Universidade do Minho Folha 1

- 0. Indução e recursão nos naturais
- **0.1** Prove, de duas formas diferentes, que, para todo o número natural $n \geq 2$, $2n \leq n^2$.
- **0.2** Prove por indução que, para todo o número natural n > 4, $n^2 < 2^n$. Note como é útil provar simultaneamente $2n + 1 < n^2$.
- **0.3** Para $n \in \mathbb{N}$, seja P(n) a propriedade: $2^n < n!$.
 - a) Mostre que: para $k \in \mathbb{N}$ e k > 3, se P(k) é verdadeira, P(k+1) também é verdadeira.
 - b) Indique, justificando, quais os naturais n para os quais P(n) é verdadeira.
- **0.4** Prove que, para qualquer $n \in \mathbb{N}$, $1 + \dots + n = n(n+1)/2$.
- **0.5** Prove que, para cada $n \in \mathbb{N}_0$:

a)
$$\sum_{i=0}^{n} 2i = n^2 + n;$$
 b) $\sum_{i=0}^{n} (2i+1) = (n+1)^2;$
c) $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6};$ d) $\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}, \text{ com } x \in \mathbb{R} \setminus \{0,1\}.$

- **0.6** Seja $f: \mathbb{N}_0 \to \mathbb{N}_0$ a função definida recursivamente por f(0) = 1 e f(n+1) = 2f(n), para cada $n \in \mathbb{N}_0$.
 - a) Calcule f(1) e f(2).
 - **b)** Mostre que, para cada $n \in \mathbb{N}_0$, $f(n) = 2^n$.
- **0.7** Seja $s: \mathbb{N} \to \mathbb{Q}$ a função definida por s(1) = 2 e $s(n+1) = \frac{2}{s(n)}$.
 - a) Determine $s(1), s(2) \in s(3)$.
 - b) Determine o contradomínio de s. Prove a sua afirmação por indução.
- **0.8** Sejam $a, b \in \mathbb{R}$ com $b \neq 1$ e seja $f : \mathbb{N} \to \mathbb{R}$ a função definida recursivamente por f(1) = a e $f(n+1) = f(n) + ab^n$ para cada $n \in \mathbb{N}$.
 - a) Verifique que $f(n) = \frac{a(1-b^n)}{1-b}$ para $n \in \{1,2,3\}$.
 - **b)** Mostre que, para cada $n \in \mathbb{N}$, $f(n) = \frac{a(1-b^n)}{1-b}$.
- $\mathbf{0.9}$ Seja A um conjunto finito.
 - a) Prove que, se A tem n subconjuntos e $a \notin A$, então $A \cup \{a\}$ tem 2n subconjuntos.
 - **b)** Prove que: $\#\mathcal{P}(A) = 2^{\#A}$.
 - c) Qual é o número de subconjuntos de A^3 , quando A é um conjunto com 3 elementos?

Universidade do Minho Folha 2

1. Indução e recursão estruturais

- **1.1** Seja S o subconjunto de $\mathbb{Q} \setminus \{0\}$ definido indutivamente pelas 3 regras apresentadas de seguida: (1) $1 \in S$; (2) $2 \in S$; (3) $q \in S \implies \frac{1}{q} \in S$.
 - a) Dê exemplos de elementos de S.
 - **b)** Mostre que o conjunto $\{\frac{1}{2},2\}$ é fechado para a operação $f:\mathbb{Q}\setminus\{0\}\to\mathbb{Q}\setminus\{0\}$ tal que $f(q)=\frac{1}{q}$, para qualquer $q\in\mathbb{Q}\setminus\{0\}$.
 - c) Determine o conjunto S.
- **1.2** Seja $A = \{a, b, c, d\}$ e seja $f: A \times A \to A$ a operação em A definida pela tabela

Seja B o subconjunto de A definido indutivamente por pelas duas condições: (1) $b \in B$; (2) se $x, x' \in B$ então $f(x, x') \in B$.

- a) Prove que $c \in B$.
- b) Determine os subconjuntos de A que têm o elemento b e são fechados para f.
- c) Determine B.
- 1.3 Apresente definições indutivas de cada um dos conjuntos que se seguem:
 - a) Conjunto dos naturais múltiplos de 5.
 - b) Conjunto dos números inteiros.
 - c) Conjunto das palavras sobre o alfabeto $A = \{0, 1\}$ cujo comprimento é impar.
 - d) Conjunto das palavras sobre o alfabeto $A=\{a,b\}$ que têm um número par de ocorrências do símbolo a.
- **1.4** Seja $A = \{1, 2, 3\}$ e seja G o subconjunto de A^* dado pela seguinte definição indutiva:
 - $(1) 1 \in G;$
 - (2) se $x \in G$ então $2x \in G$, para todo $x \in A^*$;
 - (3) se $x, y \in G$ então $3xy \in G$, para todo $x, y \in A^*$.

Considere ainda a função $S: G \longrightarrow \mathbb{N}$ definida, por recursão estrutural, do seguinte modo:

- S(1) = 1;
- para todo $x \in G$, S(2x) = 2 + S(x);
- para todo $x, y \in G$, S(3xy) = 3 + S(x) + S(y).
- a) Para cada letra $a \in A$, indique uma palavra $u \in G$ cuja primeira letra seja a.
- **b)** Mostre que $v = 3213211 \in G$.
- c) Defina por recursão estrutural a função $C: G \longrightarrow \mathbb{N}$ tal que, para todo $x \in G$, C(x) é o comprimento da palavra x.
- **d)** Calcule S(3211) e C(3211).
- e) Enuncie o Princípio de Indução Estrutural para G.
- f) Mostre que, para todo $x \in G$, i. S(x) é impar; ii. $C(x) \leq S(x)$.

