同倫類型論

JoJo

jojoid@duck.com

目录

1 λ 演 算	3
1.1 項	3
1.2 自由和綁定變量	3
1.3 α 等價	4
1.4 代人	4
2 類型論	6
2.1 項	6
2.2 語境	6
2.3 結構規則	6
2.4 類型宇宙	6
2.5 依賴函數類型	7
2.6 依賴序偶類型	7
2.7 餘積類型	8
2.8 空類型 0	8
2.9 單元類型 1	8
2.10 自然數類型	9
2.11 恆等類型	9
2.12 定義	9
3 同倫類型論	10
3.1 類型是高維羣胚	10
3.2 函數是函子	
3.3 類型族是纖維化	
3.4 同倫和等價	
3.5 宇宙和泛等公理	
3.6 恆等類型	
3.7 自然數	
4 集合和邏輯	17
4.1 集合和 n- 類型	17
4.2 命題	

1 入演算

1.1 項

定義 1.1 項

所有項的集合 Λ 的遞歸定義如下

- 1. (變量) / 中有無窮個變量;
- 2. (抽象)如果u是一個變量且 $M \in \Lambda$,則 $(u.M) \in \Lambda$;
- 3. (應用)如果 $M,N \in \Lambda$,則 $(MN) \in \Lambda$.

更簡短的表述是

$$\varLambda \coloneqq V \mid (V.\varLambda) \mid (\varLambda\varLambda)$$

或

$$M \coloneqq u \mid (u.M) \mid (MN)$$

其中 V 是變量集.

定義 1.2 子項

項M的所有子項的集合定義爲Sub(M),Sub的遞歸定義如下

- 1. (基礎) 對於任何變量 x, $Sub(x) := \{x\}$;
- 2. (抽象) $Sub(x.M) := Sub(M) \cup \{(x.M)\};$
- 3. (應用) $Sub(MN) \coloneqq Sub(M) \cup Sub(N) \cup \{(MN)\}.$

引理 1.1 1. (自反性) 對於任何項 M, 有 $M \in Sub(M)$;

2. (傳遞性) 如果 $L \in Sub(M)$ 且 $M \in Sub(N)$, 則 $L \in Sub(N)$.

引理 1.2 項可以以樹表示給出,如下圖中的例子

(y(x.(xz))) 的樹表示

項的子項對應於項的樹表示的子樹.

慣例 1.1 1. 最外層括號可以省略;

- 2. (抽象是右結合的) x.y.M 是 x.(y.M) 的一個縮寫;
- 3. (應用是左結合的) MNL 是 ((MN)L) 的一個縮寫;
- 4. (應用優先於抽象) x.MN 是 x.(MN) 的一個縮寫.

1.2 自由和綁定變量

定義 1.3 自由變量

項M的所有自由變量的集合定義爲FV(M),FV的遞歸定義如下

- 1. (變量) $FV(x) := \{x\};$
- 2. (抽象) $FV(x.M) := FV(M) \setminus \{x\};$
- 3. (應用) $FV(MN) := FV(M) \cup FV(N)$.

例子 1.1 (y(x.(xz))) 的樹表示如下圖所示

 $\mathit{FV}(y(x.(xz))) = \{y,z\}.$

定義 1.4 閉項

一個項 M 是**閉**的 : $\Leftrightarrow FV(M) = \emptyset$.

所有閉項的集合記爲 Λ^0 .

1.3 α 等價

定義 1.5 重命名

將項 M 中 x 的每個自由出現都替換爲 y, 結果記爲 $M^{x\to y}$.

定義 1.6 α 等價

定義 α 等價= α 爲符合如下性質的關係

- 1. (重命名)如果 y 不在 M 中出現,則 $x.M =_{\alpha} y.M^{x \to y}$;
- 2. (兼容性) 如果 $M =_{\alpha} N$, 則 $ML =_{\alpha} NL$, $LM =_{\alpha} LN$ 且對於任何變量 z 有 $z.M =_{\alpha} z.N$;
- 3. (自反性) $M =_{\alpha} M$;
- 4. (對稱性)如果 $M =_{\alpha} N$,則 $N =_{\alpha} M$;
- 5. (傳遞性) 如果 $L =_{\alpha} M$ 且 $M =_{\alpha} N$, 則 $L =_{\alpha} N$.

1.4 代人

定義 1.7 代人

 $(1a) \ x[N/x] := N;$

- (1b) 如果 $x \neq y$,則 $y[N/x] \coloneqq y$;
- (2) (PQ)[N/x] := (P[N/x])(Q[N/x]);
- $(3) 如果 z.P^{y \rightarrow z} =_{\alpha} y.P 且 z \notin FV(N), 則 (y.P)[N/x] \coloneqq z.(P^{y \rightarrow z}[N/x]).$

引理 1.3 | 設 $x \neq y$ 且 $x \notin FV(N)$,則L[M, N/x, y] = L[N, M[N/y]/x, y].

定義 1.8 同時代人

 $M[N_1,...,N_n/x_1,...,x_n]$ 表示把項 $N_1,...,N_n$ 同時代人到變量 $x_1,...,x_n$.

2 類型論

2.1 項

定義 2.1 項

比入演算多了一些常量以及新的構造.

2.2 語境

定義 2.2 語境

一個語境是一個列表

$$x_1: A_1, x_2: A_2, ..., x_n: A_n$$

其中 $x_1,...,x_n$ 是不同的變量,它們分別擁有類型 $A_1,...,A_n$. 我們用 Γ,Δ 等字母來縮寫語境.

定義 2.3 語境規則

 Γ ctx 是一個判斷,表示" Γ 是良構的語境."有如下規則

$$\frac{}{\cdot ctx}$$
 ctx-EMP

$$\frac{x_1:A_1,x_2:A_2,...,x_{n-1}:A_{n-1}\vdash A_n:\mathcal{U}_i}{(x_1:A_1,...,x_n:A_n)\ ctx}\ ctx\text{-}EXT$$

其中,變量 x_n 與變量 $x_1,...,x_n$ 中的任何一個都不同.

2.3 結構規則

定義 2.4 Vble 規則

$$\frac{(x_1:A_1,...,x_n:A_n)\ ctx}{x_1:A_1,...,x_n:A_n\vdash x_i:A_i}\ Vble$$

定義 2.5 判斷相等

如果
$$a =_{\alpha} b$$
, 則 $a \equiv b$.

