CSE 4553 Machine Learning Lecture 12: Ensembles

Winter 2022

Hasan Mahmud | hasan@iut-dhaka.edu

Contents

- Introduction
- Simple ensembles
 - Max voting
 - Average
 - Weighted average
- Stacking
- Bagging
 - Random forest
- Boosting
 - Adaboost

Introduction

 An ensemble is a set of classifiers that learn a target function, and their individual predictions are combined to classify new examples.

Simple ensembles

Simple ensemble techniques

Max voting

Colleague 1	Colleague 2	Colleague 3	Colleague 4	Colleague 5	Final rating
5	4	5	4	4	4

Averaging

Colleague 1	Colleague 2	Colleague 3	Colleague 4	Colleague 5	Final rating
5	4	5	4	4	4.4

Weighted averaging

Colleague 1	Colleague 2	Colleague 3	Colleague 4	Colleague 5	Final rating	
weight	0.23	0.23	0.18	0.18	0.18	
rating	5	4	5	4	4	4.41

Ensemble: Stacking

Given a set of observations $\chi = \{x_i \in R^M\}$ and a set of labels $Y = \{y_i \in N\}$ and a Training Set $D = \{(x_i, y_i)\}$ as an Input, we want to solve the problem of Supervised Classification where we learn the model M based on the D.

Algorithm 1 - Stacking

Input: $D = \{(x_i, y_i) | x_i \in \chi, y_i \in Y\}$

Output: An ensemble classifier H

- 1. Step 1: Learn first-level classifiers
- 2. For $t \leftarrow 1$ to T do
- 3. Learn a base classifier h_t based on D
- 4. Step 2 : Construct new data set from D
- 5. For $i \leftarrow 1$ to m do
- 6. Construct a new data set that contains $\{x_i^{new}, y_i\}$, where $x_i^{new} = \{h_i(x_i) \text{ for } j = 1 \text{ to } T\}$
- 7. Step 3: Learn a second-level classifier
- 8. Learn a new classifier h^{new} based on the newly constructed data set
- 9. **Return** $H(x) = h^{new}(h_1(x), h_2(x), ..., h_T(x))$

Advanced Ensemble techniques

Stacking

Table 1: Training Data Set

x	1	2	3	4	5	6	7	8	9	10
у										

Table 2: Stacking New Features

x	(1,-1)	(1,-1)	(1,-1)	(-1,-1	(-1,-1	(-1,-1	(-1,-1	(-1,1)	(-1,1)	(-1,1)
у	+1	+1	+1	-1	-1	-1	-1	+1	+1	+1

Steps of stacking

- 1. The train set is split into 10 parts.
- 2. A base model (suppose a decision tree) is fitted on 9 parts and predictions are made for the 10th part. This is done for each part of the train set.
- 3. The base model (in this case, decision tree) is then fitted on the whole train dataset.
- 4. Using this model, predictions are made on the test set.
- 5. Steps 2 to 4 are repeated for another base model (say KNN) resulting in another set of predictions for the train set and test set.
- 6. The predictions from the train set are used as features to build a new model.
- 7. This model is used to make final predictions on the test prediction set.

Bootstrapping

- Bootstrap method refers to random sampling with replacement.
- Bootstrapping is a sampling technique in which we create subsets of observations from the original dataset, with replacement.
- This sample is referred to as a resample.

- The size of the subsets may be the same as the size of the original set.
- This allows the model or algorithm to get a better understanding of the various biases, variances and features that exist in the resample.
- Bootstrapping is also great for small size data sets that can have a tendency to overfit.

Bagging

- Bagging (or Bootstrap Aggregating) technique uses these subsets (bags) to get a fair idea of the distribution (complete set).
- The size of subsets created for bagging may be less than the original set.
- Multiple subsets are created from the original dataset, selecting observations with replacement (Bootstrapping).
- A base model (weak model) is created on each of these subsets.
- The models run in parallel and are independent of each other.
- The final predictions are determined by combining the predictions from all the models.

Bagging

Bagging

Random forest

- 1. Random subsets are created from the original dataset (bootstrapping).
- 2. At each node in the decision tree, only a random set of features are considered to decide the best split.
- A decision tree model is fitted on each of the subsets.
- 4. The final prediction is calculated by averaging the predictions from all decision trees.

Random Forest

Random forest

- An ensemble of decision tree (DT) classifiers
- Uses bagging on features (each DT will use a random set of features)
 - ullet Given a total of D features, each DT uses \sqrt{D} randomly chosen features
 - Randomly chosen features make the different trees uncorrelated
- All DTs usually have the same depth
- Each DT will split the training data differently at the leaves
- Prediction for a test example votes on/averages predictions from all the DTs

Boosting

Adaboost algorithm

- Given: Training data $(x_1, y_1), \ldots, (x_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$
- Initialize weight of each example (x_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - ullet Learn a weak $h_t(oldsymbol{x})
 ightarrow \{-1,+1\}$ using training data weighted as per D_t
 - Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^{N} D_t(n) \mathbb{1}[h_t(\mathbf{x}_n) \neq y_n]$$

- Set "importance" of h_t : $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$ (gets larger as ϵ_t gets smaller)
- Update the weight of each example

$$D_{t+1}(n)$$
 \propto $\begin{cases} D_t(n) \times \exp(-\alpha_t) & \text{if } h_t(\mathbf{x}_n) = y_n \\ D_t(n) \times \exp(\alpha_t) & \text{if } h_t(\mathbf{x}_n) \neq y_n \end{cases}$ (correct prediction: decrease weight) $= D_t(n) \exp(-\alpha_t y_n h_t(\mathbf{x}_n))$

- Normalize D_{t+1} so that it sums to 1: $D_{t+1}(n) = \frac{D_{t+1}(n)}{\sum_{m=1}^{N} D_{t+1}(m)}$
- Output the "boosted" final hypothesis $H(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t h_t(x))$

Example

Training set: 10 points (represented by plus or minus)
Original Status: Equal Weights

for all training samples

Round 1: Three "plus" points are not correctly classified; They are given higher weights.

Round 2: Three "minuse" points are not correctly classified; They are given higher weights.

Round 3: One "minuse" and two "plus" points are not correctly classified;

They are given higher weights.

Final Classifier: integrate the three "weak" classifiers and obtain a final strong classifier.