

LIVRET D'EXERCICES CORRIGÉS CALCUL EMBARQUÉ

Département d'Électronique ECE École d'Ingénieurs – Engineering School

Table des matières

Méthodes de calcul numérique

SEMAINE 1	
TD1 : Racines d'équation Applications directes	p. 3
SEMAINE 2	
TD2 : Recherche d'Extrema	
Applications directes	p. 13
TD3 : Valeur d'un polynôme en un point	
Applications directes	p. 18
SEMAINE 3	
TD4: Intégration	
Applications directes	p. 20
TD5 : Résolution d'équations différentielles ordinaires	
Applications directes	p. 25

TD 1: Racines d'équations

TD1

I. Applications directes

Exercice 1.1: Méthode de dichotomie

Soit la fonction suivante :

$$f(x) = -x^3 + 2x^2 + 8$$

On cherche à trouver une racine de cette équation à l'aide de la méthode de dichotomie.

AD1.1. Trouver une valeur approchée de la racine de cette équation par dichotomie en 5 itérations.

On prendra comme intervalle initial [0; 4].

1ère itération : dans l'intervalle [0;4]

$$f(a = 0) = -0^{3} + 2 \cdot 0^{2} + 8 = 8$$

$$f(b = 4) = -4^{3} + 2 \cdot 4^{2} + 8 = -24$$

$$m = \frac{a+b}{2} = \frac{0+4}{2} = 2$$

$$f(m) = -2^{3} + 2 \cdot 2^{2} + 8 = 8$$

Le point milieu est du même signe que celui de la $1^{\text{ère}}$ borne, donc la racine est dans l'intervalle [m,b]. Le nouveau a vaut donc $\frac{a+b}{2}=2$

2^{nde} itération : dans l'intervalle [2;4]

$$f(a = 2) = 8$$

$$f(b = 4) = -24$$

$$m = \frac{a+b}{2} = \frac{2+4}{2} = 3$$

$$f(m) = -3^3 + 2 \cdot 3^2 + 8 = -1$$

Le point milieu est du même signe que celui de la 2^{nde} borne, donc la racine est dans l'intervalle [a,m]. Le nouveau b vaut donc $\frac{a+b}{2}=3$

3^{ème} itération : dans l'intervalle [2;3]

$$f(a = 2) = 8$$

$$f(b = 3) = -1$$

$$m = \frac{a+b}{2} = \frac{8-1}{2} = 2,5$$

$$f(m) = -2,5^3 + 2 \cdot 2,5^2 + 8 = 4,875$$

Le point milieu est du même signe que celui de la 1ère borne, donc la racine est dans l'intervalle [a,m]. Le nouveau a vaut donc $\frac{a+b}{2}=3,5$

4ème itération : dans l'intervalle [2, 5 ; 3]

$$f(a = 2,5) = 4,875$$

$$f(b = 3) = -1$$

$$m = \frac{a+b}{2} = \frac{2,5+3}{2} = 2,75$$

$$f(m) = -2,75^3 + 2 \cdot 2,75^2 + 8 = 2,328$$

Le point milieu est du même signe que celui de la 1ère borne, donc la racine est dans l'intervalle [a,m]. Le nouveau a vaut donc $\frac{a+b}{2}=2,75$

5^{ème} itération : dans l'intervalle [2, 75; 3]

$$f(a = 2,75) = 2,328$$

$$f(b = 3) = -1$$

$$m = \frac{a+b}{2} = \frac{2,75+3}{2} = 2,875$$

$$f(m) = -2,875^3 + 2 \cdot 2,875^2 + 8 = 0,7676$$

Le point milieu est du même signe que celui de la 1^{ère} borne, donc la racine est dans l'intervalle [a, m]. Le nouveau a vaut donc $\frac{a+b}{2}=2,875$

Conclusion en 5 itérations : la racine est comprise entre 2,875 et 3.

AD1.2. Illustrer la résolution par dichotomie à l'aide d'un graphique en 5 itérations.

Exercice 1.2: Méthode de Newton-Raphson

Soit la fonction suivante :

$$f(x) = x^6 - x - 1$$

On cherche à déterminer la racine f(x) = 0 dans l'intervalle [1;2].

AD1.3. Tracer la représentation graphique de la fonction f(x).

AD1.4. Appliquer la méthode de Newton-Raphson

- Sur 5 itérations, avec 5 chiffres significatifs ;
- Avec comme valeur de départ $x_0 = 1.5$;
- Calculer à chaque itération l'erreur relative.

La dérivée de $f(x) = x^6 - x - 1$ est :

$$f'(x) = 6x^5 - 1$$

n	x_n	$arepsilon_a$
0	1,5	
1	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1.5 - \frac{8,89063}{44,5625} = 1,30049$	$\varepsilon_1 = \left \frac{1,5 - 1,3004}{1,5} \right = 13,3 \%$
2	$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1,30049 - \frac{2,53726}{21,31967} = 1,18148$	10,07 %
3	1, 139 46	3,69 %
4	1, 134 78	0,41 %
5	1, 134 72	0,004 92 %

AD1.5. Représenter les racines sur le graphique de la question AD1.1 et tracer l'erreur absolue en fonction du n° d'itération.

Exercice 1.3: Méthode de Newton-Raphson

Soit la fonction suivante :

$$f(x) = 2\sin(x) - \frac{x^2}{10}$$

où x est un angle en radian.

On cherche à déterminer la racine f(x) = 0 dans l'intervalle [2; 3].

AD1.6. Justifier l'existence d'une racine dans l'intervalle [2 ; 3].

La représentation graphique de la fonction f(x) est la suivante :

On a:

• *f* continue sur l'intervalle [2;3]

•
$$f(2) = 2 \sin(2) - \frac{2^2}{10} = 1,4186$$

• $f(3) = 2 \sin(3) - \frac{3^2}{10} = -0,6177$

•
$$f(3) = 2 \sin(3) - \frac{3^2}{10} = -0.6177$$

D'après le théorème des valeurs intermédiaires, il existe au moins une racine entre 2 et 3.

AD1.7. Illustrer graphiquement la méthode de Newton-Raphson pour un exemple quelconque.

AD1.8. Appliquer la méthode de Newton-Raphson sur 2 itérations, avec 4 chiffres significatifs et comme valeur de départ $x_0 = 2.5$.

La dérivée de $f(x) = 2 \sin(x) - \frac{x^2}{10}$ est :

$$f'(x) = 2\cos(x) - \frac{x}{5}$$

On a donc:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2.5 - \frac{0.571944}{-2.102287} = 2.772$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2,772 - \frac{-0,045927}{-2,419349} = \mathbf{2,753}$$

AD1.9. Quels seraient les changements à apporter si on voulait utiliser la méthode de la sécante à la place de la méthode de N-R ? Laquelle des deux méthodes convergerait la plus vite ?

