R documentation

of all in 'man/'

October 28, 2016

R topics documented:

Index

BootstrapCI_AR	
BootstrapCI_CS	2
CalculateBetaEM_AR	
CalculateBetaEM_CS	3
calc_group_AR	4
calc_grp_CS	
ConvertCov	
create_dummy_mat	5
dataAR_complete	6
dataAR_user	6
dataCS_complete	
dataCS_user	7
ExpY_AR	8
ExpY_CS	8
Gradient_AR	9
Gradient_CS	9
NegativeLogLikelihood_AR	10
NegativeLogLikelihood_CS	10
parse_cov	11
PerformanceEvaluation_AR	
PerformanceEvaluation_CS	12
predict_AR	12
predict_CS	13
simExample_AR	
simExample_CS	15
SimImpl_AR	15
SimImpl_CS	16
simulate_AR	17
simulate_CS	18
sim_covariates_AR	18
sim_covariates_CS	19
	21

2 BootstrapCI_CS

BootstrapCI_AR Boot

Description

An internal function to compute the confidence interval of resampled data using bootstrap methods

Usage

```
BootstrapCI_AR(bootN = 100, data, sim = 1)
```

Arguments

bootN The number of resampling to be performed

data the dataset to be evaluated

sim the number of simulation performed

Value

The confidence interval of resampled data

CI.beta 95% Confidence Interval of beta

CI.beta.emp 95% Empirical Confidence Interval of beta CI.prev 95% Confidence Interval of prevalence

CI.prev.emp 95% Empirical Confidence Interval of prevalence

BootstrapCI_CS Bootstrapping CS dataset

Description

An internal function to compute the confidence interval of resampled data using bootstrap methods

Usage

```
BootstrapCI_CS(bootN = 100, data, sim = 1)
```

Arguments

bootN The number of resampling to be performed

data the dataset to be evaluated

sim the number of simulation performed

Value

The confidence interval of resampled data

CI. beta 95% Confidence Interval of beta

CI.beta.emp 95% Empirical Confidence Interval of beta CI.prev 95% Confidence Interval of prevalence

CI.prev.emp 95% Empirical Confidence Interval of prevalence

CalculateBetaEM_AR 3

CalculateBetaEM AR EN	A estimation
-----------------------	--------------

Description

Excecute EM algorithm to estimate beta

Usage

```
CalculateBetaEM_AR(data, x.cov, sens = 0.7, spec = 0.9, MaxIt = 2000, crt = 10^{(-8)})
```

Arguments

data	the dataset to be evaluated
x.cov	matrix of correctly measured covariates
sens	Sensitivity = $Prob(Y = 1 \mid Y.obs = 1)$
spec	Specificity = $Prob(Y.obs = 0 Y = 0)$
MaxIt	maximum number of iteration
crt	criteria of convergence

Value

optimal beta estimated by EM algorithm

```
CalculateBetaEM_CS EM estimation
```

Description

Excecute EM algorithm to estimate beta

Usage

```
CalculateBetaEM_CS(data, x.cov, sens, spec, sens.x, spec.x, MaxIt = 2000, crt = 10^{(-8)})
```

Arguments

data	the dataset to be evaluated
x.cov	matrix of correctly measured covariates
sens	Sensitivity = $Prob(Y = 1 \mid Y.obs = 1)$
spec	Specificity = $Prob(Y.obs = 0 Y = 0)$
sens.x	Sensitivity.x = $Prob(X1 = 1 \mid X1.obs = 1)$
spec.x	Specificity.x = $Prob(X1.obs = 0 \mid X1 = 0)$
MaxIt	maximum number of iteration
crt	criteria of convergence

