

Google

Randomized Composable Core-sets for Distributed Optimization

Algorithms Research Group, Google Research, New York

Vahab Mirrokni

Mainly based on joint work with:

Hossein Bateni, Aditya Bhaskara, Hossein Esfandiari, Silvio Lattanzi, Morteza Zadimoghaddam

Our team: Google NYC Algorithms Research Teams

Three most popular techniques applied in our tools

- 1. Local Algorithms: Message Passing/Label Propagation/Local Random Walks
 - e.g., similarity ranking via PPR etc, Connected Components
 - Connected components code that's 10-50 times faster the state-of-the-art
- 2. Embedding/Hashing/Sketching Techniques
 - e.g., linear embedding for balanced graph partitioning to minimize cut
 - o Improves the state-of-the-art by 26%. Improved flash bandwidth for search backend by 25%. Paper appeared in WSDM'16.
- 3. Randomized Composable Core-sets for Distributed Computation: This Talk

- Composable core-sets: Definitions & Applications
 - Applications in Distributed & Streaming settings
 - Applications: Feature Selection, Diversity in Search & Recom.
- Composable Core-sets for Four Problems: Survey
 - Diversity Maximization(PODS'14, AAAI'17),
 Clustering(NIPS'14), Submodular Maximization(STOC'15),
 and Column Subset Selection (ICML'16)
- Sketching for Coverage Problems (on arXiv)
 - Sketching Technique

Composable Core-Sets for Distributed Optimization

Composable Core-sets

Setup: Consider partitioning data set T of elements into m sets $(T_1, T_2, ..., T_m)$.

$$T = T_1 \cup T_2 \cup \cdots \cup T_m$$

Goal: Given a set function f, find a subset S^* with $|S^*| \leq k$, optimizing $f(S^*)$.

$$opt(T) = f(S^*)$$

Find: **small** core-set $S_1 \subseteq T_1$, $S_2 \subseteq T_2$, ..., $S_m \subseteq T_m$ such that

optimum solution in union of core-sets approximates the optimum solution of T

$$\frac{1}{c}\operatorname{opt}(S_1 \cup S_2 \dots \cup S_m) \le \operatorname{opt}(T_1 \cup T_2 \dots \cup T_m) \le c \times \operatorname{opt}(S_1 \cup S_2 \dots \cup S_m)$$

Application in MapReduce/Distributed Computation

E.g., two rounds of MapReduce

Application in Streaming Computation

Streaming Computation:

- Processing sequence of n data points "on the fly"
- Limited storage
- Use C-composable core-set of size k, for example:
 - \circ Chunks of size \sqrt{nk} , thus number of chunks is $\sqrt{n/k}$
 - Compute core-set of size k for each chunk
 - \circ Total space: $k\sqrt{n/k} + \sqrt{nk} = O(\sqrt{nk})$

Overview of recent theoretical results

Need to solve (combinatorial) optimization problems on large data

- 1. Diversity Maximization,
 - o PODS'14 by IndykMahdianMahabadiMirrokni
 - o for Feature Selection in AAAI'17 by AbbasiGhadiriMirrokniZadimoghaddam
- 2. Capacitated ℓ_p Clustering, NIPS'14 by BateniBhaskaraLattanziMirrokni

- 3. Submodular Maximization, STOC'15 by MirrokniZadimoghaddam
- 4. Column Subset Selection (Feature Selection), ICML'16 by Alschulter et al
- 5. Coverage Problems: Submitted by BateniEsfandiariMirrokni

Applications: Diversity & Submodular Maximization

Diverse suggestions

- Play apps
- Campaign keywords
- Search results
- News articles
- YouTube videos

Data summarization

Feature selection

Exemplar sampling

Feature selection

We have

- Data points (docs, web pages, etc.)
- Features (topics, etc.)

Goal: pick a small set of "representative" features

Weather

Gaming

Smartphone

Movie

Five Problems Considered

General: Find a set S of k items & maximize/minimize f(S).

