BBC

ENGINEERING DIVISION

MONOGRAPH

NUMBER 66: FEBRUARY 1967

V.h.f. aerial gain calculation using tables of mutual resistance between the radiating elements

by

P. KNIGHT, B.A., M.I.E.E.

and

R. E. DAVIES, M.A.

(Research Department, BBC Engineering Division)

BRITISH BROADCASTING CORPORATION

PRICE FIVE SHILLINGS

BBC ENGINEERING MONOGRAPH

No. 66

V.H.F. AERIAL GAIN CALCULATION USING TABLES OF MUTUAL RESISTANCE BETWEEN THE RADIATING ELEMENTS

by

P. Knight, B.A., M.I.E.E.

and

R. E. Davies, M.A.

(Research Department, BBC Engineering Division)

FEBRUARY 1967

BRITISH BROADCASTING CORPORATION

FOREWORD

This is one of a series of Engineering Monographs published by the British Broadcasting Corporation. About six are produced every year, each dealing with a technical subject within the field of television and sound broadcasting. Each Monograph describes work that has been done by the Engineering Division of the BBC and includes, where appropriate, a survey of earlier work on the same subject. From time to time the series may include selected reprints of articles by BBC authors that have appeared in technical journals. Papers dealing with general engineering developments in broadcasting may also be included occasionally.

This series should be of interest and value to engineers engaged in the fields of broadcasting and of telecommunications generally.

Individual copies cost 5s. post free, while the annual subscription is £1 post free. Orders can be placed with newsagents and booksellers, or BBC PUBLICATIONS, 35 MARYLEBONE HIGH STREET, LONDON, W.I.

CONTENTS

Sec	tion				Title				Page
	PREV	ious is	SUES IN	rhis si	ERIBS.	•	-		4
	SUMM	MARY	•	•					5
1.	INTR	ODUCTI	ON						5
2.	GAIN	COMPL	TATION	FROM	MUTUAL RE	ESISTANCE	· .		5
3.	THE	COMPUT	ATION C	F REL	ATIVE MUTI	JAL RESIS	TANCE		6
	3.1.	Vertica	l Radiati	ing Ele	ments				7
	3.2,	Tangen	itial Rad	iating .	Elements	-		-	7
	3.3.	Radial	Radiatin	ig Elen	nents .				7
4.	THE	GAIN OI	A SING	LE BLE	MENT				8
5.	VERI	FICATIO	N OF TH	e meti	HOD OF COM	(PUTATIO	Ν.		9
6.	CONC	LUSION	ıs						10
7.	ACKN	NOWLED	GEMENT	s					11
8.	REFE	RENCES							11
9.	APPE	NDICES			•				11
	9.1.	Notes o	n the Us	se of th	ne Tables in	Section 9.	2		11
		9.1.1.	Aerials '	with D	ipoles Carry	ing Equa	l Currents		11
		9.1.2.	Aerials ¹	with D	ipoles Carry	ing Uneq	ual but		
					Currents				14
		9.1.3.	-		arge Numbe	rs of Iden	tical Tiers		14
		9.1.4.			_		ual Currents	s .	15
	9.2.				tance Tables				17
			Vertical						18
			Tangent						24
			Radial I						36

PREVIOUS ISSUES IN THIS SERIES

	TREVIOUS ISSUES IN THIS SERIES		
No.	Title	Da	ıte
1.	The Suppressed Frame System of Telerecording	JUNE	1955
	Absolute Measurements in Magnetic Recording	SEPTEMBER	
	The Visibility of Noise in Television		
		OCTOBER	
4.	The Design of a Ribbon Type Pressure-gradient Microphone for Broadcast Transmission	DECEMBER	
	Reproducing Equipment for Fine-groove Records	FEBRUARY	1956
6.	A V.H.F./U.H.F. Field-strength Recording Receiver using Post-detector Selectivity	APRIL	1956
7.	The Design of a High Quality Commentator's Microphone Insensitive to Ambient Noise	JUNE	1956
8.	An Automatic Integrator for Determining the Mean Spherical Response of Loudspeakers and Microphones	AUGUST	
	The Application of Phase-coherent Detection and Correlation Methods to Room Acoustics	NOVEMBER	
		NOVEMBER	1730
10.	An Automatic System for Synchronizing Sound on Quarter-inch Magnetic Tape with Action on		
	35-mm Cinematograph Film	JANUARY	1957
	Engincering Training in the BBC	MARCH	1957
	An Improved 'Roving Eye'	APRIL	1957
13.	The BBC Riverside Television Studios: The Architectural Aspects	JULY	1957
14.	The BBC Riverside Television Studios: Some Aspects of Technical Planning and Equipment	OCTOBER	
15	New Equipment and Methods for the Evaluation of the Performance of Lenses of Television	DECEMBER	
16	Analysis and Measurement of Programme Levels		
		MARCH	
	The Design of a Linear Phase-shift Low-pass Filter	APRIL	
	The BBC Colour Television Tests: An Appraisal of Results	MAY	1958
	A U.H.F. Television Link for Outside Broadcasts	JUNE	1958
20.	The BBC's Mark II Mobile Studio and Control Room for the Sound Broadcasting Service	AUGUST	1958
21.	Two New BBC Transparencies for Testing Television Camera Channels (Out of Print)	NOVEMBER	1958
22.	The Engineering Facilities of the BBC Monitoring Service	JANUARY	
	The Crystal Palace Band I Television Transmitting Aerial	FEBRUARY	
	The Measurement of Random Noise in the presence of a Television Signal		
		MARCH	
	A Quality-checking Receiver for V.H.F. F.M. Sound Broadcasting	JUNE	
	Transistor Amplifiers for Sound Broadcasting	AUGUST	1959
27.	The Equipment of the BBC Television Film Studios at Ealing	JANUARY	1960
28.	Programme Switching, Control, and Monitoring in Sound Broadcasting	FEBRUARY	1960
	A Summary of the Present Position of Stereophonic Broadcasting	APRIL	
	Film Processing and After-processing Treatment of 16-nim Films		1960
	The Power Gain of Multi-tiered V.H.F. Transmitting Aerials		
		JULY	
	A New Survey of the BBC Experimental Colour Transmissions	OCTOBER	
	Sensitometric Control in Film Making	DECEMBER	1960
34.	A Mohile Laboratory for UHF and VHF Television Surveys	FEBRUARY	1961
35.	Tables of Horizontal Radiation Patterns of Dipoles Mounted on Cylinders	FEBRUARY	1961
	Some Aspects of Optical Lens Performance	APRIL	
	An Instrument for Measuring Television Signal-to-noise Ratio	JUNE	
38	Operational Research on Microphone and Studio Techniques in Stercophony		
		SEPTEMBER	
	Twenty-five Years of BBC Television	OCTOBER	
	The Broadcasting of Music in Television	FEBRUARY	1962
	The Design of a Group of Plug-in Television Studio Amplifiers	APRIL	1962
42.	Apparatus for Television and Sound Relay Stations	JULY	1962
43.	Propagational Factors in Short-wave Broadcasting	AUGUST	
	A Band V Signal-frequency Unit and a Correlation Detector for a VHF/UHF Field-strength Recording Receiver		
	Vertical Resolution and Line Broadening	DECEMBER	
	The Application of Transistors to Sound Broadcasting		
		FEBRUARY	
	Vertical Aperture Correction using Continuously Variable Ultrasonic Delay Lines	MAY	
	The Development of BBC Internal Telecommunications	MAY	1963
49.	Apparatus for Measurement of Non-linear Distortion as a Continuous Function of Frequency	JULY	1963
50.	New Methods of Lens Testing and Measurement	SEPTEMBER	1963
	Radiophonics in the BBC	NOVEMBER	
	Stereophony: the effect of cross-talk between left and right channels	MARCH	
	Aerial distribution systems for receiving stations in the l.f., m.f., and h.f. bands		
		JULY	
	An Analysis of Film Granularity in Television Reproduction	AUGUST	
	A Review of Television Standards Conversion	DECEMBER	
56 .	Stereophony: the effect of interchannel differences in the phase/frequency and amplitude/frequency characteristics	DECEMBER	1964
	Drop-out in Video-tape Recording	JUNE	
	Sine-squared pulse and bar testing in colour television	AUGUST	
	The acoustic design and performance of a new free-field sound measurement room	SEPTEMBER	
60	Colorimetric Analysis of Interference in Colour Television		
		FEBRUARY	
	Sporadic E Ionization and Television Interference	FEBRUARY	
	Automatic monitoring	APRIL	1966
63.	The design of transmission lines and single-stage switching circuits for a line-store standards converter	AUGUST	1966
64.	Data for the acoustic design of studios	NOVEMBER	1966
	Tristimulus spot colorimeter	DECEMBER	
	•		.,,00

V.H.F. AERIAL GAIN CALCULATION USING TABLES OF MUTUAL RESISTANCE BETWEEN THE RADIATING ELEMENTS

SUMMARY

A method for calculating the gain of a v.h.f. aerial from the mutual resistances between the radiating elements is described. The computation of mutual resistances between dipoles and unipoles mounted on a support mast is discussed. A set of tables of mutual resistances is included, together with notes on their use.

1. Introduction

Directional transmitting aerials are frequently used at v.h.f. to prevent co-channel interference and to concentrate the power radiated in the directions in which it is needed. One type of aerial commonly used consists of columns of dipole or unipole radiating elements mounted around a mast; in general the number of elements in each column is different, while the currents in the individual elements may also be unequal. The calculation of the power gain of such an arrangement is not straightforward.

Gain calculation by integration of the power radiation pattern would require the computation of patterns in a large number of planes and would be very laborious. The alternative method of gain calculation from the mutual resistances between radiating elements is therefore more attractive, but mutual resistance tables for dipoles in free space cannot be used because of the presence of the support mast. To overcome this difficulty, mutual resistances between dipoles and unipoles mounted on a conducting cylinder have been computed. The method of computation is described in this monograph, which also contains a set of tables and notes on their application to specific aerial problems. In calculating aerial gains the mutual resistances tabulated in this monograph are used in conjunction with tables of horizontal radiation patterns (h.r.p.s.) contained in Reference 1.

2. Gain Computation from Mutual Resistance

The radiating elements of a v.h.f. aerial may be of one of the three types shown in Fig. 1. Let us suppose that such an aerial consists of n identical radiating elements of the same type mounted at arbitrary positions on a cylindrical supporting structure, subject only to the restriction that the elements must all be at the same distance from the cylinder axis. Let the current in the p th element be I_p (a complex quantity) and the mutual impedance between the p th and q th elements be Z_{pq} , the self-impedance of the p th element being denoted by Z_{pp} . Then the power radiated by the p th element is

$$P_b = \operatorname{Re} Z_b I_b I_b^* \tag{1}$$

where Re denotes 'the real part of', Z_p is the input impedance of the p th element and I_p^* is the complex conjugate of I_p .

Fig. 1 — Types of radiating element

The input impedance of the p th element is the sum of its self-impedance and the mutual impedances of the other elements, modified in accordance with the current ratios. We therefore have

$$Z_{p} = \frac{1}{I_{p}} \sum_{q=1}^{n} I_{q} Z_{pq}$$
 (2)

Substituting in Equation (1) we have

$$P_r = \operatorname{Re} \sum_{q=1}^n I_q I_p^* Z_{pq}$$
 (3)

The total power radiated is therefore

$$P = \text{Re} \sum_{p=1}^{n} \sum_{q=1}^{n} I_{q} I_{p}^{*} Z_{pq}$$
 (4)

Now the imaginary part of Z_{pq} has no effect on this result, because the sum of the coefficients of Z_{pq} and Z_{qp} (which are equal) is $I_q I_p^* + I_p I_q^*$, a real quantity, while the coefficient of Z_{pp} is also real. The total power radiated is therefore

$$P = \sum_{p=1}^{n} \sum_{q=1}^{n} I_{q} I_{p} R_{pq}$$
 (5)

where R_{po} is the mutual resistance.

The power radiated by a single element carrying a current I (assumed real) when all the other elements carry zero current is

$$P_1 = I^2 R_{11} \tag{6}$$

where R_{11} is self-resistance of an element. From Equations (5) and (6) we may write

$$\frac{P}{P_1} = \frac{1}{I^2} \sum_{p=1}^{n} \sum_{q=1}^{n} I_q I_p^* r_{pq} \tag{7}$$

where r_{pq} denotes the ratio of the mutual resistance between the p th and q th elements to the self resistance of a single element.

We now apply this result to the calculation of the gain of the array.

Fig. 2 is a plan view of the cylinder and the p th element. The relative field strength in the horizontal plane due to the p th element alone may be expressed in the form

Fig. 2 — Cylinder and p th radiating element

where $f(\phi - a_p)$ is the complex radiation pattern of a single element, tabulated elsewhere. The relative field strength due to the complete array is therefore

$$E = \sum_{p=1}^{n} I_p f(\phi - \alpha_p)$$
 (9)

A reference element situated at a = 0 carrying a current I radiates, in a specified direction ϕ_s , a field strength given by

$$E_1 = If(\phi_s) \tag{10}$$

The gain $G_R(\phi)$ of the array relative to that of a single element on the cylinder may now be derived from Equations (7), (9), and (10), as follows

$$G_{E}(\phi) = \frac{P_{1}}{P} \left(\frac{|E|}{|E_{1}|} \right)^{2}$$

$$= \frac{\sum_{p=1}^{n} |I_{p}f(\phi - \alpha_{p})|^{2}}{|f(\phi_{s})|^{2} \sum_{p=1}^{n} \sum_{p=1}^{n} I_{p}I_{p}^{*}r_{pq}}$$
(11)

It should be noted that Equation (11) gives the gain of

the array in the direction ϕ relative to the gain in the direction ϕ_s . For vertical and tangential dipoles ϕ_s is specified as zero but for radial elements it is specified as 90° . The field from the reference element is not necessarily a maximum in the specified direction.

The gain $G(\phi)$ of the array relative to a $\lambda/2$ dipole in free space is the parameter of practical interest; this is given by the expression

$$G(\phi) = G_1 G_R(\phi)$$

$$= \frac{G_1 \sum_{p=1}^{n} |I_p f(\phi - \alpha_p)|^2}{|f(\phi_s)|^2 \sum_{p=1}^{n} \sum_{q=1}^{n} I_q I_p^* r_{pq}}$$
(12)

where G_1 is the gain of an element at $\alpha = 0$, in the specified direction ϕ_s , relative to a $\lambda/2$ dipole in free space. The calculation of G_1 is discussed in Section 4.

It is important to note that the gain of a directional aerial is a function of the azimuth angle ϕ . The performance of a directional aerial is often expressed in terms of its effective radiated power (e.r.p.); this is equal to the power supplied to the aerial multiplied by $G(\phi)$ and is also a function of azimuth. Further quantities sometimes referred to are the mean or r.m.s. gain and the corresponding mean e.r.p.; the mean gain G_N is defined as the gain of an omnidirectional aerial whose h.r.p., plotted in polar co-ordinates, has the same area as the h.r.p. of the array. Stated formally

$$G_{x} = \frac{\int_{0}^{2\pi} |E(\phi)|^{2} d\phi}{2\pi |E(\phi_{0})|^{2}} G(\phi_{0})$$
 (13)

where ϕ_0 is a value of ϕ at which $G(\phi)$ and $E(\phi)$ are known.

3. The Computation of Relative Mutual Resistance

In order to facilitate the use of Equation (12), tables of r_{pq} for the three types of radiating elements have been computed and are contained in Section 9.2. The computation of these tables is discussed in this Section.

The method of computation involves integration of the radiation pattern of a pair of radiating elements in order to find the total power radiated. A comparison is then made with the power radiated by a single element; this enables the relative mutual resistance of the pair of elements to be deduced. Details of this procedure are as follows:

Fig. 3 shows a cylinder of radius a with two radiating elements A_1 and A_2 displaced vertically by a distance c and in azimuth by an angle a. Both elements are at the same distance b from the cylinder axis. The point O will be taken as the origin of a spherical polar co-ordinate system (r, θ, ϕ) , the lower element being located at $(b, \frac{\pi}{2}, o)$.

Fig. 3 — A cylinder with two radiating elements

We assume initially that the lower element carries unit current while the upper element carries zero current. In general the field at a great fixed distance due to the lower element will contain both E_{θ} and E_{ϕ} components; we may denote them by $E_{\theta}(\theta,\phi)$ and $E_{\phi}(\theta,\phi)$ respectively, since they are functions of both θ and ϕ . The power radiated by the single element is then given by

$$P_1 = K \int_{\mathbf{z}} (|E_{\theta}(\theta, \phi)|^2 + |E_{\phi}(\theta, \phi)|^2) ds$$
 (14)

where K is a constant and S denotes the surface of a sphere of large radius enclosing the aerial.

If the upper element carries unit current it produces a similar radiation pattern, but with ϕ replaced by $\phi - a$ and the phase advanced by $\beta c \cos \theta$ radians, where $\beta = 2\pi/\lambda$. When both elements carry unit current the field components are therefore

$$E_{\theta}(\theta, \phi) = E_{\theta}(\theta, \phi) - E_{\theta}(\theta, \phi - a)e^{j\beta c \cos \theta}$$
 (15)

$$E_{\phi}'(\theta,\phi) = E_{\phi}(\theta,\phi) + E_{\phi}(\theta,\phi - a)e^{j\beta\epsilon\cos\theta}$$
 (16)

The power P_2 radiated by the two elements is given by an expression similar to Equation (14) but with E'_{θ} and E'_{ϕ} in place of E_{θ} and E_{ϕ} .

Now P_1 is proportional to R_s and P_2 to $2(R_s + R_M)$, where R_s and R_M are the self and mutual resistances of the elements. It follows that the relative mutual resistance $r = R_M/R_s$ is given by

$$r = \frac{P_2}{2P_1} - 1 \tag{17}$$

 E_{ϕ} and E_{ϕ} for doublets and dipoles near cylinders are complicated functions of θ and ϕ given by Carter's formulae.² The computation of P_1 and P_2 is not straightforward since it must be done by numerical integration. Attention is confined here to the following brief discussion of the methods of computation for vertical, tangential and radial radiating elements.

3.1 Vertical Radiating Elements

For vertical radiating elements Carter gives an expression for the radiation pattern of a short doublet; it contains only an E_{θ} component. The radiation pattern of a half-wave dipole is of more practical interest, however, and it can be obtained from Carter's formula by including the v.r.p. factor of a vertical dipole in free space. The result is

$$E_{\theta} = \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} [V_0 + 2\sum_{n=1}^{\infty} j^n V_n \cos n\phi] \qquad (18)$$

where

$$V_n = J_n(\beta b \sin \theta) - J_n(\beta a \sin \theta) \frac{H_n^{(2)}(\beta b \sin \theta)}{H_n^{(2)}(\beta a \sin \theta)}$$
 (19)

In Equation (19) J_n and $H_n^{(2)}$ denote Bessel and Hankel functions of order n.

The computation of P_1 and P_2 from these formulae gives the relative mutual resistance between half-wave dipoles.

3.2 Tangential Radiating Elements

Carter's expressions for the distant field radiated by a tangential doublet contain two components given by

$$E_{\phi} = -j[W_0 + 2\sum_{n=1}^{\infty} j^n W_n \cos n\phi]$$
 (20)

$$E_{\theta} = \frac{-j2\cos\theta}{\beta b\sin\theta} \sum_{n=1}^{\infty} j^{n} n V_{n} \sin n\phi$$
 (21)

where

$$W_n = J_n'(\beta b \sin \theta) - J_n'(\beta a \sin \theta) \frac{H_n^{(2)'}(\beta b \sin \theta)}{H_n^{(2)'}(\beta a \sin \theta)}$$
(22)

in which J_n' and $H_n^{(2)'}$ denote the derivatives of the Bessel and Hankel functions with respect to the argument. V_n was defined in Equation (19).

These formulae cannot be extended to tangential dipoles since the currents flowing in the latter, although predominantly tangential, also contain radial components. Consequently relative mutual resistance tables can only be computed for tangential doublets. The use of these tables for dipoles may be justified by the fact that relative mutual resistances between dipoles in free space are very similar to those between doublets.

3.3 Radial Radiating Elements

Carter gives the following expressions for the distant field radiated by a radial doublet:

$$E_{\phi} = \frac{-j2}{\beta b \sin \theta} \sum_{n=1}^{\infty} j^{n} n B_{n} \sin n \phi$$
 (23)

$$E_{\theta} = j \cos \theta [D_0 + 2 \sum_{n=1}^{\infty} j^n D_n \cos n\phi]$$
 (24)

where

$$B_n = J_n(\beta b \sin \theta) - J'_n(\beta a \sin \theta) \frac{H_n^{(2)}(\beta b \sin \theta)}{H_n^{(2)'}(\beta a \sin \theta)}$$
(25)

$$D_n = J'_n(\beta b \sin \theta) - J_n(\beta a \sin \theta) \frac{H_n^{(2)'}(\beta b \sin \theta)}{H_n^{(2)}(\beta a \sin \theta)}$$
 (26)

Radiating elements used in practice consist of base driven unipoles mounted on the surface of the cylinder; they are usually $\lambda/4$ long although greater lengths are sometimes used. Although Carter's formulae could be extended to unipoles by integrating along their length, this additional complication is hardly worth while because it is permissible to replace a short radiator by a doublet situated at the centroid* of its current distribution. Since the centroid of a $\lambda/4$ unipole is approximately 0.5 radians from its drive point, $\beta b - \beta a$ was set equal to 0.5 in all the computations.

It can be shown that the first term of Carter's formula for E_{θ} , Equation (24), tends to infinity at $\theta = 0$ and π , whilst the remaining terms tend to zero, as do all the terms of the series for E_{θ} . The E_{θ} component behaves as $1/(\theta \log \theta)$ in the neighbourhood of $\theta = 0$, and is therefore virtually dependent on θ only. This is equivalent to saying that the electric field near the cylinder is dominated by a radial component at distances from the origin large compared with the overall dimensions of the aerial. The associated magnetic field component is circumferential and the direction of travel of this dominant wave is along the axis of the cylinder.

When performing an outward-power-flow integration over an enclosing surface using Carter's formulae, it can be shown that the contributions due to the two portions of the surface which lie inside the cylinder are vanishingly small if these portions are sufficiently far from the origin.† In other words, the large E_{θ} component when θ is small does not contribute significantly to the total power flow. It appears, therefore, that the method used in this report for calculating mutual resistances remains valid for radial unipoles. It will be seen in Section 5 that measurements of mutual resistance between radial unipoles mounted on a conducting cylinder show very close agreement with the theory.

Because of the influence of the dominant wave mentioned above, the mutual resistance between a pair of well-spaced radial doublets decreases slowly (approximately as $1/\log \beta c$) as their separation along the cylinder axis increases and it is virtually independent of their angular displacement α .

- * We have to imagine that the unipole has a mass distributed along its length, the mass per unit length at any point being proportional to the current at that point. Then the centre of gravity (or centroid) of this mass would correspond to the centroid of the current distribution.
- † Over these portions of the surface the principal part of the power flow integral takes the form

$$\int_{0}^{a/R} \frac{2\pi\theta d\theta}{(\theta \log \theta)^2} = \frac{2\pi}{\log R - \log a}$$

where R is the distance from the origin of the surface of integration. As R tends to infinity this contribution to the integral tends to zero.

