제 2 교시

수학 영역

5 지 선 다 형

1. log₈16의 값은? [2점]

- ① $\frac{7}{6}$ ② $\frac{4}{3}$ ③ $\frac{3}{2}$ ④ $\frac{5}{3}$ ⑤ $\frac{11}{6}$

- $3. 0 \le x < 2π$ 일 때, 방정식 $\sin 4x = \frac{1}{2}$ 의 서로 다른 실근의

- ① 2 ② 4 ③ 6 ④ 8
- ⑤ 10

 $m{2}$. 공차가 3인 등차수열 $\left\{a_n\right\}$ 에 대하여 $a_4=100$ 일 때, a_1 의 값은? [2점]

- ① 91 ② 93 ③ 95 ④ 97
- **⑤** 99
- 4. $\int_{2}^{-2} (x^3 + 3x^2) dx$ 의 값은? [3점]

 - $\bigcirc -16$ $\bigcirc -8$ $\bigcirc 0$
- **4** 8
- ⑤ 16

5. 함수 y=f(x)의 그래프가 그림과 같다.

 $\lim_{x \to -2+} f(x) + \lim_{x \to 2-} f(x)$ 의 값은? [3점]

- ① 6
- 2 5
- 3 4
- 4 3
- ⑤ 2

6. 함수

$$f(x) = \begin{cases} \frac{x^2 + ax + b}{x - 3} & (x < 3) \\ \frac{2x + 1}{x - 2} & (x \ge 3) \end{cases}$$

- 이 실수 전체의 집합에서 연속일 때, a-b의 값은? (단, a, b는 상수이다.) [3점]
- ① 9
- 2 10
- ③ 11
- 4 12
- ⑤ 13

7. 수열 $\{a_n\}$ 의 일반항이

$$a_n = \begin{cases} \frac{(n+1)^2}{2} & (n \text{ o } \tilde{\mathbb{P}}) \\ \frac{n^2}{2} + n + 1 & (n \text{ o } \text{ 작수인 경우}) \end{cases}$$

일 때, $\sum_{n=1}^{10} a_n$ 의 값은? [3점]

- ① 235
- 240
- 3 245

4 250

8. 곡선 $y=x^3-3x^2-9x$ 와 직선 y=k가 서로 다른 세 점에서 만나도록 하는 정수 k의 최댓값을 M, 최솟값을 m이라 할 때, *M*−*m*의 값은? [3점]

① 27

② 28

3 29

4 30

⑤ 31

9. 최고차항의 계수가 -3인 삼차함수 y=f(x)의 그래프 위의 점 (2, f(2))에서의 접선 y = g(x)가 곡선 y = f(x)와 원점에서 만난다. 곡선 y=f(x)와 직선 y=g(x)로 둘러싸인 도형의 넓이는? [4점]

① $\frac{7}{2}$ ② $\frac{15}{4}$ ③ 4 ④ $\frac{17}{4}$ ⑤ $\frac{9}{2}$

 $\emph{10.}$ 자연수 n에 대하여 점 $A_n(n, n^2)$ 을 지나고 직선 y = nx에 수직인 직선이 x축과 만나는 점을 B_n 이라 하자.

다음은 삼각형 A_nOB_n 의 넓이를 S_n 이라 할 때, $\sum_{n=1}^8 \frac{S_n}{n^3}$ 의 값을 구하는 과정이다. (단, 〇는 원점이다.)

점 $A_n(n, n^2)$ 을 지나고 직선 y = nx에 수직인 직선의 방정식은

$$y = \boxed{(7)} \times x + n^2 + 1$$

이므로 두 점 A_n , B_n 의 좌표를 이용하여 S_n 을 구하면

따라서

$$\sum_{n=1}^{8} \frac{S_n}{n^3} = \boxed{(\mathbf{r})}$$

이다.

위의 (7), (4)에 알맞은 식을 각각 f(n), g(n)이라 하고, (다)에 알맞은 수를 r라 할 때, f(1)+g(2)+r의 값은? [4점]

① 105

② 110 ③ 115 ④ 120

11. 그림과 같이 두 점 O, O'을 각각 중심으로 하고 반지름의 길이가 3인 두 원 O, O'이 한 평면 위에 있다. 두 원 O, O'이 만나는 점을 각각 A, B라 할 때, $\angle AOB = \frac{5}{6}\pi$ 이다.

원 O의 외부와 원 O'의 내부의 공통부분의 넓이를 S_1 , 마름모 AOBO'의 넓이를 S_2 라 할 때, $S_1 - S_2$ 의 값은? [4점]

- ① $\frac{5}{4}\pi$ ② $\frac{4}{3}\pi$ ③ $\frac{17}{12}\pi$ ④ $\frac{3}{2}\pi$ ⑤ $\frac{19}{12}\pi$

12 두 다항함수 f(x), g(x)가 다음 조건을 만족시킨다.

