

TGLF Filter Adapted to KBMs Anass Najlaoui

- The new filter needs to:
 - Filter spurious modes
 - But Keep the KBMs

- The new filter needs to:
 - Filter spurious modes
 - But Keep the KBMs
- The suggested way was to identify the electromagnetic nature of the mode looking at the ratio A_{\parallel}^2/ϕ^2

There is not a clear distinction to evaluate the electromagnetic nature of modes

4

Instead of checking electromagnetic nature, we check the parity

 Based on the observations that TGLF modes modeling KBMs are <u>even</u> and that spurious modes are <u>odd</u>, we can filter only spurious mode by doing:

Effect of the new filter

Effect of the new filter

Effect of the new filter

Filtered because $\omega_r > \max_{\mathrm{freq}}$ But $\Re(\phi)$ not even

Not filtered because $\omega_r > \max_{} freq$ But $\Re(\phi)$ is even (KBM)

Test it in other cases

Anass Najlaoui 23/05/2024

Test on different cases

JET 75225 Discharge at $\rho=0.15$

R/L_{Ti}	R/L_{Te}	R/L_{Tc}	R/L_{Ni}	R/L_{Ne}	R/L_{Nc}	ŝ
4.2	2	4.2	1.67	1.5	-0.7	0.05
T_i/T_e	T_c/T_e	n_i/n_e	n_c/n_e	$oldsymbol{eta}(\%)$	и	\overline{q}
1.43	1.43	0.93	0.01	3.2	0.38	1.1

Spurious modes with $\omega_r > 2*\omega_{DW}$ are filtered, but not KBMs

Test on different cases

Steep-gradient regions

[M J Pueschel et al 2019 Plasma Phys. Control. Fusion 61 034002]

$$R/L_{T_i} = 60$$

$$R/L_{T_e} = R/L_N = 0$$

$$\beta = 0.1 \%$$

$$\hat{s} = 1$$

10

Filter = 0

 θ^{TGLF}

mode 1

-5

0.2

0.1

-0.1

-0.2

-10

 $Re(\phi_N)$

 $k_{\theta}\rho_s = 0.6$

Test on different cases

Waltz STD case at High shear ($\hat{s} = 3$)

How the filter works in details

• The basis Hermite functions Ψ_n are defined as:

$$\Psi_n = e^{-\hat{\theta}^2/2} h_n \qquad \text{with} \qquad h_n = \hat{\theta} \sqrt{\frac{2}{n-1}} h_{n-1} - \sqrt{\frac{n-2}{n-1}} h_{n-2}$$

$$\text{With } h_1(\hat{\theta}) = 1, \quad h_2(\hat{\theta}) = 2\hat{\theta}, \quad h_3(\hat{\theta}) = 4\hat{\theta}^2 - 2, \quad h_4(\hat{\theta}) = 8\hat{\theta}^3 - 12\hat{\theta} \quad \text{etc...}$$

We notice that: $\Psi_n = e^{-\hat{\theta}^2/2} \quad * \quad h_n$ Even if n is odd Odd if n is even

So we can build a function ϕ_{test} that can have the same parity as $\phi(\theta)$

We can build ϕ_{test} using only the field_weight_QL_out coefficients coupled with a Cos/Sin function (To mimic the parity of h_n without having to calculate it)

How the filter works in details

So we can build a function ϕ_{test} that can have the same parity as $\phi(\theta)$

We can build ϕ_{test} using only the field_weight_QL_out_coefficients coupled with a Cos/Sin function (To mimic the parity of h_n without having to calculate it)

I compute the ratio $\frac{|\sum \phi|}{\sum |\phi|}$

If > 0.9 then it is even
If < 0.1 then it is odd

Additional questions on the Filter

• What to do when $|\omega_r|<|{ t FILTER}*\omega_{DW}|$, But we have an odd mode parity or $\gamma>>\omega_r$?

We let it like that

Do the filter need to be run after of during the search of Width with Nbasis_min?

During the search of width

 $\Re(\phi)$ even and $\omega_r > 0$?

We may continue by Checking if $\Re(\phi)$ is even

Effect of the parallel velocity shear

- Increasing the parallel velocity shear can cause a shift in the mode structures, resulting in an uneven real part of the electrostatic potential.
- . Is the condition $\frac{|\sum \phi|}{\sum |\phi|} > 0.9$ still valid for those modes? The answer is <u>Yes</u>, except in very rare cases where the mode structure becomes very uneven. However, in these rare instances, the ratio $\frac{|\sum \phi|}{\sum |\phi|}$ is around 0.5, so there is no need to adjust the threshold.
- Out of 441 test cases (varying ky from 0.05 to 0.65 in 21 steps and parallel velocity shear from 0 to 2 in 21 steps), only 5 cases were not recognized as KBMs by the filter and were excluded, similar to the results with the original filter. (One is represented here for $k_y=0.4$ and $V_{\shortparallel}^{Shear}=1.4$)

JET 75225 Discharge at $\rho=0.15$

Thank you for your attention

- The new filter needs to:
 - Filter spurious modes
 - But Keep the KBMs

- The new filter needs to:
 - Filter spurious modes
 - But Keep the KBMs

- The new filter needs to:
 - Filter spurious modes
 - But Keep the KBMs

- The new filter needs to:
 - Filter spurious modes
 - But Keep the KBMs

