# Analysis of the CPTAC Spike-in Study

## Lieven Clement and Laurent Gattp

statOmics, Ghent University (https://statomics.github.io)

## Contents

| 1 | Int                  | Intro: Challenges in Label-Free Quantitative Proteomics    |    |  |  |  |  |
|---|----------------------|------------------------------------------------------------|----|--|--|--|--|
|   | 1.1                  | MS-based workflow                                          | 2  |  |  |  |  |
|   | 1.2                  | Level of quantification                                    | 3  |  |  |  |  |
|   | 1.3                  | Label-free Quantitative Proteomics Data Analysis Workflows | 4  |  |  |  |  |
| 2 | QF                   | Features                                                   |    |  |  |  |  |
|   | 2.1                  | Data infrastructure                                        | 4  |  |  |  |  |
| 3 | Bac                  | Background of the CPTAC Spike-In Study                     |    |  |  |  |  |
|   | 3.1                  | Import data in R                                           | 7  |  |  |  |  |
| 4 | Sub                  | Subset of the CPTAC study                                  |    |  |  |  |  |
|   | 4.1                  | Missingness                                                | 11 |  |  |  |  |
| 5 | Pre                  | Preprocessing                                              |    |  |  |  |  |
|   | 5.1                  | Log transform the data                                     | 13 |  |  |  |  |
|   | 5.2                  | Filtering                                                  | 13 |  |  |  |  |
|   | 5.3                  | Normalize the data using median centering                  | 14 |  |  |  |  |
|   | 5.4                  | Explore normalized data                                    | 14 |  |  |  |  |
| 6 | Median summarization |                                                            |    |  |  |  |  |
|   | 6.1                  | Preprocessing                                              | 16 |  |  |  |  |
|   | 6.2                  | Data Analysis                                              | 17 |  |  |  |  |
| 7 | Rol                  | bust summarization                                         | 23 |  |  |  |  |
|   | 7.1                  | Preprocessing                                              | 23 |  |  |  |  |
|   | 7 2                  | Data Analysis                                              | 2/ |  |  |  |  |

| 8               | Where the difference comes from                                |                                       |    |  |  |  |
|-----------------|----------------------------------------------------------------|---------------------------------------|----|--|--|--|
|                 | 8.1                                                            | Import data from the full CPTAC study | 30 |  |  |  |
|                 | 8.2                                                            | Peptide-Level view                    | 32 |  |  |  |
| 9               | Estimation of differential abundance using peptide level model |                                       |    |  |  |  |
| 10 Session Info |                                                                |                                       |    |  |  |  |
|                 |                                                                |                                       |    |  |  |  |

This is part of the online course Proteomics Data Analysis (PDA)

## 1 Intro: Challenges in Label-Free Quantitative Proteomics

### 1.1 MS-based workflow



Quantification Identification

- Peptide Characteristics
  - Modifications
  - Ionisation Efficiency: huge variability
  - Identification
    - \* Misidentification  $\rightarrow$  outliers

- $* \ MS^2 \ selection \ on \ peptide \ abundance \\ * \ Context \ depending \ missingness$
- \* Non-random missingness
- $\rightarrow$  Unbalanced pepide identifications across samples and messy data

#### Level of quantification 1.2

• MS-based proteomics returns peptides: pieces of proteins



• Quantification commonly required on the protein level



## 1.3 Label-free Quantitative Proteomics Data Analysis Workflows



## 2 QFeatures

#### 2.1 Data infrastructure

- We use the QFeatures package that provides the infrastructure to
  - store,
  - process,
  - manipulate and
  - analyse quantitative data/features from mass spectrometry experiments.
- It is based on the SummarizedExperiment and MultiAssayExperiment classes.
- Assays in a QFeatures object have a hierarchical relation:
  - proteins are composed of peptides,
  - themselves produced by peptide spectrum matches
  - relations between assays are tracked and recorded throughout data processing

22/06/2021 SE.svg



file: ///Users/lclement/Dropbox/statOmics/PDA21/figures/SE.svg

1/1

Figure 1: Conceptual representation of a 'SummarizedExperiment' object. Assays contain information on the measured omics features (rows) for different samples (columns). The 'rowData' contains information on the omics features, the 'colData' contains information on the samples, i.e. experimental design etc.



Figure 2: Conceptual representation of a  ${\tt QFeatures}$  object and the aggregative relation between different assays. Image from the  ${\tt QFeatures}$  vignette

## 3 Background of the CPTAC Spike-In Study

This case-study is a subset of the data of the 6th study of the Clinical Proteomic Technology Assessment for Cancer (CPTAC) [5]. In this experiment, the authors spiked the Sigma Universal Protein Standard mixture 1 (UPS1) containing 48 different human proteins in a protein background of 60 ng/ $\mu$ L Saccharomyces cerevisiae strain BY4741.

Five different spike-in concentrations were used: - 6A: 0.25 fmol UPS1 proteins/ $\mu L$ , - 6B: 0.74 fmol UPS1 proteins/ $\mu L$ , - 6C: 2.22 fmol UPS1 proteins/ $\mu L$ , - 6D: 6.67 fmol UPS1 proteins/ $\mu L$  and - 6E: 20 fmol UPS1 proteins/ $\mu L$ ).

We limited ourselves to the data of LTQ-Orbitrap W at site 56. The data were searched with MaxQuant version 1.5.2.8, and detailed search settings were described in Goeminne et al. (2016) [1]. Three replicates are available for each concentration.