- (7) $\lim_{x \to 1} \frac{f(x) g(x)}{x 1} = 5$
- (나) $\lim_{x \to 1} \frac{f(x) + g(x) 2f(1)}{x 1} = 7$

두 실수 a, b에 대하여 $\lim_{x\to 1} \frac{f(x)-a}{x-1} = b \times g(1)$ 일 때, ab의

- ① 4 ② 5 ③ 6
- **4** 7
- **⑤** 8

13. 함수

$$f(x) = \begin{cases} 2^x & (x < 3) \\ \left(\frac{1}{4}\right)^{x+a} - \left(\frac{1}{4}\right)^{3+a} + 8 & (x \ge 3) \end{cases}$$

에 대하여 곡선 y=f(x) 위의 점 중에서 y좌표가 정수인 점의 개수가 23일 때, 정수 *a*의 값은? [4점]

- $\bigcirc -7$ $\bigcirc -6$ $\bigcirc -5$ $\bigcirc -4$
- $\bigcirc 5 3$
- 14. 최고차항의 계수가 1인 삼차함수 f(x)에 대하여 함수 g(x)를

$$g(x) = f(x) + |f'(x)|$$

라 할 때, 두 함수 f(x), g(x)가 다음 조건을 만족시킨다.

- (7) f(0) = g(0) = 0
- (나) 방정식 f(x)=0은 양의 실근을 갖는다.
- (다) 방정식 |f(x)|=4의 서로 다른 실근의 개수는 3이다.

g(3)의 값은? [4점]

- ① 9 ② 10
- ③ 11
- **4** 12
- ⑤ 13

15. 그림과 같이 $\overline{AB}=5$, $\overline{BC}=4$, $\cos(\angle ABC)=\frac{1}{8}$ 인 삼각형

ABC가 있다. ∠ABC의 이등분선과 ∠CAB의 이등분선이 만나는 점을 D, 선분 BD의 연장선과 삼각형 ABC의 외접원이 만나는 점을 E라 할 때, <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

- < 보기 >

$$\neg$$
. $\overline{AC} = 6$

$$\vdash$$
. $\overline{EA} = \overline{EC}$

$$\sqsubseteq$$
. $\overline{ED} = \frac{31}{8}$

 \bigcirc

④ ∟, ⊏

단답형

16 두 함수 $f(x) = 2x^2 + 5x + 3$, $g(x) = x^3 + 2$ 에 대하여 함수 f(x)g(x)의 x = 0에서의 미분계수를 구하시오. [3점]

17. 모든 실수 x에 대하여 이차부등식

 $3x^2 - 2(\log_2 n)x + \log_2 n > 0$

이 성립하도록 하는 자연수 n의 개수를 구하시오. [3점]

 $oldsymbol{18}$. 실수 전체의 집합에서 미분가능한 함수 F(x)의 도함수 f(x)가

$$f(x) = \begin{cases} -2x & (x < 0) \\ k(2x - x^2) & (x \ge 0) \end{cases}$$

이다. F(2)-F(-3)=21일 때, 상수 k의 값을 구하시오. [3점]

19, 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 하자. $a_1=2,\ a_2=4$ 이고 2 이상의 모든 자연수 n에 대하여

$$a_{n+1}S_n = a_nS_{n+1}$$

이 성립할 때, S_5 의 값을 구하시오. [3점]

20. 실수 m에 대하여 직선 y=mx와 함수

$$f(x) = 2x + 3 + |x - 1|$$

의 그래프의 교점의 개수를 g(m)이라 하자. 최고차항의 계수가 1인 이차함수 h(x)에 대하여 함수 g(x)h(x)가 실수 전체의 집합에서 연속일 때, h(5)의 값을 구하시오. [4점]

21. 그림과 같이 ĀB=2, ĀC // BD, ĀC: BD=1:2인 두 삼각형 ABC, ABD가 있다. 점 C에서 선분 AB에 내린 수선의 발 H는 선분 AB를 1:3으로 내분한다.

두 삼각형 ABC, ABD의 외접원의 반지름의 길이를 각각 r, R라 할 때, $4(R^2-r^2) \times \sin^2(\angle {\rm CAB}) = 51$ 이다. $\overline{{\rm AC}}^2$ 의 값을 구하시오. (단, $\angle {\rm CAB} < \frac{\pi}{2}$) [4점]

22. 양수 a와 일차함수 f(x)에 대하여 실수 전체의 집합에서 정의된 함수

$$g(x) = \int_0^x (t^2 - 4) \{ |f(t)| - a \} dt$$

가 다음 조건을 만족시킨다.