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \equiv a : A}$$
$$\frac{\Gamma \vdash a \equiv b : A}{\Gamma \vdash b \equiv a : A}$$

$$\frac{\Gamma \vdash a \equiv b : A \quad \Gamma \vdash b \equiv c : A}{\Gamma \vdash a \equiv c : A}$$

$$\frac{\varGamma \vdash a : A \quad \varGamma \vdash A \equiv B : \mathcal{U}_i}{\varGamma \vdash a : B}$$

$$\frac{\varGamma \vdash a \equiv b : A \quad \varGamma \vdash A \equiv B : \mathcal{U}_i}{\varGamma \vdash a \equiv b : B}$$

2.4 類型宇宙

定義 2.6 類型宇宙層級

有如下規則

$$\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\dots$$

$$\frac{\Gamma \ ctx}{\Gamma \vdash \mathcal{U}_{i} : \mathcal{U}_{i+1}} \ \mathcal{U}\text{-}INTRO$$

$$\frac{\Gamma \vdash A : \mathcal{U}_{i}}{\Gamma \vdash A : \mathcal{U}_{i+1}} \ \mathcal{U}\text{-}CUMUL$$

2.5 依賴函數類型

定義 2.7 依賴函數類型

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma, x : A \vdash B : \mathcal{U}_i}{\varGamma \vdash (x : A) \to B : \mathcal{U}_i} \ \varPi\text{-}FORM$$

$$\frac{\varGamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \varGamma, x : A_1 \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\varGamma \vdash (x : A_1) \to B_1 \equiv (x : A_2) \to B_2 : \mathcal{U}_i} \ \varPi\text{-}FORM\text{-}EQ}$$

$$\frac{\varGamma, x : A \vdash b : B}{\varGamma \vdash (x : A) \mapsto b : (x : A) \to B} \ \varPi\text{-}INTRO$$

$$\frac{\varGamma, x : A \vdash b_1 \equiv b_2 : B}{\varGamma \vdash (x : A) \mapsto b_1 \equiv (x : A) \mapsto b_2 : (x : A) \to B} \ \varPi\text{-}INTRO\text{-}EQ}$$

$$\frac{\varGamma \vdash f : (x : A) \to B}{\varGamma \vdash f(a) : B[a/x]} \ \varPi\text{-}ELIM$$

$$\frac{\varGamma \vdash f_1 \equiv f_2 : (x : A) \to B}{\varGamma \vdash f_1(a) \equiv f_2(a) : B[a/x]} \ \varPi\text{-}ELIM\text{-}EQ}$$

$$\frac{\varGamma \vdash f : (x : A) \mapsto b : B}{\varGamma \vdash f : (x : A) \mapsto b(a) \equiv b[a/x] : B[a/x]} \ \varPi\text{-}COMP}$$

$$\frac{\varGamma \vdash f : (x : A) \to B}{\varGamma \vdash f \equiv (x \mapsto f(x)) : (x : A) \to B} \ \varPi\text{-}UNIQ}$$

2.6 依賴序偶類型

定義 2.8 依賴序偶類型

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma, x : A \vdash B : \mathcal{U}_i}{\Gamma \vdash (x : A) \times B : \mathcal{U}_i} \quad \Sigma \text{-}FORM$$

$$\frac{\Gamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \Gamma, x : A_1 \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\Gamma \vdash (x : A_1) \times B_1 \equiv (x : A_2) \times B_2 : \mathcal{U}_i} \quad \Sigma \text{-}FORM\text{-}EQQ$$

$$\frac{\Gamma, x : A \vdash B : \mathcal{U}_i \quad \Gamma \vdash a : A \quad \Gamma \vdash b : B[a/x]}{\Gamma \vdash (a, b) : (x : A) \times B} \quad \Sigma \text{-}INTRO$$

$$\frac{\Gamma, x : A \vdash B : \mathcal{U}_i \quad \Gamma \vdash a_1 \equiv a_2 : A \quad \Gamma \vdash b_1 \equiv b_2 : B[a/x]}{\Gamma \vdash (a_1, b_1) \equiv (a_2, b_2) : (x : A) \times B} \quad \Sigma \text{-}INTRO\text{-}EQQ$$

$$\frac{\Gamma, x : (x : A) \times B \vdash C : \mathcal{U}_i \quad \Gamma, x : A, y : B \vdash g : C[(x, y)/z] \quad \Gamma \vdash p : (x : A) \times B}{\Gamma \vdash ind_{(x : A) \times B}(z : C, x : y : g, p) : C[p/z]} \quad \Sigma \text{-}ELIM$$

$$\frac{\Gamma, x : (x : A) \times B \vdash C : \mathcal{U}_i \quad \Gamma, x : A, y : B \vdash g : C[(x, y)/z] \quad \Gamma \vdash p_1 \equiv p_2 : (x : A) \times B}{\Gamma \vdash ind_{(x : A) \times B}(z : C, x : y : g, p_2) : C[p_1/z] \equiv C[p_2/z]} \quad \Sigma \text{-}ELIM\text{-}EQQ$$

$$\frac{\Gamma, x : (x : A) \times B \vdash C : \mathcal{U}_i \quad \Gamma, x : A, y : B \vdash g : C[(x, y)/z] \quad \Gamma \vdash a : A \quad \Gamma \vdash b : B[a/x]}{\Gamma \vdash ind_{(x : A) \times B}(z : C, x : y : g, (a, b)) \equiv g[a, b/x, y] : C[p/z]} \quad \Sigma \text{-}COMP$$

2.7 餘積類型

定義 2.9 餘積類型

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i}{\Gamma \vdash A + B : \mathcal{U}_i} + FORM$$

$$\frac{\Gamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \Gamma \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\Gamma \vdash A_1 + B_1 \equiv A_2 + B_2 : \mathcal{U}_i} + FORM - EQ$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash a : A}{\Gamma \vdash inl(a) : A + B} + INTRO_1$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash b : B}{\Gamma \vdash inr(b) : A + B} + INTRO_2$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash b_1 \equiv b_2 : A}{\Gamma \vdash inl(a_1) \equiv inl(a_2) : A + B} + INTRO_2 - EQ$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash b_1 \equiv b_2 : B}{\Gamma \vdash inr(b_1) \equiv inr(b_2) : A + B} + INTRO_2 - EQ$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash B : \mathcal{U}_i \quad \Gamma \vdash b_1 \equiv b_2 : B}{\Gamma \vdash inr(b_1) \equiv inr(b_2) : A + B} + INTRO_2 - EQ$$

$$\frac{\Gamma, z : (A + B) \vdash C : \mathcal{U}_i \quad \Gamma, x : A \vdash c : C[inl(x)/z] \quad \Gamma, y : B \vdash d : C[inr(y)/z] \quad \Gamma \vdash e : (A + B)}{\Gamma \vdash ind_{A+B}(z.C, x.c, y.d, e) : C[e/z]} + -ELIM$$

$$\frac{\Gamma, z : (A + B) \vdash C : \mathcal{U}_i \quad \Gamma, x : A \vdash c : C[inl(x)/z] \quad \Gamma, y : B \vdash d : C[inr(y)/z] \quad \Gamma \vdash e_1 \equiv e_2 : (A + B)}{\Gamma \vdash ind_{A+B}(z.C, x.c, y.d, e_1) \equiv ind_{A+B}(z.C, x.c, y.d, e_2) : C[e_1/z]} + -ELIM - EQ$$

$$\frac{\Gamma, z : (A + B) \vdash C : \mathcal{U}_i \quad \Gamma, x : A \vdash c : C[inl(x)/z] \quad \Gamma, y : B \vdash d : C[inr(y)/z] \quad \Gamma \vdash a : A}{\Gamma \vdash ind_{A+B}(z.C, x.c, y.d, inl(a)) \equiv c[a/x] : C[inl(a)/z]} + -COMP_1$$

$$\frac{\Gamma, z : (A + B) \vdash C : \mathcal{U}_i \quad \Gamma, x : A \vdash c : C[inl(x)/z] \quad \Gamma, y : B \vdash d : C[inr(y)/z] \quad \Gamma \vdash b : B}{\Gamma \vdash ind_{A+B}(z.C, x.c, y.d, inr(b)) \equiv d[b/y] : C[inr(b)/z]} + -COMP_2$$

