

Real Time, GPU-Accelerated Analysis and Visualization in the Life Sciences

Michelle Gill, PhD and Avantika Lal, PhD October 27, 2020

Outline

Overview of bioinformatics and the drug discovery process

GPU accelerated data science

Two examples of real-time, interactive clustering:

Identifying SARS-CoV-2 susceptible cells in the human lung

Virtual screen used to select potential SARS-CoV-2 inhibitors

Layers of Bioinformatics Data

Transcriptomics measures the activity of genes

Cheminformatics is a family of techniques associated with the search and retrieval of chemical compounds

Drug Discovery: an Informatics Perspective

\$1.8B and >10 Years to Bring a Drug to Market

RAPIDS Accelerates Scientific Discovery on the GPU

Graphics Processing Units (GPUs) perform thousands of operations in parallel using CUDA

Single-Cell Transcriptomics

Single-cell Transcriptomics Workflow

Single-Cell Transcriptomics in Medicine and Drug Discovery

Five Hours -> Twelve Minutes with GPUs

Step	CPU runtime m5a.12xlarge Intel Xeon Platinum 8000, 48 vCPUs	GPU runtime g4dn.12xlarge T4 16 GB GPU (Acceleration)	GPU runtime p3.8xlarge Tesla V100 16 GB GPU (Acceleration)
Preprocessing	4337	344 (13x)	336 (13x)
PCA	29	28 (1.04x)	23 (1.3x)
t-SNE	5833	134 (44x)	38 (154x)
k-means (single iteration)	113	13.2 (8.6x)	2.4 (47x)
KNN	670	106 (6.3x)	55.1 (12x)
UMAP	1405	87 (16x)	19.2 (73x)
Louvain clustering	573	5.2 (110x)	2.8 (205x)
Leiden clustering	6414	3.7 (1733x)	1.8 (3563x)
Re-analysis of subgroup	249	10.9 (23x)	8.9 (28x)
End-to-end notebook run (steps above + data load and additional processing)	19908	912	702
Price (\$/hr)	2.064	3.912	12.24
Total cost (\$)	11.414	0.991	2.388

Real-Time, Interactive Browsing of Human Lung Cells

Cheminformatics in Drug Discovery

Virtual screening (in silico)

Assay analysis (in vitro / in vivo)

Featurization of Chemicals with Morgan Fingerprints

Source: Rogers and Hahn. J. Chem. Inf. Model. (2010) 50.5. Image: ChemAxon ECFP documentation

Cheminformatics Workflow

Virtual Screen of COVID-19 Drug Candidates

FEBS openbio

Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target the main coronavirus protease

Motonori Tsuji 📵

Institute of Molecular Function, Misato-shi, Saitama, Japan

CHEMBL ID	Structure	Target
CHEMBL1559003	-010	Survival motor neuron protein
CHEMBL2237553	grano	Aspergillus niger
CHEMBL1511674	apto	Histone-lysine N-methyltransferase MLL
CHEMBL3260476	- J. 00	Heat shock protein HSP 90-alpha
CHEMBL1170272	840	Serotonin 6(5-HT6) receptor

3-Chymotrypsin-Like Protease from SARS-CoV-2 (PDB ID 6Y2G) with Sepimostat (CHEMBL114586)

Source: Tsuji. FEBS OpenBio 10.6 (2020).

Real-Time, Interactive Browsing of COVID-19 Drug Candidates

Acknowledgements

Pat Walters, RELAY Therapeutics Abe Stern, NVIDIA Rajesh Ilango, NVIDIA Corey Nolet, NVIDIA Taurean Dyer, NVIDIA John Zedlewski, NVIDIA Johnny Israeli, NVIDIA

GitHub Repos

clara-parabricks/rapids-single-cell-examples NVIDIA/cheminformatics

Twitter

Michelle: @modernscientist

Avantika: @lal_avantika

Who We Are

Michelle Gill, PhD Senior Scientist - Deep Learning, Proteomics, and Cheminformatics

Avantika Lal, PhD Senior Scientist - Deep Learning, Genomics

Real-Time, Interactive Browsing of COVID-19 Drug Candidates

Cheminformatics in

Subtitle Op

How We Work

Domain-specific Collaborations

Applied AI & HPC Research

SDKs & 3rd Party Integrations

Productized Pipelines

CONTENT SLIDE

Subtitle Optional

Body/bullet text with no bullet icon

Use 14 pt Trebuchet font

No sub-bullets

No more than five bullets; one idea per bullet

Example of highlighted text

SAME AS PREVIOUS SLIDE

But Includes Logo and Page Number in Lower Right Corner

BULLET ICON

Body/bullet text WITH a bullet icon option

NVIDIA CONFIDENTIAL

Use This for Slides That Include "Confidential" Information/Data

NVIDIA 👱

TITLE ONLY SLIDE

