<u>Задание 1.</u> Дан универсум U={x | x − целое, $0 \le x \le 9$ } и множества A, B, C, D из U, заданные описанием или перечислением своих элементов (Таблица 1). Выяснить, из каких элементов состоят множества B и D, а также множество M \subseteq U, заданное так, как указано в Таблице 2.

Таблица 1.

Nº	Α	В	С	D	
1	{3, 2, 5, 6}	{x∈U x – чётное}	{3, 6, 4, 7, 8, 9}	$\{x \in \mathbb{N} \mid 5 < x \le 9\}$	
2	{8, 6, 0, 2, 3}	$\{x \in \mathbb{N} \mid x=2k-3, k=2,3,4\}$	{5, 3, 6, 1, 0, 2}	$\{x \in \mathbb{N} \mid (x-3)(x^2-4) = 0\}$	
3	{1, 0, 3, 8, 7, 5}	{x∈U x – чётное}	{3, 6, 4, 7, 8, 9}	{x∈ℕ x-5 <5}	
4	$\{7, 0, 4, 3, 6, 8\}$	$\{x \in \mathbb{N} \mid x=2(k-2), k=2,3,5\}$	{0, 3, 4, 2, 8, 5}	$\{x \in \mathbb{N} \mid x^2-4=0 \text{ или } x^2=1\}$	
5	{8, 1, 7, 5}	$\{x \in \mathbb{N} \mid x-3 < 4\}$	{1, 8, 7, 3, 2, 6}	{x∈U x<3 и x≥6 }	
6	{6, 7, 0, 4, 1}	$\{x \in \mathbb{N} \mid (x-5)(x-7) = 0\}$	{5, 7, 3, 6, 1, 0}	{x∈U x – чётное}	
7	{2, 6, 0, 9, 8}	$\{x \in \mathbb{N} \mid 2 \le x \le 6\}$	{6, 9, 0, 1, 2, 3}	$\{x \in \mathbb{N} \mid x-2 < 3\}$	
8	{5, 8, 2, 3}	{x∈U x – нечётное}	{1, 6, 7, 9, 3}	{x∈U x<5 и x>7 }	
9	{5, 2, 1, 8, 3, 6}	$\{x \in \mathbb{N} \mid (x-4)(x^2-25)=0 \}$	{5, 9, 2, 3,1}	$\{x \in \mathbb{N} \mid x=3k+3, k=0,1,2\}$	
10	{2, 1, 5, 6, 7}	{х∈U х≥6 и х – чётное }	{1, 5, 0, 7, 3}	${x \in \mathbb{N} \mid (x^2-9)(x-1)(x-6) = 0}$	
11	{4, 7, 3, 2}	{x∈U x<4 и x>8 }	{8, 2, 6, 3, 0}	{x∈U x – нечётное}	
12	{7, 1, 6, 8, 4, 5}	$\{x \in \mathbb{N} \mid x=3k+1, k=0,1,2\}$	{0, 3, 5}	{x∈ U 2< x-3 <9}	
13	{4, 0, 2, 1, 5, 8}	$\{x \in \mathbb{N} \mid 0 < x < 4\}$	{8, 4, 5, 2, 0}	$\{x \in \mathbb{N} \mid x-2 < 4\}$	
14	{1, 3, 6, 4, 2}	$\{x \in U \mid x = 2^k, k=0,1,3\}$	{7, 2, 5, 6, 1, 0}	$\{x \in U \mid (x^2-25)(x-2)x = 0\}$	
