MTL122 - Real and complex analysis Assignment-2

Department of Mathematics Indian Institute of Technology Delhi

Question 1

Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be sets.

- (i) Prove that $Int(A \cap B) = IntA \cap IntB$.
- (ii) Prove that $IntA \cup IntB \subseteq Int(A \cup B)$.
- (iii) Give an example of two sets A and B such that $IntA \cup IntB \neq Int(A \cup B)$.

Question 1

Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be sets.

- (i) Prove that $Int(A \cap B) = IntA \cap IntB$.
- (ii) Prove that $IntA \cup IntB \subseteq Int(A \cup B)$.
- (iii) Give an example of two sets A and B such that $IntA \cup IntB \neq Int(A \cup B)$.

Question 1

Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be sets.

- (i) Prove that $Int(A \cap B) = IntA \cap IntB$.
- (ii) Prove that $IntA \cup IntB \subseteq Int(A \cup B)$.
- (iii) Give an example of two sets A and B such that $IntA \cup IntB \neq Int(A \cup B)$.
- **Solution:** (i) To prove $Int(A \cap B) = IntA \cap IntB$.
 - Let $x \in Int(A \cap B)$.

Question 1

Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be sets.

- (i) Prove that $Int(A \cap B) = IntA \cap IntB$.
- (ii) Prove that $IntA \cup IntB \subseteq Int(A \cup B)$.
- (iii) Give an example of two sets A and B such that $IntA \cup IntB \neq Int(A \cup B)$.

- Let $x \in Int(A \cap B)$.
- $\therefore \exists \ \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq (A \cap B)$.

Question 1

Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be sets.

- (i) Prove that $Int(A \cap B) = IntA \cap IntB$.
- (ii) Prove that $IntA \cup IntB \subseteq Int(A \cup B)$.
- (iii) Give an example of two sets A and B such that $IntA \cup IntB \neq Int(A \cup B)$.

- Let $x \in Int(A \cap B)$.
- $\therefore \exists \ \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq (A \cap B)$.
- This implies $N_{\epsilon}(x) \subseteq A$ and $N_{\epsilon}(x) \subseteq B$.

Question 1

Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be sets.

- (i) Prove that $Int(A \cap B) = IntA \cap IntB$.
- (ii) Prove that $IntA \cup IntB \subseteq Int(A \cup B)$.
- (iii) Give an example of two sets A and B such that $IntA \cup IntB \neq Int(A \cup B)$.

- Let $x \in Int(A \cap B)$.
- $\therefore \exists \ \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq (A \cap B)$.
- This implies $N_{\epsilon}(x) \subseteq A$ and $N_{\epsilon}(x) \subseteq B$.
- Thus we have $x \in IntA$ and $x \in IntB$

Question 1

Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be sets.

- (i) Prove that $Int(A \cap B) = IntA \cap IntB$.
- (ii) Prove that $IntA \cup IntB \subseteq Int(A \cup B)$.
- (iii) Give an example of two sets A and B such that $IntA \cup IntB \neq Int(A \cup B)$.

- Let $x \in Int(A \cap B)$.
- $\therefore \exists \ \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq (A \cap B)$.
- This implies $N_{\epsilon}(x) \subseteq A$ and $N_{\epsilon}(x) \subseteq B$.
- Thus we have $x \in IntA$ and $x \in IntB$
- $\therefore x \in IntA \cap IntB$.

Question 1

Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be sets.

- (i) Prove that $Int(A \cap B) = IntA \cap IntB$.
- (ii) Prove that $IntA \cup IntB \subseteq Int(A \cup B)$.
- (iii) Give an example of two sets A and B such that $IntA \cup IntB \neq Int(A \cup B)$.

- Let $x \in Int(A \cap B)$.
- $\therefore \exists \ \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq (A \cap B)$.
- This implies $N_{\epsilon}(x) \subseteq A$ and $N_{\epsilon}(x) \subseteq B$.
- Thus we have $x \in IntA$ and $x \in IntB$
- $\therefore x \in IntA \cap IntB$.
- Thus we finally have $Int(A \cap B) \subseteq IntA \cap IntB$.

Question 1

Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ be sets.

- (i) Prove that $Int(A \cap B) = IntA \cap IntB$.
- (ii) Prove that $IntA \cup IntB \subseteq Int(A \cup B)$.
- (iii) Give an example of two sets A and B such that $IntA \cup IntB \neq Int(A \cup B)$.

- Let $x \in Int(A \cap B)$.
- $\therefore \exists \ \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq (A \cap B)$.
- This implies $N_{\epsilon}(x) \subseteq A$ and $N_{\epsilon}(x) \subseteq B$.
- Thus we have $x \in IntA$ and $x \in IntB$
- $\therefore x \in IntA \cap IntB$.
- Thus we finally have $Int(A \cap B) \subseteq IntA \cap IntB$.

Now we prove the other side inclusion

• Let $x \in IntA \cap IntB$.

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.
- For $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, we have $N_{\epsilon}(x) \subseteq (A \cap B)$.

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.
- For $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, we have $N_{\epsilon}(x) \subseteq (A \cap B)$.
- Thus proved. (Why?)

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.
- For $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, we have $N_{\epsilon}(x) \subseteq (A \cap B)$.
- Thus proved. (Why?)
- (ii) To prove $Int A \cup Int B \subseteq Int(A \cup B)$.

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.
- For $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, we have $N_{\epsilon}(x) \subseteq (A \cap B)$.
- Thus proved. (Why?)
- (ii) To prove $Int A \cup Int B \subseteq Int(A \cup B)$.
 - Let $x \in IntA \cup IntB$.

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.
- For $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, we have $N_{\epsilon}(x) \subseteq (A \cap B)$.
- Thus proved. (Why?)
- (ii) To prove $Int A \cup Int B \subseteq Int(A \cup B)$.
 - Let $x \in IntA \cup IntB$.
 - WLOG lets assume $x \in IntA$.

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA$ and $x \in IntB$.
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.
- For $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, we have $N_{\epsilon}(x) \subseteq (A \cap B)$.
- Thus proved. (Why?)
- (ii) To prove $Int A \cup Int B \subseteq Int(A \cup B)$.
 - Let $x \in IntA \cup IntB$.
 - WLOG lets assume $x \in IntA$.
 - $\therefore \exists \ \epsilon > 0 \text{ such that } N_{\epsilon}(x) \subseteq A.$

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.
- For $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, we have $N_{\epsilon}(x) \subseteq (A \cap B)$.
- Thus proved. (Why?)
- (ii) To prove $Int A \cup Int B \subseteq Int(A \cup B)$.
 - Let $x \in IntA \cup IntB$.
 - WLOG lets assume $x \in IntA$.
 - $\therefore \exists \ \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A$.
 - Thus we have $N_{\epsilon}(x) \subseteq A \cup B \implies x \in Int(A \cup B)$.

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.
- For $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, we have $N_{\epsilon}(x) \subseteq (A \cap B)$.
- Thus proved. (Why?)
- (ii) To prove $Int A \cup Int B \subseteq Int(A \cup B)$.
 - Let $x \in IntA \cup IntB$.
 - WLOG lets assume $x \in IntA$.
 - $\therefore \exists \ \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A$.
 - Thus we have $N_{\epsilon}(x) \subseteq A \cup B \implies x \in Int(A \cup B)$.
 - Hence Proved.

- Let $x \in IntA \cap IntB$.
- $\therefore x \in IntA \text{ and } x \in IntB.$
- This implies $\exists \ \epsilon_1 > 0$ and $\epsilon_2 > 0$ such that $N_{\epsilon_1}(x) \subseteq A$ and $N_{\epsilon_2}(x) \subseteq B$.
- For $\epsilon = \min\{\epsilon_1, \epsilon_2\}$, we have $N_{\epsilon}(x) \subseteq (A \cap B)$.
- Thus proved. (Why?)
- (ii) To prove $Int A \cup Int B \subseteq Int(A \cup B)$.
 - Let $x \in IntA \cup IntB$.
 - WLOG lets assume $x \in IntA$.
 - $\therefore \exists \ \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A$.
 - Thus we have $N_{\epsilon}(x) \subseteq A \cup B \implies x \in Int(A \cup B)$.
 - Hence Proved.

(iii)

• Take A = [0,1] and B = (1,2).

