7. Übung zur Vorlesung Modellierung und Simulation im WS 2019/2020

Aufgabe 1: Raum-Zeit-Probleme

Gegeben ist die Wärmeleitungsgleichung $u_t(t,x) = u_{xx}(t,x)$ mit $0 \le x \le 3$ und $t \ge 0$, Randbedingungen u(t,0) = 1, u(t,3) = 6 und der Anfangsbedingung u(0,x) = 1 für 0 < x < 3. Das numerische Gitter ist so gewählt, dass $\Delta x = 1$. Die Zeitschrittweite sei $\Delta t = 1/2$.

- a) Formulieren Sie für die gegebene Wärmeleitungsgleichung das explizite Differenzenverfahren. Geben Sie hierbei auch die Rand- und Anfangsbedingungen in diskreter Form an.
- b) Berechnen Sie nun unter Verwendung des expliziten Differenzenverfahrens die beiden Werte u_1^1 und u_2^1 .

Aufgabe 2: Raum-Zeit-Probleme

Gegeben ist das Raum-Zeit-Problem

$$u_t(t,x) = u_{xx}(t,x) - u(t,x)$$

mit $1 \le x \le 4$ und $t \ge 0$, Randbedingungen u(t,1) = 0, u(t,4) = 8 und der Anfangsbedingung u(0,x) = 1 für 1 < x < 4. Das numerische Gitter ist so gewählt, dass $\Delta x = 1$ ist.

- a) Diskretisieren Sie die partielle Differenzialgleichung nach dem expliziten Differenzenverfahren. Geben Sie hierbei auch die Rand- und Anfangsbedingungen in diskreter Form an.
- b) Wählen Sie für die gegebene Diskretisierung $\Delta x = 1$ die größt mögliche Zeitschrittweite, so dass das explizite Differenzenverfahren stabil bleibt.
- c) Berechnen Sie nun unter Verwendung des expliziten Differenzenverfahrens die beiden Werte u_1^1 und u_2^1 als Ergebnis der ersten Zeititeration.

Aufgabe 3: Partielle Differenzialgleichung und Taylorformel

Gegeben ist das Raum-Zeit-Problem $u_t = u_{xx} - u - x^2 + u^3$ für $2 \le x \le 6$ und $t \ge 0$ mit Randbedingungen u(t, 2) = 5, u(t, 6) = 0 und Anfangsbedingung u(0, x) = 1.

a) Diskretisieren Sie die partielle Differenzialgleichung mit Vorwärtsdifferenzen in der Zeit t und zentralen Differenzen im Ort x. Wählen Sie für das diskrete Raum-Zeit Gitter eine Zerlegung von $\Delta x = 1$ und $\Delta t = 1/2$. Formulieren Sie das explizite finite Differenzenverfahren und geben Sie hiebei auch die Randbedingungen und die Anfangsbedingung in diskreter Form an.

- b) Berechnen Sie unter Verwendung des expliziten Differenzenverfahrens die Werte u_1^1, u_2^1, u_3^1 der ersten Zeititeration.
- c) Betrachten Sie nun die reine 1-dimensionale Wärmeleitungsgleichung $u_t = u_{xx}$ und das implizite Lösungsverfahren

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \frac{1}{(\Delta x)^2} \left(u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1} \right).$$

Entwickeln Sie die Anteile $u(t + \Delta t, x)$ als Funktion von t bei festem x und $u(t + \Delta t, x + \Delta x)$, $u(t + \Delta t, x - \Delta x)$ als Funktion von x bei festem $t + \Delta t$ jeweils in Taylorreihen bis einschließlich 4. Ordnung.

d) Bestimmen Sie durch Einsetzen der Taylorreihen den Diskretisierungsfehler für das Differenzenverfahren

$$e = \frac{u(t + \Delta t, x) - u(t, x)}{\Delta t} - \frac{u(t + \Delta t, x + \Delta x) - 2u(t + \Delta t, x) + u(t + \Delta t, x - \Delta x)}{\Delta x^2}.$$

in der Zeit- und Ortsvariablen.

Zusatzaufgabe: Partielles Ableiten

Bilden Sie zu den folgenden beiden Funktionen $u_{1,2}(t,x,y,z)$ alle ersten partiellen Ableitungen $\partial u/\partial t, \partial u/\partial y, \dots$ sowie alle zweiten partiellen Ableitungen (auch die gemischten) $\partial^2 u/(\partial t)^2, \partial^2 u/(\partial x)^2, \partial^2 u/(\partial x \partial t), \dots$:

a)
$$u_1(t, x, y, z) = (5 + 2t)^2 + x^2y^2 - 3(xz^3) + (y - z)t$$

b)
$$u_2(t, x, y, z) = e^{-tx} + y^2 \sin x - x^2(y^2 + z^2) + zt - 10$$