

Fixed Income Analysis

CFA二级培训项目

讲师:何 旋

www.pzacademy.com

Fixed Income整体框架

Term Structure and Interest Rates Dynamics

★★ (整章都非常重要)

Benchmark curve

Spot curve

Forward rate model

- ① Spot rate \rightarrow Forward rate \mathcal{H} $[1+r(T^*+T)]^{(T^*+T)} = [1+r(T^*)]^{T^*} [1+f(T^*,T)]^T$
- ② Relationship:
 - ✓ upward-sloping spot curve → upward-sloping forward curve
 - ✓ When the spot curve is upward sloping, the forward curve will lie above the spot curve.

Forward curve -

Forward pricing model

$$F(T^*,T) = \frac{P(T^*+T)}{P(T^*)}$$
 No-arbitrage

Active bond portfolio management

- Yield curve movement
 - ✓ If future spot rate will be lower than forward rate, forward contract value increase.
- ② Riding the yield curve
 - ✓ upward-sloping curve: an investor will purchase bonds with maturities longer than his investment horizon.

Par curve

Bootstrapping 计算:已知par rate算spot rate

YTM, spot rate and return on bond YTM相当于是spot rate的平均数

The swap rate curve * -

- reflect the credit risk of banks
- not regulated, more comparable in different countries 优点(和government bond yield比)
 - ③ many maturities

Spread ★★

Spread =yield subject bond-yield benchmark

	计算	性质(spread反映的风险)
Swap spread	Swap rate −Treasury yield Note: Treasury bond → same maturity, on-the-run	① Default risk ② 但是,有些期限swap可能liquidity更好
I-spread	yield _{subject bond} -Swap rate Notes: <i>same maturity</i>	 Credit risk Liquidity risk
Z-spread	试错法 $P_{market} = \frac{C}{(1+S_1+Z)^1} + \frac{C}{(1+S_2+Z)^2} + \frac{C+prin}{(1+S_3+Z)^3}$	 ① Credit risk ② Liquidity risk ③ Option risk ④ 对含权债券和不含权债券的比较不合适
TED spread	LIBOR – T-bill rate Note: same maturity, 常见3个月	Default risk in the <i>banking system</i>
LIBOR-OIS spread	LIBOR – OIS rate Note: OIS rate相当于银行间隔夜借贷成 本,credit risk最小	1 high: concerns about creditworthiness2 Low: high liquidity

Summary	Description (性质)	解释yield curve形状
Pure (Unbiased) Expectations Theory	 Forward rates are solely a function of expected future spot rates Investor should earn the same return over a given investment horizon risk neutrality 	 Upward slope: rise Downward slope: fall Flat yield: remain
Local Expectation Theory	① 类似Unbiased Expectations Theory ② only for short periods: risk-neutrality ③ longer periods: risk premiums exist	
Liquidity preference theory	 forward rates: biased estimates of expectation of future rates include a liquidity premium liquidity premium:larger during periods of greater economic uncertainty 	Upward slope: ① Future rates rise ② rates remain constant, but the addition of the liquidity premium
Segmented Market Theory	Yield at each maturity is determined <i>independently</i> of the yields at other maturities	determined by the preferences of borrowers and lenders
Preferred habitat theory	 forward rates: expected future spot rates + premium premium is not related to maturity Premium (incentive): 为了使投资者shift from preferred habitats 	

Modern term structure models ★

定量描述Δr

- 基本不会考计算
- 注意三个模型之间的辨析

		公式	性质
Equilibrium	Cox—Ingersoll—Ross Model (CIR)	$dr = a(b-r)dt + \sigma\sqrt{r}dz$	① drift term & random term ② Mean-reverting (b),a是reverting speed ③ Volatility increases with r
Models	Vasicek model	$dr = a(b-r)dt + \sigma dz$	① Difference from CIR: volatility不随r而上升 ② Disadvantage: r may be negative
Arbitrage-free model	Ho-Lee Model	$dr_t = \theta_t dt + \sigma dz_t$	Advantage: match current market price and current yield curve

