Progetto S11/L5

Filippo Giorgio Rondò

Indice

• Windows Powershell	1
Cattura HTTP e HTTPS	15
• Esplorare Nmap	2
• Ringraziamento	26

Obiettivi

- Esplorare funzioni cmd e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

1

Obiettivi

- Esplorare alcune funzioni di cmd e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

Breve accenno teorico

Ping serve per verificare la connettività tra due dispostivi collegati alla medesima rete

Ipconfig dà
informazioni sulla
configurazione di rete
del computer: IP,
subnet, i gateway e
altro

Dir elenca i contenuti della directory corrente

Cd cambia la directory di lavoro

Obiettivi

- Esplorare alcune funzioni di cmd
 e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell


```
Prompt dei comandi
Microsoft Windows [Versione 10.0.10240]
c) 2015 Microsoft Corporation. Tutti i diritti sono riservati.
C:\Users\user>dir
Il volume nell'unità C non ha etichetta.
Numero di serie del volume: B068-65A2
Directory di C:\Users\user
13/12/2024 10:16
                    <DIR>
13/12/2024 10:16
                    <DIR>
99/07/2024 15:37
                    <DIR>
                                    Contacts
2/07/2024 11:10
                                    Desktop
9/07/2024 17:05
                    <DIR>
                                    Documents
                                   Downloads
9/07/2024 15:37
                    <DIR>
9/07/2024 15:37
                                   Favorites
9/07/2024 15:37
                    <DIR>
                                    Links
 9/07/2024 15:37
                                    Music
                    <DIR>
                                    OneDrive
                    <DIR>
                                    Pictures
                    <DIR>
                                    Saved Games
                    <DIR>
                                    Searches
                    <DIR>
                                    Videos
             14 Directory 19.627.417.600 byte disponibili
```

Una volta avviati powershell e prompt dei comandi possiamo digitare il comando 'dir' e analizzare i loro comportamenti. Come si può notare le informazioni fornite sono quasi identiche, ad eccezione del fatto che powershell fornisce in aggiunta indicazioni sugli attributi/modalità

Obiettivi

- Esplorare alcune funzioni di cmd e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

```
Microsoft Windows [Versione 10.0.10240]
(c) 2015 Microsoft Corporation. Tutti i diritti sono riservati.

C:\Users\user>ping 192.168.1.102

Esecuzione di Ping 192.168.1.102 con 32 byte di dati:
Risposta da 192.168.1.102: byte=32 durata<1ms TTL=128
Risposta da 192.168.1.102: byte=32 durata<1ms TTL=128
Risposta da 192.168.1.102: byte=32 durata=1ms TTL=128
Risposta da 192.168.1.102: byte=32 durata<1ms TTL=128
Risposta da 192.168.1.102: byte=32 durata<1ms TTL=128

Statistiche Ping per 192.168.1.102:

Pacchetti: Trasmessi = 4, Ricevuti = 4,
Persi = 0 (0% persi),
Tempo approssimativo percorsi andata/ritorno in millisecondi:
Minimo = 0ms, Massimo = 1ms, Medio = 0ms
```

```
Microsoft Windows [Versione 10.0.10240]
(c) 2015 Microsoft Corporation. Tutti i diritti sono riservati.

C:\Users\user>ipconfig

Configurazione IP di Windows

Scheda Ethernet Ethernet:

Suffisso DNS specifico per connessione:
Indirizzo IPv6 locale rispetto al collegamento . : fe80::c594:42e6:2365:b1ae%4
Indirizzo IPv4. . . . . . . : 192.168.1.106
Subnet mask . . . . . . . 255.255.255.0
Gateway predefinito . . . . : 192.168.1.1

Scheda Tunnel isatap.{92D61F82-1D19-45C9-87CF-2E5AF2D63627}:

Stato supporto . . . . . . . . Supporto disconnesso
Suffisso DNS specifico per connessione:
Scheda Tunnel Teredo Tunneling Pseudo-Interface:

Suffisso DNS specifico per connessione:
Indirizzo IPv6 . . . . . . . . . . . . . . . 2001:0:2851:782c:2087:8022:92cb:a256
Indirizzo IPv6 locale rispetto al collegamento . : fe80::2087:8022:92cb:a256%5
Gateway predefinito . . . . . . . . : : :
```

```
Windows PowerShell

PS C:\Users\user> ping 192.168.1.102

Esecuzione di Ping 192.168.1.102 con 32 byte di dati:
Risposta da 192.168.1.102: byte=32 durata=6ms TTL=128
Risposta da 192.168.1.102: byte=32 durata=1ms TTL=128
Risposta da 192.168.1.102: byte=32 durata<1ms TTL=128
Risposta da 192.168.1.102: byte=32 durata<1ms TTL=128

Statistiche Ping per 192.168.1.102:
    Pacchetti: Trasmessi = 4, Ricevuti = 4,
    Persi = 0 (0% persi),

Tempo approssimativo percorsi andata/ritorno in millisecondi:
    Minimo = 0ms, Massimo = 6ms, Medio = 1ms

PS C:\Users\user>
```

Noteremo che le risposte ottenute sono simili anche utilizzando comandi come 'ping', 'ipconfig' o 'cd'

Obiettivi

- Esplorare alcune funzioni di cmd e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

```
Windows PowerShell
 S C:\Users\user> ls
    Directory: C:\Users\user
                     LastWriteTime
                                              Length Name
              09/07/2024
22/07/2024
                              16:37
                                                      Contacts
                              12:10
                                                      Desktop
                              18:05
16:37
16:37
                                                      Documents
                                                      Downloads
              09/07/2024
                                                      Favorites
                                                      Links
                              16:37
16:40
                                                      Music
                                                      OneDrive
                              16:39
                                                      Pictures
                              16:37
                                                      Saved Games
                                                      Searches
                                                      Videos
PS C:\Users\user> cd Downloads
PS C:\Users\user\Downloads> ls
PS C:\Users\user\Downloads> cd
PS C:\Users\user> ls
    Directory: C:\Users\user
                      LastWriteTime
                                              Length Name
                                                      Contacts
                              12:10
18:05
16:37
                                                      Desktop
              09/07/2024
                                                      Documents
                                                      Downloads
              09/07/2024
                                                      Favorites
                              16:37
16:37
                                                      Links
                                                      Music
                              16:40
                                                      OneDrive
                              16:39
16:37
                                                      Pictures
                                                      Saved Games
                                                       Searches
PS C:\Users\user> _
```

```
Microsoft Windows [Versione 10.0.10240]
(c) 2015 Microsoft Corporation. Tutti i diritti sono riservati.

C:\Users\user>cd
C:\Users\user\cd Desktop

C:\Users\user\Desktop>ls
"ls" non è riconosciuto come comando interno o esterno, un programma eseguibile o un file batch.

C:\Users\user\Desktop>
```

Un confronto interessante è che il prompt dei comandi non riconosce i comando 'ls'. Ossia il comando che mostra file e cartelle presenti nella directory corrente

Obiettivi

- Esplorare alcune funzioni di cmd e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

Breve accenno teorico

Un cmdlet è un comando speciale usato in PowerShell. Cmdlet sono simili ai comandi eseguiti nel Prompt dei comandi (CMD), ma sono molto più potenti e flessibili. Ogni cmdlet è progettato per svolgere un compito specifico e restituisce oggetti, non solo testo, che possono essere manipolati ulteriormente.

Alias è un nome abbreviato che può essere utilizzato al posto di un cmdlet o di un comando. In altre parole, un alias è un nickname per un comando più lungo. L'uso degli alias rende più facile e veloce l'esecuzione di comandi, soprattutto se si usano spesso.

