Reti di accesso e mezzi trasmissivi

Domanda: come si connettono gli host agli edge router?

- Reti di accesso residenziale (da casa)
- Reti di accesso istituzionali (scuole, università, aziende)
- · Reti di accesso mobili

Caratteristiche:

- Larghezza di banda (bit al secondo) delle reti di accesso
- Condivise o dedicate?

- Connessione telefonica via modem
 - Fino a 56Kbps di accesso diretto ad un router (in teoria)
- <u>ISDN</u>: integrated services digital network: connessione completamente digitale a 128Kbps verso un router
- <u>ADSL</u>: asymmetric digital subscriber line
 - Fino a 1 Mbps casa-router
 - Fino a 8 Mbps router-casa
 - Diffusione ADSL: in corso

Rete telefonica

- Originariamente progettata e realizzata per la trasmissione della voce (cioè di suoni)
- Può essere sfruttata anche per trasmettere dati da un terminale ad un calcolatore o tra elaboratori.

Rete telefonica

Come funziona le rete telefonica

- L'apparato fonico di un uomo (polmoni, corde vocali, bocca,...) produce nell'aria un'onda di pressione acustica
- Il microfono della cornetta converte quel segnale in un segnale elettrico che ha esattamente la stessa forma

MA QUESTO LO SAPETE GIÀ

Come funziona le rete telefonica

Come funziona le rete telefonica

- · Il segnale elettrico viaggia sul doppino telefonico (coppia di di fili) ed arriva all'apparecchio del ricevente
- L'altoparlante della cornetta del ricevente esegue l'inverso del microfono del trasmettente convertendo il segnale elettrico in un'onda acustica ANALOGA a quella che aveva colpito il microfono.

- · La rete telefonica trasmette suoni
- Un calcolatore vuole trasmettere informazioni codificate usando un opportuno numero di bit
- Ci vuole un dispositivo che esegue la conversione da bit a "fischio"
- MOdulatore-DEModulatore

- Se si deve trasmettere un bit che vale 1 allora il modem fischia una certa nota lungo la linea telefonica altrimenti se deve trasmettere uno 0 fischia una nota differente
- Chiaramente, il ricevitore deve avere un modem che esegue il lavoro opposto: se sente un fischio con una la nota associata al bit uguale a O allora trasmette al computer un bit O altrimenti nell'altro caso trasmette un 1

-

Rete telefonica

Difetti e pregi della rete telefonica

- Trasmette solo nel campo delle frequenze che vanno da 400 a 3.400 Hertz (4KHz è considerata la frequenza massima della voce umana)
- Il numero di bit al secondo che si riesce a trasmettere è, nei casi migliori, dell'ordine di 30.000 bit/s (Quanti caratteri di un testo al secondo? Quanti pixel di un'immagine al secondo?)
- I tempi per stabilire una connessione sono lunghissimi (qualche secondo) se comparati a quelli di un calcolatore
- La rete telefonica è molto disturbata per la trasmissione dati quindi spesso si deve ritrasmettere i dati
- Diffusa capillarmente su tutta la Terra

Interazione tra processore, cache, memorie e dispositivi di I/O e modem

Accesso Residenziale: cable modems

- HFC: hybrid fiber coax
 - asimmetrico: fino a 10Mbps router-casa, 1 Mbps casa-router
- rete di cavi and fibre connettono abitazioni ai router di ISP
 - Accesso condiviso tra le abitazioni al router
 - problemi: congestione, dimensionamento
- diffusione: disponibile, in USA, dalle compagnie di TV via cavo

Accesso Istituzionale: local area networks

- La local area network (LAN) di aziende, università, connette host ad un edge router
- Ethernet (non confondetelo con Internet!!):
 - Cavo condiviso o dedicato connette gli host ed il router
 - 10 Mbs, 100Mbps, Gigabit Ethernet
 - ogni host deve avere una scheda di rete (dispositivo connesso al bus di sistema e al cavo condiviso)
- diffusione: istituzioni, LAN casalinghe, attuale

Interazione tra processore, cache, memorie e dispositivi di I/O e scheda Ethernet (LAN)

Reti di accesso Wireless

- Una rete condivisa di accesso wireless connette host a router
- wireless LAN:
 - Spettro radio sostituisce il cavo
 - e.g., Lucent Wavelan 11 Mbps
- Accessi wireless in area geografica
 - Cellular Digital Packet Data (CDPD): accesso wireless al router di un ISP attraverso la rete cellulare

Interazione tra processore, cache, memorie e dispositivi di I/O e Wireless adapter

Mezzi trasmissivi

- Canali fisici: bit di dati trasmessi si propagano lungo il canale
- Mezzi guidati:
 - segnali si propagano in mezzi solidi: rame, fibra
- Mezzi non guidati:
 - Segnali si propagano liberamente, e.g., radio

Twisted Pair (TP)

- Due cavi di rame isolati ed intrecciati
 - Categoria 3: doppino telefonico, 10 Mbps Ethernet
 - Categoria 5 TP: 100Mbps Fthernet

Mezzi trasmissivi: cavi coassiali, fibra

Cavo coassiale:

- Conduttore rame (portante segnale)
- Strato di plastica isola il conduttore da uno schermo di metallo intrecciato (per bloccare interferenze esterne)
- bi-direzionale
- Uso tipico per 10Mbs Ethernet

Cavo in fibra ottica:

- Fibra di vetro che trasporta impulsi ottici
- Operazioni ad alta velocità:
 - 100Mbps Ethernet
 - Alta velocità di trasmissione punto-punto (e.g., 5 Gps)
- · Bassa probabilità di errore

- Segnale trasportato nello spettro elettromagnetico
- Nessun cavo fisico
- bi-direzionale
- Effetti dell'ambiente sulla propagazione:
 - riflessione
 - ostruzione (oggetti ostacolo)
 - interferenza

Tipi di canali radio:

- microonde
 - e.g. fino a 45 Mbps
- LAN (e.g., WaveLAN)
 - 2Mbps, 11Mbps
- Area geografica (e.g., cellulare)
 - e.g. CDPD, 10 Kbps
- satellite
 - fino a 50Mbps

Reti residenziali: il futuro?

Componenti tipiche:

- Modem ADSL o per cavo
- router
- Ethernet

Struttura di Internet: rete di reti

- · a grandi linee gerarchica
- national/international backbone providers (NBP)
 - e.g. BBN/GTE, Sprint, AT&T, IBM, UUNet
 - si inter-connettono direttamente, o tramite Network Access Point (NAP)
- ISP regionali
 - connettono ai NBP
- ISP locali, privati, istituzioni
 - connettono agli ISP regionali

