MATH 420/507 Assignment 4

Jingyuan Hu (Juan) #41465155

Problem 1(a).

Proof. Let f be a characteristic function $\mathcal{X}_{[a,b]}$, then

$$\lim_{n \to \infty} \int_{\mathbb{R}} e^{inx} f(x) dx = \lim_{n \to \infty} \int_{\mathbb{R}} e^{inx} \mathcal{X}_{[a,b]} dx = \lim_{n \to \infty} \int_{a}^{b} e^{inx} dx = \lim_{n \to \infty} \frac{i(e^{inb} - e^{ina})}{n} = 0$$
 (1)

Since $f \in L^1(dx)$, for all $\epsilon > 0$, we can find a simple function $g = \sum_{i=1}^m a_j \mathcal{X}_{E_j}$ such that $\int |f - g| \leq \epsilon$ and an N such that for all $n \geq N$, we have $\left| \int_{\mathbb{R}} e^{inx} \mathcal{X}_{E_j} dx \right| \leq \epsilon / [m \times \max\{|a_1|, ..., |a_m|\}]$ for all j. Hence, $\left| \int_{\mathbb{R}} e^{inx} g(x) dx \right| = \left| \int_{\mathbb{R}} e^{inx} \sum_{i=1}^m a_j \mathcal{X}_{E_j} dx \right| = \left| \sum_{i=1}^m a_j \int_{\mathbb{R}} e^{inx} \mathcal{X}_{E_j} dx \right| \leq \epsilon$. Therefore for all $n \geq N$, we have

$$\left| \int_{\mathbb{R}} e^{inx} f(x) dx \right| \le \left| \int_{\mathbb{R}} e^{inx} [f(x) - g(x)] dx \right| + \left| \int_{\mathbb{R}} e^{inx} g(x) dx \right|$$

$$\le \int_{\mathbb{R}} \left| f(x) - g(x) \right| dx + \epsilon$$

$$\le 2\epsilon$$
(2)

Hence $\lim_{n\to\infty} \int_{\mathbb{R}} e^{inx} f(x) dx = 0.$

Problem 2(a).

Proof. Since f_n converges to $f \in L^+$, there exists a sequence of sets $\{E_n\}_{n=1}^{\infty}$ such that $\mu(E_n^c) < \frac{1}{n} = \epsilon$ and $f_n \to f$ uniformly on E_n . Define $E := \bigcup_{n=1}^{\infty} E_n$, then we have $\mu(E^c) \leq \liminf_{n \to \infty} \mu(E_n^c) = 0$. Then $f_n \to f$ pointwise on E where $\mu(E^c) = 0$. Therefore, $f_n \to f$ a.e.

Problem 2(b).

Proof. For every $\epsilon, \delta > 0$, \exists set E and $N \in \mathbb{N}$ such that $\forall n \geq N, |f_n(x) - f(x)| < \epsilon$ for all $x \in E$ and $\mu(E^c) < \delta$, then we have $\mu(\{x | |f_n(x) - f(x)| \geq \epsilon\}) \leq \mu(E^c) < \delta$ since $A = \{x | |f_n(x) - f(x)| \geq \epsilon\} \subseteq E^c$. Therefore by definition $f_n \to f$ in measure.

Problem 3.

Proof. We will prove by contradiction. Suppose $f_n \not\to f$ in L^1 . Then $\exists \epsilon > 0$, \exists a subsequence $\{n_k\}$ such that $\int |f_{n_k} - f| \ge \epsilon$ for all k. Since $f_n \to f$ in measure, $f_{n_k} \to f$ in measure and hence there exist a subsequence $\{n_k'\}$ of $\{n_k\}$ such that $f_{n_k'} \to f$ almost everywhere. Also $|f_{n_k'}| \le g(x) \in L^1$, then by dominated convergence theorem we have $f \in L^1$ and $\lim_{n \to \infty} \int |f_{n_k'} - f| = 0$ which contradicts with the assumption. Therefore we have proven $f_n \to f$ in L^1 .

Problem 4.

Proof. By definition, $f(n,m) = \delta_{n,m} - \delta_{n,m+1} = 1$ if n = m, equals -1 if n = m+1 and equals 0 otherwise. Then we have:

$$\int \int f d\mu d\nu = \int \int f(n,m) d\mu(n) d\nu(m) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(n,m) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \delta_{n,m} - \delta_{n,m+1} = \sum_{m=1}^{\infty} (1 - 1 + 0) = 0$$
(3)

$$\int \int f d\nu d\mu = \int \int f(n,m) d\nu(m) d\mu(n) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} f(n,m) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \delta_{n,m} - \delta_{n,m+1} = \sum_{n=1}^{\infty} \mathcal{X}_{\{n=1\}} = 1 \quad (4)$$

Therefore $\int \int f d\mu d\nu \neq \int \int f d\nu d\mu$. The counting measure μ, ν are σ -finite on \mathbb{N} , but $f \notin L^+(\mu \times \nu)$ since $\int |f| = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |f(n,m)| = \sum_{m=1}^{\infty} 2 = \infty$, so the Fubini's and Tonelli's theorem can not be applied here.

