Fundamentos de Econometría

Ignacio Lobato

ITAM

Regresión Corta y Larga

- Partimos la matriz de regresores en 2: $X = (X_1, X_2)$
- X_1 es de dimensión $n \times k_1$ y X_2 es de dimensión $n \times k_2$
- De igual forma: $b = (b'_1, b'_2)'$
- La regresión se rescribe como:

$$Y = Xb + e = (X_1X_2)\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} + e = X_1b_1 + X_2b_2 + e$$

• $X_1'e = 0$ y $X_2'e = 0$

• Corriendo la regresión de y en X_1 , el problema:

$$\min_{c_1} (Y - X_1 c_1)' (Y - X_1 c_1)$$

es de rango completo

• El vector de coeficientes es $b_1^* = A_1 Y$ y el de residuales $e^* = M_1 y$, donde:

$$A_{1} = (X'_{1}X_{1})^{-1}X'_{1}$$
 y $M_{1} = I_{n} - X_{1}A_{1}$

También se cumple que:

$$A_1X_1 = I_{k_1}, \quad M_1X_1 = O, \quad X_1'e^* = 0$$

• El modelo estimado es:

$$Y = X_1b_1^* + e^*$$

- Corremos ahora la regresión de X_2 en X_1
- Se obtiene un conjunto de regresiones auxiliares:

$$x_j = X_1 f_j + x_j^* \quad (j = k_1 + 1, \dots, k)$$

donde $f_j = A_1 x_j$ y $x_i^* = M_1 x_j$

- En notación matricial: $X_2 = X_1F + X_2^*$
- $F_{k_1 \times k_2} = (f_{k_1+1}, \dots, f_k) = A_1 X_2$, donde cada renglón contiene los coeficientes de una columna de X_2 en las columnas de X_1
- $X_2^* = (x_{k_1+1}^*, \dots, x_k^*) = M_1 X_2$, donde cada renglón contiene los residuales de la regresión anterior

Obtenemos los coeficientes de la regresión corta:

$$b_1^* = A_1 Y = A_1 (X_1 b_1 + X_2 b_2 + e) = b_1 + F b_2$$

- Los coeficientes de la regresión corta son una combinación lineal de los coeficientes de X_1 y X_2 en la regresión larga
- Los residuales:

$$e^* = M_1 Y = M_1 (X_1 b_1 + X_2 b_2 + e) = X_2^* b_2 + e$$

- $e^{*'}e^* = e'e + b_2'X_2^{*'}X_2^*b_2$
- $b_2' X_2^{*'} X_2^* b_2 \ge 0$
- La suma de residuales cuadrados es mayor en la regresión corta que en la larga

- La regresión corta no puede mejorar el ajuste
- $b_2' X_2^{*'} X_2^* b_2 = 0 \Leftrightarrow X_2^* b_2 = 0 \Leftrightarrow b_2 = 0$
- La regresión corta es equivalente a la larga con la restricción de que los coeficientes de $X_2 = 0$
- Un mínimo restringido no puede ser menor que uno no restringido
- La regresión corta difiere de la larga excepto cuando:
 - $b_2 = 0 \Rightarrow b_1^* = b_1, e^* = e$
 - $X_1'X_2 = O \Rightarrow F = A_1X_2, X_2^* = X_2, b_1^* = b_1$, aunque $e^* \neq e$

Regresión Residual

- Se corre la regresión de Y en $X_2^* = M_1 X_2$, los residuales de la regresión de X_2 en X_1
- El vector de coeficientes es $c_2 = A_2^* y$, donde:

$$A_2^* = \left(X_2^{*'}X_2^*\right)^{-1}X_2^{*'} = \left(X_2^{*'}X_2^*\right)^{-1}X_2'M_1$$

Además:

$$M_1 Y = M_1 (X_1 b_1 + X_2 b_2 + e) = X_2^* b_2 + e$$

 $X_2' X_2^* = X_2' M_1 X_2 = X_2' M_1' M_1 X_2 = X_2^{*'} X_2^*$

• Entonces $c_2 = A_2^* Y = b_2$ es el subvector de b que contiene los coeficientes de X_2 en la regresión larga

