

Class XI – Physics (Units and Measurements)

- 1. If $x = at + bt^2$ where x is in meters and t is in seconds. What are the units of a and b?
- 2. Fill in the blanks:
 - I.
 - $3.0 \text{ m/s}^2 = \underline{\qquad} \text{ km/hr}^2$ $6.67 * 10^{-11} \text{ Nm}^2/\text{kg}^2 = \underline{\qquad} \text{ g}^{-1}\text{cm}^3\text{s}^{-2}$
- 3. Write S.I unit of luminous intensity and temperature?
- 4. Calculate the time taken by the light to pass through a nucleus of diameter $1.56 * 10^{-16} \text{ m.}$ (speed of light is $3*10^8 \text{ m/s}$)
- 5. If force (F), acceleration (A) and time (T) are taken as fundamental units, then find the dimension of energy.
- 6. Two resistance R_1 = 100 ± 3 Ω and R_2 = 200 ± 4 Ω are connected in series. Then what is the equivalent resistance?
- 7. If velocity, time and force were chosen the basic quantities, find the dimensions of mass?
- 8. Young's modulus of steel is 19 * 10¹⁰ N/m². Express it in dynes cm². Here dynes are the C.G.S unit of force.
- 9. The velocity υ of water waves may depend on their wavelength λ density of water ρ and the acceleration due to gravity g. Find relation between these quantities by the method of dimension?
- 10. The force acting on an object of mass m travelling at velocity v in a circle of radius r is giving by $F = (mv^2)/r$

The measurements recorded as $m = 3.5 \text{kg} \pm 0.1 \text{kg}$

$$v = 20 \text{m/s} \pm 1 \text{m/s}$$
 $r = 12.5 \text{m} \pm 0.5 \text{m}$

Find the maximum possible (1) fractional error (2) % error in the measurement of force. How will you record the reading?