HANDOUT # 4

Comparison of Treatment Means

- 1. The Next Steps After Rejecting $H_o: \mu_1 = \cdots = \mu_t$
- 2. Contrasts
- 3. Decomposition of Treatment Sum of Squares
- 4. Example: Stopping Distance
- 5. Multiple Testing
- 6. Bonferroni Simultaneous Inferences
- 7. Scheffé Simultaneous Inferences and Confidence Intervals
- 8. Multiple Comparisons Amongst All Treatment Means Fisher's Protected LSD, Tukey's HSD, SNK
- 9. Comparing Treatment Means to a Control:

 Dunnett's Procedure
- 10. Finding a Group of Best Treatments: Hsu's Procedure
- 11. Response Curves for Treatments with Quantitative Levels
- 12. Summary of the Various Procedures

Post-hoc Analyses for Determining Differences in Treatment Means

If the F-Test fails to reject $H_o: \mu_1 = \cdots = \mu_t$, then we state that there is not sufficient evidence in the data to support the research hypothesis, H_1 with the chance of a Type II error in the decision given by

$$\beta(\lambda) = P[\text{Type II error}] = 1 - \gamma(\lambda) \quad \text{for} \quad \lambda = \frac{\sum_{i=1}^{t} n_i (\mu_i - \bar{\mu}_.)^2}{\sigma_e^2}.$$

However, in nearly all cases we do not know the value of λ because it is a function of the unknown treatment means: $\mu_1, \mu_2, \dots, \mu_t$. By failing to reject H_o , there is not much further we can say about the treatment means except to provide the power curve of the ANOVA F-test to demonstrate possible values for Type II errors:

If the F-test rejects $H_o: \mu_1 = \cdots = \mu_t$, then we know that

$$P[\text{Type I error}] = \gamma(0) = \alpha.$$

Thus, we have a high degree of certainty in our decision but now our conclusion, reject H_o : $\mu_1 = \cdots = \mu_t$ and state that there is significant evidence in the data that differences exist in the treatment means, leaves uncertainty in what type of differences may exist in the treatment means:

- 1. Are all t different means different?
- 2. Are there groups of means for which there are not significant differences?
- 3. If the treatment levels are quantitative, are there specific trends in the means?

These are the types of questions we will attempt to answer in this handout.

Describing differences in Treatment Means:

For this handout we will impose the following model and then obtain results concerning specified differences in the treatment means.

Model:

$$y_{ij} = \mu_i + e_{ij}$$
; for $i = 1, ..., t$ and $j = 1, ..., n_i$,
where $\mu_i = E[Y_{ij}]$ is the ith treatment mean and e_{ij} are iid $N(0, \sigma_e^2)$ random variables.

Definition A contrast in the treatment means μ_1, \ldots, μ_t is defined to be a linear combination

$$C = \sum_{i=1}^{t} k_i \mu_i \quad \text{with} \quad \sum_{i=1}^{t} k_i = 0$$

Examples: Suppose we have t = 5 treatment means.

1. Is $\mu_1 = \mu_3$?

Write Contrast $C_1 = \mu_1 - \mu_3$ and test $H_o: C_1 = 0$.

2. Is the average of μ_1, μ_2 equal to the average of μ_3, μ_4, μ_5 ?

Write contrast

$$C_2 = (\mu_1 + \mu_2)/2 - (\mu_3 + \mu_4 + \mu_5)/3$$

and test $H_o: C_2 = 0$.

Are C_1 and C_2 valid contrasts?

For
$$C_1$$
: $\sum_{i=1}^{t} k_i = 1 + 0 + (-1) = 0$

For
$$C_2$$
: $\sum_{i=1}^{t} k_i = \frac{1}{2} + \frac{1}{2} + \frac{-1}{3} + \frac{-1}{3} + \frac{-1}{3} = 0$

In order to make inferences about the contrasts, we need to determine point estimators, sampling distributions of the point estimators, and test statistics.

Inferences for Contrasts

1. Point estimators: For the contrast $C = \sum_{i=1}^{t} k_i \mu_i$, the LSE of C is obtained by replacing μ_i with its LSE:

$$\hat{C} = \sum_{i=1}^{t} k_i \hat{\mu}_i = \sum_{i=1}^{t} k_i \bar{y}_i.$$

- 2. Sampling Distribution of \hat{C}
 - (a.) Unbiased estimator of C:

$$\mu_{\hat{C}} = E[\hat{C}] = E\left[\sum_{i=1}^{t} k_i \bar{y}_i\right]$$

$$= \sum_{i=1}^{t} k_i E[\bar{y}_i]$$

$$= \sum_{i=1}^{t} k_i \mu_{i.} = C$$

(b.) $Var[\hat{C}]$:

$$\sigma_{\hat{C}}^{2} = Var[\hat{C}] = Var \left[\sum_{i=1}^{t} k_{i} \bar{y}_{i.} \right]$$

$$= \sum_{i=1}^{t} k_{i}^{2} Var[\bar{y}_{i.}] + \sum_{1 \leq i \neq \ell \leq t} k_{i} k_{\ell} Cov(\bar{y}_{i.}, \bar{y}_{\ell.})$$

$$= \sum_{i=1}^{t} k_{i}^{2} \sigma_{e}^{2} / n_{i.} + 0$$

$$= \sigma_{e}^{2} \sum_{i=1}^{t} k_{i}^{2} / n_{i.}$$

(c.) Sampling Distribution of \hat{C} :

 \hat{C} is a linear combination of $\bar{y}_{1.}, \bar{y}_{2.}, \cdots, \bar{y}_{t.}$, which are independent normal r.v.'s, therefore, \hat{C} is normally distributed with mean equal to C and variance equal to $\sigma_{\hat{c}}^2$. That is, \hat{C} is distributed $N(C, \sigma_{\hat{C}}^2)$

3. A $100(1-\alpha)\%$ Confidence Interval for C:

$$\hat{C} \pm t_{\alpha/2, n-t} \hat{\sigma}_e \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}},$$

where $\hat{\sigma}_e = \sqrt{MSE}$

Justification:

Pivot
$$= \frac{\hat{C} - C}{\hat{\sigma}_e \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}}}$$

$$= \frac{(\hat{C} - C) / \left(\sigma_e \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}}\right)}{\left(\hat{\sigma}_e \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}}\right) / \left(\sigma_e \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}}\right)}$$

$$= \frac{(\hat{C} - C) / \left(\sigma_e \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}}\right)}{\sqrt{\hat{\sigma}_e^2 / \sigma_e^2}}$$

$$= \frac{(\hat{C} - C) / \left(\sigma_e \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}}\right)}{\sqrt{\frac{SSE / \sigma_e^2}{(n-t)}}}$$

$$\stackrel{\mathcal{D}}{=} \frac{N(0,1)}{\sqrt{\chi_{n-t}^2 / (n-t)}}$$

 $\stackrel{\mathcal{D}}{=}$ t - Distribution with df = n - t

- 4. Test Statistic for Testing $H_o: C = 0$ versus $H_1: C \neq 0$
 - **A.** Sum of Squares Associated with the Contrast C: Let $\hat{C} = \sum_{i=1}^t k_i \mu_i$ then

$$SS_C = \frac{\left(\sum_{i=1}^t k_i \bar{y}_i\right)^2}{\sum_{i=1}^t \frac{k_i^2}{n_i}} = \frac{\hat{C}^2}{\sum_{i=1}^t \frac{k_i^2}{n_i}} \quad \left(SS_C = \frac{r\hat{C}^2}{\sum_{i=1}^t k_i^2} \text{ when } n_1 = \dots = n_t = r\right)$$

Derivation of the above Sum of Squares: Recall from Handout 2, that when we are testing

$$H_o: \mathbf{H}\boldsymbol{\mu} = \mathbf{h} \quad \text{vs} \quad H_1: \mathbf{H}\boldsymbol{\mu} \neq \mathbf{h},$$

where **H** and **h** are specified vectors of dimension k x t and k x 1, respectively, then the sum of squares associated with the null hypothesis $H_o: \mathbf{H}\boldsymbol{\mu} = \mathbf{h}$ is given by

$$SS_{\mathbf{H}} = (\mathbf{H}\hat{\boldsymbol{\mu}} - \mathbf{h})^T \left(\mathbf{H} \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{H}^T \right)^{-1} (\mathbf{H}\hat{\boldsymbol{\mu}} - \mathbf{h})$$

and $\frac{1}{\sigma_e^2}SS_{\mathbf{H}}$ has a chisquare distribution with $df = rank(\mathbf{H})$, under H_o and $SS_{\mathbf{H}}$ is independent of MSE.

First write $H_o: C = 0$ in the form of $H_o: \mathbf{H}\boldsymbol{\mu} = \mathbf{h}$

 $C = \sum_{i=1}^{t} k_i \mu_i = 0$ implies that $\mathbf{H} = (k_1, \dots, k_t)$ and $\mathbf{h} = 0$. Therefore,

$$(\mathbf{H}\hat{\boldsymbol{\mu}} - \mathbf{h}) = \sum_{i=1}^{t} k_i \bar{y}_{i.} = \hat{C}$$

The design matrix for the cell means model is

$$\mathbf{X} = Diagonal\left(\mathbf{J}_{n_1}, \mathbf{J}_{n_2}, \dots, \mathbf{J}_{n_t}\right)$$
 where \mathbf{J}_{n_t} ,

is a column vector of n_i 1's. Thus,

$$\left(\mathbf{X}^{T}\mathbf{X}\right) = Diag\left(n_{1}, n_{2}, \dots, n_{t}\right) \Rightarrow \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1} = Diag\left(\frac{1}{n_{1}}, \frac{1}{n_{2}}, \dots, \frac{1}{n_{t}}\right) \Rightarrow$$

$$\mathbf{H} \left(\mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{H}^{T} = (k_{1}, k_{2}, \dots, k_{t}) \begin{pmatrix} \frac{1}{n_{1}} & 0 & 0 & \dots & 0 \\ 0 & \frac{1}{n_{2}} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \frac{1}{n_{t}} \end{pmatrix} \begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{t} \end{pmatrix}$$

$$= \left(\frac{k_1}{n_1}, \frac{k_2}{n_2}, \dots, \frac{k_t}{n_t}\right) \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{pmatrix}$$
$$= \sum_{i=1}^t k_i^2 / n_i$$

Therefore,
$$\left(\mathbf{H}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{H}^{T}\right)^{-1} = 1/\left(\sum_{i=1}^{t}k_{i}^{2}/n_{i}\right)$$

Finally, we obtain the sum of squares associated with contrast C, SS_C :

$$SS_C = SS_{\mathbf{H}} = (\mathbf{H}\hat{\boldsymbol{\mu}} - \mathbf{h})^T \left(\mathbf{H} \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{H}^T \right)^{-1} (\mathbf{H}\hat{\boldsymbol{\mu}} - \mathbf{h})$$

$$= \left(\sum_{i=1}^t k_i \bar{y}_i \right)^T \left(1 / \left(\sum_{i=1}^t k_i^2 / n_i \right) \right) \left(\sum_{i=1}^t k_i \bar{y}_i \right)$$

$$= \frac{\left(\sum_{i=1}^t k_i \bar{y}_i \right)^2}{\sum_{i=1}^t \frac{k_i^2}{n_i}}$$

$$= \frac{\hat{C}^2}{\sum_{i=1}^t \frac{k_i^2}{n_i}}$$

B. From our general result we have that when H_o is true and C=0,

 SS_C/σ_e^2 has a chisquare distribution with $df = Rank(\mathbf{H}) = 1$ and is distributed independent of MSE. Thus, the test statistic,

$$F = \frac{SS_C}{MSE}$$

has, under H_o , a central F-distribution with df = 1, n - t.

5. Partition of SS_{TRT} :

Next, we will write SS_{TRT} as the sum of t-1 independent sum of squares.

Definition: Two contrasts $C_1 = \sum_{i=1}^t k_i \mu_i$ and $C_2 = \sum_{i=1}^t d_i \mu_i$ are said to be **orthogonal** if $\sum_{i=1}^t k_i d_i = 0$

Note: In the textbook, the author is defining contrasts in terms of $\hat{\mu}_i$'s and not in terms of μ_i 's. Therefore, the author's definition of orthogonal contrasts is with respect to the $\hat{\mu}_i = \bar{y}_i$ and not with respect to the μ_i 's.

There exists t-1 contrasts in the t treatment means $\mu_1, \mu_2, \dots, \mu_t$:

 $C_1, C_2, \ldots, C_{t-1}$ such that the t-1 contrasts are mutually orthogonal.

If $n_1 = n_2 = \cdots = n_t = r$, then the t-1 contrasts satisfy:

$$SS_{TRT} = \sum_{i=1}^{t-1} SS_{C_i}$$

with the t-1 random variables $SS_{C_1}, SS_{C_2}, \ldots, SS_{C_{t-1}}$ independently distributed.

In order to have the t-1 contrasts $SS_{C_1}, SS_{C_2}, \ldots, SS_{C_{t-1}}$ independent in the case of unequal sample sizes it is necessary to impose the further restriction that

$$\sum_{i=1}^{t} \frac{k_i d_i}{n_i} = 0$$

The partition of sum of squares treatment into t-1 independent contrasts provides the researcher with t-1 independent bits of information on the types of differences that may exist in the t treatment means.

Verification of the independence of the t-1 orthogonal contrasts:

Because the t-1 contrasts, $C_1, C_2, \ldots, C_{t-1}$, are functions of the t independent normally distributed random variables, $\bar{y}_1, \ldots, \bar{y}_t$, we only need to show that the contrasts are pairwise uncorrelated to prove their joint independence:

$$Cov\left(\hat{C}_{i}, \hat{C}_{j}\right) = Cov\left(\sum_{i=1}^{t} k_{i}\bar{y}_{i.}, \sum_{l=1}^{t} d_{l}\bar{y}_{i.}\right)$$

$$= \sum_{i=1}^{t} \sum_{l=1}^{t} k_{i}d_{l}Cov\left(\bar{y}_{i.}, \bar{y}_{l.}\right)$$

$$= \sum_{i=1}^{t} k_{i}d_{i}Var(y_{i.}) + \sum_{i\neq l} Cov\left(\bar{y}_{i.}, \bar{y}_{l.}\right)$$

$$= \sigma_{e}^{2} \sum_{i=1}^{t} \frac{k_{i}d_{i}}{n_{i}} + 0$$

Therefore,
$$Cov\left(\hat{C}_i, \hat{C}_j\right) = 0$$
 if and only if, $\sum_{i=1}^t \frac{k_i d_i}{n_i} = 0$

Note, the partition of SS_{TRT} into t-1 sum of squares associated with t-1 orthogonal contrasts yields a precise mathematical decomposition of the differences in the t treatment means into t-1 independent units of "non-overlapping" knowledge, C_1 , C_2 , ..., C_{t-1} . However, the individual contrasts in the group of t-1 contrasts may not have practical interpretation for the researcher. Thus, we will often select a set of contrasts that are not orthogonal but are the contrasts which will yield insights to the researcher concerning particular types of differences in the treatment means.

Example of an Analysis of Differences in Treatment Means

The following example will be used to illustrate the many ways in which we can evaluate the types of differences that may exist in treatment means.

Comparison of Brands of Tires

The stopping distance at 35 mph was measured for each of six brands of automobile tires. There were four replications for each brand. The brands had the following further classification.

