Worksheet 4 Answer Key

1. Let $a \in A$ and $b \in B$ and observe that

$$a(I_A \circ R)b \iff \exists a' \in A : aI_Aa' \land a'Rb \iff aRb.$$

2. Fix $a \in A, b \in B$ and note that

$$a(R \circ I_B)b \iff \exists a' \in A : aRb' \wedge b'I_Bb \iff aRb.$$

3. Choose $a \in A$ and $b \in B$. We have

$$a(R^{-1})^{-1}b \iff bR^{-1}a$$

 $\iff aRb.$

4. Fix $a \in A, c \in C$ and observe that

$$c(S \circ R)^{-1}a \iff a(S \circ R)c$$

$$\iff \exists b \in B : aRb \wedge bSc$$

$$\iff \exists b \in B : bR^{-1}a \wedge cS^{-1}b$$

$$\iff c(R^{-1} \circ S^{-1})a.$$

5. Let $a \in A$ and $d \in D$. We have

$$\begin{split} a(T\circ S)\circ Rd &\iff \exists b\in B: aRb\wedge b(T\circ S)d\\ &\iff \exists b\in B: aRb\wedge (\exists c\in C: bSc\wedge cTd)\\ &\iff \exists b\in B: \exists c\in C: aRb\wedge bSc\wedge cTd\\ &\iff \exists c\in C: (\exists b\in B: aRb\wedge bSc)\wedge cTd\\ &\iff aT\circ (S\circ R)d. \end{split}$$

6. Fix $a \in A$ and observe that

$$a \in \text{Dom } R \iff \exists b \in B : aRb$$

 $\iff \exists b \in B : bR^{-1}a$
 $\iff a \in \text{Rng } R^{-1}.$

7. Fix $b \in B$ and observe that

$$b \in \operatorname{Rng} R \iff \exists a \in A : aRb$$

 $\iff \exists a \in A : bR^{-1}a$
 $\iff a \in \operatorname{Dom} R^{-1}.$

8. Let $A = \{1, 2, 3\}$ and define the relations

$$R = \{(1,1), (1,2), (2,1)(2,2), (3,3)\}$$

$$S = \{(1,1), (2,2), (2,3), (3,2), (3,3)\}.$$

Note that both R and S are equivalence relations on A, while

$$S \circ R = A^2 \setminus \{(3,1)\}$$

is neither transitive nor symmetric.

9. Fix $a, b, c \in A$.

If aRa then $a(R \circ R)a$, whence $(R \circ R)$ is reflexive.

Suppose that $a(R \circ R)b$ and $b(R \circ R)c$. Transitivity of R provides aRb and bRc, from which we obtain $a(R \circ R)c$. This establishes the transitivy of $R \circ R$.

Now suppose that $a(R \circ R)b$ and $b(R \circ R)a$. As above, the transitivity of R yields aRb and bRa, and antisymmetry provides a = b. We conclude that $R \circ R$ is antisymmetric.

10. Define the relations R and S on $A = \mathbb{Z}$ by

$$mRn \iff m \le n$$

$$mSn \iff m \ge n.$$

Observe that both R and S are partial orders, while

$$S \circ R = \mathbb{Z} \times \mathbb{Z}$$

is not antisymmetric.

11. Let $A = \{1, 2, 3\}$ and let R and S be the relations of Question ??. We have

$$S \circ R = A^2 \setminus \{(3,1)\}$$
$$\neq A^2 \setminus \{(1,3)\}$$
$$= R \circ S.$$

12. Let A, R, and S be given as in Question ??.