No part of the candidate evidence in this exemplar material may be presented in an external assessment for the purpose of gaining credits towards an NCEA qualification.

of gaining credits towards an NCEA qu

91523

915230

new zealand qualifications authority mana tohu mätauranga o aotearoa

QUALIFY FOR THE FUTURE WORLD KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

Level 3 Physics, 2015

91523 Demonstrate understanding of wave systems

9.30 a.m. Friday 20 November 2015 Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence	
Demonstrate understanding of wave systems.	Demonstrate in-depth understanding of wave systems.	Demonstrate comprehensive understanding of wave systems.	

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Resource Booklet L3-PHYSR.

In your answers use clear numerical working, words and/or diagrams as required.

Numerical answers should be given with an SI unit, to an appropriate number of significant figures.

If you need more room for any answer, use the extra space provided at the back of this booklet.

Check that this booklet has pages 2–8 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Not Achieved

TOTAL 6

QUESTION ONE: STANDING WAVES AND PLUMBING

Speed of sound in air = 3.43×10^2 m s⁻¹ Speed of sound in water = 1.49×10^3 m s⁻¹

A shower acts like a closed pipe with a node at both ends. Matthew's shower has a height of 2.40 m, with a square base of width 1.10 m. The diagram shows a side view of the shower with one of the standing sound waves that can be set up in the shower. The displacement antinode (A) and nodes (N) are shown on the diagram.

ASSESSOR USE ONLY

(a) Show that the frequency of the vertical standing sound wave drawn is 71.5 Hz.

 $V=f_{1}$ $f=\frac{(3.43\times10^{2})}{(4.85)}=71.465H_{2}=71.5H_{2}(3s+1)$

- (b) Matthew loves singing in the shower. Although Matthew is a talented singer he cannot sing a note to resonate at this low a frequency. However, Matthew can produce two resonant frequencies:
 - a vertical standing wave at 143 Hz
 - a horizontal standing wave at 156 Hz.

Draw these two standing waves in the box on the right.

Show the calculations you used, in order to draw the two waves.

(= \frac{1}{C1+3} = 2.40m (Vertical name in 1st Harmonic) (\frac{1}{2} = L)

1.10 m (= \frac{1.10 m}{0.565} = 2.19 = 2.20 m. (Horizontal wave

is fundamental. (=2L)1

(c) One day, Matthew finds his shower is filling with water because the shower waste pipe is blocked. Matthew drains water from the waste pipe, and attempts to locate the position of the blockage.

With a loudspeaker, Matthew detects the fundamental frequency, and then detects the next two adjacent resonant frequencies at 1.80×10^2 and 3.00×10^2 Hz. Matthew uses these resonant frequencies to estimate that the pipe is blocked 1.43 m from the open end.

Shov	whow Matthew calculated that the pipe is blocked 1.43 m from the open end.	ASSESSOI USE ONL
You	may want to draw waveforms in the diagrams below to help you.	
	(43-7)	
	N ()	
(\		U
^	The state of the s	
tus	damental closed pipe:	
至(注	(3.00×10²) (3.00×10°) (= 2 = 10°9 = 191)	
A	491 500m 1=114m L=095m	
	Et = 1 = 7 = Regrent frequency	
	10 70 103 (1 20 502)-12 103	
	$L=0.57$ $(3.00 \times 10^{-}) - (1.80 \times 10^{-}) - (2.80 \times 10^{-})$	2
an artistic and	13.43×1633 = 2.86m	
	に子 し:143m/	
(d) Wit	h the loudspeaker still set at 3.00×10^2 Hz, Matthew fills the waste pipe with water. uses his loudspeaker to make sound waves in the water, and puts his ear in the water and	
He	ens, but the sound no longer resonates.	
Cal	culate one of the frequencies that Matthew should set the loudspeaker to in order to get	
	onance again.	
In y	your answer you should:	
9	describe how the water affects the speed of the sound wave	
•	explain why the sound in the waste pipe no longer resonates at $3.00 \times 10^2 \mathrm{Hz}$	
•	calculate one of the resonant frequencies.	
~		
		 -

QUESTION TWO: INTERFERENCE

Rianne uses a pair of novelty glasses to produce a laser show.

When she shines a laser through the centre of one of the eyepieces, the laser light splits up into a number of beams.

She suspects that the novelty glasses contain a diffraction grating.

Rianne measures the angle between the bright central beam of light and the 1st order maximum in the horizontal direction to be 26.0° . The laser light has a wavelength of 532×10^{-9} m.

ASSESSOR USE ONLY

(a)	Calculate th	e slit spacing	of the novel	tv glasses
	1			-) Exabbeo.

dsinθ=nl dsin 26.0 fg/(532×10-9)

QETOO XIU ME

(b) Rianne experiments by shining her laser light through different parts of the glasses. There are more lines per metre in the middle of each eyepiece (smaller slit spacing) than there are at the edges.

Describe the differences in the patterns Rianne would see when she shines the laser light through the two different sections of the glasses.

Calc	ulate the spacing in degrees between the central maximum and the 2nd order maxim
	her laser light when it passes through the diffraction grating.
,	
	show, where a blue laser light with a wavelength of 460×10^{-9} m creates a pattern laps with a pattern created by a red laser light with a wavelength of 690×10^{-9} m.
Expl	-1
_	ain what the complete pattern would look like.
	ain what the complete pattern would look like. our answer you should:
-	
-	our answer you should: calculate the number of maxima for blue laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light
	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
-	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light
	calculate the number of maxima for blue laser light calculate the number of maxima for red laser light explain why there will be a limit to the number of maxima for each laser light

ASSESSOR'S USE ONLY

QUESTION THREE: THE WHIRLING BUZZER

Speed of sound in air = $3.43 \times 10^2 \text{ m s}^{-1}$

James attaches a buzzer to the end of a piece of string. James whirls the buzzer above his head in a horizontal circle of radius 1.02 m at a constant speed of 16.0 m s^{-1} .

(not to scale)

Sabina

Sabina stands a long distance away and listens.

(a) Describe the motion of the buzzer when Sabina receives sound waves with the shortest wavelength.

The buzzer will be foreing Sabina and coming TOWARDS here from Sabina and coming

(b) If the frequency emitted by the buzzer is 512 Hz, show that the lowest frequency heard by Sabina is 489 Hz.

f'=f Vws Vs

 $f' = 512 \times \frac{(3.43 \times 10^{2})}{(3.43 \times 10^{2} + 16)}$

ourzer will be further away from

\$ Soloma

1 = 489 Hz/

U

ASSESSOR

Annotated Exemplar 91523 2015

Not Achieved exemplar for 91523, 2015		Total score	06		
Q	Grade score	Annotation			
1		1b is correct except for the diagram of the vertical standing wave, which shows antinodes at the ends.			
	A4	1c has a diagram that shows the fundamental standing wave. The calculations do not link the wavelength of 1.14m to the pipe length of 1.43m. The other calculations are wrong or irrelevant.			
2	N0	Correct working for 2a should use n=1 not n=7			
3	N2	3a "facing Sabina" is ambiguous but towards her is clear and marke		ear and marked o	correct
		3c incorrectly states that between C and A the buzzer is moving towards Sabina.			
		3d subtracts 10 Hz from 512 Hz instead of adding 10	Hz.		