Dowody indukcyjne

Indukcja matematyczna jest metodą dowodzenia twierdzeń – najczęściej tych dotyczących liczb naturalnych.

Jest oparta na następującej zasadzie:

- **Jeżeli** 1. Istnieje taka liczba naturalna n_0 , że $T(n_0)$ jest zdaniem prawdziwym
 - 2. Dla każdej liczby naturalnej $n \ge n_0$ prawdziwa jest implikacja T(n) => T(n+1)

To T(n) jest zdaniem prawdziwym dla każdej liczby naturalnej $n \ge n_0$.

Sam dowód przeprowadzony metodą indukcji matematycznej nazywamy **dowodem indukcyjnym** i również składa się on z dwóch etapów:

- 1. Sprawdzenia, że $T(n_0)$ jest prawdziwe.
- 2. Dowodu, że dla każdego $n \ge n_0$ jeżeli T(n) jest prawdziwe to T(n+1) również jest prawdziwe.

Etap ten nazywamy **krokiem indukcyjnym**. Zakładamy w nim, że dla liczby naturalnej $n \ge n_0$ zdanie T(n) jest prawdziwe (**hipoteza indukcyjna**) i na tej podstawie dowodzimy prawdziwości zdania T(n+1).

Dowód przez indukcję nie będzie pełny (i poprawny) jeżeli przeprowadzony zostanie jedynie jeden z powyższych kroków. Wówczas mamy do czynienia z **indukcją niezupełną**.

Niech p_n będzie stwierdzeniem zawierającym liczbę naturalną n. Można dowieść stwierdzenia dla każdego n należącego do N jest p_n zapewniając, że:

1. p₁ jest prawdziwe.

Indukcja zupełna:

2. Dla wszystkich k należących do N, jeśli p_1 , p_2 , ..., p_k są prawdziwe to p_{k+1} jest prawdziwe.

Indukcja niezupełna:

2. Dla wszystkich k należących do N, jeśli p_k jest prawdziwe to p_{k+1} jest prawdziwe.

Udowodnij, że dla każdej liczby naturalnej n prawdziwa jest równość 1+2+...+n = $\frac{n(n+1)}{2}$

Dowód: Niech A = {n należy do N | 1 + 2 + ... + n =
$$\frac{n(n+1)}{2}$$
}

Korzystając z zasady indukcji zupełnej udowodnij, że A=N.

- 1. 0 należy do A, ponieważ 0 = $\frac{0(0+1)}{2}$
- 2. Niech n będzie dowolną, lecz ustaloną liczbą naturalną.

Załóżmy, że n należy do A, to 1+2+...+n = $\frac{n(n+1)}{2}$ - ZAŁOŻENIE INDUKCYJNE (HIPOTEZA)

Pokażmy, że n+1 należy do A.

1 + 2 + ... + n + (n+1) =
$$\frac{(n+1)(n+2)}{2}$$

Rzeczywiście, 1 + 2 + ... + n + (n+1) =
$$\frac{n(n+1)}{2}$$
 + (n+1) = $\frac{n(n+1)}{2}$ + $\frac{2(n+1)}{2}$ = $\frac{(n+1)(n+2)}{2}$

Na mocy zasady indukcji zupełnej A=N, więc powyższa równość jest prawdziwa dla każdej liczby naturalnej.