III

Функціональний аналіз

Частина III: Зміст

11	Спряжений простір	65
11	11.1 Лінійні топологічні простори і неперевність функціоналів	65
	11.2 Топологія у спряженому просторі і його повнота	67 68
	11.3 Другий спряжений простір і природне відображення	
	11.4 Рефлексивні простори	69
	11.5 Література	71
12	Р. Слабка топологія і слабка збіжність	73
	12.1 Слабка топологія	73
	12.2 Слабка збіжність	74
	12.3 Види топології у спряженому просторі	76
	12.4 Література	77
13	В Принцип рівномірної обмеженості	79
	13.1 Види збіжності послідовностей операторів	79
	13.2 Повнота простору лінійних неперервних операторів	81
	13.3 Література	82
	19.9 viriepatypa	02
14	Принцип відкритості відображення	83
	14.1 Обмеженість на всюди щільній множині	83
	14.2 Лінійний обмежений обернений оператор	84
	14.3 Обернений до наближеного і резольвента	86
	14.4 Принцип відкритості відображення	87
	14.5 Література	88
15	Спряжені оператори, спектр і компактні оператори	89
	15.1 Спряжені оператори	89
	15.2 Спектр оператора	90
	15.3 Компактні оператори	92
	15.4 Література	93
16	: F: 6	ΩE
10	Гільбертові простори	95
	16.1 Скалярний добуток і породжена ним норма	95
	16.2 Скалярний добуток породжений нормою	96
	16.3 Ортогональність і проекції	98
	16.4 Лінійний функціонал як скалярне множення на елемент	100
	16.5 Література	101
17	′ Теорема про ізоморфізм	103
	17.1 Базиси у гільбертових просторах	103
	17.2 Елементи аналізу Фур'є	104
	17.3 Сепарабельний простір	106
	17.4 Література	107

11 Спряжений простір

Ввести топологію в лінійному просторі можна не лише за допомогою норми.

§11.1 Лінійні топологічні простори і неперевність функціоналів

Означення 11.1. Упорядкована четвірка $(L,+,\cdot,\tau)$ називається лінійним топологічним простором, якщо

- 1. $(L, +, \cdot)$ дійсний лінійний простір;
- 2. (L, τ) топологічний простір;
- 3. операція додавання і множення на числа в L є неперервними, тобто
 - а) якщо $z_0 = x_0 + y_0$, то для кожного околу U точки z_0 можна указати такі околи V і W точок x_0 і y_0 відповідно, що $\forall x \in V$, $\forall y \in W$: $x + y \in U$;
 - б) якщо $\alpha_0 x_0 = y_0$, то для кожного околу U точки y_0 існує окіл V точки x_0 і таке число $\varepsilon > 0$, що $\forall \alpha \in \mathbb{R} : |\alpha \alpha_0| < \varepsilon, \forall x \in V : \alpha x \in U$.

Приклад 11.1

Всі нормовані простори є лінійними топологічними просторами.

Зауваження 11.1 — Оскільки будь-який окіл будь-якої точки x в лінійному топологічному просторі можна отримати зсувом околу нуля U шляхом операції U+x, топологія в лінійному топологічному просторі повністю визначається локальною базою нуля.

Спочатку доведемо деякі допоміжні факти щодо лінійних функціоналів, заданих на лінійному топологічному просторі L.

Означення 11.2. Функціонал, визначений на лінійному топологічному просторі L, називається **неперервним**, якщо для будь-якого $x_0 \in L$ і будь-якого $\varepsilon > 0$ існує такий окіл U елемента x_0 , що

$$\forall x \in U : |f(x) - f(x_0)| < \varepsilon.$$

Лема 11.1

Якщо лінійний функціонал f є неперервним в якійсь одній точці x_0 лінійного топологічного простору L, то він є неперервним на усьому просторі L.