- **Diversity Maximization**: Find a set S of k points, and maximize the sum of pairwise distances i.e. max $diversity(S) = \sum_{i,j \in S} dist(i,j)$.
- Capacitated/Balanced Clustering: Find a set S of k centers and cluster nodes around them while minimizing the sum of distances to S.
- Coverage/Submodular Maximization: Find a set S of k items. Maximize submodular function f(S). Generalizing set cover.
- Column subset selection: Given a matrix A, find a set S of k columns.
 - \circ Minimize $||A \Pi_{A[S]}A||_{\mathcal{F}}^2$

Diversity Maximization Problem

- Given: A set of n points in a metric space (X, dist)
- Find a set *S* of *k* points
- Goal: maximize *diversity(S)* i.e.

$$diversity(S) = \text{sum of pairwise distances of points in } S.$$
 $diversity(S) = \sum_{i,j \in S} dist(i,j)$

- Background: Max Dispersion (Halldorson et al, Abbassi et al)
- Useful for feature selection, diverse candidate selection in Search, representative centers...

Core-sets for Diversity Maximization

Two rounds of MapReduce

Run LocalSearch on each machine

Machine 1
T₁

Run LocalSearch on selected items to find the final output set

Selected Items

Set

Output
Set

Arbitrary Partitioning works. Random partitioning is better.

Machine m

Composable Core-set Results for Diversity Maximization

• Theorem(IndykMahabadiMahdianM.'14): The local search algorithm computes a *constant-factor* composable core-set for maximizing *sum* of pairwise distances in **2 rounds**:

- Theorem(EpastoM.ZadiMoghaddam'16): A sampling+greedy algorithm computes a randomized **2-approximate** composable small-size core-set for diversity maximization in one round.
 - randomized: works under random partitioning
 - small-size: size of core-set is less than k.

Distributed Clustering Problems

Clustering: Divide data into groups containing "nearby" points

Minimize:

k-center: $\max_{i} \max_{u \in S_i} d(u, c_i)$

 $k\text{-means}: \sum_{i} \sum_{u \in S_i} d(u, c_i)^2$

k-median: $\sum_{i} \sum_{u \in S_i} d(u, c_i)$

Metric space (d, X)

 α -approximation algorithm: cost less than $\alpha^*\mathsf{OPT}$

Mapping Core-sets for Capacitated Clustering

Capacitated *₹p* clustering

<u>Problem</u>: Given *n* points in a metric space, find *k* centers and assign points to centers, *respecting capacities*, to minimize *\paralle p* norm of the distance vector.

- → Generalizes balanced **k**-median, **k**-means & **k**-center.
- → Objective is *not* minimizing cut size (cf. "balanced partitioning" in the library)

Theorem: For any p and $k < \sqrt{n}$, distributed balanced clustering with

- approx ratio: 'small constant' * 'best single machine guarantee'
- # rounds: 2
- memory: $(n/m)^2$ with m machines
- → Improves [BMVKV'12] and [BEL'13]

(Bateni, Bhaskara, Lattanzi, Mirrokni, NIPS'14)

Empirical study for distributed clustering

Test in terms of scalability and quality of solution

Two "base" instances & subsamples

- US graph ~30M nodes
- World graph ~500M nodes

	Size of seq. inst	Increase in OPT
US	1/300	1.52
World	1/1000	1.58

Quality: pessimistic analysis

Sublinear running time scaling

Submodular maximization

Problem: Given k & submodular function f, find set S of size k that maximizes f(S).

Some applications

- Data summarization
- Feature selection
- Exemplar clustering

Special case: "coverage maximization": Given a family of subsets, choose a subfamily of **k** sets, and maximize cardinality of union.

- cover various topics/meanings
- target all kinds of users

Submodular maximization

Problem: Given k & submodular function f, find set S of size k that maximizes f(S).

