El grupo $\operatorname{GL}_2(\mathbb{F}_2) = \operatorname{SL}_2(\mathbb{F}_2)$

$$|\operatorname{GL}_n(\mathbb{F}_p)| = (p^n - 1) \cdot (p^n - p) \cdots (p^n - p^{n-1}), \quad |\operatorname{SL}_n(\mathbb{F}_p)| = \frac{1}{p-1} \cdot |\operatorname{GL}_n(\mathbb{F}_p)|.$$

Para p = 2 tenemos

$$|\operatorname{GL}_2(\mathbb{F}_2)| = |\operatorname{SL}_2(\mathbb{F}_2)| = (2^2 - 1)(2^2 - 2) = 6.$$

$$GL_2(\mathbb{F}_2) = SL_2(\mathbb{F}_2) = \{I, A, B, C, D, E\},\$$

donde

$$I=\begin{pmatrix}1&0\\0&1\end{pmatrix},\;A:=\begin{pmatrix}1&0\\1&1\end{pmatrix},\;B:=\begin{pmatrix}0&1\\1&0\end{pmatrix},\;C:=\begin{pmatrix}1&1\\0&1\end{pmatrix},\;D:=\begin{pmatrix}0&1\\1&1\end{pmatrix},\;E:=\begin{pmatrix}1&1\\1&0\end{pmatrix}.$$

La tabla de multiplicación

	I	Α	В	С	D	Ε
I	I	Α	В	С	D	Е
A	Α	I	D	Е	В	С
В	В	Е	I	D	С	Α
С	С	D	Е	I	Α	В
D	D	С	Α	В	Е	I
Е	Е	В	С	Α	I	D

La tabla de multiplicación de S_3

0	id	(1 2)	(23)	(13)	(1 2 3)	(132)
id	id	(1 2)	(23)	(13)	(1 2 3)	(1 3 2)
(12)	(12)	id	(1 2 3)	(1 3 2)	(23)	(13)
(23)	(23)	(1 3 2)	id	(1 2 3)	(13)	(12)
(13)	(13)	(1 2 3)	(1 3 2)	id	(1 2)	(23)
(1 2 3)	(1 2 3)	(13)	(12)	(23)	(1 3 2)	id
(1 3 2)	(1 3 2)	(23)	(13)	(1 2)	id	(123)