2.8 空類型 0

定義 2.10 空類型 0

$$\begin{split} \frac{\Gamma\ ctx}{\Gamma\vdash\mathbf{0}:\mathcal{U}_i}\ \mathbf{0}\text{-}FORM \\ \frac{\Gamma,x:\mathbf{0}\vdash C:\mathcal{U}_i\quad \Gamma\vdash a:\mathbf{0}}{\Gamma\vdash ind_{\mathbf{0}}(x.C,a):C[a/x]}\ \mathbf{0}\text{-}ELIM \\ \\ \frac{\Gamma,x:\mathbf{0}\vdash C:\mathcal{U}_i\quad \Gamma\vdash a_1\equiv a_2:\mathbf{0}}{\Gamma\vdash ind_{\mathbf{0}}(x.C,a_1)\equiv ind_{\mathbf{0}}(x.C,a_2):C[a_1/x]\equiv C[a_2/x]}\ \mathbf{0}\text{-}ELIM\text{-}EQ \end{split}$$

2.9 單元類型 1

定義 2.11 單元類型 1

$$\begin{split} \frac{\Gamma \ ctx}{\Gamma \vdash \mathbf{1} : \mathcal{U}_i} \ \mathbf{1}\text{-}FORM \\ \frac{\Gamma \ ctx}{\Gamma \vdash \star : \mathbf{1}} \ \mathbf{1}\text{-}INTRO \\ \frac{\Gamma \ x : \mathbf{1} \vdash C : \mathcal{U}_i \quad \Gamma \vdash c : C[\star/x] \quad \Gamma \vdash a : \mathbf{1}}{\Gamma \vdash ind_{\mathbf{1}}(x.C,c,a) : C[a/x]} \ \mathbf{1}\text{-}ELIM \\ \frac{\Gamma, x : \mathbf{1} \vdash C : \mathcal{U}_i \quad \Gamma \vdash c : C[\star/x] \quad \Gamma \vdash a_1 \equiv a_2 : \mathbf{1}}{\Gamma \vdash ind_{\mathbf{1}}(x.C,c,a_1) \equiv ind_{\mathbf{1}}(x.C,c,a_2) : C[a_1/x] \equiv C[a_2/x]} \ \mathbf{1}\text{-}ELIM\text{-}EQ} \\ \frac{\Gamma, x : \mathbf{1} \vdash C : \mathcal{U}_i \quad \Gamma \vdash c : C[\star/x]}{\Gamma \vdash ind_{\mathbf{1}}(x.C,c,\star) \equiv c : C[\star/x]} \ \mathbf{1}\text{-}COMP} \end{split}$$

2.10 自然數類型

定義 2.12 自然數類型

$$\frac{\Gamma\ ctx}{\Gamma\vdash\mathbb{N}:\mathcal{U}_i}\ \mathbb{N}\text{-}FORM$$

$$\frac{\Gamma\ ctx}{\Gamma\vdash0:\mathbb{N}}\ \mathbb{N}\text{-}INTRO_1$$

$$\frac{\Gamma\vdash n:\mathbb{N}}{\Gamma\vdash succ(n):\mathbb{N}}\ \mathbb{N}\text{-}INTRO_2$$

$$\frac{\Gamma\vdash n_1\equiv n_2:\mathbb{N}}{\Gamma\vdash succ(n_1)\equiv succ(n_2):\mathbb{N}}\ \mathbb{N}\text{-}INTRO_2\text{-}EQ$$

$$\frac{\Gamma\vdash n_1\equiv n_2:\mathbb{N}}{\Gamma\vdash succ(n_1)\equiv succ(n_2):\mathbb{N}}\ \mathbb{N}\text{-}INTRO_2\text{-}EQ$$

$$\frac{\Gamma,x:\mathbb{N}\vdash C:\mathcal{U}_i\quad \Gamma\vdash c_0:C[0/x]\quad \Gamma,x:\mathbb{N},y:C\vdash c_s:C[succ(x)/x]\quad \Gamma\vdash n:\mathbb{N}}{\Gamma\vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n):C[n/x]}\ \mathbb{N}\text{-}ELIM$$

$$\frac{\Gamma,x:\mathbb{N}\vdash C:\mathcal{U}_i\quad \Gamma\vdash c_0:C[0/x]\quad \Gamma,x:\mathbb{N},y:C\vdash c_s:C[succ(x)/x]\quad \Gamma\vdash n_1\equiv n_2:\mathbb{N}}{\Gamma\vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n_1)\equiv ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n_2):C[n_1/x]\equiv C[n_2/x]}$$

$$\frac{\Gamma,x:\mathbb{N}\vdash C:\mathcal{U}_i\quad \Gamma\vdash c_0:C[0/x]\quad \Gamma,x:\mathbb{N},y:C\vdash c_s:C[succ(x)/x]}{\Gamma\vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,0)\equiv c_0:C[0/x]}\ \mathbb{N}\text{-}COMP_1$$

$$\frac{\Gamma,x:\mathbb{N}\vdash C:\mathcal{U}_i\quad \Gamma\vdash c_0:C[0/x]\quad \Gamma,x:\mathbb{N},y:C\vdash c_s:C[succ(x)/x]\quad \Gamma\vdash n:\mathbb{N}}{\Gamma\vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,succ(n))\equiv c_s[n,ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n)/x,y]:C[succ(n)/x]}\ \mathbb{N}\text{-}COMP_2}$$

2.11 恆等類型

定義 2.13 恆等類型

便等類型
$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A}{\Gamma \vdash a =_A b : \mathcal{U}_i} = -FORM$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a_1 \equiv a_2 : A \quad \Gamma \vdash b_1 \equiv b_2 : A}{\Gamma \vdash a_1 =_A b_1 \equiv a_2 =_A b_2 : \mathcal{U}_i} = -FORM\text{-}EQ$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a_1 =_A b_1}{\Gamma \vdash refl_a : a =_A a} = -INTRO$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a_1 \equiv a_2 : A}{\Gamma \vdash refl_{a_1} \equiv refl_{a_2} : a_1 =_A a_1} = -INTRO$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i \quad \Gamma \vdash a_1 \equiv a_2 : A}{\Gamma \vdash refl_{a_1} \equiv refl_{a_2} : a_1 =_A a_1} = a_2 =_A a_2$$

$$= -INTRO\text{-}EQ$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash q : a =_A b}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, b, q) : C[a, b, q/x, y, p]} = -ELIM$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash q_1 \equiv q_2 : a =_A b}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, b, q_2) : C[a, b, q_1/x, y, p] \equiv C[a, b, q_2/x, y, p]} = -ELIM\text{-}EQ}$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, a, refl_a) \equiv c[a/z] : C[a, a, refl_a/x, y, p]} = -COMP}$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, a, refl_a) \equiv c[a/z] : C[a, a, refl_a/x, y, p]} = -COMP}$$

$$\frac{\Gamma, x : A, y : A, p : x =_A y \vdash C : \mathcal{U}_i \quad \Gamma, z : A \vdash c : C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a : A}{\Gamma \vdash ind_{=_A}(x y.p.C, z.c. a, a, refl_a) \equiv c[a/z] : C[a, a, refl_a/x, y, p]} = -COMP}$$

2.12 定義

例子 2.1 $\circ := (A : \mathcal{U}_i) \mapsto (B : \mathcal{U}_i) \mapsto (C : \mathcal{U}_i) \mapsto (g : B \to C) \mapsto (f : A \to B) \mapsto (x : A) \mapsto g(f(x)).$

3 同倫類型論

3.1 類型是高維羣胚

引理 3.1 對於任何 $A:\mathcal{U}_i,x,y:A$,都能構造一個函數 $_{-}^{-1}:(x=_Ay) \to (y=_Ax)$ 使得 $(refl_x)^{-1}\equiv refl_x.$

 p^{-1} 稱爲 p 的**逆**.

