

Exame Final Nacional de Matemática A Prova 635 | 2.ª Fase | Ensino Secundário | 2018

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Caderno 2

Duração da Prova (Caderno 1 + Caderno 2): 150 minutos. | Tolerância: 30 minutos.

5 Páginas

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora.

Os dois itens que se apresentam a seguir são itens em alternativa.

O item 9.1. integra-se nos Programas de Matemática A, de 10.º, 11.º e 12.º anos, homologados em 2001 e 2002 (P2001/2002).

O item 9.2. integra-se no Programa e Metas Curriculares de Matemática A, homologado em 2015 (PMC2015).

Responda apenas a um dos dois itens.

Na sua folha de respostas, identifique claramente o item selecionado.

P2001/2002

9.1. Num dado problema de Programação Linear, pretende-se determinar o valor máximo que a função objetivo, definida por L = 3x + 5y, pode alcançar.

Sabe-se que a região admissível é definida pelo seguinte sistema.

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x + y \le 10 \\ x \le 5 \end{cases}$$

Qual é esse valor máximo?

(A) 56

(B) 50

(C) 40

(D) 36

PMC2015

9.2. Considere, num referencial o.n. xOy, uma elipse centrada na origem do referencial e de focos F_1 e F_2 pertencentes ao eixo Ox

Sabe-se que:

$$\bullet \quad \overline{F_1 F_2} = 12$$

• sendo P um ponto qualquer da elipse, tem-se $\overline{PF_1} + \overline{PF_2} = 20$

Qual é a equação reduzida desta elipse?

(A)
$$\frac{x^2}{64} + \frac{y^2}{100} = 1$$

(B)
$$\frac{x^2}{100} + \frac{y^2}{64} = 1$$

(C)
$$\frac{x^2}{100} + \frac{y^2}{36} = 1$$

(D)
$$\frac{x^2}{36} + \frac{y^2}{100} = 1$$

10. Em \mathbb{C} , conjunto dos números complexos, considere $z = \frac{(2-i)^2 + 1 + i}{1-2i} + 3i^{15}$

Escreva o complexo $-\frac{1}{2} \times \overline{z}$ na forma trigonométrica.

11. Considere, num referencial o.n. xOy, a circunferência centrada na origem do referencial e que passa no ponto A(2,1)

Seja r a reta tangente à circunferência no ponto A

Qual é a ordenada na origem da reta r?

- (A) 4
- **(B)** 5
- **(C)** 6
- **(D)** 7

12.

Os dois itens que se apresentam a seguir são itens em alternativa.

- O item 12.1. integra-se nos Programas de Matemática A, de 10.º, 11.º e 12.º anos, homologados em 2001 e 2002 (P2001/2002).
- O item 12.2. integra-se no Programa e Metas Curriculares de Matemática A, homologado em 2015 (PMC2015). Responda apenas a um dos dois itens.

Na sua folha de respostas, identifique claramente o item selecionado.

P2001/2002

12.1. Considere, num referencial o.n. Oxyz, os planos α , β e γ definidos pelas equações y=-x, y = z e 2x + 3y - z - 1 = 0, respetivamente.

A intersecção dos planos α , β e γ é

- (A) um ponto.
- (B) uma reta.
- (C) um plano.
- (D) o conjunto vazio.

PMC2015

- **12.2.** Qual é o valor do limite da sucessão de termo geral $\left(\frac{n+5}{n+1}\right)^{\frac{n}{2}}$?
 - (A) $+\infty$
- **(B)** 1
- (C) e^4
- (D) e^2

13. Determine o conjunto dos números reais que são soluções da inequação

$$\log_2(x+1) \le 3 - \log_2(8-x)$$

Apresente a resposta usando a notação de intervalos de números reais.

14. Seja f a função, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} 3 + \frac{e^x}{1 - x} & \text{se } x < 1\\ \frac{\ln(x^2) + 2}{x} & \text{se } x \ge 1 \end{cases}$$

- **14.1.** Determine f'(0), recorrendo à definição de derivada de uma função num ponto.
- **14.2.** Estude a função f quanto à existência de assíntotas horizontais do seu gráfico.
- **14.3.** Seja h a função, de domínio \mathbb{R} , definida por h(x) = x + 1

Qual é o valor de $(f \circ h^{-1})(2)$?

(o símbolo o designa a composição de funções)

- **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 3
- **15.** Seja g a função, de domínio $[0,\pi]$, definida por $g(x) = 2 \operatorname{sen} x + \operatorname{sen}^2 x$

Seja $\,r\,$ a reta tangente ao gráfico da função $\,g\,$ que tem declive máximo.

Determine o declive da reta r

Apresente a sua resposta na forma $\frac{a\sqrt{b}}{c}$, com a,b e c números naturais.

FIM

COTAÇÕES (Caderno 2)

						ltem					
				C	otação	(em po	ontos)				
9.1.	9.2.	10.	11.	12.1.	12.2.	13.	14.1.	14.2.	14.3.	15.	
3	3	12	8	8	}	13	13	13	8	12	95

TOTAL (Caderno 1 + Caderno 2) 200

Prova 635 2.ª Fase CADERNO 2