Доведення. Дійсно, нехай y — довільна точка простору L і $\varepsilon > 0$. Необхідно знайти такий окіл V точки y, щоб

$$\forall z \in V : |f(z) - f(y)| < \varepsilon.$$

Виберемо окіл U точки x_0 так, щоб

$$\forall x \in U : |f(x) - f(x_0)| < \varepsilon.$$

Побудуємо окіл точки y шляхом зсуву околу U на елемент $y-x_0$:

$$V = U + (y - x_0) = \{z \in L : z = u + y - x_0, u \in U\}.$$

Із того, що $z \in V$, випливає, що $z - y + x_0 \in U$, отже,

$$|f(z) - f(y)| = |f(z - y)| = |f(z - y + x_0 - x_0)| = |f(z - y + x_0) - f(x_0)| < \varepsilon.$$

Що і треба було довести.

Наслідок 11.1

Для того щоб перевірити неперервність лінійного функціонала в просторі, достатньо перевірити його неперервність в одній точці, наприклад, в точці 0.

Зауваження 11.2 — У скінчено-вимірному лінійному топологічному просторі будь-який лінійний функціонал ϵ неперервним.

Теорема 11.1

Для того щоб лінійний функціонал f був неперервним на лінійному топологічному просторі L, необхідно і достатньо, щоб існував такий окіл нуля в L, на якому значення функціонала f є обмеженими в сукупності.

Доведення. Необхідність. З того що функціонал f є неперервним в точці 0, випливає що

$$\forall \varepsilon > 0 : \exists U(0) : \forall x \in U(0) : |f(x)| < \varepsilon.$$

Отже, його значення ϵ обмеженими в сукупності на U(0).

Достатність. Нехай U(0) — такий окіл нуля, що

$$\forall U(0) : |f(x)| < C.$$

Крім того, нехай $\varepsilon > 0$. Тоді в околі нуля

$$\frac{\varepsilon}{C}U(0) = \{x \in L : x = \frac{\varepsilon}{C}y, y \in U(0)\}.$$

виконується нерівність $|f(x)| < \varepsilon$.

Це означає, що функціонал f є неперервним в околі нуля, а значить в усьому просторі L.

Нехай E — нормований простір. Нагадаємо, що спряженим простором E^{\star} називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E із нормою

$$||f|| = \sup_{x \neq \vec{0}} \frac{|f(x)|}{||x||} = \sup_{||x|| \le 1} |f(x)|.$$

Теорема 11.2

Для того щоб лінійний функціонал f був неперервним на нормованому просторі E, необхідно і достатнью, щоб значення функціонала f були обмеженими в сукупності на одиничній кулі.

Доведення. Необхідність. Нормований простір E є лінійним топологічним простором. За теоремою 11.1 будь-яке значення неперервного лінійного функціонала f в деякому околі нуля є обмеженими в сукупності.

$$\forall C > 0 : \exists U(0) : \forall x \in U(0) : |f(x)| < C.$$

В нормованому просторі будь-який окіл нуля містить кулю.

$$\exists S(0,r) \subset U(0).$$

Отже, значення функціонала f є обмеженими в сукупності в деякій кулі. Оскільки f — лінійний функціонал, це еквівалентно тому, що значення функціонала f є обмеженими в сукупності в одиничній кулі, оскільки

$$\forall x \in S(0,r) : |f(x)| < C \implies \forall y = \frac{1}{r}x \in S(0,1) : |f(y)| < \frac{C}{r}.$$

Достатність. Оскільки значення функціонала f є обмеженими в сукупності в одиничній кулі, а одинична куля є околом точки 0, то за теоремою 11.1 він є неперервним в точці 0. Отже, лінійний функціонал f є неперервним в нормованому просторі E.

§11.2 Топологія у спряженому просторі і його повнота

На спряженому просторі можна ввести різні топології. Найважливішими з них є сильна і слабка топології.

Означення 11.3. Сильною топологією в просторі E^* називається топологія, визначена нормою в просторі E^* , тобто локальною базою нуля

$$\{f \in E^{\star} : ||f|| < \varepsilon\}.$$

де функціонали f задовольняють умову

$$|f(x)| < \varepsilon, \quad \forall x \in E : ||x|| \le 1.$$

а ε — довільне додатне число.

