Statistics and Estimation for Computer Science

İstanbul Teknik Üniversitesi

Mustafa Kamasak, PhD

These slides are licensed under a Creative Commons Attribution 4.0 License. License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: 2022.3.15

Interval Estimation

Interval Estimation

- ▶ Point estimates are not always useful
- Instead of a single estimate, an interval can be given
- ► For example, sample mean interval: [L, U], where L is the lower limit and U is the upper limit
 - ▶ Short interval: High chance to miss population parameter
 - Long interval: Not very useful
- ▶ Define a confidence level to determine the lenth of the interval
- Commonly used confidence levels are
 - ▶ 90 % confidence level
 - 95 % confidence level
 - ▶ 99 % confidence level
- Given a confidence level, how to find the corresponding interval?

Confidence Interval (CI)

- ► Sample parameter estimation has certain sampling distr.
- ▶ For example, sample mean $\overline{x} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$
- Using sampling distr
 - ► High variance ⇒ larger confidence interval
 - ▶ Low variance ⇒ shorter confidence interval
- Determine confidence interval using area under sampling distribution
- ► For example, if 95 % CI for sample mean is [10, 20], then $P(10 \le \overline{x} \le 20) = 0.95$
- ► How do we interpret this interval in terms of population parameter? (note: population parameter is **not** rv)

Confidence Interval (CI)

- ▶ If you take 100 different samples ⇒ compute 100 different 95% confidence intervals,
- ▶ True population parameter θ will be included in 95 of these intervals.

Notation

• Define z_{α} as the value such that

$$\alpha = 1 - \Phi(z_{\alpha}) = \frac{1}{\sqrt{2\pi}} \int_{z_{\alpha}}^{\infty} \exp\{-\frac{x^2}{2}\} dx$$

ightharpoonup Area of the blue shaded area is α

Confidence Interval for Sample Mean

▶ Sampling distribution of \overline{x}

$$egin{aligned} \overline{x} &\sim \mathcal{N}(\mu, rac{\sigma^2}{\sqrt{N}}) \ Z &= rac{\overline{x} - \mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0, 1) \end{aligned}$$

- We need z_{α} such that $P(|Z| < z_{\alpha}) = 0.95$
- $\alpha = 0.025$
- From z look-up table $z_{\alpha} = 1.96$
- Hence

$$P\left(\frac{\sqrt{N}}{\sigma}|\overline{x} - \mu| \le 1.96\right) = 0.95$$

 $ightharpoonup \overline{x} \pm 1.96 \sigma / \sqrt{N}$ will contain μ with 95% probability.

$$P(\mu \in \overline{\mathbf{x}} \pm 1.96\sigma/\sqrt{N}) = 0.95$$

Confidence Interval for Sample Mean

• Why $\alpha = 0.025$

- ▶ Total area of red and green shades should be 0.05
- ► From symmetry of distr. green area = blue area = 0.025

Confidence Interval and Sample Size

Confidence interval is

$$\left[\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}, \ \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right]$$

- ▶ With a large sample size (N) ⇒ shorter interval
- ightharpoonup With a small sample size (N) \implies larger interval

Confidence Interval (CI)

ightharpoonup Commonly used confidence levels and corresponding z_{α} values are

Confidence level	α	$z_{\alpha/2}$
90%	0.10	1.645
95%	0.05	1.96
99%	0.01	2.576

Confidence Interval (CI)

- ightharpoonup sample size N given \implies confidence interval is computed
- ▶ confidence interval is given ⇒ sample size is computed
- ▶ For example, we want confidence interval 1α to be B, then

$$z_{\alpha/2} \frac{\sigma}{\sqrt{N}} \le \frac{B}{2}$$

$$N \ge \left(\frac{2z_{\alpha/2}\sigma}{B}\right)^{2}$$

$$N_{min} = \left\lceil \left(\frac{2z_{\alpha/2}\sigma}{B}\right)^{2} \right\rceil$$

