Geosphere Storms

Solar wind energy input

- There is a strong correlation between the solar wind Ey = v Bz and magnetospheric activity.
- An empirical indicator of solar wind energy input going into substorm development is the Akasofu epsilon parameter ε
 - ε > 10^{11} W, a substorm can occur;
 - ε > 10^{13} W is indicative of a big storm

$$\varepsilon = \frac{4\pi}{\mu_0} L_0^2 V_X B^2 \sin^4 \frac{1}{2} \theta$$

- $L_0 = 7$ RE, and empirical scaling parameter.
- B is the IMF magnitude,
- θ is the clock angle of the IMF relative to the Earth's magnetic dipole axis
- v = solar wind speed.

Milan+ (2012, https://doi.org/10.1029/2011JA017082)

Imbalance of ΦD and ΦN

- The amount of open magnetic flux in the magnetosphere governs the location of the OCB
- when there is more open magnetic flux, the boundary is farther from the pole, and therefore the size of the polar cap is increased.
- Faraday's law: the rate of change of polar cap magnetic flux within OCB must be equal to the electric field integrated around the OCB (sum of voltages ΦD and ΦN)

$$\frac{\mathrm{d}F_{\mathrm{PC}}}{\mathrm{d}t} = \Phi_{D} - \Phi_{N}$$

Lockwood+(1990, http://dx.doi.org/10.1029/JA095iA06p07961)

Polar Cap Potential

 Empirical formulas of polar cap size and polar cap potential relationships refit with a linear formula.

Merging electric field
$$E_m = vB_T \sin^2\left(\frac{\theta}{2}\right)$$
 (Kahn&Lee, 1979)

Polar cap potential
$$\Phi_{pc} = 33.4 + 24.0 E_m (kV)$$

<u>Liu, 2007</u>

https://doi.org/10.1029/2007JA012392

http://dx.doi.org/10.5140/JASS.2012.29.3.259

Increase of Magnetosphere Convection Electric Field

Magnetosphere Perturbations zising/evel of geomagnetic activity

Quiet

Magnetosphere

Substorm

Initiated by

Recovery

ΦD

enhancement of

Phases: Growth, (Onset,) Expansion,

(Westward Surge,)

Convection

- Steady southward IMF conditions (several hours)
- •No substorm occur at all
- Accompanied by continuous auroral activity without substorm characteristics

- Rapid repeated substorms

Geomagnetic Storm

- Sufficiently increasing ring current
- Phases: initial, main, recovery

Role of Magnetotail

Substorm phenomena related to the magnetotail

- Clear role of energy storage
- Growth: storage
- Expansion: explosive dissipation/ "unloading"

Baker+, 1997, JGR, https://doi.org/10.1029/96JA03961

Energy Budgets

 Solar wind energy transformed into thermal and kinetic energy

Table 1. Geospace Energy Budgets

Entry rates		
Incident solar wind	10^{13} - 10^{14} W	
Coupled to magnetosphere	10^{11} - 10^{12}	
Storage (energy)		
Magnetotail	10 ¹⁵ -10 ¹⁶ J	
Ring current	10 ¹⁵ -10 ¹⁶	
Transport and loss rates	10 10	
Ring current injection	10^{11} - 10^{12} W	
Ionospheric Joule heating	1010-1011	
Auroral precipitation	10 ⁹ -10 ¹⁰	
Auroral luminosity	10 ⁸ -10 ⁹	
Auroral kilometric radiation	10 ⁷ -10 ⁹	
Plasmoids	$10^{11} - 10^{12}$	
Total energy dissipation	10 -10	
Substorms	~3 x 10 ¹⁵ J	
Major storms	>8 x 10 ¹⁶ J	

Baker+, 1997, JGR, https://doi.org/10.1029/96JA03961

Intensivication of Currents

- different sources of the geomagnetic field have widely different response and decay times
- storm-time symmetric ring current requires at least several hours to build up and decays on the timescale of at least one or two days
- magnetotail current varies much faster (only a few minutes for SW pressure pulses)

Figure 1. (top) Variation of the total current in the five principal current systems during the storm of 6–10 April 2000. (bottom) Concurrent variation of the *Dst* index during the event.

Tsyganenko & Sitnov (2005, doi:10.1029/2004JA010798)

FAC intensification

 Whenever the solar wind electrons are accelerated downward or upward in the polar cap there must be distinct variation of FAC and PCV accordingly. → high and positive correlation between FAC and PCV (yellow)

$$PCV = \left[V_{sw}B_t \sin^2 \frac{\theta}{2} \times 7\mathbb{R}e\right] (mV/m)$$

$$\mathsf{FAC} = 0.328 \bigg[np^{\frac{1}{2}} V_{\mathsf{sw}} B_{\mathsf{T}} \sin \bigg(\frac{\theta}{2} \bigg) \bigg]^{\frac{1}{2}} + 1.4.$$

Adhikari+ (2018) https://doi.org/10.1029/2018EA000392