(iii)

- Take A = [0,1] and B = (1,2).
- $Int(A \cup B) = (0,2)$ and $IntA \cup IntB = (0,1) \cup (1,2)$.

(iii)

- Take A = [0,1] and B = (1,2).
- $Int(A \cup B) = (0,2)$ and $IntA \cup IntB = (0,1) \cup (1,2)$.
- Hence $Int A \cup Int B \neq Int(A \cup B)$.

(iii)

- Take A = [0,1] and B = (1,2).
- $Int(A \cup B) = (0,2)$ and $IntA \cup IntB = (0,1) \cup (1,2)$.
- Hence $IntA \cup IntB \neq Int(A \cup B)$.

Question 2

Prove that

- (i) If $A \subseteq \mathbb{R}$ is bounded above then $\sup A \in Bd(A)$.
- (ii) If a < b < c and the two sets A and B has the property that $A \cap (a, c) = B \cap (a, c)$. Show that $b \in Bd(A)$ if and only if $b \in Bd(B)$.

(iii)

- Take A = [0, 1] and B = (1, 2).
- $Int(A \cup B) = (0,2)$ and $IntA \cup IntB = (0,1) \cup (1,2)$.
- Hence $Int A \cup Int B \neq Int(A \cup B)$.

Question 2

Prove that

- (i) If $A \subseteq \mathbb{R}$ is bounded above then $\sup A \in Bd(A)$.
- (ii) If a < b < c and the two sets A and B has the property that $A \cap (a, c) = B \cap (a, c)$. Show that $b \in Bd(A)$ if and only if $b \in Bd(B)$.

Solution: (i)

• Let $M = \sup A$.

(iii)

- Take A = [0,1] and B = (1,2).
- $Int(A \cup B) = (0,2)$ and $IntA \cup IntB = (0,1) \cup (1,2)$.
- Hence $IntA \cup IntB \neq Int(A \cup B)$.

Question 2

Prove that

- (i) If $A \subseteq \mathbb{R}$ is bounded above then $\sup A \in Bd(A)$.
- (ii) If a < b < c and the two sets A and B has the property that $A \cap (a, c) = B \cap (a, c)$. Show that $b \in Bd(A)$ if and only if $b \in Bd(B)$.

Solution: (i)

- Let $M = \sup A$.
- Thus $\forall \ \epsilon > 0, \exists \ a \in A \cap N_{\epsilon}(M)$ by the definition of supremum.

(iii)

- Take A = [0,1] and B = (1,2).
- $Int(A \cup B) = (0,2)$ and $IntA \cup IntB = (0,1) \cup (1,2)$.
- Hence $IntA \cup IntB \neq Int(A \cup B)$.

Question 2

Prove that

- (i) If $A \subseteq \mathbb{R}$ is bounded above then $\sup A \in Bd(A)$.
- (ii) If a < b < c and the two sets A and B has the property that $A \cap (a, c) = B \cap (a, c)$. Show that $b \in Bd(A)$ if and only if $b \in Bd(B)$.

Solution: (i)

- Let $M = \sup A$.
- Thus $\forall \ \epsilon > 0, \exists \ a \in A \cap N_{\epsilon}(M)$ by the definition of supremum.

• We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

(ii)

• Let $\epsilon > 0$ be given,

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

(ii)

• Let $\epsilon > 0$ be given, clearly $b - \epsilon < b < b + \epsilon$.

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

(ii)

- Let $\epsilon > 0$ be given, clearly $b \epsilon < b < b + \epsilon$.
- Then by the given property, we have

$$A \cap (b - \epsilon, b + \epsilon) = B \cap (b - \epsilon, b + \epsilon).$$

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

(ii)

- Let $\epsilon > 0$ be given, clearly $b \epsilon < b < b + \epsilon$.
- Then by the given property, we have

$$A \cap (b - \epsilon, b + \epsilon) = B \cap (b - \epsilon, b + \epsilon).$$

• Now $b \in Bd(A)$

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

(ii)

- Let $\epsilon > 0$ be given, clearly $b \epsilon < b < b + \epsilon$.
- Then by the given property, we have

$$A \cap (b - \epsilon, b + \epsilon) = B \cap (b - \epsilon, b + \epsilon).$$

• Now $b \in Bd(A)$ if and only if $A \cap (b - \epsilon, b + \epsilon) \neq \phi$ $A^c \cap (b - \epsilon, b + \epsilon) \neq \phi$.

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

- Let $\epsilon > 0$ be given, clearly $b \epsilon < b < b + \epsilon$.
- Then by the given property, we have

$$A \cap (b - \epsilon, b + \epsilon) = B \cap (b - \epsilon, b + \epsilon).$$

- Now $b \in Bd(A)$ if and only if $A \cap (b \epsilon, b + \epsilon) \neq \phi$ $A^c \cap (b - \epsilon, b + \epsilon) \neq \phi$.
- We have to prove that $b \in Bd(B)$.

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

- Let $\epsilon > 0$ be given, clearly $b \epsilon < b < b + \epsilon$.
- Then by the given property, we have

$$A \cap (b - \epsilon, b + \epsilon) = B \cap (b - \epsilon, b + \epsilon).$$

- Now $b \in Bd(A)$ if and only if $A \cap (b \epsilon, b + \epsilon) \neq \phi$ $A^c \cap (b - \epsilon, b + \epsilon) \neq \phi$.
- We have to prove that $b \in Bd(B)$.
- To the contrary suppose that $B^c \cap (b \epsilon, b + \epsilon) = \phi$,

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

- Let $\epsilon > 0$ be given, clearly $b \epsilon < b < b + \epsilon$.
- Then by the given property, we have

$$A \cap (b - \epsilon, b + \epsilon) = B \cap (b - \epsilon, b + \epsilon).$$

- Now $b \in Bd(A)$ if and only if $A \cap (b \epsilon, b + \epsilon) \neq \phi$ $A^c \cap (b - \epsilon, b + \epsilon) \neq \phi$.
- We have to prove that $b \in Bd(B)$.
- To the contrary suppose that $B^c \cap (b \epsilon, b + \epsilon) = \phi$, this implies $(b \epsilon, b + \epsilon) \subseteq B$.

- We also note that $\forall \ \epsilon > 0, M + \frac{\epsilon}{2} \in N_{\epsilon}(M)$ but $M + \frac{\epsilon}{2} \notin A$.
- Thus $N_{\epsilon}(M) \cap A \neq \phi$ and $N_{\epsilon}(M) \cap A^{c} \neq \phi$
- Hence $M = \sup A \in Bd(A)$.

- Let $\epsilon > 0$ be given, clearly $b \epsilon < b < b + \epsilon$.
- Then by the given property, we have

$$A \cap (b - \epsilon, b + \epsilon) = B \cap (b - \epsilon, b + \epsilon).$$

- Now $b \in Bd(A)$ if and only if $A \cap (b \epsilon, b + \epsilon) \neq \phi$ $A^c \cap (b - \epsilon, b + \epsilon) \neq \phi$.
- We have to prove that $b \in Bd(B)$.
- To the contrary suppose that $B^c \cap (b \epsilon, b + \epsilon) = \phi$, this implies $(b \epsilon, b + \epsilon) \subseteq B$.

ullet This implies, $(b-\epsilon,b+\epsilon)$

• This implies, $(b - \epsilon, b + \epsilon) \subseteq B \cap (b - \epsilon, b + \epsilon)$

• This implies, $(b - \epsilon, b + \epsilon) \subseteq B \cap (b - \epsilon, b + \epsilon) = A \cap (b - \epsilon, b + \epsilon)$.

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction.

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction. (why?)
- Hence $b \in Bd(B)$.

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction. (why?)
- Hence $b \in Bd(B)$.
- Similarily we can prove other direction as well.

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction. (why?)
- Hence $b \in Bd(B)$.
- Similarily we can prove other direction as well.

Question 3

- The union of infinitely many compact sets is compact.
- A non-empty subset S of real numbers which has both a largest and a smallest element is compact.

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction. (why?)
- Hence $b \in Bd(B)$.
- Similarily we can prove other direction as well.

Question 3

- The union of infinitely many compact sets is compact.
- A non-empty subset S of real numbers which has both a largest and a smallest element is compact.