Problem 5.

Proof. To show f*g is well defined for a.e x, we will show f(x-y)g(y) is integrable with respect to y on \mathbb{R} , by definition it suffices to show $\int_{\mathbb{R}} |f(x-y)g(y)|dy \leq \infty$. Denote $\phi(x) = \int_{\mathbb{R}} |f(x-y)g(y)|dy \geq 0$, then it is equivalent to show $\phi(x) < \infty$ a.e. Since any integrable function is finite a.e, it suffices to show $\phi(x)$ is integrable, which by definition is equivalent to show $\int_{\mathbb{R}} |\phi(x)|dx = \int_{\mathbb{R}} \phi(x)dx \leq \infty$. Therefore, it suffices to show:

$$\int_{\mathbb{R}} \phi(x)dx = \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x-y)g(y)| dy dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x-y)g(y)| dx dy \text{ by Tonelli's theorem}$$

$$= \int_{\mathbb{R}} |g(y)| \int_{\mathbb{R}} |f(x-y)| dx dy$$

$$= \int_{\mathbb{R}} |g(y)| \int_{\mathbb{R}} |f(z)| dz dy \text{ by substituion } z = x - y$$

$$= \int_{\mathbb{R}} |g(y)| dy \int_{\mathbb{R}} |f(z)| dz$$

$$< \infty \text{ since f, g are integrable functions}$$

$$(5)$$

Therefore f*g is well defined, and we've also proved that f*g is integrable since $\int |f*g| = \int_{\mathbb{R}} |\int_{\mathbb{R}} f(x-y)g(y)dy|dx \leq \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x-y)g(y)|dydx < \infty$. Let h(x,y) = f(x) and l(x,y) = y, then the product (h*l)(x,y) is measurable since h = f(x) and l = y are both measurable and with continuous composition, hence F(x,y) = (h*l)(x-y,y) = f(x-y)g(y) is measurable. By applying Fubini's theorem, we have $f*g = \int_{\mathbb{R}} Fdy$ is also measurable. Therefore, f*g is well defined a.e, measurable and integrable.

Problem 6.

Proof. We start with some example, suppose: $\alpha = \frac{1}{2}, 1, 2$ then we can get:

Then for a fixed $\alpha \in \mathbb{R}$, the range of the map E is a union of line segments. Each line segments are result from the line $(t, \alpha t)$ intersecting with countable unit length rectangles in \mathbb{R}^2 , so there are countable number of line segments. Hence E can be written as a countable union of line segments E_i , $E = \bigcup_{i=1}^{\infty} E_i$, where each line segment are Borel sets in \mathbb{R}^2 and has measure $m^2(E_i) = 0$. Therefore E is also Borel measurable, and $m^2(E) = m^2(\bigcup_{i=1}^{\infty} E_i) = 0$ by additivity of measure. (Another method is to show $(t \mod 1)$ and $(\alpha t \mod 1)$ are Borel measurable)

Problem 7.

Proof. $D := \{(x, x) | x \in [0, 1]\}$ is a line segment in $[0, 1] \times [0, 1]$, hence we can find a collection of n rectangles $\{K_{n,j}\}_{j=1}^n$ in \mathbb{R}^2 each with length $\frac{1}{n}$ that covers D, in other words, $D \subset \bigcup_{j=1}^n K_{n,j}$ for all n, so we have

 $D \subseteq \bigcap_{n=1}^{\infty} \bigcup_{j=1}^{n} K_{n,j}$. The other direction $\bigcap_{n=1}^{\infty} \bigcup_{j=1}^{n} K_{n,j} \subseteq D$ can be shown since if there exist a $x \in \bigcap_{n=1}^{\infty} \bigcup_{j=1}^{n} K_{n,j}$ but not in D, we can find $N \in \mathbb{N}$ such that for all $n \geq N$, the rectangles are small enough that x is not in $\bigcap_{n=1}^{\infty} \bigcup_{j=1}^{n} K_{n,j}$, which leads to a contradiction. Therefore we have $D = \bigcap_{n=1}^{\infty} \bigcup_{j=1}^{n} K_{n,j}$. Notice that each rectangle $K_{n,j}$ are in $\mathcal{B}([0,1]) \otimes \mathcal{P}([0,1])$ (We can decompose $K_{n,j} = A_{n,j} \times B_{n,j}$ where $A_{n,j} \in \mathcal{B}([0,1])$ and $B_{n,j} \in \mathcal{P}([0,1])$). As a result, the countable intersection of finite union $D \in \mathcal{B}([0,1]) \otimes \mathcal{P}([0,1])$. Since $D = \{(x,x)|x \in [0,1]\}$ then $D_x = \{y \in [0,1]|(x,y) \in D\}$ and $D^y = \{x \in [0,1]|(x,y) \in D\}$, we have:

$$\int_{X} \nu(D_x) d\mu(x) = \int_{X} 1 d\mu(x) = 1 \tag{6}$$

$$\int_{Y} \mu(D^{y})d\nu(x) = \int_{Y} 0d\nu(y) = 0 \tag{7}$$

Also, notice that counting measure ν on [0,1] is ∞ , so we have:

$$(\mu \times \nu)(D) = \lim_{n \to \infty} (\mu \times \nu)(\bigcup_{j=1}^{n} K_{n,j}) = \lim_{n \to \infty} n \times (\frac{1}{n} \times \infty) = \infty$$
 (8)

The Tonelli's theorem cannot be applied here because the counting measure ν is not σ -finite on $\mathcal{P}([0,1])$. \square

Problem 8(a).

