Proposition 29.5 also holds for sesquilinear forms and their matrix representations.

Observe that if φ is a Hermitian form (E=F) and if K does not have characteristic 2, then by Theorem 29.10, there is a basis of E with respect to which the matrix M representing φ is a diagonal matrix. If $K=\mathbb{C}$, then these entries are real, and this allows us to classify completely the Hermitian forms.

Proposition 29.11. Given any Hermitian form $\varphi \colon E \times E \to \mathbb{C}$ with $\dim(E) = n$, there is a basis (e_1, \ldots, e_n) of E such that

$$\Phi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{p} x_i^2 - \sum_{i=p+1}^{p+q} x_i^2,$$

with $0 \le p, q$ and $p + q \le n$.

The proof of Proposition 29.11 is the same as the real case of Proposition 29.6. Sylvester's inertia law (Proposition 29.7) also holds for Hermitian forms: p and q only depend on φ .

29.3 Orthogonality

In this section we assume that we are dealing with a sesquilinear form $\varphi \colon E \times F \to K$. We allow the automorphism $\lambda \mapsto \overline{\lambda}$ to be the identity, in which case φ is a bilinear form. This way, we can deal with properties shared by bilinear forms and sesquilinear forms in a uniform fashion. Orthogonality is such a property.

Definition 29.12. Given a sesquilinear form $\varphi \colon E \times F \to K$, we say that two vectors $u \in E$ and $v \in F$ are orthogonal (or conjugate) if $\varphi(u,v) = 0$. Two subsets $E' \subseteq E$ and $F' \subseteq F$ are orthogonal if $\varphi(u,v) = 0$ for all $u \in E'$ and all $v \in F'$. Given a subspace U of E, the right orthogonal space of U, denoted U^{\perp} , is the subspace of F given by

$$U^{\perp} = \{ v \in F \mid \varphi(u, v) = 0 \quad \text{for all } u \in U \},$$

and given a subspace V of F, the *left orthogonal space* of V, denoted V^{\perp} , is the subspace of E given by

$$V^\perp = \{u \in E \mid \varphi(u,v) = 0 \quad \text{for all } v \in V\}.$$

When E and F are distinct, there is little chance of confusing the right orthogonal subspace U^{\perp} of a subspace U of E and the left orthogonal subspace V^{\perp} of a subspace V of E. However, if E = F, then $\varphi(u, v) = 0$ does not necessarily imply that $\varphi(v, u) = 0$, that is, orthogonality is not necessarily symmetric. Thus, if both U and V are subsets of E, there is a notational ambiguity if U = V. In this case, we may write U^{\perp_r} for the right orthogonal and U^{\perp_l} for the left orthogonal.

The above discussion brings up the following point: When is orthogonality symmetric?