ECOLE POLYTECHNIQUE DE THIES

BP A10 Thiès Sénégal <u>www.ept.sn</u> Tel : 78 180 18 87 // 33 951 26 99

BUREAU DES ÉLÈVES 2017 - 2018

CONCOURS JUNIOR POLYTECH

(SESSION 2018)

ÉPREUVE DE MATHÉMATIQUES

(Classes de Premières S1-S2-S3)

DURÉE: 04 heures

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Les questions des exercices 1 et 2 sont indépendantes

Exercice1:

- 1) Si α , β et γ sont les racines de $P(x)=x^3-x-1$, calculer $\frac{1+\alpha}{1-\alpha}+\frac{1+\beta}{1-\beta}+\frac{1+\gamma}{1-\gamma}$
- 2) Soit P un polynôme de degré n tel que \forall k \in {0,...,n} , on a : P(k) = $\frac{k}{k+1}$ Déterminer P (n + 1).
 - 3) Soit P (X) un polynôme de degré 3 à coefficients réels ayant trois racines réelles α , β et γ . Montrer que la tangente en $\frac{\alpha+\beta}{2}$ au graphe de P en Ox coupe l'axe en la troisième racine.

Exercice2

1) Prouver que:

$$\frac{1}{\cos(0^{\circ})\cos(1^{\circ})} + \frac{1}{\cos(1^{\circ})\cos(2^{\circ})} + \dots + \frac{1}{\cos(88^{\circ})\cos(89^{\circ})} = \frac{\cos(1^{\circ})}{\sin^{2}(1^{\circ})}$$

2) Trouver les réels x tels que $\tan\left(\frac{\pi}{12} - x\right)$, $\tan\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12} + x\right)$ forment une progression géométrique.

Rappel: Les réels non nuls a,b,c forment dans cet ordre une progression géométrique si et seulement si il existe q tel que b=aq,c=bq.

On pourra utiliser la caractérisation suivante :

(a, b, c forment dans cet ordre une progression géométrique)

$$\Leftrightarrow$$
 (ac = b² ou a = b = c = 0).

Problème

Dans tout le problème, on considère A, B, C trois points non alignés du plan E2. On adopte les notations suivantes :

Le cercle circonscrit au triangle ABC a pour centre O et pour rayon R; Le cercle inscrit dans le triangle ABC a pour centre ω et pour rayon r; α , β et γ désignent les longueurs respectives des côtés [BC], [AC] et [AB]; M_A , M_B , et M_C désignent les milieux respectifs des segments [BC], [AC] et [AB]; H_A , H_B et H_C désignent les pieds des hauteurs respectives issues de A, B et C; Δ_A , Δ_B et Δ_C désignent les bissectrices intérieures du triangle ABC respectivement issues des sommets A, B, C et A', B', C' désignent les points d'intersection de Δ_A , Δ_B , Δ_C respectivement avec les droites (BC), (AC), (AB).

Pour répondre aux différentes questions, il est vivement conseillé de faire plusieurs schémas qui pourront servir de supports aux divers raisonnements.

<u>Partie I</u>: Caractérisation de l'intérieur d'un triangle

Soit (D) une droite du plan et A un point n'appartenant pas à la droite (D). On note H le pied de la perpendiculaire à la droite (D), issue de A, \vec{u} un vecteur directeur unitaire de la droite (D) et on pose $\vec{v} = \frac{\vec{H}\vec{A}}{HA}$.

On appelle demi-plan ouvert délimité par la droite (D) et contenant le point A [resp. ne contenant pas le point A] l'ensemble des points M de coordonnées (x, y) dans le repère (H, \vec{u}, \vec{v}) tels que y > 0 [resp. y < 0].

L'intérieur d'un triangle ABC non aplati est, par définition, l'intersection des trois demi-plans ouverts délimités respectivement par les droites (AB), (BC) et (AC) et contenant respectivement les points A, B et C.

- I.1) Soient B et C deux points distincts appartenant à la droite (D). Démontrer qu'un point M du plan appartient au demi-plan ouvert délimité par la droite (D) et contenant le point A si et seulement si l'ordonnée du point M dans le repère (B, $\overrightarrow{BC}, \overrightarrow{BA}$) est strictement positive.
- I.2) Démontrer qu'un point M du plan appartient à l'intérieur du triangle ABC si et seulement si M est barycentre des points A, B et C affectés de coefficients non nuls, tous de même signe.

