ENGR 2910-101: Circuit Analysis

Instructor: Brian Rashap Homework 7: 03/08/23 Due: 03/15/23

Question 1 [10]

The triangular pulse below is applied to a 20 mH inductor.

- (a) Write the expressions that describe i(t) in the four intervals: $t < 0, 0 \le t \le 5ms, 5ms \le t \le 10ms, t > 10ms.$
- (b) Derive the expressions for the inductor, voltege, power, and energy.

Question 2 [10]

The voltage across a $5\mu F$ capaction is know to be

$$v_o = 500te^{-2500t}V$$
 for $t \ge 0$.

- (a) Find the current through the capacitor for t > 0.
- (b) Find the power at the terminals of the capacitor when $t = 100 \mu s$.
- (c) Is the capacitor absorbing or delivering power at $t = 100 \mu s$.

Question 3 [10]

Two magnetically coupled coils are wound on a nonmagnetic core. The self-inductrance of coil 1 is 288mH, the mutual inductance is 90mH, the coefficient of coupling is 0.75, and the physical structure of the coils is such that $\mathcal{P}_{11} = \mathcal{P}_{22}$.

- (a) Find L_2 and the turns ratio $\frac{N_1}{N_2}$.
- (b) If $N_1 = 1200$, what is the value of \mathcal{P}_1 and \mathcal{P}_2 ?

Question 4 [10]

The two parallel inductors in the figure below are connected across the terminals of a black box at t = 0. The resulting voltage v for t > 0 is known to be $12e^{-t}V$. It is also known that $i_1(0) = 2A$ and $i_2(0) = 4A$.

- (a) Replace the original inductors with an euivalent inductor and find i(t) for $t \geq 0$.
- (b) Find $i_1(t)$ for $t \geq 0$.
- (c) Find $i_2(t)$ for $t \geq 0$.
- (d) How much energy is delivered to the black box in the time interval $0 \le t \le \infty$.
- (e) How much energy was initially stored in the parallel inducutors?
- (f) How much energy is trapped in the ideal inductors?
- (g) Show that your solutions for $i_1(t)$ and $i_2(t)$ agree with your answer in (f).

Question 5 [10]

- (a) Show that the two copled coils above can be replaced by a single coil having an inductance of $L_{ab} = L_a + L_b + 2M$. (Hint: express v_{ab} in terms of i_{ab} .
- (b) Show that if the connection to the terminals of the coil L_2 are reversed, then $L_{ab} = L_a + L_b 2M$

