	Trp	Ser
			180					185					190		
Leu	Leu	Phe	Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu
		195					200					205			
Gln	Ile	Ile	His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp
	210					215					220				
Phe	Ala	Asn	Tyr	Ile	Arg	Ala	Gly	Thr	Leu	Ile	Met	Ala	Leu	His	Asp
225			•		230					235					240
Ser	Ser	Asp	Tyr	Leu	Leu	Glu	Ser	Ala	Lys	Met	Phe	Asn	Tyr	Ala	Gly
				245					250					255	
Trp	Lys	Asn	Thr	Cys	Asn	Asn	Ile	Phe	Ile	Val	Phe	Ala	Ile	Val	Phe
			260)				265	;				270		
Ile	Ile	Thr	Arg	Leu	Val	Ile	Leu	Pro	Phe	Trp	Ile	Leu	His	Cys	Thr
		275					200					205	:		

Leu	Val	Tyr	Pro	Leu	Glu	Leu	Tyr	Pro	Ala	Phe	Phe	Gly	Tyr	Tyr	Phe
	290					295					300				
Phe	Asn	Ser	Met	Met	Gly	Val	Leu	Gln	Leu	Leu	His	Ile	Phe	Trp	Ala
305					310					315					320
Tyr	Leu	Ile	Leu	Arg	Met	Ala	His	Lys	Phe	Ile	Thr	Gly	Lys	Leu	Val
				325					330					335	
Glu	Asp	Glu	Arg	Ser	Asp	Arg	Glu	Glu	Thr	Glu	Ser	Ser	Glu	Gly	Glu
			340					345					350		
Glu	Ala	Ala	Ala	Gly	Gly	Gly	Ala	Lys	Ser	Arg	Pro	Leu	Ala	Asn	Gly
		355					360					365			
His	Pro	Ile	Leu	Asn	Asn	Asn	His	Arg	Lys	Asn	Asp				
	370					375					380				
<210)> 5														
<21]	l> 58	35													
<212	2> PF	TS													
<213	3> Ho	omo s	sapie	ens											
<400)> 5														
Met	Val	Cys	Arg	Glu	Gln	Leu	Ser	Lys	Asn	Gln	Val	Lys	Trp	Val	Phe
1				5					10					15	
Ala	Gly	Ile	Thr	Cys	Val	Ser	Val	Val	Val	Ile	Ala	Ala	Ile	Val	Leu
			20					25					30		
Ala	Ile	Thr	Leu	Arg	Arg	Pro	Gly	Cys	Glu	Leu	Glu	Ala	Cys	Ser	Pro
		35					40					45			
Asn	Ala	Aen	Met	Leu	Asn	Tur	יום ו	Lau	Sor	ī au	C1	C1-	T1.	Car	A

	50					55					60				
Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	His	Ala	Ala	Asn	Ser	Lys	Lys
65					70					75					80
Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val	Leu	Glu	Ala	Asp
				85					90					95	
Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	Val	Pro	Ile
			100					105					110		
Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	Thr	Leu	Glu	Gln	Trp
		115					120					125			
Leu	Asp	Ala	Val	Leu	Gly	Ser	Ser	Gln	Lys	Gly	Ile	Lys	Leu	Asp	Phe
	130					135					140				
Lys	Asn	Ile	Lys	Ala	Val	G1y	Pro	Ser	Leu	Asp	Leu	Leu	Arg	Gln	Leu
145					150					155					160
Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn	Ala	Asp	Ile
				165					170					175	
Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn	Ala	Thr	Gln
			180)				185					190		
Phe	Leu	Ala	Leu	ı Val	G1n	Glu	Lys	Tyr	Pro	Lys	Ala	Thr	Leu	Ser	Pro
		195	5				200					205	•		
Gly	Trp	Thr	Thr	Phe	y Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg	Thr	Tyr	Thr
	210)				215	5				220)			
G1n	Ala	Me1	t Val	l Glu	ı Lys	Met	His	Glu	l Leu	ı Val	Gly	Gly	v Val	Pro	Gln
225	5				230)				235	5				240
Arg	g Val	Th	r Pho	e Pro	o Val	l Ar	g Ser	Ser	Met	t Val	l Ar	g Ala	a Ala	Trp	Pro
				2/19	<u> </u>				250	1				259	5

His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser	Leu	Thr	Leu
			260					265					270		
Trp	Gln	Ala	Ala	Ser	Asp	Pro	Met	Ser	Val	Glu	Asp	Leu	Leu	Tyr	Val
		275					280					285			
Arg	Asp	Asn	Thr	Ala	Val	His	Gln	Val	Tyr	Tyr	Asp	Ile	Phe	Glu	Pro
	290					295					300				
Leu	Leu	Ser	Gln	Phe	Lys	Gln	Leu	Ala	Leu	Asn	Ala	Thr	Arg	Lys	Pro
305					310					315					320
Met	Tyr	Tyr	Thr	Gly	Gly	Ser	Leu	Ile	Pro	Leu	Leu	Gln	Leu	Pro	Gly
				325					330					335	
Asp	Asp	Gly	Leu	Asn	Val	Glu	Trp	Leu	Val	Pro	Asp	Val	Gln	Gly	Ser
			340					345					350		
Gly	Lys	Thr	Ala	Thr	Met	Thr	Leu	Pro	Asp	Thr	Glu	Gly	Met	Ile	Leu
		355					360					365			
Leu	Asn	Thr	Gly	Leu	Glu	Gly	Thr	Val	Ala	Glu	Asn	Pro	Val	Pro	Ile
	370					375					380				
Val	His	Thr	Pro	Ser	Gly	Asn	Ile	Leu	Thr	Leu	Glu	Ser	Cys	Leu	Gln
385					390					395					400
Gln	Leu	Ala	Thr	His	Pro	Gly	His	Trp.	Gly	Ile	His	Leu	G1n	Ile	Ala
				405					410					415	
Glu	Pro	Ala	Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	Arg	Leu	Ser
			420					425					430		
Ser	Leu	Gly	Leu	Leu	His	Trp	Pro	Val	Trp	Val	Gly	Ala	Lys	Ile	Ser
		435					440					445			
His	G1y	Ser	Phe	Ser	Val	Pro	Gly	Hi∕s	نر Val	Ala	Glv	Arg	Glu	Leu	Leu

Thr Ala Val Ala Glu Val Phe Pro His Val Thr Val Ala Pro Gly Trp Pro Glu Glu Val Leu Gly Ser Gly Tyr Arg Glu Gln Leu Leu Thr Asp Met Leu Glu Leu Cys Gln Gly Leu Trp Gln Pro Val Ser Phe Gln Met Gln Ala Met Leu Leu Gly His Ser Thr Ala Gly Ala Ile Gly Arg Leu Leu Ala Ser Ser Pro Arg Ala Thr Val Thr Val Glu His Asn Pro Ala Gly Gly Asp Tyr Ala Ser Val Arg Thr Ala Leu Leu Ala Ala Arg Ala Val Asp Arg Thr Arg Val Tyr Tyr Arg Leu Pro Gln Gly Tyr His Lys Asp Leu Leu Ala His Val Gly Arg Asn

<210> 6

<211> 331

<212> PRT

<213> Homo sapiens

<400> 6

Met Trp Leu Trp Glu Asp Gln Gly Gly Leu Leu Gly Pro Phe Ser Phe

Leu	Leu	Leu	Val	Leu	Leu	Leu	Val	Thr	Arg	Ser	Pro	Val	Asn	Ala	Cys
			20					25					30		
Leu	Leu	Thr	Gly	Ser	Leu	Phe	Val	Leu	Leu	Arg	Val	Phe	Ser	Phe	Glu
		35					40					45			
Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	Gln	Val	Leu	Lys	Pro	Arg	Asp	Arg
	50					55					60				
Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp	Ala	Pro	Glu	Asn
65					70					7 5					80
Thr	Leu	Ala	Ala	Ile	Arg	Gln	Ala	Ala	Lys	Asn	Gly	Ala	Thr	Gly	Val
				85					90					95	
Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	Asp	Gly	Ile	Pro	Val	Leu	Met	His
			100					105					110		
Asp	Asn	Thr	Val	Asp	Arg	Thr	Thr	Asp	Gly	Thr	Gly	Arg	Leu	Cys	Asp
		115					120					125			
Leu	Thr	Phe	Glu	Gln	Ile	Arg	Lys	Leu	Asn	Pro	Ala	Ala	Asn	His	Arg
	130					135					140				
Leu	Arg	Asn	Asp	Phe	Pro	Asp	Glu	Lys	Ile	Pro	Thr	Leu	Arg	Glu	Ala
145					150					155					160
Val	Ala	Glu	Cys	Leu	Asn	His	Asn	Leu	Thr	Ile	Phe	Phe	Asp	Val	Lys
				165					170					175	
Gly	His	Ala	His	Lys	Ala	Thr	Glu	Ala	Leu	Lys	Lys	Met	Tyr	Met	Glu
			180					185					190		
Phe	Pro	G1n	Leu	Tyr	Asn	Asn	Ser	Val	Val	Cys	Ser	Phe	Leu	Pro	Glu
		195					200					205			
Val	Ile	Tyr	Lys	Met	Arg	Gln	Thr	Asp	ىر Arg	Asp	Val	Ile	Thr	Ala	Leu

Thr His Arg Pro Trp Ser Leu Ser His Thr Gly Asp Gly Lys Pro Arg Tyr Asp Thr Phe Trp Lys His Phe Ile Phe Val Met Met Asp Ile Leu Leu Asp Trp Ser Met His Asn Ile Leu Trp Tyr Leu Cys Gly Ile Ser Ala Phe Leu Met Gln Lys Asp Phe Val Ser Pro Ala Tyr Leu Lys Lys Trp Ser Ala Lys Gly Ile Gln Val Val Gly Trp Thr Val Asn Thr Phe Asp Glu Lys Ser Tyr Tyr Glu Ser His Leu Gly Ser Ser Tyr Ile Thr Asp Ser Met Val Glu Asp Cys Glu Pro His Phe ⟨210⟩ 7

<211> 345

<212> PRT

<213> Homo sapiens

<400> 7

Met Ser Pro Glu Glu Trp Thr Tyr Leu Val Val Leu Leu Ile Ser Ile

1 5 10 15

Pro Ile Gly Phe Leu Phe Lys Lys Ala Gly Pro Gly Leu Lys Arg Trp

Gly	Ala	Ala	Ala	Val	Gly	Leu	Gly	Leu	Thr	Leu	Phe	Thr	Cys	Gly	Pro
		35			٠.		40					4 5			
His	Thr	Leu	His	Ser	Leu	Val	Thr	Ile	Leu	Gly	Thr	Trp	Ala	Leu	Ile
	50					5 5					60				
Gln	Ala	Gln	Pro	Cys	Ser	Cys	His	Ala	Leu	Ala	Leu	Ala	Trp	Thr	Phe
65					70					75					80
Ser	Tyr	Leu	Leu	Phe	Phe	Arg	Ala	Leu	Ser	Leu	Leu	Gly	Leu	Pro	Thr
				85					90					95	
Pro	Thr	Pro	Phe	Thr	Asn	Ala	Val	Gln	Leu	Leu	Leu	Thr	Leu	Lys	Leu
			100					105					110		
Val	Ser	Leu	Ala	Ser	Glu	Val	Gln	Asp	Leu	His	Leu	Ala	Gln	Arg	Lys
		115					120		•			125			
Glu	Met	Ala	Ser	Gly	Phe	Ser	Lys	Gly	Pro	Thr	Leu	Gly	Leu	Leu	Pro
	130					135					140				
Asp	Val	Pro	Ser	Leu	Met	Glu	Thr	Leu	Ser	Tyr	Ser	Tyr	Cys	Tyr	Val
145					150					155					160
Gly	Ile	Met	Thr	G1y	Pro	Phe	Phe	Arg	Tyr	Arg	Thr	Tyr	Leu	Asp	Trp
				165					170					175	
Leu	Glu	Gln	Pro	Phe	Pro	Gly	Ala	Val	Pro	Ser	Leu	Arg	Pro	Leu	Leu
			180					185					190		
Arg	Arg	Ala	Trp	Pro	Ala	Pro	Leu	Phe	Gly	Leu	Leu	Phe	Leu	Leu	Ser
		195					200					205			
Ser	His	Leu	Phe	Pro	Leu	Glu	Ala	Val	Arg	Glu	Asp	Ala	Phe	Tyr	Ala
	210					215					220				
Arg	Pro	Leu	Pro	Ala	Arg	Leu	Phe	Tvr	نر Met	He	Pro	Val	Phe	Phe	Ala

225 230 235 240 Phe Arg Met Arg Phe Tyr Val Ala Trp Ile Ala Ala Glu Cys Gly Cys 245 250 255 Ile Ala Ala Gly Phe Gly Ala Tyr Pro Val Ala Ala Lys Ala Arg Ala 270 260 265 Gly Gly Gly Pro Thr Leu Gln Cys Pro Pro Pro Ser Ser Pro Glu Lys 275 280 285 Ala Ala Ser Leu Glu Tyr Asp Tyr Glu Thr Ile Arg Asn Ile Asp Cys 295 300 290 Tyr Ser Thr Asp Phe Cys Val Arg Val Arg Asp Gly Met Arg Tyr Trp 320 310 315 305 Asn Met Thr Val Gln Trp Trp Leu Ala Gln Tyr Ile Tyr Lys Ser Ala 330 335 325 Pro Ala Arg Ser Tyr Val Leu Arg Leu 340 345

<210> 8

<211> 89

<212> PRT

<213> Homo sapiens

20

<400> 8

Met Tyr Met Gln Asp Tyr Trp Arg Thr Trp Leu Lys Gly Leu Arg Gly

1 5 10 15

Phe Phe Phe Val Gly Val Leu Phe Ser Ala Val Ser Ile Ala Ala Phe

25 30

Cys Thr Phe Leu Val Leu Ala Ile Thr Arg His Gln Ser Leu Thr Asp 35 40 45 Pro Thr Ser Tyr Tyr Leu Ser Ser Val Trp Ser Phe Ile Ser Phe Lys 50 55 60 Trp Ala Phe Leu Leu Ser Leu Tyr Ala His Arg Tyr Arg Ala Asp Phe 65 70 75 80 Ala Asp Ile Ser Ile Leu Ser Asp Phe 85 ⟨210⟩ 9 <211> 406 <212> PRT <213> Homo sapiens ⟨400⟩ 9 Met Arg Gly Ser Val Glu Cys Thr Trp Gly Trp Gly His Cys Ala Pro 1 5 10 15 Ser Pro Leu Leu Trp Thr Leu Leu Phe Ala Ala Pro Phe Gly 20 25 30 Leu Leu Gly Glu Lys Thr Arg Gln Val Ser Leu Glu Val Ile Pro Asn 35 40 45 Trp Leu Gly Pro Leu Gln Asn Leu Leu His Ile Arg Ala Val Gly Thr 50 55 60 Asn Ser Thr Leu His Tyr Val Trp Ser Ser Leu Gly Pro Leu Ala Val 65 70 75 Val Met Val Ala Thr Asn Thr Pro His Ser Thr Leu Ser Val Asn Trp

				85					90					95	
Ser	Leu	Leu	Leu	Ser	Pro	Glu	Pro	Asp	Gly	Gly	Leu	Met	Va _. l	Leu	Pro
		•	100					105			٠		110	•	
Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser	Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu
		115					120					125			
Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser	Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly
	130					135					140				
Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile
145					150					155					160
Thr	Asp	Ser	Leu	Asp	Pro	Ala	Thr	Leu	Ser	Ala	Thr	Phe	Gln	Gly	His
				165					170					175	
Pro	Met	Asn	Asp	Pro	Thr	Arg	Thr	Phe	Ala	Asn	Gly	Ser	Leu	Ala	Phe
			180					185					190		
Arg	Val	Gln	Ala	Phe	Ser	Arg	Ser	Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg
		195	,				200					205			
Leu	Leu	His	Thr	Ala	Asp	Thr	Cys	Gln	Leu	G1u	Val	Ala	Leu	Ile	Gly
	210	•				215					220				
Ala	Ser	Pro	Arg	Gly	Asn	Arg	Ser	Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr
225	5		ě		230)				235					240
Leu	Gly	Gl:	n Gly	Pro	Asp	Cys	Pro	Ser	Met	Gln	Glu	G1n	His	Ser	Ile
				249	5				250	•				255	,
Asp	As _l	Gl:	ц Ту з	r Ala	a Pro	Ala	a Val	Phe	Gln	Leu	Asp	G1r	Leu	Leu	Trp
			260	0				265	5				270)	
Gl	y Se	r Le	u Pr	o Se:	r Gl	y Pho	e Ala	Glr	ı Çep	Arg	g Pro	Va]	l Ala	Туг	Ser
		27	5				280)				28	5		

Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro
	290					295					300				
Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg
305					310					315					320
Ala	Phe	Phe	Gly	Ser	Gln	Asn	Asn	Phe	Cys	Ala	Phe	Asn	Leu	Thr	Phe
				325					330					335	
Gly	Ala	Ser	Thr	Gly	Pro	G1 y	Tyr	Trp	Asp	G1n	His	Tyr	Leu	Ser	Trp
			340					345					350		
Ser	Met	Leu	Leu	Gly	Val	Gly	Phe	Pro	Pro	Val	Asp	Gly	Leu	Ser	Pro
		355					360					365			
Leu	Val	Leu	Gly	Ile	Met	Ala	Val	Ala	Leu	Gly	Ala	Pro	Gly	Leu	Met
	370	•				375					380				
Leu	Leu	Gly	Gly	Gly	Leu	Val	Leu	Leu	Leu	His	His	Lys	Lys	Tyr	Ser
385					390					395					400
Glu	Tyr	Gln	Ser	Ile	Asn										
				405											
<210)> 10)													
<21	1> 19	92						·					٠		
<212 ,	2> PI	RT													
<213	3> H	omo :	sapi	ens											
<400	0> 10	0													
Met	Thr	Ala	Val	Gly	Val	Gln	Ala	Ġln	Arg	Pro	Leu	Gly	Gln	Arg	Gln
1				5					10					15	
Pro	Arg	Arg	Ser	Phe	Phe	Glu	Ser	Phe	ر Ile	Arg	Thr	Leu	Ile	Ile	Thr

			20					25					30		
Cys	Val	Ala	Leu	Ala	Val	Val	Leu	Ser	Ser	Val	Ser	Ile	Cys	Asp	Gly
		35				•	40					45		٠	
His	Trp	Leu	Leu	Ala	Glu	Asp	Arg	Leu	Phe	Gly	Leu	Trp	His	Phe	Cys
	50					55					60				
Thr	Thr	Thr	Asn	G1n	Ser	Val	Pro	Ile	Cys	Phe	Arg	Asp	Leu	Gly	Gln
65					70					75					80
Ala	His	Val	Pro	Gly	Leu	Ala	Val	Gly	Met	Gly	Leu	Val	Arg	Ser	Val
				85					90					95	
Gly	Ala	Leu	Ala	Val	Val	Ala	Ala	Ile	Phe	Gly	Leu	Glu	Phe	Leu	Met
			100					105					110		
Val	Ser	G1n	Leu	Cys	Glu	Asp	Lys	His	Ser	Gln	Cys	Lys	Trp	Val	Met
		115					120					125			
Gly	Ser	Ile	Leu	Leu	Leu	Val	Ser	Phe	Val	Leu	Ser	Ser	Gly	Gly	Leu
	130					135					140				
Leu	Gly	Phe	Val	Ile	Leu	Leu	Arg	Asn	Gln	Val	Thr	Leu	Ile	Gly	Phe
145					150					155					160
Thr	Leu	Met	Phe	Trp	Cys	Glu	Phe	Thr	Ala	Ser	Phe	Leu	Leu	Phe	Leu
				165					170)	٠			175	
Asn	Ala	Ile	Ser	Gly	Leu	His	Ile	Asn	Ser	Ile	Thr	His	Pro	Trp	Glu
			180)				185	;				190)	

<210> 11

⟨211⟩ 801

<212> DNA

<213>	Homo	sapiens
		Ouprono

<400> 11

atggtgaaga	ttagcttcca	gcccgccgtg	gctggcatca	agggcgacaa	ggctgacaag	60
gcgtcggcgt	cggcccctgc	gccggcctcg	gccaccgaga	tcctgctgac	gccggctagg	120
gaggagcagc	ccccacaaca	tcgatccaag	agggggagct	cagtgggcgg	cgtgtgctac	180
ctgtcgatgg	gcatggtcgt	gctgctcatg	ggcctcgtgt	tcgcctctgt	ctacatctac	240
agatacttct	ttcttgcaca	gctggcccga	gataacttct	tccgctgtgg	tgtgctgtat	300
gaggactccc	tgtcctccca	ggtccggact	cagatggagc	tggaagagga	tgtgaaaatc	360
tacctcgacg	agaactacga	gcgcatcaac	gtgcctgtgc	cccagtttgg	cggcggtgac	420
cctgcagaca	tcatccatga	cttccagcgg	ggtctgactg	cgtaccatga	tatctccctg	480
gacaagtgct	atgtcatcga	actcaacacc	accattgtgc	tgcccctcg	caacttctgg	540
gageteetea	tgaacgtgaa	gagggggacc	tacctgccgc	agacgtacat	catccaggag	600
gagatggtgg	tcacggagca	tgtcagtgac	aaggaggccc	tggggtcctt	catctaccac	660
ctgtgcaacg	ggaaagacac	ctaccggctc	cggcgccggg	caacgcggag	gcggatcaac	720
aagcgtgggg	ccaagaactg	caatgccatc	cgccacttcg	agaacacctt	cgtggtggag	780
acgctcatct	gcggggtggt	g .				80

<210> 12

<211> 1257

<212> DNA

<213> Homo sapiens

<400> 12

atgagetgeg egggeegge gggeeetgee eggetegeeg egetegeet getgaeetge 60
ageetgtgge eggeaegge agacaaegeg ageeaggagt actaeaegge geteateaae 120
gtgaeggtge aggageeegg eegeggegee eegeteaegt ttegeatega eegegggege 180

tacgggcttg	actccccaa	ggccgaggtc	cgcggccagg	tgctggcgcc	gctgcccctc	240
cacggagttg	ctgatcatct	gggctgtgat	ccacaaaccç	ggttctttgt	ccctcctaat	300
atcaaacagt	ggattgcctt	gctgcagagg	ggaaactgca	cgtttaaaga	gaaaatatca	360
cgggccgctt	tccacaatgc	agttgctgta	gtcatctaca	ataataaatc	caaagaggag	420
ccagttacca	tgactcatcc	aggcactgga	gatattattg	ctgtcatgat	aacagaattg	480
aggggtaagg	atattttgag	ttatctggag	aạaaacatct	ctgtacaaat	gacaatagct	540
gttggaactc	gaatgccacc	gaagaacttc	agccgtggct	ctctagtctt	cgtgtcaata	600
tcctttattg	ttttgatgat	tatttcttca	gcatggctca	tattctactt	cattcagaag	660
atcaggtaca	caaatgcacg	cgacaggaac	cagcgtcgtc	tcggagatgc	agccaagaaa	720
gccatcagta	aattgacaac	caggacagta	aagaagggtg	acaaggaaac	tgacccagac	780
tttgatcatt	gtgcagtctg	catagagagc	tataagcaga	atgatgtcgt	ccgaattctc	840
ccctgcaago	atgttttcca	caaatcctgc	gtggatccct	ggcttagtga	acattgtacc	900
tgtcctatgt	gcaaacttaa	tatattgaag	gccctgggaa	ttgtgccgaa	tttgccatgt	960
actgataacg	g tagcattcga	tatggaaagg	ctcaccagaa	cccaagctgt	taaccgaaga	1020
tcagccctcg	gegaeetege	cggcgacaac	tcccttggcc	ttgagccact	tcgaacttcg	1080
gggatctcad	ctcttcctca	ggatggggag	ctcactccga	gaacaggaga	aatcaacatt	1140
gcagtaaca	a aagaatggtt	tattattgcc	agttttggcc	tcctcagtgc	cctcacactc	1200
toctacato	a tcatcagago	cacagetage	ttgaatgota	atgaggtaga	atggttt	1257

<210> 13

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 13

CCECEECAEC	agtecceaga	gagaccigii	ticacatgig	giggcatici	tactggagag	120
tctggattta	ttggcagtga	aggttttcct	ggagtgtacc	ctccaaatag	caaatgtact	180
tggaaaatca	cagttcccga	aggaaaagta	gtcgttctca	atttccgatt	catagacctc	240
gagagtgaca	acctgtgccg	ctatgacttt	gtggatgtgt	acaatggcca	tgccaatggc	300
cagcgcattg	gccgcttctg	tggcactttc	cggcctggag	cccttgtgtc	cagtggcaac	360
aagatgatgg	tgcagatgat	ttctgatgcc	aacacagctg	gcaatggctt	catggccatg	420
ttctccgctg	ctgaaccaaa	cgaaagaggg	gatcagtatt	gtggaggact	ccttgacaga	480
ccttccggct	cttttaaaac	ccccaactgg	ccagaccggg	attaccctgc	aggagtcact	540
tgtgtgtggc	acattgtagc	cccaaagaat	cagcttatag	aattaaagtt	tgagaagttt	600
gatgtggagc	gagataacta	ctgccgatat	gattatgtgg	ctgtgtttaa	tggcggggaa	660
gtcaacgatg	ctagaagaat	tggaaagtat	tgtggtgata	gtccacctgc	gccaattgtg	720
tctgagagaa	atgaacttct	tattcagttt	ttatcagact	taagtttaac	tgcagatggg	780
tttattggtc	actacatatt	caggccaaaa	aaactgccta	caactacaga	acagcctgtc	840
accaccacat	tccctgtaac	cacgggttta	aaaaccaccg	tggccttgtg	tcaacaaaag	900
tgtagacgga	cggggactct	ggagggcaat	tattgttcaa	gtgactttgt	attagccggc	960
actgttatca	caaccatcac	tcgcgatggg	agtttgcacg	ccacagtete	gatcatcaac	1020
atctacaaag	agggaaattt	ggcgattcag	caggcgggca	agaacatgag	tgccaggctg	1080
actgtcgtct	gcaagcagtg	ccctctcctc	agaagaggtc	taaattacat	tattatgggc	1140
caagtaggtg	aagatgggcg	aggcaaaatc	atgccaaaca	gctttatcat	gatgttcaag	1200
accaagaatc	agaageteet	ggatgcctta	aaaaataagc	aatot		1245

⟨210⟩ 14

⟨211⟩ 1140

<212> DNA

<213> Homo sapiens

⟨400⟩ 14

atgctccaga	ccttgtatga	ttacttctgg	tgggaacgtc	tgtggctgcc	tgtgaacttg	60
acctgggccg	atctagaaga	ccgagatgga	cgtgtctacg	ccaaagcctc	agatetetat	120
atcacgctgc	ccctggcctt	gctcttcctc	atcgttcgat	acttctttga	gctgtacgtg	180
gctacaccac	tggctgccct	cttgaacata	aaggagaaaa	ctcggctgcg	ggcacctccc	240
aacgccacct	tggaacattt	ctacctgacc	agtggcaagc	agcccaagca	ggtggaagta	300
gagettttgt	cccggcagag	cgggctctct	ggccgccagg	tagagcgttg	gttccgtcgc	360
cgccgcaacc	aggaccggcc	cagtctcctc	aagaagttcc	gagaagccag	ctggagattc	420
acattttacc	tgattgcctt	cattgccggc	atggccgtca	ttgtggataa	accctggttc	480
tatgacatga	agaaagtttg	ggagggatat	cccatacaga	gcactatccc	ttcccagtat	540
tggtactaca	tgattgaact	ttccttctac	tggtccctgc	tcttcagcat	tgcctctgat	600
gtcaagcgaa	aggatttcaa	ggaacagatc	atccaccatg	tggccaccat	cattctcatc	660
agcttttcct	ggtttgccaa	ttacatccga	gctgggactc	taatcatggc	tctgcatgac	720
tcttccgatt	acctgctgga	gtcagccaag	atgtttaact	acgcgggatg	gaagaacacc	780
tgcaacaaca	tcttcatcgt	cttcgccatt	gtttttatca	tcacccgact	ggtcatcctg	840
cccttctgga	a tcctgcattg	caccctggtg	tacccactgg	agctctatcc	tgccttcttt	900
ggctattact	tcttcaattc	catgatggga	gttctacago	tgctgcatat	cttctgggcc	960
tacctcatt	t tgcgcatggo	ccacaagtto	ataactggaa	a agctggtaga	agatgaacgc	1020
agtgaccgg	g aagaaacaga	a gagctcagag	g ggggaggagg	g ctgcagctgg	gggaggagca	1080
aagagccgg	c ccctagccaa	a tggccaccc	atcctcaata	a acaaccatce	g taagaatgac	1140

<210> 15

<211> 1755

<212> DNA

<213≻ Homo sapiens

⟨400⟩ 15

60	cggcattacc	gggtgtttgc	caggtcaagt	atcaaagaat	gggagcagtt	atggtctgca
120	gcggccaggc	tcaccctgcg	gtccttgcca	tgccgcaata	tggtggtcat	tgtgtgtctg
180	gagcctgggc	actacctgct	gacatgctgg	ccctgatgcc	aggcctgcag	tgtgagctgg
240	cagcaagaaa	acgcagccaa	acctggtacc	cttggaggtc	ggcgagatgc	cagatcagcc
300	caatgtagaa	aggctgacgt	acagtcctgg	cagcaacatc	ctgccctgaa	gccatgacag
360	cactatctac	cacacccccc	cccatcatgg	gacaggagtt	cagccaatga	gggctcggca
420	aaagggcatc	gctcttccca	gctgtgctgg	gtggctggac	cactggagca	agtgacaaca
480	gcggcagctg	tggacctcct	ggccctccc	caaggcagtg	tcaagaacat	aaactggact
540	aaagggcccc	ctgacatctt	tggatcaacg	gcggcccata	gcaaagtccg	acagaggaag
600	ccaggagaag	tggccctggt	acacagttcc	ggtcaatgcc	tctcaactga	aacatgctca
660	gtccccaaac	acatgtccac	accaccttct	tccaggctgg	ctaccctatc	tatcccaagg
720	agtgccccag	tggtgggagg	atgcacgagc	ggtggagaag	cccaagccat	aggacgtaca
780	cttcagctgg	cctggcccca	gtgcgggctg	gtcttccatg	tccctgtacg	agggtcacct
840	ggaccccatg	aggctgcctc	acgctgtggc	gtacagcctg	aatctgagag	ctgctgagcc
900	ctactatgac	tccaccaagt	aacactgctg	cgtccgggat	atctgctcta	tcggtggaag
960	acggaaacca	tgaatgccac	cagctggcct	acagttcaag	ctctcctgtc	atctttgagc
1020	tgacggtctg	tgcctgggga	cttctccagc	cctgatccct	caggaggcag	atgtactaca
1080	aatgaccctc	aaacagcaac	ggcagcggta	tgacgtccag	ggctggttcc	aatgtggagt
1140	ggctgaaaac	agggaactgt	actggcctcg	cctgctgaac	aaggcatgat	ccagacacag
1200	ctgcctgcag	cgctggagtc	aacatcctga	tccaagtggc	ttgttcatac	cccgtgccca
1260	gcccgcagcc	aaatagcgga	atccatttgc	acactggggc	cacatcccgg	cagctggcca
1320	gcattggcct	ttggcctctt	ctctccagcc	gctggcacgc	ccctggcctt	ctccggccat
1380	tgtggctggc	tccccggcca		ctcccacggg	gggccaaaat	gtgtgggttg
1440	accaggctgg	tgactgtggc	شر ttccccacg	ggctgaggtc	ttacagctgt	agagagetge

cetgaggagg tgetgggcag tggetacagg gaacagetge teacagatat getagagttg 1500
tgceagggge tetggeaace tgtgteette cagatgcagg ceatgetget gggecacage 1560
acagetggag ceataggeag getgetggea teeteecee gggecacegt caeagtggag 1620
caeaaceeag etgggggega etatgeetet gtgaggacag cattgetgge agetaggget 1680
gtggacagga eeegagteta etacaggeta eeecaggget aceacaagga ettgetgget 1740
catgttggta gaaac 1755

<210> 16

<211> 993

<212> DNA

<213> Homo sapiens

<400> 16

atgtggctgt gggaggacca gggcggcctc ctgggccctt tctccttcct gctgctagtg 60 120 ctgctgctgg tgacgcggag cccggtcaat gcctgcctcc tcaccggcag cctcttcgtt 180 ctactgcgcg tcttcagctt tgagccggtg ccctcttgca gggccctgca ggtgctcaag 240 ccccgggacc gcatttctgc catcgcccac cgtggcggca gccacgacgc gcccgagaac acgctggcgg ccattcggca ggcagctaag aatggagcaa caggcgtgga gttggacatt 300 360 gagtttactt ctgacgggat tcctgtctta atgcacgata acacagtaga taggacgact 420 gatgggactg ggcgattgtg tgatttgaca tttgaacaaa ttaggaagct gaatcctgca 480 gcaaaccaca gactcaggaa tgatttccct gatgaaaaga tccctaccct aagggaagct 540 gttgcagagt gcctaaacca taacctcaca atcttctttg atgtcaaagg ccatgcacac aaggctactg aggctctaaa gaaaatgtat atggaatttc ctcaactgta taataatagt 600 gtggtctgtt ctttcttgcc agaagttatc tacaagatga gacaaacaga tcgggatgta 660 720 ataacagcat taactcacag accttggagc ctaagccata caggagatgg gaaaccacgc tatgatactt tctggaaaca ttttatattt gttatgatgg acattttgct cgattggagc 780

atgcataata	tcttgtggta	cctgtgtgga	atttcagctt	tcctcatgca	aaaggatttt	840
gtatccccgg	cctacttgaa	gaagtggtca	gctaaaggaa	tccaggttgt	tggttggact	900
gttaatacct	ttgatgaaaa	gagttactac	gaatcccatc	ttggttccag	ctatatcact	960
gacagcatgg	tagaagactg	cgaacctcac	ttc			993

⟨210⟩ 17

⟨211⟩ 1035

<212> DNA

<213> Homo sapiens

<400> 17

atgtcgcctg aagaatggac gtatctagtg gttcttctta tctccatccc catcggcttc 60 ctctttaaga aagccggtcc tgggctgaag agatggggag cagccgctgt gggcctgggg 120 ctcaccctgt tcacctgtgg cccccacact ttgcattctc tggtcaccat cctcgggacc 180 tgggccctca ttcaggccca gccctgctcc tgccacgccc tggctctggc ctggactttc 240 tectatetee tgttetteeg ageceteage eteetgggee tgeceaetee eacgeeette 300 accaatgeeg tecagetget getgaegetg aagetggtga geetggeeag tgaagteeag 360 gacctgcatc tggcccagag gaaggaaatg gcctcaggct tcagcaaggg gcccaccctg 420 gggctgctgc ccgacgtgcc ctccctgatg gagacactca gctacagcta ctgctacgtg 480 ggaatcatga caggcccgtt cttccgctac cgcacctacc tggactggct ggagcagccc 540 ttccccgggg cagtgcccag cctgcggcc ctgctgcgcc gcgcctggcc ggccccgctc 600 ttcggcctgc tgttcctgct ctcctctcac ctcttcccgc tggaggccgt gcgcgaggac 660 geettetacg eccecceget geeggeegg etettetaca tgateceegt ettettegge 720 ttccgcatgc gcttctacgt ggcctggatt gccgccgagt gcggctgcat tgccgccggc 780 tttggggcct accccgtggc cgccaaagcc cgggccggag gcggccccac cctccaatgc 840 ccaccccca gcagtccgga gaaggcggct tccttggagt atgactatga gaccatccgc 900

300

29 /307

8	acatcgact	gctacagcac	agatttctgc	gtgcgggtgc	gcgatggcat	gcggtactgg	960
8	acatgacgg	tgcagtggtg	gctggcgcag	tatatctaca	agagcgcacc	tgcccgttcc	1020
1	tatgtcctgc	gcctt		•			1035
•	(210> 18						
•	<211> 267						
,	<212> DNA						
,	<213> Homo	sapiens					
	<400> 18						
	atgtacatgc	aagattattg	gaggacctgg	ctcaaggggc	tgcgcggctt	cttcttcgtg	60
	ggcgtcctct	tctcggccgt	ctccatcgct	gccttctgca	ccttcctcgt	gctggccatc	120
	acccggcatc	agagcctcac	agaccccacc	agctactacc	tctccagcgt	ctggagcttc	180
	atttccttca	agtgggcctt	cctgctcagc	ctctatgccc	accgctaccg	ggctgacttt	240
	gctgacatca	gcatcctcag	cgatttc				267
	<210> 19						
	<211> 1218	:					
	<212> DNA						
	<213> Homo	sapiens				•	
	<400> 19						
	atgcgcggct	ctgtggagtg	g cacctgggg1	tgggggcact	t gtgccccag	cccctgctc	6
	ctttggacto	tacttctgt1	t tgcagccca	tttggcctg	c tgggggagaa	gacccgccag	12
	gtgtctctgg	g aggtcatcc	c taactggct;	g ggccccctg	c agaacctgc1	tcatatacgg	18
	gcagtgggca	a ccaattcca	c actgcacta	t gtgtggagc	a gcctggggc	tctggcagtg	24

gtaatggtgg ccaccaacac cccccacagc accctgagcg tcaactggag cctcctgcta

tcccctgagc	ccgatggggg	cctgatggtg	ctccctaagg	acagcattca	gttttcttct	360
gcccttgttt	ttaccagget	gcttgagttt	gacagcacca	acgtgtccga	tacggcagca	420
aagcctttgg	gaagaccata	tcctccatac	tccttggccg	atttctcttg	gaacaacatc	480
actgattcat	tggatcctgc	caccctgagt	gccacatttc	aaggccaccc	catgaacgac	540
cctaccagga	cttttgccaa	tggcagcctg	gccttcaggg	tccaggcctt	ttccaggtcc	600
agccgaccag	cccaaccccc	tcgcctcctg	cacacagcag	acacctgtca	gctagaggtg	660
gccctgattg	gagcctctcc	ccggggaaac	cgttccctgt	ttgggctgga	ggtagccaca	720
ttgggccagg	gccctgactg	ccctcaatg	caggagcagc	actccatcga	cgatgaatat	780
gcaccggccg	tcttccagtt	ggaccagcta	ctgtggggct	ccctcccatc	aggctttgca	840
cagtggcgac	cagtggctta	ctcccagaag	ccggggggcc	gagaatcagc	cctgccctgc	900
caagcttccc	ctcttcatcc	tgccttagca	tactctcttc	cccagtcacc	cattgtccga	960
gccttctttg	ggtcccagaa	taacttctgt	gccttcaatc	tgacgttcgg	ggcttccaca	1020
ggccctggct	attgggacca	acactacctc	agctggtcga	tgctcctggg	tgtgggcttc	1080
cctccagtgg	acggcttgtc	cccactagtc	ctgggcatca	tggcagtggc	cctgggtgcc	1140
ccagggctca	tgctgctagg	gggcggcttg	gttctgctgc	tgcaccacaa	gaagtactca	1200
gagtaccagt	ccataaat					1218

⟨210⟩ 20

<211> 576

<212> DNA

<213> Homo sapiens

<400> 20

atgactgccg tcggcgtgca g	gcccagagg	cctttgggcc	aaaggcagcc	ccgccggtcc	60
ttctttgaat ccttcatccg g	gacceteate	atcacgtgtg	tggccctggc	tgtggtcctg	120
tcctcggtct ccatttgtga t	tgggcactgg	سر ctcctggctg	aggaccgcct	cttcgggctc	180

tggcacttct į	gcaccaccac	caaccagagt	gtgccgatct	gcttcagaga	cctgggccag	240
gcccatgtgc	ccgggctggc	cgtgggcatg	ggcctggtac	gcagcgtggg	cgccttggcc	300
gtggtggccg	ccatttttgg	cctggagttc	ctcatggtgt	cccagttgtg	cgaggacaaa	360
cactcacagt	gcaagtgggt	catgggttcc	atcctcctcc	tggtgtcttt	cgtcctctcc	420
tccggcgggc	tcctgggttt	tgtgatcctc	ctcaggaacc	aagtcacact	catcggcttc	480
accctaatgt	tttggtgcga	attcactgcc	tccttcctcc	tcttcctgaa	cgccatcagc	540
ggccttcaca	tcaacagcat	cacccatccc	tgggaa			576
<210> 21						
<211> 2042						
<212> DNA						
<213> Homo	sapiens					
<220>						
<221> CDS						
<222> (91).	(894)					
<400> 21						
tccggtgcct	gcagagctcg	gagcggcgga	ggcagagacc	gaggctgcac	cggcagaggc	60
tgcggggcgg	acgcgcgggc	cggcgcagcc	atg gtg aa	g att agc t	tc cag	111
			Met Val Ly	s Ile Ser P	he Gln	
			1	5		
ccc gcc gtg	g gct ggc a	atc aag ggc	gac aag gct	gac aag go	g tcg gcg	159
Pro Ala Val	Ala Gly	lle Lys Gly	Asp Lys Ala	Asp Lys Al	a Ser Ala	
10)	15		20		
tcg gcc cci	t gcg ccg i	gcc tcg gcc	acc gag ato	ctg ctg ac	g ccg gct	207

Ser Ala Pro Ala Pro Ala Ser Ala Thr Glu Ile Leu Leu Thr Pro Ala

	25					30					35					
agg	gag	gag	cag	ccc	cca	caa	cat	cga	tcc	aag	agg	ggg	agc	tca	gtg	255
Arg	Glu	Glu	Gln	Pro	Pro	Gln	His	Arg	Ser	Lys	Arg	Gly	Ser	Ser	Val	٠
40					4 5				•	50					55	
ggc	ggc	gtg	tgc	tac	ctg	tcg	atg	ggc	atg	gtc	gtg	ctg	ctc	atg	ggc	303
Gly	Gly	Val	Cys	Tyr	Leu	Ser	Met	Gly	Met	Val	Val	Leu	Leu	Met	Gly	
				60					65					70		
ctc	gtg	ttc	gcc	tct	gtc	tac	atc	tac	aga	tac	ttc	ttt	ctt	gca	cag	351
Leu	Val	Phe	Ala	Ser	Val	Tyr	Ile	Tyr	Arg	Tyr	Phe	Phe	Leu	Ala	Gln	
			7 5					80					85			
ctg	gcc	cga	gat	aac	ttc	ttc	cgc	tgt	ggt	gtg	ctg	tat	gag	gac	tcc	399
Leu	Ala	Arg	Asp	Asn	Phe	Phe	Arg	Cys	Gly	Val	Leu	Tyr	Glu	Asp	Ser	
		90					95					100				
					cgg											447
Leu		Ser	Gln	Val	Arg	Thr	Gln	Met	Glu	Leu	Glu	Glu	Asp	Val	Lys	
	105					110					115					
					aac											495
	Tyr	Leu	Asp	Glu	Asn	Tyr	Glu	Arg	Ile	Asn	Val	Pro	Val	Pro	G1n	
120					125					130					135	
					cct											543
Phe	Gly	Gly	Gly		Pro	Ala	Asp	Ile	Ile	His	Asp	Phe	Gln	Arg	Gly	
				140					145					150		
					gat											591
Leu	Thr	Ala		His	Asp	Ile	Ser		Asp نر	Lys	Cys	Tyr			Glu	
			155					160					165			

ctc	aac	acc	acc	att	gtg	ctg	ccc	cct	cgc	aac	ttc	tgg	gag	ctc	ctc	639
Leu	Asn	Thr	Thr	Ile	Val	Leu	Pro	Pro	Arg	Asn	Phe	Trp	Glu	Leu	Leu	
		170			•		175					180	.•		•	
atg	aac	gtg	aag	agg	ggg	acc	tac	ctg	ccg	cag	acg	tac	atc	atc	cag	687
Met	Asn	Val	Lys	Arg	Gly	Thr	Tyr	Leu	Pro	Gln	Thr	Tyr	Ile	Ile	G1n	
	185					190					195					
gag	gag	atg	gtg	gtc	acg	gag	cat	gtc	agt	gac	aag	gag	gcc	ctg	ggg	735
														Leu	_	
200					205					210	•				215	
	ttc	atc	tac	cac		tøc	aac	999	ลลล		acc	tac	ന മമ	ctc		783
														Leu		100
ger.	rne	116	1 9 1		Leu	Cys	nSii	GIY	-	nsp	1111	Iyı	VI B		vid	
		•		220					225					230		
cgc	cgg	gca	acg	cgg	agg	cgg	atc	aac	aag	cgt	ggg	gcc	aag	aac	tgc	831
Arg	Arg	Ala	Thr	Arg	Arg	Arg	Ile	Asn	Lys	Arg	Gly	Ala	Lys	Asn	Cys	
			235					240					245			
aat	gcc	atc	cgc	cac	ttc	gag	aac	acc	ttc	gtg	gtg	gag	acg	ctc	atc	879
Asn	Ala	Ile	Arg	His	Phe	Glu	Asn	Thr	Phe	Val	Val	Glu	Thr	Leu	Ile	
		250					255					260	ı			
tgc	ggg	gtg	gtg	tga	ggcc	ctc	ctcc	ccca	ga a	cccc	ctgc	c gt	gtto	ctc		930
Cys	Gly	Val	Val													
	265	,											•			
ttt	tctt	ctt	tccg	gctg	ct c	tctg	gccc	t cc	tcct	tccc	cct	gctt	agc	ttgt	actttg	990
gac	gcgt	ttc	tata	gagg	gtg a	catg	tctc	t cc	atto	ctct	cca	acco	tgc	ccac	ctccct	1050
gta	ccag	gagc	tgtg	atct	ct c	ggtg	gggg	g co	cato	tctg	ctg	acci	ggg	tgtg	gcggag	1110
0 02	0200	rcga	tect	geaa	nag t	etti	tete	rt σt	CCCS	ctgt	: ctt	ะฮลลเ	nctø	ggco	tgccaa	1170

<400≻ 22

46

34 /307

agcctgggcc	cacagctgca	ccggcagccc	aaggggaagg	accggttggg	ggagccgggc	1230
atgtgaggcc	ctgggcaagg	ggatggggct	gtgggggcgg	ggcggcatgg	gcttcagaag	1290
tatctgcaca	attagaaaag	tcctcagaag	cttttcttg	gagggtacac	tttcttcact	1350
gtccctattc	ctagacctgg	ggcttgagct	gaggatggga	cgatgtgccc	agggagggac	1410
ccaccagagc	acaagagaag	gtggctacct	gggggtgtcc	cagggactct	gtcagtgcct	1470
tcagcccacc	agcaggagct	tggagtttgg	ggagtgggga	tgagtccgtc	aagcacaact	1530
gttctctgag	tggaaccaaa	gaagcaagga	gctaggaccc	ccagtcctgc	ccccaggag	1590
cacaagcagg	gtccctcag	tcaaggcagt	gggatgggcg	gctgaggaac	ggggcaggca	1650
aggtcactgc	tcagtcacgt	ccacggggga	cgagccgtgg	gttctgctga	gtaggtggag	1710
ctcattgctt	tctccaagct	tggaactgtt	ttgaaagata	acacagaggg	aaagggagag	1770
ccacctggta	cttgtccacc	ctgcctcctc	tgttctgaaa	ttccatcccc	ctcagcttag	1830
gggaatgcac	ctttttccct	ttccttctca	cttttgcatg	ttttactga	tcattcgata	1890
tgctaaccgt	tctcagccct	gagccttgga	gaggagggct	gtaacgcctt	cagtcagtct	1950
ctggggatga	aactcttaaa	tgctttgtat	attttctcaa	ttagatctct	tttcagaagt	2010
gtctatagaa	caataaaaat	cttttacttc	tg			2042
<210> 22						
<211> 1433						
<212> DNA						
<213> Homo	sapiens			•		
⟨220⟩						
<221> CDS						
⟨222⟩ (5)	. (1264)					

 WO 01/12660 PCT/JP00/05356

	1	•			5	,				10)					
ctc	gcc	ctg	ctg	acc	tgc	agc	ctg	tgg	ccg	gca	cgg	gca	gac	aac	gcg	94
Leu	Ala	Leu	Leu	Thr	Cys	Ser	Leu	Trp	Pro	Ala	Arg	Ala	Asp	Asn	Ala	
15					20					25					30	
agc	cag	gag	tac	tac	acg	gcg	ctc	atc	aac	gtg	acg	gtg	cag	gag	ccc	142
Ser	Gln	Glu	Tyr	Tyr	Thr	Ala	Leu	Ile	Asn	Val	Thr	Val	G1n	Glu	Pro	
				35					40					45		
ggc	cgc	ggc	gcc	ccg	ctc	acg	ttt	cgc	atc	gac	cgc	ggg	cgc	tac	ggg	190
Gly	Arg	Gly	Ala	Pro	Leu	Thr	Phe	Arg	Ile	Asp	Arg	Gly	Arg	Tyr	Gly	
			50					55					60			
ctt	gac	tcc	ccc	aag	gcc	gag	gtc	cgc	ggc	cag	gtg	ctg	gcg	ccg	ctg	238
Leu	Asp	Ser	Pro	Lys	Ala	Glu	Val	Arg	Gly	G1n	Val	Leu	Ala	Pro	Leu	
		65					70					75				
ccc	ctc	cac	gga	gtt	gct	gat	cat	ctg	ggc	tgt	gat	cca	caa	acc	cgg	286
Pro	Leu	His	Gly	Val	Ala	Asp	His	Leu	Gly	Cys	Asp	Pro	G1n	Thr	Arg	
	80					85					90					
ttc	ttt	gto	cct	cct	aat	atc	aaa	cag	tgg	att	gcc	ttg	ctg	cag	agg	334
Phe	Phe	Val	Pro	Pro	Asn	Ile	Lys	Gln	Trp	Ile	Ala	Leu	Leu	Gln	Arg	
95					100			•		105					110	
gga	aac	tgo	acg	ttt	aaa	gag	aaa	ata	tca	cgg	gcc	gct	ttc	cac	aat	382
Gly	Asn	Cys	Thr	Phe	Lys	Glu	Lys	Ile	Ser	Arg	Ala	Ala	Phe	His	. Asn	
				115	, 1				120)				125	;	
gca	gtt	gct	gta	gto	ato	tac	aat	aat	aaa	tco	aaa	gag	gag	g cca	gtt	430
Ala	Va]	l Ala	a Val	Val	Ile	Yyr	Asn	Asn	Lys	Ser	Lys	Glu	Glu	ı Pro	Val	
			130)				135	5				140)		

acc	atg	act	cat	cca	ggc	act	gga	gat	att	att	gct	gtc	atg	ata	aca	478
Thr	Met	Thr	His	Pro	Gly	Thr	Gly	Asp	Ile	Ile	Ala	Val	Met	Ile	Thr	
		145		٠			150					155			·	
gaa	ttg	agg	ggt	aag	gat	att	ttg	agt	tat	ctg	gag	aaa	aac	atc	tct	526
Glu	Leu	Arg	Gly	Lys	Asp	Ile	Leu	Ser	Tyr	Leu	Glu	Lys	Asn	Ile	Ser	
	160					165					170					
gta	caa	atg	aca	ata	gct	gtt	gga	act	cga	atg	cca	ccg	aag	aac	ttc	574
Val	Gln	Met	Thr	Ile	Ala	Val	Gly	Thr	Arg	Met	Pro	Pro	Lys	Asn	Phe	
175					180					185					190	
agc	cgt	ggc	tct	cta	gtc	ttc	gtg	tca	ata	tcc	ttt	att	gtt	ttg	atg	622
Ser	Arg	Gly	Ser	Leu	Val	Phe	Val	Ser	Ile	Ser	Phe	Ile	Val	Leu	Met	
				195					200					205		
att	att	tct	tca	gca	tgg	ctc	ata	ttc	tac	ttc	att	cag	aag	atc	agg	670
Ile	Ile	Ser	Ser	Ala	Trp	Leu	Ile	Phe	Tyr	Phe	Ile	Gln	Lys	Ile	Arg	
			210					215					220			
tac	aca	aat	gca	cgc	gac	agg	aac	cag	cgt	cgt	ctc	gga	gat	gca	gcc	718
Tyr	Thr	Asn	Ala	Arg	Asp	Arg	Asn	G1n	Arg	Arg	Leu	Gly	Asp	Ala	Ala	
		225					230					235				
aag	aaa	gcc	atc	agt	aaa	ttg	aca	acc	agg	aca	gta	aag	aag	ggt	gac	766
Lys	Lys	Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	
	240					245					250					
aag	gaa	act	gac	cca	gac	ttt	gat	cat	tgt	gca	gtc	tgc	ata	gag	agc	814
Lys	Glu	Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	
255					260					265					270	
tat	aag	cag	aat	gat	gtc	gtc	cga	att	۔ ctc	ccc	tgc	aag	cat	gtt	ttc	862

Tyr	Lys	Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	
				275				•	280	•				285		
các	aaa	tcc	tgc	gtg	gat	ccc	tgg	ctt	agt	gaa	cat	tgt	acc	tgt	cct	910
His	Lys	Ser	Cys	Val	Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	
			290					295					300			
atg	tgc	aaa	ctt	aat	ata	ttg	aag	gcc	ctg	gga	att	gtg	ccg	aat	ttg	958
Met	Cys	Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	
		305					310					315				
cca	tgt	act	gat	aac	gta	gca	ttc	gat	atg	gaa	agg	ctc	acc	aga	acc	1006
Pro	Cys	Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	
	320					325					330					
caa	gct	gtt	aac	cga	aga	tca	gcc	ctc	ggc	gac	ctc	gcc	ggc	gac	aac	1054
G1n	Ala	Val	Asn	Arg	Arg	Ser	Ala	Leu	Gly	Asp	Leu	Ala	Gly	Asp	Asn	
335					340					345					350	
tcc	ctt	ggc	ctt	gag	cca	ctt	cga	act	tcg	ggg	ato	tca	cct	ctt	cct	1102
Ser	Leu	Gly	Leu	Glu	Pro	Leu	Arg	Thr	Ser	Gly	Ile	Ser	Pro		Pro	
				355					360					365	5	
cag	gat	ggg	gag	ctc	act	ccg	aga	aca	gga	gaa	ato	aac	att	gca	a gta	1150
G1n	Asp	Gly	Glu	ı Leu	Thr	Pro	Arg	Thr	Gly	Glu	Ile	e Ası			a Val	
			370)				375	5				380)		
															cctc	1198
Thr	Lys	s Glu	ı Trı	o Phe	e Ile	e Ile			r Phe	e Gly	r Le			r Ala	a Leu	
		38					390					39				
								/							t aat	1246
Thi	r Le	u Cy	s Ty	r Me	t Il	e Ile	e Arg	g Ala	a Thi	r Ala	a Se	r Le	u As	n Al	a Asn	

400	405	5	410	
gag gta gaa	tgg ttt tgaagaa	igaa aaaacctgct	ttctgactga ttttgc	ectt 1300
Glu Val Glu	Trp Phe	·		
415				
gaaggaaaaa	agaacctatt tttgt	gcatc atttaccaa	it catgocacac aago	catttat 1360
ttttagtaca	ttttatttt tcata	aaatt gctaatgco	a aagctttgta ttaa	aaagaaa 1420
taaataataa	aat			1433
<210> 23				
<211> 1917				
<212> DNA				
<213> Homo	sapiens			
<220>				
<221> CDS				
<222> (210)	(1457)			
<400> 23				
gtatcccccg	gctacctggg ccgcc	ccgcg gcggtgcgc	eg egtgagaggg ageg	gegeggg 60
cagccgagcg	ccggtgtgag ccago	egetge tgecagtgi	tg agccagcgct gct	gccagtg 120
tgagcggcgg	tgtgagcgcg gtggg	gtgcgg aggggcgtg	gt gtgccggcgc gcgc	egeegtg 180
gggtgcaaac	cccgagcgtc tacgo	ctgcc atg agg gg	ge geg aae gee tg	g gcg 233
		Met Arg G	ly Ala Asn Ala Tr	o Ala
		1	5	
cca ctc tgo	ctg ctg ctg gc	t gcc gcc acc ca	ag ctc tcg cgg ca	g cag 281
Pro Leu Cy:	s Leu Leu Leu Ala	a Ala Ala Thr G	ln Leu Ser Arg Gl	n Gln

tcc	cca	gag	aga	cct	gtt	ttc	aca	tgt	ggt	ggc	att	ctt	act	gga	gag	329
Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr	Cys	Gly	Gly	Ile	Leu	Thr	Gly	G1u	
2 5		•			30					35					40	
tct	gga	ttt	att	ggc	agt	gaa	ggt	ttt	cct	gga	gtg	tac	cct	cca	aat	377
Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly	Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	
				45					50					55		
agc	aaa	tgt	act	tgg	aaa	atc	aca	gtt	ссс	gaa	gga	aaa	gta	gtc	gtt	425
Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr	Val	Pro	Glu	Gly	Lys	Val	Val	Val	
			60					65					70			
ctc	aat	ttc	cga	ttc	ata	gac	ctc	gag	agt	gac	aac	ctg	tgc	cgc	tat	473
Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu	Glu	Ser	Asp	Asn	Leu	Cys	Arg	Tyr	
		7 5					80					85				
gac	ttt	gtg	gat	gtg	tac	aat	ggc	cat	gcc	aat	ggc	cag	cgc	att	ggc	521
Asp	Phe	Val	Asp	Val	Tyr	Asn	Gly	His	Ala	Asn	Gly	Gln	Arg	Ile	Gly	
	90					95					100					
cgc	ttc	tgt	ggc	act	ttc	cgg	cct	gga	gcc	ctt	gtg	tcc	agt	ggc	aac	569
Arg	Phe	Cys	Gly	Thr	Phe	Arg	Pro	Gly	Ala	Leu	Val	Ser	Ser	Gly	Asn	
105					110					115					120	
aag	atg	atg	gtg	cag	atg	att	tct	gat	gcc	aac	aca	gct	ggc	aat	ggc	617
Lys	Met	Met	Val	Gln	Met	Ile	Ser	Asp	Ala	Asn	Thr	Ala	Gly	Asn	Gly	
				125					130					135		
ttc	atg	gcc	atg	ttc	tcc	gct	gct	gaa	cca	aac	gaa	aga	ggg	gat	cag	665
Phe	Met	Ala	Met	Phe	Ser	Ala	Ala	Glu	Pro	Asn	Glu	Arg	Gly	Asp	Gln	
			140					145	۱۰۰ تشمی				150)		
tat	tgt	gga	gga	ctc	ctt	gac	aga	cct	tcc	ggc	tct	ttt	aaa	acc	ccc	713

Tyr	Cys	Gly	Gly	Leu	Leu	Asp	Arg	Pro	Ser	Gly	Ser	Phe	Lys	Thr	Pro	
		155					160					165				
aac	tgg	cca	gac	cgg	gat	tac	cct	gca	gga	gtc	act	tgt	gtg	tgg	cac	761
Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro	Ala	Gly	Val	Thr	Cys	Val	Trp	His	
	170					175					180					
att	gta	gcc	cca	aag	aat	cag	ctt	ata	gaa	tta	aag	ttt	gag	aag	ttt	809
Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu	Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	
185					190					195					200	
gat	gtg	gag	cga	gat	aac	tac	tgc	cga	tat	gat	tat	gtg	gct	gtg	ttt	857
Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys	Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	
				205					210					215		
aat	ggc	ggg	gaa	gtc	aac	gat	gct	aga	aga	att	gga	aag	tat	tgt	ggt	905
Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala	Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	
			220					225					230			
gat	agt	cca	cct	gcg	cca	att	gtg	tct	gag	aga	aat	gaa	ctt	ctt	att	953
Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val	Ser	Glu	Arg	Asn	Glu	Leu	Leu	Ile	
		235					240					245				
cag	ttt	tta	tca	gac	tta	agt	tta	act	gca	gat	ggg	ttt	att	ggt	cac	1001
Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu	Thr	Ala	Asp	Gly	Phe	Ile	Gly	His	
	250					255					260					
tac	ata	ttc	agg	cca	aaa	aaa	ctg	cct	aca	act	aca	gaa	cag	cct	gtc	1049
Tyr	Ile	Phe	Arg	Pro	Lys	Lys	Leu	Pro	Thr	Thr	Thr	Glu	Gln	Pro	Val	
265					270					275					280	
acc	acc	aca	ttc	cct	gta	acc	acg	ggt	tta	aaa	acc	acc	gtg	gcc	ttg	1097
Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr	Glv	Leu	Lvs	Thr	Thr	Val	Ala	Len	

				285					290					295		
tgt	caa	caa	aag	tgt	aga	cgg	acg	ggg	act	ctg	gag	ggc	aat	tat	tgt	1145
Cys	G1n	Gln	Lys	Cys	Arg	Arg	Thr	Gly	Thr	Leu	Glu	Gly	Asn	Tyr	Cys	
			300					305					310			
tca	agt	gac	ttt	gta	tta	gcc	ggc	act	gtt	atc	aca	acc	atc	act	cgc	1193
Ser	Ser	Asp	Phe	Val	Leu	Ala	Gly	Thr	Val	Ile	Thr	Thr	Ile	Thr	Arg	
		315					320					325				
gat	ggg	agt	ttg	cac	gcc	aca	gtc	tcg	atc	atc	aac	atc	tac	aaa	gag	1241
Asp	G1y	Ser	Leu	His	Ala	Thr	Val	Ser	Ile	Ile	Asn	Ile	Tyr	Lys	Glu	
	330					335					340					
gga	aat	ttg	gcg	att	cag	cag	gcg	ggc	aag	aac	atg	agt	gcc	agg	ctg	1289
Gly	Asn	Leu	Ala	Ile	Gln	Gln	Ala	Gly	Lys	Asn	Met	Ser	Ala	Arg	Leu	
345					350					355					360	
act	gtc	gtc	tgc	aag	cag	tgc	cct	ctc	ctc	aga	aga	ggt	cta	aat	tac	1337
Thr	Val	Val	Cys	Lys	Gln	Cys	Pro	Leu	Leu	Arg	Arg	Gly	Leu	Asn	Tyr	
				365					370					375		
att	att	atg	ggc	caa	gta	ggt	gaa	gat	ggg	cga	ggc	aaa	atc	atg	cca	1389
Ile	Ile	Met	Gly	Gln	Val	Gly	Glu	Asp	Gly	Arg	Gly	Lys	Ile	Met	Pro	
			380					385					390		*	
aac	agc	ttt	atc	atg	atg	ttc	aag	acc	aag	aat	cag	aag	ctc	ctg	gat	143
Asn	Ser	Phe	Ile	Met	Met	Phe	Lys	Thr	Lys	Asn	Gln	Lys	Leu	Leu	Asp	
		395					400					405				
gcc	tta	aaa	aat	aag	caa	tgt	taa	cagt	gaa	ctgt	gtcc	at t	taag	c		148
Ala	Leu	Lys	Asn	Lys	Gln	Cys			- نثسو	-						
	410)				415										

tgtattctgc	cattgccttt	gaaagatcta	tgttctctca	gtagaaaaaa	aaatacttat	1540
aaaattacat	attctgaaag	aggattccga	aagatgggac	tggttgactc	ttcacatgat	1600
ggaggtatga	ggcctccgag	atagctgagg	gaagttcttt	gcctgctgtc	agaggagcag	1660
ctatctgatt	ggaaacctgc	cgacttagtg	cggtgatagg	aagctaaaag	tgtcaagcgt	1720
tgacagcttg	gaagcgttta	tttatacatc	tctgtaaaag	gatattttag	aattgagttg	1780
tgtgaagatg	tcaaaaaaag	attttagaag	tgcaatattt	atagtgttat	ttgtttcacc	1840
ttcaagcctt	tgccctgagg	tgttacaatc	ttgtcttgcg	ttttctaaat	caatgcttaa	1900
taaaatattt	ttaaagg					1917

<210> 24

<211> 2258

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (225)...(1367)

<400> 24

tttttcccgg ctgggctcgg gctcagctcg actgggctcg gcgggcggcg gcggcggcgc 60
ccgcggctgg cggaggaggg agggcgaggg cgggcgggg ccggcggggg ggcggaagag 120
ggaggagagg cgcggggagc caggcctcgg ggcctcggag caaccacccg agcagacgga 180
gtacacggag cagcggcccc ggccccgcca acgctgccgc cggg atg ctc cag 233
Met Leu Gln

1

acc ttg tat gat tac ttc tgg tgg gaa cgt ctg tgg ctg cct gtg aac 281

Thr Leu Tyr Asp Tyr Phe Trp Trp Glú Arg Leu Trp Leu Pro Val Asn

WO 01/12660 PCT/JP00/05356

	5					10					15					
ttg	acc	tgg	gcc	gat	cta	gaa	gac	cga	gat	gga	cgt	gtc	tac	gcc	aaa	329
Leu	Thr	Trp	Ala	Asp	Leu	Glu	Asp	Arg	Asp	Gly	Arg	Val	Tyr	Ala	Lys	
20					25					30					35	
gcc	tca	gat	ctc	tat	atc	acg	ctg	ccc	ctg	gcc	ttg	ctc	ttc	ctc	atc	377
Ala	Ser	Asp	Leu	Tyr	Ile	Thr	Leu	Pro	Leu	Ala	Leu	Leu	Phe	Leu	Ile	
				40					45					50		
gtt	cga	tac	ttc	ttt	gag	ctg	tac	gtg	gct	aca	cca	ctg	gct	gcc	ctc	425
Val	Arg	Tyr	Phe	Phe	Glu	Leu	Tyr	Val	Ala	Thr	Pro	Leu	Ala	Ala	Leu	
			55					60					65			
ttg	aac	ata	aag	gag	aaa	act	cgg	ctg	cgg	gca	cct	ccc	aac	gcc	acc	473
Leu	Asn	Ile	Lys	Glu	Lys	Thr	Arg	Leu	Arg	Ala	Pro	Pro	Asn	Ala	Thr	
		70					75					80				
ttg	gaa	cat	ttc	tac	ctg	acc	agt	ggc	aag	cag	ccc	aag	cag	gtg	gaa	521
Leu	Glu	His	Phe	Tyr	Leu	Thr	Ser	Gly	Lys	Gln	Pro	Lys	Gln	Val	Glu	
	85					90					95					
gta	gag	ctt	ttg	tcc	cgg	cag	agc	ggg	ctc	tct	ggc	cgc	cag	gta	gag	569
Val	Glu	Leu	Leu	Ser	Arg	Gln	Ser	Gly	Leu	Ser	Gly	Arg	Gln	Val	Glu	
100					105				٠	110					115	
cgt	tgg	ttc	cgt	cgc	cgc	cgc	aac	cag	gac	cgg	ccc	agt	cto	cto	aag	617
Arg	Trp	Phe	Arg	Arg	Arg	Arg	Asn	Gln	Asp	Arg	Pro	Ser	Leu	ı Let	Lys	
				120)				125	•				130)	
aag	tto	cga	a gaa	gcc	ago	tgg	aga	ttc	aca	ttt	tac	ctg	g ati	t gco	ttc	665
Lys	Phe	Arg	g Glu	ı Ala	s Ser	Trp	Are	g Phe	Ţhr	Phe	Туг	Leu	ı Ile	e Ala	a Phe	
			135	5				140)				14	5		

att	gcc	ggc	atg	gcc	gtc	att	gtg	gat	aaa	ccc	tgg	ttc	tat	gac	atg	713
Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe	Tyr	Asp	Met	
		150					155					160				
aag	aaa	gtt	tgg	gag	gga	tat	ссс	ata	cag	agc	act	atc	cct	tcc	cag	761
Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile	Pro	Ser	Gln	
	165					170					175					
tat	tgg	tac	tac	atg	att	gaa	ctt	tcc	ttc	tac	tgg	tcc	ctg	ctc	ttc	809
Tyr	Trp	Tyr	Tyr	Met	Ile	Glu	Leu	Ser	Phe	Tyr	Trp	Ser	Leu	Leu	Phe	
180					185					190					195	
agc	att	gcc	tct	gat	gtc	aag	cga	aag	gat	ttc	aag	gaa	cag	atc	atc	857
Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu	Gln	Ile	Ile	
				200					205					210		
cac	cat	gtg	gcc	acc	atc	att	ctc	atc	agc	ttt	tcc	tgg	ttt	gcc	aat	905
His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp	Phe	Ala	Asn	
			215					220					225			
tac	atc	cga	gct	ggg	act	cta	atc	atg	gct	ctg	cat	gac	tet	tcc	gat	953
Tyr	Ile	Arg	Ala	Gly	Thr	Leu	Ile	Met	Ala	Leu	His	Asp	Ser	Ser	Asp	
		230					235					240				
tac	ctg	ctg	gag	tca	gcc	aag	atg	ttt	aac	tac	gcg	gga	tgg	aag	aac	1001
Tyr	Leu	Leu	Glu	Ser	Ala	Lys	Met	Phe	Asn	Tyr	Ala	Gly	Trp	Lys	Asn	
	245					250					255					
acc	tgc	aac	aac	atc	ttc	atc	gtc	ttc	gcc	att	gtt	ttt	atc	atc	acc	1049
Thr	Cys	Asn	Asn	Ile	Phe	Ile	Val	Phe	Ala	Ile	Val	Phe	Ile	Ile	Thr	
260					265					270					275	
cga	ctg	gtc	atc	ctg	ссс	ttc	tgg	atc	ctg	cat	tgc	acc	ctg	gtg	tac	1097

Arg Leu Val	Ile Leu	Pro Phe	Trp Ile	Leu His	Cys Thr	Leu	Val	Tyr	
. •	280			285			290		
cca ctg gag	ctc-tat	cct gcc	ttc ttt	ggc tat	tac ttc	ttc	aat	tcc	1145
Pro Leu Glu	Leu Tyr	Pro Ala	Phe Phe	Gly Tyr	Tyr Phe	Phe	Asn	Ser	
	295		300			305			
atg atg gga	gtt cta	cag ctg	ctg cat	atc ttc	tgg gcc	tac	ctc	att	1193
Met Met Gly	Val Leu	Gln Leu	Leu His	Ile Phe	Trp Ala	Tyr	Leu	Ile	
310			315		320	ı			
ttg cgc atg	gcc cac	aag ttc	ata act	gga aag	ctg gta	gaa	gat	gaa	1241
Leu Arg Met	Ala His	Lys Phe	Ile Thr	Gly Lys	Leu Val	Glu	Asp	Glu	•
325		330			335				
cgc agt gac	cgg gaa	gaa aca	gag ago	tca gag	ggg gag	gag	gct	gca ·	1289
Arg Ser Asp	Arg Glu	Glu Thr	Glu Ser	Ser Glu	Gly Glu	Glu	Ala	Ala	
340		345		350	ı			355	
gct ggg gga	gga gca	aag ago	cgg cc	cta gcc	aat ggo	cac	ссс	atc	1337
Ala Gly Gly	Gly Ala	Lys Ser	Arg Pro	Leu Ala	Asn Gly	His	Pro	Ile	
	360	·		365			370		
ctc aat aac	aac cat	cgt aag	g aat ga	c tgaacca	itta ttco	agct	gc ct	tccca	1390
Leu Asn Asn	n Asn His	Arg Lys	s Asn As	р					
	375		38	0					
gattaatgca	taaagcca	ag gaact	taccct g	ctccctgcg	g ctatag	ggtc	actt	taagct	1450
ctggggaaaa	aggagaaa	igt gagag	ggagag t	tctctgcat	t cctccc	tcct	tgct ⁻	tgtcac	1510
ccagttgcct	ttaaacca	aa ttcta	aaccag c	ctatcccca	a ggtagg	ggga	cgtt	ggttat	1570
attctgttag	agggggao	egg tegt:	attttc c	teçetace	c gccaag	tcat	cctt	tctact	1630
gcttttgagg				-	-				1690

216

46 /307

tgagaatttg	gccccagctg	tttgcctttg	actccctgac	ctccagagcc	agggttgtgc	1750
cttattgtcc	catctgtggg	cctcattctg	ccaaagctgg	accaaggcta	acctttctaa	1810
gctccctaac	ttgggccaga	aaccaaagct	gagcttttaa	ctttctccct	ctatgacaca	1870
aatgaattga	gggtaggagg	agggtgcaca	taacccttac	cctacctctg	ccaaaaagtg	1930
ggggctgtac	tggggactgc	tcggatgatc	tttcttagtg	ctacttcttt	cagctgtccc	1990
tgtagcgaca	ggtctaagat	ctgactgcct	cctttctctg	gcctcttccc	ccttccctct	2050
tctcttcagc	taggctagct	ggtttggagt	agaatggcaa	ctaattctaa	tttttattta	2110
ttaaatattt	ggggttttgg	ttttaaagcc	agaattacgg	ctagcaccta	gcatttcagc	2170
agagggacca	ttttagacca	aaatgtactg	ttaatgggtt	ttttttaaa	attaaaagat	2230
taaataaaaa	atattaaata	aaacatgg				2258

<210> 25

<211> 1973

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (130)...(1887)

⟨400⟩ 25

gagcagacca ggcccggtgg agaattaggt gctgctggga gctcctgcct cccacaggat 60
tccagctgca gggagcctca gggactctgg gccgcacgga gttgggggca ttccccagag 120
agcgtcgcc atg gtc tgc agg gag cag tta tca aag aat cag gtc aag 168
Met Val Cys Arg Glu Gln Leu Ser Lys Asn Gln Val Lys

1 5 10

tgg gtg ttt gcc ggc att acc tgt gtg tct gtg gtg gtc att gcc gca

Trp	Val	Phe	Ala	Gly	Ile	Thr	Cys	Val	Ser	Val	Val	Val	Ile	Ala	Ala	
	15					20					25					
ata	gtc	ctt	gcc	atc	acc	ctg	cgg	cgg	cca	ggc	tgt	gag	ctg	gag	gcc	264
Ile	Val	Leu	Ala	Ile	Thr	Leu	Arg	Arg	Pro	Gly	Cys	G1u	Leu	Glu	Ala	
30					35					40					45	
tgc	agc	cct	gat	gcc	gac	atg	ctg	gac	tac	ctg	ctg	agc	ctg	ggc	cag	312
Cys	Ser	Pro	Asp	Ala	Asp	Met	Leu	Asp	Tyr	Leu	Leu	Ser	Leu	Gly	Gln	
				50					55					60		
atc	agc	cgg	cga	gat	gcc	ttg	gag	gtc	acc	tgg	tac	cac	gca	gcc	aac	360
Ile	Ser	Arg	Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	His	Ala	Ala	Asn	
			65					70					75			
agc	aag	aaa	gcc	atg	aca	gct	gcc	ctg	aac	agc	aac	atc	aca	gtc	ctg	408
Ser	Lys	Lys	Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val	Leu	
		80					85					90				
gag	gct	gac	gtc	aat	gta	gaa	ggg	ctc	ggc	aca	gcc	aat	gag	aca	gga	456
Glu	Ala	Asp	Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	
	95					100					105					•
gtt	ccc	atc	atg	gca	cac	ccc	ccc	act	atc	tac	agt	gac	aac	aca	ctg	504
Val	Pro	Ile	Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	Thr	Leu	
110					115					120					125	
gag	cag	tgg	ctg	gac	gct	gtg	ctg	ggc	tct	tcc	caa	aag	ggc	atc	aaa	552
Glu	Gln	Trp	Leu	Asp	Ala	Val	Leu	Gly	Ser	Ser	Gln	Lys	Gly	Ile	Lys	
				130					135					140		
ctg	gac	ttc	aag	aac	atc	aag	gca	gtg	ggc	ccc	tcc	ctg	gac	ctc	ctg	600
Leu	Asp	Phe	Lys	Asn	Ile	Lys	Ala	Val	Gly	Pro	Ser	Leu	Asp	Leu	Leu	