4. The Gain of a Single Element

The quantity of G_1 in Equation (12) was defined as the ratio of the gain of one element on the cylinder relative to that of a $\lambda/2$ dipole in free space. The calculation of this quantity is discussed in this section.

We consider first the gain of a single radiating element on a cylinder relative to an identical element in free space. Since the total power radiated by the element in free space is independent of its orientation, it will for convenience be assumed to be vertical. Its radiation pattern is then independent of ϕ and contains only an E_{θ} component, which may be written as $\sin \theta$ for a doublet or as $\cos (\frac{\pi}{2} \cos \theta)/\sin \theta$ for a $\lambda/2$ dipole. The power radiated by the element in free space is then given by

$$P_0 = 4\pi K \int_0^{\frac{\pi}{2}} E_\theta^2 \sin\theta \ d\theta \tag{27}$$

where K is the constant appearing in Equation (14).

The presence of the cylinder modifies the field radiated by the element, the field components now being given by the appropriate Carter formulae. The power radiated by the element is then equal to P_1 , given by Equation (14).

Carter's formulae are stated here in such a way that if the cylinder were removed, the element would radiate unit field in its direction of maximum radiation. It follows, therefore, that the quantities P_0 and P_1 may be directly compared. It also follows that the formulae give the field E_1 in the specified direction ϕ_s (defined in Section 2) correctly scaled to the maximum field radiated by an element in free space. The gain G_1 of a single element in the presence of the support cylinder, relative to an identical element in free space, is therefore given by

$$G_1 = |E_1|^2 \frac{P_0}{P_1} \tag{28}$$

The quantity G_1 is stated above each mutual resistance table

In the tables for vertical elements this is the gain of a single element relative to a $\lambda/2$ dipole in free space, since Carter's formulae modified for $\lambda/2$ dipoles were used for the computation.

In the tables for tangential elements G_1 is the gain of a doublet on the cylinder relative to a doublet in free space. For cylinders of small radius G_1 is approximately equal to the gain of a $\lambda/2$ dipole on the cylinder relative to a $\lambda/2$ dipole in free space; thus the gain of an array of doublets relative to a doublet in free space may be assumed to be approximately equal to the gain of a similar array of dipoles relative to a dipole in free space.

In the tables for radial elements, G_1 is the gain of a single doublet on the cylinder relative to a $\lambda/2$ dipole in free space; the gain is referred to a $\lambda/2$ dipole rather than to a doublet since the doublet on the cylinder is a good approximation to a $\lambda/4$ unipole.

To summarize, substitution of the value of G_1 given above each table into Equation (12) gives the gain of an

array of dipoles or unipoles on the cylinder relative to a $\lambda/2$ dipole in free space for all three types of radiating elements; the gain is exact for vertical dipoles and a close approximation for tangential dipoles and radial unipoles.

5. Verification of the Method of Computation

Because of the complexity of the computer programme required for this work it was considered prudent to check its accuracy by using the tables to compute the gains of

Fig.~4 --- Comparison~of~computed~and~measured~mutual~resistances~r~between~tangential~elements

Computed values for tangential doublets, $\beta a = 1.25$, $\beta b = 2.50$ o Measured values for tangential dipoles, $\beta a = 1.18$, $\beta b = 2.50$

aerials whose gains could be calculated by other methods. This test was carried out for vertical dipoles since no approximations are involved in the computation of their mutual resistances. Gains calculated from the mutual resistance tables for rings of vertical dipoles were compared with gains calculated directly by radiation pattern integration and found to differ by less than 1 per cent; this agreement was considered satisfactory.

The assumption that mutual resistance tables for tangential doublets can be used for tangential $\lambda/2$ dipoles was tested by comparing the tabulated values with model measurements using dipoles. This comparison is shown in Fig. 4, in which the three curves show relative mutual resistance as a function of vertical separation for three different angular separations. The measurements, which were made during the development of the Norwich television aerial (Vision, 56.75 Mc/s; Sound, 53.25 Mc/s), occur in groups because the positions of the dipoles on the cylinder were fixed; the small ranges of separation within each group result from the measurements having been made over a band of frequencies. The comparison shows that the use of the doublet approximation results in an error when the vertical separation between the dipoles is small; elsewhere the approximation appears to be satisfactory.

It was also considered prudent to test the accuracy of the mutual resistance tables for radial doublets because it was uncertain whether the infinities in E_{θ} occurring at $\theta = 0$ and π (referred to in Section 3.3) rendered the method of computation invalid. Measurements, made during the development of the Peterborough FM aerial (90 · 1 Mc/s-94.5 Mc/s), of the impedance of a pair of unipoles mounted on a square-section cylinder* were used for this test. The unipoles were first mounted on separate cylinders 5λ apart so as to minimize their mutual impedance. They were then placed in the desired relative position on a common cylinder, the resulting change in impedance being assumed to be equal to their mutual impedance. These measurements, which were made between unipoles on the same and on adjacent faces, are compared in Fig. 5 with computed values for doublets near a circular cylinder having the same perimeter; the agreement shows that the theory is valid.

As a further check the radial doublet tables were used to calculate the gain of two doublets driven in antiphase and mounted diametrically opposite each other on a cylinder of diameter small compared with the wavelength. This arrangement simulates a half-wave dipole mounted on a boom, as in a Yagi aerial, and its gain should be approximately equal to that of a $\lambda/2$ dipole in free space. This was confirmed by calculating the gain of the pair of antiphase doublets in the direction $\phi = 90^{\circ}$ for $\beta a = 0.25$, $\beta b = 0.75$;

the result obtained was a gain of 1.025 relative to a dipole in free space. In passing it should be noted that the gain G_1 (given above each table) of a single radial doublet on a cylinder is considerably less than unity because it generates a pair of axial cylindrical surface waves; with two antiphase doublets, however, the surface waves are suppressed.

Fig. 5 — Comparison of computed and measured mutual resistances r between radial elements

— Computed values for radial doublets on a circular cylinder $\beta a = 1.5, \beta b = 2.0$

Measured values for radial unipoles on a square-section cylinder 0·37λ wide

6. Conclusions

Calculation of the gain of directional v.h.f. aerials is simplified by the use of the mutual resistance tables contained in this monograph because the need for radiation pattern integration is avoided. The tables cover the range of mast sizes and element spacings normally encountered at v.h.f. and can be used for any arrangement of radiating elements, provided all the elements have the same spacing from the axis of the mast. The tables may be applied to elements mounted on square and triangular section masts by assuming an equivalent circular cylinder. The accuracy of the tables has been verified both experimentally and by applying them to aerials whose gain can be calculated by other methods.

The mutual impedance between radial unipoles has been found to decrease very slowly as their separation increases because they are coupled by surface waves propa-

^{*} Cylinders of other than circular cross-section may be regarded as having an 'equivalent radius' provided that the width W of each face is not greater than 0.5λ for a square section and 0.3λ for a triangular section. The equivalent radii are 0.59W and 0.42W for square and triangular sections respectively for vertical elements. With tangential and radial elements the equivalent circular cylinder may be assumed to be that which has the same perimeter as the polygonal cylinder.

gating along the mast. The generation of surface waves can be avoided in an array by a suitable choice of inter-tier spacing, thereby preventing the reduction of gain which would otherwise result.

7. Acknowledgements

The measurements described in Section 5 with which the theoretical mutual resistances were compared were performed by Dr J. B. Izatt and Mr R. D. C. Thoday.

8. References

- 1. Tables of horizontal radiation patterns of dipoles mounted on cylinders, BBC Engineering Division Monograph, No. 35, February
- 2. Carter, P. S., 1941. Antenna arrays around cylinders, Proc. Inst.
- Radio Engrs., 31, No. 12, pp. 671-93, 1943.

 3. Medhurst, R. G., 1947. Radiation from short aerials, Wireless Engr., 25, No. 299, pp. 260-6, 1948.

9. Appendices

9.1 Notes on the Use of the Tables in Section 9.2

The tables give the relative mutual resistance between two elements displaced vertically and circumferentially around a cylinder. The vertical separation in wavelengths (c/λ) is given in the extreme left-hand column and the angular separation in degrees in the headings of the other columns. Each table also gives the gain G_1 of a single element on the cylinder as discussed in Section 4. The examples below demonstrate the way in which the tables are used.

9.1.1 Aerials with Dipoles Carrying Equal Currents

The example chosen is a 90 Mc/s aerial consisting of eight tiers of horizontal dipoles mounted on a cylinder, as shown in Fig. 6. The cylinder radius is 1.0 m and the dipoles are 1.8 m distant from the axis of the cylinder; these dimensions correspond approximately to $\beta a = 2 \cdot 0$ and $\beta b = 3.5$ (see Section 3). The inter-tier spacing is 0.5λ .

Referring to Fig. 6, it will be seen that (in the example chosen) the dipoles have been divided into eight groups, each denoted by a different letter, all the dipoles in a given group being identically situated and therefore having the same impedance when all dipoles carry equal currents. In order to determine the total power radiated by the aerial the relative resistance of the dipoles in each group must be found from the mutual resistance tables. This part of the calculation is set out below, it being assumed that values computed for doublets can be applied to dipoles with little error. The quantities R_A , R_B , etc., are the ratios of resistance of a single doublet in each group to that of its selfresistance in the presence of the cylinder.

Fig. 6-V.h.f. aerial for which the gain is calculated in Section 9.1,1

Dipole A

TIER				
1	1.000		_	1.000
2	$0.078 + 2 \times 0.032 - 0.005$		===	0.137
3	$-0.056 - 2 \times 0.058 + 0.049$		=	-0.123
4	0.028		=	0.028
5	-0.017		-	-0.017
6	$0.011 - 2 \times 0.001 + 0.025$		=	0.034
7	$-0.005 + 2 \times 0.004 - 0.024$		1	-0.021
8	0.002		=	0.002
		R_{\star}	=	1 · 040

Dipole B

TIER				
1	0.078		_	0.078
2	$1 \cdot 000 + 2 \times 0 \cdot 132 - 0 \cdot 037$		=	1-227
3	$0.078 + 2 \times 0.032 - 0.005$			0.137
4	-0.056		=	-0.056
5	0.028		=	0.028
6	$-0.017 - 2 \times 0.006 - 0.011$			-0.040
7	$0.011 - 2 \times 0.001 + 0.025$		=	0.034
8	-0.005		=	-0.005
		R_B	_	1 · 403

Dipole F

TIER			
1	0.049	=	0.049
2	$0.078 + 2 \times 0.032 - 0.005$	=	0.137
3	$1.000 + 2 \times 0.132 - 0.037$	=	1.227
4	-0.005	=	-0.005
5	0.049	-0-	0.049
6	$0.028 + 2 \times 0.025 - 0.015$	=	0.063
7	$-0.017 - 2 \times 0.006 - 0.011$	=	-0.040
8	0.025	_	0.025
		R_ ==	1 • 505

Dipole C

TIER			
1	-0.005		0.005
2	$1.000 + 2 \times 0.132 - 0.037$		1.227
3	$0.078 + 2 \times 0.032 - 0.005$	1	0.137
4	0.049		0.049
5	-0.015	==	-0.015
6	$-0.017 - 2 \times 0.006 - 0.011$		-0.040
7	$0.011 - 2 \times 0.001 + 0.025$	=	0.034
8	<i>-</i> − 0 · 024	=	-0.024
		$R_c =$	1.363

Dipole G

<i>I</i>				
TIER				
1	0 · 058			-0.058
2	$0.078 + 2 \times 0.032 - 0.005$			0.137
3	$1 \cdot 000 + 2 \times 0 \cdot 132 - 0 \cdot 037$		_	1 · 227
4	0.032		÷	0.032
5	0 · 058		0.7	-0.058
6	$0.028 - 2 \times 0.025 - 0.015$		30-	0.063
7	$-0.017 - 2 \times 0.006 - 0.011$		===	-0.040
8	-0.001			-0.001
		R_{α}		1 · 302

Dipole D

TIER			
1	0.032	=	0.032
2	$1.000 \pm 2 \times 0.132 - 0.037$		1 • 227
3	$0.078 + 2 \times 0.032 - 0.005$		0.137
4	-0.058	=	-0.058
5	0.025	<u></u>	0.025
6	$-0.017 - 2 \times 0.006 - 0.011$	_	-0.040
7	$0.011 - 2 \times 0.001 + 0.025$		0.034
8	0.004	_	0.004
			
		$R_{D} =$	1 · 361

Dipole H

TIER				
1	0.028		=	0.028
2	$-0.056 - 2 \times 0.058 + 0.049$		-	-0.123
3	$0.078 + 2 \times 0.032 - 0.005$		=	0.137
4	1.000			1.000
5	0.078		=	0.078
6	$-0.056 - 2 \times 0.058 + 0.049$		=	-0.123
7	$0.028 + 2 \times 0.025 - 0.015$		=	0.063
8	-0.017		=	-0.017
		R_{H}	_	1 · 043

Dipole E

TIER			
1	-0.056		-0.056
2	$0.078 + 2 \times 0.032 - 0.005$	=	0.137
3	$1.000 + 2 \times 0.132 - 0.037$	<u>s</u>	1 · 227
4	0.078	=	0.078
5	-0.056	=	-0.056
6	$0.028 + 2 \times 0.025 - 0.015$	=	0.063
7	$-0.017 - 2 \times 0.006 - 0.011$	=	-0.040
8	0-011	=	0.011
		$R_{-} =$	1 · 364

For convenience, let us assume that a single dipole on the cylinder, carrying unit current, radiates one unit of power. Then the total power radiated by the aerial, when each dipole carries unit current, is

$$2[R_A + R_B + R_C + R_D + R_E + R_F + R_G + R_R] = 26.09$$

The h.r.p. of the aerial may be calculated from the h.r.p. table for a single dipole, given on p. 31 of Reference 1, and is shown in Fig. 7. The field is greatest at $\phi = 0$. If we assume that a dipole in free space carrying unit current radiates unit field, then the tables of Reference 1 give the field radiated by a dipole, carrying unit current, on a cylinder. It

Fig. 7 — Theoretical h.r.p. of typical v.h.f. aerial Numbers against dipoles indicate number of dipoles on that bearing

follows therefore that the field radiated by the aerial in the direction $\phi=0$ is equal to:

$$8(-1.444 - j0.713) + 8(-0.209 + j0.194) + 4(0.162 - j0.570) = -12.58 - j6.43$$

This field has an amplitude of 14.13.

The table in Reference 1 also shows that a single dipole on the cylinder, carrying unit current, produces a field of -1.444 - j0.713 (amplitude 1.610) in the direction $\phi = 0$.

The gain of the array in the direction $\phi = 0$ relative to a single $\lambda/2$ dipole on the cylinder is therefore:

Gain =
$$\frac{\text{Power radiated by dipole}}{\text{Power radiated by array}}$$

$$\times \left[\frac{\text{Field radiated by array}}{\text{Field radiated by dipole}} \right]^{2}$$

$$= \frac{1.00}{26.09} \times \left(\frac{14.13}{1.610} \right)^{2} = 2.952$$

The gain (in the direction $\phi = 0$) of a doublet on the cylinder relative to a doublet in free space is the value denoted by $G_1(2.544)$ at the head of the table. This figure is substantially the same as the gain of a $\lambda/2$ dipole on the cylinder relative to a $\lambda/2$ dipole in free space. Thus the gain of the array (in the direction $\phi = 0$) relative to a $\lambda/2$ dipole in free space is:

$$2.952 \times 2.544 = 7.51$$
 (8.8 dB)

The mean gain of the aerial may be calculated from its mean field, defined as the radius of the circle which has the same area as the h.r.p. In the example considered the ratio between the mean and maximum field is 0.685. The mean gain of the aerial is therefore:

$$7.51 \times 0.685^2 = 3.52 \quad (5.5 \text{ dB})$$

relative to a $\lambda/2$ dipole in free space.

The gain figures stated above may be in error by about 0.2 dB because two assumptions were made in their calculation:

- (a) The mutual resistance values for doublets were assumed to be correct for dipoles.
- (b) The gain of a doublet on a cylinder relative to a doublet in free space was assumed to be equal to the gain of a $\lambda/2$ dipole on the cylinder relative to a $\lambda/2$ dipole in free space.

Had the gain of an array of vertical dipoles been calculated these assumptions would have been unnecessary and the gains would have been exact.

9.1.2 Aerials with Dipoles Carrying Unequal but Co-phased Currents

The radiation pattern of Fig. 7 can also be achieved with an aerial consisting of identical tiers, each tier containing four dipoles, but with the dipoles in the position $\phi = 0$ carrying twice the current of the other dipoles. Fig. 8 shows a single tier of this arrangement; we will proceed to calculate the gain of an aerial consisting of one tier. The gain of a twelve-tier aerial is calculated in Section 9.1.3.

Fig. 8 — A tier of dipoles carrying unequal but co-phased currents

Numbers against dipoles indicate currents

Because of the unequal currents the dipoles must be divided into three groups, designated A, B, and C. Their relative resistances are:

$$R_A = 1 + r(0.90^\circ) + \frac{1}{2}r(0.180^\circ)$$

$$R_B = 1 + 3r(0.90^\circ) + r(0.180^\circ)$$

$$R_B = 1 + 2r(0.90^\circ) + 2r(0.180^\circ)$$

where $r(0.90^{\circ})$ and $r(0.180^{\circ})$ denote the relative mutual resistance between dipoles at the same level but with angular separations of 90° and 180° respectively.

If a single dipole on the cylinder, carrying unit current, radiates unit power, the total power radiated by the tier is:

$$4R_A + 2R_B + R_c = 7 + 12r(0.90^\circ) + 6r(0.180^\circ)$$

= 7 + 12 × 0.132 - 6 × 0.037 = 8.362

The field due to the four dipoles, in the direction $\phi = 0$, is (from Reference 1) equal to:

$$2(-1.444 - j0.713) + 2(-0.209 + j0.194) + 0.162$$

 $-j0.570 = 3.144 - j1.608$

This has an amplitude of 3.531

A single dipole on the cylinder carrying unit current radiates a field of $1 \cdot 610$ in the direction $\phi = 0$.

The gain of the four dipoles, in the direction $\phi = 0$, relative to a single dipole on the cylinder is therefore:

$$\frac{1.00}{8.362} \times \left(\frac{3.531}{1.610}\right)^2 = 0.575$$

The other gain figures are determined as in Section 9.1.1. Thus the gain in the direction $\phi = 0$ relative to a dipole in free space is:

$$0.575 \times 2.544 = 1.463 \quad (1.7 \text{ dB})$$

and the mean gain is:

$$1.463 \times 0.685^2 = 0.686 \quad (-1.6 \text{ dB})$$

9.1.3 Aerials with Large Numbers of Identical Tiers

Consider a 90 Mc/s aerial with twelve tiers of the type described in Section 9.1.2. Although its gain may be calculated by the method described in Section 9.1.1 (with due allowance for the unequal currents) this would be very laborious because the dipoles must be divided into eighteen different groups and calculation of the resistance of each group entails the summation of no less than thirty-six terms. However, as the tiers are identical, the calculation may be greatly simplified by first calculating the relative mutual resistances between complete tiers and then finding the gain of twelve tiers relative to one tier. The result obtained in Section 9.1.2 may then be used to derive the gain of the aerial relative to a $\lambda/2$ dipole in free space. The procedure is as follows:

Fig. 9 — Two identical tiers

Consider two tiers separated by a distance x/λ as shown in Fig. 9. Because of the unequal currents the dipoles must be divided into three groups. The relative resistances of one dipole in each group are:

$$R_A = 1 + r(0.90^\circ) + \frac{1}{2}r(0.180^\circ) + r(x.0) + r(x.90^\circ) + \frac{1}{2}r(x.180^\circ)$$

$$R_B = 1 + 3r(0.90^\circ) + r(0.180^\circ) + r(x.0) + 3r(x.90^\circ) + r(x.180^\circ)$$

$$R_C = 1 + 2r(0.90^\circ) + 2r(0.180^\circ) + r(x.0) + 2r(x.90^\circ) + 2r(x.180^\circ)$$

where r(x,a) denotes the relative mutual resistance between dipoles having an angular separation of a and a vertical separation of x/λ .

The total power radiated by one tier is

$$I^{2}(R_{B} + R_{M}) = k[4R_{A} + 2R_{B} + R_{c}]$$

$$= k[7 + 12r(0.90^{\circ}) + 6r(0.180^{\circ}) + 7r(x.0) + 12r(x.90^{\circ}) + 6r(x.180^{\circ})]$$

where I is the feed current to one tier as a whole, R_s is its self-resistance, R_M is the mutual resistance between the two tiers, and k is a constant.

The power radiated by one tier on its own, carrying the same current, is:

$$I^2R_s = k[7 + 12r(0.90^\circ) + 6r(0.180^\circ)]$$

From these two equations it follows that:

$$I^2R_M = k[7r(x,0) + 12r(x,90^\circ) - 6r(x,180^\circ)]$$

The relative mutual resistance between tiers is therefore:

$$\frac{R_{y}}{R_{s}} = \frac{7r(x,0) + 12r(x,90^{\circ}) + 6r(x,180^{\circ})}{7 + 12r(0,90^{\circ}) + 6r(0,180^{\circ})} = R(x)$$

The aerial under consideration has twelve tiers spaced 0.7λ . The relative mutual resistance between all the tiers (i.e. values for separations which are multiples of 0.7λ) are calculated in the table below:

x/λ	r(x,0)	r(x,90)	r(x, 180)	f(x)	R(x)
0	1.000	0.132	−0 ·037	8 · 362	1.000
0.7	-0 ⋅175	0.027	0.022	-1.417	-0.169
1.4	0.068	0.011	0.004	0.632	0.076
2.1	0.016	-0.016	0.006	-0.044	-0.005
2.8	-0.028	0.013	-0.022	-0.172	-0.021
3.5	0.002	-0.004	0.022	0.098	0.012
4.2	0.017	-0.003	-0.007	0.041	0.005
4.9	-0.009	0.005	-0.012	-0.075	-0.009
5.6	-0.011	-0.001	0.015	0.001	0.000
6.3	0.011	-0.002	-0.002	0.041	0.005
7.0	0.003	0.002	-0.011	-0.021	-0.003
7.7	-0.011	0.000	0.010	-0.017	-0.002

From the tabulated values of R(x), the total power radiated by the array is:

$$I^{2}R_{s}[12R(0) + 22R(0\cdot7) + 20R(1\cdot4) + 18R(2\cdot1) + 16R(2\cdot8) + 14R(3\cdot5) + 12R(4\cdot2) + 10R(4\cdot9) + 8R(5\cdot6) + 6R(6\cdot3) + 4R(7\cdot0) + 2R(7\cdot7)]$$

This is equal to 9.528 times the power radiated by a single tier.

The field radiated by the array is twelve times that radiated by a single tier.

Thus the gain of the array relative to a single tier is equal to:

$$\frac{12^2}{9.528} = 15.11$$

The results obtained in Section 9.1.2 may now be used to determine the gain of the array relative to a dipole in free space.

