1. Understanding the Dataset

Import Required Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='whitegrid')
```

Load the Dataset

```
In [23]: # Load the dataset
df = pd.read_csv(r"C:\Users\SRAVANI\Documents\datasets\WA_Fn-UseC_-HR-Employee-Attrition.csv")
df.head()
```

Out[23]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNur
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	

5 rows × 35 columns

Basic Dataset Info

```
In [24]: # Check shape
print("Dataset Shape:", df.shape)
print()
# Data types and non-null counts
df.info()
print()
# Check for missing values
print("\nMissing values:\n", df.isnull().sum())
print()
```

Dataset Shape: (1470, 35)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

Data	columns (total 35 columns):	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64

34 YearsWithCurrManager 1470 non-null int64

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

Missing values:

_	
Age	0
Attrition	0
BusinessTravel	0
DailyRate	0
Department	0
DistanceFromHome	0
Education	0
EducationField	0
EmployeeCount	0
EmployeeNumber	0
EnvironmentSatisfaction	0
Gender	0
HourlyRate	0
JobInvolvement	0
JobLevel	0
JobRole	0
JobSatisfaction	0
MaritalStatus	0
MonthlyIncome	0
MonthlyRate	0
NumCompaniesWorked	0
Over18	0
OverTime	0
PercentSalaryHike	0
PerformanceRating	0
RelationshipSatisfaction	0
StandardHours	0
StockOptionLevel	0
TotalWorkingYears	0
TrainingTimesLastYear	0
WorkLifeBalance	0
YearsAtCompany	0
YearsInCurrentRole	0
YearsSinceLastPromotion	0
YearsWithCurrManager	0

dtype: int64

In [25]: # Basic statistics
df.describe()

Out[25]:

•	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRat
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.00000
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.89115
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.32942
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.00000
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.00000
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.00000
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.75000
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.00000

8 rows × 26 columns

Understand Target Variable (Attrition)

In [26]: df['Attrition'].value_counts(normalize=True) * 100

Out[26]: Attrition

No 83.877551 Yes 16.122449

Name: proportion, dtype: float64

Understand the Features

In [27]: # grouping of columns by type for easier analysis:

```
categorical_cols = df.select_dtypes(include='object').columns.tolist()
numerical_cols = df.select_dtypes(include=['int64', 'float64']).columns.tolist()

print("Categorical columns:\n", categorical_cols)

print()

print("Numerical columns:\n", numerical_cols)

Categorical columns:
['Attrition', 'BusinessTravel', 'Department', 'EducationField', 'Gender', 'JobRole', 'MaritalStatus', 'Over18', 'OverTime']

Numerical columns:
['Age', 'DailyRate', 'DistanceFromHome', 'Education', 'EmployeeCount', 'EmployeeNumber', 'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion', 'YearsWithCurrManager']
```

Check for Duplicate Records

```
In [28]: print("Duplicate Rows:", df.duplicated().sum())
    Duplicate Rows: 0
In [29]: #If duplicates exist:
    df.drop_duplicates(inplace=True)
```

2. Perform Exploratory Data Analysis (EDA)

Univariate Analysis (One Feature at a Time)

```
In [30]: # Count Plot for Categorical Variables
plt.figure(figsize=(10,5))
sns.countplot(data=df, x='Department', hue='Attrition')
plt.title('Attrition by Department',pad=20,color="green",size=20)
plt.xlabel("Department",labelpad=20)
plt.ylabel("count",labelpad=20)
```

```
plt.xticks(rotation=0)
plt.show()
```

Attrition by Department


```
In [31]: # Count Plot for Categorical Variables
plt.figure(figsize=(10,5))
sns.countplot(data=df, x='EducationField', hue='Attrition')
plt.title('Attrition by EducationField',pad=20,color="green",size=20)
plt.xlabel("EducationField",labelpad=20)
plt.ylabel("count",labelpad=20)
```

```
plt.xticks(rotation=0)
plt.show()
```

Attrition by EducationField

Histogram for Numeric Columns

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 5))
```

```
sns.histplot(data=df, x='MonthlyIncome', hue='Attrition', kde=True)
plt.title("Attrition vs Monthly Income",color="green",size=20,pad=20)
plt.ylabel("count",labelpad=20)
plt.xlabel("MonthlyIncome",labelpad=20)
plt.show()
```

