Martingales entemps discret

I/Définition: Filtration, temp d'arrêt et martingale (1, F. P): espace de probabilité

Definitions

Une suite de sous tribus (fm)m, est dite une Fiftration, si fm = Fm+1

Exemple et difinition:

Soil- (Xm) mgo um suite de v.a à voluis dams (X,A)

Posoms Fm = (Xo, ..., Xm)

Om comstate que Fm ⊆ Fm+1

(Fm) mgo: s'appelle la filtration maturelle associée au procumum à temps discret (Xm) mg on dia temps

Définition &

Soient: . (n. F. P) espace de probabilité

= (Fm)m>0 une Filhation

Alors: [r. F. (Fm/m,o, l) s'appelle espace de probabilité Fittré
de finitions

ioient: . (n. f. (Fm) m, o, P) un espace de mobabilité fifté

« (Xm) m>, o un processus discret à voleus dans (X, A)

) m dit que le processur (Xm) moso est adapté à la filhation (Fm) m > 0

ii: Xm est Fm- mosmoble. Ymbo

cm argue :

(Xm) m, o est adapté à sa filhation matuelle (Fmx) m, et fm= T (Xo,...,

· Si (xm)m>, o est adapte à la filhation (fm/m>, o ators tm² fm.72 & Définition: Soicont: a (s. F. (Fm)mzo, P) un espace de probabilité f « (Xm)mzo un procenus à temps discret à values dans Om det que (xm) mas est une martin gale (respectivement surmaitingale, respecti coment sous-martingal) par rapport à la Fithation (Fm)mzo si: « (Xm) mão est adapte à la Filhation (Fm) mão (Cad: Xm est Fmmus, Awro) · E(|Xml) (+w, Vm),0 · E(Xm+1/Fm) = Xm Pps (suspectivement E(Xm+1/fm) < Xm Pps, respectivement E(Xm+1/fm1> Xm Pps) Ym>0 E xemple : $\chi_m = 1$ om obtient pite au miéme lamen P(AB)=P Simom a stranform martially P (fau)=1-P $X_0 = x_0 \in IR_+^*$ $F_0 = \{\phi, \alpha\} - \alpha \text{ wild levil is}$ Sm = Xo + ... + Xm = Fortume juste après la mième lamen Cuglisie blis Fm = 5 (X1, ..., Xm) m>1 . Smest Fm - momable, Vm>, = o (Sm) m>, o est adapte à la filhation (Fmx) mho , (Sm) < x0+m & 2'(P) = E(ISm1) <+00 Vm>,0 , E (Sm+1 /Fm) = E (Sm+ Xm+1 /Fm) = E (Sm/Fm) + E (Xm+1 /Fm) = Sm+Elxmillar Sm est Fm- mes wable et Xm+1 I Fm domc E (Xm+1 1 Fm) = E (Xm+1) = 2P-1 d'où E(Sm+1/Fm) = Sm+ (2P-1) Cas 1: p=1/2: Smest une martingali Cas 2: p < 1/2: Sm est une suu-mortingale E (Sm+1/Fm) & Sm Pps Cas 3: p>1/2: Sm cost suru prous martingale E(Sm21/Fm/), Sm. Pps

```
Definition:
Soient: (s. F. (Fm)m,o, P) un copaci de probabilité fiftié
                         « (Xm)m>0 um processus stochashique
 Om dit que le processus (Xm)mos est prévisible par rapport à la filtration
 (Fm)m, o, si Xm+1 est fm- meourable, Vm, o et Xo est For-meourable.
Définition :
 Soiemt: . (s. F. (Fm) m>, o. P) un espace de probabilité fifté
                        * Tune v.a à valeus dans IN = IN U }+00}
 Om dit que T est un temps d'annêt par nopport ai la filhation (Fm)m>,0
 Si (TEM) & Fm, Ymao
Proprietes et exemples
. Soiemt: « (1. F. (Fm)m, o, P) un espace de probabilité fillé
                          · Tune v.a à voleus dans IN
Test un temps d'arrêt par napport à la filhation (fm)m, o sni (T=m) E fm,
 Ampo
                                       of the state of the state of the
 Lo em effet:
     "=0" (T=m)= (T<m) \ (T<m-1) & fm, can fm est une biben
"=" (T<m) = m & fm & fm = fm (T<m) & fm (T<m
         Car Fm est une tribu
· Soient: (n. F. (Fm)m>0, P) un espace de probabilité filtré
                          . (Xm)msu un processus stochastique à valeurs dans (IRd, B(IRd))
                          adapté à la filliation (fm) miso (Caid Xm est for mesuable.
                                                                                                        provisible => Xmin est fm-mus
                         Awho)
                          . AEB(IRd)
  Posoms T= inf } m>0/XmEA ; inf $ =+00
Mombroms que T est un temps d'arrêt par repport à la filliation (Fm)
   (T<m) = (T>m) c or (T>m)= (X0€A,..., Xm€A) = (X0€Ac,..., XmGAC)
                                            = (X°) - (Acx. xAc) & Fm (Xm) m> estadapte (2
```

