Mesh Generation

The formulation done in part a allowed one to create a Mesh of N by M elements. The following Mesh was obtained:

From our mesh we can see that the mesh deforms at the center and this is due to the vertical force exerted at the end of the beam.

Non-Dimensional Stress Contours

After the mesh was created, the stress contours were then plotted which contain all the three stresses to see the distribution of stresses along the beam. From our graph on the next page we see that the top edge and the bottom edge of the beam are experiencing high stresses, we also observe that the stresses are symmetric and therefore only half of the beam could have been used to do the study. Each node had its own unique value of stress and varied from high low.

Convergence Studies

We then created plots for the convergence studies, where the values for n and m were varied to see the number of intervals it takes for the solution to converge. From the graphs we can see that the four noded converges to a value a lot quicker than the 3 noded. More intervals are needed before it converges to a solution.

Numerical Solution Vs Analytical Solution

The displacements plots were then made for the analytical solution, along with the 3-noded and the 4-noded to see the mid-point vertical displacements along the x-axis. One can clearly that the results are for the three cases are quite close. For the Plane Stress case, we notice that the mid-point vertical displacements obtained for the three noded are very close to our analytical solution, however for the plane strain case we notice that the analytical solution is slightly off when compared with the numerical solution.

Results

<u>Please note that this section only contains values for the 50 elements and nodes along with the last</u> 50 fifty element nodes.

4 Noded

Plain Stress case

Elastic matrix D

1.10 0.33 0.000.33 1.10 0.000.00 0.00 0.38

Displacement Boundary Conditions

node 1 2 3 4 5 6 7 8 9 10 11

ux=0.0 uy=0.0 uy

Traction BC

node 11 22 33 44 55 66 77 88 99 110

fx=0.0 fx

node 121 132 143 154 165 176 187 198 209 220

fx=0.0 fx=0.0 fx=0.0 fx=0.0 fx=0.0 fx=0.0 fx=0.0 fx=0.0 fx=0.0

fy=-0.25 fy=-0.25 fy=-0.25 fy=-0.25 fy=-0.25 fy=-0.25 fy=-0.25

node 231 242 253 264 275 286 297 308 319 330

fx=0.0 fx

node 341 352 363 374 385 396 407 418 429 440

fx=0.0 fx

node 468

fx=0.0

fy= 0.25

displacements

* * * * * * *

* node * ux * uy ** node * ux * uy *

* * * * * * *

```
* 1*
         0.0000 *
                     0.0000 ** 2 *
                                        0.0000 *
                                                   0.0000 *
  3 *
         0.0000 *
                     0.0000 **
                                 4 *
                                        0.0000 *
                                                    0.0000 *
  5 *
         0.0000 *
                     0.0000 **
                                 6 *
                                        0.0000 *
                                                    0.0000 *
 7 *
         0.0000 *
                     0.0000 ** 8 *
                                        0.0000 *
                                                    0.0000 *
  9 *
         0.0000 *
                     0.0000 ** 10 *
                                        0.0000 *
                                                    0.0000 *
                      0.0000 ** 12 *
                                        -18.1088 *
* 11 *
          0.0000 *
                                                     -11.7137 *
* 13 *
         -12.9548 *
                      -9.6403 ** 14 *
                                         -9.1536 *
                                                      -8.3530 *
* 15 *
         -5.8927 *
                      -7.5897 ** 16 *
                                         -2.8918 *
                                                     -7.1951 *
                      -7.0922 ** 18 *
* 17 *
          -0.0007 *
                                         2.8924 *
                                                     -7.2587 *
                      -7.7205 ** 20 *
* 19 *
          5.8998 *
                                         9.1751 *
                                                     -8.5589 *
                      -9.9357 ** 22 *
* 21 *
          13.0085 *
                                         18.2507 *
                                                     -12.1221 *
                      -27.6873 ** 24 *
* 23 *
         -32.6494 *
                                         -25.2122 *
                                                      -26.2597 *
                      -25.0346 ** 26 *
* 25 *
         -18.2519 *
                                         -11.8547 *
                                                      -24.1632 *
                     -23.6659 ** 28 *
* 27 *
         -5.8235 *
                                          0.0343 *
                                                     -23.5341 *
* 29 *
          5.8953 *
                     -23.7632 ** 30 *
                                         11.9370 *
                                                     -24.3595 *
* 31 *
          18.3528 *
                      -25.3322 ** 32 *
                                          25.3406 *
                                                      -26.6591 *
* 33 *
         32.7954 *
                      -28.1794 ** 34 *
                                         -45.4483 *
                                                      -50.4999 *
* 35 *
         -35.4501 *
                      -49.2102 ** 36 *
                                          -26.0579 *
                                                       -48.2283 *
* 37 *
         -17.0885 *
                      -47.5213 ** 38 *
                                          -8.4255 *
                                                      -47.1091 *
* 39 *
          0.0798 *
                     -47.0051 ** 40 *
                                          8.5874 *
                                                     -47.2134 *
         17.2568 *
                      -47.7295 ** 42 *
                                          26.2352 *
                                                      -48.5386 *
* 41 *
                      -49.6200 ** 44 *
* 43 *
         35.6345 *
                                          45.6369 *
                                                      -51.0087 *
         -56.2682 *
                      -79.0728 ** 46 *
* 45 *
                                          -44.1430 *
                                                       -78.0119 *
* 47 *
         -32.5809 *
                      -77.1844 ** 48 *
                                          -21.4470 *
                                                       -76.6064 *
* 49 *
         -10.5923 *
                      -76.2779 ** 50 *
                                           0.1228 *
                                                      -76.2021 *
```

^{* 399 * 67.5907 * -286.7345 ** 400 * 45.3676 * -287.0159 *}

^{* 401 * 23.2865 * -287.1819 ** 402 * 1.2865 * -287.2386 *}

^{* 403 * -20.6982 * -287.1963 ** 404 * -42.7436 * -287.0636 *}

```
* 405 *
         -64.9346 * -286.8439 ** 406 *
                                          -87.3606 * -286.5334 *
* 407 *
         -110.1104 * -286.1198 ** 408 *
                                          117.1268 * -227.5266 *
* 409 *
          93.4970 * -227.9197 ** 410 *
                                          70.1562 * -228.2470 *
* 411 *
          46.9869 * -228.4342 ** 412 *
                                          23.9968 * -228.4992 *
* 413 *
          1.1519 * -228.4770 ** 414 *
                                         -21.6227 * -228.3939 *
* 415 *
         -44.4257 * -228.2634 ** 416 *
                                          -67.3692 * -228.0897 *
* 417 *
         -90.5757 * -227.8690 ** 418 *
                                         -114.1737 * -227.5871 *
         120.7876 * -167.0985 ** 420 *
* 419 *
                                           96.4385 * -167.6035 *
          71.9864 * -167.7340 ** 422 *
* 421 *
                                          47.9015 * -167.7066 *
          24.2121 * -167.6457 ** 424 *
                                          0.8089 * -167.5936 *
* 423 *
* 425 *
         -22.4493 * -167.5517 ** 426 *
                                          -45.7039 * -167.5064 *
         -69.0897 * -167.4422 ** 428 *
                                          -92.7422 * -167.3498 *
* 427 *
* 429 *
         -116.8231 * -167.2313 ** 430 *
                                          124.8858 * -105.0429 *
          98.1056 * -104.5309 ** 432 *
* 431 *
                                          72.5919 * -104.3750 *
* 433 *
          48.0425 * -104.5333 ** 434 *
                                          24.1088 * -104.8576 *
* 435 *
          0.5234 * -105.2302 ** 436 *
                                         -22.9157 * -105.5780 *
* 437 *
         -46.3665 * -105.8611 ** 438 *
                                          -69.9549 * -106.0622 *
* 439 *
         -93.7795 * -106.1807 ** 440 *
                                         -117.9128 * -106.2376 *
* 441 *
         129.0066 *
                     -29.5763 ** 442 *
                                          99.8884 *
                                                     -34.1306 *
          73.6755 *
                     -37.6685 ** 444 *
* 443 *
                                         48.8214 *
                                                     -40.3377 *
                     -42.3039 ** 446 *
                                          0.9065 *
* 445 *
          24.6794 *
                                                    -43.7046 *
* 447 *
                     -44.6501 ** 448 *
         -22.7134 *
                                         -46.3334 *
                                                     -45.2359 *
                     -45.5554 ** 450 *
* 449 *
         -70.0639 *
                                         -93.9699 *
                                                     -45.7088 *
                      -45.8052 **
* 451 *
         -118.0355 *
```

stresses

.....

```
*****************
```

* element * sx * sy * sxy *

* * * * *

- * 1 * -56.3409 * -0.5499 * 0.1284 *
- * 1 * -60.2874 * -13.7046 * -11.3163 *
- * 1 * -73.3670 * -17.6285 * -13.1580 *
- * 1 * -69.4206 * -4.4737 * -1.7133 *
- * 2 * -40.4195 * -1.9729 * -1.7388 *
- * 2 * -42.8698 * -10.1405 * -10.1797 *
- * 2 * -52.5166 * -13.0345 * -11.3231 *
- * 2 * -50.0663 * -4.8669 * -2.8822 *
- * 3 * -26.9466 * -2.0642 * -2.0331 *
- * 3 * -28.3994 * -6.9068 * -9.2742 *
- * 3 * -36.6749 * -9.3895 * -9.9522 *
- * 3 * -35.2221 * -4.5468 * -2.7111 *
- * 4 * -14.4729 * -1.2298 * -2.0947 *
- * 4 * -15.2239 * -3.7333 * -8.7585 *
- * 4 * -22.8397 * -6.0180 * -9.1090 *
- * 4 * -22.0886 * -3.5145 * -2.4452 *
- * 5 * -2.4210 * 0.0854 * -2.1747 *
- * 5 * -2.6169 * -0.5676 * -8.5946 *
- * 5 * -9.9540 * -2.7687 * -8.6860 *
- * 5 * -9.7581 * -2.1157 * -2.2661 *
- * 6 * 9.5933 * 1.5644 * -2.3375 *
- * 6 * 9.9103 * 2.6211 * -8.7617 *
- * 6 * 2.5683 * 0.4185 * -8.6137 *
- * 6 * 2.2513 * -0.6382 * -2.1895 *

- * 7 * 21.9391 * 2.9399 * -2.6047 *
- * 7 * 22.8180 * 5.8696 * -9.2831 *
- * 7 * 15.1856 * 3.5799 * -8.8729 *
- * 7 * 14.3067 * 0.6502 * -2.1946 *
- * 8 * 35.1081 * 3.9203 * -2.9597 *
- * 8 * 36.7038 * 9.2394 * -10.2328 *
- * 8 * 28.3917 * 6.7458 * -9.4881 *
- * 8 * 26.7960 * 1.4266 * -2.2151 *
- * 9 * 50.0397 * 4.1535 * -3.2100 *
- * 9 * 52.6603 * 12.8886 * -11.7223 *
- * 9 * 42.9319 * 9.9701 * -10.4994 *
- * 9 * 40.3114 * 1.2350 * -1.9871 *
- * 10 * 69.6688 * 3.6572 * -2.0369 *
- * 10 * 73.8302 * 17.5287 * -13.6777 *
- * 10 * 60.5265 * 13.5376 * -11.7357 *
- * 10 * 56.3651 * -0.3340 * -0.0949 *
- * 11 * -50.8432 * 0.3877 * 1.3905 *
- * 11 * -49.6140 * 4.4851 * -3.6797 *
- * 11 * -55.4086 * 2.7467 * -3.1061 *
- * 11 * -56.6378 * -1.3506 * 1.9641 *
- * 12 * -38.8447 * 0.7288 * -1.4409 *
- * 12 * -38.7262 * 1.1240 * -8.4561 *
- * 12 * -46.7434 * -1.2812 * -8.4007 *
- * 12 * -46.8620 * -1.6763 * -1.3856 *
- * 13 * -26.3223 * 0.5890 * -3.4776 *
- * 13 * -26.5281 * -0.0971 * -10.4419 *
- * 13 * -34.4873 * -2.4848 * -10.5380 *
- * 13 * -34.2815 * -1.7988 * -3.5736 *
- * 14 * -14.1333 * 0.5163 * -4.6390 *

- * 14 * -14.3289 * -0.1356 * -11.3680 *
- * 14 * -22.0192 * -2.4427 * -11.4593 *
- * 14 * -21.8236 * -1.7908 * -4.7303 *
- * 15 * -2.1878 * 0.6003 * -5.1861 *
- * 15 * -2.2427 * 0.4174 * -11.7737 *
- * 15 * -9.7714 * -1.8413 * -11.7994 *
- * 15 * -9.7165 * -1.6584 * -5.2117 *
- * 16 * 9.7311 * 0.7604 * -5.2411 *
- * 16 * 9.8502 * 1.1573 * -11.8318 *
- * 16 * 2.3180 * -1.1024 * -11.7762 *
- * 16 * 2.1989 * -1.4993 * -5.1855 *
- * 17 * 21.8464 * 0.8756 * -4.7838 *
- * 17 * 22.1024 * 1.7289 * -11.5214 *
- * 17 * 14.4023 * -0.5811 * -11.4019 *
- * 17 * 14.1463 * -1.4344 * -4.6644 *
- * 18 * 34.3112 * 0.8505 * -3.6375 *
- * 18 * 34.5668 * 1.7024 * -10.6115 *
- * 18 * 26.5966 * -0.6887 * -10.4922 *
- * 18 * 26.3410 * -1.5406 * -3.5183 *
- * 19 * 46.8679 * 0.6858 * -1.4323 *
- * 19 * 46.7729 * 0.3694 * -8.4369 *
- * 19 * 38.7676 * -2.0322 * -8.4812 *
- * 19 * 38.8625 * -1.7158 * -1.4766 *
- * 20 * 56.4015 * 0.3098 * 1.9538 *
- * 20 * 55.1337 * -3.9161 * -2.9594 *
- * 20 * 49.5186 * -5.6007 * -3.5510 *
- * 20 * 50.7864 * -1.3747 * 1.3622 *
- * 21 * -43.0327 * 0.2785 * 1.1097 *
- * 21 * -42.7702 * 1.1534 * -4.5774 *

- * 21 * -49.2697 * -0.7964 * -4.4549 *
- * 21 * -49.5322 * -1.6714 * 1.2322 *
- * 22 * -33.1646 * 0.3837 * -1.4564 *
- * 22 * -32.7018 * 1.9263 * -6.8564 *
- * 22 * -38.8733 * 0.0749 * -6.6404 *
- * 22 * -39.3360 * -1.4677 * -1.2404 *
- * 23 * -22.9496 * 0.5322 * -3.4750 *
- * 23 * -22.6366 * 1.5756 * -9.1870 *
- * 23 * -29.1646 * -0.3828 * -9.0409 *
- * 23 * -29.4776 * -1.4261 * -3.3290 *
- * 24 * -12.4635 * 0.5635 * -4.8586 *
- * 24 * -12.3016 * 1.1032 * -10.7027 *
- * 24 * -18.9805 * -0.9005 * -10.6271 *
- * 24 * -19.1424 * -1.4401 * -4.7831 *
- * 25 * -1.8970 * 0.5293 * -5.5394 *
- * 25 * -1.8441 * 0.7056 * -11.4185 *
- * 25 * -8.5630 * -1.3101 * -11.3938 *
- * 25 * -8.6159 * -1.4864 * -5.5148 *
- * 26 * 8.6736 * 0.4748 * -5.5137 *
- * 26 * 8.6340 * 0.3429 * -11.3904 *
- * 26 * 1.9177 * -1.6720 * -11.4089 *
- * 26 * 1.9573 * -1.5401 * -5.5321 *
- * 27 * 19.1859 * 0.4258 * -4.7718 *
- * 27 * 19.0333 * -0.0830 * -10.6070 *
- * 27 * 12.3644 * -2.0837 * -10.6783 *
- * 27 * 12.5170 * -1.5749 * -4.8430 *
- * 28 * 29.4859 * 0.4087 * -3.3060 *
- * 28 * 29.1747 * -0.6287 * -8.9962 *
- * 28 * 22.6716 * -2.5796 * -9.1414 *

- * 28 * 22.9828 * -1.5422 * -3.4513 *
- * 29 * 39.2715 * 0.4486 * -1.2132 *
- * 29 * 38.8042 * -1.1090 * -6.5682 *
- * 29 * 32.6843 * -2.9450 * -6.7863 *
- * 29 * 33.1516 * -1.3873 * -1.4313 *
- * 30 * 49.4097 * 0.6578 * 1.2353 *
- * 30 * 49.1592 * -0.1772 * -4.4219 *
- * 30 * 42.6938 * -2.1168 * -4.5388 *
- * 30 * 42.9443 * -1.2818 * 1.1184 *
- * 31 * -36.5297 * 0.1338 * 0.6707 *
- * 31 * -36.0943 * 1.5852 * -4.0522 *
- * 31 * -41.4918 * -0.0341 * -3.8490 *
- * 31 * -41.9272 * -1.4854 * 0.8739 *
- * 32 * -27.8530 * 0.2447 * -1.7917 *
- * 32 * -27.5589 * 1.2251 * -6.6102 *
- * 32 * -33.0658 * -0.4270 * -6.4730 *
- * 32 * -33.3599 * -1.4073 * -1.6544 *
- * 33 * -19.1736 * 0.3010 * -3.6409 *
- * 33 * -18.9283 * 1.1187 * -8.4472 *
- * 33 * -24.4213 * -0.5291 * -8.3327 *
- * 33 * -24.6666 * -1.3469 * -3.5264 *
- * 34 * -10.4190 * 0.3363 * -4.8802 *
- * 34 * -10.2596 * 0.8679 * -9.7472 *
- * 34 * -15.8218 * -0.8008 * -9.6727 *
- * 34 * -15.9813 * -1.3323 * -4.8058 *
- * 35 * -1.5943 * 0.3386 * -5.4936 *
- * 35 * -1.5406 * 0.5178 * -10.4006 *
- * 35 * -7.1487 * -1.1646 * -10.3756 *
- * 35 * -7.2024 * -1.3438 * -5.4685 *

- * 36 * 7.2354 * 0.3226 * -5.4623 *
- * 36 * 7.1786 * 0.1333 * -10.3661 *
- * 36 * 1.5743 * -1.5480 * -10.3926 *
- * 36 * 1.6311 * -1.3587 * -5.4888 *
- * 37 * 15.9994 * 0.3127 * -4.7901 *
- * 37 * 15.8369 * -0.2290 * -9.6472 *
- * 37 * 10.2860 * -1.8943 * -9.7231 *
- * 37 * 10.4485 * -1.3526 * -4.8660 *
- * 38 * 24.6609 * 0.3311 * -3.5063 *
- * 38 * 24.4137 * -0.4929 * -8.2978 *
- * 38 * 18.9378 * -2.1357 * -8.4131 *
- * 38 * 19.1850 * -1.3116 * -3.6217 *
- * 39 * 33.3331 * 0.3972 * -1.6382 *
- * 39 * 33.0407 * -0.5772 * -6.4446 *
- * 39 * 27.5477 * -2.2251 * -6.5811 *
- * 39 * 27.8400 * -1.2507 * -1.7746 *
- * 40 * 41.8826 * 0.4787 * 0.8806 *
- * 40 * 41.4479 * -0.9701 * -3.8323 *
- * 40 * 36.0618 * -2.5859 * -4.0351 *
- * 40 * 36.4964 * -1.1371 * 0.6777 *
- * 41 * -30.0686 * 0.0163 * 0.3230 *
- * 41 * -29.6891 * 1.2812 * -3.5595 *
- * 41 * -34.1262 * -0.0499 * -3.3824 *
- * 41 * -34.5057 * -1.3149 * 0.5001 *
- * 42 * -22.9716 * 0.1127 * -2.0312 *
- * 42 * -22.6651 * 1.1343 * -5.9660 *
- * 42 * -27.1621 * -0.2148 * -5.8230 *
- * 42 * -27.4686 * -1.2364 * -1.8882 *
- * 43 * -15.7876 * 0.1670 * -3.7889 *