Solution:

a) Ans:

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction. (why?)
- Hence $b \in Bd(B)$.
- Similarily we can prove other direction as well.

Question 3

- The union of infinitely many compact sets is compact.
- A non-empty subset S of real numbers which has both a largest and a smallest element is compact.

Solution:

a) Ans: False. Counterexample.

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction. (why?)
- Hence $b \in Bd(B)$.
- Similarily we can prove other direction as well.

Question 3

- The union of infinitely many compact sets is compact.
- A non-empty subset S of real numbers which has both a largest and a smallest element is compact.

- a) Ans: **False**. Counterexample. $\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right] = (0, 1]$.
- b) Ans:

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction. (why?)
- Hence $b \in Bd(B)$.
- Similarily we can prove other direction as well.

Question 3

- The union of infinitely many compact sets is compact.
- A non-empty subset S of real numbers which has both a largest and a smallest element is compact.

- a) Ans: **False**. Counterexample. $\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right] = (0, 1]$.
- b) Ans: False. Counterexample.

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction. (why?)
- Hence $b \in Bd(B)$.
- Similarily we can prove other direction as well.

Question 3

- The union of infinitely many compact sets is compact.
- A non-empty subset S of real numbers which has both a largest and a smallest element is compact.

- a) Ans: **False**. Counterexample. $\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right] = (0, 1]$.
- b) Ans: **False**. Counterexample. $S = [-1,0) \cup (0,1]$. The sequence $\frac{1}{n} \in S$ but limit is not in S. Hence not closed not compact.

- This implies, $(b \epsilon, b + \epsilon) \subseteq B \cap (b \epsilon, b + \epsilon) = A \cap (b \epsilon, b + \epsilon)$.
- This gives $(b \epsilon, b + \epsilon) \subseteq A \implies A^c \cap (b \epsilon, b + \epsilon) = \phi$, contradiction. (why?)
- Hence $b \in Bd(B)$.
- Similarily we can prove other direction as well.

Question 3

- The union of infinitely many compact sets is compact.
- A non-empty subset S of real numbers which has both a largest and a smallest element is compact.

- a) Ans: **False**. Counterexample. $\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1\right] = (0, 1]$.
- b) Ans: **False**. Counterexample. $S = [-1,0) \cup (0,1]$. The sequence $\frac{1}{n} \in S$ but limit is not in S. Hence not closed not compact.

Question 4

For $A \subseteq \mathbb{R}, B \subseteq \mathbb{R}$, let

$$A + B = \{a + b : a \in A, b \in B\}.$$

Let A be closed set, B be a compact set. Show that A + B is closed.

Question 4

For $A \subseteq \mathbb{R}, B \subseteq \mathbb{R}$, let

$$A + B = \{a + b : a \in A, b \in B\}.$$

Let A be closed set, B be a compact set. Show that A + B is closed.

Solution:

• Let x + y be the limit point of A + B.

Question 4

For $A \subseteq \mathbb{R}, B \subseteq \mathbb{R}$, let

$$A + B = \{a + b : a \in A, b \in B\}.$$

Let A be closed set, B be a compact set. Show that A + B is closed.

- Let x + y be the limit point of A + B.
- To show that A + B is closed, it is sufficient to show that $x + y \in A + B$.

Question 4

For $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$, let

$$A + B = \{a + b : a \in A, b \in B\}.$$

Let A be closed set, B be a compact set. Show that A + B is closed.

- Let x + y be the limit point of A + B.
- To show that A + B is closed, it is sufficient to show that $x + y \in A + B$.
- Since x + y is limit point of A + B. This implies there exists a sequence $\{x_n\} \in A$ and $\{y_n\} \in B$ such that $\{x_n + y_n\} \to x + y$ as $n \to \infty$.

Question 4

For $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$, let

$$A + B = \{a + b : a \in A, b \in B\}.$$

Let A be closed set, B be a compact set. Show that A + B is closed.

- Let x + y be the limit point of A + B.
- To show that A + B is closed, it is sufficient to show that $x + y \in A + B$.
- Since x + y is limit point of A + B. This implies there exists a sequence $\{x_n\} \in A$ and $\{y_n\} \in B$ such that $\{x_n + y_n\} \to x + y$ as $n \to \infty$.
- Since B is compact, this implies B is closed and bounded.

Question 4

For $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$, let

$$A + B = \{a + b : a \in A, b \in B\}.$$

Let A be closed set, B be a compact set. Show that A + B is closed.

- Let x + y be the limit point of A + B.
- To show that A + B is closed, it is sufficient to show that $x + y \in A + B$.
- Since x + y is limit point of A + B. This implies there exists a sequence $\{x_n\} \in A$ and $\{y_n\} \in B$ such that $\{x_n + y_n\} \to x + y$ as $n \to \infty$.
- Since B is compact, this implies B is closed and bounded.

• By BWT, there exists a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ such that $y_{n_k} \to b \in B$. (why?)

- By BWT, there exists a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ such that $y_{n_k} \to b \in B$. (why?)
- Note that $|x_{n_k}| \le |x_{n_k} + y_{n_k}| + |y_{n_k}|$.

- By BWT, there exists a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ such that $y_{n_k} \to b \in B$. (why?)
- Note that $|x_{n_k}| \le |x_{n_k} + y_{n_k}| + |y_{n_k}|$. Since $\{x_n + y_n\}$ and $\{y_n\}$ are bounded, this implies $\{x_{n_k}\}$ is also bounded.

- By BWT, there exists a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ such that $y_{n_k} \to b \in B$. (why?)
- Note that $|x_{n_k}| \le |x_{n_k} + y_{n_k}| + |y_{n_k}|$. Since $\{x_n + y_n\}$ and $\{y_n\}$ are bounded, this implies $\{x_{n_k}\}$ is also bounded.
- By BWT, there exists a subsequence $x_{n_{k_j}}$ of x_{n_k} such that $x_{n_{k_j}} \to a \in A$. (why?)

- By BWT, there exists a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ such that $y_{n_k} \to b \in B$. (why?)
- Note that $|x_{n_k}| \le |x_{n_k} + y_{n_k}| + |y_{n_k}|$. Since $\{x_n + y_n\}$ and $\{y_n\}$ are bounded, this implies $\{x_{n_k}\}$ is also bounded.
- By BWT, there exists a subsequence $x_{n_{k_j}}$ of x_{n_k} such that $x_{n_{k_j}} \to a \in A$. (why?)
- This implies $x_{n_{k_i}} + y_{n_{k_i}} \rightarrow a + b \in A + B$.

- By BWT, there exists a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ such that $y_{n_k} \to b \in B$. (why?)
- Note that $|x_{n_k}| \le |x_{n_k} + y_{n_k}| + |y_{n_k}|$. Since $\{x_n + y_n\}$ and $\{y_n\}$ are bounded, this implies $\{x_{n_k}\}$ is also bounded.
- By BWT, there exists a subsequence $x_{n_{k_j}}$ of x_{n_k} such that $x_{n_{k_i}} \to a \in A$. (why?)
- This implies $x_{n_{k_i}} + y_{n_{k_i}} \rightarrow a + b \in A + B$.
- Since $\{x_{n_{k_j}} + y_{n_{k_j}}\}$ is a subsequence of $\{x_n + y_n\}$, but $x_n + y_n \to x + y$.

- By BWT, there exists a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ such that $y_{n_k} \to b \in B$. (why?)
- Note that $|x_{n_k}| \le |x_{n_k} + y_{n_k}| + |y_{n_k}|$. Since $\{x_n + y_n\}$ and $\{y_n\}$ are bounded, this implies $\{x_{n_k}\}$ is also bounded.
- By BWT, there exists a subsequence $x_{n_{k_j}}$ of x_{n_k} such that $x_{n_{k_i}} \to a \in A$. (why?)
- This implies $x_{n_{k_i}} + y_{n_{k_i}} \rightarrow a + b \in A + B$.
- Since $\{x_{n_{k_j}} + y_{n_{k_j}}\}$ is a subsequence of $\{x_n + y_n\}$, but $x_n + y_n \to x + y$.
- Hence $x + y = a + b \in A + B$.

Question 5

Let (X, d) be a metric space. Define

$$ar{d}(x,y) = egin{cases} d(x,y) & ext{when} & d(x,y) < 1 \ 1 & ext{when} & d(x,y) \geq 1. \end{cases}$$

Prove that \bar{d} is a metric on X.