III Théoremes d'anit:	X
Définition:	(0)
Soient: . (2, F, (Fm) m>0, P) un espace de probabilité	Fiftré
· Tum temps d'arrêt par napport à (Fm) m>0	أناليونيك ويسا
(Y-)	ms (W, TI)
Posoms Xm = X = - (Xm & m < T Xm w) = X	$(\omega) = \{ X_m(\omega) \}$
Posoms $X_{m}^{T} = X_{m,n,T} = \begin{cases} X_{m} & \text{si } m \leqslant \Gamma \\ X_{m}^{T} & \text{si } m \end{cases} T$	X(w) &
	ms, T/w
Le processus (Xm) m>, s'appelle le processus d'arrêt de le temps d'arrêt	(Xm)m>0 pou
Proprietes :	m 3 (m 2))
sous les motations de la définition aussi de la	is open to the
· Xn = Xmar = Em X 1	1,01 w stansons.
· $X_n^T = X_{mnT} = \underbrace{\sum_{k=0}^{m} X_k}_{k=0} X_k \cdot 1_{T=k_1^2} + X_m \cdot 1_{T>m_1^2}$ Lycm effet:	nu 7 e
XMAT = XMAT. AS = XMAT 1 ("T=K)) U (T>M)	Lagrandan L
(U(T=K)) U(T>m)	68 m.
$= X_{mnT} \left(\underbrace{\mathcal{E}_{m}^{m}}_{K=0} 1_{T=K} \right) + 1_{T>m} \left(\sum_{k=0}^{m} 1_{T=k} \right)$	and and
= Em XmnT 1 }T=Kf + Xm. 1} T>mf	(m-1) a=
= Em XK. 17=Kf + Xm 13 T>mf	institution
· Si (Xm) m>,0 est adapté à la filtration (Fm) m>,0, alor	P
(Xm) est adopté à la fillation (En)	s a lucavir
(Xm) ms, est adapté à la filliation (Fm) ms, o Les emeffets	T 17) . : (maio)
X = & M XK. 13 T- K . X = 1	eα (11
XIII = K=0 1	an I have
$X_{m} = \underbrace{\sum_{k=0}^{m} \chi_{k}}_{K=0} \underbrace{1}_{\text{T=k}} \underbrace{1}_{\text$	10 (132>W) CAL
Fm -meauchl	12A
. Si (xm) m), o est dono [(P) (cad E (1xm)) (+00, 4m)	co), alors le
processus (xm) m>0 est dams L'(P) (Caid E((Xm))	(ofmy at)
Lo emeffet : - (Abov Avi) (met) 1000	1 (m T)
Xm & Em XK + Xm E L'(P) =0 E (Xm) <+00	

1m - Xm = (Xm+1 - Xm) 11 77>m} Ly em effet: Xm+1 - Xm = Em+1 . Xx. 13T=x{+ Xm+127 75 m+1} - Em Xx. 13T=x} - Xm 13T5m{ = Xm+1 . 13T=m+1} + Xm+1 . 13T5 m+1} - Xm 13T5m} = Xm+1 (1)37=m+13+17>m+13) = Xm.1177>m3 = (Xm+1 - Xm)1177>m3 T>m+1 =0 T>m · Si (Xm)mo est une martingale (respectivement sur-martingale, respectivement sous-martingali) pai napport à (Fm)ms, o, alors (Xm)ms, o est une martingali (respect sour-mor, respect sous mar) pai napport à (fm)m30 E(Xm+1 - Xm/Fm) = E ((Xm+1 - Xm) / 7) = 1 (T>m) = (Xm+1 - Xm/fm) =0 1375 mg est Fm - mesourable 1 ex cas: (Xm) m, o est une maitingale = 0 1375 ms est Fm - mesourable

(Xm) m, o est une maitingale = 0 1375 ms est Fm - mesourable

(Xm) est une maitingale = 0 1375 ms est Fm - mesourable

(Xm) est une maitingale = 0 1375 ms est Fm - mesourable

(Xm) est une maitingale = 0 1375 ms est Fm - mesourable

(Xm) est une maitingale = 0 1375 ms est Fm - mesourable

(Xm) est une maitingale = 0 1375 ms est Fm - mesourable Deme Ces: (Xm) mas est une suur mantingale Xm est fm-misuration ® (0 =0 (Xm)m>0 esture sour-maitingale E(xm+1/fn) < xm Pps 3 cm cas: identique @ >0 =0 (Xm) m>0 est une sous-maitingale Théoreme d'annêts Soient: a (r. F. Ifm)m>v. P) un espace de probabilité filtré . Tun ta par napport à la filtration (Fm)m>,0 · la lilbration (fm) ms à la fil braham (fm)mgo des comditions suivants: des comditions surivants: 1. Test boing, caid 31/20 (mom aleatous) by TKN 2 - T<+∞ lps et (Xm)) est bormé dans Lo(2) (Cad 3 NSo momaleat to I Xm (of Pps Vm>0)

