

Métodos numéricos

Docente: M.M. Jorge Manuel Pool Cen

Actividad: BITÁCORA

Alumno: Jafet Jesús Caamal Cocom

Matricula: 20070004

4° A

Fecha: 15/03/2021

```
Problemario_CAAMAL_COCOM_JAFET_JESUS 
 Archivo Editar Ver Insertar Entorno de ejecución Herramientas Ayuda Se han o
     + Código + Texto
≣
           def fx(t):
Q
               ce = 10
               c\theta = 4
               c = ce*(1-np.exp(-0.04*t))+c0*np.exp(-0.04*t)-9.3
<>
               return c
{x}
            def biseccion(a, b, cota):
               error = 1
i = 0
               listar = [1, 20]
                if fx(a)*fx(b) < 0:
                   while error > cota:
                       xr = (a+b)/2
                       fxr = fx(xr)
                       fxa = fx(a)
                       if fxr * fxa < 0:
                           b = xr
                       elif fxr * fxa > 0:
                           a = xr
                       else:
                           break
                       listar.append(xr)
                       xractual = xr
                       if(len(listar) >= 2):
                           xranterior = listar[-2]
                           error = np.abs((xractual-xranterior)/xractual)
                           error = 1
i += 1
```



```
Problemario_CAAMAL_COCOM_JAFET_JESUS 
 Archivo Editar Ver Insertar Entorno de ejecución Herramientas Ayuda Se han g
      + Código + Texto
∷
Q
            import numpy as np
            from matplotlib import pyplot as plt
\langle \rangle
            def fx(t):
{x}
                c = (1.4*(1/100000))*np.power(t, 1.5) + 
                    1.15 * (1/100000)*np.power(t, 2)-0.01962
                return c
def biseccion(a, b, cota):
                error = 1
                i = 1
                listar = [1, 9]
                if fx(a)*fx(b) < 0:
                    while error > cota:
                        xr = (a+b)/2
                        fxr = fx(xr)
                        fxa = fx(a)
                        if fxr * fxa < 0:
                           b = xr
                        elif fxr * fxa > 0:
                            a = xr
                            break
                        listar.append(xr)
                        xractual = xr
                        if(len(listar) >= 2):
                            xranterior = listar[-2]
                            error = np.abs((xractual-xranterior)/xractual)
error = 1
```



```
▲ Problemario CAAMAL COCOM JAFET JESUS
CO
       Archivo Editar Ver Insertar Entorno de ejecución Herramientas
      + Código + Texto
≣
            import numpy as np
       [ ] from matplotlib import pyplot as plt
Q
            def funcion(x):
<>
                return np.tan(x)-0.1*x
{x}
            def funcion2(x):
return (np.power((1/np.cos(x)), 2)-0.1)
            w = np.pi*1.5
            def newton(xi, maxiteraciones, cota):
                error = 1
                i = 1
                print("i | xi | fxi | fdxi | xr | error")
                while error > cota:
                    xr = xi - (funcion(xi)/funcion2(xi))
                    error = np.abs((xr-xi)/xr)
                   xi = xr
                    i += 1
                    print("Raiz:", xr, " Error:", error)
            newton(np.pi, w, 0.001)
            vectorx = np.arange(3, 4, 0.01)
            plt.plot(vectorx, funcion(vectorx))
            plt.grid("x")
            plt.grid("y")
plt.show()
```



```
Problemario_CAAMAL_COCOM_JAFET_JESUS 
 CO
       Archivo Editar Ver Insertar Entorno de ejecución Herramientas Ayuda Se han o
     + Código + Texto
≣
       import numpy as np
           from matplotlib import pyplot as plt
Q
           def fx(t):
               return np.power(t, 4)-2*np.power(t, 3)-4*np.power(t, 2)+4
{x}
           def biseccion(a, b, cota):
error = 1
               i = 0
               listar = [1, 20]
               if fx(a)*fx(b) < 0:
                   while error > cota:
                       xr = (a+b)/2
                       fxr = fx(xr)
                       fxa = fx(a)
                       if fxr * fxa < 0:
                           b = xr
                       elif fxr * fxa > 0:
                           break
                       listar.append(xr)
                       xractual = xr
                       if(len(listar) >= 2):
                           xranterior = listar[-2]
                           error = np.abs((xractual-xranterior)/xractual)
                           error = 1
print("No hay solucióón esa region")
```


	(Jercio	V					
	F	(x) =	tanex) + 3.5	en el Int	ervalo	10.7	
		Error	= 0.03					
							4 0	
		Xi	Xs	XV	F(xi)	F(XY)	A×B	Error
	1	0	7	1.57	-3-5	-3.47	+	1
	2	1.57	1-57	0.785	- 3.5	-3.486	+	1
	Section in the last	0.785	0.785	0.785	- 3.486	-3-486	+	1
	-	1.178	0.785	0-981	-3-47	-3-486	+	0.3333
-	-	1.374	6.981	1. 1775		-3.4	1	0.142

	Ejercici	0	Encoe	ntra la raiz	de F(x) = 6	can (x)	-0.1x
		6	Interve	10 IT, 1.57	Error	:0.0	001
*	a	6	XY	F(XV)	f(a)	AxB	Error
1	3.1416	1.511	3.9269	-6.3141	0.6071	+	0.1949
2	3.1416	3,4269	3.5342	-6.3141	0.0606	+	0.1110
3	3.1416	3.5332	3-3378	-0.3141	-0./350	+	0.0587
4	3.3378	3.5332	3.436	-6.1350	-0.0403	+	0-028
5	3.436	3.5343	3.4851	-0.0403	-0.0091	-	0.0140

	E) ever	cio	7				
	Halle la	vail	de la F		(x) = x4-		4 x 2
	a I-2	2,-17	3-4x2+	4 = 0	Error = 0	1001	
	P LO	2]				Fexi) +Fo	(0)
11	a	6	Xy	F(xx)	F(a)	AXB	Error
1	0	2	11	4	-1	+	1
2	0	1	6.5	4	2-81	+	L
3	0-5	1	6.75	2.8125	1-22	+	6.33
4	6.75	1	6.875	1.2226	1-18	+	0.14
5	0.875	1	0.9375	1-1830	-6.39	+	6.06

	Ljerci					
	Dea Flx) = tantil	x)-6, y	utilice xo	= 0 , X1 =	0.44
	para deter	minar la	ra. 2 -	Error :	0.001	
			644 1	64	1, 1, 1	
1	Xi-	Xí	f(xi-1)	f(xi)	Xi+I	ETYOV
Q	0	0.44	-6	-6.7598	0.5036	6.1263
1	0.44	0.5036	-0.7578	- 94.4156	0-4394	0.1459
2	0.3036		-94. 4156	-0.8109	0.4388	0.0013
3	0.4394	6.43 88	-0.8109	- 0.8631	0.4487	0.0217
4		0.4487		-0.1510	0-4472	0.0032
1						