Теорема 11.3

Спряжений простір E^{\star} є повним.

Доведення. Нехай $\{f_n\}_{n=1}^{\infty}$ — фундаментальна послідовність лінійних неперервних функціоналів, тобто

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon.$$

Отже,

$$\forall x \in E : |f_n(x) - f_m(x)| \le ||f_n - f_m|| \cdot ||x|| < \varepsilon ||x||. \tag{11.1}$$

Покладемо $\forall x \in E$:

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Покажемо, що f — лінійний неперервний функціонал.

$$f(\alpha x + \beta y) = \lim_{n \to \infty} f_n(\alpha x + \beta y) = \lim_{n \to \infty} (\alpha f_n(x) + \beta f_n(y)) = \alpha f(x) + \beta f(y).$$

Крім того, з нерівності (11.1) випливає, що

$$\forall x \in E: \lim_{m \to \infty} |f_n(x) - f_m(x)| = |f(x) - f(n)| < \varepsilon ||x||.$$

Це означає, що функціонал $f-f_n$ є обмеженим. Оскільки він є лінійним і обмеженим, значить він є неперервним. Таким чином, функціонал $f=f_n+(f-f_n)$ також є неперервним. Крім того, $||f-f_n|| \le \varepsilon$, $\forall n \ge N$, тобто $f_n \to f$ при $n \to \infty$ за нормою простору E^* .

Зауваження 11.3 — Зверніть увагу на те, що простір E^* повний незалежно від того, чи є повним простір E.

Приклад 11.2

 $c_0^{\star} = \ell_1$.

Приклад 11.3

 $\ell_1^{\star} = m$.

Приклад 11.4

$$\ell_p^{\star} = \ell_q$$
, де $\frac{1}{p} + \frac{1}{q} = 1$, $p, q > 1$.

§11.3 Другий спряжений простір і природне відображення

Означення 11.4. Другим спряженим простором $E^{\star\star}$ називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E^{\star} .

Лема 11.2

Будь-який елемент $x_0 \in E$ визначає певний лінійний неперервний функціонал, заданий на E^{\star} .

Доведення. Введемо відображення

$$\pi: E \to E^{\star\star}$$

поклавши

$$\varphi_{x_0}(f) = f(x_0), \tag{11.2}$$

де x_0 — фіксований елемент із E, а f — довільний лінійний неперервний функціонал із E^\star . Оскільки рівність (11.2) ставить у відповідність кожному функціоналу f із E^\star дійсне число $\varphi_{x_0}(f)$, вона визначає функціонал на просторі E^\star .

Покажемо, що φ_{x_0} — лінійний неперервний функціонал, тобто він належить $E^{\star\star}$. Дійсно, функціонал φ_{x_0} є лінійним, оскільки

$$\varphi_{x_0}(\alpha f_1 + \beta f_2) = \alpha f_1(x_0) + \beta f_2(x_0) = \alpha \varphi_{x_0}(f_1) + \beta \varphi_{x_0}(f_2).$$

Крім того, нехай $\varepsilon>0$ і A — обмежена множина в E, що містить x_0 . Розглянемо в E^\star окіл нуля $U(\varepsilon,A)$:

$$U(\varepsilon, A) = \{ f \in E^*, x_0 \in A : |f(x_0)| \le \varepsilon \}.$$

тобто

$$U(\varepsilon, A) = \{ f \in E^*, x_0 \in A : |\varphi_{x_0}(f)| \le \varepsilon \}.$$

З цього випливає, що функціонал φ_{x_0} є неперервним в точці 0, а значить і на всьому просторі E^* .

Означення 11.5. Відображення $\pi: E \to E^{**}$, побудоване в лемі 11.2, називається природнім відображенням простору E в другий спряжений простір E^{**} .

§11.4 Рефлексивні простори

Означення 11.6. Якщо природне відображення $\pi: E \to E^{\star\star}$ є бієкцією і $p(E) = E^{\star\star}$, то простір E називається **напіврефлексивним**.

