Greedy Algorithms: Interval Scheduling

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 7

 Need to make a sequence of choices to achieve a global optimum

- Need to make a sequence of choices to achieve a global optimum
- At each stage, make the next choice based on some local criterion

- Need to make a sequence of choices to achieve a global optimum
- At each stage, make the next choice based on some local criterion
- Never go back and revise an earlier decision

- Need to make a sequence of choices to achieve a global optimum
- At each stage, make the next choice based on some local criterion
- Never go back and revise an earlier decision
- Drastically reduces space to search for solutions

- Need to make a sequence of choices to achieve a global optimum
- At each stage, make the next choice based on some local criterion
- Never go back and revise an earlier decision
- Drastically reduces space to search for solutions
- How to prove that local choices achieve global optimum?

- Need to make a sequence of choices to achieve a global optimum
- At each stage, make the next choice based on some local criterion
- Never go back and revise an earlier decision
- Drastically reduces space to search for solutions
- How to prove that local choices achieve global optimum?

Examples

- Dijkstra's algorithm
 - Local rule: freeze the distance to nearest unvisited vertex
 - Global optimum: distance assigned to each vertex is shortest distance from source

- Need to make a sequence of choices to achieve a global optimum
- At each stage, make the next choice based on some local criterion
- Never go back and revise an earlier decision
- Drastically reduces space to search for solutions
- How to prove that local choices achieve global optimum?

Examples

- Prim's algorithm
 - Local rule: add to the spanning tree nearest non-tree vertex
 - Global optimum: final spanning tree is minimum cost spanning tree

- Need to make a sequence of choices to achieve a global optimum
- At each stage, make the next choice based on some local criterion
- Never go back and revise an earlier decision
- Drastically reduces space to search for solutions
- How to prove that local choices achieve global optimum?

Examples

- Kruskal's algorithm
 - Local rule: add to the current set of edges the smallest edge that does not form a cycle
 - Global optimum: final spanning tree is minimum cost spanning tree

■ IIT Madras has a special video classroom for delivering online lectures

- IIT Madras has a special video classroom for delivering online lectures
- Different teachers want to book the classroom

- IIT Madras has a special video classroom for delivering online lectures
- Different teachers want to book the classroom
- Slot for instructor i starts at s(i) and finishes at f(i)

- IIT Madras has a special video classroom for delivering online lectures
- Different teachers want to book the classroom
- Slot for instructor i starts at s(i) and finishes at f(i)
- Slots may overlap, so not all bookings can be honoured

- IIT Madras has a special video classroom for delivering online lectures
- Different teachers want to book the classroom
- Slot for instructor i starts at s(i) and finishes at f(i)
- Slots may overlap, so not all bookings can be honoured
- Choose a subset of bookings to maximize the number of teachers who get to use the room

- IIT Madras has a special video classroom for delivering online lectures
- Different teachers want to book the classroom
- Slot for instructor i starts at s(i) and finishes at f(i)
- Slots may overlap, so not all bookings can be honoured
- Choose a subset of bookings to maximize the number of teachers who get to use the room

Greedy approach

Pick the next booking to allot based on a local strategy

- IIT Madras has a special video classroom for delivering online lectures
- Different teachers want to book the classroom
- Slot for instructor i starts at s(i) and finishes at f(i)
- Slots may overlap, so not all bookings can be honoured
- Choose a subset of bookings to maximize the number of teachers who get to use the room

Greedy approach

- Pick the next booking to allot based on a local strategy
- Remove all bookings that overlap with the chosen slot

- IIT Madras has a special video classroom for delivering online lectures
- Different teachers want to book the classroom
- Slot for instructor i starts at s(i) and finishes at f(i)
- Slots may overlap, so not all bookings can be honoured
- Choose a subset of bookings to maximize the number of teachers who get to use the room

Greedy approach

- Pick the next booking to allot based on a local strategy
- Remove all bookings that overlap with the chosen slot
- Argue that this sequence of bookings will maximize the number of teachers who get to use the room

- IIT Madras has a special video classroom for delivering online lectures
- Different teachers want to book the classroom
- Slot for instructor i starts at s(i) and finishes at f(i)
- Slots may overlap, so not all bookings can be honoured
- Choose a subset of bookings to maximize the number of teachers who get to use the room

Greedy approach

- Pick the next booking to allot based on a local strategy
- Remove all bookings that overlap with the chosen slot
- Argue that this sequence of bookings will maximize the number of teachers who get to use the room
- What is a sound local strategy?

