A Bayesian Growth Mixture Model to Examine Maternal Hypertension and Birth Outcomes

Brian Neelon

Children's Environmental Health Initiative Nicholas School of the Environment Duke University

May 20, 2011

Gestational Blood Pressure and Birth Outcomes

- Hypertension in pregnancy is associated with a number of adverse birth outcomes, including
 - Preterm birth (PTB)
 - Low birth weight (LBW)
 - Restricted fetal growth

Motivation HPHB Study Growth Mixture Model HPHB Analysis Conclusion

Gestational Blood Pressure

- In healthy pregnant women, blood pressure is U-shaped over the course of pregnancy
 - Declines until mid-gestation, then rises until delivery

Gestational Blood Pressure

- In healthy pregnant women, blood pressure is U-shaped over the course of pregnancy
 - Declines until mid-gestation, then rises until delivery

Fig. 1: Typical gestational blood pressure trajectory.

Motivation HPHB Study Growth Mixture Model HPHB Analysis Conclusion

Gestational Blood Pressure and Birth Outcomes

- In contrast, in women who are at increased risk for adverse birth outcomes, blood pressure remains elevated throughout pregnancy
- Elevated blood pressure more likely in
 - Women over age 35
 - Non-Hispanic blacks
 - Primiparous women
- Clinical relevance: By monitoring blood pressure during pregnancy, obstetric providers can identify women at risk for adverse outcomes and intervene with appropriate treatments

Research Questions

- Research question 1: Can we identify distinct patient subpopulations, each characterized by an average blood pressure trajectory over the course of pregnancy?
- Research question 2: Are these blood pressure trajectories associated with birth outcomes?

Research Questions

- Research question 1: Can we identify distinct patient subpopulations, each characterized by an average blood pressure trajectory over the course of pregnancy?
- Research question 2: Are these blood pressure trajectories associated with birth outcomes?

 $\label{fig:patient} \textbf{Fig. 2: Two hypothetical patient subgroups.}$

Healthy Pregnancy, Healthy Baby (HPHB) Study

- Our analysis is based on data from the Healthy Pregnancy, Healthy Baby (HPHB) Study
 - Prospective cohort study examining how individual, social and environmental factors influence pregnancy outcomes
 - Part of the EPA-funded Southern Center for Environmentally Driven Disparities in Birth Outcomes
 - Enrolls pregnant women from Duke University Obstetrics Clinic and the Durham County Health Department Prenatal Clinic

lotivation HPHB Study Growth Mixture Model HPHB Analysis Conclusion

HPHB Study

- Patient interviews and medical record reviews were used to obtain
 - Demographic information
 - Medical history
 - Blood pressure measurements from routine prenatal visits
- Maternal blood samples collected at 28 weeks to assess environmental exposures
- Birth outcomes recorded at delivery

Motivation HPHB Study Growth Mixture Model HPHB Analysis Conclusion

HPHB Study

- Data analysis limited to:
 - Non-Hispanic white and non-Hispanic black mothers
 - Singleton gestation with delivery between 28–42 weeks
 - No history of chronic hypertension

HPHB Patient Characteristics

Table 1: Characteristics of HPHB Study participants (n = 1027).

Variable	%
Preterm Birth	13
Low Birth Weight	12
Maternal Race	
Non-Hispanic white	22
Non-Hispanic black	78
Maternal Age	
18–20 years	25
21–34 years	64
\geq 35 years	11
Maternal Education	
> High school	47
\leq High school	53
Parity	
Primiparous	42
Multiparous	58
Insurance Status	
Private	23
Other	77
	Mean (SD)
Serum Cotinine (ng/mL)	19.44 (52.17)
Mean Arterial Pressure (mm Hg)	88.0 (9.13)

Histogram of Prenatal Visits

Fig. 3: Histogram of Prenatal Visits (N = 10,290).

MAP Curves for Three Study Participants

Fig. 4: Raw and smoothed MAP curves for 3 study participants.

otivation HPHB Study **Growth Mixture Model** HPHB Analysis Conclusion

Modeling Strategy: Bayesian Growth Mixture Model (GMM)

- Growth Mixture Model (Verbeke and Lesaffre, 1996; Muthén and Shedden, 1999)
 - Finite mixture of random effects models
 - Assumes that subjects first fall into one of a small number of latent classes
 - Each class defined by an average trajectory or "growth curve"
 - Around these class means, subjects have their own unique trajectories defined by a set of random effects
- Resource: Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer: New York.

