Jupyter Notebooks on UCloud

Import the bam files generated on the Galaxy server. This will require a bit of copy/paste action. You will need to get links for each of the 12 bam files you generated in Galaxy. You can find the link by right clicking on the disk icon inside the dataset (shown in the image below) and selecting "Copy link". You can than paste the link in the cell below, in the wget comand. Be sure that the name of the output and the name of the sample it was generated from are matching.

Lecture overview

- Mapping algorithms
- Mapping software
- Input format FASTQ
- Output format SAM/BAM/CRAM

Mapping reads example

Naïve mapping – much too slow

Try every position in the reference until match:

ACGTTACCGAATCGATCAAG TCGA

m = query lengthn = genome length

Time: 0(mn)

Dynamic programming – still too slow

Needleman-Wunsch algorithm is used in BLAST, but still runs in O(mn)

Mapping by indexing

- Mapping millions of reads
 - Fast algorithms needed
 - Indexing speeds up searches
 - Hash tables
 - Suffix trees
 - Burrows-Wheeler transform and FM index

Seeds and hashes

Hash tables

 Represent a collection of key/value pairs that are organized based on the hash code of the key.

Seeds and hashes

Seeds and hashes

Novoalign and **Stampy** use a combination of hash tables and dynamic programming to achieve sensitive and accurate alignments

Banded affine gap alignment

Suffix trees

• Exact matches for any substring of L length with just L comparisons. Independent of reference length.

ananas anna

Burrows-Wheeler transform & FM-index

- Suffix trees built from Burrows-Wheeler transformed data are much more efficient
- FM-index a compressed suffix tree
- http://www.di.unipi.it/~ferragin/Libraries/fmindex
 V2/index.html

Burrows-Wheeler transform & FM-index

Transformation				
Input	All Rotations	Sort the Rows	Output	
^BANANA@	^BANANA@ @^BANANA A@^BANAN NA@^BANA ANA@^BAN NANA@^BA ANANA@^BA ANANA@^B	ANANA 6 ^ B ANA 6 ^ BANAN A 6 ^ BANAN BANANA 6 ^ BA NANA 6 ^ BANA NA 6 ^ BANA ^ BANANA 6 6 ^ BANANA	BNN^AA@A	

Making fast mapping possible

- Reduce global alignment problem to exact matching
- Use efficient data structures hash tables, suffix trees,
 Burrows-Wheeler transform with FM-index
- Limit the use of dynamic programming to short local alignments defined by exact matching seeds

Lecture overview

- Mapping algorithms
- Mapping software

Software overview

Bowtie2 FM-index does long reads and gapped alignments

BWA mem FM-index, long reads, automatic local/global alignment

NextGenMap Hashing ref, high speed and good sensitivity

Minimap2 Minimizers and hashing

Use BWA mem or Bowtie2 for short reads. Minimap2 or NextGenMap (PMID: 23975764) might also be interesting to try.

Software overview

Long NGS reads

NGS reads are no longer necessarily short reads

Multiple seeds per read

Bowtie2: FM-index + dynamic programming

bwa mem: FM-index + re-seeding + seed chaining and chain filtering + global vs. local alignment assessment

NGMLR: Hashing + split reads + alignment combinations

Minimap2: Minimizers and hashing. PacBios official choice https://github.com/PacificBiosciences/pbmm2

NGMLR - NextGenMapLongReads

NGMLR

Repeats

Mapping algorithms PMID: 22124482

Library preparation and read orientation

Graph-based approaches

The practical haplotype graph

a platform for storing and using pangenomes for imputation

10.1101/2021.08.27.457652

https://www.annualreviews.org/doi/10.1146/annurev-genom-120219-080406

Lecture overview

- Mapping algorithms
- Mapping software
- Input format FASTQ

Input format - FASTQ

Read name: @HWI-EAS133 0001:6:1:2:987#0/1

Read sequence: TCACACCACTGACAAGTNTGACCGAATACAGACAAA

Read name: +HWI-EAS133 0001:6:1:2:987#0/1

Base call quality: aa aaaaaaaab _aaa Bab ^aaaaaaaaaaaa]

PMID: 20015970

Lecture overview

- Mapping algorithms
- Mapping software
- Input format FASTQ
- Output format SAM

Mapping reads example

Header section @HD:

- @SQ Reference sequence dictionary
- @RG Read group
- @PG Program
- @CO One-line text comment

