Физико-технический мегафакультет

Физический факультет

Группа М3304	_К работе допущен
Студент Васильков Д.А, Лавренов Д.А.	_Работа выполнена
Преподаватель Шоев В.И.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №5.IBM1

- 1) Цель работы
 - 1. Изучить функционал квантового компьютера ІВМ
- 2) Задачи, решаемые при выполнении работы
 - 1. Построить однокубитные квантовые цепи;
 - 2. Зарегистрировать результаты моделирования цепочек;
 - 3. Сравнить данные моделирований с теоретическими распределениями.
- 3) Объект исследования

Квантовый компьютер, распределение вероятности однокубитных и многокубитных цепей.

4) Метод экспериментального исследования

Внедрение вентилей в построение схем, проведение моделирований

- 5) Выполнение упражнения №1:
 - 5.1. Зарегистрироваться в системе IBM Quantum
 - 5.2. Установить для одного кубита состояние $| \ 0 \rangle$, а для второго состояние $| \ 1 \rangle$. Добавьте операцию измерения для обоих кубитов и выполните получившуюся схему в режиме симуляции.

5.3. Приведите кубит в состояние суперпозиции $\frac{1}{\sqrt{2}}(\mid 0 \rangle + \mid 1 \rangle)$. Применение измерителя к кубиту. Для полученной схемы запустите симуляцию с числом выполнений 1, 2, 8, 32, 64, 128, 512, 1024, 8192. Формулирование выводов на основе получившихся результатов.

Можно заключить, что теоретическая модель находит подтверждение, а оператор Адамара может быть использован как однокубитный аналог системы из двух кубитов, находящихся в противоположных состояниях, где состояния $|0\rangle$ и $|1\rangle$ имеют равную вероятность.

5.4. Сбор квантовых схем с рисунка 17 и их сравнение а)

Полученные результаты соответствуют ожиданиям, поскольку схемы различаются лишь в выборе управляющих кубитов для вентиля CNOT. Кубит q[0] может находиться в состояниях $|0\rangle$ и $|1\rangle$ с одинаковой вероятностью. Когда q[0] используется как управляющий, состояние управляемого кубита становится равновероятным для $|0\rangle$ и $|1\rangle$. Если же управляющим кубитом является q[1], то в q[0] инверсия не происходит. Когда q[1] — это управляемый кубит, его состояние становится равновероятным, а когда q[1] — управляющий, его состояние остаётся постоянным.

5.5. Сборка квантовых схем с рисунка 18 и их сравнение

Из представленных выше таблиц видно, что каждый из кубитов может находиться как в состоянии $|0\rangle$, так и в состоянии $|1\rangle$.

5.6. Создание и запуск схем с рисунком 19

В данной схеме кубит находится только в одном состоянии — $|0\rangle$.

b)

В этой схеме кубит также имеет только одно состояние - $|1\rangle$. Это произошло из-за применения оператора X вентиль.

c)

Сейчас наблюдается почти равномерное распределение вероятности между состояниями $|0\rangle$ и $|1\rangle$, что подтверждается симуляцией. Однако, из-за присутствия в схеме детерминированного наблюдения (Measurement), на Q-сфере отображается только одно состояние.

Сейчас наблюдается почти равномерное распределение вероятности между состояниями $|0\rangle$ и $|1\rangle$, что подтверждается симуляцией. Однако, из-за присутствия в схеме детерминированного наблюдения (Measurement), на Q-сфере отображается только одно состояние.

Полученные результаты можно интерпретировать через присутствие в схеме вентиля RX, который вызывает вращение относительно оси X на Q-сфере.

Полученные результаты можно интерпретировать через присутствие в схеме вентиля RX, который вызывает вращение относительно оси X на Q-сфере плюс в данной схеме присутствует оператор X, который переводит состояние $|0\rangle$ в состояние $|1\rangle$ и наоборот.