Obiettivi

- Esplorare alcune funzioni di cmd e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

Il comando 'Get-Alias', in powershell, restituisce l'alias di un determinato comando, in questo caso del comando 'dir'. Infatti 'dir' non fa altro che emulare il comando 'Get-ChildItem'. In sinstesi, il comando dir sostituisce il comando Get-ChildItem

Notiamo anche come il Prompt dei Comandi non supporta il cmdlet, infatti, come si nota dalla foto, non viene riconosciuto come comando

Obiettivi

- Esplorare alcune funzioni di cmd e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

Breve accenno teorico

Netstat, l'abbreviazione di network statistics, è un comando di rete che fondisce informazioni di dettagliate sulle connessioni di rete attive, sulle porte in ascolto, i router e le interfacce di rete. In powershell può essere dunque utilizzato come comando per diagnosticare le connessioni di rete del proprio computer, anche quelle di dominio

Obiettivi

- Esplorare alcune funzioni di cmd
 e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

```
Windows PowerShell
                                                                                                                                                                                     _ _
    C:\Users\user> netstat
Visualizza statistiche relative ai protocolli e alle
connessioni di rete TCP/IP correnti.
NETSTAT [-a] [-b] [-e] [-f] [-n] [-o] [-p proto] [-r] [-s] [-x] [-t] [interval]
                               Visualizza tutte le connessioni e le porte di ascolto.
Visualizza il file eseguibile utilizzato per la creazione
                             Visualizza il file eseguibile utilizzato per la creazione di ogni connessione o porta di ascolto. Alcuni file eseguibili conosciuti includono più componenti indipendenti. In tali casi viene visualizzata la sequenza dei componenti utilizzati per la creazione della connessione o porta di ascolto e il nome del file eseguibile viene visualizzato in fondo, tra parentesi quadre ([]). Nella parte superiore è indicato il componente chiamato e così via, fino al raggiungimento di TCP/IP. Se si utilizza questa opzione, l'esecuzione del comando può richiedere molto tempo e riuscirà solo se si dispone di autorizzazioni sufficienti. Visualizza le statistiche Ethernet. Può essere utilizzata
                               Visualizza le statistiche Ethernet. Può essere utilizzata
                                insieme all'opzione -s.
                               Visualizza i nomi di dominio completi (FQDN, Fully Qualified
                               Domain Name) per gli indirizzi esterni.
                               Visualizza indirizzi e numeri di porta in forma numerica.
Visualizza l'ID del processo proprietario associato a ogni
                              Visualizza le connessioni relative al protocollo specificato da "proto", che può essere TCP, UDP, TCPv6 o UDPv6.
Se utilizzato insieme all'opzione -s per le statistiche per protocollo, "proto" può essere: IP, IPv6, ICMP, ICMPv6, TCP, TCPv6, UDP o UDPv6.
                               Visualizza tutte le connessioni, le porte di ascolto e le porte
TCP non di ascolto associate. Le porte non di ascolto associate
                               possono essere associate o meno a una connessione attiva.
                                Visualizza la tabella di routing.
                              Visualizza le statistiche per protocollo. Per impostazione predefinita, vengono visualizzate le statistiche per IP, IPv6, ICMP, ICMPv6, TCP, TCPv6, UDP e UDPv6. Per specificare un sottoinsieme dei valori predefiniti, è possibile
                               utilizzare l'opzione -p.
Visualizza lo stato di offload della connessione corrente.
                               Visualizza le connessioni, i listener e gli endpoint
                                Visualizza il modello di connessione TCP per tutte le
                               connessioni. Non può essere utilizzata in combinazione con le
```

