Коллоквиум №1 (20.11.2019)

GROUPS No 19137, No 19144

2019

- Множество: способы задания, операции над множествами
 Не существует явного определения множества.
 Пусть А некоторое мн-во, тогда существует 2 способа задания мн-ва
 - (a) $A = \{1,2,3,4,5\}$ явное задание эл-тов мн-ва
 - (b) Пусть $\Phi(x)$ некоторое условие, тогда $\mathbf{A} = \{x \mid \Phi(x)\}$ Задание множествами с помощью некоторого условия $\Phi(x)$

Пусть А, В- некоторые множества

Обозначение (Подмножетсво). А - подмножетсво B, если $A \subseteq B = \{x \mid x \in A \Rightarrow x \in B\}$

Обозначение (Собстевенное подмножетсво). А - собстевенное подмножетсво В, если $A \subset B$, если $A \subseteq B$ и $A \neq B$

Обозначение (Пустое множество). \emptyset - множество, не содержащее элтов ("Пустое множество")

Обозначение (Множество всех подмножетсв множества A). $P(A) = \{ C \mid C \subseteq A \}$

Обозначение (Универсум). Универсум (условное множество все множеств) U

Операции над множествами:

- Объединение множеств: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Пересечение множеств: $A \cap B = \{x \mid x \in A \land x \in B\}$
- Разность множеств: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- Дополнение множества: $\neg A = \{ \ x \mid x \in U \land x \notin A \}$
- Симметрическая разность множеств: $A \Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (B \cup A)$

Пусть S - семейство множеств:

- Объединение семейства множеств $\bigcup S = \{ x \mid \exists A_i \in S : x \in A_i \}$
- Пересечение семейства множеств $\bigcap S = \{ x \mid \forall A_i \in S : x \in A_i \}$
- 2. Упорядоченный набор (кортеж), предложение о равенстве п-ок, декартово произведение, декартова степень.

Определение (Упорядоченный набор (кортеж)). Упорядоченный набор (кортеж) длинны п определяется по индукции

$$<>=\emptyset$$

$$\langle a \rangle = a$$

$$< a, b >= \{\{a\}, \{a, b\}\}\$$

$$\langle a_1, a_2, ..., a_{n-1}, a_n \rangle = \langle \langle a_1, a_2, ..., a_{n-1} \rangle \rangle, a_n \rangle$$

Определение (пара). Набор < a, b > длинны 2 называют *парой*

Предложение (о равенстве n-ок). Если

$$\langle a_1, ..., a_n \rangle = \langle b_1, ..., b_n \rangle \Leftrightarrow a_1 = b_1, ..., a_n = b_n$$

n=2:

$$\langle a_1, a_2 \rangle = \langle b_1, b_2 \rangle \Leftrightarrow \{\{a_1\}, \{a_1, a_2\}\} = \{\{b_1\}, \{b_1, b_2\}\}$$

$$< a_1, a_2> = < b_1, b_2> \Leftrightarrow \{\{a_1\}, \{a_1, a_2\}\} = \{\{b_1\}, \{b_1, b_2\}\}$$
 Пусть $a_1 = a_2 \Rightarrow \begin{bmatrix} \{a_1\} = \{b_1, b_2\} \\ \{a_1, a_2\} = \{b_1, b_2\} \end{bmatrix} \Rightarrow a_1 = a_2 = b_1 = b_2$

для $b_1 = b_2$ аналогично

Расмотрим $a_1 \neq a_2, b_1 \neq b_2$

$$\Rightarrow \begin{bmatrix} \{a_1\} = \{b_1\} \\ \{a_1\} = \{b_1, b_2\} \end{bmatrix} \Rightarrow \{a_1\} = \{b_1\} \Rightarrow a_1 = b_1$$

По аналогии для $\{a_1, a_2\} = \{b_1, b_2\}$

T. к справледливо для n=2, а определение n-ок индуктивно следовательно верно для п

Определение (Декартово произведение). Пусть даны множества $A_1, ..., A_n$, тогда их декартовым произведением называют

$$A_1 \times A_2 \times ... \times A_n = \{ < a_1, ..., a_n > | \ \forall i \in \{1, ..., n\} \ a_i \in A_i \}$$

Определение (Декартова степень). В случае, если $A_1 = A_2 = ... = A_n$, тогда $A_1 \times A_2 \times ... \times A_n$ называют декартовой степенью и обозначают, как $A^n = A_1 \times A_2 \times ... \times A_n$

3. Бинарные отношения, обратное отношение, произведение отношений, лемма о бинарных отношениях.