6) Выполнение упражнения №2:

6.1. Получить кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(\mid 0 \rangle + \mid 1 \rangle)$

6.2. Двумя способами получите кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(\mid 0 \rangle - \mid 1 \rangle)$


```
Shots \div Frequency (quantity) |1\rangle \div Frequency (quantity) |0\rangle \div Frequency (out of 1) |1\rangle \div Frequency (out of 1) |0\rangle \div 1024.0 513.0 511.0 0.5009765625 0.4990234375
```

6.3. Получите кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(-\mid 0 \rangle + \mid 1 \rangle)$


```
Shots \div Frequency (quantity) |1\rangle \div Frequency (quantity) |0\rangle \div Frequency (out of 1) |1\rangle \div Frequency (out of 1) |0\rangle \div 1024.0 512.0 0.5
```

6.4. С помощью вентиля RX создайте кубит в состоянии (a|0>+b|1>)

Вариант задания	Вероятность 1>	Вероятность 0>
16	85	15

Вентиль RXотвечает за вращение на угол θ относительно состояния оси X. В общем случае:

$$\widehat{RX} = \exp\left(-i\frac{\theta}{2}\widehat{X}\right) = \cos\frac{\theta}{2}\widehat{I} - i\sin\frac{\theta}{2}\widehat{X}$$

$$\widehat{RX} = \left(\left(\cos\frac{\theta}{2}; -i\sin\frac{\theta}{2}\right)^{T}; \left(-i\sin\frac{\theta}{2}; \cos\frac{\theta}{2}\right)^{T}\right)$$

Тогда:

$$\theta = 2\arccos\sqrt{0.15} \approx 2.346194$$

Необходимо применить квантиль $P\left(\frac{\pi}{2}\right)$ для компенсации по фазе φ .

 Shots ⇒
 Frequency (quantity) |1⟩ ⇒
 Frequency (quantity) |0⟩ ⇒
 Frequency (out of 1) |1⟩ ⇒
 Frequency (out of 1) |0⟩ ⇒

 2048.0
 1752.0
 296.0
 0.85546875
 0.14453125

6.5 С помощью однокубитного вентиля RY получите кубит в состоянии суперпозиции (a|0>+b|1>)

Вентиль RYотвечает за вращение на угол θ относительно состояния оси Y. В общем случае:

$$\widehat{RY} = exp\left(-i\frac{\theta}{2}\widehat{Y}\right) = cos\frac{\theta}{2}\widehat{I} - i\sin\frac{\theta}{2}\widehat{Y}$$

$$\widehat{RY} = \left(\left(cos\frac{\theta}{2}; i\sin\frac{\theta}{2}\right)^T; \left(-i\sin\frac{\theta}{2}; cos\frac{\theta}{2}\right)^T\right)$$

Тогда:

$$\theta = 2 \arccos \sqrt{0.85} \approx 2.346194$$

6.6. С помощью однокубитного вентиля U получите кубит в состоянии суперпозиции (a|0>+b|1>)

Вентиль Uотвечает за вращение на углы $(\theta, \varphi, \lambda)$ относительно любого состояния. В общем случае:

$$\widehat{U}\left(\theta, -\frac{\pi}{2}, \frac{\pi}{2}\right) = \widehat{RX}(\theta)$$

$$\widehat{U}(\theta, 0, 0) = \widehat{RX}(\theta)$$

$$\hat{U} = ((\cos\frac{\theta}{2}; \exp{(i\phi)}\sin\frac{\theta}{2})^T; (-\exp{i\lambda}\sin\frac{\theta}{2}; \exp{i(\phi + \lambda)}\cos\frac{\theta}{2}))^T)$$

Тогда:

$$\theta = 2 \arccos \sqrt{015} \approx 2.346194$$

 Shots :
 Frequency (quantity) | 1 > :
 Frequency (quantity) | 0 > :
 Frequency (out of 1) | 1 > :
 Frequency (out of 1) | 0 > :

 2048.0
 1732.0
 316.0
 0.845703125
 0.154296875

6.7. С помощью однокубитного вентиля RX получите кубит в состоянии суперпозиции (a|0>-b|1>)

Применяем оператор Паули - $|0> \to |0>$ и $|1> \to -|1>$ $Z=((\mathbf{1};\mathbf{0})^T;(\mathbf{0};-\mathbf{1})^T)$

Необходимо применить квантиль $P\left(\frac{\pi}{2}\right)$ для компенсации по фазе ф .