Universidade do Minho Folha 3

2. Sintaxe do Cálculo Proposicional

- **2.1** Represente as seguintes frases através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar *frases atómicas*:
 - a) Se o Sr. João é feliz, a sua mulher é infeliz e se o Sr. João é infeliz, a sua mulher também o é.
 - b) Vou de comboio e perco o avião ou vou de camioneta e não perco o avião.
 - c) Se ganho sempre que jogo bem e não ganhei, então não joguei bem.
 - \mathbf{d}) Não se pode ter sol na eira e chuva no nabal.
 - e) Sou preso por ter cão, mas também sou preso por o não ter.
 - f) Uma condição necessária para ter aprovação a Lógica por avaliação periódica é ter pelo menos 7 valores no primeiro teste.
 - g) Uma condição suficiente para ter pelo menos 7 valores no primeiro teste é ter aprovação a Lógica por avaliação periódica
 - h) Uma condição necessária e suficiente para ter aprovação a Lógica por avaliação periódica é ter pelo menos 7 valores no primeiro teste.
 - i) Uma condição suficiente para ter aprovação a Lógica é ter 14 valores no primeiro teste e 7 valores no segundo teste.
- **2.2** Encontre exemplos de *frases verdadeiras* que possam ser representadas através das seguintes fórmulas:
 - **a**) $(p_1 \to ((\neg p_2) \lor p_3))$. **b**) $((p_4 \land (\neg p_0)) \lor p_6)$.
 - **c**) $(p_{13} \leftrightarrow (\neg p_8))$. **d**) $((p_{98} \land (p_{98} \rightarrow p_{99})) \rightarrow p_{99})$.
- **2.3** De entre as seguintes palavras sobre o alfabeto do Cálculo Proposicional, indique, justificando, aquelas que pertencem ao conjunto \mathcal{F}^{CP} :
 - **a**) $(\neg (p_1 \lor p_2))$. **b**) $((p_0 \land \neg p_0) \to \bot)$.
 - \mathbf{c}) $((\neg p_5) \to (\neg p_6))$. \mathbf{d}) (\bot) .
 - e) $((p_3 \wedge p_1) \vee (.$ f) $(((p_9 \rightarrow ((p_3 \vee (\neg p_8)) \wedge p_{12})) \leftrightarrow (\neg p_4)) \rightarrow (p_7 \vee \bot))).$
- 2.4 Para cada uma das seguintes fórmulas do Cálculo Proposicional:
 - i) p_{2015} . ii) $\neg \bot \lor \bot$. iii) $p_0 \to (\neg p_0 \to \neg p_1)$:
 - a) Calcule $\varphi[p_2/p_0]$, $\varphi[p_0 \wedge p_1/p_1]$ e $\varphi[p_{2016}/p_{2015}]$.
 - b) Indique o conjunto das suas subfórmulas.
- **2.5** Defina por recursão estrutural as seguintes funções (na alínea c) $BIN = \{\land, \lor, \rightarrow, \leftrightarrow\}$):
 - a) $p: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $p(\varphi) =$ número de ocorrências de parêntesis em φ .
 - **b)** $v: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $v(\varphi) =$ número de ocorrências de vars. proposicionais em φ .
 - c) $b: \mathcal{F}^{CP} \to \mathcal{P}(BIN)$ tal que $b(\varphi) = \{ \Box \in BIN : \Box \text{ ocorre em } \varphi \}.$
 - d) $_{-}[\perp/p_{7}]:\mathcal{F}^{CP}\to\mathcal{F}^{CP}$ (recorde que $\varphi[\perp/p_{7}]$ representa o resultado de substituir em φ todas as ocorrências de p_{7} por \perp).

