체형 판정에 대한 인공신경망의 적용

<요약>

- 체형의 특징은 스포츠 활동의 선택과 몇몇 만성 질환의 예방에 중요함
- 오늘날 체형 분류의 가장 일반적인 방법은 10개의 인체측정학 매개 변수를 기반으로 계산하는 히스카터 방법임
- 또 다른 방법은 BIA(bioelectrical impedance analysis) 생체 전기 임피던스 분석이 있지만, 공식의 정확성에 문제가 있음
- 목표: 젊은 여성의 신체 키와 몸무게에 대한 데이터와 BIA를 이용해 내배엽형 체형(셰든의 체형 분류의 하나로 소화 기관이 특히 큰 것을 말함, 외관적으로만 비만 경향이 있다.) 과 중배엽형 체형(근육과 골격이 발달한 체형)을 결정할 수 있는 공식을 만들기 위해 인공신경망을 적용하는 것
- 1) 본 연구를 통해 결정된 등급: 내배엽형 체형(Endo), 외배엽형 체형(Ecto, 신경과 피부 조직이 발달하여 마르고 날렵하지만 근육량이 부족한 체형), 중배엽형 체형(Meso)
 - → 이 등급은 인공신경망과 히스카터 방법을 사용하여 결정됨
- 2) 중요 매개 변수와 인공 신경망 출력에 미치는 영향 정도를 식별하기 위해 민감도 분석수행

<소개>

- Somatometry(체형분류)는 인류학에서 기본적인 연구이며, 개인의 신체 비율과 크기 측정을 포함함
- 체형 평가는 체형 및 구성에 관련된 인체측정학적 측정을 사용하여 체격의 범주를 제공 함
- 체형은 나이가 들면서 변화하는데, 예를 들어 60세 이상의 여성의 경우 외배엽형 체형이 줄어들고 내배엽형 체형이 많아짐
- 1) 히스카터 방법: 전통적인 체지방 측정 방법을 포함함
- 2) BIA
 - 생체 전기 임피던스 분석은 비교적 간단하고 정확한 방법으로 체성분(지방 함유, 근육량, 물)을 확립하는 측정법임
 - 스포츠, 영양학, 의학, 건강관리 분야에서 가장 흔하고 비용이 적게 드는 비침습적인 방법
 - 생물학적 조직의 전기적 특성에 기초하며 전류를 방해하는 생물학적 조직의 능력으로 전의된
 - BIA 장치에 프로그래밍된 방정식은 성별, 나이, 키, 체중 및 인종을 고려하여 신체 구성 요소를 계산함
- 최근 의료 및 영양 과학에서 인공신경망(ANN)의 적용이 큰 관심을 끌고 있지만, 체성분 분석에는 거의 사용되지 않았음
 - → 따라서, 본 연구는 신체 키와 몸무게에 대한 데이터와 원시 BIA 데이터를 사용하여

내배엽형 체형 및 중배엽형 체형 등급을 결정할 수 있는 공식을 달성하기 위해 ANN을 적용하는 것을 목표로 함

<방법>

- 1. 연구 설계
- 190명의 여성들이 지원했고, 임신, 모유수유, 뇌전증을 제외한 173명의 여성으로 구성함
 - 1) 인체 측정
 - 피실험자의 신장은 SECA Stadiometer, 몸무게는 의료용 저울로 측정함(가벼운 의복과 신발을 신지 않고)
 - 2) 측정된 신체부위
 - 높이(H)
 - 체중(BW)
 - 상완삼두근피하지방두께(TS): 상완삼두근의 피하지방 두께를 말함
 - 겹갑골하의 피부두께(SuperS): Scapular(견갑)의Inferior angle(하각)의 1~2cm 밑부분을 대각선 방향(45도)으로 측정
 - 내측 종아리 가장 굵은 부위(CS): Calf(종아리)의 가장 굵은 부위의 Medial border(내 측 경계선)의 중간 부위를 수직접지로 측정
 - Biepicondylar breadth of the femur(오른쪽): 무릎을 직각으로 구부린 채 않아 대퇴골 의 측면과 내측 대퇴골 사이의 가장 긴 거리 측정
 - 상부 팔 둘레(AG)
 - 종아리 둘레(CG): 종아리의 최대 둘레
 - → 데이터를 방정식으로 입력하여 내배엽, 중배엽, 외배엽 체형으로 계산

$$Ecto = \frac{H}{BW^{\frac{1}{3}}},$$
 (내배엽 구하는 방정식)