Sequence Alignment/Map format

Table 1. Mandatory fields in the SAM format

No.	Name	Description
1	QNAME	Query NAME of the read or the read pair
2	FLAG	Bitwise FLAG (pairing, strand, mate strand, etc.)
3	RNAME	Reference sequence NAME
4	POS	1-Based leftmost POSition of clipped alignment
5	MAPQ	MAPping Quality (Phred-scaled)
6	CIGAR	Extended CIGAR string (operations: MIDNSHP)
7	MRNM	Mate Reference NaMe ('=' if same as RNAME)
8	MPOS	1-Based leftmost Mate POSition
9	ISIZE	Inferred Insert SIZE
10	SEQ	Query SEQuence on the same strand as the reference
11	QUAL	Query QUALity (ASCII-33=Phred base quality)

PMID: 19505943


```
QNAME HWI-ST476:149:D1BMPACXX:8:2205:8604:71436
      FLAG 163
      RNAME chr3 1000001
     POS
             60
     MAPO
     CIGAR 101M
     MRNM
     MPOS 278
9
      ISIZE 375
10
            TTCCAATCTTCACAATTCATTTTTTCA[...]
      SEQ
             CCFFFFHHHHHJJJJJJJJJJJJJJJJJJI[...]
11
     QUAL
     OPT
12
             XT:A:U NM:i:0 SM:i:37 AM:i:37 X0:i:1 X1:i:0 XM:i:0
             XO:i:0 XG:i:0 MD:Z:101
```

How is the insert size (template length) calculated?

]	Flag	Description	
1]	0x0001	the read is paired in sequencing, no matter whether it is mapped in a pair	
2]	0x0002	the read is mapped in a proper pair (depends on the protocol, normally inferred during alignment) ¹	
4]	0x0004	the query sequence itself is unmapped	
8	0x0008	the mate is unmapped ¹	
16	0x0010	strand of the query (0 for forward; 1 for reverse strand)	
32	0x0020	strand of the mate ¹	
64	0x0040	the read is the first read in a pair ^{1,2}	
28	0x0080	the read is the second read in a pair 1,2	
256]	0x0100	the alignment is not primary (a read having split hits may have multiple primary alignment records)	
512	0x0200	the read fails platform/vendor quality checks	
)24]	0x0400	the read is either a PCR duplicate or an optical duplicate	

According to FLAG 163 (=128+32+2+1), the read mapped is the

- second read in the pair (128)
- regarded as properly paired (1 + 2)
- its mate is mapped to the reverse strand (32)

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

The extended CIGAR string...

BWA generates the following optional fields. Tags starting with 'X' are specific to BWA.

Tag	Meaning	
NM	Edit distance	
MD	Mismatching positions/bases	
AS	Alignment score	
вс	Barcode sequence	
X0	Number of best hits	
X1	Number of suboptimal hits found by BWA	
XN	Number of ambiguous bases in the referenece	
XM	Number of mismatches in the alignment	
хо	Number of gap opens	
XG	Number of gap extentions	
XT	Type: Unique/Repeat/N/Mate-sw	
XA	Alternative hits; format: (chr,pos,CIGAR,NM;)*	
xs	Suboptimal alignment score	
XF	Support from forward/reverse alignment	
XE	Number of supporting seeds	


```
QNAME HWI-ST476:149:D1BMPACXX:8:2205:8604:71436
      FLAG 163
      RNAME chr3 1000001
      POS
5
             60
     MAPO
      CIGAR 101M
6
     MRNM
     MPOS 278
9
      ISIZE 375
10
             TTCCAATCTTCACAATTCATTTTTTCA[...]
      SEQ
11
             CCFFFFHHHHHJJJJJJJJJJJJJJJJI[...]
      QUAL
12
      OPT
             XT:A:U NM:i:0 SM:i:37 AM:i:37 X0:i:1 X1:i:0 XM:i:0
             XO:i:0 XG:i:0 MD:Z:101
```

Output format – SAM/BAM

BAM files are binary versions of the SAM files.

These take up less space and can be indexed for quick lookups and data extraction.

They are not human readable like the SAM files.

CRAM files are compressed binary alignment files, 30-60% smaller than corresponding BAMs.

SAM/BAM links:

http://www.htslib.org/doc/

http://samtools.github.io/hts-specs/