

Prebrojavanje pešaka sa snimaka nadzorne kamere

Jovan Laković – SW51/2015

Problem

Potrebno je detektovati i prebrojati svakog pešaka koji se bar jedanput našao na platou koji je središnji deo snimka nadzorne kamere. *Dataset* koji je korišćen su snimci nadzorne kamere iznad platoa – snimci obuhvataju i deo kojim pešaci ne prolaze (Slika 1). Ukupno ima 10 različitih snimaka. Cilj je da se ostvari što veći procenat tačnosti algoritma.

Slika 1. Snimak sa fiksne kamere

Algoritam

Algoritam možemo svesti na 2 zadatka:

- 1. Izdvajanje platoa i njegovih granica (Slika 2)
- 2. Izdvajanje segmenta platoa u kom će se vršiti detekcija pešaka (Slika 3)
- . Detekcija i prebrojavanje pešaka (Slika 4)

U implementaciji rešenja korišćena je **openCV** biblioteka za obrađivanje slike i video zapisa.

U prvom delu, potrebno je izdvojiti plato. Ovo se radi samo za prvi frejm snimka, jer je kamera fiksna. Frejm se konvertuje u *gray scale*, a zatim se prevodi u binarnu sliku upotrebnom binarnog *threshold*-a. Primenjuju se morfološke operacije nad dobijenom binarnom slikom kako bi se otklonili šumovi i lakše detektovali objekti. Kada je plato detektovan, pronalaze se njegove granične tačke – uglovi.

Izdvaja se određeni segment platoa u kom će se vršiti detekcija pešaka.

Svaki *n*-ti frejm se obrađuje – posmatra se samo izdvojeni segment (odsečen je i deo platoa na kom je sneg – zbog agresivnog šuma). Segment se konvertuje u *gray scale*, prevodi se u binarnu sliku upotrebnom adaptivnog *threshold*-a. Zatim se primenjuju morfološke operacije nad binarnom slikom radi otklanjanja šumova i lakše detekcije pešaka. Prebrojava se svaki detektovani pešak, odnosno objekti čiji je radius zanemarljivo mali – posmatraju se kao šum i zanemaruju, kao i objekti čiji je radius prevelik da bi predstavljali pešaka.

Svi parametri u metodama i operacijama korišćenim za obradu slike, kao i *n* u trećem koraku algoritma, utvrđeni su eksperimentalno kako bi doveli do najboljih rezultata.

Korišćene **morfološke** operacije:

erozija – minimizacija svih piksela u okolini posmatranog piskela (ukoliko je neki piksel u okolini nula, output piksel je nula.

dilacija – maksimizacija svih piksela u okolini posmatranog piksela (ukoliko je neki piksel u okolini 1, output piksel je 1.

otvaranje – erozija pa zatim dilacija (manje destruktivno od same erozije) zatvaranje – dilacija pa zatim erozija

Slika 2. Izdvajanje platoa

Slika 3. Izdvajanje segmenta

Zaključak

Eksperimentalnim testiranjem utvrđeni su parametri metoda koji daju tačnost od preko 80%, ali ovaj problem mogao bi se rešiti na nekoliko drugačijih načina. Najveći problem za dobijanje velike tačnosti predstavlja lošiji kvalitet video zapisa – previše šuma kojeg je u nekim situacijama gotovo nemoguće potpuno ukloniti.

Bolja opcija bi bila praćenje objekata, odnosno pešaka u slučaju konkretnog problema. Ovakvom implementacijom obrađivao bi se ceo plato, a ne samo određeni segment. Ideja je u svakom trenutku obrađivati *i*-ti i *i+1*-ti frejm. Posmatra se razlika ova dva frejma, odnosno *background substraction*. U ovakvom slučaju ne bi postojalo preskakanje frejmova, ili bi to preskakanje moralo biti minimalno (1 ili maksimalno 2 frejma)

Analiza rezultata

Tačnost algoritma varira od 35% do 83.2% u zavisnosti od toga koji parametri se koriste u metodama poput morfoloških operacija nad slikama. Veliki uticaj takođe ima i parametar n – ukoliko je n<5 ili n>20, rezultati se znatno pogoršavaju. Za malo n, isti pešak se može prebrojati 2 puta, dok za veliko n, neki pešaci mogu biti potpuno zanemareni, i time smanjiti ukupan broj detektovanih pešaka. Takođe, najbolji rezultati dobijaju se primenom Gausove metode kao algoritma za adaptivni thresholding, prilikom detekcije pešaka.

Slika 4. Detekcija pešaka – levo binarna slika (primenjen adaptivni thresholding); desno su detektovani pešaci

Kontakt

Jovan Laković FTN Email: lakovic.j@live.com