位场理论

北巷的猫 2019 年 4 月 12 日

目录

2

1	场的定义			
	1.1	场的定义	3	
	1.2	位场的定义	3	
	1.3	场的刻画	3	
		1.3.1 梯度	3	
		1.3.2 散度	4	
		1.3.3 旋度	4	
2	场的基本特征			
	2.1	源	4	
	2.2	位满足的方程	4	
	2.3	位的分类	4	
	2.4	磁偶极子产生的位	4	
3	几个重要的场			
	3.1	引力场	4	
	3.2	恒定电流场	5	
4	位场变换			
	4.1	δ函数的定义	5	
	4.2	格林公式	5	
	4.3	调和函数	6	
	4.4	泊松公式	6	
	4.5	延拓	6	
	4.6	基本位场变换公式	6	
	4.7	傅里叶变换	6	
	4.8	磁化极	6	

1 场的定义 3

1 场的定义

1.1 场的定义

数学上的定义:

A field may be defined mathematically as the function of a set of variables in a given space ${\circ}$

给定空间内一系列变量的函数

a field is a distribution in space of any quantity: scalar, vector, time dependent, or independent of time

物理上的定义

A field is a physical quantity, represented by a number or tensor, that has a value for each point in space and time!

场是一个用数字或张量表示的,在时间和空间上任意一点都有值的物 理量。

1.2 位场的定义

设矢量场在区域D内的场量函数为: $\vec{A}(x,y,z)$,对于区域D内的任一闭合曲线L,都有 $\oint_L A \cdot dl = 0$,则称矢量场 $\vec{A}(x,y,z)$ 为位场。

根据stokes定理:

$$\oint A \cdot dl = \iint_s \nabla \times A \cdot dS$$

得到: $\oint A \cdot dl = 0$,即矢量场A的积分与路径无关,即存在未函数,使得:

$$A = -\nabla \dot{U}$$

即无旋为位场。

1.3 场的刻画

1.3.1 梯度

$$\nabla \varphi = grad\varphi = \frac{\partial \varphi}{\partial x}\vec{i} + \frac{\partial \varphi}{\partial y}\vec{j} + \frac{\partial \varphi}{\partial z}\vec{k}$$

2 场的基本特征

4

1.3.2 散度

$$\nabla \cdot \vec{A} = div\vec{\varphi} = \frac{\partial \varphi}{\partial A_x} + \frac{\partial \varphi}{\partial A_y} + \frac{\partial \varphi}{\partial A_z}$$

1.3.3 旋度

$$abla imes ec{A} = rat ec{A} = egin{bmatrix} ec{i} & ec{j} & ec{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial x} & rac{\partial}{\partial x} \ A_x & A_y & A_z \ \end{pmatrix}$$

2 场的基本特征

- 2.1 源
- 2.2 位满足的方程
- 2.3 位的分类
- 2.4 磁偶极子产生的位

3 几个重要的场

- 3.1 引力场
 - 1.万有引力定律

$$\overrightarrow{F_{12}} = -f\frac{m_1m_2}{r_{12}^3}\overrightarrow{r_{12}}$$

2.引力场的涡旋特征

$$\oint\limits_{L} \overrightarrow{\mathbf{G}} \cdot \mathbf{d} \overrightarrow{l} = 0$$

根据斯托克斯公式

$$\oint_{L} \overrightarrow{G} \cdot d\overrightarrow{l} = \iint_{S} rot \overrightarrow{G} \cdot d\overrightarrow{s}$$

$$\nabla \times \overrightarrow{G} \cdot d\overrightarrow{s}$$

4 位场变换

它说明引力场了是处处无旋的。

因此,引入标位

$$\mathbf{U} = (\mathbf{x}, \mathbf{y}, \mathbf{z}) = \int_{(\mathbf{x_0}, \mathbf{y_0}, \mathbf{z_0})}^{(\mathbf{x}, \mathbf{y}, \mathbf{z})} \overrightarrow{G} \cdot \mathbf{d} \overrightarrow{l}$$

5

3.2 恒定电流场

4 位场变换

4.1 δ函数的定义

狄拉克函数(Dirac Delta Function)

定义

$$\delta(x) = \begin{cases} +\infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$$

性质

$$\int_{+\infty}^{-\infty} \delta(x) \mathrm{d}x = 1$$

4.2 格林公式

1.格林第一公式[1]

$$\iint\limits_{S} V \frac{\partial U}{\partial n} ds = \iiint\limits_{V} (V \nabla^{2} U + \nabla U \nabla U) dv$$

2.格林第二公式

$$\iint\limits_{S} \left(V \frac{\partial U}{\partial n} - U \frac{\partial V}{\partial n} \right) ds = \iiint\limits_{V} \left(V \nabla^{2} U - U \nabla^{2} V \right) dv$$

参考文献 6

- 4.3 调和函数
- 4.4 泊松公式
- 4.5 延拓
- 4.6 基本位场变换公式
- 4.7 傅里叶变换
- 4.8 磁化极

参考文献

[1] 张秋光. 《场论(上)》, page 342. 地质出版社, 1983.