(19)日本国特許庁(JP)

t,

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-86712 (P2003-86712A)

(43)公開日 平成15年3月20日(2003.3.20)

(51) Int.Cl. ⁷		酸別記号		FΙ				テ	-7]}*(容考)
H01L	21/8242			H01	l L	27/10		321	5 F O 8 3
G11C	11/401			G1 I	LC	11/34		3 5 2 C	5F110
	11/404							354D	5 M O 2 4
	11/407							371K	
H01L	27/108			H01	l L	29/78		613B	
			審查請求	未請求	請求	マダイ で で で で で で で で で で で で で で で で で で で	OL	(全 44 頁)	最終頁に続く

(22)出顧日	平成13年10月25日(2001.10.25)
(31)優先権主張番号	特願2001-41828(P2001-41828)
(32)優先日	平成13年2月19日(2001.2.19)
(33)優先権主張国	日本(JP)
(31)優先権主張番号	特顧2001-191781 (P2001-191781)
(32)優先日	平成13年6月25日(2001.6.25)
(33) 優先機主張国	日本 (JP)

特願2001-328204(P2001-328204)

(71)出願人 000003078 株式会社東芝 東京都港区芝浦一丁目1番1号 (72)発明者 岩 田 佳 久 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝マイクロエレクトロニクスセン ター内

(74)代理人 100075812 弁理士 吉武 賢次 (外5名)

最終頁に続く

(54) 【発明の名称】 半導体メモリ装置及びその製造方法

(57)【要約】

(21)出願番号

【課題】 単純なトランジスタ構造を用いて、チャネルボディを記憶ノードとして電荷を蓄え、その電位差によりデータを記憶すると共に、その電荷量に応じたバックゲートバイアス効果を利用してデータの弁別を行う半導体メモリ装置を提供する。

【解決手段】 1ビットのメモリセルがフローティングの半導体層12に形成された一つのMISトランジスタにより構成される。トランジスタのソース15、ドレイン14間に配置されたチャネル形成のための主ゲート

(G1) 13とは別に、半導体層12の電位を容量結合により制御するための、主ゲート13と同期して駆動される補助ゲート(G2)20が設けられる。補助ゲート20は主ゲート13と同期して駆動される。MISトランジスタは、ドレイン接合近傍でインパクトイオン化を起こして半導体層12を第1の電位に設定した第1データ状態と、ドレイン接合に順方向電流を流して半導体層12を第2の電位に設定した第2データ状態とをダイナミックに記憶する。

【特許請求の範囲】

 \bullet n

【請求項1】1ビットのメモリセルがフローティングの 半導体層に形成された一つのMISトランジスタにより 構成され、

前記MISトランジスタのソース、ドレイン間に配置さ れたチャネル形成のための主ゲートとは別に、前記半導 体層の電位を容量結合により制御するための、前記主ゲ ートと同期して駆動される補助ゲートが設けられ、

前記MISトランジスタは、前記半導体層を第1の電位 に設定した第1データ状態と、前記半導体層を第2の電 10 位に設定した第2データ状態とをダイナミックに記憶す ることを特徴とする半導体メモリ装置。

【請求項2】前記第1データ状態は、前記MISトラン ジスタを5極管動作させ、ドレイン接合近傍でインパク トイオン化を起こすことにより書き込まれ、

前記第2データ状態は、前記主ゲートからの容量結合に より所定電位が与えられた前記半導体層と前記ドレイン との間に順方向バイアス電流を流すことにより書き込ま れることを特徴とする請求項1記載の半導体メモリ装 置。

【請求項3】前記半導体層は、半導体基板に絶縁膜を介 して形成されたものであり、前記主ゲートと補助ゲート は、前記半導体層の上下面に相対向して配置されている ことを特徴とする請求項1の半導体メモリ装置。

【請求項4】前記補助ゲートは、前記半導体層に接続さ れた中継用電極に対向して、この中継用電極との間でキ ャパシタを構成するように形成されていることを特徴と する請求項3記載の半導体メモリ装置。

【請求項5】前記半導体層は、半導体基板に絶縁膜を介 して形成されて素子形成領域毎に区画され、前記主ゲー 30 トは前記半導体層の各素子形成領域の側面に対向して配 置され、前記補助ゲートは前記半導体層の上面に対向し 且つ前記主ゲートと電気的に接続されて配置されている ことを特徴とする請求項1の半導体メモリ装置。

【請求項6】前記半導体層は、半導体基板上に形成され た柱状半導体であり、との柱状半導体の上部にドレイン が、下部にソースが形成され、前記主ゲートと補助ゲー トは前記柱状半導体の両側面に相対向して配置されてい ることを特徴とする請求項1記載の半導体メモリ装置。

【請求項7】前記主ゲートと補助ゲートとは同じ材料に 40 より形成されて、異なる電位をもって駆動されることを 特徴とする請求項1記載の半導体メモリ装置。

【請求項8】入力されたロウアドレス信号をデコードし て、これが一致したか否かを示すデコード結果信号を出 力する、ロウデコーダであって、前記デコード結果信号 はそのデコード結果に基づいて、第1の制御電位、又 は、との第1の制御電位より高い第2の制御電位であ る、ロウデコーダと、

前記デコード結果信号が入力され、とのデコード結果信 号が示すデコード結果に基づいて、前記第1の制御電位 50 モリ装置。

より低い第3の制御電位、又は、前記第2の制御電位よ りも高い第4の制御電位を、前記主ゲートに出力する、 第1の出力回路と、

前記デコード結果信号が入力され、このデコード結果信 号が示すデコード結果に基づいて、前記第3の制御電位 より低い第5の制御電位、又は、前記第4の制御電位よ りも低い第6の制御電位を、前記補助ゲートに出力す る、第2の出力回路と、

を備えることを特徴とする請求項7に記載の半導体メモ リ装置。

【請求項9】前記ロウデコーダは、前記第1の出力回路 と前記第2の出力回路とに対して、個別に設けられてい る、ことを特徴とする請求項8に記載の半導体メモリ装 置。

【請求項10】前記主ゲートと補助ゲートとは仕事関数 の異なる材料により形成されて、同電位で駆動されると とを特徴とする請求項1記載の半導体メモリ装置。

【請求項11】入力されたロウアドレス信号をデコード して、このロウアドレス信号をデコードし、これが一致 したか否かを示すデコード結果信号を出力する、ロウデ コーダであって、前記デコード結果信号はそのデコード 結果に基づいて、第1の制御電位、又は、この第1の制 御電位より高い第2の制御電位である、ロウデコーダ と、

前記デコード結果信号が入力され、このデコード結果信 号が示すデコード結果に基づいて、前記第1の制御電位 より低い第3の制御電位、又は、前記第2の制御電位よ りも高い第4の制御電位を、前記主ゲート及び前記補助 ゲートに出力する、出力回路と、

を備えることを特徴とする請求項10に記載の半導体メ モリ装置。

【請求項12】前記MISトランジスタがn チャネル型 であって複数個マトリクス配列され、第1の方向に並ぶ MISトランジスタのドレインがビット線に、第2の方 向に並ぶMISトランジスタの主ゲート及び補助ゲート がそれぞれ第1のワード線及び第2のワード線に、前記 MISトランジスタのソースが固定電位線に接続されて メモリセルアレイが構成され、

データ書き込み時、前記固定電位線を基準電位として、 選択された第1のワード線に前記基準電位より高い第1 の制御電位を与え、非選択の第1のワード線に前記基準 電位より低い第2の制御電位を与え、ビット線には第1 及び第2データ状態に応じてそれぞれ前記基準電位より 高い第3の制御電位及び前記基準電位より低い第4の制 御電位を与え、前記第1のワード線と同時に選択される 第2のワード線に前記第1の制御電位以下の第5の制御 電位を与え、非選択の第2のワード線に前記第2の制御 電位以下の第6の制御電位を与えるようにしたことを特 徴とする請求項1乃至11のいずれかに記載の半導体メ

【請求項13】前記MISトランジスタがpチャネル型 であって複数個マトリクス配列され、第1の方向に並ぶ MISトランジスタのドレインがビット線に、第2の方 向に並ぶMISトランジスタの主ゲート及び補助ゲート がそれぞれ第1のワード線及び第2のワード線に、前記 MISトランジスタのソースが固定電位線に接続されて メモリセルアレイが構成され、

データ書き込み時、前記固定電位線を基準電位として、 選択された第1のワード線に前記基準電位より低い第1 の制御電位を与え、非選択の第1のワード線に前記基準 電位より高い第2の制御電位を与え、ビット線には第1 及び第2データ状態に応じてそれぞれ前記基準電位より 低い第3の制御電位及び前記基準電位より高い第4の制 御電位を与え、前記第1のワード線と同時に選択される 第2のワード線に前記第1の制御電位以上の第5の制御 電位を与え、非選択の第2のワード線に前記第2の制御 電位以上の第6の制御電位を与えるようにしたことを特 徴とする請求項1乃至11のいずれかに記載の半導体メ モリ装置。

【請求項14】1ビットのメモリセルがフローティング 20 の半導体層に形成された一つのMISトランジスタによ り構成され、前記MISトランジスタは、前記半導体層 を第1の電位に設定した第1データ状態と、前記半導体 層を第2の電位に設定した第2データ状態とをダイナミ ックに記憶する半導体メモリ装置であって、

第1の半導体基板と、

この第1の半導体基板の表面部に、底面及び側面が絶縁 膜で覆われた状態で一方向に連続するように形成され た、前記MISトランジスタの補助ゲートと、

着された第2の半導体基板と、

この第2の半導体基板の表面に第2のゲート絶縁膜を介 して前記補助ゲートと並行して連続するように形成され た、前記MISトランジスタの主ゲートと、

前記第1の半導体基板の前記主ゲート及び補助ゲートの 間隙部に形成されたソース及びドレイン拡散層と、

前記ソース拡散層にコンタクトして前記主ゲート及び補 助ゲートと並行して連続するように配設されたソース配 線と、

とのソース配線を覆う層間絶縁膜上に前記主ゲート及び 40 補助ゲートと交差して配設されて前記ドレイン拡散層に コンタクトするビット線とを備えたことを特徴とする半 導体メモリ装置。

【請求項15】第1の半導体基板にゲート絶縁膜を介し て対向する補助ゲートを形成する工程と、

前記補助ゲートを覆って平坦化された絶縁膜を形成する 工程と、

前記絶縁膜上に第2の半導体基板を貼り合わせる工程 と、

前記第1の半導体基板を研磨して所定厚みの半導体層と 50 且つ前記主ゲートとは仕事関数が異なる材料によって形

して調整した後、素子分離絶縁膜を形成する工程と、 前記半導体層にゲート絶縁膜を介して対向する主ゲート を形成する工程と、

前記主ゲートをマスクとして前記半導体層に不純物をイ オン注入してソース及びドレインを形成する工程と、を 有することを特徴とする半導体メモリ装置の製造方法。 【請求項16】第1の半導体基板にゲート絶縁膜を介し て対向する主ゲートを形成する工程と、

前記主ゲートを覆って平坦化された第1の絶縁膜を形成 する工程と、

前記第1の絶縁膜上に第2の半導体基板を貼り合わせる 工程と、

前記第1の半導体基板を研磨して所定厚みの半導体層と して調整した後、素子分離絶縁膜を形成する工程と、 前記半導体層上に第2の絶縁膜を形成する工程と、 前記第2の絶縁膜に前記半導体層に達する開口を開け て、この開口を介して前記半導体層と接続される中継電 極を形成する工程と、

前記中継電極にゲート絶縁膜を介して対向する補助ゲー トを形成する工程と、

前記補助ゲートをマスクとして前記半導体層に不純物を イオン注入してソース及びドレインを形成する工程と、 を有することを特徴とする半導体メモリ装置の製造方 法。

【請求項17】第1の半導体基板に第1の絶縁膜を形成 する工程と、

前記第1の絶縁膜に前記第1の半導体基板に達する開口 を開けて、との開口を介して前記第1の半導体基板に接 続される中継電極を形成する工程と、

この補助ゲートの表面に第1のゲート絶縁膜を介して接 30 前記中継電極にゲート絶縁膜を介して対向する補助ゲー トを形成する工程と、

> 前記補助ゲートを覆って平坦化された第2の絶縁膜を形 成する工程と、

> 前記第2の絶縁膜上に第2の半導体基板を貼り合わせる 工程と、

> 前記第1の半導体基板を研磨して所定厚みの半導体層と して調整した後、素子分離絶縁膜を形成する工程と、

> 前記半導体層にゲート絶縁膜を介して対向する主ゲート を形成する工程と、

前記主ゲートをマスクとして前記半導体層に不純物をイ オン注入してソース及びドレインを形成する工程と、を 有することを特徴とする半導体メモリ装置の製造方法。 【請求項18】半導体基板上に絶縁膜により分離された

状態で形成された半導体層を横方向に素子分離された素 子形成領域として区画する工程と、

前記素子形成領域の側面にゲート絶縁膜を介して対向す る主ゲートを埋め込む工程と、

前記半導体層の上面にゲート絶縁膜を介して対向する補 助ゲートを、前記主ゲートと電気的に接続された状態で

成する工程と、

前記補助ゲートをマスクとして前記半導体層に不純物を イオン注入してソース、ドレインを形成する工程と、を 有することを特徴とする半導体メモリ装置の製造方法。

5

【請求項19】第1の半導体基板の表面に第1の絶縁膜を介してゲート電極材料膜を形成する工程と、

前記ゲート電極材料膜上に第1のゲート絶縁膜を介して 第2の半導体基板を接着する工程と、

前記第2の半導体基板に素子分離絶縁膜を形成してスト ライプ状に連続する素子形成領域を区画する工程と、 前記素子形成領域が区画された第2の半導体基板上に第

前記素子形成領域が区画された第2の半導体基板上に第2の絶縁膜を堆積し、これを前記素子形成領域の長手方向と直交する方向に連続するダミーゲートとしてパターン形成する工程と、

前記ダミーゲートをマスクとして前記第2の半導体基板、第1のゲート絶縁膜、及びゲート電極材料膜を順次エッチングして、前記ゲート電極材料膜による補助ゲートを前記素子形成領域の長手方向と直交する方向に連続するように形成する工程と、

前記ダミーゲートの間隙に前記第2の半導体基板の厚み 20 方向の途中まで第3の絶縁膜を埋め込む工程と、

前記ダミーゲートの間隙の前記第3の絶縁膜上に側面が 前記第2の半導体基板に接するように半導体層を形成す る工程と、

前記ダミーゲートを除去して、露出した前記第2の半導体基板の表面に第2のゲート絶縁膜を形成する工程と、前記半導体層の間隙部に前記補助ゲートと並行して連続する主ゲートを埋め込む工程と、

前記半導体層に不純物をイオン注入して、ソース及びドレイン拡散層を形成する工程と、

前記ソース拡散層にコンタクトして前記主ゲート及び補助ゲートと並行して連続するソース配線を形成する工程 と、

前記ソース配線を覆う層間絶縁膜を形成し、この層間絶縁膜上に前記ドレイン拡散層にコンタクトして前記主ゲート及び補助ゲートと交差する方向に連続するビット線を形成する工程と、を有することを特徴とする半導体メモリ装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、チャネルボディを記憶ノードとしてダイナミックにデータ記憶を行う半 導体メモリ装置に関する。

[0002]

【従来の技術】大容量のRAMとして一般的に用いられているDRAMのメモリセルは1つのMOSトランジスタと1つのキャパシタにより形成され、MOSトランジスタを選択スイッチとしてキャパシタに電荷を蓄える。このセルキャパシタに蓄積された電荷をビット線の電荷と再分配することにより、ビット線の電位の変動を見

