Prova 1 (Turma ____) - 25 de Abril de 2011

ACH2055 - Arquitetura de Computadores	(Valdinei Freire da Silva)
---------------------------------------	----------------------------

Nome:	MILION
Nomo:	NITSP:
TVOITIE:	

1. (2,0) Deseja-se comparar o desempenho de duas máquinas diferentes, M_1 e M_2 , com os clocks de 200MHz e 300MHz, respectivamente. As medidas a seguir foram realizadas nessas máquinas:

Programa	Tempo em M_1	Tempo em M_2
P_1	7.5s	$5\mathrm{s}$
P_2	3s	4s

Programa	Instruções exe-	es exe- Instruções exe-	
	cutadas em M_1	cutadas em M_2	
P_1	200×10^{6}	150×10^{6}	

- a) (0,5) Encontre a quantidade de ciclos gastos por instrução (CPI) em cada máquina para P_1 .
- b) (0,5) Utilizando os programas P_1 e P_2 , defina um benchmark para o qual as máquinas M_1 e M_2 possuam o mesmo desempenho.
- c) (1,0) Considere um cenário no qual o programa P_1 deve ser executado N_1 vezes por minuto. O restante do tempo pode ser utilizado para execução do programa P_2 . Desde que o programa P_1 seja executado N_1 vezes, o desempenho é medido pela quantidade N_2 de vezes que o programa P_2 é executado. Para quais valores de N_1 , a máquina M_1 exibe um melhor desempenho?
- 2. (3,0) Um projetista está considerando a implementação de uma arquitetura de processador com três tipos de instruções: soma entre registradores, carregar informações da memória e salvar informações na memória. A tabela a seguir exibe os microcódigos para tais instruções divididos em estágios multiciclos:

Instrução	Soma	Load	Store
Estágio 1		IR = Memory[PC]	
Listagio 1		PC = PC + 1	
Estágio 2		A = Reg[IR[25-21]]	
Listagio 2		B = Reg[IR[20-16]]	
Estágio 3	ALUout = A + B $ALUout = A + sign-extended(IR[15-0])$		
Estágio 4	Reg[IR[15-11]] = ALUout	MDR = Memory[ALUout]	Memory[ALUout] = B
Estágio 5		Reg[IR[20-16]] = MDR	

- a) (0,5) Considere que um programa típico utiliza 50% de instruções de soma, 25% de instruções para carregar informação da memória e 25% de instruções para salvar dados na memória. Qual a CPI média dessa arquitetura?
- b) (0,5) Na arquitetura acima as principais unidades funcionais são: banco de registradores, memória e ULA. Na tabela acima, indique em cada célula quais unidades são utilizadas.
- c) (0,5) Considere que seja relevante apenas o tempo de acesso às unidades funcionais: banco de registradores, memória e ULA, e que o tempo de acesso a cada unidade é respectivamente: 1ns, 1,5ns e 2ns. Qual é o clock mais rápido que pode ser especificado para esta organização multiciclo? E para uma versão monociclo?

- d) (0,5) Considere: i) o clock mais rápido possível na organização a ser considerada, e ii) a distribuição utilizada no item (a). Qual organização tem melhor desempenho, isto é, menor tempo de execução para o programa típico: com controle monociclo ou com controle multiciclo?
- e) (1,0) Considere que o tempo de acesso à memória possa ser escolhido arbitrariamente na distribuição utilizada no item (a). Para quais tempo de acesso à memória o controle multiciclo é melhor que o controle monociclo?
- 3. (3,0) O uso de pipeline na arquitetura de multiprocessadores permite o paralelismo entre instruções. No caso ideal, o paralelismo permite que seja executada uma instrução por ciclo. Responda as perguntas abaixo.
 - (a) **(0,5)** O controle monociclo também permite a execução de uma instrução por ciclo. Qual é a diferença de desempenho entre o uso do pipeline e o uso do controle monociclo?
 - (b) **(0,5)** Considere o código MIPS a seguir e utilize o código para exemplificar um conflito de controle e um conflito de dados.

add \$2, \$5, \$4 add \$6, \$2, \$5 beq \$6, \$2, Loop lw \$3, 0(\$7)

Loop: add \$2, \$3, \$4

- (c) (1,0) Quando ocorre conflito de dados, uma solução por software é incluir uma ou mais operações nulas entre operações conflitantes. Indique uma solução de conflito por hardware que minimize a perda de desempenho.
- (d) (1,0) Repita o item anterior para o conflito de controle.
- 4. (2,5) Arquiteturas RISCs fazem uso de instruções com base em registradores. Responda as perguntas abaixo.
 - a) (0,5) Indique uma vantagem e uma desvantagem do uso de instruções com base em registradores.
 - b) (1,0) A técnica de buffer circular é utilizada para tratar chamada de procedimentos. Indique o melhor e o pior cenário de sequências de chamadas de procedimentos. Explique.
 - c) (1,0) Considere uma instrução de operação aritmética que utiliza operandos localizados na memória de dados. Faça considerações sobre tal instrução no desempenho de um pipeline.