Problems

- ➤ Derive the truth table and draw the logic circuits which correspond to the following expressions:
 - a) F = A'BC' + A'BC + AB'
 - b) F = XY'Z + X'Y'Z + XYZ
 - c) F = [A(B+C') + A'B]C
 - d) F = XY'(Z+Y') + X'Z
 - e) F = (A+B').(A+B)'

Problems

➤ Which the logic expression corresponds to the following logical circuit:

Problems

➤ Which the logic expression corresponds to the following logical circuit and truth table:

Exercises

- ➤ Draw the circuit to represent the following expressions: (By NAND gate only once and using NOR gate only once)
- 1. F = (x + y).z'
- 2. $F = (x' + y) \cdot Z + w$
- 3. F = x.y.z + x.w

Assignments

- ➤Draw the NAND logic diagram for each of the following expressions:
- $\overline{1. \quad F = (AB' + CD').E + BC (A + B)}$
- 2. F = w.(x + y + z) + x.y.z

Assignment

- ☐ Simplify the following Boolean expressions to a minimum number of literals:
 - 1. XY + X(+WZ+WZ')
 - 2. (BC' + A'D)(AB' + CD')
- Reduce the following Boolean expressions to the indicated number of literals:
 - 1. A'C' + ABC + AC' to three literals
 - 2. (X'Y'+Z') + Z + XY + WZ to three literals
 - 3. A'B(D' + C'D) + B(A + A'CD)
 - 4. (A' + C)(A' + C')(A+B+C'D)

Assignments

- 1. Find the complement of the following expressions:
 - a. xy'+x'y
 - b. (x+y'+z)(x'+z')(x'+y)
- 2. Express the Boolean function in Sum of Minterms and Product of Maxterms:

$$F(A,B,C,D) = B'D + A'D + BD$$

Assignments

3. Find Sum of Product and Product of Sum to the functions of the

following table

X	Y	Z	F1	F2	F3	F4
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	1	1	0
1	0	1	0	1	1	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Assignments

- ➤ Simplify the following Boolean functions to a minimum number of literals:
 - 1) A +AB
 - 2) AB+AB'
 - 3) X+X'Y
 - 4) (X+Y)(X+Y')
 - 5) A'BC + AC
 - 6) A'B+ ABC' +ABC
 - 7) AB + A(CD + CD')
 - 8) XY + X'Z + YZ
 - 9) A'C' + AC'+ ABC
 - 10) (BC'+A'D).(AB'+CD')

Assignments

- > Answers to problems:
 - 3.1* Simplify the following Boolean functions, using three-variable maps:

(a)
$$F(x, y, z) = \Sigma(0, 2, 6, 7)$$

(b)
$$F(x, y, z) = \Sigma(0, 2, 3, 4, 6)$$

(c)
$$F(x, y, z) = \Sigma(0, 1, 2, 3, 7)$$

(d)
$$F(x, y, z) = \Sigma(3, 5, 6, 7)$$

3.2 Simplify the following Boolean functions, using three-variable maps:

(a)*
$$F(x, y, z) = \Sigma(0, 1, 5, 7)$$

(b)*
$$F(x, y, z) = \Sigma(1, 2, 3, 6, 7)$$

(c)
$$F(x, y, z) = \Sigma(0, 1, 6, 7)$$

(d)
$$F(x, y, z) = \Sigma(0, 1, 3, 4, 5)$$

(e)
$$F(x, y, z) = \Sigma(1, 3, 5, 7)$$

(f)
$$F(x, y, z) = \Sigma(1, 4, 5, 6, 7)$$

3.3° Simplify the following Boolean expressions, using three-variable maps:

(a)*
$$F(x,y,z) = xy + x'y'z' + x'yz'$$

(b)*
$$F(x,y,z) = x'y' + yz + x'yz'$$

(c)*
$$F(x, y, z) = x'y + yz' + y'z'$$

(d)
$$F(x, y, z) = xyz + x'y'z + xy'z'$$

Questions

- Draw the truth table of a three bits full adder. Use the output to draw the circuit diagram.
- Design a four-bit parallel subtractor circuit, then explain how you can use the circuit to subtract the following example 1101-1011.

Questions

- List with drawing the truth table of an 3x8 decoder circuit diagram
- List the truth table of an 3x8 decoder. Then draw the circuit diagram. Show how can you implement a full subtractor circuit using a 3x8 decoder.
- Construct 3x8 decoder using 2x4 decoders, then writhe the truth table.
- Construct 4x16 decoder using 3x8 decoders