て、データの読み出しを行う。従って、ビット線の初期 電荷量に対してセルキャパシタの蓄積電荷量には下限が 存在する。

[0003] DRAMは、微細化に伴いビット線の寄生容量は低下してきたが、消費電力削減と微細化に伴いセルへの書き込み電荷も低下してきているため、セルキャパシタの容量は減るわけではない。キャパシタの容量は面積と誘電体(キャパシタ絶縁膜)の誘電率に比例し、キャパシタ絶縁膜の膜厚に反比例する。キャパシタ絶縁膜の膜厚を薄くするとトンネル電流が流れて絶縁性を維持できなくなるため、薄膜化には限界(2nm程度)があり、2乗に比例して縮小される面積の分を打ち消すほどのシリコン酸化膜の誘電率より大きく構造的に安定で、シリコンCMOSプロセスに合い、実使用において信頼性の高い誘電体膜を探し、開発していくのは時間も費用もかかる。

【0004】そのため、1980年代半ばから、DRA Mのキャパシタには、スタックセル構造やトレンチセル構造等の3次元構造を用いるようになっている。これらのスタックセル構造、トレンチセル構造においても、平面的なサイズと3次元的な深さとの比が、最近では10を軽く超えるようになり、紙巻タバコ的形状を呈するようになり、トレンチセルの場合はシリコン基板に対するエッチング限界、スタックセルの場合はキャパシタ構造物の下方にあるものと上方にあるものとをコンタクトするコンタクト孔の開口とこれへの導体の充填、誘電体の均一な被覆性が問題となり、100nm未満のサイズのさらなる微細化に耐えられないといわれるようになってきている。

30 【0005】MOSのゲインを利用してキャパシタを縮 小するという試みは古くからなされており、そのタイプ のセルをゲインセルと呼んでいる。読み出しMOSトラ ンジスタのゲートあるいは、バックゲートの電位によ り、ドレイン電流は変化するため、ゲインセルは、ゲー ト電極を蓄積ノードとするものと、チャンネルボディを 蓄積ノードとするものに大きく2つに分けることができ る。読み出しMOSトランジスタのゲート電極を蓄積ノ ードとするものは、古くは、 Intel社が 1 k ビットDR AMに使用した3トランジスタと1キャパシタからなる 40 ものや、2トランジスタと1キャパシタからなるものが ある。キャパシタについては、積極的に形成するもの と、寄生キャパシタを利用するものがある。いずれにせ よ、これらのゲインセルは、素子数が2以上で、ゲート (ワード線)、ドレイン(ビット線)は共通ではなく、 書き込み用と読み出し用に分かれていたりして、結線数 も多く、微細化には不向きな面がある。

【0006】SOI基板を用いて、読み出し用MOS (センス用MOS) のチャンネルボディをストレージノードとして電荷を蓄え、バックゲートバイアス効果を利50 用するタイプのゲインセルも提案されている。例えば、

次のような文献がある。

[0007] (1) H.Wann and C.Hu, "A Capacitorles s DRAM Cell on SOI Substrate," IEDM Digest of Tech nical Papers, pp.635-638, Dec., 1933

7

(2) M.R. Tack, et.al, "The Multistable Charge Cont rolled Memory Effect in SOI MOS Transistors at Low Temperatures," IEEE Transactions on Electron Dev ices, vol.no.5, pp. 1371–1382 May 1990)

文献(1)は、ゲート電極は1つであり一見1トランジ スタ構成に見えるが、実際はゲート下にPMOSトラン 10 ジスタ領域とNMOSトランジスタ領域を持っており、 単純な1トランジスタ構造と比べるとサイズは大きくな る。また、"1"を書く前には"0"を書く必要があ る。書き込みスピードとしても、通常のSRAM、DR AMに比べて不利である。同一著者による特表平9-5 09284号公報には、"1"を書く前に"0"を書く 必要のない動作例も示されているが、ゲート下にPMO Sトランジスタ領域とNMOSトランジスタ領域を持つ ことには変わりはない。

対して、"1"と"0"を同時に書くことができず、S O I 基板を利用した消去動作が必要となる。書き込みス ピードも通常のSRAM、DRAMに比べて不利であ る。

【0009】特開平8-171768号公報にも、チャ ネルボディをストレージノードとして電荷を蓄え、バッ クゲートバイアス効果を利用するタイプのゲインセルが 示されている。これは、ビット線に接続しない側のソー ス/ドレインがビット線方向かまたはワード線方向に分 離されている必要があり、セルサイズが大きい。また、 "1"を書く前には"0"を書く必要があり、書き込み スピードとしては、通常のSRAM、DRAMに比べて 不利である。

【0010】特開平8-213624号公報のものは、 チャネルボディをストレージノードとして電荷を蓄え、 チャネルボディの電位により寄生バイボーラのコレクタ 電流に差があることを利用するタイプのゲインセルであ る。これも、"0"を書く前には"1"を書く必要があ り、書き込みスピードとしては、通常のSRAM, DR AMに比べて不利である。

[0011]

【発明が解決しようとする課題】以上のように、新しい DRAMとして最近提案されているものは、特殊トラン ジスタ構造を必要とするなど、構造が複雑であるか、或 いは構造が比較的単純であっても制御性に難点があり、 髙集積化と髙性能化を図ることが難しい。

【0012】との発明は、単純なトランジスタ構造を用 いて、チャネルボディを記憶ノードとして電荷を蓄え、 そのチャネルボディの電位差によりデータを記憶すると 共に、その電位差に応じたバックゲートバイアス効果を 50

利用してデータの弁別を行う半導体メモリ装置とその製 造方法を提供することを目的としている。

[0013]

【課題を解決するための手段】この発明に係る半導体メ モリ装置は、1ビットのメモリセルがフローティングの 半導体層に形成された一つのMISトランジスタにより 構成され、前記MISトランジスタのソース、ドレイン 間に配置されたチャネル形成のための主ゲートとは別 に、前記半導体層の電位を容量結合により制御するため の、前記主ゲートと同期して駆動される補助ゲートが設 けられ、前記MISトランジスタは、前記半導体層を第 1の電位に設定した第1データ状態と、前記半導体層を 第2の電位に設定した第2データ状態とをダイナミック に記憶することを特徴とする。

【0014】この発明によれば、単純なトランジスタ構 造を用いて、そのチャネルボディを記憶ノードとして電 荷を蓄え、その電荷量の差によりデータをダイナミック に記憶する半導体メモリ装置が得られる。特に、主ゲー トによるチャネル制御と同時に補助ゲートによりチャネ 【0008】文献(2)は、ワード線を共有するセルに 20 ルボディの電位制御を行うことにより、"0"データと "1"データのボディ電位差を大きくして、読み出しマ ージンを大きいものとすることができる。またこれによ り、ワード線及びビット線の振幅を小さいものとすると とができる。

> 【0015】この発明において具体的に、第1データ状 態は、MISトランジスタを5極管動作させ、ドレイン 接合近傍でインパクトイオン化を起こすことにより書き 込まれ、第2データ状態は、主ゲートからの容量結合に より所定電位が与えられた半導体層とドレインとの間に 30 順方向電流を流すことにより書き込まれる。

【0016】との発明における具体的なメモリセル構造 としては、次のようなものが挙げられる。

【0017】(1)半導体層が半導体基板に絶縁膜を介 して形成されたものであって、主ゲートと補助ゲート は、その半導体層の上下面に相対向して配置される構 造。

【0018】(2)補助ゲートが半導体層に接続された 中継用電極に対向して、この中継用電極との間でキャバ シタを構成する構造。

40 【0019】(3)半導体層が半導体基板に絶縁膜を介 して形成されて素子形成領域毎に区画され、主ゲートは 半導体層の各素子形成領域の側面に対向して配置され、 補助ゲートは半導体層の上面に対向し且つ主ゲートと電 気的に接続されて配置される構造。

【0020】(4)半導体層が半導体基板上に形成され た柱状半導体であり、この柱状半導体の上面にドレイン が、下部にソースが形成され、主ゲートと補助ゲートは 柱状半導体の両側面に相対向して配置される構造。

【0021】この発明において、主ゲートと補助ゲート とは同じ材料を用いて形成することができる。この場

合、補助ゲートは、ボディのキャリア蓄積状態を最適に 制御するために、主ゲートとは異なる電位をもって、主 ゲートと同期的に駆動される。

【0022】また主ゲートと補助ゲートを同じ電位で駆動する場合、例えば両者が電気的に接続された状態で形成する場合には、両者に仕事関数の異なる材料を用いる。これにより、主ゲートによるチャネル形成の制御と、補助ゲートによるボディ電位制御を最適化することができる。

【0023】この発明による半導体メモリ装置はより具 10体的に、MISトランジスタが複数個マトリクス配列され、第1の方向に並ぶMISトランジスタのドレインがビット線に、第2の方向に並ぶMISトランジスタの主ゲート及び補助ゲートがそれぞれ第1のワード線及び第2のワード線に、MISトランジスタのソースが固定電位線に接続されてメモリセルアレイが構成される。

【0024】そして、MISトランジスタがnチャネル型の場合には、データ書き込み時、固定電位線を基準電位として、選択された第1のワード線に基準電位より高い第1の制御電位を与え、非選択の第1のワード線に基20準電位より低い第2の制御電位を与え、ビット線には第1及び第2データ状態に応じてそれぞれ基準電位より高い第3の制御電位及び基準電位より低い第4の制御電位を与え、第1のワード線と同時に選択される第2のワード線に第1の制御電位以下の第5の制御電位を与え、非選択の第2のワード線に第2の制御電位以下の第6の制御電位を与える。

【0025】MISトランジスタがpチャネル型の場合には、データ書き込み時、固定電位線を基準電位として、選択された第1のワード線に基準電位より低い第1の制御電位を与え、非選択の第1のワード線に基準電位より高い第2の制御電位を与え、ビット線には第1及び第2データ状態に応じてそれぞれ基準電位より低い第3の制御電位及び基準電位より高い第4の制御電位を与え、第1のワード線と同時に選択される第2のワード線に第1の制御電位以上の第5の制御電位を与え、非選択の第2のワード線に第2の制御電位以上の第6の制御電位を与える。

記補助ゲートと並行して連続するように形成された、前 記MISトランジスタの主ゲートと、前記第1の半導体 基板の前記主ゲート及び補助ゲートの間隙部に形成され たソース及びドレイン拡散層と、前記ソース拡散層にコ ンタクトして前記主ゲート及び補助ゲートと並行して連 続するように配設されたソース配線と、このソース配線 を覆う層間絶縁膜上に前記主ゲート及び補助ゲートと交 差して配設されて前記ドレイン拡散層にコンタクトする ビット線とを備えたことを特徴とする。

10

【0027】この発明による半導体メモリ装置の製造方法は、第1の半導体基板にゲート絶縁膜を介して対向する補助ゲートを形成する工程と、前記補助ゲートを覆って平坦化された絶縁膜を形成する工程と、前記絶縁膜上に第2の半導体基板を貼り合わせる工程と、前記第1の半導体基板を研磨して所定厚みの半導体層として調整した後、素子分離絶縁膜を形成する工程と、前記半導体層にゲート絶縁膜を介して対向する主ゲートを形成する工程と、前記主ゲートをマスクとして前記半導体層に不純物をイオン注入してソース及びドレインを形成する工程と、を有することを特徴とする。

【0028】この発明による半導体メモリ装置の製造方法はまた、第1の半導体基板にゲート絶縁膜を介して対向する主ゲートを形成する工程と、前記主ゲートを覆って平坦化された第1の絶縁膜を形成する工程と、前記第1の半導体基板を研磨して所定厚みの半導体層として調整した後、素子分離絶縁膜を形成する工程と、前記半導体層上に第2の絶縁膜を形成する工程と、前記第2の絶縁膜に前記半導体層に達する開口を開けて、この開口を介して前記半導体層と接続される中継電極を形成する工程と、前記中継電極にゲート絶縁膜を介して対向する補助ゲートを形成する工程と、前記補助ゲートをマスクとして前記半導体層に不純物をイオン注入してソース及びドレインを形成する工程と、を有することを特徴とする。

【0029】この発明による半導体メモリ装置の製造方法は更に、第1の半導体基板に第1の絶縁膜を形成する工程と、前記第1の絶縁膜に前記第1の半導体基板に達する開口を開けて、この開口を介して前記第1の半導体基板に接続される中継電極を形成する工程と、前記中継電極にゲート絶縁膜を介して対向する補助ゲートを形成する工程と、前記補助ゲートを覆って平坦化された第2の絶縁膜を形成する工程と、前記第2の絶縁膜上に第2の半導体基板を貼り合わせる工程と、前記第1の半導体基板を研磨して所定厚みの半導体層として調整した後、素子分離絶縁膜を形成する工程と、前記半導体層にゲート絶縁膜を介して対向する主ゲートを形成する工程と、前記主ゲートをマスクとして前記半導体層に不純物をイオン注入してソース及びドレインを形成する工程と、を有することを特徴とする。

[0030] との発明による半導体メモリ装置の製造方 法は更に、半導体基板上に絶縁膜により分離された状態 で形成された半導体層を横方向に素子分離された素子形 成領域として区画する工程と、前記素子形成領域の側面 にゲート絶縁膜を介して対向する主ゲートを埋め込む工 程と、前記半導体層の上面にゲート絶縁膜を介して対向 する補助ゲートを、前記主ゲートと電気的に接続された 状態で且つ前記主ゲートとは仕事関数が異なる材料によ って形成する工程と、前記補助ゲートをマスクとして前 記半導体層に不純物をイオン注入してソース、ドレイン 10 を形成する工程と、を有することを特徴とする。

11

【0031】この発明による半導体メモリ装置の製造方 法は更に、第1の半導体基板の表面に第1の絶縁膜を介 してゲート電極材料膜を形成する工程と、前記ゲート電 極材料膜上に第1のゲート絶縁膜を介して第2の半導体 基板を接着する工程と、前記第2の半導体基板に素子分 離絶縁膜を形成してストライプ状に連続する素子形成領 域を区画する工程と、前記素子形成領域が区画された第 2の半導体基板上に第2の絶縁膜を堆積し、これを前記 素子形成領域の長手方向と直交する方向に連続するダミ 20 ーゲートとしてパターン形成する工程と、前記ダミーゲ ートをマスクとして前記第2の半導体基板、第1のゲー ト絶縁膜、及びゲート電極材料膜を順次エッチングし て、前記ゲート電極材料膜による補助ゲートを前記素子 形成領域の長手方向と直交する方向に連続するように形 成する工程と、前記ダミーゲートの間隙に前記第2の半 導体基板の厚み方向の途中まで第3の絶縁膜を埋め込む 工程と、前記ダミーゲートの間隙の前記第3の絶縁膜上 に側面が前記第2の半導体基板に接するように半導体層 を形成する工程と、前記ダミーゲートを除去して、露出 30 した前記第2の半導体基板の表面に第2のゲート絶縁膜 を形成する工程と、前記半導体層の間隙部に前記補助ゲ ートと並行して連続する主ゲートを埋め込む工程と、前 記半導体層に不純物をイオン注入して、ソース及びドレ イン拡散層を形成する工程と、前記ソース拡散層にコン タクトして前記主ゲート及び補助ゲートと並行して連続 するソース配線を形成する工程と、前記ソース配線を覆 う層間絶縁膜を形成し、この層間絶縁膜上に前記ドレイ ン拡散層にコンタクトして前記主ゲート及び補助ゲート と交差する方向に連続するビット線を形成する工程と、 を有することを特徴とする。