15	{9, 0, 1, 2, 3}	$\{x \in \mathbb{N} \mid 2 < x-4 < 5\}$	{7, 6, 1, 0, 8, 5}	$\{x \in U \mid x=3(k-2), k=2,3,4\}$	
16	${4, 0, 6, 2, 8, 3}$	$\{x \in \mathbb{N} \mid x=4(k+1), k=0,1\}$	{2, 7, 3, 6}	{x∈U x – нечётное}	
17	{1, 5, 6}	$\{x \in U 2 < x \le 7\}$	{6, 0, 7, 3, 8, 1}	$\{x \in \mathbb{N} \mid (x-7)(x-8)x = 0\}$	
18	{0, 7, 3, 8, 1}	{х∈U х>3, х – чётное}	{1, 7, 3, 0}	{х∈№ х кратно трем, х<10}	
19	{7, 9, 2, 3}	$\{x \in U \mid 3 \le x \le 7\}$	{4, 5, 0, 1, 3, 9}	{x∈U x<5 и x>7}	
20	{0, 8, 5}	$\{x \in \mathbb{N} \mid 2 \le x-3 < 7\}$	{4, 1, 6, 3, 5, 2}	$\{x \in U \mid x^2-9x+20=0\}$	
21	${3, 6, 4, 7, 8,9}$	$\{x \in \mathbb{N} \mid 5 \le x \le 9\}$	{3, 2, 5, 6}	{х∈U х – чётное}	
22	{5, 3, 6, 1, 0,2}	$\{x \in \mathbb{N} \mid (x-3)(x^2-4) = 0\}$	{8, 6, 0, 2, 3}	$\{x \in \mathbb{N} \mid x=2k-3, k=2,3,4\}$	
23	${3, 6, 4, 7, 8,9}$	$\{x \in \mathbb{N} \mid x-5 < 5\}$	{1, 0, 3, 8, 7,5}	{х∈U х – чётное}	
24	$\{0, 3, 4, 2, 8,5\}$	$\{x \in \mathbb{N} \mid x^2-4=0 \text{ или } x^2=1\}$	{7, 0, 4, 3, 6,8}	$\{x \in \mathbb{N} \mid x=2(k-2), k=2,3,5\}$	
25	{1, 8, 7, 3, 2,6}	{x∈U x<3 и x≥6 }	{8, 1, 7, 5}	$\{x \in \mathbb{N} \mid x-3 < 4\}$	
26	{5, 7, 3, 6, 1,0}	{х∈U х – чётное}	{6, 7, 0, 4, 1}	$\{x \in \mathbb{N} \mid (x-5)(x-7) = 0\}$	
27	{6, 9, 0, 1, 2,3}	$\{x \in \mathbb{N} \mid x-2 < 3\}$	{2, 6, 0, 9, 8}	$\{x \in \mathbb{N} \mid 2 \le x \le 6\}$	
28	{1, 6, 7, 9, 3}	{x∈U x<5 и x>7}	{5, 8, 2, 3}	{x∈U x – нечётное}	
29	{5, 9, 2, 3,1}	$\{x \in \mathbb{N} \mid x=3k+3, k=0,1,2\}$	{5, 2, 1, 8, 3, 6}	$\{x \in \mathbb{N} \mid (x-4)(x^2-25)=0 \}$	
30	{1, 5, 0, 7, 3}	${x \in \mathbb{N} \mid (x^2-9)(x-1)(x-6) = 0}$	{2, 1, 5, 6, 7}	{х∈U х≥6 и х – чётное }	

Таблица 2.

