Information Security Lab Autumn Semester 2023 Module 4, Week 2 – Cryptanalysis of ECDSA

Kenny Paterson (@kennyog)

Applied Cryptography Group

https://appliedcrypto.ethz.ch/

Overview of today's lecture

- More on lattices and lattice reduction
- ECDSA recap from last week
- Breaking ECDSA with partially known nonces
- From breaking ECDSA to CVP
- From CVP to SVP via Kannan embedding
- Putting it all together

Lattices and Lattice Reduction

Lattices – Recap

Definition (full-rank lattice)

Let $\{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$ be *n* linearly independent vectors in \mathbb{R}^n .

Then the lattice generated by $\{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_n\}$ is the set:

$$L := \{ \sum_{i=1}^{n} l_i \, \underline{b}_i \colon l_i \in \mathbb{Z} \}$$

of **integer** linear combinations of the \underline{b}_i .

• A lattice is a discrete subgroup of \mathbb{R}^n .

Lattices – Recap

Definition (basis matrix of a full-rank lattice):

A basis matrix B of a lattice $L \subset \mathbb{R}^n$ is an $n \times n$ matrix formed by taking the rows to be basis vectors \underline{b}_i . Then

$$L = \{ \underline{x}B : \underline{x} \in \mathbb{Z}^n \}$$

<u>Definition (determinant of a full-rank lattice):</u>

The determinant of a full-rank lattice L is the absolute value of the determinant of any basis matrix B for the lattice.

Lattices – Recap

<u>Definition (successive minima of a lattice):</u>

Let $L \subset \mathbb{R}^n$ be a full rank lattice. The successive minima of L are the values $\lambda_1, ..., \lambda_n \in \mathbb{R}$ such that:

For $1 \le i \le n$, λ_i is the smallest real value such that there exist i linearly independent vectors $\underline{v}_1,...,\underline{v}_i$ with $||\underline{v}_i|| \le \lambda_i$ for $1 \le j \le i$.

Special case:

 λ_1 is the length of a **shortest** (in terms of Euclidean norm) non-zero vector in L.

SVP and CVP

Let $L \subset \mathbb{R}^n$ be a "random" full rank lattice, and let $\underline{w} \in \mathbb{R}^n$.

Then the **Shortest Vector Problem (SVP)** is to find $\underline{v} \in L$ such that $||\underline{v}|| = \lambda_1$.

The Closest Vector Problem (CVP) for \underline{w} is to find $\underline{v} \in L$ such that $||\underline{v} - \underline{w}||$ is as small as possible.

- SVP and CVP are known to be hard problems in general.
- For example, CVP can be shown to be NP-hard by relating it to subset-sum.
- SVP and CVP problems in **high-dimensional lattices** can be used to **construct** cryptographic schemes, e.g. public key encryption, signatures.
- However, SVP and CVP may be easy if the dimension is small and/or the lattice is presented in a "nice" way.
- Then lattices can be used as a tool for cryptanalysis.

Illustrating SVP

Illustrating CVP

Lattice Reduction

- Let $L \subset \mathbb{R}^n$ be a full rank lattice, represented by some basis matrix B.
- Lattice reduction refers to the process of producing a new basis matrix B' for L satisfying certain special properties.
- In particular, the rows of B' (whose linear combinations define L) are "somewhat orthogonal" and the norms of the first rows of B' are relatively short.
- The Lenstra, Lenstra, Lovasz (LLL) algorithm is a deterministic algorithm which performs lattice reduction.
- LLL essentially performs "iterative rounded Gram-Schmidt orthogonalization".
- Algorithmic details can be found in Chapter 17 of Galbraith's book "Mathematics of Public Key Cryptography" available for free at: https://www.math.auckland.ac.nz/~sgalo18/crypto-book/crypto-book.html

Lattice Reduction – LLL and BKZ

• LLL runs in time (and space) polynomial in n and $\max_i ||\underline{b_i}||^2$ and produces a basis matrix B' in which the first row $\underline{b'}_1$ is guaranteed to satisfy:

$$\|\underline{b}'_1\| \le 2^{(n-1)/2} \lambda_1$$
.

