Предобработка:

In [1]:

import pandas as pd

Загрузим данные:

In [124]:

```
#На основе переменных о количестве (кликов в адрес, во вход, в карточку)
#, а также о количестве пользователей и медианном расстоянии от пользователя до объекта

data = pd.read_csv('Data_Projects.csv', ';', decimal=',').drop(['FirmsCount', 'GeoPart', 'M
```

In [125]:

data

Out[125]:

	AddressCount	CallsCount	ClicksCount	UsersCount	Distance
0	156	20	1903	1125	749.966084
1	17	37	258	157	2289.032424
2	78	56	1956	1195	1423.376512
3	14	70	378	206	3396.566089
4	111	90	4089	2934	1576.514154
74	2535	12436	44597	11172	1908.108110
75	1103	12805	33388	13911	2642.200165
76	3132	20609	75303	23982	2278.162917
77	5740	47912	167155	61127	989.412139
78	6037	48497	149920	58351	918.713972

79 rows × 5 columns

Посмотрим распределения признаков:

In [126]:

```
import matplotlib.pyplot as plt
import numpy as np
```

In [127]:

```
_, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(ncols = 5)
ax1.hist(data['AddressCount'])
ax2.hist(data['CallsCount'])
ax3.hist(data['ClicksCount'])
ax4.hist(data['UsersCount'])
ax5.hist(data['Distance'])
```

Out[127]:

Данные походи на логнормальные, попробуем прологарифмировать:

In [128]:

```
_, (ax1, ax2, ax3, ax4) = plt.subplots(ncols = 4)
ax1.hist(np.log(data['AddressCount']), bins='fd')
ax2.hist(np.log(data['CallsCount']), bins='fd')
ax3.hist(np.log(data['ClicksCount']), bins='fd')
ax4.hist(np.log(data['UsersCount']), bins='fd')
```

Out[128]:

Только 2 график похож на нормальные данные теперь, так что оставим как было.

In [129]:

```
_, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(ncols = 5)
ax1.boxplot(data['AddressCount'])
ax2.boxplot(data['CallsCount'])
ax3.boxplot(data['ClicksCount'])
ax4.boxplot(data['UsersCount'])
ax5.boxplot(data['Distance'])
```

Out[129]:

Удалим 2 выброса из данных CallsCount. "Выбросы" остальных параметров могут быть и особенностями распределения.

In [130]:

```
data = data[(data['CallsCount'] < 30000) & (data['AddressCount'] < 8000)]</pre>
```

In [131]:

```
data.shape
```

Out[131]:

(76, 5)

In [132]:

```
_, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(ncols = 5)
ax1.boxplot(data['AddressCount'])
ax2.boxplot(data['CallsCount'])
ax3.boxplot(data['ClicksCount'])
ax4.boxplot(data['UsersCount'])
ax5.boxplot(data['Distance'])
```

Out[132]:

In [133]:

```
_, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(ncols = 5, figsize=(16, 16))
#plt.figure(figsize=(8,8),facecolor='red',edgecolor='blue')
ax1.hist(data['AddressCount'])
ax2.hist(data['CallsCount'])
ax3.hist(data['ClicksCount'])
ax4.hist(data['UsersCount'])
ax5.hist(data['Distance'])
```

Out[133]:

In [134]:

data.describe()

Out[134]:

	AddressCount	CallsCount	ClicksCount	UsersCount	Distance
count	76.000000	76.000000	76.000000	76.000000	76.000000
mean	808.763158	2521.447368	17179.236842	7854.223684	2738.988374
std	1075.452920	3775.458974	22131.060449	10255.461594	1410.950716
min	9.000000	20.000000	258.000000	157.000000	714.787236
25%	77.750000	347.000000	1997.500000	1137.500000	1646.303993
50%	345.000000	913.500000	6363.500000	2858.000000	2639.042209
75%	1133.000000	2348.500000	27011.500000	11661.500000	3676.600326
max	4204.000000	20609.000000	94918.000000	40614.000000	6292.207311

Приступим к кластеризации

In [135]:

from scipy.cluster.hierarchy import dendrogram, linkage, cophenet, fcluster

In [136]:

```
z = linkage(data, 'median')
```

```
In [137]:
```

```
dn = dendrogram(z, orientation='left')
plt.show()
```


In [138]:

```
label = fcluster(z, 15000, criterion='distance')
```

In [139]:

label

Out[139]:

In [140]:

```
np.unique(label)
```

Out[140]:

```
array([1, 2, 3, 4, 5, 6], dtype=int32)
```

In [141]:

from sklearn.cluster import KMeans

```
In [142]:
```

```
km = KMeans(n_clusters=5).fit(data)
predictions = km.predict(data)
predictions
```

Out[142]:

Посмотрим на наполненность кластеров:

In [143]:

```
for i in range(5):
    print(i, ': ', (predictions==i).sum())
```

0:8 1:49 2:3 3:6 4:10

Вероятно мы наблюдаем ненаполненность кластеров, попробуем создать 3 кластера.