			145					150					155			
cgg	cag	ctg	aca	gag	gaa	ggc	aaa	gtc	cgg	cgg	ccc	ata	tgg	atc	aac	648
Arg	Gln	Leu	Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn	
		160					165					170				
gct	gac	atc	tta	aag	ggc	ccc	aac	atg	ctc	atc	tca	act	gag	gtc	aat	696
Ala	Asp	Ile	Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn	
	175					180					185					
gcc	aca	cag	ttc	ctg	gcc	ctg	gtc	cag	gag	aag	tat	ccc	aag	gct	acc	744
Ala	Thr	Gln	Phe	Leu	Ala	Leu	Val	Gln	Glu	Lys	Tyr	Pro	Lys	Ala	Thr	
190					195					200					205	
cta	tct	cca	ggc	tgg	acc	acc	ttc	tac	atg	tcc	acg	tcc	cca	aac	agg	792
Leu	Ser	Pro	Gly	Trp	Thr	Thr	Phe	Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg	
				210					215					220		
acg	tac	acc	caa	gcc	atg	gtg	gag	aag	atg	cac	gag	ctg	gtg	gga	gga	840
Thr	Tyr	Thr	Gln	Ala	Met	Val	Glu	Lys	Met	His	Glu	Leu	Val	Gly	Gly	
			225					230					235			
gtg	ccc	cag	agg	gtc	acc	ttc	cct	gta	cgg	tct	tcc	atg	gtg	cgg	gct	888
Val	Pro	Gln	Arg	Val	Thr	Phe	Pro	Val	Arg	Ser	Ser	Met	Val	Arg	Ala	
		240				٠	245	,				250				
gcc	tgg	ссс	cac	ttc	agc	tgg	ctg	ctg	agc	caa	tct	gag	agg	tac	agc	936
Ala	Trp	Pro	His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser	
	255					260					265					
ctg	acg	ctg	tgg	cag	gct	gcc	tcg	gac	ссс	atg	tcg	gtg	gaa	gat	ctg	984
Leu	Thr	Leu	Trp	Gln	Ala	Ala	Ser	Asp	Pro	Met	Ser	Val	Glu	Asp	Leu	
270					275			,	تغمين	287					205	

ctc tac gtc cgg gat aac act gct gtc cac caa gtc tac tat ga	ac atc 1	.032
Leu Tyr Val Arg Asp Asn Thr Ala Val His Gln Val Tyr Tyr As	sp Ile	
290 295 30	00	
ttt gag cct ctc ctg tca cag ttc aag cag ctg gcc ttg aat ge	cc aca	1080
Phe Glu Pro Leu Leu Ser Gln Phe Lys Gln Leu Ala Leu Asn A	la Thr	
305 310 315		
cgg aaa cca atg tac tac aca gga ggc agc ctg atc cct ctt c	tc cag	1128
Arg Lys Pro Met Tyr Tyr Thr Gly Gly Ser Leu Ile Pro Leu L	eu Gln	
320 325 330		
ctg cct ggg gat gac ggt ctg aat gtg gag tgg ctg gtt cct g	ac gtc	1176
Leu Pro Gly Asp Asp Gly Leu Asn Val Glu Trp Leu Val Pro A	sp Val	
335 340 345		
cag ggc agc ggt aaa aca gca aca atg acc ctc cca gac aca g	gaa ggc	1224
Gln Gly Ser Gly Lys Thr Ala Thr Met Thr Leu Pro Asp Thr G	Glu Gly	
350 355 360	365	
atg atc ctg ctg aac act ggc ctc gag gga act gtg gct gaa	aac ccc	1272
Met Ile Leu Leu Asn Thr Gly Leu Glu Gly Thr Val Ala Glu	Asn Pro	
370 375	380	
gtg ccc att gtt cat act cca agt ggc aac atc ctg acg ctg	gag tcc	1320
Val Pro Ile Val His Thr Pro Ser Gly Asn Ile Leu Thr Leu	Glu Ser	
385 390 395		
tgc ctg cag cag ctg gcc aca cat ccc gga cac tgg ggc atc	cat ttg	1368
Cys Leu Gln Gln Leu Ala Thr His Pro Gly His Trp Gly Ile	His Leu	
400 405 410		
caa ata gcg gag ccc gca gcc ctc cgg cca tcc ctg gcc ttg	ctg gca	1416

Gln	Ile	Ala	Glu	Pro	Ala	Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	
	415					420					425					
cgc	ctc	tcc	agc	ctt	ggc	ctc	ttg	cat	tgg	cct	gtg	tgg	gtt	ggg	gcc	1464
Arg	Leu	Ser	Ser	Leu	Gly	Leu	Ļeu	His	Trp	Pro	Val	Trp	Val	Gly	Ala	
430					435					440					445	
aaa	atc	tcc	cac	ggg	agt	ttt	tcg	gtc	ссс	ggc	cat	gtg	gct	ggc	aga	1512
Lys	Ile	Ser	His	Gly	Ser	Phe	Ser	Val	Pro	Gly	His	Val	Ala	Gly	Arg	
				450					455					460		
gag	ctg	ctt	aca	gct	gtg	gct	gag	gtc	ttc	ссс	cac	gtg	act	gtg	gca	1560
Glu	Leu	Leu	Thr	Ala	Val	Ala	Glu	Val	Phe	Pro	His	Val	Thr	Val	Ala	
			465					470					475			
cca	ggc	tgg	cct	gag	gag	gtg	ctg	ggc	agt	ggc	tac	agg	gaa	cag	ctg	1608
Pro	Gly	Trp	Pro	Glu	Glu	Val	Leu	Gly	Ser	Gly	Tyr	Arg	Glu	Gln	Leu	
		480					485					490				
ctc	aca	gat	atg	cta	gag	ttg	tgc	cag	ggg	ctc	tgg	caa	cct	gtg	tcc	1656
Leu	Thr	Asp	Met	Leu	Glu	Leu	Cys	Gln	Gly	Leu	Trp	Gln	Pro	Val	Ser	
	495	•				500					505					
ttc	cag	atg	cag	gcc	atg	ctg	ctg	ggc	cac	agc	aca	gct	gga	gcc	ata	1704
Phe	Gln	Met	Gln	Ala	Met	Leu	Leu	Gly	His	Ser	Thr	Ala	Gly	Ala	Ile	
510					515					520					525	
ggc	agg	ctg	ctg	gca	tcc	tcc	ccc	cgg	gcc	acc	gtc	aca	gtg	gag	cac	1752
Gly	Arg	Leu	Leu	Ala	Ser	Ser	Pro	Arg	Ala	Thr	Val	Thr	Val	Glu	His	
				530					535					540		
aac	cca	gct	ggg	ggc	gac	tat	gcc	tct	gtg بر	agg	aca	gca	ttg	ctg	gca	1800
Asn	Pro	Ala	Gly	Gly	Asp	Tyr	Ala	Sér	Val	Arg	Thr	Ala	Leu	Leu	Ala	

545 550 555 gct agg gct gtg gac agg acc cga gtc tac tac agg cta ccc cag ggc 1848 Ala Arg Ala Val Asp Arg Thr Arg Val Tyr Tyr Arg Leu Pro Gln Gly 560 565 570 tac cac aag gac ttg ctg gct cat gtt ggt aga aac tgagcaccca ggggtg 1900 Tyr His Lys Asp Leu Leu Ala His Val Gly Arg Asn 575 580 585 gtgggccagc ggacctcagg gcggaggctt cccacgggga ggcaggaaga aataaaggtc 1960 tttggctttc tcc 1973 <210> 26 <211> 1606 <212> DNA <213> Homo sapiens ⟨220⟩ <221> CDS <222> (135)...(1130) <400> 26 60 attgtgcggc gctggtcccc tcagagggtt cctgctgctg ccggtgcctt ggaccctccc cctcgcttct cgttctactg ccccaggagc ccggcgggtc cgggactccc gtccgtgccg 120 gtgcggcgc cggc atg tgg ctg tgg gag gac cag ggc ggc ctc ctg ggc 170 Met Trp Leu Trp Glu Asp Gln Gly Gly Leu Leu Gly 1 5 10 cct ttc tcc ttc ctg ctg cta gtg ctg ctg ctg gtg acg cgg agc ccg 218

Pro Phe Ser Phe Leu Leu Leu Val Leu Leu Val Thr Arg Ser Pro

		15					20					25				
gtc	aat	gcc	tgc	ctc	ctc	acc	ggc	agc	ctc	ttc	gtt	cta	ctg	cgc	gtc	266
Val	Asn	Ala	Cys	Leu	Leu	Thr	Gly	Ser	Leu	Phe	Val	Leu	Leu	Arg	Val	
	30					35					40					
ttc	agc	ttt	gag	ccg	gtg	ccc	tct	tgc	agg	gcc	ctg	cag	gtg	ctc	aag	314
Phe	Ser	Phe	Glu	Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	Gln	Val	Leu	Lys	
45					50					55					60	
ссс	cgg	gac	cgc	att	tct	gcc	atc	gcc	cac	cgt	ggc	ggc	agc	cac	gac	362
Pro	Arg	Asp	Arg	Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp	
				65					70					7 5		
gcg	ccc	gag	aac	acg	ctg	gcg	gcc	att	cgg	cag	gca	gct	aag	aat	gga	410
Ala	Pro	Glu	Asn	Thr	Leu	Ala	Ala	Ile	Arg	Gln	Ala	Ala	Lys	Asn	Gly	
			80					85					90			
gca	aca	ggc	gtg	gag	ttg	gac	att	gag	ttt	act	tct	gac	ggg	att	cct	458
Ala	Thr	Gly	Val	Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	Asp	Gly	Ile	Pro	
		95					100					105				
gtc	tta	atg	cac	gat	aac	aca	gta	gat	agg	acg	act	gat	ggg	act	ggg	506
Val	Leu	Met	His	Asp	Asn	Thr	Val	Asp	Arg	Thr	Thr	Asp	Gly	Thr	Gly	
	110					115					120					
cga	ttg	tgt	gat	ttg	aca	ttt	gaa	caa	att	agg	aag	ctg	aat	cct	gca	554
Arg	Leu	Cys	Asp	Leu	Thr	Phe	Glu	Gln	Ile	Arg	Lys	Leu	Asn	Pro	Ala	
125					130					135					140	
gca	aac	cac	aga	ctc	agg	aat	gat	ttc	cct	gat	gaa	aag	atc	cct	acc	602
Ala	Asn	His	Arg	Leu	Arg	Asn	Asp	Phe	Pro	Asp	Glu	Lys	Ile	Pro	Thr	
				145				/	150					155		

cta	agg	gaa	gct	gtt	gca	gag	tgc	cta	aac	cat	aac	ctc	aca	atc	ttc	650
Leu	Arg	Glu	Ala	Val	Ala	Glu	Cys	Leu	Asn	His	Asn	Leu	Thr	Ile	Phe	. •
			160					165					170		•	
ttt	gat	gtc	aaa	ggc	cat	gca	cac	aag	gct	act	gag	gct	cta	aag	aaa	698
Phe	Asp	Val	Lys	Gly	His	Ala	His	Lys	Ala	Thr	Glu	Ala	Leu	Lys	Lys	
		175					180					185				
atg	tat	atg	gaa	ttt	cct	caa	ctg	tat	aat	aat	agt	gtg	gtc	tgt	tct	746
Met	Tyr	Met	Glu	Phe	Pro	Gln	Leu	Tyr	Asn	Asn	Ser	Val	Val	Cys	Ser	
	190					195					200					
ttc	ttg	cca	gaa	gtt	atc	tac	aag	atg	aga	caa	aca	gat	cgg	gat	gta	794
Phe	Leu	Pro	Glu	Val	Ile	Tyr	Lys	Met	Arg	Gln	Thr	Asp	Arg	Asp	Val	
205					210					215					220	
ata	aca	gca	tta	act	cac	aga	cct	tgg	agc	cta	agc	cat	aca	gga	gat	842
Ile	Thr	Ala	Leu	Thr	His	Arg	Pro	Trp	Ser	Leu	Ser	His	Thr	Gly	Asp	
				225					230					235		
ggg	aaa	cca	cgc	tat	gat	act	ttc	tgg	aaa	cat	ttt	ata	ttt	gtt	atg	890
Gly	Lys	Pro	Arg	Tyr	Asp	Thr	Phe	Trp	Lys	His	Phe	Ile	Phe	Val	Met	
			240					245					250			
atg	gac	att	ttg	ctc	gat	tgg	agc	atg	cat	aat	atc	ttg	tgg	tac	ctg	938
Met	Asp	Ile	Leu	Leu	Asp	Trp	Ser	Met	His	Asn	Ile	Leu	Trp	Tyr	Leu	
		255	i				260)				265	•			
tgt	gga	att	tca:	gct	ttc	ctc	atg	caa	aag	gat	ttt	gta	tcc	cce	gcc	986
Cys	Gly	Ile	Ser	Ala	Phe	Leu	Met	Gln	Lys	Asp	Phe	Val	Ser	Pro	Ala	
	270)				275	;	_	۵ تشمیق		280)				
tac	tte	g aag	g aag	tgg	tca	gct		-			gtt	gti	gg1	tgg	g act	1034

Tyr Leu Lys Lys Trp Ser Ala Lys Gly Ile Gln Val Val Gly Trp Thu	r
285 290 295 300)
gtt aat acc ttt gat gaa aag agt tac tac gaa tcc cat ctt ggt tcc	c 1082
Val Asn Thr Phe Asp Glu Lys Ser Tyr Tyr Glu Ser His Leu Gly Ser	r
305 310 315	
age tat ate act gae age atg gta gaa gae tge gaa eet cae tte	1127
Ser Tyr Ile Thr Asp Ser Met Val Glu Asp Cys Glu Pro His Phe	
320 325 330	
tag actttcacgg tgggacgaaa cgggttcaga aactgccagg ggcctcatac	1180
agggatatca aaataccctt tgtgctagcc caggccctgg ggaatcaggt gactcaca	aca 1240
aatgcaatag ttggtcactg catttttacc tgaaccaaag ctaaacccgg tgttgcca	acc 1300
atgcaccatg gcatgccaga gttcaacact gttgctcttg aaaatctggg tctgaaaa	aaa 1360
cgcacaagag cccctgccct gccctagctg aggcacacag ggagacccag tgaggata	aag 1420
cacagattga attgtacaat ttgcagatgc agatgtaaat gcatgggaca tgcatga	taa 1480
ctcagagttg acattttaaa acttgccaca cttatttcaa atatttgtac tcagcta	tgt 1540
taacatgtac tgtagacatc aaacttgtgg ccatactaat aaaattatta aaaggag	cac 1600
taaagg	1606

⟨210⟩ 27

<211> 2380

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (247)...(1284)

<400> 27

agtgt	gga	cc t	ggac	toga	a tc	ccgt	tgcc	gac	tcgc	gct	ctcg	gctt	ct g	ctcc	ggggc	60	
ttctt	ccc	tg c	ccgc	ccgg	g gc	cctg	aċcg	tgg	cttc	ttc	cccg.	gcct	ga t	ctgc	gcagc	120	
ccgg	ggg	cg c	ccag	aagg	a gc	aggc	ggcg	cgg	gggc	gcg	ctgg	gcgg	gg g	aggc	gtggc	180	
cggag	gctg	cg g	cggc	aagc	g gg	ctgg	gact	gct	cggc	cgc	ctcc	tgcc	cg g	cgag	cagct	240	
caga	cc a	tg t	cg c	ct g	aa g	aa t	gg a	cg t	at c	ta g	tg g	tt c	tt c	tt a	tc	288	
	M	et S	er P	ro G	lu G	lu T	rp T	hr T	yr L	eu V	al V	al L	eu L	eu I	le		
		1				5					10						
tcc	atc	ccc	atc	ggc	ttc	ctc	ttt	aag	aaa	gcc	ggt	cct	ggg	ctg	aag	336	I
Ser :	Ile	Pro	Ile	Gly	Phe	Leu	Phe	Lys	Lys	Ala	Gly	Pro	Gly	Leu	Lys		
15					20					25					30		
aga	tgg	gga	gca	gcc	gct	gtg	ggc	ctg	ggg	ctc	acc	ctg	ttc	acc	tgt	384	ŧ
Arg	Trp	Gly	Ala	Ala	Ala	Val	Gly	Leu	Gly	Leu	Thr	Leu	Phe	Thr	Cys		
				35					40					45			
ggc	ccc	cac	act	ttg	cat	tct	ctg	gtc	acc	atc	ctc	ggg	acc	tgg	gcc	432	2
Gly	Pro	His	Thr	Leu	His	Ser	Leu	Val	Thr	Ile	Leu	Gly	Thr	Trp	Ala		
			50					55					60				
ctc	att	cag	gcc	cag	ccc	tgc	tcc	tgc	cac	gcc	ctg	gct	ctg	gcc	tgg	480)
Leu	Ile	<u>G</u> ln	Ala	Gln	Pro	Cys	Ser	Cys	His	Ala	Leu	Ala	Leu	Ala	Trp		
		65					70					75					
act	ttc	tcc	tat	ctc	ctg	ttc	ttc	cga	gcc	ctc	agc	ctc	ctg	ggc	ctg	52	8
Thr	Phe	Ser	Tyr	Leu	Leu	Phe	Phe	Arg	Ala	Leu	Ser	Leu	Leu	Gly	Leu		
	80					85					90						
ccc	act	ccc	acg	ccc	ttc	acc	aat	gcc	gtc	cag	ctg	ctg	ctg	acg	ctg	57	6
Pro	Thr	Pro	Thr	Pro	Phe	Thr	Asn	Ala	Val	Gln	Leu	Leu	Leu	Thr	Leu		

95					100					105					110	
aag	ctg	gtg	agc	ctg	gcc	agt	gaa	gtc	cag	gac	ctg	cat	ctg	gcc	cag	624
Lys	Leu	Val	Ser	Leu	Ala	Ser	Glu	Val	Gln	Asp	Leu	His	Leu	Ala	Gln	
				115					120					125		
agg	aag	gaa	atg	gcc	tca	ggc	ttc	agc	aag	ggg	ссс	acc	ctg	ggg	ctg	672
Arg	Lys	Glu	Met	Ala	Ser	Gly	Phe	Ser	Lys	Gly	Pro	Thr	Leu	Gly	Leu	
			130					135					140			
ctg	ccc	gac	gtg	ccc	tcc	ctg	atg	gag	aca	ctc	agc	tac	agc	tac	tgc	720
Leu	Pro	Asp	Val	Pro	Ser	Leu	Met	Glu	Thr	Leu	Ser	Tyr	Ser	Tyr	Cys	
		145					150					155				
tac	gtg	gga	atc	atg	aca	ggc	ccg	ttc	ttc	cgc	tac	cgc	acc	tac	ctg	768
Tyr	Val	Gly	Ile	Met	Thr	Gly	Pro	Phe	Phe	Arg	Tyr	Arg	Thr	Tyr	Leu	
	160					165					170					
gac	tgg	ctg	gag	cag	ccc	ttc	ccc	ggg	gca	gtg	ссс	agc	ctg	cgg	ссс	816
Asp	Trp	Leu	Glu	Gln	Pro	Phe	Pro	Gly	Ala	Val	Pro	Ser	Leu	Arg	Pro	
175					180					185					190	
ctg	ctg	cgc	cgc	gcc	tgg	ccg	gcc	ccg	ctc	ttc	ggc	ctg	ctg	ttc	ctg	864
Leu	Leu	Arg	Arg	Ala	Trp	Pro	Ala	Pro	Leu	Phe	G1y	Leu	Leu	Phe	Leu	
				195					200					205		
ctc	tcc	tct	cac	ctc	ttc	ccg	ctg	gag	gcc	gtg	cgc	gag	gac	gcc	ttc	912
Leu	Ser	Ser	His	Leu	Phe	Pro	Leu	Glu	Ala	Val	Arg	Glu	Asp	Ala	Phe	
			210					215					220			
tac	gcc	cgc	ccg	ctg	ссс	gcc	cgc	ctc	ttc	tac	atg	atc	ccc	gtc	ttc	960
Tyr	Ala	Arg	Pro	Leu	Pro	Ala	Arg	Leu	Phe	Tyr	Met	Ile	Pro	Val	Phe	
		225					230	/	شمو			235				

ttc	gcc	ttc	cgc	atg	cgc	ttc	tac	gtg	gcc	tgg	att	gcc	gcc	gag	tgc	1008
Phe	Ala	Phe	Arg	Met	Arg	Phe	Tyr	Val	Ala	Trp	Ile	Ala	Ala	Glu	Cys	
	240		.•			245					250					
ggc	tgc	att	gcc	gcc	ggc	ttt	ggg	gcc	tac	ccc	gtg	gcc	gcc	aaa	gcc	1056
Gly	Cys	Ile	Ala	Ala	Gly	Phe	Gly	Ala	Tyr	Pro	Val	Ala	Ala	Lys	Ala	
255					260					265					270	
cgg	gcc	gga	ggc	ggc	ccc	acc	ctc	caa	tgc	cca	ссс	ccc	agc	agt	ccg	1104
Arg	Ala	Gly	Gly	Gly	Pro	Thr	Leu	Gln	Cys	Pro	Pro	Pro	Ser	Ser	Pro	
				275					280					285		٠
gag	aag	gcg	gct	tcc	ttg	gag	tat	gac	tat	gag	acc	atc	cgc	aac	atc	1152
Glu	Lys	Ala	Ala	Ser	Leu	Glu	Tyr	Asp	Tyr	Glu	Thr	Ile	Arg	Asn	Ile	
	Ŧ		290					295					300			
gac	tgc	tac	agc	aca	gat	ttc	tgc	gtg	cgg	gtg	cgc	gat	ggc	atg	cgg	1200
Asp	Cys	Tyr	Ser	Thr	Asp	Phe	Cys	Val	Arg	Val	Arg	Asp	Gly	Met	Arg	
		305	;				310					315				
tac	tgg	aac	atg	acg	gtg	cag	tgg	tgg	ctg	gcg	cag	tat	ato	tac	aag	1248
Tyr	Trp	Asr	Met	Thr	Val	Gln	Trp	Trp	Leu	Ala	Glr	Tyr	· Ile	Tyr	Lys	
	320)				325					330)				
agc	gca	a cct	gcc	cgt	tco	tat	gto	ctg	cgc	ctt	tag	gaago	aga	aact	cagcc	1300
Ser	Ala	a Pro	Ala	a Arg	g Ser	Tyr	Val	Leu	ı Arg	g Leu	1					
335					340)				345	5					
ggg	tgcg	ggcg	gcto	cacgo	ct g	ggaat	ccca	ig ca	actti	tggga	a gg	ccaa	agca	ggt	ggatcat	1360
gag	gago	cgcc	tgga	accat	tgc 1	tgctg	gagce	gc c1	tact	ggca	c gg	cctc	cacc	cgg	gctacta	1420
cct	gage	cttc	ctg	acca	tcc (cgctg	gtgco	ct g	gctge	ccga	g gg	ccgg	ctgg	agt	cagccct	1480
gcg	ggg	gcgg	ctg	agcc	cag	gggg	ccaga	aa g	gcct	ggga	c tg	ggtg	cact	ggt	tcctgaa	1540

gatgcgcgcc	tatgactaca	tgtgcatggg	cttcgtgctg	ctctccttgg	ccgacaccct	1600
tcggtactgg	gcctccatct	acttctgtat	ccacttcctg	gccctggcag	ccctggggct	1660
ggggctggct	ttaggtgggg	gcagccccag	ccggcggaag	gcagcatccc	agcccaccag	1720
ccttgccccg	gagaagctcc	gggaggagta	agctgtcacg	acgctccctc	tgccagctgg	1780
tcccgggaat	tctgtgaacc	aggctgctgt	ctcctcccca	gaaagagtcc	ttaccttgga	1840
gagggtcctg	gagagaattt	cctcttcccc	agctaaatac	cctgcctgca	actgaagcag	1900
acccgggggt	gtcctccctg	ccctctgccc	agaggccacc	tccactccta	caaaatcaaa	1960
gtattgtcca	gacaagagtc	actggcccct	gctccagctt	ctgggtatcc	agagagcact	2020
gcacttcccc	aaaacggaag	gggccctgg	gcagtgggtt	ttgggcaaat	tccctttctt	2080
tgcatccaca	atgtggggtc	ggagcttggg	ggcaggtcct	gggagtggga	agcctcttcc	2140
ttgtgtcttt	cgctccactt	ttagctcatc	gcaccaatat	tgcagacttg	gaaggaagca	2200
taagcttccc	atttcacaaa	ggggaaactg	aggtgcgggt	gcgcgggcct	ggggacggcc	2260
gtcccatggc	ttccatctga	gccacctcgg	gaccccagca	ctcctggcgc	cctcttctca	2320
${\tt tcgcttggcc}$	tatgacaggt	caccgtgtgt	aaatctttcc	caataaagtg	ttgcacaaag	2380

<210> 28

<211> 2017

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (360)...(629)

<400> 28

tccacacatt aagaaacgct ggtggagttt taaatgcctc tccggggaag gaggaaagcc 60
tgagaatgaa tctgacctca gacccaaatc cattcaacgg agttctggta atttggaaga 120

WO 01/12660 PCT/JP00/05356

agga	agag	ca a	cctg	gaaa	c tg	acag	gaaa	gga	tgac	aag	ttgg	gagt	ca c	aggt	atatg	180
atgg	gcct	cc c	catg	tgga	t co	ttag	tgct	gtg	gcag	agc	cctt	gtta	att g	tgct	gggat	240
tttc	cctc	ca g	ctcc	cggc	c gg	gaago	tggg	cto	acgt	ggg	agct	cagt	tgc c	ctcc	tgcta	300
caga	tctg	gtc t	cttc	ctta	c aa	tggg	gtgc	tgg:	cact	gtg	ggto	ctg	gtg a	egca	cgtg	359
atg	tac	atg	caa	gat	tat	tgg	agg	acc	tgg	ctc	aag	ggg	ctg	cgc	ggc	407
Met	Tyr	Met	Gln	Asp	Tyr	Trp	Arg	Thr	Trp	Leu	Lys	Gly	Leu	Arg	Gly	
1				5					10					15		•
ttc	ttc	ttc	gtg	ggc	gtc	ctc	ttc	tcg	gcc	gtc	tcc	atc	gct	gcc	ttc	455
Phe	Phe	Phe	Val	Gly	Val	Leu	Phe	Ser	Ala	Val	Ser	Ile	Ala	Ala	Phe	
			20					25					30			
tgc	acc	ttc	ctc	gtg	ctg	gcc	atc	acc	cgg	cat	cag	agc	ctc	aca	gac	503
Cys	Thr	Phe	Leu	Val	Leu	Ala	Ile	Thr	Arg	His	Gln	Ser	Leu	Thr	Asp	
		35					40					45				
ccc	acc	agc	tac	tac	ctc	tcc	agc	gtc	tgg	agc	ttc	att	tcc	ttc	aag	551
Pro	Thr	Ser	Tyr	Tyr	Leu	Ser	Ser	Val	Trp	Ser	Phe	Ile	Ser	Phe	Lys	
	50					55					60					
tgg	gcc	ttc	ctg	ctc	agc	ctc	tat	gcc	cac	cgc	tac	cgg	gct	gac	ttt	599
Trp	Ala	Phe	Leu	Leu	Ser	Leu	Tyr	Ala	His	Arg	Tyr	Arg	, Ala	Asp	Phe	
65	,				70)				75			,	•	80	
gct	gac	ato	agc	atc	cto	ago	gat	ttc	tga	ccca	ggg	ggtg	5			640
Ala	Asp	Ile	Ser	Ile	Leu	Ser	Asp	Phe	:							
				85	,											
agg	tctc	etge	acco	tggg	gg 8	ggcct	tage	ga co	tgga	actca	gco	tct	gaga	tgtt	gggaga	700
ggc	tact	tccc	acco	ccte	gt g	gacco	ccaga	na ct	gţg	gcaga	aaa	tac	acag	cagg	gacgagt	760
gtg	gtc1	tccc	agga	agct	gt	cctg	ccgt	tc co	ctt	tcgag	g gaa	aacc	tgag	tgtg	ggtagag	820

aggggatect	gccatgttgt	tcctcatcag	cctggccaga	gggcagcttt	agaccttttc	880
aaatgaatct	gttttctttt	ctttcttttt	ttttctttt	tttttttt	ttgagatgga	940
gtcttactct	gtcacccagg	ctggagtgca	gtagtgcgat	ctcagctcac	tgcaacctcc	1000
gcctcccagg	ttcaagcaat	tctcctgcct	tggcctctca	agtagctggg	attacaggca	1060
tctgccacca	tgcccggcaa	atttttgtgt	ttttagtaga	gacagggttt	tgccatgttg	1120
gccaggctgg	tctcgaactc	ctgatctcag	gtgattcacc	cgcctcagcc	ttccaaagtg	1180
ctgggattat	aggtgtgagc	caccgcgccc	ggcctggatc	tgttttctta	gcacgcagtg	1240
aggaatcttt	gtacttaagg	ccagggcaac	aaagtcaaga	ggtcaaggtg	tagggccatg	1300
aggcctggac	ctatgctgca	ggcaagggtt	tccatccccg	ctgccctagg	cactctcttc	1360
ccaaggccag	gttgggcacc	tggggaggtc	agttcagaaa	tatctagcag	agacetetta	1420
aacccccatc	ccagcacccc	atcctgttgt	tcccagagct	ggtctcccat	gagtgtgcta	1480
gagccagata	gccgtggccc	cccacccatc	tcactcacac	acacaggcat	ccatacaccc	1540
cagaagactt	cccaaatgag	gccagactca	gggtcacggg	gaatgtgctt	ctgcccctgt	1600
aagggctttg	gggaaggggg	caacatagta	gaggctggaa	agagccccca	aacctgtgcc	1660
catgccctc	cagccctgcg	tttccattct	gccttctcag	agtgcccttg	ctgcacccag	1720
accaccggcc	aggagagacc	ttctctccca	ctccagcccc	tctcactgcc	cttcaactag	1780
agctttcacc	tttttacatt	tcccttctga	aggacacaaa	tctgcttttc	tgcccataca	1840
ctggcccaag	ggctcaccta	acttgggagg	gaaggggctg	ttggtacaag	gatgattttc	1900
tgttagactg	ccattttgca	cggtctcccc	cttcccatct	gatgtgtcct	gcccctcagc	1960
tetttgeett	atctgtgtca	ctgtcacttt	agcaaaaata	cageggeeat	ttotato	2017

<210> 29

<211> 1606

<212> DNA

<213≻ Homo sapiens

			•	
⟨220⟩				
<221> CDS				
<222> (30)(1250)	· : ·	٠.		
<400> 29				
acctetteeg teggetgaat tg	cggccgt atg	cgc ggc tct	gtg gag tgc	acc 53
	Met	Arg Gly Ser	Val Glu Cys	Thr
	1		5	
tgg ggt tgg ggg cac tgt	gcc ccc agc	ccc ctg ctc	ctt tgg act	cta 101
Trp Gly Trp Gly His Cys	Ala Pro Ser	Pro Leu Leu	Leu Trp Thr	Leu
10	15	20		
ctt ctg ttt gca gcc cca	ttt ggc ctg	ctg ggg gag	aag acc cgc	cag 149
Leu Leu Phe Ala Ala Pro	Phe Gly Leu	Leu Gly Glu	Lys Thr Arg	Gln
25 30		35		40
gtg tct ctg gag gtc atc	cct aac tgg	ctg ggc ccc	ctg cag aac	ctg 197
Val Ser Leu Glu Val Ile	Pro Asn Trp	Leu Gly Pro	Leu Gln Asn	Leu
45		50	55	
ctt cat ata cgg gca gtg	ggc acc aat	tcc aca ctg	cac tat gtg	tgg 245
Leu His Ile Arg Ala Val	Gly Thr Asn	Ser Thr Leu	His Tyr Val	Trp
60	65	;	70	
agc agc ctg ggg cct ctg	gca gtg gta	atg gtg gcc	acc aac acc	ccc 293
Ser Ser Leu Gly Pro Leu	Ala Val Val	Met Val Ala	Thr Asn Thr	Pro
75	80		85	
cac age ace etg age gte	aac tgg ago	ctc ctg cta	tcc cct gag	ccc 341

His Ser Thr Leu Ser Val Asn Trp Ser Leu Leu Ser Pro Glu Pro

95

90

100

gat	ggg	ggc	ctg	atg	gtg	ctc	cct	aag	gac	agc	att	cag	ttt	tct	tct	389
Asp	Gly	Gly	Leu	Met	Val	Leu	Pro	Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser	
105					110					115					120	
gcc	ctt	gtt	ttt	acc	agg	ctg	ctt	gag	ttt	gac	agc	acc	aac	gtg	tcc	437
Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu	Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser	
				125					130					135		
gat	acg	gca	gca	aag	cct	ttg	gga	aga	cca	tat	cct	cca	tac	tcc	ttg	485
Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly	Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	
			140					145					150			
gcc	gat	ttc	tct	tgg	aac	aac	atc	act	gat	tca	ttg	gat	cct	gcc	acc	533
Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile	Thr	Asp	Ser	Leu	Asp	Pro	Ala	Thr	
		155					160					165				
ctg	agt	gcc	aca	ttt	caa	ggc	cac	ссс	atg	aac	gac	cct	acc	agg	act	581
Leu	Ser	Ala	Thr	Phe	Gln	Gly	His	Pro	Met	Asn	Asp	Pro	Thr	Arg	Thr	
	170					175					180					
ttt	gcc	aat	ggc	agc	ctg	gcc	ttc	agg	gtc	cag	gcc	ttt	tcc	agg	tcc	629
Phe	Ala	Asn	Gly	Ser	Leu	Ala	Phe	Arg	Val	Gln	Ala	Phe	Ser	Arg	Ser	
185					190					195					200	
agc	cga	cca	gcc	caa	ccc	cct	cgc	ctc	ctg	cac	aca	gca	gac	acc	tgt	677
Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg	Leu	Leu	His	Thr	Ala	Asp	Thr	Cys	
				205					210					215		
cag	cta	gag	gtg	gcc	ctg	att	gga	gcc	tct	ccc	cgg	gga	aac	cgt	tcc	725
G1n	Leu	Glu	Val	Ala	Leu	Ile	Gly	Ala	Ser	Pro	Arg	Gly	Asn	Arg	Ser	
			220					225	تئسو				230			
ctg	ttt	ggg	ctg	gag	gta	gcc	aca	ttģ		cag	ggc	cct	gac	tgc	ссс	773

Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr	Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	
		235					240					245				
tca	átg	cag	gag	cag	cac	tcc	atc	gac	gat	gaa	tat	gca	ccg	gcc	gtc	821
Ser	Met	Gln	Glu	Gln	His	Ser	Ile	Asp	Asp	Glu	Tyr	Ala	Pro	Ala	Val	
	250					255					260					
ttc	cag	ttg	gac	cag	cta	ctg	tgg	ggc	tcc	ctc	cca	tca	ggc	ttt	gca	869
Phe	Gln	Leu	Asp	Gln	Leu	Leu	Trp	Gly	Ser	Leu	Pro	Ser	Gly	Phe	Ala	
265					270					275					280	
cag	tgg	cga	cca	gtg	gct	tac	tcc	cag	aag	ccg	ggg	ggc	cga	gaa	tca	917
G1n	Trp	Arg	Pro	Val	Ala	Tyr	Ser	Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	
				285					290					29 5		
gcc	ctg	ccċ	tgc	caa	gct	tcc	cct	ctt	cat	cct	gcc	tta	gca	tac	tct	965
Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro	Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	
			300					305					310			
ctt	ccc	cag	tca	ccc	att	gtc	cga	gcc	ttc	ttt	ggg	tcc	cag	aat	aac	1013
Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg	Ala	Phe	Phe	Gly	Ser	Gln	Asn	Asn	
		315					320					325				
ttc	tgt	gcc	ttc	aat	ctg	acg	ttc	ggg	gct	tcc	aca	ggc	cct	ggc	tat	1061
Phe	Cys	Ala	Phe	Asn	Leu	Thr	Phe	Gly	Ala	Ser	Thr	G1y	Pro	Gly	Tyr	
	330)				335					340	1				
tgg	gac	caa	cac	tac	ctc	agc	tgg	tcg	atg	ctc	ctg	ggt	gtg	ggo	ttc	1109
Trp	Asp	Gln	His	Tyr	Leu	Ser	Trp	Ser	Met	Leu	Leu	G1y	Val	Gly	Phe	
345	;				350)				355	5				360	
cct	cca	a gtg	gac	ggo	ttg	tcc	cca	cta	gto	ctg	ggg	ato	ate	g gca	gtg	1157
Pro	Pro	Val	Asp	Gly	/ Leu	. Ser	Pro	Leu	ı Val	Lei	ı Gly	, Ile	e Met	t Ala	a Val	

365 370 375 gcc ctg ggt gcc cca ggg ctc atg ctg cta ggg ggc ggc ttg gtt ctg 1205 Ala Leu Gly Ala Pro Gly Leu Met Leu Leu Gly Gly Gly Leu Val Leu 380 385 390 ctg ctg cac cac aag aag tac tca gag tac cag tcc ata aat taa 1250 Leu Leu His His Lys Lys Tyr Ser Glu Tyr Gln Ser Ile Asn 395 400 405 ggcccgctct ctggagggaa ggacattact gaacctgtct tgctgtgcct cgaaactctg 1310 gaggttggag catcaagttc cagccggccc cttcactccc ccatcttgct tttctgtgga 1370 acctcagagg ccagcctcga cttcctggag acccccaggt ggggcttcct tcatactttg 1430 ttgggggact ttggaggcgg gcaggggaca gggctattga taaggtcccc ttggtgttgc 1490 cttcttgcat ctccacacat ttcccttgga tgggacttgc aggcctaaat gagaggcatt 1550 ctgactggtt ggctgccctg gaaggcaaga aaatagattt atttttttc acaggg 1606

<210> 30

<211> 1695

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (53)... (631)

<400> 30

acageegage agetggageg ategaggetg cageggggee geegggegea ge atg

55

Met

act	gcc	gtc	ggc	gtg	cag	gcc	cag	agg	cct	ttg	ggc	caa	agg	cag	ccc	103
Thr	Ala	Val	Gly	Val	Gln	Ala	Gln	Arg	Pro	Leu	Gly	Gln	Arg	Gln	Pro	
			5					10					15			
cgc	cgg	tcc	ttc	ttt	gaa	tcc	ttc	atc	cgg	acc	ctc	atc	atc	acg	tgt	151
Arg	Arg	Ser	Phe	Phe	Glu	Ser	Phe	Ile	Arg	Thr	Leu	Ile	Ile	Thr	Cys	
		20					25					30				
gtg	gcc	ctg	gct	gtg	gtc	ctg	tcc	tcg	gtc	tcc	att	tgt	gat	ggg	cac	199
Val	Ala	Leu	Ala	Val	Val	Leu	Ser	Ser	Val	Ser	Ile	Cys	Asp	Gly	His	
	35					40					45					
tgg	ctc	ctg	gct	gag	gac	cgc	ctc	ttc	ggg	ctc	tgg	cac	ttc	tgc	acc	247
Trp	Leu	Leu	Ala	Glu	Asp	Arg	Leu	Phe	Gly	Leu	Trp	His	Phe	Cys	Thr	
50					55					60					65	
acc	acc	aac	cag	agt	gtg	ccg	atc	tgc	ttc	aga	gac	ctg	ggc	cag	gcc	295
Thr	Thr	Asn	Gln	Ser	Val	Pro	Ile	Cys	Phe	Arg	Asp	Leu	Gly	Gln	Ala	
				70					75					80		
cat	gtg	ccc	ggg	ctg	gcc	gtg	ggc	atg	ggc	ctg	gta	cgc	ago	gtg	ggc	343
His	Val	Pro	Gly	Leu	Ala	Val	Gly	Met	Gly	Leu	Val	Arg	Ser	· Val	Gly	
			85					90	1				95	;		
gcc	ttg	gco	gtg	gtg	gcc	gcc	att	ttt	ggc	ctg	g gag	tto	cto	ate	gtg	391
Ala	Leu	Ala	a Val	Val	Ala	Ala	Ile	Phe	Gly	Leu	ı Glu	Phe	Leu	ı Met	. Val	
		100)				105	5				110)			
tcc	cag	ttg	g tgo	gag	gad	c aaa	cac	tca	cag	tgo	c aag	g tgg	ggto	c atg	g ggt	439
Ser	Glr	ı Lei	ı Cys	Glu	ı Ası	p Lys	His	s Sei	Glr	ı Cys	s Ly:	s Tr	y Va	l Me	t Gly	
	115	5				120)	/	ا تشو		129	5				
tco	ate	ct	c ct	ct	g gt	g tci	tte	c gto	cto	tc	c tc	c gg	c gg	g ct	c ctg	487

Ser Ile Leu Leu Val Ser Phe Val Leu Ser Ser Gly Gly Leu Leu	
130 135 140 145	
ggt ttt gtg atc ctc ctc agg aac caa gtc aca ctc atc ggc ttc acc	535
Gly Phe Val Ile Leu Leu Arg Asn Gln Val Thr Leu Ile Gly Phe Thr	
150 155 160	
cta atg ttt tgg tgc gaa ttc act gcc tcc ttc ctc ctc ttc ctg aac	583
Leu Met Phe Trp Cys Glu Phe Thr Ala Ser Phe Leu Leu Phe Leu Asn	
165 170 175	
gcc atc agc ggc ctt cac atc aac agc atc acc cat ccc tgg gaa tg	630
Ala Ile Ser Gly Leu His Ile Asn Ser Ile Thr His Pro Trp Glu	
180 185 190	
accgtggaaa ttttaggccc cctccaggga catcagattc cacaagaaaa tatggtcaaa	690
atgggacttt tccagcatgt ggcctctggt ggggctgggt tggacaaggg ccttgaaacg	750
gctgcctgtt tgccgataac ttgtgggtgg tcagccagaa atggcccggg ggcctctgca	810
cctggtctgc agggccagag gccaggaggg tgcctcagtg ccaccaactg cacaggctta	870
gccagatgtt gattttagag gaagaaaaaa acattttaaa actccttctt gaattttctt	930
ccctggactg gaatacagtt ggaagcacag gggtaactgg tacctgagct agctgcacag	990
ccaaggatag ttcatgcctg tttcattgac acgtgctggg ataggggctg cagaatccct	1050
ggggctccca gggttgttaa gaatggatca ttcttccagc taagggtcca atcagtgcct	1110
attetteeae eageteaaag ggeettegta tgtatgteee tggetteage tttggteatg	1170
ccaaagaggc agagttcagg attccctcag aatgccctgc acacagtagg tttccaaacc	1230
atttgactcg gtttgcctcc ctgcccgttg tttaaacctt acaaaccctg gataacccca	1290
tcttctagca gctggctgtc ccctctggga gctctgccta tcagaaccct accttaaggt	1350
gggtttcctt ccgagaagag ttcttgagca agctctccca ggagggccca cctgactgct	1410
aatacacage cetececaag geeegtgtgt geatgtgtet gtettttgtg agggttagae	1470

agcci	tcagg	g ca	accat	tttt	t aa	tccca	agaa	cac	attt	caa	agag	cacgi	ta t	ctag	accte	3	1530
ctgga	actct	g ca	agggg	ggtg	a gg	gggaa	acag	cga	gagc	ttg	ggta	atga	tt a	acac	ccate	3	1590
ctgg	ggate	gc a	tgga	ggtg	a ag	gggg	ccag	gaa	ccag	tgg	agat	ttcc:	at c	cttg	ccago	2	1650
acgt	ctgta	ac t	tctg	ttca	t ta	aagt	gctc	cct	ttct	agt	cctt	t					1695
<210	> 31																
<211	> 37	7															
<212	> PR	T															
<213	> Ho	mo s	apie	ns													
<400	> 31																
Met	Asp	Ser	Ala	Leu	Ser	Asp	Pro	His	Asn	Gly	Ser	Ala	Glu	Ala	Gly		
1				5					10					15			
Gly	Pro	Thr	Asn	Ser	Thr	Thr	Arg	Pro	Pro	Ser	Thr	Pro	Glu	Gly	Ile		
			20					25					30				
Ala	Leu	Ala	Tyr	Gly	Ser	Leu	Leu	Leu	Met	Ala	Leu	Leu	Pro	Ile	Phe		
		35					40					45					
Phe	Gly	Ala	Leu	Arg	Ser	Val	Arg	Cys	Ala	Arg	Gly	Lys	Asn	Ala	Ser		
	50					55					60						
Asp	Met	Pro	Glu	Thr	Ile	Thr	Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile		
65					70					75	•				80		
Ile	Ala	Ser	Cys	Thr	Leu	Leu	Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe		
				85					90					95	•		
Ser	Gln	Glu	Tyr	Ile	Asn	Leu	Leu	Leu	Ser	Met	Tyr	Phe	Phe	e Val	Leu		
			100	+				105	- نثرو				110)			

Gly Ile Leu Ala Leu Ser His Thr Ile Ser Pro Phe Met Asn Lys Phe

		115					120					125			
Phe	Pro	Ala	Ser	Phe	Pro	Asn	Arg	Gl'n	Tyr	Gln	Leu	Leu	Phe	Thr	Gln
	130					135					140				
Gly	Ser	G1y	Glu	Asn	Lys	Glu	Glu	Ile	Ile	Asn	Tyr	Glu	Phe	Asp	Thr
145					150					155					160
Lys	Asp	Leu	Val	Cys	Leu	Gly	Leu	Ser	Ser	Ile	Val	Gly	Val	Trp	Tyr
				165					170					175	
Leu	Leu	Arg	Lys	His	Trp	Ile	Ala	Asn	Asn	Leu	Phe	Gly	Leu	Ala	Phe
			180					185					190		
Ser	Leu	Asn	Gly	Val	Glu	Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly
		195					200					205			
Cys	Ile	Leu	Leu	Gly	Gly	Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe
	210					215					220				
Gly	Thr	Asn	Val	Met	Val	Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile
225					230					235					240
Lys	Leu	Val	Phe	Pro	Gln	Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asn
				245					250					255	
Asn	Phe	Ala	Met	Leu	Gly	Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe
			260					265	:				270		
Ile	Ala	Leu	Leu	Leu	Arg	Phe	Asp	Ile	Ser	Leu	Lys	Lys	Asn	Thr	His
		275					280					285			
Thr	Tyr	Phe	Tyr	Thr	Ser	Phe	Ala	Ala	Tyr	Ile	Phe	Gly	Leu	Gly	Leu
	290					295					300				
Thr	Ile	Phe	Ile	Met	His	Ile	Phe	Lys	His	Ala	Gln	Pro	Ala	Leu	Leu
305					310			_	تعربو	215					320

Glu

69 / 307

Tyr Leu Val Pro Ala Cys Ile Gly Phe Pro Val Leu Val Ala Leu Ala Lys Gly Glu Val Thr Glu Met Phe Ser Tyr Glu Glu Ser Asn Pro Lys Asp Pro Ala Ala Val Thr Glu Ser Lys Glu Gly Thr Glu Ala Ser Ala Ser Lys Gly Leu Glu Lys Lys Glu Lys <210> 32 <211> 81 <212> PRT <213> Homo sapiens <400> 32 Met Thr Ala His Ser Phe Ala Leu Pro Val Ile Ile Phe Thr Thr Phe Trp Gly Leu Val Gly Ile Ala Gly Pro Trp Phe Val Pro Lys Gly Pro Asn Arg Gly Val Ile Ile Thr Met Leu Val Ala Thr Ala Val Cys Cys Tyr Leu Phe Trp Leu Ile Ala Ile Leu Ala Gln Leu Asn Pro Leu Phe Gly Pro Gln Leu Lys Asn Glu Thr Ile Trp Tyr Val Arg Phe Leu Trp

<210)> 3:	3													
<21	1> 48	37													
<21	2> PI	RT													
<21:	3> H	omo :	sapi	ens											
<400)> 3:	3													
Met	Gly	Asp	Thr	Gly	Leu	Arg	Lys	Arg	Arg	Glu	Asp	Glu	Lys	Ser	Ile
1				5					10					15	
Gln	Ser	Gln	Glu	Pro	Lys	Thr	Thr	Ser	Leu	Gln	Lys	Glu	Leu	Gly	Leu
			20					25					30		
Ile	Ser	Gly	Ile	Ser	Ile	Ile	Val	Gly	Thr	Ile	Ile	Gly	Ser	Gly	Ile
		35					40					4 5			
Phe	Val	Ser	Pro	Lys	Ser	Val	Leu	Ser	Asn	Thr	Glu	Ala	Val	Gly	Pro
	50					55					60				
Cys	Leu	Ile	Ile	Trp	Ala	Ala	Cys	Gly	Val	Leu	Ala	Thr	Leu	Gly	Ala
65					70					75					80
Leu	Cys	Phe	Ala	Glu	Leu	Gly	Thr	Met	Ile	Thr	Lys	Ser	Gly	Gly	Glu
			,	85					90					95	
Tyr	Pro	Tyr	Leu	Met	Glu	Ala	Tyr	Gly	Pro	Ile	Pro	Ala	Tyr	Leu	Phe
			100		•			105					110		
Ser	Trp	Ala	Ser	Leu	Ile	Val	Ile	Lys	Pro	Thr	Ser	Phe	Ala	Ile	Ile
		115					120					125			
Cys	Leu	Ser	Phe	Ser	Glu	Tyr	Val	Cys	Ala	Pro	Phe	Tyr	Val	Gly	Cys
	130					135		/	للمو		140				

Lys	Pro	Pro	Gln	Ile	Val	Val	Lys	Cys	Leu	Ala	Ala	Ala	Ala	Ile	Leu
145					150					155					160
Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly	Ser	Tyr	Val
				165					170					175	
Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	Val	Ala	Ile	Ile	Ile
			180					185					190		
Ile	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln	Gly	Asn	Thr	Lys	Asn	Phe	Asp
		195					200					205			
Asn	Ser	Phe	Glu	Gly	Ala	Gln	Leu	Ser	Val	Gly	Ala	Ile	Ser	Leu	Ala
	210					215					220				
Phe	Tyr	Asn	Gly	Leu	Trp	Ala	Tyr	Asp	Gly	Trp	Asn	Gln	Leu	Asn	Tyr
225					230					235					240
Ile	Thr	Glu	Glu	Leu	Arg	Asn	Pro	Tyr	Arg	Asn	Leu	Pro	Leu	Ala	Ile
				245					250					255	
Ile	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	Met	Asn	Val
			260					265					270		
Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	Glu	Leu	Leu	Gln	Ser	Gln	Ala
		275					280					285			
Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	Ser	Trp	Ile
	290					295					300				
Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	Asn	Gly	Thr
305					310					315					320
Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	Glu	Gly	His
				325					330)				335	
Met	Leu	Lvs	. Val	Leu	Ser	Tvr	Ile	Ser	· Val	Are	Arg	Leu	Thr	Pro	Ala

Pro Ala Ile Ile Phe Tyr Gly Ile Ile Ala Thr Ile Tyr Ile Ile Pro Gly Asp Ile Asn Ser Leu Val Asn Tyr Phe Ser Phe Ala Ala Trp Leu Phe Tyr Gly Leu Thr Ile Leu Gly Leu Ile Val Met Arg Phe Thr Arg Lys Glu Leu Glu Arg Pro Ile Lys Val Pro Val Val Ile Pro Val Leu Met Thr Leu Ile Ser Val Phe Leu Val Leu Ala Pro Ile Ile Ser Lys Pro Thr Trp Glu Tyr Leu Tyr Cys Val Leu Phe Ile Leu Ser Gly Leu Leu Phe Tyr Phe Leu Phe Val His Tyr Lys Phe Gly Trp Ala Gln Lys Ile Ser Lys Pro Ile Thr Met His Leu Gln Met Leu Met Glu Val Val Pro Pro Glu Glu Asp Pro Glu

⟨210⟩ 34

<211> 375

<212> PRT

<213> Homo sapiens

<400> 34

Met	Thr	Pro	Gln	Pro	Ala	Gly	Pro	Pro	Asp	Gly	Gly	Trp	Gly	Trp	Val
.1				5					10					15	
Val	Ala	Ala	Ala	Ala	Phe	Ala	Ile	Asn	Gly	Leu	Ser	Tyr	Gly	Leu	Leu
			20					25					30		
Arg	Ser	Leu	Gly	Leu	Ala	Phe	Pro	Asp	Leu	Ala	Glu	His	Phe	Asp	Arg
		35					40					45			
Ser	Ala	Gln	Asp	Thr	Ala	Trp	Ile	Ser	Ala	Leu	Ala	Leu	Ala	Val	G1n
	50					55					60				
Gln	Ala	Ala	Ser	Pro	Val	Gly	Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala
65					70					7 5					80
Arg	Pro	Val	Val	Met	Val	Gly	Gly	Val	Leu	Ala	Ser	Leu	Gly	Phe	Val
				85					90					95	
Phe	Ser	Ala	Phe	Ala	Ser	Gly	Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly
			100					105					110		
Leu	Leu	Ala	Gly	Phe	Gly	Trp	Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly
		115					120					125			
Thr	Leu	Ser	Arg	Tyr	Phe	Ser	Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu
	130					135					140				
Ala	Leu	Thr	Gly	Asn	Gly	Ala	Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu
145					150					155					160
Gln	Leu	Leu	Leu	Asp	Thr	Phe	Gly	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu
				165	•				170					175	
Gly	Ala	Ile	Thr	Leu	His	Leu	Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro
			180)				185	۱۰۰۰ تشمیق.				190)	
Leu	Val	Leu	ı Pro	Gly	/ Asp	Pro	Pro	Ala	Pro	Pro	Arg	Ser	Pro	Leu	Ala

WO 01/12660 PCT/JP00/05356

19	5			200					205			
Ala Leu Gl	y Leu S	Ser Leu	Phe	Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala
210			215					220				
Leu Gly Th	r Ala I	Leu Val	Gly	Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His
225		230					235					240
Leu Ala Pr	o Arg I	Phe Arg	Pro	Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala
	4	245				250					255	
Gly Gly Gl	y Arg (Gly Cys	Asp	Gly	Gly	Cys	Gly	Arg	Pro	Ala	Gly	Leu
	260				265					270		
Arg Val Al	a Gly	Arg Pro	Arg	Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly
27	5			280				•	285			
Arg Ile Ar	g Gly	Ser Asp	Trp	Ala	Gly	Ala	Val	G1 y	Gly	Gly	Ala	Gly
290			295					300				
Ala Arg G	y Gly	Arg Arg	Arg	Glu	Leu	Gly	Gly	Ser	Pro	Ala	Gly	Arg
305		310					315					320
Gly Cys G	ly Leu	Trp Ala	Glu	Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe
		325				330					335	
Arg Cys T	nr Pro	Arg Ala	Gly	Gly	Arg	Arg	Arg	Cys	Gly	Ala	Gly	His
	340				345					350	I	
Arg Ala G	ly Asp	Asp Ala	Asp	Glu	Pro	Arg	Gly	Ala	Pro	Gly	Pro	Ser
3	55			360					365	;		
Pro Val A	rg Leu	Pro Lys	Gly	•								
370			375	5								

<211	> 35	50													
<212	2> PF	TS													
<213	8> Ho	omo s	sapie	ens					٠	•					
<400)> 38	5													
Met	Ala	Thr	Thr	Ala	Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly
1				5					10					15	
Pro	Glu	Trp	Gly	Gly	Phe	Glu	Glu	Asn	Ile	Gln	Gly	Gly	Gly	Ser	Ala
			20					25					30		
Val	Ile	Asp	Met	Glu	Asn	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu
		35					40					45			
Asp	Met	Gly	Glu	Leu	His	Gln	Arg	Leu	Arg	Glu	Glu	Glu	Val	Asp	Ala
	50					55					60				
Asp	Ala	Ala	Asp	Ala	Ala	Ala	Ala	Glu	Glu	Glu	Asp	Gly	Glu	Phe	Leu
65				k	70					75					80
Gly	Met	Lys	Gly	Phe	Lys	Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln
				85					90					95	
Met	Trp	Gln	Ala	Gly	Lys	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr
			100					105					110		
Ala	Asn	Ile	Asp	Ile	Leu	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln
		115					120					125			
Val	Arg	Ser	Arg	Leu	Leu	Glu	Ser	Met	Ile	Pro	Ile	Lys	Met	Val	Asn
	130					135					140				
Phe	Pro	Gln	Lys	Ile	Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val
145					150			,	۰۰ تشمی	155					160
Phe	Thr	Len	Val	Ala	Πla	I 611	انم آ	Hic	C1 v	Mat	Ive	Thr	Sam	4.00	The

				165					170					175	
Ile	Ile	Arg	Glu	Gly	Thr	Leu	Met	Gly	Thr	Ala	Ile	Gly	Thr	Cys	Phe
			180					185					190		
Gly	Tyr	Trp	Leu	Gly	Val	Ser	Ser	Phe	Ile	Tyr	Phe	Leu	Ala	Tyr	Leu
		195					200					205			
Cys	Asn	Ala	Gln	Ile	Thr	Met	Leu	Gln	Met	Leu	Ala	Leu	Leu	Gly	Tyr
	210					215					220				
Gly	Leu	Phe	Gly	His	Cys	Ile	Val	Leu	Phe	Ile	Thr	Tyr	Asn	Ile	His
225					230					235					240
Leu	His	Ala	Leu	Phe	Tyr	Leu	Phe	Trp	Leu	Leu	Val	Gly	Gly	Leu	Ser
				245					250					255	
Thr	Leu	Arg	Met	Val	Ala	Val	Leu	Val	Ser	Arg	Thr	Val	Gly	Pro	Thr
			260					265					270		
Gln	Arg	Leu	Leu	Leu	Cys	Gly	Thr	Leu	Ala	Ala	Leu	His	Met	Leu	Phe
		275					280					285			
Leu	Leu	Tyr	Leu	His	Phe	Ala	Tyr	His	Lys	Val	Val	Glu	Gly	Ile	Leu
	290					295					300				
Asp	Thr	Leu	Glu	Gly	Pro	Asn	Ile	Pro	Pro	Ile	Gln	Arg	Val	Pro	Arg
305					310					315					320
Asp	Ile	Pro	Ala	Met	Leu	Pro	Ala	Ala	Arg	Leu	Pro	Thr	Thr	Val	Leu
				325					330					335	
Asn	Ala	Thr	Ala	Lys	Ala	Val	Ala	Val	Thr	Leu	Gln	Ser	His		
			340					345					350	ı	

(21)	l> 66	57													
<212	2> PI	RT.			·										
<213	3> H	omo :	sapi	ens											
<400)> 36	5													
Met	Ser	Ser	Gln	Pro	Ala	Gly	Asn	Gln	Thr	Ser	Pro	Gly	Ala	Thr	G1u
1				5					10					15	
Asp	Tyr	Ser	Tyr	Gly	Ser	Trp	Tyr	Ile	Asp	Glu	Pro	Gln	Gly	Gly	Glu
			20					25					30		
Glu	Leu	Gln	Pro	Glu	Gly	Glu	Val	Pro	Ser	Cys	His	Thr	Ser	Ile	Pro
		35					40					45			
Pro	Gly	Leu	Tyr	His	Ala	Cys	Leu	Ala	Ser	Leu	Ser	Ile	Leu	Val	Leu
	50					55					60				
Leu	Leu	Leu	Ala	Met	Leu	Val	Arg	Arg	Arg	Gln	Leu	Trp	Pro	Asp	Cys
65					70					75					80
Val	Arg	Gly	Arg	Pro	Gly	Leu	Pro	Ser	Pro	Val	Asp	Phe	Leu	Ala	Gly
				85					90					95	
Asp	Arg	Pro	Arg	Ala	Val	Pro	Ala	Ala	Val	Phe	Met	Val	Leu	Leu	Ser
			100					105					110		
Ser	Leu	Cys	Leu	Leu	Leu	Pro	Asp	Glu	Asp	Ala	Leu	Pro	Phe	Leu	Thr
		115					120					125			
Leu	Ala	Ser	Ala	Pro	Ser	Gln	Asp	Gly	Lys	Thr	Glu	Ala	Pro	Arg	Gly
	130					135					140				
Ala	Trp	Lys	Ile	Leu	Gly	Leu	Phe	Tyr	Tyr	Ala	Ala	Leu	Tyr	Tyr	Pro
145					150				۰۰ نشری	155					160
וום ו	412	410	Cvc	۸la	Thr	A1.	C1	u; -	TL	43.	41.	17:	7	1	~1

				165					170					175	
Ser	Thr	Leu	Ser	Trp	Ala	His	Leu	Gly	Val	Gln	Val	Trp	Gln	Arg	Ala
			180					185					190		
Glu	Cys	Pro	Gln	Val	Pro	Lys	Ile	Tyr	Lys	Tyr	Tyr	Ser	Leu	Leu	Ala
		195					200					205			
Ser	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Gly	Phe	Leu	Ser	Leu	Trp	Tyr	Pro
	210					215					220				
Val	Gln	Leu	Val	Arg	Ser	Phe	Ser	Arg	Arg	Thr	Gly	Ala	Gly	Ser	Lys
225					230					235					240
Gly	Leu	Gln	Ser	Ser	Tyr	Ser	Glu	Glu	Tyr	Leu	Arg	Asn	Leu	Leu	Cys
				245					250					255	
Arg	Lys	Lys	Leu	Gly	Ser	Ser	Tyr	His	Thr	Ser	Lys	His	Gly	Phe	Leu
			260					265					270		
Ser	Trp	Ala	Arg	Val	Cys	Leu	Arg	His	Cys	Ile	Tyr	Thr	Pro	Gln	Pro
		275					280					285			
Gly	Phe	His	Leu	Pro	Leu	Lys	Leu	Val	Leu	Ser	Ala	Thr	Leu	Thr	Gly
	290					295					300				
Thr	Ala	Ile	Tyr	Gln	Val	Ala	Leu	Leu	Leu	Leu	Val	Gly	Val	Val	Pro
305			. •		310					315					320
Thr	Ile	G1n	Lys	Val	Arg	Ala	Gly	Val	Thr	Thr	Asp	Val	Ser	Tyr	Leu
				325	•				330					335	
Leu	Ala	Gly	Phe	Gly	Ile	Val	Leu	Ser	Glu	Asp	Lys	Glr	Glu	Val	Val
			340)				345	,				350	ı	
Glu	Lei	ı Val	Lys	His	His	Leu	Trp	Ala	Leu ند	Glu	(Val	Cys	s Tyr	lle	Ser
		359	5				360) /				365	5		

Ala	Leu	Val	Leu	Ser	Cys	Leu	Leu	Thr	Phe	Leu	Val	Leu	Met	Arg	Ser
	370					375					380				
Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	His	Arg	Gly	Ala	Ala
385					390					395					400
Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	Pro	Ser	Arg	Gln	Ala
				405					410					415	
Ile	Phe	Cys	Trp	Met	Ser	Phe	Ser	Ala	Tyr	Gln	Thr	Ala	Phe	Ile	Cys
			420					425					430		
Leu	Gly	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	Leu	Gly	Thr	Thr	Ala
		435					440					445			
Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	Gly	Arg	Asn	Leu	Leu
	450					455					460				
Leu	Phe	Arg	Ser	Leu	Glu	Ser	Ser	Trp	Pro	Phe	Trp	Leu	Thr	Leu	Ala
465					470					475					480
Leu	Ala	Val	Ile	Leu	Gln	Asn	Met	Ala	Ala	His	Trp	Val	Phe	Leu	Glu
				485					490					495	
Thr	His	Asp	Gly	His	Pro	Gln	Leu	Thr	Asn	Arg	Arg	Val	Leu	Tyr	Ala
			500					505					510		
Ala	Thr	Phe	Leu	Leu	Phe	Pro	Leu	Asn	Val	Leu	Val	Gly	Ala	Met	Val
		515					520					525			
Ala	Thr	Trp	Arg	Val	Leu	Leu	Ser	Ala	Leu	Tyr	Asn	Ala	Ile	His	Leu
	530					535				·	540				
G1y	Gln	Met	Asp	Leu	Ser	Leu	Leu	Pro	Pro	Arg	Ala	Ala	Thr	Leu	Asp
545					550			,	۰۰ نغر	555					560
Pro	Glv	Tyr	Tyr	Thr	Tvr	Arø	Asn	Phe	Leu	I.vs	Πe	Glii	V _a 1	Ser	Gln

WO 01/12660 PCT/JP00/05356

80 /307

570 575 565 Ser His Pro Ala Met Thr Ala Phe Cys Ser Leu Leu Cln Ala Gln 590 580 . 585 Ser Leu Leu Pro Arg Thr Met Ala Ala Pro Gln Asp Ser Leu Arg Pro 600 605 595 Gly Glu Glu Asp Glu Gly Met Gln Leu Leu Gln Thr Lys Asp Ser Met 615 620 610 Ala Lys Gly Ala Arg Pro Gly Ala Ser Arg Gly Arg Ala Arg Trp Gly 630 635 640 625 Leu Ala Tyr Thr Leu Leu His Asn Pro Thr Leu Gln Val Phe Arg Lys 645 650 655 Thr Ala Leu Leu Gly Ala Asn Gly Ala Gln Pro 665 660 <210> 37 <211> 464

<212> PRT

<213> Homo sapiens

<400> 37

Met Ile Val Cys Leu Leu Phe Met Met Ile Leu Leu Ala Lys Glu Val

1 5 10 15

Gln Leu Val Asp Gln Thr Asp Ser Pro Leu Leu Ser Leu Leu Gly Gln

20 25 30

Thr Ser Ser Leu Ser Trp His Leu Val Asp Ile Val Ser Tyr Gln Ser

35 40 / 45

Val	Leu	Ser	Tyr	Phe	Ser	Ser	His	Tyr	Pro	Pro	Ser	Ile	Ile	Leu	Ala
	50					55					60				
Lys	Glu	Ser	Tyr	Ala	Glu	Leu	Ile	Met	Lys	Leu	Leu	Lys	Val	Ser	Ala
65					70					75					80
Gly	Leu	Ser	Ile	Pro	Thr	Asp	Ser	Gln	Lys	His	Leu	Asp	Ala	Val	Pro
				85					90					95	
Lys	Cys	Gln	Ala	Phe	Thr	His	Gln	Met	Val	Gln	Phe	Leu	Ser	Thr	Leu
			100					105					110		
Glu	Gln	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val	Leu	Glu	Gln	Glu	Met	Ser
		115					120					125			
Lys	Leu	Leu	Asp	Asp	Ile	Ile	Val	Phe	Asn	Pro	Pro	Asp	Met	Asp	Ser
	130					135					140			٠	
Gln	Thr	Arg	His	Met	Ala	Leu	Ser	Ser	Leu	Phe	Met	Glu	Val	Leu	Met
145			•		150					155					160
Met	Met	Asn	Asn	Ala	Thr	Ile	Pro	Thr	Ala	Glu	Phe	Leu	Arg	Gly	Ser
				165					170					175	
Ile	Arg	Thr	Trp	Ile	G1y	Gln	Lys	Met	His	Gly	Leu	Val	Val	Leu	Pro
			180					185					190		
Leu	Leu	Thr	Ala	Ala	Cys	Gln	Ser	Leu	Ala	Ser	Val	Arg	His	Met	Ala
		195					200					205			
Glu	Thr	Thr	Glu	Ala	Cys	Ile	Thr	Ala	Tyr	Phe	Lys	Glu	Ser	Pro	Leu
	210					215					220				
Asn	Gln	Asn	Ser	G1y	Trp	Gly	Pro	Ile	Leu	Val	Ser	Leu	Gln	Val	Pro
225					230				- تشرق	235					240
Glu	Leu	Thr	Met	G1n	Glu	Phe	Lou	Gln	Cla	Cva	Lou	Thu	1	C1	C

WO 01/12660 PCT/JP00/05356

				245					250					255	
Tyr	Leu	Thr	Leų	Tyr	Val	Tyr	Leu	Leu	Gln	Cys	Leu	Asn	Ser	Glu	Gln
			260					265					270		
Thr	Leu	Arg	Asn	Glu	Met	Lys	Val	Leu	Leu	Ile	Leu	Ser	Lys	Trp	Leu
		275					280					285			
Glu	Gln	Val	Tyr	Pro	Ser	Ser	Val	Glu	Glu	Glu	Ala	Lys	Leu	Phe	Leu
	290					295					300				
Trp	Trp	His	Gln	Val	Leu	Gln	Leu	Ser	Leu	Ile	Gln	Thr	Glu	Gln	Asn
305					310					315					320
Asp	Ser	Val	Leu	Thr	Glu	Ser	Val	Ile	Arg	Ile	Leu	Leu	Leu	Val	Gln
				325					330					335	
Ser	Arg	Gln	Asn	Leu	Val	Ala	Glu	Glu	Arg	Leu	Ser	Ser	Gly	Ile	Leu
			340					345					350		
Gly	Ala	Ile	Gly	Phe	Gly	Arg	Lys	Ser	Pro	Leu	Ser	Asn	Arg	Phe	Arg
		355					360					365			
Val	Val	Ala	Arg	Ser	Met	Ala	Ala	Phe	Leu	Ser	Val	Gln	Val	Pro	Met
	370					375					380				
Glu	Asp	Gln	Ile	Arg	Leu	Arg	Pro	Gly	Ser	Glu	Leu	His	Leu	Thr	Pro
385					390	ı	,			395					400
Lys	Ala	Glr	Glr	Ala	Leu	Asn	Ala	Leu	Glu	Ser	Met	Ala	Ser	Ser	Lys
				405	5				410)				415	
Glr	Tyr	· Val	Glu	ı Tyr	Gln	Asp	Gln	lle	Leu	Glr	Ala	Thr	- Gln	Phe	Ile
			420)				425	5				430)	
Arg	g His	s Pro	o Gly	y His	s Cys	s Leu	ı Glr	n Asp	Gly	Lys	s Ser	Phe	e Leu	Ala	Leu
		43	5				440) /	تثمن			449	5		

83 / 307

Leu Val Asn Cys Leu Tyr Pro Glu Val His Tyr Leu Asp His Ile Arg <210> 38 <211> 470 <212> PRT <213> Homo sapiens <400> 38 Met Ser Arg Leu Gly Ala Leu Gly Gly Ala Arg Ala Gly Leu Gly Leu Leu Leu Gly Thr Ala Ala Gly Leu Gly Phe Leu Cys Leu Leu Tyr Ser Gln Arg Trp Lys Arg Thr Gln Arg His Gly Arg Ser Gln Ser Leu Pro Asn Ser Leu Asp Tyr Thr Gln Thr Ser Asp Pro Gly Arg His Val Met Leu Leu Arg Ala Val Pro Gly Gly Ala Gly Asp Ala Ser Val Leu Pro Ser Leu Pro Arg Glu Gly Gln Glu Lys Val Leu Asp Arg Leu Asp Phe Val Leu Thr Ser Leu Val Ala Leu Arg Arg Glu Val Glu Leu Arg Ser Ser Leu Arg Gly Leu Ala Gly Glu Ile Val Gly Glu Val Arg Cys

His Met Glu Glu Asn Gln Arg Val Ala Arg Arg Arg Phe Pro Phe

	130					135					140				
Val	Arg	Glu	Arg	Ser	Asp	Ser	Thr	Gly	Ser	Ser	Ser	Val	Tyr	Phe	Thr
145					150					155					160
Ala	Ser	Ser	Gly	Ala	Thr	Phe	Thr	Asp	Ala	Glu	Ser	Glu	Gly	Gly	Tyr
				165					170					175	
Thr	Thr	Ala	Asn	Ala	Glu	Ser	Asp	Asn	Glu	Arg	Asp	Ser	Asp	Lys	Glu
			180					185					190		
Ser	Glu	Asp	Gly	Glu	Asp	Glu	Val	Ser	Cys	Glu	Thr	Val	Lys	Met	Gly
		195					200					205			
Arg	Lys	Asp	Ser	Leu	Asp	Leu	Glu	Glu	Glu	Ala	Ala	Ser	Gly	Ala	Ser
	210					215					220				
Ser	Ala	Leu	Glu	Ala	G1 y	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro
225					230					235					240
Leu	Leu	Gln	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	Glu	Gln	Gly	Lys
				245					250					255	
Arg	Glu	Gly	Phe	Gln	Leu	Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser
			260					265					270		
Arg	Gln	Asp	Phe	Leu	Trp	Arg	Leu	Ala	Arg	Ala	Tyr	Ser	Asp	Met	Cys
		275					280					285			
Glu	Leu	Thr	Glu	Glu	Val	Ser	Glu	Lys	Lys	Ser	Tyr	Ala	Leu	Asp	Gly
	290					295					300				
Lys	Glu	Glu	Ala	Glu	Ala	Ala	Leu	Glu	Lys	Gly	Asp	Glu	Ser	Ala	Asp
305					310					315					320
Cys	His	Leu	Trp	Tyr	Ala	Val	Leu	Cys	Gly نر	Gln	Leu	Ala	Glu	His	Glu
				325				/	330					335	

Ser Ile Gln Arg Arg Ile Gln Ser Gly Phe Ser Phe Lys Glu His Val 340 345 350 Asp Lys Ala Ile Ala Leu Gln Pro Glu Asn Pro Met Ala His Phe Leu 355 360 365 Leu Gly Arg Trp Cys Tyr Gln Val Ser His Leu Ser Trp Leu Glu Lys 370 375 380 Lys Thr Ala Thr Ala Leu Leu Glu Ser Pro Leu Ser Ala Thr Val Glu 385 390 395 400 Asp Ala Leu Gln Ser Phe Leu Lys Ala Glu Glu Leu Gln Pro Gly Phe 405 410 415 Ser Lys Ala Gly Arg Val Tyr Ile Ser Lys Cys Tyr Arg Glu Leu Gly 420 425 430 Lys Asn Ser Glu Ala Arg Trp Trp Met Lys Leu Ala Leu Glu Leu Pro 435 440 445 Asp Val Thr Lys Glu Asp Leu Ala Ile Gln Lys Asp Leu Glu Glu Leu 450 455 460 Glu Val Ile Leu Arg Asp 465 470

⟨210⟩ 39

<211> 243

<212> PRT

<213> Homo sapiens

<400> 39

Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro Val Asn Val Phe

WO 01/12660 PCT/JP00/05356

1				5					10					15	
Ser	Val	Thr	Pro	Tyr	Thr	Pro	Ser	Thr	Ala	Asp	Ile	Gln	Val	Ser	Asp
			20					25					30		
Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	Phe	Ser	Gly	Ile	Phe	Leu	Gly
		35					40					45			
Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	Gly	Trp	Ile	Lys	Tyr	Gln	Gly
	50					55					60				
Val	Ser	His	Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	Val	Leu	Leu	Ser
65					70					75					80
Val	Gly	Val	Thr	Phe	Ile	Leu	Ile	Ala	Val	Cys	Lys	Phe	Lys	Met	Leu
				85					90					95	
Ser	Cys	Gln	Leu	Cys	Lys	Glu	Ser	Glu	Glu	Arg	Val	Pro	Asp	Ser	Glu
			100					105					110		
Gln	Thr	Pro	G1y	Gly	Pro	Ser	Phe	Val	Phe	Thr	Gly	Ile	Asn	Gln	Pro
		115					120					125			
Ile	Thr	Phe	His	Gly	Ala	Thr	Val	Val	Gln	Tyr	Ile	Pro	Pro	Pro	Tyr
	130					135					140				
Gly	Ser	Pro	Glu	Pro	Met	Gly	Ile	Asn	Thr	Ser	Tyr	Leu	Gln	Ser	Val
145					150					155					160
Val	Ser	Pro	Cys	Gly	Leu	Ile	Thr	Ser	Gly	Gly	Ala	Ala	Ala	Ala	Met
				165					170					175	
Ser	Ser	Pro	Pro	Gln	Tyr	Tyr	Thr	Ile	Tyr	Pro	Gln	Asp	Asn	Ser	Ala
			180	ı				185					190)	
Phe	Val	Val	Asp	Glu	Gly	Cys	Leu	Ser	Phe	Thr	Asp	Gly	Gly	Asn	His
		195	·				200) /	شرو			205	5		