- In other words, LLL approximately solves the SVP for lattice L (and more besides) with an approximation factor of $2^{(n-1)/2}$.
- It can also be shown that $\|\underline{b'}_1\| \le 2^{(n-1)/4} \cdot \det(L)^{1/n}$, giving a useful bound on the size of the first (smallest) vector in the basis output by LLL.
- In practice, LLL often exactly solves SVP.
- For large dimensions *n*, LLL is superseded by the BKZ algorithm (which uses LLL as a subroutine to solve SVP on sub-lattices).
- Due to its importance in cryptography, lattice reduction is a major area of on-going research, with many improvements to BKZ in recent years.

ECDSA Recap

ECDSA Recap

Parameters: (E, p, n, q, h, P, H) defining a curve E over field F_p with $n = q \cdot h$ points, subgroup of prime order q and generator P of order q; H is a hash function, e.g. SHA-256 (here we assume output of H is at least bit-size of q).

KeyGen:

Set Q = [x]P where x is uniformly random from $\{1, ..., q-1\}$.

Output verification key: **Q**; signing key: **x**.

Sign: Inputs (d, m) // d is private key; m is the message to be signed

 $h = bits2int(H(m)) \mod q$. // take len(q) MSBs of H(m), cast to BigInt, reduce mod q.

Do:

- **1.** Select k uniformly at random from $\{1, ..., q-1\}$. // k is called the *nonce*
- 2. Compute r = x-coord([k]P) mod q. //[k]P is a point on E; its x-coord is in F_{p} ; we consider that as an integer and reduce mod q.
- 3. Compute $s = k^{-1}(h + xr) \mod q$.

Until $r \neq 0$ and $s \neq 0$. // works first try w.h.p.

Output (r,s).

ECDSA Recap

<u>Verify</u>: Inputs (Q, m, (r,s)) // Q is verification key; m is message; (r, s) is claimed signature.

- **1.** check that $1 \le r \le q-1$ and $1 \le s \le q-1$.
- 2. compute $w = s^{-1} \mod q$.
- 3. compute $h = bits2int(H(m)) \mod q$.
- 4. compute $u_1 = w \cdot h \mod q$ and $u_2 = w \cdot r \mod q$.
- 5. compute $Z = [u_1]P + [u_2]Q$.
- 6. If $(x\text{-coord}(Z) \mod q == r)$ then output 1 else output o.

Correctness:

Suppose (r,s) is a signature for message m under key Q. Then:

$$Z = [u_1]P + [u_2]Q = [s^{-1}h]P + [s^{-1}r]Q = [s^{-1}(h + xr)]P = [k]P.$$

Here we used $s = k^{-1}(h + xr) \mod q$ from the signing algorithm to obtain $s^{-1}(h + xr) = k \mod q$. Recalling that r = x-coord([k]P) mod q completes the argument.

- You saw in the lab last week that the security of ECDSA is very sensitive to how nonces *k* are chosen: known *k* or repeated *k* is fatal for security.
- What if the attacker could learn just a few bits of *k*?
- Such information might be available via a side-channel attack.
- Examples:
 - Brumley and Tuveri, "Remote Timing Attacks are Still Practical", ESORICS 2011 and https://eprint.iacr.org/2011/232.pdf
 - Moghimi et al., "TPM-FAIL: TPM Meets Lattice and Timing Attacks", USENIX 2020 https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
 - Both papers observe leakage of cases when MSBs of k are zero due to faster
 execution of [k]P during the signing algorithm: a timing side-channel observable by a
 "remote" attacker.
 - Other, recent work observes partial leakage of k via cache-based side-channel attacks (a local attacker model).

Fig. 4. Dependency between number of leading zero bits and wall clock execution time of the signature operation.

Brumley-Tuveri, 2011
OpenSSL ECDSA signature generation

Figure 2: Histogram of ECDSA (NIST-256p) signature generation timings on the STMicroelectronics TPM as measured on a Core i7-8650U machine for 40,000 observations.