Il comando 'netstat -h' mostra una guida con le opzioni e i parametri disponibili da poter utilizzare con netstat, offrendo anche una breve spiegazione del parametro Il comando 'netstat -r' permette di visualizzare la propria tabella di routing.

```
Windows PowerShell

    O8 00 27 07 bd 0f ......Intel(R) PRO/1000 MT Desktop Adapter

 IPv4 Tabella route
 oute attive:
     Indirizzo rete
                                                Gateway
                                                             Interfaccia Metrica
       0.0.0.0
127.0.0.0
                                         192.168.1.1
                                                         192.168.1.106
127.0.0.1
                           0.0.0.0
                                             On-link
        127.0.0.1 255.255.255.255
                                             On-link
                                                              127.0.0.1
 127.255.255.255 255.255.255
192.168.1.0 255.255.255.0
                                                                            306
266
                                             On-link
                                                              127.0.0.1
                                             On-link
                                                          192.168.1.106
    192.168.1.106 255.255.255.255
                                             On-link
                                                          192.168.1.106
   192.168.1.255 255.255.255.255
224.0.0.0 240.0.0.0
                                                          192.168.1.106
127.0.0.1
                                             On-link
                                             On-link
        224.0.0.0
                          240.0.0.0
                                             On-link
                                                          192.168.1.106
                                                                            306
266
  255.255.255.255 255.255.255.255
                                                              127.0.0.1
                                             On-link
  255.255.255.255 255.255.255.255
                                                          192.168.1.106
                                             On-link
 loute permanenti:
 Nessuna
IPv6 Tabella route
Route attive:
 Interf Metrica Rete Destinazione
                                         Gateway
       306 ::/0
                                     On-link
      306 ::1/128
306 2001::/32
                                      On-link
                                      On-link
       306 2001:0:2851:782c:2087:8022:92cb:a256/128
                                      On-link
                                     On-link
                                      On-link
       306 fe80::2087:8022:92cb:a256/128
                                      On-link
       266 fe80::c594:42e6:2365:b1ae/128
                                      On-link
      306 ff00::/8
266 ff00::/8
306 ff00::/8
                                      On-link
                                      On-link
PS C:\Users\user>
```

Obiettivi

- Esplorare alcune funzioni di cmd e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

Il comando 'netstat -abno':

- -a serve a visualizzare le connessioni sui protocolli TCP attivi
- -b serve ad elencare i processi
- -n mostra gli indizzi ip e le porte, evita dal risoluzione del DNS
- -o aggiunge il PID ossia il valore numerico di un determinato processo

Obiettivi

- Esplorare alcune funzioni di cmd e di powershell.
- Esplorare cmdlet.
- Esplorare netstat.
- Svuotare il cestito da powershell

```
Seleziona Amministratore: Windows PowerShell

PS C:\Windows\system32> clear-recyclebin

Conferma
Eseguire l'operazione?
Esecuzione dell'operazione "Clear-RecycleBin" sulla destinazione "Tutto il contenuto del Cestino".

[S] Sì [T] Sì a tutti [N] No [U] No a tutti [O] Sospendi [?] Guida (il valore predefinito è "S"): S

PS C:\Windows\system32> clear-recyclebin
```

Grazie a powershell, è possibile eseguire comandi per gestire una vasta rete. Può risultare molto più rapido poiché si evitano tutti gli interventi di interfaccia grafica. Un comando molto utile è 'clear-recyclebin'. Questo è in grado di eliminare definitivamente tutti gli elementi presenti nel cestino

Scenario pratico

Immaginiamo di voler analizzare l'intregrità dei nostri processi attivi, ad esempio su Tomcat7.exe che ha stabilito diverse connessioni su porte diverse

Step 1: utilizzo del comando netstat –abno per vedere i processi attivi su TCP

Step 2: Utilizzare il PID ottenuto e cercarlo nel task manager. Da qui possiamo notare le risorse di sistema utilizzate: non anomale

