On the penalty parameter in first order DG formulations

Jesse Chan

Contents

1	Introduction	1
2	DG numerical fluxes 2.1 Example: acoustic wave equation	1 2
	Dependence of spectra on the penalty parameter3.1 Eigenmodes3.2 Eigenvalues	
4	Numerical experiments	3

1 Introduction

2 DG numerical fluxes

We consider a first order system of hyperbolic equations

$$A_0 \frac{\partial \mathbf{U}}{\partial t} + \sum_{i=1}^d \frac{\partial \mathbf{F}_i(\mathbf{U})}{\partial \mathbf{x}_i} = 0,$$

which may alternatively be written as

$$m{A}_0 rac{\partial m{U}}{\partial t} + \sum_{i=1}^d rac{\partial \left(m{A}_i U
ight)}{\partial m{x}_i}, \qquad m{A}_i = rac{\partial m{F}_i (m{U})}{\partial m{U}}$$

where A_i are symmetric matrices. The semi-discrete DG formulation for such systems may be written as

$$\sum_{D^k \in \Omega_h} \left(\boldsymbol{A}_0 \frac{\partial \boldsymbol{U}}{\partial t}, \boldsymbol{V} \right)_{L^2(D^k)} = \sum_{D^k \in \Omega_h} \left(\left(\boldsymbol{F}_i(\boldsymbol{U}), \boldsymbol{V}_{,i} \right)_{L^2(D^k)} - \langle \boldsymbol{F}_i^*(\boldsymbol{U}) \boldsymbol{n}_i, \boldsymbol{V} \rangle_{\partial D^k} \right)$$

where n is the outward normal on a face f of D^k , and F^* is a numerical flux depending defined on shared faces between two elements.

For convergence, $F^* = F^*(U)$ must be consistent such that, for exact solutions U,

$$F^* = F(U).$$

Let f be a shared face between two elements $D^{k,+}$ and $D^{k,-}$, and let $\mathbf{F}^+, \mathbf{F}^-$ be evaluations of $\mathbf{F}(\mathbf{U})$ restricted to $D^{k,+}$ and $D^{k,-}$, respectively. Typical DG fluxes are defined as the sum of a consistent averaging of \mathbf{F}^+ and \mathbf{F}^- and a penalization term

$$F^* = \{\{F_n(U)\}\} - W \llbracket U \rrbracket, \tag{1}$$

where W is some positive-definite matrix, which is required for energy stability.

The upwind numerical flux is a well-known flux of the form (1). For some normal vector \mathbf{n} , let $[\![\mathbf{A}_n]\!] = \sum_{i=1}^d [\![\mathbf{A}_i \mathbf{n}_i]\!]$. By add citation, $[\![\mathbf{A}_n]\!]$ contains real eigenvalues, and admits an eigenvalue decomposition

$$\llbracket oldsymbol{A}_n
rbracket = oldsymbol{V} oldsymbol{\Lambda} oldsymbol{V}^{-1}, \qquad oldsymbol{\Lambda} = \left(egin{array}{ccc} \lambda_1 & & & & \\ & \ddots & & \\ & & \lambda_d \end{array}
ight).$$

For problems with continuous coefficients, the upwind numerical flux can be defined as

$$F^* = A^+U^- + A^-U^+$$

where the matrices A^+, A^- are constructed from the positive and negative eigenvalues

$$egin{aligned} & oldsymbol{A}^{+} = rac{1}{2} oldsymbol{V} \left(oldsymbol{\Lambda} + |oldsymbol{\Lambda}|
ight) oldsymbol{V}^{-1} \ & oldsymbol{A}^{-} = rac{1}{2} oldsymbol{V} \left(oldsymbol{\Lambda} - |oldsymbol{\Lambda}|
ight) oldsymbol{V}^{-1}, \end{aligned}$$

and $|\Lambda|$ is the diagonal matrix whose entries consist of the absolute values of the eigenvalues $|\lambda_i|$. This can be rewritten as

$$F^* = \{\{AU\}\} - V |\Lambda| V^{-1} \llbracket U \rrbracket.$$

An alternative to upwind fluxes are penalty fluxes, which penalize appropriately defined jumps of the solution. One such penalty flux is given as

$$F^* = \{\{AU\}\} - A^T W \|AU\|.$$

where W is some positive-definite weighting matrix. In contrast to Lax-Friedrichs fluxes, the penalty flux enforce a weaker continuity.

