(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 October 2002 (10.10.2002)

PCT

(10) International Publication Number WO 02/079492 A2

(51) International Patent Classification⁷:

C12Q

English

- (21) International Application Number: PCT/US02/04915
- **(22) International Filing Date:** 14 February 2002 (14.02.2002)
- (26) Publication Language: English
- (30) Priority Data:

(25) Filing Language:

09/784,356	14 February 2001 (14.02.2001)	US
09/791,390	22 February 2001 (22.02.2001)	US
60/285,475	19 April 2001 (19.04.2001)	US
60/310,025	3 August 2001 (03.08.2001)	US
60/350,666	13 November 2001 (13.11.2001)	US
60/334,244	29 November 2001 (29.11.2001)	US

- (71) Applicant: EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080-7019 (US).
- (72) Inventors: MURRAY, Richard; 22643 Woodridge Court, Cupertino, CA 95014 (US). GLYNNE, Richard; 2039 Alma Street, Palo Alto, CA 94301 (US). WATSON, Susan, R.; 805 Balra Drive, El Cerrito, CA 94530 (US). AZIZ, Natasha; 411 California Avenue, Palo Alto, CA 94306 (US).

- (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111-3834 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

079492 A

(54) Title: METHODS OF DIAGNOSIS OF ANGIOGENESIS, COMPOSITIONS AND METHODS OF SCREENING FOR ANGIOGENESIS MODULATORS

METHODS OF DIAGNOSIS OF ANGIOGENESIS, COMPOSITIONS AND METHODS OF SCREENING FOR ANGIOGENESIS MODULATORS

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to USSN 09/784,356, filed February 14 2001; USSN 09/791,390, filed February 22, 2001; USSN 60/285,475, filed April 19, 2001, USSN 60/310,025, filed August 3, 2001, and USSN 60/334,244, filed November 29, 2001, each of which is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

15

10

5

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in angiogenesis; and to the use of such expression profiles and compositions in diagnosis and therapy of angiogenesis. The invention further relates to methods for identifying and using agents and/or targets that modulate angiogenesis.

20

25

BACKGROUND OF THE INVENTION

Both vasculogenesis, the development of an interactive vascular system comprising arteries and veins, and angiogenesis, the generation of new blood vessels, play a role in embryonic development. In contrast, angiogenesis is limited in a normal adult to the placenta, ovary, endometrium and sites of wound healing. However, angiogenesis, or its absence, plays an important role in the maintenance of a variety of pathological states. Some of these states are characterized by neovascularization, *e.g.*, cancer, diabetic retinopathy, glaucoma, and age related macular degeneration. Others, *e.g.*, stroke, infertility, heart disease, ulcers, and scleroderma, are diseases of angiogenic insufficiency.

30

Angiogenesis has a number of stages (see, e.g., Folkman, J.Natl Cancer Inst. 82:4-6, 1990; Firestein, J Clin Invest. 103:3-4, 1999; Koch, Arthritis Rheum. 41:951-62, 1998; Carter, Oncologist 5(Suppl 1):51-4, 2000; Browder et al., Cancer Res. 60:1878-86, 2000; and Zhu and Witte, Invest New Drugs 17:195-212, 1999). The early stages of angiogenesis

include endothelial cell protease production, migration of cells, and proliferation. The early stages also appear to require some growth factors, with VEGF, TGF-α, angiostatin, and selected chemokines all putatively playing a role. Later stages of angiogenesis include population of the vessels with mural cells (pericytes or smooth muscle cells), basement membrane production, and the induction of vessel bed specializations. The final stages of vessel formation include what is known as "remodeling", wherein a forming vasculature becomes a stable, mature vessel bed. Thus, the process is highly dynamic, often requiring coordinated spatial and temporal waves of gene expression.

5

10

15

20

25

30

Conversely, the complex process may be subject to disruption by interfering with one or more critical steps. Thus, the lack of understanding of the dynamics of angiogenesis prevents therapeutic intervention in serious diseases such as those indicated. It is an object of the invention to provide methods that can be used to screen compounds for the ability to modulate angiogenesis. Additionally, it is an object to provide molecular targets for therapeutic intervention in disease states which either have an undesirable excess or a deficit in angiogenesis. The present invention provides solutions to both.

SUMMARY OF THE INVENTION

The present invention provides compositions and methods for detecting or modulating angiogenesis associated sequences.

In one aspect, the invention provides a method of detecting an angiogenesis-associated transcript in a cell in a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridized to a sequence at least 80% identical to a sequence as shown in Tables 1-8. In one embodiment, the biological sample is a tissue sample. In another embodiment, the biological sample comprises isolated nucleic acids, which are often mRNA.

In another embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide. Often, the polynucleotide comprises a sequence as shown in Tables 1-8. The polynucleotide can be labeled, for example, with a fluorescent label and can be immobilized on a solid surface.

In other embodiments the patient is undergoing a therapeutic regimen to treat a disease associated with angiogenesis or the patient is suspected of having an angiogenesis-associated disorder.

In another aspect, the invention comprises an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1-8. The nucleic acid molecule can be labeled, for example, with a fluorescent label,

In other aspects, the invention provides an expression vector comprising an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1-8 or a host cell comprising the expression vector.

In another embodiment, the isolated nucleic acid molecule encodes a polypeptide having an amino acid sequence as shown in Table 8.

5

10

15

20

25

30

In another aspect, the invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-8. In one embodiment, the isolated polypeptide has an amino acid sequence as shown in Table 8.

In another embodiment, the invention provides an antibody that specifically binds a polypeptide that has an amino acid sequence as shown in Table 8 or which is encoded by a nucleotide sequence of Tables 1-8. The antibody can be conjugated or fused to an effector component such as a fluorescent label, a toxin, or a radioisotope. In some embodiments, the antibody is an antibody fragment or a humanized antibody.

In another aspect, the invention provides a method of detecting a cell undergoing angiogenesis in a biological sample from a patient, the method comprising contacting the biological sample with an antibody that specifically binds to a polypeptide that has an amino acid sequence as shown in Table 8 or which is encoded by a nucleotide sequence of Tables 1-8. In some embodiments, the antibody is further conjugated or fused to an effector component, for example, a fluorescent label.

In another embodiment, the invention provides a method of detecting antibodies specific to angiogenesis in a patient, the method comprising contacting a biological sample from the patient with a polypeptide which is encoded by a nucleotide sequence of Tables 1-8.

The invention also provides a method of identifying a compound that modulates the activity of an angiogenesis-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a polypeptide that comprises at least 80% identity to an amino acid sequence as shown in Table 8 or which is encoded by a nucleotide sequence of Tables 1-8; and (ii) detecting an increase or a decrease in the activity of the polypeptide. In one embodiment, the polypeptide has an amino acid sequence as shown in Table 8 or is a

polypeptide encoded by a nucleotide sequence of Tables 1-8. In another embodiment, the polypeptide is expressed in a cell.

5

10

15

20

25

30

The invention also provides a method of identifying a compound that modulates angiogenesis, the method comprising steps of: (i) contacting the compound with a cell undergoing angiogenesis; and (ii) detecting an increase or a decrease in the expression of a polypeptide sequence as shown in Table 8 or a polypeptide which is encoded by a nucleotide sequence of Tables 1-8. In one embodiment, the detecting step comprises hybridizing a nucleic acid sample from the cell with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-8. In another embodiment, the method further comprises detecting an increase or decrease in the expression of a second sequence as shown in Table 8 or a polypeptide which is encoded by a nucleotide sequence of Tables 1-8.

In another embodiment, the invention provides a method of inhibiting angiogenesis in a cell that expresses a polypeptide at least 80% identical to a sequence as shown in Table 8 or which is 80% identical to a polypeptide encoded by a nucleotide sequence of Tables 1-8, the method comprising the step of contacting the cell with a therapeutically effective amount of an inhibitor of the polypeptide. In one embodiment, the polypeptide has an amino acid sequence shown in Table 8 or is a polypeptide which is encoded by a nucleotide sequence of Tables 1-8. In another embodiment, the inhibitor is an antibody.

In other embodiments, the invention provides a method of activating angiogenesis in a cell that expresses a polypeptide at least 80% identical to a sequence as shown in Table 8 or at least 80% identical to a polypeptide which is encoded by a nucleotide sequence of Tables 1-8, the method comprising the step of contacting the cell with a therapeutically effective amount of an activator of the polypeptide. In one embodiment, the polypeptide has an amino acid sequence shown in Table 8 or is a polypeptide which is encoded by a nucleotide sequence of Tables 1-8.

Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

Tables 1-8 provide nucleotide sequence of genes that exhibit changes in expression levels as a function of time in tissue undergoing angiogenesis compared to tissue that is not.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and treatment of disorders associated with angiogenesis (sometimes referred to herein as angiogenesis disorders or AD), as well as methods for screening for compositions which modulate angiogenesis. By "disorder associated with angiogenesis" or "disease associated with angiogenesis" herein is meant a disease state which is marked by either an excess or a deficit of blood vessel development. Angiogenesis disorders associated with increased angiogenesis include, but are not limited to, cancer and proliferative diabetic retinopathy. Pathological states for which it may be desirable to increase angiogenesis include stroke, heart disease, infertility, ulcers, wound healing, ischemia, and scleradoma. Solid tumors typically require angiogenesis to support or sustain growth, e.g., breast, colon, lung, brain, bladder, and prostate tumors. Other AD include, e.g., arthritis, inflammatory bowel disease, diabetis retinopathy, macular degeneration, atherosclerosis, and psoriasis. Also provided are methods for treating AD.

15 **Definitions**

5

10

20

25

30

The term "angiogenesis protein" or "angiogenesis polynucleotide" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acids, to an angiogenesis protein sequence of Table 8; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence of Table 8, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to an anti-sense strand corresponding to a nucleic acid sequence of Tables 1-8 and conservatively modified variants thereof; (4) have a nucleic acid sequence that has greater than about 95%, preferably greater than about 96%, 97%, 98%, 99%, or higher nucleotide sequence identity, preferably over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a sense sequence corresponding to one set out in Tables 1-8. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or any mammal. An "angiogenesis polypeptide" and an "angiogenesis polynucleotide," include both naturally occurring or recombinant.

A "full length" angiogenesis protein or nucleic acid refers to an agiogenesis polypeptide or polynucleotide sequence, or a variant thereof, that contains all of the elements normally contained in one or more naturally occurring, wild type angiogenesis polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of post-translation processing.

5

10

15

20

25

30

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of an angiogenic protein. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, and frozen sections taken for histologic purposes. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention *in vivo*. Archival tissues, having treatment or outcome histroy, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 70% identity, preferably 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region (e.g., SEQ ID NOS:1-229), when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, *Adv. Appl. Math.* 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, *J. Mol. Biol.* 48:443 (1970), by the search for similarity method of Pearson & Lipman, *Proc. Nat'l. Acad. Sci. USA* 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (*see, e.g., Current Protocols in Molecular Biology* (Ausubel *et al.*, eds. 1995 supplement)).

A preferred example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul *et al.*, *Nuc. Acids Res.* 25:3389-3402 (1977) and Altschul *et al.*, *J. Mol. Biol.* 215:403-410 (1990), respectively. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul *et al.*, *supra*). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as

far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

5

10

15

20

25

30

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (*see, e.g.*, Karlin & Altschul, *Proc. Nat'l. Acad. Sci. USA* 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be

prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, *e.g.*, the American Type Culture Collection catalog or web site, www.atcc.org).

5

10

15

20

25

30

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified

variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence with respect to the expression product, but not with respect to actual probe sequences.

5

10

15

20

25

30

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.

The following eight groups each contain amino acids that are conservative substitutions for one another:1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, *see*, *e.g.*, Alberts *et al.*, *Molecular Biology of the Cell* (3^{rd} ed., 1994) and Cantor and Schimmel, *Biophysical Chemistry Part I: The Conformation of Biological Macromolecules* (1980). "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional

structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

5

10

15

20

25

30

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include ³²P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide.

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, for example, detection moieties including radioactive compounds, fluroescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" *e.g.*, beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, *e.g.*, biotin, streptavidin.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (*i.e.*, A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus, for example, probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled as with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin

complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.

5

10

15

20

25

30

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, *e.g.*, a promoter from one source and a coding region from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (*e.g.*, a fusion protein).

A "promoter" is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

5

10

15

20

25

30

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1% SDS at 65°C. For PCR, a temperature of about 36°C is typical for low stringency amplification, although annealing temperatures may vary between about 32°C and 48°C depending on primer length. For high stringency PCR amplification, a temperature of about 62°C is typical, although high stringency annealing temperatures can range from about 50°C to about 65°C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90°C - 95°C for 30 sec - 2 min., an annealing phase lasting 30 sec. - 2 min., and an extension phase of about 72°C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification

reactions are provided, e.g., in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.).

5

10

15

20

25

30

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, *e.g.*, and Current Protocols in Molecular Biology, ed. Ausubel, *et al*

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of an angiogenesis protein includes the determination of a parameter that is indirectly or directly under the influence of the angiogenesis protein, *e.g.*, a functional, physical, or chemical effect, such as the ability to increase or decrease angiogenesis. It includes binding activity, the ability of cells to proliferate, expression in cells undergoing angiogenesis, and other characteristics of angiogenic cells. "Functional effects" include *in vitro*, *in vivo*, and *ex vivo* activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of an angiogenesis protein sequence, e.g., functional, physical and chemical effects. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the angiogenesis protein; measuring binding activity or binding assays, e.g. binding to antibodies, and measuring cellular proliferation, particularly endothelial cell proliferation, cell viability, cell division especially of endothelial cells, lumen formation and capillary or vessel growth or formation. Determination of the functional effect of a compound on angiogenesis can also be performed using angiogenesis assays known to those of skill in the art such as an in vitro assays, e.g., in vitro endothelial cell tube formation assays, and other assays such as the chick CAM assay, the mouse corneal assay, and assays that assess vascularization of an implanted tumor. The

functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, e.g., tube or blood vessel formation, measurement of changes in RNA or protein levels for angiogenesis-associated sequences, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β -gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

5

10

15

20

25

30

"Inhibitors", "activators", and "modulators" of angiogenic polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules identified using in vitro and in vivo assays of angiogenic polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of angiogenesis proteins, e.g., antagonists. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate angiogenesis protein activity. Inhibitors, activators, or modulators also include genetically modified versions of angiogenesis proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the angiogenic protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of angiogenesis can also be identified by incubating angiogenic cells with the test compound and determining increases or decreases in the expression of 1 or more angiogenesis proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more angiogenesis proteins, such as angiogenesis proteins comprising the sequences set out in Table 8.

Samples or assays comprising angiogenesis proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of an angiogenesis polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody will be most critical in specificity and affinity of binding.

5

10

15

20

25

30

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990))

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4: 72 (1983); Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985); Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies, A Laboratory Manual (1988); and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986)).

Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348:552-554 (1990); Marks et al., Biotechnology 10:779-783 (1992)).

A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.

The detailed description of the invention includes discussion of the following

15 aspects of the invention:

5

10

20

30

Expression of angiogenesis-associated sequences

Informatics

Angiogenesis-associated sequences

Detection of angiogenesis sequence for diagnostic and therapeutic applications

Modulators of angiogenesis

Methods of identifying variant angiogenesis-associated sequences

Administration of pharmaceutical and vaccine compositions Kits for use in diagnostic and/or prognostic applications.

25 Expression of angiogenesis-associated sequences

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is unique to the state of the cell. That is, normal tissue may be distinguished from AD tissue. By comparing expression profiles of tissue in known different angiogenesis states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. The identification of sequences that are

differentially expressed in angiogenic versus non-angiogenic tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to down-regulate angiogenesis, and thus tumor growth or recurrence, in a particular patient. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Angiogenic tissue can also be analyzed to determine the stage of angiogenesis in the tissue. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to mimicking or altering a particular expression profile; for example, screening can be done for drugs that suppress the angiogenic expression profile. This may be done by making biochips comprising sets of the important angiogenesis genes, which can then be used in these screens. These methods can also be done on the protein basis; that is, protein expression levels of the angiogenic proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the angiogenic nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the angiogenic proteins (including antibodies and other modulators thereof) administered as therapeutic drugs.

5

10

15

20

25

30

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in angiogenesis, herein termed "angiogenesis sequences". As outlined below, angiogenesis sequences include those that are up-regulated (i.e. expressed at a higher level) in disorders associated with angiogenesis, as well as those that are down-regulated (i.e. expressed at a lower level). In a preferred embodiment, the angiogenesis sequences are from humans; however, as will be appreciated by those in the art, angiogenesis sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other angiogenesis sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc). Angiogenesis sequences from other organisms may be obtained using the techniques outlined below.

Angiogenesis sequences can include both nucleic acid and amino acid sequences. In a preferred embodiment, the angiogenesis sequences are recombinant nucleic acids. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed *in vitro*, in general, by the manipulation of nucleic acid *e.g.*, using polymerases and endonucleases, in a form not normally found in nature. Thus an isolated nucleic acid, in a linear form, or an expression vector formed *in vitro* by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is

understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, *i.e.* using the *in vivo* cellular machinery of the host cell rather than *in vitro* manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention.

5

10

15

20

25

30

Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e. through the expression of a recombinant nucleic acid as depicted above. A recombinant protein is distinguished from naturally occurring protein by at least one or more characteristics. For example, the protein may be isolated or purified away from some or all of the proteins and compounds with which it is normally associated in its wild type host, and thus may be substantially pure. For example, an isolated protein is unaccompanied by at least some of the material with which it is normally associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of the total protein in a given sample. A substantially pure protein comprises at least about 75% by weight of the total protein, with at least about 80% being preferred, and at least about 90% being particularly preferred. The definition includes the production of an angiogenesis protein from one organism in a different organism or host cell. Alternatively, the protein may be made at a significantly higher concentration than is normally seen, through the use of an inducible promoter or high expression promoter, such that the protein is made at increased concentration levels. Alternatively, the protein may be in a form not normally found in nature, as in the addition of an epitope tag or amino acid substitutions, insertions and deletions, as discussed below.

In a preferred embodiment, the angiogenesis sequences are nucleic acids. As will be appreciated by those in the art and is more fully outlined below, angiogenesis sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; for example, biochips comprising nucleic acid probes to the angiogenesis sequences can be generated. In the broadest sense, then, by "nucleic acid" or "oligonucleotide" or grammatical equivalents herein means at least two nucleotides covalently linked together. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have alternate backbones, comprising, for example, phosphoramidate, phosphorothicate, phosphorodithicate, or Omethylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); and peptide nucleic acid backbones and linkages. Other

analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, for example to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip.

5

10

15

20

25

30

As will be appreciated by those in the art, nucleic acid analogs may find use in the present invention. In addition, mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (Tm) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4°C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus for example the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

An angiogenesis sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the angiogenesis sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.

5

10

15

20

25

30

For identifying angiogenesis-associated sequences, the angiogenesis screen typically includes comparing genes identified in a modification of an *in vitro* model of angiogenesis as described in Hiraoka, Cell 95:365 (1998) with genes identified in controls. Samples of normal tissue and tissue undergoing angiogenesis are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, for example from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

In a preferred embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, including, but not limited to lung, heart, brain, liver, breast, kidney, muscle, prostate, small intestine, large intestine, spleen, bone and placenta. In a preferred embodiment, those genes identified during the angiogenesis screen that are expressed in any significant amount in other tissues are removed from the profile, although in some embodiments, this is not necessary. That is, when screening for drugs, it is usually preferable that the target be disease specific, to minimize possible side effects.

In a preferred embodiment, angiogenesis sequences are those that are up-regulated in angiogenesis disorders; that is, the expression of these genes is higher in the disease tissue as compared to normal tissue. "Up-regulation" as used herein means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. All accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al., Nucleic Acids Research 26:1-7 (1998) and http://www.ncbi.nlm.nih.gov/. Sequences are also avialable in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ). In addition, most preferred genes were found to be expressed in a limited amount or not at all in heart, brain, lung, liver, breast, kidney, prostate, small intestine and spleen.

In another preferred embodiment, angiogenesis sequences are those that are down-regulated in the angiogenesis disorder; that is, the expression of these genes is lower in angiogenic tissue as compared to normal tissue. "Down-regulation" as used herein means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred.

5

10

15

20

25

30

Angiogenesis sequences according to the invention may be classified into discrete clusters of sequences based on common expression profiles of the sequences. Expression levels of angiogenesis sequences may increase or decrease as a function of time in a manner that correlates with the induction of angiogenesis. Alternatively, expression levels of angiogenesis sequences may both increase and decrease as a function of time. For example, expression levels of some angiogenesis sequences are temporarily induced or diminished during the switch to the angiogenesis phenotype, followed by a return to baseline expression levels. Tables 1-8 provides genes, the mRNA expression of which varies as a function of time in angiogenesis tissue when compared to normal tissue.

In a particularly preferred embodiment, angiogenesis sequences are those that are induced for a period of time, typically by positive angiogenic factors, followed by a return to the baseline levels. Sequences that are temporarily induced provide a means to target angiogenesis tissue, for example neovascularized tumors, at a particular stage of angiogenesis, while avoiding rapidly growing tissue that require perpetual vascularization. Such positive angiogenic factors include α FGF, β FGF, VEGF, angiogenin and the like.

Induced angiogenesis sequences also are further categorized with respect to the timing of induction. For example, some angiogenesis genes may be induced at an early time period, such as within 10 minutes of the induction of angiogenesis. Others may be induced later, such as between 5 and 60 minutes, while yet others may be induced for a time period of about two hours or more followed by a return to baseline expression levels.

In another preferred embodiment are angiogenesis sequences that are inhibited or reduced as a function of time followed by a return to "normal" expression levels. Inhibitors of angiogenesis are examples of molecules that have this expression profile. These sequences also can be further divided into groups depending on the timing of diminished expression. For example, some molecules may display reduced expression within 10 minutes of the induction of angiogenesis. Others may be diminished later, such as between 5 and 60 minutes, while others may be diminished for a time period of about two hours or more

followed by a return to baseline. Examples of such negative angiogenic factors include thrombospondin and endostatin to name a few.

In yet another preferred embodiment are angiogenesis sequences that are induced for prolonged periods. These sequences are typically associated with induction of angiogenesis and may participate in induction and/or maintenance of the angiogenesis phenotype.

In another preferred embodiment are angiogenesis sequences, the expression of which is reduced or diminished for prolonged periods in angiogenic tissue. These sequences are typically angiogenesis inhibitors and their diminution is correlated with an increase in angiogenesis.

Informatics

5

10

15

20

25

30

The ability to identify genes that undergo changes in expression with time during angiogenesis can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with angiogenesis-associated disease. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (*see*, Anderson, L., "Pharmaceutical Proteomics: Targets, Mechanism, and Function," paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (*see*, U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (*e.g.*, nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of data assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in substantially any form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for any assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing angiogenesis, *i.e.*, the identification of angiogenesis-associated sequences described herein, provide an abundance of information, which can be correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, gene-disease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, prior data processing using high-speed computers is utilized.

5

10

15

20

25

30

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multidimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, *e.g.*, with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

5

10

15

20

25

30

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, *e.g.*, a neoplastic lesion or another tissue specimen to be analyzed for angiogenesis. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, *e.g.*, a target molecular structure and/or characteristic separation coordinate (*e.g.*, electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format

(e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

5

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal tranmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

10

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

15

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

25

30

20

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem,

an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

10 Angiogenesis-associated sequences

5

15

20

25

30

Angiogenesis proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the angiogenesis protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus or associated with the intracellular side of the plasma membrane. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Molecular Biology of the Cell, 3rd Edition, Alberts, Ed., Garland Pub., 1994). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of primary

sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate.

5

10

15

20

25

30

In another embodiment, the angiogenesis sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids that may be followed or flanked by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted (see, e.g. PSORT web site http://psort.nibb.ac.jp/).

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell for example via a glycosylphosphatidylinositol

(GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Angiogenesis proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins *in situ*. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeablized to provide acess to intracellular proteins.

5

10

15

20

25

30

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, for example through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the angiogenesis proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous aspects of physiology. Angiogenesis proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, *e.g.*, for blood or serum tests.

An angiogenesis sequence is typically initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the angiogenesis sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

As detailed in the definitions, percent identity can be determined using an algorithm such as BLAST. A preferred method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively. The alignment may include the introduction of gaps in the sequences to be aligned. In addition, for sequences which contain either more or fewer nucleotides than

those of the nucleic acids of the figures, it is understood that the percentage of homology will be determined based on the number of homologous nucleosides in relation to the total number of nucleosides. Thus, for example, homology of sequences shorter than those of the sequences identified herein and as discussed below, will be determined using the number of nucleosides in the shorter sequence.

In one embodiment, the nucleic acid homology is determined through hybridization studies. Thus, *e.g.*, nucleic acids which hybridize under high stringency to a nucleic acid of Tables 1-8, or its complement, or is also found on naturally occurring mRNAs is considered an angiogenesis sequence. In another embodiment, less stringent hybridization conditions are used; for example, moderate or low stringency conditions may be used, as are known in the art; see Ausubel, *supra*, and Tijssen, *supra*.

5

10

15

20

25

30

In addition, the angiogenesis nucleic acid sequences of the invention, e.g, the sequence in Tables 1-8, are fragments of larger genes, *i.e.* they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the angiogenesis genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, *et al.*, *supra*. Much can be done by informatics and many sequences can be clustered to include multiple sequences, *e.g.*, systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

Once the angiogenesis nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire angiogenesis nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant angiogenesis nucleic acid can be further-used as a probe to identify and isolate other angiogenesis nucleic acids, for example extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant angiogenesis nucleic acids and proteins.

The angiogenesis nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the angiogenesis nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, for example for gene therapy, vaccine, and/or antisense applications. Alternatively, the angiogenesis nucleic acids that include coding regions of angiogenesis

proteins can be put into expression vectors for the expression of angiogenesis proteins, again for screening purposes or for administration to a patient.

5

10

15

20

25

30

In a preferred embodiment, nucleic acid probes to angiogenesis nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the angiogenesis nucleic acids, *i.e.* the target sequence (either the target sequence of the sample or to other probe sequences, for example in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (*i.e.* have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of electrostatic,

hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

10

15

20

25

30

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silicabased materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluorescese. A preferred substrate is described in copending application entitled Reusable Low Fluorescent Plastic Biochip, U.S. Application Serial No. 09/270,214, filed March 15, 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, for example, the biochip is derivatized with a chemical functional group including, but not

limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, for example using linkers as are known in the art; for example, homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200, incorporated herein by reference). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

In this embodiment, oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.

10

15

20

25

30

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized in situ, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affimetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of angiogenesis-associated sequences. These assays are typically performed in conjunction with reverse transcription. In such assays, an angiogenesis-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of angiogenesis-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for quantitative PCR are provided, e.g., in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.).

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent

dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, for example, literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

5

10

15

20

25

30

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see, Wu and Wallace (1989) Genomics 4: 560, Landegren et al. (1988) Science 241: 1077, and Barringer et al. (1990) Gene 89: 117), transcription amplification (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173), self-sustained sequence replication (Guatelli et al. (1990) Proc. Nat. Acad. Sci. USA 87: 1874), dot PCR, and linker adapter PCR, etc.

In a preferred embodiment, angiogenesis nucleic acids, *e.g.*, encoding angiogenesis proteins are used to make a variety of expression vectors to express angiogenesis proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (*see*, *e.g.*, Ausubel, *supra*, and Gene Expression Systems, Fernandez & Hoeffler, Eds, Academic Press, 1999) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the angiogenesis protein. The term "control sequences" refers to DNA sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.

Generally, "operably linked" means that the DNA sequences being linked are contiguous,

and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the angiogenesis protein; for example, transcriptional and translational regulatory nucleic acid sequences from Bacillus are preferably used to express the angiogenesis protein in Bacillus. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

10

15

20

25

30

Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez & Hoeffler, supra). See also Kitamura, et al. (1995) PNAS 92:9146-9150.

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

The angiogenesis proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding an angiogenesis protein, under the appropriate conditions to induce or cause expression of the

angiogenesis protein. Conditions appropriate for angiogenesis protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

5

10

15

20

25

30

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are *Saccharomyces cerevisiae* and other yeasts, *E. coli, Bacillus subtilis*, Sf9 cells, C129 cells, 293 cells, *Neurospora*, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the angiogenesis proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, *e.g.*, Fernandez & Hoeffler, *supra*). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenlytion signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used.

Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

In a preferred embodiment, angiogenesis proteins are expressed in bacterial systems. Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters

and hybrid promoters are also useful; for example, the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the angiogenesis protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez & Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

5

10

15

20

25

30

In one embodiment, angiogenesis proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, angiogenesis protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The angiogenesis protein may also be made as a fusion protein, using techniques well known in the art. Thus, for example, for the creation of monoclonal antibodies, if the desired epitope is small, the angiogenesis protein may be fused to a carrier protein to form an immunogen. Alternatively, the angiogenesis protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the angiogenesis protein is an angiogenesis peptide, the nucleic acid encoding the peptide may be linked to another nucleic acid for expression purposes. Fusion with detection epitope tags can be made, e.g., with FLAG, His 6, myc, HA, etc.

In one embodiment, the angiogenesis nucleic acids, proteins and antibodies of the invention are labeled. By "labeled" herein is meant that a compound has at least one element, isotope or chemical compound attached to enable the detection of the compound. In general, labels fall into three classes: a) isotopic labels, which may be radioactive or heavy isotopes; b) immune labels, which may be antibodies, antigens, or epitope tags and c) colored or fluorescent dyes. The labels may be incorporated into the angiogenesis nucleic acids, proteins and antibodies at any position. For example, the label should be capable of producing, either directly or indirectly, a detectable signal. The detectable moiety may be a radioisotope, such as ³H, ¹⁴C, ³²P, ³⁵S, or ¹²⁵I, a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982).

5

10

15

20

25

30

Accordingly, the present invention also provides angiogenesis protein sequences. An angiogenesis protein of the present invention may be identified in several ways. "Protein" in this sense includes proteins, polypeptides, and peptides. As will be appreciated by those in the art, the nucleic acid sequences of the invention can be used to generate protein sequences. There are a variety of ways to do this, including cloning the entire gene and verifying its frame and amino acid sequence, or by comparing it to known sequences to search for homology to provide a frame, assuming the angiogenesis protein has an identifiable motif or homology to some protein in the database being used. Generally, the nucleic acid sequences are input into a program that will search all three frames for homology. This is done in a preferred embodiment using the following NCBI Advanced BLAST parameters. The program is blastx or blastn. The database is nr. The input data is as "Sequence in FASTA format". The organism list is "none". The "expect" is 10; the filter is default. The "descriptions" is 500, the "alignments" is 500, and the "alignment view" is pairwise. The "Query Genetic Codes" is standard (1). The matrix is BLOSUM62; gap existence cost is 11, per residue gap cost is 1; and the lambda ratio is .85 default. This results in the generation of a putative protein sequence.

Also included within one embodiment of angiogenesis proteins are amino acid variants of the naturally occurring sequences, as determined herein. Preferably, the variants are preferably greater than about 75% homologous to the wild-type sequence, more

preferably greater than about 80%, even more preferably greater than about 85% and most preferably greater than 90%. In some embodiments the homology will be as high as about 93 to 95 or 98%. As for nucleic acids, homology in this context means sequence similarity or identity, with identity being preferred. This homology will be determined using standard techniques well known in the art as are outlined above for the nucleic acid homologies.

5

10

15

20

25

30

Angiogenesis proteins of the present invention may be shorter or longer than the wild type amino acid sequences. Thus, in a preferred embodiment, included within the definition of angiogenesis proteins are portions or fragments of the wild type sequences. herein. In addition, as outlined above, the angiogenesis nucleic acids of the invention may be used to obtain additional coding regions, and thus additional protein sequence, using techniques known in the art.

In a preferred embodiment, the angiogenesis proteins are derivative or variant angiogenesis proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative angiogenesis peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at any residue within the angiogenesis peptide.

Also included within one embodiment of angiogenesis proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the angiogenesis protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant angiogenesis protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the angiogenesis protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed angiogenesis variants screened for

the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example, M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of angiogenesis protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.

5

10

15

20

25

30

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the angiogenesis protein are desired, substitutions are generally made in accordance with the amino acid substitution chart provided in the definition section.

Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those provided in the definition of "conservative substitution". For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, *e.g.* seryl or threonyl, is substituted for (or by) a hydrophobic residue, *e.g.* leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, *e.g.* lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, *e.g.* glutamyl or aspartyl; or (d) a residue having a bulky side chain, *e.g.* phenylalanine, is substituted for (or by) one not having a side chain, *e.g.* glycine.

The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analog, although variants also are selected to modify the characteristics of the angiogenesis proteins as needed. Alternatively, the variant may be designed such that the biological activity of the angiogenesis protein is altered. For example, glycosylation sites may be altered or removed.

Covalent modifications of angiogenesis polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino

acid residues of an angiogenesis polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of an angiogenesis polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking angiogenesis polypeptides to a water-insoluble support matrix or surface for use in the method for purifying anti-angiogenesis polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, *e.g.*, 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

5

10

15

20

25

30

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, threonyl or tyrosyl residues, methylation of the γ-amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the angiogenesis polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence angiogenesis polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence angiogenesis polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express angiogenesis-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to angiogenesis polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence angiogenesis polypeptide (for O-linked glycosylation sites). The angiogenesis amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the angiogenesis polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the angiogenesis polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

5

10

15

20

25

30

Removal of carbohydrate moieties present on the angiogenesis polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

Another type of covalent modification of angiogenesis comprises linking the angiogenesis polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

Angiogenesis polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising an angiogenesis polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of an angiogenesis polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the angiogenesis polypeptide. The presence of such epitope-tagged forms of an angiogenesis polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the angiogenesis polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of an angiogenesis polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 [Field *et al.*, *Mol. Cell. Biol.*, 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan *et al.*, *Molecular and Cellular Biology*, 5:3610-3616 (1985)];

and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].

5

10

15

20

25

30

Also included with an embodiment of angiogenesis protein are other angiogenesis proteins of the angiogenesis family, and angiogenesis proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related angiogenesis proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the angiogenesis nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well known in the art (e.g., Innis, PCR Protocols, supra).

In addition, as is outlined herein, angiogenesis proteins can be made that are longer than those encoded by the nucleic acids of the figures, *e.g.*, by the elucidation of extended sequences, the addition of epitope or purification tags, the addition of other fusion sequences, etc.

Angiogenesis proteins may also be identified as being encoded by angiogenesis nucleic acids. Thus, angiogenesis proteins are encoded by nucleic acids that will hybridize to the sequences of the sequence listings, or their complements, as outlined herein.

In a preferred embodiment, when the angiogenesis protein is to be used to generate antibodies, *e.g.*, for immunotherapy or immunodiagnosis, the angiogenesis protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller angiogenesis protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity. In a preferred embodiment, the epitope is selected from a protein sequence set out in Table 8.

Methods of preparing polyclonal antibodies are known to the skilled artisan (e.g., Coligan, supra; and Harlow & Lane, supra). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

5

10

15

20

25

30

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Tables 1-8, or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid Tables 1-8 or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

5

10

15

20

25

30

In a preferred embodiment, the antibodies to angiogenesis protein are capable of reducing or eliminating a biological function of an angiogenesis protein, as is described below. That is, the addition of anti-angiogenesis protein antibodies (either polyclonal or preferably monoclonal) to angiogenic tissue (or cells containing angiogenesis) may reduce or eliminate the angiogenesis activity. Generally, at least a 25% decrease in activity is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

In a preferred embodiment the antibodies to the angiogenesis proteins are humanized antibodies (e.g., Xenerex Biosciences, Mederex, Inc., Abgenix, Inc., Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues form a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human

immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].

5

10

15

20

25

30

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)]. Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10, 779-783 (1992); Lonberg et al., Nature 368 856-859 (1994); Morrison, Nature 368, 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 13 65-93 (1995).

By immunotherapy is meant treatment of angiogenesis with an antibody raised against angiogenesis proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient

(patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

5

10

15

20

25

30

In a preferred embodiment the angiogenesis proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted angiogenesis protein.

In another preferred embodiment, the angiogenesis protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the angiogenesis protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The antibody may cause down-regulation of the transmembrane angiogenesis protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, noncompetitive or uncompetitive inhibitor of protein binding to the extracellular domain of the angiogenesis protein. The antibody is also an antagonist of the angiogenesis protein. Further, the antibody prevents activation of the transmembrane angiogenesis protein. In one aspect, when the antibody prevents the binding of other molecules to the angiogenesis protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, angiogenesis is treated by administering to a patient antibodies directed against the transmembrane angiogenesis protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated or fused to an effector moiety. The effector moiety can be any number of molecules, including labelling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In

one aspect the therapeutic moiety is a small molecule that modulates the activity of the angiogenesis protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the angiogenesis protein. The therapeutic moiety may inhibit enzymatic activity such as protease or collagenase activity associated with angiogenesis, or be an attractant of other cells, such as NK cells.

5

10

15

20

25

30

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to angiogenesis tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with angiogenesis. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against angiogenesis proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane angiogenesis proteins not only serves to increase the local concentration of therapeutic moiety in the angiogenesis afflicted area, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.

In another preferred embodiment, the angiogenesis protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated or fused to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the angiogenesis protein can be targeted within a cell, i.e., the nucleus, an antibody thereto contains a signal for that target localization, i.e., a nuclear localization signal.

The angiogenesis antibodies of the invention specifically bind to angiogenesis proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding is also important.

In a preferred embodiment, the angiogenesis protein is purified or isolated after expression. Angiogenesis proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological

and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the angiogenesis protein may be purified using a standard anti-angiogenesis protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes, R., Protein Purification, Springer-Verlag, NY (1982). The degree of purification necessary will vary depending on the use of the angiogenesis protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the angiogenesis proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, etc.

Detection of angiogenesis sequence for diagnostic and therapeutic applications

10

15

20

25

30

In one aspect, the RNAexpression levels of genes are determined for different cellular states in the angiogenesis phenotype. Expression levels of genes in normal tissue (*i.e.*, not undergoing angiogenesis) and in angiogenesis tissue (and in some cases, for varying severities of angiogenesis that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state. While two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or angiogenesic tissue. This will provide for molecular diagnosis of related conditions.

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g., normal versus angiogenic tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more statese. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that

expression is increased or decreased; *i.e.*, gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChipTM expression arrays, Lockhart, Nature Biotechnology, 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, Northern analysis and RNase protection. As outlined above, preferably the change in expression (*i.e.*, upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferred.

5

10

15

20

25

30

Evaluation may be at the gene transcript, or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, *e.g.*, with antibodies to the angiogenesis protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to angiogenesis genes, *i.e.*, those identified as being important in an angiogenesis phenotype, can be evaluated in an angiogenesis diagnostic test.

In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In this embodiment, the angiogenesis nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of angiogenesis sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity.

In a preferred embodiment nucleic acids encoding the angiogenesis protein are detected. Although DNA or RNA encoding the angiogenesis protein may be detected, of particular interest are methods wherein an mRNA encoding an angiogenesis protein is detected. Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is

detected. In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding an angiogenesis protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

5

10

15

20

25

30

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing angiogenesis sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, angiogenesis proteins, including intracellular, transmembrane or secreted proteins, find use as markers of angiogenesis. Detection of these proteins in putative angiogenesis tissue allows for detection or diagnosis of angiogenesis. In one embodiment, antibodies are used to detect angiogenesis proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the angiogenesis protein is detected, *e.g.*, by immunoblotting with antibodies raised against the angiogenesis protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the angiogenesis protein find use in in situ imaging techniques, e.g., in histology (e.g., Methods in Cell Biology: Antibodies in Cell Biology, volume 37 (Asai, ed. 1993)). In this method cells are contacted with from one to many antibodies to the angiogenesis protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the angiogenesis protein(s) contains a detectable label, for example an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and

detectable label. This method finds particular use in simultaneous screening for a plurality of angiogenesis proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are alsoprovided by the invention.

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

5

10

15

20

25

30

In another preferred embodiment, antibodies find use in diagnosing angiogenesis from biological samples, such as blood, urine, sputum, or other bodily fluids. As previously described, certain angiogenesis proteins are secreted/circulating molecules. Blood samples, therefore, are useful as samples to be probed or tested for the presence of secreted angiogenesis proteins. Antibodies can be used to detect an angiogenesis protein by previously described immunoassay techniques including ELISA, immunoblotting (Western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous angiogenesis protein.

In a preferred embodiment, *in situ* hybridization of labeled angiogenesis nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including angiogenesis tissue and/or normal tissue, are made. *In situ* hybridization (*see, e.g.*, Ausubel, *supra*) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing angiogenesis sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to angiogenesis severity, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. As above, angiogenesis probes may be attached to biochips for the detection and quantification of angiogenesis sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

In a preferred embodiment members of the three classes of proteins as described herein are used in drug screening assays. The angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing angiogenesis sequences are used in drug

screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al., Science 279, 84-8 (1998); Heid, *Genome Res* 6:986-94, 1996).

5

10

15

20

25

30

In a preferred embodiment, the angiogenesis proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified angiogenesis proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the angiogenesis phenotype or an identified physiological function of an angiogenesis protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified the differentially expressed genes herein, a variety of assays may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as up regulated in angiogenesis, test compounds can be screened for the ability to modulate gene expression or for binding to the angiogenic protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing angiogenesis, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in angiogenic tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in angiogenic tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, *e.g.*, through the use of antibodies to the angiogenesis protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

In a preferred embodiment, gene expression or protein monitoring of a number of entitites, *i.e.*, an expression profile, is monitored simultaneously. Such profiles will typically invove a plurality of those entitites described herein..

In this embodiment, the angiogenesis nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of angiogenesis sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Modulators of angiogenesis

5

10

15

20

25

30

Expression monitoring can be performed to identify compounds that modify the expression of one or more angiogenesis-associated sequences, *e.g.*, a polynucleotide sequence set out in Tables 1-8. Generally, in a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate angiogenesis, modulate angiogenesis proteins, bind to an angiogenesis protein, or interfere with the binding of an angiogenesis protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the angiogenesis phenotype or the expression of an angiogenesis sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses an angiogenesis phenotype, for example to a normal tissue fingerprint. In another embodiment, a modulator induced an angiogenesis phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

In one aspect, a modulator will neutralize the effect of an angiogenesis protein. By "neutralize" is meant that activity of a protein is inhibited or blocked and thereby has substantially no effect on a cell.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to an angiogenesis polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property

and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

5

10

15

20

25

30

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop et al. (1994) J. Med. Chem. 37(9): 1233-1251).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka (1991) Int. J. Pept. Prot. Res., 37: 487-493, Houghton et al. (1991) Nature, 354: 84-88), peptoids (PCT Publication No WO 91/19735, 26 Dec. 1991), encoded peptides (PCT Publication WO 93/20242, 14 Oct. 1993), random bio-oligomers (PCT Publication WO 92/00091, 9 Jan. 1992), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., (1993) Proc. Nat. Acad. Sci. USA 90: 6909-6913), vinylogous polypeptides (Hagihara et al. (1992) J. Amer. Chem. Soc. 114: 6568), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann et al., (1992) J. Amer. Chem. Soc. 114: 9217-9218), analogous organic syntheses of small compound libraries (Chen et al. (1994) J. Amer. Chem. Soc. 116: 2661), oligocarbamates (Cho, et al., (1993) Science 261:1303), and/or peptidyl phosphonates (Campbell et al., (1994) J. Org. Chem. 59: 658). See, generally, Gordon et al., (1994) J. Med. Chem. 37:1385, nucleic acid libraries (see, e.g., Strategene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn et al. (1996) Nature Biotechnology, 14(3): 309-314), and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., (1996) Science, 274: 1520-1522, and U.S. Patent No. 5.593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum (1993)

C&EN, Jan 18, page 33; isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (*see, e.g.*, 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

5

10

15

20

25

30

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of angiogenesis gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, for example, U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (*i.e.*, in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems

typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

5

10

15

20

25

30

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, *e.g.*, cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Paticularly useful test compound will be directed to the class of proteins to which the target belongs, *e.g.*, substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, for example, of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking,

prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of angiogenesis can also be nucleic acids, as defined above.

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. For example, digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

5

10

15

20

25

30

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an *in vitro* transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, for example, a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.

5

10

15

20

25

30

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, *e.g.* albumin, detergents, *etc.* which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, *etc.*, may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the angiogenesis phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, *e.g.*, for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens can be done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress an angiogenesis expression pattern leading to a normal expression pattern, or to modulate a single angiogenesis gene expression profile so as to mimic the expression of the gene from

normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated angiogenesis tissue reveals genes that are not expressed in normal tissue or angiogenesis tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for angiogenesis genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated angiogenesis tissue sample.

5

10

15

20

25

30

Thus, in one embodiment, a test compound is administered to a population of angiogenic cells, that have an associated angiogenesis expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (*i.e.*, a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, *e.g.*, PCT US97/01019. Regulatable gene therapy systems can also be used.

Once the test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, for example, angiogenesis tissue may be screened for agents that modulate, *e.g.*, induce or suppress the angiogenesis phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on angiogenesis activity. By defining such a signature for the angiogenesis phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

Measure of angiogenesis polypeptide activity, or of angiogenesis or the angiogenic phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the anagiogenesis polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention.

When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of angiogenesis associated with tumors, tumor growth, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian angiogenesis polypeptide is typically used, e.g., mouse, preferably human.

5

10

15

20

25

30

A variety of angiogenesis assays are known to those of skill in the art. Various models have been employed to evaluate angiogenesis (e.g., Croix et al., Science 289:1197-1202, 2000 and Kahn et al., Amer. J. Pathol. 156:1887-1900). Assessement of angiogenesis in the presence of a potential modulator of angiogenesis can be performed using cell-cultrebased angiogenesis assays, e.g., endothelial cell tube formation assays, as well as other bioassays such as the chick CAM assay, the mouse corneal assay, and assays measuring the effect of administering potential modulators on implanted tumors. The chick CAM assay is described by O'Reilly, et al. Cell 79: 315-328, 1994. Briefly, 3 day old chicken embryos with intact yolks are separated from the egg and placed in a petri dish. After 3 days of incubation, a methylcellulose disc containing the protein to be tested is applied to the CAM of individual embryos. After about 48 hours of incubation, the embryos and CAMs are observed to determine whether endothelial growth has been inhibited. The mouse corneal assay involves implanting a growth factor-containing pellet, along with another pellet containing the suspected endothelial growth inhibitor, in the cornea of a mouse and observing the pattern of capillaries that are elaborated in the cornea. Angiogenesis can also be measured by determining the extent of neovascularization of a tumor. For example, carcinoma cells can be subcutaneously inoculated into athymic nude mice and tumor growth then monitored. The cancer cells are treated with an angiogenesis inhibitor, such as an antibody, or other compound that is exogenously administered, or can be transfected prior to inoculation with a polynucleotide inhibitor of angiogenesis. Immunoassays using endothelial cell-specific antibodies are typically used to stain for vascularization of tumor and the number of vessels in the tumor.

Assays to identify compounds with modulating activity can be performed *in vitro*. For example, an angiogenesis polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, *e.g.*, from 0.5 to 48 hours. In one embodiment, the angiogenesis polypeptide levels are determined *in vitro* by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting,

ELISA and the like with an antibody that selectively binds to the angiogenesis polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

5

10

15

20

25

30

Alternatively, a reporter gene system can be devised using the angiogenesis protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "angiogenesis proteins". In preferred embodiments the angiogenesis protein comprises a sequence shown in Table 8. The angiogenesis protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

Preferably, the angiogenesis protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. In one embodiment an angiogenesis protein is conjugated or fused to an immunogenic agent or BSA.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the angiogenesis proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining an angiogenesis protein and a candidate compound, and determining the binding of the compound to the angiogenesis protein. Preferred embodiments utilize the human angiogenesis protein, although other mammalian proteins may also be used, for example for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative angiogenesis proteins may be used.

5

10

15

20

25

30

Generally, in a preferred embodiment of the methods herein, the angiogenesis protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

In a preferred embodiment, the angiogenesis protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the angiogenesis protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the angiogenesis protein may be done in a number of ways. In a preferred embodiment, the compound is labelled, and binding determined directly, e.g., by attaching all or a portion of the angiogenesis protein to a solid support, adding a labelled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

5

10

15

20

25

30

By "labeled" herein is meant that the compound is either directly or indirectly labeled with a label which provides a detectable signal, *e.g.* radioisotope, fluorescers, enzyme, antibodies, particles such as magnetic particles, chemiluminescers, or specific binding molecules, etc. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin, etc. For the specific binding members, the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures, as outlined above. The label can directly or indirectly provide a detectable signal.

In some embodiments, only one of the components is labeled, *e.g.*, the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, *e.g.*, ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, *e.g.*, quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (*i.e.* an angiogenesis protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40°C. Incubation periods are typically optimized, *e.g.*, to facilitate rapid high throughput screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the angiogenesis protein and thus is capable of binding to, and potentially modulating, the

activity of the angiogenesis protein. In this embodiment, either component can be labeled. Thus, for example, if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

5

10

15

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the angiogenesis protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the angiogenesis protein.

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activitity of the angiogenesis proteins. In this embodiment, the methods comprise combining an angiogenesis protein and a competitor in a first sample. A second sample comprises a test compound, an angiogenesis protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the angiogenesis protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the angiogenesis protein.

20

Alternatively, differential screening is used to identify drug candidates that bind to the native angiogenesis protein, but cannot bind to modified angiogenesis proteins. The structure of the angiogenesis protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of an angiogenesis protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

25

30

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which may be used

to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of an angiogenesis protein. The methods comprise adding a test compound, as defined above, to a cell comprising angiogenesis proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes an angiogenesis protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, for example hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e. cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate angiogenesis agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the angiogenesis protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting angiogenic cell division is provided. The method comprises administration of an angiogenesis inhibitor. In another embodiment, a method of inhibiting angiogenesis is provided. The method comprises administration of an angiogenesis inhibitor. In a further embodiment, methods of treating cells or individuals with angiogenesis are provided. The method comprises administration of an angiogenesis inhibitor.

In one embodiment, an angiogenesis inhibitor is an antibody as discussed above. In another embodiment, the angiogenesis inhibitor is an antisense molecule.

Polynucleotide modulators of angiogenesis

5

10

15

20

25

30

Antisense Polynucleotides

In certain embodiments, the activity of an angiogenesis-associated protein is downregulated, or entirely inhibited, by the use of antisense polynucleotide, *i.e.*, a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, *e.g.*, an angiogenesis protein mRNA, or a subsequence thereof.

Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the angiogenesis protein mRNA. See, *e.g.*, Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, *e.g.*, be employed to block trancription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for angiogenesis molecules. A preferred antisense molecule is for an angiogenesis sequences in Tables 1-8, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechniques 6:958, 1988).

25

30

5

10

15

20

Ribozymes

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of angiogenesis-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (*see, e.g.*, Castanotto *et al.* (1994) *Adv. in Pharmacology* 25: 289-317 for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, e.g., in Hampel et al. (1990) Nucl. Acids Res. 18: 299-304; Hampel et al. (1990) European Patent Publication No. 0

360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., Wong-Staal et al., WO 94/26877; Ojwang et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6340-6344; Yamada et al. (1994) Human Gene Therapy 1: 39-45; Leavitt et al. (1995) Proc. Natl. Acad. Sci. USA 92: 699-703; Leavitt et al. (1994) Human Gene Therapy 5: 1151-120; and Yamada et al. (1994) Virology 205: 121-126).

5

10

15

20

25

30

Polynucleotide modulators of angiogenesis may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of angiogenesis may be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

Thus, in one embodiment, methods of modulating angiogenesis in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-angiogenesis antibody that reduces or eliminates the biological activity of an endogeneous angiogenesis protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding an angiogenesis protein. This may be accomplished in any number of ways. In a preferred embodiment, for example when the angiogenesis sequence is down-regulated in angiogenesis, such state may be reversed by increasing the amount of angiogenesis gene product in the cell. This can be accomplished, e.g., by overexpressing the endogeneous angiogenesis gene or administering a gene encoding the angiogenesis sequence, using known gene-therapy techniques, for example. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), for example as described in PCT/US93/03868, hereby incorporated by reference in its entireity. Alternatively, for example when the angiogenesis sequence is up-regulated in angiogenesis, the activity of the endogeneous angiogenesis gene is decreased, for example by the administration of a angiogenesis antisense nucleic acid or other inhibitor, such as RNAi.

In one embodiment, the angiogenesis eproteins of the present invention may be used to generate polyclonal and monoclonal antibodies to angiogenesis proteins. Similarly, the angiogenesis proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify angiogenesis antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to a angiogenesis protein; that is, the antibodies show little or no cross-reactivity to other proteins. The angiogenesis antibodies may be coupled to standard affinity chromatography columns and used to purify angiogenesis proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the angiogenesis protein.

Methods of identifying variant angiogenesis-associated sequences

5

10

15

20

25

30

Without being bound by theory, expression of various angiogenesis sequences is correlated with angiogenesis. Accordingly, disorders based on mutant or variant angiogenesis genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant angiogenesis genes, e.g., determining all or part of the sequence of at least one endogeneous angiogenesis genes in a cell. This may be accomplished using any number of sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the angiogenesis genotype of an individual, e.g., determining all or part of the sequence of at least one angiogenesis gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced angiogenesis gene to a known angiogenesis gene, i.e., a wild-type gene.

The sequence of all or part of the angiogenesis gene can then be compared to the sequence of a known angiogenesis gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a a difference in the sequence between the angiogenesis gene of the patient and the known angiogenesis gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the angiogenesis genes are used as probes to determine the number of copies of the angiogenesis gene in the genome.

In another preferred embodiment, the angiogenesis genes are used as probes to determine the chromosomal localization of the angiogenesis genes. Information such as

chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the angiogenesis gene locus.

5 Administration of pharmaceutical and vaccine compositions

10

15

20

25

30

In one embodiment, a therapeutically effective dose of an angiogenesis protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (*e.g.*, Ansel *et al.*, Pharmaceuitcal Dosage Forms and Drug Delivery, Lippincott, Williams & Wilkins Publishers, ISBN:0683305727; Lieberman (1992) Pharmaceutical Dosage Forms (vols. 1-3), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding, Amer. Pharmacutical Assn, ISBN 0917330889; and Pickar (1999) Dosage Calculations, Delmar Pub, ISBN 0766805042). As is known in the art, adjustments for angiogenesis degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

The administration of the angiogenesis proteins and modulators thereof of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, for example, in the treatment of wounds and inflammation, the angiogenesis proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise an angiogenesis protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain

the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

5

10

15

20

25

30

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that angiogenesis protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise an angiogenesis protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, *e.g.*, buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents

and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science, 15th ed., Mack Publishing Company, Easton, Pennsylvania (1980) and Goodman and Gillman, The Pharmacologial Basis of Therapeutics, (Hardman, J.G, Limbird, L.E, Molinoff, P.B., Ruddon, R.W, and Gilman, A.G., eds) TheMcGraw-Hill Companies, Inc., 1996).

5

10

15

20

25

30

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gillman, The Pharmacologial Basis of Therapeutics, supra.

The compositions containing modulators of angiogenesis proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer.

It will be appreciated that the present angiogenesis protein-modulating compounds can be administered alone or in combination with additional angiogenesis modulating compounds or with other therapeutic agent, *e.g.*, other anti-cancer agents or treatments.

5

10

15

20

25

30

In numerous embodiments, one or more nucleic acids, *e.g.*, polynucleotides comprising nucleic acid sequences set forth in Tables 1-8, such as antisense polynucleotides or ribozymes, will be introduced into cells, *in vitro* or *in vivo*. The present invention provides methods, reagents, vectors, and cells useful for expression of angiogenesis-associated polypeptides and nucleic acids using *in vitro* (cell-free), *ex vivo* or *in vivo* (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (*see*, *e.g.*, Berger and Kimmel, *Guide to Molecular Cloning Techniques, Methods in Enzymology* volume 152 Academic Press, Inc., San Diego, CA (Berger), F.M. Ausubel *et al.*, eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 1999), and Sambrook *et al.*, *Molecular Cloning - A Laboratory Manual* (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989.

In a preferred embodiment, angiogenesis proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, angiogenesis genes (including both the full-length sequence, partial sequences, or regulatory sequences of the angiogenesis coding regions) can be administered in a gene therapy application. These angiogenesis genes can include antisense applications, either as gene therapy (i.e. for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.

Angiogenesis polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL and antibody responses.. Such vaccine compositions can include, for example, lipidated peptides (e.g., Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, 1991: Alonso

et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tam, J.P., J. Immunol. Methods 196:17-32, 1996), peptides formulated as 5 multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990), 10 particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle 15 absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A.,

Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

25

30

Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993).

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff *et. al.*, *Science* 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (*see*, *e.g.*, U.S. Patent No. 5,922,687).

5

2.5

30

For therapeutic or prophylactic immunization purposes, the peptides of the 10 invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, for example, as a vector to express nucleotide sequences that encode angiogenic polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an 15 immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for the apeutic administration or immunization e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified 20 anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata et al. (2000) Mol Med Today, 6: 66-71; Shedlock et al., J Leukoc Biol 68,:793-806, 2000; Hipp et al., In Vivo 14:571-85, 2000).

Methods for the use of genes as DNA vaccines are well known, and include placing an angiogenesis gene or portion of an angiogenesis gene under the control of a regulatable promoter or a tissue-specific promoter for expression in an angiogenesis patient. The angiogenesis gene used for DNA vaccines can encode full-length angiogenesis proteins, but more preferably encodes portions of the angiogenesis proteins including peptides derived from the angiogenesis protein. In one embodiment, a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from an angiogenesis gene. For example, angiogenesis-associated genes or sequence encoding subfragments of an angiogenesis protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the angiogenesis polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment angiogenesis genes find use in generating animal models of angiogenesis. When the angiogenesis gene identified is repressed or diminished in angiogenesic tissue, gene therapy technology, *e.g.*, wherein antisense RNA directed to the angiogenesis gene will also diminish or repress expression of the gene. Animal models of angiogenesis find use in screening for modulators of an angiogenesis-associated sequence or modulators of angiogenesis. Similarly, transgenic animal technology including gene knockout technology, for example as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the angiogenesis protein. When desired, tissue-specific expression or knockout of the angiogenesis protein may be necessary.

It is also possible that the angiogenesis protein is overexpressed in angiogenesis. As such, transgenic animals can be generated that overexpress the angiogenesis protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of angiogenesis and are additionally useful in screening for modulators to treat angiogenesis or to evaluate a therapeutic entity.

Kits for Use in Diagnostic and/or Prognostic Applications

5

10

15

20

25

30

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In the diagnostic and research applications such kits may include any or all of the following: assay reagents, buffers, angiogenesis-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, dominant negative angiogenesis polypeptides or polynucleotides, small molecules inhibitors of angiogenesis-associated sequences *etc*. A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing directions (i.e., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. Any

medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of angiogenesis-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: an angiogenesis-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing angiogenic-associated activity. Optionally, the kit contains biologically active angiogenesis protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

EXAMPLES

25 Example 1: Tissue Preparation, Labeling Chips, and Fingerprints

Purify total RNA from tissue using TRIzol Reagent

5

10

15

20

30

Homogenize tissue samples in 1ml of TRIzol per 50mg of tissue using a Polytron 3100 homogenizer. The generator/probe used depends upon the tissue size. A generator that is too large for the amount of tissue to be homogenized will cause a loss of sample and lower RNA yield. TRIzol is added directly to frozen tissue, which is then homogenize. Following homogenization, insoluble material is removed by centrifugation at 7500 x g for 15 min in a Sorvall superspeed or 12,000 x g for 10 min. in an Eppendorf centrifuge at 4°C. The clear homogenate is transferred to a new tube for use. The samples may be frozen now at -60° to -70°C (and kept for at least one month). The homogenate is

mixed with 0.2ml of chloroform per 1ml of TRIzol reagent used in the original homogenization and incubated at room temp. for 2-3 minutes. The aqueous phase is then separated by centrifugation and transferred to a fresh tube and the RNA precipitated using isopropyl alcohol. The pellet is isolated by centrifugation, washed, air-dried, resuspended in an appropriate volume of DEPC H₂0, and the absorbance measured.

5

10

15

20

25

30

Purification of poly A+ mRNA from total RNA is performed as follows. Heat an oligotex suspension to 37°C and mixing immediately before adding to RNA. The Elution Buffer is heated at 70°C. Warm up 2 x Binding Buffer at 65°C if there is precipitate in the buffer. Mix total RNA with DEPC-treated water, 2 x Binding Buffer, and Oligotex according to Table 2 on page 16 of the Oligotex Handbook. Incubate for 3 minutes at 65°C. Incubate for 10 minutes at room temperature. Centrifuge for 2 minutes at 14,000 to 18,000 g. Remove supernatant without disturbing Oligotex pellet. A little bit of solution can be left behind to reduce the loss of Oligotex. Gently resuspend in Wash Buffer OW2 and pipet onto spin column. Centrifuge the spin column at full speed for 1 minute. Transfer spin column to a new collection tube and gently resuspend in Wash Buffer OW2 and centrifuge as describe herein. Transfer spin column to a new tube and elute with 20 to 100 ul of preheated (70oC) Elution Buffer. Gently resuspend Oligotex resin by pipetting up and down. Centrifuge as above. Repeat elution with fresh elution buffer or use first eluate to keep the elution volume low. Read absorbance, using diluted Elution Buffer as the blank. Before proceeding with cDNA synthesis, precipitate the mRNA as follows: add 0.4 vol. of 7.5 M NH4OAc + 2.5 vol. of cold 100% ethanol. Precipitate at -20oC 1 hour to overnight (or 20-30 min. at -70oC). Centrifuge at 14,000-16,000 x g for 30 minutes at 4oC. Wash pellet with 0.5ml of 80%ethanol (-20oC) then centrifuge at 14,000-16,000 x g for 5 minutes at room temperature... Repeat 80% ethanol wash. Air dry the ethanol from the pellet in the hood.. Suspend pellet in DEPC H₂0 at lug/ul concentration.

To further Clean up total RNA using Qiagen's RNeasy kit, add no more than 100ug to an RNeasy column. Adjust sample to a volume of 100ul with RNase-free water. Add 350ul Buffer RLT then 250ul ethanol (100%) to the sample. Mix by pipetting (do not centrifuge) then apply sample to an RNeasy mini spin column. Centrifuge for 15 sec at >10,000rpm. Transfer column to a new 2-ml collection tube. Add 500ul Buffer RPE and centrifuge for 15 sec at >10,000rpm. Discard flowthrough. Add 500ul Buffer RPE and centrifuge for 15 sec at >10,000rpm. Discard flowthrough then centrifuge for 2 min at maximum speed to dry column membrane. Transfer column to a new 1.5-ml collection tube

and apply 30-50ul of RNase-free water directly onto column membrane. Centrifuge 1 min at >10,000rpm. Repeat elution. and read absorbance.

cDNA synthesis using Gibco's "SuperScript Choice System for cDNA Synthesis" kit

First Strand cDNA synthesis is performed as follows. Use 5ug of total RNA

or 1ug of polyA+ mRNA as starting material. For total RNA, use 2ul of SuperScript RT. For
polyA+ mRNA, use 1ul of SuperScript RT. Final volume of first strand synthesis mix is

20ul. RNA must be in a volume no greater than 10ul. Incubate RNA with 1ul of 100pmol

T7-T24 oligo for 10 min at 70C. On ice, add 7 ul of: 4ul 5X 1st Strand Buffer, 2ul of 0.1M

DTT, and 1 ul of 10mM dNTP mix. Incubate at 37C for 2 min then add SuperScript RT.

5

10

15

20

25

30

Incubate at 37C for 1 hour.

For the second strand synthesis, place 1st strand reactions on ice and add: 91ul DEPC H₂0; 30ul 5X 2nd Strand Buffer; 3ul 10mM dNTP mix; 1ul 10U/ul E.coli DNA Ligase; 4ul 10U/ul E.coli DNA Polymerase; and 1ul 2U/ul RNase H. Mix and incubate 2 hours at 16C. Add 2ul T4 DNA Polymerase. Incubate 5 min at 16C. Add 10ul of 0.5M EDTA. A further clean-up of DNA is performed using phenol:chloroform:isoamyl Alcohol (25:24:1) purification.

In vitro Transcription (IVT) and labeling with biotin is performed as follows: Pipet 1.5ul of cDNA into a thin-wall PCR tube. Make NTP labeling mix by combining 2ul T7 10xATP (75mM) (Ambion); 2ul T7 10xGTP (75mM) (Ambion); 1.5ul T7 10xCTP (75mM) (Ambion); 1.5ul T7 10xUTP (75mM) (Ambion); 3.75ul 10mM Bio-11-UTP (Boehringer-Mannheim/Roche or Enzo); 3.75ul 10mM Bio-16-CTP (Enzo); 2ul 10x T7 transcription buffer (Ambion); and 2ul 10x T7 enzyme mix (Ambion). The final volume is 20ul. Incubate 6 hours at 37°C in a PCR machine. The RNA can be furthered cleaned.

Fragmentation is performed as follows. 15 ug of labeled RNA is usually fragmented. Try to minimize the fragmentation reaction volume; a 10 ul volume is recommended but 20 ul is all right. Do not go higher than 20 ul because the magnesium in the fragmentation buffer contributes to precipitation in the hybridization buffer. Fragment RNA by incubation at 94 C for 35 minutes in 1 x Fragmentation buffer (5 x Fragmentation buffer is 200 mM Tris-acetate, pH 8.1; 500 mM KOAc; 150 mM MgOAc). The labeled RNA transcript can be analyzed before and after fragmentation. Samples can be heated to 65°C for 15 minutes and electrophoresed on 1% agarose/TBE gels to get an approximate idea of the transcript size range

For hybridization, 200 ul (10ug cRNA) of a hybridization mix is put on the chip. If multiple hybridizations are to be done (such as cycling through a 5 chip set), then it is recommended that an initial hybridization mix of 300 ul or more be made. The hybridization mix is: fragment labeled RNA (50ng/ul final conc.); 50 pM 948-b control oligo; 1.5 pM BioB; 5 pM BioC; 25 pM BioD; 100 pM CRE; 0.1mg/ml herring sperm DNA; 0.5mg/ml acetylated BSA; and 300 ul with 1xMES hyb buffer.

Labeling is performed as follows: The hybridization reaction includes non-biotinylated IVT (purified by RNeasy columns); IVT antisense RNA 4 μg:μl; random Hexamers (1 μg/μl) 4 μl and water to 14 ul. The reaciton is incubated at 70°C, 10 min. Reverse transcriptionis performed in the following reaction: 5X First Strand (BRL) buffer, 6 μl; 0.1 M DTT, 3 μl; 50X dNTP mix, 0.6 μl; H₂O, 2.4 μl; Cy3 or Cy5 dUTP (1mM), 3 μl; SS RT II (BRL), 1 μl in a final volume of 16 μl. Add to hybridization reaction. Incubate 30 min., 42°C. Add 1 μl SSII and incubate another hour. Put on ice. 50X dNTP mix (25mM of cold dATP, dCTP, and dGTP, 10mM of dTTP: 25 μl each of 100mM dATP, dCTP, and dGTP; 10 μl of 100mM dTTP to 15 μl H2O. dNTPs from Pharmacia)

RNA degradation is performed as follows. Add 86 µl H2O, 1.5 µl 1M NaOH/2mM EDTA and incubate at 65°C, 10 min.. For U-Con 30, 500 µl TE/sample spin at 7000g for 10 min, save flow through for purification. For Qiagen purification, suspend u-con recovered material in 500µl buffer PB and proceed using Qiagen protocol. For DNAse digestion, add 1 ul of 1/100 dil of DNAse/30ul Rx and incubate at 37°C for 15 min. Incubate at 5 min 95°C to denature the DNAse/

For sample preparation, add Cot-1 DNA, 10 μl; 50X dNTPs, 1 μl; 20X SSC, 2.3 μl; Na pyro phosphate, 7.5 μl; 10mg/ml Herring sperm DNA; 1ul of 1/10 dilution to 21.8 final vol. Dry in speed vac. Resuspend in 15 μl H20. Add 0.38 μl 10% SDS. Heat 95°C, 2 min and slow cool at room temp. for 20 min. Put on slide and hybridize overnight at 64°C. Washing after the hybridization: 3X SSC/0.03% SDS: 2 min., 37.5 mls 20X SSC+0.75mls 10% SDS in 250mls H2O; 1X SSC: 5 min., 12.5 mls 20X SSC in 250mls H2O; 0.2X SSC: 5 min., 2.5 mls 20X SSC in 250mls H2O. Dry slides and scan at appropriate PMT's and channels.

30

5

10

15

20

25

Example 2. A model of angiogenesis is used to determine expression in angiogenesis

In the model of angiogenesis used to determine expression of angiogenesisassociated sequences, human umbilical vein endothelial cells (HUVEC) were obtained, e.g.,

as passage 1 (p1) frozen cells from Cascade Biologics (Oregon) and grown in maintenance medium: Medium 199 (Life Technologies) supplemented with 20% pooled human serum, 100 mg/ml heparin and 75 mg/ml endothelial cell growth supplements (Sigma) and gentamicin (Life Technologies). An *in vitro* cell system model was used in which 2x10⁵

HUVECs were cultured in 0.5 ml 3 mgs/ml plasminogen-depleted fibrinogen (Calbiochem, San Diego, CA) that was polymerized by the addition of 1 unit of maintenance medium supplemented with 100 ng/ml VEGF and HGF and 10 ng/ml TGF-a (R&D Systems, Minneapolis,MN) added (growth medium). The growth medium was replaced every 2 days. Samples for RNA were collected, *e.g.*, at 0, 2, 6, 15, 24, 48, and 96 hours of culture. The fibrin clots were placed in Trizol (Life Technologies) and disrupted using a Tissuemizer. Thereafter standard procedures were used for extracting the RNA (*e.g.*, Example 1).

Angiogenesis associated sequences thus identified are shown in Tables 1-8. As indicated, some of the Accession numbers include expression sequence tags (ESTs). Thus, in one embodiment herein, genes within an expression profile, also termed expression profile genes, include ESTs and are not necessarily full length.

15

TABLE 1:

5

Unique Eos probeset identifier number Accession number used for previous patent filings Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Pkey: Accession: ExAccn: UnigeneID: Unigene Title:

	•	•	-		
10					
	Pkey	Accession	ExAccn	UnigenelD	UnigeneTitle
	404404	4000450	4 D000450	N- 00774	
		AB000450	AB000450	Hs.82771 Hs.6582	vaccinia related kinase 2 Rho guanine exchange factor (GEF) 12
15		AB002380	AF180681	Hs.4295	proteasome (prosome, macropain) 26S subunit, non-ATPase, 12
13		AB003103	AA130080	Hs.57553	tousled-like kinase 2
		AB004884	N27852		homogentisate 1,2-dioxygenase (homogentisate oxidase)
		AF000573_ma1	BE094848	Hs.15113	
		AF008937	AF008937	Hs.102178	syntaxin 16
20		AF009301	AB011169 AF029674	Hs.20141 Hs.173422	similar to S. cerevisiae SSM4 KIAA1605 protein
20		AF009368	NM_001269	Hs.84746	chromosome condensation 1
		D00591 D00760	AA294921	Hs.250811	v-ral simian leukemia viral oncogene homolog B (ras related; GTP binding protein)
		D11139	AA469369	Hs.5831	tissue inhibitor of metalloproteinase 1 (erythroid potentiating activity, collagenase inhibitor)
		D14657	H60720	Hs.81892	KIAA0101 gene product
25		D14878	AL037228	Hs.82043	D123 gene product
	101956		NM_002410	Hs.121502	mannosyl (alpha-1,6-)-glycoprotein beta-1,6-N-acetyl-glucosaminyltransferase
		D21090	M91401	Hs.178658	RAD23 (S. cerevisiae) homolog B
		D26135	NM_001346	Hs.89462	diacylglycerol kinase, gamma (90kD)
		D26528	D26528	Hs.123058	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 7 (RNA helicase, 52kD)
30		D30742	L24959	Hs.348	calcium/calmodulin-dependent protein kinase IV
		D31762	NM_012288	Hs.153954	TRAM-like protein
	134237	D31765	D31765	Hs.170114	KIAA0061 protein
	100248	D31888	NM_015156	Hs.78398	KIAA0071 protein
		D38128	D25418	Hs.393	prostaglandin I2 (prostacyclin) receptor (IP)
35		D38500	D38500	Hs.278468	postmeiotic segregation increased 2-like 4
		D38551	N92036	Hs.81848	RAD21 (S. pombe) homolog
		D42087	AF091035	Hs.184627	KIAA0118 protein
		D49396	AA331881	Hs.75454	peroxiredoxin 3 gb:Human monocyte PABL (pseudoautosomal boundary-like sequence) mRNA, clone Mo2.
40		D55640	D55640	Lie 6703	platelet-activating factor acetylhydrolase, isoform lb, gamma subunit (29kD)
40	100335		AW247529	Hs.6793 Hs.84087	KIAA0143 protein
		D63477 D63483	D63477 D86864	Hs.57735	acetyl LDL receptor; SREC
		D64015	M96954	Hs.182741	TIA1 cytotoxic granule-associated RNA-binding protein-like 1
		D79990	NM_014737	Hs.80905	Ras association (RalGDS/AF-6) domain family 2
45		D79997	NM_014791	Hs.184339	KIAA0175 gene product
-10		D80010	BE613486	Hs.81412	lipin 1
		D84276	D84284	Hs.66052	CD38 antigen (p45)
		D86425	AW291587	Hs.82733	nidogen 2
		D86978	D86978	Hs.84790	KIAA0225 protein
50		D87012	D87012	Hs.194685	topoisomerase (DNA) III beta
	134347	D87075	AF164142	Hs.82042	solute carrier family 23 (nucleobase transporters), member 1
	128653	D87432	D87432	Hs.10315	solute carrier family 7 (cationic amino acid transporter, y+system), member 6
		D87448	AA013051	Hs.91417	topoisomerase (DNA) II binding protein
	134593	D87845	NM_000437	Hs.234392	platelet-activating factor acetylhydrolase 2 (40kD)
55		HG1098-HT1098		Hs.121489	cystatin D
		HG2167-HT2237		Hs.301946	lysosomal
		HG2415-HT2511	NM_004091	Hs.231444	Homo sapiens, Similar to hypothetical protein PRO1722, clone MGC:15692, mRNA, complete
	cds	DOGGE PEONS	DE643600	Un 140659	rot finger protein
60		HG2825-HT2949		Hs.142653	ret finger protein Hs.816 SRY (sex determining region Y)-box 2
60		HG2887-HT3031 HG4660-HT5073		Al368680 Hs.103042	Hs.816 SRY (sex determining region Y)-box 2 microtubule-associated protein 1B
	100099	HG4704-HT5146	1 12260	Hs.172816	neuregulin 1
		HG884-HT884	AF002225	Hs.180686	ubiquitin protein ligase E3A (human papilloma virus E6-associated protein, Angelman syndrome)
		HG919-HT919	AF128542	Hs.166846	polymerase (DNA directed), epsilon
65		J00212_f	J00212	110.100010	Empirically selected from AFFX single probeset
05		J04029	J04029	Hs.99936	keratin 10 (epidermolytic hyperkeratosis; keratosis palmaris et plantaris)
		J04031	AW067805	Hs.172665	methylenetetrahydrofolate dehydrogenase (NADP+ dependent), methenyltetrahydrofolate
	131877	J04088	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)
		J04543	J04543	Hs.78637	annexin A7
70		L06139	T29618	Hs.89640	TEK tyrosine kinase, endothelial (venous malformations, multiple cutaneous and mucosal)
- =		L07540	AA460085	Hs.171075	replication factor C (activator 1) 5 (36.5kD)
		L08895	L08895	Hs.78995	MADS box transcription enhancer factor 2, polypeptide C (myocyte enhancer factor 2C)
	101132	L11239	L11239	Hs.36993	gastrulation brain homeo box 1
	134849	L11353	BE409525	Hs.902	neurofibromin 2 (bilateral acoustic neuroma)
75	106432	L13773	AK000310	Hs.17138	hypothetical protein FLJ20303

	404450 140000	A100.400F	11-0004	
	101152 L13800	Al984625	Hs.9884	spindle pole body protein
	135397 L14922	L14922	Hs.166563	replication factor C (activator 1) 1 (145kD) heat shock 70kD protein 9B (mortalin-2)
	131687 L15189	BE297635	Hs.3069 Hs.211569	
5	101168 L15388	NM_005308 H87879	Hs.102267	G protein-coupled receptor kinase 5 lysyl oxidase
5	421155 L16895 101226 L27476	AF083892	Hs.75608	tight junction protein 2 (zona occludens 2)
	133975 L27624	C18356	Hs.295944	tissue factor pathway inhibitor 2
	134739 L32976	NM_002419	Hs.89449	mitogen-activated protein kinase kinase 11
	130155 L33404	AA101043	Hs.151254	kallikrein 7 (chymotryptic, stratum corneum)
10	440538 L35263	W76332	Hs.79107	mitogen-activated protein kinase 14
10	132813 L37347	BE313625	Hs.57435	solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2
	101294 L40371	AF168418	Hs.116784	thyroid hormone receptor interactor 4
	101300 L40391	BE535511	Hs.74137	transmembrane trafficking protein
	101310 L41607	L41607	Hs.934	glucosaminyl (N-acetyl) transferase 2, I-branching enzyme
15	130344 L77566	AW250122	Hs.154879	DiGeorge syndrome critical region gene DGSI; likely ortholog of mouse expressed sequence 2
15	embryonic lethal	7111200122	110.10.010	21000190 071101110 01110011 125111 32111 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	101381 M13928	AW675039	Hs.1227	aminolevulinate, delta-, dehydratase
	101668 M14016	AW005903	Hs.78601	uroporphyrinogen decarboxylase
	133780 M14219	AA557660	Hs.76152	decorin
20	101396 M15796	BE267931	Hs.78996	proliferating cell nuclear antigen
	101447 M21305	M21305		gb:Human alpha satellite and satellite 3 junction DNA sequence.
	101458 M22092	M22092		gb:Human neural cell adhesion molecule (N-CAM) gene, exon SEC and partial cds.
	101470 M22898	NM_000546	Hs.1846	tumor protein p53 (Li-Fraumeni syndrome)
	134604 M22995	NM_002884	Hs.865	RAP1A, member of RAS oncogene family
25	101478 M23379	NM_002890	Hs.758	RAS p21 protein activator (GTPase activating protein) 1
	406698 M24364	X03068	Hs.73931	major histocompatibility complex, class II, DQ beta 1
	133519 M24400	AW583062	Hs.74502	chymotrypsinogen B1
	131185 M25753	BE280074	Hs.23960	cyclin B1
• •	134116 M27691	R84694	Hs.79194	cAMP responsive element binding protein 1
30	133999 M28213	AA535244	Hs.78305	RAB2, member RAS oncogene family
	130174 M29550	M29551	Hs.151531	protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform (calcineurin A beta)
	129963 M29971	M29971	Hs.1384	O-6-methylguanine-DNA methyltransferase
	132983 M30269	M30269	Hs.62041	nidogen (enactin)
25	133900 M31158	M31158	Hs.77439	protein kinase, cAMP-dependent, regulatory, type II, beta
35	101543 M31166	M31166	Hs.2050	pentaxin-related gene, rapidly induced by IL-1 beta endothelial differentiation, sphingolipid G-protein-coupled receptor, 1
	101545 M31210	BE246154	Hs.154210	
	101620 M55420	S55271	Hs.247930	Epsilon , IgE prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)
	134691 M59979	AW382987	Hs.88474	transcription factor 6-like 1 (mitochondrial transcription factor 1-like)
40	133595 M62810	AA393273 AA243383	Hs.75133	interferon, gamma-inducible protein 16
40	130425 M63838 101700 M64710	D90337	Hs.155530 Hs.247916	natriuretic peptide precursor C
	101714 M68874	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic, calcium-dependent)
	134246 M74524	D28459	Hs.80612	ubiquitin-conjugating enzyme E2A (RAD6 homolog)
	101760 M80254	M80254	Hs.173125	peptidylprolyl isomerase F (cyclophilin F)
45	133948 M81780_cds3	X59960	Hs.77813	sphingomyelin phosphodiesterase 1, acid lysosomal (acid sphingomyelinase)
	101791 M83822	M83822	Hs.62354	cell division cycle 4-like
	101812 M86934	BE439894	Hs.78991	DNA segment, numerous copies, expressed probes (GS1 gene)
	101813 M87338	NM_002914	Hs.139226	replication factor C (activator 1) 2 (40kD)
	133396 M96326_rna1	M96326	Hs.72885	azurocidin 1 (cationic antimicrobial protein 37)
50	135152 M96954	M96954	Hs.182741	TIA1 cytotoxic granule-associated RNA-binding protein-like 1
	129026 M98833	AL120297	Hs.108043	Friend leukemia virus integration 1
	101901 S66793	H38026	Hs.308	arrestin 3, retinal (X-arrestin)
	134831 S72370	AA853479	Hs.89890	pyruvate carboxylase
	134039 \$78569	NM_002290	Hs.78672	laminin, alpha 4
55	134395 S79873	AA456539	Hs.8262	lysosomal
	101975 S83325	AA079717	Hs.283664	aspartate beta-hydroxylase
	101977 S83364	AF112213	Hs.184062	putative Rab5-interacting protein
	101978 S83365	BE561610	Hs.5809	putative transmembrane protein; homolog of yeast Golgi membrane protein Yif1p (Yip1p-
60	interacting factor)			•
60	101998 U01212	U01212	Hs.248153	olfactory marker protein
	102003 U01922	U01922	Hs.125565	translocase of inner mitochondrial membrane 8 (yeast) homolog A
	102007 U02556	U02556	Hs.75307	t-complex-associated-testis-expressed 1-like
	102009 U02680	BE245149	Hs.82643	protein tyrosine kinase 9
65	416658 U03272	U03272	Hs.79432	fibrillin 2 (congenital contractural arachnodactyly) microfibrillar-associated protein 1
65	132951 U04209	AW821182	Hs.61418	fetal Alzheimer antigen
	135389 U05237	U05237	Hs.99872	
	102048 U07225	U07225 U34820	Hs.339 Hs.151051	purinergic receptor P2Y, G-protein coupled, 2 mitogen-activated protein kinase 10
	130145 U07620	U34820 U09759	Hs. 151051 Hs. 246857	mitogen-activated protein kinase 9
70	303153 U09759 420269 U09820	U72937	Hs.96264	alpha thalassemia/mental retardation syndrome X-linked (RAD54 (S. cerevisiae) homolog)
/ 0	102095 U11313	U11313	Hs.75760	sterol carrier protein 2
	102093 U14518	NM_001809	Hs.1594	centromere protein A (17kD)
	102126 U14575	AW950870	Hs.78961	protein phosphatase 1, regulatory (inhibitor) subunit 8
	102133 U15173	AU076845	Hs.155596	BCL2/adenovirus E1B 19kD-interacting protein 2
75	102139 U15932	NM_004419	Hs.2128	dual specificity phosphatase 5
, 5	102162 U18291	AA450274	Hs.1592	CDC16 (cell division cycle 16, S. cerevisiae, homolog)
	,			·

		U18300	NM_000107	Hs.77602	damage-specific DNA binding protein 2 (48kD)
		U18383 U20536	AA159001 U20536	Hs.180069 Hs.3280	nuclear respiratory factor 1 caspase 6, apoptosis-related cysteine protease
		U21551	AA232362	Hs.157205	branched chain aminotransferase 1, cytosolic
5	102210	U23028	BE619413	Hs.2437	eukaryotic translation initiation factor 2B, subunit 5 (epsilon, 82kD)
		U23752	U23752	Hs.32964	SRY (sex determining region Y)-box 11
		U25435 U25997	U25435 NM 003155	Hs.57419 Hs.25590	CCCTC-binding factor (zinc finger protein) stanniocalcin 1
		U28251_cds2	U28251	Hs.53237	ESTs, Highly similar to Z169_HUMAN ZINC FINGER PROTEIN 169 [H.sapiens]
10		U28831	U28831	Hs.44566	KIAA1641 protein
		U30245	U30245		gb:Human myelomonocytic specific protein (MNDA) gene, 5' flanking sequence and complete
	exon 1.	U32315	AA568906	Hs.82240	syntaxin 3A
		U32439	AF090116	Hs.79348	regulator of G-protein signalling 7
15	102298	U32849	AA382169	Hs.54483	N-myc (and STAT) interactor
		U35139	Al815867	Hs.50130	necdin (mouse) homolog
		U36764 U39400	BE303044 AA223616	Hs.192023 Hs.75859	eukaryotic translation initiation factor 3, subunit 2 (beta, 36kD) chromosome 11 open reading frame 4
		U39657	U39656	Hs.118825	mitogen-activated protein kinase kinase 6
20		U41344	AA362907	Hs.76494	proline arginine-rich end leucine-rich repeat protein
		U41766	NM_003816	Hs.2442	a disintegrin and metalloproteinase domain 9 (meltrin gamma)
		U41813 U41815	AF010258 NM_004398	Hs.127428 Hs.41706	homeo box A9 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 10 (RNA helicase)
		U43286	BE300330	Hs.118725	selenophosphate synthetase 2
25		U44378	AW410035	Hs.75862	MAD (mothers against decapentaplegic, Drosophila) homolog 4
		U44754	Z47542	Hs.179312	small nuclear RNA activating complex, polypeptide 1, 43kD
		U47011_cds1 U47077	AB014615 U63630	Hs.57710 Hs.155637	fibroblast growth factor 8 (androgen-induced) protein kinase, DNA-activated, catalytic polypeptide
		U48251	U48251	Hs.75871	protein kinase C binding protein 1
30		U50535	U50535	Hs.110630	Human BRCA2 region, mRNA sequence CG006
		U56833	U96759	Hs.198307	von Hippel-Lindau binding protein 1
		U58091 U58837	AB014595 AA019401	Hs.155976 Hs.93909	cullin 4B cyclic nucleotide gated channel beta 1
		U59289	R97457	Hs.63984	cadherin 13, H-cadherin (heart)
35	102567	U59863	U63830	Hs.146847	TRAF family member-associated NFKB activator
	134305	U67122 U67319	U61397 U67319	Hs.81424 Hs.9216	ubiquitin-like 1 (sentrin) caspase 7, apoptosis-related cysteine protease
		U68019	AW081883	Hs.288261	Homo sapiens cDNA: FLJ23037 fis, clone LNG02036, highly similar to HSU68019 Homo
4.0		mad protein homo	log (hMAD-3) m	RNA	
40		U69611	U92649	Hs.64311	a disintegrin and metalloproteinase domain 17 (tumor necrosis factor, alpha, converting enzyme)
		U70322 U73524	NM_002270 U73524	Hs.168075 Hs.87465	karyopherin (importin) beta 2 ATP/GTP-binding protein
		U79267	AF111106	Hs.3382	protein phosphatase 4, regulatory subunit 1
4.5		U79291	AW959829	Hs.83572	hypothetical protein MGC14433
45		U82671_cds2	U82671 AI752235	Hs.36980 Hs.41270	melanoma antigen, family A, 2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase) 2
		U84573 U90914	D85390	Hs.5057	carboxypeptidase D
		U91316	NM_007274	Hs.8679	cytosolic acyl coenzyme A thioester hydrolase
50		U91932	AA262170	Hs.80917	adaptor-related protein complex 3, sigma 1 subunit
50		U96131 U97018	BE264974 U97018	Hs.6566 Hs.12451	thyroid hormone receptor interactor 13 echinoderm microtubule-associated protein-like
		U97188	AA634543	Hs.79440	IGF-II mRNA-binding protein 3
	134854	V00503	J03464	Hs.179573	collagen, type I, alpha 2
55		X04327	AW163799	Hs.198365	2,3-bisphosphoglycerate mutase
55		X06389 X07496	AI018666 T72104	Hs.75667 Hs.93194	synaptophysin apolipoprotein A-l
		X07820	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin 2)
	134656	X14787	Al750878	Hs.87409	thrombospondin 1
60		X15525_ma1	NM_001610 AU076611	Hs.75589	acid phosphatase 2, lysosomal methylene tetrahydrofolate dehydrogenase (NAD+ dependent), methenyltetrahydrofolate
00	cyclohy	X16396 drolase	A0070011	Hs.154672	metalyene tetranyurototate denyurogenase (1775) depondenty, montenyurototate
	102971	X16609	X16609	Hs.183805	ankyrin 1, erythrocytic
	134037	X53586_rna1	AI808780	Hs.227730	integrin, alpha 6
65		X53793 X54936	AW500470 BE018302	Hs.117950 Hs.2894	multifunctional polypeptide similar to SAICAR synthetase and AIR carboxylase placental growth factor, vascular endothelial growth factor-related protein
03		X55740	BE245380	Hs.153952	5' nucleotidase (CD73)
		X57025	M14156	Hs.85112	insulin-like growth factor 1 (somatomedin C)
		X60673_rna1	H12912	Hs.274691	adenylate kinase 3 dipeptidylpeptidase IV (CD26, adenosine deaminase complexing protein 2)
70		X60708 X62048	S79876 U10564	Hs.44926 Hs.75188	wee1+(S. pombe) homolog
. •	129063	X63097	X63094	Hs.283822	Rhesus blood group, D antigen
	424460	X63563	BE275979	Hs.296014	polymerase (RNA) II (DNA directed) polypeptide B (140kD)
		X64037 X69636	AW977263 X69636	Hs.68257 Hs.334731	general transcription factor IIF, polypeptide 1 (74kD subunit) Homo sapiens, clone IMAGE:3448306, mRNA, partial cds
75		X69878	U43143	Hs.74049	fms-related tyrosine kinase 4
		X70649	NM_004939	Hs.78580	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 1

	103208 X72841		Hs.31314	retinoblastoma-binding protein 7
	129698 X74987			ATP-binding cassette, sub-family E (OABP), member 1
	131486 X83107			BMX non-receptor tyrosine kinase
_	130729 X84194		Hs.18573	acylphosphatase 1, erythrocyte (common) type
5	103334 X85753	_	Hs.25283	cyclin-dependent kinase 8
	132645 X87870			hepatocyte nuclear factor 4, alpha
	135094 X89066			transient receptor potential channel 1
	103352 X89398_cds2			uracil-DNA glycosylase
10	103353 X89399			RAS p21 protein activator (GTPase activating protein) 3 (Ins(1,3,4,5)P4-binding protein)
10	132173 X89426		Hs.41716	endothelial cell-specific molecule 1
	103371 X91247		Hs.13046	thioredoxin reductase 1
	131584 X91648		Hs.29117	purine-rich element binding protein A
	103376 X92098		Hs.323378	coated vesicle membrane protein
15	103378 X92110		Hs.153618	HCGVIII-1 protein RAB28, member RAS oncogene family
13	128510 X94703		Hs.296371	DR1-associated protein 1 (negative cofactor 2 alpha)
	103410 X96506		Hs.334879	killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 1
	133490 X97230_f		Hs.274601 Hs.152720	M-phase phosphoprotein 6
	103438 X98263		Hs.77578	ubiquitin specific protease 9, X chromosome (Drosophila fat facets related)
20	103440 X98296 103452 X99584		Hs.85119	SMT3 (suppressor of mif two 3, yeast) homolog 1
20	133536 Y00264	NM_006936 W25797.comp		amyloid beta (A4) precursor protein (protease nexin-II, Alzheimer disease)
	135185 Y07566		Hs.96038	Ric (Drosophila)-like, expressed in many tissues
	118523 Y07759		Hs.170157	myosin VA (heavy polypeptide 12, myoxin)
	134662 Y07827		Hs.284283	butyrophilin, subfamily 3, member A1
25	132083 Y07867	_	Hs.279663	Pirin
23	103500 Y09443		Hs.22580	alkylglycerone phosphate synthase
	134389 Y09858		Hs.82577	spindlin-like
	132084 Y12394		Hs.3886	karyopherin alpha 3 (importin alpha 4)
	103540 Z11559		Hs.154721	aconitase 1, soluble
30	133152 Z11695		Hs.324473	mitogen-activated protein kinase 1
20	103548 Z15005		Hs.75573	centromere protein E (312kD)
	103612 Z46261		Hs.70937	H3 histone family, member A
	129092 AA011243_s		Hs.63525	poly(rC)-binding protein 2
	103692 AA018418	AW137912	Hs.227583	Homo sapiens chromosome X map Xp11.23 L-type calcium channel alpha-1 subunit
35	(CACNA1F) gene, comple	te cds: HSP27 p	seudogene, cor	nplete sequence; and JM1 protein, JM2 protein, and Hb2E genes, complete cds
	103695 AA018758	AW207152	Hs.186600	ESTs
	129796 AA018804		Hs.5807	GTPase Rab14
	132258 AA031993		Hs.4311	SUMO-1 activating enzyme subunit 2
	132683 AA044217	BE264633	Hs.143638	WD repeat domain 4
40	131887 AA046548	W17064	Hs.332848	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e,
	member 1			
	103723 AA057447_s	BE274312	Hs.214783	Homo sapiens cDNA FLJ14041 fis, clone HEMBA1005780
	453368 AA058376	W20296	Hs.288178	Homo sapiens cDNA FLJ11968 fis, clone HEMBB1001133
	133260 AA083572	AA403045	Hs.6906	Homo sapiens cDNA: FLJ23197 fis, clone REC00917
45	103765 AA085696	AA085696	Hs.169600	KIAA0826 protein
	103766 AA088744	Al920783	Hs.191435	ESTs
	103767 AA089688		Hs.296155	CGI-100 protein
	132051 AA091284		Hs.180145	HSPC030 protein
5 0	103773 AA092700	Al219323	Hs.101077	ESTs, Weakly similar to T22363 hypothetical protein F47G9.4 - Caenorhabditis elegans
50	[C.elegans]			A STATE OF THE STA
	135289 AA092968	AW372569	Hs.9788	hypothetical protein MGC10924 similar to Nedd4 WW-binding protein 5
	132729 AA094800	AW970843	Hs.55682	eukaryotic translation initiation factor 3, subunit 7 (zeta, 66/67kD)
	103794 AA100219	AF244135	Hs.30670	hepatocellular carcinoma-associated antígen 66
<i>5 5</i>	131471 AA114885	AA164842	Hs.192619	KIAA1600 protein
55	134319 AA129547	BE304999 AW958264	Hs.75653 Hs.103832	fumarate hydratase similar to yeast Upf3, variant B
	103807 AA133016		Hs.15020	homolog of mouse quaking QKI (KH domain RNA binding protein)
	119159 AA149507	AF142419	Hs.129872	sperm associated antigen 9
	129863 AA151005	BE379765 AA187101	Hs.213194	hypothetical protein MGC10895
60	103850 AA187101 103855 AA195179_s	W02363	Hs.302267	hypothetical protein FLJ10330
00	322026 AA203138	AW024973	Hs.283675	NPD009 protein
	135300 AA203645	AA142922	Hs.278626	Arg/Abl-interacting protein ArgBP2
	103861 AA206236	AA206236	Hs.4944	hypothetical protein FLJ12783
	130634 AA227621	AI769067	Hs.127824	ESTs, Weakly similar to T28770 hypothetical protein W03D2.1 - Caenorhabditis elegans
65	[C.elegans]	7 (17 0000)	, 101121 02 .	2070) From y difficulty to represent the process process process process.
0.5	447735 AA248283	AA775268	Hs.6127	Homo sapiens cDNA: FLJ23020 fis, clone LNG00943
	103909 AA249611	AA249611	Hs.47438	SH3 domain binding glutamic acid-rich protein
	131236 AA282640	AF043117	Hs.24594	ubiquitination factor E4B (homologous to yeast UFD2)
	134060 AA287199	D42039	Hs.78871	mesoderm development candidate 2
70	129013 AA313990	AA371156	Hs.107942	DKFZP564M112 protein
. •	129435 AA314256	AF151852	Hs.111449	CGI-94 protein
			Hs.42500	ADP-ribosylation factor-like 5
	103988 AA314389	AA314389	113.42300	
	103988 AA314389 104000 AA324364	AA314389 A1146527	Hs.80475	polymerase (RNA) II (DNA directed) polypeptide J (13.3kD)
		AI146527 AF155568	Hs.80475 Hs.155489	polymerase (RNA) II (DNA directed) polypeptide J (13.3kD) NS1-associated protein 1
75	104000 AA324364 425284 AA329211_s 128629 AA399187	Al146527 AF155568 AL096748	Hs.80475 Hs.155489 Hs.102708	polymerase (RNA) II (DNA directed) polypeptide J (13.3kD) NS1-associated protein 1 DKFZP434A043 protein
75	104000 AA324364 425284 AA329211_s	AI146527 AF155568	Hs.80475 Hs.155489	polymerase (RNA) II (DNA directed) polypeptide J (13.3kD) NS1-associated protein 1

	104104 AA	422029	AA422029	Hs.143640	ESTs, Weakly similar to hyperpolarization-activated cyclic nucleotide-gated channel hHCN2
	[H.sapiens] 108154 AA	425230	NM_005754	Hs.220689	Ras-GTPase-activating protein SH3-domain-binding protein
	132091 AA			Hs.170218	KIAA0251 protein
5	135073 AA				Homo sapiens mRNA; cDNA DKFZp586E1624 (from clone DKFZp586E1624)
	131367 AA 129593 AA			Hs.173933 Hs.98314	nuclear factor I/A Homo sapiens mRNA; cDNA DKFZp586L0120 (from clone DKFZp586L0120)
	135266 AB			Hs.97393	KIAA0328 protein
	133505 C0				Homo sapiens mRNA; cDNA DKFZp586J0720 (from clone DKFZp586J0720)
10	132064 C0			Hs.3838	serum-inducible kinase
	134393 C0 131427 C0		W52642 AF151879	Hs.8261 Hs.26706	hypothetical protein FLJ22393 CGI-121 protein
	133435 C0		Al929357	Hs.323966	Homo sapiens clone H63 unknown mRNA
	104282 C1	4448	C14448	Hs.332338	EST
15	134827 D1				coproporphyrinogen oxidase (coproporphyria, harderoporphyria)
	130443 D2 131742 D3			Hs.155650 Hs.31433	KIAA0014 gene product ESTs
	132837 D5				EGF-TM7-latrophilin-related protein
	130377 D8	0897		Hs.155182	KIAA1036 protein
20	104334 D8		D82614		phosphoglycerate kinase 1
	134593 D8 134731 D8		NM_000437 D89377		platelet-activating factor acetylhydrolase 2 (40kD) msh (Drosophila) homeo box homolog 2
	129913 H0				cAMP responsive element binding protein-like 2
~ =	131670 H4		H03514	Hs.10130	ESTs
25	104394 H4		AA129551		Homo sapiens cDNA: FLJ21409 fis, clone COL03924
	104402 H5 129781 H7		H56731 AA306090	Hs.132956 Hs.124707	ESTs ESTs
	129077 H7			Hs.108479	ESTs
• •	104417 H8	1241	Al819448	Hs.320861	Kruppel-like factor 8
30	134927 L30		L36531	Hs.91296	integrin, alpha 8
	129280 M6 134498 M6		M63154 AW246273	Hs.110014 Hs.84131	gastric intrinsic factor (vitamin B synthesis) threonyl-tRNA synthetase
	104460 MS		AW955705		Homo sapiens, clone IMAGE:4299322, mRNA, partial cds
2 =	104488 N5		N56191	Hs.106511	protocadherin 17
35	131248 N7		AI038989		Bardet-Biedl syndrome 2
	129214 N7 130017 R1			Hs.109526 Hs.143198	zinc finger protein 198 inhibitor of growth family, member 3
	104530 R2		AK001676	Hs.12457	hypothetical protein FLJ10814
40	104534 R2	2303	R22303		gb:yh26b09.r1 Soares placenta Nb2HP Homo sapiens cDNA clone IMAGE:130841 5', mRNA
40	sequence. 104544 R3	13770	Al091173	Hs.222362	ESTs, Weakly similar to p40 [H.sapiens]
	133328 R3			Hs.265327	hypothetical protein DKFZp761I141
	104567 R6	4534	AA040620		hypothetical protein AF140225
15	128562 R6		AA923382	Hs.101490	ESTs
45	129575 R7 130776 R7		F08282 AF167706	Hs.278428 Hs.19280	progestin induced protein cysteine-rich motor neuron 1
	104599 R8		AW815036	Hs.151251	ESTs
			BE298665		Homo sapiens mRNA; cDNA DKFZp564D016 (from clone DKFZp564D016)
5 0		C_AA007234_s	Al239923 Al143020	Hs.30098 Hs.36250	ESTs Weakly similar to 138022 hypothetical protein [H.sapiens]
50		_	A1039243	Hs.278585	ESTs
		C_AA027168	AA027167	Hs.10031	KIAA0955 protein
		C_AA027317 Intains Alu repet	AA027317		gb:ze97d11.s1 Soares_fetal_heart_NbHH19W Homo sapiens cDNA clone IMAGE:366933 3'
55			ative element,, i AK001751	Hs.171835	e. hypothetical protein FLJ10889
55		C_AA031357	Al858702	Hs.31803	ESTs, Weakly similar to N-WASP [H.sapiens]
		. – .	T79340	Hs.22575	B-cell CLL/lymphoma 6, member B (zinc finger protein)
			AW631469 AA055829	Hs.203213 Hs.196701	ESTs ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION
60		ENTRY [H.sapie		113,130701	Edia, Housey Silling to the International Control of the Control o
	104943 RC	C_AA065217	AF072873	Hs.114218	frizzled (Drosophila) homolog 6
			H63789	Hs.296288 Hs.9879	ESTs, Weakly similar to KIAA0638 protein [H.sapiens] ESTs
			AA126311 AW803564	Hs.288850	Homo sapiens cDNA: FLJ22528 fis, clone HRC12825
65			AW503733	Hs.9414	KIAA1488 protein
			W55946	Hs.234863	Homo sapiens cDNA FLJ12082 fis, clone HEMBB1002492
			AL042506 AB040930	Hs.21599 Hs.126085	Kruppel-like factor 7 (ubiquitous) KIAA1497 protein
			BE245294	Hs.180789	S164 protein
70	132796 RC	C_AA180487	NM_006283	Hs.173159	transforming, acidic coiled-coll containing protein 1
			BE396283	Hs.173987	eukaryotic translation initiation factor 3, subunit 1 (alpha, 35kD) cytoskeleton associated protein 2
			AA328102 AA233393	Hs.24641 Hs.14992	hypothetical protein FLJ11151
		_AA234743	AW338625	Hs.22120	ESTs
75	105337 RC	C_AA234957	A1468789	Hs.23200	myotubularin related protein 1
	129385 RC	C_AA235604	AA172106	Hs.110950	Rag C protein

	105376 RC_AA236559	AW994032	Hs.8768	hypothetical protein FLJ10849
	105397 RC_AA242868	AA814807	Hs.7395	hypothetical protein FLJ23182
	131962 RC_AA251776	AK000046	Hs.267448	hypothetical protein FLJ20039
5	131991 RC_AA251909 128658 RC_AA252672_s	AF053306	Hs.36708 Hs.324830	budding uninhibited by benzimidazoles 1 (yeast homolog), beta diptheria toxin resistance protein required for diphthamide biosynthesis (Saccharomyces)-like 2
J	105489 RC_AA256157	AA256157	Hs.24115	Homo sapiens cDNA FLJ14178 fis, clone NT2RP2003339
	105508 RC_AA256680	AA173942	Hs.326416	Homo sapiens mRNA; cDNA DKFZp564H1916 (from clone DKFZp564H1916)
	105539 RC_AA258873	AB040884	Hs.109694	KIAA1451 protein
1.0	135172 RC_AA262727	AB028956	Hs.12144	KIAA1033 protein
10	131569 RC_AA281451	AL389951	Hs.271623	nucleoporin 50kD
	132542 RC_AA281545	AL137751 BE621719	Hs.263671 Hs.173802	Homo sapiens mRNA; cDNA DKFZp434l0812 (from clone DKFZp434l0812); partial cds KIAA0603 gene product
	105643 RC_AA282069 105659 RC_AA283044	AA283044	Hs.25625	hypothetical protein FLJ11323
	105666 RC_AA283930	AA426234	Hs.34906	ESTs, Weakly similar to T17210 hypothetical protein DKFZp434N041.1 [H.sapiens]
15	105674 RC_AA284755	AI609530	Hs.279789	histone deacetylase 3
	105709 RC_AA291268	A1928962	Hs.26761	DKFZP586L0724 protein
	105722 RC_AA291927	AI922821	Hs.32433	ESTs ESTs
	105765 RC_AA343514 115951 RC_AA398109	AA299688 BE546245	Hs.24183 Hs.301048	sec13-like protein
20	105962 RC_AA405737	AW880358	Hs.339808	hypothetical protein FLJ10120
	105985 RC_AA406610	AA406610		gb:zv15b10.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:753691 3' similar to
	gb:X02067			
	106008 RC_AA411465	AB033888	Hs.8619	SRY (sex determining region Y)-box 18
25	131216 RC_AA416886	AI815486 AW855861	Hs.243901 Hs.8025	Homo sapiens cDNA FLJ20738 fis, clone HEP08257 Homo sapiens clone 23767 and 23782 mRNA sequences
23	134222 RC_AA424013 113689 RC_AA424148	AB037850	Hs.16621	DKFZP434I116 protein
	106141 RC_AA424558	AF031463	Hs.9302	phosducin-like
	130839 RC_AA424961_s		Hs.20141	similar to S, cerevisiae SSM4
20	106157 RC_AA425367	W37943	Hs.34892	KIAA1323 protein
30	130777 RC_AA425921	AW135049	Hs.285418	Homo sapiens cDNA FLJ10643 fis, clone NT2RP2005753, highly similar to Homo sapiens I-1
	receptor 130561 RC_AA426220	AB011095	Hs.16032	KIAA0523 protein
	106196 RC_AA427735	AA525993	Hs.173699	ESTs. Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION
	WARNING			_
35	131878 RC_AA430673	AA083764	Hs.6101	hypothetical protein MGC3178
	133200 RC_AA432248	AB037715	Hs.183639	hypothetical protein FLJ10210
	106302 RC_AA435896 106328 RC_AA436705	AA398859 AL079559	Hs.18397 Hs.28020	hypothetical protein FLJ23221 KIAA0766 gene product
	450534 RC_AA446561	AL079339 Al570189	Hs.25132	KIAA0470 gene product
40	106423 RC_AA448238	AB020722	Hs.16714	Rho quanine exchange factor (GEF) 15
	133442 RC_AA448688	AL137663	Hs.7378	Homo sapiens mRNA; cDNA DKFZp434G227 (from clone DKFZp434G227)
	439608 RC_AA449756	AW864696	Hs.301732	hypothetical protein MGC5306
	106477 RC_AA450303	R23324 AB033042	Hs.41693 Hs.29679	DnaJ (Hsp40) homolog, subfamily B, member 4 cofactor required for Sp1 transcriptional activation, subunit 3 (130kD)
45	106503 RC_AA452411 446999 RC_AA454566	AA151520	Hs.334822	hypothetical protein MGC4485
15	106543 RC_AA454667	AA676939	Hs.69285	neuropilin 1
	130010 RC_AA456437	AA301116	Hs.142838	nucleolar phosphoprotein Nopp34
	106589 RC_AA456646	AK000933	Hs.28661	Homo sapiens cDNA FLJ10071 fis, clone HEMBA1001702
50	106593 RC_AA456826	AW296451	Hs.24605 Hs.293552	ESTs ESTs, Moderately similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE
30	106596 RC_AA456981 CONTAMINATION	AA452379	HS.293332	ESTS, IVIDUE IALBIY SIITIIAI TO ALOT_TOWAN ALO SODI ANIILT OU SERGENSE
	134655 RC_AA458959	AF265208	Hs.123090	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily f,
	member 1			
	106636 RC_AA459950	AW958037	Hs.286	ribosomal protein L4
55	106654 RC_AA460449	AW075485	Hs.286049	phosphoserine aminotransferase gb:RC2-CT0321-131199-011-c01 CT0321 Homo sapiens cDNA, mRNA sequence
	131353 RC_AA463910 106707 RC_AA464603	AW754182 AK000566	Hs.98135	hypothetical protein FLJ20559
	131710 RC_AA464606	NM_015368	Hs.30985	pannexin 1
	106717 RC_AA465093	AA600357	Hs.239489	TIA1 cytotoxic granule-associated RNA-binding protein
60	131775 RC_AA465692	AB014548	Hs.31921	KIAA0648 protein
	106747 RC_AA476473	NM_007118	Hs.171957	triple functional domain (PTPRF interacting)
	106773 RC_AA478109 106781 RC_AA478474	AA478109 AA330310	Hs.188833 Hs.24181	ESTs ESTs
	106817 RC_AA480889	D61216	Hs.18672	ESTS
65	106846 RC_AA485223	AB037744	Hs.34892	KIAA1323 protein
	106848 RC_AA485254	AA449014	Hs.121025	chromosome 11 open reading frame 5
	106856 RC_AA486183	W58353	Hs.285123	Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 2005779
	418699 RC_AA496936	BE539639	Hs.173030	ESTs, Weakly similar to ALUB_HUMAN ALU SUBFAMILY SX SEQUENCE CONTAMINATION
70	WARNING 107001 RC_AA598589	A1926520	Hs.31016	putative DNA binding protein
, 0	130638 RC_AA598831_f		Hs.17121	ESTs
	107054 RC_AA600150	AI076459	Hs.15978	KIAA1272 protein
	107059 RC_AA608545	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli RecA homolog)
75	107080 RC_AA609210 107115 RC_AA610108	AL122043 BE379623	Hs.19221 Hs.27693	hypothetical protein DKFZp566G1424 peptidylprolyl isomerase (cyclophilin)-like 1
13	107130 RC_AA620582	AB033106	Hs.12913	KIAA1280 protein
				•

	107156 RC_AA621239	AA137043	Hs.9663	programmed cell death 6-interacting protein
	107174 RC_AA621714 130621 RC_AA621718	BE122762 AW513087	Hs.25338 Hs.16803	ESTs LUC7 (S. cerevisìae)-like
5	107190 RC_D19673	AA836401	Hs.5103	ESTs
3	132626 RC_D25755_s 107217 RC_D51095	AW504732 AL080235	Hs.21275 Hs.35861	hypothetical protein FLJ11011 DKFZP586E1621 protein
	131610 RC_D60272_i	AA357879	Hs.29423	scavenger receptor with C-type lectin
	129604 T08879	AF088886	Hs.11590	cathepsin F UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 1
10	107295 T34527 (GalNAc-T1)	AA186629	Hs.80120	DP-14-acetyl-alpha-D-galactosamille,potypeptide 14-acetylgalactosamilyiidansicidso
	107299 T40327_s	BE277457	Hs.30661	hypothetical protein MGC4606
	107315 T62771_s 107316 T63174_s	AA316241 T63174	Hs.90691 Hs.193700	nucleophosmin/nucleoplasmin 3 Homo sapiens mRNA; cDNA DKFZp586I0324 (from clone DKFZp586I0324)
	107328 T83444	AW959891	Hs.76591	KIAA0887 protein
15	107334 T93641	T93597	Hs.187429	ESTs
	134715 U48263 128636 U49065	U48263 U49065	Hs.89040 Hs.102865	prepronociceptin interleukin 1 receptor-like 2
	129938 U79300	AW003668	Hs.135587	Human clone 23629 mRNA sequence
20	107375 U88573	BE011845 AL038596	Hs.251064 Hs.250745	high-mobility group (nonhistone chromosomal) protein 14 polymerase (RNA) III (DNA directed) (62kD)
20	130074 U93867 107387 W01094	D86983	Hs.118893	Melanoma associated gene
	132036 W01568	AL157433	Hs.37706	hypothetical protein DKFZp434E2220
	107426 W26853 113857 W27179	W26853 AW243158	Hs.291003 Hs.5297	hypothetical protein MGC4707 DKFZP564A2416 protein
25	135388 W27965	W27965	Hs.99865	epimorphin
	130419 W36280_s	AF037448	Hs.155489	NS1-associated protein 1
	107469 W47063 132616 W79060	W47063 BE262677	Hs.94668 Hs.283558	ESTs hypothetical protein PRO1855
• •	107506 W88550	AB028981	Hs.8021	KIAA1058 protein
30	132358 X60486 107522 X78931 s	NM_003542 X78931	Hs.46423 Hs.99971	H4 histone family, member G zinc finger protein 272
	125827 Z14077_s	NM_003403	Hs.97496	YY1 transcription factor
	107582 RC_AA002147	AA002147	Hs.59952	EST
35	107609 RC_AA004711 107661 RC_AA010383	R75654 AA010383	Hs.164797 Hs.60389	hypothetical protein FLJ13693 ESTs
22	107714 RC_AA015761	AA015761	Hs.60642	ESTs
	107775 RC_AA018772	AW008846	Hs.60857	ESTs gb:ze66c11.s1 Soares retina N2b4HR Homo sapiens cDNA clone IMAGE:363956 3', mRNA
	107832 RC_AA021473_i sequence.	AA021473		gb.Zeooci (1.5) Godies fetilia (42.54) (1.1) fortio sapicito obtain obtain obtain obtain obtain
40	107859 RC_AA024835	AW732573	Hs.47584	potassium voltage-gated channel, delayed-rectifler, subfamily S, member 3
	124337 RC_AA025858 107914 RC_AA027229	N23541 AA027229	Hs.281561 Hs.61329	Homo sapiens cDNA: FLJ23582 fis, clone LNG13759 ESTs, Weakly similar to T16370 hypothetical protein F45E12.5 - Caenorhabditis elegans
	[C.elegans]			
45	107935 RC_AA029428	AA029428 Al936442	Hs.61555 Hs.59838	ESTs hypothetical protein FLJ10808
40	116262 RC_AA035143 131461 RC_AA035237	AA992841	Hs.27263	KIAA1458 protein
	108007 RC_AA039347	AA039347	Hs.61916	EST
	108029 RC_AA040740 108040 RC_AA041551	AA040740 AL121031	Hs.62007 Hs.159971	ESTs SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b,
50	member 1	712121001		
	108084 RC_AA045513	AA058944	Hs.116602	Homo sapiens, cione IMAGE:4154008, mRNA, partial cds
	108088 RC_AA045745 108168 RC_AA055348	AA045745 A1453137	Hs.62886 Hs.63176	ESTS
	130719 RC_AA056582_	s AA679262	Hs.14235	hypothetical protein FLJ20008; KIAA1839 protein
55	108189 RC_AA056697 108190 RC_AA056746	AW376061 AA056746	Hs.63335 Hs.63338	ESTs, Moderately similar to A46010 X-linked retinopathy protein [H.sapiens] EST
	108203 RC_AA057678	AW847814	Hs.289005	Homo sapiens cDNA: FLJ21532 fis, clone COL06049
	108216 RC_AA058681	AA524743	Hs.44883	ESTs
60	108217 RC_AA058686 108245 RC_AA062840	AA058686 BE410285	Hs.62588 Hs.89545	ESTs proteasome (prosome, macropain) subunit, beta type, 4
	108277 RC_AA064859	AA064859		gb:zm50f03.s1 Stratagene fibroblast (937212) Homo sapiens cDNA clone IMAGE:529085 3',
	mRNA 108280 RC_AA065069	AA065069		gb:zm12e11.s1 Stratagene pancreas (937208) Homo sapiens cDNA clone 3', mRNA sequence
	108309 RC_AA069923	AA069818		gb:zm67e03.r1 Stratagene neuroepithelium (937231) Homo sapiens cDNA clone 5' similar to
65	133739 RC_AA070799_		Hs.278270	unactive progesterone receptor, 23 kD
	108340 RC_AA070815 108403 RC_AA075374	AA069820 AA075374	Hs.180909	peroxiredoxin 1 gb:zm87a01.s1 Stratagene ovarian cancer (937219) Homo sapiens cDNA clone IMAGE:544872
	3', mRNA sequence.			
70	108427 RC_AA076382	AA076382		gb:zm91g08.s1 Stratagene ovarian cancer (937219) Homo sapiens cDNA clone IMAGE:545342
70	3', mRNA sequence. 108435 RC_AA078787	T82427	Hs.194101	Homo sapiens cDNA: FLJ20869 fis, clone ADKA02377
	108439 RC_AA078986	AA078986		gb:zm92h01.s1 Stratagene ovarian cancer (937219) Homo sapiens cDNA clone IMAGE:545425
	3', mRNA sequence. 108465 RC_AA079393	AA079393	Hs.3462	cytochrome c oxidase subunit VIIc
75	108469 RC_AA079487	AA079487		gb:zm97f08.s1 Stratagene colon HT29 (937221) Homo sapiens cDNA clone 3', mRNA
	sequence			

	108500 RC 108501 RC		AA083207 AA083256	Hs.68270	EST ab:zn08q12.s1 Stratagene hNT neuron (937233) Homo sapiens cDNA clone 3' similar to
_	gb:M33308 108533 RC	-	AA084415		gb:zn06g09.s1 Stratagene hNT neuron (937233) Homo sapiens cDNA clone IMAGE:546688 3',
5	mRNA 108562 RC	_AA085274	AA100796		gb:zm26c06.s1 Stratagene pancreas (937208) Homo sapiens cDNA clone 3' similar to
	gb:X15341 108589 RC		Al732404	Hs.68846	ESTs stress-associated endoplasmic reticulum protein 1; ribosome associated membrane protein 4
10	130890 RC 134585 RC 130385 RC	_AA101255	Al907537 D14041 AW067800	Hs.76698 Hs.278573 Hs.155223	Suess-associated endoprasmic relicularin protein 1, industrite associated memorano protein 4 H-2K binding factor-2 stanniocalcin 2
	108749 RC 108807 RC	_AA127017	AA127017 Al652236	Hs.71052 Hs.49376	hypothetical protein FLJ20644
15	108808 RC 108833 RC	_AA130240	AA045088 AF188527	Hs.62738 Hs.61661	ESTs ESTs, Weakly similar to AF174605 1 F-box protein Fbx25 [H.sapiens]
	107290 RC 108846 RC	_AA132983	W27740 AL117452	Hs.323780 Hs.44155	ESTs DKFZP586G1517 protein
	108857 RC 131474 RC	_AA133250 _AA133583_s		Hs.62180 Hs.2726	anillin (Drosophila Scraps homolog), actin binding protein high-mobility group (nonhistone chromosomal) protein isoform I-C
20	108894 RC	_AA135941	AK001431	Hs.5105	hypothetical protein FLJ10569
	108941 RC IMAGE:5672	02 3',	AA148650		gb:zo09e06.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens cDNA clone
	108968 RC 108996 RC		Al304870 AW995610	Hs.188680 Hs.332436	ESTs EST
25	109001 RC	_AA156125	A1056548	Hs.72116	hypothetical protein FLJ20992 similar to hedgehog-interacting protein
	131183 RC 109019 RC	_AA156289 AA156997	AI611807 AA156755	Hs.285107 Hs.72150	hypothetical protein FLJ13397 ESTs
	109022 RC	_AA157291	AA157291	Hs.21479	ubinuclein 1
30	109023 RC 109068 RC	_AA157293 _AA164293_f	AA157293 AA164293	Hs.72168 Hs.72545	ESTs ESTs
	109072 RC	_AA164676	A1732585	Hs.22394	hypothetical protein FLJ10893
	129021 RC 130346 RC		AL044675 H05769	Hs.173081 Hs.188757	KIAA0530 protein Homo sapiens, clone MGC:5564, mRNA, complete cds
	109146 RC		AA176589	Hs.142078	EST
35	109172 RC	_AA180448	AA180448	Hs.144300	EST
		_AA187144_s		Hs.2271	endothelin 1
	109222 RC	_AA189170_f AA192757	AA192833	Hs.109441 Hs.333512	MSTP033 protein similar to rat myomegalin
40	109300 RC	_AA205650	AA418276	Hs.170142	ESTs
40	109481 RC 109485 RC		AA878923 BE619092	Hs.289069 Hs.28465	hypothetical protein FLJ21016 Homo sapiens cDNA: FLJ21869 fis, clone HEP02442
	109516 RC		Al471639	Hs.71913	ESTs
	109537 RC 109556 RC		AI858695 AI925294	Hs.34898 Hs.87385	ESTs ESTs
45	109556 RC		F02206	Hs.296639	Homo sapiens potassium channel subunit (HERG-3) mRNA, complete cds
	109578 RC	_F02208	F02208	Hs.27214	ESTs
	109595 RC 109625 RC		AA078629 H29490	Hs.27301 Hs.22697	ESTs ESTs
	131983 RC		AF119665	Hs.184011	pyrophosphatase (inorganic)
50	109648 RC	_	H17800	Hs.7154	ESTs ESTs
	109671 RC 109699 RC		R59210 H18013	Hs.26634 Hs.167483	ESTs ESTs
	109820 RC	_F11115	AW016809	Hs.323795	ESTs
55	109933 RC 110014 RC		R52417 AL109666	Hs.20945 Hs.7242	Homo sapiens clone 24993 mRNA sequence Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 35907
33	110039 RC		H11938	Hs.21907	histone acetyltransferase
	110099 RC		R44557	Hs.23748	ESTs
	110107 RC 110155 RC		AW151660 Al559626	Hs.31444 Hs.93522	ESTs Homo sapiens mRNA for KIAA1647 protein, partial cds
60	110197 RC	_H20859	AW090386	Hs.112278	arrestin, beta 1
	110223 RC 110306 RC		H19836 H38087	Hs.31697 Hs.105509	ESTs CTL2 gene
	110305 RC		H65490	Hs.18845	ESTs
<i></i>	110342 RC	_H40567	H40961	Hs.33008	ESTs
65	110395 RC 110511 RC		AA025116 H56640	Hs.33333 Hs.221460	ESTs ESTs
	110523 RC		AI040384	Hs.19102	ESTs, Weakly similar to organic anion transporter 1 [H.sapiens]
	110715 RC	_H96712	H96712	Hs.269029	ESTs
70	110754 RC 130132 RC		AW302200 U55936	Hs.6336 Hs.184376	KIAA0672 gene product synaptosomal-associated protein, 23kD
. 0	131135 RC	_N27100	NM_016569	Hs.267182	TBX3-iso protein
	134263 RC		AW973443 N48982	Hs.8086 Hs.38034	RNA (guanine-7-) methyltransferase Homo sapiens cDNA FLJ12924 fis, clone NT2RP2004709
	110938 RC 110983 RC		N40902 NM_015367	Hs.10267	MIL1 protein
75	115062 RC	N52271	AA253314	Hs.154103	LIM protein (similar to rat protein kinase C-binding enigma)
	111081 RC	_N59435	A1146349	Hs.271614	CGI-112 protein

	111128 RC_N64139 135244 RC_N66981 111216 RC_N68640	AW505364 Al834273 AW139408	Hs.19074 Hs.9711 Hs.152940	LATS (large tumor suppressor, Drosophila) homolog 2 novel protein ESTs
5	437562 RC_N69352 131002 RC_N95226 111399 RC_R00138	AB001636 AL050295 AW270776	Hs.5683 Hs.22039 Hs.18857	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 15 KIAA0758 protein ESTs
	111514 RC_R07998 similar to	R07998		gb:yf16g11.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:127076 3'
10	130182 RC_R08929 111574 RC_R10307	BE267033 Al024145	Hs.192853 Hs.188526	ubiquitin-conjugating enzyme E2G 2 (homologous to yeast UBC7) ESTs
	111804 RC_R33354 111831 RC_R36083	AA482478 R36095	Hs.181785 Hs.268695	ESTs ESTs
	129675 RC_R37938_f 111904 RC_R39330	NM_015556 Z41572	Hs.172180	KIAA0440 protein gb:HSCZYB122 normalized infant brain cDNA Homo sapiens cDNA clone c-zyb12, mRNA
15	sequence		11- 400074	
	133868 RC_R40816_s 112033 RC_R43162_s	AB012193 R49031	Hs.183874 Hs.22627	cullin 4A ESTs
	130987 RC_R45698 112300 RC_R54554	BE613269 H24334	Hs.21893 Hs.26125	hypothetical protein DKFZp761N0624 ESTs
20	112513 RC_R68425 112514 RC_R68568	R68425 R68568	Hs.13809 Hs.183373	hypothetical protein FLJ10648 src homology 3 domain-containing protein HIP-55
	112522 RC_R68763	R68857	Hs.265499	ESTs
	112540 RC_R70467 130346 RC_R73565	R69751 H05769	Hs.188757	gb:yi40a10.s1 Soares placenta Nb2HP Homo sapiens cDNA clone 3', mRNA sequence Homo sapiens, clone MGC:5564, mRNA, complete cds
25	129534 RC_R73640	AK002126	Hs.11260	hypothetical protein FLJ11264
	112597 RC_R78376 112732 RC_R92453	R78376 R92453	Hs.29733 Hs.34590	EST ESTs
	131458 RC_T03865	BE297567	Hs.27047	hypothetical protein FLJ20392
30	112888 RC_T03872 131863 RC_T10072	AW195317 Al656378	Hs.107716 Hs.33461	hypothetical protein FLJ22344 ESTs
	112911 RC_T10080	AW732747	Hs.13493	like mouse brain protein E46
	132215 RC_T10132 112931 RC_T15343	AL035703 T02966	Hs.4236 Hs.167428	KIAA0478 gene product ESTs
25	112984 RC_T23457	T16971	Hs.289014	ESTs, Weakly similar to A43932 mucin 2 precursor, intestinal [H.sapiens]
35	112998 RC_T23555 133376 RC_T23670	H11257 BE618768	Hs.22968 Hs.7232	Homo sapiens clone IMAGE:451939, mRNA sequence acetyl-Coenzyme A carboxylase alpha
	113026 RC_T23948	AA376654	Hs.183684 Hs.6298	eukaryotic translation initiation factor 4 gamma, 2
	113070 RC_T33464 128970 RC_T34413	AB032977 Al375672	Hs.165028	KIAA1151 protein
40	113074 RC_T34611 113095 RC_T40920	AK001335 AA828380	Hs.31137 Hs.126733	protein tyrosine phosphatase, receptor type, E ESTs
	113179 RC_T55182	BE622021	Hs.152571	ESTs, Highly similar to IGF-II mRNA-binding protein 2 [H.sapiens]
	113337 RC_T77453 113421 RC_T84039	T77453 A1769400	Hs.302234 Hs.189729	ESTs ESTs
45	113454 RC_T86458	AI022166	Hs.16188	ESTs
	113481 RC_T87693 131441 RC_T89350_s	T87693 AA302862	Hs.204327 Hs.90063	EST neurocalcin delta
	113557 RC_T90945	H66470	Hs.16004	ESTs
50	113559 RC_T90987 113589 RC_T91863	T79763 AI078554	Hs.14514 Hs.15682	ESTS ESTS
	113591 RC_T91881	T91881	Hs.200597	KIAA0563 gene product
	113619 RC_T93783_s 113683 RC_T96687	R08665 AB035335	Hs.1/244 Hs.144519	hypothetical protein FLJ13605 T-cell leukemia/lymphoma 6
55	113692 RC_T96944 113702 RC_T97307	AL360143 T97307	Hs.17936	DKFZP434H132 protein qb:ve53h05.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:121497 3',
33	mRNA			4.7
	113717 RC_T97764 113824 RC_W48817	T99513 Al631964	Hs.187447 Hs.34447	ESTs ESTs
60	113840 RC_W58343	R72137	Hs.7949	DKFZP586B2420 protein
60	113844 RC_W59949 PROTEIN TC10	Al369275	Hs.243010	Homo sapiens cDNA FLJ14445 fis, clone HEMBB1001294, highly similar to GTP-BINDING
	113902 RC_W74644	AA340111	Hs.100009	acyl-Coenzyme A oxidase 1, palmitoyl
	113904 RC_W74761 113905 RC_W74802	AF125044 R81733	Hs.19196 Hs.33106	ubiquitin-conjugating enzyme HBUCE1 ESTs
65	113931 RC_W81205	BE255499 AA256444	Hs.3496 Hs.126485	hypothetical protein MGC15749 hypothetical protein FLJ12604; KIAA1692 protein
	113932 RC_W81237 131965 RC_W90146_f	W79283	Hs.35962	ESTs
	114035 RC_W92798 114106 RC_Z38412	W92798 AW602528	Hs.269181	ESTs qb:RC5-BT0562-260100-011-A02 BT0562 Homo sapiens cDNA, mRNA sequence
70	133593 RC_Z38709	Al416988	Hs.238272	inositol 1,4,5-triphosphate receptor, type 2
	114161 RC_Z38904 424949 RC_Z39103	BE548222 AF052212	Hs.299883 Hs.153934	hypothetical protein FLJ23399 core-binding factor, runt domain, alpha subunit 2; translocated to, 2
	129059 RC_Z39930_f	AW069534	Hs.279583	CGI-81 protein
75	128937 RC_Z39939 WARNING	AA251380	Hs.10726	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION
, 5	130983 RC_Z40012_i	AI479813	Hs.278411	NCK-associated protein 1

	114277 RC_Z40377_s	A1052229	Hs.25373	ESTs, Weakly similar to T20410 hypothetical protein E02A10.2 - Caenorhabditis elegans
	[C.elegans]	41001001	11- 40400	FOT-
	114304 RC_Z40820	A1934204	Hs.16129	ESTs Homo sapiens mRNA; cDNA DKFZp566P013 (from clone DKFZp566P013)
5	114364 RC_Z41680	AL117427	Hs.172778	
5	132900 RC_AA005112	AA777749	Hs.5978	LIM domain only 7
	129034 RC_AA005432 131881 RC_AA010163	AA481157 AW361018	Hs.108110 Hs.3383	DKFZP547E2110 protein upstream regulatory element binding protein 1
		N78223	Hs.108106	transcription factor
	452461 RC_AA026356 114465 RC_AA026901	BE621056	Hs.131731	hypothetical protein FLJ11099
10	131376 RC_AA036867	AK001644	Hs.26156	hypothetical protein FLJ10782
10	101567 RC_AA044644	M33552	Hs.56729	lysosomal
	431555 RC_AA046426	A1815470	Hs.260024	Cdc42 effector protein 3
	132944 RC_AA054515	T96641	Hs.6127	Homo sapiens cDNA: FLJ23020 fis, clone LNG00943
	114618 RC_AA084162	AW979261	Hs.291993	ESTs
15	130274 RC_AA085749	AA128376	Hs.153884	ATP binding protein associated with cell differentiation
	110330 RC_AA098874	AI288666	Hs.16621	DKFZP4341116 protein
	114648 RC_AA101056	AA101056		gb:zn25b03.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens cDNA clone
	IMAGE:548429 3'			
20	114658 RC_AA102746	AA102383	Hs.249190	iumor necrosis factor receptor superfamily, member 10a
20	132456 RC_AA114250_s		Hs.48924	KIAA0512 gene product; ALEX2
	131319 RC_AA126561_s		Hs.25590	stanniocalcin 1
	132225 RC_AA128980_i	AA128980		gb:zo09a11.s1 Stratagene neuroepiihelium NT2RAMI 937234 Homo sapiens cDNA clone
	IMAGE:567164 3'	WOODE	11- 002004	guanina musicalida hinding protain (C protain), gamma 2, linkad
25	132669 RC_AA129757	W38586	Hs.293981 Hs.301959	guanine nucleotide binding protein (G protein), gamma 3, linked proline synthetase co-transcribed (bacterial homolog)
23	114709 RC_AA129921 131973 RC_AA133331	AA397651 AB018284	Hs.158688	KIAA0741 gene product
	114750 RC_AA135958	AA887211	Hs.129467	ESTs
	115714 RC_AA136524_s		Hs.172572	hypothetical protein FLJ20093
	114763 RC_AA147044	AA810755	Hs.88977	hypothetical protein dJ511E16.2
30	114767 RC_AA148885	A1859865	Hs.154443	minichromosome maintenance deficient (S. cerevisiae) 4
	114774 RC_AA150043	AV656017	Hs.184325	CGI-76 protein
	129388 RC_AA151621	AA662477	Hs.110964	hypothetical protein FLJ23471
	129183 RC_AA155743	BE561824	Hs.273369	uncharacterized hematopoletic stem/progenitor cells protein MDS027
2.5	128869 RC_AA156335	AA768242	Hs.80618	hypothetical protein
35	130207 RC_AA156336	AF044209	Hs.144904	nuclear receptor co-repressor 1
	114798 RC_AA159181	AA159181	Hs.54900	serologically defined colon cancer anligen 1 ESTs, Weakly similar to T24396 hypothetical protein T03F6.2 - Caenorhabditis elegans
	114800 RC_AA159825	Z19448	Hs.131887	E315, Weakly Similar to 124030 hypothetical protein 1001 0.2 - Oderomabalita elegano
	[C.elegans] 114828 RC_AA234185	AA252937	Hs.283522	Homo sapiens mRNA; cDNA DKFZp434J1912 (from clone DKFZp434J1912)
40	114846 RC_AA234929	BE018682	Hs.166196	ATPase, Class I, type 8B, member 1
	114848 RC_AA234935	BE614347	Hs.169615	hypothetical protein FLJ20989
	114902 RC_AA236359	AW275480	Hs.39504	hypothetical protein MGC4308
	132271 RC_AA236466	AB030034	Hs.115175	sterile-alpha motif and leucine zipper containing kinase AZK
	114907 RC_AA236535	N29390	Hs.13804	hypothetical protein dJ462O23.2
45	135159 RC_AA236935_s		Hs.95631	Human normal keratinocyte mRNA
	132204 RC_AA236942	AA235827	Hs.42265	ESTs
	114928 RC_AA237018	AA237018	Hs.94869	ESTS
	132481 RC_AA237025	W93378	Hs.49614 Hs.16218	ESTs KIAA0903 protein
50	114932 RC_AA242751	AA971436 BE041820	Hs.38516	Homo sapiens, clone MGC:15887, mRNA, complete cds
20	314162 RC_AA242760 131006 RC_AA242763	AF064104	Hs.22116	CDC14 (cell division cycle 14, S. cerevisiae) homolog B
	114935 RC_AA242809	H23329	Hs.290880	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION
	WARNING	1120020	110.200000	and the state of t
	132454 RC_AA243133	BE296227	Hs.250822	serine/threonine kinase 15
55	437754 RC_AA243495	R60366	Hs.5822	Homo sapiens cDNA: FLJ22120 fis, clone HEP18874
	114957 RC_AA243706	AW170425	Hs.87680	ESTs
	114974 RC_AA250848	AW966931	Hs.179662	nucleosome assembly protein 1-like 1
	114977 RC_AA250868	AW296978	Hs.87787	ESTs
60	114995 RC_AA251152	AA769266	Hs.193657	ESTS ESTS
60	115005 RC_AA251544_ 417177 RC_AA251792	NM_004458	Hs.111339 Hs.81452	fatty-acid-Coenzyme A ligase, long-chain 4
	131889 RC_AA251792	NM_002589	Hs.34073	BH-protocadherin (brain-heart)
	115026 RC_AA252144	AA251972	Hs.188718	ESTs
	115045 RC_AA252524	AW014549	Hs.58373	ESTs
65	115068 RC_AA253461	AW512260	Hs.87767	ESTs
	133138 RC_AA255522	AV657594	Hs.181161	Homo sapiens cDNA FLJ14643 fis, clone NT2RP2001597, weakly similar to RYANODINE
	RECEPTOR,			
	115114 RC_AA256468	AA527548	Hs.7527	small fragment nuclease
70	129584 RC_AA256528	AV656017	Hs.184325	CGI-76 protein
70	115137 RC_AA257976	AW968304	Hs.56156	ESTs
	134312 RC_AA258296	AB011151	Hs.334659 Hs.287832	hypothetical protein MGC14139 myelin protein zero-like 1
	115166 RC_AA258409 115167 RC_AA258421	AF095727 AA749209	Hs.43728	hypothetical protein
	129807 RC_AA262077	Y11192	Hs.5299	aldehyde dehydrogenase 5 family, member A1 (succinate-semialdehyde dehydrogenase)
75	115239 RC_AA278650	BE251328	Hs.73291	hypothetical protein FLJ10881
	115243 RC_AA278766	AA806600	Hs.116665	KIAA1842 protein

	100850 RC_AA279667_s	A A 836472	Hs.297939	cathepsin B
	126884 RC_AA280791	U49436	Hs.286236	KIAA1856 protein
	115322 RC_AA280819	L08895	Hs.78995	MADS box transcription enhancer factor 2, polypeptide C (myocyte enhancer factor 2C)
	133626 RC_AA280828	AW836130	Hs.75277	hypothetical protein FLJ13910
5	115372 RC_AA282195	AW014385	Hs.88678	ESTs, Weakly similar to Unknown [H.sapiens]
	132825 RC_AA283127_s		Hs.57698	Empirically selected from AFFX single probeset
	130269 RC_AA284694	F05422	Hs.168352	nucleoporin-like protein 1
	129192 RC_AA291137 452598 RC_AA291708	AA286914 AI831594	Hs.183299 Hs.68647	ESTS ESTS, Weakly similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE CONTAMINATION
10	WARNING	A103 1334	113.00047	EG15, WERKING SIMILIRI (U. ALO)_TIOMAN ALO GODI AIVILLI GQ GEQDENGE GGITTI INIII WITTON
	132131 RC_AA293495	AF069291	Hs.40539	chromosome 8 open reading frame 1
	115536 RC_AA347193	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), actin binding protein
	132411 RC_AA398474_s		Hs.47986	hypothetical protein MGC10940
1.5	115575 RC_AA398512	AA393254	Hs.43619	ESTS
15	115601 RC_AA400277	AA148984	Hs.48849	ESTs, Weakly similar to ALU4_HUMAN ALU SUBFAMILY SB2 SEQUENCE CONTAMINATION
	WARNING 103928 RC_AA400896	D14540	Hs.199160	myeloid/lymphoid or mixed-lineage leukemia (trithorax (Drosophila) homolog)
	125819 RC_AA404494	AA044840	Hs.251871	CTP synthase
	115683 RC_AA410345	AF255910		junctional adhesion molecule 2
20	115715 RC_AA416733	BE395161	Hs.1390	proteasome (prosome, macropain) subunit, beta type, 2
	132952 RC_AA425154	AI658580	Hs.61426	Homo sapiens mesenchymal stem cell protein DSC96 mRNA, partial cds
	115819 RC_AA426573	AA486620	Hs.41135	endomucin-2 N-acetylqlucosaminidase, alpha- (Sanfilippo disease IIIB)
	132525 RC_AA431418 115895 RC_AA436182	AW292809 AB033035	Hs.50727 Hs.51965	N-acetylgidcosaminidase, aipira- (Saminppo disease mo) KIAA1209 protein
25	132333 RC_AA437099	AA192669	Hs.45032	ESTs
20	115962 RC_AA446585	AI636361	Hs.179520	hypothetical protein MGC10702
	115967 RC_AA446887	Al745379	Hs.42911	ESTs
	115974 RC_AA447224	BE513442	Hs.238944	hypothetical protein FLJ10631
20	115985 RC_AA447709	AA447709	Hs.268115	ESTs, Weakly similar to T08599 probable transcription factor CA150 [H.sapiens]
30	129254 RC_AA453624	AA252468	Hs.1098	DKFZp434J1813 protein ESTs, Weakly similar to AF257182 1 G-protein-coupled receptor 48 [H.sapiens]
	133071 RC_AA455044 116095 RC_AA456045	BE384932 AA043429	Hs.64313 Hs.62618	ESTs, weakly similar to AF257 182 G-protein-coupled receptor 46 [n.sapiens]
	122691 RC_AA460454_s		Hs.172788	ALEX3 protein
	116210 RC_AA476494	BE622792	Hs.172788	ALEX3 protein
35	116213 RC_AA476738	AA292105	Hs.326740	hypothetical protein MGC10947
	134585 RC_AA481422	D14041	Hs.278573	H-2K binding factor-2
	134790 RC_AA482269	BE002798	Hs.287850	integral membrane protein 1
	116265 RC_AA482595	BE297412	Hs.55189 Hs.4947	hypothetical protein hypothetical protein FLJ22584
40	129334 RC_AA485084_s 116274 RC_AA485431_s		Hs.182874	guanine nucleotide binding protein (G protein) alpha 12
40	303150 RC_AA489057	AA887146	Hs.8217	stromal antigen 2
	129945 RC_AA489638	BE514376	Hs.165998	PAI-1 mRNA-binding protein
	116331 RC_AA491000	N41300	Hs.71616	Homo sapiens mRNA; cDNA DKFZp586N1720 (from clone DKFZp586N1720)
4.5	116333 RC_AA491250	AF155827	Hs.203963	hypothetical protein FLJ10339
45	132994 RC_AA505133	AA112748	Hs.279905	clone HQ0310 PR00310p1
	134577 RC_AA598447 116391 RC_AA599243	BE244323 T86558	Hs.85951 Hs.75113	exportin, tRNA (nuclear export receptor for tRNAs) general transcription factor IIIA
	116394 RC_AA599574_i		Hs.65370	lipase, endothelial
	134531 RC_AA600153	Al742845	Hs.110713	DEK oncogene (DNA binding)
50	116417 RC_AA609309	AW499664	Hs.12484	Human clone 23826 mRNA sequence
	116429 RC_AA609710	AF191018	Hs.279923	putative nucleotide binding protein, estradiol-induced
	116439 RC_AA610068	AA251594	Hs.43913	PIBF1 gene product
	116459 RC_AA621399 427505 RC_AA621752	R80137 AA361562	Hs.302738 Hs.178761	Homo sapiens cDNA: FLJ21425 fis, clone COL04162 26S proteasome-associated pad1 homolog
55	132699 RC_C21523	AW449822	Hs.55200	ESTs
33	116541 RC_D12160	D12160	Hs.249212	polymerase (RNA) III (DNA directed) (155kD)
	132557 RC_D19708	AA114926	Hs.5122	ESTs
	112259 RC_D25801	AA337548	Hs.333402	hypothetical protein MGC12760
C O	116571 RC_D45652	D45652		gb:HUMGS02848 Human adult lung 3' directed Mbol cDNA Homo sapiens cDNA 3', mRNA
60	sequence.	DEECEO17	Hs.26498	hunothatical protein EL 191657
	129815 RC_D60208_f 421919 RC_D80504_s	BE565817 AJ224901	Hs.109526	hypothetical protein FLJ21657 zinc finger protein 198
	116643 RC_F03010	Al367044	Hs.153638	myeloid/lymphoid or mixed-lineage leukemia 2
	116661 RC_F04247	R61504		gb:yh16a03.s1 Soares infant brain 1NIB Homo sapiens cDNA clone 3' similar to contains Alu
65	repetitive			
	116715 RC_F10966	AL117440	Hs.170263	tumor protein p53-binding protein, 1
	116729 RC_F13700	BE549407	Hs.115823	ribonuclease P, 40kD subunit
	318709 RC_H05063 134760 RC_H16758	R52576 NM_000121	Hs.285280 Hs.89548	Homo sapiens cDNA: FLJ22096 fis, clone HEP16953 erythropoietin receptor
70	116773 RC_H17315_s	AI823410	Hs.169149	karyopherin alpha 1 (importin alpha 5)
, 0	106425 RC_H22556	H24201	Hs.247423	adducin 2 (beta)
	116780 RC_H22566	H22566	Hs.30098	ESTs
	131978 RC_H48459_s	AA355925	Hs.36232	KIAA0186 gene product
75	116819 RC_H53073	H53073	Hs.93698	EST
75	111428 RC_H56559_s 133175 RC_H57957_s	AL031428 AW955632	Hs.174174 Hs.66666	KIAA0601 protein ESTs, Weakly similar to S19560 proline-rich protein MP4 - mouse [M.musculus]
	199119 KOTU919178	VAAAAAAA	119.00000	CO13, Weakly Sittliat to 3 19000 profitter on profess the 4 " mouse [wi.https://diagonidaj

	116844 RC_H64938_s 116845 RC_H64973 116892 RC_H69535 116925 RC_H73110	H64938 AA649530 Al573283 H73110	Hs.337434 Hs.38458 Hs.260603	ESTs, Weakly similar to A46010 X-linked retinopathy protein [H.sapiens] gb:ns44f05.s1 NCl_CGAP_Alv1 Homo sapiens cDNA clone, mRNA sequence ESTs ESTs, Moderately similar to A47582 B-cell growth factor precursor [H.sapiens]
5	116981 RC_H81783 131768 RC_H86259 117031 RC_H88353 contains L1	N29218 AC005757 H88353	Hs.40290 Hs.31809	ESTs hypothetical protein gb:yw21a02.s1 Morton Fetal Cochlea Homo sapiens cDNA clone IMAGE:252842 3' similar to
10	117034 RC_H88639 132542 RC_H88675 134403 RC_H93708_s 117280 RC_N22107 117344 RC_N24046	U72209 AL137751 AA334551 M18217 R19085	Hs.180324 Hs.263671 Hs.82767 Hs.172129 Hs.210706	YY1-associated factor 2 Homo sapiens mRNA; cDNA DKFZp434l0812 (from clone DKFZp434l0812); partial cds sperm specific antigen 2 Homo sapiens cDNA: FLJ21409 fis, clone COL03924 Homo sapiens cDNA FLJ13182 fis, clone NTZRP3004070
15	117422 RC_N27028 117475 RC_N30205 117487 RC_N30621 130207 RC_N33258 117549 RC_N33390	Al355562 N30205 N30621 AF044209 N33390	Hs.43880 Hs.93740 Hs.44203 Hs.144904 Hs.44483	ESTs, Weakly similar to A46010 X-linked retinopathy protein [H.sapiens] ESTs, Weakly similar to I38022 hypothetical protein [H.sapiens] ESTs nuclear receptor co-repressor 1 EST
20	117683 RC_N40180 IMAGE:276387 3' similar to	N40180		gb:yy44d02.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone
	117710 RC_N45198 104514 RC_N45979_s 117791 RC_N48325	N45198 AF164622 N48325	Hs.47248 Hs.182982 Hs.93956	ESTs, Highly similar to similar to Cdc14B1 phosphatase [H.sapiens] golgin-67 EST
25	117822 RC_N48913 129647 RC_N49394 117895 RC_N50656	AA706282 AB018259 AW450348	Hs.93963 Hs.118140 Hs.93996	ESTs KIAA0716 gene product ESTs, Highly similar to SORL_HUMAN SORTILIN-RELATED RECEPTOR PRECURSOR
30	[H.sapiens] 131557 RC_N50721 133057 RC_N53143 118103 RC_N55326	AA317439 AA465131 AA401733	Hs.28707 Hs.64001 Hs.184134	signal sequence receptor, gamma (translocon-associated protein gamma) Homo sapiens clone 25218 mRNA sequence ESTs
	118111 RC_N55493 mRNA	N55493	•	gb:yv50c02.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:246146 3',
35	118129 RC_N57493 IMAGE:277358 3', mRNA 118278 RC_N62955	N57493 N62955	Hs.316433	gb:yy54c08.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone Homo sapiens cDNA FLJ11375 fis, clone HEMBA1000411, weakly similar to ANKYRIN
,	118329 RC_N63520 3', mRNA 118336 RC_N63604	N63520 BE327311	Hs.47166	gb:yy62f01.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone IMAGE:278137 HT021
40	132457 RC_N64166 118363 RC_N64168 118364 RC_N64191 118475 RC_N66845 similar to	AB017365 AI183838 N46114 N66845	Hs.173859 Hs.48938 Hs.29169	frizzled (Drosophila) homolog 7 hypothetical protein FLJ21802 hypothetical protein FLJ22623 gb:za46c11.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:295604 3'
45	118491 RC_N67135 118500 RC_N67295 101663 RC_N68399 118584 RC_N68963	AV647908 W32889 NM_003528 AW136928	Hs.90424 Hs.154329 Hs.2178	Homo sapiens cDNA: FLJ23285 fis, clone HEP09071 ESTs H2B histone family, member Q gb:UI-H-BI1-adp-d-08-0-UI.s1 NCI_CGAP_Sub3 Homo sapiens cDNA clone 3', mRNA
50	sequence 421983 RC_N69331 118661 RC_N70777 118684 RC_N71364_s 118689 RC_N71545_s	AI252640 AL137554 N71313 AW390601	Hs.110364 Hs.49927 Hs.163986 Hs.184544	peptidylprolyl isomerase C (cyclophilin C) protein kinase NYD-SP15 Homo sapiens cDNA: FLJ22765 fis, clone KAIA1180 Homo sapiens, clone IMAGE:3355383, mRNA, partial cds
55	118690 RC_N71571 118766 RC_N74456 118793 RC_N75594 118817 RC_N79035 118844 RC_N80279	N71571 N74456 N75594 Al668658 AL035364	Hs.269142 Hs.50499 Hs.285921 Hs.50797 Hs.50891	ESTS EST ESTs, Moderately similar to T47135 hypothetical protein DKFZp761L0812.1 [H.sapiens] ESTs hypothetical protein
60	118919 RC_N91797 129558 RC_N92454 132692 RC_N94581 118996 RC_N94746 119021 RC_N98238	AW452696 AW580922 AW191962 N94746 N98238	Hs.130760 Hs.180446 Hs.249239 Hs.274248 Hs.55185	myosin phosphatase, target subunit 2 karyopherin (importin) beta 1 collagen, type VIII, alpha 2 hypothetical protein FLJ20758 ESTs
65	119039 RC_R02384 119063 RC_R16833 WARNING	Al160570 R16833 Y07759	Hs.252097 Hs.53106 Hs.170157	pregnancy specific beta-1-glycoprotein 6 ESTs, Moderately similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION myosin VA (heavy polypeptide 12, myoxin)
	118523 RC_R41828_s 119111 RC_R43203 133970 RC_R46395 119146 RC_R58863	T02865 AA214228 R58863	Hs.328321 Hs.127751 Hs.91815	hypothetical protein ESTs
70	120296 RC_R78248 119239 RC_T11483 sequence.	AW995911 T11483	Hs.299883	hypothetical protein FLJ23399 gb:CHR90049 Chromosome 9 exon Homo sapiens cDNA clone 111-15' and 3', mRNA
75	119281 RC_T16896 119298 RC_T23820 126502 RC_T30222 135073 RC_W15275_s	Al692322 NM_001241 T10077 W55956	Hs.65373 Hs.155478 Hs.13453 Hs.94030	ESTs, Weakly similar to T02345 hypothetical protein KIAA0324 [H.sapiens] cyclin T2 hypothetical protein FLJ14753 Homo sapiens mRNA; cDNA DKFZp586E1624 (from clone DKFZp586E1624)

	119558 RC_W38194 132736 RC_W42414_s	W38194 AW081883	Hs.288261	Empirically selected from AFFX single probeset Homo sapiens cDNA: FLJ23037 fis, clone LNG02036, highly similar to HSU68019 Homo
5	sapiens mad protein 132173 RC_W46577_s 134873 RC_W49632_s 119650 RC_W57613 119654 RC_W57759 similar to	X89426 AA884471 R82342 W57759	Hs.41716 Hs.90449 Hs.79856	endothelial cell-specific molecule 1 Human clone 23908 mRNA sequence ESTs, Weakly similar to S65657 alpha-1C-adrenergic receptor splice form 2 [H.sapiens] gb:zd20g11.s1 Soares_feta_heart_NbHH19W Homo sapiens cDNA clone IMAGE:341252 3'
10	119683 RC_W61118 119694 RC_W65344 119718 RC_W69216 133010 RC_W69379 119938 RC_W86728	W65379 AA041350 W69216 AI287518 AW014862	Hs.57835 Hs.57847 Hs.92848 Hs.62669 Hs.58885	ESTs ESTs, Moderately similar to ICE4_HUMAN CASPASE-4 PRECURSOR [H.saplens] ESTs Homo sapiens mRNA; cDNA DKFZp586D0923 (from clone DKFZp586D0923) ESTs
15	120128 RC_Z38499 120130 RC_Z38630 120148 RC_Z39494 120155 RC_Z39623	BE379320 AA045767 F02806 Z39623 F06972	Hs.91448 Hs.5300 Hs.65765 Hs.65783 Hs.27372	MKP-1 like protein tyrosine phosphatase bladder cancer associated protein ESTs ESTs BMX non-receptor tyrosine kinase
20	131486 RC_Z40071_s 120183 RC_Z40174 120184 RC_Z40182 120211 RC_Z40904 120245 RC_AA166965	AW082866 Z40182 Z40904 AW959615	Hs.65882 Hs.65885 Hs.66012 Hs.111045	ESTS EST EST EST
25	120247 RC_AA167500 120254 RC_AA169599_s 120259 RC_AA171724 120260 RC_AA171739 120275 RC_AA177105	AW014786 AK000061 AA177105	Hs.103939 Hs.111054 Hs.192742 Hs.101590 Hs.78457	EST ESTs hypothetical protein FLJ12785 hypothetical protein solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15
30	120284 RC_AA182626 to contains 114056 RC_AA186324 129507 RC_AA192099 120302 RC_AA192173	AA179656 AA188175 AJ236885 AA837098	Hs.82506 Hs.112180 Hs.269933	gb:zp54e11.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens cDNA clone 3' similar KIAA1254 protein zinc finger protein 148 (pHZ-52) ESTs
35	120303 RC_AA192415 120305 RC_AA192553 120319 RC_AA194851 133389 RC_AA195520_s 120326 RC_AA196300	Al216292 AW295096 T57776 AA195764 AA196300	Hs.96184 Hs.101337 Hs.191094 Hs.72639 Hs.21145	ESTs uncoupling protein 3 (mitochondrial, proton carrier) ESTs ESTs hypothetical protein RG083M05.2
40	134272 RC_AA196517 133145 RC_AA196549 120327 RC_AA196721 106686 RC_AA196729_i 120328 RC_AA196979 120340 RC_AA206828	X76040 H94227 AK000292	Hs.278614 Hs.6592 Hs.278732 Hs.334825 Hs.290905	hypothetical protein 15 Homo sapiens, clone IMAGE:2961368, mRNA, partial cds hypothetical protein FLJ20285 Homo sapiens cDNA FLJ14752 fis, clone NT2RP3003071 ESTs, Weakly similar to protease [H.sapiens] gb:zq80b08.s1 Stratagene hNT neuron (937233) Homo sapiens cDNA clone IMAGE:647895 3'
45	similar to 134292 RC_AA207123 131522 RC_AA214539_i 129051 RC_AA226914_s 120375 RC_AA227260	A1906291 A1380040	Hs.81234 Hs.239489 Hs.108301 Hs.111227	immunoglobulin superfamily, member 3 TIA1 cytotoxic granule-associated RNA-binding protein nuclear receptor subfamily 2, group C, member 1 Zic family member 3 (odd-paired Drosophila homolog, heterotaxy 1)
50	120376 RC_AA227469 IMAGE:663732 3', mRNA 120390 RC_AA233122 303876 RC_AA233334_s dominant, ataxin 3)	AA227469 sequence. AA837093	Hs.111460 Hs.66521	gb:zr18a07.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens cDNA clone calcium/calmodulin-dependent protein kinase (CaM kinase) II delta Machado-Joseph disease (spinocerebellar ataxia 3, olivopontocerebellar ataxia 3, autosomal
55	132038 RC_AA233347 104463 RC_AA233519 125750 RC_AA233714 120396 RC_AA233796 120409 RC_AA235050_f	Al825842 T85825 AA018515 AA134006 AA235050	Hs.3776 Hs.246885 Hs.264482 Hs.79306	zinc finger protein 216 hypothetical protein FLJ20783 Homo sapiens mRNA; cDNA DKFZp761A0411 (from clone DKFZp761A0411) eukaryotic translation initiation factor 4E gb:zs38e04.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:687486 3' similar to
60	gb:L07077 120414 RC_AA235704 120420 RC_AA236031 120422 RC_AA236352	AW137156 AI128114 AL133097	Hs.181202 Hs.112885 Hs.301717	hypothetical protein FLJ10038 spinal cord-derived growth factor-B hypothetical protein DKFZp434N1928
65	132221 RC_AA236390_s 120423 RC_AA236453 120435 RC_AA24370 120453 RC_AA250947 120455 RC_AA251083 120456 RC_AA251113	AA236453 AA243370 AA250947 AA251720 AA488750	Hs.42419 Hs.18978 Hs.96450 Hs.170263 Hs.104347 Hs.88414	ESTs Homo sapiens cDNA: FLJ22822 fis, clone KAIA3968 EST tumor protein p53-binding protein, 1 ESTs, Weakly similar to ALUC_HUMAN !!!! ALU CLASS C WARNING ENTRY !!! [H.sapiens] BTB and CNC homology 1, basic leucine zipper transcription factor 2
70	120473 RC_AA251973 128922 RC_AA252023 120477 RC_AA252414 120479 RC_AA252650	AA251973 A1244901 AA252414 AF006689	Hs.269988 Hs.9589 Hs.43141 Hs.110299	ESTs ublquilin 1 DKFZP727C091 protein mitogen-activated protein kinase kinase 7
75	120488 RC_AA255523 120510 RC_AA258128 120527 RC_AA262105 120528 RC_AA262107	AW952916 AI796395 AA262105 AI923511	Hs.63510 Hs.111377 Hs.4094 Hs.104413	KIAA0141 gene product ESTs Homo sapiens cDNA FLJ14208 fis, clone NT2RP3003264 ESTs

5	120529 RC_AA262235 120541 RC_AA278298 131445 RC_AA278529_i 120544 RC_AA278721 120562 RC_AA280036 120569 RC_AA280648 120571 RC_AA280738 120572 RC_AA280794	BE548277 BE244580 AA807544 AB037744 H39599	Hs.104415 Hs.240 Hs.172052 Hs.103104 Hs.302267 Hs.24970 Hs.34892 Hs.294008	ESTs M-phase phosphoprotein 1 serine/threonine kinase 18 ESTs hypothetical protein FLJ10330 ESTs, Weakly similar to B34323 GTP-binding protein Rab2 [H.sapiens] KIAA1323 protein ESTs
10	129434 RC_AA280837 130529 RC_AA280886 repetitive	AW967495 AA178953	Hs.186644	ESTs gb:zp39e03.s1 Stratagene muscle 937209 Homo sapiens cDNA clone 3' similar to contains Alu
15	120575 RC_AA280934 132635 RC_AA281535 120591 RC_AA281797_s 120593 RC_AA282047 430275 RC_AA283002 117729 RC_AA283709 120609 RC_AA283709	AA748355 Z11773 AA306166 AW978721	Hs.238911 Hs.54037 Hs.191356 Hs.193522 Hs.237786 Hs.7145 Hs.266076	hypothetical protein DKFZp762E1511; KIAA1816 protein ectonucleotide pyrophosphatase/phosphodlesterase 4 (putative function) general transcription factor IIH, polypeptide 2 (44kD subunit) ESTs zinc finger protein 187 calpain 7 ESTs, Weakly similar to A46010 X-linked retinopathy protein [H.sapiens]
20	132754 RC_AA284108 130315 RC_AA284109 132614 RC_AA284371 447503 RC_AA284744_f cds	Al752244 Al241084 AA284371 AA115496	Hs.75309 Hs.154353 Hs.118064 Hs.336898	eukaryotic translation elongation factor 2 nonselective sodium potassium/proton exchanger similar to rat nuclear ubiquitous casein kinase 2 Homo sapiens, Similar to RIKEN cDNA 1810038N03 gene, clone MGC:9890, mRNA, complete
25	135376 RC_AA284784 120621 RC_AA284840 107868 RC_AA286844 129868 RC_AA287032	BE617856 AW961294 AA286844 AW172431	Hs.99756 Hs.143818 Hs.61260 Hs.13012	mitochondrial ribosome recycling factor hypothetical protein FLJ23459 hypothetical protein FLJ13164 ESTs
30	120644 RC_AA287038 120660 RC_AA287546 135370 RC_AA287553_s 120661 RC_AA287556 129116 RC_AA287564	Al869129 AA286785	Hs.96616 Hs.99677 Hs.99670 Hs.263412 Hs.225767	ESTs ESTs ESTs, Weakly similar to I38022 hypothetical protein [H.sapiens] ESTs, Weakly similar to ALUB_HUMAN !!!! ALU CLASS B WARNING ENTRY !!! [H.sapiens] IDN3 protein
35	131567 RC_AA291015_s 120699 RC_AA291716 100690 RC_AA291749_s 120726 RC_AA293656	AF015592 Al683243 AA383256 AA293655	Hs.28853 Hs.97258 Hs.1657 Hs.97293	CDC7 (cell division cycle 7, S. cerevisiae, homolog)-like 1 ESTs, Moderately similar to S29539 ribosomal protein L13a, cytosolic [H.sapiens] estrogen receptor 1 ESTs
40	120737 RC_AA302430 120745 RC_AA302809 135192 RC_AA302820_s 120750 RC_AA310499 120761 RC_AA321890 120768 RC_AA340589	AL049176 AA302809 U83993 AI191410 AA321890 AA340589	Hs.82223 Hs.321709 Hs.96693 Hs.1265 Hs.104560	chordin-like gb:EST10426 Adipose tissue, white I Homo sapiens cDNA 3' end, mRNA sequence. purinergic receptor P2X, ligand-gated ion channel, 4 ESTs, Moderately similar to 2109260A B cell growth factor [H.sapiens] branched chain keto acid dehydrogenase E1, beta polypeptide (maple syrup urine disease) EST
45	120769 RC_AA340622 135232 RC_AA342457_i CONTAMINATION		Hs.96769 Hs.96800	ESTs ESTs, Moderately similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE
	133439 RC_AA342828_s 120793 RC_AA342864 120796 RC_AA342973 120809 RC_AA346495	AA342864 AI247356 AA346495	Hs.73734 Hs.96812 Hs.96820	glycoprotein V (platelet) ESTs ESTs ESTs gb:EST52657 Fetal heart II Homo sapiens cDNA 3' end similar to EST containing O family
50	repeat, mRNA sequence. 132459 RC_AA347573 120825 RC_AA347614 120827 RC_AA347717 120839 RC_AA348913	AL120071 Al280215 AA382525 AA348913	Hs.48998 Hs.96885 Hs.132967	fibronectin leucine rich transmembrane protein 2 ESTs Human EST clone 122887 mariner transposon Hsmar1 sequence qb:EST55442 Infant adrenal gland II Homo sapiens cDNA 3' end similar to EST containing Alu
55	repeat, mRNA sequence. 120850 RC_AA349647 120852 RC_AA349773 128852 RC_AA350541_s	AA349647 AA349773 R40622	Hs.96927 Hs.191564 Hs.106601	Homo sapiens cDNA FLJ12573 fis, clone NT2RM4000979 ESTs ESTs
60	135240 RC_AA357159_i 120870 RC_AA357172_i WARNING	AA357172	Hs.96986 Hs.292581	EST ESTs, Moderately similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION
65	134637 RC_AA369856_s 120894 RC_AA370132 131854 RC_AA370472_s 120897 RC_AA370829 120915 RC_AA370829	AA370132 s AF229839 AA370867 AL135556	Hs.180941 Hs.97063 Hs.173202 Hs.97079 Hs.97104	vacuolar protein sorting 41 (yeast homolog) ESTs I-kappa-B-interacting Ras-like protein 1 ESTs, Moderately similar to AF174605 1 F-box protein Fbx25 [H.sapiens] ESTs ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION
70	120935 RC_AA383902 WARNING 120936 RC_AA385934 120937 RC_AA386255 120938 RC_AA386260	AL048409 AA385934 AA386255 AA386260	Hs.97177 Hs.97184 Hs.97186 Hs.104632	EST, Highly similar to (defline not available 7499603) [C.elegans] EST EST
75	129722 RC_AA386266 120960 RC_AA398014 120985 RC_AA398222 120988 RC_AA398235	R20855 AA398014 AI219896 AA398235	Hs.5422 Hs.104684 Hs.97592 Hs.97631	glycoprotein M6B EST ESTs ESTs

	121008 RC_AA398348 GSSs and a CpG	AA398348	Hs.301720	Human DNA sequence from clone RP11-251J8 on chromosome 13 Contains ESTs, STSs,
	121029 RC AA398482	AA398482	Hs.97641	EST
	121032 RC_AA398504	AA393037	Hs.161798	ESTs
5	121033 RC_AA398505	AA398505	Hs.97360	ESTs
	121034 RC_AA398507	AL389951	Hs.271623	nucleoporin 50kD
	121035 RC_AA398523	AA398523	Hs.210579	ESTs
	121058 RC_AA398625	AA398625	Hs.97391	ESTs
	121060 RC_AA398632	AA398632	Hs.97395	ESTs
10	121061 RC_AA398633	AA393288	Hs.97396	ESTs
	121091 RC_AA398894	AA398894	Hs.97657	ESTs, Moderately similar to ALU8_HUMAN ALU SUBFAMILY SX SEQUENCE
	CONTAMINATION			
	121092 RC_AA398895	AA398895	Hs.97658	EST
	121094 RC_AA398900	AA402505		gb:zt62h10.r1 Soares_testis_NHT Homo sapiens cDNA clone 5', mRNA sequence
15	121096 RC_AA398904	AA398904	Hs.332690	ESTs
	121115 RC_AA399122	AA398187	Hs.104682	ESTs, Weakly similar to mitochondrial citrate transport protein [H.sapiens]
	121121 RC_AA399371	AA399371	Hs.189095	similar to SALL1 (sal (Drosophila)-like
	121122 RC_AA399373	Al126713	Hs.192233	ESTs, Highly similar to T00337 hypothetical protein KIAA0568 [H.sapiens]
20	121125 RC_AA399441	AL042981	Hs.251278	KIAA1201 protein
20	121151 RC_AA399636	AA399636	Hs.143629	ESTS
	121153 RC_AA399640	AA399640 AI676062	Hs.97694 Hs.111902	ESTs ESTs
	121163 RC_AA399680 121176 RC_AA400080	AL121523	Hs.97774	ESTs
	121192 RC_AA400262	AA400262	Hs.190093	ESTs
25	121223 RC_AA400725	Al002110	Hs.97169	ESTs, Weakly similar to dJ667H12.2.1 [H.sapiens]
	121227 RC_AA400748	AA400748	Hs.97823	Homo sapiens mRNA; cDNA DKFZp434D024 (from clone DKFZp434D024)
	121231 RC_AA400780	AA814948	Hs.96343	ESTs, Weakly similar to ALUC_HUMAN !!!! ALU CLASS C WARNING ENTRY !!! [H.sapiens]
	121278 RC_AA401631	AA037121	Hs.98518	Homo sapiens cDNA FLJ11490 fis, clone HEMBA1001918
	121279 RC_AA401688	AA292873	Hs.177996	ESTs
30	121282 RC_AA401695	AA401695	Hs.97334	ESTs
	121299 RC_AA402227	AA402227	Hs.22826	tropomodulin 3 (ubiquitous)
	121301 RC_AA402329	NM_006202	Hs.89901	phosphodiesterase 4A, cAMP-specific (dunce (Drosophila)-homolog phosphodiesterase E2)
	121302 RC_AA402398	AA402587	Hs.325520	LAT1-3TM protein
2.5	121304 RC_AA402449	AA293863	Hs.97316	EST
35	121305 RC_AA402468	AA402468	Hs.291557	ESTs
	134721 RC_AA403268_s		Hs.89306	hypothetical protein FLJ20105
	121323 RC_AA403314	AA291411	Hs.97247	ESTs
	121324 RC_AA404229	AA404229	Hs.97842	EST
40	129047 RC_AA404260	Al768623	Hs.108264	ESTs glutamate receptor, ionotropic, kainate 1
40	131074 RC_AA404271 121344 RC_AA405026	U16125 AA405026	Hs.181581 Hs.193754	ESTs
	121344 RC_AA405020 121348 RC_AA405182	AA405020 AA405182	Hs.97973	ESTs
	121350 RC_AA405237	AA405237	110.07070	gb:zt06e10.s1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:712362 3' similar to
	contains Alu	7.0.1,002.01		3
45	121400 RC_AA406061	AA406061	Hs.98001	EST
	121402 RC_AA406063	AA406063	Hs.98003	ESTs
	121403 RC_AA406070	AA406070	Hs.98004	EST
	121408 RC_AA406137	AA406137	Hs.98019	EST
	121431 RC_AA406335	AA035279	Hs.176731	ESTs
50	132936 RC_AA411801	AL120659	Hs.6111	aryl-hydrocarbon receptor nuclear translocator 2
	121471 RC_AA411804	AA411804	Hs.261575	ESTs
	121474 RC_AA411833	AA402335	Hs.188/60	ESTs, Highly similar to Trad [H.sapiens]
	121526 RC_AA412219	AW665325	Hs.98120 Hs.98122	ESTs ESTs
55	121530 RC_AA412259 121558 RC_AA412497	AA778658 AA412497	113.30122	gb:zt95g12.s1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:730150 3' similar to
33	contains L1.t3 L1	AATIZTOI		gb/2/00g12.51 Cod/Co_Codio_1411 110110 Cop/Cit Cod/Cod/Cod/Cod/Cod/Cod/Cod/Cod/Cod/Cod/
	121559 RC_AA412498	A1192044	Hs.104778	ESTs
	121584 RC_AA416586	AI024471	Hs.98232	ESTs
	121609 RC_AA416867	AA416867	Hs.98185	EST
60	121612 RC_AA416874	AA416874	Hs.98168	ESTs
-	121737 RC_AA421133	AA421133	Hs.104671	erythrocyte transmembrane protein
	121740 RC_AA421138	AA421138	Hs.98334	EST
		, AA150797	Hs.109276	latexin protein
	121784 RC_AA423837	T90789	Hs.94308	RAB35, member RAS oncogene family
65	121802 RC_AA424328	Al251870	Hs.188898	ESTs
	121803 RC_AA424339	Al338371	Hs.157173	ESTs
	135286 RC_AA424469_		Hs.97849	ESTS
	121806 RC_AA424502	AA424313	Hs.98402	ESTS
70	129517 RC_AA425004	AW972853	Hs.112237	ESTs ESTs, Moderately similar to ALU2_HUMAN ALU SUBFAMILY SB SEQUENCE
70	121845 RC_AA425734	A1732692	Hs.165066	LOTO, MINUTARIA SIMILAR TO ALOZ MOMENTA ALO GODE AMILET OD GEROLINOL
	CONTAMINATION 121853 RC_AA425887	AA425887	Hs.98502	hypothetical protein FLJ14303
	121891 RC_AA426456	AA426456	Hs.98469	ESTs
	121895 RC_AA427396	AA427396		gb:zw33a02.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone IMAGE:771050 3'
75	similar to contains		-	
	121899 RC_AA427555	R55341	Hs.50421	KIAA0203 gene product

	404047 DO AA400040 AA400007	H= 00020	FOT-
	121917 RC_AA428218 AA406397 121918 RC_AA428242 BE274689	Hs.98038 Hs.184175	ESTs chromosome 2 open reading frame 3
	121916 RC_AA428242 BE274889 121919 RC_AA428281 AA428281	Hs.98560	EST
		Hs.98563	ESTs
5	121941 RC_AA428865 AA428865 121942 RC_AA428994 AW452701	Hs.293237	ESTS
3		Hs.98617	EST
	121970 RC_AA429666 AA429666	Hs.98661	ESTs
	121993 RC_AA430181 AW297880	Hs.87465	ATP/GTP-binding protein
	134660 RC_AA430184_s U73524 126753 RC_AA431288_s AA306478	Hs.95327	CD3D antigen, delta polypeptide (TiT3 complex)
10	122022 RC_AA431293 AA431293	Hs.98716	ESTs, Moderately similar to T42650 hypothetical protein DKFZp434D0215.1 [H.sapiens]
10	122022 RC_AA431293 AA431293 122050 RC_AA431478 Al453076	Hs.166109	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2
	122051 RC_AA431492 AA431492	Hs.98742	EST
	122055 RC_AA431732 AA431732	Hs.98747	EST
	122105 RC_AA432278 AW241685	Hs.98699	ESTs
15	122125 RC_AA434411 AK000492	Hs.98806	hypothetical protein
13	135235 RC_AA435512_i AW298244	Hs.293507	ESTs
	122162 RC_AA435698 AA628233	Hs.79946	cytochrome P450, subfamily XIX (aromatization of androgens)
	129406 RC_AA435711 AB018255	Hs.111138	KIAA0712 gene product
	318801 RC_AA435815_s U40763	Hs.77965	peptidyl-prolyl isomerase G (cyclophillin G)
20	122186 RC_AA435842 AA398811	Hs.104673	ESTs
_ •	122235 RC_AA436475 AA436475	Hs.112227	membrane-associated nucleic acid binding protein
	129131 RC_AA436489 AB026436	Hs.177534	dual specificity phosphatase 10
	134664 RC_AA442060 AA256106	Hs.87507	ESTs
	122310 RC_AA442079 AW192803	Hs.98974	ESTs, Weakly similar to S65824 reverse transcriptase homolog [H.sapiens]
25	122334 RC_AA443151 BE465894	Hs.98365	ESTs, Weakly similar to LB4D_HUMAN NADP-DEPENDENT LEUKOTRIENE B4 12-
	122382 RC_AA446133 AA446440	Hs.98643	ESTS
	122425 RC_AA447145 AB007859	Hs.100955	KIAA0399 protein
	122431 RC_AA447398 AA447398	Hs.99104	ESTs
	122450 RC_AA447643 AA447643	Hs.112095	hypothetical protein DKFZp434F1819
30	302653 RC_AA447742_s AJ404468	Hs.284259	dynein, axonemal, heavy polypeptide 9
	122477 RC_AA448226 AA448226	Hs.324123	ESTs
	122500 RC_AA448825 AA448825	Hs.99190	ESTs
	122522 RC_AA449444 AA299607	Hs.98969	ESTs
2.5	122536 RC_AA450087 AF060877	Hs.99236	regulator of G-protein signalling 20
35	122538 RC_AA450211 AA450211	Hs.99239	ESTs
	122540 RC_AA450244 AA476741	Hs.98279	ESTs, Weakly similar to A43932 mucin 2 precursor, Intestinal [H.sapiens]
	122560 RC_AA452123 AW392342	Hs.283077	centrosomal P4.1-associated protein; uncharacterized bone marrow protein BM032
	421919 RC_AA452155 AJ224901	Hs.109526	zinc finger protein 198
40	122562 RC_AA452156 AA452156		gb:zx29c03.s1 Soares_total_fetus_Nb2HF8_9w Homo sapiens cDNA clone IMAGE:787876 3',
40	mRNA	U- 470707	humathatian unatain El 1999E1
	122585 RC_AA453036 Al681654	Hs.170737	hypothetical protein FLJ23251
	122608 RC_AA453526 AA453525	Hs.143077	ESTs gb:zx33a08.s1 Soares_total_fetus_Nb2HF8_9w Homo sapiens cDNA clone IMAGE:788246 3'
	122635 RC_AA454085 AA454085		gb.2X33abb.\$1 Goales_lotal_lettis_tvb2111 0_3W Hollio Sapletis obtVA Gold IMMGE.760240 0
45	similar to 122636 RC_AA454103 AW651706	Hs.99519	hypothetical protein FLJ14007
40	122653 RC_AA454642 AW009166	Hs.99376	ESTs
	122660 RC_AA454935 Al816827	Hs.180069	nuclear respiratory factor 1
	122703 RC_AA456323 AA456323	Hs.269369	ESTs
	122724 RC_AA457395 AA457395	Hs.99457	ESTS
50	122749 RC_AA458850 AA458850	Hs.293372	ESTs, Weakly similar to B34087 hypothetical protein [H.sapiens]
50	122772 RC_AA459662 AW117452	Hs.99489	ESTs
	131098 RC_AA459668 U66669	Hs.236642	3-hydroxyisobutyryl-Coenzyme A hydrolase
	129045 RC_AA459679_s Al082883	Hs.30732	hypothetical protein FLJ13409; KIAA1711 protein
	122777 RC_AA459702 AK001022	Hs.214397	hypothetical protein FLJ10160 similar to insulin related protein 2
55	135362 RC_AA460017_f AA978128	Hs.99513	ESTs, Weakly similar to T17454 diaphanous-related formin - mouse [M.musculus]
	122798 RC_AA460324 AW366286	Hs.145696	splicing factor (CC1.3)
	122837 RC_AA461509 AA461509	Hs.293565	ESTs, Weakly similar to putative p150 [H.sapiens]
	122860 RC_AA464414_i AA464414		gb:zx78g01.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone IMAGE:809904 3',
	mRNA sequence.		
60	122861 RC_AA464428 AA335721	Hs.119394	ESTs
	122910 RC_AA470084 AA470084	Hs.98358	ESTs
	132899 RC_AA476606_s AA476606	Hs.59666	SMAD in the antisense orientation
	122967 RC_AA478521 AA806187	Hs.289101	glucose regulated protein, 58kD
	129560 RC_AA478523 AA317841	Hs.7845	hypothetical protein MGC2752
65	123009 RC_AA479949 AA535244	Hs.78305	RAB2, member RAS oncogene family
	128917 RC_AA481252 Al365215	Hs.206097	oncogene TC21
	123081 RC_AA485351 Al815486	Hs.243901	Homo sapiens cDNA FLJ20738 fis, clone HEP08257
	123133 RC_AA487264 AA487264	Hs.154974	Homo sapiens mRNA; cDNA DKFZp667N064 (from clone DKFZp667N064)
70	123184 RC_AA489072 BE247767	Hs.18166	KIAA0870 protein
70	129671 RC_AA489630 NM_014700		KIAA0665 gene product
	123233 RC_AA490225 AW974175	Hs.188751	ESTs, Weakly similar to MAPB_HUMAN MICROTUBULE-ASSOCIATED PROTEIN 1B
	[H.sapiens]	Ue 10007	down regulator of transcription 1. TDD binding Inequative Colories 2\
	123234 RC_AA490227 NM_001938		down-regulator of transcription 1, TBP-binding (negative cofactor 2) CDC2-related protein kinase 7
75	123236 RC_AA490255 AW968504 123255 RC_AA490890 AA830335	Hs.123073 Hs.105273	ESTs
13	123255 RC_AA490890 AA830335 129503 RC_AA490916_s AW768399	Hs.112157	ESTs
	129900 1/0_W490910_9 WAALOO999	110.112.101	

	131043 RC_AA490925 123259 RC_AA490955	AF084535 Al744152	Hs.22464 Hs.283374	epilepsy, progressive myoclonus type 2, Lafora disease (laforin) ESTs, Weakly similar to CA15_HUMAN COLLAGEN ALPHA 1(V) CHAIN PRECURSOR
5	[H.sapiens] 123284 RC_AA495812 123286 RC_AA495824 123315 RC_AA496369 to contains	AA488988 AA495824 AA496369	Hs.293796 Hs.188822	ESTs ESTs, Weakly similar to A46010 X-linked retinopathy protein [H.sapiens] gb:zv37d10.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone IMAGE:755827 3' similar
10	129179 RC_AA504125_s 131612 RC_AA521473 123421 RC_AA598440 123449 RC_AA598899_i 129021 RC_AA599244 132830 RC_AA599694_s	AU076668 AA598440 AL049325 AL044675 B NM_014777	Hs.109154 Hs.334884 Hs.291154 Hs.112493 Hs.173081 Hs.57730	ESTs SEC10 (S. cerevisiae)-like 1 EST, Weakly similar to 138022 hypothetical protein [H.sapiens] Homo sapiens mRNA; cDNA DKFZp564D036 (from clone DKFZp564D036) KIAA0530 protein KIAA0133 gene product
15	123497 RC_AA600037 123604 RC_AA609135 129539 RC_AA609582 123712 RC_AA609684 123731 RC_AA609839	AA765256 AA609135 T47614 AA609684 AA609839	Hs.135191 Hs.293076 Hs.323022 Hs.112748	ESTs, Weakly similar to unnamed protein product [H.sapiens] ESTs ESTs, Highly similar to p60 katanin [H.sapiens] Homo sapiens cDNA: FLJ21543 fis, clone COL06171 gb:ae62f01.s1 Stratagene lung carcinoma 937218 Homo sapiens cDNA clone IMAGE:951481 3'
20	similar to 130725 RC_AA609862 123800 RC_AA620423 123841 RC_AA620747 123929 RC_AA621364	T98807 AA620423 AA620747 AA621364	Hs.80248 Hs.112862 Hs.112896 Hs.112981	RNA-binding protein gene with multiple splicing EST ESTs ESTs
25	123978 RC_C20653 133184 RC_D20085 132835 RC_D20749 132406 RC_D51285_s 128695 RC_D59972_i 124028 RC_F04112_f	T89832 AA001021 Z83844 AL133731 NM_003478 F04112	Hs.170278 Hs.6685 Hs.5790 Hs.4774 Hs.101299	ESTs thyroid hormone receptor interactor 8 hypothetical protein dJ37E16.5 Homo sapiens mRNA; cDNA DKFZp761C1712 (from clone DKFZp761C1712) cuilin 5 db:HSC2JH062 normalized infant brain cDNA Homo sapiens cDNA clone c-2jh06 3', mRNA
30	sequence. 124057 RC_F13604 134899 RC_H01662	AA902384 Al609045	Hs.73853 Hs.321775	bone morphogenetic protein 2 hypothetical protein DKFZp434D1428 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 1
35	130973 RC_H05135_i 124106 RC_H12245 124136 RC_H22842 124165 RC_H30894 131229 RC_H30442_s	Al638418 H12245 H22842 H30039 NM_015340	Hs.78580 Hs.101770 Hs.107674 Hs.2450	gb:ym17a12.r1 Soares infant brain 1NIB Homo sapiens cDNA clone 3', mRNA sequence EST ESTs leucyl-iRNA synthetase, mitochondrial putative G protein-coupled receptor
40	124178 RC_H45996 129948 RC_H69281_i 134374 RC_H69485_f 124254 RC_H69899 similar to	BE463721 Al537162 N22687 H69899	Hs.97101 Hs.263988 Hs.8236	ESTs ESTs gb:yu70c12.s1 Weizmann Olfactory Epithelium Homo sapiens cDNA clone IMAGE:239158 3'
45	129056 RC_H70627_s 100919 RC_H73050_s 130724 RC_H73260 100716 RC_H77531_s 124274 RC_H80552	AI769958 X54534 AK001507 X89887 H80552	Hs.108336 Hs.278994 Hs.306084 Hs.172350 Hs.102249	ESTs, Weakly similar to ALUE_HUMAN !!!! ALU CLASS E WARNING ENTRY !!! [H.sapiens] Rhesus blood group, CcEe antigens Homo sapiens clone FLB6914 PRO1821 mRNA, complete cds HIR (histone cell cycle regulation defective, S. cerevisiae) homolog A EST
50	129078 RC_H80737_s 124828 RC_H93412 124315 RC_H94892_s 100747 RC_H95643_s 124324 RC_H96552 452933 RC_H97146	Al351010 AW952124 NM_005402 X04588 H96552 AW391423	Hs.102267 Hs.13094 Hs.288757 Hs.85844 Hs.159472 Hs.288555	lysosomal presentilins associated rhomboid-like protein v-ral simian leukemia viral oncogene homolog A (ras related) neurotrophic tyrosine kinase, receptor, type 1 Homo sapiens cDNA: FLJ2224 fis, clone HRC01703 Homo saplens cDNA: FLJ22425 fis, clone HRC08686
55	132231 RC_H99131_s 129170 RC_H99462_s 133143 RC_H99837_s 132963 RC_N22140 135297 RC_N22197	AA662910 AW250380 AA094538 AA099693 AL118782	Hs.42635 Hs.109059 Hs.272808 Hs.34851 Hs.300208	hypothetical protein DKFZp434K2435 mitochondrial ribosomal protein L12 putative transcription regulation nuclear protein; KIAA1689 protein epsilon-tubulin Sec23-interacting protein p125
60	134347 RC_N23756_s 130365 RC_N24134 421642 RC_N24195 439311 RC_N26739 124383 RC_N27098	AF164142 W56119 AF172066 BE270668 N27098	Hs.82042 Hs.155103 Hs.106346 Hs.151945 Hs.102463	solute carrier family 23 (nucleobase transporters), member 1 eukaryotic translation initiation factor 1A, Y chromosome retinoic acid repressible protein mitochondrial ribosomal protein L43 EST
65	124387 RC_N27637 129341 RC_N33090 129081 RC_N35967 102827 RC_N38959_f 124433 RC_N39069	N27637 AI193519 AI364933 BE244588 AA280319	Hs.109019 Hs.226396 Hs.168913 Hs.6456 Hs.288840	ESTs hypothetical protein FLJ11126 serine/threonine kinase 24 (Ste20, yeast homolog) chaperonin containing TCP1, subunit 2 (beta) PRO1575 protein
70	124441 RC_N46441 132338 RC_N48270_f 131403 RC_N48365_s 124466 RC_N51316	AW450481 AA353868 Al473114 R10084	Hs.161333 Hs.182982 Hs.26455 Hs.113319	ESTs golgin-67 ESTs kinesin heavy chain member 2
75	132210 RC_N51499_s 124483 RC_N53976 124484 RC_N54157 124485 RC_N54300	NM_007203 AI821780 H66118 AB040933	Hs.42322 Hs.179864 Hs.285520 Hs.15420	A kinase (PRKA) anchor protein 2 ESTs ESTs, Weakly similar to 2109260A B cell growth factor [H.sapiens] KIAA1500 protein

	124494 RC_N54831 129200 RC_N59849 124527 RC_N62132	N54831 N59849 N79264	Hs.271381 Hs.13565 Hs.269104	ESTs, Weakly similar to 138022 hypothetical protein [H.sapiens] Sam68-like phosphotyrosine protein, T-STAR ESTs
	124532 RC_N62375	N62375	Hs.102731	EST
5	133213 RC_N63138	AA903424	Hs.6786	ESTs
	124539 RC_N63172	D54120	Hs.146409	cell division cycle 42 (GTP-binding protein, 25kD)
	133651 RC_N63772 129196 RC_N63787	Al301740 BE296313	Hs.173381 Hs.265592	dihydropyrimidinase-like 2 ESTs, Weakly similar to 138022 hypothetical protein [H.sapiens]
	124575 RC_N68168	N68168	113.200032	gb:za11c01.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone 3', mRNA sequence
10	124576 RC_N68201	N68201	Hs.269124	ESTs, Weakly similar to \(\text{138022 hypothetical protein [H.sapiens]} \)
	124577 RC_N68300	N68300		gb:za12g07.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:292380 3',
	mRNA 124578 RC_N68321	Megggi	Hs.231500	EST
	124593 RC_N69575	N68321 N69575	Hs.102788	ESTs
15	128501 RC_N75007	AL133572	Hs.199009	protein containing CXXC domain 2
	105691 RC_N75542	A1680737	Hs.289068	Homo sapiens cDNA FLJ11918 fis, clone HEMBB1000272
	128473 RC_N90066	T78277	Hs.100293	O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-N-acetylglucosamine:polypeptide-N-
	128639 RC_N91246 124652 RC_N92751	AW582962 W19407	Hs.102897 Hs.3862	CGI-47 protein regulator of nonsense transcripts 2; DKFZP434D222 protein
20	133137 RC_N93214_s	AB002316	Hs.65746	KIAA0318 protein
	124671 RC_N99148	AK001357	Hs.102951	Homo sapiens cDNA FLJ10495 fis, clone NT2RP2000297, moderately similar to ZINC FINGER
	PROTEIN	A A ACAODO	11- 004070	ECT- Modelly similar to T37472 hypothetical protein VE4C11A 0. Connectorabilities along an
	133054 RC_R07876 [C.elegans]	AA464836	Hs.291079	ESTs, Weakly similar to T27173 hypothetical protein Y54G11A.9 - Caenorhabditis elegans
25	130410 RC_R10865_f	J00077	Hs.155421	alpha-fetoprotein
	124720 RC_R11056	R05283		gb:ye91c08.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:125102 3'
	similar to	T0-700	11. 405005	COT.
	124722 RC_R11488 129961 RC_R22947	T97733 R23053	Hs.185685	ESTs gb:yh31a05.r1 Soares placenta Nb2HP Homo sapiens cDNA clone 5' similar to contains L1
30	repetitive element 128944		s AL137586	Hs.52763 anaphase-promoting complex subunit 7
	132965 RC_R26589_f	Al248173	Hs.191460	hypothetical protein MGC12936
	133740 RC_R37588_s	AW162919	Hs.170160	RAB2, member RAS oncogene family-like
	133074 RC_R37613 124757 RC_R38398	AL134275 H11368	Hs.6434 Hs.141055	hypothetical protein DKFZp761F2014 Homo sapiens clone 23758 mRNA sequence
35	124762 RC_R39179_f	AA553722	Hs.92096	ESTs, Moderately similar to A46010 X-linked retinopathy protein [H.sapiens]
	124773 RC_R40923	R45154	Hs.106604	ESTs
	135266 RC_R41179	R41179	Hs.97393	KIAA0328 protein
	131375 RC_R41294_s 133753 RC_R42307_f	AW293165 NM_004427	Hs.143134 Hs.165263	ESTs early development regulator 2 (homolog of polyhomeotic 2)
40	128540 RC_R43189_f	AW297929	Hs.328317	EST
	124785 RC_R43306	W38537	Hs.280740	hypothetical protein MGC3040
	124792 RC_R44357	R44357	Hs.48712	hypothetical protein FLJ20736 gb;yq24h04.s1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:33350 3', mRNA
	124793 RC_R44519 sequence.	R44519		gp;yg24fi04.51 Soates filiant blain TNIB Hollio sapiens color- cione inihoe:.55550 5, histor
45	124799 RC_R45088	R45088		gb:yg38g04.s1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:34896 3', mRNA
	sequence.			· · · · · · · · · · · · · · · · · · ·
	124812 RC_R47948_i	R47948	Hs.188732	ESTs kelch (Drosophila)-like 3
	124821 RC_R51524 127274 RC_R54950	H87832 AW966158	Hs.7388 Hs.58582	Homo sapiens cDNA FLJ12789 fis, clone NT2RP2001947
50	124835 RC_R55241	R55241	Hs.101214	EST
	124845 RC_R59585	R59585	Hs.101255	ESTs
	124847 RC_R60044	W07701	Hs.304177	Homo sapiens clone FLB8503 PRO2286 mRNA, complete cds Human DNA sequence from clone RP1-304B14 on chromosome 6. Contains a gene for a novel
	440630 RC_R60872	BE561430 se for a novel pr	Hs.239388 otein with two is:	oforms. Contains ESTs, STSs, GSSs and a CpG island
55	124861 RC_R66690	R67567	Hs.107110	ESTs
	130141 RC_R67266_s	NM_004455	Hs.150956	exostoses (multiple)-like 1
	124879 RC_R73588	R73588	Hs.101533 Hs.23756	ESTs hypothetical protein similar to swine acylneuraminate lyase
	124892 RC_R79403 124906 RC_R87647	A1970003 H75964	Hs.107815	ESTs
60	124922 RC_R93622	R93622	Hs.12163	eukaryotic translation initiation factor 2, subunit 2 (beta, 38kD)
	124940 RC_R99599_s	AF068846	Hs.103804	heterogeneous nuclear ribonucleoprotein U (scaffold attachment factor A)
	124941 RC_R99612 124943 RC_T02888	AI766661 AW963279	Hs.27774 Hs.123373	ESTs, Highly similar to AF161349 1 HSPC086 [H.sapiens] ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION
•	WARNING ENTRY [H.sap		FIS. 123373	ESTS, Weakly Similar to ALC I_HOWARD ACC CODE AWARD TO CLEGOLINGE CONTAMINATION
65	124947 RC_T03170	T03170	Hs.100165	ESTs
	124954 RC_T10465	AW964237	Hs.6728	KIAA1548 protein
	132924 RC_T15418_f	U55184 BE383768	Hs.154145 Hs.65238	hypothetical protein FLJ11585 95 kDa retinoblastoma protein binding protein; KIAA0661 gene product
	133113 RC_T15597_f 132975 RC_T15652_i	R43504	Hs.6181	ESTs
70	133235 RC_T16898_s	AW960782	Hs.6856	ash2 (absent, small, or homeotic, Drosophila, homolog)-like
	131082 RC_T26644_i	A1091121	Hs.246218	Homo sapiens cDNA: FLJ21781 fis, clone HEP00223
	124980 RC_T40841 124984 RC_T47566_i	T40841 BE313210	Hs.98681 Hs.223241	ESTs eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)
	124991 RC_T50116	T50116	110.220271	gb:yb77c10.s1 Stratagene ovary (937217) Homo sapiens cDNA clone IMAGE:77202 3' similar
75	to similar to SP:VE22_LAN	MBD P03756 E.		NA sequence.
	129475 RC_T50145_s	NM_004477	Hs.203772	FSHD region gene 1

