मानव में युग्मकजनन

पाठ्य पुस्तक के प्रश्न एवं उत्तर

बहुविकल्पीय प्रश्न

प्रश्न 1. अण्डाशय से परिपक्व अण्डे के निकलने को कहते हैं-

- (अ) इम्प्लान्टेशन (आरोपण)
- (ब) निषेचन
- (स) ओव्यूलेशन (अण्डोत्सर्ग)
- (द) पार्चुरीशन (प्रसव)

उत्तर: (स) ओव्यूलेशन (अण्डोत्सर्ग)

प्रश्न 2. योनि में प्रविष्ट शुक्राणु कितने समय तक जीवित रह सकते हैं

- (अ) 1 2 दिन
- (ब) 3 4 दिन
- (स) 5 10 दिन
- (द) १ सप्ताह

उत्तर: (अ) 1 - 2 दिन

प्रश्न 3. स्तनी शुक्राणु के अग्रपिण्डक (Acrosome) को घेरने वाली झिल्ली का टूटना कहलाता है-

- (अ) सक्रियण
- (ब) केपेसीटेशन (योग्यता अर्जन)
- (स) एग्ल्युटिनेशन (समूहन)
- (द) कोटरन

उत्तर: (ब) केपेसीटेशन (योग्यता अर्जन)

प्रश्न 4. निम्न में से कौन अमर है?

- (अ) ग्लोमेरुलर कोशिका
- (ब) जनन कोशिका
- (स) पिट्यूटरी कोशिका
- (द) कायिक कोशिका

उत्तर: (ब) जनन कोशिका

प्रश्न 5. स्पर्म के परिवर्धन की कौन-सी प्रावस्था, ओवम के परिवर्धन में भाग नहीं लेती?

- (अ) ध्रुवकाय का निर्माण
- (ब) वृद्धि प्रावस्था
- (स) गुणन प्रावस्था
- (द) स्पर्मियोजेनेसिस

उत्तर: (द) स्पर्मियोजेनेसिस

प्रश्न 6. अण्डजनन में होती है-

- (अ) गुणन प्रावस्था
- (ब) वृद्धि प्रावस्था
- (स) परिपक्वन प्रावस्था
- (द) उपरोक्त सभी

उत्तर: (द) उपरोक्त सभी

प्रश्न 7. अण्डाणुओं के निर्माण की क्रिया को कहते हैं-

- (अ) अण्डजता
- (ब) अण्डजनन
- (स) अण्डनिक्षेपण
- (द) अण्डोत्सर्ग

उत्तर: (ब) अण्डजनन

प्रश्न 8. शुक्राणु की पूँछ के तन्तुओं का विन्यास होता है-

- (अ) 9 (Singlet) + 2 अण्डजता
- (ৰ) 9 (Singlet) +9 (Doublet)
- (푃) 9 (Singlet) + 2 (Doublet)
- (ব) 9 (Singlet) + 9 (Doblet) + 2 (Singlet)

उत्तर: (द) 9 (Singlet) + 9 (Doblet) + 2 (Singlet)

प्रश्न 9. किस प्रक्रिया में धुवकाय बनती हैं ?

- (अ) पुनरुद्भवन
- (ब) शुक्रजनन

- (स) अण्डजनन
- (द) निषेचन

उत्तर: (स) अण्डजनन

प्रश्न 10. अण्डजनन में एक प्राथमिक ऊसाइट से कितने अण्डाणु बनते हैं ?

- (अ) एक
- (ब) दो
- (स) आठ
- (द) चार

उत्तर: (अ) एक

अतिलघूत्तरात्मक प्रश्न

प्रश्न 1. अपरा स्तनी (Placental mammal) में अण्डे (पीतक) कैसे होते हैं ?

उत्तर: अपरा स्तनी (Placental mammal) में अण्डे अपीतकी तथा समपीतकी प्रकार के होते हैं।

प्रश्न 2. निषेचन के समय शुक्राणु का कौन-सा शीर्ष भाग अण्डाणु के सम्पर्क में आता है ?