- After MaxQuant search with match between runs option
  - 41% of all proteins are quantified in all samples
  - 6.6% of all peptides are quantified in all samples
- $\rightarrow$  vast amount of missingness

### 3.1 Import data in R

#### 3.1.1 Load packages

library(tidyverse)
library(limma)
library(QFeatures)
library(msqrob2)

```
library(plotly)
library(ggplot2)
library(cowplot)
library(gridExtra)
```

#### 3.1.2 Import data from the CPTAC study

1. We use a peptides.txt file from MS-data quantified with maxquant that contains MS1 intensities summarized at the peptide level.

```
peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA/data/quantification/fullCptacDatasSetN
download.file(url = peptidesFile, destfile = "peptides.txt")</pre>
```

2. Maxquant stores the intensity data for the different samples in columns that start with "Intensity". We can retreive the column names with the intensity data with the code below:

```
grep("Intensity\\.", names(read.delim("peptides.txt")), value = TRUE)
## [1] "Intensity.6A_1" "Intensity.6A_2" "Intensity.6A_3" "Intensity.6A_4"
## [5] "Intensity.6A_5" "Intensity.6A_6" "Intensity.6A_7" "Intensity.6A_8"
## [9] "Intensity.6A_9" "Intensity.6B_1" "Intensity.6B_2" "Intensity.6B_3"
## [13] "Intensity.6B_4" "Intensity.6B_5" "Intensity.6B_6" "Intensity.6B_7"
## [17] "Intensity.6B_8" "Intensity.6B_9" "Intensity.6C_1" "Intensity.6C_2"
## [21] "Intensity.6C 3" "Intensity.6C 4" "Intensity.6C 5" "Intensity.6C 6"
## [25] "Intensity.6C_7" "Intensity.6C_8" "Intensity.6C_9" "Intensity.6D_1"
## [29] "Intensity.6D 2" "Intensity.6D 3" "Intensity.6D 4" "Intensity.6D 5"
## [33] "Intensity.6D_6" "Intensity.6D_7" "Intensity.6D_8" "Intensity.6D_9"
## [37] "Intensity.6E_1" "Intensity.6E_2" "Intensity.6E_3" "Intensity.6E_4"
## [41] "Intensity.6E_5" "Intensity.6E_6" "Intensity.6E_7" "Intensity.6E_8"
## [45] "Intensity.6E_9"
(ecols <- grep("Intensity\\.", names(read.delim("peptides.txt"))))</pre>
## [1] 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
## [20] 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
## [39] 172 173 174 175 176 177 178
```

3. Read the data and store it in QFeatures object

```
pe_all <- readQFeatures(
    "peptides.txt",
    fnames = 1,
    ecol = ecols,
    name = "peptideRaw",
    sep = "\t")</pre>
```

The QFeatures object stored in pe currently contains a single assay, names peptideRaw, composed of 11466 peptides measured in 45 samples.

```
pe_all
## An instance of class QFeatures containing 1 assays:
    [1] peptideRaw: SummarizedExperiment with 11466 rows and 45 columns
We can access the unique assay by index (i.e. 1) or by name (i.e "peptideRaw") using the [[]] operator,
which returns an instance of class SummarizedExperiment:
pe_all[[1]]
## class: SummarizedExperiment
## dim: 11466 45
## metadata(0):
## assays(1): ''
## rownames(11466): AAAAGAGGAGDSGDAVTK AAAALAGGK ... YYTVFDRDNNR
     YYTVFDRDNNRVGFAEAAR
## rowData names(143): Sequence N.term.cleavage.window ...
     Oxidation..M..site.IDs MS.MS.Count
## colnames(45): Intensity.6A_1 Intensity.6A_2 ... Intensity.6E_8
     Intensity.6E_9
## colData names(0):
pe_all[["peptideRaw"]]
## class: SummarizedExperiment
## dim: 11466 45
## metadata(0):
## assays(1): ''
## rownames(11466): AAAAGAGGAGDSGDAVTK AAAALAGGK ... YYTVFDRDNNR
     YYTVFDRDNNRVGFAEAAR
## rowData names(143): Sequence N.term.cleavage.window ...
     Oxidation..M..site.IDs MS.MS.Count
## colnames(45): Intensity.6A_1 Intensity.6A_2 ... Intensity.6E_8
     Intensity.6E_9
## colData names(0):
3.1.3 Explore object
  • The rowData contains information on the features (peptides) in the assay. E.g. Sequence, protein, ...
rowData(pe_all[["peptideRaw"]])[, c("Proteins", "Sequence", "Charges", "Intensity",
                                     "Experiment.6A_7", "Experiment.6A_8", "Experiment.6A_9")]
## DataFrame with 11466 rows and 7 columns
##
                             Proteins
                                                         Charges Intensity
                                           Sequence
                                        <character> <character> <numeric>
##
                          <character>
## AAAAGAGGAGDSGDAVTK sp|P38915|... AAAAGAGGAG...
                                                                   1190800
## AAAALAGGK
                       sp|Q3E792|...
                                          AAAALAGGK
                                                               2 280990000
## AAAALAGGKK
                                         AAAALAGGKK
                                                              2 33360000
                       sp|Q3E792|...
                        sp|P09938|... AAADALSDLE...
                                                               2 54622000
## AAADALSDLEIK
```

```
## AAADALSDLEIKDSK
                       sp|P09938|... AAADALSDLE...
                                                             3 18910000
## ...
                                ...
                       sp|P07267|... YYSIYDLGNN...
## YYSIYDLGNNAVGLAK
                                                                 2145900
                       sp|Q00955|... YYTFNGPNYN...
## YYTFNGPNYNENETIR
                                                                5608800
## YYTITEVATR
                       sp|P38891|...
                                       YYTITEVATR
                                                             2 13034000
                       P07339ups|... YYTVFDRDNN...
                                                             2
## YYTVFDRDNNR
                                                                 8702500
## YYTVFDRDNNRVGFAEAAR P07339ups | ... YYTVFDRDNN...
                                                                 2391100
                       Experiment.6A_7 Experiment.6A_8 Experiment.6A_9
##
                             <integer>
                                             <integer>
## AAAAGAGGAGDSGDAVTK
                                    1
                                                    1
## AAAALAGGK
                                     2
                                                     1
                                                                     1
## AAAALAGGKK
                                     1
                                                     1
                                                                     1
## AAADALSDLEIK
                                     1
                                                     1
                                                                     1
## AAADALSDLEIKDSK
                                     1
                                                                     1
                                   . . .
## YYSIYDLGNNAVGLAK
                                    NA
                                                    NA
                                                                    NA
## YYTFNGPNYNENETIR
                                    1
                                                    NA
                                                                    1
## YYTITEVATR
                                                    NA
                                    1
                                                                    NA
## YYTVFDRDNNR
                                    NA
                                                    NΑ
                                                                    NΑ
## YYTVFDRDNNRVGFAEAAR
                                    NA
                                                    NA
```

• The colData contains information on the samples, but is currently empty:

```
colData(pe_all)
```

