Irregularities in the distribution of primes in arithmetic progressions II.

By

J. PINTZ and S. SALERNO

1. In the present work we shall continue our investigations of the oscillatory properties of the functions (p always runs through the primes)

(1.1)
$$\Delta_{1}(x, q, l_{1}, l_{2}) = \sum_{p \leq x} \varepsilon(p, q, l_{1}, l_{2})$$

$$\Delta_{2}(x, q, l_{1}, l_{2}) = \sum_{n \leq x} \varepsilon(n, q, l_{1}, l_{2}) \frac{\Lambda(n)}{\log n}$$

$$\Delta_{3}(x, q, l_{1}, l_{2}) = \sum_{p \leq x} \varepsilon(p, q, l_{1}, l_{2}) \log p$$

$$\Delta_{4}(x, q, l_{1}, l_{2}) = \sum_{n \leq x} \varepsilon(n, q, l_{1}, l_{2}) \Lambda(n)$$

where we define

(1.2)
$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^m \\ 0 & \text{otherwise,} \end{cases}$$

$$\varepsilon(n, q, l_1, l_2) = \varepsilon(n) = \varepsilon_1(n) - \varepsilon_2(n), \quad \varepsilon_i(n) = \begin{cases} 1 & \text{if } n \equiv l_i \pmod{q} \\ 0 & \text{otherwise} \end{cases}$$

and we assume the trivial condition

(1.3)
$$(l_1, q) = (l_2, q) = 1, \quad l_1 \not\equiv l_2 \pmod{q}.$$

Knapowski showed the inequality [1]

(1.4)
$$\frac{1}{Y} \int_{Y \exp(-\log^{3/4} Y)}^{Y} |\Delta_i(x, q, l_1, l_2)| \, \mathrm{d}x > Y^{1/2} \exp\left(-7 \frac{\log Y}{\log_2 Y}\right)$$

for $Y > \max(c_1, e^{e^q})$ in case of i = 1 and for $Y > \max(c_2, \exp(q^{40}))$ in case of i = 2 and 4, under the assumption that

(1.5)
$$L(s, \chi, q) \neq 0$$
 for $\sigma > \frac{1}{2}$, $|t| \leq \max(c_3, q^7)$.

Extending the results of part I [2] we shall now prove

Theorem. Assume

(1.6)
$$L(s, \chi, q) \neq 0$$
 for $\sigma > \frac{1}{2}$, $|t| \leq D = c_4 q^2 \log^6 q$.

Let (with the notation $\log_2 Y = \log \log Y$)

(1.7)
$$Y > \exp(c_5 q^{10}), \quad \frac{\sqrt{\log Y}}{\sqrt{q \log_2 Y}} < \lambda < \frac{c_6 \log Y}{q \log_2^2 Y}.$$

Then for $1 \le i \le 4$ we have

$$(1.8) \qquad \frac{1}{Y} \int_{Y}^{Y} \int_{-7/\lambda}^{7/\lambda} |\Delta_i(x)| \, \mathrm{d}x \ge \sqrt{Y} \exp\left(-\frac{9\log Y}{\lambda} - c_7 q \lambda \log_2^2 Y\right).$$

Choosing $\lambda = 7 q^{-1/2} \log^{1/2} Y \log_2^{-1} Y$ and $\lambda = 7 \log Y \log_2^{-3} Y$, resp., we obtain the following corollaries.

Corollary 1. If (1.6) holds and if $Y > \exp(c_5 q^{10})$ then for $1 \le i \le 4$ we have

$$(1.9) \qquad \frac{1}{Y} \int_{A(Y)}^{Y} |\Delta_i(x)| \, \mathrm{d}x \ge \sqrt{Y} \exp\left(-c_8 \sqrt{q} \sqrt{\log Y} \log_2 Y\right)$$

with $A(Y) = Y \exp(-\sqrt{q} \sqrt{\log Y} \log_2 Y)$.

