

Is Seth Godin right?

How might I find out?

Wikipedia

https://www.wikipedia.org/

Lists of #1 NYT bestsellers

1942-2016

Scraped using Beautiful Soup

Goodreads

https://www.goodreads.com/

APIs

- General Search
- Author
- Book

Parsed xml using ElementTree

Totals

75 years

3900 weeks

746 unique books

241 unique authors

Numeric Features

Books

- Number of ratings
- Number of reviews

Authors

- Number of ratings
- Average rating
- Number of reviews
- Number of fans
- Number of books as #1
- Number of weeks as #1

Categorical Features

Books

Repeat books

Authors

- Repeat author
- Hometown in NY
- Gender

Mean rating for an **author** on Goodreads

5.0

Mean rating for an **author** on Goodreads

5.0

What might I predict?

Book's average rating

Author's average rating

Weeks as #1 best seller

Let's try to predict a book's rating

Regression Results

Model		
Adjusted R ²	0.453	Low
AIC	1670	High
BIC	1700	High
Residuals		
Omnibus P(Omnibus)	137 0	o probability random residuals
Skew	-0.923	Left
Kurtosis	5.99	2x normal

Cross Validation

Root Mean Squared Errors

Linear Regression:	0.743
Lasso:	0.743

0.744

0.743

Ridge:

Elastic Net:

