Instituto de Física de São Carlos Laboratório de Física I

Prática V Conservação da energia mecânica

Gabriel Lima Alves n° 12558547 Jefter Santiago Mares n° 12559016 Vitória Bitencourte Galliac n° 12624818

Resumo

Nessa prática, para estudar a energia mecânica de um sistema massa mola com oscilação na vertical, foi feito dois experimentos. No primeiro, foi obtido a constante elástica k da mola utilizada, por meio da medida da deformação L para cada peso adicionado ao sistema (foram utilizados 10 pesos). No segundo experimento, foi calculada a velocidade com que o objeto preso à mola é suspenso uma vez que largado do repouso - sistema estava inicialmente preso ao chão -, para então obtermos a energia do conjunto massa-mola.

Objetivos

Essa Prática tem como objetivo encontrar a energia potencial gravitacional, potencial elástica e cinética de um sistema massa-mola para a obtenção de sua energia mecânica. Dessa forma, para a análise desejada, será obtido a constante elástica k da mola no primeiro experimento, enquanto que no segundo será obtido sua velocidade para que seja possível calcular a energia do sistema.

Introdução

A energia mecânica de um sistema que possui somente forças conservativas (realizam o mesmo trabalho em qualquer caminho possível entre dois pontos) em atuação, é determinada pela soma da energia cinética E_c e da energia potencial total E_p . A energia cinética está associada à velocidade de um corpo de massa m, e é descrita como

$$E_c = \frac{mv^2}{2} \tag{1}$$

Uma vez que o sistema estudado está disposto verticalmente, estarão em atuação não somente a força elástica F_E , como também a força gravitacional F_g , que podem ser associadas à energia potencial do conjunto estudado. A energia potencial gravitacional é determinada por

$$E_q = mgh (2)$$

onde h é a posição vertical do corpo em relação à posição inicial escolhida no início do experimento. Já a energia potencial elástica está relacionada à deformação da mola, sendo descrita como

$$E_E = \frac{k(L - L_0)^2}{2} \tag{3}$$

em que k é a constante elástica da mola e $L-L_0$ é sua deformação. Assim, pode-se concluir que a energia mecânica do sistema massa-mola que será estudado será calculada a partir de

$$E_m = E_c + E_p = \frac{mv^2}{2} + mgh + \frac{k(L - L_0)^2}{2}$$
(4)

Método experimental

Experimento 1: Parâmetros da mola

Para realizar a medida da energia mecânica é necessário saber o valor da constante elástica k, para isso foi fornecido alguns valores com os quais é possível se saber a constante. O sistema proposto para calcular a constante elástica foi uma mola pendurada na vertical com diversas massas diferentes sendo atadas a ela, causando assim uma deformação. A partir da variação do comprimento da mola, uma série de medidas foram feitas e tabeladas utilizando o método dos mínimos quadrados (MMQ). Assim, foi possível determinar o valor de k e o comprimento inicial da mola.

→ Definição de k pelo método dos mínimos quadrados MMQ

Como o sistema da mola está na vertical, podemos descrevê-lo como

$$P = m \cdot g = k \cdot (L - L_0)$$

então

$$k = \frac{m \cdot g}{L - L_0}$$

e pelo MMQ
$$a = \frac{\Sigma(x_i - \overline{x}) \cdot y_i}{\Sigma(x_i - \overline{x})^2}$$
, $\Delta a = \frac{\Delta y}{\sqrt{\Sigma(x_i - \overline{x})^2}}$, $b = \overline{y} - a\overline{x}$, $\Delta b = \sqrt{\frac{\Sigma x_i^2}{N \cdot \Sigma(x_i - \overline{x})^2}} \cdot \Delta y$, $\Delta y = \sqrt{\frac{\Sigma(y_{ci} - y_i)^2}{N - 2}}$, $y_{ci} = a \cdot x_i + b$.

Pelo método temos que

$$k \cdot L - k \cdot L_0 = a \cdot x - b$$

 $a \equiv k \quad e \quad b \equiv k \cdot L_0 \Longrightarrow L_0 = \frac{b}{k}$

Experimento 2: Medida da Energia Mecânica

Para iniciar o cálculo da energia mecânica do sistema primeiramente é necessário saber a contribuição da energia cinética para o valor final da energia, ou seja, calcular o valor da velocidade final do sistema quando ele sai do repouso.

ightarrow Definição da velocidade utilizando um lazer

Utilizando um lazer que incide sobre um sensor óptico conectado a um cronômetro digital e um cilindro com abas presa à mola, o sistema será largado do repouso. Quando o lazer for interrompido pela massa, o cronômetro irá parar e medirá a duração Δt que a massa levou para atingir a altura h_b do lazer.

Assim, será calculada a velocidade média $\bar{v} = \frac{D}{\Delta t}$, onde D corresponde ao comprimento do cilindro utilizado.