- * 43 * -15.5759 * 0.8728 * -7.7799 *
- * 43 * -20.1370 * -0.4955 * -7.6810 *
- * 43 * -20.3487 * -1.2014 * -3.6901 *
- * 44 * -8.5629 * 0.1862 * -4.9514 *
- * 44 * -8.4350 * 0.6125 * -8.9634 *
- * 44 * -13.0202 * -0.7631 * -8.9037 *
- * 44 * -13.1481 * -1.1894 * -4.8917 *
- * 45 * -1.3177 * 0.1876 * -5.5203 *
- * 45 * -1.2757 * 0.3278 * -9.5447 *
- * 45 * -5.8751 * -1.0520 * -9.5251 *
- * 45 * -5.9171 * -1.1923 * -5.5006 *
- * 46 * 5.9278 * 0.1816 * -5.4975 *
- * 46 * 5.8824 * 0.0302 * -9.5205 *
- * 46 * 1.2846 * -1.3492 * -9.5417 *
- * 46 * 1.3301 * -1.1977 * -5.5187 *
- * 47 * 13.1531 * 0.1799 * -4.8848 *
- * 47 * 13.0227 * -0.2551 * -8.8931 *
- * 47 * 8.4418 * -1.6293 * -8.9540 *
- * 47 * 8.5723 * -1.1944 * -4.9457 *
- * 48 * 20.3470 * 0.1943 * -3.6818 *
- * 48 * 20.1339 * -0.5159 * -7.6685 *
- * 48 * 15.5777 * -1.8828 * -7.7679 *
- * 48 * 15.7908 * -1.1725 * -3.7813 *
- * 49 * 27.4601 * 0.2321 * -1.8810 *
- * 49 * 27.1531 * -0.7913 * -5.8118 *
- * 49 * 22.6608 * -2.1390 * -5.9551 *
- * 49 * 22.9679 * -1.1156 * -2.0243 *
- * 50 * 34.4952 * 0.3130 * 0.5031 *
- * 50 * 34.1169 * -0.9483 * -3.3786 *

- * 50 * 29.6807 * -2.2792 * -3.5552 *
- * 50 * 30.0591 * -1.0179 * 0.3265 *
- * 350 * -23.9838 * -1.7791 * -0.7579 *
- * 350 * -23.8051 * -1.1834 * 2.0876 *
- * 350 * -20.5532 * -0.2078 * 2.1710 *
- * 350 * -20.7319 * -0.8035 * -0.6745 *
- * 351 * 17.7162 * -0.1412 * -0.4010 *
- * 351 * 17.5403 * -0.7276 * 1.9891 *
- * 351 * 20.2719 * 0.0919 * 1.9070 *
- * 351 * 20.4478 * 0.6783 * -0.4831 *
- * 352 * 13.4108 * -0.1128 * 0.7493 *
- * 352 * 13.2397 * -0.6832 * 3.1454 *
- * 352 * 15.9781 * 0.1383 * 3.0656 *
- * 352 * 16.1492 * 0.7087 * 0.6695 *
- * 353 * 9.1293 * -0.2213 * 1.6756 *
- * 353 * 8.9975 * -0.6606 * 4.0245 *
- * 353 * 11.6819 * 0.1448 * 3.9630 *
- * 353 * 11.8136 * 0.5840 * 1.6141 *
- * 354 * 4.9015 * -0.3108 * 2.3060 *
- * 354 * 4.7930 * -0.6725 * 4.6336 *
- * 354 * 7.4531 * 0.1255 * 4.5830 *
- * 354 * 7.5616 * 0.4872 * 2.2554 *
- * 355 * 0.7165 * -0.4419 * 2.6756 *
- * 355 * 0.6355 * -0.7117 * 4.9701 *
- * 355 * 3.2578 * 0.0749 * 4.9323 *
- * 355 * 3.3387 * 0.3447 * 2.6379 *
- * 356 * -3.4289 * -0.6484 * 2.7604 *
- * 356 * -3.4678 * -0.7781 * 5.0199 *
- * 356 * -0.8855 * -0.0034 * 5.0017 *

- * 356 * -0.8466 * 0.1263 * 2.7422 *
- * 357 * -7.5580 * -0.9217 * 2.5169 *
- * 357 * -7.5412 * -0.8657 * 4.7602 *
- * 357 * -4.9774 * -0.0966 * 4.7680 *
- * 357 * -4.9942 * -0.1526 * 2.5248 *
- * 358 * -11.7175 * -1.2288 * 1.9093 *
- * 358 * -11.6364 * -0.9586 * 4.1712 *
- * 358 * -9.0514 * -0.1831 * 4.2090 *
- * 358 * -9.1324 * -0.4533 * 1.9471 *
- * 359 * -15.9681 * -1.5220 * 0.9208 *
- * 359 * -15.8214 * -1.0329 * 3.2448 *
- * 359 * -13.1654 * -0.2361 * 3.3133 *
- * 359 * -13.3121 * -0.7252 * 0.9892 *
- * 360 * -20.3747 * -1.7479 * -0.4417 *
- * 360 * -20.1688 * -1.0616 * 1.9897 *
- * 360 * -17.3902 * -0.2280 * 2.0858 *
- * 360 * -17.5961 * -0.9143 * -0.3456 *
- * 361 * 14.7143 * 0.2019 * -0.2953 *
- * 361 * 14.4613 * -0.6415 * 1.7663 *
- * 361 * 16.8174 * 0.0654 * 1.6482 *
- * 361 * 17.0704 * 0.9088 * -0.4134 *
- * 362 * 10.9889 * -0.1181 * 0.9197 *
- * 362 * 10.8607 * -0.5455 * 2.9220 *
- * 362 * 13.1490 * 0.1410 * 2.8622 *
- * 362 * 13.2772 * 0.5684 * 0.8599 *
- * 363 * 7.3141 * 0.1231 * 1.7514 *
- * 363 * 7.1349 * -0.4743 * 3.8524 *
- * 363 * 9.5361 * 0.2461 * 3.7688 *
- * 363 * 9.7154 * 0.8435 * 1.6677 *

- * 364 * 3.6817 * 0.2408 * 2.5636 *
- * 364 * 3.4893 * -0.4004 * 4.5823 *
- * 364 * 5.7964 * 0.2917 * 4.4925 *
- * 364 * 5.9888 * 0.9330 * 2.4738 *
- * 365 * 0.2110 * 0.1182 * 3.1985 *
- * 365 * 0.0609 * -0.3821 * 5.0746 *
- * 365 * 2.2051 * 0.2612 * 5.0046 *
- * 365 * 2.3552 * 0.7615 * 3.1284 *
- * 366 * -3.0844 * -0.1799 * 3.4995 *
- * 366 * -3.1621 * -0.4389 * 5.2534 *
- * 366 * -1.1576 * 0.1625 * 5.2172 *
- * 366 * -1.0799 * 0.4214 * 3.4632 *
- * 367 * -6.2584 * -0.5682 * 3.3746 *
- * 367 * -6.2541 * -0.5540 * 5.0568 *
- * 367 * -4.3316 * 0.0228 * 5.0588 *
- * 367 * -4.3359 * 0.0086 * 3.3766 *
- * 368 * -9.3979 * -0.9849 * 2.7734 *
- * 368 * -9.3105 * -0.6937 * 4.4445 *
- * 368 * -7.4007 * -0.1207 * 4.4853 *
- * 368 * -7.4880 * -0.4119 * 2.8142 *
- * 369 * -12.6173 * -1.3885 * 1.6609 *
- * 369 * -12.4462 * -0.8183 * 3.3940 *
- * 369 * -10.4655 * -0.2240 * 3.4738 *
- * 369 * -10.6366 * -0.7943 * 1.7407 *
- * 370 * -16.0521 * -1.7188 * 0.0209 *
- * 370 * -15.8013 * -0.8829 * 1.9045 *
- * 370 * -13.6486 * -0.2371 * 2.0215 *
- * 370 * -13.8994 * -1.0730 * 0.1379 *
- * 371 * 12.0110 * -1.2105 * -0.2351 *

- * 371 * 12.2240 * -0.5007 * 1.3621 *
- * 371 * 14.0493 * 0.0469 * 1.4615 *
- * 371 * 13.8364 * -0.6629 * -0.1357 *
- * 372 * 8.5098 * 0.8326 * -0.1105 *
- * 372 * 8.1352 * -0.4159 * 2.3576 *
- * 372 * 10.9558 * 0.4302 * 2.1828 *
- * 372 * 11.3303 * 1.6788 * -0.2853 *
- * 373 * 4.8113 * 1.2634 * 1.4674 *
- * 373 * 4.4029 * -0.0978 * 3.5004 *
- * 373 * 6.7263 * 0.5992 * 3.3098 *
- * 373 * 7.1347 * 1.9605 * 1.2768 *
- * 374 * 1.7091 * 0.8558 * 3.0350 *
- * 374 * 1.4694 * 0.0568 * 4.5878 *
- * 374 * 3.2440 * 0.5892 * 4.4760 *
- * 374 * 3.4837 * 1.3882 * 2.9231 *
- * 375 * -0.8378 * 0.2067 * 4.0988 *
- * 375 * -0.8948 * 0.0164 * 5.3383 *
- * 375 * 0.5218 * 0.4414 * 5.3117 *
- * 375 * 0.5789 * 0.6317 * 4.0722 *
- * 376 * -3.0173 * -0.3994 * 4.5550 *
- * 376 * -2.9387 * -0.1373 * 5.6291 *
- * 376 * -1.7112 * 0.2310 * 5.6658 *
- * 376 * -1.7898 * -0.0311 * 4.5917 *
- * 377 * -4.9905 * -0.8642 * 4.4263 *
- * 377 * -4.8284 * -0.3239 * 5.4292 *
- * 377 * -3.6822 * 0.0200 * 5.5049 *
- * 377 * -3.8443 * -0.5204 * 4.5019 *
- * 378 * -6.8639 * -1.1857 * 3.7535 *
- * 378 * -6.6553 * -0.4906 * 4.7356 *

- * 378 * -5.5330 * -0.1539 * 4.8329 *
- * 378 * -5.7415 * -0.8490 * 3.8508 *
- * 379 * -8.7150 * -1.4197 * 2.5394 *
- * 379 * -8.4708 * -0.6056 * 3.5299 *
- * 379 * -7.3388 * -0.2660 * 3.6438 *
- * 379 * -7.5830 * -1.0801 * 2.6533 *
- * 380 * -10.6924 * -1.6771 * 0.6820 *
- * 380 * -10.3816 * -0.6411 * 1.7541 *
- * 380 * -9.1563 * -0.2735 * 1.8992 *
- * 380 * -9.4671 * -1.3095 * 0.8271 *
- * 381 * 10.5655 * 6.1405 * -4.3207 *
- * 381 * 8.6297 * -0.3121 * 1.0778 *
- * 381 * 14.7995 * 1.5389 * 0.1745 *
- * 381 * 16.7353 * 7.9915 * -5.2241 *
- * 382 * 3.9625 * 2.1429 * 0.1156 *
- * 382 * 3.4174 * 0.3260 * 2.4727 *
- * 382 * 6.1113 * 1.1342 * 2.2183 *
- * 382 * 6.6564 * 2.9511 * -0.1388 *
- * 383 * 0.6586 * -0.9936 * 3.2067 *
- * 383 * 1.0121 * 0.1846 * 4.2384 *
- * 383 * 2.1911 * 0.5383 * 4.4033 *
- * 383 * 1.8377 * -0.6399 * 3.3717 *
- * 384 * -1.0274 * -2.7365 * 4.8683 *
- * 384 * -0.2944 * -0.2930 * 5.4107 *
- * 384 * 0.3255 * -0.1070 * 5.7527 *
- * 384 * -0.4076 * -2.5505 * 5.2104 *
- * 385 * -2.0183 * -3.4345 * 5.5167 *
- * 385 * -1.2097 * -0.7393 * 5.9215 *
- * 385 * -0.7471 * -0.6005 * 6.2988 *

- * 385 * -1.5557 * -3.2957 * 5.8941 *
- * 386 * -2.7570 * -3.4814 * 5.4673 *
- * 386 * -2.0155 * -1.0095 * 5.8690 *
- * 386 * -1.5564 * -0.8718 * 6.2150 *
- * 386 * -2.2980 * -3.3437 * 5.8134 *
- * 387 * -3.4345 * -3.1672 * 4.9099 *
- * 387 * -2.8095 * -1.0838 * 5.3455 *
- * 387 * -2.3117 * -0.9345 * 5.6372 *
- * 387 * -2.9367 * -3.0179 * 5.2016 *
- * 388 * -4.0932 * -2.6788 * 3.9569 *
- * 388 * -3.5881 * -0.9953 * 4.4069 *
- * 388 * -3.0738 * -0.8410 * 4.6426 *
- * 388 * -3.5788 * -2.5245 * 4.1926 *
- * 389 * -4.6432 * -2.1320 * 2.6818 *
- * 389 * -4.2419 * -0.7944 * 3.0639 *
- * 389 * -3.8053 * -0.6634 * 3.2511 *
- * 389 * -4.2066 * -2.0010 * 2.8691 *
- * 390 * -4.8066 * -1.6403 * 1.1158 *
- * 390 * -4.4726 * -0.5270 * 1.2322 *
- * 390 * -4.3395 * -0.4871 * 1.3881 *
- * 390 * -4.6735 * -1.6004 * 1.2716 *
- * 391 * -1.4763 * -35.2797 * -0.1373 *
- * 391 * 8.1667 * -3.1363 * 5.0542 *
- * 391 * 14.0999 * -1.3563 * 9.5543 *
- * 391 * 4.4569 * -33.4997 * 4.3628 *
- * 392 * -3.6774 * -28.6759 * 3.5758 *
- * 392 * 3.3532 * -5.2406 * 5.1286 *
- * 392 * 5.1278 * -4.7082 * 8.4095 *
- * 392 * -1.9028 * -28.1436 * 6.8568 *

- * 393 * -3.3436 * -22.3891 * 4.2338 *
- * 393 * 1.4354 * -6.4590 * 4.9104 *
- * 393 * 2.2086 * -6.2271 * 7.1406 *
- * 393 * -2.5704 * -22.1571 * 6.4640 *
- * 394 * -2.6367 * -16.9832 * 4.0858 *
- * 394 * 0.4886 * -6.5655 * 4.5484 *
- * 394 * 1.0174 * -6.4069 * 6.0069 *
- * 394 * -2.1080 * -16.8246 * 5.5442 *
- * 395 * -2.0435 * -12.4477 * 3.7073 *
- * 395 * -0.0868 * -5.9253 * 4.1236 *
- * 395 * 0.3889 * -5.7826 * 5.0367 *
- * 395 * -1.5678 * -12.3050 * 4.6205 *
- * 396 * -1.6436 * -8.6848 * 3.2306 *
- * 396 * -0.5059 * -4.8925 * 3.6321 *
- * 396 * -0.0470 * -4.7549 * 4.1630 *
- * 396 * -1.1847 * -8.5472 * 3.7615 *
- * 397 * -1.4178 * -5.6437 * 2.6595 *
- * 397 * -0.8416 * -3.7231 * 3.0352 *
- * 397 * -0.4123 * -3.5942 * 3.3041 *
- * 397 * -0.9885 * -5.5149 * 2.9284 *
- * 398 * -1.3180 * -3.3402 * 1.9701 *
- * 398 * -1.0928 * -2.5895 * 2.2856 *
- * 398 * -0.7322 * -2.4813 * 2.3907 *
- * 398 * -0.9574 * -3.2320 * 2.0752 *
- * 399 * -1.2427 * -1.8333 * 1.1653 *
- * 399 * -1.1762 * -1.6113 * 1.3460 *
- * 399 * -0.9697 * -1.5494 * 1.3771 *
- * 399 * -1.0362 * -1.7713 * 1.1964 *
- * 400 * -0.8926 * -1.1484 * 0.3707 *

```
* 400 * -0.8174 * -0.8978 * 0.2204 *
```

* 400 * -0.9891 * -0.9493 * 0.2555 *

* 400 * -1.0643 * -1.1999 * 0.4058 *

3-noded

Plain Strain case

Elastic matrix D

1.35 0.58 0.00

0.58 1.35 0.00

0.00 0.00 0.38

Displacement Boundary Conditions

node 1 2 3 4 5 6 7 8 9 10 11

ux=0.0 uy=0.0 uy

Traction BC

node 11 22 33 44 55 66 77 88 99 110

fx=0.0 fx

node 121 132 143 154 165 176 187 198 209 220

fx=0.0 fx

node 231 242 253 264 275 286 297 308 319 330

fx=0.0 fx

node 341 352 363 374 385 396 407 418 429 440

fx=0.0 fx

node 468

fx=0.0

fy = 0.25

displacements

.....