Strategy 1
 Choose the booking whose starting time is earliest

Strategy 1
 Choose the booking whose starting time is earliest

- Strategy 1
 Choose the booking whose starting time is earliest
- Strategy 2
 Choose the booking spanning the shortest interval

- Strategy 1
 Choose the booking whose starting time is earliest
- Strategy 2
 Choose the booking spanning the shortest interval

- Strategy 1
 Choose the booking whose starting time is earliest
- Strategy 2
 Choose the booking spanning the shortest interval
- Strategy 3
 Choose the booking that overlaps with minimum number of other bookings

- Strategy 1
 Choose the booking whose starting time is earliest
- Strategy 2
 Choose the booking spanning the shortest interval
- Strategy 3
 Choose the booking that overlaps with minimum number of other bookings

- Strategy 1
 Choose the booking whose starting time is earliest
- Strategy 2
 Choose the booking spanning the shortest interval
- Strategy 3
 Choose the booking that overlaps with minimum number of other bookings
- Strategy 4
 Choose the booking whose finish time is the earliest

- Strategy 1
 Choose the booking whose starting time is earliest
- Strategy 2
 Choose the booking spanning the shortest interval
- Strategy 3
 Choose the booking that overlaps with minimum number of other bookings
- Strategy 4
 Choose the booking whose finish time is the earliest
 - Counterexample? Proof of correctness?

4 / 10

■ *B* is the set of bookings

- B is the set of bookings
- A is the set of accepted bookings
 - Initially, *A* is empty

- B is the set of bookings
- A is the set of accepted bookings
 - Initially, A is empty
- While *B* is not empty
 - Pick $b \in B$ with earliest finishing time
 - \blacksquare Add b to A
 - Remove from B all bookings that overlap with b

- B is the set of bookings
- A is the set of accepted bookings
 - Initially, *A* is empty
- While *B* is not empty
 - Pick $b \in B$ with earliest finishing time
 - \blacksquare Add b to A
 - Remove from B all bookings that overlap with b

- B is the set of bookings
- A is the set of accepted bookings
 - Initially, A is empty
- While *B* is not empty
 - Pick $b \in B$ with earliest finishing time
 - \blacksquare Add b to A
 - Remove from B all bookings that overlap with b

- B is the set of bookings
- A is the set of accepted bookings
 - Initially, A is empty
- While *B* is not empty
 - Pick $b \in B$ with earliest finishing time
 - \blacksquare Add b to A
 - Remove from B all bookings that overlap with b

- B is the set of bookings
- A is the set of accepted bookings
 - Initially, A is empty
- While *B* is not empty
 - Pick $b \in B$ with earliest finishing time
 - \blacksquare Add b to A
 - Remove from B all bookings that overlap with b

- B is the set of bookings
- A is the set of accepted bookings
 - Initially, A is empty
- While *B* is not empty
 - Pick $b \in B$ with earliest finishing time
 - \blacksquare Add b to A
 - Remove from B all bookings that overlap with b

Correctness

Our algorithm produces a solution A

Correctness

- Our algorithm produces a solution A
- Let O be an optimal set of accepted bookings

- Our algorithm produces a solution A
- Let O be an optimal set of accepted bookings
- A and O need not be identical
 - Could have multiple allocations of the same size

- Our algorithm produces a solution A
- Let O be an optimal set of accepted bookings
- A and O need not be identical
 - Could have multiple allocations of the same size
- Just show that |A| = |O|
 - Both sets of bookings are of the same size

