Closed Loop Control

Exercise

Giorgio Grisetti Emanuele Giacomini Immagine to realize a Differential Drive M.R.

- We need:
 - Platform
 - 2 Motorized wheels [Brushed DC + H Bridge]
 - > 1 Caster

Mount everything and test the platform

- H Bridge configuration:
 - Dual Dir + PWM [3 control pins]

Apply same PWM signal to both motors

What happens?

Robot is unable to go straight

The motors are similar <u>but not identical</u>

How to correct this behavior?

- Two solutions:
 - Calibrate PWM channels
 - Use Closed Loop Feedback correction

Calibrating PWM channels is painful...

Velocity differences are not constant

 Requires interpolation and parameter estimation

Can be done... but why?

Closed Loop Feedback Control

- Is the shaft's angular velocity measurable?
 - > Yes! encoders

Compares measurements with input commands

Feedback design guarantees convergence

- Many Feedback controllers exists
 - We use Proportional Integral Derivative [PID]

Compute error between desired and measured speed

P acts like a spring

I removes the steady-state error

❖ D acts like a damper

Discrete PID Control

- We need to work with discrete time intervals *
 - **Proportional**

Integral
$$u_I(t) = \sum_{t_i=0}^t K_i e(t_i) \Delta t$$

Derivative

- Useful stability tips:
 - Bound the error
 - Bound the components

We designed an exercise for you

- Implement a motor class
 - Includes a PID controller

We gift you all the other modules :)

Our development

- Design problem
 - Comms with PC
 - Motor Control (Direction and Speed)
 - Encoder

- UART library
 - Initializes Serial communication
 - 19200 bit/sec
 - 8-bit data
 - Allows single/multiple byte transmissions
 - {put/get}Char()
 - {put/get}String(buf)

- Timer library
 - Allows precise loop timings
 - Set to 10ms/loop

- Brushed DC Motors requires H-Bridge circuit
 - 2 signals for direction
 - ➤ 1 signal for speed (Pulse Width Modulation)

- Digital I/O library
 - Allows binary signal generation
 - dir_a and dir_b

- PWM library
 - ➤ Allows 2^8 PWM configurations
 - en_a

Closed Feedback

- Brushed DC may include angular velocity sensor
 - Incremental quadrature encoder

- **Encoder library**
 - Allows 1 encoder port (pin 52, 53)
 - Asynchronous update
 - Refer to previous lectures for details

Last missing section

- Abstract the motor interface
 - H-bridge for control
 - Encoder for closed loop feedback

- Design a Motor class that:
 - Allows for multiple controls:
 - PWM Open Loop
 - PID
 - Computes PID corrections

Things to know

- For simplicity:
 - DigIO only handles Register E
 - Bit 4 -> pin 2
 - Bit 5 -> pin 3
 - More on the code...
 - > PWM only handles pin 13
 - Encoder mapped to pins 52 and 53

- Motor constructor takes:
 - Dir_a, dir_b regE bits
 - > PID parameters (Kp, Ki, Kd)