Sec 9.1 (6) Let μ_1 = average teachers' salary for all teachers in California, μ_2 =average teachers' salary for all teachers in New York.

$$H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2.$$

$$\bar{X}_1 = 64510$$
; $\sigma_1 = 8200$; $\bar{X}_2 = 62900$; $\sigma_2 = 7800$

$$\bar{X}_1 = 64510; \ \sigma_1 = 8200; \ \bar{X}_2 = 62900; \ \sigma_2 = 7800$$

Test statistic: $z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = 0.95$

Reject H_0 if test statistic $|z| > z_{\alpha/2} = z_{0.05} = 1.65$. Since z = 0.95, cannot reject H_0 . With $\alpha = 0.1$, do not have enough evidence to support the claim that the average salaries are different.

Sec 9.1 (18) Let μ_1 = average credit card debt for a recent year in the population, μ_2 =average credit card debt for five years ago in the population.

$$\bar{X}_1 = 9205; \ n_1 = 35; \ \bar{X}_2 = 6618; \ \sigma_2 = 35; \ \sigma_1 = \sigma_2 = 1928$$

 $\alpha = 0.05; \ z_{\alpha/2} = 1.96$

95% confidence interval for
$$(\mu_1 - \mu_2)$$
 is $(\bar{X}_1 - \bar{X}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = (1683.67, 3490.33).$

With 95% confidence level, the difference in credit card debt($\mu_1 - \mu_2$) is estimated to be (1683.67, 3490.33). Since both endpoints are positive, indicating significant evidence that average credit card debt is more than 5 years ago.

Sec 9.2 (2) Let μ_1 = mean value of the tax-exempt proportion in city A, μ_2 = mean value of the tax-exempt proportion in city B.

$$H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2.$$

The statistic:
$$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = -0.942$$

Test statistic:
$$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = -0.942$$

$$df = \min(n_1 - 1, n_2 - 1) = 15$$
 Reject H_0 if test statistic $|T| > t_{\alpha/2,15} = t_{0.025,15} = 2.131$.

Since T = -0.942, cannot reject H_0 .

With $\alpha = 0.05$, we do not have enough evidence to support the tax collector's claim that the mean are different.

Sec 9.3 (8) Let μ_d = population mean differences in weights (before – after).

$$H_0: \mu_d = 0; H_1: \mu_d > 0.$$

$$\bar{d}=4.833;\ s_d=3.869;\ n=6;\ df=n-1=5;\ \alpha=0.05.$$
 Test statistic: $T=\frac{\bar{d}}{s_d/\sqrt{n}}=3.06$

Test statistic:
$$T = \frac{\bar{d}}{8 \sqrt{\sqrt{n}}} = 3.06$$

Reject
$$H_0$$
 if test statistic $|T| > t_{5,0.05} = 2.015$. Since $T = 3.06$, reject H_0 .

With $\alpha = 0.05$, have enough evidence to support the claim that the dogs lose weight.

Sec 9.4 (10) Let p_1 = population proportion of mail carriers bitten in Clevelard, p_2 =population proportion of mail carriers bitten in Philadelphia.

$$H_0: p_1 = p_2; H_1: p_1 \neq p_2.$$

$$\hat{p}_1 = 10/73 = 0.14; \ \hat{p}_2 = 16/80 = 0.2; \ \bar{p} = (10+16)/(73+80) = 0.17;$$

Checking of condition for normal approximation: $n_1\bar{p} = 12.41; n_1(1-\bar{p}) = 60.59; n_2\bar{p} =$ $13.6; n_2(1-\bar{p}) = 66.4;$ All large than 5.

Test statistic: $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\bar{p}(1-\bar{p})(1/n_1 + 1/n_2)}} = -0.99$

Reject H_0 if test statistic $|z| > z_{\alpha/2} = 1.96$. Since z = -0.99, cannot reject H_0 .

With $\alpha = 0.05$, do not have enough evidence to support the claim that the population proportion of mail carriers bitten are different in Clevelard and Philadelphia.

Sec 9.4 (10) Checking for condition for normal approximation: $n_1\hat{p}_1 = 10; n_1(1-\hat{p}_1) = 63; n_2\hat{p}_2 =$ $16; n_2(1 - \hat{p}_2) = 64;$ All large than 5. 95% confidence interval for $p_1 - p_2$ is

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} = (-0.18, 0.06)$$

With 95% confidence level, the estimate of the population difference in proportions of mail carriers being bitten in the two cities is from -0.18 to 0.06, indicating an significant difference since zero is included in the interval.

Sec 9.4 (24) Let p_1 = proportion of men in industrial sales in the population, p_2 = proportion of men in medical supply sales in the population.

 $H_0: p_1 = p_2; H_1: p_1 \neq p_2.$

 $\hat{p}_1 = 114/200 = 0.57; \ \hat{p}_2 = 80/200 = 0.4; \ \bar{p} = (114 + 80)/(200 + 200) = 0.485;$

Checking of condition for normal approximation: $n_1\bar{p} = 97$; $n_1(1-\bar{p}) = 103$; $n_2\bar{p} = 103$ $97; n_2(1-\bar{p}) = 103;$ All large than 5.

Test statistic: $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\bar{p}(1-\bar{p})(1/n_1 + 1/n_2)}} = 3.402$

Reject H_0 if test statistic $|z| > z_{\alpha/2} = 1.96$. Since z = 3.402, reject H_0 .

With $\alpha = 0.05$, have enough evidence to support the claim that the proportions are different.

Sec 9.5 (14) Let σ_1^2 = population variance in carbohydrate content for nonchocolate candy, σ_2^2 = population variance in carbohydrate content for chocolate candy.

 $H_0: \sigma_1^2 = \sigma_2^2; H_1: \sigma_1^2 \neq \sigma_2^2.$

 $s_1 = 11.2006$; $n_1 = 11$; $s_2 = 6.4985$; $n_2 = 13$ Test statistic: $F = \frac{s_1^2}{s_2^2} = 2.97$

Reject H_0 if test statistic $F > F_{0.05,10,12} = 2.75$. Since F = 2.97, reject H_0 .

With $\alpha = 0.1$, have enough evidence to support the claim that the variances in carbohydrate grams of chocolate candy and nonchocolate candy are different.

*** Fnd ***