Arg Pro Asn Pro Asp Val Asp Gln Leu Glu Glu Thr Gln Leu Glu Glu Glu Ala Cys Ala Cys Phe Ser Pro Pro Pro Tyr Glu Glu Ile Tyr Ser Leu Pro Arg <210> 40 <211> 270 <212> PRT <213> Homo sapiens <400> 40 Met Ala Gly Ala Glu Asp Trp Pro Gly Gln Gln Leu Glu Leu Asp Glu Asp Glu Ala Ser Cys Cys Arg Trp Gly Ala Gln His Ala Gly Ala Arg Glu Leu Ala Ala Leu Tyr Ser Pro Gly Lys Arg Leu Gln Glu Trp Cys Ser Val Ile Leu Cys Phe Ser Leu Ile Ala His Asn Leu Val His Leu Leu Leu Ala Arg Trp Glu Asp Thr Pro Leu Val Ile Leu Gly Val Val Ala Gly Ala Leu Ile Ala Asp Phe Leu Ser Gly Leu Val His Trp Gly Ala Asp Thr Trp Gly Ser Val Glu Leu Pro Ile Val Gly Lys Ala

Phe Ile Arg Pro Phe Arg Glu His His Ile Asp Pro Thr Ala Ile Thr Arg His Asp Phe Ile Glu Thr Asn Gly Asp Asn Cys Leu Val Thr Leu Leu Pro Leu Leu Asn Met Ala Tyr Lys Phe Arg Thr His Ser Pro Glu Ala Leu Glu Gln Leu Tyr Pro Trp Glu Cys Phe Val Phe Cys Leu Ile Ile Phe Gly Thr Phe Thr Asn Gln Ile His Lys Trp Ser His Thr Tyr Phe Gly Leu Pro Arg Trp Val Thr Leu Leu Gln Asp Trp His Val Ile Leu Pro Arg Lys His His Arg Ile His His Val Ser Pro His Glu Thr Tyr Phe Cys Ile Thr Thr Gly Trp Leu Asn Tyr Pro Leu Glu Lys Ile Gly Phe Trp Arg Arg Leu Glu Asp Leu Ile Gln Gly Leu Thr Gly Glu Lys Pro Arg Ala Asp Asp Met Lys Trp Ala Gln Lys Ile Lys

<210> 41

<211> 1131

<212> DNA

<213> Homo sapiens

⟨400⟩ 41

atggactc	gg	ccctcagcga	tccgcataac	ggcagtgccg	aggcaggcgg	ccccaccaac	60
agcactac	gc	ggccgccttc	cacgcccgag	ggcatcgcgc	tggcctacgg	cagcctcctg	120
ctcatggc	gc	tgctgcccat	cttcttcggc	gccctgcgct	ccgtacgctg	cgcccgcggc	180
aagaatgo	tt	cagacatgcc	tgaaacaatc	accagccggg	atgccgcccg	cttccccatc	240
atcgccag	ct	gcacactctt	ggggctctac	ctcttttca	aaatattctc	ccaggagtac	300
atcaacct	сс	tgctgtccat	gtatttcttc	gtgctgggaa	tcctggccct	gtcccacacc	360
atcagccc	ct	tcatgaataa	gtttttcca	gccagctttc	caaatcgaca	gtaccagctg	420
ctcttcac	ac	agggttctgg	ggaaaacaag	gaagagatca	tcaattatga	atttgacacc	480
aaggacct	gg	tgtgcctggg	cctgagcagc	atcgttggcg	tctggtacct	gctgaggaag	540
cactggat	tg	ccaacaacct	ttttggcctg	gccttctccc	ttaatggagt	agagctcctg	600
cacctcaa	ca	atgtcagcac	tggctgcatc	ctgctgggcg	gactcttcat	ctacgatgtc	660
ttctgggt	at	ttggcaccaa	tgtgatggtg	acagtggcca	agtccttcga	ggcaccaata	720
aaattggt	gt	ttccccagga	tctgctggag	aaaggcctcg	aagcaaacaa	ctttgccatg	780
ctgggact	tg	gagatgtcgt	cattccaggg	atcttcattg	ccttgctgct	gcgctttgac	840
atcagctt	ga	agaagaatac	ccacacctac	ttctacacca	gctttgcagc	ctacatcttc	900
ggcctggg	gcc	ttaccatctt	catcatgcac	atcttcaagc	atgctcagcc	tgccctccta	960
tacctggt	cc	ccgcctgcat	cggttttcct	gtcctggtgg	cgctggccaa	gggagaagtg	1020
acagagat	gt	tcagttatga	ggagtcaaat	cctaaggatc	cagcggcagt	gacagaatcc	1080
aaagaggg	gaa	cagaggcatc	agcatcgaag	gggctggaga	agaaagagaa	а	1131

⟨210⟩ 42

<211> 243

<212> DNA

بالإ

<213> Homo sapiens

<400> 42

atgacggcgc acteattege ceteceggte ateatettea ceaegttetg gggcetegte 60 ggcategeeg ggeeetggtt egtgeegaag ggacceaace geggagtgat cateaceatg 120 etggtegeea eegeegtetg etgttacete ttetggetea tegeeateet ggegeagetg 180 aaceeetgt tegggeecea getgaagaat gagaceatet ggtacgtgeg etteetgtgg 240 gag

⟨210⟩ 43

⟨211⟩ 1461

<212> DNA

<213> Homo sapiens

<400> 43

atgggggata ctggcctgag aaagcggaga gaggatgaga agtcgatcca gagccaagag 60 cctaagacca ccagtctcca aaaggagctg ggcctcatca gtggcatctc catcatcgtg 120 ggcaccatca ttggctctgg gatcttcgtt tcccccaagt ctgtgctcag caacacggaa 180 gctgtggggc cctgcctcat catatgggcg gcttgcgggg tcctcgcgac gctgggtgcc 240 ctgtgctttg cggagcttgg cacaatgatc accaagtcag ggggagagta tccctacctg 300 atggaggcct acgggcccat ccccgcctac ctcttctcct gggccagcct gatcgtcatt 360 aagcccacgt ccttcgccat catctgcctc agcttctccg agtatgtgtg tgcgcccttc 420 tatgtgggct gcaagcctcc tcaaatcgtt gtgaaatgcc tggccgccgc cgccatcttg 480 ttcatctcga cagtgaactc actgagcgtg cggctgggaa gctacgtcca gaacatcttc 540 accgcggcca agctggtgat cgtggccatc atcatcatca gcgggctggt gctcctggcc 600 caaggaaaca caaagaattt tgataattct ttcgagggcg cccagctgtc tgtgggagcc 660 atcagcctgg cgttttacaa tggactctgg gcctatgatg gatggaatca actcaattac 720 atcacagaag aacttagaaa cccttacaga áacctgcctt tggccattat catcgggatc 780

ccctggtga	cggcgtgcta	catcctcatg	aacgtgtcct	acttcaccgt	gatgactgcc	840
accgaactcc	tgcagtccca	ggcggtggct	gtgacatttg	gtgaccgtgt	tctctatcct	900
gcttcttgga	tcgttccact	ttttgtggca	ttttcaacca	tcggtgctgc	taacgggacc	960
tgcttcacag	cgggcagact	catttacgtg	gcgggccggg	agggtcacat	gctcaaagtg	1020
ctttcttaca	tcagcgtcag	gcgcctcact	ccagcccccg	ccatcatctt	ttatggtatc	1080
atagcaacga	tttatatcat	ccctggtgac	ataaactcgt	tagtcaatta	tttcagcttt	1140
gccgcatggc	tgttttatgg	cctgacgatt	ctaggactca	tcgtgatgag	atttacaagg	1200
aaagagctgg	aaaggcctat	caaggtgccc	gtagtcattc	ccgtcttgat	gacactcatc	1260
tctgtgtttt	tggttctggc	tccaatcatc	agcaagccca	cctgggagta	cctctactgt	1320
gtgctgttta	tattaagcgg	ccttttattt	tacttcctgt	ttgtccacta	caagtttgga	1380
tgggctcaga	aaatctcaaa	gccgattacc	atgcaccttc	agatgctaat	ggaagtggtc	1440
ccaccggagg	aagaccctga	g				1461

⟨210⟩ 44

<211> 1125

<212> DNA

<213> Homo sapiens

<400> 44

ä	atgacccccc	agcccgccgg	accccggat	gggggctggg	gctgggtggt	ggcggccgca	60
8	gccttcgcga	taaacgggct	gtcctacggg	ctgctgcgct	cgctgggcct	tgccttccct	120
1	gaccttgccg	agcactttga	ccgaagcgcc	caggacactg	cgtggatcag	cgccctggcc	180
(ctggccgtgc	agcaggcagc	cagccccgtg	ggcagcgccc	tgagcacgcg	ctggggggcc	240
(cgccccgtgg	tgatggttgg	gggcgtcctc	gcctcgctgg	gcttcgtctt	ctcggctttc	300
1	gccagcggtc	tgctgcatct	ctacctcggc	ctgggcctcc	tcgctggctt	tggttgggcc	360
•	ctggtgttcg	ccccgccct	aggcaccctc	tcgcgttact	tctcccgccg	tcgagtcttg	420

WO 01/12660

92 / 307

480	gcccgccttg	tgctcctggc	gcctcctcgc	cggcaacggg	tggcgctcac	gcggtggggc
540	cgcgatcacc	tcctcctcgg	ggcgctctgc	cggctggcgg	tcgatacttt	cagcttctcc
600	agacccccca	tccttcctgg	ctacccctgg	cgccctgctg	cccctgtgg	ctccacctca
660	ccgggccttc	tgttcacacg	ggcctgagtc	agctgccctc	gtagtcccct	gcccaccgc
720	ttacgtgcac	acttcgttcc	gggggcgggt	agccctggtt	ctctaggcac	tcaatctttg
780	tggtggccgt	gcagcgctgg	gggatacgga	ggggcctggg	gctttagacc	ttggctcccc
840	accaaggctg	tggctggcag	ggtctgcggg	gcgcccggct	ggggatgcgg	ggctgcgatg
900	ggctgtgggt	actgggctgg	cggggctctg	tggccgtatt	ccgcggctgc	ggtgcccctc
960	tgctggccgc	gggggtcccc	agagagctgg	tgggcggcga	gtgcccgtgg	ggtggggctg
1020	gtgtactccc	ctggttttcg	ttacgccccg	gcgcggggag	tatgggctga	ggctgtggcc
1080	tgctgatgag	ctggtgatga	ggccacaggg	gtgtggtgca	ggcgtcggag	cgggctggtg
1125		aggga	aggcttccta	ctccctgtc	ctcctgggcc	cctcgggggg

⟨210⟩ 45

<211> 1050

<212> DNA

<213> Homo sapiens

<400> 45

aagatggtca	acttccccca	gaaaattgca	ggtgaactct	atggacctct	catgctggtc	480
ttcactctgg	ttgctatcct	actccatggg	atgaagacgt	ctgacactat	tatccgggag	540
ggcaccctga	tgggcacagc	cattggcacc	tgcttcggct	actggctggg	agtctcatcc	600
ttcatttact	tccttgccta	cctgtgcaac	gcccagatca	ccatgctgca	gatgttggca	660
ctgctgggct	atggcctctt	tgggcattgc	attgtcctgt	tcatcaccta	taatatccac	720
ctccacgccc	tcttctacct	cttctggctg	ttggtgggtg	gactgtccac	actgcgcatg	780
gtagcagtgt	tggtgtctcg	gaccgtgggc	cccacacagc	ggctgctcct	ctgtggcacc	840
ctggctgccc	tacacatgct	cttcctgctc	tatctgcatt	ttgcctacca	caaagtggta	900
gaggggatcc	tggacacact	ggagggcccc	aacatcccgc	ccatccagag	ggtccccaga	960
gacatccctg	ccatgctccc	tgctgctcgg	cttcccacca	ccgtcctcaa	cgccacagcc	1020
aaagctgttg	cggtgaccct	gcagtcacac				1050

⟨210⟩ 46

<211> 2001

<212> DNA

<213> Homo sapiens

<400> 46

atgtcgtccc agccagcagg gaaccagacc tcccccgggg ccacagagga ctactcctat 60 ggcagctggt acatcgatga gccccagggg ggcgaggagc tccagccaga gggggaagtg 120 ccctcctgcc acaccagcat accacccggc ctgtaccacg cctgcctggc ctcgctgtca 180 240 atccttgtgc tgctgctcct ggccatgctg gtgaggcgcc gccagctctg gcctgactgt gtgcgtggca ggcccggcct gcccagccct gtggatttct tggctgggga caggcccgg 300 gcagtgcctg ctgctgtttt catggtcctc ttgagctccc tgtgtttgct gctcccgac 360 gaggacgcat tgcccttcct gactctcgcc tcagcaccca gccaagatgg gaaaactgag 420 gctccaagag gggcctggaa gatactggga ctgttctatt atgctgccct ctactaccct 480

ctggctgcct	gtgccacggc	tggccacaca	gctgcacacc	tgctcggcag	cacgctgtcc	540
tgggcccacc	ttggggtcca	ggtctggcag	agggcagagt	gtccccaggt	gcccaagatc	600
tacaagtact	actccctgct	ggcctccctg	cctctcctgc	tgggcctcgg	attcctgagc	660
ctttggtacc	ctgtgcagct	ggtgagaagc	ttcagccgta	ggacaggagc	aggctccaag	720
gggctgcaga	gcagctactc	tgaggaatat	ctgaggaacc	tcctttgcag	gaagaagctg	780
ggaagcagct	accacacctc	caagcatggc	ttcctgtcct	gggcccgcgt	ctgcttgaga	840
cactgcatct	acactccaca	gccaggattc	catctcccgc	tgaagctggt	gctttcagct	900
acactgacag	ggacggccat	ttaccaggtg	gccctgctgc	tgctggtggg	cgtggtaccc	960
actatccaga	aggtgagggc	aggggtcacc	acggatgtct	cctacctgct	ggccggcttt	1020
ggaatcgtgc	tctccgagga	caagcaggag	gtggtggagc	tggtgaagca	ccatctgtgg	1080
gctctggaag	tgtgctacat	ctcagccttg	gtcttgtcct	gcttactcac	cttcctggtc	1140
ctgatgcgct	cactggtgac	acacaggacc	aaccttcgag	ctctgcaccg	aggagetgee	1200
ctggacttga	gtcccttgca	tcggagtccc	catccctccc	gccaagccat	attctgttgg	1260
atgagcttca	gtgcctacca	gacagccttt	atctgccttg	ggctcctggt	gcagcagatc	1320
atcttcttcc	tgggaaccac	ggccctggcc	ttcctggtgc	tcatgcctgt	gctccatggc	1380
aggaacctcc	tgctcttccg	ttccctggag	tcctcgtggc	ccttctggct	gactttggcc	1440
ctggctgtga	tcctgcagaa	catggcagcc	cattgggtct	tcctggagac	tcatgatgga	1500
cacccacago	tgaccaaccg	gcgagtgctc	tatgcagcca	cctttcttct	cttcccctc	1560
aatgtgctgg	tgggtgccat	ggtggccacc	tggcgagtgc	tcctctctgc	cctctacaac	1620
gccatccacc	ttggccagat	ggacctcagc	ctgctgccac	cgagagccgc	cactetegae	1680
cccggctact	acacgtaccg	aaacttcttg	aagattgaag	tcagccagtc	gcatccagcc	1740
atgacagcct	tctgctccct	gctcctgcaa	gcgcagagcc	tcctacccag	gaccatggca	1800
gcccccagg	gacagcctcag	accaggggag	gaagacgaag	ggatgcagct	gctacagaca	1860
aaggactcca	tggccaaggg	agctaggcco	ggggccagcc . نر	gcggcagggc	tcgctggggt	1920
ctggcctaca	a cgctgctgca	caacccaacc	ctgcaggtct	tccgcaagac	ggccctgttg	1980

ggtgccaatg gtgcccagcc c

2001

<210> 47

⟨211⟩ 1392

<212> DNA

<213> Homo sapiens

<400> 47

atgattgtct gcctcctttt catgatgatt ttattggcaa aggaagttca actggtagac 60 caaacagatt cacctttact tagtctcctt ggacagacaa gctcactttc atggcatctt 120 gtggatattg tgtcgtacca gagtgtgcta agttatttca gcagccatta cccgccgtcc 180 atcatcctgg caaaagaatc ttatgctgaa ttaatcatga agctcctaaa agtgtctgcg 240 ggcctttcta ttcctactga cagccagaag catcttgatg cagttccaaa atgccaagct 300 tttactcatc agatggttca attcctcagc accctggaac aaaatggaaa aatcacctta 360 gcagtcctag aacaggaaat gtctaagctc ttagacgata tcattgtctt taacccgccc 420 gacatggaca gccagacccg ccacatggcc ctcagcagcc tctttatgga agtcctgatg 480 atgatgaaca acgcgactat tccaacagca gagttccttc ggggcagtat ccggacctgg 540 attggccaaa aaatgcatgg gctggtggtg ctgccccttt taacagcagc ctgccagagc 600 ctggcgtccg tccgccacat ggctgagact acagaagcct gcatcactgc ctacttcaaa 660 gaaagccctc tcaatcagaa ttcaggatgg ggacccattc tggtatccct tcaggttccc 720 gageteacea tggaagagtt cetgeaggag tgeeteacet tgggeagtta ettgaetett 780 tacgtctact tgcttcagtg tttaaacagc gaacagactt taaggaatga aatgaaagtg 840 ctgctcatct taagcaagtg gctggaacag gtgtacccaa gctccgtgga ggaagaggca 900 aagctgtttt tgtggtggca ccaagtcett cageteteee teatteagae agagcagaat 960 gacteegtee tgacagaate tgteattega attetgetet tggtteagag caggeagaac 1020 ctcgtggctg aggagagact cagctctggg atcctggggg caattgggtt tggccggaag 1080

tcgcctttgt	ctaacaggtt	ccgagtggtt	gcccgaagca	tggctgcctt	cctttcagtt	1140
caggttccta	tggaagatca	gatccgtttg	aggcctggct	ctgaattaca	tctgaccccc	1200
aaagctcagc	aggctctgaa	tgctcttgaa	tccatggcat	caagtaagca	gtatgttgaa	1260
taccaggatc	aaatattgca	agccacccaa	tttataaggc	atcctggcca	ttgccttcaa	1320
gatgggaaaa	gcttcttggc	tcttctcgtt	aactgtctgt	atccagaagt	gcattatttg	1380
gaccacatac	ga					1392

⟨210⟩ 48

<211> 1410

<212> DNA

<213> Homo sapiens

<400> 48

atgtctagac tgggagccct gggtggtgcc cgtgccgggc tgggactgtt gctgggtacc 60 gccgccggcc ttggattcct gtgcctcctt tacagccagc gatggaaacg gacccagcgt 120 catggccgca gccagagcct gcccaactcc ctggactata cgcagacttc agatcccgga 180 240 cgccacgtga tgctcctgcg ggctgtccca ggtggggctg gagatgcctc agtgctgccc 300 agcettecae gggaaggaea ggagaaggtg etggaeegee tggaetttgt getgaeeage cttgtggcgc tgcggcggga ggtggaggag ctgagaagca gcctgcgagg gcttgcgggg 360 gagattgttg gggaggtccg atgccacatg gaagagaacc agagagtggc tcggcggcga 420 480 aggtttccgt ttgtccggga gaggagtgac tccactggct ccagctctgt ctacttcacg gcctcctcgg gagccacgtt cacagatgct gagagtgaag ggggttacac aacagccaat 540 gcggagtctg acaatgagcg ggactctgac aaagaaagtg aggacgggga agatgaagtg 600 agctgtgaga ctgtgaagat ggggagaaag gattctcttg acttggagga agaggcagct 660 tcaggtgcct ccagtgccct ggaggctgga ggttcctcag gcttggagga tgtgctgccc 720 ctcctgcagc aggccgacga gctgcacagg ggtgatgagc aaggcaagcg ggagggcttc 780

cagctgctgc	tcaacaacaa	gctggtgtat	ggaagccggc	aggactttct	ctggcgcctg	840
gcccgagcct	acagtgacat	gtgtgagctc	actgaggagg	tgagcgagaa	gaagtcatat	900
gccctagatg	gaaaagaaga	agcagaggct	gctctggaga	agggggatga	gagtgctgac	960
tgtcacctgt	ggtatgcggt	gctttgtggt	cagctggctg	agcatgagag	catccagagg	1020
cgcatccaga	gtggctttag	cttcaaggag	catgtggaca	aagccattgc	tctccagcca	1080
gaaaacccca	tggctcactt	tcttcttggc	aggtggtgct	atcaggtctc	tcacctgagc	1140
tggctagaaa	aaaaaactgc	tacagccttg	cttgaaagcc	ctctcagtgc	cactgtggaa	1200
gatgccctcc	agagetteet	aaaggctgaa	gaactacagc	caggattttc	caaagcagga	1260
agggtatata	tttccaagtg	ctacagagaa	ctagggaaaa	actctgaagc	tagatggtgg	1320
atgaagttgg	ccctggagct	gccagatgtc	acgaaggagg	atttggctat	ccagaaggac	1380
ctggaagaac	tggaagtcat	tttacgagac				1410

<210> 49

<211> 729

<212> DNA

<213> Homo sapiens

<400> 49

atggagcagg gcagcggccg cttggaggac ttccctgtca atgtgttctc cgtcactcct 60 tacacaccca gcaccgctga catccaggtg tccgatgatg acaaggcggg ggccaccttg 120 ctetteteag geatetttet gggaetggtg gggateaeat teaetgteat gggetggate 180 aaataccaag gtgtctccca ctttgaatgg acccagctcc ttgggcccgt cctgctgtca 240 gttggggtga cattcatcct gattgctgtg tgcaagttca aaatgctctc ctgccagttg 300 tgcaaagaaa gtgaggaaag ggtcccggac tcggaacaga caccaggagg accatcattt 360 gttttcactg gcatcaacca acccatcacc ttccatgggg ccactgtggt gcagtacatc 420 cctcctctt atggttctcc agagcctatg gggataaata ccagctacct gcagtctgtg 480 WO 01/12660 PCT/JP00/05356

98 / 307

gtgagcccct	gcggcctcat	aacctctgga	ggggcagcag	ccgccatgtc	aagtcctcct	540
caatactaca	ccatctaccc	tcaagataac	tctgcatttg	tggttgatga	gggctgcctt	600
tctttcacgg	acggtggaaa	tcacaggccc	aatcctgatg	ttgaccagct	agaagagaca	660
cagctggaag	aggaggcctg	tgcctgcttc	tetectecee	cttatgaaga	aatatactct	720
ctccctcgc						729

<210> 50

⟨211⟩ 810

<212> DNA

<213> Homo sapiens

<400> 50

60 atggcggcg ccgaggactg gccgggccag cagctggagc tggacgagga cgaggcgtct 120 tgttgccgct ggggcgcgca gcacgccggg gcccgcgagc tggctgcgct ctactcgcca 180 ggcaagcgcc tccaggagtg gtgctctgtg atcctgtgct tcagcctcat cgcccacaac 240 ctggtccatc tcctgctgct ggcccgctgg gaggacacac ccctcgtcat actcggtgtt 300 gttgcagggg ctctcattgc tgacttcttg tctggcctgg tacactgggg tgctgacaca 360 tggggctctg tggagctgcc cattgtgggg aaggctttca tccgaccctt ccgggagcac 420 cacattgacc caacagctat cacacggcac gacttcatcg agaccaacgg ggacaactgc 480 ctggtgacac tgctgccgct gctaaacatg gcctacaagt tccgcaccca cagccctgaa 540 gccctggagc agctataccc ctgggagtgc ttcgtcttct gcctgatcat cttcggcacc 600 ttcaccaacc agatccacaa gtggtcgcac acgtactttg ggctgccacg ctgggtcacc 660 ctcctgcagg actggcatgt catcctgcca cgtaaacacc atcgcatcca ccacgtctca 720 ccccacgaga cctacttctg catcaccaca ggctggctca actaccctct ggagaagata 780 ggcttctggc gacgcctgga ggacctcatc cagggcctga cgggcgagaa gcctcgggca 810 gatgacatga aatgggccca gaagatcaaa /

<210	> 51	l														
<211	> 18	551														•
<212	?> Di	ΝA														
<213	3> Ho	omo s	sapie	ens												
<220)>															
<221	.> CI	OS														
<222	2> (9	98)	. (12	231)												
<400)> 51	l														
caag	gggg	aac g	gtggo	ettte	ec ct	tgcag	gagco	ggt	tgtct	ccg	cctg	cgt	cc 1	tgct	gcagca	60
acce	gago	ctg g	gagto	eggat	c co	cgaad	egcad	c cct	tege	ate	g gad	tce	gco	cto	c agc	115
										Met	t Asp	Sei	Ala	a Lei	ı Ser	
]	l				5	
gat	ccg	cat	aac	ggc	agt	gcc	gag	gca	ggc	ggc	ccc	acc	aac	agc	act	163
Asp	Pro	His	Asn	Gly	Ser	Ala	Glu	Ala	Gly	Gly	Pro	Thr	Asn	Ser	Thr	
			10					15					20			
acg	cgg	ccg	cct	tcc	acg	ccc	gag	ggc	atc	gcg	ctg	gcc	tac	ggc	agc	211
Thr	Arg	Pro	Pro	Ser	Thr	Pro	Glu	Gly	Ile	Ala	Leu	Ala	Tyr	Gly	Ser	
		25					30					35				
ctc	ctg	ctc	atg	gcg	ctg	ctg	ccc	atc	ttc	ttc	ggc	gcc	ctg	cgc	tcc	259
Leu	Leu	Leu	Met	Ala	Leu	Leu	Pro	Ile	Phe	Phe	Gly	Ala	Leu	Arg	Ser	
	40					45					50					
gta	cgc	tgc	gcc	cgc	ggc	aag	aat	gct	tca	gac	atg	cct	gaa	aca	atc	301
Val	Arg	Cys	Ala	Arg	Gly	Lys	Asn	Ala	Ser	Asp	Met	Pro	Glu	Thr	Ile	
55					60					65					70	

WO 01/12660 PCT/JP00/05356

acc	agc	cgg	gat	gcc	gcc	cgc	ttc	ccc	atc	atc	gcc	agc	tgc	aca	ctc	355
Thr	Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile	Ile	Ala	Ser	Cys	Thr	Leu	
				75					80					85		
ttg	ggg	ctc	tac	ctc	ttt	ttc	aaa	ata	ttc	tcc	cag	gag	tac	atc	aac	403
Leu	Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe	Ser	Gln	Glu	Tyr	Ile	Asn	
			90					95					100		•	
ctc	ctg	ctg	tcc	atg	tat	ttc	ttc	gtg	ctg	gga	atc	ctg	gcc	ctg	tcc	451
Leu	Leu	Leu	Ser	Met	Tyr	Phe	Phe	Val	Leu	Gly	Ile	Leu	Ala	Leu	Ser	
		105					110					115				
cac	acc	atc	agc	ccc	ttc	atg	aat	aag	ttt	ttt	cca	gcc	agc	ttt	cca	499
His	Thr	Ile	Ser	Pro	Phe	Met	Asn	Lys	Phe	Phe	Pro	Ala	Ser	Phe	Pro	
	120					125					130		,			
aat	cga	cag	tac	cag	ctg	ctc	ttc	aca	cag	ggt	tct	ggg	gaa	aac	aag	547
Asn	Arg	Gln	Tyr	Gln	Leu	Leu	Phe	Thr	Gln	Gly	Ser	Gly	Glu	Asn	Lys	
135					140					145					150	
gaa	gag	atc	atc	aat	tat	gaa	ttt	gac	acc	aag	gac	ctg	gtg	tgc	ctg	595
Glu	Glu	Ile	Ile	Asn	Tyr	Glu	Phe	Asp	Thr	Lys	Asp	Leu	Val	Cys	Leu	
				155					160					165		
ggc	ctg	agc	agc	atc	gtt	ggc	gtc	tgg	tac	ctg	ctg	agg	aag	cac	tgg	643
Gly	Leu	Ser	Ser	Ile	Val	Gly	Val	Trp	Tyr	Leu	Leu	Arg	Lys	His	Trp	
			170					175					180			
att	gcc	aac	aac	ctt	ttt	ggc	ctg	gcc	ttc	tcc	ctt	aat	gga.	gta	gag	691
Ile	Ala	Asn	Asn	Leu	Phe	Gly	Leu	Ala	Phe	Ser	Leu	Asr	Gly	Val	Glu	
		185					190	•	نتسق			195	5			
cto	ctg	cac	ctc	aac	aat	gto	ago	act	ggc	tgo	ato	ctg	g ctg	gge	gga	739

Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly	Cys	Ile	Leu	Leu	Gly	Gly	
	200					205					210					
ctc	ttc	atc	tac	gat	gtc	ttc	tgg	gta	ttt	ggc	acc	aat	gtg	atg	gtg	787
Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe	Gly	Thr	Asn	Val	Met	Val	
215					220					225					230	
aca	gtg	gcc	aag	tcc	ttc	gag	gca	cca	ata	aaa	ttg	gtg	ttt	ссс	cag	835
Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile	Lys	Leu	Val	Phe	Pro	G1n	
				235					240	•				245		
gat	ctg	ctg	gag	aaa	ggc	ctc	gaa	gca	aac	aac	ttt	gcc	atg	ctg	gga	883
Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asn	Asn	Phe	Ala	Met	Leu	Gly	
			250					255					260			
ctt	gga	gat	gtc	gtc	att	cca	ggg	atc	ttc	att	gcc	ttg	ctg	ctg	cgc	931
Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe	Ile	Ala	Leu	Leu	Leu	Arg	
		265					270					275				
ttt	gac	atc	agc	ttg	aag	aag	aat	acc	cac	acc	tac	ttc	tac	acc	agc	979
Phe	Asp	Ile	Ser	Leu	Lys	Lys	Asn	Thr	His	Thr	Tyr	Phe	Tyr	Thr	Ser	
	280					285					290					
ttt	gca	gcc	tac	atc	ttc	ggc	ctg	ggc	ctt	acc	atc	ttc	atc	atg	cac	1027
Phe	Ala	Ala	Tyr	Ile	Phe	Gly	Leu	Gly	Leu	Thr	Ile	Phe	Ile	Met	His	
295					300					305					310	
atc	ttc	aag	cat	gct	cag	cct	gcc	ctc	cta	tac	ctg	gtc	ccc	gcc	tgc	1075
Ile	Phe	Lys	His	Ala	Gln	Pro	Ala	Leu	Leu	Tyr	Leu	Val	Pro	Ala	Cys	
				315					320					325		
atc	ggt	ttt	cct	gtc	ctg	gtg	gcg	ctg	gcc	aag	gga	gaa	gtg	aca	gag	1123
Ile	Gly	Phe	Pro	Val	Leu	Val	Ala	Leu	Ala	Lys	Gly	Glu	Val	Thr	Glu	

			330					335					340				
atg	ttc	agt	tat	gag	gag	tca	aat	cct	aag	gat	cca	gcg	gca	gtg	aca	117	1
Met	Phe	Ser	Tyr	Glu	Glu	Ser	Asn	Pro	Lys	Asp	Pro	Ala	Ala	Val	Thr		
		345					350					355					
gaa	tcc	aaa	gag	gga	aca	gag	gca	tca	gca	tcg	aag	ggg	ctg	gag	aag	121	9
Glu	Ser	Lys	Glu	Gly	Thr	Glu	Ala	Ser	Ala	Ser	Lys	Gly	Leu	Glu	Lys		
	360					365					370						
aaa	gag	aaa	tg a	atgca	agct	gg t	gcccg	gagco	tc1	tcagg	ggcc	agad	ccag	aca		127	'0
Lys	Glu	Lys											•				
375																	
gat	gggg	gct (gggc	ccaca	ac a	ggcgi	tgcad	c cgs	gtaga	aggg	caca	aggag	ggc (caag	ggcagc	133	0
tcc	agga	cag (ggca	gggg	gc a	gcag	gatad	cto	cago	ccag	gcct	tctg	tgg (cctci	tgtttc	139	0
ctt	ctcc	ctt	tcttį	ggcc	ct c	ctct	gctc	c tco	cca	cacc	ctgo	caggo	caa a	aagaa	aacccc	145	0
cage	cttc	ccc (cctc	cccg	gg a	gccas	ggtgg	g gaa	aaagt	ggg	tgtg	gatti	ttt a	agati	ttgta	151	0
ttg	tgga	ctg	attti	tgcci	tc a	catta	aaaaa	a cto	catco	ccat	g					155	1

<210> 52

<211> 1713

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (89)...(334)

<400> 52

atco	tgc	ctg g	ggcat	tcctg	gc go	cccg	gcc a	itg a	acg g	gcg (cac	tca	ttc	gcc (ctc	112
							. 1	let 1	Thr A	Ala H	dis S	Ser l	Phe .	Ala I	Leu	
			,			••		1				5				
ccg	gtc	atc	atc	ttc	acc	acg	ttc	tgg	ggc	ctc	gtc	ggc	atc	gcc	ggg	160
Pro	Val	Ile	Tle	Phe	Thr	Thr	Phe	Trp	Gly	Leu	Val	Gly	Ile	Ala	Gly	
	10					15					20					
ссс	tgg	ttc	gtg	ccg	aag	gga	ССС	aac	cgc	gga	gtg	atc	atc	acc	atg	208
Pro	Trp	Phe	Val	Pro	Lys	Gly	Pro	Asn	Arg	Gly	Val	Ile	Ile	Thr	Met	
25					30					35					40	
ctg	gtc	gcc	acc	gcc	gtc	tgc	tgt	tac	ctc	ttc	tgg	ctc	atc	gcc	atc	256
Leu	Val	Ala	Thr	Ala	Val	Cys	Cys	Tyr	Leu	Phe	Trp	Leu	Ile	Ala	Ile	
				45				•	50					55		
ctg	gcg	cag	ctg	aac	ссс	ctg	ttc	ggg	ссс	cag	ctg	aag	aat	gag	acc	304
Leu	Ala	Gln	Leu	Asn	Pro	Leu	Phe	Gly	Pro	Gln	Leu	Lys	Asn	Glu	Thr	
			60					65					70			
atc	tgg	tac	gtg	cgc	ttc	ctg	tgg	gag	tga	cccg	cc g	ccc	cgac	с		350
Ile	Trp	Tyr	Val	Arg	Phe	Leu	Trp	Glu								
		75					80									
cag	gtgc	cca	gctc	tcgg	aa t	gact	gtgg	c to	cact	gtcc	ctg	acaa	ссс	cttc	gtccg	g 410
acc	ctcc	ccc	acac	aact	at g	tctg	gtca	c ca	gctc	cctc	ctg	ctgg	cac	ccag	agacc	c 470
gga	cccg	cag	ggcc	tgcc	tg g	ttcc	tgga	a gt	cttc	ccag	tct	tccc	agc	cagc	ccggg	c 530
cct	gggg	agc	cctg	ggca	ca g	cago	ggcc	g ag	ggga	tgtc	ctg	ctcc	aat	accc	gcact	g 590
ctc	tgga	gtt	tgcc	ctct	tt c	ccaa	ggag	a tg	ctgc	tggg	gag	ctgg	tat	gggt	ggggt	c 650
ttt	ccct	tta	caga	cggg	gc a	gatg	ccag		tçag	ccca	tcc	tgag	gag	gaca	cgtgt	c 710
ctc	atgg	aga	gggt	gctc	cg g	ccca	ggcg	g gg	gagt	cagt	gcc	cagt	cag	cago	tctgc	c 770

accatcctgc	tgggaactgg	gggggcctct	attgggttat	aggcaaggcc	ttttctctgg	830
catggaattg	ttaattttct	gacacgtcta	gatgtgaaat	ttctgaaaat	gttgaagcag	890
agaaacattc	acacacaaaa	agcaacatag	tcatgtgggt	ccagatggcc	tcagtcctag	950
atgttggcac	cctttgctgt	gtctcctcag	agtatcctgt	tccgcctcct	gccacctgga	1010
cctccctcag	tggatgtctt	ccctccccg	accccagcct	gtcagtccga	gcacagtgca	1070
ggtttggctc	tgacttgggc	ttttggctgc	agtgggggtg	gatttcagag	cctctcatgg	1130
cagcatctaa	gtgaccagag	ctgggatgag	agagggaag	gggcaatgtg	agtggcgcta	1190
tgggacgggc	cagccctgct	cctgagccag	ccccgccctc	tgcccctgg	ccctgggctc	1250
tgtgctaggg	atggtgaaga	atgggggcgt	gccagcctgg	caggagtggg	aagcaacacg	1310
caggggtccc	ggacctctcc	agccttgccc	tcacgcttac	ccgagctccc	agtgtggtta	1370
gcacagagct	cacccacctt	gcctggctcc	cagctggggc	ctgtcctcac	tggtgctcca	1430
ggggaagaaa	cgacagcctc	acttctgtat	ggactgctga	tgtggcctgc	catcctgttc	1490
agcgggcatt	gtctttggag	cagcaggaga	ataggatgcc	tctcactcac	atgccagttc	1550
ctggctggcc	agctgctcag	ggctcaggct	ggggcctccc	attgacatcc	tcccctaca	1610
ctccctctct	gagcctccgt	cgcccctcct	gttgggtaag	ggtgttgagt	gtgacttgtg	1670
ctgaaaacct	ggttcatata	taataaataa	tggtgatgaa	аад		1713

⟨210⟩ 53

<211> 1758

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (190)...(1653)

<400> 53

ttto	ctagg	ggt 1	tggad	ccgt	gc ag	ggcad	cggg	c ggt	tcago	ctgg	gcc	gcag	ctc	ctcc	ggctc	t 60
gcag	gggto	cac g	ggagg	gaago	cc ag	gctco	ccta	a gto	cag	gccg	agct	ttgc	act 1	tgcg	tcttg	t 120
ctg	etget	tgc 1	tgaad	ccaa	ga ti	ttago	etgt	g cgo	cct	cctt	gcag	gtct	cct (ggaa	ccago	a 180
ggag	gaaa	ac at	tg gg	gg ga	at a	ct gg	gc c	tg ag	ga aa	ag c	gg ag	ga ga	ag ga	at ga	ag	228
		Me	et G	ly As	sp Tl	nr G	ly Le	eu Ai	rg Ly	ys Aı	rg Aı	rg G	lu As	sp G	lu	
			1				5]	10				
aag	tcg	atc	cag	agc	caa	gag	cct	aag	acc	acc	agt	ctc	caa	aag	gag	276
Lys	Ser	Ile	Gln	Ser	Gln	Glu	Pro	Lys	Thr	Thr	Ser	Leu	Gln	Lys	Glu	
	15					20					25					
ctg	ggc	ctc	atc	agt	ggc	atc	tcc	atc	atc	gtg	ggc	acc	atc	att	ggc	324
Leu	Gly	Leu	Ile	Ser	Gly	Ile	Ser	Ile	Ile	Val	Gly	Thr	Ile	Ile	Gly	
30	·				35					40					45	
tct	ggg	atc	ttc	gtt	tcc	ccc	aag	tct	gtg	ctc	agc	aac	acg	gaa	gct	372
Ser	Gly	Ile	Phe	Val	Ser	Pro	Lys	Ser	Val	Leu	Ser	Asn	Thr	Glu	Ala	
				50					55					60		
gtg	ggg	ccc	tgc	ctc	atc	ata	tgg	gcg	gct	tgc	ggg	gtc	ctc	gcg	acg	420
Val	Gly	Pro	Cys	Leu	Ile	Ile	Trp	Ala	Ala	Cys	Gly	Val	Leu	Ala	Thr	
			65					70					75			
ctg	ggt	gcc	ctg	tgc	ttt	gcg	gag	ctt	ggc	aca	atg	atc	acc	aag	tca	468
Leu	Gly	Ala	Leu	Cys	Phe	Ala	Glu	Leu	Gly	Thr	Met	Ile	Thr	Lys	Ser	
		80					85					90				
ggg	gga	gag	tat	ccc	tac	ctg	atg	gag	gcc	tac	ggg	ccc	atc	ccc	gcc	516
Gly	Gly	Glu	Tyr	Pro	Tyr	Leu	Met	Glu	Ala	Tyr	Gly	Pro	Ile	Pro	Ala	
	95					100			**نشو		105					
tac	ctc	ttc	tcc	tgg	gcc	agc	ctg	atc	gtc	att	aag	ccc	acg	tcc	ttc	564

WO 01/12660 PCT/JP00/05356

Tyr	Leu	Phe	Ser	Trp	Ala	Ser	Leu	Ile	Val	Ile	Lys	Pro	Thr	Ser	Phe	
110					115					120					125	
gcc	atc	atc	tgc	ctc	agc	ttc	tcc	gag	tat	gtg	tgt	gcg	ccc	ttc	tat	612
Ala	Ile	Ile	Cys	Leu	Ser	Phe	Ser	Glu	Tyr	Val	Cys	Ala	Pro	Phe	Tyr	
				130					135					140		
gtg	ggc	tgc	aag	cct	cct	caa	atc	gtt	gtg	aaa	tgc	ctg	gcc	gcc	gcc	660
Val	Gly	Cys	Lys	Pro	Pro	Gln	Ile	Val	Val	Lys	Cys	Leu	Ala	Ala	Ala	
			145					150					155			
gcc	atc	ttg	ttc	atc	tcg	aca	gtg	aac	tca	ctg	agc	gtg	cgg	ctg	gga	708
Ala	Ile	Leu	Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly	
		160					165					170				
agc	tac	gtc	cag	aac	atc	ttc	acc	gcg	gcc	aag	ctg	gtg	atc	gtg	gcc	756
Ser	Tyr	Val	Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	Val	Ala	
	175					180					185					
atc	atc	atc	atc	agc	ggg	ctg	gtg	ctc	ctg	gcc	caa	gga	aac	aca	aag	804
Ile	Ile	Ile	Ile	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln	Gly	Asn	Thr	Lys	
190					195					200					205	
aat	ttt	gat	aat	tct	ttc	gag	ggc	gcc	cag	ctg	tct	gtg	gga	gcc	atc	852
Asn	Phe	Asp	Asn	Ser	Phe	Glu	Gly	Ala	Gln	Leu	Ser	Val	Gly	Ala	Ile	
				210)				215					220		
agc	ctg	gcg	ttt	tac	aat	gga	ctc	tgg	gcc	tat	gat	gga	tgg	aat	caa	900
Ser	Leu	Ala	Phe	Tyr	Asn	Gly	Leu	Trp	Ala	Tyr	Asp	Gly	Trp	Asn	Gln	
			225					230					235	i		
ctc	aat	tac	atc	aca	gaa	gaa	ctt	aga	aac نر	cct	tac	aga	aac	ctg	cct	948
Leu	Asr	Tvr	· Ile	Thr	Glu	Glu	Leu	Arg	-	Pro	Tyr	Ars	Asn	Leu	Pro	

		240					245					250				
ttg	gcc	att	atc	atc	ggg	atc	ccc	ctg	gtg	acg	gcg	tgc	tac	atc	ctc	996
Leu	Ala	Ile	Ile	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	
	255					260					265					
atg	aac	gtg	tcc	tac	ttc	acc	gtg	atg	act	gcc	acc	gaa	ctc	ctg	cag	1044
Met	Asn	Val	Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	Glu	Leu	Leu	Gln	
270					275					280					285	
tcc	cag	gcg	gtg	gct	gtg	aca	ttt	ggt	gac	cgt	gtt	ctc	tat	cct	gct	1092
Ser	Gln	Ala	Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	
				290					295					300		
tct	tgg	atc	gtt	cca	ctt	ttt	gtg	gca	ttt	tca	acc	atc	ggt	gct	gct	1140
Ser	Trp	Ile	Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	
			305					310					315			
aac	ggg	acc	tgc	ttc	aca	gcg	ggc	aga	ctc	att	tac	gtg	gcg	ggc	cgg	1188
Asn	Gly	Thr	Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	
		320					325					330				
gag	ggt	cac	atg	ctc	aaa.	gtg	ctt	tct	tac	atc	agc	gtc	agg	cgc	ctc	1236
Glu	Gly	His	Met	Leu	Lys	Val	Leu	Ser	Tyr	Ile	Ser	Val	Arg	Arg	Leu	
	335					340					345					
act	cca	gcc	ccc	gcc	atc	atc	ttt	tat	ggt	atc	ata	gca	acg	att	tat	1284
Thr	Pro	Ala	Pro	Ala	Ile	Ile	Phe	Tyr	Gly	Ile	Ile	Ala	Thr	Ile	Tyr	
350					355					360					365	
atc	atc	cct	ggt	gac	ata	aac	tcg	tta	gtc	aat	tat	ttc	agc	ttt	gcc	1332
Ile	Ile	Pro	Gly	Asp	Ile	Asn	Ser	Leu	Val.	Asn	Tyr	Phe	Ser	Phe	Ala	
				370				ŕ	375					380		

gca	tgg	ctg	ttt	tat	ggc	ctg	acg	att	cta	gga	ctc	atc	gtg	atg	aga	1380
Ala	Trp	Leu	Phe	Tyr	Gly,	Leu	Thr	Ile	Leu	Gly	Leu	Ile	Val	Met	Arg	
			385					390					395			
ttt	aca	agg	aaa	gag	ctg	gaa	agg	cct	atc	aag	gtg	ccc	gta	gtc	att	1428
Phe	Thr	Arg	Lys	Glu	Leu	Glu	Arg	Pro	Ile	Lys	Val	Pro	Val	Val	Ile	
		400					405					410				
ссс	gtc	ttg	atg	aca	ctc	atc	tct	gtg	ttt	ttg	ġtt	ctg	gct	cca	atc	1476
Pro	Val	Leu	Met	Thr	Leu	Ile	Ser	Val	Phe	Leu	Val	Leu	Ala	Pro	Ile	
	415					420					425					
atc	agc	aag	ccc	acc	tgg	gag	tac	ctc	tac	tgt	gtg	ctg	ttt	ata	tta	. 1524
Ile	Ser	Lys	Pro	Thr	Trp	Glu	Tyr	Leu	Tyr	Cys	Val	Leu	Phe	Ile	Leu	
430					435					440					445	
agc	ggc	ctt	tta	ttt	tac	ttc	ctg	ttt	gtc	cac	tac	aag	ttt	gga	tgg	1572
Ser	Gly	Leu	Leu	Phe	Tyr	Phe	Leu	Phe	Val	His	Tyr	Lys	Phe	Gly	Trp	
				450					455					460		
gct	cag	aaa	atc	tca	aag	ccg	att	acc	atg	cac	ctt	cag	atg	cta	atg	1620
Ala	Gln	Lys	Ile	Ser	Lys	Pro	Ile	Thr	Met	His	Leu	Gln	Met	Leu	Met	
			465					470					475			
gaa	gtg	gtc	cca	ccg	gag	gaa	gac	cct	gag	taa	caag	ctc	cgtc	tctt	gt	1670
Glu	Val	Val	Pro	Pro	Glu	Glu	Asp	Pro	Glu							
		480					485									
agc	caag	tca	gctg	aatt	ta t	tttc	ttaa	g ca	atat	ttgt	ggt	tatt	tct	tcct	tttttt	1730
ctt	acga	ata	aaat	atac	tc a	gatg	ttt									1758

<211	> 15	550															
<212	:> DN	IA .															
<213	> Hc	omo s	apie	ens			٠					•					
<220)>																
<221	> CI	os															
<222	!> (1	154).	(1	281)													
<400)> 54	1						٠									
ctct	gttt	ac c	gaga	agago	c cg	gtcca	agtt	ggg	geted	atc	gctg	gccc1	tcg (ctcc	cct	tcg	60
gggc	ctc	ege o	cgcc	tggg	ga ag	gcaga	igaga	a aag	gccgg	gcc	cago	ccti	tcc 1	tcace	cct	tcc	120
ccto	cccg	gca o	cgcc	cgga	ig ag	ggtcg	gace	g gcg	g atg	g acc	ccc	cag	g cc	c gc	c g	ga	174
									Met	t Thi	r Pro	Glr	n Pro	o Ala	a G	ly	
]	l			į	5			
ссс	ccg	gat	ggg	ggc	tgg	ggc	tgg	gtg	gtg	gcg	gcc	gca	gcc	ttc	gc	g	222
Pro	Pro	Asp	Gly	Gly	Trp	Gly	Trp	Val	Val	Ala	Ala	Ala	Ala	Phe	Al	.a	
		10					15					20					
ata	aac	ggg	ctg	tcc	tac	ggg	ctg	ctg	cgc	tcg	ctg	ggc	ctt	gcc	tt	c	270
Ile	Asn	Gly	Leu	Ser	Tyr	Gly	Leu	Leu	Arg	Ser	Leu	Gly	Leu	Ala	Ph	ie	
	25					30					35						
cct	gac	ctt	gcc	gag	cac	ttt	gac	cga	agc	gcc	cag	gac	act	gcg	tg	gg	318
Pro	Asp	Leu	Ala	Glu	His	Phe	Asp	Arg	Ser	Ala	Gln	Asp	Thr	Ala	Tr	rp	
40					45					50					5	55	
atc	agc	gcc	ctg	gcc	ctg	gcc	gtg	cag	cag	gca	gcc	agc	ccc	gtg	gg	gc	366
Ile	Ser	Ala	Leu	Ala	Leu	Ala	Val	Gln	Gln	Ala	Ala	Ser	Pro	Val	G]	ly	
				60				<i>/</i>	_65					70			
age	acc	ctø	age	aco	cac	tσσ	σσσ	acc	cac	ccc	σtσ	ata	ata	a++	a.	~~	417

WO 01/12660 PCT/JP00/05356

Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala	Arg	Pro	Val	Val	Met	Val	Gly	
			75					80					85			
ggc	gtc	ctc	gcc	tcg	ctg	ggc	ttc	gtc	ttc	tcg	gct	ttc	gcc	agc	ggt	462
Gly	Val	Leụ	Ala	Ser	Leu	Gly [°]	Phe	Val	Phe	Ser	Ala	Phe	Ala	Ser	Gly	
		90					95					100				
ctg	ctg	cat	ctc	tac	ctc	ggc	ctg	ggc	ctc	ctc	gct	ggc	ttt	ggt	tgg	510
Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Phe	Gly	Trp	
	105					110					115					
gcc	ctg	gtg	ttc	gcc	ccc	gcc	cta	ggc	acc	ctc	tcg	cgt	tac	ttc	tcc	558
Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly	Thr	Leu	Ser	Arg	Tyr	Phe	Ser	
120					125					130					135	
cgc	cgt	cga	gtc	ttg	gcg	gtg	ggg	ctg	gcg	ctc	acc	ggc	aac	ggg	gcc	606
Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu	Ala	Leu	Thr	Gly	Asn	Gly	Ala	
				140					145					150		
tcc	tcg	ctg	ctc	ctg	gcg	ccc	gcc	ttg	cag	ctt	ctc	ctc	gat	act	ttc	654
Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu	Gln	Leu	Leu	Leu	Asp	Thr	Phe	
			155					160					165			
ggc	tgg	cgg	ggc	gct	ctg	ctc	ctc	ctc	ggc	gcg	atc	acc	ctc	cac	ctc	702
Gly	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu	Gly	Ala	Ile	Thr	Leu	His	Leu	
		170					175					180				
acc	ccc	tgt	ggc	gcc	ctg	ctg	cta	ccc	ctg	gtc	ctt	cct	gga	gac	ccc	750
Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro	Leu	Val	Leu	Pro	Gly	Asp	Pro	
	185					190					195			•		
cca	gcc	cca	ccg	cgt	agt	ccc	cta	gct	gcc سر	ctc	ggc	ctg	agt	ctg	ttc	798
Pro	Ala	Pro	Pro	Arg	Ser	Pro	Leu	Ala	Ala	Leu	Gly	Leu	Ser	Leu	Phe	

200					205					210					215	
aca	cgc	cgg	gcc	ttc	tca	atc _.	ttt	gct	cta	ggc	aca	gcc	ctg	gtt	ggg	846
Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala	Leu	Gly	Thr	Ala	Leu	Val	Gly	
				220					225					230		
ggc	ggg	tac	ttc	gtt	cct	tac	gtg	cac	ttg	gct	ccc	cgc	ttt	aga	ccg	894
Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His	Leu	Ala	Pro	Arg	Phe	Arg	Pro	
			235					240					245			
ggg	cct	ggg	ggg	ata	cgg	agc	agc	gct	ggt	ggt	ggc	cgt	ggc	tgc	gat	942
Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala	Gly	Gly	Gly	Arg	Gly	Cys	Asp	
		250					255					260				
ggg	gga	tgc	ggg	cgc	ccg	gct	ggt	ctg	cgg	gtg	gct	ggc	aga	cca	agg	990
Gly	G1y	Cys	Gly	Arg	Pro	Ala	Gly	Leu	Arg	Val	Ala	Gly	Arg	Pro	Arg	
	265					270					275					
ctg	ggt	gcc	cct	ccc	gcg	gct	gct	ggc	cgt	att	cgg	ggc	tct	gac	tgg	1038
Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly	Arg	Ile	Arg	Gly	Ser	Asp	Trp	
280					285					290					295	
gct	ggg	gct	gtg	ggt	ggt	ggg	gct	ggt	gcc	cgt	ggt	ggg	cgg	cga	aga	1086
Ala	G1 y	Ala	Val	Gly	Gly	Gly	Ala	Gly	Ala	Arg	Gly	Gly	Arg	Arg	Arg	
				300					305					310		
gag	ctg	ggg	ggg	tcc	cct	gct	ggc	cgc	ggc	tgt	ggc	cta	tgg	gct	gag	1134
Glu	Leu	Gly	Gly	Ser	Pro	Ala	Gly	Arg	Gly	Cys	Gly	Leu	Trp	Ala	Glu	
			315				•	320					325			
cgc	ggg	gag	tta	cgc	ccc	gct	ggt	ttt	cgg	tgt	act	ссс	cgg	gct	ggt	1182
Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe	Ąrg	Cys	Thr	Pro	Arg	Ala	Gly	
		330					335	/				340				

ggg	cgt	cgg	agg	tgt	ggt	gca	ggc	cac	agg	gct	ggt	gat	gat	gct	gat	1230
Gly	Arg	Arg	Arg	Cys	Gly	Ala	Gly	His	Arg	Ala	Gly	Asp	Asp	Ala	Asp	
	345					350					355					
gag	cct	cgg	ggg	gct	cct	ggg	ccc	tcc	cct	gtc	agg	ctt	cct	aag	gga	1278
Glu	Pro	Arg	Gly	Ala	Pro	Gly	Pro	Ser	Pro	Val	Arg	Leu	Pro	Lys	Gly	
360					365					370					375	
tg :	agac	agga	ga c	ttcad	ccgc	c tc	tttc	ctcc	tgt	ctgg	ttc	tttga	atcc	tc		1330
tcc	ggca	gct	tcat	ctaca	at a	gggt	tgcc	c agg	ggcg	ctgc	cct	cctg	tgg	tcca	geete	c 1390
cct	ccag	cca	cgcc	tccc	cc a	gaga	cggg	g ga	gctg	cttc	ccg	ctcc	cca ;	ggca	gtctt	g 1450
ctg	tccc	cag	gagg	ccct	gg c	tcca	ctct	g ga	cacc	actt	gtt	gatta	att	ttct	tgttt	g 1510
agc	ccct	ccc (ccaa	taaa	ga a	tttt	tato	g gg	tttt	cctg						1550

<210> 55

<211> 1485

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (101)...(1153)

<400> 55

ctctcctcga ccctggacgt ctaccttccg gaggcccaca tcttgcccac tccgcgcgcg 60
gggctagcgc gggtttcagc gacgggagcc ctcaagggac atg gca act aca gcg 115
Met Ala Thr Thr Ala

1 5

gcg ccg gcg ggc gcc cga aat gga gct ggc ccg gaa tgg gga ggg 163

Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly	Pro	Glu	Trp	Gly	Gly	
				10					15					20		
ttc	gaa	gaa	aac	atc	cag	ggc	gga	ggc	tca	gct	gtg	att	gac	atg	gag	211
Phe	Glu	Glu	Asn	Ile	Gln	Gly	Gly	G1y	Ser	Ala	Val	Ile	Asp	Met	Glu	
			25					30					35			
aac	atg	gat	gat	acc	tca	ggc	tct	agc	ttc	gag	gat	atg	ggt	gag	ctg	259
Asn	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu	Asp	Met	Gly	Glu	Leu	
		40					45					50				
cat	cag	cgc	ctg	cgc	gag	gaa	gaa	gta	gac	gct	gat	gca	gct	gat	gca	307
His	Gln	Arg.	Leu	Arg	Glu	Glu	G1u	Val	Asp	Ala	Asp	Ala	Ala	Asp	Ala	
	55					60					65					
gct	gct	gct	gaa	gag	gag	gat	gga	gag	ttc	ctg	ggc	atg	aag	ggc	ttt	355
Ala	Ala	Ala	Glu	Glu	Glu	Asp	Gly	Glu	Phe	Leu	Gly	Met	Lys	Gly	Phe	
70					75					80					85	
aag	gga	cag	ctg	agc	cgg	cag	gtg	gca	gat	cag	atg	tgg	cag	gct	ggg	403
Lys	Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln	Met	Trp	G1n	Ala	Gly	
				90					95					100		
aaa	aga	caa	gcc	tcc	agg	gcc	ttc	agc	ttg	tac	gcc	aac	atc	gac	atc	451
Lys	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr	Ala	Asn	Ile	Asp	Ile	
			105					110					115			
ctc	aga	ccc	tac	ttt	gat	gtg	gag	cct	gct	cag	gtg	cga	agc	agg	ctc	499
Leu	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln	Val	Arg	Ser	Arg	Leu	
		120		•			125					130				
ctg	gag	tcc	atg	atc	cct	atc	aag	atg	gtc	aac	ttc	ccc	cag	aaa	att	547
Leu	Glu	Ser	Met	Τle	Pro	Πρ	ī.ve	Met	Va1	Asn	Pho	Pro	Gln	Ive	م T ا	

	135					140					145					
gca	ggt	gaa	ctc	tat	gga	cct	ctc	atg	ctg	gtc	ttc	act	ctg	gtt	gct	595
Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val	Phe	Thr	Leu	Val	Ala	
150					155					160					165	
atc	cta	ctc	cat	ggg	atg	aag	acg	tct	gac	act	att	atc	cgg	gag	ggc	643
Ile	Leu	Leu	His	Gly	Met	Lys	Thr	Ser	Asp	Thr	Ile	Ile	Arg	Glu	Gly	
				170					175					180		
acc	ctg	atg	ggc	aca	gcc	att	ggc	acc	tgc	ttc	ggc	tac	tgg	ctg	gga	691
Thr	Leu	Met	Gly	Thr	Ala	Ile	Gly	Thr	Cys	Phe	Gly	Tyr	Trp	Leu	Gly	
			185					190					195			
gtc	tca	tcc	ttc	att	tac	ttc	ctt	gcc	tac	ctg	tgc	aac	gcc	cag	atc	739
Val	Ser	Ser	Phe	Ile	Tyr	Phe	Leu	Ala	Tyr	Leu	Cys	Asn	Ala	Gln	Ile	
		200					205					210				
acc	atg	ctg	cag	atg	ttg	gca	ctg	ctg	ggc	tat	ggc	ctc	ttt	ggg	cat	787
Thr	Met	Leu	Gln	Met	Leu	Ala	Leu	Leu	Gly	Tyr	Gly	Leu	Phe	Gly	His	
	215					220					225					
tgc	att	gtc	ctg	ttc	atc	acc	tat	aat	atc	cac	ctc	cac	gcc	ctc	ttc	835
Cys	Ile	Val	Leu	Phe	Ile	Thr	Tyr	Asn	Ile	His	Leu	His	Ala	Leu	Phe	
230		÷			235					240					245	
tac	ctc	ttc	tgg	ctg	ttg	gtg	ggt	gga	ctg	tcc	aca	ctg	cgc	atg	gta	883
Tyr	Leu	Phe	Trp	Leu	Leu	Val	Gly	Gly	Leu	Ser	Thr	Leu	Arg	Met	Val	
				250	1				255					260		
gca	gtg	ttg	gtg	tct	cgg	acc	gtg	ggc	ccc	aca	cag	cgg	cte	ctc	ctc	931
Ala	Val	Leu	ı Val	Ser	Arg	Thr	Val	Gly	Pro نتر	Thr	Gln	Arg	Leu	Leu	Leu	
			265	,				270)				275	5		

tgt	ggc	acc	ctg	gct	gcc	cta	cac	atg	ctc	ttc	ctg	ctc	tat	ctg	cat	979
Cys	Gly	Thr	Leu	Ala	Ala	Leu	His	Meţ	Leu	Phe	Leu	Leu	Tyr	Leu	His	
		280					285					290				÷
ttt	gcc	tac	cac	aaa	gtg	gta	gag	ggg	atc	ctg	gac	aca	ctg	gag	ggc	1027
Phe	Ala	Tyr	His	Lys	Val	Val	Glu	Gly	Ile	Leu	Asp	Thr	Leu	G1u	Gly	
	295					300					305					
ccc	aac	atc	ccg	ccc	atc	cag	agg	gtc	ссс	aga	gac	atc	cct	gcc	atg	1075
Pro	Asn	Ile	Pro	Pro	Ile	Gln	Arg	Val	Pro	Arg	Asp	Ile	Pro	Ala	Met	
310					315					320					325	
ctc	cct	gct	gct	cgg	ctt	ccc	acc	acc	gtc	ctc	aac	gcc	aca	gcc	aaa	1123
Leu	Pro	Ala	Ala	Arg	Leu	Pro	Thr	Thr	Val	Leu	Asn	Ala	Thr	Ala	Lys	
				330					335					340		
gct	gtt	gcg	gtg	acc	ctg	cag	tca	cac	tgad	ccca	acc t	gaaa	atte	tt		1170
Ala	Val	Ala	Val	Thr	Leu	G1n	Ser	His								
			345					350								
ggc	cagto	cct o	cttt	cccg	ca go	etgea	agaga	a gga	aggaa	agac	tatt	aaag	gga (cagto	ctgat	1230
gaca	atgti	ttc į	gtaga	atggg	gg ti	ttgca	agct	g cca	actga	agct	gtag	gctgo	egt a	aagta	acctcc	1290
ttga	atgc	ctg	tcgg	cacti	tc ta	gaaag	ggca	c aag	ggcca	aaga	acto	ectg	gcc a	agga	ctgcaa	1350
ggc1	ctg	cag (ccaat	tgca	ga aa	aatgg	ggtca	a gct	tcct1	ttga	gaad	ccci	tcc (ccac	ctaccc	1410
ctt	ctte	cct (cttta	atct	ct c	caca	attg	t-ct1	tgcta	aaat	atag	gact	tgg 1	taati	taaaat	1470
gtt	gattı	gaa (gtct	g											-	1485

<210> 56

⟨211⟩ 2694

<212> DNA

<213	> Ho	no s	apie	ns												
<220	>															
<221	> CD	S														
<222	> (8	0)	. (20	83)												
<400	> 56															
gtag	actc	tg c	ggat	cccg	a ga	ccag	cgcc	act	cato	ctg	cago	acte	gg g	gacag	gacaga	a 60
gcag	gaga	ag g	gcca	gaga	atg	tcg	tcc	cag	cca	gca	ggg	aac	cag	g acc	tcc	112
					Met	Ser	Ser	Gln	Pro	Ala	Gly	Asr	Glr	Thr	Ser	
					1				5	5				10)	
ccc	ggg	gcc	aca	gag	gac	tac	tcc	tat	ggc	agc	tgg	tac	atc	gat	gag	160
Pro	G1y	Ala	Thr	Glu	Asp	Tyr	Ser	Tyr	Gly	Ser	Trp	Tyr	Ile	Asp	Glu	
			15					20					25	•		
ссс	cag	ggg	ggc	gag	gag	ctc	cag	cca	gag	ggg	gaa	gtg	ссс	tcc	tgc	208
Pro	Gln	Gly	Gly	Glu	Glu	Leu	Gln	Pro	Glu	Gly	Glu	Val	Pro	Ser	Cys	
		30					35					40				
cac	acc	agc	ata	cca	ccc	ggc	ctg	tac	cac	gcc	tgc	ctg	gcc	tcg	ctg	256
His	Thr	Ser	Ile	Pro	Pro	Gly	Leu	Tyr	His	Ala	Cys	Leu	Ala	Ser	Leu	
	45					50					55					
tca	atc	ctt	gtg	ctg	ctg	ctc	ctg	gcc	atg	ctg	gtg	agg	cgc	cgc	cag	304
Ser	Ile	Leu	Val	Leu	Leu	Leu	Leu	Ala	Met	Leu	Val	Arg	Arg	Arg	Gln	
60					65					70					75	
ctc	tgg	cct	gac	tgt	gtg	cgt	ggc	agg	ccc	ggc	ctg	ccc	agc	cct	gtg	352
Leu	Trp	Pro	Asp	Cys	Val	Arg	Gly	Arg	Pro	Gly	Leu	Pro	Ser	Pro	Val	
				80					85					90		
gat	ttc	ttg	gct	ggg	gac	agg	ccc	cgg	ين gca	gtg	cct	gct	gct	gtt	ttc	400

Asp	Phe	Leu	Ala	Gly	Asp	Arg	Pro	Arg	Ala	Val	Pro	Ala	Ala	Val	Phe	
			95					100					105			
atg	gtc	ċtc	ttg	agc	tcc	ctg	tgt	ttg	ctg	ctc	ccc	gac	gag	gac	gca	448
Met	Val	Leu	Leu	Ser	Ser	Leu	Cys	Leu	Leu	Leu	Pro	Asp	Glu	Asp	Ala	
		110					115					120				
ttg	ccc	ttc	ctg	act	ctc	gcc	tca	gca	ccc	agc	caa	gat	ggg	aaa	act	496
Leu	Pro	Phe	Leu	Thr	Leu	Ala	Ser	Ala	Pro	Ser	Gln	Asp	Gly	Lys	Thr	
	125					130					135					
gag	gct	cca	aga	ggg	gcc	tgg	aag	ata	ctg	gga	ctg	ttc	tat	tat	gct	544
Glu	Ala	Pro	Arg	Gly	Ala	Trp	Lys	Ile	Leu	Gly	Leu	Phe	Tyr	Tyr	Ala	
140					145					150					155	
gcc	ctc	tac	tac	cct	ctg	gct	gcc	tgt	gcc	acg	gct	ggc	cac	aca	gct	592
Ala	Leu	Tyr	Tyr	Pro	Leu	Ala	Ala	Cys	Ala	Thr	Ala	Gly	His	Thr	Ala	
				160					165					170		
gca	cac	ctg	ctc	ggc	agc	acg	ctg	tcc	tgg	gcc	cac	ctt	ggg	gtc	cag	640
Ala	His	Leu	Leu	Gly	Ser	Thr	Leu	Ser	Trp	Ala	His	Leu	Gly	Val	Gln	
			175					180					185			
gtc	tgg	cag	agg	gca	gag	tgt	ccc	cag	gtg	ccc	aag	atc	tac	aag	tac	688
Val	Trp	Gln	Arg	Ala	Glu	Cys	Pro	G1n	Val	Pro	Lys	Ile	Tyr	Lys	Tyr	
		190					195					200				
tac	tcc	ctg	ctg	gcc	tcc	ctg	cct	ctc	ctg	ctg	ggc	ctc	gga	ttc	ctg	736
Tyr	Ser	Leu	Leu	Ala	Ser	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Gly	Phe	Leu	
	205					210					215					
agc	ctt	tgg	tac	cct	gtg	cag	ctg	gtg	aga	agc	ttc	agc	cgt	agg	aca	784
Ser	Leu	Trn	Tvr	Pro	Val	Gln	Len	Val	Aro	Ser	Phe	Ser	Ara	Ara	Thr	•

WO 01/12660 PCT/JP00/05356

220					225					230					235	
gga	gca	ggc	tcc	aag	ggg	ctg	cag	agc	agc	tac	tct	gag	gaa	tat	ctg	832
Gly	Ala	Gly	Ser	Lys	Gly	Leu	Gln	Ser	Ser	Tyr	Ser	Glu	Glu	Tyr	Leu	
				240					245					250		
agg	aac	ctc	ctt	tgc	agg	aag	aag	ctg	gga	agc	agc	tac	cac	acc	tcc	880
Arg	Asn	Leu	Leu	Cys	Arg	Lys	Lys	Leu	Gly	Ser	Ser	Tyr	His	Thr	Ser	
			255					260					265			
aag	cat	ggc	ttc	ctg	tcc	tgg	gcc	cgc	gtc	tgc	ttg	aga	cac	tgc	atc	928
Lys	His	Gly	Phe	Leu	Ser	Trp	Ala	Arg	Val	Cys	Leu	Arg	His	Cys	Ile	
		270					275					280				
tac	act	cca	cag	cca	gga	ttc	cat	ctc	ccg	ctg	aag	ctg	gtg	ctt	tca	976
Tyr	Thr	Pro	Gln	Pro	Gly	Phe	His	Leu	Pro	Leu	Lys	Leu	Val	Leu	Ser	
	285					290					295					
gct	aca	ctg	aca	ggg	acg	gcc	att	tac	cag	gtg	gcc	ctg	ctg	ctg	ctg	1024
Ala	Thr	Leu	Thr	Gly	Thr	Ala	Ile	Tyr	Gln	Val	Ala	Leu	Leu	Leu	Leu	
300					305					310					315	
gtg	ggc	gtg	gta	ccc	act	atc	cag	aag	gtg	agg	gca	ggg	gtc	acc	acg	1072
Val	Gly	Val	Val	Pro	Thr	Ile	Gln	Lys	Val	Arg	Ala	Gly	Val	Thr	Thr	
				320					325					330		
gat	gtc	tcc	tac	ctg	ctg	gcc	ggc	ttt	gga	atc	gtg	ctc	tcc	gag	gac	1120
Asp	Val	Ser	Tyr	Leu	Leu	Ala	Gly	Phe	Gly	Ile	Val	Leu	Ser	Glu	Asp	
			335					340					345			
aag	cag	gag	gtg	gtg	gag	ctg	gtg	aag	cac	cat	ctg	tgg	gct	ctg	gaa	1168
Lys	Gln	Glu	Val	Val	Glu	Leu	Val	Lys	His	His	Leu	Trp	Ala	Leu	Glu	
		350)				355		سرر			360)			

gtg	tgc	tac	atc	tca	gcc	ttg	gtc	ttg	tcc	tgc	tta	ctc	acc	ttc	ctg	1216
Val	Cys	Tyr	Ile	Ser	Ala	Leu	Val	Leu	Ser	Cys	Leu	Leu	Thr	Phe	Leu	
	365		,			370					375		٠		•	
gtc	ctg	atg	cgc	tca	ctg	gtg	aca	cac	agg	acc	aac	ctt	cga	gct	ctg	1264
Val	Leu	Met	Arg	Ser	Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	
380					385					390					395	
cac	cga	gga	gct	gcc	ctg	gac	ttg	agt	ссс	ttg	cat	cgg	agt	ccc	cat	1312
His	Arg	Gly	Ala	Ala	Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	
				400					405					410		
ссс	tcc	cgc	caa	gcc	ata	ttc	tgt	tgg	atg	agc	ttc	agt	gcc	tac	cag	1360
Pro	Ser	Arg	Gln	Ala	Ile	Phe	Cys	Trp	Met	Ser	Phe	Ser	Ala	Tyr	Gln	
			415					420					425			
aca	gcc	ttt	atc	tgc	ctt	ggg	ctc	ctg	gtg	cag	cag	atc	atc	ttc	ttc	1408
Thr	Ala	Phe	Ile	Cys	Leu	Gly	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	
		430					435					440				
ctg	gga	acc	acg	gcc	ctg	gcc	ttc	ctg	gtg	ctc	atg	cct	gtg	ctc	cat	1456
Leu	Gly	Thr	Thr	Ala	Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	
	445					450					455					
ggc	agg	aac	ctc	ctg	ctc	ttc	cgt	tcc	ctg	gag	tcc	tcg	tgg	ссс	ttc	1504
Gly	Arg	Asn	Leu	Leu	Leu	Phe	Arg	Ser	Leu	Glu	Ser	Ser	Trp	Pro	Phe	
460					465					470		٠			475	
tgg	ctg	act	ttg	gcc	ctg	gct	gtg	atc	ctg	cag	aac	atg	gca	gcc	cat	1552
Trp	Leu	Thr	Leu	Ala	Leu	Ala	Val	Ile	Leu	Gln	Asn	Met	Ala	Ala	His	
				480					<u>4</u> 85					490		
too	σtc	tto	ctø	ġασ	act	cat	gat	7 7 7	cac	009	^20	cto	200	220		1600

Trp	Val	Phe	Leu	Glu	Thr	His	Asp	Gly	His	Pro	Gln	Leu	Thr	Asn	Arg	
			495					500					505			
cga	gtg	ctc	tat	gca	gcc	acc	ttt	ctt	ctc	ttc	ccc	ctc	aat	gtg	ctg .	1648
Arg	Val	Leu	Tyr	Ala	Ala	Thr	Phe	Leu	Leu	Phe	Pro	Leu	Asn	Val	Leu	
		510					515					520				
gtg	ggt	gcc	atg	gtg	gcc	acc	tgg	cga	gtg	ctc	ctc	tct	gcc	ctc	tac	1696
Val	Gly	Ala	Met	Val	Ala	Thr	Trp	Arg	Val	Leu	Leu	Ser	Ala	Leu	Tyr	
	525					530					535					
aac	gcc	atc	cac	ctt	ggc	cag	atg	gac	ctc	agc	ctg	ctg	cca	ccg	aga	1744
Asn	Ala	Ile	His	Leu	Gly	Gln	Met	Asp	Leu	Ser	Leu	Leu	Pro	Pro	Arg	
540					545					550					555	
gcc	gcc	act	ctc	gac	ccc	ggc	tac	tac	acg	tac	cga	aac	ttc	ttg	aag	1792
Ala	Ala	Thr	Leu	Asp	Pro	Gly	Tyr	Tyr	Thr	Tyr	Arg	Asn	Phe	Leu	Lys	
				560					565					570		
att	gaa	gtc	agc	cag	tcg	cat	cca	gcc	atg	aca	gcc	ttc	tgc	tcc	ctg	1840
Ile	Glu	Val	Ser	Gln	Ser	His	Pro	Ala	Met	Thr	Ala	Phe	Cys	Ser	Leu	
			575					580					585			
ctc	ctg	caa	gcg	cag	agc	ctc	cta	ccc	agg	acc	atg	gca	gcc	ccc	cag	1888
Leu	Leu	Gln	Ala	Gln	Ser	Leu	Leu	Pro	Arg	Thr	Met	Ala	Ala	Pro	Gln	
		590					595					600				
gac	agc	ctc	aga	cca	ggg	gag	gaa	gac	gaa	ggg	atg	cag	ctg	cta	cag	1936
Asp	Ser	Leu	Arg	Pro	Gly	Glu	Glu	Asp	Glu	Gly	Met	Gln	Leu	Leu	G1n	
	605					610					615					
aca	aag	gac	tcc	atg	gcc	aag	gga	gct	agg	ccc	ggg	gcc	agc	cgc	ggc	1984
Thr	Lys	Asp	Ser	Met	Ala	Lys	Gly	Ala	Arg	Pro	Gly	Ala	Ser	Arg	Gly	