Nº	Условия, определяющие множество М			
1	D <u>_</u> M, C∩M=∅, 0∉M, M =2, M\B = {5}			
2	$A \cap B \subseteq M$, $ M =3$, $M \setminus C=\emptyset$, $0 \in M$, $(D \triangle B) \setminus M=\{2,5\}$			
3	$(B\backslash A) \cap M \neq \emptyset, M \cap (D\backslash C) = \emptyset, M \subseteq B, M = 2, 6 \notin M, A \cap B \cap D \subseteq M$			
4	M =2, M <u></u> A, B ∪C∪D∩M≠Ø, 4∈M			
5	$M\subseteq D$, $ M =3$, $7\in M$, $(B\setminus A)\cap M=\varnothing$, $M\cap \overline{C\cap D}=\varnothing$			
6	$0 \in M$, $M \setminus \overline{B} = \emptyset$, $ M = 2$, $ (A \cap C) \setminus M = 2$, $M \subseteq C \setminus B$, $6 \notin M$			
7	$(A \cap B)\M = \{6\}, M = 3, M \subseteq C, \{7,8,9\} \subseteq \overline{M}, 1 \notin M, (D \setminus \{2\}) \cap M \neq \emptyset$			
8	B\C <u>_</u> M, M∩C=∅, M =2, M <u>_</u> A, 2∉M			
9	M =3, M⊆D, B\M={5}, 0∉M, M∩C=∅			
10	$M \cap \overline{A} \neq \emptyset$, $ M = 2$, $C \setminus M = \{1,0,7,3\}$, $4 \notin M$, $B \cap \overline{D} \subseteq M$			
11	$M \subseteq \overline{A}$, $B \cap C \cap M \neq \emptyset$, $ M = 2$, $6 \notin M$, $ M \cap C = 2$			
12	$ M =2$, $(D\backslash A)\cap M\neq\varnothing$, $M\subseteq \overline{A}$, $0\notin M$, $\overline{B\cup C\cup D}\cap M\neq\varnothing$			
13	$M \subseteq A \cap C$, $ M = 2$, $M \cap B = \emptyset$, $8 \notin M$, $M \setminus D \neq \emptyset$, $ M \setminus \{2,4,6,8\} = 1$			
14	$ M =3$, $M\subseteq C$, $D\cap B\cap M\neq \emptyset$, $\overline{M}\cap A=\{3,6,4\}$, $0\in M$			
15	$C\setminus(M\cup D)=\{7,8,5\}, M\subseteq B\cup D, 6\not\in M, M =3, (A\setminus B)\cap M\neq\emptyset$			
16	$M\subseteq A$, $B\cap M=\emptyset$, $ M =2$, $(C\setminus D)\cap M=\{2\}$, $0\not\in M$			
17	$M \subseteq \overline{D}, M = 2, A \cap B \cap C \subseteq M, 9 \notin M, (C \setminus B) \cap M = \emptyset, \{2,3,4\} \subseteq \overline{M}$			
18	$M\subseteq \overline{B}$, $D\setminus (C\cup B)\subseteq M$, $5\not\in M$, $ M =2$, $M\cap \{0,1,2,3\}=\varnothing$			
19	M∩A=∅, M =2, M⊆D∩C, 0∉M			
20	$M\subseteq \overline{D}$, $M\setminus C=\emptyset$, $ M =3$, $2\in M$, $M\cap \{0,1\}=\emptyset$, $A\cap D\not\subset M$			
21	A∩M=∅, 0∉M, M =2, B⊆M, M\D = {5}			
22	$M A = \emptyset$, $C \cap D \subseteq M$, $ M = 3$, $0 \in M$, $(B \triangle D) M = \{2,5\}$			
23	$M\subseteq D$, $(D\setminus C)\cap M\neq\varnothing$, $M\cap (B\setminus A)=\varnothing$, $ M =2$, $6\not\in M$, $C\cap D\cap B\subseteq M$			
24	$4 \in M$, $ M =2$, $M \subseteq C$, $\overline{B \cup A \cup D} \cap M \neq \emptyset$			
25	$(D\C)\cap M=\varnothing, M\subseteq B, M =3, 7\in M, M\cap \overline{A\cap B}=\varnothing$			
26	$ (C \cap A) \setminus M = 2, 0 \in M, M \setminus D = \emptyset, M = 2, M \subseteq A \setminus D, 6 \notin M$			
27	$\{7,8,9\}\subseteq\overline{M}, (C\cap D)\backslash M=\{6\}, M =3, M\subseteq A, 1 \not\in M, (B\backslash \{2\})\cap M\neq\emptyset$			
28	M <u>C</u> , D\A <u>M</u> , M <u>A</u> =Ø, M =2, 2∉M			
29	0∉M, M =3, M⊆B, D\M={5}, M∩A=∅			
30	$A M = \{1,0,7,3\}, M \cap C \neq \emptyset, M = 2, 4 \notin M, D \cap B \subseteq M$			

<u>Задание 2.</u> Упростить выражение, заданное в Таблице 3, символьными преобразованиями (с помощью свойств операций над множествами) и проверить правильность полученного результата с помощью диаграмм Эйлера.

Таблица 3.

