MH1810 Math 1 Part 1 Algebra

Tang Wee Kee

Nanyang Technological University

Imaginary number

Does the quadratic equation $x^2 + 1 = 0$ have a real root? That is, are there real numbers x at which $x^2 = -1$?

To deal with the above irreducible quadratic equation, a new symbol 'i' is introduced, where

$$i^2 = -1$$
.

Thus, $x^2 + 1 = 0$ has two distinct roots namely i and -i.

Powers of i

$$i^2 = -1$$
, $i^3 = (i^2)(i) = -i$,

$$i^4 = (i^2)(i^2) = (-1)(-1) = 1, \quad i^5 = (i^4)(i) = i, \dots$$

Let $k \in \mathbb{Z}$. Then we have

$$i^{4k} = (i^4)^k = 1, i^{4k+1} = i, i^{4k+2} = -1, i^{4k+3} = -i.$$

Note: Values of i^n depends on the remainder when n is divided by 4.

Complex number

- (i) A **complex number** z is a mathematical object of the form x + iy, where x, y are real numbers. We have z = x + iy.
- (ii) The real numbers x and y are called the real part and imaginary part of the complex number z respectively. We denote the real and imaginary parts of a complex number z by $\operatorname{Re} z$ and $\operatorname{Im} z$ respectively.
- (ii) We represent the set of all complex numbers by \mathbb{C} .

Examples of complex numbers

$$3+5i$$
, $3.5-i$, $-\sqrt{3}+i$, $\pi+9i$,

$$Re(3+5i) = 3$$
 and $Im(3+5i) = 5$.

Definition (Equality of complex numbers.)

Two complex numbers z = x + iy and z' = x' + iy', where x, x', y and y' are real numbers, are said to be **equal** if

$$x = x'$$
 and $y = y'$.

That is, Re(z) = Re(z') and Im(z) = Im(z').

Example

Suppose x and y are real numbers such that the two complex number (2x-3)+5i and (x+7)-(y+1)i are equal. Find the values of x and y.

 Comparing both real and imaginary parts of the complex number respectively, we obtain

$$(2x-3) = x+7$$
, and $5 = -(y+1)$,

which gives x = 10 and y = -6.

Remark

• We may identify every real number $x \in \mathbb{R}$ as a complex number (why?). In view of this we may think of the set of real number as a subset of the set of complex numbers, i.e., $\mathbb{R} \subseteq \mathbb{C}$.

Remark

- We may identify every real number $x \in \mathbb{R}$ as a complex number (why?). In view of this we may think of the set of real number as a subset of the set of complex numbers, i.e., $\mathbb{R} \subseteq \mathbb{C}$.
- We say that a complex number z = x + iy is **purely imaginary** if the real part of z, namely x, is zero.

Argand Diagram

The representation of the complex number z = x + iy is said to be in **rectangular form**. By identifying each complex number z = x + iy by the point with coordinate (x, y), we actually represent the complex number z by a unique point on the xy-plane.

Modulus of z

The modulus |z| of the complex number z = x + iy is

$$|z| = \sqrt{x^2 + y^2}.$$

It is the distance of the point (x, y) from (0, 0).

Argument of z

For z = x + iy, the angle where the line joining points (0,0) and (x,y) made with the positive x-axis is known an argument of z, denoted by arg (z).

The counter-clockwise direction is considered 'positive' direction, whereas the clockwise is considered 'negative' direction.

Argument of z

Therefore, arg(z) is the angle θ such that

$$x = |z| \cos \theta \& y = |z| \sin \theta.$$

Note that $\tan \theta = \frac{y}{x}$, if $x \neq 0$. If $\arg(z) = \theta$ (radians), then

$$arg(z) = \theta + 2k\pi$$
 for every integer k .

In particular, when the angle θ is chosen such that $-\pi < \theta \le \pi$, we say this is the **principal argument** of z. It is denoted by Arg(z).

Polar form of z

Using the modulus and argument we can express a complex number z = x + iy as

$$z = r(\cos\theta + i\sin\theta),$$

where r = |z| and θ is an argument of z.

This representation is known as the polar form (also known as trigonometric form) of z.