	125000 RC_T58615 132932 RC_T59940_f	T58615 AW118826	Hs.110640 Hs.6093	ESTs Homo sapiens cDNA: FLJ22783 fis, clone KAIA1993
	129534 RC_T63595	AK002126	Hs.11260	hypothetical protein FLJ11264
	125008 RC_T64891	T91251		qb:yd60a10.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone 3', mRNA sequence
5	125009 RC_T64924	T64924	Hs.303046	ESTs
	132940 RC_T64933_r	T79136	Hs.127243	Homo sapiens mRNA for KIAA1724 protein, partial cds
	125017 RC_T68875	T68875		gb:yc30f05.s1 Stratagene liver (937224) Homo sapiens cDNA clone IMAGE:82209 3', mRNA
	sequence.			
10	125018 RC_T69027	T69027	Hs.57475	sex comb on midleg homolog 1
10	125020 RC_T69924	T69981	H= 40407	gb:yc19d03.r1 Stratagene lung (937210) Homo sapiens cDNA clone 5', mRNA sequence
	129891 RC_T70353	A1084813	Hs.13197	ESTs hypothetical protein FLJ20551
	134204 RC_T79780_s 125050 RC_T79951	Al873257 AW970209	Hs.7994 Hs.111805	EST's
	125050 RC_T80174_s	T85104	Hs.222779	ESTs, Moderately similar to Similar to NEDD-4 [H.sapiens]
15	125054 RC_T80622	T80622	Hs.268601	ESTs. Weakly similar to envelope [H.sapiens]
	125063 RC_T85352	T85352		gb:yd82d01.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:114721 3'
	similar to contains Alu repe		ontains L1 repe	fitive element;, mRNA sequence.
	125064 RC_T85373	T85373		gb:yd82f07.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:114757 3'
20			ontains MER3 r	epetitive element;, mRNA sequence.
20	125066 RC_T86284	T86284		gb:yd77b07.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone 3' similar to contains
	Alu repetitive element;, mR 112264 RC_T89579_s	AL045364	Hs.79353	transcription factor Dp-1
	125080 RC_T90360	T90360	Hs.268620	ESTs, Highly similar to ALU6_HUMAN ALU SUBFAMILY SP SEQUENCE CONTAMINATION
	WARNING ENTRY [H.sapi			
25	125097 RC_T94328_i	AW576389	Hs.335774	EST, Moderately similar to S65657 alpha-1C-adrenergic receptor splice form 2 [H.sapiens]
	125104 RC_T95590	T95590		gb:ye40a03.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone 3' similar to
	gb[M10817]IGURRAA Igua			
	135107 RC_T97257_f	T97257	Hs.337531	ESTs, Moderately similar to 138022 hypothetical protein [H.sapiens]
30	129550 RC_T97599_i	AA845462 R10606	Hs.124024	deltex (Drosophila) homolog 1 gb;yf35f11,s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:128877 3'
50	125118 RC_T97620 similar to contains Alu repe		mRNA sequenc	•
	125120 RC_T97775	T97775	Hs.100717	EST
	134160 RC_T98152	T98152	Hs.79432	fibrillin 2 (congenital contractural arachnodactyly)
~ ~	125136, RC_W31479	AW962364	Hs.129051	ESTs
35	125144 RC_W37999	AB037742	Hs.24336	KIAA1321 protein
	125150 RC_W38240	W38240	U= 440455	Empirically selected from AFFX single probeset Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 814975
	104180 RC_W40150	AA247778 AW453069	Hs.119155 Hs.3657	activity-dependent neuroprotective protein
	131987 RC_W45435 125178 RC_W58202	W93127	Hs.31845	ESTs
40	125180 RC_W58344	W58469	Hs.103120	ESTs
	125182 RC_W58650	AA451755	Hs.263560	ESTs
	130588 RC_W68736	AL030996	Hs.16411	hypothetical protein LOC57187
	125197 RC_W69106	AF086270	Hs.278554	heterochromatin-like protein 1
15	133497 RC_W69111	BE617303	Hs.74266	hypothetical protein MGC4251
45	100562 RC_W69385_s	NM_006185 Z97630	Hs.301512 Hs.226117	nuclear mitotic apparatus protein 1 H1 histone family, member 0
	125639 RC_W69399_s 129232 RC_W69459	R98881	Hs.109655	sex comb on midleg (Drosophila)-like 1
	101495 RC_W72424	W72424	Hs.112405	S100 calcium-binding protein A9 (calgranulin B)
	125209 RC_W72724	W72724	Hs.103174	ESTs, Weakly similar to TSP2_HUMAN THROMBOSPONDIN 2 PRECURSOR [H.sapiens]
50	125212 RC_W72834	AA746225	Hs.103173	ESTs
	129132 RC_W73955	BE383436	Hs.108847	hypothetical protein MGC2749
	125223 RC_W74701	Al916269	Hs.109057	ESTs, Weakly similar to ALU5_HUMAN ALU SUBFAMILY SC SEQUENCE CONTAMINATION
	WARNING ENTRY [H.sap 125225 RC_W76540	w74169	Hs.16492	DKFZP564G2022 protein
55	125228 RC_W79397	AA033982	Hs.110059	ESTs, Weakly similar to I38022 hypothetical protein [H.sapiens]
	132393 RC_W85888	AL135094	Hs.47334	hypothetical protein FLJ14495
	125238 RC_W86038	N99713	Hs.109514	ESTs
	125247 RC_W86881	AA694191	Hs.163914	ESTs
<i>c</i> 0	129296 RC_W87804	AI051967	Hs.110122	ESTS
60	125263 RC_W88942	AA098878	LI= 496900	gb:zn45g10.r1 Stratagene HeLa cell s3 937216 Homo sapiens cDNA clone 5', mRNA sequence ESTs. Highly similar to LCT2 HUMAN LEUKOCYTE CELL-DERIVED CHEMOTAXIN 2
	125266 RC_W90022 PRECURSOR [H.sapiens]	W90022	Hs.186809	ESTS, Flightly Similar to LOTZ_HOWAR LEONOCTTE CELL-DERIVED OTEMOTAAM 2
	131321 RC_W92272	U91543	Hs.25601	chromodomain helicase DNA binding protein 3
	131601 RC_W92764_s	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced protein 6
65	131677 RC_W93040	H05317	Hs.283549	ESTs
	120837 RC_W93092	BE149656	Hs.306621	Homo sapiens cDNA FLJ11963 fis, clone HEMBB1001051
	125277 RC_W93227	W93227	Hs.103245	EST / Codes at 4
	125278 RC_W93523	A1218439	Hs.129998	enhancer of polycomb 1
70	125280 RC_W93659 131856 RC_W94003_s	A1123705 W93949	Hs.106932 Hs.33245	ESTs
70	131844 RC_W94401_s	AI419294	Hs.324342	ESTs
	125284 RC_W94688	NM_002666	Hs.103253	perilipin
	313447 RC_W94787_s	AW016321	Hs.82306	destrin (actin depolymerizing factor)
	130799 RC_Z38294_s	AB028945	Hs.12696	cortactin SH3 domain-binding protein
75	125289 RC_Z38311	T34530	Hs.4210	Homo sapiens cDNA FLJ13069 fis, clone NT2RP3001752 ESTs, Weakly similar to PC4259 ferritin associated protein [H.sapiens]
	128874 RC_Z38465_s	H06245	Hs.106801	בטוים, זייכממוץ אווווומו נט דיסייבטט ויטווווווו מססטטומוביע אויטומווו נויו. מאויווווסן

					ESTs
					kelch (Drosophila)-like 1
					hypothetical protein FLJ10210
5				Hs.151301 Hs.25887	Ca2+-dependent activator protein for secretion sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic
5	125295 R	emaphorin) 4F	ADVZZ317	NS.2000/	Settla domain, infinitiographiin domain (19), transmembrane domain (114) and short of teposition
			AW972542	Hs.289008	Homo sapiens cDNA: FLJ21814 fis, clone HEP01068
	125300 R				EST
					Homo sapiens cDNA FLJ12908 fis, clone NT2RP2004399
10	311463 R		R55344	Hs.22142	cytochrome b5 reductase b5R.2
				Hs.20887	hypothetical protein FLJ10392
			-	Hs.241558	ariadne (Drosophila) homolog 2
	125310 R			Hs.124953	ESTs FOT-
15	125315 R			Hs.106296	ESTs ESTs, Weakly similar to 38022 hypothetical protein [H.sapiens]
13	125317 R	_		Hs.112461 Hs.132390	zinc finger protein 36 (KOX 18)
				Hs.10031	KIAA0955 protein
	132837 D	_		Hs.57958	EGF-TM7-latrophilin-related protein
				Hs.88414	BTB and CNC homology 1, basic leucine zipper transcription factor 2
20				Hs.48998	fibronectin leucine rich transmembrane protein 2
	101545 M	131210	BE246154	Hs.154210	endothelial differentiation, sphingolipid G-protein-coupled receptor, 1
	133505 C			Hs.324504	Homo sapiens mRNA; cDNA DKFZp586J0720 (from clone DKFZp586J0720)
				Hs.46440	solute carrier family 21 (organic anion transporter), member 3
25				Hs.264636	hypothetical protein FLJ20731
25		_		Hs.159225 Hs.13321	ESTs rearranged L-myc fusion sequence
	130839 A			Hs.20141	similar to S, cerevisiae SSM4
	132813 L			Hs.57435	solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2
	134342 N			Hs.82027	oculocutaneous albinism II (pink-eye dilution (murine) homolog)
30				Hs.6101	hypothetical protein MGC3178
	105426 R	C_AA251297	W20027	Hs.23439	ESTs
			AF234532	Hs.61638	myosin X
			X89426	Hs.41716	endothelial cell-specific molecule 1
35			AA256444	Hs.126485	hypothetical protein FLJ12604; KIAA1692 protein Homo sapiens cDNA FLJ14445 fis, clone HEMBB1001294, highly similar to GTP-BINDING
33	PROTEIN	_	Al369275	Hs.243010	HOLLO Sapielis Colta (E.) 14440 ils, Giorie Helvido 100 1204, Highly Sillina to Oth Birtolite
			AA806600	Hs.116665	KIAA1842 protein
			AA334551	Hs.82767	sperm specific antigen 2
			AB018259	Hs.118140	KIAA0716 gene product
40			AL031428	Hs.174174	KJAA0601 protein
			Al745379	Hs.42911	ESTs
		RC_AA293656	AA293655	Hs.97293	ESTs
		RC_AA251152 RC_AA233334_s	AA769266	Hs.193657 Hs.66521	ESTs Machado-Joseph disease (spinocerebellar ataxia 3, olivopontocerebellar ataxia 3, autosomal
45	dominant,		004020	H3.00321	Machado-303ephi disease Japhilocolopolidi adana of olivopolitacionolidi adana of adiocolidi
73		RC_Z39920	R55344	Hs.22142	cytochrome b5 reductase b5R.2
		RC_AA192173	AA837098	Hs.269933	ÉSTs
		RC_AA455044	BE384932	Hs.64313	ESTs, Weakly similar to AF257182 1 G-protein-coupled receptor 48 [H.sapiens]
	121032 R	RC_AA398504	AA393037	Hs.161798	ESTs
50	129829 U		AF010258	Hs.127428	homeo box A9
		RC_AA166965	AW959615	Hs.111045	ESTs
		RC_AA398222 RC_Z39095	Al219896 R56434	Hs.97592 Hs.21062	ESTs ESTs
		RC_239095 RC_AA284744_f		Hs.336898	Homo sapiens, Similar to RIKEN cDNA 1810038N03 gene, clone MGC:9890, mRNA, complete
55	cds	(0_7472047-14_1	741110-100	110.000000	Troine supported surface to the contract of th
		RC_AA428201	AA370362	Hs.57958	EGF-TM7-latrophilin-related protein
	121034 R	RC_AA398507	AL389951	Hs.271623	nucleoporin 50kD
		RC_W69216	W69216	Hs.92848	ESTs
C O		RC_AA251083	AA251720	Hs.104347	ESTs, Weakly similar to ALUC_HUMAN !!!! ALU CLASS C WARNING ENTRY !!! [H.saptens]
60		RC_W93659	AI123705	Hs.106932	ESTS
		RC_AA227903 RC_AA283902	AK001607 AW978721	Hs.41127 Hs.266076	hypothetical protein FLJ13220 ESTs, Weakly similar to A46010 X-linked retinopathy protein [H.sapiens]
		RC_AA401631	AA037121	Hs.98518	Homo sapiens cDNA FLJ11490 fis, clone HEMBA1001918
		RC_AA157293	AA157293	Hs.72168	ESTs
65		RC_D60208_f	BE565817	Hs.26498	hypothetical protein FLJ21657
	108061 F	RC_AA043979	AA043979	Hs.62651	EST
		RC_T66847	T66847	Hs.194040	ESTs, Weakly similar to I38022 hypothetical protein [H.sapiens]
		RC_Z38239	AK001612	Hs.26962	Homo sapiens cDNA FLJ10750 fis, clone NT2RP3001929
70		RC_AA491457	AL038450	Hs.48948	ESTS PMY non recenter tyracina kinasa
70		RC_Z40071_s RC_AA024961	F06972 AA024961	Hs.27372 Hs.50730	BMX non-receptor tyrosine kinase ESTs
		RC_AA024961 RC_AA443826	AU077002	Hs.24950	regulator of G-protein signalling 5
	132207 F	RC_AA443294	BE206939	Hs.42287	E2F transcription factor 6
		RC_AA155743	BE561824	Hs.273369	uncharacterized hematopoietic stem/progenitor cells protein MDS027
75	408431 F	RC_T23708	AI338631	Hs.43266	Homo sapiens cDNA: FLJ22536 fis, clone HRC13155
		RC_AA280934	AW978022	Hs.238911	hypothetical protein DKFZp762E1511; KIAA1816 protein

	132121 RC_AA443284_s	NM_004529	Hs.404	myeloid/lymphoid or mixed-lineage leukemia (trithorax (Drosophila) homolog); translocated to, 3
	117657 RC_N39074	N39074	Hs.44933	ESTs
	134922 RC_W04507_s		Hs.91161	prefoldin 4
5	118523 RC_R41828_s	Y07759	Hs.170157	myosin VA (heavy polypeptide 12, myoxin) gb:ns44f05.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone, mRNA sequence
5	116845 RC_H64973 115291 RC_AA279943	AA649530 BE545072	Hs.122579	hypothetical protein FLJ10461
	120326 RC_AA196300	AA196300	Hs.21145	hypothetical protein RG083M05.2
	130174 M29550	M29551	Hs.151531	protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform (calcineurin A beta)
	129131 RC_AA436489	AB026436	Hs.177534	dual specificity phosphatase 10
10	129868 RC_AA287032	AW172431	Hs.13012	ESTs
	118661 RC_N70777	AL137554	Hs.49927	protein kinase NYD-SP15
	129829 RC_AA496921	AF010258	Hs.127428	homeo box A9 ESTs, Weakly similar to T08599 probable transcription factor CA150 [H.sapiens]
	115985 RC_AA447709 134637 RC_AA369856_s	AA447709	Hs.268115 Hs.180941	vacuolar protein sorting 41 (yeast homolog)
15	132714 RC_AA252598	W39388	Hs.55336	Homo sapiens, clone MGC:17421, mRNA, complete cds
	129771 RC_H73237	AL096748	Hs.102708	DKFZP434A043 protein
	123360 RC_AA504784	AA532718	Hs.178604	ESTs
	132902 RC_AA490969	A1936442	Hs.59838	hypothetical protein FLJ10808
20	113716 RC_T97750	AA001356	Hs.18159	ESTs
20	113825 RC_W48860 130367 RC_Z38501	AW014486 AL135301	Hs.22509 Hs.8768	ESTs hypothetical protein FLJ10849
	120541 RC_AA278298	W07318	Hs.240	M-phase phosphoprotein 1
	116727 RC_F13684	R76472	Hs.65646	ESTs
	118219 RC_N62231	AA862391	Hs.48494	ESTs, Moderately similar to A46010 X-linked retinopathy protein [H.sapiens]
25	119767 RC_W72562	W72562	Hs.58119	ESTs
	128917 RC_AA481252	Al365215	Hs.206097	oncogene TC21
	451553 RC_AA020928	AA018454	Hs.269211	ESTS
	132716 RC_AA251288	BE379595	Hs.283738	casein kinase 1, alpha 1
30	118525 RC_N67861 114618 RC_AA084162	N67861 AW979261	Hs.49390 Hs.291993	ESTs ESTs
50	119743 RC_W70242	AA947552	Hs.58086	ESTs
	108154 RC_AA425151_s		Hs.220689	Ras-GTPase-activating protein SH3-domain-binding protein
	122798 RC_AA460324	AW366286	Hs.145696	splicing factor (CC1.3)
2.5	133746 U44378	AW410035	Hs.75862	MAD (mothers against decapentaplegic, Drosophila) homolog 4
35	119822 RC_W74471	AF086409	Hs.301327	ESTs
	122186 RC_AA435842	AA398811	Hs.104673	ESTs ESTs
	114941 RC_AA243017 118053 RC_N53367	AA236512 N53391	Hs.87331 Hs.47629	ESTs ESTs
	123234 RC_AA490227	NM_001938	Hs.16697	down-regulator of transcription 1, TBP-binding (negative cofactor 2)
40	129280 M63154	M63154	Hs.110014	gastric intrinsic factor (vitamin B synthesis)
	118995 RC_N94591	N94591	Hs.323056	ESTs
	116750 RC_H05960	AA760689	Hs.92418	ESTs
	129026 M98833	AL120297	Hs.108043	Friend leukemia virus integration 1
45	105127 RC_AA158132	AA045648 AA044873	Hs.301957 Hs.103446	nudix (nucleoside diphosphate linked molety X)-type motif 5 ESTs
43	114513 RC_AA044825 411856 RC_T35697	H67899	Hs.4190	Homo sapiens cDNA: FLJ23269 fis, clone COL09533
	132036 W01568	AL157433	Hs.37706	hypothetical protein DKFZp434E2220
	130091 RC_W88999	W88999		gb:zh70h03.s1 Soares_fetal_liver_spleen_1NFLS_S1 Homo sapiens cDNA clone 3', mRNA
	sequence			
50	414108 U09564	AI267592	Hs.75761	SFRS protein kinase 1
	119881 RC_W81456	W81486 AW957372	Hs.58648	ESTs ESTs, Weakly similar to I38022 hypothetical protein [H.sapiens]
	117770 RC_N47953 119850 RC_W80447	A1247568	Hs.46791 Hs.58452	ESTs
	115439 RC_AA284561	AI567972	Hs.193090	ESTs, Highly similar to AF161437 1 HSPC319 [H.sapiens]
55	123107 RC_AA486071	AA225048	Hs.104207	ESTs
	406698 M24364	X03068	Hs.73931	major histocompatibility complex, class II, DQ beta 1
	121231 RC_AA400780	AA814948	Hs.96343	ESTs, Weakly similar to ALUC_HUMAN !!!! ALU CLASS C WARNING ENTRY !!! [H.sapiens]
	132074 AB002366	AA478486	Hs.3852	KIAA0368 protein
60	413670 AB000115 125277 RC_W93227	AB000115 W93227	Hs.75470 Hs.103245	hypothetical protein, expressed in osteoblast EST
00	125277 RG_W95227 114056 RC_AA186324	AA188175	Hs.82506	KIAA1254 protein
	121153 RC_AA399640	AA399640	Hs.97694	ESTs
	121609 RC_AA416867	AA416867	Hs.98185	EST
	120661 RC_AA287556	AA287556	Hs.263412	ESTs, Weakly similar to ALUB_HUMAN !!!! ALU CLASS B WARNING ENTRY !!! [H.sapiens]
65	120850 RC_AA349647	AA349647	Hs.96927	Homo sapiens cDNA FLJ12573 fis, clone NT2RM4000979
	124947 RC_T03170	T03170	Hs.100165	ESTs gb:zp39e03.s1 Stratagene muscle 937209 Homo sapiens cDNA clone 3' similar to contains Alu
	130529 RC_AA280886 repetitive element;, mRNA	AA178953		guizposeusis i ottatagene musule sor zuo Frumu sapiens curra cione o similar lo contains alu
	117683 RC_N40180	N40180		gb:yy44d02.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone
70	IMAGE:276387 3' similar t	o contains L1.t1	L1 repetitive el	ement ;, mRNA sequence.
. •	120745 RC_AA302809	AA302809	_	gb:EST10426 Adipose tissue, white I Homo sapiens cDNA 3' end, mRNA sequence.
	120936 RC_AA385934	AA385934	Hs.97184	EST, Highly similar to (defline not available 7499603) [C.elegans]
	112597 RC_R78376	R78376	Hs.29733	EST
75	120183 RC_Z40174 120644 RC_AA287038	AW082866 Al869129	Hs.65882 Hs.96616	ESTs ESTs
, ,	IZUUTT NO_PMZUIUUU	, 11000120	, 10.000 10	

•	119023 RC_N98488			gb:zb82h01.s1 Soares_senescent_fibroblasts_NbHSF Homo sapiens cDNA clone
	IMAGE:310129 3', m		Hs.59952	EST
	107582 RC_AA0021 118249 RC_N62580		Hs.322925	EST, Weakly similar to putative p150 [H.sapiens]
5	115022 RC_AA2520		Hs.87935	ESTs
	117710 RC_N45198		Hs.47248	ESTs, Highly similar to similar to Cdc14B1 phosphatase [H.sapiens]
	115341 RC_AA281		Hs.88840	EST, Weakly similar to granule cell marker protein [M.musculus]
	118896 RC_N90680		Hs.54642	methionine adenosyltransferase II, beta
10	121121 RC_AA3993 118329 RC_N63520		Hs.189095	similar to SALL1 (sal (Drosophila)-like gb:yy62f01.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone IMAGE:278137
10	3', mRNA sequence.			gb.yyuzio 1.51 Guarea_marapie_scierosis_znor invior Tromo suprono eb inviore invivore 9197
	119496 RC_W3541	6 W35416	Hs.156861	ESTs, Moderately similar to A46010 X-linked retinopathy protein [H.sapiens]
	118111 RC_N5549	3 N55493		gb:yv50c02.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:246146 3',
15	mRNA sequence.		11- 77000	FOTo
15	119062 RC_R16698		Hs.77829 Hs.306088	ESTs v-crk avian sarcoma virus CT10 oncogene homolog
	116710 RC_F10577 119261 RC_T15956		Hs.65289	EST
	122723 RC_AA457		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	gb:aa86b10.s1 Stratagene fetal retina 937202 Homo sapiens cDNA clone IMAGE:838171 3'
• •	similar to contains L1	1.b3 L1 repetitive eler	nent ;, mRNA s	equence.
20	117732 RC_N4645			gb:yy76h09.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone
	104787 RC_AA027		L1 repetitive e	lement ;, mRNA sequence. gb:ze97d11.s1 Soares_fetal_heart_NbHH19W Homo sapiens cDNA clone lMAGE:366933 3'
	similar to contains Al	lu repetitive element;,	mRNA sequen	
	100071 A28102	A28102		Human GABAa receptor alpha-3 subunit
25	115819 RC_AA426		Hs.41135	endomucin-2
	130882 RC_Z40166		Hs.20887 Hs.16492	hypothetical protein FLJ10392 DKFZP564G2022 protein
	125225 RC_W7654 108339 RC_AA070		Hs.51615	ESTs, Weakly similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE CONTAMINATION
	WARNING ENTRY [1.0.01010	2010, 1100, 011
30	100338 D63483	D86864	Hs.57735	acetyl LDL receptor; SREC
	121636 RC_AA417		Hs.306654	Homo sapiens cDNA FLJ13574 fis, clone PLACE1008625
	103875 RC_AA418 118716 RC_N7346		Hs.48802 Hs.118722	Homo sapiens clone 23632 mRNA sequence fucosyltransferase 8 (alpha (1,6) fucosyltransferase)
	119763 RC_W7245		Hs.10450	Homo sapiens cDNA: FLJ22063 fis, clone HEP10326
35	121917 RC_AA428		Hs.98038	ESTs
	132806 M91488	A1699432	Hs.278619	hypothetical protein FLJ10099
	130949 Y10659 108806 RC_AA129	AV656840 933 AF070578	Hs.285115 Hs.71168	interleukin 13 receptor, alpha 1 Homo sapiens clone 24674 mRNA sequence
	133276 RC_AA490		Hs.69504	ESTs
40	134760 RC_H1675		Hs.89548	erythropoietin receptor
	132867 AA121287	AF226667	Hs.58553	CTP synthase II
	132051 AA091284		Hs.180145	HSPC030 protein ESTs
	114208 RC_Z3930 104094 AA418187	1 AL049466 AA418187	Hs.7859 Hs.330515	EST's
45	128718 AA426361	NM_002959	Hs.281706	sortilin 1
	302032 RC_N2040	7 NM_001992	Hs.128087	coagulation factor II (thrombin) receptor
	115501 RC_AA291		Hs.190086	ESTs
	101997 U01160 103708 AA037206	AU076536 AA430591	Hs.50984 Hs.72071	sarcoma amplified sequence hypothetical protein FLJ20038
50	101899 S59184	S59184	Hs.79350	RYK receptor-like tyrosine kinase
	115839 RC_AA429		Hs.28935	transducin-like enhancer of split 1, homolog of Drosophila E(sp1)
	409459 D50678	D86407	Hs.54481	low density lipoprotein receptor-related protein 8, apolipoprotein e receptor
	103563 Z22534	L02911 0225 AW974175	Hs.150402 Hs.188751	Activin A receptor, type I. (ACVR1) (ALK-2) ESTs, Weakly similar to MAPB_HUMAN MICROTUBULE-ASSOCIATED PROTEIN 1B
55	123233 RC_AA490 [H.saplens]	1225 AVV314110	113.100731	2013, Weakly Stillian to Wild D. To Hart Micros 1850 22, 1850 5 Will 2011 15
	121305 RC_AA402	2468 AA402468	Hs.291557	EST\$
	114798 RC_AA159		Hs.54900	serologically defined colon cancer antigen 1
	133145 RC_AA196	549 H94227	Hs.6592 Hs.28853	Homo sapiens, clone IMAGE:2961368, mRNA, partial cds CDC7 (cell division cycle 7, S. cerevisiae, homolog)-like 1
60	131567 RC_AA291 112300 RC_R5455		Hs.26125	ESTs
00	129507 RC_AA192		Hs.112180	zinc finger protein 148 (pHZ-52)
	121033 RC_AA398	3505 AA398505	Hs.97360	ESTs
	121151 RC_AA399		Hs.143629	ESTs
65	121402 RC_AA406 123203 RC_AA489		Hs.98003 Hs.65641	ESTs hypothetical protein FLJ20073
03	132271 RC_AA236		Hs.115175	sterile-alpha motif and leucine zipper containing kinase AZK
	125197 RC_W6910	06 AF086270	Hs.278554	heterochromatin-like protein 1
	114935 RC_AA242	2809 H23329	Hs.290880	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION
70	WARNING ENTRY		∐ e 4770	VIA A 1150 protoin
70	125279 RC_W9364 108778 RC_AA128		Hs.4779 Hs.90847	KIAA1150 protein general transcription factor IIIC, polypeptide 3 (102kD)
	108087 RC_AA045	709 AA045708	Hs.40545	ESTs
	132466 RC_N6681	0_s A1597655	Hs.49265	ESTs
75	133328 R36553	AW452738 4 AA902384	Hs,265327	hypothetical protein DKFZp761I141
75	124057 RC_F1360 124800 RC_R4511		Hs.73853 Hs.138617	bone morphogenetic protein 2 thyroid hormone receptor interactor 12
	124000 110_114011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110,100011	ay our manual receptor manager

	121029 RC_AA398482	AA398482	Hs.97641	EST ·
	120663 RC_AA287627	AA827798	Hs.105089	ESTs
	102133 U15173	AU076845	Hs.155596	BCL2/adenovirus E1B 19kD-interacting protein 2
_	108246 RC_AA062855	Al423132	Hs.146343	ESTs
5	125226 RC_W78134	AA782536	Hs.122647	N-myristoyltransferase 2
	120260 RC_AA171739	AK000061 H75964	Hs.101590 Hs.107815	hypothetical protein ESTs
	124906 RC_R87647 109406 RC_AA226877	AA199883	Hs.67624	ESTS
	109271 RC_AA195668	AW137422	Hs.86022	ESTs
10	125052 RC_T80174_s	T85104	Hs.222779	ESTs, Moderately similar to similar to NEDD-4 [H.sapiens]
	109101 RC_AA167708	AW608930	Hs.52184	hypothetical protein FLJ20618
	115241 RC_AA278723	AA648278	Hs.193859	ESTS
	117163 RC_H97909	N36861 T90313	Hs.42344 Hs.16732	ESTs ESTs
15	113530 RC_T90313 120375 RC_AA227260	AF028706	Hs.111227	Zic family member 3 (cdd-paired Drosophila homolog, heterotaxy 1)
10	129435 AA314256	AF151852	Hs.111449	CGI-94 protein
	114864 RC_AA235256	AA135332	Hs.71608	ESTs
	103988 AA314389	AA314389	Hs.42500	ADP-ribosylation factor-like 5
20	131006 RC_AA242763	AF064104	Hs.22116	CDC14 (cell division cycle 14, S. cerevisiae) homolog B
20	106781 RC_AA478474 106141 RC_AA424558	AA330310 AF031463	Hs.24181 Hs.9302	ESTs phosducin-like
	116213 RC_AA476738	AA292105	Hs.326740	hypothetical protein MGC10947
	135266 AB002326	R41179	Hs.97393	KIAA0328 protein
	135058 RC_AA430152	Al379720	Hs.93814	hypothetical protein
25	119908 RC_W85844	AA524470	Hs.58753	ESTs
	103695 AA018758	AW207152	Hs.186600	ESTs chromosome 21 open reading frame 6
	103978 AA307443 109485 RC_AA233472	NM_016940 BE619092	Hs.34136 Hs.28465	Homo sapiens cDNA: FLJ21869 fis, clone HEP02442
	129574 AA458603	AA026815	Hs.11463	UMP-CMP kinase
30	115347 RC_AA281528	AA356792	Hs.334824	hypothetical protein FLJ14825
	120765 RC_AA338735	AW961026	Hs.96752	ESTs, Weakly similar to ALU8_HUMAN ALU SUBFAMILY SX SEQUENCE CONTAMINATION
	WARNING ENTRY [H.sap			ub:zt74e03.r1 Soares_testis_NHT Homo sapiens cDNA clone 5', mRNA sequence
	121059 RC_AA398628 131887 AAD46548	AA393283 W17064	Hs.332848	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e,
35	131887 AA046548 member 1	W 17 004	113.332040	OWNOW Totaled, matrix abbooking down doportion regulator of the matrix, the
55	112064 RC_R43812	AL049390	Hs.22689	Homo sapiens mRNA; cDNA DKFZp586O1318 (from clone DKFZp586O1318)
	115606 RC_AA400465	Al025829	Hs.86320	ESTs
	131750 RC_H94855_s	NM_004349	Hs.31551	core-binding factor, runt domain, alpha subunit 2; translocated to, 1; cyclin D-related
40	102123 U14518	NM_001809	Hs.1594 Hs.296178	centromere protein A (17kD) hypothetical protein FLJ22637
40	129847 RC_W46767 133809 RC_AA235275	N64025 AV649326	Hs.76359	catalase
	132210 RC_N51499_s	NM_007203	Hs.42322	A kinase (PRKA) anchor protein 2
	122356 RC_AA443794	AA443794	Hs.98390	ESTs
4.4	114958 RC_AA243708	N20912	Hs.42369	ESTs
45	103951 AA287840	AL353944	Hs.50115	Homo sapiens mRNA; cDNA DKFZp761J1112 (from clone DKFZp761J1112) male-specific lethal-3 (Drosophila)-like 1
	134703 RC_AA280704 128727 AA287864	AF117065 Al223335	Hs.88764 Hs.50651	Janus kinase 1 (a protein tyrosine kinase)
	105743 RC_AA293300_s		Hs.9598	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic
	domain, (semaphorin) 4B	J	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
50	103744 AA076003	AA079267		gb:zm97e10.s1 Stratagene colon HT29 (937221) Homo sapiens cDNA clone 3', mRNA
	sequence	1100004	U- 004E20	CDDQ hinding system
	114348 N80402 114009 RC_W90067	AL050321 Al248544	Hs.301532 Hs.103000	CRP2 binding protein KIAA0831 protein
	134704 RC_AA280849	AA837124	Hs.88780	ESTs
55	128629 AA399187	AL096748	Hs.102708	DKFZP434A043 protein
	104410 H65925	Al807519	Hs.104520	Homo sapiens cDNA FLJ13694 fis, clone PLACE2000115
	110200 RC_H21075	H21075	Hs.31802	ESTs, Highly similar to A59266 unconventional myosin-15 [H.sapiens]
	124483 RC_N53976	Al821780 NM_002210	Hs.179864 Hs.295726	ESTs integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51)
60	101391 M14648 109657 RC_F04826	R60900	Hs.26814	ESTs
00	117140 RC_H96813	H96813	Hs.42241	ESTs
	132937 RC_AA233706_	f AW952912	Hs.300383	hypothetical protein MGC3032
	129799 R36410	AW967473	Hs.239114	mannosidase, alpha, class 1A, member 2
65	105077 RC_AA142919	W55946	Hs.234863 Hs.297939	Homo sapiens cDNA FLJ12082 fis, clone HEMBB1002492 cathepsin B
65	100850 RC_N58561_s 131043 RC_AA490925	AA836472 AF084535	Hs.22464	epilepsy, progressive myoclonus type 2, Lafora disease (laforin)
	118417 RC_N66048_f	AF080229	110.22 10 1	gb:Human endogenous retrovirus K clone 10.1 polymerase mRNA, partial cds
	129254 RC_AA243695	AA252468	Hs.1098	DKFZp434J1813 protein
5 0	119149 RC_R58910	BE304701	Hs.65732	ESTs
70	133996 AA091367	AA380267	Hs.78277	DKFZP434F2021 protein
	110223 RC_H23747 117626 RC_N36090	H19836 AK001757	Hs.31697 Hs.281348	ESTs hypothetical protein FLJ10895
	135286 RC_AA424469_		Hs.97849	ESTs
	122967 RC_AA478521	AA806187	Hs.289101	glucose regulated protein, 58kD
75	131236 AA282640	AF043117	Hs.24594	ubiquitination factor E4B (homologous to yeast UFD2)
	128568 AA463380	H12912	Hs.274691	adenylate kinase 3

5 ,	112888 RC_T03872 115192 RC_AA261920 118688 RC_N71484 122264 RC_AA436837 128981 AA135452	AW195317 AA741024 AK000708 AA436837 AA927177	Hs.107716 Hs.88378 Hs.169764 Hs.86041	hypothetical protein FLJ22344 ESTs hypothetical protein FLJ20701 gb:zv57g07.s1 Soares_testis_NHT Homo sapiens cDNA clone 3', mRNA sequence CGG triplet repeat binding protein 1 hypothetical protein MCC0629
1.0	131042 RC_R42457 103704 AA028171 121341 AA233107 106593 RC_AA456826	Al826288 AA028171 AF035528 AW296451	Hs.171637 Hs.151258 Hs.153863 Hs.24605	hypothetical protein MGC2628 hypothetical protein FLJ21062 MAD (mothers against decapentaplegic, Drosophila) homolog 6 ESTs
10	115195 RC_AA262156 115425 RC_AA284071 117258 RC_N21299 120209 RC_Z40892	AW968619 AA811895 AF086041 F02951	Hs.155849 Hs.180680 Hs.42975	ESTs ESTs, Weakly similar to 154374 gene NF2 protein [H.sapiens] ESTs gb:HSC1HB082 normalized infant brain cDNA Homo sapiens cDNA clone c-1hb08 3', mRNA
15	sequence 134082 L16991 104774 RC_AA026066 115625 RC_AA401630	L16991 AW959755 AA059459	Hs.79006 Hs.288896 Hs.62592	deoxythymidylate kinase (thymidylate kinase) Homo sapiens cDNA FLJ12977 fis, clone NT2RP2006261 ESTs
20	104469 N28707 107401 W20054 111686 RC_R21510 115300 RC_AA280026 115378 RC_AA282292	N28707 N91453 R22039 AA280095 AA282292	Hs.154304 Hs.102987 Hs.23217 Hs.88689 Hs.279841	Homo sapiens chromosome 19, BAC 282485 (CIT-B-344H19) ESTs ESTs ESTs hypothetical protein FLJ10335
25	132224 RC_H97819 113791 M95767 129144 AA004987 104448 L44574	N41549 Al269096 AL137275 NM_007331	Hs.285410 Hs.135578 Hs.20137 Hs.110457	ESTs chitobiase, di-N-acetyl- hypothetical protein DKFZp434P0116 Wolf-Mischhorn syndrome candidate 1
30	132084 RC_T26981_s 111831 RC_R36083 114765 RC_AA252163 115029 RC_AA252219 100457 H81492	NM_002267 R36095 AA463550 AL137939 BE246400	Hs.3886 Hs.268695 Hs.337532 Hs.40096 Hs.285176	karyopherin alpha 3 (importin alpha 4) ESTs ESTs, Weakly similar to A47582 B-cell growth factor precursor [H.sapiens] ESTs acelyl-Coenzyme A transporter
35	104536 R24011 PROTEIN 91 116167 RC_AA461562 103889 AA236771	R24024 Al091731 R85350	Hs.158101 Hs.87293 Hs.101368	Homo sapiens cDNA FLJ14673 fis, clone NT2RP2003714, moderately similar to ZINC FINGER hypothetical protein FLJ20045 ESTs
33	131978 RC_H48459_s 118843 RC_N80181 120837 RC_W93092	AA355925 N80181 BE149656	Hs.36232 Hs.221498 Hs.306621	KIAA0186 gene product ESTs Homo sapiens cDNA FLJ11963 fis, clone HEMBB1001051
40	133647 D21852 129521 U41815 103746 AA081876 sequence	NM_015361 AF071076 AA075000	Hs.268053 Hs.112255	KIAA0029 protein nucleoporin 98kD gb:zm83c07.s1 Stratagene ovarian cancer (937219) Homo sapiens cDNA clone 3', mRNA
45	132019 RC_AA134965_i 132310 RC_AA284107 117367 RC_N24954 103743 AA075998	H56995 AA173223 AI041793 AA075998	Hs.37372 Hs.289044 Hs.42502	Homo sapiens DNA binding peptide mRNA, partial cds Homo sapiens cDNA FLJ12048 fis, clone HEMBB1001990 ESTs gb:zm89b09.r1 Stratagene ovarian cancer (937219) Homo sapiens cDNA clone 5' similar to
50	gb:M15887 ACYL-COA-B 103761 AA085138 BINDING PROTEIN (HUM 130237 L39060	INDING PROTE AA765163		
50	128752 RC_N72879 135162 AA045930 131386 AA096412	AA504428 Al187925 BE219898	Hs.10487 Hs.95667 Hs.173135	Homo sapiens, clone IMAGE:3954132, mRNA, partial cds F-box protein 30 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2
55	129021 RC_AA599244 424274 AA293634 129913 H06583 131888 U79298	AL044675 W73933 NM_001310 AW294659	Hs.173081 Hs.283738 Hs.13313 Hs.34054	KIAA0530 protein casein kinase 1, alpha 1 cAMP responsive element binding protein-like 2 Homo sapiens cDNA: FLJ22488 fis, clone HRC10948, highly similar to HSU79298 Human clone
60	23803 mRNA 118612 RC_N69466 322026 AA203138 110892 RC_N38882	AB037788 AW024973 AL035301	Hs.224961 Hs.283675 Hs.97375	cleavage and polyadenylation specific factor 2, 100kD subunit NPD009 protein H.sapiens gene from PAC 106H8
65	111429 RC_R01245 113334 RC_T76962 104091 AA417310 105246 RC_AA226879	AI038052 AW974666 BE465093 AA226879	Hs.19162 Hs.293024 Hs.106101	ESTs, Weakly similar to !54374 gene NF2 protein [H.sapiens] ESTs hypothetical protein FLJ22557 gb:zr19c09.s1 Stratagene NT2 neuronal precursor 937230 Homo sapiens cDNA clone
5 0	IMAGE:663856 3' similar 1 113300 RC_T67448 117147 RC_H97225_s 121349 RC_AA405205	T67448 AW901347 AA405205	Hs.13101 Hs.38592 Hs.97960	ESTs hypothetical protein FLJ23342 ESTs, Weakly similar to T51146 ring-box protein 1 [H.sapiens]
70	100294 D49396 133999 M28213 133259 AA278548 129423 AA371418	AA331881 AA535244 BE379646 AA204686	Hs.75454 Hs.78305 Hs.6904 Hs.234149	peroxiredoxin 3 RAB2, member RAS oncogene family Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 2004403 hypothetical protein FLJ20647
75	131098 RC_AA459668 135272 AA399391 129155 AA046865	U66669 AI828337 AI952677	Hs.236642 Hs.97591 Hs.108972	3-hydroxyisobutyryl-Coenzyme A hydrolase ESTs Homo sapiens mRNA; cDNA DKFZp434P228 (from clone DKFZp434P228)

					ESTs ESTs Mademately similar to 2100250A B cell growth factor [H conjugat
	101002				ESTs, Moderately similar to 2109260A B cell growth factor [H.sapiens] electron-transfer-flavoprotein, alpha polypeptide (glutaric aciduria II)
					Homo sapiens, clone IMAGE:3351295, mRNA
5		AA228148_s			mitochondrial ribosomal protein L32
•					ESTs
					protein kinase, AMP-activated, gamma 3 non-catalytic subunit
	118502			Hs.50150	Homo sapiens mRNA; cDNA DKFZp564B182 (from clone DKFZp564B182)
10					replication factor C (activator 1) 5 (36.5kD)
10					ESTs, Weakly similar to dJ309K20.4 [H.sapiens]
		-			ESTS
		AA203742 N75611_s			ESTs roundabout (axon quidance receptor, Drosophila) homolog 1
		U79300			Human clone 23629 mRNA sequence
15		W90095			Homo sapiens cDNA: FLJ21564 fis, clone COL06452
		AA005190			ESTs
	125170	AA203147			selenoprotein N
		RC_AA504125_s			ESTs
20		AA477046			hypothetical protein FLJ10808
20		RC_AA479949			RAB2, member RAS oncogene family
		D29833	D29833 X83441		sallvary proline-rich protein ligase IV, DNA, ATP-dependent
		X83441 RC_C15251_f	D60730	Hs.57471	ESTs
		U77718	BE018142	Hs.300954	Huntingtin interacting protein K
25		X59710	AL044818	Hs.84928	nuclear transcription factor Y, beta
		RC_N20814	AW302200	Hs.6336	KIAA0672 gene product
		AA136382_s	N27495	Hs.5565	hypothetical protein FLJ22626
		D63506	AF032922	Hs.8813	syntaxin binding protein 3
30		AA256106	AA256106	Hs.87507	ESTS KIAA1376 protein
30		AA165564 RC_R20628	AW162998 R38487	Hs.24684 Hs.169927	ESTs
		L76159	NM_004477	Hs.203772	FSHD region gene 1
		RC_AA285068	AA876002	Hs.120551	toll-like receptor 10
		RC_AA477748	AW021968	Hs.109438	Homo sapiens clone 24775 mRNA sequence
35		RC_AA235604	AA172106	Hs.110950	Rag C protein
		RC_T79951	AW970209	Hs.111805	ESTs
		RC_AA432278	AW241685	Hs.98699	ESTs
40		RC_AA404229	AA404229 AA386260	Hs.97842 Hs.104632	EST EST
		RC_AA386260 RC_AA251376	AA251376	18.104032	gb:zs10a06.s1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:684754 3', mRNA
	sequenc		,		
		RC_R45088	R45088		gb:yg38g04.s1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:34896 3', mRNA
	sequent		A A 457205	Hs.99457	ESTs
45		RC_AA457395 RC_N48325	AA457395 N48325	Hs.93956	EST
73		RC_AA427396	AA427396	110.00000	gb:zw33a02.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone IMAGE:771050 3'
	similar t	o contains Alu repe	titive element;co	ontains MER12.	t2 MER12 repetitive element;, mRNA sequence.
	108244	RC_AA062839	AA062839		gb:zm05c09.s1 Stratagene corneal stroma (937222) Homo sapiens cDNA clone IMAGE:513232
~ 0		A sequence.)///
50		RC_N49408	AW877787	Hs.136102	KIAA0853 protein
		RC_AA205432 RC_AA447400	R77854 AA447400	Hs.250693 Hs.187684	Krueppel-related zinc finger protein ESTs, Weakly similar to B34087 hypothetical protein [H.sapiens]
		RC_AA447400 RC_N74625	N74625	⊓S. 107004	gb:za55c03.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:296452 3'
	similar t	o ab:M14338 VITA	MIN K-DEPEND	ENT PROTEIN	S PRECURSOR (HUMAN); contains OFR.b3 OFR repetitive element;, mRNA sequence.
55		RC_AA258071	AA465131	Hs.64001	Homo sapiens clone 25218 mRNA sequence
		U49065	U49065	Hs.102865	interleukin 1 receptor-like 2
		RC_AA282197	AA664862	Hs.181022	CGI-07 protein
60		RC_AA101400	AA101400	Hs.189960	ESTS
		RC_AA180487 RC_N35583	NM_006283 AL135301	Hs.173159 Hs.8768	transforming, acidic coiled-coil containing protein 1 hypothetical protein FLJ10849
60		T83444	AW959891	Hs.76591	KIAA0887 protein
		RC_AA281563	AF121176	Hs.12797	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 16
		RC_R06862	R06862		gb:yf11e09.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:126568 3'
		o contains L1 repe		mRNA sequenc	e,
65 .		AA085354	AA085291		gb:zn01g06.s1 Stratagene colon HT29 (937221) Homo sapiens cDNA clone 3' similar to
		s Alu repetitive eler RC_N75520		quence Hs.261003	ESTs, Moderately similar to B34087 hypothetical protein [H.sapiens]
		RC_F03032	N75520 F03032	Hs.290278	FSTs. Weakly similar to B34087 hypothetical protein [H.sapiens]
		RC_H56485	AW204742	Hs.143542	ESTs, Highly similar to CSA_HUMAN COCKAYNE SYNDROME WD-REPEAT PROTEIN CSA
70	[H.sapie				
	108940	RC_AA148603	AA148603		gb:zo09e04.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens cDNA clone
		:567198 3', mRNA :		H- 070074	Hama caniana mDNA aDNA DIVEZNEGOM1419 /from clone DIVEZNEGOM1419\
		RC_R50057 RC_D20572_i	R50057 D20572	Hs.272251 Hs.90171	Homo sapiens mRNA; cDNA DKFZp586M1418 (from clone DKFZp586M1418) EST
75		U25849	U25849	Hs.75393	acid phosphatase 1, soluble
		RC_C20746	Al828559	Hs.31447	ESTs, Moderately similar to A46010 X-linked retinopathy protein [H.sapiens]

	116801	RC_H43879	H43879		gb:yo69h09.s1 Soares breast 3NbHBst Homo sapiens cDNA clone IMAGE:183233 3', mRNA			
	sequence.							
	115006	RC_AA251548	AA251548	Hs.87886	EST			
5	123424	RC_AA598500	H29882	Hs.162614	ESTs			
	120831	RC_AA347919	AA347919	Hs.96889	EST			
	103691	AA018298	AA018298	Hs.103332	ESTs			
	121555	RC_AA412491	AF025771	Hs.50123	zinc finger protein 189			
	111193	RC_N67946	N67946	Hs.117569	ESTs			
	132061	RC_AA058946	AB020700	Hs.3830	KIAA0893 protein			
10 15	134575	RC_AA194568_i	AA194568	Hs.85938	EST			
	115050	RC_AA252794	AA252794	Hs.88009	ESTs			
	420208		BE276055	Hs.95972	silver (mouse homolog) like			
	133735	AC002045_xpt1	R66740	Hs.110613	KIAA0220 protein			
	128546	Z21305	NM_003478	Hs.101299	cullin 5			
	111946	RC_R40697	R40697	Hs.76666	C9orf10 protein			
		RC_R73588	R73588	Hs.101533	ESTs			
		AA410345	AF255910	Hs.54650	junctional adhesion molecule 2			
	103692	AA018418	AW137912	Hs.227583	Homo sapiens chromosome X map Xp11.23 L-type calcium channel alpha-1 subunit			
	(CACNA1	IF) gene, complete	e cds; HSP27 p	seudogene, cor	nplete sequence; and JM1 protein, JM2 protein, and Hb2E genes, complete cds			
20		AA089688	BE244667	Hs.296155	CGI-100 protein			
	125266	W90022	W90022	Hs.186809	ESTs, Highly similar to LCT2_HUMAN LEUKOCYTE CELL-DERIVED CHEMOTAXIN 2			
	PRECUR	SOR [H.sapiens]						
	135235	AA435512	AW298244	Hs.293507	ESTs			
25	134497	RC_AA404494	BE258532	Hs.251871	CTP synthase			
	426754	RC_AA278529_i	NM_014264	Hs.172052	serine/threonine kinase 18			
	412177	RC_AA342828_s	Z23091	Hs.73734	glycoprotein V (platelet)			
	132000	RC_AA044644	AW247017	Hs.36978	melanoma antigen, family A, 3			
	124738	RC_AA044644	T07568	Hs.137158	ESTs			
30	324000	RC_AA196729_i	AA604749	Hs.190213	ESTs			
		RC_AA196729_i	AW073202	Hs.334825	Homo sapiens cDNA FLJ14752 fis, clone NT2RP3003071			
	132000	RC_AA025858	AW247017	Hs.36978	melanoma antigen, family A, 3			
		RC_AA025858	N75346	Hs.82906	CDC20 (cell division cycle 20, S. cerevisiae, homolog)			
		RC_AA233519	Al949109	Hs.246885	hypothetical protein FLJ20783			
35		RC_N52271	D31139	Hs.154103	LIM protein (similar to rat protein kinase C-binding enigma)			
		RC_N68399	NM_003528	Hs.2178	H2B histone family, member Q			
		RC_AA098874	AB037850	Hs.16621	DKFZP434I116 protein			
		RC_AA279667_s		Hs.297939	cathepsin B			
		RC_H22556	W27893	Hs.150580	putative translation initiation factor			
40		RC_N45979_s	BE296690	Hs.288173	Homo sapiens cDNA: FLJ21747 fis, clone COLF5160, highly similar to AF182198 Homo sapiens			
40		n 2 long isoform (I			onen di lu lui di latta			
		RC_AA431288_s		Hs.95327	CD3D antigen, delta polypeptide (TiT3 complex)			
		RC_AA609862	BE280456	Hs.80248	RNA-binding protein gene with multiple splicing			
45		RC_N35583	AW994032	Hs.8768	hypothetical protein FLJ10849			
	124541		AF112222	Hs.44499	pinin, desmosome associated protein			
		AA203147	AL020996	Hs.8518	selenoprotein N			
		RC_W93092	AW175787	Hs.334841	selenium binding protein 1			
		RC_W93092	AW516428	Hs.78687	neutral sphingomyelinase (N-SMase) activation associated factor			
		RC_N58561_s	L04288	Hs.297939	cathepsin B			
50		RC_W93092	AW516428	Hs.78687	neutral sphingomyelinase (N-SMase) activation associated factor			
		RC_W69385_s	BE543412	Hs.250505	retinoic acid receptor, alpha			
		RC_R22947	R23053	NA	Hu01 Chip Redos			
		RC_N38959_f	AL042444	Hs.62402	p21/Cdc42/Rac1-activated kinase 1 (yeast Ste20-related)			
		RC_N38959_f	A1678638	Hs.6456	chaperonin containing TCP1, subunit 2 (beta)			
55		RC_H73050_s	AA744902	Hs.107767	hypothetical protein PRO1489 Phosus blood group, CoEs entirons			
))	100920	RC_H73050_s	X54534	Hs.278994	Rhesus blood group, CcEe antigens			

TABLE 1A

Table 1A shows the accession numbers for those pkeys lacking unigenelD's for Tables 1. The pkeys in Table 7 lacking unigenelD's are represented within Tables 1-6A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10 Pkey: Unique Eos probeset identifier number

CAT number: Gene cluster number
Accession: Genbank accession numbers

15 Pkey CAT Number Accession AA079487 AA128547 AA128291 AA079587 AA079600 108469 116761 1 H12245 AA094769 R14576 124106 125446_1 AA083256 108501 13684_-12 20 AA100796 AF020589 AA074629 AA075946 AA100849 AA085347 AA126309 AA079311 AA079323 AA085274 108562 36375_1 125008 1802095_1 T91251 T64891 T85665 125020 116017_1 T69981 T69924 AA078476 125066 1814993_1 T86284 T81933 R61504 F04247 116661 1532859_1 25 125104 413347_1 T95590 AA703278 H62764 N68168 N69188 N90450 124575 1666649_1 AA098878 W88942 125263 1547_2 116845 393481_1 118417 37186_1 AA649530 AA659316 H64973 AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 Al636743 AW614951 BE467547 Al680833 30 Al633818 N29986 U87592 U87593 U87590 U87591 S46404 U87587 AA463992 AW206802 Al970376 Al583718 Al672574 N25695 AW665466 AI818326 AA126128 AI480345 AW013827 AA248638 AI214968 AA204735 AA207155 AA206262 AA204833 AW003247 AW496808 Al080480 Al631703 Al651023 Al867418 AW818140 AA502500 Al206199 Al671282 Al352545 BE501030 Al652535 BE465762 AA206331 AW451866 AA471088 AA206342 AA204834 AA206100 AW021661 AA332922 N66048 AA703396 H92278 AW139734 H92683 U87589 U87595 H69001 U87594 BE466420 Al624817 BE466611 Al206344 AA574397 35 AA348354 AI493192 AW136928 AI685655 BE218584 BE465078 N68963 AA975338 BE147199 N76377 118584 532052_1 AA075998 AA075999 AA070986 AA070896 AA129207 AA078942 AA070783 AA078941 103743 112194_1 103744 114161 1 AA079267 AA076003 103746 113452_1 AA075000 AA081876 AA765163 AW298222 AA126126 AA085138 AA076068 40 103761 114208_1 103763 48290_6 AA085291 AA085354 120209 1531817_1 F02951 Z40892 F04711 120284 158963_1 AA179656 AA182626 AA182603 R69751 R70467 H69771 H80879 H80878 112540 1605263_1 45 111904 1719336_1 Z41572 R39330 AA393283 AA398628 121059 273450_1 121094 275729_1 AA402505 AA398900 114106 1182096_1 AW602528 BE073859 Z38412 W88999 130091 23961_-3 50 122264 296527_1 AA436837 AA442594 AA065069 AA085108 108280 110682_1 R23053 R79884 R76271 129961 1706092_1 AA178953 AA192740 130529 158447_1 108309 111495_1 AA069818 AA069971 AA069923 AA069908 55 107832 genbank_AA021473 AA021473 123731 genbank_AA609839 AA609839 116571 genbank_D45652 D45652 132225 genbank_AA128980 125017 genbank_T68875 AA128980 T68875 60 125063 genbank_T85352 T85352 125064 genbank_T85373 100964 entrez_J00212 J00212 T85373 R10606 T97620 AA576309 125118 149288_1 102269 entrez_U30245U30245 125150 NOT_FOUND_entrez_W38240 65 W38240 116801 genbank_H43879 H43879 118111 genbank_N55493 N55493 118129 genbank_N57493 N57493 118329 genbank_N63520 N63520 118475 genbank_N66845 70 N66845 111490 genbank_R06862 R06862 111514 genbank_R07998 R07998 104534 R22303_at R22303 120340 genbank_AA206828 AA206828

```
AA227469
        120376 genbank_AA227469
        104787 genbank_AA027317
                                       AA027317
        120409 genbank_AA235050
                                       AA235050
                                       AA302809
        120745 genbank_AA302809
 5
        120809 genbank_AA346495
                                       AA346495
                                       AA348913
        120839 genbank_AA348913
                                       T97307
        113702 genbank_T97307
                                       AA251376
        115001 genbank_AA251376
        122562 genbank_AA452156
122635 genbank_AA454085
                                       AA452156
10
                                       AA454085
                                       AA062839
        108244 genbank_AA062839
       108277 genbank_AA064859
122723 genbank_AA457380
124028 genbank_F04112
                                       AA064859
                                       AA457380
                                       F04112
15
                                       AA075374
        108403 genbank_AA075374
        122860 genbank_AA464414
                                       AA464414
        108427 genbank_AA076382
                                       AA076382
        108439 genbank_AA078986
131353 231290_1
                                       AA078986
                                       AW411259 H23555 AW015049 Al684275 AW015886 AW068953 AW014085 Al027260 R52686 AA918278 Al129462
20
        AA969360
                                       N34869 AI948416 AA534205 AA702483 AA705292
                                       AA084415
        108533 genbank_AA084415
        117031 genbank_H88353
                                       H88353
                                       H69899
        124254 genbank_H69899
25
                                                  M21305
        101447 entrez_M21305
        101458 entrez_M22092
                                                  M22092
        124577 genbank_N68300
                                       N68300
        108940 genbank_AA148603
                                       AA148603
                                       AA148650
        108941 genbank_AA148650
30
        124627 genbank_N74625
                                       N74625
        124720 144582_1
                                       R05283 R11056
                                       R44519
        124793 genbank_R44519
        124799 genbank_R45088
                                       R45088
        117683 genbank_N40180
117732 genbank_N46452
                                       N40180
35
                                       N46452
                                       T50116
        124991 genbank_T50116
        119023 genbank_N98488
                                       N98488
        119239 95573_2
                                       T11483 T11472
                                                  W38194
        119558 NOT_FOUND_entrez_W38194
40
                                       W57759
        119654 genbank_W57759
        105246 genbank_AA226879
                                       AA226879
                                       AA405237
        121350 genbank_AA405237
                                       AA412497
        121558 genbank_AA412497
        105985 genbank_AA406610
                                        AA406610
45
        100071 entrez_A28102A28102
        114648 genbank_AA101056
                                       AA101056
        121895 genbank_AA427396
                                       AA427396
        100327 entrez_D55640D55640
        123315 714071_1
                            AA496369 AA496646
```

PCT/US02/04915 WO 02/079492

TABLE 2:

Unique Eos probeset identifier number Accession number used for previous patent filings Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Pkey: Accession: ExAccn: UnigeneID: Unigene Title: 5

	Unigene	rille: Oi	ngene gene uu	3	
10	Pkey	Accession	ExAccn	UnigenelD	UnigeneTitle
	100420	100420	D86983	Hs.118893	Melanoma associated gene
		100484	NM_005402	Hs.288757	v-ral simian leukemia viral oncogene hom
		100991	J03836	Hs.82085	serine (or cysteine) proteinase inhibito
15		101168	NM_005308	Hs.211569	G protein-coupled receptor kinase 5
		101261	D30857	Hs.82353	protein C receptor, endothelial (EPCR)
		101447	M21305		gb:Human alpha satellite and satellite 3
		101543	M31166	Hs.2050	pentaxin-related gene, rapidly induced b
20		101560 101714	AW958272	Hs.347326 Hs.211587	intercellular adhesion molecule 2 phospholipase A2, group IVA (cytosolic,
20		101714	M68874 BE243845	Hs.75511	connective tissue growth factor
		102012	BE259035	Hs.118400	singed (Drosophila)-like (sea urchin fas
		102164	NM_000107	Hs.77602	damage-specific DNA binding protein 2 (4
		102283	AW161552	Hs.83381	guanine nucleotide binding protein 11
25	102564	102564	U59423	Hs.79067	MAD (mothers against decapentaplegic, Dr
		102759	NM_005100	Hs.788	A kinase (PRKA) anchor protein (gravin)
		102804	NM_002318	Hs.83354	lysyl oxidase-like 2
		102898	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,
30		103036	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial tyrosine kinase with immunoglobulin and
30		103095 103166	NM_005424 AA159248	Hs.78824 Hs.180909	peroxiredoxin 1
		103280	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula
		103850	AA187101	Hs.213194	hypothetical protein MGC10895
		104592	AW630488	Hs.25338	protease, serine, 23
35		104786	AA027167	Hs.10031	KIAA0955 protein
		104865	T79340	Hs.22575	B-ceil CLL/lymphoma 6, member B (zinc fi
		104952	AW076098	Hs.345588	desmoplakin (DPI, DPII)
	105178		AA313825	Hs.21941	AD036 protein ESTs
40	105330		AW338625 H46612	Hs.22120 Hs.293815	Homo sapiens HSPC285 mRNA, partial cds
40	105729 105977		AK001272	Hs.30822	hypothetical protein FLJ11110
	106031		X64116	Hs.171844	Homo sapiens cDNA: FLJ22296 fis, clone H
	106155		AA425414	Hs.33287	nuclear factor I/B
	106423		AB020722	Hs.16714	Rho guanine exchange factor (GEF) 15
45	107174		BE122762	Hs.25338	ESTs
	107295		AA186629	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polyp
	108756		AA127221	Hs.117037	ESTs
	108888 109166		AA135606 AA219691	Hs.189384 Hs.73625	gb:zl10a05.s1 Soares_pregnant_uterus_NbH RAB6 interacting, kinesin-like (rabkines
50	109768		F06838	Hs.14763	ESTs
JŲ	110906		AA035211	Hs.17404	ESTs
	111006		BE387014	Hs.166146	Homer, neuronal immediate early gene, 3
	111133	111133	AW580939	Hs.97199	complement component C1q receptor
	113073		N39342	Hs.103042	microtubule-associated protein 1B
55	113923		AW953484	Hs.3849	hypothetical protein FLJ22041 similar to
	115061		Al751438	Hs.41271	Homo sapiens mRNA full length insert cDN ESTs
	115145 115947		AA740907 R47479	Hs.88297 Hs.94761	KIAA1691 protein
		116339	AK000290	Hs.44033	dipeptidyl peptidase 8
60	116589	116589	Al557212	Hs.17132	ESTs, Moderately similar to I54374 gene
	117023	117023	AW070211	Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f
	117563	117563	AF055634	Hs.44553	unc5 (C.elegans homolog) c
	118475	118475	N66845		gb:za46c11.s1 Soares fetal liver spleen
65	119073	119073	BE245360	Hs.279477	ESTs gb:yi54c08.s1 Soares placenta Nb2HP Homo
65	1191/4	119174 119416	R71234 T97186		gb:yi54c06.\$1 Soares placenta Nb2HF Florito gb:ye50h09.s1 Soares fetal liver spleen
		121335	AA404418		gb:zw37e02.s1 Soares_total_fetus_Nb2HF8_
	123160	123160	AA488687	Hs.284235	ESTs, Weakly similar to 138022 hypotheti
	123523	123523	AA608588		gb:ae54e06.s1 Stratagene lung carcinoma
70	123964	123964	C13961		gb:C13961 Clontech human aorta polyA+ mR
	124315	124315	NM_005402	Hs.288757	v-ral simian leukemia viral oncogene hom
	124669	124669	Al571594	Hs.102943	hypothetical protein MGC12916
	124875	124875	AI887664	Hs.285814	sprouty (Drosophila) homolog 4 ESTs, Moderately similar to KIAA1215 pro
75	125103	125103 125565	AA570056 R20840	Hs.122730	gb:yg05c08.r1 Soares infant brain 1NIB H
15	120000	120000			Sail 20000 in a sail sail sail in in in

	126511 126511	T92143	Hs.57958	EGF-TM7-latrophilin-related protein
	126649 126649	AA001860	Hs.279531	ESTs
	449602 449602	AA001860	Hs.279531	ESTs
-	127402 127402	AA358869	Hs.227949	SEC13 (S. cerevisiae)-like 1
5	128992 128992	H04150	Hs.107708	ESTs
	129188 129188 129371 129371	NM_001078 X06828	Hs.109225 Hs.110802	vascular cell adhesion molecule 1 von Willebrand factor
	129765 129765	M86933	Hs.1238	amelogenin (Y chromosome)
	129884 129884	AF055581	Hs.13131	lysosomal
10	130639 130639	Al557212	Hs.17132	ÉSTs, Moderately similar to 154374 gene
	130828 130828	AW631469	Hs.203213	ESTs
	131080 131080	NM_001955	Hs.2271	endothelin 1
	131182 131182	A1824144 AA040311	Hs.23912 Hs.28959	ESTs ESTs
15	131573 131573 131756 131756	AA443966	Hs.31595	ESTs
10	131881 131881	AW361018	Hs.3383	upstream regulatory element binding prot
	132083 132083	BE386490	Hs.279663	Pirin
	132358 132358	NM_003542	Hs.46423	H4 histone family, member G
20	132456 132456	AB011084	Hs.48924	KIAA0512 gene product; ALEX2
20	132676 132676 132718 132718	N92589 NM_004600	Hs.261038 Hs.554	ESTs, Weakly similar to I38022 hypotheti Sjogren syndrome antigen A2 (60kD, ribon
	132760 132760	AA125985	Hs.56145	thymosin, beta, identified in neuroblast
	132968 132968	AF234532	Hs.61638	myosin X
	133061 133061	Al186431	Hs.296638	prostate differentiation factor
25	133161 133161	AW021103	Hs.6631	hypothetical protein FLJ20373
	133260 133260	AA403045	Hs.6906	Homo sapiens cDNA: FLJ23197 fis, clone R
	133491 133491 133550 133550	BE619053 Al129903	Hs.170001 Hs.74669	eukaryotic translation initiation factor vesicle-associated membrane protein 5 (m
	133614 133614	NM_003003	Hs.75232	SEC14 (S. cerevisiae)-like 1
30	133691 133691	M85289	Hs.211573	heparan sulfate proteoglycan 2 (perlecan
	133913 133913	AU076964	Hs.7753	calumenin
	133985 133985	L34657	Hs.78146	platelet/endothelial cell adhesion molec
	134088 134088	Al379954 AW580939	Hs.79025 Hs.97199	KIAA0096 protein complement component C1q receptor
35	134299 134299 116470 116470	AV350939 Al272141	Hs.83484	SRY (sex determining region Y)-box 4
J.	134989 134989	AW968058	Hs.92381	nudix (nucleoside diphosphate linked moi
	135073 135073	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f
	100114 100114	X02308	Hs.82962	thymidylate synthetase
40	100143 100143	AU076465	Hs.278441	KIAA0015 gene product ribonuclease, RNase A family, 1 (pancrea
40	100208 100208 100405 100405	NM_002933 AW291587	Hs.78224 Hs.82733	nidogen 2
	100405 100455	AW888941	Hs.75789	N-myc downstream regulated
	100618 100618	Al752163	Hs.114599	collagen, type VIII, alpha 1
	100658 100658	U56725	Hs.180414	heat shock 70kD protein 2
45	100718 100718	BE295928	Hs.75424	inhibitor of DNA binding 1, dominant neg
	100828 100828 100991 100991	AL048753 J03836	Hs.303649 Hs.82085	small inducible cytokine A2 (monocyte ch serine (or cysteine) proteinase inhibito
	101110 101110	Al439011	Hs.86386	myeloid cell leukemia sequence 1 (BCL2-r
	101156 101156	AA340987	Hs.75693	prolyicarboxypeptidase (angiotensinase C
50	101184 101184	NM_001674	Hs.460	activating transcription factor 3
	101317 101317	L42176	Hs.8302	four and a half LIM domains 2
	101345 101345	NM_005795 BE410405	Hs.152175 Hs.76288	calcitonin receptor-like calpain 2, (m/II) large subunit
	101475 101475 101496 101496	X12784	Hs.119129	collagen, type IV, alpha 1
55	101543 101543	M31166	Hs.2050	pentaxin-related gene, rapidly induced b
	101560 101560	AW958272	Hs.347326	intercellular adhesion molecule 2
	101592 101592	AF064853	Hs.91299	guanine nucleotide binding protein (G pr
	101634 101634	AV650262	Hs.75765	GRO2 oncogene
60	101682 101682 101720 101720	AF043045 M69043	Hs.81008 Hs.81328	filamin B, beta (actin-binding protein-2 nuclear factor of kappa light polypeptid
00	101744 101744	Al879352	Hs.118625	hexokinase 1
	101837 101837	M92843	Hs.343586	zinc finger protein homologous to Zfp-36
	101840 101840	AA236291	Hs.183583	serine (or cysteine) proteinase inhibito
(5	101864 101864	BE392588	Hs.75777	transgelin
65	101966 101966 102013 102013	X96438 BE616287	Hs.76095 Hs.178452	immediate early response 3 catenin (cadherin-associated protein), a
	102059 102059	Al752666	Hs.76669	nicotinamide N-methyltransferase
	102283 102283	AW161552	Hs.83381	guanine nucleotide binding protein 11
	102378 102378	AU076887	Hs.28491	spermidine/spermine N1-acetyltransferase
70	102460 102460	U48959	Hs.211582	myosin, light polypeptide kinase
	102499 102499	BE243877 R97457	Hs.76941	ATPase, Na+/K+ transporting, beta 3 poly cadherin 13, H-cadherin (heart)
	102560 102560 102589 102589	AU076728	Hs.63984 Hs.8867	cysteine-rich, angiogenic inducer, 61
	102645 102645	AL119566	Hs.6721	lysosomal
75	102693 102693	AA532780	Hs.183684	eukaryotic translation initiation factor
	102759 102759	NM_005100	Hs.788	A kinase (PRKA) anchor protein (gravin)

	102882 102882	AI767736	Hs.290070	gelsolin (amyloidosis, Finnish type)
	102915 102915	X07820.	Hs.2258	matrix metalloproteinase 10 (stromelysin
	102960 102960	Al904738	Hs.76053	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep
_	103020 103020	X53416	Hs.195464	filamin A, alpha (actin-binding protein-
5	103036 103036	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial cyclin D1 (PRAD1; parathyroid adenomatos
	103080 103080 103138 103138	AU077231 X65965	Hs.82932	gb:H.sapiens SOD-2 gene for manganese su
	103195 103195	AA351647	Hs.2642	eukaryotic translation elongation factor
	103371 103371	X91247	Hs.13046	thioredoxin reductase 1
10	103471 103471	Y00815	Hs.75216	protein tyrosine phosphatase, receptor t
	104447 104447	AW204145	Hs.156044	ESTs
	104783 104783	AA533513	Hs.93659	protein disulfide isomerase related prot
	104865 104865	T79340 AF065214	Hs.22575 Hs.18858	B-cell CLL/lymphoma 6, member B (zinc fi phospholipase A2, group IVC (cytosolic,
15	104894 104894 105113 105113	AB037816	Hs.8982	Homo sapiens, clone IMAGE:3506202, mRNA,
13	105196 105196	W84893	Hs.9305	angiotensin receptor-like 1
	105263 105263	AW388633	Hs.6682	solute carrier family 7, (cationic amino
	105330 105330	AW338625	Hs.22120	ESTs
20	105492 105492	Al805717	Hs.289112	CGI-43 protein
20	105594 105594	AB024334	Hs.25001	tyrosine 3-monoxygenase/tryptophan 5-mo
	105732 105732	AW504170 W46802	Hs.274344 Hs.81988	hypothetical protein MGC12942 dlsabled (Drosophila) homolog 2 (mitogen
	105882 105882 106031 106031	X64116	Hs.171844	Homo sapiens cDNA: FLJ22296 fis, clone H
	106222 106222	AA356392	Hs.21321	Homo sapiens clone FLB9213 PRO2474 mRNA,
25	106263 106263	W21493	Hs.28329	hypothetical protein FLJ14005
	106366 106366	AA186715	Hs.336429	RIKEN cDNA 9130422N19 gene
	106634 106634	W25491	Hs.288909	hypothetical protein FLJ22471
	106793 106793	H94997	Hs.16450	ESTs
30	106842 106842	AF124251	Hs.26054 Hs.88500	novel SH2-containing protein 3 mitogen-activated protein kinase 8 inter
30	106890 106890 106974 106974	AA489245 Al817130	Hs.9195	Homo sapiens cDNA FLJ13698 fis, clone PL
,	107061 107061	BE147611	Hs.6354	stromal cell derived factor receptor 1
	107216 107216	D51069	Hs.211579	melanoma cell adhesion molecule
	107444 107444	W28391	Hs.343258	proliferation-associated 2G4, 38kD
35	108507 108507	A1554545	Hs.68301	ESTs
	108931 108931	AA147186	Un 422004	gb:zo38d01.s1 Stratagene endothelial cel solute carrier family 4, sodium bicarbon
	109195 109195 109456 109456	AF047033 AW956580	Hs.132904 Hs.42699	ESTs
	110411 110411	AW001579	Hs.9645	Homo sapiens mRNA for KIAA1741 protein,
40	110906 110906	AA035211	Hs.17404	ESTs
	111091 111091	AA300067	Hs.33032	hypothetical protein DKFZp434N185
	111378 111378	AW160993	Hs.326292	hypothetical gene DKFZp434A1114
	111769 111769	AW629414	Hs.24230 Hs.6650	ESTs vacuolar protein sorting 45B (yeast homo
45	112951 112951 113195 113195	AA307634 H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom
73	113542 113542	H43374	Hs.7890	Homo sapiens mRNA for KIAA1671 protein,
	113847 113847	NM_005032	Hs.4114	plastin 3 (T isoform)
	113947 113947	W84768		gb:zh53d03.s1 Soares_fetal_liver_spleen_
7 0	115061 115061	Al751438	Hs.41271	Homo sapiens mRNA full length insert cDN
50	115870 115870	NM_005985	Hs.48029	snail 1 (drosophila homolog), zinc finge ESTs
	116228 116228 116314 116314	Al767947 Al799104	Hs.50841 Hs.178705	Homo sapiens cDNA FLJ11333 fis, clone PL
	117023 117023	AW070211	Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f
	117156 117156	W73853		ESTs
55	117280 117280	M18217	Hs.172129	Homo sapiens cDNA: FLJ21409 fis, clone C
	119866 119866	AA496205	Hs.193700	Homo sapiens mRNA; cDNA DKFZp586I0324 (f
	121314 121314	W07343	Hs.182538	phospholipid scramblase 4 metallothionein 1E (functional)
	121822 121822 122331 122331	AI743860 AL133437	Hs.110771	Homo sapiens cDNA: FLJ21904 fis, clone H
60	123160 123160	AA488687	Hs.284235	ESTs, Weakly similar to I38022 hypotheti
00	124059 124059	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti
	124358 124358	AW070211	Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f
	124726 124726	NM_003654	Hs.104576	carbohydrate (keratan sulfate Gal-6) sul
<i>(5</i>	125167 125167	AL137540	Hs.102541	netrin 4
65	125307 125307	AW580945 T40064	Hs.330466 Hs.71968	ESTs Homo sapiens mRNA; cDNA DKFZp564F053 (fr
	107985 107985 125598 125598	T40064	Hs.71968	Homo sapiens mRNA; cDNA DKFZp564F053 (fr
	413731 413731	BE243845	Hs.75511	connective tissue growth factor
	116024 116024	AA088767	Hs.83883	transmembrane, prostate androgen induced
70	418000 418000	AA932794	Hs.83147	guanine nucleotide binding protein-like
	126399 126399	AA088767	Hs.83883	transmembrane, prostate androgen induced
	127566 127566	AI051390 X02761	Hs.116731 Hs.287820	ESTs fibronectin 1
	128453 128453 128515 128515	BE395085	Hs.10086	type I transmembrane protein Fn14
75	128623 128623	BE076608	Hs.105509	CTL2 gene
	128669 128669	W28493	Hs.180414	heat shock 70kD protein 8

	128914 128914	AW867491	Hs.107125	plasmalemma vesicle associated protein
	129188 129188	NM_001078	Hs.109225	vascular cell adhesion molecule 1
	129265 129265	AA530892	Hs.171695	dual specificity phosphatase 1
_	129468 129468	AW410538	Hs.111779	secreted protein, acidic, cysteine-rich
5	101838 101838	BE243845	Hs.75511	connective tissue growth factor
	129619 129619	AA209534	Hs.284243	tetraspan NET-6 protein
	129762 129762	AA453694	Hs.12372	tripartite motif protein TRIM2
	130018 130018	AA353093	11 4540	metallothionein 1L
10	130178 130178	U20982	Hs.1516	insulin-like growth factor-binding prote
10	130431 130431	AW505214	Hs.155560	calnexin
	130553 130553	AF062649	Hs.252587	pituitary tumor-transforming 1
	130639 130639	AI557212	Hs.17132	ESTs, Moderately similar to 154374 gene
	130686 130686	BE548267	Hs.337986	Homo sapiens cDNA FLJ10934 fis, clone OV
1 5	130818 130818	AW190920	Hs.19928	hypothetical protein SP329
15	130899 130899	Al077288	Hs.296323	serum/glucocorticoid regulated kinase
	131080 131080	NM_001955	Hs.2271	endothelin 1
	131091 131091	AJ271216	Hs.22880	dipeptidylpeptidase III
	131182 131182	Al824144	Hs.23912	ESTs
20	131319 131319	NM_003155	Hs.25590	stanniocalcin 1
20	131328 131328	AW939251	Hs.25647	v-fos FBJ murine osteosarcoma viral onco v-fos FBJ murine osteosarcoma viral onco
	131328 131328	AW939251	Hs.25647 Hs.278613	interferon, alpha-inducible protein 27
	131555 131555	T47364 AA040311	Hs.28959	ESTs
	131573 131573	AA443966	Hs.31595	ESTS
25	131756 131756 131909 131909	NM_016558	Hs.274411	SCAN domain-containing 1
23			Hs.179260	chromosome 14 open reading frame 4
	132046 132046	Al359214 BE379499	Hs.173705	Homo sapiens cDNA: FLJ22050 fis, clone H
	132151 132151 132187 132187	AA235709	Hs.4193	DKFZP586O1624 protein
	132314 132314	AF112222	Hs.323806	pinin, desmosome associated protein
30	132398 132398	AA876616	Hs.16979	ESTs, Weakly similar to A43932 mucin 2 p
50	132490 132490	NM_001290	Hs.4980	LIM domain binding 2
	132546 132546	M24283	Hs.168383	intercellular adhesion molecule 1 (CD54)
	132716 132716	BE379595	Hs.283738	casein kinase 1, alpha 1
	132883 132883	AA373314	Hs.5897	Homo sapiens mRNA; cDNA DKFZp586P1622 (f
35	132989 132989	AA480074	Hs.331328	hypothetical protein FLJ13213
	133071 133071	BE384932	Hs.64313	ESTs, Weakly similar to AF257182 1 G-pro
	133099 133099	W16518	Hs.279518	amyloid beta (A4) precursor-like protein
	133149 133149	AA370045	Hs.6607	AXIN1 up-regulated
	133200 133200	AB037715	Hs.183639	hypothetical protein FLJ10210
40	133260 133260	AA403045	Hs.6906	Homo sapiens cDNA: FLJ23197 fis, clone R
	133349 133349	AW631255	Hs.8110	L-3-hydroxyacyl-Coenzyme A dehydrogenase
	133398 133398	NM_000499	Hs.72912	cytochrome P450, subfamily I (aromatic c
	133454 133454	BE547647	Hs.177781	hypothetical protein MGC5618
	133491 133491	BE619053	Hs.170001	eukaryotic translation initiation factor
45	133517 133517	NM_000165	Hs.74471	gap junction protein, alpha 1, 43kD (con
	133538 133538	NM_003257	Hs.74614	tight junction protein 1 (zona occludens
	133584 133584	D90209	Hs.181243	activating transcription factor 4 (tax-r
	133617 133617	BE244334	Hs.75249	ADP-ribosylation factor-like 6 interacti
- 0	133671 133671	AW503116	Hs.301819	zinc finger protein 146
50	133681 133681	Al352558		tyrosine 3-monooxygenase/tryptophan 5-mo
	133730 133730	BE242779	Hs.179526	upregulated by 1,25-dihydroxyvitamin D-3
	133802 133802	AW239400	Hs.76297	G protein-coupled receptor kinase 6
	133838 133838	BE222494	Hs.180919	inhibitor of DNA binding 2, dominant neg
<i>= =</i>	133889 133889	U48959	Hs.211582	myosin, light polypeptide kinase
55	133975 133975	C18356	Hs.295944	tissue factor pathway inhibitor 2 laminin, alpha 4
	134039 134039	NM_002290	Hs.78672 Hs.79005	protein tyrosine phosphatase, receptor t
	134081 134081	AL034349 AA161219	Hs.799	diphtheria toxin receptor (heparin-bindi
	134203 134203	AW580939	Hs.97199	complement component C1g receptor
60	134299 134299	R70429	Hs.81988	disabled (Drosophila) homolog 2 (mitogen
00	134339 134339 134381 134381	Al557280	Hs.184270	capping protein (actin filament) muscle
	134416 134416	X68264	Hs.211579	melanoma cell adhesion molecule
	134558 134558	NM_001773	Hs.85289	CD34 antigen
	134983 134983	D28235	Hs.196384	prostaglandin-endoperoxide synthase 2 (p
65	135052 135052	AL136653	Hs.93675	decidual protein induced by progesterone
0.0	135069 135069	AA876372	Hs.93961	Homo sapiens mRNA; cDNA DKFZp667D095 (fr
	135073 135073	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f
	135196 135196	C03577	Hs.9615	myosin regulatory light chain 2, smooth
	134404 134404	AB000450	Hs.82771	vaccinia related kinase 2
70	100082 100082	AA130080	Hs.4295	proteasome (prosome, macropain) 26S subu
- -	130150 130150	BE094848	Hs.15113	homogentisate 1,2-dioxygenase (homogenti
	130839 130839	AB011169	Hs.20141	similar to S. cerevisiae SSM4
	100113 100113	NM_001269	Hs.84746	chromosome condensation 1
	100129 100129	AA469369	Hs.5831	tissue inhibitor of metalloproteinase 1
75	100169 100169	AL037228	Hs.82043	D123 gene product
	100190 100190	M91401	Hs.178658	RAD23 (S. cerevisiae) homolog B

	100211 100211	D26528	Hs.123058	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep
	130283 130283	NM_012288	Hs.153954	TRAM-like protein
	100248 100248 100262 100262	NM_015156 D38500	Hs.78398 Hs.278468	KIAA0071 protein postmeiotic segregation increased 2-like
5	100281 100281	AF091035	Hs.184627	KIAA0118 protein
_	100327 100327	D55640	110.101021	gb:Human monocyte PABL (pseudoautosomal
	134495 134495	D63477	Hs.84087	KIAA0143 protein
	135152 135152	M96954	Hs.182741	TIA1 cytotoxic granule-associated RNA-bi
10	100372 100372	NM_014791	Hs.184339	KIAA0175 gene product
10	100394 100394 100418 100418	D84284 D86978	Hs.66052 Hs.84790	CD38 antigen (p45) KIAA0225 protein
	134347 134347	AF164142	Hs.82042	solute carrier family 23 (nucleobase tra
	100438 100438	AA013051	Hs.91417	topoisomerase (DNA) II binding protein
	100481 100481	X70377	Hs.121489	cystatin D
15	100591 100591	NM_004091	Hs.231444	Homo sapiens, Similar to hypothetical pr
	100662 100662	Al368680	Hs.816	SRY (sex determining region Y)-box 2
	100905 100905	L12260 AF128542	Hs.172816 Hs.166846	neuregulin 1 polymerase (DNA directed), epsilon
	100950 100950 135407 135407	J04029	Hs.99936	keratin 10 (epidermolytic hyperkeratosis
20	131877 131877	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)
	134786 134786	T29618	Hs.89640	TEK tyrosine kinase, endothelial (venous
	134078 134078	L08895	Hs.78995	MADS box transcription enhancer factor 2
	134849 134849	BE409525	Hs.902	neurofibromin 2 (bilateral acoustic neur
25	101152 101152	Al984625	Hs.9884 Hs.3069	spindle pole body protein heat shock 70kD protein 9B (mortalin-2)
23	131687 131687 421155 421155	BE297635 H87879	Hs.102267	lysyl oxidase
	133975 133975	C18356	Hs.295944	tissue factor pathway inhibitor 2
	130155 130155	AA101043	Hs.151254	kallikrein 7 (chymotryptic, stratum corn
20	132813 132813	BE313625	Hs.57435	solute carrier family 11 (proton-coupled
30	101300 101300	BE535511	11- 454070	transmembrane trafficking protein
	130344 130344 101381 101381	AW250122	Hs.154879 Hs.1227	DiGeorge syndrome critical region gene D aminolevulinate, delta-, dehydratase
	133780 133780	AW675039 AA557660	Hs.76152	decorin
	101447 101447	M21305	11011 5 102	gb:Human alpha satellite and satellite 3
35	101470 101470	NM_000546	Hs.1846	tumor protein p53 (Li-Fraumeni syndrome)
	101478 101478	NM_002890	Hs.758	RAS p21 protein activator (GTPase activa
	133519 133519	AW583062	Hs.74502	chymotrypsinogen B1
	134116 134116 130174 130174	R84694 M29551	Hs.79194 Hs.151531	cAMP responsive element binding protein protein phosphatase 3 (formerly 2B), cat
40	132983 132983	M30269	113.131301	nidogen (enactin)
	101543 101543	M31166	Hs.2050	pentaxin-related gene, rapidly induced b
	101620 101620	S55271	Hs.247930	Epsilon , IgE
	133595 133595	AA393273	Hs.75133	transcription factor 6-like 1 (mitochond
45	101700 101700	D90337 D28459	Hs.247916 Hs.80612	natriuretic peptide precursor C ubiquitin-conjugating enzyme E2A (RAD6 h
43	134246 134246 133948 133948	X59960	Hs.77813	sphingomyelin phosphodiesterase 1, acid
	133948 133948	X59960	Hs.77813	sphingomyelin phosphodiesterase 1, acid
	133948 133948	X59960	Hs.77813	sphingomyelin phosphodiesterase 1, acid
50	101812 101812	BE439894	Hs.78991	DNA segment, numerous copies, expressed
50	133396 133396	M96326	Hs.72885	azurocidin 1 (cationic antimicrobial pro Friend leukemia virus integration 1
	129026 129026 134831 134831	AL120297 AA853479	Hs.108043 Hs.89890	pyruvate carboxylase
	134395 134395	AA456539	Hs.8262	lysosomal
	101977 101977	AF112213	Hs.184062	putative Rab5-interacting protein
55	101998 101998	U01212	Hs.248153	olfactory marker protein
	102007 102007	U02556	Hs.75307	t-complex-associated-testis-expressed 1-
	416658 416658 135389 135389	U03272 U05237	Hs.79432 Hs.99872	fibrillin 2 (congenital contractural ara fetal Alzheimer antigen
	130145 130145	U34820	Hs.151051	mitogen-activated protein kinase 10
60	420269 420269	U72937	Hs.96264	alpha thalassemia/mental retardation syn
	102123 102123	NM_001809	Hs.1594	centromere protein A (17kD)
	102133 102133	AU076845	Hs.155596	BCL2/adenovirus E1B 19kD-interacting pro
	102162 102162	AA450274	Hs.1592	CDC16 (cell division cycle 16, S. cerevi nuclear respiratory factor 1
65	427653 427653 102200 102200	AA159001 AA232362	Hs.180069 Hs.157205	branched chain aminotransferase 1, cytos
03	102214 102214	U23752	Hs.32964	SRY (sex determining region Y)-box 11
	131319 131319	NM_003155	Hs.25590	stanniocalcin 1
	132316 132316	U28831	Hs.44566	KIAA1641 protein
70	134365 134365	AA568906	Hs.82240	syntaxin 3A
70	102298 102298	AA382169 BE303044	Hs.54483 Hs.192023	N-myc (and STAT) interactor eukaryotic translation initiation factor
	302344 302344 102367 102367	U39656	Hs.118825	mitogen-activated protein kinase kinase
	102394 102394	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma
	129521 129521	AF071076	Hs.112255	nucleoporin 98kD
75	102251 102251	NM_004398	Hs.41706	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep
	133746 133746	AW410035	Hs.75862	MAD (mothers against decapentaplegic, Dr

	400000 400000)) ===40	Charling a second for the O for decree 2nd
	132828 132828	AB014615	Hs.57710	fibroblast growth factor 8 (androgen-ind
	132828 132828	AB014615	Hs.57710 Hs.155637	fibroblast growth factor 8 (androgen-ind protein kinase, DNA-activated, catalytic
	130441 130441 129350 129350	U63630 U50535	Hs.110630	Human BRCA2 region, mRNA sequence CG006
5	130457 130457	AB014595	Hs.155976	cullin 4B
5	102560 102560	R97457	Hs.63984	cadherin 13, H-cadherin (heart)
	134305 134305	U61397	Hs.81424	ubiquitin-like 1 (sentrin)
	132736 132736	AW081883	Hs.211578	Homo sapiens cDNA: FLJ23037 fis, clone L
	102663 102663	NM_002270	Hs.168075	karyopherin (importin) beta 2
10	102735 102735	AF111106	Hs.3382	protein phosphatase 4, regulatory subuni
	101175 101175	U82671	Hs.36980	melanoma antigen, family A, 2
	132164 132164	Al752235	Hs.41270	procollagen-lysine, 2-oxoglutarate 5-dio
	102826 102826	NM_007274	Hs.8679	cytosolic acyl coenzyme A thicester hydr
	102846 102846	BE264974	Hs.6566	thyroid hormone receptor interactor 13
15	134161 134161	AA634543	Hs.79440	IGF-II mRNA-binding protein 3
	302363 302363	AW163799	Hs.198365	2,3-bisphosphoglycerate mutase
	125701 125701	T72104	Hs.93194	apolipoprotein A-I
	134656 134656	A1750878	Hs.87409	thrombospondin 1
• •	102968 102968	AU076611	Hs.154672	methylene tetrahydrofolate dehydrogenase
20	134037 134037	A1808780	Hs.227730	integrin, alpha 6
	103023 103023	AW500470	Hs.117950	multifunctional polypeptide similar to S
	130282 130282	BE245380	Hs.153952	5' nucleotidase (CD73)
	128568 128568	H12912	Hs.274691	adenylate kinase 3
25	103093 103093	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine
25	129063 129063	X63094	Hs.283822	Rhesus blood group, D antigen
	133227 133227	AW977263	Hs.68257	general transcription factor IIF, polype fms-related tyrosine kinase 4
	103184 103184	U43143	Hs.74049	retinoblastoma-binding protein 7
	103208 103208 131486 131486	AW411340 F06972	Hs.31314 Hs.27372	BMX non-receptor tyrosine kinase
30	103334 103334	NM_001260	Hs.25283	cyclin-dependent kinase 8
50	135094 135094	NM_003304	Hs.250687	transient receptor potential channel 1
	103352 103352	H09366	Hs.78853	uracil-DNA glycosylase
	132173 132173	X89426	Hs.41716	endothelial cell-specific molecule 1
	131584 131584	AA598509	Hs.29117	purine-rich element binding protein A
35	103378 103378	AL119690	Hs.153618	HCGVIII-1 protein
	103410 103410	AA158294	Hs.295362	DR1-associated protein 1 (negative cofac
	103438 103438	AW175781	Hs.152720	M-phase phosphoprotein 6
	103452 103452	NM_006936	Hs.85119	SMT3 (suppressor of mif two 3, yeast) ho
	135185 135185	AW404908	Hs.96038	Ric (Drosophila)-like, expressed in many
40	134662 134662	NM_007048	Hs.284283	butyrophilin, subfamily 3, member A1
	103500 103500	AW408009	Hs.22580	alkylglycerone phosphate synthase
	132084 132084	NM_002267	Hs.3886	karyopherin alpha 3 (importin alpha 4)
	133152 133152	Z11695	Hs.324473	mitogen-activated protein kinase 1
4 =	103612 103612	BE336654	Hs.70937	H3 histone family, member A
45	103692 103692	AW137912	Hs.227583	Homo sapiens chromosome X map Xp11.23 L- GTPase Rab14
	129796 129796	BE218319	Hs.5807	
	132683 132683	BE264633	Hs.143638 Hs.214783	WD repeat domain 4 Homo sapiens cDNA FLJ14041 fis, clone HE
	103723 103723	BE274312 AA403045	Hs.6906	Homo sapiens cDNA: FLJ23197 fis, clone R
50	133260 133260 103766 103766	AI920783	Hs.191435	ESTs
50	132051 132051	AA393968	Hs.180145	HSPC030 protein
	135289 135289	AW372569	Hs.9788	hypothetical protein MGC10924 similar to
	103794 103794	AF244135	Hs.30670	hepatocellular carcinoma-associated anti
	134319 134319	BE304999	Hs.285754	fumarate hydratase
55	119159 119159	AF142419	Hs.15020	homolog of mouse quaking QKI (KH domain
	103850 103850	AA187101	Hs.213194	hypothetical protein MGC10895
	322026 322026	AW024973	Hs.283675	NPD009 protein
	103861 103861	AA206236	Hs.4944	hypothetical protein FLJ12783
	447735 447735	AA775268	Hs.6127	Homo sapiens cDNA: FLJ23020 fis, clone L
60	131236 131236	AF043117	Hs.24594	ubiquitination factor E4B (homologous to
	129013 129013	AA371156	Hs.107942	DKFZP564M112 protein
	103988 103988	AA314389	Hs.342849	ADP-ribosylation factor-like 5
	425284 425284	AF155568	Hs.348043	NS1-associated protein 1
65	133281 133281	AK001601	Hs.69594	high-mobility group 20A Ras-GTPase-activating protein SH3-domain
65	108154 108154	NM_005754 W55956	Hs.220689 Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f
	135073 135073	Al338247	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f
	129593 129593 132064 132064	AA121098	Hs.3838	serum-inducible kinase
	132064 132064 131427	AF151879	Hs.26706	CGI-121 protein
70	104282 104282	C14448	Hs.332338	EST
70	130443 130443	D25216	Hs.155650	KIAA0014 gene product
	132837 132837	AA370362	Hs.57958	EGF-TM7-latrophilin-related protein
	104334 104334	D82614	Hs.78771	phosphoglycerate kinase 1
	134731 134731	D89377	Hs.89404	msh (Drosophila) homeo box homolog 2
75	131670 131670	H03514	Hs.15589	ESTS
	104402 104402	H56731	Hs.132956	ESTs

	129077 129077	N74724	Hs.108479	ESTs
	134927 134927	L36531	Hs.91296	integrin, alpha 8
	134498 134498	AW246273	Hs.84131	threonyl-tRNA synthetase
_	104488 104488	N56191	Hs.106511	protocadherin 17
5	129214 129214	AL044335	Hs.109526	zinc finger protein 198
	104530 104530 104544 104544	AK001676	Hs.12457 Hs.222362	hypothetical protein FLJ10814 ESTs, Weakly similar to p40 [H.sapiens]
	104544 104544	Al091173 AA040620	Hs.5672	hypothetical protein AF140225
	129575 129575	F08282	Hs.278428	progestin induced protein
10	104599 104599	AW815036	Hs.151251	ESTs
	104667 104667	Al239923	Hs.63931	ESTs
	104764 104764	A1039243	Hs.278585	ESTS
	104787 104787	AA027317	Lin 21002	gb:ze97d11.s1 Soares_fetal_heart_NbHH19W ESTs, Weakly similar to N-WASP [H.sapien
15	104804 104804 130828 130828	Al858702 AW631469	Hs.31803 Hs.203213	ESTs
1.5	104943 104943	AF072873	Hs.114218	frizzled (Drosophila) homolog 6
	105024 105024	AA126311	Hs.9879	ESTs
	105038 105038	AW503733	Hs.9414	KIAA1488 protein
20	105096 105096	AL042506	Hs.21599	Kruppel-like factor 7 (ubiquitous)
20	105169 105169	BE245294	Hs.180789	S164 protein
	130401 130401 130114 130114	BE396283 AA233393	Hs.173987 Hs.14992	eukaryotic translation initiation factor hypothetical protein FLJ11151
	105337 105337	AA233393 AI468789	Hs.347187	myotubularin related protein 1
	105376 105376	AW994032	Hs.8768	hypothetical protein FLJ10849
25	131962 131962	AK000046	Hs.343877	hypothetical protein FLJ20039
	128658 128658	BE397354	Hs.324830	diptheria toxin resistance protein requi
	105508 105508	AA173942	Hs.326416	Homo sapiens mRNA; cDNA DKFZp564H1916 (f
	135172 135172 132542 132542	AB028956	Hs.12144 Hs.263671	KIAA1033 protein Homo sapiens mRNA; cDNA DKFZp434l0812 (f
30	105659 105659	AL137751 AA283044	Hs.25625	hypothetical protein FLJ11323
50	105674 105674	Al609530	Hs.279789	histone deacetylase 3
	105722 105722	Al922821	Hs.32433	ESTs
	115951 115951	BE546245	Hs.301048	sec13-like protein
2.5	105985 105985	AA406610	11 040004	gb:zv15b10.s1 Soares_NhHMPu_S1 Homo sapi
35	131216 131216	AI815486	Hs.243901	Homo sapiens cDNA FLJ20738 fis, clone HE DKFZP434I116 protein
	113689 113689 130839 130839	AB037850 AB011169	Hs.16621 Hs.20141	similar to S. cerevisiae SSM4
	130777 130777	AW135049	Hs.26285	Homo sapiens cDNA FLJ10643 fis, clone NT
	106196 106196	AA525993	Hs.173699	ESTs, Weakly similar to ALU1_HUMAN ALU S
40	133200 133200	AB037715	Hs.183639	hypothetical protein FLJ10210
	106328 106328	AL079559	Hs.28020	KIAA0766 gene product
	106423 106423 439608 439608	AB020722 AW864696	Hs.16714 Hs.301732	Rho guanine exchange factor (GEF) 15 hypothetical protein MGC5306
	106503 106503	AB033042	Hs.29679	cofactor required for Sp1 transcriptiona
45	106543 106543	AA676939	Hs.69285	neuropilin 1
	106589 106589	AK000933	Hs.28661	Homo sapiens cDNA FLJ10071 fis, clone HE
	106596 106596	AA452379		ESTs, Moderately similar to ALU7_HUMAN A
	106636 106636	AW958037	Hs.286	ribosomal protein L4 gb:RC2-CT0321-131199-011-c01 CT0321 Homo
50	131353 131353 131710 131710	AW754182 NM_015368	Hs.30985	pannexin 1
30	131775 131775	AB014548	Hs.31921	KIAA0648 protein
	106773 106773	AA478109	Hs.188833	ESTs
	106817 106817	D61216	Hs.18672	ESTs
~ ~	106848 106848	AA449014	Hs.121025	chromosome 11 open reading frame 5
55	418699 418699	BE539639	Hs.173030	ESTs, Weakly similar to ALU8_HUMAN ALU S ESTs
	130638 130638 107059 107059	AW021276 BE614410	Hs.17121 Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re
	107115 107115	BE379623	Hs.27693	peptidylprolyl isomerase (cyclophilin)-l
	107156 107156	AA137043	Hs.9663	programmed cell death 6-interacting prot
60	130621 130621	AW513087	Hs.16803	LUC7 (S. cerevisiae)-like
	132626 132626	AW504732	Hs.21275	hypothetical protein FLJ11011
	131610 131610	AA357879 AA186629	Hs.29423 Hs.80120	scavenger receptor with C-type lectin UDP-N-acetyl-alpha-D-galactosamine:polyp
	107295 107295 107315 107315	AA 100029 AA 316241	Hs.90691	nucleophosmin/nucleoplasmin 3
65	107328 107328	AW959891	Hs.76591	KIAA0887 protein
00	134715 134715	U48263	Hs.89040	prepronociceptin
	129938 129938	AW003668	Hs.135587	Human clone 23629 mRNA sequence
	130074 130074	AL038596	Hs.250745	polymerase (RNA) III (DNA directed) (62k
70	132036 132036	AL157433 AW243158	Hs.37706 Hs.5297	hypothetical protein DKFZp434E2220 DKFZP564A2416 protein
70	113857 113857 130419 130419	AF037448	Hs.155489	NS1-associated protein 1
	132616 132616	BE262677	Hs.283558	hypothetical protein PRO1855
	132358 132358	NM_003542	Hs.46423	H4 histone family, member G
<i>a-</i>	125827 125827	NM_003403	Hs.97496	YY1 transcription factor
75	107609 107609	R75654	Hs.164797	hypothetical protein FLJ13693
	107714 107714	AA015761	Hs.60642	ESTs

5	129577 132000 107935 131461 108029 108084	107832 124337 129577 132000 107935 131461 108029 108084 108168	AA021473 N23541 N75346 AW247017 AA029428 AA992841 AA040740 AA058944 AI453137	Hs.281561 Hs.306121 Hs.36978 Hs.61555 Hs.27263 Hs.62007 Hs.116602 Hs.63176	gb:ze66c11.s1 Soares retina N2b4HR Homo Homo sapiens cDNA: FLJ23582 fis, clone L CDC20 (cell division cycle 20, S. cerevi melanoma antigen, family A, 3 ESTs KIAA1458 protein ESTs Homo sapiens, clone IMAGE:4154008, mRNA, ESTs
10	108189		AW376061	Hs.63335	ESTs, Moderately similar to A46010 X-lin
	108203	108203	AW847814	Hs.289005	Homo sapiens cDNA: FLJ21532 fis, clone C
	108217		AA058686	Hs.62588	ESTs
	108277		AA064859		gb:zm50f03.s1 Stratagene fibroblast (937
1.5		108309	AA069818	11- 400000	gb:zm67e03.r1 Stratagene neuroepithelium
15		108340	AA069820	Hs.180909	peroxiredoxin 1 gb;zm91g08.s1 Stratagene ovarian cancer
	108427		AA076382 AA078986		gb:zm92h01.s1 Stratagene ovarian cancer
	108439 108469		AA079487		gb:zm97f08.s1 Stratagene colon HT29 (937
		108501	AA083256		gb:zn08g12.s1 Stratagene hNT neuron (937
20		108562	AA100796		gb:zm26c06.s1 Stratagene pancreas (93720
	130890		AI907537	Hs.76698	stress-associated endoplasmic reticulum
	130385	130385	AW067800	Hs.155223	stanniocalcin 2
	108807	108807	Al652236	Hs.49376	hypothetical protein FLJ20644
	108833		AF188527	Hs.61661	ESTs, Weakly similar to AF174605 1 F-box
25	108846		AL117452	Hs.44155	DKFZP586G1517 protein
		131474	L46353	Hs.2726	high-mobility group (nonhistone chromoso
	108941		AA148650	11- 222426	gb:zo09e06.s1 Stratagene neuroepithelium EST
	108996		AW995610	Hs.332436 Hs.285107	hypothetical protein FLJ13397
30	131183 109022		Al611807 AA157291	Hs.21479	ubinuclein 1
30	109022		AA164293	Hs.72545	ESTs
	129021	129021	AL044675	Hs.173081	KIAA0530 protein
	109146		AA176589	Hs.142078	EST
	131080		NM_001955	Hs.2271	endothelin 1
35	109222	109222	AA192833	Hs.333512	similar to rat myomegalin
	109481	109481	AA878923	Hs.289069	hypothetical protein FLJ21016
	109516		A1471639	Hs.71913	ESTs
		109556	Al925294	Hs.87385	ESTs
40	109578		F02208	Hs.27214	ESTs
40	109625		H29490 H17800	Hs.22697 Hs.7154	ESTs ESTs
	109648 109699		H18013	Hs.167483	ESTs
	109099	109099	R52417	Hs.20945	Homo sapiens clone 24993 mRNA sequence
	110039		H11938	Hs.21907	histone acetyltransferase
	110008	110000	.,,,,,,,,,		· · · · · · · · · · · · · · · · · · ·

TABLE 2A

Table 2A shows the accession numbers for those pkeys lacking unigenelD's for Table 2. The pkeys in Table 7 lacking unigenelD's are represented within Tables 1-6A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10 Unique Eos probeset identifier number Gene cluster number Pkey: CAT number:

Genbank accession numbers Accession:

15	Pkey	CAT Number	Accession
	108469 108501	116761_1 1368412	AA079487 AA128547 AA128291 AA079587 AA079600 AA083256
20	108562 101300	36375_1 4669_1	AA100796 AF020589 AA074629 AA075946 AA100849 AA085347 AA126309 AA079311 AA079323 AA085274 BE535511 M62098 AA306787 AW881766 AA348998 AA33869 AA344013 AW956561 AW389343 AW403607 L40391 AW408435 AA121738 AI568978 H13317 R20373 AW948724 AW948744 AA335023 AA436722 AA448690 C21404 AW884390 AA345454 AA303292 AA174174 BE092290 T90614 AA035104 R76028 AA126924 AA741086 AW022056 AW118940 AA121666 AI832409 AA683475 AI140901 AI623576 AW519064 AW474125 AI953923 AI735349 AW150109 AI436154 AW118130 AW270782 AI804073 N27434 AA876543 AA937815 AI051166 AA505378 AI041975 AI335355
25			Al089540 AA662243 Al127912 Al925604 Al250880 Al366874 Al564386 Al815196 Al683526 Al435885 Al160934 H79030 Al801493 AA448691 Al673767 Al076042 Al804327 AA813438 AA680002 Al274492 T16177 Al287337 Al935050 AA907805 AA911493 Al589411 Al371358 AW576236 Al078866 AW516168 AA346372 Al560185 AA471009 R75857 AA296025 AA523155 AA853168 Al696593 Al658482 Al566601 AW072797 AA128047 AA035502 AW243274 AA992517 R43760
30	117156	145392_1	W73853 AA928112 W77887 AW889237 AA148524 AI749182 AI754442 AI338392 AI253102 AI079403 AI370541 AI697341 H97538 AW188021 AI927669 W72716 AI051402 AI188071 AI335900 N21488 AW770478 W92522 AI691028 AI913512 AI144448 W73819 AA604358 N28900 W95221 AI868132 H98465 AA148793
35	125565 132983	1704098_1 11922_1	R20840 R20839 M30269 NM_002508 X82245 AI078760 AW957003 D78945 M27445 AA650439 AL048816 AV660256 AV660347 AA333052 BE295257 T60999 AA383049 AW369677 Z26985 AW175704 AA343326 AW747957 AI818389 W17308 W17302 H15591 AA371284 AA370412 W94966 BE384365 T28498 R80714 R16959 H21723 AW835154 D56097 D56381 W21232 AA190565 AW379755 AW067895
40	133681	13893_1	Al352558 Z82248 X78138 NM_003405 AU077248 AA223125 S80794 D78577 Al124697 AW403970 BE614089 BE296713 BE621334 L20422 X80536 D54224 D54950 X57345 N29226 AA127798 AA340253 F08031 AA192540 H67636 AA321827 AW950283 AA084159 BE538808 AW401377 AA256774 C03366 W46595 W47608 AA305009 H69431 H69456 AL120082 H11706 AA303717 AA361357 H22042 H78020 AW999584 AA134368 AA322911 AA322961 H60980 N85248 N31547 H79624 T11718 W85826 AW894663 AW894624 BE167441 BE170015 AA304626 AW602163 AW998929 AA156681
45			AA151067 BE002724 AA608688 H82692 BE155392 AW383636 BE155394 AA487004 AW383504 AI342365 R82553 W16498 BE155344 AI143938 R69901 AA322873 AW340648 R25364 AA367935 AI559406 AA033522 AA374252 AW835019 AI922133 AI697089 N99662 AW189078 AI199076 AW151598 W59944 AA662875 W94022 AA299055 AI039008 AI829449 AA583503 AI635674 AW131665 AI473820 AW273118 AW900930 AA908944 AI688035 AW170272 AI082545 AW468176 AI608761 AI082748 AI911682 AI248943 AI831016 AA192465 AI218477 AA938406 AA385288 AI809817 AA905196 AI191245 AI470204 AI188296 AI421367 AI125315 AI087141 AA629032 AA740589 AI554181
50			AA150830 Al248541 Al077943 AA775958 AA864930 Al261476 Al123121 Al310394 AA862331 AA872478 BE537084 Al205606 AA720684 Al872093 AW150042 AL120538 AA219627 AA988608 C21397 Al359337 H25337 Al089749 AA605146 Al359620 AA150478 Al359738 AW383642 AW995424 Al766457 R56892 Al089839 W61343 N69107 W46459 AA565955 N20527 Al279782 W46596 AA776573 H23204 Al866231 Al083995 N21530 AA126874 D82630 W65437 Al086917 AW382095 Al086877 H69844 AW340217 W85827 L08439 AA262704 AA505380 W47413 W94135 AA223241
55			AW089153 AA084101 BE538000 AA096126 T28031 AA491574 R84813 AA774536 AW383522 AA155615 AW383529 AA491520 AW028427 AA171496 Al469689 AW664539 Al811102 Al811116 BE464590 BE350791 H78021 T15405 H21979 AA219489 H13301 AA505883 Al864305 Al423963 AW084401 F04963 R69858 H67097 Al917740 Al655561 H69864 AA033631 AW383484 Al886261 H25293 AA513281 AW271187 H11617 N79982 Al174338 Al904207 Al904208 BE614558 W94127 W65436 Al272249 AA700018 Al579932 Al085941 AW152629
60	121335 130018 121822	279548_1 18986_1 244391_1	AA404418 Al217248 AA353093 AW957317 AW872498 Al560785 Al289110 AW135512 X97261 T68873 Al743860 N49543 AW027759 BE349467 Al656284 BE463975 R35022 AA370031 AW955302 AL042109 N53092 Al611424 AL079362 Al969290 Al928016 BE394912 BE504220 BE467505 Al611611 Al611407 Al611452 W56437 Al284566 Al583349 AW183058 Al308085 Al074952 AA437315 AA628161 AW301728 Al150224 AA400137 AA437279 Al223355
65			AA639462 Al261373 Al432414 Al984994 Al539335 AA401550 AA358757 Al609976 AA442357 AA359393 AA437046 AA370301 AA429328 AW272055 Al580502 Al832944 Al038530 AA425107 Al014986 Al148349 AW237721 AW779756 AW137877 Al125293 AA400404 R28554
70	108309 107832 123523 123964 118475 104787	111495_1 genbank_AA02 genbank_AA60 genbank_C1391 genbank_N668- genbank_AA02	8588 AA608588 61 C13961 45 N66845 7317 AA027317
75	106596 113947 108277	304084_1 genbank_W847 genbank_AA06	

	108427	genbank_AA076382	AA076382
	108439	genbank_AA078986	AA078986
	131353	231290_1 AW411259 H235	i55 AW015049 AI684275 AW015886 AW068953 AW014085 AI027260 R52686 AA918278 AI129462
_		AA969360 N348	69 AI948416 AA534205 AA702483 AA705292
5	101447	entrez_M21305 M21305	
	108931	genbank_AA147186	AA147186
	108941	genbank_AA148650	AA148650
	103138	entrez_X65965 X65965	
	119174	genbank_R71234 R71234	
10	119416	genbank_T97186 T97186	
	105985	genbank_AA406610	AA406610
	100327	entrez_D55640 D55640	•

PCT/US02/04915 WO 02/079492

TABLE 3:

Unique Eos probeset identifier number Accession number used for previous patent filings Exemplar Accession number, Genbank accession number Unigene number Pkey: Accession: 5 ExAccn: UnigenelD:

UnigeneiD:	Offigene number
Unigene Title:	Unigene gene title

10					
10	Pkey	Accession	ExAccn	UniGene	UnigeneTitle
	100405	D86425	AW291587	Hs.82733	nidogen 2
		D86983	D86983	Hs.118893	Melanoma associated gene
15	100481	HG1098-HT1098	X70377	Hs.121489	cystatin D
		HG1103-HT1103			v-ral simian leukemia viral oncogene hom
		HG3342-HT3519			inhibitor of DNA binding 1, dominant neg
		J03764	J03836 BE245301	Hs.82085	serine (or cysteine) proteinase inhibito chemokine (C-X-C motif), receptor 4 (fus
20		L06797 L15388		пъ.034 14 8Hs.211569	G protein-coupled receptor kinase 5
20		L20971	L20971	Hs.188	phosphodiesterase 4B, cAMP-specific (dun
		L35545	D30857	Hs.82353	protein C receptor, endothelial (EPCR)
	101345	L76380	NM_00579	5Hs.152175	calcitonin receptor-like
25		M21305	M21305		gb:Human alpha satellite and satellite 3
25		M24736	AA296520		selectin E (endothelial adhesion molecul
		M31166 M31551	M31166 Y00630	Hs.2050 Hs.75716	pentaxin-related gene, rapidly induced b serine (or cysteine) proteinase inhibito
		M32334		Hs.347326	intercellular adhesion molecule 2
		M61916	NM_00229		laminin, beta 1
30		M68874	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic,
	101741	M74719		9Hs.326198	transcription factor 4
		M92934	BE243845		connective tissue growth factor
		M94856		Hs.153179 Hs.118400	fatty acid binding protein 5 (psoriasis- singed (Drosophila)-like (sea urchin fas
35		U03057 U03877		Hs.76224	EGF-containing fibulin-like extracellula
33		U18300		7Hs.77602	damage-specific DNA binding protein 2 (4
		U27109		1Hs.268107	multimerin
		U31384	AW161552		guanine nucleotide binding protein 11
40		U33053	U33053	Hs.2499	protein kinase C-like 1 MAD (mothers against decapentaplegic, Dr
40		U59423 U70322	U59423	Hs.79067 0Hs.168075	karyopherin (importin) beta 2
		U81607	NM_00510		A kinase (PRKA) anchor protein (gravin)
		U83463	AF000652		syndecan binding protein (syntenin)
		U89942	NM_00231	8Hs.83354	lysyl oxidase-like 2
45		X04729	J03836	Hs.82085	serine (or cysteine) proteinase inhibito
		X06256		5Hs.149609	integrin, alpha 5 (fibronectin receptor, matrix metalloproteinase 10 (stromelysin
		X07820 X54925	X07820 M13509	Hs.2258 Hs.83169	matrix metalloproteinase 10 (stronleysin
		X54936	BE018302		placental growth factor, vascular endoth
50		X60957		4Hs.78824	tyrosine kinase with immunoglobulin and
	103158	X67235		Hs.118651	hematopoietically expressed homeobox
		X67951		Hs.180909	peroxiredoxin 1
		X69910		5Hs.74368	transmembrane protein (63kD), endoplasmi cadherin 5, type 2, VE-cadherin (vascula
55		X79981 Z18951	U84722 A1878826	Hs.76206 Hs.74034	caveolin 1, caveolae protein, 22kD
33		AA187101		Hs.213194	hypothetical protein MGC10895
		N24990	Z44203	Hs.26418	ESTs
	104592	R81003	AW630488	Hs.25338	protease, serine, 23
C O		AA025351	Al039243	Hs.278585	ESTs
60		AA027168		Hs.10031	KIAA0955 protein hypothetical protein DKFZp434G171
		AA040465 AA045136	AL133035 T79340	Hs.8728 Hs.22575	B-cell CLL/lymphoma 6, member B (zinc fi
		AA054087		Hs.18858	phospholipase A2, group IVC (cytosolic,
		AA071089		Hs.345588	desmoplakin (DPI, DPII)
65	104974	AA085918	Y12059	Hs.278675	bromodomain-containing 4
		AA187490	AA313825	Hs.21941	AD036 protein
	105263	AA227926	AW388633	3 Hs.6682 5 Hs.22120	solute carrier family 7, (cationic amino ESTs
	105330	AA234743 AA236559		2 Hs.8768	hypothetical protein FLJ10849
70	1053/0	AA230339 AA292694	H46612	Hs.293815	Homo sapiens HSPC285 mRNA, partial cds
, 0		AA398243		Hs.194477	E3 ubiquitin ligase SMURF2
	105977	' AA406363	AK001972	Hs.30822	hypothetical protein FLJ11110
	106008	AA411465		Hs.8619	SRY (sex determining region Y)-box 18
75	106031	AA412284	X64116	Hs.171844 Hs.7567	Homo sapiens cDNA: FLJ22296 fis, clone H Homo sapiens cDNA: FLJ21962 fis, clone H
75	106124	AA423987	H93366	⊓S./ 30/	Homo sapiens coran. Fluz 1902 ils, dione fi

	400455				1 6 1 10
		AA425309	AA425414		nuclear factor I/B
		AA435896 AA448238	AA398859 AB020722		hypothetical protein FLJ23221 Rho guanine exchange factor (GEF) 15
		AA478778		Hs.16450	ESTs
5		AA621714	BE122762		ESTs
-		D51069		Hs.211579	melanoma cell adhesion molecule
		T34527	AA186629		UDP-N-acetyl-alpha-D-galactosamine:polyp
		U97519	NM_005397		podocalyxin-like
	108756	AA127221	AA127221	Hs.117037	ESTs
10	108846	AA132983	AL117452		DKFZP586G1517 protein
		AA135606	AA135606		gb:zl10a05.s1 Soares_pregnant_uterus_NbH
		AA156125		Hs.72116	hypothetical protein FLJ20992 similar to
		AA179845	AA219691		RAB6 interacting, kinesin-like (rabkines
15		AA232645	AW956580 F06838	Hs.14763	ESTs ESTs
13		F10399 H16772	AW151660		ESTS
		N39584	AA035211		ESTs
		N52006	AW613287		UDP-N-acetyl-alpha-D-galactosamine:polyp
		N53375	BE387014		Homer, neuronal immediate early gene, 3
20		N54067	A1287912	Hs.3628	mitogen-activated protein kinase kinase
	111133	N64436	AW580939	Hs.97199	complement component C1q receptor
	111760	R26892	BE551929		Homo sapiens cDNA FLJ11949 fis, clone HE
		T33637	N39342	Hs.103042	microtubule-associated protein 1B
0.5		T57112	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom
25		W80763	AW953484		hypothetical protein FLJ22041 similar to
		AA046808	AW139036 AI751438		40S ribosomal protein S27 isoform
		AA253217 AA255991	A1683069	Hs.41271 Hs.175319	Homo sapiens mRNA full length insert cDN ESTs
		AA258138	AA740907		ESTs
30		AA426573	AA486620		endomucin-2
20		AA443793	R47479	Hs.94761	KIAA1691 protein
		AA490588	A1799104	Hs.178705	Homo sapiens cDNA FLJ11333 fis, clone PL
	116339	AA496257	AK000290	Hs.44033	dipeptidyl peptidase 8
0.5		AA609717	AK001531		hypothetical protein FLJ10669
35		D59570	Al557212	Hs.17132	ESTs, Moderately similar to 154374 gene
		F13787	AL157424		synaptojanin 2
		H88157	AW070211	Hs.42612	Homo sapiens mRNA; cDNA DKFZp586N0121 (f ESTs, Weakly similar to ALU1_HUMAN ALU S
		H98988 N34287	H98988 AF055634	Hs.44553	unc5 (C.elegans homolog) c
40		N52090	N52090	Hs.47420	EST
-10		N66845	N66845	110.11 120	gb:za46c11.s1 Soares fetal liver spleen
		N68905	N68905		gb:za69b09.s1 Soares_fetal_lung_NbHL19W
		R32894	BE245360	Hs.279477	ESTs
	119155	R61715	R61715	Hs.310598	ESTs, Moderately similar to ALU1_HUMAN A
45		R71234	R71234		gb:yi54c08.s1 Soares placenta Nb2HP Homo
		R98105	C14322	Hs.250700	tryptase beta 1
		T97186	T97186 AA496205	Un 102700	gb:ye50h09.s1 Soares fetal liver spleen Homo sapiens mRNA; cDNA DKFZp586l0324 (f
		W80814 AA404418	AA490203 AA404418	HS.193700	gb:zw37e02.s1 Soares_total_fetus_Nb2HF8_
50		AA405747	AW088642	Hs 97984	hypothetical protein FLJ22252 similar to
50		AA488687	AA488687		ESTs, Weakly similar to I38022 hypotheti
	123473	AA599143	AA599143		gb:ae52d04.s1 Stratagene lung carcinoma
	123523	AA608588	AA608588		gb:ae54e06.s1 Stratagene lung carcinoma
	123533	AA608751	AA608751		gb:ae56h07.s1 Stratagene lung carcinoma
55		C13961	C13961		gb:C13961 Clontech human aorta polyA+mR
		D60302	AI147155	Hs.270016	ESTs
		H94892		2Hs.288757	v-ral simian leukemia viral oncogene hom Homo sapiens cDNA FLJ11918 fis, clone HE
		N93521	A1680737	Hs.289068	hypothetical protein MGC12916
60		N95477 R60044	Al571594 W07701	Hs.102943 Hs.304177	Homo sapiens clone FLB8503 PRO2286 mRNA,
00		R70506	AI887664	Hs.285814	sprouty (Drosophila) homolog 4
		T91518	T91518		gb:ye20f05.s1 Stratagene lung (937210) H
		T95333	AA570056	Hs.122730	ESTs, Moderately similar to KIAA1215 pro
		R45630	R60547	Hs.170098	KIAA0372 gene product
65		R20839	R20840		gb:yg05c08.r1 Soares infant brain 1NIB H
	125590	. R23858	R23858	Hs.143375	Homo sapiens, clone IMAGE:3840937, mRNA,
	126511	Al024874	T92143	Hs.57958	EGF-TM7-latrophilin-related protein
	126563	W26247	AA516391	Hs.181368	U5 snRNP-specific protein (220 kD), orth
70	126649	AA856990 AA136653		Hs.279531	ESTs gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su
70	120012	AA358869	AW450979 AA358869	Hs.227949	SEC13 (S. cerevisiae)-like 1
	127951	Al123976	AA382523		MSTP031 protein
	127759	Al369384	Al369384	Hs.292441	ESTs
	128062	AA379500		Hs.105547	neural proliferation, differentiation an
75	128992	R49693	H04150	Hs.107708	ESTs
	129046	AA195678	AB029290	Hs.108258	actin binding protein; macrophin (microf

	400400				
		M30257	NM_00107	8Hs.109225	vascular cell adhesion molecule 1
	129314	AA028131	BE622768	Hs.290356	mesoderm development candidate 1
	129371	M10321	X06828	Hs.110802	von Willebrand factor
	129468	J03040	AW410538	Hs.111779	secreted protein, acidic, cysteine-rich
5		M86933	M86933	Hs.1238	amelogenin (Y chromosome)
		AA012933	AA012848		tubulin-specific chaperone d
		AA286710	AF055581		lysosomal
					7
		AA243278		Hs.109059	mitochondrial ribosomal protein L12
10		D59711	Al557212		ESTs, Moderately similar to 154374 gene
10		T94452		Hs.201591	ESTs
	130828	AA053400	AW631469	Hs.203213	ESTs
	130972	AA370302	D81866	Hs.21739	Homo sapiens mRNA; cDNA DKFZp586I1518 (f
	131080	J05008	NM_00195	5Hs.2271	endothelin 1
		U85193	W27392	Hs.33287	nuclear factor I/B
15		AA256153	Al824144	Hs.23912	ESTs
		X83107	F06972	Hs.27372	BMX non-receptor tyrosine kinase
		AA046593	AA040311		ESTs
		AA410480	AA359615		ESTs
20		D45304	AA443966		ESTs
20		M90657	AW960564		transmembrane 4 superfamily member 1
	131881	AA010163	AW361018	Hs.3383	upstream regulatory element binding prot
	132050	AA136353	Al267615	Hs.38022	ESTs
	132083	Y07867	BE386490	Hs.279663	Pirin
	132164	U84573	Al752235	Hs.41270	procollagen-lysine, 2-oxoglutarate 5-dio
25		X60486	NM 003542		H4 histone family, member G
		AA132969		Hs.260116	metalloprotease 1 (pitrilysin family)
		AA114250	AB011084		KIAA0512 gene product; ALEX2
		F13782	NM_001290		LIM domain binding 2
20		AA283035	N92589	Hs.261038	ESTs, Weakly similar to 138022 hypotheti
30		AB002301	AB002301		KIAA0303 protein
	132718	AA056731	NM_004600	0Hs.554	Sjogren syndrome antigen A2 (60kD, ribon
	132736	U68019	AW081883	Hs.211578	Homo sapiens cDNA: FLJ23037 fis, clone L
	132760	H99198	AA125985	Hs.56145	thymosin, beta, identified in neuroblast
	132933	AA598702	BE263252	Hs.6101	hypothetical protein MGC3178
35		N77151	AF234532		myosin X
		AA505133		Hs.279905	clone HQ0310 PRO0310p1
		AB000584	Al186431	Hs.296638	prostate differentiation factor
					interleukin 1 receptor-like 1
		D12763	AA026533		
40		AA253193	AW021103		hypothetical protein FLJ20373
40		AA432248		Hs.183639	hypothetical protein FLJ10210
	133260	AA083572	AA403045	Hs.6906	Homo sapiens cDNA: FLJ23197 fis, clone R
	133363	AA479713	A1866286	Hs.71962	ESTs, Weakly similar to B36298 proline-r
	133491	L40395	BE619053	Hs.170001	eukaryotic translation initiation factor
	133517	X52947	NM_000169	5Hs.74471	gap junction protein, alpha 1, 43kD (con
45		W80846		Hs.74669	vesicle-associated membrane protein 5 (m
		M34539	BE273749	110,11000	FK506-binding protein 1A (12kD)
		D67029	NM_003003	2Lo 75222	SEC14 (S. cerevisiae)-like 1
		U09587			
			NM_002047		glycyl-tRNA synthetase
50		M85289	M85289	Hs.211573	heparan sulfate proteoglycan 2 (perlecan
50		D10522	Al878921	Hs.75607	myristoylated alanine-rich protein kinas
		W84712	AU076964	Hs.7753	calumenin
	133975	D29992	C18356	Hs.295944	tissue factor pathway inhibitor 2
	133985	L34657	L34657	Hs.78146	platelet/endothelial cell adhesion molec
	134039	S78569	NM 002290)Hs.78672	laminin, alpha 4
55	134088	D43636	Al379954	Hs.79025	KIAA0096 protein
		U97188	AA634543		IGF-II mRNA-binding protein 3
		AA487558	AW580939		complement component C1g receptor
		M28882		Hs.211579	melanoma cell adhesion molecule
			X68264		
C O		X70683	Al272141	Hs.83484	SRY (sex determining region Y)-box 4
60		X14787	A1750878	Hs.87409	thrombospondin 1
		AA236324	AW968058	Hs.92381	nudix (nucleoside diphosphate linked moi
	135051	C15324	Al272141	Hs.83484	SRY (sex determining region Y)-box 4
	135073	AA452000	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f
	135349	D83174	AA114212	Hs.9930	serine (or cysteine) proteinase inhibito
65		D00596	X02308	Hs.82962	thymidylate synthetase
		D11428	NM_000304		peripheral myelin protein 22
		D13640	AU076465		KIAA0015 gene product
		D14874	H73444	Hs.394	adrenomedullin
70		D26129	NM_002933		ribonuclease, RNase A family, 1 (pancrea
70		D28476	AL121516		thyroid hormone receptor interactor 12
		D86425	AW291587		nidogen 2
	100420	D86983	D86983	Hs.118893	Melanoma associated gene
	100455	D87953	AW888941	Hs.75789	N-myc downstream regulated
		HG1862-HT1897			calmodulin 2 (phosphorylase kinase, delt
75		HG2614-HT2710		Hs.114599	collagen, type VIII, alpha 1
		HG2639-HT2735		Hs.241567	RNA binding motif, single stranded inter
	.000.0				

	100658	HG2855-HT2995	U56725	Hs.180414	heat shock 70kD protein 2
		HG3044-HT3742		Hs.287820	fibronectin 1
		HG3342-HT3519		Hs.75424	inhibitor of DNA binding 1, dominant neg
_		HG3543-HT3739			insulin-like growth factor 2 (somatomedi
5		HG4069-HT4339			small inducible cytokine A2 (monocyte ch
		HG417-HT417 J03764	J03836	Hs.297939 Hs.82085	cathepsin B serine (or cysteine) proteinase inhibito
		L06797	BE245301		chemokine (C-X-C motif), receptor 4 (fus
		L08246	Al439011	Hs.86386	myeloid cell leukemia sequence 1 (BCL2-r
10		L12711	L12711	Hs.89643	transketolase (Wemicke-Korsakoff syndro
		L13977	AA340987		prolylcarboxypeptidase (angiotensinase C
		L15388 L19871	NM_001674	8Hs.211569	G protein-coupled receptor kinase 5 activating transcription factor 3
		L20859	BE247295		solute carrier family 20 (phosphate tran
15		L42176	L42176	Hs.8302	four and a half LIM domains 2
		L49169	NM_00673		FBJ murine osteosarcoma viral oncogene h
		L76380	_	5Hs.152175	calcitonin receptor-like
		M15990 M23254	M15990 BE410405	Hs.194148 Hs.76288	v-yes-1 Yamaguchi sarcoma viral oncogene calpain 2, (m/ll) large subunit
20		M24736	AA296520		selectin E (endothelial adhesion molecul
	101496	M26576	X12784	Hs.119129	collagen, type IV, alpha 1
		M27396	AA307680		asparagine synthelase
		M31166 M31994	M31166	Hs.2050	pentaxin-related gene, rapidly induced b
25		M32334	BE293116 AW958272	Hs.347326	aldehyde dehydrogenase 1 family, member intercellular adhesion molecule 2
20		M35878		Hs.77326	insulin-like growth factor binding prote
		M36429	AF064853	Hs.91299	guanine nucleotide binding protein (G pr
		M57730	NM_004428		ephrin-A1
30		M57731 M60858	AV650262 NM_00538		GRO2 ancogene nucleolin
50		M62994	AF043045		filamin B, beta (actin-binding protein-2
		M68874	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic,
		M69043	M69043	Hs.81328	nuclear factor of kappa light polypeptid
35		M74719		9Hs.326198	transcription factor 4
33		M75126 M84349	W01076	Hs.118625 Hs.278573	hexokinase 1 CD59 antigen p18-20 (antigen identified
		M92843	M92843	Hs.343586	zinc finger protein homologous to Zfp-36
	101838	M92934	BE243845	Hs.75511	connective tissue growth factor
40		M93056		Hs.183583	serine (or cysteine) proteinase inhibito
40		M94856 M95787	BE392588	Hs.153179 He 75777	fatty acid binding protein 5 (psoriasis- transgelin
	101931		NM_006823		protein kinase (cAMP-dependent, catalyti
		S81914	X96438	Hs.76095	immediate early response 3
15		U03057		Hs.118400	singed (Drosophila)-like (sea urchin fas
45		U03100 U03877		Hs.178452 Hs.76224	catenin (cadherin-associated protein), a EGF-containing fibulin-like extracellula
	102024		AI752666	Hs.76669	nicotinamide N-methyltransferase
	102121		NM_004998		myosin IE
~~	102283		AW161552		guanine nucleotide binding protein 11
50	102300		Al929721	Hs.5120	dynein, cytoplasmic, light polypeptide
	102378 102395		AU076887 AU077005		spermidine/spermine N1-acetyltransferase a disintegrin and metalloproteinase doma
		U48959	U48959	Hs.211582	myosin, light polypeptide kinase
		U51010	U51010		gb:Human nicotinamide N-methyltransferas
55		U51478	BE243877	Hs.76941	ATPase, Na+/K+ transporting, beta 3 poly
		U53445 U59289	U53445 R97457	Hs.15432 Hs.63984	downregulated in ovarian cancer 1 cadherin 13, H-cadherin (heart)
		U59423	U59423	Hs.79067	MAD (mothers against decapentaplegic, Dr
		U62015	AU076728		cysteine-rich, angiogenic inducer, 61
60		U63825	AI984144	Hs.66713	hepatitis delta antigen-interacting prot
		U67963	AL119566		lysosomal
	102687	U73379	NM_007019	Hs.183684	ubiquitin carrier protein E2-C eukaryotic translation initiation factor
	102093		AA122237		microsomal glutathione S-transferase 2
65		U81607	NM_005100		A kinase (PRKA) anchor protein (gravin)
	102804		NM_002318		lysyl oxidase-like 2
	102882			Hs.290070	gelsolin (amyloidosis, Finnish type)
	102907 102915		X07820	Hs.202833 Hs.2258	heme oxygenase (decycling) 1 matrix metalloproteinase 10 (stromelysin
70	102927		BE512730		keratin 18
	102960	X15729	AI904738	Hs.76053	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep
	103011	X52541	AJ243425	Hs.326035	early growth response 1
	103020 103029		X53416 AW800726	Hs.195464 Hs 789	filamin A, alpha (actin-binding protein- GRO1 oncogene (melanoma growth stimulati
75	103029		M13509	Hs.83169	matrix metalloproteinase 1 (interstitial
	103056		Y18024	Hs.78877	inositol 1,4,5-trisphosphate 3-kinase B

	400000 VE0700	AU1077004 11- 00000	DA (DDADA) a serial adoption
	103080 X59798	AU077231 Hs.82932	cyclin D1 (PRAD1: parathyroid adenomatos
	103095 X60957	NM_005424Hs.78824	tyrosine kinase with immunoglobulin and gb:H.sapiens SOD-2 gene for manganese su
	103138 X65965	X65965	inhibitor of DNA binding 3, dominant neg
5	103176 X69111 103195 X70940	AL021154 Hs.76884 AA351647 Hs.2642	eukaryotic translation elongation factor
5	103347 X87838	AU077309 Hs.171271	catenin (cadherin-associated protein), b
	103371 X91247	X91247 Hs.13046	thioredoxin reductase 1
	103432 X97748	X97748	gb:H.sapiens PTX3 gene promotor region.
	103471 Y00815	Y00815 Hs.75216	protein tyrosine phosphatase, receptor t
10	103967 AA303711	AL120051 Hs.144700	ephrin-B1
- 0	104447 L44538	AW204145 Hs.156044	ESTs
	104764 AA025351	Al039243 Hs.278585	ESTs
	104783 AA027050	AA533513 Hs.93659	protein disulfide isomerase related prot
	104798 AA029462	AW952619 Hs.17235	Homo sapiens clone TCCCIA00176 mRNA sequ
15	104865 AA045136	T79340 Hs.22575	B-cell CLL/lymphoma 6, member B (zinc fi
	104877 AA047437	Al138635 Hs.22968	Homo sapiens clone IMAGE:451939, mRNA se
	104894 AA054087	AF065214 Hs.18858	phospholipase A2, group IVC (cytosolic,
	104952 AA071089	AW076098 Hs.345588	desmoplakin (DPI, DPII)
	105113 AA156450	AB037816 Hs.8982	Homo sapiens, clone IMAGE:3506202, mRNA,
20	105178 AA187490	AA313825 Hs.21941	AD036 protein
	105196 AA195031	W84893 Hs.9305	angiotensin receptor-like 1
	105215 AA205724	AA205759 Hs.10119	hypothetical protein FLJ14957
	105263 AA227926	AW388633 Hs.6682	solute carrier family 7, (cationic amino
25	105271 AA227986	AA807881 Hs.25329	ESTs
25	105330 AA234743	AW338625 Hs.22120	ESTs
	105461 AA253216	BE539071 Hs.69388	hypothetical protein FLJ20505
	105492 AA256210	Al805717 Hs.289112	CGI-43 protein
	105493 AA256268	AL047586 Hs.10283	RNA binding motif protein 8B
30	105594 AA279397	AB024334 Hs.25001	tyrosine 3-monooxygenase/tryptophan 5-mo
30	105727 AA292379 105732 AA292717	AL135159 Hs.20340 AW504170 Hs.274344	KIAA1002 protein hypothetical protein MGC12942
	105767 AA346551	AW370946 Hs.23457	ESTs
	105882 AA400292	W46802 Hs.81988	disabled (Drosophila) homolog 2 (mitogen
	105936 AA404338	Al678765 Hs.21812	ESTs
35	106031 AA412284	X64116 Hs.171844	Homo sapiens cDNA: FLJ22296 fis, clone H
	106124 AA423987	H93366 Hs.7567	Homo sapiens cDNA: FLJ21962 fis, clone H
	106222 AA428594	AA356392 Hs.21321	Homo sapiens clone FLB9213 PRO2474 mRNA,
	106241 AA430108	BE019681 Hs.6019	Homo sapiens cDNA: FLJ21288 fis, clone C
	106263 AA431462	W21493 Hs.28329	hypothetical protein FLJ14005
40	106264 AA431470	AL046859 Hs.3407	protein kinase (cAMP-dependent, catalyti
	106366 AA443756	AA186715 Hs.336429	RIKEN cDNA 9130422N19 gene
	106454 AA449479	NM_014038Hs.5216	HSPC028 protein
	106634 AA459916	W25491 Hs.288909	hypothetical protein FLJ22471
45	106724 AA465226	N48670 Hs.28631	Homo sapiens cDNA: FLJ22141 fis, clone H
45	106793 AA478778	H94997 Hs.16450	ESTs
	106799 AA479037	BE313412 Hs.7961	Homo sapiens clone 25012 mRNA sequence
	106842 AA482597	AF124251 Hs.26054	novel SH2-containing protein 3 molecule possessing ankyrin repeats indu
	106868 AA487561 106890 AA489245	BE185536 Hs.301183 AA489245 Hs.88500	mitogen-activated protein kinase 8 inter
50	106961 AA504110	AW243614 Hs.18063	Homo sapiens cDNA FLJ10768 fis, clone NT
30	106974 AA520989	AI817130 Hs.9195	Homo sapiens cDNA FLJ13698 fis, clone PL
	107030 AA599434	AL117424 Hs.25035	chloride intracellular channel 4
	107061 AA608649	BE147611 Hs.6354	stromal cell derived factor receptor 1
	107086 AA609519	NM 012331Hs.26458	methionine sulfoxide reductase A
55	107216 D51069	D51069 Hs.211579	melanoma cell adhesion molecule
	107385 U97519	NM_005397Hs.16426	podocalyxin-like
	107444 W28391	W28391 Hs.343258	proliferation-associated 2G4, 38kD
	107985 AA035638	T40064 Hs.71968	Homo sapiens mRNA; cDNA DKFZp564F053 (fr
	108507 AA083514	Al554545 Hs.68301	ESTs
60	108695 AA121315	AB029000 Hs.70823	KIAA1077 protein
	108931 AA147186	AA147186	gb:zo38d01.s1 Stratagene endothelial cel
	109001 AA156125	AI056548 Hs.72116	hypothetical protein FLJ20992 similar to
	109195 AA188932	AF047033 Hs.132904	solute carrier family 4, sodium bicarbon
65	109390 AA219653	AW007485 Hs.87125	EH-domain containing 3 ESTs
05	109456 AA232645	AW956580 Hs.42699 AA055415 Hs.13233	ESTs, Moderately similar to A47582 B-cel
	109737 F10078 110411 H48032	AW001579 Hs.9645	Homo sapiens mRNA for KIAA1741 protein,
	110660 H82117	AA782114 Hs.28043	ESTs
	110906 N39584	AA035211 Hs.17404	ESTs
70	111018 N54067	Al287912 Hs.3628	mitogen-activated protein kinase kinase
, 0	111091 N59858	AA300067 Hs.33032	hypothetical protein DKFZp434N185
	111356 N90933	BE301871 Hs.4867	mannosyl (alpha-1,3-)-glycoprotein beta-
	111378 N93764	AW160993 Hs.326292	hypothetical gene DKFZp434A1114
	111741 R26124	AB020653 Hs.24024	KIAA0846 protein
75	111769 R27957	AW629414 Hs.24230	ESTs
	112318 R55470	AW083384 Hs.11067	ESTs, Highly similar to T46395 hypotheti

	440004		
	112951 T16550	AA307634 Hs.6650	vacuolar protein sorting 45B (yeast homo
	113057 T26674	AW194301 Hs.339283	Human DNA sequence from clone RP1-187J11
	113195 T57112	H83265 Hs.8881	ESTs, Weakly similar to S41044 chromosom
5	113490 T88700	BE178110 Hs.173374	Homo sapiens cDNA FLJ10500 fis, clone NT
3	113542 T90527	H43374 Hs.7890	Homo sapiens mRNA for KIAA1671 protein,
	113803 W42789	AW880709 Hs.283683	chromosome 8 open reading frame 4
	113847 W60002	NM_005032Hs.4114	plastin 3 (T isoform)
	113910 W78175	AA113262 Hs.17901	Homo sapiens, clone IMAGE:3937015, mRNA,
10	113947 W84768	W84768	gb:zh53d03.s1 Soares_fetal_liver_spleen_
10	114047 W94427	AL035858 Hs.3807 Al751438 Hs.41271	FXYD domain-containing ion transport reg
	115061 AA253217 115819 AA426573	AA486620 Hs.41135	Homo sapiens mRNA full length insert cDN endomucin-2
	115870 AA432374	NM_005985Hs.48029	snail 1 (drosophila homolog), zinc finge
	115964 AA446622	AA987568 Hs.74313	KIAA1265 protein
15	116228 AA478771	Al767947 Hs.50841	ESTs
10	116264 AA482594	D51174 Hs.272239	Ivsosomal
	116314 AA490588	Al799104 Hs.178705	Homo sapiens cDNA FLJ11333 fis, clone PL
	116589 D59570	Al557212 Hs.17132	ESTs, Moderately similar to 154374 gene
	117023 H88157	AW070211 Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f
20	117112 H94648	AW969999 Hs.293658	ESTs
20	117156 H97538	W73853	ESTs
	117176 H98670	H45100 Hs.49753	uveal autoantigen with coiled coil domai
	117280 N22107	M18217 Hs.172129	Homo sapiens cDNA: FLJ21409 fis, clone C
	119559 W38197	W38197	Empirically selected from AFFX single pr
25	119866 W80814	AA496205 Hs.193700	Homo sapiens mRNA; cDNA DKFZp58610324 (f
	120655 AA287347	AA305599 Hs.238205	hypothetical protein PRO2013
	121314 AA402799	W07343 Hs.182538	phospholipid scramblase 4
	121335 AA404418	AA404418	gb:zw37e02.s1 Soares_total_fetus_Nb2HF8_
	121822 AA425107	Al743860	metallothionein 1E (functional)
30	121835 AA425435	AB033030 Hs.300670	KIAA1204 protein
	122331 AA442872	AL133437 Hs.110771	Homo sapiens cDNA: FLJ21904 fis, clone H
	122577 AA452860	AA829725 Hs.334437	hypothetical protein MGC4248
	123160 AA488687	AA488687 Hs.284235	ESTs, Weakly similar to 138022 hypotheti
	123486 AA599674	BE019072 Hs.334802	Homo sapiens cDNA FLJ14680 fis, clone NT
3 <i>5</i>	124059 F13673	BE387335 Hs.283713	ESTs, Weakly similar to S64054 hypotheti
	124339 H99093	H99093 Hs.343411	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep
	124358 N22495	AW070211 Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f
•	124364 N23031	AF265555 Hs.250646	baculoviral IAP repeat-containing 6
40	124726 R15740	NM_003654Hs.104576	carbohydrate (keratan sulfate Gal-6) sul
40	124763 R39610	BE410405 Hs.76288	calpain 2, (m/ll) large subunit
	125167 W45560	AL137540 Hs.102541	netrin 4
	125304 Z39833	AL359573 Hs.124940	GTP-binding protein
	125307 Z40583	AW580945 Hs.330466	ESTs
45	125329 AA825437	AA825437 Hs.58875 T40064 Hs.71968	ESTs Homo sapiens mRNA; cDNA DKFZp564F053 (fr
43	125598 R66613 125609 AA868063	T40064 Hs.71968 AA868063 Hs.104576	carbohydrate (keratan sulfate Gal-6) sul
	418245 AA128075	AA088767 Hs.83883	transmembrane, prostate androgen induced
	127435 N66570	X69086 Hs.286161	Homo sapiens cDNA FLJ13613 fis, clone PL
	127566 AI051390	Al051390 Hs.116731	ESTs
50	127619 AA627122	AA627122 Hs.163787	ESTs
50	128453 X02761	X02761 Hs.287820	fibronectin 1
	128495 AF010193	NM_005904Hs.100602	MAD (mothers against decapentaplegic, Dr
	128515 AA149044	BE395085 Hs.10086	type I transmembrane protein Fn14
	128580 U82108	U82108 Hs.101813	solute carrier family 9 (sodium/hydrogen
55	128623 D78676	BE076608 Hs.105509	CTL2 gene
	128642 L35240	Z28913 Hs.102948	enigma (LIM domain protein)
	128669 AA598737	W28493 Hs.180414	heat shock 70kD protein 8
	128903 R69417	AW150717 Hs.345728	STAT induced STAT inhibitor 3
	128914 AA232837	AW867491 Hs.107125	plasmalemma vesicle associated protein
60	129087 N72695	Al348027 Hs.108557	hypothetical protein PP1057
	129188 M30257	NM_001078Hs.109225	vascular cell adhesion molecule 1
	129226 M96843	BE222494 Hs.180919	inhibitor of DNA binding 2, dominant neg
	129265 X68277	AA530892 Hs.171695	dual specificity phosphatase 1
	129345 AA292440	R22497 Hs.110571	growth arrest and DNA-damage-inducible,
65	129468 J03040	AW410538 Hs.111779	secreted protein, acidic, cysteine-rich
	129488 AA228107	AW966728 Hs.54642	methionine adenosyltransferase II, beta
	129498 AA449789	AA449789 Hs.75511	connective tissue growth factor
	129557 W01367	AL045404 Hs.46366	KIAA0948 protein
70	129619 AA610116	AA209534 Hs.284243	tetraspan NET-6 protein
70	129627 AA258308	T40064 Hs.71968	Homo sapiens mRNA; cDNA DKFZp564F053 (fr
	129762 AA460273	AA453694 Hs.12372 AF055581 Hs.13131	tripartite motif protein TRIM2
	129884 AA286710 130018 T68873	AA353093	lysosomal metallothionein 1L
	130147 D63476	D63476 Hs.172813	PAK-interacting exchange factor beta
75	130178 M62403	U20982 Hs.1516	insulin-like growth factor-binding prote
15	130282 X55740	BE245380 Hs.153952	5' nucleotidase (CD73)
	, COLOR MODELO		

	130431 L10284	AW505214 Hs.155560	calnexin
	130495 AA243278	AW250380 Hs.109059	mitochondrial ribosomal protein L12
	130553 AA430032 130638 H16402	AF062649 Hs.252587 AW021276 Hs.17121	pituitary tumor-transforming 1 ESTs
5	130639 D59711	AV021276 Hs.17121 Al557212 Hs.17132	ESTs, Moderately similar to I54374 gene
	130657 T94452	AW337575 Hs.201591	ESTs
	130686 AA431571	BE548267 Hs.337986	Homo sapiens cDNA FLJ10934 fis, clone OV
	130776 R79356	AF167706 Hs.19280	cysteine-rich motor neuron 1
4.0	130818 AA280375	AW190920 Hs.19928	hypothetical protein SP329
10	130840 Z49269	BE048821 Hs.20144	small inducible cytokine subfamily A (Cy
	130899 Z41740	Al077288 Hs.296323	serum/glucocorticoid regulated kinase
	131002 AA121543	AL050295 Hs.22039	KIAA0758 protein
	131080 J05008	NM_001955Hs.2271	endothelin 1
15	131084 AA101878	NM_017413Hs.303084	apelin; peptide ligand for APJ receptor
13	131091 T35341 131107 N87590	AJ271216 Hs.22880 BE620886 Hs.75354	dipeptidylpeptidase III GCN1 (general control of amino-acid synt
	131182 AA256153	Al824144 Hs.23912	ESTs
	131207 W74533	AF104266 Hs.24212	latrophilin
	131319 U25997	NM_003155Hs.25590	stanniocalcin 1
20	131328 V01512	AW939251 Hs.25647	v-fos FBJ murine osteosarcoma viral onco
	131328 V01512	AW939251 Hs.25647	v-fos FBJ murine osteosarcoma viral onco
	131328 V01512	AW939251 Hs.25647	v-fos FBJ murine osteosarcoma viral onco
	131328 V01512	AW939251 Hs.25647	v-fos FBJ murine osteosarcoma viral onco
25	131509 X56681	X56681 Hs.2780	jun D proto-oncogene
23	131555 AA161292	T47364 Hs.278613	interferon, alpha-inducible protein 27
	131564 AA491465 131573 AA046593	T93500 Hs.28792 AA040311 Hs.28959	Homo sapiens cDNA FLJ11041 fis, clone PL ESTs
	131692 D50914	BE559681 Hs.30736	KIAA0124 protein
	131756 D45304	AA443966 Hs.31595	ESTs
30	131859 M90657	AW960564	transmembrane 4 superfamily member 1
	131909 W69127	NM_016558Hs.274411	SCAN domain-containing 1
	131915 AA316186	Al161383 Hs.34549	ESTs, Highly similar to S94541 1 clone 4
	132046 AA384503	Al359214 Hs.179260	chromosome 14 open reading frame 4
25	132050 AA136353	Al267615 Hs.38022	ESTs
35	132151 AA044755	BE379499 Hs.173705	Homo sapiens cDNA: FLJ22050 fis, clone H
	132164 U84573 132187 AA058911	Al752235 Hs.41270 AA235709 Hs.4193	procollagen-lysine, 2-oxoglutarate 5-dio DKFZP586O1624 protein
	132303 AA620962	BE177330 Hs.325093	Homo sapiens cDNA: FLJ21210 fis, clone C
	132314 AA285290	AF112222 Hs.323806	pinin, desmosome associated protein
40	132358 X60486	NM_003542Hs.46423	H4 histone family, member G
	132398 R31641	AA876616 Hs.16979	ESTs, Weakly similar to A43932 mucin 2 p
	132421 AA489190	AW163483 Hs.48320	double ring-finger protein, Dorfin
	132490 F13782	NM_001290Hs.4980	LIM domain binding 2
15	132520 AA257993	AA257992 Hs.50651	Janus kinase 1 (a protein tyrosine kinas
45	132546 M24283	M24283 Hs.168383	intercellular adhesion molecule 1 (CD54)
	132610 AA443114 132716 T35289	AA160511 Hs.5326 BE379595 Hs.283738	amino acid system N transporter 2; porcu caseln kinase 1, alpha 1
	132840 N23817	BE218319 Hs.5807	GTPase Rab14
	132883 AA047151	AA373314 Hs.5897	Homo sapiens mRNA; cDNA DKFZp586P1622 (f
50	132968 N77151	AF234532 Hs.61638	myosin X
	132989 AA480074	AA480074 Hs.331328	hypothetical protein FLJ13213
	132999 Y00787	Y00787 Hs.624	interleukin 8
	133071 T99789	BE384932 Hs.64313	ESTs, Weakly similar to AF257182 1 G-pro
<i>E</i>	133076 W84341	AW946276 Hs.6441	Homo sapiens mRNA; cDNA DKFZp586J021 (fr
55	133099 L09209	W16518 Hs.279518	amyloid beta (A4) precursor-like protein
	133147 D12763 133149 T16484	AA026533 Hs.66 AA370045 Hs.6607	interleukin 1 receptor-like 1 AXIN1 up-regulated
	133161 AA253193	AW021103 Hs.6631	hypothetical protein FLJ20373
	133200 AA432248	AB037715 Hs.183639	hypothetical protein FLJ10210
60	133220 X82200	NM_006074Hs.318501	Homo sapiens mRNA full length insert cDN
	133260 AA083572	AA403045 Hs.6906	Homo sapiens cDNA: FLJ23197 fis, clone R
	133295 L00352	Al147861 Hs.213289	low density lipoprotein receptor (famili
	133349 N75791	AW631255 Hs.8110	L-3-hydroxyacyl-Coenzyme A dehydrogenase
65	133391 X57579	AW103364 Hs.727	inhibin, beta A (activin A, activin AB a
65	133398 X02612	NM_000499Hs.72912	cytochrome P450, subfamily I (aromatic c
	133436 H44631	BE294068 Hs.737 BE547647 Hs.177781	immediate early protein hypothetical protein MGC5618
	133454 AA090257 133478 X83703	X83703 Hs.31432	cardiac ankyrin repeat protein
	133491 L40395	BE619053 Hs.170001	eukaryotic translation initiation factor
70	133510 AA227913	AW880841 Hs.96908	p53-induced protein
	133517 X52947	NM_000165Hs.74471	gap junction protein, alpha 1, 43kD (con
	133526 M11313	AU077051 Hs.74561	alpha-2-macroglobulin
	133538 L14837	NM_003257Hs.74614	tight junction protein 1 (zona occludens
75	133562 M60721	M60721 Hs.74870	H2.0 (Drosophila)-like homeo box 1
75	133584 D90209	D90209 Hs.181243	activating transcription factor 4 (tax-r
	133590 T67986	T70956 Hs.75106	clusterin (complement lysis inhibitor, S

	400047 44440040	DE044004 11- 75040	ADD with any destinant for stary titles. O testamonal
	133617 AA148318	BE244334 Hs.75249	ADP-ribosylation factor-like 6 interacti
	133651 U97105	Al301740 Hs.173381	dihydropyrimidinase-like 2
	133671 T25747	AW503116 Hs.301819	zinc finger protein 146
5	133678 K02574	AW247252	nucleoside phosphorylase
5	133681 D78577	A1352558	tyrosine 3-monooxygenase/tryptophan 5-mo matrix Gla protein
	133722 X53331	AW969976 Hs.279009	
	133730 S73591 133750 X95735	BE242779 Hs.179526 BE410769 Hs.75873	upregulated by 1,25-dihydroxyvitamin D-3
	133802 L16862	AW239400 Hs.76297	zyxin G protein-coupled receptor kinase 6
10	133825 U44975	BE616902 Hs.285313	core promoter element binding protein
10	133838 M97796	BE222494 Hs.180919	inhibitor of DNA binding 2, dominant neg
	133859 U86782	U86782 Hs.178761	26S proteasome-associated pad1 homolog
	133889 AA099391	U48959 Hs.211582	myosin, light polypeptide kinase
	133960 M19267	M19267 Hs.77899	tropomyosin 1 (alpha)
15	133975 D29992	C18356 Hs.295944	tissue factor pathway inhibitor 2
15	133977 L19314	Al125639 Hs.250666	hairy (Drosophila)-homolog
	134039 S78569	NM_002290Hs.78672	laminin, alpha 4
	134075 U28811	NM_012201Hs.78979	Golgi apparatus protein 1
	134081 L77886	AL034349 Hs.79005	protein tyrosine phosphatase, receptor t
20	134164 C14407	AW245540 Hs.79516	brain abundant, membrane attached signal
	134203 M60278	AA161219 Hs.799	diphtheria toxin receptor (heparin-bindi
	134238 R81509	AA102179 Hs.160726	Homo sapiens cDNA FLJ11680 fis, clone HE
	134299 AA487558	AW580939 Hs.97199	complement component C1g receptor
	134332 D86962	D86962 Hs.81875	growth factor receptor-bound protein 10
25	134339 AA478971	R70429 Hs.81988	disabled (Drosophila) homolog 2 (mitogen
	134343 D50683	D50683 Hs.82028	transforming growth factor, beta recepto
	134381 U56637	Al557280 Hs.184270	capping protein (actin filament) muscle
	134403 M61199	AA334551	sperm specific antigen 2
	134416 M28882	X68264 Hs.211579	melanoma cell adhesion molecule
30	134493 X15183	M30627 Hs.289088	heat shock 90kD protein 1, alpha
	134558 S53911	NM_001773Hs.85289	CD34 antigen
	134817 U20734	AU076592 Hs.198951	jun B proto-oncogene
	134983 D28235	D28235 Hs.196384	prostaglandin-endoperoxide synthase 2 (p
0.5	134989 AA236324	AW968058 Hs.92381	nudix (nucleoside diphosphate linked moi
35	135052 AA148923	AL136653 Hs.93675	decidual protein induced by progesterone
	135062 AA174183	AK000967 Hs.93872	KIAA1682 protein
	135069 AA456311	AA876372 Hs.93961	Homo sapiens mRNA; cDNA DKFZp667D095 (fr
	135071 L08069	W27190 Hs.94	DnaJ (Hsp40) homolog, subfamily A, membe
40	135073 AA452000	W55956 Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f
40	135170 AA282140	T53169 Hs.9587	Homo sapiens cDNA: FLJ22290 fis, clone H
	135196 J02854	C03577 Hs.9615	myosin regulatory light chain 2, smooth
	135348 AA442054	U80983 Hs.268177	phospholipase C, gamma 1 (formerly subty
	134404 AB000450	AB000450 Hs.82771	vaccinia related kinase 2 Rho guanine exchange factor (GEF) 12
45	439561 AB002380 100082 AB003103	AF180681 Hs.6582 AA130080 Hs.4295	proteasome (prosome, macropain) 26S subu
40	132817 AB004884	N27852 Hs.57553	tousled-like kinase 2
	130150 AF000573	BE094848 Hs.15113	homogentisate 1,2-dioxygenase (homogenti
	100104 AF008937	AF008937	syntaxin 16
	447973 AF009301	AB011169 Hs.20141	similar to S. cerevisiae SSM4
50	332613 AF009368	AF029674 Hs.173422	KIAA1605 protein
50	100113 D00591	NM_001269Hs.84746	chromosome condensation 1
	133980 D00760	AA294921 Hs.348024	v-ral simian leukemia viral oncogene hom
	100129 D11139	AA469369 Hs.5831	tissue inhibitor of metalloproteinase 1
	100154 D14657	H60720 Hs.81892	KIAA0101 gene product
55	100169 D14878	AL037228 Hs.82043	D123 gene product
	129718 D17716	NM 002410Hs.121502	mannosyl (alpha-1,6-)-glycoprotein beta-
	100190 D21090	M91401 Hs.178658	RAD23 (S. cerevisiae) homolog B
	134742 D26135	NM_001346Hs.89462	diacylglycerol kinase, gamma (90kD)
	100211 D26528	D26528 Hs.123058	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep
60	100238 D30742	L24959 Hs.348	calcium/calmodulin-dependent protein kin
	130283 D31762	NM_012288Hs.153954	TRAM-like protein
	134237 D31765	D31765 Hs.170114	KIAA0061 protein
	100248 D31888	NM_015156Hs.78398	KIAA0071 protein
<i>-</i> -	100256 D38128	D25418 Hs.393	prostaglandin I2 (prostacyclin) receptor
65	100262 D38500	D38500 Hs.278468	postmeiotic segregation increased 2-like
	134329 D38551	N92036 Hs.81848	RAD21 (S. pombe) homolog
	100281 D42087	AF091035 Hs.184627	KIAA0118 protein
	100294 D49396	AA331881 Hs.75454	peroxiredoxin 3
70	100327 D55640	D55640	gb:Human monocyte PABL (pseudoautosomal
70	100335 D63391	AW247529 Hs.6793	platelet-activating factor acetylhydrola
	134495 D63477	D63477 Hs.84087	KIAA0143 protein
	100338 D63483	D86864 Hs.57735	acetyl LDL receptor; SREC TIA1 cytotoxic granule-associated RNA-bi
	135152 D64015 134269 D79990	M96954 Hs.182741 NM_014737Hs.80905	Ras association (RalGDS/AF-6) domain fam
75	100372 D79997	NM_014791Hs.184339	KIAA0175 gene product
13	134304 D80010	BE613486 Hs.81412	lipin 1
	INTONT DOOD TO	25010100 110.0171E	npa. (

	400004	D04070	D04004	11- 00000	0000
		D84276	D84284	Hs.66052	CD38 antigen (p45)
		D86425	AW291587		nidogen 2
		D86978	D86978	Hs.84790	KIAA0225 protein
5		D87012	D87012	Hs.194685	topoisomerase (DNA) III beta
5		D87075	AF164142		solute carrier family 23 (nucleobase tra
		D87432	D87432	Hs.10315	solute carrier family 7 (cationic amino
		D87448	AA013051 NM_000437		topoisomerase (DNA) II binding protein
		D87845 HG1098-HT1098			platelet-activating factor acetylhydrola
10		HG2167-HT2237		Hs.121489	cystatin D lysosomal
10		HG2415-HT2511			Homo sapiens, Similar to hypothetical pr
		HG2825-HT2949			ret finger protein
		HG2887-HT3031		Hs.816	SRY (sex determining region Y)-box 2
		HG4660-HT5073			microtubule-associated protein 1B
15		HG4704-HT5146		Hs.172816	neuregulin 1
1.5		HG884-HT884		Hs.180686	ubiquitin protein ligase E3A (human papi
		HG919-HT919	AF128542		polymerase (DNA directed), epsilon
		J00212	J00212		Empirically selected from AFFX single pr
		J04029	J04029	Hs.99936	keratin 10 (epidermolytic hyperkeratosis
20	130149		AW067805		methylenetetrahydrofolate dehydrogenase
	131877		J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)
	101016		J04543	Hs.78637	annexin A7
	134786	L06139	T29618	Hs.89640	TEK tyrosine kinase, endothelial (venous
	134100	L07540	AA460085	Hs.171075	replication factor C (activator 1) 5 (36
25	134078	L08895	L08895	Hs.78995	MADS box transcription enhancer factor 2
	101132	L11239	L11239	Hs.36993	gastrulation brain homeo box 1
	134849	L11353	BE409525	Hs.902	neurofibromin 2 (bilateral acoustic neur
	332736	L13773	Z83689	Hs.114765	myeloid/lymphoid or mixed-lineage leukem
•		L13800	Al984625	Hs.9884	spindle pole body protein
30		L14922	L14922	Hs.166563	replication factor C (activator 1) 1 (14
		L15189	BE297635		heat shock 70kD protein 9B (mortalin-2)
		L15388	NM_005308		G protein-coupled receptor kinase 5
		L16895	H87879	Hs.102267	lysyl oxidase
25		L27476	AF083892		tight junction protein 2 (zona occludens
35		L27624	C18356	Hs.295944	tissue factor pathway inhibitor 2
		L32976	NM_002419		mitogen-activated protein kinase kinase
		L33404 L35263	W76332	Hs.151254 Hs.79107	kallikrein 7 (chymotryptic, stratum corn mitogen-activated protein kinase 14
	409916		BE313625		solute carrier family 11 (proton-coupled
40	101294		AF168418		thyroid hormone receptor interactor 4
70	101300		BE535511	113.110704	transmembrane trafficking protein
		L40531 L41607	L41607	Hs.934	glucosaminyl (N-acetyl) transferase 2, I
		L77566	AW250122		DiGeorge syndrome critical region gene D
		M13928	AW675039		aminolevulinate, delta-, dehydratase
45		M13928	AW675039		aminolevulinate, delta-, dehydratase
		M14016	AW005903		uroporphyrinogen decarboxylase
		M14219	AA557660		decorin
	101396	M15796	BE267931	Hs.78996	proliferating cell nuclear antigen
	101447	M21305	M21305		gb:Human alpha satellite and satellite 3
50	101458	M22092	M22092		gb:Human neural cell adhesion molecule (
	101470	M22898	NM_000546	5Hs.1846	tumor protein p53 (Li-Fraumeni syndrome)
	134604	M22995	NM_002884	4Hs.865	RAP1A, member of RAS oncogene family
	101478	M23379	NM_002890		RAS p21 protein activator (GTPase activa
ــر مــم		M24400	AW583062		chymotrypsinogen B1
55		M25753	BE280074		cyclin B1
		M27691	R84694	Hs.79194	cAMP responsive element binding protein
		M28213	AA535244		RAB2, member RAS oncogene family
		M29550	M29551	Hs.151531	protein phosphatase 3 (formerly 2B), cat
60		M29971	M29971	Hs.1384	O-6-methylguanine-DNA methyltransferase
00		M30269	M30269	Ua 77420	nidogen (enactin) protein kinase, cAMP-dependent, regulato
		M31158	M31158	Hs.77439 Hs.2050	pentaxin-related gene, rapidly induced b
		M31166	M31166 BE246154		endothelial differentiation, sphingolipi
		M31210 M55420	S55271	Hs.247930	Epsilon , IgE
65		M59979	AW382987		prostaglandin-endoperoxide synthase 1 (p
05		M62810	AA393273		transcription factor 6-like 1 (mitochond
		M64710	D90337	Hs.247916	natriuretic peptide precursor C
		M68874	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic,
		M74524	D28459	Hs.80612	ubiquitin-conjugating enzyme E2A (RAD6 h
70		M80254	M80254	Hs.173125	peptidylprolyl isomerase F (cyclophilin
		M81780	X59960	Hs.77813	sphingomyelin phosphodiesterase 1, acid
		M81780	X59960	Hs.77813	sphingomyelin phosphodiesterase 1, acid
		M81780	X59960	Hs.77813	sphingomyelin phosphodiesterase 1, acid
		M81780	X59960	Hs.77813	sphingomyelin phosphodiesterase 1, acid
75	415022	M81780	X59960	Hs.77813	sphingomyelin phosphodiesterase 1, acid
		M83822	M83822	Hs.62354	cell division cycle 4-like

	404040 1100004	DE 400004 11, 70004	DNA
	101812 M86934	BE439894 Hs.78991	DNA segment, numerous copies, expressed
	101813 M87338	NM_002914Hs.139226	replication factor C (activator 1) 2 (40
	133396 M96326	M96326 Hs.72885	azurocidin 1 (cationic antimicrobial pro
	428161 M96954	M96954 Hs.182741	TiA1 cytotoxic granule-associated RNA-bi
5	129026 M98833	AL120297 Hs.108043	Friend leukemia virus integration 1
	101901 S66793	H38026 Hs.308	arrestin 3, retinal (X-arrestin)
	134831 S72370	AA853479 Hs.89890	pyruvate carboxylase
	134039 S78569	NM_002290Hs.78672	laminin, alpha 4
	442355 S79873	AA456539 Hs.8262	lysosomal-associated membrane protein 2
10	101975 S83325	AA079717 Hs.283664	aspartate beta-hydroxylase
	101977 S83364	AF112213 Hs.184062	putative Rab5-interacting protein
	101978 S83365	BE561610 Hs.5809	putative transmembrane protein; homolog
	101998 U01212	U01212 Hs.248153	olfactory marker protein
	102003 U01922	U01922 Hs.125565	translocase of inner mitochondrial membr
15	102007 U02556	U02556 Hs.75307	t-complex-associated-testis-expressed 1-
	102009 U02680	BE245149 Hs.82643	protein tyrosine kinase 9
	416658 U03272	U03272 Hs.79432	fibrillin 2 (congenital contractural ara
	132951 U04209	AW821182 Hs.61418	microfibrillar-associated protein 1
	135389 U05237	U05237 Hs.99872	fetal Alzheimer antigen
20	102048 U07225	U07225 Hs.339	purinergic receptor P2Y, G-protein coupl
2.0	130145 U07620	U34820 Hs.151051	mitogen-activated protein kinase 10
	303153 U09759	U09759 Hs.246857	mitogen-activated protein kinase 9
	420269 U09820	U72937 Hs.96264	alpha thalassemia/mental retardation syn
25	102095 U11313		sterol carrier protein 2
23	102123 U14518	NM_001809Hs.1594	centromere protein A (17kD)
	102126 U14575	AW950870 Hs.78961	protein phosphatase 1, regulatory (inhib
	102133 U15173	AU076845 Hs.155596	BCL2/adenovirus E1B 19kD-interacting pro
	102139 U15932	NM_004419Hs.2128	dual specificity phosphatase 5
20	102162 U18291	AA450274 Hs.1592	CDC16 (cell division cycle 16, S. cerevi
30	102164 U18300	NM_000107Hs.77602	damage-specific DNA binding protein 2 (4
	427653 U18383	AA159001 Hs.180069	nuclear respiratory factor 1
	131817 U20536	U20536 Hs.3280	caspase 6, apoptosis-related cysteine pr
	102200 U21551	AA232362 Hs.157205	branched chain aminotransferase 1, cytos
25	102210 U23028	BE619413 Hs.2437	eukaryotic translation initiation factor
35	102214 U23752	U23752 Hs.32964	SRY (sex determining region Y)-box 11
	132811 U25435	U25435 Hs.57419	CCCTC-binding factor (zinc finger protei
	131319 U25997	NM_003155Hs.25590	stanniccalcin 1
	102256 U28251	U28251 Hs.53237	ESTs, Highly similar to Z169_HUMAN ZINC
40	132316 U28831	U28831 Hs.44566	KIAA1641 protein
40	102269 U30245	U30245	gb:Human myelomonocytic specific protein
	417526 U32315	AA568906 Hs.82240	syntaxin 3A
	102293 U32439	AF090116 Hs.79348	regulator of G-protein signalling 7
	102298 U32849	AA382169 Hs.54483	N-myc (and STAT) interactor
45	102325 U35139	Al815867 Hs.50130	necdin (mouse) homolog eukaryotic translation initiation factor
43	428734 U36764	BE303044 Hs.192023	
	102361 U39400	AA223616 Hs.75859	chromosome 11 open reading frame 4
	102367 U39657	U39656 Hs.118825	mitogen-activated protein kinase kinase
	102388 U41344	AA362907 Hs.76494	proline arginine-rich end leucine-rich r
50	102394 U41766	NM_003816Hs.2442	a disintegrin and metalloproteinase doma
50	129829 U41813	AF010258 Hs.127428	homeo box A9
	102409 U43286	BE300330 Hs.118725	selenophosphate synthetase 2
	133746 U44378	AW410035 Hs.75862	MAD (mothers against decapentaplegic, Dr
	102423 U44754	Z47542 Hs.179312	small nuclear RNA activating complex, po
<i></i>	132828 U47011	AB014615 Hs.57710	fibroblast growth factor 8 (androgen-ind
55	132828 U47011	AB014615 Hs.57710	fibroblast growth factor 8 (androgen-ind
	132828 U47011	AB014615 Hs.57710	fibroblast growth factor 8 (androgen-ind
	132828 U47011	AB014615 Hs.57710	fibroblast growth factor 8 (androgen-ind
	425322 U47077	U63630 Hs.155637	protein kinase, DNA-activated, catalytic
~	102450 U48251	U48251 Hs.75871	protein kinase C binding protein 1
60	129350 U50535	U50535 Hs.110630	Human BRCA2 region, mRNA sequence CG006
	102534 U56833	U96759 Hs.198307	von Hippel-Lindau binding protein 1
	130457 U58091	AB014595 Hs.155976	cullin 4B
	135065 U58837	AA019401 Hs.93909	cyclic nucleotide gated channel beta 1
	102560 U59289	R97457 Hs.63984	cadherin 13, H-cadherin (heart)
65	102567 U59863	U63830 Hs.146847	TRAF family member-associated NFKB activ
	417173 U67122	U61397 Hs.81424	ubiquitin-like 1 (sentrin)
	102638 U67319	U67319 Hs.9216	caspase 7, apoptosis-related cysteine pr
	132736 U68019	AW081883 Hs.211578	Homo sapiens cDNA: FLJ23037 fis, clone L
	133070 U69611	U92649 Hs.64311	a disintegrin and metalloproteinase doma
70	102663 U70322	NM_002270Hs.168075	karyopherin (importin) beta 2
	134660 U73524	U73524 Hs.87465	ATP/GTP-binding protein
	102735 U79267	AF111106 Hs.3382	protein phosphatase 4, regulatory subuni
	102741 U79291	AW959829 Hs.83572	hypothetical protein MGC14433
	130564 U82671	U82671 Hs.36980	melanoma antigen, family A, 2
75	130564 U82671	U82671 Hs.36980	melanoma antigen, family A, 2
	132164 U84573	Al752235 Hs.41270	procollagen-lysine, 2-oxoglutarate 5-dio
	•		

	102823 U90914	D85390 Hs.5057	carboxypeptidase D
	102826 U91316	NM_007274Hs.8679	cytosolic acyl coenzyme A thioester hydr
	102831 U91932	AA262170 Hs.80917	adaptor-related protein complex 3, sigma
_	102846 U96131	BE264974 Hs.6566	thyroid hormone receptor interactor 13
5	129777 U97018	U97018 Hs.12451	echinoderm microtubule-associated protei
	134161 U97188	AA634543 Hs.79440	IGF-II mRNA-binding protein 3
	134854 V00503	J03464 Hs.179573	collagen, type I, alpha 2
	429257 X04327	AW163799 Hs.198365	2,3-bisphosphoglycerate mutase
10	413985 X06389	Al018666 Hs.75667	synaptophysin
10	419768 X07496	T72104 Hs.93194	apolipoprotein A-I
	102915 X07820	X07820 Hs.2258	matrix metalloproteinase 10 (stromelysin
	134656 X14787	Al750878 Hs.87409	thrombospondin 1
	413858 X15525	NM_001610Hs.75589	acid phosphatase 2, lysosomal
15	102968 X16396	AU076611 Hs.154672	methylene tetrahydrofolate dehydrogenase
15	102971 X16609	X16609 Hs.183805	ankyrin 1, erythrocytic
	134037 X53586	A1808780 Hs.227730	integrin, alpha 6
	134037 X53586	AI808780 Hs.227730	integrin, alpha 6
	103023 X53793	AW500470 Hs.117950	multifunctional polypeptide similar to S placental growth factor, vascular endoth
20	103037 X54936	BE018302 Hs.2894 BE245380 Hs.153952	5' nucleotidase (CD73)
20	130282 X55740 134542 X57025	M14156 Hs.85112	insulin-like growth factor 1 (somatomedi
	128568 X60673	H12912 Hs.274691	adenylate kinase 3
	128568 X60673	H12912 Hs.274691	adenylate kinase 3
	103093 X60708	S79876 Hs.44926	dipeptidylpeptidase IV (CD26, adenosine
25	413076 X62048	U10564 Hs.75188	wee1 (S. pombe) homolog
23	129063 X63097	X63094 Hs.283822	Rhesus blood group, D antigen
	424460 X63563	BE275979 Hs.296014	polymerase (RNA) II (DNA directed) polyp
	411077 X64037	AW977263 Hs.68257	general transcription factor IIF, polype
	103181 X69636	X69636 Hs.334731	Homo sapiens, clone IMAGE:3448306, mRNA,
30	103184 X69878	U43143 Hs.74049	fms-related tyrosine kinase 4
20	103194 X70649	NM_004939Hs.78580	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep
	103208 X72841	AW411340 Hs.31314	retinoblastoma-binding protein 7
	129698 X74987	BE242144 Hs.12013	ATP-binding cassette, sub-family E (OABP
	131486 X83107	F06972 Hs.27372	BMX non-receptor tyrosine kinase
35	130729 X84194	Al963747 Hs.18573	acylphosphatase 1, erythrocyte (common)
	103334 X85753	NM_001260Hs.25283	cyclin-dependent kinase 8
	132645 X87870	Al654712 Hs.54424	hepatocyte nuclear factor 4, alpha
	135094 X89066	NM_003304Hs.250687	transient receptor potential channel 1
	103352 X89398	H09366 Hs.78853	uracii-DNA glycosylase
40	103352 X89398	H09366 Hs.78853	uracil-DNA glycosylase
	103353 X89399	X89399 Hs.119274	RAS p21 protein activator (GTPase activa
	132173 X89426	X89426 Hs.41716	endothelial cell-specific molecule 1
	103371 X91247	X91247 Hs.13046	thioredoxin reductase 1
15	131584 X91648	AA598509 Hs.29117	purine-rich element binding protein A
45	103376 X92098	AL036166 Hs.323378	coated vesicle membrane protein
	103378 X92110 128510 X94703	AL119690 Hs.153618	HCGVIII-1 protein RAB28, member RAS oncogene family
	103410 X96506	X94703 AA158294 Hs.295362	DR1-associated protein 1 (negative cofac
	133490 X97230	AF022044 Hs.274601	killer cell immunoglobulin-like receptor
50	332689 X97230	AF022044 Hs.274601	killer cell immunoglobulin-like receptor
50	103438 X98263	AW175781 Hs.152720	M-phase phosphoprotein 6
	103440 X98296	X98296 Hs.77578	ubiquitin specific protease 9, X chromos
	103452 X99584	NM_006936Hs.85119	SMT3 (suppressor of mif two 3, yeast) ho
	133536 Y00264	W25797.comp	Hs.177486 amyloid beta (A4) precursor protein (pro
55	420234 Y07566	AW404908 Hs.96038	Ric (Drosophila)-like, expressed in many
	426502 Y07759	Y07759 Hs.170157	myosin VA (heavy polypeptide 12, myoxin)
	134662 Y07827	NM_007048Hs.284283	butyrophilin, subfamily 3, member A1
	132083 Y07867	BE386490 Hs.279663	Pirin
	103500 Y09443	AW408009 Hs.22580	alkylglycerone phosphate synthase
60	134389 Y09858	Y09858 Hs.82577	spindlin-like
	132084 Y12394	NM_002267Hs.3886	karyopherin alpha 3 (importin alpha 4)
	103540 Z11559	NM_002197Hs.154721	aconitase 1, soluble
	133152 Z11695	Z11695 Hs.324473	mitogen-activated protein kinase 1
<i>(c</i>	103548 Z15005	Z15005 Hs.75573	centromere protein E (312kD)
65	103612 Z46261	BE336654 Hs.70937	H3 histone family, member A
	129092 AA011243	D56365 Hs.63525	poly(rC)-binding protein 2
	103692 AA018418	AW137912 Hs.227583	Homo sapiens chromosome X map Xp11.23 L-
	103695 AA018758	AW207152 Hs.186600	ESTs CTD Deb44
70	129796 AA018804	BE218319 Hs.5807	GTPase Rab14
70	434993 AA031993	AA306325 Hs.4311	SUMO-1 activating enzyme subunit 2
	132683 AA044217 131887 AA046548	BE264633 Hs.143638	WD repeat domain 4 SWI/SNF related, matrix associated, acti
	131887 AAU40546 103723 AA057447	W17064 Hs.332848 BE274312 Hs.214783	Homo sapiens cDNA FLJ14041 fis, clone HE
	453368 AA058376	W20296 Hs.288178	Homo sapiens cDNA FLJ11968 fis, clone HE
75	133260 AA083572	AA403045 Hs.6906	Homo sapiens cDNA: FLJ23197 fis, clone R
, ,	103765 AA085696	AA085696 Hs.169600	KIAA0826 protein
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•

		AA088744		Hs.191435	ESTs
		AA089688	BE244667	1) 400445	CGI-100 protein
		AA091284	AA393968		HSPC030 protein
_		AA092700		Hs.101077	ESTs, Weakly similar to T22363 hypotheti
5		AA092968	AW372569		hypothetical protein MGC10924 similar to
		AA094800	AW970843		eukaryotic translation initiation factor
		AA100219	AF244135		hepatocellular carcinoma-associated anti
		AA114885	AA164842		KIAA1600 protein
10		AA129547	BE304999		fumarate hydratase
10		AA133016	AW958264 AF142419		similar to yeast Upf3, variant B homolog of mouse quaking QKI (KH domain
		AA149507 AA151005	BE379765		sperm associated antigen 9
		AA 18 1005 AA 187101	AA187101		hypothetical protein MGC10895
		AA 195179	W02363	NS.213134	hypothetical protein FLJ10330
15		AA206236	AA206236	He 1011	hypothetical protein FLJ12783
13		AA200230 AA227621		Hs.127824	ESTs, Weakly similar to T28770 hypotheti
		AA248283	AA775268		Homo sapiens cDNA: FLJ23020 fis, clone L
		AA249611	AA249611		SH3 domain binding glutamic acid-rich pr
		AA282640	AF043117		ubiquitination factor E4B (homologous to
20		AA287199	D42039	Hs.78871	mesoderm development candidate 2
20		AA313990	AA371156		DKFZP564M112 protein
		AA314256	AF151852		CGI-94 protein
		AA314389	AA314389		ADP-ribosylation factor-like 5
		AA324364		Hs.80475	polymerase (RNA) II (DNA directed) polyp
25		AA329211	AF155568		NS1-associated protein 1
		AA399187	AL096748		DKFZP434A043 protein
		AA421079	AK001601		high-mobility group 20A
	104104	AA422029	AA422029	Hs.143640	ESTs, Weakly similar to hyperpolarizatio
	332455	AA425230	NM_005754	Hs.220689	Ras-GTPase-activating protein SH3-domain
30	132091	AA447052	AW954243		KIAA0251 protein
	135073	AA452000	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f
	131367	AA456687	AI750575	Hs.173933	nuclear factor I/A
	129593	AA487015	Al338247	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f
	133505	C01527		Hs.324504	Homo sapiens mRNA; cDNA DKFZp586J0720 (f
35		C01714	AA121098		serum-inducible kinase
		C01811	W52642	Hs.8261	hypothetical protein FLJ22393
		C02352	AF151879		CGI-121 protein
		C02375	Al929357	Hs.323966	Homo sapiens clone H63 unknown mRNA
40		C14448	C14448	Hs.332338	EST
40		D16611	BE314037		coproporphyrinogen oxidase (coproporphyr
		D25216	D25216	Hs.155650	KIAA0014 gene product
		D31352	AA961420		ESTs ECE TAZ latrophilin related protein
		D58024	AA370362		EGF-TM7-latrophilin-related protein
45		D80897	NM_014909 D82614	Hs.78771	KIAA1036 protein phosphoglycerate kinase 1
45		D82614	NM_000437		platelet-activating factor acetylhydrola
		D87845	D89377	Hs.89404	msh (Drosophila) homeo box homolog 2
		D89377	NM_001310		cAMP responsive element binding protein-
		H06583 H40732	H03514	Hs.15589	ESTs
50		H46617	AA129551		Homo sapiens cDNA: FLJ21409 fis, clone C
50		H56731	H56731	Hs.132956	ESTs
		H75570	AA306090		ESTs
		H78886	N74724	Hs.108479	ESTs
		H81241	Al819448	Hs.320861	Kruppel-like factor 8
55		L36531	L36531	Hs.91296	integrin, alpha 8
		M63154	M63154	Hs.110014	gastric intrinsic factor (vitamin B synt
		M63180	AW246273		threonyl-tRNA synthetase
		M91504	AW955705		Homo sapiens, clone IMAGE:4299322, mRNA,
		N56191	N56191	Hs.106511	protocadherin 17
60		N78483	AI038989	Hs.332633	Bardet-Biedl syndrome 2
	130017	R14652	AK000096	Hs.143198	inhibitor of growth family, member 3
	104530	R20459	AK001676	Hs.12457	hypothetical protein FLJ10814
	104534	R22303	R22303		gb:yh26b09.r1 Soares placenta Nb2HP Homo
	104544	R33779	Al091173	Hs.222362	ESTs, Weakly similar to p40 [H.sapiens]
65	133328	R36553	AW452738	Hs.265327	hypothetical protein DKFZp761I141
	104567	R64534	AA040620		hypothetical protein AF140225
	129575	R70621	F08282	Hs.278428	progestin induced protein
		R79356	AF167706	Hs.19280	cysteine-rich motor neuron 1
70		R84933		Hs.151251	ESTs
70		AA007160	BE298665		Homo sapiens mRNA; cDNA DKFZp564D016 (fr
		AA007234	Al239923		ESTs
		AA018409	Al143020	Hs.36250	ESTs, Weakly similar to I38022 hypotheti
		AA025351	Al039243	Hs.278585	ESTs
75		AA027168	AA027167	rs.10037	KIAA0955 protein
75		AA027317	AA027317	Ua 171025	gb:ze97d11.s1 Soares_fetal_heart_NbHH19W
	1340/9	AA029423	TC/TUU/A	Hs.171835	hypothetical protein FLJ10889

	404504 44004057	A1050700 II. 04000	ECT. Marking and a Nation of the section
	104804 AA031357	Al858702 Hs.31803	ESTs, Weakly similar to N-WASP [H.sapien
	104865 AA045136	T79340 Hs.22575 AW631469 Hs.203213	B-cell CLL/lymphoma 6, member B (zinc fi FSTs
	130828 AA053400 104907 AA055829	AA055829 Hs.196701	ESTs, Weakly similar to ALU1_HUMAN ALU S
5	104943 AA065217	AF072873 Hs.114218	frizzled (Drosophila) homolog 6
,	105013 AA116054	H63789 Hs.296288	ESTs, Weakly similar to KIAA0638 protein
	105024 AA126311	AA126311 Hs.9879	ESTs
	132592 AA129390	AW803564 Hs.288850	Homo sapiens cDNA: FLJ22528 fis, clone H
	105038 AA130273	AW503733 Hs.9414	KIAA1488 protein
10	105077 AA142919	W55946 Hs.234863	Homo sapiens cDNA FLJ12082 fis, clone HE
	105096 AA150205	AL042506 Hs.21599	Kruppel-like factor 7 (ubiquitous)
	129215 AA176867	AB040930 Hs.126085	KIAA1497 protein
	105169 AA180321	BE245294 Hs.180789	S164 protein
	132796 AA180487	NM_006283Hs.173159	transforming, acidic coiled-coil contain
15	427210 AA187634	BE396283 Hs.173987	eukaryotic translation initiation factor
	105200 AA195399	AA328102 Hs.24641	cytoskeleton associated protein 2
	130114 AA234717	AA233393 Hs.14992	hypothetical protein FLJ11151
	105330 AA234743	AW338625 Hs.22120	ESTs
	105337 AA234957	Al468789 Hs.347187	myotubularin related protein 1
20	422040 AA235604	AA172106 Hs.110950	Rag C protein
	105376 AA236559	AW994032 Hs.8768	hypothetical protein FLJ10849
	105397 AA242868	AA814807 Hs.7395	hypothetical protein FLJ23182
	431679 AA251776	AK000046 Hs.343877	hypothetical protein FLJ20039
25	131991 AA251909	AF053306 Hs.36708	budding uninhibited by benzimidazoles 1
25	421305 AA252672	BE397354 Hs.324830	diptheria toxin resistance protein requi
	105489 AA256157	AA256157 Hs.24115	Homo sapiens cDNA FLJ14178 fis, clone NT
	105508 AA256680	AA173942 Hs.326416	Homo sapiens mRNA; cDNA DKFZp564H1916 (f
	105539 AA258873	AB040884 Hs.109694	KIAA1451 protein
30	135172 AA262727	AB028956 Hs.12144 AL389951 Hs.271623	KIAA1033 protein
50	131569 AA281451 431129 AA281545	AL137751 Hs.263671	nucleoporin 50kD Homo sapiens mRNA; cDNA DKFZp434l0812 (f
	105643 AA282069	BE621719 Hs.173802	KIAA0603 gene product
	105659 AA283044	AA283044 Hs.25625	hypothetical protein FLJ11323
	105666 AA283930	AA426234 Hs.34906	ESTs, Weakly similar to T17210 hypotheti
35	105674 AA284755	Al609530 Hs.279789	histone deacetylase 3
-	105709 AA291268	Al928962 Hs.26761	DKFZP586L0724 protein
	105722 AA291927	Al922821 Hs.32433	ESTs
	105765 AA343514	AA299688 Hs.24183	ESTs
	115951 AA398109	BE546245 Hs.301048	sec13-like protein
40	130884 AA398109	BE546245 Hs.301048	sec13-like protein
	105962 AA405737	AW880358 Hs.339808	hypothetical protein FLJ10120
	105985 AA406610	AA406610	gb:zv15b10.s1 Soares_NhHMPu_S1 Homo sapi
	106008 AA411465	AB033888 Hs.8619	SRY (sex determining region Y)-box 18
15	457322 AA416886	Al815486 Hs.243901	Homo sapiens cDNA FLJ20738 fis, clone HE
45	134222 AA424013	AW855861 Hs.8025	Homo sapiens clone 23767 and 23782 mRNA
	446954 AA424148	AB037850 Hs.16621	DKFZP4341116 protein phosducin-like
	106141 AA424558 447973 AA424961	AF031463 Hs.9302 AB011169 Hs.20141	similar to S. cerevisiae SSM4
	106157 AA425367	W37943 Hs.34892	KIAA1323 protein
50	428314 AA425921	AW135049 Hs.26285	Homo sapiens cDNA FLJ10643 fis, clone NT
50	446727 AA426220	AB011095 Hs.16032	KIAA0523 protein
	106196 AA427735	AA525993 Hs.173699	ESTs, Weakly similar to ALU1_HUMAN ALU S
	457714 AA430673	AA083764	hypothetical protein MGC3178
	133200 AA432248	AB037715 Hs.183639	hypothetical protein FLJ10210
55	106302 AA435896	AA398859 Hs.18397	hypothetical protein FLJ23221
•	106328 AA436705	AL079559 Hs.28020	KIAA0766 gene product
	450534 AA446561	Al570189 Hs.25132	KIAA0470 gene product
	106423 AA448238	AB020722 Hs.16714	Rho guanine exchange factor (GEF) 15
	439608 AA449756	AW864696 Hs.301732	hypothetical protein MGC5306
60	106477 AA450303	R23324 Hs.41693	DnaJ (Hsp40) homolog, subfamily B, membe
	106503 AA452411	AB033042 Hs.29679	cofactor required for Sp1 transcriptiona
	446999 AA454566	AA151520	hypothetical protein MGC4485
	106543 AA454667	AA676939 Hs.69285	neuropilin 1
65	442007 AA456437	AA301116 Hs.142838	nucleolar phosphoprotein Nopp34
65	106589 AA456646	AK000933 Hs.28661 AW296451 Hs.24605	Homo sapiens cDNA FLJ10071 fis, clone HE
	106593 AA456826 106596 AA456981	AW296451 HS.24605 AA452379	ESTs ESTs, Moderately similar to ALU7_HUMAN A
		AF265208 Hs.8740	SWI/SNF related, matrix associated, acti
	423064 AA458959 106636 AA459950	AW958037 Hs.286	ribosomal protein L4
70	106654 AA460449	AW075485 Hs.286049	phosphoserine aminotransferase
, 0	131353 AA463910	AW754182	gb:RC2-CT0321-131199-011-c01 CT0321 Homo
	106707 AA464603	AK000566 Hs.98135	hypothetical protein FLJ20559
	452909 AA464606	NM_015368Hs.30985	pannexin 1
	106717 AA465093	AA600357 Hs.239489	TIA1 cytotoxic granule-associated RNA-bi
75	453141 AA465692	AB014548 Hs.31921	KIAA0648 protein
	106747 AA476473	NM_007118Hs.171957	triple functional domain (PTPRF interact

			,
	106773 AA478109	AA478109 Hs.188833	ESTs
	106781 AA478474	AA330310 Hs.24181	ESTs
	106817 AA480889	D61216 Hs.18672	ESTs
	106846 AA485223	AB037744 Hs.34892	KIAA1323 protein
5	106848 AA485254	AA449014 Hs.121025	chromosome 11 open reading frame 5
•	106856 AA486183	W58353 Hs.285123	Homo sapiens mRNA full length insert cDN
	418699 AA496936	BE539639 Hs.173030	ESTs, Weakly similar to ALU8_HUMAN ALU S
	107001 AA598589	Al926520 Hs.31016	putative DNA binding protein
	442853 AA598831	AW021276 Hs.17121	ESTs
10		A1076459 Hs.15978	KIAA1272 protein
10	107054 AA600150	BE614410 Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re
	107059 AA608545		hypothetical protein DKFZp566G1424
	107080 AA609210	AL122043 Hs.19221	
	107115 AA610108	BE379623 Hs.27693	peptidylprolyl isomerase (cyclophilin)-l
15	107130 AA620582	AB033106 Hs.12913	KIAA1280 protein
15	107156 AA621239	AA137043 Hs.9663	programmed cell death 6-interacting prot
	107174 AA621714	BE122762 Hs.25338	ESTs
	130621 AA621718	AW513087 Hs.16803	LUC7 (S. cerevistae)-like
	107190 D19673	AA836401 Hs.87860	ESTs
20	132626 D25755	AW504732 Hs.21275	hypothetical protein FLJ11011
20	107217 D51095	AL080235 Hs.35861	DKFZP586E1621 protein
	332584 D60272	AA357879 Hs.29423	ESTs; Weakly similar to macrophage lecti
	444655 T08879	AF088886 Hs.11590	cathepsin F
	107295 T34527	AA186629 Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polyp
0.5	107299 T40327	BE277457 Hs.30661	hypothetical protein MGC4606
25	107315 T62771	AA316241 Hs.90691	nucleophosmin/nucleoplasmin 3
	107316 T63174	T63174 Hs.193700	Homo sapiens mRNA; cDNA DKFZp586I0324 (f
	107328 TB3444	AW959891 Hs.76591	KIAA0887 protein
	107334 T93641	T93597 Hs.187429	ESTs
20	456340 U48263	U48263 Hs.89040	prepronociceptin
30	128636 U49065	U49065 Hs.102865	interleukin 1 receptor-like 2
	129938 U79300	AW003668 Hs.135587	Human clone 23629 mRNA sequence
	107375 U88573	BE011845 Hs.251064	high-mobility group (nonhistone chromoso
	130074 U93867	AL038596 Hs.250745	polymerase (RNA) III (DNA directed) (62k
25	107387 W01094	D86983 Hs.118893	Melanoma associated gene
35	132036 W01568	AL157433 Hs.37706	hypothetical protein DKFZp434E2220
	107426 W26853	W26853 Hs.291003 W27965 Hs.99865	hypothetical protein MGC4707
	135388 W27965	W27965 Hs.99865 AF037448 Hs.155489	epimorphin
	130419 W36280 107469 W47063	W47063 Hs.94668	NS1-associated protein 1 ESTs
40	434203 W79060	BE262677 Hs.283558	hypothetical protein PRO1855
70	107506 W88550	AB028981 Hs.8021	KIAA1058 protein
	132358 X60486	NM_003542Hs.46423	H4 histone family, member G
	107522 X78931	X78931 Hs.99971	zinc finger protein 272
	456495 Z14077	NM_003403Hs.97496	YY1 transcription factor
45	107582 AA002147	AA002147 Hs.59952	EST
	107609 AA004711	R75654 Hs.164797	hypothetical protein FLJ13693
	107661 AA010383	AA010383 Hs.60389	ESTs
	107714 AA015761	AA015761 Hs.60642	ESTs
	107775 AA018772	AW008846 Hs.60857	ESTs
50	107832 AA021473	AA021473	gb:ze66c11.s1 Soares retina N2b4HR Homo
•	107859 AA024835	AW732573 Hs.47584	potassium voltage-gated channel, delayed
	107914 AA027229	AA027229 Hs.61329	ESTs, Weakly similar to T16370 hypotheti
	107935 AA029428	AA029428 Hs.61555	ESTs
	410196 AA035143	Al936442 Hs.59838	hypothetical protein FLJ10808
55	131461 AA035237	AA992841 Hs.27263	KIAA1458 protein
	108007 AA039347	AA039347 Hs.61916	EST
	108029 AA040740	AA040740 Hs.62007	ESTs
	108040 AA041551	AL121031 Hs.159971	SWI/SNF related, matrix associated, acti
	108084 AA045513	AA058944 Hs.116602	Homo sapiens, clone IMAGE:4154008, mRNA,
60	108088 AA045745	AA045745 Hs.62886	ESTs
•	108168 AA055348	Al453137 Hs.63176	ESTs
	130719 AA056582	AA679262 Hs.14235	hypothetical protein FLJ20008; KIAA1839
	108189 AA056697	AW376061 Hs.63335	ESTs, Moderately similar to A46010 X-lin
	108190 AA056746	AA056746 Hs.63338	EST
65	108203 AA057678	AW847814 Hs.289005	Homo sapiens cDNA: FLJ21532 fis, clone C
••	108216 AA058681	AA524743 Hs.44883	ESTs
	108217 AA058686	AA058686 Hs.62588	ESTs
	108245 AA062840	BE410285 Hs.89545	proteasome (prosome, macropain) subunit,
	108277 AA064859	AA064859	gb:zm50f03.s1 Stratagene fibroblast (937
70	108280 AA065069	AA065069	gb:zm12e11.s1 Stratagene pancreas (93720
	108309 AA069923	AA069818	gb:zm67e03.r1 Stratagene neuroepithelium
	108340 AA070815	AA069820 Hs.180909	peroxiredoxin 1
	108403 AA075374	AA075374	gb:zm87a01.s1 Stratagene ovarian cancer
	108427 AA076382	AA076382	gb:zm91g08.s1 Stratagene ovarian cancer
75	108435 AA078787	T82427 Hs.194101	Homo sapiens cDNA: FLJ20869 fis, clone A
	108439 AA078986	AA078986	gb:zm92h01.s1 Stratagene ovarian cancer