4 calc_grp_CS

Value

optimal beta estimated by EM algorithm

calc_group_AR

separate group calculation

Description

an internal function to extract data from different group and estimate beta's

Usage

```
calc_group_AR(grpdata, grp, maxit = 2000, crt = 10^(-8))
```

Arguments

grpdata data from a specific group

grp group index

maxit maximum number of iteration

crt criteria of convergence

Value

optimal beta estimated by EM algorithm and GLM

calc_grp_CS

separate group calculation

Description

an internal function to extract data from different group and estimate beta's

Usage

```
calc_grp_CS(grpdata, grp, maxit = 2000, crt = 10^(-8))
```

Arguments

grpdata data from a specific group

grp group index

maxit maximum number of iteration

crt criteria of convergence

Value

optimal beta estimated by EM algorithm and GLM

ConvertCov 5

ConvertCov convert covariates

Description

an internal function to convert x.cov to covariate matrix used in calculation

Usage

```
ConvertCov(x.cov)
```

Arguments

x.cov

matrix of correctly measured covariates

Value

processed covariate matrix used in calculation

 ${\tt create_dummy_mat}$

create dummy matrix Create dummy matrix for categorical variables

Description

create dummy matrix Create dummy matrix for categorical variables

Usage

```
create_dummy_mat(x.cov = x.cov, cat.index = is.cat)
```

Arguments

x.cov matrix of correctly measured covariates

cat.index index of categorical variable(s)

Value

A dummy matrix for categorical variables

6 dataAR_user

dataAR_complete

Example of complete AR(1) STI dataset

Description

Example of complete AR(1) STI dataset

Usage

```
data(dataAR_complete)
```

Format

An object of class data.frame with 1205 rows and 14 columns.

Examples

```
data(dataAR_complete)
head(dataAR_complete)
```

dataAR_user

Example of AR(1) STI dataset provided by user

Description

Example of AR(1) STI dataset provided by user

Usage

```
data(dataAR_user)
```

Format

An object of class data.frame with 1145 rows and 11 columns.

Examples

```
data(dataAR_user)
head(dataAR_user)
```

dataCS_complete 7

dataCS_complete

Example of complete CS STI dataset

Description

Example of complete CS STI dataset

Usage

```
data(dataCS_complete)
```

Format

An object of class data. frame with 1800 rows and 9 columns.

Examples

```
data(dataCS_complete)
head(dataCS_complete)
```

dataCS_user

Example of CS STI dataset provided by user

Description

Example of CS STI dataset provided by user

Usage

```
data(dataCS_user)
```

Format

An object of class data. frame with 1500 rows and 7 columns.

Examples

```
data(dataCS_user)
head(dataCS_user)
```

ExpY_CS

ExpY_AR	probability expectation matrix	
---------	--------------------------------	--

Description

An internal function to compute the probability expectation matrix of four cases used in E step Define Four Cases: C1: y = 1; y(t-1) = 0 C2: y = 1; y(t-1) = 1 C3: y = 0; y(t-1) = 0 C4: y = 0; y(t-1) = 1

Usage

```
ExpY_AR(b, data, x.cov, sens = 0.7, spec = 0.9)
```

Arguments

b	the beta used to calculate negative log likelihood
data	the dataset to be evaluated
x.cov	matrix of correctly measured covariates
sens	Sensitivity = $Prob(Y = 1 \mid Y.obs = 1)$
spec	Specificity = $Prob(Y.obs = 0 Y = 0)$

Value

The probability expectation matrix of given beta

ExpY_CS	probability expectation matrix of CS dataset
---------	--

Description

an internal function to compute the probability expectation matrix of four cases used in E step Define Four Cases: C1: y = 1; x1 = 0 C2: y = 1; x1 = 1 C3: y = 0; x1 = 0 C4: y = 0; x1 = 1

Usage

```
ExpY_CS(b, data, x.cov, sens, spec, sens.x, spec.x)
```

Arguments

b	the beta used to calculate negative log likelihood
data	the dataset to be evaluated
x.cov	matrix of correctly measured covariates
sens	Sensitivity = $Prob(Y = 1 \mid Y.obs = 1)$
spec	Specificity = $Prob(Y.obs = 0 Y = 0)$
sens.x	Sensitivity.x = $Prob(X1 = 1 \mid X1.obs = 1)$
spec.x	Specificity.x = $Prob(X1.obs = 0 \mid X1 = 0)$

Value

he expected probability of four cases for given beta

Gradient_AR 9

|--|

Description

An internal function to omputes the gradient of objective function(nLL) respect to beta

Usage

```
Gradient_AR(b, data, x.cov, EY)
```

Arguments

b the beta used to calculate negative log likelihood

data the dataset to be evaluated

x.cov matrix of correctly measured covariates

EY the probability expectation matrix calculated in the ExpY function

Value

expected value of negative log likelihood

Gradient_CS Gradient of CS model

Description

An internal function to omputes the gradient of objective function(nLL) respect to beta