## DataFrame with 45 rows and 0 columns

```
pe_all[[1]] %>% colnames
```

```
## [1] "Intensity.6A_1" "Intensity.6A_2" "Intensity.6A_3" "Intensity.6A_4"
## [5] "Intensity.6A_5" "Intensity.6A_6" "Intensity.6A_7" "Intensity.6A_8"
## [9] "Intensity.6A_9" "Intensity.6B_1" "Intensity.6B_2" "Intensity.6B_3"
## [13] "Intensity.6B_4" "Intensity.6B_5" "Intensity.6B_6" "Intensity.6B_7"
## [17] "Intensity.6B_8" "Intensity.6B_9" "Intensity.6C_1" "Intensity.6C_2"
## [21] "Intensity.6C_3" "Intensity.6C_4" "Intensity.6C_5" "Intensity.6C_6"
## [25] "Intensity.6C_7" "Intensity.6C_8" "Intensity.6C_9" "Intensity.6D_1"
## [29] "Intensity.6D_2" "Intensity.6D_3" "Intensity.6D_4" "Intensity.6D_5"
## [33] "Intensity.6D_6" "Intensity.6D_7" "Intensity.6D_8" "Intensity.6D_9"
## [41] "Intensity.6E_1" "Intensity.6E_2" "Intensity.6E_3" "Intensity.6E_4"
## [41] "Intensity.6E_5" "Intensity.6E_6" "Intensity.6E_7" "Intensity.6E_8"
```

- Note, that the sample names include the spike-in condition (A and B). They also end on a number:
  - -1-3 is from lab 1,
  - 4-6 from lab 2 and
  - 7-9 from lab 3.
- We can update the colData with information on the design

• We explore the colData again

```
colData(pe_all)
```

```
## DataFrame with 45 rows and 3 columns
##
                           lab
                                  condition spikeConcentration
##
                   <character> <character>
                                                      <numeric>
                                                            0.25
## Intensity.6A_1
                          lab1
## Intensity.6A 2
                                                            0.25
                          lab1
                                          Α
## Intensity.6A_3
                                                            0.25
                          lab1
                                          Α
## Intensity.6A_4
                                                            0.25
                          lab2
                                           Α
## Intensity.6A_5
                          lab2
                                           Α
                                                            0.25
## ...
                           . . .
                                                             . . .
                                         . . .
                                                              20
## Intensity.6E_5
                                          Ε
                          lab2
                                          Ε
## Intensity.6E_6
                          lab2
                                                              20
                                          Ε
## Intensity.6E_7
                          lab3
                                                              20
## Intensity.6E_8
                          lab3
                                          Ε
                                                              20
## Intensity.6E_9
                          lab3
                                          Ε
                                                              20
```

## 4 Subset of the CPTAC study

We are going to focus on a subset of the data, specifically on conditions A and B produced by lab3:

```
subsetCPTAC <- pe_all$condition %in% c("A", "B") & pe_all$lab == "lab3"
pe <- pe_all[, subsetCPTAC]
pe$condition <- factor(pe$condition)
pe</pre>
```

```
## An instance of class QFeatures containing 1 assays:
## [1] peptideRaw: SummarizedExperiment with 11466 rows and 6 columns
```

Note that a file containing this same subset is also available from the msdata package using the quant() function.

#### 4.1 Missingness

Peptides with zero intensities are missing peptides and should be represent with a NA value rather than 0. This can be done with the  ${\tt zeroIsNA}$ () function. We can then use  ${\tt nNA}$ () on the individual assay to compute missingness summaries:

```
pe <- zeroIsNA(pe, "peptideRaw")</pre>
na <- nNA(pe[[1]])
na
## $nNA
  DataFrame with 1 row and 2 columns
##
           nNA
                      pNA
##
     <integer> <numeric>
## 1
         31130
                  45.2497
##
## $nNArows
## DataFrame with 11466 rows and 3 columns
##
                   name
                               nNA
                                         pNA
##
           <character> <integer> <numeric>
         AAAAGAGGAG...
                                 4
## 1
                                     66.6667
## 2
             AAAALAGGK
                                 0
                                      0.0000
## 3
            AAAALAGGKK
                                 0
                                      0.0000
         AAADALSDLE...
                                 0
## 4
                                      0.0000
         AAADALSDLE...
## 5
                                 0
                                      0.0000
##
                               . . .
## 11462 YYSIYDLGNN...
                                 6 100.0000
## 11463 YYTFNGPNYN...
                                 3
                                     50.0000
## 11464
            YYTITEVATR
                                     66.6667
## 11465 YYTVFDRDNN...
                                 6
                                    100.0000
## 11466 YYTVFDRDNN...
                                 6 100.0000
##
## $nNAcols
## DataFrame with 6 rows and 3 columns
##
                          \mathtt{nNA}
                                     pNA
              name
##
       <character> <integer> <numeric>
## 1 Intensity....
                         4743
                                 41.3658
## 2 Intensity....
                         5483
                                 47.8196
## 3 Intensity....
                         5320
                                 46.3980
## 4 Intensity....
                         4721
                                 41.1739
## 5 Intensity....
                         5563
                                 48.5174
                         5300
## 6 Intensity....
                                 46.2236
```

- 31130 peptides intensities, corresponding to 45%, are missing and for some peptides we do not even measure a signal in any sample.
- For each sample, the proportion fluctuates between 41.4 and 48.5%.
- The table below shows the number of peptides that have 0, 1, ... and up to 6 missing values.

#### table(na\$nNArows\$nNA)

## 5 Preprocessing

This section preforms preprocessing for the peptide data. This include

- log transformation,
- filtering and
- summarisation of the data.

### 5.1 Log transform the data

```
pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")</pre>
```

## 5.2 Filtering

1. Handling overlapping protein groups

In our approach a peptide can map to multiple proteins, as long as there is none of these proteins present in a smaller subgroup.

```
pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))
```

2. Remove reverse sequences (decoys) and contaminants

We now remove the contaminants and peptides that map to decoy sequences.

```
pe <- pe |>
  filterFeatures(~ Reverse != "+") |>
  filterFeatures(~ Potential.contaminant != "+")
pe
```

```
## An instance of class QFeatures containing 2 assays:
## [1] peptideRaw: SummarizedExperiment with 10678 rows and 6 columns
## [2] peptideLog: SummarizedExperiment with 10678 rows and 6 columns
```

3. Drop peptides that were only identified in one sample

We keep peptides that were observed at last twice, i.e. those that have no more that 4 missing values

```
pe <- filterFeatures(pe, ~ nNA(pe[[1]])$nNArows$nNA <= 4)
pe

## An instance of class QFeatures containing 2 assays:
## [1] peptideRaw: SummarizedExperiment with 7011 rows and 6 columns
## [2] peptideLog: SummarizedExperiment with 7011 rows and 6 columns</pre>
```

We keep 7011 peptides upon filtering.

