crop.describe()

```
import numpy as np
import pandas as pd
Importing Data
crop = pd.read_csv("Crop_recommendation.csv")
crop.head()
\Box
         N
             P K temperature humidity
                                                     rainfall label
      0 90 42 43
                      20.879744 82.002744 6.502985 202.935536
                                                                 rice
     1 85 58 41
                      21.770462 80.319644 7.038096 226.655537
                                                                 rice
     2 60 55 44
                      23.004459 82.320763 7.840207
                                                    263.964248
                                                                 rice
     3 74 35 40
                      26.491096 80.158363 6.980401 242.864034
      4 78 42 42
                      20.130175 81.604873 7.628473 262.717340
Start coding or generate with AI.
crop.shape
     (2200, 8)
crop.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 2200 entries, 0 to 2199
     Data columns (total 8 columns):
     #
         Column
                      Non-Null Count Dtype
     0
                      2200 non-null
                                     int64
                      2200 non-null
                                      int64
         Р
     1
                                      int64
     2
                      2200 non-null
         temperature 2200 non-null
                                      float64
     4
         humidity
                       2200 non-null
                                      float64
     5
         ph
                      2200 non-null
                                      float64
         rainfall
                       2200 non-null
                                      float64
         label
                       2200 non-null
                                      object
     dtypes: float64(4), int64(3), object(1)
     memory usage: 137.6+ KB
crop.isnull().sum()
    Р
                   0
     Κ
                   0
     temperature
     humidity
                   0
     ph
                   0
     rainfall
                   0
     label
                   0
     dtype: int64
crop.duplicated().sum()
     0
```

	N	P	K	temperature	humidity	ph	ra
count	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.000000	2200.
mean	50.551818	53.362727	48.149091	25.616244	71.481779	6.469480	103.
std	36.917334	32.985883	50.647931	5.063749	22.263812	0.773938	54.
min	0.000000	5.000000	5.000000	8.825675	14.258040	3.504752	20.
25%	21.000000	28.000000	20.000000	22.769375	60.261953	5.971693	64.
50%	37.000000	51.000000	32.000000	25.598693	80.473146	6.425045	94.
75%	84.250000	68.000000	49.000000	28.561654	89.948771	6.923643	124.:
mav ∢	140 000000	1/5 000000	205 000000	12 G751Q2	QQ QQ1Q76	Q Q350Q1	208

Exploring Data

corr = crop.corr()
corr

<ipython-input-16-1dcd70030872>:1: FutureWarning: The default value of numeric_only in [
 corr = crop.corr()

00000						
00000	-0.231460	-0.140512	0.026504	0.190688	0.096683	0.059020
31460	1.000000	0.736232	-0.127541	-0.118734	-0.138019	-0.063839
40512	0.736232	1.000000	-0.160387	0.190859	-0.169503	-0.053461
26504	-0.127541	-0.160387	1.000000	0.205320	-0.017795	-0.030084
90688	-0.118734	0.190859	0.205320	1.000000	-0.008483	0.094423
96683	-0.138019	-0.169503	-0.017795	-0.008483	1.000000	-0.109069
59020	-0.063839	-0.053461	-0.030084	0.094423	-0.109069	1.000000
	31460 40512 26504 90688 96683	31460 1.000000 40512 0.736232 26504 -0.127541 90688 -0.118734 96683 -0.138019	31460 1.000000 0.736232 40512 0.736232 1.000000 26504 -0.127541 -0.160387 90688 -0.118734 0.190859 96683 -0.138019 -0.169503	31460 1.000000 0.736232 -0.127541 40512 0.736232 1.000000 -0.160387 26504 -0.127541 -0.160387 1.000000 90688 -0.118734 0.190859 0.205320 96683 -0.138019 -0.169503 -0.017795	31460 1.000000 0.736232 -0.127541 -0.118734 40512 0.736232 1.000000 -0.160387 0.190859 26504 -0.127541 -0.160387 1.000000 0.205320 90688 -0.118734 0.190859 0.205320 1.000000 96683 -0.138019 -0.169503 -0.017795 -0.008483	31460 1.000000 0.736232 -0.127541 -0.118734 -0.138019 40512 0.736232 1.000000 -0.160387 0.190859 -0.169503 26504 -0.127541 -0.160387 1.000000 0.205320 -0.017795 90688 -0.118734 0.190859 0.205320 1.000000 -0.008483 96683 -0.138019 -0.169503 -0.017795 -0.008483 1.000000