Pour pouvoir utiliser la méthode de la sécante, il faut :

- Approximer la dérivée de la fonction
- Utiliser deux valeurs initiales

Cette méthode ne convergerait pas plus vite étant donné que l'on approxime la dérivée.

Exercice 1.4: Méthode de Newton-Raphson

Soit la fonction suivante :

$$2 \sin(x) = x$$

On cherche à trouver la solution positive de cette équation en utilisant la méthode de Newton-Raphson.

AD1.10. Résoudre le problème graphiquement en donnant une valeur approchée de la solution.

La solution de l'équation est l'abscisse de l'intersection positive entre les courbes des fonctions f(x) = 2sin(x) et f(x) = x:

On a donc approximativement:

$$x \approx 1.9$$

AD1.11. Résoudre cette équation en utilisant la méthode de Newton-Raphson en 3 itérations. La valeur initiale pourra être celle trouvée à la question AD1.10.

On considère la fonction :

$$f(x) = 2\sin(x) - x$$

Dont la dérivée est :

$$f'(x) = 2\cos(x) - 1$$

On a donc:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1,9 - \frac{-0,00739}{-1,64658} = \mathbf{1,89551}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1,89551 - \frac{-0,0000258}{-1,6380748} = \mathbf{1,895494}$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1,895494 - \frac{-0,00002577}{-1,63807487} = \mathbf{1,895478}$$

Remarque : Faire très attention lorsque l'on manipule des fonctions trigonométriques. La calculatrice doit être en mode Radian.

Exercice 1.5: Méthodes de Laguerre et de Halley

Soit la fonction suivante :

$$f(x) = x^3 - 2x - 1$$

On cherche à trouver la racine positive de cette équation à l'aide de la méthode de Laguerre.

AD1.12. Utiliser la méthode de Laguerre sur quatre itérations en partant de $x_0 = 1$.

On rappelle que pour la méthode de Laguerre, on a :

$$x_{k+1} = x_k - \frac{nf(x_k)}{f'(x_k) + sgn(f'(x_k))\sqrt{\frac{n-p}{p}\left[(n-1)f'^2(x_k) - nf(x_k)f''(x_k)\right]}}$$

Le polynôme est de degré 3 donc n=3 et on prend par défaut p = 1

Les dérivées sont :

$$f'(x) = 3x^2 - 2$$

$$f''(x) = 6x$$

1ère itération

$$x_1 = 1 - \frac{3 \cdot (-2)}{1 + \sqrt{2 \cdot [2 \cdot 1 - 2 \cdot (-2) \cdot 6]}} = 1 - \frac{-6}{1 + \sqrt{52}} = 1,7307$$

2^{nde} itération

$$x_2 = 1,7307 - \frac{3 \cdot 0,7226}{6,9859 + \sqrt{2 \cdot [2 \cdot 48,8037 - 2 \cdot 0,7226 \cdot 3]}} = 1,7307 - \frac{2,1678}{6,9859 + \sqrt{186,5436}} = 1,6256$$

3^{ème} itération

$$x_3 = 1,6256 - \frac{3 \cdot 0,04457}{5,9277 + \sqrt{2 \cdot [2 \cdot 35,1379 - 2 \cdot 0,04457 \cdot 3]}} = 1,6256 - \frac{0,13371}{5,9277 + \sqrt{140,0167}} = \mathbf{1},\mathbf{6181}$$

4ème itération

$$x_4 = 1,6181 - \frac{3 \cdot 0,000386}{5,8547 + \sqrt{2 \cdot [2 \cdot 34,2780 - 2 \cdot 0,000386 \cdot 3]}} = 1,6181 - \frac{0,001158}{5,8547 + \sqrt{68,5537}} = \mathbf{1},\mathbf{6181}$$

AD1.13. Utiliser cette fois-ci la méthode de Halley, toujours sur quatre itérations et en partant de $x_0 = 1$. Que remarque-t-on ?

On rappelle que pour la méthode de Halley, on a :

$$x_{n+1} = x_n - \frac{2f(x_n) \cdot f'(x_n)}{2f'^2(x_n) - f(x_n)f''(x_n)}$$

La valeur initiale doit être proche de la racine.

Les dérivées sont :

$$f'(x) = 3x^2 - 2$$

$$f''(x) = 6x$$

1ère itération

$$x_1 = 1 - \frac{2 \cdot (-2) \cdot 1}{2 \cdot 1 - (-2) \cdot 6} = 1 - \frac{4}{14} = 0,71429$$

2^{nde} itération

$$x_2 = 0.71429 - \frac{2 \cdot (-2.0641) \cdot (-0.46938)}{2 \cdot 0.22032 - (-2.06413) \cdot 4.28571} = 0.71429 - \frac{1.93769}{9.2869} = \mathbf{0.50564}$$

3ème itération

$$x_3 = 0.50564 - \frac{2 \cdot (-1.8820) \cdot (-1.2329)}{2 \cdot 1.52025 - (-1.8820) \cdot 3.03384} = 0.50564 - \frac{4.64063}{8.7502} =$$
0, 18395

4ème itération

$$x_4 = 0.48395 - \frac{2 \cdot (-1.361675) \cdot (-1.89848)}{2 \cdot 3.60425 - (-1.36167) \cdot 1.1037} = 0.48395 - \frac{5.17023}{8.71138} = -0.10955$$

Conclusion: La résolution avec la méthode de Halley diverge.

AD1.14. Reprendre la question AD1.13 à partir de $x_0=1.6$ sur deux itérations.

1ère itération

$$x_1 = 1.6 - \frac{2 \cdot (-0.104) \cdot 5.68}{2 \cdot 32.2624 - (-0.104) \cdot 9.6} = 1.6 - \frac{-1.77216}{65.5232} = 1.6270$$

2^{nde} itération

$$x_2 = 1,6270 - \frac{2 \cdot 0,05288 \cdot 5,9414}{2 \cdot 35,3001 - 0.05288 \cdot 9,762} = 1,6270 - \frac{0,628362}{70.08399} = 1,6180$$

Exercice 1.7 : Méthode de la Sécante

Soit la fonction suivante :

$$f(x) = x^3 + 4x^2 - 10$$

On cherche à trouver la racine positive de cette équation à l'aide de la méthode de la Sécante.

