Show Me the Data!

Types of Variables
Data Visualization
Smoothers

Building a model

 Regression is about understanding the conditional distribution of a response variable, Y

Two types of variables

- Categorical (i.e., discrete)
 - Variables take one of several specific values (countable number)

A discrete distribution

Bernoulli distribution

$$y \sim Bernoulli(p)$$

$$p_{Y}(y) = \begin{cases} p & \text{if } y \text{ is } 1 \\ 1 - p & \text{if } y \text{ is } 0 \end{cases}$$

Binomial distribution

Two types of variables

- Continuous (i.e., numeric, metric)
 - Variables take any real value (potentially bounded)

A uniform distribution

Uniform distribution

Exponential distribution

Special case: Ordinal variables

- Ordinal (or "ordered") variables are a bit special
- Categorical, but with an order
 - More information than unordered categorical, but less than continuous
- Various ways to handle ordinal variables
 - Need to make some assumption about relationship to underlying continuous variable
 - Handling depends on whether the ordinal variable is the response (Y), a predictor (X), or both
 - In some cases, it can be okay to treat an ordinal scale like it's continuous, but this can also cause problems

Stevens' levels of measurement

- Notice that we aren't talking about Stevens' levels of measurement!
 - Nominal, Ordinal, Interval, Ratio
- Stevens suggested that choice of statistical model should be determined by what data transformations are allowed
 - That doesn't make much sense
- What matters is the sampling distribution, not how you can transform the data
 - e.g., some θ scores estimated in IRT can be nonlinearly transformed without changing the meaning ("ordinal" in Stevens' classification) but can still be meaningfully modeled using a normal OLS regression
 - See (Zumbo & Kroc, 2019, https://doi.org/10.1177/0013164419844305)

Modeling rule no. 1: Always plot your data!

Always plot your data!

datasets::anscombe

Each dataset has the same summary statistics (mean, standard deviation, correlation), and the datasets are *clearly different*, and *visually distinct*.

★ Unstructured Quartet

Each dataset here also has the same summary statistics. However, they are not *clearly different* or *visually distinct*.

Always plot your data!

Source

Modeling rule no. 2: Always plot your <u>DATA!</u>

Always plot your data!

Source

Always plot your data!

Source

Always plot your data

- At the beginning of analyses:
 - Plot marginal distributions
 - Plot bivariate distributions
 - Show the actual data points!
 - Exploratory data analysis

- At the end of analyses:
 - Visualize your results
 - A plot is worth 1000 tables!
 - Show model estimates and uncertainty
 - Show raw data and model predictions

Plotting one variable

- Show the shape of the distribution
 - What are the possible values?
 - Which values are more versus less common?
- Goal:
 - Make it easier to compare sizes of groups
 - Enable good choices of distributions in model building

Datasets: penguins

• ?palmerpenguins::penguins

Source

One variable: Discrete

Bar chart


```
library(palmerpenguins)
library(ggplot2)
theme_set(theme_classic())
ggplot(penguins) +
  aes(x = species) +
  geom_bar()
```


One variable: Discrete

"Candybar" chart


```
ggplot(penguins) +
 aes(y = 1,
      color = species,
      fill = species,
      label = species) +
 stat count(orientation = "y") +
 guides(y = guide_none(),
         color = guide none(),
         fill = guide_none()) +
  ylab(NULL) +
  stat_count(geom = "label",
             color = "white")
```

Avoid pie charts!

Angles are hard


```
ggplot(penguins) +
  aes(x = factor(1),
      fill = species,
      label = species) +
  geom_bar(width = 1) +
  stat count(geom = "text",
             size = 5,
             color = "white",
             label = paste
             position = position_stack(
               viust = .5)
  guides(y = guide none(),
         x = guide_none(),
         fill = guide none()) +
  xlab(NULL) +
  ylab(NULL) +
  coord_polar(theta = "y") +
  theme(axis.text = element_blank(),
        axis.line = element_blank(),
        axis.ticks = element blank())
```


One variable: Continuous

Hisotogram


```
ggplot(penguins) +
  aes(x = species) +
  geom_histogram(
    binwidth = 1
  )
```

One variable: Continuous

Density


```
ggplot(penguins) +
  aes(x = species) +
  geom_density()
```


One variable: Continuous

Dotplot

More than one variable

- Show relationships between variables
 - Trends between continuous variables
 - Differences across groups for discrete variables
- Goal:
 - Show strength of relationship
 - Show form of relationship
 - Identify anomalies (e.g., outliers/leverage points)

Scatterplots


```
ggplot(penguins) +
  aes(x = bill_length_mm,
      y = flipper_length_mm) +
  geom_point()
```

You can put more than two variables on a plot!

