Лекция 7. Деревья поиска II. Декартово дерево. Splay-дерево

#вшпи #аисд #теория

Автор конспекта: Гридчин Михаил

Сливаемые деревья поиска

Split/Merge и остальные операции

Def. **Split** принимает дерево поиска T и ключ x и разделяет на два дерева поиска, в первом все ключи < x, во втором $\ge x$.

Def. Операция **Merge** принимает T_1 и T_2 . При этом все ключи в $T_1 \le$ всех ключей в T_2 . Она объединяет два дерева в одно дерево T.

Как сделать вставку элемента x в дерево T?

- если x уже есть в T, то алгоритм окончен
- ullet иначе делаем $Split(T,x) \implies \{T_1,T_2\}$
- Возвращаем $Merge(T_1, Merge(Tree(x), T_2))$

Как сделать Erase элемента x из дерева T?

- $Split(T,x) \implies \{T_1,T_2\}$
- удаляем наивно x из T_1 (у него только один ребёнок)
- return $Merge(T_1', T_2)$

Как сделать удаление x быстрее?

• Найдём x в дереве и вместо него запишем результат Merge его детей, если их два, иначе сделаем наивное удаление

Декартово дерево поиска

Def. **Декартовым деревом поиска** называется бинарное дерево, содержащее пары $\{x_i, y_i\}$, при этом это двоичное дерево поиска по ключам и бинарная куча по приоритетам.

Свойство: декартово дерево поиска всегда можно построить единственным образом по данным парам $\{x_i, y_i\}$.

Merge в декартовом дереве деревьев T_1 и T_2 , где все ключи T_1 меньше всех глючей T_2 .

- ullet Если $T_1.\,root.\,y>T_2.\,root.\,y,$ то $T.\,root=T_1.\,root$
- Значит известно левое поддерево T: $T. root. left = T_1. root. left$
- $T. root. right = Merge(T_1. root. right, T_2)$
- Иначе действуем симметрично

Split

- Если $x > T.\,root.\,x$, то известно левое поддерево T_1 : $T_1.\,left = T.\,left$
- Тогда $\{T_1.right, T_2\} = Split(T.right, x)$
- Иначе действуем симметрично

Утверждение. Время работы *Split* и *Merge* $\sim O(h)$. Время работы *Erase*, *Insert* пропорционально максимуму из времени работы *Merge* и *Split*.

Теорема (б/д). В декартовом дереве из N узлов, приоритеты у которого являются случайными величинами с равновероятным равномерным распределением, средняя глубина вершины O(logN)

Следствие. Время работы Erase, Insert составляет O(logN) в среднем.

Splay дерево

Пусть есть элементы, к которым обращаются с разной частотой. Есть "горячие элементы", к которым чаще обращаются и "холодные элементы", к которым реже обращаются. Хочется хранить "горячие элементы" выше, чтобы доступ к ним был быстрее, чем к "холодным". Можно доказать, что Splay-дерево - это теоретически лучшее дерево поиска. То есть утверждается, что оно теоретически оптимально с точки зрения теории информации.

Def. Операция **zig** применяется только для узлов на глубине 1 и делает поворот вокруг ребра $\{x, p(x)\}$

splay-tree zig.png

Def. Операция **zig-zig** применяется, если x - односторонний внук. Выполняется сначала поворот $\{p,g\}$, затем поворот вокруг ребра $\{x,p\}$.

splay-tree zig-zig.png

Def. Операция **zig-zag** применяется, если x - разносторонний внук. Сначала выполняется поворот $\{x,p\}$, затем поворот $\{x,g\}$.

splay-tree zig-zag.png

Def. Операция **Splay(x)** является комбинацией поворотов различного типа, чтобы сделать x корнем дерева. То есть Splay(x) поднимает вершину x в корень дерева, производя при этом повороты zig, zig-zig, zig-zag.

Другие операции в Splay-дереве:

 $Merge(T_l, T_r)$

- выполняем $Splay(T_l. max)$
- Подвешиваем T_r как правый ребёнок $T_l.\ max$ Split(x)
- ullet выполним $Splay(lower_bound(x)),\ lower_bound$ как в наивной реализации
- Возвращаем x. left и x Find(x)
- находим узел в этом дереве
- ullet выполняем Splay(x) Insert(x)
- наивно вставляем x
- выполняем Splay(x) Erase(x)
- делаем Find(x)
- выполняем Merge от его детей.
- удаляем x

Доказательство времени работы Splay

Def. Рангом вершины х назовём величину $r(x) = log_2C(x)$, где C(x) - размер поддерева вершины х включая её. Заметим, что $r(x) \geq 1$.

