

CLASSIFICATION OF SKIN DISEASES

Group 3 members

- Antony Kanai
- Brenda Kinoti
- Jared Bii
- Leah George
- Phelix Okumu
- Sharon Kimutai
- Janet Khainza

Project Scope

Business Understanding

- Skin diseases can vary widely, impacting overall
 health, and some, like skin cancer can be lifethreatening.
- Early and accurate identification of the types of skin diseases is of great importance.
- Cutting edge technologies can revolutionize
 dermatological diagnostics, enhancing efficiency,
 reducing errors, and ultimately improving
 patient outcomes.

Problem Statement

- Dermatologists at Flatter Dermatological Clinic struggle with accurately categorizing skin diseases from medical images.
- Current manual inspection and personal judgment time-consuming, prone to errors leading to delayed or inaccurate diagnoses.
- This inefficiency can result in missed patterns and life-threatening consequences.

Objectives

- **Main objective:** To build a convolutional neural network model capable of classifying the 9 different types of skin diseases with over 70% precision.
- Other objectives are;
- i. To **explore the distribution** of the different types/class of skin images in the dataset.
- ii. To **assess the quality and consistency** of images in the dataset.

Data Understanding

- Dataset : **2357** images
 - o **2,239** images for Training
 - o **118** images for Testing
- The data set contains **9 skin diseases**:

Actinic keratosis, **Basal cell carcinoma**, Dermatofibroma, **Melanom**a, Nevus, Pigmented benign
keratosis, Seborrheic keratosis, **Squamous cell carcinoma**, Vascular
lesion.

Data Preparation

Exploratory Data Analysis: image counts, sampling per class, Class distributions, Class separation, Texture Analysis, RGB color channels and Pixel Intensity

Data Preprocessing – Splitting the data (Training Validation sets), Rescaling and Resizing, Dealing with imbalance and transforming images to create new, slightly altered images for training

2

Image counts

 Distribution of the skin diseases image dataset with 5% of dataset reserved for testing purposes and 95% of dataset for training the CNN Model

Image sample per class

- This images shows a sample of image per class
- The images have distinct appearance from red, pink, brown, black and purple colors
- Actinic Keratosis appears as a visible rash, Melanoma appears as a dark patch and Dermatofibroma presents like tiny brownish patches.

Class distribution

- There is a significant **class imbalance on the Train set**
- Majority of test set class samples are balanced.

Height and Width Dimensions

- Majority of images dimensions approximately around **500 pixels in width** and **450 pixels in height.**
- Outlier circled in red dimensions approximately around 6500 pixels in width and 4500 pixels in height.
- Standardize the image dimensions by resizing to a common size.

Class Separation

- Absence of clear class separation images either have complex
 visual characteristics or share
 visual similarities.
- Apply augmentation to provide diverse data allowing the model to accurately distinguish between different classes.

Texture Analysis

- Majority of images in the classes exhibit **low contrast**, **low dissimilarity**, and **low energy**, indicating **minimal intensity variations**.
- Near-normal distributed homogeneity and higher correlation suggest a uniform and consistent texture pattern within the images

RGB Color Channels

- Class images as they appears in original, red, blue and green color channels.
- The images seem to be clearer
 on the red color channel.

Pixel Intensity

- 130 is the most common pixel value in the image, representing about 1.3% of the image's pixel distribution.
- Images exhibit a broad range of grayscale values, including both dark and bright regions.

Modeling

- Among the four models, the best performer was **VGG16**, a pre-trained model originally trained on a large dataset.
- Model performance Improvement Enhanced the sample size by
 transforming images, creating a more
 diverse set of samples and addressing class
 imbalance.
- Model Evaluation Evaluated three metrics: Precision, Accuracy and Recall. Focused on **Precision**

Model Evaluation

Models	•	Model 2 using transformed training set	Model 3 using pre- trained model VGG16	Model 4 adding dropout optimization
Loss	1.1437	1.1367	0.762	0.6525
Val_loss	1.3475	1.2334	1.0313	1.1275
Precision	75.27	70.67	81.48	83.43
Val_precision	68.39	67.41	73.16	70.92
Accuracy	59.1	57.53	73.68	77.15
Val_accuracy	53.17	56.4	64.85	63.74
Recall	42.24	45.3	65.45	71.35
Val_recall	33.93	43.49	56.4	59.4

- While the models showed relatively high-performance metrics, model3 demonstrated noticeable enhancements in precision scores and losses
- Precision Training
 81.48% and Validation
 73.16%

Model Predictions

 The model seems to predict Nevus and Basal cell carcinoma very well, indicating high Precision in identifying these conditions.

Data Limitation

- The skin disease **images size was relatively small** and could have significantly impacted the model performance
- The Data may have **not been from diverse geographical locations or age groups** limiting the model's generalizability.
- The dataset **may not account for variations in skin tones and ethnicities**, which can impact the model's performance in providing accurate diagnoses across diverse patient populations.

Conclusions and Recommendations

- Precision of 73% demonstrates the potential of our model in enhancing dermatological diagnostics and ultimately improving patient care.
- To build upon our success and advance the model, we recommend the following:
 - Utilize the model's proficiency in predicting **Basal cell carcinoma** and Nevus.
 - Obtain a **larger image data** for training the model.
 - Seek data from multiple sources and geographical regions
 - Collect data that spans different time periods and age groups.

Model Deployment

- Model deployment was done using stream lit.
- Link to upload images: CNN · Stream lit

Skin Condition Image Classifier

This app classifies images of skin conditions into one of nine classes.

Upload an image

Prediction: dermatofibroma

This is a simple skin condition image classification app using a CNN model.

Thank you