Static Weather Station

Group #8: Andrew Espinoza Luis Contreras Kaven Yarbrough

Purpose

Main Objective:

Make an easy to use weather station with no moving parts

Why?

- Less points for mechanical failure
- No noise pollution

For who?

- If rooms/compartments need specific environmental factors to be controlled (as is the case for storage of materials like 3d-printing filament)
- Check the environment outside for botanical purposes

Features

Feature	Description
UltraSonic Anemometer	Reads wind speed and direction
Temperature Sensor	Reads ambient temperature
Humidity sensor	Reads ambient humidity
LCD Display	Displays weather data
ESP-32 Wireless connection	Sends data from weather station to display station

Failed circuit prototype

- Our original design had 2 level shifters for the transmit and 2 inverting op amp stages for the recievers.
- Through testing we found that we could not detect wind with this configuration

Failed circuit prototype part 2

 These we're the original circuit designs for our transmit and our recieve circuits

Architectural Overview

Anemometer Circuit

- Two transmitter's and two receivers for east->west and north->south
- The transmitters are GPO's and the receivers are converted from analog to digial using an inverting op amp with a bjt

Anemometer Receiver inverting op amp with an offset to bjt

We are receiving a 200mV pk-pk sine wave from our receiver. We turn this into a readable square wave using a schmitt trigger

Raw transmit and receive

In this image
it can be seen
that when we
send a
trigger
shortly after
we get a
single
amplified
wave packet

Anemometer phase shift with wind detection

- As we blow in one direction the phase of the output is shifted to the right and we can measure this shift
- When we blow in the opposite direction the phase is shifted to the left

Static Weather Machine Sensor Stack

- Top layer to hold the transducers and the temp/humidity sensor
- Hollow columns to move wires through
- Middle layer for transducer reflection
- Bottom layer to hold uC's

Things to implement in the future

Feature	Description
Battery Power	Using batteries, we can make it a stand-alone system
Home base for receiver end	We could add a 3D printed base for the LCD screen set up
Touch screen/better LCD screen	We could add a touch screen and implement a nicer LCD screen
Add more sensors	We could add rain, light and air pressure sensors

Demo