Com valores do tempo medido e do comprimento do cilindro suficientemente pequenos, a velocidade média poderá ser considerada uma aproximação da velocidade instantânea da massa.

Dessa forma, obtém-se todos os valores necessários para o cálculo da energia cinética, tornando possível a obtenção do valor da energia mecânica.

$$E_M = E_c + E_P \tag{5}$$

Resultados e discussão

Experimento 1: Parâmetros da mola

Foi construída uma tabela com os diferentes valores do peso de acordo com a equação $P=m\cdot g$. Para a incerteza do peso ΔP foi fornecido a incerteza da massa $\Delta m=1\cdot 10^{-4}$, sabendo que a incerteza de um produto por constante é $z=ax\Longrightarrow a\cdot \Delta x$, temos que:

$$P = mg \Longrightarrow \Delta P = g \cdot \Delta m$$

$$\Delta P = 9, 8 \cdot 0,00001 = 9, 8 \cdot 10^{-4}$$

Para o calculo da incerteza da medida do comprimento inicial utiliza-se a equação abaixo.

$$z = \frac{x}{y} = \frac{x \cdot \Delta y + y \cdot \Delta x}{y^2}$$
, logo, $\Delta L_0 = \frac{b \cdot \Delta a + a \cdot \Delta b}{a^2}$

A seguir está a tabela com os cálculos do peso para cada massa utilizada no experimento.

Tabela 1: Força peso com comprimento e massa variando.

i	$L \pm 4 \cdot 10^{-3} (m)$	$m \pm 1 \cdot 10^{-5} (kg)$	$P \pm 9, 8 \cdot 10^{-5}(N)$
1	0,403	0,01023	0,10036
2	0,605	0,03114	0,30548
3	0,900	0,05941	$0,\!58281$
4	1,067	0,07548	0,74046
5	1,305	0,09871	0,96835
6	1,492	0,11606	1,13855
7	1,710	0,13827	1,35643
8	1,938	0,15920	1,56175
9	2,160	0,18095	1,77512
10	2,378	0,20227	1,98427

Para confecção de um gráfico do peso em função da extensão da mola foi utilizado o método dos mínimos quadrados para achar a reta que melhor representa os dados, como demonstrado abaixo.

Tabela 2: Cálculos pelo MMQ, com x=L (m) e y=P (N).

i	x_i	$x_{-}i^2$	y_{-i}	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$(x_i - \overline{x}) \cdot y_{-i}$	y_{ci}	$y_{cy} - y_i)^2$
1	0,403	0,1624	0,1003	0,9928	0,9856	0,0996	0,1085	6,6466
1	0,605	0,3660	0,3054	0,7908	0,6253	0,2415	0,3003	2,6396
2	0,9	0,81	0,5828	0,4958	0,2458	0,2890	0,5805	5,3317
4	1,067	1,1385	0,7404	0,3288	0,1081	0,2434	0,7391	1,8446
5	1,305	1,7030	0,9683	0,0908	0,0082	0,0879	0,9651	1,0362
6	1,492	2,2260	1,1385	0,0962	0,0092	0,1095	1,1427	1,7374
7	1,71	2,9241	1,3564	0,3142	0,0987	0,4261	1,3497	4,4623
8	1,938	3,7558	1,5617	0,5422	0,2940	0,8467	1,5662	2,0478
9	2,16	4,6656	1,7752	0,7642	0,5840	1,3565	1,7771	3,9508
10	2,37	5,6549	1,9842	0,9822	0,9647	1,9490	1,9841	1,6826
Σ	13,958	23,4064	10,5132		3,9238	3,7264		10,513

Logo abaixo está o gráfico do peso em função do alongamento da mola.

Fig. 1: Gráfico feito a partir dos valores calculados pelo MMQ

\rightarrow Resultados

Determinamos o coeficiente angular como $\frac{a}{a} \pm \Delta a = 0$, $\frac{5}{94969} \pm 0$, $\frac{5}{90250}$, lembrando que a = k $\frac{N}{m}$ e $L_0 = \frac{b}{k}$, com $b \pm \Delta b = -0$, $\frac{27421 \pm 0}{00496}$ (m), temos que

$$L_o = \frac{b}{k} = \frac{b}{a} \Longrightarrow L_0 = \frac{|-0,27421|}{0,94969} = 0,2887363 = 28,8 \quad (cm)$$

Cálculo da incerteza ΔL_0 :

$$\Delta L_0 = \frac{(-0,27421) \cdot (0,00250) + (0,94969 \cdot 0,00496)}{(0,94969)^2}$$

$$\Delta L_0 = 0,004462676 \text{ (m)} = 0,4462676 \text{ (cm)}$$

Experimento 2: Medida da Energia Mecânica

O experimento dois foi divido em duas partes, na primeira as medidas foram feitas usando o solo como referencial enquanto que na segunda parte o referencial foi trocado para o laser.

