课程编号: 100051240 北京理工大学 <u>2022</u> — <u>2023</u> 学年 第 <u>—</u> 学期

2021 级 电路分析基础 课程试卷 A 卷

开课学院:	 集成电路与电子学院	<u>:</u>	任课教师:						
试卷用途: □其	期中 🗆 🗵 期末	□补考 □重	重修						
考试形式: □ ヲ	开卷 □半开卷	团闭卷							
考试日期:2	2022年12月3日		所需时间: _120	分钟					
考试允许带:_	计算器			入场					
班级:	学号:_		姓名:						
大 <u>华</u> 大 <u>华</u> 大 华 大 华									

在线考试诚信承诺书

考试是对知识与能力的检验,也是对道德素质的检验。在线考试也必须恪守诚信原则。

我已成功下载本次《电路分析基础》课程期末考试试卷,并承诺在考试过程中严于律己,自觉遵守以上考试规则,诚信考试。

承诺人 (签字):

年 月 日

题序	1	1 1	111	四	五.	六	七	八	九	总分
满分	10	20	8	10	10	12	8	10	12	100
得分										
评卷人										

备用数据:

-----以下为试卷内容------

- 一. 判断题(每小题 2 分, 共 10 分)。要求每题回答"正确"或"错误", 对回答"错误"的题要改错。
- 1. 图 1 所示电路中电压 u 和电流 i 为关联参考方向。

- 2. 图 2 中元件 A 吸收功率 10W。
- 3. 电流 $i_s = (1 + \sqrt{2} \sin 1000t) A$ 的有效值为 2A。
- 4. 图 3 所示电路中,当 $U_{s1}=1$ V, $U_{s2}=0$ V时, R_{1} 的平均功率 $P_{1}=1$ W,当 $U_{s1}=0$ V, $U_{s2}=1$ V时, R_{1} 的平均功率 $P_{1}=1$ W,当 $U_{s1}=1$ V, $U_{s2}=1$ V时, R_{1} 的平均功率 $P_{1}=2$ W。

5. 图 4(a), (b)两个单口网络互相等效。

二.填空题(每题2分,共20分)

- 3. 已知某个电感在 3 次谐波下的感抗为 $90\,\Omega$,则该电感在 5 次谐波下的感抗值为。
- 4. 对于有n个节点、b条支路的电路,可以列出______个独立的 KVL 方程。
- 5. 若一个电容量为 C 的电容元件流过的电流为 $i_{c}(t)$,其两端的电压为 $u_{c}(t)$ 且 $u_{c}(-\infty)=0$,则在时刻 t 其储存的能量为_____。
- 6. 当二阶电路无外加激励、仅有初始储能时,若特征根为两个不相等的负实根,则电路的过渡过程处于_____(无/欠/临界/过阻尼)状态,其响应____(有/无)振荡。
- 8. 图 5 所示电路中的电压 $U = ____V$ 。

- 10. 已知 RC 并联电路在 $f_1 = 50$ Hz 时,等效导纳 $Y_1 = (2 + j4)$ S ,那么当外加输入电源频率变为 $f_2 = 150$ Hz 时,该 RC 并联电路的等效导纳 $Y_2 =$ ______S。

以下为计算题,必须有解题步骤,否则不能得分。

三. (8分) 电路如图 7 所示, 请列出以 i_{m1} , i_{m2} 和 i_{m3} 为网孔电流变量的网孔电流方程。

五.(10分)已知具有 ab 和 cd 两个端口的含源电路如图 9 所示,设负载电阻 $R_L=2\Omega$,试确定 R_L 接于 ab 端还是 cd 端获得的功率更大?

- 六. (12 分) 电路如图 10 所示,已知 $u_{\mathbb{C}}(0^-)=0$,t=0时开关闭合,求: (1) $t\geq 0$ 时的 $u_{\mathbb{C}}(t)$,并画出其波形图; (2) $t\geq 0$ 时的 $i_{\mathbb{C}}(t)$ 。
- 七. $(8 \, \mathcal{G})$ 已知某 RL 串联电路在某频率下的等效阻抗为 $(1+j2)\Omega$,消耗的有功功率为 9W。求该 RL 串联电路的电流 I、无功功率 Q、视在功率 S 和功率因数 λ 。

- 八. (10分) 某收音机的输入回路如图 11 所示,其中 L=0.3mH, $R=10\Omega$,为收到电台 560kHz 的信号,求:
 - (1) 调谐电容 C 值;
- (2) 如果输入电压有效值为1.5μV,求谐振电流有效值、电路的品质因数和谐振时的电容电压有效值。

九. (12分) 电路如图 12 所示,已知L=0.1H, $R=20\Omega$,

 $u(t) = 10 + 50\cos 100t + 100\cos 200t + 200\cos 300t \text{ V}$,以 $u_L(t)$ 为输出。试比较u(t)

与 $u_L(t)$ 随频率的变化并据此判断该电路具有何种滤波特性。

