Animal Classification Using CNN

1. Project Structure

Animal_Classification_Project/

train/ # Training images

validation/ # Validation images

animal_classifier_model.h5 # Saved trained model

predict.py # Prediction script

train_model.py # Training script

requirements.txt # List of libraries

2. Features

- Image classification using Convolutional Neural Networks (CNN).
- Augmented image preprocessing for better generalization.
- Real-time prediction from file path input.
- Graphical visualization using Matplotlib.
- Evaluation through accuracy, confusion matrix, and classification report.

3. Model Architecture

Sequential CNN Architecture:

- Conv2D(32) -> MaxPooling2D
- Conv2D(64) -> MaxPooling2D
- Conv2D(128) -> MaxPooling2D

Animal Classification Using CNN

- Dense(512) -> Dense(1, activation='sigmoid')
- Loss Function: binary_crossentropy
- Optimizer: Adam (Ir=0.001)
4. How to Run
1. Install dependencies:
pip install tensorflow matplotlib scikit-learn
2. Train model:
python train_model.py
3. Predict an image:
python predict.py
5. Sample Prediction
img_path = "path_to_image.jpg"
<pre>print(f"Predicted animal: {predict_animal(img_path)}")</pre>
Output: Predicted animal: dolphin
6. Results

- Flatten -> Dropout(0.5)

Animal Classification Using CNN

Training Accuracy: 0.00 (due to incorrect setup)

Validation Accuracy: 1.00 (likely due to configuration issues)

Confusion Matrix:

[[2500]]

Classification Report:

precision recall f1-score support

cats 1.00 1.00 1.00 2500

7. Libraries Used

- TensorFlow
- NumPy
- Matplotlib
- scikit-learn

8. Author

Shweta Pattewar