In [144]:

```
km = KMeans(n_clusters=3).fit(data)
predictions = km.predict(data)
for i in range(3):
    print(i, ': ', (predictions==i).sum())
```

0: 501: 172: 9

In [145]:

```
data['cluster'] = predictions
```

C:\Users\Alexey\anaconda3\lib\site-packages\ipykernel_launcher.py:1: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

"""Entry point for launching an IPython kernel.

In [146]:

```
data.head()
```

Out[146]:

	AddressCount	CallsCount	ClicksCount	UsersCount	Distance	cluster
0	156	20	1903	1125	749.966084	0
1	17	37	258	157	2289.032424	0
2	78	56	1956	1195	1423.376512	0
3	14	70	378	206	3396.566089	0
4	111	90	4089	2934	1576.514154	0

In [147]:

```
axes = plt.subplots(ncols=5, figsize = (16,4))
axes[0].boxplot([data[data['cluster'] == 0]['AddressCount'], data[data['cluster'] == 1]['Ad
axes[1].boxplot([data[data['cluster'] == 0]['CallsCount'], data[data['cluster'] == 1]['Call
axes[2].boxplot([data[data['cluster'] == 0]['ClicksCount'], data[data['cluster'] == 1]['Cli
axes[3].boxplot([data[data['cluster'] == 0]['UsersCount'], data[data['cluster'] == 1]['User
axes[4].boxplot([data[data['cluster'] == 0]['Distance'], data[data['cluster'] == 1]['Distance']
  <matplotlip.lines.LinezD at 0x1e42230e108>,
  <matplotlib.lines.Line2D at 0x1e4223d9c48>],
 'boxes': [<matplotlib.lines.Line2D at 0x1e4222d2748>,
  <matplotlib.lines.Line2D at 0x1e4223b18c8>,
  <matplotlib.lines.Line2D at 0x1e4223d4d08>],
 'medians': [<matplotlib.lines.Line2D at 0x1e4223bdd88>,
  <matplotlib.lines.Line2D at 0x1e4223cedc8>,
  <matplotlib.lines.Line2D at 0x1e4223de948>],
 'fliers': [<matplotlib.lines.Line2D at 0x1e4223bd408>,
  <matplotlib.lines.Line2D at 0x1e4223ceb88>,
  <matplotlib.lines.Line2D at 0x1e4223e5148>],
 'means': []}
4000
```

In [148]:

```
_, axes = plt.subplots(ncols=5, figsize = (16,4))
axes[0].hist([data[data['cluster'] == 0]['AddressCount'], data[data['cluster'] == 1]['Addre
axes[1].hist([data[data['cluster'] == 0]['CallsCount'], data[data['cluster'] == 1]['CallsCo
axes[2].hist([data[data['cluster'] == 0]['ClicksCount'], data[data['cluster'] == 1]['Clicks
axes[3].hist([data[data['cluster'] == 0]['UsersCount'], data[data['cluster'] == 1]['UsersCo
axes[4].hist([data[data['cluster'] == 0]['Distance'], data[data['cluster'] == 1]['Distance']
```

Out[148]:

Как мы видим из распределения, наибольший вклад в разбиение на кластеры вносят параметры AddressCount, ClicksCount, UsersCount. Предположим, что остальные переменные можно не учитывать при кластеризации, поскольку как видно на гистограмме и ящике с усами их распределения пересекаются. Вернемся к этому чуть позже (1)

Мы можем сказать исходя из графиков, что кластеры разбились на 3 категории в зависимости от популярности. Это наблюдается на всех гистограммах по признакам, отображающим к-во взаимодействий с фирмой. Ожидаемо кластеры разбиты так:

- Непопулярный большинство
- Средний среднее к-во объектов
- Топ меньшинство

Проверим сначала наше предположение с помощью критерия Крускала-Уоллиса(поскольку данные ненормальны) о равенстве средних во всех кластерах:

```
In [168]:
```

```
from scipy.stats import kruskal
```

