Doing things with data frames

Doing things with data frames

Let's go back to our Australian athletes:

```
## Parsed with column specification:
## cols(
##
     Sex = col character(),
##
     Sport = col_character(),
##
     RCC = col double(),
##
     WCC = col_double(),
##
     Hc = col_double(),
     Hg = col double(),
##
     Ferr = col double(),
##
##
     BMI = col double(),
     SSF = col_double().
##
##
     `%Bfat` = col double(),
     LBM = col_double().
##
##
     Ht = col double(),
##
     Wt = col double()
```

Choosing a column

athletes %>% select(Sport)

Sport Netball Netball

Choosing several columns

athletes %>% select(Sport, Hg, BMI)

Sport	Hg	ВМІ					
Netball	13.6	19.16					
Netball	12.7	21.15					
Netball	12.3	21.40					
Netball	12.3	21.03					
Netball	12.8	21.77					
Netball	11.8	21.38					
Netball	12.7	21.47					
Netball	12.4	24.45					
Netball	12.4	22.63					
Netball	14.1	22.80					
Netball	12.5	23.58					
Netball	12.1	20.06					
Netball	12.7	23.01					
Doing things with data frames							

Choosing consecutive columns

athletes %>% select(Sex:WCC)

Sex	Sport	RCC	WCC			
female	Netball	4.56	13.30			
female	Netball	4.15	6.00			
female	Netball	4.16	7.60			
female	Netball	4.32	6.40			
female	Netball	4.06	5.80			
female	Netball	4.12	6.10			
female	Netball	4.17	5.00			
female	Netball	3.80	6.60			
female	Netball	3.96	5.50			
female	Netball	4.44	9.70			
female	Netball	4.27	10.60			
female	Netball	3.90	6.30			
female	Netball	4.02	9.10			
Datas altitus with data former						

Choosing all-but some columns

athletes %>% select(-(RCC:LBM))

Sex	ex Sport		Wt
female	Netball	176.8	59.90
female	Netball	172.6	63.00
female	Netball	176.0	66.30
female	Netball	169.9	60.70
female	Netball	183.0	72.90
female	Netball	178.2	67.90
female	Netball	177.3	67.50
female	Netball	174.1	74.10
female	Netball	173.6	68.20
female	Netball	173.7	68.80
female	Netball	178.7	75.30
female	Netball	183.3	67.40
female	Netball	174.4	70.00
	Data a strange cols	h data frames	

Select-helpers

Other ways to select columns: those whose name:

- starts_with something
- ends_with something
- contains something
- matches a "regular expression"
- everything() select all the columns

Columns whose names begin with S

athletes %>% select(starts_with("S"))

Sex	Sport	SSF				
female	Netball	49.0				
female	Netball	110.2				
female	Netball	89.0				
female	Netball	98.3				
female	Netball	122.1				
female	Netball	90.4				
female	Netball	106.9				
female	Netball	156.6				
female	Netball	101.1				
female	Netball	126.4				
female	Netball	114.0				
female	Netball	70.0				
female	Netball	77.0				
Doing things with data frames						

Columns whose names end with C

either uppercase or lowercase:

athletes %>% select(ends_with("c"))

RCC	WCC	Нс
4.56	13.30	42.2
4.15	6.00	38.0
4.16	7.60	37.5
4.32	6.40	37.7
4.06	5.80	38.7
4.12	6.10	36.6
4.17	5.00	37.4
3.80	6.60	36.5
3.96	5.50	36.3
4.44	9.70	41.4
4.27	10.60	37.7
2 AA Doing th	ょっへ ings with data	⊃⊏ ∩ a frames

Case-sensitive

This works with any of the select-helpers:

```
athletes %>% select(ends_with("C", ignore.case=F))
```

RCC	WCC
4.56	13.30
4.15	6.00
4.16	7.60
4.32	6.40
4.06	5.80
4.12	6.10
4.17	5.00
3.80	6.60
3.96	5.50
4.44	9.70
4.27	10.60
oing things w	vith data frames

Column names containing letter R

athletes %>% select(contains("r"))

