SPRAWDZIAN NR 2, TEORIA NIEZAWODNOŚCI I BEZPIECZEŃSTWA, STUDIA ST. II STOPNIA, R.A.2019/2020

- 1. Rozpiętość belki swobodnie podpartej wynosi L = 400 cm. Wskaźnik przekroju belki W i wytrzymałość materiału f są niezależnymi zmiennymi losowymi o rozkładach normalnych: $W \sim N(50, 9) [cm^3]$, $f \sim N(40, 10.24) [kN/cm^2]$.
 - Na belkę działają obciążenia ciągłe równomiernie rozłożone q_1 i q_2 niezależne zmienne losowe o parametrach: $q_1 \sim N(0.2, 0.0016)[kN/cm]$, $q_2 \sim N(0.4, 0.0064)[kN/cm]$.
 - Margines bezpieczeństwa ma postać $X = Wf (q_1 + q_2)L^2/8$.
 - Na podstawie wskaźnika niezawodności Cornella wyznaczyć prawdopodobieństwo awarii belki. Uwaga: zapis $X \sim N(\mu, \sigma^2)$ oznacza, że zmienna losowa X ma rozkład normalny z wartością oczekiwaną μ i wariancją σ^2 .
- 2. Wyznaczyć prawdopodobieństwo awarii elementu na podstawie wskaźnika Hasofera-Linda. Podać współrzędne punktu projektowego (x_R , x_Q). Funkcja graniczna ma postać f(R,Q)=R-Q, gdzie zmienne losowe mają rozkłady: $R \sim N(80,64)$ oraz $Q \sim N(50,36)$.
- 3. Biorąc pod uwagę dane z pkt.2 wyznaczyć prawdopodobieństwo awarii elementu stosując metodę Monte Carlo przyjmując przy generacji danych min. N=20. Wynik porównać z wartością uzyskaną w pkt. 2.
- 4. Obliczyć prawdopodobieństwo awarii układu równoległego oraz szeregowego n=20 niezależnych elementów. Prawdopodobieństwo awarii elementu P_{fi}=0,01.