Означення 11.7. Якщо простір E є напіврефлексивним і відображення $\pi: E \to E^{\star\star}$ є неперервним, то простір E називається **рефлексивним**.

Зауваження 11.4 — Якщо E — рефлексивний простір, то природне відображення $\pi: E \to E^{\star\star}$ є ізоморфізмом.

Теорема 11.4

Якщо E — нормований простір, то природне відображення $\pi: E \to E^{\star\star}$ є ізометрією.

Доведення. Нехай $x \in E$. Покажемо, що

$$||x||_E = ||\pi(x)||_{E^{\star\star}}.$$

Нехай f — довільний ненульовий елемент простору E^{\star} . Тоді

$$|f(x)| \le ||f|| \cdot ||x|| \implies ||x|| \ge \frac{|f(x)|}{||f||}.$$

Оскільки ліва частина нерівності не залежить від f, маємо

$$||x|| \ge \sup_{f \in E^*, f \ne 0} \frac{|f(x)|}{||f||} = ||\pi(x)||_{E^{**}}.$$

З іншого боку, внаслідок теореми Хана—Банаха, якщо x — ненульовий елемент в нормованому просторі E, то існує такий неперервний лінійний функціонал f, визначений на E, що

$$||f|| = 1, \quad f(x) = ||x||$$

(визначаємо функціонал на одновимірному підпросторі формулою $f(\alpha x) = \alpha ||x||$, а потім продовжуємо без збільшення норми на весь простір). Отже, для кожного $x \in E$ знайдеться такий ненульовий лінійний функціонал f, що

$$|f(x)| = ||f|| \cdot ||x||$$

тому

$$\|\pi(x)\|_{E^{\star\star}} = \sup_{f \in E^{\star}, f \neq 0} \frac{|f(x)|}{\|f\|} \ge \|x\|.$$

Отже, $||x||_E = ||\pi(x)||_{E^{\star\star}}$.

Зауваження 11.5 — Оскільки природне відображення нормованих просторів $\pi: E \to E^{\star\star}$ є ізометричним, поняття напіврефлексивних і рефлексивних просторів для нормованих просторів є еквівалентними.

Зауваження 11.6 — Оскільки простір, спряжений до нормованого, є повним (теорема 11.3), будь-який рефлексивний нормований простір є повним.

Зауваження 11.7 — Обернене твердження є невірним.

Приклад 11.5

Простір c_0 є повним, але нерефлексивним, тому що спряженим до нього є простір ℓ_1 , а спряженим до простору ℓ_1 є простір m.

Приклад 11.6

Простір неперервних функцій C[a,b] є повним, але нерефлексивним (більше того, немає жодного нормованого простору, для якого простір C[a,b] був би спряженим).

Приклад 11.7

Приклад рефлексивного простору, що не збігається із своїм спряженим:

$$\ell_p^{\star\star} = \ell_q^{\star} = \ell_p, \quad p, q > 1, p \neq q, \frac{1}{p} + \frac{1}{q} = 1.$$

Приклад 11.8

Приклад рефлексивного простору, що збігається із своїм спряженим:

$$\ell_2^{\star\star} = \ell_2^\star = \ell_2.$$

§11.5 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 112-123).
- [2] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 175–178, 182–192).

12 Слабка топологія і слабка збіжність

Ми розглянули поняття сильної топології і сильної збіжності в нормованому просторі E, а також сильної топології і сильної збіжності в спряженому просторі E^* . Ці топології та поняття збіжності спиралися на поняття норми.

Розглянемо відповідні поняття слабкої топології і слабкої збіжності в нормованих просторах E і E^{\star} .

§12.1 Слабка топологія

Означення 12.1. Слабкою топологією в просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$U_{f_1,f_2,...,f_n;\varepsilon} = \{x \in L : |f_i(x)| < \varepsilon, i = 1, 2, ..., n\},\$$

де f_1, f_2, \ldots, f_n — скінченна сукупність неперервних функціоналів, а ε — довільне додатне число.

Лема 12.1

Слабка топологія слабкіша за вихідну топологію простору L.