Endo =
$$-0.7182 + 0.1451 \text{ X} - 0.00068 \text{ X}^2 + 0.0000014 \text{ X}^3$$
,

where:

$$X = (TS [mm] + SubsS [mm] + SuprS [mm]) \times (170.18/H [cm]),$$

(외배엽 구하는 방정식)

Meso =[0.858 HB + 0.601 FB + 0.188 AG (corrected) + 0.161 CG (corrected)] - (0.131 H) + 4.50 (중배엽 구하는 방정식)

- 3) 체성분 분석
- 참가자는 최소 12시간 전 격한 신체 활동 자제
- 테스트 전 24시간 동안 카페인과 알코올 섭취 금지
- 테스트 30분 전 금식
- 소변으로 수분 상태 검사
- 개별 체성분을 평가하기 위해 5, 50, 100, 200kHz 전류 주파수에서 다중 주파수 BIA(BF-BIA)를 사용

Table 1. Group characteristic and statistical parameters of the used data.

		S	Statistical Parameter	s						
Parameter	Unit	Mean \pm SD (Range)	Coefficient of Variation	Skewness Coefficient						
Age	year	$22.9 \pm 1.70 (19 – 29)$	0.07	0.45						
	Anthropometric measurement									
Body weight	kg	$59.57 \pm 7.80 (40 - 78)$	0.13	0.09						
Body height	cm	$166.97 \pm 5.91 (151 – 179)$	0.04	-0.59						
Triceps skinfold	mm	$13.09 \pm 4.82 (6-28)$	0.37	0.96						
Subscapular skinfold	mm	$11.80 \pm 4.77 (5-29)$	0.40	1.59						
Supraspinale skinfold	mm	$10.64 \pm 4.62 (4.5 – 23)$	0.43	0.91						
Medial calf skinfold	mm	$11.87 \pm 6.14 (1-35.5)$	0.52	1.11						
Biepicondylar breadth of the humerus	cm	$6.19 \pm 0.39 (5.5-7)$	0.06	1.08						
Biepicondylar breadth of the femur	cm	$7.64 \pm 0.99 (4-9)$	0.13	-0.81						
Upper arm girth	cm	$26.39 \pm 2.56 (20-33)$	0.10	0.10						
Calf girth	cm	$35.91 \pm 2.67 (30-41)$	0.07	0.19						
<u> </u>	1	Body composition (BIA)								
FFM	%	$74.12 \pm 7.10 (57.5-91)$	0.10	-0.36						
FM	%	25.88 ± 7.10 (8.9–42.5)	0.28	0.36						
TBW	%	$53.01 \pm 5.17 (43-73)$	0.10	1.11						
Reac	Ω	$157.56 \pm 43.93 (86-282)$	0.28	0.88						
Res	Ω	620.64 ± 116.45 $(194-881)$	0.19	-1.47						
RMR	kcal	1546.64 ± 61.35 $(1373-1719)$	0.04	-0.16						
		Indices in used formulas								
BMI	kg/m ²	$21.32 \pm 2.70 \ (16-28)$	0.13	0.45						
$FMi = FM/H^2$	kg/m ²	$9.33 \pm 2.73 (3.5 – 16.0)$	0.30	0.47						
$FFMi = FFM/H^2$	kg/m ²	16.77 ± 2.26 $(14.17-25.0)$	0.14	1.72						

BIA—Bioelectrical Impedance Analysis, BMI—Body Mass Index, FFM—Fat Free Mass, FM—Fat Mass, TBW—Total Body Water, Reac—Reactance Res—Resistance RMR Pesting Metabolic Rate, H—Body height, FMi—Fat Mass Index, FFMi—Free Fat Mass Index.

