Assignment 2 - Thomas Boyko - 30191728

- 1. Let $a_n = \sum_{i=1}^n \frac{2i-1}{2^i}$ where n is a positive integer.
 - (a) Find $a_1, a_2, a_3, and a_4$.

$$a_1 = \frac{1}{2}$$

$$a_2 = \frac{5}{4}$$

$$a_3 = \frac{15}{8}$$

$$a_4 = \frac{37}{16}$$

(b) Guess a simple formula for a_n for all integers $n \ge 1$. Guess:

$$a_n = 3 - \frac{2n+3}{2^n}$$

(c) Prove by induction on n that your guess in part (b) is correct.

Proof: We will prove by induction. Suppose $n \in \mathbb{Z}$ and $n \geq 1$.

Base case: n = 1.

$$\sum_{i=1}^{1} \frac{2i-1}{2^i} = \frac{2(1)-1}{2^1} = \frac{1}{2} = 3 - \frac{5}{2} = 3 - \frac{2(1)+3}{2^1}$$

Induction Hypothesis:

Suppose $k \in \mathbb{Z}$ and $k \geq 1$. Further suppose:

$$\sum_{i=1}^{k} \frac{2i-1}{2^i} = 3 - \frac{2k+3}{2^k}$$

We want to prove:

$$\sum_{i=1}^{k+1} \frac{2i-1}{2^i} = 3 - \frac{2k+5}{2^{k+1}}$$

Let's begin.

$$\begin{split} \sum_{i=1}^{k+1} \frac{2i-1}{2^i} &= \frac{2(k+1)-1}{2^{k+1}} + \sum_{i=1}^k \frac{2i-1}{2^i} \\ &= \frac{2(k+1)-1}{2^{k+1}} + 3 - \frac{2k+3}{2^k} \text{ (By the Induction Hypothesis)} \\ &= 3 + \frac{2k+1}{2^{k+1}} - \frac{2(2k+3)}{2^{k+1}} \\ &= 3 + \frac{2k+1-4k-6}{2^{k+1}} \\ &= 3 - \frac{2k+5}{2^{k+1}} \end{split}$$

Therefore, by induction on n, $\sum_{i=1}^{n} \frac{2i-1}{2^i} = 3 - \frac{2n+3}{2^n}$ for all positive integers n.

2. The Fibonacci numbers f_1, f_2, f_3, \ldots are defined by setting $f_1 = f_2 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for all integers $n \ge 1$.

A fact that will become helpful in these proofs is that gcd(a + b, b) = gcd(a, b).

Here is a proof, so that we can use it in the following questions.

Proof: Suppose $\gcd(a,b)=d$ where $d\in\mathbb{Z}$. d is the greatest integer that divides both a and b. So d|b and d|a which means a=dk and b=dl for some $k,l\in\mathbb{Z}$. a+b=kd+ld=d(l+k) where $l+k\in\mathbb{Z}$, which means d|a+b.

Now we will let $e = \gcd(a + b, b)$. e is the greatest integer that divides both a + b and b.

em = a + b and en = b for some $m, n \in \mathbb{Z}$.

em = a + en

e(m-n) = a where $m-n \in \mathbb{Z}$ so e divides a.

Since d divides both a + b and $b, d \leq e$.

And since e divides both a and b, $e \leq d$

So $e \le d \le e$ which means $d = \gcd(a, b) = \gcd(a + b, b) = e$.

(a) Prove that for all integers $n \geq 3$, $gcd(f_n, f_{n-1}) = gcd(f_{n-1}, f_{n-2})$

Proof: Suppose $n \in \mathbb{Z}$, and $n \geq 3$.

Because $n \ge 3$, $gcd(f_n, f_{n-1}) = gcd(f_{n-1} + f_{n-2}, f_{n-2})$.

As proved above, this is equal to $gcd(f_{n-1}, f_{n-2})$.

Therefore, for all integers $n \geq 3$, $gcd(f_n, f_{n-1}) = gcd(f_{n-1}, f_{n-2})$

(b) Prove by induction on n that $gcd(f_n, f_{n-1}) = 1$ for all integers $n \ge 2$.

Proof: Suppose $n \in \mathbb{Z}, n > 2$.

Base cases: (For this we need to define $f_3 = f_2 + f_1 = 1 + 1 = 2$)

n = 2: $gcd(f_2, f_1) = gcd(1, 1) = 1$.

n = 3: $gcd(f_3, f_2) = gcd(2, 1) = 1$.

Induction Hypothesis:

Suppose $k \in \mathbb{Z}, k > 3$

Further suppose that for all $m \in \mathbb{Z}$ where $2 \leq m < k$:

$$\gcd(f_m, f_{m-1}) = 1$$

We want to prove: $gcd(f_k, f_{k-1}) = 1$.

 $gcd(f_k, f_{k-1}) = gcd(f_{k-1}, f_{k-2})$ as proved in part (a).

By the Induction Hypothesis, since $2 \le k - 1 < k \le 3$, $1 = \gcd(f_k, f_{k-1})$

So, by induction on n, $gcd(f_n, f_{n-1}) = 1$ for all $n \ge 2$.