Question 5

Let (X, d) be a metric space. Define

$$ar{d}(x,y) = egin{cases} d(x,y) & ext{when} & d(x,y) < 1 \ 1 & ext{when} & d(x,y) \geq 1. \end{cases}$$

Prove that \bar{d} is a metric on X.

Question 5

Let (X, d) be a metric space. Define

$$ar{d}(x,y) = egin{cases} d(x,y) & ext{when} & d(x,y) < 1 \ 1 & ext{when} & d(x,y) \geq 1. \end{cases}$$

Prove that \bar{d} is a metric on X.

Solution:

• Since d is metric, clearly \bar{d} satisfies positivity.

Question 5

Let (X, d) be a metric space. Define

$$ar{d}(x,y) = egin{cases} d(x,y) & ext{when} & d(x,y) < 1 \ 1 & ext{when} & d(x,y) \geq 1. \end{cases}$$

Prove that \bar{d} is a metric on X.

- Since d is metric, clearly \bar{d} satisfies positivity.
- Since d satisfies symmetricity, so is \bar{d} .

Question 5

Let (X, d) be a metric space. Define

$$ar{d}(x,y) = egin{cases} d(x,y) & ext{when} & d(x,y) < 1 \ 1 & ext{when} & d(x,y) \geq 1. \end{cases}$$

Prove that \bar{d} is a metric on X.

- Since d is metric, clearly \bar{d} satisfies positivity.
- Since d satisfies symmetricity, so is \bar{d} .
- Now we will check triangle inequality.

Question 5

Let (X, d) be a metric space. Define

$$ar{d}(x,y) = egin{cases} d(x,y) & ext{when} & d(x,y) < 1 \ 1 & ext{when} & d(x,y) \geq 1. \end{cases}$$

Prove that \bar{d} is a metric on X.

- Since d is metric, clearly \bar{d} satisfies positivity.
- Since d satisfies symmetricity, so is \bar{d} .
- Now we will check triangle inequality.

	` ' '	· · · · · /	(- · /			\- · /	Yes/No
	< 1	< 1	< 1	d(x,z)	d(x,y)	d(y,z)	Yes
Ì							

d(x,z)	d(x,y)	d(y,z)	$\bar{d}(x,z)$	$\bar{d}(x,y)$	$\bar{d}(y,z)$	Yes/No
< 1	< 1	< 1	d(x,z)	d(x,y)	d(y,z)	Yes
> 1	> 1	> 1	1	1	1	Yes

d(x,z)	d(x,y)	d(y,z)	d(x,z)	d(x,y)	d(y,z)	Yes/No
< 1	< 1	< 1	d(x,z)	d(x,y)	d(y,z)	Yes
> 1	> 1	> 1	1	1	1	Yes
> 1	> 1	< 1	1	1	d(y,z)	Yes
	a(x, 2) $ < 1 $ $ > 1 $ $ > 1 $	$ \begin{array}{c cccc} a(x,2) & a(x,y) \\ < 1 & < 1 \\ > 1 & > 1 \\ > 1 & > 1 \end{array} $	$ \begin{array}{c cccc} a(x,2) & a(x,y) & a(y,2) \\ < 1 & < 1 & < 1 \\ > 1 & > 1 & > 1 \\ > 1 & > 1 & < 1 \\ \end{array} $			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	d(x,z)	d(x,y)	d(y,z)	$\bar{d}(x,z)$	$\bar{d}(x,y)$	$\bar{d}(y,z)$	Yes/No
	< 1	< 1	< 1	d(x,z)	d(x,y)	d(y,z)	Yes
_	> 1	> 1	> 1	1	1	1	Yes
•	> 1	> 1	< 1	1	1	d(y,z)	Yes
	> 1	< 1	< 1	1	d(x,y)	d(y,z)	Yes

	d(x,z)	d(x,y)	d(y,z)	$\bar{d}(x,z)$	$\bar{d}(x,y)$	$\bar{d}(y,z)$	Yes/No
	< 1	< 1	< 1	d(x,z)	d(x,y)	d(y,z)	Yes
•	> 1	> 1	> 1	1	1	1	Yes
	> 1	> 1	< 1	1	1	d(y,z)	Yes
	> 1	< 1	< 1	1	d(x,y)	d(y,z)	Yes
	< 1	< 1	> 1	d(x,z)	d(x,y)	1	Yes

• We need to verify $\bar{d}(x,z) \leq \bar{d}(x,y) + \bar{d}(y,z)$.

	d(x,z)	d(x,y)	d(y,z)	$\bar{d}(x,z)$	$\bar{d}(x,y)$	$\bar{d}(y,z)$	Yes/No
	< 1	< 1	< 1	d(x,z)	d(x,y)	d(y,z)	Yes
	> 1	> 1	> 1	1	1	1	Yes
•	> 1	> 1	< 1	1	1	d(y,z)	Yes
	> 1	< 1	< 1	1	d(x,y)	d(y,z)	Yes
	< 1	< 1	> 1	d(x,z)	d(x,y)	1	Yes

ullet Clearly from above table $ar{d}$ satisfies triangle inequality.

	d(x,z)	d(x,y)	d(y,z)	$\bar{d}(x,z)$	$\bar{d}(x,y)$	$\bar{d}(y,z)$	Yes/No
	< 1	< 1	< 1	d(x,z)	d(x,y)	d(y,z)	Yes
	> 1	> 1	> 1	1	1	1	Yes
•	> 1	> 1	< 1	1	1	d(y,z)	Yes
	> 1	< 1	< 1	1	d(x,y)	d(y,z)	Yes
	< 1	< 1	> 1	d(x,z)	d(x,y)	1	Yes

- ullet Clearly from above table $ar{d}$ satisfies triangle inequality.
- Hence \bar{d} is a metric.

Question 6

Suppose that $\phi:[0,\infty)\to[0,\infty)$ satisfies $\phi(0)=0,\phi(r)>0$ for all r>0 and for all $a,b\in[0,\infty)$:

- 1) $\phi(a+b) \leq \phi(a) + \phi(b)$
- 2) If $a \le b$ then $\phi(a) \le \phi(b)$.

Let (X, d) be a metric space and let $D: X \times X \to \mathbb{R}$ be defined by $D(x, y) := \phi(d(x, y))$. Prove that D is a metric on X.

Question 6

Suppose that $\phi:[0,\infty)\to[0,\infty)$ satisfies $\phi(0)=0,\phi(r)>0$ for all r>0 and for all $a,b\in[0,\infty)$:

- 1) $\phi(a+b) \leq \phi(a) + \phi(b)$
- 2) If $a \le b$ then $\phi(a) \le \phi(b)$.

Let (X, d) be a metric space and let $D: X \times X \to \mathbb{R}$ be defined by $D(x, y) := \phi(d(x, y))$. Prove that D is a metric on X.

Solution:

ullet Since ϕ is non-negative function, this implies D satisfies positivity.

Question 6

Suppose that $\phi:[0,\infty)\to[0,\infty)$ satisfies $\phi(0)=0,\phi(r)>0$ for all r>0 and for all $a,b\in[0,\infty)$:

- 1) $\phi(a+b) \leq \phi(a) + \phi(b)$
- 2) If $a \le b$ then $\phi(a) \le \phi(b)$.

Let (X, d) be a metric space and let $D: X \times X \to \mathbb{R}$ be defined by $D(x, y) := \phi(d(x, y))$. Prove that D is a metric on X.

- ullet Since ϕ is non-negative function, this implies D satisfies positivity.
- $D(x,y) = 0 \iff \phi(d(x,y)) = 0 \iff d(x,y) = 0 \iff x = y$.

Question 6

Suppose that $\phi:[0,\infty)\to[0,\infty)$ satisfies $\phi(0)=0,\phi(r)>0$ for all r>0 and for all $a,b\in[0,\infty)$:

- 1) $\phi(a+b) \leq \phi(a) + \phi(b)$
- 2) If $a \le b$ then $\phi(a) \le \phi(b)$.

Let (X, d) be a metric space and let $D: X \times X \to \mathbb{R}$ be defined by $D(x, y) := \phi(d(x, y))$. Prove that D is a metric on X.