Proof. 第一種證明

設 $A: \mathcal{U}_i, D: (x,y:A) \to (x=Ay) \to \mathcal{U}_i, D(x,y,p) :\equiv (y=Ax).$

隨即我們就能構造一個函數 $d := x \mapsto \operatorname{refl}_x : (x : A) \to D(x, x, \operatorname{refl}_x)$.

然後根據恆等類型的消除規則我們有,對於任何 $x,y:A,p:(x=_Ay)$, 可以構造項 $\operatorname{ind}_{=,\cdot}(D,d,x,y,p):(y=_Ax)$.

現在對於任何 x,y:A 我們可以定義期望得到的函數 $_^{-1}:\equiv p\mapsto \mathrm{ind}_{=_4}(D,d,x,y,p).$

由恆等類型的計算規則, $(\operatorname{refl}_x)^{-1} \equiv \operatorname{refl}_x$.

Proof. 第二種證明

對於每個 x,y:A 和 p:x=y,我們想要構造一個項 $p^{-1}:y=x$. 根據 p 的道路歸納,我們只需要給出 y 是 x 且 p 是 refl_x 時的構造. 在該情况下, refl_x 和 refl_x^{-1} 的類型都是 x=x. 因此我們可以簡單地定義 $\mathrm{refl}_x^{-1}:\equiv \mathrm{refl}_x$. 於是根據道路歸納,我們完成了構造.

引理 3.2 對於任何 $A: \mathcal{U}_i, x, y, z: A$,都能構造一個函數 • : $(x =_A y) \to (y =_A z) \to (x =_A z)$ 使得 $refl_x$ • $refl_x:\equiv refl_x$.

p•q稱爲p和q的連接.

Proof. 第一種證明

期望得到的函數擁有類型 $(x,y,z:A) \rightarrow (x=_A y) \rightarrow (y=_A z) \rightarrow (x=_A z).$

我們將改爲定義一個函數, 擁有和預期等價的類型 $(x,y:A) \to (x=_A y) \to (z:A) \to (y=_A z) \to (x=_A z)$, 這允許我們使用兩次恆等類型的消除規則.

設 $D:(x,y:A) \to (x=Ay) \to \mathcal{U}_i, D(x,y,p) :\equiv (z:A) \to (q:y=Az) \to (x=Az).$

然後,爲了對 D 應用恆等類型的消除規則,我們需要類型爲 $(x:A) \to D(x,x,\mathrm{refl}_x)$ 的函數,也就是類型爲 $(x,z:A) \to (q:x=_Az) \to (x=_Az)$.

現在設 $E:(x,z:A) \rightarrow (q:x=_Az) \rightarrow \mathcal{U}_i, E(x,z,q) :\equiv (x=_Az).$

隨即我們能構造函數 $e := x \mapsto \operatorname{refl}_r : (x : A) \to E(x, x, \operatorname{refl}_r)$.

對 E 應用恆等類型的消除規則,我們得到函數 $d:(x,z:A) \to (q:x=_Az) \to E(x,z,q), x \mapsto z \mapsto q \mapsto \operatorname{ind}_{=+}(E,e,x,z,q).$

因爲 $E(x,z,q)\equiv(x=_Az)$,所以 $d:(x:A)\rightarrow D(x,x,\mathrm{refl}_x)$.

然 後 對 D 應 用 恆 等 類 型 的 消 除 規 則 我 們 有 , 對 於 任 何 $x,y:A,p:(x=_Ay)$, 可 以 構 造 項 $\operatorname{ind}_{=_A}(D,d,x,y,p) \equiv \operatorname{ind}_{=_A}\left(D,(x,z:A) \mapsto (q:y=_Az) \mapsto \operatorname{ind}_{=_A}(E,e,x,z,q),x,y,p\right):(z:A) \to (q:y=_Az) \to (x=_Az).$

於是我們有

$$(x,y:A) \mapsto (p:x=_A y) \mapsto \operatorname{ind}_{=_A} \left(D, (x,z:A) \mapsto (q:y=_A z) \mapsto \operatorname{ind}_{=_A} (E,e,x,z,q), x,y,p\right):$$

$$(x,y:A) \rightarrow (x=_A y) \rightarrow (z:A) \rightarrow (y=_A z) \rightarrow (x=_A z)$$

現在對於任何 a,b,c:A 我們可以定義期望得到的函數

$$\bullet : \equiv (p:a =_A b) \mapsto \operatorname{ind}_{=_A} \left(D, (x:A) \mapsto (q:b =_A c) \mapsto \operatorname{ind}_{=_A} (E,e,x,c,q), a,b,p \right) :$$

$$(a,b,c:A) \rightarrow (a =_A b) \rightarrow (b =_A c) \rightarrow (a =_A c).$$

由恆等映射的計算規則,得

$$\operatorname{refl}_a \bullet \operatorname{refl}_a \equiv \operatorname{ind}_{=_A} \left(D, (x:A) \mapsto \operatorname{ind}_{=_A} (E,e,x,a,\operatorname{refl}_a), a,a,\operatorname{refl}_a \right) \equiv \operatorname{ind}_{=_A} (E,e,a,a,\operatorname{refl}_a) \equiv e(a) \equiv \operatorname{refl}_a.$$

Proof. 第二種證明

對於每個 x,y,z:A, p:x=y 和 q:y=z, 我們想要構造一個項 $p \cdot q:x=z$. 根據 p 的道路歸納, 我們只需要給出 $y \in \mathbb{R}$ 水 且 $p \in \mathbb{R}$ 時的構造,即對於每個 x,z:A 和 q:x=z, 構造一個項 $\operatorname{refl}_x \cdot q:x=z$. 根據 q 的道路歸納, 只需給出 $z \in \mathbb{R}$ 且 $q \in \mathbb{R}$ 時的構造,即對於每個 x:A,構造一個項 $\operatorname{refl}_x \cdot \operatorname{refl}_x:x=x$. 因此我們可以簡單地定義 $\operatorname{refl}_x \cdot \operatorname{refl}_x:x=x$. 因此我們可以簡單地定義 $\operatorname{refl}_x:x=x$. 因此我們可以簡單地定義 $\operatorname{refl}_x:x=x$.

引理 3.3 設 $A: \mathcal{U}_i$, x, y, z, w: A, p: x = y, q: y = z且 r: z = w. 我們有以下結論:

1. $p = p \cdot refl_u \perp p = refl_x \cdot p$;

 $2.\; p \bullet p^{-1} = refl_x \mathrel{\rlap{\ \perp}\!\!\!\!\perp} p^{-1} \bullet p = refl_y;$

3. $(p^{-1})^{-1} = p$;

4. $p \cdot (q \cdot r) = (p \cdot q) \cdot r$.

Proof. 所有證明都使用道路歸納.

