Тема домашнего задания

«Программно-аппаратная система управления движением автомобиля»

Задание

Разработать программно-аппаратную систему управления движением автомобиля в среде STM32CubeIDE.

Используемые аппаратные ресурсы:

- плата NUCLEO-F767ZI с микроконтроллером STM32,
- клавиатура PmodKYPD,
- потенциометр для определения целевой скорости,
- зуммер (пьезоэлектрический источник звука),
- ИК-датчик расстояния Sharp 2Y0A21,
- драйвер двигателей L298N,
- мотор-редуктор.

Схема структурная (условная) представлена на рисунке 1.

Рисунок 1 – Схема структурная (условная)

Основная часть

Необходимо разработать систему управления движением автомобиля в среде STM32CubeIDE, которая будет отправлять информацию о состоянии на модуль имитации движения автомобиля. Внешний вид модуля имитации движения автомобиля представлен на рисунке 2.

Рисунок 2 — Внешний вид модуля имитации движения автомобиля В таблице 1 представлено сопоставление кнопок клавиатуры с их функциональным назначением.

Таблица 1 — Сопоставление кнопок клавиатуры с их функциональным назначением

Кнопка клавиатуры	Функциональное назначение
A	Engine (включение и выключение двигателя)
В	P mode (переключение на режим парковки)
С	R mode (переключение на задний ход)
D	D mode (переключение на движение вперед)
7	D safety belt (пристегивание/отстегивание ремня
	безопасности водителя)
8	R safety belt (пристегивание/отстегивание ремня
	безопасности пассажира)
1	Recover air bag (ремонт подушек безопасности)
0	Charge (начало/конец зарядки электромобиля)

Ниже представлены основные правила и алгоритмы, которые необходимо реализовать.

Коробка передач

- 1) Переключать передачи можно только с нулевой скоростью, нажатым тормозом и заведенным двигателем.
- 2) Начинать движение можно только, если водитель и пассажир пристегнуты (то есть при непристегнутых ремнях на передачи D и R переключиться можно, но скорость должна быть 0).
 - 3) Глушить двигатель можно только на режиме Р.

Скорость

- 4) Целевая скорость задается значением с потенциометра. Если значение с потенциометра увеличилось по сравнению с предыдущим, значит нажата педаль газа (необходимо выставить соответствующий бит CAN-пакета). Если же значение уменьшилось, значит нажата педаль тормоза.
 - 5) Максимальная скорость на передаче D 200 км/ч.
 - 6) Максимальная скорость на передаче R 60 км/ч.

Обороты

- 7) В зависимости от выставленной скорости должны быть установлены обороты на моторе-редукторе. При выборе передачи D мотор должен вращаться в одну сторону, при выборе передачи R в противоположную.
 - 8) Если машина заведена, то обороты должны быть 1000 об/мин.
- 9) В зависимости от скорости должны меняться обороты на тахометре.

- 10) На передаче D обороты должны изменяться линейно со скоростью в диапазоне [1000; 7000] об/мин. (Т.е. при скорости = 0 км/ч обороты = 1000 об/мин; скорость = 200 км/ч обороты = 7000 об/мин).
- 12) На передаче R обороты должны изменяться линейно со скоростью в диапазоне [1000; 7000] об/мин.

Пробег + Зарядка аккумулятора

- 13) Необходимо просчитывать пробег: сумма расстояний, пройденных в течение какого-то времени на некоторой скорости (расчеты проводить не по среднему значению скорости !!!)
- 14) Считать, что заряд аккумулятора определяется процентным соотношением от 0% до 100% и разряд аккумулятора составляет 1% на 1 км.
- 15) Зарядка аккумулятора производится только с заглушенным двигателем. Считать, что аккумулятор заряжается на 100% за 20 секунд. Для начала и конца зарядки необходимо нажать кнопку «0» (Charge (начало/конец зарядки электромобиля)). Уровень заряда аккумулятора должен увеличиться на некоторое значение в соответствии со временем, прошедшим с момента начала зарядки до конца зарядки.
- 16) Если зарядка не завершена, т.е. второй раз не нажата кнопка «0», то завести двигатель нельзя. Заряд аккумулятора не должен превышать 100%.

