1. Свойства интегралов от неотрицательных функций (в т.ч. теорема Леви для рядов).

1. Основные свойства

Монотонность

Если $0 \leq f(x) \leq g(x)$ п.в. на X, то:

$$\int_X f\,d\mu \le \int_X g\,d\mu.$$

Линейность

Для $a,b \geq 0$:

$$\int_X (af+bg)\,d\mu = a\int_X f\,d\mu + b\int_X g\,d\mu.$$

Аддитивность по области

Если $A\cap B=\emptyset$, то:

$$\int_{A \sqcup B} f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu.$$

Невозрастание меры

Если $A\subseteq B$, то:

$$\int_A f \, d\mu \leq \int_B f \, d\mu.$$

2. Теорема Леви для рядов

Если $f_k \geq 0$ и измеримы, то:

$$\int_E \sum_{k=1}^\infty f_k \, d\mu = \sum_{k=1}^\infty \int_E f_k \, d\mu.$$

2. Неравенство Чебышева

Суммируемая функция $f \in L(E,\mu)$

Определение

Функция f называется суммируемой на E (пишут f \in L(E, μ)), если:

$$\int_E |f|\,d\mu < +\infty$$

Свойство

Если f суммируема, то она конечна почти всюду на Е.

Измеримая функция $f \in S(E)$

S(E) — это множество всех измеримых функций $f:E o\mathbb{R}$, принимающих конечное число значений.

$$S(E)=\{f$$
 измерима $\mid f(E)=\{c_1,\ldots,c_n\},\,c_i\in\mathbb{R},\,n<\infty\}$

Формулировка неравенства Чебышева

Для $f \in S(E)$ (классу измеримых функций), t > 0:

$$\mu\{x\in E: |f(x)|\geq t\}\leq rac{1}{t}\int_E |f|\,d\mu$$

Следствие 1

Если
$$f\in L(E,\mu)$$
, то $\mu(\{x\in E:|f(x)|=+\infty\})=0.$

Следствие 2

Если $f\geq 0$ и $\int_E f d\mu=0$, то f=0 почти всюду на E.

3. Приближение интеграла интегралом по множеству конечной меры

Определение

Пусть $f\in L(E,\mu)$, где $\mu E=+\infty$. Тогда для любого $\varepsilon>0$ существует подмножество $E_{\varepsilon}\subset E$ такое, что:

- 1. $\mu E_{arepsilon} < +\infty$ (множество $E_{arepsilon}$ имеет конечную меру),
- 2. $\int_{E\setminus E_{arepsilon}}|f|\,d\mu<arepsilon$ (интеграл от |f| по дополнению $E\setminus E_{arepsilon}$ меньше arepsilon).

Счетная аддитивность интеграла

Если $E=\bigcup_k E_k$, где E_k измеримы и попарно не пересекаются, и интеграл $\int_E f \ d\mu$ существует, то:

$$\int_E f\,d\mu = \sum_k \int_{E_k} f\,d\mu.$$

4. Теорема Фату

liminf

$$\liminf_{n o\infty}A_n=igcup_{n=1}^\inftyigcap_{k=n}^\infty A_k$$

Фату для неотрицательных измеримых функций

Пусть $f_n \in S(E)$, $f_n \geq 0$. Тогда:

$$\int_E \liminf_{n o \infty} f_n \, d\mu \leq \liminf_{n o \infty} \int_E f_n \, d\mu.$$

Фату для поточечного предела

Пусть $f_n, f \in S(E)$, $f_n \geq 0$, $f_n o f$ почти везде на E. Тогда:

$$\int_E f\,d\mu \leq \liminf_{n o\infty} \int_E f_n\,d\mu.$$

5. Теорема Лебега о мажорированной сходимости

Мажоранта

Функция (или число), которая доминирует (превосходит) другую функцию (или последовательность) на заданном множестве.

