

Basics of Neural Network Programming

Vectorization

What is vectorization?

$$for i in raye (n-x):$$

$$2+= \omega [1] * x (1)$$

Basics of Neural Network Programming

More vectorization examples

Neural network programming guideline

Whenever possible, avoid explicit for-loops.

$$U = AV$$

$$U_{i} = \sum_{i} \sum_{j} A_{ij} V_{ij}$$

$$U = np. zevos((n, i))$$

$$for i \dots \subseteq ACIT_{i} \exists *vC_{i} \exists$$

$$uCi \exists t = ACIT_{i} \exists *vC_{i} \exists$$

Vectors and matrix valued functions

Say you need to apply the exponential operation on every element of a matrix/vector.

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow \mathbf{u} = \begin{bmatrix} \mathbf{e}^{\mathbf{v}_1} \\ \mathbf{e}^{\mathbf{v}_2} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$u = np \cdot exp(v) \leftarrow 1$$

$$np \cdot log(v)$$

$$np \cdot abs(v)$$

$$np \cdot abs(v)$$

$$np \cdot haximum(v, 0)$$

$$np \cdot haximum(v, 0)$$

$$v \neq v = [v_1] + [v_1] + [v_2] + [v_2] + [v_3] + [v_3] + [v_4] + [v_4] + [v_5] + [v_5]$$

Logistic regression derivatives

$$J = 0, \quad dw1 = 0, \quad dw2 = 0, \quad db = 0$$

$$\Rightarrow \text{ for } i = 1 \text{ to } n:$$

$$z^{(i)} = w^{T}x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J + = -[y^{(i)}\log\hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})]$$

$$dz^{(i)} = a^{(i)}(1 - a^{(i)})$$

$$dw_{1} + x_{1}^{(i)}dz^{(i)}$$

$$dw_{2} + x_{2}^{(i)}dz^{(i)}$$

$$db + dz^{(i)}$$

$$J = J/m, \quad dw_{1} = dw_{1}/m, \quad dw_{2} = dw_{2}/m, \quad db = db/m$$

$$d\omega / = m$$

Basics of Neural Network Programming

Vectorizing Logistic Regression

Vectorizing Logistic Regression

$$Z^{(1)} = w^{T}x^{(1)} + b$$

$$Z^{(2)} = w^{T}x^{(2)} + b$$

$$Z^{(3)} = w^{T}x^{(3)} + b$$

$$Z^{(3)} = \sigma(z^{(3)})$$

$$Z^$$

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

Vectorizing Logistic Regression

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = a^{(2)} - y^{(2)}$$

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - a^{(1)}] \quad Y = [y^{(1)} - y^{(2)}]$$

$$A = [a^{(1)} - a^{(1)}] \quad Y = [y^{(1)} - y^{(2)}]$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(2)} - y^{(2)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(1)} - y^{(1)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a^{(1)} - y^{(1)}$$

$$A = [a^{(1)} - y^{(1)}] \quad a$$

$$db = \frac{1}{m} \sum_{i=1}^{n} dz^{(i)}$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

$$= \frac{1}{m} \left[x^{(i)} + \dots + x^{(n)} dz^{(m)} \right]$$

Implementing Logistic Regression

J = 0,
$$dw_1 = 0$$
, $dw_2 = 0$, $db = 0$

for i = 1 to m:

$$z^{(i)} = w^T x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)}) \checkmark$$

$$J += -[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})]$$

$$dz^{(i)} = a^{(i)} - y^{(i)} \checkmark$$

$$dw_1 += x_1^{(i)} dz^{(i)}$$

$$dw_2 += x_2^{(i)} dz^{(i)}$$

$$dw_2 += dz^{(i)}$$

$$dw_1 += dz^{(i)}$$

$$dw_2 += dz^{(i)}$$

$$dw_3 += dz^{(i)}$$

$$dw_4 += dz^{(i)}$$

$$dw_5 += dz^{(i)}$$

$$dw_6 += dz^{(i)}$$

$$dw_7 += dw_7 / m$$

$$dw_7 = dw_7 / m$$

$$dw_7 = dw_7 / m$$

iter in range (1000)!
$$\angle$$

$$Z = \omega^{T} X + b$$

$$= n p \cdot dot (\omega \cdot T \cdot X) + b$$

$$A = \epsilon (Z)$$

$$A = \epsilon (Z)$$

$$A = \Delta - Y$$

$$A$$

Basics of Neural Network Programming

Broadcasting in Python

Broadcasting example

Calories from Carbs, Proteins, Fats in 100g of different foods:

Apples Beef Eggs Potatoes

Carb
$$56.0$$
 0.0 4.4 68.0

Protein 1.2 104.0 52.0 8.0

Fat 1.8 135.0 99.0 0.9 (3,4)

Squal Section from Cab, Poten, Fort. Can you do the arphint for-loop?

Cal = A.sum(axis = 0)

percentage = $100*A/(cal Abstrace(1.6))$

Broadcasting example

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 100 \\ 100 \\ 100 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 100 & 200 & 300 \\ 100 & 200 & 300 \end{bmatrix}$$

$$(m,n) \quad (2,3)$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 100 & 100 & 100 \\ 200 & 200 \end{bmatrix} = \begin{bmatrix} (m,n) & 2 & 100 \\ (m,n) & 2 & 100 \end{bmatrix}$$

General Principle

$$(m, n)$$
 $\frac{t}{x}$ (n, i) m (m, n) $($

Mathab/Octave: bsxfun

Basics of Neural Network Programming

Explanation of logistic regression cost function (Optional)

Logistic regression cost function

Logistic regression cost function

If
$$y = 1$$
: $p(y|x) = \hat{y}$

If $y = 0$: $p(y|x) = 1 - \hat{y}$

$$p(y|x) = \hat{y} \cdot (1 - \hat{y})$$

Cost on *m* examples

log
$$p(lolods)$$
 in troops set) = log $\prod_{i=1}^{m} p(y^{(i)}|\chi^{(i)})$

log $p(----) = \sum_{i=1}^{m} log p(y^{(i)}|\chi^{(i)})$

Movimum likelihood setiment

$$- \chi(y^{(i)}, y^{(i)})$$

$$= -\sum_{i=1}^{m} \chi(y^{(i)}, y^{(i)})$$

(ost: $J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \chi(y^{(i)}, y^{(i)})$

(minimize)