3_ E(T) (400 et (0Xm)m>0 est burner dans La (P) (Caid 3 N>0 Eq. mom alcalow IDXWISU Bbs , Ampo) Preuve 3 (Xm) m> ost une martingal (rusp. sur-nar) pou rapport à la fillration (Fm) mys = (Xm) mys est une martingali resp. suu-nar) par rapport à la filliation (Fm) my o noutingol: E(XmT) = E(Xm+1) = = E(XJ) = E(XO) | E(Xm) = E(XO) Sun-nartin: E(xm) & E(xm) & ... & E(xo) /(rusp & E(xo)) a/ Test bornie = 3 main / T/m $Xm' = \frac{Em}{K=0} XK. 1) T=K + Xm. 1 T>m$ m>, m = 11 }TSm} = 0 et 11 }T=kf = 0 & K>m m <m = 0 Xm = Em XK117T=K = 0 |Xm] < Em |XK1=YEL1(P) Xm = XmnT ____ XT Crac au throm de Come momo tome Pin E(Xm) = E(PumXm) = E(XT) Paparalama ma les com(mx) & cases = E(Xo) maitingal = = E(XT)=E(Xo) maitingal (E(X) sun-non = DE (XT) (E(X)) sun-nor b/ T(+00 et (xm) myo est bonnice dans Los (P) (Cad 3 n sol/ 1xm] (n pps) Xm = Xmar -> XT Su (T(+00) et P(T(+00)=1) Cad Xm ____ XT lps |Xm| = |Xmnr| < 0 Pps E(n)= 0 (+w) Grâce au TCD ome fim E(Xm) = E(fim Xm) = E(XT) =/TG L'(P) et (DXm)m>0 est bormé dans Lo (P) (Cad 3 N>0/10Xm) (N a dead (D) T = (X) I T = 12 (X) I = 2012 IU Pps Vm>0) . E (T) (+00 =0 P (T (+00)=1 =0 Xm = XmnT -XT Pps Xm = Xmr = (Xmr - Xmr)-1)+ (Xmr)-1 - Xmr)-2)+ ...+ (X1-X0) + X0 1Xm | < Em (DXK + 1Xol DX = Xo < n. (mat) + 1xol < n.T + 1xol & L^(P)

```
Fra au thom & CVD, from E(Xmnr) = E(Prim Xmnr) = E(Xr) = E(Xr) Por
II/ Theoreime de Comvergence:
Théoreme 1: "Admin" Comougence Pps"
  Soit (Xm) mgo une sur- Martingali parnopport à la filtration (Fm) mgo
 Dorni dans [1(P) (Cod sup E(IXmI) (+w) ALow: il existe was var X a to
 E(|Xool) (+00 et Xm Pp. Xoo
 Attention : La comorgena de (Xm/mx, o vers Xoo m'est par forcement dans
  L^(P) (Cad Ellxm_ Xwl) ____ Po las toujours)
Combi eximple:
  (UK) K), Va and / P(UK = 0) = P(UK = 2) = 1/2
   Fm = T (U1, ..., Um); Xm = TT UK, m>, 1, X0=0
   to=}$, 2}
. Xm est Fm-meauable = D (Xm/mz, o est adapte à la filtration (fm/mz, o
. Xm>, 0 E (Xm) IT E(UK)=(E(U)) - 1
                                                                                 E(Un) = 0 x 1/2 + 2 x 1/2 = 1
 → Sup E (|Xml) =1 (+0
  E(Xm=1 fm) = E(XmUm+1/fm) = Xm E(Um+1/fm) = Xm E(Un)=Xm
                                                       Xm est Fm- mesmoble Umil IFm
  D'après & thom precident Xm _ Xo lps et E( |Xw) (+w
  (Xm +0) = (U1 +0, ..., Um +0) = P(Xm +0) = (P(U1+0)) = (1/2)
   E(1 xm =0) (xm =0) (xm
                                                      1 (Xm =0) (1 & L'(P) ) TCD E(1 (X00 =0)) = P(X00 =0)
                                                                                                             Cad Xw=0 Pps
    E(|Xm_X0) = E(|Xm|) = E(Xm) = 1 - X = 0
  Théoreme 28 Comvagence dans L'(P)"
  Soit (Xm) m>10 une moutingale boinée dans L2(P) (Càd: sup E(Xm) (20)
```

```
Alors (Xm)m> comvage lps et dans L'(P) vus une v.a.r Xos avec
E(Xxx) <+0 (Càd Xm Pps Xou et E((Xm-Xou)2) ______
Preuve :
Xm = (Xm_ Xm_1) + (Xm_1 - Xm_2) + ... + (X1 - X0) + X0 = & DXK
E(DXK. DXe) =0 pour K = P, em effet:
PKK, E(OXK DXP) = E(E(OXK DXPIFP)) = E(DXP E (DXXIFP))
           = E\left(XYP\left(\frac{E\left(XKIPP\right) - E\left(XK - 1IPP\right)}{XP}\right) = 0
E\left(X_{m+m} | F_{m}\right) = X_{m}
K-12e
          E(E(Xm+m/Fm+m-1)/fm) = E(Xm+m/fm) = E(Xm+m/fm)
E(XM) = E((Em DXK)2) = E E(DXKDXE)
      = Em E((DXx)2) P=0,-m
sup E(Xm) (400 =0 E E((DXK)) (400
      (Xm Xm) = ( E m DXK) =0 [ ((Xm Xm)2) = E [ (DXK)2) = 0 m 1 400
(Xm/m>,o ext de Cauchy dans L'(P)
or L'(P) est complet a toute soute of Query converge
       Xm Lyp) X | E((Xm-X)2) = 0 ou X E Lyp)
E((Xml) < (E(Xml))2, or sup E(Xm) (400 => sup E(1Xml) <400
 Grace on them precedents Xmps 7 E(171) (+00
 La comvugence en mayenne quodiotique (L'(P1) =0 Covr en Proba
```

the said of the state of the same in our

rate of the fitter of the said

Lo Cu Pps =0 Lo Cu en proba.

Chaime de Markoo

(n, f, P) espace de probabilité E espace d'états = emsomble au plus démommoble (Xm/m/o um processus stochastique à voluis dans E xa_, xm1: pare m+1: futur le plus proch I/ Définition et probabilité élémentaire: Definition: Sous les mototions ci-demus, om dit qui (Xm) mosost une chaîne de Markou Sun For & P(Xm+1= 3/X0= x0, -, Xm-1= xm-1, Xm=x) = P(Xm+1= 3/Xm=x) Y 20, .. , 2m-1, 2, 36E Si de plus, P(Xm+1= 8/xm=x) = P(X1=8/xm=x) Yn, yee alors omdit que la chaîne (Xm)m>,0 est une chaîne de Markov homogène Dans la Suite de a chapitre, on utilise sculement les chaînes de Markou homogenes Posoms Q(x,y) = P(X=y/X=x) Yn,yGE tq \0 < Q (n. 7) < 1 Quotum application de EXE ____ [0,1] (x,y) ____ Q(x,y)) E Q(n/3) = 1 Em effet : $\underbrace{\mathcal{E}}_{\text{YGF}} Q(x,y) = \underbrace{\mathcal{E}}_{\text{YFF}} P(X_1 = y \mid X_2 = x) = P(U(X_1 = y) \mid X_2 = x) = 1$ Définition: Soit Di une application: EXE_____ [0,1] tq {0 < Qi (21,4) < 1 > dniyGE Disappelly matrice de transition sur [SEE Quand)=1 Y nEE moyan 21/8(11/11) 8 (21/21) $Q_1 = \alpha i$ $\sum_{i=1}^{\infty} \frac{\sum_{j=1}^{\infty} \{(n_i, n_j)\}}{\sum_{j=1}^{\infty} \{(n_i, n_j)\}}$ =1