Confidence Level for Lower Limit

- ▶ Sometimes an upper or a lower limit is required with some confidence level $1-\alpha$
- For example find the lower limit for population mean with confidence level $1-\alpha$

$$P(\frac{\sqrt{N}}{\sigma}(\overline{x} - \mu) \le z_{\alpha}) = 1 - \alpha$$
$$P(\overline{x} - z_{\alpha} \frac{\sigma}{\sqrt{N}} \le \mu) = 1 - \alpha$$

▶ We need green area to be $1-\alpha$, and blue are to be α

Confidence Level for Upper Limit

ightharpoonup Similarly, find the upper limit for population mean with confidence level lpha

$$P(\frac{\sqrt{N}}{\sigma}(\overline{x} - \mu) \ge z_{\alpha}) = 1 - \alpha$$
$$P(\mu \le \overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{N}}) = 1 - \alpha$$

• We need green area to be α , and blue are to be $1-\alpha$

Confidence Level for Lower/Upper Limits

▶ Upper limit with confidence level of $1 - \alpha$ is

$$\overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{N}}$$

▶ Lower limit with confidence level of $1 - \alpha$ is

$$\overline{x} - z_{\alpha} \frac{\sigma}{\sqrt{N}}$$

Confidence Interval

- Population std dev σ is used to compute confidence interval \Longrightarrow σ **not** known
- Use sample std dev s instead of population std dev σ
- ▶ Both \overline{x} and s are rv \implies their ratio is also rv
- Ratio of 2 rv does not have normal distr anymore

$$T \triangleq \frac{\sqrt{N}}{s}(\overline{x} - \mu)$$

▶ T has t distribution with N-1 dof as one dof is lost due to specification of sample std dev s

$$T \sim t_{N-1}$$

T-distribution History

- Discovered by William Gosset, a chemist working for the Guinness brewery
- Statistical methods were used to test quality of beer production
- Company policy at Guinness forbade its chemists from publishing their findings
- ► Gosset published his statistical work in the journal Biometrika 1908 under the pseudonym "Student"
- Known also as Student's t distribution
- For more info https://en.wikipedia.org/wiki/Student's_t-test

T Distribution

- Continuous distribution
- ▶ Distribution is symmetric around x = 0
- ightharpoonup Single parameter degrees of freedom (v)
- pdf

$$f(x) = a(v) \left(1 + \frac{1}{v}x^2\right)^{-\frac{1}{2}(v+1)}$$

where

$$a(v) = \frac{1}{\sqrt{v\pi} \frac{\Gamma(0.5(v+1))}{\Gamma(0.5v)}}$$

for integer values of υ and gamma function is

$$\Gamma(m) = (m-1)!$$

for positive integers.

No closed form expression for cdf of t-distr ⇒ Need look-up table

T Distribution vs Normal Distribution

- t-distribution has fatter tails compared to normal distr
- ► This is due to the added uncertainty for using sample std dev instead of population std dev
- ightharpoonup For a given α

$$t_{N-1,\alpha} > z_{\alpha}$$

due to fat tails

T Distribution vs Normal Distribution

- As dof increases t distr converges to normal distr
- ▶ Difference between $t_{N-1,\alpha}$ z_{α} decreases with increasing dof (N)
- ► For dof≥ 30, t-distr is just like normal distr

Confidence Interval of Sample Mean with Sample Std Dev

▶ $1 - \alpha$ confidence interval is:

$$\left[\overline{x}-t_{N-1,\alpha/2}\frac{s}{\sqrt{N}}\;,\;\overline{x}+t_{N-1,\alpha/2}\frac{s}{\sqrt{N}}\right]$$

- ► This interval is larger compared to case where population std dev is used
- ► This is due to added uncertainty
- ▶ How to find $t_{N-1,\alpha/2}$ \Longrightarrow Use t-table

T-table

- ▶ Cdf of t-distr. is precomputed numerically
- ▶ Values of cdf at all t values are not given
- lacktriangle Only critical t values for some lpha are given
- ► T-lookup table