Sport	RCC	Ferr
Netball	4.56	20
Netball	4.15	59
Netball	4.16	22
Netball	4.32	30
Netball	4.06	78
Netball	4.12	21
Netball	4.17	109
Netball	3.80	102
Netball	3.96	71
Netball	4.44	64
Netball	4.27	68
Netball	3.90	78
Netball	4.02	107
Distance (Island	and the state of	c

Exactly two characters, ending with T

In regular expression terms, this is ^.t\$:

- neans "start of text"
- means "exactly one character, but could be anything"
- \$ means "end of text".

athletes %>% select(matches("^.t\$"))

	Ht	Wt
	176.8	59.90
	172.6	63.00
	176.0	66.30
	169.9	60.70
	183.0	72.90
	178.2	67.90
	177.3	67.50
	174.1	74.10
Do	ning things wit	h data frames

Choosing rows by number

athletes %>% slice(16:25)

Netball

Netball

BBall

BBall

3.95

4.03

3.96

4.41

6.6

8.5

7.5

8.3

female

female

female

female

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat
female	Netball	4.25	10.7	39.5	13.2	127	24.47	156.6	26.50
female	Netball	4.46	10.9	39.7	13.7	102	23.99	115.9	23.01
female	Netball	4.40	9.3	40.4	13.6	86	26.24	181.7	30.10
female	Netball	4.83	8.4	41.8	13.4	40	20.04	71.6	13.93
female	Netball	4.23	6.9	38.3	12.6	50	25.72	143.5	26.65
female	Netball	4.24	8.4	37.6	12.5	58	25.64	200.8	35.52

38.4

37.7

37.5

38.2

12.8

13.0

12.3

12.7

33

51

60

68

19.87

23.35

20.56

20.67

68.9

103.6

109.1

102.8

15.59

19.61

19.75

21.30

Non-consecutive rows

```
athletes %>%
slice(10,13,17,42)
```

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	Netball	4.44	9.7	41.4	14.1	64	22.80	126.4	24.97
female	Netball	4.02	9.1	37.7	12.7	107	23.01	77.0	18.14
female	Netball	4.46	10.9	39.7	13.7	102	23.99	115.9	23.01
female	Row	4.37	8.1	41.8	14.3	53	23.47	98.0	21.79

A random sample of rows

athletes %>% slice_sample(n=8)

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat
male	WPolo	5.11	7.0	47.7	15.8	214	24.54	70.0	11.63
female	Swim	4.07	5.9	39.5	13.3	25	20.42	54.6	11.47
female	Gym	4.53	5.0	40.7	14.0	41	17.79	56.8	12.55
female	T400m	4.44	6.1	42.6	13.9	43	22.76	73.9	15.95
male	Swim	4.75	8.6	45.5	15.2	99	25.11	52.3	8.54
male	T400m	4.41	4.5	44.2	15.0	101	20.89	31.8	6.00
female	BBall	4.30	8.9	41.1	13.5	41	22.64	75.1	17.95
female	Swim	4.38	5.8	42.0	14.0	27	21.28	55.6	13.61

Rows for which something is true

```
athletes %>% filter(Sport == "Tennis")
```

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat	LBM
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86	56.58
female	Tennis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64	56.01
female	Tennis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07	46.52
female	Tennis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31	51.75
female	Tennis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07	42.15
female	Tennis	5.16	7.2	44.3	14.5	88	18.29	61.9	12.92	48.76
female	Tennis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45	41.93
male	Tennis	5.66	8.3	50.2	17.7	38	23.76	56.5	10.05	72.00
male	Tennis	5.03	6.4	42.7	14.3	122	22.01	47.6	8.51	68.00
male	Tennis	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50	63.00
male	Tennis	5.38	6.3	46.0	15.7	32	21.07	34.9	6.26	72.00

More complicated selections

athletes %>% filter(Sport == "Tennis", RCC < 5)

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86
female	Tennis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64
female	Tennis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07
female	Tennis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31
female	Tennis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07
female	Tennis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45
male	Tennis	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50

17/36

Another way to do "and"

```
athletes %>% filter(Sport == "Tennis") %>%
filter(RCC < 5)</pre>
```