Proprietés : Sovent Q, et QL dux matrices de transitions sur E. Posons Q(n,y)= 9 est une matrice de transition 36E 0, (21.3). Or (34) AnigeE Sun E (Q=0,01) Prenoe 3 ·Q(x, y) to Yx, yeE (evident) · E B(x, y)=1? SE Q(219) = E E Q1(213) Q2(319) = & Q(x,3) (& Q2 (3,4)) = & Q(1,3) = 1 Car Pict Qz pomt deux motives de bransitions Proprietés: " Equation de Chapman - Kolmogorov : Soit (Xm) m>0 une chaîns de Nankou sun E, de loi imitiate l'et de matria de transition: Q (Cad P(x) = P(Xo=x), Vx EE et Q(x, y)= P(XI=8/XO=x) Yn, YEE) P(X0= x0, X1 = x1, -, Xm = xm) = P(no) Q(no, n1) Q(n1, n2) - Q(nm-1, xm) Y no, -, nm FE Om det que la loi de chaine de Narkou (Xm) m70 sur E est completement caracterisé par p et 0 P(Ao, A, Az, ..., Am) = P(Ao). P(A | Ao). P(Az / Ao nA) ... P(Am | Aon... nA) Preuxs P(X2= x2 / Ko= no, X1=n1) P(Xm=xm | Xm= xm-1) = P(XI=XI) XI=XI) Exemples et applications: suy st enne dymamique ou bien nécurrence afratoire : . E em sumble au plus démombrable () . Femsemble quelcomque . H une application mes mobile de Exf dams E . Xo une v.a à voluis dans E, de loi P:

Px (x) = P(x=x)=p(n) 4n6E

\$ (Ym)mz, une suite de Da iid à voleurs dans F. de loi Det Xo I (Ym)mz, Rosoms Xm+1 = H(Xm. Ym+1) Ym EIN, alous (Xm)ms, o est une chainede Narkov sun E Em effet : Xm s'exprime en cometion de Xo, Yi, _, Ym $X_1 = H(X_0, X_1)$ Xz = H(X1, Y2) $X_m = H(X_{m-1}, Y_m)$ P(Xm+1=4/X0=x0, ..., Xm=x) = P(H(Xm, Ym+1)=4/X0=x0, ..., Xm=x) = P[(H(x, Ym+1)=y/X0=x0, ..., Xm=x) = P(H(x, Ym+1)=y)] lus / somt Ym=1 _ ,1 _ s'exp emfet (x>, Y, _ Ym) = P (H(x, Y1) = y) = Q(n, y) Marche atratain sun 760 * Xo =0 , (Ym) mx v.a. iid P(Ym=1) = p P(Ym = -1) = 1-p Xm = E / YK E = 21 F= 3-1.15 Xm+1 = Xm + Ym+1 = H(Xm, Ym+1) H: Exf -=> E (m.3) -> x+3 (Xm/m), est une chaîne de Narkov sur ZI, car (Xm/m), o est une récurrence alcatou Si deplus. Fest au plus démombrable (Y1=3))-Q(x,y) = P(H(n, Y,) = y) = P(U) (H(n,3)=y = E /H(n,3) = B (Y=3) = E D(3) 36F/H(m,3)=y Q (n, y) = P (H(n, y) = y) = $\frac{\mathcal{E}}{3 \in F/H(n, 3) = y}$ D(3) = $\frac{1-p}{p}$ 8 8=x-1 8 J= x+1 Produit à divite, P(EIR) = P'en somble des applications de E dans IR Ep; ly om out du que & (xo) = 1 Ex; Px omocul din que X(X)= Sx (d'une manieù certaine, fa chaîne part dex)

