Extended and Unscented Gaussian Processes

Daniel M. Steinberg daniel.steinberg@nicta.com.au NICTA

Edwin V. Bonilla
e.bonilla@unsw.edu.au

The University of New South Wales

Inverse Problems

In many problems in science and engineering we have access to a **forward** or system model, $g(\cdot)$:

$$\mathbf{y} = g(\mathbf{f}) + \boldsymbol{\epsilon}$$

- We can measure the outputs of the system, **y**, but the inputs, **f**, are **latent**.
- We wish to infer these inputs without access to the inverse system model, $g^{-1}(\cdot)$.
- y may be a continuous process or path (robot arm motion), so f can be a Gaussian process (GP).

Aims

- lacktriangle Compute a posterior distribution over f f.
- 2 Avoid 'hand-coding' methods for every new $g(\cdot)$, i.e. generic inference for non-linear likelihoods.
- 3 The gradients, $\partial g(\mathbf{f})/\partial \mathbf{f}$, may not be known.
- 4 Avoid expensive simulations (cf. MCMC).

GPs with nonlinear likelihoods

Prior on latent functions \mathbf{f} at locations $\mathbf{X} = {\{\mathbf{x}_n\}}_{n=1}^N$, $p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\boldsymbol{\mu}, \mathbf{K}), \tag{1}$

where μ , **K** evaluate the mean function $\mu(\mathbf{x})$ and the covariance function $k(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta})$ at all observed locations.

Likelihood encodes $\mathbf{y} = g(\mathbf{f}) + \text{noise}$,

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\underline{g(\mathbf{f})}, \mathbf{\Sigma}) = \prod_{n=1}^{N} \mathcal{N}(y_n|\underline{g(f_n)}, \sigma^2).$$
 (2)

This factorisation simplifies computation but is not required.

The **posterior** is the solution to our inverse problem:

$$p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f}) p(\mathbf{f}),$$
 (3)

which is generally intractable due to non-linear $g(\mathbf{f})$.

Figure 1: A Gaussian process for inversion problems – the mapping from f_n to y_n is given by the nonlinear forward model $g(f_n)$.

Variational Inference

We approximate $p(\mathbf{f}|\mathbf{y}) \approx q(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{m}, \mathbf{C})$, via the maximisation of the evidence lower bound:

$$\mathcal{F} = \langle \log p(\mathbf{y}|\mathbf{f}) \rangle_{q\mathbf{f}} - \text{KL}[q(\mathbf{f}) \| p(\mathbf{f})]. \tag{4}$$

Main difficulty: 'Intractable' expected log likelihood:

$$\langle \log p(\mathbf{y}|\mathbf{f}) \rangle_{q\mathbf{f}} = -\frac{1}{2\sigma^2} \left\langle \left(\mathbf{y} - \underline{g(\mathbf{f})}\right)^{\mathsf{T}} \left(\mathbf{y} - \underline{g(\mathbf{f})}\right) \right\rangle_{q\mathbf{f}} + \dots$$

Our Solution:

1 Linearise the forward model:

$$g(\mathbf{f}) \approx \tilde{g}(\mathbf{f}) = \mathbf{A}\mathbf{f} + \mathbf{b},$$
 (5)

and obtain linearised objective $\tilde{\mathcal{F}}$.

Newton method on $\tilde{\mathcal{F}}$ to find \mathbf{m} , and 'closed-form' updates for \mathbf{C} :

$$\mathbf{m}_{k+1} = (1 - \alpha) \,\mathbf{m}_k + \alpha \boldsymbol{\mu} + \alpha \mathbf{H}_k (\mathbf{y} - \mathbf{b}_k - \mathbf{A}_k \boldsymbol{\mu}),$$

$$\mathbf{C} = (\mathbf{I}_N - \mathbf{H}_k \mathbf{A}_k) \mathbf{K},$$

where $\mathbf{H}_k = \mathbf{K} \mathbf{A}_k^{\top} \left(\mathbf{\Sigma} + \mathbf{A}_k \mathbf{K} \mathbf{A}_k^{\top} \right)^{-1}$.

3 Methods: How to linearise \rightarrow EGP vs. UGP.

Extended Gaussian Process (EGP)

Figure 2: EGP linearises $g(\cdot)$ using a 1st-order Taylor expansion.

First order Taylor series expansion about \mathbf{m}_k ,

$$g(f_n) \approx g(m_{nk}) + J_{m_{nk}} (f_n - m_{nk}),$$

and $J_{m_{nk}} = \partial g(m_{nk})/\partial m_{nk}$. Then equating coefficients,

$$\mathbf{A}_k = \operatorname{diag}([J_{m_{0k}}, \dots, J_{m_{Nk}}]), \qquad (6)$$

$$\mathbf{b}_k = [g(m_{0k}) - J_{m_{0k}} m_{0k}, \dots, g(m_{Nk}) - J_{m_{Nk}} m_{Nk}]^{\mathsf{T}}.$$

This results in the *Gauss Newton* method.

