

Biostatistics

Assessing the impact of key health indicators on maternal mortality

Exploratory Data Analysis

- * Age (num)
- * Systolic blood pressure (SystolicBP)(num)
- * Diastolic blood pressure (DiastolicBP)(num)
- * Blood sugar level (BS)(num)
- Body temperature (BodyTemp)(num)
- * Heart rate (HeartRate)(chr)

num is for numerical type of variable and chr is for cathegorical type of variable

Exploratory Data Analysis

- * 1014 observations, 817(80%) for train and 202(20%) for test.
- * Target variable (RiskLevel) is categorical and ordered in 3 ranks. The proportion for each Level is 26.8% high risk individuals, 33.1% mid risk and 40.0% low risk. Percentage is rounded to second decimal point.
- * No missing values.

Robust PCA

Figure 1: Robust PCA results

Data Transformation and Visualization

Figure 2: Visualization of a PCA results using three different perspectives

Data Visualization and Transformation

	PC1	PC2	PC3
Age	0,436	-0,157	0,233
SystolicBP	0,53	0,104	-0,24
DiastolicBP	0,522	0,123	-0,304
BS	0,425	-0,362	-0,104
BodyTemp	-0,274	-0,428	-0,81
HeartRate	0,018	-0,797	0,358

Figure 3: Contribution of the original variables to the first three principal components

Data Visualization and Transformation

From the table and graphs of the PCA we can make the following inferences:

- There is some separability amongst the different risk groups;
- Large portion of high risk individuals tend to have higher values in the PC1 direction;
- Low risk individuals tend to have lower PC1 values and higher PC2 and PC3 values.
- ▶ High risk individuals tend to have higher PC1 values.
- ▶ PC1 has high weights in Age, SystolicBP, DiastolicBP and BS, which will lead to elevated values in this direction.
- PC2 is mainly influenced by the variable HeartRate.
- PC3 is essentially influenced by BodyTemp.

- ► For our hypothesis testing we considered a threshold of 0.05 for the p-value.
- Even though the Anova is quite robust against violations of the normality assumption, looking at the density plots we can see that within each Risk Level, the distributions don't have a normal shape.

Figure 4: Density plot of the variables according to Risk Level

Shapiro-Wilk (normality) tests, where the highest p-value was $< 10^-5$.

-		Shapiro-Wilk (Normality)Test							
	Age	Age SBP DBP BS BT HR							
Low Risk	< 2,2 * 10 ⁻¹⁶	< 2,2 * 10 ⁻¹⁶	1,94 * 10 ⁻¹²	< 2,2 * 10 ⁻¹⁶	< 2,2 * 10 ⁻¹⁶	2,11 * 10 ⁻¹¹			
Mid Risk	1,97 * 10 ⁻¹⁵	< 2,2 * 10 ⁻¹⁶	1,27 * 10 ⁻¹⁰	< 2,2 * 10 ⁻¹⁶	< 2,2 * 10 ⁻¹⁶	1,07 * 10-9			
High Risk	1,92 * 10 ⁻⁵	1,05 * 10 ⁻¹⁵	5,36 * 10 ⁻¹⁵	2,89 * 10 ⁻¹²	< 2,2 * 10 ⁻¹⁶	4,18 * 10-9			

Figure 5: Shapiro-Wilk (Normality) Test Results

- Discard both the F-test and the Bartlett's test.
- Levene's test and Fligner-Killeen's test, which are non-parametric tests.
- Homogeneity of variance across groups was rejected for all variables, except for Age.
- The Kruskal-Wallis test was used, therefore discarding an ANOVA Test.

		Levene's and Flingner-Kileen's Test						
	Age	Age SBP DBP BS BT HR						
p-value (Levene's Test)	0,104	2,144 * 10 ⁻⁷	0,005	4,543 * 10 ⁻⁶⁷	1,134 * 10 ⁻⁷	6,536 * 10-5		
p-value (F.Killeen's Test)	0,029	1,206 * 10 ⁻⁹	0,002	1,364 * 10 ⁻⁹⁶	1,470 * 10 ⁻⁶	1,753 * 10 ⁻⁷		

Figure 6: Levene's and Flingner-Killeen's Test Restults

	Kruskal-Wallis Test						
	Age SBP DBP BS BT						
p-value	6,56 * 10 ⁻²²	6,78 * 10 ⁻³⁷	9,66 * 10 ⁻³⁰	9,68 * 10 ⁻⁶⁷	8,65 * 10 ⁻⁸	1,21 * 10-8	

Figure 7: Kruskal-Wallis Test Results

▶ Parwise Welch's t-tests (with Bonferroni correction).

