Artificial Intelligence and Drone Autonomous Drone

Sejong University Computer Engineering Prof. Yong-Guk Kim

Nvidia 드론 주행(2017)

Alphabet 드론 배송(2019)

https://www.newsweek.com/wing-drone-first-commercial-delivery-1466471 https://arxiv.org/pdf/1705.02550.pdf

Lockheed Martin Autonomous Drone Competition

IROS Autonomous Drone Competition

[∞] Game of Drones: A NeurIPS 2019 Competition

Quickstart

- Website
- Register
- Competition guidelines
- Linux and Windows Binaries
- Python API, airsimneurips PyPI package

NeuralPS Autonomous Drone Competition

세종대학교 Background - Drone Navigation using Deep Learning

Advantage

- Stable Performance
- Training for a special case
- Vision based training

Disadvantage

- Lot of data labeling
- New dataset for a new situation
- Can not check labeling accuracy

Advantage

- No dataset and no labeling
- Training using environment data
- Easy for new environment

Disadvantage

- Difference between real and simulated environment
- Reward Function Design

세종대학교 Background- Drone Navigation using Supervised Learning

Loquercio et al

- 70,000 images (street)
- bicycle
- 3 labels(regression):
 - Steering(-1~1)
 - Velocity(0~3.0)
- Parrot Bebop Flight Controller + **ROS**

Giusti et al

- 17,119 images(forest)
- 3 labels(Classification):
 - Turn left(0)
 - Turn Right(1)
 - Go Straight(2)
- Parrot AR Drone Flight Controller + ROS

세종대학교 Background- Reinforcement Learning(Discrete)

- greedy-policy for maximize the reward
- Off-Policy algorithm
- (State, Action, Reward, Next State) are stored in buffer
 - State: images
 - Action:
 - Reward
 - Next State: images
- Image based traning

Deep Q-networks (DQN)

🍪 পাক্র বাণ্ডন Simulation Environment

Welcome to AirSim

AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open-source, cross platform, and supports hardware-in-loop with popular flight controllers such as PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped into any Unreal environment. Similarly, we have an experimental release for a Unity plugin.

Our goal is to develop AirSim as a platform for AI research to experiment with deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim also exposes APIs to retrieve data and control vehicles in a platform independent way.

Check out the quick 1.5 minute demo

Drones in AirSim

Cars in AirSim

3 VR environments

Woodland block-world Arena

DQN + Dueling DQN + Double DQN

Results

- State, Action, Reward, Next State
- Policy Network and Value Network
- Continuous output
- Image -> High dimensional

Actor Critic Networks

세종대학교 SEJONG UNIVERSITY Method — System Flow Diagram

Our Network during Training State value Critic Net. Environment(Virtual) Calculating optical flow S_{t-1} , label map Generating a label map FPV from UAV Reward Actor-Critic Training Replay Buffer **U-Net Training** Linear velocities (X,Y,Z) Actor Net. Segmentation Model(U-Net) Pooling and 1D vectorize Model Transfer Model Transfer Our Network for Control Linear velocities (X,Y,Z)Actor Net. Pooling and 1D vectorize Environment(Real) U-Net

Method – Generating Label Map for U-Net

- S_{t-1} and S_t (Optical Flow algorithm[7])
- Matrix 1D Flattening
- Label Map generation

세종대학교 Experiment – Performances of RL Algorithms

- 4 Actor-Critic algorithms
- Deep Deterministic Policy Gradient(DDPG)
- Trust Region Policy Optimization(TRPO)
- Proximal Policy Optimization(PPO)
- Actor-Critic using Kronecker-Factored Trust Region(ACKTR)
- ACKTR outperforms others

세종대학교 Experiment – Real Environment

- Real environment
- ACKTR의 Actor Network and U-Net
- Parrot Bebop 2.0
- ROS + Wifi
- Ubuntu 18.04 OS + Nvidia GTX 1060
- Average execution time: 83 ms
- Total memory usage: 300 MiB

세종대학교 Experiment - Segmentation Map and Moving Direction

세종대학교 Experiment – Trajectory in Real Environments

- Trajectories from Real Environment
- Parrot ROS Library
- Altitude control

১৯ পাক্র প্রাইন Experiment − Success Ratio

Real Environments	Trials	Complete/Non-Complete
conf. 1 (Fig. 8a)	20	19/1
conf. 2 (Fig. 8b)	20	17/3
conf. 3 (Fig. 8c)	20	15/5
conf. 4 (Fig. 8d)	20	11/9

- Actor-Critic and U-Net for obstacle avoidance drone
- Cooperation between Neural Networks
- High dimensional data(Image) for Continuous case
- Segmentation network
- Reconfigured environments