TP2

TP-2: Droite de Marchés des Capitaux

Nantas Paul - Poupard Paul - Spriet Thibault - Ung Théophile

Février 2021

Données

Séries de rendement quatidien pour 11 valeurs:

```
daily.ret.file <- file.path(get.data.folder(), "daily.ret.rda")
load(daily.ret.file)
kable(table.Stats(daily.ret), "latex", booktabs=T) %>% kable_styling(latex_options="scale_down")
```

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	HD	PG	KO
Observations	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000	3308.0000
NAs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Minimum	-0.1792	-0.1278	-0.1171	-0.2500	-0.0984	-0.0896	-0.1395	-0.1295	-0.0822	-0.0790	-0.0867
Quartile 1	-0.0077	-0.0094	-0.0073	-0.0103	-0.0038	-0.0047	-0.0068	-0.0055	-0.0067	-0.0046	-0.0047
Median	0.0010	0.0008	0.0005	0.0000	0.0006	0.0010	0.0001	0.0008	0.0006	0.0004	0.0007
Arithmetic Mean	0.0012	0.0015	0.0008	0.0005	0.0004	0.0006	0.0001	0.0004	0.0008	0.0004	0.0005
Geometric Mean	0.0010	0.0012	0.0006	0.0001	0.0003	0.0005	0.0000	0.0003	0.0006	0.0003	0.0004
Quartile 3	0.0112	0.0123	0.0088	0.0106	0.0056	0.0070	0.0073	0.0070	0.0082	0.0055	0.0059
Maximum	0.1390	0.2695	0.1860	0.2952	0.1452	0.1216	0.1719	0.0988	0.1407	0.1021	0.1388
SE Mean	0.0003	0.0004	0.0003	0.0005	0.0002	0.0002	0.0003	0.0002	0.0003	0.0002	0.0002
LCL Mean (0.95)	0.0005	0.0006	0.0002	-0.0005	0.0000	0.0002	-0.0004	-0.0001	0.0002	0.0000	0.0001
UCL Mean (0.95)	0.0019	0.0023	0.0013	0.0014	0.0008	0.0011	0.0006	0.0009	0.0013	0.0007	0.0009
Variance	0.0004	0.0006	0.0003	0.0007	0.0001	0.0002	0.0002	0.0002	0.0003	0.0001	0.0001
Stdev	0.0196	0.0243	0.0170	0.0266	0.0121	0.0130	0.0150	0.0140	0.0162	0.0109	0.0113
Skewness	-0.2151	1.4889	0.4319	0.7627	0.1379	-0.0084	0.4199	-0.3815	0.5114	0.0555	0.5004
Kurtosis	6.2706	16.8872	10.2176	20.9458	15.2824	7.3976	15.4203	7.3856	6.4641	8.1017	14.3236

Rendement annuel moyen:

Matrice de corrélation des rendements:

```
correl <- cor(daily.ret)
correl[lower.tri(correl)] <- NA
options(knitr.kable.NA = '')
kable(correl, "latex", booktabs=T, digits=2, caption="Corrélation des rendements quotidiens") %>%
kable_styling(latex_options="scale_down")
```

Table 1: Rendement annuel moyen

	Rendement $(\%)$
AAPL	30.2
AMZN	37.2
MSFT	19.0
\mathbf{F}	11.4
SPY	9.9
QQQ	15.3
XOM	3.5
MMM	9.9
$_{ m HD}$	19.2
PG	9.3
КО	12.5

Table 2: Corrélation des rendements quotidiens

	AAPL	AMZN	MSFT	F	SPY	QQQ	XOM	MMM	HD	PG	KO
AAPL	1	0.46	0.49	0.37	0.61	0.75	0.40	0.45	0.42	0.32	0.32
AMZN		1.00	0.50	0.33	0.56	0.66	0.39	0.41	0.44	0.27	0.30
MSFT			1.00	0.39	0.71	0.76	0.53	0.53	0.49	0.44	0.46
\mathbf{F}				1.00	0.56	0.53	0.37	0.44	0.46	0.30	0.31
SPY					1.00	0.92	0.77	0.75	0.71	0.62	0.60
QQQ						1.00	0.64	0.69	0.66	0.52	0.52
XOM							1.00	0.60	0.47	0.52	0.49
MMM								1.00	0.55	0.50	0.47
$_{ m HD}$									1.00	0.45	0.44
PG										1.00	0.57
КО											1.00

Droite de Marché des Capitaux (Capital Market Line)

• A partir des calculs présentés en cours, mettre en oeuvre une méthode numérique pour déterminer le portefeuille tangent quand les poids des actifs risqués sont contraints à être positifs: $w_i \geq 0$.