Доведення. Розглянемо скінчену сукупність неперервних функціоналів f_1, f_2, \dots, f_n і довільне додатне число ε .

Тоді внаслідок неперервності функціоналів f_1, f_2, \ldots, f_n множина $U_{f_1, f_2, \ldots, f_n; \varepsilon}$ є відкритою в вихідній топології простору L, оскільки прообразом відкритої множини при неперервному відображенні є відкрита множина, і містить нуль, тобто є околом нуля, оскільки ці функціонали є лінійними.

Перетин двох таких околів сам містить множину точок, в яких скінченна кількість функціоналів за модулем менше ε , отже, виконується критерій локальної бази.

Оскільки нова топологія ϵ лише частиною локальною бази нуля в вихідній топології, вона ϵ слабкішою.

Зауваження 12.1 — Слабка топологія є найменшою з усіх топологій, в яких є неперервними всі лінійні функціонали, неперервні у природній топології простору.

Зауваження 12.2 — У нормованому просторі слабка топологія задовольняє аксіому T_2 , але може не задовольняти першу аксіому зліченності, отже, вона не описується за допомогою збіжних послідовностей.

§12.2 Слабка збіжність

Означення 12.2. Послідовність називається **слабко збіжною**, якщо вона є збіжною в слабкій топології.

Лема 12.2

Послідовність $\{x_n\}_{n=1}^{\infty}$ елементів лінійного топологічного простору L є слабко збіжною до $x_0 \in L$ тоді і лише тоді, коли для будь-якого неперервного лінійного функціонала f на L числова послідовність $f(x_n)$ збігається до $f(x_0)$.

Доведення. Необхідність. Без обмеження загальності, розглянемо випадок $x_0 = 0$. Якщо для будь-якого околу $U_{f_1,\dots,f_k;\varepsilon}$ в слабкій топології існує таке число N, що $x_n \in U_{f_1,\dots,f_k;\varepsilon}$ для всіх $n \geq N$, то ця умова виконується і для околу $U_{f;\varepsilon}$, де $f \in L^*$ — довільний фіксований функціонал, а це означає, що $f(x_n) \to 0$ при $n \to \infty$.

Достатність. Припустимо, що $f(x_n) \to 0$ для будь-якого $f \in L^*$. Тоді ця умова виконується і для всіх функціоналів $f_i \in L^*$, $i = 1, 2, \ldots, k$, що визначають довільний окіл в слабкій топології:

$$U_{f_1, f_2, \dots, f_k; \varepsilon} = \{x \in L : |f_i(x)| < \varepsilon, i = 1, 2, \dots, k\}.$$

Виберемо числа N_i так, щоб $|f_i(x_n)| < \varepsilon$ при $n \ge N_i$ і покладемо $N = \max_{i=1,\dots,k} N_i$. Отже, при всіх $n \ge N$ виконується умова $x_n \in U$. Це означає, що послідовність $\{x_n\}_{n=1}^{\infty}$ збігається в слабкій топології.

Лема 12.3

Будь-яка сильно збіжна послідовність є слабко збіжною, але не навпаки.

Доведення. Відповідно до леми 12.1, слабка топологія слабкіша за вихідну топологію лінійного топологічного простору, тому будь-яка послідовність, що збігається в сильній топології, буде збігатися і в слабкій.

Обернене твердження є невірним, тому що, наприклад, в просторі ℓ_2 послідовність ортів $e_n = (0, 0, \dots, 0, 1, 0, \dots)$ слабко збігається до нуля, але не збігається до нуля сильно.

Розглянемо поняття слабкої збіжності в нормованому просторі E.

Теорема 12.1

Якщо послідовність $\{x_n\}_{n=1}^{\infty}$ слабко збігається в нормованому просторі E, то існує така константа C, що

$$||x_n|| \le C$$

тобто будь-яка слабко збіжна послідовність в нормованому просторі ϵ обмеженою.

