Battery Health Prediction System

Leveraging Data Science and Machine Learning to Predict Battery Maintenance

Project Overview

- Objectives
 - Provide recommendations to increase battery cycle life.
 - Provide recommendations to the battery maintenance team to improve service quality.

Key Components

Data preparation and EDA. Feature engineering and model training. Predictive maintenance dashboard.

Data Story Overview

1

Data Collection

Gather raw battery data from IoT sensors.

2

Analysis & Modeling

Clean data and build predictive models.

3

Actionable Insights

Estimate cycle life and identify maintenance needs.

System Architecture

Data Exploration

Dataset Overview

Source: InfluxDB (90-day retention).

Key features(Factors):
Temperature, voltage, SOC
Patterns, current, cycle
count, Environmental
Factors, Alarms and Faults.

Data Challenges

Sparse data, categorical features, and missing values.

Data Cleaning

Handle missing values. Encode categorical features. Aggregate sparse data.

Feature Engineering

Key Features

Temperature (internal, surface, BMS PCB). Voltage (cell, total). SOC, current, cycle count.

Derived Features

Time Analysis. Voltage standard deviation. Voltage range.
Temperature differences.

Categorical Features

Location type. Battery status. FET states, AlarmDesc.

Model Development

Model Selection

CatBoostRegressor handles categorical features and missing data.

Training Process

Split data into training and testing sets. Train on key features. Where Number_of_Cycles was considered as the target variable.

Performance

MSE: 0.0066, R²: 0.9989 (excellent performance).

Predictive Insights & Future Work

