Trigonometric Formulas Sheet / Fiche de Formules Trigonométriques

Reference Table / Tableau de référence

Angle (radians)	Angle (degrees)	$\sin(x)$	$\cos(x)$	$\tan(x)$
0	0°	0	1	0
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	90°	1	0	undefined

Arc Length & Sector Area / Longueur d'Arc & Aire d'un Secteur

Angle (radians)	Arc Length ${\cal L}$	Sector Area ${\cal A}$
θ	r heta	$rac{1}{2}r^2 heta$

Fundamental Identities / Identités Fondamentales

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$
 $\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$

Angle Transformations / Transformations d'Angles

Transformation	$\sin(lpha)$	$\cos(lpha)$	an(lpha)
Opposite Angle $(-lpha)$	$-\sin(lpha)$	$\cos(lpha)$	$-\tan(lpha)$
Supplementary Angle $(\pi-lpha)$	$\sin(lpha)$	$-\cos(lpha)$	$-\tan(lpha)$

Transformation	$\sin(lpha)$	$\cos(lpha)$	an(lpha)
Anti-Supplementary Angle $(\pi+lpha)$	$-\sin(lpha)$	$-\cos(lpha)$	an(lpha)
Complementary Angle $(rac{\pi}{2} - lpha)$	$\cos(lpha)$	$\sin(lpha)$	$\frac{1}{\tan(lpha)}$
Anti-Complementary Angle $(rac{\pi}{2}+lpha)$	$\cos(lpha)$	$-\sin(lpha)$	$-rac{1}{ an(lpha)}$
Periodicity $(2\pi+lpha)$	$\sin(lpha)$	$\cos(lpha)$	an(lpha)

Practice Questions / Questions d'Application

1. Opposite Angles / Angles Opposés

Compute $\sin(-\frac{\pi}{3})$.

Solution:

Using the identity $\sin(-\alpha) = -\sin(\alpha)$:

$$\sin(-\frac{\pi}{3}) = -\sin(\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$$

4. Complementary Angles / Angles Complémentaires

Compute $\sin(\frac{\pi}{2} - \frac{\pi}{3})$.

Solution:

Using the identity $\sin(\frac{\pi}{2} - \alpha) = \cos(\alpha)$:

$$\sin(\frac{\pi}{2}-\frac{\pi}{3})=\cos(\frac{\pi}{3})=\frac{1}{2}$$

5. Periodicity / Périodicité

Compute $\cos(2\pi + \frac{\pi}{4})$.

Solution:

Using the identity $\cos(2\pi+lpha)=\cos(lpha)$:

$$\cos(2\pi+\frac{\pi}{4})=\cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2}$$

6. Arc Length Calculation / Calcul de la Longueur d'Arc

A circle has a radius of **5cm**. Find the arc length corresponding to an angle of $\frac{\pi}{3}$.

Solution:

Using the arc length formula:

$$L=r heta$$
 $L=5 imesrac{\pi}{3}=rac{5\pi}{3}pprox 5.24~{
m cm}$

7. Sector Area Calculation / Calcul de l'Aire d'un Secteur

A sector has a radius of **4cm** and an angle of $\frac{\pi}{4}$. Find its area.

Solution:

Using the sector area formula:

$$A=rac{1}{2}r^2 heta$$
 $A=rac{1}{2} imes 4^2 imes rac{\pi}{4}$ $A=rac{16}{2} imes rac{\pi}{4}=rac{16\pi}{8}=2\pipprox 6.28 ext{ cm}^2$