	Pairwise t tests with nor	n-pooled SD-Age		Pairwise t tests with no	n-pooled SD-DiastolicBP
	High Risk	Low Risk		High Risk	Low Risk
Low Risk	< 2 * 10 ⁻¹⁶		Low Risk	< 2 * 10 ⁻¹⁶	
Mid Risk	6,8 * 10 ⁻¹³	0,39	Mid Risk	< 2 * 10 ⁻¹⁶	0,18
	Pairwise t tests with nor	n-pooled SD-SystolicBP		Pairwise t tests with no	n-pooled SD-BS
	High Risk	Low Risk		High Risk	Low Risk
Low Risk	< 2 * 10 ⁻¹⁶		Low Risk	< 2 * 10 ⁻¹⁶	
Mid Risk	9,7 * 10 ⁻¹³	5,5 * 10 ⁻¹⁰	Mid Risk	< 2 * 10 ⁻¹⁶	2,8 * 10-5
	Pairwise t tests with nor	n-pooled SD-BodyTemp		Pairwise t tests with no	n-pooled SD-HeartRate
	High Risk	Low Risk		High Risk	Low Risk
Low Risk	< 5,7 * 10 ⁻⁶		Low Risk	3,7 * 10-8	
Mid Risk	1	5,2 * 10 ⁻⁶	Mid Risk	0,00023	0,09781

Figure 8: Pairwise T-tests for each variable

- SystolicBP and BS are seen to have means that are statistically different between all groups. They seem to be the ones who have more impact in the risk factor.
- ► For the remaining variables, there is at least one pair of groups where we don't reject the (null) hypothesis of the means being equal.

- Other method to assess the impact of our descriptive variables on the target variable is Information Theory.
- ▶ Impact is measured by entropy, which measures the "amount of information" present in a variable.
- The more certain a variable is about an event, the less information it will contain, and information here is the entropy (i.e. small value of entropy).

Entropy:

$$H(j) = \sum_{i=1}^{3} -p(x_i) \log_2(p(x_i)),$$

where
$$p(x_i) = \frac{n. \text{ samples in class } i \text{ at node } j}{n. \text{ total samples at node } j}$$

With the formula for entropy we can now proceed in order to understand which variables give us less entropy. We will do this resorting to the following algorithm:

- 1. Calculate the initial entropy of the system.
- 2. Find the variable that further reduces the system's entropy.
- 3. Calculate the information gain (or entropy reduction).

Our initial entropy of the system is:

$$\text{H(initial)} = -\tfrac{325}{896}\log_2(\tfrac{325}{896}) - \tfrac{276}{896}\log_2(\tfrac{276}{896}) - \tfrac{208}{896}\log_2(\tfrac{208}{896}) \simeq 1.54$$

► This algorithm is the construction criterion of a well-known Machine Learning model: a Decision Tree

Figure 9: Top of the Decision Tree

			Predicted	
		Low Risk	Mid Risk	High Risk
_	Low Risk	62	1	1
Real	Mid Risk	3	65	11
	High Risk	3	15	41

Figure 10: Confusion Matrix of the Decision Tree

	Precision	Recall	F1-Score	Global Accuracy
Low Risk (n=64)	0,91	0,97	0,94	
Mid Risk (n=79)	0,8	0,82	0,81	0,83
High Risk (n=60)	0,78	0,7	0,74	

Figure 11: Evaluation Metrics

Weighted Precision	Weighted Recall	Weighted F1-Score
0,83	0,83	0,83

Figure 12: Weighted Evaluation Metrics

Cumulative Link Models

Predict and assess the importance of explanatory variables in a model based on prior observations.

$$g(P_j) = \beta_j + \beta X$$
.

. Where g is a transformation function, mapping probabilities to the real line and $P_i = P(Y \le j)$.

Ordinal Logistic Regression

$$logit(P_j) = log\left(\frac{P_j}{1 - P_j}\right) = \beta_{j0} + \beta_{j1}X_1 + \beta_{j2}X_2 + \dots + \beta_{jp}X_p,$$

where $\beta_{j0}, \beta_{j1}, \cdots, \beta_{jp}$ are the model coefficient parameters with p predictors, for $j = 1, \cdots, K - 1$.

This model hinges on two fundamental assumptions:

- 1. No multi-colinearity;
- 2. proportional odds

$$logit(P_j) = \beta_j + \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{X}$$

with $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_p)$ and $\boldsymbol{X} = (X_1, X_2, \dots, X_p)$ column vectors.

Ordinal Logistic Regression

We can also define the odds of being less than or equal to a particular category j as Pj/(1-Pj).

$$\frac{P_j}{1 - P_j} = \lambda_j e^{\boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{X}}$$

where $\lambda_j = e^{ heta_j}$.

Ordered Probit Regression

Results from modeling the probit of the cumulative probabilities as a linear function of the covariates.

$$\Phi^{-1}(P_j) = \beta_j + \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{X}$$

where Φ is the standard normal cdf.

Modeling and results

- Pair correlation values and Variance Inflation Function (VIF) to check if the assumptions hold.
- Mathematically, the VIF equals the ratio of the overall model variance to the variance of a linear model that includes only that single independent variable.
- High values indicate that it is difficult to assess accurately the contribution of predictors to a model.