Model Specification in 4 Steps

Step 1: Specify a growth mixture model for MAP

$$f(y_{ij}|\mathbf{b}_{i}) = \sum_{k=1}^{K} \pi_{ik}(\mathbf{w}_{i}) N(y_{ij}; \eta_{ijk}, \sigma_{k}^{2})$$

$$= \sum_{k=1}^{K} Pr(C_{i} = k; \mathbf{w}_{i}) N(y_{ij}; \eta_{ijk}, \sigma_{k}^{2});$$

$$\eta_{iik} = \mathbf{t}'_{ii} \boldsymbol{\beta}_{k} + \mathbf{v}'_{ii} \mathbf{b}_{i}$$

where:

- $y_{ij} = MAP$ measurement at the j-th visit for patient i
- $\pi_{ik}(\mathbf{w}_i) = \Pr(\text{patient } i \in \text{class } k)$
- C_i = unobserved class-indicator variable
- $\mathbf{b}_i | C_i = k \sim \mathsf{N}(\mathbf{0}, \mathbf{\Sigma}_k)$

Step 2: Link to Birth Outcomes

Step 2: Link MAP trajectories to PTB (z_1) and LBW (z_2)

$$f(y_{ij}, z_{1i}, z_{2i}|\mathbf{b}_i; \mathbf{w}_i, \mathbf{t}_{ij}, \mathbf{v}_{ij}) = \sum_{k=1}^K \pi_{ik}(\mathbf{w}_i) \mathsf{N}(y_{ij}; \eta_{ijk}, \sigma_k^2) \times p(z_{1i}, z_{2i}; \psi_k)$$

- Given $C_i = k$, PTB and LBW are conditionally independent of MAP
 - $(z_{1i}, z_{2i}) \perp y_{ij} | C_i \quad \forall i, j$
- However, PTB and LBW are conditionally correlated given class membership
- So we allow a "residual" dependence b/w PTB and LBW

Step 3: Bivariate Probit Model for PTB and LBW

Step 3: Specify a bivariate probit model for $p(z_{1i}, z_{2i}; \psi_k)$

- Introduce underlying normal variables, z_{1i}^* and z_{2i}^*
- $z_{1i} = 1$ if $z_{1i}^* > 0$ and $z_{2i} = 1$ if $z_{2i}^* > 0$

$$\left(\begin{array}{c} z_{1i}^* \\ z_{2i}^* \end{array}\right) \left| C_i = k \ \sim \ \mathsf{N}_2\left(\boldsymbol{\mu}_k, \mathbf{R}_k\right) = \mathsf{N}_2\left[\left(\begin{array}{c} \mu_{1k} \\ \mu_{2k} \end{array}\right), \left(\begin{array}{cc} 1 & \rho_k \\ \rho_k & 1 \end{array}\right) \right]$$

- Allows us to compute joint probabilities of PTB and LBW for each class
- ρ_k is class-specific correlation between PTB and LBW
- An aside: Could allow μ_k to be a function of covariates

Final Step: Multinomial Logit Model for Class-Membership Probabilities

Step 4: Link class-membership probabilities to patient covariates (age, race, serum cotinine, etc.) via multinomial logit model:

$$Pr(C_i = k) = \pi_{ik}(\mathbf{w}_i) = \frac{e^{\mathbf{w}_i' \boldsymbol{\gamma}_k}}{\sum_{h=1}^K e^{\mathbf{w}_i' \boldsymbol{\gamma}_h}}, \text{ with } \boldsymbol{\gamma}_1 = 0.$$

- \mathbf{w}_i = vector of patient-level predictors
- $oldsymbol{\gamma}=$ vector of regression parameters
- K = number of blood pressure trajectory classes (≥ 2)

Parameter Estimation

- Maximum Likelihood Estimation: EM algorithm (Mplus, R Flexmix)
- Bayesian Estimation:
 - Place prior distributions on model parameters
 - Use Markov chain Monte Carlo (MCMC) to draw from joint posterior
- Priors:
 - Normal priors for β_k
 - Inverse-gamma/Inverse-Wishart priors for variances
 - Normal priors for μ_k
 - U(-1,1) priors for ρ_k
 - N($\mathbf{0}$,(9/4) \mathbf{I}) for class-membership parameters, γ_k (Garrett and Zeger, 2000)
 - Centers $\pi_{ik}(\mathbf{w}_i)$'s at 1/K and bounds them away from 0 and 1

Posterior Computation

- Data-augmentation approach
 - ullet Draw class-membership parameters, $oldsymbol{\gamma}_k \, (k=2,\ldots,K)$
 - For each subject, compute posterior class-membership probabilities $Pr(C_i = k|\mathbf{y}_i)$
 - Draw C_i from multinomial logit
 - Using data for subjects assigned to class k, update class-k parameters (β_k , μ_k , etc.)
- In our case, all full conditionals have closed forms except:
 - γ_k = Class-membership regression parameters
 - ρ_k = Bivariate probit correlation parameter
 - Used random-walk Metropolis-Hastings

Modeling Selection Strategy

- How many classes?
- Let number of classes K range from $1, 2, \ldots, K_{\text{max}}$
- Use Deviance Information Criterion (DIC) to choose the optimal model (Spiegelhalter et al., 2002)

$$\mathsf{DIC} = \overline{D} + p_D$$

- Assessment of model fit + penalty for model complexity
- Smaller values are better
- We use a modified DIC for finite mixture models (Celeux et al., 2006)

Model Selection Results

Table 2: Model comparison statistics for HPHB Study.