AD1.15. Utiliser la méthode de la Sécante sur cinq itérations en partant de $x_0=0$ et $x_1=1$

On rappelle la méthode de la Sécante :

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

1ère itération

$$x_2 = x_1 - f(x_1) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)} = 1 - (-5) \cdot \frac{1 - 0}{-5 - (-10)} = 2$$

2^{nde} itération

$$x_3 = 2 - 14 \cdot \frac{2 - 1}{14 - (-5)} = 1,26316$$

3ème itération

$$x_4 = 1,26316 - (-1,602243) \cdot \frac{1,26316 - 2}{-1,602243 - 14} = 1,33883$$

4ème itération

$$x_5 = 1,33883 - (-0,43033) \cdot \frac{1,33883 - 1,26316}{-0,43033 - (-1,602243)} = \mathbf{1},\mathbf{36662}$$

5ème itération

$$x_6 = 1,36662 - 0,022969 \cdot \frac{1,36662 - 1,33883}{0,022969 - (-0,43033)} = 1,365212$$

L'Essentiel

Méthode de Dichotomie

$$m \leftarrow \frac{(a+b)}{2}$$

Si $f(a) \cdot f(m) \le 0$ alors $b \leftarrow m$ sinon $a \leftarrow m$

Avantages	Inconvénients
 Convergence assurée Encadrement de la solution Un seul calcul à chaque itération 	 Vitesse de convergence linéaire donc lente Sensible aux erreurs d'arrondi et aux fonctions qui changent beaucoup de fois de signe

Méthode de Newton-Raphson

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

) Cens
Avantages	Inconvénients
 Converge rapidement quand elle converge Relativement stable et peu sensible aux erreurs d'arrondi si la dérivée (dénominateur) n'est pas trop petite 	 Peut diverger ou converger vers un autre zéro si l'on choisit mal la valeur de départ Nécessite le calcul de la dérivée (long si on ne connait pas explicitement la fonction) Chaque étape nécessite deux évaluations de fonction

$x_{k+1} = x_k - \frac{nf(x_k)}{f'(x_k) + sgn(f'(x_k))\sqrt{\frac{n-p}{p}\left[(n-1)f'^2(x_k) - nf(x_k)f''(x_k)\right]}}$ Avantages Inconvénients Fonctionne très bien avec des polynômes Très rapide : une grande précision du résultat dès la 1ère itération • Beaucoup d'opérations mathématiques (processeur++) à chaque itération

TD 2: Recherche d'Extrema

I. Applications directes

Exercice 2.1: Recherche d'extrema à l'aide de Newton et de Halley

Soit la fonction suivante :

$$f(x) = x^5 - 5x$$

AD2.1. Montrer analytiquement que cette fonction admet un extremum local dans les x > 0.

On a:

$$f'(x) = 5x^4 - 5$$
$$f''(x) = 20x^3$$

 $\forall x \in \mathbb{R}^+$, on a f''(x) > 0.

On en déduit que la fonction f(x) est bien convexe sur l'ensemble des réels positifs. f(x) possède un extremum qui est un **minimum local**.

AD2.2. À l'aide de la méthode de Newton, trouver l'extremum local de f(x).

On partira de $x_0 = 0.8$ et on déroulera 3 itérations.

La méthode de Newton s'écrit:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

Cette relation de récurrence va converger vers l'extremum proche de $x_0 = 0.8$.

Sa forme explicite est:

$$x_{n+1} = x_n - \frac{5x_n^4 - 5}{20x_n^3}$$

$$x_1 = x_0 - \frac{5x_0^4 - 5}{20x_0^3} = 0, 8 - \frac{5 \cdot 0, 8^4 - 5}{20 \cdot 0, 8^3} = \mathbf{1}, \mathbf{08828125}$$

$$x_2 = x_1 - \frac{5x_1^4 - 5}{20x_1^3} = 1,08828125 - \frac{5 \cdot 1,08828125^4 - 5}{20 \cdot 1,08828125^3} = \mathbf{1}, \mathbf{0101729}$$

$$x_3 = x_2 - \frac{5x_2^4 - 5}{20x_2^3} = 0, 8 - \frac{5 \cdot 1,08828125^4 - 5}{20 \cdot 1,08828125^3} = \mathbf{1}, \mathbf{00015264}$$

$$x_4 = x_3 - \frac{5x_3^4 - 5}{20x_3^3} = 0, 8 - \frac{5 \cdot 1,00015264^4 - 5}{20 \cdot 1,00015264^3} = \mathbf{1}, \mathbf{000000003}$$

TD2

AD2.3. Illustrer la résolution numérique à l'aide d'un graphique

AD2.4. Reprendre la question AD2.2. à l'aide de la méthode de Halley.

La méthode de Halley s'écrit:

$$x_{n+1} = x_n - \frac{f'(x_n)f''(x_n)}{2f''^2(x_n) - f'(x_n)f'''(x_n)}$$

Sa forme explicite est:

$$x_{n+1} = x_n - \frac{(5x_n^4 - 5) \cdot (20x_n^3)}{2 \cdot (20x_n^3)^2 - (5x_n^4 - 5) \cdot (60x_n^2)} = x_n - \frac{100x_n^7 - 100x_n^3}{500x_n^6 + 300x_n^2}$$

$$x_1 = x_0 - \frac{100x_0^7 - 100x_0^3}{500x_0^6 + 300x_0^2} = 0.8 - \frac{100 \cdot 0.8^7 - 100 \cdot 0.8^3}{500 \cdot 0.8^6 + 300 \cdot 0.8^2} = \mathbf{0.89356577}$$

$$x_2 = x_1 - \frac{100x_1^7 - 100x_1^3}{500x_1^6 + 300x_1^2} = 0.8 - \frac{100 \cdot 0.89356577^7 - 100 \cdot 0.89356577^3}{500 \cdot 0.89356577^6 + 300 \cdot 0.89356577^2} = \mathbf{0.94590899}$$

$$x_3 = x_2 - \frac{100x_2^7 - 100x_2^3}{500x_2^6 + 300x_2^2} = 0.8 - \frac{100 \cdot 0.94590899^7 - 100 \cdot 0.94590899^3}{500 \cdot 0.94590899^6 + 300 \cdot 0.94590899^2} = \mathbf{0.97284751}$$

$$x_4 = x_3 - \frac{100x_3^7 - 100x_3^3}{500x_3^6 + 300x_3^2} = 0.8 - \frac{100 \cdot 0.97284751^7 - 100 \cdot 0.97284751^3}{500 \cdot 0.97284751^6 + 300 \cdot 0.97284751^2} = \mathbf{0.98641073}$$

Exercice 2.2: Minimum d'une fonction quadratique

Soit la fonction suivante :

$$f(x) = f(u, v) = u^2 + 3v^2 + uv - 5u$$

La représentation 3D de f(x) est la suivante :

AD2.5. Écrire f(x) sous forme matricielle.

