

UEFI & EDK II TRAINING

How to Write a UEFI Driver Lab - Windows

tianocore.org

See also LabGuide.md for Copy & Paste examples in labs

LESSON OBJECTIVE

- Compile a UEFI driver template created from UEFI Driver Wizard
- Test driver w/ Windows Emulation using UEFI Shell 2.0
- Port code into the template driver

Note: Since this is a lab, to follow examples for copy & paste, use the following Markdown link <u>LabGuide.md</u>

Lab 1: UEFI Driver Template

Use this lab, if you're not able to create a UEFI Driver Template using the UEFI Driver Wizard.

Skip if LAB 1 UEFI Driver Wizard completed successfully

Lab 1: Get UEFI Driver Template

- If UEFI Driver Wizard does not work:
- 1. Copy the directory UefiDriverTemplate from
 - . . ./FW/LabSampleCode/ to C:/FW/edk2-ws/edk2
- 2. Rename Directory UefiDriverTemplate to MyWizardDriver

Review UEFI Driver Wizard Lab for protocols produced and which are being consumed

Lab 2: Building a UEFI Driver

In this lab, you'll build a UEFI Driver created by the UEFI Driver Wizard. You will include the driver in the Emulator project. Build the UEFI Driver from the Driver Wizard

Compile a UEFI Driver

Two Ways to Compile a Driver	
Standalone	In a Project
The build command directly compiles the .INF file	Include the .INF file in the project's .DSC file
Results: The driver's .EFI file is located in the Build directory	Results: The driver's .EFI file is a part of the project in the Build directory

Lab 2: Build the UEFI Driver

- Perform <u>Lab Setup</u> from previous EmulatorPkg Labs
- Open C:/FW/edk2-ws/edk2/EmulatorPkg/EmulatorPkg.dsc
- Add the following to the [Components] section:

Hint: add to the last module in the [Components] section

Add new modules here
MyWizardDriver/MyWizardDriver.inf

Save and close the file C:/FW/edk2-ws/edk2/EmulatorPkg/EmulatorPkg.dsc

Lab 2: Build and Test Driver

Open a VS Command Prompt and type: cd C:/FW/edk2-ws then

- \$> setenv.bat
- \$> cd edk2
- \$> edksetup

Build the MyWizardDriver with the Windows Emulation**

```
$> Build
```

\$> RunEmulator.bat

Load the UEFI Driver from the shell

At the Shell prompt, type Shell> fs0:

Type: FS0:\> load MyWizardDriver.efi

```
Shell> fs0:
FSO: \> load MyWizardDriver.efi
Image 'FSO:\MyWizardDriver.efi' loaded at 5E7F000 - Success
FS0:\> ___
```

Build ERRORS: Copy the solution files from /FW/LabSampleCode/LabSolutions/LessonC.1 to C:/FW/edk2-ws/edk2/MyWizardDriver

** Make sure BUILD Switches from LAB 2.1 are enabled in EmulatorPkg.dsc

Lab 2: Test Driver

At the shell prompt Type: FS0:\> drivers

Verify the UEFI Shell loaded the new driver. The drivers command will display the driver information and a driver handle number ("a9" in the example screenshot)

```
92 00000011 ? - - - - Usb Mass Storage Driver

93 00000010 B - - 1 1 QEMU Video Driver

94 00000010 ? - - - - Virtio GPU Driver

A9 00000000 ? - - - - MyWizardDriver
```

UsbMassStorageDxe QemuVideoDxe VirtioGpuDxe \MyWizardDriver.efi

Lab 2: Test Driver

At the shell prompt using the handle from the drivers command, Type: dh -d a9

Note: The value a9 is the driver handle for MyWizardDriver. The handle value may change based on your system configuration.(see example screenshot - right)

```
FS0:\> dh -d a9
```

A9: SupportedEfiSpecVersion(0x0002003C) ComponentName2 ComponentName DriverBin ng HiiPackageList ImageDevicePath(..0xFBFC1)/\MyWizardDriver.efi) LoadedImage(

yWizardDriver.efi)

Driver Name [A9] : MyWizardDriver

Driver Image Name : \Myl

e : \MyWizardDriver.efi : 00000000

Driver Version : 000000000 Driver Type : <Unknown>

Configuration : NO
Diagnostics : NO
Managing : None

FS0:\> _

Lab 2: Test Driver

At the shell prompt using the handle from the drivers command, Type: unload a9

See example screenshot - below Type: drivers again

Notice results of unload command

Exit type FS0:/ > Reset

```
FSO:\> unload a9
Unload - Handle [6B1B798]. [y/n]?

Unload - Handle [6B1B798] Result Success.

FSO:\>
```


Lab 3: Component Name

In this lab, you'll change the information reported to the drivers command using the ComponentName and ComponentName2 protocols.

