GPGPU L1 Data Cache coreReq/coreRsp spec

金楚丰

coreReq Interface overview

```
class DCacheCoreReq
       instrld = UInt(WIdBits.W)
       isWrite = Bool()
       tag = UInt(TagBits.W)
       setIdx = UInt(SetIdxBits.W)
       perLaneAddr = Vec(NLanes, new DCachePerLaneAddr)
       data = Vec(NLanes, UInt(WordLength.W))
class DCachePerLaneAddr
       activeMask = Bool()
       blockOffset = UInt(BlockOffsetBits.W)
       wordOffset1H = UInt(BytesOfWord.W)
```

coreReq Interface Field Definition

- instrld
 - 由LSU生成,要求不同warp的不同指令有唯一编号。
 - 这一标识字段作用有二
 - 1、LSU用来聚合返回的uncoalesced请求
 - 2、L2返回时在TileLink中区分请求
- isWrite
 - 指令本体的一部分,区分是READ还是WRITE
- tag, setIdx
 - 所有Lane共用,地址字段的一部分
- activeMask
 - 每个Lane独有,来自Mask寄存器,指示当前Lane是否活跃
- blockOffset
 - 每个Lane独有, 由地址字段和访存类型转换而来
- wordOffset1H
 - 每个Lane独有,由地址字段和访存类型转换而来

THU DSPLAB internal-use

tag setIdx blockOffset Definition

- tag, setIdx
 - 地址字段的一部分
 - 所有Lane共用
 - 一般是最高两个字段
- blockOffset
 - 每个Lane独有
 - 介于setIdx和wordOffset之间的字段

- Nlane = 4, BlockSize = 8
- tag, setIdx, wordOffset1H与blockOffset四者相 互独立

- A coalesced request of successive address
 - VL* unit-stride
 - base addr(LSB 8 bits) = 0x10

	Lane1	Lane2	Lane3	Lane4
blockOffset (3 bits)	b100	b101	b110	b111
activeMask	1	1	1	1

address0x0c block 0 address0x1c block 1 block 2 address0x5c -个word(四个byte)

address0x00

THU DSPLAB internal-use

- An uncoalesced request of successive address
 - VL unit-stride
 - base addr(LSB 8 bits) = 0x18

Req in cycle 1	Lane1	Lane2	Lane3	Lane4
blockOffset (3 bits)	b110	b111	X	X
activeMask	1	1	0	0

Req in cycle 2	Lane1	Lane2	Lane3	Lane4
blockOffset (3 bits)	X	X	b000	b001
activeMask	0	0	1	1

- An uncoalesced request of jump address
 - VLS strided
 - stride = 2
 - base addr(LSB 8 bits) = 0x14

Req in cycle 1	Lane1	Lane2	Lane3	Lane4
blockOffset (3 bits)	b101	b111	X	X
activeMask	1	1	0	0

Req in cycle 2	Lane1	Lane2	Lane3	Lane4
blockOffset (3 bits)	X	X	b001	b011
activeMask	0	0	1	1

- A coalesced request of scatter-gather
 - VLX indexed
 - 注意core Lane的请求顺序和内存数据的顺序可以不同

Req in cycle 1	Lane1	Lane2	Lane3	Lane4
blockOffset (3 bits)	b101	b011	b111	b000
activeMask	1	1	1	1

• 这个例子挖掘了core-mem乱序重排的最大 带宽

- An uncoalesced request of scatter-gather
 - VLX indexed

• 本例中4个Lane被mask off一个

Req in cycle 1	Lane1	Lane2	Lane3	Lane4
blockOffset (3 bits)	b101	X	X	X
activeMask	1	0	0	0
Req in cycle 2	Lane1	Lane2	Lane3	Lane4
blockOffset (3 bits)	Х	X	b011	X
activeMask	0	0	1	0
Req in cycle 3	Lane1	Lane2	Lane3	Lane4
blockOffset (3 bits)	Х	X	X	b110
			HU DSPLAB inte	

	address0x00
block 0	address0x0c
block 1	
block 2	address0x5c
	□ 一个word(四个byte)

wordOffset1H Definition

- wordOffset1H
 - 每个Lane独有
 - 指示当前访问是Word, Half word还是Byte
 - 原始地址字段中的最低2 bit, 但这里需要扩展为4 bit:

• 举例如下:

case 1 addrLSB = ...100, byte access wordOffset1H = 0001 case 2 addrLSB = ...110, byte access wordOffset1H = 0100 case 3 addrLSB = ...100, half word access wordOffset1H = 0011 case 4 addrLSB = ...101, half word access illegal case 5 addrLSB = ...110, half word access wordOffset1H = 1100 THIJ DSPLAB internal-use

case 6 addrLSB = ...100, word access wordOffset1H = 1111 case 789 addrLSB = ...101, word access addrLSB = ...110, word access addrLSB = ...111, word access illegal

coreRsp Interface

```
class DCacheCoreRsp
    instrld = UInt(WIdBits.W)
    data = Vec(NLanes, UInt(WordLength.W))
    activeMask = Vec(NLanes, Bool())
```

• 可想而知,每次返回的数据肯定都位于同一个block