Updates in ACPI Based Memory Hot-Plug

Tang Chen

<tangchen@cn.fujitsu.com>

Agenda

- 1. ACPI & Memory Hot-Plug
- 2. Memory Hot-Plug Process
- 3. Boot Memory Handling
- 4. Pinned Pages Migration
- 5. QEmu memory Hot-Plug
- 6. Future work

ACPI & Memory Hot-Plug

ACPI: Advanced Configuration and Power Interface

ACPI is an interface specification of Operating System-directed motherboard device configuration and Power Management.

-- ACPI Specification 5.0

ACPI & Memory Hot-Plug

Boot time process ACPI and Memory Hot-Plug Run time process **Memory Device Driver** Kernel Call device dependent code **Memory Hot-Plug Subsystem** Call event handler **Install event handler** Call API **ACPI Framework Call ACPI Method Read ACPI Tables Methods ACPI Tables** (dynamic) (static) **Generate SCI ACPI BIOS** (System Control Interrupt) **Hardware operation Hot-Plug happens Event info ACPI Registers Hardware** 4

ACPI & Memory Hot-Plug

- Static configuration
 - SRAT: System Resource Affinity Table

Agenda

- 1. ACPI & Memory Hot-Plug
- 2. Memory Hot-Plug Process
- 3. Boot Memory Handling
- 4. Pinned Pages Migration
- 5. QEmu memory Hot-Plug
- 6. Future work

Memory management background

Memory Hot-add Process

Memory Hot-remove Process

Problem

Kernel pages cannot be hot-removed

Agenda

- 1. ACPI & Memory Hot-Plug
- 2. Memory Hot-Plug Process
- 3. Boot Memory Handling
- 4. Pinned Pages Migration
- 5. QEmu memory Hot-Plug
- 6. Future work

Avoid Allocating Hot-pluggable Memory

Avoid Allocating Hot-pluggable Memory (Before Parsing SRAT)

Allocate memory just behind the kernel image:

- The node kernel resides in is un-hot-pluggable
- Introduce a new bottom-up mode for memblock allocator

Top-down V.S. Bottom-up

Top-down allocation mode

- Memory at low addresses is precious (e.g. for DMA devices)
- For non-memory-hot-plug users

Bottom-up allocation mode

- In most cases, memory allocated before parsing SRAT won't be too much, so it could highly likely be in the same node with kernel image
- For memory-hot-plug users

Avoid Allocating Hot-pluggable Memory (After Parsing SRAT)

Mark hot-pluggable memory and skip them in followed allocations:

- Introduce MEMBLOCK_HOTPLUG flag for memblock allocator
- Change back to top-down mode

Summary

Boot Option: movable_node

A boot-time switch to enable movable node functionality

- Higher priority than kernelcore and movablecore boot option
 - Make sure movable node functionality can be configured

Agenda

- 1. ACPI & Memory Hot-Plug
- 2. Memory Hot-Plug Process
- 3. Boot Memory Handling
- 4. Pinned Pages Migration
- 5. QEmu memory Hot-Plug
- 6. Future work

Pages Pinned by Kernel

- Short-lived Pins
 - cma, fs/exec, security, nfs, events, net/ceph, lots of dirvers...
- Long-lived Pins (pinned in all lifecycle)
 - KVM
 - Real mode identity EPT pagetable
 - APIC access page
 - AIO
 - Event Ring buffer

Short-lived Pins

Just for data copying

- Solution: No handling
 - Memory-offline retry timeout (120s) is enough

Long-lived Pins: KVM

- Real mode ept identity pagetable
 - Needed for CPUs that do not allow entering guest mode with paging disable.
 - Populated with ptes that cover entire guest's memory.

- APIC access page
 - Used by CPU directly to catch MMIO access to an APIC.

Long-lived Pins: KVM

Why pinned: For convenience, not necessary.

1. Update EPT entry.

- 2. Update local cache for page struct.
- 3. Update APIC_ACCESS_ADDR pointer in VMCS.