1	$(A \ C \cup A \cap C \cup B \ A \cup C \ B \ A \cup \overline{A \Delta B}) \cap (\overline{C} \cap B \cup A \cap (B \cup C))$
2	$(\overline{A} \cap C \cup (C \cup A) \cap B) \cap (\overline{B \Delta C} \cup A \cap C \cup A \backslash C \cup C \backslash A \cup B \backslash A \backslash C)$
3	$(\ A \backslash B \backslash C \cup A \cap C \cup B \backslash C \cup C \backslash A \cup \overline{A \Delta C} \) \cap (\ \overline{A} \cap (B \cap C) \cup B \cap \overline{C} \)$
4	$(A \cap \overline{C} \cup B \cap (C \cup A)) \cap (A \cap B \cup A \backslash B \cup \overline{A \cup C} \cup B \backslash A \cup C \backslash B \backslash A)$
5	$(\overline{B \cup C} \cup A \cap B \cup B \backslash A \cup C \backslash B \cup A \backslash B \backslash C) \cap (B \cap (C \cup \overline{A}) \cup C \cap A)$
6	$(\overline{A} \cap (B \cup \overline{C}) \cup B \cap C) \cap (A \cap B \cup A \setminus B \cup B \setminus A \setminus C \cup \overline{A \cup B \cup C} \cup C \setminus A)$
7	$(C\backslash B\backslash A \cup C \cap B \cup A\backslash B \cup B\backslash C \cup \overline{A \cup B}) \cap (A \cap B \cup C \cap (\overline{B} \cup A))$
8	$((\overline{A} \cup B) \cap \overline{C} \cup B \cap A) \cap (C \cap B \cup A \setminus C \cup C \setminus B \cup B \setminus A \setminus C \cup \overline{A \setminus B})$
9	$(\overline{A\backslashC}\ \cup C \cap B \cup B\backslashC \cup C\backslashB \cup A\backslashB\backslashC) \cap (\overline{A} \cap (C \cup B) \cup C \cap \overline{B})$
10	$(A \cap (C \cup \overline{B}) \cup C \cap B) \cap (A \triangle B \cup A \cap B \cup C \setminus B \setminus A \cup \overline{B})$
11	$(\ A \cap C \cup B \backslash A \backslash C \cup \overline{A} \cup A \Delta C) \cap (\ B \cap (\overline{C} \cup \overline{A}) \cup \overline{C} \cap \overline{A})$
12	$(\ \overline{A} \cap \overline{B} \cup C \cap (B \cup \overline{A})) \cap (\ C \ \Delta \ B \cup C \cap B \cup \overline{C} \cup A \backslash B \backslash C)$
13	$((C \cup B) \setminus A \cup A \cap C \cup A \setminus C \cup \overline{B} \Delta C) \cap (A \cap C \cup \overline{B} \cap (\overline{C} \cup A))$
14	$(\ \overline{B} \cap (\overline{C} \cup A) \cup \overline{C} \cap \overline{A}\) \cap (\ \overline{BVA} \ \cup (C \cup B) VA \cup A \cap B \cup A VB\)$
15	$((A \cup C) \setminus B \cup C \cap B \cup B \setminus C \cup \overline{C \setminus A}) \cap (\overline{A} \cap (\overline{B} \cup C) \cup \overline{B} \cap \overline{C})$
16	$((C \cup A) \cap \overline{B} \cup A \cap \overline{C}) \cap (A \cap B \cup (A \cup C) \setminus B \cup \overline{B \setminus C} \cup B \setminus A)$
17	$((A \cup B) \setminus C \cup A \cap C \cup C \setminus A \cup \overline{B \Delta A}) \cap (\overline{B} \cap (\overline{C} \cup \overline{A}) \cup \overline{C} \cap A)$
18	$(\overline{A} \cap (\overline{B} \cup \overline{C}) \cup \overline{B} \cap C) \cap (\overline{C} \Delta \overline{B} \cup (A \cup B) \setminus C \cup C \cap B \cup C \setminus B)$
19	$(\ B \backslash C \cup \overline{C \Delta B} \ \cup \overline{A \cup B} \ \cup (A \cap C) \backslash B \) \cap (\ (\overline{B} \cup A) \cap \overline{C} \cup A \cap B \)$
20	$(\overline{B} \cap (C \cup A) \cup C \cap \overline{A}) \cap ((A \cap B) \setminus C \cup \overline{A \Delta C} \cup C \setminus A \cup \overline{C \cup B})$
