

Kurs:Mathematik für Anwender/Teil I/37/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3302540423 3 5 3 4 0 1 5 3 0 50

 \equiv Inhaltsverzeichnis \vee

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Eine *Abbildung* $m{F}$ von einer Menge $m{L}$ in eine Menge $m{M}$.
- 2. Eine rationale Funktion (in einer Variablen über \mathbb{R}).

3. Das Minimum der Funktion

$$f:M\longrightarrow \mathbb{R}$$

wird im Punkt $x \in M$ angenommen.

4. Die höheren Ableitungen zu einer Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

(rekursive Definition).

5. Das bestimmte Integral zu einer Riemann-integrierbaren Funktion

$$f:[a,b]\longrightarrow \mathbb{R}.$$

6. Die *inverse Matrix* zu einer invertierbaren Matrix $M \in \operatorname{Mat}_n(K)$ über einem Körper K.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über Konvergenz und absolute Konvergenz von reellen Reihen.
- 2. Der Satz über die Ableitung der Exponentialfunktionen zu einer Basis a>0.
- 3. Der Satz über lineare Abbildungen zwischen gleichdimensionalen Vektorräumen.

Aufgabe (0 Punkte)

Aufgabe * (2 Punkte)

Zeige, dass eine natürliche Zahl genau dann die Differenz zwischen zwei aufeinanderfolgenden Quadratzahlen ist, wenn sie ungerade ist.

Aufgabe * (5 Punkte)

Es seien n Geraden in der Ebene gegeben. Formuliere und beweise eine Formel (in Abhängigkeit von n) für die maximale Anzahl von Schnittpunkten der Geraden.

Aufgabe * (4 Punkte)

Sei K ein Körper und sei K[X] der Polynomring über K. Sei $P \in K[X]$ ein Polynom und $a \in K$. Zeige, dass a genau dann eine Nullstelle von P ist, wenn P ein Vielfaches des linearen Polynoms X - a ist.

Aufgabe (0 Punkte)

Aufgabe * (4 Punkte)

Es sei I_n , $n\in\mathbb{N}$, eine Intervallschachtelung in \mathbb{R} . Zeige, dass der Durchschnitt

$$igcap_{n\in\mathbb{N}}I_{r}$$

aus genau einem Punkt $x \in \mathbb{R}$ besteht.

Aufgabe * (2 Punkte)

Zeige, dass der Zwischenwertsatz für stetige Funktionen von $\mathbb Q$ nach $\mathbb Q$ nicht gelten muss.

Aufgabe * (3 Punkte)

Beweise den Satz über die Ableitung der Exponentialfunktion.

Aufgabe * (3 Punkte)

Bestimme die Ableitung der Funktion

$$f(x)=rac{\lnig(x^2+3ig)-x\sqrt{x^2+2}}{1+\sin^2x}\,.$$

Aufgabe * (5 Punkte)

Zu einem Startwert $x_0 \in [0, rac{\pi}{2}]$ sei eine Folge rekursiv durch

$$x_{n+1} := \sin x_n$$

definiert. Entscheide, ob $(x_n)_{n\in\mathbb{N}}$ konvergiert und bestimme gegebenenfalls den Grenzwert.

Aufgabe * (3 Punkte)

Bestimme eine Stammfunktion von

$$\cos(\cos(\sin x)) \cdot \cos(\sin x) \cdot \cos x.$$

Aufgabe * (4 Punkte)

Es sei

$$f: \mathbb{R} \longrightarrow \mathbb{R}_+, \ x \longmapsto f(x),$$

eine differenzierbare Funktion mit f(0)=1 und mit $f'(x)=\lambda f(x)$ für alle $x\in\mathbb{R}$ und ein $\lambda\in\mathbb{R}$. Zeige, dass f die Funktionalgleichung

$$f(x+y) = f(x) \cdot f(y)$$

für alle $x,y\in\mathbb{R}$ erfüllt.

Aufgabe (0 Punkte)

Aufgabe * (1 Punkt)

Bestimme die inverse Matrix von

$$egin{pmatrix} -rac{9}{4} & 0 & \cdots & \cdots & 0 \ 0 & rac{50}{3} & 0 & \cdots & 0 \ dots & \ddots & -rac{5}{3} & \ddots & dots \ 0 & \cdots & 0 & 10^7 & 0 \ 0 & \cdots & \cdots & 0 & rac{2}{11} \end{pmatrix}.$$

Aufgabe * (5 Punkte)

Es sei M eine $m \times n$ -Matrix über dem Körper K mit dem Rang r. Zeige, dass es eine $r \times n$ -Matrix A und eine $m \times r$ -Matrix B, beide mit dem Rang r, mit $M = B \circ A$ gibt.

Es sei $oldsymbol{K}$ ein Körper, $oldsymbol{V}$ ein $oldsymbol{K}$ -Vektorraum

$$\varphi : V \longrightarrow V$$

eine lineare Abbildung und $\lambda \in K$. Zeige folgende Aussagen.

1. Der Eigenraum

$$\mathrm{Eig}_{\lambda}\left(arphi
ight)$$

ist ein Untervektorraum von V.

- 2. λ ist genau dann ein Eigenwert zu arphi, wenn der Eigenraum $\operatorname{Eig}_{\lambda}\left(arphi\right)$ nicht der Nullraum ist.
- 3. Ein Vektor $v \in V, \, v
 eq 0$, ist genau dann ein Eigenvektor zu λ , wenn $v \in \mathrm{Eig}_{\lambda}\left(arphi
 ight)$ ist.

Aufgabe (0 Punkte)

Zuletzt bearbeitet vor einem Monat von Bocardodarapti

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ☑, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht