Mathematik Vorkurs für Informatiker 2017 Lösungen

Maximilian Frühauf

6. Oktober 2017

1 Einstimmung

1. Der Legende nach gewährte einst Sher Khan, der König von Indien, dem Erfinder des Schachspiels für die Erfindung dieses außergewöhnlichen Spiels die Gunst, sich seine Belohnung selbst aussuchen zu durfen. Der bescheidene (?) Erfinder verlangte lediglich ein paar Reiskörner. Und zwar sollten auf jedem Feld des Schachbrett jeweils doppelt so viele Körner, wie auf dem vorhergehenden Feld liegen (für Mathematiker: 1 + 2 + 2² + 2³ + ... Reiskörner). Auf wie viele Reiskörner hätte sich die Belohnung belaufen? Überlege Dir dazu allgemein, welche Zahlen herauskommen, wenn man die Zweierpotenzen aufsummiert. Studierende mit Nebenfach Physik schätzen bitte die Zahl der Reiskörner in Tonnen (Studierende mit Nebenfach Agrar- wissenschaften entsprechend in Doppelzentner).

Lösung:

(a)
$$\sum_{i=0}^4 2^i = 1+2+4+8+16 = 31 = 2^5-1$$
 Die Summe der ersten n Zweierpotenzen beträgt:
$$\sum_{i=0}^n 2^i = 2^{n+1}-1$$
 Da ein Schachbrett 64 Felder hat beträgt die Anzahl aller Reiskörner:
$$\sum_{i=0}^{63} 2^i = 2^{64}-1 = 18446744073709551615$$

2. Die Papiergrößen nach DIN sind so gebaut, dass man durch Falten in der Mitte der langen Seite die nächstkleinere Größe bekommt. Also: hat man ein Papier der Höhe a und der Breite b (in Hochformat, also a > b), dann ist das kleinere Papier a breit und b hoch. Zusätzlich gilt aber bei den DIN-Größen, dass das Seitenverhältnis dabei gleich bleibt: $a:b=b:\frac{a}{b}$ Wie groß ist demnach das Seitenverhältnis $x=\frac{a}{b}$?

Ein Blatt DIN A0 hat die Fläche $1m^2$ Wie hoch und wie breit ist es? Wie hoch und wie breit ist ein Blatt DIN A4?

Lösung:

(a) Das Seitenverhältnis beträgt: $x = \frac{a}{b} = \frac{b}{\frac{a}{2}} = \frac{2b}{a}$ Somit gilt: $\frac{a}{b} = \frac{2b}{a} \mid \cdot a \mid \cdot b$

$$\frac{a^2}{b^2} = 2 \mid \sqrt{a}$$

$$\frac{a}{b} = \sqrt{2} = x \approx 1,41$$

Somit können die Seitenlängen des Din A0 Blattes folgenermaßen errechnet werden:

$$1m^2 = (b) \cdot (\sqrt{2} \cdot b)$$

$$b = \sqrt{\frac{1}{\sqrt{2}}m^2} \approx 0.841m$$

$$a = \sqrt{2} \cdot b \approx 1,1891m$$
 Es gilt:

$$a_{neu} = b_{alt}$$
$$b_{neu} = \frac{\sqrt{2} \cdot a_{neu}}{2}$$

Somit können jetzt alle Maße der verschiedenen DIN Größen berechnet werden:

	A0	A1	A2	A3	A4
\overline{a}	1.1891m	0.841m	0.595m	0.4205m	0.2975m
b	0.841m	0.595m	0.4205m	0.2975m	0.2103m

3. Viel Schöner würden die Papiergrößen nach dem so genannten "goldenen Schnitt" ausschauen. Dazu muss sich a:b verhalten wie b:(a-b). Berechne wieder das Seitenverhältnis $x=\frac{a}{b}$. Wer eine Schere dabei hat, kann anschließend Wahrheitswert des ersten Satzes überprüfen.