Corollary 2. If (1.6) holds and $Y > \exp(\exp(c_9 q))$ then for $1 \le i \le 4$ we have the inequality

(1.10)
$$\frac{1}{Y} \int_{A'(Y)}^{Y} |\Delta_i(x)| \, \mathrm{d}x \ge \sqrt{Y} \exp\left(-c_{10} q \frac{\log Y}{\log_2 Y}\right)$$

where

$$A'(Y) = Y \exp\left(-\log_2^3 Y\right).$$

2. Since in part I [2] we proved the theorem for i=2,4 and in case of quadratic non-residues l_1 , l_2 also for i=1,3 we can assume now i=1 or 3. First we shall treat the case when both l_1 and l_2 are quadratic residues. As the proof is similar to the case l_1 , l_2 being quadratic non-residues dealt with in [2], a sketch of the proof will suffice and we shall point out only the necessary changes. (What concerns the case l_1 is a quadratic residue and l_2 a non-residue, we shall be even more brief.)

Let us denote the solutions of the congruences

(2.1)
$$x^2 \equiv l_1 \pmod{q}, \quad x^2 \equiv l_2 \pmod{q}$$

by $\alpha_1^{(1)}, \ldots, \alpha_N^{(1)}$ and $\alpha_1^{(2)}, \ldots, \alpha_N^{(2)}$ resp. (their number being equal, N = N(q)) and let (j = 1, 2)

(2.2)
$$F(s) = \sum_{n} \frac{\varepsilon(n) \Lambda(n)}{n^{s}} = \frac{1}{\varphi(q)} \sum_{\chi} (\bar{\chi}(l_{2}) - \bar{\chi}(l_{1})) \frac{L}{L}(s, \chi),$$

(2.3)
$$F_{j}(s) = -\sum_{n} \frac{\varepsilon_{j}(N^{2}) \Lambda(n^{2})}{n^{2s}} = \frac{1}{\omega(a)} \sum_{i=1}^{N} \sum_{x} \bar{\chi}(\alpha_{i}^{(j)}) \frac{L}{L}(2s, \chi).$$

Then using the integral formula $(A \in \mathbb{R}^+, B \in \mathbb{C})$

(2.4)
$$\frac{1}{2\sqrt{\pi A}} \exp\left(-\frac{B^2}{4A}\right) = \frac{1}{2\pi i} \int_{(2)} e^{As^2 + Bs} \, ds$$

we can show similarly to Section 3 of [22] that with $k \ge \lambda^{-1}$, $|\mu - k\lambda^2| \le 1$ we have

$$S \stackrel{\text{def}}{=} \frac{1}{2\sqrt{\pi K}} \left\{ \sum_{n} \varepsilon(n) \Lambda(n) \exp\left(-\frac{(\mu - \log n)^{2}}{4 K}\right) - \sum_{n} \varepsilon(n^{2}) \Lambda(n^{2}) \exp\left(-\frac{(\mu - \log n^{2})^{2}}{4 K}\right) \right\}$$

$$= \frac{1}{2\pi i} \int_{(2)} (F(s) + F_{1}(s) - F_{2}(s)) e^{Ks^{2} + \mu s} ds = \sum_{\varrho} \alpha_{\varrho} e^{K\varrho^{2} + \mu\varrho}$$

$$+ \sum_{n} a_{\varrho}^{*} e^{K(\frac{\varrho}{2})^{2} + \mu(\frac{\varrho}{2})} + O(1) \stackrel{\text{def}}{=} \Sigma + \Sigma^{*} + O(1),$$

$$(2.5)$$

where, denoting the multiplicity of ϱ as a zero of $L(s, \chi)$ by $m_{\chi}(\varrho)$,

(2.6)
$$a_{\varrho} = \frac{1}{\varphi(q)} \sum_{\substack{\chi \\ L(\varrho, \chi) = 0}} (\bar{\chi}(l_2) - \bar{\chi}(l_1)) m_{\chi}(\varrho)$$

(2.7)
$$a_{\varrho}^{*} = \frac{1}{2 \varphi(q)} \sum_{\substack{\chi \\ I(q, x) = 0}} \sum_{i=1}^{N} (\bar{\chi}(\alpha_{i}^{(1)}) - \bar{\chi}(\alpha_{i}^{(2)})) m_{\chi}(\varrho)$$

and in the summation in (2.5) ϱ runs through all zero of $L(s, \chi, q)$ with Re $\varrho \ge 0$. In view of (1.6) the contribution of zeros $\varrho = \beta + i\gamma$ with $|\gamma| < D$ to Σ^* is