- Our algorithm produces a solution A
- Let O be an optimal set of accepted bookings
- A and O need not be identical
 - Could have multiple allocations of the same size
- Just show that |A| = |O|
 - Both sets of bookings are of the same size

- Let $A = \{i_1, i_2, \dots, i_k\}$
 - Assume sorted
 - $f(i_1) \leq s(i_2), f(i_2) \leq s(i_3), \ldots$

- Our algorithm produces a solution A
- Let O be an optimal set of accepted bookings
- A and O need not be identical
 - Could have multiple allocations of the same size
- Just show that |A| = |O|
 - Both sets of bookings are of the same size

- Let $A = \{i_1, i_2, \dots, i_k\}$
 - Assume sorted
 - $f(i_1) \leq s(i_2), f(i_2) \leq s(i_3), \ldots$
- Let $O = \{j_1, j_2, \dots, j_m\}$
 - Also sorted
 - $f(j_1) \le s(j_2), f(j_2) \le s(j_3), \ldots$

- Our algorithm produces a solution A
- Let O be an optimal set of accepted bookings
- A and O need not be identical
 - Could have multiple allocations of the same size
- Just show that |A| = |O|
 - Both sets of bookings are of the same size

- Let $A = \{i_1, i_2, \dots, i_k\}$
 - Assume sorted
 - $f(i_1) \leq s(i_2), f(i_2) \leq s(i_3), \ldots$
- Let $O = \{j_1, j_2, \dots, j_m\}$
 - Also sorted
 - $f(j_1) \leq s(j_2), \ f(j_2) \leq s(j_3), \ldots$
- Our goal is to show that k = m

6/10

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Claim For each $\ell \le k$, $f(i_{\ell}) \le f(j_{\ell})$

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Claim For each $\ell \le k$, $f(i_{\ell}) \le f(j_{\ell})$
- Proof By induction of ℓ

- $A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Claim For each $\ell \le k$, $f(i_{\ell}) \le f(j_{\ell})$
- Proof By induction of ℓ
- Base case: $\ell = 1$

By greedy strategy, i_1 has earliest overall finish time

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Claim For each $\ell \le k$, $f(i_{\ell}) \le f(j_{\ell})$
- Proof By induction of ℓ
- Base case: $\ell = 1$

By greedy strategy, i_1 has earliest overall finish time

■ Induction step: Assume $f(i_{\ell-1}) \le f(j_{\ell-1})$

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Claim For each $\ell \le k$, $f(i_{\ell}) \le f(j_{\ell})$
- Proof By induction of ℓ
- Base case: $\ell = 1$

By greedy strategy, i_1 has earliest overall finish time

- Induction step: Assume $f(i_{\ell-1}) \le f(j_{\ell-1})$
 - $f(i_{\ell-1}) \le f(j_{\ell-1}) \le s(j_{\ell})$

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Claim For each $\ell \le k$, $f(i_{\ell}) \le f(j_{\ell})$
- Proof By induction of ℓ
- Base case: $\ell = 1$

By greedy strategy, i_1 has earliest overall finish time

- Induction step: Assume $f(i_{\ell-1}) \le f(j_{\ell-1})$
 - $f(i_{\ell-1}) \leq f(j_{\ell-1}) \leq s(j_{\ell})$
 - If $f(j_{\ell}) < f(i_{\ell})$, greedy strategy would pick j_{ℓ}

7 / 10

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Claim For each $\ell \le k$, $f(i_{\ell}) \le f(j_{\ell})$
- Proof By induction of ℓ
- Base case: $\ell = 1$

By greedy strategy, i_1 has earliest overall finish time

- Induction step: Assume $f(i_{\ell-1}) \le f(j_{\ell-1})$
 - $f(i_{\ell-1}) \leq f(j_{\ell-1}) \leq s(j_{\ell})$
 - If $f(j_{\ell}) < f(i_{\ell})$, greedy strategy would pick j_{ℓ}
 - We must have $f(i_{\ell}) \leq f(j_{\ell})$

