2021-Aug-31 Shift-1

AI24BTECH11003 - Badde Vijaya Sreyas

2) Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors mutually perpendicular to each other and have the same magnitude. If a vector \overrightarrow{r} satisfies $\overrightarrow{a} \times \left\{ (\overrightarrow{r} - \overrightarrow{b}) \times \overrightarrow{a} \right\} + \overrightarrow{b} \times \left\{ (\overrightarrow{r} - \overrightarrow{c}) \times \overrightarrow{b} \right\} + \overrightarrow{c} \times \overrightarrow{c}$

c) exactly two solutions

d) a unique solution

1) If $\alpha + \beta + \gamma = 2\pi$, then the system of equations

 $\{(\overrightarrow{r} - \overrightarrow{d}) \times \overrightarrow{c}\} = \overrightarrow{0}$ then \overrightarrow{r} is equal to:

 $x + (\cos \gamma)y + (\cos \beta)z = 0$ $(\cos \gamma)x + y + (\cos \alpha)z = 0$ $(\cos \beta)x + (\cos \alpha)y + z = 0$

b) infinitely many solutions

has:

a) no solution

$((\cdot a) \land c)$	((b) // c) o, and / is equal to				
a) $\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$	b) $\frac{1}{3} \left(2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$	c) $\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$	d) $\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} + 2\overrightarrow{c} \right)$		
3) The domain of the function $f(x) = \arcsin\left(\frac{3x^2 + x - 1}{(x - 1)^2}\right) + \arccos\left(\frac{x - 1}{x + 1}\right)$ is:					
a) $[0, \frac{1}{4}]$	b) $[-2,0] \cup \left[\frac{1}{4},\frac{1}{2}\right]$	c) $\left[\frac{1}{4}, \frac{1}{2}\right] \cup \{0\}$	d) $\left[0,\frac{1}{2}\right]$		
4) Let $S = \{1, 2, 3, 4, 5, 6\}$. Then the probability that a randomly chosen onto function g from S to S satisfies $g(3) = 2g(1)$ is:					
a) $\frac{1}{10}$	b) $\frac{1}{15}$	c) $\frac{1}{5}$	d) $\frac{1}{30}$		
5) Let $f: N \to N$ be a function such that $f(m+n) = f(m) + f(n)$ for every $m, n \in N$. If $f(6) = 18$, then $f(2) \cdot f(3)$ is equal to:					
a) 6	b) 54	c) 18	d) 36		
6) The distance of the point $(-1, 2, -2)$ from the line of intersection of the planes $2x + 3y + 2z = 0$ and $x - 2y + z = 0$ is:					
a) $\frac{1}{\sqrt{2}}$	b) $\frac{5}{2}$	c) $\frac{\sqrt{42}}{2}$	d) $\frac{\sqrt{34}}{2}$		
7) Negation of the statement $(p \lor q) \implies (q \lor r)$ is:					

8) If $\alpha = \lim_{x \to \frac{\pi}{4}} \frac{\tan x - \tan x}{\cos(x + \frac{\pi}{4})}$ and $\beta = \lim_{x \to 0} (\cos x)^{\cot x}$ are the roots of the equation $ax^2 + bx - 4 = 0$, then the ordered pair (a, b) is:				
a) (1, -3)	b) (-1,3)	c) (-1, -3)	d) (1,3)	
9) The locus of midpoints of the line segments joining $(-3, -5)$ and the points on the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is:				
a) $9x^2 + 4y^2 + 18x + 8y + 145 = 0$ b) $36x^2 + 16y^2 + 90x + 56y + 145 = 0$		c) $36x^2 + 16y^2 + 108x + 80y + 145 = 0$ d) $36x^2 + 16y^2 + 72x + 32y + 145 = 0$		
10) If $\frac{dy}{dx} = \frac{2^x y + 2^y \cdot 2^x}{2^x + 2^{x+y} \log_e 2}$, $y(0) = 0$, then for $y = 1$, the value of x lies in the interval:				
a) (1,2)	b) $(\frac{1}{2}, 1]$	c) (2,3)	d) $(0, \frac{1}{2}]$	
11) An angle of intersection of the curves, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $x^2 + y^2 = ab$, $a > b$, is:				
a) $\arctan\left(\frac{a+b}{\sqrt{ab}}\right)$	b) $\arctan\left(\frac{a-b}{2\sqrt{ab}}\right)$	c) $\arctan\left(\frac{a-b}{\sqrt{ab}}\right)$	d) $\arctan\left(2\sqrt{ab}\right)$	
12) If $y \frac{dy}{dx} = x \left[\frac{y^2}{x^2} + \frac{\phi\left(\frac{y^2}{x^2}\right)}{\phi'\left(\frac{y^2}{x^2}\right)} \right], x > 0, \phi > 0$, and $y(1) = -1$, then $\phi \frac{y^2}{x^4}$ is equal to:				
a) $4\phi(2)$	b) $4\phi(1)$	c) $2\phi(1)$	d) $\phi(1)$	
13) The sum of the roots of the equation $x + 1 - 2\log_2(2 + 2^x) + 2\log_4(10 - 2^{-x}) = 0$, is:				

14) If z is a complex number such that $\frac{z-i}{z-1}$ is purely imaginary, then the minimum value

15) Let a_1, a_2, a_3, \cdots be an A.P. If $\frac{a_1 + a_2 + \cdots + a_{10}}{a_1 + a_2 + \cdots + a_p} = \frac{100}{p^2}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to:

a) log₂ 14

a) $\frac{19}{21}$

of |z - (3 + 3i)| is:

b) $\log_2 11$

b) $\frac{100}{121}$

a) $2\sqrt{2} - 1$ b) $3\sqrt{2}$

c) $\log_2 12$

c) $6\sqrt{2}$

c) $\frac{21}{19}$

d) log₂ 13

d) $2\sqrt{2}$

d) $\frac{121}{100}$

a) $p \wedge \sim q \wedge \sim r$ b) $\sim p \wedge q \wedge \sim r$ c) $\sim p \wedge q \wedge r$ d) $p \wedge q \wedge r$