Modeling Preprocessing Attacks

Auxiliary-Input Model/Bit-Fixing Model

 \triangleright Offline attacker \mathcal{A}_{pre} is unbounded and outputs an S-bit hint for online attacker \mathcal{A}_{on} $\triangleright \mathcal{A}_{\mathsf{on}}$ will try to win security games using the hint

Auxiliary-Input Model

Bit-Fixing Model (ROM)

 $\triangleright \mathcal{A}_{\mathsf{pre}}$ fixes random oracle $\mathsf{H}(\cdot)$ at P locations $\triangleright \mathcal{A}_{on}$ initially knows nothing about remaining unfixed values (picked uniformly at random)

- Realistic model
- Proof can be difficult we can no longer assume that RO H looks uniformly random to online attacker (due to hint)
 - Compression Argument: if online attacker is too successful then we can "compress" H (compressing a random string is impossible)

multi-user security of key-prefixed short Schnorr signatures against preprocessing attacks in ROM+GGM [EUROCRYPT 2022]

multi-user security of **standardized implementations** of short Schnorr signatures against preprocessing attacks in ROM+GGM [New Result]

- Much easier to prove security Not a compelling model for preprocessing
 - attacks!
 - Usage: lower bound in Bit-Fixing Model ⇒ lower bound in Auxiliary-Input Model
 - [Coretti et al., EUROCRYPT 2018] $\varepsilon_{\mathsf{AI}}(S,q) \le \varepsilon_{\mathsf{BF}}(P,q) + \mathcal{O}(Sq/P)$

[Coretti et al., EUROCRYPT 2018]

Bit-Fixing ROM

Auxiliary-Input GGM

Auxiliary-Input ROM

[Coretti et al., CRYPTO 2018]

Bit-Fixing RPM

Bit-Fixing GGM

Bit-Fixing ICM

Auxiliary-Input ICM

Auxiliary-Input RPM

only showed in a single idealized model!