

Report Number: F690501/RF-RTL003481-1 Page: 1 of 45

TEST REPORT

 \mathbf{of}

FCC Part 15 Subpart B&C §15.247

FCC ID: A3LCL80

Equipment Under Test : Digital Camera

Model Name : SAMSUNG CL80 (the addition of model

names: SAMSUNG ST5500, VLUU ST5500)

Serial No. : N/A

Applicant : SAMSUNG ELECTRONICS CO., LTD.

Manufacturer : Samsung Electronics America Inc.

Date of Test(s) : 2009.12.02 ~2009.12.04

Date of Issue : 2009.12.10

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Duke Ko

Approved By

Denny Ham

Date

2009.12.10

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003481-1 Page: 2 of 45

INDEX

. Transmitter AC Power Line Conducted Emission Receiver AC Power Line Conducted Emission Transmitter Radiated Spurious Emissions and Conducted Spurious Emission Receiver Radiated Spurious Emission 20dB Bandwidth and 99% BW Maximum Peak Output Power Hopping Channel Separation Number of Hopping Frequency Time of Occupancy(Dwell Time)	Page
1. General Information	3
2. Transmitter AC Power Line Conducted Emission	7
3. Receiver AC Power Line Conducted Emission	12
4. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	16
5. Receiver Radiated Spurious Emission	26
6. 20dB Bandwidth and 99% BW	28
7. Maximum Peak Output Power	32
8. Hopping Channel Separation	36
9. Number of Hopping Frequency	38
10. Time of Occupancy(Dwell Time)	40
11. Antenna Requirement	43
12 RF Exposure Evaluation	44

Report Number: F690501/RF-RTL003481-1 Page: 3 of 45

1. General Information

1.1. Testing Laboratory

SGS Testing Korea Co., Ltd.

- 705, Dongchun-Dong Sooji-Gu, Yongin-Shi, Kyungki-Do, South Korea.

www.electrolab.kr.sgs.com

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371

1.2. Details of Applicant

Applicant : SAMSUNG ELECTRONICS CO., LTD.

Address : 416, Maetan-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea

Contact Person : Park, Yong Sang Phone No. : +82 +31 8006 8314

1.3. Description of EUT

Kind of Product	Digital Camera
Model Name	SAMSUNG CL80 (the addition of model names : SAMSUNG ST5500, VLUU ST5500)
Serial Number	N/A
Power Supply	DC 3.8 V (Li-ion Battery)
Frequency Range	2402 ~ 2480 MHz
Modulation Technique	GFSK
Number of Channels	79
Operating Conditions	0 ~ 40 ℃
Antenna Type	Integral Type (FPCB Antenna)
Antenna Gain	-0.71 dBi
H/W Version	SP1_PV_09XXXX
S/W Version	910081

1.4. Declaration by the manufacturer

- For marketing strategy, added model names are used for overseas version.
- All models are exactly same for the hardware and software.

Report Number: F690501/RF-RTL003481-1 Page: 4 of 45

1.5. Information about the FHSS characteristics:

1.5.1. Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1600 hops/s.

