Sensores Integrados

Graça Minas

gminas@dei.uminho.pt

Susana Catarino

scatarino@dei.uminho.pt

2º Semestre 2021/2022

Equipa: Distribuição por temas

Graça Minas

- Princípios de transdução de micro sensores
- Sensores / atuadores de pressão, temperatura, piezoelétricos, óticos, etc.

Susana Catarino

- Simulações em COMSOL (Teoria, exemplos, projeto)
- Especificação e dimensionamento do Projeto
- Acompanhamento dos projetos

- Fornecer ferramentas para que os alunos possam implementar modelos de microssensores e microatuadores num software comercial.
- Simular a componente elétrica, mecânica e térmica de um dispositivo.
- Analisar resultados.

Programa:

- Introdução à modelação e simulação multifísica em COMSOL
 Multiphysics: tipos de simulação. Aplicações.
- Introdução aos modelos: equações governativas, discretização espacial e temporal, malhas e solvers.
- Problemas práticos em COMSOL e resolução de erros.
- Trabalho prático simulação de um microdispositivo >> Ligação ao resto do programa da disciplina.

Modelar e simular

O que é?

- Representar através de modelos teóricos matemáticos os fenómenos físicos complexos.
- Descrevê-los por equações e resolvê-los de modo a obter aproximações aos fenómenos reais.
- O processo de modelar e simular envolve a criação de uma representação (modelo) do sistema, a simulação do modelo, a análise do comportamento do sistema.

Porquê?

 Necessidade de compreensão e previsão, de modo a lidar com os fenómenos de forma mais efetiva.

		2º Semestre 2021/2022								2022		
Sem	1º sem	1º semestre		Т	Q	Q	S	S			Teoria - GM	prática COMSOL / projeto - SOC
ana					<u> </u>	<u> </u>	<u> </u>				1	
'	14/fev a	19/fev			<u> </u>	⊥_′				14/fev	Apresentação	
'	21/fev a	26/fev			<u> </u>	⊥_′				21/fev	Princípios de transdução	
'	28/fev a	05/mar			'	'				28/fev	Estudo de sensores	
<u> </u>	07/mar a	12/mar			'	'				07/mar	Estudo de sensores	
	14/mar a	19/mar			'					14/mar		Introd. Simulação. Exemplos. Simulação modal/adição massa
	21/mar a	26/mar								21/mar		termoelétricos + Electrostatica + piezo
	28/mar a	u 02/abr								28/mar	Teste (2h)	
	04/abr a	u 09/abr								04/abr		projeto especificação/aplicação - principio funcionamento
<u> </u>	11/abr a	16/abr								11/abr		
/	18/abr a	23/abr								18/abr		
<u> </u>	25/abr a	30/abr			<u> </u>					25/abr		
<u> </u>	02/mai a	1 07/mai								02/mai		projeto - simulação principio funcionamento
	09/mai a	14/mai								09/mai		análise artigos COMSOL + projeto (otimização)
	16/mai a	21/mai			7					16/mai		análise artigos COMSOL + projeto (otimização)
	23/mai a	28/mai								23/mai	Apresentação final	Apresentação final
	30/mai a	04/jun								30/mai		
	06/jun a	11/jun								06/jun		

Avaliação

- Teste ou Exame (40%)
- Análise de um artigo de simulação (10%)
- Projeto Grupos de 2 (50% final)
- Nota mínima de 7.0 em cada uma das três componentes de avaliação

Bibliografia

- "An Introduction to Microelectromechanical Systems Engineering", Nadim Maluf, Kirt Williams, Artech House, Inc.
- "Microsystem Design", Stephen D. Senturia, Kluwer Academic Publishers
- "MEMS Mechanical Sensors", Stephen Beeby, Graham Ensell, Michael Kraft, Neil White, Artech House, Inc.
- "Silicon Sensors", S. Middelhoek, A. Audet, Delft University Press
- Principais revistas de microssistemas:
 - Journal of Microelectromechanical systems (IEEE).
 - Sensors & Actuators (Elsevier).
 - Journal of Micromechanics and Microengineering (IOP).

Microssistemas

Microssistema em Si

Exemplos de microssistemas que usam diariamente, ou que estejam presentes nas vossas atividades?

Como são fabricados?

Como funcionam?

Microtecnologias

Smart Systems

Mechanization and the introduction of steam and water power

Mass production assembly lines using electrical power

Automated production, computers, IT-systems and robotics

The Smart Factory. Autonomous systems, IoT, machine learning

- História demonstra que as décadas são marcadas pelas tecnologias descobertas nas décadas anteriores:
 - Década 70 aparecimento do microprocessador
- Década 80 <u>Década do processamento</u>
- Década 80 lasers de baixo custo, e melhoria processamento
- Década 90:
 - Aumento da capacidade de armazenamento em discos ópticos
 - Comunicações de alta qualidade e largura de banda
 - Proliferação das redes de computadores
 - · Internet e World Wide Web marcam a década
- Década 90 <u>Década do acesso</u>

- Década 90/00 grandes esforços de I&D nos sensores:
 - Miniaturização dos sensores
 - Redução de custos
 - Processamento digital de sinal e fusão sensorial

dos sensores e atuadores

Applications - The bright future of sensing

(Source: Yole Développement for InvenSense Developer Conference 2016, October 2016)

Sensors market for smart homes and buildings

(Source: Sensors and Sensing Modules for Smart Homes and Buildings 2017 report, March 2017, Yole Développement)

1:Smart Home

2: Automotive

MAIN SENSORS TO TRANSFORM YOUR CAR INTO A SUPERHERO CAR

(Source: Sensors & Data Management for Autonomous Vehicles report, Oct. 2015, Yole Développement)

Overview of the MEMS and sensor market for automotive

(Source: MEMS and Sensors for Automotive report, Yole Développement, August 2017)

Universidade do Minho Escola de Engenharia Departamento de Electrónica Industrial

Automotive MEMS and sensors: Player overview

(Source: MEMS and Sensors for Automotive report, Yole Développement, August 2017)

3: Human

Consumer biometrics: Sensor market forecasts per technology

(Source: Consumer Biometrics: Market and Technologies Trends 2018 report, Yole Développement, November 2018)

Corporate culture and cost-effectiveness drive technology choices

(Source: Consumer Biometrics: Market and Technologies Trends 2018 report, Yole Développement, November 2018)

Biométrica

3:Human

MIMICKING THE 5 SENSESAND MORE

(Source: Sensors for Wearable Electronics & Mobile Healthcare, Yole Développement, June 2015)

Biomédica

Sensor implementado no silício:

- Explorar a redução de custos verificada com a microelectrónica;
- Técnicas compatíveis com o fabrico de microelectrónica;
- Silício possui excelentes propriedades mecânicas;
- Silício é um material "inteligente" enúmeras propriedades físicas para transdução.

E a eletrónica pode ser incluída no sensor.