Доведення. Розглянемо в просторі E^* множини

$$A_{k,n} = \{ f \in E^* : |f(x_n)| \le k \}, \quad k, n = 1, 2, \dots$$

Оскільки при фіксованому x_n функціонали $\varphi_{x_n}(f) = f(x_n)$ є неперервними (лема 11.2), множини $A_{k,n}$ є замкненими.

Дійсно,

$$f_m \to f, f_m \in A_{k,n} \implies \varphi_{x_n}(f_m) = f_m(x_n) \le k \implies f(x_n) \le k.$$

Отже, множина

$$A_k = \bigcap_{n=1}^{\infty} A_{k,n}$$

є замкненою.

Оскільки послідовність $\{x_n\}_{n=1}^{\infty}$ збігається слабко, послідовність $\varphi_{x_n}(f)$ є обмеженою для кожного $f \in E^*$.

Дійсно,

$$x_n \to x \implies \varphi_{x_n}(f) = f(x_n) \to f(x) \implies \exists k > 0 : |f(x_n)| \le k.$$

Отже, будь-який функціонал $f \in E^*$ належить деякій множині A_k , тобто

$$E^{\star} = \bigcup_{k=1}^{\infty} A_k.$$

Оскільки простір E^* є повним (теорема 11.3), то за теоремою Бера хоча б одна з множин A_k , наприклад, A_{k_0} повинна буди щільною в деякій кулі $S(f_0, \varepsilon)$. Оскільки множина A_{k_0} замкненою, це означає, що

$$S(f_0,\varepsilon)\subset \overline{A}_{k_0}=A_{k_0}.$$

Звідси випливає, що послідовність $\{\varphi_{x_n}(f)\}_{n=1}^{\infty}$ є обмеженою на кулі $S(f_0,\varepsilon)$, а значить, на будь-якій кулі в просторі E^{\star} , оскільки E^{\star} є лінійним топологічним простором. Зокрема, це стосується одиничної кулі. Таким чином, послідовність $\{x_n\}_{n=1}^{\infty}$ є обмеженою як послідовність елементів з $E^{\star\star}$ Оскільки природне відображення $\pi: E \to E^{\star\star}$ є ізометричним, це означає обмеженість послідовності $\{x_n\}_{n=1}^{\infty}$ в просторі E.

Теорема 12.2

Послідовність $\{x_n\}_{n=1}^\infty$ елементів нормованого простору E слабко збігається до $x\in E,$ якщо

- 1. значення $||x_n||$ є обмеженими в сукупності деякою константою M;
- 2. $f(x_n) \to f(x)$ для будь-яких функціоналів f, що належать множині, лінійні комбінації елементів якого скрізь щільними в E^* .

Доведення. Із умови 2) і властивостей операцій над лінійними функціоналами випливає, що якщо φ — лінійна комбінація функціоналів f, то

$$\varphi(x_n) \to \varphi(x)$$
.

Нехай φ — довільний елемент з E^* і $\{\varphi_k\}_{k=1}^\infty$ — сильно збіжна до φ послідовність лінійних комбінацій із функціоналів f, тобто $\|\varphi_k - \varphi\| \to 0$ (вона завжди існує внаслідок щільності). Покажемо, що $\varphi(x_n) \to \varphi(x)$.

Нехай M задовольняє умову

$$||x_n|| \le M$$
, $n = 1, 2, \dots, n, \dots$, $||x|| \le M$.

Оскільки $\varphi_k \to \varphi$, то

$$\forall \varepsilon > 0 \exists K \in \mathbb{N} : \forall k \geq K : \|\varphi - \varphi_k\| < \varepsilon.$$

З цього випливає, що

$$|\varphi(x_n) - \varphi(x)| \le |\varphi(x_n) - \varphi_k(x_n) + |\varphi_k(x_n) - \varphi_k(x)| + |\varphi_k(x) - \varphi(x)| \le \|\varphi - \varphi_k\|M + |\varphi_k(x_n) - \varphi_k(x)| + \|\varphi - \varphi_k\|M \le \varepsilon M + |\varphi_k(x_n) - \varphi_k(x)| + \varepsilon M.$$

За умовою теореми, $\varphi_k(x_n) \to \varphi_k(x)$ при $n \to \infty$. Отже,

$$\varphi(x_n) - \varphi(x) \to 0, \quad n \to \infty, \quad \forall \varphi \in E^*.$$

§12.3 Види топології у спряженому просторі

Розглянемо поняття слабкої топології в спряженому просторі E^* . Спочатку згадаємо, що із означення 11.3 сильної топології в спряженому просторі випливає, що цю топологію можна задати за допомогою локальної бази нуля. Наведемо її еквівалентие формулювання.

