Binôme de Newton

On note a, b deux nombres réels et n un entier naturel non nul.

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{3\!\!-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}b^n = \sum_{k=0}^n \binom{n}{k}a^{n-k}b^k$$

Triangle de Pascal

Dénombrement

Arrangement simple

Si, parmi n éléments distincts, on choisit k éléments distincts $(k \le n)$ en les classant dans un ordre particulier, on forme un arrangement simple (de k éléments choisis parmi n). Le nombre A_k^n d'arrangements simples est

 $A_k^n = n(n-1)\dots(n-k+1) = \frac{n}{(n-k)!}$

nbre
$$A_k^n$$
 d'arrangements simples est

Arrangement avec répétitions

fold to même) en les classant dans un ordre particulier, on forme un arrangement avec répétitions $\mathbb{S}_{1, \text{ parmi }}$ n éléments distincts, on choisit k éléments distincts ou non (on peut choisir plusieurs (de k eléments choisis parmi n).

Le nombre A_k^n d'arrangements avec répétitions est

$$\overline{A_k^n} = n^k$$

Permutation simple

Si on classe dans un ordre particulier n éléments distincts, on forme une permutation simple (de ces n éléments).

Le nombre P_n de permutations simples est

$$P_n = n!$$

Permutation avec répétitions

Si on classe dans un ordre particulier n éléments dont n_1 sont identiques de type $1, n_2$ identiques de type $2, \ldots, n_p$ identiques de type $p(n_1 + n_2 + \ldots + n_p = n)$, on forme une permutation avec répétitions (de ces n éléments).

Le nombre $\overline{P}(n_1, n_2, \dots, n_p)$ de permutations avec répétitions est

$$\overline{\overline{P}(n_1, n_2, \dots, n_p)} = \frac{n!}{n_1! n_2! \dots n_p!}$$

Combinaison simple

Si, parmi n éléments distincts, on choisit k éléments distincts $(k \le n)$ sans les classer dans un ordre particulier, on forme une combinaison simple (de k éléments choisis parmi n). Le nombre C_k^n de combinaisons simples est

$$C_k^n = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Combinaison avec répétitions

Si, parmi n éléments distincts, on choisit k éléments distincts ou non (on peut choisir plusieurs fois le même) sans les classer dans un ordre particulier, on forme une combinaison avec répétitions (de k éléments choisis parmi n).

Le nombre $\overline{C_k^n}$ de combinaisons avec répétitions est

$$\overline{C_k} = \frac{(n+k-1)!}{k!(n-1)!} = \binom{n+k-1}{k}$$

Calcul financier

Intérêts simples et composés

\mathcal{C}_0	C_n	i	I_n	r = 1 + i	$v = \frac{1}{r}$
Sapital initial (valeur actuelle)	laleur acquise après n années	ľaux d'intérêt annuel	ntérêt produit après n années	acteur de capitalisation annuel	acteur d'actualisation annuel

$$I_n = C_0 i n$$
 $I_n = C_0 (r^n - 1)$ $C_n = C_0 (1 + i n)$ $C_n = C_0 r^n$ $C_0 = \frac{C_n}{1 + i n}$ $C_0 = C_n v^n$

Intérêts simples Intérêts composés