Def. Потенциалом Splay-дерева Т назовём величину

$$\phi(T) := \sum_{v \in T} r(v)$$

Note. далее r и r' - ранги до и после преобразований

Теорема (время работы Splay): Амортизированное время поворотов в Splay(x) с корнем в t не превосходит 3r(t)-3r(x)+1. Амортизированное время работы Splay(x) равно O(logN)

Доказательство:

Операция zig

splay-tree zig.png

Поскольку выполнен один поворот, то амортизированное время выполнения шага равно

$$T=1+r'(x)+r'(p)-r(x)-r(p)$$

r(p) уменьшился, поэтому $T \leq 1 + r'(x) - r(x)$ (т.к. $r'(p) - r(p) \leq 0$)

r(x) увеличился, поэтому $r'(x)-r(x)\geq 0$

Поэтому умножим на 3, не меняя знака

$$T \leq 1 + 3r'(x) - 3r(x) \implies Q. E. D$$

Операция zig-zig

splay-tree zig-zig.png

Выполнено два поворота. Поэтому амортизированное время выполнения шага равно

$$T = 2 + r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$

Заметим, что r'(x) = r(g). Тогда

$$T = 2 + r'(p) + r'(g) - r(x) - r(p)$$

Далее, так как $r(x) \leq r(p)$, получаем, что $T \leq 2 + r'(p) + r'(g) - 2r(x)$. $r'(p) \leq r'(x)$, получим, что $T \leq 2 + r'(x) + r'(g) - 2r(x)$. Хотим доказать, что $T \leq 2 + r'(x) + r'(g) - 2r(x) \leq 3(r'(x) - r(x))$, то есть $r(x) + r'(g) - 2r'(x) \leq -2$.

Это равносильно

$$(r(x)-r'(x))+(r'(g)-r'(x))=log_2rac{C(x)}{C'(x)}+log_2rac{C'(g)}{C'(x)}=log_2rac{C(x)C'(g)}{C'(x)^2}\leq -2$$

Заметим, что

$$\begin{cases} C'(g) + C(x) \leq C'(x) \iff (\frac{C'(g) + C(x)}{2})^2 \leq \frac{C'(x)^2}{4} \\ \sqrt{C'(g)C(x)} \leq \frac{C'(g) + C(x)}{2} \iff C'(g)C(x) \leq (\frac{C'(g) + C(x)}{2})^2 \end{cases} \implies C'(g)C(x) \leq \frac{C'(x)^2}{4}$$

Откуда $rac{C'(g)C(x)}{C'(x)^2} \leq rac{1}{4} \iff log_2 rac{C(x)C'(g)}{C'(x)^2} \leq -2 \implies Q.\,E.\,D$.

Операция zig-zag

splay-tree zig-zag.png

Выполнено два поворота, амортизированное время равно

$$T = 2 + r'(x) + r'(p) + r'(g) - r(p) - r(x) - r(g)$$

Заметим, что $r^{\prime}(x)=r(g)$. Тогда

$$T = 2 + r'(p) + r'(g) - r(x) - r(p)$$

Далее, так как $r(x) \leq r(p)$, получаем, что $T \leq 2 + r'(p) + r'(g) - 2r(x)$. Хотим доказать, что $T \leq 2 + r'(p) + r'(g) - 2r(x) \leq 2(r'(x) - r(x))$, то есть, что $r'(p) + r'(g) - 2r'(x) \leq -2$ Это равносильно

$$(r'(p)-r'(x))+(r'(g)-r'(x))=log_2rac{C'(p)}{C'(x)}+log_2rac{C'(g)}{C'(x)}\leq -2$$

Заметим, что $C'(p) + C'(g) \le C'(x)$, применение неравенства о средних аналогично операции **zig-zig** $\implies Q.E.D.$

Соединяем

Из рассуждений выше операции **zig-zig** и **zig-zag** удовлетворяет соотношению $T \leq 3r'(x) - 3r(x)$.

Пусть ключ x стартует с узла x_0 в дереве и проходит положения x_1, \ldots, x_k до операции \mathbf{zig} .

Тогда получается, что $x_{k+1}=t$. Откуда время работы Splay(x) равно

$$T(Splay) \leq \sum_{i=0}^{k-1} (3r(x_{i+1}) - 3r(x_i)) + T(zig) = 3r(x_k) - 3r(x_0) + T(zig) \leq \ \leq 3r(t) - 3r(x_0) + 1 = O(logN) \implies Q.~E.~D$$