Számítógépes Hálózatok

9. Előadás: Hálózati réteg 2

Northeastern University

Helyi frissítések

West Willage (3)
RBoam 254

Nagy konkrét

IP cím

- Minden hoszt és minden router az Interneten rendelkezik egy IP-címmel, amely a hálózat számát és a hoszt számát kódolja. (egyedi kombináció)
- 4 bájton ábrázolják az IP-címet.
- □ Több évtizeden keresztül 5 osztályos címzést használtak: A,B, C, D és E.

IP cím

- Az IP-t pontokkal elválasztott decimális rendszerben írják. Például: 192.168.0.1
- Van pár speciális cím. Lásd az alábbiakban.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ez egy hoszt.
00 hoszt		Ez egy hoszt ezen hálózaton.
111111111111111111111111111		Adatszórás a helyi hálózaton.
Hálózat	11	Adatszórás egy távoli hálózaton.
0 1 1 1 1 1 1 (bármi)		Visszacsatolás.

IP cím – alhálózatok

- Az azonos hálózatban lévő hosztok ugyanazzal a hálózatszámmal rendelkeznek.
- Egy hálózat belső felhasználás szempontjából több részre osztódhat, de a külvilág számára egyetlen hálózatként jelenik meg.
 - Alhálózat (avagy angolul subnet)

IP cím – alhálózatok

AZONOSÍTÁS

- alhálózati maszk (avagy angolul subnet mask) ismerete kell a routernek
 - Két féle jelölés IP-cím jellegű vagy a fix pozíciók száma.
- A forgalomirányító táblázatba a router-eknél (hálózat,0) és (saját hálózat, hoszt)
 alakú bejegyzések.
- Ha nincs találat, akkor az alapértelmezett router felé továbbítják a csomagot.

IP cím – CIDR

7

- □ IP címek gyorsan fogytak. 1996-ban kötötték be a 100.000-edik hálózatot.
 - Az osztályok használata sok címet elpazarolt. (B osztályú címek népszerűsége)
- Megoldás: osztályok nélküli környezetek közötti forgalomirányítás (CIDR).
 - Például 2000 cím igénylése esetén 2048 méretű blokk kiadása.
- Forgalomirányítás megbonyolódik:
 - Minden bejegyzés egy 32-bites maszkkal egészül ki.
 - Egy bejegyzés innentől egy hármassal jellemezhető: (ip-cím, alhálózati maszk, kimeneti vonal)
 - Új csomag esetén a cél címből kimaszkolják az alhálózati címet, és találat esetén a leghosszabb illeszkedés felé továbbítják.
- Túl sok bejegyzés keletkezik.
 - Csoportos bejegyzések használata.

CIDR címzés példa

```
Mi történik, ha a router egy 135.46.57.14 IP cím felé tartó csomagot kap?
```

```
/22-ES CÍM ESETÉN
```

Kimaszkolás eredménye

/23-ES CÍM ESETÉN

Vagyis 135.46.56.0/22-as vagy 135.46.56.0/23-as bejegyzést kell találni, azaz jelen esetben a 0.interface felé történik a továbbítás.

Cím/maszk	Következő ugrás
135.46.56.0/22	0.interface
135.46.60.0/23	1.interface
192.53.40.0/23	1.router
Alapértelmezett	2.router

CIDR bejegyzés aggregálás példa

Lehet-e csoportosítani a következő bejegyzéseket, ha feltesszük, hogy a következő ugrás mindegyiknél az 1.router: 57.6.96.0/21, 57.6.104.0/21, 57.6.112.0/21, 57.6.120.0/21?

Azaz az (57.6.96.0/19, 1.router) bejegyzés megfelelően csoportba fogja a 4 bejegyzést.

