M62. EXERCICES 1

1. Exercice

Soit l'équation différentielle

 $\ddot{y} - 2\dot{y} + y = 0.$

- 1) Chercher une solution sous la forme $y(t) = \exp(rt)$ où r est un nombre complexe donné.
- 2) Calculez toutes les solutions de (1.1).
 - 2. Exercice
- 1) Le problème de Cauchy

$$\dot{y} = |t|^{\frac{2}{3}}, \ y(0) = 0,$$

rentre-t-il dans le cadre du théorème de Cauchy-Lipschitz ?

- 2) Calculer la/les solutions à ce problème.
 - 3. Exercice

Trouver la solution à y(0) = 0 et $\dot{y} = |y| + |t|$.

4. Exercice

On considére le problème de Cauchy

$$\dot{y} = |y|^{\frac{2}{3}}, \ y(0) = 0.$$

1) Démontrer que la fonction $y(t) = (\frac{t}{3})^3$ est solution du problème.

- 2) Ce problème rentre-t-il dans le cadre du théorème de Cauchy-Lipschitz.
- 3) Construire une infinité de fonctions de classe \mathbb{C}^1 solutions du problème de Cauchy.

5. Exercice

Soit l'équation différentielle

(5.1)
$$(1+t+t^2)\dot{y} + (2t+1)y = (1+t+t^2)^2,$$

avec la condition initiale y(0) = 0.

- 1) Ecrire le problème de Cauchy associé à cette condition initiale et cette équation.
- 2) En posant $z(t) = (1+t+t^2)y(t)$ trouver une solution particulière à (5.1).
- 3) Calculer la solution au problème de Cauchy.

6. Exercice

On appelle solution du système différentiel

(6.1)
$$\dot{x} = -4x - 2y + 2e^t,$$

$$\dot{y} = 6x + 3y - 2e^t,$$

un couple (x, y) de fonctions C^1 sur \mathbb{R} solution de ce système.

- 1) Démontrer que l'ensemble des solutions est un espace affine dont précisera la dimension.
- 2) Trouver une solution particulière à ce système différentiel.
- 3) Calculer toutes les solutions de ce système différentiel.

7. Exercice

Résoudre le système différentiel

$$\dot{x} = 4x + 3y - 7,$$

$$\dot{y} = 3x - 4y + 1.$$