We also use the notation $cis\theta$ for $(cos \theta + i sin \theta)$, and write $z = r cis\theta$

Exponential form of z

The **exponential form** of a complex number $z = r(\cos \theta + i \sin \theta)$ is written as

$$re^{i\theta}$$
.

- commonly used in electronics, engineering and physics;
- convenient in discussing multiplication, division of complex numbers;
- formally discussed in advanced courses in mathematics via series.

Example

Let z = 3 - 3i.

- (a) Find the modulus and principal argument of z, and hence find its polar representation.
- (b) Write down the exponential form of z.

• First, find the modulus of z:

Example

Let z = 3 - 3i.

- (a) Find the modulus and principal argument of z, and hence find its polar representation.
- (b) Write down the exponential form of z.

- First, find the modulus of z:
- Note that $r = |z| = \sqrt{3^2 + (-3)^2} = 3\sqrt{2}$.

• Next we find the argument.

- Next we find the argument.
- The complex number 3-3i lies on the fourth quadrant, and $\tan \theta = \frac{-3}{3}$.

- Next we find the argument.
- The complex number 3-3i lies on the fourth quadrant, and $\tan \theta = \frac{-3}{3}$.
- Let $0 \le \alpha \le \frac{\pi}{2}$ such that $\tan \alpha = \left| \frac{-3}{3} \right| = 1$. (Basic angle.)

- Next we find the argument.
- The complex number 3-3i lies on the fourth quadrant, and $\tan \theta = \frac{-3}{3}$.
- Let $0 \le \alpha \le \frac{\pi}{2}$ such that $\tan \alpha = |\frac{-3}{3}| = 1$. (Basic angle.)
- Thus, $\alpha = \frac{\pi}{4}$.

- Next we find the argument.
- The complex number 3-3i lies on the fourth quadrant, and $\tan \theta = \frac{-3}{3}$.
- Let $0 \le \alpha \le \frac{\pi}{2}$ such that $\tan \alpha = |\frac{-3}{3}| = 1$. (Basic angle.)
- Thus, $\alpha = \frac{\pi}{4}$.
- We have $arg(3 3i) = -\frac{\pi}{4}$.

- Next we find the argument.
- The complex number 3-3i lies on the fourth quadrant, and $\tan \theta = \frac{-3}{3}$.
- Let $0 \le \alpha \le \frac{\pi}{2}$ such that $\tan \alpha = |\frac{-3}{3}| = 1$. (Basic angle.)
- Thus, $\alpha = \frac{\pi}{4}$.
- We have $\arg(3-3i) = -\frac{\pi}{4}$.
- Thus the polar form of z = 3 3i is

$$3\sqrt{2}\left(\cos(\frac{-\pi}{4}) + \sin(\frac{-\pi}{4})\right) = 3\sqrt{2}\operatorname{cis}(\frac{-\pi}{4}).$$

We have

$$r = |z| = 3\sqrt{2}$$
, $arg(3-3i) = -\frac{\pi}{4}$.

Thus the exponential form of 3 - 3i is

$$3\sqrt{2}e^{\frac{-\pi}{4}i}$$
.

Example

Express $z = 5e^{\frac{-5\pi}{3}i}$ in rectangular form.

• Note that $arg(z) = \frac{-5\pi}{3}$.

Example

- Note that $arg(z) = \frac{-5\pi}{3}$.
- The principle argument is $Arg(z) = \frac{\pi}{3}$.

Example

- Note that $arg(z) = \frac{-5\pi}{3}$.
- The principle argument is ${\sf Arg}(z)=\frac{\pi}{3}.$
- Therefore, we have

Example

- Note that $arg(z) = \frac{-5\pi}{3}$.
- The principle argument is ${\sf Arg}(z) = \frac{\pi}{3}.$
- Therefore, we have
- $z = 5e^{\frac{-5\pi}{3}i} = 5e^{\frac{\pi}{3}i}$

Example

- Note that $arg(z) = \frac{-5\pi}{3}$.
- The principle argument is ${\sf Arg}(z)=\frac{\pi}{3}.$
- Therefore, we have
- $z = 5e^{\frac{-5\pi}{3}i} = 5e^{\frac{\pi}{3}i}$
- $\bullet = 5\cos\frac{\pi}{3} + i\sin\frac{\pi}{3} = \frac{5}{2} + \frac{5\sqrt{3}}{2}i.$

Conjugate of a complex number

Definition

The **conjugate** of a complex number z = x + iy is the complex number $\bar{z} = x - iy$.