Moghimi et al., 2020 STMicroelectronics TPM ECDSA signature generation

Table 2: Discovered vulnerabilities in OpenSSL, LibreSSL, and BoringSSL and whether they are patched \checkmark as of October 2019, currently being patched \checkmark , or unpatched \checkmark . Exploiting the side channel can be easy \bullet , medium \bullet , or hard \bigcirc . The number of leaked bits (Nonce Leakage) indicates the complexity of a full key recovery.

Vulnerability	OpenSSL	LibreSSL	BoringSSL	Nonce Leakage	SC	Comments
Generate: (V1) Small k (top)	EC.X	EC X	_	Topmost 0-limbs of k	•	Leaks in several subsequent steps
(V2) k-padding resize (V3) consttime-swap	DSA/EC/	DSAXECX	_	Topmost 0-bits of k	•	CVE-2018-0734 and CVE-2018-0735
(V3) consttime-swap	DSA/EC/	DSAXECX	_	same as (V2)	•	Already known
(V4) Downgrade	DSA✓	_	_	same as (V2) + [24]	•	Introduced while fixing (V2)
(V5) k-padding (top)	DSAXECX	DSA X EC X	-	same as (V2)	0	Leaks in BN_add and BN_is_bit_set.
						SGX attack shown in Appendix B.
(V6) Buffer conversion	EC √	_	_	Topmost 0-bytes of k	0	
(V7) Point addition	EC.≯	_	EC √	All 0-windows of <i>k</i>	0	
(V8) Euclid BN_div	DSA √	DSA.X	_	Topmost bit of k	•	Leaks via resize, similar to (V2)
(V9) Euclid negation	DSA √	DSAX	_	Topmost 0-bit of kinv	•	Leaks via conditional negation
<i>Multiply</i> : (V10) Small k^{-1} (top)	_	EC√	_	Topmost 0-limbs of kinv	•	

Weiser et al., "Big Numbers - Big Troubles: Systematically Analyzing Nonce Leakage in (EC)DSA Implementations", USENIX 2020, https://www.usenix.org/system/files/sec20-weiser.pdf

- You will implement a synthetic version of these attacks in the lab to recover signing keys.
- The remainder of these lectures will describe how you will do this, in a sequence of steps:
 - Reducing to Closest Vector Problem (CVP) in a lattice.
 - Reducing CVP to Shortest Vector Problem (SVP).
 - Solving SVP using the LLL algorithm (as a black box).
- The original ideas go back to: Howgrave-Graham and Smart, Lattice Attacks on Digital Signature Schemes. *Des. Codes Cryptography*, 23:283–290, 2001.

- Suppose we are given a signature (r,s) on message m.
- Rearranging the signing equation $s = k^{-1}(h + xr) \mod q$ yields:

$$(rs^{-1})x = k - hs^{-1} \mod q$$

- Set $t = rs^{-1} \mod q$ and $z = hs^{-1} \mod q$ (z is an integer between o and q-1).
- Then we have:

$$tx = k - z \mod q$$

where t and z can be computed from the signature, x is the unknown private key and we $m\alpha y$ have some partial information on k.

- Suppose that the L most significant bits (MSBs) of k are known.
- Let N be the bit-length of q.
- Then k lies in the interval $[a2^{N-L}, (a+1)2^{N-L}-1]$ for some known value a (which is determined by the MSBs of k).
- The mid-point of this interval is $\alpha 2^{N-L} + 2^{N-L-1}$.
- So let's write $k = a2^{N-L} + 2^{N-L-1} + e$ where $0 \le |e| \le 2^{N-L-1}$.

Then

$$tx = k - z = u + e \mod q$$

where

$$U = \alpha 2^{N-L} + 2^{N-L-1} - Z$$

is a known integer that can be computed from the *L* MSBs of *k* and $z = hs^{-1}$ mod *q*.

We have:

$$tx = u + e \mod q$$

where t is known, u is known, but e and x are not.