Some applications

- Data summarization
- Feature selection
- Exemplar clustering

<u>Special case</u>: "coverage maximization": Given a family of subsets, choose a subfamily of k sets, and maximize cardinality of union.

- cover various topics/meanings
- target all kinds of users

[IMMM'14] Bad News: No deterministic composable core-set with approx $\leq \frac{\sqrt{k}}{\log k}$

Submodular maximization

Problem: Given k & submodular function f, find set S of size k that maximizes f(S).

Some applications

- Data summarization
- Feature selection
- Exemplar clustering

Special case: "coverage maximization": Given a family of subsets, choose a subfamily of **k** sets, and maximize cardinality of union.

- cover various topics/meanings
- target all kinds of users

[IMMM'14] Bad News: No **deterministic** composable core-set with approx $\leq \frac{\sqrt{k}}{\log k}$

Randomization is necessary and useful:

- Send each set randomly to some machine
- Build a coreset on each machine by greedy algorithm

Randomization to the Rescue: Randomized Core-sets

Two rounds of MapReduce

Results for Submodular Maximization: MZ (STOC'15)

- A class of 0.33-approximate randomized composable core-sets of size k for non-monotone submodular maximization. For example, Greedy Algorithm.
- Hard to go beyond ½ approximation with size k. Impossible to get better than
 1-1/e.
- 0.58-approximate randomized composable core-set of size 4k for monotone f.
 Results in 0.54-approximate distributed algorithm in two rounds with linear communication complexity.
- For small-size composable core-sets of k' less than k: sqrt{k'/k}-approximate randomized composable core-set.

Low-Rank Approximation

Given (large) matrix A in R^{mxn} and target rank k << m,n:

$$\underset{X, \text{ rank}(X)=k}{\operatorname{arg \, min}} \|A - X\|_F^2$$

- Optimal solution: k-rank SVD
- Applications:
 - Dimensionality reduction
 - Signal denoising
 - Compression
 - ...

Column Subset Selection (CSS)

- Columns often have important meaning
- CSS: Low-rank matrix approximation in column space of A

Machine 1

Machine 2

. . .

Machine L

DISTGREEDY for column subset selection

1 round result: DISTGREEDY with
$$r = O\left(\frac{k}{\sigma_{\min}(OPT)}\right)$$
 gives objective value $\Omega\left(\frac{f(OPT_k)}{\kappa(OPT_k)}\right)$

Condition number $\frac{\sigma_{\max}(OPT_k)}{\sigma_{\min}(OPT_k)}$

Multi-round result: $O(\frac{\kappa(OPT)}{\varepsilon})$ rounds gives objective value $\Omega((1-\varepsilon)f(OPT_k))$

Empirical result for column subset selection

- Training accuracy on massive data set (news 20.binary, 15k x 100k matrix)
- Speedup over 2-phase algorithm in parentheses

n	Rand	2-Phase	DISTGREEDY	PCA
500	54.9	81.8 (1.0)	80.2 (72.3)	85.8 (1.3)
1000	59.2	84.4 (1.0)	82.9 (16.4)	88.6 (1.4)
2500	67.6	87.9 (1.0)	85.5 (2.4)	90.6 (1.7)

- Interesting experiment: What if we partition more carefully and not randomly?
 - **Recent observation:** If we treat each machine separately, it does not help much! Random partitioning is good even compared with more careful partitioning.