### 5.3 Normalize the data using median centering

We normalize the data by substracting the sample median from every intensity for peptide p in a sample i:

$$y_{ip}^{\text{norm}} = y_{ip} - \hat{\mu}_i$$

with  $\hat{\mu}_i$  the median intensity over all observed peptides in sample i.

### 5.4 Explore normalized data

Upon the normalisation the density curves follow a similar distribution.

```
as_tibble(longFormat(pe[, , 2:3], colvars = "condition")) %>%
    ggplot(aes(x = value, group = primary, colour = condition)) +
    geom_density() +
    facet_grid(assay ~ .) +
    theme_bw()

## Warning: 'experiments' dropped; see 'metadata'

## harmonizing input:
## removing 6 sampleMap rows not in names(experiments)

## Warning: Removed 16334 rows containing non-finite values (stat_density).
```



We can visualize our data using a Multi Dimensional Scaling plot, eg. as provided by the limma package.

```
tmp <- assay(pe[["peptideNorm"]])
colnames(tmp) <- str_replace_all(colnames(tmp), "Intensity.6","")
tmp %>%
  limma::plotMDS(col = as.numeric(colData(pe)$condition))
```



The first axis in the plot is showing the leading log fold changes (differences on the log scale) between the samples.

We notice that the leading differences (log FC) in the peptide data seems to be driven by technical variability. Indeed, the samples do not seem to be clearly separated according to the spike-in condition.

### 6 Median summarization

### 6.1 Preprocessing

- We use median summarization in aggregateFeatures.
- Note, that this is a suboptimal normalisation procedure!
- By default robust summarization is used: fun = MsCoreUtils::robustSummary()

```
pe <- aggregateFeatures(pe,
    i = "peptideNorm",
    fcol = "Proteins",
    na.rm = TRUE,
    name = "proteinMedian",
    fun = matrixStats::colMedians)</pre>
```

```
## Your quantitative and row data contain missing values. Please read the ## relevant section(s) in the aggregateFeatures manual page regarding the ## effects of missing values on data aggregation.
```

```
## An instance of class QFeatures containing 4 assays:
## [1] peptideRaw: SummarizedExperiment with 7011 rows and 6 columns
## [2] peptideLog: SummarizedExperiment with 7011 rows and 6 columns
## [3] peptideNorm: SummarizedExperiment with 7011 rows and 6 columns
## [4] proteinMedian: SummarizedExperiment with 1389 rows and 6 columns

tmp <- assay(pe[["proteinMedian"]])
colnames(tmp) <- str_replace_all(colnames(tmp), "Intensity.6","")

tmp %>%
   limma::plotMDS(col = as.numeric(colData(pe)$condition))
```



## 6.2 Data Analysis

#### 6.2.1 Estimation

We model the protein level expression values using msqrob. By default msqrob2 estimates the model parameters using robust regression.

We will model the data with a different group mean. The group is incoded in the variable condition of the colData. We can specify this model by using a formula with the factor condition as its predictor: formula = ~condition.

Note, that a formula always starts with a symbol '~'.

```
rowData(pe[["proteinMedian"]])[, c("Proteins", ".n", "msqrobModels")]
```

```
## DataFrame with 1389 rows and 3 columns
##
                                 Proteins
                                                          msqrobModels
                                                  .n
                               <character> <integer>
##
                                                                st>
## 000762ups|UBE2C_HUMAN_UPS 000762ups|...
                                                         StatModel:rlm
## P00167ups CYB5 HUMAN UPS
                            P00167ups|...
                                                  1 StatModel:fitError
## P00441ups|SODC HUMAN UPS
                            P00441ups|...
                                                  3
                                                         StatModel:rlm
## P00709ups|LALBA_HUMAN_UPS P00709ups|...
                                                         StatModel:rlm
                                                  3
## P00915ups|CAH1_HUMAN_UPS P00915ups|...
                                                  1 StatModel:fitError
## ...
## sp|Q99258|RIB3 YEAST
                            sp|Q99258|...
                                                  4
                                                         StatModel:rlm
## sp|Q99260|YPT6_YEAST
                            sp|Q99260|...
                                                  1 StatModel:fitError
## sp|Q99287|SEY1_YEAST
                            sp|Q99287|...
                                                  1
                                                         StatModel:rlm
                                                3
## sp|Q99383|HRP1_YEAST
                            sp|Q99383|...
                                                         StatModel:rlm
## sp|Q99385|VCX1_YEAST
                            sp|Q99385|...
                                                1 StatModel:fitError
```

#### 6.2.2 Inference

First, we extract the parameter names of the model by looking at the first model. The models are stored in the row data of the assay under the default name msqrobModels.

```
getCoef(rowData(pe[["proteinMedian"]])$msqrobModels[[1]])
## (Intercept) conditionB
## -2.793005 1.541958
```

We can also explore the design of the model that we specified using the the package ExploreModelMatrix

```
library(ExploreModelMatrix)
VisualizeDesign(colData(pe),~condition)$plotlist[[1]]
```



Spike-in condition A is the reference class. So the mean log2 expression for samples from condition A is '(Intercept). The mean log2 expression for samples from condition B is'(Intercept)+conditionB'.

Hence, the average  $\log 2$  fold change between condition b and condition a is modelled using the parameter 'conditionB'. Thus, we assess the contrast 'conditionB = 0' with our statistical test.

```
L <- makeContrast("conditionB=0", parameterNames = c("conditionB"))
pe <- hypothesisTest(object = pe, i = "proteinMedian", contrast = L)</pre>
```

#### **6.2.3** Plots



logFC

### 6.2.3.1 Volcano-plot

Note, that only 2 proteins are found to be differentially abundant.

