딥러닝 데이터 준비

데이터

■ 머신러닝 방식 ■ 기존 방식 Study the Train ML Launch! algorithm problem Solution Study the Evaluate Write rules problem Inspect the solution *Lots* of data Analyze errors Understand the Iterate if needed problem better

지도학습(Supervised Learning)

비지도 학습(Unsupervised Learning)

데이터

https://www.kaggle.com/datasets

https://www.data.go.kr/

http://archive.ics.uci.edu/ml/index.php

https://aihub.or.kr/

Registry of Open Data on AWS

https://registry.opendata.aws/

https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research

문제 정의

성능지표 선택(회귀모델)

■ MSE(Mean Squared Error)

MAE(Mean Absolute Error)

참고자료 : https://mizykk.tistory.com/102

데이터 다운로드

```
import os
import tarfile
from six.moves import urllib
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml/master/"
HOUSING PATH = os.path.join("datasets", "housing")
HOUSING URL = DOWNLOAD ROOT + "datasets/housing/housing.tgz"
def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
    if not os.path.isdir(housing_path):
       os.makedirs(housing_path)
    tgz_path = os.path.join(housing_path, "housing.tgz");
    urllib.request.urlretrieve(housing_url, tgz_path)
    housing_tgz = tarfile.open(tgz_path)
    housing_tgz.extractall(path=housing_path)
   housing tgz.close()
```

데이터 다운로드

fetch_housing_data()

```
import pandas as pd

def load_housing_data(housing_path=HOUSING_PATH):
    csv_path = os.path.join(housing_path, "housing.csv")
    return pd.read_csv(csv_path)
```

housing = load_housing_data()
housing.head()

	longitud	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
(-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
•	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
;	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY

데이터 탐색과 시각화

```
import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20,15))
save_fig("attribute_histogram_plots")
plt.show()
```


https://github.com/rickiepark/handson-ml/blob/master/02_end_to_end_machine_learning_project.ipynb

데이터 이해를 위한 탐색과 시각화

```
ax = housing.plot(kind="scatter", x="longitude", y="latitude")
ax.set(xlabel='경도', ylabel='위도')
save_fig("bad_visualization_plot")
```


nttps://gitnub.com/rickiepark/nandson-mi/biob/master/UZ end to end machine learning project.ipynb

데이터 이해를 위한 탐색과 시각화

```
import matplotlib.image as mpimg
california_img=mpimg.imread(PROJECT_ROOT_DIR + '/images/end_to_end_project/california.png')
ax = housing.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7),
                      s=housing['population']/100, label="연구",
                      c="median_house_value", cmap=plt.get_cmap("jet"),
                      colorbar=False, alpha=0.4,
plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5)
plt.ylabel("위도", fontsize=14)
plt.xlabel("경도", fontsize=14)
prices = housing["median house value"]
tick_values = np.linspace(prices.min(), prices.max(), 11)
cbar = plt.colorbar()
cbar.ax.set_yticklabels(["$%dk"%(round(v/1000)) for v in tick_values], fontsize=14)
cbar.set_label('중간 주택 가격', fontsize=16)
plt.legend(fontsize=16)
save_fig("california_housing_prices_plot")
plt.show()
```

데이터 이해를 위한 탐색과 시각화

https://github.com/rickiepark/handson-ml/blob/master/02_end_to_end_machine_learning_project.ipynb

딥러닝 데이터 준비 실습

https://github.com/rickiepark/handson-ml/blob/master/02_end_to_end_machine_learning_project.ipynb

https://github.com/

https://colab.research.google.com/github/

https://colab.research.google.com/github/rickiepark/handson-ml/blob/master/02_end_to_end_machine_learning_project.ipynb

https://youtu.be/KMa5z3amwv4

https://youtu.be/NK-poleR9JY

https://youtu.be/8-milNfxCm4