The gain in the direction $\phi = 0$ is therefore:

$$15 \cdot 11 \times 1 \cdot 463 = 22 \cdot 1 \quad (13 \cdot 4 \text{ dB})$$

The mean gain is

$$15 \cdot 11 \times 0 \cdot 686 = 10 \cdot 4 \quad (10 \cdot 2 \, dB)$$

9.1.4 Aerials with Dipoles Carrying Unequal Currents

If the dipole currents are not co-phased the calculation of the total power radiated is more complicated since the relative phases of the currents must be taken into account.

Fig. 10 shows an aerial consisting of two tiers spaced 0.8λ . Each tier contains two dipoles which carry currents of $1/0^{\circ}$ and $2/45^{\circ}$; the resulting h.r.p. is shown in Fig. 11. The maximum field occurs in the direction opposite the dipoles carrying the current of $2/45^{\circ}$ ($\phi = 0$). There are two groups of dipoles, A and B, as shown in Fig. 10.

We revert to the original assumption that a single dipole on the cylinder, carrying unit current, radiates unit power.

Fig. 10 — Aerial with unequal currents

Fig. 11 — Theoretical h.r.p. of aerial with unequal currents

Applying Equation (5) and taking each dipole in turn, we find that the total power radiated is:

$$\frac{1/0^{\circ}}{1} \left[1 \times 1/0^{\circ} + r(0.90^{\circ}) \times 2/-45^{\circ} + r(0.8,0) \times 1/0^{\circ} + r(0.8,90^{\circ}) \times 2/-45^{\circ}\right] \qquad \text{(dipole A, upper)}$$

$$+ 2/45^{\circ} \left[1 \times 2/-45^{\circ} + r(0.90^{\circ}) \times 1/0^{\circ} + r(0.8,0) \times 2/-45^{\circ} + r(0.8,90^{\circ}) \times 1/0^{\circ}\right] \qquad \text{(dipole B, upper)}$$

$$+ 1/0^{\circ} \left[1 \times 1/0^{\circ} + r(0.90^{\circ}) \times 2/-45^{\circ} + r(0.8,0) \times 1/0^{\circ} + r(0.8,90^{\circ}) \times 2/-45^{\circ}\right] \qquad \text{(dipole A, lower)}$$

$$+ 2/45^{\circ} \left[1 \times 2/-45^{\circ} + r(0.90^{\circ}) \times 1/0^{\circ} + r(0.8,0) \times 2/-45^{\circ} + r(0.8,90^{\circ}) \times 1/0^{\circ}\right] \qquad \text{(dipole B, lower)}$$

$$= 10 + r(0.90^{\circ}) \times 2(2/45^{\circ} + 2/-45^{\circ}) + r(0.8,0) \times 10 + r(0.8,90^{\circ}) \times 2(2/45^{\circ} + 2/-45^{\circ})$$

$$= 10 + 0.132 \times 5.656 - 0.184 \times 10 - 0.047 \times 5.656 = 8.641$$

The field radiated by the aerial in the direction $\phi = 0$ is (from Reference 1) equal to:

$$4(-1.444 - j0.713) (0.707 + j0.707)$$
$$-2(-0.209 + j0.194) = -2.486 - j5.712$$

This has an amplitude of 6.230.

A single $\lambda/2$ dipole on the cylinder carrying unit current radiates a field of $1 \cdot 610$ in the direction $\phi = 0$.

The gain of the aerial in the direction $\phi = 0$, relative

to a single $\lambda/2$ dipole on the cylinder, is therefore:

$$\frac{1.00}{8.461} \times \left(\frac{6.230}{1.610}\right)^2 = 1.77 \quad (2.5 \text{ dB})$$

The gain of a single dipole on the cylinder relative to a $\lambda/2$ dipole in free space is approximately 2.544 (see Section 9.1.1). Thus the gain of the aerial, in the direction $\phi = 0$, relative to a $\lambda/2$ dipole in free space, is:

$$1.77 \times 2.544 = 4.50$$
 (6.5 dB)

9.2 RELATIVE MUTUAL RESISTANCE TABLES

9.2.1 VERTICAL DIPOLES

βα	=0.2	5,	$\beta b =$	1.75,	($G_1 = 1$	756	βa	==0.2	5,	βb ==	2 · 25,		$G_1 = 1$	197
c/λ	0°	30°	60°	90°	120°	150°	180°	c/λ	$0^{\mathbf{o}}$	30°	60°	90°	1 20 °	150°	180°
.0 .1 .2 .3	1.000 .968 .877 .740 .575	.860 .831 .751 .630 .484	.538 .519 .463 .380 .282	.224 .214 .185 .142 .092	.026 .022 .012 003 019	062 063 063 063	085 084 082 077 071	.0 .1 .2 .3	1.000 .966 .869 .723 .549	.781 •753 •673 •552 •409	.336 .320 .275 .209	.000 005 018 037 056	123 122 119 114 105	130 127 118 105 088	120 117 108 093 074
•5 •6 •7 •8 •9	-403 .245 .116 -023 031	.334 .197 .085 .007 036	.182 .092 .022 023 044	.043 .002 026 040 041	032 040 042 038 028	057 050 040 027 015	061 050 036 022 010		.370 .208 .079 010	.264 .134 .032 034 064	.058 004 047 068 069	072 080 078 067 049	092 076 057 037 018	068 047 026 009	054 033 014 .002
1.0 1.1 1.2 1.3 1.4	052 048 030 009	051 044 027 007 .009	046 034 017 .000	033 019 005 .006 .012	016 004 .005 .010	004 .005 .010 .011 .009	.001 .008 .011 .011	1.1 1.2	068 055 030 004 .015	067 049 024 .000	054 032 009 .009	028 008 .007 .016	002 .009 .015 .016	.014 .017 .017 .072 .006	.018 .019 .016 .010
1.5 1.6 1.7 1.8 1.9	.017 .017 .012 .004	.016 .016 .011 .003	.015 .013 .008 .001	.012 .009 .004 002	.009 .004 .000 004 005	.005 .001 003 005	.004 .000 004 005	1.5 1.6 1.7 1.8 1.9	.023 .022 .014 .003 006	.023 .020 .012 .002	.021 .015 .007 ~.002 ~.008	.015 .008 .001 005 008	.007 .001 004 007	.001 004 007 007 005	002 006 007 007
2.0 2.2 2.4 2.6 2.8	008 006 .002 .005	008 006 .002 .005	007 004 .002 .004	006 002 .003 .003	005 .000 .003 .002 001	004 .001 .003 .001 001	003 .001 .003 .001	2.2	011 007 .003 .006	01! 007 .003 .006	010 004 .004 .005	008 001 .004 .003	.005 .001 .004 .001	.002 .003 .003 .000 002	001 .003 .003 .000
3.0 3.4 3.6 3.8	003 002 .001 .002	003 002 .001 .002	003 002 .001 .002	002 001 .001 .001	002 .000 .001 .001	002 .000 .001 .001	002 .000 .001 .001		004 003 .001 .003	- 004 - 003 .001 .003 .000	003 002 .002 .002	003 001 .002 .002	002 .000 .002 .001	002 .001 .002 .000	001 .001 .002 .000
4.0	001	 001	-,001	-,001	001	0 01	001	4.0	-,002	-,002	~.002	-,001	001	001	-,001
Ва	r = 0.2	:5.	$\beta b =$	2.75.	($\hat{\mathbf{r}}_1 = 0$	676	βа	≈ 0.5		$\beta b =$	2.0.		$G_1 = 1$	906
βα c/λ	$a = 0 \cdot 2$:5, 30°	$\beta b = 60^{\circ}$	2·75, 90°		$\hat{s}_1 = 0.$ 150°		β a c/λ	≈0·5 0°	, 30°	$eta b = 60^{\circ}$	2·0, 90°		$G_1 = 1$ 150°	
				•		_		c/λ		=		90° .129 .121 .101		_	
c/λ .0 .1	0° 1.000 .963 .859 .704 .520	30° .658 .630 .552 .437 .302	.060 .050 .022 017 059	90°229228222212195	120°204199185163	150°106102090071049	065 061 051 035 016	c/λ .0 .1 .2 .3 .4 .5 .6 .7 .8	0° 1.000 .969 .879	30° .825 .798 .721 .606 .467	60° .448 .432 .384 .313 .229	90° .129 .121 .101 .072 .039	120°027028032036040	150° 067 066 062 057	180° 070 068 063 056 046
c/λ .01.2.33.4 .56.77.8	0° 1.000 .963 .059 .704 .520 .333 .167 .039	30° .658 .630 .552 .437 .302 .168 .052032079	.060 .050 .022 017 059 095 118 123 111	90°229228222212195172143108071	120°204199185163134102068036009	150°106102090071049025003 .015 .027	180°065061051035016 .002 .019 .030 .037	c/λ .0 .1 .2 .3 .4 .5 .6 .7 .8 .9	0° 1.000 .879 .743 .580 .410 .252 .122 .029027050048	30° .825 .798 .721 .606 .467 .323 .191 .084	60° .448 .432 .384 .313 .229 .144 .068 .009028	90° .129 .121 .101 .072 .039 .007019035041	120°027028036040042041036028	150°067066062057050041031020010	180°070068056046035023013003
c/\lambda .0 1.2 33 .4 5.6 77.8 9 1.0 1.1 2	0° 1.000 .963 .659 .704 .520 .333 .167 .039043080081057024 .006	30° .658 .630 .552 .437 .302 .168 .052 .079 .091 .077 .048 .013	60° .060 .050 .022 -017059095118111085051018 .009	90°229228222212195172143081071037	120°204199185163134102068036039 .011 .024 .028 .026	150°106102090071049025003 .015 .027 .033 .032 .026 .017 .007	180°065061051036016 .002 .019 .030 .037 .037 .032 .023	c/λ .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.56 1.7 1.8	0° 1,000 -969 -879 -743 -580 -410 -252 -029 -027 -050 -048 -032 -011	30° .825 .798 .721 .606 .467 .323 .191 .084 .035 .050 .050	60° .448 .432 .384 .313 .229 .144 .068 .008 .028 .044 -032 -015 .000	90° .129 .121 .101 .072 .039 .007019037041037028015003	120°027028032036040041036028019	150°067066062057050041031020010002 .004 .008 .009	180°070068056046046023003003004 .008
c/\lambda .012334 .567.889 .0112.334 .567.889 .112.334 .1567.8	0° 1.000 .963 .859 .704 .520 .333 .167 .039081057081057026 .026 .026	30° .658 .630 .552 .437 .302 .168 .052079048014 .013 .029 .032 .024 .011002	60° .060 .050 .022017059095118111085051081 .003 .026 .003007	90°229228222212195172143108037007 .015 .026 .029 .024 .014 .003006011	120°204199185163134102068036001 .024 .028 .021 .020 .010010	150°106102090071049025003 .015 .027 .033 .032 .026 .017 .007002	180°065061051035016 .002 .019 .030 .037 .037 .032 .023 .012 .002006	c/\lambda .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0	0° 1,000 -969 -879 -743 -580 -410 -252 -122 -027 -048 -032 -016 -017 -016	30° .825 .798 .721 .606 .467 .323 .191 .084 .035 .050 .044 .027 .015 .016 .011	60° .448 .432 .384 .313 .229 .144 .068 .009024044032015 .000 .014 .013 .007	90° .129 .121 .101 .072 .039 .007 -019035041037028015003 .006 .011 .008 .011	120°027028032036042041028019009 .006 .008 .008	150°067066062057050041031020010002 .004 .008 .009 .007 .005	180°070068063046035035033003003006003
c/\lambda 0.1234 566789 0.1234 1.56789 0.246	0° 1.000 .963 .963 .704 .520 .333 .167 .089080081057024 .006 .026 .032 .027 .014 .006011016009 .005 .008	30° .658 .630 .552 .302 .168 .052 .079 .091 .077 .048 .014 .013 .029 .032 .024 .011 .002 .012 .015	60° .060 .050 .022 -017059095113085051018 .009 .026 .031 .026 .016 .003007013	90°22922821219517214308071037007026 .029 .024 .014 .003006011012	120°204199185163134102068009011024026010010010007003005000	150°106102090071049025003 .015 .027 .033 .032 .026 .017 .007002008011010007003 .001 .005 .003002	180°065061051035016 .002 .019 .030 .037 .037 .032 .023 .012 .002006011012010006001 .003 .003 .006001	c/\lambda .0 .1 .2 .3 .4 .5 .6 .7 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0 2.2 2.4 2.6	0° 1,000 .969 .879 .743 .580 .410 .252 .122 .029027048032011 .006 .016 .017 .016 .017 .016 .017 .005 .005	30° .825 .798 .721 .606 .467 .323 .1914 .008 .035 .050 .044 .027 .008 .007 .015 .016 .011 .004 .003	60° .448 .432 .384 .313 .229 .144 .068 .028 .044 .032 .015 .000 .010 .014 .013 .007 .001 .004 .007 .004	90° .129 .121 .101 .072 .039 .007019037028015003 .006 .011 .011 .008 .003002 .002 .002	120°027028032036042041036028019009006008008001003004	150°067066062057050041031002 .004 .008 .009 .007 .005 .001001003004003	180°070068063046046035003004003004003004003

βι	a = 0.5	5,	$\beta b =$	2.5,		$G_1 = 1$	281	βα	a = 0.5	,	$\beta b =$	3.0,	($G_1 = 0$	680
c/λ	. 0°	30°	60°	90°	120°	150°	180°	c/\lambda	0 °	30°	60°	90°	120°	150°	180°
.0 .1 .2 .3	1.000 .966 .870 .725	-740 -713 -636 -521 -385	.246 .233 .196 .142 .080	062 064 071 079 086	118 117 111 102 090	077 075 068 057 044	053 050 044 034 023	.0 .1 .2 .3 .4	1.000 .963 .859 .704 .520	.605 .579 .505 .396 .268	027 034 054 081 109	248 245 235 219 195	153 149 136 117 092	034 032 025 014 002	.007 .008 .013 .019
•5 •6 •7 •9	.374 .212 .082 007 055	.247 .123 .026 036 065	.020 028 060 073 068	090 087 077 061 042	075 058 040 022 007	030 016 003 .006	010 .001 .010 .016 .018	•56 •78 •9	•333 •167 •038 ••045 ••082	.142 .034 =.044 086 095	130 139 133 112 082	166 131 094 057 024	065 038 014 .005 .019	.010 .020 .027 .029 .028	.032 .035 .036 .033 .026
1.0 1.1 1.2 1.3 1.4	068 056 032 006	067 050 025 001 016	052 029 007 .010	022 004 .009 .016	.004 .011 .014 .013 .009	.015 .014 .011 .006	.017 .013 .008 .003	1.0 1.1 1.2 1.3 1.4	083 059 026 .005 .026	078 048 014 .013 .029	046 013 .013 .028 .032	.002 .020 .028 .028	.025 .026 .022 .014 .006	.023 .015 .007 .000	.018 .009 .001 006 009
1.5 1.6 1.7 1.8 1.9	.023 .022 .015 .004	.023 .020 .012 .002	.020 .015 .007 002 007	.013 .007 .000 =.005 =.007	.004 001 004 006 005	003 005 005 004 002	005 006 005 004 001	1.5 1.6 1.7 1.8 1.9	.033 .028 .015 .001	.032 .025 .012 002 011	.026 .015 .002 008 013	.012 .002 006 011 011	002 007 009 008 006	009 009 007 004 .000	010 009 006 002 .002
2.0 2.2 2.4 2.6 2.8	010 008 .003 .006	010 007 .003 .006	009 004 .004 .005	007 001 .004 .003	003 .001 .003 .001 002	.000 .003 .002 001	.001 .003 .002 001	2.0 2.2 2.4 2.6 2.8	016 009 .005 .009	015 007 .006 .008	013 003 .006 .006 001	008 .001 .006 .003 002	002 .004 .004 .000 003	.003 .004 .001 002 002	.004 .004 .000 002
333468 333333	004 003 .001 .003	003 003 .001 .003	003 002 .001 .002	002 001 .001 .001	002 .000 .001 .001	001 .001 .001 .000	.000 .001 .001 .000	3.0 3.4 3.4 3.8 3.8 3.8	005 004 .002 .004	-,005 -,003 .002 .003	005 002 .002 .003	003 .000 .002 .002 001	002 .001 .002 .000	.000 .002 .001 .000	.000 .002 .001 001
_		 002	002	-,001	001	001	.000	4.0	003	-,002	002	002	001	.000	.000
g,	. — O. 7	75	8h	-2.25		c _2.	U30	Ra	0. 7	5	8b —	2.75		T — 1.	370
•	a = 0.7	-		-2·25, 90°		-	039 180°	•				2·75,		$G_1 = 1$.	
βα c/λ .0 .1 .2 .3		75, 30° .787 .761 .688 .577 .445	βb = 60° .357 .343 .303 .244 .174	90° .047 .043 .030 .013		G ₁ =2· 150°048047043038030		c/\(\lambda\)		5, 30° .695 .669 .597 .488 .359	βb = 60° .159 .148 .119 .077 .029	-		$G_1 = 1$ 150° 035 034 029 022 014	180° 006 005
c/λ .0 .1	0° 1.000 .969 .880 .746 .584	30° .787 .761 .688	.103	90° .047 .043 .030 .013007	120°054054054052049	150° 048 047 043 038 030	180°035034030024017	c/λ .0 .1 .2 .3	0° 1.000 .967 .871 .727	30° .695 .669 .597 .488 .359	60° .159 .148 .119 .077 .029	90° 109 110 110	120°105103096086072	150°035034029022014	180° 006 005 002 .003
c/λ .0 .1 .2 .3 .4	0° 1.000 .969 .880 .746 .584 .415 .258 .128	30° .787 .761 .688 .577 .445 .308 .182 .079	.357 .343 .303 .244 .174 .:03 .041 006 034	90° .047 .043 .030 .013007025037043041	120°054054052049045038030020	150°048047043038030022014006	180°035034030024017010003 .003	c/λ .0 .1 .2 .3 .9 .5 .6 .7	0° 1.000 .967 .871 .727 .556 .378 .216 .086004	30° .695 .669 .597 .488 .359 .228 .111 .020039	60° .159 .148 .119 .077 .029016051071	90°109110110107100088072953	120°105103086086072057040024010	150°035034022014005 .003 .009	180°006005002 .003 .008013 .016 .018 .017
c/λ .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1	0° 1.000 .969 .880 .746 .584 .415 .258 .128 .033024048047032	30° .787 .761 .688 .577 .445 .308 .182 .077 -034048043048	60° .357 .343 .303 .244 .174 .103 .041034045041029013	90° .047 .043 .030 .013007025037043041033022010 .001	120°054054054052049038030020011003	150°048047043030022014006 .000 .004	180°035034030024017010003 .007 .009 .008 .005 .002003002003	c/\lambda .0 .1 .2 .3 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3	0° 1.000 .967 .871 .727 .556 .378 .216 .004053067057	30° .695 .669 .597 .488 .359 .228 .111 .020039065049024001	60° .159 .148 .119 .079016051071075066047024003 .012	90°1091101101107108072053053032013 .002 .012	120°105103096086072057040024001 .001	150° -:035 -:034 -:029 -:022 -:014 -:005 :003 :009 :012 :010 :006 :006	180°006005002 .003 .013 .016 .017 .015
c/λ .01.2.7.4 .56.7.8.9 1.1.2.3.4 1.56.7.8	0° 1.000 .969 .880 .746 .584 .415 .258 .033024048047032 .005	30° .787 .761 .688 .577 .445 .308 .182 .079 .007 .015 .016 .011 .004	60° .357 .343 .303 .244 .174 .036034045045013 .001 .010	90° .047 .043 .030 .013007025037043021010 .001 .008 .010 .010 .006002002002002	120°05 ¹ 405 ¹ 405 ¹ 405 ¹ 5038030020001003 .003 .006 .004001002003	150°048047043030022014006 .000 .004 .007 .007 .006 .004 .002001002003003	180°035034030024017010003 .007 .009 .008 .005 .002002003003003	c/\lambda .0 .1 .2 .3 .4 .56 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.56 1.67 1.8	0° 1.000 .967 .727 .556 .378 .216 .086 .004053067033007 .012 .022 .015 .005	30° .695 .669 .597 .488 .359 .228 .111 .0200390650660490240015 .012 .022 .020	60° .159 .148 .119 .077 .029016051071075066047024003 .012 .019 .019 .019	90°109109110110107088072053032013 .002 .012 .017 .016	120°10503086072072057040001 .001 .009 .013 .010 .006 .002002004005	150° -:035 -:034 -:029 -:014 -:005 -:003 -:009 -:012 -:014 -:010 -:006 -:002 -:004 -:005 -:004 -:003	180°006005002 .003 .018 .017 .015 .011 .006 .002004005003001
c/λ .01.2.3.4 .56.7.8.9 .01.2.3.4 .56.7.8.9 .02.2.4.6	0° 1.000 .969 .880 .784 .415 .258 .033024048047012 .005 .017 .013 .002007006	30° .787 .761 .688 .577 .445 .308 .182 .079 .007 .034048043 .027038 .007 .015 .016 .011 .004003	60° .357 .343 .303 .244 .174 .036 .034045045010 .014 .012 .007004004006004	90° .047 .043 .030 .013025033041033022010 .001 .008 .010 .010 .006 .002004005001 .002	120°054054059049045030020011003 .007 .008 .006 .004 .001002003003	150° - 048 - 047 - 043 - 030 - 022 - 014 - 006 - 004 - 007 - 006 - 004 - 002 - 001 - 002 - 003 - 002 - 003 - 000 - 000	180°035034030024017010003 .003 .007 .009 .008 .005 .002003002003002001001	c/\lambda .0 1 2.3 3 4 5.6 7.8 9 1.1 2.3 3 4 1.5 6.7 1.8 9 2.2 4.6	0° 1.000 .967 .871 .727 .556 .378 .216 .086004053067057012 .022 .015 .005004010008	30° .695 .669 .597 .488 .359 .228 .111 .020 -039065049024001 .015 .022 .020 .012 .003 .006	60° .159 .148 .119 .077 .029016051075066047024003 .012 .019 .019 .014 .006002007	90°109109110110110088072053032013 .002 .012 .017 .016 .011 .005001007007	120°105103066086072057040010 .001 .009 .013 .010 .006 .002002004005004005 .002002004005 .002	150°035034029029014005 .009 .012 .010 .006 .002002004003001 .001 .001 .001	180°006005002 .013 .016 .017 .015 .017 .015 .002004005001 .002

