lecture - 1.

* Complex numbers:

wordingte urordingte

Def!: - A complex number is an ordered pair (x,y) $x,y \in \mathbb{R}$ and written as z:=x+iy just a symbol where i stands for $\sqrt{-1}$. (i.e. i.i=-1)

Not C: set of all complex nos.

(So, note that complex no. system perovides an entity which iet-I and which is not there in real no. system)

Eg: 3+2i, (1=)1+0i, 0+i, x+i

Define: - the For a complex no 2 = x+iy,

define seeal part of 2:= x =: Re(2)

imaginary part of z = y = : Im (2)

Quest: Is 0 a complex no.? Is 1 a complex no.?

Basic Anthrefic:

(1) Two complex nos t_1 and t_2 are equal if and only if $\text{Re}(t_1) = \text{Re}(t_2)$ and $\text{Im}(t_1) = \text{Im}(t_2)$

complex addition/specification

2) $z_1 \pm z_2 := (u + v_2) \pm i(v_1 \pm v_2)$ where the obesations $v_1 + iv_2$ where the obesations $v_1 + iv_2$ and operate $v_2 + iv_3$ on $v_3 + iv_4$ on $v_4 + iv_5$ are the obesations of leval $v_4 + iv_5$ and $v_6 + iv_6$ on $v_6 + i$

 $\frac{3}{2} \quad \frac{2_{1} \cdot 2_{2}}{2_{1}} = (\gamma_{1} + i y_{1})(\gamma_{2} + i y_{2}) = \gamma_{1}\gamma_{2} + \gamma_{1}(iy_{2}) + (iy_{1})\gamma_{2} + (iy_{1})\gamma_{2}$ $\frac{1}{2_{1}} \quad \frac{1}{2_{1}} \quad \frac{1}{2$

$$(x_1, x_2) = (x_1 x_2 - y_1 y_2)$$
 and $(x_1 x_2) = (x_1 y_1 + x_2 y_1 + x_3 y_2)$

(y) Division: tet
$$z_1 \neq 0 + i.0$$

$$\frac{z_1}{z_2} = \frac{x_1 + i.y_1}{x_1 + i.y_2} = \frac{(x_1 + i.y_1)(x_2 - i.y_2)}{(x_2 + i.y_2)(x_2 - i.y_2)}$$

perform
$$(x_1 x_2 - y_1 y_2) + i(x_2 y_1 - x_1 y_2)$$

both the multiplicate: $(x_1^2 + y_2^2)$

$$= \frac{2ix_{2} - y_{1}y_{2}}{(y_{1}^{2} + y_{1}^{2})} + i \left(\frac{x_{1}y_{1} - x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}}\right)$$

$$= \frac{2ix_{2} - y_{1}y_{2}}{(y_{1}^{2} + y_{1}^{2})} + i \left(\frac{x_{1}y_{1} - x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}}\right)$$

$$= \frac{11}{Re\left(\frac{21}{22}\right)}$$

$$= \frac{2ix_{2} - y_{1}y_{2}}{(y_{1}^{2} + y_{2}^{2})} + i \left(\frac{x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}}\right)$$

$$= \frac{11}{Re\left(\frac{21}{22}\right)}$$

$$= \frac{2ix_{2} - y_{1}y_{2}}{(y_{1}^{2} + y_{2}^{2})} + i \left(\frac{x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}}\right)$$

6 Properties:

Properties:

i)
$$z_1 + z_2 = z_2 + z_1$$
 [+ollows from the similar properties of seeal nois.]

iii)
$$t_1 + (t_2 + t_3) = (t_1 + t_2) + t_3$$
.

(vi)
$$\forall x \in \mathbb{C}$$
, $-2 := -x + i(-y)$, then $2 + (-2) = 0$

(Vii)
$$\frac{1}{7} = \frac{1+0i}{2}$$
 $\frac{as}{defined}$ $\frac{r}{a^2+y^2} + i \frac{-y}{a^2+y^2}$ then $\frac{1}{7} = 1$.

 $C = \{a+ib, a, b \in \mathbb{R}\}$: the set of complex no.

For XEIR, $\alpha = \alpha + i \cdot 0$ is a complex no.

In others words, IR = 0

(Particularly, 1 = 1 + iD, and 0 = 0 + iD, Re(1) Im(1) Re(5) Im(0)

-> There are (1) arithmetic operations (addition, multi) for

Ex: Notice that: sperations of I when scenticted to IR, are same as the operations in IR.

) Inside (), we have IR: extio

· 0 + ib : purely imaginary nos.

2=x+iy=(x,y) (y-axis) x I maginary axis

> real aris (X-axis)

X-Y- Plane.

4

Conjugation: for a complex no
$$z=x+iy$$
,

define eonjugate of z as $x-iy$ $\neq x+i(y)$

written as $\overline{z}:=x-iy$.

Verify:
$$\frac{1}{2} = 2i + iy$$
, then $\frac{1}{2} + \frac{1}{2} = (x_1 + x_2) + i(x_1 + x_2)$
 $\frac{2}{3} = x_3 + iy_2$ =) $\frac{1}{2} = (x_1 + x_2) - i(y_1 + y_2)$
 $\frac{1}{2} = x_1 - iy$
 $\frac{1}{2} = x_2 - iy_2$, then $\frac{1}{2} + \frac{1}{2} = (x_1 + x_2) - i(y_1 + y_2)$

Ex: - Verify the other equalities by comparing Lihis, and Rins.

(iv) Re(2) =
$$\frac{2+\overline{2}}{2}$$
; $Jm(2) = \frac{2-\overline{2}}{2}$

(V) Of
$$z=z+i\cdot 0$$
, then $\overline{z}=0$
If $z=0+i\cdot y$ then $\overline{z}=-z$

· 2; reflection 2 2.

Averagh X-axis.

3

Fact So, the conjugate of complus no is itself iff

Proof: - let $z = x + i \cdot 0$ then $\overline{z} = x - i \cdot 0 = 2$. Conversely let $z = \overline{z}$ $\Rightarrow x + iy = x - iy$ $\Rightarrow x = x$, y = -y.

thus 7= 2+io is a real Y=0.

EXI

The conjugate of a complex $\frac{1}{2} = -2$ if and only if 2 = 0 + iy is purely imaginary