Usage

```
Gradient_CS(b, data, EY, x.cov)
```

Arguments

b the beta used to calculate negative log likelihood

data the dataset to be evaluated

EY the probability expectation matrix calculated in the ExpY function

x.cov matrix of correctly measured covariates

Value

expected value of negative log likelihood

 ${\tt NegativeLogLikelihood_AR}$

Negative Log-Likelihood of AR(1) model

Description

An internal function to compute the expected value of negative log likelihood function The E step in EM algorithm

Usage

```
NegativeLogLikelihood_AR(b, data, x.cov, EY)
```

Arguments

b the beta used to calculate negative log likelihood

data the dataset to be evaluated

x.cov matrix of correctly measured covariates

EY the probability expectation matrix calculated in the ExpY function

Value

expected value of negative log likelihood

NegativeLogLikelihood_CS

Negative Log-Likelihood

Description

An internal function to compute the expected value of negative log likelihood function The E step in EM algorithm

Usage

```
NegativeLogLikelihood_CS(b, data, EY, x.cov)
```

Arguments

b the beta used to calculate negative log likelihood

data the dataset to be evaluated

EY the probability expectation matrix calculated in the ExpY function

x.cov matrix of correctly measured covariates

Value

expected value of negative log likelihood

parse_cov 11

parse_cov	parse covariates

Description

an internal function to parses the order of covariates

Usage

```
parse_cov(x.cov, vv.index)
```

Arguments

x.cov original covariates matrix

vv. index index of time-dependent variables

Value

A matrix of covariates in the order of [subID, time-dependent variable, fixed variable, t]

PerformanceEvaluation_AR

 $Learning\ Performance\ Evaluation\ of\ AR(1)\ model$

Description

An internal function to Evaluate the performance of statistical methods for betas estimated by EM algorithm and GLM function. Performance measures including: Bias Mean Standard Deviation Percentage Bias Standard Bias Mean Square Error

Usage

```
PerformanceEvaluation_AR(beta.est, sim = simN, cvg = FALSE)
```

Arguments

beta.est A matrix of betas estimated from different datasets

sim the number of simulation performed cvg the option to find 95% CI coverage

Value

A dataframe of the performance of statistical methods for given set of betas

12 predict_AR

PerformanceEvaluation_CS

Learning Performance Evaluation of CS model

Description

An internal function to Evaluate the performance of statistical methods for betas estimated by EM algorithm and GLM function. Performance measures including: Bias Mean Standard Deviation Percentage Bias Standard Bias Mean Square Error

Usage

```
PerformanceEvaluation_CS(beta.est, sim = simN, cvg = FALSE)
```

Arguments

beta.est A matrix of betas estimated from different datasets

sim the number of simulation performed cvg the option to find 95% CI coverage

Value

A dataframe of the performance of statistical methods for given set of betas

predict_AR Predict STI probability

Description

Predict STI infection probability based on provided dataset and patient info

Usage

```
predict_AR(data, patInfo, n.cov, n.grp, n.v, sens, spec, getBeta = TRUE,
   CI = FALSE, bootN = 10)
```

Arguments

data	dataset for beta estimation
patInfo	patient's diagonistic information
n.cov	number of covariates
n.grp	n.grp: number of testing technology
n.v	Number of time varying variable
sens	Sensitivity = $Prob(Y = 1 \mid Y.obs = 1)$
spec	Specificity = $Prob(Y.obs = 0 Y = 0)$
getBeta	the option to save beta estimated from given dataset
CI	the option to get 95% confidence interval
bootN	the number of BootStrapping used to construct CI

predict_CS 13

Value

```
specific patient's infection probability

beta.est estimated beta from provided daaset

pat.CI.prev patient's 95% CI of prevalence

pat.CI.prev.emp

patient's 95% empirical CI of prevalence
```

Examples

```
data <- simExample_AR()
patInfo <- data[5, ]
predict_AR(data,patInfo,4,3,1,c(0.8,0.85,0.9),c(0.9,0.85,0.8))
beta.est</pre>
```

predict_CS

Predict STI probability

Description

Predict STI infection probability based on provided dataset and patient info

Usage

```
predict_CS(data, patInfo, n.cov, n.grp, sensitivity, specificity, sensitivity.x,
    specificity.x, getBeta = TRUE, CI = FALSE, bootN = 10)
```