βа	=0.7	5,	$\beta b =$	3 · 25,	C	$G_1 = 0$	700	βa -	<u>1·0</u>	,	$\beta b =$	2.5,	($G_1 = 2$	157
c/λ	0°	30°	60°	90°	120°	150°	180°	c/λ	0_z	30°	60°	90°	120°	150°	180°
.0 .1 .2 .3	1.000 .964 .860 .705	.550 .526 .456 .354 .234	104 108 120 136 150	248 243 230 209 181	103 100 089 073 053	.006 .007 .011 .015	.035 .035 .036 .036	, .0 1 .1 .2 .3 .4	.969 .969 .881 .748 .587	.746 .722 .652 .547 .421	.271 .259 .227 .178 .121	015 017 023 032 040	063 062 059 054 048	026 025 022 018 013	006 006 004 001 .003
.5 .6 .7 .8	.334 .168 .038 045 083	.117 .017 054 091 097	157 153 137 109 075	147 110 073 038 008	032 012 .005 .018 .025	.025 .027 .027 .025 .020	.035 .032 .027 .020 .013	.5 .7 .9	.419 .262 .132 .036 .022	.290 .171 .073 .004 035	.065 .016 020 040 045	046 048 046 038 028	040 031 021 012 004	007 002 .002 .005	.006 .008 .009 .010
1.0 1.1 1.2 1.3 1.4	084 061 028 .004 .025	078 047 013 .014 .029	038 006 .017 .030	.013 .026 .031 .027 .019	.027 .024 .017 .010 .002	.013 .006 .000 005 007	.005 001 006 009 010	1.1 - 1.2 -	047 047 033 013 004	048 042 026 008 .006	038 025 010 .003	016 005 .004 .009	.002 .006 .007 .007 .005	.007 .006 .004 .002	.006 .004 .001 001
1.5 1.6 1.7 1.8 1.9	.033 .028 .016 .002	.032 .025 .012 002	.025 .013 .001 008 013	.009 001 008 011 010	004 008 008 007 004	008 007 004 001	008 005 002 .001 .003	1.5 1.6 1.7 1.8 1.9	.014 .016 .013 .006	.014 .015 .011 .004	.013 .011 .006 .000	.008 .005 .001 003 004	.002 .000 002 003 003	002 002 002 002 001	003 003 002 001
2.0 2.2 2.4 2.6 2.8	015 009 .005 .009	015 007 .005 .008	013 003 .006 .006	007 .002 .006 .002 002	001 .004 .003 001 002	.003 .003 ,000 002	.004 .003 001 002 001		006 006 .001 .004	006 005 .001 .004	006 003 .002 .003	004 001 .002 .002	002 .001 .002 .000	.000 .001 .001 .000	.001 .001 .000 001
3.0 3.4 3.6 3.8	005 004 .002 .004 .001	005 003 .002 .003	005 002 .002 .003	003 .000 .002 .001	001 .001 .001 .000	.000 .001 .001 001	.001 .001 .000 001		.002 .002 .000 .002	002 002 .000 .002 .001	002 001 .001 .001	-,002 001 .001 .001	001 .000 .001 .000	.000 .000 .000	.000 .001 .000 .000
4.0	002	002	002	 002	001	.000	.000	4.0	∞1	001	001	001	.000	•000	.000
βα	$a = 1 \cdot 0$,	$\beta b =$	3.0,	($G_1 = 1$	445	βа	1-0),	$\beta b =$	₃3⋅5,	4	$G_1 = 0$	714
βα c/λ		, 30°	βb == 60°	3·0, 90°		$G_1 = 1$. 150°	445 180°	βa c/λ	1 ·0 0°), 30°	$eta b = 60^{ m o}$	= 3·5, 90°	1 20 °	$G_1 = 0$ 150°	
•			•	•		_		c/λ		-	•	•		-	
c/λ	0° 1.003 .967 .872	30° .648 .624 .555 .452	60° .080 .072 .050 .019016	90°135134130124	120° 082 079 073 063 050	150° 007 007 004 000	180° .016 .016 .017 .018	c/λ .0 .1 .2 .3 .4	0° 1.000 .964 .860	30° .494 .471 .406 .310	60°167163174180	90° 226 221 206 183 153	120° 055 052 044 032	.024 .024 .025 .026	180°
c/\lambda 0.123.4 556.78	0° 1.003 .967 .872 .729 .558 .381 .220 .089002	30° .648 .624 .555 .452 .33 .207 .097 .012	60° .080 .072 .050 .019016047069079	90°135134130124113099082062041	120°082079073063050036022009 .001	150°007007004000 .004 .008 .011 .013	180° .016 .016 .017 .018 .018 .018	c/λ .0 .1 .2 .3 .4 .5 .6 .7 .8 .9	0° 1.000 .964 .860 .705 .521 .335 .168 .038	30° .494 .471 .406 .310 .199 .090001065096	60°167163174180181176161136	90°226221206183153119083048017	120°055052044032017003 .011 .021	150° .024 .024 .025 .026 .027 .026 .025 .021	180°033 .033 .032 .030 .027 .023 .018 .012 .006
c/\lambda .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .1 .1 .1 .2	0° 1.003 .967 .872 .729 .558 .381 .220 .089092052057057	30° .648 .624 .555 .452 .33° .207 .012 042 066 065 024 001	60° .080 .072 .050 .019016047069076062042019	90°135134130124113099082084021004 .008	120°082079073063050036022009 .001 .009	150°007007004004008011013013011008005002001	.016 .016 .017 .018 .018 .018 .017 .015 .005	c/\lambda .0 .1 .2 .3 .4 .566700 .9 .1 .1 .2 .1 .3 .4 .5671.8	0° 1.000 .964 .860 .705 .521 .335 .168046084086063029	30° .494 .471 .406 .310 .199 .090001065096098078046012 .0:4	60°16716917480181176161363066030 .000 .021	90°226221206183153119083048017 .007	120°055052044032017003 .011 .027 .029 .026 .020 .013	150° .024 .024 .025 .026 .027 .026 .025 .021 .017 .011 .005 .000004	180°033 .033 .032 .030 .027 .023 .018 .018 .006 .000004008009009
c/\lambda .12.33.4 .56.7.8.9 0.1.2.33.4 1.56.7.8.9 1.1.2.3.4 1.56.7.8	0° 1.003 .967 .872 .729 .558 .381 .220 .0890520570570534009 .011	30° .648 .624 .555 .452 .33° .207 .097 .012 .042066065048024001 .015	60° .080 .072 .050 .019 .016 .047 .069 .076 .062 .019 .000 .013 .019 .018 .012 .004 .003 .007	90° - 135 - 134 - 130 - 1124 - 113 - 099 - 082 - 062 - 041 - 001 - 004 - 003 - 003 - 003 - 005 - 007 - 005 - 000 - 003 - 003	120°082079063050036022009 .001 .009 .013 .012 .008 .004	150°007007007007008008 .011 .013 .013 .011 .008 .005 .002001003004004	.016 .016 .017 .018 .018 .018 .017 .015 .012 .008 .004 .000 003 005 005 005	c/\lambda .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .1 .2 .1 .1 .2 .1 .1 .2 .1 .1 .4 .1 .5 .6 .7 .1 .9 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	0° 1.000 .964 .860 .705 .521 .335 .168 .036046084086083024 .028 .028 .017	30° .494 .471 .406 .310 .199 .090001065096098046012 .014 .029	60°167169174180181176161366030 .000 .021 .031 .023 .01100	90°226221206183153119083048017 .007 .024031 .025004009009	120°055052044032017003 .011 .021 .029 .026 .020 .013 .005002006008008	150° .024 .025 .026 .027 .026 .025 .021 .017 .011 .005 .000004007007006004 .002 .00	180°033 .033 .032 .030 .027 .023 .018 .006 .000004008009007004001 .001 .003
c/λ 0.12334 566789 0112334 556789 02466 22226	0° 1.003 967 872 729 .558 .381 .220 .089052057034009 .011 .021 .022 .015 .005004009008 .002008	30° .648 .624 .555 .452 .33° .007 .012 .042 .065 .024 .001 .015 .021 .020 .012 .003 .005	60° .080 .072 .050 .019 .016 .047 .069 .076 .062 .019 .000 .013 .019 .018 .012 .004 .003 .007 .009 .003 .004 .000	90° - 135 - 134 - 130 - 1124 - 113 - 099 - 082 - 062 - 041 - 001 - 004 - 003 - 003 - 003 - 005 - 007 - 005 - 000 - 003 - 003	120°082079073063050036022009 .001 .009 .013 .012 .008 .004003004003001 .002 .002 .002 .000001	150°007007007007007007008 .001 .008 .011 .008 .005 .002001003004004003001 .000 .001 .000	.016 .016 .017 .018 .018 .018 .017 .015 .002 .004 .000 003 005 005 005 005 001 .000 .002	c/\lambda .1 234 56789 9 1.1 2.34 5.6 7.89	0° 1.000 .964 .860 .705 .521 .335 .038 -046 -083 -029 .028 .028 .028 .028 .028 .029 .028 .029 .028 .028 .029 .028 .028 .028 .028 .028 .028 .028 .028	30° .494 .471 .406 .310 .199 .090 .091 .065098046012 .014 .029 .032 .024 .012015007 .005 .008	60°167169174180176136136103066030 .021 .031 .023 .011001009009009	90°226221206183153199083017 .007 .024005004009011006 .003 .0055 .002	120°055052044032017003 .011 .021 .027 .029 .026 .020 .013 .005002006008008006003	150° .024 .024 .025 .026 .027 .026 .021 .017 .011 .005 .000004007006004002 .002 .003 .002001	180°033 .033 .032 .030 .027 .023 .018 .006 .000004008009007001 .001 .003 .004 .004001

9.2.1 Vertical Dipoles (cont.)

$\beta a =$	= 1 · 2 5		$\beta b =$	2 · 75,	($\tilde{i}_1 = 2$	249	β a	$=1\cdot 2$	5,	$\beta b =$	3 · 25,	($G_1 = 1$	500
c/λ	0°	30°	60°	90°	1 2 0°	1 50°	180°	c/λ	0_{\circ}	30°	60°	90°	120°	150°	180°
.1 .2 .	.000 .969 .882 .749 .589	.704 .681 .614 .515 .395	•19 2 •183 •157 •118 •074	055 056 057 059 059	056 055 051 045 938	009 008 007 004 001	.008 .008 .009 .010	.0 .1 .2 .3	1,000 •967 •872 •730 •560	.599 .576 .512 .415 .301	.011 .005 010 032 054	141 139 132 121 107	052 051 045 037 027	.007 .008 .009 .010	.018 .018 .018 .017
.6 . .7 . .8 .	421 .265 .135 .039 .020	.271 .158 .066 .001 .035	.030 006 032 044 044	057 052 043 032 020	029 020 011 004 .002	.002 .004 .006 .007	.010 .010 .009 .007	.56 .78 .9	.383 .222 .091 .000 051	.185 .082 .003 046 067	073 084 085 075 057	089 069 047 027 009	016 005 .004 .010	.012 .013 .012 .010	.013 .011 .008 .004
1.1 =. 1.2 = 1.3 =	.047 ·	047 041 025 008 006	035 021 007 .004 .011	.009 .000 .007 .010	.006 .007 .007 .006	.005 .003 .001 .000 002	.002 .000 002 003	1.1 1.2	067 058 035 009 .010	065 047 023 .000	036 014 .004 .015 .019	.005 .013 .017 .016 .012	.015 .013 .009 .005	.004 .001 001 003 004	002 004 005 005 004
1.6 1.7 1.8	.013 .016 .013 .006 .001	.014 .015 .011 .004 002	.013 .010 .005 .000 004	.007 .003 .000 003	.001 001 002 003 002	002 002 002 001 .000	003 +.002 001 .000	1.5 1.7 1.8 1.9	-021 -022 -015 -006 003	.021 .019 .012 .003 005	.017 .011 .003 003	.006 .000 004 006 006	002 004 005 004 002	003 002 001 .000	003 001 .001 .002
2.2 - 2.4 2.6		006 005 001 004 001	006 003 .002 .003 .000	004 .000 .002 .002 001	001 .001 .000 001	.001 .001 .000 .001	.001 .001 .000 001	2.0 2.2 2.4 2.6 2.8	009 008 .002 .006 .002	009 006 .002 .005	908 903 .904 .904	004 .001 .003 .002 001	.000 .002 .002 .000	.002 :000 :000 001 001	.002 .001 001 001 .000
3.2 - 3.4 3.6		002 002 .000 -002	002 001 .001 .001	.001 .000 .001 .001	001 .000 -001 .000	000. 000. 000. 000.	000. 000. 000. 000.	3.0 3.4 3.6 3.8	003 003 .001 .002 .001	003 002 .001 .002	003 001 .001 .002	002 .000 .001 .001	001 .000 .001 .000	.000 .001 .000 .000	.001 .001 .000 .000
4.0 -	.001	0 01	001	.4.001	.000	,000	.000	4.0	- .001	001	001	001	.000	.000	.000
0	.1.25		QL.	2.75	,	٠٥.	725	θ.σ	1.5	:	8h _	3.0	,	c _ 2.	326
	=1·25			3·75,		$G_1 = 0$		•	=1.5		-	3·0, 90°		$G_1 = 2 \cdot 150^\circ$	
c/λ .0 11 .2 .	= 1 · 25 0° .000 .964 -860 -705 •522	30° .436 .414 .354 .265	βb = 60°216216216212203	90° 188 183 169 146 117	120°012010005 .003	$G_1 = 0$ 150° - 026 .026 .026 .025 .023	725 180° .019 .018 .017 .014 .011	c/λ	= 1 · 5 0° 1.000 .970 .882 .750 .591		$\beta b = 60^{\circ}$.121 .114 .094 .065	90° 076 076 074 071 065	120°040039035030023	$G_1 = 2^{\circ}$ 150° $.002$ $.002$ $.003$ $.004$ $.005$	328 180° .010 .010 .010 .010
c/λ .0 11 .2 .3356	0° .000 .964 -860 -705 -522 -335 .168 .038 .046	30° .436 .414 .354 .265 .163	60°216216212	90° 188 183 169 146	120° 012 010 005 .003	150° - 026 .026 .026 .025	180° .019 .018 .017	c/\lambda .0 .1 .2	0° 1,000 .970 .882 .750	30° .660 .638 .575 .481	60° .121 .114 .994 .065 .032	90°076074071	120° 040 039 035 030	.002 .002 .003 .004	.010 .010 .010 .010
c/\lambda .0 1	0° .000 .964 .860 .705 .522 .335 .168 .046 .085	30° .436 .414 .354 .265 .163 .063 020 076	60°216216212203187163131094	90° 188 183 169 117 085 052 022	120°012010005 .003 .012 .020 .027 .031 .031	150° - 026 - 026 - 026 - 025 - 023 - 021 - 017 - 013 - 008	.019 .018 .017 .014 .011 .008 .004 001	c/\lambda .0 .1 .2 .3 .4 .55 .67	0° 1.000 .970 .882 .750 .591 .424 .267 .137	30° .660 .638 .575 .481 .368 .251 .144 .057	60° .121 .114 .994 .965 .932 .000026041047	90°076076071065058048037	120°040039035030023016008002	150° .002 .002 .003 .004 .005 .006	.010 .010 .010 .010 .009 .008 .006 .004
c/\lambda .0 1 2.3 1 4 5.66 7.88 1 1 5.66 7.88 1 1 5.66 7 8 1 1 5.66 7 8 1 1 5.66 7 8 1 5 5 6 1 5 5	0° .000 .964 .860 .705 .522 .335 .038 .046 .087 .064 .030 .024 .032 .024	30° .436 .414 .265 .163 .063 .020 .076 .102 .100 .078 .045 .045	60°216216216212203187163131094055020 .007 .025	90°188183169117085052052021 .033 .021	120°012010005 .003 .012 .020 .027 .031 .028 .022 .015 .007	150° -026 .026 .026 .025 .023 .021 .017 .013 .008 .004001004006	180° .019 .018 .017 .014 .011 .008 .004001007009009008	c/\lambda .0 .1 .2 .3 .4 .55 .67 .70 .9 1.0 1.1 1.2	0° 1.000 .970 .882 .750 .591 .424 .267 .041 .019 .045 .047 .033 .015	30° .660 .638 .575 .481 .368 .251 .144 .057003037040025007	60° .121 .114 .994 .065 .032 .000026047042032018004	90°076076071065058048037024013	120°040039035030023016008003007008006008	150° .002 .002 .003 .004 .005 .006 .007 .006 .004 .003 .001 .000	.010 .010 .010 .010 .009 .008 .006 .004 .002 .001 001 002
c/\lambda .0 1	0° .000 .964 .860 .705 .522 .335 .038 .046 .087 .064 .030 .024 .032 .029 .017 .003	30° .436 .414 .354 .265 .163 .063 .076 .102 .078 .045 .011 .015 .030	60°216216212203187163094055020 .007 .025 .030 .021 .009002010	90°188189146117085052022 .003 .021 .033 .029 .021 .011011011	120°012010005 .003 .012 .020 .027 .031 .028 .022 .015 .007005	150° - 026 - 026 - 026 - 026 - 025 - 023 - 021 - 013 - 003 - 004 - 001 - 004 - 006 - 007 - 006	180° .019 .018 .017 .014 .011 .008 .004001004007009009008006004	c/\lambda .0 .1 .2 .3 .4 .556 .789 .9 .0 1.12 .1.2 .1.4 .1.566 .1.8	0° 1.000 .970 .882 .750 .591 .424 .267 .137 .041019045047015 .002	30° .660 .638 .575 .481 .368 .251 .144 .057003047040025007 .014 .010 .004	60° .121 .114 .994 .065 .032 .000026041047042018004 .006 .011 .012 .009 .004	90°076076071065058048037024013005 .005 .006 .008	120°040039035030023016008007008006001001002003002	150° .002 .002 .003 .004 .005 .006 .007 .006 .004 .003 .001 .000001002	.010 .010 .010 .010 .009 .008 .006 .004 .002 .001 001 003 003 002
c/\lambda .0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 6 6 9 0 2 4 6 8 0 2 4 6 6 9 0 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0° .000 .964 .860 .705 .522 .335 .038 .046 .085 .087 .064 .030 .024 .032 .029 .017 .003 .009 .015 .008 .008	30° .4366 .414 .354 .265 .163 .063 .076 .102 .076 .102 .011 .015 .030 .032 .024 .011 .002 .024 .011 .002 .002 .002	60°216216212203187163094055020 .007 .025 .030 .021 .009020013012013	90°186183169146117085052022 .003 .021 .031 .031 .001007011007011008	120°012010005 .003 .012 .020 .027 .031 .028 .022 .015 .007 .000005008008001 .002 .004 .002007	150° - 026 - 026 - 026 - 026 - 027 - 023 - 021 - 017 - 023 - 004 - 004 - 006 - 007 - 006 - 002 - 002 - 003 - 003 - 001 - 001 - 001	180° .019 .018 .017 .014 .011 .008 .004001009009004001 .001 .001 .001 .003 .004 .003	c/\lambda .0 .1 .2 .3 .4 .566 .78 .9 .0 .1 .2 .3 .1 .4 .566 .7 .7 .1 .9 .2 .2 .4 .6 .2 .2 .6	0° 1.000 .970 .882 .750 .591 .424 .267 .041019045033015 .002 .013 .016 .003 .006001	30° .660 .638 .775 .481 .144 .057 .037 .047 .040 .025 .006 .014 .010 .004 .010 .004 .005 .005 .001 .004	60° .121 .114 .994 .065 .032 .000 -026 -041 -047 -042032018004 .001 .012 .009 .004001004001 .002 .004001	90°076076074071065058048037024013005 .005 .005 .009 .010 .008	120°040039035030023016008002003 .004001002003002002001002	150° .002 .002 .003 .004 .005 .006 .007 .006 .001 .000 .001 .000 .001 .000 .001	180° .010 .010 .010 .010 .009 .008 .006 .004 .002 .001003003002001001 .000 .001