- Moreover, e is bounded by: $0 \le |e| \le 2^{N-L-1}$.
- So we finally arrive at: $tx = u + e \mod q$, and hence:

$$tx = u + e + l \cdot q$$
 for some l

- Since $u = a2^{N-L} + 2^{N-L-1} z$, we see that u lies between $2^{N-L-1} q$ and $a2^{N-L} + 2^{N-L-1}$.
- We really only care about values mod q, so we can assume (by adding multiples of q as needed) that u is centred, i.e. -q/2 < u < q/2.

• So far: from signature (r,s) on message m and the L MSBs of k we get:

$$tx = u + e + l \cdot q$$
 for some l .

- Here, x is our target, t is known, u is known, e is small but otherwise unknown and l is unknown.
- We get one such equation for each of *n* signatures (r_i, s_i) on messages m_i :

$$t_i x = u_i + e_i + l_i \cdot q$$

Alternatively, we can write:

$$t_i x = u_i + e_i \mod q$$
 (where e_i is small)

meaning that u_i is a good approximation to $t_i x \mod q$.

- In this second form, the problem of recovering x from n distinct equations with uniformly random t_i is called the **Hidden Number Problem (HNP)**.
- A similar translation can be made when the LSBs of the k_i are known, or in fact any set of contiguous bits.

Consider the lattice $L \subset \mathbb{R}^{n+1}$ with basis matrix B given by:

Define $\underline{u} = (u_1, u_2, ... u_n, o) \in \mathbb{R}^{n+1}$ where, recall, $t_i x = u_i + e_i + l_i \cdot q$ with e_i small.

<u>Claim</u>: There exists a vector $\underline{v} \in L$ such that

$$\|\underline{u} - \underline{v}\| < (n+1)^{1/2} \cdot 2^{N-L-1}.$$

Proof of claim:

Recall that we have:

$$t_i x = u_i + e_i + l_i \cdot q$$

where $|e_i| \le 2^{N-L-1}$, and l_i is some (unknown) integer.

Now define $\underline{v} \in L$ via:

$$\underline{V} = (-l_1, -l_2, \dots, -l_n, x) \cdot B.$$

(Recall that x is unknown, so \underline{v} is also unknown at this point.)

So:
$$\underline{V} = (-l_1, -l_2, ..., -l_n, x) \cdot B = (-l_1q + t_1x, -l_2q + t_2x, ..., -l_nq + t_nx, x/2^{L+1})$$

= $(U_1 + e_1, U_2 + e_2, ..., U_n + e_n, x/2^{L+1})$

Hence:

$$\underline{V} - \underline{U} = (e_1, e_2, ..., e_n, X/2^{L+1}).$$

The result follows on noting that each entry in $\underline{v} - \underline{u}$ is bounded in absolute value by 2^{N-L-1} (for the last entry, note that $x < q < 2^N$).

Implications:

- We have constructed a lattice $L \subset \mathbb{R}^{n+1}$ and vector \underline{v} from public information and shown that \underline{v} is "somewhat close" to a point \underline{v} in L.
- Moreover, if we could find \underline{v} then we could also find the ECDSA private key x (just by inspecting the final coordinate of \underline{v}).
- We can hope that \underline{v} is actually **the** solution to the CVP for \underline{v} .
- For some parameter ranges, one can show that this is indeed the case.
- So if we have a CVP solver, we can apply it here and hope to extract the private key x.

A Formal Result:

Let $t_1, ..., t_n$ be uniformly random values in F_q , let x be non-zero in F_q . Suppose we are given n samples of the form (t_i, u_i) where u_i is known to be a good approximation to $t_i x \mod q$ (i.e. $t_i x = u_i + e_i \mod q$ with $0 \le |e_i| \le q/2^{L+1}$).

Suppose $n = 2\log_2(q)^{1/2}$ and $L = \log_2(q)^{1/2} + \log_2\log_2(q)$.

Then one can recover x in polynomial time.

- For a proof, see Theorem 21.7.9 and Corollary 21.7.10 of Galbraith's book.
- The proof is based on properties of LLL and the Babai nearest plane algorithm for solving CVP.
- Guarantee required of $|e_i|$ is slightly stronger here than in our formulation.
- In practice, we can get away with much smaller n and L and still get an attack that works.

