Algortimos en teoría de números

Segundo semestre 2022

IIC2283

Prof. Nicolás Van Sint Jan

Outline

Aritmética modular

Máximo común divisor

Inversos modulares

Para recordar: aritmética modular

Dados dos números $a,b\in\mathbb{Z}$, si b>0 entonces existen $\alpha,\beta\in\mathbb{Z}$ tales que $0\leq \beta < b$ y

$$a = \alpha \cdot b + \beta$$

Además, estos números α , β son únicos.

 β es llamado el resto de la división entera entre a y b, y es denotado como

$$a \mod b := \beta$$

Ejemplo

$$8 \mod 3 = 2$$
 $9 \mod 3 = 0$ $(-8) \mod 3 = 1$

Para recordar: aritmética modular

Definición

 $a \equiv b \pmod{n}$ si, y solo si, n divide a (b-a)

Usamos la notación $n \mid m$ para indicar que n divide a m

 $a \equiv b \pmod{n}$ si $n \mid (b-a)$

Para recordar: algunas propiedades básicas

Proposición

- 1. $a \equiv b \pmod{n}$ si y sólo si $a \mod n = b \mod n$
- 2. $a \equiv a \mod n \pmod{n}$
- 3. Si $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n}$, entonces:

$$(a+c) \equiv (b+d) \mod n$$

 $(a\cdot c) \equiv (b\cdot d) \mod n$

Ejercicios

- 1. Demuestre la proposición
- 2. Demuestre que un número *n* es divisible por 3 si y sólo si la suma de sus dígitos es divisible por 3

Algoritmos básicos en teoría de números

Vamos a estudiar tres algoritmos fundamentales en el área:

- Exponenciación rápida.
- El algoritmo de Euclides para el cálculo del máximo común divisor.
- El algoritmo de Euclides extendido y el cálculo del inverso modular.

¿ Alguien recuerda alguno de estos algoritmos ?

Exponenciación rápida: calculando $a^b \mod n$

Utilizamos el siguiente algoritmo para calcular $a^b \mod n$, el cual es llamado exponenciación rápida:

```
\begin{aligned} \mathbf{EXP}(a,\ b,\ n) \\ & \text{if } b = 1 \text{ then return } a \operatorname{mod} n \\ & \text{else if } b \text{ es par then} \\ & val := \mathbf{EXP}(a, \frac{b}{2}, n) \\ & \text{return } (val \cdot val) \operatorname{mod} n \\ & \text{else} \\ & val := \mathbf{EXP}(a, \frac{b-1}{2}, n) \\ & \text{return } (val \cdot val \cdot a) \operatorname{mod} n \end{aligned}
```

La complejidad de **EXP**

Ejercicio

Considerando la multiplicación de enteros y el cálculo de la función $x \mod y$ como las operaciones básicas a contar, demuestre que

EXP(a, b, n) en el peor caso es $O(\log_2(b))$

Outline

Aritmética modular

Máximo común divisor

Inversos modulares

Máximo común divisor

Definición

Sea $a, b \in \mathbb{Z} - \{0\}$. Se define el máximo común divisor gcd(a, b) de a y b como el mayor número d tal que $d \mid a$ y $d \mid b$.

Ejemplos

$$gcd(8, 12) = 4$$
 $gcd(24, 36) = 12$ $gcd(54, 24) = 6$

En otras palabras, gcd(a, b) es el máximo del conjunto

$$D_{a,b} = \{c \in \mathbb{Z} \mid c \mid a \land c \mid b\}$$

¿ Cómo podemos calcular gcd(a, b)?

Máximo común divisor

Proposición

Para todo $a, b \in \mathbb{Z} - \{0\}$, gcd(a, b) = gcd(b, (a mod b))

Demostración

Vamos a demostrar que para $c \in \mathbb{Z} - \{0\}$

$$c \mid a y c \mid b \Leftrightarrow c \mid b y c \mid (a \mod b)$$

De esto se concluye que $gcd(a, b) = gcd(b, a \mod b)$.

Sabemos que $a = \alpha \cdot b + (a \mod b)$.

 (\Rightarrow) Suponga que $c \mid a \ y \ c \mid b$.

