INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4067B MSI

16-channel analogue multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC04

January 1995

16-channel analogue multiplexer/demultiplexer

HEF4067B MSI

DESCRIPTION

The HEF4067B is a 16-channel analogue multiplexer/demultiplexer with four address inputs (A $_0$ to A $_3$), an active LOW enable input ($\overline{\rm E}$), sixteen independent inputs/outputs (Y $_0$ to Y $_{15}$) and a common input/output (Z).

Υ0 10 11 Α2 14 1 - of - 16**DECODER** _13 20 19 13 18 ^Y14 | 17 Y₁₅ 16 Ζ 15 E 7Z73694.3 Fig.1 Functional diagram.

The device contains sixteen bidirectional analogue switches, each with one side connected to an independent input/output (Y_0 to Y_{15}) and the other side connected to the common input/output (Z).

With \overline{E} LOW, one of the sixteen switches is selected (low impedance ON-state) by A_0 to A_3 . All unselected switches are in the high impedance OFF-state. With \overline{E} HIGH all switches are in the high impedance OFF-state, independent of A_0 to A_3 .

The analogue inputs/outputs (Y_0 to Y_{15} and Z) can swing between V_{DD} as a positive limit and V_{SS} as a negative limit. V_{DD} to V_{SS} may not exceed 15 V.

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4067BP(N): 24-lead DIL; plastic

(SOT101-1)

HEF4067BD(F): 24-lead DIL; ceramic (cerdip)

(SOT94)

HEF4067BT(D): 24-lead SO; plastic

(SOT137-1)

(): Package Designator North America

PINNING

Y₀ to Y₁₅ independent inputs/outputs

A₀ to A₃ address inputs

E enable input (active LOW)

Z common input/output

16-channel analogue multiplexer/demultiplexer

HEF4067B MSI

FUNCTION TABLE

	II	CHANNEL			
Ē	A ₃	A ₂	A ₁	A ₀	ON
L	L	L	L	L	$Y_0 - Z$
L	L	L	L	Н	$Y_1 - Z$
L	L	L	Н	L	$Y_2 - Z$
L	L	L	Н	Н	$Y_3 - Z$
L	L	Н	L	L	$Y_4 - Z$
L	L	Н	L	Н	Y ₅ – Z
L	L	Н	Н	L	$Y_6 - Z$
L	L	Н	Н	Н	Y ₇ – Z
L	Н	L	L	L	Y ₈ – Z
L	Н	L	L	Н	Y ₉ – Z
L	Н	L	Н	L	$Y_{10} - Z$
L	Н	L	Н	Н	Y ₁₁ – Z
L	Н	Н	L	L	$Y_{12} - Z$
L	Н	Н	L	Н	$Y_{13} - Z$
L	Н	Н	Н	L	Y ₁₄ – Z
L	Н	Н	Н	Н	Y ₁₅ – Z
Н	Х	Х	Х	Х	none

Note

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

16-channel analogue multiplexer/demultiplexer

HEF4067B MSI

DC CHARACTERISTICS

 T_{amb} = 25 $^{\circ}C$

	V _{DD} V	SYMBOL	TYP.	MAX.		CONDITIONS	
	5	R _{ON}	350	2500	Ω	$V_{is} = V_{SS}$ to V_{DD} see Fig.5	
ON resistance	10		80	245	Ω		
	15		60	175	Ω		
	5		115	340	Ω	V _{is} = V _{SS} see Fig.5	
ON resistance	10	R _{ON}	50	160	Ω		
	15		40	115	Ω		
	5	R _{ON}	120	365	Ω	V _{is} = V _{DD} see Fig.5	
ON resistance	10		65	200	Ω		
	15		50	155	Ω		
'Δ' ON resistance	5		25	-	Ω		
between any two	10	ΔR_{ON}	10	_	Ω	$V_{is} = V_{SS}$ to V_{DD} see Fig.5	
channels	15		5	_	Ω	See Fig.5	
OFF-state leakage	5		_	-	nA		
current, all	10	I _{OZZ}	_	_	nA	Ē at V _{DD}	
channels OFF	15		_	1000	nA		
OFF-state leakage	5		_	_	nA		
current, any	10	I _{OZY}	_	_	nA	E at V _{SS}	
channel	15		_	200	nA		

16-channel analogue multiplexer/demultiplexer

HEF4067B MSI

NOTE

To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed 0,4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed V_{DD} or V_{SS} .