उत्तर: निषेचन के समय शुक्राणु का अग्रपिण्डक भाग (Acrosome) अण्डाणु के सम्पर्क में आता है।

प्रश्न 3. शुक्राणु के मध्य भाग के निर्माण में कौन से सहायक कोशिकांग होते हैं ?

उत्तर: शुक्राणु के मध्य भाग के निर्माण में माइटोकॉन्ड्रिया (Mitochondria) सहायक कोशिकांग होते हैं।

प्रश्न 4. शुक्राणुजनन में द्वितीय परिपक्वन विभाजन के फलस्वरूप बनने वाली कोशिकाएँ क्या कहलाती हैं ?

उत्तर: शुक्राणुजनन में द्वितीय परिपक्वन विभाजन के फलस्वरूप बनने वाली कोशिकाएँ स्पर्मेटिड्स (Spermatides) कहलाती हैं।

प्रश्न 5. बार कांय किसमें पायी जाती हैं ?

उत्तर: मादा की जीनोटाइप के प्रत्येक सोमेटिक सेल (Somatic cell) में एक बार काय पायी जाती है।

प्रश्न 6. अण्डों की तुलना में शुक्राणुओं का निर्माण अधिक क्यों होता है ?

उत्तर: अण्डों की तुलना में शुक्राणुओं का निर्माण अधिक होने का कारण नर में निर्मित चारों युग्मक शुक्राणुओं का क्रियाशील होना है, जबिक मादा में केवल युग्मक अर्थात् अण्डाणु विकसित होता है।

प्रश्न 7. अण्डे की सतह पर पाये जाने वाले हॉर्मोन्स का नाम लिखिए।

उत्तर: अण्डे की सतह पर फर्टिलाइजिन (Fertilizin) हार्मोन पाया जाता है।

लघूत्तरात्मक प्रश्न

प्रश्न 1. मानव के शुक्राणु की रचना का वर्णन कीजिए।

उत्तर: मानव के शुक्राणु की संरचना (Structure of Human Sperm)-मानव के शुक्राणु को तीन भागों में विभक्त किया जाता है-

- (i) शीर्ष (Head) मानव शुक्राणु के शीर्ष भाग का निर्माण केन्द्रक (Nucleus) तथा एक्रोसोम (Acrosome) के द्वारा होता है। एक्रोसोम शुक्राणु के अग्र भाग पर केन्द्रक तथा प्लाज्मा झिल्ली के मध्य उपस्थित होता है। अम्लीय प्रोटीन एन्टी-फार्टिलाइजिन (Antifertilizin) शुक्राणु के शीर्ष पर पाया जाता है तथा इनके अन्दर स्पर्म लायजिन (Lysin) एन्जाइम जैसे-हायल्यूरोनीडेज (Hyaluronidase) एवं कैथेरिसन्स पाये जाते हैं।
- (ii) मध्य खण्ड (Mid piece)-शुक्राणु का मध्य खण्ड, शीर्ष भाग से ग्रीवा द्वारा जुड़ा रहता है। इसमें दो तारककेन्द्र होते हैं, जिनके कार्य अलग-अलग होते हैं। इनमें उपस्थित समीपस्थ तारककेन्द्र निषेचन के बाद माइटोटिक तर्क (Spindle) के निर्माण में सहायता करता है। इसकी स्थिति मुख्य अक्ष पर लम्बवत होती है। जबिक दूरस्थ ताकरकेन्द्र शुक्राणु के अक्ष का निर्माण करता है। इनमें उपस्थित अक्षीय तन्तु रचना में कशाभिका के समान, 9+ 2 प्रकार की होती है। इनमें दूरस्थ तारक केन्द्र का एक महत्त्वपूर्ण कार्य यह होता है कि वह आधार काय (Basal Body) का कार्य भी करती है। मध्य खण्ड में माइटोकोन्ड्रिया आपस में मिलकर फीते के समान नेबेनकर्ण (Nebenkern) का निर्माण करती हैं। जबिक कोशिका द्रव्य की पतली परत मैनचेट (Manchette) का निर्माण करती है।