	108465 AA079393	AA079393 Hs.3462	cytochrome c oxidase subunit VIIc
	108469 AA079487	AA079487	gb:zm97f08.s1 Stratagene colon HT29 (937
	108500 AA083207	AA083207 Hs.68270	EST
_	108501 AA083256	AA083256	gb:zn08g12.s1 Stratagene hNT neuron (937
5	108533 AA084415	AA084415	gb:zn06g09.s1 Stratagene hNT neuron (937
	108562 AA085274	AA100796	gb:zm26c06.s1 Stratagene pancreas (93720
	108589 AA088678 130890 AA100925	Al732404 Hs.68846 Al907537 Hs.76698	ESTs stress-associated endoplasmic reticulum
	432645 AA101255	D14041 Hs.347340	H-2K binding factor-2
10	130385 AA126474	AW067800 Hs.155223	stanniocalcin 2
	108749 AA127017	AA127017 Hs.71052	ESTs
	108807 AA129968	Al652236 Hs.49376	hypothetical protein FLJ20644
	108808 AA130240	AA045088 Hs.62738	ESTs
1 m	108833 AA131866	AF188527 Hs.61661	ESTs, Weakly similar to AF174605 1 F-box
15	108846 AA132983	AL117452 Hs.44155	DKFZP586G1517 protein
	108857 AA133250	AK001468 Hs.62180	anillin (Drosophila Scraps homolog), act
	131474 AA133583 108894 AA135941	L46353 Hs.2726 AK001431 Hs.5105	high-mobility group (nonhistone chromoso hypothetical protein FLJ10569
	108941 AA148650	AA148650	gb:zo09e06.s1 Stratagene neuroepithelium
20	108968 AA151110	Al304870 Hs.188680	ESTs
	108996 AA155754	AW995610 Hs.332436	EST
	109001 AA156125	Al056548 Hs.72116	hypothetical protein FLJ20992 similar to
	131183 AA156289	Al611807 Hs.285107	hypothetical protein FLJ13397
25	109019 AA156997	AA156755 Hs.72150	ESTs
25	109022 AA157291	AA157291 Hs.21479	ubinuclein 1
	109023 AA157293 109068 AA164293	AA157293 Hs.72168 AA164293 Hs.72545	ESTs ESTs
	109072 AA164676	Al732585 Hs.22394	hypothetical protein FLJ10893
	426981 AA167375	AL044675 Hs.173081	KIAA0530 protein
30	130346 AA167550	H05769 Hs.188757	Homo sapiens, clone MGC:5564, mRNA, comp
	109146 AA176589	AA176589 Hs.142078	EST
	109172 AA180448	AA180448 Hs.144300	EST
	428438 AA187144	NM_001955Hs.2271	endothelin 1
35	129208 AA189170	Al587376 Hs.109441	MSTP033 protein
33	109222 AA192757 109300 AA205650	AA192833 Hs.333512 AA418276 Hs.170142	similar to rat myomegalin ESTs
	109481 AA233342	AA878923 Hs.289069	hypothetical protein FLJ21016
	109485 AA233472	BE619092 Hs.28465	Homo sapiens cDNA: FLJ21869 fis, clone H
	109516 AA234110	Al471639 Hs.71913	ESTs
40	109537 D80981	Al858695 Hs.34898	ESTs
	109556 F01660 109577 F02206	Al925294 Hs.87385 F02206 Hs.296639	ESTs Homo sapiens potassium channel subunit (
	109578 F02208	F02208 Hs.27214	ESTs
	109595 F02544	AA078629 Hs.27301	ESTs
45	109625 F03918	H29490 Hs.22697	ESTs
	428376 F04258	AF119665 Hs.184011	pyrophosphatase (inorganic)
	109648 F04600	H17800 Hs.7154	ESTs
	109671 F08998 109699 F09605	R59210 Hs.26634 H18013 Hs.167483	ESTs ESTs
50	109820 F11115	AW016809 Hs.119021	ESTS
50	109933 H06371	R52417 Hs.20945	Homo sapiens clone 24993 mRNA sequence
	110014 H10995	AL109666 Hs.7242	Homo sapiens mRNA full length insert cDN
	110039 H11938	H11938 Hs.21907	histone acetyltransferase
	110099 H16568	R44557 Hs.23748	ESTs
55	110107 H16772	AW151660 Hs.31444	ESTs
	110155 H18951	Al559626 Hs.93522 AW090386 Hs.112278	Homo sapiens mRNA for KIAA1647 protein,
	110197 H20859 110223 H23747	H19836 Hs.31697	arrestin, beta 1 ESTs
	110306 H38087	H38087 Hs.105509	CTL2 gene
60	110335 H40331	H65490 Hs.18845	ESTs
	110342 H40567	H40961 Hs.33008	ESTs
	110395 H46966	AA025116 Hs.33333	ESTs
	110511 H56640	H56640 Hs.221460	ESTs
65	110523 H57154 110715 H96712	Al040384 Hs.19102 H96712 Hs.269029	ESTs, Weakly similar to organic anion tr ESTs
03	110754 N20814	AW302200 Hs.6336	KIAA0672 gene product
	428454 N25249	U55936 Hs.184376	synaptosomal-associated protein, 23kD
	431663 N27100	NM_016569Hs.267182	TBX3-iso protein
	134263 N39616	AW973443 Hs.8086	RNA (guanine-7-) methyltransferase
70	110938 N48982	N48982 Hs.38034	Homo sapiens cDNA FLJ12924 fis, clone NT
	110983 N51957	NM_015367Hs.10267	MIL1 protein
	111081 N59435	AI146349 Hs.271614 AW505364 Hs.19074	CGI-112 protein
	111128 N64139 431548 N66981	AW505364 Hs.19074 A1834273 Hs.9711	LATS (large tumor suppressor, Drosophila novel protein
75	111216 N68640	AW139408 Hs.152940	ESTs
	437562 N69352	AB001636 Hs.5683	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep

	111399 F		AW270776	Hs.18857	ESTs
	111514 F		R07998	11. 400000	gb:yf16g11.s1 Soares fetal liver spleen
	428744 F		BE267033		ubiquitin-conjugating enzyme E2G 2 (homo
5	111574 F 111804 F		A1024145 AA482478	Hs.188526	ESTs ESTs
5	111831 F		R36095	Hs.268695	ESTs
	426773 F		NM_015556		KIAA0440 protein
	111904 F		Z41572	,	gb:HSCZYB122 normalized infant brain cDN
	428371 F	R40816	AB012193	Hs.183874	cullin 4A
10	112033 F		R49031	Hs.22627	ESTs
	130987 F				hypothetical protein DKFZp761N0624
	112300 F		H24334	Hs.26125	ESTs
	112513 F		R68425	Hs.13809	hypothetical protein FLJ10648 src homology 3 domain-containing protein
15	112522		R68568 R68857	Hs.183373 Hs.265499	ESTs
13	112540 F		R69751	113.205455	gb:yi40a10.s1 Soares placenta Nb2HP Homo
	428655 F		H05769	Hs.188757	Homo sapiens, clone MGC:5564, mRNA, comp
	129534 F		AK002126		hypothetical protein FLJ11264
	112597 F	R78376	R78376	Hs.29733	EST
20	112732 F		R92453	Hs.34590	ESTs
	451798		BE297567		hypothetical protein FLJ20392
	112888		AW195317		hypothetical protein FLJ22344
	131863		A1656378	Hs.33461	ESTS
25	112911 T		AW732747 AL035703		like mouse brain protein E46 KIAA0478 gene product
23	112931		T02966	Hs.167428	ESTs
	112984		T16971	Hs.289014	ESTs, Weakly similar to A43932 mucin 2 p
	112998		H11257	Hs.22968	Homo sapiens clone IMAGE:451939, mRNA se
	133376	T23670	BE618768	Hs.7232	acetyl-Coenzyme A carboxylase alpha
30	113026		AA376654		eukaryotic translation initiation factor
	113070		AB032977		KIAA1151 protein
	410781		Al375672	Hs.165028	ESTs
	113074		AK001335 AA828380		protein tyrosine phosphatase, receptor t ESTs
35	113095 T			Hs.152571	ESTs, Highly similar to IGF-II mRNA-bind
55	113337		T77453	Hs.302234	ESTs
	113421		Al769400	Hs.189729	ESTs
	113454	T86458	AI022166	Hs.16188	ESTs
4.0	113481		T87693	Hs.204327	EST
40	453345		AA302862		neurocalcin delta
	113557		H66470	Hs.16004	ESTs
	113559 T		T79763 Al078554	Hs.14514 Hs.15682	ESTs ESTs
	113591		T91881	Hs.200597	KIAA0563 gene product
45	113619		R08665	Hs.17244	hypothetical protein FLJ13605
	113683		AB035335	Hs.144519	T-cell leukemia/lymphoma 6
	113692	T96944	AL360143	Hs.17936	DKFZP434H132 protein
	113702		T97307		gb:ye53h05.s1 Soares fetal liver spleen
50	113717		T99513	Hs.187447	ESTs
50	113824 \		Al631964	Hs.34447	ESTs
	113840 \ 113844 \		R72137 Al369275	Hs.7949 Hs.243010	DKFZP586B2420 protein Homo sapiens cDNA FLJ14445 fis, clone HE
	113902 \		AA340111	Hs.100009	acyl-Coenzyme A oxidase 1, palmitoyl
	113904 \		AF125044	Hs.19196	ubiquitin-conjugating enzyme HBUCE1
55	113905 \		R81733	Hs.33106	ESTs
	113931 \	W81205	BE255499	Hs.3496	hypothetical protein MGC15749
	113932			Hs.126485	hypothetical protein FLJ12604; KIAA1692
	131965 \		W79283	Hs.35962	ESTs
60	114035		W92798	Hs.269181	ESTs ab:RC5-BT0562-260100-011-A02 BT0562 Homo
00	114106 2 457308 2		AW602528 AI416988	Hs.238272	inositol 1,4,5-triphosphate receptor, ty
	114161		BE548222		hypothetical protein FLJ23399
	424949		AF052212		core-binding factor, runt domain, alpha
	457548		AW069534		CGI-81 protein
65	128937	Z39939	AA251380		ESTs, Weakly similar to ALU1_HUMAN ALU S
	432554	Z40012	AI479813	Hs.278411	NCK-associated protein 1
	114277		Al052229	Hs.25373	ESTs, Weakly similar to T20410 hypotheti
	114304 4 114364 4	240820 741680	A1934204	Hs.16129	ESTS Home sanions mRNA: cDNA DKF7n566D013 (fr
70	114304 4 432620 4	AA005112	AL117427 AA777749		Homo sapiens mRNA; cDNA DKFZp566P013 (fr LIM domain only 7
70		AA005112 AA005432	AA481157		DKFZP547E2110 protein
		AA010163	AW361018		upstream regulatory element binding prot
	332421	AA026356		Hs.108106	transcription factor
	114465	AA026901	BE621056	Hs.131731	hypothetical protein FLJ11099
75	451271	AA036867	AK001644	Hs.26156	hypothetical protein FLJ10782
	332498	AA044644	AA303661		lymphocyte-specific protein 1

	431555 AA046426	Al815470 Hs.260024	Cdc42 effector protein 3
	132944 AA054515	T96641 Hs.6127	Homo sapiens cDNA: FLJ23020 fis, clone L
	114618 AA084162	AW979261 Hs.291993	ESTs
-	332509 AA085749	AA128376 Hs.153884	ATP binding protein associated with cell
5	114648 AA101056	AA101056	gb:zn25b03.s1 Stratagene neuroepithelium
	114658 AA102746	AA102383 Hs.249190	tumor necrosis factor receptor superfami
	132456 AA114250	AB011084 Hs.48924	KIAA0512 gene product; ALEX2
	450847 AA126561	NM_003155Hs.25590	stanniocalcin 1
10	132225 AA128980	AA128980	gb:zo09a11.s1 Stratagene neuroepithelium
10	437197 AA129757	W38586	guanine nucleotide binding protein (G pr
	114709 AA129921	AA397651 Hs.301959	proline synthetase co-transcribed (bacte
	456926 AA133331	AB018284 Hs.158688	KIAA0741 gene product
	114750 AA135958	AA887211 Hs.129467	ESTs
1 ~	426806 AA136524	T19228 Hs.172572	hypothetical protein FLJ20093
15	114763 AA147044	AA810755 Hs.102500	hypothetical protein dJ511E16.2
	114767 AA148885	Al859865 Hs.154443	minichromosome maintenance deficient (S.
	114774 AA150043	AV656017 Hs.184325	CGI-76 protein
	129388 AA151621	AA662477 Hs.110964	hypothetical protein FLJ23471
20	457742 AA155743	BE561824 Hs.273369	uncharacterized hematopoietic stem/proge
20	456200 AA156335	AA768242 Hs.80618	hypothetical protein
	130207 AA156336	AF044209 Hs.144904	nuclear receptor co-repressor 1
	114798 AA159181	AA159181 Hs.54900	serologically defined colon cancer antig
	114800 AA159825	Z19448 Hs.131887	ESTs, Weakly similar to T24396 hypotheti
25	114828 AA234185	AA252937 Hs.283522	Homo sapiens mRNA; cDNA DKFZp434J1912 (f
25	114846 AA234929	BE018682 Hs.166196	ATPase, Class I, type 8B, member 1
	114848 AA234935	BE614347 Hs.169615	hypothetical protein FLJ20989
	114902 AA236359	AW275480 Hs.39504	hypothetical protein MGC4308
	132271 AA236466	AB030034 Hs.115175	sterile-alpha motif and leucine zipper c hypothetical protein dJ462O23.2
30	114907 AA236535 420170 AA236935	N29390 Hs.13804	Human normal keratinocyte mRNA
30		U43374 Hs.95631	ESTs
	132204 AA236942	AA235827 Hs.42265 AA237018 Hs.94869	ESTs
	114928 AA237018 132481 AA237025	W93378 Hs.49614	ESTs
	114932 AA242751	AA971436 Hs.16218	KIAA0903 protein
35	314162 AA242760	BE041820 Hs.38516	Homo sapiens, clone MGC:15887, mRNA, com
55	131006 AA242763	AF064104 Hs.22116	CDC14 (cell division cycle 14, S. cerevi
	114935 AA242809	H23329 Hs.290880	ESTs, Weakly similar to ALU1_HUMAN ALU S
	408908 AA243133	BE296227 Hs.250822	serine/threonine kinase 15
	437754 AA243495	R60366 Hs.5822	Homo sapiens cDNA: FLJ22120 fis, clone H
40	114957 AA243706	AW170425 Hs.87680	ESTs
. •	114974 AA250848	AW966931 Hs.302649	nucleosome assembly protein 1-like 1
	114977 AA250868	AW296978 Hs.87787	ESTs
	114995 AA251152	AA769266 Hs.193657	ESTs
	115005 AA251544	AI760825 Hs.153042	ESTs
45	417177 AA251792	NM_004458Hs.81452	fatty-acid-Coenzyme A ligase, long-chain
	115026 AA252144	AA251972 Hs.188718	ESTs
	115045 AA252524	AW014549 Hs.58373	ESTs
	115068 AA253461	AW512260 Hs.87767	ESTs
	133138 AA255522	AV657594 Hs.181161	Homo sapiens cDNA FLJ14643 fis, clone NT
50	332668 AA255522	AV657594 Hs.181161	ESTs
	115114 AA256468	AA527548 Hs.7527	small fragment nuclease
	129584 AA256528	AV656017 Hs.184325	CGI-76 protein
	115137 AA257976	AW968304 Hs.56156	ESTs
	417187 AA258296	AB011151 Hs.334659	hypothetical protein MGC14139
55	115166 AA258409	AF095727 Hs.287832	myelin protein zero-like 1
	115167 AA258421	AA749209 Hs.43728	hypothetical protein
	436719 AA262077	Y11192 Hs.5299	aldehyde dehydrogenase 5 family, member
	115239 AA278650	BE251328 Hs.73291	hypothetical protein FLJ10881
60	115243 AA278766	AA806600 Hs.116665	KIAA1842 protein
60	428419 AA280791	U49436	KIAA1856 protein
	115322 AA280819	L08895 Hs.78995	MADS box transcription enhancer factor 2
	413303 AA280828	AW836130 Hs.75277	hypothetical protein FLJ13910 ESTs, Weakly similar to Unknown [H.sapie
	115372 AA282195	AW014385 Hs.88678 U82671 Hs.57698	
65	409962 AA283127	F05422 Hs.168352	Target CAT nucleoporin-like protein 1
05	130269 AA284694	AA286914 Hs.183299	ESTs
	456570 AA291137 332675 AA291708	BE439944	ESTs
	407864 AA293495	AF069291 Hs.40539	chromosome 8 open reading frame 1
	115536 AA347193	AK001468 Hs.62180	anillin (Drosophila Scraps homolog), act
70	408799 AA398474	AA059412 Hs.47986	hypothetical protein MGC10940
70	115575 AA398512	AA393254 Hs.43619	ESTs
	115601 AA400277	AA148984 Hs.48849	ESTs, Weakly similar to ALU4_HUMAN ALU S
	434428 AA400896	D14540 Hs.199160	myeloid/lymphoid or mixed-lineage leukem
	115683 AA410345	AF255910 Hs.54650	junctional adhesion molecule 2
75	115715 AA416733	BE395161 Hs.1390	proteasome (prosome, macropain) subunit,
, 5	132952 AA425154	Al658580 Hs.61426	Homo sapiens mesenchymal stem cell prote
	,52,62 , 21,120,101		biana masamany

	445040	A A 4000770	4.4.4.0.0.000	11- 44405	andamusta 0
		AA426573	AA486620		endomucin-2
		AA431418	AW292809		N-acetylglucosaminidase, alpha- (Sanfili
		AA436182	AB033035		KIAA1209 protein
_		AA437099	AA192669		ESTs
5		AA446585	AI636361		hypothetical protein MGC10702
		AA446887	A1745379		ESTs
		AA447224		Hs.238944	hypothetical protein FLJ10631
		AA447709		Hs.268115	ESTs, Weakly similar to T08599 probable
4.0	129254	AA453624	AA252468	Hs.1098	DKFZp434J1813 protein
10	446730	AA455044	BE384932	Hs.64313	ESTs, Weakly similar to AF257182 1 G-pro
		AA456045	AA043429	Hs.62618	ESTs
	426856	AA460454	R19768	Hs.172788	ALEX3 protein
	116210	AA476494	BE622792	Hs.172788	ALEX3 protein
	116213	AA476738	AA292105	Hs.326740	hypothetical protein MGC10947
15	432645	AA481422	D14041	Hs.347340	H-2K binding factor-2
	116265	AA482595	BE297412	Hs.55189	hypothetical protein
		AA485084		Hs.343551	hypothetical protein FLJ22584
		AA485431	Al129767		guanine nucleotide binding protein (G pr
		AA489638		Hs.165998	PAI-1 mRNA-binding protein
20		AA491000	N41300	Hs.71616	Homo sapiens mRNA; cDNA DKFZp586N1720 (f
		AA491250		Hs.203963	hypothetical protein FLJ10339
		AA505133		Hs.279905	clone HQ0310 PRO0310p1
		AA598447	BE244323		exportin, tRNA (nuclear export receptor
		AA599243	T86558	Hs.75113	general transcription factor IIIA
25		AA599574	NM_00603		lipase, endothelial
		AA600153	Al742845		DEK oncogene (DNA binding)
		AA609309	AW499664		Human clone 23826 mRNA sequence
		AA609710		Hs.279923	putative nucleotide binding protein, est
		AA610068	AA251594		PIBF1 gene product
30		AA621399	R80137	Hs.302738	Homo sapiens cDNA: FLJ21425 fis, clone C
50		AA621752		Hs.178761	26S proteasome-associated pad1 homolog
	409633		AW449822		ESTs
	116541		D12160	Hs.249212	polymerase (RNA) III (DNA directed) (155
	132557			Hs.169531	ESTs
35	414964			Hs.333402	hypothetical protein MGC12760
55	116571		D45652	Hs.211604	gb:HUMGS02848 Human adult lung 3' direct
	451522		BE565817		hypothetical protein FLJ21657
	421919		AJ224901		zinc finger protein 198
	116643		Al367044	Hs.153638	myeloid/lymphoid or mixed-lineage leukem
40	116661		R61504		gb:yh16a03.s1 Soares infant brain 1NIB H
	116715			Hs.170263	tumor protein p53-binding protein, 1
	116729			Hs.115823	ribonuclease P, 40kD subunit
	318709		R52576	Hs.285280	Homo sapiens cDNA: FLJ22096 fis, clone H
	418999	H16758	NM_00012	1Hs.89548	erythropoietin receptor
45	116773		A1823410		karyopherin alpha 1 (importin alpha 5)
	116780		H22566	Hs.63931	ESTs
	453884		AA355925		KIAA0186 gene product
	116819		H53073	Hs.93698	EST
	427278			Hs.174174	KIAA0601 protein
50	407833		AW955632		ESTs, Weakly similar to S19560 proline-r
	116844		H64938	Hs.337434	ESTs, Weakly similar to A46010 X-linked
	116845		AA649530		gb:ns44f05.s1 NCI_CGAP_Alv1 Homo sapiens
	116892		Al573283	Hs.38458	ESTs
	116925		H73110	Hs.260603	ESTs, Moderately similar to A47582 B-cel
55	116981		N29218	Hs.40290	ESTs
	453133		AC005757		hypothetical protein
	117031		H88353	Hs.347265	gb:yw21a02.s1 Morton Fetal Cochlea Homo
	117034		U72209		YY1-associated factor 2
	431129		AL137751	Hs.263671	Homo sapiens mRNA; cDNA DKFZp434l0812 (f
60	417861		AA334551	1,0,000.	sperm specific antigen 2
00	117280		M18217	Hs.172129	Homo sapiens cDNA: FLJ21409 fis, clone C
	117344		R19085	Hs.210706	Homo sapiens cDNA FLJ13182 fis, clone NT
	117422		AI355562	Hs.43880	ESTs, Weakly similar to A46010 X-linked
	117475		N30205	Hs.93740	ESTs, Weakly similar to I38022 hypotheti
65	117487		N30621	Hs.44203	ESTs
••	117937		AF044209		nuclear receptor co-repressor 1
	130207		AF044209		nuclear receptor co-repressor 1
	117549		N33390	Hs.44483	EST
	117683		N40180		gb:yy44d02.s1 Soares_multiple_sclerosis_
70	117710		N45198	Hs.47248	ESTs, Highly similar to similar to Cdc14
. •	117791		N48325	Hs.93956	EST
	117822		AA706282		ESTs
	422544			Hs.118140	KIAA0716 gene product
	117895		AW450348		ESTs, Highly similar to SORL_HUMAN SORTI
75	452259		AA317439	Hs.28707	signal sequence receptor, gamma (translo
. •	133057		AA465131	Hs.64001	Homo sapiens clone 25218 mRNA sequence
	.00001	, _		•	•

		N55326		Hs.184134	ESTs
		N55493	N55493		gb:yv50c02.s1 Soares fetal liver spleen
		N57493	N57493		gb:yy54c08.s1 Soares_multiple_sclerosis_
_		N62955	N62955	Hs.316433	Homo sapiens cDNA FLJ11375 fis, clone HE
5		N63520	N63520		gb:yy62f01.s1 Soares_multiple_sclerosis_
		N63604	BE327311	Hs.47166	HT021
		N64166		Hs.173859	frizzled (Drosophila) homolog 7
		N64168	AI183838	Hs.48938	hypothetical protein FLJ21802
10		N64191	N46114	Hs.29169	hypothetical protein FLJ22623
10		N66845	N66845		gb:za46c11.s1 Soares fetal liver spleen
		N67135	AV647908		Homo sapiens cDNA: FLJ23285 fis, clone H
		N67295	W32889	Hs.154329	ESTS
		N68963	AW136928		gb:UI-H-BI1-adp-d-08-0-UI.s1 NCI_CGAP_Su
15		N69331	Al252640		peptidylprolyl isomerase C (cyclophilin
15		N70777	AL137554	Hs.49927	protein kinase NYD-SP15
		N71364 N71545	N71313	Hs.163986 Hs.184544	Homo sapiens cDNA: FLJ22765 fis, clone K
			N71571	Hs.269142	Homo sapiens, clone IMAGE:3355383, mRNA, ESTs
		N71571 N74456	N74456	Hs.50499	EST
20		N75594	N75594	Hs.285921	ESTs, Moderately similar to T47135 hypot
20		N79035	Al668658	Hs.50797	ESTs
		N80279	AL035364		hypothetical protein
		N91797		Hs.130760	myosin phosphatase, target subunit 2
		N92454		Hs.180446	karyopherin (importin) beta 1
25		N94581		Hs.288061	collagen, type VIII, alpha 2
23		N94746	N94746	Hs.274248	hypothetical protein FLJ20758
		N98238	N98238	Hs.55185	ESTs
		R02384	Al160570	Hs.252097	pregnancy specific beta-1-glycoprotein 6
		R16833	R16833	Hs.53106	ESTs, Moderately similar to ALU1_HUMAN A
30		R41828	R10674		CSR1 protein
20		R43203	T02865	Hs.328321	EST
		R46395	AA214228		hypothetical protein
		R58863	R58863	Hs.91815	ESTs
		R78248		Hs.299883	hypothetical protein FLJ23399
35	119239	T11483	T11483		gb:CHR90049 Chromosome 9 exon Homo sapie
	119281	T16896	A1692322	Hs.65373	ESTs, Weakly similar to T02345 hypotheti
	119298	T23820	NM_00124	1Hs.155478	cyclin T2
	126502	T30222	T10077	Hs.13453	hypothetical protein FLJ14753
	419983	W15275	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f
40	119558	W38194	W38194		Empirically selected from AFFX single pr
	429641	W42414	AW081883	Hs.211578	Homo sapiens cDNA: FLJ23037 fis, clone L
	419445	W49632	AA884471	Hs.90449	Human clone 23908 mRNA sequence
	119650	W57613	R82342	Hs.79856	ESTs, Weakly similar to S65657 alpha-1C-
4.5		W57759	W57759		gb:zd20g11.s1 Soares_fetal_heart_NbHH19W
45		W61118	W65379	Hs.57835	ESTs
		W65344	AA041350		ESTs, Moderately similar to ICE4_HUMAN C
		W69216	W69216	Hs.92848	ESTs
		W69379	AI287518		Homo sapiens mRNA; cDNA DKFZp586D0923 (f
50		W86728	AW014862		ESTS
50		Z38499	BE379320		MKP-1 like protein tyrosine phosphatase
		Z38630	AA045767		bladder cancer associated protein
	120148	Z39494	F02806	Hs.65765	ESTs
	120100	Z39623	Z39623	Hs.65783	ESTs
55	4019/9	Z40071 Z40174	F06972 AW082866	Hs.27372	BMX non-receptor tyrosine kinase ESTs
55		Z40174 Z40182			
		Z40102 Z40904	Z40182 Z40904	Hs.65885 Hs.66012	EST EST
	120211	AA166965		Hs.111045	ESTs
	120240	AA167500		Hs.103939	EST
60		AA169599	W90403	Hs.111054	ESTs
00		AA171724		Hs.192742	hypothetical protein FLJ12785
	120200	AA171739		Hs.101590	hypothetical protein
		AA177105	AA177105		solute carrier family 25 (mitochondrial
		AA182626	AA179656	7.5	gb:zp54e11.s1 Stratagene NT2 neuronal pr
65		AA186324	AA188175	Hs.82506	KIAA1254 protein
•	422137	AA192099	AJ236885		zinc finger protein 148 (pHZ-52)
	120302	AA192173		Hs.269933	ESTs
	120303	AA192415	Al216292	Hs.96184	ESTs
	120305	AA192553		Hs.101337	uncoupling protein 3 (mitochondrial, pro
70	120319	AA194851	T57776	Hs.191094	ESTs
	408729	AA195520	AA195764	Hs.72639	ESTs
	120326	AA196300	AA196300		hypothetical protein RG083M05.2
1	133145	AA196549	H94227	Hs.6592	Homo sapiens, clone IMAGE:2961368, mRNA,
	120327	AA196721		Hs.130732	hypothetical protein FLJ20285
75	120328	AA196979		Hs.290905	ESTs, Weakly similar to protease [H.sapi
	120340	AA206828	AA206828		gb:zq80b08.s1 Stratagene hNT neuron (937

	417122 AA207123	Al906291	Hs.81234	immunoglobulin superfamily, member 3
	131522 AA214539	A1380040	Hs.239489	TIA1 cytotoxic granule-associated RNA-bi
	421787 AA226914	AA227068	Hs.108301	nuclear receptor subfamily 2, group C, m
	120375 AA227260	AF028706	Hs.111227	Zic family member 3 (odd-paired Drosophi
5	120376 AA227469	AA227469		gb:zr18a07 s1 Stratagene NT2 neuronal pr
	120390 AA233122	AA837093	Hs.111460	calclum/calmodulin-dependent protein kin
	410804 AA233334	U64820	Hs.66521	Machado-Joseph disease (spinocerebellar
	434223 AA233347	AI825842	Hs.3776	zinc finger protein 216
	312771 AA233714	AA018515		Homo sapiens mRNA; cDNA DKFZp761A0411 (f
10	120396 AA233796	AA134006	Hs.79306	eukaryotic translation initiation factor
10			HS.19300	
	120409 AA235050	AA235050	Lin 404000	gb:zs38e04.s1 Soares_NhHMPu_S1 Homo sapi
	120414 AA235704	AW137156		hypothetical protein FLJ10038
	120420 AA236031	Al128114	Hs.112885	spinal cord-derived growth factor-B
1.5	120422 AA236352			hypothetical protein DKFZp434N1928
15	419326 AA236390	W94915	Hs.42419	ESTs
	120423 AA236453	AA236453	Hs.18978	Homo sapiens cDNA: FLJ22822 fis, clone K
	120435 AA243370	AA243370	Hs.96450	EST
	120453 AA250947	AA250947	Hs.170263	tumor protein p53-binding protein, 1
	120455 AA251083	AA251720	Hs.104347	ESTs, Weakly similar to ALUC_HUMAN !!!!
20	120456 AA251113	AA488750	Hs.88414	BTB and CNC homology 1, basic leucine zi
	120473 AA251973	AA251973	Hs.269988	ESTs
	128922 AA252023	AI244901	Hs.9589	ubiquilin 1
	120477 AA252414	AA252414		DKFZP727C091 protein
	120479 AA252650	AF006689		mitogen-activated protein kinase kinase
25	120488 AA255523	AW952916		KIAA0141 gene product
	120510 AA258128	AI796395	Hs.111377	ESTs
	120510 AA250120 120527 AA262105	AA262105		Homo sapiens cDNA FLJ14208 fis, clone NT
	120528 AA262107	A1923511	Hs.104413	ESTs
	120529 AA262235			ESTs
30		A1434823	Hs.104415	
30	120541 AA278298	W07318	Hs.240	M-phase phosphoprotein 1
	120544 AA278721	BE548277		ESTS
	120562 AA280036	BE244580		hypothetical protein FLJ10330
	120569 AA280648	AA807544		ESTs, Weakly similar to B34323 GTP-bindi
25	120571 AA280738	AB037744		KIAA1323 protein
35	120572 AA280794	H39599	Hs.294008	ESTs
	129434 AA280837	AW967495	Hs.186644	ESTs
	130529 AA280886	AA178953	Hs.309648	gb:zp39e03.s1 Stratagene muscle 937209 H
	120575 AA280934	AW978022	Hs.238911	hypothetical protein DKFZp762E1511; KIAA
	409339 AA281535	AB020686	Hs.54037	ectonucleotide pyrophosphatase/phosphodi
40	120591 AA281797	AF078847	Hs.191356	general transcription factor IIH, polype
	120593 AA282047	AA748355	Hs.193522	ESTs
	430275 AA283002	Z11773	Hs.237786	zinc finger protein 187
	440303 AA283709	AA306166		calpain 7
	120609 AA283902	AW978721		ESTs, Weakly similar to A46010 X-linked
45	409702 AA284108	AI752244	1101200010	eukaryotic translation elongation factor
	456870 AA284109	AI241084	Hs.154353	nonselective sodium potassium/proton exc
	132614 AA284371	AA284371		similar to rat nuclear ubiquitous casein
	458750 AA284744	AA115496		Homo sapiens, Similar to RIKEN cDNA 1810
	135376 AA284784	BE617856		
50				mitochondrial ribosome recycling factor
50	120621 AA284840	AW961294		hypothetical protein FLJ23459
	452279 AA286844	AA286844		hypothetical protein FLJ13164
	332484 AA287032	AW172431		ESTs
	120644 AA287038	AI869129	Hs.96616	ESTs
<i></i>	120660 AA287546	AA286785		ESTs
55	135370 AA287553	BE622187		ESTs, Weakly similar to 138022 hypotheti
	120661 AA287556	AA287556		ESTs, Weakly similar to ALUB_HUMAN !!!!
	429828 AA287564	AB019494	Hs.225767	IDN3 protein
	452291 AA291015	AF015592	Hs.28853	CDC7 (cell division cycle 7, S. cerevisi
	120699 AA291716	A1683243	Hs.97258	ESTs, Moderately similar to S29539 ribos
60	100690 AA291749	AA383256	Hs.1657	estrogen receptor 1
	120726 AA293656	AA293655	Hs.21198	ESTs
	120737 AA302430	AL049176	Hs.82223	chordin-like
	120745 AA302809	AA302809		gb:EST10426 Adipose tissue, white I Homo
	443574 AA302820	U83993	Hs.321709	purinergic receptor P2X, ligand-gated io
65	120750 AA310499	AI191410	Hs.96693	ESTs, Moderately similar to 2109260A B c
•••	120761 AA321890	AA321890	. 10.00000	branched chain keto acid dehydrogenase E
	120768 AA340589	AA340589	Hs.104560	EST
	120769 AA340622	A1769467	Hs.9475	ESTs
	135232 AA342457	AL038812	Hs.96800	ESTs, Moderately similar to ALU7_HUMAN A
70				
70	120793 AA342864	AA342864		ESTs
	120796 AA342973	A1247356	Hs.96820	ESTs
	120809 AA346495	AA346495	11 40000	gb:EST52657 Fetal heart II Homo sapiens
	332633 AA347573	AL120071	Hs.48998	fibronectin leucine rich transmembrane p
75	120825 AA347614	A1280215	Hs.96885	ESTs
75	120827 AA347717	AA382525	Hs.132967	Human EST clone 122887 mariner transposo
	120839 AA348913	AA348913		gb:EST55442 Infant adrenal gland II Homo

	4900E0 AA940C47	4 4 2 4 0 C 4 7 Un 0 C 0 C 7	Home contant aDNA EL 149572 for along NT
	120850 AA349647 120852 AA349773	AA349647 Hs.96927 AA349773 Hs.191564	Homo sapiens cDNA FLJ12573 fis, clone NT ESTs
	128852 AA350541	R40622 Hs.106601	ESTs
_	135240 AA357159	AA357159 Hs.96986	EST
5	120870 AA357172	AA357172 Hs.292581	ESTs, Moderately similar to ALU1_HUMAN A
	120894 AA370132	AA370132 Hs.97063	ESTs
	435737 AA370472 120897 AA370867	AF229839 Hs.173202 AA370867 Hs.97079	I-kappa-B-interacting Ras-like protein 1 ESTs, Moderately similar to AF174605 1 F
	120915 AA377296	AL135556 Hs.97104	ESTs, Wooderatery stilling to AFT/4005 TF
10	120935 AA383902	AL048409 Hs.97177	ESTs, Weakly similar to ALU1_HUMAN ALU S
	120936 AA385934	AA385934 Hs.97184	EST, Highly similar to (defline not avai
	120937 AA386255	AA386255 Hs.97186	EST
	120938 AA386260	AA386260 Hs.104632	EST
15	417632 AA386266	R20855 Hs.5422	glycoprotein M6B
13	120960 AA398014 120985 AA398222	AA398014 Hs.104684 Al219896 Hs.97592	EST ESTs
	120988 AA398235	AA398235 Hs.97631	ESTs
	121008 AA398348	AA398348 Hs.130546	Human DNA sequence from clone RP11-251J8
•	121029 AA398482	AA398482 Hs.97641	EST
20	121032 AA398504	AA393037 Hs.161798	ESTs
	121033 AA398505	AA398505 Hs.97360	ESTs
	121034 AA398507 121035 AA398523	AL389951 Hs.271623 AA398523 Hs.210579	nucleoporin 50kD ESTs
	121055 AA398625	AA398625 Hs.97391	ESTs
25	121060 AA398632	AA398632 Hs.97395	ESTs
	121061 AA398633	AA393288 Hs.97396	ESTs
	121091 AA398894	AA398894 Hs.97657	ESTs, Moderately similar to ALU8_HUMAN A
	121092 AA398895	AA398895 Hs.97658	EST
30	121094 AA398900	AA402505 AA398904 Hs.332690	gb:zt62h10.r1 Soares_testis_NHT Homo sap ESTs
50	121096 AA398904 121115 AA399122	AA398187 Hs.104682	ESTs, Weakly similar to mitochondrial ci
	121121 AA399371	AA399371 Hs.189095	similar to SALL1 (sal (Drosophila)-like
	121122 AA399373	Al126713 Hs.192233	ESTs, Highly similar to T00337 hypotheti
2.5	121125 AA399441	AL042981 Hs.251278	KIAA1201 protein
35	121151 AA399636	AA399636 Hs.143629	ESTs
	121153 AA399640	AA399640 Hs.97694	ESTs ESTs
	121163 AA399680 121176 AA400080	Al676062 Hs.111902 AL121523 Hs.97774	ESTs
	121192 AA400262	AA400262 Hs.190093	ESTs
40	121223 AA400725	Al002110 Hs.97169	ESTs, Weakly similar to dJ667H12.2.1 [H.
	121227 AA400748	AA400748 Hs.97823	Homo sapiens mRNA; cDNA DKFZp434D024 (fr
	121231 AA400780	AA814948 Hs.96343	ESTs, Weakly similar to ALUC_HUMAN !!!!
	121278 AA401631	AA037121 Hs.98518	Homo sapiens cDNA FLJ11490 fis, clone HE ESTs
45	121279 AA401688 121282 AA401695	AA292873 Hs.177996 AA401695 Hs.97334	ESTs
	121299 AA402227	AA402227 Hs.22826	tropomodulin 3 (ubiquitous)
	121301 AA402329	NM_006202Hs.89901	phosphodiesterase 4A, cAMP-specific (dun
	121302 AA402398	AA402587 Hs.325520	LAT1-3TM protein
50	121304 AA402449	AA293863 Hs.97316	EST
50	121305 AA402468 134721 AA403268	AA402468 Hs.291557 AK000112 Hs.89306	ESTs hypothetical protein FLJ20105
	121323 AA403314	AA291411 Hs.97247	ESTs
	121324 AA404229	AA404229 Hs.97842	EST
	444422 AA404260	Al768623 Hs.108264	ESTs
55	131074 AA404271	U16125 Hs.181581	glutamate receptor, ionotropic, kainate
	121344 AA405026	AA405026 Hs.193754	ESTs
	121348 AA405182 121350 AA405237	AA405182 Hs.97973 AA405237	ESTs gb:zt06e10.s1 NCI_CGAP_GCB1 Homo sapiens
	121400 AA406061	AA406061 Hs.98001	EST
60	121402 AA406063	AA406063 Hs.98003	ESTs
	121403 AA406070	AA406070 Hs.98004	EST
	121408 AA406137	AA406137 Hs.98019	EST
	121431 AA406335	AA035279 Hs.176731	ESTs
65	121471 AA411804 121474 AA411833	AA411804 Hs.261575 AA402335 Hs.188760	ESTs ESTs, Highly similar to Trad [H.saplens]
03	121526 AA412219	AW665325 Hs.98120	ESTs
	121530 AA412259	AA778658 Hs.98122	ESTs
	121558 AA412497	AA412497	gb:zt95g12.s1 Soares_testis_NHT Homo sap
~ ^	121559 AA412498	Al192044 Hs.104778	ĖSTs
70	121584 AA416586	A1024471 Hs.98232	ESTs
	121609 AA416867	AA416867 Hs.98185 AA416874 Hs.98168	EST ESTs
	121612 AA416874 121737 AA421133	AA421133 Hs.104671	erythrocyte transmembrane protein
	121740 AA421138	AA421138 Hs.143835	EST Process
75	436032 AA422079	AA150797 Hs.109276	latexin protein
	121784 AA423837	T90789 Hs.94308	RAB35, member RAS oncogene family

	121802 AA424328	Al251870 Hs.188898	ESTs
	121803 AA424339	Al338371 Hs.157173	ESTs
	135286 AA424469	AW023482 Hs.97849	ESTs
_	332778 AA424469	AW023482 Hs.97849	ESTs
5	121806 AA424502	AA424313 Hs.98402	ESTs
	129517 AA425004	AW972853 Hs.112237	ESTs
	121845 AA425734	Al732692 Hs.165066	ESTs, Moderately similar to ALU2_HUMAN A
	121853 AA425887	AA425887 Hs.98502	hypothetical protein FLJ14303
10	121891 AA426456	AA426456 Hs.98469	ESTs
10	121895 AA427396	AA427396	gb:zw33a02.s1 Soares ovary tumor NbHOT H
	121899 AA427555	R55341 Hs.50421	KIAA0203 gene product
	121917 AA428218	AA406397 Hs.139425	ESTs
	121918 AA428242 121919 AA428281	BE274689 Hs.184175 AA428281 Hs.98560	chromosome 2 open reading frame 3 EST
15	121941 AA428865		ESTs
15	121941 AA428894	AA428865 Hs.98563 AW452701 Hs.293237	ESTS
	121970 AA429666	AA429666 Hs.98617	EST
	121993 AA430181	AW297880 Hs.98661	ESTs
	418706 AA430184	U73524 Hs.87465	ATP/GTP-binding protein
20	122022 AA431293	AA431293 Hs.98716	ESTs, Moderately similar to T42650 hypot
	122050 AA431478	Al453076	ELAV (embryonic lethal, abnormal vision,
	122051 AA431492	AA431492 Hs.98742	EST
	122055 AA431732	AA431732 Hs.98747	EST
	122105 AA432278	AW241685 Hs.98699	ESTs
25	122125 AA434411	AK000492 Hs.98806	hypothetical protein
	135235 AA435512	AW298244 Hs.266195	ESTs
	122162 AA435698	AA628233 Hs.79946	cytochrome P450, subfamily XIX (aromatiz
	422072 AA435711	AB018255 Hs.111138	KIAA0712 gene product
•	415106 AA435815	U40763 Hs.77965	peptidyl-prolyl isomerase G (cyclophilin
30	122186 AA435842	AA398811 Hs.104673	ESTs
	122235 AA436475	AA436475 Hs.112227	membrane-associated nucleic acid binding
	412970 AA436489	AB026436 Hs.177534	dual specificity phosphatase 10
	419288 AA442060	AA256106 Hs.87507	ESTs
35	122310 AA442079	AW192803 Hs.98974	ESTs, Weakly similar to S65824 reverse t
33	122334 AA443151	BE465894 Hs.98365	ESTs, Weakly similar to LB4D_HUMAN NADP-
	122382 AA446133 122425 AA447145	AA446440 Hs.98643 AB007859 Hs.100955	ESTs KIAA0399 protein
	122431 AA447398	AA447398 Hs.99104	ESTs
	122450 AA447643	AA447643 Hs.112095	hypothetical protein DKFZp434F1819
40	426284 AA447742	AJ404468 Hs.284259	dynein, axonemal, heavy polypeptide 9
	122477 AA448226	AA448226 Hs.324123	ESTs
	122500 AA448825	AA448825 Hs.99190	ESTs
	122522 AA449444	AA299607 Hs.98969	ESTs /
4.5	122536 AA450087	AF060877 Hs.99236	regulator of G-protein signalling 20
45	122538 AA450211	AA450211 Hs.99239	ESTs
	122540 AA450244	AA476741 Hs.98279	ESTs, Weakly similar to A43932 mucin 2 p
	122560 AA452123	AW392342 Hs.283077	centrosomal P4.1-associated protein; unc
	421919 AA452155	AJ224901 Hs.109526	zinc finger protein 198
50	122562 AA452156	AA452156	gb:zx29c03.s1 Soares_total_fetus_Nb2HF8_
50	122585 AA453036	Al681654 Hs.170737 AA453525 Hs.143077	hypothetical protein FLJ23251 ESTs
	122608 AA453526 122635 AA454085	AA453025 Hs.143077 AA454085	gb:zx33a08.s1 Soares_total_fetus_Nb2HF8_
	122636 AA454103	AW651706 Hs.99519	hypothetical protein FLJ14007
	122653 AA454642	AW009166 Hs.99376	ESTs
55	122660 AA454935	Al816827 Hs.180069	nuclear respiratory factor 1
	122703 AA456323	AA456323 Hs.269369	ESTs
	122724 AA457395	AA457395 Hs.99457	ESTs
	122749 AA458850	AA458850 Hs.293372	ESTs, Weakly similar to B34087 hypotheti
	122772 AA459662	AW117452 Hs.99489	ESTs
60	430242 AA459668	U66669 Hs.236642	3-hydroxyisobutyryl-Coenzyme A hydrolase
	429838 AA459679	AW904907 Hs.30732	hypothetical protein FLJ13409; KIAA1711
	122777 AA459702	AK001022 Hs.214397	hypothetical protein FLJ10160 similar to
	135362 AA460017	AA978128 Hs.99513	ESTs, Weakly similar to T17454 diaphanou
65	122798 AA460324	AW366286 Hs.145696	splicing factor (CC1.3)
03	122837 AA461509	AA461509 Hs.293565	ESTs, Weakly similar to putative p150 [H
	122860 AA464414 122861 AA464428	AA464414 AA335721 Hs.213628	gb:zx78g01.s1 Soares ovary tumor NbHOT H ESTs
		AA470084 Hs.98358	ESTs
	122910 AA470084 132899 AA476606	AA470004 Hs.59666	SMAD in the antisense orientation
70	122967 AA478521	AA806187 Hs.289101	glucose regulated protein, 58kD
, 0	422845 AA478523	AA317841 Hs.7845	hypothetical protein MGC2752
	123009 AA479949	AA535244 Hs.78305	RAB2, member RAS oncogene family
	128917 AA481252	Al365215 Hs.206097	oncogene TC21
	123081 AA485351	Al815486 Hs.243901	Homo sapiens cDNA FLJ20738 fis, clone HE
75	123133 AA487264	AA487264 Hs.154974	Homo sapiens mRNA; cDNA DKFZp667N064 (fr
	123184 AA489072	BE247767 Hs.18166	KIAA0870 protein

	332467 AA489630	NM_014700Hs.119004	KIAA0665 gene product
	123233 AA490225	AW974175 Hs.151875	ESTs, Weakly similar to MAPB_HUMAN MICRO
	123234 AA490227	NM_001938Hs.16697	down-regulator of transcription 1, TBP-b
	123236 AA490255	AW968504 Hs.123073	CDC2-related protein kinase 7
5	123255 AA490890	AA830335 Hs.105273	ESTs
5			ESTs
	430015 AA490916	AW768399 Hs.106357	· ·
	448892 AA490925	AF084535 Hs.22464	epilepsy, progressive myoclonus type 2,
	123259 AA490955	Al744152 Hs.283374	ESTs, Weakly similar to CA15_HUMAN COLLA
4.0	123284 AA495812	AA488988 Hs.293796	ESTs
10	123286 AA495824	AA495824 Hs.188822	ESTs, Weakly similar to A46010 X-linked
	123315 AA496369	AA496369	gb:zv37d10.s1 Soares ovary tumor NbHOT H
	457397 AA504125	AW969025 Hs.109154	ESTs
	433049 AA521473	AU076668 Hs.334884	SEC10 (S. cerevisiae)-like 1
	123421 AA598440	AA598440 Hs.291154	EST, Weakly similar to 138022 hypothetic
15	123449 AA598899	AL049325 Hs.112493	Homo sapiens mRNA; cDNA DKFZp564D036 (fr
10	426981 AA599244	AL044675 Hs.173081	KIAA0530 protein
	409986 AA599694	NM_014777Hs.57730	KIAA0133 gene product
	123497 AA600037	AA765256 Hs.135191	ESTs, Weakly similar to unnamed protein
20	123604 AA609135	AA609135 Hs.293076	ESTS
20	123712 AA609684	AA609684	Homo sapiens cDNA: FLJ21543 fis, clone C
	123731 AA609839	AA609839 Hs.334437	gb:ae62f01.s1 Stratagene lung carcinoma
	123800 AA620423	AA620423 Hs.112862	EST
	123841 AA620747	AA620747 Hs.112896	ESTs
	123929 AA621364	AA621364 Hs.112981	ESTs
25	123978 C20653	T89832 Hs.170278	ESTs
	133184 D20085	AA001021 Hs.6685	thyroid hormone receptor interactor 8
	132835 D20749	Z83844 Hs.5790	hypothetical protein dJ37E16.5
	435147 D51285	AL133731 Hs.4774	Homo sapiens mRNA; cDNA DKFZp761C1712 (f
	128695 D59972	NM_003478Hs.101299	cullin 5
30	124029 F04112	F04112 Hs.312553	gb:HSC2JH062 normalized infant brain cDN
50		AA902384 Hs.73853	bone morphogenetic protein 2
	124057 F13604		
	449316 H01662	Al609045 Hs.321775	hypothetical protein DKFZp434D1428
	130973 H05135	Al638418 Hs.1440	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep
25	124106 H12245	H12245	gb:ym17a12.r1 Soares infant brain 1NIB H
35	124136 H22842	H22842 Hs.101770	EST
	124165 H30894	H30039 Hs.107674	ESTs
	429627 H43442	NM_015340Hs.2450	leucyl-tRNA synthetase, mitochondrial
	124178 H45996	BE463721 Hs.97101	putative G protein-coupled receptor
	129948 H69281	Al537162 Hs.263988	ÉSTs
40	452114 H69485	N22687 Hs.8236	ESTs
. •	124+D826254	H69899 H69899	gb:yu70c12.s1 Weizmann Olfactory Epithel
	129056 H70627	AI769958 Hs.108336	ESTs, Weakly similar to ALUE_HUMAN !!!!
	427580 H73260	AK001507 Hs.44143	Homo sapiens clone FLB6914 PRO1821 mRNA,
	426793 H77531	X89887 Hs.172350	HIR (histone cell cycle regulation defec
45		H80552 Hs.102249	EST
4 7	124274 H80552		
	129078 H80737	Al351010 Hs.102267	lysosomal
	457658 H93412	AW952124 Hs.13094	presenilins associated rhomboid-like pro
	124315 H94892	NM_005402Hs.288757	v-ral simian leukemia viral oncogene hom
~ 0	437712 H95643	X04588 Hs.85844	neurotrophic tyrosine kinase, receptor,
50	124324 H96552	H96552 Hs.159472	Homo sapiens cDNA: FLJ22224 fls, clone H
	452933 H97146	AW391423 Hs.288555	Homo sapiens cDNA: FLJ22425 fis, clone H
	132231 H99131	AA662910 Hs.42635	hypothetical protein DKFZp434K2435
	421877 H99462	AW250380 Hs.109059	mitochondrial ribosomal protein L12
	443123 H99837	AA094538 Hs.272808	putative transcription regulation nuclea
55	132963 N22140	AA099693 Hs.34851	epsilon-tubulin
	420473 N22197	AL118782 Hs.300208	Sec23-interacting protein p125
	417381 N23756	AF164142 Hs.82042	solute carrier family 23 (nucleobase tra
	130365 N24134	W56119 Hs.155103	eukaryotic translation initiation factor
	456610 N24195	AF172066 Hs.106346	retinoic acid repressible protein
60	400010 N24100		mitochondrial ribosomal protein L43
OU	439311 N26739	BE270668 Hs.151945	
	124383 N27098	N27098 Hs.102463	EST
	124387 N27637	N27637 Hs.109019	ESTs
	129341 N33090	Al193519 Hs.226396	hypothetical protein FLJ11126
	419793 N35967	Al364933 Hs.168913	serine/threonine kinase 24 (Ste20, yeast
65	124433 N39069	AA280319 Hs.288840	PRO1575 protein
	124441 N46441	AW450481 Hs.161333	ESTs
	132338 N48270	AA353868 Hs.182982	golgin-67
	436575 N48365	A1473114	ESTs
	124466 N51316	R10084 Hs.113319	kinesin heavy chain member 2
70	408048 N51499	NM_007203Hs.42322	A kinase (PRKA) anchor protein 2
, 0	124483 N53976	AI821780 Hs.179864	ESTs
	124400 NO0070		ESTs, Weakly similar to 2109260A B cell
	124484 N54157	H66118 Hs.285520	
	124485 N54300	AB040933 Hs.15420	KIAA1500 protein
75	124494 N54831	N54831 Hs.271381	ESTs, Weakly similar to I38022 hypotheti
75	129200 N59849	N59849 Hs.13565	Sam68-like phosphotyrosine protein, T-ST
	124527 N62132	N79264 Hs.269104	ESTs

	124532 N62375	N62375 Hs.102731	EST
	133213 N63138	AA903424 Hs.6786	ESTs
	124539 N63172	D54120 Hs.146409	cell division cycle 42 (GTP-binding prot
5	129196 N63787 124575 N68168	BE296313 Hs.265592 N68168	ESTs, Weakly similar to 138022 hypotheti gb:za11c01.s1 Soares fetal liver spleen
,	124576 N68201	N68201	ESTs, Weakly similar to 138022 hypotheti
	124577 N68300	N68300 Hs.138485	gb:za12g07.s1 Soares fetal liver spleen
	124578 N68321	N68321 Hs.231500	EST
	124593 N69575	N69575 Hs.102788	ESTs
10	128501 N75007	AL133572 Hs.199009	protein containing CXXC domain 2
	332434 N75542	Al680737 Hs.289068	Homo sapiens cDNA FLJ11918 fis; clone HE
	128473 N90066	T78277 Hs.100293	O-linked N-acetylglucosamine (GlcNAc) tr
	128639 N91246	AW582962 Hs.102897	CGI-47 protein
	124652 N92751	W19407 Hs.3862	regulator of nonsense transcripts 2; DKF
15	133137 N93214	AB002316 Hs.65746	KIAA0318 protein
	124671 N99148	AK001357 Hs.102951	Homo sapiens cDNA FLJ10495 fis, clone NT
	133054 R07876	AA464836 Hs.291079	ESTs, Weakly similar to T27173 hypotheti
	425266 R10865	J00077 Hs.155421	alpha-fetoprotein
20	124720 R11056	R05283	gb:ye91c08.s1 Soares fetal liver spleen ESTs
20	124722 R11488 128944 R23930	T97733 Hs.185685 AL137586 Hs.52763	anaphase-promoting complex subunit 7
	132965 R26589	Al248173 Hs.191460	hypothetical protein MGC12936
	426504 R37588	AW162919 Hs.170160	RAB2, member RAS oncogene family-like
	438828 R37613	AL134275 Hs.6434	hypothetical protein DKFZp761F2014
25	124757 R38398	H11368 Hs.141055	Homo sapiens clone 23758 mRNA sequence
	124762 R39179	AA553722 Hs.92096	ESTs, Moderately similar to A46010 X-lin
	124773 R40923	R45154 Hs.338439	ESTs
	135266 R41179	R41179 Hs.97393	KIAA0328 protein
	427961 R41294	AW293165 Hs.143134	ESTs
30	414303 R42307	NM_004427Hs.165263	early development regulator 2 (homolog o
	128540 R43189	AW297929 Hs.328317	EST
	124785 R43306	W38537 Hs.280740	hypothetical protein MGC3040
	124792 R44357	R44357 Hs.48712	hypothetical protein FLJ20736
35	124793 R44519	R44519	gb:yg24h04.s1 Soares infant brain 1NIB H
33	124799 R45088	R45088	gb:yg38g04.s1 Soares infant brain 1NIB H
	124812 R47948 124821 R51524	R47948 Hs.188732 H87832 Hs.7388	ESTs kelch (Drosophila)-like 3
	424123 R54950	AW966158 Hs.58582	Homo sapiens cDNA FLJ12789 fis, clone NT
	124835 R55241	R55241 Hs.101214	EST
40	124845 R59585	R59585 Hs.101255	ESTs
• •	124847 R60044	W07701 Hs.304177	Homo sapiens clone FLB8503 PRO2286 mRNA,
	440630 R60872	BE561430 Hs.239388	Human DNA sequence from clone RP1-304B14
	124861 R66690	R67567 Hs.107110	ESTs
4 ~	332503 R67266	NM_004455Hs.150956	exostoses (multiple)-like 1
45	124879 R73588	R73588 Hs.101533	ESTs
	124892 R79403	Al970003 Hs.23756	hypothetical protein similar to swine ac
	124906 R87647	H75964 Hs.107815	ESTs
	124922 R93622	R93622 Hs.12163	eukaryotic translation initiation factor
50	124940 R99599	AF068846 Hs.103804	heterogeneous nuclear ribonucleoprotein
50	124941 R99612	Al766661 Hs.27774	ESTs, Highly similar to AF161349 1 HSPC0
	124943 T02888 124947 T03170	AW963279 Hs.123373 T03170 Hs.100165	ESTs, Weakly similar to ALU1_HUMAN ALU S ESTs
	124954 T10465	AW964237 Hs.6728	KIAA1548 protein
	456862 T15418	U55184 Hs.154145	hypothetical protein FLJ11585
55	410653 T15597	BE383768 Hs.65238	95 kDa retinoblastoma protein binding pr
	418133 T15652	R43504 Hs.6181	ESTs
	440014 T16898	AW960782 Hs.6856	ash2 (absent, small, or homeotic, Drosop
	131082 T26644	Al091121 Hs.246218	Homo sapiens cDNA: FLJ21781 fis, clone H
	124980 T40841	T40841 Hs.98681	ESTs
60	124984 T47566	BE313210 Hs.334798	eukaryotic translation elongation factor
	124991 T50116	T50116	gb:yb77c10.s1 Stratagene ovary (937217)
	457222 T50145	NM_004477Hs.203772	FSHD region gene 1
	125000 T58615	T58615 Hs.235887	ESTs
CE	132932 T59940	AW118826 Hs.6093	Homo sapiens cDNA: FLJ22783 fis, clone K
65	444484 T63595	AK002126 Hs.11260	hypothetical protein FLJ11264
		T91251	gb:yd60a10.s1 Soares fetal liver spleen
	125008 T64891		ESTs
	125009 T64924	T64924 Hs.303046	Homo conione mPAIA for VIA 14794 models
	125009 T64924 445384 T64933	T79136 Hs.127243	Homo sapiens mRNA for KIAA1724 protein,
70	125009 T64924 445384 T64933 125017 T68875	T79136 Hs.127243 T68875	gb:yc30f05.s1 Stratagene liver (937224)
70	125009 T64924 445384 T64933 125017 T68875 125018 T69027	T79136 Hs.127243 T68875 T69027 Hs.269481	gb:yc30f05.s1 Stratagene liver (937224) sex comb on midleg homolog 1
70	125009 T64924 445384 T64933 125017 T68875 125018 T69027 125020 T69924	T79136 Hs.127243 T68875 T69027 Hs.269481 T69981	gb:yc30f05.s1 Stratagene liver (937224) sex comb on midleg homolog 1 gb:yc19d03.r1 Stratagene lung (937210) H
70	125009 T64924 445384 T64933 125017 T68875 125018 T69027 125020 T69924 437871 T70353	T79136 Hs.127243 T68875 T69027 Hs.269481 T69981 Al084813 Hs.114088	gb:yc30f05.s1 Stratagene liver (937224) sex comb on midleg homolog 1 gb:yc19d03.r1 Stratagene lung (937210) H ESTs
70	125009 T64924 445384 T64933 125017 T68875 125018 T69027 125020 T69924 437871 T70353 134204 T79780	T79136 Hs.127243 T68875 T69027 Hs.269481 T69981 Al084813 Hs.114088 Al873257 Hs.7994	gb:yc30f05.s1 Stratagene liver (937224) sex comb on midleg homolog 1 gb:yc19d03.r1 Stratagene lung (937210) H
70 75	125009 T64924 445384 T64933 125017 T68875 125018 T69027 125020 T69924 437871 T70353	T79136 Hs.127243 T68875 T69027 Hs.269481 T69981 Al084813 Hs.114088	gb:yc30f05.s1 Stratagene liver (937224) sex comb on midleg homolog 1 gb:yc19d03.r1 Stratagene lung (937210) H ESTs hypothetical protein FLJ20551
	125009 T64924 445384 T64933 125017 T68875 125018 T69027 125020 T69924 437871 T70353 134204 T79780 125050 T79951	T79136 Hs.127243 T68875 T69027 Hs.269481 T69981 Al084813 Hs.114088 Al873257 Hs.7994 AW970209 Hs.111805	gb:yc30f05.s1 Stratagene liver (937224) sex comb on midleg homolog 1 gb:yc19d03.r1 Stratagene lung (937210) H ESTs hypothetical protein FLJ20551 ESTs

	405000 T05050	T05050	1 100104 40 51111
	125063 T85352	T85352	gb:yd82d01.s1 Soares fetal liver spleen
	125064 T85373	T85373	gb:yd82f07.s1 Soares fetal liver spleen
	125066 T86284	T86284	gb:yd77b07.s1 Soares fetal liver spleen
_	416507 T89579	AL045364 Hs.79353	transcription factor Dp-1
5	125080 T90360	T90360 Hs.268620	ESTs, Highly similar to ALU6_HUMAN ALU S
	125097 T94328	AW576389 Hs.335774	EST, Moderately similar to S65657 alpha-
	125104 T95590	T95590	gb:ye40a03.s1 Soares fetal liver spleen
	135107 T97257	T97257 Hs.94560	ESTs, Moderately similar to 138022 hypot
10	423122 T97599	AA845462 Hs.124024	deltex (Drosophila) homolog 1
10	125118 T97620	R10606 Hs.269890	gb:yf35f11.s1 Soares fetal liver spleen
	125120 T97775	T97775 Hs.100717	EST
	134160 T98152	T98152 Hs.79432	fibrillin 2 (congenital contractural ara
	125136 W31479	AW962364 Hs.129051	ESTs
	125144 W37999	AB037742 Hs.24336	KIAA1321 protein
15	125150 W38240	W38240	Empirically selected from AFFX single pr
~ •	450142 W40150	AW207469 Hs.24485	chondroitin sulfate proteoglycan 6 (bama
	131987 W45435	AW453069 Hs.3657	activity-dependent neuroprotective prote
	125178 W58202		
		W93127 Hs.31845	ESTS
20	125180 W58344	W58469 Hs.103120	ESTs
20	125182 W58650	AA451755 Hs.263560	ESTs
	446888 W68736	AL030996 Hs.16411	hypothetical protein LOC57187
	125197 W69106	AF086270 Hs.278554	heterochromatin-like protein 1
	133497 W69111	BE617303 Hs.74266	hypothetical protein MGC4251
	429922 W69399	Z97630 Hs.226117	H1 histone family, member 0
25	129232 W69459	R98881 Hs.109655	sex comb on midleg (Drosophila)-like 1
	422166 W72424	W72424 Hs.112405	S100 calcium-binding protein A9 (calgran
	125209 W72724	W72724 Hs.103174	ESTs, Weakly similar to TSP2_HUMAN THROM
			ESTs
	125212 W72834	AA746225 Hs.103173	
20	456631 W73955	BE383436 Hs.108847	hypothetical protein MGC2749
30	125223 W74701	Al916269 Hs.109057	ESTs, Weakly similar to ALU5_HUMAN ALU S
	125225 W76540	W74169 Hs.16492	DKFZP564G2022 protein
	125228 W79397	AA033982 Hs.110059	ESTs, Weakly similar to 138022 hypotheti
	132393 W85888	AL135094 Hs.47334	hypothetical protein FLJ14495
	125238 W86038	N99713 Hs.109514	ESTs
35	125247 W86881	AA694191 Hs.163914	ESTs
	129296 W87804	Al051967 Hs.110122	ESTs
	125263 W88942	AA098878	gb:zn45g10.r1 Stratagene HeLa cell s3 93
	125266 W90022		ESTs, Highly similar to LCT2_HUMAN LEUKO
40	450862 W92272	U91543 Hs.25601	chromodomain helicase DNA binding protei
40	452401 W92764	NM_007115Hs.29352	tumor necrosis factor, alpha-induced pro
	428243 W93040	H05317 Hs.283549	ESTs
	125277 W93227	W93227 Hs.103245	EST
	125278 W93523	Al218439 Hs.129998	enhancer of polycomb 1
	125280 W93659	Al123705 Hs.106932	ESTs
45	448205 W94003	W93949 Hs.33245	ESTs
	131844 W94401	Al419294 Hs.324342	ESTs
	125284 W94688	NM_002666Hs.103253	perilipin
	417111 W94787	AW016321 Hs.82306	destrin (actin depolymerizing factor)
	445424 Z38294	AB028945 Hs.12696	cortactin SH3 domain-binding protein
50			Homo saplens cDNA FLJ13069 fis, clone NT
50	125289 Z38311	T34530 Hs.4210	
	446313 Z38465	H06245 Hs.106801	ESTs, Weakly similar to PC4259 ferritin
	431342 Z38525	AW971018 Hs.21659	ESTS
	433227 Z38538	AB040923 Hs.106808	kelch (Drosophila)-like 1
	428306 Z38551	AB037715 Hs.183639	hypothetical protein FLJ10210
55	424624 Z38783	AB032947 Hs.151301	Ca2+dependent activator protein for secr
	125295 Z39113	AB022317 Hs.25887	sema domain, immunoglobulin domain (lg),
	125298 Z39255	AW972542 Hs.289008	Homo sapiens cDNA: FLJ21814 fis, clone H
	125300 Z39591	Z39591 Hs.101376	EST EST
	448378 Z39783		Homo sapiens cDNA FLJ12908 fis, clone NT
60		BE622770 Hs.264915	
UU	444582 Z39920	R55344 Hs.22142	cytochrome b5 reductase b5R.2
	130882 Z40166	AA497044 Hs.20887	hypothetical protein FLJ10392
	128888 Z40388	Al760853 Hs.241558	ariadne (Drosophila) homolog 2
	125310 Z40646	R59161 Hs.124953	ESTs
	125315 Z41697	R38110 Hs.106296	ESTs
65	125317 Z99349	Z99348 Hs.112461	ESTs, Weakly similar to I38022 hypotheti
	135096 Z99394	AA081258	zinc finger protein 36 (KOX 18)
			G F

TABLE 3A

Table 3A shows the accession numbers for those pkeys lacking unigenelD's for Table 3. The pkeys in Table 7 lacking unigenelD's are represented within Tables 1-6A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" 5 column.

10

Pkey:

CAT number:

Unique Eos probeset identifier number Gene cluster number Genbank accession numbers Accession:

1	-5	
ı		

15			
	Pkey	CAT Number	Accession
20	108469 124106 108501 108562 101300	116761_1 125446_1 1368412 36375_1 4669_1	AA079487 AA128547 AA128291 AA079587 AA079600 H12245 AA094769 R14576 AA083256 AA100796 AF020589 AA074629 AA075946 AA100849 AA085347 AA126309 AA079311 AA079323 AA085274 BE535511 M62098 AA306787 AW891766 AA348998 AA338869 AA344013 AW956561 AW389343 AW403607 L40391 AW408435 AA121738 Al568978 H13317 R20373 AW948724 AW948744 AA335023 AA436722 AA448690 C21404
25			AW884390 AA345454 AA303292 AA174174 BE092290 T90614 AA035104 R76028 AA126924 AA741086 AW022056 AW118940 AA121666 Al832409 AA683475 Al140901 Al623576 AW519064 AW474125 Al953923 Al735349 AW150109 Al436154 AW118130 AW270782 Al804073 N27434 AA876543 AA937815 Al051166 AA505378 Al041975 Al335355 Al089540 AA662243 Al127912 Al925604 Al250880 Al366874 Al564386 Al815196 Al683526 Al435885 Al160934 H79030 Al801493 AA448691 Al673767 Al076042 Al804327 AA813438 AA680002 Al274492 T16177 Al287337 Al935050
30			AA907805 AA911493 Al589411 Al371358 AW576236 Al078866 AW516168 AA346372 Al560185 AA471009 R75857 AA296025 AA523155 AA853168 Al696593 Al658482 Al566601 AW072797 AA128047 AA035502 AW243274 AA992517 R43760
35	132091	94851_1	AW954243 AA829930 AA412478 AA828434 AA814538 AI927418 AI192435 W52897 AA443666 AA031913 AI683306 AA918481 AI183314 D83907 AI206832 AA876122 D83836 D83838 D82533 AI761290 AI191125 AI143749 AW771909 AI241436 AI767267 W56507 AA847787 AA568692 T10502 AI247870 AA715017 AA643304 AA890233 AA811387 AA897470 AA907729 AI708679 AI078010 AA452830 AW419160 AI783713 N80205 W56778 AA676899 AI888718 N69930
			Al338935 Al217580 AA639508 AA575836 BE046852 Al312651 Al038406 AA628649 AA643838 Al493761 AA032024 W38849 AA340178 AA447052 AA452969 W19369 AA296364 H44229 W58767 C05751 C05835 Al741989 N98532
40	117034	20113_2	AW102617 AA412583 Al922246 W38495 AA355375 AA928571 C06275 AA352500 N93132 U72209 NM_005748 Al655607 Al052758 AA385199 AW956794 H88679 AL135153 Al765644 AA384399 AW966458 AA568443 AA804610 Al873513 H88639 Z25371 R63456 W44919
	100752	33207_21	T81309 BE019033 R94181 BE019198 NM_000612 J03242 AW411299 BE300064 BE297544 R94182 AW630108 T53723 D58853 H78073 H80594 BE299560 T48899 H70196 M17426 N77077 S77035 H58384 H61664 H78540 T84527 C17198 H60255 H71980 R92644 W79050 X00910 M29645 R91055 M17863 M17862 T71815 BE299561 BE464561 X06260
45			R94741 T54216 C18594 BE262015 X06161 AW409889 AA378400 BE263228 BE313278 R88116 BE313457 H43500 T48617 BE313761 H77309 AI207601 X06159 H40413 X03425 T87663 R10627 X03562 M14118 W03982 R97520 H81229 T83157 H83168 H48762 AA669898 BE263054 H47289 AA022807 R11555 H74260 R76968 R28338 H72534 H72464 H62031 N72478 N45355 AW411300 R89113 R69135 H58454 T83281 R93476 H69645 H68015 T82229 H71089 T85121 H59939 W65299 N78176 H53909 N72373 R21788 H04660 H59639 H61874 BE262219 T53614 N73335 N50464 W00943
50			N77189 R89257 AA570502 R89432 R06366 AA553480 AA776271 AA551359 AA551050 H51670 AA601052 BE299081 H68198 H52276 BE207832 N91192 H70332 X07868 X07868 H69464 H53782 H73710 R80435 AA553384 AW884176 N53475 T71662 AW954036 AW954033 AA552931 H93206 AA430218 AA553476 AI918470 T54124 BE207982 BE300177 N73994 AW882625 N39549 N53838 AA722389 H71878 H58909 H37849 H78435 T47933 R77174 R83814 AA411890 H94199 AA663208 BE205778 AA490137 H70492 R98232 H37800 AA679294 H40341 H74238 H47290 H73231 T48618
55			AA025428 Al039521 H92969 N59369 H80538 H72933 T90630 AA411891 N55000 H74225 AA340290 AW957061 T54316 AA340437 H57125 H58908 H79027 H63450 N74623 R93425 H68714 H68758 N68396 H48763 N69256 H57320 H53831 H53589 N68833 N52453 H56048 H69870 H78074 R69253 R83375 T53615 H94330 H58455 H90864 T47934 H74261 R89258 R97997 R91056 R28339 R86760 H78235 R97521 H67692 H40358 AA022688 H52513 H59601 T88690 H65256 H63397 W65397 AA553588 R19280 N52645 W73930 R06367 R21743 H72372 N73921 AW883539 AW882639 T40616
60			H47084 R95723 AA634316 AA862781 H77310 R91389 H93111 R92767 T54512 R89341 H70333 H57817 H82941 H62032 N52638 H58385 T91796 H51086 AA340292 T49918 H81230 R36121 N50411 T67664 N62436 N39340 AA665637 AA340446 H93377 H92973 BE296290 BE269788 H61665 AA340444 N54605 AA454101 R10628 R94200 AI200549 AA342640 BE298855 BE250229 T49916 H82008 N28278 AW880662 H71268 N76791 H47685 H65255 W05198 AW889144 N76677 H71702 H68036 H71915 R91612 R87807 H68059 AI133328 AI247866 AA621443 AW881050
65			AA700847 AA340413 AW878608 AW881181 AW878249 H71916 N54596 BE161581 AW878082 W04212 AW881040 AW885492 AW880519 AA334887 AW878715 W06882 AW630222 AW885381 H70869 AW381778 H47601 AW889982 H63868 AW884986 AW878713 AW878685 R36391 AW878694 AA368070 C03393 AW878695 AW878705 AW878665 AW878742 AW878620 AW878823 AW878688 R29048 AW878690 AW878686 AW878810 AW878827 AW878733 AW878659 AW878749 AW878681 AW878681 AW883353 AW8883277 AW883300 AW883565 AW883298 AW883143 AW883045
70			AW883482 AW883352 AW883417 AW883357 AW883231 AW883474 AW883355 AW882620 AW882533 AW883754 AW883139 AW882827 AW883641 AW883567 AW883481 AW882983 AW882982 AW882465 AW883419 AW882466 AW883639 AW882330 AW882981 AW882534 AW882874 AW882619 AW883480 AW882826 AW882831 AW882835 AW882830 AW883563 AW882456 AW627642
75	116417	5418_11	AW499664 AW500888 AL042095 AW576556 AW265424 Al521500 AA761333 AA761319 AW291137 AA649040 AA769094 AA489664 AA635311 AW070509 AA425658 Al381489 AA609309 AA134476 W74704 Al923640 AW084888 H45700 Al985564 AW629495 AW614573 Al859571 Al693486 AA913892 Al806164 AA909524 AW263513 Al356361 Z40708

	123712	374423_1	Al332765 Al392620 AA181060 AW118719 AW968804 AW263502 AW505314 AA036967 W74741 R51139 H19364 H45751 Z44962 AW370823 H25650 T54007 AA453000 AL045739 AA609684 AA758732
5	117156	145392_1	M780564 AA736732 W73853 AA928112 W77887 AW889237 AA148524 AI749182 AI754442 AI338392 AI253102 AI079403 AI370541 AI697341 H97538 AW188021 AI927669 W72716 AI051402 AI188071 AI335900 N21488 AW770478 W92522 AI691028 AI913512 AI144448 W73819 AA604358 N28900 W95221 AI868132 H98465 AA148793
10	125008 125020 125066 116661	1802095_1 116017_1 1814993_1 1532859 1	T91251 T64891 T85665 T69981 T69924 AA078476 T86284 T81933 R61504 F04247
10	125104 124575 125263	413347_1 1666649_1 1547_2	T95590 AA703278 H62764 N68168 N69188 N90450 AA098878 W88942 AW960564 AA092457 T55890 D56120 T92525 Al815987 BE182608 BE182595 AW080238 M90657 AA347236 AW961686
15	131859	3672_1	AW176446 AA304671 AW583735 T61714 AA316968 AI446615 AA343532 AA083489 AA488005 W52095 W39480 N57402 D82638 W25540 W52847 D82729 D58990 BE619182 AA315188 AA308636 AA112474 W76162 AA088544 H52265 AA301631 H80982 AA113786 BE620997 AW651691 AA343799 BE613669 BE547180 BE546656 F11933 AA376800 AW239185 AA376086 BE544387 BE619041 AA452515 AA001806 AA190873 AA180483 AA159546 F00242 AI940609 AI940602 AI189753 T97663 T66110 AW062896 AW062910 AW062902 AI051622 AI828930 AA102452 AI685095 AI819390
20			AA557597 AA383220 Al804422 Al633575 AW338147 AW603423 AW606800 AW750567 AW510672 Al250777 AA083510 AW629109 AW513200 AA921353 Al677934 Al148698 Al955858 AA173825 AA453027 Al027865 AW375542 AA454099 AA733014 Al591384 R79300 R80023 AA843108 AA626058 AA844898 AW375550 AA889018 Al474275 AW205937 Al052270 AW388117 AW388111 AA699452 Al242230 N47476 H38178 AA366621 AA113196 AA130023 H39740 T61629 Al885973 AW083671 AA179730 AA305757 Al285455 N83956 AA216013 AA336155 AW999959 T97525 AA345349
25	40EEGE	1704098 1	T91762 AA771981 Al285092 Al591386 BE392486 BE385852 AA682601 Al682884 AA345840 T85477 AA292949 AA932079 AA098791 D82607 T48574 AW752038 C06300 R20840 R20839
30	125565 132983	11922_1	M30269 NM_002508 X82245 AI078760 AW957003 D78945 M27445 AA650439 AL048816 AV660256 AV660347 AA333052 BE295257 T60999 AA383049 AW369677 Z26985 AW175704 AA343326 AW747957 AI818389 W17308 W17302 H15591 AA371284 AA370412 W94966 BE384365 T28498 R80714 R16959 H21723 AW835154 D56097 D56381
	118584 133607	532052_1 1227_6	W21232 AA190565 AW379755 AW067895 AW136928 AI685655 BE218584 BE465078 N68963 AA975338 BE147199 N76377 BE773749 BE397561 BE387189 AL037858 AL037878 AI963094 BE259216 AA011363 AL036189 BE562325 AA251169
35			BE617431 N98537 AA158093 AL047800 M34539 NM_000801 AA312140 D16971 AA158904 AA307114 AA312803 T09203 AW629686 AL048504 BE388578 AA220957 AA158364 BE267385 AA224971 C18055 BE241757 AA115056 AI936769 BE378435 BE206971 AW674924 BE622060 AA604674 AA115273 AW402159 AA338608 BE568819 M80199 X55741 AA375111 AA376016 BE612671 AA805742 AW405588 N25850 N44580 H06031 AW403549 BE536552 AA056726 BE543239 AA082517 AI201645 AI201642 AI192622 N40104 AA370921 BE547569 AI969602 AA302038 AI197890
40			AW268354 Al014938 W45448 Al541395 AA037272 BE538826 AL039613 BE536130 AA299355 AW805147 AW974624 H53220 Al471471 AA399303 AA007386 W35106 BE613277 R12739 R12738 AA304342 AA667802 BE409581 Al498844 AV662092 AW904105 AA011375 BE315214 H99302 BE537893 N32299 AW855829 Al291320 BE078322 Al301395 AA303362 N32719 AA358328 AA357877 Al952540 H56279 H02758 H02048 AW805233 R82224 AA410772 AA291352 BE171109 N69935 BE169248 AA361173 H44978 BE617887 D52560 AA084043 W03595 R67219 N36477 N42924 R67104
45			H44901 H79695 W21105 AA393988 W30899 AA316096 BE622896 W46872 AA442678 BE544893 BE540112 BE621873 AA338067 N55052 BE398154 BE621210 AA740760 C03739 C03206 BE396692 AA482370 AA031614 AA301575 AA304710 AA132153 AA029796 AA994960 H19567 AA442969 H49781 H46871 AA035395 AA056185 AA149378 AA643080 AL135479 AA292329 AA654337 AA041228 AA454888 AA025039 W58331 AA625981 T94941 AA302448 H19900 AA218956 AA513790 AA563962 AA398076 W44441 AA293276 W47373 AA625879 W30888 AA043029 T64284
50			R79151 AA304340 AA485186 AA604939 R82470 AA421425 AW771456 Al339329 AA304424 AA605236 AA936934 AA587673 Al209162 Al697301 Al479995 Al679814 Al361950 AW189125 Al955888 Al986019 BE301019 Al084792 Al310211 AW189307 Al022070 AW977204 Al146825 AW190163 AW303281 Al828345 BE046043 AW029257 AA482268 Al246507 Al420729 AW084932 AW439514 Al890487 AW439692 Al523896 Al186612 Al659953 Al889773 AA687527 AW072694 AW262153 AW467371 Al613269 Al679238 D54404 AA158103 AW105527 AW149739 AW150361 AW268387
55			AW117708 AI951682 AI687440 AW674285 AA678365 AI587082 AA732095 AA019899 W45661 AA627300 BE613304 AA765891 AA612935 AI814658 AW316916 R66594 AA514640 AA025040 AA031472 AW732076 AA029797 AI244560 AI128734 AW381720 AI092360 AI263283 AW613175 AI890675 AI720156 AW631348 AI635106 AI278045 AA303979 AA703505 W45449 AW078661 AI292052 AW381707 AI147854 AW381743 AA158905 AA303258 AA888144 AW195967 AA428706 AA989559 AA617731 H19882 BE543418 AA830386 AA421302 W58652 T94995 AI869743 AI679145
60			AW085971 N98425 AA765136 Al347027 Al356955 AA928038 Al679717 AA458459 AA679281 Al367973 Al270041 AA765135 AA732793 Al798447 AA668646 AA251008 Al984538 Al401737 AA056186 BE043308 AW662375 Al302110 N50724 W96332 BE537047 N26983 Al567172 AA765296 AW673237 N29784 AA534275 AA084044 AW067973 AW300766 T63398 W46823 R39790 Al364185 AW298582 AA454814 AW069878 N67751 H05982 N23140 Al362647 Al302086 Al767772 N25755 H53114 AA706133 T93511 AA429291 AA935294 AA987647 W02803 R66595 Al680795
65			W23673 AW440794 AA722872 H49538 AW131042 AA531603 AA908665 AA040791 AA235312 W52205 N93444 R82180 H02759 H79896 AW088894 H56079 AA961143 AW067776 AW973745 AA016311 AW071227 AA017511 A1753994 W47374 T64155 AA296092 AI698626 AA558158 AA296088 AW794259 H01963 AA149267 AA485076 AA975856 H44938 AA035396 AI955555 H46289 AA486161 AI631222 AA359047 AW794253 AI806962 AW243930 AA526145 AW878734 AA018464 AA132031 R67220 R79152 AA296093 H54300 AI005160 BE242548 AW992803 AW878644 AW878666 T27742
70			R82471 AW517604 AW472738 Al282904 R39791 AA486098 AW467891 AW960520 AA551736 AA056621 AW945197 R66373 AA554236 BE242202 Al904376 Al832590 H19484 R00890 Al627677 AA302287 Al869451 Al734855 Al708073 Al832902 AA585184 AW204299 AA055565 D12417 D11975 T63543 AW664092 BE612712 T96340 T63985 AA598917 T40735 T64053 AA149284 AW272548 AA363445 AA042893 AW300697 BE261973 T53501 T53500 AW878729 AW878657 AW794391 AA069193 R01553 H44875 AA385406 AA533968 M93060 AL135600 W96331 AA017651
75			AA018849 AA017692 H85337 BE278690 AA731598 AA018512 Al076813 Al022644 R02585 X52220 AW296894 AA825671 Al699321 Al393601 AW592611 Al146747 AA608921 AA158365 AW590007 AA354519 D20081 R02704 AW798339 M92422 AA094903 AA007676

AW950283 AA084159 BE538808 AW401377 AA256774 C03366 W46595 W47608 AA305009 H69431 H6 H11706 AA303717 AA361357 H22042 H78020 AW999584 AA134368 AA322911 AA322961 H60980 N85 H79624 T11718 W85826 AW894663 AW894624 BE167441 BE170015 AA304626 AW602163 AW998929 AA151067 BE002724 AA608688 H82692 BE155392 AW383636 BE155394 AA487004 AW383504 Al3423 W16498 BE155344 Al143938 R69901 AA322873 AW340648 R25364 AA367935 Al559406 AA033522 AA AW835019 Al922133 Al697089 N99662 AW189078 Al199076 AW151598 W59944 AA662875 W94022 A Al039008 Al829449 AA583503 Al635674 AW131665 Al473820 AW273118 AW900930 AA908944 Al6888 Al082545 AW468176 Al608761 Al082748 Al911682 Al248943 Al831016 AA192465 Al218477 AA938406 Al809817 AA905196 Al191245 Al470204 Al188296 Al421367 Al125315 Al087141 AA629032 AA740589 AA150830 Al248541 Al077943 AA775958 AA864930 Al261476 Al123121 Al310394 AA862331 AA87247, Al205606 AA720684 Al872093 AW150042 AL120538 AA219627 AA988608 C21397 Al359337 H25337 A	30 (00) IM IMOUUL
A1039008 A1829449 AA583503 A1635674 AW131665 A1473820 AW273118 AW900930 AA908944 A16880 A1082545 AW468176 A1608761 A1082748 A1911682 A1248943 A1831016 AA192465 A1218477 AA938406 A1809817 AA905196 A1191245 A1470204 A1188296 A1421367 A1125315 A1087141 AA629032 AA740589 AA150830 A1248541 A1077943 AA775958 AA864930 A1261476 A1123121 A1310394 AA862331 AA87247	5248 N31547 9 AA156681 365 R82553 A374252
***************************************	035 AW170272 3 AA385288 AI554181
AA605146 Al359620 AA150478 Al359738 AW383642 AW995424 Al766457 R56892 Al089839 W61343 N	\1089749 \169107 W46459
15 AA565955 N20527 Al279782 W46596 AA776573 H23204 Al866231 Al083995 N21530 AA126874 D8263 Al086917 AW382095 Al086877 H69844 AW340217 W85827 L08439 AA262704 AA505380 W47413 W94 AW089153 AA084101 BE538000 AA096126 T28031 AA491574 R84813 AA774536 AW383522 AA15561 AA491520 AW028427 AA171496 Al469689 AW664539 Al811102 Al811116 BE464590 BE350791 H7802	4135 AA223241 5 AW383529 21 T15405 H21979
AA219489 H13301 AA505883 Al864305 Al423963 AW084401 F04963 R69858 H67097 Al917740 Al6555 AA033631 AW383484 Al886261 H25293 AA513281 AW271187 H11617 N79982 Al174338 Al904207 Al9 W94127 W65436 Al272249 AA700018 Al579932 Al085941 AW152629 AA334551 BE008229 AA307537 AW961156 AW995894 AW995826 NM_006751 M61199 AA045603 AL0	904208 BE614558
Al688095 AW351901 AA101337 AA101345 N73342 BE018030 BE569044 AW841975 AA373388 BE0904 N53845 R67867 AA093441 AA363427 H93708 AW023134 AW994986 AW994989 BE090429 R23614 Al	412 H95440 567932 H03726
25 H01101 H01867 AA548743 Al671806 AW872949 AW872941 AA742447 Al199788 AA045604 Al637465 / AW242217 AW131463 Al765302 Al683923 AA889762 Al804889 Al986437 C06049 BE502340 Al695651 AA496804 AA281008 AA665699 Al473814 BE301445 AA707837 AA551925 Al017348 Al208185 AA7752	AI491970
AA557463 H95441 AA768547 AW769358 AA991197 AA181954 Al091389 Al147289 AW771837 Al63858 Al374750 T29320 AW951272 AW085923 H02834 AA843259 AA814696 AW183290 AA158453 N68125 N	32 AA844411 N69039 AA100423
30 AA101346 Al918720 H01102 R67868 H01868 N66438 R46580 Al858433 AA599560 AA187577 AA15748	AA428908
AW160880 Z99394 Al814820 103767 34817_1 BE244667 BE241813 BE242271 AA381943 NM_016040 AF151858 AW967497 AW966873 Al824386 AW	V470133
35 AW015765 BE018650 AW503659 Al129838 Al632346 AA013099 AW770511 BE219482 Al824135 Al867 AA285143 AW087624 Al990100 AA251084 Al633962 AA287714 AA400773 Al292112 AW469095 AA743 AA694551 AA885657 AA112675 BE327333 AA082161 H03613 AA094735 AW500235 N28878 AA287711 AA826249 N46921 BE348728 AW505056 AW966879 Al521202 AA393405 Al264668 AA910851 AA2517.	7379 AA019348 3312 AW117423 3 AW300233
H03503 AA089688 R58562 BE004728 AA668793 H27167 R54717 40 103855 84277_1 W02363 N80298 AA304486 AW954799 AW805136 AW970817 AW373398 AW875459 AA136805 AA683 AW341082 AI632954 AA493369 AI478433 AI037911 AW272169 AW043832 AA010683 AW629090 AW16 AW079953 AI554533 AA563670 AA010682 AW237610 AW419057 AI470926 AI627833 AA195080 AA196 AW590266 AI168477 AW771214 AI767341 AW340086 AW748455 AI280079 AI244821 AI381283 AW300 AW195397 AA136706 AI824598 AW573004 Z98448 AA905255 AI497883	83622 N64510 5179 Al471443
45 126872 142696_1 AW450979 AA136653 AA136653 AW419381 AA984358 AA492073 BE168945 AA809054 AW238038 BE BE011367 BE011368 BE011362 BE011215 BE011365 BE011363	011212 BE011359
113026 84431_1 AA376654 W76367 AA318232 Al694545 Al742403 Al887383 AW204731 AW874431 BE220997 AA11497 Al002267 AW952031 W74801 AA011287 AA115112 Al306385 R37677 AW571707 R59986 W94102 AW AW139819 Al686172 Al674165 R51633 Al367086 T23948 H10833 H23002 H11743 R37085 Z39208 H22	197042 H10206
50 R13817 Z43122 H10257 R88398 R18795 AA010848 R67191 H10875 R67170 120284 158963_1 AA179656 AA182626 AA182603	
112540 1605263_1 R69751 R70467 H69771 H80879 H80878 111904 1719336_1 Z41572 R39330	
121094 275729_1 AA402505 AA398900 55 128510 19829_1 X94703 NM_004249 R52316 T87420 N46403 Z36855 BE076834	
114106 1182096_1 AW602528 BE073859 Z38412 121335 279548_1 AA404418 Al217248	
120761 224903_1 AA321890 R18000	AL 044220
122050 273507_2 AI453076 AI376075 AI014836 AA628633 AA961066 AI150282 AI028574 AI217182 AA732910 AA431478 A353093 AW957317 AW872498 AI560785 AI289110 AW135512 X97261 T68873	1 ALU41229
100104 199743 AF008937 121822 244391_1 AI743860 N49543 AW027759 BE349467 AI656284 BE463975 R35022 AA370031 AW955302 AL042109	N53092 Al611424
AL079362 Al989290 Al928016 BE394912 BE504220 BE467505 Al611611 Al611407 Al611452 W56437 Al583349 AW183058 Al308085 Al074952 AA437315 AA628161 AW301728 Al150224 AA400137 AA437365 AA639462 Al261373 Al432414 Al984994 Al539335 AA401550 AA358757 Al609976 AA442357 AA35939	Al284566 279 Al223355
AA370301 AA429328 AW272055 AI580502 AI832944 AI038530 AA425107 AI014986 AI148349 AW2377 AW137877 AI125293 AA400404 R28554	
108280 110682_1 AA065069 AA085108 108309 111495_1 AA069818 AA069971 AA069923 AA069908	
70 107832 genbank_AA021473 AA021473 .	
123523 genbank_AA608588 AA608588 123533 genbank_AA608751 AA608751	
132225 genbank_AA128980 AA128980	
125017 genbank_T68875 T68875 75 125063 genbank_T85352 T85352 125064 genbank_T85373 T85373	

```
125091
                   genbank_T91518 T91518
         100964
                   entrez_J00212 J00212
                   entrez_U30245
         102269
                                  U30245
                   NOT_FOUND_entrez_W38240
                                                  W38240
         125150
 5
         123964
                   genbank_C13961 C13961
                   genbank_N55493 N55493
         118111
         118129
                   genbank_N57493 N57493
                   entrez_U51010 U51010
         102491
         118329
                   genbank_N63520 N63520
10
                   genbank_N66845 N66845
         118475
                   genbank_N68905 N68905
        118581
         111514
                   genbank_R07998 R07998
         104534
                   R22303_at
                                  R22303
                   genbank_AA206828
         120340
                                                  AA206828
15
                   genbank_AA227469
                                                  AA227469
         120376
         104787
                   genbank_AA027317
                                                  AA027317
                                                  AA235050
         120409
                   genbank_AA235050
         120745
                   genbank_AA302809
                                                  AA302809
         120809
                   genbank_AA346495
                                                  AA346495
20
         120839
                   genbank_AA348913
                                                  AA348913
                   genbank_T97307 T97307
         113702
                   304084_1
                                  AI583948 AA578212 AW303715 AA653450 AA456981 AI400385 W88533 AI224133 AW272145 AA088686 R94698
         106596
         113947
                   genbank_W84768W84768
                  genbank_AA452156
         122562
                                                  AA452156
                   genbank_AA454085
25
                                                  AA454085
         122635
         108277
                   genbank_AA064859
                                                  AA064859
                   genbank_AA075374
                                                  AA075374
         108403
                   genbank_AA464414
         122860
                                                  AA464414
                   genbank_AA076382
         108427
                                                  AA076382
30
         108439
                   genbank_AA078986
                                                  AA078986
         131353
                   231290 1
                                  AW411259 H23555 AW015049 Al684275 AW015886 AW068953 AW014085 Al027260 R52686 AA918278 Al129462
                                  AA969360 N34869 AI948416 AA534205 AA702483 AA705292
                   genbank_AA084415
                                                  AA084415
         108533
         124254
                   genbank_H69899 H69899
35
         101447
                  entrez_M21305
                                  M21305
                   entrez_M22092
                                  M22092
         101458
                                  NM_005381 M60858 AW373732 AW373724 AW373689 AW373629 AW373609 AW373776 AA187806 AW386946
         101667
                   13349_1
                                  AW374207 T05235 AA216203 AW385556 AA306940 AA306526 AA315461 AL036757 AW373711 AW403124 AW403640
                                  AW377084 T27360 H62638 F06957 AW377051 AA554779 AA378568 AA096007 AW352407 AW302637 F07929 H17433
40
                                  AW382712 H05665 F07292 N39875 AA089729 H62556 N42842 R12952 AW373735 AW364155 AA056183 W39185
                                  AW382708 N32488 AF114096 AW375993 Al133569 W52561 AA603040 AA133710 Al928796 AW176370 AA827519
                                  AW338437 AA521142 T29341 AI800461 AW317002 AA703914 AA860830 AI859203 AI445772 AA714334 AI817066
                                  Al832027 AW510442 Al635802 AW088306 AW068672 AW408555 AW467542 AA552657 AA152367 W32081 AA582124
                                  AA074040 AA931657 Al051154 AW410203 Al921644 H17434 AlB32330 AW404836 Al925038 AA088423 AA954166
45
                                  AA580453 AW021292 Al267215 AW080082 AW383778 Al933053 Al919097 W31557 N90245 AA931591 AA563995
                                  F36352 AA056184 AA476294 AA641327 AA533550 AI749630 W58323 AA569119 AA508573 AI809050 AI378996
                                  AA411362 AW407505 AA938104 AA074041 AA632876 AW193748 AA507873 AI270128 AI472365 AA411363 AI523216
                                  AI719965 AI816302 AA182681 AI707990 AA133588 AI758537 W60253 AI460308 AA135423 AI083904 F04188 N89693
                                  AW408776 Al678595 Al270568 AA722059 W58234 F33650 AA090547 AA285108 AA425981 N85079 D20218 Al273980
50
                                  AA159028 F03226 AW247914 N26918 AW272741 N90109 H05666 N23327 AW247953 R44748 AA962015 F03558
                                  Al752394 AW409913 AW248396 Al816463 Al752393 AA325370 AA263089 Al570130 Al971951 Al160658 Al357360 AW168686 AL121075 AW050536 N21672 W67748 AA514242 Al127386 H14607 Al185752 W79364 AA088520 AA152476
                                  AW351940 AW373683 AI940524 AW374953 T56500 N24329 AI940720 AW374933 AW374947 AW391913 AL138337
                                  AW376241 AW062943 F26666 AW410202 AW062958 F34529 AW381807 AW393315 W17147 AW176359 AA664576
55
                                  AW380424 AA306040 AI745674 AW300951 AI188579 AI438973 AI305271 AA433818 AA612807 AI831809 AI940409
                                  AA158663 Al572988
                  genbank_N68201 N68201
        124576
         108931
                   genbank_AA147186
                                                  AA147186
                   genbank_AA148650
         108941
                                                  AA148650
60
         124720
                   144582_1
                                  R05283 R11056
                  genbank_R44519 R44519
         124793
                   genbank_R45088 R45088
         124799
                   entrez_X65965 X65965
         103138
         117683
                   genbank N40180 N40180
65
         124991
                   genbank_T50116 T50116
                   entrez_X97748 X97748
         103432
         119174
                   genbank_R71234 R71234
         119239
                   95573 2
                                  T11483 T11472
                                  AW247252 AA346143 NM 000270 AA381085 N91995 X00737 AA381079 AA296473 AA296110 AA315735 AA311617
         133678
                   11235_1
                                  AA326750 AA376804 AW403290 T95231 M13953 T47963 H82039 AA279899 AA627997 N76320 N99527 H37842 W20095 AA457308 AW469547 AA724143 H83220 AA319496 W86334 W30892 R89169 R99427 N41854 H47286
70
                                  AA348094 AA045089 R63016 AI922219 AI024906 AI096488 AI885005 AA194872 N90489 AI452544 H72411 AA282427
                                  AA430735 R68963 R22453 H70385 AW129369 AW467320 AW519082 AA345018 AA582183 AI961789 R65918 N30611
                                  AI979189 AI280889 AW273191 R66531 AI285845 AI675927 AI421990 AW190879 H37794 AA699667 H68427 AA954388
75
                                  Al188757 Al140048 AA430382 Al204151 AW247864 AA559099 Al431420 AA548276 Al149466 AA772669 AA694388
                                  AA724168 AA301651 AA281952 AA779925 AA234760 W86290 AA913603 AW511745 AI500697 AA814922 AA835040
```

T47964 H53998 AA975804 R98710 Al077604 N70252 R98084 AW250171 H69268 Al597614 AA970746 AA972548 Al377116 R62962 H16737 R89070 AA731329 R66532 N54354 Al818832 H81944 N71567 T95122 W86463 AA437095 Al431999 Al915724 N63851 Al674743 AA457307 AA211475 N64444 Al799146 H72853 R99335 H60413 AA770367 AA156105 Al269937 H64029 H89728 R65819 AW470496 Al873318 Al735713 H82987 C02447 Al478666 T27651 Al699770 AW025156 H69719 Al984717 N69225 Al459856 AA953577 Al424691 H13843 R22404 Al873796 Al336002 N70898 Al420854 AA541792 AA346142 Al000814 Al828348 AA045090 T51257 N90434 H13890 N73184 Al708083 AA781606 AA329050 AA339985 R68964 H64795 W04186 H16845

	119416	genbank_T97186 T97186	
	119558	NOT_FOUND_entrez_W38194	W38194
10	119559	NOT_FOUND_entrez_W38197	W38197
	119654	genbank_W57759W57759	
	121350	genbank_AA405237	AA405237
	121558	genbank_AA412497	AA412497
	105985	genbank_AA406610	AA406610
15	114648	genbank AA101056	AA101056
	121895	genbank_AA427396	AA427396
	100327	entrez_D55640 D55640	
	123315	714071 1 AA496369 AA4	96646
	123473	genbank_AA599143	AA599143
		-	

5

PCT/US02/04915 WO 02/079492

TABLE 4:

Pkey: Accession: ExAccn: UnigenelD: Unigene Title: Unique Eos probeset identifier number Accession number used for previous patent filings Exemplar Accession number, Genbank accession number Unigene number Unigene gene title 5

10			-		
10	Pkey	Accession	ExAccn	UniGene	UnigeneTitle
	100405	D86425	AW291587	Hs.82733	nidogen 2
1 =		D86983	D86983		Melanoma associated gene
15		HG1098-HT1098		Hs.121489	
		HG1103-HT1103 HG3342-HT3519			inhibitor of DNA binding 1, dominant neg
	100991		J03836	Hs.82085	serine (or cysteine) proteinase inhibito
••		L06797	BE245301		chemokine (C-X-C motif), receptor 4 (fus
20		L15388	_		G protein-coupled receptor kinase 5
		L20971 L35545	L20971 D30857	Hs.188 Hs.82353	phosphodiesterase 4B, cAMP-specific (dun protein C receptor, endothelial (EPCR)
		L76380		5Hs.152175	
	101447	M21305	M21305		gb:Human alpha satellite and satellite 3
25		M24736	AA296520		selectin E (endothelial adhesion molecul
		M31166 M31551	M31166 Y00630	Hs.2050 Hs.75716	pentaxin-related gene, rapidly induced b serine (or cysteine) proteinase inhibito
		M32334			intercellular adhesion molecule 2
		M61916	NM_00229		laminin, beta 1
30		M68874	M68874		phospholipase A2, group IVA (cytosolic,
		M74719 M92934	NM_003199 BE243845		transcription factor 4 connective tissue growth factor
		M94856			fatty acid binding protein 5 (psoriasis-
		U03057			singed (Drosophila)-like (sea urchin fas
35		U03877	AA301867		EGF-containing fibulin-like extracellula
		U18300	NM_000107		damage-specific DNA binding protein 2 (4
		U27109 U31384	AW161552	1Hs.268107 Hs 83381	multimerin guanine nucleotide binding protein 11
		U33053	U33053	Hs.2499	protein kinase C-like 1
40		U59423	U59423	Hs.79067	MAD (mothers against decapentaplegic, Dr
		U70322			karyopherin (importin) beta 2
		U81607 U83463	NM_005100 AF000652		A kinase (PRKA) anchor protein (gravin) syndecan binding protein (syntenin)
		U89942	NM_002318		lysyl oxidase-like 2
45		X04729	J03836	Hs.82085	serine (or cysteine) proteinase inhibito
		X06256		5Hs.149609	integrin, alpha 5 (fibronectin receptor, matrix metalloproteinase 10 (stromelysin
		X07820 X54925	X07820 M13509	Hs.2258 Hs.83169	matrix metalloproteinase 1 (interstitial
		X54936	BE018302		placental growth factor, vascular endoth
50		X60957	NM_005424		tyrosine kinase with immunoglobulin and
		X67235		Hs.118651	hematopoietically expressed homeobox
		X67951 X69910	NM_00682	Hs.180909	peroxiredoxin 1 transmembrane protein (63kD), endoplasmi
		X79981	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula
55		Z18951	A1878826	Hs.74034	caveolin 1, caveolae protein, 22kD
		AA187101		Hs.213194	hypothetical protein MGC10895 ESTs
		N24990 R81003	Z44203 AW630488	Hs.26418 Hs 25338	protease, serine, 23
		AA025351	Al039243	Hs.278585	
60		AA027168	AA027167		KIAA0955 protein
		AA040465	AL133035		hypothetical protein DKFZp434G171 B-cell CLL/lymphoma 6, member B (zinc fi
		AA045136 AA054087	T79340 AF065214	Hs.22575 Hs 18858	phospholipase A2, group IVC (cytosolic,
		AA071089		Hs.345588	
65	104974	AA085918	Y12059	Hs.278675	bromodomain-containing 4
		AA187490	AA313825		AD036 protein
		AA227926 AA234743	AW388633 AW338625		solute carrier family 7, (cationic amino ESTs
		AA236559	AW994032	Hs.8768	hypothetical protein FLJ10849
70	105729	AA292694	H46612	Hs.293815	Homo sapiens HSPC285 mRNA, partial cds
		AA398243		Hs.194477	E3 ubiquitin ligase SMURF2 hypothetical protein FLJ11110
		AA406363 AA411465	AK001972 AB033888		SRY (sex determining region Y)-box 18
		AA412284	X64116	Hs.171844	Homo sapiens cDNA: FLJ22296 fis, clone H
75		AA423987	H93366	Hs.7567	Homo sapiens cDNA: FLJ21962 fis, clone H

		AA425309	AA425414		nuclear factor I/B
		AA435896	AA398859		hypothetical protein FLJ23221
		AA448238	AB020722		Rho guanine exchange factor (GEF) 15
5		AA478778	H94997	Hs.16450	ESTs
5		AA621714 D51069	BE122762 D51069		ESTs melanoma cell adhesion molecule
	107216		AA186629		UDP-N-acetyl-alpha-D-galactosamine:polyp
		U97519	NM_005397		podocalyxin-like
		AA127221		Hs.117037	
10		AA132983	AL117452		DKFZP586G1517 protein
~ ~		AA135606			gb:zl10a05.s1 Soares_pregnant_uterus_NbH
		AA156125	A1056548	Hs.72116	hypothetical protein FLJ20992 similar to
	109166	AA179845	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines
	109456	AA232645	AW956580	Hs.42699	ESTs
15	109768	F10399	F06838	Hs.14763	ESTs
		H16772	AW151660		ESTs
		N39584	AA035211		ESTs
		N52006	AW613287		UDP-N-acetyl-alpha-D-galactosamine:polyp
20		N53375			Homer, neuronal immediate early gene, 3
20		N54067	A1287912	Hs.3628	mitogen-activated protein kinase kinase
		N64436 R26892	AW580939		complement component C1q receptor
			N39342		Homo sapiens cDNA FLJ11949 fis, clone HE microtubule-associated protein 1B
	113073	T57112	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom
25		W80763	AW953484		hypothetical protein FLJ22041 similar to
23		AA046808			40S ribosomal protein S27 isoform
		AA253217		Hs.41271	Homo sapiens mRNA full length insert cDN
		AA255991	Al683069	Hs.175319	
*		AA258138	AA740907		ESTs
30		AA426573	AA486620	Hs.41135	endomucin-2
	115947	AA443793	R47479	Hs.94761	KIAA1691 protein
	116314	AA490588	Al799104	Hs.178705	Homo sapiens cDNA FLJ11333 fis, clone PL
		AA496257	AK000290		dipeptidyl peptidase 8
25		AA609717	AK001531		hypothetical protein FLJ10669
35		D59570	Al557212	Hs.17132	ESTs, Moderately similar to I54374 gene
	116733		AL157424		synaptojanin 2
		H88157 H98988	H98988	Hs.42612	Homo sapiens mRNA; cDNA DKFZp586N0121 (f ESTs, Weakly similar to ALU1_HUMAN ALU S
		N34287	AF055634		unc5 (C.elegans homolog) c
40		N52090	N52090	Hs.47420	EST
-10		N66845	N66845	110.11 120	gb:za46c11.s1 Soares fetal liver spleen
		N68905	N68905		gb:za69b09.s1 Soares_fetal_lung_NbHL19W
		R32894		Hs.279477	
		R61715	R61715	Hs.310598	ESTs, Moderately similar to ALU1_HUMAN A
45	119174	R71234	R71234		gb:yi54c08.s1 Soares placenta Nb2HP Homo
	119221	R98105	C14322	Hs.250700	tryptase beta 1
		T97186	T97186		gb:ye50h09.s1 Soares fetal liver spleen
		W80814		Hs.193700	Homo sapiens mRNA; cDNA DKFZp586I0324 (f
50		AA404418	AA404418		gb:zw37e02.s1 Soares_total_fetus_Nb2HF8_
50		AA405747	AW088642		hypothetical protein FLJ22252 similar to
		AA488687		HS.284233	ESTs, Weakly similar to 138022 hypotheti gb:ae52d04.s1 Stratagene lung carcinoma
		AA599143 AA608588	AA599143 AA608588		gb:ae54e06.s1 Stratagene lung carcinoma
		AA608751	AA608751		gb:ae56h07.s1 Stratagene lung carcinoma
55		C13961	C13961		gb:C13961 Clontech human aorta polyA+ mR
		D60302	Al147155	Hs.270016	• • • • • • • • • • • • • • • • • • • •
		H94892			v-ral simian leukemia viral oncogene hom
		N93521	AI680737		Homo sapiens cDNA FLJ11918 fis, clone HE
		N95477	AI571594	Hs.102943	hypothetical protein MGC12916
60	124847	R60044	W07701		Homo sapiens clone FLB8503 PRO2286 mRNA,
	124875	R70506	A1887664	Hs.285814	sprouty (Drosophila) homolog 4
	125091	T91518	T91518		gb:ye20f05.s1 Stratagene lung (937210) H
		T95333			ESTs, Moderately similar to KIAA1215 pro
<i>(</i>		R45630	R60547	Hs.170098	KIAA0372 gene product
65		R20839	R20840	11- 440075	gb:yg05c08.r1 Soares infant brain 1NIB H
		R23858	R23858		Homo sapiens, clone IMAGE:3840937, mRNA,
		R23858	R23858		Homo sapiens, clone IMAGE:3840937, mRNA,
		A1024874	T92143	Hs.57958	EGF-TM7-latrophilin-related protein
70		W26247	BE247550		growth factor receptor-bound protein 7 U5 snRNP-specific protein (220 kD), orth
70		W26247 AA856990		Hs.279531	
		AA856990 AA856990		Hs.279531	
		AA136653	AW450979		gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su
		AA136653	BE180876		HSPC065 protein
75		AA136653	AW450979		gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su
		AA358869			SEC13 (S. cerevisiae)-like 1
					` '

	127651	AI123976	ΔΔ382523	He 105680	MSTP031 protein
		Al123976			MSTP031 protein
		AA379500			neural proliferation, differentiation an
~		R49693	H04150	Hs.107708	
5		AA195678			actin binding protein; macrophin (microf
		M30257 AA028131			vascular cell adhesion molecule 1 mesodem development candidate 1
		M10321	X06828		von Willebrand factor
	129468				secreted protein, acidic, cysteine-rich
10		M86933	M86933	Hs.1238	amelogenin (Y chromosome)
		AA012933	AA012848		tubulin-specific chaperone d
		AA286710	AF055581	Hs.13131	lysosomal mitochondrial ribosomal protein L12
	130639	AA243278	AVV250360 AI557212		ESTs, Moderately similar to 154374 gene
15		T94452		Hs.201591	
		AA053400		Hs.203213	
		AA370302	D81866	Hs.21739	
	131080		NM_001958		endothelin 1 nuclear factor I/B
20		U85193 AA256153	W27392 Al824144	Hs.33287 Hs.23912	ESTs
	131486		F06972	Hs.27372	BMX non-receptor tyrosine kinase
		AA046593	AA040311		ESTs
		AA410480	AA359615		ESTs
25		D45304	AA443966	Hs.31595	ESTs
23		M90657 AA010163	AW960564 AW361018	Hs 3383	transmembrane 4 superfamily member 1 upstream regulatory element binding prot
		AA136353	Al267615	Hs.38022	ESTs
	132083			Hs.279663	
20		U84573	Al752235		procollagen-lysine, 2-oxoglutarate 5-dio
30		X60486 AA132969	NM_003542		H4 histone family, member G metalloprotease 1 (pitrilysin family)
		AA114250	AB011084		KIAA0512 gene product; ALEX2
		F13782	NM_001290		LIM domain binding 2
2 7	132676	AA283035	N92589		ESTs, Weakly similar to I38022 hypotheti
35		AB002301	AB002301		KIAA0303 protein
		AA056731	NM_004600		Sjogren syndrome antigen A2 (60kD, ribon Homo sapiens cDNA: FLJ23037 fis, clone L
		U68019 H99198	AA125985		thymosin, beta, identified in neuroblast
		AA598702	BE263252		hypothetical protein MGC3178
40	132968		AF234532		myosin X
		AA505133			clone HQ0310 PRO0310p1
	133147	AB000584	AI186431 AA026533		prostate differentiation factor interleukin 1 receptor-like 1
		AA253193	AW020000		hypothetical protein FLJ20373
45		AA432248			hypothetical protein FLJ10210
		AA083572	AA403045		Homo sapiens cDNA: FLJ23197 fis, clone R
		AA479713	AI866286	Hs.71962	ESTs, Weakly similar to B36298 proline-r
	133491 133517		NM_000165		eukaryotic translation initiation factor gap junction protein, alpha 1, 43kD (con
50		W80846	Al129903	Hs.74669	vesicle-associated membrane protein 5 (m
	133607	M34539	BE273749		FK506-binding protein 1A (12kD)
		D67029	NM_003003		SEC14 (S. cerevisiae)-like 1
		U09587	NM_002047		glycyl-tRNA synthetase heparan sulfate proteoglycan 2 (perlecan
55		M85289 D10522	M85289 Al878921	Hs.75607	myristoylated alanine-rich protein kinas
0.0		W84712	AU076964		calumenin
		D29992	C18356		tissue factor pathway inhibitor 2
		L34657	L34657	Hs.78146	platelet/endothelial cell adhesion molec
60		S78569 D43636	NM_002290 Al379954	Hs.79025	laminin, alpha 4 KIAA0096 protein
00		U97188	AA634543		IGF-II mRNA-binding protein 3
		AA487558	AW580939	Hs.97199	complement component C1q receptor
		M28882	X68264		melanoma cell adhesion molecule
65		X70683	A1272141	Hs.83484	SRY (sex determining region Y)-box 4 thrombospondin 1
05		X14787 AA236324	Al750878 AW968058	Hs.87409 Hs 92381	nudix (nucleoside diphosphate linked moi
		C15324	Al272141	Hs.83484	SRY (sex determining region Y)-box 4
	135073	AA452000	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f
70		D83174	AA114212		serine (or cysteine) proteinase inhibito
70		D00596	X02308	Hs.82962	thymidylate synthetase peripheral myelin protein 22 ~
		D11428 D13640		Hs.103724 Hs.278441	
		D14874	H73444	Hs.394	adrenomedullin
<i>-</i> 7	100208	D26129	NM_002933	3Hs.78224	ribonuclease, RNase A family, 1 (pancrea
75		D28476			thyroid hormone receptor interactor 12
	100405	D86425	AW291587	115.02/ 33	nidogen 2

			m.c.c.c.c		
		D86983	D86983		Melanoma associated gene
		D87953	AW888941		N-myc downstream regulated
					calmodulin 2 (phosphorylase kinase, delt
_		HG2614-HT2710			collagen, type VIII, alpha 1
5		HG2639-HT2735			RNA binding motif, single stranded inter
		HG2855-HT2995			heat shock 70kD protein 2
		HG3044-HT3742			fibronectin 1
		HG3342-HT3519		Hs.75424	inhibitor of DNA binding 1, dominant neg
1.0		HG3543-HT3739			insulin-like growth factor 2 (somatomedi
10		HG4069-HT4339			small inducible cytokine A2 (monocyte ch
		HG417-HT417			cathepsin B
		J03764	J03836	Hs.82085	serine (or cysteine) proteinase inhibito
		L06797	BE245301		chemokine (C-X-C motif), receptor 4 (fus
		L08246	Al439011	Hs.86386	myeloid cell leukemia sequence 1 (BCL2-r
15		L12711	L12711	Hs.89643	transketolase (Wemicke-Korsakoff syndro
		L13977	AA340987		prolylcarboxypeptidase (angiotensinase C
		L15388		BHs.211569	G protein-coupled receptor kinase 5
		L19871	NM_001674		activating transcription factor 3
•		L20859	BE247295		solute carrier family 20 (phosphate tran
20		L42176	L42176	Hs.8302	four and a half LIM domains 2
		L49169	NM_006732		FBJ murine osteosarcoma viral oncogene h
		L76380	NM_005798		calcitonin receptor-like
		M15990	M15990		v-yes-1 Yamaguchi sarcoma viral oncogene
~ ~		M23254	BE410405		calpain 2, (m/II) large subunit
25	101485	M24736	AA296520	Hs.89546	selectin E (endothelial adhesion molecul
	101496	M26576	X12784	Hs.119129	collagen, type IV, alpha 1
	101505	M27396	AA307680	Hs.75692	asparagine synthetase
	101543	M31166	M31166	Hs.2050	pentaxin-related gene, rapidly induced b
	101557	M31994	BE293116	Hs.76392	aldehyde dehydrogenase 1 family, member
30	101560	M32334	AW958272	Hs.347326	intercellular adhesion molecule 2
	101587	M35878	AI752416	Hs.77326	insulin-like growth factor binding prote
	101592	M36429	AF064853	Hs.91299	guanine nucleotide binding protein (G pr
	101633	M57730	NM_004428	BHs.1624	ephrin-A1
	101634	M57731	AV650262	Hs.75765	GRO2 oncogene
35	101667	M60858	NM_005381	1	nucleolin
	101682	M62994	AF043045	Hs.81008	filamin B, beta (actin-binding protein-2
	101714	M68874	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic,
		M69043	M69043	Hs.81328	nuclear factor of kappa light polypeptid
40	101741	M74719			transcription factor 4
40		M75126	Al879352		hexokinase 1
		M84349	W01076		CD59 antigen p18-20 (antigen identified
		M92843	M92843		zinc finger protein homologous to Zfp-36
		M92934	BE243845		connective tissue growth factor
4.5		M93056			serine (or cysteine) proteinase inhibito
45		M94856			fatty acid binding protein 5 (psoriasis-
		M95787	BE392588		transgelin
		S76965	NM_006823		protein kinase (cAMP-dependent, catalyti
		S81914	X96438	Hs.76095	immediate early response 3
~ 0		U03057			
50		U03100			catenin (cadherin-associated protein), a
		U03877	AA301867		EGF-containing fibulin-like extracellula
		U08021		Hs.76669	nicotinamide N-methyltransferase
		U14391	NM_004998		myosin IE
<i></i>		U31384	AW161552		guanine nucleotide binding protein 11
55		U32944	Al929721	Hs.5120	dynein, cytoplasmic, light polypeptide
		U40369	AU076887		spermidine/spermine N1-acetyltransferase
		U41767	AU077005		a disintegrin and metalloproteinase doma
		U48959	U48959	Hs.211582	myosin, light polypeptide kinase
C O		U51010	U51010		gb:Human nicotinamide N-methyltransferas
60		U51478	BE243877		ATPase, Na+/K+ transporting, beta 3 poly
		U53445	U53445	Hs.15432	downregulated in ovarian cancer 1
		U59289	R97457	Hs.63984	cadherin 13, H-cadherin (heart)
		U59423	U59423	Hs.79067	MAD (mothers against decapentaplegic, Dr
C =		U62015	AU076728		cysteine-rich, angiogenic inducer, 61
65		U63825	Al984144	Hs.66713	hepatitis delta antigen-interacting prot
		U67963	AL119566		lysosomal
		U73379	NM_007019		ubiquitin carrier protein E2-C
		U73824		Hs.183684	
70		U77604	AA122237		microsomal glutathione S-transferase 2
70		U81607	NM_005100		A kinase (PRKA) anchor protein (gravin)
		U89942	NM_002318		lysyl oxidase-like 2
		X04412	A1767736	Hs.290070	
	102907	X06985	BE409861	Hs.202833	
	102915	X07820	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin
75	102927	X12876	BE512730		keratin 18
	102960	X15729	AI904738	Hs.76053	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep

	103011	X52541	AJ243425		early growth response 1
		X53416	X53416		filamin A, alpha (actin-binding protein-
		X54489	AW800726		GRO1 oncogene (melanoma growth stimulati
_	103036		M13509	Hs.83169	matrix metalloproteinase 1 (interstitial
5		X57206	Y18024	Hs.78877	inositol 1,4,5-trisphosphate 3-kinase B
	103080		AU077231		cyclin D1 (PRAD1: parathyroid adenomatos tyrosine kinase with immunoglobulin and
	103095	X65965	NM_005424 X65965	4FIS./ 0024	gb:H.sapiens SOD-2 gene for manganese su
	103176		AL021154	He 76884	inhibitor of DNA binding 3, dominant neg
10		X70940	AA351647		eukaryotic translation elongation factor
10		X87838		Hs.171271	
	103371		X91247	Hs.13046	thioredoxin reductase 1
	103432		X97748		gb:H.sapiens PTX3 gene promotor region.
	103471	Y00815	Y00815	Hs.75216	protein tyrosine phosphatase, receptor t
15	103967	AA303711		Hs.144700	
	104447			Hs.156044	
		AA025351	A1039243	Hs.278585	
		AA027050	AA533513		protein disulfide isomerase related prot
20		AA029462	AW952619		Homo sapiens clone TCCCIA00176 mRNA sequ B-cell CLL/lymphoma 6, member B (zinc fi
20		AA045136 AA047437	T79340 Al138635	Hs.22575 Hs.22968	Homo sapiens clone IMAGE:451939, mRNA se
		AA054087	AF065214		phospholipase A2, group IVC (cytosolic,
		AA071089			desmoplakin (DPI, DPII)
		AA156450	AB037816		Homo sapiens, clone IMAGE:3506202, mRNA,
25		AA187490	AA313825		AD036 protein
		AA195031	W84893	Hs.9305	angiotensin receptor-like 1
	105215	AA205724	AA205759	Hs.10119	hypothetical protein FLJ14957
		AA227926	AW388633		solute carrier family 7, (cationic amino
20		AA227986	AA807881		ESTs
30		AA234743	AW338625		ESTs
		AA253216	BE539071		hypothetical protein FLJ20505
		AA256210 AA256268	AI805717 AL047586		CGI-43 protein RNA binding motif protein 8B
		AA279397	AB024334		tyrosine 3-monooxygenase/tryptophan 5-mo
35		AA292379	AL135159		KIAA1002 protein
55		AA292717			hypothetical protein MGC12942
		AA346551	AW370946		ESTs
		AA400292	W46802	Hs.81988	disabled (Drosophila) homolog 2 (mitogen
	105936	AA404338	AI678765	Hs.21812	ESTs
4 0		AA412284	X64116		Homo sapiens cDNA: FLJ22296 fis, clone H
		AA423987	H93366	Hs.7567	Homo sapiens cDNA: FLJ21962 fis, clone H
		AA428594	AA356392		Homo sapiens clone FLB9213 PRO2474 mRNA,
		AA430108	BE019681	Hs.28329	Homo sapiens cDNA: FLJ21288 fis, clone C
45		AA431462 AA431470	W21493 AL046859		hypothetical protein FLJ14005 protein kinase (cAMP-dependent, catalyti
73		AA443756			RIKEN cDNA 9130422N19 gene
		AA449479	NM_014038		HSPC028 protein
		AA459916	W25491		hypothetical protein FLJ22471
		AA465226	N48670	Hs.28631	Homo sapiens cDNA: FLJ22141 fis, clone H
50	106793	AA478778	H94997	Hs.16450	ESTs
	106799	AA479037	BE313412		Homo sapiens clone 25012 mRNA sequence
	106842	AA482597	AF124251		novel SH2-containing protein 3
		AA487561			molecule possessing ankyrin repeats indu
55		AA489245	AA489245		mitogen-activated protein kinase 8 inter
55		AA504110	AW243614		Homo sapiens cDNA FL 113608 fis, clone NT
		AA520989 AA599434	AI817130 AL117424	Hs.9195	Homo sapiens cDNA FLJ13698 fis, clone PL chloride intracellular channel 4
		AA608649	BE147611		stromal cell derived factor receptor 1
		AA609519	NM_01233		methionine sulfoxide reductase A
60		D51069	D51069	Hs.211579	
		U97519	NM_00539	7Hs.16426	podocalyxin-like
	107444	W28391	W28391	Hs.343258	proliferation-associated 2G4, 38kD
		AA035638	T40064	Hs.71968	Homo sapiens mRNA; cDNA DKFZp564F053 (fr
~ =		AA083514	Al554545	Hs.68301	ESTs
65		AA121315	AB029000	Hs./0823	KIAA1077 protein
		AA147186	AA147186	Lio 70116	gb:zo38d01.s1 Stratagene endothelial cel
		AA156125	A1056548	Hs.72116	hypothetical protein FLJ20992 similar to
		AA188932 AA219653	AW007485	Hs.132904 Hs.87125	solute carrier family 4, sodium bicarbon EH-domain containing 3
70		AA219000 AA232645	AW956580		ESTs
, 0		F10078	AA055415		ESTs, Moderately similar to A47582 B-cel
		H48032	AW001579		Homo sapiens mRNA for KIAA1741 protein,
		H82117	AA782114	Hs.28043	ESTs
		N39584	AA035211		ESTs
75		N54067	Al287912	Hs.3628	mitogen-activated protein kinase kinase
	111091	N59858	AA300067	Hs.33032	hypothetical protein DKFZp434N185

	111356	N90933	BE301871 Hs.4867	mannosyl (alpha-1,3-)-glycoprotein beta-
		N93764	AW160993 Hs.32629	•••
		R26124	AB020653 Hs.24024	•
_		R27957	AW629414 Hs.24230	
5		R55470	AW083384 Hs.11067	
		T16550	AA307634 Hs.6650	vacuolar protein sorting 45B (yeast homo
		T26674		3 Human DNA sequence from clone RP1-187J11
		T57112 T88700		ESTs, Weakly similar to S41044 chromosom 4 Homo sapiens cDNA FLJ10500 fis, clone NT
10		T90527	H43374 Hs.7890	Homo sapiens mRNA for KIAA1671 protein,
10		W42789		3 chromosome 8 open reading frame 4
		W60002	NM_005032Hs.4114	plastin 3 (T isoform)
		W78175	AA113262 Hs.17901	
		W84768	W84768	gb:zh53d03.s1 Soares_fetal_liver_spleen_
15		W94427	AL035858 Hs.3807	FXYD domain-containing ion transport reg
		AA253217	Al751438 Hs.4127	Homo sapiens mRNA full length insert cDN
	115819	AA426573	AA486620 Hs.41135	endomucin-2
	115870	AA432374	NM_005985Hs.48029	snail 1 (drosophila homolog), zinc finge
• •	115964	AA446622	AA987568 Hs.74313	·
20		AA478771	AI767947 Hs.5084	
		AA482594		9 lysosomal
		AA490588		5 Homo sapiens cDNA FLJ11333 fis, clone PL
		D59570		ESTs, Moderately similar to I54374 gene
25		H88157		5 Homo sapiens mRNA; cDNA DKFZp586N0121 (f
23		H94648	AW969999 Hs.29365	
		H97538	W73853	ESTs
		H98670 N22107	H45100 Hs.49753	uveal autoantigen with coiled coil domai 9 Homo sapiens cDNA: FLJ21409 fis, clone C
		W38197	M18217 Hs.17212 W38197	Empirically selected from AFFX single pr
30		W80814		O Homo sapiens mRNA; cDNA DKFZp586I0324 (f
50		AA287347		5 hypothetical protein PRO2013
		AA402799		8 phospholipid scramblase 4
		AA404418	AA404418	gb:zw37e02.s1 Soares_total_fetus_Nb2HF8_
		AA425107	AI743860	metallothionein 1E (functional)
35		AA425435	AB033030 Hs.30067	
		AA442872		1 Homo sapiens cDNA: FLJ21904 fis, clone H
	122577	AA452860	AA829725 Hs.33443	7 hypothetical protein MGC4248
	123160	AA488687		5 ESTs, Weakly similar to I38022 hypotheti
	123486	AA599674	BE019072 Hs.33480	2 Homo sapiens cDNA FLJ14680 fis, clone NT
40		F13673		3 ESTs, Weakly similar to S64054 hypotheti
		H99093		1 DEAD/H (Asp-Glu-Ala-Asp/His) box polypep
		N22495		5 Homo sapiens mRNA; cDNA DKFZp586N0121 (f
		N23031 ·		6 baculoviral IAP repeat-containing 6
45		R15740		6 carbohydrate (keratan sulfate Gal-6) sul
43		R39610	BE410405 Hs.76288 AL137540 Hs.10254	
		W45560 Z39833		0 GTP-binding protein
		Z40583	AW580945 Hs.33046	
		AA825437	AA825437 Hs.5887	
50		R66613	T40064 Hs.71968	
		R66613	T40064 Hs.71968	
		AA868063		6 carbohydrate (keratan sulfate Gal-6) sul
		AA128075	AA088767 Hs.83883	transmembrane, prostate androgen induced
	418000	AA128075	AA932794 Hs.83147	
55		AA128075	AA088767 Hs.83883	
		N66570		11 Homo sapiens cDNA FLJ13613 fis, clone PL
		AI051390		1 ESTs
		AA627122	AA627122 Hs.1637	
C O		AA627122	AA627122 Hs.16376	
60		X02761		20 fibronectin 1
		AF010193		12 MAD (mothers against decapentaplegic, Dr 5 type I transmembrane protein Fn14
		AA149044 U82108	BE395085 Hs.10086 U82108 Hs.1018	3 solute carrier family 9 (sodium/hydrogen
		D78676	BE076608 Hs.10556	
65		L35240		8 enigma (LIM domain protein)
00		AA598737		4 heat shock 70kD protein 8
		R69417		28 STAT induced STAT inhibitor 3
		AA232837		25 plasmalemma vesicle associated protein
		N72695		7 hypothetical protein PP1057
70		M30257		25 vascular cell adhesion molecule 1
-		M96843	BE222494 Hs.1809	19 inhibitor of DNA binding 2, dominant neg
		X68277	AA530892 Hs.1716	35 dual specificity phosphatase 1
		AA292440	R22497 Hs.1105	71 growth arrest and DNA-damage-inducible,
		J03040	AW410538 Hs.1117	9 secreted protein, acidic, cystelne-rich
75		AA228107	AW966728 Hs.5464	methionine adenosyltransferase II, beta
	101838	AA449789	BE243845 Hs.7551	I connective tissue growth factor

		AA449789	BE243845		connective tissue growth factor
		W01367	AL045404		KIAA0948 protein
		AA610116			tetraspan NET-6 protein
5		AA258308	T40064	Hs.71968	Homo sapiens mRNA; cDNA DKFZp564F053 (fr
3		AA460273	AA453694		tripartite motif protein TRIM2
		AA286710	AF055581	Hs.13131	•
		T68873	AA353093	Un 470043	metallothionein 1L
		D63476	D63476 U20982		PAK-interacting exchange factor beta insulin-like growth factor-binding prote
10		M62403 X55740		Hs.1516	5' nucleotidase (CD73)
10		L10284		Hs.155560	
		AA243278			mitochondrial ribosomal protein L12
		AA430032			pituitary tumor-transforming 1
		H16402	AW021276		ESTs
15		D59711	Al557212		ESTs, Moderately similar to I54374 gene
10		T94452		Hs.201591	
		AA431571			Homo saplens cDNA FLJ10934 fis, clone OV
		R79356	AF167706		cysteine-rich motor neuron 1
		AA280375	AW190920		hypothetical protein SP329
20		Z49269	BE048821		small inducible cytokine subfamily A (Cy
		Z41740	A1077288	Hs.296323	serum/glucocorticoid regulated kinase
	131002	AA121543	AL050295	Hs.22039	KIAA0758 protein
	131080	J05008	NM_00195	5Hs.2271	endothelin 1
	131084	AA101878	NM_01741	3Hs.303084	apelin; peptide ligand for APJ receptor
25	131091	T35341	AJ271216	Hs.22880	dipeptidylpeptidase III
	131107	N87590	BE620886	Hs.75354	GCN1 (general control of amino-acid synt
	131182	AA256153	Al824144	Hs.23912	ESTs
		W74533	AF104266		latrophilin
•		U25997	NM_00315		stanniocalcin 1
30		V01512	AW939251		v-fos FBJ murine osteosarcoma viral onco
		X56681	X56681	Hs.2780	jun D proto-oncogene
		AA161292	T47364		
		AA491465	T93500	Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL
25		AA046593	AA040311		ESTs
35		D50914	BE559681		KIAA0124 protein ESTs
		D45304 M90657	AA443966 AW960564	H8.31000	transmembrane 4 superfamily member 1
		W69127		RHs 274411	SCAN domain-containing 1
		AA316186	Al161383	Hs.34549	ESTs, Highly similar to S94541 1 clone 4
40		AA384503	Al359214	Hs.179260	chromosome 14 open reading frame 4
••		AA136353	AI267615	Hs.38022	ESTs
		AA044755	BE379499		Homo sapiens cDNA: FLJ22050 fis, clone H
		U84573	A1752235	Hs.41270	procollagen-lysine, 2-oxoglutarate 5-dio
	132187	AA058911	AA235709		DKFZP586O1624 protein
45	132303	AA620962			Homo sapiens cDNA: FLJ21210 fis, clone C
		AA285290	AF112222	Hs.323806	pinin, desmosome associated protein
		X60486	NM_00354		H4 histone family, member G
		R31641	AA876616		ESTs, Weakly similar to A43932 mucin 2 p
- 0		AA489190	AW163483		double ring-finger protein, Dorfin
50		F13782	NM_00129		LIM domain binding 2
		AA257993	AA257992	HS.50657	Janus kinase 1 (a protein tyrosine kinas
		M24283	M24283		intercellular adhesion molecule 1 (CD54)
		AA443114	AA160511	Hs.5326 Hs.283738	amino acid system N transporter 2; porcu casein kinase 1, alpha 1
55		T35289 N23817	BE218319		GTPase Rab14
55		AA047151	AA373314		Homo sapiens mRNA; cDNA DKFZp586P1622 (f
		N77151	AF234532		myosin X
		AA480074			hypothetical protein FLJ13213
		Y00787	Y00787	Hs.624	interleukin 8
60		T99789	BE384932		ESTs, Weakly similar to AF257182 1 G-pro
00		W84341	AW946276		Homo sapiens mRNA; cDNA DKFZp586J021 (fr
		L09209	W16518	Hs.279518	
		D12763	AA026533	Hs.66	interleukin 1 receptor-like 1
		T16484	AA370045		AXIN1 up-regulated
65	133161	AA253193	AW021103	Hs.6631	hypothetical protein FLJ20373
	133200	AA432248	AB037715	Hs.183639	hypothetical protein FLJ10210
	133220	X82200			Homo sapiens mRNA full length insert cDN
		AA083572	AA403045	Hs.6906	Homo sapiens cDNA: FLJ23197 fis, clone R
=0	133295	L00352	AI147861		low density lipoprotein receptor (famili
70		N75791	AW631255		L-3-hydroxyacyl-Coenzyme A dehydrogenase
		X57579	AW103364		inhibîn, beta A (activin A, activin AB a
		X02612		9Hs.72912	cytochrome P450, subfamily I (aromatic c
		H44631	BE294068		immediate early protein
75		AA090257			hypothetical protein MGC5618
75		X83703	X83703	Hs.31432	cardiac ankyrin repeat protein eukaryotic translation initiation factor
	133491	L40395	BE0 19003	ms. 170001	Euralyone nanalation initiation factor

	133510	AA227913	AW880841	Hs.96908	p53-induced protein
	133517	X52947	NM 000165	5Hs.74471	gap junction protein, alpha 1, 43kD (con
	133526	M11313	AU077051	Hs.74561	alpha-2-macroglobulin
	133538	L14837	NM_003257	7Hs.74614	tight junction protein 1 (zona occludens
5	133562	M60721	M60721	Hs.74870	H2.0 (Drosophila)-like homeo box 1
		D90209	D90209		activating transcription factor 4 (tax-r
		T67986	T70956	Hs.75106	clusterin (complement lysis inhibitor, S
		AA148318	BE244334		ADP-ribosylation factor-like 6 interacti
		U97105	Al301740	Hs.173381	dihydropyrimidinase-like 2
10	133671	T25747	AW503116	Hs.301819	zinc finger protein 146
	133678	K02574	AW247252		nucleoside phosphorylase
	133681	D78577	Al352558		tyrosine 3-monooxygenase/tryptophan 5-mo
		X53331	AW969976	Hs.279009	matrix Gla protein
		S73591		Hs.179526	upregulated by 1,25-dihydroxyvitamin D-3
15		X95735	BE410769		zyxin
		L16862	AW239400		G protein-coupled receptor kinase 6
		U44975	BE616902	Hs.285313	core promoter element binding protein
		M97796			inhibitor of DNA binding 2, dominant neg
	133859	U86782	U86782		26S proteasome-associated pad1 homolog
20		AA099391	U48959		myosin, light polypeptide kinase
		M19267	M19267	Hs.77899	tropomyosin 1 (alpha)
		D29992	C18356	Hs.295944	tissue factor pathway inhibitor 2
	133977	L19314	Al125639	Hs.250666	hairy (Drosophila)-homolog
	134039	S78569	NM_002290	OHs.78672	laminin, alpha 4
25	134075	U28811	NM_012201	1Hs.78979	Golgi apparatus protein 1
	134081	L77886	AL034349	Hs.79005	protein tyrosine phosphatase, receptor t
	134164	C14407	AW245540	Hs.79516	brain abundant, membrane attached signal
	134203	M60278	AA161219	Hs.799	diphtheria toxin receptor (heparin-bindi
	134238	R81509	AA102179	Hs.160726	Homo sapiens cDNA FLJ11680 fis, clone HE
30	134299	AA487558	AW580939	Hs.97199	complement component C1q receptor
	134332	D86962	D86962	Hs.81875	growth factor receptor-bound protein 10
	134339	AA478971	R70429	Hs.81988	disabled (Drosophila) homolog 2 (mitogen
	134343	D50683	D50683	Hs.82028	transforming growth factor, beta recepto
2.5		U56637	AI557280	Hs.184270	capping protein (actin filament) muscle
35	134403	M61199	AA334551		sperm specific antigen 2
		M28882	X68264		melanoma cell adhesion molecule
		X15183	M30627		heat shock 90kD protein 1, alpha
		S53911	NM_001773		CD34 antigen
40		U20734			jun B proto-oncogene
40		D28235	D28235		prostaglandin-endoperoxide synthase 2 (p
		AA236324	AW968058		nudix (nucleoside diphosphate linked moi
		AA148923			decidual protein induced by progesterone
		AA174183	AK000967		KIAA1682 protein
4.5		AA456311	AA876372		Homo sapiens mRNA; cDNA DKFZp667D095 (fr
45		L08069	W27190	Hs.94	DnaJ (Hsp40) homolog, subfamily A, membe
		AA452000	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f
		AA282140	T53169	Hs.9587	Homo sapiens cDNA: FLJ22290 fis, clone H
		J02854	C03577	Hs.9615	myosin regulatory light chain 2, smooth
	135348	AA442054	U80983	Hs.268177	phospholipase C, gamma 1 (formerly subty

TABLE 4A

Table 4A shows the accession numbers for those pkeys lacking unigenelD's for Table 4. The pkeys in Table 7 lacking unigenelD's are represented within Tables 1-6A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10 Pkey: Unique Eos probeset identifier number

CAT number: Gene cluster number
Accession: Genbank accession numbers

15	Pkey	CAT Number	Accession
20	100752	33207_21	T81309 BE019033 R94181 BE019198 NM_000612 J03242 AW411299 BE300064 BE297544 R94182 AW630108 T53723 D58853 H78073 H80594 BE299560 T48899 H70196 M17426 N77077 S77035 H58384 H61664 H78540 T84527 C17198 H60255 H71980 R92644 W79050 X00910 M29645 R91055 M17863 M17862 T71815 BE299561 BE464561 X06260 R94741 T54216 C18594 BE262015 X06161 AW409889 AA378400 BE263228 BE313278 R88116 BE313457 H43500 T48617 BE313761 H77309 Al207601 X06159 H40413 X03425 T87663 R10627 X03562 M14118 W03982 R97520 H81229 T83157 H83168 H48762 AA669898 BE263054 H47289 AA022807 R11555 H74260 R76968 R28338 H72534 H72464 H62031 N72478 N45355 AW411300 R89113 R69135 H58454 T83281 R93476 H69645 H68015 T82229 H71089 T85121
25			H59939 W65299 N78176 H53909 N72373 R21788 H04560 H59639 H61874 BE262219 T53614 N73335 N50464 W00943 N77189 R89257 AA570502 R89432 R06366 AA553480 AA776271 AA551359 AA551050 H51670 AA601052 BE299081 H68198 H52276 BE207832 N91192 H70332 X07868 X07868 H69464 H53782 H73710 R80435 AA553384 AW884176 N53475 T71662 AW954036 AW954033 AA552931 H93206 AA430218 AA553476 Al918470 T54124 BE207982 BE300177 N73994 AW882625 N39549 N53838 AA722389 H71878 H58909 H37849 H78435 T47933 R77174 R83814 AA411890
30			H94199 AA663208 BE205778 AA490137 H70492 R98232 H37800 AA679294 H40341 H74238 H47290 H73231 T48618 AA025428 Al039521 H92969 N59389 H80538 H72933 T90630 AA411891 N55000 H74225 AA340290 AW957061 T54316 AA340437 H57125 H58908 H79027 H63450 N74623 R93425 H68714 H68758 N68396 H48763 N69256 H57320 H53831 H53589 N68833 N52453 H56048 H69870 H78074 R69253 R83375 T53615 H94330 H58455 H90864 T47934 H74261 R89258 R97997 R91056 R28339 R86760 H78235 R97521 H67692 H40358 AA022688 H52513 H59601 T88690 H65256
35			H63397 W65397 AA553588 R19280 N52645 W73930 R06367 R21743 H72372 N73921 AW883539 AW882639 T40616 H47084 R95723 AA634316 AA862781 H77310 R91389 H93111 R92767 T54512 R89341 H70333 H57817 H82941 H62032 N52638 H58385 T91796 H51086 AA340292 T49918 H81230 R36121 N50411 T87664 N62436 N39340 AA665637 AA340446 H93377 H92973 BE296290 BE269788 H61665 AA340444 N54605 AA454101 R10628 R94200 AI200549 AA342640 BE298855 BE250229 T49916 H82008 N28278 AW880662 H71268 N76791 H47685 H65255 W05198
40			AW889144 N76677 H71702 H68036 H71915 R91612 R87807 H68059 Al133328 Al247866 AA621443 AW881050 AA700847 AA340413 AW878608 AW881181 AW878249 H71916 N54596 BE161581 AW878082 W04212 AW881040 AW885492 AW880519 AA334887 AW878715 W06882 AW630222 AW885381 H70869 AW381778 H47601 AW889982 H63868 AW884986 AW878713 AW878685 R36391 AW878694 AA368070 C03393 AW878695 AW878705 AW878665 AW878742 AW878620 AW878823 AW878688 R29048 AW878690 AW878686 AW8786810 AW878827 AW878733
45			AW878659 AW878749 AW878681 AW883353 AW883277 AW883300 AW883565 AW883298 AW883143 AW883045 AW883482 AW883352 AW883457 AW883357 AW883231 AW883474 AW883355 AW882620 AW882533 AW883754 AW883139 AW882827 AW883641 AW883567 AW883639 AW882982 AW882465 AW882466 AW883639 AW88230 AW882981 AW882534 AW882574 AW882619 AW883480 AW882826 AW882831 AW882835 AW882830 AW883563 AW882456 AW627642
50	117156	145392_1	W73853 AA928112 W77887 AW889237 AA148524 AI749182 AI754442 AI338392 AI253102 AI079403 AI370541 AI697341 H97538 AW188021 AI927669 W72716 AI051402 AI188071 AI335900 N21488 AW770478 W92522 AI691028 AI913512 AI144448 W73819 AA604358 N28900 W95221 AI868132 H98465 AA148793
~ ~	131859	3672_1	AW960564 AA092457 T55890 D56120 T92525 Al815987 BE182608 BE182595 AW080238 M90657 AA347236 AW961686 AW176446 AA304671 AW583735 T61714 AA316968 Al446615 AA343532 AA083489 AA488005 W52095 W39480 N57402 D82638 W25540 W52847 D82729 D58990 BE619182 AA315188 AA308636 AA112474 W76162 AA088544 H52265
55			AA301631 H80982 AA113786 BE620997 AW651691 AA343799 BE613669 BE547180 BE546666 F11933 AA376800 AW239185 AA376086 BE544387 BE619041 AA452515 AA001806 AA190873 AA180483 AA159546 F00242 Al940609 Al940602 Al189753 T97663 T66110 AW062896 AW062910 AW062902 Al051662 Al828930 AA102452 Al685095 Al819390 AA557597 AA383220 Al804422 Al633575 AW338147 AW603423 AW606800 AW750567 AW510672 Al250777 AA083510 AW629109 AW513200 AA921353 Al677934 Al148698 Al955858 AA173825 AA453027 Al027865 AW375542 AA454099
60			AA733014 Al591384 R79300 R80023 AA843108 AA626058 AA844898 AW375550 AA889018 Al474275 AW205937 Al052270 AW388117 AW388111 AA699452 Al242230 N47476 H38178 AA366621 AA113196 AA130023 H39740 T61629 Al885973 AW083671 AA179730 AA305757 Al285455 N83956 AA216013 AA336155 AW999959 T97525 AA345349 T91762 AA771981 Al285092 Al591386 BE392486 BE385852 AA682601 Al682884 AA345840 T85477 AA292949
65	125565 133607	1704098_1 1227_6	AA932079 AA098791 D82607 T48574 AW752038 C06300 R20840 R20839 BE273749 BE397561 BE387189 AL037858 AL037878 AI963094 BE259216 AA011363 AL036189 BE562325 AA251169 BE617431 N98537 AA156093 AL047800 M34539 NM_000801 AA312140 D16971 AA158904 AA307114 AA312803 T09203 AW629686 AL048504 BE388578 AA220957 AA158364 BE267385 AA294971 C18055 BE241757 AA115056
70			A1936769 BE378435 BE206971 AW674924 BE622060 AA604674 AA115273 AW402159 AA338608 BE568819 M80199 X55741 AA375111 AA376016 BE612671 AA805742 AW405588 N25850 N44580 H06031 AW403549 BE536552 AA056726 BE543239 AA082517 A1201645 A1201642 A1192622 N40104 AA370921 BE547569 A1969602 AA302038 A1197890 AW268354 A1014938 W45448 A1541395 AA037272 BE538826 AL039613 BE536130 AA299355 AW805147 AW974624 H53220 A1471471 AA399303 AA007386 W35106 BE613277 R12739 R12738 AA304342 AA687802 BE409581 A1498844
75			AV662092 AW904105 AA011375 BE315214 H99302 BE537893 N32299 AW855829 AI291320 BE078322 AI301395 AA303362 N32719 AA358328 AA357877 AI952540 H56279 H02758 H02048 AW805233 R82224 AA410772 AA291352

5			BE171109 N69935 BE169248 AA361173 H44978 BE617887 D52560 AA084043 W03595 R67219 N36477 N42924 R67104 H44901 H79695 W21105 AA393988 W30899 AA316096 BE622896 W46872 AA442678 BE544893 BE540112 BE621873 AA338067 N55052 BE398154 BE621210 AA740760 C03739 C03206 BE396692 AA482370 AA031614 AA301575 AA304710 AA132153 AA029796 AA994960 H19567 AA442969 H49781 H46871 AA035395 AA056185 AA149378 AA643080 AL135479 AA292329 AA654337 AA041228 AA454888 AA025039 W58331 AA625981 T94941 AA302448
			H19900 AA218956 AA513790 AA563962 AA398076 W44441 AA293276 W47373 AA625879 W30688 AA043029 T64284 R79151 AA304340 AA485186 AA604939 R82470 AA421425 AW771456 Al339329 AA304424 AA605236 AA936934
			AA587673 Al209162 Al697301 Al479995 Al679814 Al361950 AW189125 Al955888 Al986019 BE301019 Al084792 Al310211 AW189307 Al022070 AW977204 Al146825 AW190163 AW303281 Al828345 BE046043 AW029257 AA482268
10			AI246507 AI420729 AW084932 AW439514 AI890487 AW439692 AI523896 AI186612 AI659953 AI889773 AA687527
			AW072694 AW262153 AW467371 Al613269 Al679238 D54404 AA158103 AW105527 AW149739 AW150361 AW268387 AW117708 Al951682 Al687440 AW674285 AA678365 Al587082 AA732095 AA019899 W45661 AA627300 BE613304
			AA765891 AA612935 AI814658 AW316916 R66594 AA514640 AA025040 AA031472 AW732076 AA029797 AI244560 AI128734 AW381720 AI092360 AI263283 AW613175 AI890675 AI720156 AW631348 AI635106 AI278045 AA303979
15			AA703505 W45449 AW078661 AI292052 AW381707 AI147854 AW381743 AA158905 AA303258 AA888144 AW195967
			AA428706 AA989559 AA617731 H19882 BE543418 AA830386 AA421302 W58652 T94995 Al869743 Al679145 AW085971 N98425 AA765136 Al347027 Al356955 AA928038 Al679717 AA458459 AA679281 Al367973 Al270041
			AA765135 AA732793 AI798447 AA668646 AA251008 AI984538 AI401737 AA056186 BE043308 AW662375 AI302110 N50724 W96332 BE537047 N26983 AI567172 AA765296 AW673237 N29784 AA534275 AA084044 AW067973
20			AW300766 T63398 W46823 R39790 Al364185 AW298582 AA454814 AW069878 N67751 H05982 N23140 Al362647 Al302086 Al767772 N25755 H53114 AA706133 T93511 AA429291 AA935294 AA987647 W02803 R66595 Al680795
			W23673 AW440794 AA722872 H49538 AW131042 AA531603 AA908665 AA040791 AA235312 W52205 N93444 R82180
			H02759 H79696 AW088894 H56079 AA961143 AW067776 AW973745 AA016311 AW071227 AA017511 AI753994 W47374 T64155 AA296092 AI698626 AA558158 AA296088 AW794259 H01963 AA149267 AA485076 AA975856 H44938
25			AA035396 Al955555 H46289 AA486161 Al631222 AA359047 AW794253 Al806962 AW243930 AA526145 AW878734 AA018464 AA132031 R67220 R79152 AA296093 H54300 Al005160 BE242548 AW992803 AW878644 AW878666 T27742
			R82471 AW517604 AW472738 AI282904 R39791 AA486098 AW467891 AW960520 AA551736 AA056621 AW945197
•			R66373 AA554236 BE242202 Al904376 Al832590 H19484 R00890 Al627677 AA302287 Al869451 Al734855 Al708073 Al832902 AA585184 AW204299 AA055565 D12417 D11975 T63543 AW664099 R54423 BE612712 T96340 T63985
30			AA598917 T40735 T64053 AA149284 AW272548 AA363445 AA042893 AW300697 BE261973 T53501 T53500 AW878729 AW878657 AW794391 AA069193 R01553 H44875 AA385406 AA533968 M93060 AL135600 W96331 AA017651
			AA018849 AA017692 H85337 BE278690 AA731598 AA018512 Al076813 Al022644 R02585 X52220 AW296894 AA825671 Al699321 Al393601 AW592611 Al146747 AA608921 AA158365 AW590007 AA354519 D20081 R02704 AW798339
35	100001	10000 4	M92422 AA094903 AA007676
33	133681	13893_1	Al352558 Z82248 X78138 NM_003405 AU077248 AA223125 S80794 D78577 Al124697 AW403970 BE614089 BE296713 BE621334 L20422 X80536 D54224 D54950 X57345 N29226 AA127798 AA340253 F08031 AA192540 H67636 AA321827
			AW950283 AA084159 BE538808 AW401377 AA256774 C03366 W46595 W47608 AA305009 H69431 H69456 AL120082 H11706 AA303717 AA361357 H22042 H78020 AW999584 AA134368 AA322911 AA322961 H60980 N85248 N31547
40			H79624 T11718 W85826 AW894663 AW894624 BE167441 BE170015 AA304626 AW602163 AW998929 AA156681 AA151067 BE002724 AA608688 H82692 BE155392 AW383636 BE155394 AA487004 AW383504 AI342365 R82553
10			W16498 BE155344 Al143938 R69901 AA322873 AW340648 R25364 AA367935 Al559406 AA033522 AA374252 AW835019 Al922133 Al697089 N99662 AW189078 Al199076 AW151598 W59944 AA662875 W94022 AA299055
			AI039008 AI829449 AA583503 AI635674 AW131665 AI473820 AW273118 AW900930 AA908944 AI688035 AW170272
45			AI082545 AW468176 AI608761 AI082748 AI911682 AI248943 AI831016 AA192465 AI218477 AA938406 AA385288 AI809817 AA905196 AI191245 AI470204 AI188296 AI421367 AI125315 AI087141 AA629032 AA740589 AI554181
			AA150830 Al248541 Al077943 AA775958 AA864930 Al261476 Al123121 Al310394 AA862331 AA872478 BE537084 Al205606 AA720684 Al872093 AW150042 AL120538 AA219627 AA988608 C21397 Al359337 H25337 Al089749
			AA605146 Al359620 AA150478 Al359738 AW383642 AW995424 Al766457 R56892 Al089839 W61343 N69107 W46459
50			AA565955 N20527 Al279782 W46596 AA776573 H23204 Al866231 Al083995 N21530 AA126874 D82630 W65437 Al086917 AW382095 Al086877 H69844 AW340217 W85827 L08439 AA262704 AA505380 W47413 W94135 AA223241
			AW089153 AA084101 BE538000 AA096126 T28031 AA491574 R84813 AA774536 AW383522 AA155615 AW383529 AA491520 AW028427 AA171496 Al469689 AW664539 Al811102 Al811116 BE464590 BE350791 H78021 T15405 H21979
			AA219489 H13301 AA505883 Al864305 Al423963 AW084401 F04963 R69858 H67097 Al917740 Al655561 H69864 AA033631 AW383484 Al886261 H25293 AA513281 AW271187 H11617 N79982 Al174338 Al904207 Al904208 BE614558
55		·	W94127 W65436 Al272249 AA700018 Al579932 Al085941 AW152629
	134403	17037_1	AA334551 BE008229 AA307537 AW961156 AW995894 AW995826 NM_006751 M61199 AA045603 AL036372 AV645606 AI688095 AW351901 AA101337 AA101345 N73342 BE018030 BE569044 AW841975 AA373388 BE090412 H95440
		•	N53845 R67867 AA093441 AA363427 H93708 AW023134 AW994986 AW994989 BE090429 R23614 Al567932 H03726 H01101 H01867 AA548743 Al671806 AW872949 AW872941 AA742447 Al199788 AA045604 Al637465 Al741796
60			AW242217 AW131463 AI765302 AI683923 AA889762 AI804889 AI986437 C06049 BE502340 AI695651 AI491970 AA496804 AA281008 AA665699 AI473814 BE301445 AA707837 AA551925 AI017348 AI208185 AA775203 AA156296
			AA557463 H95441 AA768547 AW769358 AA991197 AA181954 AI091389 AI147289 AW771837 AI638582 AA844411
			Al374750 T29320 AW951272 AW085923 H02834 AA843259 AA814696 AW183290 AA158453 N68125 N69039 AA100423 AA101346 Al918720 H01102 R67868 H01868 N66438 R46580 Al858433 AA599560 AA187577 AA157481 AA361520
65	126872	142696_1	AL047827 AA158452 R21688 AW964874 AA325161 R40871 AW752395 AW375924 R13355 AA281174 AA428908 AW450979 AA136653 AA136656 AW419381 AA984358 AA492073 BE168945 AA809054 AW238038 BE011212 BE011359
		_	BE011367 BE011368 BE011362 BE011215 BE011365 BE011363
7 .0	121335 130018	279548_1 18986_1	AA404418 Al217248 AA353093 AW957317 AW872498 Al560785 Al289110 AW135512 X97261 T68873
70	121822	244391_1	AI743860 N49543 AW027759 BE349467 AI656284 BE463975 R35022 AA370031 AW955302 AL042109 N53092 AI611424 AL079362 AI969290 AI928016 BE394912 BE504220 BE467505 AI611611 AI611407 AI611452 W56437 AI284566
			Al583349 AW183058 Al308085 Al074952 AA437315 AA628161 AW301728 Al150224 AA400137 AA437279 Al223355 AA639462 Al261373 Al432414 Al984994 Al539335 AA401550 AA358757 Al609976 AA442357 AA359393 AA447046
75			AA370301 AA429328 AW272055 AI580502 AI832944 AI038530 AA425107 AI014986 AI148349 AW237721 AW779756
75	123523	genbank_AA60	AW137877 AI125293 AA400404 R28554 8588 AA608588

	123533	genbank_AA608751 AA608751
	125091 123964	genbank_T91518 T91518 genbank_C13961 C13961
5	102491 118475	entrez_U51010 U51010 genbank N66845 N66845
3	118581	genbank_N68905 N68905
	113947 101447	genbank_W84768W84768 entrez M21305 M21305
10	101667	13349_1 NM_005381 M60858 AW373732 AW373724 AW373689 AW373609 AW373609 AW373776 AA187806 AW386946 AW374207 T05235 AA216203 AW385556 AA306940 AA306526 AA315461 AL036757 AW373711 AW403124 AW403640
10		AW377084 T27360 H62638 F06957 AW377051 AA554779 AA378568 AA096007 AW352407 AW302637 F07929 H17433
		AW382712 H05665 F07292 N39875 AA089729 H62556 N42842 R12952 AW373735 AW364155 AA056183 W39185 AW382708 N32488 AF114096 AW375993 Al133569 W52561 AA603040 AA133710 Al928796 AW176370 AA827519
15		AW338437 AA521142 T29341 Al800461 AW317002 AA703914 AA860830 Al859203 Al445772 AA714334 Al817066 Al832027 AW510442 Al635802 AW088306 AW068672 AW408555 AW467542 AA552657 AA152367 W32081 AA582124
13		AA074040 AA931657 Al051154 AW410203 Al921644 H17434 Al832330 AW404836 Al925038 AA088423 AA954166
		AA580453 AW021292 Al267215 AW080082 AW383778 Al933053 Al919097 W31557 N90245 AA931591 AA563995 F36352 AA056184 AA476294 AA641327 AA533550 Al749630 W58323 AA569119 AA508573 Al809050 Al378996
20		AA411362 AW407505 AA938104 AA074041 AA632876 AW193748 AA507873 Al270128 Al472365 AA411363 Al523216 Al719965 Al816302 AA182681 Al707990 AA133588 Al758537 W60253 Al460308 AA135423 Al083904 F04188 N89693
20		AW408776 Al678595 Al270568 AA722059 W58234 F33650 AA090547 AA285108 AA425981 N85079 D20218 Al273980
		AA159028 F03226 AW247914 N26918 AW272741 N90109 H05666 N23327 AW247953 R44748 AA962015 F03558 AI752394 AW409913 AW248396 AI816463 AI752393 AA325370 AA263089 AI570130 AI971951 AI160658 AI357360
25		AW168686 AL121075 AW050536 N21672 W67748 AA514242 AI127386 H14607 AI185752 W79364 AA088520 AA152476 AW351940 AW373683 AI940524 AW374953 T56500 N24329 AI940720 AW374933 AW374947 AW391913 AL138337
23		AW376241 AW062943 F26666 AW410202 AW062958 F34529 AW381807 AW393315 W17147 AW176359 AA664576
		AW380424 AA306040 Al745674 AW300951 Al188579 Al438973 Al305271 AA433818 AA612807 Al831809 Al940409 AA158663 Al572988
30	108931 103138	genbank_AA147186 AA147186 entrez X65965 X65965
50	103432	entrez_X97748 X97748
	119174 133678	genbank_R71234 R71234 11235_1 AW247252 AA346143 NM_000270 AA381085 N91995 X00737 AA381079 AA296473 AA296110 AA315735 AA311617
35		AA326750 AA376804 AW403290 T95231 M13953 T47963 H82039 AA279899 AA627997 N76320 N99527 H37842 W20095 AA457308 AW469547 AA724143 H83220 AA319496 W86334 W30892 R89169 R99427 N41854 H47286
		AA348094 AA045089 R63016 AI922219 AI024906 AI096488 AI885005 AA194872 N90489 AI452544 H72411 AA282427 AA430735 R68963 R22453 H70385 AW129369 AW467320 AW519082 AA345018 AA582183 AI961789 R65918 N30611
		Al979189 Al280889 AW273191 R66531 Al285845 Al675927 Al421990 AW190879 H37794 AA699667 H68427 AA954388
40		AI188757 AI140048 AA430382 AI204151 AW247864 AA559099 AI431420 AA548276 AI149466 AA772669 AA694388 AA724168 AA301651 AA281952 AA779925 AA234760 W86290 AA913603 AW511745 AI500697 AA814922 AA835040
		T47964 H53998 AA975804 R98710 Al077604 N70252 R98084 AW250171 H69268 Al597614 AA970746 AA972548 Al377116 R62962 H16737 R89070 AA731329 R66532 N54354 Al818832 H81944 N71567 T95122 W86463 AA437095
		A1431999 A1915724 N63851 A1674743 AA457307 AA211475 N64444 A1799146 H72853 R99335 H60413 AA770367
45		AA156105 Al269937 H64029 H89728 R65819 AW470496 Al873318 Al735713 H82987 C02447 Al478666 T27651 Al699770 AW025156 H69719 Al984717 N69225 Al459856 AA953577 Al424691 H13843 R22404 Al873796 Al336002
		N70898 AI420854 AA541792 AA346142 AI000814 AI828348 AA045090 T51257 N90434 H13890 N73184 AI708083 AA781606 AA329050 AA339985 R68964 H64795 W04186 H16845
	119416	genbank_T97186 T97186
50	119559 123473	NOT_FOUND_entrez_W38197

TABLE 5:

Pkey: Accession: 5

Unique Eos probeset identifier number Accession number used for previous patent filings Exemplar Accession number, Genbank accession number

ExAccn: UnigenelD: Unigene Title: Unigene number Unigene gene title

10					
	Pkey	Accession	ExAccn	UniGene	UnigeneTitle
15	115819	AA426573	AA486620	Hs.41135	AA486620
	132837	D58024	AA370362	Hs.57958	AA370362
	101545	M31210	BE246154	Hs.154210	BE246154
	102898	X06256	NM_002205	5Hs.149609	NM_002205
	101192	L20859	BE247295	Hs.78452	BE247295
20	102915 105330 107385 102024 134416	X07820 AA234743 U97519 U03877 M28882	X07820 AW338625 NM_005397 AA301867 X68264		X07820 AW338625 NM_005397 AA301867 X68264
25	103036	X54925	M13509	Hs.83169	M13509
	104865	AA045136	T79340	Hs.22575	T79340
	106124	AA423987	H93366	Hs.7567	H93366
	105330	AA234743	AW338625	Hs.22120	AW338625
30	109001	AA156125	Al036548	Hs.72116	Al056548
	104764	AA025351	Al039243	Hs.278585	Al039243
	133200	AA432248	AB037715	Hs.183639	AB037715
	105263	AA227926	AW388633	Hs.6682	AW388633
	105178	AA187490	AA313825	Hs.21941	AA313825
	109456	AA232645	AW956580	Hs.42699	AW956580

TABLE 5A

Table 5A shows the accession numbers for those pkeys lacking unigenelD's for Table 5. The pkeys in Table 7 lacking unigenelD's are represented within Tables 1-6A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10 Pkey:

Unique Eos probeset identifier number

CAT number: Accession: Gene cluster number Genbank accession numbers

15	Pkey	CAT Number	Accession
,	115819	10241_1	AA486620 AF205940 AA297524 AB034695 AA081335 NM_016242 AA188323 AA297537 H88204 AW953081 W31695 AW582203 AA248250 AW681211 AA426230 AA464807 AA426155 N44141 AA347390 AA770661 Al333225 N36136 AW665724 AA431894 Al374976 Al400254 Al338446 AA186695 H88205 W04527 AA487066 Al051414 AA918383
20	102024	14505_1	AA426573 AA425620 AW438654 AA090513 BE167284 BE167291 Al301726 AA301867 AW957981 R27614 AA155808 Al920990 Al740711 AA301026 AA301015 Al220981 Al857670 Al537140 AW015210 AA030000 W46890 H44021 Al355967 Al651735 AA058479 AA146932 T58265 R85890 AA047810 AA017387 AW026093 AA971133 Al827263 Al056416 Al355994 Al127691 H46603 U03877 NM_004105 AA157357 H42844
25			AA146824 AA187709 AA187269 AA304348 AA147292 AA361687 AA156041 AA330636 R32929 AA321130 AW950260 AA082157 AA029129 AA303708 AA028155 D31561 T84689 AA302493 BE153057 BE153181 W39408 AA187200 BE153250 AW383337 AW382622 AW382647 AW750072 BE153060 AW382630 AW371865 AW392464 AW382664 AW382658 AW382650 H61647 AW365075 AW365049 AA373397 BE072779 BE072781 Z30254 W24381 BE153254 AA040442 BE072729 BE072731 N94740 AA146945 AW802737 AI826799 AI085395 R34034 H65140 AA082800 H88275
30			AA147824 R63882 W80899 AA296413 AI765300 AI862426 AW022055 AW300003 AI743784 AI862635 AI985428 AA147764 AW573245 AW190290 AI040898 D57613 N63457 AA148082 AI028458 AA148110 AW814489 N75105 AW629443 AA704122 AW582220 AA181240 AA057495 AI418224 AI261751 AW388595 AI472205 AW470672 AA102546 AA789046 AA182416 AA062668 AW300732 AI288220 AA181982 AA146825 AA028130 AI985522 AA303344 AA081313 N69082 AA182035 AI867128 AA100902 AA605087 N67178 AW020324 AW890446 AI472191 AI335691 AI597837
35			Al081143 Al335681 AA040443 Al128067 Al678244 AA018303 AA157260 W80792 Al934590 Al096430 T54343 Al446350 AA165196 AA780683 AA603631 AA047787 AA968580 AA912645 AW890504 AW026913 D56983 H52088 AA156121 R30848 AW023036 Al590960 N67345 Al753225 Al753283 Al183768 AA147818 H89101 Al362141 H89205 Al147711 AA321129 AA668622 AA343479 AW069438 Al422376 AW629270 AA013413 Al221948 AA970605 N52335 H38366 T91180 AA657841 AA017386 AA152227 AA187593 Al913340 Al719313 Al969943 Al701271 Al004328 Al868348 N93659 H65093 H25736 D57070 D56957 C00987 D61839 D56661 Al472137 Al971002 D56971 BE048830 D57972 Al589286
40			Al361055 Al361071 Al292223 AA155898 D57139 D57981 D57345 Al420034 D57332 D57959 AA875933 R33493 N67558 D58353 AA188394 AA147966 A1160640 Al363165 H40638 AA578137 AW950265 AA300943 Al128999 H46584 AA917355 N57820 AA320504 H51959 H25737
	101545	24607_1	BE246154 M31210 NM_001400 AA193392 NM_016537 AF233365 AF022137 H27787 AA370448 F05373 T27666 W21494 AA036907 Al249966 N93476 F01623 AA304390 AA308808
45	109456	180633_1	AW956580 AA886361 Al147670 Al090115 Al168683 AA232645 H99504 AA374707 AA380875 AW139567 Al735132 BE439385 AW629780 N28322 AA232789 AA232790 N73285
	103036	17145_1	M13509 X54925 NM_002421 M16567 X05231 M15996 W39354 AA186634 AA852324 AA187507 AA081149 AA186524 AA187264 AA187361 AA386155 AA186973 AA374217 U78045 AA081230 AA188049 AA186393 W56827 AA852602
50			AA157468 AA308204 AA186754 AA186808 AA082516 AA304334 AW376428 BE439384 AW376420 AA156273 T18504 AA186521 W49496 AW084608 AA083575 AA372360 AW963590 AA132297 W47445 AA186376 AA157628 AW003999 Al037890 Al858060 Al589010 Al743739 Al452673 AW304188 AW117854 BE439933 AA157416 AW778966 Al038497 AA081006 AA100829 AA181048 CO2231 T27821 W23960 AW954802 Al471432 AW801296 AW801289 AW801603 AW801523 AW801292 AW801542 AW801601 AA181134 Al445147 AA191501 AA582862 N94407 Al147810 AA181880 W49497 W52714 AA188249 Al932881 Al082493 AA503656 AA182682 AW801393 AA182830 AA181882 AA182826
55	133200	28960_1	AI613182 N94510 W47343 AI085755 AI076956 AI918426 AA081208 AI282835 AA147528 AI081490 AI654536 AA181875 AA081282 AA186389 C06085 AA083542 AI800644 AA157642 AA101069 AA157752 AA158121 AA143331 AA081283 AA852603 AA188296 AI932880 AW449628 AA187348 C02091 AA514656 AA082736 AA308786 AA143201 M16567 AB037715 AI351347 AI375796 AI884765 AL121124 W01068 AI807275 T95240 R42807 AW515645 AI057314 AI033520
60			AA057671 N70215 AA054215 AW204183 AA552149 T95130 AW796310 Al866520 AW275564 AW796308 Al637901 AW197404 T78406 AA456232 AW206463 AA779800 Al052696 AA026744 AA454623 AW470729 R45490 AW770258 Al038393 Al290170 AA722734 AL121125 R41608 Al862414 AA833611 R45582 Al278083 BE466849 BE219944 AA418030 BE041555 AA678572 T16528 AW0063442 X39782 Al244848 AW137344 AA707400 Al032028 BE540464 Al094265 Al184281 AA931890 AW382744 AW32749 AW020448 AW827237 AA44A126 Al672059 AW772345 N70172 AW020202 Al962704 B416244 B61614 Al090204 B46666 AA432448 AW372374 AL962704 B4162704 B41614 Al090204 B46666 AA432448 AW372374 AL962704 B41614 Al090204 B4666 AA432448 AW372374 AL962704 B4162704
65			AW022003 Al862704 H19344 R61511 Al080204 H16566 AA432248 Al767980 T16688 Al984342 Al217478 Al767095 Z38551 Al359566 Al361437 Al041000 R07033 H16608 H19054 R12874 R61567 N98368 BE221199 Z42320 AA094554 R07078 AW860886 AA418090 R41262
70	132837	256666_1	AA370362 AA364110 AW959554 AW371737 AW382068 AW604716 AW604713 AA487827 AW371674 AA429137 BE503321 T93570 W72803 Al093076 AA487977 Al241562 BE439445 AW204065 R51635 Al802994 T10362 W68553 Al866215 AW152154 AA700716 Al127443 R15824 Al537587 AA953110 D58024 Al520811 AA693670 Al453280 W76329
70	102898	24023_1	AW023955 AW022563 NM_002205 X06256 M13918 BE070866 AW239485 AW996127 BE273894 BE272590 BE410252 R25975 T11786 T11787 AA301142 AA301165 AW960506 BE272819 AA386086 T39391 AA285303 AA370580 D58585 T58668 AA156213 W24142 AA343323 AW796067 AA151197 AA376121 R94782 AA302363 H90357 R82621 AA301677 H55997 AW796059 W92358
75			AL046458 AA471198 AA301952 R46287 R82694 H03186 AA187706 R32562 R27094 R25947 R25320 AW949809 H13505 H79049 R32403 H11213 R39710 H49765 H21142 H21006 AA417664 W52075 N56771 AA284240 N98556 N30907

5			AA707335 AW603781 AI340367 AI814584 AA524182 AA370076 AA418785 AA704082 AI806851 H25513 T56388 AA419627 H03986 H20963 T56245 AI459715 AW973768 AI334096 AI693020 T63414 R82646 AW167251 H55998 AI274916 AA778367 AI755253 AI033667 AW083222 AA181979 R26865 AA661627 AA706329 AI798648 AA612799 AI160180 AI274973 AI039264 AA301880 AI042429 AA307632 AI085688 AI278366 AI498890 AA303865 AI954844 AA502380 AA156334 AA723480 AI8803584 AI581026 AA304584 N51038 R94702 R69814 AW150962 AI570049 AA588807 AA151198 T53400 AI567709 AI185326 AA309205 AW338969 R53903 AA991891 AA301643 AI493337 AI026049 H25514 AI741075 R28632 AW166445 AI333068 H49978 H91267 AA558193 AW079663 A627380 AA807401 AI199956 AA666118
10	1000.1-		AI718216 AW193228 AI077745 AI500496 AI266059 AW080383 R06468 R26757 R32404 AA716599 W92322 AI077734 AI270181 R46198 AI217540 AA304045 AA305421 AW074445 AI468256 AW089568 AW571605 BE162930 H41009 AA578313 AW874497 AA181284 AA861947 T29451 D20841 T58618 AA418731 AI282500 AW081407 AA604560 AA729855 AI262538 AI580225
15	102915 134416	2903_2 30694_1	X07820 NM_002425 BE271570 Al263526 AW296143 Al829878 Al973162 Al085155 AA857496 AA709305 C02220 X68264 NM_006500 AF089868 BE257461 BE275425 AW997154 Al902799 Al902803 M78206 AA085691 AW392972 AA325490 BE006161 AA349269 AA323568 AL042548 AA191148 AA187703 AA322791 AL297452 T11625 AW366487 AA303513 AA186961 AA173480 N28330 N28379 W40320 AA187118 H03695 AA02709 BE407476 H06354 BE276589 AA351284 AA379921 AL138060 BE410587 AA113094 AA340481 BE277483 R21191 R79518 N86170 AA320505 AA296065 AW951900 AA658897 AA650052 AA654304 AA191691 N26649 AW080963 Al265800 N72019 Al453458 AA092563 AA402310 Al439450 Al061054 AA302358 T71566 AA302047 AA303432 N21289 H27357 AA303504 Al174583
20			AW151762 AA181958 AW880618 AA630773 Al889539 AW901058 Al373405 AA341941 AA086217 Al675590 Al653936 AA633570 AA987619 Al270656 N93847 N40689 AW517517 N20030 W95985 AA303955 H89170 AA309917 N21642 AA373132 W38517 Al687806 W76182 AA101065 AA036916 N45635 Al744510 Al669803 Al039157 Al126355 AA634607 AW131120 AW196838 AA190601 AA911130 BE221320 N92355 AA036752 H03696 AA588873 Al458868 Al041818 AA090477 Al093248 AA304755 AL137942 AL044688 Al083709 Al150965 N88891 AA635675 AA594898 W94657
25			AA182823 AW166205 F27886 R79246 F37329 AA565697 AI075739 AI088654 AI094287 AI204256 AA095203 T93020 AA688298 AA057324 N23442 AA075411 AA305046 AI031688 AI191503 AA111887 AA112264 N27929 AA187509 AI375522 AI474006 H06297 AI826177 N48880 H28333 AA075490 R22809 W79542 AI055934 AA042901 AA173481 AA301986 W74531 AI051747 AA187715 AI888888 AA993017 AI057530 T92954 N80227 AW273595 AI351260 AW170643 AW292979 AA302605 AA302330 BE349495 AA326602 AA302361 AI470984 AA155943 AA155914
30	105178	7792_1	AA313825 AW960347 AF223468 NM_016613 AA186345 AA186508 AA081195 AA147972 AA346943 AW961667 AA187222 AA187207 AW371052 AW449751 AW748803 AW391606 AW371047 AW371057 AW371085 AW362895 AW371092 AW377556 BE010930 AI016882 AA247878 C04398 C05158 F11398 AA188315 H23385 R55086 H15346 AA029106 AA228114 H17005 F08498 Z43376 AA095582 AA055186 AA463361 R15218 AA299132 AW103578 W21538 AA428131 AA187115 AA157197 AA157167 AW371371 AA363562 AW965995 N55663 Z17878 AA228023 AI140342
35			AA100927 AA496988 AA055917 Al089303 AW014967 AW090248 AW338371 AW131066 D62963 D79713 Al583950 Al336781 Al500705 Al471485 AW090239 D79784 D61847 D62789 D61842 Al086327 Al273381 D61815 D63043 Al913548 Al280560 Al510828 AA029996 C16343 C16513 Al075741 AW516308 Al804764 AA948068 Al356588 AW103452 AW573063 Z39445 C16489 Al949870 F04712 AA147823 AW026284 Al151538 AA081303 AA613890 Al251865 AW086499 AA992111 Al862091 Al373465 BE502094 Al922270 AA884288 AA157079 N56963 AW189145 AA428080 R55056
40	105263	178672_2	AA884068 AW771716 AA186662 C16364 H15723 AI921181 AA156888 H17006 AA187490 AI400994 AA346942 H28533 AW129047 R41656 H14636 AA995041 D58370 Z21131 D58186 AI383271 AA643977 D58044 AI934302 AW779425 F09065 H14930 AA890693 H23274 AW388633 AW388633 AW388414 AW388633 AW388607 AW388453 AW388687
45	. 105330	182497 1	AW388480 AW388591 AW388711 AW388511 AW388438 AW388570 AW388449 Al694383 AW237145 Al652991 Al964041 AW366319 AW366321 AW961938 AW469211 Al634155 Al492186 Al622430 Al677965 N26502 Al963871 AW378431 AW378421 Al015391 AW352126 N59336 Al352317 AW197113 N67998 AW778935 Al476054 Al206626 R37116 R40211 AA227926 AA639698 R38073 Al001745 T32854 Al619649 Al423703 F10774 AW388615 T16595 H05894 AW338625 R43226 R51640 Al307645 Al308100 Al085787 Al420357 Al692610 AA877160 Al953366 AA234743
50	104764 104865 106124	90967_1 102037_1 54542_1	Al039243 R68234 AA025351 AA971063 Al537757 AA025362 R81636 T86650 T79340 Al742317 AW182676 AW451460 Al420964 R43284 AA088179 AW590886 AW269529 AA045187 Al521736 Al827455 AA045136 AW271709 Al004344 AA639631 AA744417 AA744218 AA045357 AA045351 H93366 Al653547 AA336265 AW966175 BE566451 R71178 Al630656 AA234331 N55039 AA305632 AW960431 R34044
55	100124	340421	R32254 AW020970 AW451281 AW275041 Al636933 Al655640 AA423986 AA642466 Al684063 Al633876 Al624897 AA814795 AW590328 Al889166 AW243541 Al439691 AW473445 Al475516 AA741228 Al127534 AA165143 Al074714 Al654076 AA400674 Al560249 N50709 AW438621 Al806810 Al434579 Al308184 AA423987 Al141272 Al565586 Al338440 AA219628 Al246643 Al985809 AA724260 AA633988 Al364172 Al798439 Al650801 R33503 Al435891 AA903649 T96161 AA665538 AA219620 Al309962 AA400707 BE247066 R32178 Al275962 AA661602 AW003197 BE466649 AA831198 Al620052 Al825387 Al634037 Al670978 Al670979 Al655092 R32304 AA82858 Al382428
60	107385	6976_1	AW023660 AA262892 T26891 AW089917 T26926 R32227 NM_005397 U97519 AW899329 Al902387 AA077792 AA078525 AW376607 AA077946 AA070415 BE208721 AW167958 BE293050 BE208240 Al648698 AA101314 BE393348 BE305122 AA077591 BE274036 AA313687 BE392220 BE378954 AA171461 AA464821 AW938242 AW938224 AW938243 AW938232 AA147953 N64294 AA205218 AW305065 AW517478 AA307983 AA377023 BE563629 R99976 N80294 T87719 228 AA496849 AA486344 AA204938 AW370448 AA318242
65			AW964384 H92423 W95317 BE378774 BE391156 AA349138 AA173095 AW513198 AA037672 AA148029 AA169726 W04791 AA075508 BE382937 BE395034 AF139793 AA961734 N48612 H64714 AW151251 Al566113 Al566881 AW087370 AA631168 AA622014 AW513098 Al657810 AW152287 Al052596 Al983246 AA024856 Al912456 Al677938 AW026403 AA972537 Al088497 AW999869 W94582 Al140166 Al160659 Al566868 AA101263 AW190390 AW166466 Al401207 Al418156 Al625265 Al146298 AW008592 BE223020 N58926 Al308797 AA037673 Al935992 Al304706 AA024939 Al216589 Al610423 Al354621 Al500677 Al679389 Al799310 N64508 Al128756 Al679897 AW589535
70			AA989333 AI500527 AA565479 AA913529 AI923295 F21691 AA989376 AI699064 AA902447 AI699010 AA772659 AA204983 AI337895 R99975 H65205 AA340766 AI339441 AI913855 AA450293 AW192010 AA070416 N72401 AI371481 AI247108 AI371261 AI364987 AI280171 AI269104 AI868756 AA909836 AA983640 AI973271 AA913092 AI868205 AI144112 AI190975 N58085 AI566638 N93405 AW150504 AW296846 AI687036 AA902984 AI824460 AI625047 AA653148
75	101192	15367_1	AI611228 AW131922 AA862687 AA902519 C01732 AW796045 AL044660 BE247295 AW068092 AL041313 AA159244 NM_005415 L20859 AL135570 W47073 AW516906 BE388271 BE408629 W46972 BE293646 BE256647 AI075010 AL041095 AA285300 AL039560 AA368740 W26602 AA399344 AA039235 W27631 AW834898 AW834914 R93390 AA378039 AV649660 T53674 N98824 AA399974 AW843378 AA368267 R08256

AV653575 R27900 N48215 AW366371 N45500 AV652967 Al889251 Al080457 N39021 Al738542 AW242849 Al857471 Al859775 Al582830 R75850 N66564 AW341636 Al499006 Al887217 AW026694 AW182840 AA039313 AA831346 AI859775 AI68283U R7585U N66564 AW341636 AI499006 AI887217 AW026694 AW182840 AA039313 AA831346
AI393465 AW069210 AI743830 AA744243 AA401310 AW439758 AW088152 R93391 AA291379 AA225220 AW009358
AI192879 AA291202 AI565089 AA225089 AA807688 AI052058 AI341641 AI066625 AA333864 AA159147 AI923912
R75851 AI761143 AW768588 AA394195 AI288450 AW512564 AI452775 AI056520 AA468602 AA872566 AI434739
AA291838 AI948623 AW768614 AI374753 AW068174 AA884908 AI199346 AI199347 W94946 AI159995 AA877642
AI280646 AI307610 AA403310 R08205 AW182123 AI000999 R27808 AW026571 D20816 AI560350 T27667 AW960271
AI774628 AI432042 AI424528 AA909562 T17342 AI783866 5 109001 146370_3 AI056548 AW409843 AW263540 AA723669 AA909334 AA156120 AA157141 AA156125 AW409866 W19499 AA157229 10 AW887435

TABLE 6:

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number 5

Pkey: ExAcon: UnigenelD: Unigene Title: AUC1:

Unigene gene title
70th percentile of average intensity (AI) for probeset at each of 2,6,15,24,48, and 96 hour timepoints minus 70th percentile AI at 0 hrs,

summed over 5 experiments.

