CS 181u Applied Logic Lecture 9

LTL Model Checking

The Big Picture

LTL Model Checking

$$\mathcal{M} \models \phi \Leftrightarrow \forall \pi \ [\pi \models \phi]$$

LTL Model Checking

The goal of LTL Model Checking: given a transition system \mathcal{M} and an LTL property ϕ ,

- 1. determine if $\mathcal{M} \models \phi$, and
- 2. if $\mathcal{M} \not\models \phi$, then give a counterexample execution path from \mathcal{M} .

LTL Model Checking Algorithm

$$\mathcal{M} \models \phi \Leftrightarrow \forall \pi \ [\pi \models \phi]$$

LTL Model Checking

LTL Model Checking Algorithm Overview

- 1. Construct a Büchi automaton for $\neg \phi$, $A_{\neg \phi}$.
- 2. Construct a Büchi automaton for \mathcal{M} , $A_{\mathcal{M}}$.
- 3. Compute the automaton product $A_{\neg \phi} \times A_{\mathcal{M}}$.
- 4. Check if $A_{\neg \phi} \times A_{\mathcal{M}}$ has an accepting path.
 - (a) No accepting path $\Rightarrow \mathcal{M} \models \phi$.
 - (b) An accepting path corresponds to a counterexample execution.

Büchi Automata

A Büchi Automaton, A, is a tuple $A = (\Sigma, S, \rightarrow, I, F)$, where

- \bullet Σ is an alphabet of transition symbols,
- *S* is a set of states,
- \bullet \rightarrow is a transition relation,
- I is a set of initial states, and
- F is a set of accepting (a.k.a Final) states.

A Büchi Automaton, \mathcal{A} , accepts languages of *infinite words*. That is, for a Büchi automaton, \mathcal{A} , $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$.

Acceptance condition: a Büchi automaton, A, accepts an infinite word u if there exists an execution path of A when run on u that visits the set of states of F infinitely often.

LTL and Büchi Automata

Property: Any LTL formula for atomic propositions AP has a Büchi automaton with alphabet $\Sigma = \mathcal{P}(AP)$.

Example 1:
$$\phi = G p$$
, $AP = \{p\}$

Example 2:
$$\phi = G p$$
, $AP = \{p, q\}$

Example 3:
$$\phi = GF p$$
, $AP = \{p\}$

Example 4:
$$\phi = GF p$$
, $AP = \{p, q\}$

$$\emptyset$$
, $\{q\}$ $\{p\}$, $\{p,q\}$

Non-deterministic Büchi Automata

A non-deterministic Büchi automaton allows multiple outgoing transitions with the same label. Acceptance condition is the same as before.

Example 3':
$$\phi = GF \ p$$
, $AP = \{p\}$

$$0, \{p\}$$

$$\emptyset, \{p\}$$

Non-determinism: for example, from state 0, this automaton can either stay at state 0 or go to state 1 on transition labeled $\{p\}$.

For any sequence of sets of propositions that always has a p in the future, there is a correponding execution path in \mathcal{A}_{GFp} that visits state 1 infinitely often.

1. LTL to BA conversion

There is an algorithm that constructs a Büchi automaton (BA) from any LTL formula. However, we will not give it in this lecture.

There is an online tool for converting LTL to BA:

http://www.lsv.fr/~gastin/ltl2ba/index.php

2. Transition System to Büchi Automata

Given a transition system $\mathcal{M}=(S,\to,I)$ and labelling function $L:S\to AP$, we can construct a Büchi automaton $\mathcal{A}_{\mathcal{M}}=(\Sigma,S',\Rightarrow,I',F)$ where

- $\Sigma = \mathcal{P}(AP)$
- $S' = S \cup \{i\}$ (new initial state i)
- \bullet \rightarrow is a transition relation,
- $l' = \{i\}$ (state i is the only initial state),
- \bullet F=S' (all states are accepting states), and
- the new transition relation, ⇒ is as defined in the following slides.

2. Transition System to Büchi Automata

Convert the transition relation, \rightarrow , in system \mathcal{M} to the transition relation, \Rightarrow , in the Büchi automaton, $\mathcal{A}_{\mathcal{M}}$.

Informally: add a new init state, move the labels from any state to the incoming transitions for that state. We will illustrate two simple rules to do this:

	In M	In $\mathcal{A}_{\mathcal{M}}$
non-initial states	S_j S_k	S_j l S_k
initial states		$i \longrightarrow S_k$

3. Büchi Automata Product

Given Büchi automata

$$A_1 = (\Sigma, S_1, \rightarrow_1, I_1, F_1)$$

 $A_2 = (\Sigma, S_2, \rightarrow_2, I_2, F_2)$

$$A_1 \times A_2 = (\Sigma, S, \rightarrow, I, F)$$
 where

- $\bullet \ S = S_1 \times S_2$
- $I = I_1 \times I_2$
- $F = \{(f_1, f_2) : f_1 \in F_1 \land f_2 \in F_2\},\$
- \rightarrow is defined for two states and a label l when \mathcal{A}_1 and \mathcal{A}_2 agree on l. To illustrate:

in
$$A_1$$
 in A_2 in $A_1 \times A_2$

$$\underbrace{S_{1j}}_{A} \underbrace{S_{1k}}_{S_{1k}} \underbrace{S_{2r}}_{A} \underbrace{S_{2t}}_{S_{2t}}$$

Consider this transition system, M, with $AP = \{p\}$

Consider this transition system, M, with $AP = \{p\}$

We want to check the property $\phi = F G \neg p$

Step 1: Construct $A_{\neg \phi}$. $\neg \phi = \neg F \ G \ \neg p = G \ F \ p$ This is the same NBA we saw earlier in the slides (Example 3'):

Consider this transition system, M, with $AP = \{p\}$

Step 2: Construct $A_{\mathcal{M}}$.

Consider this transition system, M, with $AP = \{p\}$

Step 2: Construct $A_{\mathcal{M}}$.

Consider this transition system, M, with $AP = \{p\}$

Step 2: Construct $A_{\mathcal{M}}$.

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$.

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$.

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$.

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$.

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$.

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$. {*p*} **---⊳**{*p*} {*p*} \emptyset

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$. {*p*} {*p*} i0{*p*} **---⊳**{*p*} {*p*} \emptyset

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$. {*p*} {*p*} ---**>** {*p*} {*p*} \emptyset

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$. {*p*} i0{*p*} ---**⊳** {*p*} {*p*} {*p*} \emptyset

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$. {*p*} {*p*} i0{*p*} {*p*} {*p*} $\{p\}$ {*p*} 20

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$. $\emptyset, \{p\}$ $\emptyset, \{p\}$ \emptyset \emptyset

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$.

Step 4: Is there an accepting path (a path that visits an accept state infinitely often)?

{*p*}

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$.

Step 4: Is there an accepting path (a path that visits an accept state infinitely often)?

Yes. $i0, 00, 10, (20, 11)^{\omega}$

{*p*}

Step 3: Construct $A_{\mathcal{M}} \times A_{\neg \phi}$.

Step 4: Is there an accepting path (a path that visits an accept state infinitely often)?

Yes. $i0, 00, 10, (20, 11)^{\omega}$

This corresponds to 0, $(1,2)^{\omega}$ in the original transition system \mathcal{M} . Since we have found a counter example path, $\mathcal{M} \not\models \phi$.

 $\{p\}$