Определение. Бинарным отношением между элементами множеств A и B называется произвольное подмножество $C \subseteq A \times B$

Определение. Обратным бинарным отношением называется $R^{-1} = \{ < y; x > | < x; y > \in R \}$

Определение. Произведением бинарных отношений называется $R_1 \times R_2 = \{ \langle x; z \rangle | \exists z | \langle x; y \rangle \in R_1 \land \langle y; z \rangle \in R_2 \}$

Лемма (Лемма о бинарных отношениях). Для любых бинарных отношений R_1, R_2, R_3 :

(a)
$$R_1 \cdot (R_2 \cdot R_3) = (R_1 \cdot R_2) \cdot R_3$$

(b)
$$(R_1 \cdot R_2)^{-1} = R_2^{-1} \cdot R_1^{-1}$$

Доказательство. (a) Покажем, что $R_1\cdot (R_2\cdot R_3)\subseteq (R_1\cdot R_2)\cdot R_3$. Пусть $< x; t>\in R_1\cdot (R_2\cdot R_3)$, тогда существует y такое, что $< x; y>\in R_1$ и $< y; t>\in R_2\cdot R_3$. Далее существует z такое, что $< y; z>\in R_2$ и $< z; t>\in R_3$. Получаем, что $< x; z>\in R_1\cdot R_3$. Обратное включение доказывается аналогично.

(b) Покажем, что $(R_1 \cdot R_2)^{-1} \subseteq R_2^{-1} \cdot R_1^{-1}$. Пусть $< z; x > \in (R_1 \cdot R_2)^{-1}$, тогда существует y такое, что $< x; y > \in R_1$ и $< y; z > \in R_2$. Тогда $< y; x > \in R_1^{-1}$ и $< z; y > \in R_2^{-1}$. Получаем, что $< z; x > \in R_2^{-1} \cdot R_1^{-1}$. Обратное включение доказывается аналогично.

4. Область определения отношения, множество значений отношения, образ и прообраз множества относительно отношений, функция, замечание о равенстве функций, тождественная функция.

Определение (Функция). Бинарное отношени f называется функцией, если выполняется: $< x, y_1 >, < x, y_2 > \in f \Rightarrow y_1 = y_2$

Определение (Область определния). $dom(f) = \{x | \exists y : < x, y > \in f\}$

Определение (Область значений). $ran(f) = \{y | \exists x : \langle x, y \rangle \in f \}$

Обозначение. f - функция из A в B, если f - функция, dom(f) = A и $ran(f) \subseteq B$

Тогда функцию обозначают $f:A\to B$

Замечание. Если $f:A\to B$ и $x\in A$, то существует единственный y такой, что $< x,y>\in f$. Этот y лежит в B, называется *значение* функции f в точке x и обозначается f(x).

Замечание (о равенстве функций). Если f,g - функции, то $f=g\Leftrightarrow dom(f)=dom(g)$ и $\forall x\in dom(f)$ f(x)=g(x)

Определение (Тождественная функция). Для любого множества A $\exists f = \{< x, x > | x \in A\} = id_A$. Ясно, что $id_A : A \to B$ и $\forall x \in A \ id_A(x) = x$

5. Композиция функций, лемма о композиции функций:

Определение (Композиция функций). Если f и g - функции, то их композиция $g \circ f$ определяется, как произведение бинарных отношений $f \cdot g$ (В обратном порядке)

Лемма (о композиции функций). $Ecnu\ f:A\to B, g:B\to C,\ mo\ ux$ композицией $g\circ f:A\to C\ u\ [g\circ f](x)=g(f(x))\ npu\ x\in A$

6. Сюръекция, инъекция, биекция, обратная функция, лемма о свойствах биекций

Пусть $f: A \to B$

Определение (Сюръекция). f - функция из A на B (сюръективная функция, сюръекция), если $\forall y \in B \ \exists x \in A \mid f(x) = y$

Обозначение (Сюръекция). $f:A \underset{na}{\longrightarrow} B.$

Определение (Инъекция). f - инъективная функция (1 - 1 функция, инъекция), если $\forall x_1, x_2 \in A$ из $f(x_1) = f(x_2)$ следует $x_1 = x_2$

Обозначение (Инъекция). $f: A \xrightarrow{1-1} B$

Определение (Биекция). f - биекция из A на B, если f одновременно и инъекция, и сюръекция.

Обозначение (Биекция). $f: A \xrightarrow{1-1} B$

Определение (Обратная функция). Запись f^{-1} означает обратное бинарное отношение к f. Если f^{-1} при этом является функцией, то она называется *обратной функцией* к f.

Лемма (о свойствах биекций).

- (a) Ecru $f: A \xrightarrow[na]{1-1} B$, mo $f^{-1}: B \xrightarrow[na]{1-1} A$, $f^{-1}(f(x)) = x \ \forall x \in A \ u$ $f(f^{-1}(y)) = y \ \forall y \in B$.
- (b) Ecsu $f:A \xrightarrow[na]{1-1} B$, $g:B \xrightarrow[na]{1-1} C$, mo $f \circ g:A \xrightarrow[na]{1-1} C$.

Доказательство. (а) Покажем, что f^{-1} - функция.

Пусть $< y, x_1 >, < y, x_2 > \in f^{-1}$. Тогда $< x_1, y >, < x_2, y > \in f$ и $f(x_1) = f(x_2) = y$. Поскольку f инъективна, $x_1 = x_2$.