Portefeuille à Variance Minimale

```
A.mat <- matrix(rep(1,length(mu)), ncol=1)
b <- 1
qp <- solve.QP(2*Sigma, mu*0, A.mat, b, meq=1)
w <- qp$solution
names(w) <- names(ret)
w <- data.frame(w)
names(w) = "allocation"
min.ret <- sum(qp$solution * mu)</pre>
```

Calcul de la Frontière

```
Avec W_i \geq 0
```

```
mu.star <- seq(from=min.ret+abs(min(mu))/100, to=max(mu)-abs(max(mu))/100, length.out=200)
mu.free <- 0.03
sol <- NULL
for(mu.s in mu.star) {
# constraints: 2 equality and 1 inequality
A.sum <- matrix(rep(1,length(mu)), ncol=1)
A.mat <- cbind(A.sum, mu, diag(length(mu)))
b <- c(1, mu.s, rep(0, length(mu)))
qp <- solve.QP(2*Sigma, rep(0,length(mu)), A.mat, b, meq=2)
sharpe <- (mu.s - mu.free) / sqrt(qp$value)</pre>
  tmp <- matrix(c(mu.s, sqrt(qp$value), sharpe, qp$solution), nrow=1)
if(is.null(sol)) {
  sol <- tmp
} else {
  sol <- rbind(sol, tmp)</pre>
}
}
```

On remarque que les 2 portefeuilles sont composés à plus de 70% de deux titres. Le portefeuille de variance minimale de KO (coca-cola) à 36% et de PG (Procter & Gamble) à 42% qui sont deux entreprises de consommable. Ces 2 actions sont, d'après le tableau 2 corrélées à 57%.

Le tangent quant à lui est composé de AAPL (Apple) à 39% et de AMZN (Amazon) à 33 %. Il est donc composé de deux entreprises des nouvelles technologies. Ces deux actions sont corrélées à 46%.

Les deux portefeuilles sont donc peut diversifier car ils sont chacun composé que de deux actions fortement corrélées.

Table 3: Portefeuille risqué de varaince minimale avec les poids positifs

	Allocations		Allocations
AAPL	0.01286	mu	0.11531
AMZN	0.00000	stdev	0.15221
MSFT	0.00000		
\mathbf{F}	0.00000		
SPY	0.00000		
QQQ	0.11774		
XOM	0.00000		
MMM	0.08152		
$^{\mathrm{HD}}$	0.00485		
PG	0.42204		
КО	0.36099		

Table 4: Portefeuille risqué tangent avec les poids positifs

	Allocations		Allocations
AAPL	0.38889	mu	0.28211
AMZN	0.33250	stdev	0.24069
MSFT	0.00000		
F	0.00000		
SPY	0.00000		
QQQ	0.00000		
XOM	0.00000		
MMM	0.00000		
HD	0.09038		
PG	0.00000		
КО	0.18823		

Ajout d'un actif sans risque

Sur ce graphique, le point bleu représente le portefeuille de variance minimale et le point rouge le portefeuille tangent.

Comme nous l'avons vue précédemment, le porte feuille tangent est peu varié avec plus de 70% des allocations réparties sur deux titres fortement corrélés. Il conviend rait alors d'investir une partie de son capital dans un actif sans risque pour équilibrer notre porte feuille, avec un rendement plus faible mais moins risqué.

L'autre solution est de diversifier son portefeuille tangent, en imposant ajoutant de nouvelles conditions aux allocations des titres.