Further we have

(2.9)
$$\sum_{|\rho| \ge 2\lambda} a_{\varrho} e^{K\varrho^2 + \mu\varrho} \leqslant \sum_{n \ge [2\lambda] - 1} e^{\mu + K(1 - n^2)} \log(qn) \leqslant 1$$

and similarly

(2.10)
$$\sum_{|\varrho| \geq 2\lambda} a_{\varrho}^* e^{K\left(\frac{\varrho}{2}\right)^2 + \mu\left(\frac{\varrho}{2}\right)} \ll \sum_{n \geq \lfloor 2\lambda \rfloor - 1} e^{\frac{\mu}{2} + \frac{K}{4}(1 - n^2)} \log(qn) \ll 1.$$

So we are led to consider the finite power-sum

(2.11)
$$\Sigma_1 = \sum_{|\varrho| \ge 2\lambda} a_{\varrho} e^{K\varrho^2 + \mu\varrho} + \sum_{D < |\varrho| < 2\lambda} a_{\varrho}^* e^{K\left(\frac{\varrho}{2}\right)^2 + \mu\frac{\varrho}{2}}.$$

We quote Lemma 5 of [2] as

Lemma 1. There exist real numbers

(2.12)
$$K_0 = \frac{1}{P^2 \log^2 P}, \quad \mu_0 = \log P, \quad \frac{D}{2} < P \log^2 P < D$$

Archiv der Mathematik 43 23

and an absolute constant $c_{11} > 0$ (independent of c_4) such that

$$(2.13) |\sum_{\varrho} a_{\varrho} e^{K_0 \varrho^2 + \mu_0 \varrho}| \ge c_{11} D.$$

Let

(2.14)
$$L = \left(1 + \frac{3}{\lambda}\right)^{-1} \log Y, \quad B = \frac{1}{L^2}.$$

Further let v be an integer to be chosen later with

$$(2.15) v \in \left\lceil \frac{L - \mu_0}{B} - c_{12} q \lambda \log \lambda, \frac{L - \mu_0}{B} \right\rceil$$

and

(2.16)
$$w = \frac{L/\lambda^2 - K_0}{L - \mu_0}$$

(2.17)
$$K = K_0 + Bwv, \quad \mu = \mu_0 + Bv.$$

The above choice of parameters assures similarly to (4.2) of [2]

(2.18)
$$K \in \left[\frac{L}{\lambda^2} \left(1 - \frac{1}{L}\right), \frac{L}{\lambda^2}\right], \quad \mu \in [L - 1, L].$$

Now Σ_1 can be written as

(2.19)
$$\Sigma_{1} = \sum_{|a| < 2\lambda} b_{\varrho} z_{\varrho}^{\nu} + \sum_{P < |a| < 2\lambda} b_{\varrho}^{*} (z_{\varrho}^{*})^{\nu}$$

where

$$b_{\varrho} = a_{\varrho} e^{K_{0} \varrho^{2} + \mu_{0} \varrho} \qquad b_{\varrho}^{*} = a_{\varrho}^{*} e^{K(\frac{\varrho}{2})^{2} + \mu_{0} \frac{\varrho}{2}}$$

$$(2.20) \qquad z_{\varrho} = e^{Bw\varrho^{2} + B\varrho} \qquad z_{\varrho}^{*} = e^{Bw(\frac{\varrho}{2})^{2} + B\frac{\varrho}{2}}.$$

In the lower estimation of Σ_1 , Lemma 1 of [2], essentially due to Knapowski [1], plays a crucial role. We formulate this power-sum theorem as

Lemma 2. Let b_i , z_i (j = 1, 2, ..., n) be complex numbers with

$$(2.21) |z_1| \ge |z_2| \ge \dots \ge |z_n|$$

and let m > 0, $1 \le h \le n$. Then there exists a $v \in [m, m + n]$ such that

$$(2.22) \qquad \left|\sum_{j=1}^{n} b_j z_j^v\right| \ge \left(\min_{l \ge h} \left|\sum_{j=1}^{l} b_j\right|\right) |z_h|^v \left|\frac{z_h}{z_1}\right|^n \left(\frac{n}{16 e^2 (m+n)}\right)^n.$$