[0032]

【発明の実施の形態】以下、図面を参照して、この発明 に関するいくつかの実施の形態を説明する。まず、具体 的な実施の形態を説明する前に、後述する実施の形態で 用いられるメモリセルの基本原理を説明する。

【0033】図1は、DRAMの単位メモリセルの基本 的な断面構造を示している。メモリセルMCは、SOI 構造のnチャネルMISトランジスタにより構成されて

ン酸化膜11が形成され、このシリコン酸化膜11上に p型シリコン層12が形成されたSOI基板が用いられ ている。このSOI基板のシリコン層12上に、ゲート 酸化膜16を介してゲート電極13が形成され、ゲート 電極13に自己整合されてn型ドレイン拡散層14とn 型ソース拡散層15とが形成されている。

【0034】ドレイン拡散層14とソース拡散層15と は、底部のシリコン酸化膜11に達する深さに形成され ている。従って、p型シリコン層12からなるチャネル ボディ領域は、チャネル幅方向(図の紙面に直交する方 向)の分離を酸化膜で行うとすれば、底面及びチャネル 幅方向の側面が他から絶縁分離され、チャネル長方向は pn接合分離されたフローティング状態になる。

【0035】CのMISトランジスタからなるDRAM セルの動作原理は、トランジスタのチャネルボディ(他 から絶縁分離されたp型シリコン層12)の多数キャリ アであるホールの蓄積状態を利用する。即ち、トランジ スタを5極管領域で動作させることにより、ドレイン1 4から大きな電流を流し、ドレイン14の近傍でインパ クトイオン化を起こす。このインパクトイオン化により 生成される多数キャリアであるホールをp型シリコン層 12に保持させ、そのホール蓄積状態を例えばデータ "1"とする。ドレイン14とp型シリコン層12の間 のpn接合を順方向バイアスして、p型シリコン層12 のホールをドレイン側に放出させた状態をデータ"0" とする。

【0036】データ"0", "1"は、チャネルボディ の電位の差であり、MISトランジスタのしきい値電圧 の差として記憶される。図2は、ゲートに与えられる駆 動電位VWLとボディ電位VBの関係を示している。図 2に示すようにホール蓄積によりボディ電位 VBの高い データ"1"状態のしきい値電圧Vthlは、データ "0"状態のしきい値電圧VthOより低い。ボディに 多数キャリアであるホールを蓄積した"1"データ状態 を保持するためには、ゲート13には負のバイアス電圧 を印加することが必要になる。このデータ保持状態は、 逆データの書き込み動作(消去)を行わない限り、読み 出し動作を行っても変わない。即ち、キャパシタの電荷 蓄積を利用する1トランジスタ/1キャパシタのDRA 40 Mと異なり、非破壊読み出しが可能である。

[0037]以上の基本的なDRAMセル構成において は、データ"0", "1"のしきい値電圧差をどれだけ 大きくできるかが重要なポイントとなる。上記動作原理 から明らかなように、ゲート13からの容量結合により ボディ電位を制御することで、データの書き込み特性及 び保持特性が決まる。しかし、ボディ電位に対してしき い値電圧はほぼ平方根で効いてくるため、"0",

"1"データの間の大きなしきい値電圧差を実現するこ とは容易ではない。しかも、上述した書き込み動作で いる。即ち、シリコン基板10上に絶縁膜としてシリコ 50 は、"0"書き込みのメモリセルMCは3極管動作し、

従ってチャネルが形成されるとゲート13とチャネルボ ディは容量結合しなくなり、ボディ電位の上昇ができな くなる。

13

【0038】そとで以下の実施の形態においては、上記 した基本メモリセル構造に対して、チャネル形成に利用 される主ゲート(第1のゲート)とは別に、MISトラ ンジスタのボディに対して容量結合してボディ電位を制 御するための補助ゲート(第2のゲート)を設ける。そ して、第2のゲートを第1のゲートと同期して駆動する ことにより、より確実なデータ書き込みを実現し、且 つ、しきい値電圧差の大きいデータ"0", "1"の記 憶を可能とする。

【0039】以下に具体的な実施の形態を説明する。

【0040】[実施の形態1]図3は、実施の形態1に よるメモリセルMCの構造を、図1の基本構造と対応さ せて示している。図1と異なる点は、トランジスタのチ ャネル制御に利用されるフロントゲートである第1のゲ ート (G1) 13とは別に、ボディ電位を制御するため の第2のゲート(G2)20を設けている点である。第 2のゲート20はこの実施の形態の場合、ゲート絶縁膜 20 19を介してシリコン層12の底面に容量結合するよう に対向するバックゲートとして、シリコン層 12の下の 酸化膜11に埋め込まれている。

【0041】図4は、この様なメモリセルMCを複数、 マトリクス配列したメモリセルアレイの等価回路を示し ている。一方向に並ぶ複数のメモリセルMCの第1のゲ ート (G1) 13は、第1のワード線WL1に接続さ れ、第2のゲート(G2)20は、第2のワード線WL 2に接続される。これらのワード線WL1、WL2と交 差する方向に、メモリセルMCのドレインが接続される 30 されたビット線BLには、基準電位VSSより高い正の ビット線BLが配設される。全メモリセルMCのソース 15は固定電位線(接地電位線VSS)に接続される。 【0042】図5は、メモリセルアレイのレイアウトを 示し、図6A、図6Bはそれぞれ図5のA-A', B-B'線断面を示している。p型シリコン層12は、シリ コン酸化膜21の埋め込みにより、格子状にパターン形 成される。即ちドレイン14を共有する二つのトランジ スタの領域がワード線WL1, WL2の方向にシリコン 酸化膜21により素子分離されて配列される。或いはシ リコン酸化膜21の埋め込みに代わって、シリコン層1 2をエッチングすることにより、横方向の素子分離を行 っても良い。第1のゲート13及び第2のゲート20 は、一方向に連続的に形成されて、これらがワード線₩ L1及びWL2となる。ソース15は、ワード線WL 1, WL2の方向に連続的に形成されて、これが固定電 位線(共通ソース線)となる。トランジスタ上は層間絶 縁膜17で覆われこの上にビット線(BL)18が形成 される。ビット線18は、二つのトランジスタで共有す るドレイン 1 4 にコンタクトして、ワード線WL1, W L2と交差するように配設される。

【0043】これにより、各トランジスタのチャネルボ ディであるシリコン層12は、底面及びチャネル幅方向 の側面が酸化膜により互いに分離され、チャネル長方向 にはpn接合により互いに分離されて、フローティング 状態に保たれる。

14

【0044】そしてとのメモリセルアレイ構成では、ワ ード線WL1, WL2およびビット線BLを最小加工寸 法Fのピッチで形成したとして、単位セル面積は、図5 に破線で示したように、2F×2F=4F'となる。

【0045】以上のように、一つのMISトランジスタ を1ビットのメモリセルMCとして、ダイナミック記憶 ができるメモリセルアレイが構成される。

【0046】図7A及び図7Bは、データ書き込み時の ワード線WL1, WL2及びビット線BLの電圧波形を 示している。対をなす第1のワード線WL1と第2のワ ード線WL2は同期して駆動する。図7Aは、第1のゲ ート13と第2のゲート20が同じ材料である場合に、 第2のゲート20を第1のゲート13より低い電位で制 御して、チャネルボディの第2のゲート20側に多数キ ャリア蓄積を可能とするものである。一方、図7Bは、 第1のゲート13と第2のゲート20に仕事関数の異な る電極材料を用いた場合に、両者に同じ電位を与えて、 チャネルボディの第2のゲート20側に多数キャリア蓄 積を可能とするものである。

【0047】図7Aの場合、"1"データ書き込み時、 選択された第1のワード線WL1に基準電位VSSより 高い正の電位VWL1Hを与え、同時に選択された第2 のワード線WL2にはそれより低い電位VWL2H(図 の例では基準電位VSSより低い負電位)を与え、選択 電位VBLHを与える。これにより、選択されたメモリ セルMCにおいて、5極管動作によるインパクトイオン 化が生じ、ホールがチャネルボディに蓄積される。

【0048】データ保持は、第1のワード線WL1に基 準電位VSSより低い負の電位VWL1Lを与え、第2 のワード線WL2にはそれより更に低い電位VWL2L を与える。これにより、チャネルボディに過剰ホールを 蓄積した状態である"1"データを保持する。

【0049】"0"データ書き込み時は、選択された第 1及び第2のワード線WL1及びWL2にそれぞれ

"1"書き込み時と同様の電位VWL1H及びVWL2 Hを与え、選択されたビット線BLには基準電位VSS より低い負の電位VBLLを与える。これにより、選択 されたメモリセルMCにおいて、ドレイン接合が順バイ アスになり、チャネルボディのホールがドレイン14に 排出されて、ボディ電位の低い状態である"0"データ が書かれる。

【0050】図7Bの場合、"1"データ書き込み時、 選択された第1及び第2のワード線WL1及びWL2に 50 基準電位VSSより高い正の電位VWLHを与え、選択

ビット線BLには、基準電位VSSより高い正の電位V BLHを与える。これにより、選択されたメモリセルM Cにおいて、5極管動作によるインパクトイオン化が生 じ、ホールがボディに蓄積される。

15

【0051】データ保持は、第1及び第2のワード線₩ L1及びWL2に基準電位VSSより低い負の電位VW ししを与える。これにより、チャネルボディに過剰ホー ルを蓄積した状態である"1"データを保持する。

【0052】"0"データ書き込み時は、選択された第 1及び第2のワード線WL1及びWL2に"1"書き込 10 み時と同様の電位VWLHを与え、選択ビット線BLに は基準電位VSSより低い負の電位VBLLを与える。 これにより、選択されたメモリセルMCでドレイン接合 が順バイアスになり、チャネルボディのホールがドレイ ンに排出されて、ボディ電位の低い状態である"0"デ ータが書かれる。

【0053】このように、二つのゲート13及び20に 仕事関数の異なる材料を用いれば、第1のワード線WL 1と第2のワード線WL2を、同じ電位で同期駆動し て、チャネルボディへのホール蓄積を制御することがで 20 きる。

【0054】以上のようにとの実施の形態では、補助ゲ ート(第2のゲート)20を主ゲート(第1のゲート) 13と共に駆動することにより、しきい値電圧差の大き い"0", "1"データ書き込みができる。即ち、第2 のゲート20をデータ保持状態では負電位にして、

"1"データのホール蓄積状態を良好に保持しながら、 データ書き込み時にその第2のゲート20の電位を上昇 させることにより、容量結合によりボディ電位を上昇さ せて、データ書き込みを確実にすることができる。

"0"データ書き込みの場合に、第1のゲート13側に チャネルが形成されても、第2のゲート20の駆動によ りボディ電位を上昇させることができるから、確実な "0"データ書き込みが可能である。

【0055】以上により、しきい値電圧差の大きい "0", "1"データ記憶ができる。

【0056】また、非選択の第1のワード線WL1の電 位を下げることでデータ保持を行うが、このとき対をな す第2のワード線WL2の電位も下げてボディ電位を低 のセルで"0"データ書き込みを行う場合に、"1"デ ータを保持する非選択メモリセルMCでのデータ破壊が 確実に防止される。更に、"1"書き込みビット線BL に接続される非選択の"0"データセルでは、サーフェ スプレークダウンやGIDL (Gate Induce d Drain Leakage)電流によるデータ破 壊の懸念があるが、との実施の形態の場合、第2のワー ド線WL2によりボディ電位を下げることで、これらの 懸念も解消される。

【0057】更に、"0"書き込み時、ビット線BLの 50 路C12とレベル変換回路C13とに入力される。ま

電位を大きく下げると、ソース15からビット線BLに 電流が流れてしまうが、この実施の形態の場合、第2の ゲート20によりボディ電位を上昇せしめるため、ビッ ト線BLの電位をそれほど下げる必要がない。とのた め、例えば、ビット線BLの電位をソースの基準電位V SSと同じ程度にすることが可能であり、ソース15か らビット線BLに流れる電流を抑制することができる。 【0058】またデータ読み出し時は、誤まって"1" 書き込みにならないように、3極管動作させることが必 要である。このため、ビット線BLの電位は"1"書き 込み時より低いが、このためドレイン14とチャネルボ ディとの間の空乏層の伸びは、"1"書き込み時より小 さく、従ってビット線BLとチャネルボディと間の容量 結合が大きくなる。このことは、書き込み時にチャネル ボディに注入されたキャリアが容量再分配されて、ボデ ィ電位の低下の原因となる。この実施の形態において は、第2のゲート20による制御によって、チャネルボ ディの多数キャリア蓄積状態を良好に保持することがで きる。

【0059】次に、この実施の形態におけるロウデコー ダとワード線ドライバの具体的な回路構成の一例を説明 する。図7Cは、ロウデコーダの一例と、図7Bに示し たワード線WL1、WL2の電圧波形を生成するための ワード線ドライバWDDV1の一例を示す図である。 【0060】との図7Cに示すように、ロウデコーダR DECは、NAND回路C10により構成されており、 ワード線ドライバWDDV1は、インバータ回路C11 と、レベル変換回路C12と、レベル変換回路C13 と、出力バッファ回路C14とにより構成されている。 30 この構成により、ロウデコーダRDECにより選択され たワード線ドライバWDDV1は、ハイレベルの電位 を、正の電位VCCより高い電位であるVWLHに変換 して、ワード線WL1、WL2に供給する。 【0061】より具体的には、NAND回路C10に

は、ロウアドレス信号RADDとワード線イネーブル信 号WLENとが、入力される。選択されたワード線WL 1、WL2に対応するワード線ドライバWDDV1に は、すべてハイレベルのロウアドレス信号RADDと、 ハイレベルのワード線イネーブル信号WLENが入力さ く制御しているから、同じビット線BLに接続された他 40 れる。したがって、選択されたワード線WL1、WL2 に対応するワード線ドライバWDDV1のNAND回路 C10の出力は、ローレベル、つまり基準電位VSSに なる。NAND回路C10の出力は、インバータ回路C 11に入力される。

> 【0062】このインバータ回路C11は、入力された 信号を反転して出力する。したがって、選択されたワー ド線ドライバWDDV1においては、インバータ回路C 11の出力はハイレベル、つまり正の電位VCCにな る。このインバータ回路C11の出力は、レベル変換回

た、レベル変換回路C12とレベル変換回路C13に は、NAND回路C10の出力も、入力される。

17

【0063】このレベル変換回路C12及びレベル変換 回路C13の出力は、出力バッファ回路C14に入力さ れる。レベル変換回路C12と出力バッファ回路C14 とにより、インバータ回路C11のハイレベル出力電位 であるVCCの出力を、VCCよりも高い正の電位であ るVWLHに変換して、ワード線WL1、WL2に供給 する。また、レベル変換回路C13と出力バッファ回路 C14とにより、インバータ回路C11のローレベル出 力電位であるVSSの出力を、VSSよりも低い電位で あるVWLLにして供給する。

【0064】この実施の形態においては、レベル変換回 路C12は、p型MOSトランジスタPM10、PM1 1と、n型MOSトランジスタNM10、NM11と を、備えて構成されている。p型MOSトランジスタP M10、PM11のソース端子は、それぞれ、電位VW LHの供給線に接続されており、そのドレイン端子は、 それぞれ、n型MOSトランジスタNM10、NM11 のドレイン端子に接続されている。また、p型MOSト ランジスタPM10のゲート端子は、p型MOSトラン ジスタPM11とn型MOSトランジスタNM11の間 のノードに接続されており、p型MOSトランジスタP MI1のゲート端子は、p型MOSトランジスタPM1 Oとn型MOSトランジスタNM10の間のノードに接 続されている。