- 1. Brands S1 and S2 had an All Terrain construction
- 2. Brands B1 and B2 had a Bias construction
- 3. Brands R1 and R2 had a Radial construction
- 4. Brand S1 is the most widely used brand of tire

	Stopping Distances				
Brand	Rep 1	Rep 2	Rep 3	Rep 4	
S1	22	20	25	17	
S2	26	22	27	21	
B1	16	20	14	18	
B2	20	25	26	21	
R1	28	29	23	24	
R2	22	15	19	16	

First test $H_o: \mu_1 = \mu_2 = \cdots = \mu_6$ vs $H_1:$ not all μ_i equal

The test rejected H_o and the researchers were then interested in testing the following seven contrasts:

			Br	and				
C_i	S_1	S_2	B_1	B_2	R_1	R_2	Contrast	Purpose
1	2	2	-1	-1	-1	-1	$\frac{1}{2}(\mu_{S_1} + \mu_{S_2}) \text{ vs } \frac{1}{4}(\mu_{B_1} + \mu_{B_2} + \mu_{R_1} + \mu_{R_2})$	TERRAIN vs Rest
2	1	1	-1	-1	0	0	$\frac{1}{2}(\mu_{S_1} + \mu_{S_2}) \text{ vs } \frac{1}{2}(\mu_{B_1} + \mu_{B_2})$	TERRAIN vs BIAS
3	1	1	0	0	-1	-1	$\frac{1}{2}(\mu_{S_1} + \mu_{S_2}) \text{ vs } \frac{1}{2}(\mu_{R_1} + \mu_{R_2})$	TERRAIN vs RADIAL
4	0	0	1	1	-1	-1	$\frac{1}{2}(\mu_{B_1} + \mu_{B_2}) \text{ vs } \frac{1}{2}(\mu_{R_1} + \mu_{R_2})$	BIAS VS RADIAL
5	1	-1	0	0	0	0	μ_{S_1} vs μ_{S_2}	WITHIN TERRAIN
6	0	0	1	-1	0	0	μ_{B_1} vs μ_{B_2}	WITHIN BIAS
7	0	0	0	0	1	-1	μ_{R_1} vs μ_{R_2}	WITHIN RADIAL

Since we have 6 μ_i 's (Treatment Means), there is a set of 5=6-1 contrasts which are mutually orthogonal. One such set consists of contrasts 1, 4, 5, 6, 7. There are many more such sets of 5 mutually orthogonal contrasts.

The following SAS program will be used to analyze the data:

```
* brand.sas;
ods html; ods graphics on;
option ls=80 ps=50 nocenter nodate;
title 'Stopping Distance of 6 brands of tires';
data old; array Y Y1-Y4;
input BRD $ Y1-Y4; do over Y; SD=Y; output; end;
      drop Y1-Y4;
      label BRD = 'Brand of Tire' SD = 'Stopping Distance';
cards;
S1 22 20 25 17
S2 26 22 27 21
B1 16 20 14 18
B2 20 25 26 21
R1 28 29 23 24
R2 22 15 19 16
run;
proc glm data=old order=data;
class BRD;
model SD=BRD;
contrast 'TERRAIN VS OTHERS'
                               BRD
                                     2 2 -1 -1 -1;
contrast 'TERRAIN VS BIAS'
                               BRD
                                     1 1 -1 -1 0 0;
contrast 'TERRAIN VS RADIAL'
                               BRD
                                     1 1 0 0 -1 -1;
contrast 'BIAS VS RADIAL'
                               BRD
                                     0 0 1 1 -1 -1;
contrast 'WITHIN TERRAIN'
                               BRD
                                     1 -1 0 0 0 0;
contrast 'WITHIN BIAS'
                               BRD
                                     0 0 1 -1 0 0;
contrast 'WITHIN RADIAL'
                               BRD
                                     0 \quad 0 \quad 0 \quad 0 \quad 1 \quad -1;
estimate 'TERRAIN VS OTHERS'
                                     2 2 -1 -1 -1 -1;
                               BRD
estimate 'TERRAIN VS BIAS'
                               BRD
                                     1 1 -1 -1 0 0;
estimate 'TERRAIN VS RADIAL'
                               BRD
                                     1 1 0 0 -1 -1;
estimate 'BIAS VS RADIAL'
                               BRD
                                     0 0 1 1 -1 -1;
estimate 'WITHIN TERRAIN'
                               BRD
                                     1 -1 0 0 0
estimate 'WITHIN BIAS'
                               BRD
                                     0 0 1 -1 0 0;
estimate 'WITHIN RADIAL'
                               BRD
                                     0 \quad 0 \quad 0 \quad 0 \quad 1 \quad -1;
contrast 'TRT EFFECT'
                              2 2 -1 -1 -1 -1,
                       BRD
                        BRD
                              0 \quad 0 \quad 1 \quad 1 \quad -1 \quad -1
                        BRD
                              1 -1 0 0 0 0,
                        BRD
                                0 1 -1 0 0,
                        BRD
                              0 \ 0 \ 0 \ 1 \ -1;
```

run;

OUTPUT FROM SAS

Stopping Distance of 6 brands of tires

The GLM Procedure

Class Level Information

Class Levels Values

BRD 6 S1 S2 B1 B2 R1 R2

Number of Observations Read 24 Number of Observations Used 24

The GLM Procedure

Dependent Variable: SD Stopping Distance

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	246.0000000	49.2000000	5.47	0.0031
Error	18	162.0000000	9.0000000		
Corrected Total	23	408.0000000			

Least Squares Means

		Standard	
BRD	SD LSMEAN	Error	Pr > t
S1	21.0000000	1.5000000	<.0001
S2	24.0000000	1.5000000	<.0001
B1	17.0000000	1.5000000	<.0001
B2	23.0000000	1.5000000	<.0001
R1	26.0000000	1.5000000	<.0001
R2	18.000000	1.5000000	<.0001

Dependent Variable: SD Stopping Distance

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
C1: TERRAIN VS OTHERS	1	12.00000000	12.00000000	1.33	0.2633
C2: TERRAIN VS BIAS	1	25.00000000	25.00000000	2.78	0.1129
C3: TERRAIN VS RADIAL	1	1.00000000	1.00000000	0.11	0.7427
C4: BIAS VS RADIAL	1	16.00000000	16.00000000	1.78	0.1991
C5: WITHIN TERRAIN	1	18.00000000	18.00000000	2.00	0.1744
C6: WITHIN BIAS	1	72.00000000	72.00000000	8.00	0.0111
C7: WITHIN RADIAL	1	128.00000000	128.00000000	14.22	0.0014
TREATMENT EFFECT	5	246.0000000	49.20000000	5.47	0.0031
Standard					

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
TERRAIN VS OTHERS	6.0000000	5.19615242	1.15	0.2633
TERRAIN VS BIAS	5.00000000	3.00000000	1.67	0.1129
TERRAIN VS RADIAL	1.00000000	3.00000000	0.33	0.7427
BIAS VS RADIAL	-4.0000000	3.00000000	-1.33	0.1991
WITHIN TERRAIN	-3.00000000	2.12132034	-1.41	0.1744
WITHIN BIAS	-6.0000000	2.12132034	-2.83	0.0111
WITHIN RADIAL	8.00000000	2.12132034	3.77	0.0014

Note that

1. Sum of squares associated with each contrast:

$$SS_{C1} = \frac{\hat{C}^2}{\sum_{i=1}^6 \frac{k_i^2}{n_i}} = \frac{(6)^2}{\frac{(2)^2}{4} + \frac{(2)^2}{4} + \frac{(-1)^2}{4} + \frac{(-1)^2}{4} + \frac{(-1)^2}{4} + \frac{(-1)^2}{4}} = 12$$

2. Sum of squares associated with the difference in the 6 Brand mean stopping distances:

$$SS_{TRT} = 246.0000000$$

3. The 4 contrasts C_1, C_4, C_5, C_6, C_7 are mutually orthogonal and hence their sum of squares add to the sum of squares associated with BRAND:

$$SS_{C1} + SS_{C4} + SS_{C5} + SS_{C6} + SS_{C7} = 246.00000000$$

Because of there was an equal number of replications and the 5 contrasts were orthogonal, the 5 contrasts provide a decomposition of the Sum of Squares Treatment.

The stopping distance at 35 mph was measured for each of six brands of automobile tires. However, the stopping distances for a number of the reps failed to be recorded by the measuring devices. The experiment is now unbalanced and the contrasts no longer result in a decomposition of SS Treatment. The following SAS will be used to analyze the data.

```
*brand_unbal.sas
option ls=80 ps=50 nocenter nodate;
title 'Stopping Distance of 6 brands of tires';
data old; array Y Y1-Y4;
input BRD $ Y1-Y4;
do over Y; SD=Y;
output;
end;
drop Y1-Y4;
label BRD = 'Brand of Tire' SD = 'Stopping Distance';
S1 22 20 25 17
S2 26 22 . .
B1 16 20 14 18
B2 20 25 26 .
R1 28 29 23 24
R2 22 15 . .
run;
proc glm data=old order=data;
class BRD;
model SD=BRD;
lsmeans BRD/stderr;
contrast 'TERRAIN VS OTHERS' BRD 2 2 -1 -1 -1 -1;
contrast 'TERRAIN VS BIAS' BRD 1 1 -1 -1 0 0;
contrast 'TERRAIN VS RADIAL' BRD 1
                                     1
                                        0 0 -1 -1;
contrast 'BIAS VS RADIAL' BRD 0 0 1 1 -1 -1; contrast 'WITHIN TERRAIN' BRD 1 -1 0 0 0 0;
                             BRD 0 0 1 -1 0 0;
contrast 'WITHIN BIAS'
contrast 'WITHIN RADIAL'
                             BRD 0 0 0 0 1 -1;
run;
```

Class Level Information

Class Levels Values

BRD 6 S1 S2 B1 B2 R1 R2

Number of Observations Read 24 Number of Observations Used 19

Least Squares Means

		Standard	
BRD	SD LSMEAN	Error	Pr > t
S1	21.0000000	1.6002804	<.0001
S2	24.0000000	2.2631383	<.0001
B1	17.0000000	1.6002804	<.0001
B2	23.6666667	1.8478447	<.0001
R1	26.0000000	1.6002804	<.0001
R2	18.5000000	2.2631383	<.0001

Dependent Variable: SD Stopping Distance

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
TERRAIN VS OTHERS	1	5.39102564	5.39102564	0.53	0.4810
TERRAIN VS BIAS	1	14.08333333	14.08333333	1.37	0.2620
TERRAIN VS RADIAL	1	0.16666667	0.16666667	0.02	0.9005
BIAS VS RADIAL	1	11.02083333	11.02083333	1.08	0.3185
WITHIN TERRAIN	1	12.00000000	12.00000000	1.17	0.2988
WITHIN BIAS	1	76.19047619	76.19047619	7.44	0.0173
WITHIN RADIAL	1	75.00000000	75.00000000	7.32	0.0180

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
TERRAIN VS OTHERS	4.83333333	6.66249870	0.73	0.4810
TERRAIN VS BIAS	4.33333333	3.69568933	1.17	0.2620
TERRAIN VS RADIAL	0.50000000	3.91987048	0.13	0.9005
BIAS VS RADIAL	-3.83333333	3.69568933	-1.04	0.3185
WITHIN TERRAIN	-3.00000000	2.77176700	-1.08	0.2988
WITHIN BIAS	-6.6666667	2.44446873	-2.73	0.0173
WITHIN RADIAL	7.50000000	2.77176700	2.71	0.0180

Note that $SS_{TRT} = 206.9385965$ but

$$SS_{C1} + SS_{C4} + SS_{C5} + SS_{C6} + SS_{C7} = 179.602335160$$

Because of the unequal number of replications, the 5 contrasts no longer provide a decomposition of the Sum of Squares Treatment because the contrasts do not satisfy:

$$\sum_{i=1}^{6} \frac{k_i d_i}{n_i} = 0. \text{ In fact,}$$

for
$$C_1 = 2\mu_1 + 2\mu_2 - 1\mu_3 - 1\mu_4 - 1\mu_5 - 1\mu_6$$
 and $C_4 = 0\mu_1 + 0\mu_2 + 1\mu_3 + 1\mu_4 - 1\mu_5 - 1\mu_6$ we have

$$\sum_{i=1}^{6} \frac{k_i d_i}{n_i} = \frac{(2)(0)}{4} + \frac{(2)(0)}{2} + \frac{(-1)(1)}{4} + \frac{(-1)(1)}{3} + \frac{(-1)(-1)}{4} + \frac{(-1)(-1)}{2} = \frac{1}{6}$$

Multiple Testing Procedures - Simultaneous Tests of Hypotheses

In examining the seven contrasts, if an $\alpha = .05$ level was used for each of the seven contrasts then we would have declared that two of the seven contrasts had significant evidence that they were different from 0. However, seven hypotheses have thus been tested each at the .05 level. What is the probability of a Type I error taking all seven hypotheses together. This raises the question of error rates across multiple testing situations within a given experiment.

When a researcher has multiple hypotheses to be tested, each of the individual tests has Type I and Type II errors, and it is difficult to measure the overall error rate considering all tests simultaneously. A measure of this error rate is called the familywise error rate **FWER**, in comparison to the per comparison error rate **PCER**. Definitions of PCER and FWER are given as follows:

DEFINITION: Suppose we have M sets of hypotheses that are to be tested. The **per** comparison error rate (**PCER**) is the probability of a Type I error for each of the M sets of hypotheses disregarding the other M-1 sets of hypotheses (individual error rates).

We would have M probabilities to calculate: $PC_i = \alpha_i = P[\text{Type I error}]$ in the *i*th experiment for i = 1, ..., M. Tests are then developed to control the Type I error rates for the individual decisions, α_i ignoring the multiplicity of tests that are to be performed. Alternatively,

DEFINITION: Suppose we have M sets of hypotheses that are to be tested. The **familywise error rate** (**FWER**) is the probability of one or more Type I errors over the M sets of hypotheses (overall error rate).

We would have one probability to calculate:

FWER= $\alpha_F = P[\text{at least one Type I errors in the } M \text{ tests }].$ Thus, procedures are developed to control a single Type I error rate across all M tests.

In those situations where, M, the number of tests is especially large, the FWER is too strict. FWER forces too large of a value for the probability of Type II errors (low power). In these types of situations, a measure of error called the false discovery rate is used. For example, in microarray data, M may be 1000 or more.

DEFINITION Suppose we have M sets of hypotheses that are to be tested. The **false** discovery rate (FDR) is the expected proportion of false positive findings among all the rejected null hypotheses, that is, FDR = E[V/R], where V is the number of Type I errors in the M tests and R is the number of rejected null hypotheses in the M tests. Multiple comparison procedures which control the FDR tend to be more liberal than procedures which control the FWER, that is, the FDR procedures find on the average more significant differences than do procedures controlling the FWER.

Two papers which discuss procedures for controlling FDR are

- Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate, a practical and powerful approach to multiple testing. J.R. Statistical Society B, 57, pp. 289-300.
- Storey, J.D. (2002) A direct approach to false discovery rates. J.R. Statistical Society B, 64, pp. 479-498.

Controlling FWER

Suppose we have M sets of hypotheses to be tested. Let A_i be the event that a Type I error is committed using the ith test and let the individual error rates for each test given by

 $\alpha_i = P[A_i] = \text{probability of a Type I error using the } i \text{th test}$

 $\bigcup_{i=1}^{M} A_i$ is the event of one or more Type I errors in the M tests with $\alpha_F = P[\bigcup_{i=1}^{M} A_i]$. We will compute and/or bound α_F under various conditions on the M tests.

Case 1 Suppose A_1, A_2, \ldots, A_M are independent events with α_{PC} 's given by $\alpha_1, \alpha_2, \ldots, \alpha_M$. Let FWER = $\alpha_F = P[\text{at least one Type I error occurs}] = P[\text{at least one } A_i \text{ occurs}]$

$$\alpha_F = P\left[\bigcup_{i=1}^{M} A_i\right] = 1 - P\left[\bigcap_{i=1}^{M} A_i^c\right] = 1 - \prod_{i=1}^{M} P[A_i^c] = 1 - \prod_{i=1}^{M} (1 - P[A_i]) = 1 - \prod_{i=1}^{M} (1 - \alpha_i)$$

If $\alpha_i = \alpha_{pc}$ for all i, then $\alpha_F = 1 - (1 - \alpha_{pc})^M$

To control α_F , say we want $\alpha_F = \alpha_o$, then we could select α_{pc} to satisfy

$$\alpha_{pc} = 1 - (1 - \alpha_o)^{1/M}$$

EXAMPLE Suppose $\alpha_F = \alpha_o = .05$ is specified. The following table provides the upper bound on α_F , $1 - (1 - \alpha_o)^M$ for $\alpha_o = .05$ and the value of α_{pc} to obtain $\alpha_F \leq .05$ for various values of M.