1.5.2. Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

1.5.3. System Receiver Input Bandwidth

Each channel bandwidth is 1MHz

1.6. Test Equipment List

EQUIPMENT	MANUFACTURER	MODEL	CAL DUE.
Signal Generator	Rohde & Schwarz	SMR40	Jan. 21, 2010
Spectrum Analyzer	Agilent	E4440A	Apr. 01, 2010
Bluetooth Tester	TESOM	TC-3000B	Mar. 12, 2010
Directional Coupler	Narda	4226-20	Jan. 06, 2010
Preamplifier	H.P	8447F	Jul. 02, 2010
Preamplifier	Agilent	8449B	Apr. 01, 2010
High Pass Filter	Wainwright	WHK3.0/18G-10SS	Sep. 29, 2010
Two-Line V-Network	wo-Line V-Network R & S ENV216		Jan. 07, 2010
Test Receiver	Test Receiver R & S ESHS10		Jul. 13, 2010
Test Receiver	R & S	ESU65	Apr. 21, 2010
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB9163	Jul. 22, 2010
Horn Antenna	R & S	HF 906	Jan. 10, 2010
Horn Antenna	Schwarzbeck	BBHA 9170	Jun. 16, 2010
Antenna Master	EMCO	1050	N.C.R
Turn Table	Daeil EMC	DI-1500	N.C.R
Anechoic Chamber	SY Corporation	$\begin{array}{c} \text{L} \times \text{W} \times \text{H} \\ \text{(9.6 m} \times \text{6.4 m} \times \text{6.6 m)} \end{array}$	Jan. 31, 2010
Anechoic Chamber	SY Corporation	$\begin{array}{c} \text{L} \times \text{W} \times \text{H} \\ \text{(6.5 m} \times 3.5 \text{ m} \times 3.5 \text{ m)} \end{array}$	N.C.R

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003481-1 Page: 5 of 45

1.7. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD:FCC Part15							
Section in FCC 15	Test Item	Result					
15.207	Transmitter AC Power Line Conducted Emission	Complied					
15.107	Receiver AC Power Line Conducted Emission	Complied					
15.205(a) 15.209 15.247(d)	Transmitter Radiated Spurious Emissions Conducted Spurious Emission	Complied					
15.109(a)	Receiver Radiated Spurious Emission	Complied					
15.247(a)(1)	20 dB Bandwidth and 99% BW	Complied					
15.247(b)(1)	Maximum Peak Output Power	Complied					
15.247(a)(1)	Frequency Separation	Complied					
15.247(a)(1)(iii)	Number of Hopping Frequency	Complied					
15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Complied					
15.247(i) 1.1307(b)(1)	Maximum Permissible Exposure (Exposure of Humans to RF Fields)	Complied					

Report Number: F690501/RF-RTL003481-1 Page: 6 of 45

1.8. Test report revision

Revision	Report number	Description
0	F690501/RF-RTL003481	Initial
1	F690501/RF-RTL003481-1	Add Band edge test plot at Hopping mode

Report Number: F690501/RF-RTL003481-1 Page: 7 of 45

2. Transmitter AC Power Line Conducted Emission

2.1. Test Setup

2.2. Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Engage of Emission (MIL)	Conducted limit (dBμV)				
Frequency of Emission (MHz)	Quasi-peak	Average			
0.15 - 0.50	66-56*	56-46*			
0.50 - 5.00	56	46			
5.00 – 30.0	60	50			

^{*} Decreases with the logarithm of the frequency.

Report Number: F690501/RF-RTL003481-1 Page: 8 of 45

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

- 1. The test procedure is performed in a $6.5m \times 3.6m \times 3.6m \times 3.6m$ (L×W×H) shielded room. The EUT along with its peripherals were placed on a $1.0m(W) \times 1.5m(L)$ and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

Report Number: F690501/RF-RTL003481-1 Page: 9 of 45

2.4. Test Results

The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line.

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Frequency range : 0.15 MHz - 30 MHz

Measured Bandwidth : 9 kHz

FREQ.	LEVEL	(dBuV)	LINE	LIMIT(dBuV)	MARG	IN(dB)
(MHz)	Q-Peak	Average	LINE	Q-Peak	Average	Q-Peak	Average
0.21	46.30	33.80	Н	63.21	53.21	16.91	19.41
0.42	40.00	27.80	Н	57.45	47.45	17.45	19.65
0.53	39.80	26.30	Н	56.00	46.00	16.20	19.70
6.09	39.30	30.40	Н	60.00	50.00	20.70	19.60
7.53	35.20	27.40	Н	60.00	50.00	24.80	22.60
8.75	36.30	28.30	Н	60.00	50.00	23.70	21.70
0.21	46.20	35.20	N	63.21	53.21	17.01	18.01
0.42	41.00	29.30	N	57.45	47.45	16.45	18.15
0.52	40.20	28.60	N	56.00	46.00	15.80	17.40
1.86	33.30	23.10	N	56.00	46.00	22.70	22.90
5.89	32.90	26.30	N	60.00	50.00	27.10	23.70
8.62	32.80	26.60	N	60.00	50.00	27.20	23.40

Note;

Line (H) : Hot Line (N) : Neutral

Report Number: F690501/RF-RTL003481-1 Page: 10 of 45

Plot of Conducted Power line

Test mode: (Hot)

Report Number: F690501/RF-RTL003481-1 Page: 11 of 45

Test mode: (Neutral)

Report Number: F690501/RF-RTL003481-1 Page: 12 of 45

3. Receiver AC Power Line Conducted Emission

3.1. Test Setup- Same as clause 2.1.

3.2. Limit

According to $\S15.107(a)$ Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Evacuation of Emission (MHz)	Conducted limit (dBμV)				
Frequency of Emission (MHz)	Quasi-peak	Average			
0.15 - 0.50	66-56*	56-46*			
0.50 - 5.00	56	46			
5.00 – 30.0	60	50			

^{*} Decreases with the logarithm of the frequency.

Report Number: F690501/RF-RTL003481-1 Page: 13 of 45

3.3. Test Procedures- Same as clause 2.3.

3.4. Test Results

The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line; Addition,

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Frequency range : 0.15 MHz - 30 MHz

Measured Bandwidth : 9 kHz

FREQ.	LEVEL	(dBuV)	LINE	LIMIT((dBuV)	MARG	IN(dB)
(MHz)	Q-Peak	Average	LINE	Q-Peak	Average	Q-Peak	Average
0.21	46.90	33.50	Н	63.21	53.21	16.31	19.71
0.42	39.80	27.60	Н	57.55	47.55	17.75	19.95
0.52	39.60	27.00	Н	56.00	46.00	16.40	19.00
1.86	31.50	21.50	Н	56.00	46.00	24.50	24.50
6.16	35.70	28.50	Н	60.00	50.00	24.30	21.50
6.63	34.70	26.30	Н	60.00	50.00	25.30	23.70
0.16	32.40	13.90	N	65.46	55.46	33.06	41.56
0.21	46.10	34.20	N	63.21	53.21	17.11	19.01
0.27	25.00	14.00	N	61.12	51.12	36.12	37.12
0.52	40.10	28.00	N	56.00	46.00	15.90	18.00
5.79	30.20	23.90	N	60.00	50.00	29.80	26.10
8.44	30.60	24.50	N	60.00	50.00	29.40	25.50

Note;

Line (H) : Hot Line (N) : Neutral

Report Number: F690501/RF-RTL003481-1 Page: 14 of 45

Plot of Conducted Power line

Test mode: (Hot)

Report Number: F690501/RF-RTL003481-1 Page: 15 of 45

Test mode: (Neutral)

Report Number: F690501/RF-RTL003481-1 Page: 16 of 45

4. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

4.1. Test Setup

4.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 24 GHz Emissions.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003481-1 Page: 17 of 45

4.1.2. Conducted Spurious Emissions

4.2. Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c))

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Distance (Meters)	Field Strength (dBµV/m)	Field Strength (μV/m)
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003481-1 Page: 18 of 45

4.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

4.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE;

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz for Peak detection and frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz.

4.3.2. Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=100 kHz, VBW=100 kHz.

