Lista 1

Algebra Linear Engenharia Civil, 2do Periodo

13 de março de 2018

- 1. Exprima cada vetor do conjunto $\{u, v, w, z\} \subset E$ como combinação linear dos vetores $\{w, u + 3z, v 2u + 3w, 5z\}$.
- 2. Obtenha uma base para o subespaço vetorial gerado por cada um dos seguintes conjuntos e, consequentemente, determine a dimensão daquele subespaço:

(a)
$$\{(1,2,3,4),(3,4,7,10),(2,1,3,5)\}$$

(b)
$$\{(1,3,5),(-1,3,-1),(1,21,1)\}$$

$$(c) \{(1,2,3),(1,4,9),(1,8,27)\}$$

3. Prove que o sistema:

$$x + 2y + 3z - 3t = a$$

 $2x - 5y - 3z + 12t = b$
 $7x + y + 8z + 5t = c$

Admite solução se, e somente se, 37a + 13b = 9c. Ache a solução geral do sistema quando a = 2 e b = 4.

4. Ache uma base para o núcleo de cada uma das transformações lineares a seguir:

(a)
$$F: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $F(x, y, z) = (-3y + 4z, 3x - 5z, -4x + 5y)$

(b)
$$C: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$$
, $C(x, y, z, t) = (2x + y - z + 3t, x - 4y + 2z + t, y + 4z - t)$

5. Use escalonamento para resolver o seguinte Sistema Linear

$$x+y+t = 0$$

$$x+2y+z+t = 1$$

$$3x+3y+z+2t = -1$$

$$y+3z-t = 3$$

6. Obtenha os numeros a, b, c tais que ax + by + cz = 0 seja a equação do plano gerado pelas colunas da matriz

$$\begin{bmatrix}
 1 & 1 & 1 \\
 1 & 2 & 3 \\
 2 & 3 & 4
 \end{bmatrix}$$

- 7. **Definição**. Seja $P: R^2 \longrightarrow R^2$ a projeção ortogonal sobre uma certa certa reta r. Para todo v sobre a reta r, tem-se P(v) = v. Assim, para qualquer $v \in R^2$ tem-se P(P(v)) = P(v), pois P(v) esta sobre a reta r. Determine a matriz da projeção $P: R^2 \longrightarrow R^2$, p(x,y) = (x,0) relativamente à base $\{u,v\} \subset R^2$, onde u = (1,1) e v = (1,2).
- 8. Usando a **definição** anterior , prove que o operador $P: R^2 \longrightarrow R^2$, dado por $P(x,y) = (-2x 4y, \frac{3}{2}x + 3y)$ é a projeção sobre uma reta. Determine o núcleo e a imagem de P.
- 9. Encontre os números a, b, c, d de modo que o operador $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, dado por F(x,y) = (ax + by, cx + dy) tenha como núcleo a reta y = 3x.
- 10. Mostre que os vetores u = (1,1,1), v = (1,2,3) e w = (1,4,9) formam uma base de R^3 . Exprima cada um dos vetores e_1 , e_2 , e_3 da base canônica de R^3 como combinação linear de u, v e w.

11. Diz-se que uma função $f: X \longrightarrow R$ é limitada quando existe k > 0 tal que $|f(x)| \le k$ para todo $x \in X$. Prove que o conjunto das funções limitadas é um subespaço vetorial de F(X;R).

Note que, F(X;R) é o espaço vetorial das funções reais de variável real $f:X\longrightarrow R$.

12. Seja E um espaço vetorial e $u,v\in E$. O segmento de reta de extremidades u,v é, por definição, o conjunto $[u,v]=\{(1-t)u+tv;0\leq t\leq 1\}.$

Um conjunto $X \subset E$ chama-se convexo quando $u, v \in X \Rightarrow [u, v] \subset X$.

Prove que dados $a,b,c\in R$, o conjunto $X=\left\{(x,y)\in R^2;ax+by\leq c\right\}$ é conjunto convexo em R^2

Êxitos...!