

CHEM F111: General Chemistry Semester I: AY 2017-18

Lecture-05, 17-01-2018

Summary: Lecture - 04

General form of the wavefunctions:

$$\Psi_n(x) = \left(\frac{2}{a}\right)^{1/2} \sin\frac{n\pi x}{a} \quad 0 \le x \le a, \ n = 1, 2, 3 \dots$$

$$E_n = \frac{n^2 \pi^2 \hbar^2}{8mb^2} = \frac{n^2 h^2}{8mL^2}$$
 Energy eigenvalues,

$$L = 2b - \text{length of box.}$$

- Zero point energy state represented by n=1
- Energy levels are not continuous

Work out: Determine the energy of a particle confined to move in one dimension of length I using the general form of the wavefunction:

Wave functions & probability

Observation: For n=2 state, there is zero probability of finding the particle at x = L/2. Question: How can the particle move from one side of the box to the other? As the particle is not found at the center.

Is this a valid question??

Microscopic particles can not fully and precisely be described by concept in classical physics.

Wave functions & probability

No. of e^- is increasing (b) > (c) > (d) > (e)

Work out: Calculate the probability that a particle in a one-dimensional box of length a is found to be between 0 and a/2

PIB: Comparison with classical results

- Probability of finding the particle.
- For high quantum number we approach classical limit – uniform probability density.
- Bohr correspondence principle.

PIB – Two dimensional

Within the box, V(x) = c; We may consider c = 0 [PIB - 1D]

V (x, y) = 0 in the region
$$0 \le x \le L_1$$

 $0 \le y \le L_2$

$$\Psi_{n_x}(x) = \left(\frac{2}{L_1}\right)^{1/2} \sin\frac{n\pi x}{a} \, n_x = 1, 2, 3 \dots$$

$$\Psi_{n_y}(y) = \left(\frac{2}{L_2}\right)^{1/2} \sin\frac{n\pi y}{a} \, n_y = 1, 2, 3 \dots$$

PIB - Two dimensional

$$\psi(x,y) = \sqrt{\frac{2}{L_1}} \sqrt{\frac{2}{L_2}} \sin\left(\frac{n_x \pi x}{L_1}\right) \sin\left(\frac{n_y \pi y}{L_2}\right)$$

$$E = \frac{n_x^2 h^2}{8mL_1^2} + \frac{n_y^2 h^2}{8mL_2^2}$$
 Where $n_x = 1, 2, 3...$ $n_y = 1, 2, 3...$

PIB - Two dimensional, Square

For square box:
$$L_1 = L_2 = L$$

Ground state:
$$n_x = 1 \& n_y = 1$$

Ground state energy:

First excited state is degenerate:

$$n_x = 2$$
 and $n_v = 1$ or $n_x = 1$ and $n_v = 2$

$$E = \frac{5h^2}{8mL^2}$$

$$\frac{2h^2}{8mL^2}$$

PIB – Application

PIB: Simple model of molecular energy levels

Anthracene

 π electrons – consider "free" in box of length L. $L \approx 6 \ {\rm \mathring{A}}$ Ignore all coulomb interactions.

$$m = m_e = 9 \times 10^{-31} \text{ kg}$$
 $L = 6 \text{ Å} = 6 \times 10^{-10} \text{ m}$
 $h = 6.6 \times 10^{-34} \text{ Js}$
 $\Delta E = 5.04 \times 10^{-19} \text{ J}$

Calculate wavelength of absorption of light.

Form particle in box energy level formula

$$\Delta E = E_2 - E_1 = \frac{3h^2}{8mL^2}$$

 S_1

Small molecules — absorb in UV.

$$\Delta E = h \nu$$

$$\nu = \Delta E / h = 7.64 \times 10^{14} \text{ Hz}$$

$$\lambda = c / \nu = 393 \text{ nm} \quad \text{blue-violet}$$

Experiment
$$\Rightarrow$$
 400 nm

Summary: PIB

$$U(x) = 0 for - b < x < b$$

$$\Psi_n(x) = \left(\frac{2}{a}\right)^{1/2} \sin \frac{n\pi x}{a}$$

- Zero point energy
- Degenerate states

$$E_n = \frac{n^2 \pi^2 \hbar^2}{8mb^2} = \frac{n^2 h^2}{8mL^2}$$
 Energy eigenvalues,

$$L = 2b - \text{length of box.}$$

Particle on a ring

A simplified rotational problem: Rigid plane rotor

- For a diatomic molecule bond length is fixed.
- The molecule is constrained to rotate in a plane assume the surface is frictionless.
- Rigid plane rotor is a one-dimensional angular momentum problem.
- Angular momentum: $L = I\omega$ (I = moment of inertia = μr^2)