Lösung:

(a) Das Seitenverhältnis lässt sich auch schreiben als:

$$x = \frac{a}{b} = \frac{b}{a-b}$$

$$\frac{b}{a} = \frac{a-b}{b}$$

$$\frac{1}{x} = \frac{a}{b} - \frac{b}{b}$$

$$\frac{1}{x} = x - 1 \mid \cdot x$$

$$1 = x^2 - x \mid -1$$

$$0 = x^2 - x - 1$$

Von diesem Polynom können dann die Nullstellen bestimmt werden, um den goldenen Schnitt zu erhalten:

$$x_{1,2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1}$$

$$x_1 = \frac{1 - \sqrt{5}}{2} \lor x_2 = \frac{1 + \sqrt{5}}{2} = \varphi$$

4. Interessant sind die Koeffizienten, die herauskommen, wenn man die Terme $(x+1)^n$ ausmultipliziert (also z.B. $(x+1)^2=x^2+2x+1$). Berechne dies für die ersten paar n und überlege, nach welchem Gesetz die Koeffizienten gebildet werden.

Lösung:

(a) Beim ausmultiplizieren der einzelnen Terme sind die Dreieckszahlen in den Koeffizienten erkennbar.

$$(x+1)^2 = 1 \cdot x^2 + 2 \cdot x + 1 \cdot 1$$
$$(x+1)^3 = 1 \cdot x^3 + 3 \cdot x^2 + 3 \cdot x + 1 \cdot 1$$

Somit kann ein solcher Therm mit einer beliebigen Potenz folgendermaßen dargestellt werden:

$$(x+1)^n = \sum_{i=0}^n \binom{n}{i} \cdot x^{n-i} \cdot 1^i$$

Diese Formel lässt sich auf einen beliegen Therm mit den Variablen a,b verallgemeinern.

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} \cdot a^{n-i} \cdot b^i$$

5. Ein Vater ist heute a Jahre älter als sein Sohn. In b Jahren wird er c Jahre älter als d-mal so alt sein wie sein Sohn heute. Wie alt sind Vater und Sohn gegenwärtig?

Führen alle Parameterwerte a,b,c,d zu einer Lösung? Welche davon sind sinnvoll?

Lösung:

(a) v := Alter des Vaters heute, s := Alter des Sohns heute

$$v = s + a$$

$$c = (v + b) - d \cdot s$$
 Einsetzen und vereinfachen:

$$c = s + a + b - d \cdot s \mid -a \mid -b$$

$$c - a - b = s - d \cdot s$$

$$c - a - b = s \cdot (1 - d) \mid \div (1 - d)$$

$$s = \frac{c-a-b}{1-d}$$
 für $d \neq 1$

$$v = s + a = \frac{c - a - b}{1 - d} + a = \frac{c - b - a \cdot d}{1 - d}$$

6. Der Chinese Xu Yue stellte gegen 190 n. Chr. das folgende Problem: Wie viele Hähne, Hennen und Küken kann man für 100 Münzen kaufen, wenn man insgesamt 100 Tiere haben will und ein Hahn 5 Münzen, eine Henne 4 Münzen und 4 Küken eine Münze kosten? Die 100 Münzen sollen dabei vollständig verbraucht werden.

Lösung:

(a)
$$a := \text{Hahn}, b := \text{Henne}, c := \text{K\"{u}ken}$$

Da man insgesamt genau 100 Tiere haben möchte, muss gelten:

$$1 \cdot a + 1 \cdot b + 1 \cdot c = 100$$

Dazu sollen genau 100 Münzen verbraucht werden, somit muss außerdem gelten:

$$5 \cdot a + 4 \cdot b + \frac{c}{4} = 100$$

Diese zwei Gleichungen können in ein lineares Gleichungssystem geschrieben werden. Da dies aber 3 Variablen mit nur 2 Gleichungen besitzt ist es nicht eindeutig lösbar.