				-					
t Distribution: Critical Values of t									
				mce level					
Degrees of freedom	Two-tailed test: One-tailed test:	10% 5%	5% 2.5%	2% 1%	1% 0.5%	0.2% 0.1%	0.1% 0.05%		
1		6.314	12.706	31.821	63.657	318.309	636.619		
2		2.920	4.303	6.965	9.925	22.327	31.599		
3		2.353	3.182	4.541	5.841	10.215	12.924		
4		2.132	2.776	3.747	4.604	7.173	8.610		
5		2.015	2.571	3.365	4.032	5.893	6.869		
6		1.943	2.447	3.143	3.707	5.208	5.959		
7		1.894	2.365	2.998	3.499	4.785	5.408		
8		1.860	2.306	2.896	3.355	4.501	5.041		
9		1.833	2.262	2.821	3.250	4.297	4.781		
10		1.812	2.228	2.764	3.169	4.144	4.587		

LABLE A.Z

Confidence Interval for t Distr

ightharpoonup Commonly used confidence levels and corresponding $t_{10,\alpha/2}$ values are

Confidence level	α	$z_{\alpha/2}$	$t_{10,\alpha/2}$
90%	0.10	1.645	1.812
95%	0.05	1.960	2.228
99%	0.01	2.576	3.169

ightharpoonup Commonly used confidence levels and corresponding $t_{30,\alpha/2}$ values are

Confidence level	α	$z_{\alpha}/2$	$t_{30,\alpha/2}$
90%	0.10	1.645	1.697
95%	0.05	1.960	2.042
99%	0.01	2.576	2.750

 As sample size gets close to 30, there is small difference between critical values of normal distr and t distr

Confidence Level Lower/Upper Limits

▶ Upper limit with confidence level of $1 - \alpha$ is

$$\overline{x} + t_{N-1,\alpha} \frac{s}{\sqrt{N}}$$

▶ Lower limit with confidence level of $1 - \alpha$ is

$$\overline{x} - t_{N-1,\alpha} \frac{s}{\sqrt{N}}$$

Confidence Interval for Population Variance

▶ Sampling distribution of the sample variance s^2 is

$$X^2 = \frac{(N-1)s^2}{\sigma^2} \sim \chi^2_{N-1}$$

chi-square distribution with N-1 dof

Confidence Interval for Population Variance

- ▶ Need χ^2 look-up table for intervals
- Critical values for χ^2 distribution:

	Chi-square Distribution Table									
pdf f(x)	d.f.	.995	.99	.975	.95	.9	.1	.05	.025	.01
Î	1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63
	2	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21
	3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34
	4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
$p = \Pr[X \ge \chi^2]$	5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
$p-1$ $1[X \ge X]$	6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81
	7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48
χ^2	8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09

- ▶ For 1α CI with dof=N-1
 - ▶ Lower limit for X^2 should be $\chi^2_{N-1,1-\alpha/2}$
 - ▶ Upper limit for X^2 should be $\chi^2_{N-1,\alpha/2}$

$$\begin{split} &\chi^2_{N-1,1-\alpha/2} \leq X^2 \leq \chi^2_{N-1,\alpha/2} \\ &\chi^2_{N-1,1-\alpha/2} \leq \frac{(N-1)s^2}{\sigma^2} \leq \chi^2_{N-1,\alpha/2} \\ &\frac{(N-1)s^2}{\chi^2_{N-1,\alpha/2}} \leq \sigma^2 \leq \frac{(N-1)s^2}{\chi^2_{N-1,1-\alpha/2}} \end{split}$$

Confidence Interval for Population Variance

▶ 90% CI for population variance σ^2 with dof=5 is

$$\left[\frac{5s^2}{11.07}, \ \frac{5s^2}{1.15}\right]$$

Lower and Upper Limit for Population Variance

▶ Lower limit with $1 - \alpha$ confidence is

$$\frac{(N-1)s^2}{\chi^2_{N-1,\alpha}}$$

▶ Upper limit with $1 - \alpha$ confidence is

$$\frac{(N-1)s^2}{\chi^2_{N-1,1-\alpha}}$$

- Sometimes a confidence interval is required for a proportion of some condition in a population
- ► For example, a confidence interval can be required for the accuracy of a binary classifier
- Let \hat{p} be a zero bias point estimate of the proportion
- ▶ If p is not close to 0 or 1, and when the sample size is large (Np > 5 and N(1-p) > 5)

$$Z riangleq rac{\hat{
ho} - p}{\sqrt{rac{
ho(1-
ho)}{N}}} \sim \mathcal{N}(0,1)$$

► Why?