\rightarrow Referencial: o solo

Nesse experimento primeiramente foi medido a extensão da mola (L_a) na situação A, que consiste no sistema em repouso tocando o solo. Logo depois, ainda na situação A, foi medido a altura em que o corpo esta do solo (H_a) , partindo do solo até centro de massa do corpo.

Em seguida, foi calculado esses mesmos valores porém para a situação B (L_b e H_b). Os valores encontrados estão abaixo.

$$L_a = 2,42 \pm 0,001 \text{ m}$$

 $H_a = 0,038 \pm 0,001 \text{ m}$

$$L_b = 1,315 \pm 0,001 \text{ m}$$

 $H_b = 1,145 \pm 0,001 \text{ m}$

Depois disso, com os intervalos de tempo medidos pelo cronometro, foi calculado a velocidade do corpo quando ele passa pelo laser na situação B.

Tabela 3: Tempo e diferença da média

i	$\Delta t_i(s)$	$\Delta t_i - \Delta \overline{t}(s)$
1	0,0246	0,00032
2	0,0247	0,00022
3	0,0259	0,00098
4	0,0248	0,00012
5	0,0246	0,00032

O valor médio do tempo foi de $\bar{t}=0.0249\pm0.0004$ s e utilizando a extensão do corpo de $D=0.07\pm0.001$ m é possível achar sua velocidade média $v=2.81\pm0.08^{\frac{m}{5}}$.

Assim, com esses valores foi calculado a energia total da situação \overline{A} (E_{Ta}) e da situação \overline{B} (E_{Tb}) utilizando a seguinte equação:

$$E_T = E_c + E_g + E_e = \frac{m \cdot v^2}{2} + m \cdot g \cdot h + \frac{k \cdot x^2}{2}$$

A tabela abaixo tem os valores de cada energia nas situações pedidas. O valor da massa do corpo utilizado no calculo foi $m=0,10774\pm0,00001$ Kg, já os valores de $L_0=0,289\pm0,004$ m e de $K=0,94969\pm0,00250\frac{N}{m}$ foram utilizados os valores encontrados no experimento anterior.

Tabela 4: Energia Total, referencial solo

Energia	Estado (A)	Estado (B)	Diferença
$E_c(J)$	0	$0,43 \pm 0,03$	
$E_g(J)$	$0,040 \pm 0,001$	$1,207 \pm 0,001$	
$E_e(J)$	$2,16 \pm 0,01$	$0,500 \pm 0,005$	
$E_T(J)$	$2,20 \pm 0,01$	$2,135 \pm 0,04$	$0,065 \pm 0,05$

Comparando os valores da energia total da situação A e B pela seguinte equação.

$$|E_{TA} - E_{TB}| < 2(\Delta E_{Ta} + \Delta E_{Tb})$$

 $|2, 2 - 2, 135| < 2(0, 01 + 0, 04)$
 $0, 065 < 0, 1$

Dessa forma, pode se observar que a energia total em ambas situações são equivalentes, assim conclui-se que houve conservação de energia no sistema.

\rightarrow Referencial: Laser

Para esta parte do experimento foi recalculado os valores de H_a e H_b utilizando o laser como referencial, assim os valores encontrados foram $H'_a = -1, 107 \pm 0,002$ m e $H'_b = 0$ m.

Utilizando esses valores, também foram recalculados a enargia total de cada situação como demonstrado na tabela abaixo.

Tabela 5: Energia Tota, referencial laser

Energia	Estado (A)	Estado (B)	Diferença	
$E_c(J)$	0	$0,43 \pm 0,03$		
$E_g(J)$	$-1,170 \pm 0,002$	0		
$E_e(J)$	$2,16 \pm 0,01$	$0,500 \pm 0,005$		
$E_T(J)$	$0,99 \pm 0,01$	$0,93 \pm 0,04$	$0,06 \pm 0,05$	

Assim como na parte anterior, comparando o valor da energia total em cada situação conclui-se que houve conservação da energia, visto que os dois valores são equivalentes.

$$|E_{TA} - E_{TB}| < 2(\Delta E_{Ta} + \Delta E_{Tb})$$

 $|0,99 - 0,93| < 2(0,01 + 0,04)$
 $0,06 < 0,1$

As únicas energias que foram afetadas pela mudança de referencial foram as energias potenciais gravitacionais. Porém, pode-se observar que o valor da energia total não se manteve constante com a mudança.

Conclusão

No primeiro experimento foi determinada a constante elástica da mola e o comprimento inicial L_0 , após montar o gráfico com valores calculados pelo método dos mínimos quadrados conseguimos encontrar $L_0=28,8\pm0,4$ (cm), valor dentro do esperado.

O experimento dois provou que um sistema isolado com apenas forças conservativas mantém sua energia total constante. Porém, ao trocar o referencial o valor da energia pode sofrer mudanças.

Referências

SCHNEIDER, José F. Laboratório de Física 1: Livro de práticas. São Carlos: 2016.