Ясно, что $dom(f^{-1}) = ran(f)$ и $ran(f^{-1}) = dom(f)$. Поскольку f сюръективна, $ran(f) = B = dom(f^{-1})$. Поскольку $ran(f^{-1}) = A$, f^{-1} сюръективна. Инъективность f^{-1} легко проверяется. Тем самым $f^{-1}: B \xrightarrow{1-1} A$.

Покажем, что $f^{-1}(f(x)) = x$ при $x \in A$. Пусть $x \in A$ и y = f(x). Тогда $< x, y > \in f$ и $< y, x > \in f^{-1}$. Получаем, что $f^{-1}(y) = x$.

(b) выше доказано, что $g\circ f:A\to C$ и $[g\circ f](x)=g(f(x))$. Инъективность: если $g(f(x_1))=g(f(x_2))$, то $f(x_1)=f(x_2)$ и отсюда $x_1=x_2$. Сюръективность доказывается похожим способом.

П

- Отношения эквивалентности, классы эквивалентности, лемма о классах эквивалентности.
- 8. Частичный порядок, ч.у.м., минимальные, максимальные, наименьшие, наибольшие элементы, связи между ними. Замечание о строгом порядке.
- Фундированные частичные порядки, критерий фундированности порядка.
- 10. Предложение об индукции в фундированном ч.у.м., изоморфизм ч.у.м., замечание об изоморфизме ч.у.м.
- 11. Линейные порядки, л.у.м., начальные сегменты и отрезки, лемма о свойствах начальных сегментов.
- 12. Изоморфизм ч.у.м., изоморфизм л.у.м., признак изоморфизма л.у.м., лемма о монотонной инъекции в.у.м.
- 13. Полный порядок, в.у.м., лемма о начальных сегментах в.у.м.

Определение (Вполне упорядоченное множество). Вполне упорядоченное множество (в.у.м) - это пара (A, \leq) , где \leq - линейный фундированный порядок на A. Иногда такой порядок называют *полным*.

Лемма (о начальных сегментах в.у.м.). Любой начальный сегмент в.у.м. (A, \leq) либо равен A, либо является начальным отрезком.

Доказательство. Пусть S - начальный сегмент в A и $S \neq A$. Тогда $A \setminus S \neq \emptyset$. Пусть x - минимальный элемент в $A \setminus S$. Покажем, что $S = A_x$. Если $y \in S$, то либо y < x, либо $x \leq y$. Второй случай невозможен, так как тогда $x \in S$.

14. Предложение об изоморфизме начальных сегментов, теорема о сравнимости в.у.м. (без доказательства).

Предложение (об изоморфизме начальных сегментов). Различные начальные сегменты в.у.м. не могут быть изоморфны друг другу.

Доказательство. Пусть S_1 и S_2 - два различных сегмента в.у.м. (A, \leq) . Тогда сначала докажем лемму о том, что если (A, \leq) - в.у.м. и $f:A \xrightarrow{1-1} A$ - монотонная инъекция, то $f(x) \geq x \ \forall x \in A$. Заметим: если $x,y \in A$ и x < y, то f(x) < f(y). Из монотонности получаем, что $f(x) \leq f(y)$, а из инъективности - что $f(x) \neq f(y)$. Допустим, что утверждение неверно: существует $x \in A \mid f(x) \not\geqslant x$. Поскольку ряд линеен, f(x) < x. Тогда f(f(x)) < f(x), f(f(f(x))) < f(f(x)), и т.д.

Получаем последовательность x > f(x) > f(f(x)) > ..., противоречие.

По доказанной лемме $S_1\subseteq S_2$ или $S_2\subseteq S_1$. Пусть $S_1\subseteq S_2$. Выберем $x_0\in S_2\backslash S_1$.

Мы рассматриваем эти сегменты как в.у.м. с индуцированным из A порядком. Допустим, что $f: S_2 \to S_1$ - изоморфизм. Рассматривая f как функцию из S_2 в S_2 , видим, что она инъективна и монотонна. Следовательно, $f(x_0) \geq x_0$. Поскольку S_1 начальный сегмент и $f(x_0) \in S_1$, получаем, что $x_0 \in S_1$, противоречие.

Теорема (о сравнимости в.у.м.). Если даны два в.у.м., то одно из них изоморфно начальному сегменту другого.

- 15. Аксиома выбора, лемма Цорна (без доказательства), теорема Цермело (без доказательства), эквивалентность утверждений.
- 16. Парадокс Рассела, аксиоматика ZFC.

Парадокс (Парадокс Рассела). Рассмотрим совокупность: $M_R = \{A \mid A$ - множество и $A \notin A\}$.

Предположим, что само M_R является множеством. Возможны два варианта:

- (a) $M_R \notin M_R$. Тогда $A M_R$ подходит под определние, и $M_R \notin M_R$. Противоречие.
- (b) $M_R \in M_R$. Вновь полагая, $A = M_R$, получаем, что по определению $M_R \notin M_R$. Противоречие.

Это рассуждение показывает, что совокупность M_R нельзя считать множеством.