620	625	630	635
agg gct cgc tgg ggt	ctg gcc tac acg c	tg ctg cac aac cca	acc ctg 2032
Arg Ala Arg Trp Gly I	Leu Ala Tyr Thr L	eu Leu His Asn Pro	Thr Leu
640	6	345	650
cag gtc ttc cgc aag a	acg gcc ctg ttg g	gt gcc aat ggt gcc	cag ccc 2080
Gln Val Phe Arg Lys	Thr Ala Leu Leu G	Gly Ala Asn Gly Ala	Gln Pro
655	660	665	
tgagggcagg gaaggtca	ac ccacctgccc atc	tgtgctg aggcatgtto	2130
ctgcctacca tcctcctcc	c tecceggete tect	cccagc atcacaccag	ccatgcagcc 2190
agcaggtcct ccggatcac	c gtggttgggt ggag	gtctgt ctgcactggg	agcctcagga 2250
gggctctgct ccacccact	t ggctatggga gagc	cagcag gggttctgga	gaaagaaact 2310
ggtgggttag ggccttggt	c caggagccag ttga	gccagg gcagccacat	ccaggegtet 2370
ccctaccctg gctctgcca	t cagccttgaa gggc	ectegat gaageettet	ctggaaccac 2430
tccagcccag ctccacctc	a goottggoot toac	gctgtg gaagcagcca	aggcacttcc 2490
tcacccctc agcgccacg	g acctctctgg ggag	tggccg gaaagctccc	gggcctctgg 2550
cctgcagggc agcccaagte	c atgactcaga ccag	gtccca cactgagctg	cccacactcg 2610
agagccagat attttgta	g tttttatgcc tttg	gctatt atgaaagagg	ttagtgtgtt 2670
ccctgcaata aacttgttc	c tgag		2694

⟨210⟩ 57

<211> 3297

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

WO 01/12660 PCT/JP00/05356

122/307

⟨222⟩ (83)...(1477)

<400> 57

.400.	/ 51															
gggg	tctg	ta c	tctg	tgaa	g to	aact	gggt	tag	tgtg	ctc	tctg	gatgo	ct g	ggaat	tccag	g 60
tccc	cacc	ca g	aaac	ccgc	a go	ate	att	gto	tgo	. ct c	ctt	tto	ate	g atg	g att	112
						Met	: Ile	Val	. Cys	Leu	Leu	ı Phe	e Met	t Met	t Ile	
						1				5	•				10	
tta	ttg	gca	aag	gaa	gtt	caa	ctg	gta	gac	caa	aca	gat	tca	cct	tta	160
Leu	Leu	Ala	Lys	Glu	Val	Gln	Leu	Val	Asp	Gln	Thr	Asp	Ser	Pro	Leu	
				15					20					25		
ctt	agt	ctc	ctt	gga	cag	aca	agc	tca	ctt	tca	tgg	cat	ctt	gtg	gat	208
Leu	Ser	Leu	Leu	Gly	Gln	Thr	Ser	Ser	Leu	Ser	Trp	His	Leu	Val	Asp	
			30					35					40			
att	gtg	tcg	tac	cag	agt	gtg	cta	agt	tat	ttc	agc	agc	cat	tac	ccg	256
Ile	Val	Ser	Tyr	Gln	Ser	Val	Leu	Ser	Tyr	Phe	Ser	Ser	His	Tyr	Pro	
		4 5					50					55				
ccg	tcc	atc	atc	ctg	gca	aaa	gaa	tct	tat	gct	gaa	tta	atc	atg	aag	304
Pro	Ser	Ile	Ile	Leu	Ala	Lys	Glu	Ser	Tyr	Ala	Glu	Leu	Ile	Met	Lys	
	60					65					70					
ctc	cta	aaa	gtg	tct	gcg	ggc	ctt	tct	att	cct	act	gac	agc	cag	aag	352
Leu	Leu	Lys	Val	Ser	Ala	Gly	Leu	Ser	Ile	Pro	Thr	Asp	Ser	Gln	Lys	
75					80					85					90	
cat	ctt	gat	gca	gtt	cca	aaa	tgc	caa	gct	ttt	act	cat	cag	atg	gtt	400
His	Leu	Asp	Ala	Val	Pro	Lys	Cys	G1n	Ala	Phe	Thr	His	Gln	Met	. Val	
				95	,				100)				105	5	
caa	ttc	ctc	ago	acc	ctg	gaa	caa	aat	نني gga:	aaa	ato	acc	tta	a gca	a gtc	448

Gln	Phe	Leu	Ser	Thr	Leu	Glu	Gln	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val	
			110					115					120			
cta	gaa	cag	gaa	atg	tct	aag	ctc	tta	gac	gat	atc	att	gtc	ttt	aac	496
Leu	Glu	Gln	Glu	Met	Ser	Lys	Leu	Leu	Asp	Asp	Ile	Ile	Val	Phe	Asn	
		125					130					135				
ccg	ссс	gac	atg	gac	agc	cag	acc	cgc	cac	atg	gcc	ctc	agc	agc	ctc	544
Pro	Pro	Asp	Met	Asp	Ser	Gln	Thr	Arg	His	Met	Ala	Leu	Ser	Ser	Leu	
	140					145					150					
ttt	atg	gaa	gtc	ctg	atg	atg	atg	aac	aac	gcg	act	att	cca	aca	gca	592
Phe	Met	G1u	Val	Leu	Met	Met	Met	Asn	Asn	Ala	Thr	Ile	Pro	Thr	Ala	
155					160		•			165					170	
gag	ttc	ctt	cgg	ggc	agt	atc	cgg	acc	tgg	att	ggc	caa	aaa	atg	cat	640
Glu	Phe	Leu	Arg	Gly	Ser	Ile	Arg	Thr	Trp	Ile	Gly	Gln	Lys	Met	His	
				175					180					185		
ggg	ctg	gtg	gtg	ctg	ccc	ctt	tta	aca	gca	gcc	tgc	cag	agc	ctg	gcg	688
Gly	Leu	Val	Val	Leu	Pro	Leu	Leu	Thr	Ala	Ala	Cys	Gln	Ser	Leu	Ala	
		-	190					195					200			
tcc	gtc	cgc	cac	atg	gct	gag	act	aca	gaa	gcc	tgc	atc	act	gcc	tac	736
Ser	Val	Arg	His	Met	Ala	Glu	Thr	Thr	Glu	Ala	Cys	Ile	Thr	Ala	Tyr	
		205					210					215				
ttc	aaa	gaa	agc	cct	ctc	aat	cag	aat	tca	gga	tgg	gga	ccc	att	ctg	784
Phe	Lys	Glu	Ser	Pro	Leu	Asn	Gln	Asn	Ser	Gly	Trp	Gly	Pro	Ile	Leu	
	220					225					230					
gta	tcc	ctt	cag	gtt	ссс	gag	ctc	acc	ątg	gaa	gag	t tc	ctg	cag	gag	832
Val	Ser	Len	Gln	Va 1	Pro	Glu	Len	Thr	Ma+	Glu	Gli	Dha	Lou	C1r	C1 ₁₁	

235					240					245					250	
tgc	ctc	acc	ttg	ggc	agt	tac	ttg	act	ctt	tac	gtc	tac	ttg	ctt	cag	880
Cys	Leu	Thr	Leu	Gly	Ser	Tyr	Leu	Thr	Leu	Tyr	Val	Tyr	Leu	Leu	Gln	
				255					260					265		
tgt	tta	aac	agc	gaa	cag	act	tta	agg	aat	gaa	atg	aaa	gtg	ctg	ctc	928
Cys	Leu	Asn	Ser	Glu	Gln	Thr	Leu	Arg	Asn	Glu	Met	Lys	Val	Leu	Leu	
			270					275					280			
atc	tta	agc	aag	tgg	ctg	gaa	cag	gtg	tac	cca	agc	tcc	gtg	gag	gaa	976
Ile	Leu	Ser	Lys	Trp	Leu	Glu	Gln	Val	Tyr	Pro	Ser	Ser	Val	Glu	Glu	
		285					290					295				
gag	gca	aag	ctg	ttt	ttg	tgg	tgg	cac	caa	gtc	ctt	cag	ctc	tcc	ctc	1024
Glu	Ala	Lys	Leu	Phe	Leu	Trp	Trp	His	Gln	Val	Leu	G1n	Leu	Ser	Leu	
	300					305					310					
att	cag	aca	gag	cag	aat	gac	tcc	gtc	ctg	aca	gaa	tct	gtc	att	cga	1072
Ile	Gln	Thr	Glu	Gln	Asn	Asp	Ser	Val	Leu	Thr	Glu	Ser	Val	Ile	Arg	
315					320					325					330	
att	ctg	ctc	ttg	gtt	cag	agc	agg	cag	aac	ctc	gtg	gct	gag	g gag	aga	1120
Ile	Leu	Leu	Leu	Val	Gln	Ser	Arg	Gln	Asn	Leu	Val	Ala	Glu	ı Glu	Arg	
				335	,				340		•			348	5	
cto	ago	tct	ggg	ato	cte	ggg	gca	att	ggg	ttt	ggc	cgg	g aag	g tc	g cct	1168
Let	ı Sei	Ser	Gly	Ile	e Lei	ıGly	Ala	Ile	Gly	Phe	Gly	Arg	g Ly:	s Se	r Pro	
			350)				355	•				36	0		
ttį	g tc	t aa	c agg	g tto	c cga	a gte	ggtt	gcc	cga	ago	ate	g gc1	t gc	c tt	c ctt	1216
Le	u Se	r Ası	n Arg	g Phe	e Arı	g Val	l Val	Ala	Arg	g Sei	r Met	t Ala	a Al	a Ph	e Leu	
		36	5				370) /	سرر			37	5			

tca	gtt	cag	gtt	cct	atg	gaa	gat	cag	atc	cgt	ttg	agg	cct	ggc	tct	1264
Ser	Val	Gln	Val	Pro	Met	Glu	Asp	Gln	Ile	Arg	Leu	Arg	Pro	Gly	Ser	
	380					385					390					
gaa	tta	cat	ctg	acc	ccc	aaa	gct	cag	cag	gct	ctg	aat	gct	ctt	gaa	1312
Glu	Leu	His	Leu	Thr	Pro	Lys	Ala	Gln	Gln	Ala	Leu	Asn	Ala	Leu	Glu	
395					400					405					410	
tcc	atg	gca	tca	agt	aag	cag	tat	gtt	gaa	tac	cag	gat	caa	ata	ttg	1360
Ser	Met	Ala	Ser	Ser	Lys	Gln	Tyr	Val	Glu	Tyr	Gln	Asp	Gln	Ile	Leu	
				415					420					425		
caa	gcc	acc	caa	ttt	ata	agg	cat	cct	ggc	cat	tgc	ctt	caa	gat	ggg	1408
Gln	Ala	Thr	Gln	Phe	Ile	Arg	His	Pro	Gly	His	Cys	Leu	Gln	Asp	Gly	
			430					435					440			,
aaa	agc	ttc	ttg	gct	ctt	ctc	gtt	aac	tgt	ctg	tat	cca	gaa	gtg	cat	1456
Lys	Ser	Phe	Leu	Ala	Leu	Leu	Val	Asn	Cys	Leu	Tyr	Pro	Glu	Val	His	
		445					450					455				
tat	ttg	gac	cac	ata	cga	tagi	tta a	acact	tgagg	gc to	cttga	aaaa	a cc	catte	gctg	1510
Tyr	Leu	Asp	His	Ile	Arg											
	460															
ttta	atgti	tta d	catti	taact	tt tg	gctgi	ttgca	a caa	agtaa	actt	tgc	tcaa	ttg	cact	gtagag	1570
ctca	agtti	tgg (ccaat	tgtg	ta gi	ttgad	etga	g at	gcaag	gttg	ggag	ggcg	tta į	gata	ttagat	1630
aat	tttgg	ggg 1	tgtgi	tgtg	tg ta	gtgtg	gtgtį	g tgi	tttt	ctta	gcto	ctta	aga (cctt	ctgggg	1690
acto	cttta	aag 1	tttt	tata	tt ta	atcca	acaa	g aga	aaacı	ttac	taa	gttc	cac	ttgg	gtgcag	1750
agc	cacto	cac a	agtt	gccga	aa ta	gtcc	cagto	c ato	ctca	caag	acc	tcca	gat	ggag	ttcttt	1810
gta	tgtt	tcc a	actt	ctgt	ct c	tgtti	ttat	g taa	aatg	ttcc	aga	tctg	aca :	acct	tggaag	1870
tca	ctca	gta (cct	tact	tt ta	aaac	cca	t tt:	gtgt	tcct	cca	aagt	aaa j	gaag	tcaatt	1930

ttgaaaaatt	tctgcatttc	tcaaatgtgg	acaaatacaa	tagttttaaa	gtattgtttt	1990
tctcagaagg	gagataaaaa	tgccgagtta	gttaaagtgg	gtcatgtgta	aaatacgacc	2050
acttgatcgt	gattatagtg	ggcagtagag	atgatgacaa	gtcaatttcc	atccagccgt	2110
gtatcctcat	ggagaagctg	cctgtctgaa	tcaggatggc	aagctggcag	tctgggagga	2170
gcatgttttg	cacagatgtt	ttgtttggtc	cacttggtga	ggagtgcaga	cagggctgcc	2230
tctctctagt	cgggagagtc	tgtgcattcc	ctcgggccct	gaccctagcc	tcattcacat	2290
cacttgcccc	tgtcgacacc	taagtttgca	ccctttgata	gacaccatgt	tcgatatctg	2350
aaaggctcag	tgtcaggaga	cagagactga	gggagactga	agacctgatt	ctctgttccc	2410
tgcttgtttt	ttaacttcaa	actcagatga	agccaatgga	cctgctgaaa	cacttgtctg	2470
tggaaactgg	gtcaggtcgg	gagatctact	gaaatttggc	ttttttcca	tagccacgtg	2530
ccttctgttg	ttgacagttc	attcattacc	aaagcctgtg	tgtaactttg	ccttgttctg	2590
tggccatctt	cttgctcatg	ttatttctcc	tgggaatgag	cagtttgact	tctgttccca	2650
cgttcctcat	tctatcagct	ctagatggat	tttgcctgca	tagctggctt	aatatgtctt	2710
tgtgtatggg	tagtctgtag	cctgagaata	tttacctaaa	aatgtctaaa	cagccaccaa	2770
gaatgtttat	aggggtatag	gaatatagtt	aacagagtgc	taatctctcc	tcaaatgtcc	2830
ttttggaatg	cttcccccaa	aattgggaag	ttggtaggag	cttttcttta	ctttgaattt	2890
ctttacttgg	acagaacgat	tctgccttaa	agacacgctt	tgcagctctg	ataaagaaca	2950
tccctgttta	gtctcttgag	ttttacaggc	cacaaaatgt	ccgtctcaga	gggatctgtc	3010
tcagcttttc	ttatttttgc	ttctctccgt	tttcaaaatt	aatcatcttg	ttctctgtat	3070
aagaaaattt	gagaagctgt	ggacaattta	atagtctgat	ctggcaacag	cgatttttgt	3130
ttggaaátat	tttgtgtttt	ctttgaggag	gatataatta	ctgatatcct	aggatgtgaa	3190
atttttgagt	gacagtatgc	acattttaaa	gaaaattatg	attaatctgt	ataatgtttt	3250
ttggtctgta	aaaattataa	aaaataaaat	catttatctt	tggttgt		3297

<211	> 21	26														
<212	!> DN	JA														
<213	3> Hc	omo s	sapie	ens									•			
<220)>															
<221	> CI	S											٠			
<222	2> (6	51)	. (14	173)												
<400	> 58	3														
aaca	ctga	aca g	gcgtg	gagco	cc go	ggcg	gcte	g ctg	gccat	tggt	ggct	tggcg	ggc o	egggt	tgcagc	60
atg	tct	aga	ctg	gga	gcc	ctg	ggt	ggt	gcc	cgt	gcc	ggg	ctg	gga	ctg	108
Met	Ser	Arg	Leu	Gly	Ala	Leu	Gly	Gly	Ala	Arg	Ala	Gly	Leu	Gly	Leu	
1				5					10				•	15		
ttg	ctg	ggt	acc	gcc	gcc	ggc	ctt	gga	ttc	ctg	tgc	ctc	ctt	tac	agc	156
Leu	Leu	Gly	Thr	Ala	Ala	Gly	Leu	Gly	Phe	Leu	Cys	Leu	Leu	Tyr	Ser	
			20					25					30			
cag	cga	tgg	aaa	cgg	acc	cag	cgt	cat	ggc	cgc	agc	cag	agc	ctg	ccc	204
Gln	Arg	Trp	Lys	Arg	Thr	Gln	Arg	His	Gly	Arg	Ser	Gln	Ser	Leu	Pro	
		35					40					45				
aac	tcc	ctg	gac	tat	acg	cag	act	tca	gat	ccc	gga	cgc	cac	gtg	atg	252
Asn	Ser	Leu	Asp	Tyr	Thr	Gln	Thr	Ser	Asp	Pro	Gly	Arg	His	Val	Met	
	50					55					60					
ctc	ctg	cgg	gct	gtc	cca	ggt	ggg	gct	gga	gat	gcc	tca	gtg	ctg	ccc	300
Leu	Leu	Arg	Ala	Val	Pro	Gly	Gly	Ala	Gly	Asp	Ala	Ser	Val	Leu	Pro	
65					70					75					80	
agc	ctt	cca	cgg	gaa	gga	cag	gag	aag	gtg	ctg	gac	cgc	ctg	gac	ttt	348
Sar	Lau	Dro	Ara	Clu	C1 v	Cl _n	C1	1	Va1	I	A	A	1	A	DI.	

WO 01/12660 PCT/JP00/05356

				85					90					95			
gtg	ctg	acc	agc	ctt	gtg	gcg	ctg	cgg	cgg	gag	gtg	gag	gag	ctg	aga	3	396
Val	Leu	Thr	Ser	Leu	Val	Ala	Leu	Arg	Arg	Glu	Val	Glu	Glu	Leu	Arg		
			100					105					110				
agc	agc	ctg	cga	ggg	ctt	gcg	ggg	gag	att	gtt	ggg	gag	gtc	cga	tgc	4	144
Ser	Ser	Leu	Arg	Gly	Leu	Ala	Gly	Glu	Ile	Val	Gly	Glu	Val	Arg	Cys		
		115					120					125					
cac	atg	gaa	gag	aac	cag	aga	gtg	gct	cgg	cgg	cga	agg	ttt	ccg	ttt	4	192
His	Met	Glu	Glu	Asn	Gln	Arg	Val	Ala	Arg	Arg	Arg	Arg	Phe	Pro	Phe		
	130					135					140						
gtc	cgg	gag	agg	agt	gac	tcc	act	ggc	tcc	agc	tct	gtc	tac	ttc	acg	!	540
Val	Arg	Glu	Arg	Ser	Asp	Ser	Thr	Gly	Ser	Ser	Ser	Val	Tyr	Phe	Thr	•	
145					150					155					160		
gcc	tcc	tcg	gga	gcc	acg	ttc	aca	gat	gct	gag	agt	gaa	ggg	ggt	tac		588
Ala	Ser	Ser	Gly	Ala	Thr	Phe	Thr	Asp	Ala	Glu	Ser	Glu	Gly	Gly	Tyr		
				165					170					175			
aca	aca	ġcc	aat	gcg	gag	tct	gac	aat	gag	cgg	gac	tct	gac	aaa	gaa		636
Thr	Thr	Ala	Asn	Ala	Glu	Ser	Asp	Asn	Glu	Arg	Asp	Ser	Asp	Lys	Glu		
			180					185					190				
agt	gag	gac	ggg	gaa	gat	gaa	gtg	ago	tgt	gag	act	gtg	aag	atg	ggg		684
Ser	Glu	Asp	Gly	Glu	Asp	Glu	Val	Ser	Cys	Glu	Thr	Val	Lys	Met	Gly		
		195	•				200)				205	j				
aga	aag	g gat	tct	ctt	gac	ttg	gag	g gaa	gag	g gca	gct	t tca	a ggt	gcc	tcc		732
Arg	Lys	s Asp	Ser	Leu	ı Asp	Leu	Glu	ı Glu	ı Glu	ı Ala	. Ala	a Sei	Gly	Ala	Ser		
	210)				215	5	/	تنمن		220)					

agt	gcc	ctg	gag	gct	gga	ggt	tcc	tca	ggc	ttg	gag	gat	gtg	ctg	ccc	780
Ser	Ala	Leu	Glu	Ala	Gly	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro	
225					230		•			235					240	
ctc	ctg	cag	cag	gcc	gac	gag	ctg	cac	agg	ggt	gat	gag	caa	ggc	aag	828
Leu	Leu	Gln	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	Glu	Gln	Gly	Lys	
				245					250					255		
cgg	gag	ggc	ttc	cag	ctg	ctg	ctc	aac	aac	aag	ctg	gtg	tat	gga	agc	876
Arg	Glu	Gly	Phe	Gln	Leu	Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser	
			260					265					270			
cgg	cag	gac	ttt	ctc	tgg	cgc	ctg	gcc	cga	gcc	tac	agt	gac	atg	tgt	924
Arg	Gln	Asp	Phe	Leu	Trp	Arg	Leu	Ala	Arg	Ala	Tyr	Ser	Asp	Met	Cys	
		275					280					285				
gag	ctc	act	gag	gag	gtg	agc	gag	aag	aag	tca	tat	gcc	cta	gat	gga	972
Glu	Leu	Thr	Glu	Glu	Val	Ser	Glu	Lys	Lys	Ser	Tyr	Ala	Leu	Asp	Gly	
	290					295					300					
aaa	gaa	gaa	gca	gag	gct	gct	ctg	gag	aag	ggg	gat	gag	agt	gct	gac	1020
Lys	Glu	Glu	Ala	Glu	Ala	Ala	Leu	Glu	Lys	Gly	Asp	Glu	Ser	Ala	Asp	
305			•		310					315					320	
tgt	cac	ctg	tgg	tat	gcg	gtg	ctt	tgt	ggt	cag	ctg	gct	gag	cat	gag	1068
Cys	His	Leu	Trp	Tyr	Ala	Val	Leu	Cys	Gly	Gln	Leu	Ala	Glu	His	Glu	
				325					330					335		
agc	atc	cag	agg	cgc	atc	cag	agt	ggc	ttt	agc	ttc	aag	gag	cat	gtg	1116
Ser	Ile	Gln	Arg	Arg	Ile	Gln	Ser	Gly	Phe	Ser	Phe	Lys	Glu	His	Val	
			340					345	- نشي				350			
gac	aaa	gcc	att	gct	ctc	cag	cca	gaa	aac	ссс	atg	gct	cac	ttt	ctt	1164

WO 01/12660 PCT/JP00/05356

Asp	Lys	Ala	He	Ala	Leu	Gln	Pro	Glu	Asn	Pro	Met	Ala	His	Phe	Leu	
		355					360				٠.	365				
ctt	ggc	agg	tgg	tgc	tat	cag	gtc	tct	cac	ctg	agc	tgg	cta	gaa	aaa	1212
Leu	Gly	Arg	Trp	Cys	Tyr	Gln	Val	Ser	His	Leu	Ser	Trp	Leu	Glu	Lys	
	370					375					380					
aaa	act	gct	aca	gcc	ttg	ctt	gaa	agc	cct	ctc	agt	gcc	act	gtg	gaa	1260
Lys	Thr	Ala	Thr	Ala	Leu	Leu	Glu	Ser	Pro	Leu	Ser	Ala	Thr	Val	Glu	
385					390					395					400	
gat	gcc	ctc	cag	agc	ttc	cta	aag	gct	gaa	gaa	cta	cag	cca	gga	ttt	1308
Asp	Ala	Leu	Gln	Ser	Phe	Leu	Lys	Ala	Glu	Glu	Leu	Gln	Pro	Gly	Phe	
				405					410					415		
tcc	aaa	gca	gga	agg	gta	tat	att	tcc	aag	tgc	tac	aga	gaa	cta	ggg	1356
Ser	Lys	Ala	Gly	Arg	Val	Tyr	Ile	Ser	Lys	Cys	Tyr	Arg	Glu	Leu	Gly	
			420					425					430			
aaa	aac	tct	gaa	gct	aga	tgg	tgg	atg	aag	ttg	gcc	ctg	gag	ctg	cca	1404
Lys	Asn	Ser	Glu	Ala	Arg	Trp	Trp	Met	Lys	Leu	Ala	Leu	Glu	Leu	Pro	
		435					440					445				
gat	gtc	acg	aag	gag	gat	ttg	gct	atc	cag	aag	gac	ctg	gaa	gaa	ctg	1452
Asp	Val	Thr	Lys	Glu	Asp	Leu	Ala	Ile	Gln	Lys	Asp	Leu	Glu	Glu	Leu	
	450					455					460	1				
gaa	gtc	att	tta	cga	gac	taa	ccac	gtt	tcac	tggc	ct t	catg	actt	g		1500
Glu	Val	Ile	Leu	Arg	Asp	1										
465	-				470)										
atg	ccac	tat	ttaa	iggtg	gg g	gggc	gggg	a gg	cttt سر	tttc	ctt	agac	ctt	gctg	gagatca	1560
gga	aaco	aca	caaa	itcte	tc t	ccte	ggto	t gʻa	ctgo	tacc	cac	taco	act	cccc	attagt	1620

taatttattc	taacctctaa	cctaatctag	aattggggca	gtactcatgg	cttccgtttc	1680
tgttgttctc	tcccttgagt	aatctcttaa	aaaaatcaag	attcacacct	gccccaggat	1740
tacacatggg	tagagcctgc	aagacctgag	accttccaat	tgctggtgag	gtggatgaac	1800
ttcaaagcta	taggaacaaa	gcacataact	tgtcacttta	atcttttca	ctgactaata	1860
ggactcagta	catatagtct	taagatcata	ccttacctac	caaggtaaaa	agagggatca	1920
gagtggccca	cagacattgc	tttcttatca	cctatcatgt	gaattctacc	tgtattcctg	1980
ggctggacca	cttgataact	tccagtgtcc	tggcagcttt	tggaatgaca	gcagtggtat	2040
ggggtttatg	atgctataaa	acaatgtctg	aaaagttgcc	tagaatatat	tttgttacaa	2100
acttgaaata	aaccaaattt	gatgtt				2126

<210> 59

<211> 1781

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (74)... (805)

<400> 59

aatttggacc tgtgattcct tggttctcac aatcctctcc actctaagaa gcagggtgag 60
cccacaagga gca atg gag cag ggc agc ggc cgc ttg gag gac ttc cct 109
Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro

1 5 10

gtc aat gtg ttc tcc gtc act cct tac aca ccc agc acc gct gac atc

157

Val Asn Val Phe Ser Val Thr Pro Tyr Thr Pro Ser Thr Ala Asp Ile

15

20

25

cag	gtg	tcc	gat	gat	gac	aag	gcg	ggg	gcc	acc	ttg	ctc	ttc	tca	ggc	205
Gln	Val	Ser	Asp	Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	Phe	Ser	Gly	
	30					35					40					. •
atc	ttt	ctg	gga	ctg	gtg	ggg	atc	aca	ttc	act	gtc	atg	ggc	tgg	atc	253
Ile	Phe	Leu	Gly	Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	Gly	Trp	Ile	
45					50					55					60	
aaa	tac	caa	ggt	gtc	tcc	cac	ttt	gaa	tgg	acc	cag	ctc	ctt	ggg	ccc	301
Lys	Tyr	Gln	Gly	Val	Ser	His	Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	
				65					70					75		
gtc	ctg	ctg	tca	gtt	ggg	gtg	aca	ttc	atc	ctg	att	gct	gtg	tgc	aag	349
			Ser													
			80		•			85					90	•	•	
ttc	aaa	atg	ctc	tcc	tgc	cag	ttg	tgc	aaa	gaa	agt	gag		agg	gtc	397
			Leu													
	,	95	200		0,0	• • • • • • • • • • • • • • • • • • • •	100	0,0	2,2	313	001	105	014	6	, 41	
cca	gar		gaa	cag	aca	cca		aas	cca	toa	+++		tto	act	aac	445
																440
110		Sei	Glu	GIII	1111		Gly	GIY	rro	ser		vai	rne	HIL	GIY	
	110					115					120					
atc	aac	caa	ccc	atc	acc	ttc	cat	ggg	gcc	act	gtg	gtg	cag	tac	atc	493
Ile	Asn	Gln	Pro	Ile	Thr	Phe	His	Gly	Ala	Thr	Val	Val	Gln	Tyr	Ile	
125					130					135					140	
cct	cct	cct	tat	ggt	tct	cca	gag	cct	atg	ggg	ata	aat	acc	agc	tac	541
Pro	Pro	Pro	Tyr	Gly	Ser	Pro	Glu	Pro	Met	Gly	Ile	Asn	Thr	Ser	Tyr	
				145					150					155	ı	
ctg	cag	tct	gtg	gtg	agc	ccc	tgc	ggc	ندر ctc	ata	acc	tct	gga	ggg	gca	589

Leu	Gln	Ser	Val	Val	Ser	Pro	Cys	Gly	Leu	Ile	Thr	Ser	Gly	Gly	Ala	
			160					165					170			
gca	gcc	gcc	atg	tca	agt	cct	cct	caa	tac	tac	acc	atc	tac	cct	caa	637
Ala	Ala	Ala	Met	Ser	Ser	Pro	Pro	Gln	Tyr	Tyr	Thr	Ile	Tyr	Pro	Gln	
		175					180					185				
gat	aac	tct	gca	ttt	gtg	gtt	gat	gag	ggc	tgc	ctt	tct	ttc	acg	gac	685
Asp	Asn	Ser	Ala	Phe	Val	Val	Asp	Glu	Gly	Cys	Leu	Ser	Phe	Thr	Asp	
	190					195					200					
ggt	gga	aat	cac	agg	ссс	aat	cct	gat	gtt	gac	cag	cta	gaa	gag	aca	733
Gly	Gly	Asn	His	Arg	Pro	Asn	Pro	Asp	Val	Asp	Gln	Leu	Glu	Glu	Thr	
205					210					215					220	
cag	ctg	gaa	gag	gag	gcc	tgt	gcc	tgc	ttc	tct	cct	ссс	cct	tat	gaa	781
Gln	Leu	Glu	Glu	Glu	Ala	Cys	Ala	Cys	Phe	Ser	Pro	Pro	Pro	Tyr	Glu	
				225					230					235		
gaa	ata	tac	tct	ctc	cct	cgc	tag	aggc	t at	tctg	atat	aat	aaca	caa		830
Glu	Ile	Tyr	Ser	Leu	Pro	Arg										
			240													
tgc	tcag	ctc	aggg	agca	ag t	gttt	ccgt	c at	tgtt	acct	gac	aacc	gtg	gtgt	tctatg	890
ttg	taac	ctt	caga	agtt	ac a	gcag	cgcc	c ag	gcag	cctg	aca	gaga	tca	ttca	aggggg	950
gaa	aggg	gaa	gtgg	gagg	tg c	aatt	tctc	a ga	ttgg	taaa	aat	tagg	ctg	ggct	ggggaa	1010
att	ctcc	tcc	ggaa	cagt	tt c	aaat	tccc	t cg	ggta	agaa	atc	tcct	gta	taag	gttcag	1070
gag	cagg	aat	ttca	cttt	tt c	atcc	acca	с сс	tccc	cctt	ctc	tgta	gga	aggc	attggt	1130
ggc	tcaa	ttt	taac	ccca	gc a	gcca	atgg	a aa	aatc	acga	ctt	ctga	gac	tttg	ggagtt	1190
tcc	acag	agg	tgag	agtc	gg g	tggg	aagg	a ag	cagg	gaag	aga	aagc	agg	ccca	gctgga	1250
gat	ttcc	tgg	tggc	tgtc	ct t	ggcc	ccaa	a gc	agac	tcac	taa	tccc	aaa	caac	tcagct	1310

WO 01/12660 PCT/JP00/05356

134/307

gccatctggc	ctctctgagg	actctgggta	ccttaaagac	tataaaacaa	aacaaaacaa	1370
aaacatcaaa	ccaatgaaat	aaaataaatc	atgtctcctg	ctagaatagt	attggatacc	1430
tgactaaatt	acacaaaata	gaccataata	ggatagcact	gtgaatacat	ccttcccgat	1490
cactgagtca	cagtgaccct	tggctgctgc	agttctcgtc	tgcaaggttg	aagcttgacg	1550
tgtgatgaac	atgggtgggc	tcttggtcca	ccccaggctg	gggcctgcgc	caagcatgaa	1610
ctagctggga	ccagtggctg	acagaacaca	ggacttccct	aagtacccgt	aggtccgtgg	1670
agcaagacag	agcagagttg	ccatgtcaac	acatggggaa	tgatatgata	gaaacaatct	1730
ttatgactaa	aagaaactca	tcttcttcat	taaaaaaact	ttggtgtcct	t	1781

<210> 60

<211> 1788

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (87)...(899)

<400> 60

10

attgggcggc gtgatctcgc cgcggttccg cggccctgcc gccgccgccg ccagcagagc 60 gcaccgggcc gatcgggcga gtggcc atg gcg ggc gcc gag gac tgg ccg ggc 113

Met Ala Gly Ala Glu Asp Trp Pro Gly

1 5

20

25

cag cag ctg gag ctg gac gag gac gag gcg tct tgt tgc cgc tgg ggc 161 Gln Gln Leu Glu Leu Asp Glu Asp Glu Ala Ser Cys Cys Arg Trp Gly

gcg cag cac gcc ggg gcc cgc gag ctg gct gcg ctc tac tcg cca ggc 209

15

Ala	Gln	His	Ala	Gly	Ala	Arg	Glu	Leu	Ala	Ala	Leu	Tyr	Ser	Pro	Gly		
				. 30.					35					40			
aag	cgc	ctc	cag	gag	tgg	tgc	tct	gtg	atc	ctg	tgc	ttc	agc	ctc	atc	2	257
Lys	Arg	Leu	Gln	Glu	Trp	Cys	Ser	Val ⁻	Ile	Leu	Cys	Phe	Ser	Leu	Ile		
			45					50					55				
gcc	cac	aac	ctg	gtc	cat	ctc	ctg	ctg	ctg	gcc	cgc	tgg	gag	gac	aca	3	305
Ala	His	Asn	Leu	Val	His	Leu	Leu	Leu	Leu	Ala	Arg	Trp	Glu	Asp	Thr		
		60					65					70					
ccc	ctc	gtc	ata	ctc	ggt	gtt	gtt	gca	ggg	gct	ctc	att	gct	gac	ttc	;	353
Pro	Leu	Val	Ile	Leu	G1 y	Val	Val	Ala	Gly	Ala	Leu	Ile	Ala	Asp	Phe		
	75					80					85						
ttg	tct	ggc	ctg	gta	cac	tgg	ggt	gct	gac	aca	tgg	ggc	tct	gtg	gag	4	401
Leu	Ser	Gly	Leu	Val	His	Trp	Gly	Ala	Asp	Thr	Trp	Gly	Ser	Val	Glu		
90					95					100					105		
ctg	ccc	att	gtg	ggg	aag	gct	ttc	atc	cga	ccc	ttc	cgg	gag	cac	cac	4	149
Leu	Pro	Ile	Val	Gly	Lys	Ala	Phe	Ile	Arg	Pro	Phe	Arg	Glu	His	His		
				110					115					120			
att	gac	cca	aca	gct	atc	aca	cgg	cac	gac	ttc	atc	gag	acc	aac	ggg	4	497
Ile	Asp	Pro	Thr	Ala	Ile	Thr	Arg	His	Asp	Phe	Ile	Glu	Thr	Asn	Gly		
			125					130					135				
gac	aac	tgc	ctg	gtg	aca	ctg	ctg	ccg	ctg	cta	aac	atg	gcc	tac	aag	!	545
Asp	Asn	Cys	Leu	Val	Thr	Leu	Leu	Pro	Leu	Leu	Asn	Met	Ala	Tyr	Lys		
		140					145					150					
ttc	cgc	acc	cac	agc	cct	gaa	gcc	ctg	gag	cag	cta	tac	ccc	tgg	gag		593
Phe	Arg	Thr	His	Ser	Pro	Glu	Ala	Leu	Glu	Gln	Leu	Tvr	Pro	Trn	Glu		*

	155					160					165	•				
tgc	ttc	gtc	ttc	tgc	ctg	atc	atc	ttc	ggc	acc	ttc	acc	aac	cag	atc	641
Cys	Phe	Val	Phe	Cys	Leu	Ile	Ile	Phe	Gly	Thr	Phe	Thr	Asn	Gln	Ile	
170					175					180					185	
cac	aag	tgg	tcg	cac	acg	tac	ttt	ggg	ctg	cca	cgc	tgg	gtc	acc	ctc	689
His	Lys	Trp	Ser	His	Thr	Tyr	Phe	Gly	Leu	Pro	Arg	Trp	Val	Thr	Leu	
				190					195					200		
ctg	cag	gac	tgg	cat	gtc	atc	ctg	cca	cgt	aaa	cac	cat	cgc	atc	cac	737
Leu	Gln	Asp	Trp	His	Val	Ile	Leu	Pro	Arg	Lys	His	His	Arg	Ile	His	
			205					210					215			
cac	gtc	tca	ccc	cac	gag	acc	tac	ttc	tgc	atc	acc	aca	ggc	tgg	ctc	785
His	Val	Ser	Pro	His	Glu	Thr	Tyr	Phe	Cys	Ile	Thr	Thr	Gly	Trp	Leu	,
		220					225					230				
aac	tac	cct	ctg	gag	aag	ata	ggc	ttc	tgg	cga	cgc	ctg	gag	gac	ctc	833
Asn	Tyr	Pro	Leu	Glu	Lys	Ile	Gly	Phe	Trp	Arg	Arg	Leu	Glu	Asp	Leu	
	235					240					245					
atc	cag	ggc	ctg	acg	ggc	gag	aag	cct	cgg	gca	gat	gac	atg	aaa	tgg	881
Ile	Gln	Gly	Leu	Thr	Gly	Glu	Lys	Pro	Arg	Ala	Asp	Asp	Met	Lys	Trp	
250					255					260					265	
gcc	cag	aag	atc	aaa	taa	c tt	ctcc	gagc	ctg	ctac	ctg	gttg	ccaa	cc		930
Ala	Gln	Lys	Ile	Lys												
		•		270												
ttc	ccta	gcc	ccca	aacc	ga a	gcca	tctg	c ca	aatt	ccag	cct	cttt	gag	ctgg	cccctc	990
cag	atgg	aga	ggac	atct	cc t	gggc	tggg	c cc	aggt سر	accc	cag	ccca	ссс	ctca	tgacac	1050
aga	atac	ttg	agcc	actg	at t	tttc	attt	c ťt	tttt	tttt	ttt	ttcc	tcg	gccc	ctcctc	1110

agccacctga	gttgctctat	ctgcaagcct	gactctgcca	gcctcccctg	gtagagagga	1170
ggtttaccca	ctccctgcac	gcctgccgtc	cctgccccgc	tgggcagccc	ttcagtgtgg	1230
ctggcgttgg	ggccagtgag	ttgcctcttt	ccctccttgt	ctggccccag	tggtctgggg	1290
agcccccagg	cacacctaag	cgtcgtggag	cattgttctg	ccacagccct	gcatactgac	1350
cccgggaggc	tgggcaggtg	gacagcccca	gccaccacct	tcagcctagc	ctgtcccca	1410
aggatggtga	agctcagcag	gggtctgagg	gtagccggcc	agaagaggct	ggaacctcct	1470
gctcaagtct	agacccctac	ttctctgctg	ccccaccct	gccagagctg	atgtttccaa	1530
taccaagatg	tcttcacagg	gcacagcccc	tgcagagcat	cttggtcatt	tggaagagga	1590
cacggtatcc	cctctggcca	gagtatgtca	gagaaggaag	agtagggctt	ttttgttttg	1650
tttttttta	aaggtgcttg	cttgtttaat	gtaaataata	gaaagcctta	atatcttttc	1710
tgtaacacgg	agtaatattt	taatgtcatg	ttttggatgt	acataatata	tttataacaa	1770
agcagcaaga	gtctactt					1788

<210> 61

<211> 389

<212> PRT

<213> Homo sapiens

<400> 61

Met Asp Arg Gly Glu Lys Ile Gln Leu Lys Arg Val Phe Gly Tyr Trp

1 5 10 15

Trp Gly Thr Ser Phe Leu Leu Ile Asn Ile Ile Gly Ala Gly Ile Phe

20 25 30

Val Ser Pro Lys Gly Val Leu Ala Tyr Ser Cys Met Asn Val Gly Val

35 40 ₂₀ 45

Ser Leu Cys Val Trp Ala Gly Cys Ala Ile Leu Ala Met Thr Ser Thr

	50					55					60				
Leu	Cys	Ser	Ala	Glu	Ile	Ser	Ile	Ser	Phe	Pro	Cys	Ser	Gly	Ala	Gln
65					70					75					80
Tyr	Tyr	Phe	Leu	Lys	Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn
				85					90					95	
Leu	Trp	Thr	Ser	Leu	Phe	Leu	Gly	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala
			100					105					110		
Leu	Leu	Leu	Ala	Glu	Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser
		115					120					125			
Val	Pro	Lys	Leu	Pro	Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	Ile
	130					135					140				
Val	Gly	Ile	Leu	Thr	Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln
145					150					155					160
Ile	Ala	Ser	Ser	Val	Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	Ile	Ser	Leu
				165					170					175	
Thr	Gly	Val	Val	Phe	Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asn	Val	Glu	Arg
			180					185					190		
Phe	Gln	Asn	Ala	Phe	Asp	Ala	Glu	Leu	Pro	Asp	Ile	Ser	His	Leu	Ile
		195					200					205			
Gln	Ala	Ile	Phe	Gln	Gly	Tyr	Phe	Ala	Tyr	Ser	Gly	Glu	Leu	Lys	Lys
	210					215					220				
Pro	Arg	Thr	Thr	Ile	Pro	Lys	Cys	Ile	Phe	Thr	Ala	Leu	Pro	Leu	Val
225					230	ı				235	i				240
Thr	Val	Val	Tyr	Leu	Leu	Val	Asn	Ile	e Ser نر	Tyr	Leu	Thr	Val	Leu	Thr
				245				/	250)				255	,

Pro Arg Glu Ile Leu Ser Ser Asp Ala Val Ala Ile Thr Trp Ala Asp 260 265 270 Arg Ala Phe Pro Ser Leu Ala Trp Ile Met Pro Phe Ala Ile Ser Thr 275 280 285 Ser Leu Phe Ser Asn Leu Leu Ile Ser Ile Phe Lys Ser Ser Arg Pro 290 295 300 Ile Tyr Leu Ala Ser Gln Glu Gly Gln Leu Pro Leu Leu Phe Asn Thr 305 310 315 320 Leu Asn Ser His Ser Ser Pro Phe Thr Ala Val Leu Leu Leu Val Thr 325 330 335 Leu Gly Ser Leu Ala Ile Ile Leu Thr Ser Leu Ile Asp Leu Ile Asn 340 345 350 Tyr Ile Phe Phe Thr Gly Ser Leu Trp Ser Ile Leu Leu Met Ile Gly 355 360 365 Ile Leu Arg Arg Arg Tyr Gln Glu Pro Asn Leu Ser Ile Pro Tyr Lys 370 375 380 Val Lys Leu Asp Phe 385 <210> 62

<211> 348

<212> PRT

<213> Homo sapiens

<400> 62

Met Ala Ala Thr Leu Gly Pro Leu Gly Ser Trp Gln Gln Trp Arg Arg

1				5					10					15	
Cys	Leu	Ser	Ala	Arg	Asp	Gly	Ser	Arg	Met	Leu	Leu	Leu	Leu	Leu	Leu
			20					25				-	30		
Leu	Gly	Ser	Gly	Gln	Gly	Pro	Gln	Gln	Val	Gly	Ala	Gly	Gln	Thr	Phe
		35					40					45			
Glu	Tyr	Leu	Lys	Arg	Glu	His	Ser	Leu	Ser	Lys	Pro	Tyr	Gln	Gly	Val
	50					55					60				
Gly	Thr	Gly	Ser	Ser	Ser	Leu	Trp	Asn	Leu	Met	Gly	Asn	Ala	Met	Val
65					70					75					80
Met	Thr	Gln	Tyr	Ile	Arg	Leu	Thr	Pro	Asp	Met	Gln	Ser	Lys	Gln	Gly
				85					90					95	
Ala	Leu	Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu	Arg	Asp	Trp	Glu	Leu	Gln
			100					105					110		
Val	His	Phe	Lys	Ile	His	Gly	Gln	Gly	Lys	Lys	Asn	Leu	His	Gly	Asp
		115					120					125			
Gly	Leu	Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	Met	Gln	Pro	Gly	Pro	Val
	130					135				-	140				
Phe	Gly	Asn	Met	Asp	Lys	Phe	Val	Gly	Leu	Gly	Val	Phe	Val	Asp	Thr
145					150					155					160
Tyr	Pro	Asn	Glu	Glu	Lys	Gln	Gln	Glu	Arg	Val	Phe	Pro	Tyr	Ile	Ser
				165					170					175	
Ala	Met	Val	Asn	Asn	Gly	Ser	Leu	Ser	Tyr	Asp	His	Glu	Arg	Asp	Gly
			180	1				185	;				190		
Arg	Pro	Thr	Glu	Leu	Gly	Gly	Cys	Thr	· Ala سر	Ile	Val	Arg	, Asn	Leu	His
		195	,				200	/	-			205	5		

Tyr Asp Thr Phe Leu Val Ile Arg Tyr Val Lys Arg His Leu Thr Ile Met Met Asp Ile Asp Gly Lys His Glu Trp Arg Asp Cys Ile Glu Val Pro Gly Val Arg Leu Pro Arg Gly Tyr Tyr Phe Gly Thr Ser Ser Ile Thr Gly Asp Leu Ser Asp Asn His Asp Val Ile Ser Leu Lys Leu Phe Glu Leu Thr Val Glu Arg Thr Pro Glu Glu Glu Lys Leu His Arg Asp Val Phe Leu Pro Ser Val Asp Asn Met Lys Leu Pro Glu Met Thr Ala Pro Leu Pro Pro Leu Ser Gly Leu Ala Leu Phe Leu Ile Val Phe Phe Ser Leu Val Phe Ser Val Phe Ala Ile Val Ile Gly Ile Ile Leu Tyr Asn Lys Trp Gln Glu Gln Ser Arg Lys Arg Phe Tyr

<210> 63

<211> 261

<212> PRT

<213> Homo sapiens

<400> 63

Met Glu Leu Leu Gln Val Thr Ile Leu Phe Leu Leu Pro Ser Ile Cys

1				5					10					15	
Ser	Ser	Asn	Ser	Thr	Gly	Val	Leu	Glu	Ala	Ala	Asn	Asn	Ser	Leu	Val
			20				•	25					30		
Val	Thr	Thr	Thr	Lys	Pro	Ser	Ile	Thr	Thr	Pro	Asn	Thr	Glu	Ser	Leu
		35					40					45			
Gln	Lys	Asn	Val	Val	Thr	Pro	Thr	Thr	Gly	Thr	Thr	Pro	Lys	Gly	Thr
	50					5 5					60				
Ile	Thr	Asn	Glu	Leu	Leu	Lys	Met	Ser	Leu	Met	Ser	Thr	Ala	Thr	Phe
65					70					75					80
Leu	Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg
				85					90					95	
Lys	Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu
			100					105					110		
Pro	Asn	Ala	Val	Ser	Thr	Leu	Gln	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr
		115					120					125			
G1n	Ser	Ser	Ile	Lys	Thr	Thr	Glu	Ile	Pro	Gly	Ser	Val	Leu	Gln	Pro
	130					135					140				
Asp	Ala	Ser	Pro	Ser	Lys	Thr	G1y	Thr	Leu	Thr	Ser	Ile	Pro	Val	Thr
145					150					155					160
Ile	Pro	Glu	Asn	Thr	Ser	Gln	Ser	Gln	Val	Ile	Gly	Thr	Glu	Gly	Gly
				165					170					175	
Lys	Asn	Ala	Ser	Thr	Ser	Ala	Thr	Ser	Arg	Ser	Tyr	Ser	Ser	Ile	Ile
			180					185					190		
Leu	Pro	Val	Val	Ile	Ala	Leu	Ile	Val	Ile	Thr	Leu	Ser	Val	Phe	Val
		195					200	/	۰ تتمین			205			

Leu	اما	GIY	Leu	Tyr	Arg	met	cys	ırp	Lys	АТА	Asp	Pro	Gly	Ihr	Pro
	210					215					220				
Glu	Asn	Gly	Asn	Asp	Gln	Pro	Gln	Ser	Asp	Lys	Glu	Ser	Val	Lys	Leu
225					230					235					240
Leu	Thr	Val	Lys	Thr	Ile	Ser	His	Glu	Ser	Gly	Glu	His	Ser	Ala	Gln
				245					250					255	
Gly	Lys	Thr	Lys	Asn											
			260												
<210)> 64	1													
<211	l> 22	22													
<212	2> PI	TS						•							
<213	3> He	omo :	sapie	ens											
<400)> 64	1													
Met	Leu	Trp	Leu	Leu	Phe	Phe	Leu	Val	Thr	Ala	Ile	His	Ala	Glu	Leu
1				5					10					15	
Cys	Gln	Pro	Gly	Ala	Glu	Asn	Ala	Pho	1	V - 1	A	I 411	Ser	Ile	Arg
								ı ne	Lys	vai	AL. R	Leu			
			20					25	Lys	vai	Arg	Leu	30		
Thr	Ala	Leu	20 Gly	Asp	Lys			25					30		Tyr
Thr	Ala	Leu 35		Asp	Lys			25					30		Tyr
		35				Ala	Tyr 40	25 Ala	Trp	Asp	Thr	Asn 45	30 Glu	Glu	
		35	Gly			Ala	Tyr 40	25 Ala	Trp	Asp	Thr	Asn 45	30 Glu	Glu	
Leu	Phe 50	35 Lys	Gly	Met	Val	Ala Ala 55	Tyr 40 Phe	25 Ala Ser	Trp	Asp Arg	Thr Lys 60	Asn 45 Val	30 Glu Pro	Glu Asn	Arg
Leu	Phe 50	35 Lys	Gly	Met	Val	Ala Ala 55	Tyr 40 Phe	25 Ala Ser Leu	Trp	Asp Arg Cys	Thr Lys 60	Asn 45 Val	30 Glu Pro	Glu Asn	Arg

WO 01/12660

144/307

Pro Ala Val Glu Val Gln Ser Ala Ile Arg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn Asp Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro Met Asp Pro Ser Val Pro Ile Trp Ile Ile Ile Phe Gly Val Ile Phe Cys Ile Ile Ile Val Ala Ile Ala Leu Leu Ile Leu Ser Gly Ile Trp Gln Arg Arg Arg Lys Asn Lys Glu Pro Ser Glu Val Asp Asp Ala Glu Asp Lys Cys Glu Asn Met Ile Thr Ile Glu Asn Gly Ile Pro Ser Asp Pro Leu Asp Met Lys Gly Gly His Ile Asn Asp Ala Phe Met Thr Glu Asp Glu Arg Leu Thr Pro Leu

<210> 65

⟨211⟩ 183

<212> PRT

<213> Homo sapiens

<400> 65

Met Gly Val Arg Val His Val Val Ala Ala Ser Ala Leu Leu Tyr Phe

1 5 10 15

Ile	Leu	Leu	Ser	Gly	Thr	Arg	Cys	Glu	Glu	Asn	Cys	Gly	Asn	Pro	Glu
			20	,				25					30		
His	Cys	Leu	Thr	Thr	Asp	Trp	Val	His	Leu	Trp	Tyr	Ile	Trp	Leu	Leu
		35					40					45			
Val	Val	Ile	Gly	Ala	Leu	Leu	Leu	Leu	Cys	Gly	Leu	Thr	Ser	Leu	Cys
	50					55					60				
Phe	Arg	Cys	Cys	Cys	Leu	Ser	Arg	Gln	Gln	Asn	Gly	Glu	Asp	Gly	Gly
65					70					75					80
Pro	Pro	Pro	Cys	Glu	Val	Thr	Val	Ile	Ala	Phe	Asp	His	Asp	Ser	Thr
				85					90					95	
Leu	Gln	Ser	Thr	Ile	Thr	Ser	Leu	Gln	Ser	Val	Phe	Gly	Pro	Ala	Ala
			100					105					110		
Arg	Arg	Ile	Leu	Ala	Val	Ala	His	Ser	His	Ser	Ser	Leu	Gly	Gln	Leu
		115					120					125			
Pro	Ser	Ser	Leu	Asp	Thr	Leu	Pro	Gly	Tyr	Glu	Glu	Ala	Leu	His	Met
	130					135					140				
Ser	Arg	Phe	Thr	Val	Ala	Met	Cys	Gly	Gln	Lys	Ala	Pro	Asp	Leu	Pro
145					150					155					160
Pro	Val	Pro	Glu	Glu	Lys	Gln	Leu	Pro	Pro	Thr	Glu	Lys	Glu	Ser	Thr
				165					170					175	
Arg	Ile	Val	Asp	Ser	Trp	Asn									
			180												

⟨210⟩ 66

<211> 262

<212	> PR	T													
<213	> Ho	mo s	apie	ens											
<400	> 66	,													
Met	Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly	Ser	Trp	Arg	Glu	Asp	Glu	Asn
1				5					10					15	
Lys	Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn
			20					25					30		
Tyr	Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys
		35					40					45			
Glu	Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly
	50					55					60				
Ser	Gly	Lys	Ile	Pro	Gln	Glu	Leu	G1u	Lys	Gln	Leu	Val	Ala	Leu	Ile
65					70					75					80
Pro	Tyr	Gly	Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val
				85					90					95	
Phe	Leu	Ala	Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	Val	Phe
			100					105					110		
Phe	Leu	Phe	Pro	Arg	Ser	Val	Ile	Val	Gln	Pro	Ala	Gly	Leu	Asn	Ser
		115					120					125			
Ser	Thr	Val	Ala	Phe	Asp	Glu	Ala	Asp	Ile	Tyr	Leu	Asn	Ile	Thr	Asn
	130					135					140				
Ile	Leu	Asn	Ile	Ser	Asn	Gly	Asn	Tyr	Tyr	Pro	Ile	Met	Val	Thr	G1n
145					150	ı				155	i				160
Leu	Thr	Leu	Glu	Val	Leu	His	Leu	Ser	Leu	Val	Val	Gly	Gln	Val	Ser
				165	;			/	ار 170)				175	;

Asn	Asn	Leu	Leu	Leu	His	Ile	Gly	Pro	Leu	Ala	Ser	Glu	Gln	Met	Phe
			180					185					190		
Tyr	Ala	Val	Ala	Thr	Lys	Ile	Arg	Asp	Glu	Asn	Thr	Tyr	Lys	Ile	Cys
		195					200					205			
Thr	Trp	Leu	Glu	Ile	Lys	Val	His	His	Val	Leu	Leu	His	Ile	Gln	Gly
	210					215					220				
Thr	Leu	Thr	Cys	Ser	Tyr	Leu	Ser	His	Ser	Glu	Gln	Leu	Val	Phe	Gln
225					230					235					240
Ser	Tyr	Glu	Tyr	Val	Asp	Cys	Arg	Gly	Asn	Ala	Ser	Val	Pro	His	G1n
				245					250					255	
Leu	Thr	Pro	His	Pro	Pro										
			260						٠						•
<210	0> 67	7													
<21	1> 16	58													
<212	2> PI	TS													
<213	3> Ha	omo :	sapie	ens											
<400	0> 67	7													
Met	Gly	Val	Pro	Thr	Ala	Leu	Glu	Ala	Gly	Ser	Trp	Arg	Trp	Gly	Ser
1			•	5					10					15	
Leu	Leu	Phe	Ala	Leu	Phe	Leu	Ala	Ala	Ser	Leu	Gly	Lys	Asp	Ala	Pro
			20					25					30		
Ser	Asn	Cys	Val	Val	Tyr	Pro	Ser	Ser	Ser	Gln	Glu	Ser	Glu	Asn	Ile
		35					40		المو			45			
Thr	Ala	Ala	Ala	Leu	Ala	Thr	Gly	Ala	Cys	Ile	Val	G1y	Ile	Leu	Cys

148/307

Leu Pro Leu Ile Leu Leu Leu Val Tyr Lys Gln Arg Gln Ala Ala Ser Asn Arg Arg Ala Gln Glu Leu Val Arg Met Asp Ser Asn Ile Gln Gly Ile Glu Asn Pro Gly Phe Glu Ala Ser Pro Pro Ala Gln Gly Ile Pro Glu Ala Lys Val Arg His Pro Leu Ser Tyr Val Ala Gln Arg Gln Pro Ser Glu Ser Gly Arg His Leu Leu Ser Glu Pro Ser Thr Pro Leu Ser Pro Pro Gly Pro Gly Asp Val Phe Phe Pro Ser Leu Asp Pro Val Pro Asp Ser Pro Asn Phe Glu Val Ile <210> 68 <211> 243 <212> PRT <213> Homo sapiens **<400>** 68 Met Ser Ser Gly Thr Glu Leu Leu Trp Pro Gly Ala Ala Leu Leu Val

20 25 30

Leu Leu Gly Val Ala Ala Ser Leu Cys Val Arg Cys Ser Arg Pro Gly

Ala	Lys	Arg	Ser	Glu	Lys	Ile	Tyr	Gln	Gln	Arg	Ser	Leu	Arg	Glu	Asp
		35					40					45			
Gln	Gln	Ser	Phe	Thr	Gly	Ser	Arg	Thr	Tyr	Ser	Leu	Val	Gly	Gln	Ala
	50					55					60				
Trp	Pro	Gly	Pro	Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu
65					70					75					80
Leu	Gln	Phe	Tyr	Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln
				85					90					95	
Asn	Phe	Ser	Lys	Gly	Ser	Arg	His	Gly	Ser	Glu	Glu	Ala	Tyr	Ile	Asp
			100					105					110		
Pro	Ile	Ala	Met	Glu	Tyr	Tyr	Asn	Trp	Gly	Arg	Phe	Ser	Lys	Pro	Pro
		115					120					125			
Glu	Asp	Asp	Asp	Ala	Asn	Ser	Tyr	Glu	Asn	Val	Leu	Ile	Cys	Lys	Gln
	130					135					140				
Lys	Thr	Thr	Glu	Thr	Gly	Ala	Gln	Gln	Glu	Gly	Ile	Gly	Gly	Leu	Cys
145					150					155					160
Arg	G1y	Asp	Leu	Ser	Leu	Ser	Leu	Ala	Leu	Lys	Thr	Gly	Pro	Thr	Ser
				165					170					175	
Gly	Leu	Cys	Pro	Ser	Ala	Ser	Pro	Glu	Glu	Asp	Glu	G1u	Ser	Glu	Asp
			180)				185	· •				190)	
Tyr	Glr	n Asr	ı Sei	. Ala	s Ser	· Ile	His	G1n	Trp	Arg	Glu	ı Ser	Arg	Lys	Val
		198	5				200)				205	5		
Met	c Gly	, Glı	n Lei	ı Glı	n Are	g Glu	ı Ala	Ser	Pro	G13	r Pro	Val	l Gly	7 Ser	Pro
	210)				215	5		۰ نثرو		220)			
Acı	s Gli	ı Clı	n Ası	n G1:	v Gli	ı Pro	n Asr	Yvı	- Val	l Ası	n G1v	v G1:	ı ·Va`	l Als	. Ala

225 230 235 240 Thr Glu Ala <210> 69 <211> 428 <212> PRT <213> Homo sapiens <400> 69 Met Ala Arg Ser Leu Cys Pro Gly Ala Trp Leu Arg Lys Pro Tyr Tyr 5 1 10 15 Leu Gln Ala Arg Phe Ser Tyr Val Arg Met Lys Tyr Leu Phe Phe Ser 20 25 30 Trp Leu Val Val Phe Val Gly Ser Trp Ile Ile Tyr Val Gln Tyr Ser 35 40 45 Thr Tyr Thr Glu Leu Cys Arg Gly Lys Asp Cys Lys Lys Ile Ile Cys 50 55 60 Asp Lys Tyr Lys Thr Gly Val Ile Asp Gly Pro Ala Cys Asn Ser Leu 70 65 75 80 Cys Val Thr Glu Thr Leu Tyr Phe Gly Lys Cys Leu Ser Thr Lys Pro 85 90 95 Asn Asn Gln Met Tyr Leu Gly Ile Trp Asp Asn Leu Pro Gly Val Val 100 105 110

115 120 / 125

Lys Cys Gln Met Glu Gln Ala Leu His Leu Asp Phe Gly Thr Glu Leu

Glu	Pro	Arg	Lys	Glu	Ile	Val	Leu	Phe	Asp	Lys	Pro	Thr	Arg	Gly	Thr
	130					135					140				
Thr	Val	Gln	Lys	Phe	Lys	Glu	Met	Val	Tyr	Ser	Leu	Phe	Lys	Ala	Lys
145					150					155					160
Leu	Gly	Asp	Gln	Gly	Asn	Leu	Ser	Glu	Leu	Val	Asn	Leu	Ile	Leu	Thr
				165					170					175	
Val	Ala	Asp	G1y	Asp	Lys	Asp	Gly	Gln	Val	Ser	Leu	Gly	Glu	Ala	Lys
			180					185					190		
Ser	Ala	Trp	Ala	Leu	Leu	G1n	Leu	Asn	Glu	Phe	Leu	Leu	Met	Val	Ile
		195					200					205			
Leu	Gln	Asp	Lys	Glu	His	Thr	Pro	Lys	Leu	Met	Gly	Phe	Cys	Gly	Asp
	210		,			215					220				
Leu	Tyr	Val	Met	Glu	Ser	Val	Glu	Tyr	Thr	Ser	Leu	Tyr	Gly	Ile	Ser
225					230					235					240
Leu	Pro	Trp	Val	Ile	Glu	Leu	Phe	Ile	Pro	Ser	Gly	Phe	Arg	Arg	Ser
				245					250					255	
Met	Asp	Gln	Leu	Phe	Thr	Pro	Ser	Trp	Pro	Arg	Lys	Ala	Lys	Ile	Ala
			260					265					270		
Ile	Gly	Leu	Leu	Glu	Phe	Val	Glu	Asp	Val	Phe	His	Gly	Pro	Tyr	Gly
		275					280					285			
Asn	Phe	Leu	Met	Cys	Asp	Thr	Ser	Ala	Lys	Asn	Leu	Gly	Tyr	Asn	Asp
	290					295					300				
Lys	Tyr	Asp	Leu	Lys	Met	Val	Asp	Met	Arg	Lys	Ile	Val	Pro	Glu	Thr
305					310				۰ تغیق	315					320
Asn	Leu	Lys	Glu	Leu	Ile	Lys	Asp	Arg	His	Cys	Glu	Ser	Asp	Leu	Asp

Cys Val Tyr Gly Thr Asp Cys Arg Thr Ser Cys Asp Gln Ser Thr Met Lys Cys Thr Ser Glu Val Ile Gln Pro Asn Leu Ala Lys Ala Cys Gln Leu Leu Lys Asp Tyr Leu Leu Arg Gly Ala Pro Ser Glu Ile Arg Glu Glu Leu Glu Lys Gln Leu Tyr Ser Cys Ile Ala Leu Lys Val Thr Ala Asn Gln Met Glu Met Glu His Ser Leu Ile Leu Asn Asn Leu Lys Thr Leu Leu Trp Lys Lys Ile Ser Tyr Thr Asn Asp Ser <210> 70 <211> 283 <212> PRT <213> Homo sapiens <400> 70 Met Pro His Ser Ser Leu His Pro Ser Ile Pro Cys Pro Arg Gly His Gly Ala Gln Lys Ala Ala Leu Val Leu Leu Ser Ala Cys Leu Val Thr Leu Trp Gly Leu Gly Glu Pro Pro Glu His Thr Leu Arg Tyr Leu Val

Leu	His	Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys
	50					55					60				
Ser	Leu	Ala	Glu	Glu	Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	Gly	Ser
65					70					75					80
Tyr	Trp	Arg	Thr	Val	Arg	Ala	Cys	Leu	Gly	Cys	Pro	Leu	Arg	Arg	Gly
				85					90					95	
Ala	Leu	Leu	Leu	Leu	Ser	Ile	Tyr	Phe	Tyr	Tyr	Ser	Leu	Pro	Asn	Ala
			100					105					110		
Val	Gly	Pro	Pro	Phe	Thr	Trp	Met	Leu	Ala	Leu	Leu	Gly	Leu	Ser	Gln
		115					120					125			
Ala	Leu	Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile
	130					135					140				
Ser	Ala	Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	Gly	Leu	Ala
145					150					155					160
Trp	Ser	Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	G1n
				165					170					175	
Ala	Arg	Ile	Arg	Thr	Tyr	Asn	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly
			180					185					190		
Ala	Val	Ser	Gln	Arg	Leu	Tyr	Ile	Leu	Leu	Pro	Leu	Asp	Cys	Gly	Val
		195					200					205			
Pro	Asp	Asn	Leu	Ser	Met	Ala	Asp	Pro	Asn	Ile	Arg	Phe	Leu	Asp	Lys
	210					215					220				
Leu	Pro	Gln	Gln	Thr	Ala	Asp	Arg	Ala	Gly	Ile	Lys	Asp	Arg	Val	Tyr
225					230			,	** بمشمين	235					240
Ser	Asn	Sor	Ile	Tur	Glu	Lau	Lau	cî.,	Acr	G1 ₂₂	Cl.	A	۸	1	C1-

245

250

255

Met Thr Ala Ala Ser Arg Cys Pro Arg Arg Phe Ser Gly Thr Cys Gly

260

265

270

Arg Arg Lys Arg Lys Arg Leu Leu Trp Ala Ala

275

280

⟨210⟩ 71

⟨211⟩ 1167

<212> DNA

<213> Homo sapiens

<400> 71

atggatagag gggagaaaat acagctcaag agagtgtttg gatattggtg gggcacaagt 60 120 tttttgctta ttaatatcat tggtgcagga atttttgtgt cccccaaagg tgtgttggca tactcttgca tgaacgtggg agtctccctg tgcgtttggg ctggctgtgc catactggcc 180 240 atgacatcaa ctctttgctc tgcagagata agtataagct tcccatgcag tggagctcaa 300 tactattttc tcaagagata ctttggctcc acggttgctt ttttgaatct ctggacatcc 360 ttgtttctgg ggtcaggggt agttgctggc caagctctgc tccttgctga gtacagcatc 420 cagcettttt ttcccagetg ctctgtccca aagetgccta agaaatgtct ggcattggcc 480 atgttgtgga ttgtaggaat tctgacttct cgtggtgtga aagaagtgac ttggcttcag 540 atagctaget cagtgetgaa agtgteeata ettagettea ttteeetaac tggagtagtg 600 ttcctgataa gagggaaaaa ggagaatgta gaacgatttc agaatgcttt tgatgctgaa 660 cttccagata tctctcacct tatacaagcc atcttccaag gatattttgc atattcaggg 720 gagctgaaga agcccagaac aacaattccc aaatgcatat ttactgcgtt acctctggtg 780 actgtagttt atttactggt taacatttcc tatctgactg ttctgacacc cagggaaatt ctctcttcag atgctgtagc tatcacatgg gctgatcgag cttttccctc attagcatgg 840

attatgcctt	ttgctatttc	tacctcatta	tttagcaacc	ttctgatttc	tatatttaaa	900
tcttcgagac	caatatatct	tgcaagccaa	gagggccagc	tgcctttgct	atttaataca	960
cttaatagtc	actettetee	atttacagct	gtgctactac	ttgtcacttt	gggatccctt	1020
gcaattatct	taacaagtct	aattgatttg	ataaactata	ttttttcac	gggttcatta	1080
tggtctatat	tattaatgat	aggaatacta	aggcggagat	accaggaacc	caatctatct	1140
ataccttata	aggtaaaatt	ggatttc				1167

⟨210⟩ 72

⟨211⟩ 1044

<212> DNA

<213> Homo sapiens

<400> 72

atggcggcga ctctgggacc ccttgggtcg tggcagcagt ggcggcgatg tttgtcggct 60 cgggatgggt ccaggatgtt actccttctt cttttgttgg ggtctgggca ggggccacag 120 caagtcgggg cgggtcaaac gttcgagtac ttgaaacggg agcactcgct gtcgaagccc 180 taccagggtg tgggcacagg cagttcctca ctgtggaatc tgatgggcaa tgccatggtg 240 atgacccagt atatccgcct taccccagat atgcaaagta aacagggtgc cttgtggaac 300 cgggtgccat gtttcctgag agactgggag ttgcaggtgc acttcaaaat ccatggacaa 360 ggaaagaaga atctgcatgg ggatggcttg gcaatctggt acacaaagga tcggatgcag 420 ccagggcctg tgtttggaaa catggacaaa tttgtggggc tgggagtatt tgtagacacc 480 taccccaatg aggagaagca gcaagagcgg gtattcccct acatctcagc catggtgaac 540 aacggctccc tcagctatga tcatgagcgg gatgggcggc ctacagagct gggaggctgc 600 acagccattg tecgeaatet teattacgae acetteetgg tgattegeta egteaagagg 660 catttgacga taatgatgga tattgatggc aagcatgagt ggagggactg cattgaagtg 720 cccggagtcc gcctgccccg cggctactac ttcggcacct cctccatcac tggggatctc 780

tcagataatc	atgatgtcat	ttccttgaag	ttgtttgaac	tgacagtgga	gagaacccca	840
gaagaggaaa	agctccatcg	agatgtgttc	ttgccctcag	tggacaatat	gaagctgcct	900
gagatgacag	ctccactgcc	gcccctgagt	ggcctggccc	tcttcctcat	cgtcttttc	960
tccctggtgt	tttctgtatt	tgccatagtc	attggtatca	tactctacaa	caaatggcag	1020
gaacagagcc	gaaagcgctt	ctac .				1044

<210> 73

<211> 783

<212> DNA

<213> Homo sapiens

<400> 73

atggaactgc ttcaagtgac cattetttt ettetgeeca gtatttgeag cagtaacage 60 acaggigtit tagaggcagc taataattca citgitgita ciacaacaaa accatciata 120 acaacaccaa acacagaatc attacagaaa aatgttgtca caccaacaac tggaacaact 180 cctaaaggaa caatcaccaa tgaattactt aaaatgtctc tgatgtcaac agctactttt 240 ttaacaagta aagatgaagg attgaaagcc acaaccactg atgtcaggaa gaatgactcc 300 atcatttcaa acgtaacagt aacaagtgtt acacttccaa atgctgtttc aacattacaa 360 agttccaaac ccaagactga aactcagagt tcaattaaaa caacagaaat accaggtagt 420 gttctacaac cagatgcatc accttctaaa actggtacat taacctcaat accagttaca 480 attccagaaa acacctcaca gtctcaagta ataggcactg agggtggaaa aaatgcaagc 540 acttcagcaa ccagccggtc ttattccagt attattttgc cggtggttat tgctttgatt 600 gtaataacac tttcagtatt tgttctggtg ggtttgtacc gaatgtgctg gaaggcagat 660 ccgggcacac cagaaaatgg aaatgatcaa cctcagtctg ataaagagag cgtgaagctt 720 cttaccgtta agacaatttc tcatgagtct ggtgagcact ctgcacaagg aaaaaccaag 780 aac 783

<210>	74
<211>	666
<212>	DNA

<213> Homo sapiens

⟨400⟩ 74

atgttgtggc	tgctcttttt	tctggtgact	gccattcatg	ctgaactctg.	tcaaccaggt	60
gcagaaaatg	cttttaaagt	gagacttagt	atcagaacag	ctctgggaga	taaagcatat	120
gcctgggata	ccaatgaaga	atacctcttc	aaagcgatgg	tagctttctc	catgagaaaa	180
gttcccaaca	gagaagcaac	agaaatttcc	catgtcctac	tttgcaatgt	aacccagagg	240
gtatcattct	ggtttgtggt	tacagaccct	tcaaaaaatc	acacccttcc	tgctgttgag	300
gtgcaatcag	ccataagaat	gaacaagaac	cggatcaaca	atgccttctt	tctaaatgac	360
caaactctgg	aattttaaa	aatcccttcc	acacttgcac	cacccatgga	cccatctgtg	420
cccatctgga	ttattatatt	tggtgtgata	ttttgcatca	tcatagttgc	aattgcacta	480
ctgattttat	cagggatctg	gcaacgtaga	agaaagaaca	aagaaccatc	tgaagtggat	540
gacgctgaag	ataagtgtga	aaacatgatc	acaattgaaa	atggcatccc	ctctgatccc	600
ctggacatga	agggagggca	tattaatgat	gccttcatga	cagaggatga	gaggctcacc	660
cctctc						666

⟨210⟩ 75

⟨211⟩ 549

<212> DNA

<213> Homo sapiens

⟨400⟩ 75

WO 01/12660 PCT/JP00/05356

158/307

gggacgagat	gtgaggaaaa	ctgtggtaat	cctgaacatt	gcctgaccac	agactgggta	120
catctctggt	atatatggtt	gctagtggta	attggcgcgc	tgcttctcct	gtgtggcctg	180
acgtccctgt	gcttccgctg	ctgctgtctg	agccgccagc	aaaatgggga	agatgggggc	240
ccaccaccct	gtgaagtgac	cgtcattgct	ttcgatcacg	acagcactct	ccagagcact	300
atcacatctc	tgcagtcggt	gtttggccct	gcagctcgga	ggatcctggc	tgtggctcac	360
tcccacagct	ccctgggcca	getgeeetee	tctttggaca	ccctcccagg	gtatgaagaa	420
gctcttcaca	tgagtcgctt	cacagtagcc	atgtgcgggc	agaaagcacc	tgatctaccc	480
ccagtacctg	aagaaaagca	gctgcctcca	acagagaagg	agtcgactcg	aatagttgac	540
tcttggaac						549