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Suppose m > k

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Suppose m > k
- We know $f(i_k) \le f(j_k)$

- $\blacksquare A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Suppose m > k
- We know $f(i_k) \le f(j_k)$
- Greedy strategy stops when *B* is empty

- $A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Suppose m > k
- We know $f(i_k) \le f(j_k)$
- Greedy strategy stops when B is empty
 - Consder request j_{k+1}
 - Since $f(i_k) \le f(j_k) \le s(j_{k+1})$, this request is compatible with A

- $A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Suppose m > k
- We know $f(i_k) \le f(j_k)$
- Greedy strategy stops when B is empty
 - Consder request j_{k+1}
 - Since $f(i_k) \le f(j_k) \le s(j_{k+1})$, this request is compatible with A
 - $\blacksquare j_{k+1}$ must still be in B

- $A = \{i_1, i_2, \dots, i_k\}$
- $O = \{j_1, j_2, \dots, j_m\}$
- Suppose m > k
- We know $f(i_k) \le f(j_k)$
- Greedy strategy stops when B is empty
 - \blacksquare Consder request j_{k+1}
 - Since $f(i_k) \le f(j_k) \le s(j_{k+1})$, this request is compatible with A
 - $\blacksquare j_{k+1}$ must still be in B
 - \blacksquare B is not empty after choosing A, contradiction!

- Initially, sort n bookings by finish time $O(n \log n)$
 - Renumber bookings to reflect this sorted order

- Initially, sort n bookings by finish time $O(n \log n)$
 - Renumber bookings to reflect this sorted order
- Record start and finish times in array/dictionary
 - S[i] is starting time of request i
 - F[i] is finish time of request i

- Initially, sort n bookings by finish time $O(n \log n)$
 - Renumber bookings to reflect this sorted order
- Record start and finish times in array/dictionary
 - S[i] is starting time of request i
 - F[i] is finish time of request i
- Add first booking to A

- Initially, sort n bookings by finish time $O(n \log n)$
 - Renumber bookings to reflect this sorted order
- Record start and finish times in array/dictionary
 - S[i] is starting time of request i
 - F[i] is finish time of request i
- Add first booking to A
- In general, after adding booking j to A, Find the smallest r with S[r] > F[j]
 - Single scan, O(n) overall

 A greedy algorithm makes a sequence of locally optimal choices to achieve a global optimum

- A greedy algorithm makes a sequence of locally optimal choices to achieve a global optimum
- The algorithm never goes back and reconsiders on a choice

- A greedy algorithm makes a sequence of locally optimal choices to achieve a global optimum
- The algorithm never goes back and reconsiders on a choice
- Drastically reduces space to search for solutions, but need to show prove that local strategy is globally optimal

- A greedy algorithm makes a sequence of locally optimal choices to achieve a global optimum
- The algorithm never goes back and reconsiders on a choice
- Drastically reduces space to search for solutions, but need to show prove that local strategy is globally optimal
- Interval scheduling many "natural" greedy strategies

- A greedy algorithm makes a sequence of locally optimal choices to achieve a global optimum
- The algorithm never goes back and reconsiders on a choice
- Drastically reduces space to search for solutions, but need to show prove that local strategy is globally optimal
- Interval scheduling many "natural" greedy strategies
- Most of them are wrong!

- A greedy algorithm makes a sequence of locally optimal choices to achieve a global optimum
- The algorithm never goes back and reconsiders on a choice
- Drastically reduces space to search for solutions, but need to show prove that local strategy is globally optimal
- Interval scheduling many "natural" greedy strategies
- Most of them are wrong!
- Correct strategy needs a proof

- A greedy algorithm makes a sequence of locally optimal choices to achieve a global optimum
- The algorithm never goes back and reconsiders on a choice
- Drastically reduces space to search for solutions, but need to show prove that local strategy is globally optimal
- Interval scheduling many "natural" greedy strategies
- Most of them are wrong!
- Correct strategy needs a proof
- One way is to show that greedy solution "stays ahead", step by step, of any optimal solutions