On rappelle l'algorithme du gradient conjugué :

$$|r_k\rangle = A|x_k\rangle - |b\rangle$$

$$|p_{k+1}\rangle = |r_k\rangle - \sum_{i=1}^{i=k} \frac{\langle p_i|r_k\rangle_A}{\langle p_i|p_i\rangle_A}|p_i\rangle$$

$$|x_{k+1}\rangle = |x_k\rangle + \frac{\langle p_{k+1}|b\rangle}{\langle p_{k+1}|p_{k+1}\rangle_A}|p_{k+1}\rangle$$

On rappelle également que l'on peut écrire :

$$f(x) = \frac{1}{2}x^T A x - b^T x$$

La dimension de la fonction est n=2

$$u^{2} + 3v^{2} + uv - 5u$$

$$u^{2} + 3v^{2} + uv = \frac{1}{2} \cdot 2 \cdot (u^{2} + 3v^{2} + uv) = \frac{1}{2} \cdot (2u^{2} + 6v^{2} + 2uv)$$

$$= \frac{1}{2} \cdot (a_{11}u^{2} + 2a_{12}uv + a_{22}v^{2}) = \frac{1}{2} \left[(u \quad v) \cdot \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} \right] = \frac{1}{2} \left[(u \quad v) \cdot \begin{pmatrix} 2 & 1 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} \right]$$

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 6 \end{pmatrix}$$

$$-5u = (-5 \quad 0)x = -(5 \quad 0)x = -b^{T}x$$

$$b = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

Finalement,

$$f(x) = \frac{1}{2}x^{T} \begin{pmatrix} 2 & 1 \\ 1 & 6 \end{pmatrix} x - \begin{pmatrix} 5 \\ 0 \end{pmatrix}^{T} x$$

AD2.6. Dérouler l'algorithme du gradient conjugué afin de trouver le minimum de f(x).

1ère itération

$$|x_0\rangle = \begin{pmatrix} 0\\0 \end{pmatrix}$$

$$|r_0\rangle = A|x_0\rangle - |b\rangle = -|b\rangle = \begin{pmatrix} -5\\0 \end{pmatrix}$$

$$|p_1\rangle = |r_0\rangle = \begin{pmatrix} -5\\0 \end{pmatrix}$$

$$|x_1\rangle = |x_0\rangle + \frac{\langle p_1|b\rangle}{\langle p_1|p_1\rangle_A}|p_1\rangle$$

Avec

$$\langle p_1 | b \rangle = p_1^T b = (-5 \quad 0) {5 \choose 0} = -5 \cdot 5 + 0 \cdot 0 = -25$$

$$\langle p_1 | p_1 \rangle_A = \langle p_1 | A p_1 \rangle = p_1^T A p_1 = (-5 \quad 0) \cdot \begin{pmatrix} 2 & 1 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} -5 \\ 0 \end{pmatrix} = (-5 \quad 0) \cdot \begin{pmatrix} -10 \\ -5 \end{pmatrix} = 50$$
$$|x_1\rangle = |x_0\rangle - \frac{25}{50} \begin{pmatrix} -5 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -5 \\ 0 \end{pmatrix} = \begin{pmatrix} 2,5 \\ 0 \end{pmatrix}$$

2nde itération

$$|r_{1}\rangle = A|x_{1}\rangle - |b\rangle = \begin{pmatrix} 2 & 1\\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2,5\\ 0 \end{pmatrix} - \begin{pmatrix} 5\\ 0 \end{pmatrix} = \begin{pmatrix} 5\\ 2,5 \end{pmatrix} - \begin{pmatrix} 5\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ 2,5 \end{pmatrix}$$
$$|p_{2}\rangle = |r_{1}\rangle - \frac{\langle p_{1}|r_{1}\rangle_{A}}{\langle p_{1}|p_{1}\rangle_{A}}|p_{1}\rangle$$

Avec

$$\langle p_1 | r_1 \rangle_A = p_1^T A r_1 = (-5 \quad 0) \cdot \begin{pmatrix} 2 & 1 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2,5 \end{pmatrix} = (-5 \quad 0) \cdot \begin{pmatrix} 2,5 \\ 15 \end{pmatrix} = -\frac{25}{2} = -12.5$$

$$|p_2\rangle = |r_1\rangle - \frac{12.5}{50} |p_1\rangle = \begin{pmatrix} 0 \\ 2,5 \end{pmatrix} - \frac{-12.5}{50} \begin{pmatrix} -5 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2,5 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} -5 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{5}{4} \\ \frac{5}{2} \end{pmatrix}$$

$$|x_2\rangle = |x_1\rangle + \frac{\langle p_2 | b \rangle}{\langle p_2 | p_2 \rangle_A} |p_2\rangle$$

Avec

$$\langle p_{2}|b\rangle = p_{2}^{T}b = \left(-\frac{5}{4} - \frac{5}{2}\right) {5 \choose 0} = -\frac{25}{4}$$

$$\langle p_{2}|p_{2}\rangle_{A} = \langle p_{2}|Ap_{2}\rangle = p_{2}^{T}Ap_{2} = \left(-\frac{5}{4} - \frac{5}{2}\right) \cdot {2 \choose 1 - 6} \cdot {-\frac{5}{4} \choose \frac{5}{2}}$$

$$= \left(-\frac{5}{4} - \frac{5}{2}\right) \cdot {27 \choose 2} = \frac{135}{4}$$

$$|x_{2}\rangle = {5 \choose 2} + \frac{-\frac{25}{4}}{135 \choose 4} \cdot {-\frac{5}{4} \choose \frac{5}{2}} = {5 \choose 2} - \frac{5}{27} \cdot {-\frac{5}{4} \choose \frac{5}{2}} = {295 \choose 108 \choose -25 \choose 54} \approx {2,73 \choose -0,46}$$

Conclusion:

$$\nabla f_{|x_2\rangle} = A|x_2\rangle - |b\rangle = 0$$

Le minimum recherché est donc situé en

$$f(2,73;-0,46) = -6,8180$$

L'Essentiel

À 1 dimension

Le signe de la dérivée seconde f''(x) permet de savoir s'il s'agit d'un minimum ou d'un maximum :

• f''(x) < 0: maximum

• f''(x) > 0: minimum

Afin de trouver l'extrema, on cherche simplement la racine de la dérivée. Cela peut se faire à l'aide des méthodes classiques vues dans le COURS 1.

Méthode de Newton	$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$
Méthode de Halley	$x_{n+1} = x_n - \frac{f'(x_n)f''(x_n)}{2f''^2(x_n) - f'(x_n)f'''(x_n)}$

À n dimensions

La méthode du gradient conjugué est une méthode itérative permettant de résoudre les systèmes linéaires Ax = n dont la matrice A est définie positive.