<210> 76

<211> 786

<212> DNA

<213> Homo sapiens

<400> 76

60 atgggtaaga cgttttccca gctgggctct tggcgggagg atgagaacaa gtcaatcctg tcctccaaac cagccattgg cagcaaggct gtcaactact ccagcaccgg tagcagcaag 120 180 tcttttgtt cctgtgtgcc ttgtgaagga actgctgatg ccagcttcgt gacttgtccc 240 acctgccagg gcagtggcaa gattccccaa gagctggaga agcagttggt ggctctcatt 300 ccctatgggg accagaggct gaagcccaag cacacgaagc tctttgtgtt cctggccgtg 360 ctcatctgcc tggtgacctc ctccttcatc gtctttttcc tgtttccccg gtccgtcatt 420 gtgcagcctg caggcctcaa ctcctccaca gtggcctttg atgaggctga tatctacctc 480 aacataacga atatcttaaa catctccaat ggcaactact accccattat ggtgacacag 540 ctgaccetcg aggttetgea cetgteete gtggtggge aggttteeaa caacettete 600 ctacacattg gccctttggc cagtgaacag atgttttacg cagtagctac caagatacgg

gatgaaaaca	catacaaaat	ctgtacctgg	ctggaaatca	aagtccacca	tgtgcttttg	660
cacatccagg	gcaccctgac	ctgttcatac	ctgagccatt	cagagcagct	ggtctttcag	720
agctatgaat	atgtggactg	ccgaggaaac	gcatctgtgc	cccaccagct	gacccctcac	780
ccacca						786
<210> 77						
<211> 504						
<212> DNA						
<213> Homo	sapiens					
<400> 77						
atgggcgtcc	ccacggccct	ggaggccggc	agctggcgct	ggggatccct	gctcttcgct	60
ctcttcctgg	ctgcgtccct	aggcaaagat	gcaccatcca	actgtgtggt	gtacccatcc	120
tcctcccagg	agagtgaaaa	catcacggct	gcagccctgg	ctacgggtgc	ctgcatcgta	180
ggaatcctct	gcctcccct	catcctgctc	ctggtctaca	agcaaaggca	ggcagcctcc	240
aaccgccgtg	cccaggagct	ggtgcggatg	gacagcaaca	ttcaagggat	tgaaaacccc	300
ggctttgaag	cctcaccacc	tgcccagggg	atacccgagg	ccaaagtcag	gcaccccctg	360
tcctatgtgg	cccagcggca	gccttctgag	tctgggcggc	atctgctttc	ggagcccagc	420
accccctgt	ctcctccagg	ccccggagac	gtcttcttcc	catccctgga	ccctgtccct	480
gactctccaa	actttgaggt	catc				504

⟨210⟩ 78

<211> 729

<212> DNA

<213> Homo sapiens

⟨400⟩ 78

atgagctcgg	ggactgaact	gctgtggccc	ggagcagcgc	tgctggtgct	gttgggggtg	60
gcagccagtc	tgtgtgtgcg	ctgctcacgc	ccaggtgcaa	agaggtcaga	gaaaatctac	120
cagcagagaa	gtctgcgtga	ggaccaacag	agctttacgg	ggtcccggac	ctactccttg	180
gtcgggcagg	catggccagg	acccctggcg	gacatggcac	ccacaaggaa	ggacaagctg	240
ttgcaattct	accccagcct	ggaggatcca	gcatcttcca	ggtaccagaa	cttcagcaaa	300
ggaagcagac	acgggtcgga	ggaagcctac	atagacccca	ttgccatgga	gtattacaac	360
tgggggcggt	tctcgaagcc	cccagaagat	gatgatgcca	attcctacga	gaatgtgctc	420
atttgcaagc	agaaaaccac	agagacaggt	gcccagcagg	agggcatagg	tggcctctgc	480
agaggggacc	tcagcctgtc	actggccctg	aagactggcc	ccacttctgg	tctctgtccc	540
tctgcctccc	cggaagaaga	tgaggaatct	gaggattatc	agaactcagc	atccatccat	600
cagtggcgcg	agtccaggaa	ggtcatgggg	caactccaga	gagaagcatc	ccctggcccg	660
gtgggaagcc	cagacgagga	ggacggggaa	ccggattacg	tgaatgggga	ggtggcagcc	720
acagaagcc						729

<210> 79

<211> 1284

<212> DNA

<213≻ Homo sapiens

<400> 79

atggcgagga gtctctgtcc gggggcctgg ctaaggaaac cctattacct ccaggctcgc 60

ttctcatatg tgcggatgaa atatctttc ttttcctggt tagtggtttt tgttggaagc 120

tggattatat atgtgcagta ttctacctat acagaattat gcagaggaaa ggactgtaag 180

aaaataatat gtgacaagta caagactgga gttattgatg ggcctgcatg taacagcctt 240

tgtgttacag aaactcttta ctttggaaaa tgtttatcca ccaagcccaa caatcagatg 300

tatttaggga tttgggataa tctaccaggt gttgtgaaat gtcaaatgga acaagcgctt 360

catcttgatt	ttggaactga	attggaacca	agaaaagaaa	tagtgctatt	tgataagcca	420
actagaggaa	ctactgtaca	aaaatttaaa	gaaatggtct	atagtctctt	taaggcaaaa	480
ttgggtgacc	aaggaaacct	ctctgaactg	gttaatctca	tcttgacggt	ggctgatgga	540
gacaaagatg	gccaggtttc	cttgggagaa	gcaaagtcgg	catgggcact	tcttcaactg	600
aatgaatttc	ttctcatggt	gatacttcaa	gataaagaac	atacccccaa	attaatggga	660
ttctgtggtg	acctctatgt	gatggaaagt	gttgaatata	cctctcttta	tggaataagc	720
cttccttggg	tcattgaact	ttttattcca	tctgggttca	gaagaagcat	ggatcagctg	780
ttcacaccat	catggccaag	aaaggccaaa	atagccatag	gacttctaga	atttgtggaa	840
gatgttttcc	atggccccta	cggaaatttc	ctcatgtgcg	atactagtgc	caaaaaccta	900
ggatataatg	ataagtatga	tttgaaaatg	gtggatatga	gaaaaattgt	gccagagaca	960
aacctgaaag	aacttattaa	ggatcgtcac	tgtgagtctg	atttggactg	tgtctatggc	1020
acagattgta	gaactagctg	tgatcagagt	acaatgaagt	gtacttcaga	agtgatacaa	1080
ccaaacttgg	caaaagcttg	tcagttactc	aaagactacc	tactgcgtgg	tgctccaagt	1140
gaaattcgtg	aagaattaga	aaagcagctt	tattcttgta	ttgctctcaa	agtcacagca	1200
aatcaaatgg	aaatggaaca	ttctttgata	ctaaataacc	taaaaacatt	attgtggaag	1260
aaaatttcct	acactaatga	ctct				1284

<210> 80

<211> 849

<212> DNA

<213> Homo sapiens

<400> 80

atgccccact ccagcctgca tccatccatc ccgtgtccca ggggtcacgg ggcccagaag 60 gcagccttgg ttctgctgag tgcctgcctg gtgacccttt gggggctagg agagccacca 120 gagcacactc tccggtacct ggtgctccac ctagcctccc tgcagctggg actgctgtta 180

aacggggtct	gcagcctggc	tgaggagctg	caccacatcc	actccaggta	ccggggcagc	240
tactggagga	ctgtgcgggc	ctgcctgggc	tgcccctcc	gccgtggggc	cctgttgctg	300
ctgtccatct	atttctacta	ctccctccca	aatgcggtcg	gcccgccctt	cacttggatg	360
cttgccctcc	tgggcctctc	gcaggcactg	aacatcctcc	tgggcctcaa	gggcctggcc	420
ccagctgaga	tctctgcagt	gtgtgaaaaa	gggaatttca	acgtggccca	tgggctggca	480
tggtcatatt	acatcggata	tctgcggctg	atcctgccag	agctccaggc	ccggattcga	540
acttacaatc	agcattacaa	caacctgcta	cggggtgcag	tgagccagcg	gctgtatatt	600
ctcctcccat	tggactgtgg	ggtgcctgat	aacctgagta	tggctgaccc	caacattcgc	660
ttcctggata	aactgcccca	gcagaccgct	gaccgtgctg	gcatcaagga	tcgggtttac	720
agcaacagca	tctatgagct	tctggagaac	gggcagcgga	acctgcagat	gacagcagct	780
tctcgctgtc	ccaggaggtt	ctccggcacc	tgcggcagga	ggaaaaggaa	gaggttactg	840
tgggcagct					•	849

⟨210⟩ 81

⟨211⟩ 1376

<212> DNA

<213> Homo sapiens

⟨220⟩

<221> CDS

<222> (100)...(1269)

<400> 81

attittatti caggaatcca tcaacatcci tigcagciac ataggcagga aaatciagaa 60
attgtaatti atatagaatt ttaaaactci tcaattaca atg gat aga ggg gag 114
Met Asp Arg Gly Glu

aaa	ata	cag	ctc	aag	aga	gtg	ttt	gga	tat	tgg	tgg	ggc	aca	agt	ttt	162
Lys	Ile	Gln	Leu	Lys	Arg	Val	Phe	Gly	Tyr	Trp	Trp	Gly	Thr	Ser	Phe	
				10					15					20		
ttg	ctt	att	aat	atc	att	ggt	gca	gga	att	ttt	gtg	tcc	ccc	aaa	ggt	210
Leu	Leu	Ile	Asn	Ile	Ile	Gly	Ala	Gly	Ile	Phe	Val	Ser	Pro	Lys	Gly	
			25					30					35			
gtg	ttg	gca	tac	tct	tgc	atg	aac	gtg	gga	gtc	tcc	ctg	tgc	gtt	tgg	258
Val	Leu	Ala	Tyr	Ser	Cys	Met	Asn	Val	Gly	Val	Ser	Leu	Cys	Val	Trp	
		40					45					50				
gct	ggc	tgt	gcc	ata	ctg	gcc	atg	aca	tca	act	ctt	tgc	tct	gca	gag	306
Ala	Gly	Cys	Ala	Ile	Leu	Ala	Met	Thr	Ser	Thr	Leu	Cys	Ser	Ala	Glu	
.*	55					60					65		-			
ata	agt	ata	agc	ttc	cca	tgc	agt	gga	gct	caa	tac	tat	ttt	ctc	aag	354
Ile	Ser	Ile	Ser	Phe	Pro	Cys	Ser	Gly	Ala	Gln	Tyr	Tyr	Phe	Leu	Lys	
70					75					80					85	
aga	tac	ttt	ggc	tcc	acg	gtt	gct	ttt	ttg	aat	ctc	tgg	aca	tcc	ttg	402
Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn	Leu	Trp	Thr	Ser	Leu	
				90					95					100		
ttt	ctg	ggg	tca	ggg	gta	gtt	gct	ggc	caa	gct	ctg	ctc	ctt	gct	gag	450
Phe	Leu	Gly	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala	Leu	Leu	Leu	Ala	Glu	
			105					110	-			•	115			
tac	agc	atc	cag	cct	ttt	ttt	ccc	agc	tgc	tct	gtc	cca	aag	ctg	cct	498
Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser	Val	Pro	Lys	Leu	Pro	
		120					125		التاعتنس			130				
aag	aaa	tgt	ctg	gca	ttg	gcc	atg	ttg	tgg	att	gta	gga	att	ctg	act	546

WO 01/12660 PCT/JP00/05356

Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	Ile	Val	Gly	Ile	Leu	Thr	
	135					140					145					
tct	cgt	ggt	gtg	aaa	gaa	gtg	act	tgg	ctt	cag	ata	gct	agc	tca	gtg	594
Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln	Ile	Ala	Ser	Ser	Val	
150					155					160					165	
ctg	aaa	gtg	tcc	ata	ctt	agc	ttc	att	tcc	cta	act	gga	gta	gtg	ttc	642
Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	Ile	Ser	Leu	Thr	Gly	Val	Val	Phe	
				170					175					180		
ctg	ata	aga	ggg	aaa	aag	gag	aat	gta	gaa	cga	ttt	cag	aat	gct	ttt	690
Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asn	Val	Glu	Arg	Phe	Gln	Asn	Ala	Phe	
			185					190					195			
gat	gct	gaa	ctt	cca	gat	atc	tct	cac	ctt	ata	caa	gcc	atc	ttc	caa	738
Asp	Ala	Glu	Leu	Pro	Asp	Ile	Ser	His	Leu	Ile	Gln	Ala	Ile	Phe	Gln	
		200					205					210				
gga	tat	ttt	gca	tat	tca	ggg	gag	ctg	aag	aag	ccc	aga	aca	aca	att	786
Gly	Tyr	Phe	Ala	Tyr	Ser	Gly	Glu	Leu	Lys	Lys	Pro	Arg	Thr	Thr	Ile	
	215					220					225					
ccc	aaa	tgc	ata	ttt	act	gcg	tta	cct	ctg	gtg	act	gta	gtt	tat	tta	834
Pro	Lys	Cys	Ile	Phe	Thr	Ala	Leu	Pro	Leu	Val	Thr	Val	Val	Tyr	Leu	
230					235					240					245	
ctg	gtt	aac	att	tcc	tat	ctg	act	gtt	ctg	aca	ccc	agg	gaa	att	ctc	882
Leu	Val	Asr	ı Ile	Ser	Tyr	Leu	Thr	Val	Leu	Thr	Pro	Arg	Glu	Ile	e Leu	
				250)				255	•				260)	
tct	tea	a gat	t gct	gta	gct	ato	aca	tgg	gct سندر	gat	cga	a gct	ttt	cce	c tca	930
Sa.	- 5		. 41.	. Val	Δ1 a	110	. ፐኮታ	· Arr	-	Acn	Are	, A1a	Pha	Pr	Ser	

			265					270					275			
tta	gca	tgg	att	atg	cct	ttt	gct	att	tct	acc	tca	tta	ttt	agc	aac	978
Leu	Ala	Trp	Ile	Met	Pro	Phe	Ala	Ile	Ser	Thr	Ser	Leu	Phe	Ser	Asn	
		280					285					290				
ctt	ctg	att	tct	ata	ttt	aaa	tct	tcg	aga	cca	ata	tat	ctt	gca	agc	1026
Leu	Leu	Ile	Ser	Ile	Phe	Lys	Ser	Ser	Arg	Pro	Ile	Tyr	Leu	Ala	Ser	
	295					300					305					
caa	gag	ggc	cag	ctg	cct	ttg	cta	ttt	aat	aca	ctt	aat	agt	cac	tct	1074
Gln	Glu	Gly	Gln	Leu	Pro	Leu	Leu	Phe	Asn	Thr	Leu	Asn	Ser	His	Ser	
310					315					320					325	
tct	cca	ttt	aca	gct	gtg	cta	cta	ctt	gtc	act	ttg	gga	tcc	ctt	gca	1122
Ser	Pro	Phe	Thr	Ala	Val	Leu	Leu	Leu	Val	Thr	Leu	Gly	Ser	Leu	Ala	
				330					335					340		
att	atc	tta	aca	agt	cta	att	gat	ttg	ata	aac	tat	att	ttt	ttc	acg	1170
Ile	Ile	Leu	Thr	Ser	Leu	Ile	Asp	Leu	Ile	Asn	Tyr	Ile	Phe	Phe	Thr	
			345					350					355			
ggt	tca	tta	tgg	tct	ata	tta	tta	atg	ata	gga	ata	cta	agg	cgg	aga	1218
Gly	Ser	Leu	Trp	Ser	Ile	Leu	Leu	Met	Ile	Gly	Ile	Leu	Arg	Arg	Arg	
		360			•		365					370				
tac	cag	gaa	ccc	aat	cta	tct	ata	cct	tat	aag	gta	aaa	ttg	gat	ttc	1266
Tyr	Gln	Glu	Pro	Asn	Leu	Ser	Ile	Pro	Tyr	Lys	Val	Lys	Leu	Asp	Phe	
	375					380					385					
taa	t tc	tttt	ctgt	gtg	aaata	aac a	agat	attg	ag ta	ataa	ctgt	a tt	taag	atta		1320
taa	tcag	agc :	atct	ataa.	gt a	gatc	ttct	g aa	tact	cagt	tac	tgtg	aaa	caca	tg	1376

(210	> 82															
<211	> 23	92														
<212	> DN	A														
<213	> Ho	mo s	apie	ns												
<220	>															
<221	> CD	S														
<222	> (2	2)	. (10	68)												
<400	> 82															
gaag	ggto	gt t	ggtg	ggaa	a g	atg	gcg	gcg	act	ctg	gga	ссс	ctt	ggg	tcg	51
						Met	Ala	Ala	Thr	Leu	Gly	Pro	Leu	Gly	Ser	
						1				5					10	
tgg	cag	cag	tgg	cgg	cga	tgt	ttg	tcg	gct	cgg	gat	ggg	tcc	agg	atg	99
Trp	Gln	Gln	Trp	Arg	Arg	Cys	Leu	Ser	Ala	Arg	Asp	Gly	Ser	Arg	Met	
				15					20					25		
tta	ctc	ctt	ctt	ctt	ttg	ttg	ggg	tct	ggg	cag	ggg	cca	cag	caa	gtc	147
Leu	Leu	Leu	Leu	Leu	Leu	Leu	Gly	Ser	Gly	G1n	G1y	Pro	Gln	Gln	Val	
			30					35					40			
ggg	gcg	ggt	caa	acg	ttc	gag	tac	ttg	aaa	cgg	gag	cac	tcg	ctg	tcg	195
Gly	Ala	Gly	Gln	Thr	Phe	Glu	Tyr	Leu	Lys	Arg	Glu	His	Ser	Leu	Ser	
		45					50					55				
aag	ccc	tac	cag	ggt	gtg	ggc	aca	ggc	agt	tcc	tca	ctg	tgg	aat	ctg	243
Lys	Pro	Tyr	Gln	Gly	Val	Gly	Thr	G1 y	Ser	Ser	Ser	Leu	Trp	Asn	Leu	
	60					65					70					
atg	ggc	aat	gcc	atg	gtg	atg	acc	cag	tat نــر	atc	cgc	ctt	acc	cca	gat	291

Met Gly Asn Ala Met Val Met Thr Gln Tyr Ile Arg Leu Thr Pro Asp

7 5					80					85					90	
atg	caa	agt	aaa	cag	ggt	gcc	ttg	tgg	aac	cgg	gtg	cca	tgt	ttc	ctg	339
Met	Gln	Ser	Lys	Gln	Gly	Ala	Leu	Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu	
				95					100					105		
aga	gac	tgg	gag	ttg	cag	gtg	cac	ttc	aaa	atc	cat	gga	caa	gga	aag	387
Arg	Asp	Trp	Glu	Leu	Gln	Val	His	Phe	Lys	Ile	His	Gly	Gln	G1y	Lys	
			110					115					120			
aag	aat	ctg	cat	ggg	gat	ggc	ttg	gca	atc	tgg	tac	aca	aag	gat	cgg	435
Lys	Asn	Leu	His	Gly	Asp	Gly	Leu	Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	
		125					130					135				
atg	cag	cca	ggg	cct	gtg	ttt	gga	aac	atg	gac	aaa	ttt	gtg	ggg	ctg	483
Met	Gln	Pro	Gly	Pro	Val	Phe	Gly	Asn	Met	Asp	Lys	Phe	Val	Gly	Leu	
	140					145					150					
gga	gta	ttt	gta	gac	acc	tac	ccc	aat	gag	gag	aag	cag	caa	gag	cgg	531
Gly	Val	Phe	Val	Asp	Thr	Tyr	Pro	Asn	Glu	Glu	Lys	Gln	Gln	Glu	Arg	
155					160					165					170	
gta	ttc	ccc	tac	atc	tca	gcc	atg	gtg	aac	aac	ggc	tcc	ctc	agc	tat	579
Val	Phe	Pro	Tyr	Ile	Ser	Ala	Met	Val	Asn	Asn	Gly	Ser	Leu	Ser	Tyr	
				175					180					185		
gat	cat	gag	cgg	gat	ggg	cgg	cct	aca	gag	ctg	gga	ggc	tgc	aca	gcc	627
Asp	His	Glu	Arg	Asp	G1 y	Arg	Pro	Thr	Glu	Leu	Gly	Gly	Cys	Thr	Ala	
			190					195					200			
att	gtc	cgc	aat	ctt	cat	tac	gac	acc	ttc	ctg	gtg	att	cgc	tac	gtc	675
Ile	Val	Arg	Asn	Leu	His	Tyr	Asp	Thr,	Phe	Leu	Val	Ile	Arg	Tyr	Val	
		205					210					215				

aag	agg	cat	ttg	acg	ata	atg	atg	gat	att	gat	ggc	aag	cat	gag	tgg	723
Lys	Arg	His	Leu	Thr	Ile	Met	Met	Asp	Ile	Asp	Gly	Lys	His	Glu	Trp	
	220					225					230					
agg	gac	tgc	att	gaa	gtg	ccc	gga	gtc	cgc	ctg	ccc	cgc	ggc	tac	tac	771
Arg	Asp	Cys	Ile	Glu	Val	Pro	Gly	Val	Arg	Leu	Pro	Arø	Glv	Tyr	Tyr	
235					240					245					250	
ttc	ggc	acc	tcc	tcc	atc	act	ggg	gat	ctc	tca	gat	aat	cat	gat	gtc	819
Phe	Gly	Thr	Ser	Ser	Ile	Thr	Gly	Asp	Leu	Ser	Asp	Asn	His	Asp	Val	
				255					260					265		
att	tcc	ttg	aag	ttg	ttt	gaa	ctg	aca	gtg	gag	aga	acc	cca	gaa	gag	867
Ile	Ser	Leu	Lys	Leu	Phe	Glu	Leu	Thr	Val	Glu	Arg	Thr	Pro	Glu	Glu	
			270					275					280			
gaa	aag	ctc	cat	cga	gat	gtg	ttc	ttg	ccc	tca	gtg	gac	aat	atg	aag	915
Glu	Lys	Leu	His	Arg	Asp	Val	Phe	Leu	Pro	Ser	Val	Asp	Asn	Met	Lys	
		285					290					295				
ctg	cct	gag	atg	aca	gct	cca	ctg	ccg	ccc	ctg	agt	ggc	ctg	gcc	ctc	963
Leu	Pro	Glu	Met	Thr	Ala	Pro	Leu	Pro	Pro	Leu	Ser	Gly	Leu	Ala	Leu	
	300					305					310					
ttc	ctc	atc	gtc	ttt	ttc	tcc	ctg	gtg	ttt	tct	gta	ttt	gcc	ata	gtc	1011
Phe	Leu	Ile	Val	Phe	Phe	Ser	Leu	Val	Phe	Ser	Val	Phe	Ala	Ile	Val	
315					320					325					330	
att	ggt	atc	ata	ctc	tac	aac	aaa	tgg	cag	gaa	cag	ago	cga	aag	cgc	1059
Ile	Gly	Ile	Ile	Leu	Tyr	Asn	Lys	Trp	Gln	Glu	Gln	Ser	Arg	Lys	Arg	
				335				,	340 نىر					345		
ttc	tac	toa	ge e	ctcc	tøct	g cc	acca	cťtt	tøt.	gact	atc	acco	atoa	σσ		1110

Phe Tyr

tatggaagga	gcaggcactg	gcctgagcat	gcagcctgga	gagtgttctt	gtctctagca	1170
gctggttggg	gactatattc	tgtcactgga	gttttgaatg	cagggacccc	gcattcccat	1230
ggttgtgcat	ggggacatct	aactctggtc	tgggaagcca	cccaccccag	ggcaatgctg	1290
ctgtgatgtg	cctttccctg	cagtccttcc	atgtgggagc	agaggtgtga	agagaattta	1350
cgtggttgtg	atgccaaaat	cacagaacag	aatttcatag	cccaggctgc	cgtgttgttt	1410
gactcagaag	gcccttctac	ttcagttttg	aatccacaaa	gaattaaaaa	ctggtaacac	1470
cacaggcttt	ctgaccatcc	attcgttggg	ttttgcattt	gacccaaccc	tctgcctacc	1530
tgaggagctt	tctttggaaa	ccaggatgga	aacttcttcc	ctgccttacc	ttcctttcac	1590
tccattcatt	gtcctctctg	tgtgcaacct	gagctgggaa	aggcatttgg	atgcctctct	1650
gttggggcct	ggggctgcag	aacacacctg	cgtttcactg	gccttcatta	ggtggcccta	1710
gggagatggc	tttctgcttt	ggatcactgt	tccctagcat	gggtcttggg	tctattggca	1770
tgtccatggc	cttcccaatc	aagtctcttc	aggccctcag	tgaagtttgg	ctaaaggttg	1830
gtgtaaaaat	caagagaagc	ctggaagaca	tcatggatgc	catggattag	ctgtgcaact	1890
gaccagetee	aggtttgatc	aaaccaaaag	caacatttgt	catgtggtct	gaccatgtgg	1950
agatgtttct	ggacttgcta	gagcctgctt	agctgcatgt	tttgtagtta	cgatttttgg	2010
aatcccactt	tgagtgctga	aagtgtaagg	aagctttctt	cttacacctt	gggcttggat	2070
attgcccaga	gaagaaattt	ggctttttt	ttcttaatgg	acaagagaca	gttgctgttc	2130
tcatgttcca	agtctgagag	caacagaccc	tcatcatctg	tgcctggaag	agttcactgt	2190
cattgagcag	cacagcctga	gtgctggcct	ctgtcaaccc	ttattccact	gccttatttg	2250
acaaggggtt	acatgctgct	caccttactg	ccctgggatt	aaatcagtta	caggccagag	2310
tctccttgga	gggcctggaa	ctctgagtcc	tcctatgaac	ctctgtagcc	taaatgaaat	2370
tcttaaaatc	accgatggaa	,cc				2392

WO 01/12660 PCT/JP00/05356

170/307

<211	> 14	16														
<212	> DN	IA														
<213	> Hc	omo s	apie	ns												
<220	>															
<22 1	> CE	S														
<222	> (5	55)	. (84	.0)												
<400	> 83	}														
attg	tccc	tg c	ctgo	ttct	g ga	gaaa	igaag	ata	ittga	icac	cato	tace	ggg (acc	atg	57
															Met	
															1	
gaa	ctg	ctt	caa	gtg	acc	att	ctt	ttt	ctt	ctg	ссс	agt	att	tgc	agc	105
Glu	Leu	Leu	Gln	Val	Thr	Ile	Leu	Phẹ	Leu	Leu	Pro	Ser	Ile	Cys	Ser	
			5					10					15			
agt	aac	agc	aca	ggt	gtt	tta	gag	gca	gct	aat	aat	tca	ctt	gtt	gtt	153
Ser	Asn	Ser	Thr	Gly	Val	Leu	Glu	Ala	Ala	Asn	Asn	Ser	Leu	Val	Val	
		20					25					30				
act	aca	aca	aaa	cca	tct	ata	aca	aca	cca	aac	aca	gaa	tca	tta	cag	201
Thr	Thr	Thr	Lys	Pro	Ser	Ile	Thr	Thr	Pro	Asn	Thr	Glu	Ser	Leu	Gln	
	35					40					45					
aaa	aat	gtt	gtc	aca	cca	aca	act	gga	aca	act	cct	aaa	gga	aca	atc	249
Lys	Asn	Val	Val	Thr	Pro	Thr	Thr	Gly	Thr	Thr	Pro	Lys	Gly	Thr	Ile	
50					55					60					65	
acc	aat	gaa	tta	ctt	aaa	atg	tct	ctg	atg	tca	aca	gct	act	ttt	tta	297
Thr	Asn	Glu	Leu	Leu	Lys	Met	Ser	Leu	Met	Ser	Thr	Ala	Thr	Phe	Leu	
				70				/	75					80		

aca	agt	aaa	gat	gaa	gga	ttg	aaa	gcc	aca	acc	act	gat	gtc	agg	aag	345
Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg	Lys	
		·	85					90			٠		95			
aat	gac	tcc	atc	att	tca	aac	gta	aca	gta	aca	agt	gtt	aca	ctt	cca	393
Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu	Pro	
		100					105					110				
aat	gct	gtt	tca	aca	tta	caa	agt	tcc	aaa	ссс	aag	act	gaa	act	cag	441
Asn	Ala	Val	Ser	Thr	Leu	G1n	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr	Gln	
	115					120					125					
agt	tca	att	aaa	aca	aca	gaa	ata	cca	ggt	agt	gtt	cta	caa	cca	gat	489
Ser	Ser	Ile	Lys	Thr	Thr	Glu	Ile	Pro	Gly	Ser	Val	Leu	Gln	Pro	Asp	
130					135					140					145	
gca	tca	cct	tct	aaa	act	ggt	aca	tta	acc	tca	ata	cca	gtt	aca	att	537
Ala	Ser	Pro	Ser	Lys	Thr	Gly	Thr	Leu	Thr	Ser	Ile	Pro	Val	Thr	Ile	
				150					155					160		
cca	gaa	aac	acc	tca	cag	tct	caa	gta	ata	ggc	act	gag	ggt	gga	aaa	585
Pro	Glu	Asn	Thr	Ser	G1n	Ser	Gln	Val	Ile	Gly	Thr	Glu	Gly	Gly	Lys	
			165					170					175			
aat	gca	agc	act	tca	gca	acc	agc	cgg	tct	tat	tcc	agt	att	att	ttg	633
Asn	Ala	Ser	Thr	Ser	Ala	Thr	Ser	Arg	Ser	Tyr	Ser	Ser	Ile	Ile	Leu	
		180					185					190				
ccg	gtg	gtt	att	gct	ttg	att	gta	ata	aca	ctt	tca	gta	ttt	gtt	ctg	681
Pro	Val	Val	Ile	Ala	Leu	Ile	Val	Ile	Thr	Leu	Ser	Val	Phe	Val	Leu	
	195					200			الداعلتي		205					
gtg	ggt	ttg	tac	cga	atg	tgc	tgg	aag	gca	gat	ccg	ggc	aca	cca	gaa	729

Val Gly Leu Tyr Arg Met Cys Trp Lys Ala Asp Pro Gly Thr Pro Glu	
210 215 220 225	
aat gga aat gat caa cct cag tct gat aaa gag agc gtg aag ctt ctt	777
Asn Gly Asn Asp Gln Pro Gln Ser Asp Lys Glu Ser Val Lys Leu Leu	
230 235 240	
acc gtt aag aca att tet cat gag tet ggt gag cae tet gea caa gga	825
Thr Val Lys Thr Ile Ser His Glu Ser Gly Glu His Ser Ala Gln Gly	
245 250 255	
aaa acc aag aac tga cagcttgagg aattctctcc acacctaggc aataattacg	880
Lys Thr Lys Asn	
260	
260 cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc	940
	940 1000
cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc	
cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc ccgacttcca tacctgctgc tggactgtac cagacgtctg tcccagtaaa gtgatgtcca	1000
cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc ccgacttcca tacctgctgc tggactgtac cagacgtctg tcccagtaaa gtgatgtcca gctgacatgc aataatttga tggaatcaaa aagaaceccg gggctctcct gttctctcac	1000 1060
cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc ccgacttcca tacctgctgc tggactgtac cagacgtctg tcccagtaaa gtgatgtcca gctgacatgc aataatttga tggaatcaaa aagaaceccg gggctctcct gttctctac atttaaaaat tccattactc catttacagg agcgttccta ggaaaaggaa ttttaggagg	1000 1060 1120
cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc ccgacttcca tacctgctgc tggactgtac cagacgtctg tcccagtaaa gtgatgtcca gctgacatgc aataatttga tggaatcaaa aagaaceccg gggctctcct gttctctcac atttaaaaat tccattactc catttacagg agcgttccta ggaaaaggaa ttttaggagg agaatttgtg agcagtgaat ctgacagccc aggaggtggg ctcgctgata ggcatgactt	1000 1060 1120 1180
cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc ccgacttcca tacctgctgc tggactgtac cagacgtctg tcccagtaaa gtgatgtcca gctgacatgc aataatttga tggaatcaaa aagaaccccg gggctctcct gttctctacc atttaaaaat tccattactc catttacagg agcgttccta ggaaaaggaa ttttaggagg agaatttgtg agcagtgaat ctgacagccc aggaggtggg ctcgctgata ggcatgactt tccttaatgt ttaaagtttt ccgggccaag aatttttatc catgaagact ttcctacttt	1000 1060 1120 1180 1240

⟨210⟩ 84

⟨211⟩ 1347

<212> DNA

<213> Homo sapiens

<220	>															
<221	> CI	S.														
<222	?> (2	26)	. (69	94)										•		•
<400)> 84	Į														
gcct	tgtg	gtt t	tcca	ccct	g aa	aga	atg	ttg	tgg	ctg	ctc	ttt	ttt	ctg	gtg	52
							Met	Leu	Trp	Leu	Leu	Phe	Phe	Leu	Val	
							1				5					
act	gcc	att	cat	gct	gaa	ctc	tgt	caa	cca	ggt	gca	gaa	aat	gct	ttt	100
Thr	Ala	Ile	His	Ala	Glu	Leu	Cys	Gln	Pro	Gly	Ala	Glu	Asn	Ala	Phe	
10					15					20					25	
aaa	gtg	aga	ctt	agt	atc	aga	aca	gct	ctg	gga	gat	aaa	gca	tat	gcc	148
Lys	Val	Arg	Leu	Ser	Ile	Arg	Thr	Ala	Leu	Gly	Asp	Lys	Ala	Tyr	Ala	
				30					3 5					40		
tgg	gat	acc	aat	gaa	gaa	tac	ctc	ttc	aaa	gcg	atg	gta	gct	ttc	tcc	196
Trp	Asp	Thr	Asn	Glu	Glu	Tyr	Leu	Phe	Lys	Ala	Met	Val	Ala	Phe	Ser	
			45					50					55			
atg	aga	aaa	gtt	ccc	aac	aga	gaa	gca	aca	gaa	att	tcc	cat	gtc	cta	244
Met	Arg	Lys	Val	Pro	Asn	Arg	Glu	Ala	Thr	Glu	Ile	Ser	His	Val	Leu	
		60					65					70				
ctt	tgc	aat	gta	acc	cag	agg	gta	tca	ttc	tgg	ttt	gtg	gtt	aca	gac	292
Leu	Cys	Asn	Val	Thr	Gln	Arg	Val	Ser	Phe	Trp	Phe	Val	Val	Thr	Asp	
	75					80					85					
cct	tca	aaa	aat	cac	acc	ctt	cct	gct	gtt	gag	gtg	caa	tca	gcc	ata	340
Pro	Ser	Lys	Asn	His	Thr	Leu	Pro	Ala	Val.	Glu	Val	Gln	Ser	Ala	Ile	
90					95					100					105	

790

174/307

aga	atg	aac	aag	aac	cgg	atc	aac	aat	gcc	ttc	ttt	cta	aat	gac	caa	388
Arg	Met	Asn	Lys	Asn	Arg	Ile	Asn	Asn	Ala	Phe	Phe	Leu	Asn	Asp	Gln	
				110					115			٠		120		
act	ctg	gaa	ttt	tta	aaa	atc	cct	tcc	aca	ctt	gca	cca	ccc	atg	gac	436
Thr	Leu	Glu	Phe	Leu	Lys	Ile	Pro	Ser	Thr	Leu	Ala	Pro	Pro	Met	Asp	
			125					130					135			
cca	tct	gtg	ccc	atc	tgg	att	att	ata	ttt	ggt	gtg	ata	ttt	tgc	atc	484
Pro	Ser	Val	Pro	Ile	Trp	Ile	Ile	Ile	Phe	Gly	Val	Ile	Phe	Cys	Ile	
		140					145					150				
atc	ata	gtt	gca	att	gca	cta	ctg	att	tta	tca	ggg	atc	tgg	caa	cgt	532
Ile	Ile	Val	Ala	Ile	Ala	Leu	Leu	Ile	Leu	Ser	Gly	Ile	Trp	Gln	Arg	
	155					160					165					
aga	aga	aag	aac	aaa	gaa	cca	tct	gaa	gtg	gat	gac	gct	gaa	gat	aag	580
Arg	Arg	Lys	Asn	Lys	Glu	Pro	Ser	Glu	Val	Asp	Asp	Ala	Glu	Asp	Lys	
170					175					180					185	
tgt	gaa	aac	atg	atc	aca	att	gaa	aat	ggc	atc	ccc	tct	gat	ccc	ctg	628
Cys	Glu	Asn	Met	Ile	Thr	Ile	Glu	Asn	Gly	Ile	Pro	Ser	Asp	Pro	Leu	
				190					195					200		
gac	atg	aag	gga	ggg	cat	att	aat	gat	gcc	ttc	atg	aca	gag	gat	gag	676
Asp	Met	Lys	Gly	Gly	His	Ile	Asn	Asp	Ala	Phe	Met	Thr	Glu	Asp	Glu	
			205					210					215			
agg	ctc	acc	cct	ctc	tga	aggg	ct g	ttgt	tctg	c tt	cctc	aaga	aat	taaa	cat	730
Arg	Leu	Thr	Pro	Leu												
		220	l						، ندر							

ttgtttctgt gtgactgctg agcatcctga aataccaaga gcagatcata tattttgttt

caccattctt	cttttgtaat	aaattttgaa	tgtgcttgaa	agtgaaaagc	aatcaattat	850
acccaccaac	accactgaaa	tcataagcta	ttcacgactc	aaaatațtct	aaaatatttt	910
tctgacagta	tagtgtataa	atgtggtcat	gtggtatttg	tagttattga	tttaagcatt	970
tttagaaata	agatcaggca	tatgtatata	ttttcacact	tcaaagacct	aaggaaaaat	1030
aaattttcca	gtggagaata	catataatat	ggtgtagaaa	tcattgaaaa	tggatccttt	1090
ttgacgatca	cttatatcac	tctgtatatg	actaagtaaa	caaaagtgag	aagtaattat	1150
tgtaaatgga	tggataaaaa	tggaattact	catatacagg	gtggaatttt	atcctgttat	1210
cacaccaaca	gttgattata	tattttctga	atatcagccc	ctaataggac	aattctattt	1270
gttgaccatt	tctacaattt	gtaaaagtcc	aatctgtgct	aacttaataa	agtaataatc	1330
atctctttt	gattgtg					1347

⟨210⟩ 85

<211> 2284

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (75)... (626)

<400> 85

aaaatggcac agagcattga aaggaggcaa cggatgccca gtgcaagatt ctgaagaagc 60
aggaattcag cccg atg gga gtc cga gtt cat gtc gtg gcg gcc tca gcc 110
Met Gly Val Arg Val His Val Val Ala Ala Ser Ala

1 5 10

ctg ctg tat ttc atc ctg ctt tct ggg acg aga tgt gag gaa aac tgt 158 Leu Leu Tyr Phe Ile Leu Leu Ser Gly Thr Arg Cys Glu Glu Asn Cys

		15					20					25				
ggt	aat	cct	gaa	cat	tgc	ctg	acc	aca	gac	tgg	gta	cat	ctc	tgg	tat	206
Gly	Asn	Pro	Glu	His	Cys	Leu	Thr	Thr	Asp	Trp	Val	His	Leu	Trp	Tyr	
	30					35					40					
ata	tgg	ttg	cta	gtg	gta	att	ggc	gcg	ctg	ctt	ctc	ctg	tgt	ggc	ctg	254
Ile	Trp	Leu	Leu	Val	Val	Ile	Gly	Ala	Leu	Leu	Leu	Leu	Cys	Gly	Leu	
45					50					55					60	
acg	tcc	ctg	tgc	ttc	cgc	tgc	tgc	tgt	ctg	agc	cgc	cag	caa	aat	ggg	302
Thr	Ser	Leu	Cys	Phe	Arg	Cys	Cys	Cys	Leu	Ser	Arg	Gln	Gln	Asn	Gly	
				65					70					75		
gaa	gat	ggg	ggc	cca	cca	ccc	tgt	gaa	gtg	acc	gtc	att	gct	ttc	gat	350
Glu	Asp	Gly	Gly	Pro	Pro	Pro	Cys	Glu	Val	Thr	Val	Ile	Ala	Phe	Asp	
			80					85					90			
cac	gac	agc	act	ctc	cag	agc	act	atc	aca	tct	ctg	cag	tcg	gtg	ttt	398
His	Asp	Ser	Thr	Leu	Gln	Ser	Thr	Ile	Thr	Ser	Leu	Gln	Ser	Val	Phe	
		95					100					105				
ggc	cct	gca	gct	cgg	agg	atc	ctg	gct	gtg	gct	cac	tcc	cac	agc	tcc	446
Gly	Pro	Ala	Ala	Arg	Arg	Ile	Leu	Ala	Val	Ala	His	Ser	His	Ser	Ser	
	110					115					120					
ctg	ggc	cag	ctg	ccc	tcc	tct	ttg	gac	acc	ctc	cca	ggg	tat	gaa	gaa	494
Leu	Gly	Gln	Leu	Pro	Ser	Ser	Leu	Asp	Thr	Leu	Pro	Gly	Tyr	Glu	Glu	
125					130					135					140	
gct	ctt	cac	atg	agt	cgc	ttc	aca	gta	gcc	atg	tgc	ggg	cag	aaa	gca	542
Ala	Leu	His	Met	Ser	Arg	Phe	Thr	Val	Ala سر	Met	Cys	Gly	Gln	Lys	Ala	
				145	;			1	150					155	;	

cct	gat	cta	ccc	cca	gta	cct	gaa	gaa	aag	cag	ctg	cct	cca	aca	gag	590
Pro	Asp	Leu	Pro	Pro	Val	Pro	Glu	Glu	Lys	Gln	Leu	Pro	Pro	Thr	Glu	
			160					165					170			
aag	gag	tcg	act	cga	ata	gtt	gac	tct	tgg	aac	tgat	gag	agc	tgtca	att	640
Lys	Glu	Ser	Thr	Arg	Ile	Val	Asp	Ser	Trp	Asn						٠
		175					180									
ttai	taaat	ag	gagte	ggagt	g at	tgtc	cagag	tci	tgtgį	ggaa	aate	gaac	cac a	ataci	ttt	ct 700
aaco	ctca	aga :	agtti	ttaag	ga tg	ggca	tctaa	a cad	cato	att	ctat	ggga	aaa 1	gatgg	gttc	tt 760
acto	cttcg	gtt	cacag	ggcct	tt ta	atato	cttcc	ga	tacag	gaat	gcto	taat	ttg	ggaa	ctct	aa 820
ttti	tgtat	cc :	aatgg	gccaa	a at	tctg	caagt	aat	tctc	tagc	caca	ctga	att a	actad	taa	ac 880
cagg	gaaag	gca	tcaag	ggtat	tc ti	tgaa	ttcct	tta	acta	attg	agte	gcata	ata (gaati	tcct	gt 940
acco	cacat	ga	tact	gcaag	gt tg	gtgt	ctctc	tci	tgtca	agct	aato	cact	gc (ggtta	act	gg 1000
aaaa	agaäa	aga (caaca	agtgi	tc ag	gcaca	agcca	ı tc	gacat	taa	tgca	ictga	aat :	gcate	gcat	ct 1060
ttc	ctcct	iga :	gacag	gcaat	to ga	attt	tacac	cga	aatga	acaa	tgat	cato	ett a	agaca	agca	ca 1120
acat	tacco	cac	tcgga	atato	et aa	aaag	ctagg	g gat	tggca	attg	ctga	ıtate	ggg (caaag	gaga	ac 1180
acag	gtata	igt :	attta	aagtg	go ca	aaata	atcag	g to	tttc	tttc	tctc	tggt	cc	tacco	ctc	ag 1240
cagt	tatga	aaa :	aacto	ccata	ac ta	gtgc	agtca	a cas	gttgg	gatt	aatt	ctto	cag	ttcc1	ccg	ca 1300
ctgo	caaad	cac	atata	atgtg	gc go	caca	tgcat	gta	ataco	ctgc	acco	tgti	ttt	aacto	ctaa	ag 1360
gaat	tagte	gtt	gctti	tacti	tc t 1	ttcc	tgtti	t tg	cctg	gacc	actt	aaag	gcc :	acaa	cacc	tc 1420
tata	agtga	aca	cacgo	ctagi	tc to	ctag	tggtg	g gc	cctca	actg	ccad	ctag	gag	gagco	catg	gt 1480
ggaa	aaaca	aca	ctct	ctcci	tt tį	gagc	ctato	c tge	caca	tctc	toga	gtto	ctt	ggago	caaa	aa 1540
ctaa	aatgo	ctg	aacta	aagco	ct g	gttg	agate	g ct	tece	atgg	acca	atgc	cgc :	agca	cagt	gc 1600
taa	tcta	tcc	acaa	aacat	ta co	cacc	tccca	a aa	gtat	tatt	attg	ggaa	aat	cgag	gaag	tg 1660
acg	caca	ttt	aggg	aaaa	ac ta	actc	accti	t aga	agaa	gtca	ctga	aato	cct	tttt	tttt	tt 1720
ttti	gagai	t g g	agtt:	ttgci	to t	tgta	godos	/ a gg	ntøø	at ø	caat	taan	atσ	atet	200	to 1786

WO 01/12660 PCT/JP00/05356

178/307

actgtaacct	ccacctcccg	gattcaagca	attcttctgc	ctcagcttcc	cgactagctg	1840
ggattacagc	tgcctgccac	cgtgcccagc	taatttttgt	atttttagtg	gagagggggt	1900
ttcaccatgt	tggccagtct	ggtctagaac	tcctgacgtc	aggtgatccg	cccaccttgg	1960
cctcccaaag	tgctggaatt	agaggcctga	cccctgctc	ctggcctgaa	atctttaaag	2020
ccgtttttc	cctaaaaaaac	gggaaataat	aacacctcag	aaggtttttg	tgaagatcaa	2080
agaagctaaa	tatatgtggc	atgatttgta	aagtgttatg	catatgtatg	ttattcttcc	2140
tactgtcttc	taaccttccc	ttgcctgcta	tgacttatct	gagagccatg	ttcccattta	2200
tctttttgcc	aactatgtta	ctgttgtcac	acctgaaatg	gctttgtttt	tatcaataaa	2260
tacttgttga	ttgtggtaaa	cagc				2284

⟨210⟩ 86

⟨211⟩ 1737

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (236)...(1024)

<400> 86

1

286

ggt aag acg ttt tcc cag ctg ggc tct tgg cgg gag gat gag aac aag

Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly	Ser	Trp	Arg	Glu	Asp	Glu	Asn	Lys		
			5					10					15	•			
tca	atc	ctg	tcc	tcc	aaa	cca	gcc	att	ggc	agc	aag	gct	gtc	aac	tac	•	334
Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn	Tyr		
		20					25					30					
tcc	agc	acc	ggt	agc	agc	aag	tct	ttt	tgt	tcc	tgt	gtg	cct	tgt	gaa		382
Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys	Glu		
	35					40					45						
gga	act	gct	gat	gcc	agc	ttc	gtg	act	tgt	ccc	acc	tgc	cag	ggc	agt		430
Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	G1n	Gly	Ser		
50					55					60					65		
ggc	aag	att	ccc	caa	gag	ctg	gag	aag	cag	ttg	gtg	gct	ctc	att	ccc		478
Gly	Lys	Ile	Pro	Gln	Glu	Leu	Glu	Lys	Gln	Leu	Val	Ala	Leu	Ile	Pro		
				70					7 5					80			
tat	ggg	gac	cag	agg	ctg	aag	ссс	aag	cac	acg	aag	ctc	ttt	gtg	ttc		526
Tyr	Gly	Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val	Phe		
			85					90					95				
ctg	gcc	gtg	ctc	atc	tgc	ctg	gtg	acc	tcc	tcc	ttc	atc	gtc	ttt	ttc		574
Leu	Ala	Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	Val	Phe	Phe		
		100					105					110					
ctg	ttt	ccc	cgg	tcc	gtc	att	gtg	cag	cct	gca	ggc	ctc	aac	tcc	tcc		622
Leu	Phe	Pro	Arg	Ser	Val	Ile	Val	Gln	Pro	Ala	Gly	Leu	Asn	Ser	Ser		
	115					120					125						
aca	gtg	gcc	ttt	gat	gag	gct	gat	atc	ţac	ctc	aac	ata	acg	aat	atc		670
Thr	Val	Ala	Phe	Asp	Glu	Ala	Asp	Île	Tyr	Leu	Asn	Ile	Thr	Asn	Ile		

130					135					140					145	
tta	aac	atc	tcc	aat	ggc	aac	tac	tac	ссс	att	atg	gtg	aca	cag	ctg	718
Leu	Asn	Ile	Ser	Asn	Gly	Asn	Tyr	Tyr	Pro	Ile	Met	Val	Thr	Gln	Leu	
				150					155					160		
acc	ctc	gag	gtt	ctg	cac	ctg	tcc	ctc	gtg	gtg	ggg	cag	gtt	tcc	aac	766
Thr	Leu	Glu	Val	Leu	His	Leu	Ser	Leu	Val	Val	Gly	G1n	Val	Ser	Asn	
			165					170					175			
aac	ctt	ctc	cta	cac	att	ggc	cct	ttg	gcc	agt	gaa	cag	atg	ttt	tac	814
Asn	Leu	Leu	Leu	His	Ile	Gly	Pro	Leu	Ala	Ser	Glu	Gln	Met	Phe	Tyr	
		180					185					190				
gca	gta	gct	acc	aag	ata	cgg	gat	gaa	aac	aca	tac	aaa	atc	tgt	acc	862
Ala	Val	Ala	Thr	Lys	Ile	Arg	Asp	Glu	Asn	Thr	Tyr	Lys	Ile	Cys	Thr	
	195					200					205					
tgg	ctg	gaa	atc	aaa	gtc	cac	cat	gtg	ctt	ttg	cac	atc	cag	ggc	acc	910
Trp	Leu	Glu	Ile	Lys	Val	His	His	Val	Leu	Leu	His	Ile	Gln	Gly	Thr	
210					215					220					225	
ctg	acc	tgt	tca	tac	ctg	agc	cat	tca	gag	cag	ctg	gtc	ttt	cag	agc	958
Leu	Thr	Cys	Ser	Tyr	Leu	Ser	His	Ser	Glu	Gln	Leu	Val	Phe	Gln	Ser	
				230					235					240		
tat	gaa	'tat	gtg	gac	tgc	cga	gga	aac	gca	tct	gtg	ccc	cac	cag	ctg	1006
Tyr	Glu	Tyr	Val	Asp	Cys	Arg	Gly	Asn	Ala	Ser	Val	Pro	His	Gln	Leu	
			245					250					255			
acc	cct	cac	cca	cca	tga	cctg	tc t	gctg	tccc	t gt	actc	cagg	cac	ctgc	aac	1060
Thr	Pro	His	Pro	Pro												

cctggtctat	atctcccaca	actccctggt	gactaaggaa	ggactacaga	ggctttgcca	1120
aaggagaagc	cctgcctcat	cacaccctta	cctcccaccc	cctcagcaca	ggaagcttgc	1180
tttgaagtta	acttcataca	cacacactca	tatcctccag	tttcccccag	attctttcag	1240
gggctgccat	cagattctgc	ccttggttag	ttttttgttt	tttttttgg	tagagacaga	1300
gtctcactgt	tggtccaggt	tggttttgaa	ctcctgggct	caagcgatcc	tcccttcttg	1360
gcctcccaaa	gcacttggat	tacagatgtg	agcctgtgcc	tggctggtct	ttcttgagga	1420
aaatctgacc	tggcattttc	ttgaggcacc	ttagattccc	tggagtggca	cctggccttt	1480
ctgtactgag	cacctggtca	gtctgaaggg	ggcatttcac	cccagctcca	tcagggctgg	1540
cagtcccgtc	tgaatgtgga	gagagctgta	gttttatctg	gcttttaaaa	catggacctg	1600
ccggctgggc	gcagtggctt	acacctgtaa	tcccagtact	ttgggaggcc	gaagtgggtg	1660
gatcacttga	gggcaggagt	tcgtgaccag	cctggtcaac	atggtgaaac	cttgtctcta	1720
ctaaaaatac	aaaaatt					1737

<210> 87

<211> 1556

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (103)... (609)

⟨400⟩ 87

agogeteact egetegeact eagtegeggg aggetteece gegeeggeeg egteeegee 60 geteeegge accagaagtt eetetgegeg teegaeggeg ac atg gge gte eec 114

Met Gly Val Pro

acg	gcc	ctg	gag	gcc	ggc	agc	tgg	cgc	tgg	gga	tcc	ctg	ctc	ttc	gct	162
Thr	Ala	Leu	Glu	Ala	Gly	Ser	Trp	Arg	Trp	Gly	Ser	Leu	Leu	Phe	Ala	
5					10		•			15					20	
ctc	ttc	ctg	gct	gcg	tcc	cta	ggc	aaa	gat	gca	cca	tcc	aac	tgt	gtg	210
Leu	Phe	Leu	Ala	Ala	Ser	Leu	Gly	Lys	Asp	Ala	Pro	Ser	Asn	Cys	Val	
				25					30					35		
gtg	tac	cca	tcc	tcc	tcc	cag	gag	agt	gaa	aac	atc	acg	gct	gca	gcc	258
Val	Tyr	Pro	Ser	Ser	Ser	Gln	Glu	Ser	Glu	Asn	Ile	Thr	Ala	Ala	Ala	
			40					45					50			
ctg	gct	acg	ggt	gcc	tgc	atc	gta	gga	atc	ctc	tgc	ctc	ccc	ctc	atc	306
Leu	Ala	Thr	Gly	Ala	Cys	Ile	Val	Gly	Ile	Leu	Cys	Leu	Pro	Leu	Ile	
		55					60					65				
ctg	ctc	ctg	gtc	tac	aag	caa	agg	cag	gca	gcc	tcc	aac	cgc	cgt	gcc	354
Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	Gln	Ala	Ala	Ser	Asn	Arg	Arg	Ala	
	70					7 5					80					
cag	gag	ctg	gtg	cgg	atg	gac	agc	aac	att	caa	ggg	att	gaa	aac	ccc	402
Gln	Glu	Leu	Val	Arg	Met	Asp	Ser	Asn	Ile	Gln	Gly	Ile	Glu	Asn	Pro	
85					90					95					100	
ggc	ttt	gaa	gcc	tca	cca	cct	gcc	cag	ggg	ata	ccc	gag	gcc	aaa	gtc	450
Gly	Phe	Glu	Ala	Ser	Pro	Pro	Ala	Gln	Gly	Ile	Pro	Glu	Ala	Lys	Val	
				105					110					115	i	
agg	cac	ccc	ctg	tcc	tat	gtg	gcc	cag	cgg	cag	cct	tct	gag	tct	ggg	498
Arg	His	Pro	Leu	Ser	Tyr	Val	Ala	Gln	Arg	Gln	Pro	Ser	Glu	Ser	Gly	
			120)				125	ا منسو				130)		
cgg	cat	cts	ctt	tce	gag	ccc	ago	acc	ccc	ctg	tct	cct	cca	gge	ccc	546

Arg His Leu Leu Ser Glu Pro Ser Thr Pro Leu Ser Pro Pro Gly Pro	
135 140 145	
gga gac gtc ttc ttc cca tcc ctg gac cct gtc cct gac tct cca aac	594
Gly Asp Val Phe Phe Pro Ser Leu Asp Pro Val Pro Asp Ser Pro Asn	
150 155 160	
ttt gag gtc atc tagc ccagctgggg gacagtgggc tgttgtggct gggtctgggg	650
Phe Glu Val Ile	
165	
caggtgcatt tgagccaggg ctggctctgt gagtggcctc cttggcctcg gccctggttc	710
cetecetect getetggget cagatactgt gacateceag aageceagee ceteaacee	770
tctggatgct acatggggat gctggacggc tcagcccctg ttccaaggat tttggggtgc	830
tgagattctc ccctagagac ctgaaattca ccagctacag atgccaaatg acttacatct	890
taagaagtct cagaacgtcc agcccttcag cagctctcgt tctgagacat gagccttggg	950
atgtggcagc atcagtggga caagatggac actgggccac cctcccaggc accagacaca	1010
gggcacggtg gagagacttc tcccccgtgg ccgccttggc tcccccgttt tgcccgaggc	1070
tgctcttctg tcagacttcc tctttgtacc acagtggctc tggggccagg cctgcctgcc	1130
cactggccat cgccaccttc cccagctgcc tcctaccagc agtttctctg aagatctgtc	1190
aacaggttaa gtcaatctgg ggcttccact gcctgcattc cagtccccag agcttggtgg	1250
tcccgaaacg ggaagtacat attggggcat ggtggcctcc gtgagcaaat ggtgtcttgg	1310
gcaatctgag gccaggacag atgttgcccc acccactgga gatggtgctg agggaggtgg	1370
gtggggcctt ctgggaaggt gagtggagag gggcacctgc ccccgccct ccccatcccc	1430
tactcccact gctcagcgcg ggccattgca agggtgccac acaatgtctt gtccaccctg	1490
ggacacttct gagtatgaag cgggatgcta ttaaaaaacta catggggaaa caggtgcaaa	1550
ccctgg	1556

⟨210⟩ 88	
<211> 1855	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (222)(953)	
<400> 88	
cagagatgga atttcaccgt gttgcctagg ctggtctgga gctcttgatc tcaagcgatc	60
ctccctgcct cggcctccca acgtgctggg attataggcg tgagccaccg ctcctggcca	120
gggtctgttc ctagttgcaa cagttcttgg aaacccactc gagagggcca cgcctccatt	180
caccaggeca egeateacaa gaggeaacae caggagecaa e atg age teg ggg	233
Met Ser Ser Gly	
. 1	
act gaa ctg ctg tgg ccc gga gca gcg ctg ctg gtg ctg ttg ggg gtg	281
Thr Glu Leu Leu Trp Pro Gly Ala Ala Leu Leu Val Leu Leu Gly Val	
5 10 15 20	
gca gcc agt ctg tgt gtg cgc tgc tca cgc cca ggt gca aag agg tca	329
Ala Ala Ser Leu Cys Val Arg Cys Ser Arg Pro Gly Ala Lys Arg Ser	
25 30 35	
gag aaa atc tac cag cag aga agt ctg cgt gag gac caa cag agc ttt	377
Glu Lys Ile Tyr Gln Gln Arg Ser Leu Arg Glu Asp Gln Gln Ser Phe	
40 45 50	
acg ggg tcc cgg acc tac tcc ttg gtc ggg cag gca tgg cca gga ccc	425
Thr Gly Ser Arg Thr Tyr Ser Leu Vál Gly Gln Ala Trp Pro Gly Pro	

		55					60					65				
ctg	gcg	gac	atg	gca	ccc	aca	agg	aag	gac	aag	ctg	ttg	caa	ttc	tac	473
Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu	Leu	Gln	Phe	Tyr	
	70					75					80					
ccc	agc	ctg	gag	gat	cca	gca	tct	tcc	agg	tac	cag	aac	ttc	agc	aaa	521
Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln	Asn	Phe	Ser	Lys	
85					90					95					100	
gga	agc	aga	cac	ggg	tcg	gag	gaa	gcc	tac	ata	gac	ccc	att	gcc	atg	569
Gly	Ser	Arg	His	Gly	Ser	Glu	Glu	Ala	Tyr	Ile	Asp	Pro	Ile	Ala	Met	
				105					110					115		
gag	tat	tac	aac	tgg	ggg	cgg	ttc	tcg	aag	ccc	cca	gaa	gat	gat	gat	617
Glu	Tyr	Tyr	Asn	Trp	Gly	Arg	Phe	Ser	Lys	Pro	Pro	Glu	Asp	Asp	Asp	
			120					125					130			
gcc	aat	tcc	tac	gag	aat	gtg	ctc	att	tgc	aag	cag	aaa	acc	aca	gag	665
Ala	Asn	Ser	Tyr	Glu	Asn	Val	Leu	Ile	Cys	Lys	Gln	Lys	Thr	Thr	Glu	
		135					140			•		145				
aca	ggt	gcc	cag	cag	gag	ggc	ata	ggt	ggc	ctc	tgc	aga	ggg	gac	ctc	713
Thr	Gly	Ala	Gln	Gln	Glu	Gly	Ile	Gly	Gly	Leu	Cys	Arg	Gly	Asp	Leu	
	150					155					160					
agc	ctg	tca	ctg	gcc	ctg	aag	act	ggc	ccc	act	tct	ggt	ctc	tgt	ccc	761
Ser	Leu	Ser	Leu	Ala	Leu	Lys	Thr	Gly	Pro	Thr	Ser	Gly	Leu	Cys	Pro	
165					170					175					180	
tct	gcc	tcc	ccg	gaa	gaa	gat	gag	gaa	tct	gag	gat	tat	cag	aac	tca	809
Ser	Ala	Ser	Pro	Glu	Glu	Asp	Glu	Glu	Şer	Glu	Asp	Tyr	Gln	Asn	Ser	
				185	I				190					195	,	

gca tcc atc cat cag tgg cgc gag tcc agg aag gtc atg ggg caa ctc	857
Ala Ser Ile His Gln Trp Arg Glu Ser Arg Lys Val Met Gly Gln Leu	
200 205 210	
cag aga gaa gca tcc cct ggc ccg gtg gga agc cca gac gag gag gac	905
Gln Arg Glu Ala Ser Pro Gly Pro Val Gly Ser Pro Asp Glu Glu Asp	
215 220 225	
ggg gaa ccg gat tac gtg aat ggg gag gtg gca gcc aca gaa gcc	950
Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala Thr Glu Ala	
230 235 240	
tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggacco	a 1010
tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggt	t 1070
gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtgc acagcctgg	g 1130 .
aaaagacagt tactcacggg agctgcaggc ccgtcaccaa gccctctccc gacccaggc	t 1190
ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgca	ig 1250
gatttaggat aagetgteac ceagteecea taacaaaace aetgteeaac aetggtate	t 1310
gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggtttt	a 1370
aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgg	ga 1430
tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttatttcag	gc 1490
atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttg	gg 1550
gcttcagttc actcaggaag aaatgaggct gtcgccatct ttatgtgctt ccagtggaa	aa 1610
tgtcacttgc tacagacaat agtgcatgag agtctagaga agtagtgacc agaacaggg	gc 1670
agagtaggtc ccctccatgg ccctgaatcc tcctctgctc cagggctggc ctctgcaga	ag 1730
ctgattaaac agtgttgtga ctgtctcatg ggaagagctg gggcccagag ggaccttg	ag 1790
tcagaaatgt tgccagaaaa agtatctcct ccaaccaaaa catctcaata aaaccatt	tt 1850
agttg	1855

<210	> 89	•														
<211	> 25	530											-			
<212	?> D!	I A														
<213	3> Ho	omo s	sapie	ens												
<220)>															
<221	> CI	OS														
<222	2> (2	28)	. (13	314)												
<400)> 89)														
agce	gcggc	egg g	ggcga	ntgte	gt ga	ittad	c at	tg go	eg ag	gg ag	gt ct	c te	gt co	eg gi	gg	51
							Ме	et Al	la Ai	ng Se	er Le	eu Cy	rs Pi	ro G	ly	
		-						1				5				•
gcc	tgg	cta	agg	aaa	ccc	tat	tac	ctc	cag	gct	cgc	ttc	tca	tat	gtg	99
Ala	Trp	Leu	Arg	Lys	Pro	Tyr	Tyr	Leu	Gln	Ala	Arg	Phe	Ser	Tyr	Val	
	10					15					20					
cgg	atg	aaa	tat	ctt	ttc	ttt	tcc	tgg	tta	gtg	gtt	ttt	gtt	gga	agc	147
Arg	Met	Lys	Tyr	Leu	Phe	Phe	Ser	Trp	Leu	Val	Va1	Phe	Val	Gly	Ser	
25					30					35					40	
tgg	att	ata	tat	gtg	cag	tat	tct	acc	tat	aca	gaa	tta	tgc	aga	gga	195
Trp	Ile	Ile	Tyr	Val	Gln	Tyr	Ser	Thr	Tyr	Thr	Glu	Leu	Cys	Arg	Gly	
				45					50					55		
aag	gac	tgt	aag	aaa	ata	ata	tgt	gac	aag	tac	aag	act	gga	gtt	att	243
Lys	Asp	Cys	Lys	Lys	Ile	Ile	Cys	Asp	Lys	Tyr	Lys	Thr	Gly	Val	Ile	
			60					65 ⁄	۰۰۰ کنتمو				70			
gat	ggg	cct	gca	tgt	aac	agc	ctt	tgt	gtt	aca	gaa	act	ctt	tac	ttt	291

WO 01/12660 PCT/JP00/05356

Asp	Gly	Pro	Ala	Cys	Asn	Ser	Leu	Cys	Val	Thr	Glu	Thr	Leu	Tyr	Phe	
		75					80					85				
gga	aaa	tgt	tta	tcc	acc	aag	ссс	aac	aat	cag	atg	tat	tta	ggg	att	339
Gly	Lys	Cys	Leu	Ser	Thr	Lys	Pro	Asn	Asn	Gln	Met	Tyr	Leu	Gly	Ile	
	90					95					100					
tgg	gat	aat	cta	cca	ggt	gtt	gtg	aaa	tgt	caa	atg	gaa	caa	gcg	ctt	387
Trp	Asp	Asn	Leu	Pro	Gly	Val	Val	Lys	Cys	Gln	Met	Glu	Gln	Ala	Leu	
105					110					115					120	
cat	ctt	gat	ttt	gga	act	gaa	ttg	gaa	cca	aga	aaa	gaa	ata	gtg	cta	435
His	Leu	Asp	Phe	Gly	Thr	Glu	Leu	Glu	Pro	Arg	Lys	Glu	Ile	Val	Leu	
				125					130					135		
ttt	gat	aag	cca	act	aga	gga	act	act	gta	caa	aaa	ttt	aaa	gaa	atg	483
Phe	Asp	Lys	Pro	Thr	Arg	Gly	Thr	Thr	Val	Gln	Lys	Phe	Lys	Glu	Met	
			140					145					150			
gtc	tat	agt	ctc	ttt	aag	gca	aaa	ttg	ggt	gac	caa	ġga	aac	ctc	tct	531
Val	Tyr	Ser	Leu	Phe	Lys	Ala	Lys	Leu	Gly	Asp	Gln	Gly	Asn	Leu	Ser	
		155					160					165				
gaa	ctg	gtt	aat	ctc	atc	ttg	acg	gtg	gct	gat	gga	gac	aaa	gat	ggc	579
Glu	Leu	Val	Asn	Leu	Ile	Leu	Thr	Val	Ala	Asp	Gly	Asp	Lys	Asp	Gly	٠
	170					175					180					
cag	gtt	tcc	ttg	gga	gaa	gca	aag	tcg	gca	tgg	gca	ctt	ctt	caa	ctg	627
Gln	Val	Ser	Leu	Gly	Glu	Ala	Lys	Ser	Ala	Trp	Ala	Leu	Leu	Glr	ı Leu	
185	i				190)				195					200	
aat	gaa	ttt	ctt	ctc	atg	gtg	ata	ctt	caa سنر	gat	aaa	gaa	cat	aco	ccc	675
Asn	Glu	ı Phe	Leu	ı Leu	Met	. Val	Ile	. Léu	Glr	ı Asp	Lys	Glu	ı His	s Thi	r Pro	

				205					210					215		
aaa	tta	atg	gga	ttc	tgt	ggt	gac	ctc	tat	gtg.	atg	gaa	agt	gtt	gaa	723
Lys	Leu	Met	Gly	Phe	Cys	Gly	Asp	Leu	Tyr	Val	Met	Glu	Ser	Val	Glu	
			220					225					230			
tat	acc	tct	ctt	tat	gga	ata	agc	ctt	cct	tgg	gtc	att	gaa	ctt	ttt	771
Tyr	Thr	Ser	Leu	Tyr	Gly	Ile	Ser	Leu	Pro	Trp	Val	Ile	Glu	Leu	Phe	
		235					240					245				
att	cca	tct	ggg	ttc	aga	aga	agc	atg	gat	cag	ctg	ttc	aca	cca	tca	819
Ile	Pro	Ser	Gly	Phe	Arg	Arg	Ser	Met	Asp	Gln	Leu	Phe	Thr	Pro	Ser	
	250					255					260					
tgg	cca	aga	aag	gcc	aaa [·]	ata	gcc	ata	gga	ctt	cta	gaa	ttt	gtg	gaa	867
Trp	Pro	Arg	Lys	Ala	Lys	Ile	Ala	Ile	Gly	Leu	Leu	Glu	Phe	Val	Glu	
265					270					275					280	
gat	gtt	ttc	cat	ggc	ссс	tac	gga	aat	ttc	ctc	atg	tgc	gat	act	agt	915
Asp	Val	Phe	His	Gly	Pro	Tyr	Gly	Asn	Phe	Leu	Met	Cys	Asp	Thr	Ser	
				285					290					295		
gcc	aaa	aac	cta	gga	tat	aat	gat	aag	tat	gat	ttg	aaa	atg	gtg	gat	963
Ala	Lys	Asn	Leu	Gly	Tyr	Asn	Asp	Lys	Tyr	Asp	Leu	Lys	Met	Val	Asp	
			300					305					310			
atg	aga	aaa	att	gtg	cca	gag	aca	aac	ctg	aaa	gaa	ctt	att	aag	gat	1011
Met	Arg	Lys	Ile	Val	Pro	Glu	Thr	Asn	Leu	Lys	Glu	Leu	Ile	Lys	Asp	
		315					320					325				
cgt	cac	tgt	gag	tct	gat	ttg	gac	tgt	gtc	tat	ggc	aca	gat	tgt	aga	1059
Arg	His	Cys	Glu	Ser	Asp	Leu	Asp	Cys	Y <u>a</u> l	Tyr	Gly	Thr	Asp	Cys	Arg	
	330					335		/			340					W

act agc tgt gat cag agt aca atg aag tgt act tca gaa gtg ata caa	1107
Thr Ser Cys Asp Gln Ser Thr Met Lys Cys Thr Ser Glu Val Ile Gln	
345 350 355 360	
cca aac ttg gca aaa gct tgt cag tta ctc aaa gac tac cta ctg cgt	1155
Pro Asn Leu Ala Lys Ala Cys Gln Leu Leu Lys Asp Tyr Leu Leu Arg	
365 370 375	
ggt gct cca agt gaa att cgt gaa gaa tta gaa aag cag ctt tat tct	1203
Gly Ala Pro Ser Glu Ile Arg Glu Glu Leu Glu Lys Gln Leu Tyr Ser	
380 385 390	
tgt att gct ctc aaa gtc aca gca aat caa atg gaa atg gaa cat tct	1251
Cys Ile Ala Leu Lys Val Thr Ala Asn Gln Met Glu Met Glu His Ser	
395 400 405	
ttg ata cta aat aac cta aaa aca tta ttg tgg aag aaa att tcc tac	1299
Leu Ile Leu Asn Asn Leu Lys Thr Leu Leu Trp Lys Lys Ile Ser Tyr	
410 415 420	
act aat gac tot tagttoatt tggacataat taccatttta agaaacctgo	1350
Thr Asn Asp Ser	
425	
cacttttaaa gaacaatttt gagcattaaa aaaaaatggc ttcaaattcc tgccagttac	1410
acaaaactcc ttcccccag gcctgagaag ccatcagtat gtgattactg aagtaatggc	1470
aggtgtagga tcaacaggtc cccaagatgt cattcctgcc cttttagaag ccctgttaca	1530
tctccgaagt acattcattg tgtaactatt ttgactgact ttaaaaaacca atgctgtgaa	1590
aagcttcatt ccataaacat caacagtgag tgatttgtag atttacctta gccaaaatac	1650
caatgctgga agcattgtgt ttgcattgaa gctgctgttc aacaagaaaa tttataaatt	1710
tactaatgtc ttagcatggt aaagtttgca cattaacaga aattaagact gcaaagcagg	1770

ttaaacttgc	ttctttataa	aacagatgtt	gggttaatag	catggtttac	tgtattaaag	1830
acttatacac	ccatttttaa	cctcattcag	acatcaagtt	atgtgtagct	tcacaatggt	1890
tcaagtggct	tacttcaaga	aatcttatac	ttgacagtac	accaatttta	ttgactaaaa	1950
atggatgaac	tttcctaaag	attcaaaggg	cccatcttag	tatcacgcag	ctgactgagc	2010
ccttcaaaac	tgacatctta	aggcccaatc	aagatccaca	tatcctgatt	ttgaactatg	2070
tgaaagtggg	actgttaagt	gcaagactaa	aataaattat	agcagacttt	ttagtaataa	2130
ctttccattt	tcaaacagta	tatcctgtgg	gccaaagggc	tatttcttaa	agaggcatgt	2190
aaatgtattt	atttatctaa	tgttttttc	cccatgtaaa	cttgatatac	aaggtttagt	2250
atttgctcct	ctttcatatt	attttcacac	gtatactcag	atttggcatg	tacctttcaa	2310
catctccata	aaattaaaca	ccttttggag	aaaagatcca	ctattttctg	ctcaaaggtt	2370
tcgcctacct	aaagtggaac	atgttaaaaa	tctatgtgac	catcactgga	cagctttctc	2430
tcaaaacttt	ccttcaacgc	catggattag	caccagtttt	gtttacttta	aggtactttt	2490
cccattcatc	atctggttat	aataaatgga	tggaagaaat			2530

⟨210⟩ 90

<211> 1911

<212> DNA

<213≻ Homo sapiens

<220>

<221> CDS

⟨222⟩ (232)...(1083)

<400> 90

aaaatatgag acgggaatc atcgtgtgat gtgtgtgctg cctttggctg agtgtgtgga 60
gtcctgctca ggtgttaggt acagtgtgtt tgatcgtggt ggcttgaggg gaacccgctg 120
ttcagagctg tgactgcggc tgcactcaga gaagctgccc ttggctgctc gtagcgccgg 180

gcct	tctc	tc c	tcgt	cato	a to	caga	gcag	cca	gtgt	ccg	ggag	gcag	gaa g	ate	ccc	237
														Met	Pro	
														1	l	
cac	tcc	agc	ctg	cat	cca	tcc	atc	ccg	tgt	ссс	agg	ggt	cac	ggg	gcc	285
His	Ser	Ser	Leu	His	Pro	Ser	Ile	Pro	Cys	Pro	Arg	Gly	His	Gly	Ala	
		5					10					15				
cag	aag	gca	gcc	ttg	gtt	ctg	ctg	agt	gcc	tgc	ctg	gtg	acc	ctt	tgg	333
Gln	Lys	Ala	Ala	Leu	Val	Leu	Leu	Ser	Ala	Cys	Leu	Val	Thr	Leu	Trp	
	20					25					30					
ggg	cta	gga	gag	cca	cca	gag	cac	act	ctc	cgg	tac	ctg	gtg	ctc	cac	381
Gly	Leu	Gly	Glu	Pro	Pro	Glu	His	Thr	Leu	Arg	Tyr	Leu	Val	Leu	His	
35					40					45					50	
cta	gcc	tcc	ctg	cag	ctg	gga	ctg	ctg	tta	aac	ggg	gtc	tgc	agc	ctg	429
Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys	Ser	Leu	
				55					60					65		
gct	gag	gag	ctg	cac	cac	atc	cac	tcc	agg	tac	cgg	ggc	agc	tac	tgg	477
Ala	Glu	Glu	Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	Gly	Ser	Tyr	Trp	
			70					75					80			
agg	act	gtg	cgg	gcc	tgc	ctg	ggc	tgc	ccc	ctc	cgc	cgt	ggg	gcc	ctg	525
Arg	Thr	Val	Arg	Ala	Cys	Leu	Gly	Cys	Pro	Leu	Arg	Arg	Gly	Ala	Leu	
		85					90					95				
ttg	ctg	ctg	tcc	atc	tat	ttc	tac	tac	tcc	ctc	cca	aat	gcg	gtc	ggc	573
Leu	Leu	Leu	Ser	Ile	Tyr	Phe	Tyr	Tyr	Ser	Leu	Pro	Asn	Ala	Val	Gly	
	100					105			že.		110					
ccg	ссс	ttc	act	tgg	atg	ctt	gcc	ctc	ctg	ggc	ctc	tcg	cag	gca	ctg	621

