

Predictive Engineering and Computational Sciences

Locally Conservative Discontinuous Petrov-Galerkin for Convection-Diffusion

Truman E. Ellis

Advisors: Leszek Demkowicz, Robert Moser Collaborators: Jesse Chan, Nate Roberts

The University of Texas at Austin

March 8-9, 2013

A Summary of DPG

Overview of Features

- · Robust for singularly perturbed problems
- Stable in the preasymptotic regime
- Designed for adaptive mesh refinement

DPG is a minimum residual method:

$$u_h = \underset{w_h \in U_h}{\arg\min} \frac{1}{2} ||Bw_h - l||_{V'}^2$$

$$\updownarrow$$

$$b(u_h, R_V^{-1} B \delta u_h) = l(R_V^{-1} B \delta u_h) \quad \forall \delta u_h \in U_h$$

where $v_{\delta u_h} := R_V^{-1} B \delta u_h$ are the optimal test functions.

DPG for Convection-Diffusion

Start with the strong-form PDE.

$$\nabla \cdot (\boldsymbol{\beta} u) - \epsilon \Delta u = g$$

Rewrite as a system of first-order equations.

$$\nabla \cdot (\boldsymbol{\beta} u - \boldsymbol{\sigma}) = g$$
$$\frac{1}{\epsilon} \boldsymbol{\sigma} - \nabla u = \mathbf{0}$$

Multiply by test functions and integrate by parts over each element, K.

$$-(\boldsymbol{\beta}u - \boldsymbol{\sigma}, \nabla v)_K + ((\boldsymbol{\beta}u - \boldsymbol{\sigma}) \cdot \mathbf{n}, v)_{\partial K} = (g, v)_K$$
$$\frac{1}{\epsilon}(\boldsymbol{\sigma}, \boldsymbol{\tau})_K + (u, \nabla \cdot \boldsymbol{\tau})_K - (u, \tau_n)_{\partial K} = 0$$

Use the ultraweak (DPG) formulation to obtain bilinear form b(u, v) = l(v).

$$-(\boldsymbol{\beta}u - \boldsymbol{\sigma}, \nabla v)_K + (\hat{f}, v)_{\partial K} + \frac{1}{\epsilon}(\boldsymbol{\sigma}, \boldsymbol{\tau})_K + (u, \nabla \cdot \boldsymbol{\tau})_K - (\hat{u}, \tau_n)_{\partial K} = (g, v)_K$$

Local Conservation

The local conservation law in convection diffusion is

$$\int_{\partial K} \hat{f} = \int_K g \,,$$

which is equivalent to having $\mathbf{v}_K := \{v, \boldsymbol{\tau}\} = \{1_K, \mathbf{0}\}$ in the test space. In general, this is not satisfied by the optimal test functions. Following Moro et al¹, we can enforce this condition with Lagrange multipliers:

$$L(u_h, \boldsymbol{\lambda}) = \frac{1}{2} \left| \left| R_V^{-1}(Bu_h - l) \right| \right|_V^2 - \sum_K \lambda_K \underbrace{\langle Bu_h - l, \mathbf{v}_K \rangle}_{\langle \hat{f}, 1_K \rangle_{\partial K} - \langle g, 1_K \rangle_K},$$

where $\lambda = \{\lambda_1, \cdots, \lambda_N\}.$

T. E. Ellis

¹D. Moro, N.C. Nguyen, and J. Peraire. A hybridized discontinuous Petrov-Galerkin scheme for scalar conservation laws. *Int.J. Num. Meth. Eng.*, 2011. in print

Local Conservation

Finding the critical points of $L(u, \lambda)$, we get the following equations.

$$\frac{\partial L(u_h, \boldsymbol{\lambda})}{\partial u_h} = b(u_h, R_V^{-1} B \delta u_h) - l(R_V^{-1} B \delta u_h) - \sum_K \lambda_K b(\delta u_h, \mathbf{v}_K) = 0 \quad \forall \delta u_h \in U_h$$

$$\frac{\partial L(u_h, \boldsymbol{\lambda})}{\partial \lambda_K} = -b(u_h, \mathbf{v}_K) + l(\mathbf{v}_K) = 0 \quad \forall K$$

A few consequences:

- We've turned our minimization problem into a saddlepoint problem.
- Only need to find the optimal test function in the orthogonal complement of constants.

