

AVL Tree Splitting and Merging

261217 Data Structures for Computer Engineers

Patiwet Wuttisarnwattana, Ph.D.

patiwet@eng.cmu.ac.th

Computer Engineering, Chiang Mai University

Learning Objectives

- □ Implement merging and splitting of AVL trees.
- Analyze the runtime of these operations

New Operations

- Another useful feature of binary search trees is the ability to recombine them in interesting ways.
- We discuss two new operations:
 - Merge: Combines two binary search trees into a single one.
 - Split: Breaks one binary search tree into two

Merge

- In general, to merge two sorted AVL trees takes O(n log n) times
- However, when they are separated it is faster

Merge

Input: Roots $\mathbf{R_1}$ and $\mathbf{R_2}$ of trees with all keys in $\mathbf{R_1}$'s tree smaller than those in $\mathbf{R_2}$'s

Output: The root of a new tree with all the elements of both trees

Question

■ Which tree can be merged with the given one?

Extra Root

Easy if you have an extra node to add as root

Implementation

MergeWithRoot(R_1 , R_2 , T)

```
T.Left \leftarrow R_1
T.Right \leftarrow R_2
R_1.parent \leftarrow T
R_2.parent \leftarrow T
return T
```

Time O(1)

Get Root

- Get new root by removing largest element of the left subtree
 - Alternatively, you can use the smallest element of the right subtree

Merge

$Merge(R_1, R_2)$

```
T \leftarrow FindMax(R_1)

R_1.delete(T.key)

MergeWithRoot(R_1, R_2, T)

return T
```

Time O(h)

Merge

Balance

Unfortunately, this merge does not preserve balance properties

Idea

Go down side of tree until merge with subtree of same height

Implementation

AVLTreeMergeWithRoot(R_1 , R_2 , T)

```
if |R_1.height -R_2.height | \le 1:

MergeWithRoot(R_1, R_2, T)

T.height \leftarrow max(R_1.height, R_2.height) + 1

return T

...
```

Implementation (continued)

AVLTreeMergeWithRoot(R₁, R₂, T)

```
else if R_1.height > R_2.height:
   R' \leftarrow AVLTreeMergeWithRoot(R_1.right, R_2, T)
   R_1.right \leftarrow R'
   R'.parent \leftarrow R_1
   Rebalance(R<sub>1</sub>)
   return root
else if R_1.height < R_2.height:
   ... (homework) ...
```

Analysis

- Each step changes height difference by 1
- Eventually within 1
- □ Time O($|R_1$.height R_2 .height |+1)

Split

■ Break tree into two trees

Formal Definition

Split

Input: Root **R** of a tree, key x

Output: Two trees (List), one with elements $\leq x$, one with elements > x

Idea

- Search for x and split the trees along the search path
- Merge left subtrees (including the node) into one tree
- Merge right subtrees into another

Implementation

Split(R, x)

```
if R is null
return (null, null)
else if x < R.key:
(R1, R2) ← Split(R.left, x)
R3 ← MergeWithRoot(R2, R.right, R)
return (R1, R3)
else if x ≥ R.key
(R1, R2) ← Split(R.right, x)
R4 ← MergeWithRoot(R.left, R1, R)
return (R4, R2)
```

AVL Trees

- Using AVLMergeWithRoot maintains balance
- \square Time = $O(\log n)$

Summary

- Merge combines trees.
- Split turns one tree into two.
- Both can be implemented in O(log n) time for AVL tree