βι	z = 1 · 5	5,	$\beta b =$	3 · 5 ,	($G_1 = 1$	552	βа	=1.5	5,	β b ==	4.0,	($G_1 = 0$	740
c/λ	$0_{\rm o}$	30°	60°	90°	120°	150°	180°	c/λ	0°	30°	60°	90°	120°	150°	180°
.0 .1 .2 .3	1.000 .967 .873 .731 .561	.549 .528 .467 .376 .269	047 051 060 073 085	131 128 120 108 091	023 022 018 012 005	.013 .013 .013 .013	.011 .011 .010 .009	.0 .1 .2 .3	1,000 .964 .860 .706 .522	.377 .357 .301 .220	252 250 244 234 216	142 138 124 104 078	.019 .020 .023 .027 .031	.021 .021 .020 .018 .016	.003 .003 .002 .000
.5 .7 .8 .9	.385 .224 .093 .001	.161 .066 006 051 069	094 095 087 072 052	072 052 031 013	.002 .009 .013 .016	.012 .010 .008 .006	.005 .003 .000 002 003	.56 .78 .9	.335 .168 .038 047 086	.036 038 087 107 101	191 160 122 082 044	050 023 .001 .019	.034 .035 .033 .030 .024	.013 .009 .005 .002	004 006 008 009
1.0 1.1 1.2 1.3 1.4	067 058 035 010	064 046 022 .000	029 009 .007 .016 .019	.011 .017 .017 .014	.014 .010 .006 .002	.001 001 003 003	004 005 004 003 002	1.0 1.1 1.2 1.3 1.4	088 065 031 .001 .023	077 043 009 .016 .030	011 .014 .029 .033 .028	.035 .033 .026 .016 .006	.016 .008 .001 004 008	004 006 006 004	008 007 005 002
1.5 1.6 1.7 1.8 1.9	.021 .022 .015 .006 003	.021 .019 .011 .002	016 .009 .002 004 007	.003 002 -:005 006 006	004 005 004 003	002 001 .000 .001	001 .001 .002 .002 .002	7.5 1.6 1.7 1.8 1.9	.032 .029 .018 .003 008	.032 .024 .011 002 011	.018 .007 004 011 013	003 009 011 010 007	009 008 005 002 .001	-,002 .000 .001 .002	.002 .003 .003 .003
2.0 2.2 2.4 2.6 2.8	009 008 .001 .006	009 006 .002 .005	008 002 .004 .004 .000	003 .001 .003 .001	.000 .002 .001 001	.001 .001 .000 001	.001 .000 001 001	2.0 2.2 2.4 2.6 2.8	015 010 .004 .008 .002	015 007 .005 .007	011 001 .006 .004 002	003 .004 .005 .000 003	.003 .003 .001 002	.002 .000 001 001	.001 001 002 001
3.0 3.4 3.6 3.8	003 003 .001 .002	003 002 .001 .002	003 001 .001 .002	002 .000 .001 .001	.000 .001 .001 .000	000, 000, 000, 000,	.001 .000 .000 .000	3.0 2.2 3.4 5.8 3.8	005 004 .001 .004 .001	005 003 .002 .003	00¼ 001 .002 .002	002 .001 .002 .001	.000 .001 .001 .000	.001 .001 .000 001	.001 .000 001 001
4.0	001	001	001	 001	.000	.000	.000	4.0	002	002	002	001	.000	.000	.000
βα	$a = 1 \cdot 7$	5,	$\beta b =$	3 · 25,	($T_1 = 2$	397	8а	=1.7	5.	$\beta b =$	3.75.	(7 = 1	599
β <i>α</i> c/λ	u=1·7 0°	75, 30°	βb = 60°	3·25, 90°		$G_1 = 2$	397 180°	β a c/λ	=1·7	5, 30°	βb == 60°	3·75, 90°	120°	$G_1 = 1$. 150°	599 180°
•		-	•			-		c/λ		30° .498 .478 .421 .337	•	_		_	
c/λ	0° 1.000 .970 .883 .751	30° .615 .594 .535	.060 .054 .040 .019 004	90°082080077071062	120°021021018014009	150° .007 .007 .007 .007	180° .006 .006 .005	c/λ .0 .1 .2 .3 .4 .56	0° 1.000 .967 .873	30° .498 .478 .421 .337 .237	60° 094 096 100	90°110107099086070052	.000 .001 .003 .007	150° .012 .012 .017 .011 .010	.002 .002 .001 .000 001
c/\lambda	0° 1.000 .970 .883 .751 .592 .426 .270 .139	30° .615 .594 .535 .446 .339 .229 .129 .048	60° .060 .054 .040 .019004026041049048040	90°082080077071062052040028016	120°021018014009003 .002 .006 .008	150° .007 .007 .007 .007 .007 .007	.006 .006 .005 .005 .004 .003 .001 .000	c/λ .0 .1 .2 .3 .4 .56 .7 .8 .9 1.0 1.1	0° 1.000 .967 .873 .732 .562 -386 .225 .094	30° .498 .478 .421 .337 .237 .137 .050 016 056	60°094096100106109108100087067	90°110107099086070052033016001	120° .000 .001 .003 .007 .011 .014 .017 .018	150° .012 .012 .017 .011 .010 .008 .006 .004	.002 .002 .001 .000 001 002 003 004 004
c/λ .0 .1 .2 .3 .4 .5 .6 .7 .9 .0 .1 .1 .1 .3	0° 1.000 .970 .883 .751 .592 .426 .270 .043017044047047	30° .615,.594 .535,.446 .339 .229 .048038038047039	60° .060 .054 .040 .019004026041049040028014001 .008	90°082080077071062052040028016005	120°021018014009003 .002 .006 .008 .009	150° .007 .007 .007 .007 .007 .007 .006 .005 .004 .002 .001 .000001	.006 .006 .005 .005 .004 .003 .001 .000 001 002 003 003 003	c/λ .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2	0° 1.000 .967 .873 .732 .562 .386 .225 .094 .050 .067 .0586 .011	30° .498 .478 .421 .337 .237 .050 -016 056 070 044 040 .001	60°094096100106109108100067045023030 .018	90°110107099086070052033016001 .010 .016 .018 .016 .012	120° .000 .001 .003 .007 .011 .01½ .017 .018 .017 .015	150° .012 .017 .011 .010 .008 .006 .004 .002 .000002003003	180°002001000001002003004005004004003001
c/λ 0:234 56789 0:1234 1:678 1:1234 1:678	0° 1.000 .970 .883 .751 .592 .426 .270 .139 .043017047047015 .002	30° .615,.594 .535,.446 .339 .229 .129 .048 .008 .038 .047 .039 .047 .006	60° .060 .054 .040 .019026041049040028040028014001 .008 .012	90°082080077071062052040028016005003009007	120°021018014009003 .002 .006 .008 .009 .008 .007 .002 .000002003003003	150° .007 .007 .007 .007 .007 .007 .006 .005 .004 .002 .001 .000 .001 .000 .001 .000	.006 .006 .005 .005 .001 .001 .001 002 003 003 003 002 002 001 .000	c/\lambda .0 .1 .2 .3 .4 .56 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.56 1.7 1.8 1.9 2.0	0° 1.000 .967 .873 .732 .562 .386 .225 .094 .050050058011 .009 .020 .020 .006	30° .498 .478 .421 .337 .237 .050016056070063044020 .015 .021 .018 .011 .002	60°094096100106109108100087047045023003 .010 .018 .019 .014	90°110107099086070052033016001 .016 .018 .016 .012 .006 .001003006	120° .000 .001 .003 .007 .011 .01½ .017 .018 .017 .015 .011 .007 .002 .001 .004 .005 .004	150° .012 .017 .011 .010 .008 .006 .004 .002 .000002003003003002	180°002001000001002003004004003001000001002002002
c/\lambda 0:234 56789 011234 1.56789 0246	0° 1.000 .970 .883 .751 .592 .426 .270 .043017044015 .002 .016 .003 .006 .000005	30° .615,.594 .535,.446 .339 .229 .249 .08 .08 .08 .08 .014 .007 .006 .013 .014 .004 .002	60° .060 .054 .040 .019004026041049040028010 .008 .012 .011 .008 .001005002	90°082080077061062052048016005003 .000002004003 .001	120°021018019003 .002 .006 .008 .009008 .000002003002003002001 .000	150° .007 .007 .007 .007 .007 .007 .006 .005 .004 .002 .001 .000 .001 .000 .001 .000 .001	.006 .006 .005 .001 .003 .001 .003 .002002002001 .001 .001 .001 .001 .001 .001 .00	c/\lambda .0	0° 1.000 .9677 .873 .732 .562 .386 .225 .094 .002 .050 .0067 .009 .020 .011 .009 .020 .006 .006 .003	30° .498 .478 .421 .337 .237 .137 .50 .016 .056 .070 .063 .044 .020 .001 .015 .021 .018 .011 .002 .005	60°094096100108109108067045023003 .010 .018 .019014 .008 .001005005008	90°110107099086070052033016 .010 .016 .012 .006 .011003006005005006005	120° .000 .001 .003 .007 .011 .01½ .017 .015 .015 .011 .007 .002 .001 .005 .005 .006 .006 .006 .001 .006	150° .012 .012 .017 .011 .010 .008 .008 .004 .002 .000002003003003001 .001 .001 .001 .001 .001 .000 .001 .000	180°

9.2.1 Vertical Dipoles (cont.)

$\beta a = 1.75$,	$\beta b = 4 \cdot 2$	G_1	=0.753	βа	=2.0,		$\beta b =$	3 · 5,	($G_1 = 2$	456
c/λ 0° 30	° 60° 90	° 1 2 0° 1:	50° 180°	c/λ	0°	30°	60°	90°	120°	150°	180°
	9927009	0 .037 . 8 .038 . 1 .038 .	012007 012007 011007 009008 007008	.0 .1 .2 .3	1.000 .970 .883 .752 .594	.568 .549 .493 .410	.008 .005 005 019 033	076 074 070 062 053	005 004 003 .000	.007 .007 .007 .006	.001 .001 .000 .000
.5 .336 .0 .6 .1680 .7 .0380 .80471	56151 .00 97110 .02 11069 .03	3 .03 ⁴ . 0 .029 2 .023	.005009 .002009 .001008 .003008	.5 .6 .7 .8 .9		.207 .113 .038 013 040	046 053 053 048 037	041 029 018 007 .001	.006 .008 .010 .010	.005 .004 .003 .002	001 002 002 003
1.00880 1.10660 1.20320 1.3 .001 .0 1.4 .023 .0	40 .021 .03 07 .032 .02 18 .033 .01	1 .001 1004 1008	.006005 .006003 .005001 .004 .001 .002 .002	1.0 1.1 1.2 7.3 1.4	047 034	046 038 023 006 .007	023 010 .002 .009 .012	.007 .010 .010 .008 .005	.007 .005 .002 .000	001 001 002 002 001	002 002 001 001
1.5 0.32 .0 1.6 .029 .0 1.7 .018 .0 1.8 .0040 1.90080	23 .00401 1100601 0201100	0 - 006 1 - 003 9 000	.000 .003 .001 .003 .002 .003 .002 .002 .002 .001	1.5 1.6 1.7 1.8 1.9	.012 .016 .013 .007	.013 .014 .010 .004 002	.011 .007 .002 002	.002 001 003 004 003	003 003 002 001 .000	001 .000 .000 .001	.001 .001 .001 .001
2.00140 2.20100 2.4 .004 .0 2.6 .008 .0 2.8 .002 .0	07 ,000 ,00 05 ,006 ,00 07 ,004 ,00	5 .003 . 4 .000 0002	.000 .000 .000002 .001001 .001 .000	2.0 2.2 2.4 2.6 2.8		006 005 .001 .004 .001	005 002 .002 .002	002 .001 .002 .001	.001 .001 .000	.001 .000 .000 .000	.000 .000 001 .000
3.00050 3.20040 3.4 .001 .0 3.6 .003 .0 3.8 .001 .0	03001 .00 02 .002 .00 03 .002 .00	1 .001 . 2 .001 . 0 .000 .	.001 .001 .000 .000 .000001 .000 .000	n.0.4 n.14 0.8		002 002 .000 .001	002 001 .001 .001	001 .000 .001 .000	.000 .000 .000	.000 .000 .000	.000 .000 .000 .000
4.00020	0200200	1 .000 .	,000	4.0	001	001	001	001	.000	.000	•000
$\beta a = 2 \cdot 0$	$\beta b \approx 4.0$	<i>G</i> ₁ =	= 1 · 642	βа	$z = 2 \cdot 0$		$\beta b =$	4.5.	($G_1 = 0$	766
$\beta a = 2 \cdot 0,$ $c/\lambda 0^{\circ} 30$	$\beta b \approx 4.0,$ $60^{\circ} 90$	•		β a c/λ	$z = 2 \cdot 0,$ 0°	30°	βb == 60°	4·5, 90°	120°	$G_1 = 0$.	766 180°
•	60° 90 4612908 2813008 7513007 3712806	2 120° 15 3 .015 . 0 .015 . 3 .016 . 1 .018 .		c/λ						_	
c/\lambda 0° 30 .0 1.000 .\lambda .1 .967 .\lambda 2 .87\lambda -3 3 .732 .2 .4 .563 .2 .5 .388 .1	60° 90 60° 90 60° 90 60° 90 60° 90 60° 90 60° 90 60° 90° 60° 90° 6	120° 15 3 .015 . 0 .015 . 1 .018 . 1 .019 . 1 .019 . 1 .019 . 1 .017 .	50° 180° 008003 008003 007004 006004	c/\lambda	0° 1.000 .964 .861 .706 .523 .336 .169 .038	30° .258 .242 .196 .129 .054	60°281277264242213	90° 047 044 035 022 006	.041 .040 .040 .038 .036	.003 .003 .003 .002 .001	180°009009008008008
c/λ 0° 30 .0 1.000 .4 .1 .967 .4 2 .874 .3 3 .732 .2 .4 .563 .2 .5 .388 .1 .6 .226 .0 .7 .0950 .8 .0030	60° 90 4612908 2813008 7513009 7712404 1311603 3310201 2608300 71037 .01 42 .002 .01 19 .014 .01 102 .019 .002	120° 15 3 .015 . 0 .015 . 3 .016 . 1 .019 . 1 .017 . 1 .007 .	50° 180° 008003 008003 007004 005004 004005 007005 007005 001005	c/\lambda .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .0 .1 .1	0° 1.000 .964 .861 .706 .523 .336 .169 .038047087	30° .258 .242 .196 .129 .054018074107	60°281277264242213177137094054	90° 047 044 035 022 006 .010 .024 .035 .040	120° .041 .040 .038 .036 .032 .027 .021	150° .003 .003 .002 .007 .000002003005	180°009008008008007006005
c/λ 0° 30 .0 1.000 .4 .1 .967 .4 2 .874 .3 3 .732 .2 .4 .563 .2 .5 .388 .1 .6 .226 .0 .7 .0950 .90490 1.00660 1.10580 1.20360	60° 90 4612908 2813008 7513007 3712806 2512404 1311603 3310201 2608300 71037 .01 52015 .01 52015 .01 52015 .01 52015 .00 52015 .00 53002 .01 54 .002 .01 55015 .00 56 .006 .008 57 .009 .000 58 .006000 59 .006000 50005000	120° 15 3 .015 .0 0 .015 .0 1 .018 .0 1 .019 .0 1 .019 .0 1 .019 .0 1 .019 .0 1 .019 .0 2 .007 9 .007 9 .007 9 .007 9 .007 9 .005 .0 1 .006 .0 1 .007	50° 180° 008003 008003 007004 005004 005005 001005 001005 001005 001003 003003 003003 003002 003002	c/\lambda .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1	0° 1.000 .964 .861 .706 .523 .336 .169 .047087089066032 .000 .023 .029 .018 .004	30° .258 .242 .196 .129 .054018074115102038073005	60°281277264242213177054018 .009 .027 .035	90°047044035022006 .010 .024 .035 .040 .040	120° .041 .040 .036 .036 .032 .027 .021 .014 .007 .000005008010	150° .003 .003 .002 .007 .000002003006006006006006	180°009009008008006005001001002003
c/λ 0° 30 .0 1.000 .4 .1 .967 .4 2 .874 .3 3 .732 .2 .4 .563 .2 .5 .388 .1 .6 .226 .0 .7 .0950 .8 .0030 1.00660 1.10580 1.20360 1.3011 .0 1.5 .020 .0 1.5 .020 .0 1.6 .021 .0 1.7 .016 .0 1.8 .006 .0	60° 90 4612908 2813008 2712804 2712404 2801501 26061 .00 27037 .01 28015 .01 29 .014 .01 20 .018 .00 21 .002 .01 22 .015 .00 2300500 2500800 2600700 2700700 28 .004 .00 2900700 20 .004 .00 20 .004 .00 20 .003 .00	120° 15 3 .015 .0 .015 .0 .015 .0 .017 .0 .019 .0 .017 .0 .003 .0 .004 .0 .005 .0 .006 .0 .007 .0	50° 180° 008003 008003 007004 005004 005005 001005 001005 001003 003003 003003 003003 000 .001 000 .001 000 .002 001 .001	c/\lambda .0 .1 .2 .3 .4 .5 .6 .7 8 .9 .1 .1 .1 .2 .3 .1 .4 .5 .6 .7 8 .1 .9 .1 .9	0° 1.000 .964 .861 .706 .523 .336 .038 .047 .087 .089 .000 .023 .029 .018 .004 .008 .014	30° .258 .242 .196 .129 .054018074115102035035 .031 .031 .023 .010003	60°281277264242213177054054018 .009 .027 .035 .025	90°047044035022006 .010 .024 .035 .040 .040 .035 .026 .016 .005003	120° .041 .040 .038 .036 .032 .027 .021 .014 .007 .000005008010009	150° .003 .003 .002 .001 .000002003006006006006005000 .001 .002 .002	180°009009008008005001001002003003002002
c/λ 0° 30 .0 1.000 .4 .1 .967 .4 2 .874 .3 3 .732 .2 .4 .563 .2 .5 .388 .1 .6 .226 .0 .90490 1.00660 1.10580 1.20360 1.3011 .0 1.4 .009 .0 1.5 .020 .0 1.6 .021 .0 1.7 .016 .0 1.90030 2.00080 2.1 .001 .0 2.00080 2.1 .001 .0 2.6 .006 .0 2.6 .006 .0	60° 90 4612908 2813008 7513007 7512404 1311603 2301501 420201 5201501 420201 5201501 5201500 5200500 5300600 5000700 5000700 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100 5000100	120° 15 3 .015 .0 0 .015 .0 1 .019 .0 1 .001 .0 2 .001 .0 2 .002 .0 3 .000 .0 1 .002 .0 2 .001 .0 1 .002 .0 2 .001 .0 1 .000 .0 1	50° 180° 008003 008003 008003 006004 005004 001005 001002 003003 003003 003003 000 .001 000 .001 001 .001 001 .000 001 .000 001 .000 001 .000 001 .000	c/\lambda .01.2.34 556.789 0.1.2.31.4 1.56.789 0.2.4.6	0° 1.000 .964 .861 .706 .523 .336 .169 .038 .047087089 .066032 .003 .023 .029 .018 .004008 .003 .003 .003 .004008 .002	30° .258 .242 .196 .129 .054018073102038005 .019 .031 .023 .010031014073005	60°281277264242213177094018099018090013002013003	90°047044035026 .010 .024 .035 .040 .040035 .040 .016 .005003001011008003001	120° .041 .040 .036 .036 .032 .027 .014 .007 .005 .008 .010 .009 .007 .001 .001 .001 .003	150° .003 .003 .002 .007 .000002006006006006006002 .002 .002 .002 .002 .001001001	180°009009008008007004001002003003002001002001002001

9.2.2 TANGENTIAL DOUBLETS

$\beta a = 0 \cdot 25$,	$\beta b = 1.75$,	$G_1 = 1$	060	βa	=0.25,	,	$\beta b = 2$	·25,	G	$i_1 = 1 \cdot 1$	133
$c/\lambda = 0^{\circ} = 30^{\circ}$	60° 90°	120° 150°	180°	c/λ	0°	30°	60°	90°	120°	1 50 °	180°
.0 1.000 .796 .1 .923 .734 .2 .710 .561 .3 .414 .321 .4 .105 .071	.410 .182 .378 .177 .291 .161 .170 .138 .045 .110	.171 .238 .178 .249 .197 .275 .216 .301 .223 .308	.272 .283 .309 .333 .336	.0 .1 .2 .3	1.000 .924 .714 .422 .116	.761 .701 .537 .309 .072	•371 •343 •266 •160 •050	.224 .216 .195 .164 .126	.261 .259 .251 .234 .202	.307 .304 .292 .266 .221	.320 .316 .301 .269 .217
.5149131 .6298248 .7326264 .8248195 .9107076	111 .051 117 .026 080 .008	.208 .280 .166 .214 .101 .116 .027 .005 041092	.301 .223 .113 009 115	.5 .6 .7 .8	285 315 242	120 229 244 179 067	038 087 091 059 007	.086 .049 .019 003 015	.154 .093 .025 038 084	.153 .069 021 100 152	.142 .050 045 127 177
1.0 .043 .047 1.7 .153 .735 1.2 .194 .165 1.3 .162 .131 1.4 .079 .061	.079011 .088009 .066005	088154 104167 088132 048062 .001 .018	180 189 145 064 .027	1.0 1.1 1.2 1.3 1.4	.039 .146 .187 .157	.049 .131 .157 .126 .056	.043 .074 .078 .055	019 017 011 005 .001	105 097 066 020	165 138 079 005 .063	184 148 078 .005 .079
1.5021021 1.6101090 1.7137118 1.8120101 1.9062050	055 .003 066 .003 053 .002	.044 .084 .068 .116 .067 .108 .044 .065 .009 .005	.100 .134 .122 .071 .502	1.5 1.6 1.7 1.8 1.9	098 133 116	026 089 114 096 046	026 054 062 047 017	.005 .006 .005 .003	.059 .070 .058 .030 006	.106 .113 .086 .034 024	.124 .128 .093 .033 033
2.0 .013 .01 ² 2.2 .106 .091 2.4 .050 .041 2.606105 ² 2.807806	.052002 .020001 033 .001	026052 053088 011013 .038 .067 .033053	062 100 012 .078 .060	2.0 2.2 2.4 2.6 2.8	.013 .103 .049 059	.016 .089 .038 053 064	.016 .050 .016 033 034	002 002 001 .001 .001	036 049 002 .040 .027	069 077 .006 .070 .040	082 085 .011 .081 .044
3.0 .007 .008 3.2 .073 .06 3.4 .036 .030 3.6044038 3.8058049	.036001 .015 .000 .023 .000	013025 037062 011016 .026 .046	031 072 017 .054 .048	3.0 3.4 3.6 3.8	.007 .071 .035 043	.009 .061 .029 038 048	.0083 .035 .013 023 026	.000 001 .000 .000	018 035 006 .027 .022	035 058 006 .048 .035	042 066 005 .056 .040
4.0 .005 .005 4.2 .055 .046 4.4 .028 .025 4.6034030 4.8046031	3 .028 .000 .012 .000 018 .000	008016 028048 010015 .020 .035 .021 .035	019 055 016 .040 046	4.0 4.2 4.4 4.6 4.8		.006 .047 .022 030 038	.005 .027 .011 018 021	.000 .000 .000 .000	011 027 007 .020	021 046 009 .036 .030	026 052 009 .042 .034
5.0 .004 .004 5.2 .045 .03 5.4 .023 .019 5.6028025 5.803803	9 .022 · .000 9 .010 .000 5 - .015 .000	005011 023039 008013 .016 .028	013 045 015 .032 .034	5.0 5.2 5.6 5.8		.005 .038 .018 024 032	.00 ¹ 4 .022 .009 015 018	.000 .000 .000 .000	007 022 006 .016	015 037 009 .029	018 043 010 .034 .030
6.0 .004 .00 6.2 .038 .033 6.4 .019 .01 6.602402 6.8032026	009 .000 009 .000 0012 .000	019033 007012 .013 .023	010 038 013 .027 .029		.004 .037 .018 024 031			.000. 000. 000. 000.	006 018 006 .014 .014	011 031 009 .024 .023	013 036 010 .028 .026
7.0 .004 .005 7.2 .033 .026 7.4 .016 .016 7.6021016 7.8028026	000, 010. 8 000, 000 000, 10 8	016028 007011 .011 .020		7.0 7.2 7.4 7.6 7.8	.003 .032 .016 021 027	.003 .027 .013 018 023	.003 .016 .007 011 013	.000 .000 .000	004 016 005 .012		
8.0 .003 .00	,002 ,000	003006	007	8.0	.003	.003	.002	.000	004	007	 008

$\beta a = 0 \cdot 25$,	$\beta b = 2 \cdot 75$,	$G_1 = 1$	· 117	$\beta a = 0.5$,	$\beta b = 2$	·0,	$G_1 = 1$	478
c/λ 0° 30°	60° 90°	120° 150°	180°	$c/\lambda = 0^{\circ}$	30°	60°	90° 120°	150°	180°
.0 1.000 .718 .1 .924 .661 .2 .716 .509 .3 .425 .286 .4 .121 .065	.298 .206 .231 .183 .139 .148	.207 .164 .200 .157 .181 .133 .148 .093 .104 .041	.137 .129 .103 .062 .008	.0 1.000 .1 .926 .2 .723 .3 .439 .4 .142	.769 .711 .551 .328 .096	.367 .340 .266 .164 .059	.184 .221 .180 .223 .166 .227 .146 .225 .120 .211	.300 .301 .300 .28 <i>7</i> .258	.330 .330 .325 .307 .267
.5131116 .6281218 .7313230 .8242166 .9109059	1069 .027 1070002 1041020	.051020 005081 056132 093161 110161	054 114 161 183 175	.5105 .6253 .7287 .8220 .9094	203 222 163	026 073 078 048 001	.092 .178 .063 .126 .037 .060 .016007 .000062	.201 .121 .027 064 132	.200 .109 .005 091 160
1.0 .035 .052 1.1 .142 .128 1.2 .183 .151 1.3 .155 .119 1.4 .076 .050	.069021 .068011 .044 - .002	102131 074076 031009 .014 .054 .050 .099	13 ¹ / ₄ 070 .006 .073 .117	1.0 .042 1.1 .141 1.2 .178 1.3 .147 1.4 .069	.050 .126 .149 .118 .050	.073 - .075 -	.010095 .014098 .013074 .010032 .005 .014	098	185 164 102 019 .061
1.5019026 1.6096086 1.7130111 1.8114092 1.9059042	053 .009 057 .006 040 .003	.069 .113 .066 .095 .044 .051 .011003 022053	.127 .101 .050 012 066	1.5023 1.6098 1.7129 1.8111 1.9056	088 111 092	027 054 060 045 015	.000 .050 .003 .067 .005 .061 .005 .035 .003 .001		.115 .129 .103 .046 020
2.0 .012 .018 2.2 .101 .08 2.4 .048 .036 2.6058053 2.8075063	.047003 .012 .000 .033 .002	045082 042059 .009 .027 .042 .070 .020 .024	095 062 .036 .080 .024	2.0 .015 2.2 .101 2.4 .046 2.6059 2.8074			.001030 .002049 .002006 .000 .038 .002 .029	080 001 .067	074 090 .003 .078 .049
3.0 .007 .000 3.2 .070 .060 3.4 .034 .027 3.6042038 3.8055047	034001 011 .000 3024 .001	023045 033051 001 .006 .029 .050 .019 .027	053 057 .010 .058 .029	3.0 .008 3.2 .070 3.4 .034 3.6042 3.8055			.001 - .015 .001 - .035 .001 - .008 .000 .026 .001 .023	058 009	037 067 009 .054 .042
4.0 .005 .006 4.2 .053 .046 4.4 .027 .022 4.6033025 4.804403	.026001 .010 .000 .018 .000	014028 026042 003001 .021 .038 .016 .025	033 048 .000 .044 .028	4.0 .006 4.2 .053 4.4 .026 4.6033 4.6044		.006 .026 .011 - 018 021	.001 =.009 .000 =.027 .001 =.008 .000 .019	045 011 -035	023 052 011 .041 .035
5.0 .004 .005 5.2 .043 .037 5.4 .022 .018 5.6027021 5.8036031	, .021 .000 .008 .000 .015 .000	010019 021035 004004 .017 .030 .014 .023	04ó	5.0 .005 5.2 .043 5.4 .021 5.6027 5.8036		.00 ¹ 4 .021 .009 01 ¹ 4 017	.000006 .000021 .000007 .000 .016	037 011 .028	016 042 011 .032 .030
6.0 .004 .001 6.2 .036 .031 6.4 .018 .015 6.6023021 6.8031026	.018 .000 .000 .000	007014 018030 004005 .014 .025 .013 .020	03 ⁴ 005 .029	6.0 .004 6.2 .036 6.4 .018 6.6023 6.8031	.004 .031 .015 020		.000 = .005 .000 = .018 .000 = .006 .000 .013	031 010 .023	012 036 011 .027 .026
7.0 .003 .001 7.2 .031 .022 7.4 .015 .013 7.6020018 7.8027023	, .016 .000 .006 .000 .011 .000	006011 015026 004005 .012 .021 .011 .018	030 006 .025	7.0 .004 7.2 .031 7.4 .015 7.6020 7.8027		.003 .016 .007 011 013	,000 =.004 .000 =.015 .000 =.006 .000 .011 .000 .012	027 009 .020	009 031 010 .023 .024
8. 0 . 003 . 003	.003 .000	004009	01 1	8.0 .003	.003	.002	.000003	006	007

