Réduction

Jérémy Meynier

Exercice 1

Soit
$$A = (a_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{R})$$
 avec $a_{ij} \in [0,1]$ et $\forall i \in [1,n], \sum_{j=1}^n a_{ij} = 1$

- 1. Montrer que 1 est valeur propre de A
- 2. Soit λ une valeur propre de A. Montrer que $|\lambda| \leq 1$

Exercice 2

Soit
$$A=\begin{pmatrix}1&\dots&\dots&1\\ \vdots&0&\dots&0&\vdots\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ \vdots&0&\dots&0&\vdots\\ 1&\dots&\dots&1\end{pmatrix}\in M_n(\mathbb{R}).$$
 Déterminer les éléments propres de A et la diago-

1

naliser.

Exercice 3

Soit
$$A = \begin{pmatrix} 3 & -2 & 3 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

- 1. Valeurs propres de A? Est-elle diagonalisable?
- 2. A est-elle inversible?
- 3. Montrer que A est semblable à $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$
- 4. Calculer T^n en fonction de n
- 5. En déduire A^n en fonction de n

Exercice 4

Montrer que M est nilpotente $\Leftrightarrow Sp_{\mathbb{C}}(M) = \{0\}$

Jérémy Meynier 2

Exercice 5

Soit $A\in M_n(\mathbb{R})$ tel que $A^3+A=0.$ Montrer que le rang de A est pair. Même question si $A^3+A^2+A=0$

Exercice 6

Déterminer le polynôme caractéristique d'un endomorphisme f de rang 1 d'un \mathbb{K} -ev E de dimension n

Exercice 7

Soit $u \in L(E)$, E un \mathbb{K} -ev de dimension n. On suppose que rg(u-id)=1. Montrer que u est diagonalisable $\Leftrightarrow \operatorname{Tr}(u) \neq n \Leftrightarrow \det(u) \neq 1$

Exercice 8

Soit $A \in M_n(\mathbb{R})$ tel que $A(A-I)^2 = 0$, $A(A-I) \neq 0$, $(A-I)^2 \neq 0$. A est-elle diagonalisable?

Exercice 9

Montrer que M nilpotent $\Leftrightarrow \operatorname{Tr}(M^k) = 0 \ \forall k \geq 1$

Exercice 10

Soit $A \in M_n(\mathbb{R})$ tel que $A^2 = -I_n$. Montrer que $\det(A) = 1$

Exercice 11

Déterminer les $A \in M_n(\mathbb{R})$ tel que $\mathrm{Tr}(A) = n$ et $A^5 = A^3$

Exercice 12

Soient $A, B \in M_n(\mathbb{C})$ tel que AB = 0. Montrer que A et B admettent un vecteur propre commun

Exercice 13

Soit $A \in M_n(\mathbb{R})$ tel que $A^3 - 3A + 4I_n = 0$.

- 1. Montrer que $A \in GL_n(\mathbb{R})$
- 2. Déterminer le signe de det(A)

Jérémy Meynier 3

Exercice 14

Soit E un espace vectoriel de dimension finie, et $f \in L(E)$ de rang 1.

- 1. Montrer que f est diagonalisable si et seulement si $Tr(f) \neq 0$.
- 2. Montrer que f est diagonalisable si et seulement si $f^2 \neq 0$

Exercice 15

Soit
$$M = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de M
- 2. Calculer det(M) et M^{-1}

Exercice 16

Soit
$$A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & -2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
. Trouver les M tels que $M^2 = A$ dans $M_n(\mathbb{R})$ puis dans $M_n(\mathbb{C})$

Exercice 17

Soit $A \in M_n(\mathbb{R})$. Montrer que $\det(A^2 + I_n) \geq 0$

Exercice 18

Soit E un espace vectoriel de dimension finie, et $f \in L(E)$.

- 1. Montrer que f admet un polynôme annulateur non nul
- 2. Montrer que f est un automorphisme si et seulement si f possède un polynôme annulateur P tel que $P(0) \neq 0$