Om suppose que | E|=m E= {\ini,..., \inf alminj) Papplication fed Edams IR silvantifu pour plus (mi) | P(nj) | au vecteur colonne | f(mi) | P(xm) | P(xm) | Q f(mi) | Q f(mi) = E Q (mi, nj) f(nj) | Q f(mi) = E Q (mi, nj) f(nj) \$1%) 0= &(x1) F (EIR) ____ F(EIR) f - ap/ ap(x) = = a(n,y) p(y) loid pilaloidix. Cet opirateur rue moté emcou Q $E_{V}(f(x_{1})) = E_{V}(f(x_{1})/x_{0}) = E_{V}(L(x_{0})) = \sum_{x \in E} L(x) \underbrace{f_{V}(x_{0})}_{x \in E} L(x)$ Si P= Sz alow Ez (f(xi)) = L(3) = Ez (f(xi)/x=3) E3 (f(x1) / x=3) = E f(y). P(x=y/x=3) = 0 f(3) ARctemus : $E(f(x_1)/X_0=x_1)=Qf(x)=L(x)=Ex(f(x_1))$ E(f(x1)/x0) = Qf(x0) = L(x0) = DE(f(xm+1)/xm) = Qf(xm) Produit à ganches Om motepar P = P'emsemble des mescus positives sur E 1E1=m E={x1,...,xm} une mesur positive P sur E s'identific au vecteur ligne (Plni),..., P(nm)) $|P(n_i), P(n_i)| = |P(n_i), P(n_i)| = |P(n_i), P(n_i)|$ (40) (nj) = Emplni) Q(ni, nj) h -> ho / (ho)(2) = E h(w) o(x2) [PA](E) = & [Pa](y) = & & P(n). a(x,y) = & P(n) & Q(n,y) = Ener P(n) = P(B) = 0 St Ped mus de prob = 0 PQ est mis de prob

```
P= 2(x0) Pp (x1=3) = Pp ((x1=3) n(U (x0=x))) = E Pp (x1=3, x0=x)
= E 1 (x = x)Pp (x = 3/x = x) = E +(n) Q(x,3) = [+0)(8) ABEE
2 (x) Q= 2(xi) == P(xi=3) = E P(xo=x) Q(xi3). ABEE
L(Xm) Q = 2(Xm+1)
P (Xm== 8) = P ((Xm== 8) n ( U (Xm=x))) = E P(Xm=x) P(Xm== 8/xm=
                                                                                Q(x,y)
g(x) Θ=g(x1) / g(x4) Θ-g(x41)
                                                                        musu de prop = splec
\langle X(x) \rangle = \langle X(x) \rangle = \langle X(x) \rangle = \langle X(x) \rangle
                                                                          Lo victeur ligne
                         & (xm) & = & (xm+m)
2 (Xm-1) & = 2 (Xm)
P(Xm=4) = E P(X0=x).Qm/3,4) A JEE; Px(Xm=4) = Qm(m,4)
P(X_{m-m-3}) = \sum_{\alpha \in E} P(X_{m-\alpha}) \cdot Q^m(x, \beta)
E_{\alpha}(f(X_m)) = \sum_{\alpha \in E} f(\beta) \cdot P_{\alpha}(X_{m-\alpha}) = (Q^m f)(\alpha)
= (P(X_{m-m-3}) \cdot P(X_{m-\alpha}) \cdot Q^m(x, \beta)
E (f(xm)/x0) = (87)(x0)
E\left(f(x_{m+m})/x_{m=x}\right) = \underbrace{\mathcal{E}}_{y \in E} f(y) \underbrace{P\left(x_{m+m} = y/x_{m=x}\right)}_{Q^{m}(x_{1}y)}
E\left(f(x_{m+m})/x_{m=x}\right) = Q^{m} f(x)
                                       = Qm f(Xn) = E (f(Xm+m)/Xm)
E\left(f(x_{m+m})\right) = E\left(F\left(f(x_{m+m})/x_{m}\right) = E\left(K(x_{m})\right) \text{ aux } 
                                                       K(or) = E/ P(Xm+m)/Xm=x)
E ( f (xm+m)) = Qm f(x)
                                                       - E f(y) &m (n,y) = (Bmf)(n)
 Qm (x,y)= Px (xm=y)
                                                   K(Xm) = (Omb) (X)
& f(x) = Ex [f(xm)]
E_{1\times m}\left(f(x_{m+m})\right) = E\left(f(x_{m+m})/x_{m}\right) = \left(Q^{m}f\right)(x_{m})
II/Proprietés simple de Markov et proprietés fortes de Markov:
E: emsemble au plus démombrable
EIN: { x = (xx) k30 / x KEE YK30}. Pensemble des suites àvoleurs dans E
Om va de fini une tribu sur E'N (qui s'appelle tribu cy lindrique de la manicà
```

Survante: G=P(EIN)/pourtail Ac Galors 3m CIN et BC P(Fm-1)

XEA (=n (xa,..,xm)EB I m'est pas stable par recumion au plus domommable Posoms & = (&) = tribu cylindrique = tribu engendre par & X = (Xm b) une chaîne de Markas sun E, de los entrale pel de matrice de transition 8 POSDOMS Pm { (x1, ..., xm)} = Pp (x1, ..., xm) = P(x6) Q(x6, x1). Q(xm.1, xm) BEP(Em) Pm (B) = E Pm ({xx, xm) EB I'm ast an masur de probabilité sur (Emi, P(Emi)) Deplus, oma Pm+1 (BxE) = Pm (B) , BE D (Em+1) en effet; $P_{m+1}(BxE) = \underbrace{\mathcal{E}}_{(x_0, x_1)} \underbrace{P(x_0)}_{(x_0, x_1)} \underbrace{Q(x_0, x_1)}_{(x_0, x_m)} \underbrace{Q(x_{m-1}, x_m)}_{(x_{m-1}, x_m)} \underbrace{Q$ Giàci au Him de Komolgorous (ci-denous), il existe une unique mesur de probabilité sur (EIN, g) qu'om la moli p tq: Pourtout Afg (a=n JmAFIN et B & P(Em)) x = (xx)x>0 &A C=n (x0, ..., xm) & B = p P(A) = Pm(B) La mesur de probabilité l' s'appelle loloi du processus. Théorème: Admis (them d'extension de Komolgonou) - Hypotheix: (Pm) my o une suite de mesure de probabilité top Pm est une mesure de probabilité (Em+1, P(Em+1)) . On suppose que les l'in somt compatibles dans l'ons survant: Pm+1 (BXE) = Pm (B) Y BE & (Em+1) . Comclusion: Hexiste une unique mesur de probabilité P sur (E'N, G) to P(A) = Pm (B) où A E g con 3 meIN et B E P (Emri) Gm: (E'N, g) - (FN, g) $x=(x_0,...,x_m,...) \longrightarrow (x_m,x_{m+1},...,x_m)$ Om est mesurable, pour celà, il suffit de montrer que pour tout AE G. Gm (A) = g x = (xx) xx0 EE M/Gm (x) EA} AG & = > > KGIN et BGP(E K+1) / x = (xe) e30 GA C=0 (xo, ...,xk)GB Gm(x) = (xm, xm+1, ...) & A c=0 (xm, xm+1, ..., xm+k) & B a=0 (xo,..., xm, xm+1, --, xm+K) EEM XB

