Example and Task Idealized regression Error measures The real regression Examples Model selection

Introduction to Regression

Antanas Verikas antanas.verikas@hh.se

IDE, Halmstad University

2013

Example

Regression aims at finding a function that fits the observations.

Observations: (x,y) pairs

(1949, 100)

(1950, 117)

(1996, 1462)

(1997, 1469) (1998, 1467)

(1999, 1474)

Figure: Consumer prise index in Sweden.

Linear fit

The linear fit is not so good.

у	ŷ
100	-215
117	-184
1467	1314
1474	1345

Figure: Consumer prise index in Sweden, linear fit.

Example

Apply a transformation.

Take logarithm of y and fit a straight line.

Figure: Consumer prise index in Sweden.

Linear fit

Transform y back to the original. The fit is better.

у	ŷ
100	83
117	88
1467	1660
1474	1765

Figure: Consumer prise index in Sweden.

Regression task

Construct a model of a process, using examples of the process.

Input: x (possibly a vector)

Output: $y = g(\mathbf{x})$ (generated by the process)

Examples: Pairs of input and output $\{y(n), \mathbf{x}(n)\}$

Our model: $\hat{y} = f(\mathbf{x})$

The function f is our estimate of the true function g

Data and assumptions

Data set
$$\mathbf{Z} = \{\mathbf{x}(n), y(n)\}_{n=1,...,N}$$

 $y(n) = g[(\mathbf{x}(n)] + \varepsilon(n)]$

- $\mathbf{x}(n)$ Observed input
- y(n) Observed output
- $g[(\mathbf{x}(n)]]$ True underlying function
 - $\varepsilon(n)$ i.i.d noise process with zero mean

Example

Underlying function: $g(x) = 0.5 + x + x^2 + 6x^3$

Noise: $\varepsilon \sim N[0, 2]$

Idealized regression

Find appropriate model family Φ and $f(\mathbf{x}) \in \Phi$ with a minimum "distance" (error) to $g(\mathbf{x})$

Examples of model families

Linear
$$\Phi_1 = \{a + bx\}$$

Quadratic $\Phi_2 = \{a + bx + cx^2\}$
Cubic $\Phi_3 = \{a + bx + cx^2 + dx^3\}$

How to measure "distance"?

Q: What does the distance between functions f and g mean?

A: The difference between the functions f and g.

Q: How do we measure difference (error) between functions?

The summed squared error (SSE)

$$E = SSE = \sum_{n=1}^{N} \{ f[\mathbf{x}(n), \mathbf{w}] - y(n) \}^{2}$$
 (1)

 $\mathbf{w} =$ the parameters of the function f.

SSE assumes zero mean i.i.d noise

 $SSE \iff$ "Least squares" fit.

Negative log-likelihood

Data set
$$\mathbf{Z} = \{\mathbf{x}(n), y(n)\}_{n=1,\dots,N}$$
 (2)
 $y(n) = g[(\mathbf{x}(n)] + \varepsilon(n)$

$$E = -\ln L = -\ln \left[\prod_{n=1}^{N} p[\mathbf{z}(n)|\mathbf{w}] \right]$$
 (3)

It is common to assume normally distributed noise \Longrightarrow

$$p[\mathbf{z}(n)|\mathbf{w}] = p\{f[\mathbf{x}(n),\mathbf{w}] - y(n)\} \sim N[0,\sigma]$$
 (4)

This leads to $E \propto SSE$.

The Bayesian error measure (1)

- Why maximize the likelihood for the observations given the model parameters?
- Maximize the likelihood for the model parameters given the observations, instead.
- Bayes' theorem tells us how we should do.

The Bayesian error measure (2)

The probability for the model parameters, given the observations:

$$p(\mathbf{w}|\mathbf{Z}) = \frac{p(\mathbf{Z}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{Z})} = \frac{\mathcal{L}(\mathbf{Z}|\mathbf{w})p(\mathbf{w})}{p(\mathbf{Z})}$$
(5)

where $p(\mathbf{w})$ is our "prior" for the model parameters \mathbf{w} . More convenient to minimize the negative likelihood:

$$E = -\ln p(\mathbf{w}|\mathbf{Z}) = -\ln \mathcal{L}(\mathbf{Z}|\mathbf{w}) - \ln p(\mathbf{w}) + \ln p(\mathbf{Z})$$

$$\rightarrow = -\ln \mathcal{L}(\mathbf{Z}|\mathbf{w}) - \ln p(\mathbf{w})$$
(6)

since the third term does not depend on the model parameters w.

The Bayesian error measure (3)

$$E = -\ln p(\mathbf{w}|\mathbf{Z}) \propto -\ln \mathcal{L}(\mathbf{Z}|\mathbf{w}) - \ln p(\mathbf{w})$$
 (7)

Allows including a prior belief, expressed in $p(\mathbf{w})$, about the function $f(\mathbf{x}, \mathbf{w})$.

An example is:

$$p(\mathbf{w}) \propto \exp(-\|\mathbf{w}\|^2/2\sigma_W^2)$$
 (8)

The Bayesian error measure (4)

- The Bayesian error measure is more general than the ML error.
- The ML error is the special case of the Bayesian error with a uniform prior.
- The Bayesian error is very important to avoid over-fitting.

The real regression

Find an appropriate model family Φ and minimize the **expected** distance to $y(\mathbf{x})$ ("generalization error")

Data is never noise free, and never available in infinite amounts, thus we get variation in data and model. The generalization error is a function of both the training data and the hypothesis selection method.

Model "bias" & model "variance"

$$\langle \mathtt{Error} \rangle = (\mathtt{Bias})^2 + (\mathtt{Variance}) + \sigma_{\varepsilon}^2$$
 (9)

Example (1)

Figure: A linear function g(x) fitted with a linear model f(x), small variance.

Example (2)

Figure: A linear function g(x) fitted with a linear model f(x), larger variance.

Example (1)

Figure: A linear function g(x) fitted with a cubic model f(x), small variance.

Example (2)

Figure: A linear function g(x) fitted with a cubic model f(x), larger variance.

Example (1)

Figure: A quadratic function g(x) fitted with a linear model f(x), small variance.

Example (2)

Figure: A quadratic function g(x) fitted with a linear model f(x), larger variance.

Model selection

Figure: Model with the lowest generalization error is a bias versus variance trade-off.

Model complexity

Figure: Model with the lowest generalization error is a bias versus variance trade-off.

Variable selection

More variables imply larger variance

For linear regression models:

$$\langle E_{\mathtt{Test}} \rangle = \langle E_{\mathtt{Train}} \rangle + \frac{\sigma_{\varepsilon}^2(D+1)}{N}$$
 (10)

 \Rightarrow A penalty is payed for each input.