Arguments

data	dataset for beta estimation
patInfo	patient's diagonistic information
n.cov	number of covariates
n.grp	n.grp: number of testing technology
sensitivity	Sensitivity = $Prob(Y = 1 \mid Y.obs = 1)$
specificity	Specificity = $Prob(Y.obs = 0 Y = 0)$
sensitivity.x	Sensitivity.x = $Prob(X1 = 1 \mid X1.obs = 1)$
specificity.x	Specificity.x = $Prob(X1.obs = 0 \mid X1 = 0)$
getBeta	the option to save beta estimated from given dataset
CI	the option to get 95% confidence interval
bootN	the number of BootStrapping used to construct CI

Value

```
pecific patient's infection probability

beta.est estimated beta from provided daaset

pat.CI.prev patient's 95% CI of prevalence

pat.CI.prev.emp

patient's 95% empirical CI of prevalence
```

14 simExample_AR

Examples

```
data <- simExample_CS(sampleN=500)
patInfo <- data[5, ]
predict_CS(data,patInfo,3,3,c(0.8,0.85,0.9),c(0.9,0.85,0.8),c(0.8,0.85,0.9),c(0.9,0.85,0.8))
beta.est</pre>
```

 $simExample_AR$

Simulate an example of AR(1) dataset

Description

Simulation an example for the users to prepare their data structure

Usage

```
simExample_AR(sampleN = 500, max.obs = 5, n.binom = 1, n.cat = 1, n.cont = 1, n.v = 1, n.grp = 3, sens = c(0.7, 0.8, 0.9), spec = c(0.9, 0.8, 0.7), seed = 616)
```

Arguments

sampleN	number of tuples in each group
max.obs	maximum number of obervation for each subject
n.binom	number of binomial covariates
n.cat	number of categorial covariates
n.cont	number of continuous covariates
n.v	number of varying variable
n.grp	number of testing technology
sens	Sensitivity = $Prob(Y = 1 \mid Y.obs = 1)$
spec	Specificity = $Prob(Y.obs = 0 \mid Y = 0)$
seed	the root seed of simulation

Value

an example of dataset

Examples

```
data <- simExample_AR()
head(data)</pre>
```

simExample_CS 15

simExample_CS

Simulate an example of CS dataset

Description

Simulation an example for the users to prepare their data structure

Usage

```
simExample_CS(sampleN = 100, sensitivity = c(0.8, 0.85, 0.9), specificity = c(0.9, 0.85, 0.8), sensitivity.x = c(0.8, 0.85, 0.9), specificity.x = c(0.9, 0.85, 0.8), n.grp = 3, n.binom = 1, n.cat = 1, n.cont = 1, seed = 616)
```

Arguments

```
sampleN
                  number of tuples in each group
                  Sensitivity = Prob(Y = 1 | Y.obs = 1)
sensitivity
                  Specificity = Prob(Y.obs = 0 | Y = 0)
specificity
                  Sensitivity.x = Prob(X1 = 1 \mid X1.obs = 1)
sensitivity.x
                  Specificity.x = Prob(X1.obs = 0 \mid X1 = 0)
specificity.x
                  number of testing technology
n.grp
                  number of binomial covariates
n.binom
                  number of categorial covariates
n.cat
                  number of continuous covariates
n.cont
                  the root seed of simulation
seed
```

Value

an example of dataset

Examples

```
data <- simExample_CS()
head(data)</pre>
```

SimImpl_AR

Simulation Implementation

Description

Implement simulation of AR(1) model

Usage

```
SimImpl_AR(simN = 3, sampleN = 500, max.obs = 5, n.binom = 0,
    n.cat = 0, n.cont = 0, n.v = 0, n.lev = 3, n.grp = 3,
    saveEst = TRUE, sens = c(0.7, 0.8, 0.9), spec = c(0.9, 0.8, 0.7),
    bootN = 10, seed = 616)
```

16 SimImpl_CS

Arguments

simN	Number of dataset simulation
sampleN	Number of subjects in sample
max.obs	maximum number of obervation for each subject
n.binom	number of binomial covariates
n.cat	number of categorial covariates
n.cont	number of continuous covariates
n.v	number of varying (time dependent) variable
n.lev	number of levels for categorical covariate
n.grp	number of testing technology
saveEst	the option to save intermediate estimation
sens	Sensitivity = $Prob(Y = 1 \mid Y.obs = 1)$
spec	Specificity = $Prob(Y.obs = 0 Y = 0)$
bootN	The number of resampling to be performed
seed	the root seed of simulation