	Value of α_F	Required Value for α_{pc}
M	$1 - (1 - \alpha_o)^M$	$1 - (1 - \alpha_o)^{1/M}$
1	.0500	.0500
2	.0975	.0253
3	.1426	.0170
4	.1855	.0128
5	.2262	.0102
10	.4013	.0051
13	.4867	.0039
14	.5123	.0037

From the above table we can conclude that if we had M=14 contrasts to be tested then in order to have $\alpha_F \leq .05$ then it would be necessary to have α_{pc} no larger than .0037. This would greatly increase the probability of a Type II error for the individual tests and there would be a substantial reduction in the power of the tests to detect nonzero contrasts. Alternatively, if the 14 tests were run each at a $\alpha = .05$ level then α_F could be as large as 0.5123, more than a 50% chance of one or more of the 14 tests would result in a Type I error.

If is important to note that if we had M contrasts: C_1, \ldots, C_M with all contrasts satisfying

$$\sum_{i=1}^{t} \frac{k_i d_i}{n_i} = 0$$

then $SS_{C_1}, SS_{C_2}, \ldots, SS_{C_M}$ are independent.

However, are the events A_1, A_2, \ldots, A_M independent?

$$A_i = \{F_i \ge F_{\alpha_i} | H_o \text{ is true}\}$$

where the test statistic for the M tests are given by

$$F_i = \frac{SS_{C_i}}{MSE}$$
 for $i = 1, \dots, M$

Thus, MSE is present in each of the test statistics. However, if n-t is very large then the level of dependency is very small and the above formula would be close to correct.

The following inequality holds provided the **contrasts** are **orthogonal**:

$$\alpha_F \le 1 - (1 - \alpha_{pc})^M$$
, where $\alpha_i = \alpha_{pc}$ for $i = 1, 2, \dots, M$

The proof is in the book, Simultaneous Statistical Inference, by R. Miller.

To obtain $\alpha_F \leq \alpha_o$ take

$$\alpha_{pc} = 1 - (1 - \alpha_o)^{1/M}.$$

Refer to the examples on the previous page but with the understanding that now we are only obtaining an **upper bound** on α_F and not the exact value for the familywise error rate.

Case 2 Suppose the contrasts are not orthogonal and the M events A_1, A_2, \ldots, A_M are not independent. What can be concluded in this very general setting?

The Bonferroni inequality states $\alpha_F \leq \sum_{i=1}^{M} \alpha_i$.

Proof by Induction:

When M=2, $\alpha_F = P[A_1 \bigcup A_2] = P[A_1] + P[A_2] - P[A_1 \bigcap A_2] \le P[A_1] + P[A_2] = \alpha_1 + \alpha_2$ Assume true for any integer M > 2:

$$\alpha_F = P\left[\bigcup_{i=1}^M A_i\right] \le \sum_{i=1}^M P[A_i] = \sum_{i=1}^M \alpha_i$$

Then, for M+1, we have

$$\alpha_F = P\left[\bigcup_{i=1}^{M+1} A_i\right] = P\left[\left(\bigcup_{i=1}^{M} A_i\right) \bigcup A_{M+1}\right]$$

$$\leq P\left[\left(\bigcup_{i=1}^{M} A_i\right)\right] + P\left[A_{M+1}\right]$$

$$\leq \sum_{i=1}^{M} P[A_i] + P\left[A_{M+1}\right] = \sum_{i=1}^{M+1} \alpha_i$$

Thus by Mathematical Induction we have proved the Bonferroni Inequality.

Note: If $\alpha_i = \alpha_{pc}$ for all i = 1, ..., M, then $\alpha_F \leq M\alpha_{pc}$

Thus, to have $\alpha_F \leq \alpha_o$, we would specify

$$\alpha_{pc} = \frac{\alpha_o}{M}$$

EXAMPLE Suppose $\alpha_F = \alpha_o = .05$ is specified. The following table provides the upper bound on α_F , $M\alpha_o$, for $\alpha_o = .05$ and the value of α_{pc} to obtain $\alpha_E \leq .05$ for various values of M.

	Bonferroni	Required Value for
	Bound on α_F	$lpha_{pc}$
\overline{M}	$M\alpha_o$	α_o/M
1	.05	.0500
2	.10	.0250
3	.15	.0167
4	.20	.0125
5	.25	.0100
10	.50	.0050
13	.65	.0038
14	.70	.0036

From the above table the values of the upper bound are considerably larger for large M than the values we had in the previous table. However, the values of α_{pc} do not differ much in this general case from the values obtained in the case of orthogonal contrasts. In both cases, the use of the above values for α_{pc} would result in procedures that would not have desirable properties for the power of the procedures and for the inflated probabilities for Type II errors. The application of these types of procedures are labeled as Bonferroni procedures:

Bonferroni Simultaneous Procedures

If there are M hypotheses to be tested (contrasts) and it is specified that $\alpha_F \leq \alpha_o$, a given value, then the Bonferroni procedure consisting of

Running each of the M tests of hypotheses at level $\alpha_{pc} = \alpha_o/M$

which results in $\alpha_F \leq M\alpha_{pc} = \alpha_o$

Bonferroni F-Test for Testing M Contrasts

Suppose there are M contrasts C_1, \ldots, C_M , and tests of $H_o: C_i = 0$ versus $H_1: C_i \neq 0$ are to be constructed. The Bonferroni procedure is defined as follows:

Let
$$F_i = \frac{SS_{C_i}}{MSE}$$

State there is significant evidence $(\alpha_F = \alpha_o)$ that C_i is different from 0 if

$$F_i \ge F_{\frac{\alpha_o}{M},1,n-t}$$
 or if $p-value \le \frac{\alpha_o}{M}$

where $p - value = 1 - G(F_i)$ and $G(\cdot)$ is the cdf of an F-distribution with df = 1, n - t.

EXAMPLE Consider the 7 contrasts defined for the Brand of Tires example. Suppose it is specified that $\alpha_F \leq .05$. Using the Bonferroni procedure, the 7 contrasts would be tested individually using $\alpha_{pc} = \frac{.05}{7} = .0071$. The critical value would be

$$F_{\frac{\alpha_o}{M},1,n-t} = F_{.0071,1,18} = 9.22$$

Thus, reject $H_o: C_i = 0$ if $F_i \geq 9.22$.

Alternatively, reject $H_o: C_i = 0$ if $p - value \leq .0071$

Examining the SAS output, whereas previously there was significant evidence at the $\alpha = .05$ level that two of the seven contrasts were different from 0, now there is only contrast C_7 , the **Within Radial** contrast for which there is significant evidence that the contrast is different from 0.

Problem Because it can only be stated that $\alpha_F \leq \alpha_o$, the true size of α_F is unknown in general. In some situations, it may be that α_F is very much smaller than α_o and hence the overall power of the Bonferroni procedure to detect $C_i \neq 0$ would be small and hence the procedure would not be very sensitive at detecting false null hypotheses, that is, large probabilities of Type II errors.

In the case were the M contrasts are orthogonal, a slightly less conservative procedure can be obtained by using $\alpha_{pc} = 1 - (1 - \alpha_o)^{1/M}$ in the Bonferroni procedure.

Scheffé's Procedure for Testing Multiple Contrasts

Let
$$C_h = \sum_{i=1}^t k_{ih} \mu_i$$
 for $h = 1, \dots, M$

$$\hat{C}_h = \sum_{i=1}^t k_{ih} \bar{y}_{i.}$$
 for $h = 1, \dots, M$

$$D_h = \sqrt{\sum_{i=1}^t \frac{k_{ih}^2}{n_i}} \qquad \hat{\sigma}_e^2 = MSE,$$

$$S_h = D_h \hat{\sigma}_e \sqrt{(t-1)F_{\alpha_o, t-1, \nu_2}}$$

where t is the number of treatments, ν_2 is the df for MSE, and α_o is the specified value for α_F .

State there is significant evidence at the α_o level that C_h is different from 0,

that is, reject
$$H_o: C_h = 0$$
 if $|\hat{C}_h| \ge S_h$

Note that only D_h in S_h changes in testing the M contrasts.

The Scheffé procedure has an exact familywise error rate, $\alpha_F = \alpha_o$

Reference: The Analysis of Variance, by H. Scheffé

EXAMPLE In the Brand Example, t=6, $n_i=4$, $\nu_2=24-6=18$, $\hat{\sigma}_e^2=9$, and take $\alpha_o=.05$, then $D_h^2=\frac{1}{4}\sum_{i=1}^t k_{ih}^2$, $F_{\alpha_o,t-1,\nu_2}=F_{.05,5,18}=2.773=qf(.95,5,18)$

$$S_h = D_h \hat{\sigma}_e \sqrt{(t-1)F_{\alpha_o,t-1,\nu_2}} = D_h 3\sqrt{(6-1)F_{.05,5,18}} = (11.169)D_h$$

The following table contains the values of D_h and S_h for testing the 7 contrasts:

Contrast	D_h^2	$S_h = 11.169D_h$	$ \hat{C}_h $	Conclusion
C_1 : 2 2 -1 -1 -1 -1	3	19.35	6	Evidence is not Significant that $C_1 \neq 0$
C_2 : 1 1 -1 -1 0 0	1	11.17	5	Evidence is not Significant that $C_2 \neq 0$
C_3 : 1 1 0 0 -1 -1	1	11.17	1	Evidence is not Significant that $C_3 \neq 0$
C_4 : 0 0 1 1 -1 -1	1	11.17	4	Evidence is not Significant that $C_4 \neq 0$
C_5 : 1 -1 0 0 0 0	.5	7.90	3	Evidence is not Significant that $C_5 \neq 0$
C_6 : 0 0 1 -1 0 0	.5	7.90	6	Evidence is not Significant that $C_6 \neq 0$
C_7 : 0 0 0 0 1 -1	.5	7.90	8	Significant Evidence that $C_7 \neq 0$

Thus, in this example, the Scheffé procedure agrees with the Bonferroni procedure. Does this conclusion hold true in general?

Note in the Scheffé's $\alpha_o = \alpha_F$. This is an exact procedure.

In the Scheffé procedure, the hypothesis $H_o: C_h$ is rejected if

$$|\hat{C}_h| \ge S_h$$
 iff $\left(\frac{\hat{C}_h}{D_h \sigma_e}\right)^2 \ge (t-1) F_{\alpha_o, t-1, \nu_2}$

In the Bonferroni procedure, the hypothesis $H_o: C_h$ is rejected if

$$F_h = \frac{SS_{C_h}}{MSE} = \left(\frac{\hat{C}_h}{D_h \sigma_e}\right)^2 \ge F_{\frac{\alpha_o}{M}, 1, \nu_2}$$

where M is the number of contrasts being tested. Note that in the Scheffé procedure, M does not appear. The Scheffé procedure provides a specified Experimentwise error rate for all possible contrasts, not just a specified number of contrasts. To determine which of the two procedures is more conservative it is necessary to compare

Scheffé $(t-1)F_{\alpha_o,t-1,\nu_2}$ to $F_{\frac{\alpha_o}{M},1,\nu_2}$ for Bonferroni.

For the Brand of Tire example, with t=6 and $\alpha_o=.05$, we have that the Scheffé procedure is more conservative because $(t-1)F_{\alpha_o,t-1,\nu_2}=5F_{.05,5,18}=13.864>9.202=F_{.05/7,1,18}=F_{\frac{\alpha_o}{M},1,\nu_2}$

Thus, it takes a larger value of \hat{C}_h to reject H_o using Scheffé procedure than it does for the Bonferroni procedure. Why?

Scheffé procedure must consider "all possible" contrasts in terms of yielding the specified Experimentwise Type I error rate, whereas Bonferroni only needs to consider the M=7 specified contrasts. As the number of contrasts M increases, the critical value of the Scheffé procedure remains constant whereas the Bonferroni's critical value will increase. For example, with $t=6, \alpha_o=.05$ and M contrasts, we have

M	7	10	20	30	32	33
Scheffe Critical Value	13.864	13.864	13.864	13.864	13.864	13.864
Bonferroni Critical Value	9.202	10.218	12.321	13.634	13.849	13.952

Thus, for the case of t=6, $\nu_2=18$, and $\alpha_o=.05$, when M>32 contrasts are to be tested the Bonferroni procedure would be more conservative then Scheffé. The contrasts needed for the Bonferroni procedure to be more conservative than the Scheffé depends on all three factors: t, ν_2 , and α_o .

The following table contains the required number, M, of contrasts needed for the critical value of the Bonferroni procedure to exceed the critical value for the Scheffé procedure. If the number of contrasts is less than or equal M than use the Bonferroni procedure. We will only consider $\alpha_o = .05$ but with varying values for t and ν_2 :

$\overline{\nu_2}$	$\nu_2 = 20$ $\nu_2 = 30$		$\nu_2 = 40$		$\nu_2 = 50$		$\nu_2 = 100$		
\mathbf{t}	\mathbf{M}	t	\mathbf{M}	t	M	t	M	t	M
5	18	5	19	5	21	5	21	5	23
6	34	6	40	6	44	6	46	6	51
7	64	7	79	7	88	7	95	7	110
8	113	8	148	8	171	8	188	8	229
10	317	10	471	10	587	10	675	10	915
_15	2725	15	5619	15	8583	15	11340	15	21154

If the specified number of contrasts, M is not too large, it is advisable to use Bonferroni. If the researcher is just exploring the data and does not specify a particular set of contrasts prior to running the experiment then use Scheffè procedure. However, if the researcher is constructing formal tests of whether or not the contrasts are significant, then this would not be a good procedure. Contrasts should never be constructed based on the observed data if formal tests are to be conducted. This would violate all statistical procedures.

Simultaneous Confidence Intervals for M Contrasts

The Scheffé procedure can be used to construct simultaneous $100(1-\alpha)$ confidence intervals for any number of contrasts.

Let Θ be the set of all possible contrasts in t treatment means μ_1, \ldots, μ_t :

$$\Theta = \left\{ C : C = \sum_{i=1}^{t} k_i \mu_i, \text{ with } \sum_{i=1}^{t} k_i = 0 \right\}$$

Then, a $100(1-\alpha)$ Scheffé simultaneous confidence interval for all $C\epsilon\Theta$ is given by

$$\hat{C} \pm \hat{\sigma}_e \left(\sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}} \right) \sqrt{(t-1)F_{\alpha,t-1,\nu_2}} \text{ that is } \hat{C} \pm \widehat{SE}(\hat{C}) \sqrt{(t-1)F_{\alpha,t-1,\nu_2}}$$

where $\hat{\sigma}_e = \sqrt{MSE}$ and $\nu_2 = df$ associated with MSE.

That is, the probability that the intervals simultaneously contain their contrast is $1 - \alpha$:

$$P\left[\widehat{C} - \widehat{\sigma}_e \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}} \sqrt{(t-1)F_{\alpha,t-1,\nu_2}} \right] \leq C \leq \widehat{C} + \widehat{\sigma}_e \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}} \sqrt{(t-1)F_{\alpha,t-1,\nu_2}} \quad \text{for all} \quad C\epsilon\Theta\right] = 1 - \alpha$$

In order for the Scheffé C.I.'s to obtain their simultaneous coverage of all possible contrasts, the C.I.'s are considerably wider than the individual C.I.'s obtained using the pivot based C.I.'s.