First we note that by (2.12)

(2.23)
$$\sum_{|\varrho| > D} |b_{\varrho}| + \sum_{|\varrho| > D} |b_{\varrho}^{*}| \le c_{13} \sum_{n \ge [D] - 1} \log(qn) \cdot D e^{-K_0 n^2/4} \le c_{14}$$

(where the constants c_{13} and c_{14} are independent of c_4),

and so we have by Lemma 1

(2.24)
$$\min_{l \ge h} \left(\left| \sum_{j=1}^{l} b_j \right| \right) > c_{11} D - c_{14} > 1$$

if we choose h as the maximal index which corresponds to a zero z_{ϱ} with $|\varrho| \leq D$. Inequality (2.24) settles the most critical estimation in (2.22). Since (1.6) and (1.7) imply $\lambda \geq D^2$ (if c_5 is chosen sufficiently large compared to c_4) we obtain

(2.25)
$$|z_h| > e^{B/2 - B|w| D^2} > e^{B/2 - B|w| \lambda} \\ |z_1| < e^{B + B|w| D^2} < e^{B + B|w| \lambda}.$$

Further we choose $m = \frac{L - \mu_0}{B}$ and note that by Jensen's inequality we have

$$(2.26) n < c_{12} q \lambda \log \lambda.$$

So we obtain by Lemma 2 a v with (2.15) such that, similarly to Section 3 of [2]

$$|\Sigma_{1}| > \exp\left\{\frac{Bv}{2} - L\lambda|w| - c_{12}q\lambda\log\lambda\left(\frac{B}{2} + 2B\lambda|w| + c_{15} + \log\frac{L}{Bq\lambda\log\lambda}\right)\right\} > \exp\left\{\frac{L}{2} - c_{16}q\lambda\log^{2}L\right\}.$$

The assertion of the Theorem follows now with an application of Lemma 3 of [2] which we state in a slightly more general form (which can be proved similarly) as Lemma 3.

Lemma 3. Let d(n) be an arithmetical function satisfying $\sum_{n \le x} d(n) \ll x$ and let

(2.28)
$$D_3(x) \stackrel{\text{def}}{=} \sum_{n \le x} d(n), \quad D_1(x) \stackrel{\text{def}}{=} \sum_{n \le x} \frac{d(n)}{\log n}.$$

Then for positive K, μ with $\mu^{-1} \leq K \leq \mu/9$ we have

$$\left|\sum_{n} d(n) \exp\left(-\frac{(\mu - \log n)^2}{4K}\right)\right| \leqslant \sqrt{\frac{\mu}{K}} \int_{e^{\mu - 3V\overline{\mu}K}}^{e^{\mu + 3V\overline{\mu}K}} \frac{|D_3(x)|}{x} dx + O(1),$$

(2.29)
$$\left| \sum_{n} d(n) \exp \left(-\frac{(\mu - \log n)^2}{4K} \right) \right| \leqslant \mu \sqrt{\frac{\mu}{K}} \int_{e^{\mu - 3V\mu K}}^{e^{\mu + 3V\mu K}} \frac{|D_1(x)|}{x} dx + O(1).$$

Choosing

(2.30)
$$d(n) = \begin{cases} \varepsilon(n) \Lambda(n) & \text{if } n = p^{2j+1}, j = 0, 1, \dots \\ 0 & \text{otherwise} \end{cases}$$

we obtain by (2.5)–(2.11), (2.27) and Lemma 3, for i = 1, 3

(2.31)
$$\int_{e^{\mu-3V_{\mu K}}}^{e^{\mu+3V_{\mu K}}} \frac{|D_i(x)|}{x} dx > \exp\left(\frac{L}{2} - c_{17} q \lambda \log^2 L\right).$$

This implies by (1.7), (2.14) and (2.18)

(2.32)
$$\frac{1}{Y} \int_{Y^{1-7/\lambda}}^{Y} |D_{i}(x)| \, \mathrm{d}x > \exp\left(\frac{L}{2} - \frac{7\log Y}{\lambda} - c_{17} q \lambda \log^{2} L\right) \\ > \sqrt{Y} \exp\left(-\frac{9\log Y}{\lambda} - c_{17} q \lambda^{2} \log^{2} Y\right).$$

Since

$$D_1(x) = \sum_{p \le x} \varepsilon(p) + O(x^{1/3}) = \Delta_1(x) + O(x^{1/3}),$$

(2.33)
$$D_3(x) = \sum_{p \le x} \varepsilon(p) \log p + O(x^{1/3}) = \Delta_3(x) + O(x^{1/3}),$$

(2.32) proves our Theorem for i = 1, 3 if l_1 and l_2 are both quadratic residues.