Yield curve factor model ★★

概念、辨析、计算

Yield curve factor

	Description	重要程度
Level	Upward/Downward shift (同上同下)	77%
Steepness	Long-term rate和short-term rate变动幅度不同	17%
Curvature	Long-term & short-term rate和middle-term rate变动幅度不同	3%

Managing yield curve risk: $\frac{\Delta P}{P} \cong -D_L \Delta x_L - D_S \Delta x_s - D_C \Delta r_C$

Yield curve risk

Managing yield curve risk:

- Effective duration: parallel shift
- Key rate duration: non-parallel shift (shaping risk).

Yield curve volatility **⇒**

- Important for securities with embedded options
- Short-term interest rates are generally more volatile than are long-term rates.

The Arbitrage-free Valuation Framework

Introduction

Arbitrage opportunity
$$\blacktriangleright$$
 Value additivity Reconstitution 了解 Dominance

Introduction of Arbitrage free \blacktriangleright Value additivity Reconstitution 了解 valuation (spot curve)
$$P_{market} = \frac{C}{(1+S_1)^1} + \frac{C}{(1+S_2)^2} + \frac{C+prin}{(1+S_3)^3}$$
 了解 不适合含权债券

Binomial interest rate tree ★★

计算

求二叉树

- equal probability
- ② middle forward rate (f): $[1+r(T^*+T)]^{(T^*+T)} = [1+r(T^*)]^{T^*} [1+f(T^*,T)]^T$
- 4 The interest rate tree should generate arbitrage-free values for the benchmark security.

Option-free bond valuation

Pathwise valuation: n period, 2ⁿ⁻¹ paths → 求算术平均

Monte Carlo simulation ★★

不会考计算, 重点掌握性质

- ① Binomial tree: backward induction → 适用callable, putable
- ② Cash flow of MBS: path dependency
- ③ Advantage of MCS: 解决path dependency → 适用MBS

总结:bond定价方法★

P	$=\sum_{i=1}^{N}C_{i}$	F_i
0	$-\sum_{i=i}^{n} \left(1+\right)$	-r) ⁱ

	Option-free bond	Bond with embedded option
CF	时间、金额确定	不确定(取决于将来r的变化)
	Single yield (YTM): bond price = $\frac{0}{(1+1)^2}$	$\frac{CPN_1}{-YTM} + \frac{CPN_2}{(1+YTM)^2} + \dots + \frac{CPN_N + Par}{(1+YTM)^N}$
r	Arbitrage-free: no-arbitrage price= $\frac{C}{C}$	$\frac{\text{CPN}_1}{(1+S_1)} + \frac{\text{CPN}_2}{(1+S_2)^2} + \dots + \frac{\text{CPN}_N + \text{Par}}{(1+S_N)^N}$
	Binomial tree: backward induction (考	走将来r变化) → callable, putable
	Monte Carlo Simulation: 解决path de	pendency → MBS

Valuation And Analysis: Bonds With Embedded Options

★★ (整章都非常重要)

含权债券种类

概念

	Callable bond
Simple optionsPutable bondExtendible bond (可以看成是putable bond): 比如2年可以扩展成3年,相当2年可执行	Putable bond
	Extendible bond (可以看成是putable bond): 比如2年可以扩展成3年,相当于3年期putable,2年可执行
Complex	Estate put: contingent put option
options	Sinking fund bonds (sinkers)

Valuation of callable and putable bonds ★★

Value -

•	计算	V callable: 高过strike price的价格只能取strike price
	Binomial tree	V _{putable} : 低于strike price的价格只能取strike price
	- 计值v	$V_{callable} = V_{noncallable} - V_{call}$
	计算V _{option}	$V_{putable} = V_{nonputable} + V_{put}$
		会影响binomial tree: spread out
	Volatility 对value的影响	Volatility $\uparrow \rightarrow V_{call} \uparrow \rightarrow V_{callable} \downarrow$
	. 4 H 4 4 2 1 4	$Volatility \uparrow \rightarrow V_{put} \uparrow \rightarrow V_{putable} \uparrow$