Pro	Pro	Phe	Thr	Trp	Met	Leu	Ala	Leu	Leu	Gly	Leu	Ser	Gln	Ala	Leu	
115					120					125					130	
aac	atc	ctc	ctg	ggc	ctc	aag	ggc	ctg	gcc	cca	gct	gag	atc	tct	gca	669
Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile	Ser	Ala	
				135					140					145		
gtg	tgt	gaa	aaa	ggg	aat	ttc	aac	gtg	gcc	cat	ggg	ctg	gca	tgg	tca	717
Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	G1y	Leu	Ala	Trp	Ser	
			150					155					160			
tat	tac	atc	gga	tat	ctg	cgg	ctg	atc	ctg	cca	gag	ctc	cag	gcc	cgg	765
Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	Gln	Ala	Arg	
		165					170					175				
att	cga	act	tac	aat	cag	cat	tac	aac	aac	ctg	cta	cgg	ggt	gca	gtg	813
Ile	Arg	Thr	Tyr	Asn	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly	Ala	Val	
	180					185					190					
agc	cag	cgg	ctg	tat	att	ctc	ctc	cca	ttg	gac	tgt	ggg	gtg	cct	gat	861
Ser	Gln	Arg	Leu	Tyr	Ile	Leu	Leu	Pro	Leu	Asp	Cys	Gly	Val	Pro	Asp	
195					200					205					210	
aac	ctg	agt	atg	gct	gac	ccc	aac	att	cgc	ttc	ctg	gat	aaa	ctg	ccc	909
Asn	Leu	Ser	Met	Ala	Asp	Pro	Asn	Ile	Arg	Phe	Leu	Asp	Lys	Leu	Pro	
				215					220					225		
cag	cag	acc	gct	gac	cgt	gct	ggc	atc	aag	gat	cgg	gtt	tac	agc	aac	957
Gln	Gln	Thr	Ala	Asp	Arg	Ala	Gly	Ile	Lys	Asp	Arg	Val	Tyr	Ser	Asn	•
			230					235					240			
agc	atc	tat	gag	ctt	ctg	gag	aac	ggg	cag	. cgg	aac	ctg	cag	atg	aca	1005
Ser	Ile	Tyr	Glu	Leu	Leu	Glu	Asn	Gly	Gln	Arg	Asn	Leu	Gln	Met	Thr	

WO 01/12660 PCT/JP00/05356

194/307

245	250	255	
gca gct tct cgc tgt co	c agg agg ttc t	cc ggc acc tgc ggc	agg agg 1053
Ala Ala Ser Arg Cys Pi	o Arg Arg Phe S	er Gly Thr Cys Gly	Arg Arg
260	265	270	
aaa agg aag agg tta c	tg tgg gca gct t	gaagacctc agcggtgco	cc 1100
Lys Arg Lys Arg Leu Le	eu Trp Ala Ala		
275 28	30		
agtacctcca cgatgtccca	agagcctgag ctcc	tcatca gtggaatgga a	aaagcccctc 1160
cctctccgca cggatttctc	ttgagaccca gggt	caccag gccagagcct	ccagtggtct 1220
ccaagcctct ggactggggg	ctctcttcag tggc	tgaatg tccagcagag (ctatttcctt 1280
ccacaggggg ccttgcaggg	aagggtccag gact	tgacat cttaagatgc	gtcttgtccc 1340
cttgggccag tcatttcccc	tctctgagcc tcgg	tgtctt caacctgtga	aatgggatca 1400
taatcactgc cttacctccc	tcacggttgt tgtg	aggact gagtgtgtgg	aagtttttca 1460
taaactttgg atgctagtgt	acttaggggg tgtg	ccaggt gtctttcatg	gggccttcca 1520
gacccactcc ccacccttct	cccttcctt tgcc	egggga egeegaacte	tctcaatggt 1580
atcaacaggc tccttcgccc	tctggctcct ggtc	eatgttc cattattggg	gagececage 1640
agaagaatgg agaggaggag	gaggctgagt ttg	gggtatt gaatcccccg	gctcccaccc 1700
tgcagcatca aggttgctat	ggactctcct gcc	gggcaac tcttgcgtaa	tcatgactat 1760
ctctaggatt ctggcaccac	ttccttccct ggc	cccttaa gcctagctgt	gtatcggcac 1820
ccccacccca ctagagtact	ccctctcact tgc	ggtttcc ttatactcca	ccctttctc 1880
aacggtcctt ttttaaagca	catctcagat t		1911

<210> 91

<211> 476

<212> PRT

<213> Homo sapiens															
<400)> 9:	l													
Met	Val	Gly	Ala	Met	Trp	Lys	Val	Ile	Val	Ser	Leu	Val	Leu	Leu	Met
1				5					10					15	
Pro	Gly	Pro	Cys	Asp	Gly	Leu	Phe	Arg	Ser	Leu	Tyr	Arg	Ser	Val	Ser
			20					25			•		30		
Met	Pro	Pro	Lys	Gly	Asp	Ser	Gly	Gln	Pro	Leu	Phe	Leu	Thr	Pro	Tyr
		35					40					45			
Ile	Glu	Ala	Gly	Lys	Ile	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	Val	Gly
	50					55					60				
Pro	Phe	Pro	Gly	Leu	Asn	Met	Lys	Ser	Tyr	Ala	Gly	Phe	Leu	Thr	Val
65					70	•			-	75					80
Asn	Lys	Thr	Tyr	Asn	Ser	Asn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	Ala	Gln
				85					90					95	
Ile	Gln	Pro	Glu	Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly	Gly	Pro
			100					105					110		
Gly	Gly	Ser	Ser	Met	Phe	Gly	Leu	Phe	Val	Glu	His	Gly	Pro	Tyr	Val
		115					120					125			
Val	Thr	Ser	Asn	Met	Thr	Leu	Arg	Asp	Arg	Asp	Phe	Pro	Trp	Thr	Thr
	130					135					140				
Thr	Leu	Ser	Met	Leu	Tyr	Ile	Asp	Asn	Pro	Val	Gly	Thr	Gly	Phe	Ser
145					150					155					160
Phe	Thr	Asp	Asp	Thr	His	Gly	Tyr	Ala	Val	Asn	Glu	Asp	Asp	Val	Ala
				165		•		/	1,70					175	
Arg	Asp	Leu	Tyr	Ser	Ala	Leu	Ile	Gln	Phe	Phe	Gln	Ile	Phe	Pro	Glu

			180					185					190		
Tyr	Lys	Asn	Asn	Asp	Phe	Tyr	Val	Thr	Gly	Glu	Ser	Tyr	Ala	Gly	Lys
		195					200	•				205			
Tyr	Val	Pro	Ala	Ile	Ala	His	Leu	Ile	His	Ser	Leu	Asn	Pro	Val	Arg
	210					215					220				
Glu	Val	Lys	Ile	Asn	Leu	Asn	Gly	Ile	Ala	Ile	Gly	Asp	Gly	Tyr	Ser
225					230					235					240
Asp	Pro	Glu	Ser	Ile	Ile	Gly	Gly	Tyr	Ala	Glu	Phe	Leu	Tyr	Gln	Ile
				245					250					255	
Gly	Leu	Leu	Asp	Glu	Lys	Gln	Lys	Lys	Tyr	Phe	Gln	Lys	Gln	Cys	His
			260					265					270		
Glu	Cys	Ile	Glu	His	Ile	Arg	Lys	Gln	Asn	Trp	Phe	Glu	Ala	Phe	Glu
		275					280					285			
Ile	Leu	Asp	Lys	Leu	Leu	Asp	Gly	Asp	Leu	Thr	Ser	Asp	Pro	Ser	Tyr
	290				•	295					300				
Phe	Gln	Asn	Val	Thr	Gly	Cys	Ser	Asn	Tyr	Tyr	Asn	Phe	Leu	Arg	Cys
305					310					315					320
Thr	Glu	Pro	Glu	Asp	Gln	Leu	Tyr	Tyr	Val	Lys	Phe	Leu	Ser	Leu	Pro
				325					330					335	
Glu	Val	Arg	Gln	Ala	Ile	His	Val	Gly	Asn	Gln	Thr	Phe	Asn	Asp	Gly
			340					345					350		•
Thr	Ile	Val	Glu	Lys	Tyr	Leu	Arg	Glu	Asp	Thr	Val	Gln	Ser	Val	Lys
		355					360					365			
Pro	Trp	Leu	Thr	Glu	Ile	Met	Asn	Asn	Tyr	Lys	Val	Leu	Ile	Tyr	Asn
	370					375		/	نتمو		380				

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu His Ser Leu Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly Gly His Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly 5 <210> 92 <211> 226 <212> PRT <213> Homo sapiens <400> 92 Met Ser Arg Ala Gln Ile Trp Ala Leu Val Ser Gly Val Gly Gly Phe Gly Ala Leu Val Ala Ala Thr Thr Ser Asn Glu Trp Lys Val Thr Thr Arg Ala Ser Ser Val Ile Thr Ala Thr Trp Val Tyr Gln Gly Leu Trp Met Asn Cys Ala Gly Asn Ala Leu Gly Ser Phe His Cys Arg Pro His

	50					55					60				
Phe	Thr	Ile	Phe	Lys	Val	Ala	Gly	Tyr	Ile	Gln	Ala	Cys	Arg	Gly	Leu
65					70					75					80
Met	Ile	Ala	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile	Phe	Ala	Leu
				85					90					95	
Phe	Gly	Met	Lys	Cys	Thr	Lys	Val	Gly	Gly	Ser	Asp	Lys	Ala	Lys	Ala
			100					105					110		
Lys	Ile	Ala	Cys	Leu	Ala	Gly	Ile	Val	Phe	Ile	Leu	Ser	Gly	Leu	Cys
		115					120					125			
Ser	Met	Thr	Gly	Cys	Ser	Leu	Tyr	Ala	Asn	Lys	Ile	Thr	Thr	Glu	Phe
	130					135					140				
Phe	Asp	Pro	Leu	Phe	Val	Glu	Gln	Lys	Tyr	Glu	Leu	Gly	Ala	Ala	Leu
145					150					155					160
Phe	Ile	Gly	Trp	Ala	Gly	Ala	Ser	Leu	Cys	Ile	Ile	Gly	Gly	Val	Ile
				165					170					175	
Phe	Cys	Phe	Ser	Ile	Ser	Asp	Asn	Asn	Lys	Thr	Pro	Arg	Tyr	Thr	Tyr
			180					185					190		
Asn	Gly	Ala	Thr	Ser	Val	Met	Ser	Ser	Arg	Thr	Lys	Tyr	His	Gly	Gly
•		195					200					205			
Glu	Asp	Phe	Lys	Thr	Thr	Asn	Pro	Ser	Lys	Gln	Phe	Asp	Lys	Asn	Ala
	210					215					220				
Tyr	Val														
225	;														

<211	> 30)5													
<212	?> PR	RT													
<213	8> Hc	omo s	sapie	ens											
<400)> 93	3													
Met	Gly	Ile	Gln	Thr	Ser	Pro	Val	Leu	Leu	Ala	Ser	Leu	Gly	Val	Gly
1				5					10					15	
Leu	Val	Thr	Leu	Leu	Gly	Leu	Ala	Val	Gly	Ser	Tyr	Leu	Val	Arg	Arg
			20					25					30		
Ser	Arg	Arg	Pro	Gln	Val	Thr	Leu	Leu	Asp	Pro	Asn	Glu	Lys	Tyr	Leu
		35					40					45			
Leu	Arg	Leu	Leu	Asp	Lys	Thr	Thr	Val	Ser	His	Asn	Thr	Lys	Arg	Phe
	50					55					60				
Arg	Phe	Ala	Leu	Pro	Thr	Ala	His	His	Thr	Leu	Gly	Leu	Pro	Val	Gly
65					70					7 5					80
Lys	His	Ile	Tyr	Leu	Ser	Thr	Arg	Ile	Asp	Gly	Ser	Leu	Val	Ile	Arg
				85					90					95	
Pro	Tyr	Thr	Pro	Val	Thr	Ser	Asp	Glu	Asp	Gln	Gly	Tyr	Val	Asp	Leu
			100					105					110		
Val	Ile	Lys	Val	Tyr	Leu	Lys	Gly	Val	His	Pro	Lys	Phe	Pro	Glu	Gly
		115					120					125			
Gly	Lys	Met	Ser	Gln	Tyr	Leu	Asp	Ser	Leu	Lys	Val	Gly	Asp	Val	Val
	130					135					140				
Glu	Phe	Arg	G1y	Pro	Ser	Gly	Leu	Leu	Thr	Tyr	Thr	Gly	Lys	Gly	His
145					150			/	۵۰۰ متمق	155					160
Phe	Asn	Πla	Gln	Pro	Aen	Ive	Ive	Sar	Pro	Pro	G111	Dro	Ara	Val	416

<400> 94

200/307

Lys Lys Leu Gly Met Ile Ala Gly Gly Thr Gly Ile Thr Pro Met Leu Gln Leu Ile Arg Ala Ile Leu Lys Val Pro Glu Asp Pro Thr Gln Cys Phe Leu Leu Phe Ala Asn Gln Thr Glu Lys Asp Ile Ile Leu Arg Glu Asp Leu Glu Glu Leu Gln Ala Arg Tyr Pro Asn Arg Phe Lys Leu Trp Phe Thr Leu Asp His Pro Pro Lys Asp Trp Ala Tyr Ser Lys Gly Phe Val Thr Ala Asp Met Ile Arg Glu His Leu Pro Ala Pro Gly Asp Asp Val Leu Val Leu Cys Gly Pro Pro Pro Met Val Gln Leu Ala Cys His Pro Asn Leu Asp Lys Leu Gly Tyr Ser Gln Lys Met Arg Phe Thr Tyr ⟨210⟩ 94 <211> 227 <212> PRT <213> Homo sapiens

Met	Gly	пр	ınr	met	Arg	Leu	vaı	lhr	Ala	Ala	Leu	Leu	Leu	Gly	Leu
1				5					10					15	
Met	Met	Val	Val	Thr	Gly	Asp	Glu	Asp	Glu	Asn	Ser	Pro	Cys	Ala	His
			20					25					30		
Glu	Ala	Leu	Leu	Asp	Glu	Asp	Thr	Leu	Phe	Cys	Gln	Gly	Leu	Glu	Val
		35					40					45			
Phe	Tyr	Pro	Glu	Leu	Gly	Asn	Ile	Gly	Cys	Lys	Val	Val	Pro	Asp	Cys
	50					55					60				
Asn	Asn	Tyr	Arg	Gln	Lys	Ile	Thr	Ser	Trp	Met	Glu	Pro	Ile	Val	Lys
65					70					75					80
Phe	Pro	Gly	Ala	Val	Asp	Gly	Ala	Thr	Tyr	Ile	Leu	Val	Met	Val	Asp
				85					90					95	
Pro	Asp	Ala	Pro	Ser	Arg	Ala	Glu	Pro	Arg	Gln	Arg	Phe	Trp	Arg	His
			100					105					110		
Trp	Leu	Val	Thr	Asp	Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	Ile
		115					120					125			
G1n	Gly	Gln	Glu	Leu	Ser	Ala	Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His
	130					135					140				
Ser	Gly	Phe	His	Arg	Tyr	G1n	Phe	Phe	Val	Tyr	Leu	Gln	Glu	Gly	Lys
145					150					155					160
Val	Ile	Ser	Leu	Leu	Pro	Lys	Glu	Asn	Lys	Thr	Arg	Gly	Ser	Trp	Lys
				165					170					175	
Met	Asp	Arg	Phe	Leu	Asn	Arg	Phe	His	Leu	Gly	Glu	Pro	Glu	Ala	Ser
	•		180					185	انتمو.	••			190		
Thr	Gln	Phe	Met	Thr	Gln	Asn	Tur	Gln	Aen	Sar	Pro	The	Lau	Cl.	A 1 -

195 200 205 Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn Gln Ala Glu Ile 220 210 . 215 Ala Ala Cys 225 ⟨210⟩ 95 <211> 441 <212> PRT <213> Homo sapiens <400> 95 Met Ala Ile His Lys Ala Leu Val Met Cys Leu Gly Leu Pro Leu Phe l 5 15 10 Leu Phe Pro Gly Ala Trp Ala Gln Gly His Val Pro Pro Gly Cys Ser 20 25 30 Gln Gly Leu Asn Pro Leu Tyr Tyr Asn Leu Cys Asp Arg Ser Gly Ala 35 40 45 Trp Gly Ile Val Leu Glu Ala Val Ala Gly Ala Gly Ile Val Thr Thr 50 55 60 Phe Val Leu Thr Ile Ile Leu Val Ala Ser Leu Pro Phe Val Gln Asp 70 75 65 80 Thr Lys Lys Arg Ser Leu Leu Gly Thr Gln Val Phe Phe Leu Leu Gly 85 90 95 Thr Leu Gly Leu Phe Cys Leu Val Phe Ala Cys Val Val Lys Pro Asp

105

110

100

Phe	Ser	Thr	Cys	Ala	Ser	Arg	Arg	Phe	Leu	Phe	Gly	Val	Leu	Phe	Ala
		115					120					125			
Ile	Cys	Phe	Ser	Cys	Leu	Ala	Ala	His	Val	Phe	Ala	Leu	Asn	Phe	Leu
	130					135					140				
Ala	Arg	Lys	Asn	His	Gly	Pro	Arg	Gly	Trp	Val	Ile	Phe	Thr	Val	Ala
145					150					155					160
Leu	Leu	Leu	Thr	Leu	Val	Glu	Val	.Ile	Ile	Asn	Thr	Glu	Trp	Leu	Ile
				165					170				•	175	
Ile	Thr	Leu	Val	Arg	Gly	Ser	Gly	Glu	Gly	Gly	Pro	Gln	Gly	Asn	Ser
			180					185					190		
Ser	Ala	Gly	Trp	Ala	Val	Ala	Ser	Pro	Cys	Ala	Ile	Ala	Asn	Met	Asp
		195					200			•		205			
Phe	Val	Met	Λla	Leu	Ile	Tyr	Val	Met	Leu	Leu	Leu	Leu	Gly	Ala	Phe
	210					215					220				
Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	Tyr	Lys	Arg	Trp	Arg	Lys
225					230					235					240
His	Gly	Val	Phe	Val	Leu	Leu	Thr	Thr	Ala	Thr	Ser	Val	Ala	Ile	Trp
				245					250					255	
Val	Val	Trp	Ile	Val	Met	Tyr	Thr	Tyr	Gly	Asn	Lys	Gln	His	Asn	Ser
			260					265					270		
Pro	Thr	Trp	Asp	Asp	Pro	Thr	Leu	Ala	Ile	Ala	Leu	Ala	Ala	Asn	Ala
		275					280			•		285			
Trp	Ala	Phe	Val	Leu	Phe	Tyr	Val	Ile	Pro	Glu	Val	Ser	Gln	Val	Thr
	290					295			• نشمو.		300				
Lvs	Ser	Ser	Pro	Glu	Gln	Ser	Tvr	Gln	Glv	Asn	Met	Tur	Pro	Thr	Ara

Gly Val Gly Tyr Glu Thr Ile Leu Lys Glu Gln Lys Gly Gln Ser Met Phe Val Glu Asn Lys Ala Phe Ser Met Asp Glu Pro Val Ala Ala Lys Arg Pro Val Ser Pro Tyr Ser Gly Tyr Asn Gly Gln Leu Leu Thr Ser Val Tyr Gln Pro Thr Glu Met Ala Leu Met His Lys Val Pro Ser Glu Gly Ala Tyr Asp Ile Ile Leu Pro Arg Ala Thr Ala Asn Ser Gln Val Met Gly Ser Ala Asn Ser Thr Leu Arg Ala Glu Asp Met Tyr Ser Ala Gln Ser His Gln Ala Ala Thr Pro Pro Lys Asp Gly Lys Asn Ser Gln Val Phe Arg Asn Pro Tyr Val Trp Asp

<210> 96

<211> 265

<212> PRT

<213> Homo sapiens

<400> 96

Met Ala Ala Val Pro Lys Arg Met Arg Gly Pro Ala Gln Ala Lys

1 5 10 15

Leu	Leu	Pro	GIY	Ser	Ala	He	GIn	Ala	Leu	Val	Gly	Leu	Ala	Arg	Pro
			20				•	25					30		
Leu	Val	Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val
		35					40					45			
Ser	Arg	Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser
	50					55					60				
Thr	Pro	Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser
65					70					75					80
Ile	Ser	Gln	Ile	Ser	Thr	Thr	Leu	Pro	Pro	Thr	Thr	Ser	Thr	Lys	Lys
				85					90					95	
Ser	Gly	Gly	Ala	Ser	Val	Val	Pro	His	Pro	Ser	Pro	Thr	Pro	Leu	Ser
			100					105					110		
Gln	Glu	Glu	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	He	Glu	Glu	Glu	Asp
		115					120					125			
Leu	Leu	Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Ala	Lys	Asp	Thr	Leu	Asp
	130					135					140				
Asn	Gly	Asp	Tyr	Gly	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg
145					150					155					160
Asp	Asp	Asp	Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	Asn	Arg	Gly	Tyr	Met
				165					170					175	
Glu	Ile	Glu	Gln	Ser	Val	Lys	Ser	Phe	Lys	Met	Pro	Ser	Ser	Asn	He
			180					185					190		
Glu	Glu	Glu	Asp	Ser	His	Phe	Phe	Phe	His	Leu	Ile	Ile	Phe	Ala	Phe
		195					200		انتشو.	••		205			
Cys	Ile	Ala	Val	Val	Tyr	Ile	Thr	Tyr	His	Asn	Lys	Arg	Lys	Ile	Phe

WO 01/12660 PCT/JP00/05356

206/307

⟨210⟩ 97

<211> 208

<212> PRT

<213> Homo sapiens

<400> 97

Met Leu Gly Leu Leu Val Ala Leu Leu Ala Leu Gly Leu Ala Val Phe

1 5 10 15

Ala Leu Leu Asp Val Trp Tyr Leu Val Arg Leu Pro Cys Ala Val Leu
20 25 30

Arg Ala Arg Leu Leu Gln Pro Arg Val Arg Asp Leu Leu Ala Glu Gln
35 40 45

Arg Phe Pro Gly Arg Val Leu Pro Ser Asp Leu Asp Leu Leu Leu His
50 55 60

Met Asn Asn Ala Arg Tyr Leu Arg Glu Ala Asp Phe Ala Arg Val Ala
65 70 75 80

His Leu Thr Arg Cys Gly Val Leu Gly Ala Leu Arg Glu Leu Arg Ala

85 / 90 95

His Thr Val Leu Ala Ala Ser Cys Ala Arg His Arg Arg Ser Leu Arg Leu Leu Glu Pro Phe Glu Val Arg Thr Arg Leu Leu Gly Trp Asp Asp Arg Ala Phe Tyr Leu Glu Ala Arg Phe Val Ser Leu Arg Asp Gly Phe Val Cys Ala Leu Leu Arg Phe Arg Gln His Leu Leu Gly Thr Ser Pro Glu Arg Val Val Gln His Leu Cys Gln Arg Arg Val Glu Pro Pro Glu Leu Pro Ala Asp Leu Gln His Trp Ile Ser Tyr Asn Glu Ala Ser Ser Gln Leu Leu Arg Met Glu Ser Gly Leu Ser Asp Val Thr Lys Asp Gln <210> 98 <211> 400 <212> PRT <213> Homo sapiens <400> 98 Met Ala Trp Arg Arg Glu Ala Ser Val Gly Ala Arg Gly Val Leu Ala Leu Ala Leu Leu Ala Leu Ala Leu Cys Val Pro Gly Ala Arg Gly Arg Ala Leu Glu Trp Phe Ser Ala Val Val Asn Ile Glu Tyr Val Asp

		35					40					45			
Pro	Gln	Thr	Asn	Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe
	50					55					60				
Gly	Asp	Ser	Ser	Pro	Lys	Glu	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro
6 5					70					75					80
Trp	Ala	Pro	Gly	Gly	Asp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe
				85					90					95	
Phe	Val	Pro	Glu	Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu
			100					105					110		
Val	Ala	Arg	Gly	Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala
		115					120					125			
Arg	Arg	Asn	Ala	Ser	Ala	Val	Val	Leu	Tyr	Asn	Glu	Glu	Arg	Tyr	Gly
	130					135					140				
Asn	He	Thr	Leu	Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val
145					150					155					160
Ile	Met	Ile	Ser	Tyr	Pro	Lys	Gly	Arg	Glu	Ile	Leu	Glu	Leu	Val	Gln
				165					170					175	
Lys	Gly	Ile	Pro	Val	Thr	Met.	Thr	Ile	Gly	Val	Gly	Thr	Arg	His	Val
			180					185			•		190		
Gln	Glu	Phe	Ile	Ser	Gly	Gln	Ser	Val	Val	Phe	Val	Ala	Ile	Ala	Phe
		195					200					205			
Ile	Thr	Met	Met	Ile	Ile	Ser	Leu	Ala	Trp	Leu	He	Phe	Tyr	Tyr	Ile
	210					215					220				
Gln	Arg	Phe	Leu	Tyr	Thr	Gly	Ser	Gln	Ile نىر	Gly	Ser	Gln	Ser	His	Arg
225					230			/		235					240

Lys Glu Thr Lys Lys Val Ile Gly Gln Leu Leu His Thr Val Lys His Gly Glu Lys Gly Ile Asp Val Asp Ala Glu Asn Cys Ala Val Cys Ile Glu Asn Phe Lys Val Lys Asp Ile Ile Arg Ile Leu Pro Cys Lys His Ile Phe His Arg Ile Cys Ile Asp Pro Trp Leu Leu Asp His Arg Thr Cys Pro Met Cys Lys Leu Asp Val Ile Lys Ala Leu Gly Tyr Trp Gly Glu Pro Gly Asp Val Gln Glu Met Pro Ala Pro Glu Ser Pro Pro Gly Arg Asp Pro Ala Ala Asn Leu Ser Leu Ala Leu Pro Asp Asp Asp Gly Ser Asp Glu Ser Ser Pro Pro Ser Ala Ser Pro Ala Glu Ser Glu Pro Gln Cys Asp Pro Ser Phe Lys Gly Asp Ala Gly Glu Asn Thr Ala Leu Leu Glu Ala Gly Arg Ser Asp Ser Arg His Gly Gly Pro Ile Ser

<210> 99

<211> 192

<212> PRT

<213> Homo sapiens

<400)> 99	9													
Met	Phe	Cys	Pro	Leu	Lys	Leu	He	Leu	Leu	Pro	Val	Leu	Leu	Asp	Tyr
1				5					10					15	
Ser	Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	Glu	Leu	Thr	Val
			20					25					30		
His	Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr	Glu
		35					40					45			
Лsp	Lys	Cys	Ile	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	Glu	His
	50					55					60				
Ala	Lys	Asp	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val	Pro
65					70					75					80
He	Gly	Λrg	Phe	Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp	Asn	Leu	Cys
				85					90					95	
Asn	Asp	Gly	Ser	Leu	Leu	Leu	Gln	Asp	Val	Gln	Glu	Ala	Asp	Gln	Gly
			100					105					110		
Thr	Tyr	Ile	Cys	Glu	Ile	Arg	Leu	Lys	Gly	Glu	Ser	Gln	Val	Phe	Lys
		115					120					125			
Lys	Ala	Val	Val	Leu	His	Val	Leu	Pro	Glu	Glu	Pro	Lys	Glu	Leu	Met
	130					135					140				
Val	His	Val	Gly	Gly	Leu	Ile	Gln	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr
145					150					155					160
Glu	Val	Lys	His	Val	Thr	Lys	Val	Glu	Trp	Ile	Phe	Ser	Gly	Arg	Arg
				165					170					175	
Ala	Lys	Val	Thr	Arg	Arg	Lys	His	His	Cys	Val	Arg	Glu	Gly	Ser	Gly

185

190

180

.<21	0> 1	00													
<21	1> 2	60													
<21	2> P	RT													
<21	3> H	omo	sapi	ens											
<40	0> 1	00													
Met	Ala	G1y	Ser	Pro	Leu	Leu	Trp	Gly	Pro	Arg	Ala	Gly	Gly	Val	Gly
1				5					10					. 15	
Leu	Leu	Val	Leu	Leu	Leu	Leu	Gly	Leu	Phe	Arg	Pro	Pro	Pro	Ala	Leu
			20					25					30		
Cys	Ala	Arg	Pro	Val	Lys	Glu	Pro	Arg	Gly	Leu	Ser	Ala	Ala	Ser	Pro
		35					40					45			
Pro	Leu	Ala	Glu	Thr	Gly	Ala	Pro	Arg	Arg	Phe	Arg	Arg	Ser	Val	Pro
	50					55					60				
Arg	Gly	Glu	Ala	Ala	Gly	Ala	Val	Gln	Glu	Leu	Ala	Arg	Ala	Leu	Ala
65					70					75					80
His	Leu	Leu	Glu	Ala	Glu	Arg	Gln	Glu	Arg	Ala	Arg	Ala	Glu	Ala	G1n
				85					90					95	
Glu	Ala	Glu	Asp	Gln	Gln	Ala	Arg	Val	Leu	Ala	Gln	Leu	Leu	Arg	Val
			100					105					110		
Trp	Gly	Ala	Pro	Arg	Asn	Ser	Asp	Pro	Ala	Leu	Gly	Leu	Asp	Asp	Asp
		115					120					125			
Pro	Asp	Ala	Pro	Ala	Ala	Gln	Leu	Ala	Arg	Ala	Leu	Leu	Arg	Ala	Arg
	130					135			۰۰ ننمو		140				
Leu	Asp	Pro	Ala	Ala	Leu	Ala	Ala	Gln	Leu	Val	Pro	Ala	Pro	Val	Pro

WO 01/12660 PCT/JP00/05356

212/307

Ala Ala Ala Leu Arg Pro Arg Pro Pro Val Tyr Asp Asp Gly Pro Ala Gly Pro Asp Ala Glu Glu Ala Gly Asp Glu Thr Pro Asp Val Asp Pro Glu Leu Leu Arg Tyr Leu Leu Gly Arg Ile Leu Ala Gly Ser Ala Asp Ser Glu Gly Val Ala Ala Pro Arg Arg Leu Arg Arg Ala Ala Asp His Asp Val Gly Ser Glu Leu Pro Pro Glu Gly Val Leu Gly Ala Leu Leu Arg Val Lys Arg Leu Glu Thr Pro Ala Pro Gln Val Pro Ala Arg Arg Leu Leu Pro Pro

<210> 101

⟨211⟩ 1428

<212> DNA

<213> Homo sapiens

<400> 101

atggttggtg ccatgtggaa ggtgattgtt tcgctggtcc tgttgatgcc tggccctgt 60 gatgggctgt ttcgctccct atacagaagt gtttccatgc cacctaaggg agactcagga 120 cagccattat ttctcacccc ttacattgaa gctgggaaga tccaaaaagg aagagaattg 180 agtttggtcg gccctttccc aggactgaac afgaagagtt atgccggctt cctcaccgtg 240

aataagactt	acaacagcaa	cctcttcttc	tggttcttcc	cagctcagat	acagccagaa	300
gatgccccag	tagttctctg	gctacagggt	gggccgggag	gttcatccat	gtttggactc	360
tttgtggaac	atgggcctta	tgttgtcaca	agtaacatga	ccttgcgtga	cagagacttc	420
ccctggacca	caacgctctc	catgctttac	attgacaatc	cagtgggcac	aggcttcagt	480
tttactgatg	atacccacgg	atatgcagtc	aatgaggacg	atgtagcacg	ggatttatac	540
agtgcactaa	ttcagttttt	ccagatattt	cctgaatata	aaaataatga	cttttatgtc	600
actggggagt	cttatgcagg	gaaatatgtg	ccagccattg	cacacctcat	ccattccctc	660
aaccctgtga	gagaggtgaa	gatcaacctg	aacggaattg	ctattggaga	tggatattct	720
gatcccgaat	caattatagg	gggctatgca	gaattcctgt	accaaattgg	cttgttggat	780
gagaagcaaa	aaaagtactt	ccagaagcag	tgccatgaat	gcatagaaca	catcaggaag	840
cagaactggt	ttgaggcctt	tgaaatactg	gataaactac	tagatggcga	cttaacaagt	900
gateettett	acttccagaa	tgttacagga	tgtagtaatt	actataactt	tttgcggtgc	960
acggaacctg	aggatcagct	ttactatgtg	aaatttttgt	cacteceaga	ggtgagacaa	1020
gccatccacg	tggggaatca	gacttttaat	gatggaacta	tagttgaaaa	gtacttgcga	1080
gaagatacag	tacagtcagt	taagccatgg	ttaactgaaa	tcatgaataa	ttataaggtt	1140
ctgatctaca	atggccaact	ggacatcatc	gtggcagctg	ccctgacaga	gcactccttg	1200
atgggcatgg	actggaaagg	atcccaggaa	tacaagaagg	cagaaaaaaa	agtttggaag	1260
atctttaaat	ctgacagtga	agtggctggt	tacatccggc	aagcgggtga	cttccatcag	1320
gtaattattc	gaggtggagg	acatatttta	ccctatgacc	agcctctgag	agcttttgac	1380
atgattaatc	gattcattta	tggaaaagga	tgggatcctt	atgttgga		1428

<210> 102

<211> 678

<212> DNA

<213> Homo sapiens

<400> 102

atgtccaggg	cgcagatctg	ggctctggtg	tctggtgtcg	gagggtttgg	agctctcgtt	60
gctgctacca	cgtccaatga	gtggaaagtg	accacgcgag	cctcctcggt	gataacagcc	120
acttgggttt	accagggtct	gtggatgaac	tgcgcaggta	acgcgttggg	ttctttccat	180
tgccgaccgc	attttactat	cttcaaagta	gcaggttata	tacaggcatg	tagaggactt	240
atgatcgctg	ctgtcagcct	gggcttcttt	ggttccatat	ttgcgctctt	tggaatgaag	300
tgtaccaaag	tcggaggctc	cgataaagcc	aaagctaaaa	ttgcttgttt	ggctgggatt	360
gtattcatac	tgtcagggct	gtgctcaatg	actggatgtt	ccctatatgc	aaacaaaatc	420
acaacggaat	tctttgatcc	tctctttgtt	gagcaaaagt	atgaattagg	agccgctctg	480
tttattggat	gggcaggagc	ctcactgtgc	ataattggtg	gtgtcatatt	ttgcttttca	540
atatctgaca	acaacaaaac	acccagatac	acatacaacg	gggccacatc	tgtcatgtct	600
teteggacaa	agtatcatgg	tggagaagat	tttaaaacaa	caaacccttc	aaaacagttt	660
gataaaaatg	cttatgtc					678

<210> 103

<211> 915

<212> DNA

<213> Homo sapiens

<400> 103

atggggatcc agacgagccc cgtcctgctg gcctccctgg gggtggggct ggtcactctg 60 ctcggcctgg ctgtgggct ctacttggtt cggaggtccc gccggcctca ggtcactctc 120 ctggacccca atgaaaagta cctgctacga ctgctagaca agacgactgt gagccacaac 180 accaagaggt tccgctttgc cctgcccacc gcccaccaca ctctggggct gcctgtgggc 240 aaacatatct acctctcac ccgaattgat ggcagcctgg tcatcaggcc atacactcct 300 gtcaccagtg atgaggatca aggctatgtg gátcttgtca tcaaggtcta cctgaagggt 360

gtgcacccca	aatttcctga	gggagggaag	atgtctcagt	acctggatag	cctgaaggtt	420
ggggatgtgg	tggagtttcg	ggggccaagc	gggttgctca	cttacactgg	aaaagggcat	480
tttaacattc	agcccaacaa	gaaatctcca	ccagaacccc	gagtggcgaa	gaaactggga	540
atgattgccg	gcgggacagg	aatcacccca	atgctacagc	tgatccgggc	catcctgaaa	600
gtccctgaag	atccaaccca	gtgctttctg	ctttttgcca	accagacaga	aaaggatatc	660
atcttgcggg	aggacttaga	ggaactgcag	gcccgctatc	ccaatcgctt	taagctctgg	720
ttcactctgg	atcatcccc	aaaagattgg	gcctacagca	agggctttgt	gactgccgac	780
atgatccggg	aacacctgcc	cgctccaggg	gatgatgtgc	tggtactgct	ttgtgggcca	840
ccccaatgg	tgcagctggc	ctgccatccc	aacttggaca	aactgggcta	ctcacaaaaag	900
atgcgattca	cctac					915

<210> 104

<211> 681

<212> DNA

<213> Homo sapiens

<400> 104

atgggttgga caatgaggct ggtcacagca gcactgttac tgggtctcat gatggtggtc 60 actggagacg aggatgagaa cagcccgtgt gcccatgagg ccctcttgga cgaggacacc 120 ctcttttgcc agggccttga agttttctac ccagagttgg ggaacattgg ctgcaaggtt 180 gttcctgatt gtaacaacta cagacagaag atcacctcct ggatggagcc gatagtcaag 240 ttcccggggg ccgtggacgg cgcaacctat atcctggtga tggtggatcc agatgcccct 300 agcagagcag aacccagaca gagattctgg agacattggc tggtaacaga tatcaagggc 360 gccgacctga agaaagggaa gattcagggc caggagttat cagcctacca ggctcctcc 420 ccaccggcac acagtggctt ccatcgctac cagttctttg tctatcttca ggaaggaaaa 480 gtcatctctc tccttcccaa ggaaaacaaa actcgaggct cttggaaaat ggacagattt 540

ctgaaccgtt	tccacctggg	cgaacctgaa	gcaagcaccc	agttcatgac	ccagaactac	600
caggactcac	caaccctcca	ggctcccaga	gaaagggcca	gcgagcccaa	gcacaaaaac	660
caggcggaga	tagctgcctg	С				681

<210> 105

⟨211⟩ 1323

<212> DNA

<213> Homo sapiens

⟨400⟩ 105

atggccatcc acaaagcctt ggtgatgtgc ctgggactgc ctctcttcct gttcccaggg 60 gcctgggccc agggccatgt cccacccggc tgcagccaag gcctcaaccc cctgtactac 120 aacctgtgtg accgctctgg ggcgtgggc atcgtcctgg aggccgtggc tgggggggc 180 attgtcacca cgtttgtgct caccatcatc ctggtggcca gcctcccctt tgtgcaggac 240 accaagaaac ggagcctgct ggggacccag gtattcttcc ttctggggac cctgggcctc 300 ttctgcctcg tgtttgcctg tgtggtgaag cccgacttct ccacctgtgc ctctcggcgc 360 420 tteetetttg gggttetgtt egecatetge ttetettgte tggeggetea egtetttgee ctcaacttcc tggcccggaa gaaccacggg ccccggggct gggtgatctt cactgtggct 480 ctgctgctga ccctggtaga ggtcatcatc aatacagagt ggctgatcat caccctggtt 540 cggggcagtg gcgagggcgg ccctcagggc aacagcagcg caggctgggc cgtggcctcc 600 ccctgtgcca tcgccaacat ggactttgtc atggcactca tctacgtcat gctgctgctg 660 ctgggtgcct tcctgggggc ctggcccgcc ctgtgtggcc gctacaagcg ctggcgtaag 720 catggggtct ttgtgctcct caccacagcc acctccgttg ccatatgggt ggtgtggatc 780 840 gtcatgtata cttacggcaa caagcagcac aacagtccca cctgggatga ccccacgctg 900 gecategeee tegeogecaa tgeetgggee ttegteetet tetaegteat eecegaggte tcccaggtga ccaagtccag cccagagcaa agctaccagg gggacatgta ccccacccgg 960

ggcgtgggct	atgagaccat	cctgaaagag	cagaagggtc	agagcatgtt	cgtggagaac	1020
aaggcctttt	ccatggatga	gccggttgca	gctaagaggc	cggtgtcacc	atacagcggg	1080
tacaatgggc	agctgctgac	cagtgtgtac	cagcccactg	agatggccct	gatgcacaaa	1140
gttccgtccg	aaggagctta	cgacatcatc	ctcccacggg	ccaccgccaa	cagccaggtg	1200
atgggcagtg	ccaactcgac	cctgcgggct	gaagacatgt	actcggccca	gagccaccag	1260
gcggccacac	cgccgaaaga	cggcaagaac	tctcaggtct	ttagaaaccc	ctacgtgtgg	1320
gac						1323

<210> 106

<211> 795

<212> DNA

<213> Homo sapiens

<400> 106

atggccgctg ccgtcccgaa gaggatgagg gggccagcac aagcgaaact gctgcccggg 60 teggecatee aageeettgt ggggttggeg eggeegetgg tettggeget eetgettgtg 120 teegeegete tateeagtgt tgtateaegg actgatteae egageecaae egtaeteaae 180 tcacatattt ctaccccaaa tgtgaatgct ttaacacatg aaaaccaaac caaaccttct 240 atttcccaaa tcagcaccac cctccctccc acgacgagta ccaagaaaag tggaggagca 300 tetgtggtcc ctcatccctc gcctactcct ctgtctcaag aggaagctga taacaatgaa 360 gatcctagta tagaggagga ggatcttctc atgctgaaca gttctccatc cacagccaaa 420 gacactctag acaatggcga ttatggagaa ccagactatg actggaccac gggccccagg 480 gacgacgacg agtctgatga caccttggaa gaaaacaggg gttacatgga aattgaacag 540 tcagtgaaat cttttaagat gccatcctca aatatagaag aggaagacag ccatttcttt 600 tttcatctta ttatttttgc tttttgcatt gctgttgttt acattacata tcacaacaaa 660 aggaagattt ttcttctggt tcaaagcagg aaatggcgtg atggcctttg ttccaaaaca 720

WO 01/12660 PCT/JP00/05356

218/307

gtggaatacc	atcgcctaga	tcagaatgtt	aatgaggcaa	tgccttcttt	gaagattacc	780
aatgattata	ttttt					795
<210> 107						
<211> 624						
<212> DNA						
<213> Homo	sapiens					
<400> 107						
atgctggggc	tgctggtggc	gttgctggcc	ctggggctcg	ctgtctttgc	gctgctggac	60
gtctggtacc	tggtgcgcct	tccgtgcgcc	gtgctgcgcg	cgcgcctgct	gcagccgcgc	120
gtccgtgacc	tgctagctga	gcagcgcttc	ccgggccgcg	tgctgccctc	ggacttggac	180
ctgctgttgc	acatgaacaa	cgcgcgctac	ctgcgcgagg	ccgactttgc	gcgcgtcgcg	240
cacctgaccc	gctgcggggt	gctcggggcg	ctgagggagt	tgcgggcgca	cacggtgctg	300
gcggcctcgt	gcgcgcgcca	ccgccgctcg	ctgcgcctgc	tggagccctt	cgaggtgcgc	360
acccgcctgc	tgggctggga	cgaccgcgcg	ttctacctgg	aggcgcgctt	tgtcagcctg	420
cgggacggtt	tcgtgtgcgc	gctgctgcgc	ttccggcagc	acctgctggg	cacctcaccc	480
gagcgcgtcg	tgcagcacct	gtgccagcgc	agggtggagc	cccctgagct	gcccgctgat	540
ctgcagcact	ggatctccta	caacgaggcc	agcagccagc	tgctccgcat	ggagagtggg	600
ctcagtgatg	tcaccaagga	ccag		_		624

⟨210⟩ 108

<211> 1200

<212> DNA

<213> Homo sapiens

<400> 108

60	tctggcgttg	gcgtgttggc	ggggctcgcg	agccagcgtc	ggcggcgcga	atggcgtggc
120	gttctcggcc	ctctcgagtg	cggggccggg	gcccggggcc	ccctgtgcgt	ctcgccctgg
180	cgtctcggag	cggtgtggag	accaacctga	ggacccgcag	tcgagtacgt	gtggtaaaca
240	gggcgtcccg	atggcctggt	gagggcgcgc	ctcgcccaag	tcggcgacag	agtggccgct
300	cgtgcccgag	cgcgcttctt	gcgcccgaca	cgagggctgc	gcggagacct	tgggcgcccg
360	ctgcaccttc	ctcgtggggg	gccctggtgg	gccctgggtc	gaggggccgc	cccggcggcc
420	ctacaatgag	ccgtcgtcct	aacgcctcgg	ggcgcggagg	tgctggtggc	aaggacaagg
480	tatagtggtc	gaacaggaaa	tctcacgcgg	cttgcccatg	ggaacatcac	gagcgctacg
540	aggaattcca	tggtgcaaaa	attttggagc	aggaagagaa	gctatccaaa	attatgatta
600	cggtcagtct	agttcatcag	catgtacagg	tggcacccgg	ccataggggt	gtaacgatga
660	ctggctaata	tctcgttagc	atgatgatta	cttcatcacc	tggccattgc	gtggtgtttg
720	gagccataga	ttggaagtca	ggctctcaga	cctatatact	tacagcgttt	ttttactata
780	tggagaaaag	ctgtaaagca	ctacttcata	tggccagctt	agaaagttat	aaagaaacta
840	agtaaaggat	aaaatttcaa	gtgtgtattg	aaattgtgca	ttgatgctga	ggaattgatg
900	cccatggctt	tatgcattga	tttcatagaa	caagcatatt	ttctgccatg	attattagaa
960	aggatattgg	tcaaagccct	cttgatgtca	aatgtgtaaa	gaacatgtcc	ttggatcacc
1020	aagggatcca	ctcctcctgg	gctccagaat	ggagatgcct	gggatgtaca	ggagagcctg
1080	cagtccacca	gtgatgagag	gatgacggaa	tttaccagat	tgagtctagc	gctgcaaatt
1140	agatgcagga	gctttaaagg	tgtgatccca	tgagccacag	ctgctgaatc	tcagcctccc
1200	acccatctcc	ggcatggagg	agtgactctc	agccggcagg	cattgctaga	gaaaatacgg

⟨210⟩ 109

<211> 576

<212> DNA

<213> Homo sapiens

<400> 109

g 60	cttgggcctg	tggattattc	ccagtgttac	catcctgctg	cactgaaact	atgttttgcc
g 120	agctctgatg	tgggtgattc	acagtccatg	gcctgagcta	atgtttcccc	aatgacttga
a 180	gactctgtca	agatagactg	tgtatattca	agaagacaaa	tccagagcac	ggatgtgttt
t 240	cagtgtgcct	actccaatct	ctatactatt	cgaatatgtg	acgccaagga	ccaggagagc
t 300	tgatggctct	acttatgcaa	atgggggaca	cgtacacttg	tccagaaccg	attgggcgct
c 360	aatccgcctc	atatctgtga	cagggaacct	agaggctgac	aagatgtgca	ctcctgctcc
c 420	agaggagccc	atgtgcttcc	gtggtactgc	caagaaggcg	gccaggtgtt	aaaggggaga
a 480	ccagagcaca	gatgtgtttt	attcagatgg	gggtggattg	tggtccatgt	aaagagctca
a 540	aaaggtaaca	gacggcgcgc	atattttcag	ggtagaatgg	acgtgaccaa	gaagtgaaac
576			tctggc	tagagaaggc	atcactgtgt	aggaggaaac

<210> 110

<211> 780

<212> DNA

<213> Homo sapiens

<400> 110

60 atggcggggt cgccgctgct ctgggggccg cgggccgggg gcgtcggcct tttggtgctg 120 ctgctgctcg gcctgtttcg gccgccccc gcgctctgcg cgcggccggt aaaggagccc cgcggcctaa gcgcagcgtc tccgcccttg gctgagactg gcgctcctcg ccgcttccgg 180 240 cggtcagtgc cccgaggtga ggcggcgggg gcggtgcagg agctggcgcg ggcgctggcg 300 catcigcing aggccgaacg traggagrag graceggragg aggraggaggat graceggraggat 360 cagcaggege gegteetgge geagetgetg egegtetggg gegeeeceeg caactetgat 420 ceggetetgg geetggacga egaceeegac gegeetgeag egeagetege tegegetetg 480 ctecgegece geettgacee tgeegeete géageceage ttgteceege geeegteece

gccgcg	gcgc	tccg	accc	cg g	cccc	cggt	c ta	cgac	gacg	gcc	ccgc	ggg	cccg	gatgc	t 540
gaggag	gcag	gcga	cgag	ac a	cccg	acgt	g ga	cccc	gagc	tgt	tgag	gta	cttg	ctggg	a 600
cggatt	cttg	cggg	aagc	gc g	gact	ccga	g gg	ggtg	gcag	ссс	cgcg	ccg	cctc	cgccg	t 660
gccgcc	gacc	acga	tgtg	gg c	tctg	agct	g cc	ccct	gagg	gcg	tgct	ggg	ggcg	ctgct	g 720
cgtgtg	aaac	gcct	agag	ac c	ccgg	cgcc	с са	ggtg	cctg	cac	gccg	cct	cttg	ccacco	c 780
<210>	111													٠	
<211>	1633														
<212>	DNA														
<213>	Homo	sapi	ens												
<220>															
<221>	CDS														
<222>	(68).	(1	498)												
<400>	111														
acaaccggct ggggtccttg cgcgccgcgg ctcagggagg agcaccgact gcgccgcacc								60							
ctgaga	g atg	gtt	ggt	gcc	atg	tgg	aag	gtg	att	gtt	tcg	ctg	gtc	ctg	109
	Met	Val	G1 y	Ala	Met	Trp	Lys	Val	Ile	Val	Ser	Leu	Val	Leu	
	1				5					10					
ttg at	g cct	ggc	ccc	tgt	gat	ggg	ctg	ttt	cgc	tcc	cta	tac	aga	agt	157
Leu Me	t Pro	Gly	Pro	Cys	Asp	Gly	Leu	Phe	Arg	Ser	Leu	Tyr	Arg	Ser	
15				20					25					30	
gtt tc	c atg	cca	cct	aag	gga	gac	tca	gga	cag	cca	tta	ttt	ctc	acc	205
Val Se	r Met	Pro	Pro	Lys	Gly	Asp	Ser	Gly	Gln	Pro	Leu	Phe	Leu	Thr	
			35					40	٠.				45		
cct ta	c att	gaa	gct	ggg	aag	atc	caa	aaa	gga	aga	gaa	ttg	agt	ttg	253

Pro	Tyr	He	Glu	Ala	Gly	Lys	He	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	
			50					55					60			
gtc	ggc	cct	ttc	cca	gga	ctg	aac	atg	aag	agt	tat	gcc	ggc	ttc	ctc	301
Val	Gly	Pro	Phe	Pro	Gly	Leu	Asn	Met	Lys	Ser	Tyr	Ala	Gly	Phe	Leu	
		65					70					75				
acc	gtg	aat	aag	act	tac	aac	agc	aac	ctc	ttc	ttc	tgg	ttc	ttc	cca	349
Thr	Val	Asn	Lys	Thr	Tyr	Asn	Ser	Asn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	
	80					85					90					
gct	cag	ata	cag	cca	gaa	gat	gcc	cca	gta	gtt	ctc	tgg	cta	cag	ggt	397
Ala	Gln	Ile	Gln	Pro	Glu	Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly	
95					100					105					110	
ggg	ccg	gga	ggt	tca	tcc	atg	ttt	gga	ctc	ttt	gtg	gaa	cat	ggg	cct	445
Gly	Pro	Gly	Gly	Ser	Ser	Met	Phe	Gly	Leu	Phe	Val	Glu	His	Gly	Pro	
				115					120					125		
tat	gtt	gtc	aca	agt	aac	atg	acc	ttg	cgt	gac	aga	gac	ttc	ccc	tgg	493
Tyr	Val	Val	Thr	Ser	Asn	Met	Thr	Leu	Arg	Asp	Arg	Asp	Phe	Pro	Trp	
			130					135					140			
acc	aca	acg	ctc	tcc	atg	ctt	tac	att	gac	aat	cca	gtg	ggc	aca	ggc	541
Thr	Thr	Thr	Leu	Ser	Met	Leu	Tyr	Ile	Asp	Asn	Pro	Val	Gly	Thr	Gly	
		145					150					155				
ttc	agt	ttt	act	gat	gat	acc	cac	gga	tat	gca	gtc	aat	gag	gac	gat	589
Phe	Ser	Phe	Thr	Asp	Asp	Thr	His	Gly	Tyr	Ala	Val	Asn	Glu	Asp	Asp	
	160					165					170					
gta	gca	cgg	gat	tta	tac	agt	gca	cta	att	cag	ttt	ttc	cag	ata	ttt	637
Val	Ala	Arg	Asp	Leu	Tyr	Ser	Ala	Leú	Ile	Gln	Phe	Phe	Gln	He	Phe	

175					180					185					190	
cct	gaa	tat	aaa	aat.	aat	gac	ttt	tat	gtc	act	ggg	gag	tct	tat	gca	685
Pro	Glu	Tyr	Lys	Asn	Asn	Asp	Phe	Tyr	Val	Thr	Gly	Glu	Ser	Tyr	Ala	
				195					200					205		
ggg	aaa	tat	gtg	cca	gcc	att	gca	cac	ctc	atc	cat	tcc	ctc	aac	cct	733
G1 y	Lys	Tyr	Val	Pro	Ala	Ile	Ala	His	Leu	Ile	His	Ser	Leu	Asn	Pro	
			210					215	٠				220			
gtg	aga	gag	gtg	aag	atc	aac	ctg	aac	gga	att	gct	att	gga	gat	gga	781
Val	Arg	Glu	Val	Lys	Ile	Asn	Leu	Asn	Gly	Ile	Ala	Ile	Gly	Asp	Gly	
		225					230					235				
tat	tct	gat	ccc	gaa	tca	att	ata	ggg	ggc	tat	gca	gaa	ttc	ctg	tac	829
Tyr	Ser	Asp	Pro	Glu	Ser	Ile	Ile	Gly	Gly	Tyr	Ala	Glu	Phe	Leu	Tyr	
	240					245					250					
caa	att	ggc	ttg	ttg	gat	gag	aag	caa	aaa	aag	tac	ttc	cag	aag	cag	877
Gln	He	Gly	Leu	Leu	Asp	Glu	Lys	Gln	Lys	Lys	Tyr	Phe	Gln	Lys	Gln	
255					260					265					270	
tgc	cat	gaa	tgc	ata	gaa	cac	atc	agg	aag	cag	aac	tgg	ttt	gag	gcc	925
Cys	His	Glu	Cys	Ile	Glu	His	Ile	Arg	Lys	Gln	Asn	Trp	Phe	Glu	Ala	
				275		,			280					285		
ttt	gaa	ata	ctg	gat	aaa	cta	cta	gat	ggc	gac	tta	aca	agt	gat	cct	973
Phe	Glu	Ile	Leu	Asp	Lys	Leu	Leu	Asp	Gly	Asp	Leu	Thr	Ser	Asp	Pro	
			290					295					300			
tct	tac	ttc	cag	aat	gtt	aca	gga	tgt	agt	aat	tac	tat	aac	ttt	ttg	1021
Ser	Tyr	Phe	Gln	Asn	Val	Thr	Gly	Cys	Ser	Asn	Tyr	Tyr	Asn	Phe	Leu	
		305					310					315				

cgg	tgc	acg	gaa	cct	gag	gat	cag	ctt	tac	tat	gtg	aaa	ttt	ttg	tca	1069
Arg	Cys	Thr	Glu _.	Pro	Glu	Asp	Gln	Leu	Tyr	Tyr	Val	Lys	Phe	Leu	Ser	
	320					325					330					
ctc	cca	gag	gtg	aga	caa	gcc	atc	cac	gtg	ggg	aat	cag	act	ttt	aat	1117
Leu	Pro	Glu	Val	Arg	Gln	Ala	Ile	His	Val	Gly	Asn	Gln	Thr	Phe	Asn	
335					340					345					350	
gat	gga	act	ata	gtt	gaa	aag	tac	ttg	cga	gaa	gat	aca	gta	cag	tca	1165
Asp	Gly	Thr	Ile	Val	Glu	Lys	Tyr	Leu	Arg	Glu	Asp	Thr	Val	Gln	Ser	
				355					360					365		
gtt	aag	cca	tgg	tta	act	gaa	atc	atg	aat	aat	tat	aag	gtt	ctg	atc	1213
Val	Lys	Pro	Trp	Leu	Thr	Glu	Ile	Met	Asn	Asn	Tyr	Lys	Val	Leu	He	
			370					375					380			
tac	aat	ggc	caa	ctg	gac	atc	atc	gtg	gca	gct	gcc	ctg	aca	gag	cac	1261
Tyr	Asn	Gly	Gln	Leu	Asp	Ile	Ile	Val	Ala	Ala	Ala	Leu	Thr	Glu	His	
		385					390					395				
tcc	ttg	atg	ggc	atg	gac	tgg	aaa	gga	tcc	cag	gaa	tac	aag	aag	gca	1309
Ser	Leu	Met	Gly	Met	Asp	Trp	Lys	Gly	Ser	Gln	Glu	Tyr	Lys	Lys	Ala	
	400					405					410					
gaa	aaa	aaa	gtt	tgg	aag	atc	ttt	aaa	tct	gac	agt	gaa	gtg	gct	ggt	1357
Glu	Lys	Lys	Val	Trp	Lys	Ile	Phe	Lys	Ser	Asp	Ser	Glu	Val	Ala	Gly	
415					420					425					430	
tac	atc	cgg	caa	gcg	ggt	gac	ttc	cat	cag	gta	att	att	cga	ggt	gga	1405
Tyr	Ile	Arg	Gln	Ala	Gly	Asp	Phe	His	Gln	Val	Ile	Ile	Arg	Gly	Gly	
				435					440					445		
gga	cat	att	tta	ссс	tat	gac	cag	cct	نىر ctg	aga	gct	ttt	gac	atg	att	1453

Gly His Il	e Leu Pro	Tyr Asp	Gln Pro	Leu Arg	Ala Phe	Asp Met Ile	
	450		455			460	
aat cga tt	c att tat	gga aaa	gga tgg	gat cct	tat gtt	gga taaac	1500
Asn Arg Ph	e Ile Tyr	Gly Lys	Gly Trp	Asp Pro	Tyr Val	Gly	
46	5		470		475		
taccttccca	aaagagaa	ca tcagag	gttt tca	attgctga	aaagaaaa	atc gtaaaaacag	1560
aaaatgtcat	aggaataa	aa aaatta	tctt ttc	catatotg	caagatti	tt ttcatcaata	1620
aaaattatcc	ttg						1633
<210> 112							
<211> 1095							٠
<212> DNA							
<213> Homo	sapiens	•					
<220>							
<221> CDS							
<222> (192)) (872)						
<400> 112							
ctttaaaatg	tcattggta	a accata	c ttg a tc	ctaaatt	cctgtact	tc ctcaggccat	60
ccgagcatga	aacgctgto	a cctacco	caca tcc	gctggct	gtgacgct	tg tcaaagtgtt	120
ctctatcggc	tgcatgcct	a gaccaco	caaa gcg	ttctgac	cggacagt	gt cactggagaa	180
ggcggcgcga	c atg tco	agg gcg	cag atc	tgg gct	ctg gtg	tct ggt gtc	230
	Met Ser	Arg Ala	Gln Ile	Trp Ala	Leu Val	Ser Gly Val	
	1		5		10		
gga ggg tti	t gga gct	ctc gtt g	gct gct	acc_acg	tcc aat	gag tgg aaa	278

Gly Gly Phe Gly Ala Leu Val Ala Ala Thr Thr Ser Asn Glu Trp Lys

	15					20					25					
gtg	acc	acg	cga	gcc	tcc	tcg	gtg	ata	aca	gcc	ạct	tgg	gtt	tac	cag	326
Val	Thr	Thr	Arg	Ala	Ser	Ser	Val	Ile	Thr	Ala	Thr	Trp	Val	Tyr	Gln	
30					35					40					45	
ggt	ctg	tgg	atg	aac	tgc	gca	ggt	aac	gcg	ttg	ggt	tct	ttc	cat	tgc	374
Gly	Leu	Trp	Met	Asn	Cys	Ala	Gly	Asn	Ala	Leu	Gly	Ser	Phe	His	Cys	
				50					55					60		
cga	ccg	cat	ttt	act	atc	ttc	aaa	gta	gca	ggt	tat	ata	cag	gca	tgt	422
Arg	Pro	His	Phe	Thr	He	Phe	Lys	Val	Ala	Gly	Tyr	Ile	Gln	Ala	Cys	
			65					70					75			
aga	gga	ctt	atg	atc	gct	gct	gtc	agc	ctg	ggc	ttc	ttt	ggt	tcc	ata	470
Arg	Gly	Leu	Met	lle	Ala	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile	
		80					85					90				
ttt	gcg	ctc	ttt	gga	atg	aag	tgt	acc	aaa	gtc	gga	ggc	tcc	gat	aaa	518
Phe	Ala	Leu	Phe	Gly	Met	Lys	Cys	Thr	Lys	Val	Gly	Gly	Ser	Asp	Lys	
	95					100					105					
gcc	aaa	gct	aaa	att	gct	tgt	ttg	gct	ggg	att	gta	ttc	ata	ctg	tca	566
Ala	Lys	Ala	Lys	Ile	Ala	Cys	Leu	Ala	Gly	Ile	Val	Phe	Ile	Leu	Ser	
110					115					120					125	
					act											614
Gly	Leu	Cys	Ser		Thr	Gly	Cys	Ser		Tyr	Ala	Asn	Lys		Thr	
				130					135					140		
					cct											662
Thr	Glu	Phe		Asp	Pro	Leu	Phe		Glu ښر	Gln	Lys	Tyr		Leu	Gly	
			145					150					155			

gcc	gct	ctg	ttt	att	gga	tgg	gca	gga	gcc	tca	ctg	tgc	ata	att	ggt	710
Ala	Ala	Leu	Phe	Ile	Gly	Trp	Ala	Gly	Ąla	Ser	Leu	Cys	Ile	Ile	Gly	
		160					165					170				
ggt	gtc	ata	ttt	tgc	ttt	tca	ata	tct	gac	aac	aac	aaa	aca	ссс	aga	758
Gly	Val	Ile	Phe	Cys	Phe	Ser	Ile	Ser	Asp	Asn	Asn	Lys	Thr	Pro	Arg	
	175					180					185					
tac	aca	tac	aac	ggg	gcc	aca	tct	gtc	atg	tct	tct	cgg	aca	aag	tat	806
Tyr	Thr	Tyr	Asn	Gly	Ala	Thr	Ser	Val	Met	Ser	Ser	Arg	Thr	Lys	Tyr	
190					195					200					205	
cat	ggt	gga	gaa	gat	ttt	aaa	aca	aca	aac	cct	tca	aaa	cag	ttt	gat	854
His	Gly	Gly	Glu	Asp	Phe	Lys	Thr	Thr	Asn	Pro	Ser	Lys	Gln	Phe	Asp	
				210					215		•			220		
aaa	aat	gct	tat	gtc	t aa	aaga	gcto	gcg	ggca	agc	tgcc	etett	ga			900
Lys	Asn	Ala	Tyr	Val												
			225													
gttt	gtta	ıta a	aagc	gaac	t gt	tcac	aaaa	tga	tccc	atc	aagg	ccct	cc c	ataa	ttaac	960
actc	aaaa	ict a	ittt	taaa	a ta	tgca	tttg	aag	cato	tgt	tgat	tgta	ıtg g	atgt	aagtg	1020
															ataaa	1080
cagt																1095

<210> 113

<211> 1602

<212> DNA

<213> Homo sapiens

<220>

<221	> CI)S														
<222	?> (3	34)	. (95	51)												
<400)> 11	3														
ttte	gtcag	ggt g	ggtgg	gagga	na aa	iggce	gctco	e gto	e ate	g ggg	gato	c ca	g ac	g ago	ccc	54
									Met	t Gly	/ I1e	e Gli	ı Thi	r Sei	r Pro	
									1	l				5		
gtc	ctg	ctg	gcc	tcc	ctg	ggg	gtg	ggg	ctg	gtc	act	ctg	ctc	ggc	ctg	102
Val	Leu	Leu	Ala	Ser	Leu	Gly	Val	Gly	Leu	Val	Thr	Leu	Leu	Gly	Leu	
		10					15					20				
gct	gtg	ggc	tcc	tac	ttg	gtt	cgg	agg	tcc	cgc	cgg	cct	cag	gtc	act	150
Ala	Val	Gly	Ser	Tyr	Leu	Val	Arg	Arg	Ser	Arg	Arg	Pro	Gln	Val	Thr	
	25					30					35		٠			
ctc	ctg	gac	ccc	aat	gaa	aag	tac	ctg	cta	cga	ctg	cta	gac	aag	acg	198
Leu	Leu	Asp	Pro	Asn	Glu	Lys	Tyr	Leu	Leu	Arg	Leu	Leu	Asp	Lys	Thr	
40					45					50					55	
act	gtg	agc	cac	aac	acc	aag	agg	ttc	cgc	ttt	gcc	ctg	ссс	acc	gcc	246
Thr	Val	Ser	His	Asn	Thr	Lys	Arg	Phe	Arg	Phe	Ala	Leu	Pro	Thr	Λla	
				60					65					70		
cac	cac	act	ctg	ggg	ctg	cct	gtg	ggc	aaa	cat	atc	tac	ctc	tcc	acc	294
His	His	Thr	Leu	Gly	Leu	Pro	Val	Gly	Lys	His	Ile	Tyr	Leu	Ser	Thr	
			75					80					85			
cga	att	gat	ggc	agc	ctg	gtc	atc	agg	cca	tac	act	cct	gtc	acc	agt	342
Arg	Ile	Asp	Gly	Ser	Leu	Val	Ile	Arg	Pro	Tyr	Thr	Pro	Val	Thr	Ser	
		90					95					100				
gat	gag	gat	caa	ggc	tat	gtg	gat	ctt	نر gtc	atc	aag	gtc	tac	ctg	aag	390

Asp	Glu	Asp	Gln	Gly	Tyr	Val	Asp	Leu	Val	Ile	Lys	Val	Tyr	Leu	Lys	
	105					110					115					
ggt	gtg	cac	ссс	aaa	ttt	cct	gag	gga	ggg	aag	atg	tct	cag	tac	ctg	438
Gly	Val	His	Pro	Lys	Phe	Pro	Glu	Gly	Gly	Lys	Met	Ser	G1n	Tyr	Leu	
120					125					130					135	
gat	agc	ctg	aag	gtt	ggg	gat	gtg	gtg	gag	ttt	cgg	ggg	cca	agc	ggg	486
Asp	Ser	Leu	Lys	Val	Gly	Asp	Val	Val	Glu	Phe	Arg	Gly	Pro	Ser	Gly	
				140					145					150		
ttg	ctc	act	tac	act	gga	aaa	ggg	cat	ttt	aac	att	cag	ccc	aac	aag	534
Leu	Leu	Thr	Tyr	Thr	Gly	Lys	Gly	His	Phe	Asn	Ile	Gln	Pro	Asn	Lys	
			155					160					165			
aaa	tct	cca	cca	gaa	ccc	cga	gtg	gcg	aag	aaa	ctg	gga	atg	att	gcc	582
Lys	Ser	Pro	Pro	Glu	Pro	Arg	Val	Ala	Lys	Lys	Leu	Gly	Met	Ile	Ala	
		170					175					180				
ggc	ggg	aca	gga	atc	acc	cca	atg	cta	cag	ctg	atc	cgg	gcc	atc	ctg	630
Gly	Gly	Thr	Gly	Ile	Thr	Pro	Met	Leu	Gln	Leu	Ile	Arg	Ala	Ile	Leu	
	185					190					195					
aaa	gtc	cct	gaa	gat	cca	acc	cag	tgc	ttt	ctg	ctt	ttt	gcc	aac	cag	678
Lys	Val	Pro	Glu	Asp	Pro	Thr	Gln	Cys	Phe	Leu	Leu	Phe	Ala	Asn	Gln	
200					205	•				210					215	
aca	gaa	aag	gat	atc	atc	ttg	cgg	gag	gac	tta	gag	gaa	ctg	cag	gcc	726
Thr	Glu	Lys	Asp	Ile	Ile	Leu	Arg	Glu	Asp	Leu	Glu	Glu	Leu	Gln	Ala	
				220					225					230		
cgc	tat	ccc	aat	cgc	ttt	aag	ctc	tgg	ttc سر	act	ctg	gat	cat	ccc	cca	774
Arg	Tvr	Pro	Asn	Arg	Phe	Lvs	Leu	Trn	Phe	Thr	Lau	Acn	ніс	Dro	Dwa	

		235					240					245			
aaa ga	at tgg	gcc	tac	agc	aag	ggc	ttt	gtg	act	gcc	gac	atg	atc	cgg	822
Lys As	sp Trp	Ala	Tyr	Ser	Lys	Gly	Phe	Val	Thr	Ala	Asp	Met	Ile	Arg	
	250					255					260				
gaa ca	ac ctg	ccc	gct	cca	ggg	gat	gat	gtg	ctg	gta	ctg	ctt	tgt	ggg	870
Glu Hi	is Leu	Pro	Ala	Pro	Gly	Asp	Asp	Val	Leu	Val	Leu	Leu	Cys	Gly	
26	65				270					275					
cca co	сс сса	atg	gtg	cag	ctg	gcc	tgc	cat	ccc	aac	ttg	gac	aaa	ctg	918
Pro Pr	ro Pro	Met	Val	Gln	Leu	Ala	Cys	His	Pro	Asn	Leu	Asp	Lys	Leu	
280				285					290					295	
ggc ta	ac tca	caa	aag	atg	cga	ttc	acc	tac	tg a	agca	tcct	cc a	gctt	ccctg	970
Gly Ty	yr Ser	Gln	Lys	Met	Arg	Phe	Thr	Tyr							
			300					305							
gtgctg	gttcg	ctgca	gttg	gt to	ccc	atca	g ta	ctca	agca	cta	taag	cct	taga	ttcctt	1030
tcctca	agagt	ttcag	gttt	t ti	tcag	ttaca	a tc	taga	gctg	aaa	tetg	gat	agta	cctgca	1090
ggaaca	aatat	tcctg	gtago	c at	tgga	agagı	g gc	caag	gctc	agto	cact	cct	tgga	tggcct	1150
cctaaa	atctc	cccgt	ggca	ia ca	aggt	ccag	g aga	aggc	ccat	gga	gcag	tct	cttc	catgga	1210
gtaaga	aagga	aggga	ıgcat	g ta	acgc	ttgg	t cc	aaga	ttgg	cta	gttc	ctt	gata	gcatct	1270
tactc	tcacc	ttctt	tgtg	gt ci	tgtg	atga	a ag	gaac	agtc	tgt	gcaa	tgg	gttt	tactta	1330
aactt	cactg	ttcaa	ccta	it ga	agca	aatc	t gt	atgt	gtga	gta	taag	ttg	agca	tagcat	1390
actte	cagag	gtggt	ctta	it g	gaga	tggc	a ag	aaag	gagg	aaa	tgat	ttc	ttca	gatete	1450
aaagg	agtct	gaaat	tatca	it a	tttc	tgtg	t gt	gtct	ctct	cag	cccc	tgc	ccag	gctaga	1510
gggaa	acagc	tactg	gataa	at c	gaaa	actg	c tg	tttg	tggc	agg	aacc	cct	ggct	gtgcaa	1570
ataaa	tgggg	ctgag	ggcco	cc t	gtgt	gata	t tg								1602

<210)> 1	14														
<21	1> 8	97														
<21	2> Di	NA														
<21:	3> H	omo :	sapi	ens												
<220)>															
<22	1> C	DS														
<222	2> (99)	(78	82)												
<400)> 1	14														
agto	cctc	cca a	aagta	actt	gt g	tccg	ggtg	g tg	gact	ggat	tcg	ctgc	gga	gccc	tggaag	60
ctg	cctt	tcc	ttct	ccct	gt g	ctta	acca	g ag	gtgc	cc a	tg g	gt t	gg a	ca a	tg	113
										M	et G	ly T	rp T	hr M	et	
											l	÷			5	
agg	ctg	gtc	aca	gca	gca	ctg	tta	ctg	ggt	ctc	atg	atg	gtg	gtc	act	161
Arg	Leu	Val	Thr	Ala	Ala	Leu	Leu	Leu	Gly	Leu	Met	Met	Val	Val	Thr	
				10		-			15					20		
gga	gac	gag	gat	gag	aac	agc	ccg	tgt	gcc	cat	gag	gcc	ctc	ttg	gac	209
Gly	Asp	Glu	Asp	Glu	Asn	Ser	Pro	Cys	Ala	His	Glu	Ala	Leu	Leu	Asp	
			25					30					35			
gag	gac	acc	ctc	ttt	tgc	cag	ggc	ctt	gaa	gtt	ttc	tac	cca	gag	ttg	257
Glu	Asp	Thr	Leu	Phe	Cys	Gln	Gly	Leu	Glu	Val	Phe	Tyr	Pro	Glu	Leu	
		40					45					50				
ggg	aac	att	ggc	tgc	aag	gtt	gtt	cct	gat	tgt	aac	aac	tac	aga	cag	305
Gly		Ile	Gly	Cys	Lys	Val	Val	Pro	Asp	Cys	Asn	Asn	Tyr	Arg	Gln	
	55					60		_	ښر. م	• •	65					
aag	atc	acc	tcc	tgg	atg	gag	ccg	ata	gtc	aag	ttc	ccg	ggg	gcc	gtg	353

Lys	Ile	Thr	Ser	Trp	Met	Glu	Pro	He	Val	Lys	Phe	Pro	Gly	Ala	Val	
70			÷		7 5					80					85	
gac	ggc	gca	acc	tat	atc	ctg	gtg	atg	gtg	gat	cca	gat	gcc	cct	agc	401
Asp	Gly	Ala	Thr,	Tyr	Ile	Leu	Val	Met	Val	Asp	Pro	Asp	Ala	Pro	Ser	
				90					95					100		
aga	gca	gaa	ccc	aga	cag	aga	ttc	tgg	aga	cat	tgg	ctg	gta	aca	gat	449
Arg	Λla	Glu	Pro	Arg	G1n	Arg	Phe	Trp	Arg	His	Trp	Leu	Val	Thr	Asp	
			105					110					115			
atc	aag	ggc	gcc	gac	ctg	aag	aaa	ggg	aag	att	cag	ggc	cag	gag	tta	497
Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	He	Gln	Gly	Gln	Glu	Leu	
		120					125					130				
tca	gcc	tac	cag	gct	ccc	tcc	cca	ccg	gca	cac	agt	ggc	ttc	cat	cgc	545
Ser		Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His	Ser	Gly	Phe	His	Arg	
	135					140					145					
			ttt													593
	Gln	Phe	Phe	Val		Leu	Gln	Glu	Gly		Val	He	Ser	Leu	Leu	
150					155					160					165	
			aac												-	641
Pro	Lys	Glu	Asn		Thr	Arg	Gly	Ser		Lys	Meț	Asp	Arg		Leu	
				170					175					180		
			cac													689
Asn	Arg	Phe	His	Leu	Gly	Glu	Pro		Ala	Ser	Thr	Gln		Met	Thr	
			185					190					195			
			cag						شرو							737
1117	ASH	1 Vr	1. I D	a cn	\or	rra	ınr	1 017	(. I D	412	rrn	ura		u r a	0.10	

