Recitation 7

Matrices as maps vs. data

Previously in the course,

Matrices are linear tranformations that act on vectors.

In PCA,

• Matrices as data matrix, where rows are instances of data and columns are features.

Remark the two different interpretations of matrices!

- 1. Explain how to do this using PCA.
- 2. How can you implement PCA using SVD?
- 3. How do we determine an 'optimal' value for k?

- 1. Explain how to do this using PCA.
- 2. How can you implement PCA using SVD?
- 3. How do we determine an 'optimal' value for k?

- 1. Explain how to do this using PCA.
- 2. How can you implement PCA using SVD?
- 3. How do we determine an 'optimal' value for k?

- 1. Explain how to do this using PCA.
- 2. How can you implement PCA using SVD?
- 3. How do we determine an 'optimal' value for k?

Review: SVD

Theorem

Let $A \in \mathbb{R}^{n \times m}$. Then there exists two orthogonal matrices $U \in R^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ and a matrix $\Sigma \in \mathbb{R}^{n \times m}$ such that $\Sigma_{1,1} \geq \Sigma_{2,2} \geq \cdots \geq 0$ and $\Sigma_{i,j} = 0$ for $i \neq j, \ A = U\Sigma V^{\top}$. The columns u_1, \ldots, u_n of U (respectively the columns v_1, \ldots, v_m of V) are called the left (resp. right) singular vectors of A. The non-negative numbers $\Sigma_{i,i}$ are the singular values of A. Moreover $\operatorname{rank}(A) = \#\{i | \Sigma_{i,i} \neq 0\}$.

Reminder of Courant-Fisher

Theorem (Courant-Fisher principle)

Let A be a $n \times n$ symmetric matrix and let $\lambda_1 \ge \cdots \ge \lambda_n$ be its n eigenvalues and v_1, \ldots, v_n be an associated orthonormal family of eigenvectors. Then

$$v_1 = \mathop{\arg\max}_{\|v\|=1} v^\top A v, \ \textit{and} \ \forall k = [2:n], \ v_k = \mathop{\arg\max}_{\|v\|=1, v \perp v_1, \dots, v_{k-1}} v^\top A v.$$

$$v_n = \underset{\|v\|=1}{\arg\min} v^{\top} A v, \ \forall k = [1:(n-1)], \ v_k = \underset{\|v\|=1, v \perp v_{k+1}, \dots, v_n}{\arg\min} v^{\top} A v.$$

Courant-Fisher & SVD

Theorem (Corollary of Courant-Fisher principle)

Let A be a $n \times m$ matrix and let $A = U\Sigma V^{\top}$ be a singular eigenvalue decomposition of A. Then

$$\begin{aligned} v_1 &= \operatorname*{arg\,max}_{\|v\|=1} \|Av\|, \ \sigma_1 &= \operatorname*{max}_{\|v\|=1} \|Av\|, \\ \forall k = [2:n], \ v_k &= \operatorname*{arg\,max}_{\|v\|=1,v \perp v_1,\dots,v_{k-1}} \|Av\|, \\ \sigma_k &= \operatorname*{max}_{\|v\|=1,v \perp v_1,\dots,v_{k-1}} \|Av\|, \\ v_n &= \operatorname*{arg\,min}_{\|v\|=1} \|Av\|, \ \sigma_n &= \operatorname*{min}_{\|v\|=1} \|Av\|, \\ \forall k = [1:(n-1)], \ v_k &= \operatorname*{arg\,min}_{\|v\|=1,v \perp v_{k+1},\dots,v_n} \|Av\|, \\ \sigma_k &= \operatorname*{min}_{\|v\|=1,v \perp v_{k+1},\dots,v_n} \|Av\| \end{aligned}$$

Suppose that we are given data $\{(x_i,y_i)\}_{i=1}^n$, and we hypothesize that the data approximately satisfy an affine relation of the form $ax_i+by_i=c$, where $(a,b,c)\neq 0$. Define the matrix $A\in\mathbb{R}^{n\times 3}$ as

$$A = \begin{bmatrix} x_1 & y_1 & -1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & -1 \end{bmatrix}.$$

Assume that you have access to its SVD: $A = U\Sigma V^{\top}$.

- 1. Prove that $Ker(A) = span(\{\tilde{v}_i | \tilde{\sigma}_i = 0\})$.
- 2. Use this to show that the data $\{(x_i, y_i)\}_{i=1}^n$ satisfies an affine relation exactly iff some singular value of A is zero.
- 3. How do we find the best vector (a,b,c) when all the singular values are larger than zero? How do we know if the approximation is good?

1. Prove that $Ker(A) = span(\{\tilde{v}_i | \tilde{\sigma}_i = 0\})$.

1. Prove that $Ker(A) = span(\{\tilde{v}_i | \tilde{\sigma}_i = 0\})$.

1. Prove that $Ker(A) = span(\{\tilde{v}_i | \tilde{\sigma}_i = 0\})$.

$$A = \begin{bmatrix} x_1 & y_1 & -1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & -1 \end{bmatrix}.$$

2. Use this to show that the data $\{(x_i,y_i)\}_{i=1}^n$ satisfies an affine relation exactly iff some singular value of A is zero.

$$A = \begin{bmatrix} x_1 & y_1 & -1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & -1 \end{bmatrix}.$$

2. Use this to show that the data $\{(x_i,y_i)\}_{i=1}^n$ satisfies an affine relation exactly iff some singular value of A is zero.

$$A = \begin{bmatrix} x_1 & y_1 & -1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & -1 \end{bmatrix}.$$

3. How do we find the best vector (a,b,c) when all the singular values are larger than zero? How do we know if the approximation is good?

$$A = \begin{bmatrix} x_1 & y_1 & -1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & -1 \end{bmatrix}.$$

3. How do we find the best vector (a,b,c) when all the singular values are larger than zero? How do we know if the approximation is good?

$$A = \begin{bmatrix} x_1 & y_1 & -1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & -1 \end{bmatrix}.$$

3. How do we find the best vector (a,b,c) when all the singular values are larger than zero? How do we know if the approximation is good?

Extra Question: How is this exercise related to the "Best Fitting Subspace" Subsection of the notes of Lecture 7?

Extra Question: How is this exercise related to the "Best Fitting Subspace" Subsection of the notes of Lecture 7?

Question: SVD and ellipsoids

Explain the following statement: For any $A \in \mathbb{R}^{m \times n}$, the set $\{Ax : ||x| = 1\}$ is an ellipsoid. In other words, the image of the sphere under a linear transformation is always an ellipsoid.

Question: SVD and ellipsoids

Explain the following statement: For any $A \in \mathbb{R}^{m \times n}$, the set $\{Ax : ||x| = 1\}$ is an ellipsoid. In other words, the image of the sphere under a linear transformation is always an ellipsoid.

Next week

Next week the recitation will be about review exercises for the midterm.