2022-2023 学年第二学期高等代数与解析几何 2-2 第三次月考试题

- 1. 设 $\alpha_1 = (1,1,-1,-1)$, $\alpha_2 = (1,1,0,0)$, $\alpha_3 = (0,0,-1,-1)$, $\alpha_4 = (2,2,-1,-1)$, $\alpha_5 = (1,0,-1,-1)$, 求 $W = L(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)$ 在 R^4 中的正交补空间。(15 分)
- 2. 设三阶实对称矩阵A的各行元素和均为 3, $\alpha_1 = (-1,2,-1)'$, $\alpha_2 = (0,-1,1)'$ 是线性方程组AX = 0的两个解向量,
 - (1) 求A的特征值与特征向量,
 - (2) 求正交矩阵T和对角矩阵D,使T'AT = D。(17分)
- 3. 设四阶方阵 $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a+2 & 1 & 0 & 0 \\ 5 & 3 & 1 & 0 \\ 7 & 6 & 0 & 1 \end{pmatrix}$, 求A的若尔当标准型。(18 分)
- 4. 设 $A \in C^{n \times n}$, λ_0 为A的r重特征值,证明:秩($\lambda_0 E A$) $\geq n r$,而 秩($\lambda_0 E A$) $^r = n r$ 。(15 分)
- 5. 设欧氏空间V中的变换 σ 满足: $\forall \alpha, \beta \in V$, $(\sigma\alpha, \beta) = (\alpha, \sigma\beta)$, 证明: σ 为对称变换。(15 分)
- 6. 设A是n阶正定矩阵,证明: 对 $\forall \alpha, \beta \in R^n$,都有 $\alpha' A \alpha + \beta' A^{-1} \beta \geq 2\alpha' \beta$ 。(10 分)
- 7. 已知 $A \in R^{m \times n}$,秩(A) = n 1,设线性方程组AX = 0的基础解系为: $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$,又设 α_n 是 R^n 中的非零向量,记

$$G = \begin{pmatrix} (\alpha_1, \alpha_1) & \cdots & (\alpha_1, \alpha_{n-1}) \\ \vdots & \ddots & \vdots \\ (\alpha_{n-1}, \alpha_1) & \cdots & (\alpha_{n-1}, \alpha_{n-1}) \end{pmatrix}, F = \begin{pmatrix} (\alpha_1, \alpha_1) & \cdots & (\alpha_1, \alpha_n) \\ \vdots & \ddots & \vdots \\ (\alpha_n, \alpha_1) & \cdots & (\alpha_n, \alpha_n) \end{pmatrix}$$

证明: α_n 到AX = 0的解空间的距离 $d = \sqrt{\frac{|G|}{|F|}}$ 。(10 分)