•	计算	Binomial tree(试错法)
	Volatility	Callable: Volatility $\uparrow \rightarrow$ OAS _{call} \downarrow
	的影响	Putable: Volatility \uparrow \rightarrow OAS _{put} \uparrow
	OAS: 可以对比不	含权债券和含权债券

Yield curve risk

Effect of yield curve changes		
Level	$r \downarrow \rightarrow \Delta V_{cal}$	lable <ΔV straight
	$r \uparrow \rightarrow \Delta V_{pu}$	table <ΔV straight
Shano	Call	 ✓ r↓ → V _{call option} ↑ ✓ V _{call option} will be lower for upward sloping yield curve
Shape	Put	 ✓ r↑ → V put option ↑ ✓ V put option will be lower as an upward-sloping yield curve flattens

含权债券duration	性质	计算
ED	 ✓ Callable \ putable < straight bond ✓ r↑ → ED putable ↓ ✓ r↓ → ED callable ↓ 	$ED = \frac{BV_{-\Delta y} - BV_{+\Delta y}}{2 \times BV_{0} \times \Delta y}$
EC	 ✓ Callable: r↓→ negative convexity ✓ Putable: r↑→ more convexity 	$EC = \frac{BV_{-\Delta y} + BV_{+\Delta y} - (2 \times BV_0)}{BV_0 \times \Delta y^2}$
One-side duration	 ✓ Callable: lower one-sided down-duration than one-sided up-duration ✓ Putable: larger one-sided down-duration than one-sided up-duration 	不要求
Key rate duration	Callable/putable: exercise date和maturity date最大 其他性质了解	不要求

Capped & floored floater ★★

计算 (binomial tree)	Option-free floater: price = par Cap: coupon>cap, 只能取cap Floor: coupon <floor, 只能取floor<br="">注意:折现率还是用原来的利率</floor,>
计算value of cap/floor	Value of capped floater= Value of 'straight' bond – Value of embedded cap Value of floored floater= Value of 'straight' bond + Value of embedded floor
Ratchet bonds	capped floater: extreme protection,cap = current coupon rate

Convertible bond ★★

计算	 ✓ Conversion price & market conversion price Conversion price = bond issue price/conversion ratio Market conversion price = market price of bond/conversion ratio ✓ Conversion value straight value minimum value Conversion value = market price of stock × conversion ratio Straight value is the value of the bond if it were not convertible Minimum value = max {Conversion value, Straight value} ✓ Market conversion premium premium over straight value The market conversion premium per share = market conversion price - market price Market conversion premium ratio = market conversion premium per share/market price of stock Premium over straight value = (Market price of convertible bond straight value) 		
性质	 ✓ Fixed-income equivalent(busted convertible): Market stock price < Conversion price ✓ Common stock equity: Market stock price > Conversion price ✓ Hybrid security 		
Value	Convertible bond value = Straight value of bond+ Value of the call option on the stock		

Credit Analysis Models

衡量Credit risk的指标

基本概念: PD、LGD、Recovery rate 一级的概念,二级基本不考

PV (EL): maximum amount investor pay an insurer

Time value adjustment: PV(EL) < EL
Risk-neutral probabilities: PV(EL) > EL

计算★★

PV(risk-free) - PV (risky)

利用Credit spread计算

Time	Risk-free rate	Credit spread	Total yield	Cash flow	PV(risk-free)	PV(risky)	Difference
0.5	0.11%	0.03%	0.14%	30	\$29.98	\$29.98	\$0.00
1.00	0.16%	0.07%	0.23%	30	\$29.95	\$29.93	\$0.02
1.50	0.21%	0.08%	0.29%	30	\$29.91	\$29.87	\$0.04
2.00	0.22%	0.09%	0.31%	30	\$29.87	\$29.81	\$0.06
2.50	0.27%	0.09%	0.36%	30	\$29.80	\$29.73	\$0.07
3.00	0.31%	0.10%	0.41%	1,030	\$1,020.47	\$1,017.41	\$3.06
				total	\$1,169.97	\$1,166.73	\$3.24

四大模型 🛨

1. Credit Scoring: 重要缺点

- Do not explicitly take into account current economic conditions. i.e. do not improve with the economy.
- Pressure from users of credit scores (lenders) to prioritize stability in scores over time
- Do not take into account differing probabilities of default for different loans taken out by the same borrower.

