Берман. Сборник задач по курсу математического анализа. Издание двадцатое. М., 1985.

Глава IX. Ряды

Доказать сходимость следующих рядов с помощью признака Даламбера.

2755.
$$\frac{1}{2} + \frac{2}{2^2} + \ldots + \frac{n}{2^n} + \ldots$$

$$\blacktriangleleft \lim_{n \to \infty} \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1}{2} < 1.$$
Сходится. \blacktriangleright

2756.
$$\lg \frac{\pi}{4} + 2 \lg \frac{\pi}{8} + \ldots + n \lg \frac{\pi}{2^{n+1}} + \ldots$$

2759.
$$\frac{1}{3} + \frac{1 \cdot 3}{3 \cdot 6} + \ldots + \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{3^n \cdot n!} + \ldots$$

2759.
$$\frac{1}{3} + \frac{1 \cdot 3}{3 \cdot 6} + \ldots + \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{3^n \cdot n!} + \ldots$$

$$\blacktriangleleft \lim_{n \to \infty} \frac{1 \cdot 3 \cdot \ldots \cdot (2n+1)}{3^{n+1}(n+1)!} \cdot \frac{3^n \cdot n!}{1 \cdot 3 \cdot \ldots \cdot (2n-1)} = \lim_{n \to \infty} \frac{2n+1}{3(n+1)} = \lim_{n$$

2762.
$$\frac{2}{2} + \frac{2 \cdot 3}{4 \cdot 2} + \ldots + \frac{(n+1)!}{2^n \cdot n!} + \cdot$$

$$\blacktriangleleft \lim_{n \to \infty} \frac{(n+2)! \cdot 2^n \cdot n!}{2^{n+1}(n+1)!(n+1)!} = \lim_{n \to \infty} \frac{n+2}{2(n+1)} = \frac{1}{2} < 1. \text{ Сходится.} \blacktriangleright$$

Доказать сходимость следующих рядов с помощью радикального признака Коши.

2764.
$$\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \dots + \left(\frac{n}{2n+1}\right)^n + \dots$$

$$\blacktriangleleft \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2} < 1$$
. Сходится. \blacktriangleright

2765.
$$\arcsin 1 + \arcsin^2 \frac{1}{2} + \ldots + \arcsin^n \frac{1}{n} + \ldots$$

$$\blacktriangleleft \lim_{n \to \infty} \arcsin \frac{1}{n} = 0 < 1$$
. Сходится. \blacktriangleright

Вопрос о сходимости следующих рядов решить с помощью интегрального признака Коши.

2768.
$$\frac{1}{2 \ln 2} + \frac{1}{3 \ln 3} + \ldots + \frac{1}{n \ln n} + \ldots$$

$$\blacktriangleleft \int_2^\infty \frac{dx}{x \ln x} = \int_2^\infty \frac{d \ln x}{\ln x} = \ln \ln x \Big|_2^\infty.$$
 Интеграл и ряд расходятся. \blacktriangleright

2769.
$$\left(\frac{1+1}{1+1^2}\right)^2 + \left(\frac{1+2}{1+2^2}\right)^2 + \dots + \left(\frac{1+n}{1+n^2}\right)^2 + \dots$$

$$\blacktriangleleft \int_1^\infty \left(\frac{1+x}{1+x^2}\right)^2 dx = \int_1^\infty \frac{1+x^2}{(1+x^2)^2} dx + \int_1^\infty \frac{2x \, dx}{(1+x^2)^2} =$$

$$= \int_1^\infty \frac{dx}{1+x^2} + \int_1^\infty \frac{d(x^2+1)}{(x^2+1)^2} = \operatorname{arctg} x \Big|_1^\infty - \frac{1}{1+x^2}\Big|_1^\infty. \text{ Интеграл и ряд сходятся.} \blacktriangleright$$

Выяснить, какие из следующих рядов сходятся, какие расходятся.

2773.
$$\sqrt{2} + \sqrt{\frac{3}{2}} + \ldots + \sqrt{\frac{n+1}{n}} + \ldots$$

 $\blacktriangleleft \lim_{n o \infty} \sqrt{rac{n}{n+1}} = 1
eq 0$. Общий член ряда не стремится к нулю. Ряд расходится. \blacktriangleright

2777.
$$\frac{1}{1+1^2} + \frac{2}{1+2^2} + \ldots + \frac{n}{1+n^2} + \ldots$$

◄ Сравниваем данный ряд с расходящимся рядом $\sum_{n=1}^{\infty} \frac{1}{n}$. Вычисляем предел отноше-

ния общих членов: $\lim_{n\to\infty}\frac{n}{1+n^2}\cdot\frac{n}{1}=\lim_{n\to\infty}\frac{n^2}{1+n^2}=1.$ Предел конечный и не равен нулю, поэтому исходный ряд также расходится. \blacktriangleright

2778.
$$\frac{1}{3} + \frac{3}{3^2} + \ldots + \frac{2n-1}{3^n} + \ldots$$

■ Применяем интегральный признак. Для этого сначала вычислим неопределенный интеграл:

$$\int \frac{2x^2 - 1}{3^x} dx = -\frac{1}{\ln 3} \int (2x - 1) d(3^{-x}) = -\frac{2x - 1}{\ln 3 \cdot 3^x} + \frac{2}{\ln 3} \int 3^{-x} dx = -\frac{2x - 1}{\ln 3 \cdot 3^x} - \frac{2}{(\ln 3)^2 \cdot 3^x}.$$

Интеграл $\int_1^\infty \frac{2x-1}{3^x} \, dx$ сходится, поэтому данный ряд также сходится. \blacktriangleright

Доказать каждое из следующих соотношений с помощью ряда, общим членом которого является данная функция.

2785.
$$\lim_{n \to \infty} \frac{a^n}{n!}$$
. \blacktriangleleft Доказываем сходимость ряда $\sum_{n=1}^{\infty} \frac{a^n}{n!}$ методом Даламбера:

$$\lim_{n\to\infty} \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \lim_{n\to\infty} \frac{a}{n+1} = 0.$$

Теперь можно применить необходимый признак сходимости ряда. ▶

2788.
$$\lim_{n \to \infty} \frac{n^n}{(n!)^2}$$
. \blacktriangleleft Доказываем сходимость ряда $\sum_{n=1}^{\infty} \frac{n^n}{(n!)^2}$ методом Даламбера:

$$\lim_{n \to \infty} \frac{(n+1)^{n+1}}{[(n+1)!]^2} \cdot \frac{(n!)^2}{n^n} = \lim_{n \to \infty} \frac{n+1}{(n+1)^2} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \frac{e}{n+1} = 0.$$

Теперь можно применить необходимый признак сходимости ряда. ▶

©Alidoro, 2016. palva@mail.ru