import seaborn as sns
sns.heatmap(corr,annot=True,cbar=True,cmap='coolwarm')

crop['label'].value_counts()

```
100
rice
maize
               100
jute
               100
cotton
               100
coconut
               100
papaya
               100
orange
               100
apple
               100
muskmelon
               100
watermelon
               100
grapes
               100
mango
               100
banana
               100
pomegranate
               100
lentil
               100
blackgram
               100
mungbean
               100
mothbeans
               100
pigeonpeas
               100
kidneybeans
               100
chickpea
               100
coffee
               100
Name: label, dtype: int64
```

crop['label'].isnull().sum()

0

import matplotlib.pyplot as plt
sns.distplot(crop["N"])
plt.show()

<ipython-input-93-c29d4605fd08>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

Encoding

```
15/01/2024, 13:57
   crop_dict = {
        'rice': 1,
       'maize': 2,
       'jute': 3,
       'cotton': 4,
        'coconut': 5,
        'papaya': 6,
        'orange': 7,
        'apple': 8,
        'muskmelon': 9,
        'watermelon': 10,
        'grapes': 11,
        'mango': 12,
        'banana': 13,
        'pomegranate': 14,
        'lentil': 15,
        'blackgram': 16,
        'mungbean': 17,
        'mothbeans': 18,
        'pigeonpeas': 19,
        'kidneybeans': 20,
        'chickpea': 21,
        'coffee': 22
   }
   crop['crop_num'] = crop['label'].map(crop_dict)
   crop['crop_num'].value_counts()
               100
```

```
100
      100
3
4
      100
5
      100
      100
6
7
      100
8
      100
      100
9
10
      100
11
      100
      100
12
13
      100
14
      100
15
      100
16
      100
17
      100
18
      100
19
      100
20
      100
21
      100
22
      100
Name: crop_num, dtype: int64
```

#crop.drop('label',axis=1,inplace=True)
crop.head()

	N	Р	K	temperature	humidity	ph	rainfall	label	crop_num
0	90	42	43	20.879744	82.002744	6.502985	202.935536	rice	1
1	85	58	41	21.770462	80.319644	7.038096	226.655537	rice	1
2	60	55	44	23.004459	82.320763	7.840207	263.964248	rice	1
3	74	35	40	26.491096	80.158363	6.980401	242.864034	rice	1
4	78	42	42	20.130175	81.604873	7.628473	262.717340	rice	1