- There are multiple ways to solve CVP using an SVP solver: the Babai nearest plane algorithm, Babai rounding, Kannan's embedding technique, enumeration approaches.
- We will describe only Kannan embedding here, as it is nice and simple.
- Babai nearest plane and Babai rounding are also simple, and have provable guarantees.
- Your favourite LLL library may allow you to solve CVP directly, but it's good to have a sense of what could be happening underneath!

Let B be a basis matrix for a lattice $L \subset \mathbb{R}^n$ with rows \underline{b}_i .

Let $\underline{w} \in \mathbb{R}^n$ be a vector for which we wish to solve CVP.

A solution to the CVP corresponds to integers $l_1, ..., l_n$ such that:

$$\underline{\mathbf{w}} \approx l_1 \underline{b}_1 + \dots + l_n \underline{b}_n.$$

Define:

$$\underline{f} = \underline{w} - (l_1 \underline{b}_1 + \dots + l_n \underline{b}_n).$$

Key observation: ||f|| is small.

- So we try to define a new lattice L' which contains f.
- Hopefully then f will be output as a result of running an SVP solver on L'.
- From \underline{f} and \underline{w} we can then recover the lattice point $\underline{v} = l_1 \underline{b}_1 + \dots + l_n \underline{b}_n$ in L.

• Consider the lattice $L' \subset \mathbb{R}^{n+1}$ with basis matrix B' whose rows are:

$$(\underline{b}_1, 0), (\underline{b}_2, 0), \dots, (\underline{b}_n, 0), (\underline{w}, M)$$

where, recall, \underline{w} is the input to the CVP.

- Here M is a small constant, to be determined.
- Now consider the linear combination of rows with coefficients:

$$(-l_1,...,-l_n,1)$$

- It is easy to check that this yields the vector (*f*, *M*), which should be short.
- So we might be able to solve CVP on input \underline{w} for lattice L by solving SVP on lattice L' to find (\underline{f}, M) and then setting $\underline{v} = \underline{w} \underline{f}$.

Lemma:

Let $L \subset \mathbb{R}^n$ be a full rank lattice with shortest non-zero vector of length λ_1 . Let $\underline{w} \in \mathbb{R}^n$ and let \underline{v} be a closest vector in L to \underline{w} . Define $\underline{f} = \underline{w} - \underline{v}$. Suppose that $\|\underline{f}\| \le \lambda_1/2$ and let $M = \|\underline{f}\|$. Then (\underline{f}, M) is a shortest vector in the lattice $L' \subset \mathbb{R}^{n+1}$ in Kannan's embedding technique.

Proof: see Galbraith's book, Lemma 18.3.2.

<u>Interpretation:</u> if the target vector <u>w</u> is very close to the lattice and we have a good guess *M* for the distance, then Kannan's embedding technique *does* reduce the problem of solving CVP to that of solving SVP.

<u>Problems:</u> maybe \underline{w} is not close to the lattice; LLL and related algorithms only approximately solve SVP; maybe target (f, M) is short but **not** a shortest vector in L'.

<u>Solution:</u> in practice, this approach works quite well, but we may need to examine several vectors in the reduced basis to find target (\underline{f} , \underline{M}) or perform *enumeration*.

Putting It All Together

Putting It All Together

- We have seen how to translate the problem of recovering x from partial information about the nonces in the ECDSA scheme into a CVP problem and thence to an SVP problem.
- The lattice dimension we use is *n*+2 where *n* is the number of signatures.
- Whether *n* signatures with *L* bits of leakage per signature is enough to recover *k* depends on several factors.
- Clearly there is an information theoretic minimum: we need

$$n \cdot L > \log_2(q) = N$$
.

 Actually, knowing the public key [x]P enables attack to go beyond this minimum.

Putting It All Together

- We can use the Gaussian heuristic to see if Kannan's embedding technique or some other CVP solver is likely to produce a solution – see the exercises for an important wrinkle in this approach.
- You will implement all this in the lab and use Sagemath as a tool to solve the lattice instances that arise.
- Through this programming exercise, you'll explore the performance of this kind of attack and have to deal with some of the subtleties that arise.
- Have fun!