3. Let us now consider the case when l_1 is a quadratic residue, l_2 a non-residue (i = 1 or 3). In this case we have no squares in the second progression and therefore the pole of $L(2s, \chi_0, q)$ at s = 1/2 gives an extra term in our power-sum. So we obtain (cf. (2.5))

$$S' = \frac{1}{2\sqrt{\pi K}} \left\{ \sum_{n} \varepsilon(n) \Lambda(n) \exp\left(-\frac{(\mu - \log n)^{2}}{4K}\right) - \sum_{n} \varepsilon_{1}(n^{2}) \Lambda(n^{2}) \exp\left(-\frac{(\mu - \log n^{2})^{2}}{4K}\right) \right\}$$

$$= \frac{1}{2\pi i} \int_{(2)} \left\{ F(s) + F_{1}(s) \right\} e^{Ks^{2} + \mu s} ds$$

$$= -\frac{N}{2\varphi(q)} e^{\frac{K}{4} + \frac{\mu}{2}} + \sum_{\rho} a_{\rho} e^{K\varrho^{2} + \mu \varrho} + \sum_{\rho} a'_{\varrho} e^{K(\frac{\varrho}{2})^{2} + \mu(\frac{\varrho}{2})} + O(1)$$
(3.1)

where (cf. (2.6)–(2.7))

(3.2)
$$a'_{\varrho} = \frac{1}{2 \varphi(q)} \sum_{\substack{\chi \\ L(\varrho, \chi) = 0}} \sum_{i=1}^{N} \bar{\chi}(\alpha_{i}^{(1)}) m_{\chi}(\varrho).$$

Since the only property of a_{ϱ}^* used in Section 2 was $(\varrho = \beta + i\gamma)$

$$(3.3) \qquad \sum_{n \leq \gamma \leq n+1} |a_{\varrho}^*| \ll \log (q(n+2)),$$

which holds also for a'_e , writing always a'_e in place of a^*_e all formulas of Section 2 remain valid. Thus the only change is the appearance of the new term $b'(z')^v$, where

(3.4)
$$b' = \frac{N}{2\varphi(q)} e^{\frac{K_0}{4} + \frac{\mu_0}{2}}, \quad z' = e^{\frac{Bw}{4} + \frac{B}{2}}.$$

Now the inequality (2.26) remains true if we include one term more and (2.25) is also true for z'. So we have only to control (2.24) where we have by

$$(3.5) |b'| < \frac{1}{2}e^{\frac{K_0}{4} + \frac{\mu_0}{2}} < \sqrt{P} < \sqrt{D}$$

the inequality

(3.6)
$$\min_{l \ge h} \left(\left| \sum_{j=1}^{h} b_j \right| \right) > c_{11} D - \sqrt{D} - c_{14} > 1.$$

Thus we have (2.24) unchanged valid and so all formulas (2.25)–(2.33) remain valid without any change. This proves our Theorem in the remaining case when l_1 is a quadratic non-residue, l_2 a residue.

References

- [1] S. KNAPOWSKI, Contributions to the theory of distribution of prime numbers in arithmetical progressions I-III. Acta Arith. 6, 415-434 (1961); 7, 325-335 (1962); 8, 97-105 (1962).
- [2] J. PINTZ and S. SALERNO, Irregularities in the distribution of primes in arithmetic progressions, I. Arch. Math. 42, 439-447 (1984).

Eingegangen am 22.11.1983

Anschrift der Autoren:

János Pintz Mathematical Institute of the Hungarian Academy of Sciences Budapest Reáltanoda u. 13–15. H-1053 Hungary Saverio Salerno Istituto di Matematica Facolta di Scienze Universita di Salerno 84100 Salerno Italy