Train Test Split

```
X= crop.drop(['crop_num', 'label'],axis=1)
y =crop['crop_num']
```

```
15/01/2024, 13:57
      X.shape
         (2200, 7)
    y.shape
         (2200,)
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=42)
   X train.shape
         (1760, 7)
    X_test.shape
         (440, 7)
    Scale the features using MinMaxScaler
    from sklearn.preprocessing import MinMaxScaler
    ms = MinMaxScaler()
    ms.fit(X_train)
    X_train= ms.transform(X_train)
    X_test = ms.transform(X_test)
    X_train
         array([[0.12142857, 0.07857143, 0.045
                                                     , ..., 0.9089898 , 0.48532225,
                 0.29685161],
                 [0.26428571, 0.52857143, 0.07
                                                     , ..., 0.64257946, 0.56594073,
                 0.17630752],
[0.05 , 0.48571429, 0.1
                [0.05
                                                      , ..., 0.57005802, 0.58835229,
                 0.08931844],
                                                     , ..., 0.43760347, 0.46198144,
                [0.07857143, 0.22142857, 0.13
                 0.28719815],
                                                     , ..., 0.76763665, 0.44420505,
                [0.07857143, 0.85
                                       , 0.995
                 0.18346657],
                [0.22857143, 0.52142857, 0.085
                                                     , ..., 0.56099735, 0.54465022,
                 0.11879596]])
    y train.isnull().sum()
    Standarization
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    sc.fit(X train)
   X_train= sc.transform(X_train)
    X_test = sc.transform(X_test)
    X_train
         array([[-9.03426596e-01, -1.12616170e+00, -6.68506601e-01, ...,
                9.36586183e-01, 1.93473784e-01, 5.14970176e-03],
[-3.67051340e-01, 7.70358846e-01, -5.70589522e-01, ...,
                  -1.00470485e-01, 8.63917548e-01, -6.05290566e-01],
```

```
[-1.17161422e+00, 5.89737842e-01, -4.53089028e-01, ..., -3.82774991e-01, 1.05029771e+00, -1.04580687e+00],
            [-1.06433917e+00, -5.24091685e-01, -3.35588533e-01, ...,
             -8.98381379e-01, -6.34357580e-04, -4.37358211e-02],
            [-1.06433917e+00, 2.12501638e+00, 3.05234239e+00, ...,
              3.86340190e-01, -1.48467347e-01, -5.69036842e-01],
            [-5.01145154e-01, 7.40255346e-01, -5.11839275e-01, ...,
             -4.18045489e-01, 6.86860180e-01, -8.96531475e-01]])
Training Models
from \ sklearn.linear\_model \ import \ LogisticRegression
from sklearn.naive bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import ExtraTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy score
# create instances of all models
models = {
    'Logistic Regression': LogisticRegression(),
    'Naive Bayes': GaussianNB(),
    'Support Vector Machine': SVC(),
    'K-Nearest Neighbors': KNeighborsClassifier(),
    'Decision Tree': DecisionTreeClassifier(),
    'Random Forest': RandomForestClassifier(),
    'Bagging': BaggingClassifier(),
    'AdaBoost': AdaBoostClassifier(),
    'Gradient Boosting': GradientBoostingClassifier(),
    'Extra Trees': ExtraTreeClassifier(),
}
for name, md in models.items():
    md.fit(X_train,y_train)
   ypred = md.predict(X_test)
    print(f"{name} with accuracy : {accuracy_score(y_test,ypred)}")
     Logistic Regression with accuracy: 0.9636363636363636
     Naive Bayes with accuracy : 0.9954545454545455
     Support Vector Machine with accuracy : 0.96818181818181
     K-Nearest Neighbors with accuracy: 0.9590909090909091
     Decision Tree with accuracy : 0.98181818181818
     Random Forest with accuracy : 0.99318181818182
     Bagging with accuracy : 0.9886363636363636
     AdaBoost with accuracy: 0.1409090909090909
     Gradient Boosting with accuracy : 0.98181818181818
     Extra Trees with accuracy: 0.9340909090909091
rfc =RandomForestClassifier()
rfc.fit(X_train,y_train)
ypred = rfc.predict(X_test)
accuracy_score(y_test,ypred)
     0.9931818181818182
Predictive System
def recommendation(N,P,k,temperature,humidity,ph,rainfall):
features = np.array([[N,P,k,temperature,humidity,ph,rainfall]])
prediction = rfc.predict(features).reshape(1,-1)
return prediction[0]
```

```
15/01/2024, 13:57
```

```
N=50
P=60
k=50
temperature=30.0
humidity=20
ph=100
rainfall=100
predict=recommendation(N,P,k,temperature,humidity,ph,rainfall)
crop_dict ={1: "Rice", 2: "Maize", 3: "Jute", 4: "Cotton", 5: "Coconut", 6: "Papaya", 7: "Orange",
                 8: "Apple", 9: "Muskmelon", 10: "Watermelon", 11: "Grapes", 12: "Mango", 13: "Banana",
                 14: "Pomegranate", 15: "Lentil", 16: "Blackgram", 17: "Mungbean", 18: "Mothbeans",
                 19: "Pigeonpeas", 20: "Kidneybeans", 21: "Chickpea", 22: "Coffee"}
if predict[0] in crop_dict:
   crop = crop_dict[predict[0]]
   print("{} is a best crop to be cultivated ".format(crop))
   print("Sorry we are not able to recommend a proper crop for this environment")
     Apple is a best crop to be cultivated
import pickle
pickle.dump(rfc,open('model.pkl','wb'))
crop['label'].value_
```