200	205	210	
agc gag ccc aag cac aaa aac	cag gcg gag ata gc	t gcc tgc t	780
Ser Glu Pro Lys His Lys Asn	Gln Ala Glu Ile Al	a Ala Cys	
215 220	22	5	
agatagccgg ctttgccatc cgggca	tgtg gccacactgc cc	accaccga cgatgtgggt	840
atggaacccc ctctggatac agaacc	cctt cttttccaaa ta	aaaaaaaa atcatcc	897
<210> 115			
<211> 1866			
<212> DNA			
<213> Homo sapiens			
⟨220⟩			
<221> CDS			
<222> (142) (1467)			
<400> 115			
gcccgcatgc gggggcgtgg cagtca	acag caacaaccca cad	cgccggca gggccagaaa	60
cteccatete ceteaceage eggaaa	gtac gagtcggctc ago	cctggagg gacccaacca	120
gagcctggcc tgggagccag g atg	gcc atc cac aaa gco	c ttg gtg atg tgc	171
Met	Ala Ile His Lys Ala	a Leu Val Met Cys	
1	5	10	
ctg gga ctg cct ctc ttc ctg	ttc cca ggg gcc tgg	g gcc cag ggc cat	219
Leu Gly Leu Pro Leu Phe Leu	Phe Pro Gly Ala Trp	p Ala Gln Gly His	
15	20	25	
gtc cca ccc ggc tgc agc caa	ggc ctc aac ccc ctو	g tac tac aac ctg	267
Val Pro Pro Gly Cys Ser Gln	Gly Leu Asn Pro Leu	u Tyr Tyr Asn Leu	÷

			30					35					40				
tgt	gac	cgc	tct	ggg	gcg	tgg	ggc	atc	gtc	ctg	gag	gcc	gtg	gct	ggg		315
Cys	Asp	Arg	Ser	Gly	Ala	Trp	Gly	He	Val	Leu	Glu	Ala	Val	Ala	Gly		
		45					50					55					
gcg	ggc	att	gtc	acc	acg	ttt	gtg	ctc	acc	atc	atc	ctg	gtg	gcc	agc		363
Ala	Gly	Ile	Val	Thr	Thr	Phe	Val	Leu	Thr	Ile	Ile	Leu	Val	Ala	Ser		
	60					6 5					70						
ctc	ccc	ttt	gtg	cag	gac	acc	aag	aaa	cgg	agc	ctg	ctg	ggg	acc	cag		411
Leu	Pro	Phe	Val	Gln	Asp	Thr	Lys	Lys	Arg	Ser	Leu	Leu	Gly	Thr	Gln		
75					80					85					90		
gta	ttc	ttc	ctt	ctg	ggg	acc	ctg	ggc	ctc	ttc	tgc	ctc	gtg	ttt	gcc		459
Val	Phe	Phe	Leu	Leu	Gly	Thr	Leu	Gly	Leu	Phe	Cys	Leu	Val	Phe	Ala		
				95					100					105			
tgt	gtg	gtg	aag	ccc	gac	ttc	tcc	acc	tgt	gcc	tct	cgg	cgc	ttc	ctc		507
Cys	Val	Val	Lys	Pro	Asp	Phe	Ser	Thr	Cys	Ala	Ser	Arg	Arg	Phe	Leu		
			110					115					120				
ttt	ggg	gtt	ctg	ttc	gcc	atc	tgc	ttc	tct	tgt	ctg	gcg	gct	cac	gtc		555
Phe	Gly	Val	Leu	Phe	Ala	Ile	Cys	Phe	Ser	Cys	Leu	Ala	Ala	His	Val		
		125					130					135					
ttt	gcc	ctc	aac	ttc	ctg	gcc	cgg	aag	aac	cac	ggg	ccc	cgg	ggc	tgg		603
Phe	Ala	Leu	Asn	Phe	Leu	Ala	Arg	Lys	Asn	His	Gly	Pro	Arg	Gly	Trp		
	140					145					150						
gtg	atc	ttc	act	gtg	gct	ctg	ctg	ctg	acc	ctg	gta	gag	gtc	atc	atc		651
Val	He	Phe	Thr	Val	Ala	Leu	Leu	Leu	Thr	Leu	Val	Glu	Val	Ile	Ile	•	
155					160			/	_رړ	165					170		

aat	aca	gag	tgg	ctg	atc	atc	acc	ctg	gtt	cgg	ggc	agt	ggc	gag	ggc	699
Asn	Thr	Glu	Trp	Leu	Ile	Ile	Thr	Leu	Val	Arg	Gly	Ser	Gly	Glu	Gly	
				175			•		180					185		
ggc	cct	cag	ggc	aac	agc	agc	gca	ggc	tgg	gcc	gtg	gcc	tcc	ссс	tgt	747
Gly	Pro	Gln	Gly	Asn	Ser	Ser	Ala	Gly	Trp	Ala	Val	Ala	Ser	Pro	Cys	
			190					195					200			
gcc	atc	gcc	aac	atg	gac	ttt	gtc	atg	gca	ctc	atc	tac	gtc	atg	ctg	795
Ala	Ile	Ala	Asn	Met	Asp	Phe	Val	Met	Ala	Leu	Ile	Tyr	Val	Met	Leu	
		205					210					215				
ctg	ctg	ctg	ggt	gcc	ttc	ctg	ggg	gcc	tgg	ccc	gcc	ctg	tgt	ggc	cgc	843
Leu	Leu	Leu	Gly	Ala	Phe	Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	
	220					225					230					
tac	aag	cgc	tgg	cgt	aag	cat	ggg	gtc	ttt	gtg	ctc	ctc	acc	aca	gcc	891
Tyr	Lys	Arg	Trp	Arg	Lys	His	Gly	Val	Phe	Val	Leu	Leu	Thr	Thr	Ala	
235					240					245					250	
acc	tcc	gtt	gcc	ata	tgg	gtg	gtg	tgg	atc	gtc	atg	tat	act	tac	ggc	939
Thr	Ser	Val	Ala	Ile	Trp	Val	Val	Trp	Ile	Val	Met	Tyr	Thr	Tyr	Gly	
				255					260					265		
aac [.]	aag	cag	cac	aac	agt	ccc	acc	tgg	gat	gac	ссс	acg	ctg	gcc	atc	987
Asn	Lys	Gln	His	Asn	Ser	Pro	Thr	Trp	Asp	Asp	Pro	Thr	Leu	Ala	Ile	
			270					275					280			
gcc	ctc	gcc	gcc	aat	gcc	tgg	gcc	ttc	gtc	ctc	ttc	tac	gtc	atc	ccc	1035
Ala	Leu	Ala	Ala	Asn	Ala	Trp	Ala	Phe	Val	Leu	Phe	Tyr	Val	Ile	Pro	
		285					290	,	. شمور			295				
gag	gtc	tcc	cag	gtg	acc	aag	tcc	agc	cca	gag	caa	agc	tac	cag	ggg	1083

Glu	Val	Ser	Gln	Val	Thr	Lys	Ser	Ser	Pro	Glu	Gln	Ser	Tyr	Gln	Gly	
	300					305					310					
gac	atg	tac	ссс	acc	cgg	ggc	gtg	ggc	tat	gag	acc	atc	ctg	aaa	gag	11,31
Asp	Met	Tyr	Pro	Thr	Arg	Gly	Val	Gly	Tyr	Glu	Thr	Ile	Leu	Lys	Glu	
315					320					325					330	
cag	aag	ggt	cag	agc	atg	ttc	gtg	gag	aac	aag	gcc	ttt	tcc	atg	gat	1179
Gln	Lys	Gly	Gln	Ser	Met	Phe	Val	Glu	Asn	Lys	Ala	Phe	Ser	Met	Asp	
				335					340					345		
gag	ccg	gtt	gca	gct	aag	agg	ccg	gtg	tca	cca	tac	agc	ggg	tac	aat	1227
Glu	Pro	Val	Ala	Ala	Lys	Arg	Pro	Val	Ser	Pro	Tyr	Ser	Gly	Tyr	Asn	
			350					355					360			
ggg	cag	ctg	ctg	acc	agt	gtg	tac	cag	ccc	act	gag	atg	gcc	ctg	atg	1275
Gly	Gln	Leu	Leu	Thr	Ser	Val	Tyr	G1n	Pro	Thr	Glu	Met	Ala	Leu	Met	
		365					370					375				
cac	aaa	gtt	ccg	tcc	gaa	gga	gct	tac	gac	atc	atc	ctc	cca	cgg	gcc	1323
His	Lys	Val	Pro	Ser	Glu	Gly	Ala	Tyr	Asp	Ile	Ile	Leu	Pro	Arg	Ala	
	380					385					390					
acc	gcc	aac	agc	cag	gtg	atg	ggc	agt	gcc	aac	tcg	acc	ctg	cgg	gct	1371
Thr	Ala	Asn	Ser	Gln	Val	Met	Gly	Ser	Ala	Asn	Ser	Thr	Leu	Arg	Ala	
395					400					405					410	
gaa	gac	atg	tac	tcg	gcc	cag	agc	cac	cag	gcg	gcc	aca	ccg	ccg	aaa	1419
Glu	Asp	Met	Tyr	Ser	Ala	Gln	Ser	His	Gln	Ala	Ala	Thr	Pro	Pro	Lys	
				415					420					425		
gac	ggc	aag	aac	tct	cag	gtc	ttt	aga	aac ند.	ccc	tac	gtg	tgg	gac		1464
Asp	Glv	Lvs	Asn	Ser	Gln	Val	Phe	Aro	Asn	Pro	Tvr	Val	Trn	Asn		

430	435	440	
tgagtc agcggtggcg aggag	gaggcg gtcggatttg ggg	agggccc tgaggacctg	1520
gccccgggca agggactete	caggeteete eteceeetgg	caggeceage aacatgtgee	1580
ccagatgtgg aagggcctcc	ctctctgcca gtgtttgggt	gggtgtcatg ggtgtcccca	1640
cccactcctc agtgtttgtg g	gagtegagga gecaacecea	gcctcctgcc aggatcacct	1700
cggcggtcac actccagcca a	natagtgttc tcggggtggt	ggctgggcag cgcctatgtt	1760
tetetggaga tteetgeaac o	ctcaagagac ttcccaggcg	ctcaggcctg gatcttgctc	1820
ctctgtgagg aacaagggtg o	cctaataaat acatttctgc	tttatt	1866
<210> 116			
<211> 2198			
<212> DNA			
<213> Homo sapiens			
⟨220⟩			
<221> CDS			
〈222〉(50) (847)			
<400> 116			
aaaatggcgt agagcctagc a	acagegeag geteceagee	gagtccgtt atg gcc	55
		Met Ala	•
		1	•
gct gcc gtc ccg aag agg	atg agg ggg cca gca	caa gcg aaa ctg ctg	103
Ala Ala Val Pro Lys Arg	Met Arg Gly Pro Ala	Gln Ala Lys Leu Leu	
5	10	15	
ccc ggg tcg gcc atc caa	gcc ctt gtg ggg ttg	gcg cgg ccg ctg gtc	151
Pro Gly Ser Ala Ile Gln	Ala Leu Val Gly Leu	Ala Arg Pro Leu Val	

	20					25					30					
ttg	gcg	ctc	ctg	ctt	gtg	tcc	gcc	gct	cta	tcc	agt	gtt	gta	tca	cgg	199
Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val	Ser	Arg	
35					40					45					50	
act	gat	tca	ccg	agc	cca	acc	gta	ctc	aac	tca	cat	att	tct	acc	cca	247
Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser	Thr	Pro	
				55					60					65		
aat	gtg	aat	gct	tta	aca	cat	gaa	aac	caa	acc	aaa	cct	tct	att	tcc	298
Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser	Ile	Ser	
			70					75					80			
caa	atc	agc	acc	acc	ctc	cct	ccc	acg	acg	agt	acc	aag	aaa	agt	gga	343
Gln	He	Ser	Thr	Thr	Leu	Pro	Pro	Thr	Thr	Ser	Thr	Lys	Lys	Ser	Gly	
		85					90					95				
gga	gca	tct	gtg	gtc	cct	cat	ccc	tcg	cct	act	cct	ctg	tct	caa	gag	391
Gly	Ala	Ser	Val	Val	Pro	His	Pro	Ser	Pro	Thr	Pro	Leu	Ser	Gln	Glu	
	100					105					110					
gaa	gct	gat	aac	aat	gaa	gat	cct	agt	ata	gag	gag	gag	gat	ctt	ctc	439
Glu	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	Ile	Glu	Glu	Glu	Asp	Leu	Leu	
115					120					125					130	
atg	ctg	aac	agt	tct	cca	tcc	aca	gcc	aaa	gac	act	cta	gac	aat	ggc	487
Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Ala	Lys	Asp	Thr	Leu	Asp	Asn	Gly	
				135					140					145		
gat	tat	gga	gaa	cca	gac	tat	gac	tgg	acc	acg	ggc	ccc	agg	gac	gac	539
Asp	Tyr	G1 y	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg	Asp	Asp	
			150					155	,				160			

gac	gag	tct	gat	gac	acc	ttg	gaa	gaa	aac	agg	ggt	tac	atg	gaa	att	583
Asp	Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	Asn	Arg	Gly	Tyr	Met	Glu	Ile	
		165					170					175				
gaa	cag	tca	gtg	aaa	tct	ttt	aag	atg	cca	tcc	tca	aat	ata	gaa	gag	631
Glu	Gln	Ser	Val	Lys	Ser	Phe	Lys	Met	Pro	Ser	Ser	Asn	Ile	Glu	Glu	
	180					185					190					
gaa	gac	agc	cat	ttc	ttt	ttt	cat	ctt	att	att	ttt	gct	ttt	tgc	att	679
Glu	Asp	Ser	His	Phe	Phe	Phe	His	Leu	Ile	Ile	Phe	Ala	Phe	Cys	Ile	
195					200					205					210	
gct	gtt	gtt	tac	att	aca	tat	cac	aac	aaa	agg	aag	att	ttt	ctt	ctg	727
Ala	Val	Val	Tyr	Ile	Thr	Tyr	His	Asn	Lys	Arg	Lys	Ile	Phe	Leu	Leu	
				215					220					225		
gtt	caa	agc	agg	aaa	tgg	cgt	gat	ggc	ctt	tgt	tcc	aaa	aca	gtg	gaa	775
Val	Gln	Ser	Arg	Lys	Trp	Arg	Asp	Gly	Leu	Cys	Ser	Lys	Thr	Val	Glu	
			230					235					240			
tac	cat	cgc	cta	gat	cag	aat	gtt	aat	gag	gca	atg	cct	tct	ttg	aag	823
Tyr	His	Arg	Leu	Asp	Gln	Asn	Val	Asn	Glu	Ala	Met	Pro	Ser	Leu	Lys	
		245					250					255				
att	acc	aat	gat	tat	att	ttt	taaa	agc a	actg	tgati	tt ga	aatti	tgct	t	,	870
Ile	Thr	Asn	Asp	Tyr	Ile	Phe										
	260					265										
atgi	taati	ttt a	attte	gcttg	ga ci	tttti	tatai	t gat	tattı	gtgc	aaat	tgtti	tgc (cata	ggcaat	930
tggt	tacti	taa a	atgag	gaggi	tg ag	gtcto	eteti	t ttg	gccti	tggt	gcti	ttgga	aaa	ttaaa	atgtca	990
caaa	acga	gta 1	tataa	attti	tt ta	atcte	gtaci	t tti	tagaا	gctg	agti	taat	tca	ggtg	tccaaa	1050
atgi	tgagt	tta a	aacat	ttaco	et ta	atati	ttaca	a cti	gtta	gttt	ttai	ttgti	t tt :	agati	ttatta	1110

tgcttcttct	ggaagtatta	gtgatgctac	ttttaaaaaga	teccaaaett	gtaactaaat	1170
tctgacatat	ctgttactgc	tgactcacat	tcattctccg	ccattcaaat	actattttt	1230
atccacattt	ttttttgttc	ccaaactgta	atgtacaagg	atatgtgtga	taatgctttg	1290
gatttgagta	atatttttt	ttcttccaag	aaaactgctt	tggatatttt	tagataattt	1350
aaacataatt	taggataatg	atattgctca	atctgaccac	aattttaggt	aaaacattaa	1410
atgtgtcaag	aaatcttggc	aacagagact	ctgcagettg	cagtggacat	agataaaatg	1470
ttacagagat	actattttt	tggttggaat	tactatatta	aatttagaag	cagaaactgg	1530
taaaatgtta	aatacatgta	caattgcttt	tagttagcaa	ttgattgtag	catgggttcc	1590
tccaaggttt	caagcaatgg	gcagagttta	aaattatatc	agattcgttt	acttcgttta	1650
ttattttaca	gtaaatttga	ataaatctta	ggggtcatta	tcacttaaat	aatactgtac	1710
ctaggtcttt	caaattaaaa	ttatacctga	atgaagttgt	ttgtatacat	aaaggatatt	1770
tgtgtacaat	tacctttttt	ccccacact	tgttttcttt	gtttttgttt	tttatggcaa	1830
ctggaaagta	tttactatgg	gattcattta	tgtctgtctt	tctatcataa	agaattgatc	1890
aatatgtaaa	tatgtgattt	gaaccatggt	tgacttacaa	gtgtcactac	agctttttag	1950
aaaacatagc	cctaatatat	gttaagcagg	accegggtga	gccagtgggc	ttgcgcttta	2010
tgtagagctg	gaagaaggcc	gtccatcctg	tctcttgggc	ggacagtgta	ctttcctaat	2070
agggaaggga	agcacaatgg	aaatacccct	gaaccgtttt	attgcagtaa	tttttttcat	2130
atctgaaact	attatttaat	attttgaata	agattttaaa	aaataaatgg	caaagatata	2190
aatctatg						2198

<210> 117

<211> 2180

<212> DNA

<213> Homo sapiens

<220>

<22	1> C	DS														
<22	2> (69).	(69	95)												
<40	0> 1	17														
aac	cagc	gcc (gcgga	acac	cg g	cacc	ggcg	c ca	cgga	ctcc	gca	ggac	ccc	gcgc	cegee	g 60
ccg	ccgc	t at	g ct	g gg	g ct	g ct	g gt	g gc	g tt	g ct	g gc	c ct	g gg	g ct	c gct	110
		Me	t Lei	ı Gl	y Lei	u Le	u Va	1 A1:	a Lei	u Lei	u Ala	a Le	u Gl	y Lei	ı Ala	•
			1			:	5				10	D .				
gtc	ttt	gcg	ctg	ctg	gac	gtc	tgg	tac	ctg	gtg	cgc	ctt	ccg	tgc	gcc	158
Val	Phe	Ala	Leu	Leu	Asp	Val	Trp	Tyr	Leu	Val	Arg	Leu	Pro	Cys	Ala	
15					20					25					30	
gtg	ctg	cgc	gcg	cgc	ctg	ctg	cag	ccg	cgc	gtc	cgt	gac	ctg	cta	gct	206
Val	Leu	Arg	Ala	Arg	Leu	Leu	Gln	Pro	Arg	Val	Arg	Asp	Leu	Leu	Ala	
				35					40					45		
gag	cag	cgc	ttc	ccg	ggc	cgc	gtg	ctg	ссс	tcg	gac	ttg	gac	ctg	ctg	254
Glu	Gln	Arg	Phe	Pro	Gly	Arg	Val	Leu	Pro	Ser	Asp	Leu	Asp	Leu	Leu	
			50					55					60			
ttg	cac	atg	aac	aac	gcg	cgc	tac	ctg	cgc	gag	gcc	gac	ttt	gcg	cgc	302
Leu	His	Met	Asn	Asn	Ala	Arg	Tyr	Leu	Arg	Glu	Ala	Asp	Phe	Ala	Arg	
		65					70		•			75				
gtc	gcg	cac	ctg	acc	cgc	tgc	ggg	gtg	ctc	ggg	gcg	ctg	agg	gag	ttg	350
Val	Ala	His	Leu	Thr	Arg	Cys	Gly	Val	Leu	Gly	Ala	Leu	Arg	Glu	Leu	
	80					85					90					
cgg	gcg	cac	acg	gtg	ctg	gcg	gcc	tcg	tgc	gcg	cgc	cac	cgc	cgc	tcg	398
Arg	Ala	His	Thr	Val	Leu	Ala	Ala	Ser	Cys	Ala	Arg	His	Arg	Arg	Ser	
95					100			/	•	105					110	

WO 01/12660 PCT/JP00/05356

ctg	cgc	ctg	ctg	gag	ccc	ttc	gag	gtg	cgc	acc	cgc	ctg	ctg	ggc	tgg	446
Leu	Arg	Leu	Leu	Glu	Pro	Phe	Glu	Val	Arg	Thr	Arg	Leu	Leu	Gly	Trp	
				115			•		120					125		
gac	gac	cgc	gcg	ttc	tac	ctg	gag	gcg	cgc	ttt	gtc	agc	ctg	cgg	gac	494
Asp	Asp	Arg	Ala	Phe	Tyr	Leu	Glu	Ala	Arg	Phe	Val	Ser	Leu	Arg	Asp	
			130					135					140			
ggt	ttc	gtg	tgc	gcg	ctg	ctg	cgc	ttc	cgg	cag	cac	ctg	ctg	ggc	acc	542
Gly	Phe	Val	Cys	Ala	Leu	Leu	Arg	Phe	Arg	Gln	His	Leu	Leu	Gly	Thr	
		145					150					155				
tca	ccc	gag	cgc	gtc	gtg	cag	cac	ctg	tgc	cag	cgc	agg	gtg	gag	ccc	590
Ser	Pro	Glu	Arg	Val	Val	Gln	His	Leu	Cys	Gln	Arg	Arg	Val	Glu	Pro	
	160					165			•		170	•				
cct	gag	ctg	ccc	gct	gat	ctg	cag	cac	tgg	atc	tcc	tac	aac	gag	gcc	638
Pro	Glu	Leu	Pro	Ala	Asp	Leu	Gln	His	Trp	Ile	Ser	Tyr	Asn	Glu	Ala	
175					180					185					190	
agc	agc	cag	ctg	ctc	cgc	atg	gag	agt	ggg	ctc	agt	gat	gtc	acc	aag	686
Ser	Ser	Gln	Leu	Leu	Arg	Met	Glu	Ser	Gly	Leu	Ser	Asp	Val	Thṛ	Lys	
				195					200					205		
gac	cag	tga	ccgc	c ac	cttc	acac	cgt	ctgc	cct	ggcc	acca	tc c	tggg	cctg	g	740
Asp	Gln															
ggg	ctgc	cca	caga	tggg	ca g	tctc	agcc	a ta	ctct	gttc	cag	ctgg	agt	agcc	tcctga	800
cca	gcct	ggc	ccac	cctg	ct c	cacc	cact	g gg	cccc	ccca	gtt	attg	ata	cccc	tctgtg	860
ctg	ggct	cca	cgct	aggc	ag a	agga	ggag	t gg	catt	ggca	tcc	tgac	сса	gctc	tgccct	920
caa	ggtg	ggg :	atgg	atgg	gc a	aagg	agag	t cc	tgcc	tggc	cct	acga	tga	ggcc	actcat	980
gtg	ggcc	tag	gtag	ggga	gg a	tggt	gcct	g gá	ے۔ gcag	aggg	acc	caca	agt	gcct	cccgag	1040

cctagatcct	ggctcggacc	actgcaaggg	ccgaggcagg	gccagaccag	agcatcctgg	1100
gtacaggcct	gggctctcca	gggcctgggc	ctgattcagg	tgcagtgggc	actectgaag	1160
ggtcagagcg	gcatctgcca	ggcagcccct	ctggcttccg	ctgaggtggt	tgcaggcctg	1220
gggcagagcc	tgggtggtca	gaggccgggg	ctagaggcag	atggaaggga	ggcatttgct	1280
gacagaggac	ggggcacccg	ggctcccact	gcagtcggcc	ttgcctcctc	ctcctct	1340
acctccagtc	aggctggacg	ggagggtagc	cttgtggctg	agaggggtca	gactaggtgg	1400
cacaggggct	cctggaaaga	cagcaggett	cctgctgggc	gttcccttgt	tggagggaat	1460
agagtggggg	tgggactctg	caggggtgtc	cttgtccact	cgcacccctc	gccgcccacc	1520
agggccatgc	tctgtgactt	gggctgatcc	ccaccctttc	tgggcctaca	gcaccacagg	1580
ccgctgtacc	cccttagagc	tgccctctc	tggcctggcc	ggcagacgtc	ttcttaactc	1640
ctctgtcctc	tatattcagc	atgttccttg	tcagctgctg	ggccggccct	gccttgcgct	1700
agcagagcct	ctcctggcag	cttctcaggt	ctccctaatg	gagacaccag	gctactagga	1760
cactggctgg	ggccaccccc	tcctgcctaa	tgcctcacct	tacagctggg	gaaactgagg	1820
cctggaatgg	cccagagtca	ccaaggcaaa	gttggggctg	gtcccagcct	gaggetecag	1880
ctgatgccct	cagctcccag	agagggggtg	ccccatctag	ctgggtgcag	gggtcactgc	1940
ttgtcagctc	agggccctgt	gcccgcttgc	ctgttcccct	acatctgtgc	ctgcacatcc	2000
agaactgcct	ccttgccgct	gcctccagga	agcccacctt	gagccagagt	caagggctgc	2060
agcactgccc	gatagaacac	gcccgccctc	actgctgttc	ttgccttaca	gccaccatgg	2120
gaaagctgca	acctttctgt	tttatttaaa	gaaagcccaa	cattaaaggg	ttttcattgc	2180

<210> 118

<211> 1527

<212> DNA

<213> Homo sapiens

\ZZ]	17 CL	13														
<222	2> (1	03)	(1	(305)											
<400)> 11	18														
agto	ettec	cag	ggcgg	gcgg1	tg gg	gtgto	ecgci	t tct	ctct	tgct	ctto	egaet	tgc a	accgo	cactc	g 60
cgcg	gtgad	ссс	tgact	tccc	ec ta	agtca	gcto	c ago	eggte	gctg	cc a	atg g	gcg 1	tgg (egg	114
											N	let /	\la î	Trp /	Arg	
												1				
cgg	cgc	gaa	gcc	agc	gtc	ggg	gct	cgc	ggc	gtg	ttg	gct	ctg	gcg	ttg	162
Arg	Arg	Glu	Ala	Ser	Val	Gly	Ala	Arg	Gly	Val	Leu	Ala	Leu	Ala	Leu	
5					10					15					20	
ctc	gcc	ctg	gcc	ctg	tgc	gtg	ccc	ggg	gcc	cgg	ggc	cgg	gct	ctc	gag	210
Leu	Ala	Leu	Ala	Leu	Cys	Val	Pro	Gly	Ala	Arg	Gly	Arg	Ala	Leu	Glu	
				25					30					35		
tgg	ttc	tcg	gcc	gtg	gta	aac	atc	gag	tac	gtg	gac	ccg	cag	acc	aac	258
Trp	Phe	Ser	Ala	Val	Val	Asn	Ile	Glu	Tyr	Val	Asp	Pro	Gln	Thr	Asn	
			40					45					50			
ctg	acg	gtg	tgg	agc	gtc	tcg	gag	agt	ggc	cgc	ttc	ggc	gac	agc	tcg	306
Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe	Gly	Asp	Ser	Ser	
		55					60					65				
ccc	aag	gag	ggc	gcg	cat	ggc	ctg	gtg	ggc	gtc	ccg	tgg	gcg	ccc	ggc	354
Pro	Lys	Glu	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro	Trp	Ala	Pro	Gly	
	70					75					80					
gga	gac	ctc	gag	ggc	tgc	gcg	ccc	gac	acg	cgc	ttc	ttc	gtg	ccc	gag	402
Gly	Asp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe	Phe	Val	Pro	Glu	
85					90			/		95					100	

ссс	ggc	ggc	cga	ggg	gcc	gcg	ccc	tgg	gtc	gcc	ctg	gtg	gct	cgt	ggg	450
Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu	Val	Ala	Arg	Gly	
				105					110					115		
ggc	tgc	acc	ttc	aag	gac	aag	gtg	ctg	gtg	gcg	gcg	cgg	agg	aac	gcc	498
Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala	Arg	Arg	Asn	Ala	
			120					125					130			
tcg	gcc	gtc	gtc	ctc	tac	aat	gag	gag	cgc	tac	ggg	aac	atc	acc	ttg	546
Ser	Ala	Val	Val	Leu	Tyr	Asn	Glu	Glu	Arg	Tyr	Gly	Asn	Ile	Thr	Leu	
		135					140					145				
ссс	atg	tct	cac	gcg	gga	aca	gga	aat	ata	gtg	gtc	att	atg	att	agc	594
Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val	Ile	Met	Ile	Ser	
	150					155					160					
tat	cca	aaa	gga	aga	gaa	att	ttg	gag	ctg	gtg	caa	aaa	gga	att	cca	642
Tyr	Pro	Lys	Gly	Arg	Glu	Ile	Leu	Glu	Leu	Val	Gln	Lys	Gly	Ile	Pro	
165					170					175					180	
gta	acg	atg	acc	ata	ggg	gtt	ggc	acc	cgg	cat	gta	cag	gag	ttc	atc	690
Val	Thr	Met	Thr	Ile	G1y	Val	Gly	Thr	Arg	His	Val	Gln	Glu	Phe	Ile	
				185					190					195		
agc	ggt	cag	tct	gtg	gtg	ttt	gtg	gcc	att	gcc	ttc	atc	acc	atg	atg	738
Ser	Gly	Gln	Ser	Val	Val	Phe	Val	Ala	Ile	Ala	Phe	Ile	Thr	Met	Met	
			200					205					210			
att	atc	tcg	tta	gcc	tgg	cta	ata	ttt	tac	tat	ata	cag	cgt	ttc	cta	786
Ile	Ile	Ser	Leu	Ala	Trp	Leu	Ile	Phe	Tyr	Tyr	Île	Gln	Arg	Phe	Leu	
		215					220		۰۰ شمه			225				
tat	act	ggc	tct	cag	att	gga	agt	cag	agc	cat	aga	aaa	gaa	act	aag	834

Tyr	Thr	Gly	Ser	Gln	Ile	Gly	Ser	Gln	Ser	His	Arg	Lys	Glu	Thr	Lys	
	230					235					240					
aaa	gtt	att	ggc	cag	ctt	cta	ctt	cat	act	gta	aag	cat	gga	gaa	aag	882
Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Vai	Lys	His	Gly	Glu	Lys	
245					250					255					260	
gga	att	gat	gtt	gat	gct	gaa	aat	tgt	gca	gtg	tgt	att	gaa	aat	ttc	930
Gly	Ile	Asp	Val	Asp	Ala	Glu	Asn	Cys	Ala	Val	Cys	Ile	Glu	Asn	Phe	
				265					270					275		
aaa	gta	aag	gat	att	att	aga	att	ctg	cca	tgc	aag	cat	att	ttt	cat	978
Lys	Val	Lys	Asp	Ile	Ile	Arg	Ile	Leu	Pro	Cys	Lys	His	Ile	Phe	His	
			280					285					290			
aga	ata	tgc	att	gac	cca	tgg	ctt	ttg	gat	cac	cga	aca	tgt	cca	atg	1026
Arg	He	Cys	He	Asp	Pro	Trp	Leu	Leu	Asp	His	Arg	Thr	Cys	Pro	Met	
		295					300					305				
tgt	aaa	ctt	gat	gtc	atc	aaa	gcc	cta	gga	tat	tgg	gga	gag	cct	ggg	1074
Cys	Lys	Leu	Asp	Val	He	Lys	Ala	Leu	Gly	Tyr	Trp	Gly	Glu	Pro	Gly	
	310					315					320					
gat	gta	cag	gag	atg	cct	gct	cca	gaa	tct	cct	cct	gga	agg	gat	cca	1122
Asp	Val	Gln	Glu	Met	Pro	Ala	Pro	Glu	Ser	Pro	Pro	Gly	Arg	Asp	Pro	
325					330					335					340	
gct	gca	aat	ttg	agt	cta	gct	tta	cca	gat	gat	gac	gga	agt	gat	gag	1170
Ala	Ala	Asn	Leu	Ser	Leu	Ala	Leu	Pro	Asp	Asp	Asp	Gly	Ser	Asp	Glu	
				345					350					355		
agc	agt	cca	cca	tca	gcc	tcc	cct	gct	gaa	tct	gag	cca	cag	tgt	gat	1218
Ser	Ser	Pro	Pro	Ser	Ala	Ser	Pro	Ala	Ğlu	Ser	Glu	Pro	Gln	Cys	Asp	

	360		365	370	
				gca ttg cta gaa gcc	1266
Pro Ser Phe	Lys Gly A	sp Ala Gly	Glu Asn Thr	Ala Leu Leu Glu Ala	
375	j	380		385	
ggc agg agt	gac tot ca	gg cat gga	gga ccc atc	tcc tagcacac	1310
Gly Arg Ser	Asp Ser A	rg His Gly	Gly Pro Ile	Ser	
390		395		400	
gtgcccactg	aagtggcacc	aacagaagti	t tggcttgaac	taaaggacat tttattttt	1370
ttactttagc	acataatttg	tatatttgaa	a aataatgtat	attattttac ctattagatt	1430
ctgatttgat	atacaaagga	ctaagatati	t ttcttcttga	agagactttt cgattagtcc	1490
tcatatattt	atctactaaa	atagagtgti	t taccatg		1527
<210> 119					
<211> 1905					
<212> DNA					
<213> Homo	sapiens				
<220>					
<221> CDS					
<222> (125)	(703)				
<400> 119					
gagcctaacc	tagagtgctc	gcagcagtct	ttcagttgag	cttggggact gcagctgtgg	60
ggagatttca	gtgcattgcc	tcccctgggt	gctcttcatc	ttggatttga aagttgagag	120
cagc atg tt	t tgc cca c	tg aaa cto	atc ctg ct	g cca gtg tta ctg gat	169
Met Ph	e Cys Pro L	eu Lys Lei	ı Ile Leu Leı	u Pro Val Leu Leu Asp	
			.~		

5

l

tat	tcc	ttg	ggc	ctg	aat	gac	ttg	aat	gtt	tcc	ccg	cct	gag	cta	aca	217
Tyr	Ser	Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	Glu	Leu	Thr	
				20					25					30		
gtc	cat	gtg	ggt	gat	tca	gct	ctg	atg	gga	tgt	gtt	ttc	cag	agc	aca	265
Val	His	Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr	
			35					40					4 5			
gaa	gac	aaa	tgt	ata	ttc	aag	ata	gac	tgg	act	ctg	tca	cca	gga	gag	313
Glu	Asp	Lys	Cys	Ile	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	Glu	
		50					55					60				
cac	gcc	aag	gac	gaa	tat	gtg	cta	tac	tat	tac	tcc	aat	ctc	agt	gtg	361
His	Ala	Lys	Asp	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val	
	65					70					75					
cct	att	ggg	cgc	ttc	cag	aac	cgc	gta	cac	ttg	atg	ggg	gac	aac	tta	409
Pro	lle	Gly	Arg	Phe	Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp	Asn	Leu	
80					85					90					95	
tgc	aat	gat	ggc	tct	ctc	ctg	ctc	caa	gat	gtg	caa	gag	gct	gac	cag	457
Cys	Asn	Asp	Gly	Ser	Leu	Leu	Leu	Gln	Asp	Val	Gln	Glu	Ala	Asp	Gln	
				100					105					110		
gga	acc	tat	atc	tgt	gaa	atc	cgc	ctc	aaa	ggg	gag	agc	cag	gtg	ttc	505
Gly	Thr	Tyr	Ile	Cys	Glu	Ile	Arg	Leu	Lys	Gly	Glu	Ser	Gln	Val	Phe	
			115					120					125			
aag	aag	gcg	gtg	gta	ctg	cat	gtg	ctt	cca	gag	gag	ccc	aaa	gag	ctc	553
Lys	Lys	Ala	Val	Val	Leu	His	Val	Leu	Pro	Glu	Glu	Pro	Lys	Glu	Leu	
		130					135		ند.			140				
atg	gtc	cat	gtg	ggt	gga	ttg	att	cag	atg	gga	tgt	gtt	ttc	cag	agc	601

Met Val His V	/al Gly Gly Leu Ile	Gln Met Gly (Cys Val Phe Gln Ser	
145	150		155	
aca gaa gtg a	aaa cac gtg acc aag	gta gaa tgg	ata ttt tca gga cgg	649
Thr Glu Val L	ys His Val Thr Lys	Val Glu Trp	Ile Phe Ser Gly Arg	
160	165	170	175	
cgc gca aag g	gta aca agg agg aaa	cat cac tgt	gtt aga gaa ggc tct	697
Arg Ala Lys V	/al Thr Arg Arg Lys	His His Cys '	Val Arg Glu Gly Ser	
	180	185	190	
ggc tgatggtat	c aggacaaagg tagaat	cagg cacatga	gga ggtgttgcaa	750
Gly				
gagcctgggc tt	tggtgctt atcagaactg	gaccttctcc	tagcaatttc agctttctgg	810
tgggaaagat aa	nctccaatg aagaacaaga	acaagaagat	gatgatgatg cttaactttt	870
tggatgccga ta	itgagattg tacatgagga	gattgtattt d	cgttactacc acaaactcag	930
gatgtctgcg ga	igtactccc agagctgggg	ccacttccag a	aatcgtgtga acctggtggg	990
ggacattttc cg	caatgacg gttccatcat	gcttcaagga (gtgagggagt cagatggagg	1050
aaactacacc tg	gcagtatcc acctagggaa	cctggtgttc	aagaaaacca ttgtgctgca	1110
tgtcagcccg ga	agageete gaacaetggt	gaccccggca	gccctgaggc ctctggtctt	1170
gggtggtaat ca	gttggtga tcattgtggg	aattgtctgt g	gccacaatcc tgctgctccc	1230
tgttctgata tt	gatcgtga agaagacctg	tggaaataag a	agttcagtga attctacagt	1290
cttggtgaag aa	cacgaaga agactaatcc	agagataaaa g	gaaaaaaccct gccattttga	1350
aagatgtgaa gg	ggagaaac acatttactc	cccaataatt g	gtacgggagg tgatcgagga	1410
agaagaacca ag	tgaaaaat cagaggccac	ctacatgacc a	atgcacccag tttggccttc	1470
tctgaggtca ga	tcggaaca actcacttga	aaaaaagtca g	ggtgggggaa tgccaaaaac	1530
acagcaagcc tt	ttgagaag aatggagagt	cccttcatct o	cagcagcggt ggagactctc	1590
tcctgtgtgt gt	cctgggcc actctaccag	tgatttcaga o	ctcccgctct cccagctgtc	1650

ctcctgtctc attgtttggt caatacac	tg aagatggaga	atttggagcc tggcagaga	ag 1710
actggacagc tctggaggaa caggcctg	ct gaggggaggg	gagcatggac ttggcctc	tg 1770
gagtgggaca ctggccctgg gaaccagg	ct gagctgagtg	gecteaaacc ccccgttgg	ga 1830
tcagaccete ctgtgggcag ggttctta	gt ggatgagtta	ctgggaagaa tcagagata	aa 1890
aaaccaaccc aaatc			1905
<210> 120			
<211> 998			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> CDS			
<222> (50)(832)			
<400> 120			
gcacttgcca gccagtccgc ccgtccgg	ag cccggctcg	tggggcagc atg gcg	55
		Met Ala	
		1	
ggg tcg ccg ctg ctc tgg ggg cc	g cgg gcc ggg	g ggc gtc ggc ctt ttg	103
Gly Ser Pro Leu Leu Trp Gly Pr	o Arg Ala Gly	/ Gly Val Gly Leu Leu	
5	0	15	
gtg ctg ctg ctc ctc ggc ctg tt	t cgg ccg cc	c ccc gcg ctc tgc gcg	151
Val Leu Leu Leu Gly Leu Pr	e Arg Pro Pro	o Pro Ala Leu Cys Ala	
20 25		30	
cgg ccg gta aag gag ccc cgc gg	go ota ago goa	a gog tot oog ooc ttg	199

Arg Pro Val Lys Glu Pro Arg Gly Leú Ser Ala Ala Ser Pro Pro Leu

35					40					45					50	
gct	gag	act	ggc	gct	cct	cgc	cgc	ttc	cgg	cgg	tca	gtg	ccc	cga	ggt	247
Ala	Glu	Thr	Gly	Ala	Pro	Arg	Arg	Phe	Arg	Arg	Ser	Val	Pro	Arg	Gly	
				55					60					65		
gag	gcg	gcg	ggg	gcg	gtg	cag	gag	ctg	gcg	cgg	gcg	ctg	gcg	cat	ctg	295
Glu	Ala	Ala	Gly	Ala	Val	Gln	Glu	Leu	Ala	Arg	Ala	Leu	Ala	His	Leu	
			70					75					80			
ctg	gag	gcc	gaa	cgt	cag	gag	cgg	gcg	cgg	gcc	gag	gcg	cag	gag	gct	343
Leu	Glu	Ala	Glu	Arg	Gln	Glu	Arg	Ala	Arg	Ala	Glu	Ala	G1n	Glu	Ala	
		85					90					95				
gag	gat	cag	cag	gcg	cgc	gtc	ctg	gcg	cag	ctg	ctg	cgc	gtc	tgg	ggc	391
Glu	Asp	Gln	Gln	Ala	Arg	Val	Leu	Ala	Gln	Leu	Leu	Arg	Val	Trp	Gly	
	100					105					110					
gcc	ccc	cgc	aac	tct	gat	ccg	gct	ctg	ggc	ctg.	gac	gac	gac	ccc	gac	439
Ala	Pro	Arg	Asn	Ser	Asp	Pro	Ala	Leu	Gly	Leu	Asp	Asp	Asp	Pro	Asp	
115					120					125					130	
gcg	cct	gca	gcg	cag	ctc	gct	cgc	gct	ctg	ctc	cgc	gcc	cgc	ctt	gac	487
Ala	Pro	Ala	Ala	Gln	Leu	Ala	Arg	Ala	Leu	Leu	Arg	Ala	Arg	Leu	Asp	
				135					140					145		
cct	gcc	gcc	ctc	gca	gcc	cag	ctt	gtc	ccc	gcg	ccc	gtc	ccc	gcc	gcg	535
Pro	Ala	Ala	Leu	Ala	Ala	Gln	Leu	Val	Pro	Ala	Pro	Val	Pro	Ala	Ala	
			150					155					160			
gcg	ctc	cga	ccc	cgg	ccc	ccg	gtc	tac	gac	gac	ggc	ccc	gcg	ggc	ccg	583
Ala	Leu	Arg	Pro	Arg	Pro	Pro	Val	Tyr	Asp	Asp	Gly	Pro	Ala	Gly	Pro	
		165					170					175				•

gat	gct	gag	gag	gca	ggc	gac	gag	aca	ссс	gac	gtg	gac	ccc	gag	ctg	631
Asp	Ala	Glu	Glu	Ala	Gly	Asp	Glu	Thr	Pro	Asp	Val	Asp	Pro	Glu	Leu	
	180					185					190					
ttg	agg	tac	ttg	ctg	gga	cgg	att	ctt	gcg	gga	agc	gcg	gac	tcc	gag	679
Leu	Arg	Tyr	Leu	Leu	Gly	Arg	Ile	Leu	Ala	Gly	Ser	Ala	Asp	Ser	Glu	
195					200					205					210	
ggg	gtg	gca	gcc	ccg	cgc	cgc	ctc	cgc	cgt	gcc	gcc	gac	cac	gat	gtg	727
Gly	Val	Ala	Ala	Pro	Arg	Arg	Leu	Arg	Arg	Ala	Ala	Asp	His	Asp	Val	
				215					220					225		
ggc	tct	gag	ctg	ccc	cct	gag	ggc	gtg	ctg	ggg	gcg	ctg	ctg	cgt	gtg	775
Gly	Ser	Glu	Leu	Pro	Pro	Glu	Gly	Val	Leu	Gly	Ala	Leu	Leu	Arg	Val	
			230					235					240			
aaa	cgc	cta	gag	acc	ccg	gcg	ccc	cag	gtg	cct	gca	cgc	cgc	ctc	ttg	823
Lys	Arg	Leu	Glu	Thr	Pro	Ala	Pro	Gln	Val	Pro	Ala	Arg	Arg	Leu	Leu	
		245					250					255				
cca	ccc	t ga	agcad	etgeo	c cgg	gatco	ecgt	gcad	eccte	ggg a	ссса	agaag	gt go	cccc	egeca	880
Pro	Pro															
	260															
tccc	egcca	acc a	aggao	etget	tc co	ecge	cagca	a cgi	ccae	gagc	aact	taco	cc g	ggcca	agccag	940
ccct	ctca	acc (cgagg	gated	ee ta	ccc	ectg	g cco	caca	ata	aaca	atga	tct g	gaago	cagc	998

<210> 121

<211> 337

<212> PRT

<213> Homo sapiens

<400> 121															
Met	Thr	Ala	Gly	Gly	G1n	Ala	Glu	Ala	Glu	Gly	Ąla	Gly	Gly	Glu	Pro
1				5					10					15	
Gly	Ala	Ala	Arg	Leu	Pro	Ser	Arg	Val	Ala	Arg	Leu	Leu	Ser	Ala	Leu
			20					25					30		•
Phe	Tyr	Gly	Thr	Cys	Ser	Phe	Leu	Ile	Val	Leu	Val	Asn	Lys	Ala	Leu
		35					40					45			
Leu	Thr	Thr	Tyr	Gly	Phe	Pro	Ser	Pro	Ile	Phe	Leu	Gly	Ile	Gly	Gln
	50					55					60				
Met	Ala	Ala	Thr	Ile	Met	Ile	Leu	Tyr	Val	Ser	Lys	Leu	Asn	Lys	Ile
65					70					75					80
Ile	His	Phe	Pro	Asp	Phe	Asp	Lys	Lys	Ile	Pro	Val	Lys	Leu	Phe	Pro
				85					90					95	
Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	Ile	Ser	Gly	Leu	Ser	Ser	Thr
			100					105					110		
Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu	Arg	Lys	Phe	Thr	Ile
		115					120					125			
Pro	Leu	Thr	Leu	Leu	Leu	Glu	Thr	Ile	Ile	Leu	Gly	Lys	Gln	Tyr	Ser
	130					135					140				
Leu	Asn	He	Ile	Leu	Ser	Val	Phe	Ala	Ile	Ile	Leu	Gly	Ala	Phe	Ile
145					150					155					160
Ala	Ala	Gly	Ser	Asp	Leu	Ala	Phe	Asn	Leu	Glu	Gly	Tyr	Ile	Phe	Val
				165					170					175	
Phe	Leu	Asn	Asp	He	Phe	Thr	Ala	۸la	Asn	Gly	Val	Tyr	Thr	Lvs	Gln

190

180

Lys	Met	Asp	Pro	Lys	Glu	Leu	Gly	Lys	Tyr	Gly	Val	Leu	Phe	Tyr	Asr
		195					200					205			
Ala	Cys	Phe	Met	Ile	Ile	Pro	Thr	Leu	Ile	Ile	Ser	Val	Ser	Thr	Gly
	210					215					220				
Asp	Leu	Gln	Gln	Ala	Thr	Glu	Phe	Asn	G1n	Trp	Lys	Asn	Val	Val	Phe
225					230					235					240
Ile	Leu	Gln	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	Phe	Leu	Leu	Met	Tyr
				245					250					255	
Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala	Leu	Thr	Thr	Ala	Val
			260					265					270		
Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	Ala	Tyr	Ile	Gly	Ile	Leu	Πe
		275					280					285			
Gly	Gly	Asp	Tyr	He	Phe	Ser	Leu	Leu	Asn	Phe	Val	Gly	Leu	Asn	Πe
	290					295					300				
Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu	Thr	Leu	Ser	Ser	Gln
305					310					315					320
Leu	Lys	Pro	Lys	Pro	Val	Gly	Glu	Glu	Asn	Ile	Cys	Leu	Asp	Leu	Lys
				325					330					335	
	Ala Asp 225 Ile Ser Val Gly Cys 305	Ala Cys 210 Asp Leu 225 Ile Leu Ser Thr Val Gly Gly Gly 290 Cys Met 305	195 Ala Cys Phe 210 Asp Leu Gln 225 Ile Leu Gln Ser Thr Val Val Gly Ala 275 Gly Gly Asp 290 Cys Met Ala 305	195	195	195 195 Ala Cys Phe Met Ile Ile 210	195 Ala Cys Phe Met Ile Ile Pro 210 June June 215 Asp Leu Gln Ala Thr Glu 225 June June 230 June June<	195	195	195	195	195	195	195	Ala Cys Phe Met IIe IIe Pro Thr Leu IIe IIe Ser Val Ser Thr 210

<210> 122

Ser

<211> 236

<212> PRT

<213> Homo sapiens

<40	0> 1	22													
Met	Ala	Glu	Ala	Glu	Glu	Ser	Pro	G1y	Asp	Pro	Gly	Thr	Ala	Ser	Pro
1				5					10					15	
Arg	Pro	Leu	Phe	Ala	Gly	Leu	Ser	Asp	Ile	Ser	Ile	Ser	G1n	Asp	Ile
			20					25					30		
Pro	Val	Glu	Gly	Glu	Ile	Thr	Ile	Pro	Met	Arg	Ser	Arg	Ile	Arg	Glu
		35					40					45			
Phe	Asp	Ser	Ser	Thr	Leu	Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg
	50					55					60				
Asp	Leu	Lys	Ala	Val	Gly	Lys	Lys	Phe	Met	His	Val	Leu	Tyr	Pro	Arg
65					70					75					80
Lys	Ser	Asn	Thr	Leu	Leu	Arg	Asp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile
				85					90					95	
Leu	Cys	Val	Thr	Leu	Ala	Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser
			100					105					110		
Glu	Lys	Asp	Gly	Gly	Pro	Gln	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp
		115					120					125			
Phe	Gly	Ala	Val	Thr	Ile	Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn
	130					135					140				
He	Ser	Phe	Phe	Gln	Ser	Leu	Cys	Val	Leu	Gly	Tyr	Cys	Ile	Leu	Pro
145					150					155					160
Leu	Thr	Val	Ala	Met	Leu	Ile	Cys	Arg	Leu	Val	Leu	Leu	Ala	Asp	Pro
				165					170					175	
Gly	Pro	Val	Asn	Phe	Met	Val	Arg	Leu	Phe	Val	Val	Ile	Val	Met	Phe

185

190

180

WO 01/12660

256/307

Ala Trp Ser Ile Val Ala Ser Thr Ala Phe Leu Ala Asp Ser Gln Pro 195 200 205 Pro Asn Arg Arg Ala Leu Ala Val Tyr Pro Val Phe Leu Phe Tyr Phe 210 215 220 Val Ile Ser Trp Met Ile Leu Thr Phe Thr Pro Gln 225 230 235 <210> 123 <211> 560 <212> PRT <213> Homo sapiens <400> 123 Met Ala Ala Pro Ala Glu Ser Leu Arg Arg Arg Lys Thr Gly Tyr Ser l 5 10 15 Asp Pro Glu Pro Glu Ser Pro Pro Ala Pro Gly Arg Gly Pro Ala Gly 20 25 30 Ser Pro Ala His Leu His Thr Gly Thr Phe Trp Leu Thr Arg Ile Val 35 40 45 Leu Leu Lys Ala Leu Ala Phe Val Tyr Phe Val Ala Phe Leu Val Ala 50 55 Phe His Gln Asn Lys Gln Leu Ile Gly Asp Arg Gly Leu Leu Pro Cys 65 70 75 80 Arg Val Phe Leu Lys Asn Phe Gln Gln Tyr Phe Gln Asp Arg Thr Ser 85 90 95 Trp Glu Val Phe Ser Tyr Met Pro Thr Ile Leu Trp Leu Met Asp Trp

			100					105					110		
Ser	Asp	Met	Asn	Ser	Asn	Leu	Asp	Leu	Leu	Ala	Leu	Leu	Gly	Leu	Gly
		115					120					125			
Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	Ala	Asn	Met	Leu	Leu	Met
	130					135					140				
Ala	Ala	Leu	Trp	Gly	Leu	Tyr	Met	Ser	Leu	Val	Asn	Val	Gly	His	Val
145					150					155					160
Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	Gln	Leu	Leu	Glu	Thr	Gly	Phe	Leu
				165					170					175	
Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu	Ser	Arg	Leu	Pro	Gln	His
			180					185					190		
Thr	Pro	Thr	Ser	Λrg	Ile	Val	Leu	Trp	Gly	Phe	Arg	Trp	Leu	Ile	Phe
		195					200					205			
Arg	Ile	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	He	Arg	Gly	Λsp	Arg	Cys
	210					215					220				
Trp	Arg	Asp	Leu	Thr	Cys	Met	Asp	Phe	His	Tyr	Glu	Thr	Gln	Pro	Met
225					230					235					240
Pro	Asn	Pro	Val	Ala	Tyr	Tyr	Leu	His	His	Ser	Pro	Trp	Trp	Phe	His
				245					250					255	
Arg	Phe	Glu	Thr	Leu	Ser	Asn	His	Phe	Ile	Glu	Leu	Leu	Val	Pro	Phe
			260					265					270		
Phe	Leu	Phe	Leu	Gly	Arg	Arg	Ala	Cys	Ile	Ile	His	Gly	Val	Leu	Gln
		275					280					285			
Ile	Leu	Phe	Gln	Ala	Val	Leu	Ile	Val	Ser	Gly	Asn	Leu	Ser	Phe	Leu
	290					295		/			300				

Asn	Trp	Leu	Thr	Met	Val	Pro	Ser	Leu	Ala	Cys	Phe	Asp	Asp	Ala	Thr
305					310					315					320
Leu	Gly	Phe	Leu	Phe	Pro	Ser	Gly	Pro	Gly	Ser	Leu	Lys	Asp	Arg	Val
				325			٠		330					335	
Leu	Gln	Met	Gln	Arg	Asp	Ile	Arg	Gly	Ala	Arg	Pro	Glu	Pro	Arg	Phe
			340					345					350		
Gly	Ser	Val	Val	Arg	Arg	Ala	Ala	Asn	Val	Ser	Leu	Gly	Val	Leu	Leu
		355					360					365			
Ala	Trp	Leu	Ser	Val	Pro	Val	Val	Leu	Åsn	Leu	Leu	Ser	Ser	Arg	Gln
	370					375					380				
Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His	Ile	Val	Asn	Thr	Tyr	Gly
385					390					395					400
Ala	Phe	Gly	Ser	He	Thr	Lys	Glu	Arg	Ala	Glu	Val	He	Leu	Gln	Gly
				405					410					415	
Thr	Ala	Ser	Ser	Asn	Ala	Ser	Ala	Pro	Asp	Ala	Met	Trp	Glu	Asp	Tyr
			420					425					430		
Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	Arg	Arg	Pro	Cys	Leu	Ile
		435					440					445			
Ser	Pro	Tyr	His	Tyr	Arg	Leu	Asp	Trp	Leu	Met	Trp	Phe	Ala	Ala	Phe
	450					455					460				
Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	Ile	Ile	His	Leu	Ala	Gly	Lys	Leu
465					470					475					480
Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu	Leu	Ala	His	Asn	Pro	Phe
				485					490					495	
Ala	Gly	Arg	Pro	Pro	Pro	Arg	Trp	Val-	Arg	Glv	Glu	His	Tvr	Arg	Tvr

Lys Phe Ser Arg Pro Gly Gly Arg His Ala Ala Glu Gly Lys Trp Trp Val Arg Lys Arg Ile Gly Ala Tyr Phe Pro Pro Leu Ser Leu Glu Glu Leu Arg Pro Tyr Phe Arg Asp Arg Gly Trp Pro Leu Pro Gly Pro Leu <210> 124 <211> 406 <212> PRT <213> Homo sapiens <400> 124 Met Ala Glu Asn Gly Lys Asn Cys Asp Gln Arg Arg Val Ala Met Asn Lys Glu His His Asn Gly Asn Phe Thr Asp Pro Ser Ser Val Asn Glu Lys Lys Arg Arg Glu Arg Glu Arg Gln Asn Ile Val Leu Trp Arg Gln Pro Leu Ile Thr Leu Gln Tyr Phe Ser Leu Glu Ile Leu Val Ile Leu Lys Glu Trp Thr Ser Lys Leu Trp His Arg Gln Ser Ile Val Val Ser Phe Leu Leu Leu Ala Val Leu Ile Ala Thr Tyr Tyr Val Glu

Gly	Val	His	Gln	Gln	Tyr	Val	Gln	Arg	Ile	Glu	Lys	Gln	Phe	Leu	Leu
			100					105					110		
Tyr	Ala	Tyr	Trp	Ile	Gly	Leu	Gly	He	Leu	Ser	Ser	Val	Gly	Leu	Gly
		115					120					125			
Thr	Gly	Leu	His	Thr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser
	130					135					140				
Val	Thr	Leu	Ala	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro
145					150					155					160
Pro	Tyr	Pro	Asp	Gln	Ile	Ile	Cys	Pro	Asp	Glu	Glu	Gly	Thr	Glu	Gly
				165					170					175	
Thr	Ile	Ser	Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys
			180					185					190		
Met	Trp	Gly	Ile	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met
		195					200					205			
Ala	Arg	Ala	Λla	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	Glu	Tyr
	210					215					220				
Gln	Glu	Phe	Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Asp	Phe
225					230					235					240
Ala	Ser	Arg	Ala	Lys	Leu	Ala	Val	Gln	Lys	Leu	Val	Gln	Lys	Val	Gly
				245					250					255	
Phe	Phe	Gly	Ile	Leu	Ala	Cys	Ala	Ser	Ile	Pro	Asn	Pro	Leu	Phe	Asp
			260)				265	i				270		
Leu	Ala	Gly	Ile	Thr	Cys	Gly	His	Phe	Leu	Val	Pro	Phe	Trp	Thr	Phe
		275	;				280					285	ı		
Phe	Glv	, Als	Thr	Leu	ı Ile	Glv	Lvs	Ala	ر He	He	Lvs	Met	His	He	Gln

Lys Ile Phe Val Ile Ile Thr Phe Ser Lys His Ile Val Glu Gln Met Val Ala Phe Ile Gly Ala Val Pro Gly Ile Gly Pro Ser Leu Gln Lys Pro Phe Gln Glu Tyr Leu Glu Ala Gln Arg Gln Lys Leu His His Lys Ser Glu Met Gly Thr Pro Gln Gly Glu Asn Trp Leu Ser Trp Met Phe Glu Lys Leu Val Val Wet Val Cys Tyr Phe Ile Leu Ser Ile Ile Asn Ser Met Ala Gln Ser Tyr Ala Lys Arg Ile Gln Gln Arg Leu Asn Ser Glu Glu Lys Thr Lys <210> 125 <211> 453 <212> PRT <213> Homo sapiens <400> 125 Met Gly Val Leu Gly Arg Val Leu Leu Trp Leu Gln Leu Cys Ala Leu Thr Gln Ala Val Ser Lys Leu Trp Val Pro Asn Thr Asp Phe Asp Val

Ala	Ala	Asn	Trp	Ser	Gln	Asn	Arg	Thr	Pro	Cys	Ala	Gly	Gly	Ala	Val
		35					40					45			
Glu	Phe	Pro	Ala	Asp	Lys	Met	Val	Ser	Val	Leu	Val	Gln	Glu	Gly	His
	50					55					60				
Ala	Val	Ser	Asp	Met	Leu	Leu	Pro	Leu	Asp	Gly	Glu	Leu	Val	Leu	Ala
65					70					75					80
Ser	Gly	Ala	G1 y	Phe	Gly	Val	Ser	Asp	Val	Gly	Ser	His	Leu	Asp	Cys
				85					90					95	
Gly	Ala	Gly	Glu	Pro	Ala	Val	Phe	Arg	Asp	Ser	Asp	Arg	Phe	Ser	Trp
			100					105					110		
His	Asp	Pro	His	Leu	Trp	Arg	Ser	Gly	Asp	Glu	Ala	Pro	Gly	Leu	Phe
		115					120					125			
Phe	Val	Asp	Λla	Glu	Arg	Val	Pro	Cys	Arg	His	Asp	Asp	Val	Phe	Phe
	130					135					140				
Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val	Gly	Leu	Gly	Pro	Gly	Ala	Ser	Pro
145					150					155					160
Val	Arg	Val	Arg	Ser	Ile	Ser	Ala	Leu	G1 y	Arg	Thr	Phe	Thr	Arg	Asp
				165					170					175	
Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala	Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe
			180					185					190		
His	Gly	Pro	Gly	Ala	Leu	Ser	Val	Gly	Pro	Glu	Asp	Cys	Ala	Asp	Pro
		195					200					205			
Ser	Gly	Cys	Val	Cys	Gly	Asn	Ala	Glu	Ala	Gln	Pro	Trp	Ile	Cys	Ala
	210					215					220				
Δla	ا منا	Lau	Glo	Pro	Lou	C1v	Glv	Ara	نر درکر	Dro	Gla	۸۱۵	۸۱۵	Cuc	u; c

22 5					230					235					240
Ser	Ala	Leu	Arg	Pro	Gl _i n	Gly	Gln	Cys	Cys	Asp	Leu	Cys	Gly	Ala	Val
				245					250					255	
Val	Leu	Leu	Thr	His	Gly	Pro	Ala	Phe	Asp	Leu	Glu	Arg	Tyr	Arg	Ala
			260					265					270		
Arg	Ile	Leu	Asp	Thr	Phe	Leu	Gly	Leu	Pro	Gln	Tyr	His	Gly	Leu	Gln
		275					280					285			
Val	Ala	Val	Ser	Lys	Val	Pro	Arg	Ser	Ser	Arg	Leu	Arg	Glu	Ala	Asp
	290					295					300				
Thr	Glu	Ile	Gln	Val	Val	Leu	Val	Glu	Asn	Gly	Pro	Glu	Thr	Gly	Gly
305					310					315					320
Ala	Gly	Arg	Leu	Ala	Arg	Ala	Leu	Leu	Ala	Asp	Val	Ala	Glu	Asn	Gly
				325					330			•	•	335	
Glu	Ala	Leu	Gly	Val	Leu	Glu	Ala	Thr	Met	Arg	Glu	Ser	Gly	Ala	His
			340					345					350		
Val	Trp	Gly	Ser	Ser	Ala	Ala	Gly	Leu	Ala	G1 y	Gly	Val	Ala	Ala	Ala
		355					360					365			
Val	Leu	Leu	Ala	Leu	Leu	Val	Leu	Leu	Val	Ala	Pro	Pro	Leu	Leu	Arg
	370					375					380				
Arg	Ala	Gly	Arg	Leu	Arg	Trp	Arg	Arg	His	G1u	Ala	Ala	Ala	Pro	Ala
385					390					395					400
Gly	Ala	Pro	Leu	Gly	Phe	Arg	Asn	Pro	Val	Phe	Asp	Val	Thr	Ala	Ser
				405					410					415	
Glu	Glu	Leu	Pro	Leu	Pro	Arg	Arg	Leu	Ser	Leu	Val	Pro	Lys	Ala	Ala
			420					425					430		

Ala Asp Ser Thr Ser His Ser Tyr Phe Val Asn Pro Leu Phe Ala Gly

435

440

445

Ala Glu Ala Glu Ala

450

<210> 126

⟨211⟩ 59

<212> PRT

<213> Homo sapiens

<400> 126

Met Thr Ser Val Ser Thr Gln Leu Ser Leu Val Leu Met Ser Leu Leu

1

5

10

. 15

Leu Val Leu Pro Val Val Glu Ala Val Glu Ala Gly Asp Ala Ile Ala

20

25

30

Leu Leu Cly Val Val Leu Ser Ile Thr Gly Ile Cys Ala Cys Leu

35

40

45

Gly Val Tyr Ala Arg Lys Arg Asn Gly Gln Met

50

55

<210> 127

<211> 210

<212> PRT

<213> Homo sapiens

<400> 127

Met Ala Leu Pro Gln Met Cys Asp Gly Ser His Leu Ala Ser Thr Leu

1				5					10					15	
Arg	Tyr	Cys	Met	Thr	Val	Ser	Gly	Thr	Val	Val	Leu	Val	Ala	Gly	Thr
			20					25					30		
Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	G1 y	Asp	Ala	Thr	Ala	Gln	Pro	Gly
		35					40					45			
Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	Pro	Val	Pro	Glu	Gly	Pro	Ser	Pro
	50					55					60				
Leu	Leu	Arg	Ser	Val	Ser	Phe	Val	Cys	Cys	Gly	Ala	Gly	Gly	Leu	Leu
65					70					75					80
Leu	Leu	Ile	Gly	Leu	Leu	Trp	Ser	Val	Lys	Ala	Ser	Ile	Pro	Gly	Pro
				85					90					95	
Pro	Arg	Trp	Åsp	Pro	Tyr	His	Leu	Ser	Arg	Asp	Leu	Tyr	Tyr	Leu	Thr
			100					105					110		
Val	Glu	Ser	Ser	Glu	Lys	Ģlu	Ser	Cys	Arg	Thr	Pro	Lys	Val	Val	Asp
		115					120					125			
He	Pro	Thr	Tyr	Glu	Glu	Ala	Val	Ser	Phe	Pro	Val	Ala	Glu	Gly	Pro
	130					135					140				
Pro	Thr	Pro	Pro	Ala	Tyr	Pro	Thr	Glu	Glu	Ala	Leu	Glu	Pro	Ser	Gly
145					150					155					160
Ser	Arg	Asp	Ala	Leu	Leu	Ser	Thr	Gln	Pro	Ala	Trp	Pro	Pro	Pro	Ser
				165					170				•	175	
Tyr	Glu	Ser	Ile	Ser	Leu	Ala	Leu	Asp	Ala	Val	Ser	Ala	Glu	Thr	Thr
			180					185					190		
Pro	Ser	Ala	Thr	Arg	Ser	Cys	Ser	Gly	Leu	Val	Gln	Thr	Ala	Arg	Gly
		195					200					205			

Gly Ser 210 <210> 128 <211> 165 <212> PRT <213> Homo sapiens <400> 128 Met Asp Ser Ser Arg Ala Arg Gln Gln Leu Arg Arg Phe Leu Leu 5 10 15 Leu Pro Asp Ala Glu Ala Gln Leu Asp Arg Glu Gly Asp Ala Gly Pro 20 25 30 Glu Thr Ser Thr Ala Val Glu Lys Lys Glu Lys Pro Leu Pro Arg Leu 35 40 45 Asn Ile His Ser Gly Phe Trp Ile Leu Ala Ser Ile Val Val Thr Tyr 50 55 60 Tyr Val Asp Phe Phe Lys Thr Leu Lys Glu Asn Phe His Thr Ser Ser 70 65 75 80 Trp Phe Leu Cys Gly Ser Ala Leu Leu Leu Val Ser Leu Ser Ile Ala 85 90 95 Phe Tyr Cys Ile Val Tyr Leu Glu Trp Tyr Cys Gly Ile Gly Glu Tyr 100 105 110

Ala Ala Gly Ile Cys Phe Asn Ile Alá Leu Trp His Val Trp Ser Phe

Asp Val Lys Tyr Pro Ala Leu Ile Pro Ile Thr Thr Ala Ser Phe Ile

125

120

115

Phe Thr Pro Leu Leu Phe Thr Gln Phe Met Gly Val Val Met Phe Ile Thr Leu Leu Gly <210> 129 <211> 162 <212> PRT <213> Homo sapiens <400> 129 Met Leu Gln Thr Ser Asn Tyr Ser Leu Val Leu Ser Leu Gln Phe Leu Leu Leu Ser Tyr Asp Leu Phe Val Asn Ser Phe Ser Glu Leu Leu Gln Lys Thr Pro Val Ile Gln Leu Val Leu Phe Ile Ile Gln Asp Ile Ala Val Leu Phe Asn Ile Ile Ile Phe Leu Met Phe Phe Asn Thr Phe Val Phe Gln Ala Gly Leu Val Asn Leu Leu Phe His Lys Phe Lys Gly Thr Ile Ile Leu Thr Ala Val Tyr Phe Ala Leu Ser Ile Ser Leu His

Val Trp Val Met Asn Leu Arg Trp Lys Asn Ser Asn Ser Phe Ile Trp

WO 01/12660

268/307

Thr Asp Gly Leu Gln Met Leu Phe Val Phe Gln Arg Leu Ala Ala Val Leu Tyr Cys Tyr Phe Tyr Lys Arg Thr Ala Val Arg Leu Gly Asp Pro His Phe Tyr Gln Asp Ser Leu Trp Leu Arg Lys Glu Phe Met Gln Val Arg Arg <210> 130 <211> 221 <212> PRT <213> Homo sapiens <400> 130 Met Ala Leu Ala Leu Ala Ala Leu Ala Ala Val Glu Pro Ala Cys Gly l Ser Arg Tyr Gln Gln Leu Gln Asn Glu Glu Glu Ser Gly Glu Pro Glu Gln Ala Ala Gly Asp Ala Pro Pro Pro Tyr Ser Ser Ile Ser Ala Glu Ser Ala Ala Tyr Phe Asp Tyr Lys Asp Glu Ser Gly Phe Pro Lys Pro Pro Ser Tyr Asn Val Ala Thr Thr Leu Pro Ser Tyr Asp Glu Ala Glu Arg Thr Lys Ala Glu Ala Thr Ile Pro Leu Val Pro Gly Arg Asp Glu

Asp	Phe	Val	Gly	Arg	Asp	Asp	Phe	Asp	Asp	Ala	Asp	Gln	Leu	Arg	Ile
			100					105					110	•	
Gly	Asn	Asp	Gly	Ile	Phe	Met	Leu	Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe
		115					120					125			
Asn	Trp	Ile	Gly	Phe	Phe	Leu	Ser	Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala
	130					135					140				
G1y	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp
145					150					155					160
Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly
				165					170					175	
G1n	Tyr	Trp	Leu	Trp	Trp	Val	Phe	Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe
			180					185					190		
Leu	Arg	Gly	Phe	Ile	Asn	Tyr	Ala	Lys	Val	Arg	Lys	Met	Pro	Glu	Thr
		195					200					205			
Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	Val	Leu	Phe	Ile	Tyr			
	210					215					220				

⟨210⟩ 131

<211> 1011

<212> DNA

<213> Homo sapiens

<400> 131

atgacggccg gcggccaggc cgaggccgag ggcgctggcg gggagcccgg cgcggcggg 60 ctgccctcgc gggtggcccg gctgctgtcg gcgctcttct acgggacctg ctccttcctc 120 atcgtgcttg tcaacaaggc gctgctgacc acctacggtt tcccgtcacc aattttcctt 180

270/307

240	aaacaaaatc	tgtccaagct	atactatatg	caccataatg	agatggcagc	ggaattggac
300	gcctctcctc	tgtttcctct	cctgtaaagc	taagaaaatt	ctgattttga	attcacttcc
360	accgatgttc	aattaagcct	agcacaagta	tggattatca	accacataag	tacgttggaa
420	catacttggg	tggaaaccat	accttacttc	cattccactt	ggaaattcac	accgtgctca
480	ggctttcata	ttattctcgg	gtctttgcca	catcctcagt	cactcaacat	aagcagtatt
540	cctgaatgat	tttttgtatt	gaaggctata	ttttaactta	ctgaccttgc	gcagctgggt
600	ggagctaggg	tggacccaaa	aaacagaaaa	agtttatacc	cagcaaatgg	atcttcacag
660	tattattagt	tcccaactct	ttcatgatta	caatgcctgc	tacttttcta	aaatacggag
720	tgttgtgttt	aatggaagaa	gaattcaacc	acaggctact	gagacctgca	gtctccactg
780	cacggttctg	tgatgtactc	gggtttctgc	ctgttttttg	ttcttctttc	atcctacagt
840	gaatgtatcc	gagccatcaa	gcagtggttg	cctgacgaca	acaattcagc	tgcagctatt
900	aaactttgta	tctctttgtt	gactacattt	aatcggtgga	ttgggatatt	gttgcctaca
960	gagcagccag	ttttaacact	agatattcct	agggggcttg	tttgcatggc	gggttaaata
1011	С	atttgaagag	atctgtttgg	tgaagaaaac	aacctgtggg	ttaaaaccta

<210> 132

<211> 708

<212> DNA

<213> Homo sapiens

<400> 132

atggcggaag cggaggagtc tccaggagac ccggggacag catcgcccag gccctgttt 60 gcaggccttt cagatatatc catctcacaa gacatccccg tagaaggaga aatcaccatt 120 cctatgagat ctcgcatccg ggagtttgac agctccacat taaatgaatc tgttcgcaat 180 accatcatgc gtgatctaaa agctgttggg aaaaaattca tgcatgttt gtacccaagg 240 aaaagtaata ctcttttgag agattgggat ttgtggggcc ctttgatcct ttgtgtgaca 300

ctcgcattaa	tgctgcaaag	agactctgca	gatagtgaaa	aagatggagg	gccccaattt	360
gcagaggtgt	ttgtcattgt	ctggtttggt	gcagttacca	tcaccctcaa	ctcaaaactt	420
cttggaggga	acatatcttt	ttttcagagc	ctctgtgtgc	tgggttactg	tatacttccc	480
ttgacagtag	caatgctgat	ttgccggctg	gtacttttgg	ctgatccagg	acctgtaaac	540
ttcatggttc	ggctttttgt	ggtgattgtg	atgtttgcct	ggtctatagt	tgcctccaca	600
gctttccttg	ctgatagcca	gcctccaaac	cgcagagccc	tagctgttta	tcctgttttc	660
ctgttttact	ttgtcatcag	ttggatgatt	ctcaccttta	ctcctcag		708

<210> 133

<211> 1680

<212> DNA

<213> Homo sapiens

<400> 133

atggcggcgc ccgcggagtc gctgaggagg cggaagactg ggtactcgga tccggagcct 60 gagtcgccgc ccgcgccggg gcgtggcccc gcaggctctc cggcccatct ccacacgggc 120 accttctggc tgacccggat cgtgctcctg aaggccctag ccttcgtgta cttcgtggca 180 ttcctggtgg ctttccatca gaacaagcag ctcatcggtg acagggggct gcttccctgc 240 300 agagtgttcc tgaagaactt ccagcagtac ttccaggaca ggacgagctg ggaagtcttc agctacatgc ccaccatect etggetgatg gaetggteag acatgaacte caacetggae 360 420 ttgctggctc ttctcggact gggcatctcg tctttcgtac tgatcacggg ctgcgccaac 480 atgcttctca tggctgccct gtggggcctc tacatgtccc tggttaatgt gggccatgtc tggtactctt tcggatggga gtcccagctt ctggagacgg ggttcctggg gatcttcctg 540 tgccctctgt ggacgctgtc aaggctgccc cagcataccc ccacatcccg gattgtcctg 600 tggggcttcc ggtggctgat cttcaggatc atgcttggag caggcctgat caagatccgg 660 ggggaccggt gctggcgaga cctcacctgc atggacttcc actatgagac ccagccgatg 720

