

LaTeXEqChecker A framework for checking mathematical semantics in LaTeX documents

Felix Petersen
Information Science Group
University of Constance
www.isg.uni.kn

LaTeXEqChecker

- Framework for checking of formulae in
 - Students' math problem sets
 - Papers

LaTeXEqChecker

- Current checkers
 - WolframAlpha
 - SymPy

Bedeutung	Darstellung	LAT _E X-Code in \overset
Korrekt	<u>√</u>	<pre>\text{\color{green}\cmark}</pre>
Falsch	<u>×</u>	<pre>\text{\color{red}\xmark}</pre>
Unbekannt	<u>?</u>	<pre>\text{\color{orange}?}</pre>
Als Definition verw.	def =	<pre>\text{\color{blue}def}</pre>
Klammerfehler	Parentheses Error	Parentheses Error
Kommentar des CAS	"Kommentar"	

- Curren
 - Wo • Syn

- **1g**) \circ ist assoziativ, denn es gilt: $(3 \circ 3) \circ 3 \stackrel{?}{=} 3^{3^3} \stackrel{\checkmark}{=} 3^{27} \stackrel{\checkmark}{\neq} 3^9 \stackrel{\checkmark}{=} (3^3)^3 \stackrel{?}{=} 3 \circ (3 \circ 3)$. Außerdem ist o nicht kommutativ, denn $1^0 \stackrel{\checkmark}{=} 1 \stackrel{\checkmark}{=} 0^1 \stackrel{\checkmark}{=} 0$. Schließlich gibt es auch kein neutrales Element: Es gilt $y^1 \stackrel{\checkmark}{=} y$, also ist 1 linksneutral, aber da $1^x \stackrel{\checkmark}{=} 1$, ist 1 nicht rechtsneutral. Somit handelt es sich um einen Gruppoiden.
- **1h)** Erstens ist diese Algebra nicht assoziativ, da wenn z.B. $x \stackrel{?\text{def}}{=} 4$ und $y \stackrel{?\text{def}}{=} 2$, dann wird der Bruch $\frac{4}{2} \stackrel{\checkmark}{=} 2$. Aber wenn z.B. $x \stackrel{\text{def}}{=} 2$ und $y \stackrel{\text{def}}{=} 4$, wird der Bruch $\frac{2}{4} \stackrel{\checkmark}{=} \frac{1}{2}$. Die beide Ergebnisse sind deutlich nicht gleich. Zweitens, wenn man $x \stackrel{\mathsf{def}}{=} \frac{1}{2}$ und $y \stackrel{\mathsf{def}}{=} \frac{1}{2}$, dann wird der Bruch $\frac{1}{2} \stackrel{\mathsf{def}}{=} 1$.

Wenn $x \stackrel{\checkmark}{=} \frac{1}{2}$ und $y \stackrel{\checkmark}{=} 1$, dann wird $\frac{1}{1} \stackrel{\checkmark}{=} \frac{1}{2}$. Das erfüllt das neutrales Element. \Rightarrow Diese Algebra ist eine Gruppe, aber niicht abelsch, da Funktion nicht kommunitativ ist. z.B. $\frac{1}{2} \neq \frac{1}{2}$.

2b) Per Definition eine Gruppe hat 3 Eigenschaften: neutrales Element, inverses Element und

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \stackrel{\checkmark}{=} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

 $A^{-1} \stackrel{?}{=} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \stackrel{\checkmark}{=} \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Assoziativität: Neutrales Element Matrix:

Bedeutu

Korrek

Falsch

Unbekaı

Z.B.

Z.B.:

inverses Element:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \stackrel{\mathbf{x}}{=} -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \stackrel{\checkmark}{=} \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \stackrel{?}{=} A^{-1}$$
With days Francel A v. $A^{-1} \stackrel{\text{((A d)/(a d - b c)} - -(A b)/(a d - b c)}{=} -\frac{1}{2} A^{-1}$

Mit dem Formel $A \times A^{-1} \stackrel{((A d)/(a d - b c)}{=} \stackrel{-(A b)/(a d - b c)}{=} e$ kann man das inverses Elment auch verifizieren:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Assoziativität:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \end{pmatrix}$$

Kommentar d August 2018 LaTeXEq(

Als Definitio

Klammerf

ue}def}

Error }

n}\cmark}

}\xmark}

ange}?}

erset

LaTeXEqChecker

- Implemented in Python
- Tested in a field study over two semesters
 - Course "Diskrete Strukturen" 3rd semester
 - Only requires submission of the *.TeX files
 - Most courses require solutions in LaTeX
- Limited by current checking mechanisms
 - Open for new
- Open source
 - https://github.com/Felix-Petersen/LaTeXEqChecker.git

Questions?

Felix Petersen mail@felix-petersen.de