Economics 101A (Lecture 7)

Stefano DellaVigna

February 7, 2017

Outline

- 1. Utility Maximization
- 2. Utility maximization Tricky Cases
- 3. Indirect Utility Function
- 4. Comparative Statics (Introduction)
- 5. Income Changes

1 Utility maximization

- Nicholson, Ch. 4, pp. 119–128
- $X = R_+^2$ (2 goods)
- Consumers: choose bundle $x = (x_1, x_2)$ in X which yields highest utility.
- Constraint: income = M
- Price of good $1 = p_1$, price of good $2 = p_2$
- Bundle x is feasible if $p_1x_1 + p_2x_2 \leq M$
- Consumer maximizes

$$\max_{x_1, x_2} u(x_1, x_2)$$

$$s.t. \ p_1x_1 + p_2x_2 \le M$$

$$x_1 > 0, \ x_2 > 0$$

- Maximization subject to inequality. How do we solve that?
- Trick: u strictly increasing in at least one dimension.
 (≥ strictly monotonic)
- Budget constraint always satisfied with equality

• Ignore temporarily $x_1 \ge 0$, $x_2 \ge 0$ and check afterwards that they are satisfied for x_1^* and x_2^* .

• Problem becomes

$$\max_{x_1, x_2} u(x_1, x_2)$$
s.t. $p_1x_1 + p_2x_2 - M = 0$

•
$$L(x_1, x_2) = u(x_1, x_2) - \lambda(p_1x_1 + p_2x_2 - M)$$

• F.o.c.s:

$$u'_{x_i} - \lambda p_i = \mathbf{0} \text{ for } i = 1, 2$$

$$p_1 x_1 + p_2 x_2 - M = \mathbf{0}$$

• Moving the two terms across and dividing, we get:

$$MRS = -\frac{u'_{x_1}}{u'_{x_2}} = -\frac{p_1}{p_2}$$

• Graphical interpretation.

Second order conditions:

$$H = \begin{pmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{x_1,x_1}^{"} & u_{x_1,x_2}^{"} \\ -p_2 & u_{x_2,x_1}^{"} & u_{x_2,x_2}^{"} \end{pmatrix}$$

$$|H| = p_1 \left(-p_1 u_{x_2, x_2}^{"} + p_2 u_{x_2, x_1}^{"} \right)$$

$$-p_2 \left(-p_1 u_{x_1, x_2}^{"} + p_2 u_{x_1, x_1}^{"} \right)$$

$$= -p_1^2 u_{x_2, x_2}^{"} + 2p_1 p_2 u_{x_1, x_2}^{"} - p_2^2 u_{x_1, x_1}^{"}$$

- Notice: $u_{x_2,x_2}'' < 0$ and $u_{x_1,x_1}'' < 0$ usually satisfied (but check it!).
- Condition $u_{x_1,x_2}^{\prime\prime}>0$ is then sufficient

Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$
s.t. $p_1 x_1 + p_2 x_2 - M = 0$

- Lagrangean =
- F.o.c.:

• Solution:

$$x_{1}^{*} = \frac{M}{p_{1} \left(1 + \left(\frac{\alpha}{\beta}\right)^{\frac{1}{\rho-1}} \left(\frac{p_{2}}{p_{1}}\right)^{\frac{\rho}{\rho-1}}\right)}$$

$$x_{2}^{*} = \frac{M}{p_{2} \left(1 + \left(\frac{\beta}{\alpha}\right)^{\frac{1}{\rho-1}} \left(\frac{p_{1}}{p_{2}}\right)^{\frac{\rho}{\rho-1}}\right)}$$

• Special case 1: ho = 0 (Cobb-Douglas)

$$x_1^* = \frac{\alpha}{\alpha + \beta} \frac{M}{p_1}$$

$$x_2^* = \frac{\beta}{\alpha + \beta} \frac{M}{p_2}$$

• Special case 1: $\rho \to 1^-$ (Perfect Substitutes)

$$x_1^* = \begin{cases} 0 & \text{if } p_1/p_2 \ge \alpha/\beta \\ M/p_1 & \text{if } p_1/p_2 < \alpha/\beta \end{cases}$$

$$x_2^* = \begin{cases} M/p_2 & \text{if } p_1/p_2 \ge \alpha/\beta \\ 0 & \text{if } p_1/p_2 < \alpha/\beta \end{cases}$$

