Problem 1

A standard servo system is shown below.

The total stroke of the cylinder is h=2.4~m, the diameter of the cylinder piston and cylinder rod are D=40~mm and $D_R=25~mm$, respectively. The volume of each of the lines connecting the servo valve to the cylinder is $V_{L1}=V_{L2}=1~dm^3$. The oil stiffness is $\beta=1000~MPa$ and the density is $875~\frac{kg}{m^3}$. The mass of the payload is m=1200~kg. The constant supply pressure is set at $p_S=60~bar$.

The task of the servo system is to move the mass m a distance of $\Delta s = 1.2 m$ within a period of $\Delta t = 2 s$.

a) Compute the minimum stiffness of the mechanical-hydraulic system.

$$611.2 \frac{N}{mm}$$

b) Compute the minimal eigenfrequency of the mechanical-hydraulic system.

$$\frac{rad}{s}$$

- c) Compute a velocity reference for the motion task. Use a trapez profile (constant acceleration constant velocity constant deceleration) with a ramp time $t_R = \frac{6}{\omega_n}$. The start position of the piston is not known, hence the minimal eigenfrequency should be used to compute the ramp time. $t_R = 0.266 \text{ s}$ and $v_0 = 0.69 \frac{m}{s}$
- d) Compute the maximum and minimum load pressure $p_L = p_1 p_2$. $p_{L,max} = 46 \ bar$ and $p_{L,min} = -35.6 \ bar$
- e) Compute the maximum flow requirement, Q_L . 31.8 $\frac{l}{min}$

MAS410 - Hydraulic Systems and Components Problems for 8th lecture, autumn 2021, Michael R. Hansen

f) Compute the maximum value, $Q_{NL,max}$, of the no load flow, $Q_{NL} = Q_L \cdot \sqrt{\frac{p_S}{p_S - p_L}}$

65.8
$$\frac{l}{min}$$

The servo valve can be chosen between three valves. Each of the valves has a frequency range (phase = -90 deg) of $f_{v@90^{\circ}} = 15Hz$. For each of the valves the rated flow is measured at a rated supply pressure of $p_r = 10bar$. The rated flow of the valves are:

$$Q_{r1} = 10 \frac{l}{min}$$
 $Q_{r2} = 20 \frac{l}{min}$ $Q_{r3} = 40 \frac{l}{min}$

g) Determine which of the three valves that can be used.

Use the chosen servo valve with $f_{v@90^\circ}=15Hz$. The valves rated flow is measured at a rated supply pressure of $p_r=10bar$. The rated flow of the chosen valves is: $Q_r=40\frac{l}{min}$. Assume $C_d=0.6$ for this valve.

- h) Linearize around two steady state situations: maximum speed, $v_0 = 0.69 \frac{m}{s}$ and $v_0 = 0.0 \frac{m}{s}$ at the beginning (no load pressure and no load flow) by solving for the steady state variables: $Q_L^{(ss)} = Q_V^{(ss)}$, $p_L^{(ss)}$ and $u^{(ss)}$. $\frac{11.7 \frac{l}{min}}{min}$, 5.22 bar, 0.339 and $0 \frac{l}{min}$, 0 bar, 0
- i) Set up a position servo to drive this system by computing the proportional gain, K_p , using $K_p = 0.7079 \cdot \frac{2 \cdot \zeta_{mh} \cdot \omega_{vmh}}{K_{mh}}$. In the situation at the no velocity, no load pressure and no load flow steady state situation use $u_{lim}^{(ss)} = u_{\epsilon} = 0.05$ according to Eqs. (7.26) and (7.27). $2.12m^{-1}$
- j) Verify the performance by time domain simulation of the system.

Problem 2

A hydraulic servo system is shown below. The hydraulic motor drives a mechanical system that can be considered a pure inertia of $J = 18 \text{ kg} \cdot m^2$, i.e., no static load. The mass moment of inertia of the hydraulic motor can be ignored.

The motor has a displacement $D=225 \, \frac{cm^3}{rev}$. The oil stiffness is $\beta=1000 \, MPa$. The volume of the lines between the valve and the motor are $V_{L1}=V_{L2}=0.15 \, dm^3$. The supply pressure is held constant at $p_S=240 \, bar$. The system should be able to drive the motor at a speed of $n=1800 \, \frac{rev}{min}$ while the load pressure is $p_L=50 \, bar$.

- a) Find a suitable valve specification for controlling this system. Assume: $p_r = 70 \, bar$ and $C_d = 0.6$. $Q_r = 270 \, \frac{l}{min} \, @ p_r = 70 \, bar$ and $\omega_v = 69.9 \, \frac{rad}{s}$.
- b) Linearize around the 0-position by solving for the steady state variables: $Q_L^{(ss)} = Q_V^{(ss)}$, $p_L^{(ss)}$ and $u^{(ss)}$. $0 \frac{l}{min}$, $0 \ bar$, 0
- c) Set up a position servo to drive this system by computing the proportional gain, K_p , using $K_p = 0.7079 \cdot \frac{2 \cdot \zeta_{mh} \cdot \omega_{vmh}}{K_{mh}}$. Use $u_{lim}^{(ss)} = u_{\epsilon} = 0.05$ according to Eqs. (7.26) and (7.27). $0.181 rad^{-1}$
- d) Verify the performance by time domain simulation of the system.