Forgalomirányítási tábla példa

Kernel IP routin	ng table						
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
0.0.0.0	157.181.161.254	0.0.0.0	UG	0	Θ	Θ	enol
157.181.161.0	0.0.0.0	255.255.255.0	U	0	Θ	Θ	enol
172.17.0.0	0.0.0.0	255.255.0.0	U	0	Θ	Θ	docker0
172.24.0.0	0.0.0.0	255.255.0.0	U	0	Θ	Θ	br-772d81d6d979
192.168.0.0	0.0.0.0	255.255.255.0	U	0	Θ	0	eno2
102 168 122 A	0 0 0 0	255 255 255 A	III	Α	A	A	virhre

NAT

Gyors javítás az IP címek elfogyásának problémájára. (hálózati címfordítás)

ALAPELVEK

- Az internet forgalomhoz minden cégnek egy vagy legalábbis kevés IP-címet adnak. A vállalaton belül minden számítógéphez egyedi IP-címet használnak a belső forgalomirányításra.
- A vállalaton kívüli csomagokban a címfordítást végzünk.
- □ 3 IP-címtartományt használunk:
 - 10.0.0.0/8, azaz 16 777 216 lehetséges hoszt;
 - 172.16.0.0/12, azaz 1 084 576 lehetséges hoszt;
 - 192.168.0.0/16, azaz 65 536 lehetséges hoszt;
- NAT box végzi a címfordítást

NAT

- Hogyan fogadja a választ?
 - A port mezők használata, ami mind a TCP, mind az UDP fejlécben van
 - Kimenő csomagnál egy mutatót tárolunk le, amit beírunk a forrás port mezőbe. 65536 bejegyzésből álló fordítási táblázatot kell a NAT box-nak kezelni.
 - A fordítási táblázatban benne van az eredeti IP és forrás port.
- Ellenérvek: sérti az IP architekturális modelljét, összeköttetés alapú hálózatot képez, rétegmodell alapelveit sérti, kötöttség a TCP és UDP fejléchez, szöveg törzsében is lehet az IP, szűkös port tartomány

IP Fragmentation – IP Fragmentáció(darabolás)

Datagram Dgram1 Dgram2 1 2 3 4

- Probléma: minden hálózatnak megvan a maga MTU-ja
 - MTU: Maximum Transmission Unit lényegében a maximális használható csomag méret egy hálózatban
 - DARPA/Internet alapelv: hálózatok heterogének lehetnek
 - A minimális MTU nem ismert egy adott útvonalhoz
- □ IP esetén: fragmentáció
 - Vágjuk szét az IP csomagot, amikor az MTU csökken
 - Állítsuk helyre a darabokból a csomagot a fogadó állomásnál

IP fejléc: 2. szó

- 14
- Identifier (azonosító):
 - egyedi azonosító minden IP datagramhoz (csomaghoz)
- 🗆 Flags (jelölő bitek):
 - M flag, értéke 0, ha ez az utolsó darab/fragment, különben 1
- □ Offset (eltolás):
 - A darab/fragment első bájtjának pozíciója

0	4 8	3 12 1	6 1	9 24	3
Version	HLen	TOS	Datagram Length		
Identifier		Flags	Offset		
Ţ	TL	Protocol	Checksum		
Source IP Address					
Destination IP Address					
Options (if any, usually not)					
Data					

Példa

Példa

IP csomag helyreállítása

17

Hossz = 1500, M = 1, Offset = 0

- IP Data
- 20 1480

Hossz = 520, M = 1, Offset = 1480

IP Data

20 500

Hossz = 1500, M = 1, Offset = 1980

IP Data

20 1480

Hossz = 360, M = 0, Offset = 3460

IP Data
20 340

- □ A végponton történik
- M = 0, akkor ebből a darabból tudjuk a teljes adatmennyiséget
 - Hossz IPHDR_hossz + Offset
 - 360 20 + 3460 = 3800
- Kihívások:
 - Nem sorrendben beérkező darabok
 - Duplikátumok
 - Hiányzó darabok
- Memória kezelés szempontjából egy rémálom...

