

icclim a python library to compute climate indices

Christian Pagé CERFACS, Toulouse, France

Abel Aoun

icclim: Index Calculation for Climate

- Intra-period extreme temperature range [°C] ETR
- Warm days (days with mean temperature > 90th percentile of daily mean temperature) **TG90p**
- Summer days (days with max temperature > 25 °C) SU
- Python code developed at Cerfacs since September 2013
- Funded by EU FP7 IS-ENES2, FP7 CLIPC and H2020 IS-ENES3
- Generic and modular approach, can be reused in other environments
- New V5 completely rewritten and using underlying xclim functions, based on xarray and dask
- I/O interface is structured for optimal performance
- Implement the proper percentile indices calculations when calculation period overlaps reference period (called bootstrapping method)
- Available indices: https://icclim.readthedocs.io/en/latest/explanation/climate indices.html#icclim-capabilities

https://github.com/cerfacs-globc/icclim


```
import icclim
summer_days = icclim.su("netcdf_files/tasmax_1990-2100.nc", out_file="summer_days.nc")
```


icclim: examples

notebooks: https://gitlab.com/is-enes-cdi-c4i/notebooks/

```
KNMI TX
tx_files = glob.glob(f"netcdf_files/knmi/clean/*tx*.nc")
bp = [datetime.datetime(1901, 1, 1), datetime.datetime(1921, 12, 31)]
icclim.index(index_name='tx90p',
             in_files=tx_files,
             base_period_time_range=bp,
             slice_mode='YS',
             out_file="netcdf_files/output/out.nc")
```


[new in 5.1.0] Compute multiple indices at once

Documentation https://icclim.readthedocs.io/en/latest/how-to/recipes ecad.html#multi-indexcomputation

```
[datetime.datetime(1991, 1, 1), datetime.datetime(1999, 12, 31)]
     [datetime.datetime(1991, 1, 1), datetime.datetime(2010, 12, 31)]
res = icclim.indices(
    index_group=IndexGroup.HEAT,
    in_files="./netcdf_files/climpact.sampledata.gridded.1991-2010.nc",
    base_period_time_range=bp,
   time_range=tr,
    out_file="pouetpouet.nc",
```


[new in 5.2.0] one function per index

Documentation: https://icclim.readthedocs.io/en/latest/references/ecad-functions-api.html

```
import glob
import icclim
summer_days = icclim.su(
    in_files=glob.glob("netcdf_files/tasmax*.nc"),
   out_file="summer_days.nc",
```


[new in 5.3.0] custom season between exact dates

```
result = icclim.su(
    in_files=xr.open_dataset(climp_file).tmax,
    slice_mode=["season", ["19-07", "8 Aout"]],
).compute()
```


[new in 6.0] Spells starting before the season bounds are properly counted

Say we want to compute cdd on a monthly basis...

CDD: number of consecutive where pr < 1 mm/day

```
cdd = icclim.cdd(in_files=precipitation, slice_mode="month").CDD.compute()
```

Should February cdd be 3 days or 4?

With icclim 6 we count spells length before resampling into monthly values, So CDD in February would be 4 here

[new in 6.0] Generic indices — What?

What's the difference between SU, FD and Tx90p?

Number of days where tx > 25 degCNumber of days where tn < 0 degC -Number of days where tx > 90th (daily) percentile

An operator

A studied variable

A threshold

For our output, we want the right computation to executed and to have specific metadata to clearly identify:

- What was the computation configuration
- What was the initial data used

[new in 6.0] Generic indices – How?

```
icclim.index(in_files=climp_file,
     Operatorindex_name="count_occurrences",
tudied variable var_name="tmax",
   Threshold threshold=" ≥ 20 deg_C",
              ).compute()
```

Not CF proof!

standard_name: number_of_days_with_maximum_air_temperature_above_threshold long name: Number of days when maximum air temperature is greater or equal to 293.15 K for each year.