इस खण्ड के पश्च भाग में वलय तारक काय (Ring centriole) रचना पायी जाती है।

(iii) पूँछ (Tail)-यह शुक्राणु का सबसे लम्बा भाग होता है। इसका जो अंतिम भाग होता है वह पूँछ का नुकीला भाग बनाता है जबकि मुख्य खंड पूँछ का अधिकांश भाग बनाता है। इसमें 9 + 2 रचना के

अतिरिक्त कोशिका द्रव्य एवं मोटा तन्तु भी स्थित होता है। जोव दव्यकला (प्लाज्या झिल्ली) अग्रपिंडक **केंद्र**क्रयुक्त गुणमूत्री पदार्थ ग्रीवा मध्य खंड स्त्रकणिका (माइटोकॉड्रिण्या) (तैरने के लिए ऊर्जा का स्रोत) पुच्छ (पुँछ)

चित्र—शुक्राणु की संरचना

प्रश्न 2. एक्रोसोम निर्माण का वर्णन करें।

उत्तर: एक्रोसोम (Acrosome) का निर्माण गॉल्जी-काय (Golgi bodies) के विभेदन से होता है। विभेदन क्रिया के अन्तर्गत एक या अधिक रिक्तिका परिमाण में बढ़ने लगती हैं तथा इनमें पूर्व-एक्रोसोमल कण दिखाई देने लगते हैं, इनसे एक्रोसोम का क्रोड बनता है। एक्रोसोम कण में किण्वक (Enzymes) स्थित होते हैं जो निषेचन के समय अण्डाणु कलाओं को घोलने का कार्य करते हैं। पूर्वशुक्राणु (Spermatid) का अधिकांश जीव-द्रव्य शुक्राणु के लिये फालतू होता है तथा इसे निकाल दिया जाता है। यहाँ केन्द्रक के शिखर पर एक्रोसोम का निर्माण होता है, एक्रोसोम तथा केन्द्रक पर प्लाज्मालेमा कला की एक अत्यन्त सूक्ष्म पर्त बची रहती है। इस प्रकार स्पर्मेटोसाइट से निर्मित. गोलाकार, अगतिशील, अगुणित स्पर्मेटिड के केन्द्रक एवं गॉल्जीकाय सिर में एक्रोसोम का निर्माण होता है।

प्रश्न 3. युग्मकजनन की तीन प्रावस्थाओं के बारे में संक्षिप्त विवरण लिखिए।

उत्तर: युग्मक जनन की तीन प्रावस्थाओं का वर्णन निम्न प्रकार है-

- (अ) गणन प्रावस्था (Multiplication phase)— इसमें अविभेदित आद्य जनन कोशिका सतत सूत्री विभाजन के द्वारा शुक्राणु मातृक (नर में) कोशिकाओं का तथा मादा में अण्ड मातृक कोशिका का निर्माण करते हैं।
- (ब) वृद्धि प्रावस्था (Growth phase) नर युग्मक में गुणन अवस्था के अन्तिम विभाजन के पश्चात् स्पर्मेटोगोनिया आकार में दुगुनी होकर प्राथमिक शुक्राणुजन कोशिका का निर्माण करती हैं तथा मादा युग्मक से बनी ऊगोनिया (Oogonia) आकार में वृद्धि कर प्राथमिक अंडक में (Primary 00cyte) में बदल जाती हैं।
- (स) परिपक्वन प्रावस्था (Maturation Phase)— इस अवस्था में नर युग्मक से बनी प्राथमिक शुक्राणु कोशिका में अर्धसूत्री विभाजन द्वारा दो अगुणित द्वितीयक स्पर्मेटोसाइट निर्मित होते हैं जिनमें द्वितीय परिपक्वन विभाजन के द्वितीयक स्पर्मेटोसाइट से दो स्पर्मेटिड निर्मित होते जबिक मादा युग्मक से विकसित प्राथमिक अण्ड कोशिका (Primary Oocyte) में अर्धसूत्री विभाजन के दो विभाजनों द्वारा दो असमान कोशिकाओं में बँटती है जो अन्त में बड़ी अण्डकोशिका द्वितीयक अण्ड कोशिका (Secondary Oocyte) तथा दूसरी सूक्ष्म प्रथम ध्रुव काय (First polar body) कहलाती है।