Notation for the complex conjugate of z: \bar{z} or z^* .

Argand Diagram representing z and \bar{z} :

Z	\bar{z} or z^*
3 + 5i	
10	
3.5 − <i>i</i>	
$-\sqrt{3}+i$	
	$\pi + 9i$
$-\sqrt{7}i$	

Conjugate in Polar Form

The conjugate of the complex number $z=r\left(\cos\theta+i\sin\theta\right)$ (in polar form) or $z=re^{i\theta}$ (in exponential form), is respectively

$$z^* = r(\cos(-\theta) + i\sin(-\theta))$$
, or $z^* = re^{-i\theta}$.

Theorem

Let z = x + yi, where x and y are real numbers.

- (a) $(z^*)^* = \overline{(\overline{z})} = z$.
- (b) z is real if and only if $z = \bar{z}$.
- (c) z is imaginary if and only if $z = -\bar{z}$.
- (d) $|z^*| = |z|$ and $\arg(z^*) = -\arg(z)$.

Addition and subtraction

Given two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, we define

$$z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2).$$

(a)
$$(3+5i) + (3.5-i) = 6.5+4i$$

(b)
$$(-\sqrt{3}+i)-(\pi+9i)=(-\sqrt{3}-\pi)+(-8)i$$

Algebraic Properties

•
$$z + 0 = z = 0 + z$$

Algebraic Properties

•
$$z + 0 = z = 0 + z$$

• For every z = x + iy, the complex number -z = -x + i(-y) satisfies $z + (-z) = 0 = (-z_1) + z$.

- z + 0 = z = 0 + z
- For every z = x + iy, the complex number -z = -x + i(-y) satisfies $z + (-z) = 0 = (-z_1) + z$.
- $z_1 + z_2 = z_2 + z_1$

- z + 0 = z = 0 + z
- For every z = x + iy, the complex number -z = -x + i(-y) satisfies $z + (-z) = 0 = (-z_1) + z$.
- $z_1 + z_2 = z_2 + z_1$
- $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$

•
$$z + 0 = z = 0 + z$$

- For every z = x + iy, the complex number -z = -x + i(-y) satisfies $z + (-z) = 0 = (-z_1) + z$.
- $z_1 + z_2 = z_2 + z_1$
- $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- $\bullet \ \overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}.$

To multiply two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, we can perform the multiplication treating i as a symbol. But we replace i^2 by (-1) when we simplify it :

$$z_1 \cdot z_2 = (x_1 + iy_1)(x_2 + iy_2)$$

$$= x_1x_2 + x_1iy_2 + (iy_1)x_2 + (iy_1)(iy_2)$$

$$= (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

Example

$$(3+5i) \cdot (2-i) = 3(2) + (5i)(2) + (3)(-i) + (5i)(-i)$$

= $6+10i-3i-(5i^2) = 11+7i$.

Theorem

(i)
$$z \cdot 1 = z = 1 \cdot z$$
.

(ii)
$$z_1 \cdot z_2 = z_2 \cdot z_1$$
.

(iii)
$$(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$$
.

(iv)
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$
.

(v)
$$z \cdot \overline{z} = |z|^2$$
. In particular, if $z \neq 0$, then $z \cdot \overline{z} > 0$.

(vi)
$$z_1(z_2+z_3)=z_1z_2+z_1z_3$$
.