272/307

cccaatcctg	tggcatacta	cctgcaccac	tcaccctggt	ggttccatcg	cttcgagacg	780
ctcagcaacc	acttcatcga	gctcctggtg	cccttcttcc	tcttcctcgg	ccggcgggcg	840
tgcatcatcc	acggggtgct	gcagatcctg	ttccaggccg	tcctcatcgt	cagcgggaac	900
ctcagcttcc	tgaactggct	gactatggtg	cccagcctgg	cctgctttga	tgacgccacc	960
ctgggattct	tgttcccctc	tgggccaggc	agcctgaagg	accgagttct	gcagatgcag	1020
agggacatcc	gaggggcccg	gcccgagccc	agattcggct	ccgtggtgcg	gcgtgcagcc	1080
aacgtctcgc	tgggcgtcct	gctggcctgg	ctcagcgtgc	ccgtggtcct	caacttgctg	1140
agctccaggc	aggtcatgaa	cacccacttc	aactctcttc	acatcgtcaa	cacttacggg	1200
gccttcggaa	gcatcaccaa	ggagcgggcg	gaggtgatcc	tgcagggcac	agccagetee	1260
aacgccagcg	ccccgatgc	catgtgggag	gactacgagt	tcaagtgcaa	gccaggtgac	1320
cccagcagac	ggccctgcct	catctccccg	taccactacc	gcctggactg	gctgatgtgg	1380
ttcgcggcct	tccagaccta	cgagcacaac	gactggatca	tccacctggc	tggcaagctc	1440
ctggccagcg	acgccgaggc	cttgtccctg	ctggcacaca	accccttcgc	gggcaggccc	1500
ccgcccaggt	gggtccgagg	agagcactac	aggtacaagt	tcagccgtcc	tgggggcagg	1560
cacgccgccg	agggcaagtg	gtgggtgcgg	aagaggatcg	gagcctactt	ccctccgctc	1620
agcctggagg	agctgaggcc	ctacttcagg	gaccgtgggt	ggcctctgcc	cgggcccctc	1680

<210> 134

<211> 1218

<212> DNA

<213> Homo sapiens

<400> 134

atggcagaga atggaaaaa ttgtgaccag agacgtgtag caatgaacaa ggaacatcat 60 aatggaaatt tcacagaccc ctcttcagtg aatgaaaaga agaggaggga gcgggaagaa 120 aggcagaata ttgtcctgtg gagacagccg ctcattacct tgcagtattt ttctctggaa 180

atccttgtaa	tcttgaagga	atggacctca	aaattatggc	atcgtcaaag	cattgtggtg	240
tcttttttac	tgctgcttgc	tgtgcttata	gctacgtatt	atgttgaagg	agtgcatcaa	300
cagtatgtgc	aacgtataga	gaaacagttt	cttttgtatg	cctactggat	aggcttagga	360
attttgtctt	ctgttgggct	tggaacaggg	ctgcacacct	ttctgcttta	tctgggtcca	420
catatagcct	cagttacatt	agctgcttat	gaatgcaatt	cagttaattt	tcccgaacca	480
ccctatcctg	atcagattat	ttgtccagat	gaagagggca	ctgaaggaac	catttctttg	540
tggagtatca	tctcaaaagt	taggattgaa	gcctgcatgt	ggggtatcgg	tacagcaatc	600
ggagagctgc	ctccatattt	catggccaga	gcagctcgcc	tctcaggtgc	tgaaccagat	660
gatgaagagt	atcaggaatt	tgaagagatg	ctggaacatg	cagagtctgc	acaagacttt	720
gcctcccggg	ccaaactggc	agttcaaaaa	ctagtacaga	aagttggatt	ttttggaatt	780
ttggcctgtg	cttcaattcc	aaatccttta	tttgatctgg	ctggaataac	gtgtggacac	840
tttctggtac	ctttttggac	cttctttggt	gcaaccctaa	ttggaaaagc	aataataaaa	900
atgcatatcc	agaaaatttt	tgttataata	acattcagca	agcacatagt	ggagcaaatg	960
gtggctttca	ttggtgctgt	ccccggcata	ggtccatctc	tgcagaagcc	atttcaggag	1020
tacctggagg	ctcaacggca	gaagcttcac	cacaaaagcg	aaatgggcac	accacaggga	1080
gaaaactggt	tgtcctggat	gtttgaaaag	ttggtcgttg	tcatggtgtg	ttacttcatc	1140
ctatctatca	ttaactccat	ggcacaaagt	tatgccaaac	gaatccagca	gcggttgaac	1200
tragaggaga	aaactaaa					1218

⟨210⟩ 135

<211> 1359

<212> DNA

<213> Homo sapiens

<400≻ 135

atgggcgtcc tgggccgggt cctgctgtgg ctgcagctct gcgcactgac ccaggcggtc

tccaaactct	gggtccccaa	cacggacttc	gacgtcgcag	ccaactggag	ccagaaccgg	120
accccgtgcg	ccggcggcgc	cgttgagttc	ccggcggaca	agatggtgtc	agtcctggtg	180
caagaaggtc	acgccgtctc	agacatgctc	ctgccgctgg	atggggaact	cgtcctggct	240
tcaggagccg	gattcggcgt	ctcagacgtg	ggctcgcacc	tggactgtgg	cgcgggcgaa	300
cctgccgtct	tccgcgactc	tgaccgcttc	tcctggcatg	acccgcacct	gtggcgctct	360
ggggacgagg	cacctggcct	cttcttcgtg	gacgccgagc	gcgtgccctg	ccgccacgac	420
gacgtcttct	ttccgcctag	tgcctccttc	cgcgtggggc	teggeeetgg	cgctagcccc	480
gtgcgtgtcc	gcagcatctc	ggctctgggc	cggacgttca	cgcgcgacga	ggacctggct	540
gttttcctgg	cgtcccgcgc	gggccgccta	cgcttccacg	ggccgggcgc	gctgagcgtg	600
ggccccgagg	actgcgcgga	cccgtcgggc	tgcgtctgcg	gcaacgcgga	ggcgcagccg	660
tggatctgcg	cggccctgct	ccagcccctg	ggcggccgct	gccccaggc	cgcctgccac	720
agegeeetee	ggccccaggg	gcagtgctgt	gacctctgtg	gagccgttgt	gttgctgacc	780
cacggccccg	catttgacct	ggagcggtac	cgggcgcgga	tactggacac	cttcctgggt	840
ctgcctcagt	accacgggct	gcaggtggcc	gtgtccaagg	tgccacgctc	gtcccggctc	900
cgtgaggccg	atacggagat	ccaggtggtg	ctggtggaga	atgggcccga	gacaggcgga	960
gcggggcggc	tggcccgggc	cctcctggcg	gacgtcgccg	agaacggcga	ggccctcggc	1020
gtcctggagg	cgaccatgcg	ggagtcgggc	gcacacgtct	ggggcagctc	cgcggctggg	1080
ctggcgggcg	gcgtggcggc	tgccgtgctg	ctggcgctgc	tggtcctgct	ggtggcgccg	1140
ccgctgctgc	gccgcgcggg	gaggctcagg	tggaggaggc	acgaggcggc	ggccccggct	1200
ggagcgcccc	tcggcttccg	caacccggtg	ttcgacgtga	cggcctccga	ggagctgccc	1260
ctgccgcggc	ggctcagcct	ggttccgaag	gcggccgcag	acagcaccag	ccacagttac	1320
ttcgtcaacc	ctctgttcgc	cggggccgag	gccgaggcc			1359

275/307

<212> DNA

<213> Homo sapiens

<400> 136

at	gacctcag	tttcaacaca	gttgtcctta	gtcctcatgt	cactgctttt	ggtgctgcct	60
gt	tgtggaag	cagtagaagc	cggtgatgca	atcgcccttt	tgttaggtgt	ggttctcagc	120
at	tacaggca	tttgtgcctg	cttgggggta	tatgcacgaa	aaagaaatgg	acagatg	177
at	gacctcag	tttcaacaca	gttgtcctta	gtcctcatgt	cactgctttt	ggtgctgcct	60
gt	tgtggaag	cagtagaagc	cggtgatgca	atcgcccttt	tgttaggtgt	ggttctcagc	120
at	tacaggca	tttgtgcctg	cttgggggta	tatgcacgaa	aaagaaatgg	acagatg	177

<210> 137

<211> 630

<212> DNA

<213> Homo sapiens

<400> 137

60 atggecetge eccagatgtg tgacgggage caettggeet ecaeceteeg etattgeatg 120 acagtcagcg gcacagtggt tctggtggcc gggacgctct gcttcgcttg gtggagcgaa 180 ggggatgcaa ccgcccagcc tggccagctg gccccaccca cggagtatcc ggtgcctgag 240 ggccccagcc ccctgctcag gtccgtcagc ttcgtctgct gcggtgcagg tggcctgctg 300 ctgctcattg gcctgctgtg gtccgtcaag gccagcatcc cagggccacc tcgatgggac 360 ccctatcacc tctccagaga cctgtactac ctcactgtgg agtcctcaga gaaggagagc 420 tgcaggaccc ccaaagtggt tgacatcccc acttacgagg aagccgtgag cttcccagtg 480 gccgaggggc ccccaacacc acctgcatac cctacggagg aagccctgga gccaagtgga 540 tcgagggatg ccctgctcag cacccagccc gcctggcctc cacccagcta tgagagcatc agcettgete tigatgeegt tietgeagag acgaeacega gigeeacaeg etectgetea 600

ggcct	ggttc	agactgcacg	gggaggaagt				630
<210>	138		•				
<211>	495			•			
<212>	DNA						
<213>	Homo	sapiens					
<400>	138						
atgga	ctcct	cgcgggcccg	acagcagctc	cggcggcgat	tcctcctcct	gccggacgcc	60
gaggc	ccagc	tggaccgcga	gggtgacgcc	gggccggaaa	cctccacagc	tgttgagaaa	120
aagga	gaaac	ctcttccaag	acttaatatc	cattctggat	tctggatttt	ggcatccatt	180
gttgt	gacct	attatgttga	cttctttaaa	acccttaaag	aaaacttcca	cactagcagc	240
tggtt	tctct	gtggcagtgc	cttgttgctt	gtcagtttat	caattgcatt	ttactgcata	300
gtcta	cctgg	aatggtattg	tggaattgga	gaatatgatg	tcaagtatcc	agccttgata	360
cccat	tacca	ctgcctcctt	tattgcagca	ggaatttgct	tcaacattgc	tttatggcat	420
gtgtg	gtcgt	ttttcactcc	attgttgttg	tttacccagt	ttatgggggt	tgtcatgttt	480
atcac	actcc	ttgga					495
<210>	139	·					
<211>	486						
<212>	DNA						
<213>	Homo	sapiens					
<400>	139						i
atgct	ccaga	ccagtaacta	cagcctggtg	ctctctctgc	agttcctgct	gctgtcctat	60
gacct	ctttg	tcaattcctt	ctcagaactg	ctccaaaaga	ctcctgtcat	ccagcttgtg	120
ctctt	catca	tccaggatat	tgcagtcctc	ttcaacatca	tcatcatttt	cctcatgttc	180

ttcaacacct	tcgtcttcca	ggctggcctg	gtcaacctcc	tattccataa	gttcaaaggg	240
accatcatcc	tgacagctgt	gtactttgcc	ctcagcatct	cccttcatgt	ctgggtcatg	300
aacttacgct	ggaaaaactc	caacagcttc	atatggacag	atggacttca	aatgctgttt	360
gtattccaga	gactagcagc	agtgttgtac	tgctacttct	ataaacggac	agccgtaaga	420
ctaggcgatc	ctcacttcta	ccaggactct	ttgtggctgc	gcaaggagtt	catgcaagtt	480
cgaagg						486

<210> 140

<211> 663

<212> DNA

<213> Homo sapiens

<400> 140

atggcgttgg cgttggcggc gctggcggcg gtcgagccgg cctgcggcag ccggtaccag 60 120 cagttgcaga atgaagaaga gtctggagaa cctgaacagg ctgcaggtga tgctcctcca 180 ccttacagca gcatttctgc agagagcgca gcatattttg actacaagga tgagtctggg tttccaaagc ccccatctta caatgtagct acaacactgc ccagttatga tgaagcggag 240 300 aggaccaagg ctgaagctac tatccetttg gttcctggga gagatgagga ttttgtgggt 360 cgggatgatt ttgatgatgc tgaccagctg aggataggaa atgatgggat tttcatgtta 420 actititica tggcaticci cittaactgg attgggttit tcctgtctit ttgcctgacc 480 acttcagctg caggaaggta tggggccatt tcaggatttg gtctctctct aattaaatgg 540 atcctgattg tcaggttttc cacctatttc cctggatatt ttgatggtca gtactggctc 600 tggtgggtgt tccttgtttt aggctttctc ctgtttctca gaggatttat caattatgca 660 aaagttcgga agatgccaga aactttctca aatctcccca ggaccagagt tctctttatt 663 tat

WO 01/12660

<210	> 141																
<2112	> 162	2															
<212	> DNA																
<213	> Hom	o s	apie	ens													
<220	>																
<2212	> CDS																
<222	> (78)	. (10	91)													
<400	> 141																
ctcti	tcccc	g g	ccce	gccg	gg go	cggg	acca	g tgo	egea	gccg	ggg	ctgg	cgg	gcgg	cgggg	ţt	60
ccgcg	ggggc	c g	cage	gag a	atg a	acg (gcc	ggc (ggc (cag g	gcc	gag (gcc	gag	ggc		110
				λ	let ´	Thr i	Ala (Gly (Gly (Gln <i>I</i>	Ala	Glu <i>i</i>	Ala	Glu (Gly		
					1				5					10			
gct g	ggc g	gg	gag	ccc	ggc	gcg	gcg	cgg	ctg	ссс	tcg	cgg	gtg	gcc	cgg		158
Ala (Gly G	l y	Glu	Pro	Gly	Ala	Ala	Arg	Leu	Pro	Ser	Arg	Val	Ala	Arg		
			15					20					25		•		
ctg	ctg t	cg	gcg	ctc	ttc	tac	ggg	acc	tgc	tcc	ttc	ctc	atc	gtg	ctt	:	206
Leu l	Leu S	er	Ala	Leu	Phe	Tyr	Gly	Thr	Cys	Ser	Phe	Leu	Ile	Val	Leu		
		30					35					40					
gtc a	aac a	ag	gcg	ctg	ctg	acc	acc	tac	ggt	ttc	ccg	tca	cca	att	ttc	2	254
Val /	Asn L	ys.	Ala	Leu	Leu	Thr	Thr	Tyr	Gly	Phe	Pro	Ser	Pro	Ile	Phe		
	45					50					55						
ctt į	gga a	tt	gga	cag	atg	gca	gcc	acc	ata	atg	ata	cta	tat	gtg	tcc	;	302
Leu (Gly I	le	Gly	Gln	Met	Ala	Ala	Thr	Ile	Met	Ile	Leu	Tyr	Val	Ser		
60					65					70					75		
aag o	cta a	ac	aaa	atc	att	cac	ttc	cct	gat	ttt	gat	aag	aaa	att	cct	;	350

Lys	Leu	Asn	Lys	Ile	Ile	His	Phe	Pro	Asp	Phe	Asp	Lys	Lys	Ile	Pro	
				80					85					90		
gta	aag	ctg	ttt	cct	ctg	cct	ctc	ctc	tac	gtt	gga	aac	cac	ata	agt	398
Val	Lys	Leu	Phe	Pro	Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	Ile	Ser	
			95					100					105			
gga	tta	tca	agc	aca	agt	aaa	tta	agc	cta	ccg	atg	ttc	acc	gtg	ctc	446
Gly	Leu	Ser	Ser	Thr	Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu	
		110					115					120				
agg	aaa	ttc	acc	att	cca	ctt	acc	tta	ctt	ctg	gaa	acc	atc	ata	ctt	494
Arg	Lys	Phe	Thr	Ile	Pro	Leu	Thr	Leu	Leu	Leu	Glu	Thr	Ile	Ile	Leu	
	125					130					135					
ggg	aag	cag	tat	tca	ctc	aac	atc	atc	ctc	agt	gtc	ttt	gcc	att	att	542
Gly	Lys	Gln	Tyr	Ser	Leu	Asn	Ile	Ile	Leu	Ser	Val	Phe	Ala	Ile	Ile	
140					145					150					155	
ctc	ggg	gct	ttc	ata	gca	gct	ggg	tct	gac	ctt	gct	ttt	aac	tta	gaa	590
Leu	Gly	Ala	Phe	Ile	Ala	Ala	Gly	Ser	Asp	Leu	Ala	Phe	Asn	Leu	Glu	
				160					165					170		
ggc	tat	att	ttt	gta	ttc	ctg	aat	gat	atc	ttc	aca	gca	gca	aat	gga	638
Gly	Tyr	Ile	Phe	Val	Phe	Leu	Asn	Asp	Ile	Phe	Thr	Ala	Ala	Asn	Gly	
			175					180					185			
gtt	tat	acc	aaa	cag	aaa	atg	gac	cca	aag	gag	cta	ggg	aaa	tac	gga	686
Val	Tyr	Thr	Lys	Gln	Lys	Met	Asp	Pro	Lys	Glu	Leu	Gly	Lys	Tyr	Gly	
		190					195					200				
gta	ctt	ttc	tac	aat	gcc	tgc	ttc	atg	att	atc	cca	act	ctt	att	att	734
Val	Leu	Phe	Tyr	Asn	Ala	Cys	Phe	Met	Ile	Ile	Pro	Thr	Leu	Ile	Ile	

	205					210					215					
agt	gtc	tcc	act	gga	gac	ctg	caa	cag	gct	act	gaa	tţc	aac	caa	tgg	782
Ser	Val	Ser	Thr	Gly	Asp	Leu	Gln	Gln	Ala	Thr	Glu	Phe	Asn	Gln	Trp	
220					225					230					235	
aag	aat	gtt	gtg	ttt	atc	cta	cag	ttt	ctt	ctt	tcc	tgt	ttt	ttg	ggg	830
Lys	Asn	Val	Val	Phe	Ile	Leu	Gln	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	
				240					245					250		
ttt	ctg	ctg	atg	tac	tcc	acg	gtt	ctg	tgc	agc	tat	tac	aat	tca	gcc	878
Phe	Leu	Leu	Met	Tyr	Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala	
			255					260					265			
ctg	acg	aca	gca	gtg	gtt	gga	gcc	atc	aag	aat	gta	tcc	gtt	gcc	tac	926
Leu	Thr	Thr	Ala	Val	Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	Ala	Tyr	
		270					275					280				
att	ggg	ata	tta	atc	ggt	gga	gac	tac	att	ttc	tct	ttg	tta	aac	ttt	974
Ile	Gly	He	Leu	Ile	Gly	Gly	Asp	Tyr	Ile	Phe	Ser	Leu	Leu	Asn	Phe	
	285					290					295					
gta	ggg	tta	aat	att	tgc	atg	gca	ggg	ggc	ttg	aga	tat	tcc	ttt	tta	1022
Val	Gly	Leu	Asn	Ile	Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu	
300					305					310					315	
aca	ctg	agc	agc	cag	tta	aaa	cct	aaa	cct	gtg	ggt	gaa	gaa	aac	atc	1070
Thr	Leu	Ser	Ser	Gln	Leu	Lys	Pro	Lys	Pro	Val	Gly	Glu	Glu	Asn	Ile	
				320					325					330		
tgt	ttg	gat	ttg	aag	agc	ta a	agag	gtctg	gc ag	gcagg	gatte	g gag	gacte	gact		1120
Cys	Leu	Asp	Leu	Lys	Ser											

281/307

tgtgactgcg	ggctgggggg	gcattcccag	taggaatgtg	aagccagagg	tttcggattc	1180
gtgacatcca	cccctgggc	aagtgagagc	atctgcaaaa	tgcaaagaga	actacctcat	1240
atgcaggatg	agccaatggc	agtctcaaga	aatgtactcg	ggcgacacct	tacctgtgga	1300
aagcaaatct	tttcaaaata	agccactggg	actcggtagg	tggagcccca	gctgctcttc	1360
tagggaccta	tggggccttc	gtggcatctc	tgtgctgtgt	gctggggagg	aggttgatgt	1420
aatggtgact	cttttctgat	cagcaccttg	gccgtgattc	ccaaggtccc	agccaaagca	1480
aagggccagt	tgtttcagtt	taaacagaca	tgtctttagt	ctaataaaat	tagttaactg	1540
ccagtaaagt	tatttgttag	ctttgatgaa	agctatgttg	gtatctttcc	ctaatcatca	1600
aagtaaataa	aaaatcattt	ct				1622

<210> 142

<211> 2475

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (36)... (746)

<400> 142

acctgtggga gcgacccggg agaaggaggg ccaag atg gcg gaa gcg gag gag 53

Met Ala Glu Ala Glu Glu

1

tct cca gga gac ccg ggg aca gca tcg ccc agg ccc ctg ttt gca ggc 101
Ser Pro Gly Asp Pro Gly Thr Ala Ser Pro Arg Pro Leu Phe Ala Gly

10 15 20

ctt tca gat ata tcc atc tca caa gac atc ccc gta gaa gga gaa atc 149

Leu	Ser	Asp	Ile	Ser	Ile	Ser	Gln	Asp	Ile	Pro	Val	Glu	Gly	Glu	Ile	
		25			•		30					35				
acc	att	cct	atg	aga	tct	cgc	atc	cgg	gag	ttt	gac	agc	tcc	aca	tta	197
Thr	Ile	Pro	Met	Arg	Ser	Arg	Ile	Arg	Glu	Phe	Asp	Ser	Ser	Thr	Leu	
	40					45					50					
aat	gaa	tct	gtt	cgc	aat	acc	atc	atg	cgt	gat	cta	aaa	gct	gtt	ggg	245
Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg	Asp	Leu	Lys	Ala	Val	Gly	
55					60					65					70	
aaa	aaa	ttc	atg	cat	gtt	ttg	tac	cca	agg	aaa	agt	aat	act	ctt	ttg	293
Lys	Lys	Phe	Met	His	Val	Leu	Tyr	Pro	Arg	Lys	Ser	Asn	Thr	Leu	Leu	
				75					80				r	85		
aga	gat	tgg	gat	ttg	tgg	ggc	cct	ttg	atc	ctt	tgt	gtg	aca	ctc	gca	341
Arg	Asp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile	Leu	Cys	Val	Thr	Leu	Ala	
			90					95					100			
tta	atg	ctg	caa	aga	gac	tct	gca	gat	agt	gaa	aaa	gat	gga	ggg	ccc	389
Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser	Glu	Lys	Asp	Gly	Gly	Pro	
		105					110					115				
caa	ttt	gca	gag	gtg	ttt	gtc	att	gtc	tgg	ttt	ggt	gca	gtt	acc	atc	437
Gln	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp	Phe	Gly	Ala	Val	Thr	Ile	
	120					125					130					
acc	ctc	aac	tca	aaa	ctt	ctt	gga	ggg	aac	ata	tct	ttt	ttt	cag	agc	485
Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn	Ile	Ser	Phe	Phe	Gln	Ser	
135					140					145					150	
ctc	tgt	gtg	ctg	ggt	tac	tgt	ata	ctt	ccc	ttg	aca	gta	gca	atg	ctg	533
l eu	Cvs	Val	Leu	Glv	Tvr	Cvs	Πe	Leu	Pro	Leu	Thr	Val	Ala	Met	l.eu	

155	i	160	165	
att tgc cgg ctg gta	ctt ttg gct	gat cca gga cct	gta aac ttc atg	581
Ile Cys Arg Leu Val	Leu Leu Ala	Asp Pro Gly Pro	Val Asn Phe Met	
170		175	180	
gtt cgg ctt ttt gtg	gtg att gtg	atg ttt gcc tgg	tct ata gtt gcc	629
Val Arg Leu Phe Val	Val Ile Val	Met Phe Ala Trp	Ser Ile Val Ala	
185	190	•	195	
tcc aca gct ttc ctt	gct gat agc	cag cct cca aac	cgc aga gcc cta	677
Ser Thr Ala Phe Leu	Ala Asp Ser	Gln Pro Pro Asn	Arg Arg Ala Leu	
200	205	210		
gct gtt tat cct gtt	ttc ctg ttt	tac ttt gtc atc	agt tgg atg att	725
Ala Val Tyr Pro Val	Phe Leu Phe	Tyr Phe Val Ile	Ser Trp Met Ile	
215	220	225	230	
ctc acc ttt act cct	cag taaatca	ggaatgggaa atta	aaaacc agtgaattga	780
Leu Thr Phe Thr Pro	Gln			
235				
aagcacatct gaaagatg	ca attcaccate	g gagetttgte tet	ggccctt atttgtctaa	840
ttttggaggt atttgata	ac tgagtaggtg	g aggagattaa aag	ggagcca tatagcactg	900
tcacccctta tttgagga	ac tgatgtttga	aaggctgttc ttt	tetetet taatgteatt	960
tctttaaaaa tacatgtg	ca tactacacac	agtatataat gcc	tccttaa ggcatgatgg	1020
agtcaccgtg gtccattt	gg gtgacaacca	ı gtgacttggg aag	cacatag atacatetta	1080
caagttgaat agagttga	ta actatttca	ı gttttgagaa tac	cagttca ggtgcagctc	1140
ttaaacacat tgccttat	ga ctattagaat	atgeetetet ttt	cataaat aaaaatacat	1200
ggtctatatc cattttct	tt tatttetete	tettaagett aaa	aaggcaa tgagagaggt	1260
taggagtggg ttcataca	cg gagaatgaga	ı aaacatgcat taa	ccaatat tcagatittg	1320

atcaggggaa	attctacact	tgttgcaaaa	aaaaaaaaa	aaaaagcaaa	gggcctctaa	1380
agaatcagcc	tctttggtcc	ctttgtgctg	tcaccttttt	gccatgttta	acagcatctt	1440
ggttggcact	ctagtcttaa	tcttgctcct	taactttgaa	tatgcagtct	aaaatgtcag	1500
tagtcaacat	gtaattttcc	tttgaaattc	tgaatattcc	agtgctggaa	cttatccaaa	1560
aagaagacct	cagaaactta	gattggtaga	tctctagtgc	atattatcat	gtgggcacct	1620
tctcttaggg	tggaatgagg	cagtctggat	gcagcatagt	taaaaggagc	tgtttaatat	1680
tctctgtagt	ctggcctctt	aactagaaag	taaagctaaa	tcagaagcct	gtatttaacc	1740
atgtgaacag	ggagggattt	agtgttctga	tggctgatta	atagaacagc	tagatactta	1800
gagcatgacg	tgggatggga	tgagtttaca	gctgctgcct	tttcatggtg	agcttagcag	1860
ttttctcatt	agatgtgttt	ttttgggttg	gggaatagca	atttatttta	ttgattttag	1920
actttatcaa	gctaattagc	tcccctttag	ataagtacat	gttgcacatg	tgcacctact	1980
tgtaatctca	gatatttatg	cacacaagtg	tgaaggtttt	tcagggagca	gagcatctgg	2040
gacaggctga	ttctgagcta	aacagggctc	ctttaaggca	atatgaactg	ttgccttcta	2100
taaattgcac	attgaggaac	tctaatagac	aaagattagg	tgtcaggcag	aaaacactca	2160
ttgtaaatat	actattagtt	gataaacata	ggactttett	attccccagt	ttttctttat	2220
catataattt	aaatatttat	tcattttgta	tttaaagact	acctacacat	agatatatga	2280
ttccaaagtc	atactttctc	catccccaca	ttagccaagt	gaatacaggg	ccaaatgggt	2340
tcttggaatg	ataataacaa	agcattacaa	agtgggtccc	cttggttcca	gccttgtcca	2400
gagtttttgg	ttatatattt	ctatttatta	caatttacct	tttaaattgt	aaaataaacc	2460
tttgtgtgga	cagag					2475

<210> 143

<211> 1739

<212> DNA

<213> Homo sapiens

Ç

<22	0>			•												
<22	1> C	DS														
<22	2> (21).	(1	703)											٠	
<40	0> 1	43														
tgc	gccc	tga	cago	ccaa	ca a	tg g	cg g	cg c	cc g	cg g	ag t	cg c	tg a	gg a	gg	50
					M	et A	la A	la P	ro A	la G	lu S	er L	eu A	rg A	rg	
						1				5					10	
cgg	aag	act	ggg	tac	tcg	gat	ccg	gag	cct	gag	tcg	ccg	ccc	gcg	ccg	98
Arg	Lys	Thr	Gly	Tyr	Ser	Asp	Pro	Glu	Pro	Glu	Ser	Pro	Pro	Ala	Pro	
				15					20					25		4
ggg	cgt	ggc	ccc	gca	ggc	tct	ccg	gcc	cat	ctc	cac	acg	ggc	acc	ttc	146
Gly	Arg	Gly	Pro	Ala	Gly	Ser	Pro	Ala	His	Leu	His	Thr	Gly	Thr	Phe	
			30					35					40			
tgg	ctg	acc	cgg	atc	gtg	ctc	ctg	aag	gcc	cta	gcc	ttc	gtg	tac	ttc	194
Trp	Leu	Thr	Arg	He	Val	Leu	Leu	Lys	Ala	Leu	Ala	Phe	Val	Tyr	Phe	
		45					50					55				
gtg	gca	ttc	ctg	gtg	gct	ttc	cat	cag	aac	aag	cag	ctc	atc	ggt	gac	242
Val	Ala	Phe	Leu	Val	Ala	Phe	His	Gln	Asn	Lys	Gln	Leu	Ile	Gly	Λsp	
	60					65					70				-	
agg	ggg	ctg	ctt	ccc	tgc	aga	gtg	ttc	ctg	aag	aac	ttc	cag	cag	tac	290
Arg	Gly	Leu	Leu	Pro	Cys	Arg	Val	Phe	Leu	Lys	Asn	Phe	Gln	Gln	Tyr	
75					80					85					90	
ttc	cag	gac	agg	acg	agc	tgg	gaa	gtc	ttc	agc	tac	atg	ccc	acc	atc	338
Phe	Gln	Asp	Arg	Thr	Ser	Trp	Glu	Val	Phe	Ser	Tyr	Met	Pro	Thr	Ile	

ctc	tgg	ctg	atg	gac	tgg	tca	gac	atg	aac	tcc	aac	ctg	gac	ttg	ctg	386
Leu	Trp	Leu	Met	Asp	Trp	Ser	Asp	Met	Asn	Ser	Asn	Leu	Asp	Leu	Leu	
			110					115					120			
gct	ctt	ctc	gga	ctg	ggc	atc	tcg	tct	ttc	gta	ctg	atc	acg	ggc	tgc	434
Ala	Leu	Leu	Gly	Leu	Gly	Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	
		125					130					135				
gcc	aac	atg	ctt	çtc	atg	gct	gcc	ctg	tgg	ggc	ctc	tac	atg	tcc	ctg	482
Ala	Asn	Met	Leu	Leu	Met	Ala	Ala	Leu	Trp	Gly	Leu	Tyr	Met	Ser	Leu	
	140					145					150					
gtt	aat	gtg	ggc	cat	gtc	tgg	tac	tct	ttc	gga	tgg	gag	tcc.	cag	ctt	530
Val	Asn	Val	Gly	His	Val	Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	Gln	Leu	
155					160					165					170	
ctg	gag	acg	ggg	ttc	ctg	ggg	atc	ttc	ctg	tgc	cct	ctg	tgg	acg	ctg	578
Leu	Glu	Thr	Gly	Phe	Leu	Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu	
				175					180				٠	185		
tca	agg	ctg	ccc	cag	cat	acc	ccc	aca	tcc	cgg	att	gtc	ctg	tgg	ggc	626
Ser	Arg	Leu	Pro	G1n	His	Thr	Pro	Thr	Ser	Arg	Ile	Val	Leu	Trp	Gly	
			190					195					200			
ttc	cgg	tgg	ctg	atc	ttc	agg	atc	atg	ctt	gga	gca	ggc	ctg	atc	aag	674
Phe	Arg	Trp	Leu	Ile	Phe	Arg	Ile	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	
		205					210					215				
atc	cgg	ggg	gac	cgg	tgc	tgg	cga	gac	ctc	acc	tgc	atg	gac	ttc	cac	722
Ile	Arg	Gly	Asp	Arg	Cys	Trp	Arg	Asp	Leu	Thr	Cys	Met	Asp	Phe	His	
	220					225					230					
tat	gag	acc	cag	ccg	atg	ccc	aat	cct	gtg	gca	tac	tac	ctg	cac	cac	770

Tyr	Glu	Thr	Gln	Pro	Met	Pro	Asn	Pro	Val	Ala	Tyr	Tyr	Leu	His	His	
235					240					245					250	
tca	ccc	tgg	tgg	ttc	cat	cgc	ttc	gag	acg	ctc	agc	aac	cac	ttc	atc	818
Ser	Pro	Trp	Trp	Phe	His	Arg	Phe	Glu	Thr	Leu	Ser	Asn	His	Phe	Ile	
				255					260					265		
gag	ctc	ctg	gtg	ccc	ttc	ttc	ctc	ttc	ctc	ggc	cgg	cgg	gcg	tgc	atc	866
Glu	Leu	Leu	Val	Pro	Phe	Phe	Leu	Phe	Leu	Gly	Arg	Arg	Ala	Cys	Ile	
			270					275					280			
atc	cac	ggg	gtg	ctg	cag	atc	ctg	ttc	cag	gcc	gtc	ctc	atc	gtc	agc	914
Ile	His	Gly	Val	Leu	Gln	Ile	Leu	Phe	Gln	Ala	Val	Leu	Ile	Val	Ser	
		285					290					295				
gġg	aac	ctc	agc	ttc	ctg	aac	tgg	ctg	act	atg	gtg	ccc	agc	ctg	gcc	962
G1y	Asn	Leu	Ser	Phe	Leu	Asn	Trp	Leu	Thr	Met	Val	Pro	Ser	Leu	Ala	
	300					305					310					
tgc	ttt	gat	gac	gcc	acc	ctg	gga	ttc	ttg	ttc	ccc	tct	ggg	cca	ggc	1010
Cys	Phe	Asp	Asp	Ala	Thr	Leu	Gly	Phe	Leu	Phe	Pro	Ser	Gly	Pro	Gly	
315					320					325					330	
agc	ctg	aag	gac	cga	gtt	ctg	cag	atg	cag	agg	gac	atc	cga	ggg	gcc	1058
Ser	Leu	Lys	Asp	Arg	Val	Leu	Gln	Met	Gln	Arg	Asp	Iļe	Arg	Gly	Ala	
				335					340					345		
cgg	ccc	gag	ccc	aga	ttc	ggc	tcc	gtg	gtg	cgg	cgt	gca	gcc	aac	gtc	1106
Arg	Pro	Glu	Pro	Arg	Phe	Gly	Ser	Val	Val	Arg	Arg	Ala	Ala	Asn	Val	
			350					355					360			
tcg	ctg	ggc	gtc	ctg	ctg	gcc	tgg	ctc	agc	gtg	ccc	gtg	gtc	ctc	aac	1154
Ser	Leu	Glv	Val	Leu	Leu	Ala	Trp	Leu	Ser	Val	Pro	Val	Val	Leu	Asn	

		365					370					375				
ttg	ctg	agc	tcc	agg	cag	gtc	atg	aac	acc	cac	ttc _.	aac	tct	ctt	cac	1202
Leu	Leu	Ser	Ser	Arg	Gln	Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His	
	380					385					390					
atc	gtc	aac	act	tac	ggg	gcc	ttc	gga	agc	atc	acc	aag	gag	cgg	gcg	1250
Ile	Val	Asn	Thr	Tyr	Gly	Ala	Phe	Gly	Ser	Ile	Thr	Lys	Glu	Arg	Ala	
395					400					405					410	
gag	gtg	atc	ctg	cag	ggc	aca	gcc	agc	tcc	aac	gcc	agc	gcc	ccc	gat	1298
Glu	Val	He	Leu	Gln	Gly	Thr	Ala	Ser	Ser	Asn	Ala	Ser	Ala	Pro	Asp	
				415					420					425		
gcc	atg	tgg	gag	gac	tac	gag	ttc	aag	tgc	aag	cca	ggt	gac	ccc	agc	1346
Ala	Met	Trp	G _. lu	Asp	Tyr	Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	
			430					435					440			
aga	cgg	ccc	tgc	ctc	atc	tcc	ccg	tac	cac	tac	cgc	ctg	gac	tgg	ctg	1394
Arg	Arg	Pro	Cys	Leu	Ile	Ser	Pro	Tyr	His	Tyr	Arg	Leu	Asp	Trp	Leu	•
		445					450					455				
atg	tgg	ttc	gcg	gcc	ttc	cag	acc	tac	gag	cac	aac	gac	tgg	atc	atc	1442
Met	Trp	Phe	Ala	Ala	Phe	Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	Ile	Ile	
	460					465					470					
cac	ctg	gct	ggc	aag	ctc	ctg	gcc	agc	gac	gcc	gag	gcc	ttg	tcc	ctg	1490
His	Leu	Ala	Gly	Lys	Leu	Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu	
475					480					485					490	
ctg	gca	cac	aac	ccc	ttc	gcg	ggc	agg	ccc	ccg	ccc	agg	tgg	gtc	cga	1538
Leu	Ala	His	Asn	Pro	Phe	Ala	Gly	Arg	Pro	Pro	Pro	Arg	Trp	Val	Arg	
				495					500					505		

289/307

gga gag cac tac agg tac aag	ttc agc cgt cct	ggg ggc agg cac gcc	1586
Gly Glu His Tyr Arg Tyr Lys	Phe Ser Arg Pro	Gly Gly Arg His Ala	
510	515 ⁻	520	
gcc gag ggc aag tgg tgg gtg	cgg aag agg atc	gga gcc tac ttc cct	1634
Ala Glu Gly Lys Trp Trp Val	Arg Lys Arg Ile	Gly Ala Tyr Phe Pro	
525	530	535	
ccg ctc agc ctg gag gag ctg	agg ccc tac ttc	agg gac cgt ggg tgg	1682
Pro Leu Ser Leu Glu Glu Leu	Arg Pro Tyr Phe	Arg Asp Arg Gly Trp	
540 545		550	
cct ctg ccc ggg ccc ctc tag	acgtgca ccagaaat	aa aggcgaagac	1730
Pro Leu Pro Gly Pro Leu			
555 560		•	
ccagccccc			1739
<210> 144			
<211> 2005			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> CDS			
<222> (107)(1327)			
<400> 144			1
ggagcccagc ggcgggtgtg agagt	ccgta aggagcagct	tccaggatcc tgagatccgg	60
agcagccggg gtcggagcgg ctcct	caaga gttactgatc	tatgaa atg gca gag	115

Met Ala Glu

290/307

1

aat	gga	aaa	aat	tgt	gac	cag	aga	cgt	gta	gca	atg	aac	aag	gaa	cat		163
Asn	Gly	Lys	Asn	Cys	Asp	Gln	Arg	Arg	Val	Ala	Met	Asn	Lys	Glu	His	٠	
	5					10					15						
cat	aat	gga	aat	ttc	aca	gac	ccc	tct	tca	gtg	aat	gaa	aag	aag	agg		211
His	Asn	Gly	Asn	Phe	Thr	Asp	Pro	Ser	Ser	Val	Asn	Glu	Lys	Lys	Arg		
20					25					30					35		
agg	gag	cgg	gaa	gaa	agg	cag	aat	att	gtc	ctg	tgg	aga	cag	ccg	ctc		259
Arg	Glu	Arg	Glu	Glu	Arg	Gln	Asn	Ile	Val	Leu	Trp	Arg	Gln	Pro	Leu		
				40					45					50			
att	acc	ttg	cag	tat	ttt	tct	ctg	gaa	atc	ctt	gta	atc	ttg	aag	gaa		307
Ile	Thr	Leu	Gln	Tyr	Phe	Ser	Leu	Glu	Ile	Leu	Val	Ile	Leu	Lys	Glu		
			55					60					65				
tgg	acc	tca	aaa	tta	tgg	cat	cgt	caa	agc	att	gtg	gtg	tct	ttt	tta		355
Trp	Thr	Ser	Lys	Leu	Trp	His	Arg	Gln	Ser	Ile	Val	Val	Ser	Phe	Leu		
		70					75					80					
ctg	ctg	ctt	gct	gtg	ctt	ata	gct	acg	tat	tat	gtt	gaa	gga	gtg	cat		403
Leu	Leu	Leu	Ala	Val	Leu	Ile	Ala	Thr	Tyr	Tyr	Val	Glu	Gly	Val	His		
	85					90					95						
caa	cag	tat	gtg	caa	cgt	ata	gag	aaa	cag	ttt	ctt	ttg	tat	gcc	tac		451
Gln	Gln	Tyr	Val	Gln	Arg	Ile	Glu	Lys	Gln	Phe	Leu	Leu	Tyr	Ala	Tyr		
100					105					110					115		
tgg	ata	ggc	tta	gga	att	ttg	tct	tct	gtt	ggg	ctt	gga	aca	ggg	ctg		499
Trp	Ile	Gly	Leu	Gly	Ile	Leu	Ser	Ser	Val	Gly	Leu	Gly	Thr	Gly	Leu		
				120					125					130			

cac	acc	ttt	ctg	ctt	tat	ctg	ggt	cca	cat	ata	gcc	tca	gtt	aca	tta	547
His	Thr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser	Val	Thr	Leu	
			135					140					145			
gct	gct	tat	gaa	tgc	aat	tca	gtt	aat	ttt	ccc	gaa	cca	ccc	tat	cct	595
Ala	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro	Pro	Tyr	Pro	
		150					155					160				
gat	cag	att	att	tgt	cca	gat	gaa	gag	ggc	act	gaa	gga	acc	att	tct	643
Asp	Gln	Ile	Ile	Cys	Pro	Asp	Glu	Glu	Gly	Thr	Glu	Gly	Thr	Ile	Ser	
	165					170					175					
ttg	tgg	agt	atc	atc	tca	aaa	gtt	agg	att	gaa	gcc	tgc	atg	tgg	ggt	691
Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys	Met	Trp	Gly	
180					185					190					195	
atc	ggt	aca	gca	atc	gga	gag	ctg	cct	cca	tat	ttc	atg	gcc	aga	gca	739
Ile	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met	Ala	Arg	Ala	
				200					205					210		
gct	cgc	ctc	tca	ggt	gct	gaa	cca	gat	gat	gaa	gag	tat	cag	gaa	ttt	787
Ala	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	Glu	Tyr	Gln	Glu	Phe	
			215					220					225			
gaa	gag	atg	ctg	gaa	cat	gca	gag	tct	gca	caa	gac	ttt	gcc	tcc	cgg	835
Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Asp	Phe	Ala	Ser	Arg	
		230					235					240				
gcc	aaa	ctg	gca	gtt	caa	aaa	cta	gta	cag	aaa	gtt	gga	ttt	ttt	gga	883
Ala	Lys	Leu	Ala	Val	Gln	Lys	Leu	Val	Gln	Lys	Val	Gly	Phe	Phe	Gly	
	245					250					255					
att	ttg	gcc	tgt	gct	tca	att	cca	aat	cct	tta	ttt	gat	ctg	gct	gga	931

Ile	Leu	Ala	Cys	Ala	Ser	Ile	Pro	Asn	Pro	Leu	Phe	Asp	Leu	Ala	Gly	
260					265					270					275	•
ata	acg	tgt	gga	cac	ttt	ctg	gta	cct	ttt	tgg	acc	ttc	ttt	ggt	gca	979
Ile	Thr	Cys	Gly	His	Phe	Leu	Val	Pro	Phe	Trp	Thr	Phe	Phe	Gly	Ala	
				280					285					290		
acc	cta	att	gga	aaa	gca	ata	ata	aaa	atg	cat	atc	cag	aaa	att	ttt	1027
Thr	Leu	Ile	Gly	Lys	Ala	Ile	Ile	Lys	Met	His	Ile	Gln	Lys	Ile	Phe	
			295					300					305			
gtt	ata	ata	aca	ttc	agc	aag	cac	ata	gtg	gag	caa	atg	gtg	gct	ttc	1075
Val	Ile	Ile	Thr	Phe	Ser	Lys	His	Ile	Val	Glu	Gln	Met	Val	Ala	Phe	
		310					315					320				
att	ggt	gct	gtc	ccc	ggc	ata	ggt	cca	tct	ctg	cag	aag	cca	ttt	cag	1123
Ile	Gly	Ala	Val	Pro	Gly	Ile	Gly	Pro	Ser	Leu	Gln	Lys	Pro	Phe	Gln	
	325					330					335					
gag	tac	ctg	gag	gct	caa	cgg	cag	aag	ctt	cac	cac	aaa	agc	gaa	atg	1171
Glu	Tyr	Leu	Glu	Ala	Gln	Arg	Gln	Lys	Leu	His	His	Lys	Ser	Glu	Met	
340					345					350					355	
ggc	aca	cca	cag	gga	gaa	aac	tgg	ttg	tcc	tgg	atg	ttt	gaa	aag	ttg	1219
Gly	Thr	Pro	Gln	Gly	Glu	Asn	Trp	Leu	Ser	Trp	Met	Phe	Glu	Lys	Leu	
				360					365					370		
gtc	gtt	gtc	atg	gtg	tgt	tac	ttc	atc	cta	tct	atc	att	aac	tcc	atg	1267
Val	Val	Val	Met	Val	Cys	Tyr	Phe	Ile	Leu	Ser	Ile	Ile	Asn	Ser	Met	
			375					380					385			
gca	caa	agt	tat	gcc	aaa	cga	atc	cag	cag	cgg	ttg	aac	tca	gag	gag	1315
Ala	Gln	Ser	Tyr	Ala	Lys	Arg	Ile	Gln	Gln	Arg	Leu	Asn	Ser	Glu	Glu	

390 395 400 aaa act aaa taagta gagaaagttt taaactgcag aaattggagt ggatgggttc 1370 Lys Thr Lys 405 tgccttaaat tgggaggact ccaagccggg aaggaaaatt cccttttcca acctgtatca 1430 attittacaa ciiitticci gaaagcagii tagiccatac tiigcaciga cataciitti 1490 ccttctgtgc taaggtaagg tatccaccct cgatgcaatc caccttgtgt tttcttaggg 1550 tggaatgtga tgttcagcag caaacttgca acagactggc cttctgtttg ttactttcaa 1610 aaggcccaca tgatacaatt agagaattcc caccgcacaa aaaaagttcc taagtatgtt 1670 aaatatgtca agctttttag gcttgtcaca aatgattgct ttgttttcct aagtcatcaa 1730 aatgtatata aattatctag attggataac agtcttgcat gtttatcatg ttacaattta 1790 atattccatc ctgcccaacc cttcctctc catcctcaaa aaagggccat tttatgatgc 1850 attgcacacc ctctggggaa attgatcttt aaattttgag acagtataag gaaaatctgg 1910 ttggtgtctt acaagtgagc tgacaccatt ttttattctg tgtatttaga atgaagtctt 1970 gaaaaaaact ttataaagac atctttaatc attcc 2005

<210> 145

<211> 1558

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (31)...(1392)

<400> 145

WO 01/12660 PCT/JP00/05356

294/307

Met Gly Val Leu Gly Arg Val Leu

ctg tgg ctg cag ctc tgc gca ctg acc cag gcg gtc tcc aaa ctc tgg Leu Trp Leu Gln Leu Cys Ala Leu Thr Gln Ala Val Ser Lys Leu Trp gtc ccc aac acg gac ttc gac gtc gca gcc aac tgg agc cag aac cgg Val Pro Asn Thr Asp Phe Asp Val Ala Ala Asn Trp Ser Gln Asn Arg acc ecg tge gee gge gee gtt gag tte ecg geg gae aag atg gtg Thr Pro Cys Ala Gly Gly Ala Val Glu Phe Pro Ala Asp Lys Met Val tea gtc ctg gtg caa gaa ggt cac gcc gtc tca gac atg ctc ctg ccg Ser Val Leu Val Gln Glu Gly His Ala Val Ser Asp Met Leu Leu Pro ctg gat ggg gaa ctc gtc ctg gct tca gga gcc gga ttc ggc gtc tca Leu Asp Gly Glu Leu Val Leu Ala Ser Gly Ala Gly Phe Gly Val Ser gae gtg ggc tcg cac ctg gac tgt ggc gcg ggc gaa cct gcc gtc ttc Asp Val Gly Ser His Leu Asp Cys Gly Ala Gly Glu Pro Ala Val Phe ege gae tet gae ege tte tee tgg eat gae eeg eac etg tgg ege tet Arg Asp Ser Asp Arg Phe Ser Trp His Asp Pro His Leu Trp Arg Ser ggg gac gag gca cct ggc ctc ttc ttc gtg gac gcc gag cgc gtg ccc Gly Asp Glu Ala Pro Gly Leu Phe Phe Val Asp Ala Glu Arg Val Pro

				125					130					135		
tgc	cgc	cac	gac	gac	gtc	ttc	ttt	ccg	cct	agt	gcc	tcc	ttc	cgc	gtg	486
Cys	Arg	His	Asp	Asp	Val	Phe	Phe	Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val	
			140					145					150			
ggg	ctc	ggc	cct	ggc	gct	agc	ccc	gtg	cgt	gtc	cgc	agc	atc	tcg	gct	534
Gly	Leu	Gly	Pro	Gly	Ala	Ser	Pro	Val	Arg	Val	Arg	Ser	Ile	Ser	Ala	
		155					160					165	•			
ctg	ggc	cgg	acg	ttc	acg	cgc	gac	gag	gac	ctg	gct	gtt	ttc	ctg	gcg	582
Leu	Gly	Arg	Thr	Phe	Thr	Arg	Asp	Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala	
	170					175					180					
tcc	cgc	gcg	ggc	cgc	cta	cgc	ttc	cac	ggg	ccg	ggc	gcg	ctg	agc	gtg	630
Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe	His	Gly	Pro	Gly	Ala	Leu	Ser	Val	
185					190					195					200	
ggc	ccc	gag	gac	tgc	gcg	gac	ccg	tcg	ggc	tgc	gtc	tgc	ggc	aac	gcg	678
Gly	Pro	Glu	Asp	Cys	Ala	Asp	Pro	Ser	Gly	Cys	Val	Cys	Gly	Asn	Ala	
				205					210					215		
gag	gcg	cag	ccg	tgg	atc	tgc	gcg	gcc	ctg	ctc	cag	ccc	ctg	ggc	ggc	726
Glu	Ala	Gln	Pro	Trp	Ile	Cys	Ala	Ala	Leu	Leu	Gln	Pro	Leu	Gly	Gly	
			220					225					230			
cgc	tgc	ccc	cag	gcc	gcc	tgc	cac	agc	gcc	ctc	cgg	ccc	cag	ggg	cag	774
Arg	Cys	Pro	Gln	Ala	Ala	Cys	His	Ser	Ala	Leu	Arg	Pro	Gln	Gly	G1n	
		235					240					245				
tgc	tgt	gac	ctc	tgt	gga	gcc	gtt	gtg	ttg	ctg	acc	cac	ggc	ссс	gca	822
Cys	Cys	Asp	Leu	Cys	Gly	Ala	Val	Val	Leu	Leu	Thr	His	Gly	Pro	Ala	
	250					255					260					

870	ggt	ctg	ttc	acc	gac	ctg	ata	cgg	gcg	cgg	tac	cgg	gag	ctg	gac	ttt
	Gly	Leu	Phe	Thr	Asp	Leu	Ile	Arg	Ala	Arg	Tyr	Arg	Glu	Leu	Asp	Phe
	280					275			÷		270					265
918	cgc	cca	gtg	aag	tcc	gtg	gcc	gtg	cag	ctg	ggg	cac	tac	cag	cct	ctg
	Arg	Pro	Val	Lys	Ser	Val	Ala	Val	Gln	Leu	Gly	His	Tyr	G1n	Pro	Leu
		295					290					285				
966	gtg	ctg	gtg	gtg	cag	atc	gag	acg	gat	gcc	gag	cgt	ctc	cgg	tcc	tcg
	Val	Leu	Val	Val	Gln	Ile	Glu	Thr	Asp	Ala	Glu	Arg	Leu	Arg	Ser	Ser
			310					305					300			
1014	ctc	gcc	cgg	gcc	ctg	cgg	ggg	gcg	gga	ggc	aca	gag	ccc	ggg	aat	gag
	Leu	Ala	Arg	Ala	Leu	Arg	Gly	Ala	Gly	Gly	Thr	Glu	Pro	Gly	Asn	Glu
				325					320					315		
1062	gcg	gag	ctg	gtc	ggc	ctc	gcc	gag	ggc	aac	gag	gcc	gtc	gac	gcg	ctg
	Ala	Glu	Leu	Val	Gly	Leu	Ala	Glu	Gly	Asn	Glu	Ala	Val	Asp	Ala	Leu
					340					335					330	
1110	ggg	gct	gcg	tcc	agc	ggc	tgg	gtc	cac	gca	ggc	tcg	gag	cgg	atg	acc
	Gly	Ala	Ala	Ser	Ser	Gly	Trp	Val	His	Ala	Gly	Ser	Glu	Arg	Met	Thr
	360					355					350					345
1158	ctg	gtc	ctg	ctg	gcg	ctg	ctg	gtg	gcc	gct	gcg	gtg	ggc	ggc	gcg	ctg
	Leu	Val	Leu	Leu	Ala	Leu	Leu	Val	Ala	Ala	Ala	Val	Gly	Gly	Ala	Leu
		375					370					365				
1206	agg	tgg	agg	ctc	agg	ggg	gcg	cgc	cgc	ctg	ctg	ccg	ccg	gcg	gtg	ctg
	Arg	Trp	Arg	Leu	Arg	Gly	Ala	Arg	Arg	Leu	Leu	Pro	Pro	Ala	Val	Leu
			390			-		385					380			
1254	aac	cgc	ttc	ggc	ctc	ccc	gcg	gga	gct	ccg	gcc	gcg	gcg	gag	cac	agg

Arg His Glu	u Ala Ala Ala	Pro Ala Gly	Ala Pro Leu	ı Gly Phe Arg Asn	
398	5	400		405	
ccg gtg tto	c gac gtg acg	gcc tcc gag	gag ctg ccc	ctg ccg cgg cgg	1302
Pro Val Phe	e Asp Val Thr	Ala Ser Glu	Glu Leu Pro	Leu Pro Arg Arg	
410		415	420)	
ctc agc ctg	g gtt ccg aag	gcg gcc gca	gac agc acc	agc cac agt tac	1350
Leu Ser Leu	ı Val Pro Lys	Ala Ala Ala	Asp Ser Thr	Ser His Ser Tyr	
425	430		435	440	
ttc gtc aac	cct ctg ttc	gcc ggg gcc	gag gcc gag	gcc t gagcggccgc	1400
Phe Val Asn	n Pro Leu Phe	Ala Gly Ala	Glu Ala Glu	Ala	C
	445		450		
ctgaccgtcg	accttggggc to	ctccacccc ctc	etggcccc agt	cgaactg ggggctagcc	1460
acctcctcgt	ccagccccca a	aceteceet tee	tttcccc ctc	ctccggg ggccaaggac	1520
agggtggcct	tactcagtaa a	ggtgtttcc tgc	acctg		1558
<210> 146					
<211> 1005					
<212> DNA					
<213> Homo	sapiens				
<220>					
<221> CDS					
<222> (151)	(330)				
<400> 146					
attcctgtaa	tggctgcttc ct	agaaggtc gtg	tcacgtg gaad	ectetta ateteageat	60

ccggagctcc aggaagggaa aatttcaagt cagatagaat tctatatata ccatttcttt 120

ggaacettea geeeteaaga tteeaacate atg ace tea gt	t tca aca cag ttg 174
Met Thr Ser Va	l Ser Thr Gln Leu
1	5
tcc tta gtc ctc atg tca ctg ctt ttg gtg ctg cct	gtt gtg gaa gca 222
Ser Leu Val Leu Met Ser Leu Leu Leu Val Leu Pro	Val Val Glu Ala
10 15 20	
gta gaa gcc ggt gat gca atc gcc ctt ttg tta ggt	gtg gtt ctc agc 270
Val Glu Ala Gly Asp Ala Ile Ala Leu Leu Leu Gly	Val Val Leu Ser
25 30 35	40
att aca ggc att tgt gcc tgc ttg ggg gta tat gca	cga aaa aga aat 318
Ile Thr Gly Ile Cys Ala Cys Leu Gly Val Tyr Ala	Arg Lys Arg Asn
45 50	55
gga cag atg tga ctttgaaagg cctactgagt caaacctca	c cctgaaaacc 370
Gly Gln Met	
tttgcgcttt agaggctaaa cctgagattt ggtgtgtgaa agg	ttccaag aatcagtaaa 430
taagggagtt teacattttt cattgtttee atgaaatgge aac	aaacata catttataaa 490
ttgaaaaaaa aatgttttct ttacaacaaa taatgcacag aaa	aatgcag cctataattt 550
gctagttagg tagtcaaaga agtaagatgg ctgaaattta cat	aagtaat atttcataat 610
cttagaattc tctcaaagca tgtgaaatag gaagaaggaa gtt	cttgccc agaatcttag 670
gaaatcacca ctgttcggtt ataatcactg cctcctgaat cgt	tgaggag tcttttaaat 730
tagatttttg ttttgttgtc tcccaagtta atattatatt	atatcag agagtcaggc 790
aaaaaggaaa acttttatct ctagggaaaa aacatttaga aaa	atgtatt cagtgtatct 850
aatactgaaa tgcggaaaaa aatttaatgt taaaaaaaaa act	atagaca ttgacatgga 910
aaagagattt aatgttttga aaaaaaactt tatattaact gag	taacatc ctcctgatga 970
gaagtactat attaaatata aacccattat gttat	1005

<21	0> 1	47														
<21	1> 9	69														
<21	2> Di	NA														
<21	3> H	omo	sapi	ens												
<22	0>															
<22	1> C	DS														
<22	2> (151)	(783)												
<40	o> 1	47														
gct	ggac	acc	tgga	gctg	cc c	gagg	acgc	g ga	ggag	agac	ccg	aggg	tcg	ccgc	tggtag	g 60
ggt	cgct	cag	ccct	gccg	tc c	ttca	ccac	c ac	acct	tcac	ctg	egec	cag	ctcc	ctgcgc	: 120
gcc	tgga	cag	cgcc	tgct	gc c	cgcc	tccc	g at	g gc	c ct	g cc	cca	g at	g tg	t gac	174
								Me	t Ala	a Le	u Pro	o Gli	n Me	t Cy	s Asp	•
									1			!	5			
ggg	agc	cac	ttg	gcc	tcc	acc	ctc	cgc	tat	tgc	atg	aca	gtc	agc	ggc	222
Gly	Ser	His	Leu	Ala	Ser	Thr	Leu	Arg	Tyr	Cys	Met	Thr	Val	Ser	Gly	
	10					15					20					
aca	gtg	gtt	ctg	gtg	gcc	ggg	acg	ctc	tgc	ttc	gct	tgg	tgg	agc	gaa	270
Thr	Val	Val	Leu	Val	Àla	Gly	Thr	Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	
25					30					35					40	
ggg	gat	gca	acc	gcc	cag	cct	ggc	cag	ctg	gcc	cca	ccc	acg	gag	tat	318
Gly	Asp	Ala	Thr	Ala	Gln	Pro	Gly	Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	
				45					50					55		
ccg	gtg	cct	gag	ggc	ccc	agc	ccc	ctg	ctc	agg	tcc	gtc	agc	ttc	gtc	366
Pro	Val	Pro	Glu	Glv	Pro	Sor	Pro	Lau	Lou	Ara	San	Vo 1	Sor	Pho	Val	

WO 01/12660 PCT/JP00/05356

			60					65					70				
tgc	tgc	ggt	gca	ggt	ggc	ctg	ctg	ctg	ctc	att	ggc	ctg	ctg	tgg	tcc	4	414
Cys	Cys	Gly	Ala	Gly	Gly	Leu	Leu	Leu	Leu	Ile	Gly	Leu	Leu	Trp	Ser		
		75					80					85					
gtc	aag	gcc	agc	atc	cca	ggg	cca	cct	cga	tgg	gac	ccc	tat	cac	ctc	4	462
Val	Lys	Ala	Ser	Ile	Pro	Gly	Pro	Pro	Arg	Trp	Asp	Pro	Tyr	His	Leu		
	90					95					100						
tcc	aga	gac	ctg	tac	tac	ctc	act	gtg	gag	tcc	tca	gag	aag	gag	agc	(510
Ser	Arg	Asp	Leu	Tyr	Tyr	Leu	Thr	Val	Glu	Ser	Ser	Glu	Lys	Glu	Ser		
105					110					115					120		
tgc	agg	acc	ccc	aaa	gtg	gtt	gac	atc	ccc	act	tac	gag	gaa	gcc	gtg	5	558
Cys	Arg	Thr	Pro	Lys	Val	Val	Asp	Ile	Pro	Thr	Tyr	Glu	Glu	Ala	Val		
				125					130					135			
agc	ttc	cca	gtg	gcc	gag	ggg	ccc	cca	aca	cca	cct	gca	tac	cct	acg	ϵ	606
Ser	Phe	Pro	Val	Ala	Glu	Gly	Pro	Pro	Thr	Pro	Pro	Ala	Tyr	Pro	Thr		
			140					145					150				
gag	gaa	gcc	ctg	gag	cca	agt	gga	tcg	agg	gat	gcc	ctg	ctc	agc	acc	6	554
Glu	Glu	Ala	Leu	Glu	Pro	Ser	Gly	Ser	Arg	Asp	Ala	Leu	Leu	Ser	Thr		
		155					160					165					
cag	ccc	gcc	tgg	cct	cca	ccc	agc	tat	gag	agc	atc	agc	ctt	gct	ctt	7	'02
Gln	Pro	Ala	Trp	Pro	Pro	Pro	Ser	Tyr	Glu	Ser	Ile	Ser	Leu	Ala	Leu		
	170					175					180						
gat	gcc	gtt	tct	gca	gag	acg	aca	ccg	agt	gcc	aca	cgc	tcc	tgc	tca	7	'50
Asp	Ala	Val	Ser	Ala	Glu	Thr	Thr	Pro	Ser	Ala	Thr	Arg	Ser	Cys	Ser		
185					190					195					200		

ggc ctg gtt cag act gca cgg gga gga agt taaaggctcc tagcaggtcc	800
Gly Leu Val Gln Thr Ala Arg Gly Gly Ser	
205 210	
tgaatccaga gacaaaaatg ctgtgccttc tccagagtct tatgcagtgc ctgggacaca	860
gtaggcactc agcaaacgtt cgttgttgaa ggctgttcta tttatctatt gctgtataac	920
aaaccacccc agaatttagt ggcttaaaat aaatcccatt ttattatgt	969
<210> 148	
<211> 1241	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
⟨222⟩ (20) (517)	
<400> 148	
atttcggggc ggtaccaag atg gac tcc tcg cgg gcc cga cag cag ctc cgg	52
Met Asp Ser Ser Arg Ala Arg Gln Gln Leu Arg	
1 5 10	
cgg cga ttc ctc ctg ccg gac gcc gag gcc cag ctg gac cgc gag	100
Arg Arg Phe Leu Leu Pro Asp Ala Glu Ala Gln Leu Asp Arg Glu	
15 20 25	
ggt gac gcc ggg ccg gaa acc tcc aca gct gtt gag aaa aag gag aaa	148
Gly Asp Ala Gly Pro Glu Thr Ser Thr Ala Val Glu Lys Lys Glu Lys	
30 35 40	
cct ctt cca aga ctt aat atc cat tct gga ttc tgg att ttg gca tcc	196

	45					50					55					
att	gtt	gtg	acc	tat	tat	gtt	gac	ttc	ttt	aaa	acc	ctt	aaa	gaa	aac	244
Ile	Val	Val	Thr	Tyr	Tyr	Val	Asp	Phe	Phe	Lys	Thr	Leu	Lys	Glu	Asn	
60					65					70					75	
ttc	cac	act	agc	agc	tgg	ttt	ctc	tgt	ggc	agt	gcc	ttg	ttg	ctt	gtc	292
Phe	His	Thr	Ser	Ser	Trp	Phe	Leu	Cys	Gly	Ser	Ala	Leu	Leu	Leu	Val	
				80					85					90		
agt	tta	tca	att	gca	ttt	tac	tgc	ata	gtc	tac	ctg	gaa	tgg	tat	tgt	340
Ser	Leu	Ser	Ile	Ala	Phe	Tyr	Cys	Ile	Val	Tyr	Leu	Glu	Trp	Tyr	Cys	
			95					100					105			4
gga	att	gga	gaa	tat	gat	gtc	aag	tat	cca	gcc	ttg	ata	ccc	att	acc	388
Gly	Ile	Gly	Glu	Tyr	Asp	Val	Lys	Tyr	Pro	Ala	Leu	Ile	Pro	Ile	Thr	
		110					115					120				
act	gcc	tcc	ttt	att	gca	gca	gga	att	tgc	ttc	aac	att	gct	tta	tgg	436
Thr	Ala	Ser	Phe	Ile	Ala	Ala	Gly	Ile	Cys	Phe	Asn	Ile	Ala	Leu	Trp	
	125					130					135					
cat	gtg	tgg	tcg	ttt	ttc	act	cca	ttg	ttg	ttg	ttt	acc	cag	ttt	atg	484
His	Val	Trp	Ser	Phe	Phe	Thr	Pro	Leu	Leu	Leu	Phe	Thr	Gln	Phe	Met	
140					145					150					155	
ggg	gtt	gtc	atg	ttt	atc	aca	ctc	ctt	gga	tgat	tt d	cgaa	agaga	ac		530
Gly	Val	Val	Met	Phe	Ile	Thr	Leu	Leu	Gly							
				160					165							
aggg	gtcti	ct a	atgtt	gcc	ca gg	gctgi	tctt1	gaa	ctco	tgg	gato	caagt	tga t	tecto	ectged	590
tcag	ccti	cg a	aagta	ngtte	gg ga	acta	caggo	cca	cgc	acc	gtgo	ctg	gct g	ggaca	atgtaa	650

aaaa 710	taacagaaa	tggcagaccc	gctgaaagca	catccagcta	aatggttaaa	atttgaagtg
tttg 770	tgtgactti	tggggaaaat	aatggtttcc	ctatgaagtg	gtttttgcag	gctacagtgt
ttaa 830	aaattatta	gcatatgcat	tatttcactt	gaataaatta	gttgaaacca	tataactgtt
tctt 890	tttgagtc	tgttaatctg	tattttgcaa	acagaagtac	agtcagtgat	aattttcaga
agtt 950	acaagtagt	aatatttaa	gtgcactgtt	taggtacata	ggtttcattg	tggagaaagt
agga 1010	gtataaagg	gactggatgt	tgtataaaat	agcagttcct	tttaagggat	cactcttcca
tgat 1070	tatttatga	tataatctca	tagtaattac	taaccagctt	catgtgcctt	attatgttgt
gatt 1130	actttagat	ttttctcatc	atattttatg	ccaaatgaaa	ggtgacagga	agttttgtta
cttt 1190	taatcacti	tgtgaagttt	catttcctaa	gggtttttag	gtacattact	ttatcattat
1241	t	tttataactt	ataaaatatt	tatcatttaa	tttttttctg	taagtataca

<210> 149

⟨211⟩ 1174

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (187)... (675)

1

<400> 149

ggaagccggg acgatgtccg catgacaacc gacgttggag tttggaggtg cttgccttag 60
agcaagggaa acagctctca ttcaaaggaa ctagaagcct ctccctcagt ggtagggaga 120
cagccaggag cggtttctg ggaactgtgg gatgtgccct tgggggcccg agaaaacaga 180
aggaag atg ctc cag acc agt aac tac agc ctg gtg ctc tct ctg cag 228

Met Leu Gln Thr Ser Asn Tyr Ser Leu Val Leu Ser Leu Gln

10

5

ttc	ctg	ctg	ctg	tcc	tat	gac	ctc	ttt	gtc	aat	tcc	ttc	tca	gaa	ctg	276
Phe	Leu	Leu	Leu	Ser	Tyr	Asp	Leu	Phe	Val	Asn	Ser	Phe	Ser	Glu	Leu	
15			٠		20					25					30	
ctc	caa	aag	act	cct	gtc	atc	cag	ctt	gtg	ctc	ttc	atc	atc	cag	gat	324
Leu	Gln	Lys	Thr	Pro	Val	Ile	Gln	Leu	Val	Leu	Phe	Ile	Ile	Gln	Asp	
				35					40					45		
att	gca	gtc	ctc	ttc	aac	atc	atc	atc	att	ttc	ctc	atg	ttc	ttc	aac	372
Ile	Ala	Val	Leu	Phe	Asn	Ile	Ile	Ile	Ile	Phe	Leu	Met	Phe	Phe	Asn	
			50					55					60			
acc	ttc	gtc	ttc	cag	gct	ggc	ctg	gtc	aac	ctc	cta	ttc	cat	aag	ttc	420
Thr	Phe	Val	Phe	Gln	Ala	Gly	Leu	Val	Asn	Leu	Leu	Phe	His	Lys	Phe	
		65					70					75				
aaa	ggg	acc	atc	atc	ctg	aca	gct	gtg	tac	ttt	gcc	ctc	agc	atc	tcc	468
Lys	Gly	Thr	Ile	Ile	Leu	Thr	Ala	Val	Tyr	Phe	Ala	Leu	Ser	Ile	Ser	
	80					85					90					
ctt	cat	gtc	tgg	gtc	atg	aac	tta	cgc	tgg	aaa	aac	tcc	aac	agc	ttc	516
Leu	His	Val	Trp	Val	Met	Asn	Leu	Arg	Trp	Lys	Asn	Ser	Asn	Ser	Phe	
95					100					105					110	
ata	tgg	aca	gat	gga	ctt	caa	atg	ctg	ttt	gta	ttc	cag	aga	cta	gca	564
Ile	Trp	Thr	Asp	Gly	Leu	G1n	Met	Leu	Phe	Val	Phe	Gln	Arg	Leu	Ala	
				115					120					125		
gca	gtg	ttg	tac	tgc	tac	ttc	tat	aaa	cgg	aca	gcc	gta	aga	cta	ggc	612
Ala	Val	Leu	Tyr	Cys	Tyr	Phe	Tyr	Lys	Arg	Thr	Ala	Val	Arg	Leu	Gly	
			130					135					140			
gat	cct	cac	ttc	tac	cag	gac	tct	ttg	tgg	ctg	cgc	aag	gag	ttc	atg	660

Asp Pro His Phe Tyr Gln Asp Ser Leu Trp Leu Arg Lys Glu Phe Met

145 150 155

caa gtt cga agg tgacctct tgtcacactg atggatactt ttccttcctg 710
Gln Val Arg Arg

160

770 atagaagcca catttgctgc tttgcaggga gagttggccc tatgcatggg caaacagctg 830 gactttccaa ggaaggttca gactagctgt gttcagcatt caagaaggaa gatcctccct 890 cttgcacaat tagagtgtcc ccatcggtct ccagtgcggc atcccttcct tgccttctac 950 ctctgttcca ccccctttcc ttcctttcct ctctgtacca ttcattctcc ctgaccggcc tttcttgccg agggttctgt ggctcttacc cttgtgaagc ttttccttta gcctgggaca 1010 1070 gaaggacctc ccagccccca aaggatctcc cagtgaccaa aggatgcgaa gagtgatagt 1130 tacgtgctcc tgactgatca caccgcagac atttagattt ttatacccaa ggcactttaa 1174 aaaaatgttt tataaataga gaataaattg aattcttgtt ccat

<210> 150

<211> 1012

<212> DNA

<213> Homo sapiens

⟨220⟩

<221> CDS

<222> (208)...(873)

<400> 150

gcetettece caggggeege gteggageet eegeggegge ggeggtgett acageetgag 60
aagagegtet egeeeggag eggeggege eategagace eaceeaagge gegteeeet 120
eggeeteea gegeteeaa geegeagegg eegegeeet teagetaget egetegeteg 180

WO 01/12660 PCT/JP00/05356

ctct	gctt	cc (ctgct	gccg	gg ct	gcgc	c at	tg go	g ti	tg go	g tt	g g	cg go	cg c1	tg	231
							Ме	et Al	la Le	eu Al	la Le	eu A	la Al	la Ļ	eu į	
								1				5				
gcg	gcg	gtc	gag	ccg	gcc	tgc	ggc	agc	cgg	tac	cag	cag	ttg	cag	aat	279
Ala	Ala	Val	Glu	Pro	Ala	Cys	Gly	Ser	Arg	Tyr	Gln	Gln	Leu	G1n	Asn	
	10					15					20					
gaa	gaa	gag	tct	gga	gaa	cct	gaa	cag	gct	gca	ggt	gat	gct	cct	cca	327
Glu	Glu	Glu	Ser	Gly	Glu	Pro	Glu	Gln	Ala	Ala	Gly	Asp	Ala	Pro	Pro	
25					30					35					40	
cct	tac	agc	agc	att	tct	gca	gag	agc	gca	gca	tat	ttt	gac	tac	aag	375
Pro	Tyr	Ser	Ser	Ile	Ser	Ala	Glu	Ser	Ala	Ala	Tyr	Phe	Asp	Tyr	Lys	
			•	45					50					55		
gat	gag	tct	ggg	ttt	cca	aag	ссс	cca	tct	tac	aat	gta	gct	aca	aca	423
Asp	Glu	Ser	Gly	Phe	Pro	Lys	Pro	Pro	Ser	Tyr	Asn	Val	Ala	Thr	Thr	
			60					65					70			
ctg	ссс	agt	tat	gat	gaa	gcg	gag	agg	acc	aag	gct	gaa	gct	act	atc	471
Leu	Pro	Ser	Tyr	Asp	Glu	Ala	Glu	Arg	Thr	Lys	Ala	Glu	Ala	Thr	Ile	
		75					80					85				
cct	ttg	gtt	cct	ggg	aga	gat	gag	gat	ttt	gtg	ggt	cgg	gat	gat	ttt	519
Pro	Leu	Val	Pro	Gly	Arg	Asp	Glu	Asp	Phe	Val	Gly	Arg	Asp	Asp	Phe	
	90					95					100					
gat	gat	gct	gac	cag	ctg	agg	ata	gga	aat	gat		att	ttc	atg	tta	567
			Asp													
105	•		- 4		110	3		-,		115	/			- *	120	
	ttt	ttc	atg	gca		ete	+++	aac	taa		aaa	t	ttc	ctø		615

Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe	Asn	Trp	Ile	Gly	Phe	Phe	Leu	Ser	
				125					130			٠		135		
ttt	tgc	ctg	acc	act	tca	gct	gca	gga	agg	tat	ggg	gcc	att	tca	gga	663
Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala	Gly	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	
			140					145					150			
ttt	ggt	ctc	tct	cta	att	aaa	tgg	atc	ctg	att	gtc	agg	ttt	tcc	acc	711
Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp	Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	
		155					160					165				
tat	ttc	cct	gga	tat	ttt	gat	ggt	cag	tac	tgg	ctc	tgg	tgg	gtg	ttc	759
Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly	Gln	Tyr	Trp	Leu	Trp	Trp	Val	Phe	
	170					175					180					
ctt	gtt	tta	ggc	ttt	ctc	ctg	ttt	ctc	aga	gga	ttt	atc	aat	tat	gca	807
Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe	Leu	Arg	Gly	Phe	Ile	Asn	Tyr	Ala	
185					190					195					200	
aaa	gtt	cgg	aag	atg	cca	gaa	act	ttc	tca	aat	ctc	ccc	agg	acc	aga	855
Lys	Val	Arg	Lys	Met	Pro	Glu	Thr	Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	
				205					210					215		
gtt	ctc	ttt	att	tat	taaa	gatg	gtt t	tctg	gcaa	a gg	gcctt	cct	g cat	ttat	gaa	910
Val	Leu	Phe	Ile	Tyr					,				٠			
			220				,									
ttct	ctct	ca a	ıgaag	gcaag	ga ga	acac	ctgo	age	gaagt	gaa	tcaa	igate	gca g	gaaca	cagag	970
gaat	aato	ac c	tgct	ttaa	ia aa	aata	aagt	act	gttg	gaaa	ag					1012