$$b = \frac{300 - 19a}{15} = 20 - \frac{19a}{15}$$

$$c = -a - b + 100 = -a - (20 - \frac{19a}{15}) + 100 = \frac{4a}{15} + 80$$

Ganzzahlige Lösungen für diese beiden Gleichungen sind somit:

$$a = 15 \cdot n \ n \in \mathbb{Z}$$

$$b = 20 - 19n$$

$$c = 80 + 4n$$

7. Eine Gruppe von Menschen heißt halbzerstritten, wenn für zwei beliebig herausgegriffene Gruppenmitglieder a und b immer gilt: Entweder redet a mit b oder b redet mit a. Es gibt also weder Paare, bei denen Kommunikation in beide Richtungen möglich ist, noch solche, bei denen Kommunikation in keine Richtung funktioniert.

Um in einer halbzerstrittenen Gruppe Nachrichten weiterzuleiten, wäre es hilfreich, wenn man eine Kontaktperson x hat, die mit jeder andereren Person über höchstens eine Zwischenstation redet - also für jedes $a \neq x$ gilt, dass x mit a redet oder es zumindest ein b gibt, so dass x mit b und b mit a redet.

Gibt es eine solche Kontaktperson in jeder halbzerstrittenen Gruppe? Lösung:

(a)

2 Potenzen und Polynome

1. Berechne 2^n für $0 \dots 20$.

Für größere Zweierpotenzen ist die Faustregel " 2^{10} oder 1000 - das ist doch praktisch das selbe" nützlich Gib damit Näherungen für 2^{32} und 2^{64} an. Lösung:

(a)

- 2. Gegeben sind die Funktionen $f(x) = 6 \cdot x^2$ und $g(x) = 2 \cdot x^3$.
 - (a) Skizziere beide Graphen.
 - (b) Für welche x ist f(x) = g(x)? Für welche ist f(x) > g(x) und für welche f(x) < g(x)?
- 3. Für welche ganzen Zahlen n ist $2^n > n^2$? (Probieren ist hier besser als rechnen!)

Lösung:

(a)

- 4. (a) Skizziere den Graph der Funktion $x \mapsto 2^x$ für Rx = -1000...10 und diskutiere den Satz "die Exponentialfunktion ist ein rechter Winkel".
 - (b) Bestimme die kleinste Zahl x_0 , so dass für alle $x \ge x_0$ gilt: $2^x \ge 16x^3$.
 - (c) Wie ändert sich die Antwort in b), wenn die rechte Seite $(16x^3)$ mit $2^{13} = 8192$ multipliziert wird, also die Ungleichung $2^x \ge 131072x^3$ betrachtet wird?

Lösung:

(a)

5. Wie viele verschiedene Zustände kann man mit n Bits darstellen? Speziell: wenn wir ganze Zahlen (bei 0 beginnend) in 32 Bit speichern, wie weit können wir damit zählen?

Lösung:

(a)

6. Vereinfache folgende Therme (dabei seien x, y, z > 0):

- (a) $\sqrt[5]{2^{15}}$
- (b) $\left(\frac{8}{125}\right)^{-\frac{1}{3}}$
- (c) $\sqrt[3]{x}$
- (d) $(\sqrt[3]{x} \cdot \sqrt{y^3})^6$
- (e) $\frac{(x^2 \cdot y^3 z^4)^2}{(x \cdot y \cdot z)^{-2}}$
- (f) $\frac{x-y}{\sqrt{x}-\sqrt{y}}$

Lösung:

- (a) $\sqrt[5]{2^{15}} =$
- (b) $\left(\frac{8}{125}\right)^{-\frac{1}{3}} =$
- (c) $\sqrt[3]{x} =$
- (d) $(\sqrt[3]{x} \cdot \sqrt{y^3})^6 =$
- (e) $\frac{(x^2 \cdot y^3 z^4)^2}{(x \cdot y \cdot z)^{-2}} =$
- (f) $\frac{x-y}{\sqrt{x}-\sqrt{y}} =$

