CP 7 Ejercicio 2

En primer lugar hacemos un scatter plot entre todos los pares de variables en el data frame. Podemos apreciar que todos los pares de variables parecen tener una relación lineal.

A continuación se realizó llamada al método *lm* para realizar la regresión múltiple:

Coefficients:	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	15.9421	41.4813	0.384	0.738
months	0.1000	0.9549	0.105	0.926
sales	0.3447	0.2828	1.219	0.347
price	-24.7368	44.4184	-0.557	0.634

Con error residual de 0.4501.

Se observa que el coeficiente de intercepto es muy grande respecto al resto por lo que se decide estandarizar los datos, usando el método *scale*, obteniéndose los siguientes coeficientes:

Coefficients:	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-6.365e-16	1.071e-01	0.000	1.000
months_scaled	1.091e-01	1.042e+00	0.105	0.926
sales_scaled	3.952e-01	3.242e-01	1.219	0.347
price_scaled	-5.058e-01	9.083e-01	-0.557	0.634

Con error residual de 0.2625.

Ambos modelos comparten los siguientes datos:

Multiple R-squared 0.9724 Adjusted R-squared 0.9311

F-statistic 23.53 on 3 and 2 DF

p-value 0.04104

El parámetro *Adjusted R-squared* es 0.93 lo cual es bueno, es cercano a 1. Vemos que el segundo modelo, con las variables estandarizadas, tiene menor error

residual 0.26 vs 0.45. El *p-valor* del estadígrafo de F es menor q 0.05 por lo que existe una variable significativamente distinta de 0 en el modelo.

De aquí en adelante vamos a analizar el segundo modelo ya que presentó mejor ajuste a los datos.

Análisis de residuos

1. Media de errores:

```
Media de error residual 2.312739e-17
Suma de error residual 1.387779e-16
```

Por lo que se cumple que ambas son muy cercanas a 0.

2. Podemos ver el histograma de residuos y el gráfico QQ-Plot para asegurar que los errores están distribuidos normal:

3. Independencia de los residuos:

Al realizar el test de Durbin-Watson obtenemos:

Como el 0.34>>0.05 no podemos rechazar la hipótesis nula por lo que los errores son independientes.

4. Homocedasticidad

Se realiza el gráfico de predicciones contra errores residuales:

Como podemos ver los valores son aleatorios por lo que se cumple la Homocedasticidad.