* * * * * * *

* node * ux * uy ** node * ux * uy '

* * * * * * *

1 *

* 31 *

* 33 *

16.2888 *

29.3432 *

0.0000 *

0.0000 ** 2 *

0.0000 *

0.0000 *

```
0.0000 ** 4 *
  3 *
         0.0000 *
                                        0.0000 *
                                                   0.0000 *
  5 *
         0.0000 *
                     0.0000 ** 6 *
                                        0.0000 *
                                                   0.0000 *
         0.0000 *
                     0.0000 ** 8 *
                                        0.0000 *
                                                    0.0000 *
  7 *
  9 *
         0.0000 *
                     0.0000 ** 10 *
                                        0.0000 *
                                                    0.0000 *
                      0.0000 ** 12 *
* 11 *
          0.0000 *
                                        -16.0080 *
                                                     -12.2395 *
                      -9.5594 ** 14 *
* 13 *
         -11.1853 *
                                         -7.8332 *
                                                     -7.8403 *
                      -6.7916 ** 16 *
* 15 *
         -5.0160 *
                                         -2.4515 *
                                                     -6.2338 *
                      -6.0765 ** 18 *
* 17 *
          0.0068 *
                                         2.4667 *
                                                     -6.2934 *
* 19 *
          5.0366 *
                      -6.9139 ** 20 *
                                         7.8656 *
                                                     -8.0322 *
* 21 *
         11.2440 *
                      -9.8334 ** 22 *
                                         16.1436 *
                                                     -12.6156 *
* 23 *
         -29.1703 *
                      -26.6113 ** 24 *
                                          -22.4511 *
                                                      -24.7569 *
* 25 *
         -16.1581 *
                      -23.1645 ** 26 *
                                          -10.4478 *
                                                      -22.0225 *
         -5.1105 *
                     -21.3601 ** 28 *
                                          0.0508 *
                                                     -21.1707 *
* 27 *
                     -21.4496 ** 30 *
* 29 *
          5.2151 *
                                         10.5617 *
                                                     -22.2027 *
```

-23.4370 ** 32 *

-27.0587 ** 34 *

22.6072 *

-40.7924 *

-25.1216 *

-47.2844 *

^{* 35 * -31.7562 * -45.6074 ** 36 * -23.3008 * -44.3254 *}

^{33 31.7302 13.0071 30 23.3000 11.3231}

^{* 37 * -15.2451 * -43.3968 ** 38 * -7.4910 * -42.8475 *}

^{* 39 * 0.1066 * -42.6946 ** 40 * 7.7062 * -42.9429 *}

^{* 41 * 15.4665 * -43.5869 ** 42 * 23.5308 * -44.6086 *}

^{* 43 * 31.9930 * -45.9807 ** 44 * 41.0330 * -47.7472 *}

```
* 45 * -50.6502 * -73.1815 ** 46 * -39.6736 * -71.8000 *
```

- * 47 * -29.2387 * -70.7211 ** 48 * -19.2162 * -69.9624 *
- * 49 * -9.4606 * -69.5230 ** 50 * 0.1606 * -69.4071 *
- * 399 * 62.0872 * -258.9129 ** 400 * 41.8328 * -259.2802 *
- * 401 * 21.7151 * -259.4958 ** 402 * 1.6769 * -259.5669 *
- * 403 * -18.3449 * -259.5042 ** 404 * -38.4237 * -259.3165 *
- * 405 * -58.6418 * -259.0068 ** 406 * -79.0852 * -258.5707 *
- * 407 * -99.8394 * -257.9954 ** 408 * 107.2653 * -204.5035 *
- * 409 * 85.7090 * -205.0331 ** 410 * 64.4188 * -205.4554 *
- * 411 * 43.2973 * -205.7084 ** 412 * 22.3542 * -205.8130 *
- * 413 * 1.5535 * -205.8039 ** 414 * -19.1795 * -205.7068 *
- * 415 * -39.9406 * -205.5354 ** 416 * -60.8373 * -205.2938 *
- * 417 * -81.9865 * -204.9786 ** 418 * -103.5100 * -204.5751 *
- * 419 * 110.6301 * -149.3383 ** 420 * 88.3679 * -149.9224 *
- * 421 * 66.0560 * -150.1382 ** 422 * 44.1139 * -150.1746 *
- * 423 * 22.5489 * -150.1471 ** 424 * 1.2513 * -150.0998 *
- * 425 * -19.9146 * -150.0393 ** 426 * -41.0826 * -149.9569 *
- * 427 * -62.3807 * -149.8410 ** 428 * -83.9368 * -149.6847 *
- * 429 * -105.9040 * -149.4907 ** 430 * 114.2083 * -92.6331 *
- * 431 * 89.8260 * -92.3783 ** 432 * 66.6245 * -92.3046 *
- * 433 * 44.2960 * -92.4529 ** 434 * 22.5217 * -92.7268 *
- * 435 * 1.0588 * -93.0365 ** 436 * -20.2778 * -93.3213 *
- * 437 * -41.6345 * -93.5463 ** 438 * -63.1297 * -93.6956 *
- * 439 * -84.8575 * -93.7691 ** 440 * -106.8882 * -93.7895 *
- * 441 * 118.3903 * -24.0532 ** 442 * 91.9588 * -28.0862 *
- * 443 * 68.0723 * -31.2270 ** 444 * 45.3880 * -33.6188 *
- * 445 * 23.3432 * -35.3959 ** 446 * 1.6342 * -36.6701 *
- * 447 * -19.9340 * -37.5343 ** 448 * -41.5011 * -38.0714 *
- * 449 * -63.1697 * -38.3641 ** 450 * -85.0014 * -38.5024 *

stresses

.....

* * * * *

* element * sx * sy * sxy *

* * * * *

- * 1 * -53.5218 * 0.2900 * -0.9492 *
- * 1 * -62.4488 * -20.5399 * -11.6583 *
- * 1 * -77.4416 * -26.9653 * -14.0389 *
- * 1 * -68.5145 * -6.1355 * -3.3298 *
- * 2 * -38.1712 * -1.4600 * -2.4527 *
- * 2 * -43.8973 * -14.8209 * -9.8963 *
- * 2 * -54.3184 * -19.2871 * -11.4233 *
- * 2 * -48.5923 * -5.9261 * -3.9797 *
- * 3 * -25.4436 * -1.8159 * -2.2440 *
- * 3 * -28.9365 * -9.9661 * -8.4998 *
- * 3 * -37.6947 * -13.7196 * -9.4312 *
- * 3 * -34.2017 * -5.5694 * -3.1754 *
- * 4 * -13.5803 * -0.9855 * -1.9926 *
- * 4 * -15.4384 * -5.3210 * -7.6874 *
- * 4 * -23.4110 * -8.7379 * -8.1829 *
- * 4 * -21.5530 * -4.4024 * -2.4881 *
- * 5 * -2.0452 * 0.4863 * -1.9428 *
- * 5 * -2.5690 * -0.7358 * -7.4016 *
- * 5 * -10.2113 * -4.0111 * -7.5413 *

- * 5 * -9.6876 * -2.7890 * -2.0824 *
- * 6 * 9.4965 * 2.1908 * -2.1499 *
- * 6 * 10.2187 * 3.8759 * -7.6123 *
- * 6 * 2.5714 * 0.5985 * -7.4197 *
- * 6 * 1.8492 * -1.0866 * -1.9573 *
- * 7 * 21.3725 * 3.7817 * -2.6395 *
- * 7 * 23.4393 * 8.6044 * -8.3462 *
- * 7 * 15.4499 * 5.1804 * -7.7950 *
- * 7 * 13.3830 * 0.3577 * -2.0883 *
- * 8 * 34.0459 * 4.8992 * -3.4122 *
- * 8 * 37.7707 * 13.5905 * -9.6942 *
- * 8 * 28.9759 * 9.8213 * -8.7009 *
- * 8 * 25.2511 * 1.1300 * -2.4189 *
- * 9 * 48.5049 * 5.1772 * -4.2947 *
- * 9 * 54.5045 * 19.1762 * -11.7967 *
- * 9 * 44.0016 * 14.6750 * -10.1968 *
- * 9 * 38.0020 * 0.6759 * -2.6948 *
- * 10 * 68.6925 * 5.3266 * -3.6419 *
- * 10 * 77.9598 * 26.9503 * -14.5218 *
- * 10 * 62.7280 * 20.4224 * -12.0505 *
- * 10 * 53.4607 * -1.2013 * -1.1707 *
- * 11 * -51.1144 * 0.3899 * 1.1892 *
- * 11 * -48.3643 * 6.8068 * -3.0222 *
- * 11 * -54.2602 * 4.2800 * -2.2888 *
- * 11 * -57.0103 * -2.1369 * 1.9225 *
- * 12 * -38.8313 * 1.1510 * -1.7210 *
- * 12 * -38.4092 * 2.1359 * -8.2515 *
- * 12 * -47.5519 * -1.7824 * -8.1389 *
- * 12 * -47.9740 * -2.7673 * -1.6084 *

- * 13 * -26.0657 * 1.1613 * -3.8514 *
- * 13 * -26.3764 * 0.4362 * -10.2757 *
- * 13 * -35.3705 * -3.4184 * -10.3585 *
- * 13 * -35.0597 * -2.6933 * -3.9342 *
- * 14 * -13.7789 * 1.1312 * -5.0309 *
- * 14 * -14.1272 * 0.3184 * -11.1881 *
- * 14 * -22.7472 * -3.3759 * -11.2809 *
- * 14 * -22.3988 * -2.5631 * -5.1238 *
- * 15 * -1.7850 * 1.2422 * -5.5779 *
- * 15 * -1.8923 * 0.9918 * -11.5802 *
- * 15 * -10.2956 * -2.6096 * -11.6089 *
- * 15 * -10.1883 * -2.3592 * -5.6065 *
- * 16 * 10.1883 * 1.4452 * -5.6326 *
- * 16 * 10.3953 * 1.9282 * -11.6380 *
- * 16 * 1.9878 * -1.6750 * -11.5828 *
- * 16 * 1.7808 * -2.1581 * -5.5774 *
- * 17 * 22.4078 * 1.6356 * -5.1713 *
- * 17 * 22.8494 * 2.6658 * -11.3370 *
- * 17 * 14.2173 * -1.0336 * -11.2193 *
- * 17 * 13.7758 * -2.0639 * -5.0535 *
- * 18 * 35.0786 * 1.7394 * -3.9902 *
- * 18 * 35.4650 * 2.6411 * -10.4257 *
- * 18 * 26.4552 * -1.2203 * -10.3227 *
- * 18 * 26.0688 * -2.1219 * -3.8871 *
- * 19 * 47.9800 * 1.7801 * -1.6463 *
- * 19 * 47.5916 * 0.8737 * -8.1747 *
- * 19 * 38.4518 * -3.0433 * -8.2783 *
- * 19 * 38.8403 * -2.1369 * -1.7499 *
- * 20 * 56.7788 * 1.0841 * 1.9200 *

- * 20 * 53.9639 * -5.4841 * -2.1579 *
- * 20 * 48.2549 * -7.9308 * -2.9085 *
- * 20 * 51.0699 * -1.3626 * 1.1693 *
- * 21 * -42.8494 * 0.4769 * 0.8514 *
- * 21 * -42.2583 * 1.8559 * -4.2938 *
- * 21 * -49.4616 * -1.2312 * -4.1362 *
- * 21 * -50.0526 * -2.6102 * 1.0090 *
- * 22 * -33.1469 * 0.6028 * -1.6913 *
- * 22 * -32.1131 * 3.0152 * -6.4929 *
- * 22 * -38.8353 * 0.1342 * -6.2172 *
- * 22 * -39.8692 * -2.2781 * -1.4156 *
- * 23 * -22.8834 * 0.8923 * -3.7370 *
- * 23 * -22.1726 * 2.5508 * -8.9452 *
- * 23 * -29.4641 * -0.5741 * -8.7556 *
- * 23 * -30.1749 * -2.2326 * -3.5474 *
- * 24 * -12.2610 * 1.0442 * -5.1615 *
- * 24 * -11.8843 * 1.9233 * -10.5283 *
- * 24 * -19.3979 * -1.2968 * -10.4279 *
- * 24 * -19.7747 * -2.1759 * -5.0610 *
- * 25 * -1.5450 * 1.1035 * -5.8607 *
- * 25 * -1.4234 * 1.3872 * -11.2704 *
- * 25 * -8.9971 * -1.8586 * -11.2380 *
- * 25 * -9.1187 * -2.1423 * -5.8283 *
- * 26 * 9.1724 * 1.1309 * -5.8265 *
- * 26 * 9.0704 * 0.8929 * -11.2344 *
- * 26 * 1.4993 * -2.3519 * -11.2616 *
- * 26 * 1.6013 * -2.1139 * -5.8537 *
- * 27 * 19.8154 * 1.1619 * -5.0490 *
- * 27 * 19.4521 * 0.3143 * -10.4087 *

- * 27 * 11.9485 * -2.9016 * -10.5056 *
- * 27 * 12.3118 * -2.0539 * -5.1458 *
- * 28 * 30.1822 * 1.2147 * -3.5239 *
- * 28 * 29.4739 * -0.4381 * -8.7137 *
- * 28 * 22.2082 * -3.5520 * -8.9026 *
- * 28 * 22.9165 * -1.8992 * -3.7128 *
- * 29 * 39.8018 * 1.2535 * -1.3881 *
- * 29 * 38.7613 * -1.1745 * -6.1486 *
- * 29 * 32.0966 * -4.0308 * -6.4261 *
- * 29 * 33.1371 * -1.6028 * -1.6656 *
- * 30 * 49.9244 * 1.5886 * 1.0127 *
- * 30 * 49.3558 * 0.2618 * -4.1037 *
- * 30 * 42.1928 * -2.8080 * -4.2553 *
- * 30 * 42.7615 * -1.4812 * 0.8610 *
- * 31 * -36.5099 * 0.2207 * 0.4402 *
- * 31 * -35.5257 * 2.5173 * -3.8685 *
- * 31 * -41.5579 * -0.0679 * -3.6060 *
- * 31 * -42.5422 * -2.3646 * 0.7027 *
- * 32 * -27.7535 * 0.4338 * -2.0174 *
- * 32 * -27.0772 * 2.0119 * -6.4132 *
- * 32 * -33.2314 * -0.6257 * -6.2329 *
- * 32 * -33.9077 * -2.2038 * -1.8370 *
- * 33 * -19.0367 * 0.5732 * -3.8655 *
- * 33 * -18.4710 * 1.8933 * -8.2328 *
- * 33 * -24.5852 * -0.7271 * -8.0819 *
- * 33 * -25.1510 * -2.0472 * -3.7146 *
- * 34 * -10.2146 * 0.7057 * -5.1086 *
- * 34 * -9.8484 * 1.5602 * -9.5530 *
- * 34 * -16.0705 * -1.1064 * -9.4553 *

- * 34 * -16.4367 * -1.9609 * -5.0110 *
- * 35 * -1.2981 * 0.8031 * -5.7242 *
- * 35 * -1.1745 * 1.0914 * -10.2181 *
- * 35 * -7.4659 * -1.6049 * -10.1851 *
- * 35 * -7.5895 * -1.8932 * -5.6913 *
- * 36 * 7.6232 * 0.8741 * -5.6851 *
- * 36 * 7.4940 * 0.5728 * -10.1760 *
- * 36 * 1.2068 * -2.1217 * -10.2104 *
- * 36 * 1.3360 * -1.8204 * -5.7196 *
- * 37 * 16.4551 * 0.9421 * -4.9954 *
- * 37 * 16.0835 * 0.0749 * -9.4307 *
- * 37 * 9.8741 * -2.5863 * -9.5298 *
- * 37 * 10.2457 * -1.7191 * -5.0945 *
- * 38 * 25.1445 * 1.0305 * -3.6946 *
- * 38 * 24.5753 * -0.2976 * -8.0478 *
- * 38 * 18.4808 * -2.9095 * -8.1996 *
- * 38 * 19.0500 * -1.5814 * -3.8464 *
- * 39 * 33.8794 * 1.1917 * -1.8208 *
- * 39 * 33.2065 * -0.3785 * -6.2052 *
- * 39 * 27.0683 * -3.0091 * -6.3846 *
- * 39 * 27.7412 * -1.4389 * -2.0002 *
- * 40 * 42.4964 * 1.3554 * 0.7093 *
- * 40 * 41.5150 * -0.9347 * -3.5906 *

-3.5146 *

-3.8523 *

35.4952 *

40

- * 40 * 36.4766 * -1.2246 * 0.4476 *
- * 41 * -30.0834 * 0.0362 * 0.1269 *
- * 41 * -29.2177 * 2.0561 * -3.4113 *
- * 41 * -34.1711 * -0.0668 * -3.1804 *
- * 41 * -35.0368 * -2.0867 * 0.3577 *

- * 42 * -22.9204 * 0.2223 * -2.2249 *
- * 42 * -22.2243 * 1.8466 * -5.8140 *
- * 42 * -27.2490 * -0.3069 * -5.6283 *
- * 42 * -27.9451 * -1.9311 * -2.0393 *
- * 43 * -15.6664 * 0.3676 * -3.9787 *
- * 43 * -15.1838 * 1.4936 * -7.6237 *
- * 43 * -20.2868 * -0.6934 * -7.4950 *
- * 43 * -20.7693 * -1.8194 * -3.8500 *
- * 44 * -8.3800 * 0.4725 * -5.1362 *
- * 44 * -8.0864 * 1.1578 * -8.7979 *
- * 44 * -13.2128 * -1.0393 * -8.7196 *
- * 44 * -13.5065 * -1.7245 * -5.0579 *
- * 45 * -1.0743 * 0.5590 * -5.6994 *
- * 45 * -0.9768 * 0.7866 * -9.3741 *
- * 45 * -6.1214 * -1.4182 * -9.3481 *
- * 45 * -6.2189 * -1.6458 * -5.6734 *
- * 46 * 6.2306 * 0.6362 * -5.6702 *
- * 46 * 6.1273 * 0.3951 * -9.3435 *
- * 46 * 0.9847 * -1.8089 * -9.3711 *
- * 46 * 1.0880 * -1.5678 * -5.6978 *
- * 47 * 13.5119 * 0.7154 * -5.0511 *
- * 47 * 13.2138 * 0.0199 * -8.7091 *
- * 47 * 8.0926 * -2.1749 * -8.7885 *
- * 47 * 8.3907 * -1.4794 * -5.1306 *
- * 48 * 20.7674 * 0.8122 * -3.8418 *
- * 48 * 20.2829 * -0.3184 * -7.4826 *
- * 48 * 15.1858 * -2.5028 * -7.6118 *
- * 48 * 15.6704 * -1.3722 * -3.9710 *
- * 49 * 27.9362 * 0.9261 * -2.0323 *

- 27.2397 * -5.6174 * 49 -0.6991 *
- 49 22.2205 * -2.8502 * -5.8031 *
- 22.9171 * -1.2249 * -2.2180 * 49
- 50 35.0256 * 1.0840 * 0.3605 *
- 34.1623 * -0.9303 * -3.1766 * 50 *
- 50 29.2104 * -3.0525 * -3.4068 *
- 50 * 30.0736 * -1.0382 * 0.1303 *
- -0.6420 * 350 -24.3037 * -2.2528 *
- 350 -23.8954 * -1.3002 * 1.9458 *
- 350 -20.2724 * 0.2525 * 2.0547 *
- 350 -20.6807 * -0.7001 * -0.5332 *
- -0.2877 * 351 17.6923 * -0.1939 *
- 351 * 17.2803 * -1.1553 * 1.8948 *
- 351 20.3358 * 0.1542 * 1.7849 *
- 351 20.7478 * 1.1156 * -0.3976 *
- 352 13.3695 * -0.2112 * 0.8686 *
- 352 13.0007 * -1.0716 * 3.0480 *
- 2.9497 * 352 16.0519 * 0.2361 *
- 352 16.4207 * 1.0965 * 0.7703 *
- 353 9.0610 * -0.3500 * 1.7866 *
- 3.9243 * -1.0087 * 353 8.7787 *
- 353 11.7715 * 0.2740 *

3.8490 *

- 353 12.0538 * 0.9327 * 1.7113 *
- 354 4.8124 * -0.4625 * 2.4135 *
- 354 4.5900 * -0.9814 * 4.5312 *
- 354 7.5548 * 0.2892 * 4.4719 *
- 354 7.7772 * 0.8082 * 2.3542 *
- 2.7833 * 355 0.6049 * -0.6267 *
- 355 0.4542 * -0.9784 * 4.8658 *