Cu (4) Ed m= w+K-1 B = EmxB = D Gm est mesmoble Théoremes Propuetes symple de Markons · hypotheses: " X = (Xm) mgo une chaine de Markos sun E de loi unitrale l'et dimatria di transition & . H. (EN, G) _ (IR. B(IR)) mesmoble positive outour Fm = T(Xo, ... Xm) mound blamam · Comclusion: E (H(Gm(x)) /Fm) = U(xm) où U(x) = Ex (H(x)) Applications KEIN, F: (EK+1, P(EK+1)) ____ (IR, B(IR)) mismable positive (ou bornée) $(x_1,...,x_K)$ \longrightarrow $F(x_1,...,x_K)$ Pasoms HF: (EIN, G) - (IR, B(IR)) $x = (x_1, ..., x_m, ...) \longmapsto F(x_1, ..., x_k)$ H(Gm(X)) = H(Xm, Xm+1, __) = E(F(Xm+1, ..., Xm+K)/Fm) = U(Xm) où $U(x_m) = E_{\infty}(H(x)) = E_{\infty}(F(x_1,...,x_m))$ E(F(Xm,..., Xm+K)) = E(E(F(Xm,..., Xm+K)/fm)) = E(U(Xm)) = EU(x). P(xm=x) = Ex (F(XO, ..., XK) P(X) an &(Xm)=P Frence 3 H m esuable positive H (EIN, G) ___ (IR, BliR) Limmu d'approximation: lem Hom = H Hom étagée positive Hm = E de. 100 où DPEG ¿ Grâce au throm de la comvergence momotorne Comditionnelle. il suffit de mendu H étagée positive Grace a la Punéauté de l'esperance comditionnelle il suffit de prender H= 1A avec AG Cg Grace au throm de chanse momotone, il suffit de prender AEG (AGY CO 3 KEIN et BE 9 (EKL) / x = (xp) P/O EAO= (xo, ..., xk) EB $1_{A}(x) = 1_{B}(x_{0},...,x_{K})$

11(Gm(x)) = 1/1 (Gm(X)) = 1/1 (Im . Ym+1, .) = 1/8 (Ym, 1m=1, Xm+x) Prenoms DE In = (Xo, Ym) == D=(Xo, Xm)-1(c) où c EP(Emat) 10 = 10 (Xo, ... Xm) IE(H(GmM) 10) = [(1B(Xm, Xmx), Xmxx) 1c(Xo, Xm)) = E TO XMIRE 18 (XMIX XMI) 1 (XO, XM) X P(x0)Q(x0, xm)x. xQ(xm, xm) B(xm, xm+1) B(xm, xm+1) = E 1c (x0, xm), p(m0), Q(x0,21), Q(xm1,xm) & 1g(xm, xmx) = 1g(xm, xmx) = x0, xmx (E) $\times \mathcal{Q}(x_{m_1}x_{m+1}) \dots \mathcal{Q}(x_{m+k-1}, x_{m+k}) = \mathcal{E}_{\mathsf{Xm}}(1_{\mathsf{B}}(x_0, \dots, x_k)) = \mathcal{U}(x_{\mathsf{m}})$ $E_{Xm} \left(A_B(X_{0,...}, X_K) \right) = \underbrace{\mathcal{E}}_{X_{0,...} \times K} A_B(X_{0,...}, X_K) + (X_{0}) \cdot A(X_{0,X_{1}}) \cdot A(X_{1,X_{1}}) \cdot A(X_{1,X_{1}})$ = E (U(Xm) 1c (x0,..,xm)) = E (U(Xm) 16) U(xm) of Fm- musuable. L'unicité Pps de Perperama comditionnelle emplique E (H(Gm(x)) /Fm) = U(xm) Pps Theoreme: Proprietes forte de Markou Preuve (Photol Soit X = (Xm)m>0 une chaîns de Nackov sun E, de matrice de transition Q et Tum temps d'avrit par rapport à la filtration (Fm) mxo. Uni=Ex(H(x)) Oma E(H(Q_1(X))/FT) = U(XT) Sun (T(+w)) Pps. où H mesurable borné Definition: FT = { ACQ/AN(T=m) & fm f où Test un to 1. (fm) m>0. III/Réanneme, Transience et unéductible: Soit (Xm) my, une chaîne de Nackou sur E, de motrice de tiansition Q Définition : Soient xety dux Flats di E, Om dit que of sommunique avec y

sil eriste m GIN/Px (xm=y) > o (Cad Px (xm=y) = Qm(niy)>0)

```
Proprietos
Les propriétés suivantes sont équivalentes:
  a/ Hexiste mein et (mai) uplets d'états xonx , xi, ..., xm=g
       by & (mi, min) >0 i=1, ..., m-1
  b/x →y (3m ∈ 1N) Px (} Xm = 2f) >0)
  C/ Px(} 3K$1 /XK=8})>0
Lruw:
"a = b": ( intersection)
 {Xo=xo; X1=x1; ...; Xm= y} = } Xo=xo; Xm=y}
   =0 Px (X0=x; . ; Xm=y) & Px (X0=x; Xm=y)
      0 < p(x) Q(x,m) \times \times Q(x_{m-1}, y) < \frac{P_n(x_m = y/x_{0} = n)}{g_m(x_m = y/x_{0} = n)} \frac{P_n(x_m = y/x_{0} = n)}{g_m(x_m = y/x_{0} = n)}
"b =0 C" } Xm = 2 = " } Xx = 3 }
                        = { 3 K> 0 { X K = }}
        =0 0< Px (} Xm=8}) < Pn (}3x>0/Xx=8})
            Moma = momc
    { 3 K > 0 / XK = 8 = 0 } XK = 8 = 0 U U NK = 6 } X = n, XI = n, ... XK = 8
    Y ni,..., nk-1 EE Pa ({ Xo=n;...; Xx-1 = 4})=0
              0 < Pa (} = K,0 / XK= y) < & E Pn(} Xb=n; ... ; Xk= y) = c
Offinition &
Om dit qui x et y ox commoniquent entre eux, si n _ y et y_n
 (Cad Dexiste met m GIN / Qm (n, y) so et 9m (y,n) so
                              Px (Xm= y) Py (Xm=n)
motation x = y
```

La relation '= est une relation d'équivalence.