Universidade do Minho Folha 4

- 2.6 Considere de novo as funções definidas no exercício anterior. Prove, por indução estrutural, que, para todo $\varphi \in \mathcal{F}^{CP}$:
 - a) $v(\varphi) \ge \#var(\varphi)$.
- **b)** $p(\varphi) \ge \#b(\varphi)$.
- c) $v(\varphi) \ge v(\varphi[\perp/p_7]).$ d) $b(\varphi) = b(\varphi[\perp/p_7]).$
- e) se $b(\varphi) \neq \emptyset$ então $p(\varphi) > 0$. f) se $p_7 \notin var(\varphi)$ então $\varphi[\perp /p_7] = \varphi$.
- **2.7** Seja $\varphi \in \mathcal{F}^{CP}$. O tamanho de φ (notação: $|\varphi|$) define-se por recursão do seguinte modo: (i) |p| = 1, para cada variável proposicional p; (ii) $|\perp| = 1$; (iii) $|(\neg \varphi)| = 1 + |\varphi|$; (iv) $|(\varphi \square \psi)| = 1 + |\varphi| + |\psi|$, para cada conetivo binário \square .
 - a) Qual das fórmulas $\neg\neg\neg p$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior tamanho?
 - b) Dê exemplo de fórmulas φ e ψ , com 3 subfórmulas, tais que $|\varphi|=3$ e $|\psi|>3$
 - c) Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $|\varphi| \geq \#subf(\varphi)$.
- **2.8** Seja $\varphi \in \mathcal{F}^{CP}$. A complexidade lógica de φ (notação: $cl(\varphi)$) define-se por recursão do seguinte modo: (i) cl(p) = 0, para cada variável proposicional p; (ii) $cl(\bot) = 0$; (iii) $cl(\neg \varphi) = 1 + cl(\varphi)$; (iv) $cl(\varphi \Box \psi) = 1 + max(cl(\varphi), cl(\psi))$, para cada conetivo binário \Box .
 - a) Qual das fórmulas $\neg\neg\neg p$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior complexidade lógica?
 - **b)** Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $cl(\varphi) < |\varphi|$.
- **2.9** Seja $C \subseteq \{\bot, \neg, \lor, \land, \rightarrow, \leftrightarrow\}$. Para $\varphi \in \mathcal{F}^{CP}$, defina-se o predicado $\mathcal{C}(\varphi)$ do seguinte modo: $\mathcal{C}(\varphi)$ sse todo o conectivo que ocorre em φ é um elemento de C. Seja $\Gamma_C = \{ \varphi \in \mathcal{C} \mid \varphi \in \mathcal{C} \}$ $\mathcal{F}^{CP}|\mathcal{C}(\varphi)$. Neste exercício vamos fixar $C = \{\neg, \lor\}$.
 - a) Dê uma definição indutiva do conjunto Γ_C .
 - b) Enuncie o Teorema da Indução Estrutural para Γ_C .
 - c) Defina por recursão estrutural a função $f:\Gamma_C\to \mathcal{P}(\Gamma_C)$ tal que $f(\varphi)$ é o conjunto das subfórmulas de φ .
 - d) Prove que: para todo $\varphi \in \Gamma_C$, se \vee não ocorre em φ , então $\#f(\varphi)-1$ é o número de ocorrências de \neg em φ .
- **2.10** Seja Γ o subconjunto de \mathcal{F}^{CP} definido indutivamente por:
 - (i) Para cada variável proposicional $p, p \in \Gamma$.
 - (ii) Para cada variável proposicional $p, \neg p \in \Gamma$.
 - (iii) Se $\varphi, \psi \in \Gamma$ então $\varphi \vee \psi \in \Gamma$.
 - a) Indique, justificando, fórmulas em Γ .
 - **b)** Enuncie o Teorema da Indução Estrutural para Γ.
 - c) Prove que: para todo $\varphi \in \Gamma$, \perp não ocorre em φ .
 - d) Defina por recursão estrutural a função $f:\Gamma\to\mathbb{N}_0$ tal que $f(\varphi)$ é o número de ocorrências de \neg em φ .
 - e) Recorde a definição de Γ_C dada no exercício anterior. Seja $C = \{\neg, \lor\}$. Diga se $\Gamma \subseteq \Gamma_C$ e se $\Gamma_C \subseteq \Gamma$.

Universidade do Minho Folha 5

3. Semântica do Cálculo Proposicional

3.1 Sejam v_1 e v_2 as únicas valorações tais que

$$v_1(p) = \begin{cases} 0 & \text{se } p \in \{p_0, p_1\} \\ 1 & \text{se } p \in \mathcal{V}^{CP} - \{p_0, p_1\} \end{cases} \qquad \text{e} \qquad v_2(p) = \begin{cases} 1 & \text{se } p \in \{p_1, p_3\} \\ 0 & \text{se } p \in \mathcal{V}^{CP} - \{p_1, p_3\} \end{cases}.$$

Considere as fórmulas: $\varphi_1 = (p_2 \vee (\neg p_1 \wedge p_3)); \quad \varphi_2 = (p_2 \vee p_0) \wedge \neg (p_2 \wedge p_0); \quad \varphi_3 = (p_1 \rightarrow ((p_5 \leftrightarrow p_3) \vee \bot)).$ Calcule os valores lógicos das fórmulas $\varphi_1, \varphi_2 \in \varphi_3$ para as valorações $v_1 \in v_2$.

- **3.2** Considere as fórmulas: $\varphi_1 = \neg p_3 \wedge (\neg p_1 \vee p_2); \ \varphi_2 = (\neg p_3 \vee \neg p_1) \leftrightarrow (p_1 \rightarrow p_2); \ \varphi_3 = \neg p_3 \rightarrow (p_1 \wedge \neg p_2).$
 - a) Para cada um dos conjuntos $\{\varphi_1, \varphi_2\}$ e $\{\varphi_2, \varphi_3\}$, dê exemplo de uma valoração que atribua o valor lógico 1 a todos os seus elementos.
 - b) Mostre que não existem valorações que, em simultâneo, atribuam o valor lógico 1 a φ_1 e φ_3 .
- **3.3** Seja v uma valoração. Quais das seguintes proposições são verdadeiras?
 - a) $v((p_3 \rightarrow p_2) \rightarrow p_1) = 0$ e $v(p_2) = 0$ é uma condição suficiente para $v(p_3) = 0$.
 - **b)** Uma condição necessária para $v(p_1 \to (p_2 \to p_3)) = 0$ é $v(p_1) = 1$ e $v(p_3) = 0$.
 - c) Uma condição necessária e suficiente para $v(p_1 \land \neg p_3) = 1$ é $v((p_3 \to (p_1 \to p_3)) = 1$.
- **3.4** De entre as seguintes fórmulas, indique as tautologias e as contradições.
 - a) $(p_1 \rightarrow \perp) \lor p_1$

- **b)** $(p_1 \rightarrow p_2) \leftrightarrow (\neg p_2 \rightarrow \neg p_1)$
- $\mathbf{c)} \quad \neg (p_1 \wedge p_2) \rightarrow (p_1 \vee p_2)$
- **d)** $(p_1 \vee \neg p_1) \rightarrow (p_1 \wedge \neg p_1)$
- **3.5** Das seguintes proposições, indique as verdadeiras. Justifique.
 - a) $\models \varphi \land \psi$ se e só se $\models \varphi$ e $\models \psi$.
 - **b)** Se $\models \varphi \lor \psi$, então $\models \varphi$ ou $\models \psi$.
 - c) Se $\models \varphi$ ou $\models \psi$, então $\models \varphi \lor \psi$.
 - d) Se $\models \varphi \leftrightarrow \psi$ e $\not\models \psi$, então $\not\models \varphi$.
- **3.6** Seja $\varphi = (\neg p_2 \to \bot) \land p_1$.
 - a) Dê exemplo de:
 - i) uma valoração v tal que $v(\varphi) = v(\varphi[p_0 \wedge p_3/p_2]);$
 - ii) uma valoração v tal que $v(\varphi) \neq v(\varphi[p_0 \land p_3/p_2])$.
 - b) Seja ψ uma fórmula. Indique uma condição suficiente para que uma valoração v satisfaça $v(\varphi) = v(\varphi[\psi/p_2])$. A condição que indicou é necessária?

