Simulación de Sistemas

Trabajo Práctico Nro. 4: Dinámica Molecular regida por el paso temporal (Enunciado publicado en CAMPUS el 23/09/2024)

Resolver, utilizando dinámica molecular regida por el paso temporal, los problemas 1) y 2).

Las simulaciones tendrán un dt fijo e intrínseco de la simulación, Además considerar un dt_2 para imprimir el estado del sistema (posiciones y velocidades de las partículas) como output del sistema. Se recuerda que la simulación debe generar un output en formato de archivo de texto. Luego el análisis y módulo de animación se ejecuta en forma independiente tomando estos archivos de texto como input. De esta forma, la velocidad de la animación y postprocesamiento no queda supeditada a la velocidad de la simulación.

La realización del T.P. consiste en:

Sistema 1) Solo deben presentarse los resultados (no incluir introducción, ni ecuaciones de integradores, ni implementación, ni animaciones, ni conclusiones) en la menor cantidad posible de diapositivas (2-3) (duración 1 minuto) y debe ubicarse antes de la presentación del sistema (2).

- a- Presentación oral de 13 minutos de duración con las secciones indicadas en el documento ".../material didáctico/00_GuiasFormato/Formato_Presentaciones.pdf". Durante la presentación oral se podrá solicitar una demostración en vivo del funcionamiento del código.
- b- Links a youtube o vimeo de las animaciones generadas (NO enviar archivos de animaciones por medio de links ni subirlos a campus).
- c- El documento de la presentación en formato pdf.
- d- El código fuente implementado.

Fecha y Forma de Entrega:

La presentación en pdf (c) incluyendo ambos sistemas y el código fuente (d) deberán ser subidos a campus, antes del día 14/10/2024 a las 10 hs. Los archivos se nombran de la siguiente manera: "SdS_TP4_2024Q2GXX_Presentación" y "SdS_TP4_2024Q2GXX_Codigo", donde XX es el número de grupo. Las presentaciones orales (a) -conteniendo las animaciones (b)- se realizarán durante la clase del día 14/10/2024. No subir animaciones a campus.

Sistema 1) Oscilador Puntual Amortiguado (solución analítica)

Con la finalidad de comparar los errores de los distintos esquemas de integración se estudiará un sistema con sólo una partícula puntual: el oscilador amortiguado, cuya solución se conoce analíticamente.

Considerar la solución, los parámetros y las condiciones iniciales dadas en la diapositiva 36 de la teórica.

- 1.1) Integrar la ecuación de movimiento del oscilador utilizando por lo menos los esquemas:
- Gear predictor-corrector de orden 5
- Beeman
- Verlet original
- 1.2) En todos los casos graficar las soluciones analítica y numérica y calcular el error cuadrático medio (sumando las diferencias al cuadrado para todos los pasos temporales y normalizando por el número total de pasos).
- 1.3) Estudiar como disminuye el error al disminuir el paso de integración (dt). Usar ejes semilogarítmicos o logarítmicos para poder apreciar las diferencias de error a escalas pequeñas. ¿Cuálde los esquemas de integración resulta mejor para este sistema?

Sistema 2) Osciladores acoplados

Usando alguno de los esquemas de integración ya implementados, simular la evolución temporal de un sistema de osciladores acoplados y forzados. Para esto, considerar el sistema formado por una cadena de N osciladores puntuales de masa m, unidos por resortes ideales de contaste elástica k. Uno de los extremos de la cadena esta fijo y el otro está estímulado por una fuerza armónica $F(t) = A \cos(\omega t)$ según se muestra en la Fig. 1. Las masas están separadas entre sí por una distancia l_0 y el desplazamiento es en dirección vertical.

Figura 1: Esquema del sistema propuesto.

El valor de los parámetros es m=1 g, k=100 kg/s², $A=10^{-2}$ m y $l_0=10^{-3}$ m. La fuerza que experimenta la partícula i es

$$F_i = -k (y_i - y_{i-1}) - k (y_i - y_{i+1}),$$

donde y_i es el desplazamiento verticial de la partícula i. Usar N = 1000 y $dt = 10^{-2}$ s como paso temporal para integrar el sistema.

- 1) Estudiar la amplitud de oscilación del sistema como función de ω . Determinar la frecuencia de resonancia del sistema ω_0 , esto es, la frecuencia para la cual la amplitud de oscilación del sistema es máxima.
- 2) Repetir el análisis de 1) variando el valor de k. Considerar 5 valores en el rango [100 10000] kg/s^2 y obtener $\omega_0(k)$
- 3) Analizar la relación entre ω_0 como función de k ¿Se cumple $\omega_0 \sim k^{1/2}$?