The Bonferroni procedure can also be used to construct simultaneous $100(1-\alpha)$ confidence intervals for M contrasts. The Bonferroni t-based C.I. is

$$\hat{C} \pm \hat{\sigma}_e \left(\sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}} \right) t_{\alpha/(2M),\nu_2} \text{ that is } \hat{C} \pm \widehat{SE}(\hat{C}) t_{\alpha/(2M),\nu_2}$$

Note the difference between the two intervals is the difference between

$$\sqrt{(t-1)F_{\alpha,t-1,\nu_2}}$$
 and $t_{\alpha/(2M),\nu_2} = \sqrt{F_{\alpha/M,1,\nu_2}}$.

EXAMPLE To illustrate the difference between the simultaneous C.I.'s and the Bonferroni t-based C.I.'s, 95% C.I. on the seven contrasts from the Tire Brand Example using both methods:

From the example,

$$\begin{split} \hat{\sigma}_e &= 3; \quad \sqrt{(t-1)F_{\alpha,t-1,\nu_2}} = \sqrt{(6-1)F_{.05,5,18}} = 3.723; \quad M = 7, \\ t_{\alpha/(2*7),n-t} &= t_{.05/14,18} = qt(1-.05/14,18) = 3.033631 \\ D_h &= \sqrt{\sum_{i=1}^t \frac{k_i^2}{n_i}}; \quad S_h = \hat{\sigma}_e \sqrt{(t-1)F_{\alpha,t-1,\nu_2}} D_h = (3)(3.723)D_h \Rightarrow \\ \text{Scheffé C.I.: } \hat{C} \pm S_h \qquad \text{Bonferroni t-based C.I.: } \hat{C} \pm \hat{\sigma}_e t_{\alpha/(2M),n-t} D_h \\ \text{Scheffe C.I.: } \hat{C} \pm (11.17)D_h \qquad \text{Bonferroni t-based C.I.: } \hat{C} \pm (9.101)D_h \end{split}$$

The following table contains the two sets of SCIs for the seven contrasts:

			Scheffé C.I.	Bonferroni C.I.
Contrast	\hat{C}_h	D_h^2	$\hat{C} \pm 11.169 D_h$	$\hat{C} \pm 9.101 D_h$
C_1	6	3	6 ± 19.35	6 ± 15.763
C_2	5	1	5 ± 11.17	5 ± 9.10
C_3	1	1	1 ± 11.17	1 ± 9.10
C_4	-4	1	-4 ± 11.17	-4 ± 9.10
C_5	-3	.5	-3 ± 7.90	-3 ± 6.44
C_6	-6	.5	-6 ± 7.90	-6 ± 6.44
C_7	8	.5	8 ± 7.90	8 ± 6.44

Thus, the Scheffé SCIs are wider than the Bonferron SCIs in this example. This result depends on both the number of contrasts M and ν_2 , the degrees of freedom for estimating σ_e as we observed previously. In general, when both M and ν_2 are relatively small, the Scheffé SCI will be wider than the Bonferroni SCI. But, as M and/or ν_2 become large, the Bonferroni SCIs will eventually become wider than the Scheffé SCIs.

Multiple Comparison with Specific Types of Contrasts

There are three specific types of comparisons of the treatment means that researchers often make in designed experiments. For these types of comparisons, neither Bonferroni nor Scheffé is the "best" procedure.

Three specific types of Comparisons:

- 1. Compare all pairs: Fisher's protected LSD, Tukey's HSD, Student-Newman-Kuels (SNK), many others
- 2. Compare t-1 treatment means to a Control or Standard mean: Dunnett's procedure
- 3. Determine a group of treatment means which contains the "Best" treatment: Hsu's procedure

For comparing all pairs and comparing to a Control, a Bonferroni t-test or Scheffè's procedure could be used. However, the Type II error may be much larger than the Type II error rate for a specialized procedure which will result in diminished power. For completeness, we will provide the details for both of these procedures, but it is **not recommended** to ever use either one of them for comparing all pairs of means or for comparing treatment means to a control.

The procedures LSD, HSD, SNK, Dunnett, and Hsu are designed to control an experimentwise error rate relative to a fixed number of contrasts: $M = {t \choose 2}$ contrasts for all pairwise comparisons and M = t - 1 contrasts for comparing t - 1 treatments to a control. The Scheffè's procedure has an experimentwise error rate which must be maintained over all possible contrasts. Thus, we have

Let A_i be the event of a Type I error in testing $H_o: C_i = 0$ versus $H_1: C_i \neq 0$ for i = 1, ..., M contrasts

The familywise error rate for Tukey or Dunnett satisfies:

$$\alpha_F(M \text{ contrasts}) = P\left[\bigcup_{i=1}^M A_i\right] = \alpha_o$$

The familywise error rate for Scheffè satisfies:

$$\alpha_F(\text{All possible Contrasts}\grave{e}) = P\left[\bigcup_{all possible} A_i\right] = \alpha_o$$

All three procedures have the same Familywise error rate of α_o but Scheffè's procedure must protect for many more hypotheses than both Tukey and Dunnett.

This results in Scheffè's procedure tending to be more conservative for testing just M contrasts which results in Scheffè procedure producing more Type II errors than Tukey or Dunnett when we are testing M specific contrasts.

Bonferroni t-test Suppose we have t treatment means and want to compare all $M = {t \choose 2} = \frac{t(t-1)}{2}$ pairs. For $k \neq h = 1, \dots, t$, define

$$t_{kh} = \frac{\bar{y}_{k.} - \bar{y}_{h.}}{\hat{\sigma}_e \sqrt{\frac{1}{n_k} + \frac{1}{n_h}}}$$
 with $\hat{\sigma}_e^2 = MSE$ and $df = df_{MSE}$

State there is significant evidence at level α_o that μ_k is different from μ_h if

$$|t_{kh}| \geq t_{\frac{\alpha_o}{2M}, df_{MSE}}$$

The Experimentwise Type I error rate, α_F , satisfies, $\alpha_F \leq \alpha_o$.

A set of simultaneous C.I.'s on the M differences $\mu_k - \mu_h$ for $k \neq h = 1, ..., t$ having simultaneous coverage probability at least $100(1 - \alpha)\%$ are given by

$$(\bar{y}_{k.} - \bar{y}_{h.}) \pm \left(t_{\frac{\alpha_o}{2M}, df_{MSE}}\right) \hat{\sigma}_e \sqrt{\frac{1}{n_k} + \frac{1}{n_h}}$$

Scheffé Procedure Consider the M contrasts:

$$C_{kh} = \mu_k - \mu_h = \mu_k - \mu_h + \sum_{i \neq k, h}^t 0(\mu_i)$$
 for $k \neq h = 1, \dots, t$

State there is significant evidence at level α_o that μ_k is different from μ_h if

$$|\hat{C}_{kh}| \ge \hat{\sigma}_e(D_h) \sqrt{(t-1)F_{\alpha_o,t-1,df_{MSE}}}$$
 where $D_h = \sqrt{\frac{1}{n_k} + \frac{1}{n_h}}$

Scheffé simultaneous C.I.'s for the M contrasts can be constructed using the procedures described earlier.

The Scheffé procedure has $\alpha_F = \alpha_o$. However, the Bonferroni procedure is conservative with $\alpha_F \leq \alpha_o$. How much less α_F is than α_o would vary depending on n_i 's, t, and σ_e .

Tukey's Honest Significant Difference, HSD

HSD and Scheffé are two of the very few multiple comparison procedures which have an exact value for α_F , that is, $\alpha_F = \alpha_o$. Tukey's HSD procedure requires that the data have equal sample sizes $r = n_1 = n_2 = \cdots = n_t$ and the standard AOV distributional requirements on the experimental data:

$$y_{ij} = \mu_i + e_{ij}$$
 $i = 1, ..., t$ $j = 1, ..., r$ with e_{ij} having iid $N(0, \sigma_e^2)$ distributions

Tukey's procedure is based on the studentized range statistic:

$$q(t,\nu_2) = \frac{\bar{y}_{max} - \bar{y}_{min}}{\hat{\sigma}_e \sqrt{\frac{1}{r}}}$$

 $\bar{y}_{min} = \min\{\bar{y}_1, \bar{y}_2, \dots, \bar{y}_t\}, \ \bar{y}_{max} = \max\{\bar{y}_1, \bar{y}_2, \dots, \bar{y}_t\}, \ \hat{\sigma}_e^2 = MSE.$

Define

$$HSD(t,\nu_2) = q(\alpha_o,t,\nu_2)\sqrt{\frac{1}{2} \left(\widehat{SE}(\bar{y}_{k.} - \bar{y}_{h.})\right)^2} = q(\alpha_o,t,\nu_2)\sqrt{\frac{1}{2} \left(\frac{2\sigma_e^2}{r}\right)} \quad \Rightarrow \quad$$

$$HSD(t, \nu_2) = q(\alpha_o, t, \nu_2)\hat{\sigma}_e \sqrt{1/r}$$

where $\nu_2 = df_{MSE}$, t is number of treatment means to be compared, r is the common sample size, α_o is the specified value for α_F , and $q(\alpha_o, t, \nu_2)$ is the solution to the equation:

$$P\left[\frac{|(\bar{y}_{k.} - \mu_k) - (\bar{y}_{h.} - \mu_h)|}{\hat{\sigma}_e \sqrt{1/r}} \le q(\alpha_o, t, \nu_2) \text{ for all } k > h\right] = 1 - \alpha_o$$

Values for $q(\alpha_0, t, \nu_2)$ are given in Table VII in Kuehl's book. These are upper α percentiles.

The R function **qtukey** $(1 - \alpha, t, df_{MSE})$ also yields these values.

For example, for $\alpha = .05$, t = 5 treatments and $df_{MSE} = 9$,

qtukey(.95, 5, 9) = 4.755404 which is given as 4.76 in Table VII.

Tukey HSD Procedure:

1. State there is significant evidence at level α_o that the treatment means μ_k and μ_h are different if

$$|\bar{y}_{k.} - \bar{y}_{h.}| \ge HSD(t, \nu_2)$$

2. Simultaneous $100(1 - \alpha_o)\%$ confidence intervals for the absolute difference in all pairs of treatment means $\mu_k - \mu_h$ are given by

$$|\bar{y}_{k.} - \bar{y}_{h.}| \pm HSD(t, \nu_2)$$

- 3. Alternatively, the above simultaneous C.I.'s can be used to compare the $M = {t \choose 2}$ pairs of means by stating there is significant evidence at the α_o level that μ_k and μ_h are different if 0 is not contained in the C.I.
- 4. When the sample sizes are unequal, a procedure called the **Tukey-Kramer procedure** replaces

$$\sqrt{1/r}$$
 with $\sqrt{\frac{1}{2}\left(\frac{1}{n_k}+\frac{1}{n_h}\right)}$. This yields a multiple comparison procedure in which $\alpha_F \leq \alpha_o$.

Tukey's HSD provided an exact value for α_F . For most multiple comparison procedures only an approximate value for α_F is provided. In an extensive simulation study, Carmer and Swanson(1973), "An evaluation of ten pairwise multiple comparison procedures by Monte Carlo methods," *Journal of the American Statistical Association* **68**, pp. 66-74, have been shown the procedures LSD and SNK to have α_F very close to the specified value α_o .

Fisher's Protected Least Significant Difference, LSD

Most statisticians would not recommend using LSD because it does not have an exact FWER.

Fisher's protected LSD allows for unequal sample sizes n_1, n_2, \ldots, n_t and the standard AOV requirements on the experimental data:

$$y_{ij} = \mu_i + e_{ij}$$
 $i = 1, ..., t$ $j = 1, ..., r$ with e_{ij} having iid $N(0, \sigma_e^2)$ distributions

Let $\hat{\sigma}_e = \sqrt{MSE}$, $\nu_2 = df_{MSE}$, t be the number of treatment means to be compared, α_o be the specified value for α_F , and $t(\alpha_o/2, \nu_2)$ be the upper $\alpha_o/2$ percentile from the t-distribution with $df = df_{MSE}$.

The following steps constitute the protected LSD procedure:

- 1. Conduct the AOV F-test of $H_o: \mu_1 = \mu_2 = \cdots = \mu_t$ at level α_o . If AOV F-test fails to reject H_o , then state there is not significant evidence that μ_k and μ_h are different for any pair of treatment means.
- 2. If AOV F-test rejects H_o at level α_o , then compute

$$LSD(k,h) = t_{\alpha_o/2,\nu_2} \hat{\sigma}_e \sqrt{\frac{1}{n_k} + \frac{1}{n_h}}$$

3. State there is significant evidence at level α_o that the pair of treatment means μ_k and μ_h are different whenever

$$|\bar{y}_{k.} - \bar{y}_{h.}| \ge LSD(k, h)$$

- 4. If $r = n_1 = \cdots = n_t$, then there is a single value of $LSD(k,h) = t_{\alpha_o/2,\nu_2} \hat{\sigma}_e \sqrt{2\frac{1}{r}}$
- 5. The most we can state is that α_F is approximately α_o , α_F may be somewhat larger or smaller than α_o . The inability to state the value of α_F is why most statisticians recommend not using Fisher's LSD.
- 6. The Unprotected LSD procedure does not conduct the AOV F-test. Thus, it is just running M = t(t-1)/2 t-tests and α_F can be much larger than α_o . In fact, it could be as large as $M\alpha_o$.
- 7. Using R, $t_{\alpha_o/2,\nu_2} = qt(1 \alpha_o/2, \nu_2)$

For example, for $\alpha_o = .05, \nu_2 = 10, qt(.975, 10) = 2.228$

Student-Newman-Keuls, SNK Procedure

Most statisticians would not recommend using SNK because it does not have an exact FWER.

SNK is a less conservative than Tukey's HSD in that it generally requires a smaller difference between the treatment sample means, \bar{y}_i and \bar{y}_k than is required by HSD to declare a pair of treatment μ_i and μ_k to be different.

SNK requires equal sample sizes $r = n_1 = n_2 = \cdots = n_t$ and the standard AOV requirements on the experimental data:

$$y_{ij} = \mu_i + e_{ij}$$
 $i = 1, ..., t$ $j = 1, ..., r$ with e_{ij} having iid $N(0, \sigma_e^2)$ distributions

Like Tukey's procedure, SNK is based on the studentized range statistic:

$$q(m,\nu_2) = \frac{\bar{y}_{max,m} - \bar{y}_{min,m}}{\hat{\sigma}_e \sqrt{\frac{1}{r}}}$$

 $\bar{y}_{min,m} = \text{minimum over a set of } m \text{ sample means: } \{\bar{y}_{i_1}, \bar{y}_{i_2}, \dots, \bar{y}_{i_m}\}, \text{ and } \bar{y}_{max,m} = \text{maximum over a set of } m \text{ sample means: } \{\bar{y}_{i_1}, \bar{y}_{i_2}, \dots, \bar{y}_{i_m}\} \quad \hat{\sigma}_e^2 = MSE.$

Define

$$SNK(m, \nu_2) = q(\alpha_o, m, \nu_2)\hat{\sigma}_e \sqrt{1/r}, \text{ for } m = 2, 3, ..., t$$

where $\hat{\sigma}_e = \sqrt{MSE}$, $\nu_2 = df_{MSE}$, t is number of treatment means being compared, r is the common sample size, α_o is the specified value for α_F , and with values for $q(\alpha_o, m, \nu_2)$ given in Table VII in Kuehl's book, the same table we used for Tukey's HSD. Hence, we can also use the R function $\mathbf{qtukey}(1-\alpha,t,df_{MSE})$ to find the value of $q(\alpha_o,m,\nu_2)$, with m=t and $\nu_2=df_{MSE}$.