Regresión Residual

- b₂ se puede obtener en 2 pasos:
 - Correr la regresión de X_2 en X_1 , para obtener los residuales X_2^*
 - Correr la regresión de Y en X_2^* , para obtener los coeficientes b_2
- Con b₂ se puede completar el vector de coeficientes b de la regresión larga:
 - Corriendo la regresión de Y en X_1 , para obtener $b_1^* = A_1 y$
 - Recuperar $b_1 = b_1^* Fb_2$, donde $F = A_1X_2$
- c_2 solo toma en cuenta X_2^* , el componente de X_2 que no está linealmente relacionado a X_1
- c_2 relaciona y con X_2 controlando los efectos de X_1

Regresión Corta en el Modelo Clásico

- Partimos la matriz de regresores en 2: $X = (X_1X_2)$
- X_1 es de dimensión nxk_1 y X_2 es de dimensión nxk_2
- $E(Y) = X_1\beta_1 + X_2\beta_2$
- La regresión larga se separa como:

$$Y = Xb + e = X_1b_1 + X_2b_2 + e$$

Sabemos que:

$$E\begin{pmatrix}b_1\\b_2\end{pmatrix}=\begin{pmatrix}\beta_1\\\beta_2\end{pmatrix}, V(b)=\sigma^2Q^{-1}=\sigma^2\begin{pmatrix}Q^{11}&Q^{12}\\Q^{21}&Q^{22}\end{pmatrix}$$

• Si realizamos la regresión de Y en X_1 , obtenemos $b_1^* = A_1 Y$, con:

$$E(b_1^*) = A_1 E(Y) = A_1 (X_1 \beta_1 + X_2 \beta_2) = \beta_1 + F \beta_2$$
$$V(b_1^*) = A_1 V(Y) A_1' = \sigma^2 A_1 A_1' = \sigma^2 (X_1' X_1)^{-1}$$

- Sesgo de variables omitidas: en general b_1^* es un estimador sesgado de β_1
- Existen 2 casos en los que b_1^* es insesgado:
 - Variables omitidas irrelevantes: $\beta_2 = 0$
 - Variables explicativas ortogonales: F = 0

Varianza de la Regresión Corta

La varianza del modelo corto es menor que en el largo:

$$V\left(b_{1}
ight)\geq V\left(b_{1}^{st}
ight)$$

• Recordemos que:

$$b_1=b_1^*-Fb_2$$

Luego:

$$C(b_1^*, b_2) = A_1 V(Y) A_2^{*'} = \sigma^2 A_1 A_2^{*'}$$

Por lo tanto:

$$V\left(b_{1}\right)=V\left(b_{1}^{*}\right)+FV\left(b_{2}\right)F'$$

- Donde $FV(b_2)F' \ge 0$
- ullet Existe un trade-off entre sesgo y varianza al estimar eta_1

Residuales de la Regresión Corta

• Los residuales de la regresión corta, $e^* = M_1 Y$ satisfacen:

$$E(e^*) = M_1 E(Y) = M_1 (X_1 \beta_1 + X_2 \beta_2) = X_2^* \beta_2$$

$$V(e^*) = M_1 V(Y) M_1' = \sigma^2 M_1$$

- En general los residuales de la regresión corta no tienen esperanza igual a cero
- La esperanza de la suma de los residuales al cuadrado es:

$$E\left(e^{*'}e^{*}\right) = \sigma^{2}tr\left(M_{1}\right) + \beta_{2}'X_{2}^{*'}X_{2}^{*}\beta_{2} = \sigma^{2}\left(n - k_{1}\right) + \beta_{2}'X_{2}^{*'}X_{2}^{*}\beta_{2}$$

Por lo tanto:

$$E(e^{*'}e^*) - E(e'e) = \sigma^2 k_2 + \beta_2' X_2^{*'} X_2^* \beta_2$$

Regresión Residual

• El vector de coeficientes de la regresión de Y en $X_2^* = M_1 X_2$, $c_2 = A_2^* Y = b_2$ cumple con:

$$E(b_2) = A_2^* E(Y) = A_2^* (X_1 \beta_1 + X_2 \beta_2) = \beta_2$$

$$V(b_2) = A_2^* V(Y) A_2^{*'} = \sigma^2 A_2^* A_2^{*'} = \sigma^2 \left(X_2^{*'} X_2^* \right)^{-1} = \sigma^2 \left(Q_{22}^* \right)^{-1}$$

• b_2 es subvector de b, entonces $V\left(b_2\right)$ está dado por la submatriz (de dimensión $k_2 \times k_2$ inferior derecha de $V\left(b\right) = \sigma^2 Q^{-1}$