【0065】n型MOSトランジスタNM10のゲート 端子には、インバータ回路C11の出力が入力され、n 型MOSトランジスタNM11のゲート端子には、NA トランジスタNM10、NM11のソース端子は、ぞれ ぞれ、電位VSSの供給線に接続されている。

【0066】一方、レベル変換回路C13は、p型MO SトランジスタPM12、PM13と、n型MOSトラ ンジスタNM12、NM13とを、備えて構成されてい る。p型MOSトランジスタPM12、PM13のソー ス端子は、それぞれ、電位VCCの供給線に接続されて おり、そのドレイン端子は、それぞれ、n型MOSトラ ンジスタNM12、NM13のドレイン端子に接続され ている。また、p型MOSトランジスタPM12のゲー 40 ト端子には、インバータ回路C11の出力が入力され、 p型MOSトランジスタPM13のゲート端子には、N AND回路C10の出力が入力される。

【0067】n型MOSトランジスタNM12のゲート 端子は、p型MOSトランジスタPM13とn型MOS トランジスタNM13との間のノードに接続されてお り、n型MOSトランジスタNM13のゲート端子は、 p型MOSトランジスタPM12とn型MOSトランジ スタNM12との間のノードに接続されている。また、 これらn型MOSトランジスタNM12、NM13のソ 50 略することも可能である。

ース端子は、ぞれぞれ、電位VWLLの供給線に接続さ れている。

【0068】出力バッファ回路C14は、p型MOSト ランジスタPM14、PM15と、n型MOSトランジ スタNM14、NM15とを、直列的に接続することに より、構成されている。

【0069】p型MOSトランジスタPM14のソース 端子は、電位VWLHの供給線に接続されており、その ゲート端子は、レベル変換回路C12におけるp型MO SトランジスタPM11のゲート端子に接続されてい る。p型MOSトランジスタPM14のドレイン端子 は、p型MOSトランジスタPM15のソース端子に接 続されている。このp型MOSトランジスタPM15の ゲート端子には、電位VSSが入力されている。このた め、p型MOSトランジスタPM15は、ノーマリーオ ンのMOSトランジスタとなる。また、p型MOSトラ ンジスタPM15のドレイン端子は、n型MOSトラン ジスタNM14のドレイン端子に接続されている。これ らp型MOSトランジスタPM15とn型MOSトラン 20 ジスタNM14との間のノードから、ワード線WL1、 WL2を駆動するための電圧が出力される。

【0070】n型MOSトランジスタNM14のゲート 端子には、電位VCCが供給されている。とのため、n 型MOSトランジスタNM14は、ノーマリーオンのM OSトランジスタとなる。n型MOSトランジスタNM 14のソース端子は、n型MOSトランジスタNM15 のドレイン端子に接続されている。このn型MOSトラ ンジスタNM15のゲート端子は、レベル変換回路C1 3におけるn型MOSトランジスタNM13のゲート端 ND回路C10の出力が入力される。とれらn型MOS 30 子に接続されている。また、n型MOSトランジスタNM15のソース端子は、電位VWLLの供給線に接続さ れている。

> 【0071】以上のような構成のロウデコーダRDEC とワード線ドライバWDDV1を用いて、図7Bに示す 電位VWLH、VWLLを生成し、ワード線WL1、W L2に供給する。なお、図7Cにおいては、各MOSト ランジスタでバックゲート接続がなされているが、これ は必ずしも必要なものではない。

【0072】なお、とのワード線ドライバWDDV1の 出力バッファ回路C14は、ノーマリーオンのMOSト ランジスタPM15、NM14を備えているが、これ は、MOSトランジスタPM14、NM15に、直接、 電位VWLHと電位VWLLの電位差が印加しないよう にするためである。すなわち、ノーマリーオンのMOS トランジスタPM15、NM14により、そのしきい値 落ちをする分の電圧だけ、電位差が減少する。したがっ て、直接との電位差が、MOSトランジスタPM14、 PM15に印加されてもよいのであれば、MOSトラン ジスタPM15、NM14は、図7Dに示すように、省

【0073】これら図7C又は図7Dに示したロウデコ ーダRDECとワード線ドライバWDDV1とを、メモ リセルアレイMCAに配置したレイアウト図を、図7E に示す。この図7Eに示すように、ワード線ドライバW **DDV1のレイアウトピッチが、ワード線WL1、WL** 2の配線ピッチと一致する場合は、メモリセルアレイM CAの片側に、ロウデコーダRDECとワード線ドライ バWDDV1とを配置することができる。

19

【0074】これに対して、ワード線ドライバWDDV 1のレイアウト面積が大きくなり、ワード線ドライバ₩ DDV1のレイアウトピッチを、ワード線WL1、WL 2の配線ピッチに一致させることができない場合、図7 Fに示すようなレイアウトが考えられる。すなわち、メ モリセルアレイMCAの両側にロウデコーダRDECと ワード線ドライバWDDV1とを配置し、例えば、メモ リセルアレイMCAの左側のロウデコーダRDECとワ ード線ドライバWDDV1で、奇数番目のワード線WL 1、WL2のデコードと駆動を行い、メモリセルアレイ MCAの右側のロウデコーダRDECとワード線ドライ バWDDV1で、偶数番目のワード線WL1、WL2の 20 デコードと駆動を行うようにする。

【0075】次に、図7Aに対応するロウデータとワー ド線ドライバの回路構成を説明する。図7Gは、ロウデ コーダの一例と、図7Aに示したワード線WL1、WL 2の電圧波形を生成するためのワード線ドライバWDD V2の一例を示す図である。

【0076】この図7Gに示すように、ロウデコーダR DECは、NAND回路C10により構成されており、 ワード線ドライバWDDV2は、インバータ回路C11 と、レベル変換回路C22と、レベル変換回路C23 と、出力パッファ回路C24と、レベル変換回路C25 と、出力バッファ回路C26とにより構成されている。 ととでの電圧の高低関係は、図7Aの例に従って、VW L1H>VSS>VWL2H>VWL1L>VWL2L である。

【0077】図7Cと異なる点のみ説明すると、レベル 変換回路C22は基本的に図7Cのレベル変換回路C1 2と同様の構成であり、p型MOSトランジスタPM2 O、PM21と、n型MOSトランジスタNM20、N PM20、PM21のソース端子は、電位VWL1Hの 供給線に接続されている。

【0078】レベル変換回路C23も、基本的に図7C のレベル変換回路C13と同様の構成であり、p型M〇 SトランジスタPM22、PM23と、n型MOSトラ ンジスタNM22、NM23とを備えている。但し、n 型MOSトランジスタNM22、NM23のソース端子 は、電位VWL1Lの供給線に接続されている。

【0079】出力バッファ回路C24も、基本的に図7 Cの出力バッファ回路C14と同様の構成であり、直列 50 線ドライバWDDV1よりも大きくなってしまう。した

的に接続されたp型MOSトランジスタPM24、PM 25と、n型MOSトランジスタNM24、NM25と を備えている。但し、p型MOSトランジスタPM24 のソース端子は、電位VWL1Hの供給線に接続されて おり、n型MOSトランジスタNM25のソース端子 は、電位VWL1Lの供給線に接続されている。

【0080】これに加えて、図7Gのワード線ドライバ WDDV2は、レベル変換回路C25と出力バッファ回 路C26とを備えている。レベル変換回路C25の構成 はレベル変換回路C23の構成と同様であり、p型MO SトランジスタPM26、PM27と、n型MOSトラ ンジスタNM26、NM27とを備えている。但し、n 型MOSトランジスタNM26、NM27のソース端子 は、電位VWL2Lの供給線に接続されている。

【0081】出力バッファ回路C26は、出力バッファ 回路C24と同様の構成であるが、p型MOSトランジ スタPM28とn型MOSトランジスタNM28の2つ のMOSトランジスタにより構成されている。そして、 p型MOSトランジスタPM28のソース端子は、電位 VWL2Hの供給線に接続されており、n型MOSトラ ンジスタNM28のソース端子は、電位VWL2Lの供 給線に接続されている。

【0082】ノーマリーオンのMOSトランジスタが挿 入されていないのは、図7Aからも分かるように、電位 VWL2Hと電位VWL2Lとの電位差はそれほど大き くないので、この電位差が直接MOSトランジスタPM 28、NM28に印加されても、問題が生じないからで ある。

【0083】この構成から分かるように、出力バッファ 30 回路C24の出力は、電位VWL1Hと電位VWL1L との間で振幅し、これにより、第1のワード線WL1が 駆動される。また、出力バッファ回路C26の出力は、 電位VWL2Hと電位VWL2Lとの間で、出力バッフ ァ回路C24の出力と同期して振幅し、これにより、第 2のワード線WL2が駆動される。なお、図7Gにおい ては、各MOSトランジスタでバックゲート接続がなさ れているが、これは必ずしも必要なものではない。

【0084】また、図7Dに示したワード線ドライバ₩ DDV1と同様に、図7Hに示すようにワード線ドライ M21とを備えている。但し、p型MOSトランジスタ 40 パWDDV2においても、p型MOSトランジスタPM 25とn型MOSトランジスタNM24とを、省くこと も可能である。

> 【0085】ごれら図7G又は図7Hに示したロウデコ ーダRDECとワード線ドライバWDDV2とを、メモ リセルアレイMCAに配置したレイアウト図を、図71 に示す。図7G及び図7Hに示したワード線ドライバW DDV2においては、第1のワード線WL1と第2のワ ード線WL2を異なる電位で同期的に駆動する関係上、 そのレイアウト面積が図7C及び図7Dに示したワード

がって、ワード線WL1、WL2の配線ピッチに、ワー ド線ドライバWDDV2のレイアウトピッチを一致させ ることは困難であると考えられる。このため、図7 I に 示したレイアウトにおいては、メモリセルアレイMCA の両側に、ロウデコーダRDECとワード線ドライバW DDV2とを配置している。 すなわち、メモリセルアレ イMCAの左側のロウデコーダRDECとワード線ドラ イバWDDV2で、奇数番目のワード線WL1、WL2 のデコードと駆動を行い、メモリセルアレイMCAの右 側のロウデコーダRDECとワード線ドライバWDDV 2で、偶数番目のワード線WL1、WL2のデコードと 駆動を行う。

21

•

【0086】また、図7」に示すように、例えば、第1 のワード線WL1用のワード線ドライバWDDV3を、 メモリセルアレイMCAの左側に配置し、第2のワード 線WL2のワード線ドライバWDDV4を、メモリセル アレイMCAの右側に配置するようにしてもよい。との ように配置することにより、電源配線の引き回しを楽に することができる。すなわち、第1のワード線WL1用 のワード線ドライバWDDV3のあるメモリセルアレイ 20 て、4種類の電位VWLH、VWLL、VBLH、VB MCAの左側にのみ、電位VWL1Hと電位VWL1L の電位供給線を配線し、第2のワード線WL2用のワー ド線ドライバWDDV4のあるメモリセルアレイMCA の右側にのみ、電位VWL2Hと電位VWL2Lの電位 供給線を配線すればよい。

【0087】但し、このレイアウトの場合、ワード線ド ライバWDDV3とワード線ドライバWDDV4の双方 に、個別にロウデコーダR DE Cが必要になる。そのよ うなワード線ドライバWDDV3の例を図7Kに示し、 ワード線ドライバWDDV4の例を図7Lに示す。

【0088】図7Kに示すように、第1のワード線WL 1用のワード線ドライバWDDV3は、インバータ回路 C11を介してロウデコーダRDECに接続されたレベ ル変換回路C22と、直接ロウデコーダRDECに接続 されたレベル変換回路C23と、出力バッファ回路C2 4とを備えている。これらの構成は上述した図7Gのワ ード線ドライバWDDV2と同様である。

【0089】一方、図7Lに示すように、第2のワード 線WL2用のワード線ドライバWDDV4は、ロウデコ ーダRDECと、インバータ回路Cllと、レベル変換 40 回路C25と、出力バッファ回路C26とを備えて構成 されている。レベル変換回路C25と出力バッファ回路 C26の構成は、上述した図7Gのワード線ドライバ♡ DDV2と同様である。但し、ワード線ドライバWDD V4はメモリセルアレイMCAの右側に設けられている ため、ロウデコーダRDECをワード線ドライバWDD V3と共用することができないため、独自にロウデコー ダRDECとインバータ回路C11とを設けている。

【0090】ワード線ドライバWDDV3のロウデコー ダRDECと、WDD4のロウデコーダRDECとに

は、ロウアドレス信号RADDとWLENとが同期して 入力されるので、結果的に、異なる電圧振幅で同期した ワード線駆動電位が出力される。

【0091】なお、図7K及び図7Lにおいては、各M OSトランジスタでバックゲート接続がなされている が、これは必ずしも必要なものではない。また、図7K に示したワード線ドライバWDDV3においても、図7 Mに示すように、p型MOSトランジスタPM25とn 型MOSトランジスタNM24とを、省くことも可能で ある。

【0092】図7Nは、上述したメモリセルアレイMC AとロウデコーダR D E C とワード線ドライバW D D V とを有するメモリチップMCPの全体レイアウトの一例 を示す図である。この図7Nに示すように、低電圧側の 供給電圧であるVSSと、高電圧側の供給電圧であるV CCとが入力される。この電位VSSと電位VCCは、 昇圧回路群とそれらのドライバからなる回路BSTに供 給され、このメモリチップMCPで必要となる各種の電 圧が生成される。ここでは、図7Bの電圧波形に対応し LLとを生成する例を示している。図7Aの電圧波形を 用いるメモリセルアレイMCAを用いる場合は、6種類 の電位VWL1H、VWL1L、VWL2H、VWL2 L、VBLH、VBLLを生成することとなる。この回 路BSTで生成された各種の電位は、電位供給線により 必要な回路に供給される。特に、この図に示した4種類 の電位は、上述したように、ロウデコーダRDECとワ ード線ドライバWDDVとに供給される。

【0093】また、このメモリチップMCPには、メモ 30 リチップMCPに対してデータ書き込み、データ読み出 しを行うメモリセルを特定するためのアドレスが入力さ れる。このアドレスは、アドレスレシーバADRVに入 力され、ロウアドレス信号とカラムアドレス信号に分離 される。そして、ロウアドレス信号は、ロウアドレスデ コーダRDECに供給され、カラムアドレス信号は、カ ラムアドレスデコーダCDECに供給される。

【0094】データI/O端子からは、データの入出力 が行われる。すなわち、メモリセルアレイMCAに書き 込むデータは、このデータI/O端子から入力され、入 カレシーバINRVに入力される。そして、データドラ イバDTDVを介して、カラム選択ゲートCSGに供給 され、メモリセルアレイMCAに対するデータ書き込み が行われる。

【0095】一方、メモリセルアレイMCAから読み出 された信号は、カラム選択ゲートCSGからセンスアン プSAに出力され、このセンスアンプSAでデータの検 出が行われる。検出されたデータは、出力ドライバOT DVを介して、データI/O端子から出力される。

【0096】また、このメモリチップMCPには、各種 50 の制御信号が入力される制御信号レシーバCSRVを有

している。この制御信号レシーバCSRVは、このメモ リチップMCPの外部から入力された制御信号に基づい て、内部で必要な各種の制御信号を生成し、出力する。 【0097】なお、この図7NのメモリチップMCPに おいては、メモリセルアレイMCAの両側にロウデコー ダRDECとワード線ドライバWDDVとを設ける場合 のレイアウトを例示したが、上述したように、メモリセ ルアレイMCAの片側にのみロウデコーダRDECとワ ード線ドライバWDDVとを設ける場合もある。