Теорема Лебега

Если последовательность измеримых функций f_n сходится к f почти везде на E, и существует суммируемая мажоранта $\phi \in L(E,\mu)$ (т.е. $|f_n| \leq \phi$ почти везде), то предельный переход под знаком интеграла корректен:

$$\lim_{n o\infty}\int_E f_n\,d\mu=\int_E f\,d\mu.$$

Следствие Теоремы Лебега (для множеств конечной меры)

Если $\mu(E) < +\infty$, f_n равномерно ограничены ($|f_n| \leq K$) и $f_n o f$ почти везде, то

$$\lim_{n o\infty}\int_E f_n\,d\mu=\int_E f\,d\mu.$$

Ограниченность семейства функций

Свойство семейства вещественных функций $\{f_a\}_{a\in A}$, где A — некоторое множество индексов, X — произвольное множество. Означает, что все функции семейства ограничены одной константой C:

$$\exists C > 0 \quad \forall a \in A \quad \forall x \in X \quad |f_a(x)| < C.$$

6.Интеграл Лебега от функции непрерывной на замкнутом промежутке; сравнение несобственого интеграла с интегралом Лебега.

Определение интеграла Римана

Функция $f:[a,b] o \mathbb{R}$ интегрируема по Риману, если существует предел интегральных сумм $\sum_{i=1}^n f(\xi_i) \Delta x_i$ при стремлении диаметра разбиения к нулю.

Критерий Лебега интегрируемости по Риману

Функция $f:[a,b] o \mathbb{R}$ интегрируема по Риману ($f \in R[a,b]$), если она ограничена и множество её точек разрыва имеет нулевую меру.

Сравнение интегралов Римана и Лебега

Если $f\in R[a,b]$, то $f\in L[a,b]$, и значения интегралов совпадают: $(L)\int_a^b f=(R)\int_a^b f.$

Несобственный интеграл и интеграл Лебега

Несобственный интеграл Римана на [a,c] — предел $\lim_{b o a}\int_b^c f(t)dt$. Он абсолютно сходится, если сходится $\int_a^c |f(t)|dt$.

7. Вычисление меры множества по мерам сечений

Теорема о связи меры множества с мерами его сечений

1. Измеримость сечений

Для множества $E\subseteq \mathbb{R}^{n+m}$ и фиксированного $x\in \mathbb{R}^n$ сечение определяется как:

$$E(x) = \{ y \in \mathbb{R}^m \mid (x, y) \in E \}$$

Если E - измеримо по Лебегу в \mathbb{R}^{n+m} , то для почти всех $x\in\mathbb{R}^n$ сечения E(x) измеримы в \mathbb{R}^m

2. Измеримость функции мер

Для измеримого множества $E\subseteq\mathbb{R}^{n+m}$ функция меры сечений определяется как:

$$f_E:\mathbb{R}^n o\mathbb{R},\quad f_E(x)=\mu(E(x))$$

 $E(x) = \{y \in \mathbb{R}^m \mid (x,y) \in E\}$ - сечение множества μ - мера Лебега в \mathbb{R}^m

3. Формула меры

Мера $\mu_{n+m}(E)$ — это стандартная мера Лебега на \mathbb{R}^{n+m} .

$$\mu_{n+m}(E) = \int_{\mathbb{R}^n} \mu_m(E(x)) \, dx.$$

Измеримость по Лебегу

Множество $E\subset\mathbb{R}^n$ измеримо по Лебеге, если для любого $\varepsilon>0$ существуют: Открытое множество $U\supset E$ и замкнутое $F\subset E$, такие что $\mu_n(U\setminus F)<\varepsilon$.

8. Мера декартова произведения и мера Лебега как произведение мер

Мера декартова произведения

 \mathcal{A}_n - σ -алгебра измеримых по Лебегу множеств в \mathbb{R}^n Для измеримых множеств $A\in\mathcal{A}_n$, $B\in\mathcal{A}_m$ их декартово произведение $A\times B$ измеримо в \mathbb{R}^{n+m} , и его мера равна произведению мер:

$$\mu_{n+m}(A \times B) = \mu_n(A) \cdot \mu_m(B).$$

Мера Лебега как произведение мер

Мера Лебега на \mathbb{R}^n — это n-кратное произведение одномерных мер Лебега:

$$\lambda^n = \underbrace{\lambda^1 \times \lambda^1 \times \cdots \times \lambda^1}_{n \text{ pas}}.$$

9. Мера графика и подграфика

График функции (Гf)

Определение:

Для $f:E\subset\mathbb{R}^n o\mathbb{R}$ график — множество точек $(x,y)\in\mathbb{R}^{n+1}$, где y=f(x).