- ▶ Let *m* be total number of cases in the sample that has this certain condition
- ▶ In binary classification example, let *m* be the number of correctly classified cases
- m has binomial distr

$$m \sim \mathsf{Binomial}(p)$$

with
$$E(m) = Np$$
 and $\sigma_m^2 = Np(1-p)$

- ▶ If p is not close to 0 or 1, and when the sample size is large (Np > 5 and N(1-p) > 5) binomial distr can be approximated with normal distr.
- Continuity correction described in the next slide!!!
- ► Then, $\frac{m-Np}{\sqrt{Np(1-p)}}$ has standard normal distr.

$$Z \triangleq \frac{m - Np}{\sqrt{Np(1-p)}} = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{N}}} \sim \mathcal{N}(0,1)$$

$$Z \triangleq rac{m - Np}{\sqrt{Np(1-p)}} = rac{\hat{p} - p}{\sqrt{rac{p(1-p)}{N}}} \sim \mathcal{N}(0,1)$$

▶ $1-\alpha$ confidence interval is

$$\left[\hat{p}-z_{lpha/2}\sqrt{rac{p(1-p)}{N}},\;\hat{p}+z_{lpha/2}\sqrt{rac{p(1-p)}{N}}
ight]$$

▶ This interval is useless as it uses population parameter *p* to get an interval about *p*!

- Let $\hat{\Theta}$ be an estimator for population parameter θ
 - ▶ If Ô has normal distr.
 - ▶ If Ô is approximately unbiased
 - ▶ If estimator variance $\sigma_{\hat{\Theta}}^2$ can be estimated from sample

then confidence interval for θ can be computed using $\sigma_{\hat{\Theta}}^2$ instead of population variance σ^2

$$[\hat{\theta} - z_{\alpha/2}\sigma_{\hat{\Theta}}, \ \hat{\theta} + z_{\alpha/2}\sigma_{\hat{\Theta}}]$$

- For population parameter listed conditions hold
- ▶ 1α confidence interval is

$$\left[\hat{
ho}-z_{lpha/2}\sqrt{rac{\hat{
ho}(1-\hat{
ho})}{N}},\;\hat{
ho}+z_{lpha/2}\sqrt{rac{\hat{
ho}(1-\hat{
ho})}{N}}
ight]$$

Lower and Upper Limit for Population Proportion

▶ Lower limit with $1 - \alpha$ confidence is

$$\hat{
ho} - z_{lpha} \sqrt{rac{\hat{
ho}(1-\hat{
ho})}{N}}$$

• Upper limit with $1-\alpha$ confidence is

$$\hat{p} + z_{\alpha} \sqrt{rac{\hat{p}(1-\hat{p})}{N}}$$

Continuity Correction

- Binomial is a discrete distr
- Normal distr. is continuous distr.
- ▶ Binomial → Normal approximation will not work:
 - ▶ if p is close to 0 or 1,
 - ▶ if sample size is small

Image taken from http://mathcenter.oxford.emory.edu/site/math117/normalApproxToBinomial/

Continuity Correction

Normal
P(k-0.5 < X < k + 0.5)
P(X < k + 0.5)
P(X < k-0.5)
P(X > k + 0.5)
P(X > k-0.5)

One Sample Hypothesis Testing

Hypothesis Testing

- ► From estimation of a population parameter to test a hypothesis about the population parameter
- Concepts
 - ▶ H₀ : null hypothesis
 - H₁: alternative hypothesis
- ▶ Typically, widely accepted assumption is used as null hypothesis
- Without a strong evidence (from sample) against null hypothesis, it will not be rejected

Hypothesis Types

- ► There are two types of hypothesis
- Simple hypothesis (two-sided)

$$H_0: \theta = \theta_0$$

$$H_1: \theta \neq \theta_0$$

Composite hypothesis (one-sided)