Парктроник

17) Дальномер фиксирует расстояние до препятствия. Если это расстояние меньше 15 см, то фиксируется столкновение, срабатывает подушка безопасности и скорость падает до 0 км/ч. Ездить со сработавшей подушкой можно. Чтобы её "починить" нужно выключить двигатель и нажать кнопку ремонта подушек безопасности (1-ая кнопка).

18) Необходимо реализовать работу парктроника: в зависимости от оставшегося расстояния до препятствия должен звучать звуковой сигнал с соответствующей частотой. Расстояние до препятствия и период звучания сигнала представлены в таблице 2.

Таблица 2 — Зависимость расстояния до препятствия и периода звучания сигнала парктроника

Расстояние до препятствия (см)	Период звучания сигнала (мс)
((dist <= 50)&&(dist > 30))	1000
((dist <= 30)&&(dist > 15))	500
((dist <= 15)&&(dist > 0))	100

CAN-пакет

Система управления движением автомобиля должна постоянно информировать модуль имитации движения о своем состоянии путем оправки CAN-пакетов с идентификатором 0x1FE. В ответ она должна получать CAN-пакеты с идентификатором 0x1EF со статусом приема пакета. В Excel-таблице представлено информационное назначение каждого бита отправляемого и принимаемого пакетов.

Таблица подключения

В таблицы 3 представлена информация о пинах подключения элементов системы.

Таблица 3 – Информация о пинах подключения элементов системы

STM32	Клавиатура
PD7	1 (COL4)
PD6	2 (COL3)
PD5	3 (COL2)
PD4	4 (COL1)
	5 (GND)

	6 (VCC)
PC11	7 (ROW4)
PC10	8 (ROW3)
PC9	9 (ROW2)
PC8	10 (ROW1)
	11 (GND)
	12 (VCC)
STM32	Потенциометр
PA0	A0
PB0	VCC
	GND
STM32	RS485 CAN Shield
PD1	D14 (CAN_TX)
PD0	D15 (CAN_RX)
3.3V	3V3
GND	GND
RS485 CAN Shield	TRC-8542 (Кабель
	приемопередатчика CAN)
L	2 (CAN_L)
Н	7 (CAN_H)
STM32	L298N
PC6	ENA
PD13	IN2
PD12	IN1
	на L298N для питания от
стабилизат	
Иначе L298N не	-
	J
Источник питания	L298N
11V	VSS
GND	GND
Motor	L298N
Контакт 1	OUT1
1	0011

Контакт 2	OUT2
STM32	Sharp 2Y0A21
PA3	V0
GND	GND
5V	VCC

Требования к оформлению отчетной работы

Необходимо разработать структурную схему Э1, функциональную схему Э2, принципиальную схему Э3 в соответствии с ГОСТ 2.701-2008, ГОСТ 2.702-2011.

Примеры схем представлены на рисунках 3-5.

Рисунок 3 – Структурная схема (Э1)

Подсистема приема данных о параметрах движения NRF 24L 01 Подсистема контроля слепой зоны сзади Приёмник 3,38 AM S1117-33 5B Стобилизатор напряжения HC-SR04 FIFO буфер Дальнамер ТСТ40-16 R и ТСТ4 0-16Т Ультраздукадай передатчик и приемник EM78P153S SPI SPI Микроконтромер MOSI SS MISO SCK Arduino Pro Mini Trig G 5B 78105 ATMEGA328 KY-006 Стабилизатор напряжения Мик роконт роллер Зуммер 10B PWM AIN1 AIN2 BIN1 BIN2 Исполнительный механизм STBY T86612RVG Драйвер двигателей B 01 B02 A02 A01 TT 148 TT 148 TT 1:48 TT 148 Мотор Мотор Мотор Мот ор Колесо Колесо Колесо Колесо

Рисунок 4 – Функциональная схема (Э2)

левая сторона

правая сторона

Подсистема обеспечения движения кресла

Рисунок 5 – Принципиальная схема