اسيلوسكوپ

صالحيان

هدف: آشنائی با اسیلوسکوپ

لامپ اشعه كاتدى (CRT)

وسایل مورد نیاز:

اسيلوسكوپ

جعبه مقاومت

خازن

سیم های رابط

باترى

پانل اصلی اسیلوسکوپ

الف) اندازه گیری افتلاف پتانسیل منبع– DC

۱-کلید نوع ورودی را در مالت Ground قرار می دهیم ۷-بوسیله دگمه های Position افقی و عمودی باریکه الکترونی را طوری تنظیم می کنیم که در مبدا دستگاه مفتصات قرار گیرد

Volt/Div=0.5v/cm

مدول ۱: نتایج مربوط به منبع تغذیه DC

$$V_{DC} \pm \Delta V_{DC} =$$

AC ب) اندازه گیری دامنه و مقدار ولتاژ مؤثر (V_{rms}) منبع AC دامنه موج: میزان انمراف از نقطه تعادل تا مداکثر و یا مداقل انمراف ولتاژ موثر: معادل ولتاژ DC که همان مقدار توان را در مدار ایماد می کند ج) اندازه گیری زمان تناوب و فر کانس

زمان تناوب: فاصله زمانی بین دو نقطه همفاز فرکانس : تعداد نوسانات در یک ثانیه

Volt/Div=0.5 v/cm Time/Div=0.2 ms/cm f=800Hz

Volt/Div=0.5 v/cm Time/Div=0.2 ms/cm f=300Hz

Volt/Div=0.5 v/cm Time/Div=0.2 ms/cm f=500Hz

$$\Delta V = 0.2 \ Cm \times Volt/Div$$

$$\Delta T = 0.2 \ Cm \times Time/Div$$

$$f = \frac{1}{T}$$
 , $\Delta f = \frac{|\Delta T|}{T} f$

مدول ۱: نتایج مربوط به منبع تغذیه

F(Hz)	$V_{p-p} \pm \Delta V_{p-p}(v)$	$T \pm \Delta T(ms)$	$V_{rms} \pm \Delta V_{rms}(v)$	$f \pm \Delta f(Hz)$
800 سينوسى				
300 مثلثى				
500 مربعی				

د) مماسیه افتلاف فاز پر مسب فرکانس در مدار

$$\begin{cases} X = E \, Sin(\omega t) \\ Y = B \, Sin(\omega t + \theta) \end{cases}$$

بستن مدار الكتريكي

f=200Hz

f=400Hz

f=600Hz

f=800Hz

f=1000Hz

f=1200Hz

f=1400Hz

f=1600Hz

f=1800Hz

f=2000Hz

f=2200Hz

f=2400Hz

مِدول ٣؛ مطابق نتایج بدست آمده در قسمت های قبل، مِدول زیر را کامل کنید.

f(HZ)	200	400	600	800	1000	1200	1400	1600	1800	2000	2200	2400
2A												
2B												
$sin\theta$												

ه) ایجاد منمنی های لیساژور

$$\frac{f_v}{f_h} = \frac{N_2}{N_1} = \frac{N_2}{N_1}$$
 تعداد برخوردهای خط قائم با منحنی تعداد برخوردهای خط قائم

مالت اول:

مالت دوم:

اشكال ليساژور

قابل توجه دانشجویان

- •جداول ۱ تا ۳ را کامل کنید.
- بر اساس نتایج بدست آمده در جدول ۳:
- نمودار $\sin\theta$ بر حسب فرکانس را در یک کاغذ میلیمتری رسم نمایید و اختلاف فاز عملی مربوط به فرکانس 1500 را از روی نمودار به دست آورید.
- مقُدار اخْتلاف فاز θ -تَتُورِي را از رابطُه $an heta=RC\omega$ بدست آورده و درصد خطای نسبی آنها را محاسبه کنید.
- •نسبت های فرکانسی را در حالتهای اول و دوم تشکیل اشکال لیساژور بدست آورید. مطابق فرمت خواسته شده، گزارش کار تهیه و PDF آن را حداکثر تا شروع کلاس بعدی، به <u>آدرس</u> خواسته شده ارسال نمائید.

متشكرم