Scatterplots: Use your aesthetics!

Scatterplots: Don't go overboard!

Scatterplots: Overplotting


```
ggplot(round(alr4::Heights)) +
  aes(x = mheight,
    y = dheight) +
  geom_point()
```

Scatterplots: Overplotting


```
ggplot(round(alr4::Heights)) +
  aes(x = mheight,
    y = dheight) +
  geom_jitter()
```

Scatterplots: Discrete variables


```
ggplot(penguins) +
  aes(x = species,
    y = flipper_length_mm,
    fill = species,
    color = species) +
  geom_point()
```

Scatterplots: Discrete variables


```
ggplot(penguins) +
  aes(x = species,
    y = flipper_length_mm,
    fill = species,
    color = species) +
  geom_jitter(height = 0,
    width = .4)
```

Scatterplots: Discrete variables


```
ggplot(penguins) +
  aes(x = species,
      y = flipper_length_mm,
      fill = species,
      color = species) +
  geom_jitter(height = 0,
              width = .4) +
  geom_boxplot(color = "black",
               alpha = .5)
```


Raincloud plots!


```
library(ggdist)
ggplot(na.omit(penguins)) +
  aes(y = species,
     x = flipper_length_mm,
      fill = species,
      color = species) +
  geom_jitter(height = .15) +
  geom_boxplot(color = "black",
               alpha = .5,
               width = .1,
               size = .5) +
  stat_slab(height = .3,
            color = "black",
            size = .2,
            alpha = .5,
            position = position_nudge(y = .2))
```


Scatterplots for change


```
df <- data.frame(</pre>
  id = 1:30,
  before = rnorm(30),
  after = rnorm(30)
df <- tidyr::pivot_longer(</pre>
  df,
  -id,
  names_to = "time",
  values_to = "score")
ggplot(df) +
  aes(x = time,
      y = score,
      group = id) +
  geom_point() +
  geom_line()
```


Comparing densities

```
df <- data.frame(</pre>
  g = c(rep("a", times = 100),
        rep("b", times = 100),
        rep("c", times = 100),
        rep("d", times = 100),
        rep("e", times = 100)),
  z = c(rnorm(100, mean = 0, sd = 1),
        rnorm(100, mean = 1, sd = 2),
        rnorm(100, mean = 2, sd = 3),
        rnorm(100, mean = 3, sd = 4),
        rnorm(100, mean = 4, sd = 5))
```

Comparing densities


```
ggplot(df) +
  aes(x = z,
      group = g,
      fill = g) +
  geom_density(size = .2,
      alpha = .5)
```

Comparing densities


```
library(ggridges)
ggplot(df) +
  aes(x = z,
      y = g,
      fill = g) +
geom_density_ridges(
    size = .2,
    alpha = .5,
    scale = 4
```

Scatterplot matrix

pairs(penguins_focal)

Scatterplot matrix


```
GGally::ggpairs(
  penguins_focal,
  aes(color = species,
      alpha = .5),
  lower = list(
    continuous = "smooth_loess",
    combo = "facethist",
    discrete = "facetbar",
    na = "na")
```

Exploratory data analysis with smoothers

What is "Regression"

- Make the best prediction about cases given available data
- Conditional distribution
 - What is the distribution of Y given other information we know?
 - Mean + Variance

Mean Function

- $E(Y_i \mid X_i)$
 - E() is the "expectation" or "expected value" function
 - Read: "What is the expected value of Y, given X?"
 - If I know your score on X, what's my best guess for your level on Y?
 - We want to choose the mean function for Y that minimizes how wrong our predictions are
- Why the mean?
 - We will focus most of the semester on predicting the mean of Y
 - Other estimators of the center of a distribution exist (e.g., median), but the mean has many nice properties
 - The mean is the value that minimizes the squared prediction errors

Regression in a nutshell

Conceptually,

- 1. Make a scatterplot with response (Y) on y-axis, predictor (X) on x-axis
- 2. Draw a line
- 3. Measure the **vertical distance** from each point to that line
- 4. Move the line until you make those distances as small as possible
 - Technically, until the square of those distances are minimized

Least Squares Mean Function

- Classic Null model:
 - No relationship
 - Best prediction is always $\hat{\mu} = \text{mean}(Y_i)$
 - Huge amounts of error
- If we rotate the line, we can find an angle that will make our errors much smaller
 - How much do we need to rotate this line?
 - How complex does the formula for the line need to be?