Tuble 2. Woder comparison statistics for Til Tib Stady.				
Number of Classes (K) Model Description		DIC		
	Cubic Fixed Effects	75743		
1	Random Intercept	67296		
	Random Intercept and Slope	66473		
	Cubic Fixed Effects	71268		
2	Random Intercept	66912		
	Random Intercept and Slope	65942		
	Cubic Fixed Effects	69809		
3	Random Intercept	66393		
	Random Intercept and Slope*	65811		
	Cubic Fixed Effects	69203		
4	Random Intercept	66715		
	Random Intercept and Slope	66047		

^{*} Bold indicates preferred model.

Fig. 5: Posterior MAP trajectories.

Fig. 5: Posterior MAP trajectories.

Class 1 PTB LBW Yes No Yes 0.13 0.05 0.18 No 0.07 0.75 0.82 0.20 0.80 0.80

Fig. 5: Posterior MAP trajectories.

Class 1 PTB LBW Yes No Yes 0.13 0.05 0.18 No 0.07 0.75 0.82

0.80

0.20

Class 2				
		P1		
	LBW	Yes	No	
	Yes	0.01	0.08	0.09
	No	0.04	0.87	0.91
		0.05	0.95	

Fig. 5: Posterior MAP trajectories.

Class 1

	PTB		
LBW	Yes	No	
Yes	0.13	0.05	0.18
No	0.07	0.75	0.82
	0.20	0.80	

Class 2

	PTB		
LBW	Yes	No	
Yes	0.01	0.08	0.09
No	0.04	0.87	0.91
	0.05	0.95	

Class 3

	PTB		
LBW	Yes	No	
Yes	0.08	0.03	0.11
No	0.07	0.82	0.89
	0.15	0.85	

lotivation HPHB Study Growth Mixture Model **HPHB Analysis** Conclusion

Class-Membership Probabilities

- Can obtain class-membership probabilities as a function of covariates
- For example:
 - Reference Group: Non-Hispanic white, age 21–34 years, multiparous
 - "High-risk" Group: Non-Hispanic black, age > 34, first child

lotivation HPHB Study Growth Mixture Model **HPHB Analysis** Conclusion

Class-Membership Probabilities

- Can obtain class-membership probabilities as a function of covariates
- For example:
 - Reference Group: Non-Hispanic white, age 21–34 years, multiparous
 - "High-risk" Group: Non-Hispanic black, age > 34, first child

Table 3: Predicted class-membership probabilities by covariate profile.

	Class-Membership Probabilities		
Covariate Profile	Class 1	Class 2	Class 3
Reference Group	0.13	0.48	0.39
High-Risk Group	0.39	0.34	0.27

Predicted MAP Curves

Posterior Probability Plot

Triangle Plot of Posterior Class-Membership Probabilities

Notivation HPHB Study Growth Mixture Model HPHB Analysis Conclusion

Recap

- Proposed a growth mixture model to jointly model three outcomes: MAP, PTB and LBW
- The model partitions women into distinct classes characterized by a mean MAP curve and joint probabilities of PTB and LBW
- Bivariate probit used to model PTB and LBW
- Patient covariates influence class-membership probabilities
- Our analysis identified three distinct MAP classes with unique risks of PTB and LBW

lotivation HPHB Study Growth Mixture Model HPHB Analysis Conclusion

Future Directions

- Model could be applied to other settings with a longitudinal biomarker and correlated binary outcomes (e.g., two related diseases)
- More flexible modeling of MAP curves (e.g., via splines)
- Allow probabilities of PTB and LBW to vary by subject, not just class
 - Introduce covariates and random effects into biprobit model for PTB, LBW
- Discrete survival model for gestational length

lotivation HPHB Study Growth Mixture Model HPHB Analysis **Conclusion**

Thanks

- Collaborators:
 - Geeta Swamy, MD
 - Lane Burgette, PhD
 - Marie Lynn Miranda, PhD
- Email: brian.neelon@duke.edu
- Website: www.duke.edu/~neelo003
- Funding: EPA grant RD-83329301-4