Fragmentáció

- Az Internet esetén
 - Elosztott és heterogén
 - Minden hálózat maga választ MTU-t
 - Kapcsolat nélküli datagram/csomag alapú protokoll
 - Minden darab tartalmazza a továbbításhoz szükséges összes információt
 - A darabok függetlenül kerülnek leszállításra, akár különböző útvonalon keresztül
 - Legjobb szándék elve szerint (best effort)
 - A router-ek és a fogadó is eldobhat darabokat
 - Nem követelmény a küldő értesítése a "hibáról"
 - A legtöbb feladat a végpontra hárul
 - Csomag helyreállítása a darabokból

- A fragmentáció költséges
 - Memória és CPU költés a csomag visszaállításához
 - Ha lehetséges, el kell kerülni
- MTU felderítő protokoll
 - Csomagküldés a "don't fragment" flag bittel
 - Folyamatosan csökkentjük a csomag méretét, amíg egy meg nem érkezik
 - Lehetséges "can't fragment" hiba egy routertől, ami közvetlenül tartalmazza az adott hálózatban használt MTU-t
- Darabok kezelését végző router
 - Gyors, specializált hardver megoldás
 - Dedikált erőforrás a darabok kezeléséhez

IPv6

Fogyó IPv4 címek

- □ Probléma: az IPv4 címtartomány túl kicsi
 - $2^{32} = 4,294,967,296$ lehetséges cím
 - Ez kevesebb mint egy emberenként
- A világ egy részén már nincs kiosztható IP blokk
 - □ IANA az utolsó /8 blokkot 2011-ben osztotta ki

Régió	Regional Internet Registry (RIR)	Utolsó IP blokk kiosztása
Asia/Pacific	APNIC	April 19, 2011
Europe/Middle East	RIPE	September 14, 2012
North America	ARIN	13 Jan 2015 (Projected)
South America	LACNIC	13 Jan 2015 (Projected)
Africa	AFRINIC	17 Jan 2022(Projected)

- □ IPv6, 1998(!)-ban mutatták be
 - □ 128 bites címek
 - 4.8 * 10²⁸ cím/ember
- Cím formátum
 - 16 bites értékek 8 csoportba sorolva (':'-tal elválasztva)
 - Minden csoport elején szereplő nulla sorozatok elhagyhatók
 - Csupa nulla csoportok elhagyhatók, ekkor '::'

2001:0db8:0000:0000:0000:ff00:0042:8329 2001:db8:0:0:0:ff00:42:8329

2001:db8::ff00:42:8329

- □ Ki tudja a localhost IPv4 címét?
 - **127.0.0.1**

- Mi ez az IPv6 esetén?
 - **::1**

24

Az IPv4-nél látott kétszerese (320 bit vs. 160 bit)

Különbségek az IPv4-hez képest

- Számos mező hiányzik az IPv6 fejlécből
 - □ Fejléc hossza beépült a Next Header mezőbe
 - Checksum nem igazán használták már korábban se...
 - Identifier, Flags, Offset
 - IPv6 routerek nem támogatják a fragmentációt
 - Az állomások MTU felderítést alkalmaznak
- Az Internet felhasználás súlypontjainak megváltozása
 - Napjaink hálózatai sokkal homogénebbek, mint azt kezdetben gondolták
 - Azonban a routing költsége és bonyolultsága domináns

Teljesítmény növekmény

- Nincsenek ellenőrizendő kontrollösszegek (checksum)
- Nem szükséges a fragmentáció kezelése a routerekben
- Egyszerű routing tábla szerkezet
 - A cím tér nagy
 - Nincs szükség CIDR-re (de aggregáció szükséges)
 - A szabványos alhálózat méret 2⁶⁴ cím
- □ Egyszerű auto-konfiguráció
 - Neighbor Discovery Protocol

További IPvó lehetőségek

- □ Forrás Routing
 - Az állomás meghatározhatja azt az útvonalat, amelyen a csomagjait továbbítani szeretné
- Mobil IP
 - Az állomások magukkal vihetik az IP címüket más hálózatokba
 - Forrás routing használata a csomagok irányításához
- Privacy kiterjesztések
 - Véletlenszerűen generált állomás azonosítók
 - Megnehezíti egy IP egy adott állomáshoz való kapcsolását
- Jumbograms
 - 4Gb-es datagramok küldése

Bevezetési nehézségek

- □ IPv6 bevezetése a teljes Internet frissítését jelentené
 - Minden router, minden hoszt
 - □ ICMPv6, DHCPv6, DNSv6
- 2013: 0.94%-a a Google forgalmának volt IPv6 feletti
- □ 2015: ez 2.5%