Universidade do Minho Folha 6

- **3.7** Considere o conjunto $\mathcal{F}^{CP}_{\{\vee,\wedge\}}$ das fórmulas cujos conetivos estão no conjunto $\{\vee,\wedge\}$.
 - a) Enuncie o teorema de indução estrutural para $\mathcal{F}^{CP}_{\{\vee,\wedge\}}$.
 - \mathbf{b}) Seja v a valoração que a cada variável proposicional atribui o valor lógico 0. Mostre que $v(\varphi) = 0$ para qualquer $\varphi \in \mathcal{F}_{\{\vee,\wedge\}}^{CP}$.
 - c) Existem tautologias no conjunto $\mathcal{F}^{CP}_{\{\vee,\wedge\}}?$ Justifique.
- 3.8 Para cada uma das seguintes fórmulas, encontre uma fórmula que lhe seja logicamente equivalente e que envolva apenas conetivos no conjunto $\{\neg, \lor\}$.
 - a) $(p_0 \wedge p_2) \rightarrow p_3$.
- **b)** $p_1 \vee (p_2 \rightarrow \perp)$.
- $\neg p_4 \leftrightarrow p_2$.
- **d)** $(p_1 \lor p_2) \to \neg (p_1 \land \bot).$
- **3.9** Defina, por recursão estrutural em fórmulas, uma função $f: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}_{\{\neg, \vee\}}$ que a cada fórmula φ faça corresponder uma fórmula $f(\varphi)$ logicamente equivalente a φ .
- **3.10** Investigue se os conjuntos de conetivos $\{\lor, \land\}$ e $\{\neg, \lor, \land\}$ são ou não completos.
- 3.11 Calcule formas normais conjuntivas e disjuntivas logicamente equivalentes a cada uma das seguintes fórmulas:
 - **a**)

- $\neg p_0$. **b)** $p_1 \wedge (p_2 \wedge p_3)$. **c)** $(p_1 \vee p_0) \vee \neg (p_2 \vee p_0)$. $(p_1 \rightarrow \bot)$. **e)** $(p_1 \vee p_0) \wedge (p_2 \vee (p_1 \wedge p_0))$. **f)** $(p_1 \rightarrow p_2) \leftrightarrow (\neg p_2 \rightarrow \neg p_1)$.
- **3.12** Considere que φ e ψ são fórmulas cujo conjunto de variáveis é $\{p_1, p_2\}$ e $\{p_1, p_2, p_3\}$ respetivamente, e que têm as seguintes tabelas de verdade:

p_1	p_2	φ
1	1	0
1	0	1
0	1	1
0	0	0

p_1	p_2	p_3	ψ
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	1

Determine FND's e FNC's logicamente equivalentes a cada uma das fórmulas.

- **3.13** Será que existem outros conetivos binários para além de \land , \lor , \rightarrow , e \leftrightarrow ? Para responder a esta questão, adotemos esta definição: um conetivo binário \diamond é determinado pela sua função de verdade $v_{\diamond}: \{0,1\}^2 \longrightarrow \{0,1\}.$
 - a) Quantos conetivos binários existem?
 - **b)** Para cada $v_{\diamond}: \{0,1\}^2 \longrightarrow \{0,1\}$, escreva v_{\diamond} como uma tabela de verdade e traduza essa tabela de verdade como uma FND.
 - c) Conclua que $\{\neg, \land, \lor\}$ permaneceria um conjunto completo de conetivos, mesmo se tivéssemos adoptado no Cálculo Proposicional outros conetivos binários.

Universidade do Minho Folha 7

- **3.14** Nenhum dos conetivos $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ é completo (i.e. constitui, por si só, um conjunto completo de conetivos). No entanto, existem conetivos binários completos.
 - Considere-se a extensão do conjunto das fórmulas proposicionais \mathcal{F}^{CP} com o conetivo binário \uparrow (conhecido como seta de Sheffer ou nand), determinado pela função booleana v_{\uparrow} t.q. $v_{\uparrow}(1,1) = 0$, $v_{\uparrow}(1,0) = 1$, $v_{\uparrow}(0,1) = 1$ e $v_{\uparrow}(0,0) = 1$. Mais precisamente:
 - i) acrescente-se ao alfabeto do Cálculo Proposicional a letra †;
 - ii) considere-se a definição indutiva de \mathfrak{F}^{CP} (sobre este alfabeto estendido) com uma nova regra: se $\varphi, \psi \in \mathcal{F}^{CP}$, então $(\varphi \uparrow \psi) \in \mathcal{F}^{CP}$;
 - iii) à definição de valoração v, acrescente-se a condição $v(\varphi \uparrow \psi) = v_{\uparrow}(v(\varphi), v(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$.
 - a) Encontre fórmulas φ , ψ logicamente equivalentes a $p_0 \uparrow p_1$ e tais que i) φ é FND; ii)
 - **b)** Mostre que, para todo $\varphi, \psi \in \mathcal{F}^{CP}$: i) $\varphi \uparrow \psi \Leftrightarrow \neg(\varphi \land \psi)$; ii) $\neg \varphi \Leftrightarrow \varphi \uparrow \varphi$.
 - c) Dê exemplo de tautologias e de contradições onde o único conetivo usado seja \(\frac{1}{2} \).
 - d) O conjunto {↑} é completo? Justifique.
- 3.15 De entre os seguintes conjuntos de fórmulas, indique os que são consistentes e os que são inconsistentes.
- $\{p_0 \land p_2, p_1 \to \neg p_3, p_1 \lor p_2\}.$ **b)** $\{p_0 \lor \neg p_1, p_1, p_0 \leftrightarrow (p_2 \lor p_3)\}.$
 - c) \mathfrak{F}^{CP} .