Teorema de la Submatriz Inversa

• Para una matriz positiva definida Q y su inversa Q^{-1} , las partimos como:

$$Q = \left(\begin{array}{cc} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{array} \right), \quad Q^{-1} = \left(\begin{array}{cc} Q^{11} & Q^{12} \\ Q^{21} & Q^{22} \end{array} \right)$$

donde las submatrices en la diagonal son cuadradas

• Entonces:

$$Q^{22} = (Q_{22}^*)^{-1}$$

donde

$$Q_{22}^{*} = Q_{22} - Q_{21} (Q_{11})^{-1} Q_{12}$$

Regresión Neoclásica (supuestos)

•
$$E(Y|X) = X\beta$$

- $V(Y|X) = \sigma^2 I$
- $X_{n \times k} = (x_1, \dots, x_k)$ es estocástica
- rango(X) = k

Regresión Neoclásica

• De la estimación de mínimos cuadrados para β , b = AY, y sus residuales e = MY, recordemos que:

$$E(b|X) = E(AY|X) = AE(Y|X) = AX\beta = \beta$$

$$V(b|X) = V(AY|X) = AV(Y|X)A' = \sigma^2AA' = \sigma^2Q^{-1}$$

$$E(e|X) = E(MY|X) = ME(Y|X) = MX\beta = 0$$

$$V(e|X) = V(MY|X) = MV(Y|X)M' = \sigma^2M$$

Regresión Neoclásica

De los resultados anteriores se sigue:

$$E(e'e|X) = \sigma^2 tr(M) = \sigma^2(n-k)$$

• Como no conocemos σ^2 , proponemos or tanto, $\hat{\sigma}^2 = \frac{e'e}{n-k}$, de modo que:

$$E\left(\hat{\sigma}^{2}|X\right) = \sigma^{2}$$

$$E\left[\hat{V}\left(b\right)|X\right] = E\left(\hat{\sigma}^{2}Q^{-1}|X\right) = E\left(\hat{\sigma}^{2}|X\right)Q^{-1}$$

• Condicional en X, los estimadores b, $\hat{\sigma}^2$ y $\hat{V}(b)$ son insesgados

Utilizando la LEI con los resultados anteriores:

$$E(b) = E_X [E(b|X)] = \beta$$

$$V(b) = E_X [V(b|X)] + V_X [E(b|X)] = \sigma^2 E(Q^{-1})$$

$$E(\hat{\sigma}^2) = E_X [E(\hat{\sigma}^2|X)] = \sigma^2$$

$$E[\hat{V}(b)] = E_X \{E[\hat{V}(b)|X]\} = \sigma^2 E(Q^{-1})$$

- Los estimadores b, $\hat{\sigma}^2$ y $\hat{V}(b)$ son insesgados incondicionalmente
- Para el análisis de la regresión corta:

$$E(b_1^*) = \beta_1 + E(F)\beta_2, \quad E(e^{*'}e^*) = \sigma^2(n-k_1) + \beta_2'E(Q_{22}^*)\beta_2$$

Supuesto de Normalidad

 Ahora asumimos que la distribución de Y condicional en X se distribuye normal:

$$Y|X \sim N(X\beta, \sigma^2 I_n)$$

• Para algún coeficiente b_i:

$$b_j|X \sim N\left(\beta_j, \sigma^2 q^{jj}\right)$$

- ullet La distribución marginal de b_j no necesariamente es normal
- Sin embargo, obteniendo $z_j = \frac{b_j \beta_j}{\sigma \sqrt{q^{jj}}}$:

$$z_{j}|X \sim N(0,1)$$

• La distribución marginal de z_i es N(0,1)

Ejemplo

• Para algún β_j^0 , sea $z_j^0=\frac{b_j-\beta_j^0}{\sigma\sqrt{q^{jj}}}$, si la hipótesis nula $H_0:\beta_j=\beta_j^0$ es verdadera:

$$P\left[\left(z_{j}^{0}>c\right)|X\right]=P\left[\left(z_{j}>c\right)|X\right]=1-\Phi\left(c\right)$$

• La probabilidad no varía con X, por lo tanto, si H_0 es verdadera:

$$P\left(z_{j}^{0}>c\right)=1-\Phi\left(c\right)$$

• De igual forma para $u_j = rac{b_j - eta_j}{\hat{\sigma} \sqrt{q^{jj}}}$:

$$u_j|X\sim t(n-k)$$

para toda X, por lo que $u_i \sim t(n-k)$

- ullet Lo mismo aplica para los estadísticos χ^2 y F
- Las distribuciones son exactas