Lecture 5: Point Level Models - Variograms

Class Intro

Intro Questions

- What is point referenced data?
- How do we predict the response at unobserved locations?
- For Today:
 - What is a variogram?
 - How is a variogram useful?
 - How is EDA used for point referenced data?

Elements of Geostatistical models: continued...

Stationarity

- Assume the spatial process, Y(s) has a mean, $\mu(s)$, and that the variance of Y(s) exists everywhere.
- The process is **strictly stationary** if: for any $n \ge 1$, any set of n sites $\{s_1, \ldots, s_n\}$ and any $h \in \mathbb{R}^r$ (typically r = 2), the distribution of $(Y(s_1), \ldots, Y(s + h_n))$ is the same as $Y(s + h_1)$

Strict Stationarity

Is this strictly stationary?

6/43

Weak Stationarity

- Weak stationarity, or second-order stationarity of a spatial process, requires a constant mean and covariance that is a function of h, Cov(Y(s), Y(s + h)) = C(h), where C(h) is a covariance function that only requires the separation vector h.
- Typically with spatial models, the process is assumed to be mean zero as covariates explain the mean structure. So second-order stationarity is primarily focused on the covariance structure.

Weak Stationarity

Is this weakly stationary?

Intrinsic Stationarity

- A third kind of stationarity, known as intrinsic stationarity, describes the behavior of differences in the spatial process, rather than the data.
- Intrinsic stationarity assumes E[Y(s+h) Y(s)] = 0 then define $E[Y(s+h) Y(s)]^2 = Var(Y(s+h) Y(s)) = 2\gamma(h)$, which only works, and satisfies intrinsic stationarity, if the equation only depends on h.

Variograms

- Intrinsic stationary justifies the use of variograms $2\gamma(h)$
- Variograms are often used to visualize spatial patterns:
 - If the distance between points is small, the variogram is expected to be small
 - As the distance between points increases, the variogram increases
- There is a mathematical link between the covariance function C(h) and the variogram $2\gamma(h)$.

Isotropy

- If the variogram $2\gamma(h)$ depends only on the length of h, ||h||, and not the direction, then the variogram is isotropic.
- If the direction of *h* impacts the variogram, then the variogram is anisotropic.

More about Variograms

Variogram to the Covariance Function

$$2\gamma(h) = Var(Y(s+h) - Y(s))$$
= $Var(Y(s+h)) + Var(Y(s)) - 2Cov(Var(Y(s+h), Y(s)))$
= $C(0) + C(0) - 2C(h)$
= $2[C(0) - C(h)]$

- Given *C*(), the variogram can easily be recovered
- Going the other way, $2\gamma() \rightarrow C()$, requires additional assumptions

Linear semivariogram

$$\gamma(d) = \begin{cases} \tau^2 + \sigma^2 d & \text{if } d > 0 \\ 0 & \text{otherwise} \end{cases}$$

Nugget, sill, partial-sill, and range

- Nugget is defined as $\gamma(d): d \to 0_+$
- Sill is defined as $\gamma(d): d \to \infty$
- Partial sill is defined as the sill nugget
- Range is defined as the first point where $\gamma(d)$ reaches the sill. Note the Range is often defined as $R = \frac{1}{\phi}$, but confusingly both R and ϕ are sometimes referred to as the range. More properly, ϕ is called the decay parameter.

Spherical semivariogram: Exercise

$$\gamma(d) = \begin{cases} \tau^2 + \sigma^2 & \text{if } d \ge 1/\phi \\ \tau^2 + \sigma^2 \left[\frac{3\phi d}{2} - \frac{1}{2} (\phi d)^3 \right] \\ 0 & \text{otherwise} \end{cases}$$

- Sketch, or generate in R, a spherical semivariogram
- On this figure label the nugget, sill, partial sill, and range.

Spherical semivariogram: Solution

More Variograms

Exponential

• We saw the exponential covariance earlier in class, what is the mathematical form?

•
$$C(d) = \begin{cases} \tau^2 + \sigma^2 & \text{if } d = 0\\ \sigma^2 \exp(-\phi d) & \text{if } d > 0 \end{cases}$$

• The variogram is

$$\gamma(d) = \begin{cases} \tau^2 + \sigma^2 (1 - \exp(-\phi d)) & \text{if } d > 0 \\ 0 & \text{otherwise} \end{cases}$$

Exponential Semivariogram: Exercise

- Plot the exponential semivariogram
- Identify and interpret: the nugget, range, and sill. How are they similar or different from the spherical semivariogram?

Exponential Semivariogram: Solution

Exponential Semivariogram: Solution 2

- The sill is only reached asymptotically when $\lim_{d\to\infty} exp(-\phi*d)\to 0$
- Thus, the range, defined as distance where semivariogram reaches the sill is ∞
- The *effective range* is defined as the distance where there is *effectively* no spatial structure. Generally this is determined when the correlation is .05.
- $\exp(-d_o\phi) = .05$ $d_0\phi = -\log(.05)$ $d_0 \approx \frac{3}{\phi}$

Exponential Semivariogram: Solution 3

More Semivariograms: Equations

• Gaussian:

$$\gamma(d) = \begin{cases} \tau^2 + \sigma^2 (1 - \exp(-\phi^2 d^2)) & \text{if } d > 0 \\ 0 & \text{otherwise} \end{cases}$$

• Powered Exponential:

$$\gamma(d) = \begin{cases} \tau^2 + \sigma^2 (1 - \exp(-|\phi d|^p)) & \text{if } d > 0 \\ 0 & \text{otherwise} \end{cases}$$

• Matérn:

$$\gamma(d) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \frac{(2\sqrt{\nu}d\phi)^{\nu}}{2^{\nu-1}\Gamma(\nu)} K_{\nu}(2\sqrt{\nu}d\phi) \right] & \text{if } d > 0 \\ 0 & \text{otherwise} \end{cases},$$

where K_{ν} is a modified Bessel function and Γ () is a Gamma function.

