Exercise: Model predictive control with the race car

In the following exercise, we will play around with variations of optimal control.

Tasks

- 1. We will start by casting a simulation task as a nonlinear optimization problem solved in Opti. For this purpose, we use a collocation scheme. With some hand-waving, this boils down to:
 - ullet Subdivide the integration horizon T into N integration intervals referred to by index k.
 - Introduce state variables at the beginning of each interval: $X_k \in \mathbb{R}^{n_x}$.
 - Introduce helper variables: $X_k^c \in \mathbb{R}^{n_x \times \text{degree}}$.
 - On each interval k, consider a polynomial that exactly interpolates through X_k and X_k^c .
 - Enforce that the polynomial's slope should match the ODE, point-wise.
 - Enforce continuity of the polynomials at the interval boundaries.
 - All of the above polynomial activity can be represented by constant linear maps.

Run the Opti example below, and verify that the car covers a distance of $4.066\,\mathrm{m}$

```
x0 = dae.start(dae.x())
                                          # Initial state
f = dae.create('f', ['x', 'u'], ['ode']) # System dynamics
T = 2
            # Integration horizon [s]
N = 20
            # Number of integration intervals
           # Length of one interval
dt = T/N
nx = dae.nx() # Number of states
xvar = dae.x()
# Numeric coefficient matrices for collocation
degree = 3
method = 'radau'
tau = ca.collocation_points(degree, method)
[C,D,B] = ca.collocation_coeff(tau)
opti = ca.Opti() # Opti context
xk = ca.MX(x0)
x_{traj} = [xk]
                   # Place to store the state solution trajectory
for k in range(N): # Loop over integration intervals
```

Page 1 Python

```
# Decision variables for helper states at each collocation point
    Xc = opti.variable(nx, degree)
    # Slope of polynomial at collocation points
     = ca.horzcat(xk,Xc)
    Pidot = (Z @ C)/dt
    \# Collocation constraints (slope matching with dynamics)
    opti.subject_to(Pidot==f(x=Xc)["ode"])
    # Continuity constraints
    xk_next = opti.variable(nx)
    opti.subject_to(Z @ D==xk_next)
    # Initial guesses
    opti.set_initial(Xc, ca.repmat(x0,1,degree))
    opti.set_initial(xk_next, x0)
    xk = xk_next
    x_traj.append(xk)
x_traj = ca.hcat(x_traj)
opti.minimize(0)
options = {'ipopt.hessian_approximation':'limited-memory'}
```

The template script also comes with plotting code that can be used to obtain:

2. Start from the solution of the previous task, but extend the problem's decision variables and constraints.

Find a formulation and a control trajectory such that the car reaches s(T)=4 at the end of

the horizon, whilst staying within track boundaries: $-0.2 \le n(t) \le 0.2$. The result may look something like this:

3. Optional: compute a control trajectory that minimizes lap-time. The length of the lap is 4π . Meaningful bounds of the problem's quantities are given in the table below.

		<u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u>
Quantity	Lower bound	Upper bound
\overline{n}	-0.2	0.2
D	-1	1
\dot{D}	-20	20
δ	-0.8	0.8
$\dot{\delta}$	-4	4
a_{long}	-10	6
a_{lat}	-10	10

With ${\cal N}=40$, the optimal solution should look like the following picture:

Page 3 Python

- 4. We will work towards model predictive control (MPC) now. Start from the solution script of Task 3.
 - Pick a prediction horizon of $T=0.5\,\mathrm{s}$ and N=10.
 - Introduce a parameter \bar{x}_0 , i.e. a changable quantity that is not optimized over:

```
x0_bar = opti.parameter(nx)
opti.set_value(x0_bar, x0)
```

• Introduce an extra decision variable for x_0 :

```
xk = opti.variable(nx)
opti.subject_to(xk==x0_bar)
```

- Instead of a final constraint on s(T), use -s(T) in the objective.
- Relax the solver tolerance with the ipopt.tol option set to 1e-5.
- Obtain a pure CasADi function out of the Opti problem:

Here, mpc_step maps from the current state \bar{x}_0 and initial guesses for states & controls to the optimal states & controls. Verify that the car ends up at $3.13822\,\mathrm{m}$ at the end of the horizon.

MPC is simply the computation and application of mpc_step in a loop: Now, MPC is about repeatedly solving this problem in a receding horizon fashion:

```
simulator = ca.integrator('simulator', 'cvodes', dae.create(), 0, dt)

y_traj = [H(x0)]
for k in range(25):
    # Compute optimal trajectories
    [x_opt,u_opt] = mpc_step(x0, x_opt, u_opt))

# What part of the trajectory to apply?
    u_apply = u_opt[:,0]

# Plant model
    x0 = simulator(x0=x0,u=u_apply)["xf"]

    y_traj.append(H(x0))
y_opt = ca.hcat(y_traj)
```

The resulting closed-loop trajectory should look something like this:

5. Optional: Gauss-Newton and fatrop solver

Page 5 Python