2.1 Example: acoustic wave equation

Consider the isotropic acoustic wave equation in pressure-velocity form

$$\frac{\partial p}{\partial t} = \nabla \cdot \boldsymbol{u}$$
$$\frac{\partial \boldsymbol{u}}{\partial t} = \nabla p.$$

Let U denote the group variable U = (p, u, v), where u and v are the x and y components of velocity. Then, in two dimensions, the isotropic wave equation is given as

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{A}_x \boldsymbol{U}}{\partial x} + \frac{\partial \boldsymbol{A}_y \boldsymbol{U}}{\partial y} = 0, \qquad \boldsymbol{A}_x = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \boldsymbol{A}_y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

The normal flux matrix A_n is then

$$oldsymbol{A}_n = \left(egin{array}{ccc} 0 & oldsymbol{n}_x & oldsymbol{n}_y \ oldsymbol{n}_x & 0 & 0 \ oldsymbol{n}_y & 0 & 0 \end{array}
ight)$$

implying that the penalty fluxes (with $W = \tau I$) are

$$\left\{ \left\{ \boldsymbol{A}_{n}\boldsymbol{U} \right\} \right\} - \boldsymbol{A}_{n}^{T} \left[\!\!\left[\boldsymbol{A}_{n}\boldsymbol{U} \right] \!\!\right] = \left(\begin{array}{c} \left\{ \left\{ \boldsymbol{u}_{n} \right\} \right\} \\ \left\{ \left\{ p\boldsymbol{n}_{x} \right\} \right\} \\ \left\{ \left\{ p\boldsymbol{n}_{y} \right\} \right\} \end{array} \right) - \tau \left(\begin{array}{c} \left[\!\!\left[\boldsymbol{n} \right] \!\!\right] \boldsymbol{n}_{x} \\ \left[\!\!\left[\boldsymbol{u}_{n} \right] \!\!\right] \boldsymbol{n}_{y} \end{array} \right)$$

For $\tau = 1$, these fluxes coincide with the upwind fluxes.

3 Dependence of spectra on the penalty parameter

3.1 Eigenmodes

Reproduce Gershgorin proof here.

3.2 Eigenvalues

Let A = B + C be the DG discretization matrix, which is assumed to be the sum of a skew-symmetric matrix B and symmetric, negative-definite matrix C.

Let λ, \boldsymbol{u} be an eigenpair of \boldsymbol{A} . Let $\lambda = \alpha + i\beta$ and $\boldsymbol{u} = \boldsymbol{v} + i\boldsymbol{w}$, where α, β and $\boldsymbol{v}, \boldsymbol{w}$ are the real and imaginary parts of λ and \boldsymbol{u} , respectively. Then, expanding and grouping terms in

$$\mathbf{A}(\mathbf{v} + i\mathbf{w}) = (\alpha + i\beta)(\mathbf{v} + i\mathbf{w})$$

we have that

$$\mathbf{A}\mathbf{v} = \alpha\mathbf{v} - \beta\mathbf{w}$$
$$\mathbf{A}\mathbf{w} = \beta\mathbf{v} + \alpha\mathbf{w}.$$

Assuming that $u^*u = ||v||^2 + ||w||^2 = 1$, multiplying both sides by v^T , w^T and straightforward manipulations using the skew-symmetry of B and symmetry of C yields

$$\tau (\mathbf{v}^T \mathbf{C} \mathbf{v} + \mathbf{w}^T \mathbf{C} \mathbf{w}) = \alpha$$
$$\mathbf{v}^T \mathbf{B} \mathbf{w} - \mathbf{w}^T \mathbf{B} \mathbf{w} = \beta.$$

Since C is symmetric, negative-definite, and independent of τ , the quantity

$$\left| \boldsymbol{v}^T \boldsymbol{C} \boldsymbol{v} + \boldsymbol{w}^T \boldsymbol{C} \boldsymbol{w} \right| \leq \left\| \boldsymbol{C} \right\|.$$

Since this is bounded independently of τ , we conclude that $|\alpha| = O(\tau)$.

Use Gershgorin result to show that α diverges for eigenmodes the non-conforming subspace.

4 Numerical experiments