• Même calcul en ajoutant des contraintes supplémentaires qui vous semblent pertinentes (ex: pas plus de 20% de l'actif risqué alloué à un seul titre, etc.)

Table 5: Allocations du portefeuille risqué de varaince minimale avec les poids positifs et inferieurs à 0.2

	Allocations
AAPL	0.00000
AMZN	0.00000
MSFT	0.00000
F	0.00000
SPY	0.14010
QQQ	0.18803
XOM	0.06583
MMM	0.16134
HD	0.04470
PG	0.20000
KO	0.20000

Portefeuille à Variance Minimale

Avec $W_i \geq 0$ et $W_i \leq 20$ On introduit un nouveau paramètre : lim. Il va nous permettre d'imposer une valeur maximal au w_i .

On remarque que les poids sont bien positifs et inferieurs à 20%. On peut également noter que le portefeuille de variance minimale est plus équilibrer.

Calcul de la Frontière

```
Avec W_i \ge 0 et W_i \le 20
```

Puisque nous avons ajouter la contrainte supplémentaire sur les w_i , la fonction solve.QP ne trouvait plus de solution pour des rendement trop élevé. Nous avons donc dû limiter les rendements à 0,24. Nous avons remarqué que c'est à partir de cette valeur de rendement que la fonction n'arrivait plus à trouver de solution.

```
mu.star <- seq(from=min.ret+abs(min(mu))/100, to=0.24, length.out=200)
mu.free <- 0.03
sol <- NULL
for(mu.s in mu.star) {
# constraints: 2 equality
A.sum <- matrix(rep(1,length(mu)), ncol=1)
A.mat <- cbind(A.sum, mu, diag(length(mu)),-1*diag(length(mu)))
b <- c(1, mu.s, rep(0, length(mu)), rep(-lim, length(mu)))
qp <- solve.QP(2*Sigma, rep(0,length(mu)), A.mat, b, meq=2)
sharpe <- (mu.s - mu.free) / sqrt(qp$value)</pre>
  tmp <- matrix(c(mu.s, sqrt(qp$value), sharpe, qp$solution), nrow=1)</pre>
if(is.null(sol)) {
  sol <- tmp
} else {
  sol <- rbind(sol, tmp)</pre>
}
}
```

Table 6: Portefeuille risqué tangent avec les poids positifs et inferieurs à 0.2

	Allocations		Allocations
AAPL	0.20000	mu	0.22601
AMZN	0.20000	stdev	0.19773
MSFT	0.09361		
F	0.00000		
SPY	0.00000		
QQQ	0.00000		
XOM	0.00000		
MMM	0.00000		
HD	0.20000		
PG	0.10639		
КО	0.20000		

Ajout d'un actif sans risque

Sur ce graphique, le point bleu représente le portefeuille de variance minimale et le point rouge le portefeuille tangent.

Le porte feuille tangent est plus diversifié avec 4 actions à 20% d'allocation chacune : AAPL, AMZN, HD, et KO. Nous pouvons calculer le rapport $\frac{\mu}{\sigma}$ pour déterminer si ce porte feuille tangent est mieux optimisé. Das le cadre de la première partie on obtient

 $\frac{0.28211}{0.24069} = 1.1721$

Et dans celui de la seconde :

$$\frac{0.22601}{0.19773} = 1.1430$$

On remarque donc que ce rapport est plus avantageux sans limiter les w_i à 20%. À la question 1, le portefeuille tangent était composé à plus de 70% d'AAPL et de AMZN. On peut donc en déduire que les actions AAPL et AMZN ont un fort rendement ce qui est confirmé par le tableau 1. Cependant, le tableau 2 nous montre que KO est l'une des actions les moins corrélés avec AAPL et AMZN. D'autre part, notre portefeuille contient également 10% de PG, qui est l'action la moins corrélé avec AMZN et AAPL. Tout cela nous a permis de diversifier notre portefeuille et donc de diminuer le risque. Il faut cependant nuancer notre analyse car bien que ces actions soient les moins corrélés de l'indice, leurs corrélations restent relativement élevées (aux alentours de 30%).