16-channel analogue multiplexer/demultiplexer

HEF4067B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1 100 $f_i + \sum (f_0 C_L) \times V_{DD}^2$	where
dissipation per	10	5 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	13 300 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS (1), (2)

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP.	MAX.		
Propagation delays						
$V_{is} \rightarrow V_{os}$	5		30	60	ns	
HIGH to LOW	10	t _{PHL}	15	25	ns	note 3
	15		10	20	ns	
	5		25	50	ns	
LOW to HIGH	10	t _{PLH}	10	20	ns	note 3
	15		10	20	ns	
$A_n \rightarrow V_{os}$	5		190	380	ns	
HIGH to LOW	10	t _{PHL}	70	145	ns	note 4
	15		50	100	ns	
	5		175	345	ns	
LOW to HIGH	10	t _{PLH}	70	140	ns	note 4
	15		50	100	ns	
Output disable times						
$\overline{E} \to V_{os}$	5		195	385	ns	
HIGH	10	t _{PHZ}	140	280	ns	note 5
	15		130	260	ns	
	5		215	435	ns	
LOW	10	t _{PLZ}	180	355	ns	note 5
	15		170	340	ns	
Output enable times						
$\overline{E} \to V_{os}$	5		155	315	ns	
HIGH	10	t _{PZH}	70	135	ns	note 5
	15		50	100	ns	
	5		170	340	ns	
LOW	10	t _{PZL}	70	140	ns	note 5
	15		50	100	ns	

16-channel analogue multiplexer/demultiplexer

HEF4067B MSI

AC CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ °C}$; input transition times $\leq 20 \text{ ns}$

	V _{DD}	SYMBOL	TYP.	MAX.		
Distortion, sine-wave	5		0,25	9	%	
response	10		0,04	9	%	note 6
	15		0,04	9	%	
Crosstalk between	5		_	N	ИНz	
any two channels	10		1	N	ИHz	note 7
	15		_	N	ИHz	
Crosstalk; enable	5		_	n	nV	
or address input	10		50	n	nV	note 8
to output	15		_	n	nV	
OFF-state	5		_	N	ИНz	
feed-through	10		1	N	ИHz	note 9
	15		_	N	ИHz	
ON-state frequency	5		13	N	ИHz	
response	10		40	N	ИHz	note 10
	15		70	N	ЛHz	

Notes

- 1. V_{is} is the input voltage at a Y or Z terminal, whichever is assigned as input.
- 2. Vos is the output voltage at a Y or Z terminal, whichever is assigned as output.
- 3. $R_L = 10 \text{ k}\Omega$ to V_{SS} ; $C_L = 50 \text{ pF}$ to V_{SS} ; $\overline{E} = V_{SS}$; $V_{is} = V_{DD}$ (square-wave); see Fig.7.
- 4. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF to V}_{SS}$; $\overline{E} = V_{SS}$; $A_n = V_{DD}$ (square-wave); $V_{is} = V_{DD}$ and R_L to V_{SS} for t_{PLH} ; $V_{is} = V_{SS}$ and R_L to V_{DD} for t_{PHL} ; see Fig.7.
- 5. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF to V}_{SS}$; $\overline{E} = V_{DD}$ (square-wave);
 - $V_{is} = V_{DD}$ and R_L to V_{SS} for t_{PHZ} and t_{PZH} ;
 - $V_{is} = V_{SS}$ and R_L to V_{DD} for t_{PLZ} and t_{PZL} ; see Fig.7.
- 6. $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); $f_{is} = 1 \text{ kHz}$; see Fig.8.
- 7. $R_L = 1 \text{ k}\Omega; V_{is} = \frac{1}{2} V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);

$$20 \log \frac{V_{os}}{V_{is}} = -50 \text{ dB; see Fig.9.}$$

- 8. $R_L = 10 \text{ k}\Omega$ to V_{SS} ; $C_L = 15 \text{ pF}$ to V_{SS} ; \overline{E} or $A_n = V_{DD}$ (square-wave); crosstalk is $|V_{os}|$ (peak value); see Fig.7.
- 9. R_L = 1 $k\Omega$; C_L = 5 pF; channel OFF; V_{is} = $\frac{1}{2}$ $V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2}$ V_{DD});

$$20 \ log \frac{V_{os}}{V_{is}} = -50 \ dB; \, see \, Fig.8.$$

10. $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);

20
$$\log \frac{V_{os}}{V_{in}} = -3$$
 dB; see Fig.8.

16-channel analogue multiplexer/demultiplexer

HEF4067B MSI

APPLICATION INFORMATION

Some examples of applications for the HEF4067B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.