7. Um eine Koch-Kurve zu konstruieren, beginnen wir mit einer Strecke der Länge 1 und ersetzen nun in jeder Runde jede bis dahin erzeugte Strecke durch vier Teilstrecken von je einem Drittel der Länge gemäß folgendem Muster

Die Ergebnisse der Runden zwei bis fünf sehen dann so aus (die Koch-Kurve selbst ist das fraktale Objekt, das im Grenzprozess unendlich vieler Iterationen entsteht):

Schätze die Länge dieser Streckenzüge! Wie lang sind sie wirklich?

Lösung:

(a)

8. Lineare Gleichungen - bestimme für die folgenden Gleichungen jeweils alle x, die die Gleichung erfüllen:

- (a) $4 \cdot (x-1) = 5 \cdot (x-2)$
- (b) $\frac{1}{x-1} = \frac{x+1}{x-2} 1$
- (c) $(x+2) \cdot (x-2) = 21$

Naja, die letzte Gleichung ist nicht linear in x; wen das stört, der führt zwischendrin ein $y:=x^2$ ein...

Lösung:

9.	Leite die Lösungsformel $x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$ der quadratischen Gleichung
	mit Hilfe der so genannten quadratischen Ergänzung her, d.h. bringe die
	Gleichung $x^2 + px + q = 0$ erst in die Form $(x + \alpha)^2 + \beta = 0$ und löse die
	Gleichung dann nach x auf.

Lösung:

(a)

- 10. Gegeben sind die Punkte A(0|2), B(2|6) und C(-1|1.5).
 - (a) Konstruiere eine Funktion $f(x) = ax^2 + bx + c$, so dass ihr Graph durch diese drei Punkte verläuft. Wie viele solcher Funktionen gibt es?
 - (b) Bestimme y_1 und y_2 so, dass die Punkte $D(4|y_1)$ und $E(-3|y_2)$ ebenfalls auf dem Graphen liegen!

Lösung:

(a)

11. Dividiere $x^5-x^4+2x^3-2x2-8x+8$ durch x^2-2 und bestimme alle Nullstellen von $x^5-x^4+2x^3-2x^2-8x+8$.

Lösung:

(a)

12. Berechne $(\sum_{i=0}^n x^i) \cdot (x-1)$ und stelle damit eine geschlossene Formel (d.h. ohne Summenzeichen) zur Berechnung von $\sum_{i=0}^n x^i$ für $x \neq 1$ auf. Lösung:

(a)

3 Logarithmen

1. Skizziere den Graph der Funktion $x\mapsto ldx$ für $x=2^{-1000}\dots 1000.$ Lösung:

(a)

2. Bestimme für beliebiges positives $b \neq 1$ folgende Werte: $log_b 1$ und $log_b b$. Lösung:

(a)

3. Finde mit den Rechenregeln für Potenzen und Logarithmen eine Rechenregel für $\log_b \sqrt[n]{x}$.

Lösung:

4. Vereinfache folgende Ausdrücke $(b, c, x \text{ und } y \text{ seien positiv mit } b, c \neq 1)$:

$$b^{x+log_b y}, \left(\sqrt{b}\right)^{log_b x}, log_c\left(x^{\frac{1}{log_c b}}\right),$$

Lösung:

(a)

5. Vereinfache (es sei x > y > 0)

$$ln(x^2 - y^2) - ln(x - y)$$

Lösung:

(a)

6. Wenn für Abszisse (vulgo "x-Achse") und Ordinate logarithmische Maßstäbe verwendet werden — wie sehen dann die Graphen von Potenzfunktionen $x \mapsto x^n$ aus?

Lösung:

(a)

7. Jaja, ich weiß schon, dass die allermeisten von Ihnen nicht vorhaben, jemals auf einem Rechenschieber zu rechnen. Zum Logarithmen-Üben ist das Ding (bzw. eine Vorstellung davon) aber immer noch praktisch! Manchmal wollen auch Informatiker die Länge der Diagonale eines Quadrats berechnen — markiere dazu auf dem Informatiker-Rechenschieber den Wert $\sqrt{2}$.

