Internal Assessment Question Paper - 1

Ramaiah Institute of Technology (Autonomous Institute, Affiliated to VTU) Department of CSE

Programme: B.E Term: Jan-May 2021 CIE: I

Course: Design and Analysis of Algorithms **Course Code:** CS42 **Credits:** 3:1:0 **Sem:** IV **Date:** 9/06/2021 **Section:** A, B & C

Max Marks: 30 Time: 1Hr Portions for Test: Units 1 & 2

 $Instructions \ to \ Candidates: \ Mobiles, smart \ watches \ or \ any \ electronic \ gadgets \ are \ strictly \ banned.$

Question 1 is compulsory. Answer any one question from 2 and 3.

Sl#	Question	Marks	Bloom's Level	CO
	a. What is the difference between perfect matching and stable matching? Consider an execution of the G-S algorithm that returns a set of pairs S for the given set of men M and women W. Prove that "The set S is a stable matching".	6	Understand	CO1
1	b. Construct a proof for "If f is a polynomial of degree d, in which the coefficient a_d is positive. Then $f = O(n^d)$ ".	4	Understand	CO1
	c. Apply the divide and conquer algorithm to the following numbers, and count the number of inversions in it. {21, 16, 22, 15, 24, 32, 12, 14, 27, 11}	5	Apply	CO2
	a. Design an algorithm to find stable matching for a given "n" men & "n" women set. State the real world example for stable matching algorithm.	6	Understand	CO1
2	b. Compute the topological ordering for the following graph using source removal method. 5 6 2 3	4	Apply	CO2

	c. Construct the DFS Traversal tree for the following graph with "A" as the source vertex.	5	Apply	CO2
	OR OR			
	a. Prove the following.			
3	i. $T(n) = 4n^2 + 3n + 2$ is $O(n^3)$	4	Apply	CO1
	ii. $T(n) = 4n^2 + 3n + 2$ is $\Omega(n)$		11.	
	b. Design an algorithm to determine whether a given graph is	5	Understand	CO2
	bipartite or not.			
	c. Design an algorithm for sorting numbers using divide and	_		G0.2
	conquer method. Discuss the best, average and worst-case	6	Understand	CO2
	efficiency of the algorithm.			

Course Outcomes meant to be assessed by the IA Test:

CO1: Define the basic concepts and analyze worst-case running times of algorithms using asymptotic analysis. (PO1, PO2, PO3, PSO2, PSO3)

CO2: Recognize the design techniques for graph traversal using representative algorithms. (PO1, PO2, PO3, PSO2, PSO3)