इस प्रकार नर तथा मादा जनदों में युग्मकजन की तीनों प्रावस्थाएँ उपरोक्त प्रकार से वर्णित की गई हैं।

निबन्धात्मक प्रश्न

प्रश्न 1. अण्डाणुजनन में वृद्धि अवस्था का वर्णन कीजिए।

उत्तर: अण्डाणु जनन में वृद्धि अवस्था (Growth Phase) का वर्णन निम्न प्रकार से है अण्डाणु जनन (Oogenesis) के समय यह वह महत्त्वपूर्ण अवस्था है जिसमें आवश्यक पोषक पदार्थों को संश्लेषित तथा निक्षेपित किया जाता है। इस अवस्था में उगोनिया अपने आकार में अत्यधिक वृद्धि कर लेती है। इस समय इसे प्राथमिक अंडक (Primary oocyte) कहते हैं। समस्त स्तनधारियों में फोलिकल (पुटिका) कोशिकाएँ ही ऊसाइट की ३ वृद्धि के लिये उत्तरदायी होती हैं। अण्डे देने वाले सभी जीवों में उपस्थित योक यकृत में संश्लेषित होता है जो कि मातृत्व रक्त के द्वारा परिवर्तित ऊसाइट में स्थानान्तरित हो जाती है। वृद्धि प्रावस्था में दो अवस्थाएँ होती हैं, एक प्रीविटेलोजिनेसिस प्रावस्था जिसे पीतक जनन पूर्व वृद्धि प्रावस्था भी कहते हैं तथा दूसरी विटेलोजिनेसिस अर्थात् पीतक जनन प्रावस्था होती है।

पहली प्रावस्था प्रीविटेलोजिनेसिस वह अवस्था है जिसके केन्द्रक तथा कोशिका द्रव्य के आयतन में विशेष वृद्धि होती है। इसी में लेम्पब्रुश गुणसूत्र का निर्माण होता है तथा कोशिकाद्रव्य की गुणात्मक व मात्रात्मक वृद्धि होती है। इसके अतिरिक्त विटेलोनिजेसिस के समय अण्ड कोशिको द्रव्य ग्लाइकोजन, कार्बोहाइड्रेट, वसा तथा प्रोटीन से संगठित हो जाती है। इसका यहाँ अर्थ यह होता है कि योनि से योक का संश्लेषण तथा निक्षेपण होता है। योक के रासायनिक संगठन में 48.7% मात्रा जल की, 16.7% मात्रा प्रोटीन की, 32:6% फॉस्फोलिपिड एवं उदासीन वसा तथा कार्बोहाइड्रेट की मात्रा 1% तक होती है। अण्डाणु जनन में वृद्धि प्रावस्था का एक विशेष महत्त्व है।

प्रश्न 2. शुक्राणु जनन का सचित्र वर्णन करें।

उत्तर: शुक्राणु जनन (Spermatogenesis)-शुक्राणु जनन की क्रिया में वृषणों (Testis) में आद्य जनन कोशिकाओं द्वारा शुक्राणुओं का निर्माण होता है। कशेरुकी प्राणियों में शुक्रजनन सतत प्रक्रिया के रूप में होता है। इसमें 74 दिन का समय लगता है।