23

【0098】なお、これまで説明したワード線ドライバ 10 WDDV1、WDDV2、WDDV3、WDDV4の構 成や、メモリチップMCPの構成は、以下に説明する各 実施の形態でも、それぞれ適用することが可能である。 【0099】[実施の形態2]図8は、実施の形態2に よるDRAMセル構造を、図3に対応させて示してい る。この実施の形態では、第1のゲート(G1)13が シリコン層12の下の埋め込み酸化膜11内に埋め込ま れている。第2のゲート(G2)20は、シリコン層1 2の上方に配置されるが、直接的にはシリコン層 12 に 対向しない。即ち、シリコン層12と第2のゲート20 との間には、シリコン層12に接続される中継電極25 が設けられている。そして、第2のゲート20は、絶縁 膜26を介して、中継電極25に対向しており、これに よりキャパシタを構成している。

【0100】との実施の形態の場合も、第2のゲート2 0がシリコン層12に対して容量結合による電位制御を 行うことは、先の実施の形態と同様である。そして、メ モリセルMCの第1のゲート13, 第2のゲート20は それぞれ第1, 第2のワード線WL1, WL2に接続さ ようなメモリセルアレイを構成する。

【0101】との実施の形態によっても、先の実施の形 態と同様の効果が得られる。また、第1のゲート20 は、チャネルボディに対して直接対向させず、中継電極 25との間でキャパシタを構成するようにしているの で、中継電極25の面積を実際のチャネルボディ領域の 面積より大きくすることで、より大きな容量結合を与え ることが可能になる。

【0102】[実施の形態3]図9は、実施の形態3に よるDRAMセル構造を、図3に対応させて示してい る。との実施の形態では、第1のゲート13が、図3と 同様に、シリコン層12の上面に対向するように形成さ れ、第2のゲート20が図8と同様のキャパシタ構造を 形成するように、シリコン層12の下に、酸化膜11に 埋め込まれて作られている。

【0103】との実施の形態によっても、先の実施の形 態と同様の効果が得られる。また実施の形態2と同様の 理由で、第2のゲート20のチャネルボディに対する容 量結合を大きくすることができる。

【0104】[実施の形態4]図10Aは、実施の形態 50

4によるDRAMセルアレイのレイアウトを示し、図1 OBはそのA-A'線断面を示しており、図10Cはそ のB-B'線断面を示している。

24

【0105】との実施の形態の場合、図10Bに示すよ うに、シリコン層12の上面に対向するように第2のゲ ート(G2)20が形成され、図10A及び図10Cに 示すように、シリコン層12の両側面に対向するよう に、第1のゲート(G1)13が形成されている。即ち シリコン層12の側面をチャネルとするMISトランジ スタが構成されている。このことから分かるように、こ の実施の形態においては、シリコン層の両側面にチャネ ルが形成される。図10Aに示すように、第1のゲート 13は、ビット線BLの方向には各メモリセルMC毎に 不連続に配置される。そして、第2のゲート20が、と れら第1のゲート13を共通接続してワード線WLとし て連続的に形成される。従って、第1及び第2のゲート 13及び20は同電位で制御されることになる。

【0106】層間絶縁膜17は、第1層17aと第2層 17bの二層構造であり、第1層17a上に、ソース1 5を共通接続する固定電位線23が配設され、第2層1 7 b上にビット線18が配設される。

【0107】との実施の形態の場合、第1のゲート13 によるシリコン層12の側面にチャネルが形成されると きに同時に、第2のゲート20の直下にチャネルが形成 されることを避けて、第2のゲート20によりその直下 のボディの電位制御ができるようにすることが必要であ る。このため、第1のゲート13と第2のゲート20に は仕事関数が異なる材料が用いられる。例えば、この実 施の形態のようにメモリセルMCがnチャネルMISト れ、ドレイン14はビット線BLに接続されて、図4の 30 ランジスタの場合であれば、第1のゲート13には、n 型ポリシリコンを用い、第2のゲート20には、シリコ ン層12をp型ボディとして蓄積状態を保持できるよう に、n型ポリシリコンより仕事関数の大きいp型ポリシ リコン或いはプラチナ等の金属を用いる。また、第2の ゲート20の下のゲート絶縁膜(キャパシタ絶縁膜)1 9には例えばシリコン窒化膜を用いる。

> 【0108】メモリセルがpチャネルの場合であれば、 第1のゲート13としてp型ポリシリコンを用い、第2 のゲート20として例えばハフニウム等の金属を用いれ 40 ばよい。

【0109】この実施の形態によっても、先の実施の形 態と同様の効果が得られる。

【0110】 [実施の形態5] 図11は、実施の形態5 によるDRAMセルの断面構造を示している。この実施 の形態では、SOI基板ではなく、シリコン基板10上 に形成されたp型柱状シリコン部30に縦型MISトラ ンジスタを構成している。即ち、柱状シリコン部30の 上部にn型ドレイン14が形成され、底部にn型ソース 15が形成されている。また、柱状シリコン部30の両 側面に相対向するように第1のゲート(G1)13と第 2のゲート(G2)20が形成されている。従って、SOI基板ではないが、柱状シリコン部30をフローティングのチャネルボディとする縦型MISトランジスタによりメモリセルMCが構成される。

25

【0111】この縦型MISトランジスタ構造は、SGT(Surrounding Gate Transistor)として知られている。

【0112】との実施の形態によっても、先の実施の形態と同様の効果が得られる。

【0113】次に、上記各実施の形態対応の製造工程を 説明する。

【0114】[実施の形態1対応の製造工程]図12~図18は、図3に示す実施の形態1対応のDRAMセルの製造工程を示している。この実施の形態では、二つのゲート13、20をシリコン層の上下に配置するために、2枚のシリコン基板を用いる。図12に示すように、第1のシリコン基板101には、セルアレイ領域の外側に合わせマークとして、溝102を加工する。そして図13に示すように、溝102に酸化膜103を埋め込む。溝102の深さは、後にシリコン基板101を削って厚み調整されるSOI層より深くする。より具体的には、後述するように、このシリコン基板101は図3のシリコン層12となるため、このシリコン層12の厚さよりも深くなるように、溝102を形成する。

【0115】この後、図14に示すように、シリコン基板101上に、ゲート絶縁膜19を介して第2のゲート20(G2)をワード線WL2として連続するようにパターン形成する。第2のゲート20を形成した面は、シリコン酸化膜106等の絶縁膜で覆って平坦化する。平坦化には、CMP(Chemical Mechanical Polishing)を用いる。その後、図15に示すように、平坦化したシリコン酸化膜106の面に第2のシリコン基板201を貼り合わせる。

【0116】 この後、図16に示すように、第1のシリコン基板101を予定しているSOI層の厚みになるまで研磨する。このように研磨されたシリコン基板101が図3のシリコン層12となる。このとき、先に埋め込んだシリコン酸化膜103が突出すため、次の第1のゲート13を形成する工程で、これを既に形成された第2のゲート20に位置合わせするためのマークとして利用 40することができる。

【0117】即ち、図17に示すように、シリコン基板 101に横方向の素子分離を行う素子分離酸化膜115 をSTI法により埋め込み、その後ゲート絶縁膜16を 介して第1のゲート(G1)13をワード線WL1として連続するようにバターン形成する。素子分離絶縁膜115は、図ではビット線方向についてのみ示しているが、ワード線方向にも所定間隔で形成して、各メモリセルMC領域毎に他から分離されたシリコン層12を形成する。更にイオン注入を行ってドレイン14及びソース 50

15を形成する。そして、図18に示すように、層間絶縁膜17を形成し、この上にビット線18を形成する。【0118】[実施の形態2対応の製造工程]図19~図26は、図8に示す実施の形態2対応のDRAMセルの製造工程を示している。この実施の形態でも、二つのゲート13、20をシリコン層の上下に配置するために、2枚のシリコン基板を用いる。図19に示すように、第1のシリコン基板101には、セルアレイ領域の外側に合わせマークとして、溝102を加工する。そして図20に示すように、溝102に酸化膜103を埋め込む。溝102の深さは、後にシリコン基板101を削って厚み調整されるSOI層より深くする。より具体的には、後述するように、このシリコン層12となるため、このシリコン層12の厚さよりも深くなるように、溝102を形成する。

【0119】この後、図21に示すように、シリコン基板101上に、ゲート絶縁膜16を介して第1のゲート13(G1)をワード線WL1として連続するようにパターン形成する。第1のゲート13を形成した面は、シリコン酸化膜106等の絶縁膜で覆って平坦化する。平坦化には、CMP(Chemical Mechanical Polishing)を用いる。その後、図22に示すように、平坦化したシリコン酸化膜106の面に第2のシリコン基板201を貼り合わせる。

【0120】この後、図23に示すように、第1のシリコン基板101を予定しているSOI層の厚みになるまで研磨する。このように研磨されたシリコン基板101が図8のシリコン層12となる。このとき、先に埋め込んだシリコン酸化膜103が突出すため、次の第2のゲ30 ート20を形成する工程で、これを既に形成された第1のゲート13に位置合わせするためのマークとして利用することができる。

【0121】厚み調整されたシリコン基板101には、 図24に示すように、素子分離酸化膜115を埋め込ん だ後、シリコン酸化膜203を堆積し、トランジスタの チャネルボディに対応する位置に開口204を開ける。 素子分離絶縁膜115は、図ではビット線方向について のみ示しているが、ワード線方向にも所定間隔で形成し て、各メモリセルMC領域毎に他から分離されたシリコ ン層12を形成する。そして、図25に示すように、開 口を介してチャネルボディに接続される中継電極25を 形成し、この上にキャパシタ絶縁膜26を介して第2の ゲート20 (G2) を形成する。中継電極25と第2の ゲート20とは、キャパシタ絶縁膜26を挟んで連続的 に成膜した後、これらを一体にワード線▼L2としてパ ターニングすればよい。そして、第2のゲート20をマ スクとして、シリコン酸化膜203上からシリコン層1 2にイオン注入を行って、ドレイン14及びソース15 を形成する。その後、図26に示すように、層間絶縁膜 17を形成し、との上にビット線18を形成する。

【0122】[実施の形態3対応の製造工程]図27~ 図33は、図9に示す実施の形態3対応のDRAMセル の製造工程を示している。との実施の形態でも、二つの ゲート13,20をシリコン層の上下に配置するため に、2枚のシリコン基板を用いる。図27に示すよう に、第1のシリコン基板101には、セルアレイ領域の 外側に合わせマークとして、溝102を加工する。そし て図28に示すように、溝102に酸化膜103を埋め 込む。溝102の深さは、後にシリコン基板101を削 って厚み調整されるSOI層より深くする。より具体的 には、後述するように、このシリコン基板101は図9 のシリコン層12となるため、このシリコン層12の厚 さよりも深くなるように、溝102を形成する。

27

【0123】との後、図29に示すように、シリコン酸 化膜209を堆積し、トランジスタのチャネルボディに 対応する位置に開口209aを形成する。そして、この 開口209aを介してチャネルボディに接続される中継 電極25を形成し、この上にキャパシタ絶縁膜26を介 して第2のゲート20(G2)を形成する。中継電極2 5と第2のゲート20とは、キャパシタ絶縁膜26を挟 20 んで連続的に成膜した後、一体にワード線WL2として バターニングすればよい。

【0124】第2のゲート20を形成した面は、シリコ ン酸化膜210等の絶縁膜で覆って平坦化する。平坦化 には、CMP (Chemical Mechanica 1Polishing)を用いる。その後、図30に示 すように、平坦化したシリコン酸化膜210の面に第2 のシリコン基板201を貼り合わせる。

【0125】この後、図31に示すように、第1のシリ コン基板101を予定しているSOI層の厚みになるま 30 してワード線WLとなる第2のゲート20を埋め込む。 で研磨する。とのように研磨されたシリコン基板101 が図9のシリコン層12となる。このとき、先に埋め込 んだシリコン酸化膜103が突出すため、次の第1のゲ ート13を形成する工程で、これを既に形成された第2 のゲート20に位置合わせするためのマークとして利用 することができる。

【0126】厚み調整されたシリコン基板101には、 図32に示すように、素子分離酸化膜115を埋め込ん だ後、ゲート絶縁膜16を介して第1のゲート13 (G 1)をワード線WL1として連続するようにパターン形 40 成する。素子分離絶縁膜115は、図ではビット線方向 についてのみ示しているが、ワード線方向にも所定間隔 で形成して、各メモリセルMC領域毎に他から分離され たシリコン層12を形成する。更にイオン注入により、 ドレイン14及びソース15を形成する。その後、図3 3に示すように、層間絶縁膜17を形成し、この上にビ ット線18を形成する。

【0127】[実施の形態4対応の製造工程]図34A 及び図34B~図38A及び図38Bは、図10A乃至 図100に示した実施の形態4対応のセルアレイの製造 50

工程を、図10B及び図10Cの断面に対応させて示し ている。

【0128】図34A及び図34Bに示すように、シリ コン基板10上に酸化膜11を形成し、この酸化膜11 上に所定の厚さのp型シリコン層12を形成する。この シリコン層 12上に、キャパシタ絶縁膜として、例えば シリコン窒化膜19とシリコン酸化膜301とからな る、積層膜を形成する。続いて、この積層膜のシリコン 酸化膜301をワード線方向に連続するストライプパタ ーンに形成し、これをマスクとしてシリコン窒化膜19 及びシリコン層12を酸化膜11に達するようにエッチ ングして、素子分離絶縁膜302を埋め込む。これによ りシリコン層12は、ビット線の方向に連続する複数の ストライプパターンの素子形成領域として区画される。 【0129】続いて、図35A及び図35Bに示すよう に、第1のゲート13を埋め込むべき領域のシリコン酸 化膜301と302とシリコン窒化膜19をエッチング して、p型シリコン層12のトランジスタ形成領域の側 面を露出させる。このときワード線方向に隣接するp型 シリコン層12の間では、シリコン酸化膜302を除去 し、更に下地の酸化膜11を一部オーバーエッチングす る。

【0130】そして、図36A及び図36Bに示すよう に、シリコン層12の両側面にゲート絶縁膜16を形成 した後、多結晶シリコンの堆積とエッチングにより、第 1のゲート(G1)13を、各メモリセルMC領域のシ リコン層12の間に埋め込み形成する。

【0131】次に、図37A及び図37Bに示すよう に、酸化膜301の間に、第1のゲート13を共通接続 第2のゲート20には前述のように、第1のゲート13 より仕事関数の大きいプラチナ等の金属材料を用いる。 なお、第1のゲート13の多結晶シリコンと第2のゲー ト20のプラチナとの反応をおさえるために、第1のゲ ート13堆積後に、反応防止用のバリア金属(例えば、 TiNやTaNなど)を堆積しておいてもよい。その 後、酸化膜301上からシリコン層12にイオン注入を 行って、シリコン層12にドレイン14及びソース15 を形成する。

【0132】次に、図38A及び図38Bに示すよう に、層間絶縁膜17aを堆積し、これにコンタクト孔を 開けて、ソース15をワード線方向に共通接続する固定 電位線23を形成する。この後、図10B及び図10C に示すように、層間絶縁膜 1 7 b を堆積し、コンタクト 孔を開けて、ドレイン14を接続するビット線18を形 成する。

【0133】[実施の形態5対応のセルアレイと製造工 程] 図39Aは、図11に示すDRAMセルの具体的な セルアレイのレイアウトを示し、図39BはそのA-A'線断面を示し、図39CはそのB-B'線断面を示

している。第1のゲート13と第2のゲート30は同じ 材料を用いて柱状シリコン部30の側面に形成される。 これらのゲート13,20は、一方向に連続的にバター ニングされて、それぞれ第1のワード線WL1, 第2の ワード線WL2となる。

29

【0134】図40A及び図40B~図44A及び図4 4 Bは、図39 B及び図39 Cに対応する断面を用い た、製造工程を説明する図である。図40A及び図40 Bに示すように、シリコン基板10には予めソース15 となるn型層が全面に形成されいる。そして、このn型 層の上に、p型シリコン層400がエピタキシャル成長 される。この様なエピタキシャル基板に、シリコン窒化 膜401のマスクをパターン形成し、シリコン層400 をエッチングしてビット線方向に連続するストライプ状 の溝を加工し、その溝に素子分離酸化膜402を埋め込 t.