1. Order the t treatment sample means: $\bar{y}_{(1)} \leq \bar{y}_{(2)} \leq \ldots \leq \bar{y}_{(t)}$ and consider the following matrix of differences (assume t = 6 for illustration purposes) with $D(k, h) = \bar{y}_{(k)} - \bar{y}_{(h)}$:

	$\bar{y}_{(1)}$	$\bar{y}_{(2)}$	$\bar{y}_{(3)}$	$\bar{y}_{(4)}$	$\bar{y}_{(5)}$	$\bar{y}_{(6)}$	Compare to
$\bar{y}_{(1)}$		D(2,1)	D(3,1)	D(4,1)	D(5,1)	D(6,1)	$SNK(6, \nu_2)$
$\bar{y}_{(2)}$			D(3, 2)	D(4, 2)	D(5, 2)	D(6, 2)	$SNK(5, \nu_2)$
$\bar{y}_{(3)}$				D(4, 3)	D(5, 3)	D(6,3)	$SNK(4, \nu_2)$
$\bar{y}_{(4)}$					D(5,4)	D(6,4)	$SNK(3, \nu_2)$
$\bar{y}_{(5)}$						D(6, 5)	$SNK(2, \nu_2)$

- 2. Compute $SNK(m, \nu_2)$ for m = 2, ..., t.
- 3. For each of the differences in the above matrix, compare D(k,h) to $SNK(m,\nu_2)$ for m=h-k+1. Note, that differences along a common diagonal are compared to the same $SNK(m,\nu_2)$ value. State there is significant evidence at the α_o level that μ_k and μ_h are different if $D(k,h) = |\bar{y}_{k.} \bar{y}_{h.}| \geq SNK(m,\nu_2)$ for the appropriate value of m.
- 4. If $\bar{y}_{k_1} < \bar{y}_{k_2} < \bar{y}_{h_2} < \bar{y}_{h_1}$ and it has been determined using SNK that \bar{y}_{k_1} and \bar{y}_{h_1} do not exceed the critical value for SNK then \bar{y}_{k_2} and \bar{y}_{h_2} should not be compared. It would be given that there is not significant evidence that μ_{k_2} and μ_{h_2} are different.
- 5. For SNK, α_F is only approximately equal to α_o , it may be larger or smaller depending on the particular values of the parameters. The inability to state the value of α_F is why most statisticians recommend not using SNK.

A few observations about HSD, LSD, and SNK:

1. If the sample sizes are unequal, most software programs use the harmonic mean in place of r when computing SNK:

$$r = \frac{t}{\sum_{i=1}^{t} \frac{1}{n_i}}$$

The problem is that the resulting procedure may have an inflated α_F in comparison to the values given for equal sample sizes.

2. When sample sizes are equal,

$$LSD = SNK(2, \nu_2) \leq SNK(t, \nu_2) = HSD(t, \nu_2)$$

Therefore, SNK will always declare as many treatment means or more different as HSD but as many or less than LSD.

- 3. The Experimentwise error rate α_F is exact only for HSD and Scheffé.
- 4. Bonferroni's t-based comparisons provide an upper bound on α_F .
- 5. The values of α_F are only approximate for LSD and SNK. The familywise error rate, α_F , may be larger or smaller than the nominal value used by the experimenter. For this reason, LSD and SNK are not recommended for multiple comparisons of treatment means.

Simultaneous Confidence Intervals on the Differences in Treatment Means

Whenever possible, a test of hypotheses should include confidence intervals on the treatment effects, $\mu_i - \mu_k$, in this case. Because there are many such effects, t(t-1)/2, in the case of t treatment means, it is necessary to construct simultaneous confidence intervals on the treatment mean differences. We will consider four such intervals: Separate-t intervals, Bonferroni-t intervals, Scheffè's intervals, Tukey intervals.

The four intervals can be obtained from the general formula:

Simultaneous C.I. on
$$\mu_i - \mu_k$$
: $\bar{y}_{i.} - \bar{y}_{k.} \pm C\sqrt{\frac{2}{n}\hat{\sigma}^2}$

where $\hat{\sigma}^2$ is MSE from the AOV table, n is the common sample size, and C is a constant specific to each method for comparing the t(t-1)/2 treatment mean differences:

- 1. Separate-t intervals: $C_t = t(\alpha/2; (N-t))$
- 2. Bonferrroni intervals: $C_B = t(\alpha/(t(t-1)); (N-t))$
- 3. Scheffè's intervals: $C_S = \sqrt{(t-1)F(\alpha;(t-1),(N-t))}$
- 4. Tukey intervals: $C_T = \frac{1}{\sqrt{2}}q(\alpha;t,(N-t))$

where $t(\alpha/2; (N-t))$, $t(\alpha/(t(t-1)); (N-t))$, $F(\alpha; (t-1), (N-t))$ are upper percentiles from the t and F distributions and $q(\alpha; t, (N-t))$ is the α percentile from the Studentized range distribution.

The separate-t intervals are not valid simultaneous C.I.'s. They were included for just comparison purposes.

To illustrate the differences in the widths of the four C.I.'s, consider the Brand of Tires example:

$$\alpha = .05, \quad t = 6, \quad n = 4, \quad N = (6)(4) = 24, \quad \sqrt{\frac{2}{n}}\hat{\sigma}^2 = \sqrt{\frac{2}{4}}(9) = 2.1213$$

$$C_t = t(.025; 18) = 2.1009, \qquad C_B = t(.00167; 18) = 3.3795$$

$$C_S = \sqrt{(5)F(.05; 5, 18)} = 3.7235, \qquad C_T = \frac{1}{\sqrt{2}}q(.05; 6, 18) = 3.1780$$

Based on the above calculations, the half widths of the four C.I.'s, $C\sqrt{\frac{2}{n}\hat{\sigma}^2}$ would be

Separate-t = 4.4567, Bonferroni = 7.1708, Scheffè = 7.8987, Tukey = 6.7416

The Separate-t C.I.'s would be too narrow to provide simultaneous coverage, the Scheffè and Bonferroni C.I.'s are too wide, and Tukey's C.I.'s are just right.

Comparion of All Treatment Means to a Control or Standard: Dunnett's Procedure

Dunnett's procedure is the most widely used multiple comparison procedure in the situation where the experiment or study has a standard treatment or a control treatment to which all other treatments are compared.

Suppose we have t treatment means: μ_c , μ_1 , μ_2 , ..., μ_{t-1} with μ_c the mean associated with a standard or control treatment.

We wish to compare μ_i , i = 1, ..., t-1 to μ_c in one of three possible manners:

$$\mu_i < \mu_c$$
 $\mu_i > \mu_c$ $\mu_i \neq \mu_c$ for $i = 1, 2, t - 1$.

Dunnett's procedure requires equal sample sizes $r = n_1 = n_2 = \cdots = n_t$ and the standard AOV requirements on the experimental data:

$$y_{ij} = \mu_i + e_{ij}$$
 $i = 1, ..., t$ $j = 1, ..., r$ with e_{ij} having iid $N(0, \sigma_e^2)$ distributions

Let $d2_{\alpha_o,t-1,\nu_2}$ be the upper α_o percentile of the statistic,

$$\frac{\max_{i=1,\dots,t-1}(|\bar{y}_i - \bar{y}_c|)}{\hat{\sigma}_e \sqrt{\frac{2}{r}}} \quad \text{(two-sided procedure)}$$

and let $d1_{\alpha_o,t-1,\nu_2}$ be the upper α_o percentile of the statistic,

$$\frac{\max_{i=1,\dots,t-1}(\bar{y}_i - \bar{y}_c)}{\hat{\sigma}_e \sqrt{\frac{2}{r}}} \quad \text{(one-sided procedure)}$$

Values of $d1_{\alpha_o,m,\nu_2}$ and $d2_{\alpha_o,m,\nu_2}$ (labeled 1-sided and 2-sided, respectively) and with k=t-1 are given in Table VI in Kuehl's book.

Alternatively, the following R function can be used to obtain these values: library(mvtnorm)

$$d1_{\alpha_0,m,\nu_2} =$$

$$qmvt(p = 1 - \alpha_0, tail = "lower.tail", df = \nu_2, corr = matrix(rep(.5, m^2), m) + diag(m) * .5)$$
\$quantile

$$d2_{\alpha_0,m,\nu_2} =$$

$$qmvt(p = 1 - \alpha_0, tail = "both.tails", df = \nu_2, corr = matrix(rep(.5, m^2), m) + diag(m) * .5)$$
\$quantile

For example, with $\alpha_o = .01$, $\nu_2 = 20$ and m = 4, we have

$$d1_{.01,5,20} =$$

$$qmvt(p = .99, tail = "lower.tail", df = 20, corr = matrix(rep(.5, 4^2), 4) + diag(4) * .5)$$
\$quantile = 3.088

$$d2_{.01,5,20} =$$

$$qmvt(p = .99, tail = "both.tails", df = 20, corr = matrix(rep(.5, 4^2), 4) + diag(4) * .5)$$
\$quantile = 3.386

The R function differs from the values in Table VI in the textbook by at most .01.

Dunnett's Procedure

- 1. Compute $D2(t-1,\nu_2) = d2_{\alpha_o,t-1,\nu_2} \hat{\sigma}_e \sqrt{\frac{2}{r}}$ or $D1(t-1,\nu_2) = d1_{\alpha_o,t-1,\nu_2} \hat{\sigma}_e \sqrt{\frac{2}{r}}$
- 2. State there is significant evidence at the α_o level that μ_i is different from μ_c if

$$|\bar{y}_{i.} - \bar{y}_{c.}| \ge D2(t - 1, \nu_2)$$

• Simultaneous confidence intervals on $\mu_i - \mu_c$ for $i = 1, \dots, t-1$ are given by

$$\bar{y}_i - \bar{y}_{c.} \pm D2(t-1,\nu_2)$$

3. State there is significant evidence at the α_o level that μ_i is greater than μ_c if

$$\bar{y}_i - \bar{y}_{c.} \ge D1(t-1, \nu_2)$$

• Simultaneous lower confidence bounds on $\mu_i - \mu_c$ for $i = 1, \dots, t-1$ are given by

$$\bar{y}_i - \bar{y}_{c.} - D1(t-1, \nu_2)$$

4. State there is significant evidence at the α_o level that μ_i is less than μ_c if

$$\bar{y}_i - \bar{y}_{c.} \le -D1(t-1, \nu_2)$$

• Simultaneous upper confidence bounds on $\mu_i - \mu_c$ for $i = 1, \dots, t-1$ are given by

$$\bar{y}_i - \bar{y}_{c.} + D1(t-1, \nu_2)$$

- 5. Dunnett's procedure yields **exact** experimentwise error rates when there are equal sample sizes.
- 6. Table VI values are for $n_1 = n_2 = \cdots = n_{t-1} = n_c = r$. For unequal number of replications, let $m = \max_{i=1,\dots,t-1} (1 + .07(1 \frac{n_i}{n_c}))$ then compute,

$$D1(t-1,\nu_2) = (m)(d1_{\alpha_o,t-1,\nu_2})\hat{\sigma}_e\sqrt{\frac{1}{n_i} + \frac{1}{n_c}} \quad \text{or} \quad D2(t-1,\nu_2) = (m)(d2_{\alpha_o,t-1,\nu_2})\hat{\sigma}_e\sqrt{\frac{1}{n_i} + \frac{1}{n_c}}$$

- When the sample sizes are not equal, Dunnett's procedure yields approximate experimentwise error rates.
- 7. Dunnett (1964), "New tables for multiple comparison with a control." *Biometrics* **20**, pp. 482-491, has tables for the critical values.
- 8. Dunnett (1955), "A multiple comparison procedure for comparing several treatments with a control." JASA **50**, 1096-1121, showed that the relationship $n_c = n\sqrt{t-1}$ yields the maximum coverage probability for a lower(upper) confidence bound on $\mu_i \mu_c$.

Selecting a Group of "Best" Treatments: Hsu's Procedure

In many experimental settings, the goal of the experiment is to determine which treatments yield the **best treatment means**, either largest or smallest. In these types of experiments we can employ Hsu's procedure to determine the group of best treatments.

Hsu's procedure requires equal sample sizes $n_1 = \cdots = n_t = r$ and the standard AOV requirements on the experimental data:

$$y_{ij} = \mu_i + e_{ij}$$
 $i = 1, ..., t$ $j = 1, ..., r$ with e_{ij} having iid $N(0, \sigma_e^2)$ distributions

Let $d_{\alpha,t-1,\nu_2}$ be the **1-sided** values given in Table VI in Kuehl's book, that is, the 1-sided Dunnett values. The following R function can also be used to obtain $d_{\alpha,t-1,\nu_2}$ with m=t-1:

library(mvtnorm)

$$qmvt(p = 1 - \alpha, tail = "lower.tail", df = \nu_2, corr = matrix(rep(.5, m^2), m) + diag(m) * .5)$$
\$quantile

Hsu's Procedure, when Best is Largest:

Hsu's procedure produces a group $G = \{\mu_{i_1}, \mu_{i_2}, \dots, \mu_{i_m}\}$ of m treatment means such that the probability that G contains the largest treatment mean is at least $1 - \alpha$.

- 1. For i = 1, ..., t let $M_i = \max_{h \neq i} \bar{y}_h$ (largest sample mean excluding the *i*th sample mean.
- 2. Let $K_i = M_i d_{\alpha,t-1,\nu_2} \hat{\sigma}_e \sqrt{\frac{2}{r}}$
- 3. The *i*th treatment mean μ_i is placed in G if $\bar{y}_i \geq K_i$

That is, if
$$M_i - \bar{y}_{i.} \le d_{\alpha,t-1,\nu_2} \hat{\sigma}_e \sqrt{\frac{2}{r}} \implies (\bar{y}_{i.} \text{ is close to } M_i)$$

Hsu's Procedure, when Best is Smallest:

Hsu's procedure produces a group $G = \{\mu_{i_1}, \mu_{i_2}, \dots, \mu_{i_m}\}$ of m treatment means such that the probability that G contains the smallest treatment mean is at least $1 - \alpha$.

- 1. For i = 1, ..., t let $m_i = min_{h \neq i} \bar{y}_{h}$ (smallest sample mean excluding the *i*th sample mean.
- 2. Let $k_i = m_i + d_{\alpha,t-1,\nu_2} \hat{\sigma}_e \sqrt{\frac{2}{r}}$
- 3. The *i*th treatment mean μ_i is placed in G if $\bar{y}_i \leq k_i$

That is, if
$$\bar{y}_{i.} - m_i \leq d_{\alpha,t-1,\nu_2} \hat{\sigma}_e \sqrt{\frac{2}{r}} \implies (\bar{y}_{i.} \text{ is close to } m_i)$$

Note: For unequal replications, see Hsu(1994), *Multiple Comparisons, Theory and Methods*, pp. 89-95, Chapman & Hall.

An approximation to Hsu's procedure is obtained by replacing

$$d_{\alpha,t-1,\nu_2}\hat{\sigma}_e\sqrt{\frac{2}{r}}$$
 with $t_{\alpha/(t-1),\nu_2}\hat{SE}(\hat{\mu}_i-\hat{\mu}_j)$

where $\hat{SE}(\hat{\mu}_i - \hat{\mu}_j) = \sigma_e \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$ for the case of unequal sample sizes in a CRD design.

Tire Brand example:

In the Brand Example the "Best" treatment is the treatment having **Smallest** μ_i

$$d(5,0.05,18) = 2.41$$
, which yields $k_i = m_i + (2.41)(3)\sqrt{2/4} = m_i + 5.11$

$$d(5,0.01,18) = 3.21$$
, which yields $k_i = m_i + (3.21)(3)\sqrt{2/4} = m_i + 6.81$

			0.05	0.01
Brand	$\bar{y}_{i.}$	m_i	k_i	k_i
S_1	21	17	22.11	23.81
S_2	24	17	22.11	23.81
B_1	17	18	23.11	24.81
B_2	23	17	22.11	23.81
R_1	26	17	22.11	23.81
R_2	18	17	22.11	23.81

For $\alpha = 0.05$, the Collection, G_1 , containing the treatment with the "Best" mean is $G_1 = \{S_1, B_1, R_2\}$

That is, we are 95% confident that G_1 contains the treatment with the "Best" mean.

For 99% confidence, i.e., for $\alpha = 0.01$, the group of treatments becomes $G_2 = \{S_1, B_1, B_2, R_2\}$

Notice to increase the level of confidence from 95% to 99% for G to contain the treatment with the "Best" mean it was necessary to add another treatment to the group.