Méthode du gradient conjugué

Méthode du gradient conjugué

Méthode du gradient $|r_k\rangle = |x_k\rangle + \frac{\langle p_{k+1}|b\rangle}{\langle p_{k+1}|p_{k+1}\rangle_A}|p_{k+1}\rangle = |x_k\rangle + \frac{p^T_{k+1}b}{p^T_{k+1}Ap_{k+1}}|p_{k+1}\rangle$ Pour n=2 $f(x) = \frac{1}{2}[au^2 + 2buv + cv^2] - b_1u - b_2v$ $= \frac{1}{2}[(u \quad v) \cdot \begin{pmatrix} a & b \\ b & c \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix}] - (-b_1 \quad -b_2) \cdot \begin{pmatrix} u \\ v \end{pmatrix}$ $= \frac{1}{2}[(u \quad v) \cdot \begin{pmatrix} a & b \\ b & c \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix}] - (-b_1 \quad -b_2) \cdot \begin{pmatrix} u \\ v \end{pmatrix}$ $= \frac{1}{2}[(u \quad v) \cdot \begin{pmatrix} a & b \\ b & c \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix}] - (-b_1 \quad -b_2) \cdot \begin{pmatrix} u \\ v \end{pmatrix}$ $= \frac{1}{2}[(u \quad v) \cdot \begin{pmatrix} a & b \\ b & c \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix}] - (-b_1 \quad -b_2) \cdot \begin{pmatrix} u \\ v \end{pmatrix}$ $= \frac{1}{2}[(u \quad v) \cdot \begin{pmatrix} a & b \\ b & c \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix}] - (-b_1 \quad -b_2) \cdot \begin{pmatrix} u \\ v \end{pmatrix}$ $= \frac{1}{2}[(u \quad v) \cdot \begin{pmatrix} a & b \\ b & c \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix}] - (-b_1 \quad -b_2) \cdot \begin{pmatrix} u \\ v \end{pmatrix}$

TD 3 : Valeur d'un polynôme en un point

I. Applications directes

Exercice 3.1: Algorithme de Clenshaw

Soit la fonction suivante :

$$y(x) = 10x^2 + 3x^5 + 5x^3 - 20$$

AD3.1. Donner la valeur de y en 2 par calcul direct et donner le nombre de multiplication.

On a

$$y(x) = 10 \cdot 2 \cdot 2 + 3 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 + 5 \cdot 2 \cdot 2 \cdot 2 + (-20) = 156$$

Il y a 10 multiplications.

AD3.2. Appliquer l'algorithme de Clenshaw pour faire ce même calcul et donner le nombre de multiplications.

Les coefficients c_k sont :

$$c_5 = 3$$

$$c_3 = 5$$

$$c_2 = 10$$

$$c_0 = -20$$

On applique l'algorithme (n = 5):

$$u_5 = c_5 = 3$$

$$u_4 = c_4 + x \cdot u_5 = 0 + 2 \cdot 3 = 6$$

$$u_3 = c_3 + x \cdot u_4 = 5 + 2 \cdot 6 = 17$$

$$u_2 = c_2 + x \cdot u_3 = 10 + 2 \cdot 17 = 44$$

$$u_1 = c_1 + x \cdot u_2 = 0 + 2 \cdot 44 = 88$$

$$u_0 = c_0 + x \cdot u_1 = -20 + 2 \cdot 88 = 156$$

Il y a 5 multiplications.

L'Essentiel

L'algorithme de Clenshaw est un bon moyen d'optimiser le temps de calcul de la valeur d'un polynôme en un point.

Soit la fonction

$$y(x) = \sum_{k=0}^{n} c_k \varphi_k(x)$$

Méthode de Clenshaw (schéma de Hörner)

Dans le cas d'un polynôme (schéma de Hörner) :

$$\varphi_k(x) = x^k$$

L'algorithme de Clenshaw s'écrit :

$$y(x) = \sum_{k=n-1}^{0} c_k + x \cdot u_{k+1}$$

TD 4: Intégration numérique

I. Applications directes

Exercice 4.1: Intégration numérique à l'aide des méthodes classiques

Soit la fonction suivante :

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

On souhaite calculer l'intégrale de la fonction f(x) entre a=0 et b=0.8

AD4.1. Donner une solution analytique de

$$I = \int_{a=0}^{b=0,8} f(x)dx$$

$$I = \int_{a=0}^{b=0,8} (0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5) dx$$
$$= \left[0.2x + \frac{25}{2}x^2 - \frac{200}{3}x^3 + \frac{675}{4}x^4 - \frac{900}{5}x^5 + \frac{400}{6}x^6 \right]_{0}^{0.8} = \mathbf{1,64053}$$

AD4.2. Estimer la valeur de l'intégrale en utilisant la méthode des trapèzes puis commenter le résultat en s'appuyant sur une représentation graphique de la fonction.

La méthode des trapèzes donne :

$$I = (b - a) \cdot \frac{f(a) + f(b)}{2}$$

On a donc:

$$I = (0.8 - 0) \cdot \frac{f(0) + f(0.8)}{2}$$

$$= 0.4 \cdot [0.2 + 0.2 + 25 \cdot 0.8 - 200 \cdot 0.8^{2} + 675 \cdot 0.8^{3} - 900 \cdot 0.8^{4} + 400 \cdot 0.8^{5}]$$
$$= 0.4 \cdot 0.432 = \mathbf{0.173}$$

La méthode des trapèzes donne une mauvaise approximation de I car $f(a) \approx f(b) \approx 0$ alors que la fonction est strictement positive sur cet intervalle et passe par un maxima local $\sim f(0,56) \approx 3,5$

AD4.3. Calculer cette fois-ci l'intégrale à l'aide de la méthode composite.

On rappelle qu'elle s'écrit :

$$I = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_j) + f(b) \right]$$
$$h = \frac{b-a}{n}$$

On fera le calcul sur 4 points puis sur 10 points.

Calcul sur 4 points

$$h = \frac{b-a}{4} = \frac{0.8-0}{4} = 0.2$$

$$I_4 = \frac{0.2}{2} [f(a) + 2f(x_1) + 2f(x_2) + f(b)] = 0.2 \left[f(0) + 2f\left(\frac{0.8}{3}\right) + 2f\left(2 \cdot \frac{0.8}{3}\right) + f(0.8) \right]$$

$$= 0.1 [f(0) + 2f(0.267) + 2f(0.533) + f(0.8)] = 0.2 [0.2 + 1.433 + 3.487 + 0.232] = 1.027$$

Calcul sur 10 points

$$h = \frac{b-a}{10} = \frac{0,8-0}{10} = 0,08$$

$$I_{10} = \frac{0,08}{2} [f(a) + 2f(x_1) + \dots + 2f(x_8) + f(b)]$$

$$= 0,04 \left[f(0) + 2f\left(\frac{0,8}{9}\right) + \dots + 2f\left(8 \cdot \frac{0,8}{9}\right) + f(0,8) \right]$$

$$= 0,04 [f(0) + 2f(0,089) + 2f(0,179) + \dots + 2f(711) + f(0,8)]$$

$$= 0,04 [0,2 + 2 \cdot 1,262 + 2 \cdot 1,288 + \dots + 2 \cdot 2,163 + 0,232] = 1,448$$

AD4.4. Reprendre la question AD4.2. à l'aide de la méthode de Simpson.

