

Time series analysis

Master of Cognitive Science

Steven Moran & Marco Maiolini

Nov 23, 2022

What is a time series?

Methods for time series analysis

Time series

"Collection of observation made sequentially through time"

· Mathematical model to explain serial correlation in a time series data set

• Time series analysis provides a robust statistical framework for analysis

Economics & Finance

Physical observations

Biological observations

Coronavirus in Northern Ireland

Reported new daily confirmed cases

Data from 1 June 2021

Source: Department of Health as of 7 January 2022

BBC

Types of time series

• Discrete: Data taken only in specific fixed time

• Continuous: Data taken continuously through time

• **Deterministic**: Predicted exactly by previous values

Stochastic: Only partially predicted by past values

Why use time series analysis?

· Identify systematic patterns or causes of trends through time

Time series forecasting to predict future events

Clean your data and impute missing values (fill the gaps)

Example of time series

• Weather data, e.g. rainfall, temperature

• Health data, e.g., heart rate (EKG) or brain (EEG) monitoring

• Forecasting, e.g., stocks, business sales, interest rates, trading, gambling

Describe

Describe

Explain

Describe

Explain

Predict

Describe

Explain

Predict

Control

• Mean: The central value of a finite set of numbers

• Frequency: Sampling frequency

Variance: Expectation of the squared deviation of a random variable from its mean

Autocorrelation: Correlation among neighboring observations

Population growth rate:

How to plot a time series in R: plot.ts(x, xlab, ylab, main)

Autocorrelation plot

How to do an autocorrelation plot for a specific time series in R: acf(x, main)

Trend: General development of a feature over time

Trend: General development of a feature over time

Relation between your data and time

Trend: General development of a feature over time

Relation between your data and time

Linear trends

Periodic trends

Trend: General development of a feature over time

Relation between your data and time

Linear trends

Periodic trends

In R you can remove the linear trend with: diff()

Basic models of time series

White Noise model (WN)

Random walk model (RW)

Simple moving average model (MA)

Autoregressive model (AR)

Basic models of time series

- Does our observed time series follow one of these models?
 - White noise
 - Random walk model (RW)
 - Simple moving average model (MA)
 - Autoregressive model (AR)

The simplest model of time series

The simplest model of time series

A fixed, constant mean

The simplest model of time series

- A fixed, constant mean
- · A fixed, constant variance

The simplest model of time series

- A fixed, constant mean
- · A fixed, constant variance
- No correlation over time

The simplest model of time series

- A fixed, constant mean
- A fixed, constant variance
- No correlation over time

In R you can fit your data in a WN model using this code:

arima(x, order=c(0,0,0))

residuals(fit213200)

Random walk model (RW)

Another simple model of time series

For each period (x-axis), the variable takes a random step up or down (y-axis)

Random walk model (RW)

Defined as: Today = Yesterday + Noise

Random walk model (RW)

Defined as: Today = Yesterday + Noise — Today - Yesterday = Noise

Random walk model (RW)

Defined as: Today = Yesterday + Noise — Today - Yesterday = Noise White noise

 $diff(RW) \rightarrow WN \ model$

Random walk model (RW)

Defined as:

- No specific mean
- No specific variance
- Strong dependence over time

White noise

 $diff(RW) \rightarrow WN \ model$

Random walk model (RW)

Defined as:

- No specific mean
- No specific variance
- Strong dependence over time

 $diff(RW) \rightarrow WN \ model$

White noise

In R you can fit your data in a RW model using this code:

arima(x, order=c(0,1,0))

Stationarity

Parsimonious models with distributional stability over time (values are not a function of time)

Stationary models can be modeled with fewer values, however few time series are stationary

Autocorrelation: correlation with past observations

- Study how each time series observation is related to its recent past
- Greater autocorrelation is more predictable
- Lag 1 autocorrelation
 - E.g. compare today versus yesterday for each day
 - cor()
 - · Previous stock price is high, likely to be high
- Lag 2 autocorrelation
 - Defined by similarity
 - Compare today versus yesterday AND the day before yesterday
- Autocorrelation function plot: acf()

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous observation

Slope =
$$1 \& \text{Mean} = 0$$
 (Today - 0) = $1 * (\text{Yesterday} - 0) + \text{Noise}$

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous observation

Slope = 1 & Mean = 0Today = Yesterday + Noise (Today - Mean) = Slope * (Yesterday - Mean) + Noise Slope = 0AR model Slope = 0.7AR model Slope = -0.72 2 ကု 20 60 80 100 20 60 80 100 9.0 0.5 0.0 0.5 15 15 20

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

Forecast

We can use the <u>Autoregressive models (AR)</u> and the <u>Simple Moving Average models (MA)</u> models to fit our data and try to forecast our time series

• Fitted values: Forecast (estimation) of an observation using all previous ones

Forecast

We can use the <u>Autoregressive models (AR)</u> and the <u>Simple Moving Average models (MA)</u> models to fit our data and try to forecast our time series

- Fitted values: Forecast (estimation) of an observation using all previous ones
- Residuals: Difference between the observation and the corresponding fitted values

Forecast

We can use the <u>Autoregressive models (AR)</u> and the <u>Simple Moving Average models (MA)</u> models to fit our data and try to forecast our time series

- Fitted values: Forecast (estimation) of an observation using all previous ones
- Residuals: Difference between the observation and the corresponding fitted values

Forecast in R

To fit our time series on AR model:

AR model $\leftarrow arima(x, order=c(1,0,0))$

Forecast in R

To fit our time series on AR model:

AR model $\leftarrow arima(x, order=c(1,0,0))$

To fit our time series on MA model:

MA model $\leftarrow arima(x, order=c(0,0,1))$

Forecast in R

To fit our time series on AR model:

AR model \leftarrow arima(x, order=c(1,0,0))

Fitted values \leftarrow x - residuals(x)

Forecast \leftarrow predict(x)\$pred

Forecast SD \leftarrow predict(x)\$sd

To fit our time series on MA model:

MA model \leftarrow arima(x, order=c(0,0,1))

Fitted values \leftarrow x - residuals(x)

Forecast \leftarrow predict(x)\$pred

Forecast SD \leftarrow predict(x)\$sd

Compare different models

When comparing different models we want to find out which model explains better our data regardless of the **individual independent variables** in the model.

It doesn't mean that there is a right and a wrong model!

Compare different models

When comparing different models we want to find out which model explain better my data regardless of the **individual independent variables** in the model.

It doesn't mean that there is a right and a wrong model!

Akaike's information criteria (AIC):

AIC estimates model complexity. It works by estimating the expected performance of the model's predictions, for that scope it uses observed data and hypothetical sample generated by the same model.

The best model show the smallest value; a difference within 4 - 7 units indicate less support, a difference over 10 indicate that the worse model can be omitted

Limits of time series analysis

Limited to previous observations

Seriously affected by NAs values

When forecasting doesn't take into account variables

General workflow

Outline a hypothesis for a particular time series and its behavior

One liners for time series terminology

- **Trend**: long-term change in the mean of the data;
- Seasonality: regular and predictable changes;
- Residuals: de-seasonalised and de-trended series;
- Stationarity: When time series properties remain constant over time;
- Autocorrelation: Correlation with past observations;
- Heteroskedasticity: Changes in the variance;
- Regularity: Whether the series is captured at regular intervals;
- Frequency: Frequency at which the series is observed;
- Reflexivity: When the forecast affects the outcome;
- Outliers: Rare but possibly interesting observations;
- Regimes and Change Detection: When the data distribution changes;
- Dimensionality: Number of variables in the time series.