- Since ϕ is non-negative function, this implies D satisfies positivity.
- $D(x,y) = 0 \iff \phi(d(x,y)) = 0 \iff d(x,y) = 0 \iff x = y$.
- Symmetric

$$D(x,y) = \phi(d(x,y)) = \phi(d(y,x)) = D(y,x).$$

Question 6

Suppose that $\phi:[0,\infty)\to[0,\infty)$ satisfies $\phi(0)=0,\phi(r)>0$ for all r>0 and for all $a,b\in[0,\infty)$:

- 1) $\phi(a+b) \leq \phi(a) + \phi(b)$
- 2) If $a \le b$ then $\phi(a) \le \phi(b)$.

Let (X, d) be a metric space and let $D: X \times X \to \mathbb{R}$ be defined by $D(x, y) := \phi(d(x, y))$. Prove that D is a metric on X.

- Since ϕ is non-negative function, this implies D satisfies positivity.
- $D(x,y) = 0 \iff \phi(d(x,y)) = 0 \iff d(x,y) = 0 \iff x = y$.
- Symmetric

$$D(x,y) = \phi(d(x,y)) = \phi(d(y,x)) = D(y,x).$$

$$D(x,z) = \phi(d(x,z))$$

$$D(x,z) = \phi(d(x,z))$$

$$\leq \phi(d(x,z) + d(z,y))(why?)$$

$$D(x,z) = \phi(d(x,z))$$

$$\leq \phi(d(x,z) + d(z,y))(why?)$$

$$\leq \phi(d(x,z)) + \phi(d(z,y))(why?)$$

Triangle inequality

$$D(x,z) = \phi(d(x,z))$$

$$\leq \phi(d(x,z) + d(z,y))(why?)$$

$$\leq \phi(d(x,z)) + \phi(d(z,y))(why?)$$

$$= D(x,y) + D(y,z)$$

Hence D is a metric.

Question 7

Let $(X_1, d_1), (X_2, d_2), \ldots$ be a sequence of metric spaces. Let $X = \prod_{n \in \mathbb{N}} X_n$ i.e, X is the set of all sequences $x = (x_1, x_2, \ldots)$ with $x_n \in X_n$ for all $n \in \mathbb{N}$. Prove that the function $d: X \times X \to \mathbb{R}$ defined by

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

is a metric on X.

Question 7

Let $(X_1,d_1),(X_2,d_2),\ldots$ be a sequence of metric spaces. Let $X=\prod_{n\in\mathbb{N}}X_n$ i.e, X is the set of all sequences $x=(x_1,x_2,\ldots)$ with $x_n\in X_n$ for all $n\in\mathbb{N}$. Prove that the function $d:X\times X\to\mathbb{R}$ defined by

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

is a metric on X.

Solution:

• **Well-defined:** Since $\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} < 1$. This implies

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty. (why?)$$

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty.(why?)$$

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty. (why?)$$

•

• Clear *d* is non-negative.

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty.(why?)$$

- Clear d is non-negative.
- d(x, y) = 0

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty.(why?)$$

- Clear d is non-negative.
- $d(x,y) = 0 \iff \frac{d_n(x_n,y_n)}{1+d_n(x_n,y_n)} = 0$

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty. (why?)$$

•

• Clear d is non-negative.

•
$$d(x,y) = 0 \iff \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} = 0 \iff d_n(x_n, y_n) = 0$$
 for all $n \in \mathbb{N}$

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty. (why?)$$

- Clear *d* is non-negative.
- $d(x,y) = 0 \iff \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} = 0 \iff d_n(x_n, y_n) = 0$ for all $n \in \mathbb{N} \iff x_n = y_n$ for all $n \in \mathbb{N}$

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty. (why?)$$

- Clear d is non-negative.
- $d(x,y) = 0 \iff \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} = 0 \iff d_n(x_n, y_n) = 0$ for all $n \in \mathbb{N} \iff x_n = y_n$ for all $n \in \mathbb{N} \iff x = y$.

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty. (why?)$$

- Clear d is non-negative.
- $d(x,y) = 0 \iff \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} = 0 \iff d_n(x_n, y_n) = 0$ for all $n \in \mathbb{N} \iff x_n = y_n$ for all $n \in \mathbb{N} \iff x = y$.
- Clearly d is symmetric as well.(why?)

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

$$< \sum_{n=1}^{\infty} 2^{-n}$$

$$< \infty. (why?)$$

- Clear d is non-negative.
- $d(x,y) = 0 \iff \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} = 0 \iff d_n(x_n, y_n) = 0$ for all $n \in \mathbb{N} \iff x_n = y_n$ for all $n \in \mathbb{N} \iff x = y$.
- Clearly d is symmetric as well.(why?)

$$d_n(x_n, z_n) \leq d_n(x_n, y_n) + d_n(y_n, z_n)(why?)$$

$$d_{n}(x_{n}, z_{n}) \leq d_{n}(x_{n}, y_{n}) + d_{n}(y_{n}, z_{n})(why?)$$

$$1 + d_{n}(x_{n}, z_{n}) \leq 1 + d_{n}(x_{n}, y_{n}) + d_{n}(y_{n}, z_{n})(why?)$$

$$\begin{array}{rcl} d_{n}(x_{n},z_{n}) & \leq & d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(\mbox{why?}) \\ 1 + d_{n}(x_{n},z_{n}) & \leq & 1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(\mbox{why?}) \\ 1 - \frac{1}{1 + d_{n}(x_{n},z_{n})} & \leq & 1 - \frac{1}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \end{array}$$

Triangle inequality

$$\begin{array}{rcl} d_{n}(x_{n},z_{n}) & \leq & d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(why?) \\ 1 + d_{n}(x_{n},z_{n}) & \leq & 1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(why?) \\ 1 - \frac{1}{1 + d_{n}(x_{n},z_{n})} & \leq & 1 - \frac{1}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ \frac{d_{n}(x_{n},z_{n})}{1 + d_{n}(x_{n},z_{n})} & \leq & \frac{d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \end{array}$$

Triangle inequality

$$\begin{array}{rcl} d_{n}(x_{n},z_{n}) & \leq & d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(why?) \\ 1 + d_{n}(x_{n},z_{n}) & \leq & 1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(why?) \\ 1 - \frac{1}{1 + d_{n}(x_{n},z_{n})} & \leq & 1 - \frac{1}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ \frac{d_{n}(x_{n},z_{n})}{1 + d_{n}(x_{n},z_{n})} & \leq & \frac{d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ & \leq & \frac{d_{n}(x_{n},y_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ + & \frac{d_{n}(y_{n},z_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \end{array}$$

Triangle inequality

$$\begin{array}{rcl} d_{n}(x_{n},z_{n}) & \leq & d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(why?) \\ 1 + d_{n}(x_{n},z_{n}) & \leq & 1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(why?) \\ 1 - \frac{1}{1 + d_{n}(x_{n},z_{n})} & \leq & 1 - \frac{1}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ \frac{d_{n}(x_{n},z_{n})}{1 + d_{n}(x_{n},z_{n})} & \leq & \frac{d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ & \leq & \frac{d_{n}(x_{n},y_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ + & \frac{d_{n}(y_{n},z_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ & \leq & \frac{d_{n}(x_{n},y_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \end{array}$$

Triangle inequality

$$\begin{array}{rcl} d_{n}(x_{n},z_{n}) & \leq & d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(why?) \\ 1 + d_{n}(x_{n},z_{n}) & \leq & 1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})(why?) \\ 1 - \frac{1}{1 + d_{n}(x_{n},z_{n})} & \leq & 1 - \frac{1}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ \frac{d_{n}(x_{n},z_{n})}{1 + d_{n}(x_{n},z_{n})} & \leq & \frac{d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ & \leq & \frac{d_{n}(x_{n},y_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ + & \frac{d_{n}(y_{n},z_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \\ \leq & \frac{d_{n}(x_{n},y_{n})}{1 + d_{n}(x_{n},y_{n}) + d_{n}(y_{n},z_{n})} \end{array}$$

• Now by multiplying by 2^{-n} then taking sum over \mathbb{N} , we will get our required triangle inequality. Hence d is a metric.

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

Question 8

Prove that the function $d(m, n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

Solution:

• Clearly *d* is non-negative.