Означення 12.3. Сильною топологією в спряженому просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$B_{\varepsilon,A} = \{ f \in E^* : |f(x)| < \varepsilon, x \in A \subset E \},$$

де A — довільна обмежена множина в E, а ε — довільне додатне число.

Зауваження 12.3 — Оскільки будь-яка скінченна множина є обмеженою, то слабка топологія в E^* є слабкішою, ніж сильна топологія цього простору.

Означення 12.4. Послідовність $\{f_n\}_{n=1}^{\infty}$ називається **слабко збіжною**, якщо вона є збіжною в слабкій топології E^{\star} , інакше кажучи, $f_n(x) \to f(x)$ для кожного $x \in E$.

Зауваження 12.4 — В спряженому просторі сильно збіжна послідовність є одночасно слабко збіжною, але не навпаки.

В спряженому просторі мають місце теореми, аналогічні теоремам 12.1 і 12.2.

Теорема 12.3

Якщо послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ слабко збігається на банаховому просторі E, то існує така константа C, що

$$||f_n|| \leq C$$
,

тобто будь-яка слабко збіжна послідовність простору, спряженого до банахова простору, ϵ обмеженою.

Теорема 12.4

Послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ елементів спряженого простору E^{\star} слабко збігається до $f \in E$, якщо

1. послідовність $||f_n||$ є обмеженою, тобто

$$\exists C \in \mathbb{R} : ||f_n|| \leq C, \quad n = 1, 2, \ldots;$$

2. $\varphi_x(f_n) \to \varphi_x(f)$ для будь-яких елементів x, що належать множині, лінійні комбінації елементів якої скрізь щільними в E.

Зауваження 12.5 — Простір E^* лінійних неперервних функціоналів, заданих на просторі E, можна тлумачити і як простір, спряжений до простору E, і як основний простір, спряженим до якого є простір E^{**} . Відповідно, слабку топологію в просторі E^* можна ввести або за означенням 12.4 (через скінченні множини елементів простору E), або як в основному просторі відповідно до означення 12.1 (через функціонали із простору E^{**}). Для рефлексивних просторів це одне й теж, а для нерефлексивних просторів ми таким чином отримуємо різні слабкі топології.

Означення 12.5. Топологія в спряженому просторі E^* , що вводиться за допомогою простору $E^{\star\star}$ (як в означенні 12.1), називається **слабкою** і позначається як $\sigma(E^\star, E^{\star\star})$.

Означення 12.6. Топологія в спряженому просторі E^* , що вводиться за допомогою простору E (як в означенні 12.4), називається *-слабкою і позначається як $\sigma(E^*, E)$.

Зауваження 12.6 — Очевидно, що \star -слабка топологія в E^{\star} є більш слабкою, ніж слабка топологія простору E, тобто в слабкій топології не менше відкритих множин, ніж в \star -слабкій топології.

§12.4 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 114–117).
- [2] Колмогоров А. Н. Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 192–202).

13 Принцип рівномірної обмеженості

В цій лекції ми розглянемо види збіжності послідовностей лінійних неперервних операторів і з'ясуємо, коли простір $\mathcal{L}(E,F)$ є банаховим в розумінні тої чи іншої збіжності.

§13.1 Види збіжності послідовностей операторів

Означення 13.1. Послідовність операторів $\{A_n\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, **поточково збігається** до оператора A в просторі $\mathcal{L}(E,F)$ при $n\to\infty$, якщо $\forall x\in E$: $\lim_{n\to\infty}A_nx=Ax$.