Coverage Problems

Problems: Given a set system (*n* sets and *m* elements),

- 1. "K-coverage": pick k sets to max. size of union
- 2. "set cover": cover all elements with least number of sets
- 3. "set cover with outliers": cover $(1-\lambda)m$ elements with least number of sets

Coverage Problems

Problems: Given a set system (*n* sets and *m* elements),

- 1. "K-coverage": pick k sets to max. size of union
- 2. "set cover": cover all elements with least number of sets
- 3. "set cover with outliers": cover $(1-\lambda)m$ elements with least number of sets

Greedy Algorithm: Pick a subset with the maximum marginal coverage,

Coverage Problems

Problems: Given a set system (*n* sets and *m* elements),

- 1. "K-coverage": pick k sets to max. size of union
- 2. "set cover": cover all elements with least number of sets
- 3. "set cover with outliers": cover $(1-\lambda)m$ elements with least number of sets

Greedy Algorithm: Pick a subset with the maximum marginal coverage,

- 1-1/e-approx. To k-coverage, $log\ n$ -approximation for set cover...
- Goal: Achieve good fast approximation with minimum memory footprint
 - Streaming: elements arrive one by one, not sets
 - Distributed: linear communication and memory independent of the size of ground set

Submodular Maximization vs. Maximum Coverage

Coverage function is a special case of submodular function: $\mathbf{f}(\mathbf{R}) = \mathbf{cardinality} \ \mathbf{of} \ \mathbf{union} \ \mathbf{of} \ \mathbf{family} \ \mathbf{R} \ \mathbf{of} \ \mathbf{subsets}$ $f(R) = |\cup_{S \in R} S|$

Submodular Maximization vs. Maximum Coverage

Coverage function is a special case of submodular maximization: f(R) = cardinality of union of family R of subsets

$$f(R) = |\cup_{S \in R} S|$$

So problem solved?

[MirrokniZadimoghaddam STOC'15]: Randomized composable core-sets work

[Mirzasoleiman et al NIPS'14]: This method works well in Practice!

Submodular Maximization vs. Maximum Coverage

Coverage function is a special case of submodular maximization: f(R) = cardinality of union of family R of subsets $f(R) = | \cup_{S \in R} S |$

So problem solved?

[MirrokniZadimoghaddam STOC'15]: Randomized composable core-sets work [Mirzasoleiman et al NIPS'14]: This method works well in Practice!

No. This solution has several issues for coverage problems:

- It requires expensive oracle access to computing cardinality of union!
- Distributed Computation: Send whole "sets" around ?
- Streaming: Handles set arrival model, does not handle "element" arrival model!

Why can't we apply core-sets for submodular functions?

What if the subsets are large? Can we send a sketch of them?

Idea: Send a sketch for each set (e.g., sample of elements)

Question: Does any approximation-preserving sketch work?

Approximation-preserving sketching is not sufficient.

Idea: Use sketching to define a (1± ϵ)-approx oracle to cardinality of union function?

[BateniEsfandiariMirrokni'16]:

- Thm 1: A (1±ε)-approx sketch of coverage function May NOT Help
 - o Given an $(1\pm\epsilon)$ -approx oracle to coverage function, we get $n^{0.49}$ approximation

Approximation-preserving sketching is not sufficient.

Idea: Use sketching to define a $(1\pm\epsilon)$ -approx oracle to cardinality of union function?

[BateniEsfandiariMirrokni'16]:

- Thm 1: A (1±ε)-approx sketch of coverage function May NOT Help
 - \circ Given an $(1\pm\epsilon)$ -approx oracle to coverage function, we get $n^{0.49}$ approximation
- Thm 2: With some tricks, MinHash-based sketch + proper sampling WORKS
 - Sample elements not sets (different from previous coreset idea)
 - Correlation between samples (MinHash)
 - Cap degrees of elements in the sketch (reduces memory footprint)

Bipartite Graph Formulation for Coverage Problems

Bipartite graph G(U, V, E)

U: sets

V: elements

E: membership

Set cover problem: Pick minimum number of sets that cover all elements.

Set cover with outliers problem: Pick minimum number of sets that cover a 1 - ↑ fraction of elements.

Maximum coverage problem: Pick *k* sets that cover maximum number of elements.

Sketching Technique

Construction

Dependent sampling: Assign hash values from [0,1) to elements.

