Лабораторная работа №5.

Выделение геологических объектов на основе Байесовской стратегии.

Пусть в рассматриваемом районе встречены две породы (продуктивный пласт и вмещающая порода) и, в соответствии с этим будем проверять справедливость одной из двух гипотез:

H1 – гипотеза о том, что в данной точке пространства находится продуктивный пласт;

Н2 – гипотеза о том, что в данной точке пространства находится вмещающая порода.

Кроме того, имеются априорные вероятности гипотез:

$$P(H_1)=0.5; P(H_2)=0.5$$

$$\sum_{i=1}^{2} P(H_i) = 1$$

Пусть проведен каротаж опорной скважины, в результате этого получено поле F.

Наблюдаемое поле есть аддитивная смесь полезного сигнала и помехи.

$$F=a(x) + v(x)$$
,

Где: а средний уровень поля для продуктивного пласта.

Будем полагать, что помеха распределена по нормальному закону распределения:

$$V \rightarrow N(M = 0, \sigma)$$

т.е. с математическим ожиданием равным нулю и среднеквадратическим отклонением.

```
–4,36 <sub>T</sub>
 -4,36
6,36
8,36
6,36
-7,44
13,86
4,81
5,82
  3,85
  5,48
    1,8
 -7,32
-7,25
-2,27
 -8,82
-5,32
-11,83
-10,28
-10,86
-13,88
-11,12
-7,15
12,62
 17,18
10,12
 5,18
-5,29
 -3,92
-6,26
 -6,72
5,38
  3,81
4,22
5,32
 6,28
12,25
  5,66
 14,28
13,27
-9,4
-6,23
-6,4
```

Запишем дифференциальные функции распределения для каждой гипотезы:

$$f_j(F/H_1) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{-F - a_j^2}{2\sigma^2}}$$
$$f_j(F/H_2) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{-F}{2\sigma^2}}$$

Будем проводить анализ данных каротажа в окне длиной L, тогда дифференциальные функции в окне примут вид:

$$f_{j}(F/H_{1}) = \frac{1}{(\sigma\sqrt{2\pi})^{L}} \cdot exp \sum_{i=1}^{L} \frac{(F_{i} - a)^{2}}{2\sigma^{2}}$$
$$f_{j}(F/H_{2}) = \frac{1}{(\sigma\sqrt{2\pi})^{L}} \cdot exp \sum_{i=1}^{L} \frac{F_{i}^{2}}{2\sigma^{2}}$$

Найдем коэффициент правдоподобия по следующей формуле:

$$\lambda = \frac{f(F/H_1)}{f(F/H_2)}$$

Подставив формулы дифференциальных функций в это уравнение, получим:

$$\lambda = \frac{f(F/H_1)}{f(F/H_2)} = exp\left\{ \sum_{i=1}^{L} \left[\frac{(2F_i - a_i) \cdot a_i}{2\sigma^2} \right] \right\}$$

Если $\lambda > 1$, тогда верна гипотеза H_2 ;

 λ < 1, тогда верна гипотеза H_1 .

Вычислим вероятности гипотез по теореме Байеса:

$$P(H_1/F) = \frac{\lambda}{\lambda + 1}$$

Если $P(H_1/F) > 0.5$, верна гипотеза H_1 о продуктивном пласте; По данным значениям поля F, заполним таблицу 1 ниже ($\sigma = 5.0$; a = -13; L = 5):