units: d

cell methods: time: sum over days


```
thresh = Threshold(" ≥ 75 period_per",
                   threshold_min_value="1 mm/day",
                   reference_period=['1991-01-01', "31 décembre 2000"])
r75p = icclim.index(climp_file,
  pr_thresh = Threshold("≥ 75 doy_per", threshold_min_value="1 mm/day")
  temp_thresh = Threshold("≥ 75 doy_per")
  c_w = icclim.index(climp_file,
     pr_thresh = Threshold("≥ 75 doy_per", threshold_min_value="1 mm/day")
     temp_thresh = Threshold("≥ 75 doy_per")
    wind_thresh = Threshold("≥ 95 doy_per")
     c_w_w = icclim.index(ds,
                       index_name="count_occurrences",
                       var_name=["precip", "tmax", "sfcWind"],
                       threshold=[pr_thresh, temp_thresh, wind_thresh])
```


[new in 6.0] Generic indices – Operators

count_occurrences	SU, TR, TG90p, CD, R95p SD50cm
max_consecutive_occurrence	CSU, CFD, CDD, CWD
sum_of_spell_lengths	WSDI, CSDI
excess	GD4
deficit	HD17
fraction_of_total	R75pTOT, R95pTOT, r99pTOT
maximum	RX1day, TXx, TNx, custommaximum
minimum	TXn, TNn, user_index - minimum
average	TG, TN, TX, SDII, SD, custommean
sum	PRCPTOT, customsum
standard_deviation	**new**
max_of_rolling_sum	RX5day, user_indexrolling_sum
min_of_rolling_sum	customrolling_sum
min_of_rolling_average	customrolling_mean
max_of_rolling_average	customrolling_mean
mean_of_difference	DTR
difference_of_extremes	ETR
mean_of_absolute_one_time_step_difference	vDTR
difference_of_means	custom_anomaly

[new in 6.0] Generic indices – Thresholds

Scalar	Threshold(query=">=", value=25, unit="degC")
Day of year percentiles	Threshold(query=">=", value=99, unit="doy_per")
Period percentiles	Threshold(query=">=", value=99, unit="period_per")
Bounded period percentiles.	Threshold(">= 75 period_per".
	threshold_min_value="1 mm/day",
	reference_period=['1991-01-01',
	"31 décembre 2000"])
Per-grid cell threshold	Threshold(query=">=", value="data.nc", threshold_var_name="tmin", unit="K")
Sequence of scalars	Threshold(query=">=", value=[25, 29], unit="degC")

A F.A.I.R icclim

Findable:

- Open source code, licensed under the permissive Apache 2 license.
- Try to follow <u>OpenSSF principles</u>
- Documentation freely available on readthedocs
- Dissemination by Christian in conferences (AGU, AMS, EGU...).
- Integrated in C41 and C3S.

Accessible

- Documentation on readthedocs.
- Github issues and pull requests.
- CERFACS support the development.
- Can be installed with pip or conda-forge.

Interoperable

- Based on well knowns libraries: xarray, xclim, numpy.
- Support NetCDF and xarray.Dataset input formats.
- Indices are deriviated from ECA&D and CF conventions standards.
- icclim custom parsing for non CF complying inputs.

Reusable

- NetCDF output, with enriched metadata.
- Easy to integrate within existing infrastructures.
- Easy to write small scripts with it.

What could be next?

- Improve bootstrap performances
- Improve documentation
- Add Provenance metadata
- Create a D.S.L to handle requests such as `count days where tx > 25 °C`

icclim users

Égalité Fraternité

Researchers

Created by Tippawan Soo

Thanks!

THE CONSORTIUM

Coordinated by CNRS-IPSL, the IS-ENES3 project gathers 22 partners in 11 countries

UK Research and Innovation

Christian Pagé Abel Aoun

christian.page@cerfacs.fr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°824084

Our website

https://is.enes.org/

Follow us on Twitter! **@ISENES RI**

Contact us at

is-enes@ipsl.fr

Follow our channel **IS-ENES3 H2020**