- * 355 * 3.3698 * 0.2711 * 4.8256 *
- * 355 * 3.5205 * 0.6228 * 2.7431 *
- * 356 * -3.5682 * -0.8770 * 2.8670 *
- * 356 * -3.6204 * -0.9989 * 4.9133 *
- * 356 * -0.7556 * 0.2289 * 4.8993 *
- * 356 * -0.7033 * 0.3508 * 2.8530 *
- * 357 * -7.7316 * -1.2019 * 2.6207 *
- * 357 * -7.6617 * -1.0388 * 4.6501 *
- * 357 * -4.8206 * 0.1788 * 4.6687 *
- * 357 * -4.8905 * 0.0157 * 2.6393 *
- * 358 * -11.9319 * -1.5665 * 2.0097 *
- * 358 * -11.7254 * -1.0848 * 4.0563 *
- * 358 * -8.8602 * 0.1431 * 4.1114 *
- * 358 * -9.0666 * -0.3386 * 2.0648 *
- * 359 * -16.2271 * -1.9213 * 1.0187 *
- * 359 * -15.8823 * -1.1166 * 3.1243 *
- * 359 * -12.9345 * 0.1467 * 3.2162 *
- * 359 * -13.2794 * -0.6580 * 1.1107 *
- * 360 * -20.6780 * -2.2113 * -0.3451 *
- * 360 * -20.2062 * -1.1103 * 1.8622 *
- * 360 * -17.1161 * 0.2140 * 1.9880 *
- * 360 * -17.5879 * -0.8870 * -0.2192 *
- * 361 * 14.7344 * 0.1422 * -0.1795 *
- * 361 * 14.2284 * -1.0384 * 1.6853 *
- * 361 * 16.8391 * 0.0804 * 1.5504 *
- * 361 * 17.3451 * 1.2611 * -0.3144 *
- * 362 * 10.9459 * -0.1705 * 1.0002 *
- * 362 * 10.6298 * -0.9079 * 2.8414 *
- * 362 * 13.2075 * 0.1968 * 2.7571 *

- * 362 * 13.5235 * 0.9342 * 0.9159 *
- * 363 * 7.2734 * 0.0717 * 1.8490 *
- * 363 * 6.8926 * -0.8169 * 3.7745 *
- * 363 * 9.5883 * 0.3384 * 3.6730 *
- * 363 * 9.9692 * 1.2271 * 1.7474 *
- * 364 * 3.6419 * 0.1537 * 2.6735 *
- * 364 * 3.2719 * -0.7096 * 4.5062 *
- * 364 * 5.8377 * 0.3900 * 4.4075 *
- * 364 * 6.2077 * 1.2533 * 2.5748 *
- * 365 * 0.1578 * -0.0187 * 3.3032 *
- * 365 * -0.1091 * -0.6416 * 4.9965 *
- * 365 * 2.2616 * 0.3744 * 4.9253 *
- * 365 * 2.5285 * 0.9973 * 3.2320 *
- * 366 * -3.1668 * -0.3702 * 3.5899 *
- * 366 * -3.2815 * -0.6377 * 5.1693 *
- * 366 * -1.0704 * 0.3099 * 5.1387 *
- * 366 * -0.9557 * 0.5774 * 3.5593 *
- * 367 * -6.3825 * -0.8138 * 3.4497 *
- * 367 * -6.3283 * -0.6871 * 4.9646 *
- * 367 * -4.2074 * 0.2218 * 4.9791 *
- * 367 * -4.2617 * 0.0951 * 3.4642 *
- * 368 * -9.5733 * -1.2902 * 2.8370 *
- * 368 * -9.3464 * -0.7606 * 4.3442 *
- * 368 * -7.2364 * 0.1437 * 4.4047 *
- * 368 * -7.4634 * -0.3860 * 2.8976 *
- * 369 * -12.8536 * -1.7639 * 1.7193 *
- * 369 * -12.4508 * -0.8241 * 3.2866 *
- * 369 * -10.2566 * 0.1162 * 3.3940 *
- * 369 * -10.6594 * -0.8235 * 1.8267 *

- * 370 * -16.3520 * -2.1749 * 0.0836 *
- * 370 * -15.7799 * -0.8399 * 1.7918 *
- * 370 * -13.3885 * 0.1849 * 1.9444 *
- * 370 * -13.9607 * -1.1500 * 0.2362 *
- * 371 * 11.8169 * -1.2284 * -0.2468 *
- * 371 * 11.9987 * -0.8042 * 1.3207 *
- * 371 * 14.1932 * 0.1363 * 1.3691 *
- * 371 * 14.0114 * -0.2879 * -0.1983 *
- * 372 * 8.4816 * 0.7841 * 0.0518 *
- * 372 * 7.7935 * -0.8214 * 2.3207 *
- * 372 * 10.9700 * 0.5399 * 2.1372 *
- * 372 * 11.6580 * 2.1454 * -0.1317 *
- * 373 * 4.8571 * 1.1790 * 1.6404 *
- * 373 * 4.1356 * -0.5045 * 3.4625 *
- * 373 * 6.6866 * 0.5888 * 3.2701 *
- * 373 * 7.4081 * 2.2723 * 1.4480 *
- * 374 * 1.7536 * 0.7470 * 3.1600 *
- * 374 * 1.3138 * -0.2794 * 4.5411 *
- * 374 * 3.2473 * 0.5492 * 4.4238 *
- * 374 * 3.6872 * 1.5756 * 3.0427 *
- * 375 * -0.8355 * 0.0729 * 4.1761 *
- * 375 * -0.9629 * -0.2242 * 5.2795 *
- * 375 * 0.5819 * 0.4379 * 5.2455 *
- * 375 * 0.7092 * 0.7349 * 4.1421 *
- * 376 * -3.0717 * -0.5666 * 4.5990 *
- * 376 * -2.9498 * -0.2822 * 5.5602 *
- * 376 * -1.6042 * 0.2944 * 5.5927 *
- * 376 * -1.7261 * 0.0101 * 4.6315 *
- * 377 * -5.1025 * -1.0747 * 4.4494 *

- * 377 * -4.8059 * -0.3827 * 5.3532 *
- * 377 * -3.5406 * 0.1596 * 5.4323 *
- * 377 * -3.8371 * -0.5324 * 4.5285 *
- * 378 * -7.0319 * -1.4483 * 3.7634 *
- * 378 * -6.6134 * -0.4717 * 4.6546 *
- * 378 * -5.3657 * 0.0630 * 4.7662 *
- * 378 * -5.7843 * -0.9136 * 3.8750 *
- * 379 * -8.9426 * -1.7453 * 2.5420 *
- * 379 * -8.4134 * -0.5106 * 3.4455 *
- * 379 * -7.1484 * 0.0315 * 3.5866 *
- * 379 * -7.6776 * -1.2032 * 2.6831 *
- * 380 * -11.0113 * -2.1008 * 0.6848 *
- * 380 * -10.3134 * -0.4724 * 1.6702 *
- * 380 * -8.9338 * 0.1189 * 1.8563 *
- * 380 * -9.6317 * -1.5096 * 0.8709 *
- * 381 * 10.7104 * 5.4412 * -3.7983 *
- * 381 * 7.9162 * -1.0788 * 0.9096 *
- * 381 * 14.5072 * 1.7459 * 0.1645 *
- * 381 * 17.3015 * 8.2659 * -4.5434 *
- * 382 * 4.1458 * 1.9147 * 0.3673 *
- * 382 * 3.1815 * -0.3354 * 2.3427 *
- * 382 * 5.9470 * 0.8499 * 2.0855 *
- * 382 * 6.9113 * 3.0999 * 0.1102 *
- * 383 * 0.7010 * -1.0691 * 3.2740 *
- * 383 * 1.0737 * -0.1993 * 4.1322 *
- * 383 * 2.2752 * 0.3156 * 4.2316 *
- * 383 * 1.9024 * -0.5542 * 3.3734 *
- * 384 * -1.1211 * -2.7904 * 4.8599 *
- * 384 * -0.1172 * -0.4480 * 5.3245 *

- * 384 * 0.5333 * -0.1692 * 5.5922 *
- * 384 * -0.4706 * -2.5117 * 5.1276 *
- * 385 * -2.2000 * -3.5173 * 5.4904 *
- * 385 * -1.0108 * -0.7425 * 5.8574 *
- * 385 * -0.4969 * -0.5223 * 6.1745 *
- * 385 * -1.6861 * -3.2971 * 5.8075 *
- * 386 * -2.9840 * -3.6069 * 5.4457 *
- * 386 * -1.8337 * -0.9230 * 5.8249 *
- * 386 * -1.3028 * -0.6954 * 6.1316 *
- * 386 * -2.4531 * -3.3793 * 5.7524 *
- * 387 * -3.6801 * -3.3359 * 4.8978 *
- * 387 * -2.6563 * -0.9469 * 5.3165 *
- * 387 * -2.0701 * -0.6957 * 5.5895 *
- * 387 * -3.0940 * -3.0846 * 5.1709 *
- * 388 * -4.3466 * -2.8877 * 3.9502 *
- * 388 * -3.4632 * -0.8265 * 4.3879 *
- * 388 * -2.8504 * -0.5639 * 4.6234 *
- * 388 * -3.7338 * -2.6251 * 4.1857 *
- * 389 * -4.9060 * -2.3763 * 2.6696 *
- * 389 * -4.1404 * -0.5899 * 3.0510 *
- * 389 * -3.6064 * -0.3611 * 3.2552 *
- * 389 * -4.3720 * -2.1475 * 2.8737 *
- * 390 * -5.0834 * -1.9049 * 1.0820 *
- * 390 * -4.3693 * -0.2387 * 1.2229 *
- * 390 * -4.1721 * -0.1542 * 1.4133 *
- * 390 * -4.8862 * -1.8204 * 1.2725 *
- * 391 * -4.2234 * -36.1715 * 0.3109 *
- * 391 * 10.0584 * -2.8473 * 4.8612 *
- * 391 * 16.4289 * -0.1171 * 8.6697 *

- * 391 * 2.1471 * -33.4412 * 4.1193 *
- * 392 * -5.6256 * -29.4603 * 3.6961 *
- * 392 * 5.0816 * -4.4769 * 5.2174 *
- * 392 * 7.2113 * -3.5642 * 8.0726 *
- * 392 * -3.4959 * -28.5476 * 6.5514 *
- * 393 * -4.7784 * -23.1213 * 4.2852 *
- * 393 * 2.6945 * -5.6846 * 5.0751 *
- * 393 * 3.8003 * -5.2107 * 7.0679 *
- * 393 * -3.6726 * -22.6474 * 6.2780 *
- * 394 * -3.6883 * -17.6179 * 4.1221 *
- * 394 * 1.3184 * -5.9355 * 4.7230 *
- * 394 * 2.1597 * -5.5749 * 6.0582 *
- * 394 * -2.8470 * -17.2573 * 5.4572 *
- * 395 * -2.7971 * -12.9614 * 3.7350 *
- * 395 * 0.4155 * -5.4653 * 4.2814 *
- * 395 * 1.1805 * -5.1375 * 5.1381 *
- * 395 * -2.0322 * -12.6336 * 4.5917 *
- * 396 * -2.1645 * -9.0790 * 3.2484 *
- * 396 * -0.2346 * -4.5760 * 3.7625 *
- * 396 * 0.4852 * -4.2675 * 4.2772 *
- * 396 * -1.4447 * -8.7705 * 3.7630 *
- * 397 * -1.7606 * -5.9322 * 2.6681 *
- * 397 * -0.7209 * -3.5063 * 3.1355 *
- * 397 * -0.0666 * -3.2258 * 3.4128 *
- * 397 * -1.1062 * -5.6517 * 2.9454 *
- * 398 * -1.5320 * -3.5401 * 1.9722 *
- * 398 * -1.0544 * -2.4257 * 2.3573 *
- * 398 * -0.5154 * -2.1947 * 2.4846 *
- * 398 * -0.9930 * -3.3091 * 2.0996 *

```
* 399 * -1.3755 * -1.9586 * 1.1629 *
```

Connectivity Matrix

- 1 1 12 13 2
- 2 2 13 14 3
- 3 3 14 15 4
- 4 4 15 16 5
- 5 5 16 17 6
- 6 6 17 18 7
- 7 7 18 19 8
- 8 8 19 20 9
- 9 9 20 21 10
- 10 10 21 22 11
- 11 12 23 24 13
- 12 13 24 25 14
- 13 14 25 26 15
- 14 15 26 27 16
- 15 16 27 28 17
- 16 17 28 29 18
- 17 18 29 30 19
- 18 19 30 31 20
- 19 20 31 32 21

- 20 21 32 33 22
- 21 23 34 35 24
- 22 24 35 36 25
- 23 25 36 37 26
- 24 26 37 38 27
- 25 27 38 39 28
- 26 28 39 40 29
- 27 29 40 41 30
- 28 30 41 42 31
- 29 31 42 43 32
- 30 32 43 44 33
- 31 34 45 46 35
- 32 35 46 47 36
- 33 36 47 48 37
- 34 37 48 49 38
- 35 38 49 50 39
- 36 39 50 51 40
- 37 40 51 52 41
- 38 41 52 53 42
- 39 42 53 54 43
- 40 43 54 55 44
- 41 45 56 57 46
- 42 46 57 58 47
- 43 47 58 59 48
- 44 48 59 60 49
- 45 49 60 61 50
- 46 50 61 62 51
- 47 51 62 63 52
- 48 52 63 64 53

- 49 53 64 65 54
- 50 54 65 66 55
- 51 56 67 68 57
- 52 57 68 69 58
- 53 58 69 70 59
- 54 59 70 71 60
- 55 60 71 72 61
- 56 61 72 73 62
- 57 62 73 74 63
- 58 63 74 75 64
- 59 64 75 76 65
- 60 65 76 77 66
- 61 67 78 79 68
- 62 68 79 80 69
- 63 69 80 81 70
- 64 70 81 82 71
- 65 71 82 83 72
- 66 72 83 84 73
- 67 73 84 85 74
- 68 74 85 86 75
- 69 75 86 87 76
- 70 76 87 88 77
- 71 78 89 90 79
- 72 79 90 91 80
- 73 80 91 92 81
- 74 81 92 93 82
- 75 82 93 94 83
- 76 83 94 95 84
- 77 84 95 96 85

- 78 85 96 97 86
- 79 86 97 98 87
- 80 87 98 99 88
- 81 89 100 101 90
- 82 90 101 102 91
- 83 91 102 103 92
- 84 92 103 104 93
- 85 93 104 105 94
- 86 94 105 106 95
- 87 95 106 107 96
- 88 96 107 108 97
- 89 97 108 109 98
- 90 98 109 110 99
- 91 100 111 112 101
- 92 101 112 113 102
- 93 102 113 114 103
- 94 103 114 115 104
- 95 104 115 116 105
- 96 105 116 117 106
- 97 106 117 118 107
- 98 107 118 119 108
- 99 108 119 120 109
- 100 109 120 121 110
- 101 111 122 123 112
- 102 112 123 124 113
- 103 113 124 125 114
- 104 114 125 126 115
- 105 115 126 127 116
- 106 116 127 128 117

- 107 117 128 129 118
- 108 118 129 130 119
- 109 119 130 131 120
- 110 120 131 132 121
- 111 122 133 134 123
- 112 123 134 135 124
- 113 124 135 136 125
- 114 125 136 137 126
- 115 126 137 138 127
- 116 127 138 139 128
- 117 128 139 140 129
- 118 129 140 141 130
- 119 130 141 142 131
- 120 131 142 143 132
- 121 133 144 145 134
- 122 134 145 146 135
- 123 135 146 147 136
- 124 136 147 148 137
- 125 137 148 149 138
- 126 138 149 150 139
- 127 139 150 151 140
- 128 140 151 152 141
- 129 141 152 153 142
- 130 142 153 154 143
- 131 144 155 156 145
- 132 145 156 157 146
- 133 146 157 158 147
- 134 147 158 159 148
- 135 148 159 160 149

```
136 149 160 161 150
```

184 173

157 172 183

^{137 150 161 162 151}

```
165 181 192 193 182
```

- 194 213 224 225 214
- 195 214 225 226 215
- 196 215 226 227 216
- 197 216 227 228 217
- 198 217 228 229 218
- 199 218 229 230 219
- 200 219 230 231 220
- 201 221 232 233 222
- 202 222 233 234 223
- 203 223 234 235 224
- 204 224 235 236 225
- 205 225 236 237 226
- 206 226 237 238 227
- 207 227 238 239 228
- 208 228 239 240 229
- 209 229 240 241 230
- 210 230 241 242 231
- 211 232 243 244 233
- 212 233 244 245 234
- 213 234 245 246 235
- 214 235 246 247 236
- 215 236 247 248 237
- 216 237 248 249 238
- 217 238 249 250 239
- 218 239 250 251 240
- 219 240 251 252 241
- 220 241 252 253 242
- 221 243 254 255 244
- 222 244 255 256 245

- 223 245 256 257 246
- 224 246 257 258 247
- 225 247 258 259 248
- 226 248 259 260 249
- 227 249 260 261 250
- 228 250 261 262 251
- 229 251 262 263 252
- 230 252 263 264 253
- 231 254 265 266 255
- 232 255 266 267 256
- 233 256 267 268 257
- 234 257 268 269 258
- 235 258 269 270 259
- 236 259 270 271 260
- 237 260 271 272 261
- 238 261 272 273 262
- 239 262 273 274 263
- 240 263 274 275 264
- 241 265 276 277 266
- 242 266 277 278 267
- 243 267 278 279 268
- 244 268 279 280 269
- 245 269 280 281 270
- 246 270 281 282 271
- 247 271 282 283 272
- 248 272 283 284 273
- 249 273 284 285 274
- 250 274 285 286 275
- 251 276 287 288 277

277	288	289	278
278	289	290	279
279	290	291	280
280	291	292	281
281	292	293	282
282	293	294	283
283	294	295	284
284	295	296	285
285	296	297	286
287	298	299	288
288	299	300	289
289	300	301	290
290	301	302	291
291	302	303	292
292	303	304	293
293	304	305	294
294	305	306	295
295	306	307	296
296	307	308	297
298	309	310	299
299	310	311	300
300	311	312	301
301	312	313	302
302	313	314	303
303	314	315	304
304	315	316	305
305	316	317	306
306	317	318	307
307	318	319	308
	278 279 280 281 282 283 284 285 287 288 289 290 291 292 293 294 295 296 298 299 300 301 302 303 304 305 306	278 289 279 290 281 291 282 293 283 294 284 295 285 296 287 298 288 299 289 300 290 301 291 302 292 303 293 304 294 305 295 306 296 307 298 309 299 310 300 311 301 312 302 313 303 314 304 315 305 316 306 317	278 289 290 279 291 292 281 292 293 282 293 294 283 294 295 284 295 296 285 296 297 287 298 299 288 299 300 289 300 301 290 301 302 291 302 303 292 303 304 293 304 305 294 305 306 295 306 307 296 307 308 295 306 307 296 307 308 297 310 310 298 307 308 299 310 311 300 311 312 301 312 313 302 313 314 303 314 315 304 315 3

281	309	320	321	310
282	310	321	322	311
283	311	322	323	312
284	312	323	324	313
285	313	324	325	314
286	314	325	326	315
287	315	326	327	316
288	316	327	328	317
289	317	328	329	318
290	318	329	330	319
291	320	331	332	321
292	321	332	333	322
293	322	333	334	323
294	323	334	335	324
295	324	335	336	325
296	325	336	337	326
297	326	337	338	327
298	327	338	339	328
299	328	339	340	329
300	329	340	341	330
301	331	342	343	332
302	332	343	344	333
303	333	344	345	334
304	334	345	346	335
305	335	346	347	336
306	336	347	348	337
307	337	348	349	338
308	338	349	350	339
309	339	350	351	340