21	$(B \backslash A \cup A \cap C \cup A \backslash C \cup C \backslash B \backslash A \cup \overline{A} \Delta \overline{B} \) \cap (A \cap (B \cup C) \cup \overline{C} \cap B)$
22	$(B \cap (C \cup A) \cup \overline{A} \cap C \) \cap (A \cap C \cup A \backslash C \cup \overline{B} \Delta \overline{C} \ \cup C \backslash A \cup B \backslash A \backslash C \)$
23	$(C \setminus A \cup \overline{A \land C} \cup A \setminus B \setminus C \cup A \cap C \cup B \setminus C) \cap (B \cap \overline{C} \cup \overline{A} \cap (B \cap C))$
24	$(\overline{\mathbb{C}} \cap A \cup B \cap (\mathbb{C} \cup A)) \cap (\mathbb{C}\backslash B\backslash A \cup A \cap B \cup A\backslash B \cup \overline{A \cup C} \cup B\backslash A)$
25	$(B \setminus A \cup C \setminus B \cup \overline{B \cup C} \cup A \cap B \cup A \setminus B \setminus C) \cap ((C \cup \overline{A}) \cap B \cup C \cap A)$
26	$(B \cap C \cup \overline{A} \cap (B \cup \overline{C})) \cap (\overline{A \cup B \cup C} \cup A \cap B \cup A \backslash B \cup B \backslash A \backslash C \cup C \backslash A)$
27	$(A \setminus B \cup B \setminus C \cup C \setminus B \setminus A \cup \overline{A \cup B} \cup C \cap B) \cap (B \cap A \cup C \cap (\overline{B} \cup A))$
28	$(\overline{\mathbb{C}} \cap (\overline{\mathbb{A}} \cup \mathbb{B}) \cup \mathbb{B} \cap \mathbb{A}) \cap (\mathbb{B}\backslash \mathbb{A}\backslash \mathbb{C} \cup \mathbb{C} \cap \mathbb{B} \cup \mathbb{A}\backslash \mathbb{C} \cup \mathbb{C}\backslash \mathbb{B} \cup \overline{\mathbb{A}\backslash \mathbb{B}})$
29	$(B \setminus C \cup \overline{A \setminus C} \cup C \cap B \cup C \setminus B \cup A \setminus B \setminus C) \cap ((C \cup B) \cap \overline{A} \cup C \cap \overline{B})$
30	$(C \cap B \cup A \cap (C \cup \overline{B})) \cap (A \cap B \cup C \backslash B \backslash A \cup A \Delta B \cup \overline{B})$

- Задание 3. Даны множества $X = Y = \{1,2,3,4,5\}$ и соответствия $Q_i \subseteq X \times Y$, i=1,2,3,4 (см. Таблицу 4). Определить, каким является каждое из соответствий Q_i (i=1,...,4) (всюду определенное, сюръективное, функциональное, инъективное, биективное). Затем для каждого из соответствий Q_i (i=1,...,4), с учетом его свойств, выполнить следующее:
- 3.1. Если соответствие Q_i всюду определено, функционально, но не инъективно, то построить разбиение области определения соответствия на классы эквивалентности по отношению P: «два элемента эквивалентны между собой тогда и только тогда, когда они принадлежат прообразу одного и того же элемента».
- 3.2. Если соответствие Q_i сюръективно, инъективно, но не функционально, то построить разбиение области значений соответствия на классы эквивалентности по отношению R: «два элемента эквивалентны между собой тогда и только тогда, когда они принадлежат образу одного и того же элемента».
- 3.3. Если соответствие Q_i не инъективно и не функционально, то найти нижнюю и верхнюю грани множества Q_i , введя на этом множестве отношение порядка, по которому сравниваются векторы одинаковой размерности (если $a=(a_1,a_2)$ и $b=(b_1,b_2)$, то a < b тогда и только тогда, когда $a_i \le b_i$, i=1,2, и хотя бы одно из этих неравенств строгое).
- 3.4. Если соответствие Q_i является биекцией, то построить соответствующую ему перестановку на множестве X и разложить ее на циклы.

Таблица 4.

1	$Q_1 = \{(1,2), (3,1), (4,1), (5,1), (2,3)\},\$	2	$Q_1 = \{(3,2), (1,3), (1,4), (2,1), (5,5)\},\$
	$Q_2 = \{(1,3), (1,4), (1,5), (2,1), (2,2)\},$		$Q_2 = \{(2,2), (2,5), (1,4), (3,4), (3,3)\},$
	$Q_3 = \{(1,2), (2,3), (4,1), (5,4), (3,5)\},\$		$Q_3 = \{(5,2), (3,4), (4,5), (2,4), (1,5)\},$
	$Q_4 = \{(2,3), (4,5), (5,5), (3,2), (3,4)\}.$		$Q_4 = \{(2,5), (5,1), (4,4), (3,2), (1,3)\}.$
3	$Q_1 = \{(2,2), (4,3), (5,4), (1,1), (3,5)\},\$	4	$Q_1 = \{(1,2), (1,3), (1,4), (1,5), (3,1)\},\$
	$Q_2 = \{(1,3), (3,4), (2,5), (5,3), (4,4)\},$		$Q_2 = \{(1,2), (4,4), (5,5), (2,3), (3,1)\},$
	$Q_3 = \{(1,2), (1,4), (1,5), (2,1), (3,3)\},$		$Q_3 = \{(1,2), (1,4), (4,3), (3,5), (2,2)\},$
	$Q_4 = \{(1,3), (2,2), (5,3), (4,5), (2,3)\}.$		$Q_4 = \{(1,3), (2,4), (5,5), (3,4), (4,5)\}.$
5	$Q_1 = \{(1,2), (2,3), (4,4), (5,5), (3,5)\},\$	6	$Q_1 = \{(1,2), (2,3), (3,4), (5,1), (4,5)\},\$
	$Q_2 = \{(5,1), (3,4), (1,2), (2,3), (4,5)\},$		$Q_2 = \{(4,2), (3,3), (1,4), (5,2), (1,3)\},$
	$Q_3 = \{(2,2), (1,4), (1,5), (2,1), (4,3)\},$		$Q_3 = \{(1,2), (2,4), (1,5), (3,3), (3,1)\},$
	$Q_4 = \{(3,2), (2,4), (2,5), (3,5), (1,5)\}.$		$Q_4 = \{(1,3), (2,4), (3,4), (5,5), (4,5)\}.$
7	$Q_1 = \{(2,3), (4,3), (2,1), (3,5), (1,4)\},\$	8	$Q_1 = \{(1,2), (4,2), (3,1), (2,5), (4,4)\},\$
	$Q_2 = \{(2,1), (1,2), (3,3), (5,4), (4,5)\},$		$Q_2 = \{(1,3), (5,2), (5,5), (2,4), (3,1)\},$
	$Q_3 = \{(2,2), (1,4), (5,5), (3,4), (4,5)\},\$		$Q_3 = \{(1,2), (2,4), (5,5), (3,5), (4,5)\},\$
	$Q_4 = \{(1,3), (2,5), (3,4), (3,1), (4,2)\}.$		$Q_4 = \{(2,4), (1,5), (3,3), (4,2), (5,1)\}.$
9	$Q_1 = \{(5,2), (5,5), (4,1), (2,4), (1,3)\},\$	10	$Q_1 = \{(2,4), (1,4), (3,2), (4,5), (5,4)\},\$
	$Q_2 = \{(1,3), (3,4), (4,5), (5,2), (2,1)\},\$		$Q_2 = \{(2,2), (5,2), (4,2), (1,3), (2,3)\},$
	$Q_3 = \{(4,3), (1,3), (5,4), (2,5), (3,3)\},$		$Q_3 = \{(2,3), (3,2), (1,4), (3,1), (4,5)\},$
	$Q_4 = \{(1,4), (4,3), (3,5), (2,2), (2,3)\}.$		$Q_4 = \{(5,2), (1,3), (2,5), (4,1), (3,4)\}.$

```
Q_1 = \{(2,5), (5,1), (3,4), (4,2), (1,3)\},\
                                                        12
                                                             Q_1 = \{(5,3), (3,5), (4,2), (2,1), (1,4)\},\
11
     Q_2 = \{(5,4), (1,3), (4,2), (2,3), (3,3)\},\
                                                             Q_2 = \{(2,3), (5,4), (4,5), (1,5), (3,5)\},\
                                                             Q_3 = \{(1,2), (2,5), (3,1), (4,4), (4,3)\},\
     Q_3 = \{(1,2), (1,5), (3,4), (5,1), (2,3)\},\
                                                             Q_4 = \{(1,4), (1,2), (1,5), (2,5), (3,3)\}.