Given two complex numbers expressed in polar form:

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1) \& z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$$

•
$$z_1 \cdot z_2 = r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_2 + i\sin\theta_2)$$

Given two complex numbers expressed in polar form:

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1) \& z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$$

- $z_1 \cdot z_2 = r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_2 + i\sin\theta_2)$
- $\bullet = r_1 r_2 \left[(\cos \theta_1 \cos \theta_2 \sin \theta_1 \sin \theta_2) + (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2) i \right]$

Given two complex numbers expressed in polar form:

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1) \& z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$$

- $z_1 \cdot z_2 = r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_2 + i\sin\theta_2)$
- $\bullet = r_1 r_2 \left[(\cos \theta_1 \cos \theta_2 \sin \theta_1 \sin \theta_2) + (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2) i \right]$
- $\bullet = r_1 r_2 \left(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right).$

Given two complex numbers expressed in polar form:

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1) \& z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$$

- $z_1 \cdot z_2 = r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_2 + i\sin\theta_2)$
- $\bullet = r_1 r_2 \left[(\cos \theta_1 \cos \theta_2 \sin \theta_1 \sin \theta_2) + (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2) i \right]$
- $\bullet = r_1 r_2 \left(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right).$
- Then $|z_1z_2| =$

Given two complex numbers expressed in polar form:

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1) \& z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$$

- $z_1 \cdot z_2 = r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_2 + i\sin\theta_2)$
- $\bullet = r_1 r_2 \left[(\cos \theta_1 \cos \theta_2 \sin \theta_1 \sin \theta_2) + (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2) i \right]$
- $\bullet = r_1 r_2 \left(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right).$
- Then $|z_1z_2| =$
- and $arg(z_1z_2) =$

Important Result

Theorem

(a) Modulus of product is the product of moduli:

$$|z_1 \cdot z_2| = r_1 r_2 = |z_1| |z_2|$$

(b) Argument of the product is the **sum** of arguments:

$$\arg(z_1 \cdot z_2) = \theta_1 + \theta_2 = \arg(z_1) + \arg(z_2).$$

This implies the complex number $z_1 \cdot z_2$ lies on the line obtained by rotating the line segment representing z_1 by the angle $arg(z_2)$.

Represent the product on an Argand diagram:

Represent the product on an Argand diagram

In particular, for a complex number z, the complex number $z \cdot e^{i\theta}$ is represented on the Argand diagram by by rotating z through θ .

Division of complex numbers

Recall that to express $\frac{1}{3+2\sqrt{5}}$ in the form $a+b\sqrt{5}$, we use the conjugate $3-2\sqrt{5}$ of $3+2\sqrt{5}$ to perform the following

$$\frac{1}{3+2\sqrt{5}} \cdot \frac{3-2\sqrt{5}}{3-2\sqrt{5}} = \frac{3-2\sqrt{5}}{3^2+(2\sqrt{5})^2} = \frac{3}{29} - \frac{2}{29}\sqrt{5}.$$

Division of complex numbers

To divide a complex number $z_1 = x_1 + y_1 i$ by a non-zero complex number $z_2 = x_2 + y_2 i$ (i.e., $z_2 \neq 0$), we use the conjugate $\overline{z_2} = x_2 - y_2 i$ as follows:

$$\frac{z_1}{z_2} = \frac{z_1}{z_2} \cdot \frac{\overline{z_2}}{\overline{z_2}} = \frac{z_1 \overline{z_2}}{z_2 \overline{z_2}} = \frac{z_1 \overline{z_2}}{|z_2|^2}$$

Note that $z_2 \cdot \overline{z_2} = x_2^2 + y_2^2$ is a positive real number.

Example

Express $\frac{3+5i}{2-i}$ in the form a+bi.

The conjugate of the denominator 2 - i is 2 + i. We have

$$\frac{3+5i}{2-i} = \frac{(3+5i)(2+i)}{(2-i)(2+i)} = \frac{(6-5)+(10+3)i}{5} = \frac{1}{5} + \frac{13}{5}i.$$

Division in polar form

In polar form, we have $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$, such that

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$

$$\operatorname{\mathsf{arg}}(rac{z_1}{z_2}) = \operatorname{\mathsf{arg}}(z_1) - \operatorname{\mathsf{arg}}(z_2)$$

Thus, we have

$$\frac{\mathit{z}_1}{\mathit{z}_2} = \frac{\mathit{r}_1}{\mathit{r}_2} \left(\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right).$$

Division in polar (exponential) form

Using the exponential form, for $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$ we have

$$z_1 z_2 = (r_1 r_2) e^{i(\theta_1 + \theta_2)}$$
, and

$$rac{z_1}{z_2} = rac{r_1}{r_2} \; e^{i(heta_1 - heta_2)} \; ext{where} \; z_2
eq 0.$$

Both coincide with the law of exponents we are familiar with in real numbers.