	Age	SystolicBP	DiastolicBP	BS	BodyTemp	HeartRate
VIF	1,43	2,83	2,76	1,45	1,15	1,06

Figure 13: VIF associated to each variable

Correlation Matrix

Figure 14: Correlation of the variables

Brant Hypothesis Test

			Brant Hypothesis test							
ĺ		Omn Age SBP DBP BS BT HR								
I	P-val all vars	0	0,42	0	0	0,51	0,79	0,04		
I	p-val remove	0,39	0,43	0,89	NA	0,13	0,85	0,1		

Figure 15: p-values for the Brant Hypothesis test.

OLR results

		Age	SystolicBP	BS	BodyTemp	HeartRate	Low/Mid	Mid/High
П	2,5% IC	-0,0258	0,0349	0,3883	NA	0,0179		
	97,5% IC	0,0007	0,0557	0,5445	NA	0,0593		
	Coef	-0,012	0,045	0,463	0,458	0,039	55,96	58,276

Figure 16: Confidence Intervals when profiling the likelihood function - OLR model

_	Age	SystolicBP	BS	BodyTemp	HeartRate
2,5% IC	-0,0255	0,0355	0,3856	0,438	0,0178
97,5% IC	0.0007	0,0547	0,5413	0,4784	0,0592

Figure 17: Confidence Intervals when assuming normal distribution - OLR model

		Age	SystolicBP	BS	BodyTemp	HeartRate
	OR	0,9877	1,0462	1,5896	1,5812	1,0393
2	2,5% IC	0,9749	1,0362	1,4704	1,549	1,018
9	7,5% IC	1,0007	1,0562	1,7183	1,613	1,061

Figure 18: Odds ratio and 95% confidence intervals - OLR model

OPR results

		Age	SystolicBP	BS	BodyTemp	HeartRate	Low/Mid	Mid/High
	2,5% IC	-0,0147	0,0199	0,2251	NA	0,0104		
	97,5% IC	0,0009	0,0316	0,3071	NA	0,0343		
I	Coef	-0,007	0,026	0,265	0,267	0,022	32,536	33,894

Figure 19: Confidence intervals when profiling the likelihood function - OPR model

	Age	SystolicBP	BS	BodyTemp	HeartRate
2,5% IC	-0,0145	0,0203	0,2243	0,2559	0,0104
97,5% IC	0,0008	0,0312	0,3063	0,2784	0,0343

Figure 20: Confidence intervals assuming Normal distribution - OPR model

Predictions OLR

·			Real	
		Low Risk	Mid Risk	High Risk
	Low Risk	65	27	1
Pred	Mid Risk	13	27	26
	High Risk	1	6	37

Figure 21: Prediction for Ordinary Logistic Regression

	Recall	Precision	F1-Score	Global Accuracy
Low Risk (n=64)	0,82	0,7	0,76	
Mid Risk (n=79)	0,45	0,41	0,43	0,64
High Risk (n=60)	0,58	0,84	0,69	

Figure 22: Evaluation Metrics of the Ordinal Logistic Regression model

Weight.Precision	Weight.Recall	Weight.F1-Score
0,63	0,61	0,61

Figure 23: Weighted Evaluation Metrics of the Logistic Regression model

Predictions OPR

			Real	
		Low Risk	Mid Risk	High Risk
Pred	Low Risk	66	28	1
	Mid Risk	12	26	26
	High Risk	1	6	37

Figure 24: Confusion Matrix for the Ordered Probit Regression model

	Recall	Precision	F1-Score	Global Accuracy
Low Risk (n=64)	0,84	0,69	0,76	
Mid Risk (n=79)	0,43	0,41	0,43	0,64
High Risk (n=60)	0,58	0,84	0,69	

Figure 25: Confusion Matrix for the Ordered Probit Regression model

Weight.Precision	Weight.Recall	Weight.F1-Score
0,63	0,6	0,6

Figure 26: Weighted Evaluation Metrics of the Ordered Probit Regression model

Conclusions

- Our goal was to assess which variables played a major role in the dynamic of the risk level associated with pregnant women.
- ► Robust PCA > 2 outliers were detected, which lead these two observations to be discarded.
- ightharpoonup PCA -> some separability between the different risk groups. Corroborated the natural tendency of the human body.
- ► Levene 's test and Fligner-Killeen 's test > low p-value indicated that there was no variance homogeneity across groups, except for Age.
- Non parametric Kruskal-Wallis test − > indicated that we should reject the null hypothesis, that for each level of Risk, the means are the same.

Conclusions

- ▶ Pairwise Welch's t-tests(with bonferroni correction) -> SystolicBP and BS turned out to be the most significant in the risk factor.
- Information Theory > Trained a decision tree based on entropy criteria and verified that BS and SystolicBP have the highest impact on maternal mortality risk.
- Ordinal Logistic Regression and Ordered Probit Regression
 -> Again showed us that the variables BS and BodyTemp
 have a high influence in the Risk Level.
- ► Knowledge to apply in future endeavours.

Thank you for your time!