1 Promietes :

5

```
Lieurs
· x = x 8° (x,x) = 150 mes riflexive
· x = y con Jm.m CIN to a" (n.y) sod a" (y.n) so an y = x
· n - yel y - 3 am } 3m (101/8m (1.3/50)
 alou = = y el y == 3 PEE am (n. 1) & m (t. 3) > & (n. 1) & m (t. 3) >
 = x = 3 (dapus caqui precède)
E = } Pensemble des clames d'équivolonce}
 OF Prinition :
On dit qu'une chaîne de NacKov (Xm)mzo est inséductible si tous les
états se communiquent entre eux (Càd n = E YneE).
Soit XFE
Tx = inf /m/o /Xm = x) est lo u.a qui décuit le 1a instant de
parage par naprès l'instanto
   = inf { m>1 / xm caf out un t.a / (Fmx) m>0; Tn = n -> IN
    A = }x} +0
    Nn = E 1/3×x=n) = v.a qui decut l' mombre de parrage par n
   Tn = onf my Tn /xm=n) est la v.a que décut la dému instant
   el parrage par n après Pinstant Dert un t.a 1. (fmx) m>,0
Soit sun tail (Fm) min ACE
                                 a liter dexercia
     T=mff >c>S/XmeAf extum tail (fmx/mxo)
 Tx (m) = on f /m> Tr (m-1) / Xm = nf v.a qui dicut li m inu panage paun
 Définition :
Soit nGE. Omelit qui n est un état recurrent, si en paitant de n en revient 
En pusque suu ment à l'état x (Càd Pin (Th' (400)=1)
```

```
Proprietos
Les propuetes suivantes somt équivalentes:
  a/ of existe mein et (mail uplets d'états xo=x, xi, ..., xm=g
       kg & (mi, min) >0 i=1, ..., mal
  b/x ->y (3m∈1N Px (} Xm=2f)>0)
  C/ Px(3 3K) 1 /KK = 8})>0
Prenor:
" a = 0 b" (; intersection)

{Xo = xo; X1 = x1; ...; Xm = y} = } Xo = x0; Xm = y}
   = Px (X0=x; ...; Xm=y) & Px (X0=x; Xm=y)
        0 < P(x) Q(x,m) \times x Q(m-1, y) < P_n(x = y/x = n) P_n(x = n)
"b =0 C" } Xm = 2} = \ Xx = 2}
                                                    Si East finis
                       = \ 3 K > 0 \ X K = 3 }
        =0 0 < Px ( } Xm=8 ) < Pn ( } 3K > 0 / XK=8 )
c =0a"
            Moma = moma
    { 3 K > 0 / XK = 8 = 0 } XK = 8 = 0 U U NK = 6 } Xx = 9 = 0 U Xx = 9 }
    Y ni, ..., nx-1 EE Pa ({ Xo=n; ...; Xx-1 = })=0
   VKEIN 0 < Pa ( ) = Kjo / XK= y) < E = Pn( ) Xb=n; ..., XK= y) = 0
Offinition &
Om dit que x et y ox commoniquent entre eux, si n _, y et y_, n
(Càd Dexiste met m EIN / Om (n, y) so et 9m (y, n) so
                            Px (Xm= y) Py (Xm=n)
motation x => y
Propriétés :
La relation "= " est une relation d'équivalence.
```

```
Dams Lecar comtrain, andit qui x est transient
Proposition:
Px (Nx > K+1) = Px (Tx <+00). Px (Nx > K)
Lawe 5
N_{3x} = \sum_{k=0}^{+\infty} \mathbf{1}_{(x_{0} \times x)} = G(x)
  G. EIN__ IN
      = (xx) x, = = = 1 (xx=x)
 sous Pa
(Nx > K+1) = (Tx (+0)
Tx(K) = (mf) m> Tx(K-1) / Xm = x = Tx(K-1) + mf > m> 0 / Xm + Tx(K-1) }
(Tx(K) <400) = (Tx(K-1) <400; inf) m>0/1 xm + Tx(K-1) = x) <400}
Tn = in f } m>0 / Xm=x ] = F(x); in f { m>0 / Xm+Tn(K-1) = n } = F(Q_{Tn(K-1)}(x))
                                                    QTn(K) (x) = (x(K-1); X(K-1);...)
                           X = (Xm)m>0
                       F. E" __ N
                         (mm)mx0 -> unf /mx0 / mm = x}
 Pa(Nx>, K+1) = Px (Tx (K-1) (+00) = Ex (1 (Tx (K-1) (+00); F(Q (K-1) (X)) (400)))
     = En [En (1 (Thinkson) (F( QTinn) (x)) (+0) / FTinn))
     = En (1(Tx (K-1/400)) = (1(F(QT(K-1)(x)) 400) / Fx(K-1)))
                                           11 maprietos forti de Naikas
                                  U(XTM-1); U(8) = Ey (1 [F(x) < 400))
Or X_{Tn}^{(K-1)} = n U(X_{Tn}^{(K-1)}) = U(n) = E_n(\Lambda(F(x)(x+\omega)) = P_n(Tn(x+\omega))
 Px(Nn), K+1)= Pn (Tn (+00) En (1 (Tn(K-1) <400)) -
                                   = Pn (Tx <+00) = Pn (Nn > K)
Theoreme &
1. Les propuetes suivantes sont équivalentes
                                récurrent (Càd Pr (Tr (40)=1)
    all' Etat = est
                                c/ E+a Qm (n,n) =+a (Caid Seu divagonti)
    b/ (Nx =+0)=1
```

```
2. Les propriétés survantes somt équi valentes
   a, / l'état x est transient (cod Pr (Tr (+w) <1 0=0 Pr (Tr = 10) so)
   bil Nx sul une loi géometique de paramètic
   a/ E+00 Rm (n.n) <+00
Prauxs
"a =0 b" Hypothix: Lx (Tx <+00)=1
  D'apres la proposition precedente, Pri(Nn >, K+1) = Pri (Tr/40) Pri(Nn>,K)
= = P(Nn) o) =1 Nn = E+0 1(xx=x)
1 = Pn(Nn), K) \xrightarrow{M \to \infty} Pn\left( \bigwedge_{k=0}^{+\infty} AK \right) = Pn\left(Nn = +\infty\right)
AK = (Nn), K Nn = +\infty
                                                   On € ( AK O= N N ( W ) > K, Y)
                    AH+1 & AK
"b=== (" Hypotheix: Pn (Nn=+00)=1)0 =0
Nx = \underbrace{\xi^{00}}_{K=1} \Lambda(x_{K}=n) \Rightarrow E(Nn) = \underbrace{\xi}_{K=0} E_{x} (\Lambda(x_{K}=n)) = \underbrace{\xi^{+00}}_{K=0} \underbrace{\rho_{n}(x_{K}=n)}_{Q^{K}(n,n)}
                                             en d'unteprobilité
                              thin do convinuom :TCD
     QK (7,7)=40
"a1 =0 b1": Hypothix: Pn (Tn (400) <1
      Pn (Nn) K+1) = Pn (Tn x+00). Pn (Nn > K)
       Nn=K= (Nn>K)/(Nn>K+1)
             Nn (s) = 1N
       Nn>K+1 C (Nn>K)
      Pn (Nn=K) = Pn (Nn>K) - P (*Nn>K+1)
  . P. (Nn) K) = Pn (Tn (+00). Pn (Nn) K-1)
   Pn (Nn 5, Ka) = Pn (Tn (+w) Pn (Nn 5 K-2)
   Pn(Nn) 1) = Pn (Tn (+00) Pn (Nn) 0)
  Pn (Nn>,K) = (Pn (Tn (40))K)
```

