Implementazione MATLAB e test di problemi di ottimizzazione lineare con obiettivi multipli e priorità

Tesi di Laurea in Ingegneria Informatica

Candidato

Gregorio Maria Manduzio

Relatore

Prof. Marco Cococcioni

Introduzione e Problema

Dati n lavori, ciascuno con il proprio tempo di completamento, da far svolgere ad m macchinari identici, a quanto ammonta il minimo tempo necessario per svolgerli tutti?

• Quale strumento utilizzare per risolvere tale problema?

Come ottenere delle soluzioni bilanciate e più resistenti ad eventuali malfunzionamenti dei macchinari?

 La soluzione si trova risolvendo il problema del makespan scheduling mono-obiettivo.

 Un qualsiasi software in grado di risolvere problemi di Programmazione Lineare Intera, come CPLEX, Gurobi oppure MATLAB (utilizzato in questa tesi).

 Risolvendo nuovamente il problema del makespan scheduling ma in versione lessicografica.

Soluzioni

$$\begin{cases} \min C_{\max} \\ C_{\max} \ge C_i \\ \end{cases} \qquad M_i \in \mathcal{M} \\ C_i = \sum_{j=1}^n x_{i,j} \cdot p_j \\ \sum_{j=1}^m x_{i,j} = 1 \\ \end{cases} \qquad M_i \in \mathcal{M} \\ \sum_{j=1}^m x_{i,j} = 1 \\ J_j \in \mathcal{J} \\ X_{i,j} \in \{0,1\} \end{cases} \qquad J_j \in \mathcal{J}, M_i \in \mathcal{M}$$

$$\begin{cases} \operatorname{lexmin} C_1, \dots, C_m \\ C_i \ge C_{i+1} & M_i \in \mathcal{M} \setminus M_m \\ \\ \sum_{q=1}^{i-1} C_q + (m-i+1) \cdot C_i \ge \sum_{j=1}^n p_j & M_i \in \mathcal{M} \\ \\ i \cdot C_i + \sum_{q=i+1}^m C_q \le \sum_{j=1}^n p_j & M_i \in \mathcal{M} \\ \\ C_i = \sum_{j=1}^n x_{i,j} \cdot p_j & M_i \in \mathcal{M} \\ \\ \sum_{i=1}^m x_{i,j} = 1 & J_j \in \mathcal{J} \\ \\ x_{i,j} \in \{0,1\} & J_j \in \mathcal{J}, M_i \in \mathcal{M} \end{cases}$$

 M_4

Risultati

Sono stati prodotti gli script makespan_singolo.m e makespan_lessicografico.m (reperibili qui) per risolvere le due versioni del problema. Il secondo implementa l'algoritmo iterativo

```
1: v_1^* = \min\{C_1 : (\vec{x}, \vec{C}) \in \mathcal{S}\}

2: for i = 2, ..., m do

3: v_i^* = \min\{C_i : x \in \mathcal{S}, C_1 = v_1^*, ..., C_{i-1} = v_{i-1}^*\}

4: Restituisci il risultato ottenuto all'ultima iterazione
```

Se ne apprezzano le differenze fornendo in input tempi di completamento volutamente sbilanciati, ad esempio il problema nella slide precedente

>> makespan_singol	0(4, [12	2 2 2 2	2 2])					>> makespan_lessic	ografico	(4, [12	2 2 2 2	2 2])			
MAKESPAN								MAKESPAN							
C1 = 12 C2 = 6 C3 = 0 C4 = 6								C1 = 12 C2 = 4 C3 = 4 C4 = 4							
ASSEGNAMENTO								ASSEGNAMENTO							
	Job1	Job2	Job3	Job4	Job5	Job6	Job7		Job1	Job2	Job3	Job4	Job5	Job6	Job7
Macchinario1	1	0	0	0	0	0	0	Macchinario1	1	0	0	0	0	0	0
Macchinario2	0	0	1	0	1	0	1	Macchinario2	0	0	0	0	1	0	1
Macchinario3	0	0	0	0	0	0	0	Macchinario3	0	0	1	0	0	1	0
Macchinario4	0	1	0	1	0	1	0	Macchinario4	0	1	0	1	0	0	0
SOLUZIONE								SOLUZIONE							

Risultati

A <u>questo link</u> si trovano le soluzioni, ottenute con il software CPLEX, di alcune istanze di problema lessicografico. Prese le prime 10, si vuole misurare mediamente quanto si discostano da esse le soluzioni ottenute tramite lo script makespan_lessicografico.m, secondo la formula

$$\frac{(C_{max}^{MATLAB} - C_{min}^{MATLAB}) - (C_{max}^{CPLEX} - C_{min}^{CPLEX})}{C_{max}^{CPLEX} - C_{min}^{CPLEX}} \cdot 100$$

	C_{max}^{MATLAB}	C_{min}^{MATLAB}	C_{max}^{CPLEX}	C_{min}^{CPLEX}	Scostamento	Scostamento medio
Istanza 1	236.531	236.489	236.538	236.502	16,67%	
Istanza 2	373.452	373.392	373.441	373.376	-7,69%	
Istanza 3	435.170	435.104	435.175	435.111	3,13%	
Istanza 4	3.926.512	3.926.360	3.926.812	3.926.077	-79,32%	
Istanza 5	8.820.121	8.818.229	8.820.118	8.818.097	-6,38%	2 720/
Istanza 6	9.113.174	9.111.172	9.112.867	9.111.424	38,74%	2.73%
Istanza 7	83.430.779	83.421.528	83.432.430	83.420.967	-19,30%	
Istanza 8	172.651.777	172.619.086	172.650.095	172.621.523	14,42%	
Istanza 9	195.439.916	195.410.873	195.434.984	195.414.317	40,53%	
Istanza 10	1.532.534.626	1.532.367.946	1.532.517.792	1.532.385.975	26,45%	