- d) $\mathfrak{F}^{CP}_{\{\vee,\wedge\}}$.
- **3.16** Sejam $\Gamma, \Delta \subseteq \mathcal{F}^{CP}$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
 - a) Se $\Gamma \cup \Delta$ é consistente, então Γ e Δ são conjuntos consistentes.
 - b) Se Γ e Δ são conjuntos consistentes, então $\Gamma \cup \Delta$ é consistente.
 - c) Se Γ é consistente e $\varphi \in \Gamma$, então $\neg \varphi \notin \Gamma$.
 - d) Se Γ contém uma contradição, então Γ é inconsistente.
- 3.17 Este exercício ilustra um método, conhecido por resolução, para decidir se uma fórmula do Cálculo Proposicional é uma tautologia. O método assenta em formas normais conjuntivas e na análise da inconsistência de conjuntos de fórmulas.

Considere as fórmulas

$$\varphi = (p_3 \to (p_1 \lor p_2)) \lor \neg (\neg p_1 \to p_2),$$

$$\psi = \neg p_2 \land p_3 \land (\neg p_3 \lor \neg p_1 \lor p_2) \land (p_2 \lor p_1).$$

- a) Observe que ψ é uma FNC e mostre que ψ é logicamente equivalente a $\neg \varphi$.
- b) Observe que, para toda a valoração $v, v(\psi) = 1$ sse v satisfaz $\{\neg p_2, p_3, \neg p_3 \lor \neg p_1 \lor p_2, \dots, \neg p_1 \lor p_2, \dots \lor p_2,$ $p_2 \vee p_1$ \}.
- c) Mostre que $\{\neg p_2, p_3, \neg p_3 \lor \neg p_1 \lor p_2, p_2 \lor p_1\}$ é inconsistente e diga se ψ é uma contradição.
- d) Diga se φ é uma tautologia.
- e) Aplique a sequência de passos anterior, considerando

$$\varphi = (p_2 \to p_1) \to (\neg p_2 \land p_3), \qquad \psi = (p_1 \lor \neg p_2) \land (p_2 \lor \neg p_3).$$

Universidade do Minho Folha 8

- **3.18** Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - a) $p_3 \vee p_0, \neg p_0 \models p_3$.
- **b)** $p_0 \vee \neg p_1, p_1 \vee p_2 \models p_0 \vee p_2.$
- c) $\neg p_2 \to (p_1 \lor p_3), \neg p_2 \models \neg p_1$. d) para todo $\varphi, \psi, \sigma \in \mathcal{F}^{CP}, \neg \psi, \psi \to \sigma \models \sigma \lor \varphi$.
- **3.19** Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$ e Γ um conjunto de fórmulas. Demonstre que:
 - a) $\varphi \lor \psi, \neg \varphi \lor \sigma \models \psi \lor \sigma$.
- **b)** $\models \varphi \rightarrow \psi$ se e só se $\varphi \models \psi$.
- c) $\Gamma \models \varphi \lor \psi$ se e só se $\Gamma, \neg \varphi \models \psi$. d) Γ é inconsistente se e só se $\Gamma \models \bot$.
- **3.20** Considere as seguintes afirmações:
 - Se há vida em Marte, então Zuzarte gosta de tarte.
 - Zuzarte é um marciano ou não gosta de tarte.
 - Zuzarte não é um marciano, mas há vida em Marte.
 - a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
 - b) Mostre que as três afirmações acima não podem ser simultaneamente verdadeiras.
- **3.21** Considere as seguintes afirmações:
 - Se a porta do cofre foi arrombada, então: o inspetor Heitor desvenda o crime ou o segurança Bragança é culpado.
 - O segurança Bragança não é culpado se e só se: a porta do cofre não foi arrombada e o inspetor Heitor desvenda o crime.
 - Não é verdade que: o segurança Bragança não é culpado ou a porta do cofre foi arrombada.
 - a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
 - b) Admitindo que todas as afirmações são verdadeiras, podemos concluir que o inspetor Heitor desvenda o crime? Justifique.
- 3.22 O Carlos, o João e o Manuel, suspeitos de um crime, fizeram os seguintes depoimentos, respetivamente:
 - O João é culpado, mas o Manuel é inocente.
 - Se o Carlos é culpado, o Manuel também o é.
 - Eu estou inocente, mas um dos outros dois é culpado.
 - a) Os três depoimentos são consistentes?
 - b) Algum dos depoimentos é consequência dos outros dois?
 - c) Supondo os três réus inocentes, quem mentiu?
 - d) Supondo que todos disseram a verdade, quem é culpado?
 - e) Supondo que os inocentes disseram a verdade e que os culpados mentiram, quem é culpado?

Universidade do Minho Folha 9

Dedução Natural para o Cálculo Proposicional

- a) Indique uma derivação em DNP cuja conclusão seja $p_0 \wedge p_1$ e cuja única hipótese não 4.1 cancelada seja $p_1 \wedge p_0$.
 - b) Indique duas derivações distintas em DNP de conclusão $p_0 \to (p_1 \to (p_0 \lor p_1))$ e sem hipóteses por cancelar.
 - c) Indique as subderivações de cada uma das derivações que apresentou em a) e em b).
- **4.2** Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$. Encontre demonstrações em DNP das fórmulas abaixo indicadas.