Dado que $(a \mod b) = a - \alpha \cdot b$, concluimos que $c \mid (a \mod b)$.

 (\Leftarrow) Suponga que $c \mid b \ y \ c \mid (a \ mod \ b)$.

Dado que $a = \alpha \cdot b + (a \mod b)$, tenemos que $c \mid a$.

Cálculo de máximo común divisor

De lo anterior, concluimos la siguiente identidad para a > 0:

$$\gcd(a,b) = \begin{cases} a & b = 0\\ \gcd(b, a \mod b) & b > 0 \end{cases}$$

Usamos esta identidad para generar un algoritmo para calcular el máximo común divisor, el cual es conocido como Algoritmo de Euclides:

```
MCD(a, b)

if a = 0 and b = 0 then return error

else if a = 0 then return b

else if b = 0 then return a

else if a \ge b then return MCD(b, a \mod b)

else return MCD(a, b \mod a)
```

¿ Cuál es la complejidad del algoritmo ?

La complejidad del algoritmo

Lema

Si $a \ge b$ y b > 0, entonces $(a \mod b) < \frac{a}{2}$

Demostración

Si $b > \frac{a}{2}$:

$$a \mod b = a - b < a - \frac{a}{2} = \frac{a}{2}$$

Si $b < \frac{a}{2}$, entonces:

$$a \mod b < b < \frac{a}{2}$$

Si $b = \frac{a}{2}$ (a debe ser par):

$$a \bmod b = 0 < b = \frac{a}{2}$$

La complejidad del algoritmo

Ejercicio

Suponga que la operación básica para el algoritmo **MCD** es el cálculo de la función $x \mod y$. Muestre entonces que el algoritmo en el peor caso es $O(\log_2(\max\{a,b\}))$, suponiendo que la entrada es (a,b)

 Vale decir, MCD es de orden lineal en el tamaño de la entrada en el peor caso

Outline

Aritmética modular

Máximo común divisor

Inversos modulares

Una noción importante: inverso modular

Definición

b es inverso de a en módulo n si

$$a \cdot b \equiv 1 \pmod{n}$$

Ejemplo

37 es inverso de 13 en módulo 60

¿ Todo número tiene inverso modular ?

R: No, 2 no tiene inverso en módulo 4

i Bajo qué condiciones a tiene inverso en módulo n?

Una identidad útil

Identidad de Bézout

Para cada $a,b\in\mathbb{N}$ tales que $a\neq 0$ o $b\neq 0$, existen $s,t\in\mathbb{Z}$ tales que:

$$gcd(a, b) = s \cdot a + t \cdot b$$

Ejercicio

Demuestre la identidad de Bézout.

Existencia de inverso modular y la Identidad de Bézout

Teorema

a tiene inverso en módulo n si y sólo si gcd(a, n) = 1

Demostración

 (\Rightarrow) Suponga que b es inverso de a en módulo n:

$$a \cdot b \equiv 1 \pmod{n}$$

Se deduce que $\mathbf{a} \cdot \mathbf{b} = \alpha \cdot \mathbf{n} + 1$, por lo que $\mathbf{1} = \mathbf{a} \cdot \mathbf{b} - \alpha \cdot \mathbf{n}$

Concluimos que si $c \mid a$ y $c \mid n$, entonces $c \mid 1$. Por lo tanto c debe ser igual a 1, de lo que concluimos que $\gcd(a,n)=1$

(\Leftarrow) Suponga que gcd(a,n) = 1. Por la identidad de Bézout existen $s,t\in\mathbb{Z}$ tales que:

$$1 = s \cdot n + t \cdot a$$

Entonces $a \cdot t \equiv 1 \mod n$. Así a tiene inverso en módulo n.

¿Cómo podemos calcular el inverso modular?

Sabemos que **MCD** es un algoritmo eficiente para calcular el máximo común divisor entre dos números.