A 95% C.I. for the difference between the *ith* treatment mean and the best treatment mean μ^* : $\mu_i - \mu^*$ is given by $(0, D_i)$, where $D_i = max(0, \bar{y}_i, -m_i + 5.11)$.

Brand	95% C.I. on $\mu_i - \mu^*$
S_1	(0, 9.11)
S_2	(0, 12.11)
B_1	(0, 4.11)
B_2	(0, 11.11)
R_1	(0, 14.11)
R_2	(0, 6.11)

SAS code for Dunnett, LSD, Tukey, SNL:

```
ods html; ods graphics on;
option ls=80 ps=50 nocenter nodate;
title 'Stopping Distance of 6 brands of tires';
data old; array Y Y1-Y4;
input BRD $ Y1-Y4; do over Y; SD=Y; output; end;
      drop Y1-Y4;
      label BRD = 'Brand of Tire' SD = 'Stopping Distance';
cards:
S1 22 20 25 17
S2 26 22 27 21
B1 16 20 14 18
B2 20 25 26 21
R1 28 29 23 24
R2 22 15 19 16
proc glm data=old order=data;
class BRD;
model SD=BRD;
run;
          BRD/cl pdiff alpha=.05 adjust=tukey;
1smeans
          BRD/cl pdiff=controll('S1') adjust=DUNNETT alpha=.05;
1smeans
means BRD/hovtest=bf;
output out=ASSUMP r=RESID p=MEANS;
proc univariate def=5 plot normal; var RESID;
run;
proc gplot;
plot SD*BRD='*';
run;
ods graphics off; ods html close;
```

- 1. **pdiff=control('S1') adjust=DUNNETT** provides a 2-sided Dunnett comparison with the treatment **S1** designated as the control and tests $H_1: \mu_i \neq \mu_{S1}$
- 2. **pdiff=controll('S1') adjust=DUNNETT** provides a 1-sided Dunnett comparison with the treatment **S1** designated as the control and tests $H_1: \mu_i < \mu_{S1}$
- 3. **pdiff=controlu('S1') adjust=DUNNETT** provides a 1-sided Dunnett comparison with the treatment **S1** designated as the control and tests $H_1: \mu_i > \mu_{S1}$

The GLM Procedure

Class Level Information

Class Levels Values

BRD 6 B1 B2 R1 R2 S1 S2

Number of Observations Read 24 Number of Observations Used 24

Dependent Variable: SD Stopping Distance

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	246.0000000	49.2000000	5.47	0.0031
Error	18	162.0000000	9.0000000		
Corrected Total	23	408.0000000			

Least Squares Means

Adjustment for Multiple Comparisons: Tukey

BRD	SD LSMEAN	LSMEAN Number	
S1	21.0000000	1	
S2	24.0000000	2	
B1	17.0000000	3	
B2	23.0000000	4	
R1	26.0000000	5	
R2	18.0000000	6	

Least Squares Means for effect BRD
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: SD

i/j	1	2	3	4	5	6
1		0.7185	0.4412	0.9298	0.2229	0.7185
2	0.7185		0.0392	0.9966	0.9298	0.0979
3	0.4412	0.0392		0.0979	0.0055	0.9966
4	0.9298	0.9966	0.0979		0.7185	0.2229
5	0.2229	0.9298	0.0055	0.7185		0.0149
6	0 7185	0 0979	0 9966	0 2229	0 0149	

```
BRD
               SD LSMEAN 95% Confidence Limits
S1 21.000000 17.848617, 24.151383

S2 24.000000 20.848617, 27.151383

B1 17.000000 13.848617, 20.151383

B2 23.000000 19.848617, 26.151383

R1 26.000000 22.848617, 29.151383

R2 18.000000 14.848617, 21.151383
```

Least Squares Means for Effect BRD

i j Difference Between Simultaneous 95% Confidence Limits for LSMean(i)-LSMean(j) 1 2 -3.000000 -9.741630, 3.741630 4.000000 -2.741630, 10.741630 1 3 1 4 -2.000000 -8.741630, 4.741630 1 5 -5.000000 -11.741630, 1.741630 3.000000 -3.741630, 9.741630 1 6 2 3 7.000000 0.258370, 13.741630 1.000000 -2.000000 6.000000 -6.000000 -9.000000 -1.000000 -3.000000 8.000000 2 4 -5.741630, 7.741630 2 5 -8.741630, 4.741630 2 6 -0.741630, 12.741630 3 4 -12.741630, 0.741630 3 5 -15.741630, -2.258370 3 6 -7.741630, 5.741630 4 5 -9.741630, 3.741630 4 6 5.000000 -1.741630, 11.741630

1.258370, 14.741630

The GLM Procedure Least Squares Means

8.000000

5 6

Adjustment for Multiple Comparisons: Dunnett

BRD	SD LSMEAN	HO:LSMean=Control
		Pr < t
S1	21.0000000	
S2	24.0000000	0.9947
B1	17.0000000	0.1263
B2	23.0000000	0.9799
R1	26.0000000	0.9997
R2	18.0000000	0.2566

Least Squares Means for Effect BRD

	1	
i j	Difference Between	Simultaneous 95% Confidence Limits
	Means	<pre>for LSMean(i)-LSMean(j)</pre>
2 1	3.00000	-Infinity, 8.106229
3 1	-4.000000	-Infinity, 1.106229
4 1	2.000000	-Infinity, 7.106229
5 1	5.000000	-Infinity, 10.106229
6 1	-3.000000	-Infinity, 2.106229

SUMMARY OF TREATMENT COMPARISONS - BRAND EXAMPLE

I. Comparison of LSD, Tukey, SNK Procedures:

Technique	Groups of Brands with	Pairs of Brands with
Technique	Similar Means	Significantly Different Means
HSD	$G1 = [R_1, S_2, B_2, S_1]$	$[R_1, R_2], [B_1, R_1]$
	$G2 = [S_1, S_2, B_2, R_2]$	$[S_2, B_1]$
	$G3 = [S_1, R_2, B_1, B_2]$	
SNK	$G1 = [R_1, S_2, B_2, S_1]$	$[R_1, R_2], [B_1, R_1]$
	$G2 = [S_1, B_2, R_2]$	$[S_2, B_1], [S_2, R_2]$
	$G3 = [S_1, R_2, B_1]$	$ [B_2,B_1] $
LSD	$G1 = [R_1, S_2, B_2]$	$[S_1, R_1], [R_1, R_2]$
	$G2 = [S_1, S_2, B_2]$	$[B_1, R_1], [S_2, R_2]$
	$G3 = [S_1, R_2, B_1]$	$[S_2, B_1], [B_2, R_2], [B_2, B_1]$

Note that LSD declares the most pairs of treatments to be different, then SNK, and finally HSD declares the fewest pairs of treatments to be different.

II. Comparison of All Brands to Brand S_1 (Standard Brand) Dunnett's Procedure:

This is a 1-sided test $H_1: \mu_i < \mu_{S_1}$ (shorter mean stopping distances). Based on the Dunnett procedure our conclusion is that there is not significant evidence that any of the brands have a shorter mean stopping distance than Brand S_1 .

III. Hsu's Procedure for finding the "Best" Treatment In the Brand Example the "Best" treatment is the treatment having Smallest μ_i

With 95% confidence ($\alpha = 0.05$), the Collection containing the treatment having the "Best" mean consists of

$${S_1, B_1, R_2}.$$

With 99% confidence ($\alpha = 0.01$), the Collection containing the treatment having the "Best" mean consists of

$${S_1, B_1, B_2, R_2}.$$

Analysis of Treatment Means

When Treatment is Levels of Quantitative Variable

The following example will be used to illustrate the many ways in which we can evaluate the types of differences that may exist in treatment means when the levels of the treatments are quantitative.

EXAMPLE

An experiment is run to examine the relationship between the temperature of the reaction and the percent yield of reaction. The treatment in this example is the temperature of a chemical reaction. There are 5 equally spaced values for the temperatures with four replications at each temperature. Thus, 4 orthogonal polynomial contrasts will be used to examine the effects of temperature on the response variable.

	PerCent Yield								
Temperature	Rep 1	Rep 2	Rep 3	Rep 4	$\bar{y}_{i.}$				
550	6	4	5	5	5				
600	32	26	24	22	26				
650	45	45	44	34	42				
700	63	62	44	39	52				
750	87	85	72	80	81				

A plot of the data is given on the next page. There appears to be an increasing trend in the data for increasing reaction temperature. Does this observed trend hold in the treatment means or is it just an artifact of the observed data?

When the treatments consist of t equally spaced values of a quantitative variable and there are an equal number of replications per treatment level, it is possible to construct t-1 contrasts which reflect the reduction in SSE due to fitting an increasing higher order polynomial model relating the response variable to the treatment variable.

In the above example, the response variable is y_{ij} the % yield of the jth replication of a chemical reaction run using temperature level T_i for i=1,2,3,4,5 and j=1,2,3,4. The treatment levels are 550, 600, 650, 700, and 750 which are equally spaced and there are an equal number of replications per treatment: $n_i=4$ for all i. It is thus possible to fit a polynomial of order t-1=4 relating % yield to temperature. The following notation will describe the general setting of such an experiment.

1. Let X be a treatment with t equally spaced quantitative levels used in the experiment: X_1, X_2, \ldots, X_t : $X_i = X_1 + (i-1)d$, where d is the common spacing between treatment levels.

With t=5,
$$X_1 = 550$$
, $d = 50 \implies X_i = 500 + (i-1)50$ for $i = 2, 3, 4, 5$

- 2. Suppose r independent experiments are conducted at each level, yielding average responses: $\bar{y}_1, \bar{y}_2, \dots, \bar{y}_t$.
- 3. Using the contrasts given in Table XI, t-1 mutually orthogonal contrasts can be constructed which reflect the gain in model fit by fitting a higher order polynomial to the experimental data.
- 4. This set of contrasts provide a decomposition of SS_{TRT} into t-1 independent components.

		t	= 3	t	= 4			t =	5				t = 6					t	= 7			
	X_{j}	P_1	P_2	$\overline{P_1}$	P_2	P_3	$\overline{P_1}$	P_2	P_3	P_4	P_1	P_2	P_3	P_4	P ₅	P_1	P_2	P_3	P_4	P_5	P_6	-
	1	-1 0 1	$^{1}_{-2}$	-3 -1 1	1	-1	-2 -1 0 1	2 -1 -2 -1	-1 2 0 -2 1	1	-5	5	-5	1	-1	-3		-1	3			
	1 2 3 4 5	1	1	1	-1 -1	-3 1	0	-2	ő	-4 6 -4	-5 -3 -1 1 3	-1 -4 -4 -1 5	-5 7 4 -4 -7 5	1 -3 2 2 -3	5 -10 10 -5 1	-3 -2 -1 0 1 2	0 -3 -4 -3 0	1	-7 I	7 4 1 -5 5 0 1 5 7 -4	-(1	5
	4			3	1	1	1 2	-1 2	-2	-4	1	-4	-4	2	10	0	-4	0	6	0	-2 1	0
	6						4	- 2	#	Ĭ.	5	5	5	1	-3 1	2	-3	1 0 -1 -1	1 6 1 -7	7 –4	-(5
ş	7															3	5	1	3	1	1	I
$\sum_{i=1}^{n} \{P_i(X_j)\}^2$		2	6	20	4	20	10	14	10	70	70	84	180	28	252	28	84	6	154	84	924	
j=1	λ	1	3	2	1	10	. 1	1	5	$\frac{35}{12}$	2	3 2	5	7 12	$\frac{21}{10}$	1	1	1 6	7 12	7	77	
-	: 600		553	150	5.75	3			6	12	(475)	2	3	12	10	2.90		6	12	20	60	
				t	= 8							t =	9					t =	= 10			
	X_j	P_1	P_2	P_3	I	4	P_5	P_6	P_1	P_2	F	3	P_4	P_5	P_6	P_1	\overline{P}		P_3	P_4	P_5	P_6
	1	-7	7	-7	<u> </u>	7	-7 23 -17 -15 -15 -17 -23 7	1	-4	28	-1	4	14	-4	4	-9		6 –	42	18	-6	3
	1 2 3 4 5 6 7 8 9	-5 -3 -1 1 3 5	1	5		3	23	-5	-3	28 7 -8 -17 -20 -17 -8 7 28		7	14 -21 -11 9 18 9 -11 -21	-4 11 -4 -9 0 9 4 -11	4 -17 22 1 -20 1 22 -17	-9 -7 -5 -3 -1 1 3 5 7	- - - - - -	2	14 35 31 12 12 31 35	-22	14	-11
	4	-1	-5	3		9	-17	-5	-1	-17	1	9	-11	-9	- 22 1	-3	_	3	33 31	-22 -17 3 18 18 3 -17 -22	$-1 \\ -11$	10
	5	1	-5	-3		9	.15	-5	0	-20		0	18	0	-20	-Ī	-	1	12	18	-11 -6 6 11	-8 -8
	6	3	-3	-7	10 0 <u>=</u> 5 3	-3	17	9	1	-17		9	9	9	1	1	127	4 -	12	18	6	-8
	8	7	7	7		7	-23 7	-3 1	3	_8 7	-1	7	-11 -21	_11	-17	- 5	=====	5 — 1 —	31 35	- 17	11	10
	9			.*			34.0		4	28	1	4	14	4	4	7	1	2 =	14	-22	-14	-11
	10															9			42	18	6	3
$\sum_{i=1}^{t} \{P_i(X_j)\}^2$		168	168	264	61	6 2	2184	264	60	2772	99	0 2	2002	468	1980	330	132	858	80	2860	780	660
=1	λ	2	1	2 3	5	7 2	7 10	11 60	1	3		5	$\frac{7}{12}$	3 20	11 60	2		I Ž	5	$\frac{5}{12}$	1	11

Plot of PE*T. Symbol used is '*'.

NOTE: 3 obs hidden.

To illustrate the above idea, consider the simplest possible case, fitting a first order polynomial to the t data points: $(X_1, \bar{y}_1), (X_2, \bar{y}_2), \dots, (X_t, \bar{y}_t) \Rightarrow \bar{y}_i = \beta_o + \beta_1 X_i + e_i$

Let
$$\bar{X}_{\cdot} = \frac{1}{t} \sum_{i=1}^{t} X_i$$
, $SS_X = \sum_{i=1}^{t} (X_i - \bar{X}_{\cdot})^2$, $k_i = \frac{X_i - \bar{X}_{\cdot}}{SS_X}$, $i = 1, \dots, t$

Define the contrast: $C = \sum_{i=1}^{t} k_i \mu_i$ where $\mu_i = E[\bar{y}_{i.}]$ the ith Treatment Mean

What does this contrast measure?

$$\widehat{C} = \sum_{i=1}^{t} k_i \overline{y}_i.$$

$$= \sum_{i=1}^{t} \frac{X_i - \overline{X}_{\cdot}}{SS_X} \overline{y}_i.$$

$$= \frac{\sum_{i=1}^{t} (X_i - \overline{X}_{\cdot}) \overline{y}_i.}{SS_X}$$

$$= \frac{\sum_{i=1}^{t} (X_i - \overline{X}_{\cdot}) (\overline{y}_i. - \overline{y}_{\cdot})}{\sum_{i=1}^{t} (X_i - \overline{X}_{\cdot})^2}$$

$$= \widehat{\beta}_1 \quad \text{the LSE of the slope of the line relating} \quad \mu_{Y|X} \quad \text{to} \quad X$$

Thus, $\widehat{C}=0$ if and only if $\widehat{\beta}_1=0$. The test of $H_o:C=0$ is equivalent to the test of $H_o:\beta_1=0$. Thus, C measures whether or not there is a 1st order polynomial relationship between the mean response and the explanatory variable X. The decomposition of SS_{TRT} into the t-1 components extends the 1st order model to a t-1 order polynomial.