Подграфик функции (Qf)

Определение:

Для $f:E\subset\mathbb{R}^n o [0,+\infty]$ подграфик — множество точек (x,y), где $0\leq y\leq f(x)$.

Мера графика

Если $E\subset\mathbb{R}^n$, $f\in S(E)$ (измерима по Лебегу), то $\Gamma f\in\mathcal{A}_{n+1}$ и $\mu_{n+1}(\Gamma f)=0.$

Мера подграфика

Пусть $E \in \mathcal{A}_n$, $f: E o [0, +\infty]$. Тогда:

$$Q_f$$
 измерим $\Leftrightarrow f$ измерима, и $\mu_{n+1}(Q_f) = \int_E f \, d\mu_n.$

Доп:

 \mathcal{A}_n - σ -алгебра измеримых по Лебегу множеств в \mathbb{R}^n

10. Теорема Тонелли и Фубини

Теорема Тонелли (для неотрицательных функций)

Пусть $E\subset \mathbb{R}^{n+m}$, $f\in S(E o [0,+\infty])$. Тогда справедливы следующие утверждения.

- 1. При почти всех $x \in \mathbb{R}^n$ $f(x,\cdot) \in S(E(x))$.
- 2. Функция I, заданная формулой $I(x)=\int_{E(x)}f(x,y)dy$, измерима на \mathbb{R}^n .

3.
$$\int_E f d\mu_{n+m} = \int_{\mathbb{R}^n} I(x) dx$$
 .

Теорема Фубини (для суммируемых функций)

Пусть $E\subset \mathbb{R}^{n+m}$, $f\in L(E)$. Тогда справедливы следующие утверждения.

- 1. При почти всех $x \in \mathbb{R}^n \ f(x,\cdot) \in L(E(x)).$
- 2. Функция I, заданная формулой $I(x)=\int_{E(x)}f(x,y)dy$, суммируема на \mathbb{R}^n .
- 3. $\int_E f d\mu_{n+m} = \int_{\mathbb{R}^n} I(x) dx$.

Основное отличие теорем

Теорема Тонелли применяется к неотрицательным измеримым функциям $(f \geq 0)$, но не требует их суммируемости. Теорема Фубини применяется к функциям произвольного знака, но требует их суммируемости на E $(f \in L(E))$. При выполнении условий Фубини справедливо равенство повторных интегралов.

Интегральная функцией сечения I(x)

Функция, определяемая как $I(x)=\int_{E(x)}f(x,y)\,dy$, где $E(x)=\{y\in\mathbb{R}^m:(x,y)\in E\}$ — сечение множества E при фиксированном x.

11. Интеграл Эйлера-Пуассона

Определение:

Интеграл Эйлера-Пуассона — это несобственный интеграл вида $I=\int_0^{+\infty}e^{-x^2}\,dx$, значение которого равно $\frac{\sqrt{\pi}}{2}$.

Ключевые шаги:

- 1. Замена $I^2 = \iint e^{-(x^2+y^2)} \, dx \, dy$.
- 2. Переход к полярным координатам: $\int_0^{+\infty} \int_0^{\pi/2} r e^{-r^2} \, d\varphi \, dr$.
- 3. Вычисление: $\frac{\pi}{4}$, откуда $I=\frac{\sqrt{\pi}}{2}$.

12. Мера n-мерного шара и сферы

Определение:

Мера Лебега μ_n n-мерного шара $\overline{B}_n(a,R)=\{x\in\mathbb{R}^n:|x-a|\leq R\}$ вычисляется по формуле:

$$\mu_n \overline{B}_n(a,R) = rac{2^n}{n!} \left(rac{\pi}{2}
ight)^{\lfloor rac{n}{2}
floor} R^n.$$

Примеры:

- $\mu_2 \overline{B}_2(a, R) = \pi R^2$ (круг),
- $\mu_3\overline{B}_3(a,R)=rac{4}{3}\pi R^3$ (шар), $\mu_4\overline{B}_4(a,R)=rac{\pi^2}{2}R^4.$