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86
female	Tennis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64
female	Tennis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07
female	Tennis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31
female	Tennis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07
female	Tennis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45
male	Tennis	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50

Either/Or

female

female

female

female

female

female

female

male

male

Tennis

Tennis

Tennis

Tennis

Tennis

Tennis

Tennis

Swim

Swim

4.00

4.40

4.38

4.08

4.98

5.16

4.66

5.13

5.09

athletes %>% filter(Sport == "Tennis" | RCC > 5)

4.2

4.0

7.9

6.6

6.4

7.2

6.4

7.1

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat
female	Row	5.02	6.4	44.8	15.2	48	19.76	91.0	19.20
female	T400m	5.31	9.5	47.1	15.9	29	21.35	57.9	11.07
female	Field	5.33	9.3	47.0	15.0	62	25.27	102.8	19.51
female	TSprnt	5.16	8.2	45.3	14.7	34	20.30	46.1	10.15

12.0

13.9

13.5

12.1

14.8

14.5

13.9

15.9

36.6

40.8

39.8

37.8

44.8

44.3

40.9

46.8

57

73

88

182

80

88

109

34

55

25.36

22.12

21.25

20.53

17.06

18.29

18.37

22.46

23.68

109.0

98.1

80.6

68.3

47.6

61.9

38.2

44.5

33.7

20.86

19.64

17.07

15.31

11.07

12.92

8.45

8.47

Sorting into order

Sport

Row

Netball

BBall

Tennis

Netball

Netball

Netball

Swim

Sex

female

female

female

female

female

female

female

female

athletes %>% arrange(RCC)

female	Netball	3.80	6.60	36.5	12.4	102	24.45	156.6	26.57
female	Netball	3.90	6.30	35.9	12.1	78	20.06	70.0	15.01
female	T400m	3.90	6.00	38.9	13.5	16	19.37	48.4	10.48
female	Row	3.91	7.30	37.6	12.9	43	22.27	125.9	25.16
female	Netball	3.95	6.60	38.4	12.8	33	19.87	68.9	15.59

36.9

36.3

37.5

36.6

37.7

37.7

38.7

39.5

Doing things with data frames

Hc

Hg

12.5

12.4

12.3

12.0

12.7

13.0

12.8

13.3

Ferr

40

71

60

57

107

51

78

25

BMI

24.54

22.63

20.56

25.36

23.01

23.35

21.77

20.42

SSF

74.9

101.1

109.1

109.0

103.6

122.1

54.6

77.0

%Bfat

16.38

17.93

19.75

20.86

18.14

19.61

23.11

11.47

20/36

3.95

3.96

3.96

4.00

4.02

4.03

4.06

4.07

RCC

WCC

3.30

5.50

7.50

4.20

9.10

8.50

5.80

5.90

Breaking ties by another variable

athletes %>% arrange(RCC, BMI)

female	Netball	3.80	6.60	36.5	12.4	102	24.45	156.6	26.57
female	T400m	3.90	6.00	38.9	13.5	16	19.37	48.4	10.48
female	Netball	3.90	6.30	35.9	12.1	78	20.06	70.0	15.01
female	Row	3.91	7.30	37.6	12.9	43	22.27	125.9	25.16
female	Netball	3.95	6.60	38.4	12.8	33	19.87	68.9	15.59

36.9

37.5

36.3

36.6

37.7

37.7

38.7

39.5

Doing things with data frames

Hc

Hg

12.5

12.3

12.4

12.0

12.7

13.0

12.8

13.3

Ferr

40

60

71

57

107

51

78

25

BMI

24.54

20.56

22.63

25.36

23.01

23.35

21.77

20.42

SSF

74.9

109.1

101.1

109.0

103.6

122.1

54.6

77.0

%Bfat

16.38

19.75

17.93

20.86

18.14

19.61

23.11

11.47

21/36

Sex **RCC** WCC Sport

3.95

3.96

3.96

4.00

4.02

4.03

4.06

4.07

3.30

7.50

5.50

4.20

9.10

8.50

5.80

5.90

female

female

female

female

female

female

female

female

Row **BBall**

Netball

Tennis

Netball

Netball

Netball

Swim

Descending order

Field

Field

Field

WPolo

WPolo

Field

Field

male

female

female

male

male

male female

athletes %>% arrange(desc(BMI))