 $1. \ \hat{\mathbf{x}} - \mathbf{\text{ #}} \ \hat{\mathbf{x}} \ D: (x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D(x,y,p) : \equiv \left(p = p \cdot \operatorname{refl}_y\right). \ \mathbf{\text{#}} \ \mathbf{\text{#}} \ D(x,x,\operatorname{refl}_x) \ \mathbf{\text{#}} \ \operatorname{refl}_x = \operatorname{refl}_x \cdot \operatorname{refl}_x = \operatorname{refl}_x \cdot \operatorname{refl}_x \equiv \operatorname{refl}_x, \\ \mathbf{\text{#}} \ \mathbf{\text{#}} \ \mathbf{\text{#}} \ D(x,x,\operatorname{refl}_x) \ \mathbf{\text{#}} \$

本書後面將把 $\operatorname{ind}_{=_A} \left((x,y,p) \mapsto \left(p = p \cdot \operatorname{refl}_y \right), x \mapsto \operatorname{refl}_{\operatorname{refl}_x}, x, y, p \right)$ 記爲 $\operatorname{\mathbf{ru}}_{\boldsymbol{p}}$,把 $\operatorname{ind}_{=_A} \left((x,y,p) \mapsto \left(p = \operatorname{refl}_y \cdot p \right), x \mapsto \operatorname{refl}_{\operatorname{refl}_x}, x, y, p \right)$ 記爲 $\operatorname{\mathbf{lu}}_{\boldsymbol{p}}$. 第二種證明:根據 p 的道路歸納,只需要假設 y 是 x 且 p 是 refl_x . 在該情況下, $p \cdot \operatorname{refl}_y \equiv \operatorname{refl}_x \cdot \operatorname{refl}_x \equiv \operatorname{refl}_x$. 因此只需證明 $\operatorname{refl}_x = \operatorname{refl}_x$, 這是簡單的,即 $\operatorname{refl}_{\operatorname{refl}_x} = \operatorname{refl}_x$.

2. 第一種證明: 設 $D:(x,y:A) \to (p:x=y) \to \mathcal{U}, D(x,y,p) \coloneqq (p \bullet p^{-1} = \operatorname{refl}_x)$. 那麼 $D(x,x,\operatorname{refl}_x)$ 是 $\operatorname{refl}_x \bullet \operatorname{refl}_x^{-1} = \operatorname{refl}_x$. 因爲 $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$ 且 $\operatorname{refl}_x \bullet \operatorname{refl}_x = \operatorname{refl}_x$,我們有 $D(x,x,\operatorname{refl}_x) \equiv (\operatorname{refl}_x = \operatorname{refl}_x)$. 因此可以構造函數 $d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \to D(x,x,\operatorname{refl}_x)$. 根據道路歸納,對於每個 x,y:A 和 p:x=y,我們有項 $\operatorname{ind}_{\equiv_x}(D,d,x,y,p):p \bullet p^{-1} = \operatorname{refl}_x$.

第二種證明:根據 p 的道路歸納,只需要假設 y 是 x 且 p 是 refl_x. 在該情況下, p • p⁻¹ ≡ refl_x • refl⁻¹ ≡ refl_x.

3. 第一種證明: 設 $D:(x,y:A) \to (p:x=y) \to \mathcal{U}, D(x,y,p) :\equiv \left(p^{-1}\right)^{-1} = p$. 那麼 D(x,x,p) 是 $\left(\operatorname{refl}_x^{-1}\right)^{-1} = \operatorname{refl}_x$. 因爲 $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$,所以 $\left(\operatorname{refl}_x^{-1}\right)^{-1} \equiv \operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$,那麼 $D(x,x,\operatorname{refl}_x) \equiv \left(\operatorname{refl}_x = \operatorname{refl}_x\right)$. 因此我們能構造函數 $d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \to D(x,x,\operatorname{refl}_x)$. 根據道路歸納,對於每個 x,y:A 和 p:x=y,我們有項 $\operatorname{ind}_{=_x}(D,d,x,y,p) : \left(p^{-1}\right)^{-1} = p$.

第二種證明: 根據 p 的道路歸納, 只需要假設 $y \in x$ 且 $p \in refl_x$. 在該情況下, $(p^{-1})^{-1} \equiv (refl_x^{-1})^{-1} \equiv refl_x$.

4. 我們想要構造的函數的類型是 $(x,y,z,w:A) \rightarrow (p:x=y) \rightarrow (q:y=z) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r)$, 我們改爲證明 $(x,y:A) \rightarrow (p:x=y) \rightarrow (z:A) \rightarrow (q:y=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r)$.

設 $D_1:(x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D_1(x,y,p):\equiv (z:A) \rightarrow (q:y=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r).$ 根據 p 的道路歸納,只需要構造類型爲 $(x:A) \rightarrow D_1(x,x,\mathrm{refl}_x) \equiv (x,z:A) \rightarrow (q:x=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (\mathrm{refl}_x \bullet (q \bullet r) = (\mathrm{refl}_x \bullet q) \bullet r)$ 的函數.

爲了構造這個類型的函數,我們設 $D_2:(x,z:A) \to (q:x=z) \to \mathcal{U}, D_2(x,z,q):\equiv (w:A) \to (r:z=w) \to (\mathrm{refl}_x \bullet (q \bullet r) = (\mathrm{refl}_x \bullet q) \bullet r).$ 根據 q 的 道路歸納,只需要構造類型爲 $(x:A) \to D(x,x,\mathrm{refl}_r) \equiv (x,w:A) \to (r:x=w) \to (\mathrm{refl}_r \bullet (\mathrm{refl}_r \bullet r) = (\mathrm{refl}_r \bullet r) \bullet r)$ 的函數.

爲了構造這個類型的函數,我們設 $D_3:(x,w:A) \to (r:x=w) \to \mathcal{U}, D_3(x,w,r):\equiv (\mathrm{refl}_x \bullet (\mathrm{refl}_x \bullet r) = (\mathrm{refl}_x \bullet \mathrm{refl}_x) \bullet r).$ 根據 r 的道路歸納,只需要構造類型爲 $(x:A) \to D_3(x,x,\mathrm{refl}_x) \equiv (x:A) \to (\mathrm{refl}_x \bullet (\mathrm{refl}_x \bullet \mathrm{refl}_x) = (\mathrm{refl}_x \bullet \mathrm{refl}_x) \bullet \mathrm{refl}_x) \equiv (x:A) \to \mathrm{refl}_x = \mathrm{refl}_x$ 的函數. 這是簡單的,即 $\mathrm{refl}_{\mathrm{refl}_x}$.

П

因此,應用3此道路歸納,我們就得到了想要的類型的函數.

引理 3.4 加鬚

- 1. 對於任何 a,b,c:A,p,q:a=b,我們可以構造函數 $_\bullet_r=(p=q)\to (r:b=c)\to (p\bullet r=q\bullet r), \alpha\bullet_r refl_b:\equiv ru_n^{-1}\bullet\alpha\bullet ru_a;$
- 2. 對於任何 a,b,c:A,q,r:b=c,我們可以構造函數 $_{-\mathbf{q}}_{-}:(p:a=b) \rightarrow (q=r) \rightarrow (p \bullet q=p \bullet r), refl_b \bullet_l \beta:\equiv lu_a^{-1} \bullet \beta \bullet lu_r.$

Proof. 略.

引理 3.5 對於任何 $a,b,c:A,p,q:a=b,r,s:b=c,\alpha:p=q,\beta:r=s$,我們有 $(\alpha \bullet_r r) \bullet (q \bullet_l \beta) = (p \bullet_l \beta) \bullet (\alpha \bullet_r s)$.

Proof. 略.

定理 3.1 Eckmann-Hilton

$$\left(\alpha,\beta:\Omega^2(A,a)\right)\to\left(\alpha\,{\scriptstyle\bullet\,}\beta=\beta\,{\scriptstyle\bullet\,}\alpha\right)$$

Proof. 略.