 - $\mathbf{a)} \quad (\varphi \wedge \psi) \to (\varphi \vee \psi). \qquad \mathbf{e)} \quad (\varphi \to (\psi \to \sigma)) \to ((\varphi \to \psi) \to (\varphi \to \sigma)).$

- $\begin{array}{lll} \mathbf{b)} & \varphi \to \varphi. & \mathbf{f)} & (\neg \varphi \lor \psi) \to (\varphi \to \psi). \\ \mathbf{c)} & \varphi \leftrightarrow \neg \neg \varphi. & \mathbf{g)} & ((\varphi \to \psi) \land (\psi \to \varphi)) \leftrightarrow (\varphi \leftrightarrow \psi). \\ \mathbf{d)} & (\varphi \lor \psi) \leftrightarrow (\psi \lor \varphi). & \mathbf{h)} & (\varphi \land \psi) \leftrightarrow \neg (\neg \varphi \lor \neg \psi). \end{array}$

- **4.3** Mostre que:
 - **a)** $p_0 \to p_1, \neg p_1 \vdash \neg p_0.$
 - **b)** $p_0 \to p_1, p_1 \to p_2, p_2 \to p_0 \vdash ((p_0 \leftrightarrow p_1) \land (p_1 \leftrightarrow p_2)) \land (p_0 \leftrightarrow p_2).$
 - c) $\{p_0 \lor p_1, \neg p_0 \land \neg p_1\}$ é sintaticamente inconsistente.
- 4.4 Represente o raciocínio que se segue através de uma relação de consequência sintática e construa uma derivação em DNP que prove a validade dessa relação: O Tiago disse: "Vou almoçar ao McDonald's ou à Pizza Hut". E, acrescentou: "Se comer no McDonald's, fico mal disposto e não vou ao cinema". Nesse dia, a Joana encontrou o Tiago no cinema e conclui: "O Tiago foi almoçar à Pizza Hut".
- 4.5 Mostre que o conjunto das fórmulas do Cálculo Proposicional referidas na alínea a) do exercício 3.20 é sintaticamente inconsistente.
- **4.6** Demonstre as seguintes proposições, para todo $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subset \mathcal{F}^{CP}$.
 - a) $\Gamma \vdash \varphi \land \psi$ sse $\Gamma \vdash \varphi$ e $\Gamma \vdash \psi$. b) $\Gamma \vdash \varphi$ sse $\Gamma, \neg \varphi \vdash \bot$.
 - c) $\Gamma \vdash \bot$ se e só se $\Gamma \vdash p_0 \land \neg p_0$. d) Se $\Gamma, \neg \varphi \vdash \varphi$, então $\Gamma \vdash \varphi$.
- **4.7** Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ fórmulas. A fórmula $((\varphi \to \psi) \to \varphi) \to \varphi$ é chamada a *Lei de Peirce*. Mostre que a Lei de Peirce é um teorema de DNP. (Sugestão: tenha em atenção a resolução da alínea **d**) do exercício anterior.)
- **4.8** Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que:
 - a) $(p_0 \vee p_1) \to (p_0 \wedge p_1)$ não é um teorema de DNP.
 - **b)** $p_0 \vee p_1 \not\vdash p_0 \wedge p_1$.
 - c) $\{p_0 \lor p_1, \neg p_0 \land p_1\}$ é sintaticamente consistente.
 - d) $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$ se e só se Γ é semanticamente inconsistente.
 - e) Se $\Gamma, \varphi \vdash \psi$ e φ é uma tautologia, então $\Gamma \vdash \psi$.

(Sugestão: aplique o Teorema da Correção e/ou o Teorema da Completude.)

Universidade do Minho Folha 10

Sintaxe do Cálculo de Predicados

- 5.1 Escreva as seguintes afirmações como fórmulas para um tipo de linguagem apropriado.
 - a) Todo aquele que é persistente aprende Lógica.
 - b) Quem quer vai, quem não quer manda.
 - c) Nem todos os pássaros voam.
 - d) Se toda a gente consegue, também o João consegue.
 - e) Para todo o número natural que é maior do que 6, o seu dobro é maior do que 12.
 - f) Quaisquer dois conjuntos que têm os mesmos elementos são iguais.
 - g) Existe um inteiro positivo menor do que qualquer inteiro positivo.
 - h) Todo o inteiro positivo é menor do que algum inteiro positivo.
 - i) Não há barbeiro que barbeie precisamente aqueles homens que não se barbeiam a si próprios.
- **5.2** Seja $L = (\{0, f, g\}, \{R\}, \mathcal{N})$ o tipo de linguagem tal que $\mathcal{N}(0) = 0, \mathcal{N}(f) = 1, \mathcal{N}(g) = 2,$ $\mathcal{N}(R) = 2.$
 - a) Explicite a definição indutiva do conjunto dos termos de tipo L.
 - b) Indique quais das seguintes sequências de símbolos constituem termos de tipo L:
- f(1).