Аксиоматика ZFC.

Можно с собой на листочке!!!

17. Равномощные множества, замечание о равномощности.

Обозначение (мощность множества). Мнощность множества A обозначается |A|.

Определение (равномощные множества). Говорим, что множества A и B равномощные, если существует биекция $f:A \xrightarrow{1-1}_{\text{на}} B$.

Обозначим это символической записью |A| = |B|.

Замечание (о равномощности). Равномощность обладаает свойствами отношения эквивалентности - для любых множеств A,B,C верно:

- (a) |A| = |A|;
- (b) $|A| = |B| \Rightarrow |B| = |A|$;
- (c) $|A| = |B| \text{ if } |B| = |C| \Rightarrow |A| = |C|;$

Доказательство. Следует из деммы о свойствах биекций.

18. Лемма о порядке на мощностях.

Лемма (Лемма о порядке на мощностях). Для всяких непустых множеств $A\ u\ B$ следующие условия эквиваленты:

- (a) $|A| \le |B|$
- (b) Существует функция $g: B \xrightarrow{HA} A$
- (с) А равномощно некоторому подмножеству В

Доказательство.

- (a) $a\Rightarrow c$ Пусть $|A|\leq |B|$. Тогда существует $f:A\xrightarrow{1-1}B$. Тогда $ran(f)\subseteq B$ и $f:A\xrightarrow{1-1}na$ ran(f).
- (b) $c\Rightarrow b$ Пусть $h:B_1\xrightarrow{1-1}A$, где $B_1\subseteq B$. Выберем произвольное $a_0\in A$ и построим $g:B\xrightarrow{\text{на}}A$ так: $g(y)=\begin{cases}h(y),\ \text{если}y\in B_1\\a_0,\ \text{если}y\in B\setminus B_1\end{cases}$
- (с) $b\Rightarrow a$ Пусть $g:B\xrightarrow{\text{на}}A$. Построим $f:B\to A$. Построим $x\in A$ Множество $\{y\in B|\ g(y)=x\}$ непусто. Выберем в качестве f(x) некоторый элемент из этого множества. Проверим, что f инъективна. Пусть $f(x_1)=f(x_2)$ Тогда $g(f(x_1))=g(f(x_2))$, а по построению $g(f(x_i))=x_i$ при i=1,2.

- 19. Теорема Кантора-Бернштейна.
- 20. Теорема о сравнимости мощностей, теорема Кантора.
- 21. Конечные, бесконечные, счетные, континуальные множества, описание не более чем счетных множеств.

Определение (Конечное множество). Множество A называется конечным множеством мощности k, если $|A| = |\mathbb{N}_k|$, где $k \in \mathbb{N}$, а $\mathbb{N}_k = \{x \in \mathbb{N} | x < k\}$

Определение (Бесконечное множество). Множество *бесконечно*, если оно не является конечным.

Определение (Счётное множество). Множество A cчётное, если $|A| = |\mathbb{N}|$.

Определение (Континуальное множество). Множество A континуально, если $|A| = |\mathbb{R}|$.

Определение (Не более чем счётное множество). Множество A не более чем счётно, если $|A| \leq |\mathbb{N}|$

Следствие (Описание не более чем счётных множеств). Множество не более чем счётно тогда и только тогда, когда оно конечно или счётно.

Доказательство. \Leftarrow : счётное множество не более чем счётно. Если A конечно, то $|A|=|\mathbb{N}_k|\leq |\mathbb{N}|$.

 \Rightarrow : Пусть A не более чем счётно. Предположим, что оно бесконечно. Тогда в A есть счётное подмножество B. Получаем, что $|\mathbb{N}| - |B| \le |A| \le |\mathbb{N}|$. По теореме Кантора-Бернштейна $|A| = |\mathbb{N}|$.

22. Лемма о сохранении мощностей, теорема о мощности объединения (без доказательства).

Лемма (Лемма о сохранении мощностей).

(a)
$$Ecnu |A| = |A_1| u |B| = |B_1|, mo |A \times B| = |A_1 \times B_1|$$

(b) Echu npu этом $A \cap B = A_1 \cap B_1 = \emptyset$, то $|A \cup B| = |A_1 \cup B_1|$

Доказательство.

- (а) Пусть даны биекции $f: A \xrightarrow[\text{на}]{1-1} A_1 \text{ и } g: B \xrightarrow[\text{на}]{1-1} B_1.$ Построим $h: A \times B \xrightarrow[\text{на}]{1-1} A_1 \times B_1$ так: $h_1(< x; y>) = < f(x), g(y)>$. Легко проверить, что h_1 нужная биекция.
- (b) Построим $h_2:A\cup B\xrightarrow[\text{на}]{1-1}A_1\cup B_1$ так: $h_2(x)=\begin{cases}f(x),\text{ если}x\in A\\g(x),\text{ если}x\in B\end{cases}$ Условие $A\cap B=\emptyset$ гарантирует, что определение корректно. Вновь нетрудно доказать, что h_2 биекция. Проверим в качестве примера, что h_2 инъективна. Пусть $h_2(x)=h_2(y)$. Если $x,y\in A$, то получаем f(x)=f(y) и x=y. Если $x,y\in B$, рассуждения аналогичны. Если же $x\in A,y\in B$ (или наоборот), то $h_2(x)\in A_1$ и $h_2(y)\in B_1$, что невозможно в силу $A_1\cap B_2=\emptyset$.

