# 基于聚类与时间序列的H指数增长预测分析

#### 李子岳 肖昌荣

清华大学经济管理学院

2020年5月21日

## 目录

- 1 导言
- 2 数据集简介与分析
- 3 聚类启发式模型
- 4 ARIMA(p, d, q)模型
- 5 总结与讨论

#### H指数简介

- Hirsch 于 2005 年提出。
- 目的: 量化学者的影响力和科研成果, 进行评估比较。
- H-index = h 表示
  - 至少有 h 篇论文满足每篇论文至少被 h 篇论文引用。
  - 而对于该学者其他的论文, 每篇论文引用量则小于等于 h。
- 是目前广为学界接受的衡量学者学术影响力的重要指标。

#### H指数的预测

- "学术年龄"的重要性 (Penner et al., 2013)
  - "学术年龄"即从第一篇文章发表至今的年数。
  - H 指数是一个随着时间积累的数,与学术年龄有很强的相关性。但在预测时需要消除 H 指数随时间积累的性质。
  - → 整合移动平均自回归模型 (ARIMA 模型)
- 基于回归的预测方法 (Dong et al., 2016)
  - 回归因子: 当前的 H 指数值、发表的文章数量、总引用量、合作者的数量、从第一篇文章发表至今的年数。
  - 在本文数据集中的表现不佳:回归因子中仅"当前的H指数值" 一项的参数为显著。
  - → 基于聚类的预测模型

- 1 导言
- 2 数据集简介与分析
- 3 聚类启发式模型
- 4 ARIMA(p, d, q)模型
- 5 总结与讨论

#### 数据集简介

• 从 Scopus 中收集了 96 位计算机科学领域的知名学者的数据。

| 名称            | 解释                        |
|---------------|---------------------------|
| h-index       | 从1970年至2020年该学者截止每年的h指数值。 |
| earliest_year | 该学者发表最早一篇文章的年份。           |
| academic_age  | 该学者的"学术年龄"。               |
| co-author     | 该学者截止2020年的合作者数。          |
| paper_num     | 该学者截止2020年发表的文章数。         |
| citation_num  | 该学者截止2020年的总被引用量。         |
| journal₋num   | 该学者截止2020年的所有发表文章所在期刊数。   |

#### 聚类分析

- 将数据集中的 H 指数值、学术年龄、发表文章数量、总引用 量作为每位学者的特征进行聚类。
- 使用 K-means 方法,确定最优聚类类别数 k=4。



# 聚类分析 (Cont'd)

- Type0: 较弱势学者
  - 分布于各个学术年龄段,无论是发表文章数、总引用量,还是 H 指数都属于四个类别学者中最低的一个。
  - 可能原因: 研究方向不热门、中国学者。
- Type1: 引用量优势学者
  - 虽然发表文章数不多,但总引用量是最高的,进而 H 指数值也 普遍很高。
- Type2: 年轻型学者
  - 学术年龄相对而言是最年轻的,发表文章数、总引用量、H 指数值中等,有较大的发展潜力。
- Type3: 文章量优势学者
  - 总引用量不是最高,但凭借高发表文章数得到较大的 H 指数。

#### H指数增长规律分析

- 较弱势学者 → 线性模型
  - 举例: Thomas Kailath。线性系统领域, 较为冷门。



## H指数增长规律分析 (Cont'd)

- 年轻型学者、引用量优势学者、文章量优势学者 → 指数模型
  - 举例: Yoshua Bengio。引用量优势学者,人工神经网络和深度 学习领域专家,2018年图灵奖获得者。



- 1 导言
- 2 数据集简介与分析
- 3 聚类启发式模型
- 4 ARIMA(p, d, q)模型
- 5 总结与讨论

## 模型构建

- 思路: 通过聚类结果确定学者 H 指数增长模式。
- 基本步骤:
  - 1. 利用学者的 H 指数历史数据、当前学术年龄、发表文章数量、 总引用量等特征,对数据集中的学者进行预先聚类。
  - 2. 将所要预测的学者归类(如选取与其欧式距离最近的聚类中心 所在类别)。
  - 3. 根据步骤2中的类别确定其 H 指数增长模式(较弱势学者对应 线性模型,其他三类学者对应指数模型)。
  - 4. 拟合增长模型,得到模型参数。
  - 5. 利用模型进行 H 指数值的预测。

