delete

Daniel Topa daniel.topa@hii.com

Huntington Ingalls Industries Mission Technologies

December 28, 2024

Contents

	Introduction			
	1.1	Overview of the Problem	1	
	1.2	Objectives	1	
	1.3	Methodology	1	
2	Bac		2	
	2.1	A	2	
	2.2	B	2	
	2.3	C	2	
\mathbf{R}	References			

1 Introduction

1.1 Overview of the Problem

This subsection provides a detailed description of the problem or challenge being addressed in this document.

1.2 Objectives

This subsection outlines the main objectives of the document, including key research goals or development targets.

1.3 Methodology

This subsection describes the methodology or approach taken to address the problem and achieve the objectives.

2 Backup

2.1 A

First subsection.

2.2 B

Second subsection.

2.3 C

Third subsection.

References

- [1] Yasir Ali, Fizza Hussain, and Md Mazharul Haque. "Advances, challenges, and future research needs in machine learning-based crash prediction models: A systematic review". In: *Accident Analysis & Prevention* 194 (2024), p. 107378. ISSN: 0001-4575. DOI: https://doi.org/10.1016/j.aap.2023.107378.
- [2] Inc. (AGI) Analytical Graphics. Iridium 33 Cosmos 2251 Collision. https://web.archive.org/web/20100514075852/http://www.agi.com/media-center/multimedia/current-events/iridium-33-cosmos-2251-collision/default.aspx. Archived link accessed: 2024-12-25. Includes videos, 3D models, and interactive tools for understanding the event. Feb. 2009.
- [3] Anonymous. Analysis of Orbital Debris Impact Risks. Tech. rep. Accessed: 2024-12-25. United States Department of Energy (DOE), Oct. 2009.
- [4] Anonymous. "Analysis of Debris from the Collision of the Cosmos 2251 and the Iridium 33 Satellites". In: *Science & Global Security* 18.2 (2010), pp. 87–118. ISSN: 0892-9882. DOI: 10.1080/08929882.2010.493078.
- [5] Anonymous. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Analysis. Tech. rep. Accessed: 2024-12-25. United States Department of Energy (DOE), Aug. 2010.
- [6] Ulpia Elena BOTEZATU. "Developing a comprehensive Combat Mindset for outer space security". In: Redefining Community in Intercultural Context 11.1 (2023), pp. 43–52.
- [7] Keir Clarke. Satellite Crash. Vimeo video. A Google Earth Browser plug-in simulation of the Iridium 33 and Cosmos 2251 satellite collision. Accessed: 2024-12-25. 2009.
- [8] Rachel Courtland. "Satellite crash prediction is plagued with uncertainty". In: New Scientist (2009). Accessed: 2024-12-25.
- [9] Ram S Jakhu. "Iridium-Cosmos collision and its implications for space operations". In: Year-book on Space Policy 2008/2009: Setting New Trends (2010), pp. 254–275.

- [10] Adam P Jodice and Mark R Guerber. "Space combat capability... do we have it?" In: Air & Space Power Journal 28.6 (2014), pp. 82–99.
- [11] Nicholas Johnson. "The Collision of Iridium 33 and Cosmos 2251: The Shape of Things to Come". In: *Proceedings of the 60th International Astronautical Congress*. Work of the US Government. Public use permitted. NASA Johnson Space Center. Seoul, Korea, Republic of, Oct. 2009, pp. 1–5.
- [12] Donald J Kessler and Burton G Cour-Palais. "Collision frequency of artificial satellites: The creation of a debris belt". In: *Journal of Geophysical Research: Space Physics* 83.A6 (1978), pp. 2637–2646.
- [13] Michael Listner. *Iridium 33 and Cosmos 2251 three years later: where are we now?* https://www.thespacereview.com/article/2023/1. Accessed: 2024-12-25. Analysis of the long-term effects and current status of debris from the 2009 satellite collision. Feb. 2012.
- [14] Israel Lopez and Nesrin Sarigul-Klijn. "A review of uncertainty in flight vehicle structural damage monitoring, diagnosis and control: Challenges and opportunities". In: Progress in Aerospace Sciences 46.7 (2010), pp. 247–273.
- [15] Paul Marks. "Satellite collision 'more powerful than China's ASAT test'". In: *New Scientist* (Feb. 2009). Accessed: 2024-12-25.
- [16] Jonathan C. McDowell. Jonathan's Space Report No. 606. http://host.planet4589.org/space/jsr/back/news.606. Covers Iridium 33/Cosmos 2251 collision and other significant space events. Archived at https://web.archive.org/web/20170405123635/http://host.planet4589.org/space/jsr/back/news.606. Accessed: 2024-12-25. Feb. 2009.
- [17] Martha Mejía-Kaiser. "Collision Course: The 2009 Iridium-Cosmos Crash". In: Proceedings of the 52nd IISL Colloquium on the Law of Outer Space. Posted: 21 Mar 2019, Accessed: 2024-12-25. Examines legal, political, and liability implications of the 2009 satellite collision. International Institute of Space Law. Daejeon, Korea, Oct. 2009, pp. 87–118.
- [18] NASA Johnson Space Center Orbital Debris Program Office. "Orbital Debris Quarterly News, Volume 15, Issue 3". In: Orbital Debris Quarterly News 15.3 (July 2011). Accessed: 2024-12-25.
- [19] "Satellite Collision Leaves Significant Debris Clouds". In: Orbital Debris Quarterly News 13.2 (Apr. 2009). Accessed: 2024-12-25.
- [20] Primal Space. The Power of Space Debris. YouTube video. Accessed: 2024-12-25. 2024.
- [21] Space-Track.org. Space-Track.org. https://www.space-track.org/. Accessed: 2024-12-25. 2024.
- [22] SpaceNews Editorial Team. 10 breakups account for 1/3 of cataloged space debris. SpaceNews. Accessed: 2024-12-25, original URL no longer active. Apr. 2016.
- [23] SpaceWeather.com Editorial Team. Fireball Mania: Colliding Satellites Iridium 33 and Cosmos 2251. https://spaceweather.com/glossary/fireballmania.htm. Accessed: 2024-12-25. 2009.

- [24] CelesTrak Team. Iridium 33/Cosmos 2251 Collision. http://celestrak.com/events/collision.asp. Coverage started March 5, 2009. Updated March 11, 2009. Accessed: 2024-12-25. 2009.
- [25] CelesTrak Team. Iridium 33/Cosmos 2251 Collision. https://celestrak.org/events/collision/. Accessed: 2024-12-25. 2009.
- [26] Edward B Tomme. The paradigm shift to effects-based space: Near-space as a combat space effects enabler. Airpower Research Institute, College of Aerospace Doctrine, Research and ..., 2005.
- [27] Ting Wang. "Analysis of Debris from the Collision of the Cosmos 2251 and the Iridium 33 Satellites". In: Science & Global Security 18.2 (2010), pp. 87–118.
- [28] Wikipedia contributors. 2009 Satellite Collision. https://en.wikipedia.org/wiki/2009_satellite_collision. Accessed: 2024-12-24. 2024.
- [29] David Wright. Colliding Satellites: Consequences and Implications. Union of Concerned Scientists Report. Accessed: 2024-12-25. Feb. 2009.