AUC2: AUC1/90th percentile of AI for aorta, aortic valve, vein, and artery. 10

	Pkey	Ex.Accn	UnigenelD	UnigeneTitle	AUC1	AUC2
15	314941	AA515902	Hs.130650	ESTs	1038	9
	327414			predicted exon	303.2	30.3
	321911	AF026944	Hs.293797	ESTs	429.2	42.9
		Al246482	Hs.249989		677.4	10.3
20				KIAA0716 gene product	395.2	39.5
20				ESTs, Weakly similar to S59501 interfero	324	32.4
		N50617	Hs.80506	small nuclear ribonucleoprotein polypept	394.8	39.5
	326230		11. 440000	predicted exon	357.2	35.7
		AA628517		FOT-	433.6	12
25		AW751201			-83 348.2	0.5 34.8
23		Al380792		ESTs, Weakly similar to The KIAA0149 gen	-49.2	0.5
		AA084248		G protein-coupled receptor 39	-1309	0.2
		AA632012			-247.8	1
		AI821409		ESTs, Highly similar to AF116865 1 hedge	-1025.8	1
30				protocadherin 10	203.6	5.2
		AW591949		ETL protein	183.8	18.4
	326759			predicted exon	1654.4	1.2
	300318	AW444502	Hs.256982	ESTs, Highly similar to AF116865 1 hedge	-346	1
	313978	Al870175	Hs.13957	ESTs	576.6	2.3
35		A1077477	Hs.307912		56.4	0.4
				semaphorin Rs, short form	-127.6	0
		BE547674			-102.6	0
				KIAA protein (similar to mouse paladin)	1080.6	4.8 5.3
40				protocadherin 12 Homo sapiens mRNA full length insert cDN	1270.8 915.8	15.8
70	315060	AL 103/ 12 AA551104	He 1800/8	ESTs, Moderately similar to ALUC_HUMAN!		4.9
		AW337575			522.6	4.7
	337214	7111007070	1101201001	predicted exon	269	26.9
		AW023595	Hs.232048		796.4	20.2
45	304782	AA582081		gb:nn32h08.s1 NCI_CGAP_Gas1 Homo sapid	ens	316.4 10.5
	312802	AA644669	Hs.193042	ESTs	349.6	7.6
		AW192334		ESTs	638.6	63.9
		AA972965			360.8	36.1
50				RNA binding motif protein, X chromosome	700.2 274.2	6.6 7.5
50		T90309	Hs.269651		238.2	23.8
		F11802 H75391	Hs.6818 Hs.255748	ESTs	231.8	23.2
	326198	H10091	HS.200740	predicted exon	581.6	8.2
		H25899	Hs.201591		281.6	9.7
55		AW072215			-213	0.3
		W87874	Hs.25277	hypothetical protein FLJ21065	285	0.5
				hypothetical protein FLJ20401	26.6	0.3
	338316			predicted exon	1494.2	34.7
.		R44557	Hs.23748	ESTs	975.8	1.8
60		NM_00603		lipase, endothelial	201.2	0.9
				Homo sapiens mRNA; cDNA DKFZp434B042		478.6 1.3
		X17033	HS.2/1986	integrin, alpha 2 (CD49B, alpha 2 subuni	356.2 1014.6	1.7 9.4
	325544			predicted exon predicted exon	627.4	62.7
65	328700	AW248508	He 270727	Homo sapiens cDNA FLJ14035 fis, clone HE		5.7
03	336034	7111270000	113.213121	predicted exon	782.6	78.3
		AA938198	Hs.146123	hypothetical protein FLJ12972	746.4	13.8
		AW341683		gb:hd13d01.x1 Soares_NFL_T_GBC_S1 Hor	no s	134.8 13.5
	330692	R39288	Hs.6702	ESTs	137	13.7
70	319962	H06350	Hs.135056	Human DNA sequence from clone RP5-850E		14.6 0.5
	338033			predicted exon	540.6	14
	314943	Y00272		cell division cycle 2, G1 to S and G2 to	-494.8	1
	332640 338158	BE568452	⊓s.510 1	protein regulator of cytokinesis 1 predicted exon	-600 311.2	31.1
75	327036			predicted exon	351.8	35.2
, 5	02,000			production oxon		

	00000-					
		AJ227892	Hs.146274		180.2	18
	327568			predicted exon	229	22.9
		AW770553		sterol O-acyltransferase (acyl-Coenzyme	161.2	16.1
_	317850	Al681545	Hs.152982	hypothetical protein FLJ13117	-690	1
5		AW043782		ESTs	126.4	4.5
	324626	A1685464	Hs.292638	ESTs	170.2	17
	317224	X73608	Hs.93029	sparc/osteonectin, cwcv and kazal-like d	-80	0
		Al476732			466.8	46.7
		R38772		KIAA1106 protein	277	27.7
10	338388	. 1007 . 2	110.11.2010	predicted exon	267.6	26.8
10	338442			predicted exon	256	25.6
		AW247252	Dc 7551/	nucleoside phosphorylase	1247.8	24.2
		AVVZ41252	1 15.7 33 14		206	20.6
	338645	NEODOZ	11- 400420	predicted exon		
1.5		N58907	Hs.162430		204.8	20.5
15		BE169746	Hs.12504	hypothetical protein DKFZp761D081	203.6	20.4
	330305			predicted exon	199.8	20
	308248	AI560919		gb:tq41g10.x1 NCI_CGAP_Ut1 Homo sapiens		199.4 19.9
	308886	A1833240		gb:at76d10.x1 Barstead colon HPLRB7 Homo		19.8
	315622	A)796144	Hs.258188	Homo sapiens cDNA FLJ11674 fis, clone HE	191.2	19.1
20	323675	R43240	Hs.272168	tumor differentially expressed 1	189.2	18.9
	312164	T91980	Hs.221074		187.6	18.8
		Z45270		hypothetical protein FLJ22672	271.6	18.7
		Al343569	Hs.107000	Homo sapiens mRNA for WDC146, complete		187 18.7
		AW452344			184.2	18.4
25		Al873346			182.8	18.3
20	334834	A1073340	113.214505	predicted exon	178.8	17.9
		Degeno				
		D62892	11- 070070	gb:HUM337C07B Clontech human aorta poly/		177.2 17.7
		AL121460	MS.272073	hypothetical protein FLJ20508	316.4	17.6
20	328548			predicted exon	174.6	17.5
30		AA884000		hypothetical protein FLJ10803	172.4	17.2
		Al188183	Hs.144078		326	17.2
		AW382682			170.8	17.1
	317702	AW173339	Hs.135665	ESTs	169.8	17
	316094	AW975920	Hs.283361	ESTs	169.4	16.9
35	323706	AA377578	Hs.65234	hypothetical protein FLJ20596	169.2	16.9
	325843			predicted exon	321.4	16.9
		AA764950	Hs.119898		1047.2	16.9
		AW236154		myosin,lightpolypeptide6,alkali,smoothmu	168.2	16.8
		AL134744		ESTs	168	16.8
40		W05086	Hs.114256		167.4	16.7
-10		Al422023	Hs.161338		298.6	16.6
		AW977642			165.6	16.6
		AVV311042	115.231742		165.4	16.5
	338728	ALMOOOFFOO	11- 400000	predicted exon		
15		AW292520	HS.122082		165	16.5
45		AA888220		gb:oj15h01.s1 NCI_CGAP_Kid5 Homo sapien		164.6 16.5
		AW052128		gb:wx26c02.x1 NCI_CGAP_Kid11 Homo saple		164 16.4
	339236			predicted exon	163.6	16.4
		Al217713	Hs.147586		161.8	16.2
	311137	AW207582	Hs.196042	ESTs	582.2	16.2
50	310178	Al936450	Hs.147482	ESTs	161.2	16.1
	320745	H51696	Hs.89278	hypothetical protein FLJ11186	161	16.1
	317336	AW014637	Hs.130212	ESTs	160	16
		AW300366		gb:xs63b05.x1 NCl_CGAP_Kid11 Homo sapis	en	159.8 16
	302038	AC004076	Hs.129709	Homo sapiens chromosome 19, cosmid R302		159 15.9
55		N52883	Hs.102676		159	15.9
		AW015994		gb:UI-H-Bl0p-abh-g-09-0-UI.s1 NCI_CGAP_S		15.9
		N62401	Hs.48531	EST	158.6	15.9
		AI684535	Hs.200811		158.4	15.8
	336059	A1004000	113.200011	predicted exon	157.4	15.7
60		AJ245245		gb:Homo sapiens mRNA for immunoglobulin		15.6
00		AJZ4JZ4J		predicted exon	153.8	15.4
	328418	A1/000440	11- 20402	•		
		AK000149		hypothetical protein FLJ20142	153.6	15.4
		AW273285	HS.50802	ESTs	153	15.3
65	338962			predicted exon	664.4	15.3
65		Al204202	Hs.130264		152.6	15.3
	336228			predicted exon	152.4	15.2
		AW072916		zinc finger protein 131 (clone pHZ-10)	152.2	15.2
		AI806867	Hs.126594		152.2	15.2
^	311943	Al469911	Hs.26498	hypothetical protein FLJ21657	152	15.2
70	314680	Al247425	Hs.152182	ESTs	151.4	15.1
	331484	N29696	Hs.44076	EST	151.2	15.1
	338116			predicted exon	151.2	15.1
	329863			predicted exon	150.6	15.1
		AW452886	Hs.239107	•	149.6	15
75		AA868583			149.6	15
		R63816	Hs.28445		149.6	15
	55.,00					

		Al917222	Hs.121655	ESTs	149.4	14.9
	328695			predicted exon	149.2	14.9
	302282	BE396283	Hs.173987	eukaryotic translation initiation factor	148.4	14.8
_	318781	F11802	Hs.6818	ESTs	148.2	14.8
5	323709	AW297246	Hs.288546	Homo sapiens cDNA FLJ14190 fis, clone NT	148	14.8
	310790	AW192063	Hs.248865	ESTs	147.8	14.8
	316833	AW292614	Hs.124367	ESTs	147.8	14.8
	323176	NM_00735	0Hs.82101	pleckstrin homology-like domain, family	229	14.8
	324188	AW274439	Hs.252709	ESTs	147.6	14.8
10	317441	AA922798	Hs.196583	ESTs	147.4	14.7
		AI825890	Hs.220513	ESTs	146.8	14.7
	321798	Al308206	Hs.181959	ESTs	146.8	14.7
	304363	AA206045		gb:zq77f05.s1 Stratagene hNT neuron (937	146.6	14.7
		F20956		gb:HSPD05390 HM3 Homo sapiens cDNA cic	ne	146.6 14.7
15	301909	AI702609	Hs.15713	ESTs	263.8	14.7
	309196	Al904895	Hs.9614	nucleophosmin (nucleolar phosphoprotein	146.2	14.6
	321860	N47474	Hs.212631		146.2	14.6
	330187			predicted exon	146	14.6
• •	323042	AA463571	Hs.172550	polypyrimidine tract binding protein (he	145.6	14.6
20			Hs.201366		145.2	14.5
	302437	AB024729	Hs.227473	UDP-N-acetylglucosamine:a-1,3-D-mannosid	145	14.5
	318197	A1473096	Hs.133403	ESTs	144.8	14.5
	302749	M16951		gb:Human Ig mu-chain mRNA VDJ4-region, 5	144.6	14.5
	322357	AI734258	Hs.245367	ESTs, Weakly similar to ALU1_HUMAN ALU S	3	144.6 14.5
25	300391	Al927371	Hs.288839	hypothetical protein FLJ12178	144.4	14.4
	326077			predicted exon	144.4	14.4
	302004	Y18264	Hs.123094	sal (Drosophila)-like 1	144	14.4
	320668	AA805666		Homo sapiens cDNA: FLJ23077 fis, clone L	144	14.4
		T88693	Hs.226410		144	14.4
30	311268	AI969727			143.2	14.3
				EST, Weaklysimilarto EF1D_HUMANELONGA		143 14.3
				ribosomalproteinL13a	142.8	14.3
			Hs.303527		142.8	14.3
			Hs.122139		142.8	14.3
35				basic-helix-loop-helix-PAS protein	142.6	14.3
		Al824879		ESTs, Weakly similar to 1207289A reverse	142.2	14.2
	322631	AA001697		ESTs, Weakly similar to putative p150 [H	142.2	14.2
		R40855	Hs.100839		142	14.2
	302894	AA719572	Hs.274441	Homo sapiens mRNA; cDNA DKFZp434N011	(fr	141.2 14.1
40		R35391	Hs.252831		141	14.1
		Al204491			141	14.1
			Hs.122872		140.8	14.1
			Hs.150276		140.8	14.1
		N45600	Hs.46534	Homo sapiens mRNA; cDNA DKFZp434P0714	1 (f	140.8 14.1
45	327365			predicted exon	140.8	14.1
	331264	AA278898	Hs.225979	hypothetical protein similar to small G	140.8	14.1
				Homo sapiens mRNA for KIAA1724 protein,	140.4	14
	312986	AA211586		gb:zn56d05.s1 Stratagene muscle 937209 H	140.2	14
	316053	AA825814	Hs.149065		140.2	14
50	330723	BE247449	Hs.31082	hypothetical protein FLJ10525	140.2	14
	304876	AA595765		gb:nj28g06.s1 NCI_CGAP_AA1 Homo sapien:	3	139.8 14
			Hs.202450		139.8	14
	318265	AW019873	Hs.146840	ESTs	139.8	14
			Hs.222762		139.8	14
55	328262			predicted exon	139.6	14
	322349	AK001279	Hs.180171	Homo sapiens cDNA FLJ10417 fis, clone NT	139.4	13.9
	323504	AA280223	Hs.130865	ESTs	139.4	13.9
	304261	AA059387		gb:zf66d01.s1 Soares retina N2b4HR Homo	139.2	13.9
	310489	AW451493	Hs.235516	hypothetical protein PRO2955	139.2	13.9
60	335946			predicted exon	139.2	13.9
	318155	Al041546	Hs.132133	ESTs	138.8	13.9
	313796	Al797169	Hs.208486	ESTs	138.6	13.9
	333977			predicted exon	138.6	13.9
	324845	AW969635	Hs.283718	ESTs	138.2	13.8
65	331139	R65706		gb:yi16g12.s1 Soares placenta Nb2HP Homo	138.2	13.8
		R54797		gb:yg87b07.s1 Soares infant brain 1NIB H	669.6	13.8
		H58539	Hs.151692		138	13.8
				ESTs, Weakly similar to ALU1_HUMAN ALU S		137.8 13.8
		W52470	Hs.34578	alpha2,3-sialyltransferase	137.8	13.8
70	337407			predicted exon	137.8	13.8
-		AW512014		gb:xx68a03.x1 NCI_CGAP_Lym12 Homo sapi		137.4 13.7
			Hs.188817	ESTs	137.4	13.7
	327373			predicted exon	137.2	13.7
		AA234591	Hs.304123		136.6	13.7
75			Hs.120260		136.4	13.6
			Hs.119922		136.2	13.6

	318592	T20240	Hs.1139	cold abook domain protoin A	136.2	13.6
		AW969706		cold shock domain protein A	136.2	13.6
		AVVEOEVUO	ns.293332		136.2	13.6
	328937 329073			predicted exon predicted exon	136.2	13.6
5		AV659082	Un 424220		136.2	13.6
9		AL360200			135.8	13.6
		AA766457			135.8	13.6
		AA968594			135.8	13.6
		W02848	Hs.93704		135.8	13.6
10	326080	1102070	113.501 07	predicted exon	135.8	13.6
10		ΔE036043	He 172619	KIAA1106 protein	135.8	13.6
				ribosomal protein, large P2	135.6	13.6
		Al223207			135.6	13.6
		AW449382			135.6	13.6
15		R15138		Homo sapiens clone 25052 mRNA sequence		13.5
10		AA884104			134.8	13.5
		N58198	Hs.182898		134.8	13.5
		H09604	Hs.13268		134.6	13.5
				ret finger protein 2	134.4	13.4
20		AA282330			134.2	13.4
20	334376	AAZOZOOO	113.173000	predicted exon	134.2	13.4
		N93416	Hs.118228		133.6	13.4
		AA351109		Tax1 (human T-cell leukemia virus type I	133.2	13.3
	312083		Hs.205816		132.6	13.3
25		AA993807			132.6	13.3
23		Al242106	113.107.007	gb:qh92a02.x1 Soares_NFL_T_GBC_S1 Hom		132.2 13.2
			He 26//82	Apg 12 (autophagy 12, S. cerevisiae)-like	131.8	13.2
		Al274963			131.2	13.1
		AW510641			220.6	13
30	319323		Hs.13287	ESTs	125.4	12.5
50	329451	F 12000	FIS. 13207	predicted exon	123.4	12.3
				•	572	12.2
	337603	R68651	Hs.144997	predicted exon	121.4	12.1
		AW452051			119.4	11.9
35		BE178025		hypothetical protein FLJ20080	117	11.7
33			∏S./ 94Z	gb:qi74f02.y5 NCI_CGAP_Ov26 Homo sapien		116.6 11.7
		A1792566	LI- 2020EE		112.8	11.3
				Homo sapiens clone GLSH-2 similar to gli	112.6	11.3
		BE003191	ns.119000	gb:np46f05.s1 NCl_CGAP_Br11 Homo sapier		112.4 11.2
40		AA614406	Ua 227767		111.2	11.1
40				zinc finger protein 41	111.2	11.1
		AA347945			111	11.1
		AW419225		ribosomalproteinS4,X-linked	110.2	11.1
		AW419223 AW452334			110.2	11
45		W49701	Hs.29667		109.4	10.9
43		AA806536			109.4	10.9
					108.8	10.9
				ribosomalproteinL12	108.8	
				KIAA1238 protein ribosomal protein S3	714.8	10.9 10.8
50		T81656	HS.Z0ZZ03	•	135	10.8
50	325222			predicted exon	814.6	10.8
	325889	AW891130	11- 20472	predicted exon	107.8	10.8
					107.6	10.6
		AA496212 Al476803	HS. 100 10Z	gb:tj77e12.x1 Soares_NSF_F8_9W_OT_PA_!		270.6 10.6
55		Al301041	Un 15017 <i>8</i>		_6 106	10.6
55		AW157431			233	10.6
	318787		Hs.22657		105.8	10.6
		Al927226	Hs.175610		105.0	10.5
	326788	A1321220	П5. 170010	predicted exon	104.4	10.4
60		AA830640	H= 200034		104.4	10.4
00		AW085525			234	10.4
		AVV065525 Al185693			102.4	10.2
				hypothetical protein PRO2730	162.4	10.2
			Hs.129993		102.4	10.2
65		Al791531 N55761		zinc finger protein 265	100.2	10.1
05					99.2	9.9
		AA256465 AA554913			98.2	9.8
		AMOD4913	HS. 102231		98.2	9.8
	327876	D17/10/	He egen	predicted exon	98.2 98	9.8
70		R17424	Hs.6650	vacuolar protein sorting 45B (yeast homo predicted exon	97.6	9.8
70	327747			predicted exon	97.4	9.7
	327844	A1064400	Uc 166517		97.4 97.2	9.7
		Al061192	Hs.166517	predicted exon	97.2	9.7
	329414	AINQUEET	Hs.270713	•	121.4	9.7
75		A1089667 A1140014	115.2/0/13	gb:qa68f09.x1 Soares_fetal_heart_NbHH19W	205	9.7
15		AI140014 AI138635	Hs.22968	ESTs	385.4	9.6
	318/87	VI 190099	1 13.22300	2013	555.7	0.0

	305671	AA811688	Hs.82113	dUTPpyrophosphatase	96	9.6	
	329440			predicted exon	93.8	9.4	
	310381	Al263059	Hs.145594	ESTs	93.4	9.3	
	318824	F06771	Hs.27226	ESTs	93.4	9.3	
5	328957			predicted exon	92.2	9.2	
	318804	Z42549	Hs.160893	ESTs	92	9.2	
	330836	AA055611	Hs.226568	ESTs, Moderately similar to ALU4_HUMAN A	92	9.2	
			Hs.325708		91.8	9.2	
			Hs.254333		91.4	9.1	
10	-	H86161		gb:ys94b01.r1 Soares retina N2b5HR Homo		9.1	
	330306	1100101		predicted exon	91	9.1	
		AL080276	Hs 268562	regulator of G-protein signalling 17	90	9	
		A1027604	Hs.159650		110.4	8.8	
		H54855	Hs.36958		88	8.8	
15			Hs.171688		86.2	8.6	
13					456.4	8.6	
		Al133530			430.4 86		
			Hs.297260			8.6	
		BE002723	HS.301905	Homo sapiens cDNA FLJ14080 fis, clone HE		8.6	
20	328688			predicted exon	85.6	8.6	
20	325251			predicted exon	85.4	8.5	
	329088	11/2000	11 074700	predicted exon	85.4	8.5	
		W79027	Hs.271762		84	8.4	
	337953			predicted exon	451	8.3	
0.5			Hs.201485	Homo sapiens clone FLC0664 PRO2866 mRi		82.6	
25		Al144243		gb:qb85b12.x1 Soares_fetal_heart_NbHH19V		306.8	8.2
		Al332454	Hs.158412		81.4	8.1	
		AA759263	Hs.14041	ESTs	81	8.1	
	329350			predicted exon	81	8.1	
	326169			predicted exon	80.4	8	
30	338038			predicted exon	1024.2	7.9	
	312549	Al214510	Hs.146304		77.4	7.7	
	312542	D60076		gb:HUM084E10A Clontech human fetal brain	76.8	7.7	
	320992	AB026891	Hs.225972	solute carrier family 7, (cationic amino	76	7.6	
	318596	Al470235	Hs.172698	EST	150.6	7.5	
35	315650	AA649042	Hs.269615	ESTs	73.4	7.3	
	324328	AA447276	Hs.292020	ESTs	210.4	7.1	
	332622	R10674	Hs.128856	CSR1 protein	70.2	7	
	328229			predicted exon	69.4	6.9	
	319110	T75260	Hs.98321	hypothetical protein FLJ14103	68.6	6.9	
40		Al187742	Hs.125562		308.6	6.9	
• •		AW515800		gb:hd88g01.x1 NCI_CGAP_GC6 Homo sapie		67.8	6.8
			Hs.146580	enolase 2, (gamma, neuronal)	377.2	6.7	
	325753	,		predicted exon	105.2	6.6	
		Al004377	Hs 200360	Homo sapiens cDNA FLJ13027 fis, clone NT		6.4	
45				v-ral simian leukemia viral oncogene hom	361.6	6.3	
10			Hs.137475		201.6	6.1	
	335986	7 11 10 100	110.107 470	predicted exon	108.6	6	
		AW402593	Hs 123253	hypothetical protein FLJ22009	528	6	
		AA666019	110.120200	gb:ag44a04.s1 Jia bone marrow stroma Hom		5.9	
50		AA070605		gb:zm53h09.s1 Stratagene fibroblast (937	78.6	5.6	
50		AJ235667		gb:Homo sapiens mRNA for immunoglobulin		5.5	
		T97905	Hs.77256	enhancer of zeste (Drosophila) homolog 2	479.2	5.4	
				nuclear receptor co-repressor 1	792.4	5.3	
	330803	MASSOSS	He 195055	BENE protein	2423.8	5.3	
55		Al733112	Hs.176101		523.2	5.1	
55			Hs.172445		578	5.1	
		Al380429			223	5.1	
		BE280787 AI268399	Hs.140489	hypothetical protein FLJ10233	136.2	5	
	333122	A1200388	115.140409	predicted exon	399	5	
6 0		A1220072	Hs.165893		234.4	4.9	
00		D43945		transcription factor EC	68	4.9	
				EST, Weakly similar to A27217 glucose tr	258.8	4.8	
		Z44067	Hs.10957	ESTs	376.6	4.8	
65	327220	AVAID4400E	15- 470070	predicted exon	47.4	4.7	
05			Hs.179872		177.4	4.7	
		R68869	Hs.151072		205.2	4.6	
		AI682536		Homo sapiens cDNA FLJ13608 fis, clone PL		4.5	
		T49598	Hs.156832		475.2	4.5	
70				a disintegrin and metalloproteinase doma	388.6	4.4	
70		AI000497	Hs.119500	ribosomalprotein,largeP2	81.6	4.4	
		AW051913		gb:wx24a09.x1 NCI_CGAP_Kid11 Homo sapi		102.4	4.3
		AA889992	Hs.2186	eukaryotictranslationelongationfactor1ga	451.2	4.2	
	330020			predicted exon	61.2	4.1	
~ 7 ~		AW327279	Hs.91379	ribosomal protein L26	342	3.9	
75		AW979268		gb:EST391378 MAGE resequences, MAGP F		56.4	ა.8
	315131	AI753709	Hs.152484	ESTs	130.4	3.7	

		A1493591	Hs.78146	platelet/endothelial cell adhesion molec		3.6
	333585			predicted exon		3.5
		H93366	Hs.7567	Homo sapiens cDNA: FLJ21962 fis, clone H		3.5
_		AA633669		Homo sapiens cell recognition molecule C	350.2	3.4
5		R71072	Hs.191269		322.8	3
	318988		Hs.26418		25	2.5
		Al123705	Hs.106932			2.5
		AI025476	Hs.131628			2.4
10			Hs.312830			2.4
10				transcription factor BMAL2	23.4	2.3
		AI829848		peptidylprolylisomeraseA(cyclophilinA)	92	2.3
				Homo sapiens cDNA FLJ13585 fis, clone PL	494	2.3
				DKFZP434N178 protein	76.2	2.2
1.5		N24236		nucleosome assembly protein 1-like 1	253.2	2.1
15				homeo box B4	136.6	2.1
				NADPH oxidase 4	720	1.8
				ESTs, Weakly similar to 1605244A erythro	27	1.8
			Hs.200242		303.8	1.6
20		W35132	Hs.267442		189	1.5
20		AW247977		translocase of inner mitochondrial membr	14.4	1.4
		AW378685	HS.18025	Mitochondrial Acyl-CoA Thioesterase	529.8	1.4
	333123			predicted exon	396.2	1.4 1.3
	328455			predicted exon	91.8 406.4	1.3
25	334458	A A C 40000	11- 400775	predicted exon	413.4	1.1
23			Hs.192775 Hs.217493		-30,8	1.1
				Homo sapiens cDNA FLJ12981 fis, clone NT	-50.6 -62.8	1
				coagulation factor II (thrombin) recepto	-73.6	1
			Hs.241175		-43.8	1
30	313000	AVVJUZ ZOZO	15.241110	ESTs, Weakly similar to ALU4_HUMAN ALU		-63 1
30			Hs.271106		-67	1
				ESTS	-395.2	1
		AL121278		ESTS	-1.6	1
			Hs.292663		4.4	i
35	224400	A14/07/030	Hs.291039	ECT.	-282.8	1
55	333610	MMainana	118.231003	predicted exon	-152.6	1
	335093			predicted exon	-23.2	1
	339403			predicted exon	-331.2	1
		X04588	Hs.85844	neurotrophic tyrosine kinase, receptor,	591.2	i
40		R56151	Hs.93589	Homo sapiens mRNA; cDNA DKFZp564B116		276.6 1
- 10			Hs.136252		135	0.9
	326946	7111000007	110.100202	predicted exon	727.4	0.9
		BF144306	Hs 179891	ESTs, Weakly similar to P4HA_HUMAN PRO		122.8 0.9
				hypothetical protein FLJ10408	304	0.9
45	329732	1111001210	110.100000	predicted exon	109.2	0.9
1.5		BE621807	Hs 3337	transmembrane 4 superfamily member 1	414.8	0.7
	333121	52021001	110.0001	predicted exon		_
	333120			•	87.8	0.7
				predicted exon	87.8 379.8	0.7 0.7
50		AW797956	Hs 75748	predicted exon proteasome (prosome, macropain) subunit.	379.8	0.7
•	314711	AW797956 AA769365		proteasome (prosome, macropain) subunit,		
		AA769365	Hs.126058	proteasome (prosome, macropain) subunit, ESTs	379.8 589.2	0.7 0.7
	330865		Hs.126058	proteasome (prosome, macropain) subunit, ESTs hypothetical protein	379.8 589.2 -87 347.4	0.7 0.7 0.6
	330865 333169	AA769365	Hs.126058	proteasome (prosome, macropain) subunit, ESTs	379.8 589.2 -87	0.7 0.7 0.6 0.6
	330865 333169 335095	AA769365	Hs.126058	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon	379.8 589.2 -87 347.4 -1182	0.7 0.7 0.6 0.6 0.6
55	330865 333169 335095 335815 330232	AA769365 BE409857	Hs.126058 Hs.69499	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6	0.7 0.7 0.6 0.6 0.6 0.6
55	330865 333169 335095 335815 330232	AA769365 BE409857	Hs.126058 Hs.69499	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6	0.7 0.7 0.6 0.6 0.6 0.6 0.6
55	330865 333169 335095 335815 330232 330823 331704	AA769365 BE409857 AA031565 F04225	Hs.126058 Hs.69499 Hs.221255 Hs.66032	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6
55	330865 333169 335095 335815 330232 330823 331704 302642	AA769365 BE409857 AA031565 F04225 NM_01642	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5
	330865 333169 335095 335815 330232 330823 331704 302642 304484	AA769365 BE409867 AA031565 F04225 NM_01642i AA432067	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5
55 60	330865 333169 335095 335815 330232 330823 331704 302642 304484 310230	AA769365 BE409857 AA031565 F04225 NM_01642i AA432067 AK000377	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5
	330865 333169 335095 335815 330232 330823 331704 302642 304484 310230 301531	AA769365 BE409857 AA031565 F04225 NM_01642 AA432067 AK000377 AI077462	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5
	330865 333169 335095 335815 330232 330823 331704 302642 304484 310230 301531	AA769365 BE409857 AA031565 F04225 NM_01642i AA432067 AK000377	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084 Hs.73742	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4
	330865 333169 335095 335815 330232 330823 331704 302642 304484 310230 301531 306337 331327	AA769365 BE409857 AA031565 F04225 NM_01642 AA432067 AK000377 AI077462	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4
60	330865 333169 335095 335815 330232 330823 331704 302642 304843 31023 301531 306337 331327 332961	AA769365 BE409857 AA031565 F04225 NM_01642 AA432067 AK000377 AI077462 AA954221 N46436	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084 Hs.73742 Hs.109221	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4
	330865 333169 335095 335815 330232 330823 331704 302642 304484 310233 301531 306337 331327 332961 322796	AA769365 BE409857 AA031565 F04225 NM_01642 AA432067 AK000377 AI077462 AA954221	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084 Hs.73742 Hs.109221	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -880.6	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4
60	330865 333169 335095 335815 330232 331704 302642 304484 310230 301531 306337 331327 332961 322796	AA769365 BE409857 AA031565 F04225 NM_01642: AA432067 AK000377 AI077462 AA954221 N46436 W31178	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.73742 Hs.109221 Hs.154140	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -880.6 55.2	0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3
60	330865 333169 335095 335815 330232 330232 331704 302642 304484 310230 301531 306337 331327 332961 322966 228857 316342	AA769365 BE409857 AA031565 F04225 NM_016422 AA432067 AK000377 AI077462 AA954221 N46436 W31178 AA743935	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084 Hs.73742 Hs.109221 Hs.154140 Hs.202329	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 55.2 43.4	0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3
60	330865 333169 335095 335095 330823 330823 331704 302642 304484 310230 301531 306337 331327 332961 322962 328857 316342 331263	AA769365 BE409857 AA031565 F04225 NM_016422 AA432067 AK000377 AI077462 AA954221 N46436 W31178 AA743935	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.73742 Hs.109221 Hs.154140	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTS NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -880.6 55.2 43.4 -180.4	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3
60 65	330865 333169 335095 335815 330232 330232 331704 302642 304484 310231 306337 331327 332961 322796 328857 316342 331263 331263	AA769365 BE409857 AA031565 F04225 NM_01642: AA432067 AK000377 AK077462 AA954221 N46436 W31178 AA743935 AW780192	Hs.126058 Hs.69499 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084 Hs.73742 Hs.109221 Hs.154140 Hs.202329 Hs.207596	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon ESTs ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -880.6 55.2 43.4 -180.4 -180.4 -134	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3
60	330865 333169 335095 335815 330232 331704 302642 304484 310230 301531 306337 331327 332961 322796 328857 316342 335987 311923	AA769365 BE409857 AA031565 F04225 NM_016421 AA432067 AK000377 AI077462 AA954221 N46436 W31178 AA743935 AW780192 T60843	Hs.126058 Hs.69499 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084 Hs.73742 Hs.109221 Hs.154140 Hs.202329 Hs.267596 Hs.189679	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon ESTs ESTs ESTs predicted exon ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -880.6 55.2 43.4 -180.4 -134 12.2	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3
60 65	330865 333169 335095 335815 330823 330823 331704 302642 304484 310230 301531 306337 332961 322796 328857 316342 331263 331923 311923 311923	AA769365 BE409857 AA031565 F04225 NM_01642 AA432067 AK000377 AI077462 AA954221 N46436 W31178 AA743935 AW780192 T60843 AW134529	Hs.126058 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084 Hs.73742 Hs.109221 Hs.154140 Hs.202329 Hs.267596 Hs.189679 Hs.244647	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon ESTs ESTs predicted exon ESTs ESTs ESTs predicted exon ESTs ESTS ESTS ESTS ESTS	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -880.6 55.2 43.4 -134 -134 -134 -134 -134 -134 -134 -134 -134 -134 -138	0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3
60 65	330865 333169 335095 335815 330232 330823 331704 302642 304484 310230 301531 306337 332961 322796 328857 316342 331263 331987 311982 311982 311982 311982 311982 311982 311982 311982	AA769365 BE409857 AA031565 F04225 NM_016422 AA432067 AK000377 AI077462 AA954221 N46436 W31178 AA743935 AW780192 T60843 AW134529 AA759190	Hs.126058 Hs.69499 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084 Hs.73742 Hs.109221 Hs.154140 Hs.202329 Hs.267596 Hs.189679 Hs.244647 Hs.121454	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon ESTs ESTs predicted exon ESTs ESTS ESTS ESTS Predicted exon ESTS ESTS ESTS ESTS ESTS ESTS ESTS EST	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -880.6 55.2 43.4 -180.4 -134 -134 -134 -134 -134 -134 -134 -134 -138 -80 -80 -80 -80 -80 -80 -80 -8	0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3
60 65	330865 333169 335095 335095 330812 330823 331704 302642 301531 306337 331327 332961 322796 328857 316342 331263 335987 311923 310522 310522 310522 310522	AA769365 BE409857 AA031565 F04225 NM_01642: AA432067 AK000377 AI0777462 AA954221 N46436 W31178 AA743935 AW780192 T60843 AW134529 AA759190 NM_00199	Hs.126058 Hs.69499 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.134084 Hs.73742 Hs.109221 Hs.154140 Hs.202329 Hs.267596 Hs.189679 Hs.244647 Hs.121454 2Hs.128087	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon ESTs predicted exon ESTs ESTs ESTs ESTS ESTS ESTS ESTS ESTS	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -55.2 43.4 -180.4 -134 12.2 -187.8 80 -877	0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3
60 65 70	330865 333169 335095 335815 330232 330823 331704 302642 304484 310230 301531 306337 331327 332961 3228796 32857 311923 311923 311923 311923 310522 315363 302032 313140	AA769365 BE409857 AA031565 F04225 NM_01642: AA432067 AK000377 AI0777462 AA954221 N46436 W31178 AA743935 AW780192 T60843 AW134529 AA759190 NM_00199 BE265133	Hs.126058 Hs.69499 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.73742 Hs.109221 Hs.154140 Hs.202329 Hs.267596 Hs.189679 Hs.244647 Hs.121454 2Hs.128087 Hs.217493	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -880.6 55.2 43.4 -134 12.2 -187.8 80 -877 95.4	0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
60 65	330865 333169 335095 335815 330232 330232 331704 302642 304484 310230 306337 331327 332961 322796 328857 316342 331263 335987 311923 310522 315363 302032 315363 302034 310860	AA769365 BE409857 AA031565 F04225 NM_01642: AA432067 AK000377 AK077462 AA954221 N46436 W31178 AA743935 AW780192 T60843 AW134529 AA759190 NM_00199 BE265133 AW015920	Hs.126058 Hs.69499 Hs.69499 Hs.221255 Hs.66032 8Hs.130719 Hs.258373 Hs.144840 Hs.73742 Hs.109221 Hs.154140 Hs.202329 Hs.267596 Hs.244647 Hs.121454 2Hs.128087 Hs.2124648 Hs.121454	proteasome (prosome, macropain) subunit, ESTs hypothetical protein predicted exon predicted exon predicted exon predicted exon predicted exon predicted exon ESTs, Moderately similar to ALU5_HUMAN A ESTs NESH protein ESTs homolog of mouse C2PA ESTs ribosomalprotein,large,P0 ESTs predicted exon Homo sapiens ovary-specific acidic prote predicted exon ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	379.8 589.2 -87 347.4 -1182 106.4 -156 102.6 -62 -14.6 267.6 85 -70 -195.4 -33.4 -392 -5.6 -880.6 55.2 4.34 -180.4 -134 12.2 -187.8 80 -877 95.4 -239	0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.3

	328520			predicted exon	-109.2	0.2	
		NM 012099	9Hs.211956	CD3-epsilon-associated protein; antisens	10	0.2	
		AI866921		Homo sapiens cDNA FLJ12149 fis, clone MA		0.2	
				hypothetical protein FLJ10260	-46.2	0.2	
5		AA228366			-308.8	0.2	
J	335697	AAZZOOOU	110.110122	predicted exon	-47.2	0.2	
	335989			predicted exon	89	0.2	
		A1A/067042	Un 107016	hypothetical protein FLJ13465	-205.6	0.2	
	329745	AVV007943	115.12/210	predicted exon	103	0.2	
10		4344400C0	Un 200670		-177.8	0.2	
10	334616	AW419069	ns.2090/0		-177.6 -936.6	0.2	
		41004007	11- 007040	predicted exon	-930.0 -7.2		
		Al821267	Hs.207243			0.2	
		A1026984	Hs.293662		-18.4	0.2	
15	335211	4 4 0 7 5 0 5 7	11 0000	predicted exon	-142	0.2	
15		AA375957	Hs.6682	ESTs	-100	0.1	
		AW452904		gb:UI-H-Bi3-aly-h-11-0-UI.s1 NCI_CGAP_Su		0.1	
		AI015862	Hs.131793		-250.6	0.1	
	332833			predicted exon	-374.2	0.1	
00		NM_002314		LIM domain kinase 1	-27.6	0.1	
20		AA004879			-288.2	0.1	
		AV651680			-735.6	0.1	
		AW247020	Hs.250747	SUMO-1 activating enzyme subunit 1	53.6	0.1	
	333168			predicted exon	-1041.8	0.1	
		Al308876	Hs.103849		19.4	0.1	
25	322724	AF161442	Hs.191591	Homo sapiens HSPC324 mRNA, partial cds	-123.6	0.1	
	303652	Al799111	Hs.64341	ESTs	-46.4	0.1	
	303131	AW081061	Hs.103180	DC2 protein	-156.4	0.1	
	320716	Al479439	Hs.171532	ESTs	-146.6	0.1	
	300454	AA659037	Hs.163780	ESTs	-304	0.1	
30	312757	Al285970	Hs.183817	ESTs	-445	0.1	
	312391	R43707	Hs.133159	ESTs, Weakly similar to PIHUSD salivary	-111.8	0.1	
	308877	Al832519		gb:at69h03 x1 Barstead colon HPLRB7 Homo	-149.6	0	
		Al659166	Hs.207144	ESTs	-62.6	0	
	302363	AW163799	Hs.198365	2,3-bisphosphoglycerate mutase	-15	0	
35		AW956580		ESTs	-1059.6	0	
	302638	AA463798	Hs.102696	MCT-1 protein	-332.2	0	
	306352	AA961367		gb:or52a05.s1 NCI_CGAP_GC3 Homo sapier	1S	21.8	0
	313798	AI292148	Hs.71622	SWI/SNF related, matrix associated, acti	-97.2	0	
	320807	AA135370	Hs.188536	Homo sapiens cDNA: FLJ21635 fis, clone C	-2222	0	
40	320931	AW262836	Hs.252844	ESTs	-881.6	0	
	332450	AW288085	Hs.11156	hypothetical protein	28.4	0	
	332535	AF167706	Hs.19280	cysteine-rich motor neuron 1	-722	0	
	335990			predicted exon	-421	0	
	330746	AB033888	Hs.8619	SRY (sex determining region Y)-box 18	35.4	0	
45	316820	Al627912	Hs.130783	Forssman synthetase	-373.6	0	
	337429			predicted exon	-257	0	
	331192	BE622021	Hs.152571	ESTs, Highly similar to IGF-II mRNA-bind	-33	0	
	330609	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1	-280	0	
		AI739435	Hs.39168	ESTs	-3627.6	0	
50		AA531133	Hs.4253	hypothetical protein MGC2574	-278.6	0	
		NM_004579		mitogen-activating protein kinase kinase	-244	0	
		X91195		phospholipase C, beta 3, neighbor pseudo	-1204.2	0	
	333221			predicted exon	-189.6	0	
	335988			predicted exon	-122.6	Ō	
55		AI984144	Hs.66713	hepatitis delta antigen-interacting prot	-2257.4	Ō	
		BE621697	Hs.14317	nucleolar protein family A, member 3 (H/	-359.2	Õ	
		AF131781		hypothetical protein FLJ12442	-874.6	Ŏ	
	337113			predicted exon	-24.6	Õ	
	335149			predicted exon	-191.8	Õ	
	,,,,			F		-	

TABLE 6A

Table 6A shows the accession numbers for those pkeys lacking unigenelD's for Table 6. The pkeys in Table 7 lacking unigenelD's are represented within Tables 1-6A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10

Pkey: Unique Eos probeset identifier number

CAT number: Gene cluster number

Accession: Genbank accession numbers

15

Pkey CAT Number Accession

```
320925 1525201_1
                             D62892 D79755 D62760
20
        321614 87866_1
                             H86161 AA054308 AA018955
                             F20956 AA129374 AA133740 AW819878
        313952 136885_1
        314648 293660_1
                             AW979268 AA878419 AA431342 AA431628
        302749 458 107
                             M16951 M16952 M16948 M16949 M16950
        312362 764066_1
                             AW015994 R39898 AW000978 Al598202 Al521706
25
                             D60076 D60259 D61037
        312542 1522649_1
        312642 1005225_1
                             AW052128 H51439 H51481
        312986 171879_1
                             AA211586 F35799 AA211641 F29720 AW937387 AW937408
        329350 c_x_hs
        329414 c_y_hs
30
        329440 c_y_hs
        329451 c_y_hs
        338033 CH22_6528FG__LINK_EM:AC00
338038 CH22_6535FG__LINK_EM:AC00
        338116 CH22_6650FG__LINK_EM:AC00
338158 CH22_6700FG__LINK_EM:AC00
35
        329732 c14_p2
        329745 c14_p2
        308106 Al476803
        329863 c14_p2
40
        338316 CH22_6944FG__LINK_EM:AC00
        308248 AI560919
        338388 CH22_7034FG__LINK_EM:AC00
        338442 CH22_7109FG__LINK_EM:AC00
        338645 CH22_7410FG__LINK_EM:AC00
45
        338728 CH22_7527FG__LINK_EM:AC00
        308877 AI832519
        338962 CH22_7838FG__LINK_DJ32I10
        308886 Al833240
        333120 CH22 349FG 81_3_LINK_EM:A
50
        333121 CH22_350FG_81_4_LINK_EM:A
        333122 CH22_351FG_81_6_LINK_EM:A
        333123 CH22_352FG_81_7_LINK_EM:A
333168 CH22_400FG_94_1_LINK_EM:A
        333169 CH22_401FG_94_2_LINK_EM:A
55
        333221 CH22_458FG_105_1_LINK_EM:
        326077 c17_hs
        326080 c17_hs
        326169 c17_hs
        326198 c17_hs
60
        326230 c17_hs
        333585 CH22_846FG_203_4_LINK_EM: 333610 CH22_871FG_217_5_LINK_EM:
        335093 CH22 2423FG 492 3 LINK_EM
        335095 CH22_2425FG_492_5_LINK_EM
65
        335149 CH22_2484FG_499_5_LINK_EM
        326759 c20_hs
        333977 CH22 1254FG 309 6 LINK_EM
        326788 c20_hs
        335211 CH22_2550FG_511_2_LINK_EM
70
        305192 AA666019
        303973 AW512014
        303992 AW515800
        326946 c21_hs
        328229 c_6_hs
75
        328262 c_6_hs
```

```
328418 c_7_hs
         328455 c_7_hs
         335697 CH22_3058FG_596_12_LINK_E
         328520 c_7_hs
 5
         328548 c_7_hs
         335815 CH22_3187FG_618_3_LINK_EM
         328688 c_7_hs
         328695 c_7_hs
307010 Al140014
10
         337113 CH22_5058FG_493_1_
         307041 Al144243
         328700 c_7_hs
335946 CH22_3324FG_646_20_LINK_D
335986 CH22_3366FG_654_10_LINK_D
335987 CH22_3367FG_654_11_LINK_D
15
         335988 CH22_3368FG_654_12_LINK_D
         335989 CH22_3369FG_655_2_LINK_DJ
335990 CH22_3370FG_655_4_LINK_DJ
         337214 CH22_5288FG_613_7_
20
         330020 c16 p2
         305989 AA888220
         328857 c_7_hs
         328937 c_8_hs
         328957 c_8_hs
25
         330187 c_4_p2
337407 CH22_5607FG_755_1_
         337429 CH22_5633FG_762_3_
         330232 c_5_p2
         307414 Al242106
30
         330305 c_7_p2
         330306 c_7_p2
337603 CH22_5896FG__LINK_C20H12.
         337953 CH22_6395FG__LINK_EM:AC00
         339236 CH22_8181FG__LINK_BA354I1
339403 CH22_8384FG__LINK_BA232E1
35
         309349 AW051913
         325222 c10_hs
         325251 c10_hs
                               Al792566 Al053836 Al054127 Al792489 Al288324
         318188 956161_1
40
         309871 AW300366
         325544 c12 hs
         309931 AW341683
         332833 CH22_50FG_17_7_LINK_C20H1
                               AJ235667 AJ235666 AJ235664 AJ235665 AJ235668 AJ235669 AJ235670
         302779 33837_1
45
                               AJ245245 AJ245247 AJ245257 AJ245248 AJ245254 AJ245256 AJ245253 AJ245203 AJ245250 AJ245252 AJ245243 AJ245204
         302790 34168_1
                               AJ245201 AJ245206 AJ245246 AJ245255 AJ245205 AJ245202 AJ245251 AJ245249 AJ245207 AJ245244
         332961 CH22_185FG_48_18_LINK_EM:
         325753 c14_hs
         327036 c21_hs
50
         325843 c16_hs
         325889 c16_hs
         304261 AA059387
         304275 AA070605
         334376 CH22_1670FG_379_8_LINK_EM
55
         327220 c_1_hs
         304363 AA206045
         334458 CH22_1757FG_391_2_LINK_EM
         327365 c_1_hs
         327373 c_2_hs
334616 CH22_1923FG_411_15_LINK_E
60
         327414 c_2_hs
         327568 c_3_hs
         336034 CH22_3419FG_678_5_LINK_DJ
         336059 CH22 3445FG_684_2_LINK_DJ
65
         334834 CH22_2148FG_439_3_LINK_EM
         304782 AA582081
         304876 AA595765
         327747 c_5_hs
         336228 CH22_3626FG_730_4_LINK_DA
70
         329073 c_x_hs
         329088 c_x_hs
304969 AA614406
         327844 c_5_hs
         327876 c_6_hs
75
         306352 AA961367
                                         R54797
         331131 genbank_R54797
```

331139 genbank_R65706 R65706 331420 675963_1 AW452904 AW449414 BE467906 Al298565 BE549932 BE326357 F04362

TABLE 6B

Table 6B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 6. The pkeys in Table 7 lacking unigeneID's are represented within Tables 1-6B. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed. 5

Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication Pkey: 10 Ref:

entitled "The DNA

sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted.

Strand: Indicates nucleotide positions of predicted exons. Nt_position:

15

	Pkey	Ref	Strand	Nt_position
	332961	Dunham, I. et.al.	Plus	2521424-2521555
20	333221	Dunham, I. et.al.	Plus	3978070-3978187
	333585	Dunham, I. et.al.	Plus	6234778-6234894
	333610	Dunham, I. et.al.	Plus	6547007-6547116
	334376	Dunham, I. et.al.	Plus	13902218-13902331
25	334458	Dunham, I. et.al.	Plus	14353496-14353572
25	334616	Dunham, I. et.al.	Plus	15176123-15176470
	335149 335211	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	21497441-21497587 21774611-21774680
	335697	Dunham, I. et.al.	Plus	25481456-25481649
	335986	Dunham, I. et.al.	Plus	27967791-27967852
30	335987	Dunham, I. et.al.	Plus	27971413-27971481
- 0	335988	Dunham, I. et.al.	Plus	27977912-27978013
	335989	Dunham, I. et.al.	Plus	27983788-27983860
	335990	Dunham, l. et.al.	Plus	27988532-27988608
a -	336034	Dunham, I. et.al.	Plus	29014404-29014590
35	337953	Dunham, I. et al.	Plus	6827029-6827125
	338033	Dunham, l. et.al.	Plus	8092128-8092271
	338038	Dunham, I. et.al.	Plus	8138219-8138392
	338316	Dunham, I. et.al.	Plus	17089711-17089988 19980640-19980698
40	338442 338962	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	29581892-29582020
TU	332833	Dunham, I. et.al.	Minus	1119848-1119705
	333120	Dunham, I. et.al.	Minus	3307508-3307427
	333121	Dunham, I. et.al.	Minus	3308446-3308358
	333122	Dunham, I. et.al.	Minus	3309596-3309531
45	333123	Dunham, I. et.al.	Minus	3310817-3310749
	333168	Dunham, l. et.al.	Minus	3729896-3729788
	333169	Dunham, I. et.al.	Minus	3730864-3730767
	333977	Dunham, I. et.al.	Minus	8722928-8722725
5 0	334834	Dunham, I. et.al.	Minus	17182681-17182535
5 0	335093	Dunham, I. et.al.	Minus	21297367-21297214
	335095	Dunham, I. et.al.	Minus	21292546-21292381 26320518-26320421
	335815 335946	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	27487203-27487035
	336059	Dunham, I. et.al.	Minus	29184079-29183969
55	336228	Dunham, I. et.al.	Minus	30904602-30904497
	337113	Dunham, I. et.al.	Minus	21233344-21233237
	337214	Dunham, I. et.al.	Minus	26095902-26095502
	337407	Dunham, I. et.al.	Minus	31886652-31886567
CO	337429	Dunham, I. et.al.	Minus	32086238-32086079
60	337603	Dunham, I. et.al.	Minus	1299296-1299194
	338116	Dunham, I. et.al.	Minus	10614071-10613814
	338158	Dunham, I. et.al.	Minus	11794465-11794343 18662403-18662305
	338388 338645	Dunham, i. et.al. Dunham, i. et.al.	Minus Minus	24063839-24063775
65	338728	Dunham, I. et.al.	Minus	25949039-25948927
05	339236	Dunham, I. et.al.	Minus	32773355-32773202
	339403	Dunham, I. et.al.	Minus	34050728-34050625
	325222	6525287	Minus	22332-22473
	325251	6682448	Minus	411693-411751
70	325544		Plus	171228-171286
	325753		Plus	398512-398621
	329745	6065779	Plus	174774-175142
	329732	6065783	Plus	161252-161322
75	329863	6691797	Plus	196801-196971 223829-223891
15	325889	5867087	Plus	ZZJUZ3-ZZJ03 I

	325843	6552453	Minus	7126-7232
	330020	6671887	Plus	172397-172491
	326198	5867215	Minus	80295-80674
	326230	5867230	Minus	301868-301972
5	326169	5867255	Minus	128321-128388
	326077	6682495	Minus	312108-312168
	326080	6682495	Plus	478644-478847
	326759	6249610	Plus	97216-97311
	326788	6682503	Plus	277132-277335
10	326946	6004446	Minus	116677-116967
	327036	6531965	Plus	319951-320040
	327220	5867525	Minus	65701-657B1
	327365	6552412	Minus	118133-118198
	327414	5867750	Plus	102461-102586
15	327373	5867792	Minus	8186-8742
	327568	5867811	Minus	46152-46287
	330187	6706138	Plus	212923-213020
	327747	5867947	Plus	115322-115498
	327844	6249582	Minus	18895-18958
20	330232	6013526	Plus	113655-113830
	328229	5868105	Minus	120936-121053
	327876	5868140	Plus	103882-104034
	328262	6381906	Plus	11867-12027
	328688	5868262	Plus	626030-626094
25	328700	5868264	Plus	764089-764203
	328695	5868264	Plus	318632-318695
	328418	5868409	Minus	258811-258894
	328455	5868431	Pius	385576-385633
	328520	5868477	Plus	1942075-1942246
30	328548	5868487	Plus	72301-72397
	328857	6381927	Minus	80557-81051
	330305	4877982	Minus	52269-52365
	330306	4877982	Plus	96161-96233
	328937	5868500	Minus	1448241-1448333
35	328957	6456773	Plus	219195-219297
	329073	5868596	Plus	37838-37956
	329088	5868608	Plus	116738-116950
	329350	6456785	Plus	98911-98969
	329414	5868874	Plus	942555-942643
40	329440		Plus	21943-22063
	329451	5868887	Plus	25974-26048

TABLE 7:

Table 7 depicts Seq ID No., UnigeneID, UnigeneTitle, Pkey, and ExAccn for all of the sequences in Table 8. Seq ID No links the nucleic acid and protein sequence information inTable 8 to Table 7. 5

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Sequence Identification Number found in Table 8

Pkey: ExAcon: UnigenelD: Unigene Title: Seq.ID.No.: 10

15	PKey	ExAccn	Unigene ID	Unigene Tiltle	SEQ ID NO
10	101545	BE246154	Hs.154210	endothelial differentiation, sphingolipi	Seq ID 1 & 2
	115819	AA486620	Hs.41135	endomucin-2	Seq ID 3 & 4
	424503	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,	Seq ID 5 & 6
	102917	AI016712	Hs.287797	integrin, beta 1 (fibronectin receptor,	Seq ID 7 & 8
20	102915	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	Seq ID 9 & 10
	105330	AW338625	Hs.22120	ESTs	Seq ID 11 & 12
	107385	NM_005397	Hs.16426	podocalyxin-like	Seq ID 13 & 14
	102024	AA301867	Hs.76224	EGF-containing fibulin-like extracellula	Seq ID 15 & 16
25	102024	AA301867	Hs.76224	EGF-containing fibulin-like extracellula	Seq ID 17 & 18
25	134416	X68264	Hs.211579 Hs.83169	melanoma cell adhesion molecule	Seq ID 19 & 20 Seq ID 21 & 22
	103036	M13509	Hs.22575	matrix metalloproteinase 1 (interstitial B-cell CLL/lymphoma 6, member B (zinc fi	Seq ID 23 & 24
	104865 106 124	T79340 H93366	Hs.7567	Homo sapiens cDNA: FLJ21962 fis, clone H	Seg ID 25 & 26
	109001	AI056548	Hs.72116	hypothetical protein FLJ20992 similar to	Seq ID 27 & 28
30	104764	A1039243	Hs.278585	ESTs	Seq ID 29 & 30
-	133200	AB037715	Hs.183639	hypothetical protein FLJ10210	Seq ID 31 & 32
	105263	AW388633	Hs.6682	solute carrier family 7, (cationic amino	Seq ID 33 & 34
	102892	BE440042	Hs.83326	matrix metalloproteinase 3 (stromelysin	Seq ID 35 & 36
	109456	AW956580	Hs.42699	ESTs	Seq ID 37 & 38
35	110906	AA035211	Hs.17404	ESTs	Seq ID 39 & 40
	119073	BE245360	Hs.279477	ESTs	Seq ID 41 & 42
	132050	Al267615	Hs.38022	ESTs	Seq ID 43 & 44
	132490	NM_001290	Hs.4980	LIM domain binding 2	Seq ID 45 & 46 Seq ID 47 & 48
4 0	102283	AW161552	Hs.83381 Hs.211587	guanine nucleotide binding protein 11 phospholipase A2, group IVA (cytosolic,	Seq ID 47 & 40 Seg ID 49 & 50
40	101714 133975	M68874 C18356	Hs.295944	tissue factor pathway inhibitor 2	Seq ID 51 & 52
	106793	H94997	Hs.16450	ESTs	Seq ID 53 & 54
	118511	N75620	Hs.43157	ESTs	Seg ID 54 & 55
	101447	M21305	*******	gb:Human alpha satellite and satellite 3	Seq ID 56 & 57
45	314941	AA515902	Hs.130650	ESTs	Seq ID 58 & 59
	332466	AB018259	Hs.118140	KIAA0716 gene product	Seq ID 60 & 61
	313513	AW298600	Hs.141840	ESTs, Weakly similar to S59501 interfero	Seq ID 62 & 63
	313556	AA628517	Hs.118502	ESTs	Seq ID 64 & 65
50	313665	AW751201	Hs.51233	ESTs	Seq ID 66 & 67
50	314372	AL040178	Hs.142003	ESTs	Seq ID 68 & 69 Seq ID 70 & 71
	429276	AF056085	Hs.198612	G protein-coupled receptor 51 calcitonin receptor-like	Seq ID 72 & 73
	101345 418994	NM_005795 AA296520	Hs.152175 Hs.89546	selectin E (endothelial adhesion molecul	Seq ID 74 & 75
	103850	AA187101	Hs.213194	hypothetical protein MGC10895	Seg ID 76 & 77
55	133260	AA403045	Hs.6906	Homo sapiens cDNA: FLJ23197 fis, clone R	Seq ID 78 & 79
	101097	BE245301	Hs.89414	chemokine (C-X-C motif), receptor 4 (fus	Seq ID 80 & 81
	104786	AA027167	Hs.10031	KIAA0955 protein	Seq ID 82 & 83
	132173	X89426	Hs.41716	endothelial cell-specific molecule 1	Seq ID 84 & 85
60	100420	D86983	Hs.118893	Melanoma associated gene	Seq ID 86 & 87
60	111018	Al287912	Hs.3628	mitogen-activated protein kinase kinase	Seq ID 88 & 89
	108507	AI554545	Hs.68301	ESTs	Seq ID 90 & 91
	104894	AF065214	Hs.18858	phospholipase A2, group IVC (cytosolic,	Seq ID 92 & 93 Seq ID 94 & 95
	118511	N75620 AA868063	Hs.43157 Hs.104576	ESTs carbohydrate (keratan sulfate Gal-6) sul	Seq ID 94 & 95 Seq ID 96 & 97
65	125609 101543	M31166	Hs.2050	pentaxin-related gene, rapidly induced b	Seq ID 98 & 99
05	101343	NM_007351	Hs.268107	multimerin	Seg ID 100 & 101
	101560	AW958272	Hs.347326	intercellular adhesion molecule 2	Seg ID 102 & 103
	103280	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula	Seq ID 104 & 105
	105826	AA478756	Hs.194477	E3 ubiquitin ligase SMURF2	Seq ID 106 & 107
70	102804	NM_002318	Hs.83354	lysyl oxidase-like 2	Seq ID 108 & 109
	131647	AA359615	Hs.30089	ESTs	Seq ID 110 & 111
	103095	NM_005424	Hs.78824	tyrosine kinase with immunoglobulin and	Seq ID 112 & 113
	103037	BE018302	Hs.2894	placental growth factor, vascular endoth	Seq ID 114 & 115
75	100405	AW291587	Hs.82733	nidogen 2 singed (Drosophila)-like (sea urchin fas	Seq ID 116 & 117 Seq ID 118 & 119
75	102012	BE259035	Hs.118400	singed (Drosophila)-like (sea urchin ras	Seq io 119

	101261	D30857	Hs.82353	protein C receptor, endothelial (EPCR)	Seq ID 120 & 121
	105729	H46612	Hs.293815	Homo sapiens HSPC285 mRNA, partial cds	Seq ID 122 & 123
					Seq ID 124 & 125
	107216	D51069	Hs.211579	melanoma cell adhesion molecule	
~	131080	NM_001955	Hs.2271	endothelin 1	Seq ID 126 & 127
5	131486	F06972	Hs.27372	BMX non-receptor tyrosine kinase	Seq ID 128 & 129
	134299	AW580939	Hs.97199	complement component C1q receptor	Seq ID 130 & 131
	134983	D28235	Hs.196384	prostaglandin-endoperoxide synthase 2 (p	Seq ID 132 & 133
	115827	AA428000	Hs.283072	actin related protein 2/3 complex, subun	Seg ID 134 & 135
	133614	NM_003003	Hs.75232	SEC14 (S. cerevisiae)-like 1	Seg ID 136 & 137
10	116483	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1	Seg ID 138 & 139
10	132546	M24283	Hs.168383	intercellular adhesion molecule 1 (CD54)	Seg ID 140 & 141
				· · · · · · · · · · · · · · · · · · ·	Seq ID 142 & 143
	133678	AW247252	NA	nucleoside phosphorylase	
	130184	H58306	Hs.15165	retinoic acid induced 14	Seq ID 144 & 145
	134786	T29618	Hs.89640	TEK tyrosine kinase, endothelial (venous	Seq ID 146 & 147
15	129371	X06828	Hs.110802	von Willebrand factor	Seq ID 148 & 149
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	Seq ID 150 & 151
	322262	AA632012	Hs.188746	ESTs	Seq ID 152 & 153
	312173	Al821409	Hs.304471	EST	Seq ID 154 & 155
	319795	AB037821	Hs.146858	protocadherin 10	Seg ID 156 & 157
20	313978	AI870175	Hs.13957	ESTs	Seg ID 158 & 159
20	306840	A1077477	Hs.307912	ESTs	Seg ID 160 & 161
					Seq ID 162 & 163
	310272	AF216389	Hs.148932	sema domain, transmembrane domain (TM),	
	310272	AF216389	Hs.148932	sema domain, transmembrane domain (TM),	Seq ID 164 & 165
0.5	315044	BE547674	Hs.204169	ESTs, Weakly similar to S65657 alpha-1C-	Seq ID 166 & 167
25	321325	AB033100	Hs.300646	KIAA1274 protein (similar to mouse palad	Seq ID 168 & 169
	321325	AB033100	Hs.300646	KIAA1274 protein (similar to mouse palad	Seq ID 170 & 171
	303251	AF240635	Hs.115897	protocadherin 12	Seq ID 172 & 173
	302378	AL109712	Hs.296506	Homo sapiens mRNA full length insert cDN	Seq ID 174 & 175
	319267	F11802	Hs.6818	ESTs	Seg ID 176 & 177
30	310442	AW072215	Hs.208470	ESTs	Seq ID 178 & 179
50	300469	BE301708	Hs.233955	hypothetical protein FLJ20401	Seq ID 180 & 181
					Seg ID 182 & 183
	331237	W87874	Hs.25277	Homo sapiens cDNA FLJ10717 fis; clone NT	• • • • • • • • • • • • • • • • • • • •
	330968	R44557	Hs.23748	ESTS	Seq ID 184 & 185
~ -	301822	X17033	Hs.271986	integrin, alpha 2 (CD49B, alpha 2 subuni	Seq ID 186 & 187
35	422573	AW297985	Hs.295726	integrin, alpha V (vitronectin receptor	Seq ID 188 & 189
	133061	Al186431	Hs.296638	prostate differentiation factor	Seq ID 190 & 191
	135235	AW298244	Hs.266195	ESTs	Seq ID 192 & 193
	101192	BE247295	Hs.78452	solute carrier family 20 (phosphate tran	Seq ID 194 & 195
	113195	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom	Seq ID 196 & 197
40	101741	NM_003199	Hs.326198	transcription factor 4	Seq ID 198 & 199
	321911	AF026944	Hs.293797	ESTs	Seq ID 200 & 201
		N50617	Hs.80506	small nuclear ribonucleoprotein polypept	Seq ID 202 & 203
	320635	N30017	115.00000	NM_017643:Homo sapiens hypothetical prot	Seq ID 204 & 205
	326230	. =00.1500	11 04000	= · · · · · ·	•
45	132968	AF234532	Hs.61638	myosin X	Seq ID 206 & 207
45	135073	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f	Seq ID 208 & 209
	108937	AL050107	Hs.24341	transcriptional co-activator with PDZ-bi	Seq ID 210 & 211
	116430	AK001531	Hs.66048	hypothetical protein FLJ10669	Seq ID 212 & 213
	104877	Al138635	Hs.22968	Homo sapiens clone IMAGE:451939, mRNA se	Seq ID 214 & 215
	122697	AA420683	Hs.98321	hypothetical protein FLJ14103	Seq ID 216 & 217
50	112522	R68857	Hs.265499	ESTs	Seg ID 218 & 219
	304782	AA582081		gb:nn32h08.s1 NCI_CGAP_Gas1 Homo sapiens	Seq ID 220 & 221
	312802	AA644669	Hs.193042	ESTs	Seg ID 222 & 223
		AW192334	Hs.38218	ESTs	Seg ID 224 & 225
	302680	MVV 132334	1 13.302 10	Phase 2 & 3 Exons	Seq ID 224 & 223
55	326198	NIN 000000	11- 05270		•
55	331019	NM_006033	Hs.65370	lipase; endothelial	Seq ID 228 & 229

TABLE 8

Seq ID NO: 1 DNA sequence

75

5 NM 001400 Nucleic Acid Accession #: 244-2208 (underlined sequences correspond to start and stop codons)) Coding sequence: 10 11 21 31 41 51 GTCGGGGGCA GCAGCAAGAT GCGAAGCGAG CCGTACAGAT CCCGGGCTCT CCGAACGCAA 60 CTTCGCCCTG CTTGAGCGAG GCTGCGGTTT CCGAGGCCCT CTCCAGCCAA GGAAAAGCTA CACAAAAAGC CTGGATCACT CATCGAACCA CCCCTGAAGC CAGTGAAGGC TCTCTCGCCT 180 15 CGCCCTCTAG CGTTCGTCTG GAGTAGCGCC ACCCCGGCTT CCTGGGGACA CAGGGTTGGC 240 ACCATGGGGC CCACCAGCGT CCCGCTGGTC AAGGCCCACC GCAGCTCGGT CTCTGACTAC GTCAACTATG ATATCATCGT CCGGCATTAC AACTACACGG GAAAGCTGAA TATCAGCGCG 360 GACAAGGAGA ACAGCATTAA ACTGACCTCG GTGGTGTTCA TTCTCATCTG CTGCTTTATC ATCCTGGAGA ACATCTTTGT CTTGCTGACC ATTTGGAAAA CCAAGAAATT CCACCGACCC 480 20 ATGTACTATT TTATTGGCAA TCTGGCCCTC TCAGACCTGT TGGCAGGAGT AGCCTACACA GCTAACCTGC TCTTGTCTGG GGCCACCACC TACAAGCTCA CTCCCGCCCA GTGGTTTCTG CGGGAAGGGA GTATGTTTGT GGCCCTGTCA GCCTCCGTGT TCAGTCTCCT CGCCATCGCC 660 ATTGAGCGCT ATATCACAAT GCTGAAAATG AAACTCCACA ACGGGAGCAA TAACTTCCGC 720 CTCTTCCTGC TAATCAGCGC CTGCTGGGTC ATCTCCCTCA TCCTGGGTGG CCTGCCTATC 780 25 ATGGGCTGGA ACTGCATCAG TGCGCTGTCC AGCTGCTCCA CCGTGCTGCC GCTCTACCAC 840 AAGCACTATA TCCTCTTCTG CACCACGGTC TTCACTCTGC TTCTGCTCTC CATCGTCATT 900 CTGTACTGCA GAATCTACTC CTTGGTCAGG ACTCGGAGCC GCCGCCTGAC GTTCCGCAAG 960 AACATTTCCA AGGCCAGCCG CAGCTCTGAG AAGTCGCTGG CGCTGCTCAA GACCGTAATT 1020 ATCGTCCTGA GCGTCTTCAT CGCCTGCTGG GCACCGCTCT TCATCCTGCT CCTGCTGGAT 30 GTGGGCTGCA AGGTGAAGAC CTGTGACATC CTCTTCAGAG CGGAGTACTT CCTGGTGTTA 1140 GCTGTGCTCA ACTCCGGCAC CAACCCCATC ATTTACACTC TGACCAACAA GGAGATGCGT 1200 CGGGCCTTCA TCCGGATCAT GTCCTGCTGC AAGTGCCCGA GCGGAGACTC TGCTGGCAAA 1260 TTCAAGCGAC CCATCATCGC CGGCATGGAA TTCAGCCGCA GCAAATCGGA CAATTCCTCC CACCCCAGA AAGACGAAGG GGACAACCCA GAGACCATTA TGTCTTCTGG AAACGTCAAC 35 TCTTCTTCCT AGAACTGGAA GCTGTCCACC CACCGGAAGC GCTCTTTACT TGGTCGCTGG 1440 CCACCCCAGT GTTTGGAAAA AAATCTCTGG GCTTCGACTG CTGCCAGGGA GGAGCTGCTG 1500 CAAGCCAGAG GGAGGAAGGG GGAGAATACG AACAGCCTGG TGGTGTCGGG TGTTGGTGGG 1560 TAGAGTTAGT TCCTGTGAAC AATGCACTGG GAAGGGTGGA GATCAGGTCC CGGCCTGGAA 1620 TATATATTCT ACCCCCTGG AGCTTTGATT TTGCACTGAG CCAAAGGTCT AGCATTGTCA 1680 40 AGCTCCTAAA GGGTTCATTT GGCCCCTCCT CAAAGACTAA TGTCCCCATG TGAAAGCGTC 1740 TCTTTGTCTG GAGCTTTGAG GAGATGTTTT CCTTCACTTT AGTTTCAAAC CCAAGTGAGT GTGTGCACTT CTGCTTCTTT AGGGATGCCC TGTACATCCC ACACCCCACC CTCCCTTCCC TTCATACCCC TCCTCAACGT TCTTTTACTT TATACTTTAA CTACCTGAGA GTTATCAGAG 1920 CTGGGGTTGT GGAATGATCG ATCATCTATA GCAAATAGGC TATGTTGAGT ACGTAGGCTG 1.980 45 TGGGAAGATG AAGATGGTTT GGAGGTGTAA AACAATGTCC TTCGCTGAGG CCAAAGTTTC 2040 CATGTAAGCG GGATCCGTTT TTTGGAATTT GGTTGAAGTC ACTTTGATTT CTTTAAAAAA CATCTTTTCA ATGAAATGTG TTACCATTC ATATCCATTG AAGCCGAAAT CTGCATAAGG 2160 AAGCCCACTT TATCTAAATG ATATTAGCCA GGATCCTTGG TGTCCTAGGA GAAACAGACA 2220 AGCAAAACAA AGTGAAAACC GAATGGATTA ACTTTTGCAA ACCAAGGGAG ATTTCTTAGC 2280 50 AAATGAGTCT AACAAATATG ACATCCGTCT TTCCCACTTT TGTTGATGTT TATTTCAGAA TCTTGTGTGA TTCATTTCAA GCAACAACAT GTTGTATTTT GTTGTGTTAA AAGTACTTTT 2400 CTTGATTTTT GAATGTATTT GTTTCAGGAA GAAGTCATTT TATGGATTTT TCTAACCCGT 2460 GTTAACTTTT CTAGAATCCA CCCTCTTGTG CCCTTAAGCA TTACTTTAAC TGGTAGGGAA 2520 CGCCAGAACT TTTAAGTCCA GCTATTCATT AGATAGTAAT TGAAGATATG TATAAATATT 2580 55 ACAAAGAATA AAAATATATT ACTGTCTCTT TAGTATGGTT TTCAGTGCAA TTAAACCGAG AGATGTCTTG TTTTTTTAAA AAGAATAGTA TTTAATAGGT TTCTGACTTT TGTGGATCAT TTTGCACATA GCTTTATCAA CTTTTAAACA TTAATAAACT GATTTTTTTA AAG 60 Seq ID NO: 2 Protein sequence: Protein Accession #: NP 001391 65 41 51 11 2.1 31 MGPTSVPLVK AHRSSVSDYV NYDIIVRHYN YTGKLNISAD KENSIKLTSV VFILICCFII LENIFVLLTI WKTKKFHRPM YYFIGNLALS DLLAGVAYTA NLLLSGATTY KLTPAQWFLR EGSMFVALSA SVFSLLAIAI ERYITMLKMK LHNGSNNFRL FLLISACWVI SLILGGLPIM 180 70 GWNCISALSS CSTVLPLYHK HYLLFCTTVF TLLLLSIVIL YCRIYSLVRT RSRRLTFRKN 240 ISKASRSSEK SLALLKTVII VLSVFIACWA PLFILLLDV GCKVKTCDIL FRAEYFLVLA VLNSGTNPII YTLTNKEMRR AFIRIMSCCK CPSGDSAGKF KRPIIAGMEF SRSKSDNSSH POKDEGDNPE TIMSSGNVNS SS

5 Seq ID NO: 3 Nucleotide sequence: 10 Nucleic Acid Accession #: NM 016242 Coding sequence: 79-864 (underlined sequences correspond to start and stop codons)) 21 31 11 15 AAGGCCCTGC CAGCTTGGGA GGGAATTGTC CCTGCCTGCT TCTGGAGAAA GAAGATATTG 60 ACACCATCTA CGGGCACCAT GGAACTGCTT CAAGTGACCA TTCTTTTTCT TCTGCCCAGT 120 180 ATTTGCAGCA GTAACAGCAC AGGTGTTTTA GAGGCAGCTA ATAATTCACT TGTTGTTACT ACAACAAAAC CATCTATAAC AACACCAAAC ACAGAATCAT TACAGAAAAA TGTTGTCACA 240 20 CCAACAACTG GAACAACTCC TAAAGGAACA ATCACCAATG AATTACTTAA AATGTCTCTG 360 ATGTCAACAG CTACTTTTTT AACAAGTAAA GATGAAGGAT TGAAAGCCAC AACCACTGAT GTCAGGAAGA ATGACTCCAT CATTTCAAAC GTAACAGTAA CAAGTGTTAC ACTTCCCAAT 420 GCTGTTTCAA CATTACAAAG TTCCAAACCC AAGACTGAAA CTCAGAGTTC AATTAAAACA 480 ACAGAAATAC CAGGTAGTGT TCTACAACCA GATGCATCAC CTTCTAAAAC TGGTACATTA 25 ACCTCAATAC CAGTTACAAT TCCAGAAAAC ACCTCACAGT CTCAAGTAAT AGACACTGAG 600 GGTGGAAAAA ATGCAAGCAC TTCAGCAACC AGCCGGTCTT ATTCCAGTAT TATTTTGCCG 660 GTGGTTATTG CTTTGATTGT AATAACACTT TCAGTATTTG TTCTGGTGGG TTTGTACCGA 720 ATGTGCTGGA AGGCAGATCC GGGCACACCA GAAAATGGAA ATGATCAACC TCAGTCTGAT AAAGAGAGCG TGAAGCTTCT TACCGTTAAG ACAATTTCTC ATGAGTCTGG TGAGCACTCT 840 30 GCACAAGGAA AAACCAAGAA CIGACAGCTI GAGGAATICT CTCCACACCI AGGCAATAAT 900 960 TACGCTTAAT CTTCAGCTTC TATGCACCAA GCGTGGAAAA GGAGAAAGTC CTGCAGAATC AATCCCGACT TCCATACCTG CTGCTGG 35 Seq ID NO: 4 Protein sequence: Protein Accession #: NP_057326

40 | 11 21 31 41 51

| MELLQVTILF LLPSICSSNS TGVLEAANNS LVVTTTKPSI TTPNTESLQK NVVTPTTGTT 60
PKGTITNELL KMSLMSTATF LTSKDEGLKA TTTDVRKNDS IISNVTVTSV TLPNAVSTLQ 120
SSKPKTETQS SIKTTEIPGS VLQPDASPSK TGTLTSIPVT IPENTSQSQV IDTEGGKNAS 180
TSATSRSYSS IILPVVIALI VITLSVFVLV GLYRMCWKAD PGTPENGNDQ PQSDKESVKL 240

45 LTVKTISHES GEHSAQGKTK N

Seq ID NO: 5 <u>Nucleotide sequence:</u>
Nucleic Acid Accession #: NM_002205

50 Coding sequence: 24..3173 (underlined sequences correspond to start and stop codons)

21 31 11 CAGGACAGGG AAGAGCGGGC GCTATGGGGA GCCGGACGCC AGAGTCCCCT CTCCACGCCG 55 60 TGCAGCTGCG CTGGGGCCCC CGGCGCCGAC CCCCGCTCGT GCCGCTGCTG TTGCTGCTCG 120 TGCCGCCGCC ACCCAGGGTC GGGGGCTTCA ACTTAGACGC GGAGGCCCCA GCAGTACTCT 180 CGGGGCCCCC GGGCTCCTTC TTCGGATTCT CAGTGGAGTT TTACCGGCCG GGAACAGACG 240 GGGTCAGTGT GCTGGTGGGA GCACCCAAGG CTAATACCAG CCAGCCAGGA GTGCTGCAGG 300 60 GTGGTGCTGT CTACCTCTGT CCTTGGGGTG CCAGCCCCAC ACAGTGCACC CCCATTGAAT 360 TTGACAGCAA AGGCTCTCGG CTCCTGGAGT CCTCACTGTC CAGCTCAGAG GGAGAGGAGC 420 CTGTGGAGTA CAAGTCCTTG CAGTGGTTCG GGGCAACAGT TCGAGCCCAT GGCTCCTCCA TCTTGGCATG CGCTCCACTG TACAGCTGGC GCACAGAGAA GGAGCCACTG AGCGACCCCG 540 TGGGCACCTG CTACCTCTCC ACAGATAACT TCACCCGAAT TCTGGAGTAT GCACCCTGCC 600 GCTCAGATTT CAGCTGGGCA GCAGGACAGG GTTACTGCCA AGGAGGCTTC AGTGCCGAGT 65 660 TCACCAAGAC TGGCCGTGTG GTTTTAGGTG GACCAGGAAG CTATTTCTGG CAAGGCCAGA 720 TCCTGTCTGC CACTCAGGAG CAGATTGCAG AATCTTATTA CCCCGAGTAC CTGATCAACC TGGTTCAGGG GCAGCTGCAG ACTCGCCAGG CCAGTTCCAT CTATGATGAC AGCTACCTAG 840 GATACTCTGT GGCTGTTGGT GAATTCAGTG GTGATGACAC AGAAGACTTT GTTGCTGGTG 900 70 TGCCCAAAGG GAACCTCACT TACGGCTATG TCACCATCCT TAATGGCTCA GACATTCGAT 960 CCCTCTACAA CTTCTCAGGG GAACAGATGG CCTCCTACTT TGGCTATGCA GTGGCCGCCA 1020 CAGACGTCAA TGGGGACGGG CTGGATGACT TGCTGGTGGG GGCACCCCTG CTCATGGATC GGACCCCTGA CGGGCGGCCT CAGGAGGTGG GCAGGGTCTA CGTCTACCTG CAGCACCCAG 1140 CCGGCATAGA GCCCACGCCC ACCCTTACCC TCACTGGCCA TGATGAGTTT GGCCGATTTG 1200 GCAGCTCCTT GACCCCCCTG GGGGACCTGG ACCAGGATGG CTACAATGAT GTGGCCATCG 75 GGGCTCCCTT TGGTGGGGAG ACCCAGCAGG GAGTAGTGTT TGTATTTCCT GGGGGCCCAG

```
GAGGGCTGGG CTCTAAGCCT TCCCAGGTTC TGCAGCCCCT GTGGGCAGCC AGCCACACCC 1380
      CAGACTTCTT TGGCTCTGCC CTTCGAGGAG GCCGAGACCT GGATGGCAAT GGATATCCTG
      ATCTGATTGT GGGGTCCTTT GGTGTGGACA AGGCTGTGGT ATACAGGGGC CGCCCCATCG
      TGTCCGCTAG TGCCTCCCTC ACCATCTTCC CCGCCATGTT CAACCCAGAG GAGCGGAGCT
                                                                         1560
 5
      GCAGCTTAGA GGGGAACCCT GTGGCCTGCA TCAACCTTAG CTTCTGCCTC AATGCTTCTG
                                                                         1620
      GAAAACACGT TGCTGACTCC ATTGGTTTCA CAGTGGAACT TCAGCTGGAC TGGCAGAAGC
                                                                         1680
      AGAAGGGAGG GGTACGGCGG GCACTGTTCC TGGCCTCCAG GCAGGCAACC CTGACCCAGA
                                                                         1800
      CCCTGCTCAT CCAGAATGGG GCTCGAGAGG ATTGCAGAGA GATGAAGATC TACCTCAGGA
      ACGAGTCAGA ATTTCGAGAC AAACTCTCGC CGATTCACAT CGCTCTCAAC TTCTCCTTGG
                                                                         1860
10
      ACCCCAAGC CCCAGTGGAC AGCCACGGCC TCAGGCCAGC CCTACATTAT CAGAGCAAGA
      GCCGGATAGA GGACAAGGCT CAGATCTTGC TGGACTGTGG AGAAGACAAC ATCTGTGTGC
                                                                         1980
      CTGACCTGCA GCTGGAAGTG TTTGGGGAGC AGAACCATGT GTACCTGGGT GACAAGAATG
                                                                         2040
                                                                         2100
      CCCTGAACCT CACTTTCCAT GCCCAGAATG TGGGTGAGGG TGGCGCCTAT GAGGCTGAGC
      TTCGGGTCAC CGCCCTCCA GAGGCTGAGT ACTCAGGACT CGTCAGACAC CCAGGGAACT
                                                                         2160
      TCTCCAGCCT GAGCTGTGAC TACTTTGCCG TGAACCAGAG CCGCCTGCTG GTGTGTGACC
15
      TGGGCAACCC CATGAAGGCA GGAGCCAGTC TGTGGGGTGG CCTTCGGTTT ACAGTCCCTC
                                                                         2280
      ATCTCCGGGA CACTAAGAAA ACCATCCAGT TTGACTTCCA GATCCTCAGC AAGAATCTCA
                                                                         2340
      ACAACTCGCA AAGCGACGTG GTTTCCTTTC GGCTCTCCGT GGAGGCTCAG GCCCAGGTCA
                                                                         2400
      CCCTGAACGG TGTCTCCAAG CCTGAGGCAG TGCTATTCCC AGTAAGCGAC TGGCATCCCC
20
      GAGACCAGCC TCAGAAGGAG GAGGACCTGG GACCTGCTGT CCACCATGTC TATGAGCTCA
      TCAACCAAGG CCCCAGCTCC ATTAGCCAGG GTGTGCTGGA ACTCAGCTGT CCCCAGGCTC
                                                                         2580
      TGGAAGGTCA GCAGCTCCTA TATGTGACCA GAGTTACGGG ACTCAACTGC ACCACCAATC
                                                                         2640
      ACCCCATTAA CCCAAAGGGC CTGGAGTTGG ATCCCGAGGG TTCCCTGCAC CACCAGCAAA
      AACGGGAAGC TCCAAGCCGC AGCTCTGCTT CCTCGGGACC TCAGATCCTG AAATGCCCGG
                                                                         2760
25
      AGGCTGAGTG TTTCAGGCTG CGCTGTGAGC TCGGGCCCCT GCACCAACAA GAGAGCCAAA
                                                                         2820
      GTCTGCAGTT GCATTTCCGA GTCTGGGCCA AGACTTTCTT GCAGCGGGAG CACCAGCCAT
                                                                         2880
      TTAGCCTGCA GTGTGAGGCT GTGTACAAAG CCCTGAAGAT GCCCTACCGA ATCCTGCCTC
                                                                         2940
      GGCAGCTGCC CCAAAAAGAG CGTCAGGTGG CCACAGCTGT GCAATGGACC AAGGCAGAAG
      GCAGCTATGG CGTCCCACTG TGGATCATCA TCCTAGCCAT CCTGTTTGGC CTCCTGCTCC
                                                                         3060
30
      TAGGTCTACT CATCTACATC CTCTACAAGC TTGGATTCTT CAAACGCTCC CTCCCATATG
                                                                         3120
      GCACCGCCAT GGAAAAAGCT CAGCTCAAGC CTCCAGCCAC CTCTGATGCC TGAGTCCTCC
                                                                         3180
      CAATTTCAGA CTCCCATTCC TGAAGAACCA GTCCCCCCAC CCTCATTCTA CTGAAAAGGA
                                                                         3240
      GGGGTCTGGG TACTTCTTGA AGGTGCTGAC GGCCAGGGAG AAGCTCCTCT CCCCAGCCCA
                                                                         3300
      GAGACATACT TGAAGGGCCA GAGCCAGGGG GGTGAGGAGC TGGGGATCCC TCCCCCCCAT
                                                                         3360
35
      GCACTGTGAA GGACCCTTGT TTACACATAC CCTCTTCATG GATGGGGGAA CTCAGATCCA
                                                                         3420
      GGGACAGAGG CCCAGCCTCC CTGAAGCCTT TGCATTTTGG AGAGTTTCCT GAAACAACTG
      GAAAGATAAC TAGGAAATCC ATTCACAGTT CTTTGGGCCA GACATGCCAC AAGGACTTCC
                                                                         3540
      TGTCCAGCTC CAACCTGCAA AGATCTGTCC TCAGCCTTGC CAGAGATCCA AAAGAAGCCC
                                                                         3600
      CCAGTAAGAA CCTGGAACTT GGGGAGTTAA GACCTGGCAG CTCTGGACAG CCCCACCTG
                                                                         3660
      GTGGGCCAAC AAAGAACACT AACTATGCAT GGTGCCCCAG GACCAGCTCA GGACAGATGC
40
                                                                         3720
      CACAAGGATA GATGCTGGCC CAGGGCCAGA GCCCAGCTCC AAGGGGAATC AGAACTCAAA
      TGGGGCCAGA TCCAGCCTGG GGTCTGGAGT TGATCTGGAA CCCAGACTCA GACATTGGCA
                                                                         3840
      CCAATCCAGG CAGATCCAGG ACTATATTTG GGCCTGCTCC AGACCTGATC CTGGAGGCCC
                                                                         3900
      AGTTCACCCT GATTTAGGAG AAGCCAGGAA TTTCCCAGGA CCTGAAGGGG CCATGATGGC
                                                                         3960
45
      AACAGATCTG GAACCTCAGC CTGGCCAGAC ACAGGCCCTC CCTGTTCCCC AGAGAAAGGG
      GAGCCCACTG TCCTGGGCCT GCAGAATTTG GGTTCTGCCT GCCAGCTGCA CTGATGCTGC
      CCCTCATCTC TCTGCCCAAC CCTTCCCTCA CCTTGGCACC AGACACCCAG GACTTATTTA
                                                                         4140
      AACTCTGTTG CAAGTGCAAT AAATCTGACC CAGTGCCCCC ACTGACCAGA ACTAGAAAAA
                                                                         4200
      AAAA
50
      Seg ID NO: 6 Protein sequence:
      Protein Accession #: NP 002196.1
55
                                       31
                                                   41
                                                             51
      MGSRTPESPL HAVOLRWGPR RRPPLVPLLL LLVPPPPRVG GFNLDAEAPA VLSGPPGSFF
      GFSVEFYRPG TDGVSVLVGA PKANTSQPGV LQGGAVYLCP WGASPTQCTP IEFDSKGSRL
      LESSLSSEG EEPVEYKSLQ WFGATVRAHG SSILACAPLY SWRTEKEPLS DPVGTCYLST
60
      DNFTRILEYA PCRSDFSWAA GQGYCQGGFS AEFTKTGRVV LGGPGSYFWQ GQILSATQEQ
                                                                          240
      IAESYYPEYL INLVQGQLQT RQASSIYDDS YLGYSVAVGE FSGDDTEDFV AGVPKGNLTY
                                                                          300
      GYVTILNGSD IRSLYNFSGE OMASYFGYAV AATDVNGDGL DDLLVGAPLL MDRTPDGRPQ
      EVGRVYVYLQ HPAGIEPTPT LTLTGHDEFG RFGSSLTPLG DLDQDGYNDV AIGAPFGGET
      QQGVVFVFPG GPGGLGSKPS QVLQPLWAAS HTPDFFGSAL RGGRDLDGNG YPDLIVGSFG
                                                                          480
65
      VDKAVVYRGR PIVSASASLT IFPAMFNPEE RSCSLEGNPV ACINLSFCLN ASGKHVADSI
                                                                          540
      GFTVELOLDW OKOKGGVRRA LFLASRQATL TQTLLIQNGA REDCREMKIY LRNESEFRDK
                                                                          600
      LSPIHIALNF SLDPQAPVDS HGLRPALHYQ SKSRIEDKAQ ILLDCGEDNI CVPDLQLEVF
      GEQNHVYLGD KNALNLTFHA QNVGEGGAYE AELRVTAPPE AEYSGLVRHP GNFSSLSCDY
                                                                           720
```

FAVNQSRLLV CDLGNPMKAG ASLWGGLRFT VPHLRDTKKT IQFDFQILSK NLNNSQSDVV

SFRLSVEAOA OVTLNGVSKP EAVLFPVSDW HPRDQPQKEE DLGPAVHHVY ELINQGPSSI

SOGVLELSCP QALEGOOLLY VTRVTGLNCT TNHPINPKGL ELDPEGSLHH QQKREAPSRS

SASSGPQILK CPEAECFRLR CELGPLHQQE SQSLQLHFRV WAKTFLQREH QPFSLQCEAV
YKALKMPYRI LPRQLPQKER QVATAVQWTK AEGSYGVPLW IIILAILFGL LLLGLLIYIL 1020

YKLGFFKRSL PYGTAMEKAQ LKPPATSDA

70

75

181

780

840

900

Seq ID NO: 7 <u>Mucleotide sequence:</u>
Nucleic Acid Accession #: NM_002211
Coding sequence: 104..2500 (underlined sequences correspond to start and stop codons)

5							
,	1	11	21	31	41	51	
	GECCGCCAAA	ACCTGCGCGG	ATACCCAACA	ACAGCACCCC	GGCGCCGATT	GCCGTACCAA	60
		CGTCCGCTGG					120
10	TTTCTGGATT	GGACTGATCA	GTTCAGTTTG	CTGTGTGTTT	GCTCAAACAG	ATGAAAATAG	180
		GCAAATGCCA					240
		AATTCAACAT TTAAAAAAGA					300 360
		AAGAAAAATA					420
15		GATATTACTC					480
		ACATTTACAT					540
		GACCTGTCTT					600 660
		ATGAATGAAA AAGACTGTGA					720
20		GAACAGAACT					780
		${\tt GAAGTATTTA}$					840
		GGTGGTTTCG					900
		GTTACACGGC CTTGGTGGCA					960 1020
25		ATGAGCCATT					1080
		AATATTCAGA					1140
		AACTTGATCC					1200
						TTTTGGAAAA	
30		TCAGAAGGAG				ACGGGGTGAA	1320 1380
50		ATAACTTCAA					1440
						AATGTGAATG	1500
						CATTTGAGTG	
35						GCACAGATGA AAATCTGCAG	
55		GAGTGCGTCT					1740
						CCAATGGCTT	
						CCAACTACAC	
40						ACGGACAGAT	
40						CGAAGTTTCA ATAAAGAATG	
						AGGAATGTTC	
		ATTACCAAGG					2160
15		CATTGTAAGG					2220
45		AACAACGAGG ATTCCAATTG					2280 2340
		ATATGGAAGC					2400
		AAAATGAATG					2460
~~						TGCAAATCCC	
5 0						TAGGGCAATA	
						ATTTTTAAAA AAGACTTGAG	
	ACAGGATGGT	TATTCTTGTC	AGCTAAGGTC	ACATTGTGCC	TTTTTGACCT	TTTCTTCCTG	2760
	GACTATTGAA	ATCAAGCTTA	TTGGATTAAG	TGATATTTCT	ATAGCGATTG	AAAGGGCAAT	2820
55	AGTTAAAGTA	ATGAGCATGA	TGAGAGTTTC	TGTTAATCAT	GTATTAAAAC	TGATTTTTAG	2880
		GTCAGTTTGC TTAAATCTGT				CTAGCTAGTT	2940 3000
						GTTGATCTAC	
						TAAAACCTGT	
60	GTGCCATTTT	AAGAGTTACT	TAATGTTTGG	TAACTTTTAT	GCCTTCACTT	TACAAATTCA	3180
	AGCCTTAGAT	AAAAGAACCG	AGCAATTTTC	TGCTAAAAAG	TCCTTGATTT	AGCACTATTT	3240
						TTGAATTTAT AATCTTTTAA	
						TTGAAGTTTT	
65						GCAACAGCTC	
						GTTTACTTCT	
			TTGTTTCACA	CTAGTCACAT	TCTTGTTTTA	AGTGCCTTTA	3600
	GTTTTAACAG	TTCA					
70	Sea ID NO:	8 Protein	sequence:				
. •		cession #: 1					
			_				
	-	7.7	21	21	41	51	
75	1 ,	11	21	31 	 #T	1	
, 5	MNLQPIFWIG	LISSVCCVFA	QTDENRCLKA	NAKSCGECIQ	AGPNCGWCTN	STFLQEGMPT	60
			-				

```
SARCDDLEAL KKKGCPPDDI ENPRGSKDIK KNKNVTNRSK GTAEKLKPED ITQIQPQQLV
      LRLRSGEPOT FTLKFKRAED YPIDLYYLMD LSYSMKDDLE NVKSLGTDLM NEMRRITSDF
      RIGFGSFVEK TVMPYISTTP AKLRNPCTSE ONCTSPFSYK NVLSLTNKGE VFNELVGKQR
                                                                           240
      ISGNLDSPEG GFDAIMQVAV CGSLIGWRNV TRLLVFSTDA GFHFAGDGKL GGIVLPNDGQ
                                                                           300
 5
      CHLENNMYTM SHYYDYPSIA HLVQKLSENN IQTIFAVTEE FQPVYKELKN LIPKSAVGTL
      SANSSNVIQL IIDAYNSLSS EVILENGKLS EGVTISYKSY CKNGVNGTGE NGRKCSNISI
      GDEVQFEISI TSNKCPKKDS DSFKIRPLGF TEEVEVILQY ICECECQSEG IPESPKCHEG
                                                                           480
      NGTFECGACR CNEGRVGRHC ECSTDEVNSE DMDAYCRKEN SSEICSNNGE CVCGQCVCRK
                                                                           540
      RDNTNEIYSG KFCECDNFNC DRSNGLICGG NGVCKCRVCE CNPNYTGSAC DCSLDTSTCE
                                                                           600
10
      ASNGOICNGR GICECGYCKC TDPKFOGOTC EMCOTCLGYC AEHKECYOCR AFNKGEKKDT
                                                                           660
      CTQECSYFNI TKVESRDKLP QPVQPDPVSH CKEKDVDDCW FYFTYSVNGN NEVMVHVVEN
                                                                           720
      PECPTGPDII PIVAGVVAGI VLIGLALLLI WKLLMIIHDR REFAKFEKEK MNAKWDTGEN
                                                                           780
      PIYKSAVTTV VNPKYEGK
15
      Seq ID NO: 9 Nucleotide sequence:
      Nucleic Acid Accession #:NM_002425
      Coding sequence: 23..1453 (underlined sequences correspond to start and stop codons)
20
                            21
                                       31
                                                  41
                                                             51
                 11
      AAAGAAGGTA AGGGCAGTGA GAATGATGCA TCTTGCATTC CTTGTGCTGT TGTGTCTGCC
      AGTCTGCTCT GCCTATCCTC TGAGTGGGGC AGCAAAAGAG GAGGACTCCA ACAAGGATCT
      TGCCCAGCAA TACCTAGAAA AGTACTACAA CCTCGAAAAG GATGTGAAAC AGTTTAGAAG
                                                                           180
25
      AAAGGACAGT AATCTCATTG TTAAAAAAAT CCAAGGAATG CAGAAGTTCC TTGGGTTGGA
                                                                           240
      GGTGACAGGG AAGCTAGACA CTGACACTCT GGAGGTGATG CGCAAGCCCA GGTGTGGAGT
      TCCTGACGTT GGTCACTTCA GCTCCTTTCC TGGCATGCCG AAGTGGAGGA AAACCCACCT
      TACATACAGG ATTGTGAATT ATACACCAGA TTTGCCAAGA GATGCTGTTG ATTCTGCCAT
                                                                           420
      TGAGAAAGCT CTGAAAGTCT GGGAAGAGGT GACTCCACTC ACATTCTCCA GGCTGTATGA
                                                                           480
30
      AGGAGAGGCT GATATAATGA TCTCTTTCGC AGTTAAAGAA CATGGAGACT TTTACTCTTT
                                                                           540
      TGATGGCCCA GGACACAGTT TGGCTCATGC CTACCCACCT GGACCTGGGC TTTATGGAGA
      TATTCACTTT GATGATGATG AAAAATGGAC AGAAGATGCA TCAGGCACCA ATTTATTCCT
                                                                           660
      CGTTGCTGCT CATGAACTTG GCCACTCCCT GGGGCTCTTT CACTCAGCCA ACACTGAAGC
                                                                           720
      TTTGATGTAC CCACTCTACA ACTCATTCAC AGAGCTCGCC CAGTTCCGCC TTTCGCAAGA
                                                                           780
35
      TGATGTGAAT GGCATTCAGT CTCTCTACGG ACCTCCCCCT GCCTCTACTG AGGAACCCCT
                                                                           840
      GGTGCCCACA AAATCTGTTC CTTCGGGATC TGAGATGCCA GCCAAGTGTG ATCCTGCTTT
      GTCCTTCGAT GCCATCAGCA CTCTGAGGGG AGAATATCTG TTCTTTAAAG ACAGATATTT
                                                                           960
      TTGGCGAAGA TCCCACTGGA ACCCTGAACC TGAATTTCAT TTGATTTCTG CATTTTGGCC
                                                                          1020
      CTCTCTTCCA TCATATTTGG ATGCTGCATA TGAAGTTAAC AGCAGGGACA CCGTTTTTAT
                                                                          1080
40
      TTTTAAAGGA AATGAGTTCT GGGCCATCAG AGGAAATGAG GTACAAGCAG GTTATCCAAG
      AGGCATCCAT ACCCTGGGTT TTCCTCCAAC CATAAGGAAA ATTGATGCAG CTGTTTCTGA
      CAAGGAAAAG AAGAAAACAT ACTTCTTTGC AGCGGACAAA TACTGGAGAT TTGATGAAAA
                                                                          1260
      TAGCCAGTCC ATGGAGCAAG GCTTCCCTAG ACTAATAGCT GATGACTTTC CAGGAGTTGA
                                                                          1320
      GCCTAAGGTT GATGCTGTAT TACAGGCATT TGGATTTTTC TACTTCTTCA GTGGATCATC
45
      ACAGTTTGAG TTTGACCCCA ATGCCAGGAT GGTGACACAC ATATTAAAGA GTAACAGCTG
      GTTACATTGC TAGGCGAGAT AGGGGGAAGA CAGATATGGG TGTTTTTAAT AAATCTAATA
      ATTATTCATC TAATGTATTA TGAGCCAAAA TGGTTAATTT TTCCTGCATG TTCTGTGACT
                                                                          1560
      GAAGAAGATG AGCCTTGCAG ATATCTGCAT GTGTCATGAA GAATGTTTCT GGAATTCTTC
      ACTTGCTTTT GAATTGCACT GAACAGAATT AAGAAATACT CATGTGCAAT AGGTGAGAGA
50
      ATGTATTTC ATAGATGTGT TATTACTTCC TCAATAAAAA GTTTTATTTT GGGCCTGTTC 1740
      Seq ID NO: 10 Protein sequence:
55
      Protein Accession #: NP 002416
                            21
                                       31
                                                   41
                                                              51
                 11
      MMHLAFLVLL CLPVCSAYPL SGAAKEEDSN KDLAQQYLEK YYNLEKDVKQ FRRKDSNLIV
60
      KKIQGMQKFL GLEVTGKLDT DTLEVMRKPR CGVPDVGHFS SFPGMPKWRK THLTYRIVNY
                                                                           120
      TPDLPRDAVD SAIEKALKVW EEVTPLTFSR LYEGEADIMI SFAVKEHGDF YSFDGPGHSL
                                                                           180
      AHAYPPGPGL YGDIHFDDDE KWTEDASGTN LFLVAAHELG HSLGLFHSAN TEALMYPLYN
      SFTELAQFRL SQDDVNGIQS LYGPPPASTE EPLVPTKSVP SGSEMPAKCD PALSFDAIST
                                                                           300
      LRGEYLFFKD RYFWRRSHWN PEPEFHLISA FWPSLPSYLD AAYEVNSRDT VFIFKGNEFW
                                                                           360
65
      AIRGNEVQAG YPRGIHTLGF PPTIRKIDAA VSDKEKKKTY FFAADKYWRF DENSQSMEQG
                                                                           420
      FPRLIADDFP GVEPKVDAVL QAFGFFYFFS GSSQFEFDPN ARMVTHILKS NSWLHC
70
      Seq ID NO: 11 <u>Mucleotide sequence:</u>
      Nucleic Acid Accession #: XM_058189
      Coding sequence: 169..774 (underlined sequences correspond to start and stop codons)
                            21
                                                              51
75
      GAAGACCAGC TCAGCTCTTC AGTTGTTGAT CATTGTCTAT TGTTCTCCAA ACAGTAAACC
```

```
AGTATTTCAC ACTGAGATTG TCGGCTGCGG GTATATTCCA ATTCCCCGTC TCCTCATGAA
      TATGAAGTGA AGGGCTCTGA CCCTGGAAGT GGTTCTAAGC AGGGCAAAAT GGGGTCTCGG
      AAGTGTGGAG GCTGCCTAAG TTGTTTGCTG ATTCCGCTTG CACTTTGGAG TATAATCGTG
                                                                          240
      AACATATTAT TGTATTTCCC GAATGGGCAA ACTTCCTATG CATCCAGCAA TAAACTCACC
                                                                          300
      AACTACGTGT GGTATTTTGA AGGAATCTGT TTCTCAGGCA TCATGATGCT TATAGTAACA
      ACAGTTCTTC TGGTACTGGA GAATAATAAC AACTATAAAT GTTGCCAGAG TGAAAACTGC
                                                                          420
      AGCAAAAAA ATGTGACACT GCTGTCAATT ATCTTTTCTT CCCTCGGAAT TGCTTTTTCT
                                                                          480
      GGATACTGCC TGGTCATCTC TGCCTTGGGT CTTGTCCAAG GGCCATATTG CCGCACCCTT
                                                                          540
      GATGGCTGGG AGTATGCTTT TGAAGGCACT GCTGGACGTT TCCTTACAGA TTCTAGCATA
10
      CTCATAACCC TCAGTGGGCT TCAAGTGATC ATCTGCCTCA TCAGAGTAGT CATGCAACTA
TCCAAGATAC TGTGTGGAAG CTATTCAGTG ATCTTCCAGC CTGGAATCAT T<u>TGA</u>ATAAGG
                                                                          720
                                                                          780
      ACAAAATGTT TTCCATTATC AAGACATGGC CATCTATCTA AATATTATAT CAACTGTGTA
      GACTTGAGGG CAATATTGAA ATGATGGTGC TTTCTGCATT TGGTGTTTAT TTGTAAAAAA
15
      TTTGCAGTCC TCACTGCACA TGCAAGTATA CCACCCTTCC ATTTAGTATG TTTTTTAAGT
      AATATGCATC AGAAACTTCA GAAATACTTC TGCCCTTTGA TCAAACAAAT CCATTTCCAA
                                                                         1020
      GAATCTGTAC TAGGGAAGTA AATAAGAATA TGAGAGAAAC CTTTATGCAA ATATGTATAT
                                                                         1080
      TGCAACATTA TTTAATATTC TGGAAAATTG GAAACACCCC AAAATTCTAA ACTCAGAGGA 1140
      AGGATTAAGT AAAGAGTGGT ACATACTGTA AATGTTTTCT GATATTAAAA AAAAAATTAA 1200
20
      ATAAAAATA AAGAGTACTA CATGGTTGTA AAA
      Seq ID NO: 12 Protein sequence:
      Protein Accession #: XP 058189
25
                 11
                            21
                                       31
                                                  41
                                                             51
      MGSRKCGGCL SCLLIPLALW SIIVNILLYF PNGOTSYASS NKLTNYVWYF EGICFSGIMM
      LIVTTVLLVL ENNNNYKCCQ SENCSKKYVT LLSIIFSSLG IAFSGYCLVI SALGLVQGPY
                                                                          120
30
      CRTLDGWEYA FEGTAGRFLT DSSIWIQCLE PAHVVEWNII LFSILITLSG LQVIICLIRV
                                                                          180
      VMQLSKILCG SYSVIFQPGI I
      Seq ID NO: 13 Nucleotide sequence:
35
      Nucleic Acid Accession #: NM_005397
      Coding sequence: 251..1837 (underlined sequences correspond to start and stop codons)
40
      AAACGCCGCC CAGGACGCAG CCGCCGCCGC CGCCGCTCCT CTGCCACTGG CTCTGCGCCC
      CAGCCCGGCT CTGCTGCAGC GGCAGGGAGG AAGAGCCGCC GCAGCGCGAC TCGGGAGCCC
                                                                          120
      CGGGCCACAG CCTGGCCTCC GGAGCCACCC ACAGGCCTCC CCGGGCGGCG CCCACGCTCC
                                                                          180
      TACCGCCCGG ACGCGCGGAT CCTCCGCCGG CACCGCAGCC ACCTGCTCCC GGCCCAGAGG
                                                                          240
      CGACGACACG ATGCGCTGCG CGCTGGCGCT CTCGGCGCTG CTGCTACTGT TGTCAACGCC
45
      GCCGCTGCTG CCGTCGCCGTC GCCGTCGCCG TCGCCCTCCC AGAATGCAAC
                                                                          360
      CCAGACTACT ACGGACTCAT CTAACAAAAC AGCACCGACT CCAGCATCCA GTGTCACCAT
                                                                          420
      CATGGCTACA GATACAGCCC AGCAGAGCAC AGTCCCCACT TCCAAGGCCA ACGAAATCTT
                                                                          480
      GGCCTCGGTC AAGGCGACCA CCCTTGGTGT ATCCAGTGAC TCACCGGGGA CTACAACCCT
                                                                          540
      GGCTCAGCAA GTCTCAGGCC CAGTCAACAC TACCGTGGCT AGAGGAGGCG GCTCAGGCAA
50
      CCCTACTACC ACCATCGAGA GCCCCAAGAG CACAAAAAGT GCAGACACCA CTACAGTTGC
                                                                          660
      AACCTCCACA GCCACAGCTA AACCTAACAC CACAAGCAGC CAGAATGGAG CAGAAGATAC
                                                                          720
      AACAAACTCT GGGGGGAAAA GCAGCCACAG TGTGACCACA GACCTCACAT CCACTAAGGC
                                                                          780
      AGAACATCTG ACGACCCCTC ACCCTACAAG TCCACTTAGC CCCCGACAAC CCACTTTGAC
      GCATCCTGTG GCCACCCCAA CAAGCTCGGG ACATGACCAT CTTATGAAAA TTTCAAGCAG
55
      TTCAAGCACT GTGGCTATCC CTGGCTACAC CTTCACAAGC CCGGGGATGA CCACCACCCT
                                                                          960
      ACCGTCATCG GTTATCTCGC AAAGAACTCA ACAGACCTCC AGTCAGATGC CAGCCAGCTC 1020
      TACGGCCCCT TCCTCCCAGG AGACAGTGCA GCCCACGAGC CCGGCAACGG CATTGAGAAC 1080
      ACCTACCCTG CCAGAGACCA TGAGCTCCAG CCCCACAGCA GCATCAACTA CCCACCGATA 1140
      CCCCAAAACA CCTTCTCCCA CTGTGGCTCA TGAGAGTAAC TGGGCAAAGT GTGAGGATCT 1200
60
      TGAGACACAG ACACAGAGTG AGAAGCAGCT CGTCCTGAAC CTCACAGGAA ACACCCTCTG 1260
      TGCAGGGGGC GCTTCGGATG AGAAATTGAT CTCACTGATA TGCCGAGCAG TCAAAGCCAC 1320
      CTTCAACCCG GCCCAAGATA AGTGCGGCAT ACGGCTGGCA TCTGTTCCAG GAAGTCAGAC 1380
      CGTGGTCGTC AAAGAAATCA CTATTCACAC TAAGCTCCCT GCCAAGGATG TGTACGAGCG 1440
      GCTGAAGGAC AAATGGGATG AACTAAAGGA GGCAGGGGTC AGTGACATGA AGCTAGGGGA 1500
65
      CCAGGGGCCA CCGGAGGAGG CCGAGGACCG CTTCAGCATG CCCCTCATCA TCACCATCGT 1560
      CTGCATGGCG TCATTCCTGC TCCTCGTGGC GGCCCTCTAT GGCTGCTGCC ACCAGCGCCT 1620
      CTCCCAGAGG AAGGACCAGC AGCGGCTAAC AGAGGAGCTG CAGACAGTGG AGAATGGTTA 1680
      CCATGACAAC CCAACACTGG AAGTGATGGA GACCTCTTCT GAGATGCAGG AGAAGAAGGT 1740
      GGTCAGCCTC AACGGGGAGC TGGGGGACAG CTGGATCGTC CCTCTGGACA ACCTGACCAA 1800
70
      GGACGACCTG GATGAGGAGG AAGACACACA CCTCTAGTCC GGTCTGCCGG TGGCCTCCAG 1860
      CAGCACCACA GAGCTCCAGA CCAACCACCC CAAGTGCCGT TTGGATGGGG AAGGGAAAGA 1920
      CTGGGGAGGG AGAGTGAACT CCGAGGGGTG TCCCCTCCCA ATCCCCCCAG GGCCTTAATT 1980
      TTTCCCTTTT CAACCTGAAC AAATCACATT CTGTCCAGAT TCCTCTTGTA AAATAACCCA 2040
      CTAGTGCCTG AGCTCAGTGC TGCTGGATGA TGAGGGAGAT CAAGAAAAAG CCACGTAAGG
                                                                         2100
75
      GACTTTATAG ATGAACTAGT GGAATCCCTT CATTCTGCAG TGAGATTGCC GAGACCTGAA 2160
      GAGGGTAAGT GACTTGCCCA AGGTCAGAGC CACTTGGTGA CAGAGCCAGG ATGAGAACAA 2220
```

```
CCCGGGCAGG GGTGAAACTC CAGCAGGTGG CTGGGCTGGA AAGGAGGGCA GGGCTACATC
      CTGGCTCGGT GGGATCTGAC GACCTGAAAG TCCAGCTCCC AAGTTTTCCT TCTCCTACCC
      CAGCCTCGTG TACCCATCTT CCCACCCTCT ATGTTCTTAC CCCTCCTAC ACTCAGTGTT
                                                                       2460
 5
      TGTTCCCACT TACTCTGTCC TGGGGCCTCT GGGATTAGCA CAGGTTATTC ATAACCTTGA
                                                                       2520
      ACCCCTTGTT CTGGATTCGG ATTTTCTCAC ATTTGCTTCG TGAGATGGGG GCTTAACCCA
                                                                       2580
      CACAGGTCTC CGTGCGTGAA CCAGGTCTGC TTAGGGGACC TGCGTGCAGG TGAGGAGAGA 2640
      AGGGGACACT CGAGTCCAGG CTGGTATCTC AGGGCAGCTG ATGAGGGGTC AGCAGGAACA
      CTGGCCCATT GCCCTGGCA CTCCTTGCAG AGGCCACCCA CGATCTTCTT TGGGCTTCCA
10
      TTTCCACCAG GGACTAAAAT CTGCTGTAGC TAGTGAGAGC AGCGTGTTCC TTTTGTTGTT
                                                                       2820
      CACTGCTCAG CTGATGGGAG TGATTCCCTG AGACCCAGTA TGAAAGAGCA GTGGCTGCAG
      GAGAGGCCTT CCCGGGGCCC CCCATCAGCG ATGTGTCTTC AGAGACAATC CATTAAAGCA
                                                                       2940
      GCCAGGAAGG ACAGGCTTTC CCCTGTATAT CATAGGAAAC TCAGGGACAT TTCAAGTTGC
                                                                       3000
      TGAGAGTTTT GTTATAGTTG TTTTCTAACC CAGCCCTCCA CTGCCAAAGG CCAAAAGCTC
                                                                       3060
15
      AGACAGTTGG CAGACGTCCA GTTAGCTCAT CTCACTCACT CTGATTCTCC TGTGCCACAG
      GAAAAGAGGG CCTGGAAAGC GCAGTGCATG CTGGGTGCAT GAAGGGCAGC CTGGGGGACA
      GACTGTTGTG GGAACGTCCC ACTGTCCTGG CCTGGAGCTA GGCCTTGCTG TTCCTCTTCT
                                                                       3240
      CTGTGAGCCT AGTGGGGCTG CTGCGGTTCT CTTGCAGTTT CTGGTGGCAT CTCAGGGGAA
                                                                       3300
      CACAAAAGCT ATGTCTATTC CCCAATATAG GACTTTTATG GGCTCGGCAG TTAGCTGCCA
                                                                       3360
20
      TGTAGAAGGC TCCTAAGCAG TGGGCATGGT GAGGTTTCAT CTGATTGAGA AGGGGGAATC
      CTGTGTGGAA TGTTGAACTT TCGCCATGGT CTCCATCGTT CTGGGCGTAA ATTCCCTGGG
                                                                       3480
      ATCAAGTAGG AAAATGGGCA GAACTGCTTA GGGGAATGAA ATTGCCATTT TTCGGGTGAA
                                                                       3540
      ACGCCACACC TCCAGGGTCT TAAGAGTCAG GCTCCGGCTG TAGTAGCTCT GATGAAATAG
                                                                       3600
      GCTATCCACT CGGGATGGCT TACTTTTTAA AAGGGTAGGG GGAGGGGCTG GGGAAGATCT
      GTCCTGCACC ATCTGCCTAA TTCCTTCCTC ACAGTCTGTA GCCATCTGAT ATCCTAGGGG
25
                                                                       3720
      GAAAAGGAAG GCCAGGGGTT CACATAGGGC CCCAGCGAGT TTCCCAGGAG TTAGAGGGAT
                                                                       3780
      GCGAGGCTAA CAAGTTCCAA AAACATCTGC CCCGATGCTC TAGTGTTTGG AGGTGGGCAG
                                                                       3840
      GATGGAGAAC AGTGCCTGTT TGGGGGAAAA CAGGAAATCT TGTTAGGCTT GAGTGAGGTG
                                                                       3900
      TTTGCTTCCT TCTTGCCCAG CGCTGGGTTC TCTCCACCCA GTAGGTTTTC TGTTGTGGTC
                                                                       3960
30
      CCGTGGGAGA GGCCAGACTG GATTATTCCT CCTTTGCTGA TCCTGGGTCA CACTTCACCA 4020
      GCCAGGGCTT TTGACGGAGA CAGCAAATAG GCCTCTGCAA ATCAATCAAA GGCTGCAACC
                                                                       4080
      CTATGGCCTC TTGGAGACAG ATGATGACTG GCAAGGACTA GAGAGCAGGA GTGCCTGGCC
                                                                       4140
      AGGTCGGTCC TGACTCTCCT GACTCTCCAT CGCTCTGTCC AAGGAGAACC CGGAGAGGCT
      CTGGGCTGAT TCAGAGGTTA CTGCTTTATA TTCGTCCAAA CTGTGTTAGT CTAGGCTTAG
                                                                       4260
35
      GACAGCTTCA GAATCTGACA CCTTGCCTTG CTCTTGCCAC CAGGACACCT ATGTCAACAG
                                                                      4320
      GCCAAACAGC CATGCATCTA TAAAGGTCAT CATCTTCTGC CACCTTTACT GGGTTCTAAA 4380
      TGCTCTCTGA TAATTCAGAG AGCATTGGGT CTGGGAAGAG GTAAGAGGAA CACTAGAAGC
                                                                       4440
      TCAGCATGAC TTAAACAGGT TGTAGCAAAG ACAGTTTATC ATCAACTCTT TCAGTGGTAA 4500
      ACTGTGGTTT CCCCAAGCTG CACAGGAGGC CAGAAACCAC AAGTATGATG ACTAGGAAGC 4560
40
      CTACTGTCAT GAGAGTGGGG AGACAGGCAG CAAAGCTTAT GAAGGAGGTA CAGAATATTC
                                                                      4620
      TTGATAAGGA AAGCTAGCAG AAAGTTTATT TAAACCACTT CTTGAGCTTT ATCTTTTTTG 4740
      ACAATATACT GGAGAAACTT TGAAGAACAA GTTCAAACTG ATACATATAC ACATATTTTT 4800
      TTGATAATGT AAATACAGTG ACCATGTTAA CCTACCCTGC ACTGCTTTAA GTGAACATAC 4860
45
      TTTGAAAAAG CATTATGTTA GCTGAGTGAT GGCCAAGTTT TTTCTCTGGA CAGGAATGTA 4920
      AATGTCTTAC TGGAAATGAC AAGTTTTTGC TTGATTTTTT TTTTTAAACA AAAAATGAAA 4980
      5040
      TTTTTAATTT TAAAATGCAA CCCTGCCCCC TCCCCAGCAA AGTCACAGCT CCATTTCAGT
                                                                      5100
      AAAGGTTGGA GTCAATATGC TCTGGTTGGC AGGCAACCCT GTAGTCATGG AGAAAGGTAT 5160
50
      TTCAAGATCT AGTCCAATCT TTTTCTAGAG AAAAAGATAA TCTGAAGCTC ACAAAGATGA 5220
      AGTGACTTCC TCAAAATCAC ATGGTTCAGG ACAGAAACAA GATTAAAACC TGGATCCACA 5280
      GACTGTGCGC CTCAGAAGGA ATAATCGGTA AATTAAGAAT TGCTACTCGA AGGTGCCAGA 5340
      ATGACACAAA GGACAGAATT CCTTTCCCAG TTGTTACCCT AGCAAGGCTA GGGAGGGCAT
                                                                       5400
      GAACACAAAC ATAAGAACTG GTCTTCTCAC ACTTTCTCTG AATCATTTAG GTTTAAGATG
      TAAGTGAACA ATTCTTTCTT TCTGCCAAGA AACAAAGTTT TGGATGAGCT TTTATATATG
55
                                                                       5520
      GAACTTACTC CAACAGGACT GAGGGACCAA GGAAACATGA TGGGGGAGGC AAGAGAGGGC
                                                                       5580
      AAAGAGTAAA ACTGTAGCAT AGCTTTTGTC ACGGTCACTA GCTGATCCCT CAGGTCTGCT
                                                                       5640
      GCAAACACAG CATGGAGGAC ACAGATGACT CTTTGGTGTT GGTCTTTTTG TCTGCAGTGA
                                                                       5700
      ATGTTCAACA GTTTGCCCAG GAACTGGGGG ATCATATATG TCTTAGTGGA CAGGGGTCTG
      AAGTACACTG GAATTTACTG AGAAACTTGT TTGTAAAAAC TATAGTTAAT AATTATTGCA
60
      TTTTCTTACA AAAATATATT TTGGAAAATT GTATACTGTC AATTAAAGT
      Seq ID NO: 14 Protein sequence:
      Protein Accession #: NP_005388
65
                                                 41
                                                            51
      MRCALALSAL LLLLSTPPLL PSSPSPSPS SPSQNATQTT TDSSNKTAPT PASSVTIMAT
                                                                         60
      DTAQQSTVPT SKANEILASV KATTLGVSSD SPGTTTLAQQ VSGPVNTTVA RGGGSGNPTT
                                                                        120
70
      TIESPKSTKS ADTTTVATST ATAKPNTTSS QNGAEDTTNS GGKSSHSVTT DLTSTKAEHL
                                                                        180
      TTPHPTSPLS PROPTLTHPV ATPTSSGHDH LMKISSSSST VAIPGYTFTS PGMTTTLPSS
                                                                        240
      VISQRTQQTS SQMPASSTAP SSQETVQPTS PATALRTPTL PETMSSSPTA ASTTHRYPKT
      PSPTVAHESN WAKCEDLETQ TQSEKQLVLN LTGNTLCAGG ASDEKLISLI CRAVKATFNP
                                                                        360
      AQDKCGIRLA SVPGSQTVVV KEITIHTKLP AKDVYERLKD KWDELKEAGV SDMKLGDQGP
                                                                        420
      PEEAEDRFSM PLIITIVCMA SFLLLVAALY GCCHQRLSQR KDQQRLTEEL QTVENGYHDN
75
                                                                        480
      PTLEVMETSS EMQEKKVVSL NGELGDSWIV PLDNLTKDDL DEEEDTHL
```

AGATTCCATT TGCACCATGC CACACTGCTG TGTTCACATG TGCCTTCCGT CCAGAGCAGT

Seq ID NO: 15 Nucleotide sequence:

Nucleic Acid Accession #: NM_004105 Coding sequence: 150..1631 (underlined sequences correspond to start and stop codons) 5 60 120 10 180 CAAGGTAACT CTGCTAGCTA AGATTCACAA TGTTGAAAGC CCTTTTCCTA ACTATGCTGA CTCTGGCGCT GGTCAAGTCA CAGGACACCG AAGAAACCAT CACGTACACG CAATGCACTG 240 ACGGATATGA GTGGGATCCT GTGAGACAGC AATGCAAAGA TATTGATGAA TGTGACATTG TCCCAGACGC TTGTAAAGGT GGAATGAAGT GTGTCAACCA CTATGGAGGA TACCTCTGCC 360 TTCCGAAAAC AGCCCAGATT ATTGTCAATA ATGAACAGCC TCAGCAGGAA ACACAACCAG 420 15 CAGAAGGAAC CTCAGGGGCA ACCACCGGGG TTGTAGCTGC CAGCAGCATG GCAACCAGTG GAGTGTTGCC CGGGGGTGGT TTTGTGGCCA GTGCTGCTGC AGTCGCAGGC CCTGAAATGC 540 AGACTGGCCG AAATAACTTT GTCATCCGGC GGAACCCAGC TGACCCTCAG CGCATTCCCT CCAACCCTTC CCACCGTATC CAGTGTGCAG CAGGCTACGA GCAAAGTGAA CACAACGTGT 660 GCCAAGACAT AGACGAGTGC ACTGCAGGGA CGCACAACTG TAGAGCAGAC CAAGTGTGCA 720 TCAATTTACG GGGATCCTTT GCATGTCAGT GCCCTCCTGG ATATCAGAAG CGAGGGGAGC 20 AGTGCGTAGA CATAGATGAA TGTACCATCC CTCCATATTG CCACCAAAGA TGCGTGAATA 840 CACCAGGCTC ATTTTATTGC CAGTGCAGTC CTGGGTTTCA ATTGGCAGCA AACAACTATA 900 CCTGCGTAGA TATAAATGAA TGTGATGCCA GCAATCAATG TGCTCAGCAG TGCTACAACA 960 TTCTTGGTTC ATTCATCTGT CAGTGCAATC AAGGATATGA GCTAAGCAGT GACAGGCTCA 1020 25 ACTGTGAAGA CATTGATGAA TGCAGAACCT CAAGCTACCT GTGTCAATAT CAATGTGTCA ATGAACCTGG GAAATTCTCA TGTATGTGCC CCCAGGGATA CCAAGTGGTG AGAAGTAGAA 1140 CATGTCAAGA TATAAATGAG TGTGAGACCA CAAATGAATG CCGGGAGGAT GAAATGTGTT 1200 GGAATTATCA TGGCGGCTTC CGTTGTTATC CACGAAATCC TTGTCAAGAT CCCTACATTC 1260 TAACACCAGA GAACCGATGT GTTTGCCCAG TCTCAAATGC CATGTGCCGA GAACTGCCCC 1320 30 AGTCAATAGT CTACAAATAC ATGAGCATCC GATCTGATAG GTCTGTGCCA TCAGACATCT 1380 TCCAGATACA GGCCACAACT ATTTATGCCA ACACCATCAA TACTTTTCGG ATTAAATCTG 1440 GAAATGAAAA TGGAGAGTTC TACCTACGAC AAACAAGTCC TGTAAGTGCA ATGCTTGTGC TCGTGAAGTC ATTATCAGGA CCAAGAGAAC ATATCGTGGA CCTGGAGATG CTGACAGTCA 1560 GCAGTATAGG GACCTTCCGC ACAAGCTCTG TGTTAAGATT GACAATAATA GTGGGGCCAT 35 TTTCATTT<u>TA</u> GTCTTTTCTA AGAGTCAACC ACAGGCATTT AAGTCAGCCA AAGAATATTG TTACCTTAAA GCACTATTTT ATTTATAGAT ATATCTAGTG CATCTACATC TCTATACTGT 1740 ACACTCACCC ATAACAAACA ATTACACCAT GGTATAAAGT GGGCATTTAA TATGTAAAGA TTCAAAGTTT GTCTTTATTA CTATATGTAA ATTAGACATT AATCCACTAA ACTGGTCTTC 1860 TTCAAGAGAG CTAAGTATAC ACTATCTGGT GAAACTTGGA TTCTTTCCTA TAAAAGTGGG 1920 40 ACCAAGCAAT GATGATCTTC TGTGGTGCTT AAGGAAACTT ACTAGAGCTC CACTAACAGT 1980 CTCATAAGGA GGCAGCCATC ATAACCATTG AATAGCATGC AAGGGTAAGA ATGAGTTTTT AACTGCTTTG TAAGAAAATG GAAAAGGTCA ATAAAGATAT ATTTCTTTAG AAAATGGGGA 2100
TCTGCCATAT TTGTGTTGGT TTTTATTTTC ATATCCAGCC TAAAGGTGGT TGTTTATTAT 2160 ATAGTAATAA ATCATTGCTG TACAACATGC TGGTTTCTGT AGGGTATTTT TAATTTTGTC 2220 45 AGAAATTTTA GATTGTGAAT ATTTTGTAAA AAACAGTAAG CAAAATTTTC CAGAATTCCC AAAATGAACC AGATACCCCC TAGAAAATTA TACTATTGAG AAATCTATGG GGAGGATATG AGAAAATAAA TTCCTTCTAA ACCACATTGG AACTGACCTG AAGAAGCAAA CTCGGAAAAT 2400 ATAATAACAT CCCTGAATTC AGGCATTCAC AAGATGCAGA ACAAAATGGA TAAAAGGTAT 2460 TTCACTGGAG AAGTTTTAAT TTCTAAGTAA AATTTAAATC CTAACACTTC ACTAATTTAT 50 AACTAAAATT TCTCATCTTC GTACTTGATG CTCACAGAGG AAGAAAATGA TGATGGTTTT TATTCCTGGC ATCCAGAGTG ACAGTGAACT TAAGCAAATT ACCCTCCTAC CCAATTCTAT GGAATATTTT ATACGTCTCC TTGTTTAAAA TCTGACTGCT TTACTTTGAT GTATCATATT 2700 TTTAAATAAA AATAAATATT CCTTTAGAAG ATCACTCTAA AA 55 Seq ID NO: 16 Protein sequence: Protein Accession #: NP 004096 60 31 41 MLKALFLIML TLALVKSQDT EETITYTQCT DGYEWDPVRQ QCKDIDECDI VPDACKGGMK CVNHYGGYLC LPKTAQIIVN NEQPQQETQP AEGTSGATTG VVAASSMATS GVLPGGGFVA 120 SAAAVAGPEM QTGRNNFVIR RNPADPQRIP SNPSHRIQCA AGYEQSEHNV CQDIDECTAG 65 180 THNCRADQVC INLRGSFACQ CPPGYQKRGE QCVDIDECTI PPYCHQRCVN TPGSFYCQCS 240 PGFOLAANNY TCVDINECDA SNOCAQOCYN ILGSFICQCN QGYELSSDRL NCEDIDECRT SSYLCQYQCV NEPGKFSCMC PQGYQVVRSR TCQDINECET TNECREDEMC WNYHGGFRCY 360 PRNPCQDPYI LTPENRCVCP VSNAMCRELP QSIVYKYMSI RSDRSVPSDI FQIQATTIYA 420 70 NTINTFRIKS GNENGEFYLR QTSPVSAMLV LVKSLSGPRE HIVDLEMLTV SSIGTFRTSS 480 VLRLTIIVGP FSF Seq ID NO: 17 Nucleotide sequence: Nucleic Acid Accession #: NM_018894 75 Coding sequence: 27..1967 (underlined sequences correspond to start and stop codons)

```
11
                            21
      AAAACATTCA ACAAATTAAT GGGTGTAAGG AACTGGAAAA CCTGGACTCC TACCACATGC
 5
      120
      AAAGACACAT GGCCTTCTTT GTGTACATGA CATGCATTCT CAACAATGCA CTGACGGATA
                                                                         180
      TGAGTGGGAT CCTGTGAGAC AGCAATGCAA AGATATTGAT GAATGTGACA TTGTCCCAGA
                                                                         240
      CGCTTGTAAA GGTGGAATGA AGTGTGTCAA CCACTATGGA GGATACCTCT GCCTTCCGAA
                                                                         300
      AACAGCCCAG ATTATTGTCA ATAATGAACA GCCTCAGCAG GAAACACAAC CAGCAGAAGG
                                                                         360
10
      AACCTCAGGG GCAACCACCG GGGTTGTAGC TGCCAGCAGC ATGGCAACCA GTGGAGTGTT
                                                                         420
      GCCCGGGGGT GGTTTTGTGG CCAGTGCTGC TGCAGTCGCA GGCCCTGAAA TGCAGACTGG
                                                                         480
      CCGAAATAAC TTTGTCATCC GGCGGAACCC AGCTGACCCT CAGCGCATTC CCTCCAACCC
                                                                         540
      TTCCCACCGT ATCCAGTGTG CAGCAGGCTA CGAGCAAAGT GAACACAACG TGTGCCAAGA
                                                                         600
      CATAGACGAG TGCACTGCAG GGACGCACAA CTGTAGAGCA GACCAAGTGT GCATCAATTT
                                                                         660
15
      ACGGGGATCC TTTGCATGTC AGTGCCCTCC TGGATATCAG AAGCGAGGGG AGCAGTGCGT
      AGACATAGAT GAATGTACCA TCCCTCCATA TTGCCACCAA AGATGCGTGA ATACACCAGG
                                                                         780
      CTCATTTTAT TGCCAGTGCA GTCCTGGGTT TCAATTGGCA GCAAACAACT ATACCTGCGT
                                                                         840
      AGATATAAAT GAATGTGATG CCAGCAATCA ATGTGCTCAG CAGTGCTACA ACATTCTTGG
                                                                         900
      TTCATTCATC TGTCAGTGCA ATCAAGGATA TGAGCTAAGC AGTGACAGGC TCAACTGTGA
                                                                         960
20
      AGACATTGAT GAATGCAGAA CCTCAAGCTA CCTGTGTCAA TATCAATGTG TCAATGAACC
      TGGGAAATTC TCATGTATGT GCCCCCAGGG ATACCAAGTG GTGAGAAGTA GAACATGTCA
                                                                        1080
      AGATATAAAT GAGTGTGAGA CCACAAATGA ATGCCGGGAG GATGAAATGT GTTGGAATTA
                                                                        1140
      TCATGGCGGC TTCCGTTGTT ATCCACGAAA TCCTTGTCAA GATCCCTACA TTCTAACACC
                                                                        1200
      AGAGAACCGA TGTGTTTGCC CAGTCTCAAA TGCCATGTGC CGAGAACTGC CCCAGTCAAT
25
      AGTCTACAAA TACATGAGCA TCCGATCTGA TAGGTCTGTG CCATCAGACA TCTTCCAGAT
                                                                        1320
      ACAGGCCACA ACTATTTATG CCAACACCAT CAATACTTTT CGGATTAAAT CTGGAAATGA
                                                                        1380
      AAATGGAGAG TTCTACCTAC GACAAACAAG TCCTGTAAGT GCAATGCTTG TGCTCGTGAA
                                                                        1440
      GTCATTATCA GGACCAAGAG AACATATCGT GGACCTGGAG ATGCTGACAG TCAGCAGTAT
      AGGGACCTTC CGCACAAGCT CTGTGTTAAG ATTGACAATA ATAGTGGGGC CATTTTCATT
                                                                        1560
30
      TTAGTCTTTT CTAAGAGTCA ACCACAGGCA TTTAAGTCAG CCAAAGAATA TTGTTACCTT
                                                                        1620
      AAAGCACTAT TTTATTTATA GATATATCTA GTGCATCTAC ATCTCTATAC TGTACACTCA
                                                                        1680
      CCCATAACAA ACAATTACAC CATGGTATAA AGTGGGCATT TAATATGTAA AGATTCAAAG
                                                                        1740
      TTTGTCTTTA TTACTATATG TAAATTAGAC ATTAATCCAC TAAACTGGTC TTCTTCAAGA
                                                                        1.800
      GAGCTAAGTA TACACTATCT GGTGAAACTT GGATTCTTTC CTATAAAAGT GGGACCAAGC
                                                                        1860
35
      AATGATGATC TTCTGTGGTG CTTAAGGAAA CTTACTAGAG CTCCACTAAC AGTCTCATAA
                                                                        1920
      GGAGGCAGCC ATCATAACCA TTGAATAGCA TGCAAGGGTA AGAATGAGTT TTTAACTGCT
      TTGTAAGAAA ATGGAAAAGG TCAATAAAGA TATATTTCTT TAGAAAATGG GGATCTGCCA
                                                                        2040
      TATTTGTGTT GGTTTTTATT TTCATATCCA GCCTAAAGGT GGTTGTTTAT TATATAGTAA
                                                                        2100
      TAAATCATTG CTGTACAACA TGCTGGTTTC TGTAGGGTAT TTTTAATTTT GTCAGAAATT
                                                                        23.60
40
      TTAGATTGTG AATATTTTGT AAAAAACAGT AAGCAAAATT TTCCAGAATT CCCAAAATGA
                                                                        2220
      ACCAGATACC CCCTAGAAAA TTATACTATT GAGAAATCTA TGGGGAGGAT ATGAGAAAAT
      AAATTCCTTC TAAACCACAT TGGAACTGAC CTGAAGAAGC AAACTCGGAA AATATAATAA
                                                                        2340
      CATCCCTGAA TTCAGGCATT CACAAGATGC AGAACAAAAT GGATAAAAGG TATTTCACTG
                                                                        2400
      GAGAAGTTTT AATTTCTAAG TAAAATTTAA ATCCTAACAC TTCACTAATT TATAACTAAA
                                                                        2460
45
      ATTTCTCATC TTCGTACTTG ATGCTCACAG AGGAAGÁAAA TGATGATGGT TTTTATTCCT
                                                                        2520
      GGCATCCAGA GTGACAGTGA ACTTAAGCAA ATTACCCTCC TACCCAATTC TATGGAATAT
      TTTATACGTC TCCTTGTTTA AAATCTGACT GCTTTACTTT GATGTATCAT ATTTTTAAAT
                                                                        2640
      AAAAATAAAT ATTCCTTTAG AAGATCACTC TAAAA
50
      Seq ID NO: 18 Protein sequence:
      Protein Accession #: NP_061489.1
                                       31
                            21
      MHSQQCTDGY EWDPVRQQCK DIDECDIVPD ACKGGMKCVN HYGGYLCLPK TAQIIVNNEQ
55
                                                                          60
      PQQETQPAEG TSGATTGVVA ASSMATSGVL PGGGFVASAA AVAGPEMQTG RNNFVIRRNP
                                                                         120
      ADPORIPSNP SHRIQCAAGY EQSEHNVCQD IDECTAGTHN CRADQVCINL RGSFACQCPP
                                                                         180
      GYOKRGEOCV DIDECTIPPY CHORCUNTPG SFYCOCSPGF QLAANNYTCV DINECDASNO
                                                                         240
      CAQQCYNILG SFICQCNQGY ELSSDRLNCE DIDECRTSSY LCQYQCVNEP GKFSCMCPQG
                                                                         300
60
      YQVVRSRTCQ DINECETTNE CREDEMCWNY HGGFRCYPRN PCQDPYILTP ENRCVCPVSN
                                                                         360
      AMCRELPOSI VYKYMSIRSD RSVPSDIFQI QATTIYANTI NTFRIKSGNE NGEFYLRQTS
                                                                         420
      PVSAMLVLVK SLSGPREHIV DLEMLTVSSI GTFRTSSVLR LTIIVGPFSF
      Seq ID NO: 19 Nucleotide sequence:
65
      Nucleic Acid Accession #: NM_006500
      Coding sequence: 27..1967 (underlined sequences correspond to start and stop codons)
                                                             51
                            21
                                       31
                                                  41
70
      ACTTGCGTCT CGCCCTCCGG CCAAGCATGG GGCTTCCCAG GCTGGTCTGC GCCTTCTTGC
      TCGCCGCCTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCCTG
                                                                          120
      CGCCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCCTCTCCC
                                                                          180
      AGTCCCAAGG CAACCTCAGC CATGTCGACT GGTTTTCTGT CCACAAGGAG AAGCGGACGC
                                                                          240
75
      TCATCTTCCG TGTGCGCCAG GGCCAGGGCC AGAGCGAACC TGGGGAGTAC GAGCAGCGGC
                                                                          300
      TCAGCCTCCA GGACAGAGGG GCTACTCTGG CCCTGACTCA AGTCACCCCC CAAGACGAGC
```

```
GCATCTTCTT GTGCCAGGGC AAGCGCCCTC GGTCCCAGGA GTACCGCATC CAGCTCCGCG
      TCTACAAAGC TCCGGAGGAG CCAAACATCC AGGTCAACCC CCTGGGCATC CCTGTGAACA
      GTAAGGAGCC TGAGGAGGTC GCTACCTGTG TAGGGAGGAA CGGGTACCCC ATTCCTCAAG
      TCATCTGGTA CAAGAATGGC CGGCCTCTGA AGGAGGAGAA GAACCGGGTC CACATTCAGT
 5
      CGTCCCAGAC TGTGGAGTCG AGTGGTTTGT ACACCTTGCA GAGTATTCTG AAGGCACAGC
      TGGTTAAAGA AGACAAAGAT GCCCAGTTTT ACTGTGAGCT CAACTACCGG CTGCCCAGTG
      GGAACCACAT GAAGGAGTCC AGGGAAGTCA CCGTCCCTGT TTTCTACCCG ACAGAAAAAG
      TGTGGCTGGA AGTGGAGCCC GTGGGAATGC TGAAGGAAGG GGACCGCGTG GAAATCAGGT
      GTTTGGCTGA TGGCAACCCT CCACCACACT TCAGCATCAG CAAGCAGAAC CCCAGCACCA
10
      GGGAGGCAGA GGAAGAGACA ACCAACGACA ACGGGGTCCT GGTGCTGGAG CCTGCCCGGA
      AGGAACACAG TGGGCGCTAT GAATGTCAGG CCTGGAACTT GGACACCATG ATATCGCTGC 1020
      TGAGTGAACC ACAGGAACTA CTGGTGAACT ATGTGTCTGA CGTCCGAGTG AGTCCCGCAG
                                                                        1080
      CCCCTGAGAG ACAGGAAGGC AGCAGCCTCA CCCTGACCTG TGAGGCAGAG AGTAGCCAGG
      ACCTCGAGTT CCAGTGGCTG AGAGAAGAGA CAGACCAGGT GCTGGAAAGG GGGCCTGTGC
                                                                        1200
15
      TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGCGGCTA TCGCTGCGTG GCGTCTGTGC
      CCAGCATACC CGGCCTGAAC CGCACACAGC TGGTCAAGCT GGCCATTTTT GGCCCCCCTT 1320
      GGATGGCATT CAAGGAGAGG AAGGTGTGGG TGAAAGAGAA TATGGTGTTG AATCTGTCTT
      GTGAAGCGTC AGGGCACCCC CGGCCCACCA TCTCCTGGAA CGTCAACGGC ACGGCAAGTG 1440
      AACAAGACCA AGATCCACAG CGAGTCCTGA GCACCCTGAA TGTCCTCGTG ACCCCGGAGC 1500
20
      TGTTGGAGAC AGGTGTTGAA TGCACGGCCT CCAACGACCT GGGCAAAAAC ACCAGCATCC 1560
      TCTTCCTGGA GCTGGTCAAT TTAACCACCC TCACACCAGA CTCCAACACA ACCACTGGCC 1620
      TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCAACAG CACCTCCACA GAGAGAAAGC
      TGCCGGAGCC GGAGAGCCGG GGCGTGGTCA TCGTGGCTGT GATTGTGTGC ATCCTGGTCC 1740
      TGGCGGTGCT GGGCGCTGTC CTCTATTTCC TCTATAAGAA GGGCAAGCTG CCGTGCAGGC 1800
GCTCAGGGAA GCAGGAGATC ACGCTGCCCC CGTCTCGTAA GACCGAACTT GTAGTTGAAG 1860
25
      TTAAGTCAGA TAAGCTCCCA GAAGAGATGG GCCTCCTGCA GGGCAGCAGC GGTGACAAGA 1920
      GGGCTCCGGG AGACCAGGGA GAGAAATACA TCGATCTGAG GCAT<u>TAG</u>CCC CGAATCACTT
      CAGCTCCCTT CCCTGCCTGG ACCATTCCCA GCTCCCTGCT CACTCTTCTC TCAGCCAAAG 2040
      CCTCCAAAGG GACTAGAGAG AAGCCTCCTG CTCCCCTCAC CTGCACACCC CCTTTCAGAG 2100
30
      GGCCACTGGG TTAGGACCTG AGGACCTCAC TTGGCCCTGC AAGCCGCTTT TCAGGGACCA
      GTCCACCACC ATCTCCTCCA CGTTGAGTGA AGCTCATCCC AAGCAAGGAG CCCCAGTCTC 2220
      CCGAGCGGGT AGGAGAGTTT CTTGCAGAAC GTGTTTTTC TTTACACACA TTATGGCTGT 2280
      AAATACCTGG CTCCTGCCAG CAGCTGAGCT GGGTAGCCTC TCTGAGCTGG TTTCCTGCCC 2340
      CAAAGGCTGG CTTCCACCAT CCAGGTGCAC CACTGAAGTG AGGACACACC GGAGCCAGGC 2400
35
      GCCTGCTCAT GTTGAAGTGC GCTGTTCACA CCCGCTCCGG AGAGCACCCC AGCGGCATCC
      AGAAGCAGCT GCAGTGTTGC TGCCACCACC CTCCTGCTCG CCTCTTCAAA GTCTCCTGTG
      ACATTTTTC TTTGGTCAGA AGCCAGGAAC TGGTGTCATT CCTTAAAAGA TACGTGCCGG
      GGCCAGGTGT GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGCCGA GGCGGGCGGA 2640
      TCACAAAGTC AGGACGAGAC CATCCTGGCT AACACGGTGA AACCCTGTCT CTACTAAAAA 2700
40
      TACAAAAAA AATTAGCTAG GCGTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG
      CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT GCAGTGAGCC GAGACCGTGC 2820
      ACGCGTACCT GCGGTGAGGA AGCTGGGCGC TGTTTTCGAG TTCAGGTGAA TTAGCCTCAA
      TCCCCGTGTT CACTTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAACT GAAAGGCAGC 3000
45
      GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAAGC TATGGTTATA
                                                                       3060
      TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCCAAC CCTAGAAGGG CCCAAATGAG
      AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CTTCGGGTGT GTGTGTCTGT 3180
      CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTTGT CAGGTGTGTA AATTTGCAAA
      50
      AAAGCTTAAT TGTCCCAGAA AATCATACAT TGCTTTTTTA TTCTACATGG GTACCACAGG 3360
      AACCTGGGGG CCTGTGAAAC TACAACCAAA AGGCACACAA AACCGTTTCC AGTTGGCAGC 3420
      AGAGATCAGG GGTTACCTCT GCTTCTGAGC AAATGGCTCA AGCTCTACCA GAGCAGACAG 3480
      CTACCCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC 3540
      TGTTAGCAGG AGCTATGTCC CTTCCTATCG TTTCCGTCCA CTT
55
      Seq ID NO: 20 Protein sequence:
      Protein Accession #: NP_006491
60
                11
                           21
                                      31
                                                 47
      MGLPRLVCAF LLAACCCCPR VAGVPGEAEQ PAPELVEVEV GSTALLKCGL SQSQGNLSHV
                                                                         60
      DWFSVHKEKR TLIFRVRQGQ GQSEPGEYEQ RLSLQDRGAT LALTQVTPQD ERIFLCQGKR
                                                                         120
65
      PRSQEYRIOL RVYKAPEEPN IQVNPLGIPV NSKEPEEVAT CVGRNGYPIP QVIWYKNGRP
      LKEEKNRVHI QSSQTVESSG LYTLQSILKA QLVKEDKDAQ FYCELNYRLP SGNHMKESRE
      VTVPVFYPTE KVWLEVEPVG MLKEGDRVEI RCLADGNPPP HFSISKONPS TREAEEETTN
      DNGVLVLEPA RKEHSGRYEC QAWNLDTMIS LLSEPQELLV NYVSDVRVSP AAPERQEGSS
                                                                         360
      LTLTCEAESS QDLEFQWLRE ETDQVLERGP VLQLHDLKRE AGGGYRCVAS VPSIPGLNRT
                                                                         420
```

QLVKLAIFGP PWMAFKERKV WVKENMVLNL SCEASGHPRP TISWNVNGTA SEQDQDPQRV LSTLNVLVTP ELLETGVECT ASNDLGKNTS ILFLELVNLT TLTPDSNTTT GLSTSTASPH

TRANSTSTER KLPEPESRGV VIVAVIVCIL VLAVLGAVLY FLYKKGKLPC RRSGKQEITL

PPSRKTELVV EVKSDKLPEE MGLLQGSSGD KRAPGDQGEK YIDLRH

70

75

188

540

600

Seq ID NO: 21 <u>Nucleotide sequence:</u> Nucleic Acid Accession #: NM_002421

Coding sequence: 72..1481 (underlined sequences correspond to start and stop codons)

```
5
                                                             51
                            21
                                       31
                                                  41
                 11
      GGGATATTGG AGTAGCAAGA GGCTGGGAAG CCATCACTTA CCTTGCACTG AGAAAGAAGA
                                                                          60
      120
10
      CTCACAGCTT CCCAGCGACT CTAGAAACAC AAGAGCAAGA TGTGGACTTA GTCCAGAAAT
      ACCTGGAAAA ATACTACAAC CTGAAGAATG ATGGGAGGCA AGTTGAAAAG CGGAGAAATA
                                                                          240
      GTGGCCCAGT GGTTGAAAAA TTGAAGCAAA TGCAGGAATT CTTTGGGCTG AAAGTGACTG
                                                                         300
      GGAAACCAGA TGCTGAAACC CTGAAGGTGA TGAAGCAGCC CAGATGTGGA GTGCCTGATG
                                                                         360
      TGGCTCAGTT TGTCCTCACT GAGGGGAACC CTCGCTGGGA GCAAACACAT CTGACCTACA
                                                                          420
15
      GGATTGAAAA TTACACGCCA GATTTGCCAA GAGCAGATGT GGACCATGCC ATTGAGAAAG
                                                                         480
      CCTTCCAACT CTGGAGTAAT GTCACACCTC TGACATTCAC CAAGGTCTCT GAGGGTCAAG
                                                                         540
      CAGACATCAT GATATCTTTT GTCAGGGGAG ATCATCGGGA CAACTCTCCT TTTGATGGAC
                                                                         600
      CTGGAGGAAA TCTTGCTCAT GCTTTTCAAC CAGGCCCAGG TATTGGAGGG GATGCTCATT
                                                                         660
      TTGATGAAGA TGAAAGGTGG ACCAACAATT TCAGAGAGTA CAACTTACAT CGTGTTGCGG
                                                                         720
20
      CTCATGAACT CGGCCATTCT CTTGGACTCT CCCATTCTAC TGATATCGGG GCTTTGATGT
                                                                         780
      ACCCTAGCTA CACCTTCAGT GGTGATGTTC AGCTAGCTCA GGATGACATT GATGGCATCC
                                                                         840
      AAGCCATATA TGGACGTTCC CAAAATCCTG TCCAGCCCAT CGGCCCACAA ACCCCAAAAG
                                                                         900
      CGTGTGACAG TAAGCTAACC TTTGATGCTA TAACTACGAT TCGGGGAGAA GTGATGTTCT
                                                                         960
      TTAAAGACAG ATTCTACATG CGCACAAATC CCTTCTACCC GGAAGTTGAG CTCAATTTCA
                                                                        1020
25
      TTTCTGTTTT CTGGCCACAA CTGCCAAATG GGCTTGAAGC TGCTTACGAA TTTGCCGACA
                                                                        1080
      GAGATGAAGT CCGGTTTTTC AAAGGGAATA AGTACTGGGC TGTTCAGGGA CAGAATGTGC
      TACACGGATA CCCCAAGGAC ATCTACAGCT CCTTTGGCTT CCCTAGAACT GTGAAGCATA
      TCGATGCTGC TCTTTCTGAG GAAAACACTG GAAAAACCTA CTTCTTTGTT GCTAACAAAT
                                                                        1260
      ACTGGAGGTA TGATGAATAT AAACGATCTA TGGATCCAGG TTATCCCAAA ATGATAGCAC
                                                                        1320
30
      ATGACTTTCC TGGAATTGGC CACAAAGTTG ATGCAGTTTT CATGAAAGAT GGATTTTTCT
                                                                        1380
      ATTTCTTCA TGGAACAAGA CAATACAAAT TTGATCCTAA AACGAAGAGA ATTTTGACTC
      TCCAGAAAGC TAATAGCTGG TTCAACTGCA GGAAAAATTG AACATTACTA ATTTGAATGG
                                                                        1500
      AAAACACATG GTGTGAGTCC AAAGAAGGTG TTTTCCTGAA GAACTGTCTA TTTTCTCAGT
                                                                        1560
      CATTTTTAAC CTCTAGAGTC ACTGATACAC AGAATATAAT CTTATTTATA CCTCAGTTTG
                                                                        1620
35
      CATATTTTT TACTATTTAG AATGTAGCCC TTTTTGTACT GATATAATTT AGTTCCACAA
      ATGGTGGGTA CAAAAAGTCA AGTTTGTGGC TTATGGATTC ATATAGGCCA GAGTTGCAAA
                                                                        1740
      GATCTTTTCC AGAGTATGCA ACTCTGACGT TGATCCCAGA GAGCAGCTTC AGTGACAAAC
                                                                        1800
      ATATCCTTTC AAGACAGAAA GAGACAGGAG ACATGAGTCT TTGCCGGAGG AAAAGCAGCT
                                                                        1860
      CAAGAACACA TGTGCAGTCA CTGGTGTCAC CCTGGATAGG CAAGGGATAA CTCTTCTAAC 1920
40
      ACAAAATAAG TGTTTTATGT TTGGAATAAA GTCAACCTTG TTTCTACTGT TTT
      Seq ID NO: 22 Protein sequence:
      Protein Accession #: NP 002412
45
                            21
                                       31
                                                  41
                                                             51
                 11
      MHSFPPLLLL LFWGVVSHSF PATLETQEQD VDLVQKYLEK YYNLKNDGRQ VEKRRNSGPV
50
      VEKLKOMQEF FGLKVTGKPD AETLKVMKQP RCGVPDVAQF VLTEGNPRWE QTHLTYRIEN
                                                                         120
      YTPDLPRADV DHAIEKAFQL WSNVTPLTFT KVSEGQADIM ISFVRGDHRD NSPFDGPGGN
                                                                         180
      LAHAFQPGPG IGGDAHFDED ERWINNFREY NLHRVAAHEL GHSLGLSHST DIGALMYPSY
                                                                         240
      TFSGDVQLAQ DDIDGIQAIY GRSQNPVQPI GPQTPKACDS KLTFDAITTI RGEVMFFKDR
                                                                         300
      FYMRTNPFYP EVELNFISVF WPQLPNGLEA AYEFADRDEV RFFKGNKYWA VQGQNVLHGY
                                                                         360
55
      PKDIYSSFGF PRTVKHIDAA LSEENTGKTY FFVANKYWRY DEYKRSMDPG YPKMIAHDFP
                                                                         420
      GIGHKVDAVF MKDGFFYFFH GTRQYKFDPK TKRILTLQKA NSWFNCRKN
      Seq ID NO: 23 Nucleotide sequence:
60
      Nucleic Acid Accession #: FGENESH predicted ORF
      Coding sequence: 141-1580 (underlined sequences correspond to start and stop codons)
                            21
                                       31
                                                  41
                                                             51
65
      TCTGCGTGTG CCGGGGCTAG GGGCTGGAAG TCCTGGCTCT AGTTGCACCT CGGAAGGAAA
                                                                          60
      AGGCAAACAG AGGAGGGAAG GCGTCTTAGG ACTGCCTGGA TCCAGAGCAC TTTCCTCGGC
                                                                         120
      CTCTACAGGC CTGTGTCGCT ATGGGTTCCC CCGCCGCCCC GGAGGGAGCG CTGGGCTACG
                                                                         180
      TCCGCGAGTT CACTCGCCAC TCCTCCGACG TGCTGGGCAA CCTCAACGAG CTGCGCCTGC
                                                                         240
70
      GCGGGATCCT CACTGACGTC ACGCTGCTGG TTGGCGGGCA ACCCCTCAGA GCACACAAGG
                                                                         300
      CAGTTCTCAT CGCCTGCAGT GGCTTCTTCT ATTCAATTTT CCGGGGCCGT GCGGGAGTCG
                                                                         360
      GGGTGGACGT GCTCTCTCTC CCCGGGGGTC CCGAAGCGAG AGGCTTCGCC CCTCTATTGG
                                                                         420
      ACTTCATGTA CACTTCGCGC CTGCGCCTCT CTCCAGCCAC TGCACCAGCA GTCCTAGCGG
                                                                          480
      CCGCCACCTA TTTGCAGATG GAGCACGTGG TCCAGGCATG CCACCGCTTC ATCCAGGCCA
                                                                         540
75
      GCTATGAACC TCTGGGCATC TCCCTGCGCC CCCTGGAAGC AGAACCCCCA ACACCCCCAA
                                                                         600
      CGGCCCCTCC ACCAGGTAGT CCCAGGCGCT CCGAAGGACA CCCAGACCCA CCTACTGAAT
                                                                          660
```

```
CTCGAAGCTG CAGTCAAGGC CCCCCCAGTC CAGCCAGCCC TGACCCCAAG GCCTGCAACT
      GGAAAAAGTA CAAGTACATC GTGCTAAACT CTCAGGCCTC CCAAGCAGGG AGCCTGGTCG
      GGGAGAGAG TTCTGGTCAA CCTTGCCCCC AAGCCAGGCT CCCCAGTGGA GACGAGGCCT
                                                                          840
      CCAGCAGCAG CAGCAGCAGC AGCAGCAGCA GTGAAGAAGG ACCCATTCCT GGTCCCCAGA
      GCAGGCTCTC TCCAACTGCT GCCACTGTGC AGTTCAAATG TGGGGCTCCA GCCAGTACCC
      CCTACCTCCT CACATCCCAG GCTCAAGACA CCTCTGGATC ACCCTCTGAA CGGGCTCGTC
                                                                         1020
      CACTACCGGG AAGTGAATTT TTCAGCTGCC AGAACTGTGA GGCTGTGGCA GGGTGCTCAT
                                                                         1080
      CGGGGCTGGA CTCCTTGGTT CCTGGGGACG AAGACAAACC CTATAAGTGT CAGCTGTGCC
                                                                         1140
      GGTCTTCGTT CCGCTACAAG GGCAACCTTG CCAGTCATCG TACAGTGCAC ACAGGGGAAA
10
      AGCCTTACCA CTGCTCAATC TGCGGAGCCC GTTTTAACCG GCCAGCAAAC CTGAAAACGC
      ACAGCCGCAT CCATTCGGGA GAGAAGCCGT ATAAGTGTGA GACGTGCGGC TCGCGCTTTG
                                                                         1320
      TACAGGTGGC ACATCTGCGG GCGCACGTGC TGATCCACAC CGGGGAGAAG CCCTACCCTT
                                                                         1380
      GCCCTACCTG CGGAACCCGC TTCCGCCACC TGCAGACCCT CAAGAGCCAC GTTCGCATCC
      ACACCGGAGA GAAGCCTTAC CACTGCGACC CCTGTGGCCT GCATTTCCGG CACAAGAGTC
15
     AACTGCGGCT GCATCTGCGC CAGAAACACG GAGCTGCTAC CAACACCAAA GTGCACTACC
                                                                         1620
      ACATTCTCGG GGGGCCC<u>TAG</u> CTGAGCGCAG GCCCAGGCCC CACTTGCTTC CTGCGGGTGG
      GAAAGCTGCA GGCCCAGGCC TTGCTTCCCT ATCAGGCTTG GGCATAGGGG TGTGCCAGGC
                                                                         1680
      CACTTTGGTA TCAGAAATTG CCACCCTCTT AATTTCTCAC TGGGGAGAGC AGGGGTGGCA
      GATCCTGGCT AGATCTGCCT CTGTTTTGCT GGTCAAAACC TCTTCCCCAC AAGCCAGATT
                                                                         1800
20
      GTTTCTGAGG AGAGAGCTAG CTAGGGGCTG GGAAAGGGGA GAGATTGGAG TCCTGGTCTC
                                                                         1860
      CCTAAGGGAA TAGCCCTCCA CCTGTGGCCC CCATTGCATT CAGTTTATCT GTAAATATAA
                                                                         1920
      TTTATTGAGG CCTTTGGGTG GCACCGGGGC CTTCATTCGA TTGCATTTCC CACTCCCCTC
      TTCCACAAGT GTGATTAAAA GTGACCAGAA ACACAGAAGG TGAGATCACA GCTCTGCTGG
      CAGAGATTAC TAGCCCTTGG CTCTCTCGTT TGGCTTGGGT ATTTTATATT ATTTCTGTCA
                                                                         2100
25
      TAACTTTTAT CTTTAGAATT GTTCTTTCTC CTGTTTGTTT GCTTGTTAGT TTGTTTAAAA
                                                                         2160
      TGGAAAAAGG GGTTCTCTGT GTTCTGCCCC TGTAATTCTA GGTCTGGAAC CTTTATTTGT
      TCTAGGGCAG CTCTGGGAAC ATGCGGGATT GTGGAATTGG GTCAGGAACC CTCTCTGGTA
      TTCTGGATGT TGTAGGTTCT CTAGCAGTCT AGAAATGGAT ACAGACATTT CTCTGTTCTT
                                                                         2340
      CAAGGGTGAT AGGAACCATT ATGTTGAGCC CAAAATGGAA GTAATAATAA ATGCCTCCTG
30
      GAGGCTGTGG GTGTGGGGGA TTCTGTATCT GGAITCCGTA TCACTCCAAC TGGAGGCTGT
      GGGTGTGGGG GATTCTGTAT CTGGATTCCG TATCACTCCA AGTGGAGGCT GGCAGGTTTT
      TCTGCAAGAT GGTCCAGAAT CTAAAATGTC CCATTAATCT GGTCACTTGG GTTTGGCTCT
                                                                         2580
      GCTGTATCCA TCTATAGTGG TAGAGACCCA CCAGGGCTCA AGTGGAGTCC ATCATCCTCC
                                                                         2640
      CACGGGGGCC TGTTCTTAGC ACTGAGTTGA TCGCTCCATG GGGGAGAGAT CAGACATTCC
                                                                         2700
35
      TTATCAGAGA TGATGTGACC TTTTCTGACT CTGCCCAGTC TCTATGAATG TTATGGCCTA
      GGGAAGAATC ATGAAACTCT TTAGCTTGAT TAGATGGTAA ACAGTGTTAA CCCATCCTTT
      ACTACAGAGG CATATGGGTT TGAATGTTAC CTGGGGTTCT CTCTATTGAG TTGAGCCCCT
                                                                         2880
      TCTTCCTTTA GTGGGTTTTG GACATCTTCT GGCAAGTGTC CAGATGCCAG AACCTTCTTT
                                                                         2940
      TCCTCTAGAA GGGATGGTGC TTGGTAACCT TACCTTTTAA AAGCTGGGTC TGTGACCTGG
                                                                         3000
40
      TCTTCCCATC CCTGCATTCC TGTCTGGAAC CAGTGAATGC ATTAGAACCT TCCATAGGAA
      AAGAAAAGGG GCTGAGTTCC ATTCTGGGTT TGCTGTAGTT TGGTTGGGAT TATTGTTGGC
      ATTACAGATG TAAAAGATTG ACTAGCCCAT AGGCCAAAGG CCTGTTCTAG TTGACCAAGT
                                                                         3180
      TTCAAGTAGG ATTAAGAGGT TGGTTGAGGG GTGCAGTTTC TGGTGTAGGC CAGGTAGGTA
      GAAAGTGAGG AACAGGGTTG CCTCTTGGCT GGGTGGAGTC TCTGAAATGT TAGAAGAAGC 3300
45
      GCTGAAGCCT TGATTGATAG TTCTGCCCCT TGTTGCCCTG GGGCTTATCT GATTATGGGA
                                                                         3360
      CGAGGGTAGA AAGTAAGAAG CACTTTTGAA TTTGTGGGGT AGAACTTCAA CAATAAGTCA
                                                                         3420
      GTTCTAGTGG CTGTCGCCTG GGGACTAGTG AGAAAGCTAC TCTTCTCCCT CTTCCCTCTT
                                                                         3480
      TCTCCCCATG GCCCCACTGC AGAATTAAAG AAGGAAGAAG GGAAGGCGGA GGAGTCTATA
      AGAAGGAATC ATGATTTCTA TTTAGCAGAT TGGATGGGCA GGTGGAGAAT GCCTGGGGGT
50
      AGAAATGTTA GATCTTGCAA CATCAGATCC TTGGAATAAA GAAGCCTCTC TGYGCWRAAA 3660
      AAAAAA AAAAAAA
      Seq ID NO: 24 Protein sequence:
55
      Protein Accession #: FGENESH predicted
                 11
                            21
                                       31
                                                  41
                                                             51
60
      MGSPAAPEGA LGYVREFTRH SSDVLGNLNE LRLRGILTDV TLLVGGQPLR AHKAVLIACS
      GFFYSIFRGR AGVGVDVLSL PGGPEARGFA PLLDFMYTSR LRLSPATAPA VLAAATYLQM
      EHVVQACHRF IQASYEPLGI SLRPLEAEPP TPPTAPPPGS PRRSEGHPDP PTESRSCSQG
      PPSPASPDPK ACNWKKYKYI VLNSQASQAG SLVGERSSGQ PCPQARLPSG DEASSSSSSS
                                                                          240
      SSSSEEGPIP GPQSRLSPTA ATVQFKCGAP ASTPYLLTSQ AQDTSGSPSE RARPLPGSEF
                                                                          300
65
      FSCONCEAVA GCSSGLDSLV PGDEDKPYKC QLCRSSFRYK GNLASHRTVH TGEKPYHCSI
      CGARFNRPAN LKTHSRIHSG EKPYKCETCG SRFVQVAHLR AHVLIHTGEK PYPCPTCGTR
      FRHLQTLKSH VRIHTGEKPY HCDPCGLHFR HKSQLRLHLR QKHGAATNTK VHYHILGGP
      Seq ID NO: 25 Nucleotide sequence:
70
      Nucleic Acid Accession #: U21551
      Coding sequence: 1..1155 (underlined sequences correspond to start and stop codons)
                            21
                                       31
                 11
75
      ATGGATTGCA GTAACGGATC GGCAGAGTGT ACCGGAGAAG GAGGATCAAA AGAGGTGGTG
```

```
GGGACTTTTA AGGCTAAAGA CCTAATAGTC ACACCAGCTA CCATTTTAAA GGAAAAACCA
      GACCCCAATA ATCTGGTTTT TGGAACTGTG TTCACGGATC ATATGCTGAC GGTGGAGTGG
      TCCTCAGAGT TTGGATGGGA GAAACCTCAT ATCAAGCCTC TTCAGAACCT GTCATTGCAC
                                                                          240
      CCTGGCTCAT CAGCTTTGCA CTATGCAGTG GAATTATTTG AAGGATTGAA GGCATTTCGA
                                                                          300
      GGAGTAGATA ATAAAATTCG ACTGTTTCAG CCAAACCTCA ACATGGATAG AATGTATCGC
                                                                          360
      TCTGCTGTGA GGGCAACTCT GCCGGTATTT GACAAAGAAG AGCTCTTAGA GTGTATTCAA
      CAGCTTGTGA AATTGGATCA AGAATGGGTC CCATATTCAA CATCTGCTAG TCTGTATATT
                                                                          480
      CGTCCTGCAT TCATTGGAAC TGAGCCTTCT CTTGGAGTCA AGAAGCCTAC CAAAGCCCTG
                                                                          540
      CTCTTTGTAC TCTTGAGCCC AGTGGGACCT TATTTTTCAA GTGGAACCTT TAATCCAGTG
                                                                          600
10
      TCCCTGTGGG CCAATCCCAA GTATGTAAGA GCCTGGAAAG GTGGAACTGG GGACTGCAAG
      ATGGGAGGGA ATTACGGCTC ATCTCTTTTT GCCCAATGTG AAGACGTAGA TAATGGGTGT
                                                                          720
      CAGCAGGTCC TGTGGCTCTA TGGCAGAGAC CATCAGATCA CTGAAGTGGG AACTATGAAT
                                                                          780
      CTTTTCTTT ACTGGATAAA TGAAGATGGA GAAGAAGAAC TGGCAACTCC TCCACTAGAT
                                                                          840
      GGCATCATTC TTCCAGGAGT GACAAGGCGG TGCATTCTGG ACCTGGCACA TCAGTGGGGT
                                                                          900
15
      GAATTTAAGG TGTCAGAGAG ATACCTCACC ATGGATGACT TGACAACAGC CCTGGAGGGG
      AACAGAGTGA GAGAGATGTT TAGCTCTGGT ACAGCCTGTG TTGTTTGCCC AGTTTCTGAT
                                                                         1020
      ATACTGTACA AAGGCGAGAC AATACACATT CCAACTATGG AGAATGGTCC TAAGCTGGCA
                                                                         1080
      AGCCGCATCT TGAGCAAATT AACTGATATC CAGTATGGAA GAGAAGAGG CGACTGGACA
      ATTGTGCTAT CCTGA
20
      Seq ID NO: 26 Protein sequence:
      Protein Accession #: AAB08528
25
                 11
                            21
                                       31
                                                  41
                                                             51
      MDCSNGSAEC TGEGGSKEVV GTFKAKDLIV TPATILKEKP DPNNLVFGTV FTDHMLTVEW
      SSEFGWEKPH IKPLONLSLH PGSSALHYAV ELFEGLKAFR GVDNKIRLFQ PNLNMDRMYR
      SAVRATLPVF DKEELLECIQ QLVKLDQEWV PYSTSASLYI RPAFIGTEPS LGVKKPTKAL
                                                                          180
30
      LFVLLSPVGP YFSSGTFNPV SLWANPKYVR AWKGGTGDCK MGGNYGSSLF AQCEDVDNGC
                                                                          240
      QQVLWLYGRD HQITEVGTMN LFLYWINEDG EEELATPPLD GIILPGVTRR CILDLAHQWG
                                                                          300
      EFKVSERYLT MDDLTTALEG NRVREMFSSG TACVVCPVSD ILYKGETIHI PTMENGPKLA
      SRILSKLTDI OYGREESDWT IVLS
35
      Seq ID NO: 27 Nucleotide sequence:
      Nucleic Acid Accession #: XM 039209
      Coding sequence: 656..2758 (underlined sequences correspond to start and stop codons)
40
                 11
                            21
                                       31
                                                  41
      TCGCGCGGGG GCCGCCCCT CCCCTTCCCT CCACCCTGGG CGGGGGCGCG CGAGAAGCGG
                                                                           60
      TGACGTCAAG GGGCGCGCTG TGGCAGCACC TCCCCGCGCG CTAGTTAAAA AGAAGAAGAA
                                                                          120
45
      AAGAGGGAAC GAAACATGAG AGGCTGTGTG AGAAGCTGCA GCCGCCGGCA GAGGAGACCT
      CAGCATCATC TAGAGCCCAG CGCTGGCCCT GCCTCCGCCT GCCCCGCCGC CGCCGTCGCC
                                                                          240
      GTTTCTGTTC CTGCTACTGT CCCACCTAAA CAACTCCCGT TACACGGACA AGTGAACATC
                                                                          300
      TGTGGCTGTC CTCTCCTTTT CTTCCTCCTC TTCCAACTCC TTCTCCTCCT CCCACTTCCC
                                                                          360
      AGCCGCAGCA GAAAGCCCCC AACCCAACTG ACACTGGCAC AACTGCAAAC GGTGTCATCC
50
      GCACAACTTT ATCTCGCTCC TCGGGCTCCC CTAAGGCATT GGACCCATCG CCGCGTCTTT
                                                                          480
      TATTTTTGC AAAGTTGCAT CGCTGTACAT ATTTTTGTCC CCGCCACCTC CCTCTGTCTC
                                                                          540
      TGGAGTGCCC TACAGCCCCG CAAACTCCTC CTGGAGCTGC GCCCTAGTGC CCCTGCTGGG
                                                                          600
      CAGTGGCGTT CCCCCCCATC CTCCCGCGCC CAGCCCCTGC TGCTCTGGGC AGACGATGCT
      GAAGATGCTC TCCTTTAAGC TGCTGCTGCT GGCCGTGGCT CTGGGCTTCT TTGAAGGAGA
      TGCTAAGTTT GGGGAAAGAA ACGAAGGGAG CGGAGCAAGG AGGAGAAGGT GCCTGAATGG
55
                                                                          780
      GAACCCCCCG AAGCGCCTGA AAAGGAGAGA CAGGAGGATG ATGTCCCAGC TGGAGCTGCT
                                                                          840
      GAGTGGGGA GAGATGCTGT GCGGTGGCTT CTACCCTCGG CTGTCCTGCT GCCTGCGGAG
                                                                          900
      TGACAGCCCG GGGCTAGGGC GCCTGGAGAA TAAGATATTT TCTGTTACCA ACAACACAGA
                                                                          960
      ATGTGGGAAG TTACTGGAGG AAATCAAATG TGCACTTTGC TCTCCACATT CTCAAAGCCT
                                                                         1020
60
      GTTCCACTCA CCTGAGAGAG AAGTCTTGGA AAGAGACCTA GTACTTCCTC TGCTCTGCAA
                                                                         1.080
      AGACTATTGC AAAGAATTCT TTTACACTTG CCGAGGCCAT ATTCCAGGTT TCCTTCAAAC
                                                                         1140
      AACTGCGGAT GAGTTTTGCT TTTACTATGC AAGAAAAGAT GGTGGGTTGT GCTTTCCAGA
      TTTTCCAAGA AAACAAGTCA GAGGACCAGC ATCTAACTAC TTGGACCAGA TGGAAGAATA
                                                                         1260
      TGACAAAGTG GAAGAGATCA GCAGAAAGCA CAAACACAAC TGCTTCTGTA TTCAGGAGGT
                                                                         1320
65
      TGTGAGTGGG CTGCGGCAGC CCGTTGGTGC CCTGCATAGT GGGGATGGCT CGCAACGTCT
                                                                         1380
      CTTCATTCTG GAAAAAGAAG GTTATGTGAA GATACTTACC CCTGAAGGAG AAATTTTCAA
      GGAGCCTTAT TTGGACATTC ACAAACTTGT TCAAAGTGGA ATAAAGGGAG GAGATGAAAG
      AGGACTGCTA AGCCTCGCAT TCCATCCCAA TTACAAGAAA AATGGAAAGT TGTATGTGTC
                                                                         1560
      CTATACCACC AACCAAGAAC GGTGGGCTAT CGGGCCTCAT GACCACATTC TTAGGGTTGT
                                                                         1.620
70
      GGAATACACA GTATCCAGAA AAAATCCACA CCAAGTTGAT TTGAGAACAG CCAGAGTCTT
                                                                         1680
      TCTTGAAGTT GCAGAACTCC ACAGAAAGCA TCTGGGAGGA CAACTGCTCT TTGGCCCTGA
      CGGCTTTTTG TACATCATTC TTGGTGATGG GATGATTACA CTGGATGATA TGGAAGAAAT
                                                                         1800
      GGATGGGTTA AGTGATTTCA CAGGCTCAGT GCTACGGCTG GATGTGGACA CAGACATGTG
                                                                         1860
      CAACGTGCCT TATTCCATAC CAAGGAGCAA CCCACACTTC AACAGCACCA ACCAGCCCCC
                                                                         1920
75
      CGAAGTGTTT GCTCATGGGC TCCACGATCC AGGCAGATGT GCTGTGGATA GACATCCCAC
      TGATATAAAC ATCAATTTAA CGATACTGTG TTCAGACTCC AATGGAAAAA ACAGATCATC 2040
```

```
AGCCAGAATT CTACAGATAA TAAAGGGGAA AGATTATGAA AGTGAGCCAT CACTTTTAGA
      ATTCAAGCCA TTCAGTAATG GTCCTTTGGT TGGTGGATTT GTATACCGGG GCTGCCAGTC
      AGAAAGATTG TATGGAAGCT ACGTGTTTGG AGATCGTAAT GGGAATTTCC TAACTCTCCA
                                                                         2220
      GCAAAGTCCT GTGACAAAGC AGTGGCAAGA AAAACCACTC TGTCTCGGCA CTAGTGGGTC
                                                                        2280
      CTGTAGAGGC TACTTTTCCG GTCACATCTT GGGATTTGGA GAAGATGAAC TAGGTGAAGT
                                                                        2340
      TTACATTTTA TCAAGCAGTA AAAGTATGAC CCAGACTCAC AATGGAAAAC TCTACAAAAT
                                                                        2400
      TGTAGATCCC AAAAGACCTT TAATGCCTGA GGAATGCAGA GCCACGGTAC AACCTGCACA
                                                                        2460
      GACACTGACT TCAGAGTGCT CCAGGCTCTG TCGAAACGGC TACTGCACCC CCACGGGAAA
                                                                        2520
      GTGCTGCTGC AGTCCAGGCT GGGAGGGGGA CTTCTGCAGA ACTGCAAAAT GTGAGCCAGC
                                                                        2580
10
      ATGTCGTCAT GGAGGTGTCT GTGTTAGACC GAACAAGTGC CTCTGTAAAA AAGGATATCT
                                                                        2640
      TGGTCCTCAA TGTGAACAAG TGGACAGAAA CATCCGCAGA GTGACCAGGG CAGGTATTCT
                                                                        2700
      TGATCAGATC ATTGACATGA CATCTTACTT GCTGGATCTA ACAAGTTACA TTGTA\overline{\text{TAG}}TT
                                                                        2760
      TCTGGGACTG TTTGAATATT CTATTCCAAT GGGCATTTAT TTTTTATCCT GTCATTAAAA
                                                                        2820
      AAAAAAGACT GTTATCCTGC TACACACTCC TGTGATTTCA TTCTCTTTTA TTAATTTAAA
                                                                        2880
      AATAATTTCC AGAAATGTGC AGATCCTCTG TGTGTATGTC AGCATGTTTG TTCACATATG
15
      CACATACACA TACTCATAAC CCCTATATGC GTTGTTGCAT AACAGATGAT TTTTTAAAAT
                                                                        3000
      ATATACTTCC TTATGCAAAG TAATTTACAC AGAAATTCCA TTGTAAATTG ATAATGGATT
                                                                        3060
      TTTTATGTTA CTAGAAGAGA TTATTTGACT TCCCAGGAAT TTTCTGTCTG TAATCACTAA
                                                                        3120
      AGTCAACTTT AATAGAGTTT TGAAACAGTA CTGTGCAATC CGATGGATCT AATTAAAAAA
      AAGGCAATAT TTTTATATTA AAGTACTATA CTAGGAGAGA ATGTTTCAGA ACTCCCTGAT
20
      GAATTTCTAA GTGAGCAACT TGATATAAAA TTGTAATCTT CATTTTTGTC AGTGTATCCA
                                                                        3300
      GTTACAGAAT GCTACACACT TACCTTTTTA TTGGCTGAGA AATCTGGTTA TTTCATCTTA
                                                                        3360
      ATCTCAAGAT TGTTTTCAAG TGTTTTATAA TTAAATCATA ATAGCATATT TTAAAATCAA
                                                                        3420
      TCTTCCTAAA AGGTCTGCTT TTATTGTATA TTTTATTTAA CAATAGGCAC TGGGTTTGTG
25
      TTACATATTT ATATATTTTA TTTTATTTTT ATAATATAGA CATCACCTAG
      Seq ID NO: 28 Protein sequence:
      Protein Accession #: XP_039209
30
                 11
                            21
                                       31
                                                  41
                                                             51
      MLKMLSFKLL LLAVALGFFE GDAKFGERNE GSGARRRRCL NGNPPKRLKR RDRRMMSQLE
                                                                           60
      LLSGGEMLCG GFYPRLSCCL RSDSPGLGRL ENKIFSVTNN TECGKLLEEI KCALCSPHSQ
                                                                          120
35
      SLFHSPEREV LERDLVLPLL CKDYCKEFFY TCRGHIPGFL QTTADEFCFY YARKDGGLCF
                                                                          180
      PDFPRKOVRG PASNYLDOME EYDKVEEISR KHKHNCFCIQ EVVSGLRQPV GALHSGDGSQ
                                                                          240
      RLFILEKEGY VKILTPEGEI FKEPYLDIHK LVQSGIKGGD ERGLLSLAFH PNYKKNGKLY
                                                                          300
      VSYTTNQERW AIGPHDHILR VVEYTVSRKN PHQVDLRTAR VFLEVAELHR KHLGGQLLFG
                                                                          360
      PDGFLYIILG DGMITLDDME EMDGLSDFTG SVLRLDVDTD MCNVPYSIPR SNPHFNSTNQ
                                                                          420
40
      PPEVFAHGLH DPGRCAVDRH PTDININLTI LCSDSNGKNR SSARILQIIK GKDYESEPSL
                                                                          480
      LEFKPFSNGP LVGGFVYRGC QSERLYGSYV FGDRNGNFLT LQQSPVTKQW QEKPLCLGTS
                                                                          540
      GSCRGYFSGH ILGFGEDELG EVYILSSSKS MTQTHNGKLY KIVDPKRPLM PEECRATVQP
                                                                          600
      AQTLTSECSR LCRNGYCTPT GKCCCSPGWE GDFCRTAKCE PACRHGGVCV RPNKCLCKKG
                                                                          660
      YLGPQCEQVD RNIRRVTRAG ILDQIIDMTS YLLDLTSYIV
45
      Seq ID NO: 29 Nucleotide sequence:
      Nucleic Acid Accession #: NM 024756
      Coding sequence: 75..2924 (underlined sequences correspond to start and stop codons)
50
                            21
                                       31
                                                  41
                                                             51
      AAGACAACGT CACTAGCAGT TTCTGGAGCT ACTTGCCAAG GCTGAGTGTG AGCTGAGCCT
                                                                           60
      120
55
      GGCTGCTGGG GGCATGGGCC CAGGCTTCCA GTACTAGCCT CTCTGATCTG CAGAGCTCCA
                                                                          180
      GGACACCTGG GGTCTGGAAG GCAGAGGCTG AGGACACCAG CAAGGACCCC GTTGGACGTA
                                                                          240
      ACTGGTGCCC CTACCCAATG TCCAAGCTGG TCACCTTACT AGCTCTTTGC AAAACAGAGA
      AATTCCTCAT CCACTCGCAG CAGCCGTGTC CGCAGGGAGC TCCAGACTGC CAGAAAGTCA
                                                                          360
      AAGTCATGTA CCGCATGGCC CACAAGCCAG TGTACCAGGT CAAGCAGAAG GTGCTGACCT
                                                                          420
60
      CTTTGGCCTG GAGGTGCTGC CCTGGCTACA CGGGCCCCAA CTGCGAGCAC CACGATTCCA
                                                                          480
      TGGCAATCCC TGAGCCTGCA GATCCTGGTG ACAGCCACCA GGAACCTCAG GATGGACCAG
                                                                          540
      TCAGCTTCAA ACCTGGCCAC CTTGCTGCAG TGATCAATGA GGTTGAGGTG CAACAGGAAC
      AGCAGGAACA TCTGCTGGGA GATCTCCAGA ATGATGTGCA CCGGGTGGCA GACAGCCTGC
                                                                          660
      CAGGCCTGTG GAAAGCCCTG CCTGGTAACC TCACAGCTGC AGTGATGGAA GCAAATCAAA
                                                                          720
65
      CAGGGCACGA GTTCCCTGAT AGATCCTTGG AGCAGGTGCT GCTACCCCAC GTGGACACCT
                                                                          780
      TCCTACAAGT GCATTTCAGC CCCATCTGGA GGAGCTTTAA CCAAAGCCTG CACAGCCTTA
                                                                          840
      CCCAGGCCAT AAGAAACCTG TCTCTTGACG TGGAGGCCAA CCGCCAGGCC ATCTCCAGAG
      TCCAGGACAG TGCCGTGGCC AGGGCTGACT TCCAGGAGCT TGGTGCCAAA TTTGAGGCCA
                                                                          960
      AGGTCCAGGA GAACACTCAG AGAGTGGGTC AGCTGCGACA GGACGTGGAG GACCGCCTGC
                                                                         1020
70
      ACGCCCAGCA CTTTACCCTG CACCGCTCGA TCTCAGAGCT CCAAGCCGAT GTGGACACCA
                                                                         1080
      AATTGAAGAG GCTGCACAAG GCTCAGGAGG CCCCAGGGAC CAATGGCAGT CTGGTGTTGG
                                                                         1140
      CAACGCCTGG GGCTGGGGCA AGGCCTGAGC CGGACAGCCT GCAGGCCAGG CTGGGCCAGC
                                                                         1200
      TGCAGAGGAA CCTCTCAGAG CTGCACATGA CCACGGCCCG CAGGGAGGAG GAGTTGCAGT
                                                                         1260
      ACACCCTGGA GGACATGAGG GCCACCCTGA CCCGGCACGT GGATGAGATC AAGGAACTGT
                                                                         1320
      ACTCCGAATC GGACGAGACT TTCGATCAGA TTAGCAAGGT GGAGCGGCAG GTGGAGGAGC 1380
75
      TGCAGGTGAA CCACACGGCG CTCCGTGAGC TGCGCGTGAT CCTGATGGAG AAGTCTCTGA 1440
```

```
TCATGGAGGA GAACAAGGAG GAGGTGGAGC GGCAGCTCCT GGAGCTCAAC CTCACGCTGC 1500
      AGCACCTGCA GGGTGGCCAT GCCGACCTCA TCAAGTACGT GAAGGACTGC AATTGCCAGA
      AGCTCTATTT AGACCTGGAC GTCATCCGGG AGGGCCAGAG GGACGCCACG CGTGCCCTGG
                                                                        1620
      AGGAGACCCA GGTGAGCCTG GACGAGCGGC GGCAGCTGGA CGGCTCCTCC CTGCAGGCCC
                                                                        1680
 5
      TGCAGAACGC CGTGGACGCC GTGTCGCTGG CCGTGGACGC GCACAAAGCG GAGGGCGAGC
      GGGCGCGGC GGCCACGTCG CGGCTCCGGA GCCAAGTGCA GGCGCTGGAT GACGAGGTGG
                                                                        1800
      GCGCGCTGAA GGCGGCCGCG GCCGAGGCCC GCCACGAGGT GCGCCAGCTG CACAGCGCCT
                                                                        1860
      TCGCCGCCCT GCTGGAGGAC GCGCTGCGGC ACGAGGCGGT GCTGGCCGCG CTCTTCGGGG
                                                                        1920
      AGGAGGTGCT GGAGGAGATG TCTGAGCAGA CGCCGGGACC GCTGCCCCTG AGCTACGAGC
10
      AGATCCGCGT GGCCCTGCAG GACGCCGCTA GCGGGCTGCA GGAGCAGGCG CTCGGCTGGG
      ACGAGCTGGC CGCCCGAGTG ACGGCCCTGG AGCAGGCCTC GGAGCCCCCG CGGCCGGCAG
                                                                        2100
      AGCACCTGGA GCCCAGCCAC GACGCGGGCC GCGAGGAGGC CGCCACCACC GCCCTGGCCG
                                                                        2160
      GGCTGGCGCG GGAGCTCCAG AGCCTGAGCA ACGACGTCAA GAATGTCGGG CGGTGCTGCG
                                                                        2220
      AGGCCGAGGC CGGGGCCGGG GCCGCCTCCC TCAACGCCTC CCTTGACGGC CTCCACAACG
15
      CACTCTTCGC CACTCAGCGC AGCTTGGAGC AGCACCAGCG GCTCTTCCAC AGCCTCTTTG
      GGAACTTCCA AGGGCTCATG GAAGCCAACG TCAGCCTGGA CCTGGGGAAG CTGCAGACCA
                                                                        2400
      TGCTGAGCAG GAAAGGGAAG AAGCAGCAGA AAGACCTGGA AGCTCCCCGG AAGAGGGACA
                                                                        2460
      AGAAGGAAGC GGAGCCTTTG GTGGACATAC GGGTCACAGG GCCTGTGCCA GGTGCCTTGG
      GCGCGGCGCT CTGGGAGGCA GGATCCCCTG TGGCCTTCTA TGCCAGCTTT TCAGAAGGGA
      CGGCTGCCCT GCAGACAGTG AAGTTCAACA CCACATACAT CAACATTGGC AGCAGCTACT
20
      TCCCTGAACA TGGCTACTTC CGAGCCCCTG AGCGTGGTGT CTACCTGTTT GCAGTGAGCG
                                                                        2700
      TTGAATTTGG CCCAGGGCCA GGCACCGGGC AGCTGGTGTT TGGAGGTCAC CATCGGACTC
      CAGTCTGTAC CACTGGCAG GGGAGTGGAA GCACAGCAAC GGTCTTTGCC ATGGCTGAGC
      TGCAGAAGGG TGAGCGAGTA TGGTTTGAGT TAACCCAGGG ATCAATAACA AAGAGAAGCC
                                                                        2880
25
      TGTCGGGCAC TGCATTTGGG GGCTTCCTGA TGTTTAAGAC CTGAACCCCA GCCCCAATCT
      GATCAGACAT CATGGACTCG CCCAGCTCTC CTCGGCCTGG GGCTCTGGCC AAGGATGGGC
      TACGTGGCTT CCCTGTAACC ACATGGGGCT TGGCCATTTC TCCATGATGA GAAGGACTGG
      AATGCTTCTC CGGGCAGGAC ATGGTCCTAG GAAGCCTGAA CCTTGGCTTG GCATGCCTTC
                                                                        31.80
30
      TCAGACAGCA CGGCCTGGGC TCCAACTCTT CACCACACCC TGTATTCTAC AACTTCTTTG
      GTGTTTTGCT CCTCCTGTGG TTGGAAACTT CTGTACAACA CTTTAAACTT TTCTCTTGCT
      TCCTCTTCTC TTCTCCCTTA TCGTATGATA GAAAGACATT CTTCCCCAGG AGGAATGTTT
                                                                        3360
      AAAATGGAGG CAACATTTTG GCCAACATTG GAAAGCACTA GAGGGCAATG GGATTAAACC
      AACCTGCTTG GTCTCTATTA GTCAGTAATG AAGACGACAG CCTGGCCAAC CAAGGGAAAG
                                                                        3480
35
      GAAATTAGTA TCTTTAGTTT CAGTCATTCC TTGTAGGATA TGGTTTAGCT GTGCCCCCAC
      CTAAAATATC ATCTTGAATT GTAATCCCTA TAATCCCCAC ATCAAGGGAG AGATCAGGTG
      GAGGTAATTG GATCTTGGGG GCGGTTCCCC CATGCTGTTC TTGTGATAGT TCTCACGAGA
                                                                        3660
      TCTGATGATT TTATAAGTTT GATAGTTCCT CCTGTGTTCA TTCTCCTTCC TGCCACCTTG
                                                                        3720
      TGAAGATGCC TTGGTTCCTC TTCACTGTCT GCCATGATTG TAAGTTTCCT GAGGCCTCCC 3780
40
      CAGCCATGTG GAACAGTGAG TCAATTAAAC CTCTTTCCTT TATAAATT
      Seq ID NO: 30 Protein sequence:
      Protein Accession #: NP 079032
45
                                                            51
                11
                           21
                                      31
                                                 41
      MILSLIFSLG GPLGWGLLGA WAQASSTSLS DLQSSRTPGV WKAEAEDTSK DPVGRNWCPY
      PMSKLVTLLA LCKTEKFLIH SQQPCPQGAP DCQKVKVMYR MAHKPVYQVK QKVLTSLAWR
      CCPGYTGPNC EHHDSMAIPE PADPGDSHQE PQDGPVSFKP GHLAAVINEV EVQQEQOEHL
50
                                                                         180
      LGDLQNDVHR VADSLPGLWK ALPGNLTAAV MEANQTGHEF PDRSLEQVLL PHVDTFLQVH
      FSPIWRSFNQ SLHSLTQAIR NLSLDVEANR QAISRVQDSA VARADFQELG AKFEAKVQEN
      TORVEQUEOD VEDRLHAOHF TLHRSISELQ ADVDTKLKRL HKAQEAPGTN GSLVLATPGA
      GARPEPDSLQ ARLGQLQRNL SELHMTTARR EEELQYTLED MRATLTRHVD EIKELYSESD
55
      ETFDQISKVE RQVEELQVNH TALRELRVIL MEKSLIMEEN KEEVERQLLE LNLTLQHLQG
                                                                         480
      GHADLIKYVK DCNCQKLYLD LDVIREGQRD ATRALEETQV SLDERRQLDG SSLQALQNAV
                                                                         540
      DAVSLAVDAH KAEGERARAA TSRLRSOVOA LDDEVGALKA AAAEARHEVR QLHSAFAALL
      EDALRHEAVL AALFGEEVLE EMSEQTPGPL PLSYEQIRVA LQDAASGLQE QALGWDELAA
                                                                         660
      RVTALEQASE PPRPAEHLEP SHDAGREEAA TTALAGLARE LQSLSNDVKN VGRCCEAEAG
                                                                         720
60
      AGAASLNASL DGLHNALFAT QRSLEQHQRL FHSLFGNFQG LMEANVSLDL GKLQTMLSRK
                                                                         780
      GKKOOKDLEA PRKRDKKEAE PLVDIRVTGP VPGALGAALW EAGSPVAFYA SFSEGTAALQ
                                                                         840
      TVKFNTTYIN IGSSYFPEHG YFRAPERGVY LFAVSVEFGP GPGTGQLVFG GHHRTPVCTT
      GQGSGSTATV FAMAELQKGE RVWFELTQGS ITKRSLSGTA FGGFLMFKT
65
      Seg ID NO: 31 Nucleotide sequence:
      Nucleic Acid Accession #: AB037715
      Coding sequence: 370..3489 (underlined sequences correspond to start and stop codons)
70
                                      31
                                                 41.
                                                            51
                11
                            21
      GAACGCTCAC AGAACAGGCA GTGCAATTCC ATGTTCCTCT TAAGTATGTT AGCCCTACCG
      GGAGCTGAGC TGGCCAGTCT ACTTGGAGAG GAAAAGTAGA TCTGGGGAAG GTGGAAGGGT
                                                                         120
      CAGTTCCTAA GTGACTTCCT CCTCGGGGAT GGTAAGGGCA TTTGCTGATC TCCAGTGACT
                                                                         180
75
      GCCTGGTGCC TCATGGTCAG ACTCGGCTGT CTCACTCCCA GATATCTGAT TTTGCAAAAA
      GGGACACACC TATCTGCAGC AAAGAAGACA CTGACCAGAT TGCGAGCGGT GCTTTTGGAT
```

	GCTCTGTAGC	CACCCGGGGC	CCAGGAGGAC	${\tt TGACTCGGCA}$	GCAGGATTCG	TGCATGGGAA	360
	TCGGAGACCA	TGGCAGTGCA	GCTGGTGCCC	${\tt GACTCAGCTC}$	TCGGCCTGCT	GATGATGACG	420
	GAGGGCCGCC	GATGTCAAGT	ACATCTTCTT	GATGACAGGA	AGCTGGAACT	CCTAGTACAG	480
	CCCAAGCTGT	TCCCCAAGCA	CCTTCTTGAC	CTTGTGGCTT	CTCACTTCAA	TCTGAAGGAA	540
5				GAAACGGGAC			600
5							
				AAAAAGTCAG			660
				TACCTGAAGG			720
	TTCTTTCTGA	ACGCGAAGTC	CTGCATCTAC	AAGGAGCTTA	TTGACGTTGA	CAGCGAAGTG	780
	GTGTTTGAAT	TAGCTTCCTA	TATTTTACAG	GAGGCAAAGG	GAGATTTTTC	TAGCAATGAA	840
10				GCCCTTCCCA			900
10							960
				ATTGAGCACT			
				${\tt AGCATCGTGG}$			1020
	GTTCACTATT	ATGCAGTGAA	GGACAAGCAG	GGCATACCAT	GGTGGCTGGG	CCTGAGCTAC	1080
	AAAGGGATCT	TCCAGTATGA	CTACCATGAT	AAAGTGAAGC	CAAGAAAGAT	ATTCCAATGG	1140
15				AAGAAGTTTT			1200
13				GGGCACAGCG			1260
				TGGGCTATGG			1320
	TATCTGGACA	GAAAGCAGAG	TAAGTCCAAA	ATCCATGCAG	CACGCAGCCT	GAGTGAGATC	1380
	GCCATCGACC	TGACCGAGAC	GGGGACGCTG	AAGACCTCGA	AGCTGGCCAA	CATGGGTAGC	1440
20	AAGGGGAAGA	TCATCAGCGG	CAGCAGCGGC	AGCCTGCTGT	CTTCAGGTTC	TCAGGAATCA	1500
				CTGGCTGCCT			1560
	CTGGAGGAAA	CCCTGCGTCA	GAGGCTGGAG	GAACTGAAGA	AGCTGTGTCT	CCGAGAAGCT	1620
				CCCCTGGATC			1680
	GTTCGGAGAA	GAATAGGAAC	AGCCTTCAAA	CTGGATGAAC	AGAAAATCCT	GCCCAAAGGA	1740
25				GAGTTTGCCA			1800
				GTCAGCAAAA			1860
							1920
				CAGGAGATTG			
				AGGGCTTCGC			1980
	ATTGCCAGTG	AAGACAGCTC	CCTCTCAGAT	GCCCTTGTTC	TTGAGGATGA	AGACTCTCAG	2040
30	GTTACCAGCA	CAATATCCCC	CCTACATTCT	CCTCACAAGG	GACTCCCTCC	TCGGCCACCG	2100
				CTGGAGGGAC			2160
				CCCAAAATGT			2220
				TCTCACAGCC			2280
				GGCGGAGGAA			2340
35				CAGTCCAGCA			2400
	CGGGTCCGGA	GTCCCCACTA	CGTCCATTCC	ACGAGGTCGG	TGGACATCAG	CCCCACCCGA	2460
				CGGAGCTCCA			2520
				CCCGACTTCT			2580
	CICCIGGCI	CGGAAAACGA	CACCGGGAGC	CCCGACTICI	GOT GGGT GTG	GACICGIAGC	
40				${\tt TCGTCGTGCA}$			2640
40	CACTACTACC	CGGCGCAGAT	GAACGCCAAC	TACTCCACGC	TGGCCGAGGA	CTCGCCGTCC	2700
	AAGGCGCGCC	AGAGGCAGAG	GCAGCGGCAG	CGGGCGGCGG	GCGCACTGGG	CTCAGCCAGC	2760
				GGGGGTGCGG			2820
				CCCAGCTCGC			2880
4 ~				GTGGTGGTGC			2940
45				AAGACGTCCA			3000
	CTGTTCAAGG	AGAGCTGGCG	CGGCGGCGGC	GGCGACGAGG	GCGACACGGG	CCGCCTGACG	3060
				TCGCTGGGCC			3120
				CTGCGCCAGT			3180
	GGCGCGGCC	GIGCCGCCGI	CICAGACGAG	CIGCGCCAGI	GGTACCAGCA	TICCACCOCC	
70				ACCAGCTCCA			3240
50				GTGGCGCACA			3300
	CAGATGTGCA	AGGCCACGTC	AGCTGCCTTA	CCTCAAAGCC	AGAGAAGCTC	GACACCGTCA	3360
	AGTGAAATTG	GAGCCACCCC	CCCAAGCAGC	CCCCACCACA	TCCTAACCTG	GCAGACTGGA	3420
				GGGTCTGAGT			3480
				TTCCTGGATT			3540
EE	GATGAA <u>TAG</u> A	GGAGCTACAA	IGATAGCIGI	TICCIGGATI	CCICCCICIA	CENGANCIA	
55	GCTGATGTCC	AGTGGTACGG	GCAGGAAAAA	GCCAAGCCCG	GGACCCTCGT	GTGAGCCAGC	3600
	CCGGCCTAAT	CTGACCGCCT	CAACGCCATT	CTGAGATCAC	CTCACTGCCT	CTCATTTGCC	3660
	TTACCCAGAC	GCACCGTCAC	CCTGCACCAG	CTTTGGCCCT	CAGCACTTTT	TTTCTCCTGT	3720
	CTCCGCATTC	CCTCCCCCTT	GAAAACCTGA	CTGAGGAGAC	ATTCTGGAAG	GTTCCGGTCC	3780
	CACTCTCTCT	CCCCTCCCCC	TOTTOCOCAT	AGAGAGCCAG	ACACCAATCC	TCAATGGCAC	3840
60 .							
00 .				CTAGGCCAGG			3900
				GGGAGAGAAC			3960
				GTCCAGCCTG			4020
	CAAGCACTTC	ATGAAGAGGA	GGCCTCGTGG	CATATTCAGT	TTACACCTGA	AATATTCCTT	4080
				GGAAGGGGAG			4140
65							
65				AGTTCTATGC			4200
				AGGAAGACAT			4260
	TTTTAAATTC	TGAACTGCTA	CTACACACAA	GTGAAAGTCA	ACCCTATGTA	AACTGGTGTC	4320
	CTCTCTCTAG	CCCTCTCCCT	TACTGGCCCA	CTTCTCTCTC	CGTAGAGAGC	CTGAAAAACT	4380
	CCCCCAATCC	CACCCTAAAC	CCCACCAACT	CTTGGCTGGC	GТТGСТG∆СТ	CACAGTCGCC	4440
70							
70	ATCCATCTGG	MCACAAAGAG	ACACCIGIGG	GAGTCATAGA	GGGTVCIGII	TACCCCCGGTC	4500
	CATGCAGGGG	GTTCAGCCGA	GCCCAAGACT	CAAAGCTGCT	TTCCTTTCAG	GATTTGTAGT	4560
				CTCTCTCATT			4620
	ATCCTATTTT	TTTGCATAAG	GTGTTTCATT	TTCGTTTTTA	TGGGAAACCA	AGGGAAAAGC	4680
	አርአጥፐርርርአጥ	ССУДТСУСТС	TTTAACTGTC	GTGGCTCATT	TTCTGTTCGT	TAGCACTTGT	4740
75	TITILITICAL	YGGGGAYGYGG	רכא טיייטייטייטי	TATGTGTCAC	ΤΤΣΤΤΟΟΣΣΟ	AACCCAACTA	4800
15							
	TGCCCTTAGG	TAGAAAGATT	TGACTCGTGT	GTCTACTAGC	CAACAGGCAG	WGCWGGT.T.C	4860

```
AAAAAATAT CAGCTCCCAA AGGGCCCATG TGTCTACATC ATCAGTTACT GTCATGCACC 4920
     ACATTTGTGT GCAGATACCA AAAGAGGAGG AAAGAAGAAA AAAATTAATG TGTGGGAGCT
      GCACGTTTAC ATGTTTTGAG CTATGCTTCA AACACAACTG GAAAGCCATC AATCTTCAAA
                                                                         5040
     GGCCTCAAAA ATACTTTTAT AGTAACAAGT GCACGACTTT AGTTGGGTTA TTCAAGATGG
                                                                         5100
      CACAAAAAGG TTTCCGCAGA GGTGGTATGC TGTGCTTTTG GCGCAAGTGG TGGGGGGATG
                                                                         5160
      GGGGTGGGGG TGGAATTTTT TTCTCACTCT AATGACTTCC TATTGGAAAG GCATTGACAG
                                                                         5220
      CCAGGGACAG GAGCCAGGGT GGGGGTAGTT TTGTGGGAAA GCAGAACTGA AGTTAGCTTA
                                                                         5280
      AGCATAAAAA CAAAGAAAAA TCTTCGCTTT TCATGTATGT GGAATCCAAG AATAACCATA
                                                                         5340
      GGCTCTACCA GACCAGGAGG GTAAGGATGG ACACTAAAAT GAAACAAATA CCAAGGTATT
                                                                         5400
10
      CCTTCTGCTG CAGCCTGGAG ACCACCGAGA GTCGAGCTGG GGCACACACA CACCTGGCCG
      GGACCCGGCA GGGACAAGGC GGGCCGTGGC CTCCTCCACC AAGTCTCTCT AGACAATTCA
      GGGCCTGCTT TCCCCAGCTC CATGCATGGC TGGACTGGTG ATTCCAGGGT GCAGAAGGGA
                                                                         5580
      TTCATATTCC CAGAACGCTT TAAGTGTACA CCTGCAGGAT AAAGAGATAC CGGTTACATT
                                                                         5640
      ATTAAATGAT TCTAGGGATT CACTGGGGGA TATTTTTGTT GCTTTTACTT TCATGGTTAG
                                                                         5700
15
      AGCTACAAAG AACAGTGATT TTTTTTTTT CTCCCTTCCC CATTCAGAAA CATTATACAT
      TGGGCCATTT TTCTTTCTCC CAAAGAAGAT TCATGGATAG TCAGACTGAA CTGTGTGCAA
                                                                         5820
      CAGGAAAAGT CAAAAGGGAA AAGGCAGCTG ATGAGGTTAC ATGGTTACAT GTTCTACATC
                                                                         5880
      ATGCAGAGTA GCTTGAAATC TAGTCTGGAG AAAACTGGAT CAAGATTCTA GCCCACTGGA
                                                                         5940
      GTTGCAAGGA ATGAGAGGCA AAAATTCTAA AGATTTGGGT TATATTTTCA ACTTGGGGGA
      CAGAGAGAAA TGGAGAGCAG GAATTACAGT TCCAACAAAC ATCATGATAG TCTGGTAGTC
20
      AAGACAGAGA TTAAGTAAAA CAGGTTTTAC TGTTTAGCTG AGTTCAGTTA ATACAAAATG
                                                                         6120
      TACATAAAAC GTTAGTCCTT TGAGACTGAC ATGATTAATG ATCAGTGTGG TGGGAAATGA
                                                                         6180
      TGTAGTTATT GTACACAGC ACTTGCAAAC TCTTTATCCC TATTTCTTTA AAACAAAATA
                                                                         6240
      AGGTGAAATA CGAAGTCCTT GGTCTGATAT AAAGCCCCTA TTGGATTCTT CGGATGCGTA
                                                                         6300
25
      AAAGAAATTG CCTGTTTCAG CCAGAAGACT GGTGAAAACA CATACATCAG ACTATGTTGT
                                                                         6360
      GAGCCAGGTT GATTTTTTAT TTTATTATAT GCAGGTGAGT GTTGAAACTG TTAAAATTCC
                                                                         6420
      AATTTGTTTT CATTCAGTAT TAGTTTAGTT CTAAATATAG CAAACCCCAT CCAGGTGCTA
                                                                         6480
      TCAGATGACC AGTTACTGCT TAGTTAACTA GGTGTAAAGT TTTACATATA CATTAATTTC
      AATAGTTTAT TACAAGTTGT GTAAAATGGA CTCTAGTTTA ATAATGGGGG AAAAAAAGATT
                                                                         6600
30
      AGGTTGCTCC TGAAACTGAC TGTAGAGCAT GTAAAATGAT TTTACTGGAT TCTGTTCAAC
                                                                         6660
      TGTAATCAAT GAAAAAGATG TACGTTGTAG ACAAAGTTGC AGAATTAAAA AAAGAAATCT
                                                                         6720
      GCTTTTAATT TATTCTTTTT GTATTAAGAA TTTGTATAGT ATCTTTACAT TTTGCAAAAC
      AGTGTTGTCA ACACTTATTA AAGCATTTTC AAAATG
35
      Seq ID NO: 32 Protein sequence:
      Protein Accession #: BAA92532
40
                            21
                                       31
                                                  41
                                                             51
                 11
      MAVQLVPDSA LGLLMMTEGR RCQVHLLDDR KLELLVQPKL LAKELLDLVA SHFNLKEKEY
      FGIAFTDETG HLNWLQLDRR VLEHDFPKKS GPVVLYFCVR FYIESISYLK DNATIELFFL
                                                                          120
      NAKSCIYKEL IDVDSEVVFE LASYILQEAK GDFSSNEVVR SDLKKLPALP TQALKEHPSL
                                                                          180
45
      AYCEDRVIEH YKKLNGQTRG QAIVNYMSIV ESLPTYGVHY YAVKDKQGIP WWLGLSYKGI
                                                                          240
      FQYDYHDKVK PRKIFQWRQL ENLYFREKKF SVEVHDPRRA SVTRRTFGHS GIAVHTWYAC
      PALIKSIWAM AISQHQFYLD RKQSKSKIHA ARSLSEIAID LTETGTLKTS KLANMGSKGK
                                                                          360
      IISGSSGSLL SSGSQESDSS QSAKKDMLAA LKSRQEALEE TLRQRLEELK KLCLREAELT
                                                                          420
      GKLPVEYPLD PGEEPPIVRR RIGTAFKLDE QKILPKGEEA ELERLEREFA IQSQITEAAR
50
      RLASDPNVSK KLKKORKTSY LNALKKLOEI ENAINENRIK SGKKPTQRAS LIIDDGNIAS
      EDSSLSDALV LEDEDSQVTS TISPLHSPHK GLPPRPPSHN RPPPPQSLEG LRQMHYHRND
      YDKSPIKPKM WSESSLDEPY EKVKKRSSHS HSSSHKRFPS TGSCAEAGGG SNSLQNSPIR
                                                                          660
      GLPHWNSQSS MPSTPDLRVR SPHYVHSTRS VDISPTRLHS LALHFRHRSS SLESQGKLLG
                                                                          720
      SENDTGSPDF YTPRTRSSNG SDPMDDCSSC TSHSSSEHYY PAQMNANYST LAEDSPSKAR
      QRQRQRQRAA GALGSASSGS MPNLAARGGA GGAGGAGGGV YLHSQSQPSS QYRIKEYPLY
55
                                                                          840
      IEGGATPVVV RSLESDQECH YSVKAQFKTS NSYTAGGLFK ESWRGGGGDE GDTGRLTPSR
                                                                          900
      SQILRTPSLG REGAHDKGAG RAAVSDELRQ WYQRSTASHK EHSRLSHTSS TSSDSGSQYS
                                                                          960
      TSSQSTFVAH SRVTRMPQMC KATSAALPQS QRSSTPSSEI GATPPSSPHH ILTWQTGEAT
                                                                         1020
      ENSPILDGSE SPPHOSTDE
60
      Seq ID NO: 33 Nucleotide sequence:
      Nucleic Acid Accession #: NM 014331
      Coding sequence: 1..1506 (underlined sequences correspond to start and stop codons)
65
                 11
                            21
                                       31
                                                             51
      1
      ATGGTCAGAA AGCCTGTTGT GTCCACCATC TCCAAAGGAG GTTACCTGCA GGGAAATGTT
                                                                           60
70
      AACGGGAGGC TGCCTTCCCT GGGCAACAAG GAGCCACCTG GGCAGGAGAA AGTGCAGCTG
                                                                          120
      AAGAGGAAAG TCACTTTACT GAGGGGAGTC TCCATTATCA TTGGCACCAT CATTGGAGCA
                                                                          180
      GGAATCTTCA TCTCTCCTAA GGGCGTGCTC CAGAACACGG GCAGCGTGGG CATGTCTCTG
      ACCATCTGGA CGGTGTGTGG GGTCCTGTCA CTATTTGGAG CTTTGTCTTA TGCTGAATTG
                                                                          300
      GGAACAACTA TAAAGAAATC TGGAGGTCAT TACACATATA TTTTGGAAGT CTTTGGTCCA
                                                                          360
75
      TTACCAGCTT TTGTACGAGT CTGGGTGGAA CTCCTCATAA TACGCCCTGC AGCTACTGCT
                                                                          420
      GTGATATCCC TGGCATTTGG ACGCTACATT CTGGAACCAT TTTTTATTCA ATGTGAAATC
```

```
CCTGAACTTG CGATCAAGCT CATTACAGCT GTGGGCATAA CTGTAGTGAT GGTCCTAAAT
      AGCATGAGTG TCAGCTGGAG CGCCCGGATC CAGATTTTCT TAACCTTTTG CAAGCTCACA
      GCAATTCTGA TAATTATAGT CCCTGGAGTT ATGCAGCTAA TTAAAGGTCA AACGCAGAAC
                                                                           660
      TTTAAAGACG CGTTTTCAGG AAGAGATTCA AGTATTACGC GGTTGCCACT GGCTTTTAT
                                                                           720
 5
      TATGGAATGT ATGCATATGC TGGCTGGTTT TACCTCAACT TTGTTACTGA AGAAGTAGAA
                                                                           780
      AACCCTGAAA AAACCATTCC CCTTGCAATA TGTATATCCA TGGCCATTGT CACCATTGGC
                                                                           840
      TATGTGCTGA CAAATGTGGC CTACTTTACG ACCATTAATG CTGAGGAGCT GCTGCTTTCA
      AATGCAGTGG CAGTGACCTT TTCTGAGCGG CTACTGGGAA ATTTCTCATT AGCAGTTCCG
                                                                          960
      ATCTTTGTTG CCCTCTCCTG CTTTGGCTCC ATGAACGGTG GTGTGTTTGC TGTCTCCAGG
                                                                         1020
10
      TTATTCTATG TIGCGTCTCG AGAGGGTCAC CTTCCAGAAA TCCTCTCCAT GATTCATGTC
      CGCAAGCACA CTCCTCTACC AGCTGTTATT GTTTTGCACC CTTTGACAAT GATAATGCTC
                                                                         1140
      TTCTCTGGAG ACCTCGACAG TCTTTTGAAT TTCCTCAGTT TTGCCAGGTG GCTTTTTATT
                                                                         1200
      GGGCTGGCAG TTGCTGGGCT GATTTATCTT CGATACAAAT GCCCAGATAT GCATCGTCCT
                                                                         1260
      TTCAAGGTGC CACTGTTCAT CCCAGCTTTG TTTTCCTTCA CATGCCTCTT CATGGTTGCC
15
      CTTTCCCTCT ATTCGGACCC ATTTAGTACA GGGATTGGCT TCGTCATCAC TCTGACTGGA
      GTCCCTGCGT ATTATCTCTT TATTATATGG GACAAGAAAC CCAGGTGGTT TAGAATAATG
                                                                         1440
      TCAGAGAAAA TAACCAGAAC ATTACAAATA ATACTGGAAG TTGTACCAGA AGAAGATAAG
                                                                         1500
      TTATGAACTA ATGGACTTGA GATCTTGGCA ATCTGCCCAA GGGGAGACAC AAAATAGGGA
                                                                         1560
      TTTTTACTTC ATTTTCTGAA AGTCTAGAGA ATTACAACTT TGGTGATAAA CAAAAGGAGT
20
      CAGTTATTTT TATTCATATA TTTTAGCATA TTCGAACTAA TTTCTAAGAA ATTTAGTTAT
      AACTCTATGT AGTTATAGAA AGTGAATATG CAGTTATTCT ATGAGTCGCA CAATTCTTGA
                                                                         1740
      GTCTCTGATA CCTACCTATT GGGGTTAGGA GAAAAGACTA GACAATTACT ATGTGGTCAT
                                                                         1800
      TCTCTACAAC ATATGTTAGC ACGGCAAAGA ACCTTCAAAT TGAAGACTGA GATTTTTCTG
                                                                         1860
      TATATATGGG TTTTGTAAAG ATGGTTTTAC ACACTACAGA TGTCTATACT GTGAAAAGTG
                                                                          1920
25
      TTTTCAATTC TGAAAAAAG CATACATCAT GATTATGGCA AAGAGGAGAG AAAGAAATTT
                                                                         1980
      ATTTTACATT GACATTGCAT TGCTTCCCCT TAGATACCAA TTTAGATAAC AAACACTCAT
                                                                         2040
      GCTTTAATGG ATTATACCCA GAGCACTTTG AACAAAGGTC AGTGGGGATT GTTGAATACA
                                                                         2100
      TTAAAGAAGA GTTTCTAGGG GCTACTGTTT ATGAGACACA TCCAGGAGTT ATGTTTAAGT
                                                                         2160
      AAAAATCCTT GAGAATTTAT TATGTCAGAT GTTTTTCAT TCATTATCAG GAAGTTTTAG
                                                                         2220
30
      TTATCTGTCA TTTTTTTTT TCACATCAGT TTGATCAGGA AAGTGTATAA CACATCTTAG
                                                                         2280
      AGCAAGAGTT AGTTTGGTAT TAAATCCTCA TTAGAACAAC CACCTGTTTC ACTAATAACT
      TACCCCTGAT GAGTCTATCT AAACATATGC ATTTTAAGCC TTCAAATTAC ATTATCAACA
      TGAGAGAAAT AACCAACAAA GAAGATGTTC AAAATAATAG TCCCATATCT GTAATCATAT
                                                                         2460
      CTACATGCAA TGTTAGTAAT TCTGAAGTTT TTTAAATTTA TGGCTATTTT TACACGATGA
                                                                          2520
35
      TGAATTTTGA CAGTTTGTGC ATTTTCTTTA TACATTTTAT ATTCTTCTGT TAAAATATCT
                                                                          2580
      CTTCAGATGA AACTGTCCAG ATTAATTAGG AAAAGGCATA TATTAACATA AAAATTGCAA
      AAGAAATGTC GCTGTAAATA AGATTTACAA CTGATGTTTC TAGAAAATTT CCACTTCTAT
      ATCTAGGCTT TGTCAGTAAT TTCCACACCT TAATTATCAT TCAACTTGCA AAAGAGACAA
                                                                         2760
      CTGATAAGAA GAAAATTGAA ATGAGAATCT GTGGATAAGT GTTTGTGTTC AGAAGATGTT
                                                                         2820
40
      GTTTTGCCAG TATTAGAAAA TACTGTGAGC CGGGCATGGT GGCTTACATC TGTAATCCCA
                                                                          2880
      GCACTTTGGG AGGCTGAGGG GGTGGATCAC CTGAGGTCGG GAGTTCTAGA CCAGCCTGAC
                                                                          2940
      CAACATGGAG AAACCCCATC TCTACTAAAA ATACAAAATT AGCTGGGCAT GGTGGCACAT
                                                                          3000
      GCTGGTAATC TCAGCTATTG AGGAGGCTGA GGCAGGAGAA TTGCTTGAAC CCGGGAGGCG
                                                                         3060
      GAGGTTGCAG TGAGCCAAGA TTGCACCACT GTACTCCAGC CTGGGTGACA AAGTCAGACT 3120
45
      CCATCTCCAA AAAAAAAAAA AAAA
      Seq ID NO: 34 Protein sequence:
      Protein Accession #: NP_055146
50
                 11
                            21
                                        31
                                                  41
                                                             51
      MVRKPVVSTI SKGGYLQGNV NGRLPSLGNK EPPGQEKVQL KRKVTLLRGV SIIIGTIIGA
      GIFISPKGVL QNTGSVGMSL TIWTVCGVLS LFGALSYAEL GTTIKKSGGH YTYILEVFGP
55
                                                                           120
      LPAFVRVWVE LLIIRPAATA VISLAFGRYI LEPFFIQCEI PELAIKLITA VGITVVMVLN
                                                                           180
      SMSVSWSARI OIFLTFCKLT AILIIIVPGV MQLIKGQTQN FKDAFSGRDS SITRLPLAFY
                                                                           240
      YGMYAYAGWF YLNFVTEEVE NPEKTIPLAI CISMAIVTIG YVLTNVAYFT TINAEELLLS
      NAVAVTFSER LLGNFSLAVP IFVALSCFGS MNGGVFAVSR LFYVASREGH LPEILSMIHV
                                                                           360
60
      RKHTPLPAVI VLHPLTMIML FSGDLDSLLN FLSFARWLFI GLAVAGLIYL RYKCPDMHRP
                                                                           420
      FKVPLFIPAL FSFTCLFMVA LSLYSDPFST GIGFVITLTG VPAYYLFIIW DKKPRWFRIM
                                                                           480
      SEKITRTLQI ILEVVPEEDK L
65
      Seq ID NO: 35 Nucleotide sequence:
      Nucleic Acid Accession #: NM_002422
      Coding sequence: 64..1497 (underlined sequences correspond to start and stop codons)
70
                            21
                                        31
                                                  41
                                                              51
                 11
      ACAAGGAGGC AGGCAAGACA GCAAGGCATA GAGACAACAT AGAGCTAAGT AAAGCCAGTG
      GAAATGAAGA GTCTTCCAAT CCTACTGTTG CTGTGCGTGG CAGTTTGCTC AGCCTATCCA
                                                                           120
      TTGGATGGAG CTGCAAGGGG TGAGGACACC AGCATGAACC TTGTTCAGAA ATATCTAGAA
                                                                           180
75
      AACTACTACG ACCTCAAAAA AGATGTGAAA CAGTTTGTTA GGAGAAAGGA CAGTGGTCCT
      GTTGTTAAAA AAATCCGAGA AATGCAGAAG TTCCTTGGAT TGGAGGTGAC GGGGAAGCTG
```

```
GACTCCGACA CTCTGGAGGT GATGCGCAAG CCCAGGTGTG GAGTTCCTGA TGTTGGTCAC
      TTCAGAACCT TTCCTGGCAT CCCGAAGTGG AGGAAAACCC ACCTTACATA CAGGATTGTG
                                                                           420
      AATTATACAC CAGATTTGCC AAAAGATGCT GTTGATTCTG CTGTTGAGAA AGCTCTGAAA
      GTCTGGGAAG AGGTGACTCC ACTCACATTC TCCAGGCTGT ATGAAGGAGA GGCTGATATA
                                                                           540
 5
      ATGATCTCTT TTGCAGTTAG AGAACATGGA GACTTTTACC CTTTTGATGG ACCTGGAAAT
                                                                           600
      GTTTTGGCCC ATGCCTATGC CCCTGGGCCA GGGATTAATG GAGATGCCCA CTTTGATGAT
                                                                           660
      GATGAACAAT GGACAAAGGA TACAACAGGG ACCAATTTAT TTCTCGTTGC TGCTCATGAA
                                                                           720
      ATTGGCCACT CCCTGGGTCT CTTTCACTCA GCCAACACTG AAGCTTTGAT GTACCCACTC
                                                                           780
      TATCACTCAC TCACAGACCT GACTCGGTTC CGCCTGTCTC AAGATGATAT AAATGGCATT
                                                                           840
10
      CAGTCCCTCT ATGGACCTCC CCCTGACTCC CCCTGAGACCC CCCTGGTACC CACGGAACCT
                                                                           900
      GTCCCTCCAG AACCTGGGAC GCCAGCCAAC TGTGATCCTG CTTTGTCCTT TGATGCTGTC
                                                                          960
      AGCACTCTGA GGGGAGAAAT CCTGATCTTT AAAGACAGGC ACTTTTGGCG CAAATCCCTC
                                                                          1020
      AGGAAGCTTG AACCTGAATT GCATTTGATC TCTTCATTTT GGCCATCTCT TCCTTCAGGC
                                                                         1080
      GTGGATGCCG CATATGAAGT TACTAGCAAG GACCTCGTTT TCATTTTTAA AGGAAATCAA 1140
15
       TTCTGGGCCA TCAGAGGAAA TGAGGTACGA GCTGGATACC CAAGAGGCAT CCACACCCTA 1200
       GGTTTCCCTC CAACCGTGAG GAAAATCGAT GCAGCCATTT CTGATAAGGA AAAGAACAAA
       ACATATTCT TTGTAGAGGA CAAATACTGG AGATTTGATG AGAAGAGAAA TTCCATGGAG
       CCAGGCTTTC CCAAGCAAAT AGCTGAAGAC TTTCCAGGGA TTGACTCAAA GATTGATGCT
                                                                          1380
       GTTTTTGAAG AATTTGGGTT CTTTTATTTC TTTACTGGAT CTTCACAGTT GGAGTTTGAC
                                                                          1440
20
       CCAAATGCAA AGAAAGTGAC ACACACTTTG AAGAGTAACA GCTGGCTTAA TTGT<u>TGA</u>AAG
       AGATATGTAG AAGGCACAAT ATGGGCACTT TAAATGAAGC TAATAATTCT TCACCTAAGT
                                                                          1560
       CTCTGTGAAT TGAAATGTTC GTTTTCTCCT GCCTGTGCTG TGACTCGAGT CACACTCAAG
                                                                          1620
       GGAACTTGAG CGTGAATCTG TATCTTGCCG GTCATTTTTA TGTTATTACA GGGCATTCAA 1680
       ATGGGCTGCT GCTTAGCTTG CACCTTGTCA CATAGAGTGA TCTTTCCCAA GAGAAGGGGA
25
       AGCACTCGTG TGCAACAGAC AAGTGACTGT ATCTGTGTAG ACTATTTGCT TATTTAATAA 1800
       AGACGATTTG TCAGTTGTTT T
      Seq ID NO: 36 Protein sequence:
Protein Accession #: NP_002413
30
                                                              51
                            21
                                                   41
                 11
                                       31
      MKSLPILLL CVAVCSAYPL DGAARGEDTS MNLVQKYLEN YYDLKKDVKQ FVRRKDSGPV
35
      VKKIREMOKF LGLEVTGKLD SDTLEVMRKP RCGVPDVGHF RTFPGIPKWR KTHLTYRIVN
      YTPDLPKDAV DSAVEKALKV WEEVTPLTFS RLYEGEADIM ISFAVREHGD FYPFDGPGNV
                                                                           180
      LAHAYAPGPG INGDAHFDDD EQWTKDTTGT NLFLVAAHEI GHSLGLFHSA NTEALMYPLY
      HSLTDLTRFR LSQDDINGIQ SLYGPPPDSP ETPLVPTEPV PPEPGTPANC DPALSFDAVS
                                                                           300
40
      TLRGEILIFK DRHFWRKSLR KLEPELHLIS SFWPSLPSGV DAAYEVTSKD LVFIFKGNQF
                                                                           360
      WAIRGNEVRA GYPRGIHTLG FPPTVRKIDA AISDKEKNKT YFFVEDKYWR FDEKRNSMEP
      GFPKQIAEDF PGIDSKIDAV FEEFGFFYFF TGSSQLEFDP NAKKVTHTLK SNSWLNC
45
      Seq ID NO: 37 Nucleotide sequence:
      Nucleic Acid Accession #: NM 003246
      Coding sequence: 112..3624 (underlined sequences correspond to start and stop codons)
50
                                        31
                                                   41
                                                              51
                 11
                            21
      GGACGCACAG GCATTCCCCG CGCCCTCCA GCCCTCGCCG CCCTCGCCAC CGCTCCCGGC
                                                                            60
      120
      GCCTGGGGAC TAGGCGTCCT GTTCCTGATG CATGTGTGTG GCACCAACCG CATTCCAGAG
      TCTGGCGGAG ACAACAGCGT GTTTGACATC TTTGAACTCA CCGGGGCCGC CCGCAAGGGG
TCTGGGCGCC GACTGGTGAA GGGCCCCGAC CCTTCCAGCC CAGCTTTCCG CATCGAGGAT
55
                                                                           240
      GCCAACCTGA TCCCCCCTGT GCCTGATGAC AAGTTCCAAG ACCTGGTGGA TGCTGTGCGG
                                                                           360
      GCAGAAAAGG GTTTCCTCCT TCTGGCATCC CTGAGGCAGA TGAAGAAGAC CCGGGGCACG
                                                                           420
      CTGCTGGCCC TGGAGCGGAA AGACCACTCT GGCCAGGTCT TCAGCGTGGT GTCCAATGGC
      AAGGCGGGCA CCCTGGACCT CAGCCTGACC GTCCAAGGAA AGCAGCACGT GGTGTCTGTG
60
                                                                           540
      GAAGAAGCTC TCCTGGCAAC CGGCCAGTGG AAGAGCATCA CCCTGTTTGT GCAGGAAGAC
                                                                           600
      AGGGCCCAGC TGTACATCGA CTGTGAAAAG ATGGAGAATG CTGAGTTGGA CGTCCCCATC
      CAAAGCGTCT TCACCAGAGA CCTGGCCAGC ATCGCCAGAC TCCGCATCGC AAAGGGGGGC
                                                                           720
      GTCAATGACA ATTTCCAGGG GGTGCTGCAG AATGTGAGGT TTGTCTTTGG AACCACCA
65
      GAAGACATCC TCAGGAACAA AGGCTGCTCC AGCTCTACCA GTGTCCTCCT CACCCTTGAC
                                                                           840
      AACAACGTGG TGAATGGTTC CAGCCCTGCC ATCCGCACTA ACTACATTGG CCACAAGACA
      AAGGACTTGC AAGCCATCTG CGGCATCTCC TGTGATGAGC TGTCCAGCAT GGTCCTGGAA
      CTCAGGGGCC TGCGCACCAT TGTGACCACG CTGCAGGACA GCATCCGCAA AGTGACTGAA
                                                                          1020
      GAGAACAAAG AGTTGGCCAA TGAGCTGAGG CGGCCTCCCC TATGCTATCA CAACGGAGTT
                                                                          1080
70
      CAGTACAGAA ATAACGAGGA ATGGACTGTT GATAGCTGCA CTGAGTGTCA CTGTCAGAAC
      TCAGTTACCA TCTGCAAAAA GGTGTCCTGC CCCATCATGC CCTGCTCCAA TGCCACAGTT
      CCTGATGGAG AATGCTGTCC TCGCTGTTGG CCCAGCGACT CTGCGGACGA TGGCTGGTCT
      CCATGGTCCG AGTGGACCTC CTGTTCTACG AGCTGTGGCA ATGGAATTCA GCAGCGCGGC
                                                                          1320
      CGCTCCTGCG ATAGCCTCAA CAACCGATGT GAGGGCTCCT CGGTCCAGAC ACGGACCTGC
                                                                          1380
75
      CACATTCAGG AGTGTGACAA AAGATTTAAA CAGGATGGTG GCTGGAGCCA CTGGTCCCCG
      TGGTCATCTT GTTCTGTGAC ATGTGGTGAT GGTGTGATCA CAAGGATCCG GCTCTGCAAC
```