Proof. (\Rightarrow): E is v-null, then $\forall F \subseteq E, v(F) = 0$. Suppose $|v|(E) = v^+(E) + v^-(E) > 0$, let $X = N \cup P$ be an Hahn Decomposition, then $v(E) = v^+(E) - v^-(E) = 0 \Rightarrow v^+(E) = v^-(E)$. Hence we have $|v|(E) = 2v^+(E) = 2v^-(E) > 0$, so $v^+(E), v^-(E) > 0$. Thus $v^+(E \cap P) = v^+(E \cap N) + v^+(E \cap P) = v^+(E) > 0$, and $v^-(E \cap P) = 0$ since $E \cap P \subset P$. Therefore $v(E \cap P) = v^+(E \cap P) - v^-(E \cap P) > 0$ which is a contradiction since $E \cap P \subset E$, we should have $v(E \cap P) = 0$. Hence |v|(E) = 0.

(\Leftarrow): For any set $F \subseteq E$, we have $|v|(F) = 0 \Rightarrow v^+(F) + v^-(F) = 0 \Rightarrow v^+(F) = v^-(F) = 0 \Rightarrow v(F) = 0$. Therefore E is v-null.

Problem 8(b).

Proof. $(v \perp \mu \Rightarrow |v| \perp \mu)$: suppose $v \perp \mu$ then we have $A, B \subset X$ where $A \cap B = \emptyset$ and $A \cup B = X$, A is v-null and B is μ -null. Then we have for all $F \subseteq A$, $|v|(F) = v^+(F) + v^-(F) = v(F \cap P) + v(F \cap N) = 0 + 0 = 0$ since $F \cap P \subseteq A \cap P$, $F \cap N \subseteq A \cap N$. Therefore A is also v-null, we can conclude that $|v| \perp \mu$.

 $(|v|\perp\mu \Rightarrow v^+\perp\mu, v^-\perp\mu)$: similar from above, let A be |v|-null and B be μ -null where $A\cap B=\emptyset$ and $A\cup B=X$. For any set $F\subseteq A$, we have $|v|(F)=v^+(F)+v^-(F)=0$, so $v^+(F)=v^-(F)=0$, therefore A is v^+ -null and v^- -null, so we can conclude that $v^+\perp\mu, v^-\perp\mu$.

 $(v^+ \perp \mu, v^- \perp \mu \Rightarrow v \perp \mu)$: with Hahn decomposition, denote A_1 be v^+ -null, B_1 be μ -null where $A_1 \cap B_1 = \emptyset$ and $A_1 \cup B_1 = X$. Also denote A_2 be v^- -null, B_2 be μ -null with $A_2 \cap B_2 = \emptyset$ and $A_2 \cup B_2 = X$. Then we have $A = A_1 \cap A_2$ is v-null and $B = B_1 \cup B_2$ is μ -null since $\forall F \subseteq A, F \subseteq A_1$ and $A_2, v^+(F) = v^-(F) = 0$ so v(F) = 0, and $\forall F' \subseteq B, F' \subseteq B_1$ or $B_2, \mu(F') = 0$. Also notice that $A \cap B = (A_1 \cap A_2 \cap B_1) \cup (A_1 \cap A_2 \cap B_2) = \emptyset \cup \emptyset = \emptyset$ and $A \cup B = (B_1 \cup B_2 \cup A_1) \cap (B_1 \cup B_2 \cup A_2) = X \cap X = X$.

Problem 8(c).

Proof. $v_1 << \mu$ and $v_2 << \mu$, then $\forall E \subset X, \mu(E) = 0 \Rightarrow v_1(E) = v_2(E) = 0$ by definition, so $(v_1 + v_2)(E) = v_1(E) + v_2(E) = 0$, therefore $v_1 + v_2 << \mu$.

Problem 8(d).

Proof. $v_1 \perp \mu$ and $v_2 \perp \mu$, denote A_1, A_2 be v_1 -null, v_2 -null repsectively and B_1, B_2 be μ -null. Let $A = A_1 \cap A_2$ and $B = B_1 \cup B_2$, for any $E \subset A$, $E \subset A_1$, $E \subset A_2$, hence $(v_1 + v_2)(E) = v_1(E) + v_2(E) = 0$. For any $E' \subset B$, $E' \subset B_1$, or $E' \subset B_2$, then $\mu(E') = 0$. Also, $A \cap B = (A_1 \cap A_2 \cap B_1) \cup (A_1 \cap A_2 \cap B_2) = \emptyset \cup \emptyset = \emptyset$ and $A \cup B = (B_1 \cup B_2 \cup A_1) \cap (B_1 \cup B_2 \cup A_2) = X \cap X = X$. Therefore $v_1 + v_2 \perp \mu$.