【0135】なお、別例として、エピタキシャル成長法 を使わずに、通常のp型シリコン基板にイオン注入する ことにより、ソース15となるn型層を形成するように してもよい。

【0136】更に、図41A及び図41Bに示すよう に、シリコン窒化膜401をビット線方向にも分離した パターンに変形する。そして、このシリコン窒化膜40 1をマスクとして用いて、ストライプ状になっているシ リコン層400を再度、エッチングする。これにより、 シリコン層400はビット線方向及びワード線方向に分 離され、各メモリセルMC領域毎に分離された柱状シリ コン部30が得られる。

【0137】次いで、素子分離酸化膜402のうち、ワ 後、シリコン窒化膜401を除去し、図42A及び図4 2 Bに示すように、柱状シリコン部30の周囲にゲート 絶縁膜403 (図11のゲート絶縁膜16, 19に対応 する)を形成し、多結晶シリコン膜404を堆積する。

【0138】次に、図43A及び図43Bに示すよう に、この多結晶シリコン膜404をRIEによりエッチ ングして、ワード線WL1及びWL2として連続する第 1のゲート13及び第2のゲート20を形成する。すな わち、多結晶シリコン膜404を側壁残し技術によりエ ッチングして、ゲート13,20を形成する。

【0139】その後、図44A及び図44Bに示すよう に、イオン注入を行って柱状シリコン部30の上部にn 型ドレイン14を形成する。続いて、シリコン酸化膜4 05を堆積した後、これを平坦化する。この後は、図3 9 B及び図39 Cに示すように、層間絶縁膜17を堆積 し、これにコンタクト孔を開けてビット線18を形成す る。

【0140】[実施の形態5対応の他のセルアレイとそ の製造工程]図39A及び図39Bでは、第1のゲート 13と第2のゲート20として同じ電極材料を用いた

が、同様のセルアレイ構造で第1のゲート13と第2の ゲート20に別の電極材料を用いる場合の構造を、図3 9A乃至図39Cに対応させて図45A乃至図45Cに 示す。

【0141】柱状シリコン部30の両側にゲート酸化膜 16, 19を介して第1のゲート(G1)13と第2の ゲート(G2)20が形成される点は、図39A乃至図 39 Cと同じである。但し、これらのゲート13、20 に異なる材料を用いる関係で、ビット線BL方向に隣接 するメモリセルMCの間で第1のゲート13と第2のゲ ート20が交互に逆の配置となる点が、相違している。 即ち、第1のワード線WL1と第2のワード線WL2が 異なる工程で形成され、柱状シリコン部30の間に2本 ずつ交互に配置されるようにしている。

【0142】図46A及び図46B~図53A及び図5 3 Bは、その製造工程を、図45 B及び図45 Cの断面 に対応させて、説明する図である。図46A及び図46 Bに示すように、シリコン基板10には予めソース15 となるn型層が全面に形成されている。このn型層の上 20 に、p型シリコン層400がエピタキシャル成長され る。この様なエピタキシャル基板に、シリコン窒化膜4 01のマスクをパターン形成し、シリコン層400をエ ッチングしてビット線方向に連続するストライプ状の溝 を加工し、その溝に素子分離酸化膜402を埋め込む。 【0143】なお、別例として、エピタキシャル成長法 を使わずに、通常のp型シリコン基板にイオン注入する ことにより、ソース15となるn型層を形成するように してもよい。

【0144】更に、図47A及び図47Bに示すよう ード線を埋め込む領域の部分を選択的にエッチングした 30 に、シリコン窒化膜401をビット線方向にも分離した パターンに変形する。そして、このシリコン窒化膜40 1をマスクとして用いて、ストライプ状になっているシ リコン層400を再度、エッチングする。これにより、 シリコン層400はビット線方向及びワード線方向に分 離され、各メモリセルMC領域毎に分離された柱状シリ コン部30として残す。

> 【0145】次いで、素子分離酸化膜402のうち、ワ ード線を埋め込む領域の部分を選択的にエッチングした 後、シリコン窒化膜401を除去し、図48A及び図4 40 8 Bに示すように、柱状シリコン部30の周囲にゲート 酸化膜16を形成し、多結晶シリコン膜404を堆積す る。この多結晶シリコン膜404をRIEによりエッチ ングして、図49A及び図49Bに示すように、ワード 線WL1として連続する第1のゲート13を形成する。 すなわち、多結晶シリコン膜404を側壁残し技術によ りエッチングして、第1のゲート13を形成する。

> 【0146】この段階で、連続的に形成された第1のゲ ート13からなるワード線WL1が、柱状シリコン部3 0の両側面に形成される。その後、図50A及び図50 50 Bに示すように、イオン注入を行ってシリコン層30の

上部にn型ドレイン14を形成する。そして、シリコン 酸化膜405を堆積した後、柱状シリコン部30が露出 しないように、このシリコン酸化膜405を平坦化す る。

31

【0147】そして、図51A及び図51Bに示すよう に、第2のゲート20を埋め込むべき領域で、シリコン 酸化膜405に開口を開け、との開口から露出した第1 のゲート13及びゲート酸化膜16を除去する。その 後、図52A及び図52Bに示すように、露出した柱状 シリコン部30の側面にゲート酸化膜19を形成し、第 1のゲート13とは異なる材料で、ゲート電極材料膜4 06を堆積する。

【0148】次に、図53A及び図53Bに示すよう に、このゲート電極材料膜406をエッチングして、連 続的に形成された第2のゲート20からなる第2のワー ド線WL2を形成する。すなわち、ゲート電極材料膜4 06を側壁残し技術でエッチングして、第2のゲート2 0を形成する。この後、図45B及び図45Cに示すよ うに、層間絶縁膜17を介してビット線18を形成す る。

【0149】[実施の形態5対応のさらに他のセルアレ イ] 図54Aは、図39Aの実施の形態のセルアレイ に、ワード線WL1, WL2を低抵抗化するためのシャ ント配線を付加した実施の形態のレイアウトを示す図で ある。図54BはそのC-C'線断面を示しており、図 54CはそのD-D'線断面を示している。即ち、図3 9A乃至図39Cで説明したと同様のセルアレイを形成 した後、ビット線18上に層間絶縁膜409を形成し、 この層間絶縁膜409上にシャント配線500を形成し ている。

【0150】シャント配線500は、適当なビット線1 8の間に、層間絶縁膜409及び17を貫通して第1及 び第2のゲート13及び20に達するコンタクト孔50 1を形成して、このコンタクト孔501を介してゲート 13及び20にコンタクトさせる。このとき、ビット線 18の間にコンタクト孔501をセルフアラインさせて 形成するために、ビット線18はシリコン窒化膜408 で覆われている。

【0151】との様なシャント配線500を形成すると とにより、ワード線WL1, WL2の信号伝搬遅延を小 40 さくすることができる。

【0152】さらに図55A及び図55Bは、図54B 及び図54Cにおいて、ワード線WL1(第1のゲート 13)とワード線WL2(第2のゲート20)に対する シャント配線層あるいは配線材料を異ならせた場合を示 している。この場合、ビット線18を覆う層間絶縁膜5 02aにまず、第1のゲート13に対するコンタクト孔 501を形成して第1のシャント配線500aを形成す る。

の層間絶縁膜502bに第2のゲート20に対するコン タクト孔を開けて、第2のシャント配線500bを形成 する。この場合、第2のシャント配線500bを、第1 のシャント配線500aの間に短絡を生じることなく形 成するために、第1のシャント配線500aの周囲はシ リコン窒化膜504で覆うようにする。

【0154】なお、図45A乃至図45Cに示したよう に、ワード線WL1, WL2を異なる材料により形成し たセルアレイにも、同様のシャント配線を形成するよう にしてもよい。その際、ゲート電極材料と同様に、第1 のゲート13に対するシャント配線と第2のゲート20 に対するシャント配線の材料を異ならせるとすれば、図 55A及び図55Bのシャント配線構造を適用すればよ い。但し、この場合、第1のワード線WL1と第2のワ ード線WL2は2本ずつ交互に配置されているので、シ ャント配線についても、2本ずつ交互に異なる材料でシ ャント配線を形成することになる。

【0155】[実施の形態1対応セルのシミュレーショ ン]次に、図3で説明した実施の形態1対応のDRAM 20 セルの二次元デバイスシミュレーション結果を説明す る。図61は、デバイスパラメータを示しており、p型 シリコン層 (チャネルボディ) は厚みが t S i = 50 n m、アクセプタ濃度 $N_A = 5 \times 10^{18} / cm^3$ であり、ソ ース及びドレイン拡散層はドナー濃度N。=2×1019 /cm³である。主ゲートG1及び補助ゲートG2共 に、p⁺型多結晶シリコンであり、ゲート長L=0.0 7μm、主ゲートG1側のゲート酸化膜厚toxf、補 助ゲートG2側のゲート酸化膜厚toxb共に、tox $f = t \circ x b = 4 n m c \sigma \delta$.

30 【0156】図62は、"0"書き込みとその後の読み 出し動作のシミュレーション結果である。書き込み時、 主ゲートG1には、VWL1=0~2Vの振幅、補助ゲ **~トG2には、VWL2=−1.5~0Vの振幅を与** え、ドレイン (ビット線) には、VBL=-1.5 Vを 与えている。時刻 t 0 - t 5 で書き込みが行われ、時刻 t5でデータ保持(ポイントのみ)、その後読み出し動 作になる。図62にはこの動作時の、チャネルボディの ホールの擬フェルミレベルを示している。

【0157】ホールの擬フェルミレベルをチャネルボデ ィの電位と考えれば、データ保持時(時刻 t 5)、-1.6 Vになっている。

【0158】図63は、"1"書き込みとその後の読み 出し動作のシミュレーション結果である。書き込み時、 主ゲートG1には、VWL1=0~2Vの振幅、補助ゲ **ートG2には、VWL2=−1.5~0Vの振幅を与** え、ドレイン (ビット線) には、VBL=1.5 Vを与 えている。この場合、データ保持時(時刻 t 5)のチャ ネルボディ電位は、-0.6 Vになっている。

【0159】以上の結果から、データ"0"と"1"の 【0153】次いで、層間絶縁膜502bを堆積し、と 50 チャネルボディの電位差は、1Vであり、この基板バイ

10

アス効果によるしきい値の差を利用してデータ読み出し が可能であることがわかる。0", "1"データの読み 出し時のドレイン電流 Idsとゲート電圧Vgsの関係 は、図64のようになる。"1"データのしきい値はV thl=1.6V、"0" データのしきい値はVth0 = 1. 9 V であり、しきい値差 Δ V t h = 3 0 0 m V が 得られる。

33

【0160】以上のセル動作で重要なことは、"0"書 き込み時、選択ビット線(VBL=-1.5V)につな がる非選択セル(主ゲートがOV、補助ゲートが-1. 5 Vに保持される)の"1"データを破壊することな く、選択セルのデータを"1"から"0"に反転できる かどうかである。その条件は、"1"データセルのチャ ネルボディ電位が保持状態で"0"書き込みデータのセ ルのチャネルボディ電位と等しいか、より低いことであ る。上の例では、"1"データセルのボディ電位は保持 状態で-0.6 Vであるのに対し、"0"データの書き 込み時 (時刻 t 4) のボディ電位は-0. 75 V であ り、僅かに(0.15V)逆転しているものの、データ 破壊が生じない程度になっている。

【0161】補助ゲートG2を主ゲートG1に対して、 2 V オフセットの状態で同期させて振幅させている理由 は、各ゲートとチャネルボディ間の容量カップリング を、主ゲートG1だけの場合、或いは補助ゲートG2を 固定電位とした場合に比べて大きくして、チャネルボデ ィのゲートへの追随性を良くし、選択ビット線に沿った 非選択の"1"データセルのチャネルボディを破壊させ ないレベルまで下げるためである。これにより、主ゲー トG1の保持レベルを0Vとし、ワード線振幅を2Vに 抑えることができる。

【0162】参考までに、補助ゲートG2を固定電位 (VWL2=-1.5V) とした場合の"0"書き込み 及び"1"書き込みのシミュレーション結果を、それぞ れ図62, 図63及び図64に対応して、図65, 図6 6及び図67に示す。主ゲートG1は、VWL1=-2. 5 V ~ 2 V の振幅としている。

【0163】この結果から、補助ゲートG2を固定した 場合には、データ保持時、主ゲートG1を-2.5Vま で下げないと、"1"データのチャネルボディ電位を一 0.7 Vまで下げることができない。従って、補助ゲー 40 いる。ソース配線902が形成された面にシリコン酸化 トを主ゲートと同期させて振幅させることが、低電圧化 のために有効であることがわかる。

【0164】 ここでは、主ゲートG1、補助ゲートG2 共にp⁺型多結晶シリコンの場合を説明したが、n⁺型多 結晶シリコンを用いることもできる。特に、主ゲートG 1側だけ n *型多結晶シリコンにすることは、一層の低 電圧化に好ましい。即ち、主ゲートG1をn^{*}型多結晶 シリコンにすると、主ゲートG1の電位を負側に1Vシ フトすることができる。ビット線は"0"書き込み時、 -1.5 Vになるから、ゲート・ドレイン間の最大電圧 50 材料膜603は、後にパターニングされて補助ゲート2

は2.5 Vになる。"0"書き込み時のビット線電位を - 1 Vに上げることができれば、ゲート絶縁膜にかかる 最大電圧は2.0 Vとなり、低電圧化される。

【0165】[実施の形態6のセルアレイと製造工程] 図3~図6の実施の形態1では、4F'のセル面積のセ ルアレイを簡単に説明したが、これをより具体化した実 施の形態6を次に説明する。図68Aは、実施の形態6 に係るセルアレイのレイアウトであり、図68Bはその I-I'線断面図であり、図68Cは同じくII-II'断 面図である。

【0166】この実施の形態では、二枚のシリコン基板 601,701の貼り合わせ基板を用いて、ダブルゲー ト構造のMISトランジスタからなるメモリセルアレイ を作っている。第1のシリコン基板601の表面に、シ リコン酸化膜層の絶縁膜602を介して、補助ゲート (G2)20が一方向に連続するワード線WL2として 形成される。但し、補助ゲート20のパターン形成は、 ゲート電極材料膜が全面に形成された状態でシリコン基 板601を貼り合わせた後に行われる。この補助ゲート 20 20を分離しているのが、絶縁膜803,804であ る。