Particle on a ring

r and θ are fixed Cartesian to polar coordinates: $\Psi(x, y) \rightarrow \Psi(\varphi)$

Define an operator to measure the Z-component of angular momentum:

$$\hat{L}_{z} = -i\hbar \frac{\partial}{\partial \phi} = \frac{\hbar}{i} \frac{\partial}{\partial \phi}$$

Particle on a ring

What would be the form of the \hat{H} ?

$$\widehat{H} = \widehat{T} + \widehat{V}$$

For a rigid rotor constrained to move in a plane: V = 0

$$\widehat{H} = \widehat{T}$$

KE:
$$\widehat{T} = \frac{L_Z^2}{2I}$$
; Thus, $\widehat{H} = -\frac{\hbar^2}{2I} \frac{\delta^2}{\delta \varphi^2}$

Schröndinger Equation

$$-\frac{\hbar^2}{2I}\frac{d^2}{d\varphi^2}\Phi(\varphi)=E\Phi(\varphi)$$

$$\Rightarrow \frac{d^2}{d\varphi^2} \Phi(\varphi) = -\frac{2I}{\hbar^2} E \Phi(\varphi)$$

Can we guess any solution for this ODE?

2nd derivative of a function is equals the function times a –ve const.

General solution:
$$oldsymbol{\Phi}(oldsymbol{\phi}) = A_{m\pm} \ e^{\pm imoldsymbol{\Phi}}$$

..Equn. 1

Work out: Calculate normalization constant of the wave function. N = $\frac{1}{\sqrt{2\pi}}$

Normalized wave function:

$$\Phi(\phi) = \frac{1}{\sqrt{2\pi}} e^{\pm im\Phi}$$
 Solves the differential equation but not an acceptable wavefunction

Acceptable wave function

• Requirement that $\Phi(\varphi)$ to be continuous is:

$$\Phi (\varphi + 2\pi) = \Phi(\varphi) \qquad \qquad \dots \dots Equn. 2$$

Substitute Equn. (2) into Equn. (1)

$$A_{m+} e^{+im(\Phi+2\pi)} = A_{m+} e^{+im\Phi}$$

$$A_{m-}e^{-im(\Phi+2\pi)} = A_{m-}e^{-im\Phi}$$

$$e^{\pm i2\pi m}=1$$

$$\Rightarrow$$
 cos(2 π m) \pm i sin(2 π m) = 1 (cos2 π m=1 and sin2 π m=0)

$$\Rightarrow$$
 m = 0, \pm 1, \pm 2, \pm 3 (m: quantum no => magnetic quantum no.)

Energy and angular momentum

Wave functions:
$$\Phi(\varphi)$$

Work out:
$$\Phi(\varphi) = \frac{1}{\sqrt{2\pi}} e^{\pm im\Phi}$$

Work out:

- Apply energy operator on $oldsymbol{\Phi}(oldsymbol{arphi})$ to obtain the energy
- Apply angular momentum operator on $oldsymbol{\Phi}(oldsymbol{arphi})$ to obtain angular momentum

$$-\frac{\hbar^2}{2I}\frac{d^2}{d\varphi^2}\Phi(\varphi) = E\Phi(\varphi) \qquad E = \frac{m^2\hbar^2}{2I}$$

- All states with $|m| \ge 1$ are doubly degenerate.
- m = 0 is an allowed state.
- Angular momentum would be mħ
- Angular momentum is also quantized.

Wave funcitons

$$\boldsymbol{\Phi}(\boldsymbol{\varphi}) = \frac{1}{\sqrt{2\pi}} \, for \, m = 0$$

General solution for $|m| \ge 1$ ${m \Phi}({m \varphi}) = A_{m+} \, e^{\pm im{m \Phi}}$

Work out: (i) Show that linear combinations $(e^{im\Phi} + e^{-im\Phi}) \& (e^{im\Phi} - e^{-im\Phi})$ are also eigen function of the Hamiltonian of rigid rotor with same eigen value.

(ii) Show:
$$\cos(m\Phi) = \frac{e^{im\Phi} + e^{-im\Phi}}{2}$$
 and $\sin(m\Phi) = \frac{e^{im\Phi} - e^{-im\Phi}}{2i}$

Consequence: Real functions $cos(m\Phi)$ & $sin(m\Phi)$ are having same energy as that of $\Phi(\varphi) = e^{\pm im\Phi}$

Real solution for |m| ≥1

$$\Phi_{|m|}(\varphi) = \frac{1}{\sqrt{2\pi}} \cos|m|\varphi$$
 and $\frac{1}{\sqrt{2\pi}} \sin|m|\varphi$ for $|m| \ge 1$

(will be used in H-atom problem)