Lab 3: Component Name

- Open C:/FW/edk2-ws/edk2/MyWizardDriver/ComponentName.c
- Change the string returned by the driver from MyWizardDriver to: UEFI Sample Driver

Save and close the file:
 C:/FW/edk2-ws/edk2/MyWizardDriver/ComponentName.c

Lab 3: Build and Test Driver

At the VS Command Prompt

```
$> Build
$> RunEmulator.bat
```

Load the UEFI Driver from the shell

At the Shell prompt, type Shell> fs0:

Type: FS0:\> load MyWizardDriver.efi

```
Type: FS0: \> drivers
```

Observe the change in the string that the driver returned

```
Exit type FS0:/ > Reset
```

UsbMassStorage QemuVideoDxe VirtioGpuDxe \MyWizardDrive

Lab 4: Porting the Supported & Start Functions

The UEFI Driver Wizard produced a starting point for driver porting ... so now what?

In this lab, you'll port the "Supported" and "Start" functions for the UEFI driver

Lab 4: Porting Supported and Start

Review the Driver Binding Protocol

Supported()

Determines if a driver supports a controller

Start()

Starts a driver on a controller & Installs Protocols

Stop()

Stops a driver from managing a controller

Lab 4: The Supported() Port

The UEFI Driver Wizard produced a Supported() function but it only returns EFI_UNSUPPORTED

Supported Goals:

- Checks if the driver supports the device for the specified controller handle
- Associates the driver with the Serial I/O protocol
- Helps locate a protocol's specific GUID through UEFI Boot Services' function

Lab 4: Help from Robust Libraries

EDK II has libraries to help with porting UEFI Drivers

- AllocateZeroPool() include [MemoryAllocationLib.h]
- SetMem16() include [BaseMemoryLib.h]

18

Lab 4: Update Supported

- Open C:/FW/edk2-ws/edk2/MyWizardDriver/MyWizardDriver.c
- Locate MyWizardDriverDriverBindingSupported(), the supported function for this driver and comment out the "//" in the line: "return EFI UNSUPPORTED;

```
EFI_STATUS
EFIAPI
MyWizardDriverDriverBindingSupported (
   IN EFI_DRIVER_BINDING_PROTOCOL *This,
   IN EFI_HANDLE ControllerHandle,
   IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
   )
{
   // return EFI_UNSUPPORTED;
}
```

copy and past (next slide)

Lab 4: Update Supported Add Code

Copy & Paste the following code for the supported function MyWizardDriverDriverBindingSupported():

```
EFI STATUS Status;
EFI SERIAL IO PROTOCOL *SerialIo;
Status = gBS->OpenProtocol (
              ControllerHandle,
              &gEfiSerialIoProtocolGuid,
              (VOID **) &SerialIo,
              This->DriverBindingHandle,
              ControllerHandle,
              if (EFI_ERROR (Status)) {
  return Status; // Bail out if OpenProtocol returns an error
 // We're here because OpenProtocol was a success, so clean up
  gBS->CloseProtocol
     ControllerHandle,
     &gEfiSerialIoProtocolGuid,
     This->DriverBindingHandle,
     ControllerHandle
  return EFI SUCCESS;
```


Lab 4: Notice UEFI Driver Wizard Includes

- Open C:/FW/edk2-ws/edk2/MyWizardDriver/MyWizardDriver.h
- Notice the following include statement is already added by the driver wizard:

```
// Produced Protocols
//
#include <Protocol/SerialIo.h>
```

 Review the Libraries section and see that UEFI Driver Wizard automatically includes library headers based on the form information. Also other common libary headers were included

```
// Libraries
//
#include <Library/UefiBootServicesTableLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/BaseLib.h>
#include <Library/UefiLib.h>
#include <Library/DevicePathLib.h>
#include <Library/DebugLib.h>
```


Lab 4: Update the Start()

