Teoria dos Grafos

Prof. Leandro G. M. Alvim

Agenda

- História
- Motivação
- Definições

Königsberg, Prússia (até 1945) Kaliningrado, Rússia (Rússia)

• É possível caminhar pela cidade passando por todas as pontes uma unica vez?

Leonard Euler

Primeiro trabalho da Teoria dos Grafos

(1735)

- Curiosidades
 - 13 filhos
 - Cegueira

- Análise de Euler
 - Primeiro passo

- Análise de Euler
 - Segundo passo
 - Para que tenha solução, devemos ter um número par de pontes em cada terreno

- Análise de Euler
 - Não há solução para este exemplo!

- Análise de Euler
 - Legado
 - Vértices, arestas, grau, Caminho Euleriano, Circuito Euleriano
 - Primeiro Teorema

História

Biggs, N.; Lloyd, E. and Wilson, R. (1986), Graph Theory, 1736-1936,
Oxford University Press

Problema das cores

Caminho Mínimo

Cabeamento

Ramos de rede possíveis com custo ambiental associado

Interligação das tabas com menor custo ambiental

Topologia de redes

Rede Social

Texto

Grafo Vazio

d

(a) (b)

(c) (d)

Grafo Nulo

- Grafo
 - \bullet G = (V, E)
 - $V = \{a,b,c,d\}, |V| = 4$
 - $E = \{e_1, e_2, e_3, e_4\}, |E| = 4$

- Arestas
 - \bullet e₁ = (a,c)
 - não ordenado
 - e₁ incide em a e c

- Grafo orientado (Digrafo)
 - \bullet G = (V, E)
 - $V = \{a,b,c,d\}, |V| = 4$
 - $E = \{e_1, e_2, e_3, e_4, e_5\}, |E| = 5$

- Arestas
 - $e_4 = (d,c)$ <> $e_5 = (c,d)$
 - e4 incide em c
 - e₅ incide em d

Laço

Aresta paralela

Grafo Simples

Adjacência

- Grau
 - $\bullet d+(d)=1$
 - $\bullet d-(d) = 2$

- Grau
 - $\bullet \ d(d) = 2$

- Grau
 - Sum(d(v)) = 2m(demostre)

- Grau
 - O número de vértices de grau impar de um grafo sempre é par (demonstre)

- Ordem
 - O número de vértices de G

- Fonte
 - vértice: d-(v) = 0

- Sumidouro
 - vértice: d+(v) = 0

- Vértice Isolado
 - nenhuma aresta incidente

- Vértice Pendente
 - $\bullet \ \, \mathsf{d}(\mathsf{v}) = \mathsf{I}$

- Grafo Rotulado
 - $V = \{v | v \text{ \'e uma capital}\}$

- Grafo Valorado
 - $V = \{v | v \text{ \'e uma capital}\}$
 - E = {(vI,v2,d) | há uma vizinhança tal que a distância é d km}

Multigrafo

Subgrafo

Grafo Completo (k - regular)

• |E| = n(n-1)/2 (demonstre)

- Grafo Bipartido
 - Se existem duas partições VI e V2 de forma que qualquer aresta pertença a VI e V2

- Grafo Bipartido Completo
 - Se existem duas partições VI e V2 de forma que qualquer aresta pertença a VI e V2
 - Todo vértice de VI é adjacente a todo vértice de V2

- Grafo Bipartido Completo
 - $|E| = n \times m$ (demonstre)

- Grafos Complementares
 - Arestas que faltam para um grafo completo

- Clique
 - Subconjunto de vértices que induz grafo completo

- Cadeia
 - Sequência de arestas (e1,e2,...en)
 - ei vértice comum a ei-1 e ei+1

- Ciclo
 - Cadeia (e1,e2,...en)
 - Vértice comum eleen

- Caminho
 - Cadeia (e₁,e₂,...e_n)
 - Obedece sentido das arestas (Digrafo)

- Circuito
 - Caminho (e₁,e₂,...e_n)
 - Vértice comum eleen

- Caminho Euleriano
 - Caminho sem repetições de arestas
 - Deve passar por todos os vértices
- Circuito Euleriano
 - Caminho Euleriano Fechado

- Caminho Hamiltoniano
 - Caminho sem repetições de vértices
 - Passa por todos os vértices
- Circuito Hamiltoniano
 - Caminho Hamiltoniano Fechado

- Fecho Transitivo Direto
 - Conjunto de todos os vértices atingidos por um caminho a partir de v
- Fecho Transitivo Inverso
 - Conjunto de todos os vértices que podem atingir v por algum caminho

- Componente Conexa
 - Existe cadeia entre qualquer par de vértices

- Grafo Conexo
 - Pelo menos uma cadeia que liga cada par de vértices

- Componente Fortemente Conexa
 - Caminho vi a vj
 - Caminho vj a vi

- Grafo Fortemente Conexo
 - Caminho de vi a vj
 - Caminho de vj a vi

Ponto de Articulação

Ponte

- Grafo Gerador
 - G=(V,E), G'=(V',E') e V=V'

Planar

• Pode ser representado no plano sem interseção de arestas

- Planar
 - |R| = |E| |V| + 2 (demonstre)

- Grafos Isomorfos
 - G = (V,E) e G' = (V',E')
 - f: V -> V' | (f(u'),f(v')) E G' <-> (u,v) E G

Graph G	Graph H	An isomorphism between G and H
a g	2	f(a) = 1 $f(b) = 6$
b	5 6	f(c) = 8 $f(d) = 3$
	8 7	f(g) = 5 $f(h) = 2$
		f(i) = 4
	(4)	f(j) = 7

- Grafos Isomorfos
 - Encontre um grafo G5 isomorfo a seu complementar
 - Não há algoritmo eficiente

- Base
 - Vértices em A
 - Nenhuma aresta
 - Vértices fora de A

- Anti-Base
 - Vértices em B
 - Nenhuma aresta
 - Vértices fora de B

- Raiz
 - Base unitária
 - Anti-Raiz
 - Anti-Base unitária

- Árvore
 - Conexo
 - Sem ciclos

 Único caminho entre dois vértices

|E| = |V| - I

Árvore

- Árvore Cheia
 - Subárvore vazia apenas no último nível

- Árvore Completa
 - Subárvore vazia apenas no último nível ou penúltimo nível

- Arborescência
 - Árvore Orientada

Floresta

- Árvore Geradora
 - Árvore de G
 - G=(V,E), G'=(V',E') e V=V'