     Q_4 = \{(5,3), (2,3), (4,1), (3,1), (2,2)\}.
     Q_1 = \{(1,1), (1,2), (1,4), (2,3), (3,5)\},\
                                                             Q_1 = \{(1,2), (5,3), (2,4), (4,4), (3,5)\},\
13
                                                        14
     Q_2 = \{(5,2), (2,5), (4,1), (3,4), (1,2)\},\
                                                             Q_2 = \{(1,2), (1,1), (1,5), (3,3), (4,4)\},\
     Q_3 = \{(5,2), (3,3), (2,3), (1,4), (1,3)\},\
                                                             Q_3 = \{(4,2), (5,1), (1,4), (3,3), (2,5)\},\
     Q_4 = \{(3,4), (2,5), (5,3), (1,5), (4,5)\}.
                                                             Q_4 = \{(2,2), (4,2), (1,4), (3,2), (4,1)\}.
     Q_1 = \{(4,3), (1,1), (5,4), (2,5), (3,2)\},\
                                                             Q_1 = \{(1,4), (4,1), (3,5), (2,2), (5,3)\},\
15
                                                        16
     Q_2 = \{(4,3), (1,4), (3,5), (5,5), (2,5)\},\
                                                             Q_2 = \{(1,2), (1,1), (2,3), (2,5), (2,4)\},\
     Q_3 = \{(4,3), (2,4), (4,5), (4,1), (1,4)\},\
                                                             Q_3 = \{(2,2), (4,4), (5,3), (3,4), (1,5)\},\
     Q_4 = \{(1,5), (1,3), (2,4), (3,1), (3,2)\}.
                                                             Q_4 = (3,1), (2,4), (3,5), (4,2), (5,5){}.
                                                             \overline{Q_1} = \{(5,2), (4,3), (3,4), (1,5), (2,5)\},\
     Q_1 = \{(1,4), (1,2), (1,5), (2,1), (3,3)\},\
17
                                                        18
     Q_2 = \{(1,1), (2,4), (3,2), (1,5), (4,1)\},\
                                                             Q_2 = \{(2,1), (1,4), (3,2), (4,5), (5,3)\},\
                                                             Q_3 = \{(1,1), (1,3), (2,2), (3,5), (4,4)\},\
     Q_3 = \{(2,3), (5,2), (1,4), (3,1), (4,5)\},\
     Q_4 = \{(3,4), (5,5), (4,3), (2,5), (1,5)\}.
                                                             Q_4 = \{(2,3), (4,1), (5,2), (3,4), (3,3)\}.
     Q_1 = \{(3,5), (4,2), (1,5), (4,3), (2,2)\},\
                                                             Q_1 = \{(5,2), (1,3), (4,4), (2,4), (3,5)\},\
19
                                                       20 |
     Q_2 = \{(4,3), (1,4), (2,3), (5,4), (3,5)\},\
                                                             Q_2 = \{(2,4), (5,1), (4,3), (2,4), (5,2)\},\
     Q_3 = \{(1,3), (1,4), (2,1), (2,5), (3,2)\},\
                                                             Q_3 = \{(5,2), (1,5), (3,4), (4,1), (2,3)\},\
     Q_4 = \{(5,4), (1,3), (4,2), (2,5), (3,1)\}.
                                                             Q_4 = \{(1,4), (1,1), (2,2), (2,5), (4,3)\}.