Example

Let $z = \cos \theta + i \sin \theta$. Find |z| and show that $\frac{1}{z} = \bar{z}$.

Note that
$$|z| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$$
. Thus, we have $z\bar{z} = 1$ and

$$\frac{1}{z} = \frac{1}{z} \frac{\bar{z}}{\bar{z}} = \frac{\bar{z}}{z\bar{z}} = \bar{z} = \cos\theta - i\sin\theta.$$

The Fundamental Theorem of Algebra

Theorem (The Fundamental Theorem of Algebra)

Every polynomial equation of the form

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0,$$

in which the coefficients $a_0, a_1, \ldots, a_{n-1}, a_n$ are any complex numbers, whose degree n is greater than or equal to one, and whose leading coefficient a_n is not zero, has exactly n roots in the complex number system, provided each multiple root of multiplicity m is counted as m roots.

Proof (Omitted): Textbook on theory of complex analysis.

Solving Quadratic Equations

Consider a quadratic equation $ax^2 + bx + c = 0$, where a, b and c are real numbers.

Recall that its **discriminant** D, is defined as $D = b^2 - 4ac$.

(i) If D>0, the quadratic equation $ax^2+bx+c=0$ has two distinct real roots given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

(ii) If D=0, the quadratic equation $ax^2+bx+c=0$ has repeat real roots given by

$$x=\frac{-b}{2a}.$$

Solving Quadratic Equations

(iii) If D < 0, the quadratic equation $ax^2 + bx + c = 0$ has two distinct complex roots given by

$$x = \frac{-b \pm i\sqrt{-(b^2 - 4ac)}}{2a}.$$

Note that the two complex roots are conjugate of each other. When D < 0, the quadratic equation or expression is said to be *irreducible*.

Example

Example

Solve the quadratic equation $2x^2 - 3x + 5 = 0$

For the given quadratic equation $2x^2 - 3x + 5 = 0$, its discriminant D is $D = (-3)^2 - 4(2)(5) = -31 < 0$.

Thus, $2x^2 - 3x + 5 = 0$ is irreducible.

The two distinct roots are $\frac{3+\sqrt{31}i}{4}$ and $\frac{3-\sqrt{31}i}{4}$ which form a conjugate pair.

Question: From the from the above example, we see that the roots of the equation appear in conjugate pairs. Is this true in general?

Polynomial with Real Coefficients

Theorem

Suppose $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is a polynomial in x with real coefficients a_k 's. If z is a solution to p(x) = 0, then the conjugate \bar{z} is also a solution of p(x) = 0.

For example: suppose z_0 is a complex root of $9x^5+7x^2-6x+\pi=0$, then \bar{z}_0 is also a complex root of $9x^5+7x^2-6x+\pi=0$. Therefore, $(x-z_0)(x-\bar{z}_0)$ is a quadratic factor of $9x^5+7x^2-6x+\pi$. Moreover, $(x-z_0)(x-\bar{z}_0)=x^2-(z_0+\bar{z}_0)x+z\bar{z}_0$ is a real coefficient quadratic factor.

As a consequence of the Fundamental Theorem of Algebra and the above result, we have the following useful result.

Theorem

Every odd degree polynomial p(x) with real coefficients has at least one real root.

For example: $9x^5 + 7x^2 - 6x + \pi = 0$ has at least one real root.

Example

Example

Let $z = (\cos \theta + i \sin \theta)$. Find expressions for z^2 and z^3 in the same form.

De Moivre's Theorem

Theorem (De Moivre's Theorem)

For every rational number n,

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta.$$

The Euler representation DeMoivre's Theorem is

$$\left(e^{i\theta}\right)^n = e^{i(n\theta)}.$$

Examples

(a)
$$(\cos \theta + i \sin \theta)^9$$

(b)
$$(\cos \theta + i \sin \theta)^{-4}$$

Example. Simplify each of the following complex numbers

(a)
$$(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})^{-2}$$

(b)
$$(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})^9$$

Example

Example

Express each of the following complex numbers in the form $(\cos \theta + i \sin \theta)^n$

- (a) $\cos 7\theta + i \sin 7\theta$.
- (b) $\cos 5\theta i \sin 5\theta$.

