Q 1.

Using two-group theory, determine the critical core width of a slab reactor with core composition similar to that of a PWR and surrounded by an infinite water reflector. Use the following data for the core (subscript 1 refers to fast group, subscript 2 refers to thermal group and y_0 and z_0 are the transversal dimensions for a reference cylindrical PWR).

	Core 2G			\mathbf{Core}	4G		Reflector 2G	
Group	1	2	1	2	3	4	1	2
$\nu\Sigma_f$	0.008476	0.18514	0.009572	0.001193	0.01768	0.18514		
Σ_a	0.01207	0.121	0.004946	0.00284	0.03053	0.121	0.0004	0.0197
D	1.2627	0.3543	2.1623	1.0867	0.6318	0.3543	1.13	0.16
Σ_R	0.02619	0.121	0.08795	0.06124	0.09506	0.121	0.0494	0.0197

Table 1: Diffusion theory constants for a typical PWR Reactor Core and Reflector

Other data:

- Fast fission factor (over all energies) $\epsilon = 1.27$
- \bullet Reference PWR diameter $y_0=340~\mathrm{cm}$
- Reference PWR height $z_0 = 370 \text{ cm}$