

Universidad Autónoma de Nuevo León

Facultad de Ingeniería Mecánica y

Eléctrica

Laboratorio de Prótesis

Practica #4: Estudio de fuerzas de una prótesis

Nombre	Matricula
César Alonso Cantú Espinosa	1820718
Luis Eduardo Andrade García	1835065
Juan Ángel Alonso García	1667089
Alida Marlen Castillo Martínez	1823637
William Harold Carrazco Hernandez	1801787

Al comienzo del semestre se seleccionó un diseño de prótesis a realizar, este es una prótesis de dedo índice, en las anteriores 2 practicas se hizo una descripción de las explicaciones y un proceso de como se realizó el diseño a grandes rasgos dejando de lado los detalles como bocetos para centrarnos en mostrar las piezas y el armado de estas.

En el esta práctica se realizará una simulación de fuerzas para ver como se comporta la pieza al momento en el que se le aplican fuerzas.

La pieza por simular es la representación de la parte superior de la falange medial.

El material seleccionado es el polipropileno, esta decisión se tomó en base a un articulo en el cual se menciona que es un material muy usado en prótesis las cuales no necesitan de resistir cargas tan extremas.

Componente	Material	Factor de seguridad
DR_Link_1 v1:1	Polipropileno	Límite de elasticidad

□ Polipropileno

Densidad	8.99E-07 kg / mm^3
Módulo de Young	1340 MPa
Coeficiente de Poisson	0.392
Límite de elasticidad	30.3 MPa
Resistencia máxima a tracción	36.5 MPa
Conductividad térmica	1.98E-04 W / (mm C)
Coeficiente de dilatación térmica	9.05E-05 / C
Calor específico	2731 J / (kg C)

Las restricciones se colocaron en la base que conecta con la representación de la falange proximal debido a que el equipo considera que estas conexiones son las que pueden sufrir mayor desgaste debido a que ahí se unen los engranes con el servomotor a utilizar, el diseño del falange proximal y la parte inferior del diseño del falange medial.

□ Restricciones

□ Fijo1

Tipo	Fijo
Ux	Fijo
Uy	Fijo
Uz	Fijo

□ Entidades seleccionadas

Las fuerzas aplicadas se colocaron en 3 secciones de esta parte esperando comprender que pasaría si se aplica la fuerza de los servomotores. Los servomotores utilizados cuentan con la capacidad de mover hasta 15 kg-fuerza lo que se puede traducir en 150 newtons, usando estos datos como base fue como se colocaron las cargas en los límites.

□ Cargas

□ Fuerza1

Tipo	Fuerza
Magnitud	150 N
Valor X	-33.39 N
Valor Y	0 N
Valor Z	-146.2 N
Ángulo X	0 deg
Ángulo Y	0 deg
Ángulo Z	0 deg
Fuerza por entidad	No

□ Fuerza2

Tipo	Fuerza
Magnitud	150 N
Valor X	-48.61 N
Valor Y	-96.39 N
Valor Z	-104.1 N
Ángulo X	50 deg
Ángulo Y	0 deg
Ángulo Z	0 deg
Fuerza por entidad	No

□ Fuerza3

Tipo	Fuerza
Magnitud	150 N
Valor X	-48.63 N
Valor Y	96.39 N
Valor Z	-104.1 N
Ángulo X	50 deg
Ángulo Y	0 deg
Ángulo Z	0 deg
Fuerza por entidad	No

☐ Entidades seleccionadas

☐ Entidades seleccionadas

☐ Entidades seleccionadas

Resultados

Los resultados obtenidos son reveladores, lo cual nos revela que tenemos que tener cuidado con el uso de los servomotores para no causar un daño a la pieza, principalmente centrándonos en no causar una deformación a la pieza.

-Factor de seguridad

☐ Resumen de resultados

Nombre	Mínimo	Máximo	
Factor de seguridad			
Coeficiente de seguridad (por cuerpo)	0.2756	15	
Estrés			
Von Mises	6.633E-04 MPa	109.9 MPa	
Primera principal	-35.61 MPa	48.64 MPa	
Tercera principal	-152.7 MPa	4.175 MPa	
Normal XX	-117.6 MPa	39.15 MPa	
Normal YY	-60.48 MPa	21.85 MPa	
Normal ZZ	-139.4 MPa	21.51 MPa	
Corte XY	-51.38 MPa	48.71 MPa	
Corte YZ	-27.31 MPa	32.18 MPa	
Corte ZX	-22.91 MPa	17.84 MPa	

-Desplazamiento

Desplazamiento		
Total	0 mm	4.411 mm
Χ	-1.259 mm	0.1161 mm
Υ	-3.478 mm	3.476 mm
Z	-2.743 mm	0.006483 mm

-Deformación

Deformación	T.	
Equivalente	6.529E-07	0.1338
	5.688E-07	0.1062
Primera principal		
Tercera principal	-0.1246	-5.607E-07
Normal XX	-0.06357	0.039
Normal YY	-0.02976	0.02919
Normal ZZ	-0.0746	0.02407
Corte XY	-0.1068	0.1012
Corte YZ	-0.05674	0.06685
Corte ZX	-0.0476	0.03707

Conclusiones

Las conclusiones a las cual se llegó es que el diseño cuenta con la estabilidad suficiente siempre y cuando se ajuste bien el torque que entregará el servomotor, también existe la posibilidad de utilizar otro de menor fuerza y asegurar que no sufra ningún daño la prótesis.