Pn (Nn=K)=
$$(Pn(Tn \leftrightarrow w))^{K}$$
 (1 = $Pn(Tn \leftrightarrow w)$)

= $(Pn(Tn \leftrightarrow w))^{K}$ (1 = $Pn(Tn \leftrightarrow w)$)

Nn ~ $G(A - Pn)$ south avec $Pn = Pn(Tn \leftrightarrow w)$

P(Tn=+w) $En(E^{tw}_{k=0})^{K}$ ($X_{K=n}$) = $E^{tw}_{k=0}^{K}$ $En(A_{(X_{K=n})})^{K}$

= $En(A_{(X_{K=n})})^{K}$ = $En(A_{(X_{K=n})})^{K}$ = $En(A_{(X_{K=n})})^{K}$

b) = $En(Nn)$ <+ $En(E^{tw}_{k=0})^{K}$ = $En(A_{(X_{K=n})})^{K}$ = $En(A_{(X_{K=n})})^{K}$

= $En(Nn)$ <+ $En(E^{tw}_{k=0})^{K}$ = $En(E^$

Demime, & E+00 Q" (V, V) <+00 =0 E+000 Qm (m, n) <+00

EXT: 1 P(o paraplus et il plant-) 4 Te 2. P(o parapluie) × p. P. Sur le long terme: Ts = Ts. Q. Ts la distribution de probabilite Ts est stationnaire/invariante lasque $TI_s = TI_s, Q$ On pose: The (QB, V, S, E). la matrie de Transition: 0 9 P. O P 0 0 = 1 Eq=d. 1 d= Eq 0 0 0. /2+1 P Sq + Ep = B d = (d+BP)9. 2d + 86=8 he matrice est d= dp + BP9. B9. + 81= = 8 stockastique. d = dp+ (89+Ep) p9 (d+ BP = E. (2) la chaîne de Markov est irréductible. = dq+(&q parce que on peut power. n'importe. quelébt. $TI_s = (q \varepsilon, \varepsilon, \varepsilon, \varepsilon, \varepsilon)$. à n'impolte quel sutre. 2048-10+ = 1 (partig) 3 Qu'ciiji. : le probabilité de perser d'un élat i d'un élat j'en a élips. TIS ((9) 1 9+4 9+4 19+4 9+4) Q(a) (1,j) = Q2. P (o paraplus). (11) = | P9 | P2+92 | P9 0 0 12:1 2 = 1 0 0 Pg Pg+ ds bd bg+d 2 = 1 N=0 9. n=1=2=3 p2+92 m = 4

Pénadicité. Cx2. Chaine Le Markou Patrice de Transition 2) II" = 3 nitialisé à l'élat A. To = (1,90,0) Tro = To Q(n) $Q^{(n)} = Q^{n}$ $Q^{(n)} = Q^{n}$ $Q^{2} = \begin{pmatrix} 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \end{pmatrix}$ $Q^{3} = Q$ $Q^{2K+1} = Q$ $Q^{2K} = Q^{2}$ TT = TT x Q0. = {TTo, Q & n impair TTo, Q & n pair = $\begin{cases} 0 & \text{si} & n \text{ impair} \\ 1 & \text{si} & n \text{ pair} \end{cases}$

La période d'un état i d'une chaîne de Markov est défence comme étant le PGCD de cl'ensemble. Le nombres ne IN to, Q" (iii) to q', Q', Q', on Elimine ceur qui oir un disposali nul n= 8,4,6. ... of on charde le peget du 0=2 chaîne periodique de periode 2. (4) dans le de s'ablum Q2 = (1/2 0 1/4 1/4 0 1/4 0 1/2 0 1/2 0 1/4 1/4 0 1/2 Q3= (0) Qr= (+0+0) n=2,4,5. d= 1 =) chaîne apeniodique + irreductible + espérance d'étal-fine => ergodique sphinmanite. TTs = TIS Q on pox TIs= (d, B, d, S, E) d+ B+ 8+ 8+ E=1 => hys + 69=0: d+8+8+8+8+2=1. => TTs = (1/5,1/15,1/5,1/r,1/r)