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

- Clearly *d* is non-negative.
- d(n, m) = 0

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

- Clearly *d* is non-negative.
- $d(n,m) = 0 \iff |\frac{1}{m} \frac{1}{n}| = 0$

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

- Clearly *d* is non-negative.
- $d(n,m) = 0 \iff \left|\frac{1}{m} \frac{1}{n}\right| = 0 \iff n = m$.

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

- Clearly d is non-negative.
- $d(n,m) = 0 \iff \left|\frac{1}{m} \frac{1}{n}\right| = 0 \iff n = m.$
- $d(m, n) = |\frac{1}{m} \frac{1}{n}| = |\frac{1}{n} \frac{1}{m}| = d(n, m)$, hence symmetric.

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

- Clearly *d* is non-negative.
- $d(n,m) = 0 \iff \left|\frac{1}{m} \frac{1}{n}\right| = 0 \iff n = m.$
- $d(m, n) = |\frac{1}{m} \frac{1}{n}| = |\frac{1}{n} \frac{1}{m}| = d(n, m)$, hence symmetric.
- $d(m,n) = \left|\frac{1}{m} \frac{1}{k} + \frac{1}{k} \frac{1}{n}\right| \le \left|\frac{1}{m} \frac{1}{k}\right| + \left|\frac{1}{k} \frac{1}{n}\right| \le d(m,k) + d(k,n).$

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

- Clearly d is non-negative.
- $d(n,m) = 0 \iff \left|\frac{1}{m} \frac{1}{n}\right| = 0 \iff n = m.$
- $d(m,n) = |\frac{1}{m} \frac{1}{n}| = |\frac{1}{n} \frac{1}{m}| = d(n,m)$, hence symmetric.
- $d(m,n) = |\frac{1}{m} \frac{1}{k} + \frac{1}{k} \frac{1}{n}| \le |\frac{1}{m} \frac{1}{k}| + |\frac{1}{k} \frac{1}{n}| \le d(m,k) + d(k,n)$. Thus d satisfies triangle inequality.

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

- Clearly d is non-negative.
- $d(n,m) = 0 \iff \left|\frac{1}{m} \frac{1}{n}\right| = 0 \iff n = m.$
- $d(m,n) = |\frac{1}{m} \frac{1}{n}| = |\frac{1}{n} \frac{1}{m}| = d(n,m)$, hence symmetric.
- $d(m,n) = |\frac{1}{m} \frac{1}{k} + \frac{1}{k} \frac{1}{n}| \le |\frac{1}{m} \frac{1}{k}| + |\frac{1}{k} \frac{1}{n}| \le d(m,k) + d(k,n)$. Thus d satisfies triangle inequality.
- Hence d is a metric.

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

Solution:

- Clearly *d* is non-negative.
- $d(n,m) = 0 \iff \left|\frac{1}{m} \frac{1}{n}\right| = 0 \iff n = m.$
- $d(m, n) = |\frac{1}{m} \frac{1}{n}| = |\frac{1}{n} \frac{1}{m}| = d(n, m)$, hence symmetric.
- $d(m,n) = |\frac{1}{m} \frac{1}{k} + \frac{1}{k} \frac{1}{n}| \le |\frac{1}{m} \frac{1}{k}| + |\frac{1}{k} \frac{1}{n}| \le d(m,k) + d(k,n)$. Thus d satisfies triangle inequality.
- Hence *d* is a metric.

Does this metric extend to \mathbb{R}^+ .

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

Solution:

- Clearly *d* is non-negative.
- $d(n,m) = 0 \iff \left|\frac{1}{m} \frac{1}{n}\right| = 0 \iff n = m.$
- $d(m, n) = |\frac{1}{m} \frac{1}{n}| = |\frac{1}{n} \frac{1}{m}| = d(n, m)$, hence symmetric.
- $d(m,n) = |\frac{1}{m} \frac{1}{k} + \frac{1}{k} \frac{1}{n}| \le |\frac{1}{m} \frac{1}{k}| + |\frac{1}{k} \frac{1}{n}| \le d(m,k) + d(k,n)$. Thus d satisfies triangle inequality.
- Hence d is a metric.

Does this metric extend to \mathbb{R}^+ .

Ans:

Question 8

Prove that the function $d(m,n) = |\frac{1}{m} - \frac{1}{n}|$ for any $m, n \in \mathbb{N}$ defines a metric on the set of natural numbers. Does this metric extend to \mathbb{R}^+ .

Solution:

- Clearly *d* is non-negative.
- $d(n,m) = 0 \iff \left|\frac{1}{m} \frac{1}{n}\right| = 0 \iff n = m.$
- $d(m, n) = |\frac{1}{m} \frac{1}{n}| = |\frac{1}{n} \frac{1}{m}| = d(n, m)$, hence symmetric.
- $d(m,n) = |\frac{1}{m} \frac{1}{k} + \frac{1}{k} \frac{1}{n}| \le |\frac{1}{m} \frac{1}{k}| + |\frac{1}{k} \frac{1}{n}| \le d(m,k) + d(k,n)$. Thus d satisfies triangle inequality.
- Hence d is a metric.

Does this metric extend to \mathbb{R}^+ .

Ans:Yes.

Question 9

Let A be a subset of a metric space X with closure \bar{A} and boundary of A by ∂A . Show that

- (i) Show that $\partial A = \bar{A} \setminus A^{\circ}$ and ∂A is closed.
- (ii) Prove that $X \setminus \bar{A} = (X \setminus A)^{\circ}$.
- (iii) Prove that A is closed if and only if $\partial A \subset A$, and A is open if and only if $\partial A \subset A^c$.
- (iv) If A is open, does it follow that $(\bar{A})^{\circ} = A$?

Question 9

Let A be a subset of a metric space X with closure \bar{A} and boundary of A by ∂A . Show that

- (i) Show that $\partial A = \bar{A} \setminus A^{\circ}$ and ∂A is closed.
- (ii) Prove that $X \setminus \bar{A} = (X \setminus A)^{\circ}$.
- (iii) Prove that A is closed if and only if $\partial A \subset A$, and A is open if and only if $\partial A \subset A^c$.
- (iv) If A is open, does it follow that $(\bar{A})^{\circ} = A$?

Solution: (i)

• Let $x \in \partial A$,

Question 9

Let A be a subset of a metric space X with closure \bar{A} and boundary of A by ∂A . Show that

- (i) Show that $\partial A = \bar{A} \setminus A^{\circ}$ and ∂A is closed.
- (ii) Prove that $X \setminus \bar{A} = (X \setminus A)^{\circ}$.
- (iii) Prove that A is closed if and only if $\partial A \subset A$, and A is open if and only if $\partial A \subset A^c$.
- (iv) If A is open, does it follow that $(\bar{A})^{\circ} = A$?

Solution: (i)

• Let $x \in \partial A$, i.e. for $\epsilon > 0$, we have $N_{\epsilon}(x) \cap A \neq \phi$ and $N_{\epsilon}(x) \cap A^{c} \neq \phi$.

Question 9

Let A be a subset of a metric space X with closure \bar{A} and boundary of A by ∂A . Show that

- (i) Show that $\partial A = \bar{A} \setminus A^{\circ}$ and ∂A is closed.
- (ii) Prove that $X \setminus \bar{A} = (X \setminus A)^{\circ}$.
- (iii) Prove that A is closed if and only if $\partial A \subset A$, and A is open if and only if $\partial A \subset A^c$.
- (iv) If A is open, does it follow that $(\bar{A})^{\circ} = A$?

- Let $x \in \partial A$, i.e. for $\epsilon > 0$, we have $N_{\epsilon}(x) \cap A \neq \phi$ and $N_{\epsilon}(x) \cap A^{c} \neq \phi$.
- In particular, for $\epsilon_n = \frac{1}{n} > 0$, we have $N_{\frac{1}{n}}(x) \cap A \neq \phi$.

Question 9

Let A be a subset of a metric space X with closure \bar{A} and boundary of A by ∂A . Show that

- (i) Show that $\partial A = \bar{A} \setminus A^{\circ}$ and ∂A is closed.
- (ii) Prove that $X \setminus \bar{A} = (X \setminus A)^{\circ}$.
- (iii) Prove that A is closed if and only if $\partial A \subset A$, and A is open if and only if $\partial A \subset A^c$.
- (iv) If A is open, does it follow that $(\bar{A})^{\circ} = A$?