On rappelle que l'on a :

$$I = \frac{h}{3} \left[f(x_0) + 4 \sum_{i=1,3,5,\dots}^{n-1} f(x_i) + 2 \sum_{j=2,4,6,\dots}^{n-2} f(x_j) + f(x_n) \right]$$
$$h = \frac{b-a}{n}$$

Calcul sur 4 points

$$h = \frac{b-a}{4} = \frac{0.8-0}{4} = 0.2$$

$$I = \frac{h}{3} [f(a) + 4[f(x_1) + f(x_3)] + 2f(x_2) + f(b)]$$

$$= \frac{0.2}{3} [f(0) + 4[f(0.2) + f(0.6)] + 2f(0.4) + f(0.8)]$$

$$= \frac{0.2}{3} [0.2 + 4 \cdot (1.288 + 3.464) + 2 \cdot 2.456 + 0.232] = \mathbf{1}, \mathbf{623}$$

Calcul sur 10 points

$$h = \frac{b-a}{10} = \frac{0.8-0}{10} = 0.08$$

$$I = \frac{h}{3}[f(a) + 4[f(x_1) + f(x_3) + f(x_5) + f(x_7) + f(x_9)] + 2 \cdot [f(x_2) + f(x_4) + f(x_6) + f(x_8)] + f(b)]$$

$$= \frac{0.08}{3}[f(0) + 4[f(0.08) + f(0.24) + f(0.4) + f(0.56) + f(0.72)] + 2 \cdot [f(0.16) + f(0.32) + f(0.48) + f(0.64)] + f(0.8)]$$

$$= 0.0267 \cdot [0.2 + 4 \cdot 9.408 + 2 \cdot 10.564 + 0.232] = 1.578$$

Exercice 4.2 : Intégration numérique à l'aide de la méthode de Romberg

Soit la fonction suivante :

$$f(x) = \frac{1}{x}dx$$

On souhaite calculer l'intégrale de la fonction f(x) entre a=1 et b=2

AD4.5. Donner une solution analytique de

$$I = \int_{a=1}^{b=2} f(x)dx$$

$$I = \int_{1}^{2} \frac{1}{x} dx = \left[\ln(x)\right]_{1}^{2} = \ln(2) - \ln(1) = \ln(2) = 0,69314718191 \dots$$

AD4.6. Calculer cette intégrale à l'aide de la méthode de Romberg en 5 itérations.

On commence par calculer les termes R_i^0 qui correspondent aux calculs d'intégrale en utilisant la méthode des trapèzes à $n=1,2,4,6\dots$ points.

k	n	R_k^0
1	1	$R_1^0 = \frac{1}{2} (f(0) + f(2)) = \frac{1}{2} (1 + \frac{1}{2}) = 0.75$

2	2	$R_2^0 = 0.5 \cdot \frac{1}{1.5} + \frac{0.5}{2} \cdot \left(1 + \frac{1}{2}\right) = 0.70833333333$
3	4	$R_3^0 = 0.25 \cdot \left(\frac{1}{1,25} + \frac{1}{1,5} + \frac{1}{1,75}\right) + \frac{0.25}{2}\left(1 + \frac{1}{2}\right) = 0.69702380952$
4	8	$R_4^0 = 0,69412185037$
5	16	$R_5^0 = 0,69314718191$

On calcule ensuite les éléments des colonnes suivantes :

En utilisant la formule suivante :

$$R_k^i = \frac{4^i R_k^{i-1} - R_{k-1}^{i-1}}{4^i - 1}$$

On obtient:

$$0,708333333333 \qquad R_{2}^{1} = \frac{4R_{2}^{0} - R_{1}^{0}}{3} = 0,694444$$

$$0,69702380952 \qquad R_{3}^{1} = \frac{4R_{3}^{0} - R_{2}^{0}}{3} = 0,693253 \qquad R_{3}^{2} = \frac{4R_{3}^{1} - R_{2}^{1}}{3} = 0,693253$$

$$0,69412185037 \qquad R_{4}^{1} = \frac{4R_{4}^{0} - R_{2}^{0}}{3} = 0,69315453065 \qquad R_{4}^{2} = \frac{4R_{4}^{1} - R_{3}^{1}}{3} = 0,69314790148 \qquad R_{3}^{3} = \frac{4R_{4}^{2} - R_{3}^{2}}{3} = 0,69214747764$$

$$0,69314718191 \qquad R_{5}^{1} = \frac{4R_{5}^{0} - R_{4}^{0}}{3} = 0,69314765281 \qquad R_{5}^{2} = \frac{4R_{5}^{1} - R_{4}^{1}}{3} = 0,69314719429 \qquad R_{5}^{3} = \frac{4R_{5}^{2} - R_{4}^{2}}{3} = 0,69314718307 \qquad 0,69314718191$$

Finalement,

$$R_5^4 = \mathbf{0}, \mathbf{69314718191}$$

Pour rappel, le calcul analytique donnait

$$I = 0,69314718191$$

L'Essentiel

Objectif: Calculer l'intégrale d'une fonction

Approche : calculer l'aire sous la courbe

- Méthode des trapèzes : adapté pour les polynômes de degré 1 (il faut que f''(x) = 0)
- Méthode des trapèzes composite : on applique n fois la méthode des trapèzes sur n segments
 - o L'erreur est divisée par 4 à chaque fois que l'on double le nombre de segments
- Méthode de Simpson : adaptées aux polynômes d'ordre élevé
 - o Plus précis que la méthode des trapèzes
 - Peut être appliquée de façon composite mais il faut des points equi-espacés, un nombre pair de segments et un nombre impair de points
- Méthode de Romberg : la plus utilisée dans l'industrie et la plus précise

Méthode des trapèzes	$I = (b-a) \cdot \frac{f(a) + f(b)}{2}$
Méthode des trapèzes composite	$I = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_j) + f(b) \right]$ $h = \frac{b-a}{n}$
Méthode de Simpson	$I = \frac{h}{3} \left[f(x_0) + 4 \sum_{i=1,3,5,\dots}^{n-1} f(x_i) + 2 \sum_{j=2,4,6,\dots}^{n-2} f(x_j) + f(x_n) \right]$ $h = \frac{b-a}{n}$
Méthode de Romberg	• Calcul des coefficients de la première colonne R_k^0 à l'aide de la méthode des trapèzes composite On prend $k=1,2,3\dots$ et $n=1,2,4,8,16\dots$ • Calcul des coefficients des autres colonnes : $R_k^i = \frac{4^i R_k^{i-1} - R_{k-1}^{i-1}}{4^i - 1}$

TD 5 : Résolution d'équations différentielles ordinaires

I. Applications directes

Exercice 5.1: Méthode d'Euler

Soit l'équation différentielle suivante :

$$y' = -y + t + 1$$

On prend $0 \le t \le 5$

Et on donne comme condition initiale y(0) = 1.