- (가) 함수 g(x)는 극값을 갖지 않는다.
- (나) g(2) = 5

g(0)-g(-4)의 값을 구하시오. [4점]

제2교시

수학 영역(확률과 통계)

5 지 선 다 형

23. ₃H₆의 값은? [2점]

① 24

2 26

3 28

4 30

⑤ 32

24. 그림과 같이 직사각형 모양으로 연결된 도로망이 있다. 이 도로망을 따라 A 지점에서 출발하여 P 지점을 지나 B 지점까지 최단거리로 가는 경우의 수는? [3점]

25. 어느 고등학교 3학년의 네 학급에서 대표 2명씩 모두 8명의 학생이 참석하는 회의를 한다. 이 8명의 학생이 일정한 간격을 두고 원 모양의 탁자에 모두 둘러앉을 때, 같은 학급 학생끼리 서로 이웃하게 되는 경우의 수는? (단, 회전하여 일치하는 것은 같은 것으로 본다.) [3점]

① 92

2 96

3 100

4 104

⑤ 108

26. 같은 종류의 연필 6자루와 같은 종류의 지우개 5개를 세 명의 학생에게 남김없이 나누어 주려고 한다. 각 학생이 적어도 한 자루의 연필을 받도록 나누어 주는 경우의 수는? (단, 지우개를 받지 못하는 학생이 있을 수 있다.) [3점]

① 210 ② 220

3 230

4 240

27. 숫자 1, 2, 3, 3, 4, 4, 4가 하나씩 적힌 7장의 카드를 모두한 번씩 사용하여 일렬로 나열할 때, 1이 적힌 카드와 2가 적힌 카드 사이에 두 장 이상의 카드가 있도록 나열하는 경우의수는? [3점]

① 180

② 185

3 190

④ 195

⑤ 200

1 2 3 3 4 4 4

28. 두 집합

 $X = \{1, 2, 3, 4, 5\}, Y = \{2, 4, 6, 8, 10, 12\}$

에 대하여 X에서 Y로의 함수 f 중에서 다음 조건을 만족시키는 함수의 개수는? [4점]

(7) f(2) < f(3) < f(4)

(나) f(1) > f(3) > f(5)

100

② 102

③ 104

4 106

4

수학 영역(확률과 통계)

고 3

단답형

29. 5 이하의 자연수 a, b, c, d에 대하여 부등식

 $a \le b+1 \le c \le d$

를 만족시키는 모든 순서쌍 (a, b, c, d)의 개수를 구하시오.

[4점]

- 30. 숫자 1, 2, 3, 4 중에서 중복을 허락하여 네 개를 선택한 후 일렬로 나열할 때, 다음 조건을 만족시키도록 나열하는 경우의 수를 구하시오. [4점]
 - (가) 숫자 1은 한 번 이상 나온다.
 - (나) 이웃한 두 수의 차는 모두 2 이하이다.

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기) 했는지 확인하시오.

2021학년도 3월 고3 전국연합학력평가 문제지

제2교시

수학 영역(미적분)

5 지 선 다 형

$$23$$
 $\lim_{n\to\infty} \frac{10n^3-1}{(n+2)(2n^2+3)}$ 의 값은? [2점]

① 1 ② 2

③ 3 ④ 4

⑤ 5

24. 수열 $\{a_n\}$ 의 일반항이

$$a_n = \left(\frac{x^2 - 4x}{5}\right)^n$$

일 때, 수열 $\{a_n\}$ 이 수렴하도록 하는 모든 정수 x의 개수는?

[3점]

① 7 ② 8 ③ 9 ④ 10 ⑤ 11

 $\emph{25.}$ 모든 항이 양수인 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여

$$a_{n+1} = a_1 a_n$$

을 만족시킨다. $\lim_{n\to\infty} \frac{3a_{n+3}-5}{2a_n+1} = 12$ 일 때, a_1 의 값은? [3점]

- ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ 2 ⑤ $\frac{5}{2}$

- 26. 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여

$$2n^2 - 3 < a_n < 2n^2 + 4$$

- 를 만족시킨다. 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때, $\lim_{n\to\infty}\frac{S_n}{n^3}$ 의 값은? [3점]
- ① $\frac{1}{2}$ ② $\frac{2}{3}$ ③ $\frac{5}{6}$ ④ 1 ⑤ $\frac{7}{6}$

27. 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여

$$\sum_{k=1}^{n} \frac{a_k}{(k-1)!} = \frac{3}{(n+2)!}$$

을 만족시킨다. $\lim_{n\to\infty} \left(a_1+n^2a_n\right)$ 의 값은? [3점]

- $\bigcirc -\frac{7}{2}$ $\bigcirc -3$ $\bigcirc -\frac{5}{2}$ $\bigcirc -2$ $\bigcirc -\frac{3}{2}$

- 28 자연수 n에 대하여 $\angle A = 90^{\circ}$, $\overline{AB} = 2$, $\overline{CA} = n$ 인 삼각형 ABC에서 ∠A의 이등분선이 선분 BC와 만나는 점을 D라 하자. 선분 CD의 길이를 a_n 이라 할 때, $\lim_{n \to \infty} (n - a_n)$ 의 값은?