Variance Function

- $Var(Y_i \mid X_i)$
 - Read: "What is the variance of Y, given X?"
 - If I know your score on X, how uncertain am I about your score on Y?
 - If I predict your Y score, how wrong will I be on average?
- This is called "residual variance" or "residual error"
 - $y_i = y_i + \varepsilon_i$
 - Observed y_i = predicted y_i + error
 - $Var(Y_i \mid X_i) = Var(\varepsilon_i)$

Exploratory data analysis with smoothers

- Drawing straight lines requires some strong assumptions
 - e.g., linearity 🎲
- It's best to start off our exploratory analyses with something more flexible
- A **smoother** is a non-parametric method for fitting a line
 - No easy to formula can be written down
 - Think of it as letting the data fit itself
- A smoother is still regression: $E(Y_i \mid X_i)$ and $Var(Y_i \mid X_i)$

Slice Smoothers

Datasets: mtcars

• ?datasets::mtcars

		var	Description
[,	1]	mpg	Miles/(US) gallon
[,	2]	cyl	Number of cylinders
[,	3]	disp	Displacement (cu.in.)
[,	4]	hp	Gross horsepower
[,	5]	drat	Rear axle ratio
[,	6]	wt	Weight (1000 lbs)
[,	7]	qsec	1/4 mile time
[,	8]	VS	Engine (0 = V-shaped, 1 = straight)
[,	9]	am	Transmission (0 = automatic, 1 = manual)
[,:	10]	gear	Number of forward gears

- Estimate $E(Y_i \mid X_i)$ by:
 - For each value of x_i ,
 - select the points with that x_i
 value and some fraction of other points closest to it
 - (usually 66%-75%)
 - (higher % makes a "smoother" line)
 - fit a straight line model to the selected points
 - move to the next x_i and repeat


```
ggplot(mtcars) +
  aes(x = disp,
      y = mpg) +
  geom_point() +
  geom_smooth() +
  geom_smooth(method = "lm",
      color = "pink3",
      fill = "pink3")
```


- loess can also help to look for differences in trends across groups
- Plot the penguins data


```
ggplot(penguins) +
  aes(x = bill_length_mm,
      y = flipper_length_mm,
      fill = species,
      color = species) +
  geom_point() +
  geom_smooth(color = "black",
              fill = "black") +
  geom_smooth(method = "lm",
              color = "orange",
              fill = "orange")
```



```
ggplot(penguins) +
 aes(x = bill_length_mm,
      y = flipper_length_mm,
      fill = species,
      color = species) +
  geom_point() +
  geom_smooth() +
  geom_smooth(
    method = "lm",
    color = "black",
    linetype = "dashed"
```



```
ggplot(penguins) +
  aes(x = bill_length_mm,
      y = flipper_length_mm,
      fill = species,
      color = species) +
  geom_point() +
  geom_smooth(method = "lm",
              linetype = "dashed")
  geom_smooth(color = "black",
              fill = "black",
              alpha = .2) +
  geom_smooth(method = "lm",
              color = "orange",
              fill = "orange",
              alpha = .2)
```


A full EDA plot


```
ggplot(penguins) +
  aes(x = flipper_length_mm,
      y = bill_length_mm,
      color = species,
      fill = species,
      shape = species,
      linetype = species) +
  geom_point(alpha = .50) +
  geom_smooth() +
  theme(
    legend.position = "bottom"
```

Scatterplot matrix


```
GGally::ggpairs(
  penguins_focal,
  aes(color = species,
      alpha = .5),
  lower = list(
    continuous = "smooth_loess",
    combo = "facethist",
    discrete = "facetbar",
    na = "na")
```

Key ggplot aesthetics

aes	What it does
x, y	Which axis to plot the data on; Leave one blank if the geom will compute automatically (e.g., geom_bar(); geom_histogram())
color	Color of the lines/borders
fill	Color of the fill/area
shape	Point shape to use
linetype	Type of line to use (solid, dashed, etc.)

size	Size of point, width of line
alpha	Transparency level (0 [invisible] to 1 [solid])

```
ggplot(penguins) +
  aes(x = flipper_length_mm,
      y = bill_length_mm,
      color = species,
      fill = species,
      shape = species,
      linetype = species
  geom_point(
    aes(size = body_mass_g),
    alpha = .50
  geom_smooth()
```


General data viz tips

- Never contrast "black" and "red"!
- Choose aesthetics that are easy to process
 - Avoid angles, area
- Avoid chart junk
 - Non-communicative color
 - Unnecessary lines (e.g., gridlines)
 - Don't use a bar when a line will do
- Use direct labeling, rather than legends
- Draw attention to key data points
- See https://www.data-to-viz.com/caveats.html