- Let $x \in \partial A$, i.e. for $\epsilon > 0$, we have $N_{\epsilon}(x) \cap A \neq \phi$ and $N_{\epsilon}(x) \cap A^{c} \neq \phi$.
- In particular, for $\epsilon_n = \frac{1}{n} > 0$, we have $N_{\frac{1}{n}}(x) \cap A \neq \phi$.
- This implies there exists $x_n \in N_{\frac{1}{n}}(x) \cap A$. This gives $x \in \bar{A}$.

Question 9

Let A be a subset of a metric space X with closure \bar{A} and boundary of A by ∂A . Show that

- (i) Show that $\partial A = \bar{A} \setminus A^{\circ}$ and ∂A is closed.
- (ii) Prove that $X \setminus \bar{A} = (X \setminus A)^{\circ}$.
- (iii) Prove that A is closed if and only if $\partial A \subset A$, and A is open if and only if $\partial A \subset A^c$.
- (iv) If A is open, does it follow that $(\bar{A})^{\circ} = A$?

- Let $x \in \partial A$, i.e. for $\epsilon > 0$, we have $N_{\epsilon}(x) \cap A \neq \phi$ and $N_{\epsilon}(x) \cap A^{c} \neq \phi$.
- In particular, for $\epsilon_n = \frac{1}{n} > 0$, we have $N_{\frac{1}{n}}(x) \cap A \neq \phi$.
- This implies there exists $x_n \in N_{\frac{1}{n}}(x) \cap A$. This gives $x \in \bar{A}$.
- Since $N_{\epsilon}(x) \cap A^c \neq \phi$, i.e. $N_{\frac{1}{n}}(x)$ always contains element of A^c .

Question 9

Let A be a subset of a metric space X with closure \bar{A} and boundary of A by ∂A . Show that

- (i) Show that $\partial A = \bar{A} \setminus A^{\circ}$ and ∂A is closed.
- (ii) Prove that $X \setminus \bar{A} = (X \setminus A)^{\circ}$.
- (iii) Prove that A is closed if and only if $\partial A \subset A$, and A is open if and only if $\partial A \subset A^c$.
- (iv) If A is open, does it follow that $(\bar{A})^{\circ} = A$?

- Let $x \in \partial A$, i.e. for $\epsilon > 0$, we have $N_{\epsilon}(x) \cap A \neq \phi$ and $N_{\epsilon}(x) \cap A^{c} \neq \phi$.
- In particular, for $\epsilon_n = \frac{1}{n} > 0$, we have $N_{\frac{1}{n}}(x) \cap A \neq \phi$.
- This implies there exists $x_n \in N_{\frac{1}{n}}(x) \cap A$. This gives $x \in \bar{A}$.
- Since $N_{\epsilon}(x) \cap A^c \neq \phi$, i.e. $N_{\frac{1}{n}}(x)$ always contains element of A^c .

• Thus $N_{\frac{1}{n}}(x) \nsubseteq A$.

• Thus $N_{\frac{1}{2}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$.

• Thus $N_{\frac{1}{2}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \bar{A} \setminus A^{\circ}$.

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \overline{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \overline{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \overline{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

• Since $\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap (A^{\circ})^{c}$,

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \overline{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

• Since $\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap (A^{\circ})^{c}$, \bar{A} is always closed and A° is always open.

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \bar{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

- Since $\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap (A^{\circ})^{c}$, \bar{A} is always closed and A° is always open.
- Hence ∂A is closed

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \bar{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

- Since $\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap (A^{\circ})^{c}$, \bar{A} is always closed and A° is always open.
- Hence ∂A is closed

$$x \in X \setminus \bar{A} \iff x \in X \text{ but } x \notin \bar{A}$$

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \bar{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

- Since $\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap (A^{\circ})^{c}$, \bar{A} is always closed and A° is always open.
- Hence ∂A is closed

$$x \in X \setminus \bar{A} \iff x \in X \text{ but } x \notin \bar{A}$$

 $\iff x \text{ is not a limit point of } A$

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \overline{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

- Since $\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap (A^{\circ})^{c}$, \bar{A} is always closed and A° is always open.
- Hence ∂A is closed

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \overline{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

- Since $\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap (A^{\circ})^{c}$, \bar{A} is always closed and A° is always open.
- Hence ∂A is closed

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \bar{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

- Since $\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap (A^{\circ})^{c}$, \bar{A} is always closed and A° is always open.
- Hence ∂A is closed

$$x \in X \setminus \bar{A} \iff x \in X \text{ but } x \notin \bar{A}$$
 $\iff x \text{ is not a limit point of } A$
 $\iff \exists \epsilon > 0 \text{ such that } N_{\epsilon}(x) \cap A = \phi$
 $\iff N_{\epsilon}(x) \subset A^{c}$
 $\iff x \text{ is interior point of } X \setminus A \text{ .i.e } x \in (X \setminus A)^{\circ}$

- Thus $N_{\frac{1}{n}}(x) \nsubseteq A$. Therefore $x \notin A^{\circ}$. Hence $x \in \bar{A} \setminus A^{\circ}$.
- Since every step was following if and only if, Thus we get $\partial A = \bar{A} \setminus A^{\circ}$.

Now we will prove that ∂A is closed.

- Since $\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap (A^{\circ})^{c}$, \bar{A} is always closed and A° is always open.
- Hence ∂A is closed

(ii)

$$x \in X \setminus \bar{A} \iff x \in X \text{ but } x \notin \bar{A}$$
 $\iff x \text{ is not a limit point of } A$
 $\iff \exists \epsilon > 0 \text{ such that } N_{\epsilon}(x) \cap A = \phi$
 $\iff N_{\epsilon}(x) \subset A^{c}$
 $\iff x \text{ is interior point of } X \setminus A \text{ .i.e } x \in (X \setminus A)^{\circ}$

(iii) To show that A is open if and only if $\partial A \subset A^c$.

- (iii) To show that A is open if and only if $\partial A \subset A^c$. Assume that A is open
 - To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.

(iii) To show that A is open if and only if $\partial A \subset A^c$. Assume that A is open

• To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.

- (iii) To show that A is open if and only if $\partial A \subset A^c$. Assume that A is open
 - To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
 - Since A is open,

- To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
- Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.

- To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
- Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
- Thus x cannot be boundary point of A.

- To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
- Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
- Thus *x* cannot be boundary point of *A*. Contradiction.

- To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
- Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
- Thus x cannot be boundary point of A. Contradiction.
- Hence $\partial A \subset A^c$

(iii) To show that A is open if and only if $\partial A \subset A^c$.

Assume that A is open

- To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
- Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
- Thus x cannot be boundary point of A. Contradiction.
- Hence $\partial A \subset A^c$

(iii) To show that A is open if and only if $\partial A \subset A^c$.

Assume that A is open

- To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
- Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
- Thus x cannot be boundary point of A. Contradiction.
- Hence $\partial A \subset A^c$

Assume that $\partial A \subset A^c$

• Let $x \in A$

(iii) To show that A is open if and only if $\partial A \subset A^c$.

Assume that A is open

- To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
- Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
- Thus x cannot be boundary point of A. Contradiction.
- Hence $\partial A \subset A^c$

Assume that $\partial A \subset A^c$

• Let $x \in A \implies x$ is not a boundary point.

(iii) To show that A is open if and only if $\partial A \subset A^c$.

Assume that A is open

- To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
- Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
- Thus x cannot be boundary point of A. Contradiction.
- Hence $\partial A \subset A^c$

- Let $x \in A \implies x$ is not a boundary point.
- There exists $\epsilon > 0$ such that $N_{\epsilon}(x) \cap A = \phi$ or $N_{\epsilon}(x) \cap A^{c} = \phi$.

- (iii) To show that A is open if and only if $\partial A \subset A^c$.
- Assume that A is open
 - To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
 - Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
 - Thus x cannot be boundary point of A. Contradiction.
 - Hence $\partial A \subset A^c$

- Let $x \in A \implies x$ is not a boundary point.
 - There exists $\epsilon > 0$ such that $N_{\epsilon}(x) \cap A = \phi$ or $N_{\epsilon}(x) \cap A^{c} = \phi$.
 - But $x \in N_{\epsilon} \cap A \neq \phi$. Thus $N_{\epsilon}(x) \cap A^{c} = \phi \implies N_{\epsilon}(x) \subset A$.