【0167】第2のシリコン基板701は、補助ゲート 20の表面にゲート絶縁膜19が形成された状態で貼り 合わされる。シリコン基板701は、貼り合わせ後、厚 みが調整され、またビット線の方向に連続するストライ プ状の素子形成領域が区画される。その各素子形成領域 にゲート絶縁膜16を介して主ゲート(G1)13が、 補助ゲート20と並行して連続するワード線WL1とし てパターン形成されている。具体的な工程は後に詳細に 30 説明するが、基板貼り合わせ後に補助ゲート20を分離 する溝を形成し、その分離溝に絶縁膜と半導体層の埋め 込みを行い、その後、補助ゲート20とセルフアライン された主ゲート13の埋め込みを行うことになる。

【0168】主ゲート13の上面及び側面は、層間絶縁 膜等に対してエッチング選択比の大きい保護膜であるシ リコン窒化膜809、807で覆われる。そして主ゲー ト13の間隙部には、ドレイン、ソース拡散層14,1 5が形成される。ソース拡散層 15には、ワード線WL 1, WL2と並行するソース配線902が裏打ちされて 膜等の層間絶縁膜900が形成され、この上にドレイン 拡散層14にコンタクトするビット線(BL)18が形 成されている。

【0169】具体的な製造工程を、図69乃至図91を 参照して説明する。以下の説明では、主として、図68 Bの断面に対応する断面図を用いる。まず、図69に示 すように、第1のシリコン基板601に、シリコン酸化 膜等の絶縁膜602を形成し、この上に多結晶シリコン 膜等のゲート電極材料膜603を堆積する。ゲート電極 10

0となるものである。

【0170】一方、図70に示すように、第2のシリコ ン基板701に犠牲酸化膜702を形成し、この状態 で、H*イオン注入を第2のシリコン基板701に行い 所定深さ位置にイオン注入層703を形成する。そし て、第2のシリコン基板701の犠牲酸化膜702を一 旦除去して、図71に示すように改めてシリコン酸化膜 等のゲート絶縁膜19を形成する。その後、この第2の シリコン基板701のゲート絶縁膜19の面を、第1の シリコン基板601のゲート電極材料膜603の面に、 接着する。基板貼り合わせ後、第2のシリコン基板70 1をイオン注入層703の位置で剥離して、図72に示 すように、厚み調整されたシリコン基板701を能動素 子領域として残す (M. Bruel: Electron ics Letters, Vol. 31, p. 120 1.1995参照)。

35

【0171】次に、シリコン基板701に、素子分離絶 縁膜を形成する。その様子を図73Aと図73Bに示 す。図73Aは、平面図であり、図73BはそのII-I I' 断面図 (図68Cの断面に対応する) である。即 5, STI (Shallow Trench Isol ation)法により、ゲート絶縁膜19に達する深さ に素子分離絶縁膜704を埋め込むことにより、ビット 線方向に連続する複数本のストライプ状の素子形成領域 が、ワード線方向に所定ピッチで配列された状態で区画 される。

【0172】との様に素子分離されたシリコン基板70 1上に、図74に示すようにシリコン酸化膜等の絶縁膜 801を堆積する。そして、図75に示すように、絶縁 膜801を、ダミーゲート(ダミーワード線)としてパ 30 ターン形成し、更にこれをマスクとして、シリコン基板 701、ゲート絶縁膜19、ゲート電極材料膜603を 順次エッチングして、分離溝802を形成する。この分 離溝エッチングは、絶縁膜602の途中で止まるように する。これにより、ゲート電極材料膜603は、ワード 線WL2として連続する補助ゲート20として、パター ニングされる。

【0173】との後、図76に示すように、全面に薄く シリコン窒化膜803を堆積した後、図77に示すよう に、分離溝802内にシリコン酸化膜804を埋め込 む。これは、シリコン酸化膜を堆積し、全面エッチング することにより、得られる。埋め込まれるシリコン酸化 膜804の表面位置は、シリコン基板701の厚みの途 中に位置するようにする。

【0174】その後、図78に示すように、埋め込まれ たシリコン酸化膜804より上にあるシリコン窒化膜8 03をエッチング除去し、シリコン基板701の側面を 分離溝802に露出させた状態とする。この状態で、図 79に示すように、分離溝802内にシリコン層805

リコン基板701の側面から結晶成長して、良質の結晶 性を有するものとなる。シリコン層805は、ワード線 と平行の方向即ち、ストライプ状の素子形成領域の長手 方向と直交する方向に連続的に形成され、シリコン窒化 膜807で覆われた状態とする。

【0175】なお、シリコン層805は、ソース及びド レイン拡散層として用いられるものであり、必ずしも良 質の結晶である必要はなく、例えば多結晶シリコン層を 埋め込んでも良い。

【0176】次に、図80に示すように、ダミーワード 線として用いたシリコン酸化膜801をエッチング除去 する。そして、図81に示すように、シリコン層805 の側壁にもシリコン窒化膜を形成した後、シリコン酸化 膜801を除去して底部に露出したシリコン基板701 の表面にシリコン酸化膜等によるゲート絶縁膜16を形 成する。そして、多結晶シリコン膜等のゲート電極材料 膜の堆積とエッチングにより、図82に示すように、シ リコン層805の間にワード線WL1として連続する主 ゲート(G1)13を埋め込み形成する。これにより、 20 シリコン基板701の上面の主ゲート13と下面の補助 ゲート20とがセルフアラインされて、素子形成領域の 長手方向と直交する方向にそれぞれワード線WL1, W L2として連続するようにパターン形成されたことにな る。

【0177】との後、図83に示すように、シリコン窒 化膜809を全面に堆積し、平坦化する。そして、この シリコン窒化膜809、807を、シリコン層805が 露出するまで全面エッチングする。図84Aはこの状態 の平面図であり、図84BはそのI-I'断面図であ る。これにより、主ゲート13の上面及び側面をシリコ ン窒化膜809,807で覆った状態でシリコン層80 5が露出した状態が得られる。

[0178] この段階でシリコン層805は、図84A に示すように、ワード線(主ゲート13及び補助ゲート 20)の間隙にストライプ状に連続している。シリコン 層805は前述のようにドレイン及びソース拡散層の領 域であり、少なくともドレイン拡散層は、ワード線方向 に分離されることが必要である。そこで、STI法によ って、図85に示すように、シリコン層805のうちド 40 レイン拡散層を形成する領域について、素子分離絶縁膜 905を埋め込み形成する。素子分離絶縁膜905は、 先に図73Aで説明した素子分離絶縁膜704と等ビッ チで埋め込まれる。

【0179】この後n型不純物をイオン注入して、図8 6に示すようにシリコン層805の底部のシリコン酸化 膜804に達する深さにn型のドレイン、ソース拡散層 14, 15を形成する。ドレイン拡散層14は、ワード 線方向には飛び飛びに形成され、ソース拡散層15はワ ード線方向に連続して共通ソース線となる。但し、上述 をエピタキシャル成長させる。シリコン層805は、シ 50 の素子分離絶縁膜905をソース拡散層15の領域にも 同様に形成して、ソース拡散層15がドレイン拡散層1 4と同様にワード線方向に飛び飛びになるようにしても よい。

37

【0180】次に、図87に示すように、シリコン酸化 膜等の層間絶縁膜900aを堆積する。そして、リソグ ラフィとエッチングにより、図88に示すように、層間 絶縁膜900aのソース拡散層15に対応する位置に、 ワード線方向に連続するストライプ状の配線溝901を 開ける。次いで、多結晶シリコン膜の堆積とエッチング により、図89に示すように、配線溝901にソース配 線902を埋め込め形成する。このソース配線902に より、ソース拡散層 15が連続に形成されている場合に はその低抵抗化が図られ、飛び飛びに形成されている場 合にはこれらが共通接続されることになる。

【0181】この後再度、図90に示すように、シリコ ン酸化膜等の層間絶縁膜900bを堆積する。そして、 図91に示すように、デュアルダマシーン(Dual Damascene) 法により、ビット線の埋め込み用 溝とコンタクト孔903を形成した後、図68Bに示す ようにビット線18を埋め込む。

【0182】以上のようにこの実施の形態によれば、貼 り合わせによるSOI基板を用いて、しかもMISトラ ンジスタの上下の主ゲート13と補助ゲート20をセル フアラインされた状態でワード線WL1, WL2として パターン形成することができる。ワード線WL1,WL 2とビット線BLを最小加工寸法Fの幅とピッチで形成 すれば、図68Aに一点鎖線で示したように、4F2の 単位セル面積のセルアレイが得られる。また、主ゲート 13の上面及び側面はシリコン窒化膜809,807で 覆われているから、層間絶縁膜902aに埋め込まれる。30 成される。同様に、図8、図9、図10B及び図10 ソース配線902は、シリコン窒化膜で覆われた主ゲー ト13にセルフアラインされて、ソース拡散層15にコ ンタクトさせることができる。ビット線コンタクトも同 様に、主ゲート13にセルフアラインされる。従って、 微細トランジスタ構造を持つ信頼性の高い DRAMセル アレイが得られる。

【0183】図68日に示すように、この実施の形態で は、ソース配線902は保護膜で覆われていない。主ゲ ート13は、シリコン窒化膜809,807で覆われて いるため、層間絶縁膜にビット線コンタクト孔を形成す 40 る時、シリコン酸化膜からなる層間絶縁膜とシリコン窒 化膜のエッチング選択比により、ビット線コンタクト孔 を主ゲート13にセルフアラインさせることができる。 しかし、コンタクト孔を大きくとった場合には、合わせ ずれによりビット線とソース配線902との短絡が生じ る可能性がある。これを防止するためには、ソース配線 902についても、シリコン窒化膜等の保護膜で覆うと とが好ましい。

【0184】その様な好ましい構造を、図68Bに対応 させて図92に示す。ソース配線902の上面及び側面 50

がシリコン窒化膜905により覆われている。具体的に この構造を得るためには、図87~図89で説明したソ ース配線902の埋め込み法に代わって、次のようにす ればよい。即ち、図86の状態で、多結晶シリコン膜と シリコン窒化膜の積層膜を堆積し、この積層膜をパター ン形成してソース配線902を形成する。次いでソース 配線902の側壁にシリコン窒化膜を形成する。これに より、シリコン窒化膜で覆われてソース配線902を得 ることができる。

38

【0185】図92では、ビット線形成工程も上の実施 の形態とは異なる例を示している。即ち、層間絶縁膜9 00を堆積し、これにビット線コンタクト孔を形成し て、多結晶シリコン等によるコンタクトプラグ906を 埋め込み形成する。その後、ビット線18を形成する。 【0186】この様に、ソース配線902をシリコン窒 化膜905で覆うことにより、コンタクトプラグ906 の埋め込み工程で、多少のビット線コンタクト孔の位置 ずれがあったとしても、ソース配線902との短絡が防 止される。従って、ビット線コンタクト孔を大きくし 20 て、ビット線18を確実にドレイン拡散層14に対して 低抵抗コンタクトさせることができる。

【0187】[上述した実施の形態の変形例] ことまで の実施の形態は、DRAMセルをnチャネル型MISト ランジスタにより構成したが、pチャネル型MISトラ ンジスタを用いることもできる。例えば、図3に対応し て、pチャネル型MISトランジスタを用いた場合のセ ル構造を示すと、図56のようになる。p型シリコン層 12の部分がn型シリコン層12aとなり、これにp型 のドレイン拡散層14aおよびソース拡散層15aが形 C、図11対応のpチャネルDRAMセル構造を示す と、それぞれ、図57、図58、図59A及び図59 B、図60Aとなる。

【0188】pチャネル型のDRAMセルを用いた場合 の書き込み、読み出し等の電位関係は、ソースが接続さ れる固定電位線を基準電位として、nチャネル型の場合 とは逆にすればよい。具体的な電圧波形の一例を、上述 した図7A及び図7Bに対応して示すと、図60B及び 図600のようになる。

【0189】すなわち、図60Bに示すように、第1の ワード線WL1と第2のワード線WL2を同じ材料で形 成した場合、"1"データ書き込みの際には、選択され た第1のワード線に基準電位VSSより低い電位VWL 1しを与え、選択された第2のワード線WL2にはこの 電位VWL1Lより高い電位VWL2L(図の例では、 基準電位VSSより高い正電位)を与える。また、選択 されたビット線BLには、基準電位VSSより低い電位 VBLLを与える。これにより選択されたメモリセルM Cにおいて、5 極管動作によるインパクトイオン化が生 じ、多数キャリアであるエレクトロンがチャネルボディ

に蓄積される。

【0190】データ保持は、第1のワード線WL1に基 準電位VSSより高い正の電位VWL1Hを与え、第2 のワード線WL2にはこの電位VWL1Hよりも更に高 い電位VWL2Hを与える。これにより、チャネルボデ ィに過剰エレクトロンを蓄積した状態である"1"デー タを保持する。

【0191】"0"データ書き込み時は、選択された第 1及び第2のワード線WL及びWL2に、それぞれ、

"1" データ書き込みの際と同様の電位VWL1L及び 10 VWL2Lを与える。そして、選択されたビット線BL には、基準電位VSSより高い正の電位VBLHを与え る。これにより、選択されたメモリセルMCにおいて、 ドレイン接合が順バイアスになり、チャネルボディのエ レクトロンがドレインに排出されて、ボディ電位が高い 状態である"0"データが書き込まれる。

【0192】一方、図60Cは、第1のゲート13と第 2のゲート20に仕事関数の異なる材料を用いて、これ ら第1のゲート13と第2のゲート20に同じ電位を与 えて駆動する場合を示している。この図60Cに示すよ 20 うに、"1"データ書き込みの際には、選択された第1 及び第2のワード線WL1及びWL2に、基準電位VS Sより低い負の電位VWLLを与え、選択されたビット 線BLにも、基準電位VSSより低い負の電位VBLL を与える。これにより、選択されたメモリセルMCにお いて、5 極管動作によるインパクトイオン化が生じ、エ レクトロンがチャネルボディに蓄積される。

【0193】データ保持は、第1及び第2のワード線W L1及びWL2に、基準電位VSSより高い正の電位V WLHを与える。これにより、チャネルボディに過剰エ 30 【図7G】図7Aの書き込み動作波形を生成するための レクトロンを蓄積した状態である"1"データを保持す る。

【0194】"0"データ書き込み時は、選択された第 1 及び第2のワード線WL1及びWL2に、"1"書き 込み時と同様の電位VWLLを与え、選択されたビット 線BLには基準電位VSSより高い正の電位VBLHを 与える。これにより、選択されたメモリセルMCでドレ イン接合が順バイアスになり、チャネルボディのエレク トロンがドレインに排出されて、ボディ電位の高い状態 である"0"データが書き込まれる。

[0195]

【発明の効果】以上述べたようにこの発明によれば、単 純なトランジスタ構造を用いて、チャンネルボディを記 憶ノードとして電荷を蓄え、そのチャネルボディの電位 の差によりデータを記憶する半導体メモリ装置であっ て、第1のゲートによるチャネル制御と同時に第2のゲ ートによりボディ電位制御を行うことにより、読み出し マージンを大きいものとすることができる。

