Optimization Theory and Algorithms

Instructor: Prof. LIAO, Guocheng (廖国成)

Email: liaogch6@mail.sysu.edu.cn

School of Software Engineering Sun Yat-sen University

Outline

- Inequality constrained minimization
- Logarithmic barrier function and central path
- Barrier method

Equality constrained minimization problem

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

- f is convex and twice continuously differentiable
- Assume optimal point x^* exists. Let $p^* = f(x^*)$ be the optimal value.
- Assume Slater's condition holds, i.e., strong duality holds.

Optimality condition (KKT conditions): x^* is optimal iff there exists a λ^* and ν^* such that

- $\lambda_i^* f_i(x^*) = 0, i = 1, ..., m$
- $\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + A^T \nu^* = 0$
- $\lambda^{\star} > 0$
- $f_i(x^*) \le 0, i = 1, ..., m, Ax^* = b$

Logarithmic barrier

not differentiable

$$\min f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, ..., m$

$$Ax = b$$

min
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

s.t. $Ax = b$

 I_{-} is the indicator function for the nonpositive reals

$$I_{-}(\mu) = \begin{cases} 0, & \text{if } \mu \leq 0 \\ \infty, & \text{if } \mu > 0 \end{cases}$$

min
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

s.t. $Ax = b$

min
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

s.t. $Ax = b$

$$\widehat{I}_{-}(\mu) = -(1/t) \sum_{i=1}^{m} \log(-\mu)$$

- Convex
- Differentiable
- As t increases, the approximation is more accurate

Central path

min
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

s.t. $Ax = b$

• $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$: logarithmic barrier function

Multiply the objective with *t*

min
$$tf_0(x) + \phi(x)$$

s.t. $Ax = b$

- For t > 0, $x^*(t)$ is the solution of the above problem
- Central path: $x^*(t)$, t > 0:

$$Ax^{*}(t) = b$$

$$f_{i}(x^{*}(t)) < 0$$

$$t\nabla f_{0}(x^{*}(t)) + \nabla \phi(x^{*}(t)) + A^{T}v' = 0$$

$$t\nabla f_{0}(x^{*}(t)) + \sum_{i=1}^{m} \frac{1}{-f_{i}(x^{*}(t))} \nabla f_{i}(x^{*}(t)) + A^{T}v' = 0$$

Approximation gap

min
$$tf_0(x) + \phi(x)$$

s.t. $Ax = b$

- $Ax^*(t) = b$
- $f_i(x^*(t)) < 0$
- $t\nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t)) + A^T \nu' = 0$ $\sum_{i=1}^m \lambda_i f_i(x) + \nu^T (Ax b)$

$$p^* = \min \ f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$
Lagrangian

• $L(x, \lambda, \nu) = f_0(x) +$

Lower bound of the optimal value p^* : $f_0(x^*(t)) \le p^* + m/t$

convergence as
$$t \to \infty$$

- $\nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-tf_i(x^*(t))} \nabla f_i(x^*(t)) + A^T v'/t = 0$
- Define $\lambda_i^*(t) = -1/t f_i(x^*(t))$, and $\nu_i^*(t) = \nu'/t$
- $x^*(t)$ minimizes Lagrangian $L(x, \lambda^*(t), \nu^*(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^*(t) f_i(x^*) + \nu_i^*(t)^T (Ax b)$
- $g(\lambda^*(t), \nu^*(t)) = f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t) f_i(x^*) + \nu_i^*(t)^T (Ax b) = f_0(x^*(t)) m/t$

$$f_0(x^*(t)) - m/t = g(\lambda^*(t), \nu^*(t)) \le p^*$$

Interpretation via KKT conditions

$$x^*(t), \lambda^*(t), \nu^*(t)$$
 satisfy

- Approximate complementary slackness: $\lambda_i^*(t) f_i(x^*(t)) = 1/t, i = 1, ..., m$
- Lagrangian optimality: $\nabla f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t) \nabla f_i(x^*(t)) + A^T \nu^*(t) = 0$
- Dual feasibility: $\lambda^*(t) \ge 0$
- Primal feasibility: $f_i(x^*(t)) \le 0$, i = 1, ..., m, $Ax^*(t) = b$

Barrier method

- Given strictly feasible x, t > 0, u > 1, tolerance $\epsilon > 0$
- Repeat
- 1. Centering step.

Starting at x, compute $x^*(t)$ by solving the following problem (Newton's method)

min
$$tf_0(x) + \phi(x)$$

s.t. $Ax = b$

- 2. Update: $x \leftarrow x^*(t)$
- 3. Stopping criterion: if $m/t \le \varepsilon$, break
- 4. Increase $t, t \leftarrow ut$