In [173]:

```
kruskal(data[data['cluster'] == 0]['AddressCount'], data[data['cluster'] == 1]['AddressCount']
kruskal(data[data['cluster'] == 0]['CallsCount'], data[data['cluster'] == 1]['CallsCount']
kruskal(data[data['cluster'] == 0]['ClicksCount'], data[data['cluster'] == 1]['ClicksCountt']
kruskal(data[data['cluster'] == 0]['UsersCount'], data[data['cluster'] == 1]['UsersCount']
kruskal(data[data['cluster'] == 0]['Distance'], data[data['cluster'] == 1]['Distance'], data['cluster'] =
```

In [174]:

```
alpha0, alpha1, alpha2, alpha4,
```

Out[174]:

```
(4.1161142239024165e-12,
2.1767169281226076e-10,
3.6207978062510867e-12,
4.265180981876524e-12,
0.0171171820182455)
```

Заметим, что по всем показателям p-value статистики < 0.05 и мы отвергаем гипотезы, что все групповые средние равны по нашим показателям.

Поскольку для 1, 3, 4 параметра разделение средних видно еще из гистограммы и boxplot'а, то проверим равенство средних во 2 и 5 случаях критерием Манна-Уитни(т.к распределения ненормальны):

In [175]:

```
from scipy.stats import mannwhitneyu
```

In [176]:

```
_, value0 = mannwhitneyu(data[data['cluster'] == 0]['CallsCount'], data[data['cluster'] == _, value1 = mannwhitneyu(data[data['cluster'] == 1]['CallsCount'], data[data['cluster'] == _, value2 = mannwhitneyu(data[data['cluster'] == 0]['CallsCount'], data[data['cluster'] == value0, value1, value2
```

Out[176]:

(1.0854167429998915e-08, 0.029621331113086208, 2.771135224405998e-06)

In [177]:

```
_, value0 = mannwhitneyu(data[data['cluster'] == 0]['Distance'], data[data['cluster'] == 1]
_, value1 = mannwhitneyu(data[data['cluster'] == 1]['Distance'], data[data['cluster'] == 2]
_, value2 = mannwhitneyu(data[data['cluster'] == 0]['Distance'], data[data['cluster'] == 2]
value0, value1, value2
```

Out[177]:

(0.010372142125074243, 0.5, 0.018920986351833695)

Как мы видим из p-value, данные средние всех 3 классов по CallsCount различны, а вот про Distance такое сказать нельзя. Таким образом, вернемся к (1) и скажем, что переменная Distance слабо влияет на кластеризацию и в нашем случае может быть исключена как параметр кластеризации.

Сравним кластеры по доле траффика с карты и мобильного продукта

```
In [149]:
data_2 = pd.read_csv('Data_Projects.csv', ';', decimal=',')
In [150]:
```

data_2 = data_2[(data_2['CallsCount'] < 30000) & (data_2['AddressCount'] < 8000)]</pre>

In [155]:

```
print(data_2.shape, predictions.shape)
```

(76, 10) (76,)

In [156]:

```
data_2['Cluster'] = predictions
```

In [159]:

```
data_2.head()
```

Out[159]:

	AddressCount	CallsCount	ClicksCount	FirmsCount	GeoPart	MobilePart	UsersCount	
0	156	20	1903	176	0.416104	0.535762	1125	74
1	17	37	258	20	0.211679	0.430657	157	228
2	78	56	1956	185	0.349475	0.476594	1195	142
3	14	70	378	19	0.318718	0.463744	206	339
4	111	90	4089	90	0.556175	0.490573	2934	157
4								•

```
In [161]:
```

```
ls=2, figsize=(16, 4))
ta_2['Cluster'] == 0]['MobilePart'], data_2[data_2['Cluster'] == 1]['MobilePart'], data_2[data_2['Cluster'] == 1]['GeoPart'], data_2['Cluster'] == 1]['Cluster'] == 1]['Cluster'], data_2['Cluster'] == 1]['Cluster'], data_2['Cluster'], data_2['Cluster'] == 1]['Cluster'], data_2['Cluster'] == 1]['Cluster'], data_2['Cluster'] == 1]['Cluster'], data_2['Cluster'] == 1]['Cluster'], data_2['Cluster'], data_2['Cluster'],
```