- (iii) To show that A is open if and only if $\partial A \subset A^c$.
- Assume that A is open
 - To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
 - Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
 - Thus x cannot be boundary point of A. Contradiction.
 - Hence $\partial A \subset A^c$

- Let $x \in A \implies x$ is not a boundary point.
 - There exists $\epsilon > 0$ such that $N_{\epsilon}(x) \cap A = \phi$ or $N_{\epsilon}(x) \cap A^{c} = \phi$.
 - But $x \in N_{\epsilon} \cap A \neq \phi$. Thus $N_{\epsilon}(x) \cap A^{c} = \phi \implies N_{\epsilon}(x) \subset A$.
 - Hence *A* is open.

- (iii) To show that A is open if and only if $\partial A \subset A^c$.
- Assume that A is open
 - To the contrary suppose that $x \in \partial A$ but $x \notin A^c$.i.e. $x \in A$.
 - Since A is open,there exists $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \implies N_{\epsilon}(x) \cap A^{c} = \phi$.
 - Thus x cannot be boundary point of A. Contradiction.
 - Hence $\partial A \subset A^c$

- Let $x \in A \implies x$ is not a boundary point.
 - There exists $\epsilon > 0$ such that $N_{\epsilon}(x) \cap A = \phi$ or $N_{\epsilon}(x) \cap A^{c} = \phi$.
 - But $x \in N_{\epsilon} \cap A \neq \phi$. Thus $N_{\epsilon}(x) \cap A^{c} = \phi \implies N_{\epsilon}(x) \subset A$.
 - Hence *A* is open.

Now we will prove that A is closed if and only if $\partial A \subset A$.

A is closed \iff A^c is open

$$A$$
 is closed \iff A^c is open \iff $\partial A^c \subset (A^c)^c$ (why?)

$$A$$
 is closed \iff A^c is open \iff $\partial A^c \subset (A^c)^c$ (why?) \iff $\partial A \subset A$ (why?)

Now we will prove that A is closed if and only if $\partial A \subset A$.

$$A$$
 is closed \iff A^c is open \iff $\partial A^c \subset (A^c)^c$ (why?) \iff $\partial A \subset A$ (why?)

(iv)

Now we will prove that A is closed if and only if $\partial A \subset A$.

$$A$$
 is closed \iff A^c is open \iff $\partial A^c \subset (A^c)^c$ (why?) \iff $\partial A \subset A$ (why?)

(iv) Ans:

Now we will prove that A is closed if and only if $\partial A \subset A$.

$$A$$
 is closed \iff A^c is open \iff $\partial A^c \subset (A^c)^c$ (why?) \iff $\partial A \subset A$ (why?)

(iv) Ans: No Conterexample

$$A$$
 is closed \iff A^c is open \iff $\partial A^c \subset (A^c)^c$ (why?) \iff $\partial A \subset A$ (why?)

- (iv) Ans: No Conterexample
 - Take $A = (-\infty, 0) \cup (0, \infty)$.

$$A$$
 is closed \iff A^c is open \iff $\partial A^c \subset (A^c)^c$ (why?) \iff $\partial A \subset A$ (why?)

- (iv) Ans: No Conterexample
 - Take $A = (-\infty, 0) \cup (0, \infty)$.
 - Clealry $\bar{A}=\mathbb{R}$ and $(\bar{A})^\circ=\mathbb{R}$ thus $(\bar{A})^\circ \neq A$.

$$A$$
 is closed \iff A^c is open \iff $\partial A^c \subset (A^c)^c$ (why?) \iff $\partial A \subset A$ (why?)

- (iv) Ans: No Conterexample
 - Take $A = (-\infty, 0) \cup (0, \infty)$.
 - Clealry $\bar{A}=\mathbb{R}$ and $(\bar{A})^\circ=\mathbb{R}$ thus $(\bar{A})^\circ \neq A$.

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}$$

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

$$E = \{p \in \mathbb{Q} : 2 < p^2 < 3\} = \mathbb{Q} \cap (-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3}).$$

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

Solution: We have

$$E = \{p \in \mathbb{Q} : 2 < p^2 < 3\} = \mathbb{Q} \cap (-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3}).$$

Clearly E is bounded.

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

$$E = \{p \in \mathbb{Q} : 2 < p^2 < 3\} = \mathbb{Q} \cap (-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3}).$$

- Clearly *E* is bounded.
- Clearly there doesn't exist any rational number q such that $q^2 = 2$ or $q^2 = 3$.

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \} = \mathbb{Q} \cap (-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3}).$$

- Clearly *E* is bounded.
- Clearly there doesn't exist any rational number q such that $q^2=2$ or $q^2=3$.
- Let $q \in \mathbb{Q}$ and $q^2 < 2$.

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

$$E = \{p \in \mathbb{Q} : 2 < p^2 < 3\} = \mathbb{Q} \cap (-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3}).$$

- Clearly E is bounded.
- Clearly there doesn't exist any rational number q such that $q^2 = 2$ or $q^2 = 3$.
- Let $q \in \mathbb{Q}$ and $q^2 < 2$.
- Take $r_1 = \frac{\sqrt{2} |q|}{2} > 0$. then $N_{r_1}(q) \cap E = \phi$.

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

$$E = \{p \in \mathbb{Q} : 2 < p^2 < 3\} = \mathbb{Q} \cap (-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3}).$$

- Clearly *E* is bounded.
- Clearly there doesn't exist any rational number q such that $q^2 = 2$ or $q^2 = 3$.
- Let $q \in \mathbb{Q}$ and $q^2 < 2$.
- Take $r_1 = \frac{\sqrt{2} |q|}{2} > 0$. then $N_{r_1}(q) \cap E = \phi$.
- Thus $q \in \mathbb{Q}$ with $q^2 < 2$ can't be the limit point of E.

Question 10

Let \mathbb{Q} , the set of rational numbers, as a metric space with the Euclidean distance d(p,q)=|p-q|. Consider the set

$$E = \{ p \in \mathbb{Q} : 2 < p^2 < 3 \}.$$

Show that E is closed and bounded in \mathbb{Q} .

$$E = \{p \in \mathbb{Q} : 2 < p^2 < 3\} = \mathbb{Q} \cap (-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3}).$$

- Clearly *E* is bounded.
- Clearly there doesn't exist any rational number q such that $q^2 = 2$ or $q^2 = 3$.
- Let $q \in \mathbb{Q}$ and $q^2 < 2$.
- Take $r_1 = \frac{\sqrt{2} |q|}{2} > 0$. then $N_{r_1}(q) \cap E = \phi$.
- Thus $q \in \mathbb{Q}$ with $q^2 < 2$ can't be the limit point of E.

• Let $q \in \mathbb{Q}$ and $q^2 > 3$.

- Let $q \in \mathbb{Q}$ and $q^2 > 3$.
- Take $r_1=rac{|q|-\sqrt{3}}{2}>0$. then $N_{r_2}(q)\cap E=\phi$.

- Let $q \in \mathbb{Q}$ and $q^2 > 3$.
- Take $r_1=rac{|q|-\sqrt{3}}{2}>0$. then $N_{r_2}(q)\cap E=\phi$.
- Thus $q \in \mathbb{Q}$ with $q^2 > 3$ can't be the limit point of E.

- Let $q \in \mathbb{Q}$ and $q^2 > 3$.
- Take $r_1=rac{|q|-\sqrt{3}}{2}>0$. then $N_{r_2}(q)\cap E=\phi$.
- Thus $q \in \mathbb{Q}$ with $q^2 > 3$ can't be the limit point of E.
- Therefore only possible limit point of E are $q \in \mathbb{Q}$ with $2 < q^2 < 3$.

- Let $q \in \mathbb{Q}$ and $q^2 > 3$.
- Take $r_1 = \frac{|q| \sqrt{3}}{2} > 0$. then $N_{r_2}(q) \cap E = \phi$.
- Thus $q \in \mathbb{Q}$ with $q^2 > 3$ can't be the limit point of E.
- Therefore only possible limit point of E are $q \in \mathbb{Q}$ with $2 < q^2 < 3$.
- Hence *E* is closed.