$\beta a = 0.5$,	$\beta b = 2 \cdot 5$,	$G_1 = 1.516$	$\beta a = 0.5$,	$\beta b = 3 \cdot 0$,	$G_1 = 1 \cdot 272$
c/λ 0° 30°	60° 90° 120°	1 50° 180°	c/λ 0° 30°	60° 90°	120° 150° 180°
.0 1.000 .743	.350 .215 .223	.215 .202	.0 1.000 .703	.310 .193	.128 .032012
.1 .929 .688	.326 209 .219	.208 .195	.1 .928 .651	.289 .186	.122 .026019
.2 .732 .538	.261 .190 .205	.188 .172	.2 .730 .507	.231 .165	.103 .007037
.3 .456 .330	.170 .161 .180	.153 .132	.3 .453 .306	.151 .133	.075023066
.4 .166 .112	.076 .126 .144	.103 .077	.4 .159 .096	.068 .096	.037060101
.5078068	.000 .088 .095	.041 .011	.5087076	.000 .057	005098135
.6228175	045 .053 .040	027059	.6241179	039 .022	046130161
.7270198	054 .022016	089121	.7284200	047006	079149171
.8214148	033001062	134162	.8230151	029024	098148160
.9100056	.004015091	152172	.9115061	.002032	099124125
1.0 .027 .041	.039021096	- .095 095	1.0 .013 .035	.033032	081081072
1.1 .122 .110	.060021079		1.1 .112 .102	.049025	049025008
1.2 .159 .132	.059016044		1.2 .154 .124	.047015	009 .032 .053
1.3 .135 .104	.037009002		1.3 .134 .099	.028004	.028 .078 .098
1.4 .065 .043	.004002 .036		1.4 .069 .041	001 .004	.055 .101 .117
1.5019027	028 .004 .059	.104 .120	1.5013025	029 .009	.064 .097 .106
1.6087080	049 .007 .063	.096 .106	1.6081075	045 .010	.055 .068 .069
1.7117100	052 .007 .047	.061 .063	1.7112094	045 .009	.031 .023 .016
1.8102082	036 .005 .019	.011 .004	1.8099077	029 .005	.000025037
1.9051037	009 .002013	039050	1.9051034	004 .001	028062076
2.0 .013 .018	.019 .000038	072085	2.0 .011 .018	.021003	044078090
2.2 .092 .079	.043003042	062067	2.2 .089 .076	.040005	033040040
2.4 .042 .032	.011002 .003	.018 .025	2.4 .041 .029	.007001	.014 .036 .046
2.6054049	031 .001 .038	.065 .075	2.6052048	031 .002	.038 .062 .069
2.8068057	029 .002 .022	.029 .030	2.8066054	025 .002	.014 .012 .009
3.0 .008 .009	.010 .001019	038046	3.0 .007 .010	.012 .000	023046054
3.2 .064 .056	.032001031	050057	3.2 .063 .054	.030002	026042046
3.4 .031 .025	.010001003	.001 .004	3.4 .030 .023	.008001	.002 .012 .017
3.6039035	022 .000 026	.046 .053	3.6038035	022 ,001	.027 .046 .053
3.8051043	023 .001 .019	.028 .031	3.8050041	021 .001	.015 .019 .020
4.0 .005 .006	.006 .000011	023028	4.0 .005 .007	.007 .000	014029035
4.2 .049 .043	.024 .000024	040046	4.2 .048 .042	.024001	023036041
4.4 .024 .020	.009001005	004003	4.4 .024 .019	.008001	001 .003 .005
4.6031027	017 .000 .019	.034 .040	4.6030027	017 .000	.020 .035 .041
4.8040034	019 .000 .016	.025 .028	4.8040033	017 .001	.014 .020 .021
5.0 .00\(\psi\) .005	.004 .000008	016019	5.0 .004 .005	.005 .000	010020024
5.2 .0\(\psi\) 0.035	.020 .000020	033038	5.2 .039 .034	.019 .000	019031035
5.\(\psi\) .020 .016	.008 .000005	006006	5.4 .019 .015	.007 .000	003001 .000
5.6025022	014 .000 .015	.027 .032	5.6025022	014 .000	.016 .028 .033
5.8033029	016 .000 .014	.022 .025	5.8033028	015 .000	.012 .018 .020
6.0 .004 .004 6.2 .034 .029 6.4 .017 .014 6.6022019 6.8029024	012 ,000 .013	028032 006006 .023 .026	6.0 .004 .004 6.2 .033 .028 6.4 .016 .013 6.6021019 6.8028024		007015018 016026030 003003002 .013 .023 .027 .011 .017 .019
7.0 .003 .003	.014 .000014	009011	7.0 .003 .004	.003 .000	006011014
.2 .029 .025		024028	7.2 .028 .025	.014 .000	014023026
7.4 .014 .012		006006	7.4 .014 .011	.005 .000	003003003
7.6019017		.019 .023	7.6019016	010 .000	.011 .020 .023
7.8025021		.018 .020	7.8024021	011 .000	.010 .015 .017
8.0 ,003 ,003	.002 .000004	007009	8.0 .003 .003	.000 .000	004009011

$\beta a = 0.75$	$\beta b = 2 \cdot 25$,	$G_1 = 2 \cdot 015$	$\beta a = 0.75$	$\beta b = 2 \cdot 75$,	$G_1 = 1 \cdot 735$
c/λ 0° 30°	60° 90° 120°	150° 180°	c/λ 0° 30°	60° 90°	120° 150° 180°
.0 1.000 .752	.3½5 .181 .198	.222 .224	.0 1.000 .731	.343 .207	.157 .082 .043
.1 .933 .700	.323 .178 .197	.218 .218	.1 .933 .662	.323 .201	.153 .076 .037
.2 .747 .558	.264 .167 .192	.204 .199	.2 .749 .546	.267 .184	.139 .059 .018
.3 .486 .360	.182 .151 .180	.177 .166	.3 .490 .354	.189 .158	.115 .030012
.4 .208 .151	.096 .129 .157	.135 .116	.4 .213 .152	.107 .125	.082007049
.5027024 .6177132 .7227163 .8186126 .9090049	.025 .103 .121018 .075 .073030 .048 .019016 .023031 .011 .003068	106138	.5024020 .6180129 .7236164 .8203133 .9111063	.037 .089 009 .054 027 .023 020001 .001018	.042048089 .000087124. 039116146 068128148 081119127
1.0 .021 .035	.038011084	133148	1.0003 .017	.023026	076088085
1.1 .104 .095	.053018077	101104	1.1 .083 .076	.036027	055041029
1.2 .137 .113	.049019051	047039	1.2 .123 .098	.034022	022 .011 .029
1.3 .116 .088	.028016014	.015 .030	1.3 .110 .080	.018013	.012 .057 .077
1.4 .054 .034	002009 .023	.066 .085	1.4 .057 .034	005004	.039 .085 .102
1.5021028	030002 .049	.095 .112	1.5011021	026 .004	.053 .089 .100
1.6081074	046 .004 .058	.093 .105	1.6067062	038 .009	.050 .069 .072
1.7105090	046 .007 .047	.064 .068	1.7092078	036 .010	.033 .031 .026
1.8090072	030 .008 .023	.018 .014	1.8081063	022 .008	.007013023
1.9043030	005 .006007	029040	1.9041026	001 .005	018049062
2.0 .016 .019	.020 .003031	064077	2.0 .012 .017	.020 .001	036068080
2.2 .085 .073	.040003040	062068	2.2 .076 .065	.034005	032042043
2.4 .036 .027	.008004 .000	.012 .018	2.4 .033 .023	.004004	.008 .027 .036
2.6052047	030 .000 .034	.061 .071	2.6047013	028 .001	.033 .056 .064
2.8062052	026 .003 .023	.031 .032	2.8057016	022 .003	.015 .016 .014
3.0 .009 .010	.010 .002016	033040	3.0 .008 .010	.011 .001	019039046
3.2 .060 .052	.030001030	049055	3.2 .055 .048	.027001	026040044
3.4 .028 .022	.009002005	002 .000	3.4 .025 .019	.006002	.000 .008 .012
3.6037034	021001 .023	.042 .049	3.6034031	020 .000	.023 .041 .047
3.8047040	021 .001 .019	.029 .031	3.8043036	018 .001	.015 .020 .021
4.0 .006 .007	.006 .001009	020025	4.0 .006 .007	.007 .001	011024029021038038002 .000 .002 .017 .031 .036 .013 .019 .021
4.2 .046 .040	.023 .000023	039044	4.2 .043 .037	.021001	
4.4 .022 .018	.008001006	006005	4.4 .020 .016	.006001	
4.6029026	016 .000 .018	.032 .037	4.6027024	015 .000	
4.8038032	017 .001 .016	.025 .028	4.8035029	015 .001	
5.0 .005 .005	.005 .001006	014017	5.0 .004 .005	.005 .001	008016020
5.2 .037 .032	.019 .000019	032036	5.2 .035 .030	.017 .000	017028032
5.4 .018 .015	.007001005	007007	5.4 .017 .013	.006001	003002001
5.6024021	013 .000 .014	.025 .030	5.6022020	012 .000	.014 .025 .029
5.8031027	014 .000 .013	.022 .024	5.8029024	013 .001	.011 .018 .019
6.0 .004 .004	.003 .001005	010013	6.0 .004 .004	.004 .000	006012015
6.2 .031 .027	.016 .000016	027031	6.2 .029 .025	.014 .000	014024027
6.4 .015 .013	.006001005	007007	6.4 .014 .011	.005001	003003003
6.6020018	011 .000 .012	.021 .024	6.6019017	010 .000	.017 .020 .024
6.8027023	012 .000 .012	.019 .022	6.8025021	011 .000	.010 .016 .018
7.0 .003 .003 7.2 .027 .024 7.4 .013 .011 7.6018016 7.8023020	.014 .000 =.013	006007	7.0 .003 .003 7.2 .025 .022 7.4 .012 .010 7.6017015 7.8021018	.003 .000 .013 .000 .005 .000 009 .000 010 .000	005010012 012021024 003004004 .010 .017 .020 .009 .014 .016
8.0 .003 .003	.002 .000003	-,006 -,008	8,0 .003 .003	.002 .000	004008009

βa	=0.7	5,	$\beta b =$	3-25,	($G_1 = 1$	185	βα	$a = 1 \cdot 0$),	$\beta b =$	2.5,	($G_1 = 2$	160
c/λ	0°	30°	60°	90°	120°	150°	180°	c/λ	0°	30°	60°	90°	120°	150°	180°
0 1 2 3	1,000 .930 .738 .466	.689 .639 .502 .311 .109	.300 .281 .229 .156 .079	.17 ¹ .168 .148 .119 .083	.062 .057 .042 .020 008	063 067 078 094 111	115 116 125 136 147	.0	1.000 .937 .763 .517 .252	.740 .693 .564 .383 .188	.342 .324 .274 .204 .129	.191 .188 .178 .162 .141	.160 .158 .150 .135	.108 .103 .088 .063 .029	.075 .069 .052 .023
.6 .7 .8	070 230 284 243 140	061 166 195 158 079	.013 028 043 034 011	.046 .012 015 033 040	038 064 082 088 079	125 131 125 104 069	153 149 132 100 055	.5 .6 .7 .8 .9	.021 135 200 181 106	.021 090 134 116 060	.063 .018 004 004	.11 ⁴ .084 .053 .024	.078 .038 003 038 060	011 052 086 106 107	-:055 -:093 -:121 -:132 -:121
1.0 1.1 1.2 1.3 1.4	018 .081 .130 .123	.008 .074 .101 .087 .041	.012 .027 .028 .016	039 031 019 006 .004	057 025 .008 .037 .053	024 .023 .062 .086 .090	-,003 .047 .086 .105	1.0 1.1 1.2 1.3 1.4	013 .064 .102 .093 .049	.008 .060 .080 .066 .028	.021 .028 .024 .009	017 026 027 022 013	066 055 031 001 .026	086 048 002 .042 .071	088 039 .015 .062 .090
1.7 1.8	,001 •.060 •.091 •.083 •.045	014 057 075 063 028	022 032 03! 017 .002	.011 .014 .012 .008	.054 .041 .017 009 031	.072 .037 005 042 066	.073 .030 018 058 079	1.5 1.6 1.7 1.8 1.9	008 057 079 069 033	018 053 066 052 020	026 034 030 016 .003	003 .006 .011 .012	.043 .045 .033 .012 012	.080 .066 .034 006 041	.093 .070 .030 016 054
2.0 2.2 2.4 2.6 2.8	.007 .074 .035 045 056	.015 .062 .023 042 045	.020 .030 .001 027 019	002 007 003 .002 .004	041 024 .017 .033 .008	069 021 .043 .051 .000	077 016 .054 .056 005	2.0 2.2 2.4 2.6 2.8	.012 .066 .027 043 050	.017 .057 .018 040 040	.021 .030 .007 026 018	.004 005 006 001 .004	029 031 .004 .030	061 041 .022 .052	073 043 .031 .060
3.4 3.4 3.6 3.8	.007 .055 .025 •.034 •.043	.011 .047 .018 032 036	.013 .025 .005 020 017	.001 002 002 .000	023 023 .005 .024	045 032 .018 .041	053 034 .024 .047	3.0 3.4 3.6 3.8	.009 .050 .022 032 039	.011 .043 .016 029 032	.012 .024 .005 019 016	.003 001 003 001	016 024 002 .021	034 038 .005 .038 .020	042 042 .009 .044 .021
	.006 .043 .020 027 035	.007 .037 .015 025 029	.008 .021 .005 016 015	.001 001 001 .000	015 020 .001 .018	029 030 .007 .032 .014	035 033 .010 .037	4.0 4.2 4.4 4.6 4.8	.006 .039 .018 025	.007 .034 .014 023 026	.007 .019 .005 015 014	.002 001 002 001	010 019 003 .016	021 032 001 .028	026 036 .001 .033 .020
5.0 5.4 5.6 5.8	.004 .035 .017 023 029	.005 .030 .013 020 025	.006 .017 .005 013 013	.001 .000 001 .000	010 016 001 .015	021 026 .002 .026 .014	025 030 .004 .030	5.0 5.4 5.6 5.8	.005 .032 .015 021 026	.005 .028 .012 019 022	.005 .016 .005 012 012	.001 .000 =.001 .000	007 016 004 .012	014 026 003 .023	018 030 002 .026 .019
		.004 .026 .011 017 021		.000 .000 001 .000	007 014 002 .012 .009	015 023 .000 .022 .014	018 026 .001 .025			.004 .023 .010 016 019		.001 .000 001 .000	005 013 004 .010	011 022 004 .019	013 026 004 .022
7.0 7.2 7.4 7.6 7.8	.003 .026 .012 017	.004 .022 .010 015 018	.003 .013 .004 009	.000 .000 .000 .000	006 012 002 .010 .008	012 020 001 .018 .013	014 023 001 .021	7.0 7.2 7.4 7.6 7.8	.003 .023 .011 015 020	.003 .020 .009 014 017	.003 .012 .004 008 009	.001 .000 001 .000	004 011 003 .009	008 019 004 .016 .014	010 022 004 .019
8.0	,003	.003	.003	.001	 005	010	 012	8.0	.003	.003	.002	.000	003	007	800

$\beta a = 1 \cdot 0$,	$\beta b = 3 \cdot 0$,	$G_1 = 1 \cdot 6$	654	$\beta a = 1 \cdot 0$,	$\beta b = 3 \cdot 5$,	$G_1 = 0.991$
c/λ 0° 30°	60° 90°	120° 150°	180°	c/λ 0° 30°	60° 90°	1 2 0° 150° 180°
.0 1.000 .718 .1 .935 .671 .2 .756 .5 ¹ / ₂ .3 .503 .360 .14 .230 .164	.337 .204 .319 .198 .269 .182 .198 .156 .120 .123	.104016 .092027 .07!044	069 079	.0 1.000 .66; .1 .930 .618 .2 .737 .484 .3 .464 .297 .4 .171 .097	.280 .152 .262 .145 .213 .126 .144 .098 .070 .063	.019099138 .015100138 .003104138 014108136 034110130
.5008004 .6170116 .7236160 .8216141 .9135081	.052 .086 .004 .050 021 .017 023009 012027	020099 046104 063095	121 100	.5080071 .6246177 .7306209 .8268175 .9166098	.007 .027 036006 053032 047048 028054	054108117 070098096 079079066 076051029 062016 .011
1.0033008 1.1 .054 .050 1.2 .102 .078 1.3 .101 .070 1.4 .063 .036	.003036 .014035 .016028 .008017 006005	057037 036 .003 009 .040 .018 .067 .037 .076	.025 1 .063 1	.0040009 .1 .067 .061 .2 .126 .096 .3 .130 .090 .4 .087 .053	005050 .012038 .019023 .014006 .002 .008	039 .020 .050 011 .052 .080 .017 .073 .094 .038 .079 .091 .048 .067 .069
1.5 .006007 1.6044043 1.7071058 1.8067049 1.9037022	018 .006 025 .012 022 .014 011 .012 .005 .007	.044 .065 .038 .039 .021 .004 001030 021053	.035 1 007 1 044 1	1.5 .021 .003 1.6040040 1.7077061 1.8078056 1.9049029	011 .017 019 .020 019 .017 010 .011 .004 .003	.044 .041 .034 .029 .007007 .008027045 014052068 031062073
2.0 .005 .012 2.2 .060 .050 2.4 .027 .017 2.6038036 2.8046037	.018 .001 .024007 001006 024 .001 015 .005	033060 024023 .011 .034 .028 .046 .010 .003	019 2 .045 2 .051 2	2.0004 .007 2.2 .060 .050 2.4 .033 .020 2.6036034 2.8048037	.016004 .021010 003005 022 .004 013 .006	036055058 016001 .008 .019 .047 .058 .028 .039 .041 .003011019
3.0 .008 .010 3.2 .046 .040 3.4 .020 .014 3.6030028 3.8036030	.012 .002 .022002 .003003 018 .000 014 .002	019038 021030 .003 .014 .021 .036 .011 .012	032 .019 .042	3.0 .005 .010 3.2 .047 .040 3.4 .022 .015 3.6030028 3.8038030	.013 .001 .021003 .001003 019 .001 013 .003	023043051 019022021 .008 .023 .030 .022 .036 .041 .008 .004 .001
4.0 .006 .007 4.2 .037 .032 4.4 .017 .013 4.6024022 4.8030025	.008 .002 .018001 .004002 014 .000 012 .001	012025 018027 .000 .005 .016 .028 .010 .014	030 .008 .033	4.0 .006 .008 4.2 .038 .033 4.4 .018 .013 4.6025023 4.8031026	.009 .001 .018001 .003002 015 .000 012 .002	015030036 017024026 .003 .011 .016 .017 .030 .034 .009 .009 .008
5.0 .005 .005 5.2 .030 .026 5.4 .014 .011 5.6020018 5.8025021	.004001	008017 015024 002 .001 .013 .023 .009 .014	027 .002	5.0 .005 .006 5.2 .032 .028 5.4 .015 .011 5.6021019 5.8026022	.007 .001 .015001 .003001 012 .000 011 .001	010021026 015023025 .000 .005 .008 .014 .024 .028 .008 .011 .011
6.0 .004 .004 6.2 .026 .022 6.4 .012 .009 6.6017015 6.8022018	.013 .000 .004001 010 .000	006013 012021 002001 .010 .019 .008 .013	023 .000 .022	6.0 .004 .005 6.2 .027 .024 6.4 .013 .010 6.6018016 6.8023019	.005 .001 .013 .000 .003001 010 .000 010 .001	008016019 013020023 001 .002 .004 .011 .020 .024 .008 .011 .011
7.0 .003 .004 7.2 .022 .019 7.4 .010 .008 7.6015013 7.8019016	.011 .000 .004001 008 .000	005010 011018 002002 .009 .016 .008 .012	021 001 .019	7.0 .003 .004 7.2 .024 .020 7.4 .011 .009 7.6016014 7.8020017	.004 .001 .012 .000 .003001 009 .000 009 .001	006012015 011018020 001 .000 .002 .010 .017 .020 .007 .010 .011
8.0 .003 .003	.003 .001	004008	010	8.0 .003 .003	.003 .001	005010013