定義 3.1 有點類型

設 $A:\mathcal{U},a:A$. 序偶 $(A,a):(A:\mathcal{U})\times A$ 稱爲一個有點類型, a 稱爲它的基點. 類型 $(A:\mathcal{U})\times A$ 記爲 \mathcal{U}_{\bullet} .

定義 3.2 迴路空間

對於 $n:\mathbb{N}$,一個有點類型 (A,a) 的 n 重迭代迴路空間 $\Omega^n(A,a)$ 遞歸地定義爲

$$\Omega^0(A,a) :\equiv (A,a)$$
,

$$\Omega^1(A,a) :\equiv ((a =_A a), refl_a)$$
 ,

$$\Omega^{n+1}(A,a) :\equiv \Omega^n(\Omega(A,a)),$$

它的一個項稱爲點a的一個n維迴路.

慣例 3.1 設 $\Omega^n(A,a) \equiv (B,b)$. 則 $x:\Omega^n(A,a)$ 表示 x:B.

3.2 函數是函子

引理 3.6 對於任何 $A,B:\mathcal{U},f:A\to B,x,y:A$,都能構造函數 $\mathbf{ap_f}:(x=_Ay)\to (f(x)=_Bf(y)), ap_f(refl_x)\equiv refl_{f(x)}.$

Proof. 第一種證明: 設 $D:(x,y:A) \to (x=_A y) \to \mathcal{U}, D(x,y,p) :\equiv (f(x)=_B f(y)).$ 那麼我們有 $d:\equiv (x:A) \mapsto \operatorname{refl}_{f(x)}:(x:A) \to (f(x)=_B f(y)).$ 根據 p 的道路歸納,我們得到函數 $\operatorname{ap}_f:(x=_A y) \to (f(x)=_B f(y)).$ 根據恆等類型的計算規則,對於任何 x:A,有 $\operatorname{ap}_f(\operatorname{refl}_x) \equiv \operatorname{refl}_{f(x)}.$ 第二種證明: 爲了對任何 p:x=y 定義 $\operatorname{ap}_f(p)$,根據 p 的道路歸納,只需要構造 p 是 refl_x 的情况。在該情况下,我們定義 $\operatorname{ap}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}:f(x)=f(x).$

慣例 3.2 我們將經常將 $ap_f(p)$ 簡寫爲 f(p).

引理 3.7 對於任何函數 $f:A\to B, g:B\to C$ 和道路 $p:x=_Ay, q:y=_Az$,我們有:

- 1. $ap_f(p \cdot q) = ap_f(p) \cdot ap_f(q)$;
- 2. $ap_f(p^{-1}) = (ap_f(p))^{-1}$;
- 3. $ap_{q}(ap_{f}(p)) = ap_{q \circ f}(p);$
- 4. $ap_{id_A}(p) = p$.

Proof. 1. 根據的道路歸納, 只需要證明 $ap_f(refl_x \cdot refl_x) = ap_f(refl_x) \cdot ap_f(refl_x)$, 這太簡單, 遂略.

- 2. 根據道路歸納,只需要證明 $\operatorname{ap}_f(\operatorname{refl}_x^{-1}) = (\operatorname{ap}_f(\operatorname{refl}_x))^{-1}$,略.
- 3. 根據道路歸納,只需證明 $\operatorname{ap}_q(\operatorname{ap}_f(\operatorname{refl}_x)) = \operatorname{ap}_{g \circ f}(\operatorname{refl}_x)$,即 $\operatorname{ap}_q(\operatorname{refl}_{f(x)}) = \operatorname{refl}_{g \circ f}$,略.
- 4. 根據道路歸納,只需證明 $\operatorname{ap}_{\operatorname{id}_A}(\operatorname{refl}_x) = \operatorname{refl}_x$,略.

3.3 類型族是纖維化

引理 3.8 傳送

設 $B: A \to \mathcal{U}, x, y: A$, 則存在函數 $transport^B(_,_): p: x =_A y \to B(x) \to B(y), transport^B(refl_x, b) \equiv b.$

Proof. 第一種證明: 設 $D:(x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D(x,y,p) \coloneqq B(x) \rightarrow B(y)$. 那麼我們有函數 $d:\equiv (x:A) \mapsto \mathrm{id}_{B(x)}:D(x,x,\mathrm{refl}_x)$. 根據道路歸納,對於任何 x,y:A,p:x=y,我們有函數 $\mathrm{ind}_{=_A}(D,d,x,y,p):B(x) \rightarrow B(y)$. 於是我們可以定義,對於任何 p:x=y,函數 $\mathrm{transport}^B(p,_) \coloneqq \mathrm{ind}_{=_A}(D,d,x,y,p)$. 根據計算規則, $\mathrm{transport}^B(\mathrm{refl}_x,_) \equiv \mathrm{id}_{B(x)}$.

第二種證明:根據道路歸納,只需假設 p 是 refl_x . 在該情況下,對於任何 b:B(x),我們定義 $\mathrm{transport}^B(\mathrm{refl}_x,b):\equiv b$.

引理 3.9 道路提升

設 $P:A \to \mathcal{U}, x,y:A$. 則對於任何 u:P(x),p:x=y,我們有 $lift(u,p):(x,u)=_{(x:A)\times P(x)} \big(y,transport^P(p,u)\big), lift(u,refl_x)\equiv refl_{(x,u)}$.

Proof. 根據道路歸納,只需證明 $(x,u) = (x, \mathrm{id}_{P(x)}(u))$, 略.

引理 3.10 依賴映射

設 $B:A\to\mathcal{U},f:(x:A)\to B(x),x,y:A.$ 我們有映射 $apd_f:(p:x=_Ay)\to \left(transport^B(p,f(x))=_{B(y)}f(y)\right),apd_f(refl_x):\equiv refl_{f(x)}$.

Proof. 第 一 種 證 明 : 設 $D:(x,y:A) \to (x=y) \to \mathcal{U}, D(x,y,p) :\equiv \operatorname{transport}^B(p,f(x)) =_{B(y)} f(y).$ 於 是 我 們 有 函 數 $d:\equiv (x:A) \mapsto \operatorname{refl}_{f(x)}:(x:A) \to D(x,x,\operatorname{refl}_x).$ 根 據 道 路 歸 納 , 對 於 任 何 x,y:A,p:x=y, 我 們 有 函 數 $\operatorname{ind}_{=_A}(D,d,x,y,p) : \operatorname{transport}^B(p,f(x)) =_{B(y)} f(y).$ 於是我們可以定義,對於任何 p:x=y,函數 $\operatorname{apd}_f(p) :\equiv \operatorname{ind}_{=_A}(D,d,x,y,p).$ 根據計算規則, $\operatorname{apd}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}.$

第二種證明:根據道路歸納,只需假設 p 是 refl_x . 在該情況下,我們定義 $\operatorname{apd}_f(\operatorname{refl}_x) := \operatorname{refl}_{f(x)} : \operatorname{transport}^B(\operatorname{refl}_x, f(x)) =_{B(x)} f(x)$.

引理 3.11 設 $B: A \to \mathcal{U}, B(x) \coloneqq B, x, y: A$. 則能構造函數 $transportconst^B(_,_): (p: x = y) \to b: B \to b = transport^B(p,b)$.

Proof. 根據道路歸納,只需證明 $(b:B) \to b = \text{transport}^B(\text{refl}_x,b)$,即 $(b:B) \to b = b$. 顯然只需定義 $\text{transportconst}^B(\text{refl}_x,b) :\equiv \text{refl}_b$.

