Relação de Equivalência - Classes de Equivalência nos Inteiros - Continuação

José Antônio O. Freitas

MAT-UnB

27 de agosto de 2020

Sabemos, pela aula anterior, que a congruência módulo m é uma relação de equivalência,

Sabemos, pela aula anterior, que a congruência módulo m é uma relação de equivalência, assim vamos determinar suas classes de equivalência.

 $\overline{n} =$

$$\overline{n} = C(n) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n)

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} ,

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{ x \in \mathbb{Z} \mid x \equiv 0 \pmod{m} \}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{m} \} = \{ x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z} \}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

Por exemplo, fixando m > 1

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

D () (= 77 |) | | | | | |

$$R_m(n) = \{x \in \mathbb{Z} \mid x = n + km, k \in \mathbb{Z}\}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

Por exemplo, fixando m > 1

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

D () (= 77 |) | | | | | |

$$R_m(n) = \{x \in \mathbb{Z} \mid x = n + km, k \in \mathbb{Z}\}$$

As classes de equivalência definidas pela congruência módulo m

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

$$R_m(k) = R_m(l)$$

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

 $R_m(k) = R_m(l)$ se, e somente se, $k \equiv l \pmod{m}$.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

 $R_m(k) = R_m(l)$ se, e somente se, $k \equiv l \pmod{m}$.

1) Se m = 2,

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1.

$$R_2(0) =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{ x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m = 3,

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m=3, então os possíveis restos da divisão inteira são 0, 1 e 2.

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m = 3, então os possíveis restos da divisão inteira são 0, 1 e 2. Daí

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m = 3, então os possíveis restos da divisão inteira são 0, 1 e 2. Daí $R_3(0)=$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m = 3, então os possíveis restos da divisão inteira são 0, 1 e 2. Daí $R_3(0)=\{x\in\mathbb{Z}\mid$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m=3, então os possíveis restos da divisão inteira são 0, 1 e 2. Daí $R_3(0)=\{x\in\mathbb{Z}\mid x\equiv 0\pmod 3\}=$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) =$$

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} =$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) =$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z} \mid$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} =$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{ x \in \mathbb{Z} \mid x \equiv 2 \pmod{3} \} = \{ x \in \mathbb{Z} \mid$$

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 2, k \in \mathbb{Z}\}\$$

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 2, k \in \mathbb{Z}\}\$$

Proposição

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente, existem exatamente m classes de equivalência \blacksquare

Observação:

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$
 $R_m(1) = \overline{1}$
 \vdots
 $R_m(m-1) = \overline{m-1}$

O conjunto quociente desta relação será denotado por $\frac{\mathbb{Z}}{m\mathbb{Z}}$ ou \mathbb{Z}_m . Assim

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$$

Queremos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2=\{\overline{0},\overline{1}\}$ temos que a soma de pares é par, soma de par com ímpar é ímpar e a soma de ímpares é par. Assim podemos escrever

\oplus	$\overline{0}$	$\overline{1}$
$\overline{0}$	0	$\overline{1}$
$\overline{1}$	$\overline{1}$	ō

Para multiplicação, temos

\otimes	ō	$\overline{1}$
ō	0	0
$\overline{1}$	ō	$\overline{1}$

(2)

Definição

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b} \tag{1}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e produto definidas em (1) e (2) são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$, $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2$$
$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1 b_1} = \overline{a_2 b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

A some e a multiplicação em $\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ são dadas nas tabelas abaixo:

Tabela: Soma em \mathbb{Z}_4

\oplus	Ō	$\overline{1}$	2	3
<u> </u>	$\overline{0}$	$\overline{1}$	$\overline{2}$	3
<u>1</u> <u>2</u>	$\overline{1}$	2	3	0
	2	3	$\overline{0}$	$\overline{1}$
3	3	ō	$\overline{1}$	2

Tabela: Multiplicação em \mathbb{Z}_4

\otimes	$\overline{0}$	$\overline{1}$	2	3
ō	0	0	0	ō
$\overline{1}$	$\overline{0}$	$\overline{1}$	2	3
2	ō	2	ō	2
3	0	3	2	$\overline{1}$

Proposição

As operações de soma \oplus e multiplicação \otimes em \mathbb{Z}_m satisfazem as seguintes propriedades:

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}$, existe $\bar{y} \in \mathbb{Z}$ tal que $\bar{x} \oplus \bar{y} = 0$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.
- vii) Para todo $\bar{x} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{1} = \bar{x}$.

Prova:

- i) $\overline{x} \oplus \overline{y} = \overline{x+y} = \overline{y+x} = \overline{y} \oplus \overline{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\bar{x} \oplus \bar{0} = \overline{x+0} = \bar{x}$.
- iv) Dado $\overline{x} \in \mathbb{Z}_m$ escolha $\overline{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\overline{x} \oplus \overline{y} = \overline{x} \oplus \overline{m-x} = \overline{x} + (m-x) = \overline{m} = \overline{0}$.
- $\mathsf{v}) \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$
- $\forall i) \ (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x} \cdot (y \cdot z) = \overline{x} \otimes \overline{y \cdot z} = \overline{x} \otimes (\overline{y} \otimes \overline{z}).$
- $\mathsf{vii}) \ \overline{x} \otimes \overline{1} = \overline{x \cdot 1} = \overline{x}.$

Definição

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Prova: De fato, dado $\overline{a} \in \mathbb{Z}_m$, suponha que existem \overline{b} , $\overline{d} \in \mathbb{Z}_m$ tais que $\overline{a} \otimes \overline{b} = \overline{1} = \overline{a} \otimes \overline{d}$, então

$$\overline{b} = \overline{b} \otimes \overline{1} = \overline{b} \otimes (\overline{a} \otimes \overline{d})$$
$$= (\overline{b} \otimes \overline{a}) \otimes \overline{d} = \overline{1} \otimes \overline{d} = \overline{d}$$

Proposição

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

- 1) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$, cujo inverso é $\overline{3}$.
- 2) Em \mathbb{Z}_{11} , todos elementos, exceto $\overline{0}$, possuem inverso:

Tabela: Inversos em \mathbb{Z}_{11}

Elemento	1	2	3	4	5	<u>6</u>	7	8	9	10
Inverso	1	6	4	3	9	2	8	7	5	10