					4		
	TCTCCCAGCC	CCCAGATGAA	TGGGAAACCC	TGTGAAGGCG	AAGCGCGGGA	GACCAAAGCC	1560
		ACGCCTGCCC					1620
		CCTGTGGAGG					1680
_		GAGGCAAGGA					1740
5	CAGGACTGTC	${\tt CAATTGATGG}$	ATGCCTGTCC	AATCCCTGCT	TTGCCGGCGT	GAAGTGTACT	1800
	AGCTACCCTG	ATGGCAGCTG	GAAATGTGGT	GCTTGTCCCC	CTGGTTACAG	TGGAAATGGC	1860
		CAGATGTTGA					1920
		GGTGTGAGAA					1980
10		CACAGCCCTT					2040
10		GTAACCCCTG					2100
	AACTACCTGG	GCCACTATAG	CGACCCCATG	TACCGCTGCG	AGTGCAAGCC	TGGCTACGCT	2160
	GGCAATGGCA	TCATCTGCGG	GGAGGACACA	GACCTGGATG	GCTGGCCCAA	TGAGAACCTG	2220
		CCAATGCGAC					2280
1 5		AAGACTATGA					2340
15		TTCCAGATGA					2400
	GACTATGACA	GAGATGATGT	GGGAGACCGC	TGTGACAACT	GTCCCTACAA	CCACAACCCA	2460
	GATCAGGCAG	ACACAGACAA	CAATGGGGAA	GGAGACGCCT	GTGCTGCAGA	CATTGATGGA	2520
		TCAATGAACG					2580
		ATGGGGTTGG					2640
20							
20		CTGACTCAGA					2700
	GAAGATGGCC	ACCAGAACAA	TCTGGACAAC	TGTCCCTATG	TGCCCAATGC	CAACCAGGCT	2760
	GACCATGACA	AAGATGGCAA	GGGAGATGCC	TGTGACCACG	ATGATGACAA	CGATGGCATT	2820
	CCTGATGACA	AGGACAACTG	CAGACTCGTG	CCCAATCCCG	ACCAGAAGGA	CTCTGACGGC	2880
		GTGATGCCTG					2940
25							3000
43		CTGAGAATGT					
		CCAAAGGGAC					3060
	AAAGAACTCG	TCCAGACTGT	CAACTGTGAT	CCTGGACTCG	CTGTAGGTTA	TGATGAGTTT	3120
	AATGCTGTGG	ACTTCAGTGG	CACCTTCTTC	ATCAACACCG	AAAGGGACGA	TGACTATGCT	3180
		TTGGCTACCA					3240
30		ACTGGGACAC					3300
50							
		ACTCCACCAC					3360
		CTGGCCAGGT					3420
	GATTTCACCG	CCTACAGATG	GCGTCTCAGC	CACAGGCCAA	AGACGGGTTT	CATTAGAGTG	3480
	GTGATGTATG	AAGGGAAGAA	AATCATGGCT	GACTCAGGAC	CCATCTATGA	TAAAACCTAT	3540
35		GACTAGGGTT					3600
55							3660
		GTAGAGATCC					
		TTGCACCTTC					3720
	CTTGGCTTCC	TTCTTTTCTG	TGCTTGCATC	AGTGTGGACT	CCTAGAACGT	GCGACCTGCC	3780
	TCAAGAAAAT	GCAGTTTTCA	AAAACAGACT	CATCAGCATT	CAGCCTCCAA	TGAATAAGAC	3840
40		CATATAAACA					3900
10		GTGCCCATTC					3960
		CAGTGGACTC					4020
		AACAAAACCA					4080
	AAGCACTAAG	GGGAGGCGC	ATACCCGAGA	CGATTGTATG	AAGAAAATAT	GGAGGAACTG	4140
45		GGTACTAAGT					4200
10		CGTTAGCTGA					4260
		ACTGGCTTCT					4320
	AGTGGCCAGA	ATTAGGGAAT	CAGAATCAAA	CCAGTGTAAG	GCAGTGCTGG	CTGCCATTGC	4380
	CTGGTCACAT	TGAAATTGGT	GGCTTCATTC	TAGATGTAGC	TTGTGCAGAT	GTAGCAGGAA	4440
50	AATAGGAAAA	CCTACCATCT	CAGTGAGCAC	CAGCTGCCTC	CCAAAGGAGG	GGCAGCCGTG	4500
	CւժւնΣւներ	TATGGTTACA	ATGGCACAA	ΑΤΤΑΤΤΑΤΓΑ	ACCTAACTAA	AACATTCCTT	4560
	mmcmcmmmmm	TCCGTAATTA	CONCOUNTE	mmcma ammcm	CTCTTTTCC	አርጥአጥር አጥጥጥ	4620
		TTTACGATGT					4680
	AGGATTATTC	ATGGAACAGG	AAGAAGCGTA	AAGACTATCC	ATGTCATCTT	TGTTGAGAGT	4740
55	CTTCGTGACT	GTAAGATTGT	AAATACAGAT	TATTTATTAA	CTCTGTTCTG	CCTGGAAATT	4800
	TAGGCTTCAT	ACCGAAAGTG	TTTGAGAGCA	AGTAGTTGAC	ATTTATCAGC	AAATCTCTTG	4860
						CTCAGAGTGG	4920
						TTGGTTATCC	4980
C O							5040
60	TCCCTTGTGC	ATATTTCCAG	GGAGAAGGAA	AGCATATACA	CTTTTTTCTT	TCATTTTTCC	5100
						ATTTGTTGTG	5160
							5220
						CAGAGAAGTA	5280
C =	TTCCCAATAA	GGAAATAGCA	TIGAAATGTT	AAATACAATT	TCTGAAAGTT	ATGTTTTTT	5340
65							5400
	TAGAATATTC	AGATTGTGTA	GATATGCTAT	TTAAATAATT	TATCAGGAAA	TACTGCCTGT	5460
						TTGTTGGTTT	5520
						CCCATTTTTA	5580
							5640
70						TTATCCATTT	
70		AGCAGTGTAA		ACTGTTTCTT	ATGTACAAGG	AACAACAATA	5700
	AATCATATGG	AAATTTATAT	TT				

Seq ID NO: 38 <u>Protein sequence:</u> Protein Accession #: NP_003237

75

```
11
                            21
                                       31
                                                  41
                                                             51
      MGLAWGLGVL FLMHVCGTNR IPESGGDNSV FDIFELTGAA RKGSGRRLVK GPDPSSPAFR
      IEDANLIPPV PDDKFQDLVD AVRAEKGFLL LASLRQMKKT RGTLLALERK DHSGQVFSVV
 5
      SNGKAGTLDL SLTVQGKQHV VSVEEALLAT GQWKSITLFV QEDRAQLYID CEKMENAELD
                                                                          180
      VPIQSVFTRD LASIARLRIA KGGVNDNFQG VLQNVRFVFG TTPEDILRNK GCSSSTSVLL
                                                                          240
      TLDNNVVNGS SPAIRTNYIG HKTKDLOAIC GISCDELSSM VLELRGLRTI VTTLQDSIRK
      VTEENKELAN ELRRPPLCYH NGVOYRNNEE WTVDSCTECH CONSVTICKK VSCPIMPCSN
                                                                          360
      ATVPDGECCP RCWPSDSADD GWSPWSEWTS CSTSCGNGIQ QRGRSCDSLN NRCEGSSVQT
                                                                          420
10
      RTCHIQECDK RFKQDGGWSH WSPWSSCSVT CGDGVITRIR LCNSPSPQMN GKPCEGEARE
                                                                          480
      TKACKKDACP INGGWGPWSP WDICSVTCGG GVQKRSRLCN NPAPQFGGKD CVGDVTENQI
                                                                          540
      CNKQDCPIDG CLSNPCFAGV KCTSYPDGSW KCGACPPGYS GNGIQCTDVD ECKEVPDACF
      NHNGEHRCEN TDPGYNCLPC PPRFTGSQPF GQGVEHATAN KQVCKPRNPC TDGTHDCNKN
                                                                          660
      AKCNYLGHYS DPMYRCECKP GYAGNGIICG EDTDLDGWPN ENLVCVANAT YHCKKDNCPN
                                                                          720
15
      LPNSGQEDYD KDGIGDACDD DDDNDKIPDD RDNCPFHYNP AQYDYDRDDV GDRCDNCPYN
      HNPDOADTDN NGEGDACAAD IDGDGILNER DNCQYVYNVD QRDTDMDGVG DQCDNCPLEH
      NPDQLDSDSD RIGDTCDNNQ DIDEDGHQNN LDNCPYVPNA NQADHDKDGK GDACDHDDDN
                                                                          900
      DGIPDDKDNC RLVPNPDQKD SDGDGRGDAC KDDFDHDSVP DIDDICPENV DISETDFRRF
                                                                          960
      QMIPLDPKGT SQNDPNWVVR HQGKELVQTV NCDPGLAVGY DEFNAVDFSG TFFINTERDD
                                                                         1020
20
      DYAGFVFGYO SSSRFYVVMW KOVTOSYWDT NPTRAOGYSG LSVKVVNSTT GPGEHLRNAL
      WHTGNTPGQV RTLWHDPRHI GWKDFTAYRW RLSHRPKTGF IRVVMYEGKK IMADSGPIYD 1140
      KTYAGGRLGL FVFSQEMVFF SDLKYECRDP
25
      Seq ID NO: 39 Nucleotide sequence:
      Nucleic Acid Accession #: BC004299
      Coding sequence: 69..1235 (underlined sequences correspond to start and stop codons)
30
                            21
                                       31
                                                  41
                                                             51
      CCCGACCCGT GCGAGGGCCA GGTCCGCGCC TGCCCCGCCA GGCGAAGCGA GGCGACCCGC
      GTGCGGCCAT GCTTCGCTG CTGGGAGCCT ACCCTTGGCC CGAGGGTCTC GAGTGCCCGG
                                                                          120
35
      CCCTGGACGC CGAGCTGTCG GATGGACAAT CGCCGCCGGC CGTCCCCCGG CCCCCGGGGG
                                                                          180
      ACAAGGGCTC CGAGAGCCGT ATCCGGCGGC CCATGAACGC CTTCATGGTT TGGGCCAAGG
                                                                          240
      ACGAGAGGAA ACGGCTGGCA GTGCAGAACC CGGACCTGCA CAACGCCGAG CTCAGCAAGA
                                                                          300
      TGCTGGGAAA GTCGTGGAAG GCGCTGACGC TGTCCCAGAA GAGGCCGTAC GTGGACGAGG
                                                                          360
      CGGAGCGGCT GCGCCTGCAG CACATGCAGG ACTACCCCAA CTACAAGTAC CGGCCGCGCA
                                                                          420
40
      GGAAGAAGCA GGCCAAGCGG CTGTGCAAGC GCGTGGACCC GGGCTTCCTT CTGAGCTCCC
                                                                          480
      TCTCCCGGGA CCAGAACGCC CTGCCGGAGA AGAGAAGCGG CAGCCGGGGG GCGCTGGGGG
                                                                          540
      AGAAGGAGGA CAGGGGTGAG TACTCCCCCG GCACTGCCCT GCCCAGCCTC CGGGGCTGCT
      ACCACGAGGG GCCGGCTGGT GGTGGCGGCG GCGCACCCC GAGCAGTGTG GACACGTACC
                                                                          660
      CGTACGGGCT GCCCACACCT CCTGAAATGT CTCCCCTGGA CGTGCTGGAG CCGGAGCAGA
                                                                          720
45
      CCTTCTTCTC CTCCCCTGC CAGGAGGAGC ATGGCCATCC CCGCCGCATC CCCCACCTGC
                                                                          780
      CAGGGCACCC GTACTCACCG GAGTACGCCC CAAGCCCTCT CCACTGTAGC CACCCCCTGG
      GCTCCCTGGC CCTTGGCCAG TCCCCCGGCG TCTCCATGAT GTCCCCTGTA CCCGGCTGTC
                                                                          900
      960
      CCCACCTGGG CCAGCTTTCC CCGCCTCCTG AGCACCCTGG CTTCGACGCC CTGGATCAAC
                                                                         1020
50
      TGAGCCAGGT GGAACTCCTG GGGGACATGG ATCGCAATGA ATTCGACCAG TATTTGAACA
                                                                         1080
      CTCCTGGCCA CCCAGACTCC GCCACAGGGG CCATGGCCCT CAGTGGGCAT GTTCCGGTCT
      CCCAGGTGAC ACCAACGGGT CCCACAGAGA CCAGCCTCAT CTCCGTCCTG GCTGATGCCA
                                                                         1200
      CGGCCACGTA CTACAACAGC TACAGTGTGT CA<u>TAG</u>AGCTG GAGGCGCCCC GTCCGGTCAG
                                                                         1260
      CCCTCGCGCC CTCTCCTTCT TGTGCCTTGA GTGGCAGAGG AGCCGTCCAG CCACACCAGC 1320
      TTTCCTCCCA CCGCTCAGGG CAGGGAGGTC TGAACTGCGG CCCCAGAGCC TTTGGCCTAA GCTGGACTCT CCTTATCCGA GTGCCGCCTC TATCCCCTTC CCCACGTTCC AGCCCCTGCA
55
                                                                         1440
      GCCCACATTT TAAGTATATT CCTTCAAGTG AGTTTTCCTC CAGCCCCTGA GAGTTGCTGT
                                                                         1500
      CTCCCAGTGG AATGTTCACT GACGTCTTTT CTTGGTAGCC ATCATCGAAA CTAATGGGGG
                                                                         1560
      GACAGACTTG ATAGCCAAGG TCCCTTCTGG TCCAGTTTTC TGATTTAGGG TTCTCTCAAG
60
      ATTAATAAAG GAAGATGGGG AAATTTGACT CATTAATGAG CTCGCTAACC TACGATCTGG
                                                                         1680
      TGATAATTTT GTGTGCACAG CCCAAGGACC ACGAGGCTTT CTGCACTTTC TGCACCCCCT
                                                                         1740
      TCCAAAGTGA CCACAAAATT TCAAAGGGAC TCATACAATT TGAGAAAAAA CAGTCAACCT
                                                                         1800
      GATTTGAGAA ATTAACCAGT ATGGCTAACT ATATCACAGA AAATGGGATT GAGTTAAAAC
                                                                         1860
      TATTTATTT TAAATATACA TTTTAAAGCA GTTCTTTTTT TTTGTTAATT TGTTTATTAT
                                                                         1920
65
      ACACACACTT CAAGAGCCAC CGCGCCCAGC CTACATTTAT AATTTTCATT CTCTTTTACC
                                                                         1980
      TATAAAATTC AGTGTATTAG TTTCATTACA TAGGAGAAAT TATATTTCTA AACATTTTAT
                                                                         2040
      GATGTTTAAA AACAAAACAG GCTGTTGTAA AAAAAAAAA AAAAAAAAA
      Seq ID NO: 40 Protein sequence:
70
      Protein Accession #: AAH04299
                                                             51
                 11
                            21
                                       31
                                                  41
      MASLLGAYPW PEGLECPALD AELSDGQSPP AVPRPPGDKG SESRIRRPMN AFMVWAKDER
                                                                           60
75
      KRLAVQNPDL HNAELSKMLG KSWKALTLSQ KRPYVDEAER LRLQHMQDYP NYKYRPRRKK
                                                                          120
      OAKRLCKRVD PGFLLSSLSR DQNALPEKRS GSRGALGEKE DRGEYSPGTA LPSLRGCYHE
```

GPAGGGGGGT PSSVDTYPYG LPTPPEMSPL DVLEPEQTFF SSPCQEEHGH PRRIPHLPGH

```
PYSPEYAPSP LHCSHPLGSL ALGQSPGVSM MSPVPGCPPS PAYYSPATYH PLHSNLQAHL
                                                                            300
      GQLSPPPEHP GFDALDQLSQ VELLGDMDRN EFDQYLNTPG HPDSATGAMA LSGHVPVSQV
                                                                            360
      TPTGPTETSL ISVLADATAT YYNSYSVS
 5
      Seq ID NO: 41 Nucleotide sequence:
      Nucleic Acid Accession #: NM_004449
10
      Coding sequence: 1..1389 (underlined sequences correspond to start and stop codons)
                 11
                                                   41
                                                              51
      1
                            21
                                        31
15
      ATGATTCAGA CTGTCCCGGA CCCAGCAGCT CATATCAAGG AAGCCTTATC AGTTGTGAGT
      GAGGACCAGT CGTTGTTTGA GTGTGCCTAC GGAACGCCAC ACCTGGCTAA GACAGAGATG
      ACCGCGTCCT CCTCCAGCGA CTATGGACAG ACTTCCAAGA TGAGCCCACG CGTCCCTCAG
                                                                           180
      CAGGATTGGC TGTCTCAACC CCCAGCCAGG GTCACCATCA AAATGGAATG TAACCCTAGC
                                                                            240
      CAGGTGAATG GCTCAAGGAA CTCTCCTGAT GAATGCAGTG TGGCCAAAGG CGGGAAGATG
                                                                            300
20
      GTGGGCAGCC CAGACACCGT TGGGATGAAC TACGGCAGCT ACATGGAGGA GAAGCACATG
                                                                            360
      CCACCCCAA ACATGACCAC GAACGAGCGC AGAGTTATCG TGCCAGCAGA TCCTACGCTA
      TGGAGTACAG ACCATGTGCG GCAGTGGCTG GAGTGGGCGG TGAAAGAATA TGGCCTTCCA
                                                                            480
      GACGTCAACA TCTTGTTATT CCAGAACATC GATGGGAAGG AACTGTGCAA GATGACCAAG
                                                                            540
      GACGACTTCC AGAGGCTCAC CCCCAGCTAC AACGCCGACA TCCTTCTCTC ACATCTCCAC
                                                                            600
25
      TACCTCAGAG AGACTCCTCT TCCACATTTG ACTTCAGATG ATGTTGATAA AGCCTTACAA
      AACTCTCCAC GGTTAATGCA TGCTAGAAAC ACAGATTTAC CATATGAGCC CCCCAGGAGA
                                                                            720
      TCAGCCTGGA CCGGTCACGG CCACCCCACG CCCCAGTCGA AAGCTGCTCA ACCATCTCCT
                                                                            780
      TCCACAGTGC CCAAAACTGA AGACCAGCGT CCTCAGTTAG ATCCTTATCA GATTCTTGGA
                                                                            840
      CCAACAAGTA GCCGCCTTGC AAATCCAGGC AGTGGCCAGA TCCAGCTTTG GCAGTTCCTC
                                                                            900
30
      CTGGAGCTCC TGTCGGACAG CTCCAACTCC AGCTGCATCA CCTGGGAAGG CACCAACGGG
                                                                            960
      GAGTTCAAGA TGACGGATCC CGACGAGGTG GCCCGGCGCT GGGGAGAGCG GAAGAGCAAA
                                                                          1020
      CCCAACATGA ACTACGATAA GCTCAGCCGC GCCCTCCGTT ACTACTATGA CAAGAACATC
                                                                          1080
      ATGACCAAGG TCCATGGGAA GCGCTACGCC TACAAGTTCG ACTTCCACGG GATCGCCCAG
                                                                          1140
      GCCCTCCAGC CCCACCCCCC GGAGTCATCT CTGTACAAGT ACCCCTCAGA CCTCCCGTAC
                                                                          1200
35
      ATGGGCTCCT ATCACGCCCA CCCACAGAAG ATGAACTTTG TGGCGCCCCA CCCTCCAGCC
                                                                          1260
      CTCCCCGTGA CATCTTCCAG TTTTTTTGCT GCCCCAAACC CATACTGGAA TTCACCAACT
                                                                          1320
      GGGGGTATAT ACCCCAACAC TAGGCTCCCC ACCAGCCATA TGCCTTCTCA TCTGGGCACT
                                                                           1380
      TACTACTAA
40
      Seq ID NO: 42 <u>Protein sequence:</u>
Protein Accession #: NP_004440
45
                 11
                            21
                                        31
                                                   41
                                                              51
      MIOTVPDPAA HIKEALSVVS EDOSLFECAY GTPHLAKTEM TASSSSDYGQ TSKMSPRVPQ
      QDWLSQPPAR VTIKMECNPS QVNGSRNSPD ECSVAKGGKM VGSPDTVGMN YGSYMEEKHM
                                                                            120
      PPPNMTTNER RVIVPADPTL WSTDHVRQWL EWAVKEYGLP DVNILLFQNI DGKELCKMTK
                                                                           180
50
      DDFQRLTPSY NADILLSHLH YLRETPLPHL TSDDVDKALQ NSPRLMHARN TDLPYEPPRR
                                                                            240
      SAWTCHGHPT PQSKAAOPSP STVPKTEDQR PQLDPYQILG PTSSRLANPG SGQIQLWQFL
      LELLSDSSNS SCITWEGTNG EFKMTDPDEV ARRWGERKSK PNMNYDKLSR ALRYYYDKNI
                                                                            360
      MTKVHGKRYA YKFDFHGIAQ ALQPHPPESS LYKYPSDLPY MGSYHAHPQK MNFVAPHPPA
                                                                            420
      LPVTSSSFFA APNPYWNSPT GGIYPNTRLP TSHMPSHLGT YY
55
      Seq ID NO: 43 Nucleotide sequence:
      Nucleic Acid Accession #: NM_005100
      Coding sequence: 192..5537 (underlined sequences correspond to start and stop codons)
60
                 11
                            21
                                        31
                                                   41
                                                              51
      CCTTCTTTTA AGGAGTTTGC CGCGAGCGCG TCTCCTTCAT TCGCAGGCTG GGCGCGTTCG
65
      CAGTCGGCTG GCGGCGAAGG AAGGCGCTCT CGGGACCTCA CGGGCGCGCG TCTTTTGGCT
                                                                            1.20
      CTTGCCCCTG TCCCTGCGGC TTGGGGAAAG CGTAACCCGG CGGCTAGGCG CGGGAGAAGT
                                                                            180
      GCGGAGGAGC CATGGGCGCC GGGAGCTCCA CCGAGCAGCG CAGCCCGGAG CAGCCGCCCG
                                                                            240
      AGGGGAGCTC CACGCCGGCT GAGCCCGAGC CCAGCGGCGG CGGCCCCTCG GCCGAGGCGG
                                                                            300
      CGCCAGACAC CACCGCGGAC CCCGCCATCG CTGCCTCGGA CCCCGCCACC AAGCTCCTAC
                                                                            360
70
      AGAAGAATGG TCAGCTGTCC ACCATCAATG GCGTAGCTGA GCAAGATGAG CTCAGCCTCC
                                                                            420
      AGGAGGGTGA CCTAAATGGC CAGAAAGGAG CCCTGAACGG TCAAGGAGCC CTAAACAGCC
                                                                            480
      AGGAGGAAGA AGAAGTCATT GTCACGGAGG TTGGACAGAG AGACTCTGAA GATGTGAGCG
      AAAGAGACTC CGATAAAGAG ATGGCTACTA AGTCAGCGGT TGTTCACGAC ATCACAGATG
                                                                            600
      ATGGGCAGGA GGAGAACCGA AATATCGAAC AGATTCCTTC TTCAGAAAGC AATTTAGAAG
                                                                            660
75
      AGCTAACACA ACCCACTGAG TCCCAGGCTA ATGATATTGG ATTTAAGAAG GTGTTTAAGT
                                                                            720
      TTGTTGGCTT TAAATTCACT GTGAAAAAGG ATAAGACAGA GAAGCCTGAC ACTGTCCAGC
                                                                            780
```

		GAAGAAAGAT					840
	CCAGCCTTGG	GGCTGGAGAA	GCAGCATCCA	AAGAAAGCGA	ACCCAAACAA	TCTACAGAGA	900
	AACCCGAAGA	GACCCTGAAG	CGTGAGCAAA	GCCACGCAGA	AATTTCTCCC	CCAGCCGAAT	960
		AGTGGAGGAA					1020
5		AGAATCTCCG					1080
J							
		TCAAGGTTGG					1140
		GGAAGCTTCA					1200
	AAGAAGACGG	AAAGGCAGAG	GTTGCCTCCG	AGAAACTGAC	CGCCTCCGAG	CAAGCCCACC	1260
	CACAGGAGCC	GGCAGAAAGT	GCCCACGAGC	CCCGGTTATC	AGCTGAATAT	GAGAAAGTTG	1320
10	AGCTGCCCTC	AGAGGAGCAA	GTCAGTGGCT	CGCAGGGACC	TTCTGAAGAG	AAACCTGCTC	1380
		AGAAGTGTTT					1440
		CAGCACCGTG					1500
							1560
		TGTGCCAGCT					
4 =		GGAGCTGGTG					1620
15		CCTCAGTCCT					1680
	GTGAGGTGGA	AATGCTGTCA	TCACAGGAGA	GAATGAAGGT	GCAGGGAAGT	CCACTAAAGA	1740
		CAGCACTGGC					1800
		CGAGGAATCA					1860
		AAAGGGCGAG					1920
20							
20		GGGCTTAGCC					1980
		GAAAAAAAGA					2040
	CGCCCAAGAA	GCGTGTTAGA	CGGCCTTCGG	AAAGTGATAA	AGAAGATGAG	CTGGACAAGG	2100
	TCAAGAGCGC	TACCTTGTCT	TCCACCGAGA	GCACAGCCTC	TGAAATGCAA	GAAGAAATGA	2160
		GGAAGAGCCA					2220
25		TTTAATTTGT					2280
25 .		AGGGGGACCA					2340
		AGAGACGGGG					2400
	GGCAGGGAAG	TTCCTCCCCG	GAGCAAGCTG	GAAGCCCTAC	CGAAGGGGAG	GGCGTTTCCA	2460
	CCTGGGAGTC	ATTTAAAAGG	TTAGTCACGC	CAAGAAAAA	ATCAAAGTCC	AAGCTGGAAG	2520
30	AGAAAAGCGA	AGACTCCATA	GCTGGGTCTG	GTGTAGAACA	TTCCACTCCA	GACACTGAAC	2580
		AGAATCCTGG					2640
		GAAACAAGAA					2700
		TGATGTCCCG					2760
25		GGCACAGCAA					2820
35		${\tt CAAGGAGCTC}$					2880
	ACGGGACGAG	GGCAGCTACC	ATTATTGAAG	AAAGGTCTCC	TTCTTGGATA	TCTGCTTCAG	2940
	TGACAGAACC	TCTTGAACAA	GTAGAAGCTG	AAGCCGCACT	GTTAACTGAG	GAGGTATTGG	3000
		AATTGCAGAA					3060
		GGGCGACACG					3120
40		TGCAGGGCCA					3180
40							
		AATGGTGTCA					3240
		GGTGCAGGAG					3300
	GGACTCAAGA	GGTCCTCCAG	GCAGTGGCAG	AAAAAGTGAA	AGAGGAATCC	CAGCTGCCTG	3360
	GCACCGGTGG	GCCAGAAGAT	GTGCTTCAGC	CTGTGCAGAG	AGCAGAGGCA	GAAAGACCAG	3420
45		TGAAGCGTCG					3480
	CMCACCACCC	AAAAACTGAG	CCTCTCTTCT	AACCCAACCT	CCTCCCCCAC	ACCACCCCAG	3540
	CTCAGGAGGC	AAAAACIGAG	CCITIIACAC	AAGGGAAGGI	GG1GGGCAG	OUDCOUCCUG	3600
		AAAAGCTCCT					
		CGAAACCTTA					3660
		CTCGGTGGAA					3720
50	CCGACTTTGA	CGCACCAGGC	ACAACCCAGA	AAGACGAGAT	TGTGGAAATC	CATGAGGAGA	3780
	ATGAGGTCGC	ATCTGGTACC	CAGTCAGGGG	GCACAGAAGC	AGAGGCAGTT	CCTGCACAGA	3840
	AAGAGAGGCC	TCCAGCACCT	TCCAGTTTTG	TGTTCCAGGA	AGAAACTAAA	GAACAATCAA	3900
	ACATCCAACA	CACTCTAGAG	CATACAGATA	AAGAGGTGTC	ΔΩΤΩΩΔΔΔΩΤ	GTATCCATTC	3960
		TGAGGGGACT					4020
55	TGICMANGAC	CGAAGGACT	CARGAGGGGGG	TACACIAIGC	CAMANCACAC	ACTICCONA	4080
55	TACCATTTTT	CGAAGGACTT	DANGGGGTCTA	TAGACACAGG	ACCURATE	MANDEDUTEN	
		AGTTGCCCTT					4140
		ACTGCAGAGT					4200
	TAGTTCAAGT	CGAAAGGGAG	AAAACAGAAG	CAGAGCCAAC	CCATGTGAAT	GAAGAGAAGC	4260
	TTGAGCACGA	AACAGCTGTT	ACCGTATCTG	AAGAGGTCAG	TAAGCAGCTC	CTCCAGACAG	4320
60	ጥሮል ልጥሮጥሮርር	CATCATAGAT	GGGGCAAAGG	AAGTCAGCAG	TTTGGAAGGA	AGCCCTCCTC	4380
00		TCAAGAGGAG					4440
							4500
		AACAGCGGCT					
		TGAAACGTTG					4560
		TGAAGACTTT					4620
65	ACTGTCAGGC	AAAATCGACA	CCAGTGATAG	TATCTGCTAC	TACCAAGAAA	GGCTTAAGTT	4680
	CCGACCTGGA	AGGAGAGAAA	ACCACATCAC	TGAAGTGGAA	GTCAGATGAA	GTCGATGAGC	4740
	ACCALLCOAL	CCAGGAGGTC	AAAGTGAGTG	TAGCAATTGA	GGATTTAGAG	CCTGAAAATG	4800
	CONTRACTION AND A STATE OF THE	ACTTGAGACC	ΔΔΔΔασασα	A A CTTCTCCA	ΔΔΔΟΔΤΟΔΤΟ	CAGACAGCCG	4860
	DESCRIPTION OF THE PROPERTY OF	TGTACGTACA	CANCANTACACTA	CONCOCCANA TO	CAMBON COMO	CACTTACACA	4920
70	TIGACCAGIT	TGTACGTACA	GAAGAAACAG	CCACCGAAAT	TOTOGRACUICI	GAGIIACAGA	
70	CACAAGCTCA	CGTGATAAAA	GCTGACAGCC	AGGACGCTGG	ACAGGAAACG	JAGMAGAAG	4980
	GAGAGGAACC	TCAGGCCTCT	GCACAGGATG	AAACACCAAT	TACTTCAGCC	AAAGAGGAGT	5040
	CAGAGTCAAC	CGCAGTGGGA	CAAGCACATT	CTGATATTTC	CAAAGACATG	AGTGAAGCCT	5100
	CAGAAAAGAC	CATGACTGTT	GAGGTAGAAG	GTTCCACTGT	AAATGATCAG	CAGCTGGAAG	5160
	AGGTCGTCCT	CCCATCTGAG	GAAGAGGGAG	GTGGAGCTGG	AACAAAGTCT	GTGCCAGAAG	5220
75	ATCATCCTCA	ՃԵՐՐ ԱՊԵՊԻՃ	GCAGAAAGAA	TAGAGAAGTC	ACTAGTTGAA	CCGAAAGAAG	5280
10	ATGRIGGICA	TGATGATGTT	CATCACAGAA	7177777777777	מההצימית התהבים	GCTGATACTC	5340
	ATGAAAAAGG	IGAIGAIGIT	GALGACCCTG	MANACCAGAA	CICAGCCCIG	2220114010	2240

```
ATGCCTCAGG AGGCTTAACC AAAGAGTCCC CAGATACAAA TGGACCAAAA CAAAAAGAGA 5400
      AGGAGGATGC CCAGGAAGTA GAATTGCAGG AAGGAAAAGT GCACAGTGAA TCAGATAAAG
      CGATCACACC CCAAGCACAG GAGGAGTTAC AGAAACAAGA GAGAGAATCT GCAAAGTCAG
      AACTTACAGA ATCT<u>TAA</u>AAC ATCATGCAGT TAAACTCATT GTCTGTTTGG AAGACCAGAA
      TGTGAAGACA AGTAGTAGAA GAAAATGAAT GCTGCTGCTG AGACTGAAGA CCAGTATTTC
      AGAACTTTGA GAATTGGAGA GCAGGCACAT CAACTGATCT CATTTCTAGA GAGCCCCTGA
      CAATCCTGAG GCTTCATCAG GAGCTAGAGC CATTTAACAT TTCCTCTTTC CAAGACCAAC
      CTACAATTTT CCCTTGATAA CCATATAAAT TCTGATTTAA GGTCCTAAAT TCTTAACCTG
      GAACTGGAGT TGGCAATACC TAGTTCTGCT TCTGAAACTG GAGTATCATT CTTTACATAT
10
      TTATATGTAT GTTTTAAGTA GTCCTCCTGT ATCTATTGTA TATTTTTTC TTAATGTTTA
      AGGAAATGTG CAGGATACTA CATGCTTTTT GTATCACACA GTATATGATG GGGCATGTGC
      CATAGTGCAG GCTTGGGGAG CTTTAAGCCT CAGTTATATA ACCCACAAAA AACAGAGCCT
      CCTAGATGTA ACATTCCTGA TCAAGGTACA ATTCTTTAAA ATTCACTAAT GATTGAGGTC
      CATATTTAGT GGTACTCTGA AATTGGTCAC TTTCCTATTA CACGGAGTGT GCCAAAACTA
15
      AAAAGCATTT TGAAACATAC AGAATGTTCT ATTGTCATTG GGAAATTTTG CTTTCTAACC
      CAGTGGAGGT TAGAAAGAAG TTATATTCTG GTAGCAAATT AACTTTACAT CCTTTTTCCT
      ACTTGTTATG GTTGTTTGGA CCGATAAGTG TGCTTAATCC TGAGGCAAAG TAGTGAATAT
      GTTTTATATG TTATGAAGAA AAGAATTGTT GTAAGTTTTT GATTCTACTC TTATATGCTG
      GACTGCATTC ACACATGGCA TGAAATAAGT CAGGTTCTTT ACAAATGGTA TTTTGATAGA
                                                                          6480
20
      TACTGGATTG TGTTTGTGCC ATATTTGTGC CATTCCTTTA AGAACAATGT TGCAACACAT
                                                                          6540
      TCATTTGGAT AAGTTGTGAT TTGACGACTG ATTTAAATAA AATATTTGCT TCACTTAAAA
      AAAAAAA
      Seq ID NO: 44 <u>Protein sequence:</u>
Protein Accession #: NP_005091
25
                 11
                            21
                                        31
                                                   41
                                                              51
30
      MGAGSSTEOR SPEOPPEGSS TPAEPEPSGG GPSAEAAPDT TADPAIAASD PATKLLOKNG
      QLSTINGVAE QDELSLQEGD LNGQKGALNG QGALNSQEEE EVIVTEVGQR DSEDVSERDS
      DKEMATKSAV VHDITDDGQE ENRNIEQIPS SESNLEELTQ PTESQANDIG FKKVFKFVGF
                                                                           180
      KFTVKKDKTE KPDTVQLLTV KKDEGEGAAG AGDHQDPSLG AGEAASKESE PKQSTEKPEE
                                                                           240
      TLKREQSHAE ISPPAESGQA VEECKEEGEE KQEKEPSKSA ESPTSPVTSE TGSTFKKFFT
35
      QGWAGWRKKT SFRKPKEDEV EASEKKKEQE PEKVDTEEDG KAEVASEKLT ASEQAHPQEP
      AESAHEPRLS AEYEKVELPS EEQVSGSQGP SEEKPAPLAT EVFDEKIEVH QEEVVAEVHV
      STVEERTEEQ KTEVEETAGS VPAEELVGMD AEPQEAEPAK ELVKLKETCV SGEDPTQGAD
      LSPDEKVLSK PPEGVVSEVE MLSSQERMKV QGSPLKKLFT STGLKKLSGK KQKGKRGGGD
                                                                           540
      EESGEHTOVP ADSPDSOEEO KGESSASSPE EPEEITCLEK GLAEVOODGE AEEGATSDGE
40
      KKREGVTPWA SFKKMVTPKK RVRRPSESDK EDELDKVKSA TLSSTESTAS EMQEEMKGSV
                                                                           660
      EEPKPEEPKR KVDTSVSWEA LICVGSSKKR ARRRSSSDEE GGPKAMGGDH OKADEAGKDK
                                                                           720
      ETGTDGILAG SQEHDPGQGS SSPEQAGSPT EGEGVSTWES FKRLVTPRKK SKSKLEEKSE
      DSIAGSGVEH STPDTEPGKE ESWVSIKKFI PGRRKKRPDG KQEQAPVEDA GPTGANEDDS
      DVPAVVPLSE YDAVEREKME AQQAQKGAEQ PEQKAATEVS KELSESQVHM MAAAVADGTR
      AATIIEERSP SWISASVTEP LEQVEAEAAL LTEEVLEREV IAEEEPPTVT EPLPENREAR
45
                                                                           960
      GDTVVSEAEL TPEAVTAAET AGPLGSEEGT EASAAEETTE MVSAVSQLTD SPDTTEEATP
                                                                          1020
      VQEVEGGVPD IEEQERRTQE VLQAVAEKVK EESQLPGTGG PEDVLQPVQR AEAERPEEQA
      EASGLKKETD VVLKVDAQEA KTEPFTQGKV VGQTTPESFE KAPQVTESIE SSELVTTCQA
                                                                          1140
      ETLAGVKSQE MVMEQAIPPD SVETPTDSET DGSTPVADFD APGTTQKDEI VEIHEENEVA 1200
50
      SGTQSGGTEA EAVPAQKERP PAPSSFVFQE ETKEQSKMED TLEHTDKEVS VETVSILSKT 1260
      EGTQEADQYA DEKTKDVPFF EGLEGSIDTG ITVSREKVTE VALKGEGTEE AECKKDDALE
      LOSHAKSPPS PVEREMVVOV EREKTEAEPT HVNEEKLEHE TAVTVSEEVS KQLLQTVNVP 1380
      IIDGAKEVSS LEGSPPPCLG QEEAVCTKIQ VQSSEASFTL TAAAEEEKVL GETANILETG
      ETLEPAGAHL VLEEKSSEKN EDFAAHPGED AVPTGPDCQA KSTPVIVSAT TKKGLSSDLE 1500
55
      GEKTTSLKWK SDEVDEQVAC QEVKVSVAIE DLEPENGILE LETKSSKLVQ NIIQTAVDQF 1560
      VRTEETATEM LTSELQTQAH VIKADSQDAG QETEKEGEEP QASAQDETPI TSAKEESEST
      AVGOAHSDIS KDMSEASEKT MTVEVEGSTV NDQQLEEVVL PSEEEGGGAG TKSVPEDDGH 1680
      ALLAERIEKS LVEPKEDEKG DDVDDPENQN SALADTDASG GLTKESPDTN GPKQKEKEDA 1740
      QEVELQEGKV HSESDKAITP QAQEELQKQE RESAKSELTE S
60
      Seq ID NO: 45 Nucleotide sequence:
      Nucleic Acid Accession #: NM_001290
      Coding sequence: 110..1231 (underlined sequences correspond to start and stop codons)
65
               · 11
                            21
                                        31
                                                              51
                                                   41
      GTGAGCGTGT GTGCGTGCGT CTACTTTGTA CTGGGAAGAA CACAGCCCAT GTGCTCTGCA
                                                                            60
      TGGACGTTAC TGATACTCTG TTTAGCTTGA TTTTCGAAAA GCAGGCAAGA TGTCCAGCAC
                                                                           120
70
      ACCACATGAC CCCTTCTATT CTTCTCCTTT CGGCCCATTT TATAGGAGGC ATACACCATA
      CATGGTACAG CCAGAGTACC GAATCTATGA GATGAACAAG AGACTGCAGT CTCGCACAGA
                                                                           240
      GGATAGTGAC AACCTCTGGT GGGACGCCTT TGCCACTGAA TTTTTTGAAG ATGACGCCAC
                                                                           300
      ATTAACCCTT TCATTTTGTT TGGAAGATGG ACCAAAGCGA TACACTATCG GCAGGACCCT
      CATCCCCCGT TACTTTAGCA CTGTGTTTGA AGGAGGGGTG ACCGACCTGT ATTACATTCT
                                                                           420
      CAAACACTCG AAAGAGTCAT ACCACAACTC ATCCATCACG GTGGACTGCG ACCAGTGTAC
75
                                                                           480
      CATGGTCACC CAGCACGGGA AGCCCATGTT TACCAAGGTA TGTACAGAAG GCAGACTGAT
```

```
CTTGGAGTTC ACCTTTGATG ATCTCATGAG AATCAAAACA TGGCACTTTA CCATTAGACA
      ATACCGAGAG TTAGTCCCGA GAAGCATCCT AGCCATGCAT GCACAAGATC CTCAGGTCCT
      GGATCAGCTG TCCAAAAACA TCACCAGGAT GGGGCTAACA AACTTCACCC TCAACTACCT
                                                                           720
      CAGGTTGTGT GTAATATTGG AGCCAATGCA GGAACTGATG TCGAGACATA AAACTTACAA
                                                                           780
 5
      CCTCAGTCCC CGAGACTGCC TGAAGACCTG CTTGTTTCAG AAGTGGCAGA GGATGGTGGC
      TCCGCCAGCA GAACCCACAA GGCAACCAAC AACCAAACGG AGAAAAAGGA AAAATTCCAC
      CAGCAGCACT TCCAACAGCA GCGCTGGGAA CAATGCAAAC AGCACTGGCA GCAAGAAGAA
      GACCACAGCT GCAAACCTGA GTCTGTCCAG TCAGGTACCT GATGTGATGG TGGTAGGAGA
                                                                          1020
      GCCAACTCTG ATGGGAGGTG AGTTTGGGGA CGAGGACGAA AGGCTAATCA CTAGATTAGA
                                                                          1080
10
      AAACACGCAA TATGATGCGG CCAACGGCAT GGACGACGAG GAGGACTTCA ACAATTCACC
      CGCGCTGGGG AACAACAGCC CGTGGAACAG TAAACCTCCC GCCACTCAAG AGACCAAATC
                                                                          1200
      AGAAAACCCC CCACCCCAGG CTTCCCAA<u>TA</u> <u>A</u>GATGATCGG CACCAGAATC CACTGTCAAT
                                                                          1260
      AGGCCCGTGG GTGATCATTA CAATTGCAAA TCTTTACTTA CAGGAGAGGA AACAGAAGAG
                                                                          1320
      ATAAAAACTT TTCCATGCAA ATATCTATTT CTAAACCACA ATGATCTGAT TTTCTTTCTT
15
      CTTTCTTTT TTCTAATTGA GAGGATTATT CCCAGTAAGC TTCCATGACC CTTTCTTGGA
      GGCCTTCACA GGTAATACAG ATACTGGCAC TGATTGTAAT TAAAATGAGA GAAAACTCTA
                                                                          1500
      GCGCATCTTC TGGCACGGTT TTAACAACGT GTTTGTGTTG AATTTCCTTT TTATGCATCA
                                                                          1560
      AACGAAGGCC ATATTGTCCA TAAATGCTCA GTGCTCAGGA TCTCATTAAT ATGCCGAACC
      TAACTACAGA TGACTTTTTA ATATTGTAAA ATATTTTCTG CTTTTTGACT TGCATCTGAG
20
      AGTTTCTTGT TTCAGTAAAA AAAGAAAAGA CAAAAAAATC AGCTTTGGAA AGTAATTTAA
      ATGTACCTTA TTTTTTTTT CTTTATGTTT TCTTTCATTG GGCAACAGCT AAGAGGGCCC
                                                                         1800
      AGCAAGGTAA TTTATGGTTG AGCTGATGTC AATTGGTTCT TGTCTTGAGT CGACTCAATT
                                                                          1860
      TAGCCCAAGT GCTGAAACAA GAAATGTCAT TTTTTTCATC AAAGACACCA GGGCAGATTT
      TTAAGTAAAG AAAGACAATT GGACCCTTAA GAATTTATGC ATTTGTAAAG TTGCTGTTGA
                                                                          1980
25
      TCCAAATATT TTCAAGCCAT GTAATCCATT GGTTTTGTGG GCAGTTTAAT AAACCTGAAC
                                                                          2040
      CTTTGTGTGT TTTCTAATTG TACCTGAGTT GACCATCCTT TCTTTTTATA GTATATTTCT
                                                                          2100
      TGTATGATAT TTTGTAAAGC TCTCACCTGG TTCTTTTATG GGGACTTTTC GTTTTTGGGC
                                                                          2160
      AACTCCAGTG TATTTATGTG AAACTTTATA AGAGAATTAA TTTTTCCATT TGCATATTAA
      TATGTTCCTC CACACATGTA AAGGCACAGT GGCTCCGTGT GTTAAAAAAAC AGCTGTATTT
30
      TATGTATGCT TTACTGATAA GTGTGCCAAT AATAAACTGT GTTAATGACC
      Seq ID NO: 46 Protein sequence:
      Protein Accession #: NP_001281
35
                 11
                            21
                                       31
                                                  41
                                                              51
      1
      MSSTPHDPFY SSPFGPFYRR HTPYMVQPEY RIYEMNKRLQ SRTEDSDNLW WDAFATEFFE
                                                                            60
40
      DDATLTLSFC LEDGPKRYTI GRTLIPRYFS TVFEGGVTDL YYILKHSKES YHNSSITVDC
      DOCTMVTOHG KPMFTKVCTE GRLILEFTFD DLMRIKTWHF TIRQYRELVP RSILAMHAQD
      PQVLDQLSKN ITRMGLTNFT LNYLRLCVIL EPMQELMSRH KTYNLSPRDC LKTCLFQKWQ
                                                                           240
      RMVAPPAEPT RQPTTKRRKR KNSTSSTSNS SAGNNANSTG SKKKTTAANL SLSSQVPDVM
                                                                          300
      VVGEPTLMGG EFGDEDERLI TRLENTQYDA ANGMDDEEDF NNSPALGNNS PWNSKPPATQ
45
      ETKSENPPPQ ASQ
      Seq ID NO: 47 Nucleotide sequence:
      Nucleic Acid Accession #: NM_004126
      Coding sequence: 108..329 (underlined sequences correspond to start and stop codons)
50
                            21
                                       31
                                                  41
                                                              51
      GGCACGAGCT CGTGCCGGCC TTCAGTTGTT TCGGGACGCG CCGAGCTTCG CCGCTCTTCC
                                                                            60
      AGCGGCTCCG CTGCCAGAGC TAGCCCGAGC CCGGTTCTGG GGCGAAAAATG CCTGCCCTTC
55
      ACATCGAAGA TTTGCCAGAG AAGGAAAAAC TGAAAATGGA AGTTGAGCAG CTTCGCAAAG
                                                                           180
      AAGTGAAGTT GCAGAGACAA CAAGTGTCTA AATGTTCTGA AGAAATAAAG AACTATATTG
                                                                           240
      AAGAACGTTC TGGAGAGGAT CCTCTAGTAA AGGGAATTCC AGAAGACAAG AACCCCTTTA
                                                                           300
      AAGAAAAGG CAGCTGTGTT ATTTCATAAA TAACTTGGGA GAAACTGCAT CCTAAGTGGA
                                                                           360
      AGAACTAGTT TGTTTTAGTT TTCCCAGATA AAACCAACAT GCTTTTTAAG GAAGGAAGAA
                                                                           420
60
      TGAAATTAAA AGGAGACTIT CTTAAGCACC ATATAGATAG GGTTATGTAT AAAAGCATAT
                                                                           480
      GTGCTACTCA TCTTTGCTCA CTATGCAGTC TTTTTTAAGA GAGCAGAGAG TATCAGATGT
                                                                           540
      ACAATTATGG AAATAAGAAC ATTACTTGAG CATGACACTT CTTTCAGTAT ATTGCTTGAT
      GCTTCAAATA AAGTTTTGTC TT
65
      Seq ID NO: 48 Protein sequence:
      Protein Accession #: NP_004117
                                                  41
                                                              51
                            21
                                       31
70
      MPALHIEDLP EKEKLKMEVE QLRKEVKLQR QQVSKCSEEI KNYIEERSGE DPLVKGIPED
                                                                            60
      KNPFKEKGSC VIS
      Seq ID NO: 49 Nucleotide sequence:
75
      Nucleic Acid Accession #: XM_051896
      Coding sequence: 139..2388 (underlined sequences correspond to start and stop codons)
```

```
31
                                                            51
                11
                            21
                                                 41
      GTTTTAAAGA CGCTAGAGTG CCAAAGAAGA CTTTGAAGTG TGAAAACATT TCCTGTAATT
      GAAACCAAAA TGTCATTTAT AGATCCTTAC CAGCACATTA TAGTGGAGCA CCAGTATTCC
                                                                         120
      CACAAGTTTA CGGTAGTGGT GTTACGTGCC ACCAAAGTGA CAAAGGGGGC CTTTGGTGAC
      ATGCTTGATA CTCCAGATCC CTATGTGGAA CTTTTTATCT CTACAACCCC TGACAGCAGG
                                                                         240
      AAGAGAACAA GACATTTCAA TAATGACATA AACCCTGTGT GGAATGAGAC CTTTGAATTT
                                                                         300
10
      ATTTTGGATC CTAATCAGGA AAATGTTTTG GAGATTACGT TAATGGATGC CAATTATGTC
      ATGGATGAAA CTCTAGGGAC AGCAACATTT ACTGTATCTT CTATGAAGGT GGGAGAAAAG
                                                                         420
      AAAGAAGTTC CTTTTATTTT CAACCAAGTC ACTGAAATGG TTCTAGAAAT GTCTCTTGAA
                                                                         480
      GTTTGCTCAT GCCCAGACCT ACGATTTAGT ATGGCTCTGT GTGATCAGGA GAAGACTTTC
                                                                         540
      AGACAACAGA GAAAAGAACA CATAAGGGAG AGCATGAAGA AACTCTTGGG TCCAAAGAAT
                                                                         600
15
      AGTGAAGGAT TGCATTCTGC ACGTGATGTG CCTGTGGTAG CCATATTGGG TTCAGGTGGG
      GGTTTCCGAG CCATGGTGGG ATTCTCTGGT GTGATGAAGG CATTATACGA ATCAGGAATT
                                                                         720
      CTGGATTGTG CTACCTACGT TGCTGGTCTT TCTGGCTCCA CCTGGTATAT GTCAACCTTG
                                                                         780
      TATTCTCACC CTGATTTTCC AGAGAAAGGG CCAGAGGAGA TTAATGAAGA ACTAATGAAA
                                                                         840
      AATGTTAGCC ACAATCCCCT TTTACTTCTC ACACCACAGA AAGTTAAAAG ATATGTTGAG
                                                                         900
20
      TCTTTATGGA AGAAGAAAG CTCTGGACAA CCTGTCACCT TTACTGATAT CTTTGGGATG
      TTAATAGGAG AAACACTAAT TCATAATAGA ATGAATACTA CTCTGAGCAG TTTGAAGGAA
                                                                        1020
      AAAGTTAATA CTGCACAATG CCCTTTACCT CTTTTCACCT GTCTTCATGT CAAACCTGAC
                                                                        1080
      GTTTCAGAGC TGATGTTTGC AGATTGGGTT GAATTTAGTC CATACGAAAT TGGCATGGCT
      AAATATGGTA CTTTTATGGC TCCCGACTTA TTTGGAAGCA AATTTTTAT GGGAACAGTC
                                                                        1200
      GTTAAGAAGT ATGAAGAAAA CCCCTTGCAT TTCTTAATGG GTGTCTGGGG CAGTGCCTTT
25
                                                                        1260
      TCCATATTGT TCAACAGAGT TTTGGGCGTT TCTGGTTCAC AAAGCAGAGG CTCCACAATG
                                                                        1320
      GAGGAAGAAT TAGAAAATAT TACCACAAAG CATATTGTGA GTAATGATAG CTCGGACAGT
      GATGATGAAT CACACGAACC CAAAGGCACT GAAAATGAAG ATGCTGGAAG TGACTATCAA
      AGTGATAATC AAGCAAGTTG GATTCATCGT ATGATAATGG CCTTGGTGAG TGATTCAGCT
                                                                        1500
30
      TTATTCAATA CCAGAGAAGG ACGTGCTGGG AAGGTACACA ACTTCATGCT GGGCTTGAAT
                                                                        1560
      CTCAATACAT CTTATCCACT GTCTCCTTTG AGTGACTTTG CCACACAGGA CTCCTTTGAT
      GATGATGAAC TGGATGCAGC TGTAGCAGAT CCTGATGAAT TTGAGCGAAT ATATGAGCCT
      CTGGATGTCA AAAGTAAAAA GATTCATGTA GTGGACAGTG GGCTCACATT TAACCTGCCG
      TATCCCTTGA TACTGAGACC TCAGAGAGGG GTTGATCTCA TAATCTCCTT TGACTTTTCT
                                                                        1800
35
      GCAAGGCCAA GTGACTCTAG TCCTCCGTTC AAGGAACTTC TACTTGCAGA AAAGTGGGCT
                                                                        1860
      AAAATGAACA AGCTCCCCTT TCCAAAGATT GATCCTTATG TGTTTGATCG GGAAGGGCTG 1920
      AAGGAGTGCT ATGTCTTTAA ACCCAAGAAT CCTGATATGG AGAAAGATTG CCCAACCATC
                                                                        1980
      ATCCACTTG TTCTGGCCAA CATCAACTTC AGAAAGTACA GGGCTCCAGG TGTTCCAAGG
                                                                        2040
      GAAACTGAGG AAGAGAAAGA AATCGCTGAC TTTGATATTT TTGATGACCC AGAATCACCA
                                                                        2100
40
      TTTTCAACCT TCAATTTTCA ATATCCAAAT CAAGCATTCA AAAGACTACA TGATCTTATG
      CACTTCAATA CTCTGAACAA CATTGATGTG ATAAAAGAAG CCATGGTTGA AAGCATTGAA
      TATAGAAGAC AGAATCCATC TCGTTGCTCT GTTTCCCTTA GTAATGTTGA GGCAAGAAGA
                                                                        2280
      TTTTTCAACA AGGAGTTTCT AAGTAAACCC AAAGCATAGT TCATGTACTG GAAATGGCAG
                                                                        2340
      45
      AGATAGTCGT ACTGATCATG AGAGACTGGC TGATACTCAA AGTTGCAGTT ACTTAGCTGC
      ATGAGAATAA TACTATTATA AGTTAGGTTG ACAAATGATG TTGATTATGT AAGGATATAC
      TTAGCTACAT TTTCAGTCAG TATGAACTTC CTGATACAAA TGTAGGGATA TATACTGTAT
                                                                        2580
      TTTTAAACAT TTCTCACCAA CTTTCTTATG TGTGTTCTTT TTAAAAATTT TTTTTCTTTT
                                                                        2640
      AAAATATTTA ACAGTTCAAT CTCAATAAGA CCTCGCATTA TGTATGAATG TTATTCACTG
50
      ACTAGATTTA TTCATACCAT GAGACAACAC TATTTTTATT TATATATGCA TATATATACA
      TACATGAAAT AAATACATCA ATATAAAAAT
      Seq ID NO: 50 Protein sequence:
      Protein Accession #: XP 051896
55
                            21
                                       31
                                                 41
                                                            51
      MSFIDPYOHI IVEHQYSHKF TVVVLRATKV TKGAFGDMLD TPDPYVELFI STTPDSRKRT
      RHFNNDINPV WNETFEFILD PNOENVLEIT LMDANYVMDE TLGTATFTVS SMKVGEKKEV
                                                                         120
60
      PFIFNQVTEM VLEMSLEVCS CPDLRFSMAL CDQEKTFRQQ RKEHIRESMK KLLGPKNSEG
                                                                         180
      LHSARDVPVV AILGSGGGFR AMVGFSGVMK ALYESGILDC ATYVAGLSGS TWYMSTLYSH
                                                                         240
      PDFPEKGPEE INEELMKNVS HNPLLLLTPQ KVKRYVESLW KKKSSGQPVT FTDIFGMLIG
      ETLIHNRMNT TLSSLKEKVN TAOCPLPLFT CLHVKPDVSE LMFADWVEFS PYEIGMAKYG
                                                                         360
      TFMAPDLFGS KFFMGTVVKK YEENPLHFLM GVWGSAFSIL FNRVLGVSGS QSRGSTMEEE
                                                                         420
65
      LENITTKHIV SNDSSDSDDE SHEPKGTENE DAGSDYQSDN QASWIHRMIM ALVSDSALFN
                                                                         480
      TREGRAGKVH NFMLGLNLNT SYPLSPLSDF ATQDSFDDDE LDAAVADPDE FERIYEPLDV
                                                                         540
      KSKKIHVVDS GLTFNLPYPL ILRPQRGVDL IISFDFSARP SDSSPPFKEL LLAEKWAKMN
                                                                         600
      KLPFPKIDPY VFDREGLKEC YVFKPKNPDM EKDCPTIIHF VLANINFRKY KAPGVPRETE
                                                                         660
      EEKEIADFDI FDDPESPFST FNFQYPNQAF KRLHDLMHFN TLNNIDVIKE AMVESIEYRR
                                                                         720
70
      ONPSRCSVSL SNVEARRFFN KEFLSKPKA
```

Seq ID NO: 51 <u>Nucleotide sequence:</u>
Nucleic Acid Accession #: NM_006528
Coding sequence: 57..764 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51 		
5	ACCCCGCTCG GCGATGCTGC	CCCCCTGGGG TCAGGAGCCA	CTGTCGATTC ACAGGAAATA	TGCTGCTTTT ACGCGGAGAT	CCTGACGGAG CTGTCTCCTG	TGCACC <u>ATG</u> G GCTGCACTGG CCCCTAGACT		
	GCCAGTTCCT GCGACGATGC	GTACGGGGGC TTGCTGGAGG	TGCGAGGGCA ATAGAAAAAG	ACGCCAACAA TTCCCAAAGT	TTTCTACACC TTGCCGGCTG	CAGAGCTGCC TGGGAGGCTT CAAGTGAGTG		
10	GTGAAAAATT AAGCTACTTG	CTTTTCCGGT TATGGGCTTC	TGCGCACCAA	GGAACCGGAT AGAAAATTCC	TGAGAACAGG ATCATTTTGC	TTTCCAGATG TACAGTCCAA AGATACAGAA	480 540 600	
15	CCTGTGATGC AGGATTGCAA	TTTCACCTAT ACGTGCATGT	ACTGGCTGTG GCAAAAGCTT	GAGGGAATGA TGAAAAAGAA	CAATAACTTT AAAGAAGATG	GTTAGCAGGG CCAAAGCTTC TTAATATGTC	660 720	
	ATCTTGTTTG GCATGAGGAA	TCTTTATGGC ACAAATCATT	$\begin{array}{c} \mathtt{TTATTTGCCT} \\ \mathtt{GGTGATTTAT} \end{array}$	$\begin{array}{c} \mathtt{TTATGGTTGT} \\ \mathtt{TCACCAGTTT} \end{array}$	$\begin{array}{c} \mathtt{ATCTGAAGAA} \\ \mathtt{TTATTAATAC} \end{array}$	TAATATGACA AAGTCACTTT GTCTACCATT	840 900	
20	AAATATGACT	CACTCATTTC	TTGGGGTCGT	ATTCCTGATT	TCAGAAGAGG	ATATAAAAGC ATCATAACTG AAAGGACTAG	1020 1080 1140	
25		52 <u>Protein</u> cession #:						
	1 	11	21	31	41]	51 l	•	
30	CRQFLYGGCE	GNANNFYTWE	ACDDACWRIE	KVPKVCRLQV	SVDDQCEGST	RYYYDRYTQS EKYFFNLSSM VTRYYFNPRY	120	
			REDCKRACAK					
35	Nucleic Ac		ide sequence n #: AA47877 RF found					
40	1	11	21	31 -	41	51 	50	
	 TATTTTTGTA TGATCCTTCA ACTTTTTTAA	 CGTAAAATGA TTATCACGGT AATGAATTTT	TTCTATTATG ACACTATTGT TTTAAAACAA	ACTGCCTTTG TTACTTTTCA TCTAGCCATC	 CATGTAGTAA TCTGTAAATG ATCAAGGTGC	 TATGACAAAG TTTTATTGTT TATAAGAGTT	120 180	
40 45	TATTTTTGTA TGATCCTTCA ACTTTTTTAA GTATAAAAGA TCACAGATTG GGAAAAAAAT	CGTAAAATGA TTATCACGGT AATGAATTTT TATTTTTGGC TACCAACTAT ATGCTGCCTT	TTCTATTATG ACACTATTGT TTTAAAACAA ATTTCTAGGC TAACTATGTT GGTGCTAATA	ACTGCCTTTG TTACTTTTCA TCTAGCCATC AAGTATCAGC AAATAAGTAT TTGTATGTAT	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTTCAT TTAAATGATC	TATGACAAAG TTTTATTGTT TATAAGAGTT GTTAGTGATA GTGATCTCTG ATCTGACTCA	120 180 240 300 360	
	TATTTTGTA TGATCCTTCA ACTTTTTTAA GTATAAAAGA TCACAGATTG GGAAAAAAT GAAATATAAA CACTTGGATG AGACTTAGAC	CGTAAAATGA TTATCACGGT AATGAATTTT TATTTTTGGC TACCAACTAT ATGCTGCTTT CACTTTTAAT AAATAAGACC TTTATCCTTA	TTCTATTATG ACACTATTGT TTTAAAACAA ATTTCTAGGC TAACTATGT GGTGCTAATA GAAAGGGAGG AGCTCTTTAC TTGTTGTTAG	ACTGCCTTTG TTACTTTCA TCTAGCCATC AAGTATCAGC AAATAAGTAT TTGTATGTAT AACGGAAGGA CCTTATTTT TGTTGTTAAT	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTTCAT TTAAATGATC CAATTTCCAG GGATATGCCT ATTCGTTGCT	TATGACAAAG TTTTATTGTT TATAAGAGTT GTTATTGTTAT GTGATCTCTG ATCTGACTCA TGCACAGAAT TTTTTGGAAG TCAGCCCACG	120 180 240 300	
45	TATTTTTGTA TGATCCTTCA ACTTTTTTAA GTATAAAAGA TCACAGATTG GGAAAAAAT GAAATATAAA CACTTGGATG AGACTTAGGT TATTGGGAAA TTACCAGTAG	CGTAAAATGA TTATCACGGT AATGAATTT TATTTTTGC TACCAACTAT ATGCTGCCTT CACTTTAAT AAATAAGACC TTTATCCTTA CTCTCCACAA GTGAGATCCT AAAGACACAC	TTCTATTATG ACACTATTGT TTTAAAACA ATTTCTAGGC TAACTATGTT GGTGCTAATA GAAAGGGAGG AGCTCTTTAC TTGTTGTTAC TCAAATGGAG CTCACCATTT GATGCACATT	ACTGCCTTTG TTACTTTCA TCTAGCCAT TCTAGCCAT AAGTATCAGC AAATAAGTAT TTGTATGTAT AACGGAAGGA CCTTATTTT TGTTGTTAAT GATCCCCCAA TGCCAAGATA ATGGGCATGA	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTTCAT TTAAATGATC CAATTTCCAG GGATATGCCT ATTCGTTGCT GCAGCTTCAT CTCTAAAATG CCTTCAGCTC	TATGACAAAG TTTTATTGTT TATAAGAGTT GTTAGTGATA GTGATCTCTG ATCTGACTCA TGCACAGAAT TTTTTGGAAG TCAGCCCACG TACAGAGTGA ACATCCAAGT ACGAGCCACAC	120 180 240 300 360 420 480 540 600 660 720	
45	TATTTTTGTA TGATCCTTCA ACTTTTTTAAA GTATAAAAGA TCACAGATTG GGAAAAAAT GAAATATAAA CACTTGGATG AGACTTAGAC GTGCCTTGGT TATTGGGAAA TTACCAGTAG CCTGGAGAAAT GCTGGTGATG CCTGCAGTAGT CCTGCAGTAAT	CGTAAAATGA TTATCACGGT AATGAATTTT TATTTTTGG TACCAACTAT AATAAGACC TTTATCCTTA CTCTCCACAA GTGAGATCCT AAAGACCAC TCAGAACCAG TCAGAACCAG GGACGTTTGT	TTCTATTATG ACACTATTGT TTTAAAACAA ATTTCTAGGC TAACTATGT GAAAGGGAGG AGCTCTTTAC TTGTTGTTAG TCAAATGGAG CTCACACTT GATGCACACT GATGCACACT TGTGCACACT TCAGGCCATG GTGAAGAAAT	ACTGCCTTTG TTACTTTCA TCTAGCCATC AAGTATCAGC AAGTATCAGC TTGTATGTAT TAGTATTTTT TGTTGTTAAT GATCCCCAA TGCCAAGATA ATGAGCATGA ATCACGATTG AGCCTAACTT AGCCTAACAY GAACTGTGGA	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTTCAT TTAAATGATC CAATTTCCAG GGATATGCCT ATTCGTTGCT GCAGCTTCAT CTCTAAAATG CCTTCAAGCTC CCTTTCAGCT CCTTCAGCTG CCTTCGCTG	TATGACAAAG TTTTATTGTT TATAAGAGTT GTTAGTGATT GTGACTCA ATCTGACTCA TGCACAGAAT TTTTTGGAAG TCAGCCCACG TACAGAGTGA ACATCCAAGT ACATCCAAGT CAGAGCACAC GAAAACATCC GTCATGCCCG CTTTGAGTCT	120 180 240 300 360 420 480 540 600 660 720 780 840 900	
45 50 55	TATTTTTGTA TGATCCTTCA ACTTTTTTAA GCTATAAAAA TCACAGATTG GGAAAAAAT GAATTAAAA CACTTGGATG AGACTTAGG TATTGGGAAA TTACCAGTAG CTGGAGAAAT GCTGGTGATG CTGCAGTAAT TTCCGATTAG CTGCAGTAGT CTGCAGTAGT CATTGCTTTT ACACTTGGTT	CGTAAAATGA TTATCACGGT AATGAATTT TATTTTTGGC TACCAACTAT ATGCTGCCTT CACTTTAAT AAATAAGACC TTATATCCTTA CTCTCCACAA GTGAGATCCT AAAGACACAG TCAGAACCAG TCAGAACCAG TCAGAACTTTTTTTTTT	TTCTATTATG ACACTATTGT ACACTATTGT TTTAAAACA ATTTCTAGGC TAACTATAT GGTGCTAATA GAAAGGGAGG AGCTCTTTAC TCTGTGTTAC TCAAATGGAG CTCACCATTT GATGCACAGA GTTCTGAATC TCAGGCCATG TGAAGAAAT ACTTTTTTGT AAGCTGATGA TGCCCACTTC	ACTGCCTTTG TTACTTTCA TCTAGCCAT TCTAGCCAT AAGTATCAGC AAATAAGTAT TTGTATGTAT AACGGAAGGA CCTTATTTT TGTTGTTAT GATCCCCAA ATGGCATGA ATGGCATGA ATCACGATTG AGCCTAACAY GAACTGTGGA TACTTCTTTC AGGGAAGCCT CAAAGACCAA	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTTCAT TTAAATGATC CAATTTCCAG GGATATGCCT ATTCGTTGCT CCAGCTTCAA CCTTCAAGCTC CCTTTAAATG CCTTCAGCTC CCTTTTGCAT CCTGCCGGTT GTACAAAATG CAAAATGGAA TTGCCAATG AGAGATTAGG AGAGATTAGG	TATGACAAAG TTTTATTGTT TATAAGAGTT GTGATCTCTG ATCTGACTCA TGCACAGAAT TTTTTGGAAG TCAGCCCACG ACATCCAAGT ACAGCCACG ACATCCAAGT ACGAGCACAC GAAAACATCG CTTTGAGTCC TTCATGACCC CTTTGAGTCC CTTTGAGTCC CCCATGGAAG AAAAGCCTGG	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080	
45	TATTTTGTA TGATCCTTCA ACTTTTTAA GTATAAAAGA TCACAGATTG GGAAAAAAAT GAATTAGAAC CACTTGGAT AGACTTAGAC CTGCCTTGGT TATTGGGAAA TTACCAGTAG CTGGAGAAAT CCTGGAGAAAT TTCCGATGAT TCCGATGTT ACACTTGGTT ACACTTGGTT ACACTTGGTT CAGTATCTC TGAATAAGTG	CGTAAAATGA TTATCACGGT AATGAATTTT TATTTTTGGC TACCAACTAT AAGTAGACTT CACTTTAAT AAATAAGACC TTTATCCTTA CTCTCCACAA GTGAGATCCT TAAGAACACA TCAGAACCAG TCAGAACCAG TCATTATCTTC GGACGTTTGT TCATTAATTC CTGCCCCTCC TGAGAACCC CAACTCCAAA TTATTCTCCA	TTCTATTATG ACACTATTGT TTTAAAACA ATTTCTAGGC TAACTATGTT GGTGCTAATA GAAAGGGAGG AGCTCTTTAC TCTGTGTTAC TCAAATGGAG CTCACCATTT GATGCACAGA GTTCTGAATC TCAGGCCATG TGAAGAAAT ACTTTTTGT AAGCTGATGA	ACTGCCTTTG TTACTTTCA TCTAGCCATC AAGTATCAGC AAATAAGTAT TTGTATGTAT AACGGAAGGA CCTTATTTT TGTTGTTAAT ATGCCCCAA ATGCCAAGATA ATGGCATGA ATCACGATTG ACCTAACAY GAACTGTGGA TACTTCTTTC AGGGAAGCCT AGGGAAGCCT AGGGAAGCCT AGTGCTCCAG GTTCTGAAAA	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTCAT TTAAATGATC CAATTTCCAG GGATATGCCT ATTCGTTGCT TCTCAAAATGATC CCTTCAGCTC CCTTTTGCAT CCTGCCGGTT GTACAAAATG CAAAATGAAATG	TATGACAAAG TTTTATTGTT TATAAGAGTT GTTAGTGATA GTGATCTCA ATCTGACTCA TGCACAGAAT TTTTTGGAAG TCAGCCCACG TACAGAGTGA ACATCCAAGT ACGAGCACAC GAAAACATCG TTCATGCCCG CTTTGAGTCT GTGCTGAAG CCCATGGAAG AAAGCCTGG AAAAGCCTGG ATTCAGTATA	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020	
45 50 55	TATTTTGTA TGATCCTTCA ACTTTTTAAA GTATAAAAGA TCACAGATTG GGAAAAAAT GAAATATAAA CACTTGGATG GTGCCTTGGT TATTGGGAAA TTACCAGTAG CTGCAGTAGT CTGCAGTAAT TTCCGATTGT TTCCGATTGT TCCAGTTGT CACTATTCC CATGGTCTTT ACACTTGGTT CAGTATTCC TGAATAAGTG CACCACACCC Seq ID NO: Nucleic Ac	CGTAAAATGA TTATCACGGT AATGAATTTT TATTTTTGGC TACCAACTAT AATAAGACC TTTATCCTTA CTCTCCACACA GTGAGATCCT AAGACCACG TCAGAACCAG TCAGAACCAG TCAGAACCAG TCAGAACCAG TCAGAACCAG TCAGAACCAC TCAGAACCAC CTACTCCCACAC TCAGAAACCC CTACCCCTCC TCAGAAACCC CAACTCCCAA TTATTCTCCA AAAAAAAAAA	TTCTATTATG ACACTATTGT TTTAAAACAA ATTTCTAGGC TTAACTATGT GGTGCTAATA GAAAGGGAGG AGCTCTTTAC TTGTTGTTAGTC TCAAATGGAG CTCACCATTT GATGCACAGA GTTCTGAATC TCAGGCCATG GTGAAGAAAT ACTTTTTTGT AAGCTGATGA TCCACTTT CAAGCTCTAG TACCACTTC CAAGCTCTAG TTATTAATGT AAAAAAAAAA	ACTGCCTTTG ACTGCCTTTC TTACTTTCA TCTAGCCATC AAGTATCAGC AAATAAGTAT TTGTATGTAT AACGGAAGGA CCTTATTTT TGTTGTTAAT ATGCCACAA ATCACCAA ATCACCAA ATCACCAA ATCACCAA ATCACCAA ATCACCAA ATCACCAA ATCACCAA ATCACCAA AGCCTAACAY CAACTGTGA ACTGTTCTTC CAAAGACCAA AGTGCTCCAG GTTCTGAAAA AAAA	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTCAT TTAAATGATC CAATTTCCAG GGATATGCCT ATTCGTTGCT GCAGCTTCAT CCTTAAAATG CCTTCAGCTC CCTTTTGCAT CCTGCCGGTT GTACAAAATG AAAATGAA TTGCCAATGG AAGAATTAT TATATTATGA	TATGACAAAG TTTTATTGTT TATAAGAGTT GTTAGTGATA GTGATCTCA ATCTGACTCA TGCACAGAAT TTTTTGGAAG TCAGCCACG TACAGAGTGA ACATCCAAGT ACGAGCACC GAAAACATCG TTCATGCCCG CTTCATGCCCG CTTGTGAGTCT GTGCTGAAG AAAAGCCTGG ATTCAGTATA ATAAATACAT	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140	s)
45 50 55 60	TATTTTTGTA TGATCCTTCA ACTTTTTAA ACTTTTTAA GTATAAAAA TCACAGATTG GGAAAAAAT GAAATATAAA CACTTGGATG TATTGGGAAA TTACCAGTAG CTGGAGAAAT TTACCAGTAG CTGCAGTAAT TTCCGATTGT ACACTTGGT ACACTTGGT ACACTTGGT CAGTATTCTC TGAATAAGTG CACCACACCC Seq ID NO: Nucleic Ac: Coding seq	CGTAAAATGA TTATCACGGT AATGAATTTT TATTTTTGC TACCAACTAT ATGCTGCCTT CACTTTAAT AAATAAGACC TTTATCCTTA CTCTCCACAA GTGAGATCCT AAAGACACAG TCAGAACCAG TCAGAACCAG TCAGAACCAG TCAGAACCAG TCAGAACCAC TCAGAACCCC TCAGCCCTCC CAACTCCAAA TTATTCTCCA AAAAAAAAAA	TTCTATTATG ACACTATTGT ACACTATTGT TTTAAAACA ATTTCTAGGC TAACTATGTT GGTGCTAATA GAAAGGGAGG AGCTCTTTAC TTGTTGTTAG CCACATTT GATGCACAAT GATGCACAAT GATGCACAAT ACTTTTTTTT AAGCTGATGA TGCACACTT CAAGCTCTC CAAGCTCTAG TTATTATTTT AAGCTGATGA TATTAATGT AAAAAAAAAA	ACTGCCTTTG TTACTTTCA TCTAGCCAT TCTAGCCAT TCTAGCCAT AAGTATCAGC AAATAAGTAT TTGTATGTAT TTGTATGTAT TGATCCCCCAA ATGCCAAGATA ATGGCATGA ATCACGATTG AGCCTAACAY GAACTGTGGA ATCACGATTC CAAAGACCAA AGTGCTCCAG GTTCTGAAAA AAAA	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTCAT TTAAATGATC CAATTTCCAG GGATATGCCT GCAGCTTCAT CCTTCAGCTC CCTTCAGCTC CCTTCAGCTC CAAAATGGAT TGCAAAATGCAT TACAAAATG CAAAATGGAA ATGCAATTG CAAAATGGAA TTGCCAATTG CAAAATGGAA TTGCCAATTG AGAGATTAT TATATTATGA es correspon	TATGACAAAG TTTTATTGTT TATAAGAGTT GTTAGTGATA GTGATCTCTG ATCTGACTCA TGCACAGAAT TTTTTGGAAG TCAGCCCACG TACAGAGTGA ACATCCAAGT ACGAGCACAC GAAAACATCG TTCATGCCCG CTTTGAGTCT GTGCTGAAGC CCCATGGAAG AAAAGCCTGG ATTCAGTATA ATAAATACAT	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 and stop codon	ຣ)
4550556065	TATTTTGTA TGATCCTTCA ACTTTTTTAA GCTATAAAGA TCACAGATTG GGAAAAAAT GAAATATAAA CACTTGGATG TATTGGATG TATTGGAAA TTACCAGTAG CTGGAGAAA TTACCAGTAG CTGCAGTAAT TTCCGATTGC CATGGTCTTT ACACTTGGT TATTGGTAAT CACTAGTCT TGAATAAGTC CACACACCC Seq ID NO: Nucleic Ac: Coding sequence 1 ATGAACTGCA ATGTACCACAC ATGTTGAAGT ATGAACTGCA ATGTTGAAGTG ATGAACTGCA ATGTTGAAGTG	CGTAAAATGA TTATCACGGT AATGAATTTT TATTTTTTGGC TACCAACTAT ATGCTGCCTT CACTTTAAT AAATAAGACC TTATCCTTA GTGAGATCCT AAAGACACAG GTGAGATCCT TCAGAACCAG TGACTTCTCT GGACGTTTGT TCATTAATTC CTGCCCCTCC TAAGAACCC CAACTCCAAA TTATCTCCA AAAAAAAAAA	TTCTATTATG ACACTATTAT ACACTATTAT TTTAAAACAA ATTTCTAGGC TAACTATGT GGTGCTAATA GAAAGGGAGG AGCTCTTTAC TCAACTATTT GTTGTTATA GATGCACATT GATGCACAGA GTTCTGAATC TCAGGCCATG GTGAAGAAAT ACTTTTTTGT AAGCTGATGA TTCCACACTT CAGCTCTAG TAATAATGT AAAAAAAAAA	ACTGCCTTTG TTACTTTCA TCTAGCCATC AAGTATCAGC AAATAAGTAT TTGTATGTAT AACGGAAGGA CCTTATTTTT TGTTGTTATT TGTTGTTATA ATGGCCAGA AGCCCAAGATA ATGGCATGA ATCACGATTG AGCCTAACAY GAACTGTGGA TACTTCTTTC AGGGAAGCCT CAAAGACCA AGTGCTCAG GTTCTGAAAA AAAA	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTTCAT TTAAATGATC CAATTTCCAG GGATATGCT GCAGCTCAT CCTTCAGCTC CCTTTTGCAT CCTGCCGGTT GTACAAATG AAAATGGAA TTGCCAATGG AGAGATTAGC AAAATGGAA TTGCCAATGG AGAGATTAT TATATTATGA es corresponded of the correspo	TATGACAAAG TTTATTGTT TATAAGAGTT GTTAGTGATA GTGATCTCTG ATCTGACTCA TGCACAGAAT TTTTGGAAG TCTAGCCCACG TACAGAGTA ACATCCAAGT ACGAGCACAC GAAAACATCC GTTTGAGTCT GTGCTGAAGC CCCATGGAGA ATTCAGTATA ATAAATACAT ad to start 51 CGAGAAGAAG CCTGATGAGC CCGATGAGC CCCATGAGAC CCCATGAGACAC CCCATGAGACAC CCCATGATGAGC	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 and stop codon	s)
4550556065	TATTTTGTA TGATCCTTCA ACTTTTTAAA GCTATAAAAAA TCACAGATTG GGAAAAAAAT GAAATATAAA CACTTGGATG TATTGGGAAA TTACCAGTAG TTACCAGTAG CTGGAGAAAT TTCCAGTAGT TTCCAGTAT TCCAGTAT TCCAGTAGT CACTTGGT CACTAGT CACTAGT CACTAGT CACTAGT CACTAGT CACTAGT CACTAGT TCAGTATTCT CAGTATTCTC TGAATAAGT CACCACACCC Seq ID NO: Nucleic Ac: Coding sequence of the color of the col	CGTAAAATGA TTATCACGGT AATGAATTTT TATTTTTGGC TACCAACTAT ATGCTGCCTT CACTTTAAT AAATAAGACC TTTATCCTTA CTTCCACAA GTGAGATCCT AAAGACACAG TCAGAACCAG TCAGAACCAG TCAGTTTTAAT TCATTAATTC TCACTCCACAA TTATTCTCCA AAAAAAAA	TTCTATTATG ACACTATTGT TTTAAAACAA ATTTCTAGGC TTACTATTATG GAAAGGGAGG AGCTCTTTAC TTGTTGTTAGAC TCAAATGGAG CTCACCATTT GATGCACAGA GTTCTGAATC TCAGGCCATG GTGAAGAAAT ACTTTTTTGT TAGCCACTTC CAAGCTCTAG TTATTAATGT AAAAAAAAAA	ACTGCCTTTG TTACTTTCA TCTAGCCATC AAGTATCAGC AAATAAGTAT TTGTATGTAT AACGGAAGGA CCTTATTTTT TGTTGTTAT ATGCCCCAA ATGGCATGA ATCACGATG AACTGTGGA ATCACGATTG AGCCTAACAT AGGGAAGCA ATCACGATTG AGCCTAACAT AGGGAAGCCT CAAAGACCAA AGTGCTCCAG GTTCTGAAAA AAAA	CATGTAGTAA TCTGTAAATG ATCAAGGTGC CAATAAGTAT TCAGTTCAT TTAAATGATC CAATTTCCAG GGATATGCT ATTCGTTGCT CTCTAAAATG CCTTCAGCTC CCTTTTGCAT CCAAAATG GTACAAAATG GAAAATG GAAAATG GAAAATG AAAATGAAATT TATATTATGA ES COIPESPON 41 GGGGCAACGA AAACCTGCCT TGTTTGACCA ATGACACGC ATGACACCGC	TATGACAAAG TTTTATTGTT TATAAGAGTT TATAAGAGTT GTGATCTCTG ATCTGACTCA TGCACAGAAT TTTTTGGAAG TCAGCCCACG TACAGAGTA ACATCCAAGT ACGAGCACAC GAAAACATCC GTTCAGCCCC CTTTGAGTCT TTGAGTCT TTGAGTCT ACGAGTATA ATAAATACAT ad to start CGAGAAAAAA CCTGATGAGC CTTTGAGTCT CGAGTATA CTTCAGTATA CTTCAGTATA CTTCAGTATA CTTCAGTATA CCTATGAGTCT CCCATGGAAG CCCATGGAAG CCCATGGAAG CCCATGGAAG CCCATGGAAG CCCATGGAAG CCCATGGAAG CCCATGGAAG CCCATGATGAGC CCTATGCAGTT CGGACAGGAG CCTATGCAGTT CGGACAGGAG	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 and stop codon	s)

```
TCTGTCGTAA ACCCTGCCTC TTACCACAAT GTCCAGGAGG AATGGGTCCC CGAGCTCAAG
      GACTGCATGC CTCACGTGCC TTATGTCCTC ATAGGGACCC AGATTGATCT CCGTGATGAC
                                                                           420
      CCAAAAACCT TGGCCCGTTT GCTGTATATG AAAGAGAAAC CTCTCACTTA CGAGCATGGT
                                                                           480
      GTGAAGCTCG CAAAAGCGAT CGGAGCACAG TGCTACTTGG AATGTTCAGC TCTGACTCAG
                                                                           540
      AAAGGTCTCA AAGCGGTTTT TGATGAAGCA ATCCTCACCA TTTTCCACCC CAAGAAAAAG
                                                                           600
      AAGAAACGCT GTTCTGAGGG TCACAGCTGC TGTTCAATTA TCTGA
      Seq ID NO: 55 Protein sequence:
10
      Protein Accession #: NP 065714
                            21
                                                  41
                                                              51
                                       31
      MNCKEGTDSS CGCRGNDEKK MLKCVVVGDG AVGKTCLLMS YANDAFPEEY VPTVFDHYAV
                                                                           60
15
      TVTVGGKQHL LGLYDTAGQE DYNQLRPLSY PNTDVFLICF SVVNPASYHN VQEEWVPELK
      DCMPHVPYVL IGTQIDLRDD PKTLARLLYM KEKPLTYEHG VKLAKAIGAQ CYLECSALTQ
      KGLKAVFDEA ILTIFHPKKK KKRCSEGHSC CSII
20
      Seq ID NO: 56 Nucleotide sequence:
      Nucleic Acid Accession #: fgenesh prediction
      Coding sequence: 1-546 (underlined sequences correspond to start and stop codons)
25
                 11
                            21
                                       31
                                                  41
                                                              51
      ATGCCCTTGG GCAGCTCCGC CCCTGTGGCT TTGCAGGGTA ATGCCCACTT CCCTGCTGCT
                                                                            60
      TTCATGGCTG GCATTAAGTG TCTGTGGCTT TTCCAGGTAG TCCCCCTGGG GCTCCCCGAG
      TIGGTGCAAA GGCTCCTGGG TGGAGCTCGA ACTGAAACTC GCTTTGTGCC CGCAGCCCTG
                                                                           1.80
30
      CAGCTCGCCG GTGCCCTCGA CCTGCCCGCT GGGTCCTGTG CCTTTGAAGA GAGCACTTGC
                                                                           240
      GGCTTTGACT CCGTGTTGGC CTCTCTGCCG TGGATTTTAA ATGAGGAAGG CCAGCAACCT
                                                                          300
      TTCTGGTCCT CAGGAGACAT GTCTGACTGG GACTACTGGG TTGGCTGGCG GAAGTTAATT
                                                                           360
      CATTCTCCTC TGAGCACTCC AGGGTGGAGC AGGCAGGTTA GGCTCCAGTT GTTCCAGCTT
      CAGTTTGTCA AAGGCCAGAA CTTGGACGTA ACAGTGTACT GCAGGCTCCA GGGCAGTGAG
                                                                          480
35
      AAACCCTTTG AAACTGGTTC CATGGTTCCA TTCACCTTCA TGTACTGGAT CCACCATGGA
                                                                          540
      Seq ID NO: 57 Protein sequence:
40
      Protein Accession #: fgenesh prediction
                            21
                                       31
                                                  41
                                                              51
                 11
      MALGSSAPVA LQGNAHFPAA FMAGIKCLWL FQVVPLGLPE LVQRLLGGAR TETRFVPAAL
                                                                           60
45
      QLAGALDLPA GSCAFEESTC GFDSVLASLP WILNEEGQQP FWSSGDMSDW DYWVGWRKLI
                                                                          120
      HSPLSTPGWS RQVRLQLFQL QFVKGQNLDV TVYCRLQGSE KPFETGSMVP FTFMYWIHHG
      Seq ID NO: 58 Nucleotide sequence:
50
      Nucleic Acid Accession #: XM 050478
      Coding sequence: 27..4508 (underlined sequences correspond to start and stop codons)
                 11
                            21
                                       31
                                                  41
                                                             51
      CCGGCGCGC CTGAGCCCAG CCGAGGATGG AGAACCGGCC TGGGTCCTTC CAGTACGTCC
55
      CTGTGCAGCT GCAAGGGGG GCACCCTGG GCTTCACCCT TAAGGGGGGT CTGGAACACT
                                                                          120
      GTGAGCCGCT CACAGTGTCT AAGATTGAAG ATGGAGGCAA GGCAGCTTTG TCCCAGAAGA
                                                                          180
      TGAGGACTGG TGATGAGCTG GTGAATATCA ATGGCACTCC ATTATATGGC TCCCGCCAAG
                                                                           240
      AGGCCCTCAT TCTCATCAAA GGCTCCTTCC GGATTCTCAA GCTGATTGTC AGGAGGAGGA
                                                                           300
      ACGCCCTGT CAGTAGGCCG CACTCATGGC ATGTGGCCAA GCTGCTGGAG GGATGCCCTG
      AAGCAGCCAC CACCATGCAT TTCCCTTCTG AAGCCTTCAG CTTGTCCTGG CATTCTGGCT
60
                                                                           420
      GCAACACAAG TGACGTGTGT GTGCAGTGGT GTCCACTCTC CCGGCATTGC AGCACCGAGA
                                                                           480
      AAAGCAGCTC CATTGGCAGC ATGGAGAGCC TGGAGCAACC AGGCCAAGCC ACCTATGAGA
                                                                          540
      GCCATCTGTT GCCTATTGAC CAGAACATGT ACCCTAACCA GCGTGACTCA GCCTACAGCT
      CCTTCTCGGC CAGCTCAAAT GCTTCTGACT GTGCCCTTTC CCTCAGGCCA GAGGAGCCAG
                                                                           660
65
      CCTCTACAGA CTGCATCATG CAAGGCCCAG GGCCAACTAA GGCCCCCAGT GGCCGGCCTA
                                                                           720
      ATGTGGCTGA GACCTCAGGA GGTAGTCGGC GCACCAATGG GGGCCACCTG ACCCCCAGCT
                                                                           780
      CTCAGATGTC ATCCCGTCCA CAGGAGGGAT ACCAGTCAGG GCCCGCCAAA GCAGTCAGGG
      GCCCACCACA ACCTCCAGTG AGGCGGGACA GCCTTCAGGC CTCCAGAGCC CAACTCCTCA
                                                                           900
      ATGGAGAGCA GCGCAGGGCA TCTGAGCCTG TGGTCCCCTT GCCACAGAAG GAGAAACTGA
                                                                           960
70
      GCTTAGAGCC TGTGCTACCC GCAAGGAACC CTAATAGGTT CTGTTGCCTC AGTGGGCATG
                                                                         1020
      ACCAAGTGAC AAGTGAGGGC CATCAGAACT GTGAGTTCAG TCAGCCTCCT GAATCCAGCC
                                                                          1080
      AACAGGGCTC TGAGCATCTA CTGATGCAGG CCTCAACCAA AGCTGTTGGA TCCCCAAAAG
      CCTGTGACAG AGCTTCCAGC GTGGATTCCA ACCCACTCAA TGAGGCTTCT GCAGAGCTAG
                                                                         1200
      CTAAGGCTTC TTTTGGCAGA CCTCCACATC TCATAGGACC CACAGGGCAT CGCCATAGTG
                                                                          1260
75
      CCCCTGAACA GCTGCTGGCA TCCCACCTGC AGCATGTGCA CCTTGATACC AGGGGCAGCA
                                                                         1320
      AAGGGATGGA GCTCCCACCC GTACAGGATG GGCACCAGTG GACTCTGTCC CCTTTGCACA
```

			AGTCCATGCC				1440
			CAAGTGGATG				1500
			GAGGCTGATG				1560
5			GCCAGTGAAT				1620
5			GACTGTTCTT				1680
			GAGCCCAAGG				1740
			ATCCAAAACC AGGAAGGCCC				1800 1860
			CCAGTGGAAG				1920
10			CTTCTATCTT				1980
10			ATGCTCAGAG				2040
			ACAGGCTTAG				2100
			AACACCTGGT				2160
			TGTGGAGTCC				2220
15			GCAGCAGCCA				2280
13			GCTCAAGCTG				2340
			GAGAGTAGCA				2400
			ACTTTTACCC				2460
			AGGGAATTGA				2520
20			GCCACAGACC				2580
_ `			GAATGTTTTG				2640
			GATTTTGATT				2700
			GATCCTTGCA				2760
			CCAAATTGCT				2820
25	TTCGGTGTTC	AGTTTGCTAT	CATAATCCTC	AGCACAGTGC	CCTCGAGGAC	AGCAGCTTGG	2880
	CACCTGGCAA	CACTTGGAAA	CCCAGGAAGC	TGACAGTGCA	GGAATTTCCT	GGGGACAAAT	2940
	GGAATCCAAT	AACAGGAAAC	AGGAAGACCA	GCCAGTCAGG	GAGGGAAATG	GCTCATTCCA	3000
	AGACTAGCTT	TTCATGGGCA	ACCCCTTTCC	ATCCTTGCCT	TGAGAACCCA	GCACTGGACT	3060
	TGTCAAGCTA	CCGAGCAATT	TCTTCTCTTG	ACCTCCTTGG	AGACTTCAAA	CATGCTTTGA	3120
30	AAAAATCAGA	GGAAACTTCA	GTTTATGAGG	AGGGGAGCTC	CCTTGCCTCC	ATGCCCCACC	3180
	CACTGCGCAG	CCGTGCCTTC	TCAGAGAGTC	ACATCAGCTT	GGCGCCCAA	AGCACCCGGG	3240
	CCTGGGGGCA	GCATAGGAGG	GAGCTCTTTA	GCAAAGGTGA	TGAGACCCAG	TCGGATCTTC	3300
	TCGGAGCCAG	GAAGAAGGCC	TTTCCTCCTC	CTCGCCCTCC	TCCTCCCAAC	TGGGAGAAGT	3360
25			CAGCAGCAGA				3420
35			GAAGAAGAAG				3480
			CTGCCACCCC				3540
			GTCCTAGAGC				3600
			CAAAGTGTCC				3660
40			ATAAGGGGTC				3720
40			GGTGGGCTTT				3780
			CACTTTTCGC				3840
			ATTTCTGTGG				3900
	ACCAACCTGA	GATGGCAGAG	ATTGGCCTAG	GAGAGGAGGA	AGTIGACCAT	GAACIGGCIC	3960
45			GAAAGCATCA ATCAATGCCA				4020 4080
40			TCCAATGAAT				4140
			TTGCTGTCAC				4200
			GAGGCCAACC				4260
			GCAGATGCCA				4320
50			GTCTCCCGCT				4380
50			TCTGCTCTCA				4440
			CTCAAATGTC				4500
	ATTTCTAATT	CTACCAGCAC	TCTGCCACAG	CATCCCTGCC	CAGCCATGTG	GGAAGTGCTT	4560
			TTTCTCAGCA				4620
55			CACTACCCCT				4680
			TTCTACCCAA				4740
			TGCCAAGGGC				4800
			CTAGGACACC				4860
			GCTCAGAGGG				4920
60			TCACAGAGAG				4980
			AGCTTTGCAG				5040
	AAAAAATGCA	AGCAAAGGTT	GAGTACCCCC	AGGTGCCCCT	TAGGAAGGAA	CCAGGTTTAA	5100
	ATAGGCTCTA	CCCTTACCTT	TCCCAGCAGC	AAGTTCAGGG	GAAGAGGCCT	ACTCTTAGCC	5160
	CTGGCTAGTG	TGACCCTCTT	CCTGTCCTAA	GACTTTGGTC	CTACCACCTC	TTGTTTCATC	5220
65			GTTACCGCAG				5280
			CTGACTTCTA				5340
			TGGCCTTTTG				5400
	TTTTCTTTTT	TAACTAATAA	GGCGAGAAGA	GGGAAGTTGG	AGAGGGAAAA	GTTAGCCCAG	5460
70	AAGGAAAGCA	TTTTCTGCAG	ATCAGCCTGA	ATCCACCGTG	GCTAGGCATA	TTCTTGCTCT	5520
70 ·			CCTGCCTGGA				5580
			ACAATCCGAA				5640
			ATCCCAGCAC				5700
			CTGGCTAACA				5760
75			GGCACGCACC				5820
75	AGGAGAATTG	CTTGAACCTG	GAAGGCAGAG	ATTGCAGTGA	GCTGAGACCA	CACCACTGCA	5880
	CTCCATCCTG	GGCAACAGAG	TGAGACTTTG	TCTCAAAAAG	AADAAADAA	DAAADAAADA	5940

60

180

240

AAAGAAAGAA AGAAAAGAAA GAAAGAAAGA AAGAAAGAAA ACAGTTCCAT TTACAATAGC 6000 ATC

RRTNGGHLTP SSQMSSRPQE GYQSGPAKAV RGPPQPPVRR DSLQASRAQL LNGEQRRASE 300
PVVPLPQKEK LSLEPVLPAR NPNRFCCLSG HDQVTSEGHQ NCEFSQPPES SQQGSEHLLM 360
QASTKAVGSP KACDRASSVD SNPLNEASAE LAKASFGRPP HLIGPTGHRH SAPEQLLASH 420
LQHVHLDTRG SKGMELPPVQ DGHQWTLSPL HSSHKGKKSP CPPTGGTHDQ SSKERKTRQV 480
DDRSLVLGHQ SQSSPPHGEA DGHPSEKGFL DPNRTSRAAS ELANQQPSAS GSLVQQATDC 540
SSTTKAASGT EAGEEGDSEP KECSRMGGRR SGGTRGRSIQ NRRKSERFAT NLRNEIQRRK 600
AOLOKSKGPL SOLCDTKEPV KETGEPPESP PLYTASNTSLL SSCKKPPSPR DKLFNKSMML 660

20 AQLQKSKGPL SQLCDTKEPV EETQEPPESP PLTASNTSLL SCKKPPSPR DKLFNKSMIL 660
RARSSECLSQ APESHESRTG LEGRISPGQR PGQSSLGLIN WWKAPDPSSS DPEKAHAHCG 720
VRGGHWRWSP EHNSQPLVAA AMEGPSNPGD NKELKASTAQ AGEDATLLIPF ADRRKFFEES 780
SKSLSTSHLP GLTTHSNKTF TQRPKPIDQN FQPMSSSCRE LRRHPMDQSY HSADQPYHAT 840
DQSYHSMSPL QSETPTYSEC FASKGLENSM CCKPLHCGDF DYHRTCSYSC SVQGALVHDP 900
CIYCSGEICP ALLKRNMMPN CYNCRCHHHQ CIRCSVCYHN PQHSALEDSS LAPGNTWKPR 960

25 KLTVQEFEGD KWNPITGNK TSQSGREMAH SKTSFSWATP FHPCLENPAL DLSSYRAISS 1020
LDLLGDFKHA LKKSEETSVY EEGSSLASMP HPLRSRAFSE SHISLAPQST RAWGQHRREL 1080
FSKGDETQSD LLGARKKAFP PPRPPPNWE KYRLFRAAQQ QKQQQQQQKQ QEEEEEEEEE 1140
EEEEEEEEEEE EAEEEEELP PQYFSSETSG SCALNPEEVL EQPQPLSFGH LEGSRQSQS 1200
VPAEQESFAL HSSDFLPPIR GHLGSQPEQA QPPCYYGIGG LWRTSGQEAT ESAKQEFQHF 1260
SPPSGAPGIP TSYSAYYNIS VAKAELLNKL KDQPEMAEIG LGEEEVDHEL AQKKIQLIES 1320

ISRKLSVLRE AQRGLLEDIN ANSALGEEVE ANLKAVCKSN EFEKYHLFVG DLDKVVNLLL 1380
SLSGRLARVE NALNSIDSEA NQEKLVLIEK KQQLTGQLAD AKELKEHVDR REKLVFGMVS 1440

RYLPQDQLQD YQHFVKMKSA LIIEQRELEE KIKLGEEQLK CLRESLLLGP SNF

Seq ID NO: 60 <u>Nucleotide sequence:</u> Nucleic Acid Accession #: NM_014705

Coding sequence: 192..2489 (underlined sequences correspond to start and stop codons)

	3 1		,	-		-	
40							
	1	11	21	31	41	51	
	ī	Ī	Ī	ì	ï	Ī	
	GGGAGAAGCT	AGGAAAAAAT	GTCTTTGAGC	TGTGAGATGC	TTGTATATTT	TGAAAATATG	60
	ATTATATGCA	TGTGTTTGTA	TTTTATGACT	TGGATAATCT	GAAAATCAAT	TTGCTTTGTC	120
45	AATGCTTCCT	GGATTAGAAT	TCCACTATTT	GGTCCCTATC	CTAGTCTACT	AAAGAAAATT	180
						TCGTCTAATG	
	GAGAGGTTGT	TAGATTACAG	AACTTCTATA	AGACTGAACT	GAACAAGGAG	GAGATGTATA	300
						ACAGAAGCTG	
	CATATACCCT	CCTCTTATAT	GACGAGCTAC	TGGAATGGTC	TGATCGGCCC	CTCAGGGAGT	420
50	TCCTGACCTA	CCCCATGCAA	ACAGAATGGC	AGCGCAAAGA	GCACCTGCAC	CTCACCATCA	480
	TCCAGAACTT	TGACAGAGGC	AAATGTTGGG	AGAATGGCAT	TATCTTGTGC	CGGAAGATTG	540
	CAGAGCAGTA	TGAGAGTTAT	TATGACTACA	GAAACCTGAG	CAAGATGCGG	ATGATGGAAG	600
	CCTCTTTGTA	TGACAAAATT	ATGGACCAGC	AACGTCTTGA	ACCAGAGTTC	TTCAGAGTTG	660
	GATTTTATGG	AAAAAAATTT	CCATTTTTCT	TAAGAAATAA	GGAGTTTGTG	TGTCGAGGGC	720
55	ATGACTACGA	GAGGCTGGAA	GCCTTCCAAC	AGAGAATGCT	GAACGAGTTC	CCCCATGCCA	780
	TCGCCATGCA	GCACGCCAAC	CAGCCCGATG	AGACCATCTT	CCAGGCAGAA	GCTCAGTATT	840
	TGCAGATATA	TGCTGTGACT	CCCATTCCAG	AGAGCCAGGA	GGTCCTGCAG	AGAGAGGGTG	900
	TTCCGGACAA	CATCAAAAGC	TTCTATAAAG	TGAATCACAT	CTGGAAATTC	CGCTATGACC	960
	GACCATTTCA	CAAAGGCACA	AAAGATAAAG	AGAATGAATT	CAAGAGTCTC	TGGGTGGAGA	1020
60	GAACGTCATT	ATACTTGGTG	CAGAGTTTGC	${\tt CTGGCATCTC}$	TCGCTGGTTT	GAAGTGGAAA	1.080
	AGCGTGAAGT	GGTAGAAATG	AGTCCTCTGG	AAAATGCAAT	TGAAGTGCTA	GAAAATAAGA	1140
	ATCAGCAGCT	GAAGACTCTG	ATTAGTCAGT	GTCAGACAAG	ACAGATGCAG	AATATTAATC	1200
	CCCTGACTAT	GTGCCTGAAT	GGAGTTATAG	ATGCTGCAGT	TAATGGTGGC	GTTTCCAGGT	1260
						GGGGAGAAAA	
65						GGTTTGGCCG	
	TGCATGAGAA	GTTTGTACCT	CAAGATATGA	GACCCCTTCA	CAAAAAGCTG	GTTGACCAAT	1440
						CAAGCCAGTC	
						GCTTCTGTGA	
						GCTGTCAACC	
70						ATTACAGGGC	
						TCAAGCTTGA	
						GCCAGAGCTT	
						TCACCAAGAG	
75						ATGCTGTTTA	
75						CCTGAAAAAG	
	CTTCACCAGC	AAGACACACG	ACATCAGTAT	CCCCCTCGCC	TGCCGGGCGA	TCTCCATTGA	2040

```
AGGGCTCTGT GCAGTCTTTC ACCCCCTCTC CAGTGGAGTA CCACTCGCCA GGACTCATCT 2100
      CCAACTCCCC TGTCTTGTCG GGCAGCTACA GCAGTGGGAT TTCTTCTCTC AGCCGGTGCA
      GCACGTCGGA AACCTCAGGC TTTGAAAATC AGGTGAATGA ACAGTCGGCC CCCCTGCCGG
                                                                        2220
      TGCCAGTGCC GGTGCCCGTG CCGAGCTACG GCGGGGAGGA GCCAGTGCGC AAGGAGAGCA
 5
      AGACTCCGCC CCCGTACAGC GTCTACGAGC GGACTCTGCG GCGCCCCGTC CCGCTACCTC
      ACAGCCTCTC CATCCCCGTC ACGTCGGAGC CGCCCGCGCT GCCCCCCAAG CCTCTGGCAG
      CGCGATCCAG CCACCTGGAG AATGGGGCCC GGAGGACTGA CCCCGGCCCG CGGCCCAGGC
                                                                       2460
      CCCTGCCCCG CAAGGTCTCT CAGTTATAAG TCACTTTTCT ATGTACCTGC GATGCATTCT
                                                                        2520
      TTGCCCGTTT ACAAAATAAG AAGTATGATG AGAAGACATT TAGTGTAGGC ACTTTAATAA
                                                                        2580
10
      CTTACTCAGC TCCTTCGATG AATGGAATTA AAACTTGCTT ATTAAATATC ATGTTGCACA
      ATATTAAAAG TTGCTGATCT AAAACGCCAG ATGTTAAATG AAGTATGGCT GAATTTCATT
     AAAACGTTTC TCATTTGGAA GTGGTAAATA GTGATAAAGA CTCCTTTTGT ACCTTTTTAT
                                                                       2760
      GTTCACTTTT TTTTATATAG TTTAATCTTA AAACCAATAC GATATTGTCA AACGATACAA
                                                                       2820
      TGTGTGACAA TGTTGTATCG TTTTTACTGA ATACTTGATA CTTGGAGAAA GCTTATTAAG
                                                                        2880
15
      TCAGTGCACA TCCTAACACA GTGGTCCTTA TTTTAGAAGA CTTCTGTAAA TAAGGCAAGG
      TTTATCAGTG CAGATCATCA GAATTAAAGT TCAAGCAGGC GAGCAAGACA GTATACTTAA
                                                                       3000
     GGGGTTGCAA AGCTTGGGAC TGGAAATTGT TTTGTTCTTG AAACAAAATA CTTCTTTAAG
                                                                       3060
      GTTGCTTTTG CTGTTTGACT GCTGTCTACA TTCGTAAAAT TCTATTTTGT GAATTGGTAG
                                                                       3120
      CTAAATCCCT TACTACCCTG ACACCGTGGT ATCTACTGTA TTTCTTTTCA AGGTGCAATT
     TGCTTCAGAG TTCCAATCAG CTAGATTAAG CAAGAGGCTC CAGAAGAAAT GTTTACTTGA
20
     ATTTTGCGCT TCCTTTCTTG ATAGTTTCCT ATATAAAATT TGTCATTGAA CAAGAGCAAA
                                                                       3300
      TGCTGAAGTA TTAATGAGGC ACAAATGACT GTGCCCCATT AGCAAGAATT CAGGAATCAA
                                                                       3360
      TACAGACAGT ATTAAATTAA TAGCTTAAGT GAAGAAAAA AAAAACTTAG TGAAAATGTA
                                                                       3420
      TTAGCACGAT TAAATGGCAA AAGGACTTAT AAAAGGCAAG GGCATTAACT TTCAGTCCTG
                                                                        3480
25
      CÀCAAAATAA AAAATTCCTC ACGACTCTCC ACTTTTACCA GTGGAGTTTG TCTTAGCTGA
                                                                       3540
      CCTGTCGTCT TTCTCTTGAA GGAGGATTGC TGTAGACTTC TCTAGCTTGA ATATTGCAAC
                                                                       3600
     ATAGCATCTT AGGTCTAGAT AGGGATGCTA ATGCCAGTTG TAGAAGTGTG AAAAAAGCAC
                                                                        3660
     CTTGTATGTA GTAATGTATT TTATATCTTT GTTTTTTCTT TTACTGACTG TTTATAACAC
     TCAATTGACA ATAGATATGA ACTGTATTTT AAATCATACT GTTAAATATT TTCCCTCTTT
                                                                       3780
30
      3840
     AGTGACCACT TTTTTATATT CTCTTAATGA AACCATTCAG CAGGTATATG CTGTTGAGGC
                                                                       3900
      TGGTTATAGA GGTTTTCTAT AATAAATGTT CAAGTATTTT TGTATATAAC TGGTTAATTT
                                                                       3960
     TAATAAGAGA TACCATTATG TGTAAAAAAA AGTAAAAATA AACGCAAACA GTTGTTGATG
                                                                       4020
      CAGTATGATT GTTATAATTA TGCCAAATAC TTTACGTATG GAAAAAGAAT ATTTGTACAT 4080
35
      ATGTGCTTTT AACAATTCTG CCATATTGAC TTTACAATTT TGAATGTCGG AAAAATTAAT
                                                                       4140
     ATATGTTAAA TATTTATGTT TAGTGAAAGT GTTCATAATT GAGAAAAGGA ACATATGCAT
      TTTAGCTTTG TATCTTGCAA GTTTTGCAGT CAGAAATTTT TTGAACTAGC TTTTGCTTTT
                                                                       4260
     GATAACACTT CGTGTTTGTA ACCACATTCA TATATATATA CATATATATG TGAAGCTCCA 4320
     TATTTCTGTT GCTTTAAAGA AGTAAAACCT TCCATTTAAA TAAGATGACA TGCATAAGAT 4380
40
      AACAAAGCTT CCTTGATTTC CTTTTCCTGT GTAATTTAAT AGATTTGTTG ACTAGTGCTT
                                                                        4440
     GGGCACATTA TAAATCAGTG TTATTTGCTC TTGGAGCCAT TTTTTAAAAA AAATTTTGGC
     AGTGAGCAGT TGAATTTATC TTGAATTTAT CATGTGTGTG TATTTCTGAA GCAGCTACAT
                                                                       4560
     AGCAGAACAT TTTAAGAGAT TCTGTTAGCC CACATGTTCA TGTTGGTTGC TGCTGAATGG 4620
      TAAATATTAA ATAAAATTAC CAGATTAATC TT
45
      Seq ID NO: 61 Protein sequence:
     Protein Accession #: NP_055520
                                      31
                                                 41
50
     MAGKWRFINC YCNSSNGEVV RLQNFYKTEL NKEEMYIRYI HKLYDLHLKA QNFTEAAYTL
     LLYDELLEWS DRPLREFLTY PMQTEWQRKE HLHLTIIQNF DRGKCWENGI ILCRKIAEQY
                                                                        120
      ESYYDYRNLS KMRMMEASLY DKIMDQQRLE PEFFRVGFYG KKFPFFLRNK EFVCRGHDYE
                                                                        180
     RLEAFQQRML NEFPHAIAMQ HANQPDETIF QAEAQYLQIY AVTPIPESQE VLQREGVPDN
55
      IKSFYKVNHI WKFRYDRPFH KGTKDKENEF KSLWVERTSL YLVQSLPGIS RWFEVEKREV
                                                                        300
      VEMSPLENAI EVLENKNQQL KTLISQCQTR QMQNINPLTM CLNGVIDAAV NGGVSRYQEA
                                                                        360
     FFVKEYILSH PEDGEKIARL RELMLEQAQI LEFGLAVHEK FVPQDMRPLH KKLVDQFFVM
                                                                        420
      KSSLGIOEFS ACMOASPVHF PNGSPRVCRN SAPASVSPDG TRVIPRRSPL SYPAVNRYSS
                                                                         480
      SSLSSQASAE VSNITGQSES SDEVFNMQPS PSTSSLSSTH SASPNVTSSA PSSARASPLL
                                                                        540
60
      SDKHKHSREN SCLSPRERPC SAIYPTPVEP SQRMLFNHIG DGALPRSDPN LSAPEKASPA
                                                                         600
      RHTTSVSPSP AGRSPLKGSV OSFTPSPVEY HSPGLISNSP VLSGSYSSGI SSLSRCSTSE
                                                                         660
     TSGFENQVNE QSAPLPVPVP VPVPSYGGEE PVRKESKTPP PYSVYERTLR RPVPLPHSLS
      TPVTSEPPAL PPKPLAARSS HLENGARRTD PGPRPRPLPR KVSOL
65
      Seq ID NO: 62 Nucleotide sequence:
      Nucleic Acid Accession #: fgenesh prediction
     Coding sequence: 1..2561 (underlined sequences correspond to start and stop codons)
70
                11
                           21
                                      31
                                                 41
                                                            51
      ATGGACCGAG GCCAGGGTAA GAGGGGCCGC GACGCCCGCA CTTGTTGCGG CGCCGGGCGG
      GAAAGGGAGA CTGGACGATC TGAAGCCGGA GAGGAGGAGG GAGAGAGGCG GGCGGTGGGG
                                                                        1.20
      CGGGGGCTGA GGAACGCTCG GAGGGGACTG GGAGACGCGG CGCTTATGCA AAGGTGCCTT
                                                                         180
75
      CGGCTGCCGG GACAACCCGC CAGCAACCAG GTACAGCTCT CAGAGGTTCC ACAGAGGAAG
      CTCAGGGTCC CTGAATCTCC CAGTGTGGCA GAGAAAGTGA AACTTGGTCA CCGATGCCTG
```

```
GAACTGCTGG AGCAGCTGCT CCCAGAGCTC ACCGGGCTGC TCAGCCTCCT GGACCACGAG
      TACCTCAGCG ATACCACCCT GGAAAAGAAG ATGGCCGTGG CCTCCATCCT GCAGAGCCTG
      CAGCCCCTTC CAGCAAAGGA GGTCTCCTAC CTGTATGTGA ACACAGCAGA CCTCCACTCG
                                                                          480
      GGGCCCAGCT TCGTGGAATC CCTCTTTGAA GAATTTGACT GTGACCTGAG TGACCTTCGG
                                                                          540
      GACATGCCAG AGGATGATGG GGAGCCCAGC AAAGGAGCCA GCCCTGAGCT AGCCAAGAGC
      CCACGCCTGA GAAACGCGGC CGACCTGCCT CCACCGCTCC CCAACAAGCC TCCCCCTGAG
      GACTACTATG AAGAGGCCCT TCCTCTGGGA CCCGGCAAGT CGCCTGAGTA CATCAGCTCC
                                                                          720
      CACAATGGCT GCAGCCCCTC ACACTCGATT GTGGATGGCT ACTATGAGGA CGCAGACAGC
                                                                          780
      AGCTACCTG CAACCAGGGT GAACGGCGAG CTTAAGAGCT CCTATAATGA CTCTGACGCA
                                                                          840
10
      ATGAGCAGCT CCTATGAGTC CTACGATGAA GAGGAGGAG AAGGGAAGAG CCCGCAGCCC
      CGACACCAGT. GGCCCTCAGA GGAGGCCTCC ATGCACCTGG TGAGGGAATG CAGGATATGT
                                                                          960
      GCCTTCCTGC TGCGGAAAAA GCGTTTCGGG CAGTGGGCCCA AGCAGCTGAC GGTCATCAGG
      GAGGACCAGC TCCTGTGTTA CAAAAGCTCC AAGGATCGGC AGCCACATCT GAGGTTGGCA
                                                                         1080
      CTGGATACCT GCAGCATCAT CTACGTGCCC AAGGACAGCC GGCACAAGAG GCACGAGCTG
15
      CGTTTCACCC AGGGGGCTAC CGAGGTCTTG GTGCTGGCAC TGCAGAGCCG AGAGCAGGCC
      GAGGAGTGGC TGAAGGTCAT CCGAGAAGTG AGCAAGCCAG TTGGGGGAGC TGAGGGAGTG
                                                                         1260
      GAGGTCCCCA GATCCCCAGT CCTCCTGTGC AAGTTGGACC TGGACAAGAG GCTGTCCCAA
                                                                         1320
      GAGAAGCAGA CCTCAGATTC TGACAGCGTG GGTGTGGGTG ACAACTGTTC TACCCTTGGC 1380
      CGCCGGGAGA CCTGTGATCA CGGCAAAGGG AAGAAGAGCA GCCTGGCAGA ACTGAAGGGC
20
      TCAATGAGCA GGGCTGCGGG CCGCAAGATC ACCCGTATCA TTGGCTTCTC CAAGAAGAAG
      ACACTGGCCG ATGACCTGCA GACGTCCTCC ACCGAGGAGG AGGTTCCCTG CTGTGGCTAC
                                                                         1560
      CTGAACGTGC TGGTGAACCA GGGCTGGAAG GAACGCTGGT GCCGCCTGAA GTGCAACACT
                                                                         1620
      CTGTATTTCC ACAAGGATCA CATGGACCTG CGAACCCATG TGAACGCCAT CGCCCTGCAA
      GGCTGTGAGG TGGCCCCGGG CTTTGGGCCC CGACACCCAT TTGCCTTCAG GATCCTGCGC
25
      AACCGGCAGG AGGTGGCCAT CTTGGAGGCA AGCTGTTCAG AGGACATGGG TCGCTGGCTC
      GGGCTGCTGC TGGTGGAGAT GGGCTCCAGA GTCACTCCGG AGGCGCTGCA CTATGACTAC
      GTGGATGTGG AGACCTTAAC CAGCATCGTC AGTGCTGGGC GCAACTCCTT CCTATATGCA
      AGATCCTGCC AGAATCAGTG GCCTGAGCCC CGAGTCTATG ATGATGTTCC TTATGAAAAG
      ATGCAGGACG AGGAGCCCGA GCGCCCCACA GGGGCCCAGG TGAAGCGTCA CGCCTCCTCC
                                                                         2040
30
      TGCAGTGAGA AGTCCCATCG TGTGGACCCG CAGGTCAAAG TCAAACGCCA CGCCTCCAGT
      GCCAATCAAT ACAAGTATGG CAAGAACCGA GCCGAGGAGG ATGCCCGGAG GTACTTGGTA
      GAAAAAGAGA AGCTGGAGAA AGAGAAAGAG ACGATTCGGA CAGAGCTGAT AGCACTGAGA
      CAGGAGAAGA GGGAACTGAA GGAAGCCATT CGGAGCAGCC CAGGAGCAAA ATTAAAGGCT
                                                                         2280
      CTGGAAGAG CCGTGGCCAC CCTGGAAGCT CAGTGTCGGG CAAAGGAGGA GCGCCGGATT
                                                                         2340
35
      GACCTGGAGC TGAAGCTGGT GGCTGTGAAG GAGCGCTTGC AGCAGTCCCT GGCAGGAGGG
                                                                         2400
      CCAGCCCTGG GGCTCTCCGT GAGCAGCAAG CCCAAGAGTG GGCAACTCTC TGAGGAAGAT
      ACGCTCACCT CCAATGGTGC TCTCTCAGAG AGAACTTCTC TGACCTCATC TACACCAGGG
      CTTCTCAACC CCAACACTAC TGACATTTTG GACCAGTAA
40
      Seq ID NO: 63 Protein sequence:
      Protein Accession #: fgenesh prediction
45
                 11
                            21
                                       31 .
                                                  41
      MDRGOGKRGR DARTCCGAGR ERETGRSEAG EEEGERRAVG RGLRNARRGL GDAALMORCL
      RLPGOPASNO VOLSEVPORK LRVPESPSVA EKVKLGHRCL ELLEQLLPEL TGLLSLLDHE
                                                                          120
      YLSDTTLEKK MAVASILQSL QPLPAKEVSY LYVNTADLHS GPSFVESLFE EFDCDLSDLR
50
      DMPEDDGEPS KGASPELAKS PRLRNAADLP PPLPNKPPPE DYYEEALPLG PGKSPEYISS
      HNGCSPSHSI VDGYYEDADS SYPATRVNGE LKSSYNDSDA MSSSYESYDE EEEEGKSPQP
                                                                          300
      RHQWPSEEAS MHLVRECRIC AFLLRKKRFG QWAKQLTVIR EDQLLCYKSS KDRQPHLRLA
                                                                          360
      LDTCSIIYVP KDSRHKRHEL RFTQGATEVL VLALQSREQA EEWLKVIREV SKPVGGAEGV
      EVPRSPVLLC KLDLDKRLSQ EKQTSDSDSV GVGDNCSTLG RRETCDHGKG KKSSLAELKG
55
      SMSRAAGRKI TRIIGFSKKK TLADDLQTSS TEEEVPCCGY LNVLVNQGWK ERWCRLKCNT
                                                                          540
      LYFHKDHMDL RTHVNAIALQ GCEVAPGFGP RHPFAFRILR NRQEVAILEA SCSEDMGRWL
                                                                          600
      GLLLVEMGSR VTPEALHYDY VDVETLTSIV SAGRNSFLYA RSCQNQWPEP RVYDDVPYEK
      MODEEPERPT GAQVKRHASS CSEKSHRVDP QVKVKRHASS ANQYKYGKNR AEEDARRYLV
                                                                          720
      EKEKLEKEKE TIRTELIALR OEKRELKEAI RSSPGAKLKA LEEAVATLEA OCRAKEERRI
                                                                          780
60
      DLELKLVAVK ERLQQSLAGG PALGLSVSSK PKSGQLSEED TLTSNGALSE RTSLTSSTPG
                                                                          840
      LLNPNTTDIL DQ
      Seq ID NO: 64 Nucleotide sequence:
      Nucleic Acid Accession #: NM_004126.1
65
      Coding sequence: 108-129(underlined sequences correspond to start and stop codons)
                            21
                                       31
                 11
                                                  41
                                                             51
70
      GGCACGAGCT CGTGCCGGCC TTCAGTTGTT TCGGGACGCG CCGAGCTTCG CCGCTCTTCC
                                                                           60
      AGCGGCTCCG CTGCCAGAGC TAGCCCGAGC CCGGTTCTGG GGCGAAAATG CCTGCCCTTC
      ACATCGAAGA TTTGCCAGAG AAGGAAAAAC TGAAAATGGA AGTTGAGCAG CTTCGCAAAG
                                                                          180
      AAGTGAAGTT GCAGAGACAA CAAGTGTCTA AATGTTCTGA AGAAATAAAG AACTATATTG
                                                                          240
      AAGAACGTTC TGGAGAGGAT CCTCTAGTAA AGGGAATTCC AGAAGACAAG AACCCCTTTA
                                                                          300
75
      AAGAAAAAGG CAGCTGTGTT ATTTCA<u>TAA</u>A TAACTTGGGA GAAACTGCAT CCTAAGTGGA
      AGAACTAGTT TGTTTTAGTT TTCCCAGATA AAACCAACAT GCTTTTTAAG GAAGGAAGAA
```

```
TGAAATTAAA AGGAGACTTT CTTAAGCACC ATATAGATAG GGTTATGTAT AAAAGCATAT
      GTGCTACTCA TCTTTGCTCA CTATGCAGTC TTTTTTAAGA GAGCAGAGAG TATCAGATGT
                                                                          540
      ACAATTATGG AAATAAGAAC ATTACTTGAG CATGACACTT CTTTCAGTAT ATTGCTTGAT
      GCTTCAAATA AAGTTTTGTC TT
 5
      Seq ID NO: 65 Protein sequence:
      Protein Accession #: NP 004117
10
                 11
                            21
                                       31
                                                   41
                                                              51
      MPALHIEDLP EKEKLKMEVE QLRKEVKLQR QQVSKCSEEI KNYIEERSGE DPLVKGIPED
      KNPFKEKGSC VIS
15
      Seq ID NO: 66 Nucleotide sequence:
      Nucleic Acid Accession #: NM_003842.1
      Coding sequence: 1-1236 (underlined sequences correspond to start and stop codons)
20
                                       31
                                                              51
                 11
                            21
                                                   41
      ATGGAACAAC GGGGACAGAA CGCCCCGGCC GCTTCGGGGG CCCGGAAAAG GCACGGCCCA
                                                                            60
      GGACCCAGGG AGGCGGGGG AGCCAGGCCT GGGCCCCGGG TCCCCAAGAC CCTTGTGCTC
                                                                           120
      GTTGTCGCCG CGGTCCTGCT GTTGGTCTCA GCTGAGTCTG CTCTGATCAC CCAACAAGAC
25
      CTAGCTCCCC AGCAGAGAGC GGCCCCACAA CAAAAGAGGT CCAGCCCCTC AGAGGGATTG
                                                                           240
      TGTCCACCTG GACACCATAT CTCAGAAGAC GGTAGAGATT GCATCTCCTG CAAATATGGA
                                                                           300
      CAGGACTATA GCACTCACTG GAATGACCTC CTTTTCTGCT TGCGCTGCAC CAGGTGTGAT
                                                                           360
      TCAGGTGAAG TGGAGCTAAG TCCCTGCACC ACGACCAGAA ACACAGTGTG TCAGTGCGAA
30
      GAAGGCACCT TCCGGGAAGA AGATTCTCCT GAGATGTGCC GGAAGTGCCG CACAGGGTGT
                                                                           480
      CCCAGAGGGA TGGTCAAGGT CGGTGATTGT ACACCCTGGA GTGACATCGA ATGTGTCCAC
                                                                           540
      AAAGAATCAG GCATCATCAT AGGAGTCACA GTTGCAGCCG TAGTCTTGAT TGTGGCTGTG
                                                                           600
      TTTGTTTGCA AGTCTTTACT GTGGAAGAAA GTCCTTCCTT ACCTGAAAGG CATCTGCTCA
      GGTGGTGGTG GGGACCCTGA GCGTGTGGAC AGAAGCTCAC AACGACCTGG GGCTGAGGAC
                                                                           720
35
      AATGTCCTCA ATGAGATCGT GAGTATCTTG CAGCCCACCC AGGTCCCTGA GCAGGAAATG
                                                                           780
      GAAGTCCAGG AGCCAGCAGA GCCAACAGGT GTCAACATGT TGTCCCCCGG GGAGTCAGAG
                                                                           840
      CATCTGCTGG AACCGGCAGA AGCTGAAAGG TCTCAGAGGA GGAGGCTGCT GGTTCCAGCA
                                                                           900
      AATGAAGGTG ATCCCACTGA GACTCTGAGA CAGTGCTTCG ATGACTTTGC AGACTTGGTG
      CCCTTTGACT CCTGGGAGCC GCTCATGAGG AAGTTGGGCC TCATGGACAA TGAGATAAAG
                                                                          1020
40
      GTGGCTAAAG CTGAGGCAGC GGGCCACAGG GACACCTTGT ACACGATGCT GATAAAGTGG
                                                                          1080
      GTCAACAAA CCGGGCGAGA TGCCTCTGTC CACACCCTGC TGGATGCCTT GGAGACGCTG
      GGAGAGAGAC TTGCCAAGCA GAAGATTGAG GACCACTTGT TGAGCTCTGG AAAGTTCATG
      TATCTAGAAG GTAATGCAGA CTCTGCCATG TCCTAA
45
      Seq ID NO: 67 Protein sequence:
      Protein Accession #: NP 003833.1
                                       31
                                                   41
                                                              51
50
      MEORGONAPA ASGARKRHGP GPREARGARP GPRVPKTLVL VVAAVLLLVS AESALITQQD
      LAPQQRAAPQ QKRSSPSEGL CPPGHHISED GRDCISCKYG QDYSTHWNDL LFCLRCTRCD
      SGEVELSPCT TTRNTVCQCE EGTFREEDSP EMCRKCRTGC PRGMVKVGDC TPWSDIECVH
                                                                           180
      KESGIIIGVT VAAVVLIVAV FVCKSLLWKK VLPYLKGICS GGGGDPERVD RSSQRPGAED
                                                                           240
      NVLNEIVSIL OPTOVPEOEM EVOEPAEPTG VNMLSPGESE HLLEPAEAER SQRRRLLVPA
                                                                           300
      NEGDPTETLR QCFDDFADLV PFDSWEPLMR KLGLMDNEIK VAKAEAAGHR DTLYTMLIKW
55
                                                                           360
      VNKTGRDASV HTLLDALETL GERLAKQKIE DHLLSSGKFM YLEGNADSAM S
      Seq ID NO: 68 Nucleotide sequence:
      Nucleic Acid Accession #: FGENESH predicted ORF
      Coding sequence: 361- 2220 (underlined sequences correspond to start and stop codons)
60
                             21
                                                   41
                                                              51
                 11
      1
      GGCACCATCT GCTCCCTGCC CTGCCCAGAG GGCTTTCACG GACCCAACTG CTCCCAGGAA
                                                                            60
      TGTCGCTGCC ACAACGGCGG CCTCTGTGAC CGATTCACTG GGCAGTGCCG CTGCGCTCCG
65
                                                                           120
      GGTTACACTG GGGATCGGTG CCGGGAGGAG TGCCCGGTGG GCCGCTTTGG GCAGGACTGT
                                                                           180
      GCTGAGACGT GCGACTGCGC CCCGGACGCC CGTTGCTTCC CGGCCAACGG CGCATGTCTG
      TGCGAACACG GCTTCACTGG GGACCGCTGC ACGGATCGCC TCTGCCCCGA CGGCTTCTAC
                                                                           300
      GGTCTCAGCT GCCAGGCCCC CTGCACCTGC GACCGGGAGC ACAGCCTCAG CTGCCACCCG
                                                                           360
      ATGAACGGGG AGTGCTCCTG CCTGCCGGGC TGGGCGGGCC TCCACTGCAA CGAGAGCTGC
70
                                                                           420
      CCGCAGGACA CGCATGGGCC AGGGTGCCAG GAGCACTGTC TCTGCCTGCA CGGTGGCGTC
                                                                           480
      TGCCAGGCTA CCAGCGGCCT CTGTCAGTGC GCGCCGGGTT ACACGGGCCC TCACTGTGCT
      AGTCTTTGTC CTCCTGACAC CTACGGTGTC AACTGTTCTG CACGCTGCTC ATGTGAAAAT
                                                                           600
      GCCATCGCCT GCTCACCCAT CGACGGCGAG TGCGTCTGCA AGGAAGGTTG GCAGCGTGGT
                                                                           660
75
      AACTGCTCTG TGCCCTGCCC ACCCGGAACC TGGGGCTTCA GTTGCAATGC CAGCTGCCAG
                                                                           720
      TGTGCCCATG AGGCAGTCTG CAGCCCCCAA ACTGGAGCCT GTACCTGCAC CCCTGGGTGG
```

```
CATGGGGCCC ACTGCCAGCT GCCCTGTCCG AAGGGGCAGT TTGGAGAAGG TTGTGCCAGT
      CGCTGTGACT GTGACCACTC TGATGGCTGT GACCCTGTTC ATGGACGCTG TCAGTGCCAG
                                                                           900
      GCTGGCTGGA TGGGTGCCCG CTGCCACCTG TCCTGCCCTG AGGGCTTATG GGGAGTCAAC
                                                                           960
      TGTAGCAACA CCTGCACCTG CAAGAATGGG GGCACCTGTC TCCCTGAGAA TGGCAACTGC
                                                                          1020
 5
      GTGTGTGCAC CCGGATTCCG GGGCCCCTCC TGCCAGAGAT CCTGTCAGCC TGGCCGCTAT
                                                                         1080
      GGCAAACGCT GTGTGCCCTG CAAGTGCGCT AACCACTCCT TCTGCCACCC CTCGAACGGG
                                                                         1140
      ACCTGCTACT GCCTGGCTGG CTGGACAGGC CCCGACTGCT CCCAGCGCTG CCCTCTGGGG 1200
      ACATTTGGTG CTAACTGCTC CCAGCCATGC CAGTGTGGTC CTGGAGAAAA GTGCCACCCA 1260
      GAGACTGGGG CCTGTGTATG TCCCCCAGGG CACAGTGGTG CACCTTGCAG GATTGGAATC 1320
10
      CAGGAGCCCT TTACTGTGAT GCCGACCACT CCAGTAGCGT ATAACTCGCT GGGTGCAGTG 1380
      ATTGGCAFTG CAGTGCTGGG GTCCCTTGTG GTAGCCCTGG TGGCACTGTT CATTGGCTAT
      CGGCACTGGC AAAAAGGCAA GGAGCACCAC CACCTGGCTG TGGCTTACAG CAGCGGGCGC 1500
      CTGGACGGCT CCGAGTATGT CATGCCAGAT GTCCCTCCGA GCTACAGTCA CTACTACTCC 1560
      AACCCCAGCT ACCACACCT GTCGCAGTGC TCCCCAAACC CCCCACCCC TAACAAGGTT
                                                                         1620
15
      CCAGGCCCGC TCTTTGCCAG CCTGCAGAAC CCTGAGCGGC CAGGTGGGGC CCAAGGGCAT 1680
      GATAACCACA CCACCCTGCC TGCTGACTGG AAGCACCGCC GGGAGCCCCC TCCAGGGCCT
                                                                          1740
      CTGGACAGGG GGAGCAGCCG CCTGGACCGA AGCTACAGCT ATAGCTACAG CAATGGCCCA 1800
      GGCCCATTCT ACAATAAAGG GCTCATCTCT GAAGAGGAGC TCGGGGCCAG TGTGGCTTCC 1860
      CTGAGCAGTG AGAACCCATA TGCCACCATC CGGGACCTGC CCAGCTTGCC AGGGGGCCCC
20
      CGGGAGAGCA GCTACATGGA GATGAAAGGC CCTCCCTCAG GATCTCCCCC CAGGCAGCCT
      CCTCAGTTCT GGGACAGCCA GAGGCGGCGG CAACCCCAGC CACAGAGAGA CAGTGGCACC
                                                                         2040
      TACGAGCAGC CCAGCCCCT GATCCATGAC CGAGACTCTG TGGGCTCCCA GCCCCCTCTG
                                                                         2100
      CCTCCGGGCC TACCCCCGG CCACTATGAC TCACCCAAGA ACAGCCACAT CCCTGGACAT 2160
      TATGACTTGC CTCCAGTACG GCATCCCCCA TCACCTCCAC TTCGACGCCA GGACCGTTGA
25
      Seq ID NO: 69 <u>Protein sequence:</u>
Protein Accession #: FGENESH prediction
30
                 11
                                       31
                                                  41
                                                             51
                            21
      GTICSLPCPE GFHGPNCSQE CRCHNGGLCD RFTGQCRCAP GYTGDRCREE CPVGRFGQDC
      AETCDCAPDA RCFPANGACL CEHGFTGDRC TDRLCPDGFY GLSCQAPCTC DREHSLSCHP
      MNGECSCLPG WAGLHCNESC PQDTHGPGCQ EHCLCLHGGV CQATSGLCQC APGYTGPHCA
                                                                           180
35
      SLCPPDTYGV NCSARCSCEN AIACSPIDGE CVCKEGWQRG NCSVPCPPGT WGFSCNASCQ
                                                                           240
      CAHEAVCSPQ TGACTCTPGW HGAHCQLPCP KGQFGEGCAS RCDCDHSDGC DPVHGRCQCQ
                                                                           300
      AGWMGARCHL SCPEGLWGVN CSNTCTCKNG GTCLPENGNC VCAPGFRGPS CQRSCQPGRY
                                                                           360
      GKRCVPCKCA NHSFCHPSNG TCYCLAGWTG PDCSQRCPLG TFGANCSQPC QCGPGEKCHP
                                                                           420
      ETGACVCPPG HSGAPCRIGI QEPFTVMPTT PVAYNSLGAV IGIAVLGSLV VALVALFIGY
                                                                           480
40
      RHWQKGKEHH HLAVAYSSGR LDGSEYVMPD VPPSYSHYYS NPSYHTLSQC SPNPPPPNKV
                                                                           540
      PGPLFASLON PERPGGAOGH DNHTTLPADW KHRREPPPGP LDRGSSRLDR SYSYSYSNGP
      GPFYNKGLIS EEELGASVAS LSSENPYATI RDLPSLPGGP RESSYMEMKG PPSGSPPRQP
                                                                           660
      PQFWDSQRRR QPQPQRDSGT YEQPSPLIHD RDSVGSQPPL PPGLPPGHYD SPKNSHIPGH
                                                                           720
      YDLPPVRHPP SPPLRRQDR
45
      Seq ID NO: 70 Nucleotide sequence:
      Nucleic Acid Accession #: NM_005458
      Coding sequence: 1..2826 (underlined sequences correspond to start and stop codons)
50
                            21
                                       31
                                                  41.
      ATGGCTTCCC CGCGGAGGTC CGGGCAGCCA GGGCGGCCGC CGCCGCCGCC ACCGCCGCC
                                                                           60
      GCGCGCCTGC TACTGCTACT GCTGCTGCCG CTGCTGCTGC CTCTGGCGCC CGGGGCCTGG
55
      GGCTGGGCGC GGGGCGCCCC CCGGCCGCCG CCCAGCAGCC CGCCGCTCTC CATCATGGGC
                                                                           180
      CTCATGCCGC TCACCAAGGA GGTGGCCAAG GGCAGCATCG GGCGCGGTGT GCTCCCCGCC
                                                                           240
      GTGGAACTGG CCATCGAGCA GATCCGCAAC GAGTCACTCC TGCGCCCCTA CTTCCTCGAC
                                                                           300
      CTGCGGCTCT ATGACACGGA GTGCGACAAC GCAAAAGGGT TGAAAGCCTT CTACGATGCA
      ATAAAATACG GGCCGAACCA CTTGATGGTG TTTGGAGGCG TCTGTCCATC CGTCACATCC
      ATCATTGCAG AGTCCCTCCA AGGCTGGAAT CTGGTGCAGC TTTCTTTTGC TGCAACCACG
60
                                                                           480
      CCTGTTCTAG CCGATAAGAA AAAATACCCT TATTTCTTTC GGACCGTCCC ATCAGACAAT
                                                                           540
      GCGGTGAATC CAGCCATTCT GAAGTTGCTC AAGCACTACC AGTGGAAGCG CGTGGGCACG
                                                                           600
      CTGACGCAAG ACGTTCAGAG GTTCTCTGAG GTGCGGAATG ACCTGACTGG AGTTCTGTAT
      GGCGAGGACA TTGAGATTTC AGACACCGAG AGCTTCTCCA ACGATCCCTG TACCAGTGTC
                                                                           720
65
      AAAAAGCTGA AGGGGAATGA TGTGCGGATC ATCCTTGGCC AGTTTGACCA GAATATGGCA
                                                                           780
      GCAAAAGTGT TCTGTTGTGC ATACGAGGAG AACATGTATG GTAGTAAATA TCAGTGGATC
                                                                           840
      ATTCCGGGCT GGTACGAGCC TTCTTGGTGG GAGCAGGTGC ACACGGAAGC CAACTCATCC
      CGCTGCCTCC GGAAGAATCT GCTTGCTGCC ATGGAGGGCT ACATTGGCGT GGATTTCGAG
      CCCCTGAGCT CCAAGCAGAT CAAGACCATC TCAGGAAAGA CTCCACAGCA GTATGAGAGA 1020
70
      GAGTACAACA ACAAGCGGTC AGGCGTGGGG CCCAGCAAGT TCCACGGGTA CGCCTACGAT
                                                                          1080
      GGCATCTGGG TCATCGCCAA GACACTGCAG AGGGCCATGG AGACACTGCA TGCCAGCAGC
      CGGCACCAGC GGATCCAGGA CTTCAACTAC ACGGACCACA CGCTGGGCAG GATCATCCTC
      AATGCCATGA ACGAGACCAA CTTCTTCGGG GTCACGGGTC AAGTTGTATT CCGGAATGGG
                                                                          1260
      GAGAGAATGG GGACCATTAA ATTTACTCAA TTTCAAGACA GCAGGGAGGT GAAGGTGGGA 1320
75
      GAGTACAACG CTGTGGCCGA CACACTGGAG ATCATCAATG ACACCATCAG GTTCCAAGGA 1380
      TCCGAACCAC CAAAAGACAA GACCATCATC CTGGAGCAGC TGCGGAAGAT CTCCCTACCT
```

```
CTCTACAGCA TCCTCTCTCC CCTCACCATC CTCGGGATGA TCATGGCCAG TGCTTTTCTC 1500
      TTCTTCAACA TCAAGAACCG GAATCAGAAG CTCATAAAGA TGTCGAGTCC ATACATGAAC 1560
      AACCTTATCA TCCTTGGAGG GATGCTCTCC TATGCTTCCA TATTTCTCTT TGGCCTTGAT
      GGATCCTTTG TCTCTGAAAA GACCTTTGAA ACACTTTGCA CCGTCAGGAC CTGGATTCTC
 5
      ACCGTGGGCT ACACGACCGC TTTTGGGGCC ATGTTTGCAA AGACCTGGAG AGTCCACGCC 1740
      ATCTTCAAAA ATGTGAAAAT GAAGAAGAAG ATCATCAAGG ACCAGAAACT GCTTGTGATC
      GTGGGGGGCA TGCTGCTGAT CGACCTGTGT ATCCTGATCT GCTGGCAGGC TGTGGACCCC
      CTGCGAAGGA CAGTGGAGAA GTACAGCATG GAGCCGGACC CAGCAGGACG GGATATCTCC
ATCCGCCCTC TCCTGGAGCA CTGTGAGAAC ACCCATATGA CCATCTGGCT TGGCATCGTC
                                                                           1980
10
      TATGCCTACA AGGGACTTCT CATGTTGTTC GGTTGTTTCT TAGCTTGGGA GACCCGCAAC
      GTCAGCATCC CCGCACTCAA CGACAGCAAG TACATCGGGA TGAGTGTCTA CAACGTGGGG
ATCATGTGCA TCATCGGGGC CGCTGTCTCC TTCCTGACCC GGGACCAGCC CAATGTGCAG
      TTCTGCATCG TGGCTCTGGT CATCATCTTC TGCAGCACCA TCACCCTCTG CCTGGTATTC
                                                                           2220
      GTGCCGAAGC TCATCACCCT GAGAACAAAC CCAGATGCAG CAACGCAGAA CAGGCGATTC
15
      CAGTTCACTC AGAATCAGAA GAAAGAAGAT TCTAAAAACGT CCACCTCGGT CACCAGTGTG
      AACCAAGCCA GCACATCCCG CCTGGAGGGC CTACAGTCAG AAAACCATCG CCTGCGAATG
      AAGATCACAG AGCTGGATAA AGACTTGGAA GAGGTCACCA TGCAGCTGCA GGACACACCA 2460
      GAAAAGACCA CCTACATTAA ACAGAACCAC TACCAAGAGC TCAATGACAT CCTCAACCTG 2520
      GGAAACTTCA CTGAGAGCAC AGATGGAGGA AAGGCCATTT TAAAAAATCA CCTCGATCAA
20
      AATCCCCAGC TACAGTGGAA CACAACAGAG CCCTCTCGAA CATGCAAAGA TCCTATAGAA
      GATATAAACT CTCCAGAACA CATCCAGCGT CGGCTGTCCC TCCAGCTCCC CATCCTCCAC
                                                                           2700
      CACGCCTACC TCCCATCCAT CGGAGGCGTG GACGCCAGCT GTGTCAGCCC CTGCGTCAGC
      CCCACCGCCA GCCCCGCCA CAGACATGTG CCACCCTCCT TCCGAGTCAT GGTCTCGGGC 2820
      CTGTAA
25
      Seq ID NO: 71 Protein sequence:
      Protein Accession #: NP 005449
30
                             21
                                        31
                                                    41
                                                               51
                 11
      MASPRRSGOP GRPPPPPPPP ARLLLLLLLD LLLPLAPGAW GWARGAPRPP PSSPPLSIMG
      LMPLTKEVAK GSIGRGVLPA VELAIEQIRN ESLLRPYFLD LRLYDTECDN AKGLKAFYDA
      IKYGPNHLMV FGGVCPSVTS IIAESLQGWN LVQLSFAATT PVLADKKKYP YFFRTVPSDN
                                                                            180
35
      AVNPAILKLL KHYQWKRVGT LTQDVQRFSE VRNDLTGVLY GEDIEISDTE SFSNDPCTSV
      KKLKGNDVRI ILGQFDQNMA AKVFCCAYEE NMYGSKYQWI IPGWYEPSWW EQVHTEANSS
      RCLRKNLLAA MEGYIGVDFE PLSSKQIKTI SGKTPQQYER EYNNKRSGVG PSKFHGYAYD
      GIWVIAKTLO RAMETLHASS RHORIODFNY TDHTLGRIIL NAMNETNFFG VTGQVVFRNG
      ERMGTIKFTQ FQDSREVKVG EYNAVADTLE IINDTIRFQG SEPPKDKTII LEQLRKISLP
                                                                            480
40
      LYSILSALTI LGMIMASAFL FFNIKNRNQK LIKMSSPYMN NLIILGGMLS YASIFLFGLD
      GSFVSEKTFE TLCTVRTWIL TVGYTTAFGA MFAKTWRVHA IFKNVKMKKK IIKDQKLLVI
      VGGMLLIDLC ILICWQAVDP LRRTVEKYSM EPDPAGRDIS IRPLLEHCEN THMTIWLGIV
                                                                            660
      YAYKGLLMLF GCFLAWETRN VSIPALNDSK YIGMSVYNVG IMCIIGAAVS FLTRDQPNVQ
                                                                            720
      FCIVALVIIF CSTITLCLVF VPKLITLRTN PDAATQNRRF QFTQNQKKED SKTSTSVTSV
                                                                            780
45
      NOASTSRLEG LOSENHRLRM KITELDKDLE EVTMQLQDTP EKTTYIKQNH YQELNDILNL
                                                                            840
      GNFTESTDGG KAILKNHLDQ NPQLQWNTTE PSRTCKDPIE DINSPEHIQR RLSLQLPILH
      HAYLPSIGGV DASCVSPCVS PTASPRHRHV PPSFRVMVSG L
      Seq ID NO: 72 Nucleotide sequence:
50
      Nucleic Acid Accession #: NM 005795
      Coding sequence: 522-1940 (underlined sequences correspond to start and stop codons)
55
      GCACGAGGGA ACAACCTCTC TCTCTSCAGC AGAGAGTGTC ACCTCCTGCT TTAGGACCAT
                                                                             60
      CAAGCTCTGC TAACTGAATC TCATCCTAAT TGCAGGATCA CATTGCAAAG CTTTCACTCT
                                                                            120
      TTCCCACCTT GCTTGTGGGT AAATCTCTTC TGCGGAATCT CAGAAAGTAA AGTTCCATCC
      TGAGAATATT TCACAAAGAA TTTCCTTAAG AGCTGGACTG GGTCTTGACC CCTGGAATTT
                                                                            240
      AAGAAATTCI TAAAGACAAT GTCAAATATG ATCCAAGAGA AAATGTGATT TGAGTCTGGA
60
      GACAATTGTG CATATCGTCT AATAATAAAA ACCCATACTA GCCTATAGAA AACAATATTT
                                                                            360
      GAATAATAAA AACCCATACT AGCCTATAGA AAACAATATT TGAAAGATTG CTACCACTAA
      AAAGAAAACT ACTACAACTT GACAAGACTG CTGCAAACTT CAATTGGTCA CCACAACTTG
      ACAAGGTTGC TATAAAACAA GATTGCTACA ACTTCTAGTT TATGTTATAC AGCATATTTC
                                                                            540
      ATTTGGGCTT AATGATGGAG AAAAAGTGTA CCCTGTATTT TCTGGTTCTC TTGCCTTTTT
65
      TTATGATTCT TGTTACAGCA GAATTAGAAG AGAGTCCTGA GGACTCAATT CAGTTGGGAG
                                                                            660
      TTACTAGAAA TAAAATCATG ACAGCTCAAT ATGAATGTTA CCAAAAGATT ATGCAAGACC
                                                                            720
      CCATTCAACA AGCAGAAGGC GTTTACTGCA ACAGAACCTG GGATGGATGG CTCTGCTGGA
      ACGATGTTGC AGCAGGAACT GAATCAATGC AGCTCTGCCC TGATTACTTT CAGGACTTTG
      ATCCATCAGA AAAAGTTACA AAGATCTGTG ACCAAGATGG AAACTGGTTT AGACATCCAG
                                                                            900
70
      CAAGCAACAG AACATGGACA AATTATACCC AGTGTAATGT TAACACCCAC GAGAAAGTGA
                                                                            960
      AGACTGCACT AAATTTGTTT TACCTGACCA TAATTGGACA CGGATTGTCT ATTGCATCAC
                                                                           1020
      TGCTTATCTC GCTTGGCATA TTCTTTTATT TCAAGAGCCT AAGTTGCCAA AGGATTACCT
      TACACAAAAA TCTGTTCTTC TCATTTGTTT GTAACTCTGT TGTAACAATC ATTCACCTCA
                                                                           1140
      CTGCAGTGGC CAACAACCAG GCCTTAGTAG CCACAAATCC TGTTAGTTGC AAAGTGTCCC
                                                                           1200
75
      AGTTCATTCA TCTTTACCTG ATGGGCTGTA ATTACTTTTG GATGCTCTGT GAAGGCATTT
      ACCTACACAC ACTCATTGTG GTGGCCGTGT TTGCAGAGAA GCAACATTTA ATGTGGTATT
```

```
ATTTTCTTGG CTGGGGATTT CCACTGATTC CTGCTTGTAT ACATGCCATT GCTAGAAGCT 1380
     TATATTACAA TGACAATTGC TGGATCAGTT CTGATACCCA TCTCCTCTAC ATTATCCATG 1440
     GCCCAATTTG TGCTGCTTTA CTGGTGAATC TTTTTTTCTT GTTAAATATT GTACGCGTTC
     TCATCACCAA GTTAAAAGTT ACACACCAAG CGGAATCCAA TCTGTACATG AAAGCTGTGA 1560
     GAGCTACTCT TATCTTGGTG CCATTGCTTG GCATTGAATT TGTGCTGATT CCATGGCGAC 1620
     CTGAAGGAAA GATTGCAGAG GAGGTATATG ACTACATCAT GCACATCCTT ATGCACTTCC 1680
     AGGGTCTTTT GGTCTCTACC ATTTTCTGCT TCTTTAATGG AGAGGTTCAA GCAATTCTGA 1740
     GAAGAACTG GAATCAATAC AAAATCCAAT TTGGAAACAG CTTTTCCAAC TCAGAAGCTC 1800
     TTCGTAGTGC GTCTTACACA GTGTCAACAA TCAGTGATGG TCCAGGTTAT AGTCATGACT 1860
10
     GTCCTAGTGA ACACTTAAAT GGAAAAAGCA TCCATGATAT TGAAAATGTT CTCTTAAAAC 1920
      CAGAAAATTT ATATAAT<u>TGA</u> AAATAGAAGG ATGGTTGTCT CACTGTTTGG TGCTTCTCCT
     AACTCAAGGA CTTGGACCCA TGACTCTGTA GCCAGAAGAC TTCAATATTA AATGACTTTG 2040
     GGGAATGTCA TAAAGAAGAG CCTTCACATG AAATTAGTAG TGTGTTGATA AGAGTGTAAC
                                                                       2100
     ATCCAGCTCT ATGTGGGAAA AAAGAAATCC TGGTTTGTAA TGTTTGTCAG TAAATACTCC 2160
15
     CACTATGCCT GATGTGACGC TACTAACCTG ACATCACCAA GTGTGGAATT GGAGAAAAGC
     ACAATCAACT TTTCTGAGCT GGTGTAAGCC AGTTCCAGCA CACCATTGAT GAATTCAAAC
     AAATGGCTGT AAAACTAAAC ATACATGTTG GGCATGATTC TACCCTTATT CSCCCCAAGA 2340
     GACCTAGCTA AGGTCTATAA ACATGAAGGG AAAATTAGCT TTTAGTTTTA AAACTCTTTA 2400
     TCCCATCTTG ATTGGGGCAG TTGACTTTTT TTTTTTCCCA GAGTGCCGTA GTCCTTTTTG 2460
20
     CTATGAAAAG CAACTGAGTA CAATTGTTAT GATCTACTCA TTTGCTGACA CATCAGTTAT
                                                                       2580
     ATCTTGTGGC ATATCCATTG TGGAAACTGG ATGAACAGGA TGTATAATAT GCAATCTTAC 2640
     TTCTATATCA TTAGGAAAAC ATCTTAGTTG ATGCTACAAA ACACCTTGTC AACCTCTTCC 2700
     TGTCTTACCA AACAGTGGGA GGGAATTCCT AGCTGTAAAT ATAAATTTTG TCCCTTCCAT
25
     TTCTACTGTA TAAACAAATT AGCAATCATT TTATATAAAG AAAATCAATG AAGGATTTCT 2820
     TATTTCTTG GAATTTTGTA AAAAGAAATT GTGAAAAATG AGCTTGTAAA TACTCCATTA 2880
     TTTTATTTTA TAGTCTCAAA TCAAATACAT ACAACCTATG TAATTTTTAA AGCAAATATA 2940
     TAATGCAACA ATGTGTGTAT GTTAATATCT GATACTGTAT CTGGGCTGAT TTTTTAAATA 3000
     AAATAGAGTC TGGAATGCTA TATTTGGTAA ATATTTTAAA GACAACCAGA TGCCAGCATC
30
     AGAAGTCTGT TTGAGAACTA AGAGAACAGA AACATCTATC ATAAGATATA TTTATTTTAA 3120
     AAACACAAGG TCACTATTTT ACTGAATATA TTTGTTTTGA TAACTCATAC CTTAATAATA 3180
     GGTGTGTTTG ACATATTTCT TTTTTCATTT TGACAATGAA CTCACATTCT AATCCAGAAA 3240
     TTTTAAACAA CTACTGTGAT AAATACCAAT CTGCTACTTT TATAGATTTT ACCCCATTAA 3300
     AATATTACTT TACTGACTTT TACTATGTGA AGATATATAG CTTTGGAAAT GTCCCAGGCT 3360
     ATTCAAGAAA TATAAAAAAC TAGAAGGATA CTATATATAC CATATACAAT GCTTTAATAT 3420
35
      TTTAATAGAG CTACTGTATA TAATACAAAT TAGGGAAATA CTTGAATATA TCATTGAGAA 3480
     AAAATTATTG TCAGATCTTA CTGAATTATT GTCAGACTTT ATTAAATAAA GATAGAAGAA 3540
     AACCTTGCTA ATGAATTAAA GTGAAATTTG CATGGGATTC AGTTTCTCTA ATGTTATTTT 3600
     CCGCTGAAAT CTCTAAAGAA CAAGAATGAC TTCAATTAGT AAAAGTCAAT TTTGGGAAAA 3660
40
     GTCATGGGTA TCTGTTTTT AAGTGTGTCA ATCTGATTAA AATGGATGAA ACAAATTACT 3720
     CATCATAAGT TGTTTCTTAA GCTGTCAATA TGTCAATAGA TGGTGAGTTC AGAACTTATT 3780
     3840
     AGTACATTTA TAATTTATCT ATGCATGAAA AAGTATTGTT TTGTTTGAAA CATGAATTTC 3900
     ATAGCAAGCT GCCATAGAAA GGA
45
     Seq ID NO: 73 <u>Protein sequence:</u>
Protein Accession #: NM_005795
50
                11
                           21
                                      31
                                                 41
     MLYSIFHLGL MMEKKCTLYF LVLLPFFMIL VTAELEESPE DSIQLGVTRN KIMTAQYECY
                                                                         60
     QKIMQDPIQQ AEGVYCNRTW DGWLCWNDVA AGTESMQLCP DYFQDFDPSE KVTKICDQDG
                                                                        120
     NWFRHPASNR TWTNYTOCNV NTHEKVKTAL NLFYLTIIGH GLSIASLLIS LGIFFYFKSL
55
      SCORITLHKN LFFSFVCNSV VTIIHLTAVA NNQALVATNP VSCKVSQFIH LYLMGCNYFW
                                                                        240
     MLCEGIYLHT LIVVAVFAEK OHLMWYYFLG WGFPLIPACI HAIARSLYYN DNCWISSDTH
                                                                        300
     LLYIIHGPIC AALLVNLFFL LNIVRVLITK LKVTHQAESN LYMKAVRATL ILVPLLGIEF
                                                                        360
      VLIPWRPEGK IAEEVYDYIM HILMHFQGLL VSTIFCFFNG EVQAILRRNW NQYKIQFGNS
                                                                        420
      FSNSEALRSA SYTVSTISDG PGYSHDCPSE HLNGKSIHDI ENVLLKPENL YN
60
      Seq ID NO: 74 Nucleotide sequence:
     Nucleic Acid Accession #: NM 000450.1
      Coding sequence: 117..1949 (underlined sequences correspond to start and stop codons)
65
                11
                           21
                                      31
                                                           51
      CCTGAGACAG AGGCAGCAGT GATACCCACC TGAGAGATCC TGTGTTTGAA CAACTGCTTC
      CCAAAACGGA AAGTATTTCA AGCCTAAACC TTTGGGTGAA AAGAACTCTT GAAGTCATGA
                                                                        120
     TTGCTTCACA GTTTCTCTCA GCTCTCACTT TGGTGCTTCT CATTAAAGAG AGTGGAGCCT
                                                                        180
70
      GGTCTTACAA CACCTCCACG GAAGCTATGA CTTATGATGA GGCCAGTGCT TATTGTCAGC
      AAAGGTACAC ACACCTGGTT GCAATTCAAA ACAAAGAAGA GATTGAGTAC CTAAACTCCA
      TATTGAGCTA TTCACCAAGT TATTACTGGA TTGGAATCAG AAAAGTCAAC AATGTGTGGG
      TCTGGGTAGG AACCCAGAAA CCTCTGACAG AAGAAGCCAA GAACTGGGCT CCAGGTGAAC
                                                                        420
      CCAACAATAG GCAAAAAGAT GAGGACTGCG TGGAGATCTA CATCAAGAGA GAAAAAGATG
                                                                        480
75
      TGGGCATGTG GAATGATGAG AGGTGCAGCA AGAAGAAGCT TGCCCTATGC TACACAGCTG
      CCTGTACCAA TACATCCTGC AGTGGCCACG GTGAATGTGT AGAGACCATC AATAATTACA
```

```
CTTGCAAGTG TGACCCTGGC TTCAGTGGAC TCAAGTGTGA GCAAATTGTG AACTGTACAG
      CCCTGGAATC CCCTGAGCAT GGAAGCCTGG TTTGCAGTCA CCCACTGGGA AACTTCAGCT
      ACAATTCTTC CTGCTCTATC AGCTGTGATA GGGGTTACCT GCCAAGCAGC ATGGAGACCA
                                                                         780
      TGCAGTGTAT GTCCTCTGGA GAATGGAGTG CTCCTATTCC AGCCTGCAAT GTGGTTGAGT
                                                                         840
      GTGATGCTGT GACAAATCCA GCCAATGGGT TCGTGGAATG TTTCCAAAAC CCTGGAAGCT
      TCCCATGGAA CACAACCTGT ACATTTGACT GTGAAGAAGG ATTTGAACTA ATGGGAGCCC
      AGAGCCTTCA GTGTACCTCA TCTGGGAATT GGGACAACGA GAAGCCAACG TGTAAAGCTG
      TGACATGCAG GGCCGTCCGC CAGCCTCAGA ATGGCTCTGT GAGGTGCAGC CATTCCCCTG
                                                                        1080
      CTGGAGAGTT CACCTTCAAA TCATCCTGCA ACTTCACCTG TGAGGAAGGC TTCATGTTGC
10
      AGGGACCAGC CCAGGTTGAA TGCACCACTC AAGGGCAGTG GACACAGCAA ATCCCAGTTT
      GTGAAGCTTT CCAGTGCACA GCCTTGTCCA ACCCCGAGCG AGGCTACATG AATTGTCTTC
                                                                        1260
      CTAGTGCTTC TGGCAGTTTC CGTTATGGGT CCAGCTGTGA GTTCTCCTGT GAGCAGGGTT 1320
      TTGTGTTGAA GGGATCCAAA AGGCTCCAAT GTGGCCCCAC AGGGGAGTGG GACAACGAGA 1380
      AGCCCACATG TGAAGCTGTG AGATGCGATG CTGTCCACCA GCCCCCGAAG GGTTTGGTGA 1440
15
      GGTGTGCTCA TTCCCCTATT GGAGAATTCA CCTACAAGTC CTCTTGTGCC TTCAGCTGTG 1500
      AGGAGGGATT TGAATTATAT GGATCAACTC AACTTGAGTG CACATCTCAG GGACAATGGA 1560
      CAGAAGAGT TCCTTCCTGC CAAGTGGTAA AATGTTCAAG CCTGGCAGTT CCGGGAAAGA
                                                                       1620
      TCAACATGAG CTGCAGTGGG GAGCCCGTGT TTGGCACTGT GTGCAAGTTC GCCTGTCCTG 1680
      AAGGATGGAC GCTCAATGGC TCTGCAGCTC GGACATGTGG AGCCACAGGA CACTGGTCTG
                                                                       1740
20
      GCCTGCTACC TACCTGTGAA GCTCCCACTG AGTCCAACAT TCCCTTGGTA GCTGGACTTT 1800
      CTGCTGCTGG ACTCTCCCTC CTGACATTAG CACCATTTCT CCTCTGGCTT CGGAAATGCT 1860
      TACGGAAAGC AAAGAAATTT GTTCCTGCCA GCAGCTGCCA AAGCCTTGAA TCAGACGGAA
      GCTACCAAAA GCCTTCTTAC ATCCTTTAAG TTCAAAAGAA TCAGAAACAG GTGCATCTGG 1980
      GGAACTAGAG GGATACACTG AAGTTAACAG AGACAGATAA CTCTCCTCGG GTCTCTGGCC
                                                                        2040
25
      CTTCTTGCCT ACTATGCCAG ATGCCTTTAT GGCTGAAACC GCAACACCCA TCACCACTTC
      AATAGATCAA AGTCCAGCAG GCAAGGACGG CCTTCAACTG AAAAGACTCA GTGTTCCCTT
      TCCTACTCTC AGGATCAAGA AAGTGTTGGC TAATGAAGGG AAAGGATATT TTCTTCCAAG
      CAAAGGTGAA GAGACCAAGA CTCTGAAATC TCAGAATTCC TTTTCTAACT CTCCCTTGCT 2280
      CGCTGTAAAA TCTTGGCACA GAAACACAAT ATTTTGTGGC TTTCTTTCTT TTGCCCTTCA 2340
30
      CAGTGTTTCG ACAGCTGATT ACACAGTTGC TGTCATAAGA ATGAATAATA ATTATCCAGA
      GTTTAGAGGA AAAAAATGAC TAAAAATATT ATAACTTAAA AAAATGACAG ATGTTGAATG 2460
      CCCACAGGCA AATGCATGGA GGGTTGTTAA TGGTGCAAAT CCTACTGAAT GCTCTGTGCG
                                                                       2520
      AGGGTTACTA TGCACAATTT AATCACTTTC ATCCCTATGG GATTCAGTGC TTCTTAAAGA 2580
      GTTCTTAAGG ATTGTGATAT TTTTACTTGC ATTGAATATA TTATAATCTT CCATACTTCT
35
      TCATTCAATA CAAGTGTGGT AGGGACTTAA AAAACTTGTA AATGCTGTCA ACTATGATAT
      GGTAAAAGTT ACTTATTCTA GATTACCCCC TCATTGTTTA TTAACAAATT ATGTTACATC
      TGTTTTAAAT TTATTTCAAA AAGGGAAACT ATTGTCCCCT AGCAAGGCAT GATGTTAACC
                                                                       2820
      AGAATAAAGT TCTGAGTGTT TTTACTACAG TTGTTTTTTG AAAACATGGT AGAATTGGAG
      AGTAAAAACT GAATGGAAGG TTTGTATATT GTCAGATATT TTTTCAGAAA TATGTGGTTT 2940
40
      CCACGATGAA AAACTTCCAT GAGGCCAAAC GTTTTGAACT AATAAAAGCA TAAATGCAAA
      CACACAAAGG TATAATTTTA TGAATGTCTT TGTTGGAAAA GAATACAGAA AGATGGATGT
      GCTTTGCATT CCTACAAAGA TGTTTGTCAG ATGTGATATG TAAACATAAT TCTTGTATAT
                                                                       3120
      TATGGAAGAT TTTAAATTCA CAATAGAAAC TCACCATGTA AAAGAGTCAT CTGGTAGATT
                                                                       3180
      TTTAACGAAT GAAGATGTCT AATAGTTATT CCCTATTTGT TTTCTTCTGT ATGTTAGGGT 3240
45
      GCTCTGGAAG AGAGGAATGC CTGTGTGAGC AAGCATTTAT GTTTATTTAT AAGCAGATTT
      AACAATTCCA AAGGAATCTC CAGTTTTCAG TTGATCACTG GCAATGAAAA ATTCTCAGTC 3360
      AGTAATTGCC AAAGCTGCTC TAGCCTTGAG GAGTGTGAGA ATCAAAACTC TCCTACACTT
                                                                       3420
      CCATTAACTT AGCATGTGTT GAAAAAAAA GTTTCAGAGA AGTTCTGGCT GAACACTGGC
      AACGACAAAG CCAACAGTCA AAACAGAGAT GTGATAAGGA TCAGAACAGC AGAGGTTCTT
50
      TTAAAGGGGC AGAAAAACTC TGGGAAATAA GAGAGAACAA CTACTGTGAT CAGGCTATGT
                                                                       3600
      ATGGAATACA GTGTTATTTT CTTTGAAATT GTTTAAGTGT TGTAAATATT TATGTAAACT
                                                                       3660
      GCATTAGAAA TTAGCTGTGT GAAATACCAG TGTGGTTTGT GTTTGAGATT TATTGAGAAT 3720
      TCAGACCTAT TTGACATAAC ACTATAAAGG TTGACAATAA ATGTGCTTAT GTTT
55
      Seq ID NO: 75 Protein sequence:
      Protein Accession #: NP 000441
                11
                           21
                                      31
                                                 41
                                                            51
60
      MIASQFLSAL TLVLLIKESG AWSYNTSTEA MTYDEASAYC QQRYTHLVAI QNKEEIEYLN
      SILSYSPSYY WIGIRKVNNV WVWVGTQKPL TEEAKNWAPG EPNNRQKDED CVEIYIKREK
      DYGMWNDERC SKKKLALCYT AACTNTSCSG HGECVETINN YTCKCDPGFS GLKCEQIVNC
                                                                         180
      TALESPEHGS LVCSHPLGNF SYNSSCSISC DRGYLPSSME TMQCMSSGEW SAPIPACNVV
                                                                         240
65
      ECDAVTNPAN GFVECFQNPG SFPWNTTCTF DCEEGFELMG AQSLQCTSSG NWDNEKPTCK
                                                                         300
      AVTCRAVROP QNGSVRCSHS PAGEFTFKSS CNFTCEEGFM LQGPAQVECT TQGQWTQQIP
      VCEAFOCTAL SNPERGYMNC LPSASGSFRY GSSCEFSCEO GFVLKGSKRL QCGPTGEWDN
      EKPTCEAVRC DAVHQPPKGL VRCAHSPIGE FTYKSSCAFS CEEGFELYGS TQLECTSQGQ
                                                                         480
      WTEEVPSCQV VKCSSLAVPG KINMSCSGEP VFGTVCKFAC PEGWTLNGSA ARTCGATGHW
                                                                         540
70
      SGLLPTCEAP TESNIPLVAG LSAAGLSLLT LAPFLLWLRK CLRKAKKFVP ASSCQSLESD
      GSYOKPSYIL
```