5.09

4.58

4.51

5.34

4.90

5.11

4.81

8.90

5.80

9.00

6.20

7.60

9.60

6.80

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat
male	Field	5.48	6.20	48.2	16.3	94	34.42	82.7	13.91
male	Field	4.96	8.30	45.3	15.7	141	33.73	113.5	17.41
male	Field	5.48	4.60	49.4	18.0	132	32.52	55.7	8.51
female	Field	4.75	7.50	43.8	15.2	90	31.93	131.9	23.01
male	Field	5.01	8.90	46.0	15.9	212	30.18	112.5	19.94
male	Field	5.01	8.90	46.0	15.9	212	30.18	96.9	18.08

46.3

42.1

39.7

49.8

45.6

48.2

42.7

Doing things with data frames

15.4

14.7

14.3

17.2

16.0

16.7

15.3

44

164

36

143

90

103

50

29.97

28.57

28.13

27.79

27.56

27.39

26.95

71.1

109.6

136.3

75.7

67.2

65.9

98.5

13.97

21.30

24.88

13.49

11.79

11.66

20.10

22/36

"The top ones"

```
athletes %>%
  arrange(desc(Wt)) %>%
  slice(1:7) %>%
  select(Sport, Wt)
```

Sport	Wt
Field	123.2
BBall	113.7
Field	111.3
Field	108.2
Field	102.7
WPolo	101.0
BBall	100.2

Another way

```
athletes %>%
  slice_max(order_by = Wt, n=7) %>%
  select(Sport, Wt)
```

Sport	Wt
Field	123.2
BBall	113.7
Field	111.3
Field	108.2
Field	102.7
WPolo	101.0
BBall	100.2

Create new variables from old ones

```
athletes %>%
  mutate(wt_lb = Wt * 2.2) %>%
  select(Sport, Sex, Wt, wt_lb) %>%
  arrange(Wt)
```

Sport	Sex	Wt	wt_lb
Gym	female	37.80	83.16
Gym	female	43.80	96.36
Gym	female	45.10	99.22
Tennis	female	45.80	100.76
Tennis	female	47.40	104.28
Gym	female	47.80	105.16
T400m	female	49.20	108.24
Row	female	49.80	109.56
T400m	female	50.90	111.98
Netball	female	51.90	114.18
	Doing things wit	h data frames	

Turning the result into a number

Output is always data frame unless you explicitly turn it into something else, eg. the weight of the heaviest athlete, as a number:

```
athletes %>% arrange(desc(Wt)) %>% pluck("Wt", 1)
```

[1] 123.2

Or the 20 heaviest weights in descending order:

```
athletes %>%
  arrange(desc(Wt)) %>%
  slice(1:20) %>%
  pluck("Wt")
```

```
## [1] 123.20 113.70 111.30 108.20 102.70 101.00

## [7] 100.20 98.00 97.90 97.90 97.00 96.90

## [13] 96.30 94.80 94.80 94.70 94.70 94.60

## [19] 94.25 94.20
```

Another way to do the last one

```
athletes %>%
  arrange(desc(Wt)) %>%
  slice(1:20) %>%
  pull("Wt")
```

```
## [1] 123.20 113.70 111.30 108.20 102.70 101.00

## [7] 100.20 98.00 97.90 97.90 97.00 96.90

## [13] 96.30 94.80 94.80 94.70 94.70 94.60

## [19] 94.25 94.20
```

pull grabs the column you name as a vector (of whatever it contains).

