

CS 372 Lecture #33

IP version 6

- addressing
- other features
- compared to IPv4

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach*, 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

IPv6

- Initial motivation:
 - 32-bit address space exhaustion
 - predicted for decades ... not really an issue, because of NAT
 - IETF bypassed IPv5 via IPng (IP next generation)
- Changes from IPv4:
 - Address space: 128-bit
 - Support for audio and video
 - "flow labels" allow AV applications to establish appropriate connections
 - Fragmentation no longer allowed
 - drop packet if too big
 - Checksum removed to reduce processing time
 - already done at transport and link layers
 - Optional headers (outside of base header)
 - indicated by "Next Header" field
 - easily add new headers for new features
 - ICMPv6: new version of Internet Control Message Protocol
 - additional message types
 - more effective inter-router collaboration

IPv6 addressing

- 128-bit addresses
 - -3.4×10^{38} addresses
 - routers use longest matching prefix
 - dotted-decimal would not make sense
 - example (don't use): 105.220.136.100.255.255.255.255.0.0.18.128.140.10.255.255
- IPv6 represents addresses in colon hexadecimal (colon hex), with /bits to specify netmask
 - example:
 - 69DC:8864:FFFF:FFFF:0:1280:8C0A:FFFF /64
- Zero-compression
 - series of zeroes indicated by two colons
 - example: FF0C:0:0:0:0:0:0:B1 \rightarrow FF0C::B1
 - An IPv6 address with 96 leading zeros is interpreted as an IPv4 address

IPv6 header format

- VERSION (4 bits)
- TRAFFIC CLASS (8 bits)
 - specifies the traffic class (used to specify priority)
- FLOW LABEL (20 bits)
 - used to associate datagrams belonging to a flow or communication between two applications (helps packets to arrive in order)
- PAYLOAD LENGTH (16 bits)
 - indicates the length of data (i.e. payload) excluding header
- NEXT HEADER (8 bits)
 - type of first extension header
- HOP LIMIT (8 bits) (old TTL)
 - specifies the maximum number of hops a packet can transit before being discarded
- SOURCE ADDRESS (128 bits)
- DESTINATION ADDRESS (128 bits)

Base header (40 bytes)

		`	,			
VERS	TRAFFIC CLASS	FLOW LABEL				
PAYLOAD LENGTH			NEXT HEA	DER	HOP LIMIT	
SOURCE ADDRESS						
DESTINATION ADDRESS						

Size of optional "next header" depends on header type. Each header has a "next header" field ... a linked-list of headers.

Example extension header (8 – 16 bytes)

NEXT HEADER	HEADER LEN	OPTIONS/PADDING			
OPTIONS/PADDING					

Fragmentation and Path MTU

- Fragmentation information is in fragmentation extension header
 - IPv6 <u>source</u> (not intermediate routers) is responsible for fragmentation
 - Source determines path MTU
 - Uses path MTU discovery
 - Source sends probe message of various sizes
 - Gets ICMP messages until destination reached
 - Constructs datagram fragments to fit within that MTU
- Routers simply drop datagrams larger than path MTU
 - No more fragmenting by routers
 - ICMP message sent to source

Transition from IPv4 to IPv6

- Not all routers can be upgraded simultaneously
 - networks must operate with mixed IPv4 and IPv6 routers
- tunneling: IPv6 datagrams are carried (among IPv4 routers) as payload in IPv4 datagram

Tunneling

IPv4 tunnel В Ε connecting IPv6 routers logical view: IPv6 IPv6 IPv6 IPv6 В Ε Α physical view: IPv6 IPv6 IPv6 IPv4 IPv4 IPv6 src:B flow: X flow: X src:B src: A src: A dest: E dest: E dest: F dest: F Flow: X Flow: X Src: A Src: A Dest: F data Dest: F data data data A-to-B: E-to-F: B-to-C: B-to-C: IPv6 IPv6 IPv6 inside IPv6 inside IPv4 IPv4

Comparing IPv4 and IPv6

IPv4	IPv6		
32-bit addresses	128-bit addresses		
Service type	Traffic class / flow labels		
Payload Len = Total Len – Headed Len	Payload Len is actual size of payload		
Transport layer protocol (TCP, UDP) specified in header	Destination determines transport layer protocol		
Fragmentation by routers	Fragmentation by source		
Checksum: required	No checksum		
Options: included in variable-size header	Options: in header extensions added after fixed-size base header		
ICMP	ICMPv6		
Dotted-decimal	Colon-hex		

Summary Lecture #33

- IPv4 basic abstractions have been very successful
 - IPv4 will be around for a long time
- IPv6 carries forward IPv4 abstractions
 - For now, need to know both
- IPv6
 - changes/additions to IPv4
 - address format
 - datagram header
- Transition from IPv4 to IPv6
 - tunneling