Ejercitación de Integración y Diferenciación Numérica

1. Diferenciación Numérica:

Dada la siquiente tabla,

Х	1	3	4	6	8
Y	1	-2	-2	k	8

- a. Halle **k** para que el polinomio de menor grado que interpola todos los datos sea de grado 2
- b. Para un k = 4, aplicando la fórmula que sea más conveniente determine:

f' (1):

f'' (4):

- c. Indique cual derivada es más eficiente para hallar f" (8). Justifique
- d. ¿Es posible hallar f' (7)? ¿Cómo lo haría?
- 2. Integración Numérica:
- a. Dada la integral: $\int_0^1 e^{x^2} dx$
- a1. Indique el mayor valor de h racional no periódico para que al calcular la integral por **Trapecios** con subintervalos de longitud h, asegure un $\varepsilon \le 10^{-3}$. El valor resultante de resolver mediante este método, ¿Cómo es con respecto al valor exacto de la integral?
- a2. De ser posible, resuelva por Simpson con h = 0.2 trabajando con 5 dígitos y redondeo simétrico en todos los cálculos.
- a3. Indique el mayor valor de h racional no periódico para que al calcular la integral por **Simpson** con subintervalos de longitud h, asegure un $\varepsilon \leq 10^{-2}$
- b. Dada la función $f(x) = 1 + x^3$ en [0,2] calcule la integral:
- b1. En forma analítica
- b2. Aproximando mediante Trapecios con h= 1, h=0.5, h=0.2
- b3. Aproximando mediante Simpson con h = 1
- b4. Calcule los errores y extraiga conclusiones

Curso: K3011