- **1. शुक्राणुपूर्व (**Spermatid) का निर्माण- इसमें आद्य जनन कोशिकाएँ (Primordial germ cells) स्पर्मेटिड्स का निर्माण तीन चरणों में करती हैं-
- (अ) गुणन प्रावस्था (Multiplication phase) –इस अवस्था में शुक्राणुमातृक या पुमणुजन कोशिकाओं (Spermatogonia) का निर्माण आद्य जनन कोशिका के सूत्री विभाजन द्वारा होता है। ये कोशिकाएँ द्विगुणित होती हैं।
- (ब) वृद्धि प्रावस्था (Growth phase)—इस अवस्था में स्पर्मेटोगोनिआ आकार में वृद्धि कर लेती है तब प्राथमिक शुक्राणुजन (Primary Spermatocyte) कोशिका कहलाती हैं, जो कि द्विगुणित होती हैं।
- (स) परिपक्वन प्रावस्था (Maturation phase)—प्राथमिक शुक्राणु कोशिका अर्धसूत्री विभाजन कर दो अगुणित द्वितीयक स्पर्मेटोसाइट्स बनाती है, जिनमें दूसरे अर्धसूत्री विभाजन से प्रत्येक द्वितीयक स्पर्मेटोसाईट से दो स्पर्मेटिड निर्मित हो जाते हैं। इन दो स्पर्मेटिड से चार अगुणित स्पर्मेटिड निर्मित हो जाते हैं।

शुक्राणुजन: शुक्राणुपूर्व का विभेदीकरण-अगुणित पूर्व शुक्राणुओं में विभेदीकरण क्रिया के परिणामस्वरूप हुई क्रिया को शुक्रजन शुक्रकायान्तरण अथवा स्पर्मेटिलियोसिस कहते हैं। इसके पश्चात् अनेकों परिवर्तनों से पूर्व-शुक्राणु (Spermatids) शुक्राणुओं (Spermatozoa) में विभेदित हो जाते हैं, जिनमें केन्द्रक, केन्द्रक द्रव्य आदि के जल के निकल जाने पर सभी गुणसूत्र छोटे से स्थान में व्यविस्थत हो जाते हैं।

प्रश्न ३. शुक्रजनन तथा अण्डजनन का आरेखी चित्र बनाइये।

उत्तर: शुक्रजनन तथा अण्डजन का आरेखी चित्र

सभी व्यर्थ पदार्थों के हट जाने से यह जल में तैरता गोलाकार से लम्बा एवं सँकरा हो जाता है।

अब इसके पश्चात् शुक्राणु का एक्रोसोम गॉल्जीकॉय के विभेदन से बनता है। विभेदन क्रिया के परिणामस्वरूप रिक्तिका के परिमाण में बढ़ने से तथा इनके भीतर पूर्व एक्रोसोमल कण दिखते हैं। कणयुक्त रिक्तिका के परिमाण के बढ़ने से इन एक्रोसोमल कणों से एक्रोसोम का क्रोड बनता है। पूर्व शुक्राणु को सेन्ट्रोसोम (तारककाय) सेन्ट्रिओल का बना होता है, इस शुक्राणु को समीपस्थ सेन्ट्रिओल (Centriole) कहते हैं दूसरा दूरस्थ सेन्ट्रिओल जो अक्षीय तन्तु का निर्माण करते हैं। यह शुक्राणु की पूँछ का प्रमुख भाग होते हैं।

2. शुक्राणु में रूपान्तरण (Spermateleosis) — यहाँ पर स्पर्मेटोसाइट से निर्मित गोलाकार एवं अगुणित स्पर्मेटिड एक धागे के समान, अगतिशील से गतिशील एवं अगुणित शुक्राणुओं (Sperms) में परिवर्तित हो जाते हैं।

स्पर्मेटिड का केन्द्रक एवं गॉल्जीकाय सिर (एक्रोसोम), माइटोक्गॅन्ड्रिया मध्य को (Middle piece) तथा दूरस्थ तारककाय (सेन्ट्रिओल) पूँछ के हिस्से का निर्माण करते हैं। इस प्रकार से शुक्राणु निर्माण की प्रक्रिया पूर्ण होती है।

चित्र-शुकाणु जनन का सचित्र वर्णन

प्रश्न ४. अण्डाणुजनन तथा शुक्राणु जनन में अन्तर बताइये।

उत्तर: अण्डाणुजनन तथा शुक्राणुजनन में अन्तर (Difference between oogenesis and soermatogenesis)