[4점]

- 1
- \bigcirc $\sqrt{2}$
- 3 2
- $4 \ 2\sqrt{2}$ $5 \ 4$

단답형

29. 자연수 n에 대하여 곡선 $y=x^2$ 위의 점 $P_n(2n,4n^2)$ 에서의 접선과 수직이고 점 $Q_n(0,2n^2)$ 을 지나는 직선을 l_n 이라 하자. 점 P_n 을 지나고 점 Q_n 에서 직선 l_n 과 접하는 원을 C_n 이라 할 때, 원점을 지나고 원 C_n 의 넓이를 이등분하는 직선의 기울기를

 a_n 이라 하자. $\lim_{n\to\infty}\frac{a_n}{n}$ 의 값을 구하시오. [4점]

30. 자연수 n에 대하여 삼차함수 $f(x) = x(x-n)(x-3n^2)$ 이 극대가 되는 x를 a_n 이라 하자. x에 대한 방정식 $f(x) = f(a_n)$ 의 근 중에서 a_n 이 아닌 근을 b_n 이라 할 때, $\lim_{n \to \infty} \frac{a_n b_n}{n^3} = \frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기) 했는지 확인하시오.

제2교시

수학 영역(기하)

5 지 선 다 형

23. 타원 $\frac{x^2}{36} + \frac{y^2}{20} = 1$ 의 두 초점을 F, F'이라 할 때, 선분 FF'의 길이는? [2점]

- ① 6 ② 7 ③ 8 ④ 9
- ⑤ 10

24. 두 초점이 F(c, 0), F'(-c, 0)이고 주축의 길이가 8인 쌍곡선의 한 점근선이 직선 $y=\frac{3}{4}x$ 일 때, 양수 c의 값은?

[3점]

- ① 5 ② 6 ③ 7
- **4** 8
- **⑤** 9

25. 꼭짓점이 점 (-1, 0)이고 준선이 직선 x = -3인 포물선의 방정식이 $y^2 = ax + b$ 일 때, 두 상수 a, b의 합 a + b의 값은? [3점]

- 14
- 2 16
- ③ 18
- **4** 20
- **⑤** 22
- **26.** 그림과 같이 쌍곡선 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 의 두 초점 F, F'과 쌍곡선 위의 점 A에 대하여 삼각형 AF'F의 둘레의 길이가 24일 때, 삼각형 AF'F의 넓이는? (단, 점 A는 제1사분면의 점이다.) [3점]

- ② $4\sqrt{6}$ ① $4\sqrt{3}$
 - ③ $8\sqrt{3}$
- $4 \ 8\sqrt{6}$ $5 \ 16\sqrt{3}$

27. 점 A(6, 12)와 포물선 $y^2 = 4x$ 위의 점 P, 직선 x = -4 위의 점 Q에 대하여 $\overline{AP} + \overline{PQ}$ 의 최솟값은? [3점]

- ① 12
- 2 14
- ③ 16
- **4** 18
- ⑤ 20

- 28. 자연수 n에 대하여 초점이 F인 포물선 $y^2 = 2x$ 위의 점 P_n 이 $\overline{FP_n} = 2n$ 을 만족시킬 때, $\sum_{n=1}^8 \overline{OP_n}^2$ 의 값은? (단, O는 원점이고, 점 P_n 은 제1사분면에 있다.) [4점]
 - ① 874
- 2 876
- ③ 878
- 4 880
- ⑤ 882

단답형

29. 두 초점이 $F_1(c,0)$, $F_2(-c,0)$ (c>0) 인 타원이 x축과 두 점 A(3,0), B(-3,0)에서 만난다. 선분 BO가 주축이고 점 F_1 이 한 초점인 쌍곡선의 초점 중 F_1 이 아닌 점을 F_3 이라 하자. 쌍곡선이 타원과 제1사분면에서 만나는 점을 P라 할 때, 삼각형 PF_3F_2 의 둘레의 길이를 구하시오. (단, O는 원점이다.)

30. 그림과 같이 두 초점이 F(c,0), F'(-c,0) (c>0) 이고 장축의 길이가 12 인 타원이 있다. 점 F 가 초점이고 직선 x=-k(k>0)이 준선인 포물선이 타원과 제2사분면의 점 P에서 만난다. 점 P에서 직선 x=-k에 내린 수선의 발을 Q라 할 때, 두 점 P, Q가 다음 조건을 만족시킨다.

- $(7) \cos(\angle F'FP) = \frac{7}{8}$
- (나) $\overline{FP} \overline{F'Q} = \overline{PQ} \overline{FF'}$

c+k의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기) 했는지 확인하시오.