COGNOME NOME MATRICOLA.....

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali.

1. Determinare l'insieme delle soluzioni del seguente sistema lineare in 4 incognite sul campo dei numeri reali

$$\begin{cases} x_1 & -x_2 & +2x_3 & +x_4 & = & 1 \\ 2x_1 & -2x_2 & +x_3 & +x_4 & = & 0 \\ x_1 & -x_2 & -3x_3 & -x_4 & = & -2 \end{cases}.$$

2. Cosa è un sistema di generatori di uno spazio vettoriale V su un campo K? Quale dei seguenti insiemi è un sistema di generatori di \mathbb{R}^3 ?

$$S_1 = \{(1, 2, -1), (1, 0, -2), (0, 2, 1)\}$$

$$S_2 = \{(1, 1, 1), (0, 1, 2), (0, 0, 0), (0, 1, 1)\}$$

$$S_3 = \{(1, -1, 1), (0, 1, 2), (-1, 2, 1), (0, 0, 0)\}$$

- 3. Nello spazio vettoriale \mathbb{R}^4 si consideri il sottospazio vettoriale $W = \mathcal{L}((1,0,1,1),(0,1,1,1),(1,-1,0,0))$.
 - (i) Determinare una base di W.
 - (ii) Il vettore (2, -1, 1, 1) appartiene a W? \circ Si \circ No Perché?

- **4.** Si consideri l'applicazione lineare $T: \mathbb{R}^2 \to \mathbb{R}^3$ tale che T((x,y)) = (2x y, 2x + y, 4x + y).
 - (i) Determinare una base di $Ker\ T$ e una base di $Im\ T$ e dire se T è iniettiva e suriettiva.
 - (ii) Determinare la matrice associata all'applicazione lineare T nei riferimenti $\mathcal{B} = ((1,0),(0,1))$ di \mathbb{R}^2 e $\mathcal{B}' = ((1,0,1),(0,1,1),(0,0,1))$ di \mathbb{R}^3 .

5. Dato un endomorfismo $T:V\to V$ di uno spazio vettoriale V su un campo K, cosa è un autovettore di T? È vero che un autovettore di T è autovettore della funzione composta $T \circ T$? ∘ Si ∘ No Perché?

6. Data la matrice reale $A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, determinare autovalori e autospazi dell'endomorfismo T di \mathbb{R}^3 con matrice associata A nel riferimento canonico di \mathbb{R}^3 e, nel caso in cui A sia diagonalizzabile,

esibire una base di autovettori di T.

- 7. Fissato un riferimento cartesiano del piano della geometria elementare, si considerino i punti A(1,2) e B(-1,3).
 - (i) Determinare la retta passante per $A \in B$.
 - (ii) Determinare una retta ortogonale al segmento AB.

- 8. Fissato un riferimento cartesiano dello spazio della geometria elementare, si considerino le rette $s: \left\{ \begin{array}{ll} x-y+z &=& 1 \\ x+y+z &=& -1 \end{array} \right.$ e r:=(0,0,1)+(1,1,0)t.
 - (a) Le rette s ed r sono sghembe? \circ Si \circ No Perché?
 - (b) Determinare la comune perpendicolare a s ed r.
 - (c) Determinare un piano parallelo sia a r sia a s.