【図面の簡単な説明】

示す図である。

【図2】同DRAMセルの動作原理を説明するためのボ ディ電位とゲートバイアスの関係を示す図である。

40

【図3】 この発明の実施の形態 1 による DR AM セルの 断面構造を示す図である。

【図4】同DRAMセルを用いたセルアレイの等価回路 である。

【図5】同セルアレイのレイアウトである。

【図6A】図5のA-A'線断面図である。

【図6B】図5のB-B′線断面図である。

【図7A】第1のゲートと第2のゲートとを同じ材料で 形成した場合における、同DRAMセルの書き込み動作 を示す波形図である。

【図7日】第1のゲートと第2のゲートとを異なる仕事 関数を持つ材料で形成した場合における、同DRAMセ ルの書き込み動作を示す波形図である。

【図7C】図7Bの書き込み動作波形を生成するための ワード線ドライバとロウデコーダの回路構成の一例を示 す図である。

【図7D】図7Cに示したワード線ドライバの変形例を 示す図である。

【図7E】図7C又は図7Dに示したロウデコーダとワ ード線ドライバとを、メモリセルアレイに対して配置し た場合のレイアウトの一例を示す図である(片側配 置)。

【図7F】図7C又は図7Dに示したロウデコーダとワ ード線ドライバとを、メモリセルアレイに対して配置し た場合のレイアウトの一例を示す図である(両側配 置)。

ワード線ドライバとロウデコーダの回路構成の一例を示 す図である。

【図7H】図7Gに示したワード線ドライバの変形例を 示す図である。

【図7 I 】図7 G又は図7 Hに示したロウデコーダとワ ード線ドライバとを、メモリセルアレイに対して配置し た場合のレイアウトの一例を示す図である(第1のワー ド線と第2のワード線とからなる対のワード線に対し て、左右交互にロウデコーダとワード線ドライバとを設 けた場合)。

【図7J】図7G又は図7Hに示したロウデコーダとワ ード線ドライバとを、メモリセルアレイに対して配置し た場合のレイアウトの一例を示す図である(片側に第1 のワード線用のロウデコーダとワード線ドライバとを設 け、もう片側に第2のワード線のロウデコーダとワード 線ドライバとを設けた場合)。

【図7K】図7Jに示したレイアウトを採用する場合に おける、第1のワード線用のロウデコーダとワード線ド ライバの回路構成の一例を示す図である。

【図1】各実施形態で用いるDRAMセルの基本構造を 50 【図7L】図7Jに示したレイアウトを採用する場合に

おける、第2のワード線用のロウデコーダとワード線ド ライバの回路構成の一例を示す図である。

【図7M】図7Kに示したワード線ドライバの変形例を 示す図である。

【図7N】各実施の形態におけるメモリセルを用いて構 成されたメモリセルアレイと、そのロウデコーダとワー ド線ドライバとを配置した、メモリチップのレイアウト の一例を示す図である。

【図8】実施の形態2によるDRAMセルの断面構造を 示す図である。

【図9】実施の形態3によるDRAMセルの断面構造を 示す図である。

【図10A】実施の形態4によるDRAMセルアレイの レイアウトである。

【図10B】図10AのA-A、線断面図である。

【図100】図10AのB-B、線断面図である。

【図11】実施の形態5によるDRAMセルの断面構造 を示す図である。

【図12】図3に示した実施の形態1に係るメモリセル の製造工程におけるマーク形成工程を示す図である。

【図13】同製造工程のマーク形成工程を示す図であ る。

【図14】同製造工程のゲート(G2)形成工程を示す 図である。

【図15】同製造工程の基板貼り合わせ工程を示す図で ある。

【図16】同製造工程の基板研磨工程を示す図である。

【図17】同製造工程のゲート(G1)形成工程を示す 図である。

る。

【図19】図8に示した実施の形態2に係るメモリセル の製造工程におけるマーク形成工程を示す図である。

【図20】同製造工程のマーク形成工程を示す図であ る。

【図21】同製造工程のゲート(G1)形成工程を示す 図である。

【図22】同製造工程の基板貼り合わせ工程を示す図で ある。

【図23】同製造工程の基板研磨工程を示す図である。

【図24】同製造工程の絶縁膜形成工程を示す図であ る。

【図25】同製造工程のゲート(G2)形成工程を示す 図である。

【図26】同製造工程のビット線形成工程を示す図であ る。

【図27】図9に示した実施の形態3に係るメモリセル の製造工程におけるマーク形成工程を示す図である。

【図28】同製造工程のマーク形成工程を示す図であ る。

【図29】同製造工程のゲート(G2)形成工程を示す 図である。

【図30】同製造工程の基板貼り合わせ工程を示す図で ある。

【図31】同製造工程の基板研磨工程を示す図である。

【図32】同製造工程のゲート(G1)形成工程を示す 図である。

【図33】同製造工程のビット線形成工程を示す図であ る。

【図34A】図10A乃至図10Cに示した実施の形態 4に係るメモリセルの製造工程における素子分離工程を 示す図である(図10AにおけるA-A'線断面図)。 【図34B】図10A乃至図10Cに示した実施の形態 4に係るメモリセルの製造工程における素子分離工程を 示す図である(図10AにおけるB-B'線断面図)。 【図35A】同製造工程のゲート埋め込み部形成工程を 示す図である(図10AにおけるA-A'線断面図)。 【図35B】同製造工程のゲート埋め込み部形成工程を 示す図である(図10AにおけるB-B'線断面図)。 【図36A】同製造工程のゲート(G1)埋め込み工程 を示す図である(図10AにおけるA-A、線断面 図)。

【図36B】同製造工程のゲート(G1)埋め込み工程 を示す図である(図10AにおけるB-B'線断面 図)。

【図37A】同製造工程のゲート(G2)形成工程を示 す図である(図10AにおけるA-A、線断面図)。

【図37B】同製造工程のゲート(G2)形成工程を示 す図である(図10AにおけるB-B'線断面図)。

【図18】同製造工程のビット線形成工程を示す図であ 30 【図38A】同製造工程の固定電位線形成工程を示す図 である(図10AにおけるA-A'線断面図)。

> 【図38B】同製造工程の固定電位線形成工程を示す図 である(図10AにおけるB-B'線断面図)。

> 【図39A】図11の実施の形態対応のセルアレイのレ イアウトである。

【図39B】図39AのA-A'線断面図である。

【図39C】図39AのB-B'線断面図である。

【図40A】図39のセルアレイの製造工程における柱 状シリコン形成工程を示す図である(図39Aにおける 40 A-A'線断面図)。

【図40 B】図39のセルアレイの製造工程における柱 状シリコン形成工程を示す図である(図39Aにおける B-B'線断面図)。

【図41A】同製造工程の柱状シリコン形成工程を示す 図である(図39AにおけるA-A'線断面図)。

【図41B】同製造工程の柱状シリコン形成工程を示す 図である(図39AにおけるB-B'線断面図)。

【図42A】同製造工程のゲート電極材料堆積工程を示 す図である(図39AにおけるA-A'線断面図)。

50 【図42B】同製造工程のゲート電極材料堆積工程を示

す図である(図39AにおけるB-B'線断面図)。

【図43A】同製造工程のゲート形成工程を示す図であ る(図39AにおけるA-A'線断面図)。

43

【図43B】同製造工程のゲート形成工程を示す図であ る (図39AにおけるB-B'線断面図)。

【図44A】同製造工程の平坦化工程を示す図である (図39AにおけるA-A'線断面図)。

【図44B】同製造工程の平坦化工程を示す図である

(図39AにおけるB-B'線断面図)。

【図45A】図11に示した実施の形態5に係るメモリ セルにおける他のセルアレイのレイアウトである。

【図45B】図45AのA-A線断面図である。

【図45C】図45AのB-B'線断面図である。

【図46A】図45のセルアレイの製造工程における柱 状シリコン形成工程を示す図である(図45Aにおける A-A'線断面図)。

【図46B】図45のセルアレイの製造工程における柱 状シリコン形成工程を示す図である(図45Aにおける B-B'線断面図)。

【図47A】同製造工程の柱状シリコン形成工程を示す 20 る。 図である(図45AにおけるA-A'線断面図)。

【図47B】同製造工程の柱状シリコン形成工程を示す 図である(図45AにおけるB-B'線断面図)。

【図48A】同製造工程のゲート電極材料堆積工程を示 す図である(図45AにおけるA-A、線断面図)。

【図48日】同製造工程のゲート電極材料堆積工程を示 す図である(図45AにおけるB-B'線断面図)。

【図49A】同製造工程のゲート(G1)形成工程を示 す図である(図45AにおけるA-A、線断面図)。

す図である(図45AにおけるB-B'線断面図)。

【図50A】同製造工程の平坦化工程を示す図である (図45AにおけるA-A、線断面図)。

【図50B】同製造工程の平坦化工程を示す図である

(図45AにおけるB-B'線断面図)。 【図51A】同製造工程のゲート(G2)形成領域の開

口工程を示す図である(図45AにおけるA-A'線断 面図)。 【図51B】同製造工程のゲート(G2)形成領域の開

口工程を示す図である(図45AにおけるB-B'線断 40 その後の読み出し動作の電圧波形を示す図である。 面図)。

【図52A】同製造工程のゲート電極材料堆積工程を示 す図である(図45AにおけるA-A、線断面図)。

【図52B】同製造工程のゲート電極材料堆積工程を示 す図である(図45AにおけるB-B'線断面図)。

【図53A】同製造工程のゲート(G2)形成工程を示 す図である(図45AにおけるA-A、線断面図)。

【図53B】同製造工程のゲート(G2)形成工程を示 す図である(図45AにおけるB-B'線断面図)。

【図54A】図39Aの実施の形態にシャント配線を追 50 ータ書き込み時のセルのドレイン電流ーゲート電圧特性

加した実施の形態のレイアウトである。

【図54B】図54AのA-A'線断面図である。

【図54C】図54AのB-B、線断面図である。

【図55A】他のシャント配線構造を用いた場合の図5 4AのA-A'線断面図である。

【図55B】他のシャント配線構造を用いた場合の図5 4 A の B - B'線断面図である。

【図56】実施の形態1に係るnチャネル型のMISト ランジスタを、pチャネル型に変形した場合における、 10 メモリセル構造を図3に対応させて示す図である。

【図57】実施の形態2に係るnチャネル型のMISト ランジスタを、pチャネル型に変形した場合における、 メモリセル構造を図8に対応させて示す図である。

【図58】実施の形態3に係るnチャネル型のMISト ランジスタを、pチャネル型に変形した場合における、 メモリセル構造を図9に対応させて示す図である。

【図59A】実施の形態4に係るnチャネル型のMIS トランジスタを、pチャネル型に変形した場合におけ る、メモリセル構造を図10Bに対応させて示す図であ

【図59B】実施の形態4に係るnチャネル型のMIS トランジスタを、pチャネル型に変形した場合におけ る、メモリセル構造を図10Cに対応させて示す図であ る。

【図60A】実施の形態5に係るnチャネル型のMIS トランジスタを、pチャネル型に変形した場合におけ る、メモリセル構造を図11に対応させて示す図であ

【図60B】pチャネル型のMISトランジスタを用い 【図49B】同製造工程のゲート(G1)形成工程を示 30 た場合における、駆動電圧波形を図7Aに対応させて示 す図。

> 【図60C】pチャネル型のMISトランジスタを用い た場合における、駆動電圧波形を図7Bに対応させて示 す図。

> 【図61】図3の実施の形態のセルのシミュレーション に用いたデバイスパラメータを示す図である。

> 【図62】同シミュレーションによる"0"書き込みと その後の読み出し動作の電圧波形を示す図である。

> 【図63】同シミュレーションによる"1"書き込みと

【図64】同シミュレーションによる"0", "1"デ ータ書き込み時のセルのドレイン電流ーゲート電圧特性 を示す図である。

【図65】補助ゲートを固定電位としたシミュレーショ ンによる"0"書き込みとその後の読み出し動作の電圧 波形を示す図である。

【図66】同シミュレーションによる"1"書き込みと その後の読み出し動作の電圧波形を示す図である。

【図67】同シミュレーションによる"0"、"1"デ

を示す図である。

【図68A】実施の形態6によるセルアレイの平面図で ある。

45

【図68B】図68AのI-I'断面図である。

【図68C】図68AのII-II 断面図である。

【図69】同実施の形態の製造工程における第1のシリ コン基板にゲート電極材料膜を形成する工程を示す断面 図である。

【図70】同製造工程における第2のシリコン基板に水 素イオン注入を行う工程を示す断面図である。

【図71】同製造工程における基板貼り合わせの工程を 示す断面図である。

【図72】同製造工程における貼り合わせ基板の厚み調 整工程を示す図である。

【図73A】同製造工程における素子分離工程を示す平 面図である。

【図73B】図73AのII-II 断面図である。

【図74】同製造工程におけるダミーワード線用絶縁膜 堆積工程を示す断面図である。

【図75】同製造工程におけるダミーワード線形成とこ 20 れを用いた補助ゲート分離工程を示す断面図である。

【図76】同製造工程におけるシリコン窒化膜形成工程 を示す断面図である。

【図77】同製造工程における分離溝への絶縁膜埋め込 み工程を示す断面図である。

【図78】同製造工程におけるシリコン窒化膜除去の工 程を示す断面図である。

【図79】同製造工程におけるシリコン層成長の工程を 示す断面図である。

【図80】同製造工程おけるダミーワード線除去の工程 30 17 層間絶縁膜 を示す断面図である。

【図81】同製造工程におけるゲート絶縁膜形成工程と シリコン窒化膜形成工程を示す断面図である。 *

*【図82】同製造工程における主ゲート埋め込み工程を 示す断面図である。

【図83】同製造工程におけるシリコン窒化膜堆積の工 程を示す断面図である。

【図84A】同製造工程におけるシリコン窒化膜エッチ ングの工程を示す平面図である。

【図84B】図84AのI-I'断面図である。

【図85】同製造工程の素子分離工程を示す平面図であ る。

【図86】同製造工程におけるソース、ドレイン拡散層 形成工程を示す断面図である。

【図87】同製造工程における層間絶縁膜形成工程を示 す断面図である。

【図88】同製造工程におけるソース配線埋め込み溝形 成工程を示す断面図である。

【図89】同製造工程におけるソース配線層埋め込み工 程を示す断面図である。

【図90】同製造工程における層間絶縁膜形成工程を示 す断面図である。

【図91】同製造工程におけるビット線コンタクト孔及 び配線溝形成工程を示す断面図である。

【図92】他の実施の形態によるセルアレイの図68B 対応の断面図である。

【符号の説明】

10 シリコン基板

11 シリコン酸化膜

12 シリコン層

13 主ゲート(第1のゲート)

16 ゲート絶縁膜

18 ビット線

19 ゲート絶縁膜

20 補助ゲート(第2のゲート)

【図3】 【図2】 【図1】

【図7C】

【図7D】

[図7G]

[図7H]

【図12】

101 103 103 103 106 13(G1)

201

【図29】

【図30】

【図31】

[図32]

【図33】

[図34A]

20(G2)

12a

【図60B】

【図61】

【図60C】

【図62】

【図63】

【図69】

【図68B】

【図73A】

【図74】

[図75]

[図76]

【図78】

【図79】

【図80】

【図81】

【図82】

[図83]

【図84A】

【図84B】

【図85】

[図87]

【図86】

[図88]

[図89]

【図90】

【図91】

【図92】

フロントページの続き

(51)Int.Cl.'

識別記号

F I

テマコード (参考)

(72)発明者 大 沢 隆

HO1L 29/786

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝マイクロエレクトロニクスセンター内

(72)発明者 山 田 敬

神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 5F083 AD01 AD03 AD69 HA02 JA19

JA32 JA38 JA40 KA01 KA05

LA05 LA12 LA16 MA06 MA19

NA01 PR25 PR29 PR36

5F110 AA30 BB04 BB06 CC02 DD05

DD13 EE01 EE02 EE04 EE09

EE14 EE30 EE36 FF02 GG02

GG42 HJ13 NN62 NN65 QQ16

QQ19

5M024 AA91 BB02 BB35 BB36 CC20

CC22 LL11 PP01 PP02 PP03

PP04 PP05 PP07 PP10