筆跡判定

簽名比對

About Me

- 政大資管所(2017.07)
- 富邦人壽

在開始之前...

- 簽名比對不是單純的「分類問題」
- 簽名有分成「線上」及「線下」簽名
- 今天針對的主要在「線下」的部分

成果?

準確率

Answer	Predict		
Same	Different	Er	ror
Different	Same		
Same	Same	Co	rrect
Different	Different		

26%~100%

事情發生在上個禮拜四...

Siamese Target and Triplet Target

positive pair (a,p) and negative pair (a',n) are separated

positive pair (a,p) and negative pair (a,n) are linked

All Connected Triplet Target:

$$(\Delta_{ap}, \Delta_{an}, \Delta_{pn}) \rightarrow (0, d_{\max}, d_{\max})$$

Euclidean distance

$$egin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

From wikipedia

$$L(F_1,F_2,Y)=rac{1}{2}(1-Y)D(F_1,F_2)^2+rac{1}{2}Ymax\{0,m-D(F_1,F_2)\}^2$$

- Training data 中,我們給出成對的圖片
 - 若兩圖相似則給 label = 0
 - 若兩圖不相似則給 label = 1

$$L(F_1,F_2,Y) = rac{1}{2}(1-Y)D(F_1,F_2)^2 + rac{1}{2}Ymax\{0,m-D(F_1,F_2)\}^2$$
 Label

- Training data 中,我們給出成對的圖片
 - 若兩圖相似則給 label = 0
 - 若兩圖不相似則給 label = 1

$$L(F_1,F_2,Y) = rac{1}{2}(1-Y)D(F_1,F_2)^2 + rac{1}{2}Ymax\{0,m-D(F_1,F_2)\}^2$$

- Y=0,兩圖相似
 - D(F1,F2) 為距離,距離越小, loss越小

$$L(F_1,F_2,Y) = rac{1}{2} rac{1}{2} rac{1}{2} rac{1}{2} rac{1}{2} D(F_1,F_2)^2 + rac{1}{2} Y max \{0,m-D(F_1,F_2)\}^2$$

- Y = 1,兩圖不相似
 - D(F1,F2) 為距離,距離越大, loss越小

$$L(F_1,F_2,Y) = rac{1}{2}(1-Y)D(F_1,F_2)^2 + rac{1}{2}Ymax\{0,m-D(F_1,F_2)\}^2$$

- Y = 1,兩圖不相似
 - D(F1,F2) 為距離,距離越大, loss越小

$$L(F_1,F_2,Y) = rac{1}{2} rac{1}{2} rac{1}{2} rac{1}{2} rac{1}{2} D(F_1,F_2)^2 + rac{1}{2} Y max \{0,m-D(F_1,F_2)\}^2$$

- Y = 1,兩圖不相似
 - D(F1,F2) 為距離,距離越大, loss越小
 - m為一個固定值,當D(F1,F2) < m就會產生損失

$$L(F_1,F_2,Y)=rac{1}{2}(1-Y)D(F_1,F_2)^2+rac{1}{2}Ymax\{0,m-D(F_1,F_2)\}^2$$

- 這裡的 loss function 要能判別
 - 對兩張相同標籤的圖片,相似性越大,loss就越小
 - 對兩張不同標籤的圖片,相似性越小,loss就越小

Embedding from the last layer of the network

但這不是唯一的方法...

Triplet loss

還是發生在上個禮拜四...

Siamese Target and Triplet Target

positive pair (a,p) and negative pair (a',n) are separated

positive pair (a,p) and negative pair (a,n) are linked

All Connected Triplet Target:

$$(\Delta_{ap}, \Delta_{an}, \Delta_{pn}) \rightarrow (0, d_{\max}, d_{\max})$$

Triplet loss

- Triplet 是一個三元組: Anchor, Negative, Positive
- 訓練一個參數共享或者不共享的網絡,得到三個元素的特徵表達

Triplet loss

目標函數:

所以我說...Label 呢?

好像...真的沒有

Conclusion

參考資料

- Siamese paper
 - http://citeseerx.ist.psu.edu/viewdoc/download?
 doi=10.1.1.698.717&rep=rep1&type=pdf (Signature Verification Using a Siamese Time Delay Neural Network)
- Contrastive loss
 - http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
 (Dimensionality Reduction by Learning an Invariant Mapping)
- Triplet loss
 - http://blog.csdn.net/tangwei2014/article/details/46788025 (triplet loss 原理以及梯度推导)

你們以為結束了嗎...

敲~碗~

Q&A