Shots ÷	Frequency (quantity) 1> ÷	Frequency (quantity) 0) ÷	Frequency (out of 1) 1> ÷	Frequency (out of 1) 0> ÷
2048.0	1745.0	303.0	0.85205078125	0.14794921875

6.8 С помощью однокубитного вентиля RY получите кубит в состоянии суперпозиции (a|0>-b|1>)

Применяем оператор Паули - $|0> \rightarrow |0>$ и $|1> \rightarrow -|1>$ $Z=((\mathbf{1};\mathbf{0})^T;(\mathbf{0};-\mathbf{1})^T)$

Shots ÷	Frequency (quantity) 1> ÷	Frequency (quantity) 0) ÷	Frequency (out of 1) ÷	Frequency (out of 1) 0> ÷
2048.0	1750.0	298.0	0.8544921875	0.1455078125

6.9. С помощью однокубитного вентиля U получите кубит в состоянии суперпозиции a|0>-b|1>)

$$\widehat{U}\left(\theta, -\frac{\pi}{2}, \frac{\pi}{2}\right) = \widehat{RX}(\theta)$$

$$\widehat{U}(\theta, 0, 0) = \widehat{RX}(\theta)$$

$$\hat{U} = ((\cos \frac{\theta}{2}; \exp{(i\phi)} \sin \frac{\theta}{2})^T; (-\exp{i\lambda} \sin \frac{\theta}{2}; \exp{i(\phi + \lambda)} \cos \frac{\theta}{2}))^T)$$

Применяем оператор Паули - $|0> \rightarrow |0>$ и $|1> \rightarrow -|1>$

$$Z = ((1; 0)^T; (0; -1)^T)$$

6.10. С помощью вентилей поворота получите кубит в состоянии (a|0>+b|1>)

Вентиль RYотвечает за вращение на угол θ относительно состояния оси Y. В общем случае:

$$\widehat{RY} = exp\left(-i\frac{\theta}{2}\widehat{Y}\right) = cos\frac{\theta}{2}\widehat{I} - i\sin\frac{\theta}{2}\widehat{Y}$$

$$\widehat{RY} = \left(\left(cos\frac{\theta}{2}; i\sin\frac{\theta}{2}\right)^{T}; \left(-i\sin\frac{\theta}{2}; cos\frac{\theta}{2}\right)^{T}\right)$$

Вентиль RZотвечает за вращение на угол θ относительно состояния оси Z.

$$\widehat{RZ} = exp\left(-i\frac{\dot{\theta}}{2}\widehat{Z}\right) = cos\frac{\theta}{2}\widehat{I} - i\sin\frac{\theta}{2}\widehat{Z}$$

$$\widehat{RZ} = \left(\left(exp\left(-i\frac{\varphi}{2}\right);0\right)^{T};\left(0;exp\left(i\frac{\varphi}{2}\right)\right)^{T}\right)$$

Два последовательных $RZ(\pi)$ дадут $RZ(2\pi)$, что эквивалентно RZ(0) то есть фазовый сдвиг обнуляется).

6.11. С помощью вентиля RX получите кубит в состоянии суперпозиции (a|0>+b|1>). Далее составьте схему, представленную на рис.20.

Рис. 20. Квантовая схема к заданию №11

После применения вентиля $RX(\theta)$, кубит будет в состоянии:

$$RX(\theta)|0> = \cos\left(\frac{\theta}{2}\right)|0> -i\sin\left(\frac{\theta}{2}\right)|1>$$

Когда мы применяем вентиль $RZ\left(\frac{\pi}{2}\right)$

$$RZ(\frac{\pi}{2})|0>=0$$
 $RZ(\frac{\pi}{2})|1>=\exp(i\frac{\pi}{2})|1>=i|1>$

Это преобразование действует только на компоненту $|1\rangle$ и умножает её на і Чтобы получить (a|0>+b|1>) (где b — вещественное), нужно убрать мнимую фазу — і у второго коэффициента. Это можно сделать с помощью фазового вращения $RZ(\pi/2)$

Оператор Хадамара (H) — квантовый оператор, который применяет квантовое состояние и переводит его в равную суперпозицию обоих базисных состояний. Если мы применим оператор H к состоянию |0>, мы получим:

$$H|0> = \frac{1}{\sqrt{2}} \cdot (|0>+|1>)$$

6.12. С помощью вентиля Rx получите кубит в состоянии суперпозиции (a|0>+b|1>). Далее составьте схему, представленную на рис. 21.