Optimal Test Functions

For each $\mathbf{u}=\{u, \pmb{\sigma}, \hat{u}, \hat{f}\} \in \mathbf{U}_h$, find $\mathbf{v_u}=\{v_\mathbf{u}, \pmb{\tau_u}\} \in \mathbf{V}$ such that

$$(\mathbf{v}_{\mathbf{u}}, \mathbf{w})_{\mathbf{V}} = b(\mathbf{u}, \mathbf{w}) \quad \forall \mathbf{w} \in \mathbf{V}$$

where V becomes $V_{p+\Delta p}$ in order to make this computationally tractable. Chan et al² developed the following robust norm for convection-diffusion.

$$\begin{split} ||(v, \boldsymbol{\tau})||_{\mathbf{V}, \Omega_h}^2 &= ||\nabla \cdot \boldsymbol{\tau}||^2 + \left|\left|\min\left\{\frac{1}{\sqrt{\epsilon}}, \frac{1}{\sqrt{|K|}}\right\} \boldsymbol{\tau}\right|\right|^2 \\ &+ \epsilon \, ||\nabla v||^2 + ||\boldsymbol{\beta} \cdot \nabla v||^2 \quad + \left|\left|\min\left\{\sqrt{\frac{\epsilon}{|K|}}, 1\right\} v\right|\right|^2 \\ &\text{no longer necessary to make this a norm} \end{split}$$

T. E. Ellis

²J. Chan, N. Heuer, T Bui-Thanh, and L. Demkowicz. Robust DPG method for convection-dominated diffusion problems ii: a natural inflow condition. Technical Report 21, ICES, 2012

Optimal Test Functions

For each $\mathbf{u}=\{u, \boldsymbol{\sigma}, \hat{u}, \hat{f}\} \in \mathbf{U}_h$, find $\mathbf{v_u}=\{v_\mathbf{u}, \boldsymbol{\tau_u}\} \in \mathbf{V}$ such that

$$(\mathbf{v}_{\mathbf{u}}, \mathbf{w})_{\mathbf{V}} = b(\mathbf{u}, \mathbf{w}) \quad \forall \mathbf{w} \in \mathbf{V}$$

where V becomes $V_{p+\Delta p}$ in order to make this computationally tractable. Chan et al² developed the following robust norm for convection-diffusion.

$$||(v, \boldsymbol{\tau})||_{\mathbf{V}, \Omega_h}^2 = ||\nabla \cdot \boldsymbol{\tau}||^2 + \left|\left|\min\left\{\frac{1}{\sqrt{\epsilon}}, \frac{1}{\sqrt{|K|}}\right\} \boldsymbol{\tau}\right|\right|^2 + \epsilon ||\nabla v||^2 + ||\boldsymbol{\beta} \cdot \nabla v||^2 + \left(\int_{K} v\right)^2$$
zero mean term

T. E. Ellis

²J. Chan, N. Heuer, T Bui-Thanh, and L. Demkowicz. Robust DPG method for convection-dominated diffusion problems ii: a natural inflow condition. Technical Report 21, ICES, 2012

Erickson-Johnson Problem

On domain $\Omega = [0,1]^2$, with $\beta = (1,0)^T$, f = 0 and boundary conditions

$$\hat{f} = u_0, \quad \beta_n \le 0, \qquad \hat{u} = 0, \quad \beta_n > 0$$

Separation of variabes gives an analytic solution

$$u(x,y) = C_0 + \sum_{n=1}^{\infty} C_n \frac{\exp(r_2(x-1)) - \exp(r_1(x-1))}{r_1 \exp(-r_2) - r_2 \exp(-r_1)} \cos(n\pi y)$$

Skewed Convection-Diffusion Problem

After 8 refinement steps

Skewed Convection-Diffusion Problem

Double Glazing Problem

After 6 refinement steps

Double Glazing Problem

Vortex Problem

After 6 refinement steps

Without Local Conservation

With Local Conservation

Vortex Problem

Wedge Problem

After 16 refinement steps

Wedge Problem

Wedge Problem

Graph norm

Robust norm

Discontinuous Source Problem

After 16 refinement steps

Discontinuous Source Problem

J. Chan, N. Heuer, T Bui-Thanh, and L. Demkowicz.

Robust DPG method for convection-dominated diffusion problems ii: a natural inflow condition. Technical Report 21, ICES, 2012.

D. Moro, N.C. Nguyen, and J. Peraire.

A hybridized discontinuous Petrov-Galerkin scheme for scalar conservation laws. *Int.J. Num. Meth. Eng.*, 2011. in print.