Report Number: F690501/RF-RTL003481-1 Page: 19 of 45

4.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

4.4.1. Spurious Radiated Emission

The frequency spectrum from 30 MHz to 1000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

Radiated Emissions		Ant	Correctio	n Factors	Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
187.827	39.80	Peak	Н	10.00	-26.34	23.46	43.50	20.04
211.309	43.20	Peak	Н	10.56	-26.14	27.62	43.50	15.88
234.791	47.10	Peak	Н	11.84	-25.94	33.00	46.00	13.00
258.273	48.20	Peak	Н	12.01	-25.78	34.43	46.00	11.57
281.715	51.50	Peak	Н	12.93	-25.70	38.73	46.00	7.27
305.197	43.50	Peak	Н	13.43	-25.66	31.27	46.00	14.73
328.679	40.50	Peak	Н	14.06	-25.75	28.81	46.00	17.19
540.018	38.20	Peak	V	17.88	-26.53	29.55	46.00	16.45
Above 600.000	Not detected	-	-	-	-	-	-	-

Remark:

- 1. All spurious emission at channels are almost the same below 1 GHz, so that channel was chosen at representative in final test.
- 2. Actual = Reading + AF + AMP + CL

Report Number: F690501/RF-RTL003481-1 Page: 20 of 45

4.4.2. Spurious Radiated Emission

The frequency spectrum above 1000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB.

Operating Mode: GFSK

A. Low Channel (2402 MHz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2390.000	29.43	Peak	V	28.05	4.84	62.32	74.00	11.68
*2390.000	17.41	Average	V	28.05	4.84	50.30	54.00	3.70

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4804.030	45.80	Peak	V	32.95	-27.78	50.97	74.00	23.03
Above 4900.000	Not detected	-	-	-	-	-	-	-

B. Middle Channel (2441 MHz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4881.974	44.95	Peak	V	33.17	-27.56	50.56	74.00	23.44
Above 4900.000	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL003481-1 Page: 21 of 45

C. High Channel (2480 MHz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit		
	uency [Hz]	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*248	33.500	28.75	Peak	V	28.18	4.78	61.71	74.00	12.29
*248	33.500	16.97	Average	V	28.18	4.78	49.93	54.00	4.07

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4960.037	45.33	Peak	V	33.39	-27.41	51.31	74.00	22.69
Above 5000.000	Not detected	-	-	-	-	-	-	-

Remarks;

- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental Frequency.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit.
- 5. Actual = Reading + AF + AMP + CL

Report Number: F690501/RF-RTL003481-1 Page: 22 of 45

4.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission

Low Channel

Report Number: F690501/RF-RTL003481-1 Page: 23 of 45

Middle Channel

Report Number: F690501/RF-RTL003481-1 Page: 24 of 45

High Channel

Report Number: F690501/RF-RTL003481-1 Page: 25 of 45

Hopping Mode

Report Number: F690501/RF-RTL003481-1 Page: 26 of 45

5. Receiver Radiated spurious emissions

5.1. Test setup - Same as clause 4.1.

5.1.1. Receiver Radiated Spurious Emissions - Same as clause 4.1.1.

5.2. Limit

According to §15.109(a), Except for Class A digital devices, the field strength of radiated emission from unintentional radiator at a distance of 3 m shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

5.3. Test Procedures - Same as clause 4.3.

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

5.3.1. Test Procedures for Radiated Spurious Emissions- Same as clause 4.3.1.

Report Number: F690501/RF-RTL003481-1 Page: 27 of 45

5.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

5.4.1. Spurious Radiated Emission

The frequency spectrum from 30 MHz to 26.5 GHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

Radi	Radiated Emissions		Ant	Correction	on Factors	Total	FCC L	imit
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
30.728	35.70	Peak	Н	11.08	-27.74	19.04	40.00	20.96
187.827	40.00	Peak	Н	10.00	-26.34	23.66	43.50	19.84
211.309	41.70	Peak	Н	10.56	-26.14	26.12	43.50	17.38
234.791	46.30	Peak	Н	11.84	-25.94	32.20	46.00	13.80
258.273	47.20	Peak	Н	12.01	-25.78	33.43	46.00	12.57
281.715	51.00	Peak	Н	12.93	-25.70	38.23	46.00	7.77
305.197	45.70	Peak	Н	13.43	-25.66	33.47	46.00	12.53
328.679	41.30	Peak	Н	14.06	-25.75	29.61	46.00	16.39
540.018	38.40	Peak	V	17.88	-26.53	29.75	46.00	16.25
Above 600.000	Not detected	-	-	-	-	-	-	-

