Pré-Cálculo

Humberto José Bortolossi

Departamento de Matemática Aplicada Universidade Federal Fluminense

Parte 3

Funções monótonas

Parte 3 Pré-Cálculo 1 Parte 3

em

Funções crescentes

Definição

Dizemos que uma função $f \colon D \to C$ é crescente um subconjunto S de D se

$$\forall x_1, x_2 \in S, \quad x_1 < x_2 \quad \Rightarrow \quad f(x_1) < f(x_2).$$

Funções decrescentes

Parte 3

Definição

Dizemos que uma função $f\colon D\to C$ é decrescente em um subconjunto S de D se

$$\forall x_1, x_2 \in \mathcal{S}, \quad x_1 < x_2 \quad \Rightarrow \quad f(x_1) > f(x_2).$$

Pré-Cálculo

Funções monótonas não-decrescentes

Definição

Dizemos que uma função $f\colon D\to C$ é monótona não-decrescente em um subconjunto S de D se

$$\forall x_1, x_2 \in \mathcal{S}, \quad x_1 < x_2 \quad \Rightarrow \quad f(x_1) \leq f(x_2).$$

Parte 3 Pré-Cálculo

Funções monótonas não-decrescentes

Definição

Dizemos que uma função $f\colon D\to C$ é monótona não-decrescente em um subconjunto S de D se

$$\forall x_1, x_2 \in S, \quad x_1 < x_2 \quad \Rightarrow \quad f(x_1) \leq f(x_2).$$

Parte 3 Pré-Cálculo

Funções monótonas não-crescentes

Definição

Dizemos que uma função $f \colon D \to C$ é monótona não-crescente em um subconjunto S de D se

$$\forall x_1, x_2 \in \mathcal{S}, \quad x_1 < x_2 \quad \Rightarrow \quad f(x_1) \geq f(x_2).$$

Funções monótonas não-crescentes

Definição

Dizemos que uma função $f \colon D \to C$ é monótona não-crescente em um subconjunto S de D se

$$\forall x_1, x_2 \in \mathcal{S}, \quad x_1 < x_2 \quad \Rightarrow \quad f(x_1) \geq f(x_2).$$

Observações

- ▶ Uma função monótona em um conjunto *S* é uma função que é crescente, decrescente, monótona não-decrescente ou monótona não-crescente neste conjunto.
- ▶ Note que toda função crescente em um conjunto *S* também é monótona não-decrescente neste conjunto e que toda função decrescente em um conjunto *S* também é monótona não-crescente neste conjunto.
- ▶ Alguns autores chamam funções monótonas não-decrescentes simplesmente de funções não-decrescentes e funções monótonas não-crescentes simplesmente de funções não-crescentes. Note, contudo, que negar (por exemplo) que uma função seja decrescente em um conjunto *S* não implica necessariamente que ela seja monótona não-decrescente neste conjunto.
- ▶ Uma função é estritamente monótona em um conjunto *S* se ou ela é crescente ou ela é decrescente neste conjunto.

Parte 3 Pré-Cálculo 9

Exemplo

Mostre que a função $y = f(x) = x^2$ é crescente no intervalo $S = [0, +\infty)$.

Demonstração. Sejam $x_1, x_2 \in S = [0, +\infty)$, com $x_1 < x_2$. Com estas condições, vale que $x_2 > 0$ e

$$x_2 - x_1 > 0$$
.

Como $x_1 \ge 0$ e $x_2 > 0$, segue-se que

$$x_2 + x_1 > 0$$
.

Como o produto de dois números reais positivos é ainda um número real positivo, temos que

$$(x_2-x_1)(x_2+x_1)>0.$$

Sendo assim.

$$x_2^2 - x_1^2 > 0$$

e, consequentemente,

$$x_2^2 > x_1^2$$

isto é, $f(x_2) > f(x_1)$. Mostramos então que $\forall x_1, x_2 \in S, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$. Logo, f é uma função crescente em S.

Observações

Existem funções que não são monótonas. Por exemplo, a função descrita na figura abaixo não é monótona no conjunto S = [-1, 4]. Contudo, ela é monótona em [-1, 0], em [0, 1], em [1, 3] e em [3, 4].

Parte 3 Pré-Cálculo 10

Estudar o crescimento de funções pode ser difícil!

Em quais intervalos a função f abaixo é crescente?