### 6.2.3.2 Heatmap We first select the names of the proteins that were declared significant

```
sigNames <- rowData(pe[["proteinMedian"]])$conditionB %>%
  rownames_to_column("proteinMedian") %>%
  filter(adjPval<0.05) %>%
  pull(proteinMedian)
heatmap(assay(pe[["proteinMedian"]])[sigNames, ],cexRow = 1, cexCol = 1)
```



```
sigProteins <- rowData(pe[["proteinMedian"]])$conditionB %>%
rownames_to_column("proteinMedian") %>%
filter(grepl("UPS",proteinMedian)) %>%
pull(proteinMedian)
heatmap(assay(pe[["proteinMedian"]])[sigProteins, ], cexCol = 1)
```



The majority of the proteins are indeed UPS proteins. 1 yeast protein is returned. Note, that the yeast protein indeed shows evidence for differential abundance.

**6.2.3.3** Boxplots We create a boxplot of the log2 FC and group according to the whether a protein is spiked or not.

```
rowData(pe[["proteinMedian"]])$conditionB %>%
  rownames_to_column(var = "protein") %>%
  mutate(ups=grepl("UPS",protein)) %>%
  ggplot(aes(x=ups, y =logFC, fill = ups)) +
  geom_boxplot() +
  theme_bw() +
  geom_hline(yintercept = log2(0.74 / .25), color = "#00BFC4") +
    geom_hline(yintercept = 0, color = "#F8766D")
```

## Warning: Removed 166 rows containing non-finite values (stat boxplot).



## 7 Robust summarization

## 7.1 Preprocessing

- By default robust summarization is used: fun = MsCoreUtils::robustSummary()
- Structure from QFeatures is usefull here. No need to rerun any of the previous log transformation or normalization.

```
pe <- aggregateFeatures(pe,
    i = "peptideNorm",
    fcol = "Proteins",
    na.rm = TRUE,
    name = "protein_robust",
    fun = MsCoreUtils::robustSummary)</pre>
```

## Your quantitative and row data contain missing values. Please read the
## relevant section(s) in the aggregateFeatures manual page regarding the
## effects of missing values on data aggregation.

Now we have both the proteinMedian and protein\_robust in one QFeatures object.

```
## An instance of class QFeatures containing 5 assays:
## [1] peptideRaw: SummarizedExperiment with 7011 rows and 6 columns
## [2] peptideLog: SummarizedExperiment with 7011 rows and 6 columns
## [3] peptideNorm: SummarizedExperiment with 7011 rows and 6 columns
## [4] proteinMedian: SummarizedExperiment with 1389 rows and 6 columns
## [5] protein_robust: SummarizedExperiment with 1389 rows and 6 columns

tmp <- assay(pe[["protein_robust"]] )
colnames(tmp) <- str_replace_all(colnames(tmp), "Intensity.6","")

tmp %>%
   limma::plotMDS(col = as.numeric(colData(pe)$condition))
```



Note that the samples upon robust summarisation show a clear separation according to the spike-in condition in the second dimension of the MDS plot.

## 7.2 Data Analysis

#### 7.2.1 Estimation

We model the protein level expression values using msqrob. By default msqrob2 estimates the model parameters using robust regression.

We will model the data with a different group mean. The group is incoded in the variable condition of the colData. We can specify this model by using a formula with the factor condition as its predictor: formula = ~condition.

Note, that a formula always starts with a symbol '~'.

```
pe <- msqrob(object = pe, i = "protein_robust", formula = ~condition)</pre>
```

#### 7.2.2 Inference

First, we extract the parameter names of the model by looking at the first model. The models are stored in the row data of the assay under the default name msqrobModels.

```
getCoef(rowData(pe[["protein_robust"]])$msqrobModels[[1]])
## (Intercept) conditionB
## -2.672396 1.513682
```

We can also explore the design of the model that we specified using the the package ExploreModelMatrix

```
library(ExploreModelMatrix)
VisualizeDesign(colData(pe),~condition)$plotlist[[1]]
```



Spike-in condition A is the reference class. So the mean log2 expression for samples from condition A is '(Intercept). The mean log2 expression for samples from condition B is '(Intercept)+conditionB'. Hence, the

average log2 fold change between condition b and condition a is modelled using the parameter 'conditionB'. Thus, we assess the contrast 'conditionB = 0' with our statistical test.

```
L <- makeContrast("conditionB=0", parameterNames = c("conditionB"))
pe <- hypothesisTest(object = pe, i = "protein_robust", contrast = L)</pre>
```

#### 7.2.3 Plots



### 7.2.3.1 Volcano-plot

Note, that 20 proteins are found to be differentially abundant.

### 7.2.3.2 Heatmap We first select the names of the proteins that were declared signficant.

```
sigNames <- rowData(pe[["protein_robust"]])$conditionB %>%
  rownames_to_column("protein_robust") %>%
  filter(adjPval<0.05) %>%
  pull(protein_robust)
heatmap(assay(pe[["protein_robust"]])[sigNames, ],cexCol = 1)
```



The majority of the proteins are indeed UPS proteins. 1 yeast protein is returned. Note, that the yeast protein indeed shows evidence for differential abundance.

heatmaps also show difference between median and robust summarization

```
par(cex.main=.8)
sigProteins <- rowData(pe[["protein_robust"]])$conditionB %>%
   rownames_to_column("protein_robust") %>%
   filter(grepl("UPS",protein_robust)) %>%
   pull(protein_robust)
heatmap(assay(pe[["protein_robust"]])[sigProteins, ], cexCol = 1,cexRow = 0.5, main = "Robust summariza"
```



**7.2.3.3** Boxplots We make boxplot of the log2 FC and stratify according to the whether a protein is spiked or not.

```
rbind(rowData(pe[["protein_robust"]])$conditionB %>%
  rownames_to_column(var = "protein") %>% mutate(method = "robust"),
  rowData(pe[["proteinMedian"]])$conditionB %>%
  rownames_to_column(var = "protein") %>% mutate(method = "median"))%>%
  mutate(ups=grepl("UPS",protein)) %>%
  ggplot(aes(x=method, y =logFC, fill = ups)) +
  geom_boxplot() +
  theme_bw() +
  geom_hline(yintercept = log2(0.74 / .25), color = "#00BFC4") +
   geom_hline(yintercept = 0, color = "#F8766D")
```

