1. Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

$$P = 1017 \text{ hPa} \Rightarrow 101,7 \text{ KPa}$$

 $T = 6^{\circ}$
 $\phi = 90\%$

ABSOLUTE HUMIDITY

$$\omega = 0.0052 \frac{Kg_{water}}{Kg_{dry air}}$$

WET-BULB TEMPERATURE

$$T_{wh} = 5.2 \, ^{\circ}\text{C}$$

MASS OF WATER VAPOR

$$V_{room A} = 20 \cdot 20 \cdot 6 = 720 m^{2}$$

$$P_{v} = \frac{P \cdot \omega}{0,622 + \omega} = \frac{101,7 \cdot 0,0052}{0,622 + 0,0052} = 0,84 Kg$$

$$m_{v} = \frac{P_{v} \cdot V}{R_{v} \cdot T} = \frac{0,84 \cdot 720}{0,4615 \cdot (273 + 6)} = 4,7 Kg$$

If I consider that when I am doing the exercise (Sunday), the Politecnico di Milano is closed, I assume as external temperature and humidity values for the calculation of the mass of vapor.

2. Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

	BRINDISI, Italy														WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
Annual Heating and Humidification Design Conditions																1	
						differentiate Di	0.0000			h-141	- INIO 2 400	0	1401410	IDOLLID.	1		
	Coldest Heating DB			Humidification DP/MCDB and HR 99.6% 99%					Coldest month WS/MCD8								
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	ws	MCDB	MCWS	PCWD		
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	Annual Cooling, Dehumbonsation, and Enthalpy Design Conditions															
	Hottest	Hottest Cooling DB/M Month 0.4% 1%									Evaporation			%		MCWS/PCWD to 0.4% DB	
Month		DB Range	DB U	4% MCWB	DB 1	% MCWB	DB MCW		WB	.4% 19 I MCDB WB I			MCDB WB		MCWS	% DB	1
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	MCDB (n)	(0)	(p)	,
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
(2)	<u> </u>															Hours	1
	-	0.4%		Denumidino	1%	JUB and Fir	2%						%	2	%	8 to 4 &	1
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	1
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	,
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	Extreme Annual Design Conditions															
	Extreme Annual WS			Extreme				Annual DB					Return Period Values of Ext				1
	1% 2.5% 5%		5%	Max WB	Mean Min Max		Standard deviation Min Max		n=5 years Min Max		n=10 years Min Max		n=20 years Min Max		n=50 years Min Max		1
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	1
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)
(4)		0.0				0.10		210	3.0	55.4	2.4			-2.0	3.2	- 7.0	1-9

$$h_{\text{building}} = 2.5 m$$

 $A_{floor} = 200 m^2$
 $A_{wall} = 144 m^2$
 N° occupants = 2
 N° bedroom = 1

INTERNAL GAINS

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + 2.2 \cdot A_{cf} + 22 \, N_{oc} = 136 + 2.2 \cdot 200 + 22 \cdot 2 = 620 \, W \\ \dot{Q}_{ig_{latent}} &= 20 + 0.22 \cdot A_{cf} + 12 \, N_{oc} = 20 + 0.22 \cdot 200 + 12 \cdot 2 = 88 \, W \end{split}$$

INFILTRATION

$$A_{ul} = 1.4 \frac{cm^2}{m^2}$$
 (good quality)

$$A_{es} = A_{wall} + A_{roof}$$

$$A_{es} = 200 + 144 = 344 \, m^2$$

$$A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \ cm^2$$

$$IDF_{heating} = 0.065 \frac{L}{s. cm^2}$$

$$IDF_{cooling} = 0.032 \frac{L}{s. cm^2}$$

$$\dot{V}_{infiltration_{heating}} = A_L \times IDF_{heating} = 481.6 \cdot 0.065 = 31.30 \frac{L}{s}$$

$$\dot{V}_{infiltration_{cooling}} = A_L \times IDF_{cooling} = 481.6 \cdot 0.032 = 15.41 \frac{L}{s}$$

VENTILATION

$$\dot{V}_{ventilation} = 0.05 A_{cf} + 3.5 (N_{br} + 1) = 0.05 \cdot 200 + 3.5 \cdot 2 = 17 \frac{L}{s}$$

$$\dot{V}_{infiltration-ventilation_{heating}} = \dot{V}_{infiltration_{heating}} + \dot{V}_{ventilation} = 31.30 + 17$$

$$= 48.30 \frac{L}{s}$$

$$\dot{V}_{infiltration-ventilation_{cooling}} = \dot{V}_{infiltration_{cooling}} + \dot{V}_{ventilation} = 15.41 + 17$$

$$= 32.41 \frac{L}{s}$$

$$C_{sensible} = 1.23$$

$$C_{latent} = 3010$$

$$\Delta T_{cooling} = 31.1 - 24 = 7.1 \,^{\circ}C$$

$$\Delta T_{\text{heating}} = 20 - (4.1) = 15.9 \,^{\circ}C$$

$$\begin{split} \dot{Q}_{inf-vent_{cooling}_{sensible}} &= C_{sensible} \times \dot{V}_{inf-vent_{cooling}} \times \Delta T_{Cooling} \\ &= 1.23 \, \cdot 32.41 \cdot 7.1 = 283.04 \, W \end{split}$$

$$\begin{split} \dot{Q}_{inf-vent_{\text{heating}}_{sensible}} &= C_{sensible} \times \dot{V}_{inf-vent_{\text{heating}}} \times \Delta T_{\text{heating}} \\ &= 1.23 \, \cdot 48.30 \cdot 15.9 = 944.6 \, W \end{split}$$

$$\omega_{out} = 0.0143 \frac{kg_{water}}{kg_{dryAir}}$$

$$\omega_{in} = 0.0093 \; \frac{kg_{water}}{kg_{dryAir}}$$

$$\Delta\omega_{Cooling} = \omega_{out} - \omega_{in} = 0.0143 - 0.0093 = 0.005 \frac{kg_{water}}{kg_{DryAir}}$$

$$\begin{split} \dot{Q}_{inf-vent_{cooling}_{latent}} &= C_{latent} \times \dot{V}_{inf-vent_{cooling}} \times \Delta \omega_{Cooling} \\ &= 3010 \cdot 32.41 \, \cdot \, 0.005 = 487.77 \, W \end{split}$$