 $H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$

or

 $H_0: \theta \ge \theta_0$ $H_1: \theta < \theta_0$

Hypothesis Testing

- ▶ A test statistics (*T*) obtained from the sample is used
- Depending on the value of this test statistics, we can reject or retain H₀
- ▶ Define a critical region (rejection region) using a critical value c

$$\mathcal{R}_{\text{one-sided}} = \{T(x) > c\}$$

or

$$\mathcal{R}_{\mathsf{two-sided}} = \{ |T(x)| > c \}$$

Hypothesis Testing

- ightharpoonup If the value of test statistics is within critical region \implies reject H_0
- ▶ If the value of test statistics is outside critical region (acceptance region) \implies do not reject H_0 / retain H_0

$$\begin{cases} T(x) \in \mathcal{R} & \text{reject } H_0 \\ T(x) \notin \mathcal{R} & \text{retain } H_0 \end{cases}$$

- Not rejecting H₀ does not mean accepting H₀
- Failing to reject (or retaining) H₀ just means sample statistics does not supply a strong evidence against H₀

Hypothesis Testing – Example

- ► Let H₀ to be average cholesterol level in the healthy population is 170
- ▶ Take a sample of 100 healthy individual, measure their cholesterol
- ▶ Let the test statistic to be $T = \overline{x} 170$
- ▶ Let critical value to be 20
- ► Then critical region will be

$$\mathcal{R} = \{ |\overline{x} - 170| \ge 20 \}$$

- ▶ If mean cholesterol of the sample is
 - ▶ larger then or equal to 190
 - less than or equal to 150

H₀ is rejected

Hypothesis Testing

- ▶ How to determine the test statistics *T*
- Use a test statistics where the sampling distribution is known
- ▶ How to determine the critical value or critical region?
- lacktriangle Determine a significance level lpha
- Using sampling distr of test statistics, find a critical value c such that

$$P(T(x) \in R \mid H_0) = \alpha$$

 $P(\text{reject } H_0 \mid H_0) = \alpha$

Relation of Hypothesis Testing and Confidence Interval

Consider the simple hypothesis:

$$H_0: \theta = \theta_0$$

$$H_1: \theta \neq \theta_0$$

- lacktriangle Let significance level to be lpha
- ▶ Let [L, U] be the 1α CI

$$\begin{cases} \theta_0 \in [L, \ U] & \text{retain } H_0 \\ \theta_0 \notin [L, \ U] & \text{reject } H_0 \end{cases}$$

Types of Errors in Hypothesis Testing

	H ₀	H ₀
	retained	rejected
H ₀		type-I error
correct	$1-\alpha$	α
H ₀	type-II error	
incorrect	1 0	$1-\beta$

$$\begin{split} &P(\text{retain H}_0 \mid \text{H}_0 \) = 1 - \alpha \\ &P(\text{reject H}_0 \mid \text{H}_0 \) = P(\text{type-I error}) = \alpha \\ &P(\text{reject H}_0 \mid \text{H}_1 \) = 1 - \beta \\ &P(\text{retain H}_0 \mid \text{H}_1 \) = P(\text{type-II error}) = \beta \end{split}$$

Type-I Error

- ► Assume H₀ is correct for a composite hypothesis (one-sided)
- ► Consider the following sampling distribution (for a sample statistics) when H₀ is correct
- ▶ If a sample statistics fall in the critical (red) region, H_0 is rejected \implies type-I error
- lacktriangle Red area is the probability of type-I error $= \alpha$
- Green are is the probability of correctly retaining $H_0 = 1 \alpha$

Factors of Type-I Error

- lacktriangle Type-I error probability is the significance level lpha
- ▶ Depending on the cost of type-I error, its probability is selected during study design before data collection
- ▶ Typically used values for power of a test is 0.8, 0.85, or 0.9
- Hence there is no factor that affects type-I error

Type-II Error

- ▶ Type-II error: Retaining H₀ when H₁ is correct
- ▶ If the sample parameter falls within the acceptance region (outside critical region)
- ▶ In the figure, if sample parameter is less than c, H_0 is retained
- lacktriangle Probability of type-II error is the area shown in magenta $\implies eta$