## Warning: Removed 333 rows containing non-finite values (stat boxplot).



## 8 Where the difference comes from

## 8.1 Import data from the full CPTAC study

Click to see background and code

1. We use a peptides.txt file from MS-data quantified with maxquant that contains MS1 intensities summarized at the peptide level.

peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA/data/quantification/fullCptacDatasSetN</pre>

2. Maxquant stores the intensity data for the different samples in columns that start with Intensity. We can retreive the column names with the intensity data with the code below:

```
ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))</pre>
```

3. Read the data and store it in QFeatures object

```
pe <- readQFeatures(
  table = peptidesFile,
  fnames = 1,
  ecol = ecols,
  name = "peptideRaw", sep="\t")</pre>
```

#### 8.1.1 Design

Click to see background and code

```
pe %>% colnames
```

```
## CharacterList of length 1
## [["peptideRaw"]] Intensity.6A_1 Intensity.6A_2 ... Intensity.6E_9
```

- Note, that the sample names include the spike-in condition.
- They also end on a number.
  - -1-3 is from lab 1,
  - 4-6 from lab 2 and
  - 7-9 from lab 3.
- We update the colData with information on the design

```
colData(pe)$lab <- rep(rep(paste0("lab",1:3),each=3),5) %>% as.factor
colData(pe)$condition <- pe[["peptideRaw"]] %>% colnames %>% substr(12,12) %>% as.factor
colData(pe)$spikeConcentration <- rep(c(A = 0.25, B = 0.74, C = 2.22, D = 6.67, E = 20),each = 9)</pre>
```

• We explore the colData

```
colData(pe)
```

```
## DataFrame with 45 rows and 3 columns
##
                        lab condition spikeConcentration
##
                             <factor>
                   <factor>
                                                <numeric>
## Intensity.6A_1
                      lab1
                                                     0.25
## Intensity.6A_2
                      lab1
                                    Α
                                                     0.25
## Intensity.6A_3
                      lab1
                                    Α
                                                     0.25
## Intensity.6A_4
                      lab2
                                    Α
                                                     0.25
## Intensity.6A_5
                      lab2
                                    Α
                                                     0.25
## ...
## Intensity.6E_5
                      lab2
                                    Ε
                                                       20
## Intensity.6E_6
                                    Ε
                                                       20
                      lab2
## Intensity.6E 7
                      lab3
                                    Ε
                                                       20
## Intensity.6E_8
                                    Ε
                                                       20
                      lab3
## Intensity.6E_9
                       lab3
                                    Ε
                                                       20
```

#### 8.1.2 Preprocessing

Click to see R-code to preprocess the data

• We calculate how many non zero intensities we have for each peptide and this can be useful for filtering.

```
rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)
```

Peptides with zero intensities are missing peptides and should be represent with a NA value rather than
 0.

```
pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA
```

• Logtransform data with base 2

```
pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")</pre>
```

1. Handling overlapping protein groups

In our approach a peptide can map to multiple proteins, as long as there is none of these proteins present in a smaller subgroup.

```
pe <- filterFeatures(pe, ~ Proteins %in% smallestUniqueGroups(rowData(pe[["peptideLog"]])$Proteins))</pre>
```

2. Remove reverse sequences (decoys) and contaminants

We now remove the contaminants, peptides that map to decoy sequences, and proteins which were only identified by peptides with modifications.

```
pe <- filterFeatures(pe,~Reverse != "+")
pe <- filterFeatures(pe,~ Potential.contaminant != "+")</pre>
```

3. Drop peptides that were only identified in one sample

We keep peptides that were observed at last twice.

```
pe <- filterFeatures(pe,~ nNonZero >=2)
nrow(pe[["peptideLog"]])
```

## [1] 10478

We keep 10478 peptides upon filtering.

#### 8.1.3 Normalization

Click to see R-code to normalize the data

### 8.2 Peptide-Level view

#### 8.2.1 Summarization

Click to see code to make plot

```
prot <- "P01031ups|C05_HUMAN_UPS"</pre>
data <- pe[["peptideNorm"]][</pre>
  rowData(pe[["peptideNorm"]])$Proteins == prot,
  colData(pe)$lab=="lab3"] %>%
  assay %>%
  as.data.frame %>%
  rownames_to_column(var = "peptide") %>%
  gather(sample, intensity, -peptide) %>%
  mutate(condition = colData(pe)[sample, "condition"]) %>%
  na.exclude
sumPlot <- data %>%
  ggplot(aes(x = peptide, y = intensity, color = condition, group = sample, label = condition), show.le
  geom_text(show.legend = FALSE) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  xlab("Peptide") +
  ylab("Intensity (log2)") +
  ggtitle(paste0("protein: ",prot))
```

Here, we will focus on the summarization of the intensities for protein  $P01031ups|CO5\_HUMAN\_UPS$  from Lab3 for all conditions.

```
sumPlot +
geom_line(linetype="dashed",alpha=.4)
```



## $\textbf{8.2.1.1} \quad \textbf{Median summarization} \quad \text{We first evaluate median summarization for protein P01031ups} | \textbf{CO5\_HUMAN\_UPS}.$

Click to see code to make plot

```
dataHlp <- pe[["peptideNorm"]][
    rowData(pe[["peptideNorm"]]) $Proteins == prot,
    colData(pe) $lab=="lab3"] %>% assay

sumMedian <- data.frame(
    intensity= dataHlp
        %>% colMedians(na.rm=TRUE)
,
    condition= colnames(dataHlp) %>% substr(12,12) %>% as.factor )

sumMedianPlot <- sumPlot +
    geom_hline(
    data = sumMedian,
    mapping = aes(yintercept=intensity,color=condition)) +
    ggtitle("Median summarization")</pre>
```

sumMedianPlot

## Warning: Removed 1 rows containing missing values (geom\_hline).



• The sample medians are not a good estimate for the protein expression value.

- Indeed, they do not account for differences in peptide effects
- Peptides that ionize poorly are also picked up in samples with high spike-in concentration and not in samples with low spike-in concentration
- This introduces a bias.