Value

save simulation results to environment

b_AR	evaluation of GLM estimates for correctly measured Y
b.obs_AR	evaluation of GLM estimates for misclassified Y
b.EM_AR	evaluation of EM estimates for misclassified Y

Examples

```
SimImpl_AR()
```

Description

Implement simulation of Cross-sectional model

Usage

```
\begin{split} & \text{SimImpl\_CS}(\text{simN} = 5, \text{ sampleN} = 500, \text{ n.binom} = 1, \text{ n.cat} = 1, \\ & \text{ n.cont} = 1, \text{ n.lev} = 3, \text{ n.grp} = 3, \text{ saveEst} = \text{TRUE}, \\ & \text{sensitivity} = \text{c}(0.8, 0.85, 0.9), \text{ specificity} = \text{c}(0.9, 0.85, 0.8), \\ & \text{sensitivity.x} = \text{c}(0.8, 0.85, 0.9), \text{ specificity.x} = \text{c}(0.9, 0.85, 0.8), \\ & \text{seed} = 616, \text{ bootN} = 2) \end{split}
```

simulate_AR 17

Arguments

SIMN	Number of dataset simulation
sampleN	Number of subjects in sample
n.binom	number of binomial covariates
n.cat	number of categorial covariates
n.cont	number of continuous covariates

n. lev number of levels for categorical covariate

n.grp number of testing technology

 $\begin{tabular}{lll} save Est & the option to save intermediate estimation \\ sensitivity & Sensitivity = Prob(Y = 1 \mid Y.obs = 1) \\ specificity & Specificity = Prob(Y.obs = 0 \mid Y = 0) \\ sensitivity.x & Sensitivity.x = Prob(X1 = 1 \mid X1.obs = 1) \\ specificity.x & Specificity.x = Prob(X1.obs = 0 \mid X1 = 0) \\ \end{tabular}$

seed the root seed of simulation

bootN The number of resampling to be performed

Value

writes simulation results into csv file

 $\begin{array}{lll} b_AR & evaluation of GLM estimates for correctly measured X_1\\ b.obs_AR & evaluation of GLM estimates for misclassified X_1\\ b.EM_AR & evaluation of EM estimates for misclassified X_1\\ \end{array}$

Examples

SimImpl_CS()

simulate_AR simulate AR dataset

Description

an internal function to simulates binary status and observations with misclassification

Usage

```
simulate_AR(n = sampleN, sens = 0.7, spec = 0.9, max.obs = 5,
    x.cov = x.cov, n.vv, subID = subID, k = 2836)
```

Arguments

n	Number of subjects in sample
sens	Sensitivity = $Prob(Y = 1 Y.obs = 1)$
spec	Specificity = $Prob(Y.obs = 0 Y = 0)$

max.obs Maximum number of obervation for each subject

x.cov matrix of correctly measured covariatesn.vv number of varying (time dependent) variable

subID ID for each subject k Seed for simulation

18 sim_covariates_AR

Value

A dataframe including subject ID, binary status and observations with misclassification

simulate_CS

Simulate CS dataset

Description

an internal function to simulate binary status and observations with misclassification

Usage

```
simulate_CS(n = sampleN, p = 0.5, x.cov = x.cov, sub.sens, sub.spec,
    sub.sens.x, sub.spec.x, k = 2836)
```

Arguments

n	Number of subjects in sample
p	probability of \$X_1\$ to be 1
x.cov	matrix of correctly measured covariates
sub.sens	Sensitivity = $Prob(Y = 1 \mid Y.obs = 1)$
sub.spec	Specificity = $Prob(Y.obs = 0 Y = 0)$
sub.sens.x	Sensitivity.x = $Prob(X1 = 1 \mid X1.obs = 1)$
sub.spec.x	Specificity.x = $Prob(X1.obs = 0 \mid X1 = 0)$
k	Seed for simulation