Remark:

- 1. All spurious emission at channels are almost the same from 30 MHz to 26.5 GHz, so that the channel was chosen at representative in final test.
- 2. Actual = Reading + AF + AMP + CL

Report Number: F690501/RF-RTL003481-1 Page: 28 of 45

6. 20 dB Bandwidth Measurement and 99% BW

6.1. Test Setup

6.2. Limit

Limit: Not Applicable

6.3. Test Procedure

- 1. The 20dB band width was measured with a spectrum analyzer connected to RF antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 20dB band width of the emission was determined.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=10 kHz, VBW=10 kHz, Span=5 MHz.

Report Number: F690501/RF-RTL003481-1 Page: 29 of 45

6.4. Test Results

Ambient temperature : 24 $^{\circ}$ C

Relative humidity : 47 % R.H.

Operation Mode	Channel	Channel Frequency (MHz)	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)
	Low	2402	992	878
GFSK	Middle	2441	991	882
	High	2480	990	882

Report Number: F690501/RF-RTL003481-1 Page: 30 of 45

Low Channel

Middle Channel

Report Number: F690501/RF-RTL003481-1 Page: 31 of 45

High Channel

Report Number: F690501/RF-RTL003481-1 Page: 32 of 45

7. Maximum Peak Output Power Measurement

7.1. Test Setup

7.2. Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5805 MHz band: 1 Watt.

7.3. Test Procedure

- 1. The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using;

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge 20dB BW$

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = \max hold

Report Number: F690501/RF-RTL003481-1 Page: 33 of 45

7.4. Test Results

Ambient temperature : 24 $^{\circ}$ C

Relative humidity : 47 % R.H.

Operation Mode	Channel	Channel Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)
GFSK	Low	2402	6.74	30.00
	Middle	2441	7.02	30.00
	High	2480	6.99	30.00

Report Number: F690501/RF-RTL003481-1 Page: 34 of 45

Low Channel

Middle Channel

Report Number: F690501/RF-RTL003481-1 Page: 35 of 45

High Channel

Report Number: F690501/RF-RTL003481-1 Page: 36 of 45

8. Hopping Channel Separation

8.1. Test Setup

8.2. Limit

§15.247(a)(1) Frequency hopping system operating in 2400-2483.5MHz. Band may have hopping channel carrier frequencies that are separated by 25kHz or two-third of 20dB bandwidth of the hopping channel, whichever is is greater, provided the systems operate with an output power no greater than 125mW.

8.3. Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by spectrum analyzer MARK function. And then plot the result on spectrum analyzer screen.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. Set center frequency of spectrum analyzer = middle of hopping channel.
- 7. Set the spectrum analyzer as RBW=100 kHz, VBW=100 kHz, Span=5 MHz and Sweep = auto.

Report Number: F690501/RF-RTL003481-1 Page: 37 of 45

8.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Operation Mode	Channel (Middle)	Adjacent Hopping Channel Separation (kHz)	Two-third of 20 dB Bandwidth (kHz)	Minimum Bandwidth (kHz)
GFSK	2441 MHz	1000	660.7	25

Note;

20 dB bandwidth measurement, the measured channel separation should be greater than two-third of 20dB bandwidth or Minimum bandwidth.

Report Number: F690501/RF-RTL003481-1 Page: 38 of 45

9. Number of Hopping Frequency

9.1. Test Setup

9.2. Limit

§15.247(a)(1)(iii) For frequency hopping system operating in the 2400-2483.5MHz bands shall use at least 15 hopping frequencies.