Seq ID No: 76 <u>Nucleotide sequence:</u>
Nucleic Acid Accession #: NM_031439
Coding sequence: 69..1235 (underlined sequences correspond to start and stop codons)

```
41
                                                            51
                 11
                            21
                                       31
 5
      CCCGACCCT GCGAGGGCCA GGTCCGCGCC TGCCCCGCCA GGCGAAGCGA GGCGACCCGC
      GTGCGGCCAT GGCTTCGCTG CTGGGAGCCT ACCCTTGGCC CGAGGGTCTC GAGTGCCCGG
                                                                         120
      CCCTGGACGC CGAGCTGTCG GATGGACAAT CGCCGCCGGC CGTCCCCCGG CCCCCGGGGG
      ACAAGGGCTC CGAGAGCCGT ATCCGGCGGC CCATGAACGC CTTCATGGTT TGGGCCAAGG
                                                                         240
      ACGAGAGAA ACGCTGGCA GTGCAGAACC CGGACCTGCA CAACGCCGAG CTCAGCAAGA
                                                                         300
10
      TGCTGGGAAA GTCGTGGAAG GCGCTGACGC TGTCCCAGAA GAGGCCGTAC GTGGACGAGG
      CGGAGCGGCT GCGCCTGCAG CACATGCAGG ACTACCCCAA CTACAAGTAC CGGCCGCGCA
                                                                         420
      GGAAGAAGCA GGCCAAGCGG CTGTGCAAGC GCGTGGACCC GGGCTTCCTT CTGAGCTCCC
                                                                         480
      TCTCCCGGGA CCAGAACGCC CTGCCGGAGA AGAGAAGCGG CAGCCGGGGG GCGCTGGGGG
                                                                         540
      AGAAGGAGGA CAGGGGTGAG TACTCCCCCG GCACTGCCCT GCCCAGCCTC CGGGGCTGCT
                                                                         600
15
      ACCACGAGGG GCCGGCTGGT GGTGGCGGCG GCGGCACCCC GAGCAGTGTG GACACGTACC
      CGTACGGGCT GCCCACACCT CCTGAAATGT CTCCCCTGGA CGTGCTGGAG CCGGAGCAGA
                                                                         720
      CCTTCTTCTC CTCCCCCTGC CAGGAGGAGC ATGGCCATCC CCGCCGCATC CCCCACCTGC
                                                                         780
      CAGGGCACCC GTACTCACCG GAGTACGCCC CAAGCCCTCT CCACTGTAGC CACCCCTGG
                                                                         840
      GCTCCCTGGC CCTTGGCCAG TCCCCCGGCG TCTCCATGAT GTCCCCTGTA CCCGGCTGTC
                                                                         900
20
      CCCACCTGGG CCAGCTTTCC CCGCCTCCTG AGCACCCTGG CTTCGACGCC CTGGATCAAC
                                                                        1020
      TGAGCCAGGT GGAACTCCTG GGGGACATGG ATCGCAATGA ATTCGACCAG TATTTGAACA
                                                                        1080
      CTCCTGGCCA CCCAGACTCC GCCACAGGGG CCATGGCCCT CAGTGGGCAT GTTCCGGTCT
      CCCAGGTGAC ACCAACGGGT CCCACAGAGA CCAGCCTCAT CTCCGTCCTG GCTGATGCCA
                                                                        1200
25
      CGGCCACGTA CTACAACAGC TACAGTGTGT CATAGAGCTG GAGGCGCCCC GTCCGGTCAG
                                                                        1260
      CCCTCGCGCC CTCTCCTTCT TGTGCCTTGA GTGGCAGAGG AGCCGTCCAG CCACACCAGC
                                                                        1320
      TTTCCTCCCA CCGCTCAGGG CAGGGAGGTC TGAACTGCGG CCCCAGAGCC TTTGGCCTAA
      GCTGGACTCT CCTTATCCGA GTGCCGCCTC TATCCCCTTC CCCACGTTCC AGCCCCTGCA
      GCCCACATTT TAAGTATATT CCTTCAAGTG AGTTTTCCTC CAGCCCCTGA GAGTTGCTGT
                                                                        1500
30
      CTCCCAGTGG AATGTTCACT GACGTCTTTT CTTGGTAGCC ATCATCGAAA CTAATGGGGG
                                                                        1560
      GACAGACTTG ATAGCCAAGG TCCCTTCTGG TCCAGTTTTC TGATTTAGGG TTCTCTCAAG
                                                                        1620
      ATTAATAAAG GAAGATGGGG AAATTTGACT, CATTAATGAG CTCGCTAACC TACGATCTGG
      TGATAATTTT GTGTGCACAG CCCAAGGACC ACGAGGCTTT CTGCACTTTC TGCACCCCCT
                                                                        1740
      TCCAAAGTGA CCACAAAATT TCAAAGGGAC TCATACAATT TGAGAAAAAA CAGTCAACCT
                                                                        1800
35
      GATTTGAGAA ATTAACCAGT ATGGCTAACT ATATCACAGA AAATGGGATT GAGTTAAAAC
                                                                        1.860
      TATTTTATTT TAAATATACA TTTTAAAGCA GTTCTTTTTT TTTGTTAATT TGTTTATTAT
      ACACACACTT CAAGAGCCAC CGCGCCCAGC CTACATTTAT AATTTTCATT CTCTTTTACC
                                                                        1980
      TATAAAATTC AGTGTATTAG TTTCATTACA TAGGAGAAAT TATATTTCTA AACATTTTAT
                                                                        2040
      GATGTTTAAA AACAAAACAG GCTGTTGTAA AAAAAAAAA AAAAAAAAA
40
      Seq ID NO: 77 Protein sequence:
      Protein Accession #: NP_113627
45
                                                  41
                                       31
                                                            51
      MASLLGAYPW PEGLECPALD AELSDGQSPP AVPRPPGDKG SESRIRRPMN AFMVWAKDER
                                                                          60
      KRLAVQNPDL HNAELSKMLG KSWKALTLSQ KRPYVDEAER LRLQHMQDYP NYKYRPRRKK
50
      OAKRLCKRVD PGFLLSSLSR DONALPEKRS GSRGALGEKE DRGEYSPGTA LPSLRGCYHE
      GPAGGGGGGT PSSVDTYPYG LPTPPEMSPL DVLEPEQTFF SSPCQEEHGH PRRIPHLPGH
                                                                         240
      PYSPEYAPSP LHCSHPLGSL ALGQSPGVSM MSPVPGCPPS PAYYSPATYH PLHSNLQAHL
                                                                         300
      GQLSPPPEHP GFDALDQLSQ VELLGDMDRN EFDQYLNTPG HPDSATGAMA LSGHVPVSQV
                                                                         360
      TPTGPTETSL ISVLADATAT YYNSYSVS
55
      Seq ID NO: 78 Nucleotide sequence:
      Nucleic Acid Accession #: XM 035787
      Coding sequence: 329..949 (underlined sequences correspond to start and stop codons)
60
                           21
                                       31
                                                  41
                                                            51
      TGCCCGCCC CGCTCCCAG CGCCCCGGAA GTGATCTGTG GCGGCTGCTG CAGAGCCGCC
      AGGAGGAGGG TGGATCTCCC CAGAGCAAAG CGTCGGAGTC CTCCTCCTCC TTCTCCTCCT
                                                                         1.20
65
      CCTCCTCCTC CTCCTCCAGC CGCCCAGGCT CCCCCGCCAC CCGTCAGACT CCTCCTTCGA
                                                                         180
      CCGCTCCCGG CGCGGGGCCT TCCAGGCGAC AAGGACCGAG TACCCTCCGG CCGGAGCCAC
                                                                         240
      GCAGCCGCGG CTTCCGGAGC CCTCGGGGCG GCGGACTGGC TCGCGGTGCA GATTCTTCTT
      AATCCTTTGG TGAAAACTGA GACACAAAAT GGCTGCAAAT AAGCCCAAGG GTCAGAATTC
                                                                         360
      TTTGGCTTTA CACAAAGTCA TCATGGTGGG CAGTGGTGGC GTGGGCAAGT CAGCTCTGAC
                                                                         420
70
      TCTACAGTTC ATGTACGATG AGTTTGTGGA GGACTATGAG CCTACCAAAG CAGACAGCTA
                                                                         480
      TCGGAAGAAG GTAGTGCTAG ATGGGGAGGA AGTCCAGATC GATATCTTAG ATACAGCTGG
                                                                         540
      GCAGGAGGAC TACGCTGCAA TTAGAGACAA CTACTTCCGA AGTGGGGAGG GGTTCCTCTG
      TGTTTCTCT ATTACAGAAA TGGAATCCTT TGCAGCTACA GCTGACTTCA GGGAGCAGAT
                                                                         660
      TTTAAGAGTA AAAGAAGATG AGAATGTTCC ATTTCTACTG GTTGGTAACA AATCAGATTT
                                                                         720
75
      AGAAGATAAA AGACAGGTTT CTGTAGAAGA GGCAAAAAAC AGAGCTGAGC AGTGGAATGT
                                                                         780
      TAACTACGTG GAAACATCTG CTAAAACACG AGCTAATGTT GACAAGGTAT TTTTTGATTT
```

```
AATGAGAGAA ATTCGAGCGA GAAAGATGGA AGACAGCAAA GAAAAGAATG GAAAAAAAGAA
      GAGGAAAAGT TTAGCCAAGA GAATCAGAGA AAGATGCTGC ATTTTA<u>TAA</u>T CAAAGCCCAA
      ACTCCTTTCT TATCTTGACC ATACTAATAA ATATAATTTA TAAGCATTGC CATTGAAGGC
                                                                        1020
      TTAATTGACT GAAATTACTT TAACATTTTG GAAATTGTTG TATATCACTA AAAGCATGAA 1080
 5
      TTGGAACTGC AATGAAAGTC AAATTTACTT TAAAAAGAAA TTAATATGGC TTCACCAAGA
                                                                        1140
      AGCAAAGTTC AACTTATTC ATAATTGCCT ACATTTATCA TGGTCCTGAA TGTAGCGTGT
                                                                        1200
      AAGCTTGTGT TTCTTGGGCA GTCTTTCTTG AAATTGAAGA GGTGAAATGG GGGTGGGGAG 1260
      TGGGAGGAAA GGTGACTTCC TCTGGTGTTT ATTATAAAGC TTAAATTTTA TATCATTTTA 1320
     AAATGTCTTG GTCTTCTACT GCCTTGAAAA ATGACAATTG TGAACATGAT AGTTAAACTA 1380
10
      CCACTTTTT TAACCATTAT TATGCAAAAT TTAGAAGAAA AGTTATTGGC ATGGTTGTTG 1440
      CATATAGTTA AACTGAGAGT AATTCATCTG TGAATCTGCT TTAATTACCT GGTGAGTAAC
                                                                        1500
      TTAGAAAGT GGTGTAAACT TGTACATGGA ATTTTTTGAA TATGCCTTAA TTTAGAAACT 1560
      GAAAAATATC TGGTTATATC ATTCTGGGTG TGTTCTTACT GACACCAGGG GTCCGCTGCC 1620
      CCATGTGTCC TGGTGAGAAA ATATATGCCT GGCACAGCTT TTGTATAGAA AATTCTTGAG 1680
15
      AAGTAACTGT CCGCTAGAAG TCTGTCCAAA TTTAAAATGT GTGCCATATT CTGGTTCTTG 1740
      AAAATAAGAT TCCAGAGCTC TTTGATCGCT TTTAATAAAC TGCAAGTTCA TTTTAAATGA 1800
     AGGGCCAGCA TATATACTTG CAAGATAATT TTCAGCTGCA AGGATTCAGC ACCAGTTATG 1860
      TTTGAATGAA CCCTCCTTTT CTCTGAGATT CTGGTCCCTG GAAATCCCTT TCTGCTAGTG 1920
      GTGAGCATGT AAGTGTTAAG TTTTTAATCT GGGAGCAGGG CATAGGAAGA AAATGTCAGT 1980
20
     AGTGCTAATG CATTTTGCAC TAGAACGCTT CGGGAAAATA TTCATGCTTG CCATCTGTTC 2040
      ATTTCTAAAT TTATATTCAT AAAGTTACAG TTTGATACAG GAATTATTAG GAGTAATTCT
                                                                        2100
      TTTCTGTTTC TGTTTATAAT GAAGAACACT GTAGCTACAT TTTCAGAAGT TAACATCAAG 2160
      CCATCAAACC TGGGTATAGT GCAGAAAACG TGGCACACAC TGACCACACA TTAGGCTGTG 2220
      TCACCATTGT GTGGTGTACC TGCTGGAAGA ATTCTAGCAT GCTACTTGGG GACATAATTT
                                                                        2280
25
      CAGTGGGAAA TATGCCACTG ACCGATTTT TTTTTTCCT CTTTGCAGTG GGGCTAGGAC 2340
      AGTTGATTCA ACAAAGTATT TTTTTCTTTT TTCTCAGTCC TAATTTGAAC AGGTCAAAGA 2400
      TGTGTTCAGG CATTCCAGGT AACAGGTGTG TATGTAAAGT TAAAAATAGG CTTTTTAGGA 2460
     ACTCACTCTT TAGATATTTA CATCCAGCTT CTCATGTTAA ATATTTGTCC TTAAAGGGTT 2520
      TGAGATGTAC ATCTTTCATT TCGTATTTCT CATAGGCTAT GCCATGTGCG GAATTCAAGT 2580
30
      TACCAATGTA ACACTGGCCA GCGGGCCCAG CAATCTCCAT GTGTACTTAT TACAGTCTTA 2640
      TTTAACCAGG GGTCCTAACC ACTAACATTG TGACTTTGCT TTGAGACCTT TCCTCTCTG 2700
      GGTACTGAGG TGCTATGAAG CCAACTGACA AAGATGCATC ACGTGTCTTA GGCTGATGCC
                                                                        2760
      ACTACCCGAT TTGTTTATTT GCAATTTGAG CCATTTAAAG ACCAATAAAC TTCCTTTTTT
35
      Seq ID NO: 79 Protein sequence:
      Protein Accession #: XP_035787
                                       31
                                                  41
                                                             51
                            21
40
      MAANKPKGON SLALHKVIMV GSGGVGKSAL TLQFMYDEFV EDYEPTKADS YRKKVVLDGE
                                                                           60
      EVQIDILDTA GQEDYAAIRD NYFRSGEGFL CVFSITEMES FAATADFREQ ILRVKEDENV
                                                                          120
      PFLLVGNKSD LEDKROVSVE EAKNRAEOWN VNYVETSAKT RANVDKVFFD LMREIRARKM
      EDSKEKNGKK KRKSLAKRIR ERCCIL
45
      Seq ID NO: 80 Nucleotide sequence:
     Nucleic Acid Accession #: NM_003467
      Coding sequence: 89..1147 (underlined sequences correspond to start and stop codons)
50
                 11
      GTTTGTTGGC TGCGGCAGCA GGTAGCAAAG TGACGCCGAG GGCCTGAGTG CTCCAGTAGC
                                                                           60
      CACCGCATCT GGAGAACCAG CGGTTACCAT GGAGGGGATC AGTATÁTACA CTTCAGATAA
                                                                          120
      CTACACCGAG GAAATGGGCT CAGGGGACTA TGACTCCATG AAGGAACCCT GTTTCCGTGA
                                                                          180
55
      AGAAAATGCT AATTTCAATA AAATCTTCCT GCCCACCATC TACTCCATCA TCTTCTTAAC
                                                                          240
      TGGCATTGTG GGCAATGGAT TGGTCATCCT GGTCATGGGT TACCAGAAGA AACTGAGAAG
      CATGACGGAC AAGTACAGGC TGCACCTGTC AGTGGCCGAC CTCCTCTTTG TCATCACGCT
                                                                          360
      TCCCTTCTGG GCAGTTGATG CCGTGGCAAA CTGGTACTTT GGGAACTTCC TATGCAAGGC
                                                                          420
      AGTCCATGTC ATCTACACAG TCAACCTCTA CAGCAGTGTC CTCATCCTGG CCTTCATCAG
60
      TCTGGACCGC TACCTGGCCA TCGTCCACGC CACCAACAGT CAGAGGCCAA GGAAGCTGTT
                                                                          540
      GGCTGAAAAG GTGGTCTATG TTGGCGTCTG GATCCCTGCC CTCCTGCTGA CTATTCCCGA
      CTTCATCTT GCCAACGTCA GTGAGGCAGA TGACAGATAT ATCTGTGACC GCTTCTACCC
                                                                          660
      CAATGACTTG TGGGTGGTTG TGTTCCAGTT TCAGCACATC ATGGTTGGCC TTATCCTGCC
                                                                          720
      TGGTATTGTC ATCCTGTCCT GCTATTGCAT TATCATCTCC AAGCTGTCAC ACTCCAAGGG
65
      CCACCAGAAG CGCAAGGCCC TCAAGACCAC AGTCATCCTC ATCCTGGCTT TCTTCGCCTG
                                                                          840
      TTGGCTGCCT TACTACATTG GGATCAGCAT CGACTCCTTC ATCCTCCTGG AAATCATCAA
                                                                          900
      GCAAGGGTGT GAGTTTGAGA ACACTGTGCA CAAGTGGATT TCCATCACCG AGGCCCTAGC
                                                                          960
      TTTCTTCCAC TGTTGTCTGA ACCCCATCCT CTATGCTTTC CTTGGAGCCA AATTTAAAAC
                                                                         1020
      CTCTGCCCAG CACGCACTCA CCTCTGTGAG CAGAGGGTCC AGCCTCAAGA TCCTCTCCAA 1080
70
      AGGAAAGCGA GGTGGACATT CATCTGTTTC CACTGAGTCT GAGTCTTCAA GTTTTCACTC
                                                                         1140
      CAGCTAACAC AGATGTAAAA GACTTTTTT TATACGATAA ATAACTTTTT TTTAAGTTAC 1200
      ACATTTTCA GATATAAAAG ACTGACCAAT ATTGTACAGT TTTTATTGCT TGTTGGATTT 1260
      TTGTCTTGTG TTTCTTTAGT TTTTGTGAAG TTTAATTGAC TTATTTATAT AAATTTTTTT
                                                                         1320
      TGTTTCATAT TGATGTGTGT CTAGGCAGGA CCTGTGGCCA AGTTCTTAGT TGCTGTATGT
                                                                         1380
75
      CTCGTGGTAG GACTGTAGAA AAGGGAACTG AACATTCCAG AGCGTGTAGT GAATCACGTA 1440
      AAGCTAGAAA TGATCCCCAG CTGTTTATGC ATAGATAATC TCTCCATTCC CGTGGAACGT
```

```
TTTTCCTGTT CTTAAGACGT GATTTTGCTG TAGAAGATGG CACTTATAAC CAAAGCCCAA 1560
      AGTGGTATAG AAATGCTGGT TTTTCAGTTT TCAGGAGTGG GTTGATTTCA GCACCTACAG 1620
      TGTACAGTCT TGTATTAAGT TGTTAATAAA AGTACATGTT AAACTTACTT AGTGTTATG
 5
      Seq ID NO: 81 Protein sequence:
      Protein Accession #: NP 003458
                 11
                            21
                                       31
                                                  41
                                                             51
10
      MEGISIYTSD NYTEEMGSGD YDSMKEPCFR EENANFNKIF LPTIYSIIFL TGIVGNGLVI
      LVMGYQKKLR SMTDKYRLHL SVADLLFVIT LPFWAVDAVA NWYFGNFLCK AVHVIYTVNL
      YSSVLĪLAFI SLDRYLAIVH ATNSORPRKL LAEKVVYVGV WIPALLLTIP DFIFANVSEA
                                                                          180
      DDRYICDRFY PNDLWVVVFQ FOHIMVGLIL PGIVILSCYC IIISKLSHSK GHQKRKALKT
                                                                          240
15
      TVILILAFFA CWLPYYIGIS IDSFILLEII KQGCEFENTV HKWISITEAL AFFHCCLNPI
      LYAFLGAKFK TSAOHALTSV SRGSSLKILS KGKRGGHSSV STESESSSFH SS
      Seq ID NO: 82 Nucleotide sequence:
20
      Nucleic Acid Accession #: NM_014959
      Coding sequence: 314..1609 (underlined sequences correspond to start and stop codons)
                            23
25
      CTGGTTCTCA ACTTCTTTTG AAATAATGTT CATAGAGAAG GAGGGCTGTC TGAGATTCGA
      GGGAAACAAG CTCTCAGGAC TTCCGGTCGC CATGATGGCT GTGGGCGGTA AACGCGGTTA
                                                                          120
      GTGCAAGCAT CTGGGCCATC TTCAATGGTA AAAAAGATAC AGTAAAGACA TAAATACCAC
                                                                          180
      ATTTGACAAA TGGAAAAAAA GGAGTGTCCA GAAAAGAGTA GCAGCAGTGA GGAAGAGCTG
      CCGAGACGGG TATACAGGGA GCTACCCTGT GTTTCTGAGA CCCTTTGTGA CATCTCACAT
30
      TTTTTCCAAG AAGATGATGA GACAGAGGCA GAGCCATTAT TGTTCCGTGC TGTTCCTGAG
                                                                          360
      TGTCAACTAT CTGGGGGGGA CATTCCCAGG AGACATTTGC TCAGAAGAGA ATCAAATAGT
                                                                          420
      TTCCTCTTAT GCTTCTAAAG TCTGTTTTGA GATCGAAGAA GATTATAAAA ATCGTCAGTT
                                                                          480
      TCTGGGGCCT GAAGGAAATG TGGATGTTGA GTTGATTGAT AAGAGCACAA ACAGATACAG
      CGTTTGGTTC CCCACTGCTG GCTGGTATCT GTGGTCAGCC ACAGGCCTCG GCTTCCTGGT
                                                                          600
35
      AAGGGATGAG GTCACAGTGA CGATTGCGTT TGGTTCCTGG AGTCAGCACC TGGCCCTGGA
                                                                          660
      CCTGCAGCAC CATGAACAGT GGCTGGTGGG CGGCCCCTTG TTTGATGTCA CTGCAGAGCC
                                                                          720
      AGAGGAGGCT GTCGCCGAAA TCCACCTCCC CCACTTCATC TCCCTCCAAG GTGAGGTGGA
                                                                          780
      CGTCTCCTGG TTTCTCGTTG CCCATTTTAA GAATGAAGGG ATGGTCCTGG AGCATCCAGC
      CCGGGTGGAG CCTTTCTATG CTGTCCTGGA AAGCCCCAGC TTCTCTCTGA TGGGCATCCT
                                                                          900
40
      GCTGCGGATC GCCAGTGGGA CTCGCCTCTC CATCCCCATC ACTTCCAACA CATTGATCTA
                                                                          960
      TTATCACCCC CACCCGAAG ATATTAAGTT CCACTTGTAC CTTGTCCCCA GCGACGCCTT 1020
      GCTAACAAAG GCGATAGATG ATGAGGAAGA TCGCTTCCAT GGTGTGCGCC TGCAGACTTC
      GCCCCCAATG GAACCCCTGA ACTTTGGTTC CAGTTATATT GTGTCTAATT CTGCTAACCT
                                                                         1140
      GAAAGTAATG CCCAAGGAGT TGAAATTGTC CTACAGGAGC CCTGGAGAAA TTCAGCACTT
                                                                        1200
45
      CTCAAAATTC TATGCTGGGC AGATGAAGGA ACCCATTCAA CTTGAGATTA CTGAAAAAAG
                                                                         1260
      ACATGGGACT TTGGTGTGGG ATACTGAGGT GAAGCCAGTG GATCTCCAGC TTGTAGCTGC 1320
      ATCAGCCCCT CCTCCTTTCT CAGGTGCAGC CTTTGTGAAG GAGAACCACC GGCAACTCCA
                                                                         1380
      AGCCAGGATG GGGGACCTGA AAGGGGTGCT CGATGATCTC CAGGACAATG AGGTTCTTAC 1440
      TGAGAATGAG AAGGAGCTGG TGGAGCAGGA AAAGACACGG CAGAGCAAGA ATGAGGCCTT 1500
50
      GCTGAGCATG GTGGAGAAGA AAGGGGACCT GGCCCTGGAC GTGCTCTTCA GAAGCATTAG
      TGAAAGGGAC CCTTACCTCG TGTCCTATCT TAGACAGCAG AATTTGTAAA ATGAGTCAGT
      TAGGTAGTCT GGAAGAGAGA ATCCAGCGTT CTCATTGGAA ATGGATAAAC AGAAATGTGA 1680
      TCATTGATTT CAGTGTTCAA GACAGAAGAA GACTGGGTAA CATCTATCAC ACAGGCTTTC
                                                                        1740
      AGGACAGACT TGTAACCTGG CATGTACCTA TTGACTGTAT CCTCATGCAT TTTCCTCAAG 1800
55
      AATGTCTGAA GAAGGTAGTA ATATTCCTTT TAAATTTTTT CCAACCATTG CTTGATATAT
      CACTATTTTA TCCATTGACA TGATTCTTGA AGACCCAGGA TAAAGGACAT CCGGATAGGT
      GTGTTTATGA AGGATGGGGC CTGGAAAGGC AACTTTTCCT GATTAATGTG AAAAATAATT
                                                                        1980
      CCTATGGACA CTCCGTTTGA AGTATCACCT TCTCATAACT AAAAGCAGAA AAGCTAACAA
                                                                         2040
      AAGCTTCTCA GCTGAGGACA CTCAAGGCAT ACATGATGAC AGTCTTTTT TTTTTGTAT 2100
60
      GTTAGGACTT TAACACTTTA TCTATGGCTA CTGTTATTAG AACAATGTAA ATGTATTTGC
      TGAAAGAGAG CACAAAAATG GGAGAAAATG CAAACATGAG CAGAAAATAT TTTCCCACTG
      GTGTGTAGCC TGCTACAAGG AGTTGTTGGG TTAAATGTTC ATGGTCAACT CCAAGGAATA 2280
      CTGAGATGAA ATGTGGTAAA TCAACTCCAC AGAACCACCA AAAAGAAAAT GAGGGTAATT
                                                                         2340
      CAGCTTATTC TGAGACAGAC ATTCCTGGCA ATGTACCATA CAAAAAATAA GCCAACTCTG 2400
65
      ACATTIGGAT TCTACCATAG ACTCTGTCAT TTTGTAGCCA TTTCAGCTGT CTTTTGATTA 2460
      ATGTTTTCGT GGCACACATA TTTCCATCCT TTTATGTTTA ATCTGTTTAA AACAAGTTCC
      TAGTAGACAC CATCTGGTTG AGTCAGTTTT TTTTATGGTG TATTTTGAAC CCATTCTGAT
      AGTCTCTTTT AACTGGAAGA TTTCAATTAC TTACGTTAAT GTAATTATTA ATATGTTAGG
      ATTTATCCTC AGTCAGCCAG TTTGTTATGT CTTTTCTATT CTACTGTTAT CACATTTGTA 2700
70
      CCACTTAAAG TGGAATCTAG GCACTTTATC ACCATTTAGA TCCTATTACC TTTTCTCATC 2760
      TAGGATATAG TTATCTTCTA CATAATCTTT CTGTATCTTA AAACCCATCA ATAAATTATT
      ATATATTTC TACTTTTAAT CACTCAGAAG ATTTAAAAAA CTCATGAGAA GAGTAATCTG 2880
      TTATGTTTTT CCAGATATTT ACCATTTCTG TTGCTCTTCC TTCATTATTT TCCAAATTTC
      GTTCTGCAAA TTTCCACTTC TTCTGATAGA CGTTTTTTAG TTCTTTTAGA GTGGTTCTGA
                                                                        3000
75
      TAGGTACAGA TTCTCTTATT TTTTGCTTCC TCTGAGGACA TCTTTTTCTC ACCTTCATTC 3060
      TCAGTGATGT TTTTTGCTTG TAGTATTTTT AGTTGACATT GTTTTCTGTT CAGCAGTTTC 3120
```

```
CTTTTAGCTT CCGTATTTCC TGATGAGAAA TCTGCAGTCA TTCAAATTGT TGTTTCCCTG 3180
      TATGTAGTGT GTCATTTTC TGTCAGATTT CAAGGTATTT ATCTTTAGTT TTTAGCCATT
      TCATTATGTT GGGGATGAGT TTCCTTGTTT TATTCCCTTT GGAATTTGCT CCAATTCATA
      AATTTGCAGT TTTATGTCTT TTACCAAACT TAGAGGTTTT CAGCCTAATT TCTAAAAATA
                                                                         3360
      CTTTTTATTA GCCTGATTTT CATCTTTATA GGAAATAGTT TAAGTGATGA CAAGTTCCAA
                                                                         3420
      TAGCTTATAT GCCCAGAAGG CCTTCAAAAT AAGAATTTTG AAAGAATACA GAAAACAAAC
      TTTTATATCC TTCTCATGTC TTCTACTGTA AAATTCATAT GCTTTGCTAC TCTAAACCTA
      GTTTGAAATC AACAGTCTTG AGAATAGATG AAAATTTTGA TGAATAGTGG AATTCTTTTA
                                                                         3600
      AATGGAAACC TCTTACATGT GATTTTCCTT GCCATCTAGA AATAAACCAT AGTATTTATG
10
      TTGAATCAAT CAATATTATA TTTTGTTTTT TTCCTCCTCT TCTGAGACTC TTATTGTGGA
                                                                         3720
      AATGTTAGAC TTTTATGTTT TCCTAAATGT CCCTGATATT CTACTTATTT AGAACATCTT
      TTCATTTTT CCATTATTCT GATTGGGTAA TTTTAATTTG TCTATTTTCA AATTTGCTGG
      AGTGTTCACC TGTTGTTGTC TGTGTCGTCC CACTGAGTGC ATTCACCACC TTTTAAATTT
                                                                         3,900
      TGGTCACTGT ATGTATCAGT TCTAAAATTT CCATTTTGTT CTCTATATTT TAAATTTCTT
                                                                         3960
15
      GGCTTATATT CTATTTTCCT GCAAATGTGT CAGCATTTGC TTGTTTGAGC TTTTTTTTT
      TCAAGACAGG GTCTCAACTC TGTTACCCAG GCTGGAGTGC AGTGGTGCGA TCTCAGCTCA
                                                                         4080
      CTGCAACCTC TGCCTCCTGG TTCAAGCGAT TATTGTGCCT CAGCCTCCTG AGTAGCTGGG
                                                                         4140
      ATTACAGGCA TGCACCACCA CAGCCCAGCT AATTTTTTGT ATTTTTAGTA GAGACAGAGT
                                                                         4200
      TTTGCTATGT TGGCCAGGCT GGTTTTGAAC TCCTGGCCTC AAGTGATCCA CCCACCTCAG
20
      CCTCCCAAAG TGCTGGGATT ACAGGCCACT ACACCTGGCA CATTTGAGTA TTTTTTTTT
      TTTTTTTT TTGAGATGGA GTCTCGCTCT GTCATCTAGG CTGGAGTGCA GTGGTGTGAT
                                                                         4380
      CTCAGCTCAC TGCAGCCTCT GTCTCCCGGG CTCAAGCGAT TCTCTTGCCT CAGCCTCCTG
                                                                         4440
                                                                         4500
      AGTAGCTAGG ACTACAGGTG CATGCCAACA CGCCCGGCTA ATTTTTTTAA AAAATATTTT
      TAGTAGAGAC AGGGTTTCAC CATTTTGGCC AGGATGGTCT CGATCTCCTG ACCTCATGAT
25
      CCACCGCCT CGGCCTTCCA AAGTGCTGGG ATTACAGGCA TGAGCCACCG TGCCTGGCCT
                                                                         4620
      CATTTGAGTA TTTTTATAAT GTCTCTTTTA AAGTCTTTGT CAGATAATTC CACTGTACAT
                                                                         4680
      GTTATTCAGT GTTTGGTGTC CACTGAGTTG TCATTTGCCA GACAAGTGGA GATTTTTGCA
                                                                         4740
      GCTCATCCTT GTATTCTCAG TAGTTCCGAT ATGTACCCTC GACATGTGAA TGTTATCTTA
      TGAGACTCTG TTTTATTTGT ATCCAACAGA AGATGTTTAT TATTTATTTG GCTTTCTGTG
                                                                         4860
30
      AACTGAGGTC TTAATATCAG CTCATTTTAA AAGTCTTTGC AGTGGTATTC GGATCTATCC
                                                                         4920
      TGTGTGTGCC TATGAGATTG GGTGCAGTGT ATCCTGTTAG CTCCATTCTC AGGGCGTTTG
                                                                         4980
      AATGTGAATT AGGACCAGCG CAATGAATGC TCAAGTTGGG GTTGGGCGTT AGAATTCATA
      AAAGTCTTTA TATGCTCAG
35
      Seq ID NO: 83 Protein sequence:
      Protein Accession #: NP 055774
40
                 11
                            21
                                       31
                                                  41
                                                             51
      MMROROSHYC SVLFLSVNYL GGTFPGDICS EENQIVSSYA SKVCFEIEED YKNROFLGPE
      GNVDVELIDK STNRYSVWFP TAGWYLWSAT GLGFLVRDEV TVTIAFGSWS OHLALDLOHH
                                                                          120
      EQWLVGGPLF DVTAEPEEAV AEIHLPHFIS LQGEVDVSWF LVAHFKNEGM VLEHPARVEP
                                                                          180
45
      FYAVLESPSF SLMGILLRIA SGTRLSIPIT SNTLIYYHPH PEDIKFHLYL VPSDALLTKA
                                                                          240
      IDDEEDRFHG VRLQTSPPME PLNFGSSYIV SNSANLKVMP KELKLSYRSP GEIQHFSKFY
      AGQMKEPIQL EITEKRHGTL VWDTEVKPVD LQLVAASAPP PFSGAAFVKE NHROLOARMG
                                                                          360
      DLKGVLDDLQ DNEVLTENEK ELVEQEKTRQ SKNEALLSMV EKKGDLALDV LFRSISERDP
                                                                          420
      YLVSYLRQQN L
50
      Seq ID NO: 84 Nucleotide sequence:
      Nucleic Acid Accession #: NM 007036
      Coding sequence: 56-610 (underlined sequences correspond to start and stop codons)
55
                            21
                                       31
                                                  41
                                                             51
      CTTCCCACCA GCAAAGACCA CGACTGGAGA GCCGAGCCGG AGGCAGCTGG GAAACATGAA
      GAGCGTCTTG CTGCTGACCA CGCTCCTCGT GCCTGCACAC CTGGTGGCCG CCTGGAGCAA
                                                                          120
60
      TAATTATGCG GTGGACTGCC CTCAACACTG TGACAGCAGT GAGTGCAAAA GCAGCCCGCG
                                                                          180
      CTGCAAGAGG ACAGTGCTCG ACGACTGTGG CTGCTGCCGA GTGTGCGCTG CAGGGCGGGG
                                                                          240
      AGAAACTTGC TACCGCACAG TCTCAGGCAT GGATGGCATG AAGTGTGGCC CGGGGCTGAG
      GTGTCAGCCT TCTAATGGGG AGGATCCTTT TGGTGAAGAG TTTGGTATCT GCAAAGACTG
                                                                          360
      TCCCTACGGC ACCTTCGGGA TGGATTGCAG AGAGACCTGC AACTGCCAGT CAGGCATCTG
                                                                          420
65
      TGACAGGGG ACGGGAAAAT GCCTGAAATT CCCCTTCTTC CAATATTCAG TAACCAAGTC
                                                                          480
      TTCCAACAGA TTTGTTTCTC TCACGGAGCA TGACATGGCA TCTGGAGATG GCAATATTGT
      GAGAGAAGAA GTTGTGAAAG AGAATGCTGC CGGGTCTCCC GTAATGAGGA AATGGTTAAA
      TCCACGCTGA TCCCGGCTGT GATTTCTGAG AGAAGGCTCT ATTTTCGTGA TTGTTCAACA
                                                                          660
      CACAGCCAAC ATTTTAGGAA CTTTCTAGAT ATAGCATAAG TACATGTAAT TTTTGAAGAT
                                                                          720
70
      CCAAATTGTG ATGCATGGTG GATCCAGAAA ACAAAAAGTA GGATACTTAC AATCCATAAC
                                                                          780
      ATCCATATGA CTGAACACTT GTATGTGTTT GTTAAATATT CGAATGCATG TAGATTTGTT
      AAATGTGTGT GTATAGTAAC ACTGAAGAAC TAAAAATGCA ATTTAGGTAA TCTTACATGG
                                                                          900
      AGACAGGTCA ACCAAAGAGG GAGCTAGGCA AAGCTGAAGA CCGCAGTGAG TCAAATTAGT
                                                                          960
      TCTTTGACTT TGATGTACAT TAATGTTGGG ATATGGAATG AAGACTTAAG AGCAGGAGAA
                                                                         1020
75
      GATGGGGAGG GGGTGGGAGT GGGAAATAAA ATATTTAGCC CTTCCTTGGT AGGTAGCTTC
      TCTAGAATTT AATTGTGCTT TTTTTTTTT TTTGGCTTTG GGAAAAGTCA AAATAAAACA
```

```
ACCAGAAAAC CCCTGAAGGA AGTAAGATGT TTGAAGCTTA TGGAAATTTG AGTAACAAAC 1200
      AGCTTTGAAC TGAGAGCAAT TTCAAAAGGC TGCTGATGTA GTTCCCGGGT TACCTGTATC 1260
      TGAAGGACGG TTCTGGGGCA TAGGAAACAC ATACACTTCC ATAAATAGCT TTAACGTATG
      CCACCTCAGA GATAAATCTA AGAAGTATTT TACCCACTGG TGGTTTGTGT GTGTATGAAG
 5
      GTAAATATTT ATATATTTTT ATAAATAAAT GTGTTAGTGC AAGTCATCTT CCCTACCCAT 1440
      ATTTATCATC CTCTTGAGGA AAGAAATCTA GTATTATTTG TTGAAAATGG TTAGAATAAA
      AACCTATGAC TCTATAAGGT TTTCAAACAT CTGAGGCATG ATAAATTTAT TATCCATAAT 1560
      TATAGGAGTC ACTCTGGATT TCAAAAAATG TCAAAAAATG AGCAACAGAG GGACCTTATT 1620
      TAAACATAAG TGCTGTGACT TCGGTGAATT TTCAATTTAA GGTATGAAAA TAAGTTTTTA
10
      GGAGGTTTGT AAAAGAAGAA TCAATTTTCA GCAGAAAACA TGTCAACTTT AAAATATAGG 1740
      TGGAATTAGG AGTATATTTG AAAGAATCTT AGCACAAACA GGACTGTTGT ACTAGATGTT
                                                                         1800
      CTTAGGAAAT ATCTCAGAAG TATTTTATTT GAAGTGAAGA ACTTATTTAA GAATTATTTC 1860
      AGTATTTACC TGTATTTTAT TCTTGAAGTT GGCCAACAGA GTTGTGAATG TGTGTGGAAG 1920
      GCCTTTGAAT GTAAAGCTGC ATAAGCTGTT AGGTTTTGTT TTAAAAGGAC ATGTTTATTA 1980
15
      TTGTTCAATA AAAAAGAACA AGATAC
      Seq ID NO: 85 Protein sequence:
      Protein Accession #: NP_008967.1
20
                                                             51
                 11
                            21
                                       31
                                                  41
      MKSVLLLTTL LVPAHLVAAW SNNYAVDCPQ HCDSSECKSS PRCKRTVLDD CGCCRVCAAG
      RGETCYRTVS GMDGMKCGPG LRCQPSNGED PFGEEFGICK DCPYGTFGMD CRETCNCQSG
                                                                          120
25
      ICDRGTGKCL KFPFFOYSVT KSSNRFVSLT EHDMASGDGN IVREEVVKEN AAGSPVMRKW
      Seg ID NO: 86 Nucleotide sequence:
30
      Nucleic Acid Accession #: D86983
      Coding sequence: 52-4491 (underlined sequences correspond to start and stop codons)
35
      AGCCGGCCGT GGTGGCTCCG TGCGTCCGAG CGTCCGTCCG CGCCGTCGGC CATGGCCAAG
                                                                           60
      CGCTCCAGGG GCCCCGGGCG CCGCTGCCTG TTGGCGCTCG TGCTGTTCTG CGCCTGGGGG
                                                                          120
      ACGCTGGCCG TGGTGGCCCA GAAGCCGGGC GCAGGGTGTC CGAGCCGCTG CCTGTGCTTC
                                                                          180
      CGCACCACCG TGCGCTGCAT GCATCTGCTG CTGGAGGCCG TGCCCGCCGT GGCGCCGCAG
                                                                          240
      ACCTCCATCC TAGATCTTCG CTTTAACAGA ATCAGAGAGA TCCAACCTGG GGCATTCAGG
                                                                          300
40
      CGGCTGAGGA ACTTGAACAC ATTGCTTCTC AATAATAATC AGATCAAGAG GATACCTAGT
                                                                          360
      GGAGCATTTG AAGACTTGGA AAATTTAAAA TATCTCTATC TGTACAAGAA TGAGATCCAG
      TCAATTGACA GGCAAGCATT TAAGGGACTT GCCTCTCTAG AGCAACTATA CCTGCACTTT
                                                                          480
      AATCAGATAG AAACTTTGGA CCCAGATTCG TTCCAGCATC TCCCGAAGCT CGAGAGGCTA
                                                                          540
      TTTTTGCATA ACAACCGGAT TACACATTTA GTTCCAGGGA CATTTAATCA CTTGGAATCT
                                                                          600
45
      ATGAAGAGT TGCGACTGGA CTCAAACACA CTTCACTGCG ACTGTGAAAT CCTGTGGTTG
                                                                          660
      GCGGATTTGC TGAAAACCTA CGCGGAGTCG GGGAACGCGC AGGCAGCGGC CATCTGTGAA
      TATCCCAGAC GCATCCAGGG ACGCTCAGTG GCAACCATCA CCCCGGAAGA GCTGAACTGT
                                                                          780
      GAAAGGCCCC GGATCACCTC CGAGCCCCAG GACGCAGATG TGACCTCGGG GAACACCGTG
                                                                          840
      TACTTCACCT GCAGAGCCGA AGGCAACCCC AAGCCTGAGA TCATCTGGCT GCGAAACAAT
                                                                          900
50
      AATGAGCTGA GCATGAAGAC AGATTCCCGC CTAAACTTGC TGGACGATGG GACCCTGATG
                                                                          960
      ATCCAGAACA CACAGGAGAC AGACCAGGGT ATCTACCAGT GCATGGCAAA GAACGTGGCC
      GGAGAGGTGA AGACGCAAGA GGTGACCCTC AGGTACTTCG GGTCTCCAGC TCGACCCACT
                                                                         1080
      TTTGTAATCC AGCCACAGAA TACAGAGGTG CTGGTTGGGG AGAGCGTCAC GCTGGAGTGC
                                                                         1140
      AGCGCCACAG GCCACCCCC GCCGCGGATC TCCTGGACGA GAGGTGACCG CACACCCTTG 1200
55
      CCAGTTGACC CGCGGGTGAA CATCACGCCT TCTGGCGGGC TTTACATACA GAACGTCGTA
                                                                         1260
      CAGGGGGACA GCGGAGAGTA TGCGTGCTCT GCGACCAACA ACATTGACAG CGTCCATGCC
                                                                         1320
      ACCGCTTTCA TCATCGTCCA GGCTCTTCCT CAGTTCACTG TGACGCCTCA GGACAGAGTC
                                                                         1380
      GTTATTGAGG GCCAGACCGT GGATTTCCAG TGTGAAGCCA AGGGCAACCC GCCGCCCGTC
                                                                         1440
      ATCGCCTGGA CCAAGGGAGG GAGCCAGCTC TCCGTGGACC GGCGGCACCT GGTCCTGTCA
60
      TCGGGAACAC TTAGAATCTC TGGTGTTGCC CTCCACGACC AGGGCCAGTA CGAATGCCAG
                                                                         1560
      GCTGTCAACA TCATCGGCTC CCAGAAGGTC GTGGCCCACC TGACTGTGCA GCCCAGAGTC
                                                                         1620
      ACCCCAGTGT TTGCCAGCAT TCCCAGCGAC ACAACAGTGG AGGTGGGCGC CAATGTGCAG
      CTCCCGTGCA GCTCCCAGGG CGAGCCCGAG CCAGCCATCA CCTGGAACAA GGATGGGGTT
      CAGGTGACAG AAAGTGGAAA ATTTCACATC AGCCCTGAAG GATTCTTGAC CATCAATGAC
                                                                         1800
65
      GTTGGCCCTG CAGACGCAGG TCGCTATGAG TGTGTGGCCC GGAACACCAT TGGGTCGGCC
                                                                         1860
      TCGGTGAGCA TGGTGCTCAG TGTGAACGTT CCTGACGTCA GTCGAAATGG AGATCCGTTT
                                                                         1920
      GTAGCTACCT CCATCGTGGA AGCGATTGCG ACTGTTGACA GAGCTATAAA CTCAACCCGA
      ACACATTTGT TTGACAGCCG TCCTCGTTCT CCAAATGATT TGCTGGCCTT GTTCCGGTAT
                                                                         2040
      CCGAGGGATC CTTACACAGT TGAACAGGCA CGGGCGGGAG AAATCTTTGA ACGGACATTG
                                                                         2100
70
      CAGCTCATTC AGGAGCATGT ACAGCATGGC TTGATGGTCG ACCTCAACGG AACAAGTTAC
                                                                         2160
      CACTACAACG ACCTGGTGTC TCCACAGTAC CTGAACCTCA TCGCAAACCT GTCGGGCTGT
                                                                         2220
      ACCGCCCACC GGCGCGTGAA CAACTGCTCG GACATGTGCT TCCACCAGAA GTACCGGACG
      CACGACGGCA CCTGTAACAA CCTGCAGCAC CCCATGTGGG GCGCCTCGCT GACCGCCTTC
                                                                         2340
      GAGCGCCTGC TGAAATCCGT GTACGAGAAT GGCTTCAACA CCCCTCGGGG CATCAACCCC
                                                                         2400
75
      CACCGACTGT ACAACGGGCA CGCCCTTCCC ATGCCGCGCC TGGTGTCCAC CACCCTGATC
                                                                         2460
      GGGACGGAGA CCGTCACACC CGACGAGCAG TTCACCCACA TGCTGATGCA GTGGGGCCAG
```

```
TTCCTGGACC ACGACCTCGA CTCCACGGTG GTGGCCCTGA GCCAGGCACG CTTCTCCGAC
      GGACAGCACT GCAGCAACGT GTGCAGCAAC GACCCCCCCT GCTTCTCTGT CATGATCCCC
      CCCAATGACT CCCGGGCCAG GAGCGGGGCC CGCTGCATGT TCTTCGTGCG CTCCAGCCCT
      GTGTGCGGCA GCGGCATGAC TTCGCTGCTC ATGAACTCCG TGTACCCGCG GGAGCAGATC
 5
      AACCAGCTCA CCTCCTACAT CGACGCATCC AACGTGTACG GGAGCACGGA GCATGAGGCC
                                                                          2820
      CGCAGCATCC GCGACCTGGC CAGCCACCGC GGCCTGCTGC GGCAGGGCAT CGTGCAGCGG
                                                                          2880
      TCCGGGAAGC CGCTGCTCCC CTTCGCCACC GGGCCGCCCA CGGAGTGCAT GCGGGACGAG
      AACGAGAGCC CCATCCCCTG CTTCCTGGCC GGGGACCACC GCGCCAACGA GCAGCTGGGC
      CTGACCAGCA TGCACACGCT GTGGTTCCGC GAGCACAACC GCATTGCCAC GGAGCTGCTC
10
      AAGCTGAACC CGCACTGGGA CGGCGACACC ATCTACTATG AGACCAGGAA GATCGTGGGT
                                                                          3120
      GCGGAGATCC AGCACATCAC CTACCAGCAC TGGCTCCCGA AGATCCTGGG GGAGGTGGGC
                                                                          3180
      ATGAGGACGC TGGGAGAGTA CCACGGCTAC GACCCCGGCA TCAATGCTGG CATCTTCAAC
      GCCTTCGCCA CCGCGGCCTT CAGGTTTGGC CACACGCTTG TCAACCCACT GCTTTACCGG
                                                                          3300
      CTGGACGAGA ACTTCCAGCC CATTGCACAA GATCACCTCC CCCTTCACAA AGCTTTCTTC
15
      TCTCCCTTCC GGATTGTGAA TGAGGGCGGC ATCGATCCGC TTCTCAGGGG GCTGTTCGGG
      GTGGCGGGA AAATGCGTGT GCCCTCGCAG CTGCTGAACA CGGAGCTCAC GGAGCGGCTG
      TTCTCCATGG CACACACGGT GGCTCTGGAC CTGGCGGCCCA TCAACATCCA GCGGGGCCGG
      GACCACGGGA TCCCACCCTA CCACGACTAC AGGGTCTACT GCAATCTATC GGCGGCACAC
                                                                          3600
      ACGTTCGAGG ACCTGAAAAA TGAGATTAAA AACCCTGAGA TCCGGGAGAA ACTGAAAAGG
      TTGTATGGCT CGACACTCAA CATCGACCTG TTTCCGGCGC TCGTGGTGGA GGACCTGGTG
20
      CCTGGCAGCC GGCTGGGCCC CACCCTGATC TGTCTTCTCA GCACACAGTT CAAGCGCCTG
CGAGATGGG ACAGGTTGTG GTATGAGAAC CCTGGGGTGT TCTCCCCGGC CCAGCTGACT
                                                                          3840
      CAGATCAAGC AGACGTCGCT GGCCAGGATC CTATGCGACA ACGCGGACAA CATCACCCGG
                                                                          3900
      GTGCAGAGCG ACGTGTTCAG GGTGGCGGAG TTCCCTCACG GCTACGGCAG CTGTGACGAG
25
      ATCCCCAGGG TGGACCTCCG GGTGTGGCAG GACTGCTGTG AAGACTGTAG GACCAGGGGG
      CAGTTCAATG CCTTTTCCTA TCATTTCCGA GGCAGACGGT CTCTTGAGTT CAGCTACCAG
                                                                          4080
      GAGGACAAGC CGACCAAGAA AACAAGACCA CGGAAAATAC CCAGTGTTGG GAGACAGGGG
                                                                          4140
      GAACATCTCA GCAACAGCAC CTCAGCCTTC AGCACACGCT CAGATGCATC TGGGACAAAT 4200
      GACTTCAGAG AGTTTGTTCT GGAAATGCAG AAGACCATCA CAGACCTCAG AACACAGATA
30
      AAGAAACTTG AATCACGGCT CAGTACCACA GAGTGCGTGG ATGCCGGGGG CGAATCTCAC
                                                                          4320
      GCCAACAACA CCAAGTGGAA AAAAGATGCA TGCACCATTT GTGAATGCAA AGACGGGCAG
      GTCACCTGCT TCGTGGAAGC TTGCCCCCCT GCCACCTGTG CTGTCCCCGT GAACATCCCA
                                                                          4440
      GGGGCCTGCT GTCCAGTCTG CTTACAGAAG AGGGCGGAGG AAAAGCCC<u>TA G</u>GCTCCTGGG
      AGGCTCCTCA GAGTTTGTCT GCTGTGCCAT CGTGAGATCG GGTGGCCGAT GGCAGGGAGC
                                                                          4560
35
      TGCGGACTGC AGACCAGGAA ACACCCAGAA CTCGTGACAT TTCATGACAA CGTCCAGCTG
      GTGCTGTTAC AGAAGGCAGT GCAGGAGGCT TCCAACCAGA GCATCTGCGG AGAAGGAGGC 4680
      ACAGCAGGTG CCTGAAGGGA AGCAGGCAGG AGTCCTAGCT TCACGTTAGA CTTCTCAGGT
      TTTTATTTAA TTCTTTTAAA ATGAAAAATT GGTGCTACTA TTAAATTGCA CAGTTGAATC
      ATTTAGGCGC CTAAATTGGT TTTGCCTCCC AACACCATTT CTTTTTAAAT AAAGCAGGAT
                                                                          4860
      ACCTCTATAT GTCAGCCTTG CCTTGTTCAG ATGCCAGGAG CCGGCAGACC TGTCACCCGC
40
                                                                          4920
      AGGTGGGGTG AGTCTCGGAG CTGCCAGAGG GGCTCACCGA AATCGGGGTT CCATCACAAG 4980
      CTATGTTTAA AAAGAAAATT GGTGTTTGGC AAACGGAACA GAACCTTTGA TGAGAGCGTT
      CACAGGGACA CTGTCTGGGG GTGCAGTGCA AGCCCCCGGC CTCTTCCCTG GGAACCTCTG 5100
      AACTCCTCCT TCCTCTGGGC TCTCTGTAAC ATTTCACCAC ACGTCAGCAT CTAATCCCAA
                                                                          5160
45
      GACAAACATT CCCGCTGCTC GAAGCAGCTG TATAGCCTGT GACTCTCCGT GTGTCAGCTC
                                                                          5220
      CTTCCACACC TGATTAGAAC ATTCATAAGC CACATTTAGA AACAGATTTG CTTTCAGCTG
      TCACTTGCAC ACATACTGCC TAGTTGTGAA CCAAATGTGA AAAAACCTCC TTCATCCCAT
                                                                          5340
      TGTGTATCTG ATACCTGCCG AGGGCCAAGG GTGTGTTG ACAACGCCGC TCCCAGCCGG
                                                                          5400
      CCCTGGTTGC GTCCACGTCC TGAACAAGAG CCGCTTCCGG ATGGCTCTTC CCAAGGGAGG 5460
50
      AGGAGCTCAA GTGTCGGGAA CTGTCTAACT TCAGGTTGTG TGAGTGCGTT
      Seq ID NO: 87 Protein sequence:
      Protein Accession #: BAA13219
                            21
                 11
55
      SRPWWLRASE RPSAPSAMAK RSRGPGRRCL LALVLFCAWG TLAVVAQKPG AGCPSRCLCF
                                                                            60
      RTTVRCMHLL LEAVPAVAPQ TSILDLRFNR IREIQPGAFR RLRNLNTLLL NNNQIKRIPS
                                                                           120
      GAFEDLENLK YLYLYKNEIQ SIDRQAFKGL ASLEQLYLHF NQIETLDPDS FQHLPKLERL
                                                                           180
      FLHNNRITHL VPGTFNHLES MKRLRLDSNT LHCDCEILWL ADLLKTYAES GNAQAAAICE
60
      YPRRIQGRSV ATITPEELNC ERPRITSEPQ DADVTSGNTV YFTCRAEGNP KPEIIWLRNN
      NELSMKTDSR LNLLDDGTLM IQNTQETDQG IYQCMAKNVA GEVKTQEVTL RYFGSPARPT
                                                                           360
      FVIQPONTEV LVGESVTLEC SATCHPPPRI SWTRGDRTPL PVDPRVNITP SGGLYIONVV
                                                                           420
      OGDSGEYACS ATMNIDSVHA TAFIIVOALP OFTVTPODRV VIEGOTVDFQ CEAKGNPPPV
                                                                           480
      IAWTKGGSQL SVDRRHLVLS SGTLRISGVA LHDQGQYECQ AVNIIGSQKV VAHLTVQPRV
                                                                           540
65
      TPVFASIPSD TTVEVGANVQ LPCSSQGEPE PAITWNKDGV QVTESGKFHI SPEGFLTIND
                                                                           600
      VGPADAGRYE CVARNTIGSA SVSMVLSVNV PDVSRNGDPF VATSIVEAIA TVDRAINSTR
                                                                           660
      THLFDSRPRS PNDLLALFRY PRDPYTVEQA RAGEIFERTL QLIQEHVQHG LMVDLNGTSY
                                                                           720
      HYNDLVSPOY LNLIANLSGC TAHRRVNNCS DMCFHQKYRT HDGTCNNLQH PMWGASLTAF
                                                                           780
      ERLLKSVYEN GFNTPRGINP HRLYNGHALP MPRLVSTTLI GTETVTPDEQ FTHMLMQWGQ
70
      FLDHDLDSTV VALSQARFSD GQHCSNVCSN DPPCFSVMIP PNDSRARSGA RCMFFVRSSP
                                                                           900
      VCGSGMTSLL MNSVYPREQI NQLTSYIDAS NVYGSTEHEA RSIRDLASHR GLLRQGIVQR
                                                                           960
      SGKPLLPFAT GPPTECMRDE NESPIPCFLA GDHRANEQLG LTSMHTLWFR EHNRIATELL
      KLNPHWDGDT IYYETRKIVG AEIQHITYQH WLPKILGEVG MRTLGEYHGY DPGINAGIFN
                                                                          1080
      AFATAAFRFG HTLVNPLLYR LDENFQPIAQ DHLPLHKAFF SPFRIVNEGG IDPLLRGLFG
                                                                          1140
75
      VAGKMRVPSQ LLNTELTERL FSMAHTVALD LAAINIQRGR DHGIPPYHDY RVYCNLSAAH
                                                                          1200
      TFEDLKNEIK NPEIREKLKR LYGSTLNIDL FPALVVEDLV PGSRLGPTLM CLLSTQFKRL
```

RDGDRLWYEN PGVFSPAQLT QIKQTSLARI LCDNADNITR VQSDVFRVAE FPHGYGSCDE 1320 IPRVDLRVWQ DCCEDCRTRG QFNAFSYHFR GRRSLEFSYQ EDKPTKKTRP RKIPSVGRQG 1380 EHLSNSTSAF STRSDASGTN DFREFVLEMQ KTITDLRTQI KKLESRLSTT ECVDAGGESH 1440 ANNTKWKKDA CTICECKDGQ VTCFVEACPP ATCAVPVNIP GACCPVCLQK RAEEKP

5

Seq ID NO: 88 <u>DNA sequence</u>
Nucleic Acid Accession #: NM_004834.1
Coding sequence: 80-3577 (underlined sequences correspond to start and stop codons)

10

10			,					•
	1	11	21	31	41	51		
	A ATTCCACCA	macacama ac	 	CCCACAGAGA	 	 TATTTGTTTT	60	
15						TGGACATCGA		
10						TTGGAAATGG		
						CAGCCATCAA		
	AGTTATGGAT	GTCACTGAGG	ATGAAGAGGA	AGAAATCAAA	${\tt CTGGAGATAA}$	ATATGCTAAA	300	
20						AAAAGAGCCC		
20						GGTCCATTAC		
						CTTACATCTC ACCGGGATAT		
						ACTTTGGTGT		
						CTCCCTACTG		
25						ATTACAGAAG		
						CCCCTCTCTG		
						CCCGGCTGAA		
						TGAAGAATTA		
30						ATCAGCCAAA AGAAGAGAGG		
50						AGGAAGTGCC		
						CTCTTCGCCG		
	AGATTTCCTG	AGACTGCAGC	AGGAGAACAA	GGAACGTTCC	GAGGCTCTTC	GGAGACAACA	1200	
25						TGCTGGCAGA		
35						AGCAACAAAG		
						AACAAGAAGA GGAGACGGGC		
				· ·		AGCTAGAAGA		
						CCATGTTACT		
40						CGCAGCAGGA		
						CTGCTGACCG		
						GTCGAGATTC		
						CCACCAGTAT		
45						GCAGTGGCAG CTCAGAGTGG		
73						CATCTCAGCG		
						CCCTCAAGCC		
						AAGATGTACG		
~ 0						CGACGGATGA		
50						CAGAGGACAC		
						AAACCATGAT		-
						GCACTCTAAT CCTCCTCCTT		
						CAACAGTGAC		
55						AAGATCCTAC		
						GTGACACCCC		
*						CCTTATGGGG		
						GTGGCCAAGG		
60						TTGAGGGCTT ATTTGTCCTG		
00						GATGGACAAC		
						GAATCAAATT		
						AGCCATATCA		
	CAAATTTATG	GCCTTTAAGT	${\tt CATTTGGAGA}$	ATTGGTACAT	${\tt AAGCCATTAC}$	TGGTGGATCT	3060	
65						GATTCCATGC		
						TAAGAAAGAA		
				ACCCCATGCA AGATGAGGGG		ACACATATGG	3240 3300	
				GGGAGAGATG			3360	
70				GAAGGCCATA			3420	
•	TGGTCACTTG	GATGGTGTGT	TCATGCACAA	AAGGGCTCAA	AGACTAAAAT	TCTTGTGTGA	3480	
				TCGGTCTGGT			3540	
						CAGGGATTAC		
75				CTTGGAATTC		GAGCTCGGAG	3660	
15						TCTTACTCCA		
	CICCIICCIG	TTCCTCTIME					3,30	

AAATAAATCA AGGCTGCAAT GCAGCTGGTG CTGTTCAGAT TCCAAAAAAA AAAAAAAACC 3840 ATGGTACCCG GATCCTCGAA TTCC

```
5
      Seq ID No: 89 Protein sequence:
      Protein Accession #: NP 004825.1
                 11
                            21
                                       31
                                                  41
                                                              51
10
      MANDSPAKSL VDIDLSSLRD PAGIFELVEV VGNGTYGQVY KGRHVKTGQL AAIKVMDVTE
                                                                            60
      DEEEEIKLEI NMLKKYSHHR NIATYYGAFI KKSPPGHDDQ LWLVMEFCGA GSITDLVKNT
                                                                          120
      KGNTLKEDWI AYISREILRG LAHLHIHHVI HRDIKGQNVL LTENAEVKLV DFGVSAQLDR
                                                                          180
      TVGRRNTFIG TPYWMAPEVI ACDENPDATY DYRSDLWSCG ITAIEMAEGA PPLCDMHPMR
                                                                           240
15
      ALFLIPRNPP PRLKSKKWSK KFFSFIEGCL VKNYMQRPST EQLLKHPFIR DQPNERQVRI
      QLKDHIDRTR KKRGEKDETE YEYSGSEEEE EEVPEQEGEP SSIVNVPGES TLRRDFLRLQ
                                                                           360
      QENKERSEAL RRQQLLQEQQ LREQEEYKRQ LLAERQKRIE QQKEQRRRLE EQQRREREAR
                                                                           420
      RQQEREQRRR EQEEKRRLEE LERRRKEEEE RRRAEEEKRR VEREQEYIRR QLEEEQRHLE
                                                                           480
      VLQQQLLQEQ AMLLHDHRRP HPQHSQQPPP PQQERSKPSF HAPEPKAHYE PADRAREVPV
20
      RTTSRSPVLS RRDSPLQGSG QQNSQAGQRN STSIEPRLLW ERVEKLVPRP GSGSSSGSSN
      SGSQPGSHPG SQSGSGERFR VRSSSKSEGS PSQRLENAVK KPEDKKEVFR PLKPAGEVDL
                                                                           660
      TALAKELRAV EDVRPPHKVT DYSSSSEESG TTDEEDDDVE QEGADESTSG PEDTRAASSL
                                                                           720
      NLSNGETESV KTMIVHDDVE SEPAMTPSKE GTLIVRQTQS ASSTLQKHKS SSSFTPFIDP
                                                                           780
      RLLQISPSSG TTVTSVVGFS CDGMRPEAIR QDPTRKGSVV NVNPTNTRPQ SDTPEIRKYK
25
      KRFNSEILCA ALWGVNLLVG TESGLMLLDR SGOGKVYPLI NRRRFOOMDV LEGLNVLVTI
                                                                           900
      SGKKDKLRVY YLSWLRNKIL HNDPEVEKKQ GWTTVGDLEG CVHYKVVKYE RIKFLVIALK
                                                                          960
      SSVEVYAWAP KPYHKFMAFK SFGELVHKPL LVDLTVEEGQ RLKVIYGSCA GFHAVDVDSG
                                                                          1020
      SVYDIYLPTH VRKNPHSMIQ CSIKPHAIII LPNTDGMELL VCYEDEGVYV NTYGRITKDV
      VLOWGEMPTS VAYIRSNOTM GWGEKAIEIR SVETGHLDGV FMHKRAORLK FLCERNDKVF
30
      FASVRSGGSS QVYFMTLGRT SLLSW
      Seq ID NO: 90 DNA sequence
      Nucleic Acid Accession #: none found
35
      Coding sequence: 2-71 (underlined sequences correspond to start and stop codons)
                 11
                            21
                                       31
                                                  41
                                                              51
40
      TTACACTICA ATTCCTTACA CGGTATTICA AACAAACAGI TITGCTGAGA GGAGCITITG
                                                                           60
      TCTCTCCTTA AGAAAATGTT TATAAAGCTG AAAGGAAATC AAACAGTAAT CTTAAAAATG
      AAAACAAAAC AACCCAACAA CCTAGATAAC TACAGTGATC AGGGAGCACA GTTCAACTCC
                                                                          180
      TTGTTATGTT TTAGTCATAT GGCCTACTCA AACAGCTAAA TAACAACACC AGTGGCAGAT
                                                                          240
      AAAAATCACC ATTTATCTTT CAGCTATTAA TCTTTTGAAT GAATAAACTG TGACAAACAA
                                                                          300
45
      ATTAACATTT TTGAACATGA AAGGCAACTT CTGCACAATC CTGTATCCAA GCAAACTTTA
      AATTATCCAC TTAATTATTA CTTAATCTTA AAAAAAATTA GAACCCAGAA CTTTTCAATG
                                                                           420
      AAGCATTTGA AAGTTGAAGT GGAATTTAGG AAAGCCATAA AAATATAAAT ACTGTTATCA
                                                                          480
      CAGCACCAGC AAGCCATAAT CTTTATACCT ATCAGTTCTA TTTCTATTAA CAGTAAAAAC
                                                                          540
      ATTAAGCAAG ATATAAGACT ACCTGCCCAA GAATTCAGTC TTTTTTCATT TTTGTTTTTC
                                                                           600
50
      TCAGTTCTGA GGATGTTAAT CGTCAAATTT TCTTTGGACT GCATTCCTCA CTACTTTTTG
      CACAATGGTC TCACGTTCTC ACATTTGTTC TCGCGAATAA ATTGATAAAA GGTGTTAAGT
                                                                           720
      TCTGTGAATG TCTTTTTAAT TATGGGCATA ATTGTGCTTG ACTGGATAAA AACTTAAGTC
                                                                           780
      CACCCTTATG TTTATAATAA TTTCTTGAGA ACAGCAAACT GCATTTACCA TCGTAAAACA
                                                                          840
      ACATCTGACT TACGGGAGCT GCAGGGAAGT GGTGAGACAG TTCGAACGGC TCCTCAGAAA
                                                                          900
55
      TCCAGTGACC CAATTCTAAA GACCATAGCA CCTGCAAGTG ACACAACAAG CAGATTTATT
                                                                          960
      ATACATTTAT TAGCCTTAGC AGGCAATAAA CCAAGAATCA CTTTGAAGAC ACAGCAAAAA
                                                                          1020
      GTGATACACT CCGCAGATCT GAAATAGATG TGTTCTCAGA CAACAAAGTC CCTTCAGAAT
      CTTCATGTTG CATAAATGTT ATGAATATTA ATAAAAAGTT GATTGAGA
60
      Seq ID No: 91 Protein sequence:
      Protein Accession #: none found
                                       31
                            21
                                                  41
                                                              51
65
      YTSIPYTVFQ TNSFAERSFC LSL
      Seq ID NO: 92 DNA sequence
70
      Nucleic Acid Accession #: NM_003706.1
      Coding sequence: 310-1935 (underlined sequences correspond to start and stop codons)
                 11
                            21
                                       31
                                                  41
                                                              51
75
      CACGAGGCAG GGGCCATTTT ACCTCCAGGT TGGCCCTGCT CAGGACCAGG AGGAAACACC
```

```
TCCAGCCCGC GACCTCCTCC CACAGGGGGA AAAGGAAAGC AGGAGGACCA CAGAAGCTTT
      GGCACCGAGG ATCCCCGCAG TCTTCACCCG CGGAGATTCC GGCTGAAGGA GCTGTCCAGC
      GACTACACCG CTAAGCGCAG GGAGCCCAAG CCTCCGCACC GGATTCCGGA GCACAAGCTC
                                                                          240
      CACCGCGCAT GCGCACACGC CCCAGACCCA GGCTCAGGAG GACTGAGAAT TTTCTGACCG
                                                                          300
 5
      CAGTGCACCA TGGGAAGCTC TGAAGTTTCC ATAATTCCTG GGCTCCAGAA AGAAGAAAAG
                                                                          360
      GCGGCCGTGG AGAGACGAAG ACTTCATGTG CTGAAAGCTC TGAAGAAGCT AAGGATTGAG
      GCTGATGAGG CCCCAGTTGT TGCTGTGCTG GGCTCAGGCG GAGGACTGCG GGCTCACATT
      GCCTGCCTTG GGGTCCTGAG TGAGATGAAA GAACAGGGCC TGTTGGATGC CGTCACGTAC
                                                                          540
      CTCGCAGGGG TCTCTGGATC CACTTGGGCA ATATCTTCTC TCTACACCAA TGATGGTGAC
                                                                          600
10
      ATGGAAGCTC TCGAGGCTGA CCTGAAACAT CGATTTACCC GACAGGAGTG GGACTTGGCT
      AAGAGCCTAC AGAAAACCAT CCAAGCAGCG AGGTCTGAGA ATTACTCTCT GACCGACTTC
                                                                          720
      TGGGCCTACA TGGTTATCTC TAAGCAAACC AGAGAACTGC CGGAGTCTCA TTTGTCCAAT
                                                                          780
      ATGAAGAAGC CCGTGGAAGA AGGGACACTA CCCTACCCAA TATTTGCAGC CATTGACAAT
                                                                          840
      GACCTGCAAC CTTCCTGGCA GGAGGCAAGA GCACCAGAGA CCTGGTTCGA GTTCACCCCT
                                                                          900
15
      CACCACGCTG GCTTCTCTGC ACTGGGGGCC TTTGTTTCCA TAACCCACTT CGGAAGCAAA
      TTCAAGAAGG GAAGACTGGT CAGAACTCAC CCTGAGAGAG ACCTGACTTT CCTGAGAGGT
                                                                         1020
      TTATGGGGAA GTGCTCTTGG TAACACTGAA GTCATTAGGG AATACATTTT TGACCAGTTA 1080
      AGGAATCTGA CCCTGAAAGG TTTATGGAGA AGGGCTGTTG CTAATGCTAA AAGCATTGGA 1140
      CACCTTATTT TTGCCCGATT ACTGAGGCTG CAAGAAAGTT CACAAGGGGA ACATCCTCCC
      CCAGAAGATG AAGGCGGTGA GCCTGAACAC ACCTGGCTGA CTGAGATGCT CGAGAATTGG 1260
20
      ACCAGGACCT CCCTGGAAAA GCAGGAGCAG CCCCATGAGG ACCCCGAAAG GAAAGGCTCA 1320
      CTCAGTAACT TGATGGATTT TGTGAAGAAA ACAGGCATTT GCGCTTCAAA GTGGGAATGG 1380
      GGGACCACTC ACAACTTCCT GTACAAACAC GGTGGCATCC GGGACAAGAT AATGAGCAGC 1440
      CGGAAGCACC TCCACCTGGT GGATGCTGGT TTAGCCATCA ACACTCCCTT CCCACTCGTG 1500
      CTGCCCCGA CGCGGGAGGT TCACCTCATC CTCTCCTTCG ACTTCAGTGC CGGAGATCCT 1560
25
      TTCGAGACCA TCCGGGCTAC CACTGACTAC TGCCGCCGCC ACAAGATCCC CTTTCCCCAA 1620
      GTAGAAGAGG CTGAGCTGGA TTTGTGGTCC AAGGCCCCCG CCAGCTGCTA CATCCTGAAA
      GGAGAAACTG GACCAGTGGT GATACATTTT CCCCTGTTCA ACATAGATGC CTGTGGAGGT 1740
      GATATTGAGG CATGGAGTGA CACATACGAC ACATTCAAGC TTGCTGACAC CTACACTCTA
30
      GATGTGGTGG TGCTACTCTT GGCATTAGCC AAGAAGAATG TCAGGGAAAA CAAGAAGAAG 1860
      ATCCTTAGAG AGTTGATGAA CGTGGCCGGG CTCTACTACC CGAAGGATAG TGCCCGAAGT 1920
      TGCTGCTTGG CATAGATGAG CCTCAGCTTC CAGGGCACTG TGGGCCTGTT GGTCTACTAG
      GGCCCTGAAG TCCACCTGGC CTTCCTGTTC TTCACTCCCT TCAGCCACAC GCTTCATGGC 2040
      CTTGAGTTCA CCTTGGCTGT CCTAACAGGG CCAATCACCA GTGACCAGCT AGACTGTGAT 2100
      TTTGATAGCG TCATTCAGAA GAAGGTGTCC AAGGAGCTGA AGGTGGTGAA ATTTGTCCTG 2160
35
      CAGGTCCCTC GGGAGATCCT GGAGCTGGAG CATGAGTGTC TGACAATCAG AAGCATCATG 2220
      TCCAATGTCC AGATGGCCAG AATGAATGTG ATAGTTCAGA CCAATGCCTT CCACTGCTCC
                                                                         2280
      TTTATGACTG CACTTCTAGC CAGTAGCTCT GCACAAGTTA GCTCTGTAGA AGTAAGAACT
                                                                         2340
      TGGGCTTAAA TCATGGGCTA TCTCTCCACA GCCAAGTGGA GCTCTGAGAA TACAACAAGT 2400
40
      GCTCAATAAA TGCTTGCTGA TTGACTGATG AAAAAAAAA AAAAAAAAA AAAAAAAAA
                                                                         2460
      ΑΑΑΑ ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ
      Seq ID No: 93 <u>Protein sequence:</u>
Protein Accession #: NP_003697.1
45
                 11
                            21
                                       31
                                                  41
                                                             51
50
      MGSSEVSIIP GLOKEEKAAV ERRRLHVLKA ĹKKLRIEADE APVVAVLGSG GGLRAHIACL
      GVLSEMKEQG LLDAVTYLAG VSGSTWAISS LYTNDGDMEA LEADLKHRFT RQEWDLAKSL
      QKTIQAARSE NYSLTDFWAY MVISKQTREL PESHLSNMKK PVEEGTLPYP IFAAIDNDLQ
                                                                          180
      PSWQEARAPE TWFEFTPHHA GFSALGAFVS ITHFGSKFKK GRLVRTHPER DLTFLRGLWG
                                                                          240
      SALGNTEVIR EYIFDOLRNL TLKGLWRRAV ANAKSIGHLI FARLLRLQES SQGEHPPPED
55
      EGGEPEHTWL TEMLENWTRT SLEKQEQPHE DPERKGSLSN LMDFVKKTGI CASKWEWGTT
                                                                          360
      HNFLYKHGGI RDKIMSSRKH LHLVDAGLAI NTPFPLVLPP TREVHLILSF DFSAGDPFET
                                                                          420
      IRATTDYCRR HKIPFPQVEE AELDLWSKAP ASCYILKGET GPVVIHFPLF NIDACGGDIE
                                                                          480
      AWSDTYDTFK LADTYTLDVV VLLLALAKKN VRENKKKILR ELMNVAGLYY PKDSARSCCL
                                                                         540
60
      Seq ID NO: 94 DNA sequence
      Nucleic Acid Accession #: AK027351
      Coding sequence: 1-642 (underlined sequences correspond to start and stop codons)
65
                                       31
                                                   41
      AGGGAAAAA ACTCCATTAA AAAGCCCAGC TTTCCTCCAT GTTAGATGTG ACTTGGAAAA
                                                                           60
      TGAGAAAGAT TTAGCAAAAT TCCACCGTAT CTTTTGCCAG GCTAGAGACA GGGAGAGCAG
                                                                          120
70
      AGTAAAACCC TCAGGCTGCT GAAATTTCTA GGCTGTTAGG AAGCCCCTCG AATTCTGTGA
                                                                          180
      AAATGAGGGT TTCTTAACTC ACACTGAGAG CGGAAAGGGG CAGACCCTTT TCATAACTCC
                                                                           240
      CTCAAGTGTG TGTTACCTTT CTTTACCAGC ATGGTAAGCA ACAGGACATA TCCCAGCCTC
      GGACATGTCT GTATGATCCA AGGTACCCAA AGTCAGACAG AGTAAACTCA AGCCTGGCAC
                                                                          360
      TGGCTTTCTG CCGCTTCATG TGCTTTGGAA AAAGCAGGAG AAGCAATAGC AGCAGGAGTC
                                                                          420
75
      CCCAGCAGCT GGAGCCGCAA GAATGAACTG CAAAGAGGGA ACTGACAGCA GCTGCGGCTG
                                                                           480
      CAGGGGCAAC GACGAGAAGA AGATGTTGAA GTGTGTGGTG GTGGGGGACG GTGCCGTGGG
```

```
GAAAACCTGC CTGCTGATGA GCTACGCCAA CGACGCCTTC CCAGAGGAAT ACGTGCCCAC
      TGTGTTTGAC CACTATGCAG TTACTGTGAC TGTGGGAGGC AAGCAACACT TGCTCGGACT
      GTATGACACC GCGGGACAGG AGGACTACAA CCAGCTGAGG CCACTCTCCT ACCCCAACAC
                                                                          720
      GGATGTGTTT TTGATCTGCT TCTCTGTCGT AAACCCTGCC TCTTACCACA ATGTCCAGGA
                                                                          780
      GGAATGGGTC CCCGAGCTCA AGGACTGCAT GCCTCACGTG CCTTATGTCC TCATAGGGAC
      CCAGATTGAT CTCCGTGATG ACCCAAAAAC CTTGGCCCGT TTGCTGTATA TGAAAGAGAA
      ACCTCTCACT TACGAGCATG GTGTGAAGCT CGCAAAAGCG ATCGGAGCAC AGTGCTACTT
                                                                          960
      GGAATGTTCA GCTCTGACTC AGAAAGGTCT CAAAGCGGTT TTTGATGAAG CAATCCTCAC
                                                                         1020
      CATTTTCCAC CCCAAGAAAA AGAAGAAACG CTGTTCTGAG GGTCACAGCT GCTGTTCAAT
                                                                         1080
10
      TATCTGAGGT TGTCTGGGAC CTGCCTCCAC CCCATCCAGG GATGAGAATG GCAGCCAATC
      TCTGTGGCCA AGCTCCAGCC AAAAAGGAGG GCACGACCAG AAAGGAACTC CCTTTGCACG
                                                                         1200
      GAGGCTTGCC CCATCACCCT CTGAGCCCTC CCAACACAGC ACACTAGTCA GCCCACTGCC
                                                                         1260
      ACGACCTCCC TGCCAGCCAG AAGCATCCGT ACTGCACGCT GTCTGAGAAT GCTGGGCCTG
                                                                         1320
      GATTGCAGAC AGTGCCGCTG CTGATCGCAT CAAAAACAAA GTCAAAGGCC ATCTCACATT
15
      TTACAAATCC CCAGCTCATG AACGTGAAGC TGATAGGAAA TCACCCCAGG GAACCCGAAA
      AAGAAACTTG ATTCCTCTAT TGCTGGCCTT ACTTGATGTC TTTTATAAAA CTTGGGACTA
                                                                         1500
      CAATACTAAC CTTTTTTCT GAATCTGCTG TTCTACCCAT GTGTCTCACA TTCATTTGTA
                                                                         1560
      TTATTTCAAG AAATGTACTA ATTTCCAGTT CACTCAGGCC TTACTAATCC ATACCAAATT
                                                                         1620
      AGCCTAAAGA CAAGGCATTT TATATTCATT TCTATTTTCA GCATGTTTCT ACCAAAGCTA
20
      TTAGAACCAA CACGTACCTC TGAATGCCCG ATTATAAGAA GACATGAGAA GACTTTAAAA
      GTTTTGGAAA TTTACAGAGC CATGATTTTT GAACCTAATT GAAAGAAAAC CATCTGAATT
                                                                         1800
      GTTGCAGGTC CACATTTTG CCAAAGATAC ACTCTATAGA TGCTTAGTAG TGGCCTGATT
                                                                         1860
      TTTTTCCATG TATTGCCACG ACAAACTAAA AATGAACTGT GTTTAAGAAT GTAGTATTTC
                                                                         1920
      TGTTTTTCAT CCAAGTTGAT TGGGGGAAGA ATATGGCAGG ATCCATCTTT TACAGTATTT
                                                                         1980
25
      TGTATTCAGT AAAGTGGACA TTCCTGCTCC TCCCTTCCCC CATTGCATGC CCTCTTCCTC
                                                                         2040
     · CCTTGATTTC ACTTTCTCTC ATGCCCGGAT CCTTTTATTC TCCCCAGTTA TAACCCAGTT
                                                                         2100
      ATAAAAGAAA GATCTGAGCA TAAAGATACG TGTTTAAAAA TAACTAAAAG TAAAGGAAAG
      TGCCTTAATT TTTCTATTTG CTTCAACTGA AAGTGCTTCT CAGCTCGCCC CATGTAAGTT
      CTCATTCCAT GTAAATGACA TTTTCCAGTT ACAACTGGTA CTGAGATTTT GCCTCTCTCT
                                                                         2280
30
      TTCCTTACTC ATCCTCCCAA ATGTCTTTGT GGGAGCCATA TCAGTGGATA CCAAGCTCTG
                                                                         2340
      TATCCATTTG TCCCCTGCCC TCCACAATGT GTGACATAGA ACAGGGACTT TGGCCCTGGG
      AAAGCAAAAG CTCCCAGTAA GGAATCCTGT GCCCAATGAT GTAAAACAAT TCCAAACATC
                                                                         2460
      CAGGAATTTT TGTATCATAG AGCGAATTAC TTCCTATCTT TTCATTAGAG GCTATGAGGA
      CTTCTAATTA GTCTTAGTTG CTTATAAGTG CCCTGGAATC ACCCAGGTAG GCACTTAATT
                                                                         2580
35
      TTTTTTCAG TTGCATGAGC AAAGTGCTTC TTAGTAGTGT GAAATTACAA CAACTTTAAG
                                                                         2640
      ACTITCCAGA TTCAAGCTCC CACTGTTGGA AAAAGCCAGC CTTTCTAATC TCTTCTGCTA
      CTGGAATAAG CACTTAAGAA TTGCGTGATA GCCAGGCACC GTGGCTCATG CCTGTAATCC
                                                                         2760
      CAACACTTAG GGAGGCTGAG GTGGGTGGGC CGCTTGAGCT CAGGAGTTCA AGACCAGCCT
                                                                         2820
      GGGTAATATA GTGAGATCCT GTGTCTCTAT AAAAAAATTA AAAATTAGTC AGTTGTAGTG
                                                                         2880
40
      ACACATACCT GTAGTCCCAG CTACTCAGGA GGCTGAGGTG GAAGGATCAC TTGAGCCCAG
                                                                         2940
      AAGGTAAGGC TGCAGTGAGC TGTGACTGTG CCACTACACT CCAGCCTGAG TGACAGAGAA
      AGAACCTGTC AAAAAAAAA AAAAAACAAC CTACATTTCA AGTACTATTT CCCTTCTCTC
                                                                         3060
      CCATCTAATT GCTAAAGATT TTCTTTCATA CGCACACACT CCAGTGACTG GAAAAACGGG
                                                                         3120
      AGTTTTCAGT CAAAGCTTGA CATTTAGAGA AAACAAGGAC TTTCTGCCTT TATAAATGGA
45
      AATCAACTGT GTATGAACTA TAACTCTGCA GAGGTTATGA ATTCATCCTT TACAAACAAT
      AATGAACTTT TAGTCCTGTA ATAAATGAAA TGTTATTAGG CAGCTTTGTT GCATGATTGC
                                                                         3300
      ATAGTTATAT CTTGCTAACG GGCCACTCAT TTCTCACTGA TGTGGATGAA AAAATGAGAG
                                                                         3360
      CAGTATGTTT CCAGGTGTGT GCACTCAACA GGCAAATAGC TCCCGAGGTC ACCACTTCCC
                                                                         3420
      TAATGGGCCA CAGGAAGTAA GTTGATCTTG ATGGGGAGAT CACGTCACCC AGAACCAGCA
50
      ACTGGATAGA GACTGTTGTT AGTGTCTGGG TAGAGCACAG GCTCCCAGGG GTCTTAAGAG
      CTAATTACTG AATAAAACAA TCTAGAACAA AGCAA
      Seq ID No: 95 Protein sequence:
      Protein Accession #: CAC06611.1
55
                            21
                                       31
                                                  41
                 11
                                                             51
      MNCKEGTDSS CGCRGNDEKK MLKCVVVGDG AVGKTCLLMS YANDAFPEEY VPTVFDHYAV
                                                                           60
60
      TVTVGGKQHL LGLYDTAGQE DYNQLRPLSY PNTDVFLICF SVVNPASYHN VQEEWVPELK
                                                                          120
      DCMPHVPYVL IGTQIDLRDD PKTLARLLYM KEKPLTYEHG VKLAKAIGAQ CYLECSALTQ
      KGLKAVFDEA ILTIFHPKKK KKRCSEGHSC CSII
65
      Seq ID NO: 96 DNA sequence
      Nucleic Acid Accession #: NM_003654.1
      Coding sequence: 367-1602 (underlined sequences correspond to start and stop codons)
                            21
                                       31
                                                  41
70
      GGGGAGGGCG CGGGAGGCGG AGGATGCCGC CGCGGCTGCT GCCGCCGCCG CCACCCGCGG
                                                                           60
      GTCCCCGGCG ACCCTACTCC AGACCCGAGG ATGGAGCCGG CGCTGGGCGC TGCAGCTGCT
                                                                          120
      CCCGGCGCT CCCCGACCAG GTAGCTGGTG TCACTTCGGT GTGGTTGGAA GAAGACTTTC
                                                                          180
      TCCCCAGCTG CATTCCCGGA GGCGCCCTTT CGACCTGGAG GCCGGGTCTG CTGGCCACAG
                                                                          240
75
      GGCTGCCGCA CTGGCTGGGA CTGCCAGCTG GGCCTGGAGA CGCTGGTGGC TGTGGACTCC
      CCAGCTTGGA GCAGTCCCTC TTTGACCTCA CCCCTTGGAG AAGCAGCCCC ATGAAGGTGC
```

```
CCAGCCATGC AATGTTCCTG GAAGGCCGTC CTCCTCCTTG CCCTGGCCTC CATTGCCATC
      CAGTACACGG CCATCCGCAC CTTCACCGCC AAGTCCTTTC ACACCTGCCC CGGGCTGGCA
                                                                          480
      GAGGCCGGGC TGGCCGAGCG ACTGTGCGAG GAGAGCCCCA CCTTCGCCTA CAACCTCTCC
                                                                          540
      CGCAAGACCC ACATCCTCAT CCTGGCCACC ACGCGCAGCG GCTCCTCCTT CGTGGGCCAG
                                                                          600
 5
      CTCTTCAACC AGCACCTGGA CGTCTTCTAC CTGTTTGAGC CCCTCTACCA CGTCCAGAAC
                                                                          660
      ACGCTCATCC CCCGCTTCAC CCAGGGCAAG AGCCCGGCCG ACCGGCGGGT CATGCTAGGC
                                                                          720
      GCCAGCCGCG ACCTCCTGCG GAGCCTCTAC GACTGCGACC TCTACTTCCT GGAGAACTAC
                                                                          780
      ATCAAGCCGC CGCCGGTCAA CCACACCACC GACAGGATCT TCCGCCGCGG GGCCAGCCGG
                                                                          840
      GTCCTCTGCT CCCGGCCTGT GTGCGACCCT CCGGGGCCAG CCGACCTGGT CCTGGAGGAG
                                                                          900
10
      GGGGACTGTG TGCGCAAGTG CGGGCTACTC AACCTGACCG TGGCGGCCGA GGCGTGCCGC
      GAGCGCAGCC ACGTGGCCAT CAAGACGGTG CGCGTGCCCG AGGTGAACGA CCTGCGCGCC
                                                                         1020
      CTGGTGGAAG ACCCGCGATT AAACCTCAAG GTCATCCAGC TGGTCCGAGA CCCCCGCGGC
                                                                         1080
      ATTCTGGCTT CGCGCAGCGA GACCTTCCGC GACACGTACC GGCTCTGGCG GCTCTGGTAC
                                                                         1140
      GGCACCGGGA GGAAACCCTA CAACCTGGAC GTGACGCAGC TGACCACGGT GTGCGAGGAC
                                                                         1200
15
      TTCTCCAACT CCGTGTCCAC CGGCCTCATG CGGCCCCCGT GGCTCAAGGG CAAGTACATG
      TTGGTGCGCT ACGAGGACCT GGCTCGGAAC CCTATGAAGA AGACCGAGGA GATCTACGGG
                                                                         1320
      TTCCTGGGCA TCCCGCTGGA CAGCCACGTG GCCCGCTGGA TCCAGAACAA CACGCGGGGC
                                                                        1380
      GACCCCACCC TGGGCAAGCA CAAATACGGC ACCGTGCGAA ACTCGGCGGC CACGGCCGAG 1440
      AAGTGGCGCT TCCGCCTCTC CTACGACATC GTGGCCTTTG CCCAGAACGC CTGCCAGCAG
20
      GTGCTGGCCC AGCTGGGCTA CAAGATCGCC GCCTCGGAGG AGGAGCTGAA GAACCCCTCG 1560
      GTCAGCCTGG TGGAGGAGCG GGACTTCCGC CCCTTCTCGT GACCCGGGCG GTGCGGGTGG
                                                                         1620
      GGGCGGGAGG CGCAAGGTGT CGGTTTTGAT AAAATGGACC GTTTTTAACT GTTGCCTTAT
                                                                         1680
      TAACCCCTCC CTCTCCCACC TCATCTTCGT GTCCTTCCTG CCCCCAGCTC ACCCCACTCC
                                                                         1740
      CTTCTGCCCC TTTTTTGTCT CTGAAATTTG CACTACGTCT TGGACGGGAA TCACTGGGGC
                                                                         1800
25
      AGAGGGCGCC TGAAGTAGGG TCCCGCCCCC CCCACCCCAT TCAGACACAT GGATGTTGGG 1860
      TCTCTGTGCG GACGGTGACA ATGTTTACAA GCACCACATT TACACATCCA CACACGCACA
                                                                         1920
      CGGGCACTCG CGAGGCGACT TCTCAAGCTT TTGAATGGGT GAGTGGTCGG GTATCTAGTT
                                                                         1980
      TTTGCACTGT CTTACTATTC AAGGTAAGAG GATACAAACA AGAGGACCAC TTGTCTCTAA 2040
      TTTATGAATG GTGTCCATCC TTTCCCCATC CCTGCCTCCT GCCCCTGACG CCCATTTCCC
                                                                         2100
30
      CCCTTAGAGC AGCGAAACTG CCCCCTCTG CCCGCCCTTG CCTGTCGGTG AGGCAGGTTT
                                                                         2160
      TTACTGTGAG GTGAACGTGG ACCTGTTTCT GTTTCCAGTC TGTGGTGATG CTGTCTGTCT
                                                                         2220
      GTCTGAGTCT CGTGGCCGCC CCTGGACCAG TGATGACTGA TGAATCTTAT GAGCTTCTGA
                                                                         2280
      TTGATCTCGG GGTCCATCTG TGATATTTCT TTGTGCCAAA AAGAAAAAA AAGAGTGGAT
                                                                         2340
      CAGTTTGCTA AATGAACATT GAAATTGAAA TGCTTTATCT GTGTTTTCTG TAAATAAAAG 2400
35
      AGTGCAATAA TCACC
      Seq ID No: 97 Protein sequence:
      Protein Accession #: NP 003645.1
40
                                                             51
                 11
                            21
                                       31
                                                  41
      MOCSWKAVLL LALASIAIQY TAIRTFTAKS FHTCPGLAEA GLAERLCEES PTFAYNLSRK
      THILILATTR SGSSFVGQLF NQHLDVFYLF EPLYHVQNTL IPRFTQGKSP ADRRVMLGAS
                                                                          120
45
      RDLLRSLYDC DLYFLENYIK PPPVNHTTDR IFRRGASRVL CSRPVCDPPG PADLVLEEGD
                                                                          180
      CVRKCGLLNL TVAAEACRER SHVAIKTVRV PEVNDLRALV EDPRLNLKVI QLVRDPRGIL
      ASRSETFRDT YRLWRLWYGT GRKPYNLDVT QLTTVCEDFS NSVSTGLMRP PWLKGKYMLV
                                                                          300
      RYEDLARNPM KKTEEIYGFL GIPLDSHVAR WIQNNTRGDP TLGKHKYGTV RNSAATAEKW
                                                                          360
      RFRLSYDIVA FAQNACQQVL AQLGYKIAAS EEELKNPSVS LVEERDFRPF S
50
      Seq ID NO: 98 DNA sequence
      Nucleic Acid Accession #: NM_002852.1
      Coding sequence: 68-1213 (underlined sequences correspond to start and stop codons)
55
                                                  41
                                                             51
                                       31
      CTCAAACTCA GCTCACTTGA GAGTCTCCTC CCGCCAGCTG TGGAAAGAAC TTTGCGTCTC
                                                                           60
      TCCAGCAATG CATCTCCTTG CGATTCTGTT TTGTGCTCTC TGGTCTGCAG TGTTGGCCGA
                                                                          120
      GAACTCGGAT GATTATGATC TCATGTATGT GAATTTGGAC AACGAAATAG ACAATGGACT
60
                                                                          1.80
      CCATCCCACT GAGGACCCCA CGCCGTGCGA CTGCGGTCAG GAGCACTCGG AATGGGACAA
                                                                          240
      GCTCTTCATC ATGCTGGAGA ACTCGCAGAT GAGAGAGCGC ATGCTGCTGC AAGCCACGGA
      CGACGTCCTG CGGGGCGAGC TGCAGAGGCT GCGGGAGGAG CTGGGCCGGC TCGCGGAAAG
                                                                          360
      CCTGGCGAGG CCGTGCGCGC CGGGGGCTCC CGCAGAGGCC AGGCTGACCA GTGCTCTGGA
                                                                           420
65
      CGAGCTGCTG CAGGCGACCC GCGACGCGGG CCGCAGGCTG GCGCGTATGG AGGGCGCGGA
                                                                           480
      GGCGCAGCGC CCAGAGGAGG CGGGGCGCGC CCTGGCCGCG GTGCTAGAGG AGCTGCGGCA
                                                                           540
      GACGCGAGCC GACCTGCACG CGGTGCAGGG CTGGGCTGCC CGGAGCTGGC TGCCGGCAGG
      TTGTGAAACA GCTATTTAT TCCCAATGCG TTCCAAGAAG ATTTTTGGAA GCGTGCATCC
                                                                           660
      AGTGAGACCA ATGAGGCTTG AGTCTTTTAG TGCCTGCATT TGGGTCAAAG CCACAGATGT
                                                                          720
70
      ATTAAACAAA ACCATCCTGT TTTCCTATGG CACAAAGAGG AATCCATATG AAATCCAGCT
                                                                           780
      GTATCTCAGC TACCAATCCA TAGTGTTTGT GGTGGGTGGA GAGGAGAACA AACTGGTTGC
      TGAAGCCATG GTTTCCCTGG GAAGGTGGAC CCACCTGTGC GGCACCTGGA ATTCAGAGGA
      AGGGCTCACA TCCTTGTGGG TAAATGGTGA ACTGGCGGCT ACCACTGTTG AGATGGCCAC
                                                                           960
      AGGTCACATT GTTCCTGAGG GAGGAATCCT GCAGATTGGC CAAGAAAAGA ATGGCTGCTG
                                                                         1020
75
      TGTGGGTGGT GGCTTTGATG AAACATTAGC CTTCTCTGGG AGACTCACAG GCTTCAATAT
      CTGGGATAGT GTTCTTAGCA ATGAAGAGAT AAGAGAGACC GGAGGAGCAG AGTCTTGTCA
```

```
CATCCGGGGG AATATTGTTG GGTGGGGAGT CACAGAGATC CAGCCACATG GAGGAGCTCA 1200
      GTATGTTTCA TAAATGTTGT GAAACTCCAC TTGAAGCCAA AGAAAGAAAC TCACACTTAA 1260
      AACACATGCC AGTTGGGAAG GTCTGAAAAC TCAGTGCATA ATAGGAACAC TTGAGACTAA 1320
      TGAAAGAGA AGTTGAGACC AATCTTTATT TGTACTGGCC AAATACTGAA TAAACAGTTG 1380
 5
      AAGGAAAGAC ATTGGAAAAA GCTTTTGAGG ATAATGTTAC TAGACTTTAT GCCATGGTGC 1440
      TTTCAGTTTA ATGCTGTGTC TCTGTCAGAT AAACTCTCAA ATAATTAAAA AGGACTGTAT
      TGTTGAACAG AGGGACAATT GTTTTACTTT TCTTTGGTTA ATTTTGTTTT GGCCAGAGAT 1560
      GAATTTTACA TTGGAAGAAT AACAAAATAA GATTTGTTGT CCATTGTTCA TTGTTATTGG 1620
      TATGTACCTT ATTACAAAAA AAATGATGAA AACATATTTA TACTACAAGG TGACTTAACA 1680
10
      ACTATAAATG TAGTTTATGT GTTATAATCG AATGTCACGT TTTTGAGAAG ATAGTCATAT 1740
      AAGTTATATT GCAAAAGGGA TTTGTATTAA TTTAAGACTA TTTTTGTAAA GCTCTACTGT 1800
      AAATAAAATA TTTTATAAAA CTAAAAAAAA AAAAAAA
15
      Seq ID No: 99 Protein sequence:
      Protein Accession #: NP 002843.1
                                       31
                                                             51
                                                  41
20
      MHLLAILFCA LWSAVLAENS DDYDLMYVNL DNEIDNGLHP TEDPTPCDCG QEHSEWDKLF
      IMLENSOMRE RMLLQATDDV LRGELQRLRE ELGRLAESLA RPCAPGAPAE ARLTSALDEL
                                                                          120
      LQATRDAGRR LARMEGAEAQ RPEEAGRALA AVLEELRQTR ADLHAVQGWA ARSWLPAGCE
                                                                          180
      TAILFPMRSK KIFGSVHPVR PMRLESFSAC IWVKATDVLN KTILFSYGTK RNPYEIQLYL
                                                                          240
      SYOSIVFVVG GEENKLVAEA MVSLGRWTHL CGTWNSEEGL TSLWVNGELA ATTVEMATGH
25
      IVPEGGILOI GOEKNGCCVG GGFDETLAFS GRLTGFNIWD SVLSNEEIRE TGGAESCHIR
      GNIVGWGVTE IQPHGGAQYV S
      Seq ID NO: 100 DNA sequence
      Nucleic Acid Accession #: NM_007351.1
30
      Coding sequence: 72-3758 (underlined sequences correspond to start and stop codons)
                 11
                            21
                                       3.1
                                                  41
                                                             51
35
      CTGCTATCAA AAAGGCCATA AGGATTTTGT CCCCAAATTT CACATGAGCT ACCTTGCTTC
      AAACTACTGA GATGAAGGGG GCAAGATTAT TTGTCCTTCT TTCTAGTTTA TGGAGTGGGG
                                                                          120
      GCATTGGGCT TAACAACAGT AAGCATTCTT GGACTATACC TGAGGATGGG AACTCTCAGA
      AGACTATGCC TTCTGCTTCA GTTCCTCCAA ATAAAATACA AAGTTTGCAA ATACTGCCAA
                                                                          240
40
      CCACTCGGGT CATGTCGGCG GAGATAGCTA CAACTCCAGA GGCAAGAACT TCTGAAGACA
                                                                          300
      GTCTTCTTAA ATCAACACTG CCTCCCTCAG AAACAAGTGC ACCTGCTGAG GGTGTGAGAA
      ATCAAACTCT CACATCCACA GAGAAAGCAG AAGGAGTGGT CAAGTTACAG AATCTTACCC
                                                                          420
      TCCCAACCAA CGCTAGCATC AAGTTCAATC CTGGAGCAGA ATCAGTGGTC CTTTCCAATT
                                                                          480
      CTACACTGAA ATTTCTTCAG AGCTTTGCCA GAAAGTCAAA TGAACAAGCA ACTTCTCTAA
                                                                          540
45
      ACACAGTTGG AGGCACTGGA GGCATTGGAG GCGTTGGAGG CACTGGAGGC GTGGGAAATC
      GAGCCCCACG GGAAACATAC CTCAGCCGGG GTGACAGCAG TTCCAGCCAA AGAACTGACT
                                                                          660
      ACCAAAAATC AAATTTCGAA ACAACTAGAG GAAAGAATTG GTGTGCTTAT GTACATACCA
                                                                          720
      GGTTATCTCC CACAGTGACA TTGGACAACC AGGTCACTTA TGTCCCAGGT GGGAAAGGAC
                                                                          780
      CTTGTGGCTG GACCGGTGGA TCCTGTCCTC AGAGATCTCA GAAGATATCC AATCCTGTCT
50
      ATAGGATGCA ACATAAAATT GTCACCTCAT TGGATTGGAG GTGCTGTCCT GGATACAGTG
      GGCCGAAATG TCAACTAAGA GCCCAGGAAC AGCAAAGTTT GATACACACC AACCAGGCTG
      AAAGTCATAC AGCTGTTGGC AGAGGAGTAG CTGAGCAGCA GCAGCAGCAA GGCTGTGGTG 1020
      ACCCAGAAGT GATGCAAAAA ATGACTGATC AGGTGAACTA CCAGGCAATG AAACTGACTC
      TTCTGCAGAA GAAGATTGAC AATATTTCTT TGACTGTGAA TGATGTAAGG AACACTTACT 1140
55
      CCTCCCTAGA AGGAAAAGTC AGCGAAGATA AAAGCAGAGA ATTTCAATCT CTTCTAAAAG 1200
      GTCTAAAATC CAAAAGCATT AATGTACTGA TAAGAGACAT AGTAAGAGAA CAATTTAAAA 1260
      TTTTTCAAAA TGACATGCAA GAGACTGTAG CACAGCTCTT CAAGACTGTA TCAAGTCTAT 1320
      CAGAGGACCT CGAAAGCACC AGGCAAATAA TTCAAAAAGT TAATGAATCT GTGGTTTCAA 1380
      TAGCAGCCCA GCAAAAGTTT GTTTTGGTGC AAGAGAATCG GCCCACTTTG ACTGATATAG 1440
60
      TGGAACTAAG GAATCACATT GTGAATGTAA GGCAAGAAAT GACTCTTACA TGTGAGAAGC 1500
      CTATTAAAGA ACTAGAAGTA AAGCAGACTC ATTTAGAAGG TGCTCTAGAA CAGGAACACT 1560
      CAAGAAGCAT TCTGTATTAT GAATCCCTCA ATAAAACTCT TTCTAAATTG AAGGAAGTAC 1620
      ATGAGCAGCT TTTATCAACT GAACAGGTAT CAGACCAGAA GAATGCTCCA GCTGCTGAGT 1680
      CAGTTAGCAA TAATGTCACT GAGTACATGT CTACTTTACA TGAAAATATA AAGAAGCAGA 1740
65
      GTTTGATGAT GCTGCAAATG TTTGAAGATT TGCACATTCA AGAAAGCAAG ATTAACAATC 1800
      TCACCGTCTC TTTGGAGATG GAGAAAGAGT CTCTCAGAGG TGAATGTGAA GACATGTTAT
                                                                         1860
      CCAAATGCAG AAATGATTTT AAATTTCAAC TTAAGGACAC AGAAGAGAAT TTACATGTGT 1920
      TAAATCAAAC ATTGGCTGAA GTTCTCTTTC CAATGGACAA TAAGATGGAC AAAATGAGTG 1980
      AGCAACTAAA TGATTTGACT TATGATATGG AGATCCTTCA ACCCTTGCTT GAGCAGGGAG 2040
70
      CATCACTCAG ACAGACAATG ACATATGAAC AACCAAAGGA AGCAATAGTG ATAAGGAAAA
                                                                         2100
      AGATAGAAAA TCTGACTAGT GCTGTCAATA GTCTAAATTT TATTATCAAA GAACTTACAA
                                                                         2160
      AAAGACACAA CTTACTTAGA AATGAAGTAC AGGGTCGTGA TGATGCCTTA GAAAGACGTA
                                                                         2220
      TCAATGAATA TGCCTTAGAA ATGGAAGATG GCCTCAATAA GACAATGACT ATTATAAATA
                                                                         2280
      ATGCTATTGA TTTCATTCAA GATAACTATG CCCTAAAAGA GACTTTAAGT ACTATTAAGG
                                                                         2340
75
      ATAATAGTGA GATCCATCAT AAATGTACCT CCGATATGGA AACTATTTTG ACATTTATTC 2400
      CTCAGTTCCA CCGTCTGAAT GATTCTATTC AGACTTTGGT CAATGACAAT CAGAGATATA 2460
```

```
ACTTTGTTTT GCAAGTCGCC AAGACCCTTG CAGGTATTCC CAGAGATGAG AAACTAAATC 2520
      AGTCCAACTT CCAAAAGATG TATCAAATGT TCAATGAAAC CACTTCCCAA GTGAGAAAAT 2580
      ACCAGCAAAA TATGAGTCAT TTGGAAGAAA AACTACTCTT AACTACCAAG ATTTCCAAAA
      ATTTTGAGAC TCGGTTGCAA GACATTGAGT CTAAAGTTAC CCAGACGCTC ATACCTTATT
 5
      ATATTTCAGT TAAAAAAGGC AGTGTAGTTA CAAATGAGAG AGATCAGGCT CTTCAACTGC
                                                                         2760
      AAGTATTAAA TTCCAGATTT AAGGCGTTGG AAGCAAAATC TATCCATCTT TCAATTAACT
      TCTTTTCGCT TAACAAACT CTCCACGAAG TTTTAACAAT GTGTCACAAT GCTTCTACAA 2880
      GTGTGTCAGA ACTGAATGCT ACCATCCCTA AGTGGATAAA ACATTCCCTG CCAGATATTC
      AACTTCTTCA GAAAGGTCTA ACAGAATTTG TGGAACCAAT AATTCAAATA AAAACTCAAG
                                                                         3000
10
      CTGCCCTATC TAATTCAACT TGTTGTATAG ATCGATCGTT GCCTGGTAGT CTGGCAAATG
      TTGTCAAGTC TCAGAAGCAA GTAAAATCAT TGCCAAAGAA AATTAACGCA CTTAAGAAAC
      CAACGGTAAA TCTTACCACA GTCCTGATAG GCCGGACTCA AAGAAACACG GACAACATAA 3180
      TATATCCTGA GGAGTATTCA AGCTGTAGTC GGCATCCGTG CCAAAATGGG GGCACGTGCA 3240
      TAAATGGAAG AACTAGCTTT ACCTGTGCCT GCAGACATCC TTTTACTGGT GACAACTGCA
                                                                         3300
15
      CTATCAAGCT TGTGGAAGAA AATGCTTTAG CTCCAGATTT TTCCAAAGGA TCTTACAGAT
      ATGCACCCAT GGTGGCATTT TTTGCATCTC ATACGTATGG AATGACTATA CCTGGTCCTA
      TCCTGTTTAA TAACTTGGAT GTCAATTATG GAGCTTCATA TACCCCAAGA ACTGGAAAAT 3480
      TTAGAATTCC GTATCTTGGA GTATATGTTT TCAAGTACAC CATCGAGTCA TTTAGTGCTC
                                                                         3540
      ATATTTCTGG ATTTTTAGTG GTTGATGGAA TAGACAAGCT TGCATTTGAG TCTGAAAATA
20
      TTAACAGTGA AATACACTGT GATAGGGTTT TAACTGGGGA TGCCTTATTA GAATTAAATT
      ATGGGCAGGA AGTCTGGTTA CGACTTGCAA AAGGAACAAT TCCAGCCAAG TTTCCCCCTG
                                                                         3720
      TTACTACATT TAGTGGCTAT TTATTATATC GTACA<u>TAA</u>GT TAGTATGAAA AACAGACTAT 3780
      CACCTTTATT GAGAAACAGC CAGTGTTTTC ATTTATCTTT GCTTGCACAT CTGCTCTGTT 3840
      TTGGTTTTTC TACAGGAAAT GAAAATCAAC TTGTTTTTTT AATATGAGTA AACTTGTATG
25
      TCTATTTTAT AAAATTATTT GAATATTGTT TAATGTCTGA ATATGAAAGA GTTCTTGATC 3960
      CTAAAGAAAT TTAGTGGCAC AGAAAACAAA GTGAATTTGT TAGCATAATT ATTCCTATTC
                                                                         4020
      TTATTTCTTC ATTTTAAGTC ATTGCAATGG AAAGTAATAT TATAAAACGG TAATTACAAC
                                                                         4080
      ATATTATCAG TCACAGTTTT CTTTCCAATT AAACACTTAA CTTTTGTTAT TCCCTGTATA
      TAAATATATA ACACACATTT TCTAGATTCA CAAATTTAAA TAAATTACTC AAAAAATG
30
      Seq ID No: 101 Protein sequence:
      Protein Accession #: NP 031377.1
                 77
                                       31
                                                  41
                                                             51
35
      MKGARLFVLL SSLWSGGIGL NNSKHSWTIP EDGNSQKTMP SASVPPNKIQ SLQILPTTRV
      MSAEIATTPE ARTSEDSLLK STLPPSETSA PAEGVRNQTL TSTEKAEGVV KLQNLTLPTN
                                                                          120
      ASIKFNPGAE SVVLSNSTLK FLOSFARKSN EQATSLNTVG GTGGIGGVGG TGGVGNRAPR
      ETYLSRGDSS SSQRTDYQKS NFETTRGKNW CAYVHTRLSP TVTLDNQVTY VPGGKGPCGW
                                                                          240
40
      TGGSCPQRSQ KISNPVYRMQ HKIVTSLDWR CCPGYSGPKC QLRAQEQQSL IHTNQAESHT
                                                                          300
      AVGRGVAEQQ QQQGCGDPEV MQKMTDQVNY QAMKLTLLQK KIDNISLTVN DVRNTYSSLE
      GKVSEDKSRE FOSLLKGLKS KSINVLIRDI VREQFKIFON DMQETVAQLF KTVSSLSEDL
                                                                          420
      ESTRQIIQKV NESVVSIAAQ QKFVLVQENR PTLTDIVELR NHIVNVRQEM TLTCEKPIKE
      LEVKQTHLEG ALEQEHSRSI LYYESLNKTL SKLKEVHEQL LSTEQVSDQK NAPAAESVSN
                                                                          540
45
      NVTEYMSTLH ENIKKQSLMM LQMFEDLHIQ ESKINNLTVS LEMEKESLRG ECEDMLSKCR
      NDFKFQLKDT EENLHVLNQT LAEVLFPMDN KMDKMSEQLN DLTYDMEILQ PLLEQGASLR
      QTMTYEQPKE AIVIRKKIEN LTSAVNSLNF IIKELTKRHN LLRNEVQGRD DALERRINEY
                                                                          720
      ALEMEDGLNK TMTIINNAID FIQDNYALKE TLSTIKDNSE IHHKCTSDME TILTFIPQFH
                                                                          780
      RLNDSIQTLV NDNQRYNFVL QVAKTLAGIP RDEKLNQSNF QKMYQMFNET TSQVRKYQQN
                                                                          840
50
      MSHLEEKLLL TTKISKNFET RLQDIESKVT QTLIPYYISV KKGSVVTNER DQALQLQVLN
                                                                          900
      SRFKALEAKS IHLSINFFSL NKTLHEVLTM CHNASTSVSE LNATIPKWIK HSLPDIQLLQ
      KGLTEFVEPI IQIKTQAALS NSTCCIDRSL PGSLANVVKS QKQVKSLPKK INALKKPTVN
                                                                         1020
      LTTVLIGRTQ RNTDNIIYPE EYSSCSRHPC QNGGTCINGR TSFTCACRHP FTGDNCTIKL
                                                                         1080
      VEENALAPDF SKGSYRYAPM VAFFASHTYG MTIPGPILFN NLDVNYGASY TPRTGKFRIP 1140
55
      YLGVYVFKYT IESFSAHISG FLVVDGIDKL AFESENINSE IHCDRVLTGD ALLELNYGQE 1200
      VWLRLAKGTI PAKFPPVTTF SGYLLYRT
      Seq ID NO: 102 DNA sequence
      Nucleic Acid Accession #: NM 000873.2
      Coding sequence: 57-884 (underlined sequences correspond to start and stop codons)
60
                 11
                            21
                                       31
                                                  41
                                                             51
65
      ATCTCCCTCC AGGCAGCCCT TGGCTGGTCC CTGCGAGCCC GTGGAGACTG CCAGAGATGT
                                                                           60
      CCTCTTTCGG TTACAGGACC CTGACTGTGG CCCTCTTCAC CCTGATCTGC TGTCCAGGAT
                                                                          1.20
      CGGATGAGAA GGTATTCGAG GTACACGTGA GGCCAAAGAA GCTGGCGGTT GAGCCCAAAG
      GGTCCCTCGA GGTCAACTGC AGCACCACCT GTAACCAGCC TGAAGTGGGT GGTCTGGAGA
                                                                          240
      CCTCTCTAAA TAAGATTCTG CTGGACGAAC AGGCTCAGTG GAAACATTAC TTGGTCTCAA
                                                                          300
70
      ACATCTCCCA TGACACGGTC CTCCAATGCC ACTTCACCTG CTCCGGGAAG CAGGAGTCAA
                                                                          360
      TGAATTCCAA CGTCAGCGTG TACCAGCCTC CAAGGCAGGT CATCCTGACA CTGCAACCCA
                                                                          420
      CTTTGGTGGC TGTGGGCAAG TCCTTCACCA TTGAGTGCAG GGTGCCCACC GTGGAGCCCC
      TGGACAGCCT CACCCTCTTC CTGTTCCGTG GCAATGAGAC TCTGCACTAT GAGACCTTCG
                                                                          540
      GGAAGGCAGC CCCTGCTCCG CAGGAGGCCA CAGCCACATT CAACAGCACG GCTGACAGAG
                                                                          600
75
      AGGATGGCCA CCGCAACTTC TCCTGCCTGG CTGTGCTGGA CTTGATGTCT CGCGGTGGCA
                                                                          660
      ACATCTTTCA CAAACACTCA GCCCCGAAGA TGTTGGAGAT CTATGAGCCT GTGTCGGACA
                                                                          720
```

```
GCCAGATGGT CATCATAGTC ACGGTGGTGT CGGTGTTGCT GTCCCTGTTC GTGACATCTG
      TCCTGCTCTG CTTCATCTTC GGCCAGCACT TGCGCCAGCA GCGGATGGGC ACCTACGGGG
      TGCGAGCGGC TTGGAGGAGG CTGCCCCAGG CCTTCCGGCC ATAGCAACCA TGAGTGGCAT
                                                                           900
      GGCCACCACC ACGGTGGTCA CTGGAACTCA GTGTGACTCC TCAGGGTTGA GGTCCAGCCC
                                                                          960
 5
      TGGCTGAAGG ACTGTGACAG GCAGCAGAGA CTTGGGACAT TGCCTTTTCT AGCCCGAATA
      CAAACACCTG GACTT
      Seq ID No: 103 Protein sequence:
      Protein Accession #: NP_000864.1
10
                                       31
                                                  41
                                                             51
                 1.1
                            21
      MSSFGYRTLT VALFTLICCP GSDEKVFEVH VRPKKLAVEP KGSLEVNCST TCNOPEVGGL
15
      ETSLNKILLD EQAQWKHYLV SNISHDTVLQ CHFTCSGKQE SMNSNVSVYQ PPRQVILTLQ
                                                                          120
      PTLVAVGKSF TIECRVPTVE PLDSLTLFLF RGNETLHYET FGKAAPAPQE ATATFNSTAD
                                                                          180
      REDGHRNFSC LAVLDLMSRG GNIFHKHSAP KMLEIYEPVS DSQMVIIVTV VSVLLSLFVT
                                                                          240
      SVLLCFIFGQ HLRQQRMGTY GVRAAWRRLP QAFRP
20
      Seq ID NO: 104 DNA sequence
      Nucleic Acid Accession #: NM_001795.2
      Coding sequence: 121-2475 (underlined sequences correspond to start and stop codons)
25
                                       31
                                                  41
                                                             51
                 11
                            21
      GACGGTCGGC TGACAGGCTC CACAGAGCTC CACTCACGCT CAGGCCCTGG ACGGACAGGC
      AGTCCAACGG AACAGAAACA TCCCTCAGCC CCACAGGCAC GATCTGTTCC TCCTGGGAAG
      ATGCAGAGGC TCATGATGCT CCTCGCCACA TCGGGCGCCT GCCTGGGCCT GCTGGCAGTG
                                                                          1.80
30
      GCAGCAGTGG CAGCAGCAGG TGCTAACCCT GCCCAACGGG ACACCCACAG CCTGCTGCCC
                                                                          240
      ACCCACCGGC GCCAAAAGAG AGATTGGATT TGGAACCAGA TGCACATTGA TGAAGAGAAA
                                                                          300
      AACACCTCAC TTCCCCATCA TGTAGGCAAG ATCAAGTCAA GCGTGAGTCG CAAGAATGCC
      AAGTACCTGC TCAAAGGAGA ATATGTGGGC AAGGTCTTCC GGGTCGATGC AGAGACAGGA
      GACGTGTTCG CCATTGAGAG GCTGGACCGG GAGAATATCT CAGAGTACCA CCTCACTGCT
                                                                          480
35
      GTCATTGTGG ACAAGGACAC TGGTGAAAAC CTGGAGACTC CTTCCAGCTT CACCATCAAA
                                                                          540
      GTTCATGACG TGAACGACAA CTGGCCTGTG TTCACGCATC GGTTGTTCAA TGCGTCCGTG
      CCTGAGTCGT CGGCTGTGGG GACCTCAGTC ATCTCTGTGA CAGCAGTGGA TGCAGACGAC
                                                                          660
      CCCACTGTGG GAGACCACGC CTCTGTCATG TACCAAATCC TGAAGGGGAA AGAGTATTTT
                                                                          720
      GCCATCGATA ATTCTGGACG TATTATCACA ATAACGAAAA GCTTGGACCG AGAGAAGCAG
                                                                          780
40
      GCCAGGTATG AGATCGTGGT GGAAGCGCGA GATGCCCAGG GCCTCCGGGG GGACTCGGGC
                                                                          840
      ACGGCCACCG TGCTGGTCAC TCTGCAAGAC ATCAATGACA ACTTCCCCTT CTTCACCCAG
      ACCAAGTACA CATTTGTCGT GCCTGAAGAC ACCCGTGTGG GCACCTCTGT GGGCTCTCTG
                                                                          960
      TTTGTTGAGG ACCCAGATGA GCCCCAGAAC CGGATGACCA AGTACAGCAT CTTGCGGGGC
                                                                         1020
      GACTACCAGG ACGCTTTCAC CATTGAGACA AACCCCGCCC ACAACGAGGG CATCATCAAG
                                                                         1080
45
      CCCATGAAGC CTCTGGATTA TGAATACATC CAGCAATACA GCTTCATCGT CGAGGCCACA
      GACCCCACCA TCGACCTCCG ATACATGAGC CCTCCCGCGG GAAACAGAGC CCAGGTCATT
      ATCAACATCA CAGATGTGGA CGAGCCCCCC ATTTTCCAGC AGCCTTTCTA CCACTTCCAG
                                                                         1260
      CTGAAGGAAA ACCAGAAGAA GCCTCTGATT GGCACAGTGC TGGCCATGGA CCCTGATGCG
                                                                         1320
      GCTAGGCATA GCATTGGATA CTCCATCCGC AGGACCAGTG ACAAGGGCCA GTTCTTCCGA
50
      GTCACAAAAA AGGGGGACAT TTACAATGAG AAAGAACTGG ACAGAGAAGT CTACCCCTGG
      TATAACCTGA CTGTGGAGGC CAAAGAACTG GATTCCACTG GAACCCCCAC AGGAAAAGAA
      TCCATTGTGC AAGTCCACAT TGAAGTTTTG GATGAGAATG ACAATGCCCC GGAGTTTGCC
                                                                         1560
      AAGCCCTACC AGCCCAAAGT GTGTGAGAAC GCTGTCCATG GCCAGCTGGT CCTGCAGATC
      TCCGCAATAG ACAAGGACAT AACACCACGA AACGTGAAGT TCAAATTCAC CTTGAATACT
55
      GAGAACAACT TTACCCTCAC GGATAATCAC GATAACACGG CCAACATCAC AGTCAAGTAT
                                                                         1740
      GGGCAGTTTG ACCGGGAGCA TACCAAGGTC CACTTCCTAC CCGTGGTCAT CTCAGACAAT
                                                                         1800
      GGGATGCCAA GTCGCACGGG CACCAGCACG CTGACCGTGG CCGTGTGCAA GTGCAACGAG
                                                                         1860
      CAGGGCGAGT TCACCTTCTG CGAGGATATG GCCGCCCAGG TGGGCGTGAG CATCCAGGCA
      GTGGTAGCCA TCTTACTCTG CATCCTCACC ATCACAGTGA TCACCCTGCT CATCTTCCTG
                                                                         1980
      CGGCGGCGGC TCCGGAAGCA GGCCCGCGCG CACGGCAAGA GCGTGCCGGA GATCCACGAG
60
                                                                         2040
      CAGCTGGTCA CCTACGACGA GGAGGGCGGC GGCGAGATGG ACACCACCAG CTACGATGTG
                                                                         2100
      TCGGTGCTCA ACTCGGTGCG CCGCGGCGGG GCCAAGCCCC CGCGGCCCGC GCTGGACGCC
      CGGCCTTCCC TCTATGCGCA GGTGCAGAAG CCACCGAGGC ACGCGCCTGG GGCACACGGA
                                                                         2220
      GGGCCCGGGG AGATGGCAGC CATGATCGAG GTGAAGAAGG ACGAGGCGGA CCACGACGGC
65
      GACGGCCCCC CCTACGACAC GCTGCACATC TACGGCTACG AGGGCTCCGA GTCCATAGCC
                                                                         2340
      GAGTCCCTCA GCTCCCTGGG CACCGACTCA TCCGACTCTG ACGTGGATTA CGACTTCCTT
                                                                         2400
      AACGACTGGG GACCCAGGTT TAAGATGCTG GCTGAGCTGT ACGGCTCGGA CCCCCGGGAG
      GAGCTGCTGT ATTAGGCGGC CGAGGTCACT CTGGGCCTGG GGACCCAAAC CCCCTGCAGC
                                                                         2520
      CCAGGCCAGT CAGACGCCAG GCACCACAGC CTCCAAAAAT GGCAGTGACT CCCCAGCCCA
                                                                         2580
70
      GCACCCCTTC CTCGTGGGTC CCAGAGACCT CATCAGCCTT GGGATAGCAA ACTCCAGGTT
                                                                         2640
      CCTGAAATAT CCAGGAATAT ATGTCAGTGA TGACTATTCT CAAATGCTGG CAAATCCAGG
      CTGGTGTTCT-GTCTGGGCTC AGACATCCAC ATAACCCTGT CACCCACAGA CCGCCGTCTA
      ACTCAAAGAC TTCCTCTGGC TCCCCAAGGC TGCAAAGCAA AACAGACTGT GTTTAACTGC
                                                                         2820
      TGCAGGGTCT TTTTCTAGGG TCCCTGAACG CCCTGGTAAG GCTGGTGAGG TCCTGGTGCC
                                                                         2880
75
      TATCTGCCTG GAGGCAAAGG CCTGGACAGC TTGACTTGTG GGGCAGGATT CTCTGCAGCC
      CATTCCCAAG GGAGACTGAC CATCATGCCC TCTCTCGGGA GCCCTAGCCC TGCTCCAACT
```

```
CCATACTCCA CTCCAAGTGC CCCACCACTC CCCAACCCCT CTCCAGGCCT GTCAAGAGGG 3060
      AGGAAGGGGC CCCATGGCAG CTCCTGACCT TGGGTCCTGA AGTGACCTCA CTGGCCTGCC
      ATGCCAGTAA CTGTGCTGTA CTGAGCACTG AACCACATTC AGGGAAATGG CTTATTAAAC
      TTTGAAGCAA CTGTGAATTC ATTCTGGAGG GGCAGTGGAG ATCAGGAGTG ACAGATCACA
 5
      GGGTGAGGGC CACCTCCACA CCCACCCCCT CTGGAGAAGG CCTGGAAGAG CTGAGACCTT
                                                                            3300
      GCTTTGAGAC TCCTCAGCAC CCCTCCAGTT TTGCCTGAGA AGGGGCAGAT GTTCCCGGAG
      CAGAAGACGT CTCCCCTTCT CTGCCTCACC TGGTCGCCAA TCCATGCTCT CTTTCTTTTC
      TCTGTCTACT CCTTATCCCT TGGTTTAGAG GAACCCAAGA TGTGGCCTTT AGCAAAACTG
      GACAATGTCC AAACCCACTC ATGACTGCAT GACGGAGCCG AGCCATGTGT CTTTACACCT
10
      CGCTGTTGTC ACATCTCAGG GAACTGACCC TCAGGCACAC CTTGCAGAAG GCAAGGCCCT
      GCCCTGCCCA ACCTCTGTGG TCACCCATGC ATCTTCCACT GGAACGTTTC ACTGCAAACA
      CACCTTGGAG AAGTGGCATC AGTCAACAGA GAGGGGCAGG GAAGGAGACA CCAAGCTCAC
      CCTTCGTCAT GGACCGAGGT TCCCACTCTG GGCAAAGCCC CTCACACTGC AAGGGATTGT
      AGATAACACT GACTTGTTTG TTTTAACCAA TAACTAGCTT CTTATAATGA TTTTTTTACT
15
      AATGATACTT ACAAGTTTCT AGCTCTCACA GACATATAGA ATAAGGGTTT TTGCATAATA
      AGCAGGTTGT TATTTAGGTT AACAATATTA ATTCAGGTTT TTTAGTTGGA AAAACAATTC
      CTGTAACCTT CTATTTTCTA TAATTGTAGT AATTGCTCTA CAGATAATGT CTATATATTG
      GCCAAACTGG TGCATGACAA GTACTGTATT TTTTTATACC TAAATAAAGA AAAATCTTTA 4080
      GCCTGGGCAA CAAAAAA
20
      Seq ID No: 105 Protein sequence:
      Protein Accession #: NP_001786.1
25
                             21
                                        31
                                                    41
                                                                51
                 11
      MORLMMLLAT SGACLGLLAV AAVAAAGANP AQRDTHSLLP THRRQKRDWI WNQMHIDEEK
      NTSLPHHVGK IKSSVSRKNA KYLLKGEYVG KVFRVDAETG DVFAIERLDR ENISEYHLTA
      VIVDKDTGEN LETPSSFTIK VHDVNDNWPV FTHRLFNASV PESSAVGTSV ISVTAVDADD
PTVGDHASVM YQILKGKEYF AIDNSGRIIT ITKSLDREKQ ARYEIVVEAR DAQGLRGDSG
30
      TATVLVTLQD INDNFPFFTQ TKYTFVVPED TRVGTSVGSL FVEDPDEPQN RMTKYSILRG
                                                                             300
      DYODAFTIET NPAHNEGIIK PMKPLDYEYI QOYSFIVEAT DPTIDLRYMS PPAGNRAQVI
      INITDVDEPP IFQQPFYHFQ LKENQKKPLI GTVLAMDPDA ARHSIGYSIR RTSDKGQFFR
      VTKKGDIYNE KELDREVYPW YNLTVEAKEL DSTGTPTGKE SIVQVHIEVL DENDNAPEFA
                                                                             480
35
      KPYOPKVCEN AVHGQLVLQI SAIDKDITPR NVKFKFTLNT ENNFTLTDNH DNTANITVKY
                                                                             540
      GOFDREHTKV HFLPVVISDN GMPSRTGTST LTVAVCKCNE QGEFTFCEDM AAQVGVSIQA
      VVAILLCILT ITVITLLIFL RRRLRKQARA HGKSVPEIHE QLVTYDEEGG GEMDTTSYDV
                                                                             660
      SVLNSVRRGG AKPPRPALDA RPSLYAQVQK PPRHAPGAHG GPGEMAAMIE VKKDEADHDG
                                                                             720
      DGPPYDTLHI YGYEGSESIA ESLSSLGTDS SDSDVDYDFL NDWGPRFKML AELYGSDPRE
                                                                             780
40
      ELLY
      Seq ID NO: 106 DNA sequence
      Nucleic Acid Accession #: none found
      Coding sequence: 1-474 (underlined sequences correspond to start and stop codons)
45
                                        31
                                                    41
      ACAGTACTCT GTGCAAAAAA CCTGGTGAAA AAGGATTTTT TCCGACTTCC TGATCCATTT
                                                                              60
      GCTAAGGTGG TGGTTGATGG ATCTGGGCAA TGCCATTCTA CAGATACTGT GAAGAATACG
                                                                             1.20
50
      CTTGATCCAA AGTGGAATCA GCATTATGAC CTGTATATTG GAAAGTCTGA TTCAGTTACG
      ATCAGTGTAT GGAATCACAA GAAGATCCAT AAGAAACAAG GTGCTGGATT TCTCGGTTGT
      GTTCGTCTTC TTTCCAATGC CATCAACCGC CTCAAAGACA CTGGTTATCA GAGGTTGGAT
                                                                             300
      TTATGCAAAC TCGGGCCAAA TGACAATGAT ACAGTTAGAG GACAGATAGT AGTAAGTCTT
                                                                             360
      CAGTCCAGAG ACCGAATAGG CACAGGAGGA CAAGTTGTGG ACTGCAGTCG TTTATTTGAT
      AACGATTTAC CAGACGAGC TCATTATTTG TGGACTTGGA AAGATAGATG TTAATGACTG
GAAGGTAAAC ACCCGGTTAA AACACTGTAC ACCAGACAGC AACATTGTCA AATGGTTCTG
55
                                                                             480
                                                                             540
      GAAAGCTGTG GAGTTTTTTG ATGAAGAGCG ACGAGCAAGA TTGCTTCAGT TTGTGACAGG
                                                                             600
      ATCCTCTCGA GTGCCTCTGC AGGGCTTCAA AGCATTGCAA GGTGCTGCAG GCCCGAGACT
                                                                             660
      CTTTACCATA CACCAGATTG ATGCCTGCAC TAACAACCTG CCGAAAGCCC ACACTTGCTT
                                                                             720
      CAATCGAATA GACATTCCAC CCTATGAAAG CTATGAAAAG CTATATGAAA AGCTGCTAAC
60
                                                                             780
      AGCCATTGAA GAAACATGTG GATTTGCTGT GGAATGACAA GCTTCAAGGA TTTACCCAGG
                                                                             840
      Seq ID No: 107 Protein sequence:
65
      Protein Accession #: none found
                             21
                                        31
                                                    41
                                                                51
                  11
70
      TVLCAKNLVK KDFFRLPDPF AKVVVDGSGQ CHSTDTVKNT LDPKWNQHYD LYIGKSDSVT
                                                                              60
      ISVWNHKKIH KKQGAGFLGC VRLLSNAINR LKDTGYQRLD LCKLGPNDND TVRGQIVVSL
      OSRDRIGTGG OVVDCSRLFD NDLPDGAHYL WTWKDRC
      Seq ID NO: 108 DNA sequence
75
      Nucleic Acid Accession #: NM 002318.1
      Coding sequence: 248-2572 (underlined sequences correspond to start and stop codons)
```

	1	11	21	31	41	51	
5	ACTCCAGCC	רכים מיייז כיייד	A CCCTTCCTC		CCAGCCATCG	 GAGACCAGAG	60
5					AGCGGAGGGG		120
					CCAAAAAGCT		180
					CGTGGGATCA		240
10					TGCCTGGCTA		300
10					CATTACCCCG		360
					AACGTGGCCA		420
					GTGGAGGTGT GCTGCCCACG		480 540
					TCCTCCTACG		600
15					GAGGCGACCC		660
					GAGGATGTCG		720
					TTGATCAACC		780
					CTCTCAACCT		840
20					AAGACCTGGA GGCATGTTTG		900 960
20					TCACGGAGGA		1020
					ATCTCCAGCT		1080
	CCCCCAGGTG	${\tt TCACTGGACC}$	CCATGAAGAA	${\tt TGTCACCTGC}$	${\tt GAGAATGGGC}$	TGCCGGCCGT	1140
25					CCCTCGAGAT		1200
25					GCCTACATCG		1260
					GACGACAAGT GCCAAAGAGG		1320 1380
					GAGATCCAGT		1440
					CAGGGCTGCA		1500
30					CAGAAGAAGC		1560
					GTGGAGAGAA		1620
					GAGGCCATGG		1680
					ACCTGGTATT TCGGGAACGG		1740 1800
35					CAGGGCGGAG		1860
					CTCAATGCGG		1920
					CAGTGTGCCA		1980
					GGCTACCGCC		2040
40					CGGCCCAAGA		2100
40					ATGGAGGTGT CACAAGGCCA		2160 2220
					GAGTGTGCCA		2280
					GACATCGACT		2340
	TGACATCACT	GACGTGCCCC	CTGGAGACTA	CCTGTTCCAG	${\tt GTTGTTATTA}$	ACCCCAACTT	2400
45					TGCAGGAGCC		2460
					TTCAGCGAAG TCCCCGCAGT		2520 2580
					ATGGGACTTC		2640
	CTGAGTCTGA	ACGAATGCCA	CGTGCCCTCA	CCCAGCCCGG	CCCCCACCCT	GTCCAGACCC	2700
50					ATCATTCATG		2760
					GTTTGTCCAC		2820
					CAGACAGGTT		2880
					AGCCGCGCTC GGTCAGGCCG		2940 3000
55					GACCTCTCTT		3060
55					GTTTTCTGAT		3120
	CAGACTTGGT	GCTTCCCTCT	CCACAACCCC	CACCCCTTGT	TTTTCAAGAT	ACTATTATTA	3180
						ATCTGGGCCC	3240
60					AGTGACTCAT		3300
60					ACTTGAAACT	GTGACAGGGC	3360 3420
	GAAAGATTTA		CAICACAGAC	ACTIACACAT	ACTIGARACT	IGGAAIAAAA	3420
	Old Brosser						
		109 <u>Proteir</u>					
65	Protein Acc	cession #: 1	NP_002309.1				
				1			
	1	11	21	31	41	51	
	1	Ī	Ī	Ĭ	Ī	Ī	
70	MERPLCSHLC	SCLAMLALLS	PLSLAQYDSW	PHYPEYFQQP	APEYHQPQAP	ANVAKIQLRL	60
					GYVEAKSWTA		120
					KRIPGFKFDN		180
					HWTAKNSRVV		240 300
75	LAMIKA AKME.	CDSELBKVAR	DEODIVELEC	GAYIGEGRVE	VSLDPMKNVT VLKNGEWGTV	CDDKWDLVSA	360
					SIIDCKFNAE		420
				. =			

```
GVRCNTPAMG LQKKLRLNGG RNPYEGRVEV LVERNGSLVW GMVCGQNWGI VEAMVVCRQL
      GLGFASNAFQ ETWYWHGDVN SNKVVMSGVK CSGTELSLAH CRHDGEDVAC PQGGVQYGAG
                                                                          540
      VACSETAPDL VLNAEMVQQT TYLEDRPMFM LQCAMEENCL SASAAQTDPT TGYRRLLRFS
                                                                          600
      SQIHNNGOSD FRPKNGRHAW IWHDCHRHYH SMEVFTHYDL LNLNGTKVAE GHKASFCLED
      TECEGDIQKN YECANFGDQG ITMGCWDMYR HDIDCQWVDI TDVPPGDYLF QVVINPNFEV
      AESDYSNNIM KCRSRYDGHR IWMYNCHIGG SFSEETEKKF EHFSGLLNNQ LSPQ
      Seq ID NO: 110 DNA sequence
      Nucleic Acid Accession #: none found, CAT_73007 3
10
      Coding sequence: 1-495 (underlined sequences correspond to start and stop codons)
      CGGACGCGTG GGTCGACCCA CGCGTCCGCC CACGCGTCCG TATGGACAGA GCCTCCACTG
                                                                           60
15
      GCTGCTGCCT GCCCGCCACA TACCCAGCTG ACATGGGCAC CGCAGGAGCC ATGCAGCTGT
                                                                          120
      CTGGGTGATC CTGGGCTTCC TCCTGTTCCG AGGCCACAAC TCCCAGCCCA CAATGACCCA
                                                                          180
      ACCTCTAGCT CTCAGGGAGG CCTTGGCGGT CTAAGTCTGA CCACAGAGCC AGTTTCTTCC
      ACCCAGGATA CATCCCTTCC TCAGAGGCTA ACAGGCCAAG CCATCTGTCC AGCACTGGTA
                                                                          300
      CCCAGGCGCA GGTGTCCCCA GCAGTGGAAG AGACGGAGGC ACAAGCAGAG ACACATTTCA
                                                                          360
20
      ACTGTTCCCC CCAATTCAAC CACCATGAGC CTGAGCATGA GGGAAGATGC GACCATCCTG
      CCAGCCCCAC GTCAGAGACT GTGCTCACTG TGGCTGCATT TGGGATGGAG TCGGGTGGAG
                                                                          480
      GCCCACTCTG GCTAGGGGGC GGCAGGCTGA GAGCTCACCT GTTCAGCAGA GAAGTGGAAC
                                                                          540
      CACTTTGCTC CTGGAGCCTG TCTACCACAG TGTTATCAGC TTCATTGTCA TCCTGGTGGT
                                                                          600
      GTGGTGATCA TCCTAGTTGG TGTGGTCAGC CTGAGGGTTC AGTGTCGGAA GAGCAAGGAG
                                                                          660
25
      TCTGAAGATC CCAGAACCTG GGAGTACAGG GCGTGTCTGA CAAGCTGGTC ACAGACCATG
      GCGAGAACGA CAGCATCGCC CATTATCACA TGGAAGACAT CACACGACTT AGGGCAACAC
                                                                          780
      GCACTCAGCA GCGAGCATCA AAGGAGCCTA CGCATGGCCC AGACTGAGAG CAAGCACAAA
30
      Seq ID No: 111 Protein sequence:
      Protein Accession #: none found, CAT_73007_3
                 11
                            21
                                       31
                                                  41
35
      RTRGSTHASA HASVWTEPPL AAACPPHTQL TWAPQEPCSC LGDPGLPPVP RPQLPAHNDP
                                                                           60
      TSSSQGGLGG LSLTTEPVSS TQDTSLPQRL TGQAICPALV PRRRCPQQWK RRRHKQRHIS
                                                                          120
      TVPPNSTTMS LSMREDATIL PAPRORLCSL WLHLGWSRVE AHSG
40
      Seq ID NO: 112 DNA sequence
      Nucleic Acid Accession #: NM 005424.1
      Coding sequence: 37-3453 (underlined sequences correspond to start and stop codons)
45
                 11
                            21
                                       31
                                                  41
                                                             51
      CGCTCGTCCT GGCTGGCCTG GGTCGGCCTC TGGAGTATGG TCTGGCGGGT GCCCCCTTTC
      TTGCTCCCCA TCCTCTTCTT GGCTTCTCAT GTGGGCGCGG CGGTGGACCT GACGCTGCTG
                                                                          120
      GCCAACCTGC GGCTCACGGA CCCCCAGCGC TTCTTCCTGA CTTGCGTGTC TGGGGAGGCC
                                                                          180
50
      GGGGCGGGGA GGGCTCGGA CGCCTGGGGC CCGCCCCTGC TGCTGGAGAA GGACGACCGT
                                                                          240
      ATCGTGCGCA CCCCGCCCGG GCCACCCCTG CGCCTGGCGC GCAACGGTTC GCACCAGGTC
      ACGCTTCGCG GCTTCTCCAA GCCCTCGGAC CTCGTGGGCG TCTTCTCCTG CGTGGGCGGT
                                                                          360
      GCTGGGGCGC GGCGCACGCG CGTCATCTAC GTGCACAACA GCCCTGGAGC CCACCTGCTT
                                                                          420
      CCAGACAAGG TCACACACAC TGTGAACAAA GGTGACACCG CTGTACTTTC TGCACGTGTG
                                                                          480
55
      CACAAGGAGA AGCAGACAGA CGTGATCTGG AAGAGCAACG GATCCTACTT CTACACCCTG
                                                                          540
      GACTGGCATG AAGCCCAGGA TGGGCGGTTC CTGCTGCAGC TCCCAAATGT GCAGCCACCA
      TCGAGCGGCA TCTACAGTGC CACTTACCTG GAAGCCAGCC CCCTGGGCAG CGCCTTCTTT
                                                                          660
      CGGCTCATCG TGCGGGGTTG TGGGGCTGGG CGCTGGGGGC CAGGCTGTAC CAAGGAGTGC
                                                                          720
      CCAGGTTGCC TACATGGAGG TGTCTGCCAC GACCATGACG GCGAATGTGT ATGCCCCCCT
60
      GGCTTCACTG GCACCCGCTG TGAACAGGCC TGCAGAGAGG GCCGTTTTGG GCAGAGCTGC
      CAGGAGCAGT GCCCAGGCAT ATCAGGCTGC CGGGGCCTCA CCTTCTGCCT CCCAGACCCC
      TATGGCTGCT CTTGTGGATC TGGCTGGAGA GGAAGCCAGT GCCAAGAAGC TTGTGCCCCT
                                                                          960
      GGTCATTTTG GGGCTGATTG CCGACTCCAG TGCCAGTGTC AGAATGGTGG CACTTGTGAC
                                                                         1020
      CGGTTCAGTG GTTGTGTCTG CCCCTCTGGG TGGCATGGAG TGCACTGTGA GAAGTCAGAC
      CGGATCCCCC AGATCCTCAA CATGGCCTCA GAACTGGAGT TCAACTTAGA GACGATGCCC
65
                                                                         1140
      CGGATCAACT GTGCAGCTGC AGGGAACCCC TTCCCCGTGC GGGGCAGCAT AGAGCTACGC
      AAGCCAGACG GCACTGTGCT CCTGTCCACC AAGGCCATTG TGGAGCCAGA GAAGACCACA
      GCTGAGTTCG AGGTGCCCCG CTTGGTTCTT GCGGACAGTG GGTTCTGGGA GTGCCGTGTG
      TCCACATCTG GCGGCCAAGA CAGCCGGCGC TTCAAGGTCA ATGTGAAAGT GCCCCCCGTG
70
      CCCCTGGCTG CACCTCGGCT CCTGACCAAG CAGAGCCGCC AGCTTGTGGT CTCCCCGCTG 1440
      GTCTCGTTCT CTGGGGATGG ACCCATCTCC ACTGTCCGCC TGCACTACCG GCCCCAGGAC 1500
      AGTACCATGG ACTGGTCGAC CATTGTGGTG GACCCCAGTG AGAACGTGAC GTTAATGAAC 1560
      CTGAGGCCAA AGACAGGATA CAGTGTTCGT GTGCAGCTGA GCCGGCCAGG GGAAGGAGGA
      GAGGGGGCCT GGGGGCCTCC CACCCTCATG ACCACAGACT GTCCTGAGCC TTTGTTGCAG 1680
75
      CCGTGGTTGG AGGGCTGGCA TGTGGAAGGC ACTGACCGGC TGCGAGTGAG CTGGTCCTTG 1740
      CCCTTGGTGC CCGGGCCACT GGTGGGCGAC GGTTTCCTGC TGCGCCTGTG GGACGGGACA
```

```
CGGGGGCAGG AGCGGCGGA GAACGTCTCA TCCCCCCAGG CCCGCACTGC CCTCCTGACG 1860
      GGACTCACGC CTGGCACCCA CTACCAGCTG GATGTGCAGC TCTACCACTG CACCCTCCTG
      GGCCCGGCCT CGCCCCTGC ACACGTGCTT CTGCCCCCCA GTGGGCCTCC AGCCCCCCGA
      CACCTCCACG CCCAGGCCCT CTCAGACTCC GAGATCCAGC TGACATGGAA GCACCCGGAG
                                                                         2040
 5
      GCTCTGCCTG GGCCAATATC CAAGTACGTT GTGGAGGTGC AGGTGGCTGG GGGTGCAGGA
                                                                         2100
      GACCCACTGT GGATAGACGT GGACAGGCCT GAGGAGACAA GCACCATCAT CCGTGGCCTC
      AACGCCAGCA CGCGCTACCT CTTCCGCATG CGGGCCAGCA TTCAGGGGCT CGGGGACTGG
      AGCAACACAG TAGAAGAGTC CACCCTGGGC AACGGGCTGC AGGCTGAGGG CCCAGTCCAA
                                                                         2280
      GAGAGCCGGG CAGCTGAAGA GGGCCTGGAT CAGCAGCTGA TCCTGGCGGT GGTGGGCTCC
                                                                         2340
10
      GTGTCTGCCA CCTGCCTCAC CATCCTGGCC GCCCTTTTAA CCCTGGTGTG CATCCGCAGA
                                                                         2400
      AGCTGCCTGC ATCGGAGACG CACCTTCACC TACCAGTCAG GCTCGGGCGA GGAGACCATC
                                                                         2460
      CTGCAGTTCA GCTCAGGGAC CTTGACACTT ACCCGGCGGC CAAAACTGCA GCCCGAGCCC
                                                                         2520
      CTGAGCTACC CAGTGCTAGA GTGGGAGGAC ATCACCTTTG AGGACCTCAT CGGGGAGGGG
                                                                         2580
      AACTTCGGCC AGGTCATCCG GGCCATGATC AAGAAGGACG GGCTGAAGAT GAACGCAGCC
                                                                         2640
15
      ATCAAAATGC TGAAAGAGTA TGCCTCTGAA AATGACCATC GTGACTTTGC GGGAGAACTG
      GAAGTTCTGT GCAAATTGGG GCATCACCCC AACATCATCA ACCTCCTGGG GGCCTGTAAG
                                                                         2760
      AACCGAGGTT ACTTGTATAT CGCTATTGAA TATGCCCCCT ACGGGAACCT GCTAGATTTT 2820
      CTGCGGAAAA GCCGGGTCCT AGAGACTGAC CCAGCTTTTG CTCGAGAGCA TGGGACAGCC
                                                                         2880
      TCTACCCTTA GCTCCCGGCA GCTGCTGCGT TTCGCCAGTG ATGCGGCCAA TGGCATGCAG
20
      TACCTGAGTG AGAAGCAGTT CATCCACAGG GACCTGGCTG CCCGGAATGT GCTGGTCGGA
      GAGAACCTAG CCTCCAAGAT TGCAGACTTC GGCCTTTCTC GGGGAGAGGA GGTTTATGTG
                                                                         3060
      AAGAAGACGA TGGGGCGTCT CCCTGTGCGC TGGATGGCCA TTGAGTCCCT GAACTACAGT 3120
      GTCTATACCA CCAAGAGTGA TGTCTGGTCC TTTGGAGTCC TTCTTTGGGA GATAGTGAGC 3180
      CTTGGAGGTA CACCCTACTG TGGCATGACC TGTGCCGAGC TCTATGAAAA GCTGCCCCAG 3240
25
      GGCTACCGCA TGGAGCAGCC TCGAAACTGT GACGATGAAG TGTACGAGCT GATGCGTCAG 3300
      TGCTGGCGGG ACCGTCCCTA TGAGCGACCC CCCTTTGCCC AGATTGCGCT ACAGCTAGGC 3360
      CGCATGCTGG AAGCCAGGAA GGCCTATGTG AACATGTCGC TGTTTGAGAA CTTCACTTAC
      GCGGGCATTG ATGCCACAGC TGAGGAGGCC TGAGCTGCCA TCCAGCCAGA ACGTGGCTCT 3480
      GCTGGCCGGA GCAAACTCTG CTGTCTAACC TGTGACCAGT CTGACCCTTA CAGCCTCTGA 3540
30
      CTTAAGCTGC CTCAAGGAAT TTTTTTAACT TAAGGGAGAA AAAAAGGGAT CTGGGGATGG 3600
      GGTGGGCTTA GGGGAACTGG GTTCCCATGC TTTGTAGGTG TCTCATAGCT ATCCTGGGCA 3660
      TCCTTCTTC TAGTTCAGCT GCCCCACAGG TGTGTTTCCC ATCCCACTGC TCCCCCAACA
                                                                         3720
      CAAACCCCCA CTCCAGCTCC TTCGCTTAAG CCAGCACTCA CACCACTAAC ATGCCCTGTT 3780
      CAGCTACTCC CACTCCCGGC CTGTCATTCA GAAAAAAATA AATGTTCTAA TAAGCTCCAA 3840
35
      AAAAA
      Seq ID No: 113 Protein sequence:
      Protein Accession #: NP_005415.1
40
                                                             51
                                       31
                                                  41
      MVWRVPPFLL PILFLASHVG AAVDLTLLAN LRLTDPORFF LTCVSGEAGA GRGSDAWGPP
                                                                           60
      LLLEKDDRIV RTPPGPPLRL ARNGSHQVTL RGFSKPSDLV GVFSCVGGAG ARRTRVIYVH . 120
      NSFGAHLLPD KVTHTVNKGD TAVLSARVHK EKQTDVIWKS NGSYFYTLDW HEAQDGRFLL
                                                                          180
45
      QLPNVQPPSS GIYSATYLEA SPLGSAFFRL IVRGCGAGRW GPGCTKECPG CLHGGVCHDH
      DGECVCPPGF TGTRCEQACR EGRFGQSCQE QCPGISGCRG LTFCLPDPYG CSCGSGWRGS
      QCQEACAPGH FGADCRLQCQ CQNGGTCDRF SGCVCPSGWH GVHCEKSDRI PQILNMASEL
                                                                          360
      EFNLETMPRI NCAAAGNPFP VRGSIELRKP DGTVLLSTKA IVEPEKTTAE FEVPRLVLAD
                                                                          420
      SGFWECRVST SGGQDSRRFK VNVKVPPVPL AAPRLLTKQS RQLVVSPLVS FSGDGPISTV
50
      RLHYRPQDST MDWSTIVVDP SENVTLMNLR PKTGYSVRVQ LSRPGEGGEG AWGPPTLMTT
      DCPEPLLQPW LEGWHVEGTD RLRVSWSLPL VPGPLVGDGF LLRLWDGTRG QERRENVSSP
      QARTALLTGL TPGTHYQLDV QLYHCTLLGP ASPPAHVLLP PSGPPAPRHL HAQALSDSEI
                                                                          660
      QLTWKHPEAL PGPISKYVVE VQVAGGAGDP LWIDVDRPEE TSTIIRGLNA STRYLFRMRA
                                                                          720
      SIOGLGDWSN TVEESTLGNG LOAEGPVOES RAAEEGLDQQ LILAVVGSVS ATCLTILAAL
55
      LTLVCIRRSC LHRRRTFTYQ SGSGEETILQ FSSGTLTLTR RPKLQPEPLS YPVLEWEDIT
                                                                          840
      FEDLIGEGNF GQVIRAMIKK DGLKMNAAIK MLKEYASEND HRDFAGELEV LCKLGHHPNI
                                                                          900
      INLLGACKNR GYLYIAIEYA PYGNLLDFLR KSRVLETDPA FAREHGTAST LSSRQLLRFA
                                                                          960
      SDAANGMQYL SEKQFIHRDL AARNVLVGEN LASKIADFGL SRGEEVYVKK TMGRLPVRWM
                                                                         1020
      AIESLNYSVY TTKSDVWSFG VLLWEIVSLG GTPYCGMTCA ELYEKLPQGY RMEQPRNCDD 1080
60
      EVYELMRQCW RDRPYERPPF AQIALQLGRM LEARKAYVNM SLFENFTYAG IDATAEEA
      Seg ID NO: 114 DNA sequence
      Nucleic Acid Accession #: NM 002632.1
65
      Coding sequence: 322-771 (underlined sequences correspond to start and stop codons)
                 11
                            21
      GGGATTCGGG CCGCCCAGCT ACGGGAGGAC CTGGAGTGGC ACTGGGCGCC CGACGGACCA
                                                                           60
70
      TCCCCGGGAC CCGCCTGCCC CTCGGCGCCC CGCCCGCCG GGCCGCTCCC CGTCGGGTTC
                                                                          120
      CCCAGCCACA GCCTTACCTA CGGGCTCCTG ACTCCGCAAG GCTTCCAGAA GATGCTCGAA
                                                                          180
      CCACCGGCCG GGGCCTCGGG GCAGCAGTGA GGGAGGCGTC CAGCCCCCA CTCAGCTCTT
      CTCCTCCTGT GCCAGGGGCT CCCCGGGGGA TGAGCATGGT GGTTTTCCCT CGGAGCCCCC
                                                                          300
      TGGCTCGGGA CGTCTGAGAA G\underline{\mathrm{ATG}}CCGGTC ATGAGGCTGT TCCCTTGCTT CCTGCAGCTC
                                                                          360
75
      CTGGCCGGGC TGGCGCTGCC TGCTGTGCCC CCCCAGCAGT GGGCCTTGTC TGCTGGGAAC
                                                                          420
      GGCTCGTCAG AGGTGGAAGT GGTACCCTTC CAGGAAGTGT GGGGCCGCAG CTACTGCCGG
```

```
GCGCTGGAGA GGCTGGTGGA CGTCGTGTCC GAGTACCCCA GCGAGGTGGA GCACATGTTC
      AGCCCATCCT GTGTCTCCCT GCTGCGCTGC ACCGGCTGCT GCGGCGATGA GAATCTGCAC
                                                                             600
      TGTGTGCCGG TGGAGACGGC CAATGTCACC ATGCAGCTCC TAAAGATCCG TTCTGGGGAC
                                                                             660
      CGGCCCTCCT ACGTGGAGCT GACGTTCTCT CAGCACGTTC GCTGCGAATG CCGGCCTCTG
                                                                             720
 5
      \texttt{CGGGAGAAGA} \hspace{0.1in} \textbf{TGAAGCCGGA} \hspace{0.1in} \textbf{AAGGTGCGGC} \hspace{0.1in} \textbf{GATGCTGTTC} \hspace{0.1in} \textbf{CCCGGAGGT} \hspace{0.1in} \underline{\textbf{A}} \textbf{CCCACCCCT}
                                                                             780
      TGGAGGAGAG AGACCCCGCA CCCGGCTCGT GTATTTATTA CCGTCACACT CTTCAGTGAC
                                                                             840
      TCCTGCTGGT ACCTGCCCTC TATTTATTAG CCAACTGTTT CCCTGCTGAA TGCCTCGCTC
      CCTTCAAGAC GAGGGCAGG GAAGGACAGG ACCCTCAGGA ATTCAGTGCC TTCAACAACG
                                                                            960
      TGAGAGAAAG AGAGAAGCCA GCCACAGACC CCTGGGAGCT TCCGCTTTGA AAGAAGCAAG
                                                                           1020
10
      ACACGTGGCC TCGTGAGGGG CAAGCTAGGC CCCAGAGGCC CTGGAGGTCT CCAGGGGCCT
                                                                           1080
      GCAGAAGGAA AGAAGGGGGC CCTGCTACCT GTTCTTGGGC CTCAGGCTCT GCACAGACAA
                                                                           1140
      GCAGCCCTTG CTTTCGGAGC TCCTGTCCAA AGTAGGGATG CGGATTCTGC TGGGGCCGCC
      ACGGCCTGGT GGTGGGAAGG CCGGCAGCGG GCGGAGGGGA TTCAGCCACT TCCCCCTCTT
                                                                           1260
      CTTCTGAAGA TCAGAACATT CAGCTCTGGA GAACAGTGGT TGCCTGGGGG CTTTTGCCAC
                                                                           1320
15
      TCCTTGTCCC CCGTGATCTC CCCTCACACT TTGCCATTTG CTTGTACTGG GACATTGTTC
      TTTCCGGCCG AGGTGCCACC ACCCTGCCCC CACTAAGAGA CACATACAGA GTGGGCCCCG
                                                                           1440
      GGCTGGAGAA AGAGCTGCCT GGATGAGAAA CAGCTCAGCC AGTGGGGATG AGGTCACCAG
                                                                           1500
      GGGAGGAGCC TGTGCGTCCC AGCTGAAGGC AGTGGCAGGG GAGCAGGTTC CCCAAGGGCC 1560
      CTGGCACCCC CACAAGCTGT CCCTGCAGGG CCATCTGACT GCCAAGCCAG ATTCTCTTGA
20
      ATAAAGTATT CTAGTGTGGA AACGC ,
      Seq ID No: 115 Protein sequence:
      Protein Accession #: NP 002623.1
25
                                        31
                 11
                             21
                                                    41
                                                               51
      MPVMRLFPCF LQLLAGLALP AVPPQQWALS AGNGSSEVEV VPFQEVWGRS YCRALERLVD
                                                                             60
      VVSEYPSEVE HMFSPSCVSL LRCTGCCGDE NLHCVPVETA NVTMQLLKIR SGDRPSYVEL
      TFSOHVRCEC RPLREKMKPE RCGDAVPRR
30
      Seq ID NO: 116 DNA sequence
      Nucleic Acid Accession #: NM 007361.1
      Coding sequence: 1-4131 (underlined sequences correspond to start and stop codons)
35
                 11
                             21
                                        31
                                                    41
                                                               51
      ATGGAGGGG ACCGGGTGGC CGGGCGGCCG GTGCTGTCGT CGTTACCAGT GCTACTGCTG
      CTGCAGTTGC TAATGTTGCG GGCCGCGGCG CTGCACCCAG ACGAGCTCTT CCCACACGGG
                                                                            120
      GAGTCGTGGT GGGACCAGCT CCTGCAGGAA GGCGACGACG TAAAGCTCAG CCGTGGTGAA
                                                                            180
40
      GCTGGCGAAT CCCCTGCACT TCTTACGAAG CCCGATTCAG CAACCTCTAC GTGGGCACCA
                                                                            240
      ACGGCATCAT CTCCACTCAG GACTTCCCCA GGGAAACGCA GTATGTGGAC TATGATTTCC
      CCACCGACTT CCCGGCCATC GCCCCTTTC TGGCGGACAT CGACACGAGC CACGGCAGAG
                                                                            360
      GCCGAGTCCT GTACCGAGAG GACACCTCCC CCGCAGTGCT GGGCCTGGCC GCCCGCTATG
                                                                            420
      TGCGCGCTGG CTTCCCGCGC TCTGCGCGCT TTTTACCCCC ACCCACGCCT TCCTGGCCAC
                                                                            480
45
      CTGGGAGCAG GTAGGCGCTT ACGAGGAGGT CAAACGCGGG CGCTGCCCTC GGGAGAGCTG
                                                                            540
      AACACTTTCC AGGCAGTTTT GGCATCTGAT GGGTCTGATA GCTACGCCCT CTTTCTTTAT
      CCTGCCAACG GCCTGCAGTT CCTTGGAACC CGCCCCAAAG AGTCTTACAA TGTCCAGCTT
                                                                            660
      CAGCTTCCAG CTCGGGTGGG CTTCTGCCGA GGGGAGGCTG ATGATCTGAA GTCAGAAGGA
                                                                            720
      CCATATTTCA GCTTGACTAG CACTGAACAG TCTGTGAAAA ATCTCTATCA ACTAAGCAAC
                                                                            780
50
      CTGGGGATCC CTGGAGTGTG GGCTTTCCAT ATCGGCAGCA CTTCCCCGTT GGACAATGTC
      AGGCCAGCTG CAGTTGGAGA CCTTTCCGCT GCCCACTCTT CTGTTCCCCT GGGACGTTCC
      TTCAGCCATG CTACAGCCCT GGAAAGTGAC TATAATGAGG ACAATTTGGA TTACTACGAT
                                                                            960
      GTGAATGAGG AGGAAGCTGA ATACCTTCCG GGTGAACCAG AGGAGGCATT GAATGGCCAC
                                                                           1020
      AGCAGCATTG ATGTTTCCTT CCAATCCAAA GTGGATACAA AGCCTTTAGA GGAATCTTCC
                                                                           1080
55
      ACCTTGGATC CTCACACCAA AGAAGGAACA TCTCTGGGAG AGGTAGGGGG CCCAGATTTA
      AAAGGCCAAG TTGAGCCCTG GGATGAGAGA GAGACCAGAA GCCCAGCTCC ACCAGAGGTA
                                                                           1200
      GACAGAGATT CACTGGCTCC TTCCTGGGAA ACCCCACCAC CGTACCCCGA AAACGGAAGC
                                                                           1260
      ATCCAGCCCT ACCCAGATGG AGGGCCAGTG CCTTCGGAAA TGGATGTTCC CCCAGCTCAT
                                                                           1320
      CCTGAAGAAG AAATTGTTCT TCGAAGTTAC CCTGCTTCAG GTCACACTAC ACCCTTAAGT
60
      CGAGGGACGT ATGAGGTGGG ACTGGAAGAC AACATAGGTT CCAACACCGA GGTCTTCACG
      TATAATGCTG CCAACAAGGA AACCTGTGAA CACAACCACA GACAATGCTC CCGGCATGCC
                                                                           1500
      TTCTGCACGG ACTATGCCAC TGGCTTCTGC TGCCACTGCC AATCCAAGTT TTATGGAAAT
                                                                           1560
      GGGAAGCACT GTCTGCCTGA GGGGGCACCT CACCGAGTGA ATGGGAAAGT GAGTGGCCAC
      CTCCACGTGG GCCATACACC CGTGCACTTC ACTGATGTGG ACCTGCATGC GTATATCGTG
                                                                           1680
65
      GGCAATGATG GCAGAGCCTA CACGGCCATC AGCCACATCC CACAGCCAGC AGCCCAGGCC
                                                                           1740
      CTCCTCCCC TCACACCAAT TGGAGGCCTG TTTGGCTGGC TCTTTGCTTT AGAAAAACCT
      GGCTCTGAGA ACGGCTTCAG CCTCGCAGGT GCTGCCTTTA CCCATGACAT GGAAGTTACA
      TTCTACCCGG GAGAGGAGAC GGTTCGTATC ACTCAAACTG CTGAGGGACT TGACCCAGAG
      AACTACCTGA GCATTAAGAC CAACATTCAA GGCCAGGTGC CTTACGTCCC AGCAAATTTC
                                                                           1980
70
      ACAGCCCACA TCTCTCCCTA CAAGGAGCTG TACCACTACT CCGACTCCAC TGTGACCTCT
                                                                           2040
      ACAAGTTCCA GAGACTACTC TCTGACTTTT GGTGCAATCA ACCAAACATG GTCCTACCGC
                                                                           2100
      ATCCACCAGA ACATCACTTA CCAGGTGTGC AGGCACGCCC CCAGACACCC GTCCTTCCCC
      ACCACCCAGC AGCTGAACGT GGACCGGGTC TTTGCCTTGT ATAATGATGA AGAAAGAGTG
                                                                           2220
      CTTAGATTTG CTGTGACCAA TCAAATTGGC CCGGTCAAAG AAGATTCAGA CCCCACTCCG
                                                                           2280
75
      GTGAATCCTT GCTATGATGG GAGCCACATG TGTGACACAA CAGCACGGTG CCATCCAGGG
                                                                           2340
      ACAGGTGTAG ATTACACCTG TGAGTGCGCA TCTGGGTACC AGGGAGATGG ACGGAACTGT
```

```
GTGGATGAAA ATGAATGTGC AACTGGCTTT CATCGCTGTG GCCCCAACTC TGTATGTATC 2460
      AACTTGCCTG GAAGCTACAG GTGTGAGTGC CGGAGTGGTT ATGAGTTTGC AGATGACCGG
      CATACTTGCA TCTTGATCAC CCCACCTGCC AACCCCTGTG AGGATGGCAG TCATACCTGT
      GCTCCTGCTG GGCAGGCCCG GTGTGTTCAC CATGGAGGCA GCACGTTCAG CTGTGCCTGC
                                                                          2640
 5
      CTGCCTGGTT ATGCCGGCGA TGGGCACCAG TGCACTGATG TAGATGAATG CTCAGAAAAC
      AGATGTCACC CTGCAGCTAC CTGCTACAAT ACTCCTGGTT CCTTCTCCTG CCGTTGTCAA
      CCCGGATATT ATGGGGATGG ATTTCAGTGC ATACCTGACT CCACCTCAAG CCTGACACCC
      TGTGAACAAC AGCAGCGCCA TGCCCAGGCC CAGTATGCCT ACCCTGGGGC CCGGTTCCAC
                                                                          2880
      ATCCCCCAAT GCGACGAGCA GGGCAACTTC CTGCCCCTAC AGTGTCATGG CAGCACTGGT
                                                                          2940
10
      TTCTGCTGGT GCGTGGACCC TGATGGTCAT GAAGTTCCTG GTACCCAGAC TCCACCTGGC
      TCCACCCCGC CTCACTGTGG ACCATCACCA GAGCCCACCC AGAGGCCCCC GACCATCTGT
                                                                          3060
      GAGCGCTGGA GGGAAAACCT GCTGGAGCAC TACGGTGGCA CCCCCCGAGA TGACCAGTAC
                                                                          3120
      GTGCCCCAGT GCGATGACCT GGGCCACTTC ATCCCCCTGC AGTGCCACGG AAAGAGCGAC
                                                                          3180
      TTCTGCTGGT GTGTGGACAA AGATGGCAGA GAGGTGCAGG GCACCCGCTC CCAGCCAGGC
                                                                          3240
15
      ACCACCCTG CGTGTATACC CACCGTCGCT CCACCCATGG TCCGGCCCAC GCCCCGGCCA
      GATGTGACCC CTCCATCTGT GGGCACCTTC CTGCTCTATA CTCAGGGCCA GCAGATTGGC
                                                                          3360
      TACTTACCCC TCAATGGCAC CAGGCTTCAG AAGGATGCAG CTAAGACCCT GCTGTCTCTG
                                                                          3420
      CATGGCTCCA TAATCGTGGG AATTGATTAC GACTGCCGGG AGAGGATGGT GTACTGGACA
      GATGTTGCTG GACGGACAAT CAGCCGTGCC GGTCTGGAAC TGGGAGCAGA GCCTGAGACG
20
      ATCGTGAATT CAGGTCTGAT AAGCCCTGAA GGACTTGCCA TAGACCACAT CCGCAGAACA
      ATGTACTGGA CGGACAGTGT CCTGGATAAG ATAGAGAGCG CCCTGCTGGA TGGCTCTGAG
                                                                          3660
      CGCAAGGTCC TCTTCTACAC AGATCTGGTG AATCCCCGTG CCATCGCTGT GGATCCAATC
                                                                          3720
      CGAGGCAACT TGTACTGGAC AGACTGGAAT AGAGAAGCTC CTAAAATTGA AACGTCATCT
      TTAGATGGAG AAAACAGAAG AATTCTGATC AATACAGACA TTGGATTGCC CAATGGCTTA
                                                                          3840
25
      ACCTTTGACC CTTTCTCTAA ACTGCTCTGC TGGGCAGATG CAGGAACCAA AAAACTGGAG
                                                                          3900
      TGTACACTAC CTGATGGAAC TGGACGGCGT GTCATTCAAA ACAACCTCAA GTACCCCTTC
                                                                          3960
      AGCATCGTAA GCTATGCAGA TCACTTCTAC CACACAGACT GGAGGAGGGA TGGTGTTGTA
                                                                          4020
      TCAGTAAATA AACATAGTGG CCAGTTTACT GATGAGTATC TCCCAGAACA ACGATCTCAC 4080
      CTCTACGGGA TAACTGCAGT CTACCCCTAC TGCCCAACAG GAAGAAAG<u>TA A</u>GTACAGTAA
                                                                          4140
30
      TGTAAAGGAA GACTTGGAGT TTACAATCAG AACCTGGACC CTAAAGAACA GTGACTGCAA 4200
      AGGCAAAGAA AGTAAAAAAG GAATTGGCCA TTAGACGTTC CTGAGCATCC AAGATGAACA 4260
      TTTTGTAGTG CAAAAAGACT TTTGTGAAAA GCTGATACCT CAATCTTTAC TACTGTATTT
                                                                          4320
      TTAAAAATGA AGGTTGTTAT TGCAAGTTTA AAAAGGTAAC AGAATTTTAA CTGTTGCTTA 4380
      TTAAAGCAAC TTCTTGTAAA CATTTATCAT TAATATTTAA AAGATCAAAT TCATTCAACT 4440
35
      AAGAATTAGA GTTTAAGACT CTAAACCTGA TTTTTGCCAT GGATTCCTTC TGGCCAAGAA 4500
      ATTAAAGCAC ATGTGATCAA TATAACAATA TAATCCTAAA CCTTGACAGT TGGAGAAGCC
      AATGCAGAAC TGATGGGAAA GGACCAATTA TTTATAGTTT CCCAACAAAA GTTCTAAGAT TTTTTACCTC TGCATCAGTG CATTTCTATT TATATCAAAA GGTGCTAAAA TGATTCAATT
                                                                          4620
                                                                          4680
      TGCATTTTCT GATCCTGTAG TGCCTCTATA GAAGTACCCA CAGAAAGTAA AGTATCACAT
                                                                          4740
40
      TTATAAATAC CAAAGATGTA ACAATTTTAA AATTTTCTAG ATTACTCCAA TAAAGTGTTT
                                                                          4800
      TAAGTTTAAA AAAAAAAAA AAAAAAAA
      Seq ID No: 117 Protein sequence:
45
      Protein Accession #: NP 031387.1
                 11
                            21
                                        31
                                                   41
                                                              51
      MEGDRVAGRP VLSSLPVLLL LQLLMLRAAA LHPDELFPHG ESWWDQLLQE GDDVKLSRGE
50
      AGESPALLTK PDSATSTWAP TASSPLRTSP GKRSMWTMIS PPTSRPSPLF WRTSTRATAE
      AESCTERTPP POCWAWPPAM CALASRALRA FYPHPRLPGH LGAGRRLRGG QTRALPSGEL
      NTFQAVLASD GSDSYALFLY PANGLQFLGT RPKESYNVQL QLPARVGFCR GEADDLKSEG
                                                                           240
      PYFSLTSTEQ SVKNLYQLSN LGIPGVWAFH IGSTSPLDNV RPAAVGDLSA AHSSVPLGRS
                                                                           300
      FSHATALESD YNEDNLDYYD VNEEEAEYLP GEPEEALNGH SSIDVSFQSK VDTKPLEESS
55
      TLDPHTKEGT SLGEVGGPDL KGOVEPWDER ETRSPAPPEV DRDSLAPSWE TPPPYPENGS
                                                                           420
      IQPYPDGGPV PSEMDVPPAH PEEEIVLRSY PASGHTTPLS RGTYEVGLED NIGSNTEVFT
      YNAANKETCE HNHRQCSRHA FCTDYATGFC CHCQSKFYGN GKHCLPEGAP HRVNGKVSGH
                                                                           540
      LHVGHTPVHF TDVDLHAYIV GNDGRAYTAI SHIPQPAAQA LLPLTPIGGL FGWLFALEKP
                                                                           600
      GSENGFSLAG AAFTHDMEVT FYPGEETVRI TQTAEGLDPE NYLSIKTNIQ GQVPYVPANF
60
      TAHISPYKEL YHYSDSTVTS TSSRDYSLTF GAINQTWSYR IHQNITYQVC RHAPRHPSFP
                                                                           720
      TTQQLNVDRV FALYNDEERV LRFAVTNQIG PVKEDSDPTP VNPCYDGSHM CDTTARCHPG
                                                                           780
      TGVDYTCECA SGYQGDGRNC VDENECATGF HRCGPNSVCI NLPGSYRCEC RSGYEFADDR
      HTCILITPPA NPCEDGSHTC APAGOARCVH HGGSTFSCAC LPGYAGDGHO CTDVDECSEN
      RCHPAATCYN TPGSFSCRCQ PGYYGDGFQC IPDSTSSLTP CEQQQRHAQA QYAYPGARFH
65
      IPQCDEQGNF LPLQCHGSTG FCWCVDPDGH EVPGTQTPPG STPPHCGPSP EPTQRPPTIC
                                                                          1020
      ERWRENLLEH YGGTPRDDQY VPQCDDLGHF IPLQCHGKSD FCWCVDKDGR EVQGTRSQPG
                                                                          1080
      TTPACIPTVA PPMVRPTPRP DVTPPSVGTF LLYTQGQQIG YLPLNGTRLQ KDAAKTLLSL
      HGSIIVGIDY DCRERMVYWT DVAGRTISRA GLELGAEPET IVNSGLISPE GLAIDHIRRT
                                                                          1200
      MYWTDSVLDK IESALLDGSE RKVLFYTDLV NPRAIAVDPI RGNLYWTDWN REAPKIETSS
                                                                          1260
70
      LDGENRRILI NTDIGLPNGL TFDPFSKLLC WADAGTKKLE CTLPDGTGRR VIQNNLKYPF
                                                                          1320
      SIVSYADHFY HTDWRRDGVV SVNKHSGQFT DEYLPEQRSH LYGITAVYPY CPTGRK
      Seq ID NO: 118 DNA sequence
      Nucleic Acid Accession #: NM_003088.1
75
      Coding sequence: 112-1593 (underlined sequences correspond to start and stop codons)
```

```
1
                 11
                            21
                                                            51
      GCGGAGGGTG CGTGCGGGCC GCGGCAGCCG AACAAAGGAG CAGGGGCGCC GCCGCAGGGA
                                                                          60
      CCCGCCACCC ACCTCCGGG GCCGCGAGC GGCCTCTCGT CTACTGCCAC C\underline{\mathsf{ATG}}ACCGCC
 5
      AACGGCACAG CCGAGGCGGT GCAGATCCAG TTCGGCCTCA TCAACTGCGG CAACAAGTAC
                                                                         180
      CTGACGGCCG AGGCGTTCGG GTTCAAGGTG AACGCGTCCG CCAGCAGCCT GAAGAAGAAG
                                                                         240
      CAGATCTGGA CGCTGGAGCA GCCCCCTGAC GAGGCGGGCA GCGCGGCCGT GTGCCTGCGC
      AGCCACCTGG GCCGCTACCT GGCGGCGGAC AAGGACGGCA ACGTGACCTG CGAGCGCGAG
                                                                         360
      GTGCCCGGTC CCGACTGCCG TTTCCTCATC GTGGCGCACG ACGACGGTCG CTGGTCGCTG
10
      CAGTCCGAGG CGCACCGGCG CTACTTCGGC GGCACCGAGG ACCGCCTGTC CTGCTTCGCG
      CAGACGGTGT CCCCCGCCGA GAAGTGGAGC GTGCACATCG CCATGCACCC TCAGGTCAAC
      ATCTACAGTG TCACCCGTAA GCGCTACGCG CACCTGAGCG CGCCGGCCGGC CGACGAGATC
                                                                         600
      GCCGTGGACC GCGACGTGCC CTGGGGCGTC GACTCGCTCA TCACCCTCGC CTTCCAGGAC
                                                                         660
      CAGCGCTACA GCGTGCAGAC CGCCGACCAC CGCTTCCTGC GCCACGACGG GCGCCTGGTG
                                                                         720
15
      GCGCGCCCG AGCCGGCCAC TGGCTACACG CTGGAGTTCC GCTCCGGCAA GGTGGCCTTC
      CGCGACTGCG AGGGCCGTTA CCTGGCGCCC TCGGGGCCCA GCGGCACGCT CAAGGCGGGC
                                                                         840
      AAGGCCACCA AGGTGGGCAA GGACGAGCTC TTTGCTCTGG AGCAGAGCTG CGCCCAGGTC
                                                                         900
      GTGCTGCAGG CGGCCAACGA GAGGAACGTG TCCACGCGCC AGGGTATGGA CCTGTCTGCC
                                                                         960
      AATCAGGACG AGGAGACCGA CCAGGAGACC TTCCAGCTGG AGATCGACCG CGACACCAAA
20
      AAGTGTGCCT TCCGTACCCA CACGGGCAAG TACTGGACGC TGACGGCCAC CGGGGGCGTG
      CAGTCCACCG CCTCCAGCAA GAATGCCAGC TGCTACTTTG ACATCGAGTG GCGTGACCGG
                                                                        1140
      CGCATCACAC TGAGGGCGTC CAATGGCAAG TTTGTGACCT CCAAGAAGAA TGGGCAGCTG
                                                                        1200
      GCCGCCTCGG TGGAGACAGC AGGGGACTCA GAGCTCTTCC TCATGAAGCT CATCAACCGC
      CCCATCATCG TGTTCCGCGG GGAGCATGGC TTCATCGGCT GCCGCAAGGT CACGGGCACC
      CTGGACGCCA ACCGCTCCAG CTATGACGTC TTCCAGCTGG AGTTCAACGA TGGCGCCTAC
25
      AACATCAAAG ACTCCACAGG CAAATACTGG ACGGTGGGCA GTGACTCCGC GGTCACCAGC
      AGCGGCGACA CTCCTGTGGA CTTCTTCTTC GAGTTCTGCG ACTATAACAA GGTGGCCATC
      AAGGTGGGCG GGCGCTACCT GAAGGGCGAC CACGCAGGCG TCCTGAAGGC CTCGGCGGAA
      ACCGTGGACC CCGCCTCGCT CTGGGAGTAC TAGGGCCGGC CCGTCCTTCC CCGCCCCTGC
30
      CCACATGGCG GCTCCTGCCA ACCCTCCCTG CTAACCCCTT CTCCGCCAGG TGGGCTCCAG
                                                                        1680
      GGCGGGAGGC AAGCCCCCTT GCCTTTCAAA CTGGAAACCC CAGAGAAAAC GGTGCCCCCA
      CCTGTCGCCC CTATGGACTC CCCACTCTCC CCTCCGCCCG GGTTCCCTAC TCCCCTCGGG
      TCAGCGGCTG CGGCCTGGCC CTGGGAGGGA TTTCAGATGC CCCTGCCCTC TTGTCTGCCA
      CGGGGCGAGT CTGGCACCTC TTTCTTCTGA CCTCAGACGG CTCTGAGCCT TATTTCTCTG
                                                                        1920
35
      TTTGCCTCTC CCAGCCACCT CCTCCCAGCC CCCCAGGAGA GCTGGGCACA TGTCCCAAGC
      CTGTCAGTGG CCCTCCCTGG TGCACTGTCC CCGAAACCCC TGCTTGGGAA GGGAAGCTGT
      CGGGAGGGCT AGGACTGACC CTTGTGGTGT TTTTTTGGGT GGTGGCTGGA AACAGCCCCT
                                                                        2160
      CTCCCACGTG GGAGAGGCTC AGCCTGGCTC CCTTCCCTGG AGCGGCAGGG CGTGACGGCC
                                                                        2220
40
      ACAGGGTCTG CCCGCTGCAC GTTCTGCCAA GGTGGTGGTG GCGGGCGGGT AGGGGTGTGG
      GGGCCGTCTT CCTCCTGTCT CTTTCCTTTC ACCCTAGCCT GACTGGAAGC AGAAAATGAC
      CAAATCAGTA TTTTTTTAA TGAAATATTA TTGCTGGAGG CGTCCCAGGC AAGCCTGGCT
                                                                        2400
      GTAGTAGCGA GTGATCTGGC GGGGGGCGTC TCAGCACCCT CCCCAGGGGG TGCATCTCAG
                                                                        2460
      CCCCCTCTTT CCGTCCTTCC CGTCCAGCCC CAGCCCTGGG CCTGGGCTGC CGACACCTGG
                                                                        2520
45
      GCCAGAGCCC CTGCTGTGAT TGGTGCTCCC TGGGCCTCCC GGGTGGATGA AGCCAGGCGT
      CGCCCCTCC GGGAGCCCTG GGGTGAGCCG CCGGGGCCCC CCTGCTGCCA GCCTCCCCCG
      TCCCCAACAT GCATCTCACT CTGGGTGTCT TGGTCTTTTA TTTTTTGTAA GTGTCATTTG
                                                                        2700
      TATAACTCTA AACGCCCATG ATAGTAGCTT CAAACTGGAA ATAGCGAAAT AAAATAACTC
                                                                        2760
      AGTCTGC
50
      Seq ID No: 119 Protein sequence:
      Protein Accession #: NP_003079.1
55
                                                  41
                                                            51
                 11
                            21
                                      31
      MTANGTAEAV QIQFGLINCG NKYLTAEAFG FKVNASASSL KKKQIWTLEQ PPDEAGSAAV
      CLRSHLGRYL AADKDGNVTC EREVPGPDCR FLIVAHDDGR WSLQSEAHRR YFGGTEDRLS
      CFAOTVSPAE KWSVHIAMHP OVNIYSVTRK RYAHLSARPA DEIAVDRDVP WGVDSLITLA
      FQDQRYSVQT ADHRFLRHDG RLVARPEPAT GYTLEFRSGK VAFRDCEGRY LAPSGPSGTL
60
                                                                          240
      KAGKATKVGK DELFALEQSC AQVVLQAANE RNVSTRQGMD LSANQDEETD QETFQLEIDR
                                                                         300
      DTKKCAFRTH TGKYWTLTAT GGVQSTASSK NASCYFDIEW RDRRITLRAS NGKFVTSKKN
                                                                          360
      GQLAASVETA GDSELFLMKL INRPIIVFRG EHGFIGCRKV TGTLDANRSS YDVFQLEFND
                                                                          420
      GAYNIKDSTG KYWTVGSDSA VTSSGDTPVD FFFEFCDYNK VAIKVGGRYL KGDHAGVLKA
                                                                         480
65
      SAETVDPASL WEY
      Seq ID NO: 120 DNA sequence
      Nucleic Acid Accession #: NM 006404.1
      Coding sequence: 25-741 (underlined sequences correspond to start and stop codons)
70
                 11
                            21
                                                             51
                                       31
                                                  41
      1
      CAGGTCCGGA GCCTCAACTT CAGGATGTTG ACAACATTGC TGCCGATACT GCTGCTGTCT
                                                                          60
75
      GGCTGGGCCT TTTGTAGCCA AGACGCCTCA GATGGCCTCC AAAGACTTCA TATGCTCCAG
                                                                         120
      ATCTCCTACT TCCGCGACCC CTATCACGTG TGGTACCAGG GCAACGCGTC GCTGGGGGGA
```

```
CACCTAACGC ACGTGCTGGA AGGCCCAGAC ACCAACACCA CGATCATTCA GCTGCAGCCC
      TTGCAGGAGC CCGAGAGCTG GGCGCGCACG CAGAGTGGCC TGCAGTCCTA CCTGCTCCAG
                                                                           300
      TTCCACGGCC TCGTGCGCCT GGTGCACCAG GAGCGGACCT TGGCCTTTCC TCTGACCATC
                                                                           360
      CGCTGCTTCC TGGGCTGTGA GCTGCCTCCC GAGGGCTCTA GAGCCCATGT CTTCTTCGAA
 5
      GTGGCTGTGA ATGGGAGCTC CTTTGTGAGT TTCCGGCCGG AGAGAGCCTT GTGGCAGGCA
                                                                           480
      GACACCCAGG TCACCTCCGG AGTGGTCACC TTCACCCTGC AGCAGCTCAA TGCCTACAAC
                                                                           540
      CGCACTCGGT ATGAACTGCG GGAATTCCTG GAGGACACCT GTGTGCAGTA TGTGCAGAAA
                                                                           600
      CATATTTCCG CGGAAAACAC GAAAGGGAGC CAAACAAGCC GCTCCTACAC TTCGCTGGTC
      CTGGGCGTCC TGGTGGGCGG TTTCATCATT GCTGGTGTGG CTGTAGGCAT CTTCCTGTGC
10
      ACAGGTGGAC GGCGATGT\underline{TA} \underline{A}TTACTCTCC AGCCCCGTCA GAAGGGGCTG GATTGATGGA
                                                                           780
      GGCTGGCAAG GGAAAGTTTC AGCTCACTGT GAAGCCAGAC TCCCCAACTG AAACACCAGA
                                                                           840
      AGGTTTGGAG TGACAGCTCC TTTCTTCTCC CACATCTGCC CACTGAAGAT TTGAGGGAGG
                                                                           900
      GGAGATGGAG AGGAGAGGTG GACAAAGTAC TTGGTTTGCT AAGAACCTAA GAACGTGTAT
                                                                           960
      GCTTTGCTGA ATTAGTCTGA TAAGTGAATG TTTATCTATC TTTGTGGAAA ACAGATAATG
                                                                          1020
15
      GAGTTGGGGC AGGAAGCCTA TGCGCCATCC TCCAAAGACA GACAGAATCA CCTGAGGCGT
                                                                          1080
      TCAAAAGATA TAACCAAATA AACAAGTCAT CCACAATCAA AATACAACAT TCAATACTTC
                                                                          1140
      CAGGTGTGTC AGACTTGGGA TGGGACGCTG ATATAATAGG GTAGAAAGAA GTAACACGAA
      GAAGTGGTGG AAATGTAAAA TCCAAGTCAT ATGGCAGTGA TCAATTATTA ATCAATTAAT
                                                                          1260
      AATATTAATA AATTTCTTAT ATTT
20
      Seq ID No: 121 Protein sequence:
      Protein Accession #: NP_006395.1
                                        31
                                                   41
                                                              51
25
      MLTTLLPILL LSGWAFCSQD ASDGLQRLHM LQISYFRDPY HVWYQGNASL GGHLTHVLEG
                                                                            60
      PDTNTTIIQL QPLQEPESWA RTQSGLQSYL LQFHGLVRLV HQERTLAFPL TIRCFLGCEL
                                                                           120
      PPEGSRAHVF FEVAVNGSSF VSFRPERALW QADTQVTSGV VTFTLQQLNA YNRTRYELRE
                                                                           180
      FLEDTCVQYV OKHISAENTK GSQTSRSYTS LVLGVLVGGF IIAGVAVGIF LCTGGRRC
30
      Seq ID NO: 122 DNA sequence
      Nucleic Acid Accession #: none found
      Coding sequence: 2-505 (underlined sequences correspond to start and stop codons)
35
                 11
                            21
                                        31
                                                   41
                                                              51
      CGAGAAGCTG GGAGAGACAC CACTTGTCCC TGAACAAGAC AATTCAGTAA CATCTATTCC
      TGAGATTCCT CGATGGGGAT CACAGAGCAC GATGTCTACC CTTCAAATGT CCCTTCAAGC
40
      CGAGTCAAAG GCCACTATCA CCCCATCAGG GAGCGTGATT TCCAAGTTTA ATTCTACGAC
      TTCCTCTGCC ACTCCTCAGG CTTTCGACTC CTCCTCTGCC GTGGTCTTCA TATTTGTGAG
                                                                           240
      CACAGCAGTA GTAGTGTTGG TGATCTTGAC CATGACAGTA CTGGGGCTTG TCAAGCTCTG
                                                                           300
      CTTTCACGAA AGCCCCTCTT CCCAGCCAAG GAAGGAGTCT ATGGGCCCGC CGGGCCTGGA
      GAGTGATCCT GAGCCCGCTG CTTTGGGCTC CAGTTCTGCA CATTGCACAA ACAATGGGGT
                                                                           420
45
      GAAAGTCGGG GACTGTGATC TGCGGGACAG AGCAGAGGGT GCCTTGCTGG CGGAGTCCCC
                                                                           480
      TCTTGGCTCT AGTGATGCAT AGGGAAACAG GGGACATGGG CACTCCTGTG AACAGTTTTT
                                                                           540
      CACTTTTGAT GAAACGGGGA ACCAAGAGGA ACTTACTTGT GTAACTGACA ATTTCTGCAG
      AAATCCCCCT TCCTCTAAAT TCCCTTTACT CCACTGAGGA GCTAAATCAG AACTGCACAC
                                                                           660
      TCCTTCCCTG ATGATAGAGG AAGTGGAAGT GCCTTTAGGA TGGTGATACT GGGGGACCGG
                                                                           720
50
      GTAGTGCTGG GGAGAGATAT TTTCTTATGT TTATTCGGAG AATTTGGAGA AGTGATTGAA
                                                                           780
      CTTTTCAAGA CATTGGAAAC AAATAGAACA CAATATAATT TACATTAAAA AATAATTTCT
      ACCAAAATGG AAAGGAAATG TTCTATGTTG TTCAGGCTAG GAGTATATTG GTTCGAAATC
      CCAGGGAAAA AAATAAAAAT AAAAAATTAA AGGATTGTTG ATAAAA
55
      Seq ID No: 123 Protein sequence:
      Protein Accession #: none found
                 11
                            21
                                        31
                                                   47
                                                              51
                                                                            60
      EKLGETPLVP EQDNSVTSIP EIPRWGSQST MSTLQMSLQA ESKATITPSG SVISKFNSTT
60
      SSATPOAFDS SSAVVFIFVS TAVVVLVILT MTVLGLVKLC FHESPSSQPR KESMGPPGLE
      SDPEPAALGS SSAHCTNNGV KVGDCDLRDR AEGALLAESP LGSSDA
      Seq ID NO: 124 DNA sequence
65
      Nucleic Acid Accession #: NM_006500.1
      Coding sequence: 27-1967 (underlined sequences correspond to start and stop codons)
                             21
                                        31
                                                   41
                                                              51.
                 11
70
      ACTTGCGTCT CGCCCTCCGG CCAAGCATGG GGCTTCCCAG GCTGGTCTGC GCCTTCTTGC
                                                                             60
      TCGCCGCCTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCCTG
                                                                            120
      CGCCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCCTCTCCC
                                                                            180
      AGTCCCAAGG CAACCTCAGC CATGTCGACT GGTTTTCTGT CCACAAGGAG AAGCGGACGC
                                                                            240
75
      TCATCTTCCG TGTGCGCCAG GGCCAGGGCC AGAGCGAACC TGGGGAGTAC GAGCAGCGGC
                                                                            300
      TCAGCCTCCA GGACAGAGGG GCTACTCTGG CCCTGACTCA AGTCACCCCC CAAGACGAGC
                                                                           360
```

	GCATCTTCTT	GTGCCAGGGC	AAGCGCCCTC	GGTCCCAGGA	GTACCGCATC	CAGCTCCGCG	420
				AGGTCAACCC			480
				TAGGGAGGAA			540
				AGGAGGAGAA			600
5							
5				ACACCTTGCA			660
				ACTGTGAGCT			720
				CCGTCCCTGT			780
				TGAAGGAAGG			840
1.0				TCAGCATCAG			900
10	GGGAGGCAGA	GGAAGAGACA	ACCAACGACA	ACGGGGTCCT	GGTGCTGGAG	CCTGCCCGGA	960
	AGGAACACAG	TGGGCGCTAT	GAATGTCAGG	CCTGGAACTT	GGACACCATG	ATATCGCTGC	1020
	TGAGTGAACC	ACAGGAACTA	CTGGTGAACT	ATGTGTCTGA	CGTCCGAGTG	AGTCCCGCAG	1080
	CCCCTGAGAG	ACAGGAAGGC	AGCAGCCTCA	CCCTGACCTG	TGAGGCAGAG	AGTAGCCAGG	1140
	ACCTCGAGTT	CCAGTGGCTG	AGAGAAGAGA	CAGACCAGGT	GCTGGAAAGG	GGGCCTGTGC	1200
15				GAGGCGGCTA			1260
				TGGTCAAGCT			1320
				TGAAAGAGAA			1380
				TCTCCTGGAA			1440
				GCACCCTGAA			1500
20				CCAACGACCT		*	1560
20							
				TCACACCAGA			1620
				GAGCCAACAG			1680
				TCGTGGCTGT			1740
25				TCTATAAGAA			1800
25				CGTCTCGTAA			1860
				GCCTCCTGCA			1920
				TCGATCTGAG			1980
	CAGCTCCCTT	CCCTGCCTGG	ACCATTCCCA	GCTCCCTGCT	CACTCTTCTC	TCAGCCAAAG	2040
				CTCCCCTCAC			2100
30				TTGGCCCTGC			2160
	GTCCACCACC	ATCTCCTGCA	CGTTGAGTGA	AGCTCATCCC	AAGCAAGGAG	CCCCAGTCTC	2220
	CCGAGCGGGT	AGGAGAGTTT	CTTGCAGAAC	GTGTTTTTC	TTTACACACA	TTATGGCTGT	2280
	AAATACCTGG	CTCCTGCCAG	CAGCTGAGCT	GGGTAGCCTC	TCTGAGCTGG	TTTCCTGCCC	2340
	CAAAGGCTGG	CTTCCACCAT	CCAGGTGCAC	CACTGAAGTG	AGGACACACC	GGAGCCAGGC	2400
35	GCCTGCTCAT	GTTGAAGTGC	GCTGTTCACA	CCCGCTCCGG	AGAGCACCCC	AGCGGCATCC	2460
	AGAAGCAGCT	GCAGTGTTGC	TGCCACCACC	CTCCTGCTCG	CCTCTTCAAA	GTCTCCTGTG	2520
	ACATTTTTTC	TTTGGTCAGA	AGCCAGGAAC	TGGTGTCATT	CCTTAAAAGA	TACGTGCCGG	2580
	GGCCAGGTGT	GGTGGCTCAC	GCCTGTAATC	CCAGCACTTT	GGGAGGCCGA	GGCGGGCGGA	2640
	TCACAAAGTC	AGGACGAGAC	CATCCTGGCT	AACACGGTGA	AACCCTGTCT	CTACTAAAAA	2700
40	TACAAAAAAA	AATTAGCTAG	GCGTAGTGGT	TGGCACCTAT	AGTCCCAGCT	ACTCGGAAGG	2760
				GGTGGAGCTT			2820
				GACTCCGTCT			2880
				TGTTTTCGAG			2940
				TTGATGGATC			3000
45				TCCTTCATGG			3060
15				GGGCCCCAAC			3120
				CTGGCTAGAG			3180
				ATGGTTTTGT			3240
				TATATGAAAA			3300
50							3360
50				TGCTTTTTA			
	AACCTGGGGG	CCTGTGAAAC	TACAACCAAA	AGGCACACAA	AACCGTTTCC	AGTTGGCAGC	3420
				AAATGGCTCA			3480
						CCTGGCAGGC	3540
	TGTTAGCAGG	AGCTATGTCC	CTTCCTATCG	TTTCCGTCCA	CTT		
55							
		125 <u>Proteir</u>					
	Protein Acc	cession #: 1	NP_006491.1				
C 0							
60	1	11	21	31	41	51	
	1	1		I	1		
	MGLPRLVCAF	LLAACCCCPR	VAGVPGEAEQ	PAPELVEVEV	GSTALLKCGL	SQSQGNLSHV	60
				RLSLQDRGAT			120
<u> </u>				NSKEPEEVAT			180
65				QLVKEDKDAQ			240
				RCLADGNPPP			300
	DNGVLVLEPA	RKEHSGRYEC	QAWNLDTMIS	LLSEPQELLV	NYVSDVRVSP	AAPERQEGSS	360
				VLQLHDLKRE			420
						SEQDQDPQRV	480
70						GLSTSTASPH	540
				VLAVLGAVLY			600
				KRAPGDQGEK		~ -	
				2			
75	Sea ID NO:	126 DNA sec	nience				

⁷⁵ Seq ID NO: 126 <u>DNA sequence</u> Nucleic Acid Accession #: NM_001955.1

Coding sequence: 337-975 (underlined sequences correspond to start and stop codons)

```
1.1
                             21
                                         31
                                                    41
                                                               51
 5
      GGAGCTGTTT ACCCCCACTC TAATAGGGGT TCAATATAAA AAGCCGGCAG AGAGCTGTCC
                                                                              60
      AAGTCAGACG CGCCTCTGCA TCTGCGCCAG GCGAACGGGT CCTGCGCCTC CTGCAGTCCC
                                                                             120
      AGCTCTCCAC CACCGCCGCG TGCGCCTGCA GACGCTCCGC TCGCTGCCTT CTCTCCTGGC
                                                                             180
      AGGCGCTGCC TTTTCTCCCC GTTAAAGGGC ACTTGGGCTG AAGGATCGCT TTGAGATCTG
                                                                             240
10
      AGGAACCCGC AGCGCTTTGA GGGACCTGAA GCTGTTTTTC TTCGTTTTCC TTTGGGTTCA
      GTTTGAACGG GAGGTTTTTG ATCCCTTTTT TTCAGAATGG ATTATTTGCT CATGATTTTC
                                                                             360
      TCTCTGCTGT TTGTGGCTTG CCAAGGAGCT CCAGAAACAG CAGTCTTAGG CGCTGAGCTC
                                                                             420
      AGCGCGGTGG GTGAGAACGG CGGGGAGAAA CCCACTCCCA GTCCACCCTG GCGGCTCCGC
                                                                             480
      CGGTCCAAGC GCTGCTCCTG CTCGTCCCTG ATGGATAAAG AGTGTGTCTA CTTCTGCCAC
                                                                             540
15
      CTGGACATCA TTTGGGTCAA CACTCCCGAG CACGTTGTTC CGTATGGACT TGGAAGCCCT
                                                                             600
      AGGTCCAAGA GAGCCTTGGA GAATTTACTT CCCACAAAGG CAACAGACCG TGAGAATAGA
                                                                             660
      TGCCAATGTG CTAGCCAAAA AGACAAGAAG TGCTGGAATT TTTGCCAAGC AGGAAAAGAA
                                                                             720
      CTCAGGGCTG AAGACATTAT GGAGAAAGAC TGGAATAATC ATAAGAAAGG AAAAGACTGT
      TCCAAGCTTG GGAAAAGTG TATTTATCAG CAGTTAGTGA GAGGAAGAAA AATCAGAAGA
20
      AGTTCAGAGG AACACCTAAG ACAAACCAGG TCGGAGACCA TGAGAAACAG CGTCAAATCA
                                                                             900
      TCTTTTCATG ATCCCAAGCT GAAAGGCAAG CCCTCCAGAG AGCGTTATGT GACCCACAAC
                                                                             960
      \texttt{CGAGCACATT} \enspace \texttt{GG}\underline{\texttt{TGA}} \texttt{CAGAC} \enspace \texttt{TTCGGGGCCT} \enspace \texttt{GTCTGAAGCC} \enspace \texttt{ATAGCCTCCA} \enspace \texttt{CGGAGAGCCC}
                                                                            1020
      TGTGGCCGAC TCTGCACTCT CCACCCTGGC TGGGATCAGA GCAGGAGCAT CCTCTGCTGG
      TTCCTGACTG GCAAAGGACC AGCGTCCTCG TTCAAAACAT TCCAAGAAAG GTTAAGGAGT
                                                                            1140
25
      TCCCCCAACC ATCTTCACTG GCTTCCATCA GTGGTAACTG CTTTGGTCTC TTCTTTCATC 1200
      TGGGGATGAC AATGGACCTC TCAGCAGAAA CACACAGTCA CATTCGAATT C
      Seq ID No: 127 Protein sequence:
      Protein Accession #: NP_001946.1
30
                 11
                             21
                                         31
                                                    41
                                                               51
      MDYLLMIFSL LFVACOGAPE TAVLGAELSA VGENGGEKPT PSPPWRLRRS KRCSCSSLMD
                                                                              60
35
      KECVYFCHLD IIWVNTPEHV VPYGLGSPRS KRALENLLPT KATDRENRCQ CASQKDKKCW
                                                                             120
      NFCQAGKELR AEDIMEKDWN NHKKĠKDCSK LGKKCIYQQL VRGRKIRRSS EEHLRQTRSE
      TMRNSVKSSF HDPKLKGKPS RERYVTHNRA HW
40
      Seq ID NO: 128 DNA sequence
      Nucleic Acid Accession #: NM 001721.1
      Coding sequence: 34-2061 (underlined sequences correspond to start and stop codons)
45
                                                               51
                 11
                             21
                                         31
                                                    41
      GCAAGCACGG AACAAGCTGA GACGGATGAT AATATGGATA CAAAATCTAT TCTAGAAGAA
      CTTCTTCTCA AAAGATCACA GCAAAAGAAG AAAATGTCAC CAAATAATTA CAAAGAACGG
50
      CTTTTTGTTT TGACCAAAAC AAACCTTTCC TACTATGAAT ATGACAAAAT GAAAAGGGGC
                                                                             180
      AGCAGAAAAG GATCCATTGA AATTAAGAAA ATCAGATGTG TGGAGAAAGT AAATCTCGAG
                                                                             240
      GAGCAGACGC CTGTAGAGAG ACAGTACCCA TTTCAGATTG TCTATAAAGA TGGGCTTCTC
                                                                             300
      TATGTCTATG CATCAAATGA AGAGAGCCGA AGTCAGTGGT TGAAAGCATT ACAAAAAGAG
                                                                             360
      ATAAGGGGTA ACCCCCACCT GCTGGTCAAG TACCATAGTG GGTTCTTCGT GGACGGGAAG
55
      TTCCTGTGTT GCCAGCAGAG CTGTAAAGCA GCCCCAGGAT GTACCCTCTG GGAAGCATAT
                                                                             480
      GCTAATCTGC ATACTGCAGT CAATGAAGAG AAACACAGAG TTCCCACCTT CCCAGACAGA
                                                                             540
      GTGCTGAAGA TACCTCGGGC AGTTCCTGTT CTCAAAATGG ATGCACCATC TTCAAGTACC
      ACTCTAGCCC AATATGACAA CGAATCAAAG AAAAACTATG GCTCCCAGCC ACCATCTTCA
                                                                             660
      AGTACCAGTC TAGCGCAATA TGACAGCAAC TCAAAGAAAA TCTATGGCTC CCAGCCAAAC
                                                                             720
60
      TTCAACATGC AGTATATTCC AAGGGAAGAC TTCCCTGACT GGTGGCAAGT AAGAAAACTG
                                                                             780
      AAAAGTAGCA GCAGCAGTGA AGATGTTGCA AGCAGTAACC AAAAAGAAAG AAATGTGAAT
                                                                             840
      CACACCACCT CAAAGATTTC ATGGGAATTC CCTGAGTCAA GTTCATCTGA AGAAGAGGAA
      AACCTGGATG ATTATGACTG GTTTGCTGGT AACATCTCCA GATCACAATC TGAACAGTTA
                                                                             960
      CTCAGACAAA AGGGAAAAGA AGGAGCATTT ATGGTTAGAA ATTCGAGCCA AGTGGGAATG
                                                                            1020
65
      TACACAGTGT CCTTATTTAG TAAGGCTGTG AATGATAAAA AAGGAACTGT CAAACATTAC
                                                                            1080
      CACGTGCATA CAAATGCTGA GAACAAATTA TACCTGGCAG AAAACTACTG TTTTGATTCC
      ATTCCAAAGC TTATTCATTA TCATCAACAC AATTCAGCAG GCATGATCAC ACGGCTCCGC
      CACCCTGTGT CAACAAGGC CAACAAGGTC CCCGACTCTG TGTCCCTGGG AAATGGAATC
                                                                            1260
      TGGGAACTGA AAAGAGAAGA GATTACCTTG TTGAAGGAGC TGGGAAGTGG CCAGTTTGGA
                                                                            1320
70
      GTGGTCCAGC TGGGCAAGTG GAAGGGGCAG TATGATGTTG CTGTTAAGAT GATCAAGGAG
      GGCTCCATGT CAGAAGATGA ATTCTTTCAG GAGGCCCAGA CTATGATGAA ACTCAGCCAT
      CCCAAGCTGG TTAAATTCTA TGGAGTGTGT TCAAAGGAAT ACCCCATATA CATAGTGACT
      GAATATATAA GCAATGGCTG CTTGCTGAAT TACCTGAGGA GTCACGGAAA AGGACTTGAA
                                                                            1560
      CCTTCCCAGC TCTTAGAAAT GTGCTACGAT GTCTGTGAAG GCATGGCCTT CTTGGAGAGT
                                                                            1620
75
      CACCAATTCA TACACCGGGA CTTGGCTGCT CGTAACTGCT TGGTGGACAG AGATCTCTGT 1680
      GTGAAAGTAT CTGACTTTGG AATGACAAGG TATGTTCTTG ATGACCAGTA TGTCAGTTCA 1740
```

```
GTCGGAACAA AGTTTCCAGT CAAGTGGTCA GCTCCAGAGG TGTTTCATTA CTTCAAATAC 1800
      AGCAGCAAGT CAGACGTATG GGCATTTGGG ATCCTGATGT GGGAGGTGTT CAGCCTGGGG
      AAGCAGCCCT ATGACTTGTA TGACAACTCC CAGGTGGTTC TGAAGGTCTC CCAGGGCCAC
      AGGCTTTACC GGCCCCACCT GGCATCGGAC ACCATCTACC AGATCATGTA CAGCTGCTGG
 5
      CACGAGCTTC CAGAAAAGCG TCCCACATTT CAGCAACTCC TGTCTTCCAT TGAACCACTT
                                                                         2040
      CGGGAAAAAG ACAAGCAT<u>TG A</u>AGAAGAAAT TAGGAGTGCT GATAAGAATG AATATAGATG
                                                                         2100
      CTGGCCAGCA TTTTCATTCA TTTTAAGGAA AGTAGGAAGG CATAAGTAAT TTTAGCTAGT
                                                                         2160
      TTTTAATAGT GTTCTCTGTA TTGTCTATTA TTTAGAAATG AACAAGGCAG GAAACAAAAG
                                                                         2220
      2280
10
      TTTCCAGCCT ATAGCAGAAG CACATTTTCA GACTGCAATA TAGAGACTGT GTTCATGTGT
                                                                         2340
      AAAGACTGAG CAGAACTGAA AAATTACTTA TTGGATATTC ATTCTTTTCT TTATATTGTC
                                                                         2400
      ATTGTCACAA CAATTAAATA TACTACCAAG TACAGAAATG TGGAAAAAAA AAACCG
      Seq ID No: 129 Protein sequence:
15
      Protein Accession #: NP_001712.1
                                                             51
      1.
                 11
                            21
                                       31
                                                  41
20
      MDTKSILEEL LLKRSOOKKK MSPNNYKERL FVLTKTNLSY YEYDKMKRGS RKGSIEIKKI
      RCVEKVNLEE QTPVERQYPF QIVYKDGLLY VYASNEESRS QWLKALQKEI RGNPHLLVKY
      HSGFFVDGKF LCCQQSCKAA PGCTLWEAYA NLHTAVNEEK HRVPTFPDRV LKIPRAVPVL
      KMDAPSSSTT LAQYDNESKK NYGSQPPSSS TSLAQYDSNS KKIYGSQPNF NMQYIPREDF
                                                                         240
      PDWWQVRKLK SSSSEDVAS SNQKERNVNH TTSKISWEFP ESSSEEEEN LDDYDWFAGN
                                                                          300
25
      ISRSOSEOLL ROKGKEGAFM VRNSSOVGMY TVSLFSKAVN DKKGTVKHYH VHTNAENKLY
      LAENYCFDSI PKLIHYHQHN SAGMITRLRH PVSTKANKVP DSVSLGNGIW ELKREEITLL
                                                                          420
      KELGSGOFGV VOLGKWKGOY DVAVKMIKEG SMSEDEFFOE AOTMMKLSHP KLVKFYGVCS
                                                                          480
      KEYPIYIVTE YISNGCLLNY LRSHGKGLEP SQLLEMCYDV CEGMAFLESH QFIHRDLAAR
                                                                          540
      NCLVDRDLCV KVSDFGMTRY VLDDQYVSSV GTKFPVKWSA PEVFHYFKYS SKSDVWAFGI
                                                                          600
30
      LMWEVFSLGK OPYDLYDNSO VVLKVSQGHR LYRPHLASDT IYQIMYSCWH ELPEKRPTFQ
      OLLSSIEPLR EKDKH
      Seq ID NO: 130 DNA sequence
35
      Nucleic Acid Accession #: NM 012072.2
      Coding sequence: 149-2107 (underlined sequences correspond to start and stop codons)
                            21
                                       31
                                                  41
                 11
40
      AAAGCCCTCA GCCTTTGTGT CCTTCTCTGC GCCGGAGTGG CTGCAGCTCA CCCCTCAGCT
                                                                          60
      CCCCTTGGGG CCCAGCTGGG AGCCGAGATA GAAGCTCCTG TCGCCGCTGG GCTTCTCGCC
                                                                          120
      TCCCGCAGAG GGCCACACAG AGACCGGGAT GGCCACCTCC ATGGGCCTGC TGCTGCTGCT
      GCTGCTGCTC CTGACCCAGC CCGGGGCGGG GACGGGAGCT GACACGGAGG CGGTGGTCTG
                                                                          240
45
      CGTGGGGACC GCCTGCTACA CGGCCCACTC GGGCAAGCTG AGCGCTGCCG AGGCCCAGAA
                                                                         300
      CCACTGCAAC CAGAACGGGG GCAACCTGGC CACTGTGAAG AGCAAGGAGG AGGCCCAGCA
      CGTCCAGCGA GTACTGGCCC AGCTCCTGAG GCGGGAGGCA GCCCTGACGG CGAGGATGAG
                                                                          420
      CAAGTTCTGG ATTGGGCTCC AGCGAGAGAA GGGCAAGTGC CTGGACCCTA GTCTGCCGCT
                                                                          480
      GAAGGGCTTC AGCTGGGTGG GCGGGGGGGA GGACACGCCT TACTCTAACT GGCACAAGGA
                                                                          540
50
      GCTCCGGAAC TCGTGCATCT CCAAGCGCTG TGTGTCTCTG CTGCTGGACC TGTCCCAGCC
                                                                          600
      GCTCCTTCCC AACCGCCTGC CCAAGTGGTC TGAGGGCCCC TGTGGGAGCC CAGGCTCCCC
      CGGAAGTAAC ATTGAGGGCT TCGTGTGCAA GTTCAGCTTC AAAGGCATGT GCCGGCCTCT
                                                                          720
      GGCCCTGGGG GGCCCAGGTC AGGTGACCTA CACCACCCC TTCCAGACCA CCAGTTCCTC
                                                                          780
      CTTGGAGGCT GTGCCCTTTG CCTCTGCGGC CAATGTAGCC TGTGGGGAAG GTGACAAGGA
                                                                          840
55
      CGAGACTCAG AGTCATTATT TCCTGTGCAA GGAGAAGGCC CCCGATGTGT TCGACTGGGG
                                                                          900
      CAGCTCGGGC CCCCTCTGTG TCAGCCCCAA GTATGGCTGC AACTTCAACA ATGGGGGCTG
      CCACCAGGAC TGCTTTGAAG GGGGGGATGG CTCCTTCCTC TGCGGCTGCC GACCAGGATT
                                                                         1020
      CCGGCTGCTG GATGACCTGG TGACCTGTGC CTCTCGAAAC CCTTGCAGCT CCAGCCCATG
                                                                        1080
      TCGTGGGGGG GCCACGTGCG TCCTGGGACC CCATGGGAAA AACTACACGT GCCGCTGCCC
60
      CCAAGGGTAC CAGCTGGACT CGAGTCAGCT GGACTGTGTG GACGTGGATG AATGCCAGGA
                                                                         1200
      CTCCCCCTGT GCCCAGGAGT GTGTCAACAC CCCTGGGGGC TTCCGCTGCG AATGCTGGGT
                                                                        1260
      TGGCTATGAG CCGGGCGGTC CTGGAGAGGG GGCCTGTCAG GATGTGGATG AGTGTGCTCT
                                                                        1320
      GGGTCGCTCG CCTTGCGCCC AGGGCTGCAC CAACACAGAT GGCTCATTTC ACTGCTCCTG
                                                                         1380
      TGAGGAGGGC TACGTCCTGG CCGGGGAGGA CGGGACTCAG TGCCAGGACG TGGATGAGTG
                                                                        1440
65
      TGTGGGCCCG GGGGGCCCCC TCTGCGACAG CTTGTGCTTC AACACACAG GGTCCTTCCA
                                                                        1500
      CTGTGGCTGC CTGCCAGGCT GGGTGCTGGC CCCAAATGGG GTCTCTTGCA CCATGGGGCC
                                                                        1560
      TGTGTCTCTG GGACCACCAT CTGGGCCCCC CGATGAGGAG GACAAAGGAG AGAAAGAAGG
      GAGCACCGTG CCCCGCGCTG CAACAGCCAG TCCCACAAGG GGCCCCGAGG GCACCCCCAA
      GGCTACACCC ACCACAGTA GACCTTCGCT GTCATCTGAC GCCCCCATCA CATCTGCCCC
                                                                        1740
70
      ACTCAAGATG CTGGCCCCCA GTGGGTCCTC AGGCGTCTGG AGGGAGCCCA GCATCCATCA
                                                                        1800
      CGCCACAGCT GCCTCTGGCC CCCAGGAGCC TGCAGGTGGG GACTCCTCCG TGGCCACACA
                                                                         1860
      AAACAACGAT GGCACTGACG GGCAAAAGCT GCTTTTATTC TACATCCTAG GCACCGTGGT
      GCCATCCTA CTCCTGCTGG CCCTGGCTCT GGGGCTACTG GTCTATCGCA AGCGGAGAGC
                                                                         1980
      GAAGAGGAG GAGAAGAAGG AGAAGAAGCC CCAGAATGCG GCAGACAGTT ACTCCTGGGT
                                                                         2040
      TCCAGAGCGA GCTGAGAGCA GGGCCATGGA GAACCAGTAC AGTCCGACAC CTGGGACAGA
75
                                                                         2100
      CTGCTGAAAG TGAGGTGGCC CTAGAGACAC TAGAGTCACC AGCCACCATC CTCAGAGCTT
                                                                        2160
```

	~~~		~~~~~~		3 G3 G0GG3 G0	GG3 3 MGMM3 G	0000
		ATTCCAAAGG					2220
		TAAGTCTCCT					2280
		TCCTGAAGTG					2340
	TCTATAATGA	${\tt TTGTTACTCC}$	CCCTCCCTTT	TCAAATTCCA	ATGTGACCAA	TTCCGGATCA	2400
5		AGGCTGGGGC					2460
	ATCTAAGAGG	AAAAGGTGAG	TTGCTCATGC	TGATTAGGAT	TGAAATGATT	TGTTTCTCTT	2520
		AAACTAAATC					2580
		CATGTTCGGA					2640
							2700
10		TTGCTAAATG					
10		GGTGGCAAGG					2760
		${\tt TTTGCAAAGG}$					2820
		TGAAGTCACA					2880
	CACAGATACT	TGAATTAATT	CATCCAAATG	TACTGAGGTT	ACCACACACT	TGACTACGGA	2940
	TGTGATCAAC	ACTAACAAGG	AAACAAATTC	AAGGACAACC	TGTCTTTGAG	CCAGGGCAGG	3000
15	CCTCAGACAC	CCTGCCTGTG	GCCCCGCCTC	CACTTCATCC	TGCCCGGAAT	GCCAGTGCTC	3060
		CAGAGGAAGC					3120
		ATGATGCACT					3180
		CAGTTGATGC					3240
		AGGGAGCTAG					3300
20							
20		TTGGGGGTAA					3360
		AAAAACTGCT					3420
		TTCTCCCTAT					3480
		ACACACACAC					3540
	CCTGGGGCAC	TGGAACACAT	TCCTGGGGGT	CACCGATGGT	CAGAGTCACT	AGAAGTTACC	3600
25	TGAGTATCTC	TGGGAGGCCT	CATGTCTCCT	GTGGGCTTTT	TACCACCACT	GTGCAGGAGA	3660
	ACAGACAGAG	GAAATGTGTC	TCCCTCCAAG	GCCCCAAAGC	CTCAGAGAAA	GGGTGTTTCT	3720
		TAGCAATGCA					3780
		GGTTAATACT					3840
		AAACTAAAGG					3900
30							3960
30		ATTTGGAACT					
		TTTAACACTT					4020
		CTCTAGGTGA					4080
	CTGTCTGGCC	ATTCAGAGGA	TTCTAAAGAC	ATGGCTGGAT	GCGCTGCTGA	CCAACATCAG	4140
	CACTTAAATA	AATGCAAATG	CAACATTTCT	CCCTCTGGGC	CTTGAAAATC	CTTGCCCTTA	4200
35		TGAAGGAGAC					4260
	GTATGATTCC	TGGGATCCAA	CGAGCCCTCC	TATTTTCACA	GTGTTCTGAT	TGCTCTCACA	4320
		ATCGTCTGTT					4380
		GTGGAACCCA					4440
		GCAGGCTGGG					4500
40		GGGGAGAGCC					4560
<b>T</b> U							
		CTCAAACACG					4620
		TTGTTTGGGG					4680
		CATTAACAAA					4740
	CACAGTGGGG	AATCCAAGGG	TCACAGTATG	GGGAGAGGTG	CACCCTGCCA	CCTGCTAACT	4800
45		CACAGTGTTT					4860
	CATGGGGACG	GGGGAAGTTT	TCACTTGGAG	ATGGACACCA	AGACAATGAA	GATTTGTTGT	4920
		CAATAATTCT					4980
		CCCTCATCCC					5040
		GCCATGCCTA					5100
50		ATTTGAGAAA					5160
50							5220
		AGGGCAGGAC					
		CCACCCCTGC					5280
		GGTGGCCCAC					5340
		CGTGTAGCAC					5400
55	AGGCTCTGAT	TAAGGATGTG	GGGAAGTGGG	CTGCGGTCAC	TGTCGGCCTT	GCAAGGCCAC	5460
	CTGGAGGCCT	GTCTGTTAGC	CAGTGGTGGA	GGAGCAAGGC	TTCAGGAAGG	GCCAGCCACA	5520
	TGCCATCTTC	CCTGCGATCA	GGCAAAAAAG	TGGAATTAAA	AAGTCAAACC	TTTATATGCA	5580
	TGTGTTATGT	CCATTTTGCA	GGATGAACTG	AGTTTAAAAG	AATTTTTTTT	TCTCTTCAAG	5640
	TTGCTTTGTC	TTTTCCATCC	TCATCACAAG	CCCTTGTTTG	AGTGTCTTAT	CCCTGAGCAA	5700
60	TOUTTOUT	GATGGAGATG	ΔΤΓΔΤΤΔΙΙΙΙ	ΣC.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d	CAACCTTTAT	TCCTGTAAAT	5760
00		AAACTAGGAG					5820
		TTTTTAAAAC					5880
		CTAAATCAGG					5940
65		CTACATATTT					6000
65		GAAAACATCT					6060
		ATTTTCTCAA					6120
		ACACTATTT					6180
	TTTAAAAAATA	AATTGTGTTT	TGGTCTGTTC	TTGTAGATAA	$\mathtt{TGCCCTTCTA}$	TTTTAGGTAG	6240
	AAGCTCTGGA	ATCCCTTTAT	TGTGCTGTTG	CTCTTATCTG	CAAGGTGGCA	AGCAGTTCTT	6300
70		TTTGCCCACT					6360
	CCTTCAATTA	GATCCCTGCA	AAGGCTTGCT	CTGTGATGTC	AGATGTAATT	GTAAATGTCA	6420
	COLLOCATE TA	CATGAATGCT	ANATCACAAT	CAL Y CAL Y ALALA	TTAAATGTGT	GTATTTCAAA	6480
		TAATTCTGGA					6540
75		AACTGTGAGG					6600
75		CTTTGAGGGT			CITTGTTGTC	CTTTGAGCTT	6660
	TCTGTTATGT	GCCTATCCTA	ATAAACTCTT	AAACACATT			

Seq ID No: 131 Protein sequence:
Protein Accession #: NP_036204.1