Key Results

- UGP treats the likelihood as a 'black box' by not requiring knowledge of its form or its derivatives.
- A is a diagonal matrix because of the factorising likelihood in (2) so similar complexity as Laplace approx.
- The iterative extended and sigma-point Kalman filters are specific instances of our variational framework.

Experiments

Synthetic inversion problems

Table 1: Performance on synthetic inversion problems.

$\alpha(\mathbf{f})$	Algorithm	$ m NLPD~\it f^*$		SMSE f^*		SMSE y^*	
$g(\mathbf{f})$		mean	std.	mean	std.	mean	std.
\mathbf{f}	UGP	-0.90046	0.06743	0.01219	0.00171	<u>—</u>	_
	EGP	-0.89908	0.06608	0.01224	0.00178	_	_
	[1]	-0.27590	0.06884	0.01249	0.00159	_	_
	GP	-0.90278	0.06988	0.01211	0.00160	_	_
$\mathbf{f}^3 + \mathbf{f}^2 + \mathbf{f}$	UGP	-0.23622	1.72609	0.01534	0.00202	0.02184	0.00525
	EGP	-0.22325	1.76231	0.01518	0.00203	0.02184	0.00528
	[1]	-0.14559	0.04026	0.06733	0.01421	0.02686	0.00266
$exp(\mathbf{f})$	UGP	-0.75475	0.32376	0.13860	0.04833	0.03865	0.00403
	EGP	-0.75706	0.32051	0.13971	0.04842	0.03872	0.00411
	[1]	-0.08176	0.10986	0.17614	0.04845	0.05956	0.01070
$\sin(\mathbf{f})$	UGP	-0.59710	0.22861	0.03305	0.00840	0.11513	0.00521
	EGP	-0.59705	0.21611	0.03480	0.00791	0.11478	0.00532
	[1]	-0.04363	0.03883	0.05913	0.01079	0.11890	0.00652
$\tanh(2\mathbf{f})$	UGP	0.01101	0.60256	0.15703	0.06077	0.08767	0.00292
· ,	EGP	0.57403	1.25248	0.18739	0.07869	0.08874	0.00394
	[1]	0.15743	0.14663	0.16049	0.04563	0.09434	0.00425

Figure 3: Learning the UGP with the forward model $g(\mathbf{f}) = 2 \times \text{sign}(\mathbf{f}) + \mathbf{f}^3$.

Binary classification

Table 2: Perf. on USPS for classes '3' and '5'.

		_ (0.4)
Algorithm	NLP y^*	Error rate (%)
GP – Laplace	0.11528	2.9754
GP - EP	0.07522	2.4580
GP - VB	0.10891	3.3635
SVM (RBF)	0.08055	2.3286
Logistic Reg.	0.11995	3.6223
UGP	0.07290	1.9405
EGP	0.08051	2.1992

Unscented Gaussian Process (UGP)

Figure 4: UGP linearises $g(\cdot)$ using the unscented transform.

Make sigma points [2] \mathcal{M}_{ni} and \mathcal{Y}_{ni} ,

$$\mathcal{M}_{n0} = m_{nk},$$
 $\mathcal{M}_{n1} = m_{nk} + \sqrt{(1+\kappa) C_{nnk}},$
 $\mathcal{M}_{n2} = m_{nk} - \sqrt{(1+\kappa) C_{nnk}},$
 $\mathcal{Y}_{ni} = g(\mathcal{M}_{ni}),$

then solving N scalar linear regression problems,

$$\underset{a_{nk},b_{nk}}{\operatorname{argmin}} \sum_{i=0}^{2} \|\mathcal{Y}_{ni} - (a_{nk}\mathcal{M}_{ni} + b_{nk})\|_{2}^{2}$$

gives,

$$\mathbf{A}_k = \operatorname{diag}([a_{0k}, \dots, a_{Nk}]),$$

$$\mathbf{b}_k = [\bar{y}_0 - a_{0k} m_{0k}, \dots, \bar{y}_N - a_{Nk} m_{Nk}]^{\mathsf{T}}.$$

$$(7)$$

Here $a_{nk} = \Gamma_{ym,nk}C_{nnk}^{-1}$, $\Gamma_{ym,nk}$ is the cross-covariance between \mathcal{M}_{ni} and \mathcal{Y}_{ni} $\forall i$, and $\bar{y}_n = \sum_{i=0}^2 w_i \mathcal{Y}_{ni}$.

Learning the EGP and the UGP

Variational-EM updates:

- Optimize posterior parameters m, C
- Optimize hyperparameters and forward model's parameters for fixed posterior parameters

References

[1] M. Opper and C. Archambeau.

The variational Gaussian approximation revisited.

Neural computation, 21(3):786-792, 2009.

[2] S.J. Julier and J.K. Uhlmann.

Unscented filtering and nonlinear estimation.

Proceedings of the IEEE, 92(3):401–422, Mar 2004.

Code

Github - https://github.com/NICTA/linearizedGP