

Vektorok

Matematika G1 – Analitikus geometria Utoljára frissítve: 2024. szeptember 10.

1.1. Elméleti Áttekintő

Definíció 1.1: Vektor

Egy (v_1, v_2, v_3) valós számokból alló rendezett számhármast a térben (\mathbb{R}^3) vektornak nevezünk. Jelölése: \boldsymbol{v} (nyomtatott szöveg), v / \vec{v} (kézzel írott szöveg).

A vektorok geometriai értelemben olyan irányított szakaszok, melyeknek hossza és iránya van.

Vektorok megadása:

Egy tetszőleges \boldsymbol{v} ($v_1; v_2; v_3$) vektor a standard normális bázisban

$$\boldsymbol{v} = v_1 \hat{\imath} + v_2 \hat{\jmath} + v_3 \hat{k}.$$

$$\hat{i} = (1; 0; 0)$$

$$\hat{j} = (0; 1; 0)$$

$$\hat{k} = (0; 0; 1)$$

Vektorok típusai:

- kötött vektor: fix kezdőponttal rendelkezik,
- szabad vektor: nincs fix kezdőpontja,
- helyvektor: olyan kötött vektor, amelynek kezdőpontja az origó.

Vektor hossza:

$$|\boldsymbol{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

- Ha |v| = 0, akkor v nullvektor. (Jele: 0)
- Ha |v| = 1, akkor v egységvektor.

A nullvektor iránya nem definiált.

Egy adott *v* vektorhoz tartozó egységvektor:

$$\hat{\boldsymbol{e}}_{v} = \frac{\boldsymbol{v}}{|\boldsymbol{v}|} = \begin{pmatrix} v_1 & v_2 & v_3 \\ |\boldsymbol{v}| & |\boldsymbol{v}| & |\boldsymbol{v}| \end{pmatrix}$$

Háromszög-egyenlőtlenség:

Minden **u**, **v** vektorpárra igaz, hogy

$$|u+v|\leq |u|+|v|.$$

Paralelogramma-szabály:

Ha az \boldsymbol{u} és \boldsymbol{v} vektor különböző állású, akkor a két vektor összegét megadja az \boldsymbol{u} és \boldsymbol{v} vektorokkal, mint oldalakkal szerkesztett paralelogrammának azon átlója, amely a közös pontból indul.

Vektor koordinátatengelyekkel bezárt szöge:

$$\cos \varphi_x = \frac{v_1}{|\mathbf{v}|} \quad \cos \varphi_y = \frac{v_2}{|\mathbf{v}|} \quad \cos \varphi_z = \frac{v_3}{|\mathbf{v}|}$$

Kollinearitás:

Az \boldsymbol{u} és \boldsymbol{v} kollineárisak, ha \boldsymbol{v} előáll \boldsymbol{u} és egy $\lambda \in \mathbb{R}$ szorzataként. Amennyiben $\lambda > 0$, akkor a két vektor azonos irányú.

Komplanaritás:

Tetszőleges számú vektor komplanáris, ha azok egy síkban helyezkednek el.

Definíció 1.2: Lineáris függetlenség

Egy $\{v_1; v_2; ...; v_n\}$ vektorrendszer lineárisan független, ha a $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n = 0$ egyenletnek csak a triviális megoldása létezik. (Azaz $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.)

- A nullvektor minden vektorral lineárisan függő.
- Két vektor akkor lineárisan független, ha nem kollineáris.
- Ha két vektor nem kollineáris, akkor egyértelműen meghatároznak egy síkot, azaz bármely velük koplanáris vektor előállítható a két vektor lineáris kombinációjaként.
- 3D koordinátarendszerben 3-nál több vektor biztos, hogy lineárisan összefüggő. (Feltéve, hogy nincs köztük nullvektor.)
- 3 vektor lineárisan független ha nem koplanáris. (3D-ben)

Vektorok összege és különbsége:

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1; u_2 + v_2; u_3 + v_3)$$

 $\mathbf{u} - \mathbf{v} = (u_1 - v_1; u_2 - v_2; u_3 - v_3)$

- Kommutatív: u + v = v + u
- Asszociatív: (u+v)+w=u+(v+w)

Skalárral való szorzás:

Skalárral való szorzás esetén a vektor (v) minden koordinátáját megszorozzuk a $\lambda \in \mathbb{R}$ skalárral, vagyis:

$$\mathbf{u} = \lambda \mathbf{v} = (\lambda v_1; \lambda v_2; \lambda v_3).$$

A skalárral való szorzás eredménye egy vektor, melynek hossza az eredeti vektor hosszának skalárszorosa.