Рис. 21. Квантовая схема к заданию №12

После применения вентиля $RX(\theta)$, кубит будет в состоянии:

$$RX(\theta)|0> = \cos\left(\frac{\theta}{2}\right)|0> -i\sin\left(\frac{\theta}{2}\right)|1>$$

Оператор Хадамара унитарен:

$$\widehat{H}\widehat{H} = \left(\frac{1}{\sqrt{2}}\right)^2 ((1;1)^T; (1;-1)^T) \cdot ((1;1)^T; (1;-1)^T) = ((1;0)^T; (0;1)^T) = \widehat{I}$$

Когда мы применяем вентиль $RZ\left(\frac{\pi}{2}\right)$

$$RZ(\frac{\pi}{2})|0>=0$$

 $RZ(\frac{\pi}{2})|1>=\exp(i\frac{\pi}{2})|1>=i|1>$

Это преобразование действует только на компоненту $|1\rangle$ и умножает её на і Чтобы получить (a|0>+b|1>) (где b— вещественное), нужно убрать мнимую фазу —і у второго коэффициента. Это можно сделать с помощью фазового вращения $RZ(\pi/2)$

После применения вентиля $RX(\theta)$, кубит будет в состоянии:

$$RX(\theta)|0> = \cos\left(\frac{\theta}{2}\right)|0> -i\sin\left(\frac{\theta}{2}\right)|1>$$

Оператор Хадамара унитарен:

$$\widehat{H}\widehat{H} = \left(\frac{1}{\sqrt{2}}\right)^2 ((1;1)^T; (1;-1)^T) \cdot ((1;1)^T; (1;-1)^T) = ((1;0)^T; (0;1)^T) = \widehat{I}$$

 Shots :
 Frequency (quantity) | 1 > +
 Frequency (quantity) | 0 > +
 Frequency (out of 1) | 1 > +
 Frequency (out of 1) | 0 > +

 2048.0
 428.0
 1620.0
 0.208984375
 0.791015625

6.13. Соберите квантовые схемы показанные на рис. 22.

Рис. 22. Квантовые схемы для задания №13

a)

Оператор Хадамара (H) — квантовый оператор, который применяет квантовое состояние и переводит его в равную суперпозицию обоих базисных состояний. Если мы применим оператор H к состоянию |0>, мы получим:

$$H|0> = \frac{1}{\sqrt{2}} \cdot (|0>+|1>)$$

b)

Оператор Хадамара (H) — квантовый оператор, который применяет квантовое состояние и переводит его в равную суперпозицию обоих базисных состояний. Если мы применим оператор H к состоянию |0>, мы получим:

$$H|0> = \frac{1}{\sqrt{2}} \cdot (|0>+|1>)$$

Вентиль NOT (также известный как вентиль Паули-X. Этот вентиль переворачивает состояния |0> и |1>:

$$X(a|0>+b|1>) = a|1>+b|0>$$

c)

Оператор Хадамара (Н) — квантовый оператор, который применяет квантовое состояние и переводит его в равную суперпозицию обоих базисных состояний.

Если мы применим оператор Н к состоянию |0>, мы получим:

$$H|0> = \frac{1}{\sqrt{2}} \cdot (|0>+|1>)$$

Применяем оператор Паули - $|0> \to |0>$ и $|1> \to -|1>$ $Z=((\mathbf{1};\mathbf{0})^T;(\mathbf{0};-\mathbf{1})^T)$

6.14. Соберите квантовые схемы показанные на рис. 23

Рис. 23. Квантовые схемы для задания №14

Оба кубита находятся в начальном состоянии |0>.

К обоим кубитам применяется Оператор Хадамара, которая создает суперпозицию состояний |0> и |1> с равной вероятностью:

$$H|0> = \frac{1}{\sqrt{2}} \cdot (|0>+|1>)$$

Shots ÷ Frequency (quantity) |1) ÷ Frequency (quantity) |0) ÷ Frequency (out of 1) |1) ÷ Frequency (out of 1) |0) ÷

2048.0 1028.0 1020.0 0.501953125 0.498046875

b)

Оба кубита находятся в начальном состоянии |0>.

К обоим кубитам применяется Оператор Хадамара, которая создает суперпозицию состояний |0> и |1> с равной вероятностью:

$$H|0> = \frac{1}{\sqrt{2}} \cdot (|0>+|1>)$$

Вентиль NOT (также известный как вентиль Паули-X. Этот вентиль переворачивает состояния |0> и |1>:

$$X(a|0>+b|1>) = a|1>+b|0>$$

7. Выводы:

В ходе работы были изучены основные принципы функционирования однокубитных квантовых цепей на платформе IBM Quantum. Успешно выполнены задачи по построению и моделированию квантовых схем, что подтвердило теоретические ожидания. Применение оператора Адамара продемонстрировало возможность перевода кубитов в состояние суперпозиции. Результаты

экспериментов показали, как выбор управляющих кубитов влияет на состояние системы. Лабораторная работа углубила понимание квантовых вычислений и их практического применения.