Long-lived Pins: KVM

EPT identity pagetable: Unpin directly

- 1. Guest requires a page
- 2. MMU searches EPT for a hpa
- 3. MMU returns EPT violation since page has been migrated
- 4. KVM handles EPT violation and find the new page
- 5. KVM updates EPT
- 6. MMU returns new hpa

Long-lived Pins: KVM APIC access page

Two kinds of VM-Entry/Exit:

- VM-Entry/Exit in Guest mode are emulated by KVM.
 - L1 <--> L2 VM-Entry/Exit
- > VM-Entry/Exit between Host and Guest mode are provided by CPU.
 - L0 <--> L1 VM-Entry/Exit
 - L0 <--> L2 VM-Entry/Exit

Two cases to handle:

- > CPU is running L1 Guest.
- > CPU is running L2 Guest.

Long-lived Pins: KVM APIC access page

CPU is running L1 Guest:

Page Migration:

- 1. Try to unmap page
- 2. MMU notifier works

- 3. Unmap and migrate page
- 4. Page migrated

KVM:

- 1. Handler enforces a L1
 --> L0 VM-Exit
- 2. Handler makes vcpu request to update L1 VMCS
- 3. Next L0 --> L1 VM-Entry: GUP waits for page migration
- 4. Update L1 VMCS
- 5. Update L2 VMCS in next L1 --> L2 VM-Entry

Long-lived Pins: KVM APIC access page

CPU is running **L2** Guest:

Page Migration:

- 1. Try to unmap page
- 2. MMU notifier works

- 3. Unmap and migrate page
- 4. Page migrated

KVM:

- Handler enforces a L2
 L0 VM-Exit
- 2. Handler makes vcpu request to update L2 VMCS
- 3. Next LO --> L2 VM-Entry: GUP waits for page migration

4. Update L2 VMCS

5. Update L1 VMCS in next L2 --> L1 VM-Exit

- AIO Event Ring Buffer
 - Used by kernel to notify user space that AIO has completed.

Why pinned: Unable to know when AIO completes.

Page Migration:

- 1. Offline memory
- 2. Page migration |--> migratepages()

.....

3. Page migration fails

AIO:

- 1. AIO pins ring pages
- 2. AIO in progress

••••

- 3. AIO completes
- 4. AIO unpin ring pages

Need new splution

Why cannot use MMU notifier:

- 1. No way to get the page (have to repin)
 - GUP may sleep in io interrupt context
- 2. No way to notify AIO to repin the page
 - No such MMU notifier after page migration completes

Solution: Implement aio_migratepage()

Agenda

- 1. ACPI & Memory Hot-Plug
- 2. Memory Hot-Plug Process
- 3. Boot Memory Handling
- 4. Pinned Pages Migration
- 5. QEmu memory Hot-Plug
- 6. Future work

QEmu memory hotplug

Memory hot-add usage: available

QEmu commandline:

```
-m 2G,slots=8,maxmem=16G
-object memory-ram,id=ram0,size=1G
-object memory-backend-file,mem-path=/hugetlbfs,id=ram1,size=1G
```

QEmu monitor:

```
device_add pc-dimm,id=d0,memdev=ram0
object_add memory-ram,id=ram2,size=2G
object_add memory-backend-file,mem-path=/hugetlbfs,id=ram3,size=1G
```

Memory hot-remove usage: in progress

 QEmu monitor: device del d0

Agenda

- 1. ACPI & Memory Hot-Plug
- 2. Memory Hot-Plug Process
- 3. Boot Memory Handling
- 4. Pinned Pages Migration
- 5. QEmu memory Hot-Plug
- 6. Future work

Future work

- Try to migrate kernel pages
 - Long way to go.
- QEmu device hotplug
 - CPU hotplug
 - Device hotplug framework improvment .
- User space tools, like libnuma and numactl
 - A library of functions.
 - Commands.

Thank you! Q&A