• Copy & Paste the following in MyWizardDriver.c after the #include "MyWizardDriver.h" line:

```
#define DUMMY_SIZE 100*16 // Dummy buffer
CHAR16 *DummyBufferfromStart = NULL;
```

Locate MyWizardDriverDriverBindingStart(), the start function for this driver and comment out the "//" in the line "return EFI_UNSUPPORTED; "

```
EFI_STATUS
EFIAPI
MyWizardDriverDriverBindingStart (
    IN EFI_DRIVER_BINDING_PROTOCOL *This,
    IN EFI_HANDLE ControllerHandle,
    IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
    )
{
     // return EFI_UNSUPPORTED;
}
```


Lab 4: Update Start Add Code

Copy & Paste the following code for the start function MyWizardDriverDriverBindingStart():

- Notice the Library calls to AllocateZeroPool() and SetMem16()
- The Start() function is where there would be calls to "gBS-InstallMultipleProtocolInterfaces()"

Lab 4: Debugging before Testing the Driver

UEFI drivers can use the EDK II debug library

DEBUG() include - [DebugLib.h]

DEBUG() Macro statements can show status progress interest points throughout the driver code

```
Developer Command Prompt for VS2015 - RunEmulator.bat
[MyWizardDriver] Not Supported
[MyWizardDriver] Not Supported
[MyWizardDriver] Not Supported
 BlockSize : 512
[MyWizardDriver] Not Supported
[MyWizardDriver] Supported SUCCESS
[MyWizardDriver] Buffer pointer 0x19818738018
Terminal - Mode 0, Column = 80, Row = 25
Terminal - Mode 1, Column = 80, Row = 50
Terminal - Mode 2, Column = 100, Row = 31
0[2J0[01;01H0[=3h0[2J0[01;01HPROGRESS CODE: V01040001 I0
InstallProtocolInterface: DD9E7534-7762-4698-8C14-F58517A625AA 1983
InstallProtocolInterface: 387477C2-69C7-11D2-8E39-00A0C969723B 1983
InstallProtocolInterface: 09576E91-6D3F-11D2-8E39-00A0C969723B 1983
[MiddizandDnivon] Not Supported
```

www.tianocore.org

Lab 4: Add Debug Statements Supported()

Copy & Paste the following DEBUG() macros for the supported function:

```
Status = gBS->OpenProtocol(
      ControllerHandle,
      &gEfiSerialIoProtocolGuid,
      (VOID **)&SerialIo,
      This->DriverBindingHandle,
      ControllerHandle,
      if (FET ERROR(Status))
     DEBUG((EFI_D_INFO, "[MyWizardDriver] Not Supported \r\n"));
     return Status, // Bail out il OpenProtocol returns an error
  // We're here because OpenProtocol was a success, so clean up
  gBS->CloseProtocol(
      ControllerHandle,
      &gEfiSerialIoProtocolGuid,
      This->DriverBindingHandle,
      ControllerHandle
  DEBUG((EFI D INFO, "[MyWizardDriver] Supported SUCCESS\r\n"));
```

25

Lab 4: Add Debug Statements Start()

Copy & Paste the following DEBUG macro for the Start function just before the return EFI_SUCCESS; statement

```
DEBUG ((EFI_D_INFO, "\r\n***\r\n[MyWizardDriver] Buffer 0x%p\r\n", DummyBufferfromStart));
return EFI_SUCCESS;
```

Note: This debug macro displays the memory address of the allocated buffer on the debug console

Save C:/FW/edk2-ws/edk2/MyWizardDriver/MyWizardDriver.c

26

Lab 4: Build and Test Driver

At the VS Command Prompt

```
$> Build
```

\$> RunEmulator.bat

Load the UEFI Driver from the shell At the Shell prompt, type

```
Shell> fs0:
```

FS0:\> load MyWizardDriver.efi

```
Shell> fs0:
FS0:\> load MyWizardDriver.efi
Image 'FS0:\MyWizardDriver.efi' loaded at 5E7F000 - Success
FS0:\> _
```


