Лабораторная работа по теме LATEX

Мустафаев Алим. Группа М8О-113Б-23 $11 \ \text{февраля} \ 2024 \ \text{г}.$

1 Теорема Коши о вычетах. Приложение вычетов к вычислению определенных интегралов. Суммирование некоторых рядов с помощью вычетов

1.1 Теорема Коши о вычетах

Теорема. Если функция f(z) является аналитической на границе C области D и всюду внутри области, за исключением конечного числа особых точек $z_1, z_2, ..., z_n$, то

$$\int_{C} f(z)dz = 2\pi i \sum_{k=1}^{n} resf(z_k).$$

Пример 1. Вычислить интеграл

$$\int_{|z|=4} \frac{e^z - 1}{z^2 + z} dz.$$

 $\underline{Peшение.}$ В области $|\mathbf{z}|<4$ функция $f(z)=\frac{e^z-1}{z^2+z}$ аналитична всюду, кроме $\mathbf{z}=0$ и $\mathbf{z}=$ -1. По теореме Коши о вычетах

$$\int_{-1}^{1} z| = 4\frac{e^z - 1}{z^2 + z}dz \approx 2\pi(resf(0) + resf(-1))$$

Точка z=0 есть устранимая особая точка функции f(z), ибо

$$\lim_{x \to 0} \frac{e^x - 1}{z(z+1)} = 1.$$

Поэтому resf(0) = 0. Точка z = -1 – полюс первого порядка,

$$resf(-1) = \lim_{x \to -1} \left(\frac{e^z - 1}{z(z+1)} (z+1) \right) = 1 - e^{-1}$$

Таким образом,

$$\int_{|z|=4} \frac{e^z - 1}{z^2 + z} dz = 2\pi i (1 - e^{-1}).$$

Пример 2. Вычислить интеграл

$$\int_{|z|=2} \operatorname{tg} z dz.$$

 $\underline{Peшeнue}$. В области D: $|\mathbf{z}|<2$ функция $f(z)=\operatorname{tg} z$ аналитична всюду, кроме точек $z=\frac{\pi}{2}$ и $z=-\frac{\pi}{2}$, являющихся простыми полюсами. Все другие

особые точки $z_k = \frac{\pi}{2} + k\pi$ функции $f(z) = \operatorname{tg} z$ лежат вне области D и поэтому не учитваются.

$$\left. resf\left(\frac{\pi}{2}\right) = \left. \frac{\sin z}{(\cos z)} \right|_{z=\pi/2} = -1, resf\left(-\frac{\pi}{2}\right) = \left. \frac{\sin z}{(\cos z)'} \right|_{z=-\pi/2} = -1.$$

Поэтому

$$\int_{|z|=2} \operatorname{tg} z dz = -4\pi i.$$

Пример 3. Вычислить интеграл

$$\int_{x-i=3/2} \frac{e^{1/z^2}}{z^2+1} dz.$$

 $\underline{Peшeнue}$. В области D: $|z-i|<\frac{3}{2}$ функция $f(z)=\frac{e^{1/z^2}}{z^2+1}$ имеет две особые точка: z=i – после первого порядка и z=0 – существенно особая точка.

По формуле (5) из §9 имеем

$$resf(i) = \frac{e^{1/z^2}}{2z} \bigg|_{z=i} = \frac{e^{-1}}{2i}$$

Для нахождения вычета точки z=0 необходимо иметь лорановское разложение функции f(z) в окрестности точка z=0. Однако в данном случае искать ряд Лорана нет необходимости: функция ${
m f(z)}$ четная, и поэтому можно заранее сказать, что в ее лорановском разложении будут содержаться только четные степени z и $\frac{1}{z}$. Так что $c_{-1}=0$ и, следовательно,

$$resf(0) = 0$$

По теореме Коши о вычетах

$$\int_{|x-i|=3/2} \frac{e^{1/z^2}}{z^2+1} dz = \frac{\pi}{e}.$$

Пример 4. Вычислить интеграл

$$\int_{|z|=2} \frac{1}{z-1} \sin \frac{1}{z} dz.$$

 $\underline{Pewenue}$. В круге $|z| \leq 2$ подынтегральная функция имеет две особые точки z=1 и z=0. Легко установить, что z=1 есть простой полюс, поэтому

$$res_{z=1}\left(\frac{1}{z-1}\sin\frac{1}{z}\right) = \frac{\sin\frac{1}{z}}{(z-1)'}\Big|_{z=1} = \sin 1.$$

Для установления характера особой точки z=0 напишем ряд Лорана для функции $\frac{1}{z-1}\sin\frac{1}{z}$ в окрестности этой точки. Имеем

$$\frac{1}{z-1}\sin\frac{1}{z} = -\frac{1}{1-z}\sin\frac{1}{z} = (-1+z+z^2+\ldots)\left(\frac{1}{z} - \frac{1}{3!z^3} + \frac{1}{5!z^5} - \ldots\right)$$
$$= -\left(1 - \frac{1}{3} + \frac{1}{5!} - \ldots\right)\frac{1}{z} + \frac{c_{-2}}{z^2} + \frac{c_{-3}}{z^3} + \ldots +$$
$$c_{-k} \neq 0, k = 2, 3, \ldots$$

Так как ряд Лорана содержит бесконечное множество членов с отрицательными степенями z, то точка z=0 является существенно особой. Вычет подынтегральной функции в этой точке равен

$$res_{z=0} \frac{\sin\frac{1}{z}}{z-1} = c_{-1} = -\left(1 - \frac{1}{3!} + \frac{1}{5!} - \dots\right) = -\sin 1.$$

Следовательно,

$$\int_{|z|=2} \frac{1}{z-1} \sin \frac{1}{z} dz = 2\pi i (\sin 1 - \sin 1) = 0.$$

Задачи для самостоятельного решения

Вычислить интегралы:

$$\mathbf{347.} \int\limits_{|z|=1} z \tan \pi z dz. \qquad \mathbf{348.} \int\limits_C \frac{z dz}{(z-1)^2(z+2)}, \qquad \text{где } C: x^{2/3} + y^{2/3} = 3^{2/3}.$$

349.
$$\int_{|z|=2} \frac{e^x dz}{z^3(z+1)}.$$
 350.
$$\int_{|z-i|=3} \frac{e^{x^2}-1}{x^3-iz^2} dz.$$
 351.
$$\int_{|z|=1/2} z^2 \sin \frac{1}{z} dz$$

352.
$$\int_{|z|=\sqrt{3}} \frac{\sin \pi z}{z^2 - z} dz.$$
 353.
$$\int_{|z+1|=4} \frac{z dz}{e^x + 3}.$$
 354.
$$\int_{|z|=1} \frac{z^2 dz}{\sin^3 z \cos z}.$$

355.
$$\int_{|x-i|=1} \frac{e^z dz}{z^4 + 2z^2 + 1}.$$
 356.
$$\int_{|z|=4} \frac{e^{iz} dz}{(z-\pi)^3}.$$

357.
$$\int_C \frac{\cos\frac{z}{2}}{z^2-4}dz$$
, $C: \frac{x^2}{4}+y^2=1$. **358.** $\int_C \frac{e^{2z}}{z^3-1}dz$, $C: x^2+y^2-2x=0$.

359.
$$\int_C \frac{\sin \pi z}{(z^2-1)^2} dz$$
, $C: \frac{x^2}{4} + y^2 = 1$. **360.** $\int_C \frac{z+1}{z^2+2z-3} dz$, $C: x^2 + y^2 = 16$.