## Resonance and beats

Suppose you have an object of mass 1 kg hanging from a spring with damping coefficient 1/10 N/(m/s) and spring coefficient 1 N/m. If the mass is oscillating, what is the pseudo frequency (in radians per second)?

**Answer**  $\sqrt{3.99}/2 \approx 0.999$ 

Now suppose there is a forcing function  $2\sin(t)$ . Solve the differential equation and determine the amplitude of the steady state response. How does this amplitude compare to the amplitude of the forcing function?

**Answer** The steady state solution is  $-20\cos(t)$ , which has amplituted 20.

What if you change the forcing function to  $2\sin(2t)$ . Now what is the amplitude of the steady state response?

**Answer** The steady state solution is  $\frac{5}{113}(\cos t + 25\sin t)$ , which has amplitude  $\frac{5\sqrt{226}}{113} \approx 0.66$ .

Suppose you have an object of mass 1 kg hanging from a spring with spring coefficient 1 N/m, without any damping or forcing function. What is the frequency of oscillation (in radians per second)?

## Answer 1

Suppose there is a forcing function of  $\cos(11t/10)$ , and at time t = 0, the mass is at u = 0 with u' = 0. Determine the position of the mass at any time.

**Answer**  $y = -\frac{100}{21}(\cos(\frac{11}{10}t) - \cos t).$ 

Use the trig identity

$$\cos u - \cos v = -2\sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$$

to rewrite your answer as a product of two sin functions. Sketch a graph. This is an example of a *beat*. A similar thing happens when you play two tones at very close frequencies; you can then hear the amplitude of the sound increase and decrease in a periodic way.

**Answer**  $u(t) = \frac{200}{21} \sin(\frac{21}{20}t) \sin(\frac{1}{20}t)$ 



The red line is the graph of  $\pm \frac{200}{21} \sin(\frac{1}{20}t)$ . The graph of u oscillates between these functions.