引理 3.12 設 $f:A \to B, x,y:A$. 則對於任何路徑 p:x=y,我們有類型爲 $ap_f(p)=transportconst^B(p,f(x)) \bullet apd_f(p)$ 的路徑.

Proof. 根據道路歸納,只需證明 $\operatorname{ap}_f(\operatorname{refl}_x) = \operatorname{transportconst}^B(\operatorname{refl}_x, f(x)) \bullet \operatorname{apd}_f(\operatorname{refl}_x)$,即 $\operatorname{refl}_{f(x)} = \operatorname{refl}_{f(x)} \bullet \operatorname{refl}_{f(x)}$,這是顯然的.

引 \mathcal{U} 3.13 $P:A \to \mathcal{U}$ $P:A \to \mathcal{U}$ P

引建 3.14 $(f:A \rightarrow B) \rightarrow (P:B \rightarrow \mathcal{U}) \rightarrow (x,y:A) \rightarrow (p:x=y) \rightarrow (u:P(f(x))) \rightarrow transport^{P \circ f}(p,u) = transport^{P}(ap_f(p),u)$.

Proof. 略.

引理 3.15

Proof. 略.

 $(P,Q:A\rightarrow \mathcal{U})\rightarrow (f:(x:A)\rightarrow P(x)\rightarrow Q(x))\rightarrow (x,y:A)\rightarrow (p:x=y)\rightarrow (u:P(x))\rightarrow transport^Q(p,f_x(u))=_{Q(y)}f_y(transport^P(p,u)).$

Proof. 略.

3.4 同倫和等價

定義 3.3 同倫

設 $P:A\to\mathcal{U},f,g:(x:A)\to P(x)$. 從 f 到 g 的一個**同倫**定義爲一個類型爲 $(f\sim g):\equiv (x:A)\to f(x)=g(x)$ 的函數.

引理 3.16 設 $f: A \rightarrow B$. 則 $(x:A) \mapsto refl_{f(x)}: f \sim f$.

Proof. 略.

引理 3.17 設 $P: A \rightarrow \mathcal{U}$. 我們有:

1. $(f:(x:A) \to P(x)) \to (f \sim f);$

2. $(f,g:(x:A)\to P(x))\to (f\sim g)\to (g\sim f)$;

3. $(f, g, h : (x : A) \rightarrow P(x)) \rightarrow (f \sim g) \rightarrow (g \sim h) \rightarrow (f \sim h)$.

Proof. 略.

引理 3.18 設 $f,g:A\to B,H:f\sim g$. 則對於任何 x,y:A,p:x=y 我們有 $H(x)\bullet g(p)=f(p)\bullet H(y)$,即下圖交換

Proof. 略.

推論 3.1 設 $f:A \rightarrow A, H:f \sim id_A$. 則對於任何 x:A 我們有 H(f(x))=f(H(x)).

Proof. 根據 H 的自然性, 我們有 $f(Hx) \cdot Hx = H(fx) \cdot Hx$, 即下圖交換

我們可以用 $(Hx)^{-1}$ 加鬚來消除 Hx, 得到 $f(Hx) = f(Hx) \cdot Hx \cdot (Hx)^{-1} = H(fx) \cdot Hx \cdot (Hx)^{-1} = H(fx)$.

定義 3.4 擬逆

對於一個函數 $f:A \to B$,它的一個擬逆是一個三元組 $(g,\alpha,\beta): \mathbf{qinv}(f) :\equiv (g:B \to A) \times [(g \circ f \sim id_A) \times (f \circ g \sim id_B)].$

定義 3.5 等價

對 於 任 何 函 數 $f:A \rightarrow B$, 定 義 $isequiv(f) :\equiv [(g:B \rightarrow A) \times (g \circ f \sim id_A)] \times [(h:B \rightarrow A) \times (f \circ h \sim id_B)]$, $(A \simeq B) :\equiv (f:A \rightarrow B) \times isequiv(f)$.

引理 3.19 1. 對於任何 $f: A \to B$, 存在函數 $qinv(f) \to isequiv(f)$;

2. 對於任何 $f: A \rightarrow B$,存在函數 $isequiv(f) \rightarrow qinv(f)$.

Proof. 1. 略.

2. 給 定 四 元 組 (g,α,h,β) : isequiv(f), 我 們 有 $\alpha:(x:A)\to (g\circ f)(x)=x,\beta:(y:B)\to (f\circ h)(y)=y$, 那 麼 我 們 有 同 倫 $g\circ \beta^{-1}:(y:B)\to g(y)=(g\circ f\circ h)(y)\equiv g\sim (g\circ f\circ h)$ 和 $\alpha\circ h:(y:B)\to (g\circ f\circ h)(y)=h(y)\equiv (g\circ f\circ h)\sim h$. 於 是 我 們 可 以 定 義 同 倫 $\gamma:\equiv (g\circ \beta^{-1})\bullet(\alpha\circ h):g\sim h\equiv (y:B)\to g(y)=h(y)$. 那 麼 $f\circ \gamma:(y:B)\to (f\circ g)(y)=(f\circ h)(y)\equiv (f\circ g)\sim (f\circ h)$. 於 是 有 $(f\circ \gamma)\bullet\beta:(f\circ g)\sim \mathrm{id}_B$. 所以有 $(g,\alpha,(f\circ \gamma)\bullet\beta):\mathrm{qinv}(f)$.

引理 3.20 1. 對於任何類型 $A: \mathcal{U}$, 我們有 $isequiv(id_A)$, 即 $A \simeq A$;

- 2. 對於任何函數 $f: A \to B$ 使得 isequiv(f), 即 $A \simeq B$, 我們有一個函數 $f^{-1}: B \to A$ 使得 $isequiv(f^{-1})$, 即 $B \simeq A$;
- 3. 對於任何函數 $f:A \to B$ 使得 isequiv(f) (即 $A \simeq B$) 和 $g:B \to C$ 使得 isequiv(g) (即 $B \simeq C$), 我們有 $isequiv(g \circ f)$ (即 $A \simeq C$).

 $Proof.\ 1.$ 我們要證明對於任何類型 $A: \mathcal{U}$ 有 $[(g: B \to A) \times (g \circ \mathrm{id}_A \circ \mathrm{id}_A)] \times [(h: B \to A) \times (\mathrm{id}_A \circ h \circ \mathrm{id}_B)]$, 略.

2. f 的擬逆.

$$3. f^{-1} \circ g^{-1}$$
 是 $g \circ f$ 的一個擬逆.

3.5 宇宙和泛等公理

引理 3.21 對於任何類型 $A, B: \mathcal{U}$,我們有一個函數 $idtoeqv_{A,B}: (A =_{\mathcal{U}} B) \rightarrow (A \simeq B)$.

Proof. 函數 $\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(_,_): (A =_{\mathcal{U}} B) \to A \to B$. 我們要證明 $(p: A =_{\mathcal{U}} B) \to \operatorname{isequiv}(\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(p,_))$. 根據 p 的道路歸納,只需證明 $\operatorname{isequiv}(\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(\operatorname{refl}_A,_))$,即證明 $\operatorname{isequiv}(\operatorname{id}_A)$.

定義
$$idtoeqv_{AB}(p) := (transport^{id_{\mathcal{U}}}(p, _), a) : A \simeq B$$
, 其中 $a : isequiv(transport^{id_{\mathcal{U}}}(p, _))$.