```
5
                 11
                             21
                                        31
      MATSMGLLLL LLLLTQPGA GTGADTEAVV CVGTACYTAH SGKLSAAEAQ NHCNQNGGNL
                                                                             60
      ATVKSKEEAQ HVQRVLAQLL RREAALTARM SKFWIGLQRE KGKCLDPSLP LKGFSWVGGG
                                                                             120
10
      EDTPYSNWHK ELRNSCISKR CVSLLLDLSQ PLLPNRLPKW SEGPCGSPGS PGSNIEGFVC
                                                                            180
      KFSFKGMCRP LALGGPGQVT YTTPFQTTSS SLEAVPFASA AMVACGEGDK DETQSHYFLC
                                                                             240
      KEKAPDVFDW GSSGPLCVSP KYGCNFNNGG CHODCFEGGD GSFLCGCRPG FRLLDDLVTC
                                                                             300
      ASRNPCSSSP CRGGATCVLG PHGKNYTCRC PQGYQLDSSQ LDCVDVDECQ DSPCAQECVN
                                                                             360
      TPGGFRCECW VGYEPGGPGE GACQDVDECA LGRSPCAQGC TNTDGSFHCS CEEGYVLAGE
                                                                             420
15
      DGTQCQDVDE CVGPGGPLCD SLCFNTQGSF HCGCLPGWVL APNGVSCTMG PVSLGPPSGP
                                                                             480
      PDEEDKGEKE GSTVPRAATA SPTRGPEGTP KATPTTSRPS LSSDAPITSA PLKMLAPSGS
                                                                             540
      SGVWREPSIH HATAASGPQE PAGGDSSVAT QNNDGTDGQK LLLFYILGTV VAILLLLALA
                                                                            600
      LGLLVYRKRR AKREEKKEKK PQNAADSYSW VPERAESRAM ENQYSPTPGT DC
20
      Seq ID NO: 132 DNA sequence
      Nucleic Acid Accession #: NM_000963.1
      Coding sequence: 135-1949 (underlined sequences correspond to start and stop codons)
25
                  11
                              21
                                         31
                                                     41
                                                                51
       CAATTGTCAT ACGACTTGCA GTGAGCGTCA GGAGCACGTC CAGGAACTCC TCAGCAGCGC
                                                                               60
       CTCCTTCAGC TCCACAGCCA GACGCCCTCA GACAGCAAAG CCTACCCCCG CGCCGCCCC
                                                                              120
30
       TGCCCGCCGC TCGGATGCTC GCCCGCGCCC TGCTGCTGTG CGCGGTCCTG GCGCTCAGCC
                                                                              180
       ATACAGCAAA TCCTTGCTGT TCCCACCCAT GTCAAAACCG AGGTGTATGT ATGAGTGTGG
                                                                              240
       GATTTGACCA GTATAAGTGC GATTGTACCC GGACAGGATT CTATGGAGAA AACTGCTCAA
                                                                              300
       CACCGGAATT TTTGACAAGA ATAAAATTAT TTCTGAAACC CACTCCAAAC ACAGTGCACT
       ACATACTTAC CCACTTCAAG GGATTTTGGA ACGTTGTGAA TAACATTCCC TTCCTTCGAA
                                                                              420
35
       ATGCAATTAT GAGTTATGTC TTGACATCCA GATCACATTT GATTGACAGT CCACCAACTT
       ACAATGCTGA CTATGGCTAC AAAAGCTGGG AAGCCTTCTC TAACCTCTCC TATTATACTA
                                                                              540
       GAGCCCTTCC TCCTGTGCCT GATGATTGCC CGACTCCCTT GGGTGTCAAA GGTAAAAAGC
       AGCTTCCTGA TTCAAATGAG ATTGTGGAAA AATTGCTTCT AAGAAGAAAG TTCATCCCTG
                                                                              660
       ATCCCCAGGG CTCAAACATG ATGTTTGCAT TCTTTGCCCA GCACTTCACG CATCAGTTTT
                                                                              720
40
       TCAAGACAGA TCATAAGCGA GGGCCAGCTT TCACCAACGG GCTGGGCCAT GGGGTGGACT
                                                                              780
       TAAATCATAT TTACGGTGAA ACTCTGGCTA GACAGCGTAA ACTGCGCCTT TTCAAGGATG
       GAAAAATGAA ATATCAGATA ATTGATGGAG AGATGTATCC TCCCACAGTC AAAGATACTC
       AGGCAGAGAT GATCTACCCT CCTCAAGTCC CTGAGCATCT ACGGTTTGCT GTGGGGCAGG
                                                                              960
       AGGTCTTTGG TCTGGTGCCT GGTCTGATGA TGTATGCCAC AATCTGGCTG CGGGAACACA 1020
45
       ACAGAGTATG CGATGTGCTT AAACAGGAGC ATCCTGAATG GGGTGATGAG CAGTTGTTCC
                                                                             1080
       AGACAAGCAG GCTAATACTG ATAGGAGAGA CTATTAAGAT TGTGATTGAA GATTATGTGC
       AACACTTGAG TGGCTATCAC TTCAAACTGA AATTTGACCC AGAACTACTT TTCAACAAAC
                                                                             1200
       AATTCCAGTA CCAAAATCGT ATTGCTGCTG AATTTAACAC CCTCTATCAC TGGCATCCCC
                                                                            1260
       TTCTGCCTGA CACCTTTCAA ATTCATGACC AGAAATACAA CTATCAACAG TTTATCTACA 1320
       ACAACTCTAT ATTGCTGGAA CATGGAATTA CCCAGTTTGT TGAATCATTC ACCAGGCAAA
TTGCTGGCAG GGTTGCTGGT GGTAGGAATG TTCCACCCGC AGTACAGAAA GTATCACAGG
50
       CTTCCATTGA CCAGAGCAGG CAGATGAAAT ACCAGTCTTT TAATGAGTAC CGCAAACGCT
                                                                             1500
       TTATGCTGAA GCCCTATGAA TCATTTGAAG AACTTACAGG AGAAAAGGAA ATGTCTGCAG
                                                                             1560
       AGTTGGAAGC ACTCTATGGT GACATCGATG CTGTGGAGCT GTATCCTGCC CTTCTGGTAG
       AAAAGCCTCG GCCAGATGCC ATCTTTGGTG AAACCATGGT AGAAGTTGGA GCACCATTCT
55
       CCTTGAAAGG ACTTATGGGT AATGTTATAT GTTCTCCTGC CTACTGGAAG CCAAGCACTT 1740
       TTGGTGGAGA AGTGGGTTTT CAAATCATCA ACACTGCCTC AATTCAGTCT CTCATCTGCA 1800
       ATAACGTGAA GGGCTGTCCC TTTACTTCAT TCAGTGTTCC AGATCCAGAG CTCATTAAAA
                                                                             1860
       CAGTCACCAT CAATGCAAGT TCTTCCCGCT CCGGACTAGA TGATATCAAT CCCACAGTAC 1920
       TACTAAAAGA ACGTTCGACT GAACTG\underline{\mathrm{TAG}}A AGTCTAATGA TCATATTTAT TTATTTATAT
60
       GAACCATGTC TATTAATTTA ATTATTTAAT AATATTTATA TTAAACTCCT TATGTTACTT
       AACATCTTCT GTAACAGAAG TCAGTACTCC TGTTGCGGAG AAAGGAGTCA TACTTGTGAA
                                                                             21.00
       GACTTTTATG TCACTACTCT AAAGATTTTG CTGTTGCTGT TAAGTTTGGA AAACAGTTTT
                                                                             2160
       TATTCTGTTT TATAAACCAG AGAGAAATGA GTTTTGACGT CTTTTTACTT GAATTTCAAC
       TTATATTATA AGAACGAAAG TAAAGATGTT TGAATACTTA AACACTATCA CAAGATGGCA
65
                                                                             2280
       AAATGCTGAA AGTTTTTACA CTGTCGATGT TTCCAATGCA TCTTCCATGA TGCATTAGAA
                                                                             2340
       GTAACTAATG TITGAAATTI TAAAGTACTI TIGGTTATTI TICTGTCATC AAACAAAAAC
       AGGTATCAGT GCATTATTAA ATGAATATTT AAATTAGACA TTACCAGTAA TTTCATGTCT ACTTTTTAAA ATCAGCAATG AAACAATAAT TTGAAATTTC TAAATTCATA GGGTAGAATC
                                                                             2460
                                                                             2520
70
       ACCTGTAAAA GCTTGTTTGA TTTCTTAAAG TTATTAAACT TGTACATATA CCAAAAAGAA
                                                                             2580
       GCTGTCTTGG ATTTAAATCT GTAAAATCAG ATGAAATTTT ACTACAATTG CTTGTTAAAA
       TATTTTATAA GTGATGTTCC TTTTTCACCA AGAGTATAAA CCTTTTTAGT GTGACTGTTA
       AAACTTCCTT TTAAATCAAA ATGCCAAATT TATTAAGGTG GTGGAGCCAC TGCAGTGTTA
                                                                             2760
       TCTCAAAATA AGAATATTTT GTTGAGATAT TCCAGAATTT GTTTATATGG CTGGTAACAT
                                                                             2820
75
       GTAAAATCTA TATCAGCAAA AGGGTCTACC TTTAAAATAA GCAATAACAA AGAAGAAAAC 2880
       CAAATTATTG TTCAAATTTA GGTTTAAACT TTTGAAGCAA ACTTTTTTT ATCCTTGTGC
```

```
ACTGCAGGCC TGGTACTCAG ATTTTGCTAT GAGGTTAATG AAGTACCAAG CTGTGCTTGA 3000
       ATAACGATAT GTTTTCTCAG ATTTTCTGTT GTACAGTTTA ATTTAGCAGT CCATATCACA
       TTGCAAAAGT AGCAATGACC TCATAAAATA CCTCTTCAAA ATGCTTAAAT TCATTTCACA
                                                                         3120
       CATTAATTT ATCTCAGTCT TGAAGCCAAT TCAGTAGGTG CATTGGAATC AAGCCTGGCT
 5
       ACCTGCATGC TGTTCCTTTT CTTTTCTTCT TTTAGCCATT TTGCTAAGAG ACACAGTCTT
       CTCATCACTT CGTTTCTCCT ATTTTGTTTT ACTAGTTTTA AGATCAGAGT TCACTTTCTT
       TGGACTCTGC CTATATTTTC TTACCTGAAC TTTTGCAAGT TTTCAGGTAA ACCTCAGCTC
       AGGACTGCTA TTTAGCTCCT CTTAAGAAGA TTAAAAGAGA AAAAAAAAGG CCCTTTTAAA
       AATAGTATAC ACTTATTTTA AGTGAAAAGC AGAGAATTTT ATTTATAGCT AATTTTAGCT
                                                                         3480
10
       ATCTGTAACC AAGATGGATG CAAAGAGGCT AGTGCCTCAG AGAGAACTGT ACGGGGTTTG
       3600
       CAAATGATAT CTAAGTAGTT CTCAGCAATA ATAATAATGA CGATAATACT TCTTTTCCAC
                                                                         3660
       ATCTCATTGT CACTGACATT TAATGGTACT GTATATTACT TAATTTATTG AAGATTATTA
                                                                         3720
       TTTATGTCTT ATTAGGACAC TATGGTTATA AACTGTGTTT AAGCCTACAA TCATTGATTT
15
       TTTTTGTTA TGTCACAATC AGTATATTTT CTTTGGGGTT ACCTCTCTGA ATATTATGTA 3840
       AACAATCCAA AGAAATGATT GTATTAAGAT TTGTGAATAA ATTTTTAGAA ATCTGATTGG
                                                                         3900
       CATATTGAGA TATTTAAGGT TGAATGTTTG TCCTTAGGAT AGGCCTATGT GCTAGCCCAC
                                                                         3960
       AAAGAATATT GTCTCATTAG CCTGAATGTG CCATAAGACT GACCTTTTAA AATGTTTTGA
                                                                         4020
       GGGATCTGTG GATGCTTCGT TAATTTGTTC AGCCACAATT TATTGAGAAA ATATTCTGTG
20
       TCAAGCACTG TGGGTTTTAA TATTTTTAAA TCAAACGCTG ATTACAGATA ATAGTATTTA 4140
       TATAAATAAT TGAAAAAAAT TTTCTTTTGG GAAGAGGGAG AAAATGAAAT AAATATCATT 4200
       AAAGATAACT CAGGAGAATC TTCTTTACAA TTTTACGTTT AGAATGTTTA AGGTTAAGAA 4260
       AGAAATAGTC AATATGCTTG TATAAAACAC TGTTCACTGT TTTTTTTAAA AAAAAAACTT 4320
       GATTTGTTAT TAACATTGAT CTGCTGACAA AACCTGGGAA TTTGGGTTGT GTATGCGAAT 4380
25
       GTTTCAGTGC CTCAGACAAA TGTGTATTTA ACTTATGTAA AAGATAAGTC TGGAAATAAA 4440
       TGTCTGTTTA TTTTTGTACT ATTTA
      Seq ID No: 133 Protein sequence:
      Protein Accession #: NP_000954.1
30
                 11
                            21
                                      31
                                                 41
      MLARALLLCA VLALSHTANP CCSHPCONRG VCMSVGFDOY KCDCTRTGFY GENCSTPEFL
35
      TRIKLFLKPT PNTVHYILTH FKGFWNVVNN IPFLRNAIMS YVLTSRSHLI DSPPTYNADY
                                                                         120
      GYKSWEAFSN LSYYTRALPP VPDDCPTPLG VKGKKQLPDS NEIVEKLLLR RKFIPDPQGS
      NMMFAFFAQH FTHQFFKTDH KRGPAFTNGL GHGVDLNHIY GETLARQRKL RLFKDGKMKY
                                                                         240
      QIIDGEMYPP TVKDTQAEMI YPPQVPEHLR FAVGQEVFGL VPGLMMYATI WLREHNRVCD
                                                                         300
      VLKQEHPEWG DEQLFQTSRL ILIGETIKIV IEDYVQHLSG YHFKLKFDPE LLFNKQFQYQ
                                                                         360
40
      NRIAAEFNTL YHWHPLLPDT FQIHDQKYNY QQFIYNNSIL LEHGITQFVE SFTRQIAGRV
                                                                         420
      AGGRNVPPAV OKVSOASIDO SROMKYOSFN EYRKRFMLKP YESFEELTGE KEMSAELEAL
      YGDIDAVELY PALLVEKPRP DAIFGETMVE VGAPFSLKGL MGNVICSPAY WKPSTFGGEV
                                                                         540
      GFQIINTASI QSLICNNVKG CPFTSFSVPD PELIKTVTIN ASSSRSGLDD INPTVLLKER
                                                                         600
45
      Seq ID NO: 134 DNA sequence
      Nucleic Acid Accession #: XM_059648.1
      Coding sequence: 35-664 (underlined sequences correspond to start and stop codons)
50
                                      31
                                                 41
                                                            51
                           21
      AGGCTGCTGA GACTTCCCTC TAGAATCCTC CAACATGGAG CCTCTTGCAG CTTACCCGCT
      AAAATGTTCC GGGCCCAGAG CAAAGGTATT TGCAGTTTTG CTGTCTATAG TTCTATGCAC
55
      AGTAACGCTA TTTCTTCTAC AACTAAAATT CCTCAAACCT AAAATCAACA GCTTTTATGC
                                                                         1.80
      CTTTGAAGTG AAGGATGCAA AAGGAAGAAC TGTTTCTCTG GAAAAGTATA AAGGCAAAGT
                                                                         240
      TTCACTAGTT GTAAACGTGG CCAGTGACTG CCAACTCACA GACAGAAATT ACTTAGGGCT
      GAAGGAACTG CACAAAGAGT TTGGACCATC CCACTTCAGC GTGTTGGCTT TTCCCTGCAA
                                                                         360
      TCAGTTTGGA GAATCGGAGC CCCGCCCAAG CAAGGAAGTA GAATCTTTTG CAAGAAAAAA
                                                                         420
      CTACGGAGTA ACTTTCCCCA TCTTCCACAA GATTAAGATT CTAGGATCTG AAGGAGAACC
60
                                                                         480
      TGCATTTAGA TTTCTTGTTG ATTCTTCAAA GAAGGAACCA AGGTGGAATT TTTGGAAGTA
                                                                         540
      TCTTGTCAAC CCTGAGGGTC AAGTTGTGAA GTTCTGGAAG CCAGAGGAGC CCATTGAAGT
      CATCAGGCCT GACATAGCAG CTCTGGTTAG ACAAGTGATC ATAAAAAAGA AAGAGGATCT
                                                                         660
      ATGAGAATGC CATTGCGTTT CTAATAGAAC AGAGAAATGT CTCCATGAGG GTTTGGTCTC
65
      ATTTTAAACA TTTTTTTTT GGAGACAGTG TCTCACTCTG TCACCCAGGC TGGAGTGCAG
                                                                         780
      TAGTGCGTTC TCAGCTCATT GCAACCTCTG CCTTTTTAAA CATGCTATTA AATGTGGCAA
                                                                         840
      TGAAGGATTT TTTTTTAATG TTATCTTGCT ATTAAGTGGT AATGAATGTT CCCAGGATGA
      GCATGTTACC CAAAGCAAAA ATCAAGAGTA GCCAAAGAAT CAACATGAAA TATATTAACT
                                                                         960
      ACTICCTCTG ACCATACTAA AGAATTCAGA ATACACAGTG ACCAATGTGC CTCAATATCT 1020
70
      TATTGTTCAA CTTGACATTT TCTAGGACTG TACTTGATGA AAATGCCAAC ACACTAGACC 1080
      ACTOTTTGGA TTCAAGAGCA CTGTGTATGA CTGAAATTTC TGGAATAACT GTAAATGGTT
                                                                       1140
      ATGTTAATGG AATAAAACAC AAATGTTGAA AAATGTAAAA TATATATACA TAGATTCAAA 1200
      TCCTTATATA TGTATGCTTG TTTTGTGTAC AGGATTTTGT TTTTTCTTTT TAAGTACAGG 1260
      TTCCTAGTGT TTTACTATAA CTGTCACTAT GTATGTAACT GACATATATA AATAGTCATT 1320
75
      TATAAATGAC CGTATTATAA CA
```

Seq ID No: 135 <u>Protein sequence:</u> Protein Accession #: XP 059648.1

```
5
                11
                           21
                                       31
                                                 41.
                                                            51
      MEPLAAYPLK CSGPRAKVFA VLLSIVLCTV TLFLLOLKFL KPKINSFYAF EVKDAKGRTV
                                                                          60
      SLEKYKGKVS LVVNVASDCQ LTDRNYLGLK ELHKEFGPSH FSVLAFPCNQ FGESEPRPSK
                                                                         120
      EVESFARKNY GVTFPIFHKI KILGSEGEPA FRFLVDSSKK EPRWNFWKYL VNPEGQVVKF
                                                                         1.80
10
      WKPEEPIEVI RPDIAALVRQ VIIKKKEDL
      Seq ID NO: 136 DNA sequence
      Nucleic Acid Accession #: NM_003003.1
15
      Coding sequence: 304-2451 (underlined sequences correspond to start and stop codons)
                                                            51
                11
                            21
                                       31
                                                  41
20
      CAAGTGCCGT CGCCGCGCCC CTTCCCCCTC CCGCCTCCCC GGCCCCCTCC CCGGAACCGG
      CGGTCGAGCT ACGGTCGCGG ACGAGTGGAA CCGAGACTGC CCCGCGGAGC CGCCGGTATG
                                                                         120
      AGCGCCCCTC GCCACCCGT GTCCCAGGCC CGGCCTTTCT GACAAGAGCT AGACTTCGGG
                                                                         180
      CTCCTTGAGG ATATTCAGTT TTGTATGTTT GAATATCCTC TCACCATGTT CAGCATAAAG
      25
      ATCATGGTGC AAAAATACCA GTCCCCAGTG AGAGTGTACA AATACCCCTT TGAATTAATT
                                                                         360
      ATGGCTGCCT ATGAAAGGAG GTTCCCTACA TGTCCTTTGA TTCCGATGTT CGTGGGCAGT
                                                                          420
      GACACTGTGA GTGAATTCAA GAGCGAAGAT GGGGCTATTC ATGTCATTGA AAGGCGCTGC
                                                                          480
      AAGCTGGATG TAGATGCACC CAGACTGCTG AAGAAGATTG CAGGAGTTGA TTATGTTTAT
      TTTGTCCAGA AAAACTCACT GAATTCTCGG GAACGTACTT TGCACATTGA GGCTTATAAT
                                                                         600
30
      GAAACGTTTT CCAATCGGGT CATCATTAAT GAGCATTGCT GCTACACCGT TCACCCTGAA
                                                                         660
      AATGAAGATT GGACCTGTTT TGAACAGTCT GCAAGTTTAG ATATTAAATC TTTCTTTGGT
                                                                         720
      TTTGAAAGTA CAGTGGAAAA AATTGCAATG AAACAATATA CCAGCAACAT TAAAAAAGGA
                                                                          780
      AAGGAAATCA TCGAATACTA CCTTCGCCAA TTAGAAGAAG AAGGCATAAC CTTTGTGCCC
                                                                         840
      CGTTGGAGTC CGCCTTCCAT CACGCCCTCT TCAGAGACAT CTTCATCATC CTCCAAGAAA
                                                                         900
35
      CAAGCAGCGT CCATGGCCGT CGTCATCCCA GAAGCTGCCC TCAAGGAGGG GCTGAGTGGT
                                                                         960
      GATGCCCTCA GCAGCCCCAG TGCACCTGAG CCCGTGGTGG GCACCCCTGA CGACAAACTA
      GATGCCGACC ACATCAAGAG ATACCTGGGC GATTTGACTC CGCTGCAGGA GAGCTGCCTC
                                                                        1080
      ATTAGACTTC GCCAGTGGCT CCAGGAGACC CACAAGGGCA AAATTCCAAA AGATGAGCAT
                                                                        1140
      ATTCTTCGGT TCCTCCGTGC ACGGGATTTT AATATTGACA AAGCCAGAGA GATCATGTGT
                                                                        1200
40
      CAGTCTTTGA CGTGGAGAAA GCAGCATCAG GTAGACTACA TTCTTGAAAC CTGGACCCCT
                                                                        1260
      CCTCAGGTCC TTCAGGATTA CTACGCGGGA GGCTGGCATC ATCACGACAA AGATGGGCGG
      CCCCTCTACG TGCTCAGGCT GGGGCAGATG GACACCAAAG GCTTGGTGAG AGCGCTCGGG
                                                                        1380
      GAGGAAGCCC TGCTGAGATA CGTTCTCTCC GTAAATGAAG AACGGCTAAG GCGATGCGAA
                                                                        1440
      GAGAATACAA AAGTCTTTGG TCGGCCTATC AGCTCATGGA CCTGCCTGGT GGACTTGGAA
                                                                        1500
45
      GGGCTGAACA TGCGCCACTT GTGGAGACCT GGTGTGAAAG CGCTGCTGCG GATCATCGAG
      GTGGTGGAGG CCAACTACCC TGAGACACTG GGCCGCCTTC TCATCCTGCG GGCGCCCAGG
      GTATTTCCTG TGCTCTGGAC GCTGGTTAGT CCGTTCATTG ATGACAACAC CAGAAGGAAG
                                                                        1680
      TTCCTCATTT ATGCAGGAAA TGACTACCAG GGTCCTGGAG GCCTGCTGGA TTACATCGAC
                                                                        1740
      AAAGAGATTA TTCCAGATTT CCTGAGTGGG GAGTGCATGT GCGAAGTGCC AGAGGGTGGA
50
      CTGGTCCCCA AATCTCTGTA CCGGACTGCA GAGGAGCTGG AGAACGAAGA CCTGAAGCTC
      TGGACTGAGA CCATCTACCA GTCTGCAAGC GTCTTCAAAG GAGCCCCACA TGAGATTCTC
      ATTCAGATTG TGGATGCCTC GTCAGTCATC ACTTGGGATT TCGACGTGTG CAAAGGGGAC
                                                                        1980
      ATTGTGTTTA ACATCTATCA CTCCAAGAGG TCGCCACAAC CACCCAAAAA GGACTCCCTG
                                                                        2040
      GGAGCCCACA GCATCACCTC TCCGGGTGGG AACAATGTGC AGCTCATAGA CAAAGTCTGG
55
      CAGCTGGGCC GCGACTACAG CATGGTGGAG TCGCCTCTGA TCTGCAAAGA AGGAGAAAGC
                                                                        2160
      GTGCAGGGTT CCCATGTGAC CAGGTGGCCG GGCTTCTACA TCCTGCAGTG GAAATTCCAC
                                                                        2220
      AGCATGCCTG CGTGCGCCGC CAGCAGCCTT CCCCGGGTGG ACGACGTGCT TGCGTCCCTG
                                                                        2280
      CAGGTCTCTT CGCACAAGTG TAAAGTGATG TACTACACCG AGGTGATCGG CTCGGAGGAT
                                                                         2340
      TTCAGAGGTT CCATGACGAG CCTGGAGTCC AGCCACAGCG GCTTCTCCCA GCTGAGTGCC
60
      GCCACCACCT CCTCCAGCCA GTCCCACTCC AGCTCCATGA TCTCCAGG<u>TA G</u>TGCCGCGCT
                                                                        2460
      GCCTGCACCT AGTGTGCAGA GGGGACGGCC GCCCCTCCTC GGACAGCAGC TGCACCCGCC
                                                                        2520
      CACCCAGCGG CGACATTGTA CAGACTCCTC TCACCTCTAG ATAGCAAATA GCTCTCAGAT
      GGTAAACGTA GTCGTTTGAT CCCAAAACTA CCTTGGCAGG TAGTTTTAAC TCTGATCCTA
                                                                        2640
      ACTTAACTCA ATAGCCATAG ATTTTGTATA CGTTGTGCAC AAAATCCAAC CAGAGCGCAA
65
      GGGCTCTCTT GAAAGAAAAG TAGTTTCTGT ACCAATTAAA GGATTGACGT GGTCTCAGAT
                                                                        2760
      ATTGATGCAA AAAATTTTTC CAACGAACTC CGCATTGTCC ATTAGTGAAT GAATTCCTGT
                                                                         2820
      GACATCCTCC AGAGATGGCC CCTCCTCACC TGGGACGGAA GCTGCCAGCT CGCTTCCCCC
      AAGCTGCCTC ATGGCCCGCA CGCCGCCTCA CGGCCCCCAT GCTTCCCGCC AGTCAAGATG
                                                                        2940
      GTCTGTGGAC TTAGGGCCAG CCCTTGAGGT CCTTATCCTC TGAGGATTCA GAGGTTGCCT
                                                                        3000
70
      GCGGAGTACC TTGTCCCAGG GCCAGACACA CCCACACCAC CCACTGTCTG CAGTGGGGCC
                                                                        3060
      GGGGGCTCAG GAGGGGCTCT CAGGGACTCC TGGTGACTCC AGGAAAATGC TGCCATCGTT
                                                                         3120
      AAACATTACT TTCTCTTTCC TCCTTTTCAA ATCTTTTTGA TACTTTTTAG AGCAGGATTT
      TTCTGTATGT GAACTTGGGT GGGGGGGTTC TTCCCGTTTC CTTCCGTGCG TCGCCCCTCT
                                                                         3240
      CACCTGCAGT CAGCTCCCAG CCCAGTGTAG GCCATCTCCT CTGTGCCCTC TGGAGGCTCA
                                                                        3300
75
      TTGTCTCAGA GCCCAGACAG TTCCAGCCAC TAGGAGGCCG TCTTGGAACC AGCAAGTCGC
                                                                        3360
      ATTTGCCACT TGACACTGTC CATGGGGTTT TATTAGTAGC TAAGCAGCAG CTCTCGCATC
```

```
CACTTCAGGG TGGCGTGTGG CATGTAGGAG TCCTGCTTCT TTGTACATGG GAATTGTGGA 3480
      CTCATGCGTG TGTGTGTGT CATGTGCTGT GTGTGTGCAT GTGTGCATGA CGGTGGGGGT
      GCTGGGGGGA CGGGGTGAGT GGAAACTTAG TTTGAGTAAT GAAGGAATCT TCACAGAAGC
      AAATCAGAAT ATGGGATTTG TTTGCCTTTT ACATTTTGTT TAATTCCTGA TTTTAAAGCC
 5
      TGCTCTATCT GGTACAGGCC CTTATTTTTT CAGCTTTTTA TGGGAAAAGC AGGTTATTTG
      AGAATCTGTC CAGAAGTTGC ATAGGGGATG GCCTCCACGA TAAGGACATG CAACACGTGT
      TTCTGTGTGC AGCAGAGGCC GTGTTTTTCA TGCCAAACCC CACGCGGCTG TCAACTGTGT
      GCGTGGTAGG CATGGAGATC CTGGTTGTGC CGTCTCAGCT CCGCTCTGAA GGCACTGTGT
      GGGTGCTGCG TGACTGGAGA GCTGTGTGGA GGCCATGTGT GCCCCGTGCA GGGATCAGGA
10
      GGGCGGGGA GGGACCGAGC AGCCCTCTTG CCCGGTCGGG TCAGCCCTAG TGGCTGCCTG
      CACACTGTAG ACGTCCCAGG GCCTGTGCTG TGATCACCTG CCTTTGGACC ACATTTGTGT
      TTGCTCTTAG AGATCGAGCT CCTCAGTGGT ACCTGAAGCC TTTGCTTCCG GAAAGCGCGG
      TAGGGTTCGT AGGTAGGGCT AGTAGGTAGG GTTAGTAGGT AGGGCTAGTA GGTAGGGCTA
                                                                         4200
      GTAGGTAGGG TTAGTAGGTA GGGTTCGTAG GTAGGGCTGG TAGGTAGGGT TAGTAGGTAG
                                                                         4260
15
      GGCTAGTAGG TAGGGTTCGT AGGTAGGGCT AGTAGGTAGG GTTAGTAGGT AGGGCTAGTA
      GGTAGGGCTA GTAGGTAGGG TTAGTAGGTA GGGTTCGTAG GTAGGGCTGG TAGGTAGGGT
      TAGTAGGTAG GGCTAGTAGG TAGGGTTCGT AGGTAGGCCT AGTAGGTAGG GTTAGTAGGT
                                                                         4440
      AGGGCTAGTA GGTAGGGCTA GTAGGTAGGG TTAGTAGGTA GGGTTCGTAG GTAGGGCTGG
                                                                         4500
      TAGGTAGGGT TAGTAGGTAG GGCTAGTAGG TAGGGCTAGT AGGTAGGGCT AGTAGGTAGG
20
      GTTAGTAGGT AGGGCTAGTA GGTAGGGCTA GTAGGTAGGG TTAGTAGGTA GGGTTCGTAG
      GTAGGGCTGG TAGGTAGGGT TAGTAGGTAG GGCTAGTAGG TAGGGCTAGT AGGTAGGGCT
                                                                         4680
      AGTAGGTAGG GCTAGTAGGT AGGGCTAGTA GGTAGGGCTA GTAGGTAGGG CTAGTAGGTA
      GGGTTCGTAG GTAGGGTTCG TAGGTAGGGT TCGTAGGTAG GGTTAGTAGC GCGTCTGTGC
                                                                         4800
      TGCTTCCACC TGGTGCTTCC TGTTCCCAAA TCACAAGGGC CTGAAGGTGG TCCCTGCTTT
      CTCTTTCTCT TTCTCTGTGT CTCAGATGGC GATTTTGCTG ACAGCTGCCA AGAAAATGCT
25
      TCACTCAACA GTCCTCATGT GCCCAGAGAT GTTTATAGAA CTGTTTGAAT TGCAGCCATC
                                                                         4980
      CCCTGCCCC TCCCAGGCTG AAGATCTGTT CTTTTTAAGT TGATTCGGGA GTGGCATTCT
                                                                         5040
      TTTATACCCA AAGACTGTAG TGCATCTTGA AGAGCTCAAA GCACATGACC GCACAAATGC
      TTACAGGGTT TCCTCCCGAG TAATCCAATC TCACTCCCCT TGTAAGGGAA TTCTGGGGCA
                                                                         5160
30
      GCTATGGTTT GAGTATGCAG TTTGCATCGT GTTTCTACCT TTAGTACCTT GCCACTCTTT
                                                                         5220
      TAAAACGCTG CTGTCATTTC CCATTTCTTA GTACTAATGA TTCTTTGATT CTCCCTCTAT
                                                                         5280
      TATGTCTTAA TTCACTTTCC TTCCTAAATT TGTTATTTGC ATATCAAATT CTGTAAATGT
      TTTGTAAACA TATTACCTCA CTTGGTAATA CAATACTGAT AGTCTTTAAA AGATTTTTT 5400
      ATTGTTATCA ATAATAAATG TGAACTATTT AAAG
35
      Seq ID No: 137 Protein sequence:
      Protein Accession #: NP_002994.1
40
                                                             51
                 11
                                       31
                                                  41
      MVQKYQSPVR VYKYPFELIM AAYERRFPTC PLIPMFVGSD TVSEFKSEDG AIHVIERRCK
      LDVDAPRLLK KIAGVDYVYF VQKNSLNSRE RTLHIEAYNE TFSNRVIINE HCCYTVHPEN
                                                                          120
      EDWTCFEQSA SLDIKSFFGF ESTVEKIAMK QYTSNIKKGK EIIEYYLRQL EEEGITFVPR
                                                                          180
45
      WSPPSITPSS ETSSSSSKKQ AASMAVVIPE AALKEGLSGD ALSSPSAPEP VVGTPDDKLD
                                                                          240
      ADHIKRYLGD LTPLQESCLI RLRQWLQETH KGKIPKDEHI LRFLRARDFN IDKAREIMCQ
      SLTWRKQHQV DYILETWTPP QVLQDYYAGG WHHHDKDGRP LYVLRLGQMD TKGLVRALGE
                                                                          360
      EALLRYVLSV NEERLRRCEE NTKVFGRPIS SWTCLVDLEG LNMRHLWRPG VKALLRIIEV
                                                                          420
      VEANYPETLG RLLILRAPRV FPVLWTLVSP FIDDNTRRKF LIYAGNDYQG PGGLLDYIDK
                                                                          480
50
      EIIPDFLSGE CMCEVPEGGL VPKSLYRTAE ELENEDLKLW TETIYQSASV FKGAPHEILI
                                                                          540
      OIVDASSVIT WDFDVCKGDI VFNIYHSKRS PQPPKKDSLG AHSITSPGGN NVQLIDKVWQ
                                                                          660
      LGRDYSMVES PLICKEGESV QGSHVTRWPG FYILQWKFHS MPACAASSLP RVDDVLASLQ
      VSSHKCKVMY YTEVIGSEDF RGSMTSLESS HSGFSQLSAA TTSSSQSHSS SMISR
55
      Seq ID NO: 138 DNA sequence
      Nucleic Acid Accession #: NM_004181.1
      Coding sequence: 32-670 (underlined sequences correspond to start and stop codons)
60
                                       31
                                                  41
                                                             51
                 11
                            21
      GCAGAAATAG CCTAGGGAGA TCAACCCCGA GATGCTGAAC AAAGTGCTGT CCCGGCTGGG
                                                                           60
      GGTCGCCGGC CAGTGGCGCT TCGTGGACGT GCTGGGGCTG GAAGAGGAGT CTCTGGGCTC
                                                                          120
      GGTGCCAGCG CCTGCCTGCG CGCTGCTGCT GCTGTTTCCC CTCACGGCCC AGCATGAGAA
      CTTCAGGAAA AAGCAGATTG AAGAGCTGAA GGGACAAGAA GTTAGTCCTA AAGTGTACTT
65
      CATGAAGCAG ACCATTGGGA ATTCCTGTGG CACAATCGGA CTTATTCACG CAGTGGCCAA
      TAATCAAGAC AAACTGGGAT TTGAGGATGG ATCAGTTCTG AAACAGTTTC TTTCTGAAAC
                                                                          360
      AGAGAAAATG TCCCCTGAAG ACAGAGCAAA ATGCTTTGAA AAGAATGAGG CCATACAGGC
                                                                          420
      AGCCCATGAT GCCGTGGCAC AGGAAGGCCA ATGTCGGGTA GATGACAAGG TGAATTTCCA
70
      TTTTATTCTG TTTAACAACG TGGATGGCCA CCTCTATGAA CTTGATGGAC GAATGCCTTT
                                                                          540
      TCCGGTGAAC CATGGCGCCA GTTCAGAGGA CACCCTGCTG AAGGACGCTG CCAAGGTGTG
                                                                          600
      CAGAGAATTC ACCGAGCGTG AGCAAGGAGA AGTCCGCTTC TCTGCCGTGG CTCTCTGCAA
      GGCAGCCTAA TGCTCTGTGG GAGGGACTTT GCTGATTTCC CCTCTTCCCT TCAACATGAA
                                                                          720
                                                                          780
      AATATATACC CCCCATGCAG TCTAAAATGC TTCAGTACTT GTGAAACACA GCTGTTCTTC
75
      TGTTCTGCAG ACACGCCTTC CCCTCAGCCA CACCCAGGCA CTTAAGCACA AGCAGAGTGC
                                                                          840
      ACAGCTGTCC ACTGGGCCAT TGTGGTGTGA GCTTCAGATG GTGAAGCATT CTCCCCAGTG
```

TATGTCTTGT ATCCGATATC TAACGCTTTA AATGGCTACT TTGGTTTCTG TCTGTAAGTT 960
AAGACCTTGG ATGTGGTTAT GTTGTCCTAA AGAATAAATT TTGCTGATAG TAGC

```
5
      Seq ID No: 139 Protein sequence:
      Protein Accession #: NP_004172.1
                 11
                            21
                                       31
                                                  41
                                                             51
10
      MLNKVLSRLG VAGQWRFVDV LGLEEESLGS VPAPACALLL LFPLTAQHEN FRKKQIEELK
      GQEVSPKVYF MKQTIGNSCG TIGLIHAVAN NQDKLGFEDG SVLKQFLSET EKMSPEDRAK
      CFEKNEAIQA AHDAVAQEGQ CRVDDKVNFH FILFNNVDGH LYELDGRMPF PVNHGASSED
      TLLKDAAKVC REFTEREQGE VRFSAVALCK AA
15
      Seq ID NO: 140 DNA sequence
      Nucleic Acid Accession #: NM_000201.1
      Coding sequence: 58-1656 (underlined sequences correspond to start and stop codons)
20
                 11
                            21
                                       31
                                                  41
                                                             51
      GCGCCCCAGT CGACGCTGAG CTCCTCTGCT ACTCAGAGTT GCAACCTCAG CCTCGCTATG
25
      GCTCCCAGCA GCCCCGGCC CGCGCTGCCC GCACTCCTGG TCCTGCTCGG GGCTCTGTTC
                                                                          120
      CCAGGACCTG GCAATGCCCA GACATCTGTG TCCCCCTCAA AAGTCATCCT GCCCCGGGGA
                                                                          180
      GGCTCCGTGC TGGTGACATG CAGCACCTCC TGTGACCAGC CCAAGTTGTT GGGCATAGAG
                                                                          240
      ACCCCGTTGC CTAAAAAGGA GTTGCTCCTG CCTGGGAACA ACCGGAAGGT GTATGAACTG
      AGCAATGTGC AAGAAGATAG CCAACCAATG TGCTATTCAA ACTGCCCTGA TGGGCAGTCA
                                                                          360
30
      ACAGCTAAAA CCTTCCTCAC CGTGTACTGG ACTCCAGAAC GGGTGGAACT GGCACCCCTC
                                                                          420
      CCCTCTTGGC AGCCAGTGGG CAAGAACCTT ACCCTACGCT GCCAGGTGGA GGGTGGGGCCA
                                                                          480
      CCCCGGGCCA ACCTCACCGT GGTGCTGCTC CGTGGGGAGA AGGAGCTGAA ACGGGAGCCA
      GCTGTGGGGG AGCCCGCTGA GGTCACGACC ACGGTGCTGG TGAGGAGAGA TCACCATGGA
      GCCAATTTCT CGTGCCGCAC TGAACTGGAC CTGCGGCCCC AAGGGCTGGA GCTGTTTGAG
                                                                          660
35
      AACACCTCGG CCCCCTACCA GCTCCAGACC TTTGTCCTGC CAGCGACTCC CCCACAACTT
                                                                          720
      GTCAGCCCCC GGGTCCTAGA GGTGGACACG CAGGGGACCG TGGTCTGTTC CCTGGACGGG
      CTGTTCCCAG TCTCGGAGGC CCAGGTCCAC CTGGCACTGG GGGACCAGAG GTTGAACCCC
      ACAGTCACCT ATGGCAACGA CTCCTTCTCG GCCAAGGCCT CAGTCAGTGT GACCGCAGAG
      GACGAGGGCA CCCAGCGGCT GACGTGTGCA GTAATACTGG GGAACCAGAG CCAGGAGACA
                                                                         960
40
      CTGCAGACAG TGACCATCTA CAGCTTTCCG GCGCCCAACG TGATTCTGAC GAAGCCAGAG
                                                                         1020
      GTCTCAGAAG GGACCGAGGT GACAGTGAAG TGTGAGGCCC ACCCTAGAGC CAAGGTGACG
      CTGAATGGG TTCCAGCCCA GCCACTGGGC CCGAGGGCCC AGCTCCTGCT GAAGGCCACC
                                                                         1140
      CCAGAGGACA ACGGGCGCAG CTTCTCCTGC TCTGCAACCC TGGAGGTGGC CGGCCAGCTT
                                                                         1200
      ATACACAAGA ACCAGACCCG GGAGCTTCGT GTCCTGTATG GCCCCCGACT GGACGAGAGG
                                                                         1260
45
      GATTGTCCGG GAAACTGGAC GTGGCCAGAA AATTCCCAGC AGACTCCAAT GTGCCAGGCT
      TGGGGGAACC CATTGCCCGA GCTCAAGTGT CTAAAGGATG GCACTTTCCC ACTGCCCATC
      GGGGAATCAG TGACTGTCAC TCGAGATCTT GAGGGCACCT ACCTCTGTCG GGCCAGGAGC
                                                                         1440
      ACTCAAGGGG AGGTCACCCG CGAGGTGACC GTGAATGTGC TCTCCCCCCG GTATGAGATT
                                                                         1500
      GTCATCATCA CTGTGGTAGC AGCCGCAGTC ATAATGGGCA CTGCAGGCCT CAGCACGTAC 1560
50
      CTCTATAACC GCCAGCGGAA GATCAAGAAA TACAGACTAC AACAGGCCCA AAAAGGGACC
      CCCATGAAAC CGAACACACA AGCCACGCCT CCCTGAACCT ATCCCGGGAC AGGGCCTCTT
      CCTCGGCCTT CCCATATTGG TGGCAGTGGT GCCACACTGA ACAGAGTGGA AGACATATGC
                                                                         1740
      CATGCAGCTA CACCTACCGG CCCTGGGACG CCGGAGGACA GGGCATTGTC CTCAGTCAGA
                                                                         1800
      TACAACAGCA TTTGGGGCCA TGGTACCTGC ACACCTAAAA CACTAGGCCA CGCATCTGAT 1860
55
      CTGTAGTCAC ATGACTAAGC CAAGAGGAAG GAGCAAGACT CAAGACATGA TTGATGGATG
      TTAAAGTCTA GCCTGATGAG AGGGGAAGTG GTGGGGGAGA CATAGCCCCA CCATGAGGAC
      ATACAACTGG GAAATACTGA AACTTGCTGC CTATTGGGTA TGCTGAGGCC CACAGACTTA
                                                                         2040
      CAGAAGAAGT GGCCCTCCAT AGACATGTGT AGCATCAAAA CACAAAGGCC CACACTTCCT
                                                                         2100
      GACGGATGCC AGCTTGGGCA CTGCTGTCTA CTGACCCCAA CCCTTGATGA TATGTATTTA
60
      TTCATTTGTT ATTTTACCAG CTATTTATTG AGTGTCTTTT ATGTAGGCTA AATGAACATA
                                                                         2220
      GGTCTCTGGC CTCACGGAGC TCCCAGTCCA TGTCACATTC AAGGTCACCA GGTACAGTTG
                                                                         2280
      TACAGGTTGT ACACTGCAGG AGAGTGCCTG GCAAAAAGAT CAAATGGGGC TGGGACTTCT
      CATTGGCCAA CCTGCCTTTC CCCAGAAGGA GTGATTTTTC TATCGGCACA AAAGCACTAT
      ATGGACTGGT AATGGTTCAC AGGTTCAGAG ATTACCCAGT GAGGCCTTAT TCCTCCCTTC
                                                                         2460
65
      CCCCCAAAAC TGACACCTTT GTTAGCCACC TCCCCACCCA CATACATTTC TGCCAGTGTT
                                                                         2520
      CACAATGACA CTCAGCGGTC ATGTCTGGAC ATGAGTGCCC AGGGAATATG CCCAAGCTAT
      GCCTTGTCCT CTTGTCCTGT TTGCATTTCA CTGGGAGCTT GCACTATTGC AGCTCCAGTT
      TCCTGCAGTG ATCAGGGTCC TGCAAGCAGT GGGGAAGGGG GCCAAGGTAT TGGAGGACTC
      CCTCCCAGCT TTGGAAGGGT CATCCGCGTG TGTGTGTGT TGTATGTGTA GACAAGCTCT
                                                                         2760
70
      CGCTCTGTCA CCCAGGCTGG AGTGCAGTGG TGCAATCATG GTTCACTGCA GTCTTGACCT
                                                                         2820
      TTTGGGCTCA AGTGATCCTC CCACCTCAGC CTCCTGAGTA GCTGGGACCA TAGGCTCACA
      ACACCACAC TGGCAAATTT GATTTTTTTT TTTTTTTCA GAGACGGGGT CTCGCAACAT
      TGCCCAGACT TCCTTTGTGT TAGTTAATAA AGCTTTCTCA ACTGCC
```

⁷⁵ Seq ID No: 141 Protein sequence: Protein Accession #: NP_000192.1

```
11
      MLQFVRAGAR AWLRPTGSQG LSSLAEEAAR ATENPEQVAS EGLPEPVLRK VELPVPTHRR
 5
      PVQAWVESLR GFEQERVGLA DLHPDVFATA PRLDILHQVA MWQKNFKRIS YAKTKTRAEV
                                                                           120
      RGGGGKPLAA ERHWAGPAWQ HPLSALARRR CCPWPPGPTS YYYMLPMKVR ALGLKVALTV
                                                                           180
      KLAODDLHIM DSLELPTGDP OYLTELAHYR RWGDSVLLVD LTHEEMPQSI VEATSRLKTF
                                                                           240
      NLIPAVGLNV HSMLKHQTLV LTLPTVAFLE DKLLWQDSRY RPLYPFSLPY SDFPRPLPHA
      TQGPAATPYH C
10
      Seq ID NO: 142 DNA sequence
      Nucleic Acid Accession #: NM_000270.1
      Coding sequence: 110-979(underlined sequences correspond to start and stop codons)
15
                 11
                            21
                                        31
                                                   41
                                                              51
      AACTGTGCGA ACCAGACCCG GCAGCCTTGC TCAGTTCAGC ATAGCGGAGC GGATCCGATC
                                                                            60
      \verb|GGATCGGAGC| ACACCGGAGC| AGGCTCATCG| AGAAGGCGTC| TGCGAGACCA| \underline{TG}GAGAACGG|
                                                                           120
20
      ATACACCTAT GAAGATTATA AGAACACTGC AGAATGGCTT CTGTCTCATA CTAAGCACCG
      ACCTCAAGTT GCAATAATCT GTGGTTCTGG ATTAGGAGGT CTGACTGATA AATTAACTCA
                                                                           240
      GGCCCAGATC TTTGACTACA GTGAAATCCC CAACTTTCCT CGAAGTACAG TGCCAGGTCA
                                                                           300
      TGCTGGCCGA CTGGTGTTTG GGTTCCTGAA TGGCAGGGCC TGTGTGATGA TGCAGGGCAG
      GTTCCACATG TATGAAGGGT ACCCACTCTG GAAGGTGACA TTCCCAGTGA GGGTTTTCCA
25
      CCTTCTGGGT GTGGACACCC TGGTAGTCAC CAATGCAGCA GGAGGGCTGA ACCCCAAGTT
                                                                           480
      TGAGGTTGGA GATATCATGC TGATCCGTGA CCATATCAAC CTACCTGGTT TCAGTGGTCA
                                                                           540
      GAACCCTCTC AGAGGGCCCA ATGATGAAAG GTTTGGAGAT CGTTTCCCTG CCATGTCTGA
                                                                           600
      TGCCTACGAC CGGACTATGA GGCAGAGGGC TCTCAGTACC TGGAAACAAA TGGGGGAGCA
      ACGTGAGCTA CAGGAAGGCA CCTATGTGAT GGTGGCAGGC CCCAGCTTTG AGACTGTGGC
                                                                           720
30
      AGAATGTCGT GTGCTGCAGA AGCTGGGAGC AGACGCTGTT GGCATGAGTA CAGTACCAGA
                                                                           780
      AGTTATCGTT GCACGGCACT GTGGACTTCG AGTCTTTGGC TTCTCACTCA TCACTAACAA
                                                                           840
      GGTCATCATG GATTATGAAA GCCTGGAGAA GGCCAACCAT GAAGAAGTCT TAGCAGCTGG
                                                                           900
      CAAACAAGCT GCACAGAAAT TGGAACAGTT TGTCTCCATT CTTATGGCCA GCATTCCACT
      CCCTGACAAA GCCAGT<u>TGA</u>C CTGCCTTGGA GTCGTCTGGC ATCTCCCACA CAAGACCCAA
                                                                          1020
35
      GTAGCTGCTA CCTTCTTTGG CCCCTTGCTG GAGTCATGTG CCTCTGTCCT TAGGTTGTAG
                                                                          1080
      CAGAAAGGAA AAGATTCCTG TCCTTCACCT TTCCCACTTT CTTCTACCAG ACCCTTCTGG
                                                                          1140
      TGCCAGATCC TCTTCTCAAA GCTGGGATTA CAGGTGTGAG CATAGTGAGA CCTTGGCGCT
                                                                          1200
      ACAAAATAAA GCTGTTCTCA TTCCTGTTCT TTCTTACACA AGAGCTGGAG CCCGTGCCCT
                                                                          1260
      ACCACACATC TGTGGAGATG CCCAGGATTT GACTCGGGCC TTAGAACTTT GCATAGCAGC
                                                                          1320
40
      TGCTACTAGC TCTTTGAGAT AATACATTCC GAGGGGCTCA GTTCTGCCTT ATCTAAATCA
      CCAGAGACCA AACAAGGACT AATCCAATAC CTCTTGGA
      Seq ID No: 143 Protein sequence:
      Protein Accession #: NP_000261.1
45
                                        31
                                                   41
                                                              51.
                 11
                            21
      MENGYTYEDY KNTAEWLLSH TKHRPQVAII CGSGLGGLTD KLTQAQIFDY SEIPNFPRST
50
      VPGHAGRLVF GFLNGRACVM MQGRFHMYEG YPLWKVTFPV RVFHLLGVDT LVVTNAAGGL
      NPKFEVGDIM LIRDHINLPG FSGQNPLRGP NDERFGDRFP AMSDAYDRTM RQRALSTWKQ
      MGEQRELQEG TYVMVAGPSF ETVAECRVLQ KLGADAVGMS TVPEVIVARH CGLRVFGFSL
      ITNKVIMDYE SLEKANHEEV LAAGKQAAQK LEQFVSILMA SIPLPDKAS
55
      Seq ID NO: 144 DNA sequence
      Nucleic Acid Accession #: NM 015577.1
      Coding sequence: 112-3054 (underlined sequences correspond to start and stop codons)
60
                                        31
                                                   41
                                                              51
                 11
                            21
      GAAGCGGCGG GCGGGGTGGA GCAGCCAGCT GGGTCCGGGG AGCGCCGCCG CCGCCTCGAT
                                                                            60
      GGGGTGTTGA AAAGTCTCCT CTAGAGCTTT GGAAGGCTGA ATGCACTAAA CATGAAGAGC
      TTGAAAGCGA AGTTCAGGAA GAGTGACACC AATGAGTGGA ACAAGAATGA TGACCGGCTA
65
      CTGCAGGCCG TGGAGAATGG AGATGCGGAG AAGGTGGCCT CACTGCTCGG CAAGAAGGGG
                                                                           240
      GCCAGTGCCA CCAAACACGA CAGTGAGGGC AAGACCGCTT TCCATCTTGC TGCTGCAAAA
                                                                           300
      GGACACGTGG AATGCCTCAG GGTCATGATT ACACATGGTG TGGATGTGAC AGCCCAAGAT
      ACTACCGGAC ACAGCGCCTT ACATCTCGCA GCCAAGAACA GCCACCATGA ATGCATCAGG
                                                                           420
      AGGCTGCTTC AGTCTAAATG CCCAGCCGAA AGTGTCGACA GCTCTGGGAA AACAGCTTTA
                                                                           480
70
      CATTATGCAG CGGCTCAGGG CTGCCTTCAA GCTGTGCAGA TTCTCTGCGA ACACAAGAGC
                                                                           540
      CCCATAAACC TCAAAGATTT GGATGGGAAT ATACCGCTGC TTCTTGCTGT ACAAAATGGT
                                                                           600
      CACAGTGAGA TCTGTCACTT TCTCCTGGAT CATGGAGCAG ATGTCAATTC CAGGAACAAA
                                                                           660
      AGTGGAAGAA CTGCTCTCAT GCTGGCCTGT GAGATTGGCA GCTCTAACGC TGTGGAAGCC
                                                                           720
      TTAATTAAAA AGGGTGCAGA CCTAAACCTT GTAGATTCTC TTGGATACAA TGCCTTACAT
                                                                           780
75
      TATTCCAAAC TCTCAGAAAA TGCAGGAATT CAAAGCCTTC TATTATCAAA AATCTCTCAG
                                                                           840
      GATGCTGATT TAAAGACCCC AACAAAACCA AAGCAGCATG ACCAAGTCTC TAAAATAAGC
```

	TCAGAAAGAA	GTGGAACTCC	AAAAACACGC	AAAGCTCCAC	CACCTCCTAT	CAGTCCTACC	960
	CAGTTGAGTG	ATGTCTCTTC	CCCAAGATCA	ATAACTTCGA	CTCCACTATC	GGGAAAGGAA	1020
	TCGGTATTTT	TTGCTGAACC	ACCCTTCAAG	GCTGAGATCA	GTTCTATACG	AGAAAACAAA	1080
	GACAGACTAA	GTGACAGTAC	TACAGGTGCT	GATAGCTTAT	TGGATATAAG	TTCTGAAGCT	1140
5	GACCAACAAG	ATCTTCTCTC	TCTATTGCAA	GCAAAAGTTG	CTTCCCTTAC	CTTACACAAT	1200
	AAGGAGTTAC	AAGATAAATT	ACAGGCCAAA	TCACCCAAGG	AGGCGGAAGC	AGACCTAAGC	1260
	TTTGACTCAT	ACCATTCCAC	CCAAACTGAC	TTGGGCCCAT	CCCTGGGAAA	ACCTGGTGAA	1320
	ACCTCTCCCC	CAGACTCCAA	ATCATCTCCA	TCTGTCTTAA	TACATTCTTT	AGGTAAATCC	1380
				CTGCAAGAGA			1440
10	AGATTAGAGA	GCTCTGAAGC	AGAGAGAAAA	CAGCTACAGG	TCGAACTCCA	ATCCCGAAGG	1500
	GCAGAACTGG	TATGCTTAAA	CAACACTGAG	ATTTCAGAGA	ACAGCTCTGA	CCTCAGCCAG	1560
				GAGGCTATGA			1620
				GAAAGCATGG			1680
				GTGCTAAAGC			1740
15				AGAGAGTTAG			1800
				GAAGAGTACG			1860
				AAAGCATTTT			1920
				ACACTAAAAA			1980
				ATGAATAGGA			2040
20				GAAGCCCAGG			2100
20				GAATATATCC			2160
				AAAGCAGAAG			2220
				ACCCAGCTCA			2280
				TTGCAAGTGA			2340
25				CTTAAGGAAC			2400
45							2460
				GAAGAGAAAG			2520
				TCATCCTTAG			
				AAAGAGAAGG			2580
30				GAAAAGGAAA			2640
30				CAAAAATTCC			2700
				TCAAAACTGG			2760
				TTGAAGGAGG			2820
				CAGAGTCAGC			2880
25				GAATGCAAGA			2940
35				GTGCAGGGCC			3000
				AAAAACCAGT			3060
				TGTCTTTGTG			3120
				GCACTGTGGC			3180
4.0				GAAGACTGCC			3240
40				TCATCCCTTC			3300
	GCCATGCCCA	GAGGTCTGGT	CCTGATGCTG	GCAGGGGGC	CCCCTCCTCC	ATCCCTGACT	3360
	GGCTGAGTGG	CTTTATCACC	ACCGAGTGAT	GTGCTGAGGC	CTCCTGCAGT	GAATGCTCCT	3420
	TCCATTCCTG	TACTCGGGCA	GTGCCATTCA	GCACAGGAGA	GCTCTTTTTG	CCTTTGGCTT	3480
	TCAATTCCAA	AACATGATTT	AATTTCTAAC	TAAATTAGTA	TGGCACTAGT	TATGAAGTAT	3540
45	CTGCTTAAAA	CCCTTCATCA	TGATATCCTG	TGGATTTAAA	AACTCTAATT	CCATGTTTTC	3600
	TTCCCATCTG	CCTTATATAT	CTCATCACCC	TGCTTATCAA	TATTCAGTTT	GATGAGCACT	3660
	ATTAACTAAA	ATATGAAACT	TAAAAACAAA	AGCAAGTTGT	CCTTAAAAGT	TCTTTTTTTA	3720
	AGTAAATTGT	TGACATACTG	CAAATTTTCT	ATGCAAACTT	GCCTCCTGCT	GTTATCTGTG	3780
	AAGCTCAGGA	AATCCAAACA	TTTGTGTTTC	AACAAGGGAC	AGTAAACTGT	GTGTTTACAG	3840
50	CCAAAAGAAA	TGCCTCATAG	TTCTTAACCT	CAACTTTTGT	AGAAGTATTT	TTTTCTCTGT	3900
	AATATTTTTA	TTGGCTCATA	AAGATGTTTT	CATATCTGAA	CTCCTAAATA	AGTGAAATTA	3960
				GGTAGCCATG			4020
	TAACTTTTTC	CTTAAAGTTT	TCAGCTATAG	CAAAAGGTAG	TTATGTATGC	CAGACCTAAT	4080
				CAGCCATGGT			4140
55				CGTTGAATGT			4200
				GTTAGTACCA			4260
				TGCATAGCAG			4320
						TTCCCTTATG	4380
				ATCCTGGACT			4440
60				CCACAAGGCT			4500
00				TTGGATAAGG			4560
				TAAGTTGTTT			4620
				TTTTGTCACA			
							4680
65				GCAGAGTATA			4740
0.5				CTTGTTTCCG			4800
						CTTTGTAATT	4860
		ATTGGAGAAA	ATAAACTTGT	TTCATTTTGC	AAAAAAAAA	AAAAAAAA	4920
	AAAAA						
70							
70		145 Protein					
	Protein Acc	cession #: 1	NP_056392.1				
	_						
75	1	11	21	31	41	51	
75		1	<u></u>	1		<u> </u>	
	MKSLKAKFRK	SDTNEWNKND	DRLLQAVENG	DAEKVASLLG	KKGASATKHD	SECKTAFHLA	60

```
AAKGHVECLR VMITHGVDVT AQDTTGHSAL HLAAKNSHHE CIRRLLQSKC PAESVDSSGK
      TALHYAAAQG CLQAVQILCE HKSPINLKDL DGNIPLLLAV QNGHSEICHF LLDHGADVNS
      RNKSGRTALM LACEIGSSNA VEALIKKGAD LNLVDSLGYN ALHYSKLSEN AGIOSLLLSK
                                                                              240
      ISQDADLKTP TKPKQHDQVS KISSERSGTP KTRKAPPPPI SPTQLSDVSS PRSITSTPLS
      GKESVFFAEP PFKAEISSIR ENKDRLSDST TGADSLLDIS SEADQQDLLS LLQAKVASLT
                                                                              360
      LHNKELQDKL QAKSPKEAEA DLSFDSYHST QTDLGPSLGK PGETSPPDSK SSPSVLIHSL
                                                                              420
      GKSTTDNDVR IQQLQEILQD LQKRLESSEA ERKQLQVELQ SRRAELVCLN NTEISENSSD
      LSQKLKETQS KYEEAMKEVL SVQKQMKLGL VSPESMDNYS HFHELRVTEE EINVLKQDLQ
NALEESERNK EKVRELEEKL VEREKGTVIK PPVEEYEEMK SSYCSVIENM NKEKAFLFEK
                                                                              540
                                                                              600
10
      YQEAQEEIMK LKDTLKSQMT QEASDEAEDM KEAMNRMIDE LNKQVSELSQ LYKEAQAELE
                                                                              660
      DYRKRKSLED VTAEYIHKAE HEKLMQLTNV SRAKAEDALS EMKSQYSKVL NELTQLKQLV
                                                                              720
      DAQKENSVSI TEHLQVITTL RTAAKEMEEK ISNLKEHLAS KEVEVAKLEK QLLEEKAAMT
                                                                              780
      DAMVPRSSYE KLQSSLESEV SVLASKLKES VKEKEKVHSE VVQIRSEVSQ VKREKENIQT
                                                                              840
      LLKSKEQEVN ELLQKFQQAQ EELAEMKRYA ESSSKLEEDK DKKINEMSKE VTKLKEALNS
                                                                              900
15
      LSQLSYSTSS SKRQSQQLEA LQQQVKQLQN QLAECKKQHQ EVISVYRMHL LYAVQGQMDE
      DVQKVLKQIL TMCKNQSQKK
      Seq ID NO: 146 DNA sequence
      Nucleic Acid Accession #: NM_000459.1
20
```

Coding sequence: 149-3523 (underlined sequences correspond to start and stop codons)

	1	11	21	31	41	51	
25	1						
23		GTTCCTTCTT					60
		CAAACCGCTG GGAGAGATTT					120 180
		CTCCTTTCTG		_			240
		GTATCTGATG					300
30		ATCACCATAG					360
50		ACTCAAGATG					420
		AAGATCAATG					480
		ACCATGAAGA					540
		AAGGGAGATA					600
35		ATTTACAAAA					660
		GAAGTACACC					720
		GGAGGAAACC					780
		AAGTGGGGAC					840
		GAAGATACTG					900
40		TGTGAACTGC					960
	AGAGGGATGC	AAGTCTTATG	TGTTCTGTCT	CCCTGACCCC	TATGGGTGTT	CCTGTGCCAC	1020
	AGGCTGGAAG	GGTCTGCAGT	GCAATGAAGC	ATGCCACCCT	GGTTTTTACG	GGCCAGATTG	1080
	TAAGCTTAGG	TGCAGCTGCA	ACAATGGGGA	GATGTGTGAT	CGCTTCCAAG	GATGTCTCTG	1140
	CTCTCCAGGA	TGGCAGGGGC	TCCAGTGTGA	GAGAGAAGGC	ATACCGAGGA	TGACCCCAAA	1200
45		TTGCCAGATC					1260
		TGGCCGCTAC					1320
	AGTGCTCCAT	CCAAAAGACT	TTAACCATAC	GGATCATTTC	TCAGTAGCCA	TATTCACCAT	1380
	CCACCGGATC	CTCCCCCCTG	ACTCAGGAGT	TTGGGTCTGC	AGTGTGAACA	CAGTGGCTGG	1440
<b>5</b> 0		AAGCCCTTCA					1500
50		GACACTGGAC					1560
		CCAATCAAAT					1620
		ATTCAAGTGA					1680
		CTCTGTGTGC					1740
c c		CGCTTCACAA					1800
55		AGTCAGACCA					1860
		TATGTTGAAG					1920
		GGCAACTTGA					1980
		GCTAGAGTCA					2040
60		AGTGACATTC					2100
60		GCTGTGATTT					2160
		AAGGTTCAAG					2220
		ATTCAGTATC					2280
		GAGAACAACA TCTCAAGCAC					2340
65							2400 2460
05		GCTGGAATGA GCAAATGTGC					2520
		CAGTTCAACT					2520
		ATTTATCCAG					2640
		TTTGGCCAAG					2700
70		AAAAGAATGA					2760
		GTTCTTTGTA					2820
		CGAGGCTACT					2880
		CGCAAGAGCC					2940
		ACACTGTCCT					3000
75		TTGAGCCAAA					3060
, ,	ACTTCCTCAA	AACTATGTGG	CAAAAATAGC	AGATTTTGGA	TTGTCCCGAG	GTCAAGAGGT	3120
	"GTT GGT GWW	-74C141G1GG					

```
GTACGTGAAA AAGACAATGG GAAGGCTCCC AGTGCGCTGG ATGGCCATCG AGTCACTGAA 3180
      TTACAGTGTG TACACAACCA ACAGTGATGT ATGGTCCTAT GGTGTGTTAC TATGGGAGAT
      TGTTAGCTTA GGAGGCACAC CCTACTGCGG GATGACTTGT GCAGAACTCT ACGAGAAGCT
      GCCCCAGGGC TACAGACTGG AGAAGCCCCT GAACTGTGAT GATGAGGTGT ATGATCTAAT
 5
      GAGACAATGC TGGCGGGAGA AGCCTTATGA GAGGCCATCA TTTGCCCAGA TATTGGTGTC
                                                                         3420
      CTTAAACAGA ATGTTAGAGG AGCGAAAGAC CTACGTGAAT ACCACGCTTT ATGAGAAGTT
                                                                         3480
      TACTTATGCA GGAATTGACT GTTCTGCTGA AGAAGCGGCC TAGGACAGAA CATCTGTATA 3540
      CCCTCTGTTT CCCTTTCACT GGCATGGGAG ACCCTTGACA ACTGCTGAGA AAACATGCCT
      CTGCCAAAGG ATGTGATATA TAAGTGTACA TATGTGCTGG AATTCTAACA AGTCATAGGT
10
      TAATATTTAA GACACTGAAA AATCTAAGTG ATATAAATCA GATTCTTCTC TCTCATTTTA
                                                                         3720
      TCCCTCACCT GTAGCATGCC AGTCCCGTTT CATTTAGTCA TGTGACCACT CTGTCTTGTG
      TTTCCACAGC CTGCAAGTTC AGTCCAGGAT GCTAACATCT AAAAATAGAC TTAAATCTCA
      TTGCTTACAA GCCTAAGAAT CTTTAGAGAA GTATACATAA GTTTAGGATA AAATAATGGG
      ATTTTCTTTT CTTTTCTCTG GTAATATTGA CTTGTATATT TTAAGAAATA ACAGAAAGCC
                                                                         3960
15
      TGGGTGACAT TTGGGAGACA TGTGACATTT ATATATTGAA TTAATATCCC TACATGTATT
      GCACATTGTA AAAAGTTTTA GTTTTGATGA GTTGTGAGTT TACCTTGTAT ACTGTAGGCA 4080
      CACTTTGCAC TGATATATCA TGAGTGAATA AATGTCTTGC CTACTCAAAA AAAAAAAA
      Seg ID No: 147 Protein sequence:
20
      Protein Accession #: NP 000450.1
                            21
                                       31
                                                  41
                                                             51
25
      MDSLASLVIC GYSLLLSGTV EGAMDLILIN SLPLVSDAET SLTCIASGWR PHEPITIGRD
      FEALMNQHQD PLEVTQDVTR EWAKKVVWKR EKASKINGAY FCEGRVRGEA IRIRTMKMRQ
      QASFLPATLT MTVDKGDNVN ISFKKVLIKE EDAVIYKNGŞ FIHSVPRHEV PDILEVHLPH
                                                                          180
      AQPQDAGVYS ARYIGGNLFT SAFTRLIVRR CEAQKWGPEC NHLCTACMNN GVCHEDTGEC
      ICPPGFMGRT CEKACELHTF GRTCKERCSG OEGCKSYVFC LPDPYGCSCA TGWKGLQCNE
30
      ACHPGFYGPD CKLRCSCNNG EMCDRFQGCL CSPGWQGLQC EREGIPRMTP KIVDLPDHIE
      VNSGKFNPIC KASGWPLPTN EEMTLVKPDG TVLHPKDFNH TDHFSVAIFT IHRILPPDSG
                                                                          420
      VWVCSVNTVA GMVEKPFNIS VKVLPKPLNA PNVIDTGHNF AVINISSEPY FGDGPIKSKK
                                                                          480
      LLYKPVNHYE AWOHIOVTNE IVTLNYLEPR TEYELCVQLV RRGEGGEGHP GPVRRFTTAS
      IGLPPPRGLN LLPKSQTTLN LTWQPIFPSS EDDFYVEVER RSVQKSDQQN IKVPGNLTSV
                                                                          600
35
      LLNNLHPREQ YVVRARVNTK AQGEWSEDLT AWTLSDILPP QPENIKISNI THSSAVISWT
                                                                          660
      ILDGYSISSI TIRYKVQGKN EDQHVDVKIK NATIIQYQLK GLEPETAYQV DIFAENNIGS
      SNPAFSHELV TLPESQAPAD LGGGKMLLIA ILGSAGMTCL TVLLAFLIIL QLKRANVQRR
      MAQAFQNVRE EPAVQFNSGT LALNRKVKNN PDPTIYPVLD WNDIKFQDVI GBGNFGQVLK
      ARIKKDGLRM DAAIKRMKEY ASKDDHRDFA GELEVLCKLG HHPNIINLLG ACEHRGYLYL
                                                                          900
40
      AIEYAPHGNL LDFLRKSRVL ETDPAFAIAN STASTLSSQQ LLHFAADVAR GMDYLSQKQF
                                                                          960
      IHRDLAARNI LVGENYVAKI ADFGLSRGQE VYVKKTMGRL PVRWMAIESL NYSVYTTNSD 1020
      VWSYGVLLWE IVSLGGTPYC GMTCAELYEK LPQGYRLEKP LNCDDEVYDL MRQCWREKPY 1080
      ERPSFAOILV SLNRMLEERK TYVNTTLYEK FTYAGIDCSA EEAA
45
      Seq ID NO: 148 DNA sequence
      Nucleic Acid Accession #: NM 000552.2
      Coding sequence: 311-8752 (underlined sequences correspond to start and stop codons)
50
                            21
                                       31
                                                  41
                                                             51
                 11
      AGCTCACAGC TATTGTGGTG GGAAAGGGAG GGTGGTTGGT GGATGTCACA GCTTGGGCTT
                                                                           60
      TATCTCCCCC AGCAGTGGGG ACTCCACAGC CCCTGGGCTA CATAACAGCA AGACAGTCCG
                                                                          120
      GAGCTGTAGC AGACCTGATT GAGCCTTTGC AGCAGCTGAG AGCATGGCCT AGGGTGGGCG
55
      GCACCATTGT CCAGCAGCTG AGTTTCCCAG GGACCTTGGA GATAGCCGCA GCCCTCATTT
      GCAGGGGAAG GCACCATTGT CCAGCAGCTG AGTTTCCCAG GGACCTTGGA GATAGCCGCA
      GCCCTCATTT ATGATTCCTG CCAGATTTGC CGGGGTGCTG CTTGCTCTGG CCCTCATTTT
                                                                          360
      GCCAGGGACC CTTTGTGCAG AAGGAACTCG CGGCAGGTCA TCCACGGCCC GATGCAGCCT
                                                                          420
      TTTCGGAAGT GACTTCGTCA ACACCTTTGA TGGGAGCATG TACAGCTTTG CGGGATACTG
60
      CAGTTACCTC CTGGCAGGGG GCTGCCAGAA ACGCTCCTTC TCGATTATTG GGGACTTCCA
                                                                          540
      GAATGGCAAG AGAGTGAGCC TCTCCGTGTA TCTTGGGGAA TTTTTTGACA TCCATTTGTT
                                                                          600
      TGTCAATGGT ACCGTGACAC AGGGGGACCA AAGAGTCTCC ATGCCCTATG CCTCCAAAGG
                                                                          660
      GCTGTATCTA GAAACTGAGG CTGGGTACTA CAAGCTGTCC GGTGAGGCCT ATGGCTTTGT
                                                                          720
      GGCCAGGATC GATGCCAGCG GCAACTTTCA AGTCCTGCTG TCAGACAGAT ACTTCAACAA
      GACCTGCGGG CTGTGTGGCA ACTTTAACAT CTTTGCTGAA GATGACTTTA TGACCCAAGA
65
                                                                          840
      AGGGACCTTG ACCTCGGACC CTTATGACTT TGCCAACTCA TGGGCTCTGA GCAGTGGAGA
                                                                          900
      ACAGTGGTGT GAACGGGCAT CTCCTCCCAG CAGCTCATGC AACATCTCCT CTGGGGAAAT
      GCAGAAGGGC CTGTGGGAGC AGTGCCAGCT TCTGAAGAGC ACCTCGGTGT TTGCCCGCTG
      CCACCCTCTG GTGGACCCCG AGCCTTTTGT GGCCCTGTGT GAGAAGACTT TGTGTGAGTG
70
      TGCTGGGGGG CTGGAGTGCG CCTGCCCTGC CCTCCTGGAG TACGCCCGGA CCTGTGCCCA
                                                                         1140
      GGAGGGAATG GTGCTGTACG GCTGGACCGA CCACAGCGCG TGCAGCCCAG TGTGCCCTGC
                                                                         1200
      TGGTATGGAG TATAGGCAGT GTGTGTCCCC TTGCGCCAGG ACCTGCCAGA GCCTGCACAT
      CAATGAAATG TGTCAGGAGC GATGCGTGGA TGGCTGCAGC TGCCCTGAGG GACAGCTCCT
      GGATGAAGGC CTCTGCGTGG AGAGCACCGA GTGTCCCTGC GTGCATTCCG GAAAGCGCTA 1380
75
      CCCTCCCGGC ACCTCCCTCT CTCGAGACTG CAACACCTGC ATTTGCCGAA ACAGCCAGTG 1440
      GATCTGCAGC AATGAAGAAT GTCCAGGGGA GTGCCTTGTC ACTGGTCAAT CCCACTTCAA 1500
```

	GAGCTTTGAC	AACAGATACT	TCACCTTCAG	TGGGATCTGC	CAGTACCTGC	TGGCCCGGGA	1560
	TTGCCAGGAC	CACTCCTTCT	CCATTGTCAT	TGAGACTGTC	CAGTGTGCTG	ATGACCGCGA	1620
							1680
				GCTGCCTGGC			
_	ACTGAAGCAT	GGGGCAGGAG	TTGCCATGGA	TGGCCAGGAC	ATCCAGCTCC	CCCTCCTGAA	1740
5	AGGTGACCTC	CGCATCCAGC	ATACAGTGAC	GGCCTCCGTG	CGCCTCAGCT	ACGGGGAGGA	1800
-				GCTGCTGGTG			1860
	CGGGAAGACC	TGCGGCCTGT	GTGGGAATTA	CAATGGCAAC	CAGGGCGACG	ACTTCCTTAC	1920
	CCCCTCTGGG	CTGGCAGAGC	CCCGGGTGGA	GGACTTCGGG	AACGCCTGGA	AGCTGCACGG	1980
							2040
1.0	GGACTGCCAG	GACCTGCAGA	AGCAGCACAG	CGATCCCTGC	GCCCICAACC	CGCGCAIGAC	
10	CAGGTTCTCC	GAGGAGGCGT	GCGCGGTCCT	GACGTCCCCC	ACATTCGAGG	CCTGCCATCG	2100
				CTGCCGCTAC			2160
							2220
				CAGCTATGCC			
	CGTGCGCGTC	GCGTGGCGCG	AGCCAGGCCG	CTGTGAGCTG	AACTGCCCGA	AAGGCCAGGT	2280
	GTACCTGCAG	TGCGGGACCC	CCTGCAACCT	GACCTGCCGC	TCTCTCTCTT	ACCCGGATGA	2340
15				CTTCTGCCCC			2400
13							
				CCCCTGTTAC			2460
	GCCAGAAGAC	ATCTTCTCAG	ACCATCACAC	CATGTGCTAC	TGTGAGGATG	GCTTCATGCA	2520
	CTCTACCATC	ACTCCACTCC	CCCCAACCTT	GCTGCCTGAC	GCTGTCCTCA	CCACTCCCCT	2580
•				TCGGCCCCCC			2640
20	CGCTGACAAC	CTGCGGGCTG	AAGGGCTCGA	GTGTACCAAA	ACGTGCCAGA	ACTATGACCT	2700
	GGAGTGCATG	AGCATGGGGT	GTGTCTCTGG	CTGCCTCTGC	CCCCCGGGCA	TGGTCCGGCA	2760
				CTGCCTCTGC			2760
							-
	TGAGAACAGA	TGTGTGGCCC	TGGAAAGGTG	TCCCTGCTTC	CATCAGGGCA	AGGAGTATGC	2820
	CCCTGGAGAA	ACAGTGAAGA	TTGGCTGCAA	CACTTGTGTC	TGTCGGGACC	GGAAGTGGAA	2880
25	CTCCACACAC	Сътстотста	מתכרכמ כפתפ	CTCCACGATC	GGCATGGCCC	ልርሞልሮሮሞሮልሮ	2940
20							
				GGAGTGCCAG			3000
	CTGCGGCAGT	AACCCTGGGA	CCTTTCGGAT	CCTAGTGGGG	AATAAGGGAT	GCAGCCACCC	3060
	CTCACTCAAA	TCCAACAAAC	CCCTCACCAT	CCTGGTGGAG	CCACCACACA	TTCACCTCTT	3120
20				GAAGGATGAG			3180
30	GTCTGGCCGG	TACATCATTC	TGCTGCTGGG	CAAAGCCCTC	TCCGTGGTCT	GGGACCGCCA	3240
	CCTGAGCATC	TCCGTGGTCC	TGAAGCAGAC	ATACCAGGAG	AAAGTGTGTG	GCCTGTGTGG	3300
				CACCAGCAGC			3360
	CCCTGTGGAC	TTTGGGAACT	CCTGGAAAGT	GAGCTCGCAG	TGTGCTGACA	CCAGAAAAGT	3420
	GCCTCTGGAC	TCATCCCCTG	CCACCTGCCA	TAACAACATC	ATGAAGCAGA	CGATGGTGGA	3480
35	<b>ተተተ</b>	Δαλλποοππλ	CCACTGACGT	CTTCCAGGAC	TGCAACAAGC	TGGTGGACCC	3540
55							3600
				CACCTGCTCC			
	CGCCTGCTTC	TGCGACACCA	TTGCTGCCTA	TGCCCACGTG	TGTGCCCAGC	ATGGCAAGGT	3660
	GGTGACCTGG	AGGACGGCCA	CATTGTGCCC	CCAGAGCTGC	GAGGAGAGGA	ATCTCCGGGA	3720
				CAGCTGTGCA			3780
40							
40	TCAGCACCCT	GAGCCACTGG	CCTGCCCTGT	GCAGTGTGTG	GAGGGCTGCC	ATGCCCACTG	3840
	CCCTCCAGGG	AAAATCCTGG	ATGAGCTTTT	GCAGACCTGC	GTTGACCCTG	AAGACTGTCC	3900
	а стстстсас	GTGGCTGGCC	· CCCCTTTTTCC	CTCAGGAAAG	AAAGTCACCT	TGAATCCCAG	3960
							4020
				TGATGTTGTC			
				CACAGATGCC			4080
45	GTATGTGGAG	GACATCTCGG	AACCGCCGTT	GCACGATTTC	TACTGCAGCA	GGCTACTGGA	4140
,,,				GCTGTCCGAG			4200
	GGCCTTTGTG	GTGGACATGA	TGGAGCGGCT	GCGCATCTCC	CAGAAGTGGG	TCCGCGTGGC	4260
	CGTGGTGGAG	TACCACGACG	GCTCCCACGC	CTACATCGGG	CTCAAGGACC	GGAAGCGACC	4320
				GAAGTATGCG			4380
50							
30				AATCTTCAGC			4440
	CTCCCGCATC	GCCCTGCTCC	TGATGGCCAG	CCAGGAGCCC	CAACGGATGT	CCCGGAACTT	4500
	TGTCCGCTAC	GTCCAGGGCC	TGAAGAAGAA	GAAGGTCATT	GTGATCCCGG	TGGGCATTGG	4560
							4620
				CATCGAGAAG			
				GCAGCAAAGG			4680
55	CTGTGACCTT	GCCCCTGAAG	CCCCTCCTCC	TACTCTGCCC	CCCCACATGG	CACAAGTCAC	4740
	TOTOGGCCCC	CCCCTCTTCC	CCCTTTCCAC	CCTGGGGCCC	AAGAGGAACT	CCATGGTTCT	4800
				CAAAATTGGT			4860
				GATGGATGTG			4920
	CACGGTGCTG	CAGTACTCCT	ACATGGTGAC	CGTGGAGTAC	CCCTTCAGCG	AGGCACAGTC	4980
60	CANAGGGGAC	ΔΨΟΟΤΟΟΔΟΟ	GCGTCCGAGA	GATCCGCTAC	CAGGGCGGCA	ACAGGACCAA	5040
00							
				CCACAGCTTC			5100
	GGAGCAGGCG	CCCAACCTGG	TCTACATGGT	CACCGGAAAT	CCTGCCTCTG	ATGAGATCAA	5160
	GAGGCTGCCT	GGAGACATCC	AGGTGGTGCC	CATTGGAGTG	GGCCCTAATG	CCAACGTGCA	5220
				CCCTATCCTC			5280
65							
65				GAGGTGCTGC			5340
	CCCCACCCTC	TCCCCTGCAC	CTGACTGCAG	CCAGCCCCTG	GACGTGATCC	TTCTCCTGGA	5400
				TGATGAAATG			5460
				CACTCAGGTG			5520
	CATCACCACC	ATTGACGTGC	CATGGAACGT	GGTCCCGGAG	AAAGCCCATT	TGCTGAGCCT	5580
70				CAGCCAAATC			5640
, 0							
				TGCCAGGCCG			5700
	CATCCTGGTC	ACGGACGTCT	CTGTGGATTC	AGTGGATGCA	GCAGCTGATG	CCGCCAGGTC	5760
				TGGAGATCGC			5820
				CGTGGTGAAG			5880
75							
75				CCTCCACAAA			5940
	GATTTGCATG	GATGAGGATG	GGAATGAGAA	GAGGCCCGGG	GACGTCTGGA	CCTTGCCAGA	6000
	_	-					

```
CCAGTGCCAC ACCGTGACTT GCCAGCCAGA TGGCCAGACC TTGCTGAAGA GTCATCGGGT 6060
      CAACTGTGAC CGGGGGCTGA GGCCTTCGTG CCCTAACAGC CAGTCCCCTG TTAAAGTGGA
      AGAGACCTGT GGCTGCCGCT GGACCTGCCC CTGCGTGTGC ACAGGCAGCT CCACTCGGCA
      CATCGTGACC TTTGATGGGC AGAATTTCAA GCTGACTGGC AGCTGTTCTT ATGTCCTATT
 5
      TCAAAACAAG GAGCAGGACC TGGAGGTGAT TCTCCATAAT GGTGCCTGCA GCCCTGGAGC
      AAGGCAGGGC TGCATGAAAT CCATCGAGGT GAAGCACAGT GCCCTCTCCG TCGAGCTGCA
      CAGTGACATG GAGGTGACGG TGAATGGGAG ACTGGTCTCT GTTCCTTACG TGGGTGGGAA
      CATGGAAGTC AACGTTTATG GTGCCATCAT GCATGAGGTC AGATTCAATC ACCTTGGTCA
                                                                         6480
      CATCTTCACA TTCACTCCAC AAAACAATGA GTTCCAACTG CAGCTCAGCC CCAAGACTTT
10
      TGCTTCAAAG ACGTATGGTC TGTGTGGGAT CTGTGATGAG AACGGAGCCA ATGACTTCAT
      GCTGAGGGAT GGCACAGTCA CCACAGACTG GAAAACACTT GTTCAGGAAT GGACTGTGCA
      GCGGCCAGGG CAGACGTGCC AGCCCATCCT GGAGGAGCAG TGTCTTGTCC CCGACAGCTC
      CCACTGCCAG GTCCTCCTCT TACCACTGTT TGCTGAATGC CACAAGGTCC TGGCTCCAGC
                                                                         6780
      CACATTCTAT GCCATCTGCC AGCAGGACAG TTGCCACCAG GAGCAAGTGT GTGAGGTGAT
                                                                         6840
15
      CGCCTCTTAT GCCCACCTCT GTCGGACCAA CGGGGTCTGC GTTGACTGGA GGACACCTGA
      TTTCTGTGCT ATGTCATGCC CACCATCTCT GGTCTACAAC CACTGTGAGC ATGGCTGTCC
      CCGGCACTGT GATGGCAACG TGAGCTCCTG TGGGGACCAT CCCTCCGAAG GCTGTTTCTG
                                                                         7020
      CCCTCCAGAT AAAGTCATGT TGGAAGGCAG CTGTGTCCCT GAAGAGGCCT GCACTCAGTG
                                                                         7080
      CATTGGTGAG GATGGAGTCC AGCACCAGTT CCTGGAAGCC TGGGTCCCGG ACCACCAGCC
      CTGTCAGATC TGCACATGCC TCAGCGGGCG GAAGGTCAAC TGCACAACGC AGCCCTGCCC
20
      CACGGCCAAA GCTCCCACGT GTGGCCTGTG TGAAGTAGCC CGCCTCCGCC AGAATGCAGA
                                                                         7260
      CCAGTGCTGC CCCGAGTATG AGTGTGTGTG TGACCCAGTG AGCTGTGACC TGCCCCCAGT
                                                                         7320
      GCCTCACTGT GAACGTGGCC TCCAGCCCAC ACTGACCAAC CCTGGCGAGT GCAGACCCAA
                                                                         7380
      CTTCACCTGC GCCTGCAGGA AGGAGGAGTG CAAAAGAGTG TCCCCACCCT CCTGCCCCCC
25
      GCACCGTTTG CCCACCCTTC GGAAGACCCA GTGCTGTGAT GAGTATGAGT GTGCCTGCAA
      CTGTGTCAAC TCCACAGTGA GCTGTCCCCT TGGGTACTTG GCCTCAACCG CCACCAATGA
                                                                         7560
      CTGTGGCTGT ACCACAACCA CCTGCCTTCC CGACAAGGTG TGTGTCCACC GAAGCACCAT
                                                                         7620
      CTACCCTGTG GGCCAGTTCT GGGAGGAGGG CTGCGATGTG TGCACCTGCA CCGACATGGA
      GGATGCCGTG ATGGGCCTCC GCGTGGCCCA GTGCTCCCAG AAGCCCTGTG AGGACAGCTG
30
      TCGGTCGGGC TTCACTTACG TTCTGCATGA AGGCGAGTGC TGTGGAAGGT GCCTGCCATC
                                                                         7800
      TGCCTGTGAG GTGGTGACTG GCTCACCGCG GGGGGACTCC CAGTCTTCCT GGAAGAGTGT
                                                                         7860
      CGGCTCCCAG TGGGCCTCCC CGGAGAACCC CTGCCTCATC AATGAGTGTG TCCGAGTGAA
      GGAGGAGGTC TTTATACAAC AAAGGAACGT CTCCTGCCCC CAGCTGGAGG TCCCTGTCTG
      CCCCTCGGGC TTTCAGCTGA GCTGTAAGAC CTCAGCGTGC TGCCCAAGCT GTCGCTGTGA
                                                                         8040
35
      GCGCATGGAG GCCTGCATGC TCAATGGCAC TGTCATTGGG CCCGGGAAGA CTGTGATGAT
                                                                         8100
      CGATGTGTGC ACGACCTGCC GCTGCATGGT GCAGGTGGGG GTCATCTCTG GATTCAAGCT
      GGAGTGCAGG AAGACCACCT GCAACCCCTG CCCCCTGGGT TACAAGGAAG AAAATAACAC
      AGGTGAATGT TGTGGGAGAT GTTTGCCTAC GGCTTGCACC ATTCAGCTAA GAGGAGGACA 8280
      GATCATGACA CTGAAGCGTG ATGAGACGCT CCAGGATGGC TGTGATACTC ACTTCTGCAA 8340
40
      GGTCAATGAG AGAGGAGAGT ACTTCTGGGA GAAGAGGGTC ACAGGCTGCC CACCCTTTGA 8400
      TGAACACAG TGTCTGGCTG AGGGAGGTAA AATTATGAAA ATTCCAGGCA CCTGCTGTGA 8460
      CACATGTGAG GAGCCTGAGT GCAACGACAT CACTGCCAGG CTGCAGTATG TCAAGGTGGG
                                                                         8520
      AAGCTGTAAG TCTGAAGTAG AGGTGGATAT CCACTACTGC CAGGGCAAAT GTGCCAGCAA 8580
      AGCCATGTAC TCCATTGACA TCAACGATGT GCAGGACCAG TGCTCCTGCT GCTCTCCGAC 8640
45
      ACGGACGGAG CCCATGCAGG TGGCCCTGCA CTGCACCAAT GGCTCTGTTG TGTACCATGA
                                                                         8700
      GGTTCTCAAT GCCATGGAGT GCAAATGCTC CCCCAGGAAG TGCAGCAAGT GAGGCTGCTG
      AGTCCTCTGC ATGTTCTGCT CTTGTGCCCT TCTGAGCCCA CAATAAAGGC TGAGCTCTTA 8880
      TCTTGCTGCA TGTTCTGCTC TTGTGCCCTT CTGAGCCCAC AAT
50
      Seq ID No: 149 Protein sequence:
      Protein Accession #: NP 000543.1
55
                                                             51
                                                  41
      7
                 11
                            21
                                       31
      MIPARFAGVL LALALILPGT LCAEGTRGRS STARCSLFGS DFVNTFDGSM YSFAGYCSYL
      LAGGCOKRSF SIIGDFONGK RVSLSVYLGE FFDIHLFVNG TVTQGDQRVS MPYASKGLYL
      ETEAGYYKLS GEAYGFVARI DGSGNFOVLL SDRYFNKTCG LCGNFNIFAE DDFMTQEGTL
      TSDPYDFANS WALSSGEQWC ERASPPSSSC NISSGEMQKG LWEQCQLLKS TSVFARCHPL
60
                                                                          240
      VDPEPFVALC EKTLCECAGG LECACPALLE YARTCAQEGM VLYGWTDHSA CSPVCPAGME
                                                                          300
      YRQCVSPCAR TCQSLHINEM CQERCVDGCS CPEGQLLDEG LCVESTECPC VHSGKRYPPG
      TSLSRDCNTC ICRNSQWICS NEECPGECLV TGQSHFKSFD NRYFTFSGIC QYLLARDCQD
HSFSIVIETV QCADDRDAVC TRSVTVRLPG LHNSLVKLKH GAGVAMDGQD IQLPLLKGDL
                                                                          420
                                                                          480
      RIQHTVTASV RLSYGEDLQM DWDGRGRLLV KLSPVYAGKT CGLCGNYNGN QGDDFLTPSG
65
                                                                          540
      LAEPRVEDFG NAWKLHGDCQ DLQKQHSDPC ALNPRMTRFS EEACAVLTSP TFEACHRAVS
                                                                          600
      PLPYLRNCRY DVCSCSDGRE CLCGALASYA AACAGRGVRV AWREPGRCEL NCPKGQVYLQ
      CGTPCNLTCR SLSYPDEECN EACLEGCFCP PGLYMDERGD CVPKAQCPCY YDGEIFQPED
                                                                          720
      IFSDHHTMCY CEDGFMHCTM SGVPGSLLPD AVLSSPLSHR SKRSLSCRPP MVKLVCPADN
                                                                          780
70
      LRAEGLECTK TCQNYDLECM SMGCVSGCLC PPGMVRHENR CVALERCPCF HQGKEYAPGE
                                                                          840
      TVKIGCNTCV CRDRKWNCTD HVCDATCSTI GMAHYLTFDG LKYLFPGECQ YVLVQDYCGS
                                                                          900
      NPGTFRILVG NKGCSHPSVK CKKRVTILVE GGEIELFDGE VNVKRPMKDE THFEVVESGR
      YIILLIGKAL SVVWDRHLSI SVVLKQTYQE KVCGLCGNFD GIQNNDLTSS NLQVEEDPVD
                                                                         1020
      FGNSWKVSSQ CADTRKVPLD SSPATCHNNI MKQTMVDSSC RILTSDVFQD CNKLVDPEPY
                                                                         1080
75
      LDVCIYDTCS CESIGDCACF CDTIAAYAHV CAQHGKVVTW RTATLCPQSC EERNLRENGY
      ECEWRYNSCA PACQVTCQHP EPLACPVQCV EGCHAHCPPG KILDELLQTC VDPEDCPVCE
```

```
VAGRRFASGK KVTLNPSDPE HCQICHCDVV NLTCEACQEP GGLVVPPTDA PVSPTTLYVE 1260
      DISEPPLHDF YCSRLLDLVF LLDGSSRLSE AEFEVLKAFV VDMMERLRIS QKWVRVAVVE
      YHDGSHAYIG LKDRKRPSEL RRIASOVKYA GSOVASTSEV LKYTLFOIFS KIDRPEASRI
      ALLLMASQEP QRMSRNFVRY VQGLKKKKVI VIPVGIGPHA NLKQIRLIEK QAPENKAFVL
      SSVDELEQQR DEIVSYLCDL APEAPPPTLP PHMAQVTVGP GLLGVSTLGP KRNSMVLDVA
      FVLEGSDKIG EADFNRSKEF MEEVIQRMDV GQDSIHVTVL QYSYMVTVEY PFSEAQSKGD
      ILORVREIRY OGGNRTNTGL ALRYLSDHSF LVSOGDREQA PNLVYMVTGN PASDEIKRLP
      GDIQVVPIGV GPNANVQELE RIGWPNAPIL IQDFETLPRE APDLVLQRCC SGEGLQIPTL
      SPAPDCSQPL DVILLLDGSS SFPASYFDEM KSFAKAFISK ANIGPRLTQV SVLQYGSITT
                                                                           1740
10
      IDVPWNVVPE KAHLLSLVDV MOREGGPSQI GDALGFAVRY LTSEMHGARP GASKAVVILV
      TDVSVDSVDA AADAARSNRV TVFPIGIGDR YDAAQLRILA GPAGDSNVVK LQRIEDLPTM
                                                                           1860
      VTLGNSFLHK LCSGFVRICM DEDGNEKRPG DVWTLPDQCH TVTCQPDGQT LLKSHRVNCD
      RGLRPSCPNS QSPVKVEETC GCRWTCPCVC TGSSTRHIVT FDGQNFKLTG SCSYVLFQNK
      EQDLEVILHN GACSPGARQG CMKSIEVKHS ALSVELHSDM EVTVNGRLVS VPYVGGNMEV
15
      NVYGAIMHEV RFNHLGHIFT FTPQNNEFQL QLSPKTFASK TYGLCGICDE NGANDFMLRD
      GTVTTDWKTL VQEWTVQRPG QTCQPILEEQ CLVPDSSHCQ VLLLPLFAEC HKVLAPATFY AICQQDSCHQ EQVCEVIASY AHLCRTNGVC VDWRTPDFCA MSCPPSLVYN HCEHGCPRHC
                                                                           2160
                                                                           2220
      DGNVSSCGDH PSEGCFCPPD KVMLEGSCVP EEACTQCIGE DGVQHQFLEA WVPDHQPCQI
                                                                           2280
      CTCLSGRKVN CTTQPCPTAK APTCGLCEVA RLRQNADQCC PEYECVCDPV SCDLPPVPHC
20
      ERGLOPTLIN PGECRPNFTC ACRKEECKRV SPPSCPPHRL PILRKTQCCD EYECACNCVN
      STVSCPLGYL ASTATNDCGC TTTTCLPDKV CVHRSTIYPV GQFWEEGCDV CTCTDMEDAV
                                                                           2460
      MGLRVAQCSQ KPCEDSCRSG FTYVLHEGEC CGRCLPSACE VVTGSPRGDS QSSWKSVGSQ
                                                                           2520
      WASPENPCLI NECVRVKEEV FIQQRNVSCP QLEVPVCPSG FQLSCKTSAC CPSCRCERME
      ACMLNGTVIG PGKTVMIDVC TTCRCMVQVG VISGFKLECR KTTCNPCPLG YKEENNTGEC
25
      CGRCLPTACT IQLRGGQIMT LKRDETLQDG CDTHFCKVNE RGEYFWEKRV TGCPPFDEHK
                                                                           2700
      CLAEGGKIMK IPGTCCDTCE EPECNDITAR LQYVKVGSCK SEVEVDIHYC QGKCASKAMY 2760
      SIDINDVODO CSCCSPTRTE PMOVALHCTN GSVVYHEVLN AMECKCSPRK CSK
30
      Seq ID NO: 150 DNA sequence
      Nucleic Acid Accession #: NM_001508.1
      Coding sequence: 1-1362 (underlined sequences correspond to start and stop codons)
35
                  11
                             21
                                        31
                                                    41
                                                               51
      ATGCTTCAC CCAGCCTCCC GGGCAGTGAC TGCTCCCAAA TCATTGATCA CAGTCATGTC
                                                                             60
      CCCGAGTTTG AGGTGGCCAC CTGGATCAAA ATCACCCTTA TTCTGGTGTA CCTGATCATC
                                                                            120
      TTCGTGATGG GCCTTCTGGG GAACAGCGTC ACCATTCGGG TCACCCAGGT GCTGCAGAAG
                                                                            180
40
      AAAGGATACT TGCAGAAGGA GGTGACAGAC CACATGGTGA GTTTGGCTTG CTCGGACATC
      TTGGTGTTCC TCATCGGCAT GCCCATGGAG TTCTACAGCA TCATCTGGAA TCCCCTGACC
      ACGTCCAGCT ACACCCTGTC CTGCAAGCTG CACACTTTCC TCTTCCAGGC CTGCAGCTAC GCTACGCTGC TGCACGTGCT GACGCTCAGC TTTGAGCGCT ACATCGCCAT CTGTCACCCC
                                                                            360
                                                                            420
      TTCAGGTACA AGGCTGTGTC GGGACCTTGC CAGGTGAAGC TGCTGATTGG CTTCGTCTGG
                                                                             480
45
      GTCACCTCCG CCCTGGTGGC ACTGCCCTTG CTGTTTGCCA TGGGTACTGA GTACCCCCTG
      GTGAACGTGC CCAGCCACCG GGGTCTCACT TGCAACCGCT CCAGCACCCG CCACCACGAG
      CAGCCCGAGA CCTCCAATAT GTCCATCTGT ACCAACCTCT CCAGCCGCTG GACCGTGTTC
                                                                             660
      CAGTCCAGCA TCTTCGGCGC CTTCGTGGTC TACCTCGTGG TCCTGCTCTC CGTAGCCTTC
                                                                            720
      ATGTGCTGGA ACATGATGCA GGTGCTCATG AAAAGCCAGA AGGGCTCGCT GGCCGGGGGC
50
      ACGCGCCTC CGCAGCTGAG GAAGTCCGAG AGCGAAGAGA GCAGGACCGC CAGGAGGCAG
      ACCATCATCT TCCTGAGGCT GATTGTTGTG ACATTGGCCG TATGCTGGAT GCCCAACCAG
      ATTCGGAGGA TCATGGCTGC GGCCAAACCC AAGCACGACT GGACGAGGTC CTACTTCCGG
                                                                            960
      GCGTACATGA TCCTCCTCCC CTTCTCGGAG ACGTTTTTCT ACCTCAGCTC GGTCATCAAC
                                                                           1020
      CCGCTCCTGT ACACGGTGTC CTCGCAGCAG TTTCGGCGGG TGTTCGTGCA GGTGCTGTGC
55
      TGCCGCCTGT CGCTGCAGCA CGCCAACCAC GAGAAGCGCC TGCGCGTACA TGCGCACTCC
                                                                           1140
      ACCACCGACA GCGCCCGCTT TGTGCAGCGC CCGTTGCTCT TCGCGTCCCG GCGCCAGTCC
                                                                           1200
      TCTGCAAGGA GAACTGAGAA GATTTTCTTA AGCACTTTTC AGAGCGAGGC CGAGCCCCAG
                                                                           1260
      TCTAAGTCCC AGTCATTGAG TCTCGAGTCA CTAGAGCCCA ACTCAGGCGC GAAACCAGCC
      AATTCTGCTG CAGAGAATGG TTTTCAGGAG CATGAAGTTT GA
60
      Seq ID No: 151 Protein sequence:
      Protein Accession #: NP 001499.1
65
                  11
                             21
                                        31
                                                    41
                                                               51
      MASPSLPGSD CSQIIDHSHV PEFEVATWIK ITLILVYLII FVMGLLGNSV TIRVTQVLQK
      KGYLQKEVTD HMVSLACSDI LVFLIGMPME FYSIIWNPLT TSSYTLSCKL HTFLFEACSY
                                                                            120
      ATLLHVLTLS FERYIAICHP FRYKAVSGPC QVKLLIGFVW VTSALVALPL LFAMGTEYPL
                                                                            180
70
      VNVPSHRGLT CNRSSTRHHE QPETSNMSIC TNLSSRWTVF QSSIFGAFVV YLVVLLSVAF
                                                                             240
      MCWNMMQVLM KSQKGSLAGG TRPPQLRKSE SEESRTARRQ TIIFLRLIVV TLAVCWMPNQ
                                                                             300
      IRRIMAAAKP KHDWTRSYFR AYMILLPFSE TFFYLSSVIN PLLYTVSSOO FRRVFVOVLC
                                                                             360
      CRLSLQHANH EKRLRVHAHS TTDSARFVQR PLLFASRRQS SARRTEKIFL STFQSEAEPQ
                                                                             420
      SKSQSLSLES LEPNSGAKPA NSAAENGFQE HEV
75
      Seq ID NO: 152 DNA sequence
```

Nucleic Acid Accession #: none found Coding sequence: 3-65 (underlined sequences correspond to start and stop codons)

```
5
                 11
                            21
                                       31
                                                  41
                                                             51
      TTATTATTTT GTGTAAACTA TATTCTGCTT ATAGAGAGTC TCTGAGACTA AAATTGACAA
                                                                          60
      CTTGAAAAGT ATTCCAAGGA ATATTATGAA AATAGGGCAA CATGGACTGT TTAAGATCTC
                                                                         120
      CATGTAATTG AAATTCATGC AAGGAAACAA CTCATAGAAA AGATAAATAT GGATGCCCTT
                                                                         1.80
10
      CACATGTTAT CAACCTCGTA ACTTTTGGTG CTTGCTGAAT CAGTCCATGA AAAGCTACAG
                                                                          240
      CCCGCTCTTT GGGAATGCTA CATACCCATT TCTGGTATTT AAAAAATATC TAGGAGGAGC
                                                                          300
      TAAATGACAA AACACAGCAG TGTTTTGAGG GAGAAAGGAC CATCATTTAT AATGCTCTGT
                                                                         360
      ACATACTACC AGAGCTGCTT GGAAAATTAA AGGCCACTTG TGGCTTTTTC CTACCAACTG
                                                                          420
      ATACGTTTAA ATTTGCCCTA GGATTSAGCT AACAGCAAAA AAAAAAAAAA AAAAAAAAAA
                                                                          480
15
      GAGAGAAAGA AAGGAGKAAA CAGTGGTAAT AAAAAAATCC ATCTGTCTTC TTGCTATGTT
                                                                          540
      AATATTAATA AATCATAATA TGACAAGACC CTCACTGAAT AAGAGTATTT TCAGTCATCA
                                                                         600
      GAAGCCAGCT GTTGGTAGGC ATTAATGAGT TTAAAATTGT TCTCAATTGA AAAAACATCA
                                                                          660
      CACTATTTTG CCAAAACCAA AGTAATTATA ATACTGTGTC CTCCTGTAAT TTTTTGAGAA
                                                                          720
      GTGGTTATAA AGGGCATATT TACATAAATT CTACTTTATT CCTCAACTTC TTTGATGAAT
                                                                          780
20
      GTAACCCAAT TTTACTTCTT TAAAAAGTCT CAATTCAAGC TGGATTAGCC AGCTCAGCAT
                                                                          840
      AATCAACTAG ACAGTGGTTT GTTAAATTTA GCAGCATACT TCGTTCCCAT TCTAATTAAA
                                                                          900
      GTCATGAGTT CTTGAATCCC AGAGAAATAA TGCTTAGGAA CTTCTCTCAA TCTGCTTGGC
                                                                          960
      TTGGCCTAGA GAAGTGGCCA TTTTATCAAC AGGRAAAAAA AAAATTTTCT CTACTACAAC
                                                                        1020
      CCCGTTGCCT TCTGAAAAAC AGCAAGTTAT TTCTTTATAT AATTATCATT TTATTATTTT
                                                                        1080
25
      ATGGAAAATT AATTTATTAA TTAATAGCCT ATTATGTGTT CTCACTTGCT TCTCTAAGTA
                                                                        1140
      ATATTTTGAG ATAAAATGTT GAATAAAACC ATGGATTATA GAGAAAAGTC AAAATATATG
                                                                        1200
      TGTAATATTT AATTATTTTA TAAGTTTTAT AATAAAGTAT TCCATTTCTT TATCTT
30
      Seq ID No: 153 Protein sequence:
      Protein Accession #: none found
                                                             51
                 11
                            21
                                       31
                                                  41
35
      IILCKLYSAY RESLRLKLTT
      Seq ID NO: 154 DNA sequence
      Nucleic Acid Accession #: none found
40
      Coding sequence: 1-36 (underlined sequences correspond to start and stop codons)
                 11
                            21
                                                  41
                                                             51
      CTGGATGATA TGGAAGAAAT GGATGGGTTA AGG<u>TAA</u>AAGG CTGATCACAG ATGGGTTCCT
45
                                                                           60
      CTCAAGGTTA AAATAGTTTA AGTGCCAGAA GAAAAGGTGG GCACCAGCGA ATTAAGAACC
                                                                          120
      ATCTTTGAAT GGTCCCCTTG GTTAAATACT TAACTTTTGT CATCAGTGTC TGCATTTATG
                                                                          180
      AAATGAAGAG GAATTCACTA ATATGCTACG TGATCTTTTG TTTGTCATGA AAAGAGTTAC
                                                                          240
      TGTTGTGTAG TTCTCTGTTC CAGGGCTGCC TTTGCTCCAC AAAGCACTGA GAAGCAGTGG
      CCCTGTACAA CCATACTGCC TCTCAACACT GTGTAATAGG CTAACACCGC CCAGCGAACC
50
                                                                          360
      TTCCTGGGAG ATATAAAATA CATAGGTTTA GGCTGGCAAA AAAAAAAAA AAA
      Seq ID No: 155 Protein sequence:
      Protein Accession #: none found
55
                 11
                            21
                                       31
                                                  41
                                                             51
      1
      LDDMEEMDGL R
60
      Seq ID NO: 156 DNA sequence
      Nucleic Acid Accession #: NM_032961.1
65
      Coding sequence: 827-3949 (underlined sequences correspond to start and stop codons)
                 11
                            21
                                       31
                                                  41
                                                             51
70
      CAGGCTCAGA GGCTGAAGCA GGAGGAAGGA AGGACTGGAA GGAAAAAGAG ACAGGTTAGA
                                                                           60
      GGGAAAGAGG CTTGGGAAGA AAACAGCAGA AAAGAAACTG CTCATTACAC TTACAGAGAG
                                                                          120
      GCAAGTAACG GTGGAGATGA GGACAGAGGG AACCAAGACT CTGAAAGACA AAAAATACAA
                                                                          180
      ATAGAGCGAA AGAGGAAAAA AATGTCAAGA AGAACATCCA TCCGGAGAAA TGAAGAGAAT
                                                                          240
      GAAAGTTTTA AACTGCAGAG CCGTTCTGTG CTTTTCCGGC ACAAAATTAT ATCGCTGATT
                                                                          300
75
      TTAAGCCCTT TTGCATTTGC CAGCCGTTGA CATTAAGAGG CATGTTTAAC GGTGCCAACA
```

	~~~~				~~~~~		
		GTTCTCCTCC					480
		CTTTGGGATT					540
		TTATTTTATT					600
	CCTGTCACCC	TTCCTGTGCT	AAGATTTAAA	AAAAAATGAG	GCTGGATTGC	GGGAAGCTCT	660
5	AAAATGAAGC	AAAAGGAGTA	AGATTTTTAA	AGACAGAAAG	CCACAGGAGC	CCCCACGTAG	720
	CGCACTTTTA	TTTGTATTTT	TTCAGATTTT	TTTTTGTTTC	GTGGTGGTGG	GGGAGGTGAT	780
		ACTGGCTGCG					840
		TTGCTCTGGA					900
10		GAACATGGCA					960
10		TCGGCTCGCG					1020
		GAGACAGGGG					1080
	CAAACAGAGC	CCCTCCTGTG	TCCTGCACCT	GGAGGTCTTT	CTGGAGAACC	CCCTGGAGCT	1140
	GTTCCAGGTG	GAGATCGAGG	TGCTGGACAT	TAATGACAAC	CCCCCCTCTT	TCCCGGAGCC	1200
		GTGGAAATCT					1260
15		CCAGACGTGG					1320
IJ							1380
		CTGGACGTGC					
		CTGGACCGAG					1440
		GGGGGAGGAG					1500
	CCCCCAGCAG	CAGCGCACCG	GCACGGCCCT	ACTCACCATC	CGAGTGCTGG	ACTCCAATGA	1560
20	CAATGTGCCC	GCTTTCGACC	AACCCGTCTA	CACTGTGTCC	CTACCAGAGA	ACTCTCCCCC	1620
	AGGCACTCTC	GTGATCCAGC	TCAACGCCAC	CGACCCGGAC	GAGGGCCAGA	ACGGTGAGGT	1680
		TTCAGCAGCC					1740
		AGACTGGAGG					1800
25		CAAGCCAAGG					1860
25		CTGGATGCTA					1920
		GAGGGCGCGG					1980
	CGACTCAGAG	GAGAATGGGC	AGGTGCAGTG	CGAGCTACTG	GGAGACGTGC	CTTTCCGCCI	2040
	CAAGTCTTCC	TTTAAGAATT	ACTACACCAT	CGTTACCGAA	GCCCCCTGG	ACCGAGAGGC	2100
	GGGGGACTCC	TACACCCTGA	CTGTAGTGGC	TCGGGACCGG	GGCGAGCCTG	CGCTCTCCAC	2160
30		ATCCAGGTAC					2220
50		GACGTGTATG					2280
		GACCGGGATG					2340
		GGCATGAGCG					2400
~ -		CGCTCCTTCG					2460
35	CCGGGACGCT	GGCAGCCCCC	AGGCGCTGGC	TGGTAACGCC	ACTGTCAACA	TCCTCATAGT	2520
	GGATCAAAAT	GACAACGCCC	CTGCCATCGT	GGCGCCTCTA	CCAGGGCGCA	ACGGGACTCC	2580
	AGCGCGTGAG	GTGCTGCCCC	GCTCGGCGGA	GCCGGGTTAC	CTGCTCACCC	GCGTGGCCGC	2640
		GACGACGGCG					2700
		TTTCGCATGG					2760
40		GACCCCCAGC					2820
40							
		TCCTCCACCG					2880
		GGCGGGAGCG					2940
	TGGCGGCGGG	GAAACCTCGC	TAGACCTCAC	CCTCATCCTC	ATCATCGCGT	TGGGCTCGGT	3000
	GTCCTTCATC	TTCCTGCTGG	CCATGATCGT	GCTGGCCGTG	CGTTGCCAAA	AAGAGAAGAA	3060
45	GCTCAACATC	TATACTTGTC	TGGCCAGCGA	TTGCTGCCTC	TGCTGCTGCT	GCTGCGGTGG	3120
		ACCTGCTGTG					3180
		CTGGTGCAGA					3240
		GGCTTTGGCT					3300
50		TCCGCCAAGA					3360
50		GAGCACAACC					3420
		TCCAACGGAA					3480
	CAGCTATCTA	GTTGACAGAC	CTCGCCGAGT	TAACAGTTCT	GCATTCCAGG	AAGCCGACAT	3540
	AGTAAGCTCT	AAGGACAGTG	GTCATGGAGA	CAGTGAACAG	GGAGATAGTG	ATCATGATGC	3600
		GCCCAGTCAG					3660
55		CACTCAGATC					3720
		TATCGCAGCA					3780
		ACTCCAGAAG					3840
							3900
		CTTCACAGCA					
CO		TACAAACCAC					3960
60		GAAGCAGCAT					4020
		CTTGGCCATC					4080
	GTCATCATGG	CCAATTATAG	GACCTAATTG	CTCTCAGCAG	GCCTGAGAAA	TGAGTTGAAA	4140
		TGTAGAAACT					4200
		ACTATCTATC					4260
65		AGAAGCCAGT					4320
00		AACTTGACTG					4320
		ACAAGAGAAA					4440
		AAGACCCACA					4500
		TGTACTATTT					4560
70	TATAATTTTC	CTAAAATGTG	GTACAACTCA	GTTGGTTTTT	AAATGGATGC	ATACAGTCCA	4620
	CATCATACAA	TAAAATAAAA	GGTAATTCAG	GGTCCCAAAG	ACAAACTTAC	TAAGAAAAA	4680
	TCATTAATAG	TTTTCTCCCA	ATTTCCATAT	CTTACTCAAC	CGTGTTTTTC	CTTGTTTAAA	4740
	ACAAAATGAT	GCTCTAAGCT	ACAAAATTTT	GTCAAAAACT	CATATTGAAT	TTTCAATGCC	4800
	A A A C A T C T A C	CTATTGATGT	TATCACACAC	AGCACTGACT	ATGTACTATC	AAACTATCTA	4860
75	TANGET GIVE	TAAGTCTGAT	TIT CUCUCUG	TOO TO TO TO	TTTACANTO		4920
13							
	TTATAAAGAA	TCGATAAATT	CACCTGTATT	TGTTGTTAGA	HAMMAACTGG	GIGICIGIAC	4980

```
ATTTTGTGGT GTAAAATATG TAATTGAAGA TTACTATTTT AAGAAGTCAT CAGTCATATC 5040
      ACTCACACAG AATTTTATTT TACATAGTTT TGTGACTTAA TTACACATGA ATATAAAATC
      TATAATTCTA TATGAATATA TAGAGATATA GAAACATCTG AACTGGTAAA GAATAACTAT
                                                                         5160
      AAAATATGAA AGCTCTAAAT TTAAAATAAA TTTAGAGATA GAATCATGGT ACATTATTGT
                                                                         5220
      TTCAGTATTC CATGTAAAAA TTTTATAGCT TAAATGTAGT CAGTGTTTGA TTAATGAAAA
                                                                         5280
      AATTCTTCAT GAGTCAGCCT TCAAAAGTTA AGCTTGCCTT TTACTTTTAT GTCAACAATA
      TITADITTA AATTTAGTAA GACGCAAAAA AAAAAAAAA AAAA
      Seq ID No: 157 Protein sequence:
10
      Protein Accession #: NP 116586.1
                            21
                                                  41
                                                             51
                 11
                                       31
15
      MIVLLLFALL WMVEGVFSQL HYTVQEEQEH GTFVGNIAED LGLDITKLSA RGFQTVPNSR
      TPYLDLNLET GVLYVNEKID REQICKQSPS CVLHLEVFLE NPLELFQVEI EVLDINDNPP
                                                                          120
      SFPEPDLTVE ISESATPGTR FPLESAFDPD VGTNSLRDYE ITPNSYFSLD VQTQGDGNRF
                                                                          180
      AELVLEKPLD REQQAVHRYV LTAVDGGGGG GVGEGGGGGG GAGLPPQQQR TGTALLTIRV
      LDSNDNVPAF DOPVYTVSLP ENSPPGTLVI OLNATDPDEG ONGEVVYSFS SHISPRAREL
20
      FGLSPRTGRL EVSGELDYEE SPVYQVYVQA KDLGPNAVPA HCKVLVRVLD ANDNAPEISF
      STVKEAVSEG AAPGTVVALF SVTDRDSEEN GQVQCELLGD VPFRLKSSFK NYYTIVTEAP
                                                                          420
      LDREAGDSYT LTVVARDRGE PALSTSKSIQ VQVSDVNDNA PRFSQPVYDV YVTENNVPGA
                                                                          480
      YIYAVSATDR DEGANAQLAY SILECQIQGM SVFTYVSINS ENGYLYALRS FDYEQLKDFS
      FQVEARDAGS PQALAGNATV NILIVDQNDN APAIVAPLPG RNGTPAREVL PRSAEPGYLL
                                                                          600
25
      TRVAAVDADD GENARLTYSI VRGNEMNLFR MDWRTGELRT ARRVPAKRDP QRPYELVIEV
                                                                          660
      RDHGQPPLSS TATLVVQLVD GAVEPQGGGG SGGGGSGEHQ RPSRSGGGET SLDLTLILII
                                                                           720
      ALGSVSFIFL LAMIVLAVRC QKEKKLNIYT CLASDCCLCC CCCGGGGSTC CGRQARARKK
                                                                           780
      KLSKSDIMLV QSSNVPSNPA QVPIEESGGF GSHHHNQNYC YQVCLTPESA KTDLMFLKPC
                                                                          840
      SPSRSTDTEH NPCGAIVTGY TDQQPDIISN GSILSNETKH QRAELSYLVD RPRRVNSSAF
                                                                          900
30
      QEADIVSSKD SGHGDSEQGD SDHDATNRAQ SAGMDLFSNC TEECKALGHS DRCWMPSFVP
                                                                          960
      SDGRQAADYR SNLHVPGMDS VPDTEVFETP EAQPGAERSF STFGKEKALH STLERKELDG 1020
      LLTNTRAPYK PPYLTRKRIC
      Seq ID NO: 158 DNA sequence
35
      Nucleic Acid Accession #: NM_022159.1
      Coding sequence: 70-1890 (underlined sequences correspond to start and stop codons)
                                       31
                                                  41
                                                             51
                            21
40
      GTGAAATTTA AACTCCAGTC CTGTGGCGAA AATGCTAATT GCACTAACAC AGAAGGAAGT
      TATTATTGTA TGTGTGTACC TGGCTTCAGA TCCAGCAGTA ACCAAGACAG GTTTATCACT
                                                                          120
      AATGATGGAA CCGTCTGTAT AGAAAATGTG AATGCAAACT GCCATTTAGA TAATGTCTGT
                                                                          180
      ATAGCTGCAA ATATTAATAA AACTTTAACA AAAATCAGAT CCATAAAAGA ACCTGTGGCT
45
      TTGCTACAAG AAGTCTATAG AAATTCTGTG ACAGATCTTT CACCAACAGA TATAATTACA
                                                                           300
      TATATAGAAA TATTAGCTGA ATCATCTTCA TTACTAGGTT ACAAGAACAA CACTATCTCA
                                                                          360
      GCCAAGGACA CCCTTTCTAA CTCAACTCTT ACTGAATTTG TAAAAACCGT GAATAATTTT
                                                                          420
      GTTCAAAGGG ATACATTTGT AGTTTGGGAC AAGTTATCTG TGAATCATAG GAGAACACAT
                                                                           480
      CTTACAAAAC TCATGCACAC TGTTGAACAA GCTACTTTAA GGATATCCCA GAGCTTCCAA
50
      AAGACCACAG AGTTTGATAC AAATTCAACG GATATAGCTC TCAAAGTTTT CTTTTTTGAT
                                                                           600
      TCATATAACA TGAAACATAT TCATCCTCAT ATGAATATGG ATGGAGACTA CATAAATATA
                                                                           660
      TTTCCAAAGA GAAAAGCTGC ATATGATTCA AATGGCAATG TTGCAGTTGC ATTTTATAT
                                                                           720
      TATAAGAGTA TTGGTCCTTT GCTTTCATCA TCTGACAACT TCTTATTGAA ACCTCAAAAT
                                                                           780
      TATGATAATT CTGAAGAGGA GGAAAGAGTC ATATCTTCAG TAATTTCAGT CTCAATGAGC
      TCAAACCCAC CCACATTATA TGAACTTGAA AAAATAACAT TTACATTAAG TCATCGAAAG
55
                                                                          900
      GTCACAGATA GGTATAGGAG TCTATGTGCA TTTTGGAATT ACTCACCTGA TACCATGAAT
                                                                          960
      GGCAGCTGGT CTTCAGAGGG CTGTGAGCTG ACATACTCAA ATGAGACCCA CACCTCATGC 1020
      CGCTGTAATC ACCTGACACA TTTTGCAATT TTGATGTCCT CTGGTCCTTC CATTGGTATT
      AAAGATTATA ATATTCTTAC AAGGATCACT CAACTAGGAA TAATTATTTC ACTGATTTGT 1140
60
      CTTGCCATAT GCATTTTTAC CTTCTGGTTC TTCAGTGAAA TTCAAAGCAC CAGGACAACA 1200
      ATTCACAAAA ATCTTTGCTG TAGCCTATTT CTTGCTGAAC TTGTTTTTCT TGTTGGGATC
                                                                         1260
      AATACAAATA CTAATAAGCT CTTCTGTTCA ATCATTGCCG GACTGCTACA CTACTTCTTT
      TTAGCTGCTT TTGCATGGAT GTGCATTGAA GGCATACATC TCTATCTCAT TGTTGTGGGT
                                                                         1380
      GTCATCTACA ACAAGGGATT TTTGCACAAG AATTTTTATA TCTTTGGCTA TCTAAGCCCA
                                                                         1440
65
      GCCGTGGTAG TTGGATTTTC GGCAGCACTA GGATACAGAT ATTATGGCAC AACCAAAGTA 1500
      TGTTGGCTTA GCACCGAAAA CAACTTTATT TGGAGTTTTA TAGGACCAGC ATGCCTAATC
      ATTCTTGTTA ATCTCTTGGC TTTTGGAGTC ATCATATACA AAGTTTTTCG TCACACTGCA 1620
      GGGTTGAAAC CAGAAGTTAG TTGCTTTGAG AACATAAGGT CTTGTGCAAG AGGAGCCCTC
                                                                         1680
      GCTCTTCTGT TCCTTCTCGG CACCACCTGG ATCTTTGGGG TTCTCCATGT TGTGCACGCA 1740
70
      TCAGTGGTTA CAGCTTACCT CTTCACAGTC AGCAATGCTT TCCAGGGGAT GTTCATTTT 1800
      TTATTCCTGT GTGTTTTATC TAGAAAGATT CAAGAAGAAT ATTACAGATT GTTCAAAAAT
      GTCCCCTGTT GTTTTGGATG TTTAAGG<u>TAA</u> ACATAGAGAA TGGTGGATAA TTACAACTGC 1920
      ACAAAAATAA AAATTCCAAG CTGTGGATGA CCAATGTATA AAAATGACTC ATCAAATTAT
                                                                         1980
      CCAATTATTA ACTACTAGAC AAAAAGTATT TTAAATCAGT TTTTCTGTTT ATGCTATAGG
                                                                          2040
75
      AACTGTAGAT AATAAGGTAA AATTATGTAT CATATAGATA TACTATGTTT TTCTATGTGA
      AATAGTTCTG TCAAAAATAG TATTGCAGAT ATTTGGAAAG TAATTGGTTT CTCAGGAGTG 2160
```

```
ATATCACTGC ACCCAAGGAA AGATTTTCTT TCTAACACGA GAAGTATATG AATGTCCTGA
      AGGAAACCAC TGGCTTGATA TTTCTGTGAC TCGTGTTGCC TTTGAAACTA GTCCCCTACC
      ACCTCGGTAA TGAGCTCCAT TACAGAAAGT GGAACATAAG AGAATGAAGG GGCAGAATAT
                                                                          2340
      CAAACAGTGA AAAGGGAATG ATAAGATGTA TTTTGAATGA ACTGTTTTTT CTGTAGACTA
                                                                          2400
 5
      GCTGAGAAAT TGTTGACATA AAATAAAGAA TTGAAGAAAC ACATTTTACC ATTTTGTGAA
                                                                          2460
      TTGTTCTGAA CTTAAATGTC CACTAAAACA ACTTAGACTT CTGTTTGCTA AATCTGTTTC
                                                                          2520
      TTTTTCTAAT ATTCTAAAA
      Seq ID No: 159 Protein sequence:
10
      Protein Accession #: NP 071442.1
                                                              51
                            21
                                       31
                                                   41
                 11
15
      MCVPGFRSSS NQDRFITNDG TVCIENVNAN CHLDNVCIAA NINKTLTKIR SIKEPVALLQ
      EVYRNSVTDL SPTDIITYIE ILAESSSLLG YKNNTISAKD TLSNSTLTEF VKTVNNFVQR
                                                                           120
      DTFVVWDKLS VNHRRTHLTK LMHTVEQATL RISQSFQKTT EFDTNSTDIA LKVFFFDSYN
                                                                           180
      MKHIHPHMNM DGDYINIFPK RKAAYDSNGN VAVAFLYYKS IGPLLSSSDN FLLKPQNYDN
                                                                           240
      SEEEERVISS VISVSMSSNP PTLYELEKIT FTLSHRKVTD RYRSLCAFWN YSPDTMNGSW
                                                                           300
20
      SSEGCELTYS NETHTSCRCN HLTHFAILMS SGPSIGIKDY NILTRITQLG IIISLICLAI
      CIFTFWFFSE IQSTRTTIHK NLCCSLFLAE LVFLVGINTN TNKLFCSIIA GLLHYFFLAA
                                                                           420
      FAWMCIEGIH LYLIVVGVIY NKGFLHKNFY IFGYLSPAVV VGFSAALGYR YYGTTKVCWL
                                                                           480
      STENNFIWSF IGPACLIILV NLLAFGVIIY KVFRHTAGLK PEVSCFENIR SCARGALALL
                                                                           540
      FLLGTTWIFG VLHVVHASVV TAYLFTVSNA FQGMFIFLFL CVLSRKIQEE YYRLFKNVPC
25
      CFGCLR
      Seq ID NO: 160 DNA sequence
      Nucleic Acid Accession #: none found
30
      Coding sequence: 1-216 (underlined sequences correspond to start and stop codons)
                                                              51
                                       31
                                                   41
                 11
                            21
      TGTCTGCTTA TGCGGTGGCT CGCTGCTCAG AACAGGATGG CAGAGATGAG CACCACCATC
35
      AAAAACTCAA GGACCAGTGC TGTGGGTCCA GTCATCTGTT TCATGGAATT CACCAGTCTG
      GTATCTTCAA AATCCAGAAG GATGATGGCA GATGGCAGGA AGGAGGAAGA GGGTAATCTG
      GAAGAGTTTC CTGACCTACT CTGCTGCTGT GAT<u>TAA</u>ACAA CCACCAGGAA ATTTTGATGA
                                                                           240
      CACTGTTCTC CTGAGCTCCT CCCTTTCCTC GGGGAAGAAA AGCATTGAAA CTACAAAAAT
                                                                           300
40
      AAAGTGTTAT TTGGCTGGAG TGAGGTCTCA TGTCTGCTTA TGCGGTGGCT CGCTGCTCAG
                                                                           360
      AACAGGGAAC CATTGGAGAT ACTCATTACT CTTTGAAGGC TTACAGTGGA ATGAATTCAA
      ATACGACTTA TTTGAGGAAT TGAAGTTGAC TTTATGGAGC TGATAAGAAT CTTCTTGGAG
                                                                           480
      AAAAAAGAC TGGTACTTCT GAATTAACCA AAATCACAGT ATTCTGAAGA TGATTCTACA
                                                                           540
      AAGCCTGCTG TTTCTACAAA GGCTGCTGAT GATTTCTACA AAGCCTGCTG TAGTGTTGCT
                                                                           600
45
      GTGGCCTCTG CTTAAAAAAG TAGAAAACAC ATTGATGCAG CATGTTCACC CCAACCTCCC
                                                                           660
      TGCCTAAAGG CTCAGGGACC ATCTTGGAAG AGGAAGGCGC GTGAGATTGT AAGAGCCGAA
      TTAGGGGGAT GGAGTGTGGA GAATAAGGAC ACTTCATCTT GGATGCTCAC CTGCCAAATT
                                                                           780
      GACTTCTGAT GAAAGCCAGC TCCAGAAATG TGCCTACAGT TACTACTTTC ACCTAAACCC
                                                                           840
      TGCCCTTAGT CAAATCCTTC TCTTCTTCTA AGCAATCAAC TTCAATTCCT TGTATAACCC
                                                                           900
50
      ACAGTATAAA AGGGCTTTTA TACCATTCTA TCCTATTGCA TGTAAGCCTT GGGTCTGGGA
                                                                           960
      GGTAACAGTG TGGGATTCCA CCATCTCATC TCCCTGCCAC CCAAACATGC CTGCTCTTCT
                                                                         1020
      TTAAGCAATA TTAAATGTTT GTACTTCA
      Seq ID No: 161 Protein sequence:
55
      Protein Accession #: none found
                            21
                                       31
                                                   41
                 11
      CLLMRWLAAQ NRMAEMSTTI KNSRTSAVGP VICFMEFTSL VSSKSRRMMA DGRKEEEGNL
60
                                                                            60
      EEFPDLLCCC D
      Seq ID NO: 162 DNA sequence
      Nucleic Acid Accession #: none found
65
      Coding sequence: 1-159 (underlined sequences correspond to start and stop codons)
                                                              51
                            21
                                       31
                                                   41
                 11
70
      GAGACCCTCC AGAGGCAGGG CCCAGGATTG AAGAGGGAAG CCCTGCTCCA CACGTGTTCA
                                                                            60
      TCAGGAAGGA CCCACAGACT GCTGCTCCTG GAGGCCTCTC GGTTTATGGA TGTGTGTTTG
                                                                           120
      TTCCATAAAC CCTCAGAGGG TCACCTGGAG ACCCGCTAAA ATGCAGGTTC TTGGGCCACA
                                                                           180
      TCCTAGACCT TCTGACCGAC CCAGGGAGTG GGGCCCAGGA AGCTGCATTT GACAGATATC
                                                                           240
      CCCGTGTGAT CATCATGCAC ACAGGAGTGA GAGAACCAGT GTTCTCCCCG GGCAGAAGGG
                                                                           300
75
      AAGCTCGTGT GCAGGACACC TCACACCTCC TTTCCCATTC CCCTGCCAGG CTCTCCCTGC
      TGACATTGTT TTTGCGGGAG AGCTGTGAAT TCTGAAGATT AGGTTGCTTC TCACCCCAAG
```

```
CTCCAGAAGT CCAGGCTGAG CCAAACCAAG CTTCAAGTTG TGCCTGGACT TGGAGAACCA
      GGAGGTGAGG GGACTGACTA CTTGAAGATC ACATGGAGGA GGAGTCTGAT CCAGGCCCAG
                                                                         540
      GCACCAGGA AAGGCCATGC AAGGACACAG GGAGAAGGGC AGCTGTCTGT AAGCCAGAAA
                                                                         600
      GAGCCTTCAC TAGAAACCAA ATCAGCCAGA ACCTTCATCT TGGACTTTCC AGCCTTCAGA
                                                                         660
 5
      GATGTGAAAA AATAAATTTC TGTTGATTAA CCTAAAAAA
      Seq ID No: 163 Protein sequence:
      Protein Accession #: none found
10
                11
                            21
                                       31
                                                 41
                                                            51
      ETLOROGPGL KREALLHTCS SGRTHRLLLL EASRFMDVCL FHKPSEGHLE TR
15
      Seq ID NO: 164 DNA sequence
      Nucleic Acid Accession #: NM_020241.1
      Coding sequence: 4-1557 (underlined sequences correspond to start and stop codons)
20
                            21
                                                  41
                                                            51
                11
                                       31
      GCCATGCAGA CCCCGCGAGC GTCCCCTCCC CGCCCGGCCC TCCTGCTTCT GCTGCTGCTA
                                                                          60
      CTGGGGGGCC CCCACGGCCT CTTTCCTGAG GAGCCGCCGC CGCTTAGCGT GGCCCCCAGG
      GACTACCTGA ACCACTATCC CGTGTTTGTG GGCAGCGGGC CCGGACGCCT GACCCCCGCA
                                                                         1.80
25
      GAAGGTGCTG ACGACCTCAA CATCCAGCGA GTCCTGCGGG TCAACAGGAC GCTGTTCATT
                                                                         240
      GGGGACAGGG ACAACCTCTA CCGCGTAGAG TTGGAGCCCC CCACGTCCAC GGAGCTGCGG
                                                                         300
      TACCAGAGGA AGCTGACCTG GAGATCTAAC CCCAGCGACA TAAACGTGTG TCGGATGAAG
                                                                         360
      GGCAAACAGG AGGGCGAGTG TCGAAACTTC GTAAAGGTGC TGCTCCTTCG GGACGAGTCC
      ACGCTCTTTG TGTGCGGTTC CAACGCCTTC AACCCGGTGT GCGCCAACTA CAGCATAGAC
                                                                         480
30
      ACCCTGCAGC CCGTCGGAGA CAACATCAGC GGTATGGCCC GCTGCCCGTA CGACCCCAAG
                                                                         540
      CACGCCAATG TTGCCCTCTT CTCTGACGGG ATGCTCTTCA CAGCTACTGT TACCGACTTC
      CTAGCCATTG ATGCTGTCAT CTACCGCAGC CTCGGGGACA GGCCCACCCT GCGCACCGTG
                                                                         660
      AAACATGACT CCAAGTGGTT CAAAGAGCCT TACTTTGTCC ATGCGGTGGA GTGGGGCAGC
                                                                         720
      CATGTCTACT TCTTCTCCG GGAGATTGCG ATGGAGTTTA ACTACCTGGA GAAGGTGGTG
                                                                         780
35
      GTGTCCCGCG TGGCCCGAGT GTGCAAGAAC GACGTGGGAG GCTCCCCCCG CGTGCTGGAG
                                                                         840
      AAGCAGTGGA CGTCCTTCCT GAAGGCGCGG CTCAACTGCT CTGTACCCGG AGACTCCCAT
      TTCTACTTCA ACGTGCTGCA GGCTGTCACG GGCGTGGTCA GCCTCGGGGG CCGGCCCGTG
                                                                         960
      GTCCTGGCCG TTTTTTCCAC GCCCAGCAAC AGCATCCCTG GCTCGGCTGT CTGCGCCTTT
                                                                        1020
      GACCTGACAC AGGTGGCAGC TGTGTTTGAA GGCCGCTTCC GAGAGCAGAA GTCCCCCGAG
                                                                        1080
40
      GCCCCGGGA TGCAGTACAA TGCCTCCAGC GCCTTGCCGG ATGACATCCT CAACTTTGTC
      AAGACCCACC CTCTGATGGA CGAAGCGGTG CCCTCGCTGG GCCATGCGCC CTGGATCCTG
                                                                        1260
      CGGACCCTGA TGAGGCACCA GCTGACTCGA GTGGCTGTGG ACGTGGGAGC CGGCCCCTGG
                                                                        1320
      GGCAACCAGA CCGTTGTCTT CCTGGGTTCT GAGGCGGGGA CGGTCCTCAA GTTCCTCGTC
45
      CGGCCCAATG CCAGCACCTC AGGGACGTCT GGGCGTGTGT GTCAAGTGGG CCACGCGTGC
      AGGGTGTGTG TCCACGAGCG ACGATCGTGG TGGCCCCAGC GGCCTGGGCG TTGGCTGAGC
      CGACGCTGGG GCTTCCAGAA GGCCCGGGGG CCTCCGAGGT GCCGGTTAGG AGTT<u>TGA</u>ACC
                                                                        1560
      CCCCCCACTC TGCAGAGGGA AGCGGGGACA ATGCCGGGGT TTCAGGCAGG AGACACGAGG
                                                                        1620
      AGGGCCTGCC CGGAAGTCAC ATCGGCAGCA GCTGTCTAAA GGGCTTGGGG GCCTGGGGGG
50
      CGGCGAAGGT GGGTGGGCC CCTCTGTAAA TACGGCCCCA GGGTGGTGAG AGAGTCCCAT
                                                                        1740
      GCCACCCGTC CCCTTGTGAC CTCCCCCTC TGACCTCCAG CTGACCATGC ATGCCACGTG 1800
      Seq ID No: 165 Protein sequence:
55
      Protein Accession #: NP_064626.1
                11
                                                 41
                                                            51
                            21
                                       31
      MOTPRASPPR PALLILLLL GGAHGLFPEE PPPLSVAPRD YLNHYPVFVG SGPGRLTPAE
60
      GADDLNIQRV LRVNRTLFIG DRDNLYRVEL EPPTSTELRY QRKLTWRSNP SDINVCRMKG
                                                                         120
      KOEGECRNFV KVLLLRDEST LFVCGSNAFN PVCANYSIDT LQPVGDNISG MARCPYDPKH
                                                                         180
      ANVALFSDGM LFTATVTDFL AIDAVIYRSL GDRPTLRTVK HDSKWFKEPY FVHAVEWGSH
      VYFFFREIAM EFNYLEKVVV SRVARVCKND VGGSPRVLEK OWTSFLKARL NCSVPGDSHF
                                                                         300
      YFNVLQAVTG VVSLGGRPVV LAVFSTPSNS IPGSAVCAFD LTQVAAVFEG RFREQKSPES
                                                                         360
65
      IWTPVPEDQV PRPRPGCCAA PGMQYNASSA LPDDILNFVK THPLMDEAVP SLGHAPWILR
                                                                         420
      TLMRHQLTRV AVDVGAGPWG NQTVVFLGSE AGTVLKFLVR PNASTSGTSG RVCQVGHACR
                                                                         480
      VCVHERRSWW PQRPGRWLSR RWGFQKARGP PRCRLGV
      Seq ID NO: 166 DNA sequence
70
      Nucleic Acid Accession #: NM 032108.1
      Coding sequence: 39-2705 (underlined sequences correspond to start and stop codons)
                            21
                                       31
75
      TCCGAGGCGT CACCTCCTCC TGTCGCCTGG CCCTCGCCAT GCAGACCCCG CGAGCGTCCC
      CTCCCCGCCC GGCCCTGCTG CTTCTGCTGC TGCTACTGGG GGGCGCCCAC GGCCTCTTTC
```

	CTGAGGACCC	GCCGCCGCTT	AGCGTGGCCC	CCAGGGACTA	CCTGAACCAC	TATCCCGTGT	180
	TTGTGGGCAG	CGGGCCCGGA	CGCCTGACCC	CCGCAGAAGG	TGCTGACGAC	CTCAACATCC	240
	AGCGAGTCCT	GCGGGTCAAC	AGGACGCTGT	TCATTGGGGA	CAGGGACAAC	CTCTACCGCG	300
_			TCCACGGAGC				360
5			GTGTGTCGGA				420
	ACTTCGTAAA	GGTGCTGCTC	CTTCGGGACG	AGTCCACGCT	CTTTGTGTGC	GGTTCCAACG	480
			AACTACAGCA				540
	TCAGCGGTAT	GGCCCGCTGC	CCGTACGACC	CCAAGCACGC	CAATGTTGCC	CTCTTCTCTG	600
	ACGGGATGCT	CTTCACAGCT	ACTGTTACCG	ACTTCCTAGC	CATTGATGCT	GTCATCTACC	660
10			ACCCTGCGCA				720
	AGCCTTACTT	TGTCCATGCG	GTGGAGTGGG	GCAGCCATGT	CTACTTCTTC	TTCCGGGAGA	780
	TTGCGATGGA	GTTTAACTAC	CTGGAGAAGG	${\tt TGGTGGTGTC}$	CCGCGTGGCC	CGAGTGTGCA	840
			CCCCGCGTGC				900
	CGCGGCTCAA	CTGCTCTGTA	CCCGGAGACT	CCCATTTCTA	CTTCAACGTG	CTGCAGGCTG	960
15			GGGGGCCGGC				1020
	GCAACAGCAT	CCCTGGCTCG	GCTGTCTGCG	CCTTTGACCT	GACACAGGTG	GCAGCTGTGT	1080
	TTGAAGGCCG	CTTCCGAGAG	CAGAAGTCCC	CCGAGTCCAT	CTGGACGCCG	GTGCCGGAGG	1140
			CCCGGGTGCT				1200
	CCAGCGCCTT	GCCGGATGAC	ATCCTCAACT	TTGTCAAGAC	CCACCCTCTG	ATGGACGAGG	1260
20	CGGTGCCCTC	GCTGGGCCAT	GCGCCCTGGA	TCCTGCGGAC	CCTGATGAGG	CACCAGCTGA	1320
			GGAGCCGGCC				1380
'			CTCAAGTTCC				1440
			CTGGAGGAGT				1500
			GGGCAGCGGC				1560
25			CCCCGCTGCG				1620
			AACTGTATCG				1680
			CTCAGCCCGG				1740
			TTAGGGGACT				1800
			TCGGTGAACC				1860
30			GGCTTCAGCG				1920
50			GACAAGGAGG				1980
			GGCGAGCGCA				2040
			GTTCCCCCGG				2100
			CTGCAGGGCG				2160
35			CTGCCGCAGA				2220
55			TGGGACCACG				2280
	CCTCCCTCCT	CCTCCTCCC	CCCGCCCGGG	CCCCCGAGCA	GCCCCCCCC	CCTGGGGAGC	2340
	CCICCCCCCA	CCCCCCCCCC	TATGCTGCCC	GCCCCGCCC	CGCCTCCCAC	GGCGACTTCC	2400
			CCGGACCGCC				2460
40			GATGGCCTCC				2520
70			CCCCACGCCC				2580
			CGGCCTGGGG				2640
			CTCCCCTATG				2700
	CCTACAGACII	CCCCCCCCCC	ATGCCTTGGC	AGTGCCAGCC	ACCCCAACCA	GCAGCGAGAG	2760
45			CCCGGGGCAA				2820
73			GCCCCCTCCG				2880
							2940
			CGCTGAGACG				3000
			TTATGCGCGT				
50			ATTGCACAAC ATGGGGGGCC				3060 3120
30	GGCTTGGACG	CCGGTGGGGA	ATGGGGGGCC	ACAGCTGCAG	ACCTAAGCCC	TCCCCCACCC	
	CTGGAAAGGT	CCCTCCCCAA	CCCAGGCCCC	TGGCGTGTGT	GGGTGTGCGT	GCGTGTGCGT	3180
			GCCGGGGAGG				3240
	GCTGTGGGCG	TGTGTGTCAA	GTGGGCCACG	CGTGCAGGGT	GTGTGTCCAC	CAGCGACGAT	3300 3360
55			GGGCGTTGGC				
55						AGGGAAGCGG	3420
	GGACAATGCC	GGGGTTTCAG	GCAGGAGACA	CGAGGAGGGC	CTGCCCGGAA	GTCACATCGG	3480
	CAGCAGCTGT	CTAAAGGGCT	TGGGGGCCTG	GGGGGCGCG	AAAG		
60							
60			sequence:				
	Protein Acc	cession #: 1	NP_115484.1				
	i	11	21	31	41	51	
~~]				ļ	•
65			GGAHGLFPED				60
			DRDNLYRVEL				120
			LFVCGSNAFN				180
			AIDAVIYRSL				240
- .			SRVARVCKND				300
70	YFNVLQAVTG	VVSLGGRPVV	LAVFSTPSNS	IPGSAVCAFD	LTQVAAVFEG	RFREQKSPES	360
	IWTPVPEDQV	PRPRPGCCAA	PGMQYNASSA	LPDDILNFVK	THPLMDEAVP	SLGHAPWILR	420
			NQTVVFLGSE				480
	YRPDRCGRPG	GGETGQRLLS	LELDAASGGL	LAAFPRCVVR	VPVARCQQYS	GCMKNCIGSQ	540
	DPYCGWAPDG	SCIFLSPGTR	AAFEQDVSGA	STSGLGDCTG	LLRASLSEDR	AGLVSVNLLV	600
75	TSSVAAFVVG	AVVSGFSVGW	FVGLRERREL	ARRKDKEAIL	AHGAGEAVLS	VSRLGERRAO	660
	GPGGRGGGGG	GGAGVPPEAT.	LAPLMQNGWA	KATLLQGGPH	DLDSGLLPTP	EQTPLPQKRL	720
				~		÷.	

```
PTPHPHPHAL GPRAWDHGHP LLPASASSSL LLLAPARAPE OPPAPGEPTP DGRLYAARPG
                                                                        780
      RASHGDFPLT PHASPDRRRV VSAPTGPLDP ASAADGLPRP WSPPPTGSLR RPLGPHAPPA
      ATLRRTHTFN SGEARPGDRH RGCHARPGTD LAHLLPYGGA DRTAPPVP
 5
      Seq ID NO: 168 DNA sequence
      Nucleic Acid Accession #: AW205664
      Coding sequence: 1-135 (underlined sequences correspond to start and stop codons)
10
                 11
                           21
                                      31
                                                 41
                                                           51
      CGGCACGAGG AGAACAGGGG CCTCTGCCTC AGTTTGCCCG GGAGCCAGCC AGGGCCCATC
                                                                         60
      CTAATTTGGA GCACAGTCTT CCCGGTGCCT AGACATGCCA AGGCCCCTCC CACGTGGTAC
                                                                        120
15
      ACCCTCTCCG TTTAGTACCT GACCACCTGT TTCAAAACGC AGGTGTTTCT GGTTTAGAAA
      CTTGGAAGGC GGAATGTGTT TTCGTGTCTT CTAGGAAGGG TCTGCTGAGG ACCAGACCAC
                                                                        240
      GTAAGCCTGA GTGGATCCTG ACTCAGCTGC AGCCCTTACC TGCCTCGTGC TGATGATCTA
                                                                        300
      TGCATGGCGT TATGTAGATC ACGTGCGGCA GAGACAGCCA CTGTCCTGTG TGCGGGTTTT
                                                                        360
      20
      Seq ID No: 169 Protein sequence:
      Protein Accession #: AW205664
25
                                      31
                                                           51
                 11 .
                           21
                                                 41
      RHEENRGLCL SLPGSOPGPI LIWSTVFPVP RHAKAPPTWY TLSV
30
      Seq ID NO: 170 DNA sequence
      Nucleic Acid Accession #: AB033100
      Coding sequence: 32~2623 (underlined sequences correspond to start and stop codons)
35
                           21
                                      31
                                                 41
                                                           51
                 11
      AGGTCTGGGG TCCTGAGGCT GCTGGCAGAC TATGGGTACA ACGGCCAGCA CAGCCCAGCA
      GACGGTCTCG GCAGGCACCC CATTTGAGGG CCTACAGGGC AGTGGCACGA TGGACAGTCG
                                                                        120
      GCACTCCGTC AGCATCCACT CCTTCCAGAG CACTAGCTTG CATAACAGCA AGGCCAAGTC
                                                                        1.80
40
      CATCATCCCC AACAAGGTGG CCCCTGTTGT GATCACGTAC AACTGCAAGG AGGAGTTCCA
                                                                        240
      GATCCATGAT GAGCTGCTCA AGGCTCATTA CACGTTGGGC CGGCTCTCGG ACAACACCCC
      TGAGCACTAC CTGGTGCAAG GAGCTCAGGC CTTACCCCAG GGCCGCTACT TCCTGGTGCG
                                                                        360
      GGATGTCACT GAGAAGATGG ATGTGCTGGG CACCGTGGGA AGCTGTGGGG CCCCCAACTT
                                                                        420
      45
      CAGGCGGGTC CTCCAGAAAC TCCAGAAGGA CGGACATAGG GAGTGTGTCA TCTTCTGTGT
      GCGGGAGGAA MCTGTGCTTT TCCTGCGTGC AGATGAGGAC TTTGTGTCCT ACACACCTCG
      AGACAAGCAG AACCTTCATG AGAACCTCCA GGGCCTTGGA CCCGGGGTCC GGGTGGAGAG
                                                                        660
      CCTGGAGCTG GCCATCCGGA AAGAGATCCA CGACTTTGCC CAGCTGAGCG AGAACACATA
                                                                        720
      CCATGTGTAC CATAACACCG AGGACCTGTG GGGGGAGCCC CATGCTGTGG CCATCCATGG
50
      TGAGGACGAC TTGCATGTGA CGGAGGAGGT GTACAAGCGG CCCCTCTTCC TGCAGCCCAC
      CTACAGGTAC CACCGCCTGC CCCTGCCCGA GCAAGGGAGT CCCCTGGAGG CCCAGTTGGA
                                                                        900
      CGCCTTTGTC AGTGTTCTCC GGGAGACCCC CAGCCTGCTG CAGCTCCGTG ATGCCCACGG
                                                                        960
      GCCTCCCCA GCCCTCGTCT TCAGCTGCCA GATGGGCGTG GGCAGGACCA ACCTGGGCAT
                                                                       1020
      GGTCCTGGGC ACCCTCATCC TGCTTCACCG CAGTGGGACC ACCTCCCAGC CAGAGGCTGC
                                                                       1080
55
      CCCCACGCAG GCCAAGCCCC TGCCTATGGA GCAGTTCCAG GTGATCCAGA GCTTTCTCCG
                                                                       1140
      CATGGTGCCC CAGGGAAGGA GGATGGTGGA AGAGGTGGAC AGAGCCATCA CTGCCTGTGC
                                                                       1200
      CGAGTTGCAT GACCTGAAAG AAGTGGTCTT GGAAAACCAG AAGAAGTTAG AAGGTATCCG
      ACCGGAGAGC CCAGCCCAGG GAAGCGGCAG CCGACACAGC GTCTGGCAGA GGGCGCTGTG
      GAGCCTGGAG CGATACTTCT ACCTGATCCT GTTTAACTAC TACCTTCATG AGCAGTACCC
                                                                       1380
60
      GCTGGCCTTT GCCCTCAGTT TCAGCCGCTG GCTGTGTGCC CACCCTGAGC TGTACCGCCT
                                                                       1440
      GCCCGTGACG CTGAGCTCAG CAGGCCCTGT GGCTCCGAGG GACCTCATCG CCAGGGGCTC
                                                                       1500
      CCTACGGGAG GACGATCTGG TCTCCCCGGA CGCGCTCAGC ACTGTCAGAG AGATGGATGT
      GGCCAACTTC CGGCGGGTGC CCCGCATGCC CATCTACGGC ACGGCCCAGC CCAGCGCCAA
                                                                       1620
      GGCCCTGGGG AGCATCCTGG CCTACCTGAC GGACGCCAAG AGGAGGCTGC GGAAGGTTGT
                                                                       1680
65
      CTGGGTGAGC CTTCGGGAGG AGGCCGTGTT GGAGTGTGAC GGGCACACCT ACAGCCTGCG
                                                                       1740
      GTGGCCTGGG CCCCCTGTGG CTCCTGACCA GCTGGAGACC CTGGAGGCCC AGCTGAAGGC
                                                                       1800
      CCATCTAAGC GAGCCTCCCC CAGGCAAGGA GGGCCCCCTG ACCTACAGGT TCCAGACCTG
      CCTTACCATG CAGGAGGTCT TCAGCCAGCA CCGCAGGGCC TGTCCTGGCC TCACCTACCA
                                                                       1920
      CCGCATCCCC ATGCCGGACT TCTGTGCCCC CCGAGAGGAG GACTTTGACC AGCTGCTGGA
                                                                       1980
70
      GGCCCTGCGG GCCGCCCTCT CCAAGGACCC AGGCACTGGC TTCGTGTTCA GCTGCCTCAG
                                                                       2040
      CGGCCAGGGC CGTACCACAA CTGCGATGGT GGTGGCTGTC CTGGCCTTCT GGCACATCCA
      AGGCTTCCCC GAGGTGGGTG AGGAGGAGCT CGTGAGTGTG CCTGATGCCA AGTTCACTAA
                                                                       2160
      GGGTGAATTT CAGGTAGTAA TGAAGGTGGT GCAGCTGCTA CCCGATGGGC ACCGTGTGAA
                                                                       2220
      GAAGGAGGTG GACGCAGCGC TGGACACTGT CAGCGAGACC ATGACGCCCA TGCACTACCA
                                                                       2280
75
      CCTGCGGGAG ATCATCATCT GCACCTACCG CCAGGCGAAG GCAGCGAAAG AGGCGCAGGA
                                                                       2340
      AATGCGGAGG CTGCAGCTGC GGAGCCTGCA GTACTTGGAG CGCTATGTCT GCCTGATTCT
```

```
CTTCAACGCG TACCTCCACC TGGAGAAGGC CGACTCCTGG CAGAGGCCCT TCAGCACCTG 2460
      GATGCAGGAG GTGGCATCGA AGGCTGGCAT CTACGAGATC CTTAACGAGC TGGGCTTCCC 2520
      CGAGCTGGAG AGCGGGGAGG ACCAGCCCTT CTCCAGGCTG CGCTACCGGT GGCAGGAGCA
     GAGCTGCAGC CTCGAGCCCT CTGCCCCCGA GGACTTGCTG TAGGGGGGCCT TACTCCCTGT
     CCCCCACCC ACAGGGCCCC ACGCAGGCCT GGGGTGTCTG AGGTGCTCTT GGCTGGGAGC
     GGCCCTGAGG GGTGCTGGCC TTGAAATGAT TCCCCCACTT CCTGGAGAGA CTGAGCGGAG
     TTGGGAGCCT TTTTAGAAAG AACTTTTTAT AGGACAGGGA GACAGCACAG CCATCCCTTG
      CAAACCACCA AGGTGTGTGG CTGACCTCCA GGGAGGAGCA CTCACTGGAG TGCTCACAAG
                                                                      2880
     GTGCACACTG CTGTGTGTAC CTTGCAGACA GGCCGGCGTT CAGCCTCCAA GGGGCTCACT
10
     CCCCCAGTTG CCAAACACTG TGGATCTCTC TGTCCTCTTC TCCCCTCTCT CAGATTGGCC
      TGGCAGCCCC TGGCACAGAG CAGACCCGGC CACTGGTAGC TCCCCACTTC CTTACTCCTG
                                                                      3060
      CTGCTCTGCC ATTGCCGCTC CCCTTCTTGC TGCCCAAGCA CTGCCCTCGG GCGTCTGGCA
                                                                      3120
      GCCTGAGGTG GGTGGAGGGG ACAGTGTTCT GGATAGATCT ATTATGTGAA AGGCAGCTTC 3180
      ACCCAGTTTT CTGGACTCTC ATGCCCCCAT CTCCGACCTG GGAGACTTCA GGAATGACAA
15
     CCTACCCAGC CTGGTGGGGC TGGCAGGATG GTGGAGGTTT CTCAAGGAGC TGGAGACTTC
      AGGGAGCCCC TCTCATGGGG AGGAAAGAGC TTCCAGGGGG CGAACGCAGC ACAGAGGAAG
                                                                      3360
     AGGCCTGCTC CACTTGTCTG GGAACCTGGG CAGGAGGCAC AGAGGAAGCC AAGGCCTGGA 3420
      GCTGCAGGTC CCCCGGCATC TCTCTCTGTC CCGGCAGCCC AGGATGGCCT GGTGCCCCCA 3480
      CCTGCTGCAG CAGGAGCCCC AAGGAGTGCT AGCTGAGGGT GGTTGCTGGG GTGGTCCTCA
20
     TGGACAGTGA GGTGTGCAAG GGTGCACTGA GGGTGGTGGG AGGGGATCAC CTGGGTTCCA
     GGCCATCCTT GCTGAGCATC TTTGAGCCTG CCTTCCGGTG GGAGCAGAAA AGGCCAGACC
                                                                      3660
      CTGCTGAGTT AGAGGCTGCT GGGATCCACT GTTTCCACAC AGCGGGAAGG CTGCTGGGAA
                                                                      3720
      CAGGTGGCAG AGAAGTGCCA TGTTTGCGTT GAGCCTTGCA GCTCTTCCAG CTGGGGACTG 3780
     25
     GATGTGTCAT TGGTCATGAT ATTTGAAAAG GGGAGGAGGC CGAAGTTGTT CCCATTTATC 3960
      CAGTATTGGA AAATATTTGA CCCCCTTGGC TGAATTCTTT TGCAGAACTA CTGTGTGTCT
     GTTCACTACC TTTTCAGGTT TATTGTTTTT ATTTTTGCAT GAATTAAGAC GTTTTAATTT 4080
     30
      CTCTCTGCCT CAGTTTCCCC ATCTGTAAAA TGGGAGAATA ATACTTGCCT ACCTACCTCA 4260
      CRGGGGTGTT GTGAGGATTC ATTTGTGATT TTTTTTTTT TTTTTGTACA GAGCTTTTAA 4320
     GCATTAAAAA CAGCTAAATG TG
35
      Seq ID No: 171 Protein sequence:
     Protein Accession #: BAA86588.1
                                                           51
                                      31
                                                41
40
     MGTTASTAQQ TVSAGTPFEG LQGSGTMDSR HSVSIHSFQS TSLHNSKAKS IIPNKVAPVV
     ITYNCKEEFO IHDELLKAHY TLGRLSDNTP EHYLVQGAQA LPQGRYFLVR DVTEKMDVLG
      TVGSCGAPNF RQVQGGLTVF GMGQPSLLGF RRVLQKLQKD GHRECVIFCV REEVLFLRAD
                                                                       180
     EDFVSYTPRD KQNLHENLQG LGPGVRVESL ELAIRKEIHD FAQLSENTYH VYHNTEDLWG
                                                                       240
      EPHAVAIHGE DDLHVTEEVY KRPLFLQPTY RYHRLPLPEQ GSPLEAQLDA FVSVLRETPS
                                                                       300
45
      LLQLRDAHGP PPALVFSCOM GVGRTNLGMV LGTLILLHRS GTTSQPEAAP TQAKPLPMEQ
     FOVIOSFLRM VPQGRRMVEE VDRAITACAE LHDLKEVVLE NQKKLEGIRP ESPAQGSGSR
     HSVWQRALWS LERYFYLILF NYYLHEQYPL AFALSFSRWL CAHPELYRLP VTLSSAGPVA
                                                                       480
      PRDLIARGSL REDDLVSPDA LSTVREMDVA NFRRVPRMPI YGTAQPSAKA LGSILAYLTD
                                                                       540
     AKRRLRKVVW VSLREEAVLE CDGHTYSLRW PGPPVAPDQL ETLEAQLKAH LSEPPPGKEG
                                                                       600
50
      PLTYRFQTCL TMQEVFSQHR RACPGLTYHR IPMPDFCAPR EEDFDQLLEA LRAALSKDPG
                                                                       660
     TGFVFSCLSG QGRTTTAMVV AVLAFWHIQG FPEVGEEELV SVPDAKFTKG EFQVVMKVVO
                                                                       720
      LLPDGHRVKK EVDAALDTVS ETMTPMHYHL REIIICTYRQ AKAAKEAQEM RRLQLRSLQY
                                                                       780
      LERYVCLILF NAYLHLEKAD SWQRPFSTWM QEVASKAGIY EILNELGFPE LESGEDQPFS
                                                                       840
     RLRYRWOEOS CSLEPSAPED LL
55
      Seq ID NO: 172 DNA sequence
     Nucleic Acid Accession #: AK021806.1
     Coding sequence: 1-645 (underlined sequences correspond to start and stop codons)
60
                           21
                                      31
                                                41
                                                           51
      ACTGTGCTTT TCCTGCGTGC AGATGAGGAC TTTGTGTCCT ACACACCTCG AGACAAGCAG
     AACCTTCATG AGAACCTCCA GGGCCTTGGA CCCGGGGTCC GGGTGGAGAG CCTGGAGCTG
                                                                       1.20
65
      GCCATCCGGA AAGAGATCCA CGACTTTGCC CAGCTGAGCG AGAACACATA CCATGTGTAC
                                                                       180
      CATAACACCG AGGACCTGTG GGGGGAGCCC CATGCTGTGG CCATCCATGG TGAGGACGAC
      TTGCATGTGA CGGAGGAGGT GTACAAGCGG CCCCTCTTCC TGCAGCCCAC CTACAGGTAC
      CACCGCCTGC CCCTGCCCGA GCAAGGGAGT CCCCTGGAGG CCCAGTTGGA CGCCTTTGTC
                                                                       360
      AGTGTTCTCC GGGAGACCCC CAGCCTGCTG CAGCTCCGTG ATGCCCACGG GCCTCCCCCA
                                                                       420
70
      GCCCTCGTCT TCAGCTGCCA GATGGGCGTG GGCAGGACCA ACCTGGGCAT GGTCCTGGGC
                                                                       480
      ACCCTCATCC TGCTTCACCG CAGTGGGACC ACCTCCCAGC CAGAGGCTGC CCCCACGCAG
                                                                       540
      GCCAAGCCCC TGCCTATGGA GCAGTTCCAG GTGATCCAGA GCTTTCTCCG CATGGTGCCC
      CAGGGAAGGA GGATGGTGGA AGAGGTGGAT AGATCTATTA TG<u>TGA</u>AAGGC AGCTTCACCC
                                                                        660
      AGTTTTCTGG ACTCTCATGC CCCCATCTCC GACCTGGGAG ACTTCAGGAA TGACAACCTA
                                                                        720
75
      CCCAGCCTGG TGGGGCTGGC AGGATGGTGG AGGTTTCTCA AGGAGCTGGA GACTTCAGGG
                                                                       780
      AGCCCCTCTC ATGGGGAGGA AAGAGCTTCC AGGGGGCGAA CGCAGCACAG AGGAAGAGGC
```

```
CTGCTCCACT TGTCTGGGAA CCTGGGCAGG AGGCACAGAG GAAGCCAAGG CCTGGAGCTG
      CAGGTCCCCC GGCATCTCTC TCTGTCCCGG CAGCCCAGGA TGGCCTGGTG CCCCCACCTG
      CTGCAGCAGG AGCCCCAAGG AGTGCTAGCT GAGGGTGGTT GCTGGGGTGG TCCTCATGGA
                                                                        1020
      CAGTGAGGTG TGCAAGGGTG CACTGAGGGT GGTGGGAGGG GATCACCTGG GTTCCAGGCC
                                                                        1080
      ATCCTTGCTG AGCATCTTTG AGCCTGCCTT CCGGTGGGAG CAGAAAAGGC CAGACCCTGC
      TGAGTTAGAG GCTGCTGGGA TCCACTGTTT CCACACAGCG GGAAGGCTGC TGGGAACAGG
                                                                        1200
      TGGCAGAGAA GTGCCATGTT TGCGTTGAGC CTTGCAGCTC TTCCAGCTGG GGACTGGTGC
                                                                        1260
      TTGCTGAAAC CCAGGAGCTG AACAGTGAGG AGGCTGTCCA CCTTGCTTGG CTCACTGGGA
                                                                        1320
      CCAGGAAAGC CTGTCTTTGG TTAGGCTCGT GTACTTCTGC AGGAAAAAAA AAAAAGGATG
                                                                        1380
10
      TGTCATTGGT CATGATATTT GAAAAGGGGA GGAGGCCGAA GTTGTTCCCA TTTATCCAGT
      ATTGGAAAAT ATTTGACCCC CTTGGCTGAA TTCTTTTGCA GAACTACTGT GTGTCTGTTC
                                                                        1500
      ACTACCTTTT CAGGTTTATT GTTTTTATTT TTGCATGAAT TAAGACGTTT TAATTTCTTT
                                                                        1560
      GCAGACAAGG TCTAGATGCG GAGTCAGAGA TGGGACTGAA TGGGGAGGGA TCCTTTGTGT
      TCTCATGGTT GGCTCTGACT TTCAGCTGTG TTGGGACCAC TGGCTGATCA CATCACCTCT
15
      CTGCCTCAGT TTCCCCATCT GTAAAATGGG AGAATAATAC TTGCCTACCT ACCTCACGGG
                                                                        1740
      TAAAAACAGC TAAATGTG
20
      Seq ID No: 173 Protein sequence:
      Protein Accession #: AK021806.1
25
                11
                           21
                                      31
                                                 41
                                                            51
      TVLFLRADED FVSYTPRDKQ NLHENLQGLG PGVRVESLEL AIRKEIHDFA QLSENTYHVY
      HNTEDLWGEP HAVAIHGEDD LHVTEEVYKR PLFLOPTYRY HRLPLPEOGS PLEAQLDAFV
                                                                         120
      SVLRETPSLL QLRDAHGPPP ALVFSCQMGV GRTNLGMVLG TLILLHRSGT TSQPEAAPTQ
30
      AKPLPMEOFO VIOSFLRMVP OGRRMVEEVD RSIM
      Seq ID NO: 174 DNA sequence
      Nucleic Acid Accession #: NM_016580.2
35
      Coding sequence: 1212-4766 (underlined sequences correspond to start and stop codons)
                11
                           21
                                      31
                                                 41
                                                            51
40
      GGGAAGCGGG AGGAGAGCCA CACGGTCAAG TTGCACAGGT TCTTGCAGCT TCTGGAATCA
                                                                          60
      AGACCATGGG CACCCTCATA AGTCAGTGTG GGCAGGGACT GCCCCAGGGC CAATCCAAGA
                                                                         120
      TCCAGAGGTA GCCATAGGGT GTGACAAGTT GTGCAGATTA CAACACTCAC CCCTTGCAAT
                                                                         180
      AACGTCACTG CCTGTGACTC GGGGCCAGGC CCAGGCCAAA GCCCTTCCTA CATCATTTCG
                                                                         240
      TTTAATCCTC ACAGTTTCCT GCTGAAAGGG CTACTATTCT TACTCCCATC CCCACTCTAC
45
      AGATGAGGTA ATGGAGGCCC AGGAAAGTTA AGTGACTTGT CCCAGATGAC ACCGCTGGTA
      AGTTGCAAAG TCAGAATTTG AACTCAGGCA GTTTACCTCT GATGGCTGCT CTGTTAATCA
                                                                         420
      CAGCTGCTTT CCAGTGAGAC AAAAACGGGT GATCAGGGCA GAGTCAAGAC AGAGAGGTAA
                                                                         480
      ACAAGATTGG GAAAAAGACA GGAATGAGAG GGGAACAATG GGGGAAAAGA TAGGAACAAA
                                                                         540
      GAGAGTTGGG GAAGGGGAGA GAAACAGGAA ACATGACTTG CCCGGGAGGG GCATCAGTCC
50
      ACGTGCAAGC AGGTGGAGGC TCAAGTTTTC TGCTCACTTG GTGATGCAGA GGCTCCCTTT
                                                                         660
      CCCTCAGCAG CCGCCTTGCT GCGTGGACAG CAGCTTCCCA TCTGGCCTGT CCCCGGAGCC
                                                                         720
      CCGGCCTCAT CCTCCTCAGC GGCAGGCCAC TTAGCTTCAC AGGAAATGCT CTTTCTCTAA
                                                                         780
      TTGGCATTGA AACTCACAGC CCTCCCTTTT CCTGTAGGTG GGGTTTCCAT AGGAAAAAGC
                                                                         840
      TGCTTCTCTG TTTCCCCAGC CTAGCAACTG TTTGGCAGTC AGAGTCCCAC ATCCTGCTCA
55
      ACTGGGTCAG GTCCCTCTTA GACCAGCTCT TGTCCATCAT TTGCTGAAGT GGACCAACTA
                                                                         960
      GTTCCCCAGT AGGGGGTCTC CCCTGGCAAT TCTTGATCGG CGTTTGGACA TCTCAGATCG
                                                                        1020
      CTTCCAATGA AGATGGCCTT GCCTTGGGGT CCTGCTTGTT TCATAATCAT CTAACTATGG
      GACAAGGTTG TGCCGGCAGC TCTGGGGGAA GGAGCACGGG GCTGATCAAG CCATCCAGGA
                                                                        1140
      AACACTGGAG GACTTGTCCA GCCTTGAAAG AACTCTAGTG GTTTCTGAAT CTAGCCCACT
                                                                        1200
60
      TGGCGGTAAG CATGATGCAA CTTCTGCAAC TTCTGCTGGG GCTTTTGGGG CCAGGTGGCT
                                                                        1260
      ACTTATTTCT TTTAGGGGAT TGTCAGGAGG TGACCACTCT CACGGTGAAA TACCAAGTGT
      CAGAGGAAGT GCCATCTGGT ACAGTGATCG GGAAGCTGTC CCAGGAACTG GGCCGGGAGG
      AGAGGGGAG GCAAGCTGGG GCTGCCTTCC AGGTGTTGCA GCTGCCTCAG GCGCTCCCCA
                                                                        1440
      TTCAGGTGGA CTCTGAGGAA GGCTTGCTCA GCACAGGCAG GCGGCTGGAT CGAGAGCAGC
65
      TGTGCCGACA GTGGGATCCC TGCCTGGTTT CCTTTGATGT GCTTGCCACA GGGGATTTGG
      CTCTGATCCA TGTGGAGATC CAAGTGCTGG ACATCAATGA CCACCAGCCA CGGTTTCCCA
      AAGGCGAGCA GGAGCTGGAA ATCTCTGAGA GCGCCTCTCT GCGAACCCGG ATCCCCCTGG
      ACAGAGCTCT TGACCCAGAC ACAGGCCCTA ACACCCTGCA CACCTACACT CTGTCTCCCA
                                                                        1800
      GTGAGCACTT TGCCTTGGAT GTCATTGTGG GCCCTGATGA GACCAAACAT GCAGAACTCA
70
      TAGTGGTGAA GGAGCTGGAC AGGGAAATCC ATTCATTTTT TGATCTGGTG TTAACTGCCT
      ATGACAATGG GAACCCCCC AAGTCAGGTA CCAGCTTGGT CAAGGTCAAC GTCTTGGACT
      CCAATGACAA TAGCCCTGCG TTTGCTGAGA GTTCACTGGC ACTGGAAATC CAAGAAGATG
                                                                        1980
      CTGCACCTGG TACGCTTCTC ATAAAACTGA CCGCCACAGA CCCTGACCAA GGCCCCAATG
      GGGAGGTGGA GTTCTTCCTC AGTAAGCACA TGCCTCCAGA GGTGCTGGAC ACCTTCAGTA
                                                                        2100
75
      TTGATGCCAA GACAGGCCAG GTCATTCTGC GTCGACCTCT AGACTATGAA AAGAACCCTG
                                                                        2160
      CCTACGAGGT GGATGTTCAG GCAAGGGACC TGGGTCCCAA TCCTATCCCA GCCCATTGCA 2220
```

```
AAGTTCTCAT CAAGGTTCTG GATGTCAATG ACAACATCCC AAGCATCCAC GTCACATGGG 2280
      CCTCCCAGCC ATCACTGGTG TCAGAAGCTC TTCCCAAGGA CAGTTTTATT GCTCTTGTCA
      TGGCAGATGA CTTGGATTCA GGACACAATG GTTTGGTCCA CTGCTGGCTG AGCCAAGAGC
      TGGGCCACTT CAGGCTGAAA AGAACTAATG GCAACACATA CATGTTGCTA ACCAATGCCA
 5
      CACTGGACAG AGAGCAGTGG CCCAAATATA CCCTCACTCT GTTAGCCCAA GACCAAGGAC
      TCCAGCCCTT ATCAGCCAAG AAACAGCTCA GCATTCAGAT CAGTGACATC AACGACAATG
                                                                         2580
      CACCTGTGTT TGAGAAAAGC AGGTATGAAG TCTCCACGCG GGAAAACAAC TTACCCTCTC
      TTCACCTCAT TACCATCAAG GCTCATGATG CAGACTTGGG CATTAATGGA AAAGTCTCAT
      ACCGCATCCA GGACTCCCCA GTTGCTCACT TAGTAGCTAT TGACTCCAAC ACAGGAGAGG
10
      TCACTGCTCA GAGGTCACTG AACTATGAAG AGATGGCCGG CTTTGAGTTC CAGGTGATCG
      CAGAGGACAG CGGGCAACCC ATGCTTGCAT CCAGTGTCTC TGTGTGGGTC AGCCTCTTGG
      ATGCCAATGA TAATGCCCCA GAGGTGGTCC AGCCTGTGCT CAGCGATGGA AAAGCCAGCC
      TCTCCGTGCT TGTGAATGCC TCCACAGGCC ACCTGCTGGT GCCCATCGAG ACTCCCAATG
                                                                         3000
      GCTTGGGCCC AGCGGGCACT GACACACCTC CACTGGCCAC TCACAGCTCC CGGCCATTCC
                                                                         3060
15
      TTTTGACAAC CATTGTGGCA AGAGATGCAG ACTCGGGGGC AAATGGAGAG CCCCTCTACA
      GCATCCGCAG TGGAAATGAA GCCCACCTCT TCATCCTCAA CCCTCATACG GGGCAGCTGT
      TCGTCAATGT CACCAATGCC AGCAGCCTCA TTGGGAGTGA GTGGGAGCTG GAGATAGTAG
      TAGAGGACCA GGGAAGCCCC CCCTTACAGA CCCGAGCCCT GTTGAGGGTC ATGTTTGTCA
                                                                         3300
      CCAGTGTGGA CCACCTGAGG GACTCAGCCC GCAAGCCTGG GGCCTTGAGC ATGTCGATGC
20
      TGACGGTGAT CTGCCTGGCT GTACTGTTGG GCATCTTCGG GTTGATCCTG GCTTTGTTCA
      TGTCCATCTG CCGGACAGAA AAGAAGGACA ACAGGGCCTA CAACTGTCGG GAGGCCGAGT
                                                                         3480
      CCACCTACCG CCAGCAGCCC AAGAGGCCCC AGAAACACAT TCAGAAGGCA GACATCCACC
      TCGTGCCTGT GCTCAGGGGT CAGGCAGGTG AGCCTTGTGA AGTCGGGCAG TCCCACAAAG
      ATGTGGACAA GGAGGCGATG ATGGAAGCAG GCTGGGACCC CTGCCTGCAG GCCCCCTTCC
      ACCTCACCCC GACCCTGTAC AGGACGCTGC GTAATCAAGG CAACCAGGGA GCACCGGCGG
25
      AGAGCCGAGA GGTGCTGCAA GACACGGTCA ACCTCCTTTT CAACCATCCC AGGCAGAGGA
      ATGCCTCCCG GGAGAACCTG AACCTTCCCG AGCCCCAGCC TGCCACAGGC CAGCCACGTT
      CCAGGCCTCT GAAGGTTGCA GGCAGCCCCA CAGGGAGGCT GGCTGGAGAC CAGGGCAGTG
      AGGAAGCCCC ACAGAGGCCA CCAGCCTCCT CTGCAACCCT GAGACGGCAG CGACATCTCA
30
      ATGGCAAAGT GTCCCCTGAG AAAGAATCAG GGCCCCGTCA GATCCTGCGG AGCCTGGTCC
      GGCTGTCTGT GGCTGCCTTC GCCGAGCGGA ACCCCGTGGA GGAGCTCACT GTGGATTCTC
                                                                         4080
      CTCCTGTTCA GCAAATCTCC CAGCTGCTGT CCTTGCTGCA TCAGGGCCAA TTCCAGCCCA
                                                                         4140
      AACCAAACCA CCGAGGAAAT AAGTACTTGG CCAAGCCAGG AGGCAGCAGG AGTGCAATCC
      CAGACACAGA TGGCCCAAGT GCAAGGGCTG GAGGCCAGAC AGACCCAGAA CAGGAGGAAG
                                                                         4260
35
      GGCCTTTGGA TCCTGAAGAG GACCTCTCTG TGAAGCAACT GCTAGAAGAA GAGCTGTCAA
      GTCTGCTGGA CCCCAGCACA GGTCTGGCCC TGGACCGGCT GAGCGCCCCT GACCCGGCCT
      GGATGGCGAG ACTCTCTTG CCCCTCACCA CCAACTACCG TGACAATGTG ATCTCCCCGG
      ATGCTGCAGC CACGGAGGAG CCAAGGACCT TCCAGACGTT CGGCAAGGCA GAGGCACCAG
      AGCTGAGCCC AACAGGCACG AGGCTGGCCA GCACCTTTGT CTCGGAGATG AGCTCACTGC
                                                                         4560
40
      TGGAGATGCT GCTGGAACAG CGCTCCAGCA TGCCCGTGGA GGCCGCCTCC GAGGCGCTGC
                                                                         4620
      GGCGGCTCTC GGTCTGCGGG AGGACCCTCA GTTTAGACTT GGCCACCAGT GCAGCCTCAG
      GCATGAAAGT GCAAGGGGAC CCAGGTGGAA AGACGGGGAC TGAGGGCAAG AGCAGAGGCA
      GCAGCAGCAG CAGCAGGTGC CTG<u>TGA</u>ACAT ACCTCAGACG CCTCTGGATC CAAGAACCAG 4800
      GGGCCTGAGG ATCTGTGGAC AAGAGCTGGT TTCTAAAATC TTGTAACTCA CTAGCTAGCG
                                                                         4860
45
      GCGGCCTGAG AACTTTAGGG TGACTGATGC TACCCCCACA GAGGAGGCAA GAGCCCCAGG
                                                                         4920
      ACTAACAGCT GACTGACCAA AGCAGCCCCT TGTAAGCAGC TCTGAGTCTT TTGGAGGACA
      GGGACGGTTT GTGGCTGAGA TAAGTGTTTC CTGGCAAAAC ATATGTGGAG CACAAAGGGT
                                                                         5040
      CAGTCCTCTG GCAGAACAGA TGCCACGGAG TATCACAGGC AGGAAAGGGT GGCCTTCTTG 5100
      GGTAGCAGGA GTCAGGGGGC TGTACCCTGG GGGTGCCAGG AAATGCTCTC TGACCTATCA 5160
50
      ATAAAGGAAA AGCAGTGATT CAAAAAAAA AAAAAAAAA AAAAAAAAA
      Seq ID No: 175 Protein sequence:
      Protein Accession #: NP 057664.1
55
                            2.1
                                       31
                                                  41
                                                             51
      MMOLLOLLIG LIGPGGYLFL LGDCQEVTTL TVKYQVSEEV PSGTVIGKLS QELGREERRR
      QAGAAFQVLQ LPQALPIQVD SEEGLLSTGR RLDREQLCRQ WDPCLVSFDV LATGDLALIH
60
      VEIQVLDIND HQPRFPKGEQ ELEISESASL RTRIPLDRAL DPDTGPNTLH TYTLSPSEHF
      ALDVIVGPDE TKHAELIVVK ELDREIHSFF DLVLTAYDNG NPPKSGTSLV KVNVLDSNDN
      SPAFAESSLA LEIQEDAAPG TLLIKLTATD PDQGPNGEVE FFLSKHMPPE VLDTFSIDAK
      TGOVILRRPL DYEKNPAYEV DVOARDLGPN PIPAHCKVLI KVLDVNDNIP SIHVTWASQP
                                                                          360
      SLVSEALPKD SFIALVMADD LDSGHNGLVH CWLSQELGHF RLKRTNGNTY MLLTNATLDR
      EQWPKYTLTL LAQDQGLQPL SAKKQLSIQI SDINDNAPVF EKSRYEVSTR ENNLPSLHLI
65
                                                                          480
      TIKAHDADLG INGKVSYRIQ DSPVAHLVAI DSNTGEVTAQ RSLNYEEMAG FEFQVIAEDS
                                                                          540
      GOPMLASSVS VWVSLLDAND NAPEVVQPVL SDGKASLSVL VNASTGHLLV PIETPNGLGP
      AGTDTPPLAT HSSRPFLLTT IVARDADSGA NGEPLYSIRS GNEAHLFILN PHTGQLFVNV
                                                                          660
      TNASSLIGSE WELEIVVEDQ GSPPLQTRAL LRVMFVTSVD HLRDSARKPG ALSMSMLTVI
                                                                          720
70
      CLAVLLGIFG LILALFMSIC RTEKKDNRAY NCREAESTYR QQPKRPQKHI QKADIHLVPV
                                                                          780
      LRGQAGEPCE VGQSHKDVDK EAMMEAGWDP CLQAPFHLTP TLYRTLRNQG NQGAPAESRE
                                                                          840
      VLQDTVNLLF NHPRQRNASR ENLNLPEPQP ATGQPRSRPL KVAGSPTGRL AGDQGSEEAP
      QRPPASSATL RRORHLNGKV SPEKESGPRQ ILRSLVRLSV AAFAERNPVE ELTVDSPPVQ
                                                                          960
      QISQLLSLLH QGQFQPKPNH RGNKYLAKPG GSRSAIPDTD GPSARAGGQT DPEQEEGPLD
                                                                         1020
75
      PEEDLSVKQL LEEELSSLLD PSTGLALDRL SAPDPAWMAR LSLPLTTNYR DNVISPDAAA
```