Vektorok skaláris szorzata: (Scalar / Dot product)

Az \boldsymbol{u} és \boldsymbol{v} vektorok skaláris szorzata:

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Két vektor skaláris szorzatának eredménye egy skalár.

A skaláris szorzat tulajdonságai:

- $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$ (kommutatív)
- $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (disztributív)
- $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$
- $\mathbf{u} \cdot \mathbf{0} = 0$
- $(\lambda \mathbf{u}) \cdot \mathbf{v} = \lambda (\mathbf{u} \cdot \mathbf{v})$

A skaláris szorzat geometriai jelentése:

A skaláris szorzás segítségével kiszámítható az \boldsymbol{u} és \boldsymbol{v} vektorok közötti szög.

$$\boldsymbol{u} \cdot \boldsymbol{v} = |\boldsymbol{u}||\boldsymbol{v}|\cos\varphi$$

Az \boldsymbol{u} vektor \boldsymbol{v} vektorra vett párhuzamos és merőleges komponense:

$$oldsymbol{u}_{||} = (oldsymbol{u} \cdot \hat{oldsymbol{e}}_v) \, \hat{oldsymbol{e}}_v \quad \text{\'es} \quad oldsymbol{u}_{\perp} = oldsymbol{u} - oldsymbol{u}_{||},$$

ahol $\hat{\boldsymbol{e}}_v$ a \boldsymbol{v} irányába mutató egységvektor.

Vektoriális szorzat / **keresztszorzat** (Cross product):

Az \boldsymbol{u} és \boldsymbol{v} vektorok keresztszorzata:

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}.$$

Két vektor keresztszorzatának eredménye egy vektor, amely merőleges mindkét vektorra, iránya pedig a jobbkéz szabály szerinti.

A keresztszorzat tulajdonságai:

- $\mathbf{v} \times \mathbf{v} = \mathbf{0}$
- $\boldsymbol{u} \times \boldsymbol{v} = -\boldsymbol{v} \times \boldsymbol{u}$ (antikommutatív)
- $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$ (disztributív)
- $\mathbf{u} \times (\lambda \mathbf{v}) = \lambda(\mathbf{u} \times \mathbf{v})$
- $\boldsymbol{u} \times \boldsymbol{v} = \boldsymbol{0}$ akkor és csak akkor, ha \boldsymbol{u} és \boldsymbol{v} kollineárisak, vagy ha valamelyikük nullvektor.

A keresztszorzat geometriai jelentése:

Az $u \times v$ vektor hossza megegyezik az u és v vektorok által kifeszített paralelogramma területével.

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\varphi$$

Vegyesszorzat:

Az **u**, **v** és **w** vektorok vegyes szorzata:

$$uvw = u \cdot (v \times w)$$

A vegyesszorzat eredménye egy skalár.

A vegyesszorzat tulajdonságai:

- uvw = wuv = vwu = -vuw = -wvu = -uwv (ciklikus csere)
- lineáris mindhárom változójában: $(\lambda u + \mu v)wz = \lambda uwz + \mu vwz$
- Ha **u**, **v** és **w** vektorok egy síkban helyezkednek el, akkor vegyesszorzatuk nulla.

A vegyesszorzat geometriai jelentése:

3 vektor vegyesszorzata megadja az általuk kifeszített paralelepipedon térfogatát, illetve az általuk kifeszített tetraéder térfogatának hatszorosát.