引理 3.22 $(id_A, a) = idtoeqv_A R(refl_A)$, 其中 $a : isequiv(id_A)$.

引理 3.23 對於任何 $x,y:A,p:x=y,B:A\to\mathcal{U},u:B(x)$, 我們有 $transport^B(p,u)=transport^{id_{\mathcal{U}}}(ap_B(p),u)=pr_1(idtoeqv(ap_B(p)))(u)$.

Proof. 根據歸納原理,只需證明 $transport^B(refl_x, u) = transport^{id_{\mathcal{U}}}(ap_B(refl_x), u) = pr_1(idtoeqv(ap_B(refl_x)))(u)$,略.

Proof. 略.

定義 3.6 泛等公理(不常用)

$$\frac{\varGamma \vdash A: \mathcal{U}_i \quad \varGamma \vdash B: \mathcal{U}_i}{\varGamma \vdash \boldsymbol{univalence}(A,B): isequiv(idtoeqv_{A,B})} \; \mathcal{U}_i\text{-}UNIV$$

引理 3.24 $(idtoeqv_{A,B}, univalence(A, B)) : (A =_{\mathcal{U}} B) \simeq (A \simeq B).$

Proof. №.

定義 3.7 泛等公理(常用)

- 1. 對於任何類型 $A, B: \mathcal{U}$, 我們有一個函數 $ua: (A \simeq B) \to (A =_{\mathcal{U}} B)$;
- 2. 對於任何 $(f,a): A \simeq B$, 我們有 $idtoeqv_{A,B}(\boldsymbol{ua}(f,a)) = (f,a)$;
- 3. 對於任何 $p: A =_{\mathcal{U}} B$, 我們有 $p = ua(idtoeqv_{A,B}(p))$.

引理 3.25 1. 對於任何類型 $A:\mathcal{U}$,我們有 $refl_A=ua(id_A,a)$,其中 $a:isequiv(id_A)$;

- 2. 對於任何 $(f,a):A\simeq B, (g,b):B\simeq C$,我們有 ua(f,a) $ua(g,b)=ua(g\circ f,c)$.
- 3. 對於任何 $(f,a): A \simeq B$ 和它的一個擬逆 (f^{-1},b) ,我們有 $(ua(f,a))^{-1} = ua(f^{-1},b)$.

Proof. 略.

3.6 恆等類型

定理 3.2 如果 $(f,a):A\simeq B$,則對於任何 x,x':A,函數 $ap_f:(x=x')\to (f(x)=f(x'))$ 也是一個等價.

Proof. 我 們 想 要 構 造 一 個 四 元 組 (g,γ,h,δ) : isequiv (ap_f) , 即 $g:(f(x)=f(x'))\to (x=x'),\gamma:(p:x=x')\to \big(g\big(\operatorname{ap}_f(p)\big)=p\big),h:(f(x)=f(x'))\to (x=x'),\delta:(q:f(x)=f(x'))\to \big(\operatorname{ap}_f(g(q))\big).$ 設 $(f^{-1},\alpha,\beta):\operatorname{qinv}(f)$, 即 $f^{-1}:B\to A,\alpha:(x:A)\to (f^{-1}(f(x))=x),\beta:(y:B)\to (f(f^{-1}(y))=y).$

```
於是對於任何 p: x = x', 我們有 \alpha_x^{-1} \cdot \operatorname{ap}_{f^{-1}}(\operatorname{ap}_f(p)) \cdot \alpha_{x'} = \alpha_x^{-1} \cdot \operatorname{ap}_{f^{-1}\circ f}(p) \cdot \alpha_{x'} = \operatorname{ap}_{\operatorname{id}_A}(p) = \operatorname{p}. 且對於任何 q: f(x) = f(x'), 我們有 \operatorname{ap}_f(\alpha_x^{-1} \cdot \operatorname{ap}_{f^{-1}}(q) \cdot \alpha_{x'}) = \beta_{f(x)}^{-1} \cdot \beta_{f(x)} \cdot \beta_{f(x)}^{-1} \cdot \operatorname{ap}_{f^{-1}}(q) \cdot \alpha_{x'}) \cdot \beta_{f(x')}^{-1} \cdot \beta_{f(x')} = \beta_{f(x)}^{-1} \cdot \operatorname{ap}_f(\alpha_x^{-1} \cdot \operatorname{ap}_{f^{-1}}(q) \cdot \alpha_{x'}) \cdot \beta_{f(x')}^{-1} = \beta_{f(x)}^{-1} \cdot \operatorname{ap}_f(\alpha_x^{-1} \cdot \operatorname{ap}_{f^{-1}}(q) \cdot \alpha_{x'} \cdot \alpha_x^{-1}) \cdot \beta_{f(x')} = \beta_{f(x)}^{-1} \cdot \operatorname{ap}_f(\alpha_x \cdot \alpha_x^{-1} \cdot \operatorname{ap}_{f^{-1}}(q) \cdot \alpha_{x'} \cdot \alpha_x^{-1}) \cdot \beta_{f(x')} = \beta_{f(x)}^{-1} \cdot \operatorname{ap}_f(\operatorname{ap}_f(\alpha_x)) \cdot \beta_{f(x')} = g
g.
```

那麼對於任何 x, x': A,我們有 $\operatorname{ap}_{f^{-1}}: (f(x) = f(x')) \to (f^{-1}(f(x)) = f^{-1}(f(x'))).$

$3.\ (q:x_1=x_2)\to transport^{x\mapsto (x=x)}(p,q)=p^{-1}\bullet q\bullet p.$ Proof. 略.

2. $(q:x_1=a) \rightarrow transport^{x \mapsto (x=a)}(p,q) = p^{-1} \bullet q$;

3.7 自然數

4 集合和邏輯

4.1 集合和 n-類型

定義 4.1 集合 (0-類型)

設 A: U.

$$isSet(A) :\equiv (x,y:A) \rightarrow (p,q:x=y) \rightarrow (p=q)$$

定義 4.2 1-類型

一個類型 A 是一個 **1-類型** 如果 $(x,y:A) \rightarrow (p,q:x=y) \rightarrow (\alpha,\beta:p=q) \rightarrow (\alpha=\beta).$

引理 4.1 如果 A 是一個集合,則 A 是一個 1-類型.

Proof. 我們想證明 $[(x,y:A) \rightarrow (p,q:x=y) \rightarrow (p=q)] \rightarrow (x,y:A) \rightarrow (p,q:x=y) \rightarrow (\alpha,\beta:p=q) \rightarrow (\alpha=\beta).$

設 f: isSet(A). 那麼對於任何 x,y:A 和 p,q:x=y 我們有 p=q. 給定 x,y 和 p,定義 $g:(q:x=y)\to (p=q), g:\equiv f(x,y,p,_)$. 那麼對於任何 q,q':x=y 和 $\alpha:q=q'$,我們有 $\mathrm{apd}_q(\alpha):$ transport $^{g\mapsto (p=q)}(\alpha,g(q))=g(q')$,也就有 $g(q)\bullet\alpha=g(q')$.

因此對於任何 $x,y:A,p,q:x=y,\alpha,\beta:p=q$, 我們有 $g(p) \bullet \alpha = g(q)$ 且 $g(p) \bullet \beta = g(q)$, 也就有 $g(p) \bullet \alpha = g(p) \bullet \beta$, 也就有 $\alpha = \beta$.

4.2 命題

定義 4.3 命題

設 A: U.

$$isProp(A) :\equiv (x, y : A) \rightarrow (x = y)$$