AD5.1. Résoudre l'équation différentielle en utilisant la méthode d'Euler avec un pas de h=0,2.

On rappelle la méthode d'Euler:

$$y(t_{i+1}) \approx w_{i+1} = w_i + h \cdot f(t_i, w_i)$$
$$w_0 = y_0$$

On a:

$$w_0 = y_0 = 1$$

$$w_1 = w_0 + h \cdot f(t_0, w_0) = 1 + 0.2 \cdot (-1 + 0 + 1) = 1$$

$$w_2 = w_1 + h \cdot f(t_1, w_1) = 1 + 0.2 \cdot (-1 + 0.2 + 1) = 1.04$$

$$w_3 = w_2 + h \cdot f(t_3, w_3) = 1.04 + 0.2 \cdot (-1.04 + 0.4 + 1) = 1.112$$

$$w_4 = w_3 + h \cdot f(t_4, w_4) = 1.112 + 0.2 \cdot (-1.112 + 0.6 + 1) = 1.2096$$

$$w_5 = w_4 + h \cdot f(t_5, w_5) = 1.2096 + 0.2 \cdot (-1.2096 + 0.8 + 1) = 1.32768$$

La solution exacte de cette équation différentielle est :

$$y(x) = e^{-t} + t$$

AD5.2. Calculer l'erreur absolue de la solution donnée par la méthode d'Euler avec un pas de 0,2.

L'erreur absolue est :

$$\delta = |y_i - w_i|$$

i	t_i	w_i	y_i	δ_i
0	0	1	1	0
1	0,2	1	1,018730	0,01873
2	0,4	1,04	1,070320	0,03032
3	0,6	1,112	1,148811	0,03681
4	0,8	1,2096	1,249328	0,03940
5	1.0	1.32768	1.367879	0.04012

Exercice 5.2: Méthode de Runge-Kutta 2

Soit l'équation différentielle suivante :

$$y' = yx^2 - y$$

On prend $0 \le x \le 1$

Et on donne comme condition initiale y(0) = 0.25.

AD5.3. Résoudre l'équation différentielle en utilisant la méthode de Runge-Kutta 2 avec un pas de 0,25.

On rappelle la méthode de RK2:

$$y_{i+1} = y_i + hk_2$$

Avec:

$$k_1 = f(x_i, y_i)$$

$$k_2 = h \cdot f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_1\right)$$

 $1^{\text{ère}}$ itération : i = 0

$$x_1 = x_0 + 0.25 = 0 + 0.25 = 0.25$$

$$k_1 = y_0 x_0^2 - y_0 = 0.25 \cdot 0^2 - 0.25 = -0.25$$

$$x_0 + \frac{h}{2} = 0 + \frac{0,25}{2} = 0,125$$

$$y_0 + \frac{h}{2}k_1 = 0.25 + 0.125 \cdot (-0.25) = 0.21875$$

$$k_2 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}k_1\right) = 0,21875 \cdot 0,125^2 - 0,21875 = -0,2153$$

D'où

$$y_1 = y_0 + hk_2 = 0.25 + 0.25 \cdot (-0.2153) = 0.1962$$

 2^{nde} itération : i = 1

$$x_2 = x_1 + 0.25 = 0.25 + 0.25 = 0.5$$

$$k_1 = y_1 x_1^2 - y_1 = 0.1962 \cdot 0.25^2 - 0.1962 = -0.1842$$

$$x_1 + \frac{h}{2} = 0.25 + \frac{0.25}{2} = 0.375$$

$$y_1 + \frac{h}{2}k_1 = 0.1962 + 0.125 \cdot (-0.1842) = 0.1732$$

$$k_2 = h \cdot f\left(x_1 + \frac{h}{2}, y_1 + \frac{h}{2}k_1\right) = 0,1732 \cdot 0,375^2 - 0,1732 = -0,1488$$

D'où

$$y_2 = y_1 + hk_2 = 0.25 + 0.25 \cdot (-0.1488) = 0.159$$

 $3^{\text{ème}}$ itération : i = 2

$$x_3 = x_2 + 0.25 = 0.5 + 0.25 = 0.75$$

$$k_1 = y_2 x_2^2 - y_2 = 0.159 \cdot 0.5^2 - 0.159 = -0.11925$$

$$x_2 + \frac{h}{2} = 0.5 + \frac{0.25}{2} = 0.625$$

$$y_2 + \frac{h}{2}k_1 = 0.159 + 0.125 \cdot 0.625 = 0.2371$$

$$k_2 = h \cdot f\left(x_2 + \frac{h}{2}, y_2 + \frac{h}{2}k_1\right) = 0.2371 \cdot 0.625^2 - 0.2371 = -0.1445$$

D'où

$$y_3 = y_3 + hk_2 = 0.159 + 0.25 \cdot (-0.1445) = 0.1229$$

 $4^{\text{ème}}$ itération : i = 3

$$x_4 = x_3 + 0.25 = 0.75 + 0.25 = 1.00$$

$$k_1 = y_3 x_3^2 - y_3 = 0.1229 \cdot 0.75^2 - 0.1229 = -0.0538$$

$$x_3 + \frac{h}{2} = 0.75 + \frac{0.25}{2} = 0.825$$

$$y_3 + \frac{h}{2}k_1 = 0.1229 + 0.125 \cdot (-0.0538) = 0.1162$$

$$k_2 = h \cdot f\left(x_3 + \frac{h}{2}, y_3 + \frac{h}{2}k_1\right) = 0,1162 \cdot 0,825^2 - 0,1162 = -0,0371$$

D'où

$$y_3 = y_3 + hk_2 = 0.1229 + 0.25 \cdot (-0.0371) = 0.1136$$

Conclusion

i	1	2	3	4	5
x_i	0,0	0,25	0,5	0,75	1,0
y_i	0,25	0,1962	0,159	0,1229	0,1136

Exercice 5.3: Méthode de Runge-Kutta 4

Soit l'équation différentielle suivante :

$$y' = -1.2y + 7e^{-0.3x}$$

On prend $0 \le x \le 1,5$

Et on donne comme conditions initiales:

$$y(0) = 3$$

AD5.4. Résoudre l'équation différentielle en utilisant la méthode de Runge-Kutta 4 avec un pas de h=0.5.

