Hamiltonianos do Sistema Sierpinski

Ensemble $\beta = 1$

$$H = \sum_{i \in \text{Sierpinski}} \epsilon_i c_i^{\dagger} c_i - \sum_{\langle i,j \rangle \in \text{Sierpinski}} t c_i^{\dagger} c_j \tag{1}$$

Ensemble $\beta = 2$

$$H = \sum_{i \in \text{Sierpinski}} \epsilon_i c_i^{\dagger} c_i - \sum_{\langle i,j \rangle \in \text{Sierpinski}} t_{ij} c_i^{\dagger} c_j \tag{2}$$

$$t_{ij} = \sigma_0 e^{i\frac{\phi}{2}(x_i - x_j)(y_i + y_j)}$$

Ensemble $\beta = 4$

$$H = \sum_{i \in \text{Sierpinski}} (\epsilon_i + e_z \sigma_z) c_i^{\dagger} c_i - \sum_{\langle i,j \rangle_x} (t \sigma_0 - \frac{i\alpha}{2} \sigma_y) c_i^{\dagger} c_j - \sum_{\langle i,j \rangle_y} (t \sigma_0 + \frac{i\alpha}{2} \sigma_x) c_i^{\dagger} c_j \quad (3)$$

Informação sobre o cálculo da dimensão fractal

Na figura abaixo, transladamos verticalmente todas os pontos e a reta de modo que o primeiro ponto de cada reta coincida com a origem. Dado que a dimensão fractal é dada pelo valor do coeficiente angular, este procedimento não altera o resultado da dimensão fractal.

Com isso é possível mostrar claramente que a inclinação da reta aumenta com m, em outras palavras, quanto maior a ordem m do fractal, maior a dimensão fractal das curvas de condutância e ruído de disparo. Em m=0, o valor da dimensão fractal calculada pelo método box-counting converge para o valor da Dimensão de Hausdorff do carpete de sierpinski.

	m=0	m = 1	m=2	m = 3	m=4
$\beta = 1 \text{ (G)}$	1.69	1.79	1.85	1.86	1.88
$\beta = 2 \text{ (G)}$	1.33	1.62	1.73	1.81	1.86
$\beta = 4 \text{ (G)}$	1.19	1.44	1.75	1.80	1.86
$\beta = 1 \text{ (P)}$	1.69	1.73	1.78	1.81	1.88
$\beta = 2 \text{ (P)}$	1.45	1.67	1.73	1.65	1.85
$\beta = 4$ (P)	1.23	1.37	1.60	1.83	1.87

Table 1: Dimensão fractal.

Figure 1: Legenda da imagem