Lab 4: Build and Test Driver

- Check the VS console output.
- Notice Debug messages indicate the driver did not return EFI_SUCCESS from the "Supported()" function most of the time.
- See that the "Start()" function did get called and a Buffer was allocated.

```
Exit type FS0:/ > Reset
```

```
Developer Command Prompt for VS2015 - RunEmulator.bat
[MyWizardDriver] Not Supported
[MyWizardDriver] Not Supported
[MyWizardDriver] Not Supported
 BlockSize : 512
LastBlock : FFFFFFFFFFFFFFF
[MyWizardDriver] Not Supported
[MyWizardDriver] Supported SUCCESS
[MyWizardDriver] Buffer pointer 0x19818738018
Terminal - Mode 0, Column = 80, Row = 25
Terminal - Mode 1, Column = 80, Row = 50
Terminal - Mode 2, Column = 100, Row = 31
@[2J@[01;01H@[=3h@[2J@[01;01HPROGRESS CODE: V01040001 I0
InstallProtocolInterface: 387477C1-69C7-11D2-8E39-00A0C969723B 198
InstallProtocolInterface: DD9E7534-7762-4698-8C14-F58517A625AA 198
InstallProtocolInterface: 387477C2-69C7-11D2-8E39-00A0C969723B
InstallProtocolInterface: 09576E91-6D3F-11D2-8E39-00A0C969723B 198
[MyddizandDnivon] Not Supported
```

Note: use the right-side scroll bar with mouse to scroll back to see the "Supported SUCCESS"

Lab 5: Create a NVRAM Variable

In this lab you'll create a non-volatile UEFI variable (NVRAM), and set and get the variable in the Start function

Use Runtime services to "SetVariable()" and "GetVariable()"

Lab 5: Adding a NVRAM Variable Steps

- 1. Create .h file with new typedef definition and its own GUID
- 2. Include the new .h file in the driver's top .h file
- 3. In the Start() make a call to a new function to set/get the new NVRam Variable
- 4. Before EntryPoint() add the new function CreateNVVariable() to the driver.c file.

Lab 5: Create a new .h file

Create a new file in your editor called: "MyWizardDriverNVDataStruc.h" **Copy, Paste** and then **Save** this file

```
#ifndef MYWIZARDDRIVERNVDATASTRUC H
#define _MYWIZARDDRIVERNVDATASTRUC_H
#include <Guid/HiiPlatformSetupFormset.h>
#include <Guid/HiiFormMapMethodGuid.h>
#define MYWIZARDDRIVER_VAR_GUID \
    0x363729f9, 0x35fc, 0x40a6, 0xaf, 0xc8, 0xe8, 0xf5, 0x49, 0x11, 0xf1, 0xd6 \
#pragma pack(1)
typedef struct {
           MyWizardDriverStringData[20];
    UINT16
            MyWizardDriverHexData;
    UINT8
   UINT8
            MyWizardDriverBaseAddress;
            MyWizardDriverChooseToEnable;
    UINT8
} MYWIZARDDRIVER CONFIGURATION;
#pragma pack()
#endif
```


Lab 5: Update MyWizardDriver.c

Open "C:/FW/edk2-ws/edk2/MyWizardDriver/MyWizardDriver.c"

Copy & Paste the following 4 lines after the #include "MyWizardDriver.h" statement:

32

Lab 5: Update MyWizardDriver.c

Locate "MyWizardDriverDriverBindingStart ()" function

Copy & Paste at the beginning of the start function to declare a local variable

Copy & Paste the 6 lines: 1) new call to "CreateNVVariable();", 2-6) if statement with DEBUG just before the line "return EFI_SUPPORTED" as below:

return EFI_SUCCESS;

Lab 5: Update MyWizardDriver.c

Copy & Paste the new function before the call to "MyWizardDriverDriverEntryPoint()"

```
EFI STATUS
EFIĀPI
CreateNVVariable()
    EFI STATUS
                              Status;
   UINTN
                           BufferSize;
    BufferSize = sizeof (MYWIZARDDRIVER CONFIGURATION);
    Status = gRT->GetVariable(
        mVariableName.
        &mMyWizardDriverVarGuid,
        NULL.
        &BufferSize,
        mMyWizDrv Conf
    if (EFI ERROR(Status)) { // Not definded yet so add it to the NV Variables.
        <u>if (Status == EFI_NOT_FOUND)</u>
            Status = gRT->SetVariable(
                mVariableName,
                &mMyWizardDriverVarGuid,
                EFI VARIABLE NON VOLATILE | EFI VARIABLE BOOTSERVICE ACCESS,
                sizeof (MYWIZARDDRIVER CONFIGURATION),
                mMyWizDrv Conf // buffer is 000000 now for first time set
            DEBUG((EFI D INFO, "[MyWizardDriver] Variable %s created in NVRam Var\r\n", mVariableName));
            return EFI SUCCESS;
      already defined once
    return EFI UNSUPPORTED;
```

