

INTELLIGENCE IN ACTION: AI-DRIVEN NETWORKS

M3. Prototype

Projeto em Informática 2024/2025

Hugo Ribeiro - 113402

Rodrigo Abreu - 113626

Eduardo Lopes - 103070

Jorge Domingues - 113278

João Neto - 113482

TABLE OF CONTENTS

- 1. CONTEXT
 - 2. STATE OF ART
 - 3. ACTORS
 - 4. USE CASES
 - 5. SYSTEM ARCHITECTURE
 - 6. MVP SYSTEM ARCHITECTURE
 - 7. WORK DONE
 - 8. CHALLENGES
 - 9. DEMO
 - 10. FUTURE WORK
 - 11. CALENDAR

1. CONTEXT

Networks have evolved significantly from traditional static infrastructures to more dynamic, intelligent, and adaptive systems.

5G and Beyond-5G networks must:

- handle vast amounts of data.
- support a diverse range of applications.
- ensure high reliability and low latency.

Goal: Achieve self-managing networks, where human intervention is minimized.

NWDAF

Network Data Analytics Function

- collecting and analyzing network data
- provide predictions for network optimization

Has three main aspects:

- Data Collection
- Analytics Processing
- Analytics Exposure

Data repositories Data access **NWDAF** AF Delivery of Delivery of activity data and analytics data local analytics OAM

Goal: Automating the 5G network with machine learning and data analytics

2. State of Art

- Papers [1],[2],[3] emphasize ML capabilities but do not address full ML lifecycle management (CI/CD, retraining).
- Papers do not explore how models adapt to changing data (model drift).
- A gap exists between theoretical ML solutions and practical, deployable AI-driven network functions.
- nProbe has emerged as an efficient flow exporter capable of generating suitable features for ML-based network analysis [4].
- There is not a proof-of-concept that demonstrates how to operationalize ML pipelines (MLOps) in a NWDAF-like system.

MLOps Pipeline

MLOps is an extension of DevOps, specifically adapted for machine learning workflows.

End-to-end machine learning development process.

Aims to unify the release cycle for machine learning.

Enables the application of agile principles to machine learning projects.

3. Actors

Network/service provider

Service Client

5. System Architecture

Deployment

Data Flow Diagram in Detail

Data Flow Diagram in Detail

6. MVP System Architecture

7. Work Done

- Simulated network flow using PCAP files to recreate realistic traffic scenarios.
- Use of nProbe to extract 43 NetFlow version 9 features.
- Implemented a data relay to forward processed network information to the visualization system.
- Created a Chronograf dashboard based on the received data.

8. Challenges

- PCAP -> JSON
- JSON -> InfluxDB
- InfluxDB -> JSON
- JSON -> PCAP

- Exhaustive logging analysis.
- Ensure no packet data is lost/changed during conversions.

- Work with time series
 DBs.
- InfluxDB integration on chronograph.

JSON NETWORK PACKET EXAMPLE

```
"timestamp": 1424219007.801358,
"timestamp_iso": "2015-02-18 00:23:27",
"summary": "CookedLinux / IP / TCP 175.45.176.0:45235 > 149.171.126.16:ftp A",
"length": 56,
"layers": [

{
    "name": "cooked linux",
    "fields": {
        "pkttype": 4,
        "lladdrlen": 6,
        "src": "005056a524c20000",
        "proto": 2048
    }
},
```

```
"name": "IP",
"fields": {
  "version": 4,
 "ihl": 5,
  "tos": 0,
 "len": 40,
  "id": 14155,
  "flags": "",
  "frag": 0,
  "ttl": 62,
  "proto": 6,
  "chksum": 53915,
  "src": "175.45.176.0",
  "dst": "149.171.126.16",
  "options": []
```

```
"name": "TCP",
"fields": {
  "sport": 45235,
 "dport": 21,
  "seq": 1107119178,
  "ack": 1047442890,
  "dataofs": 5,
  "reserved": 0,
  "flags": "A",
  "window": 16383,
  "chksum": 51618,
  "urqptr": 0,
  "options": []
```

9. DEMO

https://youtu.be/pbfqgiKx1DU

10. Future Work

Fix the issues related
 with the new
 technologies we picked
 up

- Finish pre-processing data

 Change the communication of some components to use API calls instead of Kafka

10. Future Work

 Add new graphics to our Dashboard Interface.

 Start the ML implementation (ML training and ML inference)

 Evaluate how fast data should flow in our pipeline.

11. Calendar

Check calendar updates here

Scan the QR code to check our documentation website.

Or click here.

THANK YOU

References

[1]

A. Mekrache, K. Boutiba, and A. Ksentini, "Combining Network Data Analytics Function and Machine Learning for Abnormal Traffic Detection in Beyond 5G," *GLOBECOM 2023 - 2023 IEEE Global Communications Conference*, Dec. 2023, https://doi.org/10.1109/globecom54140.2023.10436766.

[2]

N. Nisha, Lakshman K, and R. Kumar, "A Smart Data Analytics System Generating for 5G N/W System Via ML Based Algorithms for the Better Communications," Apr. 2024, https://doi.org/10.1109/istems60181.2024.10560068.

[3]

Rui Cruz Ferreira *et al.*, "Demo: Enhancing Network Performance based on 5G Network Function and Slice Load Analysis," Jun. 2023, https://doi.org/10.1109/wowmom57956.2023.00057.

[4]

M. Sarhan, S. Layeghy, and M. Portmann, "Towards a Standard Feature Set for Network Intrusion Detection System Datasets," *Mobile Networks and Applications*, Nov. 2021, https://doi.org/10.1007/s11036-021-01843-0.