Attrition vs Monthly Income

Bivariate Analysis (Feature vs Feature)

```
In [33]: import matplotlib.pyplot as plt
         import seaborn as sns
         import numpy as np
         # 1. Select only numeric columns
         numeric df = df.select dtypes(include=['int64', 'float64'])
         corr = numeric df.corr()
         # 2. Set up the figure
         plt.figure(figsize=(12, 10)) # Adjust size as needed
         # 3. Create a mask for the upper triangle
         mask = np.triu(np.ones like(corr, dtype=bool))
         # 4. Customize the heatmap
         sns.heatmap(
             corr,
             mask=mask,
             cmap='coolwarm',
             annot=True,
             fmt=".2f",
             annot_kws={"size": 9}, # Smaller annotation font
             linewidths=0.5, # Lines between cells
             cbar kws={"shrink": 0.8}, # Colorbar shrink
             square=True
         # 5. Improve titles and labels
         plt.title("Correlation Matrix (Lower Triangle Only)", fontsize=16)
         plt.xticks(rotation=45, ha='right', fontsize=9)
         plt.yticks(rotation=0, fontsize=9)
         plt.tight layout()
         plt.show()
```


POSE BEACHTORING BUILDING COUNT MICHAEL SEASON OF STATE O

3. Data Preprocessing

1. Drop Unnecessary Columns

```
In [34]: df.drop(['EmployeeCount', 'StandardHours', 'Over18', 'EmployeeNumber'], axis=1, inplace=True)
```

2. Encode the Target Column: Attrition

```
In [35]: df['Attrition'] = df['Attrition'].map({'Yes': 1, 'No': 0})
```

3. Encode Categorical Columns

```
In [36]: df = pd.get_dummies(df, drop_first=True)
```

4. Split Data into Features and Target

```
In [37]: X = df.drop('Attrition', axis=1)
y = df['Attrition']
```

5. Train-Test Split

```
In [38]: # Split into training and testing data (80%-20%).
    from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

4.Build Classification Models

Logistic Regression

```
In [39]: from sklearn.model selection import train test split
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import accuracy score, confusion matrix, classification report
         # 1. Split your data
         X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
         # 2. Scale the features
         scaler = StandardScaler()
         X train scaled = scaler.fit transform(X train)
         X test scaled = scaler.transform(X test)
         # 3. Initialize and train the model
         lr model = LogisticRegression(max iter=1000)
         lr model.fit(X train scaled, y train)
         # 4. Predict
         y pred lr = lr model.predict(X test scaled)
         # 5. Evaluate
         print(" • Logistic Regression")
         print("Accuracy:", accuracy_score(y_test, y_pred_lr))
         print("Confusion Matrix:\n", confusion matrix(y test, y pred lr))
         print("Classification Report:\n", classification report(y test, y pred lr))
```

```
◆ Logistic Regression
Accuracy: 0.8809523809523809
Confusion Matrix:
[[241 14]
[ 21 18]]
Classification Report:
               precision
                           recall f1-score
                                              support
           0
                   0.92
                             0.95
                                       0.93
                                                  255
           1
                   0.56
                             0.46
                                       0.51
                                                   39
   accuracy
                                       0.88
                                                  294
                   0.74
                             0.70
                                       0.72
                                                  294
  macro avg
weighted avg
                   0.87
                             0.88
                                       0.88
                                                  294
```

Train Decision Tree and Random Forest Models

Train a Decision Tree Classifier

```
In [40]: from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

dt_model = DecisionTreeClassifier(random_state=42)
    dt_model.fit(X_train_scaled, y_train)

y_pred_dt = dt_model.predict(X_test_scaled)

print(" * Decision Tree Classifier")
    print("Accuracy:", accuracy_score(y_test, y_pred_dt))
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_dt))
    print("Classification Report:\n", classification_report(y_test, y_pred_dt))
```

```
◆ Decision Tree Classifier
Accuracy: 0.7551020408163265
Confusion Matrix:
[[215 40]
[ 32 7]]
Classification Report:
              precision
                           recall f1-score
                                              support
           0
                  0.87
                            0.84
                                      0.86
                                                 255
           1
                  0.15
                            0.18
                                      0.16
                                                  39
   accuracy
                                      0.76
                                                 294
  macro avg
                  0.51
                            0.51
                                      0.51
                                                 294
weighted avg
                  0.77
                            0.76
                                      0.76
                                                 294
```

Train a Random Forest Classifier

```
In [41]: rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
    rf_model.fit(X_train_scaled, y_train)

y_pred_rf = rf_model.predict(X_test_scaled)

print(" * Random Forest Classifier")
    print("Accuracy:", accuracy_score(y_test, y_pred_rf))
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
    print("Classification Report:\n", classification_report(y_test, y_pred_rf))
```

• Random Forest Classifier Accuracy: 0.8775510204081632

Confusion Matrix:

[[254 1] [35 4]]

Classification Report:

	precision	recall	f1-score	support
0	0.88	1.00	0.93	255
1	0.80	0.10	0.18	39
accuracy			0.88	294
macro avg	0.84	0.55	0.56	294
weighted avg	0.87	0.88	0.83	294

In [42]: df.to_excel("cleaned_hr_data.xlsx", index=False)