1.2. Feladatok

1. Legyen \boldsymbol{u} és \boldsymbol{v} két tetszőleges vektor. Milyen α és β paraméterek esetén lesznek kollineárisak, ha az $\{\boldsymbol{a};\boldsymbol{b};\boldsymbol{c}\}$ vektorrendszer lineárisan független?

a)
$$\begin{cases} \mathbf{u} = 2\mathbf{a} + 3\mathbf{b} \\ \mathbf{v} = 4\mathbf{a} + \alpha\mathbf{b} \end{cases}$$

b)
$$\begin{cases} \mathbf{u} = 3\mathbf{a} - 3\alpha\mathbf{b} + \beta\mathbf{c} \\ \mathbf{v} = \mathbf{a} - \alpha\mathbf{b} - \mathbf{c} \end{cases}$$

2. Legyen az $\{a; b; c\}$ vektorrendszer lineárisan független. Lineárisan független lesz-e az $\{r; s; t\}$ vektorrendszer?

a)
$$\begin{cases} \mathbf{r} = 3\mathbf{a} + 2\mathbf{b} + \mathbf{c} \\ \mathbf{s} = 5\mathbf{a} - 3\mathbf{b} - 2\mathbf{c} \\ \mathbf{t} = \mathbf{0} \end{cases}$$

b)
$$\begin{cases} r = a + b + c \\ s = b + c \\ t = a + c \end{cases}$$

- 3. Legyen a, b és c közös középpontú komplanáris vektorok. (a és b nem kollineáris) Bizonyítsa be, hogy az a, b, c vektorok végpontja akkor és csakis akkor esik egy egyenesre, ha $c = \alpha a + \beta b$ előállításban $\alpha + \beta = 1$.
- 4. Számítsa ki az a(7; -1; 6) és b(2; 20; 2) vektorok által bezárt szöget!
- 5. Milyen z esetén lesz a b(6; -2; z) vektor merőleges az a(2; -3; 1) vektorra?
- 6. Ha az $\mathbf{a} + 3\mathbf{b}$ vektor merőleges a $7\mathbf{a} 5\mathbf{b}$ vektorra, az $\mathbf{a} 4\mathbf{b}$ vektor pedig merőleges a $7\mathbf{a} 2\mathbf{b}$ vektorra, mekkora \mathbf{a} és \mathbf{b} bezárt szögének koszinusza?
- 7. Az ABCD téglalap ismert csúcsainak koordinátái: A(2;6;0), B(1;2;3), C(-2;8;z). Mennyi z értéke? Hol van D pont?
- 8. Számítsa ki az $\mathbf{a} \times \mathbf{b}$ keresztszorzatot, amennyiben $\mathbf{a}(-4; 2; 1)$ és $\mathbf{b}(-2; 7; 8)$.
- 9. Hozza egyszerűb alakra a $(3\mathbf{a} \mathbf{b}) \times (\mathbf{b} + 3\mathbf{a})$ kifejezést!
- 10. Kollineárisak-e az $\boldsymbol{a}(-3;4;7)$ és $\boldsymbol{b}(2;5;1)$ vektorok?
- 11. Mekkora az ABC háromszög területe, ha csúcsai: A(1;0;2), B(-1;4;7) és C(5;-2;1)?
- 12. Igaz-e, hogy ha $\mathbf{a} \times \mathbf{c} = \mathbf{b} \times \mathbf{c}$, akkor $\mathbf{a} = \mathbf{b}$?
- 13. Lehet-e az a(6; 2; -3) és b(-3; 6; -2) vektor egy kocka egy csúcsából induló élvektorok? Ha igen, határozzuk meg a harmadik élt!
- 14. Lineárisan független-e az a(2; 3; -1), b(1; -1; 3) és c(1; 9; -11) vektor?
- 15. Az a, b és c vektorok által kifeszített paralelepipedon térfogata V. Mekkora az r = 2a + 3b + 4c, s = a b + c és t = 2a + 4b c vektorok által kifeszített paralelepipedon térfogata?
- 16. Milyen α paraméter esetén lesz az $\{a, b, c\}$ vektorrendszer lineárisan függő, illetve lineárisan független, ha $a(3; \alpha; 0)$, $b(0; 3; \alpha)$ és c(1; 0; -1)?
- 17. Határozza meg a(-1;2;1) vektor b(1;2;2) vektorra vett vetületét!