**8.2.1.2** Linear Model based summarization We can use a linear peptide-level model to estimate the protein expression value while correcting for the peptide effect, i.e.

$$y_{ip} = \beta_i^{\text{sample}} + \beta_n^{peptide} + \epsilon_{ip}$$

Click to see code to make plot

```
sumMeanPepMod <- lm(intensity ~ -1 + sample + peptide,data)

sumMeanPep <- data.frame(
   intensity=sumMeanPepMod$coef[grep("sample",names(sumMeanPepMod$coef))] + mean(data$intensity) - mean(
   condition= names(sumMeanPepMod$coef)[grep("sample",names(sumMeanPepMod$coef))] %>% substr(18,18) %>%

fitLmPlot <- sumPlot + geom_line(
   data = data %>% mutate(fit=sumMeanPepMod$fitted.values),
   mapping = aes(x=peptide, y=fit,color=condition, group=sample)) +
   ggtitle("fit: ~ sample + peptide")

sumLmPlot <- sumPlot + geom_hline(
   data = sumMeanPep,
   mapping = aes(yintercept=intensity,color=condition)) +
   ggtitle("Peptide-Level linear model Summarization")

plot_grid(plot_grid(sumMedianPlot+theme(legend.position = "none"),
        sumLmPlot+theme(legend.position = "none") + ylab("")),
        get_legend(sumLmPlot), ncol = 2, rel_widths = c(1,0.15))</pre>
```

## Warning: Removed 1 rows containing missing values (geom\_hline).



- By correcting for the peptide species the protein expression values are much better separated an better reflect differences in abundance induced by the spike-in condition.
- Indeed, it shows that median and mean summarization that do not account for the peptide effect indeed overestimate the protein expression value in the small spike-in conditions and underestimate that in the large spike-in conditions.
- Still there seem to be some issues with samples that for which the expression values are not well separated according to the spike-in condition.

A residual analysis clearly indicates potential issues:

Click to see code to make plot

```
resPlot <- data %>%
  mutate(res=sumMeanPepMod$residuals) %>%
  ggplot(aes(x = peptide, y = res, color = condition, label = condition), show.legend = FALSE) +
  geom_point(shape=21) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  xlab("Peptide") +
  ylab("residual") +
  ggtitle("residuals: ~ sample + peptide")

grid.arrange(fitLmPlot+theme(legend.position = "none"), resPlot, nrow = 1)
```





- The residual plot shows some large outliers for peptide KIEEIAAK.
- Indeed, in the original plot the intensities for this peptide do not seem to line up very well with the concentration.
- This induces a bias in the summarization for some of the samples (e.g. for D and E)

#### 8.2.1.3 Robust summarization using a peptide-level linear model

$$y_{ip} = \beta_i^{\text{sample}} + \beta_p^{peptide} + \epsilon_{ip}$$

• Ordinary least squares: estimate  $\beta$  that minimizes

$$OLS: \sum_{i,p} \epsilon_{ip}^2 = \sum_{i,p} (y_{ip} - \beta_i^{\text{sample}} - \beta_p^{\text{peptide}})^2$$

We replace OLS by M-estimation with loss function

$$\sum_{i,p} w_{ip} \epsilon_{ip}^2 = \sum_{i,p} w_{ip} (y_{ip} - \beta_i^{\text{sample}} - \beta_p^{\text{peptide}})^2$$

- Iteratively fit model with observation weights  $w_{ip}$  until convergence
- The weights are calculated based on standardized residuals

Click to see code to make plot

```
sumMeanPepRobMod <- MASS::rlm(intensity ~ -1 + sample + peptide,data)</pre>
resRobPlot <- data %>%
  mutate(res = sumMeanPepRobMod$residuals,
         w = sumMeanPepRobMod$w) %>%
  ggplot(aes(x = peptide, y = res, color = condition, label = condition, size=w), show.legend = FALSE) +
  geom_point(shape=21,size=.2) +
  geom_point(shape=21) +
  theme minimal() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  xlab("Peptide") +
  ylab("residual") +
  ylim(c(-1,1)*max(abs(sumMeanPepRobMod$residuals)))
weightPlot <- qplot(</pre>
  seq(-5,5,.01),
  MASS::psi.huber(seq(-5,5,.01)),
  geom="path") +
  xlab("standardized residual") +
  ylab("weight") +
  theme_minimal()
```

#### grid.arrange(weightPlot,resRobPlot,nrow=1)



• We clearly see that the weights in the M-estimation procedure will down-weight errors associated with outliers for peptide KIEEIAAK.

```
sumMeanPepRob <- data.frame(
   intensity=sumMeanPepRobMod$coef[grep("sample",names(sumMeanPepRobMod$coef))] + mean(data$intensity) -
   condition= names(sumMeanPepRobMod$coef)[grep("sample",names(sumMeanPepRobMod$coef))] %>% substr(18,18

sumRlmPlot <- sumPlot + geom_hline(
   data=sumMeanPepRob,
   mapping=aes(yintercept=intensity,color=condition)) +
   ggtitle("Robust")</pre>
```





• Robust regresion results in a better separation between the protein expression values for the different samples according to their spike-in concentration.

## 9 Estimation of differential abundance using peptide level model

- Instead of summarising the data we can also directly model the data at the peptide-level.
- But, we will have to address the pseudo-replication.

$$y_{iclp} = \beta_0 + \beta_c^{\rm condition} + \beta_l^{\rm lab} + \beta_p^{\rm peptide} + u_s^{\rm sample} + \epsilon_{iclp}$$

• protein-level

```
- \beta_c^{\rm condition}: spike-in condition c=b,\ldots,e - \beta_l^{\rm lab}: lab effect l=l_2\ldots l_3 - u_r^{\rm run}\sim N\left(0,\sigma_{\rm run}^2\right)\rightarrow random effect addresses pseudo-replication
```

• peptide-level

```
– \beta_p^{\text{peptide}}: peptide effect

– \epsilon_{rp} \sim N\left(0, \sigma_{\epsilon}^2\right) within sample (run) error
```

• DA estimates:

```
\begin{split} \log_2 FC_{B-A} &= \beta_B^{\text{condition}} \\ \log_2 FC_{C-B} &= \beta_C^{\text{condition}} - \beta_B^{\text{condition}} \end{split}
```

- Mixed peptide-level models are implemented in msgrob2
- It has the advantages that
  - 1. it correctly addresses the difference levels of variability in the data
  - 2. it avoids summarization and therefore also accounts for the difference in the number of peptides that are observed in each sample
  - 3. more powerful analysis
- It has the disadvantage that
  - 1. protein summaries are no longer available for plotting
  - 2. it is difficult to correctly specify the degrees of freedom for the test-statistic leading to inference that is too liberal in experiments with small sample size
  - 3. sometimes sample level random effect variance are estimated to be zero, then the pseudoreplication is not addressed leading to inference that is too liberal for these specific proteins
  - 4. they are much more difficult to disseminate to users with limited background in statistics

Hence, for this course we opted to use peptide-level models for summarization, but not for directly inferring on the differential expression at the protein-level.