PROOF of De Moivre's Theorem

We prove the theorem by considering two cases:

First Case: n is a non-negative integer, i.e., $n \ge 0$.

Second Case: n is a negative integer, i.e., n < 0.

PROOF of De Moivre's Theorem

Case: *n* is non-negative integer We shall prove

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta,$$

for n = 0, 1, 2, 3, ... by Mathematical Induction.

PROOF: n is an non-negative integer

1. Verify the result holds for n = 0

$$(\cos \theta + i \sin \theta)^0 = 1$$
, $\cos 0\theta + i \sin 0\theta = \cos 0 = 1$.

2. Assume the result hold for some non-negative integer k

$$(\cos\theta + i\sin\theta)^k = \cos k\theta + i\sin k\theta.$$

3. We shall prove the result holds for k + 1 i.e.,

$$(\cos \theta + i \sin \theta)^{k+1} = \cos(k+1)\theta + i \sin(k+1)\theta.$$

PROOF: n is an non-negative integer

Indeed:

$$(\cos \theta + i \sin \theta)^{k+1} = (\cos \theta + i \sin \theta)^{k} (\cos \theta + i \sin \theta)$$
$$= (\cos k\theta + i \sin k\theta) (\cos \theta + i \sin \theta)$$
$$= (\cos k\theta \cos \theta - \sin k\theta \sin \theta) + i (\sin k\theta \cos \theta + \cos k\theta \sin \theta)$$
$$= \cos(k+1)\theta + i \sin(kn+1)\theta.$$

Therefore by Mathematical induction, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ for all **non-negative integer** n.

PROOF: n is a negative integer

Case n is a negative integer, i.e., $n = -1, -2, -3, \ldots$

Let n = -m where m is a positive integer. Note that

$$(\cos\theta + i\sin\theta)^n = (\cos\theta + i\sin\theta)^{-m}$$

$$= \frac{1}{(\cos\theta + i\sin\theta)^m} = \frac{1}{\cos m\theta + i\sin m\theta}$$

$$= \frac{1}{\cos m\theta + i\sin m\theta} \cdot \frac{\cos m\theta - i\sin m\theta}{\cos m\theta - i\sin m\theta}$$

$$= \frac{\cos m\theta - i\sin m\theta}{\cos^2(m\theta) + \sin^2(m\theta)} = \cos m\theta - i\sin m\theta$$

$$= \cos(-m\theta) + i\sin(-m\theta) = \cos n\theta + i\sin n\theta.$$

Finding nth roots

We begin with an example to have a geometrical idea of finding roots of a complex number before we state the formula for all distinct nth roots of $z = r(\cos \theta + i \sin \theta)$.

Example

Find all distinct cube roots of $\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$.

Distinct nth roots

Theorem (Distinct *n*th roots)

Consider a complex number z in polar form

$$z = r(\cos \theta + i \sin \theta)$$
, where $r > 0$ and $-\pi < \theta \le \pi$.

Then the distinct nth roots of the complex number $z = r(\cos \theta + i \sin \theta)$ are

$$z_k = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right), k = 0, 1, 2, 3, \dots, n-1.$$

Distinct nth roots - exponential form

In exponential form, we have all n distinct nth roots f the complex number $z=re^{i\alpha}$ are

$$z_k = \sqrt[n]{r} \left(e^{i\frac{\theta + 2k\pi}{n}} \right)$$
, $k = 0, 1, 2, 3, ..., n - 1$.

The n integers can be chosen to be any n consecutive integers.

Find all distinct 5^{th} roots of $\sqrt{3} + i$.

• First, we express $\sqrt{3} + i$ in polar form.

Find all distinct 5^{th} roots of $\sqrt{3} + i$.

- First, we express $\sqrt{3} + i$ in polar form.
- Note that $r = \sqrt{3+1} = 2$, and $\sqrt{3} + i = 2(\frac{\sqrt{3}}{2} + i\frac{1}{2}) = 2e^{i\frac{\pi}{6}}$.