310	340	351	352	341
311	342	353	354	343
312	343	354	355	344
313	344	355	356	345
314	345	356	357	346
315	346	357	358	347
316	347	358	359	348
317	348	359	360	349
318	349	360	361	350
319	350	361	362	351
320	351	362	363	352
321	353	364	365	354
322	354	365	366	355
323	355	366	367	356
324	356	367	368	357
325	357	368	369	358
326	358	369	370	359
327	359	370	371	360
328	360	371	372	361
329	361	372	373	362
330	362	373	374	363
331	364	375	376	365
332	365	376	377	366
333	366	377	378	367
334	367	378	379	368
335	368	379	380	369
336	369	380	381	370
337	370	381	382	371
338	371	382	383	372

339	372	383	384	373	
340	373	384	385	374	
341	375	386	387	376	
342	376	387	388	377	
343	377	388	389	378	
344	378	389	390	379	
345	379	390	391	380	
346	380	391	392	381	
347	381	392	393	382	
348	382	393	394	383	
349	383	394	395	384	
350	384	395	396	385	
351	386	397	398	387	
352	387	398	399	388	
353	388	399	400	389	
354	389	400	401	390	
355	390	401	402	391	
356	391	402	403	392	
357	392	403	404	393	
358	393	404	405	394	
359	394	405	406	395	
360	395	406	407	396	
361	397	408	409	398	
362	398	409	410	399	
363	399	410	411	400	
364	400	411	412	401	
365	401	412	413	402	
366	402	413	414	403	
367	403	414	415	404	

368	404	415	416	405
369	405	416	417	406
370	406	417	418	407
371	408	419	420	409
372	409	420	421	410
373	410	421	422	411
374	411	422	423	412
375	412	423	424	413
376	413	424	425	414
377	414	425	426	415
378	415	426	427	416
379	416	427	428	417
380	417	428	429	418
381	419	430	431	420
382	420	431	432	421
383	421	432	433	422
384	422	433	434	423
385	423	434	435	424
386	424	435	436	425
387	425	436	437	426
388	426	437	438	427
389	427	438	439	428
390	428	439	440	429
391	430	441	442	431
392	431	442	443	432
393	432	443	444	433
394	433	444	445	434
395	434	445	446	435
396	435	446	447	436

- 397 436 447 448 437
- 398 437 448 449 438
- 399 438 449 450 439
- 400 439 450 451 440

Coordinate Matrix

- 1 0.00000 0.00000
- 2 0.00000 0.10000
- 3 0.00000 0.20000
- 4 0.00000 0.30000
- 5 0.00000 0.40000
- 6 0.00000 0.50000
- 7 0.00000 0.60000
- 8 0.00000 0.70000
- 9 0.00000 0.80000
- 10 0.00000 0.90000
- 11 0.00000 1.00000
- 12 0.25000 0.00000
- 13 0.25000 0.10000
- 14 0.25000 0.20000
- 15 0.25000 0.30000
- 16 0.25000 0.40000
- 17 0.25000 0.50000
- 18 0.25000 0.60000
- 19 0.25000 0.70000
- 20 0.25000 0.80000
- 21 0.25000 0.90000
- 22 0.25000 1.00000
- 23 0.50000 0.00000
- 24 0.50000 0.10000

- 25 0.50000 0.20000
- 26 0.50000 0.30000
- 27 0.50000 0.40000
- 28 0.50000 0.50000
- 29 0.50000 0.60000
- 30 0.50000 0.70000
- 31 0.50000 0.80000
- 32 0.50000 0.90000
- 33 0.50000 1.00000
- 34 0.75000 0.00000
- 35 0.75000 0.10000
- 36 0.75000 0.20000
- 37 0.75000 0.30000
- 38 0.75000 0.40000
- 39 0.75000 0.50000
- 40 0.75000 0.60000
- 41 0.75000 0.70000
- 42 0.75000 0.80000
- 43 0.75000 0.90000
- 44 0.75000 1.00000
- 45 1.00000 0.00000
- 46 1.00000 0.10000
- 47 1.00000 0.20000
- 48 1.00000 0.30000
- 49 1.00000 0.40000
- 50 1.00000 0.50000
- 51 1.00000 0.60000
- 52 1.00000 0.70000
- 53 1.00000 0.80000

- 54 1.00000 0.90000
- 55 1.00000 1.00000
- 56 1.25000 0.00000
- 57 1.25000 0.10000
- 58 1.25000 0.20000
- 59 1.25000 0.30000
- 60 1.25000 0.40000
- 61 1.25000 0.50000
- 62 1.25000 0.60000
- 63 1.25000 0.70000
- 64 1.25000 0.80000
- 65 1.25000 0.90000
- 66 1.25000 1.00000
- 67 1.50000 0.00000
- 68 1.50000 0.10000
- 69 1.50000 0.20000
- 70 1.50000 0.30000

1.00000

1.50000

71

77

- 72 1.50000 0.50000
- 73 1.50000 0.60000
- 74 1.50000 0.70000
- 75 1.50000 0.80000
- 76 1.50000 0.90000

- 78 1.75000 0.00000
- 79 1.75000 0.10000
- 80 1.75000 0.20000
- 81 1.75000 0.30000
- 82 1.75000 0.40000

- 83 1.75000 0.50000
- 84 1.75000 0.60000
- 85 1.75000 0.70000
- 86 1.75000 0.80000
- 87 1.75000 0.90000
- 88 1.75000 1.00000
- 89 2.00000 0.00000
- 90 2.00000 0.10000
- 91 2.00000 0.20000
- 92 2.00000 0.30000
- 93 2.00000 0.40000
- 94 2.00000 0.50000
- 95 2.00000 0.60000
- 96 2.00000 0.70000
- 97 2.00000 0.80000
- 98 2.00000 0.90000
- 99 2.00000 1.00000
- 100 2.25000 0.00000
- 101 2.25000 0.10000
- 102 2.25000 0.20000
- 103 2.25000 0.30000
- 104 2.25000 0.40000
- 105 2.25000 0.50000
- 106 2.25000 0.60000
- 107 2.25000 0.70000
- 108 2.25000 0.80000
- 109 2.25000 0.90000
- 110 2.25000 1.00000
- 111 2.50000 0.00000

- 112 2.50000 0.10000
- 113 2.50000 0.20000
- 114 2.50000 0.30000
- 115 2.50000 0.40000
- 116 2.50000 0.50000
- 117 2.50000 0.60000
- 118 2.50000 0.70000
- 119 2.50000 0.80000
- 120 2.50000 0.90000
- 121 2.50000 1.00000
- 122 2.75000 0.00000
- 123 2.75000 0.10000
- 124 2.75000 0.20000
- 125 2.75000 0.30000
- 126 2.75000 0.40000
- 127 2.75000 0.50000
- 128 2.75000 0.60000
- 2.75000

1.00000

0.20000

0.40000

129

132

135

137

- 130 2.75000 0.80000
- 131 2.75000 0.90000
- 2.75000
- 133 3.00000 0.00000
- 134 3.00000 0.10000
- 136 3.00000 0.30000

3.00000

- 138 3.00000 0.50000
- 139 3.00000 0.60000
- 140 3.00000 0.70000

141	3.00000	0.80000
T+T	3.00000	0.80000

- 142 3.00000 0.90000
- 143 3.00000 1.00000
- 144 3.25000 0.00000
- 145 3.25000 0.10000
- 146 3.25000 0.20000
- 147 3.25000 0.30000
- 148 3.25000 0.40000
- 149 3.25000 0.50000
- 150 3.25000 0.60000
- 151 3.25000 0.70000
- 152 3.25000 0.80000
- 153 3.25000 0.90000
- 154 3.25000 1.00000
- 155 3.50000 0.00000
- 156 3.50000 0.10000
- 157 3.50000 0.20000
- 158 3.50000 0.30000
- 159 3.50000 0.40000
- 160 3.50000 0.50000
- 161 3.50000 0.60000
- 162 3.50000 0.70000
- 163 3.50000 0.80000
- 164 3.50000 0.90000
- 165 3.50000 1.00000
- 166 3.75000 0.00000
- 167 3.75000 0.10000
- 168 3.75000 0.20000
- 169 3.75000 0.30000

1/0 3./5000 0.40000	170 3.75000 0.40000
1/0 3./5000 0.40000	170 3.75000 0.40000
1/0 3./5000 0.40000	170 3.75000 0.40000
1/0 3./5000 0.40000	170 3.75000 0.40000
1/0 3./5000 0.40000	170 3.75000 0.40000
1/0 3./5000 0.40000	170 3.75000 0.40000
1/0 3./5000 0.40000	170 3.75000 0.40000
170 3.75000 0.40000	170 3.75000 0.40000
170 3.75000 0.40000	170 3.75000 0.40000
170 3.75000 0.40000	170 3.75000 0.40000
170 375000 040000	170 3 75000 O 40000
170 375000 040000	170 3 75000 O 40000
170 375000 040000	170 3 75000 O <u>4</u> 0000
170 375000 070000	. 170 - 3.75000 - 0.40000
170 375000 070000	. 170 - 3.75000 - 0.40000
170 375000 070000	170 3.75000 0.70000
1/0 2/5000 0/0000	17N 275NNN N <i>I</i> NNNN
1/0 2/6000 0/0000	170 275000 070000
1/0 2/6000 0/0000	170 2 75000 0 40000
	170 2 75000 0 40000

- 173 3.75000 0.70000
- 174 3.75000 0.80000
- 175 3.75000 0.90000
- 176 3.75000 1.00000
- 177 4.00000 0.00000
- 178 4.00000 0.10000
- 179 4.00000 0.20000
- 180 4.00000 0.30000
- 181 4.00000 0.40000
- 182 4.00000 0.50000
- 102 1100000 0150000
- 183 4.00000 0.60000
- 184 4.00000 0.70000
- 185 4.00000 0.80000
- 186 4.00000 0.90000
- 187 4.00000 1.00000
- 188 4.25000 0.00000
- 189 4.25000 0.10000
- 190 4.25000 0.20000
- 191 4.25000 0.30000
- 192 4.25000 0.40000
- 193 4.25000 0.50000
- 194 4.25000 0.60000
- 195 4.25000 0.70000
- 196 4.25000 0.80000
- 197 4.25000 0.90000
- 198 4.25000 1.00000

199	4.50000	0.00000

- 202 4.50000 0.30000
- 203 4.50000 0.40000
- 204 4.50000 0.50000
- 205 4.50000 0.60000
- 206 4.50000 0.70000
- 207 4.50000 0.80000
- 208 4.50000 0.90000
- 209 4.50000 1.00000
- 4.75000

210

220

221

0.00000

- 211 4.75000 0.10000
- 212 4.75000 0.20000
- 213 4.75000 0.30000
- 214 4.75000 0.40000
- 215 4.75000 0.50000
- 216 4.75000 0.60000
- 217 4.75000 0.70000
- 218 4.75000 0.80000
- 219 4.75000 0.90000
- 4.75000

1.00000

- 5.00000
- 222 5.00000 0.10000
- 223 5.00000 0.20000
- 224 5.00000 0.30000
- 225 5.00000 0.40000
- 226 5.00000 0.50000
- 227 5.00000 0.60000

228 5.00000 0.7000
228 5.00000 0.7000
220 3.UUUUU U.7UUU

- 229 5.00000 0.80000
- 230 5.00000 0.90000
- 231 5.00000 1.00000
- 5.25000 232 0.00000
- 233 5.25000 0.10000
- 234 5.25000 0.20000
- 235 5.25000 0.30000
- 236 5.25000 0.40000
- 237 5.25000 0.50000
- 238 5.25000 0.60000
- 5.25000

239

249

251

- 240 5.25000 0.80000
- 241 5.25000 0.90000
- 242 5.25000 1.00000
- 243 5.50000 0.00000
- 244 5.50000 0.10000
- 245 5.50000 0.20000
- 246 5.50000 0.30000
- 247 5.50000 0.40000
- 248 5.50000 0.50000
- 5.50000

0.60000

- 250 5.50000 0.70000
- 5.50000
- 252 5.50000 0.90000
- 253 5.50000 1.00000
- 5.75000 254 0.00000
- 255 5.75000 0.10000
- 256 5.75000 0.20000

257	5.75000	0.30000

0.00000

0.10000

0.20000

275

276

277

278

286	6.25000	1.00000
287	6.50000	0.00000
288	6.50000	0.10000
289	6.50000	0.20000
290	6.50000	0.30000
291	6.50000	0.40000
292	6.50000	0.50000
293	6.50000	0.60000
294	6.50000	0.70000
295	6.50000	0.80000
296	6.50000	0.90000
297	6.50000	1.00000
298	6.75000	0.00000
299	6.75000	0.10000
300	6.75000	0.20000
301	6.75000	0.30000
302	6.75000	0.40000
303	6.75000	0.50000
304	6.75000	0.60000
305	6.75000	0.70000
306	6.75000	0.80000
307	6.75000	0.90000
308	6.75000	1.00000
309	7.00000	0.00000
310	7.00000	0.10000
311	7.00000	0.20000
312	7.00000	0.30000
313	7.00000	0.40000

314 7.00000 0.50000

315	7.00000	0.60000
316	7.00000	0.70000
317	7.00000	0.80000
318	7.00000	0.90000
319	7.00000	1.00000
320	7.25000	0.00000
321	7.25000	0.10000
322	7.25000	0.20000
323	7.25000	0.30000
324	7.25000	0.40000
325	7.25000	0.50000
326	7.25000	0.60000
327	7.25000	0.70000
328	7.25000	0.80000
329	7.25000	0.90000
330	7.25000	1.00000
331	7.50000	0.00000
332	7.50000	0.10000
333	7.50000	0.20000
334	7.50000	0.30000
335	7.50000	0.40000
336	7.50000	0.50000
337	7.50000	0.60000
338	7.50000	0.70000
339	7.50000	0.80000
340	7.50000	0.90000
341	7.50000	1.00000
342	7.75000	0.00000
343	7.75000	0.10000

344	7.75000	0.20000
345	7.75000	0.30000
346	7.75000	0.40000
347	7.75000	0.50000
348	7.75000	0.60000
349	7.75000	0.70000
350	7.75000	0.80000
351	7.75000	0.90000
352	7.75000	1.00000
353	8.00000	0.00000
354	8.00000	0.10000
355	8.00000	0.20000
356	8.00000	0.30000
357	8.00000	0.40000
358	8.00000	0.50000
359	8.00000	0.60000
360	8.00000	0.70000
361	8.00000	0.80000
362	8.00000	0.90000
363	8.00000	1.00000
364	8.25000	0.00000
365	8.25000	0.10000
366	8.25000	0.20000
367	8.25000	0.30000
368	8.25000	0.40000
369	8.25000	0.50000
370	8.25000	0.60000
371	8.25000	0.70000
372	8.25000	0.80000

373	8.25000	0.90000
374	8.25000	1.00000
375	8.50000	0.00000
376	8.50000	0.10000
377	8.50000	0.20000
378	8.50000	0.30000
379	8.50000	0.40000
380	8.50000	0.50000
381	8.50000	0.60000
382	8.50000	0.70000
383	8.50000	0.80000
384	8.50000	0.90000
385	8.50000	1.00000
386	8.75000	0.00000
387	8.75000	0.10000
388	8.75000	0.20000
389	8.75000	0.30000
390	8.75000	0.40000
391	8.75000	0.50000
392	8.75000	0.60000
393	8.75000	0.70000
394	8.75000	0.80000
395	8.75000	0.90000
396	8.75000	1.00000
397	9.00000	0.00000
398	9.00000	0.10000
399	9.00000	0.20000
400	9.00000	0.30000

401

9.00000 0.40000

402	9.00000	0.50000
403	9.00000	0.60000
404	9.00000	0.70000
405	9.00000	0.80000
406	9.00000	0.90000
407	9.00000	1.00000
408	9.25000	0.00000
409	9.25000	0.10000
410	9.25000	0.20000
411	9.25000	0.30000
412	9.25000	0.40000

9.25000

9.25000

9.25000

9.25000

9.25000

9.50000

9.50000

9.50000

9.50000

9.50000

9.50000

9.50000

9.50000

9.50000

9.50000

9.50000

9.75000

0.50000

0.60000

0.70000

0.80000

0.90000

1.00000

0.00000

0.10000

0.20000

0.30000

0.40000

0.50000

0.60000

0.70000

0.80000

0.90000

1.00000

0.00000

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

```
431
      9.75000 0.10000
432
      9.75000
               0.20000
433
      9.75000
               0.30000
434
      9.75000
               0.40000
435
      9.75000
               0.50000
436
      9.75000
               0.60000
437
      9.75000
               0.70000
438
      9.75000
               0.80000
439
      9.75000
                0.90000
440
      9.75000
                1.00000
441
      10.00000
                0.00000
442
      10.00000
                0.10000
443
      10.00000
                0.20000
444
      10.00000
                0.30000
445
      10.00000
                0.40000
446
      10.00000
                0.50000
447
      10.00000
                0.60000
448
      10.00000
                0.70000
449
      10.00000
                0.80000
450
      10.00000
                0.90000
451
      10.00000
                1.00000
```

Three Noded

Plain Strain case

Elastic matrix D

1.20	0.40	0.00
0.40	1.20	0.00
0.00	0.00	0.40

displacements

.....