#### 预测实例

- 选取清华大学姚期智教授的数据,依据模型构建部分所述的聚 类启发式模型构建方法构建模型。归类结果为较弱势学者,应 用线性增长模型。
- $\hat{\beta}_1 = 0.8969$ , 在 99% 的置信水平显著。  $R^2 = 0.981$ 。



### 模型局限性

- 聚类启发式模型的必要性与有效性。
- 依赖于多种数据,数据质量关系到模型预测的准确性。
- 只能进行短期预测。因为聚类的特征中包含了学术年龄,一些 类别的模型仅对一定年龄段的学者有效。
- 只能应用在同一或相似的学科领域。
- 对学术年龄非常年轻的学者进行预测的效果不好。

总之,聚类启发式模型的思想是充分利用学者自身的多种数据、其他学者的 H 指数增长模式等多维数据提供的信息精细化地确定增长模式。目前的模型仅为可供参考的想法,有很大的改善空间。

- 1 导言
- 2 数据集简介与分析
- 3 聚类启发式模型
- 4 ARIMA(p, d, q)模型
- 5 总结与讨论

## 模型构建

- 确定 ARIMA(p, d, q) 的阶数
- 使用 AIC 准则

表: 不同p, d, q出现频次

| р   | d      | q  | frequency |
|-----|--------|----|-----------|
| 0   | 2      | 0  | 7         |
| 0   | 2      | 1  | 42        |
| 0   | 2      | 2  | 6         |
| 1   | 2      | 0  | 15        |
| 1   | 2      | 1  | 2         |
| 1   | 2      | 2  | 3         |
| 2   | 2      | 0  | 4         |
| 2   | 2      | 1  | 1         |
| 2   | 2      | 2  | 9         |
| otł | ner pa | 7  |           |
|     |        | 96 |           |

ARIMA(0, 2, 1) 模型:

$$\nabla^2 h_t = (1 + \theta B)\epsilon_t$$

## 模型构建(Cont'd)

 $\mathsf{ARIMA}(0,2,1)$  的 AIC 与使 AIC 最小的 ARIMA 模型的  $\mathit{AIC}_{opt}$  的比较



# 模型构建(Cont'd)

- 实例分析
- 平稳性、ARIMA模型定阶



## 模型拟合

去除离群值之后, $\sigma^2$ 的估计值的平均值为1.358,方差为0.359。





# 预测效果

- 使用每一个学者前 i 年的数据作为已知数据,由此估计模型中的未知参数,并对第 i+n 年的 H 指数进行预测。
- 随着 n 的增加, 预测误差增加。
- 模型有低估未来 H 指数的倾向。

#### 表: 预测误差的均值

| n | $\setminus i$ | 36     | 37     | 38     | 39     | 40     | 41     | 42     | 43     | 44     | 45     |
|---|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1 | .             | 0.5637 | 0.6073 | 0.0047 | 0.4508 | 0.126  | 0.4356 | 0.0412 | 0.0581 | 0.1726 | 0.4144 |
| 2 | :             | 1.4398 | 0.9125 | 0.4364 | 0.7869 | 0.5957 | 0.6733 | 0.1346 | 0.2724 | 0.6368 | 0.9226 |
| 3 | ;             | 2.0139 | 1.6448 | 0.7536 | 1.4668 | 0.8675 | 0.9631 | 0.3841 | 0.7784 | 1.1947 | 1.1911 |
| 4 | . [           | 3.0151 | 2.2625 | 1.4145 | 1.9488 | 1.1913 | 1.4091 | 0.9254 | 1.3782 | 1.5131 | 1.3451 |
| 5 | ;             | 3.9016 | 3.2239 | 1.8776 | 2.4829 | 1.6715 | 2.1468 | 1.5603 | 1.7383 | 1.7169 | 1.3324 |

#### 表: 预测误差的方差

| $n \backslash i$ | 36     | 37     | 38     | 39     | 40     | 41     | 42     | 43     | 44     | 45     |
|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1                | 2.2576 | 1.8125 | 1.9591 | 3.1763 | 1.6137 | 1.9155 | 1.4862 | 2.4509 | 2.0032 | 3.2183 |
| 2                | 6.1407 | 3.7774 | 6.7228 | 8.9908 | 4.737  | 5.0371 | 4.7586 | 6.3608 | 7.1244 | 25.021 |
| 3                | 10.179 | 8.6098 | 15.388 | 17.016 | 8.7592 | 10.763 | 9.5659 | 13.091 | 35.449 | 67.909 |
| 4                | 18.445 | 16.298 | 27.092 | 27.864 | 15.949 | 18.282 | 15.574 | 43.834 | 85.479 | 90.932 |
| 5                | 30.142 | 25.74  | 43.691 | 46.913 | 24.859 | 26.258 | 48.36  | 95.252 | 112.86 | 113.09 |

