KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

1. ÅRSPRØVE 2011 S-1A ex ret

EKSAMEN I MATEMATIK A

Onsdag den 15. juni 2011

RETTEVEJLEDNING

Opgave 1.

Elasticiteter.

Lad $I \subseteq \mathbf{R}$ være et åbent interval, og lad $f: I \to \mathbf{R}$ være en funktion, som er differentiabel i punktet $x_0 \in I$. Det antages desuden, at $f(x_0) \neq 0$.

(1) Definer elasticiteten $\text{El} f(x_0)$ af funktionen f i punktet $x_0 \in I$.

Løsning. Elasticiteten $Elf(x_0)$ er defineret ved formlen

$$Elf(x_0) = x_0 \frac{f'(x_0)}{f(x_0)}.$$

(2) Antag, at funktionerne f og g begge er defineret på det åbne interval I, og at elasticiteterne $\text{El}f(x_0)$ og $\text{El}g(x_0)$ eksisterer.

Vis, at elasticiteten $El(fq)(x_0)$ eksisterer, og at

$$El(fq)(x_0) = Elf(x_0) + Elq(x_0).$$

Løsning. Idet elasticiteterne $\text{El}f(x_0)$ og $\text{El}g(x_0)$ eksisterer, ved vi, at funktionerne f og g er differentiable i punktet $x_0 \in I$, og at $f(x_0) \neq 0$ og $g(x_0) \neq 0$. Da er funktionen fg differentiable i x_0 , og vi har, at

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Desuden er $(fg)(x_0) = f(x_0)g(x_0) \neq 0$.

Vi får nu, at

$$x_0 \frac{(fg)'(x_0)}{(fg)(x_0)} = x_0 \frac{f'(x_0)g(x_0) + f(x_0)g'(x_0)}{f(x_0)g(x_0)} =$$

$$x_0 \frac{f'(x_0)g(x_0)}{f(x_0)g(x_0)} + x_0 \frac{f(x_0)g'(x_0)}{f(x_0)g(x_0)} = x_0 \frac{f'(x_0)}{f(x_0)} + x_0 \frac{g'(x_0)}{g(x_0)},$$

hvoraf påstanden straks fremgår.

(3) Find elasticiteten i punktet x for funktionerne

$$f(x) = 2 + \cos(5x), \ g(x) = e^{17x} \text{ og } h(x) = 2 + \cos(5x) + e^{17x}.$$

Løsning. Vi finder, at

$$\operatorname{El} f(x) = x \frac{-5\sin(5x)}{2 + \cos(5x)}, \ \operatorname{El} g(x) = x \frac{17e^{17x}}{e^{17x}} = 17x$$

og

$$Elh(x) = x \frac{-5\sin(5x) + 17e^{17x}}{2 + \cos(5x) + e^{17x}}.$$

Opgave 2. For ethvert $x \in \mathbb{R}_+$ betragter vi den uendelige række

$$(*) \qquad \sum_{n=1}^{\infty} (\ln(x))^n.$$

(1) Bestem mængden

$$K = \{x \in \mathbf{R}_+ \mid (*) \text{ er konvergent}\}.$$

Løsning. Vi ser, at den uendelige række (*) er en kvotientrække med kvotienten $q = \ln(x)$, og denne række er konvergent, hvis og kun hvis $|q| = |\ln(x)| < 1$. Vi får så, at

$$-1 < \ln(x) < 1 \Leftrightarrow e^{-1} < x < e.$$

Altså er

$$K = \{x \in \mathbf{R}_+ \mid (*) \text{ er konvergent}\} =]e^{-1}, e[.$$

(2) Bestem en forskrift for funktionen $f: K \to \mathbf{R}$, som er givet ved

$$\forall x \in K : f(x) = \sum_{n=1}^{\infty} (\ln(x))^n.$$

Løsning. Vi finder, at

$$\forall x \in]e^{-1}, e[: f(x) = \ln(x) \frac{1}{1 - \ln(x)} = \frac{\ln(x)}{1 - \ln(x)}.$$

(3) Bestem den afledede f' af funktionen f, og vis, at f er voksende på hele mængden K.

Løsning. Vi ser, at

$$f'(x) = \frac{df}{dx} = \frac{\frac{1}{x}(1 - \ln(x)) - \ln(x)(\frac{-1}{x})}{(1 - \ln(x))^2} = \frac{1}{x(1 - \ln(x))^2}.$$

Da f'(x) > 0 for ethvert $x \in]e^{-1}, e[$, er funktionen f åbenbart voksende.

(4) Bestem mængden af de $x \in K$, hvor elasticiteten El f(x) for funktionen f eksisterer, og udregn derpå El f(x).

Løsning. Vi ser, at f(x)=0, netop når x=1. For $x\in]e^{-1},e[\setminus\{1\}$ finder vi så, at

$$Elf(x) = x \frac{f'(x)}{f(x)} = x \frac{1}{x(1 - \ln(x))^2} \frac{1 - \ln(x)}{\ln(x)} = \frac{1}{\ln(x)(1 - \ln(x))}.$$

Opgave 3. Vi betragter funktionen $f : \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved $\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + \ln(1+y^2)$.

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

Løsning. Vi ser straks, at

$$\frac{\partial f}{\partial x}(x,y) = 2x \text{ og } \frac{\partial f}{\partial y}(x,y) = \frac{2y}{1+y^2}.$$

(2) Vis, at funktionen f har netop et stationært punkt, bestem dette punkt, og godtgør, at det er et globalt minimumspunkt for f.

Løsning. Det er klart, at punktet (0,0) er det eneste stationære punkt for funktionen f. Vi ser desuden, at

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) \ge 0 \, \land \, f(x,y) = 0 \Leftrightarrow (x,y) = (0,0).$$

Det stationære punkt (0,0) er således et globalt minimumspunkt for funktionen f.

(3) Bestem værdimængden for funktionen f.

Løsning. Vi ser, at

$$f(x,0) \to \infty$$
 for $x \to \infty$,

og heraf får vi så, at funktionen f har værdimængden $R(f) = [0, \infty[$.

(4) Lad funktionen $\phi: \mathbf{R} \to \mathbf{R}$ være givet ved

$$\forall s \in \mathbf{R} : \phi(s) = f(e^s, e^s).$$

Vis, at funktionen ϕ er strengt konveks på hele den reelle akse.

Løsning. Vi ser, at

$$\forall s \in \mathbf{R} : \phi(s) = f(e^s, e^s) = e^{2s} + \ln(1 + e^{2s}).$$

Vi får nu, at

$$\frac{d\phi}{ds} = 2e^{2s} + \frac{2e^{2s}}{1 + e^{2s}},$$

og

$$\frac{d^2\phi}{ds^2} = 4e^{2s} + \frac{4e^{2s}(1+e^{2s}) - 4e^{4s}}{(1+e^{2s})^2} = 4e^{2s} + \frac{4e^{2s}}{(1+e^{2s})^2} > 0.$$

Dette viser, at funktionen ϕ er strengt konveks.