Type-II Error and Power

- ightharpoonup Probability of type-II error is the area shown in magenta $\implies \beta$
- ▶ Probability of rejecting H_0 when H_1 is correct is called "power of the test" $= 1 \beta$
- Shown in cyan area
- How to compute type-II error probability and power of the test
- ▶ Blue sampling distribution $-P(\text{sample parameter} \mid H_1)$ is not known

Type-II error and Power

- ▶ H₁ does not result in a sampling distribution
- ► For example:

 $H_0: \mu = 0$ $H_1: \mu \neq 0$

Alternative hypothesis do not result in a distribution for sample mean

- \blacktriangleright One possibility is to compute type-II error and power as a function of distance from H_0
- ▶ What about std. dev.? ⇒ requires pilot study (small sample size) or technical prior information
- Another possibility is to compute type-II error and power of test at a meaningful (in terms of application) distance

Type-II Error and Power

- ► Power of a test is typically pre-selected at a given distance to find the sample size
- ▶ Typically used values for power of a test is 0.8, 0.85, or 0.9
- Distance is a meaningful difference
- Sample variance is computed from a pilot study (small sample size) or used from literature

Factors of Type-II Error and Power

- ▶ Sample size N and significance level α affects type-II error probability β and test power 1β
- ▶ Sample size $\uparrow \implies \beta \downarrow$ and power \uparrow
- ▶ Significance level $\alpha \uparrow \implies \beta \downarrow$ and power \uparrow

Type I-II Errors in Binary Classification

- ▶ In binary classification, terminology is a bit different
 - Confusion matrix
 - True/False positive
 - ► True/False negative
- ▶ Think H₀ as negative and H₁ as positive
- Type-I error is like FP
- Type-II error is like FN

Figure taken from https://en.wikipedia.org/wiki/Type_I_and_type_II_errors

p-value

- From a sample, let the observed value of t statistic be tobs
- ► Then p-value is the probability of observed sample statistics or more extreme observations when H₀ is correct
- ► For a two-tailed test (simple hypothesis), p-value is the red area shown below

p-value

► For a one-tailed test (composite hypothesis), p-value is the red area shown below

Interpretation of p-value

p-value is a measure of evidence against H₀

p-value	Interpretation	
<0.01	very strong evidence against H ₀	
0.01-0.05	strong evidence against H_0	
0.05-0.10	weak evidence against H ₀	
>0.10	little or no evidence against H_0	
	intile of no evidence against m	

- \blacktriangleright A large p-value is **NOT** a strong evidence in favor of H_0
- ▶ p-value is **NOT** the probability of H₀
- ► Why?

Interpretation of p-value

 $ightharpoonup t_{obs}$ is an rv \implies p is also rv

$$p \triangleq P(T \ge t_{obs}|\mathsf{H}_0|) = 1 - F_t(t_{obs})$$

 F_t is the cdf of sample statistics t when H_0 is correct

- ▶ Consider a new rv K whose pdf is $F_t(t)$
- ▶ Then p = 1 K
- From probability course
 - ► *K* ~ Uni(0, 1)
 - ▶ p ~ Uni(0,1)
- ▶ When H₀ is correct, p-value has uniform distribution in [0,1]
- \blacktriangleright Hence a large p-value cannot be interpreted as an evidence in favor of H_0

Significance Level vs p-value

- Significance level α is selected during study design (before data collection)
- ▶ Typical values for significance level is 0.1, 0.05 or 0.01
- ▶ If type-I error is very costly choose smaller significance level
- p-value is computed from sample after data collection
- If $p < \alpha \ (t_{obs} > t_{\alpha}) \implies \text{reject H}_0$
- ▶ t_{obs} is within critical region reject H₀
- If $p > \alpha$ $(t_{obs} < t_{\alpha}) \implies$ retain H_0
- $ightharpoonup t_{obs}$ is outside critical region retain H_0

Hypothesis Testing for Population Parameters

- Population parameters
 - Mean
 - Variance
 - ► Proportion

► Simple hypothesis: (two-sided test)

```
H_0: \mu = \mu_0

H_1: \mu \neq \mu_0
```

Composite hypothesis: (one-sided test)