## 预测实例

- 对清华大学姚期智教授 H 指数的预测。
- 前40年的数据为已知,对后10年的数据进行预测。
- 预测值(蓝色数据点)与真实值十分接近!



## 预测实例(Cont'd)

- 对清华大学李国良教授 H 指数的预测。
- 李国良教授比较年轻,成长速度过快,模型低估 H 指数的增长。



## 预测实例(Cont'd)

- 对清华大学李国良教授 H 指数的预测。
- 若增加已知 H 指数值的数量,并减少预测的年份,预测结果 更精确。



#### 模型评估

- 对于资深学者和领域专家,预测较为准确。
- 对于年轻学者或成长速度较快的学者,预测较为保守,H指数增长偏慢——干预分析(Intervention Analysis)。
- 随着预测年份 n 的增加,预测误差增加。

- 1 导言
- 2 数据集简介与分析
- 3 聚类启发式模型
- 4 ARIMA(p, d, q)模型
- 5 总结与讨论

### 模型总结

- 聚类启发式模型
  - 在学者 H 指数历史数据未知的情况下,利用同领域相似学者的 增长模式进行预测。
  - 由于数据量较少,聚类结果有待提高。
- ARIMA(p,d,q)模型
  - 使用已知的 H 指数信息直接推断未来的 H 指数信息。
  - ARIMA(0,2,1) 模型对大部分学者的(较短期)预测非常精确。
  - 当学者在某一时刻H指数增长突然加快时预测偏差较大——干预分析。

#### H指数的局限性

- 在非主流领域工作的学者, H 指数可能相对偏低。
- 不同领域之间的 H 指数也可能存在较大的差异。
- 有的文章作者很多,一些学者的文章和引用数量因此大幅增加。
- H指数与总引用数存在较强的函数关系,Alexander(2014)给出  $h \approx 0.54 \sqrt{N_{citations}}$ 。
- 学者"科研年龄"的决定不应该是简单的发表第一篇文章。
- 自引可以显著增加 H 指数。

#### H指数的改进

- 考虑第一作者、第二作者。
- 删除自引数。
- Egghe(2006) 提出了 G 指数的理论与实践。
  - 一名学者的 "G 指数=g" 表示,在他的所有论文中,引文数量最高的 g 篇论文的总引用数大于等于  $g^2$ ,满足此条件的最大的g 即为 G 指数。
  - 解决了部分学者通过增加发表文章数量和一定数量的文章引用 (包括自引)等提高 H 指数的问题,同时对于非主流领域工作 的学者成就的评估也相对更为客观。

#### 参考文献

- ALEXANDER Y, 2014. Critique of hirsch's citation index: a combinatorial fermi problem[J/OL]. arXiv.org. https://search.proquest.com/docview/2084724191?accountid=14426.
- BAR-ILAN J, 2008. Which h-index? a comparison of wos, scopus and google scholar[J/OL]. Scientometrics, 74(2): 257-271. https://doi.org/10.1007/s11192-008-0216-y.
- Dong Y, Johnson R A, Chawla N V, 2016. Can scientific impact be predicted?[J/OL]. IEEE Transactions on Big Data, 2(1): 18-30. DOI: 10.1109/TBDATA.2016.2521657.
- EGGHE L, 2006. Theory and practise of the g-index[J/OL]. Scientometrics, 69(1):131-152. https://doi.org/10.1007/s11192-0 06-0144-7.
- HIRSCH J E, 2005. An index to quantify an individual's scientific research output[J/OL]. Proceedings of the National Academy of Sciences, 102(46):16569-16572. https://www.pnas.org/content/102/46/16569. DOI: 10.1073/pnas.0507655102.
- PENNER O, PAN R K, PETERSEN A M, et al., 2013. On the predictability of future impact in science[J/OL]. Scientific Reports, 3(1):3052. DOI: 10.1038/srep03052.