TEEPRTFQTF GKAEAPELSP TGTRLASTFV SEMSSLLEML LEQRSSMPVE AASEALRRLS

VCGRTLSLDL ATSAASGMKV QGDPGGKTGT EGKSRGSSSS SRCL

```
Seq ID NO: 176 DNA sequence
      Nucleic Acid Accession #: AL109712.1
 5
      Coding sequence: 2-128 (underlined sequences correspond to start and stop codons)
                                         31
                                                    41
                                                                51
                  11
                             21
10
      GAGTCTCTTT GGGCCAGCCG GGCTGCTGCA GACAGACAGG AAGCACGCCT GACGCTCCTC
                                                                              60
      TACCCTCGGG CAGCACAGCG GGGCTGGGAC TCACTCTAGC TTGCCCAGCA ACTTGCTTTC
                                                                             120
      \mathtt{CTGTG}\underline{\mathbf{TGA}}\mathtt{AC} \ \ \mathtt{TCTGGCAGGC} \ \ \mathtt{TGCCCTCTCT} \ \ \mathtt{GTGCAAAGCT} \ \ \mathtt{GCCACTGGGG} \ \ \mathtt{CCTGCTCAGG}
                                                                             180
      GTGGCCTGGA ACTTGGAGGT GGGCAGTCAG GGCCTAGGAT GGGCCTGTGT CACCAGGGCA
                                                                             240
      TGTGCCCTTG GGCCAGTTAC TTCCTCTCAG AGCCTTGGGC TCCTCCTCTG AGGATGGGGC
                                                                             300
15
      TTGTTGGTGT GAAATGAGGT GAGCATGTTG AGTTGGGGAG CAGCAGGACA CGCACCTGCA
      GGCAGCCGCC CTGGCCACGC TCCCTCCCTA CCTTCCGAGT CCTGGGACAG ACACAGTAGA
                                                                             420
      GCACAGCGGG CCAGCCTGCT CTCTTCTCTG TCTACTTTTT GCAGAAGAGT CAACAGATAC
                                                                             480
      AACAGGCCCA GGGAGGTGCC CCTGGGGGCC CCAGTCCCCA TCACTCCAAG GGGCAGTCCT
                                                                             540
      GCAAGTGACA AGGTGGGCCC AATCCCTGTG GAACAGGTCT CTGAGGACCA CAGAGTGGGG
20
      CCCCAGGGAA AGCTGGGAGC CGAGCTAGAG GCAGGCAGCA AGTAAGGGCA AAGCTGTGCC
                                                                             660
      CCTGCCCGGA AGACCTTCCT GCCCCCAGAA CCCGACCCTC CGCAGATAGC CCTCCCTGGG
                                                                             720
      CAGCAGCCCC CCAGCTTCCA AGGCCCGTGC CTCACCAGAC GCCATGCTCT CACGGACTTG
                                                                             780
                                                                             840
      TTTGCTGCTC TGTACCCTGC AGATCTGCCC CAGAGGAGCA GGTGAAAAGC CGCGCCTGCC
      GAGGTGCTGT GGCGGTGGAG TTTTGGGCAG AGGAGTGGGG GGAAGAGTTT CTCACTTTTA
                                                                             900
25
      AGATTCTCCA AATCCAAGAT GAAGTCATGC TGTGCTTTGG AATGGTAGAT GCTCATTTAT
                                                                             960
      GTAAAATCAT AATAAATGTT ACACAAACTG TTAAAAAAAA AAAAAAAA AAAAAA
      Seq ID No: 177 Protein sequence:
      Protein Accession #: AL109712.1
30
                                                                51
                                                    41
      VSLGQPGCCR QTGSTPDAPL PSGSTAGLGL TLACPATCFP
35
      Seq ID NO: 178 DNA sequence
      Nucleic Acid Accession #: none found
      Coding sequence: 3-107(underlined sequences correspond to start and stop codons)
40
                  11
                             21
                                         31
                                                    41
                                                                51
      AATGGAGCAC TCCAAAGAAC GATTTGACCA ATAGCATTTC TTCTCTGGGG GTTGTATTTC
                                                                              60
      AAAGCATGCA ACTCTCCAGG GAACCAGAAC TAAATTGCTT AAAATGAAGT CATTCCTCAG
                                                                             120
      ATTAACTTCC TCAGATAAAG TGTCAGCGGT CTGCAGAAAC GAAGAAGACA AAACTGAGAT
                                                                             180
45
      TATCACTCAT AATTCTCTTA CTTACTATGT CAGTGAAACA ATGAGTTTGC ATTTTTGCAA
                                                                             240
      TCCTAGAACA TTCTTCATTA GCCCTGGGTC ATGACCTCTT CCAGTTAATT CTCTTTCACA
      CCTTTAGGAA AGATTTAAGA TGAACCTTCA ATAGGATATT AACATAACTC ATAGCCAATA
                                                                             360
      CCACAGCTGC CTTTCAAATT AATGAGGTTA ATTGTTCTCC AGCAAACATG AGTTTGTCTT
                                                                             420
      TGGCATTTTA AATGCTTCCC ATTGATCTGA CATTTTGCTG TTTCAAGTTT TAAAGGGCTC
                                                                             480
50
      AAATCAAAGA CTATTGATAA CTGAGCAAAG AGCGAAGATC CAGAAATACG AAAACATTGT
                                                                             540
      CTTTTTTTT CCATGAAAAA CAATCATAGC CTTTTGAATT CAATCGAAGT TTCTACATTA
                                                                             600
      GCCATCTAAG ACTTATTTAA TTATTTCTGT TCTCAGTCAA GCTAATTCAA GTGAATGAAC
                                                                             660
      AGTATTGACT TTTAAAATCT TTTTTAAATT TTTTTAAATC TTTAGTTTAT TAAGTTTGTA
                                                                             720
      GAAAAGCTCT GGGGCCATGA CCACTTACGT AAATGTTTCA GTTTAAAAAC AAAAGATTCA
                                                                             780
55
      GGCCTCTAAT TTGAGCCAAA TCCAGGTGAT CTTGTTTGAA ATTTTTGATG AATTTGAAAA
                                                                             840
      GATGAAAGTG GAACTTTTAA CATTCATGTT CCCCAAATTT TTCACTGGGA AGGGATGCTA
                                                                             900
      ATTGCCTACT TAAGATATAA GTTCAAGAAT AACATTTTCA TAGAAAATTC AGAAAACTGC
                                                                             960
      TTGACACAGC AGTGACATAG TTAGATGTGG CTCAGATGCC TTCCAAACCT GAGGGTCCCC
                                                                            1020
      AAAGATTTCT TTACCAGTTG TTTTTAACTA TGAATCTTAA TCTTGTTCAT TCCCCTGCCA 1080
60
      AAACAAATTT AAAAG
      Seq ID No: 179 Protein sequence:
      Protein Accession #: none found
65
                  11
                             21
                                                    41
                                                                51
      WSTPKNDLTN SISSLGVVFQ SMQLSREPEL NCLK
70
      Seq ID NO: 180 DNA sequence
      Nucleic Acid Accession #: none found
      Coding sequence: 2-176 (underlined sequences correspond to start and stop codons)
75
                                                    41
                                                                51
                  11
```

```
CCGGCTGGGG CCTCGGGATG CAGGCGCCGG TGCCCGGGCC CCTGGGCCTG CTGGACCCCG
                                                                            60
      CAGAAGGGCT TTCGAGGAGG AAGAAGACGT CGCTCTGGTT TGTGGGGTCT CTGCTGCTGG
                                                                           120
      TGTCCGTCCT CATAGTCACC GTCGGGCTGG CTGCATCAGC AGGACGAGA ATGTGACCGT
                                                                           180
      TGGGGGCTAC TACCCAGGGA TCATTCTCGG CTTTGGATCT TTCTTAGGAA TTATTGGCAT
                                                                           240
 5
      CAACTTGGTG GAGAATAGAA GGCAAATGCT GGTGGCAGCG ATCGTGTTTA TCAGTTTTGG
                                                                           300
      CGTGGTGGCC GCCTTCTGCT GCGCCATCGT GGACGGCGTA TTTGCAGCAC AGCACATTGA
                                                                           360
      ACCGAGGCCC CTCACCACGG GAAGATGCCA GTTTTACTCC AGTGGGGTGG GGTACTTGTA
                                                                           420
      CGATGTCTAC CAGACAGAGG TGAGCAGGAG CACTGAGATT CATGTGGGTT TTGCTCAGCT
                                                                           480
      AACCCCGCCG ACCCCACGCG GTTTTCCCTG CACATAGGCG TGGTCTGAAT ATTTGGATTC
                                                                           540
10
      TAATAGTTCC TGGGGGTCAC CCCTGCAGCT GGTGAACCGT TGATGCCCCC TGTGTAAGGG
                                                                           600
      ACCTTGACAT TTCGATGTGC TGTATTTCAC TCTGGAGTCA GAGTTCTGGA CTTGCTTCAT
                                                                           660
      TAAATCACAA CAGTCTCAGA AAACAACCGC ACCACCCCGC AATCCCACCA AAGGGGCGCG
                                                                           720
      CCGTCCCTAA GAGTTATCCC
15
      Seq ID No: 181 Protein sequence:
      Protein Accession #: none found
                                                              51
                            21
                                       31
                                                   41
20
      RVGPRDAGAG ARAPGPAGPR RRAFEEEEDV ALVCGVSAAG VRPHSHRRAG CISRTENV
      Seq ID NO: 182 DNA sequence
      Nucleic Acid Accession #: AK001579.1
      Coding sequence: 1150-2637(underlined sequences correspond to start and stop codons)
25
                 11
                            21
                                        31
                                                  41
      TTTTCTCTGC TTTTCGCTAC CCCGGTCACT CTCATTTCTC TCCCCTATTC CTTGTCTCTT
                                                                            60
30
      CCCCCATCCC CCTTTCTCCT GTCCTCCCCC TGCCTCTACA GTGGTTCTCC CCGCTGAGCT
                                                                           120
      GCCACCAGCT GCTGGGCCCC GGGCTGCTGC GGCTGGGCCG CCTATGGCTG CGGTCCCCCT
                                                                           1.80
      CCCATACAGC CCCGGCCCCT GGTCTCTGGC TGTCAGGGTT TGGCCTCCTT CGTGGTGACC
                                                                           240
      ACCTCTTCCT GTGCTCAGCG CCGGGCCCAG GCCCCCCAGC CCCTGAGGAC ATGGTGCATC
                                                                           300
      TGCGGCGGCT ACAGGAGATC AGTGTGGTTT CTGCAGCTGA CACCCCAGAT AAGAAAGAGC
                                                                           360
35
      ATTTGGTCCT GGTGGAGACA GGAAGGACCC TGTATCTGCA AGGAGAGGGC CGGCTGGACT
                                                                           420
      TCACGGCATG GAACGCAGCC ATTGGGGGCG CGGCTGGTGG GGGCGGCACA GGGCTGCAGG
                                                                           480
      AGCAGCAGAT GAGCCGGGGT GACATCCCCA TCATCGTGGA TGCCTGCATC AGTTTTGTTA
                                                                           540
      CCCAGCATGG GCTCCGGCTG GAAGGTGTAT ACCGGAAAGG GGGCGCTCGT GCCCGCAGCC
                                                                           600
      TGAGACTCCT GGCTGAGTTC CGTCGGGATG CCCGGTCGGT GAAGCTCCGA CCAGGGGAGC
                                                                           660
40
      ACTITGIGGA GGATGICACI GACACACICA AACGCIICIT ICGIGAGCIC GAIGACCCIG
                                                                           720
      TGACCTCTGC ACGGTTGCTG CCTCGCTGGA GGGAGGCTGC TGGTATTCCT AAGATCCCTG
                                                                           780
      AGAGCCAAGG CCCAACCAGG ATCTCTGCCT TCCCCCACCA GAATCCATGG TTTGGCAGCC
                                                                           840
      CTCCGCCCCA TCACTTCCCA CCCTGGGGGA TCATCCAGAG ACTTGGCTCA GGGGGAGGTG
                                                                           900
      GGAAGGGGGC AGAGACACAT CCATCCTGCA TTTGTGCCTA AAAATCCCTC CCTCTGTACC
                                                                           960
45
      AGCTGCCACT CTTTCTTCCC GGGTCCTCCC CAACCCTCCT CCATTCCATC CCCAGAGCTG
                                                                          1020
      CCCCAGAAGA ATCAGCGCCT GGAGAAATAT AAAGATGTGA TTGGCTGCCT GCCGCGGGTC
      AACCGCCGCA CACTGGCCAC CCTCATTGGG CATCTCTATC GGGTGCAGAA ATGTGCGGCT
                                                                          1140
      CTAAACCAGA TGTGCACGCG GAACTTGGCT CTGCTGTTTG CACCCAGCGT GTTCCAGACG
                                                                          1200
      GATGGGCGAG GGGAGCACGA GGTGCGAGTG CTGCAAGAGC TCATTGATGG CTACATCTCT
                                                                          1260
50
      GTCTTTGATA TCGATTCTGA CCAGGTAGCT CAGATTGACT TGGAGGTCAG TCTTATCACC
                                                                          1320
      ACCTGGAAGG ACGTGCAGCT GTCTCAGGCT GGAGACCTCA TCATGGAAGT TTATATAGAG
                                                                          1380
      CAGCAGCTCC CAGACAACTG TGTCACCCTG AAGGTGTCCC CAACCCTGAC TGCTGAGGAG
                                                                          1440
      CTGACTAACC AGGTACTGGA GATGCGGGGG ACAGCAGCTG GGATGGACTT GTGGGTGACT
                                                                          1500
      TTTGAGATTC GCGAGCATGG GGAGCTGGAG CGGCCACTGC ATCCCAAGGA AAAGGTCTTA
                                                                          1560
55
      GAGCAGGCTT TACAATGGTG CCAGCTCCCA GAGCCCTGCT CAGCTTCCCT GCTCTTGAAA
                                                                          1620
      AAAGTCCCCC TGGCCCAAGC TGGCTGCCTC TTCACAGGTA TCCGACGTGA GAGCCCACGG
                                                                          1680
      GTGGGGCTGT TGCGGTGTCG TGAGGAGCCA CCTCGCTTGC TGGGAAGCCG CTTCCAGGAG
                                                                          1740
      AGGTTCTTTC TGCTGCGTGG CCGCTGCCTG CTGCTGCTCA AGGAGAAGAA AAGCTCTAAA
                                                                          1800
      CCAGAACGGG AGTGGCCTTT GGAAGGTGCC AAGGTCTACC TGGGAATCCG CAAGAAGTTA
      AAGCCCCCAA CACCGTGGGG CTTCACATTG ATACTAGAGA AGATGCACCT CTACTTGTCC
60
                                                                          1920
      TGCACTGACG AGGATGAAAT GTGGGATTGG ACCACCAGCA TCCTTAAAGC CCAGCACGAT
                                                                          1980
      GACCAGCAGC CAGTGGTCTT ACGACGCCAT TCCTCCTCTG ACCTTGCCCG TCAGAAGTTT
                                                                          2040
      GGCACTATGC CTTTGCTGCC TATCCGTGGG GATGACAGTG GAGCCACCCT CCTCTCTGCC
                                                                          2100
      AATCAGACCC TGCGGCGACT ACACAACCGG AGGACCCTGT CCATGTTCTT TCCAATGAAG
                                                                          2160
      TCATCCCAGG GGTCTGTGGA GGAGCAAGAG GAGCTGGAGG AGCCTGTGTA CGAGGAGCCA
65
                                                                          2220
      GTGTATGAGG AAGTAGGGGC CTTCCCTGAG TTGATCCAGG ACACTTCTAC CTCCTTCTCC
                                                                          2280
      ACCACACGGG AGTGGACAGT GAAGCCAGAG AACCCCCTCA CCAGCCAGAA GTCATTGGAT
                                                                          2340
      CAACCCTTTC TCTCCAAGTC AAGCACCCTT GGCCAGGAGG AGAGGCCACC TGAGCCCCCT
                                                                          2400
      CCAGGCCCCC CTTCAAAGAG CAGTCCCCAG GCACGGGGGT CCCTAGAGGA ACAGCTGCTC
                                                                          2460
70
      CAGGAGCTCA GCAGCCTCAT CCTGAGGAAA GGAGAGACCA CTGCAGGCCT GGGAAGTCCT
                                                                          2520
      TCCCAGCCAT CCAGCCCCCA ATCCCCCAGC CCCACTGGCC TTCCAACACA GACACCTGGC
                                                                          2580
      TTCCCCACC AACCCCCATG CACTTCCAGT CCACCCTCCA GCCAGCCCCT CACATGACCC
                                                                          2640
      TAGGACCAGC AGTCTGAGAG GGTAGGTACC AGAAGACCCA GAAACTCTTA TCGTGGCACT
                                                                          2700
      GTTGCAGCTT CCTCTGCCCT GGCTGGAAAG ACTCCAGAAT CCAGTGTGGT GCTGTGGAAG
                                                                          2760
75
      GAGCACTGGA CTAAAGGCTT CAGTGGCTGC GTGTCCCAGG ACAGGTCATG GCCCCTCTCT
                                                                          2820
      GGGCCCAGCC CATTTATCTA TACCATGAGG TAACTGAAGT AAGGAGAGCA GTGAATGTCA
                                                                          2880
```

```
AACTGTGTTT CTTAGAGCCA TAAGCCCCAC ATATTATCCC TGAACAAGGG CAGCTCCTGC
      TTTATATATT TGATACGTAG GGGTTCCATG AGAGATTTTG GGTTTTAAAG GAATGGTTTT
      ACTGCATTAA AGAAAAAAA TGCTTTGGAA ACCAGAGGCC TGGGTGATGT TAAAGTCTAT
                                                                          3060
      CCTGTCCCAC TTCCTACATT CTGGGACTAC CGTGAAGCCT GGAGTAGGGA GAGCGAGTTT
                                                                          3120
 5
      GGGAGCTGGG ACTCGGGGAG TCAAAAATAG ATGAGTAATT GTCAATAAAC CTGGGAACC
      Seq ID No: 183 Protein sequence:
      Protein Accession #: AK001579.1
10
                            21
                                                              51
                 11
                                        31
                                                  41
      MSLTHSNASF VSSMTLPLHG CCLAGGRLLV FLRSLRAKAQ PGSLPSPTRI HGLAALRPIT
                                                                            60
      SHPGGSSRDL AQGEVGRGQR HIHPAFVPKN PSLCTSCHSF FPGPPQPSSI PSPELPQKNQ
                                                                           120
15
      RLEKYKDVIG CLPRVNRRTL ATLIGHLYRV QKCAALNQMC TRNLALLFAP SVFQTDGRGE
      HEVRYLOELI DGYISVFDID SDOVAQIDLE VSLITTWKDV QLSQAGDLIM EVYIEQQLPD
                                                                           240
      NCVTLKVSPT LTAEELTNQV LEMRGTAAGM DLWVTFEIRE HGELERPLHP KEKVLEQALQ
                                                                           300
      WCQLPEPCSA SLLLKKVPLA QAGCLFTGIR RESPRVGLLR CREEPPRLLG SRFQERFFLL
                                                                           360
      RGRCLLLLKE KKSSKPEREW PLEGAKVYLG IRKKLKPPTP WGFTLILEKM HLYLSCTDED
20
      EMWDWTTSIL KAQHDDQQPV VLRRHSSSDL ARQKFGTMPL LPIRGDDSGA TLLSANQTLR
      RLHNRRTLSM FFPMKSSQGS VEEQEELEEP VYEEPVYEEV GAFPELIQDT STSFSTTREW
                                                                           540
      TVKPENPLTS QKSLDQPFLS KSSTLGQEER PPEPPPGPPS KSSPQARGSL EEQLLQELSS
                                                                           600
      LILRKGETTA GLGSPSQPSS PQSPSPTGLP TQTPGFPTQP PCTSSPPSSQ PLT
25
      Seq ID NO: 184 DNA sequence
      Nucleic Acid Accession #: none found
      Coding sequence: 1-81 (underlined sequences correspond to start and stop codons)
30
                 11
                            21
                                        31
                                                  41
                                                              51
      GTAGAGTTAG TGTCAATGTG CTTAGAATAT ACCAAATTCA TAAACATTTT CTCTAAAAAA
      GTATTAAGCT TAAAAAGT\underline{\mathrm{TA}} ATTCAGTTTA AGGAATATAA ACCAAATTAT TTTATATTTG
                                                                           120
      AATCTCAACA TAAGAAGTCA AAATGTAATG CTGCCAGATA ACAATATCAA AGGTATTTTT
                                                                           180
35
      CTTTCTCTAT AATTTCATCA GTATGTCCTC TCCCTTTTCT CCTATTTGTC AAATTTTAGC
                                                                           240
      AACCCTAACT CTGCTAATTA TAAGCTAGGC AAGTAATCTT GGACAAGTTA TTTGACCTCT
      CACTGCACCA GCTTTGTTAT CTGTAAAATG ATGATAATAC CAACACCTTC TTCTTGGGGT
                                                                           360
      ACTGAAGATG AGAGAACATG ATATGTGTAA AGTGCCTTCC ACAATACCCA GAACATAGCA
                                                                           420
      AACATGTAAT GAATGTAGTA ATAGTAATTA TTTTATTTTC TTTTGATTCA GTTGGGACTA
                                                                           480
40
      TGTTCAGCTG TAACAGAATA CCCAAAATAA CAGTTTTAAA CAAATTAAAG TTTTGTTGTG
                                                                           540
      AAGTTTTGTT ACGAATTCAG ACAATCCAGG GCTTTTATAG ATGCACCAGG ATCAGCAGGT
      ACAAAGGCAT CTTTCCTGAT TTCTGCCAGT CTCAATGCAT GGGTTGCAAT CCAGAGTCCA
                                                                           660
      GGATGGCAGT TCCAGCCCTG GTTACGCCCA TATTAGCACA CAGAAAGAAA GAGAAAGGGA
                                                                           720
      TGTGCCTCTT CACTTTAATC ATAGCTCCCA CTAGATGCAC CCACTACTTC TGCTGATACT
                                                                           780
45
      CCATTAGCTA ATGCTTGCTT ACATGGTCAC ACTTAGTTTC CAGAGAGACA TGTCTGGACA
      GTCATGTGCT CAATTAATAT CCAAGTGTCC AATTACTGAG AAAAAAAGAA ACTAGCACCT
                                                                           900
      TTGCTTGGTT GCATTCTTCT TAGCATAAGC CACATTCTTT TTATGAAGTT GTCCTCAGTT
                                                                           960
      ACTTGGATGC CTCAGTTGTC CTTTCATTTA GAAATGCTCC TTGGACATCC TGAATCTGAC
                                                                          1020
      TTCTTTTGTC ATCAGCACCA TCACTACCAC TGCCTTCTTC AAAGCCACCA CGTTCTGTCC
50
      CAGGATGGTT GCAACAACCA CCATAGGGAC TTTTTGCTTC TACTTCCACA CAATAGCCAG
                                                                          1140
      AGTAAGCTTT TGAAAATGTA GGTCAGATCA TGTCTCTCTC TTCTCTTCAA AACCCTCCGA
                                                                          1200
      TGGCTTTTCA TATTACTCAA AAGAAAACCT AAAACTTTGC TGTGAGATCT ATGTGACCCG
                                                                          1260
      GCTTATTCTT CCTCTTACTT TATCTCTGTA TTGCTCTTCC TCACTCTACT CCAGCCATCC
      CACCTCCTTG CTGCTTGTCC TATACTCCTA AAAGAAGTTC AGTCTTCCCT TATGATATTT
                                                                          1380
55
      GCACTTAAAA TAGAAAAAAA AAAAAAAAA AGCTCAGAGA GGCTGAGTTG TCCAAGGTCA
                                                                          1440
      TGCAGGTTAG AAGTCATGGA GCTGGGATCT AAATCCATGT CAGTCTGACT ATGAGTTCTG
                                                                          1500
      CACCGTTCTA TTCAACCCCA TTGCCTAGAG GTGCTTGATT GCTCAATAAT AGATTCCATG
      GACACAGTCA GCTCTTTCTG AGAAAAGGCA GCTCAGCATT TCCATGAGAT CCGCACATCC 1620
      TTTTGCAGAA GAAAAC
60
      Seq ID No: 185 Protein sequence:
      Protein Accession #: none found
65
                  11
                             21.
                                        31
                                                   41
                                                               51
       VELVSMCLEY TKFINIFSKK VLSLKS
      Seq ID NO: 186 DNA sequence
70
      Nucleic Acid Accession #: NM_002203.2
      Coding sequence: 43-3588 (underlined sequences correspond to start and stop codons)
                                        31
                                                  41
75
      CTGCAAACCC AGCGCAACTA CGGTCCCCCG GTCAGACCCA GGATGGGGCC AGAACGGACA
                                                                            60
      GGGGCCGCGC CGCTGCCGCT GCTGCTGGTG TTAGCGCTCA GTCAAGGCAT TTTAAATTGT
```

	TGTTTGGCCT	ACAATGTTGG	TCTCCCAGAA	GCAAAAATAT	TTTCCGGTCC	TTCAAGTGAA	180
	CAGTTTGGGT	ATGCAGTGCA	GCAGTTTATA	AATCCAAAAG	GCAACTGGTT	ACTGGTTGGT	240
7	TCACCCTGGA	GTGGCTTTCC	TGAGAACCGA	ATGGGAGATG	TGTATAAATG	TCCTGTTGAC	300
				TTGCAAACTT			360
5				TTGATCCTCA			420
J							
				CAGCAATGTG			480
				CAGCTCTCAG			540
	CAGCCCTGCC	CTTCCCTCAT	AGATGTTGTG	GTTGTGTGTG	ATGAATCAAA	TAGTATTTAT	600
	CCTTGGGATG	CAGTAAAGAA	TTTTTTGGAA	AAATTTGTAC	AAGGCCTTGA	TATAGGCCCC	660
10	ACAAAGACAC	AGGTGGGGTT	AATTCAGTAT	GCCAATAATC	CAAGAGTTGT	GTTTAACTTG	720
				GTAGCAACAT			780
				CAATATGCAA			840
				GTAATGGTAG			900
1.5				GATCAATGCA			960
15				AGAAACGCCC			1020
				ACAGAAAGAT			1080
	GAAGCAGCTC	TACTAGAAAA	GGCTGGGACA	TTAGGAGAAC	AAATTTTCAG	CATTGAAGGT	1140
				GAAATGTCAC			1200
				GGTGCAGTGG			1260
20				TTGATCTTTC			1320
20							
				TTAGGTTACT			1380
				CCTCGGGCAA			1440
				ACGGTTATTC			1500
	ATTGGCTCCT	ATTTTGGTAG	TGTGCTGTGT	TCAGTTGATG	TGGATAAAGA	CACCATTACA	1560
25				ATGAGTGACC			1620
				TTGGGTCAGC			1680
				GCAATTGCAG			1740
				CCACTAGAAA			1800
20				CGCACAAAGT			1860
30				TACTTTGGGA			1920
	GATTTAAATG	GGGATTCCAT	CACCGATGTG	TCTATTGGTG	CCTTTGGACA	AGTGGTTCAA	1980
	CTCTGGTCAC	AAAGTATTGC	TGATGTAGCT	ATAGAAGCTT	CATTCACACC	AGAAAAAATC	2040
	ACTTTGGTCA	ACAAGAATGC	TCAGATAATT	CTCAAACTCT	GCTTCAGTGC	AAAGTTCAGA	2100
				GTATATAACA			2160
35				TTTAAAGAAA			2220
55				TGCCCCGAGC			2280
				CGTGTGGACA			2340
				ACTGCCAAGG			2400
				TCTGATCTAG			2460
40	CCAGCTGCTC	AAGAACAACC	CTTTATTGTC	AGCAACCAAA	ACAAAAGGTT	AACATTTTCA	2520
				TACAACACTG			2580
				CCGGTTGATG			2640
				GATGTAGGCT			2700
							2760
15				TTCAATCTTC			
45				CAAGAAGAAA			2820
				GAAATTCACT			2880
	AATTTTTATG	AAATCTCTTC	GGATGGGAAT	GTTCCTTCAA	TCGTGCACAG	TTTTGAAGAT	2940
	GTTGGTCCAA	AATTCATCTT	CTCCCTGAAG	GTAACAACAG	GAAGTGTTCC	AGTAAGCATG	3000
	GCAACTGTAA	TCATCCACAT	CCCTCAGTAT	ACCAAAGAAA	AGAACCCACT	GATGTACCTA	3060
50				ATCAGTTGTA			3120
50				TTCAAAAGTG			3180
	AAAAIAGGAC	AAACA COTTC	TICIGIAICI	AATGTTACCT	COMCOMMON	ACACCOUNCAC	3240
				ACCAGAATTT			3300
~ ~				GCTGCAGAAA			3360
55				ATTCCCCTGA			3420
	AAAGCCGAAG	TACCAACAGG	AGTTATAATA	GGAAGTATAA	TTGCTGGAAT	CCTTTTGCTG	3480
	TTAGCTCTGG	TTGCAATTTT	ATGGAAGCTC	GGCTTCTTCA	AAAGAAAATA	TGAAAAGATG	3540
				ACAGAGCTCA			3600
				CAGGGTTTGC			3660
60				CGTAGGTAAA			3720
00							3780
				TGTGGGGGGT			
				TATATGATGG			3840
				TTGCATTGTG			3900
	CAAGCATGAC	AACTTTTAAA	GAAAAATATG	ATACTCTCAG	ATTTTAAGGG	GGAAAACTGT	3960
65	TCTCTTTAAA	ATATTTGTCT	TTAAACAGCA	ACTACAGAAG	TGGAAGTGCT	TGATATGTAA	4020
				ATTGATGTTA			4080
				AAAGTTGCCA			4140
				TTGTTGGTTC			4200
70				AAACATGCTT			4260
70				AGGGGGCGAT			4320
				TGTAAAATCC			4380
				CCTTTCTCTT			4440
	CTTCTAGGAT	TTGTTTGGCT	GACTGGCAGT	AACCTAGTGA	ATTTTTGAAA	GATGAGTAAT	4500
				AACCACTCTC			4560
75	ТАТТАТАСА	GCCCTCTACA	GCCTGACTTT	CTCTCCAGCG	GTCCAAAGTT	ATCCCCTCCT	4620
				AGGACAGCTG			4680
	LINCCCCTCA	TCCMMGIIC		DIJUNIOULU	CICICONIIA		-000

```
GGGAAAGTCA TCTGTTTAAT TTACACACTT GCATGAATTA CTGTATATAA ACTCCTTAAC
      TTCAGGGAGC TATTTTCATT TAGTGCTAAA CAAGTAAGAA AAATAAGCTA GAGTGAATTT
      CTAAATGTTG GAATGTTATG GGATGTAAAC AATGTAAAGT AAAACACTCT CAGGATTTCA
                                                                         4860
      CCAGAAGTTA CAGATGAGGC ACTGGAAACC ACCACCAAAT TAGCAGGTGC ACCTTCTGTG
      GCTGTCTTGT TTCTGAAGTA CTTTTTCTTC CACAAGAGTG AATTTGACCT AGGCAAGTTT
                                                                         4980
      GTTCAAAAGG TAGATCCTGA GATGATTTGG TCAGATTGGG ATAAGGCCCA GCAATCTGCA
                                                                         5040
      TTTTAACAAG CACCCAGTC ACTAGGATGC AGATGGACCA CACTTTGAGA AACACCACCC
                                                                         5100
      ATTTCTACTT TTTGCACCTT ATTTTCTCTG TTCCTGAGCC CCCACATTCT CTAGGAGAAA
      CTTAGATTAA AATTCACAGA CACTACATAT CTAAAGCTTT GACAAGTCCT TGACCTCTAT
                                                                         5220
10
      AAACTTCAGA GTCCTCATTA TAAAATGGGA AGACTGAGCT GGAGTTCAGC AGTGATGCTT
                                                                         5280
      TTTAGTTTTA AAAGTCTATG ATCTGATCTG GACTTCCTAT AATACAAATA CACAATCCTC
                                                                         5340
      CAAGAATTTG ACTTGGAAAA G
      Seq ID NO: 187 Protein sequence:
15
      Protein Accession #: NP 002194.1
                                       31
                                                  41
                                                             51
      MGPERTGAAP LPLLLVLALS QGILNCCLAY NVGLPEAKIF SGPSSEQFGY AVQQFINPKG
                                                                           60
20
      NWLLVGSPWS GFPENRMGDV YKCPVDLSTA TCEKLNLQTS TSIPNVTEMK TNMSLGLILT
                                                                          120
      RNMGTGGFLT CGPLWAQQCG NQYYTTGVCS DISPDFQLSA SFSPATQPCP SLIDVVVVCD
                                                                          180
      ESNSIYPWDA VKNFLEKFVQ GLDIGPTKTQ VGLIQYANNP RVVFNLNTYK TKEEMIVATS
                                                                          240
      QTSQYGGDLT NTFGAIQYAR KYAYSAASGG RRSATKVMVV VTDGESHDGS MLKAVIDQCN
                                                                          300
      HDNILRFGIA VLGYLNRNAL DTKNLIKEIK AIASIPTERY FFNVSDEAAL LEKAGTLGEQ
                                                                          360
25
      IFSIEGTVQG GDNFQMEMSQ VGFSADYSSQ NDILMLGAVG AFGWSGTIVQ KTSHGHLIFP
      KQAFDQILQD RNHSSYLGYS VAAISTGEST HFVAGAPRAN YTGQIVLYSV NENGNITVIQ
                                                                          480
      AHRGDQIGSY FGSVLCSVDV DKDTITDVLL VGAPMYMSDL KKEEGRVYLF TIKKGILGQH
                                                                          540
      QFLEGPEGIE NTRFGSAIAA LSDINMDGFN DVIVGSPLEN QNSGAVYIYN GHQGTIRTKY
                                                                          600
      SQKILGSDGA FRSHLQYFGR SLDGYGDLNG DSITDVSIGA FGQVVQLWSQ SIADVAIEAS
                                                                          660
30
      FTPEKITLVN KNAOIILKLC FSAKFRPTKO NNOVAIVYNI TLDADGFSSR VTSRGLFKEN
                                                                          720
      NERCLQKNMV VNQAQSCPEH IIYIQEPSDV VNSLDLRVDI SLENPGTSPA LEAYSETAKV
                                                                          780
      FSIPFHKDCG EDGLCISDLV LDVRQIPAAQ EQPFIVSNQN KRLTFSVTLK NKRESAYNTG
                                                                          840
      IVVDFSENLF FASFSLPVDG TEVTCQVAAS QKSVACDVGY PALKREQQVT FTINFDFNLQ
                                                                          900
      NLONOASLSF OALSESCEEN KADNLVNLKI PLLYDAEIHL TRSTNINFYE ISSDGNVPSI
                                                                          960
35
      VHSFEDVGPK FIFSLKVTTG SVPVSMATVI IHIPQYTKEK NPLMYLTGVQ TDKAGDISCN
                                                                         1020
      ADINPLKIGQ TSSSVSFKSE NFRHTKELNC RTASCSNVTC WLKDVHMKGE YFVNVTTRIW
                                                                         1080
      NGTFASSTFQ TVQLTAAAEI NTYNPEIYVI EDNTVTIPLM IMKPDEKAEV PTGVIIGSII 1140
      AGILLLLALV AILWKLGFFK RKYEKMTKNP DEIDETTELS S
40
      Seq ID NO: 188 DNA sequence
      Nucleic Acid Accession #: NM_002210.1
      Coding sequence: 42-3188 (underlined sequences correspond to start and stop codons)
                            21
                                       31
                                                  41
                                                             51
45
      GGCTACCGCT CCCGGCTTGG CGTCCCGCGC GCACTTCGGC GATGGCTTTT CCGCCGCGGC
                                                                           60
      GACGGCTGCG CCTCGGTCCC CGCGGCCTCC CGCTTCTTCT CTCGGGACTC CTGCTACCTC
      TGTGCCGCGC CTTCAACCTA GACGTGGACA GTCCTGCCGA GTACTCTGGC CCCGAGGGAA
                                                                          180
      GTTACTTCGG CTTCGCCGTG GATTTCTTCG TGCCCAGCGC GTCTTCCCGG ATGTTTCTTC
                                                                          240
50
      TCGTGGGAGC TCCCAAAGCA AACACCACCC AGCCTGGGAT TGTGGAAGGA GGGCAGGTCC
                                                                          300
      TCAAATGTGA CTGGTCTTCT ACCCGCCGGT GCCAGCCAAT TGAATTTGAT GCAACAGGCA
      ATAGAGATTA TGCCAAGGAT GATCCATTGG AATTTAAGTC CCATCAGTGG TTTGGAGCAT
                                                                          420
      CTGTGAGGTC GAAACAGGAT AAAATTTTGG CCTGTGCCCC ATTGTACCAT TGGAGAACTG
                                                                          480
      AGATGAAACA GGAGCGAGAG CCTGTTGGAA CATGCTTTCT TCAAGATGGA ACAAAGACTG
                                                                          540
55
      TTGAGTATGC TCCATGTAGA TCACAAGATA TTGATGCTGA TGGACAGGGA TTTTGTCAAG
                                                                          600
      GAGGATTCAG CATTGATTTT ACTAAAGCTG ACAGAGTACT TCTTGGTGGT CCTGGTAGCT
                                                                          660
      TTTATTGGCA AGGTCAGCTT ATTTCGGATC AAGTGGCAGA AATCGTATCT AAATACGACC
                                                                          720
      CCAATGTTTA CAGCATCAAG TATAATAACC AATTAGCAAC TCGGACTGCA CAAGCTATTT
                                                                          780
      TTGATGACAG CTATTTGGGT TATTCTGTGG CTGTCGGAGA TTTCAATGGT GATGGCATAG
60
      ATGACTTTGT TTCAGGAGTT CCAAGAGCAG CAAGGACTTT GGGAATGGTT TATATTTATG
                                                                          900
      ATGGGAAGAA CATGTCCTCC TTATACAATT TTACTGGCGA GCAGATGGCT GCATATTTCG
                                                                          960
      GATTTTCTGT AGCTGCCACT GACATTAATG GAGATGATTA TGCAGATGTG TTTATTGGAG
                                                                         1020
      CACCTCTCTT CATGGATCGT GGCTCTGATG GCAAACTCCA AGAGGTGGGG CAGGTCTCAG
                                                                         1080
      TGTCTCTACA GAGAGCTTCA GGAGACTTCC AGACGACAAA GCTGAATGGA TTTGAGGTCT
65
      TTGCACGGTT TGGCAGTGCC ATAGCTCCTT TGGGAGATCT GGACCAGGAT GGTTTCAATG
                                                                         1200
      ATATTGCAAT TGCTGCTCCA TATGGGGGTG AAGATAAAAA AGGAATTGTT TATATCTTCA
                                                                         1260
      ATGGAAGATC AACAGGCTTG AACGCAGTCC CATCTCAAAT CCTTGAAGGG CAGTGGGCTG
                                                                         1320
      CTCGAAGCAT GCCACCAAGC TTTGGCTATT CAATGAAAGG AGCCACAGAT ATAGACAAAA
                                                                         1380
      ATGGATATCC AGACTTAATT GTAGGAGCTT TTGGTGTAGA TCGAGCTATC TTATACAGGG
                                                                         1440
70
      CCAGACCAGT TATCACTGTA AATGCTGGTC TTGAAGTGTA CCCTAGCATT TTAAATCAAG
                                                                         1500
      ACAATAAAAC CTGCTCACTG CCTGGAACAG CTCTCAAAGT TTCCTGTTTT AATGTTAGGT
                                                                         1560
      TCTGCTTAAA GGCAGATGGC AAAGGAGTAC TTCCCAGGAA ACTTAATTTC CAGGTGGAAC
      TTCTTTTGGA TAAACTCAAG CAAAAGGGAG CAATTCGACG AGCACTGTTT CTCTACAGCA
                                                                         1680
      GGTCCCCAAG TCACTCCAAG AACATGACTA TTTCAAGGGG GGGACTGATG CAGTGTGAGG
                                                                         1740
      AATTGATAGC GTATCTGCGG GATGAATCTG AATTTAGAGA CAAACTCACT CCAATTACTA
75
                                                                         1800
      TTTTTATGGA ATATCGGTTG GATTATAGAA CAGCTGCTGA TACAACAGGC TTGCAACCCA 1860
```

```
TTCTTAACCA GTTCACGCCT GCTAACATTA GTCGACAGGC TCACATTCTA CTTGACTGTG 1920
     GTGAAGACAA TGTCTGTAAA CCCAAGCTGG AAGTTTCTGT AGATAGTGAT CAAAAGAAGA
     TCTATATTGG GGATGACAAC CCTCTGACAT TGATTGTTAA GGCTCAGAAT CAAGGAGAAG 2040
     GTGCCTACGA AGCTGAGCTC ATCGTTTCCA TTCCACTGCA GGCTGATTTC ATCGGGGTTG 2100
     TCCGAAACAA TGAAGCCTTA GCAAGACTTT CCTGTGCATT TAAGACAGAA AACCAAACTC
     TTCGTTTCAG TGTGCACCAG CAGTCAGAGA TGGATACTTC TGTGAAATTT GACTTACAAA
                                                                       2280
      TCCAAAGCTC AAATCTATTT GACAAAGTAA GCCCAGTTGT ATCTCACAAA GTTGATCTTG
      CTGTTTTAGC TGCAGTTGAG ATAAGAGGAG TCTCGAGTCC TGATCATATC TTTCTTCCGA
                                                                       2400
      TTCCAAACTG GGAGCACAAG GAGAACCCTG AGACTGAAGA AGATGTTGGG CCAGTTGTTC
10
      AGCACATCTA TGAGCTGAGA AACAATGGTC CAAGTTCATT CAGCAAGGCA ATGCTCCATC
      TTCAGTGGCC TTACAAATAT AATAATAACA CTCTGTTGTA TATCCTTCAT TATGATATTG
                                                                       2580
      ATGGACCAAT GAACTGCACT TCAGATATGG AGATCAACCC TTTGAGAATT AAGATCTCAT
                                                                       2640
      CTTTGCAAAC AACTGAAAAG AATGACACGG TTGCCGGGCA AGGTGAGCGG GACCATCTCA
      TCACTAAGCG GGATCTTGCC CTCAGTGAAG GAGATATTCA CACTTTGGGT TGTGGAGTTG
15
      CTCAGTGCTT GAAGATTGTC TGCCAAGTTG GGAGATTAGA CAGAGGAAAG AGTGCAATCT
      TGTACGTAAA GTCATTACTG TGGACTGAGA CTTTTATGAA TAAAGAAAAT CAGAATCATT
                                                                       2880
      CCTATTCTCT GAAGTCGTCT GCTTCATTTA ATGTCATAGA GTTTCCTTAT AAGAATCTTC
      CAATTGAGGA TATCACCAAC TCCACATTGG TTACCACTAA TGTCACCTGG GGCATTCAGC
      CAGCGCCCAT GCCTGTGCCT GTGTGGGTGA TCATTTTAGC AGTTCTAGCA GGATTGTTGC
                                                                       3060
20
      TACTGGCTGT TTTGGTATTT GTAATGTACA GGATGGGCTT TTTTAAACGG GTCCGGCCAC
                                                                       3120
      CTCAAGAAGA ACAAGAAAGG GAGCAGCTTC AACCTCATGA AAATGGTGAA GGAAACTCAG 3180
      AAACT<u>TAA</u>CT GCAGTTTTTA AGTTATGCTA CATCTTGACC CACTAGAATT AGCAACTTTA
      TTATAGATTT AAACTTTCTT CATGAGGAGT AAAAATCCAA GGCTTTACTG CTGATAGTGC
                                                                       3300
      TRATTGGCAT TAACCACAAA ATGAGAATTA TATTTGTCAA CCTTCTCCTT ATAAATAAGT
                                                                       3360
25
      TCAGACATAC ATTIAATAAC ATAGGGTGAC TTGTGTTTTT AGGTATTTAA ATAATAAAAT
                                                                       3420
      TTCAAGGGAT AGTTTTATT CAATGTATAT AAGACAGGTA GTGCCTGATT TACTACTTTA 3480
      TATAAAATAG TACCTCCTTC AGTTACTGTT TCTGATTTAA TGTACGGAAC TTTATTTGTT
      GTTGTTGTTG TTGTTGTTGT TGTTGTTTTA AAGCAGTCCA AATTTGGACC TTAGCAATCA
      TGTCTTTTGT ATAGGTACTT AATGTTAATA CATATTACAC TACAGTTTAC TTTTCAGAAT
30
      ACTAAAGACT TTATAACTGC ATGAACTTGG ATTTTTTTAA TCACTCATAT GGTAGAATTT
      TATAAACACA TACATGATAC CATCCAAATT CTTGCTTTTA ATAACAAAGG TACAATATTT
      TGTTTTAGTA TGAAAATCTG GTAGATCCTA TTACACTTCT GTTTATATTA AATCCACAAT
                                                                       3840
      ATTTTATTAC ATTTTTAACT TGTATAAATT TTAGGTCAAA TCCTTCAAGC CAACCTATAC
      TAAAAATTAG TTCCATAATC ACAAATGGCT CTTTTGTGTA ATTGTTTAAT TTCACCTGAA
35
      TATCATAATG CTTAAAGCCA TATGGAGTTG GAAATTATTT CCAAAGCATA TTTATTCCAT
      TGTTTTAGTC TGGCTATTTA CAGTATAAAA AAAGCATTTT ATTAAAATAC TGTGTAGTTC
      TTTGAGATAG TTGCTTATGC ATATAGTAAG TATTACATTC TTAGAGTAGA GCAGAGTTTT
                                                                        4140
      TAGTTAGTAT TAATTTATTT TCCTCCATTC ATGTACTTTT CCTTATATTT CCAAAACTGT
      TACTGAGAAT GGGTCAAGAT CAGTGAGAAA TCTTTACAGT TGACAGGAAC CTGGACCCCT
40
      TACCCCAACT TTATGAGTAA TGCTTGGAAT AAAAAACTCT TAAGGCAACT CACTGATTTA
      CTTCTAGCAA TAGCATGATG TTACAGGAAT ATTACCTCTG TTTAAGCAAG GTAATGTGTA
                                                                        4380
      AAATCAGTCT CGGCTGTCAG AATAACTTCT AAAAGGTATT TTTATAAGCA GTTCAAGTTA
      CTGAAAACCT TTTAAACCTT TCTGAAGTTC GTTAGTATAA ATTACTTTTC TAGGATTATT
                                                                        4500
      AATAAAAGCC ACATAGGTGG CAAGTTGTAG TTTTATATGG CTCTGTAGAG TGGTGAACCT
45
      TCTAGAGGAA TATATGATTT ATTCACAGTT CCTCAAGGCC TGGGGATGAT GATCAGTTAT
                                                                        4620
      ACCTATTTTT GTGCAATTAC ATCATGTTGT ACATTAGAAA TGGAGAGTTT AATAGCTCTT
                                                                        4680
      TAACTGCTGT CCTCATTAGG TAATGATAAA TATTTCCCTT AAATAATTGA CTATTTTGCT
      GTGTTTTAAA AATGATTGAA ATTTATCTTG CCATATCTCA TAATTTCATG CACAAGTTGA
                                                                        4860
50
      CTGAGCTAAT CTTGAGAATA TATTCGTAAA ATAGGAGCAC ATTTAGTTGA GGTATACAAG
      GTAGGACTCT AGACAAAACC TTCTATTTTA GCTTTAGTGA ATTTCAAAAG TAATGGGTCT
                                                                        4920
      TGGAGTATAG ATTTTTATTA GTAGCTTGAA AGAGCTTAAT CATATGCAGT AAGTATTTTT
                                                                        4980
      ATTACCAATA AATTTAAAAT TTTTTAAGAA AAATATTTTT ATCCTAGGGC CAAGTGTTGC
      CTGCCACCAA TCAGTAAGTT AGTCTATAAC AAATTTTACC CTAACAGTTT TACCACCTAG
      CAACAGTCAT TTCTGAAAAT ATGTTGGATA GAAAGTCACT CTTTGGCAAA AGTGTTAGAA
55
      TTTGCTTTTG TGCCATCTAT TCCTTTTATG GCATCTATCT TGAAAGTAAT CTTGTATTGG
      AGATTGAAAG ATGCTGTAAT TTAGAAATTA ACATGATATC TTAAATTACC TTTATGAAAT
      ATAGTTTTGT ATAATAGCAT AGATTTTCCT TCAAAAAATG AACATTTATA TATCTACAAA 5340
      AATATGGAGA AGAGCAATTT GAAAGCCTAC TTTCTGAAGA AAATGGTGGG ATTTTTTTT
      ATCATGATTA AATATCAAAA AATTGCCCTA TGAAAACTTT AAATCTCTAA AACATTTGAA 5460
60
      ATACTACCAT ATTTGTGATT TATTGAGAAT AAAAATCCAT TTTGAAATGT AAAATTTTTA
      TGATCTGATT CAGTTTTAAG AAAACATGAA TGAACTAGAA GATATTAAAA ACATTTGACA 5580
      TTGGTAAGAA ATATTGATAC TGATATTGAT TTTTATATAG GTATTTATTT CAGAATTGAT 5640
      ATTTTGAGAA AAATACATGT GAGTCATTTT TTCTGTTTCT CTTTTCTCTT AACGATTATC 5700
65
      ACTGTAATTC TGAATCT
      Seq ID NO: 189 Protein sequence:
      protein Accession #: NP 002201.1
70
                                       31
                 11
                            21
       MAFPPRRRLR LGPRGLPLLL SGLLLPLCRA FNLDVDSPAE YSGPEGSYFG FAVDFFVPSA
                                                                          60
       SSRMFLLVGA PKANTTQPGI VEGGQVLKCD WSSTRRCQPI EFDATGNRDY AKDDPLEFKS
                                                                         120
       HOWFGASVRS KQDKILACAP LYHWRTEMKQ EREPVGTCFL QDGTKTVEYA PCRSQDIDAD
                                                                         180
       GQGFCQGGFS IDFTKADRVL LGGPGSFYWQ GQLISDQVAE IVSKYDPNVY SIKYNNQLAT
                                                                         240
75
       RTAQAIFDDS YLGYSVAVGD FNGDGIDDFV SGVPRAARTL GMVYIYDGKN MSSLYNFTGE
```

```
QMAAYFGFSV AATDINGDDY ADVFIGAPLF MDRGSDGKLQ EVGQVSVSLQ RASGDFQTTK
      LNGFEVFARF GSAIAPLGDL DQDGFNDIAI AAPYGGEDKK GIVYIFNGRS TGLNAVPSQI
                                                                           420
      LEGQWAARSM PPSFGYSMKG ATDIDKNGYP DLIVGAFGVD RAILYRARPV ITVNAGLEVY
                                                                           480
      PSILNQDNKT CSLPGTALKV SCFNVRFCLK ADGKGVLPRK LNFQVELLLD KLKQKGAIRR
                                                                           540
 5
      ALFLYSRSPS HSKNMTISRG GLMQCEELIA YLRDESEFRD KLTPITIFME YRLDYRTAAD
      TTGLQPILNQ FTPANISRQA HILLDCGEDN VCKPKLEVSV DSDQKKIYIG DDNPLTLIVK
                                                                           660
      AQNQGEGAYE AELIVSIPLQ ADFIGVVRNN EALARLSCAF KTENQTRQVV CDLGNPMKAG
                                                                           720
      TQLLAGLRFS VHQQSEMDTS VKFDLQIQSS NLFDKVSPVV SHKVDLAVLA AVEIRGVSSP
                                                                           780
      DHIFLPIPNW EHKENPETEE DVGPVVQHIY ELRNNGPSSF SKAMLHLQWP YKYNNNTLLY
                                                                           840
10
      ILHYDIDGPM NCTSDMEINP LRIKISSLOT TEKNDTVAGO GERDHLITKR DLALSEGDIH
                                                                           900
      TLGCGVAQCL KIVCQVGRLD RGKSAILYVK SLLWTETFMN KENQNHSYSL KSSASFNVIE
                                                                           960
      FPYKNLPIED ITNSTLVTTN VTWGIQPAPM PVPVWVIILA VLAGLLLLAV LVFVMYRMGF
                                                                         1020
      FKRVRPPQEE QEREQLQPHE NGEGNSET
15
      Seq ID NO: 190 DNA sequence
      Nucleic Acid Accession #: NM_004864
      Coding sequence: 26-952 (underlined sequences correspond to start and stop codons)
                            21
                                                  41
                                                              51
                                       31
20
      CGGAACGAGG GCAACCTGCA CAGCCATGCC CGGGCAAGAA CTCAGGACGG TGAATGGCTC
                                                                            60
      TCAGATGCTC CTGGTGTTGC TGGTGCTCTC GTGGCTGCCG CATGGGGGCG CCCTGTCTCT
                                                                           120
      GGCCGAGGCG AGCCGCGCAA GTTTCCCGGG ACCCTCAGAG TTGCACTCCG AAGACTCCAG
      ATTCCGAGAG TTGCGGAAAC GCTACGAGGA CCTGCTAACC AGGCTGCGGG CCAACCAGAG
                                                                           240
25
      CTGGGAAGAT TCGAACACCG ACCTCGTCCC GGCCCCTGCA GTCCGGATAC TCACGCCAGA
                                                                           300
      AGTGCGGCTG GGATCCGGCG GCCACCTGCA CCTGCGTATC TCTCGGGCCG CCCTTCCCGA
      GGGGCTCCCC GAGGCCTCCC GCCTTCACCG GGCTCTGTTC CGGCTGTCCC CGACGGCGTC
                                                                           420
      AAGGTCGTGG GACGTGACAC GACCGCTGCG GCGTCAGCTC AGCCTTGCAA GACCCCAAGC
                                                                           480
      GCCCGCGCTG CACCTGCGAC TGTCGCCGCC GCCGTCGCAG TCGGACCAAC TGCTGGCAGA
                                                                           540
30
      ATCTTCGTCC GCACGGCCCC AGCTGGAGTT GCACTTGCGG CCGCAAGCCG CCAGGGGGCG
                                                                           600
      CCGCAGAGCG CGTGCGCGCA ACGGGGACGA CTGTCCGCTC GGGCCCGGGC GTTGCTGCCG
      TCTGCACACG GTCCGCGCGT CGCTGGAAGA CCTGGGCTGG GCCGATTGGG TGCTGTCGCC
                                                                           720
      ACGGGAGGTG CAAGTGACCA TGTGCATCGG CGCGTGCCCG AGCCAGTTCC GGGCGGCAAA
                                                                           780
      CATGCACGCG CAGATCAAGA CGAGCCTGCA CCGCCTGAAG CCCGACACGG AGCCAGCGCC
                                                                           840
35
      CTGCTGCGTG CCCGCCAGCT ACAATCCCAT GGTGCTCATT CAAAAGACCG ACACCGGGGT
                                                                           900
      GTCGCTCCAG ACCTATGATG ACTTGTTAGC CAAAGACTGC CACTGCATA<u>T GA</u>GCAGTCCT
      GGTCCTTCCA CTGTGCACCT GCGCGGGGGA GGCGACCTCA GTTGTCCTGC CCTGTGGAAT
                                                                          1020
      GGGCTCAAGG TTCCTGAGAC ACCCGATTCC TGCCCAAACA GCTGTATTTA TATAAGTCTG
                                                                          1080
      TTATTTATTA TTAATTTATT GGGGTGACCT TCTTGGGGAC TCGGGGGCTG GTCTGATGGA
40
      ACTGTGTATT TATTTAAAAC TCTGGTGATA AAAATAAAGC TGTCTGAACT GTTAAAAAAA
      AAAA
      Seq ID NO: 191 Protein sequence:
      Protein Accession #: NP_004855
45
                            21
                                       31
                                                   41
                                                              51
      MPGOELRTVN GSOMLLVLLV LSWLPHGGAL SLAEASRASF PGPSELHSED SRFRELRKRY
      EDLLTRLRAN OSWEDSNTDL VPAPAVRILT PEVRLGSGGH LHLRISRAAL PEGLPEASRL
      HRALFRLSPT ASRSWDVTRP LRRQLSLARP QAPALHLRLS PPPSQSDQLL AESSSARPQL
50
                                                                           180
      ELHLRPQAAR GRRRARARNG DDCPLGPGRC CRLHTVRASL EDLGWADWVL SPREVQVTMC
                                                                           240
      IGACPSQFRA ANMHAQIKTS LHRLKPDTEP APCCVPASYN PMVLIQKTDT GVSLQTYDDL
      LAKDCHCI
55
      Seq ID NO: 192 DNA sequence
      Nucleic Acid Accession #: XM 061731.1
      Coding sequence: 1-567 (underlined sequences correspond to start and stop codons)
                             21
                                        31
                                                   41
                                                              51
60
      ATGAGAAAAG GAAATGAGGG AGAGAACACA GAAGAGGGCA GGCTTGCTCA GCTTGCTCAA
      AGAAAGTTTC TCAAAGAAGA TGGCATTACA TTGCACATCT CTCTGTGTCT CTCTATTGCT
      GTAAAAGAAC CTTTCTCTCT GATTGGACTT GACACACAGA AGGATCTCAG TAAAGATTTG
                                                                           1.80
      CTGTTGTTGA TGTCCACAGA CACTGGCAAG GACAGGTTTA CCAACATACT GCTGTCACAC
                                                                           240
65
      TCCCCTCCAA TGTGCACCAA ATCACGTAAA AATGGGGGATA ATGACTCCCC TGCCTTCACA
                                                                           300
      TGGGGTGGCA AAGACACCAG GAGCAATACT GATCTTCCTA TCAGAGACCC TGGGGGCAAG
                                                                           360
      AGTCTTTCAC TCACCAAACA TTCCCACAAG CCTGTCCCTG AGCATCAGTG TGACCAGAGA
                                                                           420
      GAGGTCTTCC AGCCACTTTC AGAGCCAGGT GTAGAAGCAG AGATGGAAGT GTTCGCTGAT
                                                                           480
      GCTGGATGGT GGATTTATCA GAGCTGTCAG GTTCCTTCCT CAACCCTTGC AAGAAAGAAG
                                                                           540
70
      ATGGTTTATT CTAAAGAAAC TGAGTGA
      Seq ID NO: 193 Protein sequence:
      Protein Accession #: XP_061731.1
75
                                       31
                                                              51
                             21
                 11
```

MRKGNEGENT EEGRLAQLAQ RKFLKEDGIT LHISLCLSIA VKEPFSLIGL DTQKDLSKDL

```
LLLMSTDTGK DRFTNILLSH SPPMCTKSRK NGDNDSPAFT WGGKDTRSNT DLPIRDPGGK
                                                                         120
      SLSLTKHSHK PVPEHQCDQR EVFQPLSEPG VEAEMEVFAD AGWWIYQSCQ VPSSTLARKK
                                                                         180
      MVYSKETE
 5
      Seq ID NO: 194 DNA sequence
      Nucleic Acid Accession #: NM_005415.2
      Coding sequence: 371-2410 (underlined sequences correspond to start and stop codons)
10
                            21
                                       31
                                                             51.
      GAGCTGTCCC CGGTGCCGCC GACCCGGGCC GTGCCGTGTG CCCGTGGCTC CAGCCGCTGC
                                                                          60
      CGCCTCGATC TCCTCGTCTC CCGCTCCGCC CTCCCTTTTC CCTGGATGAA CTTGCGTCCT
                                                                         120
      TTCTCTTCTC CGCCATGGAA TTCTGCTCCG TGCTTTTAGC CCTCCTGAGC CAAAGAAACC
15
      CCAGACAACA GATGCCCATA CGCAGCGTAT AGCAGTAACT CCCCAGCTCG GTTTCTGTGC
                                                                         240
      CGTAGTTTAC AGTATTTAAT TTTATATAAT ATATATTATT TATTATAGCA TTTTTGATAC
                                                                         300
      CTCATATTCT GTTTACACAT CTTGAAAGGC GCTCAGTAGT TCTCTTACTA AACAACCACT
                                                                         360
      ACTCCAGAGA ATGCCACGC TGATTACCAG TACTACAGCT GCTACCGCCG CTTCTGGTCC
                                                                          420
      TTTGGTGGAC TACCTATGGA TGCTCATCCT GGGCTTCATT ATTGCATTTG TCTTGGCATT
                                                                         480
20
      CTCCGTGGGA GCCAATGATG TAGCAAATTC TTTTGGTACA GCTGTGGGCT CAGGTGTAGT
                                                                         540
      GACCCTGAAG CAAGCCTGCA TCCTAGCTAG CATCTTTGAA ACAGTGGGCT CTGTCTTACT
                                                                         600
      GGGGGCCAAA GTGAGCGAAA CCATCCGGAA GGGCTTGATT GACGTGGAGA TGTACAACTC
      GACTCAAGGG CTACTGATGG CCGGCTCAGT CAGTGCTATG TTTGGTTCTG CTGTGTGGCA
                                                                          720
      ACTCGTGGCT TCGTTTTTGA AGCTCCCTAT TTCTGGAACC CATTGTATTG TTGGTGCAAC
                                                                          780
25
      TATTGGTTTC TCCCTCGTGG CAAAGGGGCA GGAGGGTGTC AAGTGGTCTG AACTGATAAA
                                                                         840
      AATTGTGATG TCTTGGTTCG TGTCCCCACT GCTTTCTGGA ATTATGTCTG GAATTTTATT
                                                                         900
      CTTCCTGGTT CGTGCATTCA TCCTCCATAA GGCAGATCCA GTTCCTAATG GTTTGCGAGC
                                                                         960
      TTTGCCAGTT TTCTATGCCT GCACAGTTGG AATAAACCTC TTTTCCATCA TGTATACTGG
                                                                        1020
     AGCACCGTTG CTGGGCTTTG ACAAACTTCC TCTGTGGGGT ACCATCCTCA TCTCGGTGGG
                                                                        1080
30
      ATGTGCAGTT TTCTGTGCCC TTATCGTCTG GTTCTTTGTA TGTCCCAGGA TGAAGAGAAA
                                                                        1140
      AATTGAACGA GAAATAAAGT GTAGTCCTTC TGAAAGCCCC TTAATGGAAA AAAAGAATAG
                                                                        1200
      CTTGAAAGAA GACCATGAAG AAACAAAGTT GTCTGTTGGT GATATTGAAA ACAAGCATCC
                                                                        1260
      TGTTTCTGAG GTAGGGCCTG CCACTGTGCC CCTCCAGGCT GTGGTGGAGG AGAGAACAGT
                                                                        1320
      CTCATTCAAA CTTGGAGATT TGGAGGAAGC TCCAGAGAGA GAGAGGCTTC CCAGCGTGGA
                                                                        1380
35
      1500
      GAACCTTGTC CAGTTCAGTC AAGCCGTCAG CAACCAAATA AACTCCAGTG GCCACTCCCA
     GTATCACACC GTGCATAAGG ATTCCGGCCT GTACAAAGAG CTACTCCATA AATTACATCT
                                                                        1560
      TGCCAAGGTG GGAGATTGCA TGGGAGACTC CGGTGACAAA CCCTTAAGGC GCAATAATAG 1620
      CTATACTTCC TATACCATGG CAATATGTGG CATGCCTCTG GATTCATTCC GTGCCAAAGA
40
      AGGTGAACAG AAGGGCGAAG AAATGGAGAA GCTGACATGG CCTAATGCAG ACTCCAAGAA
      GCGAATTCGA ATGGACAGTT ACACCAGTTA CTGCAATGCT GTGTCTGACC TTCACTCAGC
                                                                        1800
     ATCTGAGATA GACATGAGTG TCAAGGCAGC GATGGGTCTA GGTGACAGAA AAGGAAGTAA
                                                                        1860
                                                                        1920
      TGGCTCTCTA GAAGAATGGT ATGACCAGGA TAAGCCTGAA GTCTCTCTCC TCTTCCAGTT
      CCTGCAGATC CTTACAGCCT GCTTTGGGTC ATTCGCCCAT GGTGGCAATG ACGTAAGCAA
45
      TGCCATTGGG CCTCTGGTTG CTTTATATTT GGTTTATGAC ACAGGAGATG TTTCTTCAAA
                                                                        2040
     AGTGGCAACA CCAATATGGC TTCTACTCTA TGGTGGTGTT GGTATCTGTG TTGGTCTGTG
                                                                        2100
      GGTTTGGGGA AGAAGAGTTA TCCAGACCAT GGGGAAGGAT CTGACACCGA TCACACCCTC
                                                                        2160
      TAGTGGCTTC AGTATTGAAC TGGCATCTGC CCTCACTGTG GTGATTGCAT CAAATATTGG
      CCTTCCCATC AGTACAACAC ATTGTAAAGT GGGCTCTGTT GTGTCTGTTG GCTGGCTCCG
                                                                        2280
50
     GTCCAAGAAG GCTGTTGACT GGCGTCTCTT TCGTAACATT TTTATGGCCT GGTTTGTCAC
                                                                        2340
     AGTCCCCATT TCTGGAGTTA TCAGTGCTGC CATCATGGCA ATCTTCAGAT ATGTCATCCT
                                                                        2400
      CAGAATG\underline{TGA} AGCTGTTTGA GATTAAAATT TGTGTCAATG TTTGGGACCA TCTTAGGTAT
                                                                        2460
      TCCTGCTCCC CTGAAGAATG ATTACAGTGT TAACAGAAGA CTGACAAGAG TCTTTTTATT
                                                                        2520
      TGGGAGCAGA GGAGGGAAGT GTTACTTGTG CTATAACTGC TTTTGTGCTA AATATGAATT
                                                                        2580
55
     GTCTCAAAAT TAGCTGTGTA AAATAGCCCG GGTTCCACTG GCTCCTGCTG AGGTCCCCTT
                                                                        2640
                                                                        2700
      TCCTTCTGGG CTGTGAATTC CTGTACATAT TTCTCTACTT TTTGTATCAG GCTTCAATTC
      CATTATGTTT TAATGTTGTC TCTGAAGATG ACTTGTGATT TTTTTTCTT TTTTTTAAAC
                                                                        2760
     CATGAAGAGC CGTTTGACAG AGCATGCTCT GCGTTGTTGG TTTCACCAGC TTCTGCCCTC
                                                                        2820
     ACATGCACAG GGATTTAACA ACAAAAATAT AACTACAACT TCCCTTGTAG TCTCTTATAT
                                                                        2880
60
      AAGTAGAGTC CTTGGTACTC TGCCCTCCTG TCAGTAGTGG CAGGATCTAT TGGCATATTC
                                                                        2940
     GGGAGCTTCT TAGAGGGATG AGGTTCTTTG AACACAGTGA AAATTTAAAT TAGTAACTTT
                                                                        3000
      TTTGCAAGCA GTTTATTGAC TGTTATTGCT AAGAAGAAGT AAGAAGAAA AAGCCTGTTG
                                                                        3060
     GCAATCTTGG TTATTTCTTT AAGATTTCTG GCAGTGTGGG ATGGATGAAT GAAGTGGAAT
                                                                        3120
     GTGAACTTTG GGCAAGTTAA ATGGGACAGC CTTCCATGTT CATTTGTCTA CCTCTTAACT
                                                                        3180
65
      GAATAAAAA GCCTACAGTT TTTAGAAAAA ACCCGAATTC
      Seq ID NO: 195 Protein sequence:
      Protein Accession #: NP_005406.2
70
                                                  41
                                                             51
     MATLITSTTA ATAASGPLVD YLWMLILGFI IAFVLAFSVG ANDVANSFGT AVGSGVVTLK
                                                                          60
      QACILASIFE TVGSVLLGAK VSETIRKGLI DVEMYNSTQG LLMAGSVSAM FGSAVWQLVA
                                                                         120
      SFLKLPISGT HCIVGATIGF SLVAKGQEGV KWSELIKIVM SWFVSPLLSG IMSGILFFLV
75
     RAFILHKADP VPNGLRALPV FYACTVGINL FSIMYTGAPL LGFDKLPLWG TILISVGCAV
                                                                         240
      FCALIVWFFV CPRMKRKIER EIKCSPSESP LMEKKNSLKE DHEETKLSVG DIENKHPVSE
                                                                         300
```

```
VGPATVPLOA VVEERTVSFK LGDLEEAPER ERLPSVDLKE ETSIDSTVNG AVOLPNGNLV
      QFSQAVSNQI NSSGHSQYHT VHKDSGLYKE LLHKLHLAKV GDCMGDSGDK PLRRNNSYTS
                                                                          420
      YTMAICGMPL DSFRAKEGEQ KGEEMEKLTW PNADSKKRIR MDSYTSYCNA VSDLHSASEI
                                                                          480
      DMSVKAAMGL GDRKGSNGSL EEWYDQDKPE VSLLFQFLQI LTACFGSFAH GGNDVSNAIG
                                                                          540
      PLVALYLVYD TGDVSSKVAT PIWLLLYGGV GICVGLWVWG RRVIQTMGKD LTPITPSSGF
                                                                          600
      SIELASALTV VIASNIGLPI STTHCKVGSV VSVGWLRSKK AVDWRLFRNI FMAWFVTVPI
                                                                          660
      SGVISAAIMA IFRYVILRM
      Seq ID NO: 196 DNA sequence
10
      Nucleic Acid Accession #: NM_000020.1
      Coding sequence: 283-1794 (underlined sequences correspond to start and stop codons)
                                                             51
                            21
                                       31
                                                  41
                 11
15
      AGGAAACGGT TTATTAGGAG GGAGTGGTGG AGCTGGGCCA GGCAGGAAGA CGCTGGAATA
                                                                           60
      AGAAACATTT TTGCTCCAGC CCCCATCCCA GTCCCGGGAG GCTGCCGCGC CAGCTGCGCC
                                                                          120
      GAGCGAGCCC CTCCCCGGCT CCAGCCCGGT CCGGGGCCGC GCCGGACCCC AGCCCGCCGT
      CCAGCGCTGG CGGTGCAACT GCGGCCGCG GGTGGAGGGG AGGTGGCCCC GGTCCGCCGA
                                                                          240
      AGGCTAGCGC CCCGCCACCC GCAGAGCGGG CCCAGAGGGA CCATGACCTT GGGCTCCCCC
                                                                          300
20
      AGGAAAGGCC TTCTGATGCT GCTGATGGCC TTGGTGACCC AGGGAGACCC TGTGAAGCCG
      TCTCGGGGCC CGCTGGTGAC CTGCACGTGT GAGAGCCCAC ATTGCAAGGG GCCTACCTGC
      CGGGGGGCCT GGTGCACAGT AGTGCTGGTG CGGGAGGAGG GGAGGCACCC CCAGGAACAT
      CGGGGCTGCG GGAACTTGCA CAGGGAGCTC TGCAGGGGGC GCCCCACCGA GTTCGTCAAC
                                                                          540
      CACTACTGCT GCGACAGCCA CCTCTGCAAC CACAACGTGT CCCTGGTGCT GGAGGCCACC
                                                                          600
25
      CAACCTCCTT CGGAGCAGCC GGGAACAGAT GGCCAGCTGG CCCTGATCCT GGGCCCCGTG
      CTGGCCTTGC TGGCCCTGGT GGCCCTGGGT GTCCTGGGCC TGTGGCATGT CCGACGGAGG
                                                                          720
      CAGGAGAAGC AGCGTGGCCT GCACAGCGAG CTGGGAGAGT CCAGTCTCAT CCTGAAAGCA
                                                                          780
      TCTGAGCAGG GCGACACGAT GTTGGGGGAC CTCCTGGACA GTGACTGCAC CACAGGGAGT
                                                                          840
      GGCTCAGGGC TCCCCTTCCT GGTGCAGAGG ACAGTGGCAC GGCAGGTTGC CTTGGTGGAG
                                                                          900
30
      TGTGTGGGAA AAGGCCGCTA TGGCGAAGTG TGGCGGGGCT TGTGGCACGG TGAGAGTGTG
                                                                          960
      GCCGTCAAGA TCTTCTCCTC GAGGGATGAA CAGTCCTGGT TCCGGGAGAC TGAGATCTAT
                                                                         1020
      AACACAGTAT TGCTCAGACA CGACAACATC CTAGGCTTCA TCGCCTCAGA CATGACCTCC
                                                                         1080
      CGCAACTCGA GCACGCAGCT GTGGCTCATC ACGCACTACC ACGAGCACGG CTCCCTCTAC
      GACTITCTGC AGAGACAGAC GCTGGAGCCC CATCTGGCTC TGAGGCTAGC TGTGTCCGCG
35
     GCATGCGGCC TGGCGCACCT GCACGTGGAG ATCTTCGGTA CACAGGGCAA ACCAGCCATT
      GCCCACCGCG ACTTCAAGAG CCGCAATGTG CTGGTCAAGA GCAACCTGCA GTGTTGCATC 1320
      GCCGACCTGG GCCTGGCTGT GATGCACTCA CAGGGCAGCG ATTACCTGGA CATCGGCAAC
                                                                         1380
      AACCCGAGAG TGGGCACCAA GCGGTACATG GCACCCGAGG TGCTGGACGA GCAGATCCGC 1440
      ACGGACTGCT TTGAGTCCTA CAAGTGGACT GACATCTGGG CCTTTGGCCT GGTGCTGTGG
                                                                         1500
40
     GAGATTGCCC GCCGGACCAT CGTGAATGGC ATCGTGGAGG ACTATAGACC ACCCTTCTAT 1560
      GATGTGGTGC CCAATGACCC CAGCTTTGAG GACATGAAGA AGGTGGTGT TGTGGATCAG
                                                                         1620
      CAGACCCCCA CCATCCCTAA CCGGCTGGCT GCAGACCCGG TCCTCTCAGG CCTAGCTCAG
                                                                         1680
      ATGATGCGGG AGTGCTGGTA CCCAAACCCC TCTGCCCGAC TCACCGCGCT GCGGATCAAG
      AAGACACTAC AAAAAATTAG CAACAGTCCA GAGAAGCCTA AAGTGATTCA A<u>TAG</u>CCCAGG
                                                                         1800
45
      AGCACCTGAT TCCTTTCTGC CTGCAGGGGG CTGGGGGGGT GGGGGGCAGT GGATGGTGCC
                                                                         1860
      CTATCTGGGT AGAGGTAGTG TGAGTGTGGT GTGTGCTGGG GATGGGCAGC TGCGCCTGCC 1920
      TGCTCGGCCC CCAGCCCACC CAGCCAAAAA TACAGCTGGG CTGAAACCTG
      Seq ID NO: 197 Protein sequence:
50
      Protein Accession #: NP 000011.1
                                                  41
                                                             51
                 11
                            21
                                       31
      MTLGSPRKGL LMLLMALVTQ GDPVKPSRGP LVTCTCESPH CKGPTCRGAW CTVVLVREEG
55
      RHPQEHRGCG NLHRELCRGR PTEFVNHYCC DSHLCNHNVS LVLEATQPPS EQPGTDGQLA
                                                                          120
      LILGPVLALL ALVALGVLGL WHVRRROEKO RGLHSELGES SLILKASEOG DTMLGDLLDS
      DCTTGSGSGL PFLVQRTVAR QVALVECVGK GRYGEVWRGL WHGESVAVKI FSSRDEQSWF
                                                                          240
      RETEIYNTVL LRHDNILGFI ASDMTSRNSS TQLWLITHYH EHGSLYDFLQ RQTLEPHLAL
                                                                          300
      RLAVSAACGL AHLHVEIFGT QGKPAIAHRD FKSRNVLVKS NLQCCIADLG LAVMHSQGSD
                                                                          360
60
      YLDIGNNPRV GTKRYMAPEV LDEQIRTDCF ESYKWTDIWA FGLVLWEIAR RTIVNGIVED
                                                                          420
      YRPPFYDVVP NDPSFEDMKK VVCVDQQTPT IPNRLAADPV LSGLAQMMRE CWYPNPSARL
      TALRIKKTLQ KISNSPEKPK VIQ
      Seq ID NO: 198 DNA sequence
65
      Nucleic Acid Accession #: NM 003199.1
      Coding sequence: 200-2203 (underlined sequences correspond to start and stop codons)
70
      CGGGGGGATC TTGGCTGTGT GTCTGCGGAT CTGTAGTGGC GGCGGCGGCG GCGGCGGCGG
                                                                           60
      GGAGGCAGCA GGCGCGGGAG CGGGCGCAGG AGCAGGCGGC GGCGGTGGCG GCGGCGGTTA
                                                                          120
      GACATGAACG CCGCCTCGGC GCCGGCGGTG CACGGAGAGC CCCTTCTCGC GCGCGGCCG
                                                                          180
      TTTGTGTGAT TTTGCTAAAA TGCATCACCA ACAGCGAATG GCTGCCTTAG GGACGGACAA
                                                                          240
      AGAGCTGAGT GATTTACTGG ATTTCAGTGC GATGTTTTCA CCTCCTGTGA GCAGTGGGAA
                                                                          300
      AAATGGACCA ACTTCTTTGG CAAGTGGACA TTTTACTGGC TCAAATGTAG AAGACAGAAG
75
                                                                          360
      TAGCTCAGGG TCCTGGGGGA ATGGAGGACA TCCAAGCCCG TCCAGGAACT ATGGAGATGG
                                                                          420
```

```
GACTCCCTAT GACCACATGA CCAGCAGGGA CCTTGGGTCA CATGACAATC TCTCTCCACC
                                                                           480
      TTTTGTCAAT TCCAGAATAC AAAGTAAAAC AGAAAGGGGC TCATACTCAT CTTATGGGAG
      AGAATCAAAC TTACAGGGTT GCCACCAGCA GAGTCTCCTT GGAGGTGACA TGGATATGGG
                                                                           600
      CAACCCAGGA ACCCTTTCGC CCACCAAACC TGGTTCCCAG TACTATCAGT ATTCTAGCAA
                                                                           660
 5
      TAATCCCCGA AGGAGGCCTC TTCACAGTAG TGCCATGGAG GTACAGACAA AGAAAGTTCG
      AAAAGTTCCT CCAGGTTTGC CATCTTCAGT CTATGCTCCA TCAGCAAGCA CTGCCGACTA
                                                                           780
      CAATAGGGAC TCGCCAGGCT ATCCTTCCTC CAAACCAGCA ACCAGCACTT TCCCTAGCTC
                                                                           840
      CTTCTTCATG CAAGATGGCC ATCACAGCAG TGACCCTTGG AGCTCCTCCA GTGGGATGAA
                                                                           900
      TCAGCCTGGC TATGCAGGAA TGTTGGGCAA CTCTTCTCAT ATTCCACAGT CCAGCAGCTA
                                                                           960
10
      CTGTAGCCTG CATCCACATG AACGTTTGAG CTATCCATCA CACTCCTCAG CAGACATCAA
      TTCCAGTCTT CCTCCGATGT CCACTTTCCA TCGTAGTGGT ACAAACCATT ACAGCACCTC
                                                                          1080
      TTCCTGTACG CCTCCTGCCA ACGGGACAGA CAGTATAATG GCAAATAGAG GAAGCGGGGC
                                                                          1140
      AGCCGGCAGC TCCCAGACTG GAGATGCTCT GGGGAAAGCA CTTGCTTCGA TCTATTCTCC
                                                                          1200
      AGATCACACT AACAACAGCT TTTCATCAAA CCCTTCAACT CCTGTTGGCT CTCCTCCATC
15
      TCTCTCAGCA GGCACAGCTG TTTGGTCTAG AAATGGAGGA CAGGCCTCAT CGTCTCCTAA
      TTATGAAGGA CCCTTACACT CTTTGCAAAG CCGAATTGAA GATCGTTTAG AAAGACTGGA
                                                                          1380
      TGATGCTATT CATGTTCTCC GGAACCATGC AGTGGGCCCA TCCACAGCTA TGCCTGGTGG
                                                                          1440
      TCATGGGGAC ATGCATGGAA TCATTGGACC TTCTCATAAT GGAGCCATGG GTGGTCTGGG
      CTCAGGGTAT GGAACCGGCC TTCTTTCAGC CAACAGACAT TCACTCATGG TGGGGACCCA
                                                                          1560
20
      TCGTGAAGAT GGCGTGGCCC TGAGAGGCAG CCATTCTCTT CTGCCAAACC AGGTTCCGGT
      TCCACAGCTT CCTGTCCAGT CTGCGACTTC CCCTGACCTG AACCCACCCC AGGACCTTA
                                                                          1680
      CAGAGGCATG CCACCAGGAC TACAGGGGCA GAGTGTCTCC TCTGGCAGCT CTGAGATCAA
                                                                          1740
      ATCCGATGAC GAGGGTGATG AGAACCTGCA AGACACGAAA TCTTCGGAGG ACAAGAAATT
      AGATGACGAC AAGAAGGATA TCAAATCAAT TACTAGCAAT AATGACGATG AGGACCTGAC
                                                                         1860
25
      ACCAGAGCAG AAGGCAGAGC GTGAGAAGGA GCGGAGGATG GCCAACAATG CCCGAGAGCG
                                                                         1920
      TCTGCGGGTC CGTGACATCA ACGAGGCTTT CAAAGAGCTC GGCCGCATGG TGCAGCTCCA
      CCTCAAGAGT GACAAGCCCC AGACCAAGCT CCTGATCCTC CACCAGGCGG TGGCCGTCAT
                                                                          2040
      CCTCAGTCTG GAGCAGCAAG TCCGAGAAAG GAATCTGAAT CCGAAAGCTG CGTGTCTGAA
                                                                         2100
      AAGAAGGGAG GAAGAGAAGG TGTCCTCGGA GCCTCCCCCT CTCTCCTTGG CCGGCCCACA
                                                                         2160
30
      CCCTGGAATG GGAGACGCAT CGAATCACAT GGGACAGATG <u>TAA</u>AAGGGTC CAAGTTGCCA
                                                                         2220
      CATTGCTTCA TTAAAACAAG AGACCACTTC CTTAACAGCT GTATTATCTT AAACCCACAT
      AAACACTTCT CCTTAACCCC CATTTTTGTA ATATAAGACA AGTCTGAGTA GTTATGAATC
                                                                         2340
      GCAGACGCAA GAGGTTTCAG CATTCCCAAT TATCAAAAAA CAGAAAAACA AAAAAAAGAA
                                                                         2400
      AGAAAAAGT GCAACTTGAG GGACGACTTT CTTTAACATA TCATTCAGAA TGTGCAAAGC 2460
35
      AGTATGTACA GGCTGAGACA CAGCCCAGAG ACTGAACGGC
      Seq ID NO: 199 Protein sequence:
      Protein Accession #: NP_003190.1
40
                 11
                                       31
                                                  41
                                                             51
      MHHQQRMAAL GTDKELSDLL DFSAMFSPPV SSGKNGPTSL ASGHFTGSNV EDRSSSGSWG
                                                                           60
      NGGHPSPSRN YGDGTPYDHM TSRDLGSHDN LSPPFVNSRI OSKTERGSYS SYGRESNLOG
                                                                          120
      CHQQSLLGGD MDMGNPGTLS PTKPGSQYYQ YSSNNPRRRP LHSSAMEVQT KKVRKVPPGL
45
      PSSVYAPSAS TADYNRDSPG YPSSKPATST FPSSFFMQDG HHSSDPWSSS SGMNQPGYAG
      MLGNSSHIPQ SSSYCSLHPH ERLSYPSHSS ADINSSLPPM STFHRSGTNH YSTSSCTPPA
                                                                          300
      NGTDSIMANR GSGAAGSSQT GDALGKALAS IYSPDHTNNS FSSNPSTPVG SPPSLSAGTA
                                                                          360
      VWSRNGGQAS SSPNYEGPLH SLQSRIEDRL ERLDDAIHVL RNHAVGPSTA MPGGHGDMHG
                                                                           420
      IIGPSHNGAM GGLGSGYGTG LLSANRHSLM VGTHREDGVA LRGSHSLLPN QVPVPQLPVQ
                                                                          480
50
      SATSPDLNPP QDPYRGMPPG LQGQSVSSGS SEIKSDDEGD ENLQDTKSSE DKKLDDDKKD
                                                                          540
      IKSITSNNDD EDLTPEQKAE REKERRMANN ARERLRVRDI NEAFKELGRM VQLHLKSDKP
                                                                          600
      QTKLLILHQA VAVILSLEQQ VRERNLNPKA ACLKRREEEK VSSEPPPLSL AGPHPGMGDA
55
      Seq ID NO: 200 DNA sequence
      Nucleic Acid Accession #: BC005987 (1-1286), BE888744 (1287-1756)
      Coding sequence: 124-525 (underlined sequences correspond to start and stop codons)
                                                             51
                 11
                            21
                                       31
60
      GGCAGAAGAG GAAGATTTCT GAAGAGTGCA GCTGCCTGAA CCGAGCCCTG CCGAACAGCT
      GAGAATTGCA CTGCAACCAT GAGTGAGAAC AATAAGAATT CCTTGGAGAG CAGCCTACGG
                                                                          120
      CAACTAAAAT GCCATTTCAC CTGGAACTTG ATGGAGGGAG AAAACTCCTT GGATGATTTT
                                                                          180
      GAAGACAAAG TATTTTACCG GACTGAGTTT CAGAATCGTG AATTCAAAGC CACAATGTGC
                                                                          240
65
      AACCTACTGG CCTATCTAAA GCACCTCAAA GGGCAAAACG AGGCAGCCCT GGAATGCTTA
      CGTAAAGCTG AAGAGTTAAT CCAGCAAGAG CATGCTGACC AGGCAGAAAT CAGAAGTCTG
                                                                          360
      GTCACCTGGG GAAACTATGC CTGGGTCTAC TATCACATGG GCCGACTCTC AGACGTTCAG
                                                                          420
      ATTTATGTAG ACAAGGTGAA ACATGTCTGT GAGAAGTTTT CCAGTCCCTA TAGAATTGAG
                                                                          480
      AGTCCAGAGC TTGACTGTGA GGAAGGGTGG ACACGGTTAA AGTGTGGARG AAACCAAAAT
                                                                          540
70
      GAAAGAGCGA AGGTGTGCTT TGAGAAGGCT CTGGAAAAGA AGCCAAAGAA CCCAGAATTC
      ACCTCTGGAC TGGCAATAGC AAGCTACCGT CTGGACAACT GGCCACCATC TCAGAACGCC
                                                                          660
      ATTGACCCTC TGAGGCAAGC CATTCGGCTG AATCCTGACA ACCAGTACCT TAAAGTCCTC
                                                                          720
      CTGGCTCTGA AGCTTCATAA GATGCGTGAA GAAGGTGAAG AGGAAGGTGA AGGACACAAG
                                                                          780
      TTAGTTGAAG AAGCCTTGGA GAAAGCCCCA GGTGTAACAG ATGTACTTCG CAGTGCAGCC
                                                                           840
75
      AAGTTTTATC GAAGAAAAGA TGAGCCAGAC AAAGCGATTG AACTGCTTAA AAAGGCTTTA
      GAATACATAC CAAACAATGC CTACCTGCAT TGCCAAATTG GGTGCTGCTA TAGGGCAAAA
```

```
GTCTTCCAAG TAATGAATCT AAGAGAGAAT GGAATGTATG GGAAAAGAAA GTTACTGGAA
      CTAATAGGAC ACGCTGTGGC TCATCTGAAG AAAGCTGATG AGGCCAATGA TAATCTCTTC
      CGTGTCTGTT CCATTCTTGC CAGCCTCCAT GCTCTAGCAG ATCAGTATGA AGAAGCAGAG
                                                                          1140
      TATTACTTCC AAAAGGAATT CAGTAAAGAG CTTACTCCTG TAGCGAAACA ACTGCTCCAT
                                                                          1200
      CTGCGGTATG GCAACTTTCA GCTGTACCAA ATGAAGTGTG AAGACAAGGC CATCCACCAC
      TTTATAGAGG GTGTAAAAAT AAACCAGAAA TCAAGGGAGA AAGAAAAGAT GAAAGACAAA
                                                                          1320
      CTGCAAAAA TTGCCAAAAT GCGACTTTCT AAAAATGGAG CAGATTCTGA GGCTTTGCAT
                                                                          1380
      GTCTTGGCAT TCCTTCAGGA GCTGAATGAA AAAATGCAAC AAGCAGATGA AGACTCTGAG
                                                                          1440
      AGGGGTTTGG AGTCTGGAAG CCTCATCCCT TCAGCATCAA GCTGGAATGG GGAA<u>TGA</u>AGA
                                                                          1500
10
      ATAGAGATGT GGTGCCCACT AGGCTACTGC TGAAAGGGAG CTGAAATTCC TCCACAAGTT
      GGTATTCAAA ATATGTAATG ACTGGTATGG CAAAAGATTG GACTAAGACA CTGGCCATAC
                                                                          1620
      CACTGGACAG GGTTATGTTA AACCTGAATT GCTGGGTCTT AAAAGAGCCC AAGGAGTTCT
                                                                          1680
      GGGAGAGGGA CAGATTGGGG GGTCGTCCAG GGCTGCGCTA AATTATTCTC AATGATTTGT 1740
      CTCTTTGCGG AACTTC
15
      Seq ID NO: 201 Protein sequence:
      Protein Accession #: AAA59191
                                       31
                                                  41
20
      MSENNKNSLE SSLRQLKCHF TWNLMEGENS LDDFEDKVFY RTEFONREFK ATMCNLLAYL
                                                                           60
      KHLKGQNEAA LECLRKAEEL IQQEHADQAE IRSLVTWGNY AWVYYHMGRL SDVQIYVDKV
                                                                           120
      KHVCEKFSSP YRIESPELDC EEGWTRLKCG GNQNERAKVC FEKALEKKPK NPEFTSGLAI
      ASYRLDNWPP SQNAIDPLRQ AIRLNPDNQY LKVLLALKLH KMREEGEEG EGEKLVEEAL
                                                                           240
25
      EKAPGVTDVL RSAAKFYRRK DEPDKAIELL KKALEYIPNN AYLHCQIGCC YRAKVFQVMN
                                                                           300
      LRENGMYGKR KLLELIGHAV AHLKKADEAN DNLFRVCSIL ASLHALADQY EDAEYYFQKE
                                                                           360
      FSKELTPVAK QLLHLRYGNF QLYQMKCEDK AIHHFIEGVK INQKSREKEK MKDKLQKIAK
                                                                           420
      MRLSKNGADS EALHVLAFLQ ELNEKMQQAD EDSERGLESG SLIPSASSWN GE
30
      Seq ID NO: 202 DNA sequence
      Nucleic Acid Accession #: NM 003090
      Coding sequence: 57-824 (underlined sequences correspond to start and stop codons)
35
                            21
                                       31
                                                  41
                                                             51
      GAATTCCGCG GGAGGCCACG GGCTTTCCAC AGCGCGGGG AACGGGAGGC TGCAGGATGG
                                                                           60
      TCAAGCTGAC GGCGGAGCTG ATCGAGCAGG CGGCGCAGTA CACCAACGCG GTGCGCGACC
                                                                           120
      GGGAGCTGGA CCTCCGGGGG TATAAAATTC CCGTCATTGA AAATCTAGGT GCTACGTTAG
                                                                          180
40
      ACCAGTTTGA TGCTATTGAT TTTTCTGACA ATGAGATCAG GAAACTGGAT GGTTTTCCTT
      TGTTGAGAAG ACTGAAAACA TTGTTAGTGA ACAACAACAG AATATGCCGT ATAGGTGAGG
      GACTTGATCA GGCTCTGCCC TGTCTGACAG AACTCATTCT CACCAATAAT AGTCTCGTGG
                                                                           360
      AACTGGGTGA TCTGGACCCT CTGGCATCTC TCAAATCGCT GACTTACCTA AGTATCCTAA
                                                                           420
      GAAATCCGGT AACCAATAAG AAGCATTACA GATTGTATGT GATTTATAAA GTTCCGCAAG
45
      TCAGAGTACT GGATTTCCAG AAAGTGAAAC TAAAAGAGCG TCAGGAAGCA GAGAAAATGT
      TCAAGGGCAA ACGGGGTGCA CAGCTTGCAA AGGATATTGC CAGGAGAAGC AAAACTTTTA
      ATCCAGGTGC TGGTTTGCCA ACTGACAAAA AGAGAGGTGG GCCATCTCCA GGGGATGTAG
                                                                           660
      AAGCAATCAA GAATGCCATA GCAAATGCTT CAACTCTGGC TGAAGTGGAG AGGCTGAAGG
                                                                           720
      GGTTGCTGCA GTCTGGTCAG ATCCCTGGCA GAGAACGCAG ATCAGGGCCC ACTGATGATG
50
      GTGAAGAAGA GATGGAAGAA GACACAGTCA CAAACGGGTC CTGAGCAGTG AGGCAGATGT
                                                                           840
      ATAATAATAG GCCCTCTTGG AACAAGTCTT GCTTTTCGAA CATGGTATAA TAGCCTTGTT
                                                                          900
      TGTGTTAGCA AAGTGGAATC TATCAGCATT GTTGAAATGC TTAAGACTGC TGCTGATAAT
                                                                          960
      TTTGTAATAT AAGTTTTGAA ATCTAAATGT CAATTTTCTA CAAATTATAA AAATAAACTC
                                                                         1020
      CACTCTCTAT GCTAAAAAAA AAAAAAAGGA ATTC
55
      Seq ID NO: 203 Protein sequence:
      Protein Accession #: NP 003081.1
                                                             51
                            21
                                       31
                                                  41
60.
      MVKLTAELIE QAAQYTNAVR DRELDLRGYK IPVIENLGAT LDQFDAIDFS DNEIRKLDGF
      PLLRRLKTLL VNNNRICRIG EGLDQALPCL TELILTNNSL VELGDLDPLA SLKSLTYLSI
      LRNPVTNKKH YRLYVIYKVP OVRVLDFOKV KLKEROEAEK MFKGKRGAQL AKDIARRSKT
                                                                          180
      FNPGAGLPTD KKRGGPSPGD VEAIKNAIAN ASTLAEVERL KGLLQSGQIP GRERRSGPTD
                                                                          240
65
      DGEEEMEEDT VTNGS
      Seq ID NO: 204 DNA sequence
      Nucleic Acid Accession #: NM_017643.1
      Coding sequence: 169-1401 (underlined sequences correspond to start and stop codons)
70
                                       31
                            21
                                                  41
      AATAGCAATA GCTTTATAGC AGCTCCGGTT ACCTGTTTTA AACATGGAAG GAGAGTCGCT
                                                                           60
      CCCAGATAGC CCTCACGAGT GGCCCTGGAG CAGGGAGTGG TGGAGCAGAT CTTCCTTGTT
                                                                           120
75
      TGGGAGGAGC CTGAGGTGGA CCTCGCGTCC TGAGTCTGGA AGGCACCTAT GGGGACCTGC
      TGGGGTGATA TCTCAGAAAA TGTGAGAGTA GAAGTTCCCA ATACAGACTG CAGCCTACCT
```

```
ACCAAAGTCT TCTGGATTGC TGGAATTGTA AAATTAGCAG GTTACAATGC CCTTTTAAGA
      TATGAAGGAT TTGAAAATGA CTCTGGTCTG GACTTCTGGT GCAATATATG TGGTTCTGAT
                                                                          360
      ATCCATCCAG TTGGTTGGTG TGCAGCCAGC GGAAAACCTC TTGTTCCTCC TAGAACTATT
      CAGCATAAAT ATACAAACTG GAAAGCTTTT CTAGTGAAAC GACTTACTGG TGCCAAAACA
 5
      CTGCCTCCTG ATTTCTCCCA AAAGGTTTCA GAGAGTATGC AGTATCCTTT CAAACCTTGC
      ATGAGAGTAG AAGTGGTTGA CAAGAGGCAT TTGTGTCGAA CACGAGTAGC AGTGGTGGAA
      AGTGTAATTG GAGGAAGATT AAGACTAGTG TATGAAGAAA GCGAAGATAG AACAGATGAC
                                                                          550
      TTCTGGTGCC ATATGCACAG CCCATTAATA CATCATATTG GTTGGTCTCG AAGCATAGGT
      CATCGATTCA AAAGATCTGA TATTACAAAG AAACAGGATG GACATTTTGA TACACCACCA
10
      CATTTATTTG CTAAGGTAAA AGAAGTAGAC CAGAGTGGGG AATGGTTCAA GGAAGGAATG
      AAATTGGAAG CTATAGACCC ATTAAATCTT TCTACAATAT GTGTCGCAAC CATTAGAAAG
                                                                          900
      GTGCTAGCTG ACGGATTCCT GATGATTGGG ATCGATGGCT CAGAAGCAGC AGACGGATCT
                                                                         960
      GACTGGTTCT GTTACCATGC AACCTCTCCT TCTATTTTCC CTGTCGGTTT CTGTGAAATT 1020
      AACATGATTG AACTTACTCC ACCCAGAGGT TACACAAAAC TTCCTTTTAA ATGGTTTGAC
15
      TACCTCAGGG AAACTGGCTC CATTGCAGCA CCAGTAAAAC TATTTAATAA GGATGTTCCA 1140
      AATCACGGAT TTCGTGTAGG AATGAAATTA GAAGCAGTAG ATCTCATGGA GCCACGTTTA 1200
      ATATGTGTAG CCACAGTAAC TCGAATTATT CATCGTCTCT TGAGGATACA TTTTGATGGA
      TGGGAAGAAG AGTATGATCA GTGGGTAGAC TGTGAGTCAC CTGACCTCTA TCCTGTAGGG 1320
      TGGTGTCAGT TAACTGGATA TCAACTACAG CCTCCAGCAT CACAGTGTAA GTTGGTATAC 1380
20
      AGAAAAGGTG TCCTTTTG<u>TA A</u>AAATCAGCA ATTCTCCAGA GGACTATCTC ACATAAGTCA 1440
      TCTTATGAGC TCACAGGACA AGAATATACC TATGTCTGAT TGGTTGCCAG GTAAGACATT 1500
      AAGACTCAAC AACAATATCA CAGAATCAGA CCATGTGTCC CATGGCAATG TGAATCCAAT
      AGTCAATTAC ATAATGACTA TAGAAACACA ACAGTCACCA AATTAAACTA GACTTACTAT 1620
      TTTAGTGAGT TAAAAATTAC ATACTAAAAG TTTATTGGTA GGTAATAAAT GCTTTTGAGT 1680
25
      AAATAGTGGA AAATGTCTCA TGTTGAGGCT ATGGTTTTGT AGGAACAAGT ACCCTTATTT
      TCAGAGCATC ATGTACTTAA GTATAATGGT CTTGGTAAAG ATAGTTCATA TAAGTTGTAT 1800
      CTAGACAACT GTATCGTCTA AATTGTAAAC AATTATCTAG TACCAATTTT CCCTTTTTAT
      TTTTCAGCAT CAAGAGAAAA CCAATCAGCT TCATCAAAAC AGAAGAAAAA GGCTAAGTCC 1920
      CAGCAATACA AAGGACATAA GAAAAGTGGG TCACCACGTG GTGTTCACAT ACATTTTCTA 1980
30
      ATTGTTAACT AATTGGAGTC ACAGTATTCT TGGACAGAAA ATGATATATC TTGTGAGAAC
      TGATGATTGT GCATTATGTA TTATGCTTAA AGGTGCAGTA TGCCATAAAA GGCAAACCCT 2100
      TGCAATAATG AGAAACACTG ATATTTTACT AACAGGAGAA ATGATTACCA CAGTATTTAA 2160
      AGTATACGTG GTAAAGAATA GAGTCTGTGA ATGATTCTTG AAATAATATG TAAAACCTAC 2220
      TGAAAGTTAA TCCTTTTTAA AAACTTTATT TAAAAAGAAA AATTAGCAGC CAGGTGCAGT 2280
35
      GGCTCACGCC TGTAATCCCA GCACTTTAGG AGGCCGAGGC TGGCAGATCA CAAGGTCAGG
      AGATCGAGAC CATCCTGGCT AACACGGTGA AACCCTGTCT CCACCAAAAA TACAAAAAAT
      CTGCCGGGCG TGGTGGCACA CGCCTGAAGT CCCAGCTACT CAGGAGGCTG AGGCAAGAGA
                                                                         2460
      ATCACTTGAA CCCAGGAGGC AGAGGTTGCA GTGGGCCAAG ATCACGCCAC TACATTCCAG 2520
      CTGGGCAACA CAGCAAGACT CTGTCTCAAA AAAAAAAAA AAAA
40
      Seq ID NO: 205 Protein sequence:
      Protein Accession #: NP_060113.1
                                       31
45
      MGTCWGDISE NVRVEVPNTD CSLPTKVFWI AGIVKLAGYN ALLRYEGFEN DSGLDFWCNI
      CGSDIHPVGW CAASGKPLVP PRTIQHKYTN WKAFLVKRLT GAKTLPPDFS QKVSESMQYP
      FKPCMRVEVV DKRHLCRTRV AVVESVIGGR LRLVYEESED RTDDFWCHMH SPLIHHIGWS
      RSIGHRFKRS DITKKQDGHF DTPPHLFAKV KEVDQSGEWF KEGMKLEAID PLNLSTICVA
                                                                          240
50
      TIRKVLADGF LMIGIDGSEA ADGSDWFCYH ATSPSIFPVG FCEINMIELT PPRGYTKLPF
                                                                          300
                                                                          360
      KWFDYLRETG SIAAPVKLFN KDVPNHGFRV GMKLEAVDLM EPRLICVATV TRIIHRLLRI
      HFDGWEEEYD QWVDCESPDL YPVGWCQLTG YQLQPPASQC KLVYRKGVLL
55
      Seq ID NO: 206 DNA sequence
      Nucleic Acid Accession #: NM 012334
      Coding sequence: 223-6399 (underlined sequences correspond to start and stop codons)
60
                                       31
      GAGACAAAGG CTGCCGTCGG GACGGCCGAG TTAGGGACTT GGGTTTGGGC GAACAAAAGG
      TGAGAAGGAC AAGAAGGGAC CGGGCGATGG CAGCAGGGGA GCCCCGCGGG CGCGCTCCT
                                                                          120
      CGGGAGTGGC GCCGTGACAC GCATGGTTTC CCCGGACCCG CGGCGGCGCT GACTTCCGCG
                                                                          180
65
      AGTCGGAGCG GCACTCGGCG AGTCCGGGAC TGCGCTGGAA CAATGGATAA CTTCTTCACC
      GAGGGAACAC GGGTCTGGCT GAGAGAAAAT GGCCAGCATT TTCCAAGTAC TGTAAATTCC
      TGTGCAGAAG GCATCGTCGT CTTCCGGACA GACTATGGTC AGGTATTCAC TTACAAGCAG
      AGCACAATTA CCCACCAGAA GGTGACTGCT ATGCACCCCA CGAACGAGGA GGGCGTGGAT
                                                                          420
      GACATGGCGT CCTTGACAGA GCTCCATGGC GGCTCCATCA TGTATAACTT ATTCCAGCGG
70
      TATAAGAGAA ATCAAATATA TACCTACATC GGCTCCATCC TGGCCTCCGT GAACCCCTAC
      CAGCCCATCG CCGGGCTGTA CGAGCCTGCC ACCATGGAGC AGTACAGCCG GCGCCACCTG
                                                                          600
      GGCGAGCTGC CCCCGCACAT CTTCGCCATC GCCAACGAGT GCTACCGCTG CCTGTGGAAG
                                                                          660
      CGCTACGACA ACCAGTGCAT CCTCATCAGT GGTGAAAGTG GGGCAGGTAA AACCGAAAGC
                                                                          720
      ACTAAATTGA TCCTCAAGTT TCTGTCAGTC ATCAGTCAAC AGTCTTTGGA ATTGTCCTTA
                                                                          780
75
      AAGGAGAAGA CATCCTGTGT TGAACGAGCT ATTCTTGAAA GCAGCCCCAT CATGGAAGCT
      TTCGGCAATG CGAAGACCGT GTACAACAAC AACTCTAGTC GCTTTGGGAA GTTTGTTCAG
                                                                          900
```

	CTGAACATCT	GTCAGAAAGG	AAATATTCAG	GGCGGGAGAA	TTGTAGATTA	TTTATTAGAA	960
	AAAAACCGAG	TAGTAAGGCA	AAATCCCGGG	GAAAGGAATT	ATCACATATT	TTATGCACTG	1020
	CTGGCAGGGC	TGGAACATGA	AGAAAGAGAA	GAATTTTATT	TATCTACGCC	AGAAAACTAC	1080
_		ATCAGTCTGG					1140
5		TTACGGCAAT					1200
		TTGCTGGTAT CCTTCAAAAC					1260 1320
		CAGATGCTTT					1380
		ATGTTCAACA					1440
10		TTGAGTGGGT					1500
	TTCAAGTCTA	${\tt TTGGCATCCT}$	CGACATCTTT	GGATTTGAAA	${\tt ACTTTGAGGT}$	TAATCACTTT	1560
		ATATAAACTA					1620
		AACAACTAGA					1680
15		GAGAATGCCT GCCATTTTCC					1740 1800
13		ATAACCACTT					1860
		CTGGAGAGGT					1920
		ATGACCTTCT					1980
	CTTTTTGAAC	ATGTTTCAAG	CCGCAACAAC	CAGGATACCT	TGAÄATGTGG	AAGCAAACAT	2040
20		CAGTCAGCTC					2100
		ATCCTTTCTT					2160
		AGGCGGTTGT					2220 2280
	_	AAGCTGGGTA TGAGGAATCT					2340
25		ATGATGCCTC					2400
20		TGGAACAGAA					2460
		GGGCCCATGT					2520
	TATTGTGTGG	TGATAATACA	GAAGAATTAC	AGAGCATTCC	${\tt TTCTGAGGAG}$	GAGATTTTTG	2580
20		AGGCAGCCAT					2640
30		AATTGCTGGC					2700
		AGAAACGGGA					2760 2820
		CCCAGCAGGA AGGAAGCTGA					2820
		TCCTCCGTCT					2940
35		CGCTGACCGA					3000
	CTCCGCAGGC	TGGAGGAGGA	AGCGTGCAGG	GCGGCCCAGG	AGTTCCTCGA	GTCCCTCAAT	3060
	${\tt TTCGACGAGA}$	${\tt TCGACGAGTG}$	TGTCCGGAAT	ATCGAGCGGT	CCCTGTCGGT	GGGAAGCGAA	3120
		AGCTGGCTGA					3180
40		AGGAGGAGGT					3240
40		CCAGCGAGCA CAGAGGAGGA					3300 3360
	-	CGGTGCTGCT					3420
		AGTCCACCTA					3480
		ACTACGACCA					3540
45		CCAACTCCTA					3600
		GCTCGGGTGC					3660
		AGGACTTTGA					3720
		ACAGCTGTGT					3780
50		ACTCTTGGAA AGCAGGAGGC					3840 3900
50		CCAGGAGAAA					3960
		AAAACGACAG					4020
		TAGATAACAC					4080
	ACTTTCCACC	TGATTGCAGA	GTCCCCAGAA	GATGCCAGCC	AGTGGTTCAG	CGTGCTGAGT	4140
55		CGTCCACGGA					4200
		TGGGCACCTT					4260
		CCAACTCGTT					4320 4380
	TACACTCCACC	AGGAGATGCA GCCAGGAATT	CACTEGATA	CONTROTTO	AGAGGTCCAA	GAAGAACACC	4440
60		CTTCACTGAA					4500
		AGAGTTCAGA					4560
	CTCTGCTCTG	TCGTCCCCCC	AGATGAGAAG	ATATTCAAAG	AGACAGGCTA	CTGGAACGTC	4620
		$\tt GGCGCAAGCA$					4680
· ·		GTGCCATTCA					4740
65		TTCAAGATAT					4800
		ACCCGATCCT GGGACATAAA					4860 4920
		TCAAGATATT					4920 4980
		AGGGCATCCT					5040
70		TTATCAAACA					5100
		AGATCCTGAC					5160
	AAGTATCTCA	AGTTCCATCT	GAAAAGGATA	CGGGAACAGT	TTCCAGGAAC	CGAGATGGAA	5220
	AAATACGCTC	TCTTCACTTA	CGAATCTCTT	AAGAAAACCA	AATGCCGAGA	GTTTGTGCCT	5280
75		AAATAGAAGC					5340
75		GCTCCTGCAA					5400
	GAGAAGCTGA	TCCGAGGCCT	GGCCATGGAG	GACAGCAGGA	ACATGTTTGC	TITGITTGAA	5460

```
TACAACGGCC ACGTCGACAA AGCCATTGAA AGTCGAACCG TCGTAGCTGA TGTCTTAGCC 5520
      AAGTTTGAAA AGCTGGCTGC CACATCCGAG GTTGGGGACC TGCCATGGAA ATTCTACTTC
      AAACTTTACT GCTTCCTGGA CACAGACAAC GTGCCAAAAG ACAGTGTGGA GTTTGCATTT
      ATGTTTGAAC AGGCCCACGA AGCGGTTATC CATGGCCACC ATCCAGCCCC GGAAGAAAAC
      CTCCAGGTTC TTGCTGCCCT GCGACTCCAG TATCTGCAGG GGGATTATAC TCTGCACGCT 5760
      GCCATCCCAC CTCTCGAAGA GGTTTATTCC CTGCAGAGAC TCAAGGCCCG CATCAGCCAG
      TCAACCAAAA CCTTCACCCC TTGTGAACGG CTGGAGAAGA GGCGGACGAG CTTCCTAGAG 5880
      GGGACCCTGA GGCGGAGCTT CCGGACAGGA TCCGTGGTCC GGCAGAAGGT CGAGGAGGAG
      CAGATGCTGG ACATGTGGAT TAAGGAAGAA GTCTCCTCTG CTCGAGCCAG TATCATTGAC
10
      AAGTGGAGGA AATTTCAGGG AATGAACCAG GAACAGGCCA TGGCCAAGTA CATGGCCTTG
      ATCAAGGAGT GGCCTGGCTA TGGCTCGACG CTGTTTGATG TGGAGTGCAA GGAAGGTGGC
                                                                         6120
      TTCCCTCAGG AACTCTGGTT GGGTGTCAGC GCGGACGCCG TCTCCGTCTA CAAGCGTGGA
      GAGGGAAGAC CACTGGAAGT CTTCCAGTAT GAACACATCC TCTCTTTTGG GGCACCCCTG
      GCGAATACGT ATAAGATCGT GGTCGATGAG AGGGAGCTGC TCTTTGAAAC CAGTGAGGTG
15
      GTGGATGTGG CCAAGCTCAT GAAAGCCTAC ATCAGCATGA TCGTGAAGAA GCGCTACAGC
      ACGACACGCT CCGCCAGCAG CCAGGGCAGC TCCAGGTGAA GGCGGGACAG AGCCCACCTG
                                                                         6420
      TCTTTGCTAC CTGAACGCAC CACCCTCTGG CCTAGGCTGG CTCCAGTGTG CCATGCCCAG
                                                                         6480
      CCAAAACAAA CACAGAGCTG CCCAGGCTTT CTGGAAGCTT CTGGTCTGAG GGAGGTGTCT
      CCGAGGATCC TTTTGCCTGC CGCCTTCATT GATCCTGTAT TAAGCTGTCA ACTTTAACAG
20
      TCTGCACAGT TTCCAAAGCT TTACTACTCT TAGAGGACAC ATGCCTTAAA AAAGGAGGGG
      AGGAACCACG CTGCCACCAA AGCAGCCGGA AGTGCCTTAA CTTGTGGAAC CAACACTAAT
      CGACCGTAAC TGTGCTACTG AAGGGAACTG CCTTTCCCCC TTCTGGGGGA GACTTAACAG
      AGCGTGGAAG GGGGGCATTC TCTGTCAATG ATGCACTAAC CTCCCAACCT GATTTCCCCG
      AATCTGAGGG AAGGTGAGGG AGTGGGAAGG GGGATGGAGA GCTCGAGGGG ACAGTGTGTT
25
      TGAGCTGGAG TGCTGCGGGC AGCCTTTCTC ATGGAATGAC ATGAATCAAC TTTTTTCTTT
      GTTTCATCTT TTAAGTGTAC GTGCTTGCCT GTTCGTGCAT GTGTTCATAA ACTCAACACT
      TTAATCATGG TTTCATGAGC ATTAAAAAGC AAAGGGAAAA AGGATGTGTA ATGGTGTACA
      CAGTCTGTAT ATTTTAATAA TGCAGAGCTA TAGTCTCAAT TGTTACTTTA TAAGGTGGTT
                                                                         7140
      TTATTAACAA ACCCAAATCC TGGATTTTCC TGTCTTTGCT GTATTTTGAA AAACACGTGT
                                                                         7200
30
      TGACTCCATT GTTTTACATG TAGCAAAGTC TGCCATCTGT GTCTGCTGTA TTATAAACAG
                                                                         7260
      ATAAGCAGCC TACAAGATAA CTGTATTTAT AAACCACTCT TCAACAGCTG GCTCCAGTGC
      TGGTTTTAGA ACAAGAATGA AGTCATTTTG GAGTCTTTCA TGTCTAAAAG ATTTAAGTTA
                                                                         7380
      AAAACAAAGT GTTACTTGGA AGGTTAGCTT CTATCATTCT GGATAGATTA CAGATATAAT
                                                                         7440
      AACCATGTTG ACTATGGGGG AGAGACGCTG CATTCCAGAA ACGTCTTAAC ACTTGAGTGA
                                                                         7500
35
      ATCTTCAAAG GACCCTGACA TTAAATGCTG AGGCTTTAAT ACACACATAT TTTATCCCAA
      GTTTATAATG GTGGTCTGAA CAAGGCACCT GTAAATAAAT CAGCATTTAT GACCAGAAGA
      AAAATAATCT GGTCTTGGAC TTTTTATTTT TATATGGAAA AGTTTTAAGG ACTTGGGCCA
                                                                         7680
      ACTAAGTCTA CCCACACGAA AAAAGAAATT TGCCTTGTCC CTTTGTGTAC AACCATGCAA
      AACTGTTTGT TGGCTCACAG AAGTTCTGAC AATAAAAGAT ACTAGCT
40
      Seq ID NO: 207 Protein sequence:
      Protein Accession #: NP_036466
                                       31
45
      MDNFFTEGTR VWLRENGQHF PSTVNSCAEG IVVFRTDYGQ VFTYKQSTIT HQKVTAMHPT
      NEEGVDDMAS LTELHGGSIM YNLFQRYKRN QIYTYIGSIL ASVNPYQPIA GLYEPATMEQ
                                                                          120
      YSRRHLGELP PHIFAIANEC YRCLWKRYDN QCILISGESG AGKTESTKLI LKFLSVISQQ
                                                                          180
      SLELSLKEKT SCVERAILES SPIMEAFGNA KTVYNNNSSR FGKFVQLNIC QKGNIQGGRI
50
      VDYLLEKNRV VRONPGERNY HIFYALLAGL EHEEREEFYL STPENYHYLN QSGCVEDKTI
                                                                          300
      SDQESFREVI TAMDVMQFSK EEVREVSRLL AGILHLGNIE FITAGGAQVS FKTALGRSAE
                                                                          360
      LLGLDPTQLT DALTQRSMFL RGEEILTPLN VQQAVDSRDS LAMALYACCF EWVIKKINSR
      IKGNEDFKSI GILDIFGFEN FEVNHFEQFN INYANEKLQE YFNKHIFSLE QLEYSREGLV
      WEDIDWIDNG ECLDLIEKKL GLLALINEES HFPQATDSTL LEKLHSQHAN NHFYVKPRVA
      VNNFGVKHYA GEVQYDVRGI LEKNRDTFRD DLLNLLRESR FDFIYDLFEH VSSRNNQDTL
55
                                                                          600
      KCGSKHRRPT VSSQFKDSLH SLMATLSSSN PFFVRCIKPN MQKMPDQFDQ AVVLNQLRYS
                                                                          660
      GMLETVRIRK AGYAVRRPFO DFYKRYKVLM RNLALPEDVR GKCTSLLQLY DASNSEWQLG
                                                                          720
      KTKVFLRESL EQKLEKRREE EVSHAAMVIR AHVLGFLARK QYRKVLYCVV IIQKNYRAFL
      LRRRFLHLKK AAIVFQKQLR GQIARRVYRQ LLAEKREQEE KKKQEEEEKK KREEEERERE
                                                                          840
60
      RERREAELRA QQEEETRKQQ ELEALQKSQK EAELTRELEK QKENKQVEEI LRLEKEIEDL
                                                                          900
      ORMKEOOELS LTEASLOKLO ERRDQELRRL EEEACRAAQE FLESLNFDEI DECVRNIERS
                                                                          960
      LSVGSEFSSE LAESACEEKP NFNFSOPYPE EEVDEGFEAD DDAFKDSPNP SEHGHSDQRT
      SGIRTSDDSS EEDPYMNDTV VPTSPSADST VLLAPSVQDS GSLHNSSSGE STYCMPONAG
                                                                         1080
      DLPSPDGDYD YDQDDYEDGA ITSGSSVTFS NSYGSQWSPD YRCSVGTYNS SGAYRFSSEG
                                                                         1140
65
      AOSSFEDSEE DFDSRFDTDD ELSYRRDSVY SCVTLPYFHS FLYMKGGLMN SWKRRWCVLK
      DETFLWFRSK QEALKQGWLH KKGGGSSTLS RRNWKKRWFV LRQSKLMYFE NDSEEKLKGT
      VEVRTAKEII DNTTKENGID IIMADRTFHL IAESPEDASQ WFSVLSQVHA STDQEIQEMH
      DEQANPQNAV GTLDVGLIDS VCASDSPDRP NSFVIITANR VLHCNADTPE EMHHWITLLQ
                                                                         1380
      RSKGDTRVEG QEFIVRGWLH KEVKNSPKMS SLKLKKRWFV LTHNSLDYYK SSEKNALKLG
                                                                         1440
70
      TLVLNSLCSV VPPDEKIFKE TGYWNVTVYG RKHCYRLYTK LLNEATRWSS AIQNVTDTKA 1500
      PIDTPTQQLI QDIKENCLNS DVVEQIYKRN PILRYTHHPL HSPLLPLPYG DINLNLLKDK
      GYTTLQDEAI KIFNSLQQLE SMSDPIPIIQ GILQTGHDLR PLRDELYCQL IKQTNKVPHP 1620
      GSVGNLYSWQ ILTCLSCTFL PSRGILKYLK FHLKRIREQF PGTEMEKYAL FTYESLKKTK 1680
      CREFVPSRDE LEALIHRQEM TSTVYCHGGG SCKITINSHT TAGEVVEKLI RGLAMEDSRN
                                                                         1740
75
      MFALFEYNGH VDKAIESRTV VADVLAKFEK LAATSEVGDL PWKFYFKLYC FLDTDNVPKD 1800
      SVEFAFMFEQ AHEAVIHGHH PAPEENLQVL AALRLQYLQG DYTLHAAIPP LEEVYSLQRL 1860
```

```
KARISOSTKT FTPCERLEKR RTSFLEGTLR RSFRTGSVVR OKVEEEOMLD MWIKEEVSSA 1920
      RASIIDKWRK FQGMNQEQAM AKYMALIKEW PGYGSTLFDV ECKEGGFPQE LWLGVSADAV
      SVYKRGEGRP LEVFQYEHIL SFGAPLANTY KIVVDERELL FETSEVVDVA KLMKAYISMI 2040
      VKKRYSTTRS ASSQGSSR
      Seq ID NO: 208 DNA sequence
      Nucleic Acid Accession #: XM_059761.1
      Coding sequence: 124-525 (underlined sequences correspond to start and stop codons)
10
                11
                           21
                                       31
                                                  41
                                                            51
      CGAAGATCTA TCCAAAATCA AGAAGCCTTT GATTTAGATG TTGCTGTAAA AGAAAATAAA
                                                                           60
      GATGATCTCA ATCATGTGGA TTTGAATGTG TGTACAAGCT TTTCGGGCCC GGGTAGGAGT
                                                                          120
      GGCATGGCTC TTATGGAAGT TAACCTATTA AGTGGCTTTA TGGTGCCTTC AGAAGCAATT
                                                                          180
15
      TCTCTGAGCG AGACAGTGAA GAAAGTGGAA TATGATCATG GAAAACTCAA CCTCTATTTA
                                                                          240
      GATTCTGTAA ATGAAACCCA GTTTTGTGTT AATATTCCTG CTGTGAGAAA CTTTAAAGTT
                                                                          300
      TCAAATACCC AAGATGCTTC AGTGTCCATA GTGGATTACT ATGAGCCAAG GAGACAGGCG
                                                                          360
      GTGAGAAGTT ACAACTCTGA AGTGAAGCTG TCCTCCTGTG ACCTTTGCAG TGATGTCCAG
                                                                          420
      GGCTGCCGTC CTTGTGAGGA TGGAGCTTCA GGCTCCCATC ATCACTCTTC AGTCATTTTT
                                                                          480
20
      ATTTTCTGTT TCAAGCTTCT GTACTTTATG GAACTTTGGC TG\underline{TGA}TTTAT TTTTAAAGGA
                                                                          540
      600
      TACTGCTTCT ATTTTGAAAA AAGAGTTTTT TTTCTTTCTA TGGGGTTGCA GGGATGGTGT
                                                                          660
      ACAACAGGTC CTAGCATGTA TAGCTGCATA GATTTCTTCA CCTGATCTTT GTGTGGAAGA
                                                                          720
      TCAGAATGAA TGCAGTTGTG TGTCTATATT TTCCCCTCTC AAAATCTTTT AGAATTTTTT
                                                                          780
25
      TGGAGGTGTT TGTTTTCTCC AGAATAAAGG TATTACTTTA G
      Seq ID NO: 209 Protein sequence:
      Protein Accession #: XP_059761.1
30
                 77
                            21
                                       3.1
                                                  41
                                                            51
      MALMEVNLLS GFMVPSEAIS LSETVKKVEY DHGKLNLYLD SVNETQFCVN IPAVRNFKVS
                                                                           60
      NTQDASVSIV DYYEPRRQAV RSYNSEVKLS SCDLCSDVQG CRPCEDGASG SHHHSSVIFI
                                                                          120
      FCFKLLYFME LWL
35
      Seq ID NO: 210 DNA sequence
      Nucleic Acid Accession #: NM_015472
      Coding sequence: 258-1460 (underlined sequences correspond to start and stop codons)
40
                           21.
                                       31
                                                  41
                                                            51
      GACACACTCC TCTACAACAC CAGAGACTCC CAAACACAAG GCCTTATATT GACTCATTTC
                                                                           60
      AGCTCACATC CTGGCGACTC TCAAGAGAGA AACCTCAGAG TGACTAAAAT CTCCATAATG
                                                                          120
45
      AGAAGACATG TACATTCAGT ATCTATTTTG GCATTTTCCC CAATACATCT CTGCTCATCT
                                                                          180
      GACTCTTATC TTGGCATCTG CTTCCTGGTG GATCTGAACT GACCCATAAG CCACGCTTAC
                                                                          240
      TGGTGATTTT CCAGAAGATG AATCCGGCCT CGGCGCCCCC TCCGCTCCCG CCGCCTGGGC
                                                                          300
      AGCAAGTGAT CCACGTCACG CAGGACCTAG ACACAGACCT CGAAGCCCTC TTCAACTCTG
                                                                          360
      TCATGAATCC GAAGCCTAGC TCGTGGCGGA AGAAGATCCT GCCGGAGTCT TTCTTTAAGG
                                                                          420
50
      AGCCTGATTC GGGCTCGCAC TCGCGCCAGT CCAGCACCGA CTCGTCGGGC GGCCACCCGG
                                                                          480
      GGCCTCGACT GGCTGGGGGT GCCCAGCATG TCCGCTCGCA CTCGTCGCCC GCGTCCCTGC
                                                                          540
      AGCTGGGCAC CGGCGCGGGT GCTGCGGGTA GCCCCGCGCA GCAGCACGCG CACCTCCGCC
      AGCAGTCCTA CGACGTGACC GACGAGCTGC CACTGCCCCC GGGCTGGGAG ATGACCTTCA
                                                                          660
      CGGCCACTGG CCAGAGGTAC TTCCTCAATC ACATAGAAAA AATCACCACA TGGCAAGACC
                                                                          720
55
      CTAGGAAGGC GATGAATCAG CCTCTGAATC ATATGAACCT CCACCCTGCC GTCAGTTCCA
                                                                          780
      CACCAGTGCC TCAGAGGTCC ATGGCAGTAT CCCAGCCAAA TCTCGTGATG AATCACCAAC
                                                                          840
      ACCAGCAGCA GATGGCCCCC AGTACCCTGA GCCAGCAGAA CCACCCCACT CAGAACCCAC
                                                                          900
      CCGCAGGGCT CATGAGTATG CCCAATGCGC TGACCACTCA GCAGCAGCAG CAGCAGAAAC
                                                                          960
      TGCGGCTTCA GAGAATCCAG ATGGAGAGAG AAAGGATTCG AATGCGCCAA GAGGAGCTCA
                                                                         1020
60
      TGAGGCAGGA AGCTGCCCTC TGTCGACAGC TCCCCATGGA AGCTGAGACT CTTGCCCCAG
      TTCAGGCTGC TGTCAACCCA CCCACGATGA CCCCAGACAT GAGATCCATC ACTAATAATA
                                                                         1140
      GCTCAGATCC TTTCCTCAAT GGAGGGCCAT ATCATTCGAG GGAGCAGAGC ACTGACAGTG
                                                                         1200
      GCCTGGGGTT AGGGTGCTAC AGTGTCCCCA CAACTCCGGA GGACTTCCTC AGCAATGTGG
                                                                         1260
      ATGAGATGGA TACAGGAGAA AACGCAGGAC AAACACCCAT GAACATCAAT CCCCAACAGA
                                                                         1320
65
      CCCGTTTCCC TGATTTCCTT GACTGTCTTC CAGGAACAAA CGTTGACTTA GGAACTTTGG
      AATCTGAAGA CCTGATCCCC CTCTTCAATG ATGTAGAGTC TGCTCTGAAC AAAAGTGAGC
                                                                        1440
      CCTTTCTAAC CTGGCTGTAA TCACTACCAT TGTAACTTGG ATGTAGCCAT GACCTTACAT
                                                                         1500
      TTCCTGGGCC TCTTGGAAAA AGTGATGGAG CAGAGCAAGT CTGCAGGTGC ACCACTTCCC 1560
      GCCTCCATGA CTCGTGCTCC CTCCTTTTTA TGTTGCCAGT TTAATCATTG CCTGGTTTTG
70
      ATTGAGAGTA ACTTAAGTTA AACATAAATA AATATTCTAT TTTCATTTTC
      Seq ID NO: 211 Protein sequence:
      Protein Accession #: NP_056287.1
75
                                       31
                                                             51
                            21
                                                  41
```

```
MNPASAPPPL PPPGOOVIHV TODLDTDLEA LFNSVMNPKP SSWRKKILPE SFFKEPDSGS
      HSRQSSTDSS GGHPGPRLAG GAQHVRSHSS PASLQLGTGA GAAGSPAQQH AHLRQQSYDV
                                                                           120
      TDELPLPPGW EMTFTATGQR .YFLNHIEKIT TWQDPRKAMN QPLNHMNLHP AVSSTPVPQR
                                                                           180
      SMAVSQPNLV MNHQHQQQMA PSTLSQQNHP TQNPPAGLMS MPNALTTQQQ QQQKLRLQRI
                                                                           240
      QMERERIRMR QEELMRQEAA LCRQLPMEAE TLAPVQAAVN PPTMTPDMRS ITNNSSDPFL
                                                                           300
      NGGPYHSREQ STDSGLGLGC YSVPTTPEDF LSNVDEMDTG ENAGQTPMNI NPQQTRFPDF LDCLPGTNVD LGTLESEDLI PLFNDVESAL NKSEPFLTWL
      Seq ID NO: 212 DNA sequence
10
      Nucleic Acid Accession #: NM 018174
      Coding sequence: 176-2194 (underlined sequences correspond to start and stop codons)
      CATCTCCCCC AACCTGGGGG TCGTGTTCTT CAACGCCTGC GAGGCCGCGT CGCGGCTGGC
                                                                            60
15
      GCGCGGCGAG GATGAGGCGG AGCTGGCGCT GAGCCTCCTG GCGCAGCTGG GCATCACGCC
                                                                           120
      TCTGCCACTC AGCCGCGGCC CCGTGCCAGC CAAACCCACC GTGCTCTTCG AGAAG<u>ATG</u>GG
                                                                           180
      CGTGGGCCGG CTGGACATGT ATGTGCTGCA CCCGCCCTCC GCCGGCGCCG AGCGCACGCT
                                                                           240
      GGCCTCTGTG TGCGCCCTGC TGGTGTGGCA CCCCGCCGGC CCCGGCGAGA AGGTGGTGCG
      CGTGCTGTTC CCCGGTTGCA CCCCGCCCGC CTGCCTCCTG GACGGCCTGG TCCGCCTGCA
                                                                           360
20
      GCACTTGAGG TTCCTGCGAG AGCCCGTGGT GACGCCCCAG GACCTGGAGG GGCCGGGGCG
                                                                           420
      AGCCGAGAGC AAAGAGAGCG TGGGCTCCCG GGACAGCTCG AAGAGAGAG GCCTCCTGGC
      CACCCACCCT AGACCTGGCC AGGAGCGCCC TGGGGTGGCC CGCAAGGAGC CAGCACGGGC
                                                                           540
      TGAGGCCCCA CGCAAGACTG AGAAAGAAGC CAAGACCCCC CGGGAGTTGA AGAAAGACCC
                                                                           600
      CAAACCGAGT GTCTCCCGGA CCCAGCCGCG GGAGGTGCGC CGGGCAGCCT CTTCTGTGCC
25
      CAACCTCAAG AAGACGAATG CCCAGGCGGC ACCCAAGCCC CGCAAAGCGC CCAGCACGTC
                                                                           720
      CCACTCTGGC TTCCCGCCGG TGGCAAATGG ACCCCGCAGC CCGCCCAGCC TCCGATGTGG
      AGAAGCCAGC CCCCCAGTG CAGCCTGCGG CTCTCCGGCC TCCCAGCTGG TGGCCACGCC
      CAGCCTGGAG CTGGGGCCGA TCCCAGCCGG GGAGGAGAAG GCACTGGAGC TGCCTTTGGC
                                                                           900
      CGCCAGCTCA ATCCCAAGGC CACGCACACC CTCCCCTGAG TCCCACCGGA GCCCCGCAGA
30
      ACCCACAGTG ACCACACCCA CGGTGACCAC GCCCTCACTA CCCGCAGAGG TGGGCTCCCC
      GCACTCGACC GAGGTGGACG AGTCCCTGTC GGTGTCCTTT GAGCAGGTGC TGCCGCCATC
      CGCCCCACC AGTGAGGCTG GGCTGAGCCT CCCGCTGCGT GGCCCCCGGG CGCGGCGCTC
      GGCTTCCCCA CACGATGTGG ACCTGTGCCT GGTGTCACCC TGTGAATTTG AGCATCGCAA 1260
35
      GGCGGTGCCA ATGGCACCGG CACCTGCGTC CCCCGGCAGC TCGAATGACA GCAGTGCCCG
      GTCACAGGAA CGGGCAGGTG GGCTGGGGGC CGAGGAGACG CCACCCACAT CGGTCAGCGA
      GTCCCTGCCC ACCCTGTCTG ACTCGGATCC CGTGCCCCTG GCCCCCGGTG CGGCAGACTC
      AGACGAAGAC ACAGAGGGCT TTGGAGTCCC TCGCCACGAC CCTTTGCCTG ACCCCCTCAA
      GGTCCCCCA CCACTGCCTG ACCCATCCAG CATCTGCATG GTGGACCCCG AGATGCTGCC
      CCCCAAGACA GCACGGCAAA CGGAGAACGT CAGCCGCACC CGGAAGCCC TGGCCCGCCC CAACTCACG GCTGCCGCC CCAAAGCCAC TCCAGTGGCT GCTGCCAAAA CCAAGGGGCT
40
      TGCTGGTGGG GACCGTGCCA GCCGACCACT CAGTGCCCGG AGTGAGCCCA GTGAGAAGGG
      AGGCCGGGCA CCCCTGTCCA GAAAGTCCTC AACCCCCAAG ACTGCCACTC GAGGCCCGTC
      GGGGTCAGCC AGCAGCCGGC CCGGGGTGTC AGCCACCCCA CCCAAGTCCC CGGTCTACCT 1860
45
      GGACCTGGCC TACCTGCCCA GCGGGAGCAG CGCCCACCTG GTGGATGAGG AGTTCTTCCA
      GCGCGTGCGC GCGCTCTGCT ACGTCATCAG TGGCCAGGAC CAGCGCAAGG AGGAAGGCAT
      GCGGGCCGTC CTGGACGCGC TACTGGCCAG CAAGCAGCAT TGGGACCGTG ACCTGCAGGT
      GACCCTGATC CCCACTTTCG ACTCGGTGGC CATGCATACG TGGTACGCAG AGACGCACGC
                                                                          2100
      CCGGCACCAG GCGCTGGGCA TCACGGTGTT GGGCAGCAAC GGCATGGTGT CCATGCAGGA
                                                                          2160
50
      TGACGCCTTC CCGGCCTGCA AGGTGGAGTT CTAGCCCCAT CGCCGACACG CCCCCCACTC 2220
      AGCCCAGCCC GCCTGTCCCT AGATTCAGCC ACATCAGAAA TAAACTGTGA CTACACTTG
      Seq ID NO: 213 <u>Protein sequence:</u> Protein Accession #: NP_060644.1
55
      MGVGRLDMYV LHPPSAGAER TLASVCALLV WHPAGPGEKV VRVLFPGCTP PACLLDGLVR
      LOHLRFLREP VVTPODLEGP GRAESKESVG SRDSSKREGL LATHPRPGOE RPGVARKEPA
      RAEAPRKTEK EAKTPRELKK DPKPSVSRTQ PREVRRAASS VPNLKKTNAQ AAPKPRKAPS
                                                                           180
      TSHSGFPPVA NGPRSPPSLR CGEASPPSAA CGSPASQLVA TPSLELGPIP AGEEKALELP
                                                                           240
60
      LAASSIPRPR TPSPESHRSP AEGSERLSLS PLRGGEAGPD ASPTVTTPTV TTPSLPAEVG
      SPHSTEVDES LSVSFEOVLP PSAPTSEAGL SLPLRGPRAR RSASPHDVDL CLVSPCEFEH
      RKAVPMAPAP ASPGSSNDSS ARSQERAGGL GAEETPPTSV SESLPTLSDS DPVPLAPGAA
      DSDEDTEGFG VPRHDPLPDP LKVPPPLPDP SSICMVDPEM LPPKTARQTE NVSRTRKPLA
                                                                           480
      RPNSRAAAPK ATPVAAAKTK GLAGGDRASR PLSARSEPSE KGGRAPLSRK SSTPKTATRG
                                                                           540
65
      PSGSASSRPG VSATPPKSPV YLDLAYLPSG SSAHLVDEEF FQRVRALCYV ISGQDQRKEE
      GMRAVLDALL ASKOHWDRDL OVTLIPTFDS VAMHTWYAET HARHOALGIT VLGSNGMVSM
      QDDAFPACKV EF
      Seq ID NO: 214 DNA sequence
70
      Nucleic Acid Accession #:
                                    NM 002019.1
                             250-4266 (underlined sequences correspond to start and stop codons)
      Coding sequence:
                                                              51
75
      GCGGACACTC CTCTCGGCTC CTCCCCGGCA GCGGCGGCGG CTCGGAGCGG GCTCCGGGGC
                                                                            60
      TCGGGTGCAG CGGCCAGCGG GCCTGGCGGC GAGGATTACC CGGGGAAGTG GTTGTCTCCT
```

				GCGGGGCCGG			180
				AGCGCGGGCA			240
				GGGGTCCTGC			300
	CTGCTTCTCA	CAGGATCTAG	TTCAGGTTCA	AAATTAAAAG	ATCCTGAACT	GAGTTTAAAA	360
5	GGCACCCAGC	ACATCATGCA	AGCAGGCCAG	ACACTGCATC	TCCAATGCAG	GGGGGAAGCA	420
	GCCCATAAAT	GGTCTTTGCC	TGAAATGGTG	AGTAAGGAAA	GCGAAAGGCT	GAGCATAACT	480
				TTCTGCAGTA			540
				AAATATCTAG			600
10				ATTAGTGATA			660
10				ATGACTGAAG			720
				ACTTTAAAAA			780
	ATCCCTGATG	GAAAACGCAT	AATCTGGGAC	AGTAGAAAGG	GCTTCATCAT	ATCAAATGCA	840
	ACGTACAAAG	AAATAGGGCT	TCTGACCTGT	GAAGCAACAG	TCAATGGGCA	TTTGTATAAG	900
	ACAAACTATC	TCACACATCG	ACAAACCAAT	ACAATCATAG	ATGTCCAAAT	AAGCACACCA	960
15	CGCCCAGTCA	AATTACTTAG	AGGCCATACT	CTTGTCCTCA	ATTGTACTGC	TACCACTCCC	1020
				TACCCTGATG			1080
				CATGCCAACA			1140
				CTTTATACTT			1200
							1260
20				ATATATGATA			
20				GCTGGCAAGC			1320
				GTATGGTTAA			1380
	GAGAAATCTG	CTCGCTATTT	GACTCGTGGC	TACTCGTTAA	TTATCAAGGA	CGTAACTGAA	1.440
	GAGGATGCAG	GGAATTATAC	AATCTTGCTG	AGCATAAAAC	AGTCAAATGT	GTTTAAAAAC	1500
	CTCACTGCCA	CTCTAATTGT	CAATGTGAAA	CCCCAGATTT	ACGAAAAGGC	CGTGTCATCG	1560
25	TTTCCAGACC	CGGCTCTCTA	CCCACTGGGC	AGCAGACAAA	TCCTGACTTG	TACCGCATAT	1620
				TGGCACCCCT			1680
		• • • • • • • • • • • • • • • • • • • •		GAGTCCTTTA			1740
				CGCATGGCAA			1800
				AGAATTTCTG			1860
20							
30				ATAAGCTTTT			1920
				ACGGAAGGAG			1980
	ACAGTTAACA	AGTTCTTATA	CAGAGACGTT	ACTTGGATTT	TACTGCGGAC	AGTTAATAAC	2040
				AAAATGGCCA			2100
	ACTCTTAATC	TTACCATCAT	GAATGTTTCC	CTGCAAGATT	CAGGCACCTA	TGCCTGCAGA	2160
35	GCCAGGAATG	TATACACAGG	GGAAGAAATC	CTCCAGAAGA	AAGAAATTAC	AATCAGAGAT	2220
				AGTGATCACA			2280
				CCCGAGCCTC			2340
				ATTTTAGGAC			2400
				GTCTATCACT			2460
40							
40				GTTCAAGGAA			2520
				GCTGCGACTC			2580
				TCTGAAATAA			2640
	ATAATGGACC	CAGATGAAGT	TCCTTTGGAT	GAGCAGTGTG	AGCGGCTCCC	TTATGATGCC	2700
	AGCAAGTGGG	AGTTTGCCCG	GGAGAGACTT	AAACTGGGCA	AATCACTTGG	AAGAGGGGCT	2760
45	TTTGGAAAAG	TGGTTCAAGC	ATCAGCATTT	GGCATTAAGA	AATCACCTAC	GTGCCGGACT	2820
	GTGGCTGTGA	AAATGCTGAA	AGAGGGGCC	ACGGCCAGCG	AGTACAAAGC	TCTGATGACT	2880
				CATCTGAACG			2940
				ATTGTTGAAT			3000
				TTTTTTCTCA			3060
50							
50				GGCCTGGAAC			3120
				AGCTCCGGCT			3180
				GGTTTCTACA			3240
	GATCTGATTT	CTTACAGTTT	TCAAGTGGCC	AGAGGCATGG	AGTTCCTGTC	TTCCAGAAAG	3300
	TGCATTCATC	GGGACCTGGC	AGCGAGAAAC	ATTCTTTTAT	CTGAGAACAA	CGTGGTGAAG	3360
55	ATTTGTGATT	TTGGCCTTGC	CCGGGATATT	TATAAGAACC	CCGATTATGT	GAGAAAAGGA	3420
				CCCGAATCTA			3480
				TTGCTGTGGG			3540
				GACTTTTGCA			3600
							3660
60				GAAATCTATC			3720
UU				GCAGAACTTG			
				GACTACATCC			3780
				GCCTTCTCTG			3840
				TCTGATGATG			3900
	AAGTTCATGA	GCCTGGAAAG	AATCAAAACC	TTTGAAGAAC	TTTTACCGAA	TGCCACCTCC	3960
65	ATGTTTGATG	ACTACCAGGG	CGACAGCAGC	ACTCTGTTGG	CCTCTCCCAT	GCTGAAGCGC	4020
				TCGCTCAAGA			4080
				AGCAGGCCCA			4140
				ACCTACGACC			4200
				AACTCGGTGG			4260
70							
70				AGAAGCACAT			4320
				AAGTTTACAC			4380
				CTTTTTTTT			4440
				ACACTACTGC			4500
	TGTTAGAGAA	ATCCTTCCTA	AACCCAATGA	CTTCCCTGCT	CCAACCCCCG	CCACCTCAGG	4560
75	GCACGCAGGA	CCAGTTTGAT	TGAGGAGCTG	CACTGATCAC	CCAATGCATC	ACGTACCCCA	4620
				GCAACAAGCC			4680
					_		

```
TGGCTGGCCT GAGCAACATC TCGGGAGTCC TCTAGCAGGC CTAAGACATG TGAGGAGGAA 4740
      AAGGAAAAAA AGCAAAAAGC AAGGGAGAAA AGAGAAACCG GGAGAAGGCA TGAGAAAGAA 4800
      TTTGAGACGC ACCATGTGGG CACGGAGGGG GACGGGGCTC AGCAATGCCA TTTCAGTGGC 4860
      TTCCCAGCTC TGACCCTTCT ACATTTGAGG GCCCAGCCAG GAGCAGATGG ACAGCGATGA 4920
 5
      GGGGACATTT TCTGGATTCT GGGAGGCAAG AAAAGGACAA ATATCTTTTT TGGAACTAAA
      GCAAATTTTA GACCTTTACC TATGGAAGTG GTTCTATGTC CATTCTCATT CGTGGCATGT
      TTTGATTTGT AGCACTGAGG GTGGCACTCA ACTCTGAGCC CATACTTTTG GCTCCTCTAG
      TAAGATGCAC TGAAAACTTA GCCAGAGTTA GGTTGTCTCC AGGCCATGAT GGCCTTACAC
      TGAAAATGTC ACATTCTATT TTGGGTATTA ATATATAGTC CAGACACTTA ACTCAATTTC
10
      TTGGTATTAT TCTGTTTTGC ACAGTTAGTT GTGAAAGAAA GCTGAGAAGA ATGAAAATGC
      AGTCCTGAGG AGAGTTTTCT CCATATCAAA ACGAGGGCTG ATGGAGGAAA AAGGTCAATA
      CCAAAACACA GGAAGTCAGT CACGTTTCCT TTTCATTTAA TGGGGATTCC ACTATCTCAC
      ACTAATCTGA AAGGATGTGG AAGAGCATTA GCTGGCGCAT ATTAAGCACT TTAAGCTCCT
15
      TGAGTAAAAA GGTGGTATGT AATTTATGCA AGGTATTTCT CCAGTTGGGA CTCAGGATAT
      TAGTTAATGA GCCATCACTA GAAGAAAAGC CCATTTTCAA CTGCTTTGAA ACTTGCCTGG
      GGTCTGAGCA TGATGGGAAT AGGGAGACAG GGTAGGAAAG GGCGCCTACT CTTCAGGGTC
      TAAAGATCAA GTGGGCCTTG GATCGCTAAG CTGGCTCTGT TTGATGCTAT TTATGCAAGT
      TAGGGTCTAT GTATTTAGGA TGCGCCTACT CTTCAGGGTC TAAAGATCAA GTGGGCCTTG
20
      GATCGCTAAG CTGGCTCTGT TTGATGCTAT TTATGCAAGT TAGGGTCTAT GTATTTAGGA 5880
      TGTCTGCACC TTCTGCAGCC AGTCAGAAGC TGGAGAGGCA ACAGTGGATT GCTGCTTCTT 5940
      GGGGAGAAGA GTATGCTTCC TTTTATCCAT GTAATTTAAC TGTAGAACCT GAGCTCTAAG
      TAACCGAAGA ATGTATGCCT CTGTTCTTAT GTGCCACATC CTTGTTTAAA GGCTCTCTGT 6060
      ATGAAGAGAT GGGACCGTCA TCAGCACATT CCCTAGTGAG CCTACTGGCT CCTGGCAGCG 6120
25
      GCTTTTGTGG AAGACTCACT AGCCAGAAGA GAGGAGTGGG ACAGTCCTCT CCACCAAGAT 6180
      CTAAATCCAA ACAAAAGCAG GCTAGAGCCA GAAGAGAGGA CAAATCTTTG TTGTTCCTCT
      TCTTTACACA TACGCAAACC ACCTGTGACA GCTGGCAATT TTATAAATCA GGTAACTGGA
      AGGAGGTTAA ACTCAGAAAA AAGAAGACCT CAGTCAATTC TCTACTTTTT TTTTTTTTT 6360
      TCCAAATCAG ATAATAGCCC AGCAAATAGT GATAACAAAT AAAACCTTAG CTGTTCATGT 6420
30
      CTTGATTCA ATAATTAATT CTTAATCATT AAGAGACCAT AATAAATACT CCTTTTCAAG
      AGAAAAGCAA AACCATTAGA ATTGTTACTC AGCTCCTTCA AACTCAGGTT TGTAGCATAC 6540
      ATGAGTCCAT CCATCAGTCA AAGAATGGTT CCATCTGGAG TCTTAATGTA GAAAGAAAAA 6600
      TGGAGACTTG TAATAATGAG CTAGTTACAA AGTGCTTGTT CATTAAAATA GCACTGAAAA 6660
      TTGAAACATG AATTAACTGA TAATATTCCA ATCATTTGCC ATTTATGACA AAAATGGTTG 6720
35
      GCACTAACAA AGAACGAGCA CTTCCTTTCA GAGTTTCTGA GATAATGTAC GTGGAACAGT
      CTGGGTGGAA TGGGGCTGAA ACCATGTGCA AGTCTGTGTC TTGTCAGTCC AAGAAGTGAC 6840
      ACCGAGATGT TAATTTTAGG GACCCGTGCC TTGTTTCCTA GCCCACAAGA ATGCAAACAT
      CAAACAGATA CTCGCTAGCC TCATTTAAAT TGATTAAAGG AGGAGTGCAT CTTTGGCCGA
                                                                       6960
      CAGTGGTGTA ACTGTGTGTG TGTGTGTGTG TGTGTGTGTG TGTGGGTGTG 7020
40
      GGTGTATGTG TGTTTTGTGC ATAACTATTT AAGGAAACTG GAATTTTAAA GTTACTTTTA
      TACAAACCAA GAATATATGC TACAGATATA AGACAGACAT GGTTTGGTCC TATATTTCTA
      GTCATGATGA ATGTATTTTG TATACCATCT TCATATAATA TACTTAAAAA TATTTCTTAA 7200
      TTGGGATTTG TAATCGTACC AACTTAATTG ATAAACTTGG CAACTGCTTT TATGTTCTGT
                                                                       7260
      CTCCTTCCAT AAATTTTCA AAATACTAAT TCAACAAAGA AAAAGCTCTT TTTTTTCCTA 7320
      AAATAAACTC AAATTTATCC TTGTTTAGAG CAGAGAAAAA TTAAGAAAAA CTTTGAAATG
45
      GTCTCAAAAA ATTGCTAAAT ATTTTCAATG GAAAACTAAA TGTTAGTTTA GCTGATTGTA
      TGGGGTTTTC GAACCTTTCA CTTTTTGTTT GTTTTACCTA TTTCACAACT GTGTAAATTG 7500
      CCAATAATTC CTGTCCATGA AAATGCAAAT TATCCAGTGT AGATATATTT GACCATCACC
      CTATGGATAT TGGCTAGTTT TGCCTTTATT AAGCAAATTC ATTTCAGCCT GAATGTCTGC
50
      CTATATATTC TCTGCTCTTT GTATTCTCCT TTGAACCCGT TAAAACATCC TGTGGCACTC
      Seq ID NO: 215 Protein sequence:
      Protein Accession #: NP_002010.1
55
                                      31
                                                 41
                                                            51
                           21
      MYSYWDTGVL LCALLSCLLL TGSSSGSKLK DPELSLKGTO HIMOAGOTLH LOCRGEAAHK
      WSLPEMVSKE SERLSITKSA CGRNGKQFCS TLTLNTAQAN HTGFYSCKYL AVPTSKKKET
                                                                        120
60
      ESAIYIFISD TGRPFVEMYS EIPEIIHMTE GRELVIPCRV TSPNITVTLK KFPLDTLIPD
                                                                        180
      GKRIIWDSRK GFIISNATYK EIGLLTCEAT VNGHLYKTNY LTHRQTNTII DVQISTPRPV
      KLLRGHTLVL NCTATTPLNT RVQMTWSYPD EKNKRASVRR RIDQSNSHAN IFYSVLTIDK
      MQNKDKGLYT CRVRSGPSFK SVNTSVHIYD KAFITVKHRK QQVLETVAGK RSYRLSMKVK
                                                                        360
      AFPSPEVVWL KDGLPATEKS ARYLTRGYSL IIKDVTEEDA GNYTILLSIK QSNVFKNLTA
                                                                        420
65
      TLIVNVKPQI YEKAVSSFPD PALYPLGSRQ ILTCTAYGIP QPTIKWFWHP CNHNHSEARC
      DFCSNNEESF ILDADSNMGN RIESITQRMA IIEGKNKMAS TLVVADSRIS GIYICIASNK
      VGTVGRNISF YITDVPNGFH VNLEKMPTEG EDLKLSCTVN KFLYRDVTWI LLRTVNNRTM
                                                                        600
      HYSISKQKMA ITKEHSITLN LTIMNVSLQD SGTYACRARN VYTGEEILQK KEITIRDQEA
                                                                        660
      PYLLRNLSDH TVAISSSTTL DCHANGVPEP QITWFKNNHK IQQEPGIILG PGSSTLFIER
                                                                        720
70
      VTEEDEGVYH CKATNOKGSV ESSAYLTVOG TSDKSNLELI TLTCTCVAAT LFWLLLTLLI
      RKMKRSSSEI KTDYLSIIMD PDEVPLDEOC ERLPYDASKW EFARERLKLG KSLGRGAFGK
      VVQASAFGIK KSPTCRTVAV KMLKEGATAS EYKALMTELK ILTHIGHHLN VVNLLGACTK
                                                                        900
      QGGPLMVIVE YCKYGNLSNY LKSKRDLFFL NKDAALHMEP KKEKMEPGLE QGKKPRLDSV
                                                                        960
      TSSESFASSG FQEDKSLSDV EEEEDSDGFY KEPITMEDLI SYSFQVARGM EFLSSRKCIH
                                                                       1020
75
      RDLAARNILL SENNVVKICD FGLARDIYKN PDYVRKGDTR LPLKWMAPES IFDKIYSTKS 1080
      DVWSYGVLLW EIFSLGGSPY PGVQMDEDFC SRLREGMRMR APEYSTPEIY QIMLDCWHRD 1140
```

```
PKERPRFAEL VEKLGDLLOA NVOODGKDYI PINAILTGNS GFTYSTPAFS EDFFKESISA 1200
      PKFNSGSSDD VRYVNAFKFM SLERIKTFEE LLPNATSMFD DYQGDSSTLL ASPMLKRFTW 1260
      TDSKPKASLK IDLRVTSKSK ESGLSDVSRP SFCHSSCGHV SEGKRRFTYD HAELERKIAC 1320
      CSPPPDYNSV VLYSTPPI
 5
      Seq ID NO: 216 DNA sequence
                                   NM_024689
      Nucleic Acid Accession #:
                           76-624 (underlined sequences correspond to start and stop codons)
10
                 11
                           21
                                      31
                                                 41
                                                            51
      CTCTTTGGCC AAGCCCTGCC TCTGTACAGC CTCGAGTGGA CAGCCAGAGG CTGCAGCTGG
                                                                          60
      AGCCCAGAGC CCAAGATGGA GCCCCAGCTG GGGCCTGAGG CTGCCGCCCT CCGCCCTGGC
      TGGCTGGCCC TGCTGCTGTG GGTCTCAGCC CTGAGCTGTT CTTTCTCCTT GCCAGCTTCT
                                                                        180
15
      TCCCTTTCTT CTCTGGTGCC CCAAGTCAGA ACCAGCTACA ATTTTGGAAG GACTTTCCTC
                                                                         240
      GGTCTTGATA AATGCAATGC CTGCATCGGG ACATCTATTT GCAAGAAGTT CTTTAAAGAA
                                                                         300
      GAAATAAGAT CTGACAACTG GCTGGCTTCC CACCTTGGAC TGCCTCCGA TTCCTTGCTT
                                                                         360
      TCTTATCCTG CAAATTACTC AGATGATTCC AAAATCTGGC GCCCTGTGGA GATCTTTAGA
      CTGGTCAGCA AATATCAAAA CGAGATCTCA GACAGGAAAA TCTGTGCCTC TGCATCAGCC
                                                                         480
20
      CCAAAGACCT GCAGCATTGA GCGTGTCCTG CGGAAAACAG AGAGGTTCCA GAAATGGCTG
                                                                        540
      CAGGCCAAGC GCCTCACGCC GGACCTGGTG CAGGACTGTC ACCAGGGCCA GAGAGAACTA
                                                                         600
      AAGTTCCTGT GTATGCTGAG ATAACACCAG TGAAAAAGCC TGGCATGGAG CCCAGCACTG
      AGAACTTCCA GAAAGTGTTA GCCTTCTCCC AACTGTGTTA TACCAACCAC ATTTTCAAAT
                                                                        720
      AGTAATCATT AAAGAGGCTT CTGCATCAAA CCTTCACATG CAGCTCCCAT GCCACCCTCC
                                                                        780
25
      AGAATTCACC AACACACAGG CCCACCAGCA ACAGGCTACC TTTGCACAAT ATTCTCTGAT
                                                                         840
      GACAACTCCA AAGCCCCGGC TCTTTCCACC ACACTGTGGT CCCCTAGATG GGGCTGTTGC
      TGAGCCCACC CCAATCCAGA TGTGATCCCC CTGTGATCTA CTTCTGGCAA GATTCTCAGT
                                                                        960
      CTGGACAGGT CTTCCCTATG AGATAGAACC TGATAAGGAG CTAGGGCAAT TCTGACAACA
                                                                       1020
                                                                       1080
      30
      CCCTAGTGAT GGATGAACTC TCTTATCTCT GGCTTCTAGA GGGAAAAAAA AAGCATACCT
      CTTTTACTTT TTAAGTACCT CCATCAGAGT CATGAAATCA CCTGTCAAGA CTATCTATCT
      TTTATGTTTC CATTCTGGTA AGAACTCTTT AAATGAGGAC ACTGCTGATT GCTGGTGATG
                                                                       1260
      TTTTTTGAGC AAACACTCGG GGGTATGGAT GAAAGCCAAT CGCAGGTCAA ATGACTCCTT
                                                                       1320
      GGGGAAGCTA CTTCTCCTCT ATTCAGATTT CACTAAAATC TTCCAAGATG AAAGCAAATC
35
      TAGATTTCGG TCTTCATTGC TGTCCATTTT TGTAATGAAC GAGTGTTTTT CCTTTAGCTA
      GTGTATCAGG CAGGGTTCTA CCAGAGAAAC AGAACCAGTA GGAGATACAT ATACATGTCC 1500
      AGATTTATTT CAAAGAATTG ATTTACATGA TTGTGGGGAT TGGCAAGTCC AAAATCCATA
                                                                       1560
      TGGTAGGCCT GCAATCTGTA AACCTTTGGG CAGGAGCTGA TGCTGTAGTT TGCAGATAGA
                                                                       1620
      ATTCCTTGTT CCTTAAAAAA ATCTGTTTTT GTTCTTAAGG GCTTTGAATG ATTGGATCAG
      GCCCACCCAG ATTACCTAGA TAATCTCTTT TACTTAAAGT AAACTGATTG TAGGTGCTAA
40
      TCACATCTAT GAAATGCCTT CACAGCAACA CCTAGATTAG CATTCAATTG AATAACTGGG
      GAATACAGCC TAGCCAAGTT GACACATAAA ATTAACCATC ACAGCAACAT GCCTGCTAAA
      TTTTATCGAC CGTCTTCAGA CTGTTAAGGA TTGTGGTAGA GAACTGTGAC AGCCACTCTC
      AGCATCACCC TGAACCAAAG GCCCCTATCA AGTAACAATA TAGCCAAGCA AAATTCCAGT
      CAATAGAGAC ATTGACTGGT TGGCTGGCTT CCCAAGGGAT AGCACCAGAC AAGAAATGCA
45
      AGGATGAGGA AACCAGGCAC GGGAGAGGGA GGGGCAACAG AGGTCCAGGG TTTGGTTATC
                                                                       2100
      TTTTTATTT TCACTGGGAG GTGGTAAGTT AGCCCTGTTG CCCATGTATG CAGATGGGAG
      AAGTGATTTA GAAACTCCAA AGCAATTGGT AATCCCCAAA ATGGGTGTAT CTGGTTTGAA
      ATGAAACCTT ATTTTATTGG AAATGGTTGG TTTCCCAATT CTGTTTGCCA TTGGCCAATA
50
      TAATTGTGGG TTTGCACATG GCCAGCACAT GCCAAACAGA AGTAGACAAA GGTCTCACTC
                                                                       2340
      TGTAAGTGGG ACCTTGGGGA GGAGCTGCCT CCATCATAAA GGGAGGGGTT AGTAAAAATG
      GTCTCTTAAG CCTGTTCCTG CTACAGTTAT AGAGGTTGCT CAGAACCTTC TCAGCAAATA
      TAGCAGTTAT CTATTGTTGT GTATTAAACC ATTTCAACAC AT
55
      Seq ID NO: 217 Protein sequence:
      Protein Accession #: NP_078965.1
                           21
                                      31
                                                 41
                                                            51
60
      MEPOLGPEAA ALRPGWLALL LWVSALSCSF SLPASSLSSL VPQVRTSYNF GRTFLGLDKC
      NACIGTSICK KFFKEEIRSD NWLASHLGLP PDSLLSYPAN YSDDSKIWRP VEIFRLVSKY
      QNEISDRKIC ASASAPKTCS IERVLRKTER FQKWLQAKRL TPDLVQDCHQ GQRELKFLCM 180
65
      Seq ID NO: 218 DNA sequence
                                   AF075027.1
      Nucleic Acid Accession #:
      Coding sequence: 3-269 (underlined sequences correspond to start and stop codons)
                           21
                 11
70
      GATTAATTAA GTGCTTTAAA CGGTCTTGGT AAATATTCCG CGGGAGCTGG GGAGGACCGT
                                                                          60
      TGGGATGGCT GTAGCTTGAG TTGAATTTTA ACTGTCCTCA TTCTGGGTTT TGTCGCTCTG
                                                                         120
      CTTTCTGTGC CAAGGTGCTG TGTTACGGGA GAGAGTGACT GGAAAGTAAC AAAGCTGAAT
                                                                         180
      CTTTCTCCCT GGAGTAAGGC CGAAGACTGG ATTACTACAC GCCTAGACGT GACACTACAC
                                                                         240
75
      CCATAGATCT CATGCATCAT TAATGCCATA TGACATTGCC ATTTTCTTTC TCAGTTCACG
                                                                         300
      GACAAAAGTG GTGGGTTTTC ATTGTCTTCA CTGATTGTCA ATGCATTAAT AAAGAAGATG
                                                                         360
```

TGTGGT

```
Seq ID NO: 219 Protein sequence:
      Protein Accession #: AF075027
 5
                                       31
                                                   41
                                                              51
                 11
      ERKWQCHMAL MMHEIYGCSV TSRRVVIQSS ALLQGERFSF VTFQSLSPVT QHLGTESRAT
                                                                            60
      KPRMRTVKIQ LKLQPSQRSS PAPAEYLPRP FKALN
10
      Seq ID NO: 220 DNA sequence
                                    AL133411.8
      Nucleic Acid Accession #:
      Coding sequence: 1-1395(underlined sequences correspond to start and stop codons)
15
                            21
                                       31
                                                   41
                                                             51
                 11
      ATGGGCAAGG ACTTCATGAC TAAAACACTA AAAGCAATGG CAACAAAAGC CAAAATTGAC
                                                                            60
      AAATGGGATC TAATCAAATT AAAGAGCTTC CGCACAGCAA AAGAAACTAT TATCAGAGTG
                                                                           120
      AACAGGCAAC CTACAGAATG GGAGAAAAAT TTTGCAATGT ATCCATCTGA CAAAGGGCTG
                                                                           180
20
      ACATCCAGAA TCTATAAGGA ACTTAAACAA TTTTACAAGA AAAAACCAAA CAACGCCATC
                                                                           240
      AAAAAGGACA TGGATGAAGC TGGAAACCGT CATTCTCAGA AAACTAACAC AGGAACAGAA
                                                                           300
      AACCAAACAC CACATGTTCT CACTCATAAG TGGGAGTTGA ACAATGAGAA CACATGGACA
      CAGGGAGGG AACATCACAC ACTGGGGCCT GTCAGAAGCC CCTCTGGCCT CCTGGCTGGC
      CTTGAACATG CTGGGAGGAA ATTACAATTC ATCCATGGGC TGTTTACCCT TGAAAATGAA
                                                                           480
25
      TGGGCCCAGG AACAATCCAT AATACAAAAG AAATATGCAT TATGGATTGG AACCAAGCAG
                                                                           540
      ATCTGGGTGG CACAAACTCC TGGTGAATCT ATCTCCAGTT CACCAGCATT GCCTAATGTG
      CTACCTTTAA ATGAAGATGT TAATAAGCAG GAAGAAAAGA ATGAAGATCA TACTCCCAAT
                                                                           660
      TATGCTCCTG CTAATGAGAA AAATGGCAAT TATTATAAAG ATATAAAACA ATATGTGTTC
                                                                           720
      ACAACACAAA ATCCAAATGG CACTGAGTCT GAAATATCTG TGAGAGCCAC AACTGACCTG
                                                                           780
30
      AATTTTGCTC TAAAAAACGA TAAAACTGTC AATGCAACTA CATATGAAAA ATCCACCATT
                                                                           840
      GAAGAAGAA CAACTACTAG CGAACCCTCT CATAAAAATA TTCAAAGATC AACCCCAAAC
      GTGCCTGCAT TTTGGACAAT GTTAGCTAAA GCTATAAATG GAACAGCAGT GGTCATGGAT
                                                                           960
      GATAAAGATC AATTATTICA CCCAATTCCA GAGTCTGATG TGAATGCTAC ACAGGGAGAA
                                                                          1020
      AATCAGCCAG ATCTAGAGGA TCTGAAGATC AAAATAATGC TGGGAATCTC GTTGATGACC
                                                                          1080
35
      CTCCTCCTCT TTGTGGTCCT CTTGGCATTC TGTAGTGCTA CACTGTACAA ACTGAGGCAT
                                                                          1140
      CTGAGTTATA AAAGTTGTGA GAGTCAGTAC TCTGTCAACC CAGAGCTGGC CACGATGTCT
                                                                          1200
      TACTTTCATC CATCAGAAGG TGTTTCAGAT ACATCCTTTT CCAAGAGTGC AGAGAGCAGC
                                                                          1260
      ACATTTTTGG GTACCACTTC TTCAGATATG AGAAGATCAG GCACAAGAAC ATCAGAATCT
                                                                          1320
      AAGATAATGA CGGATATCAT TTCCATAGGC TCAGATAATG AGATGCATGA AAACGATGAG 1380
40
      TCGGTTACCC GGTGA
      Seq ID NO: 221 Protein sequence:
      Protein Accession #: AL133411.8
45
                            21
                                                              51
                 11
                                       31
      MGKDFMTKTL KAMATKAKID KWDLIKLKSF RTAKETIIRV NRQPTEWEKN FAMYPSDKGL
50
      TSRIYKELKQ FYKKKPNNAI KKDMDEAGNR HSQKTNTGTE NQTPHVLTHK WELNNENTWT
                                                                           120
      QGGEHHTLGP VRSPSGLLAG LEHAGRKLQF IHGLFTLENE WAQEQSIIQK KYALWIGTKQ
                                                                           180
      IWVAQTPGES ISSSPALPNV LPLNEDVNKQ EEKNEDHTPN YAPANEKNGN YYKDIKQYVF
                                                                           240
      TTONPNGTES EISVRATTOL NFALKNOKTV NATTYEKSTI EEETTTSEPS HKNIQRSTPN
                                                                           300
      VPAFWTMLAK AINGTAVVMD DKDQLFHPIP ESDVNATQGE NQPDLEDLKI KIMLGISLMT
                                                                           360
55
      LLLFVVLLAF CSATLYKLRH LSYKSCESQY SVNPELATMS YFHPSEGVSD TSFSKSAESS
                                                                           420
      TFLGTTSSDM RRSGTRTSES KIMTDIISIG SDNEMHENDE SVTR
      Seq ID NO: 222 DNA sequence
                                   AL050295.1
      Nucleic Acid Accession #:
60
      Coding sequence: 237-2073 (underlined sequences correspond to start and stop codons)
                 11
                            21
                                       31
                                                   41
                                                              51
65
      GAAGGGGACA GAAGGCAGTT CACCTCTGCT CCCGACAGCC TGGGAACCCG CAAGAGCCCC
      AGCATTTGAA GTCTGGTCTT GTGAAACCCC ACCCTCCTCT GGCTGTGTGA TTGAATGGGA
                                                                           120
      TGCCCTCGAG GTACACCTCA CCTGAGAGGG TTTTGGGCAG ATCAGCAGTA AGGTGTTAAA
                                                                           180
      TTTTAGAAGC CTGAAAACTC CAGAAGAGAA AGGCCAACCA ACTCAAACTT GAAGACATGA
                                                                           240
      AATCCCCAAG GAGAACCACT TTGTGCCTCA TGTTTATTGT GATTTATTCT TCCAAAGCTG
                                                                           300
70
      CACTGAACTG GAATTACGAG TCTACTATTC ATCCTTTGAG TCTTCATGAA CATGAACCAG
      CTGGTGAAGA GGCACTGAGG CAAAAACGAG CCGTTGCCAC AAAAAGTCCT ACGGCTGAAG
                                                                           420
      AATACACTGT TAATATTGAG ATCAGTTTTG AAAATGCATC CTTCCTGGAT CCTATCAAAG
                                                                           480
      CCTACTTGAA CAGCCTCAGT TTTCCAATTC ATGGGAATAA CACTGACCAA ATTACTGACA
                                                                           540
      TTTTGAGCAT AAATGTGACA ACAGTCTGCA GACCTGCTGG AAATGAAATC TGGTGCTCCT
                                                                           600
75
      GCGAGACAGG TTATGGGTGG CCTCGGGAAA GGTGTCTTCA CAATCTCATT TGTCAAGAGC
                                                                           660
      GTGACGTCTT CCTCCCAGGG CACCATTGCA GTTGCCTTAA AGAACTGCCT CCCAATGGAC
                                                                           720
```

```
CTTTTTGCCT GCTTCAGGAA GATGTTACCC TGAACATGAG AGTCAGACTA AATGTAGGCT
     TTCAAGAAGA CCTCATGAAC ACTTCCTCCG CCCTCTATAG GTCCTACAAG ACCGACTTGG
                                                                        840
      AAACAGCGTT CCGGAAGGGT TACGGAATTT TACCAGGCTT CAAGGGCGTG ACTGTGACAG
                                                                        900
      GGTTCAAGTC TGGAAGTGTG GTTGTGACAT ATGAAGTCAA GACTACACCA CCATCACTTG
                                                                        960
     AGTTAATACA TAAAGCCAAT GAACAAGTTG TACAGAGCCT CAATCAGACC TACAAAATGG
     ACTACAACTC CTTTCAAGCA GTTACTATCA ATGAAAGCAA TTTCTTTGTC ACACCAGAAA
      TCATCTTTGA AGGGGACACA GTCAGTCTGG TGTGTGAAAA GGAAGTTTTG TCCTCCAATG
                                                                       1140
      TGTCTTGGCG CTATGAAGAA CAGCAGTTGG AAATCCAGAA CAGCAGCAGA TTCTCGATTT
                                                                       1200
      ACACCGCACT TTTCAACAAC ATGACTTCGG TGTCCAAGCT CACCATCCAC AACATCACTC
10
     CAGGTGATGC AGGTGAATAT GTTTGCAAAC TGATATTAGA CATTTTTGAA TATGAGTGCA
      AGAAGAAAAT AGATGTTATG CCCATCCAAA TTTTGGCAAA TGAAGAAATG AAGGTGATGT
                                                                       1380
     GCGACAACAA TCCTGTATCT TTGAACTGCT GCAGTCAGGG TAATGTTAAT TGGAGCAAAG
                                                                       1440
      TAGAATGGAA GCAGGAAGGA AAAATAAATA TTCCAGGAAC CCCTGAGACA GACATAGATT
      CTAGCTGCAG CAGATACACC CTCAAGGCTG ATGGAACCCA GTGCCCAAGC GGGTCGTCTG
15
     GAACAACAGT CATCTACACT TGTGAGTTCA TCAGTGCCTA TGGAGCCAGA GGCAGTGCAA
     ACATAAAAGT GACATTCATC TCTGTGGCCA ATCTAACAAT AACCCCGGAC CCAATTTCTG
                                                                       1680
      TTTCTGAGGG ACAAACTTT TCTATAAAAT GCATCAGTGA TGTGAGTAAC TATGATGAGG
      TTTATTGGAA CACTTCTGCT GGAATTAAAA TATACCAAAG ATTTTATACC ACGAGGAGGT
      1860
20
     CCTATCACTG CATATTTAGA TATAAGAATT CATACAGTAT TGCAACCAAA GACGTCATTG
                                                                       1920
      TTCACCCGCT GCCTCTAAAG CTGAACATCA TGATTGATCC TTTGGAAGCT ACTGTTTCAT 1980
      GCAGTGGTTC CCATCACATC AAGTGCTGCA TAGAGGAGGA TGGAGACTAC AAAGTTACTT 2040
      25
      Seq ID NO: 223 Protein sequence:
      Protein Accession #: CAB43394.1
                                      31
                                                 47.
                                                           51
30
      MKSPRRTTLC LMFIVIYSSK AALNWNYEST IHPLSLHEHE PAGEEALRQK RAVATKSPTA
      EEYTVNIEIS FENASFLDPI KAYLNSLSFP IHGNNTDQIT DILSINVTTV CRPAGNEIWC
      SCETGYGWPR ERCLHNLICO ERDVFLPGHH CSCLKELPPN GPFCLLQEDV TLNMRVRLNV
                                                                        180
      GFQEDLMNTS SALYRSYKTD LETAFRKGYG ILPGFKGVTV TGFKSGSVVV TYEVKTTPPS
                                                                        240
      LELIHKANEQ VVQSLNQTYK MDYNSFQAVT INESNFFVTP EIIFEGDTVS LVCEKEVLSS
                                                                        300
35
     NVSWRYEEQQ LEIQNSSRFS IYTALFNNMT SVSKLTIHNI TPGDAGEYVC KLILDIFEYE
     CKKKIDVMPI QILANEEMKV MCDNNPVSLN CCSQGNVNWS KVEWKQEGKI NIPGTPETDI
                                                                        420
      DSSCSRYTLK ADGTQCPSGS SGTTVIYTCE FISAYGARGS ANIKVTFISV ANLTITPDPI
                                                                        480
      SVSEGQNFSI KCISDVSNYD EVYWNTSAGI KIYQRFYTTR RYLDGAESVL TVKTSTREWN
                                                                        540
      GTYHCIFRYK NSYSIATKDV IVHPLPLKLN IMIDPLEATV SCSGSHHIKC CIEEDGDYKV
                                                                        600
40
      TFHMGSSSLP AVKKKKK
      Seq ID NO: 224 DNA sequence
     Nucleic Acid Accession #:
                                  NM 007268
                         46-1245 (underlined sequences correspond to start and stop codons)
     Coding sequence:
45
                           2.1
                                      31
                                                41
      GGTAGCAGGA GGCTGGAAGA AAGGACAGAA GTAGCTCTGG CTGTGATGGG GATCTTACTG
                                                                         60
      GGCCTGCTAC TCCTGGGGCA CCTAACAGTG GACACTTATG GCCGTCCCAT CCTGGAAGTG
50
      CCAGAGAGTG TAACAGGACC TTGGAAAGGG GATGTGAATC TTCCCTGCAC CTATGACCCC
                                                                        180
      CTGCAAGGCT ACACCCAAGT CTTGGTGAAG TGGCTGGTAC AACGTGGCTC AGACCCTGTC
                                                                        240
     ACCATCTTC TACGTGACTC TTCTGGAGAC CATATCCAGC AGGCAAAGTA CCAGGGCCGC
      CTGCATGTGA GCCACAAGGT TCCAGGAGAT GTATCCCTCC AATTGAGCAC CCTGGAGATG
                                                                        360
      GATGACCGGA GCCACTACAC GTGTGAAGTC ACCTGGCAGA CTCCTGATGG CAACCAAGTC
                                                                        420
55
      GTGAGAGATA AGATTACTGA GCTCCGTGTC CAGAAACTCT CTGTCTCCAA GCCCACAGTG
                                                                        480
      ACAACTGGCA GCGGTTATGG CTTCACGGTG CCCCAGGGAA TGAGGATTAG CCTTCAATGC
                                                                        540
      CAGGCTCGGG GTTCTCCTCC CATCAGTTAT ATTTGGTATA AGCAACAGAC TAATAACCAG
      GAACCCATCA AAGTAGCAAC CCTAAGTACC TTACTCTTCA AGCCTGCGGT GATAGCCGAC
                                                                        660
      TCAGGCTCCT ATTTCTGCAC TGCCAAGGGC CAGGTTGGCT CTGAGCAGCA CAGCGACATT
                                                                        720
60
      GTGAAGTTTG TGGTCAAAGA CTCCTCAAAG CTACTCAAGA CCAAGACTGA GGCACCTACA
      ACCATGACAT ACCCCTTGAA AGCAACATCT ACAGTGAAGC AGTCCTGGGA CTGGACCACT
                                                                        840
      GACATGGATG GCTACCTTGG AGAGACCAGT GCTGGGCCAG GAAAGAGCCT GCCTGTCTTT
      GCCATCATCC TCATCATCTC CTTGTGCTGT ATGGTGGTTT TTACCATGGC CTATATCATG
                                                                        960
      CTCTGTCGGA AGACATCCCA ACAAGAGCAT GTCTACGAAG CAGCCAGGGC ACATGCCAGA
                                                                       1020
65
      GAGGCCAACG ACTCTGGAGA AACCATGAGG GTGGCCATCT TCGCAAGTGG CTGCTCCAGT
      GATGAGCCAA CTTCCCAGAA TCTGGGCAAC AACTACTCTG ATGAGCCCTG CATAGGACAG
      GAGTACCAGA TCATCGCCCA GATCAATGGC AACTACGCCC GCCTGCTGGA CACAGTTCCT
      CTGGATTATG AGTTTCTGGC CACTGAGGGC AAAAGTGTCT GT<u>TAA</u>AAATG CCCCATTAGG
                                                                       1260
      CCAGGATCIG CIGACATAAI IGCCIAGICA GICCIIGCCI ICTGCAIGGC CIICTICCCI
                                                                       1320
70
      GCTACCTCTC TTCCTGGATA GCCCAAAGTG TCCGCCTACC AACACTGGAG CCGCTGGGAG
      TCACTGGCTT TGCCCTGGAA TTTGCCAGAT GCATCTCAAG TAAGCCAGCT GCTGGATTTG
      GCTCTGGGCC CTTCTAGTAT CTCTGCCGGG GGCTTCTGGT ACTCCTCTT AAATACCAGA
                                                                       1500
      GGGAAGATGC CCATAGCACT AGGACTTGGT CATCATGCCT ACAGACACTA TTCAACTTTG
                                                                       1560
      GCATCTTGCC ACCAGAAGAC CCGAGGGAGG CTCAGCTCTG CCAGCTCAGA GGACCAGCTA
                                                                       1620
75
      TATCCAGGAT CATTTCTCTT TCTTCAGGGC CAGACAGCTT TTAATTGAAA TTGTTATTTC
      ACAGGCCAGG GTTCAGTTCT GCTCCTCCAC TATAAGTCTA ATGTTCTGAC TCTCTCCTGG 1740
```

TGCTCAATAA ATATCTAATC ATAACAGCAA AAAAAAAAA AAAAAAA

```
Seq ID NO: 225 Protein sequence:
      Protein Accession #: NP 009199.1
 5
                                                              51
                            21
                                       31
                                                   41
      MGILLGLLL GHLTYDTYGR PILEVPESVT GPWKGDVNLP CTYDPLQGYT QVLVKWLVQR
      GSDPVTIFLR DSSGDHIQQA KYQGRLHVSH KVPGDVSLQL STLEMDDRSH YTCEVTWQTP
10
      DGNQVVRDKI TELRVQKLSV SKPTVTTGSG YGFTVPQGMR ISLQCQARGS PPISYIWYKQ
                                                                           180
      QTNNQEPIKV ATLSTLLFKP AVIADSGSYF CTAKGQVGSE QHSDIVKFVV KDSSKLLKTK
                                                                           240
      TEAPTTMTYP LKATSTVKQS WDWTTDMDGY LGETSAGPGK SLPVFAIILI ISLCCMVVFT
                                                                           300
      MAYIMLCRKT SQQEHVYEAA RAHAREANDS GETMRVAIFA SGCSSDEPTS QNLGNNYSDE
                                                                           360
      PCIGQEYQII AQINGNYARL LDTVPLDYEF LATEGKSVC
15
      Seq ID NO: 226 DNA sequence
      Nucleic Acid Accession #:
                                    XM 64321
                             1-2079 (underlined sequences correspond to start and stop codons)
      Coding sequence:
20
                            21
      ATGGTCGCCA GTTCCGATCA AGACAGAGCC CCGTATCTTC CAGGGACACT AGACAAGATG
                                                                            60
      CCAGGACCAC GCCTCCGCTC TGCCCAGAGG CCAAAAGCAG CCCAACAAGA GCCCGGCATT
                                                                           120
25
      GAGCCTGGTA CTTACAGGGA GGGTGGTGGA GCCATCGTCC TCACGTATGC GCTGGGGATC
                                                                           180
      GGGGTTGGGA TCACGGGAAA CACAGTTCAA CAACCACCTC AACTCACTGA CTCCGCCAGC
                                                                           240
      ATCCGTCAGG AGGATGCCTT TGATAACAAA ATTGACATTG CTGAAGATGG TGGCCAGACA
      CCATACGAAG CTACCTTGCA GCAAAGCTTT CAATACTCAC CTACAACAGA TCTTCCTCCA
                                                                           360
      CTCACAAATG GCTACCTGCC ATCAATCAGC ATGTATGAAA TTCAAACCAA ATACCAGTCG
                                                                           420
30
      CATAATCAAT ATCCTAATGG AAATTCTAAA CAGAAGACCA CATTAAATTC TAGAAAACCC
      TTCCCCTCCA CAGCCACCAC TTCGGTACCA CAAACTGTGA TTCCAAAGAA GAGTGGCTCA
                                                                           540
      CCTGAAGTTA AACTAAAAAT AACCAAAACT ATCCAGAATG GCAGGGAATT GTTCAAGTCT
                                                                           600
      TCCCTTTGTG GAGACCTTTT AAATGAAGTA CAGGCAAGTG AGCACACGAA GTCAAAGCAT
                                                                           660
      GAAAGCAGAA AAGAAAAGAG GAAAAAACCC AAAAAGCATG ACTCATCAAG ATCTGAAGAG
                                                                           720
35
      CGCAAGTCAC ACAAAATCCC CAAATTAGAA CCAGAGGAAC AAAATAGACC AAATGAGAGG
      GTTCACACCA TATCAGAAAA ACCAAGGGAA GATCCAGTAC TAAAAGAGGA AGCCCCAGTT
                                                                           840
      CAGCCAATAC TATCTTCTGT TCCAACAACA GAAGTGTCCA CTGGTGTTAA GTTTCAAGTT
                                                                           900
      GGTGATCTTG TGTGGTCCAA GGTGACGGTC ACACCCTGTT GGGTGCCCCG CCTGCGAGGA
                                                                           960
      CGGAGGAGCC ATCACTGTTC CAGCTGCCTG GAGATCTTGG TGCTGGTGCC AGCCCTCAGC
                                                                          1020
40
      CTCAAGAGT CTTCATGGT TTCTTCCTTG AAGTTCCTCA CCTCCACGGG CAAACAGAAG
      CCCACATTCA AGGGAACTGC CCAGATGGGC TGGTCACCTA TGGCCTCCAC GACCAATGTC
                                                                          1140
      TCCCTGCTCC TTGGTCATTG GGAAGGAACA GACCAGATGT CATCCAGGGG CCCGGAATTT
                                                                          1200
      GGGGGGCGCC GCTGGGTGTG GCAGCATCAG AAGCCTCAGA TCCGCATCTC CATCTGCCAC 1260
      AGGCCAGGGA AGGAACCTCT GAGACTCAGT TTCCTACGAT GTGAAGTGGA GAGAAGAATC
      TCCTCTTTAG CCACCTCTCA GGGCTGCTGG TGTTCGCCCC CAGACCACGT CTGTGAGAAA 1380
45
      TGCTTAGAAG ACTATGCAGG GCGCCGCCAT TTGACACTCA GAGCCCAGGA AGCCTTTCTT 1440
      GGTCCAGACA GCAGGACTGG AAGCCTTAGA GCTGTCGGCA AGAGATACTG CAGGAACAGC
                                                                          1500
      CAGCACCAGA GATATCTCCT GCAAGGCCTC CTAGGTGGGT TCTTGGAAGA AAGGAATGCC 1560
      AATGAATATG ATTGCAAGCT AGAGACGAGA GAAGCGGCGT CCTCAACTCC AAGAATCCCG
                                                                          1620
50
      TATTCCCCAA CCCACATCCT TCAGTCTGAA AGTGCCCCTA ACCACTACTT TCCCTACCAC 1680
      GTCTCCCTTT CCAAGTTCCT CAAACGCAAA GCAAACAGCC ATTTCCTGCA CCTGTGTGCA 1740
      GTCGTAGCAG TACGTAGGAG ATCCAATATG CCTGGCACAA GGGGGTGGGG TGGCCACAAA
                                                                          1800
      CAGAAGCAGC CCTGTCCTGC CAAGTACACG CCTGCCTGCC ACGCACAATG GGAGACATTC 1860
      CGCAAGTTCC ACGTGATGGC TCAGAAGAGG GGCCTGTCAG GAAGATGTAG GGGCCAGCAG
                                                                          1920
55
      CCCCCGGCCG CGCCCCGCAA GGTGGCTGAC AGACGCCAGC AGCTGCCGGG GGCTCCGGGC
                                                                          1980
      TGCTCCTGCT CCCAGGATGT GTATCTGACT GGAGTTTCTG GATTAAAGGC CAGTCGTGGC 2040
      TTCATTCCAC ATCCCTGGGT GCCCTTCGGC TCCTCCTAG
60
      Seg ID NO: 227 Protein sequence:
      Protein Accession #: XP 064321.1
                                                  41
                            21
                                       31
                                                              51
65
      MVASSDODRA PYLPGTLDKM PGPRLRSAQR PKAAQOEPGI EPGTYREGGG AIVLTYALGI
      GVGITGNTVQ QPPQLTDSAS IRQEDAFDNK IDIAEDGGQT PYEATLQQSF QYSPTTDLPP
      LINGYLPSIS MYEIQIKYQS HNQYPNGNSK QKTTLNSRKP FPSTATTSVP QTVIPKKSGS
PEVKLKITKT IQNGRELFKS SLCGDLLNEV QASEHTKSKH ESRKEKRKP KKHDSSRSEE
                                                                           180
                                                                           240
      RKSHKIPKLE PEEONRPNER VHTISEKPRE DPVLKEEAPV QPILSSVPTT EVSTGVKFQV
                                                                           300
70
      GDLVWSKVTV TPCWVPRLRG RRSHHCSSCL EILVLVPALS LKRSFMVSSL KFLTSTGKQK
                                                                           360
      PTFKGTAOMG WSPMASTTNV SLLLGHWEGT DQMSSRGPEF GGRRWVWQHQ KPQIRISICH
      RPGKEPLRLS FLRCEVERRI SSLATSQGCW CSPPDHVCEK CLEDYAGRRH LTLRAQEAFL
                                                                            480
      GPDSRTGSLR AVGKRYCRNS QHQRYLLQGL LGGFLEERNA NEYDCKLETR EAASSTPRIP
                                                                           540
      YSPTHILQSE SAPNHYFPYH VSLSKFLKRK ANSHFLHLCA VVAVRRRSNM PGTRGWGGHK
                                                                            600
      OKOPCPAKYT PACHAQWETF RKFHVMAQKR GLSGRCRGQQ PPAAPRKVAD RRQQLPGAPG
75
      CSCSQDVYLT GVSGLKASRG FIPHPWVPFG SS
```

Seq ID NO: 228 DNA sequence NM_006033 Nucleic Acid Accession #: 5 Coding sequence: 253-1752 (underlined sequences correspond to start and stop codons) 21 31 41 AGCAGCGAGT CCTTGCCTCC CGGCGGCTCA GGACGAGGGC AGATCTCGTT CTGGGGCAAG 60 10 CCGTTGACAC TCGCTCCCTG CCACCGCCCG GGCTCCGTGC CGCCAAGTTT TCATTTCCA CCTTCTCTGC CTCCAGTCCC CCAGCCCCTG GCCGAGAGAA GGGTCTTACC GGCCGGGATT GCTGGAAACA CCAAGAGGTG GTTTTTGTTT TTTAAAACTT CTGTTTCTTG GGAGGGGGTG 240 TGGCGGGGCA GGATGAGCAA CTCCGTTCCT CTGCTCTGTT TCTGGAGCCT CTGCTATTGC 300 TTTGCTGCGG GGAGCCCCGT ACCTTTTGGT CCAGAGGGAC GGCTGGAAGA TAAGCTCCAC 15 AAACCCAAAG CTACACAGAC TGAGGTCAAA CCATCTGTGA GGTTTAACCT CCGCACCTCC 420 AAGGACCCAG AGCATGAAGG ATGCTACCTC TCCGTCGGCC ACAGCCAGCC CTTAGAAGAC TGCAGTTTCA ACATGACAGC TAAAACCTTT TTCATCATTC ACGGATGGAC GATGAGCGGT 540 ATCTTTGAAA ACTGGCTGCA CAAACTCGTG TCAGCCCTGC ACACAAGAG GAAAGACGCC 600 AATGTAGTTG TGGTTGACTG GCTCCCCCTG GCCCACCAGC TTTACACGGA TGCGGTCAAT AATACCAGGG TGGTGGGACA CAGCATTGCC AGGATGCTCG ACTGGCTGCA GGAGAAGGAC 20 720 GATTTTCTC TCGGGAATGT CCACTTGATC GGCTACAGCC TCGGAGCGCA CGTGGCCGGG 780 TATGCAGGCA ACTTCGTGAA AGGAACGGTG GGCCGAATCA CAGGTTTGGA TCCTGCCGGG 840 CCCATGTTTG AAGGGGCCGA ĈATCCACAAG AGGCTCTCTC CGGACGATGC AGATTTTGTG 900 GATGTCCTCC ACACCTACAC GCGTTCCTTC GGCTTGAGCA TTGGTATTCA GATGCCTGTG 960 25 GGCCACATTG ACATCTACCC CAATGGGGGT GACTTCCAGC CAGGCTGTGG ACTCAACGAT 1020 GTCTTGGGAT CAATTGCATA TGGAACAATC ACAGAGGTGG TAAAATGTGA GCATGAGCGA 1080 GCCGTCCACC TCTTTGTTGA CTCTCTGGTG AATCAGGACA AGCCGAGTTT TGCCTTCCAG 1140 TGCACTGACT CCAATCGCTT CAAAAAGGGG ATCTGTCTGA GCTGCCGCAA GAACCGTTGT 1200 AATAGCATTG GCTACAATGC CAAGAAAATG AGGAACAAGA GGAACAGCAA AATGTACCTA 1260 30 AAAACCCGGG CAGGCATGCC TTTCAGAGTT TACCATTATC AGATGAAAAT CCATGTCTTC 1320 AGTTACAAGA ACATGGGAGA AATTGAGCCC ACCTTTTACG TCACCCTTTA TGGCACTAAT 1380 GCAGATTCCC AGACTCTGCC ACTGGAAATA GTGGAGCGGA TCGAGCAGAA TGCCACCAAC 1440 ACCTTCCTGG TCTACACCGA GGAGGACTTG GGAGACCTCT TGAAGATCCA GCTCACCTGG 1500 GAGGGGGCCT CTCAGTCTTG GTACAACCTG TGGAAGGAGT TTCGCAGCTA CCTGTCTCAA 1560 35 CCCCGCAACC CCGGACGGGA GCTGAATATC AGGCGCATCC GGGTGAAGTC TGGGGAAACC CAGCGGAAAC TGACATTTTG TACAGAAGAC CCTGAGAACA CCAGCATATC CCCAGGCCGG GAGCTCTGGT TTCGCAAGTG TCGGGATGGC TGGAGGATGA AAAACGAAAC CAGTCCCACT 1740 GTGGAGCTTC CCTGAGGGTG CCCGGGCAAG TCTTGCCAGC AAGGCAGCAA GACTTCCTGC 1800 TATCCAAGCC CATGGAGGAA AGTTACTGCT GAGGACCCAC CCAATGGAAG GATTCTTCTC 1860 40 AGCCTTGACC CTGGAGCACT GGGAACAACT GGTCTCCTGT GATGGCTGGG ACTCCTCGCG 1920 GGAGGGGACT GCGCTGCTAT AGCTCTTGCT GCCTCTCTTG AATAGCTCTA ACTCCAAACC 1.980 TCTGTCCACA CCTCCAGAGC ACCAAGTCCA GATTTGTGTG TAAGCAGCTG GGTGCCTGGG 2040 GCCTCTCGTG CACACTGGAT TGGTTTCTCA GTTGCTGGGC GAGCCTGTAC TCTGCCTGAC 2100 GAGGAACGCT GGCTCCGAAG AGGCCCTGTG TAGAAGGCTG TCAGCTGCTC AGCCTGCTTT 2160 45 GAGCCTCAGT GAGAAGTCCT TCCGACAGGA GCTGACTCAT GTCAGGATGG CAGGCCTGGT ATCTTGCTCG GGCCCTAGCT GTTGGGGTTC TCATGGGTTG CACTGACCAT ACTGCTTACG 2280 TCTTAGCCAT TCCGTCCTGC TCCCCAGCTC ACTCTCTGAA GCACACATCA TTGGCTTTCC 2340 TATTTTCTG TTCATTTTT AATTGAGCAA ATGTCTATTG AACACTTAAA ATTAATTAGA 2400 ATGTGGTAAT GGACATATTA CTGAGCCTCT CCATTTGGAA CCCAGTGGAG TTGGGATTTC TAGACCCTCT TTCTGTTTGG ATGGTGTATG TGTATATGCA TGGGGAAAGG CACCTGGGGC 2520 50 CTGGGGGAGG CTATAGGATA TAAGCATTAG GGACCCTGAG GCTTTAAGTG GTTTCTATTT 2580 CTTCTTAGTT ATTATGTGCC ACCTTCTTAG TTATTATGTG CCACCTCCCC TATGAGTGAC GTGTTTGATC ACTAGCAGAA TAGCAAGCAG AGTATCATTC ATGCTGGGGC CAGAATGATG 2700 GCCGGTTGCC AGATATAACT GCTTTGGAGC AAATCTCTTC TGTTTAGAGA GATAGAAGTT ATGACATATG TAATACACAT CTGTGTACAC AGAAACCGGC ACCTGCCAGA CAGAGCTGGT 55 TCTAAGATTT AATACAGTGC TTTTTTTCCT CTTTGAAATA TTTTACTTTA ATACCAGTGC 2880 CTTTTCTTGT TGAACTTCTT GGAAAAGCCA CCAATTCTAG ATCTTGATTT GAATTAATAC ACACAATATC TGAGACACTT ACACTTTTCA AAAGATTTGT GTATGCATTG CCTAATTAGA GTAGGGGGAG AAGGGCAACT ATTATTATCC CTATTTTACA AAACTGAGGC TTAGTGAGGT 3060 TCAGCCACAT GCCTAGACTT ATATACTAGT TAGTGGTGCA GCCAGGGAGA GGACTCAGAT 60 TTCCTGGAGG CAAAGTCTAT CTCTGAAACT CCATGAAGAC TTTTGCAGCC AGTTCCCACC AATATGCCCC AGACGTGAGA CAAACAAGGA CTTTTTTTT TATATAGAGC CATCCATAAA 3240 ATCCTAAGCC CTTTTATTAA TGTATAACCA GGAGAACATC TGTGCCAACG GTTGGACTTT TTATGGCTGA GATTCGGGAG GAAGTGTGAC ACCAAGCAGG AGAGGAAGAA TGATTTTCTT 3360 65 TGTACTTAGG TTTTCTAAGG ACATTGTTTT AATCTGTATC GTGCCAAAGT TGTATCACTG TTAAACTTCT GAAGACATAA CCAGTTGAGT CTTATTTCAA GATATGTTCT CAAGCCAATT GTGTGCTTCT CTTGTTTCTG TGATTGCTTT CTAGCCAAAG CGAAGCTTGT ACAGGTTGAG
TATCCCTTAT CCAAAATGCT TGGAACCAGA AGTGTTTCAA ATTTTAGATT ATTTTCAGAT 3540 TTTGGAATGT TTGCATATAC ATAATGAGAT ATTTTGGGAA TAGGACCCGA GCCTAAACAC 3660 70 AAAATTCATT GATGTGTCAG TTACACCTTA TCCACATAGC CTGAGGGTAA TTTTATACGA TATTTTAAAT AGTTGTGTAC ATGAAGCATG GTTTGTGGTA ACTTATGTGA GGGGTTTTCC CATTTTTGT CTTGTTGGTG CTCAAAAAGT TTTGGATTTT GGAGCATTTC GGATTTTGGA 3840 TTTTTGGATT AGGGTTGCTC AACCCATATT ATTGGCTGTA CATCCTGGTC ACTTCTGACT 3900 TCTGTTTTTA CTAATGGAAG CTTTGCA 75

Seq ID NO: 229 Protein sequence:

Protein Accession #: NP_006024.1

	1	11	21	31	41	51	
~	1	1	1	1	}	}	
5	MSNSVPLLCF	WSLCYCFAAG	SPVPFGPEGR	LEDKLHKPKA	TQTEVKPSVR	FNLRTSKDPE	60
	HEGCYLSVGH	SQPLEDCSFN	MTAKTFFIIH	GWTMSGIFEN	WLHKLVSALH	TREKDANVVV	120
				WLQEKDDFSL			180
				DDADFVDVLH			240
10				KCEHERAVHL			300
10	NRFKKGICLS	CRKNRCNSIG	YNAKKMRNKR	NSKMYLKTRA	GMPFRVYHYQ	MKIHVFSYKN	360
				EQNATNTFLV			420
	QSWYNLWKEF	RSYLSQPRNP	GRELNIRRIR	VKSGETQRKL	TFCTEDPENT	SISPGRELWF	480
	RKCRDGWRMK	NETSPTVELD					

15

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

5

WHAT IS CLAIMED IS:

1	1.	A method of detecting an angiogenesis-associated transcript in a cell in
2	a patient, the met	hod comprising contacting a biological sample from the patient with a
3	polynucleotide th	at selectively hybridized to a sequence at least 80% identical to a sequence
4	as shown in Table	es 1-8.
1	2.	The method of claim 1, wherein the biological sample is a tissue
2	sample.	
	•	
1	3.	The method of claim 1, wherein the biological sample comprises
2	isolated nucleic a	cids.
1	4.	The method of claim 3, wherein the nucleic acids are mRNA.
1	5.	The method of claim 3, further comprising the step of amplifying
2	nucleic acids befo	ore the step of contacting the biological sample with the polynucleotide.
1	6.	The method of claim 1, wherein the polynucleotide comprises a
2	sequence as show	n in Tables 1-8 .
_	_	
1	7.	The method of claim 1, wherein the polynucleotide is labeled.
1	8.	The method of claim 7, wherein the label is a fluorescent label.
1	9.	The method of claim 1, wherein the polynucleotide is immobilized on
2	a solid surface.	
1	10	The method of claim 1, wherein the patient is undergoing a therapeutic
2		disease associated with angiongenesis.
1	11	. The method of claim 1, wherein the patient is suspected of having
2	cancer.	
1	12	An isolated nucleic acid molecule consisting of a polynucleotide
2	sequence as show	yn in Tables 1-8.
1	13	The nucleic acid molecule of claim 12, which is labeled.
-		
1	14	The nucleic acid of claim 13, wherein the label is a fluorescent label

1	15.	An expression vector comprising the nucleic acid of claim 12.				
1	16.	A host cell comprising the expression vector of claim 15.				
1	17.	An isolated polypeptide which is encoded by a nucleic acid molecule				
2	having polynucleo	tide sequence as shown in Tables 1-8				
1	18.	An antibody that specifically binds a polypeptide of claim 17.				
.1	19.	The antibody of claim 18, further conjugated or fused to an effector				
2	component.					
1	20.	The antibody of claim 19, wherein the effector component is a				
2	fluorescent label.					
1	21.	The antibody of claim 19, wherein the effector component is a				
2	radioisotope.					
1	22.	The antibody of claim 19, which is an antibody fragment.				
1	23.	The antibody of claim 19, which is a humanized antibody				
1	24.	A method of detecting a cell undergoing angiogenesis in a biological				
2	-	ent, the method comprising contacting the biological sample with an				
3	antibody of claim	18.				
1	25.	The method of claim 24, wherein the antibody is further conjugated or				
2	fused to an effector	r component.				
1	26.	The method of claim 25, wherein the effector component is a				
2	fluorescent label.					
1	27.	The method of detecting antibodies specific to angiogenesis in a				
2	patient, the method comprising contacting a biological sample from the patient with a					
3	polypeptide which is encoded by a nucleotide sequence of Tables 1-8.					