13. Замена переменной в интеграле, образ и плотность меры

Общая схема замены переменной

Для пространств с мерами (X,A,μ) , (Y,B,v) и измеримой функции $h\geq 0$, если vB= $\int_{\Phi^{-1}(B)} h \, d\mu$ и f измерима на Y , то:

$$\int_Y f\,dv = \int_X (f\circ\Phi)h\,d\mu.$$

Образ меры

Если $h\equiv 1$, то $v=\Phi(\mu)$ (образ меры μ), и:

$$\int_{Y} f \, dv = \int_{X} f \circ \Phi \, d\mu.$$

Плотность меры

Если $vA=\int_A h\,d\mu$, то h- плотность v относительно μ , и:

$$\int_X f\,dv = \int_X f h\,d\mu.$$

Доп

 Φ – это измеримое отображение (функция), которое "переводит" точки из пространства X в пространство Y.

h – весовая функция, это неотрицательная измеримая функция, которая определяет, как мера μ на X преобразуется в меру v на Y.

14. Естественная мера на кривой и на поверхности. Криволинейный и поверхностный интегралыпервого рода для элементарных поверхностей

1. Мера, порожденная кривой

Пусть $\gamma:\langle a,b\rangle \to \mathbb{R}^n$ - кривая. Для множества B определим $\mathcal{A}=\{B:\gamma^{-1}(B)$ измеримо $\}$ (σ -алгебра). Мера m_γ на кривой задается формулой:

$$m_{\gamma}(B) = \int_{\gamma^{-1}(B)} \|\gamma'(t)\| dt$$

2. Мера, порожденная поверхностью

Пусть $\varphi:U\subseteq\mathbb{R}^2\to\mathbb{R}^3$ - параметризация поверхности (φ гладкая). Для множества B мера m_S на поверхности задается формулой:

$$m_S(B) = \int_{arphi^{-1}(B)} \|arphi_u imes arphi_v\| du dv$$

3. Криволинейный интеграл первого рода

Пусть $\gamma:\langle a,b\rangle \to \mathbb{R}^n$ - кривая, $A\subseteq \mathbb{R}^n$, $x=\gamma(t)$. Интеграл функции f по кривой γ в множестве A определяется как:

$$\int_A f d\gamma = \int_{\gamma^{-1}(A)} f(\gamma(t)) \cdot \|\gamma'(t)\| dt$$

4. Поверхностный интеграл первого рода

Пусть S - поверхность, заданная параметризацией $\varphi:U\subseteq\mathbb{R}^2\to\mathbb{R}^3$, $x=\varphi(u)$, $A\subseteq\mathbb{R}^3$. Для функции f, определенной на поверхности, интеграл по множеству A задается формулой:

$$\int_A f dS = \int_{arphi^{-1}(A)} f(arphi(u)) \cdot \|arphi_u imes arphi_v\| du dv$$

15. Преобразование меры Лебега при диффеоморфизме. Замена переменной в интеграле Лебега. Использование полярных, цилиндрических и сферических координат в кратных интегралах.

Диффеоморфизм

Пусть $G,V\subset\mathbb{R}^n$ — открытые множества. Отображение $\Phi:G o V$ называется диффеоморфизмом, если:

- Ф биективно
- $\Phi \in C^{(1)}(G \to V)$
- $\Phi^{-1} \in C^{(1)}(V o G).$ Якобиан $\det \Phi'
 eq 0$ во всех точках G.

Преобразование меры Лебега

Пусть $G\subset \mathbb{R}^n$ открыто, $\Phi:G o \mathbb{R}^n$ — диффеоморфизм. Тогда для $E\in \mathcal{A}_n(G)$:

$$\mu(\Phi(E)) = \int_E |\det \Phi'(x)| d\mu.$$

Замена переменных в интеграле Лебега

Пусть $G\subset\mathbb{R}^n$ открыто, $\Phi:G o\mathbb{R}^n$ — диффеоморфизм, $E\in\mathcal{A}_n(G)$, $f\in\mathcal{S}(\Phi(E))$. Тогда:

$$\int_{\Phi(E)} f(y) d\mu(y) = \int_E f(\Phi(x)) \cdot |\det \Phi'(x)| d\mu(x).$$

Равенство выполняется, если существует один из интегралов.