Таблица 1 – Вспомогательная таблица

F	2F	2F-a	(2F-a)a	$1 \text{$	$\frac{10\text{Могательная тао.}}{\sum (2\mathbf{F} - \mathbf{a})\mathbf{a}/2\sigma^2} = \mathbf{C}$	ехр(C)=λ	$P(H_1/F) = \lambda/(\lambda+1)$
-4,36	-8,72	4,28	-55,64	<u>(21 a)a</u>	$\sum_{i=1}^{n} (2i^n - a)a/20 = C$	cxp(C)=R	$I(H_1/I) = R/(R+I)$
6,36	12,72	25,72	-334,36				
8,36	16,72	29,72	-386,36	-217,26	-4,35	0,013	0,013
6,36	12,72	25,72	-334,36	-312,00	-6,24	0,002	0,002
-7,44	-14,88	-1,88	24,44	-303,94	-6,08	0,002	0,002
13,86	27,72	40,72	-529,36	-290,73	-5,81	0,003	0,003
4,81	9,62	22,62	-294,06	-277,68	-5,55	0,004	0,004
5,82	11,64	24,64	-320,32	-344,86	-6,90	0,001	0,001
3,85	7,7	20,7	-269,1	-282,15	-5,64	0,004	0,004
5,48	10,96	23,96	-311,48	-219,08	-4,38	0,013	0,012
1,8	3,6	16,6	-215,8	-151,11	-3,02	0,049	0,046
-7,32	-14,64	-1,64	21,32	-119,29	-2,39	0,092	0,084
-7,25	-14,5	-1,5	19,5	-44,93	-0,90	0,407	0,289
-2,27	-4,54	8,46	-109,98	-7,90	-0,16	0,854	0,461
-8,82	-17,64	-4,64	60,32	15,55	0,31	1,365	0,577
-5,32	-10,64	2,36	-30,68	31,30	0,63	1,870	0,652
-11,83	-23,66	-10,66	138,58	75,97	1,52	4,570	0,820
-10,28	-20,56	-7,56	98,28	102,28	2,05	7,734	0,886
-10,86	-21,72	-8,72	113,36	132,44	2,65	14,138	0,934
-13,88	-27,76	-14,76	191,88	108,11	2,16	8,690	0,897
-11,12	-22,24	-9,24	120,12	-10,97	-0,22	0,803	0,445
-7,15	-14,3	-1,3	16,9	-156,78	-3,14	0,043	0,042
12,62	25,24	38,24	-497,12	-281,58	-5,63	0,004	0,004
17,18	34,36	47,36	-615,68	-366,34	-7,33	0,001	0,001
10,12	20,24	33,24	-432,12	-376,01	-7,52	0,001	0,001
5,18	10,36	23,36	-303,68	-290,00	-5,80	0,003	0,003
-5,29	-10,58	2,42	-31,46	-168,12	-3,36	0,035	0,033
-3,92	-7,84	5,16	-67,08	-80,55	-1,61	0,200	0,166
-6,26	-12,52	0,48	-6,24	-81,59	-1,63	0,196	0,164
-6,72	-13,44	-0,44	5,72	-128,91	-2,58	0,076	0,071
5,38	10,76	23,76	-308,88	-171,24	-3,42	0,033	0,032
3,81	7,62	20,62	-268,06	-231,45	-4,63	0,010	0,010
4,22	8,44	21,44	-278,72	-299,05	-5,98	0,003	0,003
5,32	10,64	23,64	-307,32	-334,78	-6,70	0,001	0,001
6,28	12,56	25,56	-332,28	-344,40	-6,89	0,001	0,001
12,25	24,5	37,5	-487,5	-396,71	-7,93	0,000	0,000
5,66	11,32	24,32	-316,16	-438,05	-8,76	0,000	0,000
14,28	28,56	41,56	-540,28	-356,51	-7,13	0,001	0,001
13,27	26,54	39,54	-514,02	-260,42	-5,21	0,005	0,005
-9,4	-18,8	-5,8	75,4	-197,70	-3,95	0,019	0,019
-6,23	-12,46	0,54	-7,02				
-6,4	-12,8	0,2	-2,6				

По данным каротажа опорной скважины и результатам вычисления вероятности первой гипотезы $P(H_1/F_k)$ о наличии породы $N \!\!\! \ge \!\!\! 1$ построим геологоматематическую модель продуктивного пласта.