* * * * * * *

* node * ux * uy ** node * ux * uy *

* * * * * * *

```
* 1 * 0.0000 * 0.0000 ** 2 * 0.0000 * 0.0000 *
```

^{* 21 * 11.3281 * -8.9282 ** 22 * 15.8035 * -10.7355 *}

^{* 35 * -30.6812 * -43.5803 ** 36 * -22.5075 * -42.6401 *}

```
* 37 * -14.7474 * -41.9910 ** 38 * -7.2571 * -41.6360 *
```

- * 41 * 15.0211 * -42.3410 ** 42 * 22.8427 * -43.1584 *
- * 43 * 31.0709 * -44.2494 ** 44 * 39.8201 * -45.6019 *
- * 45 * -48.9010 * -69.9879 ** 46 * -38.3118 * -68.9716 *
- * 47 * -28.2348 * -68.1899 ** 48 * -18.5431 * -67.6509 *
- * 49 * -9.1066 * -67.3594 ** 50 * 0.2059 * -67.3178 *
- * 399 * 59.9356 * -249.7968 ** 400 * 40.3523 * -250.0532 *
- * 401 * 20.9123 * -250.1970 ** 402 * 1.5584 * -250.2386 *
- * 403 * -17.7738 * -250.1869 ** 404 * -37.1560 * -250.0468 *
- * 405 * -56.6646 * -249.8194 ** 406 * -76.3799 * -249.5012 *
- * 407 * -96.3845 * -249.0841 ** 408 * 103.6734 * -197.3887 *
- * 409 * 82.7785 * -197.8097 ** 410 * 62.1385 * -198.0976 *
- * 411 * 41.7314 * -198.2680 ** 412 * 21.5211 * -198.3470 *
- * 413 * 1.4459 * -198.3542 ** 414 * -18.5730 * -198.3009 *
- * 415 * -38.6238 * -198.1915 ** 416 * -58.8001 * -198.0256 *
- * 417 * -79.2001 * -197.7991 ** 418 * -99.9272 * -197.5046 *
- * 419 * 107.0045 * -143.8761 ** 420 * 85.1873 * -144.2369 *
- * 421 * 63.6991 * -144.4229 ** 422 * 42.5981 * -144.5347 *
- * 423 * 21.8156 * -144.6086 ** 424 * 1.2466 * -144.6543 *
- * 425 * -19.2222 * -144.6707 ** 426 * -39.7028 * -144.6523 *
- * 427 * -60.3042 * -144.5934 ** 428 * -81.1341 * -144.4899 *
- * 429 * -102.3047 * -144.3402 ** 430 * 109.9856 * -88.0036 *
- * 431 * 86.7491 * -88.2723 ** 432 * 64.5548 * -88.6391 *
- * 433 * 43.0363 * -89.0383 ** 434 * 21.9586 * -89.4253 *
- * 435 * 1.1444 * -89.7687 ** 436 * -19.5518 * -90.0481 *
- * 437 * -40.2550 * -90.2527 ** 438 * -61.0741 * -90.3805 *
- * 439 * -82.1026 * -90.4387 ** 440 * -103.4175 * -90.4446 *
- * 441 * 111.4401 * -26.0459 ** 442 * 88.1315 * -28.5240 *

- * 443 * 65.7227 * -30.6674 ** 444 * 43.9728 * -32.4533 *

 * 445 * 22.6700 * -33.8839 ** 446 * 1.6405 * -34.9768 *

 * 447 * -19.2597 * -35.7616 ** 448 * -40.1505 * -36.2779 *

 * 449 * -61.1303 * -36.5767 ** 450 * -82.2719 * -36.7226 *
- * 451 * -103.6094 * -36.7966 **

stresses

.....

```
******************
```

* * * * *

* element * sx * sy * sxy *

* * * * *

- * 1 * -72.0840 * -24.0280 * -16.1241 *
- * 2 * -47.5449 * -0.0832 * 1.7633 *
- * 3 * -53.4568 * -17.8189 * -13.7593 *
- * 4 * -34.1097 * -0.4620 * 0.5907 *
- * 5 * -38.2001 * -12.7334 * -12.1232 *
- * 6 * -22.1328 * -0.3493 * 0.1242 *
- * 7 * -24.7684 * -8.2561 * -11.0689 *
- * 8 * -10.8750 * 0.2340 * -0.1181 *
- * 9 * -12.3221 * -4.1074 * -10.4901 *

- * 10 * 0.1024 * 1.1304 * -0.3145 *
- * 11 * -0.3087 * -0.1029 * -10.3256 *
- * 12 * 11.1458 * 2.1561 * -0.5268 *
- * 13 * 11.7305 * 3.9102 * -10.5595 *
- * 14 * 22.6342 * 3.1203 * -0.7541 *
- * 15 * 24.2934 * 8.0978 * -11.2232 *
- * 16 * 35.1280 * 3.8194 * -0.9122 *
- * 17 * 38.0867 * 12.6956 * -12.4067 *
- * 18 * 49.6789 * 4.0367 * -0.7115 *
- * 19 * 54.3750 * 18.1250 * -14.2851 *
- * 20 * 68.6277 * 3.5978 * 0.7248 *
- * 21 * -57.0735 * -3.2594 * -7.7676 *
- * 22 * -44.6134 * 0.3125 * 2.7104 *
- * 23 * -46.2168 * -4.4977 * -10.6636 *
- * 24 * -32.9433 * 0.4730 * 0.3089 *
- * 25 * -34.6029 * -4.5060 * -12.1025 *
- * 26 * -21.5271 * 0.6407 * -1.3340 *
- * 27 * -23.0111 * -3.8114 * -12.8054 *
- * 28 * -10.3841 * 0.8666 * -2.3591 *
- * 29 * -11.5960 * -2.7691 * -13.0958 *
- * 30 * 0.6332 * 1.1468 * -2.8788 *
- * 31 * -0.3023 * -1.6600 * -13.0984 *
- * 32 * 11.7140 * 1.4387 * -2.9374 *
- * 33 * 10.9796 * -0.7646 * -12.7980 *
- * 34 * 23.0294 * 1.6849 * -2.5019 *
- * 35 * 22.3175 * -0.4508 * -12.0077 *
- * 36 * 34.6263 * 1.8373 * -1.4555 *
- * 37 * 33.5694 * -1.3331 * -10.2008 *
- * 38 * 46.0880 * 1.8895 * 0.3858 *

- * 39 * 43.9112 * -4.6410 * -6.0153 *
- * 40 * 55.4016 * 1.9175 * 3.1167 *
- * 41 * -48.3875 * -0.9456 * -6.1848 *
- * 42 * -38.6098 * 0.1863 * 2.3090 *
- * 43 * -39.2106 * -1.6161 * -8.9872 *
- * 44 * -28.8360 * 0.4176 * -0.1103 *
- * 45 * -29.6660 * -2.0723 * -10.9620 *
- * 46 * -18.9644 * 0.6022 * -1.8989 *
- * 47 * -19.9377 * -2.3179 * -12.1914 *
- * 48 * -9.0849 * 0.7582 * -3.0594 *
- * 49 * -10.1539 * -2.4490 * -12.7682 *
- * 50 * 0.7798 * 0.8991 * -3.6085 *
- * 750 * -1.1396 * -0.8679 * 3.6436 *
- * 751 * -0.7434 * 0.3208 * 5.8444 *
- * 752 * -3.1814 * -1.2346 * 3.9333 *
- * 753 * -2.6785 * 0.2742 * 5.6054 *
- * 754 * -5.1057 * -1.5058 * 3.7405 *
- * 755 * -4.5155 * 0.2649 * 4.9574 *
- * 756 * -6.9840 * -1.7002 * 3.0859 *
- * 757 * -6.3134 * 0.3117 * 3.8916 *
- * 758 * -8.8689 * -1.8516 * 1.9751 *
- * 759 * -8.1053 * 0.4392 * 2.3864 *
- * 760 * -10.8139 * -2.0086 * 0.3802 *
- * 761 * 12.8663 * 0.4405 * 2.1274 *
- * 762 * 6.4218 * -0.7260 * -3.4026 *
- * 763 * 6.7528 * 0.2668 * 3.5904 *
- * 764 * 2.6405 * -3.0321 * 0.4769 *
- * 765 * 3.6604 * 0.0274 * 4.8501 *
- * 766 * 0.5068 * -4.0891 * 2.7202 *

- * 767 * 1.8079 * -0.1856 * 5.6645 *
- * 768 * -0.8619 * -4.4154 * 3.9824 *
- * 769 * 0.5031 * -0.3203 * 6.0171 *
- * 770 * -1.8639 * -4.2845 * 4.5605 *
- * 771 * -0.5555 * -0.3593 * 5.9420 *
- * 772 * -2.6994*** -3.8799*** 4.6114***
- * 773 * -1.5083 * -0.3067 * 5.4739 *
- * 774 * -3.4690 * -3.3384 * 4.2264 *
- * 775 * -2.4153 * -0.1773 * 4.6338 *
- * 776 * -4.2071 * -2.7664 * 3.4643 *
- * 777 * -3.2814 * 0.0109 * 3.4210 *
- * 778 * -4.8817 * -2.2474 * 2.3677 *
- * 779 * -4.0507 * 0.2458 * 1.7992 *
- * 780 * -5.3654 * -1.8522 * 0.9733 *
- * 781 * 5.9069 * -0.8976 * 6.1863 *
- * 782 * -3.2769 * -27.5255 * 2.3628 *
- * 783 * 5.1685 * -2.1895 * 6.8201 *
- * 784 * -2.9677 * -23.8523 * 3.1194 *
- * 785 * 4.0092 * -2.9216 * 6.6805 *
- * 786 * -2.6486 * -19.9324 * 3.5360 *
- * 787 * 2.9469 * -3.1458 * 6.2249 *
- * 788 * -2.3072 * -16.0280 * 3.6553 *
- * 789 * 2.0411 * -2.9829 * 5.6097 *
- * 790 * -1.9910 * -12.3220 * 3.5488 *
- * 791 * 1.2634 * -2.5590 * 4.8822 *
- * 792 * -1.7371 * -8.9496 * 3.2578 *
- * 793 * 0.5836 * -1.9876 * 4.0454 *
- * 794 * -1.5637 * -6.0283 * 2.7963 *
- * 795 * -0.0101 * -1.3674 * 3.0833 *

```
* 796 * -1.4655 * -3.6764 * 2.1668 *
```

Plain Stress case

Elastic matrix D

1.07 0.27 0.00

0.27 1.07 0.00

0.00 0.00 0.40

Displacement Boundary Conditions

node 1 2 3 4 5 6 7 8 9 10 11

ux=0.0 uy=0.0 uy

Traction BC

fx=0.0 fx

node 121 132 143 154 165 176 187 198 209 220

fx=0.0 fx

node 231 242 253 264 275 286 297 308 319 330

fx=0.0 fx

node 341 352 363 374 385 396 407 418 429 440

fx=0.0 fx

node 242

fx=0.0

fy = -0.25

displacements

.....

```
**************************
```

* * * * * * *

* node * ux * uy ** node * ux * uy *

* * * * * * *

```
* 1 * 0.0000 * 0.0000 ** 2 * 0.0000 * 0.0000 *
```

- * 3 * 0.0000 * 0.0000 ** 4 * 0.0000 * 0.0000 *
- * 5 * 0.0000 * 0.0000 ** 6 * 0.0000 * 0.0000 *
- * 7 * 0.0000 * 0.0000 ** 8 * 0.0000 * 0.0000 *
- * 9 * 0.0000 * 0.0000 ** 10 * 0.0000 * 0.0000 *
- * 11 * 0.0000 * 0.0000 ** 12 * -16.3864 * -9.8324 *
- * 13 * -12.2275 * -8.6642 ** 14 * -8.7647 * -7.8718 *
- * 15 * -5.6879 * -7.3717 ** 16 * -2.8220 * -7.1046 *
- * 17 * -0.0495 * -7.0371 ** 18 * 2.7275 * -7.1605 *
- * 19 * 5.6129 * -7.4929 ** 20 * 8.7490 * -8.0842 *
- * 21 * 12.3766 * -9.0309 ** 22 * 16.9781 * -10.5053 *
- * 23 * -30.3906 * -25.2829 ** 24 * -23.4122 * -24.1533 *
- * 25 * -17.0571 * -23.3075 ** 26 * -11.1452 * -22.7368 *
- * 27 * -5.5107 * -22.4280 ** 28 * -0.0037 * -22.3723 *

```
* 29 * 5.5183 * -22.5701 ** 30 * 11.2014 * -23.0317 *
```

- * 33 * 30.7655 * -26.0778 ** 34 * -42.3829 * -46.8065 *
- * 35 * -33.0540 * -45.8351 ** 36 * -24.2854 * -45.0921 *
- * 37 * -15.9364 * -44.5837 ** 38 * -7.8620 * -44.3122 *
- * 39 * 0.0818 * -44.2780 ** 40 * 8.0372 * -44.4816 *
- * 41 * 16.1442 * -44.9225 ** 42 * 24.5387 * -45.5969 *
- * 43 * 33.3478 * -46.4948 ** 44 * 42.6934 * -47.6059 *
- * 45 * -52.4866 * -73.6780 ** 46 * -41.1735 * -72.8716 *
- * 47 * -30.3837 * -72.2540 ** 48 * -19.9872 * -71.8321 *
- * 49 * -9.8516 * -71.6104 ** 50 * 0.1561 * -71.5910 *
- * 399 * 63.2888 * -267.5474 ** 400 * 42.4687 * -267.7483 *
 - * 401 * 21.7952 * -267.8605 ** 402 * 1.2098 * -267.8939 *
 - * 403 * -19.3539 * -267.8568 ** 404 * -39.9691 * -267.7541 *
 - * 405 * -60.7142 * -267.5866 ** 406 * -81.6714 * -267.3511 *
 - * 407 * -102.9252 * -267.0399 ** 408 * 109.7641 * -212.1333 *
 - * 409 * 87.5716 * -212.4676 ** 410 * 65.6372 * -212.6902 *
 - * 411 * 43.9417 * -212.8170 ** 412 * 22.4471 * -212.8722 *
 - * 413 * 1.0907 * -212.8741 ** 414 * -20.2079 * -212.8332 *
 - * 415 * -41.5388 * -212.7533 ** 416 * -62.9981 * -212.6336 *
 - * 417 * -84.6865 * -212.4702 ** 418 * -106.7106 * -212.2558 *
 - * 419 * 113.3091 * -155.3072 ** 420 * 90.1359 * -155.5966 *
 - * 421 * 67.3035 * -155.7369 ** 422 * 44.8661 * -155.8215 *
 - * 423 * 22.7565 * -155.8839 ** 424 * 0.8689 * -155.9319 *
 - * 425 * -20.9123 * -155.9626 ** 426 * -42.7024 * -155.9692 *
 - * 427 * -64.6140 * -155.9450 ** 428 * -86.7585 * -155.8849 *
 - * 429 * -109.2521 * -155.7873 ** 430 * 116.4837 * -95.9473 *
 - * 431 * 91.7946 * -96.1821 ** 432 * 68.1820 * -96.5411 *
 - * 433 * 45.2829 * -96.9520 ** 434 * 22.8535 * -97.3623 *

^{* 31 * 17.2032 * -23.7733 ** 32 * 23.6875 * -24.8030 *}

```
* 435 *
          0.7072 *
                     -97.7350 ** 436 *
                                         -21.3093 *
                                                     -98.0461 *
* 437 *
         -43.3272 *
                      -98.2826 ** 438 *
                                          -65.4602 *
                                                       -98.4418 *
                      -98.5302 ** 440 *
* 439 *
          -87.8050 *
                                         -110.4406 *
                                                       -98.5648 *
* 441 *
         117.8681 *
                      -30.0433 ** 442 *
                                           93.0141 *
                                                       -32.7269 *
* 443 *
          69.1722 *
                      -35.0429 ** 444 *
                                          46.0539 *
                                                      -36.9683 *
* 445 *
          23.4224 *
                      -38.5077 ** 446 *
                                          1.0871 *
                                                     -39.6823 *
* 447 *
         -21.1074 *
                      -40.5255 ** 448 *
                                          -43.2896 *
                                                       -41.0817 *
* 449 *
         -65.5641 *
                      -41.4069 ** 450 *
                                          -88.0073 *
                                                      -41.5709 *
```

* 451 * -110.6540 * -41.6606 **

stresses

.....

* element * sx * sy * sxy *

* * * * *

```
* 1 * -69.9154 * -17.4789 * -15.7319 *
```

- * 2 * -49.0553 * -0.5818 * 2.7731 *
- * 3 * -52.1705 * -13.0426 * -13.8628 *
- * 4 * -35.2828 * -0.8967 * 1.2563 *
- * 5 * -37.3959 * -9.3490 * -12.5949 *
- * 6 * -22.9347 * -0.7327 * 0.5124 *
- * 7 * -24.2683 * -6.0671 * -11.7947 *
- * 8 * -11.3284 * -0.1612 * 0.0960 *
- * 9 * -12.0406 * -3.0102 * -11.3674 *
- * 10 * -0.0310 * 0.6679 * -0.1692 *

- * 11 * -0.2112 * -0.0528 * -11.2593 *
- * 12 * 11.3079 * 1.5922 * -0.3490 *
- * 13 * 11.6372 * 2.9093 * -11.4569 *
- * 14 * 23.0623 * 2.4421 * -0.4467 *
- * 15 * 23.9485 * 5.9871 * -11.9886 *
- * 16 * 35.7523 * 3.0250 * -0.3904 *
- * 17 * 37.3292 * 9.3323 * -12.9347 *
- * 18 * 50.2823 * 3.1039 * 0.0609 *
- * 19 * 52.8068 * 13.2017 * -14.4494 *
- * 20 * 68.5078 * 2.3823 * 1.5973 *
- * 21 * -56.6361 * -2.4770 * -8.0849 *
- * 22 * -44.7092 * 0.1185 * 3.1314 *
- * 23 * -45.6083 * -3.4780 * -10.9314 *
- * 24 * -33.1254 * 0.1767 * 0.7233 *
- * 25 * -34.0473 * -3.5108 * -12.3899 *
- * 26 * -21.7628 * 0.2659 * -0.9367 *
- * 27 * -22.5723 * -2.9722 * -13.1207 *
- * 28 * -10.6480 * 0.4264 * -1.9793 *
- * 29 * -11.2914 * -2.1472 * -13.4273 *
- * 30 * 0.3440 * 0.6430 * -2.5084 *
- * 31 * -0.1338 * -1.2682 * -13.4285 *
- * 32 * 11.3802 * 0.8670 * -2.5672 *
- * 33 * 11.0214 * -0.5682 * -13.1134 *
- * 34 * 22.6133 * 1.0377 * -2.1297 *
- * 35 * 22.2673 * -0.3463 * -12.3177 *
- * 36 * 34.0933 * 1.1070 * -1.0955 *
- * 37 * 33.5466 * -1.0801 * -10.5923 *
- * 38 * 45.5137 * 1.0809 * 0.7017 *
- * 39 * 44.3278 * -3.6627 * -6.8296 *

- * 40 * 55.4269 * 1.1093 * 3.3961 *
- * 41 * -48.1547 * -0.7429 * -6.5239 *
- * 42 * -38.5481 * 0.0773 * 2.6246 *
- * 43 * -38.8831 * -1.2627 * -9.2704 *
- * 44 * -28.8596 * 0.2152 * 0.2191 *
- * 45 * -29.3192 * -1.6232 * -11.2078 *
- * 46 * -19.0869 * 0.3119 * -1.5589 *
- * 47 * -19.6189 * -1.8163 * -12.4169 *
- * 48 * -9.3084 * 0.3883 * -2.7172 *
- * 49 * -9.8839 * -1.9140 * -12.9867 *
- * 50 * 0.4557 * 0.4552 * -3.2739 *
- * 750 * -1.0745 * -0.7490 * 3.5569 *
- * 751 * -0.8371 * 0.2003 * 5.9132 *
- * 752 * -3.0874 * -1.0786 * 3.8681 *
- * 753 * -2.7925 * 0.1011 * 5.6694 *
- * 754 * -4.9826 * -1.3118 * 3.6940 *
- * 755 * -4.6460 * 0.0346 * 5.0172 *
- * 756 * -6.8301 * -1.4650 * 3.0555 *
- * 757 * -6.4591 * 0.0193 * 3.9481 *
- * 758 * -8.6804 * -1.5696 * 1.9586 *
- * 759 * -8.2687 * 0.0772 * 2.4401 *
- * 760 * -10.5836 * -1.6697 * 0.3751 *
- * 761 * 12.7732 * 0.2991 * 2.2833 *
- * 762 * 6.4509 * -0.7351 * -3.6931 *
- * 763 * 6.7028 * 0.2729 * 3.7337 *
- * 764 * 2.7908 * -2.8932 * 0.2631 *
- * 765 * 3.5228 * 0.0349 * 4.9637 *
- * 766 * 0.6826 * -3.9378 * 2.5947 *
- * 767 * 1.6118 * -0.2212 * 5.7527 *