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = \frac{2^x}{x^2 + 1}$

f é crescente nos intervalos

$$\left(-\infty, \frac{1-\sqrt{1-(\ln(2))^2}}{\ln(2)}\right] = \left(-\infty, 0.402806113\ldots\right] e^{\left[\frac{1+\sqrt{1-(\ln(2))^2}}{\ln(2)}, +\infty\right)} = [2.482583968\ldots, +\infty).$$

A disciplina de Cálculo ensinará novas ferramentas para se resolver questões deste tipo!

Parte 3

Estudar o crescimento de funções pode ser difícil!

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = \frac{2^x}{x^2 + 1}$$

Funções injetivas, sobrejetivas e bijetivas

Parte 3 Pré-Cálculo 13

Parte 3 Pré-Cálculo 14

Funções injetivas

Parte 3

Definição

Dizemos que $f: D \to C$ é injetiva se elementos diferentes de D são transformados por f em elementos diferentes em C, isto é, se f satisfaz a seguinte condição: $\forall x_1, x_2 \in D$, se $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.

Forma equivalente (usando a contrapositiva): $f: D \to C$ é injetiva se ela satisfaz a seguinte condição: $\forall x_1, x_2 \in D$, se $f(x_1) = f(x_2)$, então $x_1 = x_2$.

Funções injetivas

(Ir para o GeoGebra)

Funções injetivas

Parte 3 Pré-Cálculo

Funções injetivas

(Ir para o GeoGebra)

Parte 3 Pré-Cálculo 18

Exemplo

Mostre que a função $f: \mathbb{R} \to \mathbb{R}$ definida por y = f(x) = 2x + 1 é injetiva.

Demonstração. Sejam $x_1, x_2 \in \mathbb{R}$ tais que

$$f(x_1)=f(x_2).$$

Temos que

$$f(x_1) = f(x_2) \Rightarrow 2x_1 + 1 = 2x_2 + 1 \Rightarrow 2x_1 = 2x_2 \Rightarrow x_1 = x_2.$$

Exercício

Mostre que a função $f:[0,+\infty)\to\mathbb{R}$ definida por $y=f(x)=x^2$ é injetiva.

Demonstração. Sejam $x_1, x_2 \in \mathbb{R}$ tais que

Parte 3

$$f(x_1)=f(x_2).$$

Temos que

$$f(x_1) = f(x_2) \Rightarrow x_1^2 = x_2^2 \Rightarrow x_1^2 - x_2^2 = 0 \Rightarrow (x_1 - x_2)(x_1 + x_2) = 0.$$

Assim, $x_1 - x_2 = 0$ ou $x_1 + x_2 = 0$, isto é, $x_1 = x_2$ ou $x_1 = -x_2$. No caso em que $x_1 = -x_2$, como $x_1 \ge 0$ e $x_2 \ge 0$, concluímos que obrigatoriamente $x_1 = 0$ e $x_2 = 0$. Em particular, $x_1 = x_2$.

Outra demonstração. sejam $x_1, x_2 \in [0, +\infty)$, com $x_1 \neq x_2$. Então $x_1 < x_2$ ou $x_2 < x_1$. Como f é crescente em $[0, +\infty)$, segue-se que $f(x_1) < f(x_2)$ ou $f(x_2) < f(x_1)$. Nos dois casos, $f(x_1) \neq f(x_2)$.

19

Funções sobrejetivas

Definição

Dizemos que $f: D \rightarrow C$ é sobrejetiva se sua imagem é igual ao seu contradomínio, isto é, se para todo $y \in C$, pode-se encontrar (pelo menos) um elemento $x \in D$ tal que f(x) = y.

Funções sobrejetivas

(Ir para o GeoGebra)

Parte 3 Pré-Cálculo Parte 3 Pré-Cálculo 22

Funções sobrejetivas

Funções sobrejetivas

Parte 3

21

$$f \colon \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = 1$ não é injetiva!

Mas

$$g \colon \mathbb{R} \to \{1\}$$

 $x \mapsto g(x) = 1$ é injetiva!

Parte 3 Pré-Cálculo 23

Exemplo

Mostre que a função $f: \mathbb{R} \to \mathbb{R}$ definida por y = f(x) = 2x + 1 é sobrejetiva.