Find all distinct 5^{th} roots of $\sqrt{3} + i$.

- First, we express $\sqrt{3} + i$ in polar form.
- Note that $r = \sqrt{3+1} = 2$, and $\sqrt{3} + i = 2(\frac{\sqrt{3}}{2} + i\frac{1}{2}) = 2e^{i\frac{\pi}{6}}$.
- Then apply the formula, we have $2^{1/5}e^{\frac{\pi/6+2k\pi}{5}i} = 2^{1/5}e^{\frac{(1+12k)\pi}{30}i} \quad k = 0, 1, 2, 3, 4.$

Find all distinct 5^{th} roots of $\sqrt{3} + i$.

- First, we express $\sqrt{3} + i$ in polar form.
- Note that $r = \sqrt{3+1} = 2$, and $\sqrt{3} + i = 2(\frac{\sqrt{3}}{2} + i\frac{1}{2}) = 2e^{i\frac{\pi}{6}}$.
- Then apply the formula, we have $2^{1/5} a^{\frac{\pi/6+2k\pi}{5}i} 2^{1/5} a^{\frac{(1+12k)\pi}{20}i}$

$$2^{1/5}e^{\frac{\pi/6+2k\pi}{5}i} = 2^{1/5}e^{\frac{(1+12k)\pi}{30}i}$$
, $k = 0, 1, 2, 3, 4$;

• All distinct 5th of $\sqrt{3} + i$ are $z_0 = 2^{1/5} e^{\frac{\pi}{30}i}$, $z_1 = 2^{1/5} e^{\frac{13\pi}{30}i}$,

Find all distinct 5th roots of $\sqrt{3} + i$.

- First, we express $\sqrt{3} + i$ in polar form.
- Note that $r = \sqrt{3+1} = 2$, and $\sqrt{3} + i = 2(\frac{\sqrt{3}}{2} + i\frac{1}{2}) = 2e^{i\frac{\pi}{6}}$.
- Then apply the formula, we have

$$2^{1/5}e^{\frac{\pi/6+2k\pi}{5}i}=2^{1/5}e^{\frac{(1+12k)\pi}{30}i}, k=0,1,2,3,4;$$

- All distinct 5th of $\sqrt{3} + i$ are $z_0 = 2^{1/5} e^{\frac{\pi}{30}i}$, $z_1 = 2^{1/5} e^{\frac{13\pi}{30}i}$,
- $z_2 = 2^{1/5} e^{\frac{25\pi}{30}i}$, $z_3 = 2^{1/5} e^{\frac{37\pi}{30}i} = 2^{1/5} e^{\frac{-23\pi}{30}i}$, $z_4 = 2^{1/5} e^{\frac{49\pi}{30}i} = 2^{1/5} e^{\frac{-11\pi}{30}i}$.

Distinct nth roots

Corollary

The n distinct nth roots of $\cos \theta + i \sin \theta$ are

$$w_k = cis\left(\frac{\theta + 2k\pi}{n}\right) = cos\left(\frac{\theta + 2k\pi}{n}\right) + i sin\left(\frac{\theta + 2k\pi}{n}\right),$$

$$k = 0, 1, 2, \dots, n - 1.$$

In exponential form, we have

$$w_k = e^{i(\frac{\theta+2k\pi}{n})}, k = 0, 1, 2, ..., n-1.$$

Roots of Unity

Note that $1 = 1 + 0i = \cos 0 + i \sin 0 = \cos 2k\pi + i \sin 2k\pi$, where k is an integer. We call n-th roots of 1 the n-th roots of unity.

Corollary (nth roots of unity)

The n distinct nth roots of unity are

$$z_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, k = 0, 1, 2, 3, \dots, n-1.$$

By De Moivre's Theorem, we have

$$z_k = (z_1)^k$$
, where $z_1 = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.

Roots of Unity

On the Argand diagram, all *n*-th roots of 1 are represented by points on the unit circle and they are equally spaced by $\frac{2\pi}{n}$:

Deriving Certain Trigonometric Identities I

Express $\cos n\theta$, $\sin n\theta$ and $\tan n\theta$ in terms of powers of $\cos \theta$, $\sin \theta$ and $\tan \theta$.