Goal: Model $\mu_{y|X}$ as a polynomial function of X:

$$y_i = \beta_o + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_{t-1} X_i^{t-1} + e_i,$$

where the values of X are equally spaced:

$$X_i = X_1 + (i-1)d$$
 for $i = 1, ..., t$ and e_i are iid r.v.'s with distribution $N(0, \sigma_e^2)$.

Observe r values of y for each value of X yielding:

$$(X_1, \bar{y}_{1.}), (X_2, \bar{y}_{2.}), \dots, (X_t, \bar{y}_{t.})$$

Determine the reduction in the value of SSE for each added term in the polynomial:

Model 0:
$$y_i = \beta_o + e_i$$

Model 1:
$$y_i = \beta_o + \beta_1 X_i + e_i$$

Model 2:
$$y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + e_i$$

:

Model
$$t - 1$$
: $y_i = \beta_o + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_{t-1} X_i^{t-1} + e_i$

Sequentially compare the above models:

Let SSE_i be the sum of squares error from Model i and

let
$$SSE_{ch,i} = SSE_{i-1} - SSE_i$$
; for $i = 1, 2, ..., t-2$

be the gain in the fit of the model due to adding another term to the current model.

Equation 1 is given by

Equation 1:
$$\bar{y}_{i} = \beta_{o} + \beta_{1}X_{i} + \beta_{2}X_{i}^{2} + \cdots + \beta_{t-1}X_{i}^{t-1} + e_{i}$$

is written in matrix form as:

$$\bar{\mathbf{y}} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$
, where

$$\bar{\mathbf{y}} = \begin{bmatrix} \bar{y}_{1.} \\ \bar{y}_{2.} \\ \vdots \\ \bar{y}_{t.} \end{bmatrix}; \quad \mathbf{X} = \begin{bmatrix} 1 & X_{1} & X_{1}^{2} & \cdots & X_{1}^{t-1} \\ 1 & X_{2} & X_{2}^{2} & \cdots & X_{2}^{t-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{t} & X_{t}^{2} & \cdots & X_{t}^{t-1} \end{bmatrix}; \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_{o} \\ \beta_{1} \\ \vdots \\ \beta_{t-1} \end{bmatrix}; \quad \mathbf{e} = \begin{bmatrix} e_{1} \\ e_{2} \\ \vdots \\ e_{t} \end{bmatrix}$$

To obtain the orthogonal polynomials, first it is necessary to standardize the X variable:

$$X_i = X_1 + (i-1)d$$
 \Rightarrow $\bar{X}_i = X_1 + \frac{d}{2}(t-1)$ \Rightarrow

$$Z_i = \frac{X_i - \bar{X}_i}{d} = i - \frac{t+1}{2}$$
 for $i = 1, 2, \dots, t$

Rewrite the model in terms of the Z_i 's:

Equation 2:
$$\bar{y}_{i} = \gamma_{o} + \gamma_{1}Z_{i} + \gamma_{2}Z_{i}^{2} + \cdots + \gamma_{t-1}Z_{i}^{t-1} + e_{i}$$

Define the t-1 polynomials in Z_i as:

$$P_o(Z_i) = 1;$$
 $P_1(Z_i) = Z_i;$ $P_2(Z_i) = Z_i^2 - 2$

$$P_{l+1} = Z_i P_l(Z_i) - \frac{l^2(t^2 - l^2)}{4(4l^2 - 1)} P_{l-1}(Z_i)$$
 for $l = 2, \dots, t - 2$

The above polynomials, after converting them to integers, yield the coefficients in Table XI in Kuehl's book (see page 44 of this handout).

The regression equation can now be written in terms of these polynomials:

Equation 3:
$$\bar{y}_i = \alpha_o + \alpha_1 P_1(Z_i) + \alpha_2 P_2(Z_i) + \dots + \alpha_{t-1} P_{t-1}(Z_i) + e_i$$

Express the above model in matrix form as $\bar{\mathbf{y}} = \mathbf{P}\boldsymbol{\alpha} + \mathbf{e}$, where

$$\bar{\mathbf{y}} = \begin{bmatrix} \bar{y}_{1.} \\ \bar{y}_{2.} \\ \vdots \\ \bar{y}_{t.} \end{bmatrix}; \quad \mathbf{P} = \begin{bmatrix} P_{o}(Z_{1}) & P_{1}(Z_{1}) & \cdots & P_{t-1}(Z_{1}) \\ P_{o}(Z_{2}) & P_{1}(Z_{2}) & \cdots & P_{t-1}(Z_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ P_{o}(Z_{t}) & P_{1}(Z_{t}) & \cdots & P_{t-1}(Z_{t}) \end{bmatrix}; \quad \boldsymbol{\alpha} = \begin{bmatrix} \alpha_{o} \\ \alpha_{1} \\ \vdots \\ \alpha_{t-1} \end{bmatrix}; \quad \mathbf{e} = \begin{bmatrix} e_{1} \\ e_{2} \\ \vdots \\ e_{n} \end{bmatrix}$$

The LSE of α is obtained as $\hat{\alpha} = (\mathbf{P}'\mathbf{P})^{-1}(\mathbf{P}'\bar{\mathbf{y}})$

Because the columns of \mathbf{P} are orthogonal and the sum of each column is 0, we obtain:

$$\mathbf{P'P} = Diag\left(t, \sum_{i=1}^{t} P_1^2(Z_i), \sum_{i=1}^{t} P_2^2(Z_i), \cdots, \sum_{i=1}^{t} P_{t-1}^2(Z_i)\right).$$

Therefore,

$$\hat{\alpha}_l = \frac{\sum_{i=1}^t P_l(Z_i)\bar{y}_{i.}}{\sum_{i=1}^t P_l^2(Z_i)} \quad \text{and} \quad SS_{P_l} = \frac{\left(\sum_{i=1}^t P_l(Z_i)\bar{y}_{i.}\right)^2}{\frac{1}{r}\sum_{i=1}^t P_l^2(Z_i)}; \quad l = 1, 2, \dots, t-1$$

Note that
$$\hat{\alpha}_l = \frac{\hat{C}_l}{\sum_{i=1}^t k_{li}^2}$$
, where $k_{li} = P_l(Z_i)$, $\hat{C}_l = \sum_{i=1}^t k_{li} \bar{y}_{i.}$ and $SS_{P_l} = SS_{C_l} = \frac{\hat{C}}{\frac{1}{n} \sum_{i=1}^t K_{li}^2}$

The sum of squares SS_{P_l} is the resulting decrease in SSE by including the term X^l in a model containing the terms X, X^2, \ldots, X^{l-1} :

$$SS_{P_1} = SS_{TOT} - SSE_1$$

$$SS_{P_2} = SSE_1 - SSE_2$$

$$\vdots$$

$$SS_{P_{t-1}} = SSE_{t-2} - SSE_{t-1}$$

The LSE of the coefficients in the original model, $\hat{\beta}_i$ can be obtained from the $\hat{\alpha}_i$'s:

In the model
$$\hat{y} = \hat{\alpha}_o + \hat{\alpha}_1 P_1(Z) + \hat{\alpha}_2 P_2(Z) + \dots + \hat{\alpha}_{t-1} P_{t-1}(Z)$$

Replace Z with $\frac{X-\bar{X}_{\cdot}}{d}$ and expand the polynomial to obtain:

$$\hat{y} = \hat{\beta}_o + \hat{\beta}_1 X + \hat{\beta}_2 X^2 + \dots + \hat{\beta}_{t-1} X^{t-1}$$

The above ideas will be illustrated using the Chemical Reaction Experiment.

There are t = 5 equally spaced levels of the treatment factor, temperature of reaction, with r = 4 independent experiments at each of the five temperature levels. The t - 1 = 4 mutually orthogonal contrasts are obtained as follows: (See Table IX):

$$Z_i = i - \frac{t+1}{2}$$
 for $i = 1, 2, 3, 4, 5$ yielding $Z = -2, -1, 0, 1, 2$

$$P_o(Z) = 1$$
 for all Z

$$P_1(Z) = Z$$

$$P_{l+1} = Z_i P_l(Z_i) - \frac{l^2(t^2 - l^2)}{4(4l^2 - 1)} P_{l-1}(Z_i)$$
 for $l = 2, \dots, t - 2 \implies$

$$P_2(Z) = ZP_1(Z) - \frac{(t^2-1)}{4(4-1)}P_o(Z) = Z^2 - 2$$

$$P_3(Z) = ZP_2(Z) - \frac{(2)^2(t^2 - (2)^2)}{4(4(2)^2 - 1)}P_1(Z) = Z(Z^2 - 2) - \frac{7}{5}Z = Z^3 - \frac{17}{5}Z$$

$$P_4(Z) = ZP_3(Z) - \frac{(3)^2(t^2 - (3)^2)}{4(4(3)^2 - 1)}P_2(Z) = Z(Z^3 - \frac{17}{5}) - \frac{36}{35}(Z^2 - 2) = Z^4 - \frac{31}{7}Z^2 + \frac{72}{35}$$

The values given for the 4 contrasts are obtained by evaluating the above for Z = -2, -1, 0, 1, 2 and multiplying by a common denominator to obtain integer values for the five coefficients. We can compare the values obtained from the values given in Table IX:

For example,
$$P_3(Z) = \frac{-6}{5}$$
 for $Z = -2$; $\frac{12}{5}$ for $Z = -1$; 0 for $Z = 0$; $\frac{-12}{5}$ for $Z = 1$; $\frac{6}{5}$ for $Z = 2$;

Multiplying the five values by $\frac{5}{6}$, yields the coefficients given in Table IX: -1, 2, 0, -2, 1

				Polynomial		
		Mean	Linear	Quadratic	Cubic	Quartic
$\overline{\text{Temp}(X_i)}$	$\bar{y}_{i.}$	P_{l0}	P_{l1}	P_{l2}	P_{l3}	P_{l4}
550	5	1	-2	2	-1	1
600	26	1	-1	-1	2	-4
650	42	1	0	-2	0	6
700	52	1	1	-1	-2	-4
750	81	1	2	2	1	1
Multiplier	λ_l	1	1	1	5/6	35/12
$\hat{C}_l = \sum_{i=1}^t I$	$P_{li}\bar{y}_{i}$	206	178	10	24	26
$D_l = \sum_{i=1}^t D_i$	P_{li}^2	5	10	14	10	70
$\hat{C}_{l} = \sum_{i=1}^{t} I_{l}$ $D_{l} = \sum_{i=1}^{t} I_{l}$ $SS_{P_{l}} = \frac{\hat{C}_{l}^{2}}{\frac{1}{r}D_{l}}$ $\hat{\alpha}_{l} = \frac{\hat{C}_{l}}{D_{l}}$			12673.6	28.571	230.4	38.6286
$\hat{\alpha}_l = \frac{\hat{C}_l}{D_l}$		41.2	17.8	5/7	2.4	13/35

From the above table, we obtain the following AOV for Regression:

SV	DF	SS	MS	F	p-value
Model	4	12971.2	3242.8	66.45	$2x10^{-9}$
Linear	1	12673.6	12673.6	259.7	$7x10^{-11}$
Quadratic	1	28.6	28.6	0.59	0.4560
Cubic	1	230.4	230.4	4.72	0.0462
Quartic	1	38.6	38.6	0.79	0.3877
Error	15	732	48.80		

The predictive model can also be obtained:

$$\hat{y} = \lambda_0 \hat{\alpha}_0 + \lambda_1 \hat{\alpha}_1 P_1(Z) + \lambda_2 \hat{\alpha}_2 P_2(Z) + \lambda_3 \hat{\alpha}_3 P_3(Z) + \lambda_4 \hat{\alpha}_4 P_4(Z)$$

It is necessary to multiply the coefficients α_l by the multipliers λ_l because we had converted the actual coefficients in the orthogonal contrasts into integers.

$$\hat{y} = (1)(41.2) + (1)(17.8)P_1(Z) + (1)\left(\frac{5}{7}\right)P_2(Z) + \left(\frac{5}{6}\right)(2.4)P_3(Z) + \left(\frac{35}{12}\right)\left(\frac{13}{35}\right)P_4(Z)$$

$$\hat{y} = 41.2 + (17.8)P_1(Z) + \left(\frac{5}{7}\right)P_2(Z) + (2)P_3(Z) + \left(\frac{13}{12}\right)P_4(Z)$$

The equation can be written in terms of X by substituting $Z = \frac{X - \bar{X}}{d} = \frac{X - 650}{50}$ into the above equation and collecting terms:

$$\hat{y} = 41.2 + (17.8) \left(\frac{X - 650}{50} \right) + \left(\frac{5}{7} \right) \left(\left(\frac{X - 650}{50} \right)^2 - 2 \right) + (2) \left(\left(\frac{X - 650}{50} \right)^3 - \frac{17}{5} \left(\frac{X - 650}{50} \right) \right)$$

$$+ \frac{13}{12} \left(\left(\frac{X - 650}{50} \right)^4 - \frac{31}{7} \left(\frac{X - 650}{50} \right)^2 + \frac{72}{35} \right)$$

which simplifies to

$$\hat{y} = 25756 - 167.783X + 0.40657X^2 - 0.0004347X^3 + 0.000000173X^4$$

Examine the following SAS program to compare the results obtained above to the results from directly running a regression analysis.

```
* orthopoly.sas;
ods html;ods graphics on;
option ls=72 ps=60 nocenter nodate;
title 'Orthogonal Polynomials';
data poly; array Y Y1-Y4;
input T Y1-Y4; do over Y; PE=Y; output; end;
     drop Y1-Y4;
     label T = 'Temp of React' PE = 'Percent of Water-Gas';
cards:
550 6 4 5 5
600 32 26 24 22
650 45 45 44 34
700 63 62 44 39
750 87 85 72 80
run;
proc plot;
plot PE*T='*';
run;
proc glm;
class T;
model PE = T/ss3;
contrast 'LINEAR'
                   T -2 -1 0 1 2;
contrast 'QUADRATIC' T 2 -1 -2 -1 2;
contrast 'CUBIC'
                  T -1 2 0 -2 1;
contrast 'QUARTIC' T 1 -4 6 -4 1;
*simultaneous test of all 4 contrasts;
contrast '4 TREND CONTRASTS' T -2 -1 0 1 2,
                           T 2 -1 -2 -1 2,
                           T -1 2 0 -2 1,
                           T 1-4 6-41;
run; ods graphics off; ods html close;
OUTPUT FROM SAS PROGRAM: orthopoly.sas:
Dependent Variable: PE Percent of Water-Gas
                                   Sum of
                                            Mean Square F Value Pr > F
                         DF
Source
                                  Squares
Model
                         4
                              12971.20000
                                            3242.80000
                                                           66.45 <.0001
                                               48.80000
Error
                         15
                                732.00000
Corrected Total
                         19
                              13703.20000
                         DF
Contrast
                              Contrast SS
                                            Mean Square F Value
                                                                      Pr > F
LINEAR
                              12673.60000 12673.60000 259.70
                                                                       <.0001
                        1
                                                           0.59
                                                                      0.4560
QUADRATIC
                        1
                                28.57143
                                              28.57143
                                                            0.59
4.72
CUBIC
                        1
                                230.40000
                                              230.40000
                                                                      0.0462
QUARTIC
                         1
                                 38.62857
                                               38.62857
                                                           0.79
                                                                      0.3877
                                                         66.45
4 TREND CONTRASTS 4 12971.20000
                                              3242.80000
                                                                       <.0001
```

Matrix Calculations for Combined Test of 4 Contrasts:

Recall from page 6 of this handout, the Sum of Squares needed to test the significance of the 4 Contrasts simultaneously is obtained as follows:

The test of $H_o: C_1 = 0, C_2 = 0, C_3 = 0, C_4 = 0$ versus $H_1:$ At least one $C_i \neq 0$

is obtained by formulating the Hypothesis matrix:

Test $H_o: \mathbf{H}\boldsymbol{\mu} = 0 \text{ vs } H_o: \mathbf{H}\boldsymbol{\mu} \neq 0 \text{ with}$

$$\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \\ \mu_5 \end{pmatrix}; \quad \mathbf{H} = \begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ 2 & -1 & -2 & -1 & 2 \\ -1 & 2 & 0 & -2 & 1 \\ 1 & -4 & 6 & -4 & 1 \end{pmatrix}; \quad \boldsymbol{\hat{\mu}} = \begin{pmatrix} \bar{y}_1 \\ \bar{y}_2 \\ \bar{y}_3 \\ \bar{y}_4 \\ \bar{y}_5 \end{pmatrix} = \begin{pmatrix} 5 \\ 26 \\ 42 \\ 52 \\ 81 \end{pmatrix};$$

$$(\mathbf{X}^T \mathbf{X}) = Diag(n_1, n_2, n_3, n_4, n_5) = \begin{pmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

The sum of squares associated \mathbf{H} is given by

$$SS_{\mathbf{H}} = (\mathbf{H}\hat{\boldsymbol{\mu}} - \mathbf{0})^T (\mathbf{H} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{H}^T)^{-1} (\mathbf{H}\hat{\boldsymbol{\mu}} - \mathbf{0}) = 12971.2$$

The following R code yields the above matrix calculations:

```
library(MASS)
H = matrix(c( -2,-1,0,1,2,2,-1,-2,-1,2,-1,2,0,-2,1,1,-4,6,-4,1),nrow=4, byrow=T)
muhat = matrix(c(5,26,42,52,81),nrow=5)
h = matrix(c(0,0,0,0),nrow=4)
x=rep(4,5)
D = diag(x,5,5)
A = H%*%muhat - h
Dinv = solve(D)
Cinv = solve(H%*%Dinv%*%t(H))
SSH = t(A)%*%Cinv%*% A
SSH
12971.2
```

The test statistic for testing $H_o: \mathbf{H}\boldsymbol{\mu} = 0$ vs $H_o: \mathbf{H}\boldsymbol{\mu} \neq 0$ is given by

$$F = \frac{SS_H/k}{MSE} = \frac{12971.2/4}{48.80} = 66.45 \implies \text{p-value} = P[F_{4,15} \ge 66.45] = 2.3 \times 10^{-9}$$

Next we will compare the analysis of the orthogonal polynomials to fitting regression models:

```
*orthoreg.sas
option ls=70 ps=55 nocenter nodate;
data poly;
array Y Y1-Y4;
input T Y1-Y4;
T2=T**2; T3=T**3; T4=T**4;
do over Y; PE=Y; output; end;
     drop Y1-Y4;
     label T = 'Temp of React' PE = 'Percent Yield of Reaction';
cards;
550 6 4 5 5
600 32 26 24 22
650 45 45 44 34
700 63 62 44 39
750 87 85 72 80
run;
proc reg data=poly ;
model PE= T T2 T3 T4/ ss1 ss2;
run;
proc reg data=poly ;
model PE= T T2 T3 / ss1 ss2;
proc reg data=poly ;
model PE= T T2 / ss1 ss2;
run;
proc reg data=poly ;
model PE= T / ss1 ss2;
run;
```

OUTPUT FROM SAS PROGRAM: MODEL WITH 4TH ORDER POLYNOMIAL:

Source Model Error C Total		DF Squ 4 12971.2 15 731.9	731.99992 48.79999		Prob>F 0.0001
Root Dep M		6.98570 41.20000	R-square Adj R-sq	0.9466 0.9323	
-			-		
	20	Parameter	Standard	T for HO:	D 1 . lml
Variable	DF	Estimate	Error	Parameter=0	Prob > T
INTERCEP T	1	25756 -167.783738	33926.424847 211.41191517	0.759	0.4595
T2	1 1	0.406568	0.49192672	-0.794 0.826	0.4398 0.4215
T3	1	-0.000435	0.00050659	-0.858	0.4213
T4	1	0.000000173	0.00000019	0.890	0.3877
Variable	DF	Type I SS	Type II SS		
INTERCEP	1	33949	28.125652		
T	1	12674	30.736937		
T2	1	28.571429	33.333775		
T3	1	230.400000	35.926892		
T4	1	38.628651	38.628651		
MODEL WIT	 H 3RI	O ORDER POLYNO	 DMIAL:		
		Sı	ım of Me	ean	
Source		DF Squ	iares Squa	are F Value	Prob>F
Model		3 12932.5	7143 4310.85	714 89.503	0.0001
Error		16 770.6	32857 48.16 ⁴	129	
C Total		19 13703.2	20000		
Parameter	Est	imates			
		Parameter	Standard	T for HO:	
Variable	DF	Estimate	Error	Parameter=0	Prob > T
INTERCEP	1	-4376.514287	1974.7238678	-2.216	0.0415
T	1	20.128571	9.22280000	2.182	0.0443
T2	1	-0.030914	0.01426996	-2.166	0.0457
Т3	1	0.000016000	0.00000732	2.187	0.0439
Variable	DF	Type I SS	Type II SS		
INTERCEP	1	33949	236.575123		
_	-	00040	200.010120		
T	1	12674	229.416922		
T T2					

MODEL WITH 2ND ORDER POLYNOMIAL:

Source Model Error C Total			17143 6351. 02857 58.	Mean quare 08571 88403	F Value 107.858	
Variable INTERCEP T T2	DF 1 1	Parameter Estimate -70.914286 -0.015429 0.000286	Standar Erro 171.9797356 0.5337739 0.0004101	r Param 8 2	or H0: neter=0 -0.412 -0.029 0.697	Prob > T 0.6852 0.9773 0.4955
Variable INTERCEP T T2	DF 1 1	Type I SS 33949 12674 28.571429	Type II S 10.01176 0.04919 28.57142	1 7		

MODEL WITH 1ST ORDER POLYNOMIAL:

		Sui	m of	M	ean		
	DF	Squ	ares	Squ	are	F Value	Prob>F
	1	12673.6	0000	12673.60	000	221.566	0.0001
	18	1029.6	0000	57.20	000		
	19	13703.2	0000				
	Par	ameter		Standard	T fo	r HO:	
DF	Es	timate		Error	Param	eter=0	Prob > T
1	-190.	200000	15.	63745504	-	12.163	0.0001
1	0.	356000	0.	02391652		14.885	0.0001
DF	Тур	e I SS	Ту	pe II SS			
1		33949	846	32.231579			
1		12674		12674			
	1 1 DF 1	1 18 19 Par DF Es 1 -190. 1 0. DF Typ	DF Square 1 12673.66 18 1029.66 19 13703.26 Parameter DF Estimate 1 -190.200000 1 0.356000 DF Type I SS 1 33949	1 12673.60000 18 1029.60000 19 13703.20000 Parameter DF Estimate 1 -190.200000 15. 1 0.356000 0. DF Type I SS Ty 1 33949 846	DF Squares Squ 1 12673.60000 12673.60 18 1029.60000 57.20 19 13703.20000 Parameter Standard DF Estimate Error 1 -190.200000 15.63745504 1 0.356000 0.02391652 DF Type I SS Type II SS 1 33949 8462.231579	DF Squares Square 1 12673.60000 12673.60000 18 1029.60000 57.20000 19 13703.20000 Parameter Standard T for DF Estimate Error Param 1 -190.200000 15.63745504 - 1 0.356000 0.02391652 DF Type I SS Type II SS 1 33949 8462.231579	DF Squares Square F Value 1 12673.60000 12673.60000 221.566 18 1029.60000 57.20000 19 13703.20000 Parameter Standard T for H0: DF Estimate Error Parameter=0 1 -190.200000 15.63745504 -12.163 1 0.356000 0.02391652 14.885 DF Type I SS Type II SS 1 33949 8462.231579

What exactly are the tests of $H_o: C_i = 0$ versus $H_1: C_i \neq 0$, i = 1, ..., t-1 evaluating where C_i is the contrast associated with the *ith* order polynomial?

We will explain their meaning through the chemical yield example.

We have t = 5 levels of the variable X temperature of the reaction with five potential models:

Model 0: $Y_i = \beta_o + e_i$ with $SSE_0 = SS_{Total} = 13703.20000$

Model 1: $Y_i = \beta_o + \beta_1 X_i + e_i$ with $SSE_1 = 1029.60000$

Model 2: $Y_i = \beta_o + \beta_1 X_i + \beta_2 X_i^2 + e_i$ with $SSE_2 = 1001.02857$

Model 3: $Y_i = \beta_o + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + e_i$ with $SSE_3 = 770.62587$

Model 4: $Y_i = \beta_o + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \beta_4 X_i^4 + e_i$ with $SSE_4 = 731.99992$

Using the SSEs from the five models we have the following reductions in SSE due to adding another term to the regression model:

 $SSE_{Red1} = SSE_0 - SSE_1 = 13703.20000 - 1029.60000 = 12673.6$ This Sum of Squares measures the gain in fitting a straight line with arbitrary slope to the data over fitting a horizontal line.

 $SSE_{Red2} = SSE_1 - SSE_2 = 1029.60000 - 1001.02857 = 28.57143$ This Sum of Squares measures the gain in fitting a quadratic equation to the data over fitting a straight line.

 $SSE_{Red3} = SSE_2 - SSE_3 = 1001.02857 - 770.62587 = 230.4027$ This Sum of Squares measures the gain in fitting a cubic equation to the data over fitting a quadratic equation.

 $SSE_{Red4} = SSE_3 - SSE_4 = 770.62587 - 731.99992 = 38.62595$ This Sum of Squares measures the gain in fitting a quartic equation to the data over fitting a cubic equation.

The sum of squares from the Four contrasts are given below.

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
LINEAR	1	12673.600	12673.600	259.70	0.0001
QUADRATIC	1	28.571	28.571	0.59	0.4560
CUBIC	1	230.400	230.400	4.72	0.0462
QUARTIC	1	38.629	38.629	0.79	0.3877

Thus, we can now see that the Contrast SS are exactly what we obtained from fitting the four models to the data.

The p-value for the Linear Contrast is testing $H_o: \beta_1 = 0$ vs $H_o: \beta_1 \neq 0$ in the model: $Y_i = \beta_o + \beta_1 X_i + e_i$

The p-value for the Quadratic Contrast is testing $H_o: \beta_2 = 0$ vs $H_o: \beta_2 \neq 0$ in the model: $Y_i = \beta_o + \beta_1 X_i + \beta_2 X_i^2 + e_i$

The p-value for the Cubic Contrast is testing $H_o: \beta_3 = 0$ vs $H_o: \beta_3 \neq 0$ in the model: $Y_i = \beta_o + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + e_i$

The p-value for the Quartic Contrast is testing $H_o: \beta_4 = 0$ vs $H_o: \beta_4 \neq 0$ in the model: $Y_i = \beta_o + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \beta_4 X_i^4 + e_i$

When the selected levels of the treatment variable are unequally spaced, the following R code can be used to obtain the coefficients. It is not necessary to convert the coefficients to integers.

Suppose we have a variable X from which the levels of the treatment will be selected. The researcher wants to run experiment with a control (X=0) and the following 4 levels from X: 5, 15, 30, 50. The levels are unequally spaced so the table in the textbook cannot be used to select the coefficients for determining if the relationship between the response Y and the treatment variable X follow a t-1 = 5-1 = 4th degree polynomial.

```
con = contr.poly(5, scores = c(0,5,15,30,50))
con_std = matrix(0,5,4)
m = c(rep(0,4))
for (i in 1:4) {
m[i] =min(abs(con[,i]))
con_std[,i] = con[,i]/m[i]
}
con_std
     [,1]
                [,2]
                           [,3] [,4]
            6.000000 -2.666667
[1,]
       -4
                                   14
[2,]
       -3
            1.000000
                      2.000000
                                  -28
[3,]
       -1 -5.666667
                       3.333333
                                   20
[4,]
        2 -7.333333 -3.666667
                                   -7
[5,]
           6.000000
                       1.000000
                                    1
con_std[,2] = 3*con_std[,2]
con_std[,3] = 3*con_std[,3]
con_std
     [,1] [,2] [,3] [,4]
[1,]
       -4
             18
                  -8
                        14
[2,]
       -3
              3
                   6
                       -28
[3,]
           -17
       -1
                  10
                        20
        2
            -22
                 -11
                        -7
[4,]
[5,]
        6
             18
                   3
                         1
```

The four contrasts would thus be given by

$$C_{linear} = -4\mu_1 + -3\mu_2 - \mu_3 + 2\mu_4 + 6\mu_5$$

$$C_{quadratic} = 18\mu_1 + 3\mu_2 - 17\mu_3 + -22\mu_4 + 18\mu_5$$

$$C_{cubic} = -8\mu_1 + 6\mu_2 + 10\mu_3 + -11\mu_4 + 3\mu_5$$

$$C_{quartic} = 14\mu_1 + -28\mu_2 + 20\mu_3 + -7\mu_4 + \mu_5$$

SUMMARY of Procedures

1. Testing a Single Contrast: Use F-test with $\alpha_C = \alpha_F$, FamilyWiseErrorRate (FWER). Yields exact result for

Pr[Type I Error].

- 2. Testing a fixed number, M, of contrasts Selected prior to running the experiment.
 - (a) If M Contrasts are mutually orthogonal: Use F-test with $\alpha_C = 1 (1 \alpha_E)^{1/M}$. Yields an upper bound of size α_F on Pr[Experiment-wise Type I Error].
 - (b) If M Contrasts are NOT mutually orthogonal: Use F-test with $\alpha_C = \alpha_F/M$ (Bonferroni F-test) Yields an upper bound of size α_F on Pr[Experiment-wise Type I Error].
- 3. Although it is never a good idea to test contrasts selected after the experiment has been run, the Scheffé Procedure would be the procedure to be used in the unusual circumstances when this is necessary. Scheffé's Procedure handles an unspecified number of contrasts. Scheffe's Procedure yields Exact Result with

 $\Pr[\text{Experiment-wise Type I Error}] = \alpha_F.$

- 4. For comparing ALL possible Pairs of Treatment Means, μ_i 's:
 - (a) Strongly recommend against using Fisher's Protected LSD and SNK due to the lack of an exact value for FWER
 - (b) In nearly all cases use Tukey's HSD when sample sizes are equal.
 - (c) When the t sample sizes are unequal, use the Tukey-Kramer in place of Tukey.
- 5. When comparing a Control or Standard Treatment to a Group of Treatments: Use Dunnett's Procedure.
- 6. When selecting a subset of Treatments containing the "BEST" Treatment: Use Hsu's Procedure.
- 7. When the treatments consist of equally spaced levels of an ordinal scaled variable, use Orthogonal Polynomial with $\alpha_C = 1 (1 \alpha_F)^{1/M}$ to evaluate trends in the Treatment Means $\mu'_i s$. Yields an upper bound of size α_F on Pr[Experiment-wise Type I Error].
- 8. Procedures yielding exact experimentwise error rates are Scheffé, Tukey's HSD, and Dunnett's procedures.
- 9. Procedures yielding results having a bounded experimentwise error rate are Bonferroni and Hsu's procedures.

10. Fisher's protected LSD and SNK have experimentwise error rates which are neither exact nor bounded by their nominal values.

11. References:

- (a) Miller, R.(1981), Simultaneous Statistical Inferences, 2nd Edition
- (b) Carmen and Swanson, JASA, Vol. 68, 1973, pp. 66-74, Evaluation of 10 Pairwise Comparison Procedures by Monte Carlo Methods
- (c) Benjamini and Hochberg(1995), Controlling the false discovery rate, a practical and powerful approach to multiple testing, J.R.S.S. B, Vol. 57, pp. 289-300.
- (d) Storey(2002), A direct approach to false discovery rates, J.R.S.S. B, Vol. 64, pp. 479-498.
- (e) Westfall, Tobias, Rom, Wolfinger, Hochberg (1999), Multiple Comparisons and Multiple Tests, SAS Institute, Inc.
- (f) Hsu, Jason.(1996), Multiple Comparisons, Theory and Methods