9.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna the port to the Spectrum analyzer
- 3. Set spectrum analyzer Start=2400 MHz, Stop=2441.5 MHz, Sweep=auto and Start=2441.5 MHz, Stop=2483.5 MHz, Sweep=auto.
- 4. Set the spectrum analyzer as RBW, VBW=300 kHz.
- 5. Max hold, view and count how many channel in the band.

Report Number: F690501/RF-RTL003481-1 Page: 39 of 45

9.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Operation Mode	Number of Hopping Frequency	Limit
GFSK	79	>= 15

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003481-1 Page: 40 of 45

10. Time Of Occupancy (Dwell Time)

10.1. Test Set up

10.2. Limit

§15.247(a)(1)(iii) For frequency hopping system operating in the 2400-2483.5MHz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time=0.4(s)*79=31.6(s)

10.3. Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. The Bluetooth has 3 type of payload, DH1, DH3, DH5. The hopping rate is 1600 per second.

Report Number: F690501/RF-RTL003481-1 Page: 41 of 45

10.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Time of occupancy on the TX channel in 31.6sec

= time domain slot length \times (hop rate \div number of hop per channel) \times 31.6

Packet Type	Frequency	Dwell Time (ms)	Time of occupancy on the Tx Channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)
DH1	2441 MHz	0.38	121.6	400
DH3	2441 MHz	1.63	260.8	400
DH5	2441 MHz	2.88	307.2	400

2441 MHz : $0.38 \text{ (ms)} \times [(1600 \div 2) \div 79] \times 31.6 \text{ (s)} = 121.6 \text{ (ms)}$ $1.63 \text{ (ms)} \times [(1600 \div 4) \div 79] \times 31.6 \text{ (s)} = 260.8 \text{ (ms)}$ $2.88 \text{ (ms)} \times [(1600 \div 6) \div 79] \times 31.6 \text{ (s)} = 307.2 \text{ (ms)}$

Packet Type: DH1

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003481-1 Page: 42 of 45

Packet Type: DH3

Packet Type: DH5

Report Number: F690501/RF-RTL003481-1 Page: 43 of 45

11. Antenna Requirement

11.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dBi.

11.2. Antenna Connected Construction

Antenna used in this product is Integral type (FPCB Antenna) gain of -0.71 dBi.

Report Number: F690501/RF-RTL003481-1 Page: 44 of 45

12. RF Exposure Evaluation

12.1 Environmental evaluation and exposure limit according to FCC CFR 47 part 1, 1.1307(b), 1.1310

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in §1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength(V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time				
	(A) Limits for Occupational /Control Exposures							
300 – 1500			F/300	6				
1500 - 100000			5	6				
	(B) Limits for Ge	eneral Population/Unc	ontrol Exposures					
300 – 1500			F/1500	6				
<u>1500 - 100000</u>			1	<u>30</u>				

12.1.1. Friis transmission formula: $Pd = (Pout*G)/(4*pi*R^2)$

Where $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Report Number: F690501/RF-RTL003481-1 Page: 45 of 45

12.1.2. Test Result of RF Exposure Evaluation

Test Item : RF Exposure Evaluation Data

Test Mode : Normal Operation

12.1.3. Output Power into Antenna & RF Exposure Evaluation Distance

Channel	Channel Frequency (MHz)	Output Peak Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at 20cm (mW/cm²)	Limits (mW/cm ²)
Low	2402	6.74	-0.71	0.0008	
Middle	2441	7.02	-0.71	0.0009	1
High	2480	6.99	-0.71	0.0008	

Note:

1. For GFSK mode.

2. The power density Pd (5th column) at a distance of 20cm calculated from the friis transmission formula is far below the limit of 1 mW/cm².

12.2. Collocation RF exposure WLAN and BT

- Worst cases of WLAN is 0.0159 mW/cm² at 2412 MHz.
- Worst cases of BT is 0.0009 mW/cm² at 2441 MHz.
- RF Exposure of BT is very small portion of 1 mW/cm².