Tools:

$$\cos n\theta = \operatorname{Re}(\cos n\theta + i \sin n\theta) = \operatorname{Re}(\cos \theta + i \sin \theta)^n$$
,

$$\sin n\theta = \operatorname{Re}(\cos n\theta + i \sin n\theta) = \operatorname{Im}(\cos \theta + i \sin \theta)^n$$
,

Apply binomial expansion to $(\cos \theta + i \sin \theta)^n$

Notation used: $c \equiv \cos \theta$, $s \equiv \sin \theta$, $t \equiv \tan \theta$.

Example

Express $\sin 3\theta$ in terms of powers of $\sin \theta$.

The first step is to note that

$$\sin 3\theta = \operatorname{Im}(\cos 3\theta + i \sin 3\theta)$$

Now, we apply de Moivre's theorem

$$sin 3\theta = Im(cos 3\theta + i sin 3\theta)
= Im(cos \theta + i sin \theta)^3 (why?)
= Im(c + is)^3
= Im(c^3 + 3c^2 is + 3ci^2 s^2 + i^3 s^3)
= Im(c^3 - 3cs^2 + i(3c^2 s - s^3))
= 3c^2 s - s^3$$

Using
$$c^2 + s^2 = 1$$
, we have

$$\sin 3\theta = 3c^2s - s^3$$

$$= 3(1 - s^2)s - s^3$$

$$= 3s - 4s^3$$

$$= 3\sin \theta - 4\sin^3 \theta.$$

From the above, we have also obtained an expression for $\cos 3\theta$:

$$\cos 3\theta = c^3 - 3cs^2 = c^3 - 3c(1 - c^2) = 4c^3 - 3c$$

Using the expression for both $\sin 3\theta$ and $\cos 3\theta$, we obtain a similar expression for $\tan 3\theta$:

$$\tan 3\theta = \frac{\sin 3\theta}{\cos 3\theta} = \frac{3c^2s - s^3}{c^3 - 3cs^2}$$
$$= \frac{3c^2s - s^3}{c^3 - 3cs^2} \cdot \left(\frac{1/c^3}{1/c^3}\right) = \frac{3t - t^3}{1 - 3t^2}$$

Deriving Certain Trigonometric Identities II

Express $\cos^n \theta$ or $\sin^n \theta$ in terms of cosines and sines of multiples of θ , i.e. $\cos k\theta$, $\sin k\theta$.

Main Tool: Let $z = \cos \theta + i \sin \theta$, we have $\frac{1}{z} = \cos \theta - i \sin \theta$. Thus we have $\cos \theta = \frac{1}{2} \left(z + \frac{1}{2}\right)$ and $\sin \theta = \frac{1}{2i} \left(z - \frac{1}{2}\right)$.

Deriving Certain Trigonometric Identities II

Next, we apply binomial expansion and group z^k and $\frac{1}{z^k}$ together. By De Moivre's Theorem, we have

$$z^k = \cos k\theta + i\sin k\theta$$
 and $\frac{1}{z^k} = \cos k\theta - i\sin k\theta$

which gives

$$z^k + \frac{1}{z^k} = 2\cos k\theta$$
 and $z^k - \frac{1}{z^k} = 2i\sin k\theta$.

Thus, we obtain an expression involving sines and cosines of multiple of θ .

Example

Prove that $\cos^3 \theta = \frac{1}{4} (\cos 3\theta + 3\cos \theta)$

Proof.

Let $z = \cos \theta + i \sin \theta$. We have

$$\cos^3\theta = (\cos\theta)^3 = \left(\frac{1}{2}(z + \frac{1}{z})\right)^3$$

$$= \frac{1}{8} \left(z^3 + 3z^2 \frac{1}{z} + 3z (\frac{1}{z})^2 + (\frac{1}{z})^3 \right) = \frac{1}{8} \left((z^3 + \frac{1}{z^3}) + 3(z + \frac{1}{z}) \right)$$

$$=\frac{1}{8}\left[2\cos 3\theta+3(2\cos \theta)\right]=\frac{1}{4}\left(\cos 3\theta+3\cos \theta\right).$$