→ 체성분 분석을 통해 얻은 파라미터

2. 체형 모델링-인공 신경망(ANN)

- ANN 모델링은 Matlab R2018a로 수행됨
- 체형 분류 내배엽, 중배엽, 외배엽은 다층 퍼셉트론 ANN으로 예측되었음
- 본 연구에서는 173명의 사례를 121개의 샘플 훈련(70%), 26개의 샘플 검증(15%), 26개의 샘플 테스트(15%)

3. ANN 민감도 분석

- 중요 파라미터와 ANN 출력에 미치는 영향 정도를 식별하기 위해 민감도 분석 수행
- 이 분석은 개인 네트워크 입력 변수의 중요도를 나타내며 네트워크 오류가 독립변수의 변화에 따라 어떻게 동작하는지 확인하는 것으로 구성됨
- 각 입력 변수에 대해 평균 값을 입력하고 최종 예측 오류를 확인
- 예: 오차가 증가하지 않는다는 것은 ANN에 대해 이 변수가 유의하지 않으며 생략해도 된다는 뜻

4. 통계분석

- 체형 결정을 위해 BIA 기반 모델의 정확도를 비교함
- 히스카터 방법과 ANNs에 의해 결정된 체형형 사이의 불일치(오류 및 편향)의 크기 평가
- 모델의 정확도는 상관계수 R, RMSE 및 **카이제곱**을 사용하여 측정

<모델링 결과 전체 표>

Table 2. Results of statistical analyses on the modelling of somatotypes and sensitivity analysis 의사라

			휴식대사량					
Somatotype and ANN Form	Statistics	ANN	Fat free mass ^{Omitted Parameter} (기초대사량) 체크					
			BMI	FFM	Res	Reac	RMR	TBW
			MLP 6-5-1					
	R	0.9350	0.8271	0.9136	0.8335	0.7820	0.8672	0.9275
Endo	RMSE	0.4529	0.7144	0.5340	0.7077	0.8379	0.6558	0.5128
	x ²	0.4764	1.1854	0.6622	1.1633	1.6305	0.9988	0.6107
	K	0.8909	-0.1128	0.7981	0.7715	0.8572	0.8195	0.5187
Meso	RMSE	0.6063	1.5257	1.0626	0.8620	0.7013	0.7734	1.2268
	x ²	0.8536	5.4063	2.6222	1.7259	1.1421	1.3894	3.4957
			MLP 6-4-3					
	R	0.9060	0.1554	0.8751	0.7742	0.8928	0.8795	0.8967
Endo, Ecto, and Meso	RMSE	0.5906	1.5158	0.7095	0.8997	0.6287	0.6628	0.6334
	x ²	0.4257	2.8039	0.6143	0.9878	0.4824	0.5361	0.4895
	R	0.8860	-0.3453	0.8705	0.4759	0.8607	0.8717	0.8796
Endo	RMSE	0.5886	1.9957	0.8216	1.2928	0.6483	0.6221	0.6379
	x ²	0.7558	8.6900	1.4729	3.6465	0.9170	0.8443	0.8879
	R	0.9463	0.8377	0.9404	0.9381	0.9454	0.9120	0.9447
Ecto	RMSE	0.4809	1.0731	0.5577	0.5159	0.4896	0.6102	0.5106
	x ²	0.5046	2.5123	0.6786	0.5807	0.5231	0.8124	0.5687
	R	0.8597	0.1987	0.8472	0.8535	0.8412	0.8290	0.8442
Meso	RMSE	0.6846	1.3261	0.72402	0.7006	0.7252	0.7473	0.7320
	x ²	1.0227	3.8368	1.1436	1.0710	1.1474	1.2185	1.1690
			MLP 4-4-1					
	R	0.8687	0.4680	-	0.7178	0.7926	0.8366	_
Endo	RMSE	0.6562	1.1365	-	0.9502	0.8898	0.7361	-
	x ²	0.6596	1.9787	-	1.3830	1.2128	0.8298	_
	R	0.8293	0.6050	0.5464	0.8066	-	-	0.7535
Meso	RMSE	0.7546	1.0929	1.1304	0.8250	_	-	1.1365
	x ²	0.8723	1.8298	1.9574	1.0426	-	-	1.9787
			MLP 2-4-3					
	R	0.8796	0.2569	-	0.8314	-	-	_
Endo, Ecto, and Meso	RMSE	0.6703	1.3463	_	0.7745	_	-	_
	x ²	0.5135	2.0715	_	0.6855		_	_
	Ř	0.8777	0.2924	_	0.7316	-	-	_
Endo	RMSE	0.6091	1.2550	_	0.8637		-	_
	x ²	0.5937	2.5200		1.1936		_	
Ecto	Ř	0.9092	0.0436		0.9078	_	-	
	RMSE	0.6195	1.4715		0.6230	_	_	_
	x ²	0.6140	3.4644		0.6211	_	_	
Meso	Ř	0.8165	0.2323		0.7918		_	
	RMSE	0.7702	1.3029		0.8157	_	_	
	χ ²	0.9492	2.7160	_	1.0645		_	

