

El Sistema Binario y Nuestras Computadoras

Introducción a Ciencias de la Computación (CS)

Est. Johel Heraclio Batista Cárdenas

Propósito y Objetivo en esta Vida

Entender, Comprender, Analizar y Reflexionar acerca del Funcionamiento de los Equipos Electrónicos (Computadoras), los Sistemas de Numeración y por qué el Sistema Binario es tan fundamental en este mundo.

Pregunta Rápida: ¿Hay o no Binario?

Si yo tengo una computadora; todos los datos, gráficos, sonidos, vídeos, colores, documentos, étc... ¿Són Números?

- 1. Cierto
- 2. Falso
- 3. No lo sé Rick

Algunos Sistemas de Numeración

Finding an alternate future out of 14 million where everybody lives

One outcome where everyone lives except Tony because you hate him

- •Sistema Decimal: Tiene como base el número 10 y está conformado por 10 dígitos... 0,1,2,3,4,5,6,7,8,9
- •Sistema Binario: Es otro sistema que se usa muchísimo en la computación, pero está conformado solo por dos dígitos el 0 (apagado) y el 1 (encendido).
- •Sistema Octal: Está conformado por una base de 8 dígitos numéricos que son... 0,1,2,3,4,5,6,7
- •Sistema Hexadecimal: Es un sistema alfanumérico con base en 16 dígitos; que son 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

¿Tipos de Sistemas de Numeración? :D

Los Sistemas de Numeración, al final nomás que son un conjunto de símbolos que usamos para representar cantidades según ciertas reglas y existen dos tipos:

- 1. Posicionales: Cada cifra tiene un valor propio y un valor en la posición en la que se encuentra.
- 2. No Posicionales: Cada cifra siempre tendrá el mismo valor, independientemente de del lugar en el que se encuentre.

¿Posicionales y No Posicionales?: No lo sé Rick

Sistema Hexadecimal

0 1 2 3 4 5 6 7 8 9

Sistema Decimal

0 1 2 3 4 5 6 7

Sistema Octal

O 1 Sistema Binario

Protip: Si cambias la posición de alguna cifra, tiene un valor totalmente diferente.

¿Y los Números Romanos?... SPARTAAAAAA

El Sistema de Numeración Romano usa siete letras para escribir los números, pero tiene ciertas reglas:

- 1. Las letras I,X,C y M, se pueden repetir hasta tres veces...
- 2. Las letras P,L,D, no se pueden repetir...

Sistema Romano		V	Χ	L	С	D	М
Sistema Decimal	1	5	10	50	100	500	1000

Las Computadoras: ¿Son o no Son Binarias?

Ejemplo de una Unidad Aritmético-Lógica en un Procesador

- ·Las computadoras utilizan distintos **códigos binarios** para representar los datos en almacenamiento primario.
- •Hay normalizaciones industriales para los códigos binarios, las más corrientes son el **EBCDIC**, **ASCII Y UNICODE** utilizados en mainframes y computadoras personales.
- •Cada computadora posee un **código binario** específico, y este será utilizado por todo el sistema. ¿Pero qué es ese Código Binario?

Calma io: ¿Qué es eso del Sistema Binario?

Podríamos resumirlo en tres premisas básicas:

- 1. Es el sistema que utilizan internamente el hardware de cualquier dispositivo electrónico actual.
- 2. Está basado en la representación de cantidades usando los dígitos 0 y 1. Así que su base del sistema es 2, ya que es el número de dígitos que hay en el sistema.
- 3. A cada dígito de un número en este sistema, se le llama bit (Acortando de Binary Digit o Dígito Binario).

Veamos los Binarios como Electricidad

El Sistema Binario nos explica lo que sucede con la corriente eléctrica dentro de un circuito; es decir: Cuando está apagado (0) y cuando está encendido (1)

Ahora veamos el Sistema Binario como Gráfica

¿Cómo se almacena la Información en Binario

En una computadora no se almacena información, sino datos.

Datos

Representación
Interpretación
Información

- Representar es expresar una Información como una Combinación de Símbolos (Datos) en un determinado lenguaje.
- Interpretar es obtener la información originalmente representada, a partir de una combinación de símbolos.

¿Estados Eléctricos en una Computadora?

Los datos están almacenados temporalmente en la Memoria de Acceso Aleatorio (RAM), pero esto es solo temporal; para que sea permanente se necesita una unidad de almacenamiento como Discos Duros, SSD's, NVMe, Google Drive, étc.

Por su naturaleza eléctrica y electrónica, una computadora tradicional solo puede manejar dos estados eléctricos:

¿Pero porqué usamos el Sistema Binario?

- Las computadoras y sistemas electrónicos usan el sistema binario (o solo base dos), porque es la forma más económica que tenemos.
- Dentro de cada procesador hay millones de transistores, que entienden dos estados: ON y OFF ó Unos y Ceros.
- Es por eso que cada bit de datos que gestiona una PC, al final se interpreta como una cadena de unos y ceros.