$\beta a = 1 \cdot 25$,	$\beta b = 2.75$,	$G_1 = 2 \cdot 1$	101	$\beta a = 1 \cdot 2$	5, <i>þ</i>	$b=3\cdot25$,	$G_1 =$	= 1 · 564
c/λ 0° 30°	60° 90° 1	20° 150°	180°	$c/\lambda = 0^{\circ}$	30° 6	0° 90°	120° 15	0° 180°
.0 1.000 .727 .1 .939 .683 .2 .770 .561 .3 .529 .388 .4 .268 .200	.325 .204 . .280 .193 . .216 .175 .	.131 .017 .122 .007 .105 - .011	035 039 050 065 083	.0 1.000 .1 .936 .2 .758 .3 .506 .4 .233	.65 ¹ 4 .529	322 .19 2 305 .187 258 .169 191 .142 117 .108	.072 =.0 .068 =.0 .056 =.0 .038 =.0	59 = .108 64 = .110 72 = .112
	.033 .084 . .004 .048 - .006 .016 -	.018 073 .014 085 .040 0 84	100 110 109 095 068	.6 =.173 .7 =.245 .8 =.229	118 .0 1640 1490	051 .070 001 .033 026001 033027 026043	0100 0340 0520 0620	82 0 92 173 070 155 041
1.0037013 1.1 .042 .038 1.2 .086 .064 1.3 .089 .060 1.4 .057 .032	.008038 .007036 .000027	.055	.012 .049	1.0048 1.1 .044 1.2 .098 1.3 .107 1.4 .075	.040 .0 .073 .0	012049 001045 007033 005018	027 .0 002 .0	01 .028 30 .057 52 .075 62 .077 58 .063
1.6035035 1.7060048	021 .010 . 017 .016 . 006 .017 .	.006022	.065 .036 001 035 058	1.7 0 60 1.8 063	0280 0470 0440	009 .011 013 .019 011 .020 004 .016 005 .009		38054
2.6033031	.020008 004009 . 021 .000 .		062 020 .038 .047 .001		.039 .0 .016 = .0 027 = .0	014 .000 015 =.011 004 =.008 018 .002 009 .007		06 .002 137 .047 134 .036
	.019002 .001004 . 017001		030		.032 .0 .011 = .0 024 = .0	012 .003 016003 001004 016 .000	0. ق10.	
	.016001 .002003 013001		027 028 .006 .030 .014		.027 .010 .0 .010 .020	009 ,002 015 =.001 001 =.003 013 ,000	.014 .0	
	.014 .000 .003002 011001		019 025 .002 .024 .014		.023 .0 .009 .0 0160	006 ,002 1003 =.001 002 =.002 000 ,000	.012 .0	
6.0 .004 .004 6.2 .023 .020 6.4 .010 .008 6.6016014 6.8019016	.012 .000 = . .003 = .001 = . = .009 .000	.011019	022 001	6.0 .00 ¹ 6.2 .023 6.1 .010 6.6016 6.8019	020 008 - 014 - 0		. ojo .	
7.0 .003 .004 7.2 .020 .018 7.4 .009 .007 7.6014012 7.8017014	.003001 .000 800	.010017	011 019 002 .017 .012		.017 .007 .007	004 .001 010 .000 003001 008 .000 007 .001	. 800.	
8.0 .003 .003	.003 .001 -	.003007	009°	8.0 ,003	.003 .	:003 .001	0030	008010

$\beta a = 1 \cdot 25$,	$\beta b = 3.75$	$G_1 = 0$	931	$\beta a = 1.5$	$\beta b = 3 \cdot 0$,	$G_1 = 2 \cdot 186$
c/λ 0° 30°	60° 90°	120° 150°	180°	c/λ 0° 30°	60° 90°	120° 150° 180°
.0 1.000 .638 .1 .930 .591 .2 .736 .460 .3 .461 .271 .4 .167 .083	.227 .104 .086 .182 .086 .118 .059	019092 022091 030090 043087 057081	103 101 096 087 073	.0 1,000 .708 .1 .940 .666 .2 .774 .550 .3 .537 .384 .4 .279 .203	.329 .207 .314 .203 .273 .190 .213 .168 .146 .139	.105028086 .102030087 .092036090 .075045093 .052055095
.5087082 .6256186 .7317217 .8280182 .9175104	050036 065058 060069	069070 077054 078032 069006 052 .020	053 028 -000 -030 -057	.5 .048 .043 .6116071 .7195124 .8194122 .9133080	.083 .104 .034 .066 .001 .028 013006 015031	.025063093 004067084 029064068 047053044 055034014
1.0046013 1.1 .067 .062 1.2 .133 .100 1.3 .142 .099).4 .102 .064	.006 =.042 .017 =.021	028 .044 002 .061 .021 .067 .037 .059 .043 .040	.077 .085 .080 .061 .032	1.0046022 1.1 .034 .030 1.2 .083 .059 1.3 .092 .061 1.4 .067 .039	010046 005049 002042 003028 007011	051009 .017 037 .016 .044 016 .038 .063 .005 .050 .067 .023 .050 .058
1.5 .036 .015 1.6030031 1.7073057 1.8081051 1.9059036	009 .027 011 .022 007 .013	.037 .013 .022015 .003039 016052 028051	003 035 058 066 057	1.5 .022 .006 1.6023023 1.7051039 1.8055038 1.9037021	010 .006 010 .018 007 .023 .000 .021 .008 .014	.031 .038 .036 .030 .016 .006 .019008023 .004029045 012041053
2.001700 ¹ 2.2 .052 .0 ¹ 2 2.1 .037 .022 2.6025025 2.80 ¹ 3032	.013014 !003006 i016 .006	031036 010 .014 .019 .045 .023 .025 .000020	034 .026 .054 .023 030	2.0007 .002 2.2 .040 .033 2.4 .024 .013 2.6023023 2.8032024	.014 .004 .012011 006011 016 .001 006 .008	022041046 018008001 .007 .030 .040 .020 .030 .033 .007004011
3.0 .001 .006 3.2 .039 .033 3.4 .020 .013 3.6025024 3.8033026	.015005 002005 016 .001	021038 014011 .009 .027 .019 .030 .005003	044 007 .034 .032 008	3.0 .004 .008 3.2 .032 .027 3.4 .014 .009 3.6022020 3.8026020	.012 .005 .014003 002006 014001 008 .004	013031037 015018018 .002 .015 .021 .015 .027 .031 .008 .005 .003
4.0 .004 .007 4.2 .033 .028 4.4 .015 .010 4.6022021 4.8027022	3 .015 =.002 3 .001 =.003 014 .000	015029 014018 .004 .015 .016 .026 .006 .004	035 018 .020 .030	4.0 .005 .007 4.2 .027 .023 4.4 .011 .008 4.6019017 4.8022018	.008 .003 .013001 .000003 012001 008 .002	009022027 013 +.019021 .000 .007 .011 .012 .022 .026 .008 .008
5.0 .005 .006 5.2 .028 .024 5.4 .013 .009 5.6019018 5.8023019	.013 = .001 .002 = .002 3 = .012 .000	010022 013018 .002 .008 .013 .022 .007 .007	026 020 .012 .026 .006	5.0 .005 .006 5.2 .023 .020 5.4 .010 .007 5.6016015 5.8019016	.006 .002 .011001 .001002 010001 007 .001	007016019 011018020 001 .003 .005 .010 .019 .022 .007 .009 .009
	.012001	008017 011017 .000 .005 .011 .019 .007 .008	020 019 .007 .022 .008	6.0 .004 .005 6.2 .020 .018 6.4 .009 .006 6.6014013 6.8017014	.005 .002 .010 .000 .002002 008001 007 .001	005012014 010016018 001 .001 .002 .008 .016 .018 .007 .009 .009
7.0 .004 .004 7.2 .022 .019 7.4 .010 .007 7.6015013 7.8018015	000 000 002 - 001 - 009 000	006013 010016 .000 .002 .009 .016 .006 .008	016 018 .004 .019 .008	7.0 .003 .004 7.2 .018 .015 7.4 .008 .006 7.6012011 7.8015012	.004 .001 .009 .000 .002001 007 .000 006 .001	004009011 009014016 002 .000 .001 .007 .013 .015 .006 .008 .009
8.0 .003 .001	100. 400.	005011	013	8.0 .003 .003	.003 .001	003007009

βα	$t = 1 \cdot 5$	5,	eta b =	3 · 5,	($G_1 = 1$	661	βa	$=1\cdot5$,	$\beta b =$	4.0,	($\hat{J}_1 = 1$	007
c/λ	0°	30°	60°	90°	120°	150°	180°	c/λ	0_{o}	30°	$60^{\rm o}$	90°	120°	150°	180°
.0 .1 .2 .3 .4	1.000 .937 .761 .512 .241	.674 .631 .511 .340 .156	.290 .275 .232 .170 .101	. 156 . 150 . 133 . 106 . 073	.030 ,026 .017 .002 016	065 065 066 067 066	090 089 086 080 070	.1 .2 .3	1.000 .930 .738 .465	.607 .561 .436 .260	. 198 . 183 . 143 . 086 . 025	.050 .045 .029 .006 021	057 059 064 072 079	061 060 057 051 042	037 ₀ 035 029 019 005
.6 .7 .8 9	.001 166 242 230 154	005 115 161 148 094	.039 008 035 042 035	.037 .001 029 050 061	035 052 062 064 057	061 052 038 019	056 037 013 .012 .036	.6 .7 .8	082 251 315 280 176	084 183 212 177 100	027 061 073 065 043	047 069 082 085 077	084 084 077 062 042	030 014 .004 .023 .039	.012 .030 .049 .064 .074
1.0 1.1 1.2 1.3	052 .041 .099 .112 .084	024 .038 .073 .076 .052	020 006 004 .007	060 050 032 012 .006	041 020 .003 .021 .032	.024 .041 .050 .049 .037	.056 .067 .067 .055	1.0 1.1 1.2 1.3 1.4	046 .068 .136 .147 .108	010 .064 .103 .102 .069	016 .007 .020 .023	059 036 011 .011 .027	017 .907 .027 .039	.051 .055 .050 .036 .015	.076 .068 .050 .025 004
1.5 1.6 1.7 1.8 1.9	.032 020 056 065 048	.015 021 043 045 029	.000 004 005 002 .004	.020 .026 .025 .018 .008	.034 .025 .011 005 018	.018 005 026 039 041	.005 023 044 053 048	1.7 1.8	.041 027 074 087 067	.019 028 057 061 042	.007 003 008 008	.035 .033 .025 .012	.034 .018 .000 016 026	008 028 042 044 036	031 050 058 053 035
2.0 2.2 2.4 2.6 2.8	016 .040 .030 018 034	005 .032 .018 019 025	.008 .008 005 013 004	003 015 009 .004 .009	024 013 .011 .019 .003	032 .007 .035 .022 014	032 .018 .044 .021 022	2.2 2.4 2.6	026 .048 .042 017 041	011 .038 .026 018 030	.003 .007 002 010 004	012 018 005 .009	027 008 .017 .019 002	019 .023 .038 .012 024	010 .037 .044 .006
3.0 3.4 3.6 3.8	.000 .030 .016 019 025	.005 .025 .010 019 020	.010 ,012 003 013 006	.003 005 006 .000	015 013 .005 .015 .005	031 011 .020 .024 001	036 008 .027 .027 005	3.2 3.4 3.6	006 .032 .021 018 029	.001 .027 .013 018 022	.009 .010 003 012 006	.001 007 006 .002	018 011 .009 .016	031 002 .027 .022 009	034 .004 .034 .022 015
4.0 4.2 4.4 4.6 4.8	.004 .026 .012 018 021	.006 .022 .008 017 017	.008 .012 .000 011 007	.003 002 003 .000	011 012 .002 .013 .006	024 015 .011 .022 .004	028 015 .016 .025 .002		.001 .027 .014 018 023	.005 .023 .009 017 018	.009 .011 001 012	.002 003 004 .000	013 011 .005 .014	026 011 .017 .022 001	031 009 .022 .024 004
5.0 5.4 5.6 5.8	.004 .023 .010 016 019	.005 .020 .007 015 015	.006 .011 .001 010 007	.002 001 002 001	-,008 -,011 .001 .010 .006	018 015 .006 .019	021 017 .009 .021 .006		.003 .024 .011 017	.005 .021 .007 015 016	.007 .011 .000 010	.002 002 003 .000	010 011 .003 .012	021 013 .011 .020	025 014 .014 .022
		.005 .017 .006 =.013 =.014	.005 .010 .001 008 -,006	.001 001 002 .000	006 009 .000 .009	013 014 .003 .016 .007	016 016 .005 .018	6.0 6.2 6.4 6.6	.004 .022 .009 .015	.005 .019 .007 014	.006 .010 .001 009 006	.001 001 002 .000	008 010 .001 .010	 016	020 015 .009 .020
	.003 .018 .008 012	.004 .015 .006 011 012	.004 .009 .002 007 006	.001 .000 001 .000	005 008 001 .008 .005	011 013 .002 .014 .007	013 015 .003 .016 .007	7.0 7.2 7.4 7.6	.003 .019 .008 .008	.004 .017 .006 012	.005 .009 .001 008	.001 001 000	005 009 .000 .008	013 013 .004 .015	016 014 .006 .017
8.0	.003	.003	.003	.001	004	 009	011	8.0	.003	.004	.004	.001	-	013	

$\beta a = 1.75$,	$\beta b = 3 \cdot 25$,	$G_1 = 2$	416	$\beta a = 1.75$,	$\beta b = 3.75$,	$G_1 = 1.808$
c/λ 0° 30°	60° 90°	120° 150°	180°	c/λ 0° 30°	60° 90°	120° 150° 180°
.0 1.000 .686 .1 .942 .646 .2 .780 .535 .3 .548 .377 .4 .293 .205	.302 .177 .288 .172 .251 .158 .196 .135 .134 .105	.062043 .059044 .049046 .034049 .014051	077 077 075 071 063	.0 1.000 .648 .1 .938 .607 .2 .765 .492 .3 .519 .330 .4 .251 .154	.251 .101 .238 .096 .199 .081 .144 .057 .082 .028	016050040 019050038 026048034 036046026 048041015
.5 .065 .050 .6101060 .7184115 .8188116 .9133078	.075 .070 .027 .033 004002 020031 023050	008050 030046 047037 057023 057006		.5 .013001 .6156107 .7234153 .8226142 .9155091	.026033 016031 040053 046066 038069	059033001 067022 .014 069009 .030 063 .006 .045 050 .021 .055
1.0050024 1.1 .029 .026 1.2 .079 .056 1.3 .091 .060 1.4 .069 .042	018057 010054 004040 001021 001001	048 .012 031 .028 010 .038 .010 .040 .025 .033	.057	1.0056024 1.1 .036 .036 1.2 .095 .071 1.3 .110 .075 1.4 .084 .053	022060 006044 .006022 .011 .000 .011 .018	031 .033 .059 009 .039 .056 .012 .039 .044 .027 .031 .025 .035 .018 .002
1.5 .027 .011 1.6018018 1.7048036 1.8056037 1.9042024	002 .016 002 .026 001 .028 .003 .023 .006 .012	.031 .018 .028 .000 .017018 .003030 011034	017 036 045	1.5 .035 .017 1.6018019 1.70550 ¹ 1 1.80670 ¹ 46 1.9052033	.006 .030 .001 .033 002 .027 002 .017 .000 .003	.033 .000020 .023017037 .009029045 006034043 018030031
2.0014004 2.2 .034 .027 2.4 .027 .015 2.6015016 2.8029021	.009 .000 .005016 006012 011 .003 002 .011	019028 015 .003 .006 .028 .017 .020	.013 .037 .019	2.0021009 2.2 .037 .029 2.4 .034 .021 2.6012013 2.8033023	.003009 .003019 004008 008 .007 001 .011	022018012 011 .014 .027 .010 .029 .036 .016 .012 .007 .002017026
3.0001 .004 3.2 .025 .021 3.4 .014 .008 3.6016015 3.8021016	.010 .005 .009005 003007 011 .000 004 .005	011026 012010 .003 .017 .013 .021 .006 .000	008 .023 .023	3.0006 .000 3.2 .025 .020 3.4 .017 .010 3.6014014 3.8022016	.008 .002 .007007 003007 010 .001 003 .006	013024028 010003 .002 .005 .020 .027 .013 .018 .019 .004006011
4.0 .003 .005 4.2 .022 .019 4.4 .010 .006 4.6015014 4.8018014	.008 .004 .010002 001004 010001 005 .003	008020 010013 .001 .009 .010 .019 .006 .004	013 013 021	4.0 .001 .004 4.2 .021 .018 4.4 .011 .007 4.6014013 4.8018014	.008 .003 .008003 002004 009 .000 005 .003	009021025 009009008 .003 .013 .017 .011 .018 .020 .004 .000003
5.0 .004 .005 5.2 .019 .017 5.4 .008 .005 5.6014013 5.8016013	.006 .002 .009001 .000003 009001 005 .002	006015 009013 .000 .005 .009 .016	014 .008 .019	5.0 .003 .004 5.2 .019 .016 5.4 .008 .005 5.6013012 5.8016013	.006 .002 .008002 001003 008 .000 005 .002	007016020 009011011 .001 .008 .011 .009 .016 .018 .004 .003 .002
6.0 .003 .004 6.2 .017 .015 6.4 .007 .005 6.6012011 6.8014011	.008001 .001002 007001	008013 001 .003 .007 .014	014 .004 .016	6.0 .003 .004 6.2 .017 .015 6.4 .007 .005 6.6012011 6.8014011	.005 .002 .008001 .000002 007 .000 005 .002	006013016 008011012 .000 .005 .007 .008 .014 .016 .004 .004 .004
7.0 .003 .004 7.2 .015 .013 7.4 .006 .005 7.6011010 7.8012010	006 .0 00	007012 001 .001	013 .002 .014	7.0 .003 .004 7.2 .015 .013 7.4 .006 .004 7.6011010 7.8012010	.004 .001 .007001 .001001 006 .000 005 .001	005010013 007011012 .000 .003 .005 .007 .012 .014 .004 .005 .005
8.0 .003 .003	.003 .001	003007	009	8.0 .003 .003	.003 ,001	004009010

$\beta a = 1.75$,	$\beta b = 4 \cdot 25$,	$G_1 = 1$	043	$\beta a = 2 \cdot 0$,	$\beta b = 3 \cdot 5$	$G_1 = 2 \cdot 544$
c/λ 0° 30°	60° 90°	120° 150°	180°	c/λ 0° 30°	60° 90°	120° 150° 180°
.0 1.000 .577 .i .931 .533 .2 .740 .414 .3 .468 .245 .4 .176 .067	.155007 .142012 .107024 .057041	087028 087027 089023 091017 091009	.023 .025 .029 .035 .044	.0 1.000 .664 .1 .943 .626 .2 .784 .521 .3 .556 .370 .4 .305 .205	.273 .132 .261 .127 .227 .113 .177 .092 .121 .064	.013039037 .010039036 .002039032 010038026 024036017
.5078084	039077	088 .001	.053	.5 .078 .057	.067 .032	039032005
.6248179	067089	080 .013	.061	.6088051	.023 .001	052024 .008
.7314206	074092	067 .025	.066	.7175106	007027	060015 .022
.8282172	063086	048 .035	.068	8184110	022047	060003 .035
.9180096	040070	024 .042	.063	.9135076	025058	053 .010 .044
1.0051009	013046	.000 .044	.053	1.0056025	020058	038 .021 .049
1.1 .063 .063	.011020	.022 .040	.036	1.1 .020 .022	011047	019 .029 .047
1.2 .132 .102	.025 .006	.037 .030	.014	1.2 .072 .052	003029	.001 .031 .038
1.3 .145 .101	.028 .027	.044 .014	~.009	1.3 .086 .057	.002008	.019 .027 .023
1.4 .108 .068	.022 .039	.042003	~.030	1.4 .068 .041	.003 ,011	.030 .017 .004
1.5 .042 .019	.010 .042	.031020	046	1.5 .028 .013	.003 .025	.032 .004015
1.6027028	001 .035	.014032	052	1.6015015	.002 .032	.026010030
1.7074058	008 .022	004037	047	1.7045033	.002 .029	.014021038
1.8088063	010 .006	019033	033	1.8055036	.002 .020	.000027037
1.9070045	008009	027021	012	1.9043026	.003 .007	012025027
2.0029015	002020	026004	.010	2.0017007	.004006	019016011
2.2 .0½8 .037	.005021	006 .026	.041	2.2 .032 .024	.001020	014 .010 .022
2.4 .047 .030	.000003	.016 .029	.030	2.4 .029 .017	005010	.006 .024 .030
2.6012013	006 .013	.017 .001	009	2.6011011	007 .007	.015 .011 .007
2.80½2030	002 .012	002025	035	2.8028019	.001 .013	.005013022
3.0011004	.006001	016022	022	3.0005 .000	.008 .004	010020024
3.2 .028 .023	.007010	009 .005	.013	3.2 .021 .017	.006007	010003 .001
3.4 .023 .014	003006	.008 .025	.031	3.4 .015 .008	004008	.002 .016 .022
3.6013013	009 .004	.014 .014	.012	3.6011011	009 .001	.011 .015 .016
3.8027019	003 .007	.001012	019	3.8019014	002 .006	.004004009
4.0002 .002	.007 .002	012022	-,026	4.0 .030 .003 4.2 .017 .015 4.4 .009 .005 4.6 011 011 4.8 015 012	.007 .004	007017021
4.2 .023 .019	.008005	009005	001		.007033	008008007
4.4 .014 .008	002005	.005 .017	.023		002005	.001 .010 .015
4.6014013	009 .001	.012 .017	.018		008001	.009 .015 .017
4.8021016	004 .004	.003005	009		003 .004	.004 .000002
5.0 .001 .004	.007 .002	009019	023	5.0 .002 .004	.006 .003	005014017
5.2 .020 .017	.008002	009009	008	5.2 .016 .013	.007001	007010010
5.4 .010 .006	001003	.003 .012	.016	5.4 .007 .004	001003	.000 .007 .009
5.6013013	009 .000	.010 .016	.018	5.6011010	007001	.007 .013 .015
5.8018014	005 .003	.004 .000	002	5.8013010	004 .002	.004 .003 .001
6.0 .003 .004	.006 .002	007016	019	6.0 .003 .004	.005 .002	004011013
6.2 .018 .016	.006001	008010	010	6.2 .014 .012	.006001	007010010
6.4 .008 .005	.000002	.002 .008	.011	6.4 .006 .004	.000002	.000 .004 .006
6.6013012	008 .000	.009 .015	.017	6.6010009	006001	.006 .012 .014
6.8016012	005 .002	.004 .002	.001	6.8012009	004 .002	.004 .004 .003
7.0 .003 .004	.005 .001	006013	015	7.0 .003 .003	.004 .002	004009011
7.2 .017 .014	.008001	007010	011	7.2 .013 .011	.006001	006009010
7.4 .007 .005	.000002	.001 .005	.008	7.4 .005 .004	.000002	.000 .003 .004
7.6012011	007 .000	.008 .013	.015	7.6009008	006 .000	.006 .010 .012
7.8014011	005 .001	.004 .003	.003	7.8010009	004 .001	.004 .004 .004
8.0 .003 .004	.004 .001	005011	-, 013	8.0 .003 .003	.003 .001	003007009