- * 768 * -0.6805 * -4.2734 * 3.9168 *
- * 769 * 0.2855 * -0.4090 * 6.0840 *
- * 770 * -1.6835 * -4.1481 * 4.5301 *
- * 771 * -0.7714 * -0.4996 * 5.9902 *
- * 772 * -2.5230 * -3.7410 * 4.6004 *
- * 773 * -1.7112 * -0.4939 * 5.5060 *
- * 774 * -3.2966 * -3.1896 * 4.2267 *
- * 775 * -2.6011 * -0.4078 * 4.6522 *
- * 776 * -4.0347 * -2.6007 * 3.4734 *
- * 777 * -3.4500 * -0.2620 * 3.4272 *
- * 778 * -4.7005 * -2.0588 * 2.3884 *
- * 779 * -4.2045 * -0.0750 * 1.7931 *
- * 780 * -5.1632 * -1.6367 * 1.0134 *
- * 781 * 5.2809 * -1.0276 * 6.6900 *
- * 782 * -1.9528 * -27.3240 * 2.1123 *
- * 783 * 4.2459 * -2.5294 * 7.0781 *
- * 784 * -1.9512 * -23.6478 * 3.0296 *
- * 785 * 3.1292 * -3.3262 * 6.8007 *
- * 786 * -1.8448 * -19.7157 * 3.5008 *
- * 787 * 2.1955 * -3.5544 * 6.2561 *
- * 788 * -1.6777 * -15.8130 * 3.6410 *
- * 789 * 1.4333 * -3.3688 * 5.5825 *
- * 790 * -1.5116 * -12.1236 * 3.5433 *
- * 791 * 0.7912 * -2.9124 * 4.8184 *
- * 792 * -1.3871 * -8.7789 * 3.2551 *
- * 793 * 0.2307 * -2.3077 * 3.9610 *
- * 794 * -1.3225 * -5.8924 * 2.7926 *
- * 795 * -0.2639 * -1.6580 * 2.9898 *
- * 796 * -1.3105 * -3.5795 * 2.1580 *

```
* 797 * -0.6790 * -1.0535 * 1.8767 *

* 798 * -1.3006 * -1.9656 * 1.3621 *

* 799 * -0.9554 * -0.5847 * 0.5921 *

* 800 * -1.1494 * -1.1839 * 0.4598 *
```

C234567

C A FINITE ELEMENT CODE FOR SOLVING PLANE ELASTICITY

C PISS=1 SOLVES PLANE STRAIN PROBLEM

C PISS NON EQUAL TO 1 SOLVES THE PLANE STRESS PROBLEM

C234567

PROGRAM PROJECT2

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION IELMN(800,3),SLM(6,6),GSM(902,24),KK(6),CORD(451,2),

*B(3,6),B1(3,6),BT(6,3),D(3,3),IGG(22),F(902),STRAIN(3,1),

*UEL(6),STRESS(3,1)

C ELASTIC CONSTANTS EY=YOUNG MODULUS, V=POISSON'S RATIO, D=ELASIC MATRIX

PISS=11.0

IF(PISS.EQ.1)GO TO 6

WRITE(6,99)

WIDTH=1.0

GO TO 7

6 WRITE(6,98)

WIDTH=1.0

7 EY=210000

```
CALL ELASTI (EY,V,PISS,D)
  WRITE(6,100) ((D(I,J),J=1,3),I=1,3)
C DADA----GEOMETRY OF THE BODY
C XL-----LENGTH OF THE BODY
C YL-----HEIGHT OF THE BODY
C NGP----# OF GRID POINTS:::NEL=# OF ELEMENTS
C IBAND----BANDWIDTH
C H-----DISPLACEMENT BOUNDARY LENGTH
C QP----APPLIED TRACTION IN THE Y-DIRECTION
С
С
С
   PI=DATAN(1.0D0)*4.0D0
С
С
C234567
  XL=10.0
  YL=1.0
  H=YL
  QP=-10.0
  N=40
  M=10
  DX=XL/N
  DY=YL/M
  XII=0.25
  N1=N+1
```

V=0.25

M1=M+1

```
M22=M1*2
   NGP=N1*M1
   NGP2=NGP*2
  IBAND=(M1+1)*2
   NEL=M*N*2
C MATRIX DESCRIPTION
C CORD(NGP,2)----COORDINATE'S MATRIX
C IELMN(NEL,3)----ASSOCIATES EACH ELEMENT WITH ITS NODES
C B1=D*B(3,6)
C BT(6,3)----TRANSPOSE OF B1
C SLM(6,6)----ELEMENT STIFFNESS MATRIX IN GLOBAL SENSE
C GSM(NGP2,IBAND)----GLOBAL STIFFNESS MATRIX
C F(NGP2)----GLOBAL FORCE VECTOR
C234567
   DO 8 I=1,NGP2
  DO 8 J=1,IBAND
8 GSM(I,J)=0.0
  CALL CRDIXY(M1,N1,NGP,DX,DY,CORD)
  CALL INODES(M,N,M1,NEL,IELMN)
   DO 40 L=1,NEL
  CALL BETA (L,CORD,IELMN,NGP,NEL,DA,B)
  CALL MULT (D,B,B1,3,3,6)
   DO 41 I=1,3
  DO 41 J=1,6
41 BT(J,I)=B(I,J)
  CALL MULT(BT,B1,SLM,3,6,6)
```

```
DO 42 IS=1,6
   DO 42 JS=1,6
42 SLM(IS,JS)=SLM(IS,JS)*DA*WIDTH/2.0
   CALL ASSEMB(IELMN,SLM,NEL,NGP2,IBAND,L,GSM)
40 CONTINUE
C APPLY GEOMETRIC BCS
   DO 50 I=1,NGP2
50 F(I)=0.0
   NGP3=NGP-M1
   DO 60 I=M1,NGP3,M1
   F(2*I-1)=F(2*I-1)+0.0
   F(2*I)=F(2*I)+QP*XII/2.0
   F(2*(I+M1)-1)=F(2*(I+M1)-1)+0.0
60 F(2*(I+M1))=F(2*(I+M1))+QP*XII/2.0
   DO 70 I=1,M1
   SOF=(I-1)*DY+H
   IF(SOF.LT.YL) GO TO 70
   IGG(2*I-1)=2*I-1
   IGG(2*I)=2*I
70 CONTINUE
   WRITE(6,101)
   WRITE(6,102)(I,I=1,M1)
   WRITE(6,103)
   WRITE(6,104)
   DO 80 KX=1,4
   WRITE(6,105)(((I-1)*M1+11),I=((KX-1)*10+1),KX*10)
80 WRITE(6,106)(F(((I-1)*M1+11)*2),I=((KX-1)*10+1),KX*10)
```

```
I=451
   WRITE(6,107) I,F(I*2)
   CALL BOUNDA (M22,NGP2,IBAND,IGG,GSM,F)
C SOLVE FOR NODAL DISPLACEMENTS
   CALL HALLEY (1,GSM,F,NGP2,IBAND)
   CALL HALLEY (2,GSM,F,NGP2,IBAND)
   WRITE(6,111)
   WRITE(6,112)(I,F(2*I-1),F(2*I),I=1,NGP)
C CALCULATION OF THE STRESS FIELD STRESS=STRAIN *D
   WRITE(6,113)
   DO 200 I=1,NEL
   DO 199 J=1,3
   JPN=IELMN(I,J)
   UEL(2*J-1)=F(2*JPN-1)
199 UEL(2*J)=F(2*JPN)
   CALL BETA (I,CORD,IELMN,NGP,NEL,DA,B)
   CALL MULT (B,UEL,STRAIN,6,3,1)
   CALL MULT (D,STRAIN,STRESS,3,3,1)
   WRITE(6,114)I,(STRESS(IT,1),IT=1,3)
200 CONTINUE
   WRITE(6,115)
```

- 98 FORMAT(//,10X,'PLAIN STRAIN CASE')
- 99 FORMAT(//,10X,'PLAIN STRESS CASE')
- 100 FORMAT(//,10X,'ELASTIC MATRIX D',/(35X,3(F10.2,2X)))
- 101 FORMAT(5(/),10X,'DISPLACEMENT BOUNDARY CONDITIONS')
- 102 FORMAT(//,4X,'NODE',11(4X,I2,4X))
- 103 FORMAT(/,10X,11(2X,'UX=0.0',2X)/10X,11(2X,'UY=0.0',2X))
- 104 FORMAT(5(/),10X,'TRACTION BC')
- 105 FORMAT(//,4X,'NODE',10(4X,I3,4X))
- 106 FORMAT(/,10X,10(2X,'FX=0.0',3X)/10X,10(2X,'FY=',F5.2,1X))
- 107 FORMAT(//,4X,'NODE',4X,I3,//,12X,'FX=0.0'/12X,'FY=',F5.2)
- 111 FORMAT(///,47X,'D',2X,'I',2X,'S',2X,'P',2X,'L',2X,'A',2X,'C',
 - *2X,'E',2X,'M',2X,'E',2X,'N',2X,'T',2X,'S',/,40X,50('.'),5(/),
 - :28X,76('*'),/,28X,2('*',6X,'*',2(14X,'*')),/,28X,2('*',1X,'NODE',
 - *1X,'*',6X,'UX',6X,'*',6X,'UY',
 - *6X,'*'),/,28X,2('*',6X,'*',2(14X,'*')),/,28X,76('*'))

```
112 FORMAT((28X,2('*',1X,I4,1X,'*',2(1X,F12.8,1X,'*'))))
113 FORMAT(28X,76('*'),6(/),55X,'S',2X,'T',2X,'R',2X,'E',2X,'S',2X,
  *'S',2X,'E',2X,'S',/,50X,32('.'),5(/),35X,61('*'),/,35X,'*',4(14X,
  *'*'),/,35X,'*',
  *4X,'ELEMENT',3X,'*',6X,'SX',6X,'*',6X,'SY',6X,'*',6X,'SXY',5X,'*',
  */,35X,'*',4(14X,'*'),/,35X,61('*'))
114 FORMAT((35X,'*',5X,I4,5X,'*',3(1X,F12.4,1X,'*')))
115 FORMAT(35X,61('*'))
   STOP
   END
C
C
   SUBROUTINE CRDIXY(M1,N1,NGP,DX,DY,CORD)
   IMPLICIT REAL*8(A-H,O-Z)
   DIMENSION CORD(NGP,2)
С
   DO 1 I=1,M1
   DO 1 J=1,N1
    JP=(J-1)*M1+I
    CORD(JP,1)=(J-1)*DX
    CORD(JP,2)=(I-1)*DY
1
   CONTINUE
С
```

```
С
  WRITE(6,100)(I,(CORD(I,J),J=1,2),I=1,NGP)
100 FORMAT("COORDINATE MATRIX",/,((I5,2X,F12.5,F12.5)))
С
С
  RETURN
  END
С
С
  SUBROUTINE INODES(M,N,M1,NEL,IELMN)
  IMPLICIT REAL*8(A-H,O-Z)
  DIMENSION IELMN(NEL,3)
С
С
  DO 10 J=1,N
  LP=(J-1)*M1
  KP=LP+1
  DO 10 I=1,M
  KK1=(J-1)*M*2+2*I-1
  KK2=KK1+1
  LP=LP+1
  KP=KP+1
С
С
  IELMN(KK1,1)=LP
  IELMN(KK1,2)=LP+M+1
  IELMN(KK1,3)=LP+1
```

```
IELMN(KK2,1)=KP
  IELMN(KK2,2)=KP+M
  IELMN(KK2,3)=KP+M+1
10 CONTINUE
  WRITE(6,200) (I,(IELMN(I,J),J=1,3),I=1,NEL)
200 FORMAT("CONNECTIVITY MATRIX",/,((15,2X,15,2X,15,2X,15)))
  RETURN
  END
С
C ASSEMBLES THE GLOBAL STIFFNESS MATRIX
  SUBROUTINE ASSEMB(IELMN,SLM,NEL,NGP2,IBAND,L,GSM)
  IMPLICIT REAL*8(A-H,O-Z)
  DIMENSION IELMN(NEL,3),SLM(6,6),GSM(NGP2,IBAND),KK(6)
  DO 10 INODE=1,3
  II=2*INODE
  KK(II)=2*IELMN(L,INODE)
  KK(II-1)=KK(II)-1
10 CONTINUE
  DO 30 I=1,6
  K=KK(I)
  DO 30 J=1,6
  IF(KK(J).LT.K) GO TO 30
```

```
LM=KK(J)-K+1
   GSM(K,LM)=GSM(K,LM)+SLM(I,J)
30 CONTINUE
   RETURN
   END
С
C COMPUTES THE B ELEMENT MATRIX
   SUBROUTINE BETA(L,CORD,IELMN,NGP,NEL,DA,B)
   IMPLICIT REAL*8(A-H,O-Z)
   DIMENSION CORD(NGP,2),IELMN(NEL,3),B(3,6),X(3),Y(3)
   DO 3 I=1,3
   MS=IELMN(L,I)
   X(I)=CORD(MS,1)
3 Y(I)=CORD(MS,2)
   \mathsf{DA} = \mathsf{X}(1)^*\mathsf{Y}(2) - \mathsf{X}(1)^*\mathsf{Y}(3) + \mathsf{X}(2)^*\mathsf{Y}(3) - \mathsf{X}(2)^*\mathsf{Y}(1) + \mathsf{X}(3)^*\mathsf{Y}(1) - \mathsf{X}(3)^*\mathsf{Y}(2)
   DO 4 I=1,3
   DO 4 J=1,6
4 B(I,J)=0.0
```

```
B(1,1)=(Y(2)-Y(3))/DA
  B(1,3)=(Y(3)-Y(1))/DA
  B(1,5)=(Y(1)-Y(2))/DA
  B(2,2)=(X(3)-X(2))/DA
  B(2,4)=(X(1)-X(3))/DA
  B(2,6)=(X(2)-X(1))/DA
  DO 5 I=1,5,2
5 B(3,I)=B(2,I+1)
  DO 6 I=2,6,2
6 B(3,I)=B(1,I-1)
  RETURN
  END
C MULTIPLICATION OF TWO MATRICES OF THE FORM S(M4,L4)*Q(L4,N4)
```

С

SUBROUTINE MULT(S,Q,C,L4,M4,N4)

```
IMPLICIT REAL*8(A-H,O-Z)
   DIMENSION S(M4,L4),C(M4,N4),Q(L4,N4)
   DO 10 I=1,M4
   DO 10 J=1,N4
  C(I,J)=0.0
   DO 20 KY=I,L4
20 C(I,J)=C(I,J)+S(I,KY)*Q(KY,J)
10 CONTINUE
90 RETURN
  END
С
C COMPUTATION OF ELASTIC MATRIX...D...
   SUBROUTINE ELASTI (EY,V,PISS,D)
   IMPLICIT REAL*8(A-H,O-Z)
   DIMENSION D(3,3)
   IF(PISS.EQ.1) GO TO 1
  DD=EY/(1.0-V**2)
   DOF=V*DD
   D3=EY/(2*(1.0+V))
   GO TO 2
```



```
С
C IMPOSING BC---UNSCRAMBLING THE SYSTEM OF EQNS
C234567
  SUBROUTINE BOUNDA (M22,NGP2,IBAND,IGG,GSM,F)
  IMPLICIT REAL*8(A-H,O-Z)
  DIMENSION IGG(M22),GSM(NGP2,IBAND),F(NGP2)
С
  DO 20 I=1,M22
  KM=IGG(I)
  F(KM) = 0.0
  GSM(KM,1)=1.0
С
  DO 20 J=2,IBAND
  KMJ=KM-J+1
  IF(KMJ.LE.0) GO TO 21
  F(KMJ)=F(KMJ)-GSM(KMJ,J)*F(KM)
  GSM(KMJ,J)=0.0
C
21 KMJ=KM+J-1
  IF(KMJ.GT.NGP2) GO TO 20
  F(KMJ)=F(KMJ)-GSM(KM,J)*F(KM)
  GSM(KM,J)=0.0
20 CONTINUE
С
  RETURN
  END
```

```
C234567
  SUBROUTINE HALLEY(KKK,AK,Q,MDIM,NDIM)
  IMPLICIT REAL*8(A-H,O-Z)
C SYMMETRIC BANDED MATRIX EQUATION SOLVER
C
C KKK=1 TRIANGULARIZES THE BANDED SYMMETRIC STIFFNESS MATRIX AK(MDIM,NDIM)
C KKK=2 SOLVES FOR RIGHT HAND SIDE Q(MDIM), SOLUTION RETURNS IN Q(MDIM)
С
  DIMENSION AK(MDIM,NDIM),Q(MDIM)
  NER=MDIM
  IBAND=NDIM
  NRS=NER-1
  NR=NER
  IF (KKK.EQ.2) GO TO 200
  DO 120 N=1,NRS
  M=N-1
  MR=MINO(IBAND, NR-M)
  PIVOT=AK(N,1)
  DO 120 L=2,MR
  CP=AK(N,L)/PIVOT
  I=M+L
  J=0
  DO 110 K=L,MR
  J=J+1
110 AK(I,J)=AK(I,J)-CP*AK(N,K)
120 AK(N,L)=CP
  GO TO 400
200 DO 220 N=1,NRS
```

```
M=N-1
   MR=MINO(IBAND, NR-M)
   CP=Q(N)
   Q(N)=CP/AK(N,1)
   DO 220 L=2,MR
   I=M+L
220 Q(I)=Q(I)-AK(N,L)*CP
   Q(NR)=Q(NR)/AK(NR,1)
   DO 320 I=1,NRS
   N=NR-I
   M=N-1
   MR=MINO(IBAND, NR-M)
   DO 320 K=2,MR
   L=M+K
C
C STORE COMPUTED DISPLACEMENTS IN LOAD VECTOR Q
C234567
320 Q(N)=Q(N)-AK(N,K)*Q(L)
400 RETURN
   END
call station (im2,z,w)call station (im2,z,w)call station (im2,z,w)c234567
c A finite element code for solving plane elasticity
c Piss=1 Solves Plane Strain Problem
c Piss Non Equal to 1 solves the plane stress problem
c234567
   program project2
   implicit real*8(a-h,o-z)
   dimension ielmn(400,4),slm(8,8),gsm(902,26),kk(8),cord(451,2)
```

```
\label{eq:dimension} $$ \dim (3,8), b1(3,8), bt(8,3), d(3,3), igg(22), f(902), strain(3,1) $$ dimension $$ uel(8,1), stress(3,1), xq(4), yq(4), dj(2,2) $$
```

c dimension slmsum(8,8)