IPv6 Adoption

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

Átmenet IPv6-ra

- □ Hogyan történhet az átmenet IPv4-ről IPv6-ra?
 - Napjainkban a legtöbb végpont a hálózat széleken támogatja az IPv6-ot
 - Windows/OSX/iOS/Android mind tartalmaz IPv6 támogatást
 - Az itteni vezetéknélküli access point-ok is valószínűleg IPv6 képesek
 - Az Internet magja a probléma

Átmeneti megoldások

- Azaz hogyan routoljunk IPv6 forgalmaz IPv4 hálózat felett?
- Megoldás
 - Használjunk tunneleket az IPvó csomagok becsomagolására és IPv4 hálózaton való továbbítására
 - Számos különböző implementáció
 - 6to4
 - IPv6 Rapid Deployment (6rd)
 - Teredo
 - **...**

Routing 2. felvonás

Újra: Internet forgalom irányítás

- Az Internet egy két szintű hierarchiába van szervezve
- Első szint autonóm rendszerek (AS-ek)
 - AS egy adminisztratív tartomány alatti hálózat
 - □ Pl.: ELTE, Comcast, AT&T, Verizon, Sprint, ...
- AS-en belül ún. intra-domain routing protokollokat használunk
 - Distance Vector, pl.: Routing Information Protocol (RIP)
 - Link State, pl.: Open Shortest Path First (OSPF)
- AS-ek között ún. inter-domain routing protokollokat
 - Border Gateway Routing (BGP)
 - Napjainkban: BGP-4

Miért van szükség AS-ekre?

- A routing algoritmusok nem elég hatékonyak ahhoz, hogy a teljes Internet topológián működjenek
- Különböző szervezetek más-más politika mentén akarnak forgalom irányítást (policy)
- Lehetőség, hogy a szervezetek elrejtsék a belső hálózatuk szerkezetét
- Lehetőség, hogy a szervezetek eldöntsék, hogy mely más szervezeteken keresztül forgalmazzanak
 - Egyszerűbb az útvonalak számítása
 - Nagyobb rugalmasság
 - Nagyobb autonómia/függetlenség

AS számok

- □ Minden AS-t egy AS szám (ASN) azonosít
 - 16 bites érték (a legújabb protokollok már 32 bites azonosítókat is támogatnak)
 - 64512 65535 más célra foglalt
- Jelenleg kb. 40000 AS szám létezik
 - □ AT&T: 5074, 6341, 7018, ...
 - □ Sprint: 1239, 1240, 6211, 6242, ...
 - □ ELTE: 2012
 - Google 15169, 36561 (formerly YT), + others
 - □ Facebook 32934
 - Észak-amerkiai AS-ek → ftp://ftp.arin.net/info/asn.txt

Inter-Domain Routing

- A globális összeköttetéshez szükséges!!!
 - Azaz minden AS-nek <u>ugyanazt</u> a protokollt kell használnia
 - Szemben az intra-domain routing-gal
- Milyen követelmények vannak?
 - Skálázódás
 - Rugalmas útvonal választás
 - Költség
 - Forgalom irányítás egy hiba kikerülésére
- Milyen protokollt válasszunk?
 - link state vagy distance vector?
 - □ Válasz: A BGP egy path vector (útvonal vektor) protokoll

ÁLTALÁNOS

AS-ek közötti (exterior gateway protocol).

Eltérő célok vannak forgalomirányítási szempontból, mint az AS-eken belüli protokollnál.

Politikai szempontok szerepet játszathatnak a forgalomirányítási döntésben.

NÉHÁNY PÉLDA FORGALOMIRÁNYÍTÁSI KORLÁTOZÁSRA

- Ne legyen átmenő forgalom bizonyos AS-eken keresztül.
- Csak akkor haladjunk át Albánián, ha nincs más út a célhoz.
- Az IBM-nél kezdődő illetve végződő forgalom ne menjen át a Microsofton.
- A politikai jellegű szabályokat kézzel konfigurálják a BGP-routeren.
- A BGP router szempontjából a világ AS-ekből és a közöttük átmenő vonalakból áll.