(c) Prove by induction on n that $\sum_{i=1}^{n} f_i^2 = f_{n+1} f_n$ for all integers $n \ge 1$.

Proof: Suppose $n \in \mathbb{Z}$, $n \ge 1$.

Base case: n = 1.

$$\sum_{i=1}^{1} f_i^2 = 1^2 = 1 = 1 \times 1 = f_2 \times f_1$$

Induction Hypothesis:

Suppose $k \in \mathbb{Z}, k \geq 1$.

Further suppose that $\sum_{i=0}^{k} f_i^2 = f_{k+1} f_k$.

We want to prove that: $\sum_{i=0}^{k+1} f_i^2 = f_{k+2} f_{k+1}$.

Let's begin.

$$\sum_{i=0}^{k+1} f_i^2 = f_{k+1}^2 \sum_{i=0}^{k} f_i^2$$

$$= f_{k+1}^2 + f_{k+1} f_k \text{ By the Induction Hypothesis}$$

$$= f_{k+1} (f_k + f_{k+1})$$

$$= f_{k+1} (f_{k+2})$$

Therefore, by induction on n, $\sum_{i=1}^{n} f_i^2 = f_{n+1} f_n$ for all integers $n \ge 1$.

- 3. For each of the following statements, if the statement is true, then give a proof, and if the statement is false, then write out its negation and prove that.
 - (a) For all sets A, B, and $C, A \cup (B \cap C)$ is a subset of $(A \cup B) \cap (A \cup C)$.

Proof: Suppose A, B and C are sets. Let $x \in A \cup (B \cap C)$.

So, x is in A, or x is in both B and C.

Case 1: $x \in A$

If $x \in A$, x is in both $A \cup B$ and $A \cup C$.

So, $x \in (A \cup B) \cap (A \cup C)$ if $x \in A$.

Case 2: $x \notin A$

If $x \notin A$, $x \in B \cap C$.

This means that $x \in C$ and $x \in B$.

So x must be in both $A \cup B$ and $A \cup C$.

Therefore, if $x \notin A$, $x \in (A \cup B) \cap (A \cup C)$

Since we know that all x must be in A or (B and C),

And we know that all x in $A \cup (B \cap C)$ must be in $(A \cup B) \cap (A \cup C)$,

 $A \cup (B \cap C)$ is a subset of $(A \cup B) \cap (A \cup C)$.

(b) For all sets A, B, and C, if $A \subset B$, then $(C - A) \subset (C - B)$.

The statement is false, so we will negate it and prove that.

The negation is: "There exist sets A, B, and C so that $A \subset B$ but $(C - A) \not\subset (C - B)$."

Proof: Choose the following sets.

 $A = \emptyset$

 $B = \{1\}$

 $C = \{1\}$

Note that $A \subset B$, because there are no elements in A.

 $C - A = \{1\}$

 $C - B = \emptyset$

So, $A \subset B$ but $(C-A) \not\subset (C-B)$ because the element 1 is in C-A but is not in C-B. Therefore, there exist sets A, B, and C so that $A \subset B$ but $(C - A) \not\subset (C - B)$.

(c) For all sets A, B, and C, $(A \cup B) - C = (A - C) \cup (B - C)$

Proof: Suppose A, B, and C are sets.

Suppose $x \in (A \cup B) - Ccases$.

So x is in A or B, but x is not in C.

We will consider two cases.

Case: $x \in A$.

Since $x \in A$, and $x \notin C$, $x \in (A - C)$

So, when $x \in A$, $x \in (A - C) \cup (B - C)$.

Case: $x \notin A$.

Since $x \notin A$, x must be in B.

Therefore $x \in (B - C)$ because x is in B but not C.

So $x \in (A - C) \cup (B - C)$.

All elements of the left side of the equation must be in the right side, so $(A \cup B) - C \subset (A - C) \cup (B - C)$

Let $y \in (A - C) \cup (B - C)$.

So y must be in either A - C or B - C. This means y must be in A or B.

Either way, $y \notin C$

Since y must be in A or B, it will always be in $A \cup B$.

And since $y \notin C$, y must always be in $(A \cup B) - C$.

Therefore, $(A-C) \cup (B-C) \subset (A \cup B) - C$

Since the sets $(A-C) \cup (B-C)$ and $(A \cup B) - C$ are subsets of each other, they are equal.

(d) For all sets A and B, $A \subset B \iff A - B = \emptyset$.

Proof: Suppose A, B are sets.

To prove that $A \subset B \iff A - B = \emptyset$, we will first prove $A \subset B \implies A - B = \emptyset$

We will prove this by contradition. Suppose $A \subset B$ and $\exists x \in (A - B)$.

So, $x \in A$ but $x \notin B$.

But all elements of A must be in B since $A \subset B$. A contradiction!

So, $A \subset B \implies A - B = \emptyset$.

Next we will prove that $A - B = \emptyset \implies A \subset B$.

Since there are no elements in $A-B, \forall y \in A, y \in B$

This is the same as saying "A is a subset of B"

So, $A - B = \emptyset \implies A \subset B$

 $A \subset B \implies A - B = \emptyset$ and $A - B = \emptyset \implies A \subset B$

Which means that $A \subset B \iff A - B = \emptyset$.