$\beta a = 2 \cdot 0$,	$\beta b = 4 \cdot 0$,	$G_1 = 1$	828	$\beta a = 2 \cdot 0$,	$\beta b = 4.5$,	$G_1 = 0.977$
c/λ 0° 30°	60° 90°	120° 150°	180°	c/λ 0° 30°	60° 90°	120° 150° 180°
.0 1.000 .623	.217 .050	054030	.010	.0 1.000 .547	.120049	097003 .055
.1 .939 .584	.205 .045	055029	.011	.1 .931 .506	.109052	096002 .055
.2 .768 .474	.171 .033	059027	.014	.2 .740 .390	.078060	095 .001 .057
.3 .524 .318	.121 .013	064023	.020	.3 .468 .228	.035071	092 .005 .059
.4 .257 .149	.067010	070018	.027	.4 .175 .057	010082	086 .011 .060
.7 232 148 .8 - .228 138	.017033 021053 041066 045070 036065	073010 072001 065 .009 053 .018 035 .026	.035 .043 .049 .052 .050	.5080088 .6252179 .7320204 .8289169 .9189096	047091 068093 072088 059074 035053	077 .018 .061 063 .025 .060 045 .031 .055 023 .035 .047 .000 .035 .035
	020050	015 .031	.043	1.0059010	009027	.021 .032 .019
	004030	.006 .031	.031	1.1 .056 .061	.014001	.038 .024 .001
	.038007	.024 .025	.015	1.2 .129 .099	.026 .023	.047 .012017
	.014 .014	.035 .016	003	1.3 .144 .099	.029 .039	.048001032
	.014 .029	.037 .003	020	1.4 .110 .067	.022 .045	.039015043
1.8065045	.009 .036	.031010	033	1.5 .045 .019	.010 .042	.025025046
	.003 .034	.019021	040	1.6023027	002 .030	.006030041
	002 .024	.034027	038	1.7071057	010 .014	011028029
	004 .010	010026	028	1.8067062	013004	024021011
	003004	020018	012	1.9069045	011018	029008 .008
2.2 .036 .028 2.4 .036 .022	001016 .001021 002005 004 .012 -000 .013	023006 010 .018 .011 .022 .015 .003 .002018	.006 .031 .025 -,005 -,027	2.0030015 2.2 .048 .037 2.4 .049 .032 2.6011012 2.8044031	006026 .004020 .004 .002 002 .018 002 .012	026 .006 .025 004 .026 .037 .018 .019 .015 .016006019 002023031
3.6009010	.006 .001	012018	019	3.0015006	.003004	015014011
	.004009	009 .003	.009	3.2 .027 .021	.004013	008 .010 .019
	003007	.004 .019	.024	3.4 .026 .016	002006	.008 .021 .026
	007 .003	.011 .012	.011	3.6009010	006 .006	.012 .008 .003
	001 .007	.003009	014	3.8027019	002 .009	.001014021
4.6010010	.006 .003	008017	020	4.0006001	.006 .001	010018020
	.006004	008005	002	4.2 .020 .016	.006006	008 .000 .005
	002005	.003 .013	.018	4.4 .015 .009	002005	.005 .017 .022
	007 .000	.009 .013	.014	4.6010010	007 .002	.010 .012 .012
	003 .004	.003003	006	4.8019014	003 .005	.002007012
5.6010010	.006 .002	006015	018	5.0001 .002	.006 .002	008017019
	.006002	007007	007	5.2 .017 .015	.006003	007005003
	001003	.002 .009	.012	5.4 .010 .006	002004	.003 .012 .016
	007 .000	.008 .013	.014	5.6011010	007 .000	.009 .013 .014
	003003	.003 .000	002	5.8016012	003 .003	.003003006
6.0 .002 .003 6.2 .014 .012 6.4 .006 .004 6.6010009 6.8012009		005012 006008 .001 .006 .007 .012 .003 .002	015 008 .008 .013 .001	6.0 .001 .003 6.2 .016 .013 6.4 .008 .005 6.6010010 6.8014011		007014017 007007006 .002 .009 .012 .008 .013 .014 .003 .000002
	.004 .001	034010	012	7.0 .002 .003	.004 .001	005012015
	.006001	006008	009	7.2 .014 .012	.006001	006008008
	.000002	.000 .004	.006	7.4 .007 .004	.000002	.001 .006 .009
	006 .000	.006 .011	.012	7.6010009	006 .000	.007 .012 .013
	003 .001	.003 .003	.002	7.8012010	004 .002	.003 .001 .000
8.0 .003 ,003	.003 .001	004008	010	8.0 .003 .003	.004 .003	005010012

9.2.3 RADIAL UNIPOLES

$\beta a = 0.25$	$\beta b = 0.75$,	$G_1 = 0$	486	$\beta a = 0.5$	$\beta b = 1 \cdot 0$,	$G_1 = 0.598$
c/λ 0° 30°	60° 90°	120° 150°	180°	c/λ 0° 30°	60° 90°	120° 150° 180°
.0 1.000 .919	.712 .460	.241 .100	.052	.0 1.000 .891	.620 .310	.062086133
.1 .876 .801	.609 .377	.175 .046	.003	.1 .889 .787	.536 .251	.023111153
.2 .545 .486	.336 .156	.004092	124	.2 .590 .510	.313 .093	076172202
.3 .112 .075	016121	206256	27i	.3 .194 .143	.022105	195239251
.4286299	328356	370373	373	.4181201	242273	280272267
.5529522	500464	422388	375	.5430423	397350	291243224
.6555536	483409	335281	261	.6493469	402308	215146122
.7377354	293213	136081	062	.7374344	266165	070005 .018
.8076058	010 .052	.108 .146	159	.8134110	048 .029	.096 .139 .154
.9 .230 .239	.261 .287	.309 .321	-325	.9 .128 .141	.171 .203	.227 .238 .242
1.0 .429 .427	.421 .410	.396 .383	.378	1.0 .318 .317	.311 .297	.277 .258 .251
1.1 .454 .444	.417 .378	.338 .308	.297	1.1 .373 .361	.327 .279	.228 .190 .176
1.2 .305 .292	.256 .207	.159 .124	.112	1.2 .262 .266	.221 .160	.100 .057 .042
1.3 .047 .035	.004036	075102	112	1.3 .090 .076	.036014	062094105
1.4219225	240260	277289	293	1.4125133	153178	198210214
1.5391390	387381	374368	365	1.5281280	277270	260250247
1.6408401	383357	331311	303	1.6322314	292259	226200191
1.7269259	234200	165140	131	1.7238227	195152	109078067
1.8031023	.000 .030	.059 .080	.087	1.8067056	028 .010	.046 .071 .080
1.9 .213 .217	.229 .244	.259 .268	.272	1.9 .124 .130	.145 .164	.181 .192 .196
2.0 .369 .369	.367 .363	.359 .355	-353	2.0 .261 .260	.258 .254	.248 .242 .239
2.2 .247 .240	.221 .194	.167 .148	-141	2.2 .213 .204	.179 .146	.113 .088 .080
2.4208212	221234	246254	257	2.4123128	140156	170179183
2.6363359	348333	317305	301	2.6275270	256237	217202196
2.8016010	.004 .024	.043 .057	062	2.8043037	018 .006	.030 .047 .053
3.0 .3\(\frac{1}{2}\)4 .3\(\frac{1}{3}\)3.2 .223 .218 3.\(\frac{1}{2}\)20120\(\frac{1}{2}\)3.63\(\frac{1}{2}\)0337 3.8010006	.342 .340	.336 .336	.335	3.0 .239 .238	.237 .234	.231 .228 .227
	.205 .186	.168 .154	.149	3.2 .184 .178	.161 .138	.115 .098 .092
	210219	228234	236	3.4122125	133145	155162165
	329318	307299	296	3.6251248	238224	210199195
	.005 .020	.034 .045	.048	3.8032027	014 .004	.022 .035 .040
4.0 .328 .328	.327 .326	300293	.322	4.0 .225 .225	.224 .222	.220 .218 .217
4.2 .210 .206	.196 .182		.154	4.2 .168 .163	.150 .133	.115 .102 .098
4.4195197	202209		223	4.4 -119 -122	128137	145151153
4.6326324	317309		291	4.6237234	226215	204196193
4.8007004	.005 .016		.039	4.8026023	012 .003	.017 .027 .031
5.0 .317 .317	.316 .315	.314 .313	.312	5.0 .216 .216	.215 .214	.212 .210 .210
5.2 .202 .199	.190 .179	.168 .159	.156	5.2 .158 .154	.144 .129	.115 .105 .101
5.4190191	195201	207211	212	5.4117119	124131	138143145
5.6316314	309301	294289	287	5.6227224	218209	200193190
5.8007004	.003 .013	.022 .029	.032	5.8023020	011 .001	.013 .021 .024
6.0 .308 .308 6.2 .196 .194 6.4185186 6.6308307 6.8007005	.187 .177 189194 302296	 290 285	.304 .158 203 284 .025	6.0 .209 .209 6.2 .151 .148 6.4114116 6.6219217 6.8 +.021019		.206 .204 .204 .115 .106 .103 132136138 196190188 .009 .016 .019
7.0 .301 .301	.300 .300	192195	.297	7.0 .204 .203	.203 .202	.200 .199 .199
7.2 .193 .191	.185 .176		.160	7.2 .146 .143	.136 .126	.115 .108 .105
7.4180181	184188		196	7.4112113	117122	127131132
7.6302301	297292		281	7.6213212	207200	193188186
7.8008006	001 .006		.020	7.8020018	011003	.006 .012 .015
8.0 .295 .295	.294 .293	. 2 93 .292	.29 2	8.0 .199 .199	.198 .197	.196 .195 .194

9.2.3 Radial Unipoles (cont.)

$\beta a = 0.75$,	$\beta b = 1 \cdot 25$,	$G_1 = 0.593$	$\beta a = 1 \cdot 0,$	$\beta b = 1.5$,	$G_{\rm I}=0.535$
c/λ 0° 30°	60° 90°	120° 150° 180°	c/λ 0° 3	0° 60° 90°	120° 150° 180°
.0 1.000 .860 .1 .894 .764 .2 .608 .505 .3 .226 .160 .4142169	.531 .192 .459 .147 .266 .030 .014116 217238	041155186 063163190 118181195 180192190 215178161	.1 .896 . ,2 .615 . ,3 .237 .	822 .428 .079 729 .364 .046 481 .194041 150028148 167229232	096137137 107137133 134133120 161119095 166087053
.5397389 .6479450 .7387351 .8174144 .9 .073 .089	357288 367249 254131 067 .023 .126 .161	200128100 130044013 019 .055 .081 .098 .142 .156 .182 .188 .189	.7398 .8194	383348259 446352213 355245106 158070 .027 069 .110 .142	137037 .002 072 .027 .062 .014 .090 .114 .097 .133 .143 .150 .142 .137
1.0 .265 .264 1.1 .339 .325 1.2 .280 .260 1.3 .121 .103 1.4071081	.256 .236 .283 .222 .204 .129 .054007 107136	.205 .177 .165 .158 .109 .091 .057 .006013 062099111 158169173	1.1 .332 . 1.2 .289 . 1.3 .144 .	245 .234 .203 315 .265 .189 264 .198 .109 122 .064006 054084114	.155 .111 .094 .108 .046 .024 .025034054 066103115 133140141
1.5223223 1.6281271 1.7228214 1.8091078 1.9 .074 .081	219210 244204 175122 043 .002 .100 .123	195181175 162129117 070033019 .045 .074 .084 .142 .154 .157	1.6266 1.7231 1.8111	196191176 254221172 214167104 095053 .000 052 .075 .101	152130121 118077062 042 .002 .018 .048 .080 .091 .120 .130 .133
2.0 .203 .203 2.2 .198 .187 2.4076082 2.6229223 2.8061052	.201 .195 .157 .117 097116 207183 030 .000	.186 .177 .174 .077 .037 .047 .037 .132142146159140133 .028 .048 .055	2.2 .196 . 2.4046 2.6207	172 .170 .161 183 .148 .099 053072093 200180152 065038003	.148 .134 .129 .051 .016 .003 111121124 121098089 .030 .053 .061
3.0 .182 .182 3.2 .165 .157 3.4078082 3.6204200 3.8046040	.181 .178 .137 .109 093106 188172 023002	.173 .169 .167 .081 .061 .059 118127129 154141136 .020 .035 .040	3.2 .158 . 3.4051 3.6180	150 .149 .145 149 .125 .092 056069084 175161141 050030004	.138 .131 .129 .059 .035 .026 098107110 120104098 .021 .038 .044
4.0 .171 .170 4.2 .146 .141 4.4078081 4.6190186 4.8038033	.169 .167 .125 .104 090100 177164 020002	.164 .161 .160 .083 .068 .062 110116119 150140136 .015 .027 .031	4.2 .137 4.4053 4.6164	139 .138 .135 130 .112 .087 057067079 160149134 041025005	
5.0 .163 .163 5.2 .135 .131 5.4078080 5.6180177 5.8032028	.162 .160 .118 .101 087095 169158 018003	.157 .155 .155 .084 .071 .067 103109111 147139136 .011 .021 .021	5.2 .124 . 5.4054 5.6154	132 .131 .128 119 .104 .084 057065075 151141129 035022005	.064 .049 .043 084090092 115105102
6.0 .157 .157 6.2 .127 .123 6.4077079 6.6172170 6.8029026	.156 .154 .113 .099 085092 163154 017004	.152 .151 .156 .084 .074 .076 098103105 145138135 .008 .016 .015	6.2 .115 . 6.4054 6.6146	126 .125 .124 111 .098 .082 057063072 143136125 031020006	.065 .052 .048 079085087 113105102
7.0 .152 .152 7.2 .122 .118 7.4076078 7.6167165 7.8027024	.109 .097 082088	.148 .147 .144 .085 .075 .076 094098100 142136134 .005 .013 .015	7.2 .109 . 7.4054 7.6141	122 .121 .120 105 .094 .080 056062069 138131122 029019007	.065 .055 .051 076080082 112104102
8.0 .149 .148	.147 .146	.144 .143 .142	8.0 .119	.119 .118 .116	.114 .112 .112

9.2.3 Radial Unipoles (cont.)

β a =	=1.2	5,	βb =	1 · 75,	($G_1 = 0$	514	βα	=1.5	,	βb =	2.0,	($G_1 = 0$	520
c/λ	0°	30°	60°	90°	120°	150°	180°	<i>c/λ</i>	0°	30°	60°	90 °	120°	150°	180°
.1 .2 .3	.000 .901 .632 .269 089	.768 .683 .455 .149	290 239 102 074 233	061 080 129 185 222	154 154 151 138 112	106 098 074 038 .006	070 060 032 .009 054	.1 .2 .3	1.000 .902 .63 ¹ 4 .27 ¹ 4	.722 .640 .420 .126 156	.1 ¹ 45 .025 128	126 141 177 214 231	133 133 130 119 095	020 016 007 .009	.037 .041 .050 .063 .077
.6 - .7 - .8 -	348 451 391 209 .020	352 419 344 166 .044	324 318 221 067 .092	218 165 073 .031 118	069 014 .043 .087	.050 .086 .106 .102 076	.094 .120 .124 .103 .061	.6 •7 .8	336 437 377 197 .027	349 405 325 148 .058	325 299 191 036 .116	208 141 044 .059 .138	055 003 .049 .089	.052 .071 .079 .073 .049	.088 .091 .082 .059 .024
1.1 1.2 1.3	.213 .309 .286 .162	.214 292 .259 .137	. 204 . 237 . 185 . 073 055	.161 .148 .087 001 083	.093 .052 005 060 094	.031 021 066 092 091	.006 048 087 102 087	1.1 1.2 1.3	.214 .303 .274 .148 021	.220 .288 .248 .122 038	.217 .236 .174 .057 072	.170 .147 .077 014 095	.088 .046 010 -,062 093	.013 029 064 082	017 056 081 086 068
1.6 - 1.7 - 1.8 -	161 242 228 132 .007	161 229 209 113 017	154 191 155 066 .043	132 131 083 007 .068	-,096 -,065 -,012 .044 .084	062 014 .037 .076 .089	048 .004 054 .086 .090	1.6 1.7 1.8	169 244 224 122 .019	171 232 204 103 .030	166 194 150 055 .055	138 131 077 .002 .077	092 059 006 .048 .086	048 004 .042 .075 .083	030 .017 .059 .083 .081
2.2 2.4 - 2.6 -	.133 .192 .008 .177 .094	.133 .177 - .017 - .169 - .082	129 -135 038 146 051	.116 .078 060 111 011	.094 .022 077 073 .026	.074 017 085 044 051	.065 032 087 033 .060	2.2 2.4 2.6	.143 .191 018 183 090	.144 .175 027 175 077	.139 .132 048 150 045	.121 .073 068 112 004	.092 .016 080 069 .033	.065 025 083 037 .057	.053 039 083 024 .065
3.2 3.4 - 3.6 -	.107 .149 013 146 073	.107 .138 019 140 065	.105 110 034 124 042	099 .071 051 100 012	.089 033 066 074 .017	.079 .005 074 055 .036	075 006 077 047 043	3.2 3.4 3.6	.116 .150 020 152 070	.116 .139 026 146 061	.113 .109 042 128 036	.104 .068 059 102 005	.090 .027 072 073 .024	.077 003 078 051 .043	.071 013 080 042 .050
4.2 4.4 - 4.6 -	.095 .125 .017 .129 .060	.095 .117 021 124 054	.093 096 =.032 =.111 =.036	.090 .066 046 093 012	.084 037 058 073 011	.078 .016 066 059	.075 .008 068 053 .032	4.2 4.4 4.6	.102 .126 023. 134 057	.102 .118 028 129 050	.101 .095 040 116 031	.096 .064 054 095 006	.087 .032 065 074 .018	.079 .010 072 057 .034	.076 .002 074 051 .040
5.2 5.4 - 5.6 -	.087 .110 .019 .117 .052	.087 .103 =.022 113 =.046	.086 086 032 103 031	.083 .063 043 088 012	079 .039 053 072 .007	075 022 060 060 020	.073 016 062 056 .025	5.2 5.4	.095 .111 025 122 049	.095 .104 029 118 043	.093 .086 039 107 027	.090 .061 051 091 006	.084 .036 060 074 .013	.079 .018 066 060 .027	.076 .011 068 055 .032
6.2 6.4 - 6.6 -	. 109	- .106	081 080 031 097 028	084	.075 040 049 071 .004	.072 .026 055 061 .016	.071 .021 057 057 .020	6.6	.090 .101 027 114 042		.088 .080 038 101 024			.077 .023 062 062 .022	.075 .017 064 058 .026
7.2 7.4 = 7.6 =	.079 .092 .021 .103 .041	.078 .087 024 100 037	.077 075 030 092 026	.075 .058 038 081 012	.072 041 046 069 .002	.070 .029 051 061 .012	.069 024 053 057 016	٠ ٠٩ أ	.086 .093 028 108 038	.086 .088 031 105 034	.085 .075 037 097 022	.082 .057 046 085 007	.079 .039 054 072 .008	.076 .026 058 063 .018	.074 .021 060 059 .022
8.0	.076	.075	074	.072	070	068	.067	8.0	.083	.083	.082	.080	.077	.074	.073

9.2.3 Radial Unipoles (cont.)

$\beta a = 1.75$,	$\beta b = 2 \cdot 25$,	$G_1 = 0.588$	eta a =	2.0,	$\beta b = 2 \cdot 5$,	$G_1 = 0$	688
c/λ 0° 30°	60° 90° 1	20° 150° 180°	c/λ	0° 30°	60° 90°	120° 150°	$180^{\rm o}$
.0 1.000 .670 .1 .904 .593 .2 .642 .386 .3 .287 .109 .4063156	.053185 044201 165212	114 .018 .071 111 .021 .072 101 .027 .074 083 .036 .076 053 .047 .075	.1 .9	000 .615 905 .543 646 .347 295 .086 053165	.002189 027191 104192 197185 267159	069 .034 065 .035 053 .038 033 .042 005 .044	.057 .054 .049 .040
.5320337 .6426390 .7375313 .8205144 .9 .010 .051	265091 . 157001 . 012 .086 .	015 .055 .069 028 .059 .056 066 .054 .036 090 .038 .009 091 .014021	.7 -:		284109 234038 126 .041 .009 .109 .131 .148	.027 .044 .059 .039 .081 .027 .089 .010	.027 .011 009 030 047
1.0 .194 .206 1.1 .285 .272 1.2 .263 .235 1.3 .147 .117 1.4013034	.221 .128 . .157 .058 .044026	069015048 028043067 020060071 061063059 081048032	I.1 .2 I.2 .2 I.3 .	180 .196 275 .261 260 .227 152 .115 002 - .029	.202 .146 .203 .104 .137 .033 .030043 080103	.049030 .009044 032049 063042 073023	058 059 048 027 .001
1.5155160 1.6230219 1.7214194 1.8119099 1.9 .014 .026	183118 140066 . 049 .007 .	074019 .004 042 .017 .039 003 .048 .063 046 .065 .069 073 .061 .054	1.62 1.72 1.8	141150 217208 206185 119096 007 .023	156126 173107 12905½ 041 .015 .056 .075	061 .003 030 .029 .010 .047 .046 .052 .065 .041	.029 .050 .058 .050 .029
2.0 .134 .135 2.2 .184 .168 2.4013023 2.6174166 2.8090077	.125 .064 . 044062 140099	074 .038 .024 006034048 069066063 052016002 033 .054 .061	2.2 2.4 - .0 2.6 - .		.128 .106 .117 .057 044060 133091 041001	.061 .017 001038 060049 040 .000 .032 .049	001 051 043 .015
3.0 .107 .107 3.2 .146 .135 3.4014020 3.6144138 3.8072062	.103 .059 . 036052 118089	073 .055 .048 016014025 062065 066 057031 022 024 .043 .050	3.2 3.40 3.6	138131	.098 .085 .098 .053 033048 112080 036004	.061 .038 .009022 054054 045017 .024 .042	.028 033 052 006 .048
4.0 .093 .093 4.2 .123 .114 4.4015020 4.6126120 4.8060052	.089 .056 . 033047 105083	072 .061 .056 022002010 057062063 059040033 019 .035 .041	4.2 4.40 4.6	120114	.084 .075 .085 .050 029042 098074 032005	.060 .046 .015010 050053 047026 .019 .035	.040 019 053 018 .040
5.0 .084 .084 5.2 .107 .100 5.4017021 5.6113109 5.8051045	.080 .053 . 032043 097079	070 .063 .060 026 .007 .000 053058059 059044039 015 .028 .033	5.2 5.40 5.6	107103	.075 .069 .076 .047 027038 090070 028005	.059 .049 .019002 046050 048032 .015 .029	.045 009 051 025 .034
6.0 .079 .079 6.2 .097 .090 6.4019022 6.6105101 6.8045039	.074 .051 . 031041 091076	068 .063 .060 029 .012 .006 049054056 059047043 011 .024 .028	6,2 .0 6,40 6,60	098094	.070 .065 .070 .045 026036 083067 025006	.058 .051 .021 .004 044048 049035 .012 .024	.048 002 049 030 .029
7.0 .075 .075 7.2 .089 .083 7.4020023 7.6098095 7.8040035	.069 .050 . 030039 086073	066 .062 .060 030 .016 .011 046051052 059049045 009 .020 .023	7.40 7.40 7.60	092088	.066 .062 .065 .044 025034 079064 023006	.056 .051 .023 .009 041045 049038 .010 .021	.049 .003 046 033 .025
8.0 .072 .072	.071 .068 .0	064 .061 .060	8.0 .0	065 .064	.063 .060	.055 .051	.049