Partie II: Position du centre du cercle inscrit d'un triangle ABC non aplati

- II.1) Démontrer que, dans le repère (A, \overrightarrow{AB} , \overrightarrow{AC}), une équation de la bissectrice Δ_A est : $y=\frac{\gamma}{\beta}x$
- II.2) Déterminer, dans le repère (A, \overrightarrow{AB} , \overrightarrow{AC}), une équation de la droite (BC).
- II.3) Déterminer dans le repère (A, \overrightarrow{AB} , \overrightarrow{AC}), les coordonnées du point A', point d'intersection des droites Δ_A et (BC).
- II.4) Déterminer deux réels λ et μ tels que le point A' soit barycentre des points B et C respectivement affectés des coefficients λ et μ .

- II.5) Démontrer que le point ω , centre du cercle inscrit dans le triangle ABC, est le barycentre des points A, B et C respectivement affectés des coefficients α , β et γ longueurs respectives des segments [BC], [AC] et [AB].
- II.6) Quel résultat concernant la position du point ω relativement au triangle ABC retrouve-t-on?

<u>Partie III</u>: Position du centre du cercle circonscrit d'un triangle ABC non aplati M_A étant le milieu du segment [BC], on munit le plan E2 du repère orthonormé $(M_A,\vec{1},\vec{j})$ tel que le point B (respectivement C) ait pour coordonnées $(-\frac{\alpha}{2},0)$ (respectivement $(\frac{\alpha}{2},0)$) et que le point A ait une ordonnée strictement positive. On note (x_A,y_A) les coordonnées du point A dans ce repère.

III.1) Justifier que les coordonnées du point O, centre du cercle circonscrit au triangle ABC, sont :

$$X_{O} = 0$$
 et $Y_{O} = \frac{y_{A}}{2} + \frac{(x_{A} - \frac{\alpha}{2})(x_{A} + \frac{\alpha}{2})}{2y_{A}}$

- III.2) Démontrer que : $2y_AY_O = \overrightarrow{AB}.\overrightarrow{AC}$
- III.3) En déduire que, pour que les points O et A soient dans le même demi-plan ouvert déterminé par la droite (BC), il faut et il suffit que l'angle géométrique BAC soit aigu.
- III.4) Donner une condition nécessaire et suffisante sur les angles géométriques du triangle ABC pour que le point O soit à l'intérieur du triangle ABC.

<u>Partie IV</u>: Cas particulier d'un résultat établi par Lazare Carnot (général et mathématicien français 1753-1823)

On admettra que si M est un point appartenant à l'intérieur d'un triangle ABC non aplati, l'aire du triangle ABC est égale à la somme des aires des triangles AMB, AMC et BMC.

IV.1) Justifier que l'aire du triangle ABC notée $\mathcal{A}(ABC)$ est telle que :

 $\mathcal{A}(ABC)=\left(\frac{\alpha+\beta+\gamma}{2}\right)r$ où r désigne le rayon du cercle inscrit dans le triangle ABC.

IV.2) On se place dans le cas où le point O, centre du cercle circonscrit au triangle ABC, appartient à l'intérieur du triangle ABC.

- IV.2.1) Démontrer que : α OM_A + β OM_B + γ OM_C = 2 $\mathcal{A}(ABC)$; (1)
- IV.2.2) Justifier que le point H_A (respectivement H_B , H_C) est un point du segment [BC] (respectivement [AC], [AB]).
- IV.2.3) Démontrer que les triangles ABH_B, ACH_C et BOM_A sont semblables.
- IV.2.4) En déduire l'égalité suivante :

$$(\beta + \gamma)OM_A = R(AH_B + AH_C)$$

où R est le rayon du cercle circonscrit au triangle ABC. Ecrire les deux autres égalités qui peuvent être obtenues de manière analogue pour OM_B et OM_C .

IV.2.5) Démontrer alors l'égalité suivante :

$$OM_A + OM_B + OM_C = R + r$$
 (2).

- IV.3) Dans cette question, le point O appartient à l'un des segments [BC], [AB] ou [AC].
- IV.3.1) Préciser la nature du triangle ABC dans ce cas.
- IV.3.2) On suppose que le point O est un point du segment [BC].
 - a) Démontrer qu'on a alors :

$$R + r = \frac{\alpha}{2} + \frac{\beta \gamma}{\alpha + \beta + \gamma}$$
 et $R + r = \frac{\beta + \gamma}{2}$.

b) En déduire que la relation (2) est encore vérifiée dans ce cas.

Qui cherche trouve. N'abandonnez point! Bonne Chance!