С

c Elastic Constants EY=Young Modulus, v=Poisson's Ratio, D=Elasic Matrix

```
piss=11.0
   if(piss.eq.1)go to 6
   write(6,99)
   width=1.0
   go to 7
6 write(6,98)
   width=1.0
7 ey=1.0
   v=0.30
   call elasti (ey,v,piss,d)
   write(6,100) ((d(i,j),j=1,3),i=1,3)
c dada----geometry of the body
c xl-----length of the body
c yl-----height of the body
  ngp----# of grid points:::nel=# of elements
С
  iband-----bandwidth
  h-----displacement boundary length
С
   qp----applied traction in the y-direction
С
```

```
pi=datan(1.0d0)*4.0d0
С
С
С
c234567
   xl=10.0
   yl=1.0
   h=yl
   qp=-1.0
   n=40
   m=10
   dx=xI/n
   dy=yl/m
   xii=0.25
   n1=n+1
   m1=m+1
   m22=m1*2
   ngp=n1*m1
   ngp2=ngp*2
   iband=(m1+2)*2
   nel=m*n
c Matrix Description
c cord(ngp,2)----coordinate's matrix
c ielmn(nel,3)----associates each element with its nodes
c b1=d*b(3,6)
c bt(6,3)----transpose of b1
c slm(6,6)----element stiffness matrix in global sense
c gsm(ngp2,iband)----global stiffness matrix
```

```
c234567
   do 8 i=1,ngp2
   do 8 j=1,iband
8 gsm(i,j)=0.0
   call inodes(m,n,m1,nel,ielmn)
   call crdixy(m1,n1,ngp,dx,dy,cord)
   do 40 l=1,nel
   slmsum(is,js)=0.0d0
   do 40 im=1,4
c call localuxy(l,ielmn,f,nel,ngp2,ulocal)
   call station (im,z,w)
   call beta(l,cord,ielmn,z,w,ngp,nel,b,da)
   call elasti (ey,v,piss,d)
   call mult(d,b,b1,3,3,8)
   do 41 i=1,3
   do 41 j=1,8
41 bt(j,i)=b(i,j)
   call mult(bt,b1,slm,3,8,8)
   do 43 is=1,8
   do 43 js=1,8
  slmsum(is,js)=0.0d0
   do 42 ls=1,3
С
    do 42 ms=1,8
С
    do iss=1,8
С
С
     do jss=1,8
```

43 slm(is,js)=slm(is,js)*da*width

c f(ngp2)----global force vector

```
c slmsum(is,js)=0.0d0
```

- c slmsum(is,js)=slmsum(is,js)+slm(is,js)*da*width
- c call assemb(ielmn,slm,nel,ngp2,iband,l,gsm)
- c enddo
- c enddo

call assemb(ielmn,slm,nel,ngp2,iband,l,gsm)

- 40 continue
- c call assemb(ielmn,slm,nel,ngp2,iband,l,gsm)
- c call assemb(ielmn,slm,nel,ngp2,iband,l,gsm)
- c write(6,120)z,w,determ
- c 120 format(3(f8.3,2x))
- c write(6,121)((B(i,j),j=1,8),i=1,3)
- c 121 format(/,8(f8.4,1x))

С

c Apply Geometric BCs

do 60 i=m1,ngp3,m1

$$f(2*i-1)=f(2*i-1)+0.0$$

$$f(2*i)=f(2*i)+qp*xii/2.0$$

$$f(2*(i+m1)-1)=f(2*(i+m1)-1)+0.0$$

```
f((2*ngp)-(2*m))=-(3*qp*xI)/8
60 f(2*(i+m1))=f(2*(i+m1))+qp*xii/2.0
   do 70 i=1,m1
   sof=(i-1)*dy+h
   if(sof.lt.yl) go to 70
   igg(2*i-1)=2*i-1
   igg(2*i)=2*i
70 continue
   write(6,101)
   write(6,102)(i,i=1,m1)
   write(6,103)
   write(6,104)
   do 80 kx=1,4
   write(6,105)(((i-1)*m1+11),i=((kx-1)*10+1),kx*10)
80 write(6,106)(f(((i-1)*m1+11)*2),i=((kx-1)*10+1),kx*10)
   i=451
   write(6,107) i,f(i*2)
   call bounda (m22,ngp2,iband,igg,gsm,f)
c Solve for nodal displacements
   call halley (1,gsm,f,ngp2,iband)
   call halley (2,gsm,f,ngp2,iband)
   write(6,111)
```

write(6,112)(i,f(2*i-1),f(2*i),i=1,ngp)

```
write(6,113)
   do 200 i=1,nel
   do 200 im2=1,4
   do 199 j=1,4
   jpn=ielmn(i,j)
   uel(2*j-1,1)=f(2*jpn-1)
199 uel(2*j,1)=f(2*jpn)
   call station (im2,z,w)
   call beta (i,cord,ielmn,z,w,ngp,nel,b,da)
   call elasti (ey,v,piss,d)
   call mult (b,uel,strain,8,3,1)
   call mult (d,strain,stress,3,3,1)
   write(6,114)i,(stress(it,1),it=1,3)
200 continue
   write(6,115)
c234567
98 format(//,10x,'Plain Strain case')
99 format(//,10x,'Plain Stress case')
100 format(//,10x,'Elastic matrix D',/(35x,3(f10.2,2x)))
101 format(5(/),10x,'Displacement Boundary Conditions')
102 format(//,4x,'node',11(4x,i2,4x))
```

```
103 format(/,10x,11(2x,'ux=0.0',2x)/10x,11(2x,'uy=0.0',2x))
104 format(5(/),10x,'Traction BC')
105 format(//,4x,'node',10(4x,i3,4x))
106 format(/,10x,10(2x,'fx=0.0',3x)/10x,10(2x,'fy=',f5.2,1x))
107 format(//,4x,'node',4x,i3,//,12x,'fx=0.0'/12x,'fy=',f5.2)
111 format(///,47x,'d',2x,'i',2x,'s',2x,'p',2x,'l',2x,'a',2x,'c',
  *2x,'e',2x,'m',2x,'e',2x,'n',2x,'t',2x,'s',/,40x,50('.'),5(/),
  :28x,76('*'),/,28x,2('*',6x,'*',2(14x,'*')),/,28x,2('*',1x,'node',
  *1x,'*',6x,'ux',6x,'*',6x,'uy',
  *6x,'*'),/,28x,2('*',6x,'*',2(14x,'*')),/,28x,76('*'))
112 format((28x,2('*',1x,i4,1x,'*',2(1x,f12.4,1x,'*'))))
113 format(28x,76('*'),6(/),55x,'s',2x,'t',2x,'r',2x,'e',2x,'s',2x,
  *'s',2x,'e',2x,'s',/,50x,32('.'),5(/),35x,61('*'),/,35x,'*',4(14x,
  *'*'),/,35x,'*',
  *4x,'element',3x,'*',6x,'sx',6x,'*',6x,'sy',6x,'*',6x,'sxy',5x,'*',
  */,35x,'*',4(14x,'*'),/,35x,61('*'))
```

```
114 format((35x,'*',5x,i4,5x,'*',3(1x,f12.4,1x,'*')))
115 format(35x,61('*'))
  stop
  end
С
С
  subroutine crdixy(m1,n1,ngp,dx,dy,cord)
  implicit real*8(a-h,o-z)
  dimension cord(ngp,2)
С
  do 1 i=1,m1
  do 1 j=1,n1
  jp=(j-1)*m1+i
  cord(jp,1)=(j-1)*dx
  cord(jp,2)=(i-1)*dy
1 continue
c do k=1,n
  cord(2,1)=cord(2,1)-dx
   cord(2,2) = -cord(2,1)
   enddo
С
С
С
  write(6,100)(i,(cord(i,j),j=1,2),i=1,ngp)
100 format("Coordinate Matrix",/,((i5,2x,f12.5,f12.5)))
С
```

```
С
   return
   end
С
С
   subroutine inodes(m,n,m1,nel,ielmn)
   implicit real*8(a-h,o-z)
   dimension ielmn(nel,4)
   do 10 i=1,n
   do 10 j=1,m
   kl=m*(i-1)+j
   kn1=(i-1)*m1+j
   kn2=kn1+m1
   kn3=kn2+1
   kn4=kn1+1
   ielmn(kl,1)=kn1
   ielmn(kl,2)=kn2
   ielmn(kl,3)=kn3
   ielmn(kl,4)=kn4
10 continue
   write(6,200) (i,(ielmn(i,j),j=1,4),i=1,nel)
200 format("Connectivity Matrix",/,((i5,2x,i5,2x,i5,2x,i5,2x,i5)))
   return
   end
```

```
С
c Assembles the global stiffness matrix
  subroutine assemb(ielmn,slm,nel,ngp2,iband,l,gsm)
  implicit real*8(a-h,o-z)
  dimension ielmn(nel,4),slm(8,8),gsm(ngp2,iband),kk(8)
  do 10 inode=1,4
    ii=2*inode
    kk(ii)=2*ielmn(l,inode)
    kk(ii-1)=kk(ii)-1
10
    continue
    do 30 i=1,8
    k=kk(i)
    do 30 j=1,8
    if(kk(j).lt.k) go to 30
    lm=kk(j)-k+1
    gsm(k,lm)=gsm(k,lm)+slm(i,j)
30
    continue
    return
    end
С
c computes the b element matrix
c234567
```

```
subroutine beta(l,cord,ielmn,z,w,ngp,nel,b,da)
  implicit real*8(a-h,o-z)
  dimension cord(ngp,2), ielmn(nel,4), b(3,8), xq(4), yq(4), dj(2,2)
  do 1 i=1,4
  ms=ielmn(l,i)
  xq(i)=cord(ms,1)
1 yq(i)=cord(ms,2)
  d11=((w-1.0d0)*(xq(1)-xq(2))+(w+1.0d0)*(xq(3)-xq(4)))/4.0
  d12=((w-1.0d0)*(yq(1)-yq(2))+(w+1.0d0)*(yq(3)-yq(4)))/4.0
  d21=((z-1.0d0)*(xq(1)-xq(4))+(z+1.0d0)*(xq(3)-xq(2)))/4.0
  d22=((z-1.0d0)*(yq(1)-yq(4))+(z+1.0d0)*(yq(3)-yq(2)))/4.0
  da=d11*d22-d12*d21
  dj(1,1)=d22/da
  dj(1,2)=-d12/da
  dj(2,1)=-d21/da
  dj(2,2)=d11/da
  do 2 ks=1,2
```

2 b(ks,kl)=0.0

$$b(1,1)=(dj(1,1)*(w-1.0d0)+dj(1,2)*(z-1.0d0))/4.0$$

$$b(2,2)=(dj(2,1)*(w-1.0d0)+dj(2,2)*(z-1.0d0))/4.0$$

$$b(1,3)=-(dj(1,1)*(w-1.0d0)+dj(1,2)*(z+1.0d0))/4.0$$

$$b(2,4)=-(dj(2,1)*(w-1.0d0)+dj(2,2)*(z+1.0d0))/4.0$$

$$b(1,5)=(dj(1,1)*(w+1.0d0)+dj(1,2)*(z+1.0d0))/4.0$$

$$b(2,6)=(dj(2,1)*(w+1.0d0)+dj(2,2)*(z+1.0d0))/4.0$$

$$b(1,7)=-(dj(1,1)*(w+1.0d0)+dj(1,2)*(z-1.0d0))/4.0$$

$$b(2,8)=-(dj(2,1)*(w+1.0d0)+dj(2,2)*(z-1.0d0))/4.0$$

$$b(3,ls)=b(2,ls+1)$$

3
$$b(3,ls+1)=b(1,ls)$$

- c write(6,200)(xq(i),yq(i),i=1,4)
- c 200 format(2(f10.3,2x))
- c write(6,201)z,w,determ
- c 201 format(3(f8.3,2x))

```
return
  end
С
С
c subroutine station chooses the values of z and w to be used
c In Gauss Integration for each integration station
c234567
  subroutine station (ms,z,w)
  implicit real*8(a-h,o-z)
С
  cs1=1.0/sqrt(3.0)
  if (ms-2)1,2,3
1 z=cs1
  w=z
  go to 5
2 z=-cs1
  w=-z
  go to 5
3 if(ms.gt.3) go to 4
  z=-cs1
  w=z
  go to 5
4 z=cs1
  w=-z
С
5 return
  end
```

```
c Multiplication of two matrices of the form s(m4,l4)*q(l4,n4)
```

```
subroutine mult(s,q,c,l4,m4,n4)
  implicit real*8(a-h,o-z)
  dimension s(m4,l4),c(m4,n4),q(l4,n4)
  do 10 i=1,m4
  do 10 j=1,n4
  c(i,j)=0.0
  do 20 ky=1,l4
20 c(i,j)=c(i,j)+s(i,ky)*q(ky,j)
10 continue
90 return
  end
c computation of elastic matrix...d...
  subroutine elasti (ey,v,piss,d)
  implicit real*8(a-h,o-z)
  dimension d(3,3)
  if(piss.eq.1) go to 1
  dd=ey/(1.0-v**2)
  dof=v*dd
  d3=ey/(2*(1.0+v))
```

```
go to 2
```

1 dd=(ey*(1.0-v))/((1.0+v)*(1.0-2.0*v))

dof=v*dd/(1.0-v)

d3=ey/(2.0*(1.0+v))

2 do 3 i=1,2

do 3 j=1,2

if(i.eq.j) go to 4

d(i,j)=dof

go to 3

4 d(i,j)=dd

3 continue

do 5 i=1,2

d(i,3)=0.0

5 d(3,i)=0.0

```
d(3,3)=d3
   return
   end
С
c Imposing BC---Unscrambling the system of eqns
c234567
   subroutine bounda (m22,ngp2,iband,igg,gsm,f)
   implicit real*8(a-h,o-z)
   dimension igg(m22),gsm(ngp2,iband),f(ngp2)
С
   do 20 i=1,m22
   km=igg(i)
   f(km)=0.0
   gsm(km,1)=1.0
С
   do 20 j=2,iband
   kmj=km-j+1
   if(kmj.le.0) go to 21
   f(kmj)=f(kmj)-gsm(kmj,j)*f(km)
   gsm(kmj,j)=0.0
С
21 kmj=km+j-1
   if(kmj.gt.ngp2) go to 20
   f(kmj)=f(kmj)-gsm(km,j)*f(km)
   gsm(km,j)=0.0
20 continue
С
   return
```

```
end
```

```
С
c234567
   subroutine halley(kkk,ak,q,mdim,ndim)
   implicit real*8(a-h,o-z)
c symmetric banded matrix equation solver
С
c kkk=1 triangularizes the banded symmetric stiffness matrix ak(mdim,ndim)
c kkk=2 solves for right hand side q(mdim), solution returns in q(mdim)
С
   dimension ak(mdim,ndim),q(mdim)
   ner=mdim
   iband=ndim
   nrs=ner-1
   nr=ner
   if (kkk.eq.2) go to 200
   do 120 n=1,nrs
   m=n-1
   mr=min0(iband,nr-m)
   pivot=ak(n,1)
   do 120 l=2,mr
   cp=ak(n,l)/pivot
   i=m+l
   j=0
   do 110 k=l,mr
   j=j+1
110 ak(i,j)=ak(i,j)-cp*ak(n,k)
```

```
120 ak(n,l)=cp
  go to 400
200 do 220 n=1,nrs
   m=n-1
   mr=min0(iband,nr-m)
  cp=q(n)
  q(n)=cp/ak(n,1)
  do 220 l=2,mr
  i=m+l
220 q(i)=q(i)-ak(n,l)*cp
   q(nr)=q(nr)/ak(nr,1)
  do 320 i=1,nrs
   n=nr-i
   m=n-1
   mr=min0(iband,nr-m)
   do 320 k=2,mr
  I=m+k
С
c store computed displacements in load vector q
c234567
320 q(n)=q(n)-ak(n,k)*q(l)
400 return
  end
```

MATLAB Code

```
cord = xlsread('cord');
ielmn = xlsread('ielmn');
disp = xlsread('displacements');
defcord = zeros(451, 2);
for j = 2:3
    for k = 1:451
       defcord(k,(j-1)) = (cord(k,(j-1))) + ((disp(k,j))/5000);
end
for i = 1:length(ielmn)
    xu = [cord(ielmn(i,1),1), cord(ielmn(i,2),1)];
    yu = [cord(ielmn(i,1),2), cord(ielmn(i,2),2)];
    plot(xu, yu, 'k'); hold on;
    xlim([0 10.5]);
    ylim([-.5 1.5]);
    xd = [defcord(ielmn(i,1),1), defcord(ielmn(i,2),1)];
    yd = [defcord(ielmn(i,1),2), defcord(ielmn(i,2),2)];
    plot(xd, yd, 'c'); hold on;
end
for i = 1:length(ielmn)
    xu = [cord(ielmn(i,2),1), cord(ielmn(i,3),1)];
    yd = [cord(ielmn(i,2),2), cord(ielmn(i,3),2)];
    plot(xu,yd,'k'); hold on;
    xd = [defcord(ielmn(i,2),1), defcord(ielmn(i,3),1)];
    yd = [defcord(ielmn(i,2),2), defcord(ielmn(i,3),2)];
    plot(xd, yd, 'c'); hold on;
end
for i = 1:length(ielmn)
    xu = [cord(ielmn(i,3),1), cord(ielmn(i,4),1)];
    yu = [cord(ielmn(i,3),2), cord(ielmn(i,4),2)];
    plot(xu, yu, 'k'); hold on;
    xd = [defcord(ielmn(i,3),1), defcord(ielmn(i,4),1)];
    yd = [defcord(ielmn(i,3),2), defcord(ielmn(i,4),2)];
    plot(xd, yd, 'c'); hold on;
end
for i = 1:length(ielmn)
    xu = [cord(ielmn(i, 4), 1), cord(ielmn(i, 1), 1)];
    yu = [cord(ielmn(i,4),2), cord(ielmn(i,1),2)];
    plot(xu, yu, 'k'); hold on;
    xd = [defcord(ielmn(i, 4), 1), defcord(ielmn(i, 1), 1)];
    yd = [defcord(ielmn(i, 4), 2), defcord(ielmn(i, 1), 2)];
    plot(xd, yd, 'c'); hold on;
title ('Cantilever Beam subjected to Distributed Load and Force at tip')
xlabel('Non-Dimensional Displacements in the x')
ylabel('Non-Dimensional Displacements in the y')
legend('Undeformed', 'Deformed')
```

```
for i = 1:1600
    sigma(i,1) = i;
end
sigma2 = zeros(451,2);
cord = zeros(451,2);
cord2 = xlsread('stresses');
sigma(:,2) = cord2(:,3);
dx = 10/40;
dy = 1/10;
p = 1;
for i = 0:40
    for j = 0:10
    cord(p,1) = 0+dx*i;
    cord(p,2) = 0+dy*j;
    p=p+1;
    end
end
j = [1;4;8;12;16;20;24;28;32;36;40];
k = [1562; 1566; 1570; 1574; 1578; 1582; 1586; 1590; 1594; 1598; 1599];
1 = [441;442;443;444;445;446;447;448;449;450;451];
q = 1;
for i = 1:40;
    for p = 1:11
    sigma2(q,2) = sigma(j(p)+40*(i-1),2);
    q = q+1;
    end
end
    for p = 1:11
    sigma2(1(p),2) = sigma(k(p),2);
    end
for i = 1:451
    sigma2(i,1) = i;
end
x=min(cord(:,1)):(max(cord(:,1))-min(cord(:,1)))/200:max(cord(:,1));
y=min(cord(:,2)):(max(cord(:,2))-min(cord(:,2)))/200:max(cord(:,2));
[X, Y] = meshgrid(x, y);
Z =griddata(cord(:,1),cord(:,2),sigma2(:,2),X,Y);
contour (X, Y, Z, 100)
title('Non-Dimensional Stress Contours')
xlabel('Non-dimenisonal Displacements in x')
ylabel('Nondimensional Displacements in Y')
```