Variogram Creation

Variogram Creation: How?

X	у	copper
181072	333611	85
181025	333558	81
181165	333537	68
181298	333484	81
181307	333330	48
181390	333260	61
181165	333370	31
181027	333363	29
181060	333231	37
181232	333168	24
181191	333115	25
181032	333031	25
180874	333339	93

X	y	copper
180969	333252	31
181011	333161	27

Variogram Creation: Steps

- 1. Calculate distances between sampling locations
- 2. Choose grid for distance calculations
- 3. Calculate empirical semivariogram

$$\hat{\gamma}(d_k) = \frac{1}{2N(d_k)} \sum_{\mathbf{s}_i, \mathbf{s}_i, \in N(d_k)} \left[\mathbf{Y}(\mathbf{s}_i) - \mathbf{Y}(\mathbf{s}_j) \right]^2,$$

where

$$N(d_k) = \{(s_i, s_j) : ||s_i - s_j|| \in I_k\}$$

and I_k is the k^{th} interval.

4. Plot the semivariogram

Variogram Creation: R function

Calculate Distances between sampling locations

```
dist(meuse.small)
```

```
5
                                                                           6
##
                             2
                                        3
                 1
## 2
         70.95069
## 3
        120.05832
                    142.16188
## 4
        259.27013
                    282.85155
                                143.76022
## 5
        368.17795
                    364.13871
                                251.81938
                                           157.75297
## 6
        474.23728
                                356.93557
                    471.62379
                                           242.98148
                                                       109.35264
## 7
        263.90529
                    239.67478
                               171.04970
                                           182.16751
                                                       148.50253
                                                                   252.23997
## 8
        258.19566
                    201.82418
                                225.47949
                                           301.30715
                                                       282.57742
                                                                   378.68457
## 9
        383.20752
                                                                   332.14003
                    331.79813
                                324.99538
                                           350.12712
                                                       266.32874
## 10
        474.94210
                    445.19434
                                377.60561
                                           327.81245
                                                       180.12496
                                                                  186.53954
## 11
        513.59225
                    476.38325
                                424.98118
                                           388.26022
                                                       245.37726
                                                                   248.84131
                                                                   426.49853
## 12
        584.46557
                    530.01321
                               524.95143
                                           528.30010
                                                       406.88450
## 13
        336.52934
                    266.28181
                                352.85975
                                           448.26889
                                                       435.42508
                                                                   522.99235
## 14
        377.36720
                    315.07459
                                347.86492
                                           405.66612
                                                       347.29958
                                                                   422.14334
## 15
        457.80454
                    400.90024
                                408.37850
                                                       341.49378
                                           435.44690
                                                                   393.18952
## 16
        437.93835
                    367.95924
                                444.10584
                                                       485.82816
                                           525.06476
                                                                   560.73256
## 17
        593.84426
                    524.22228
                                590.87139
                                           656.25757
                                                       589.65074
                                                                   646.24608
## 18
        742.60420
                    673.12777
                                735.57257
                                           791.89898
                                                       710.19293
                                                                   753.27551
## 19
        885.30277
                               876.18548
                                           926.73729
                                                       835.97488
                    815.88296
                                                                   869.40094
## 20
       1041.44371
                    972.26385 1030.40235 1075.16231
                                                       977.67172 1002.09281
## 21
       1000.66628
                    932.72343
                                980.30352 1016.51168
                                                       910.56795
                                                                   929.66230
## 22
        968.07025
                    901.35343
                                941.28104
                                           971.20595
                                                       859.96919
                                                                   875.28338
## 23
       1017.21827
                    950.99579
                               987.79502 1013.58374
                                                       898.51767
                                                                   909.11385
## 24
        693.45368
                    648.32245
                                613.69699
                                           580.30595
                                                       433.95507
                                                                   412.02306
## 25
        793.75689
                    747.08366
                               715.46069
                                           680.25510
                                                       532.10243
                                                                   501.24146
```

dist.mat <- dist(meuse.small %>% select(x,y))

Choose grid for distance calculations

```
cutoff <- max(dist.mat) / 3 # default maximum distance
num.bins <- 15
bin.width <- cutoff / 15</pre>
```

Calculate empirical semivariogram

```
## # A tibble: 15 x 2
##
        bin emp.sv
##
      <dbl>
              <dbl>
##
   1
           1
               236.
               347.
               348.
               488.
               499.
               577.
               553.
               623.
               600.
           9
               665.
         10
         11
               603.
## 12
               673.
               557.
## 13
## 14
               643.
## 15
               574.
         15
```

Plot empirical semivariogram

Variogram Fitting

Now given this empirical semivariogram, how to we choose a semivariogram (and associated covariance structure) and estimate the parameters in that function??

