Exercise 10.1

Let $|\psi\rangle = a |0\rangle + b |1\rangle$ and the initial state be $|\psi_0\rangle = a |000\rangle + b |100\rangle$. Applying a CNOT to the first two qubits we get, $|\psi_1\rangle = a |000\rangle + b |110\rangle$ Applying a CNOT to the first and last qubits we get, $|\psi_2\rangle = a |000\rangle + b |111\rangle$

Exercise 10.2

$$\begin{array}{l} P_{\pm} = \frac{1}{2}(|0\rangle \pm |1\rangle)(\langle 0| \pm \langle 1|) = \frac{1}{2}(|0\rangle \langle 0| + |1\rangle \langle 1| \pm |1\rangle \langle 0| \pm |0\rangle \langle 1|) = \frac{1}{2}(I \pm X) \\ \text{Therefore,} \\ \mathcal{E}(\rho) = (1-2p)\rho + 2pP_{+}\rho P_{+} + 2pP_{-}\rho P_{-} = (1-2p)\rho + \frac{1}{2}p(I+X)\rho(I+X) + \frac{1}{2}p(I-X)\rho(I-X) = (1-2p)\rho + p\rho + pX\rho X = (1-p)\rho + pX\rho X \end{array}$$

Exercise 10.3

$$Z_{2}Z_{3}Z_{1}Z_{2} = [I \otimes (|00\rangle \langle 00| + |11\rangle \langle 11|) - I \otimes (|01\rangle \langle 01| + |10\rangle \langle 10|)][(|00\rangle \langle 00| + |11\rangle \langle 11|) \otimes I - (|01\rangle \langle 01| + |10\rangle \langle 10|) \otimes I] = \underbrace{|000\rangle \langle 000| + |111\rangle \langle 111|}_{P_{0}} - \underbrace{(|100\rangle \langle 100| + |011\rangle \langle 011|)}_{P_{1}} + \underbrace{|010\rangle \langle 010| + |101\rangle \langle 101|}_{P_{2}} - \underbrace{(|001\rangle \langle 001| + |110\rangle \langle 110|)}_{P_{3}}$$

- Exercise 10.4
- Exercise 10.5
- Exercise 10.6
- Exercise 10.7
- Exercise 10.8
- Exercise 10.9
- Exercise 10.10
- Exercise 10.11
- Exercise 10.12
- Exercise 10.13
- Exercise 10.14
- Exercise 10.15
- Exercise 10.16
- Exercise 10.17
- Exercise 10.18
- Exercise 10.19
- Exercise 10.20
- Exercise 10.21
- Exercise 10.22
- Exercise 10.23
- Exercise 10.24
- Exercise 10.25
- Exercise 10.26