अण्डाणुजनन	शुक्राणुजनन
 यह मादा के अण्डाशय (Ovary) के अन्दर होने वाली एक जटिल प्रक्रिया है। इस निर्माण क्रिया में ऊजेनेसिस का वृहद भाग अण्डाशय (Ovary) 	 यह नर के वृषणों (Testis) में होने वाली शुक्राणु के निर्माण की प्रक्रिया है। शुक्राणुजनन की समस्त अवस्थाएँ वृषण के अन्दर ही पूर्ण होती हैं।
के अन्दर लेकिन अन्तिम आवस्थाएँ अंडवाहिनी (Oviduct) के अन्दर पायी जाती हैं।	
3. यह सतत अथवा निरन्तर होते रहने वाली प्रक्रिया नहीं है।	3. यह सतत अथवा निरन्तर होने वाली प्रक्रिया है।
4. इसमें आद्य जनन कोशिका, अण्डमातृक कोशिका (Egg mother	4. शुक्राणुजनन में अविभेदित आद्य जनन कोशिका सतत सूत्री विभाजन
cell) में परिवर्तित होती है, जिसमें लगातार सूत्री विभाजन से ऊगोनिया (Oogonia) का निर्माण होता है।	के द्वारा शुक्राणु मातृक या 'पुमणुजनन कोशिकाएँ (Spermatogonia) का निर्माण करती हैं।

कसाइट (Oocyte) का निर्माण होता है। 6. अण्डाणुजनन की वृद्धि प्रावस्था (Growth phase) एक लम्बी

5. अण्डाणुजनन के समय केवल कुछ कगोनिया (Oogonia) से

- प्रावस्था है।
- प्राथमिक ऊसाइट से अर्धसूत्री विभाजन— I के द्वारा द्वितीयक कसाइट तथा एक पोलर काय का निर्माण करते हैं।
- का निर्माण करती हैं।
- 5. यहाँ सभी स्पर्भेटोगोनिया (Spermatogonia) विभाजित होकर स्पर्मेटोसाइट्स बनाती है।
- शुक्राणुजनन की वृद्धि प्रावस्था (Growth Phase) एक छोटी प्रावस्था होती है।
- 7. प्राथमिक शुक्राणु कोशिका में अर्धसूत्री विभाजन-] द्वारा दो अगुणित द्वितीयक स्पर्मेटोसाइट या शुक्राणुजन कोशिका निर्मित होती हैं।

- हितीयक कसाइट अर्धस्त्री विभाजन— II के द्वारा एक वास्तविक अण्डाणु (Ovum) तथा एक द्वितीयक पौलर काय (Polar body) का निर्माण करता है।
- 9. अण्डाणुजनन में एक कसाइट केवल एक अण्डा या Ovum बनाता है।
- 10. अण्डा (Egg) आकार में कसाइट (Oocyte) से बड़ा होता है।
- 11. अण्डा (Ovum या egg) में बहुत-सा संचित भोजन एकत्रित रहता है।
- 12. यह (अण्डा या Ouvm या egg) अगतिशील (Non-motiles) अथवा अचल मादा युग्मक (Female gamete) होते हैं।

- 8. इन द्वितीयक स्पर्मेटोसाइट में अर्धसूत्री विभाजन-II के प्रत्येक द्वितीयक स्पर्मेटोसाइट से दो स्पर्मेटिङ निर्मित होते हैं।
- एक स्पर्मेंद्रोसाइट से चार अगुणित स्पर्मेंटोजोआ (शुक्राणु) का निर्माण होता है।
- 10. इनमें शुक्राणु आकार में स्पर्मेटोसाइट से छोटे होते हैं।
- 11. शुकाणु में संचित भोजन की मात्रा अत्यन्त कम होती है।
- 12. शुक्राणु (Spermatozoa) गतिशील (Motile), नर-युग्मक (Male gametes) होते हैं।