Классические замены координат

Полярные (\mathbb{R}^2): $x=r\cos\varphi,\;y=r\sin\varphi,\quad |\det\Phi'|=r$ Цилиндрические (\mathbb{R}^3): $x=r\cos\varphi,\;y=r\sin\varphi,\;z=h,\quad |\det\Phi'|=r$ Сферические (\mathbb{R}^3): $x=r\cos\varphi\cos\psi,\;y=r\sin\varphi\cos\psi,\;z=r\sin\psi,\quad |\det\Phi'|=r^2|\cos\psi|$

Доп:

 $\det Darphi$ - якобиан.

16. Мера Лебега-Стилтьеса и дискретная мера

Полукольцо ячеек

Полукольцо ячеек P_{Δ} — это семейство промежутков вида [a,b) (или других типов: (a,b], [a,b], (a,b)), замкнутое относительно пересечения и таких, что разность двух ячеек представима в виде конечного объединения непересекающихся ячеек из P_{Δ} .

Мера Лебега-Стилтьеса

Мера μ_g на полукольце ячеек P_Δ , заданная через возрастающую непрерывную слева функцию g как $v_g[a,b]=g(b)-g(a)$, и стандартно распространённая на σ -алгебру A_g .

Дискретная мера Лебега-Стилтьеса

Для функции g со скачками h_k в точках a_k :

$$\mu_g(A) = \sum_{a_k \in A} h_k$$

где A — любое измеримое подмножество числовой прямой (например, интервал, отрезок или точечное множество).

Ключевая связь

Дискретная мера — частный случай меры Лебега-Стилтьеса, где g кусочно-постоянна со скачками в точках носителя. Это позволяет единообразно работать как с непрерывными, так и дискретными распределениями.

17. Интеграл Лебега-Стилтьеса по мере, порожденной абсолютно непрерывной функцией

1. Определение локально абсолютно непрерывной функции

Функция $g:\Delta\to\mathbb{R}$ называется локально абсолютно непрерывной на промежутке Δ ($g\in AC_{loc}(\Delta)$), если существует точка $x_0\in\Delta$ и функция $h\in L_{loc}(\Delta)$ такие, что для всех $x\in\Delta$ выполняется:

$$g(x)=\int_{x_0}^x h d\mu +g(x_0).$$

2. Теорема об интеграле по абсолютно непрерывной функции

Пусть Δ — промежуток, $x_0\in \Delta$, $h\in L_{loc}(\Delta)$, $h\geq 0$, $g(x)=\int_{x_0}^x hd\mu+g(x_0)$, $E\in A_1(\Delta)$ (измеримо по Лебегу), $f\in S(E)$ (измерима и знакопостоянна на E). Тогда:

$$\int_E f dg = \int_E f h d\mu,$$

причем если существует один из этих интегралов, то существует и другой, и они равны.

3. Следствие для гладкой функции (С¹-случай)

Пусть Δ — промежуток, $g\in C^{(1)}(\Delta)$ (непрерывно дифференцируема), $g'\geq 0$, $E\in A_1(\Delta)$, $f\in S(E)$. Тогда:

$$\int_E f dg = \int_E f g' d\mu,$$

причем если существует один из этих интегралов, то существует и другой, и они равны.

18. Формула Фруллани

Дано: a, b > 0, $f \in C(0; +\infty)$.

$$I(a,b) = \int_0^\infty \left(f(ax) - f(bx) \right) dx$$

1. Если $\lim_{x o 0^+} f(x) \in \mathbb{R}$ (существует и конечен), то:

$$I(a,b) = -\left(\lim_{x o 0^+} f(x)
ight) \lnrac{a}{b}$$

2. Если $\lim_{x o 0^+} f(x) \in \mathbb{R}$ и $\lim_{x o +\infty} f(x) \in \mathbb{R}$, то:

$$I(a,b) = \left(\lim_{x o 0^+} f(x) - \lim_{x o +\infty} f(x)
ight) \ln rac{b}{a}$$

