Corso di Ottimizzazione Combinatoria

Prova scritta del 17 Luglio 2023

Tempo a disposizione: ore 1:45.

Si ricorda che:

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola,
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato.
- Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- Non è consentita la consultazione di appunti, libri, etc.
- Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- Occorre consegnare anche la brutta copia ai docenti.

Esercizio 1. (Punti 10)

Un'azienda alimentare mono-prodotto dispone di n stabilimenti $1, \ldots, n$, ciascun stabilimento i avente una capacità produttiva massima di t_i tonnellate di prodotto al mese. Il prodotto in uscita da ogni stabilimento deve essere immediatamente trasportato via terra in uno o o più degli m magazzini di stoccaggio $1, \ldots, m$, dove resterà fino a al mese successivo. Ogni magazzino j ha una capacità di c_j tonnellate di prodotto e lo stoccaggio di una tonnellata di prodotto nel magazzino j costa p_j Euro. Infine, il trasporto di un chilogrammo di prodotto tra lo stabilimento i e il magazzino j costa d_{ij} Euro. Si formuli in PLI il problema di decidere dove produrre e dislocare il prodotto in modo da ridurre al minimo i costi di trasporto e stoccaggio, garantendo al contempo che le tonnellate di bene prodotte e trasferite siano esattamente pari ad un certo ammontare s.

Esercizio 2. (Punti 8)

Si risolva il seguente problema di programmazione lineare attraverso l'algoritmo del simplesso. Si parta dalla base ammissibile corrispondente ai vincoli della colonna a sinistra.

$$\min 2x + y$$

$$y \le 2$$
 $x+1 \ge 0$ $y \le x+2$ $y+x+1 \ge 0$ $x \le 2$ $y+1 \ge 0$ $y+2 \ge x$

Esercizio 3. (Punti 7)

Si risolva il seguente problema di accoppiamento di massima cardinalità tramite un algoritmo a scelta. Si indichi in modo preciso la soluzione ottima.

Esercizio 4. (Punti 5)

Si consideri la seguente variazione sul tema dell'Esercizio 1. Si supponga che i costi di trasporto relativi al prodotto trasportato dallo stabilimento i al magazzino j comprendano, oltre alla quota variabile d_{ij} , anche una quota fissa f_{ij} , da sostenersi però solo nel caso in cui tra i e j si debba spostare una quantità di prodotto superiore a q_{ij} tonnellate.

ESERCIZIO 1

Variable:

Xij ∈ R+ : touvellate di merce prodotte nella stabilimento è e traspontate al mayor. j

Furzione doiltino:

Min
$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} p_{j} + (1000 x_{ij}) dij$$

Costo di STOCLAGGIO e TRASPORTO

Vinwli:

ESERCIZIO 12

$$A_{i} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad A_{i}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad b_{i} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$b_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\overline{\chi}_{\cdot} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\overline{\chi}_{\cdot} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \quad \overline{y} = \begin{bmatrix} -2 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 1 & 0 \end{bmatrix}$$

$$3_{1} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad \overline{A}_{1} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ -1 & 1 \\ 1 & -1 \\ -1 & -1 \end{bmatrix}$$

$$3_{1} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad \overline{A}_{1} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ -1 & 1 \\ 1 & -1 \\ -1 & -1 \end{bmatrix} \quad \overline{A}_{1} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 1 \\ 1 \end{bmatrix} \quad 1 - \begin{bmatrix} 0 - 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 3$$

$$1 - \begin{bmatrix} 0 - 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 3$$

$$1 - \begin{bmatrix} -1 -1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2 \quad k = 6$$

$$\begin{array}{llll} \text{(TERAZIONE II } & B_2 = \{Q_1Q\} \\ A_2 & = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} & A_2^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} & 02 & = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \\ \overline{X}_2 & = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} & \overline{Y}_2 & = \begin{bmatrix} -2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix} \\ X_2 & = \begin{bmatrix} -1 \\ -1 \end{bmatrix} & \overline{A}_2 & = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 0 & -1 \\ -1 & 1 \end{bmatrix} & A_2^{-1} & X_2^{-1} & X_2$$

ITERAZIONE III B3= \0,0}

$$A_{3} = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \quad A_{3}^{-1} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \quad b_{3} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\bar{x}_{3} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \bar{y}_{3} = \begin{bmatrix} -2 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} -1 \\ 1 & 0 \\ -1 & 0 \end{bmatrix} \quad \bar{A}_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad \bar{A}_{3} = \begin{bmatrix} 0 \\ -1 \\ 1 & 1 \end{bmatrix} \quad 1 = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 & 1 \end{bmatrix} = 1$$

$$A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 &$$

ITERATIONE IN B4 =
$$\{\emptyset, \widehat{\emptyset}\}$$

$$A_4 = \begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix} \quad A_4^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} \quad b_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\overline{\times}_{4} = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \overline{\mathbb{Q}}_{4} = \begin{bmatrix} -2 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix}$$

ITERAZIONE I BG =
$$\{3, 9\}$$

$$A_s = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \quad A_s^{-1} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \quad b_s = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\bar{\chi}_{S} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \quad \bar{y}_{S} = \begin{bmatrix} -2 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

SOW ZIONE OTIMA
PRIMALE

AMITO INGRESSE NAL

ESERCIZIO 3 Riduco il problema a MF:

Tothi gli archi hammé capacità 1. I cammini armentanti sous 1,2,3,4,5,6 L'acoppiamento rivoltante e' perfetto:

ESERCIZIO 4

Variabili agginutive:

$$\begin{aligned}
y_{ij} &\in \{0, 1\} = \begin{cases} 1 & \text{se } \chi_{ij} > q_{ij} \\
i &\in \{1, \dots, m\} \end{cases} \\
i &\in \{1, \dots, m\}
\end{aligned}$$

Nuova funcione docettivo:

Min
$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} p_j + (1000 x_{ij}) dij + y_{ij} f_{ij}$$
Costo di stoccassio e trasforto e quote fisse

Vincoli agginutivi:

 $y_{ij} \ge (x_{ij} - q_{ij})/q_{ij}$ per $i \in [1,...,n]$, $j \in [1,...,n]$ Se $x_{ij} > q_{ij}$, $(x_{ij} - q_{ij})/q_{ij} > 0$ e y_{ij} deve errere posto a a, altrimenti y_{ij} problement posto a o.