• Special case 1: $\rho \to -\infty$ (Perfect Complements)

$$x_1^* = \frac{M}{p_1 + p_2} = x_2^*$$

- ullet Parameter ho indicates substition pattern between goods:
 - $-\
 ho > 0$ -> Goods are (net) substitutes
 - $\rho < 0 ->$ Goods are (net) complements

2 Utility maximization – tricky cases

1. Non-convex preferences. Example:

2. Example with CES utility function.

$$\max_{x_1, x_2} \left(\alpha x_1^{\rho} + \beta x_2^{\rho} \right)^{1/\rho}$$
s.t. $p_1 x_1 + p_2 x_2 - M = 0$

- With $\rho > 1$ the interior solution is a minimum!
- ullet Draw indifference curves for ho=1 (boundary case) and ho=2

Can also check using second order conditions

2. Solution does not satisfy $x_1^* > 0$ or $x_2^* > 0$. Example:

$$\max x_1 * (x_2 + 5)$$
s.t. $p_1x_1 + p_2x_2 = M$

ullet In this case consider corner conditions: what happens for $x_1^*=$ 0? And $x_2^*=$ 0?

- 3. Multiplicity of solutions.
 - \bullet Example 1: Perfect Substitutes with $p_1/p_2 = \alpha/\beta$

• Example 2: Non-convex preferences with two optima

3 Indirect utility function

- Nicholson, Ch. 4, pp. 128-130
- Define the indirect utility $v(\mathbf{p}, M) \equiv u(\mathbf{x}^*(\mathbf{p}, M))$, with \mathbf{p} vector of prices and \mathbf{x}^* vector of optimal solutions.
- $v(\mathbf{p}, M)$ is the utility at the optimum for prices \mathbf{p} and income M
- Some comparative statics: $\partial v(\mathbf{p}, M)/\partial M = ?$
- Hint: Use Envelope Theorem on Lagrangean function

• What is the sign of λ ?

•
$$\lambda = u'_{x_i}/p > 0$$

•
$$\partial v(\mathbf{p}, M)/\partial p_i = ?$$

• Properties:

- Indirect utility is always increasing in income ${\cal M}$
- Indirect utility is always decreasing in the price p_i

4 Comparative Statics (introduction)

- Nicholson, Ch. 5, pp. 145-155
- Utility maximization yields $x_i^* = x_i^*(p_1, p_2, M)$
- Quantity consumed as a function of income and price

• What happens to quantity consumed x_i^* as prices or income varies?

• Simple case: Equal increase in prices and income.

•
$$M' = tM$$
, $p'_1 = tp_1$, $p'_2 = tp_2$.

- Compare $x^*(tM, tp_1, tp_2)$ and $x^*(M, p_1, p_2)$.
- What happens?

• Write budget line: $tp_1x_1 + tp_2x_2 = tM$

ullet Demand is homogeneous of degree 0 in ${f p}$ and M:

$$x^*(tM, tp_1, tp_2) = t^0x^*(M, p_1, p_2) = x^*(M, p_1, p_2).$$

• Consider Cobb-Douglas Case:

$$x_1^* = \frac{\alpha}{\alpha + \beta} M/p_1, x_2^* = \frac{\beta}{\alpha + \beta} M/p_2$$

• What is $\partial x_1^*/\partial M$?

• What is $\partial x_1^*/\partial p_1$?

• What is $\partial x_1^*/\partial p_2$?

• General results?

5 Income changes

- Income increases from M to to M' > M.
- Budget line $(p_1x_1 + p_2x_2 = M)$ shifts out:

$$x_2 = \frac{M'}{p_2} - x_1 \frac{p_1}{p_2}$$

• New optimum?

ullet Engel curve: $x_i^*(M)$: demand for good i as function of income M holding fixed prices p_1,p_2

- Does x_i^* increase with M?
 - Yes. Good i is normal

- No. Good i is inferior

6 Next Class

- More comparative statics:
 - Price Effects
 - Slutzky Equation
- Then moving on to applications:
 - Labor Supply
 - Intertemporal choice
 - Economics of Altruism