Лемма (о мощности объединения). Если хотя бы одно из множеств A,B бесконечно, то $|A \cup B| = max\{|A|,|B|\}$.

23. Теорема о мощности квадрата бесконечного множества (доказательства для счетного и континуального), теорема о мощности произведения (без доказательства).

8

Теорема (о мощности квадрата бесконечного множества). Ecnu A бесконеное множество, то $|A \times A| = |A|$

Доказательство.

• Докажем, что $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ Построим $f: \mathbb{N} \times \mathbb{N} \xrightarrow{1-1} \mathbb{N}$ и $g: \mathbb{N} \xrightarrow{1-1} \mathbb{N} \times \mathbb{N}$ $f(x,y) = 2^{x} + 3^{y}$ g(x) = < x, 0 >

 $g(x) = \langle x, y \rangle$ Заметим, что обе функции инъективны, а значит $\begin{cases} |\mathbb{N} \times \mathbb{N}| \leq |\mathbb{N}| \\ |\mathbb{N} \times \mathbb{N}| \geq |\mathbb{N}| \end{cases}$ тогда по теореме Kантора-Бернштейна получаем, что $|\mathbb{N} \times \mathbb{N}| =$

- Докажем, что $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$ По аналогии с № построим две инъекции:
 - (a) $f: \mathbb{R} \times \mathbb{R} \xrightarrow{1-1} \mathbb{R}$ Для построения данной функции докажем, равномощность \mathbb{R} и (0,1):

Для этого построим биекцию $h:(0,1)\xrightarrow[\text{на}]{1-1}\mathbb{R}$ $h(x)=ctg(x*\pi)$ - функция биекция из-за $E(ctgx)=\mathbb{R}$ Значит $|\mathbb{R}| = |(0,1)|$

Докажем, что $\mathbb{R} \times \mathbb{R}$ равномощно $(0,1) \times (0,1)$:

Для этого построим $w:(0,1)\times(0,1)\xrightarrow{1-1}\mathbb{R}\times\mathbb{R}$

 $w(x,y) = \langle h(x), h(y) \rangle$

Значит $|\mathbb{R} \times \mathbb{R}| = |(0,1) \times (0,1)|$

Построим инъекцию $u:(0,1)\times(0,1)\xrightarrow{1-1}(0,1)$ $u(x,y)=0,\frac{10*a_1}{2}\frac{10*b_1}{2}\frac{10*a_2}{2}\frac{10*b_2}{2}...$ Где $x=0,a_1a_2...,$ а $y=0,b_1b_2...$

Т.к в формуле присутсвует умножение на 10, то на каждое число из $\frac{10*a_1}{2}\frac{10*b_2}{2}\frac{10*b_2}{2}\dots$ отводится по две цифры, т.е $\frac{10*4}{2}=20$, а $\frac{10*9}{2}=45$, также $\frac{10*0}{2}=00$ u - инъекция, тогда $f(x,y)=h\circ u\circ w^{-1}(x,y)$

(b) $g: \mathbb{R} \xrightarrow{1-1} \mathbb{R} \times \mathbb{R}$ Построим g(x) = < x, 0 >

Т.к f и g - инъекции, значит значит $\begin{cases} |\mathbb{R} \times \mathbb{R}| \leq |\mathbb{R}| \\ |\mathbb{R} \times \mathbb{R}| \geq |\mathbb{R}| \end{cases}$ тогда по теореме Kантора-Бернштейна получаем, что $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$

Теорема (о мощности произведения). Если А, В - непустые множества и одно из них бесконечно, то:

 $|A \times B| = max\{|A|, |B|\}$

24. Континуум-гипотеза, теорема Гёделя-Коэна (без доказательства), обобщенная континуумгипотеза.

 Гипотеза (Континуум-гипотеза). Не существует множества A такого, что

$$|\mathbb{N}| < |A| < |\mathbb{R}|$$

Теорема (Теорема Гёделя-Коэна). Если теория множеств ZFC непротиворечива, то континуум-гипотезу нельзя ни доказать, ни опровергнуть в рамках ZFC.

Гипотеза (Обобщенная континуумгипотеза). Если множество B - бесконечно, то не существует множества A такого, что |B|<|A|<|P(B)|

25. Ординалы, лемма об элементах ординала

Определение (Ординал). Ординалом называется транзитивное множество все элементы которого сравнимы относительно включения.

Определение (Транзитивное множество). Множество α называется транзитивным, если из $x \in \alpha$ и $y \in x$ следует, что $x \in \alpha$.

Лемма (Лемма об элементах ординала). *Если* α - *ординал* u $\beta \in \alpha$, *то* β - *ординал*.

