

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name: Baumyq Pandey	
UB Person Number:	Instructions:
(1) (1) (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (6) (Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. 5 6 7 9 9
1 2 3 4	5 6 7 TOTAL GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ \boxed{b} \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

a)
$$x_1V_1 + x_2V_2 + x_3V_3 = W$$

$$x_1\begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix} + x_3\begin{bmatrix} -1 \\ -3 \\ -3 \end{bmatrix} + x_3\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0$$

No , the set $\S_{VijVajV3}\S$ is not linearly independent because the solution would be a trivial solution if it were linearly independent. In this case, it leads to infinitely many solutions.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$= \left\{ \begin{bmatrix} 0 & 0 & 1 & | & a & a & 1 \\ 0 & 1 & -1 & | & a & a & 1 \\ 0 & 1 & -1 & | & a & a & 1 \\ 0 & 1 & -1 & | & a & a & 1 \\ 0 & 1 & -1 & | & a & a & 1 \\ 0 & 0 & 1 & | & a$$

$$(A^{T})^{-1} = (A^{-1})^{T}$$
, then use A^{-1} from problem Z .
3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \quad A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

$$A^{T}C = B$$

$$A^{T}A^{T}C = A^{T}B$$

$$C = A^{T} - B$$

In verse of
$$A^T = \begin{bmatrix} -a & 1 & a \\ 3 & -1 & -a \end{bmatrix}$$

$$-2+4+6=8$$

 $-4+5+4=5$
 $-6+4+2=0$

$$6 + (-6) + (-4) = -3$$

 $9 + (-4) + (-a) = 3$
 $-1 + 4 + 3 = 6$
 $-2 + 5 + a = 5$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $T(e_1) = T[0] = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$T(e_2) = T[0] = T[0] = T[0]$$

$$T(e_3) = T[0] = T[0]$$

Otandard Matrix of T:

b)
$$AV = \begin{bmatrix} 1 & -\alpha \\ 1 & -3 \end{bmatrix}$$

$$AV = \begin{bmatrix} 10 \\ -\alpha \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -\alpha \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} 1 & -\alpha \\ 1 & -\alpha \end{bmatrix} = \begin{bmatrix} 1 & -\alpha \\ 1 &$$

$$\begin{bmatrix} x_1 & x_2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{cases} x_1 = 7 \\ x_2 = 3 \end{cases} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \Rightarrow y$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

ne-to one or not. If
$$T_A$$
 is not one-to-one, find two $a(v_2)$.

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 3$

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If
$$u, v, w$$
 are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v) \cup \{0\} = \{0\} \cup \{0\} = \{0\} \cup \{$

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

$$U = \begin{bmatrix} 0 \\ 0 \end{bmatrix} V = \begin{bmatrix} 0 \\ 0 \end{bmatrix} W = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 \\ 0 \end{bmatrix} W = \begin{bmatrix} 0 \\ 0$$

Set
$$\{u,v\} = \}$$
 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = 0 \\ 0 = 0 \end{cases}$

$$doesn't$$

having a trivial 901. So by decreasing the

? Jeet to Suluz, it won't change to infinite amount of

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

en u, v also must be linearly dependent. $u = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0 \end{bmatrix} \text{ Linearly inclependent}$ $v = \begin{bmatrix} 0 \end{bmatrix} v = \begin{bmatrix} 0$

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

Means multiplying by a matrix that could lead to no linear combinations for T(u).