

Introduction

■ Motivations

為了期末報告前往 Aldea 平台尋找題目,討論後我們在練習場上選擇了工研院提供的「AOI 瑕疵分類」題目,希望能通過 AOI 影像資料進行瑕疵分類,學習影像分析。

網址:人工智慧共創平台 (aidea-web.tw)

□ Technical Challenges (題目有何難處/為何值得做此題目)

自動光學檢測應用於許多產品檢測流程上,當工廠接到多樣化產品的訂單時,透過人工檢測的方法已不足以應付,因此使用經由機器學習技術辨識 AOI 瑕疵影像,除了能夠大幅減少人力資源,配合產線更能提高效率,對於我們來說也是很好學習影像分類的題材。影像分類是我們初次接觸的領域,希望能從此題材中,學習尋找影像的特徵並研究影像分類模型。

Problem Statement

- □ Dataset:Aldea 練習場 AOI 瑕疵分類
- □ Input
 - □影像資料(PNG格式)
 - □大小:512*512
- □ Output
 - □瑕疵分類類別

0	normal
1	void
2	horizontal defect
3	vertical defect
4	edge defect
5	particle

- Training Data
 - □X:2,528張
 - \square Y

Label	0	1	2	3	4	5
張數	674	492	100	378	240	644

□ Testing Data

□X:10,142 張

Problem Statement

Variety of samples

1. 許佳蓉,手機鏡頭塑膠鏡片表面瑕疵分類(2019)

✓ 方法:CNN

✓ 原圖尺寸:384×384 像素,共 500 張

類別	(1) 刮傷	(2) 流紋	(3) 氣泡	(4) 邊緣毛邊	(5) 邊緣過切	(6) 辯污	總計
總張數	65	10	63	67	43	219	467
訓練資料集(80%)	52	8	50	54	34	175	373
測試資料集(20%)	13	2	13	13	9	44	94

✓ 前處理:圖像切割、圖像增強

✓ 圖像切割後: 128×128 像素,共 4000 張

✓ 實驗結果:

Predict	1	2	3	4	5	6
label	_					
1	91	3	0	2	3	3
2	1	9	2	1	0	2
3	0	0	79	0	2	1
4	1	0	1	84	1	6
5	2	0	0	4	36	0
6	11	2	0	1	2	307
						$\overline{}$

	predict			準確率(%)	精準率(%)	召回率(%)	F度量(%)	
		真瑕疵	假瑕疵	總計	Accuracy	Precision	Recall	F1-measure
label	真瑕疵	322	12	334				
label	假瑕疵	16	307	323	95.74%	95.27%	96.41%	95.83%
	總計	338	319	657				

- 2. Convolutional Neural Network Based Multi-label Classification of PCB Defects (2018)
- ✓ 作者:Linlin Zhang, Yongqing Jin, Xuesong Yang, Xia Li, Xiaodong Duan, Yuan Sun, Hong Liu
- ✓ 方法:CNN

- ✓ 資料前處理:將原始圖像的白邊去除,再將圖像正規化為800×600像素。
- ✓ Training data / Testing data:1200張 / 150張。

	no defects	short circuit	open circuit	spurious copper	mousebite	spur
訓練張數	200	200	200	200	200	200
圖像						
accuracy	86 %	96.67 %	97.34 %	88.67 %	87.34 %	83.34 %

✓ 整體準確率:89.89%

3. 基於深度卷積神經網路之印刷電路板影像瑕疵分類 (Defect Classification of Printed Circuit Board Based on Deep Convolutional Neural Networks)

✓ 作者:賴威豪、曾紹崟

✓ 方法:CNN

網路架構	總參數量	特色	解決之問題
LeNet	0.43 M	convolutional layer	提出卷積架構並使神經網路
AlexNet	60 M	LRN layer, dropout layer	應用在更大的影像任務上和嘗試減少過擬合現象
VGG16	138 M	3x3 kernel, no LRN layer	對網路深度進行研究並發現往深層網路退化現象
GoogLeNet v1	6.8 M	inception module	提出 inception 模組對優化網路
GoogLeNet v2	13.6 M	batch normalization(BN)	改善 inception 模組和提出 BN 層異加快網路收斂
ResNet 50	25.6 M	identity residual block	透過恆等映射減輕深層網路退化現象

▲各卷積神經網路總述

✓ 2468 張 320 x 240 的影像, 80% Training Data、20% Testing Data

	正常	皮屑	髒污	残膠	線路異常
總張數	832	344	624	396	271
訓練資料集(80%)	666	276	500	317	217
測試資料集(20%)	166	68	124	79	54

✓ 各卷積神經網路參數設定

Network	Data augmentation	Batch size	Initial learning rate	learning rate scheme	
LeNet	none	no batch	0.0005	隨 epoch 越多逐漸除 2 遞減至 0.00001	
AlexNet	random cropping, horizontal flips	128	0.01	手動調整三次每次除 10 至 0.00001	
VGG16	random cropping, horizontal flips, intensity adjustment	64	0.01	根據驗證集沒有進步時調整· 共調整三次每次除 10 至 0.00001	_
GoogLeNet v1			same as below		
GoogLeNet v2	random aspect ratio, random cropping, horizontal flips, intensity adjustment	32	0.045	使用指數衰減下降作調整	1
ResNet50	random cropping, 2 horizontal flips, image standardization	128	0.1	根據特定 epoch 除 10 共兩次至 0.001	

參數量過多無法使用單張顯示卡設 備達成

VGG -> 數據增強(data augmentation) 使用 S=256,對其做更多的訓練疊代 (iteration)

> 各神經網路訓練統一為 348 epochs

各神經網路準確率表現

→ AlexNet、VGG16、ResNet50的表現比較好

	LeNet	AlexNet	VGG16	GoogLeNet v1	GoogLeNet v2	ResNet50
accuracy(%)	19.6%	85.5%	87.0%	23.0%	28.1%	93.4%
~epochs	348	348	321	309	333	307

▲最高準確率及發生時間

	Accuracy	Precision	Recall	F1-measure
ResNet50	97.12%	98.71%	97.70%	98.20%

▲真假缺陷之數學統計

模型表現較差原因

- 神經網路參數量不足以記錄此模型分布
- 學習到的特徵不能代表此模型分布

LeNet → 針對 MNIST 28x28 的手寫數字影像,且只有 7 層結 構約 0.43M 參數量,而此資料集為 320x240 的影像,因此損 失掉重要的資訊使特徵沒有學習完備

GoogLeNet→改變資料增強的方法準確度即大幅提升,說明 同一種設定無法直接對應到不同資料集上

Preliminary Methods

類型	機器學習	深度學習
特徵模型	Haralick 特徵	_
	Random Forest	CNN
預測模型	Vahoost	VGG
Xgboost		ResNet

Evaluation Plan

 $\square \ \, Accuracy = \frac{\text{Number of correct predictions}}{\text{Number of total predictions}}$

每人一天可上傳三次至 Aldea 平台,檢視 testing 的預測成果。

Confusion Matrix

Expected Time Schedule

MON	TUE	WED	THU	FRI	SAT	SUN
			9 Discussion	10 資料探索、文獻	11 回顧	12 Discussion
13	14	15 Proposal	16 資料前處理	17	18	19
20	21 冬至	22	23 模型訓練	24	25 Merry Xmas	26
27	28	29	30 模型優化	31	1 NEW YEAR	2
3	4	5 Final	6 報告後修正、其	7 月末報告撰寫	8	9
10	11	12	13	14	15	16 Project Report

THANKS

