

Competition

Grime (1977): "the tendency of neighboring plants to utilize the same quantum of light, ion of a mineral nutrient, molecule of water, or volume of space"

Grime (1977): "the tendency of neighboring plants to utilize the same quantum of light, ion of a mineral nutrient, molecule of water, or volume of space"

Why neighboring?

Grime (1977): "the tendency of neighboring plants to utilize the same quantum of light, ion of a mineral nutrient, molecule of water, or volume of space"

Not all abiotic and biotic drivers of plant fitness Why these specifically?

Grime (1977): "the tendency of neighboring plants to utilize the same quantum of light, ion of a mineral nutrient, molecule of water, or volume of space"

"allows competition to be defined in relation to its mechanism rather than its effects, and the risk is avoided of confusion with mechanism operating through the the direct impact of the physiochemical environment or through biotic effects such as selective predation"

Grime (1977): "the tendency of neighboring plants to utilize the same quantum of light, ion of a mineral nutrient, molecule of water, or volume of space"

"allows competition to be defined in relation to its mechanism rather than its effects, and the risk is avoided of confusion with mechanism operating through the direct impact of the physiochemical environment or through biotic effects such as selective predation"

Grime (1977): "the tendency of neighboring plants to utilize the same quantum of light, ion of a mineral nutrient, molecule of water, or volume of space"

"allows competition to be defined in relation to its mechanism rather than its effects, and the risk is avoided of confusion with mechanism operating through the the direct impact of the physiochemical environment or through biotic effects such as selective predation"

Grime (1977): "the tendency of neighboring plants to utilize the same quantum of light, ion of a mineral nutrient, molecule of water, or volume of space"

"allows competition to be defined in relation to its mechanism rather than its effects, and the risk is avoided of confusion with mechanism operating through the the direct impact of the physiochemical environment or through biotic effects such as selective predation"

Plant perception of competition

Perception by seeds: recap

Seedlings also perceive light from the canopy

Stem elongation occurs when neighbors are present and reducing the ratio of red light to far red light. Plants are sensing they are under a canopy and elongating stems to access the limited light.

Allelopathy: plant chemical sensing

Allelopathy tends to have negative impacts on plants

Allelopathy can stimulate plastic responses

Increased belowground competition

Allelopathy and invasion example

Mineral layer

Gold: invader present Blue: invader absent

Garlic mustard is an allelopathic invader that alters microbial communities ...

Gold: invader present Blue: invader absent

...which influences native plant traits ...

... and reduces native plant growth ...

... and fitness!

Resource competition and traits

Traits: <u>nutrient</u> competition

Nutrient stress promotes root competition,

increasing root biomass allocation

Traits: <u>nutrient</u> competition

Presence of slow growing Schizachyrium (Ss) reduces nutrient availability (R* hypothesis), hampering growth of fast growing Agrostis (As) Nutrient stress promotes root competition,

favoring low growth rate species

Traits: water competition

- Toleration of soil low water potential
 - Similar to R* for nutrients?
- Desiccation resistance
 - E.g., CAM and C4 photosynthesis
- Desiccation avoidance
 - Phenology

Traits: <u>light</u> competition

 Light competition only occurs when belowground resources are plentiful

Traits: <u>CO</u>₂ competition

Traits: <u>CO</u>₂ competition

Are these competing according to Grime's definition?

Competitive strategies

r-K continuum

$$rac{dN}{dt} = rN\left(1-rac{N}{K}
ight)$$

N = population size

t = time

r = population growth rate

K = carrying capacity

r-K continuum

Where would r species dominate? Where would K species dominate?

Grime's (1977) triangle

Grime's (1977) triangle

What is different from r-K?

Grime's (1977) triangle

SUGGESTED BASIS FOR THE EVOLUTION OF THREE STRATEGIES IN VASCULAR PLANTS

Intensity of Disturbance	Intensity of Stress		
	Low	High	
Low		Stress-tolerant strategy No viable strategy	

TABLE 3

Morphogenetic Responses to Desiccation, Shading, or Mineral Nutrient Stress of Competitive, Stress-tolerant, and Ruderal Plants and Their Ecological Consequences in Three Types of Habitat

Strategy		Consequences		
	RESPONSE TO STRESS	Habitat 1*	Habitat 2†	Habitat 3‡
Competitive	Large and rapid changes in root: shoot ratio, leaf area, and root surface area	Tendency to sustain high rates of uptake of water and mineral nutrients to maintain dry-matter production under stress and to succeed in competition	Tendency to exhaust reserves of water and/or mineral nutrients both in rhizosphere and within the plant; etiolation in response to shade increases susceptibility to fungal attack	Failure rapidly to produce seeds reduces chance of rehabilitation after
Stress tolerant	Changes in morphology slow and often small in magnitude	Overgrown by	Conservative utilization of water, mineral nutrients, and photosynthate allows survival over long periods in which little dry-matter production is possible	disturbance
Ruderal	Rapid curtailment of vegetative growth and diversion of resources into seed production	competitors	Chronically low seed production fails to compensate for high rate of mortality	Rapid production of seeds ensures rehabilitation after disturbance

^{*} In the early successional stages of productive, undisturbed habitats (stresses mainly plant induced and coinciding with competition).

[†] In either continuously unproductive habitats (stresses more or less constant and due to unfavorable climate and/or soil) or in the late stages of succession in productive habitats.

[‡] In severely disturbed, potentially productive habitats (stresses either a prelude to disturbance, e.g., moisture stress preceding drought fatalities, or plant induced, between periods of disturbance).

Westoby (1998) Leaf-Height-Seed theory

- SLA describes the competition-stress tolerance tradeoff
- Plant height and seed mass reflect aspects of coping with disturbance

Sandra Díaz ⊠, Jens Kattge, [...] Lucas D. Gorné

Nature 529, 167-171(2016) | Cite this article

Sandra Díaz ⊠, Jens Kattge, [...] Lucas D. Gorné

Nature 529, 167-171(2016) | Cite this article

Sandra Díaz ⊠, Jens Kattge, [...] Lucas D. Gorné

Nature 529, 167-171(2016) | Cite this article

Sandra Díaz ⊠, Jens Kattge, [...] Lucas D. Gorné

Nature 529, 167-171(2016) | Cite this article