 $H_0: \mu \leq \mu_0$

 $H_1: \mu > \mu_0$

or

 $H_0: \mu \geq \mu_0$

 $\mathsf{H_1}:\,\mu<\mu_0$

- For population mean, normalized sample mean is used as test statistic
- If population variance σ^2 is known

$$T = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{N}}$$

- lacktriangle Sampling distribution for sample mean: $\mathcal{T} \sim \mathcal{N}(0,1)$
- ▶ If population variance σ^2 is unknown, sample variance s^2 is used

$$T = \frac{\overline{x} - \mu_0}{s / \sqrt{N}}$$

▶ Sampling distribution for sample mean: $T \sim t_{N-1}$

- ightharpoonup Set significance level α
- Depending on the sampling distribution
 - Normal distr if population variance is known
 - ► T distr if population variance is unknown
- Critical values are found from tables
- ► For two-sided test (simple hypothesis), t_{critical} is
 - $z_{\alpha/2}$ if population variance is known
 - $t_{N-1,\alpha/2}$ if population variance is unknown
- For one-sided test (composite hypothesis), t_{critical} is
 - z_{α} if population variance is known
 - $t_{N-1,\alpha}$ if population variance is unknown
- ightharpoonup Compute sample mean from sample \overline{x} and observed test statistic t_{obs}
- ▶ If t_{obs} is within critical region \implies reject H_0
- Otherwise, retain H₀

- p-value of the test is
- ► For known population variance
 - two-sided test

p-value =
$$2(1 - F_z(\frac{\overline{x} - \mu_0}{\sigma/\sqrt{N}})) = 2(1 - F_z(t_{obs}))$$

one-sided test

p-value
$$=1-F_z(rac{\overline{x}-\mu_0}{\sigma/\sqrt{N}})=1-F_z(t_{obs})$$

- For unknown population variance
 - two-sided test

p-value =
$$2\left(1 - F_t\left(\frac{\overline{x} - \mu_0}{s/\sqrt{N}}\right)\right) = 2(1 - F_t(t_{obs}))$$

one-sided test

p-value =
$$1 - F_t(\frac{\overline{x} - \mu_0}{s/\sqrt{N}}) = 1 - F_t(t_{obs})$$

where F_t is the cdf of t distr with N-1 dof.

Hypothesis Testing for Population Variance

Simple hypothesis: (two-sided test)

$$H_0: \sigma^2 = \sigma_0^2$$

 $H_1: \sigma^2 \neq \sigma_0^2$

Composite hypothesis: (one-sided test)

 $H_0: \sigma^2 \le \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$

or

 $H_0: \sigma^2 \ge \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$

Hypothesis Testing for Population Variance

Test statistics:

$$T = \frac{(N-1)s^2}{\sigma_0^2} \sim \chi_{N-1}^2$$

- ightharpoonup Critical value for significance level of α
 - Two-sided test:
 - ▶ Lower critical value: $\chi^2_{N-1,1-\alpha/2}$
 - Upper critical value: $\chi^2_{N-1,\alpha/2}$
 - One-sided test:
 - $\chi^2_{N-1,1-\alpha}$ if $H_0: \sigma^2 \ge \sigma_0^2$ $\chi^2_{N-1,\alpha}$ if $H_0: \sigma^2 \le \sigma_0^2$

Hypothesis Testing for Population Proportion

Simple hypothesis: (two-sided test)

```
H_0: p = p_0

H_1: p \neq p_0
```

Composite hypothesis: (one-sided test)

 $H_0: p \le p_0$ $H_1: p > p_0$

or

 $H_0: p \geq p_0$

 $H_1 : p < p_0$

Hypothesis Testing for Population Proportion

► Test statistic:

$$T = \frac{M/N - p_0}{\sqrt{\frac{p_0(1-p_0)}{N}}}$$

- ▶ $T \sim \mathcal{N}(0,1)$ if $Np_0 > 5$ and $N(1-p_0) > 5$
- Critical value
 - ▶ Two-sided test: $z_{\alpha/2}$
 - One-sided test: z_{α}
- p-value
 - Two-sided test:

$$p
-value = 2(1 - F_z(t_{obs}))$$

One-sided test:

$$p$$
-value = $1 - F_z(t_{obs})$