34

Lab 5: Update MyWizardDriver.h

Open "C:/FW/edk2-ws/edk2/ MyWizardDriver/MyWizardDriver.h" **Copy & Paste** the following "#include" after the list of library include statements:

// Libraries
//
#include <Library/UefiRuntimeServicesTableLib.h>

Copy & Paste the following "#include" after the list of protocol include statements:

```
// Produced Protocols
// . . .
#include "MyWizardDriverNVDataStruc.h"
```

Save "C:/FW/edk2-ws/edk2/ MyWizardDriver/MyWizardDriver.h"

Save "C:/FW/edk2-ws/edk2/ MyWizardDriver/MyWizardDriver.c"

Lab 5: Build and Test Driver

At the VS Command Prompt

```
$> Build
```

\$> RunEmulator.bat

Load the UEFI Driver

Shell> fs0:

FS0:\> load MyWizardDriver.efi

Observe the Buffer address returned by the debug statement in the VS Command window and the new NV Variable was created

```
Developer Command Prompt for VS2015 - RunEmulator.bat
 BlockSize : 512
[MyWizardDriver] Not Supported
[MyWizardDriver] Supported SUCCESS
[MyWizardDriver] Buffer pointer 0x1BE2D978018
[MyWizardDriver] Variable MWD_NVData created in NVRam Var
[MyWizardDriver] Created NV Variable in the Start
Terminal - Mode 0. Column = 80. Row = 25
Terminal - Mode 1, Column = 80, Row = 50
Terminal - Mode 2, Column = 100, Row = 31
@[2J@[01;01H@[=3h@[2J@[01;01HPROGRESS CODE: V01040001 I0
InstallProtocolInterface: 387477C1-69C7-11D2-8E39-00A0C969723B 1BE2D979EC0
InstallProtocolInterface: DD9E7534-7762-4698-8C14-F58517A625AA 1BE2D979FA8
InstallProtocolInterface: 387477C2-69C7-11D2-8E39-00A0C969723B 1BE2D979ED8
InstallProtocolInterface: 09576E91-6D3F-11D2-8E39-00A0C969723B 1BE2DB98D98
```

Note: use the right-side scroll bar with mouse to scroll back to see the "Supported SUCCESS"

Lab 5: Verify Driver

Use the Buffer address pointer in the previous slide then use the "mem" command

At the Shell prompt, type FS0:\> mem 0x1be2d978018

Observe the Buffer is filled with the letter "B" or 0x0042

```
FS0:\> mem 1be2d978018
Memory Address 000001BE2D978018 200 Bytes
 2D978018: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
                                                             *B.B.B.B.B.B.B.*
  2D978028: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
                                                             *B.B.B.B.B.B.B.B.*
 2D978038: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
                                                             *B.B.B.B.B.B.B.*
  2D978048: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
                                                             *B.B.B.B.B.B.B.B.*
  2D978058: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
                                                             *B.B.B.B.B.B.B.B.*
  2D978068: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
                                                             *B.B.B.B.B.B.B.B.*
  2D978078: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
                                                             *B.B.B.B.B.B.B.B.*
  2D978088: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
                                                             *R.R.R.R.R.R.R.R.*
  2D978098: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
                                                             *R.R.R.R.R.R.R.R.*
  2D9780A8: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00
```

37

Lab 5: Verify NVRAM Created by Driver

At the Shell prompt, type FS0:\> dmpstore -all -b

Observe new the NVRAM variable "MWD_NVData" was created and filled with 0x00s

Exit type FS0:/ > Reset

Lab 6: Port Stop and Unload

In this lab, you'll port the driver's "Unload" and "Stop" functions to free any resources the driver allocated when it was loaded and started.

