Contents

1	Peri	nutations and Combinations	2
	1.1	Basic Counting Principles	2
	1.2	Permutations	4

1

Permutations and Combinations

1.1 Basic Counting Principles

An important motivation to study combinatorics is to count the **number of ways** in which an event may occur. Intuitively, we have two approaches to count.

The first approach is to categorise the event into **non-overlapping cases**. This means that we break an event into mutually exclusive sub-events, after which we can count the number of ways for each sub-event to occur. The agregate of these counts is the total number of ways for the original event to occur.

Those familiar with basic set theory may consider E to be the set containing all distinct ways for an event to occur. By breaking up the event, we essentially establish a **partition** of E, so that the sum of cardinalities of all the elements in that partition equals the cardinality of E.

This motivates us to write the following principle using set notations.

Theorem 1.1.1 ▶ Addition Principle (AP)

Let $k \in \mathbb{N}^+$ and let A_1, A_2, \dots, A_k be k finite sets which are pairwise disjoint, i.e. $A_i \cap A_j = \emptyset$ whenever $i \neq j$, then

$$\left| \bigcup_{i=1}^k A_i \right| = \sum_{i=1}^k |A_i|.$$

Proof. The case where k = 1 is trivial.

Suppose that when k = n, we have

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i|$$

for any n finite sets which are pairwise disjoint. Let A_{n+1} be an arbitrary finite set

which is disjoint with any of the A_i 's from the n sets. So we have:

$$\begin{vmatrix} \prod_{i=1}^{n+1} A_i \\ | = \left| \left(\bigcup_{i=1}^n A_i \right) \cup A_{n+1} \right| \\ = \left| \bigcup_{i=1}^n A_i \right| + |A_{n+1}| - \left| \left(\bigcup_{i=1}^n A_i \right) \cap A_{n+1} \right| \\ = \left(\sum_{i=1}^n |A_i| \right) + |A_{n+1}| - |\varnothing| \\ = \sum_{i=1}^{n+1} |A_i|.$$

Therefore, the original statement holds for all $k \in \mathbb{N}^+$.

In more casual language, this means that if an event E_k has n_k distinct ways to occur, then there is $\sum_{i=1}^k n_k$ ways for at least one of the events E_1, E_2, \dots, E_k to occur, provided that E_i and E_j can never occur concurrently whenever $i \neq j$.

Given an event E, the other approach to count the number of ways for it to occur is to break E up internally into non-overlapping stages.

With set notations, we can write the *i*-th stage for E to occur as e_i , and so a way for E to occur can be represented by an ordered tuple (e_1, e_2, \dots, e_k) , where k is the total number of stages to undergo for E to occur.

Let E_i denote the set of all distinct ways to undergo the *i*-th stage of E, then it is easy to see that E is just the **Cartesian product** of all the E_i 's. Hence, we derive the following principle:

Theorem 1.1.2 ▶ Multiplication Principle (MP)

Let $k \in \mathbb{N}^+$ and let A_1, A_2, \cdots, A_k be k pairwise disjoint finite sets, then

$$\left| \prod_{i=1}^k A_i \right| = \prod_{i=1}^k |A_i|.$$

Proof. The case where k = 1 is trivial.

Suppose that when k = n, we have

$$\left| \prod_{i=1}^{n} A_i \right| = \prod_{i=1}^{n} |A_i|$$

for any n finite sets which are pairwise disjoint. Let A_{n+1} be an arbitrary finite set which is disjoint with any of the A_i 's from the n sets. Take $a_i, a_j \in A_{n+1}$. Note that for all $\mathbf{a} \in \prod_{i=1}^n A_i$, $(\mathbf{a}, a_i) \neq (\mathbf{a}, a_j)$ whenever $a_i \neq a_j$. This means that

$$\left| \prod_{i=1}^{n+1} A_i \right| = \left| \prod_{i=1}^n A_i \times A_{n+1} \right|$$

$$= \left| \prod_{i=1}^n A_i \right| |A_{n+1}|$$

$$= \left(\prod_{i=1}^n |A_i| \right) |A_{n+1}|$$

$$= \prod_{i=1}^{n+1} |A_i|$$

Therefore, the original statement holds for all $k \in \mathbb{N}^+$.

In more casual language, this means that if an event E requires k stages to be undergone before it occurs and the i-th stage has n_i ways to complete, then there is $\prod_{i=1}^k n_k$ ways for E to occur, provided that no two different stages complete concurrently.

1.2 Permutations

A fundamental problem in combinatorics is described as follows: given a set S, how many ways are there to arrange r elements in S, i.e. how many **distinct sequences** can be formed using the elements in S without repetition? The process of selecting elements from S and arranging them as a sequence is known as **permutation**.

Note that forming a sequence using r elements from a set S is an event consisting of r stages, as we need to select an element for each of the r terms of the sequence. Suppose S has n elements. For the first term of the sequence, we can choose any of the elements in S, so there is n ways to do it. For the second term, since we cannot repeat the elements, we are left with n-1 choices.

Continue choosing elements in this way, we realise that if we choose the terms sequentially, when we reach the k-th term we will be left with n - k + 1 options as the previous (k - 1) terms have taken away (k - 1) elements. By Theorem 1.1.2, we know that the number of sequences which can be formed is given by $\prod_{i=1}^{r} (n - r + i)$.

Definition 1.2.1 ▶ **Permutations**

Let A be a finite set such that |A| = n, an r-permutation of A is a way to arrange r elements of A, denoted as P_r^n and given by

$$P_r^n = \prod_{i=1}^r (n-r+i) = \frac{n!}{(n-r)!}.$$