                                                             Q_1 = \{(3,4), (2,2), (2,5), (1,4), (3,3)\},\
     Q_1 = \{(4,1), (1,2), (2,3), (5,4), (3,5)\},\
21
                                                       22
                                                             Q_2 = \{(1,3), (3,2), (1,4), (2,1), (5,5)\},\
     Q_2 = \{(2,1), (1,3), (1,4), (1,5), (2,2)\},\
     Q_3 = \{(1,2), (3,1), (4,1), (5,1), (2,3)\},\
                                                             Q_3 = \{(5,2), (3,4), (4,5), (2,4), (1,5)\},\
     Q_4 = \{(3,2), (2,3), (4,5), (5,5), (3,4)\}.
                                                             Q_4 = \{(4,4), (2,5), (5,1), (3,2), (1,3)\}.
     Q_1 = \{(5,3), (4,5), (1,3), (2,2), (2,3)\},\
                                                             Q_1 = \{(1,3), (2,4), (5,5), (3,4), (4,5)\},\
23
                                                       24
     Q_2 = \{(1,3), (3,4), (2,5), (5,3), (4,4)\},\
                                                             Q_2 = \{(1,2), (4,4), (5,5), (2,3), (3,1)\},\
     Q_3 = \{(1,5), (2,1), (1,2), (1,4), (3,3)\},\
                                                             Q_3 = \{(1,4), (4,3), (1,2), (3,5), (2,2)\},\
     Q_4 = \{(2,2), (4,3), (5,4), (1,1), (3,5)\}.
                                                             Q_4 = \{(1,5), (1,2), (1,3), (1,4), (3,1)\}.
     Q_1 = \{(2,2), (1,4), (1,5), (2,1), (4,3)\},\
                                                             Q_1 = \{(3,3), (1,4), (4,2), (5,2), (1,3)\},\
25
                                                       26
     Q_2 = \{(3,4), (1,2), (2,3), (5,1), (4,5)\},\
                                                             Q_2 = \{(1,2), (2,3), (3,4), (5,1), (4,5)\},\
     Q_3 = \{(1,2), (2,3), (4,4), (5,5), (3,5)\},\
                                                             Q_3 = \{(1,3), (2,4), (3,4), (5,5), (4,5)\},\
     Q_4 = \{(2,4), (2,5), (3,2), (3,5), (1,5)\}.
                                                             Q_4 = \{(1,5), (3,3), (1,2), (2,4), (3,1)\}.
     \overline{Q_1} = \{(5,5), (3,4), (2,2), (1,4), (4,5)\},\
                                                             Q_1 = \{(1,5), (3,3), (2,4), (4,2), (5,1)\},\
27
                                                       28
     Q_2 = \{(3,3), (5,4), (2,1), (1,2), (4,5)\},\
                                                             Q_2 = \{(5,2), (5,5), (2,4), (1,3), (3,1)\},\
     Q_3 = \{(2,3), (4,3), (2,1), (3,5), (1,4)\},\
                                                             Q_3 = \{(5,5), (1,2), (2,4), (3,5), (4,5)\},\
     Q_4 = \{(3,4), (1,3), (2,5), (3,1), (4,2)\}.
                                                             Q_4 = \{(2,5), (1,2), (4,2), (3,1), (4,4)\}.
     Q_1 = \{(4,3), (3,5), (1,4), (2,2), (2,3)\},\
                                                             Q_1 = \{(2,5), (4,1), (5,2), (1,3), (3,4)\},\
29
                                                       30
     Q_2 = \{(5,2), (1,3), (3,4), (4,5), (2,1)\},\
                                                             Q_2 = \{(4,2), (2,2), (5,2), (1,3), (2,3)\},\
     Q_3 = \{(4,3), (1,3), (5,4), (2,5), (3,3)\},\
                                                             Q_3 = \{(1,4), (3,1), (2,3), (3,2), (4,5)\},\
     Q_4 = \{(4,1), (2,4), (5,2), (5,5), (1,3)\}.
                                                              Q_4 = \{(4,5), (2,4), (1,4), (3,2), (5,4)\}.
```