Remove any element with hash value exceeding p.

 Arbitrarily remove edges to have max-degree
 [∆] for elements.

Baraphetens ameters

1) 🛕 is 0e asy to compute.

2) 🏚 🕫 Be found via a round of MapReduce.

sets

Approach

Build graph

Sketch Core-set method

Final greedy

results

Sketch: sparse subgraph with sufficient information

For instance with many sets, parallelize using core sets.

Any single-machine greedy algorithm

Proof ingredients:

- 1. Parameters are chosen to produce small sketch (indep. of size of ground set): O(#sets)
 - Challenge: how to choose parameters in distributed or streaming models
- 2. Any α -approximation on the sketch is an $\alpha+\varepsilon$ approximation for original instance

Summary of Results for Coverage Functions

- Special case of submodular maximization
- Problems are NP-hard and APX-hard
- Greedy algorithm gives best guarantees

Good implementations (linear-time)

- Lazy greedy algorithm
- Lazier-than-lazy algorithm

Problem: Graph should be stored in RAM

Our algorithm:

- Memory O(#sets)
- Linear-time
- Optimal approximation guarantees
- MapReduce, streaming, etc.

GREEDY

- 1) Start with empty solution
- 2) Until "done,"
 - (a) find set with best marginal coverage, and
 - (b) add it to tentative solution.

Bounds for distributed coverage problems

From [**BEM'16**]: 1) Space indep. of size of sets or ground set, 2) Optimal Approximation Factor, 3) Communication linear in #sets (indep. of their size), 4) small #rounds Previous work: [39]=[CKT'11], [42]=[MZ'15], [19]=[BENW'16], [43]=[MBKK'16]

Problem	Credit	# rounds	Approximation	Load per machine	Comment
k-cover	[39]	$O(\frac{1}{\epsilon\delta}\log m)$	$1-\frac{1}{e}-\varepsilon$	$O(mkn^{\delta})$	submodular functions
k-cover	[42]	2	0.54	$\max(mk^2, mn/k)$	submodular functions
k-cover	[19]	$\frac{1}{\epsilon}$	$1-\frac{1}{e}-\varepsilon$	$\frac{\max(mk^2, mn/k)}{\varepsilon}$	submodular functions
k-cover	Here	3	$1-\frac{1}{e}-\varepsilon$	$\tilde{O}(n+m)$	-
Set cover w outliers	Here	3	$(1+\varepsilon)\log\frac{1}{\lambda}$	$\tilde{O}(n+m)$	-
Set cover	[43]	$\log(nm)$	$(1+\varepsilon)\log n$	$\Omega(mn^{1-arepsilon})$	Submodular cover
Set cover	Here	r	$(1+\varepsilon)\log n$	$\tilde{O}(nm^{O(\frac{1}{r})}+m)$	i -

Bounds for streaming coverage problems

From [BEM'16]: 1) Space indep. of size of ground set, 2) Optimal Approximation Factor, 3) "Edge" vs "set" arrival

Previous work:[14]=[CW'15], [22]=[DIMV'14], [24]=[ER'14], [31]=[IMV'15], [49]=[SG'09]

Problem	Credit	# passes	Approximation	Space	Arrival
k-cover	[49]	1	1/4	$ ilde{O}(m)$	set
k-cover	Here	1	$1-1/e-\varepsilon$	$ ilde{O}(n)$	edge
Set cover w outliers	[24, 14]	p	$O(\min(n^{\frac{1}{p+1}}, e^{-\frac{1}{p}}))$	$ ilde{O}(m)$	set
Set cover w outliers	Here	1	$(1+\varepsilon)\log\frac{1}{\lambda}$	$ ilde{O}_{\lambda}(n)$	edge
Set cover	[14, 49]	p	$(p+1)n^{\frac{1}{p+1}}$	$ ilde{O}(m)$	set
Set cover	[22]	4^k	$4^k \log n$	$ ilde{O}(nm^{rac{1}{k}})$	set
Set cover ¹	[31]	\boldsymbol{p}	$O(p \log n)$	$ ilde{O}(nm^{O(rac{1}{p})})$	set
Set cover	Here	p	$(1+arepsilon)\log n$	$\tilde{O}(nm^{O(\frac{1}{p})}+m)$	edge