Demonstração. Seja $y \in \mathbb{R}$. Observe que

$$f(x) = y \Leftrightarrow 2x + 1 = y \Leftrightarrow 2x = y - 1 \Leftrightarrow x = \frac{y - 1}{2}.$$

Assim, $x = (y - 1)/2 \in \mathbb{R}$ é tal que f(x) = y. Isto mostra que f é sobrejetiva.

Atenção!

Mostrar que a função $f: [0, +\infty) \to [0, +\infty)$ definida por $y = f(x) = x^2$ é sobrejetiva é bem mais complicado!

Para fazer isto, precisaríamos do conceito de continuidade, que será visto em Cálculo I -A-.

Parte 3

Pré-Cálculo

25

Parte 3

Parte 3

Pré-Cálculo

26

Funções bijetivas

Definição

Dizemos que $f: D \to C$ é bijetiva se ela é injetiva e sobrejetiva.

Funções bijetivas

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = 2x + 1$ é bijetiva.

Funções bijetivas

 $f\colon \ \mathbb{R} \ o \ \mathbb{R}$ $x \mapsto f(x) = x^2$ não é bijetiva, pois não é injetiva e nem sobrejetiva.

Parte 3 Pré-Cálculo

Funções bijetivas

 $f\colon \ \mathbb{R} \to [0,+\infty)$ $x\mapsto f(x)=x^2$ não é bijetiva, pois não é injetiva (mas é sobrejetiva).

Parte 3 Pré-Cálculo

Funções bijetivas

$$f: [0, +\infty) \rightarrow [0, +\infty)$$

 $x \mapsto f(x) = x^2$ é bijetiva.

Novas funções a partir de antigas: operações com funções

Parte 3

29

31

Operações com funções

Definição

Sejam $f\colon D_f\to\mathbb{R}$ e $g\colon D_g\to\mathbb{R}$ duas funções reais. Definimos as funções soma f+g, diferença f-g, produto $f\cdot g$ e quociente f/g da seguinte forma:

$$\begin{array}{lll} (f+g)(x) & = & f(x)+g(x), & & \text{com } D_{f+g} = D_f \cap D_g \\ (f-g)(x) & = & f(x)-g(x), & & \text{com } D_{f-g} = D_f \cap D_g \\ (f \cdot g)(x) & = & f(x) \cdot g(x), & & \text{com } D_f \cdot g = D_f \cap D_g \\ (f/g)(x) & = & f(x)/g(x), & & \text{com } D_{f/g} = \{x \in D_f \cap D_g \mid g(x) \neq 0\}. \end{array}$$

Exemplo: soma

$$f(x) = 1 + \sqrt{x-2},$$
 $g(x) = x-3.$ $D_f = [2, +\infty),$ $D_g = \mathbb{R}.$

$$(f+g)(x) = f(x) + g(x) = 1 + \sqrt{x-2} + x - 3 = x - 2 + \sqrt{x-2},$$

$$D_{f+g} = D_f \cap D_g = [2, +\infty).$$

Parte 3 Pré-Cálculo 33

Exemplo: diferença

$$f(x) = 1 + \sqrt{x - 2},$$
 $g(x) = x - 3.$ $D_f = [2, +\infty),$ $D_g = \mathbb{R}.$

$$(f-g)(x) = f(x) - g(x) = 1 + \sqrt{x-2} - (x-3) = 4 - x + \sqrt{x-2},$$

$$D_{f-g} = D_f \cap D_g = [2, +\infty).$$

Exemplo: produto

Parte 3

Parte 3

$$f(x) = 1 + \sqrt{x - 2},$$
 $g(x) = x - 3.$ $D_f = [2, +\infty),$ $D_g = \mathbb{R}.$

$$(f \cdot g)(x) = f(x) \cdot g(x) = (1 + \sqrt{x-2}) \cdot (x-3),$$

$$D_{f \cdot g} = D_f \cap D_g = [2, +\infty).$$

Pré-Cálculo

Exemplo: quociente

$f(x) = 1 + \sqrt{x-2},$ g(x) = x-3. $D_f = [2, +\infty),$ $D_g = \mathbb{R}.$

$$(f/g)(x) = f(x)/g(x) = \frac{1+\sqrt{x-2}}{x-3},$$

$$D_{f/g} = D_f \cap D_g - \{x \in D_g \mid g(x) = 0\} = [2, +\infty) - \{3\}.$$

Parte 3 Pré-Cálculo

Composição de funções

Cuidado!