Markiere nun noch denjenigen Wert, mit dem man die Kantenlänge eines Würfels multiplizieren muss, um die Kantenlänge eines Würfels mit doppeltem Volumen zu erhalten.

Wie kann man mit unserem Rechenschieber — ohne die Skalen zu verlängern — den Wert von 8 · 512 ablesen? (Tipp: am echten Rechenschieber heißt diese Technik Durchschieben. Bei unserm Modell ist ggf. mal wieder die Näherung $2^{10}\approx 1000$ hilfreich.)

Lösung:

(a)

8. In wieviel Jahren hat sich eine mit einen Zinssatz von p%im Jahr verzinste Geldanlage (incl. Zinseszins) verdoppelt? Berechne diese Dauer für p=1,2,3,4 und 10 und vergleiche die Ergebnisse mit der Faustregel "70 Jahre geteilt durch Zinssatz".

Lösung:

(a)

9. Zeige, dass ld10 keine rationale Zahl ist (es gibt keine ganzen Zahlen x, y mit ld10 = x/y).

Lösung:

4 Aussagenlogik und Beweise

1. Bestätige durch Wahrheitstafeln das erste Distributivgesetz und die erste de morgansche Regel.

Lösung:

(a)

- 2. Zeige die Äquivalenz von $A \Rightarrow B$ und $(\neg B) \Rightarrow (\neg A)$
 - (a) Mittels Wahrheitstafeln
 - (b) Durch Umformen (zweckmäßig ist hier, die zweite Form in die erste umzuformen, aber andersrum geht's natürlich auch).

Lösung:

(a)

3. Ein logischer Ausdruck, der (unabhängig von den Werten der darin vorkommenden Variablen) immer den Wert true hat, heißt Tautologie — z.B. der Ausdruck $A \vee (\neg A)$.

Welche der folgenden Aussagen sind Tautologien?

- (a) $(A \lor C) \land (A \lor \neg C)$
- (b) $\neg (A \land \neg A) \lor (B \land C)$
- (c) $((A \lor B) \land \neg(\neg A \land \neg B)) \land ((A \lor \neg B)) \land \neg(\neg A \land B))$

Lösung:

(a)

- 4. Bei einem Verstoß gegen ein mathematisches Gesetz (welches, ist hier egal) kommen drei stadtbekannte Gauner A, B und C als Täter infrage einer alleine oder mehrere zusammen. Der Polizei liegen zwei Aussagen vor:
 - (a) Wenn A unschuldig ist, ist B schuldig.
 - (b) Wenn ${\cal B}$ unschuldig ist, sind sowohl ${\cal A}$ als auch ${\cal C}$ schuldig

Da die Polizei ihre Informanten kennt, weiß sie, dass die erste Aussage wahr, die zweite Aussage aber falsch ist. Wer ist's gewesen?

Hier gibt es mal wieder verschiedene Lösungswege – man kann z.B. logische Ausdrücke für die Aussagen aufstellen und umformen, man kann die Aufgabe aber auch graphisch lösen, indem man sich ein Venn-Diagramm für drei Mengen A,B und C aufmalt: Nun legt man fest, dass der Bereich innerhalb von z.B. A bedeutet, dass A schuldig ist etc., hat so alle möglichen Kombinationen von Schuld/Unschuld der drei Kandidaten vor sich und kann mittels der Aussagen solange Bereiche ausschließen, bis nur noch ein Feld übrig ist.

Lösung:

- 5. Formuliere folgende Aussagen mit Quantoren:
 - (a) Die Differenz von 1 und allen natürlichen Zahlen, die größer als 15 sind, ist kleiner als -14.
 - (b) Jede reelle Zahl x hat ein multiplikatives Inverses, also eine Zahl y mit $x \cdot y = 1$.
 - (c) Es gibt eine gerade Primzahl. (Hierbei kann der Operator | verwendet werden: für zwei ganze Zahlen a und b gilt a|b genau dann, wenn a Teiler von b ist.)