TCP 127.0.0.1:8005	0.0.0.0:0	LISTENING	2288
[tomcat7.exe]	127.0.0.1.40416	ECTABL TOUED	2200
TCP 127.0.0.1:49415 [tomcat7.exe]	127.0.0.1:49416	ESTABLISHED	2288
TCP 127.0.0.1:49416	127.0.0.1:49415	ESTABLISHED	2288
[tomcat7.exe]		2311122231123	
TCP 127.0.0.1:49417	127.0.0.1:49418	ESTABLISHED	2288
[tomcat7.exe]	427 0 0 4 40447	ECTABLITCHES	2222
TCP 127.0.0.1:49418 [tomcat7.exe]	127.0.0.1:49417	ESTABLISHED	2288
TCP 127.0.0.1:49419	127.0.0.1:49420	ESTABLISHED	2288
[tomcat7.exe]	127101011113120	2317132131123	2200
TCP 127.0.0.1:49420	127.0.0.1:49419	ESTABLISHED	2288
[tomcat7.exe]	427 0 0 4 40422	ECTABLE TOURS	2222
TCP 127.0.0.1:49421 [tomcat7.exe]	127.0.0.1:49422	ESTABLISHED	2288
TCP 127.0.0.1:49422	127.0.0.1:49421	ESTABLISHED	2288
[tomcat7.exe]			
TCP 127.0.0.1:49423	127.0.0.1:49424	ESTABLISHED	2288
[tomcat7.exe]	437.0.0.4.40433	ECTABLITCHES	2200
TCP 127.0.0.1:49424 [tomcat7.exe]	127.0.0.1:49423	ESTABLISHED	2288
TCP 127.0.0.1:49425	127.0.0.1:49426	ESTABLISHED	2288
[tomcat7.exe]			
TCP 127.0.0.1:49426	127.0.0.1:49425	ESTABLISHED	2288
[tomcat7.exe]	437.0.0.4.40430	ECTABLITCHES	2200
TCP 127.0.0.1:49427 [tomcat7.exe]	127.0.0.1:49428	ESTABLISHED	2288
TCP 127.0.0.1:49428	127.0.0.1:49427	ESTABLISHED	2288
[tomcat7.exe]	20.101012113121	ESTRIBLISHED	
TCP 127.0.0.1:49429	127.0.0.1:49430	ESTABLISHED	2288
[tomcat7.exe]	437.0.0.4.40430	ECTABLITCHED	2222
TCP 127.0.0.1:49430	127.0.0.1:49429	ESTABLISHED	2288

Scenario pratico

Immaginiamo di voler analizzare l'intregrità dei nostri processi attivi, ad esempio su Tomcat7.exe che ha stabilito diverse connessioni su porte diverse

Step 3: analizzare il processo.
Dalle proprietà e i dettagli forniti
ricaviamo che Tomcat7.exe è un
demone ossia un processo attivo
in background. Per quanto
riguarda la firma digitale, è
originale e non ha subito mai
modifiche. Anche importante è il
percorso file, in questo caso non
risulta anomalo

Scenario pratico

Immaginiamo di voler analizzare l'intregrità dei nostri processi attivi, ad esempio su Tomcat7.exe che ha stabilito diverse connessioni su porte diverse

Step 4: ricavare l'hash del processo e verificarlo online. Grazie al comando 'Get-FileHash' seguito dal Path del file

-wireshark

Obiettivi

- Catturare e analizzare il trafficO HTTP
- Catturare e analizzare il traffic HTTPS

15

Obiettivi

- Catturare e analizzare il trafficO HTTP
- Catturare e analizzare il traffico HTTPS

REQUISITI

VM: cyberops workspace

Impostazioni di rete: Scheda con bridge e

connessione ad internet

CREDENZIALI UTENTE

Username: analyst Password: cyberops

Step 1: Avviare il prompt dei comandi, verificare l'indirizzo ip ed eseguire il comando 'sudo tcpdump -i enp0s3 -s 0 -w httpdump.pcap'

```
[analyst@secOps ~]$ ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defau:
t qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: enpOs3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP g
oup default glen 1000
   link/ether 08:00:27:69:ff:67 brd ff:ff:ff:ff:ff
    inet 192.168.1.108/24 brd 192.168.1.255 scope global dynamic enp0s3
       valid_lft 85913sec preferred_lft 85913sec
    inet6 fe80::a00:27ff:fe69:ff67/64 scope link
       valid_lft forever preferred_lft forever
[analyst@secOps ~]$ sudo tcpdump -i enpOs3 -s O -w httpdump.pcap
[sudo] password for analyst:
topdump: listening on enp0s3, link-type EN10MB (Ethernet), capture size 262144 k
ytes
```

Il comando avvierà tcpdump e registrerà il traffico di rete sull'interfaccia enp0s3.