$$f(x) = x,$$
 $g(x) = x.$ $D_f = \mathbb{R},$ $D_g = \mathbb{R}.$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x}{x} = 1,$$

$$D_{f/g} = D_f \cap D_g - \{x \in D_g \mid g(x) = 0\} = \mathbb{R} - \{0\}.$$

Composição de funções

Parte 3

Parte 3

Definição

Sejam $f: D_f \to C_f$ e $g: D_g \to C_g$ duas funções reais tais que $C_g \subset D_f$. A composição de f e g é a função $f \circ g: D_g \to C_f$ definida por:

$$(f\circ g)(x)=f(g(x)).$$

37

Pré-Cálculo

Composição de funções

Definição

Sejam $f: D_f \to C_f$ e $g: D_g \to C_g$ duas funções reais tais que $C_g \subset D_f$. A composição de f e g é a função $f \circ g: D_g \to C_f$ definida por:

$$(f\circ g)(x)=f(g(x)).$$

Parte 3 Pré-Cálculo 41

Composição de funções

Definição

Sejam $f: D_f \to C_f$ e $g: D_g \to C_g$ duas funções reais tais que $C_g \subset D_f$. A composição de f e g é a função $f \circ g: D_g \to C_f$ definida por:

$$(f\circ g)(x)=f(g(x)).$$

Parte 3 Pré-Cálculo 42

f(g(x))

Exemplo

$f(x) = x^2 + 3,$ $g(x) = \sqrt{x}.$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 + 3 = x + 3.$$

Exemplo

$$f(x) = x^2 + 3,$$
 $g(x) = \sqrt{x}.$

$$(g \circ f)(x) = g(f(x)) = g(x^2 + 3) = \sqrt{x^2 + 3}.$$

Parte 3

Exemplo

$f(x) = x^2 + 3,$ $g(x) = \sqrt{x}.$

$$(f \circ g)(x) = x + 3, \qquad (g \circ f)(x) = \sqrt{x^2 + 3}.$$

Moral: (em geral) $f \circ g \neq g \circ f$.

A operação de composição de funções não é comutativa!

Pré-Cálculo

45

Identificando composições

$$h(x) = (x^2 + 1)^{10} = (f \circ g)(x)$$

onde

$$f(x) = x^{10}$$
 e $g(x) = x^2 + 1$.

Parte 3

Identificando composições

$$h(x) = \operatorname{tg}(x^5) = (f \circ g)(x)$$

onde

$$f(x) = tg(x)$$
 e $g(x) = x^5$.

Identificando composições

Parte 3

Parte 3

$$h(x) = \sqrt{4 - 3x} = (f \circ g)(x)$$

onde

$$f(x) = \sqrt{x}$$
 e $g(x) = 4 - 3x$.

Pré-Cálculo

Identificando composições

$$h(x) = 8 + \sqrt{x} = (f \circ g)(x)$$

$$h(x) = 1/(x+1) = (f \circ g)(x)$$

onde

onde

$$f(x) = 8 + x$$
 e $g(x) = \sqrt{x}$.

$$f(x) = 1/x$$
 e $g(x) = x + 1$.

Parte 3 Pré-Cálculo 49

Funções inversíveis

Parte 3

Funções inversíveis

Definição

Dizemos que uma função $f\colon D\to C$ é inversível se existe função $g\colon C\to D$ tal que

$$(g \circ f)(x) = g(f(x)) = x$$
, para todo $x \in D$

е

$$(f \circ g)(x) = f(g(x)) = x$$
, para todo $x \in C$.

Neste caso, dizemos que g é a inversa de f e escreveremos:

$$g = f^{-1}$$
.

Parte 3

51

Pré-Cálculo

Exemplo

Exemplo

Parte 3 Pré-Cálculo 54

Exemplo

A função

$$f: D = \mathbb{R} \rightarrow C = \mathbb{R}$$

 $x \mapsto y = f(x) = 2x + 1$

é inversível, pois

$$g: C = \mathbb{R} \rightarrow D = \mathbb{R}$$

 $x \mapsto y = g(x) = (x-1)/2$

é tal que

$$(g \circ f)(x) = g(f(x)) = g(2x+1) = ((2x+1)-1)/2 = x, \quad \forall x \in D = \mathbb{R}$$

Е

$$(f \circ g)(x) = f(g(x)) = f((x-1)/2) = 2((x-1)/2) + 1 = x, \ \forall x \in C = \mathbb{R}.$$

Podemos então escrever que $f^{-1}(x) = g(x) = (x-1)/2$.