DEFINÍCIÓ

Két AS összekötött, ha van köztük a BGP-router-eiket összekötő él.

Border Gateway Protocol

HÁLÓZATOK CSOPORTOSÍTÁSA AZ ÁTMENŐ FORGALOM SZEMPONTJÁBÓL

- Csonka hálózatok, amelyeknek csak egyetlen összeköttetésük van a BGP gráffal.
- 2. Többszörösen bekötött hálózatok, amelyeket használhatna az átmenő forgalom, de ezek ezt megtagadják.
- Tranzit hálózatok, amelyek némi megkötéssel, illetve általában fizetség ellenében, készek kezelni harmadik fél csomagjait.

JELLEMZŐK

- A BGP router-ek páronként TCP-összeköttetést létrehozva kommunikálnak egymással.
- A BGP alapvetően távolságvektor protokoll, viszont a router nyomon követi a használt útvonalat, és az útvonalat mondja meg a szomszédjainak.

BGP egyszerűsített működése

Border Gateway Protocol

A F által a szomszédjaitól kapott D-re vonatkozó információ az alábbi:

B-től: "Én a BCD-t használom"
G-től: "Én a GCD-t használom"
I-től: "Én a IFGCD-t használom"
E-től: "Én a EFGCD-t használom"

BGP kapcsolatok

Tier-1 ISP Peering

Tier-1 ISP Peering

Útvonalvektor protokoll Path Vector Protocol

47

- AS-útvonal: AS-ek sorozata melyeken áthalad az útvonal
 - Hasonló a távolságvektorhoz, de további információt is tartalmaz
- Hurkok, körök detektálása és külnböző továbbítási politikák alkalmazása
 - Pl. válaszd a legolcsóbb/legrövidebb utat
- Routing a leghosszabb prefix egyezés alapján

AS 3 130.10.0.0/16 AS 2 AS 4 120.10.0.0/16

AS 5 110.10.0.0/16

AS 1

120.10.0.0/16: AS 2 \rightarrow AS 3 \rightarrow AS 4

130.10.0.0/16: AS 2 \rightarrow AS 3

110.10.0.0/16: AS 2 \rightarrow AS 5

Útvonalvektor protokoll Path Vector Protocol

- □ A távolságvektor protokoll kiterjesztése
 - Rugalmas továbbítási politikák
 - Megoldja a végtelenig számolás problémáját
 - Útvonalvektor: Célállomás, következő ugrás (nh), AS útvonal
- Ötlet: a teljes útvonalat meghirdeti
 - □ Távolságvektor: távolság metrika küldése célállomásonként
 - Útvonalvektor: a teljes útvonal küldése célállomásonként

Rugalmas forgalomirányítás

- Minden állomás hely/saját útválasztási politikát alkalmaz
 - Útvonal kiválasztás: Melyik útvonalat használjuk?
 - Útvonal export: Melyik útvonalat hirdessük meg?
- Példák
 - A 2. állomás által preferált útvonal: "2, 3, 1" (nem a "2, 1")
 - Az 1. állomás nem hagyja, hogy a 3. állomás értesüljön az "1, 2" útvonalról

Shortest AS Path != Shortest Path

Hot Potato Routing

Importing Routes

Exporting Routes

53 \$\$\$ generating Customer and routes ISP routes only To Provider То To Peer Peer To Customer Customers get all routes

BGP

IGB - iBGP - eBGP

55

- eBGP: Routing információk cseréje autonóm rendszerek között
- IGP: útválasztás egy AS-en belül belső célállomáshoz
- iBGP: útválasztás egy AS-en belül egy külső célállomáshoz

- 1. eBGP A megismeri az útvonal a célhoz, ehhez eBGP-t használunk
- 2. iBGP A-ban levő router megtanulja a célhoz vezető utat az iBGP segítségével (a köv. ugrás a határ router)
- 3. IGP IGP segítségével eljuttatja
 a csomagot az A határrouteréig

Cél állomás

Forrás: wikipedia

Köszönöm a figyelmet!