

CAMBRIDGE INSTITUTE OF TECHNOLOGY

K.R. PURAM, BANGALORE – 560 036, Ph: 080-2561 8798 / 2561 8799

Fax: 080-2561 8789, email: principal@cambridge.edu.in

Affiliated to VTU, Belagavi| Approved by AICTE, New Delhi| NAAC& NBA Accredited| UGC 2(f) Certified| Recognized by Govt. of Karnataka

Department of Basic Sciences – Physics

Sl. No	Ouestion Bank Module-1 Lasers and optical fibers	COs	RBT	Marks
			Levels	
		CO1	L1	4m
1	What is Laser? Mention important characteristics of Lasers.			
2	Discuss the possible ways through which radiation and matter interaction can take place.	CO1	L2	7m
3	Derive the expression for energy density in terms of Einstein's coefficients.	CO1	L3	8m
4		CO1	L2	7m
4	Explain the Requisites and conditions of a Laser system.	GO 1		
5	Explain the construction and working of a semiconductor laser.	CO1	L2	8m
6	Explain the working of Bar code scanner.	CO1	L2	5m
7	Explain the working of laser printer and laser cooling.	CO1	L2	4m
8	With neat diagram derive an expression for numerical aperture and arrive at the condition for propagation of a	CO1	L3	8m
	signal in an optical fiber.			
	OR			
	Prove that NA = $\sqrt{n_1^2 - n_2^2}$			
	What is refractive index profile? With neat diagrams,	CO1	L2	8m
9	explain different types of optical fibers.			
10	What is attenuation? Discuss the various loss factors in	CO1	L2	8 m
10	optical fiber communication.			
11	With the help of block diagram, explain point to point communication using optical fiber.	CO1	L2	5m

	Define attenuation and mention the expression attenuation co	CO1	L2	5m
12	efficient.			
	Define optical fiber , refractive index profile and Numerical	CO1	L2	5 m
13	aperture and acceptance angle?			
	Explain fiber optic networking	CO1	L2	5m
14				