BMI—Body Mass Index, FFM—Fat Free Mass, Res—Resistance, Reac—Reactance, RMR—Resting Metabolic Rate, TBW—Total Body Water, MLP—Multilayer Perceptron, Endo—endomorphy, Ecto—ectomorphy, Meso—mesomorphy, R—correlation coefficient, RMSE—root mean square error, χ^2 —reduced chi-square.

<표 보는 법>

- 체형형을 결정하기 위해 ANNs이 선택되었고 이 네트워크들은 숨겨진 계층이 있음
- ✓ MLP 6-5-1은 내배엽, 중배엽, 외배엽 체형을 결정하는 데 사용되었고,
- ✓ MLP 6-4-3은 세가지 체형형을 동시에 결정하는 데 사용
- ANN 민감도 분석 결과 중 MLP 6-5-1의 Endo(내배엽)을 보는 경우,
 - 1) TBW (가장 큰 R = 0.93)가 가장 낮은 오류를 보였다. (RMSE = 0.51, 카이제곱 = 0.61)
 - 2) FFM(R = 0.91, RMSE = 0.53, 카이제곱 = 0.66)은 다음과 같은 순서로 가장 낮은 영향을 미친다.
 - 3) Reac(가장 작은 R = 0.78, 가장 큰 오차: RMSE = 0.84, 카이제곱 = 1.63), BMI, Res 및 RMR이 내배엽 타입에 가장 큰 영향을 미친다.
 - 4) Reac(가장 큰 R = 0.86, 가장 낮은 오차: RMSE = 0.70, 카이제곱 = 1.14)와 RMR(R = 0.82, RMSE = 0.77, 카이제곱 = 1.39)이 가장 낮은 영향을 미치는 반면, 차례로 BMI(R

= -0.11, 최대 오차: RMSE = 1.53, 카이제곱: 5.11), TBW, FFM, Res는 중배엽 타입에 가장 큰 영향을 미친다.

- → 본 연구는 ANN 기반 공식과 히스카터 방법 사이에 매우 좋은 일치를 보여줌
- → BIA 결과를 바탕으로 ANN을 이용한 체형 계산 가능성을 보여준다.
- ANN 민감도 분석 결과를 고려하고 출력층에 선형 활성화 함수를 적용한 후 체형 결정을 위해 다음과 같은 직선 신경망을 얻음

training, test, and validation set regression R: 8795, 0.8800, and 0.8771, respectively (c)

→ 본 연구의 한계점

- 1) 다중 주파수 BIA에 적용되며 다른 장치에서는 다를 수 있음(다양한 알고리즘 기반 BIA 제조 업체가 다양하기 때문)
- 2) 본 연구의 결과는 젊은 여성들을 대상으로 하기 때문에 일반화 오류 발생 가능

→ 본 연구의 강점

- 1) 본 연구에 적용된 신경망은 비선형 시스템으로 앞서 언급한 BIA 기반 공식과 같은 기존 선형 모델 방법보다 데이터를 더 잘 분류 가능
- 2) 이러한 유형의 기술은 방대한 양의 데이터를 처리하고 다른 방법으로 얻은 정보 간 새로운 상관관계를 제안하며 보다 정확한 진단과 개인화된 치료가 가능해짐

<결론>

- 본 연구의 결과는 젊은 여성의 내배엽형 체형과 중배엽형 체형을 예측하는 데 ANN 기반 모델의 성공적인 적용을 나타낸다.
- 히스카터 방법과 비교하여 BIA 측정은 연구자와 피실험자 사이의 물리적 접촉을 덜 필요로 하기 때문에 심리적 편안함이 증가한다.