SS 2022 Worksheet 7 10.06.2022

Algorithms for Scientific Computing (Algorithmen des Wissenschaftlichen Rechnens)

Haar Wavelets

The wavelet families we look at (e.g. Haar wavelets) are constructed around a mulitresolution analysis, a nested sequence V_n of function spaces some of which properties are

$$V_j \subset V_{j+1}, j \in \mathbb{Z}$$
 (1)

$$\begin{array}{ccc}
V_j & \subset & V_{j+1}, \ j \in \mathbb{Z} \\
\bigcap_{j=-\infty}^{\infty} V_j & = \{0\} \\
\end{array} \tag{2}$$

$$f(t) \in V_{l} \iff f(2^{-l}t) \in V_{0}$$

$$V_{l} = V_{l-1} \oplus W_{l-1}$$

$$= V_{l-2} \oplus W_{l-2} \oplus W_{l-1}$$

$$= V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots \oplus W_{l-1},$$

$$(4)$$

with *orthogonal* functions $f \in V_j$ and $g \in W_j$, i.e. $\langle f, g \rangle = 0$.

The theory of multiresolution analysis further states the existence of a unique function ϕ which satisfies a so-called dilation equation of the form

$$\phi(t) = \sum_{k \in \mathbb{Z}} c_k \cdot \phi(2t - k) \tag{5}$$

for coefficients c_k with $c_k \neq 0$ for $k \in [0,N]$ and $c_k = 0$ for every $k \notin [0,N]$.

Define another function, known as the mother wavelet or the wavelet function of the form

$$\psi(t) := \sum_{k \in \mathbb{Z}} (-1)^k c_{1-k} \cdot \phi(2t - k). \tag{6}$$

In case N is odd, i.e. we have an even number of coefficients that are not zero, the c_{1-k} changes to $c_{N-k}!$

With the help of ϕ and ψ , we can define *orthonormal nodal bases* $\{\phi_{l,k}\}$ for V_l with

$$\phi_{l,k}(t) = \phi(2^{l} t - k)
span{ \phi_{l,k} } = V_{l}, <\phi_{l,k}, \phi_{l,m} >= \delta_{k,m} k, m \in \mathbb{Z}.$$
(7)

The function ϕ is called **father wavelet** or the **scaling function**, and together with a **mother** wavelet ψ , they define the wavelet family. It is not necessary to know a specific formula for ϕ , the dilation equation (5) with its coefficients c_k together with the theory of multiresolution analysis provide enough information to derive the mother wavelet ψ as well as *orthonormal wavelet bases* $\{ \psi_{l,m} \}$ for the W_l with

$$\psi_{l,k}(t) = \psi(2^{l} t - k)$$
 $span\{ \psi_{l,k} \} = W_{l}, \langle \psi_{l,k}, \psi_{l,m} \rangle = \delta_{k,m} \ k, m \in \mathbb{Z}.$
(8)

Excercise 1: Cranking the Machine

Typically the scaling function ϕ is not known explicitly, and sometimes a closed-form analytic formula does not even exist. However, for continuous ϕ we can approximate the function to arbitrarily high precision using the "Cascade Algorithm", a fixed-point method for functions.

In this exercise we want to implement this algorithm by iterating over the expression

$$F(\gamma)(t) = \sum_{k} c_k \cdot \gamma(2t - k) \tag{9}$$

in order to find the fixed point γ of F. That is, at iteration n

$$\gamma_{n+1}(t) = \sum_{k} c_k \cdot \gamma_n(2t - k) \tag{10}$$

Our starting point γ_0 will be the hat function

$$\gamma_0(t) = \max\{1 - |x|, 0\}. \tag{11}$$

(i) Over the interval [-1,4] plot the approximations of the scaling function ϕ for the Haar wavelet family obtained in the first 7 iterations of the cascade algorithm. Do so by plugging the refinements coefficients c_k , k=0,1 in (12) into (9) resp. (5).

$$c_0 = c_1 = 1 \tag{12}$$

(ii) Over the interval [-1,4] plot the approximations of the scaling function ϕ for the Daubechies wavelet family obtained in the first 7 iterations of the cascade algorithm. Do so by plugging the refinements coefficients c_k , $k = 0, \dots, 3$ in (13) into (9) resp. (5).

$$c_0 = \frac{1+\sqrt{3}}{4}$$
 $c_1 = \frac{3+\sqrt{3}}{4}$ $c_2 = \frac{3-\sqrt{3}}{4}$ $c_3 = \frac{1-\sqrt{3}}{4}$ (13)

Excercise 2: The Haar Wavelet Basis

We derive the mother wavelet ψ as well as orthonormal wavelet bases $\{\ \psi_{l,m}\ \}$ with

$$\psi_{l,k}(t) = \psi(2^{l} t - k)
span{ \psi_{l,k} } = W_{l}, < \psi_{l,k}, \psi_{l,m} >= \delta_{k,m} k, m \in \mathbb{Z}.$$
(14)

In this exercise we want to compute the 1-d wavelet transform for the Haar wavelet family and apply it to a signal vector \vec{s} of length $m=2^n$. The transform can be implemented very efficiently as a "pyramidal algorithm" taking $\mathcal{O}(m)$ steps. For educational purpose we focus on the $\mathcal{O}(m^2)$ matrix-based algorithm.

- (i) Write a function that constructs the transformation matrix M consisting of the basis vectors $\psi_{l,k},\ l\leq n,\ 0\leq k\leq 2^n-1.$
- (ii) Use Python's package *numpy.linalg* to invert the matrix.
- (iii) Use the program to compute the transform $\vec{d}=M^{-1}\vec{s}$ as well as the reconstructed signal $\vec{s}=M\vec{d}$ of the vector

$$\vec{s} = [1, 2, 3, -1, 1, -4, -2, 4]^T$$

(iv) Verify the program's output tracing the steps by hand.