Empirical Study

Public datasets

- Social networks
- Bags of words
- Contribution graphs
- Planted instances
- Very small sketches (0.01–5%) suffice for obtaining good approximations (95+%).
- Without core sets, can handle in <1h
 XXXB edges or elements.

Name	Туре	S	8	E
livejournal-3	dominating set	3,997,962	3,997,962	72,803,204,325
livejournal-2	dominating set	3,997,962	3,997,962	3,377,182,611
dblp-3	dominating set	317,080	317,080	333,505,724
dblp-2	dominating set	317,080	317,080	27,437,914
gutenberg	bag of words	41,716	99,949,091	1,068,977,156
s-gutenberg	bag of words	925	10,620,424	27,337,479
reuters	bag of words	199,328	138,922	15,334,605
planted-A	planted	10,100	10,000	1,220,000
planted-B	planted	100,100	1,000,000	1,201,100,000
planted-C	planted	100,500	10,000,000	2,410,100,000
planted-D	planted	101,000	10,000,000	1,210,100,000
wiki-main	contribution graph	2,953,425	10,619,081	75,151,304
wiki-talk	contribution graph	1,736,343	1,017,617	7,299,920

Instance	Footprint	Quality
wiki-main	0.06%	94.4%
wiki-main	2.4%	99.5%
wiki-main	7.7%	99.9%
wiki-talk	1.5%	99.2%
planted-A	8.2%	96%

Instance	Footprint	Quality	
reuters	10%	96%	
dblp-2	1.7%	92%	
dblp-2	3.1%	96%	
reuters	1.2%	87%	
reuters	3.6%	92%	

Feature Selection (ongoing)

features

Goal: Pick k "representative" features

	+	+	+	+	+	+	+	+	+	+ -
es	+	+	+	+	_	_	_	_	_	
entitie	+	-	-	_	+	+	+	-	-	s-s
en	-	+	_	-	+	_	_	+	+	
	-	-	+	_	-	+	-	+	-	+
		_	_	+	_	_	+	_	+	+

Based on composable core sets

	1		
k	Random clusters	Best cluster method	Set cover (pairs)
500	0.8538	0.851	0.862
1000	0.8864	0.8912	0.8936
2500	0.9236	0.9234	0.9118

- 1) Pick features that cover all entities
- Pick features that cover many pairs (or triples, etc.) of entities

Summary: Distributed Algorithms for Five Problems

Define on a metric space & composable core-sets apply.

- Diversity Maximization,
 - PODS'14 by IndykMahdianMahabadiM.
 - for Feature Selection in AAAI'17 by AbbasiGhadiriMirrokniZadimoghaddam
- Capacitated ℓ_p Clustering, NIPS'14 by BateniBhaskaraLattanziM.

Beyond Metric Spaces. Only Randomized partitioning apply.

- Feature Selection (Column Subset Selection), ICML'16 by Alschulter et al.

Needs adaptive sampling/sketching techniques

Coverage Problems: by BateniEsfandiariM

Our team: Google NYC Algorithms Research Team

Recently released external team website: research.google.com/teams/nycalg/

THANK YOU

mirrokni@google.com

Local Search for Diversity Maximization [KDD'13]

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improves diversity by a factor of \(1 + \frac{\epsilon}{n} \)
 - » Perform the swap
- For Remote-Clique
 - Number of rounds: $\log_{\left\{1+\frac{\epsilon}{n}\right\}} k^2 = O(\frac{n}{\epsilon} \log k)$
 - Approximation factor is constant.