Chapitre 4 : Réduction des endomorphismes

Sommaire:

I - Outils

II - Éléments Propres

III - Polynôme caractéristique

IV - Diagonalisation

<u>V - Trigonalisation</u>

VI – Endomorphisme nilpotent

<u>VII – Polynômes d'endomorphismes</u>

VIII - Théorème de Cayley-Hamilton

Soit E un K-espace vectoriel.

I – Outils

II – Eléments propres

Soit $u \in L(E)$

Définition:

Soit $x \in E$. x est vecteur propre de u si :

$$\begin{cases} x \neq 0 \\ \exists \lambda \in \mathbb{K}, u(x) = \lambda x \end{cases}$$

 λ est alors appelé valeur propre de u associée au vecteur propre x.

On note:

- $E_{\lambda}(u) = \ker(u \lambda Id) = \{x \in E | u(x) = \lambda x\}$ le sous-espace propre de u associé à la valeur propre λ .
- $Sp(u) = \{\lambda \in \mathbb{K} \big| E_{\lambda}(u) \neq \{0\} \}$ l'ensemble des valeurs propres de u.

Propositions:

- $Vect(x_0)$ est stable par $u \Leftrightarrow x_0$ est vecteur propre de u.
- Des sous-espaces propres associés à des valeurs propres 2 à 2 distinctes sont toujours en somme directe.
- Des vecteurs propres associés à des valeurs propres 2 à 2 distinctes forment une famille libre.
- Si E est de dimension finie, $Card(Spu) \le dim E$
- Si deux endomorphismes commutent, le noyau, l'image et les sous-espaces propres de l'un sont stables par l'autre.
- $A \sim B \Rightarrow Sp A = Sp B$

III – Polynôme caractéristique

On suppose E de dimension finie. Soit $u \in L(E)$.

Définition:

On note $\chi_u(X) = Det(X.Id - u)$ le polynôme caractéristique de u.

Propositions:

- $A \sim B \Rightarrow \chi_A = \chi_B$
- Si $A \in M_n(\mathbb{R}), \chi_A(X) = X^n tr(A)X^{n-1} + \dots + (-1)^n det(A)$
- $Sp A = Rac \chi_A$
- $\quad \lambda \in Sp \ u \iff E_{\lambda}(u) \neq \{0\} \iff 1 \leq \dim E_{\lambda}(u) \leq m_{\lambda}$
- Soit $F \subset E$. Alors $\chi_{u|_F}/\chi_u$.

IV – Diagonalisation

On suppose E de dimension finie.

Définition:

$$u \ est \ diagonalisable \Leftrightarrow \begin{cases} \exists B \ base \ de \ E, Mat_B(u) \ est \ diagonale \\ \exists B \ base \ de \ E \ constituée \ de \ vecteurs \ propres \ de \ u \\ E = \bigoplus_{\lambda \in Sp(u)} E_\lambda(u) \end{cases}$$

Théorème:

$$u\ diagonalisable \Leftrightarrow \begin{cases} \chi_u\ est\ scind\'e \\ \forall \lambda \in Sp(u), \dim E_\lambda(u) = m_\lambda \end{cases}$$

Corollaire:

 χ_u scindé simple \Rightarrow u diagonalisable

V – Trigonalisation

On suppose E de dimension finie.

Définition:

A est trigonalisable si elle est semblable à une matrice triangulaire.

Théorème:

u est trigonalisable $\Leftrightarrow \chi_u$ est scindé

VI – Endomorphisme nilpotent

Définition:

$$u \ est \ nilpotent \Leftrightarrow \exists P \in \mathbb{N}^*, u^p = 0$$

Propositions:

- L'indice de nilpotence de u est inférieur ou égal à la dimension de E.

VII – Polynômes d'endomorphismes

Définition:

$$P$$
 est annulateur de u si $P(u) = 0$

Le polynôme minimal Π_u est l'**unique** polynôme unitaire de degté minimal annulateur de u.

Propositions:

- Π_u divise $P \Leftrightarrow P(u) = 0$
- En notant $d=\deg \Pi_u$, on a $\mathbb{K}[u]=Vect(u^k)_{k\in \mathbb{N}}=Vect(Id,u,...,u^{d-1})$
- $\forall P \in \mathbb{K}[X] \ tq \ P(u) = 0, Sp(u) \subset Rac(P)$
- $Sp(u) = Rac(\Pi_u)$
- $F \subset E SEV : \Pi_{u_{|F}} / \Pi_u$
- u est diagonalisable $\Rightarrow u_{|F}$ est diagonalisable

Lemme de décomposition des noyaux :

On suppose E de dimension finie.
Soient
$$P_1, ..., P_r \in \mathbb{K}[X]$$
 premiers entre eux deux à deux.
Soit $Q = P_1 \times ... \times P_r$
Alors $\ker Q(u) = \bigoplus_{k=1}^r \ker P_k(u)$

Théorème:

- u est diagonalisable $\Leftrightarrow \Pi_u$ est scindé simple

- u est diagonalisable $\Leftrightarrow \exists P$ scindé simple, P(u) = 0
- u est trigonalisable $\Leftrightarrow \Pi_u$ est scindé
- u est trigonalisable $\Leftrightarrow \exists P$ scindé, P(u) = 0

VIII – Théorème de Cayley-Hamilton

Théorème:

On suppose E de dimension finie. Soit
$$u \in L(E)$$
.
$$\begin{cases} \chi_u(u) = 0 \\ \Pi_u/\chi_u \end{cases}$$

Proposition:

Si χ_u est scindé,

$$E = \ker \chi_u(u) = \bigoplus_{\lambda \in Sp(u)} \ker(u - \lambda Id)^{m_{\lambda}}$$

Théorème de Dunford:

On suppose χ_u scindé.

$$\exists ! (d,n) \in L(E)^{2}, \begin{cases} d \ est \ diagonal \\ n \ est \ nilpotent \\ don = nod \\ u = d + n \end{cases}$$