Доказательство. Пусть $x,y\in\beta$. Тогда $x,y\in\alpha$. Следовательно, x и y равны или сравнимы относительно \in . Докажем, что β транзитивно. Пусть $y\in x\in\beta$. Тогда $x\in\alpha$ и $y\in\alpha$. Возможны три случая:

- (a) $\beta \in y$ Тогда получаем, что $\beta \in y \in x \in \beta$ противоречие.
- (b) $\beta = y$ Получаем, что $\beta \in x \in \beta$ противоречие.
- (c) $y \in \beta$. Следовательно, β ординал.

26. Лемма о порядке на ординалах, теорема о свойствах ординалов.

Лемма (о порядке на ординалах). *Для любых ординалов* α, β *равносильно:*

- (a) $\alpha \leq \beta$;
- (b) $\alpha \subseteq \beta$.

Доказательство. (а \Rightarrow b): если $\alpha = \beta$, то $\alpha \subseteq \beta$. Если же $\alpha \in \beta$ и $x \in \alpha$, то $x \in \beta$

(b \Rightarrow a): если $\alpha=\beta$, то $\alpha\leq\beta$. Предположим, что $\alpha\subset\beta$. Тогда $\beta\backslash\alpha\neq\emptyset$. По аксиоме регулярности $\exists\gamma\in\beta\backslash\alpha$ т. ч. $\gamma\cap(\beta\backslash\alpha)\neq\emptyset$. Покажем, что $\alpha=\gamma$.

Если $x \in \gamma$, то $x \in \beta$ и $x \notin \beta \setminus \alpha$, следовательно, $x \in \alpha$.

Если $x \in \alpha$, то $x \in \beta$ и возможны три случая:

- (a) $\gamma \in x$. Тогда $\gamma \in \alpha$, противоречие.
- (b) $\gamma = x$. Вновь $\gamma \in \alpha$, противоречие.
- (c) $x \in \gamma$.

Получаем, что $\alpha \in \beta$ и $\alpha \leq \beta$.

Теорема (о свойствах ординалов). Класс ординалов с порядком \leq обладает свойствами в.у.м. - для любых ординалов α, β, γ верно:

- (a) $\alpha \leq \alpha$;
- (b) $\alpha \leq \beta \ u \ \beta \leq \alpha \Rightarrow \alpha = \beta$;
- (c) $\alpha \leq \beta \ u \ \beta \leq \gamma \Rightarrow \alpha \leq \gamma$;
- (d) $\alpha \leq \beta$ unu $\beta \leq \alpha$;
- (е) в любом непустом множестве ординалов есть минимальный

Доказательство. (а) очевидно.

- (b) если $\alpha \subseteq \beta$ и $\beta \subseteq \alpha$, то $\alpha = \beta$.
- (c) если $\alpha \subseteq \beta$ и $\beta \subseteq \gamma$, то $\alpha \subseteq \gamma$.
- (d) пусть $\delta = \alpha \cap \beta$. Легко проверить, что δ является ординалом. По лемме о порядке на ординалах $\delta \leq \alpha$ и $\delta \leq \beta$. Если $\delta = \alpha$ или $\delta = \beta$, утверждение доказано. Допустим, что $\delta \neq \alpha, \beta$. Тогда $\delta \in \alpha, \delta \in \beta$ и $\delta \in \alpha \cap \beta = \delta$, противоречие.
- (e) пусть S непустое множество ординалов. По аксиоме регулярности $\exists \alpha \in S$, т.ч. $\alpha \cap S = \emptyset$. Если $\beta < \alpha$, то $\beta \in \alpha$ и $\beta \notin S$. Ясно, что α минимальный элемент в S.

27. Предложение о супремуме множества ординалов (без доказательства), теорема о связи в.у.м. и ординалов (без доказательства), предложение о принципе трансфинитной индукции (без доказательства).

Предложение (о супремуме множества ординалов). Пусть A - некоторое множество ординалов. Тогда $\cup A$ - ординал, являющийся супремумом множества A.

Теорема (о связи в.у.м. и ординалов). Для любого в.у.м. существует единственный изоморфный ему ординал.

Предложение (о трансфинитной индукции). Пусть $\Phi(x)$ - некоторое условие. Пусть для любого ординала α из того, что $\Phi(\beta)$ верно для всех $\beta < \alpha$, следует, что верно $\Phi(\alpha)$. Тогда $\Phi(\alpha)$ верно для всех ординалов α .

28. Сумма и произведение ординалов, кардинал, мощность множества.

Предложение (принцип трансфинитной рекурсии). Пусть существует условие, которое для каждого ординала α однозначно задаёт некоторое множество f_{α} в предположении, что при $\beta < \alpha$ множества f_{β} уже определены. Тогда каждому ординалу α действительно можно сопоставить множество f_{α} так, чтобы указанная связь между f_{α} и f_{β} , $\beta < \alpha$ выполнялась. При этом f_{α} определено однозначно.