3. Если $\lim_{x o +\infty} f(x) \in \mathbb{R}$ (существует и конечен), то:

$$I(a,b) = \left(\lim_{x o +\infty} f(x)
ight) \ln rac{a}{b}$$

19. Локальное условие Лебега для интегралов зависящих от параметра. Равномерная

сходимостьнесобственных интегралов. Признаки Вейерштрасса, Дирихле и Абеля равномерной сходимости несобственных интегралов

Локальное условие Лебега для интегралов, зависящих от параметра

Пусть функция f(x,y) интегрируема по x на $[a,+\infty)$ при каждом $y\in Y$ и удовлетворяет условию:

$$\exists g(x) \in L^1([a,+\infty)): |f(x,y)| \leq g(x)$$
 для почти всех x и всех $y \in Y$

Тогда интеграл $\int_a^\infty f(x,y) dx$ сходится равномерно по $y \in Y$.

Равномерная сходимость несобственных интегралов

Интеграл $\int_a^{+\infty} f(x,y) dx$ сходится равномерно на множестве Y, если:

$$orall arepsilon > 0 \ \exists A = A(arepsilon) > a: orall R > A, orall y \in Y \Rightarrow \left| \int_R^{+\infty} f(x,y) dx
ight| < arepsilon$$

где R - это нижний предел интегрирования для остатка интеграла.

Критерий Коши равномерной сходимости

Интеграл $\int_a^\infty f(x,y) dx$ сходится равномерно на Y тогда и только тогда, когда:

$$orall arepsilon > 0 \ \exists A > a : orall R_1, R_2 > A, orall y \in Y \Rightarrow \left| \int_{R_1}^{R_2} f(x,y) dx
ight| < arepsilon$$

где R_1, R_2 - Это произвольные точки на оси x, лежащие правее A.

Признак Вейерштрасса

Если $|f(x,y)| \leq g(x)$ для всех $x \geq a$, $y \in Y$ и $\int_a^{+\infty} g(x) dx$ сходится, то $\int_a^{+\infty} f(x,y) dx$ сходится равномерно на Y.

Признак Дирихле

Пусть:

1.
$$\left|\int_a^R f(x,y) dx
ight| \leq M$$
 для всех $R>a,y\in Y$

2. При каждом $y \in Y$ функция g(x,y) монотонна по x

3.
$$g(x,y)
ightrightarrows 0$$
 при $x
ightarrow +\infty$ на Y

Тогда $\int_a^\infty f(x,y)g(x,y)dx$ сходится равномерно на Y (\Longrightarrow это сходится равномерно).

Признак Абеля

Пусть:

- 1. $\int_a^\infty f(x,y) dx
 ightharpoonup$ по y (сходится равномерно), при $x
 ightarrow \infty$ на Y
- 2. $\overset{\circ}{g}(x,y)$ равномерно ограничена: $|g(x,y)| \leq M$ для всех $x \geq a$, $y \in Y$
- 3. При каждом $y \in Y$ функция g(x,y) монотонна по x

Тогда $\int_a^{+\infty} f(x,y) g(x,y) dx
ightrightarrows$ на Y .

Доп:

 $L^1(X)$ -пространство абсолютно интегрируемых функций на X (интеграл понимается в смысле Лебега):

$$L^1(X) = \left\{ f: X o \mathbb{R} \ \Big| \ \int_X |f(x)| \, dx < +\infty
ight\}$$

Y - произвольное множество, на котором определен параметр. ([c,d])

20. Связь (равномерной) сходимости несобственного интеграла с (равномерной) сходимостью ряда из определенных интегралов.

Несобственный интеграл

$$I(y) = \int_a^\infty f(x,y) \, dx$$

Ряд из кусочных интегралов

$$\sum_{k=1}^\infty u_k(y) = \sum_{k=1}^\infty \int_{x_{k-1}}^{x_k} f(x,y)\,dx$$

Критерий равномерной сходимости

- 1. Интеграл \to Ряд: Если I(y) сходится равномерно, то для любого разбиения ряд $\sum u_k(y)$ сходится равномерно (так как "хвост" ряда соответствует "хвосту" интеграла).
- 2. Ряд \to Интеграл: Если для какого-то разбиения ряд $\sum u_k(y)$ сходится равномерно, то I(y) сходится равномерно (поскольку частичные суммы ряда совпадают с интегралами $\int_a^{x_N} f(x,y) \, dx$).