Reliable Data Processing Enabled by Program Analysis

Xiangyu Zhang

December 22, 2013 @ ISHCS, PKU

Data processing is becoming increasing important.

Errors in Data Processing

internal errors

```
Returns the index of the k
string.

if isinstance(key, str):
    key = hex_to_long(key

# Bound check for key too

if key < 0:
    raise ValueError('Key

i = 0

for bucket in self._bucke
    if bucket.key_in_rang
        return i

    else:
        i += 1

# Key was too big given
raise ValueError('Key ou
```


External Errors

float x, z;

$$z = f(x);$$

- 4 if (z > 0.5)
- printf ("hit");
- 6 else
- 7 printf ("miss");

$$X = 100.0;$$

1. How would the program output change if input x is uncertain?

e.g. $x \in [50.0, 150.0]$

Internal Errors

```
float x, z;
```


$$X = 100.0;$$

- x = input();
- z = f(x);
- 4 if (z > 0.5)
- printf ("hit");
- 6 else
- 7 printf ("miss");

2. Are the computed results reliable?

miss

Errors in Data Processing

- External errors
 - Also known as data uncertainty problem
 - Existing techniques
 - query-based uncertain data processing e.g. [R. Jampani, SIGMOD 2008], [S. Singh, ICDE 2008] and etc.
 - Interval analysis
 - Automatic differentiation
- Internal errors
 - Existing work include interval analysis, using high precision
- Existing solutions are hardly applicable or usable -- too expensive, too many false positives
- Errors may get propagated and magnified, leading to unreliable output.
 - We call it the instability problem.

Outline

- Overview
- External Errors
 - White-box sampling (OOPSLA 2012)
- Internal Errors
 - On-the-fly detection of instability problems (OOPSLA 2013)

White Box Sampling -- External Errors

```
float x, z;
```


$$z = f(x);$$

- 4 if (z > 0.5)
- printf ("hit");
- 6 else
- printf ("miss");

$$X = 100.0;$$

1. How would the program output change if input x is uncertain?

e.g. $x \in [50.0, 150.0]$

Monte Carlo (MC) methods

Sampling-based Monte Carlo method is effective, yet imprecise.

Our Idea

- MC sampling guided by program analysis (few samples and sampling at the critical places)
 - Use dynamic analysis to predict output continuity
 - Perform demand driven sampling based on continuity

input

White Box Sampling - Intuition

A Running Example

```
x = sample(1.5);
y = (int) x;
   if (x < 1.0)
    o = 1 + y;
                      1.0
    else
    if (t(x) > 0.3)
     o = 0.3;
                      0.3
    else
      o = 0.75;
                                               2.0
                                  1.0
```