#### 10 Session Info

With respect to reproducibility, it is highly recommended to include a session info in your script so that readers of your output can see your particular setup of R.

#### sessionInfo()

```
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
##
```

```
## locale:
                               LC_NUMERIC=C
  [1] LC_CTYPE=C.UTF-8
                                                      LC TIME=C.UTF-8
   [4] LC COLLATE=C.UTF-8
                               LC MONETARY=C.UTF-8
                                                       LC MESSAGES=C.UTF-8
   [7] LC_PAPER=C.UTF-8
                               LC_NAME=C
                                                      LC_ADDRESS=C
## [10] LC_TELEPHONE=C
                               LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4
                 stats
                           graphics grDevices datasets utils
                                                                    methods
## [8] base
##
## other attached packages:
## [1] ExploreModelMatrix_1.8.0
                                    gridExtra_2.3
## [3] cowplot_1.1.1
                                    plotly_4.10.0
## [5] msqrob2_1.4.0
                                    QFeatures_1.6.0
## [7] MultiAssayExperiment_1.22.0
                                    SummarizedExperiment_1.26.1
## [9] Biobase_2.56.0
                                    GenomicRanges_1.48.0
## [11] GenomeInfoDb_1.32.4
                                    IRanges_2.30.1
## [13] S4Vectors 0.34.0
                                    BiocGenerics 0.42.0
## [15] MatrixGenerics_1.8.1
                                    matrixStats_0.62.0
## [17] limma_3.52.3
                                    forcats_0.5.2
## [19] stringr_1.4.1
                                    dplyr_1.0.10
                                    readr 2.1.2
## [21] purrr_0.3.4
                                    tibble_3.1.8
## [23] tidyr 1.2.1
## [25] ggplot2_3.3.6
                                    tidyverse 1.3.2
##
## loaded via a namespace (and not attached):
##
     [1] googledrive_2.0.0
                                                          colorspace_2.0-3
                                 minqa_1.2.4
##
     [4] ellipsis_0.3.2
                                 XVector_0.36.0
                                                          fs_1.5.2
##
     [7] clue_0.3-61
                                 farver_2.1.1
                                                         DT_0.25
                                 lubridate_1.8.0
  [10] fansi_1.0.3
                                                         xm12_1.3.3
##
   [13] codetools_0.2-18
                                 splines_4.2.1
                                                          cachem_1.0.6
## [16] knitr_1.40
                                 jsonlite_1.8.0
                                                         nloptr_2.0.3
##
  [19] broom_1.0.1
                                 cluster_2.1.4
                                                          dbplyr_2.2.1
## [22] shinydashboard_0.7.2
                                                         BiocManager_1.30.18
                                 shiny_1.7.2
                                                          backports_1.4.1
##
   [25] compiler 4.2.1
                                 httr 1.4.4
## [28] assertthat_0.2.1
                                 Matrix_1.5-1
                                                         fastmap_1.1.0
## [31] lazyeval 0.2.2
                                 gargle 1.2.1
                                                          cli 3.4.0
## [34] later_1.3.0
                                 htmltools_0.5.3
                                                          tools_4.2.1
## [37] igraph_1.3.4
                                 gtable_0.3.1
                                                          glue_1.6.2
## [40] GenomeInfoDbData_1.2.8
                                 Rcpp_1.0.9
                                                          cellranger_1.1.0
## [43] jquerylib_0.1.4
                                 vctrs 0.4.1
                                                         nlme 3.1-159
## [46] rintrojs_0.3.2
                                 xfun_0.33
                                                         lme4_1.1-30
## [49] rvest 1.0.3
                                 mime 0.12
                                                         lifecycle_1.0.2
## [52] renv_0.15.5
                                                          zlibbioc_1.42.0
                                 googlesheets4_1.0.1
## [55] MASS_7.3-58.1
                                 scales_1.2.1
                                                         promises_1.2.0.1
## [58] hms_1.1.2
                                 ProtGenerics_1.28.0
                                                         parallel_4.2.1
## [61] AnnotationFilter_1.20.0
                                 yam1_2.3.5
                                                          sass_0.4.2
##
  [64] stringi_1.7.8
                                 highr_0.9
                                                         boot_1.3-28
## [67] BiocParallel_1.30.3
                                                         pkgconfig_2.0.3
                                 rlang_1.0.5
## [70] bitops_1.0-7
                                 evaluate_0.16
                                                          lattice_0.20-45
## [73] labeling_0.4.2
                                 htmlwidgets_1.5.4
                                                          tidyselect_1.1.2
## [76] magrittr 2.0.3
                                 R6_2.5.1
                                                          generics_0.1.3
## [79] DelayedArray_0.22.0
                                 DBI_1.1.3
                                                         pillar_1.8.1
## [82] haven_2.5.1
                                 withr_2.5.0
                                                         MsCoreUtils 1.8.0
```

| ## | [85]  | RCurl_1.98-1.8 | modelr_0.1.9  | crayon_1.5.1      |
|----|-------|----------------|---------------|-------------------|
| ## | [88]  | utf8_1.2.2     | tzdb_0.3.0    | rmarkdown_2.16    |
| ## | [91]  | grid_4.2.1     | readxl_1.4.1  | data.table_1.14.2 |
| ## | [94]  | reprex_2.0.2   | digest_0.6.29 | xtable_1.8-4      |
| ## | [97]  | httpuv_1.6.6   | munsell_0.5.0 | viridisLite_0.4.1 |
| ## | [100] | bslib_0.4.0    | shinyjs_2.1.0 |                   |