Lab 6: Port the Unload function

Open "C:/FW/edk2-ws/edk2/MyWizardDriver/MyWizardDriver.c"
Locate "MyWizardDriverUnload ()" function
Copy & Paste the following "if" and "DEBUG" statements before the "return
EFI_SUCCESS;" statement.

```
// Do any additional cleanup that is required for this driver
//
if (DummyBufferfromStart != NULL) {
    FreePool(DummyBufferfromStart);
    DEBUG((EFI_D_INFO, "[MyWizardDriver] Unload, clear buffer\r\n"));
}
DEBUG((EFI_D_INFO, "[MyWizardDriver] Unload success\r\n"));
return EFI_SUCCESS;
```


Lab 6: Port the Stop function

Locate "MyWizardDriverDriverBindingStop ()" function
Comment out with "//" before the "return EFI_UNSUPPORTED;" statement.
Copy & Paste the following "if" and "DEBUG" statements before the "return EFI_SUCCESS;" statement.

```
if (DummyBufferfromStart != NULL) {
    FreePool(DummyBufferfromStart);
    DEBUG((EFI_D_INFO, "[MyWizardDriver] Stop, clear buffer\r\n"));
}
DEBUG((EFI_D_INFO, "[MyWizardDriver] Stop, EFI_SUCCESS\r\n"));
return EFI_SUCCESS;
// return EFI_UNSUPPORTED;
}
```

Save & Close "MyWizardDriverDriver.c"

Lab 6: Build and Test Driver

At the VS Command Prompt

```
$> Build
```

\$> RunEmulator.bat

Load the UEFI Driver

Shell> fs0:

FS0:\> load MyWizardDriver.efi

Observe the Buffer address is at 0x25DE4F5C018 as this slide example

```
Developer Command Prompt for VS2015 - runEmulator.bat
ProtectUefiImageCommon - 0xE4F5F040
   0x0000025DE4F15000 - 0x000000000000000000
InstallProtocolInterface: 18A031AB-B443-4D1A-A5C0-0C09261E9F71
InstallProtocolInterface: 107A772C-D5E1-11D4-9A46-0090273FC14D
InstallProtocolInterface: 6A7A5CFF-E8D9-4F70-BADA-75AB3025CE14 5DC36158
InstallProtocolInterface: 5C198761-16A8-4E69-972C-89D67954F81D 5DC360E8
[MyWizardDriver] Supported
[MyWizardDriver] Buffer pointer 0x25DE4F5C018
[MyWizardDriver] Not Supported
[MvWizardDriver]
                 Not Supported
```


Lab 6: Verify Driver

At the Shell prompt, type FS0:\> drivers

Observe the handle is "A9" as this slide example

Type: mem 0x25DE4F5C018

Observe the buffer was filled with the "0x0042"

UsbMassSt QemuVided VirtioGpu \MyWizard

```
FSO:\> mem 25de4f5c018

Memory Address 0000025DE4F5C018 200 Bytes

E4F5C018: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 42 00 *B.]

E4F5C028: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 *B.]

E4F5C038: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 *B.]

E4F5C048: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 *B.]

E4F5C058: 42 00 42 00 42 00 42 00-42 00 42 00 42 00 *B.]
```

F4F5C068 · 42 00 42 00 42 00 42 00 42 00 42 00 42

Lab 6: Verify Unload

At the Shell prompt, type FS0:\> unload a9

Observe the DEBUG messages from the Unload in the VS Command Window

Type Drivers again to verify

```
FSO:\> unload a9
Unload - Handle [6B1B798]. [y/n]?
Unload - Handle [6B1B798] Result Success.
FSO:\>
```

[MyWizardDriver] Unload, clear buffer [MyWizardDriver] Unload success

Lab 6: Verify Unload

At the Shell prompt, type FS0:\> mem 0x25DE4F5C018

Observe the buffer is now NOT filled

Exit Type FS0: \> reset

Additional Porting

Adding strings and forms to setup (HII)

Publish & consume protocols

Hardware initialization

Refer to the UEFI Drivers Writer's Guide for more tips—Pdf link

LESSON OBJECTIVE

- Compile a UEFI driver template created from UEFI Driver Wizard
- Test driver in Windows Emulation using UEFI Shell 2.0
- Port code into the template driver

47

Return to Main Training Page

Return to Training Table of contents for next presentation link

ACKNOWLEDGEMENTS

Redistribution and use in source (original document form) and 'compiled' forms (converted to PDF, epub, HTML and other formats) with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code (original document form) must retain the above copyright notice, this list of conditions and the following disclaimer as the first lines of this file unmodified.

Redistributions in compiled form (transformed to other DTDs, converted to PDF, epub, HTML and other formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS DOCUMENTATION IS PROVIDED BY TIANOCORE PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL TIANOCORE PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2019, Intel Corporation. All rights reserved.