- -i specifica l'interfaccia
- -s specifica la dimensione della cattura
- -w permette di salvare il file come formato pcap con il nome specificato

Obiettivi

- Catturare e analizzare il trafficO HTTP
- Catturare e analizzare il traffico HTTPS

Step 2: Visitare un sito web non protetto da crittografia e registrarsi nel login, inserendo 'Admin' nei campi username e password. Una volta che uscirà il popup potremo chiudere la pagina web e arrestare il comando avviato in precendenza con Ctrl + C

Step 2: Aprire con wireshark la cattura salvata nei file e filtrare solo catture HTTP. In particolare noteremo una richiesta POST, ossia quella dove abiamo inserito le credenziali. Indagando nell'HTML From URL possiamo vedere in chiaro le credenziali che abbiamo inserito

Obiettivi

- Catturare e analizzare il trafficO HTTP
- Catturare e analizzare il traffico HTTPS

Per quanto riguarda la cattura HTTPS il processo è identico: avviare tcpdump (modificando il nome di salvataggio del file) e registrarsi al sito. La differenza è che la registrazione verrà effettuata in un sito protetto da crittografia. Oltre al fatto che utilizza il protocollo HTTPS è facilmente riconoscibile dal lucchetto verde vicino l'URL; quello non protetto aveva un lucchetto sbarrato in rosso

Obiettivi

- Catturare e analizzare il trafficO HTTP
- Catturare e analizzare il traffico HTTPS

Questa volta, una volta aperta la cattura, filtrare il traffico sulla porta 443 e selezionare il frame che riguarda Application Data. Nella sezione Secure Sockets Layer noteremo una voce 'Encrypted Application Data' che non è altro che la sezione di credenziali fornite ma cifrate

Evitare furto di credenziali

Torna all'indice

Grazie a questo
protocollo i nostril dati
sono al sicuro da attacchi
come il MITM

Sito sicuro

Prima di inserire le credenziali verificare l'attendibilità e la sicurezza del sito

Credenziali diverse

Utilizzare account diversi per la registrazione ai siti e modificare la password con frequenza

Obiettivi

• Capire come utilizzare nmap e fare scansioni semplici

21

Obiettivi

 Capire come utilizzare nmap e fare scansioni semplici

RISORSE RICHIESTE

MV: Cyberops Workspace

Configurazione di rete: scheda con bridge e connessione ad internet

Accenno teorico

Un attaccante prima di mettersi in gioco ha bisogno di conoscere la topologia della rete e avere più informazioni sui servizi e le versioni, sui sistemi operativi e sulle porte. Questa, anche definita come fase di enumerazione, prevede l'utilizzo di tool come nmap. Inoltre, questo tool non effettua solo scansioni ma è dotato anche di alcuni script (nmap –script-) per testare le vulnerabilità anche se il suo utilizzo principale è la scansione.

22

Obiettivi

 Capire come utilizzare nmap e fare scansioni semplici Il comando man [programma | utilità | funzione] visualizza le pagine di manuale associate agli argomenti. Le pagine di manuale sono i manuali di riferimento presenti sui sistemi operativi Unix e Linux. Eseguendo man nmap è possibile visionare il manuale. Se necessario si possono ricercare parole specifiche all'interno di esso utilizzando '/paroladacercare' o il '?' se si tratta di frasi. Il manuale propone anche un esempio di comando, il più classico

```
Example 1. A representative Nmap scan

# nmap -A -T4 scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.029s latency).

rDNS record for 74.207.244.221: li86-221.members.linode.com

Not shown: 995 closed ports

PORT STATE SERVICE VERSION

22/top open ssh OpenSSH 5.3p1 Debian 3ubuntu7 (protocol 2.0)
```