- $g(f(x_1,x_0),x_0).$ iv)
- $g(x_0, f(x_1)).$
- $R(x_0, x_1).$
- c) Calcule o conjunto das variáveis de cada um dos seguintes termos:
- $g(x_1, f(x_1)).$
- $g(x_1, x_2)$. iii)
- **iv)** $g(x_1, g(x_2, x_3)).$
- d) Para cada um dos termos t da alínea anterior, calcule subt(t).
- e) Para cada um dos termos t da alínea c), calcule $t[g(x_0,0)/x_1]$.
- **5.3** Seja L o tipo de linguagem definido no exercício 5.1.
 - a) Enuncie o teorema de indução estrutural para o conjunto \mathfrak{T}_L .
 - b) Defina, por recursão estrutural, funções $r, h: \mathfrak{I}_L \to \mathbb{N}_0$ que a cada termo t fazem corresponder o número de ocorrências de variáveis em t e o número de ocorrências de símbolos de função em t, respetivamente.
 - c) Dê exemplos de termos t_1 e t_2 de tipo L tais que $\#VAR(t_1) = r(t_1)$ e $\#VAR(t_2) < r(t_1)$
 - d) Demonstre que, para todo o termo $t \in \mathcal{T}_L$, $\#VAR(t) \leq r(t)$.
- **5.4** Seja L um tipo de linguagem. Mostre que: para todo o termo $t \in \mathcal{T}_L$, $VAR(t) \subseteq subt(t)$.

Universidade do Minho Folha 11

- **5.5** Seja $L = (\{0, -\}, \{P, <\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(-) = \mathcal{N}(<) = 2$.
 - a) Dê exemplos de termos de tipo L. Justifique.
 - b) Dê exemplos de fórmulas atómicas de tipo L.
 - c) Justifique que cada uma das seguintes palavras é uma fórmula de tipo L.
 - i) $x_2 0 < x_1$.
 - ii) $\exists x_0 \forall x_1(x_1 x_0 < 0).$
 - iii) $\forall x_2 (\exists x_0 (x_0 < x_1) \to \exists x_1 (x_2 < x_1 x_0)) \land P(x_2).$
 - iv) $\forall x_0(x_0 < x_1) \lor \exists x_1(x_1 < x_0).$
 - d) Para cada fórmula da alínea anterior, calcule o conjunto das suas subfórmulas.
 - e) Calcule os conjuntos de variáveis livres e de variáveis ligadas de cada uma das fórmulas da alínea c).
 - f) A proposição "Para todo $\varphi \in \mathcal{F}_L$, LIV $(\varphi) \cap \text{LIG}(\varphi) = \emptyset$ " é verdadeira?
- **5.6** Para cada uma das fórmulas φ do exercício 5.5 c), calcule $\varphi[x_2 x_0/x_1]$.
- 5.7 Considere o tipo de linguagem L do exercício 5.5. Para cada uma das fórmulas φ do exercício 5.5 c), indique quais das seguintes proposições são verdadeiras.
 - a) A variável x_1 está livre para o termo termo 0 em φ .
 - **b)** A variável x_1 está livre para o termo x_2 em φ .
 - c) A variável x_2 está livre para qualquer termo de tipo L em φ .
 - d) Toda a variável está livre para o termo $x_1 x_3$ em φ .
- 5.8 Seja L um tipo de linguagem.
 - a) Defina, por recursão estrutural, a função SUBFA : $\mathcal{F}_L \to \mathcal{P}(\mathcal{F}_L)$ que a cada fórmula φ faz corresponder o conjunto das subfórmulas atómicas de φ .
 - **b)** Sejam φ uma fórmula de tipo L e x uma variável. Demonstre que: se $x \notin LIV(\psi)$ para todo $\psi \in SUBFA(\varphi)$, então $x \notin LIV(\varphi)$.

Universidade do Minho Folha 12

6. Semântica do Cálculo de Predicados

- **6.1** Considere o tipo de linguagem L = Arit e a estrutura $NATS = (\mathbb{N}_0, \overline{})$ (a estrutura usual de tipo L). Sejam α_1 e α_2 atribuições em NATS tais que $\alpha_1(x_i) = 0$ e $\alpha_2(x_i) = i$, para todo $i \in \mathbb{N}_0$.
 - a) Para cada um dos termos t de tipo L que se seguem, determine \bar{t}_{α_1} e \bar{t}_{α_2} , primeiro informalmente, depois formalmente através da definição de valor de termo.
 - b) Para cada uma das fórmulas φ de tipo L que se seguem, calcule $\overline{\varphi}_{\alpha_1}$ e $\overline{\varphi}_{\alpha_2}$, primeiro informalmente, depois formalmente através da definição de valor de fórmula.
 - i) \perp . iii) $s(x_1) < (x_1 + 0)$. v) $(x_1 < x_2) \rightarrow (s(x_1) < s(x_2))$. ii) $x_1 = x_2$. iv) $\neg (x_1 = x_1)$. vi) $(x_1 < x_2) \rightarrow ((x_1 + x_3) < (x_2 + x_3))$.
 - c) Para cada uma das fórmulas φ da alínea anterior, determine

$$\overline{(\forall x_1 \varphi)}_{\alpha_1} \quad \overline{(\forall x_1 \varphi)}_{\alpha_2} \quad \overline{(\exists x_1 \varphi)}_{\alpha_1} \quad \overline{(\exists x_1 \varphi)}_{\alpha_2}$$

- d) Indique se alguma das fórmulas da alínea b) é verdadeira na estrutura NATS.
- e) Para cada uma das fórmulas φ da alínea b), considere ψ o fecho universal de φ e diga qual o valor lógico que NATS determina para ψ .
- **6.2** Repita o exercício anterior, considerando a estrutura $E = (D, \overline{})$, de tipo L, com $D = \{a, b\}$, e as atribuições α_1 e α_2 em E a seguir definidas:

$$\begin{array}{lll} \overline{0} = a & \qquad & \equiv \subseteq D^2 & \equiv = \{(a,a),(b,b)\} \\ \overline{s} : D \to D & \overline{s}(x) = x & \overline{<} \subseteq D^2 & \overline{<} = \{(a,b)\} \\ \overline{+} : D^2 \to D & \overline{+}(x,y) = b & \alpha_1 : \mathcal{V} \to D & \alpha_1(x) = b \\ \overline{\times} : D^2 \to D & \overline{\times}(x,y) = a \text{ sse } x = y & \alpha_2 : \mathcal{V} \to D & \alpha_1(x_i) = b \text{ sse } i \text{ \'e par.} \end{array}$$