Пример. На классе ординалов можно задать операции + и \cdot так, что для любых ординалов α, β будет верно:

- (a) $\alpha + 0 = \alpha \text{ if } \alpha \cdot 0 = 0$;
- (b) $\alpha + (\beta + 1) = (\alpha + \beta) + 1$ и $\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha$;
- (c) $\alpha + \lambda = \sup\{\alpha + \beta | \beta < \lambda\}$ и $\alpha \cdot \lambda = \sup\{\alpha \cdot \beta | \beta < \lambda\}$, если λ предельный ординал.

Доказательство. Зафиксируем γ и определим $\gamma+\alpha$ трансфинитной рекурсией по α . Предположим, что при $\beta<\alpha$ ординал $\gamma+\beta$ уже определён. Определим $\gamma+\alpha$, просто повторив формулировку для трёх случаев:

- (a) $\alpha = 0$, тогда $\gamma + \alpha = \gamma$;
- (b) $\alpha = \beta + 1$, тогда $\gamma + \alpha = (\gamma + \beta) + 1$;
- (c) α предельный, тогда $\gamma + \alpha = \sup\{\gamma + \beta | \beta < \alpha\}.$

Произведение $\gamma \cdot \alpha$ определяется аналогично.

Определение (Кардинал). Ординал μ называется $\kappa apduna$ лом, если он не равномощен никакому строго меньшему ординалу.

Определение (Мощность множества). *Мощность* множества A - это единствееный кардинал, равномощный A, т.е. $|\mu_A| = |A|$.

- 29. Алфавит ИВ, формула ИВ, подформула, представление формул ИВ.
- 30. Принцип математической индукции и возвратной индукции.

Определение (Принцип математической индукции). Если $\Delta(0)$ истинно и для всех n из истинности $\Delta(n)$ следует истинность $\Delta(n+1)$, то $\Delta(n)$ истинно для всех n.

Определение (Возвратная индукция). Пусть для каждого n из того, что $\Delta(k)$ истинно при любом k < n, следует, что истинно $\Delta(n)$. Тогда $\Delta(n)$ истинн для всех n.

Доказательство. Оба принципа индукции легко вытекают из следующего факта: в любом непустом множестве натуральных числе есть минимальный элемент. Покажем, как отсюда выводится возвратная индукция.

Допустим, что $\Delta(n)$ ложно при некотором n. Рассмотрим множество $A = \{n | \Delta(n)$ ложно $\}$. Оно не пусто, следовательно, в нём есть минимальный элемент n_0 . Тогда $\Delta(n_0)$ ложно, а если $n < n_0$, то $n \notin A$ и $\Delta(n)$ истинно. Получаем, что $\Delta(n_0)$ тоже истинно, противоречие. \square

- 31. Алфавит ИС, секвенция, аксиома, правило вывода, дерево вывода, доказуемость, пример вывода.
- 32. Семантика ИВ: означивание, значение формулы при означивании, выполнимые, опровержимые, тождественно истинные, тождественно ложные формулы, примеры.

33. Тождественно истинные секвенции, теорема о корректности ИС.

Определение (Тождественно истинные секвенции). Секвенция называется тождественно истинной, если она истинна при любом означивании переменных.

Теорема (о корректности ИС). Любая доказуемая в ИС секвенция тожедественно истинна.

Доказательство. Пусть S - доказуемая секвенция, D - её дерево вывода. Индукцией по числу секвенций в D докажем, что S тождественно истинна.

Предположим, что в D одна секвенция. Тогда она совпадает с S и является аксиомой вида $\Phi \vdash \Phi$. Ясно, что она тождественно истинна. Предположим, что в D n секвенций, n>1, и для меньшего числа секвенций утверждение уже доказано. Дерево D имеет вид $\frac{D_1;\dots;D_k}{S}$, где D_i - деревья вывода секвенций S_i , а $\frac{S_1;\dots;S_k}{S}$ - правило вывода. По предположению индукции все S_i , $i\leq k$, тождественно истинны. Чтобы доказать, что S тождественно истинна, нужно перебрать все возможные правила вывода.

Рассмотрим случай, когда последнее правило в D имеет вид $\frac{\Gamma \vdash \Phi; \Gamma \vdash (\Phi \to \Psi)}{\Gamma \vdash \Psi}$. Рассмотрим произвольное означивание и покажем, что секвенция $\Gamma \vdash \Psi$ истинна при этом означивании. Если одна из формул в Γ ложна, секвенция истинна. Предположим, все формулы в Γ истинны. Тогда истинны формулы Φ и ($\Phi \to \Psi$). Ясно, что Ψ тоже истинна. Остальные правила разбираются аналогично.

- 34. Допустимые правила вывода, примеры.
- 35. Лемма об основных эквивалентностях, теорема о замене для ИВ.

