Question Number	Answer		Mark
19(a)(i)	Top line correct Bottom line correct	(1) (1)	2
	Example of calculation	()	
	$^{60}_{27}\text{Co} \rightarrow ^{60}_{28}\text{Ni} + ^{0}_{-1}\beta^{-} + ^{0}_{0}\overline{\nu}_{e}$		
10()(!!)	2, 20 1. 0 0	(1)	-
19(a)(ii)	The mass of the Ni nucleus is much larger than total mass of the other two particles	(1)	1
19(b)	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	t = 6.0 (years)	(1)	3
		(1)	
	Example of calculation		
	$\lambda = \frac{\ln 2}{5.27 \times 3.16 \times 10^7 \text{ s}} = 4.16 \times 10^{-9} \text{ s}^{-1}$		
	$1.85 \times 10^{14} \text{Bq} = 4.07 \times 10^{14} \text{ Bq e}^{-4.16 \times 10^{-9} \times t}$		
	$ \therefore t = \frac{\ln\left(\frac{4.07 \times 10^{14} \text{ Bq}}{1.85 \times 10^{14} \text{ Bq}}\right)}{4.16 \times 10^{-9} \text{ s}^{-1}} = 1.886 \times 10^8 \text{ s} $		
	$\therefore t = \frac{1.894 \times 10^8 \text{ s}}{3.16 \times 10^7 \text{ s year}^{-1}} = 5.996 \text{ years}$		
19(c)	Required % transmission calculated	(1)	
	Distance x read from graph for required transmission	(1)	
	x = 1.1 cm, so shielding would be insufficient	(1)	
	OR		
	Required % transmission calculated	(1)	
	% transmission read from graph for 1.0 cm shielding	(1)	
	% transmission $\approx 33\%$, so shielding would be insufficient	(1)	3
	Example of calculation		
	Required % transmission $\leq \frac{1.2 \times 10^{14} \text{ Bq}}{4.0 \times 10^{14} \text{ Bq}} \times 100\% = 30 \%$		
	From graph, for required % transmission thickness of shielding = 1.1 cm,		
	Total for question 19		9