TEST5

2023-04-28

#Questions

Consider again the application in lecture 5.5, where we have analyzed response to a direct mailing using the following logit specification

$$Pr[resp_{i} = 1] = \frac{exp(\beta_{0} + \beta_{1} male_{i} + \beta_{2} active_{i} + \beta_{3} age_{i} + \beta_{4} (age_{i}/10)^{2})}{1 + exp(\beta_{0} + \beta_{1} male_{i} + \beta_{2} active_{i} + \beta_{3} age_{i} + \beta_{4} (age_{i}/10)^{2})}$$

for i = 1, . . . , 925. The maximum likelihood estimates of the parameters are given by

Variable	Coefficient	Std. Error	t-value	<i>p</i> -value
Intercept	-2.488	0.890	-2.796	0.005
Male	0.954	0.158	6.029	0.000
Active	0.914	0.185	4.945	0.000
Age	0.070	0.036	1.964	0.050
$(Age/10)^{2}$	-0.069	0.034	-2.015	0.044

(a)

The marginal effect of activity status is defined as

$$\frac{\partial Pr[resp_i = 1]}{\partial active_i} = Pr[resp_i = 1]Pr[resp_i = 0]\beta_2.$$

We could use this result to construct an activity status elasticity

$$\frac{\partial Pr[resp_i = 1]}{\partial active_i} = \frac{active_i}{Pr[resp_i = 1]} = Pr[resp_i = 0]active_i\beta_2.$$

Use this results to compute the elasticity effect of active status for a 50 years old active male customer. Do the same for an 50 years old inactive male customer.

answer (a)

$$Pr[resp_{i} = 1] = \frac{exp(\beta_{0} + \beta_{1} male_{i} + \beta_{2} active_{i} + \beta_{3} age_{i} + \beta_{4} (age_{i}/10)^{2})}{1 + exp(\beta_{0} + \beta_{1} male_{i} + \beta_{2} active_{i} + \beta_{3} age_{i} + \beta_{4} (age_{i}/10)^{2})}$$

 $Pr[resp_i = 0] = 1 - Pr[resp_i = 1]$, so,

$$Pr[resp_i = 0] = \frac{1}{1 + exp(\beta_0 + \beta_1 male_i + \beta_2 active_i + \beta_3 age_i + \beta_4 (age_i/10)^2)}$$

In active,

 $Pr[resp_i = 0, male_i = 1, active_i = 1, age_i = 50], \beta_2 = 0.914$

 $elasticity = Pr[resp_i = 0] * active_i * \beta_2$

$$Pr[resp_i = 0] = \frac{1}{1 + exp(\beta_0 + \beta_1 male_i + \beta_2 active_i + \beta_3 age_i + \beta_4 (age_i/10)^2)} = \frac{1}{1 + exp(-2.488 + 0.954 * 1 + 0.914 * 1 + 0.070 * 50 + (-0.069 * (\frac{50}{10})^2))}$$

elasticity = $\frac{1}{1 + exp(-2.488 + 0.954 * 1 + 0.914 * 1 + 0.070 * 50 + (-0.069 * (\frac{50}{10})^{2})} * 1 * 0.914$

$$= \frac{1}{1 + exp(1.155)} * 1 * 0.914 = \frac{1}{1 + 3.1740} * 1 * 0.914 = 0.219$$

In inactive,

 $Pr[resp_i = 0, male_i = 1, active_i = 0, age_i = 50], \beta_2 = 0.914$

elasticity =
$$Pr[resp_i = 0] * active_i * \beta_2 = 0$$

 $(active_i = 0)$

(b)

The activity status variable is only a dummy variable and hence it can take only two values. It is therefore better to define the elasticity as

$$\frac{Pr[resp_i = 1 | active_i = 1] - Pr[resp_i = 1 | active_i = 0]}{Pr[resp_i = 1 | active_i = 0]}$$

Show that you can simplify the expression for the elasticity as

$$(exp(\beta_2) - 1)Pr[resp_i = 0 | active_i = 1].$$

answer (b)

$$\begin{split} \exp(active_{i}\beta_{2})exp(\beta_{0} + \beta_{1}male_{i} + \beta_{2}active_{i} + \beta_{3}age_{i} + \beta_{4}(age_{i}/10)^{2} &= 2i * exp(\beta_{2}active_{i}) \\ &= \frac{Pr[resp_{i} = 1 | active_{i} = 1] - Pr[resp_{i} = 1 | active_{i} = 0]}{Pr[resp_{i} = 1 | active_{i} = 0]} \\ &= \frac{\frac{exp(\beta_{2})2i}{1 + exp(\beta_{1})2i} - \frac{2i}{1 + 2i}}{\frac{2i}{1 + 2i}} | \frac{1 + 2i}{2i} \\ &= \frac{exp(\beta_{2})(1 + 2i)}{1 + exp(\beta_{1})2i} - 1 \\ &= \frac{exp(\beta_{2}) - 1 + 2i(exp(\beta_{2}) - exp(\beta_{1}))}{1 + exp(\beta_{1})2i} \\ &\approx \frac{exp(\beta_{2}) - 1}{1 + exp(\beta_{1})2i} \\ &= (exp(\beta_{2}) - 1)Pr[resp_{i} = 0 | active_{i} = 1] \end{split}$$

(c)

Use the formula in (b) to compute the activity elasticity of 50 years old male active customer.

answer (c)

$$elasticity = (exp(\beta_2) - 1)Pr[resp_i = 0 | active_i = 1]$$

so,

$$elasticity = (exp(\beta_2) - 1)Pr[resp_i = 0, male_i = 1, active_i = 1, age_i = 50], \beta_2 = 0.914$$

$$= (exp(\beta_2) - 1) \frac{1}{1 + exp(\beta_0 + \beta_1 male_i + \beta_2 active_i + \beta_3 age_i + \beta_4 (age_i/10)^2)}$$

$$= (exp(0.914) - 1) \frac{1}{1 + exp(-2.488 + 0.954 * 1 + 0.914 * 1 + 0.070 * 50 + (-0.069 * (\frac{50}{10})^2))}$$

$$= 1.494 * 0.24$$

$$= 0.36$$