To find the mean height of the women athletes

Two ways:

```
athletes %>% group_by(Sex) %>% summarize(m = mean(Ht))
```

 Sex
 m

 female
 174.5940

 male
 185.5059

```
athletes %>%
  filter(Sex == "female") %>%
  summarize(m = mean(Ht))
```

m 174.594

Summary of data selection/arrangement "verbs"

Verb	Purpose
select	Choose columns
print	Display non-default # of rows/columns
slice	Choose rows by number
${\tt sample_n}$	Choose random rows
filter	Choose rows satisfying conditions
arrange	Sort in order by column(s)
mutate	Create new variables
group_by	Create groups to summarize by
summarize	Calculate summary statistics (by groups if defined)
pluck	Extract items from data frame
pull	Extract a single column from a data frame as a vector

Looking things up in another data frame

Recall the tuberculosis data set, tidied:

tb3

iso2	year	gender	age	freq
AD	1996	m	014	0
AD	1996	m	1524	0
AD	1996	m	2534	0
AD	1996	m	3544	4
AD	1996	m	4554	1
AD	1996	m	5564	0
AD	1996	m	65	0
AD	1996	f	014	0
AD	1996	f	1524	1
AD	1996	f	2534	1
AD	1996	f	3544	0
ΔD	1006 Doing	f things with dat	4554	Λ

Actual country names

Found actual country names to go with those abbreviations, in spreadsheet:

```
my_url <-
   "http://www.utsc.utoronto.ca/~butler/c32/ISOCountryCodes081507.xlsx"</pre>
```

Note trick for reading in .xlsx from URL:

```
f <- tempfile()
download.file(my_url, f)
country_names <- read_excel(f)</pre>
```

- set up temporary file
- download spreadsheet to there
- read it from temporary file (which is "local")

The country names

country_names

Code	$Code_UC$	Country	
ad	AD	Andorra	
ae	AE	United Arab Emirates	
af	AF	Afghanistan	
ag	AG	Antigua and Barbuda	
ai	ΑI	Anguilla	
al	AL	Albania	
am	AM	Armenia	
an	AN	Netherlands Antilles	
ao	AO	Angola	
aq	AQ	Antarctica	
ar	AR	Argentina	
arpa	ARPA	Old style Arpanet	
as	AS	American Samoa	
		Doing things with data frames	32

Doing things with data frames

Looking up country codes

Matching a variable in one data frame to one in another is called a **join** (database terminology):

tb3 %>% left_join(country_names, by = c("iso2" = "Code_UC"))

iso2	year	gender	age	freq	Code	Country	
AD	1996	m	014	0	ad	Andorra	
AD	1996	m	1524	0	ad	Andorra	
AD	1996	m	2534	0	ad	Andorra	
AD	1996	m	3544	4	ad	Andorra	
AD	1996	m	4554	1	ad	Andorra	
AD	1996	m	5564	0	ad	Andorra	
AD	1996	m	65	0	ad	Andorra	
AD	1996	f	014	0	ad	Andorra	
AD	1996	f	1524	1	ad	Andorra	
AD	1996	f	2534	1	ad	Andorra	
^ D	1006	٢	OF 4 4 Doing	things wit	I h data frames	Λ1	33 / 36

Total cases by country

```
options(dplyr.summarise.inform=FALSE)
```

```
tb3 %>%
  group_by(iso2) %>%
  summarize(cases = sum(freq)) %>%
  left_join(country_names, by = c("iso2" = "Code_UC")) %>%
  select(Country, cases)
```

Country	cases
Andorra	64
United Arab Emirates	487
Afghanistan	80005
Antigua and Barbuda	21
Anguilla	1
Albania	2467
Armenia	6757

or even sorted in order

```
tb3 %>%
  group_by(iso2) %>%
  summarize(cases = sum(freq)) %>%
  left_join(country_names, by = c("iso2" = "Code_UC")) %>%
  select(Country, cases) %>%
  arrange(desc(cases))
```

Country	cases
China	4065174
India	3966169
Indonesia	1129015
South Africa	900349
Bangladesh	758008
Vietnam	709695
NA	603095
Philippines	490040
Bangladesh Vietnam NA	758008 709695 603095

Comments

- This is probably not quite right because of:
 - the 1994-1995 thing
 - there is at least one country in tb3 that was not in country_names (the NA above). Which?

```
tb3 %>%
anti_join(country_names, by = c("iso2" = "Code_UC")) %>%
distinct(iso2)
```

CD ME NA PS RS TL