Lösung:

(a)

6. Gib für die Aussage $\neg(\exists x \in \mathbb{Z} : x^2 = 5)$ eine äquivalente Aussage an, die keinen Existenzquantor enthält (Allquantoren sind erlaubt...).

Hinweis: ein negierter Allquator entspricht einem Existenzquantor und umgekehrt.

Lösung:

(a)

7. Sind die Aussagen

$$\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : x - y = 0$$

und

$$\exists x \in \mathbb{R} : \forall y \in \mathbb{R} : x - y = 0$$

äquivalent?

Lösung:

(a)

- 8. Folgende Aussagen gelten:
 - (a) Jeder Student will gute Noten haben.
 - (b) Kein Studen lernt auf langweilige Prüfungen
 - (c) Jeder Prüfung, die ohne Mathe auskommt, ist langweilig
 - (d) Jeder Student, der gute Noten haben will, aber nichts gelernt hat, muss sich nur auf sein Glück verlassen.

Beweise: Wenn alle Prüfungen ohne Mathe auskommen, müssen sich alle Studenten nur auf ihr Glück verlassen.

9. Wie lautet die Verneinung von "Alle Kreter sind Lügner"? Lösung:

10. Zeige mit vollständiger Induktion über n, dass

$$\sum_{k=1}^{n} = \frac{n(n+1)}{2}$$

und

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1}$$

für alle $x \neq 1$ und alle $n \geq 0$ gilt.

Lösung:

(a)

11. Beweise durch vollständige Induktion: für $n \ge 4$ ist $n! > 2^n$. Lösung:

(a)

12. Gegeben sei ein Parkett aus 1×4 und 2×2 -Stücken (die Skizze zeigt ein

Beispiel, in Wirklichkeit kann das Parkett aber eine beliebige andere Form haben). Nun geht ein 1 × 4-Stück kaputt und wir haben keins mehr im Lager. Daher ersetzen wir es durch ein 2 × 2 Stück und versuchen, die Ausgangsform wiederherzustellen (die Teile sind noch nicht festgeklebt, können also beliebig umgeordnet werden).

Geht das — immer, also für beliebig geformte Flächen, oder nur für gewisse (welche?), oder vielleicht gar nie?

Lösung:

(a)

5 Mengen

1. Gegeben sind die folgenden Teilmengen $A = \{1, 3, 5, 7, 9\}, B = \{2, 4, 6, 8, 10\}$ und $D = \{5, 6, 7, 8, 9, 10\}.$

Gib die folgenden Mengen an:

- (a) $A \cup B$
- (b) $A \cap B$

(c) $A \setminus B$
(d) $A \setminus D$
(e) $B \setminus D$
(f) $D \setminus A$
(g) $D \setminus B$
(h) $D \setminus (A \cup B)$
(i) $D \setminus (A \cap B)$
Wie viele Eleme
ge A mit $ A = a$
auf, und versuch

- 2. Wie viele Elemente enthält die Potenzmenge $\mathcal{P}(A)$ einer (endlichen) Menge A mit |A|=n? Schreibe z.B. alle Teilmengen von $\{1,2\}$ oder $\{1,2,3\}$ auf, und versuche eine Regelmäßigkeit zu erkennen. Wie könnte man die Regelmäßigkeit allgemein beweisen? Zeige dass für endliche Mengen stets $|A|<|\mathcal{P}(A)|$ gilt.
- 3.
- 4.
- 5.
- 6.

6 Relationen

7 Ordnungsrelationen

write something here

- 8 Abbildungen
- 9 Folgen

write something here

- 10 Analysis
- 11 Kombinatorik
- 12 Linare Gleichungssysteme