- **6.3** Seja L = Arit.
 - a) Quantas estruturas de tipo L existem com domínio $\{0\}$? E domínio $\{0,1,2\}$?
 - b) Defina uma estrutura de tipo L com domínio $\{0, 1, 2\}$.
- **6.4** Seja L = Arit e sejam E_1 e E_2 as estruturas standard de tipo L com domínios \mathbb{N}_0 e \mathbb{Z} respectivamente. Para cada i = 1, 2, seja $\Gamma_i = \{ \varphi \in \mathcal{F}_L | \varphi \text{ \'e verdadeira em } E_i \}$. Mostre que nem $\Gamma_1 \subseteq \Gamma_2$, nem $\Gamma_2 \subseteq \Gamma_1$.
- **6.5** Suponha que L tem um símbolo de relação binário R. Seja $\Gamma = \{\varphi_1, \varphi_2, \varphi_3\}$, onde

$$\begin{array}{rcl} \varphi_1 &=& \forall x_0\,R(x_0,x_0)\\ \varphi_2 &=& \forall x_0\forall x_1\,(R(x_0,x_1)\rightarrow R(x_1,x_0))\\ \varphi_3 &=& \forall x_0\forall x_1\forall x_2\,((R(x_0,x_1)\wedge R(x_1,x_2))\rightarrow R(x_0,x_2) \end{array}$$

- a) Seja $E = (D, \overline{})$ um modelo de Γ . Caracterize \overline{R} .
- b) Suponha que L tem também duas constantes c_1 e c_2 . Mostre que existem modelos quer de $\Gamma \cup \{\neg R(c_1, c_2)\}$, quer de $\Gamma \cup \{R(c_1, c_2)\}$.

6.6 Seja L um tipo linguagem com um símbolo de relação binário =, seja D um conjunto com n elementos, para algum $n \geq 2$, e seja — uma interpretação de L em D que interpreta = como a relação identidade em D e seja $E = (U, \overline{})$. Diga, justificando, quais das seguintes fórmulas em L são válidas, verdadeiras em E, ou satisfazíveis.

a) $x_1 = x_2$.

Universidade do Minho

- b) $x_1 = x_1$. c) $\forall x_1 x_1 = x_2$. e) $\exists x_1 x_1 = x_2$. f) $\exists x_1 x_1 = x_1$.
- d) $\forall x_1 \, x_1 = x_1$.

- g) $\exists x_1 \exists x_2 x_1 = x_2$. h) $\forall x_1 \exists x_2 x_1 = x_2$. i) $\exists x_1 \forall x_2 x_1 = x_2$.

6.7 Seja L um tipo de linguagem e sejam φ, ψ fórmulas de tipo L. Mostre que:

- a) $\models (\forall x \varphi \lor \forall x \psi) \to \forall x (\varphi \lor \psi)$. b) $\not\models \forall x (\varphi \lor \psi) \to (\forall x \varphi \lor \forall x \psi)$.
- c) $\models \exists x (\varphi \land \psi) \rightarrow (\exists x \varphi \land \exists x \psi)$. d) $\not\models (\exists x \varphi \land \exists x \psi) \rightarrow \exists x (\varphi \land \psi)$.
- e) $\models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$.
- f) $\not\vDash \forall x \exists y \varphi \to \exists y \forall x \varphi$.
- **6.8** Seja L um tipo de linguagem.
 - a) Mostre que, para todo $\varphi, \psi \in \mathcal{F}_L$ tais que $x \notin LIV(\psi)$, se tem:
 - i) $\models (\forall x \varphi \to \psi) \leftrightarrow \exists x (\varphi \to \psi)$. ii) $\models (\exists x \varphi \to \psi) \leftrightarrow \forall x (\varphi \to \psi)$.

Folha 13

- iii) $\models (\psi \to \exists x \varphi) \leftrightarrow \exists x (\psi \to \varphi)$. iv) $\models (\psi \to \forall x \varphi) \leftrightarrow \forall x (\psi \to \varphi)$.
- b) Mostre que, na alínea anterior, a condição $x \notin LIV(\psi)$ é necessária.
- c) Conclua que, para toda a fórmula φ em L, $\models \exists x(\varphi \to \forall x\varphi)$.

(Como curiosidade, pense no caso particular de φ representar a condição "x é aprovado a Lógica".)

6.9 Seja L um tipo de linguagem. Mostre que as seguintes afirmações são verdadeiras para todos φ , ψ e σ fórmulas de tipo L e todo $x \in \mathcal{V}$.

(Curiosidade: estas afirmações correspondem a alguns silogismos aristotélicos, cujos nomes medievais estão indicados.)

- (a) Barbara $\forall x(\psi \to \varphi), \forall x(\sigma \to \psi) \models \forall x(\sigma \to \varphi).$
- $\forall x(\psi \to \varphi), \exists x(\sigma \land \psi) \models \exists x(\sigma \land \varphi).$ (b) Darii
- $\forall x(\psi \to \neg \varphi), \forall x(\sigma \to \varphi) \models \forall x(\sigma \to \neg \psi).$ Cesare (c)
- (d) Festino $\forall x(\psi \to \neg \varphi), \exists x(\sigma \land \varphi) \models \exists x(\sigma \land \neg \psi).$
- $\forall x(\sigma \to \varphi), \exists x(\sigma \land \psi) \models \exists x(\psi \land \varphi).$ (e) Datisi
- $\forall x(\sigma \to \neg \varphi), \exists x(\sigma \land \psi) \models \exists x(\psi \land \neg \varphi).$ (f) Ferison