Value

A dataframe including subject ID, binary status and observations with misclassification

sim_covariates_AR

simulate covariates for AR(1) model

Description

Simulates correctly measured covariates

Usage

```
sim_covariates_AR(n = n, n.binom = 1, n.cat = 1, n.cont = 1, n.vv = 1, n.lev = 3, max.obs = 5, grpIdx, subID, p = 0.6, p.cat = c(0.1, 0.2, 0.7), k = 2812)
```

sim_covariates_CS 19

Arguments

n	Number of subjects in sample
n.binom	number of correctly measured binary covariates
n.cat	number of correctly measured categorical covariates
n.cont	number of correctly measured continuous covariates
n.vv	number of varying (time dependent) variable
n.lev	number of levels for categorical covariate
max.obs	Maximum number of obervation for each subject
grpIdx	group index for each subject
subID	ID for each subject
р	probability of binary covariate to be 1
p.cat	probability of different levels of categorical covariate
k	Seed for simulation

Value

A dataframe including correctly measured covariates

subID	ID for each subject
grpIdx	group index for each subject
\$X_n\$	correctly measured covariates
+	time

t time

Description

an internal function to simulate correctly measured covariates

Usage

```
sim_covariates_CS(n = sampleN, n.binom = 1, n.cat = 1, n.cont = 1, n.lev = 3, grpIdx, subID, p = 0.6, p.cat = c(0.1, 0.2, 0.7), k = 2812)
```

Arguments

n	Number of subjects in sample
n.binom	number of correctly measured binary covariates
n.cat	number of correctly measured categorical covariates
n.cont	number of correctly measured continuous covariates
n.lev	number of levels for categorical covariate
grpIdx	group index for each subject
subID	ID for each subject
р	probability of binary covariate to be 1
p.cat	probability of different levels of categorical covariate
k	Seed for simulation

20 sim_covariates_CS

Value

A dataframe including correctly measured covariates

subID ID for each subject

grpIdx group index for each subject \$X_n\$ correctly measured covariates

Index

*Topic Bootstrap	*Topic simulate
BootstrapCI_AR, 2	simExample_AR, 14
BootstrapCI_CS, 2	<pre>simExample_CS, 15</pre>
*Topic EM	*Topic simulation
CalculateBetaEM_AR, 3	SimImpl_AR, 15
CalculateBetaEM_CS, 3	SimImpl_CS, 16
*Topic Evaluation	
PerformanceEvaluation_AR, 11	BootstrapCI_AR, 2
PerformanceEvaluation_CS, 12	BootstrapCI_CS, 2
*Topic Example	
simExample_AR, 14	calc_group_AR, 4
simExample_CS, 15	calc_grp_CS, 4
*Topic LogLikelihood	CalculateBetaEM_AR, 3
Gradient_AR, 9	CalculateBetaEM_CS, 3
Gradient_CS, 9	ConvertCov, 5
NegativeLogLikelihood_AR, 10	create_dummy_mat,5
NegativeLogLikelihood_CS, 10	dataAR_complete, 6
*Topic covaraites	dataAR_user, 6
sim_covariates_AR, 18	dataCS_complete, 7
sim_covariates_CS, 19	dataCS_user, 7
*Topic datasets	dataes_user, /
dataAR_complete, 6	ExpY_AR, 8
dataAR_user, 6	ExpY_CS, 8
dataCS_complete, 7	
dataCS_user, 7	Gradient_AR, 9
*Topic expectation	Gradient_CS, 9
ExpY_AR, 8	
ExpY_CS, 8	NegativeLogLikelihood_AR, 10
*Topic implementation	NegativeLogLikelihood_CS, 10
SimImpl_AR, 15	44
SimImpl_CK, 15 SimImpl_CS, 16	parse_cov, 11
*Topic prediction	PerformanceEvaluation_AR, 11
predict_AR, 12	PerformanceEvaluation_CS, 12
predict_CS, 13	predict_AR, 12
*Topic prevalence	predict_CS, 13
predict_AR, 12	sim_covariates_AR, 18
	sim_covariates_AR, 18 sim_covariates_CS, 19
predict_CS, 13	simExample_AR, 14
*Topic probability	simExample_CS, 15
ExpY_AR, 8	SimImpl_AR, 15
ExpY_CS, 8	SimImpl_AR, 13 SimImpl_CS, 16
*Topic regression	simulate_AR, 17
CalculateBetaEM_AR, 3	simulate_AR, 17 simulate_CS, 18
CalculateBetaEM_CS, 3	3111101ate_C3, 10