Il comando 'nmap —A —T4 scanme.nmap.org effettua una scansione aggressiva e invasiva, restituendo il sistema operativo, servizi, versioni, delle porte e avvia alcuni script. Queste informazioni sono date dal parametro —a. Invece il parametro —T4 indica la velocità con cui deve essere effettuata la scansione. Considerando che questo parametro va da 0 a 5, -T4 sarà relativamente veloce, diminuendo il tempo a discapito della precisione

Obiettivi

 Capire come utilizzare nmap e fare scansioni semplici E' possibile effettuare una scansione sul dispositivo in uso tramite il comando nmap – A –T4 localhost (oppure ip corrente)

```
analyst@secOps ~]$ nmap -A -T4 localhost
Starting Nmap 7.70 ( https://nmap.org ) at 2024–12–13 11:23 EST
Nmap scan report for localhost (127.0.0.1)
Host is up (0.00082s latency).
Other addresses for localhost (not scanned): ::1
                     vsftpd 2.0.8 or later
  ftp-anon: Anonymous FTP login allowed (FTP code 230)
                                           0 Mar 26 2018 ftp_test
  ftp-syst:
   STAT:
  FTP server status:
       Connected to 127.0.0.1
       Logged in as ftp
       TYPE: ASCII
       No session bandwidth limit
       Session timeout in seconds is 300
       Control connection is plain text
       Data connections will be plain text
       At session startup, client count was 6
       vsFTPd 3.0.3 - secure, fast, stable
 _End of status
22/tcp open ssh
                    OpenSSH 7.7 (protocol 2.0)
   2048 b4:91:f9:f9:d6:79:25:86:44:c7:9e:f8:e0:e7:5b:bb (RSA)
   256 06:12:75:fe:b3:89:29:4f:8d:f3:9e:9a:d7:c6:03:52 (ECDSA)
   256 34:5d:f2:d3:5b:9f:b4:b6:08:96:a7:30:52:8c:96:06 (ED25519)
Service detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 12.16 seconds
[analyst@secOps ~]$
```

In breve, da questa scansione si ottiengono le porte aperte ftp ed ssh con le corrispettive versioni. Inoltre vi sono informazioni aggiuntive, ad esempio la registrazione come anonimo al protocollo ftp e le ssh-hostkey.

Sono possibili anche scan sull'intera rete o su server web, vediamo un esempio \rightarrow

Obiettivi

 Capire come utilizzare nmap e fare scansioni semplici

Nmap –A –T4 <indirizzo del server>

```
analyst@secOps ~]$ nmap -A -T4 scanme.nmap.org
tarting Nmap 7.70 ( https://nmap.org ) at 2024–12–13 11:30 EST;
 nap scan report for scanme.nmap.org (45.33.32.156)
łost is up (0.22s latency).
Other addresses for scanme.nmap.org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f
                         OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu Linux; protocol 2.0)
 ssh-hostkey:
   1024 ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:97:6b:75 (DSA)
   2048 20:3d:2d:44:62:2a:b0:5a:9d:b5:b3:05:14:c2:a6:b2 (RSA)
   256 96:02:bb:5e:57:54:1c:4e:45:2f:56:4c:4a:24:b2:57 (ECDSA)
   256 33:fa:91:0f:e0:e1:7b:1f:6d:05:a2:b0:f1:54:41:56 (ED25519)
                         Apache httpd 2.4.7 ((Ubuntu))
 .http-server-header: Apache/2.4.7 (Ubuntu)
_http-title: Go ahead and ScanMe!
Service detection performed. Please report any incorrect results at https://nmap.org/submit/
lmap done: 1 IP address (1 host up) scanned in 33.77 seconds
 analyst@secOps ~]$
```

Da questo scan si ottengono informazioni sui servizi, porte e informazioni consuete e in aggiunga informazioni che si trovano negli header e il titolo della pagina

Grazie dell'attenzione

Filippo Giorgio Rondò