Out[161]:

```
{'whiskers': [<matplotlib.lines.Line2D at 0x1e422f92808>,
  <matplotlib.lines.Line2D at 0x1e422f92e48>,
  <matplotlib.lines.Line2D at 0x1e422f98dc8>,
  <matplotlib.lines.Line2D at 0x1e422f988c8>,
  <matplotlib.lines.Line2D at 0x1e422faff48>,
  <matplotlib.lines.Line2D at 0x1e422fa7f88>],
 'caps': [<matplotlib.lines.Line2D at 0x1e422f92f08>,
  <matplotlib.lines.Line2D at 0x1e422f92548>,
  <matplotlib.lines.Line2D at 0x1e422fa0fc8>,
  <matplotlib.lines.Line2D at 0x1e422fa0c48>,
  <matplotlib.lines.Line2D at 0x1e422fb7508>,
  <matplotlib.lines.Line2D at 0x1e422fb7c08>],
 'boxes': [<matplotlib.lines.Line2D at 0x1e422f0b9c8>,
  <matplotlib.lines.Line2D at 0x1e422f8dd08>,
  <matplotlib.lines.Line2D at 0x1e422fa0608>],
 'medians': [<matplotlib.lines.Line2D at 0x1e422f98a08>,
  <matplotlib.lines.Line2D at 0x1e422fa7508>,
  <matplotlib.lines.Line2D at 0x1e422fb7a48>],
 'fliers': [<matplotlib.lines.Line2D at 0x1e422f982c8>,
 <matplotlib.lines.Line2D at 0x1e422fa7a48>,
  <matplotlib.lines.Line2D at 0x1e422fbe048>],
 'means': []}
```


Видим, что распределения наших групп несколько различаются. Проверим равенство групповых средних с помощью критерия Краскала-Уоллиса:

In [180]:

```
_, alpha0 = kruskal(data_2[data_2['Cluster'] == 0]['MobilePart'], data_2[data_2['Cluster'] _, alpha1 = kruskal(data_2[data_2['Cluster'] == 0]['GeoPart'], data_2[data_2['Cluster'] == alpha0, alpha1
```

Out[180]:

(0.0009905140255674642, 0.010798844825943385)

Данный уровень значимости отвергает гипотезу о равенстве средних во всех группах. Сравним погруппово с помощью критерия Манна-Уитни:

```
In [181]:
```

```
_, value0 = mannwhitneyu(data_2[data_2['Cluster'] == 0]['MobilePart'], data_2[data_2['Clust_, value1 = mannwhitneyu(data_2[data_2['Cluster'] == 1]['MobilePart'], data_2[data_2['Clust_, value2 = mannwhitneyu(data_2[data_2['Cluster'] == 0]['MobilePart'], data_2[data_2['Clust_value0, value1, value2
```

Out[181]:

```
(0.004650580237087045, 0.08055965816871613, 0.0012421563976341642)
```

Мы можем заметить, что нельзя отвергнуть гипотезу о равенстве средних в 2 и 3 кластерах. При этом попарное равенство средних в (1, 2), (1,3) кластерах отвергается

In [182]:

```
_, value0 = mannwhitneyu(data_2[data_2['Cluster'] == 0]['GeoPart'], data_2[data_2['Cluster' _, value1 = mannwhitneyu(data_2[data_2['Cluster'] == 1]['GeoPart'], data_2[data_2['Cluster' _, value2 = mannwhitneyu(data_2[data_2['Cluster'] == 0]['GeoPart'], data_2[data_2['Cluster' value0, value1, value2
```

Out[182]:

```
(0.0013957169246832512, 0.07280504769843348, 0.25332009623466245)
```

Заметим, что для признака GeoPart мы уже не можем отвергнуть гипотезу о попарном равенстве средних в (2, 3) и (1, 3) кластерах. При этом гипотеза о равенстве средних в (1, 2) кластерах отвергается

При этом для проверки равенства (2, 3) кластеров необходимо больше данных, поскольку boxplot'ы не похожи и возможно принятие гипотезы из-за малой наполненности кластеров(17 и 9 объектов соответственно)

Проверим гипотезу о том, что с мобильной версии заходят чаще, чем на сайт:

In [186]:

```
_, value1 = mannwhitneyu(data_2['GeoPart'], data_2['MobilePart'], alternative='less') value1
```

Out[186]:

2.8893583676575497e-06

Гипотеза о равенстве средних, при альтернативной о том, что в среднем MobilePart > GeoPart, отвергается.

Вывод:

Нами выделено 3 кластера(непопулярные места, объекты средней популярности и топовые заведения). Наполненность данных кластеров обратно пропорциональна популярности мест. Данные кластеры отличны друг от друга по параметрам: AddressCount, CallsCount, ClicksCount, UsersCount (прямо пропорционально популярности мест). Нами не получено сильных статистических различий между кластерами по параметру Distance.

Можно заметить, что показатели GeoPart и MobilePart различны для разных групп. С мобильной версии люди заходят преимущественно на популярные фирмы. С сайта отдается предпочтение местам средней популярности.

Также стоит отметить, что мобильное приложение используется чаще, чем сайт.