Cuidado

Cuidado!

$$f^{-1}(x)$$
 e $(f(x))^{-1}$

denotam objetos diferentes!

 $f^{-1}(x)$ é a função inversa de f calculada em x. $(f(x))^{-1}$ é igual a 1/f(x).

No exemplo anterior,

$$f^{-1}(x) = (x-1)/2$$
, enquanto que $(f(x))^{-1} = (2x+1)^{-1} = 1/(2x+1)$.

Parte 3

Parte 3

Pré-Cálculo

53

B

Proposição

Proposição

 $f: D \to C$ é uma função inversível se, e somente se, f é bijetiva, isto é, se, e somente se,

- 1. f é injetiva: para todo $x_1, x_2 \in D$, se $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$ e, ao mesmo tempo,
- 2. f é sobrejetiva: para todo $y \in C$, existe pelo menos um $x \in D$ tal que f(x) = y.

Parte 3 Pré-Cálculo

Demonstração: (⇐)

Como $f: D \to C$ é sobrejetiva, para todo $y \in C$, existe $x \in D$ tal que f(x) = y. Mais ainda: como f é injetiva, esse x é único. Considere então a função $g: C \to D$ definida por g(y) = x = 0 único elemento de D tal que f(x) = y. Observe que $g(f(x)) = g(y) = x, \forall x \in D$ e $f(g(y)) = f(x) = y, \forall y \in C$. Sendo assim, f é inversível e sua inversa é $f^{-1} = g$.

Demonstração: (⇒)

Se $f: D \to C$ é inversível, então existe uma função $g: C \to D$ tal que $\forall x \in D, (g \circ f)(x) = g(f(x)) = x$ e $\forall x \in C, (f \circ g)(x) = f(g(x)) = x$.

Suponha, por absurdo, que f não seja injetiva. Então existem $x_1, x_2 \in D$ tais que $x_1 \neq x_2$ e $f(x_1) = f(x_2)$. Mas, se $f(x_1) = f(x_2)$, então $g(f(x_1)) = g(f(x_2))$, isto é, $x_1 = x_2$, uma contradição. Assim $f: D \to C$ é injetiva.

Seja $y \in C$. Se x = g(y), então f(x) = f(g(y)) = y. Isso mostra que $f: D \to C$ é sobrejetiva.

Como $f:D\to C$ é injetiva e sobrejetiva, segue-se que $f:D\to C$ é bijetiva.

Observações

Parte 3

57

Provar que uma função é inversível pode não ser uma tarefa fácil seja com a definição, seja com a proposição anterior.

A disciplina de Cálculo ensinará novas ferramentas para estudar se uma função é inversível (localmente).

Parte 3 Pré-Cálculo

Parte 3

Pré-Cálculo

Pré-Cálculo

O gráfico da função inversa

Seja f uma função real inversível.

Se f(1) = 2, então $f^{-1}(2) = 1$.

Assim, o ponto (1,2) pertence ao gráfico de f e (2,1) pertence ao gráfico de f^{-1} .

Se f(2) = 3, então $f^{-1}(3) = 2$.

Assim, o ponto (2,3) pertence ao gráfico de f e (3,2) pertence ao gráfico de f^{-1} .

Se f(x) = y, então $f^{-1}(y) = x$.

Assim, o ponto (x, y) pertence ao gráfico de $f \in (y, x)$ pertence ao gráfico de f^{-1} .

Parte 3 Pré-Cálculo 61

O gráfico da função inversa

Qual é a relação entre o gráfico de uma função e sua inversa?

Se uma mesma escala foi usada para os eixos x e y, os gráficos de f e f^{-1} são simétricos com relação a reta y = x.

Se uma mesma escala foi usada para os eixos x e y, o gráfico da inversa f^{-1} é obtido fazendo-se uma reflexão do gráfico de f com relação a reta y=x.

O gráfico da função inversa

(Ir para o GeoGebra)

Parte 3 Pré-Cálculo

62

Parte 3 Pré-Cálculo 63