2. Credit Rating: 重要优缺点

- · Strengths of credit ratings
 - ✓ Simple to understand
 - ✓ Reduce volatility in the debt market
- · Weaknesses of credit ratings
 - ✓ **Stability** in credit ratings comes at the expense of a reduction in correlation with default probability
 - ✓ Do not adjust with the business cycle
 - ✓ In issuer-pays model, there exists the conflicts of interest.

3. Structure model

原理 (类似于option)	Stock: long公司资产的call optionBond: short put option
Assumption	 Company's assets are traded in a frictionless market with return and variance. The risk-free interest rate (r) is constant. The company has a simple balance sheet structure.
优缺点	 Strengths of structural models Provide option analogy to understand probability of default and loss given default and can be estimated using current market prices. Weaknesses of structural models Model assumptions of simple balance sheet and traded assets are not realistic. Estimation procedures do not consider business cycle.

4. Reduced Form Model

Assumption	 Company has a zero-coupon bond, and it trades in frictionless and arbitrage-free markets. The risk-free interest rate (r) and the state of the economy are stochastic.
优缺点	 Strengths of structural models Since model inputs are observable, historical estimation procedures can be used. Credit risk is a allowed to fluctuate with the business cycle. Reduced form models do not require specification of the company's balance sheet structure. Weaknesses of structural models The hazard rate estimation procedures may not be valid.

Credit analysis of ABS ★

- 结论
- Credit analysis of ABS is different from a corporate bond.
 - The *cash flow characteristics* of an ABS differ from corporate bond.
 - To value an ABS, either a reduced form or a structural model can be used.
 - The credit risk metric of probability of default does not apply to an ABS; we instead use the probability
 of loss.

Credit Default Swaps

Basic Definitions and Concepts

Important Features of CDS

Types of CDS **

- ISDA Master Agreement
- Notional principal
- CDS spread and CDS Coupon ★ → upfront payment
- Credit Events ★: Bankruptcy, Failure to pay and Restructuring

- Single-Name CDS: one specific borrower
 - cheapest-to-deliver obligation: be purchased and delivered at the lowest cost but has the same seniority
- Index CDS: multiple issuers
- Tranche CDS: only up to pre-specified levels of losses

判断: Settlement Preference - 因为cash settlement要遵循*cheapest-to-deliver obligation*

Basics of Valuation and Pricing

影响CDS定价因素★

Probability of default Loss given default

Hazard rate: The probability of default given that default has not already occurred. A conditional probability of default

CDS Pricing ★★ ⇒

Upfront payment (paid by protection buyer)=PV(Protection leg)- PV(Premium leg)
Upfront premium % (paid by protection buyer) \approx (CDS spread – fixed coupon) \times duration
Price of CDS (per \$100 notional) \approx \$100-upfront premium (%)

Valuation Changes in CDS ★⇒

Profit for protection buyer ≈ change in spread × duration × notional principal Profit for protection buyer (%) ≈ change in spread (%) ×duration

The Credit Curve ★ → The credit spreads for a range of maturities

Applications of CDS

掌握交易方法★

Manage Credit Exposures	Valuation Differences and Basis Trading	CDO
Basic application: lender → reduce its credit exposure; CDS seller → adds credit exposure.	Basis trade: exploit the difference in credit spreads between bond markets and the CDS market.	Synthetic CDO: has similar credit risk exposure to that of a cash CDO
Naked CDS: a party with no exposure to the reference entity	leveraged buyout: purchase both the stock and CDS protection	
 Long/short trade ★★ A curve trade: curve-steepening trade (buying protection in a long-term CDS and selling protection in a short-term CDS) & curve-flattening trade 		育