Лемма (об основных эквивалентностях). Для любых формул $\Phi, \Psi, \Phi^{'}, \Psi^{'}$ и Δ верно:

- (a) $\Phi \equiv \Phi$;
- (b) $\Phi \equiv \Psi \Rightarrow \Psi \equiv \Phi$;
- (c) $\Phi \equiv \Psi, \Psi \equiv \Delta \Rightarrow \Phi \equiv \Delta$:
- (d) $\Phi \equiv \Phi' \Rightarrow \neg \Phi \equiv \neg \Phi';$
- (e) $\Phi \equiv \Phi', \Psi \equiv \Psi' \Rightarrow (\Phi' \circ \Psi) \equiv (\Phi' \circ \Psi'), \ \partial e \circ \in \{ \&, \lor, \to \}.$

Доказательство. Пункты a),b) очевидны; с): предположим, что доказуемы секвенции $\Phi \vdash \Psi, \Psi \vdash \Phi, \Psi \vdash \Delta, \Delta \vdash \Psi$. Покажем доказуемость секвенции $\Phi \vdash \Delta$, построив допустимое дерево:

$$\frac{\Phi \vdash \Delta}{\Phi, \Psi \vdash \Delta}$$

$$\frac{\Phi \vdash \Delta}{\Phi \vdash \Delta}$$

Дерево для $\Delta \vdash \Phi$ строится симметрично. Далее будем указывать только деревья.

d):

$$\frac{\Phi' \vdash \Phi}{\neg \Phi \vdash \neg \Phi'}$$

e) : построим три дерева для случаев $\circ = \to, \circ = \&$ и $\circ = \lor$. Далее мы иногда будем пропускать структурные правила, соединяя несколько структурных правил с одним основным или допустимым в один переход дерева.

$$\begin{array}{c|c} \Phi^{'} \vdash \Phi; & (\Phi \rightarrow \Psi) \vdash (\Phi \rightarrow \Psi) & \Psi \vdash \Psi^{'} \\ \hline \\ \underline{(\Phi \rightarrow \Psi), \Phi^{'} \vdash \Psi; & (\Phi \rightarrow \Psi), \Phi^{'}, \Psi \vdash \Psi^{'}} \\ \hline \\ \underline{(\Phi \rightarrow \Psi), \Phi^{'} \vdash \Psi^{'}} \\ \hline \\ \underline{(\Phi \rightarrow \Psi) \vdash (\Phi^{'} \rightarrow \Psi^{'})} \end{array}$$

$$\frac{\frac{\Phi \vdash \Phi^{'}}{\Phi, \Psi \vdash \Phi^{'}}}{\frac{(\Phi \& \Psi) \vdash \Phi^{'};}{(\Phi \& \Psi) \vdash (\Phi^{'} \& \Psi^{'})}} \frac{\frac{\Psi \vdash \Psi^{'}}{\Phi, \Psi \vdash \Psi^{'}}}{\frac{\Phi \vdash (\Phi^{'} \lor \Psi^{'});}{(\Phi \lor \Psi) \vdash (\Phi^{'} \lor \Psi^{'})}} \frac{\Psi \vdash \Psi^{'}}{\Psi \vdash (\Phi^{'} \lor \Psi^{'})}$$

Теорема (о замене для ИВ). Пусть Ψ - подформула формулы Φ . Обозначим через $\Phi^{'}$ результат замены Ψ на $\Psi^{'}$. Если $\Psi \equiv \Psi^{'}$, то и $\Phi \equiv \Phi^{'}$.

Доказательство. Индукцией по $|\Phi|$ докажем, что $\Phi^{'}$ - формула, эквивалентная Φ . Если $\Phi=\Psi$, то $\Phi^{'}=\Psi^{'}$ и $\Phi\equiv\Phi^{'}$. Поэтому будем рассматривать только случай $\Phi\neq\Psi$.

Пусть $|\Phi|=1$. Тогда $\Phi=\Psi$, и этот случай уже рассмотрен.

Пусть $|\Phi|>1$, и для формул меньшей длины утверждение уже доказано. Если $\Phi=\neg\Phi_1$, то Ψ - подформула Φ_1 , и по предположению индукции $\Phi_1\equiv\Phi_1'$. Тогда $\Phi=\neg\Phi_1\equiv\neg\Phi_1'=\Phi_1'$

Если $\Phi = (\Phi_1 \circ \Phi_2)$, где $\circ \in \{\&, \lor, \to\}$, то Ψ - подформула Φ_1 или Φ_2 . Предположим, что Ψ - подформула Φ_1 . По предположению индукции $\Phi_1 \equiv \Phi_1'$, отсюда $\Phi = (\Phi_1 \circ \Phi_2) \equiv (\Phi_1' \circ \Phi_2) = \Phi'$.

- 36. Д.н.ф., к.н.ф., теорема о приведении к д.н.ф. и к.н.ф.
- 37. Предложение о тождественно истинных к.н.ф.
- 38. Теорема о полноте ИС.
- 39. Совершенные нормальные формы, теорема о совершенных нормальных формах.

- 40. Гильбертовское исчисление высказываний: аксиоматика, выводимость, примеры выводов.
- 41. Теорема о дедукции.
- 42. Связь гильбертовского и секвенциального исчисления.