¡Pero este algoritmo puede hacer más! Puede ser extendido para calcular s y t tales que

$$gcd(a, b) = s \cdot a + t \cdot b$$

Vamos a usar este algoritmo para calcular inversos modulares

Suponga que $a \ge b$, y defina la siguiente **sucesión**:

$$r_0 = a$$

$$r_1 = b$$

$$r_{i+1} = r_{i-1} \mod r_i \quad (i \ge 2)$$

y calculamos esta sucesión hasta un número k tal que $r_k = 0$.

$$\xi$$
 A qué corresponde el valor r_{k-1} ?

$$\mathbf{R} \colon r_{k-1} = \gcd(a,b)$$

Al mismo tiempo podemos ir calculando dos sucesiones s_i , t_i tales que:

$$r_i = s_i \cdot a + t_i \cdot b$$

Tenemos que:

$$\gcd(a,b)=r_{k-1}=s_{k-1}\cdot a+t_{k-1}\cdot b$$

Sean:

$$s_0 = 1$$
 $t_0 = 0$ $s_1 = 0$ $t_1 = 1$

Se tiene que:

$$r_0 = s_0 \cdot a + t_0 \cdot b$$

 $r_1 = s_1 \cdot a + t_1 \cdot b$

Dado que $r_{i-1} = \left| \frac{r_{i-1}}{r_i} \right| \cdot r_i + r_{i-1} \mod r_i$, tenemos que:

$$r_{i-1} = \left| \frac{r_{i-1}}{r_i} \right| \cdot r_i + r_{i+1}$$

Por lo tanto:

$$s_{i-1} \cdot a + t_{i-1} \cdot b = \left| \frac{r_{i-1}}{r_i} \right| \cdot (s_i \cdot a + t_i \cdot b) + r_{i+1}$$

Concluimos que:

$$r_{i+1} = (s_{i-1} - \left| \frac{r_{i-1}}{r_i} \right| \cdot s_i) \cdot a + (t_{i-1} - \left| \frac{r_{i-1}}{r_i} \right| \cdot t_i) \cdot b$$

Definimos entonces:

$$s_{i+1} = s_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot s_i$$

$$t_{i+1} = t_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot t_i$$

Ejemplo

Vamos a usar el algoritmo para a = 60 y b = 13

Inicialmente:

$$r_0 = 60$$
 $s_0 = 1$ $t_0 = 0$ $r_1 = 13$ $s_1 = 0$ $t_1 = 1$

Entonces tenemos que:

$$r_2 = r_0 \mod r_1$$

$$s_2 = s_0 - \left\lfloor \frac{r_0}{r_1} \right\rfloor \cdot s_1$$

$$t_2 = t_0 - \left\lfloor \frac{r_0}{r_1} \right\rfloor \cdot t_1$$

Ejemplo

[Continuación] Por lo tanto:

$$r_2 = 8$$
 $s_2 = 1$ $t_2 = -4$

Y el proceso continua:

$$r_3 = 5$$
 $s_3 = -1$ $t_3 = 5$
 $r_4 = 3$ $s_4 = 2$ $t_4 = -9$
 $r_5 = 2$ $s_5 = -3$ $t_5 = 14$
 $r_6 = 1$ $s_6 = 5$ $t_6 = -23$
 $r_7 = 0$ $s_7 = -13$ $t_7 = 60$

Tenemos que: $1 = 5 \cdot 60 + (-23) \cdot 13$

El Algoritmo Extendido de Euclides y el inverso modular

Dados dos números naturales a y n, con $n \ge 2$, si el inverso de a en módulo n existe el siguiente algoritmo lo retorna, y en caso contrario indica que no existe.

```
Inverso(a, n)

if MCD(a, n) > 1 then no\_existe\_inverso

else

s_0 := 1

t_0 := 0

s_1 := 0

t_1 := 1

r_0 := n
```

 $r_1 := a$

El Algoritmo Extendido de Euclides y el inverso modular

```
\begin{array}{l} \text{while } r_1 > 1 \text{ do} \\ & aux\_s := s_0 - \left\lfloor \frac{r_0}{r_1} \right\rfloor \cdot s_1 \\ & s_0 := s_1 \\ & s_1 := aux\_s \\ & aux\_t := t_0 - \left\lfloor \frac{r_0}{r_1} \right\rfloor \cdot t_1 \\ & t_0 := t_1 \\ & t_1 := aux\_t \\ & r_0 := r_1 \\ & r_1 := s_1 \cdot n + t_1 \cdot a \end{array}
```