On a:

$$x_{i+1} = x_i + h = x_i + 0.5$$

Les valeurs de y_{i+1} sont calculées comme suit :

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Avec:

$$k_{1} = h \cdot f(x_{i}, y_{i})$$

$$k_{2} = h \cdot f\left(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{1}\right)$$

$$k_{3} = h \cdot f\left(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{2}\right)$$

$$k_{4} = h \cdot f(x_{i} + h, y_{i} + k_{3})$$

 $1^{\text{ère}}$ itération : i = 0

$$x_1 = x_0 + 0.5 = 0 + 0.5 = 0.5$$

 $k_1 = h \cdot (-1.2y_0 + 7e^{-0.3x_0}) = 0.5 \cdot (-1.2 \cdot 3 + 7e^{-0.3 \cdot 0}) = 1.7$

$$x_0 + \frac{1}{2}h = 0 + \frac{1}{2} \cdot 0.5 = 0.25$$

$$y_0 + \frac{1}{2}k_1 = 3 + \frac{1}{2} \cdot 1.7 = 3.85$$

$$k_2 = h \cdot f\left(-1.2 \cdot \left(y_0 + \frac{1}{2}k_1\right) + 7e^{-0.3 \cdot \left(x_0 + \frac{1}{2}h\right)}\right) = 0.5 \cdot (-1.2 \cdot 3.85 + 7e^{-0.3 \cdot 0.25}) = 0.937$$

$$y_0 + \frac{1}{2}k_2 = 3 + \frac{1}{2} \cdot 0,937 = 3,469$$

$$k_3 = h \cdot \left(-1,2 \cdot \left(y_0 + \frac{1}{2}k_2\right) + 7e^{-0,3 \cdot \left(x_0 + \frac{1}{2}h\right)}\right) = 1,1655$$

$$y_0 + k_3 = 3 + 1,1655 = 4,1655$$

$$k_4 = h \cdot (-1,2 \cdot 4,1655 + 7e^{-0,3 \cdot 0,5}) = 0,513$$

D'où:

$$y_1 = 3 + \frac{1}{6}(1.7 + 2 \cdot 0.937 + 2 \cdot 1.1655 + 0.513) = 4.069$$

 2^{nde} itération : i = 1

$$x_2 = x_1 + 0.5 = 0.5 + 0.5 = 1$$

 $k_1 = h \cdot (-1.2y_1 + 7e^{-0.3x_1}) = 0.5 \cdot (-1.2 \cdot 4.069 + 7e^{-0.3 \cdot 0.5}) = 0.571$

$$x_1 + \frac{1}{2}h = 0.5 + \frac{1}{2} \cdot 0.5 = 0.75$$

$$y_1 + \frac{1}{2}k_1 = 4,069 + \frac{1}{2} \cdot 0,571 = 4,355$$

$$k_2 = h \cdot \left(-1.2 \cdot \left(y_1 + \frac{1}{2} k_1 \right) + 7e^{-0.3\left(x_1 + \frac{1}{2}h \right)} \right) = 0.5 \cdot \left(-1.2 \cdot 4.355 + 7e^{-0.3 \cdot 0.75} \right) = 0.1818$$

$$y_1 + \frac{1}{2}k_2 = 4,069 + \frac{1}{2} \cdot 0,1818 = 4,16$$

$$k_3 = h \cdot \left(-1.2 \cdot \left(y_1 + \frac{1}{2}k_2\right) + 7e^{-0.3 \cdot \left(x_1 + \frac{1}{2}h\right)}\right) = 0.5 \cdot \left(-1.2 \cdot 4.16 + 7e^{-0.3 \cdot 0.75}\right) = 0.2988$$

$$y_1 + k_3 = 4,069 + 0,2988 = 4,368$$

$$k_4 = h \cdot \left(-1.2 \cdot (y_1 + k_3) + 7e^{-0.3(x_1 + h)} \right) = 0.5 \cdot \left(-1.2 \cdot 4.368 + 7e^{-0.3 \cdot 1.0} \right) = -0.02795$$

D'où:

$$y_2 = 4,069 + \frac{1}{6}(0,571 + 2 \cdot 0,1818 + 2 \cdot 0,2988 - 0,02795) = 4,32$$

$3^{\text{ème}}$ itération : i = 2

$$x_3 = x_2 + 0.5 = 1.0 + 0.5 = 1.5$$

$$k_1 = h \cdot (-1.2y_2 + 7e^{-0.3x_2}) = 0.5 \cdot (-1.2 \cdot 4.32 + 7e^{-0.3 \cdot 1.0}) = 0.000864$$

$$x_2 + \frac{1}{2}h = 1.0 + \frac{1}{2} \cdot 0.5 = 1.25$$

$$y_2 + \frac{1}{2}k_1 = 4{,}32 + \frac{1}{2} \cdot 0{,}000864 = 4{,}320$$

$$k_2 = h \cdot \left(-1.2 \cdot \left(y_2 + \frac{1}{2} k_1 \right) + 7e^{-0.3 \left(x_2 + \frac{1}{2} h \right)} \right) = 0.5 \cdot (-1.2 \cdot 4.320 + 7e^{-0.3 \cdot 1.25}) = -0.1865$$

$$y_2 + \frac{1}{2}k_2 = 4.32 + \frac{1}{2} \cdot (-0.1865) = 4.227$$

$$k_3 = h \cdot \left(-1.2 \cdot \left(y_2 + \frac{1}{2} k_2 \right) + 7e^{-0.3 \cdot \left(x_2 + \frac{1}{2} h \right)} \right) = 0.5 \cdot \left(-1.2 \cdot 4.227 + 7e^{-0.3 \cdot 1.25} \right) = -0.1307$$

$$y_2 + k_3 = 4{,}32 + (-0{,}1307) = 4{,}189$$

$$k_4 = h \cdot (-1.2 \cdot (y_2 + k_3) + 7e^{-0.3(x_2 + h)}) = 0.5 \cdot (-1.2 \cdot 4.189 + 7e^{-0.3 \cdot 1.5}) = -0.2817$$

D'où:

$$y_3 = 4,069 + \frac{1}{6}(0,000864 + 2 \cdot (-0,1865) + 2 \cdot (-0,1307) - 0,2817) = 4,167$$

Conclusion

i	1	2	3	4
x_i	0,0	0,5	1,0	1,5
y_i	3,0	4,069	4,32	4,167

L'Essentiel

Objectif : Résoudre numériquement une équation différentielle de type :

$$\begin{cases} \frac{dy}{dt} = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

Méthode d'Euler

$$y(t_{i+1}) \approx w_{i+1} = w_i + h \cdot f(t_i, w_i)$$

 $w_0 = y_0$

Objectif: Résoudre numériquement une équation différentielle de type:

$$\begin{cases} \frac{dy}{dt} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Méthode de Runge-Kutta ordre 2

(version méthode du point milieu)

$$x_{i+1} = x_i + h$$
$$y_{i+1} = y_i + hk_2$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = h \cdot f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_1\right)$$

Méthode de Runge-Kutta ordre 4

$$x_{i+1} = x_i + h$$

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = h \cdot f(x_i, y_i)$$

$$k_2 = h \cdot f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1\right)$$

$$k_3 = h \cdot f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2\right)$$

$$k_4 = h \cdot f(x_i + h, y_i + k_3)$$