Означення 13.2. Послідовність операторів $\{A_n\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, **рівномірно збігається** до оператора A в просторі $\mathcal{L}(E,F)$ при $n \to \infty$, якщо $\lim_{n \to \infty} \|A_n - A\| = 0$.

Зауваження 13.1 — Якщо $F = \mathbb{R}$, то простір $\mathcal{L}(E,\mathbb{R})$ є спряженим простором, поточкова збіжність є аналогом слабкої збіжності в спряженому просторі, а рівномірна збіжність є аналогом сильної збіжності в спряженому просторі.

Лема 13.1

Якщо послідовність лінійних обмежених операторів $A_n: E \to F$, де E, F нормовані простори, є такою, що послідовність $\{\|A_n\|\}_{n=1}^{\infty}$ є необмеженою, то послідовність $\{\|A_nx\|\}_{n=1}^{\infty}$ є необмеженою в будь-якій замкненій кулі.

Доведення. Припустимо супротивне: послідовність $\{\|A_n x\|\}_{n=1}^{\infty}$ є обмеженою в деякій замкненій кулі $\overline{S}(x_0,\varepsilon)$:

$$\exists (\overline{S}(x_0,\varepsilon), C > 0) : \forall n \in \mathbb{N} : \forall x \in (x_0,\varepsilon) : ||A_n x||_F \le C.$$

Кожному елементу $\xi \in E$ поставимо у відповідність елемент $x = \frac{\varepsilon}{\|\xi\|_E} \xi + x_0$, якщо $\xi \neq 0$. Елементу $\xi = 0$ поставимо у відповідність елемент $x = x_0$.

$$\xi \neq 0 \implies \|x - x_0\|_E = \left\| \frac{\varepsilon}{\|\xi\|_E} \xi + x_0 - x_0 \right\|_E = \left\| \frac{\varepsilon}{\|\xi\|_E} \xi \right\|_E = \varepsilon.$$

Це означає, що для довільних $\xi \in E$ всі елементи $x \in \overline{S}(x_0, \varepsilon)$.

Оцінимо наступну величину (використовуючи допоміжну нерівність $||x|| - ||y|| \le ||x+y||$.

$$\left| \frac{\varepsilon}{\|\xi\|_E} \|A_n \xi\|_F - \|A_n x_0\|_F \right| \le \left\| \frac{\varepsilon}{\|\xi\|_E} A_n \xi + A_n x_0 \right\|_F = \left\| A_n \left(\frac{\varepsilon}{\|\xi\|_E} \xi + x_0 \right) \right\|_F \le C. \tag{13.1}$$

Отже,

$$\frac{\varepsilon}{\|\xi\|_E} \|A_n \xi\|_F - \|A_n x_0\|_F \le C.$$

Звідси випливає, що

$$||A_n\xi||_F \le \frac{C + ||A_nx_0||_F}{\varepsilon} ||\xi||_E \le \frac{2C}{\varepsilon} ||\xi||_E.$$

Отже,

$$\exists C_1 = \frac{2C}{\varepsilon} > 0 : \forall \xi \in E : ||A_n \xi||_E \le C_1 ||\xi||_E \implies ||A_n|| \le C_1.$$

Отримане протиріччя доводить лему.

Теорема 13.1 (Банаха—Штейнгауза)

Нехай послідовність лінійних обмежених операторів $\{A_n\}_{n=1}^{\infty}$, що відображають банахів простір E в нормований простір F, поточково збігається до оператора A при $n \to \infty$. Тоді послідовність $\{\|A_n\|\}_{n=1}^{\infty}$ є обмеженою, оператор A є лінійним і неперервним, а $A_n x \to A x$ рівномірно по n на кожному компакті $K \subset E$ (тобто n не залежить від x).

Доведення. Припустимо, що послідовність $\{\|A_n\|\}_{n=1}^{\infty}$ є необмеженою. Тоді за лемою 13.1 послідовність $\{\|A_nx\|\}_{n=1}^{\infty}$ є необмеженою на довільній замкненій кулі $\overline{S}(x_0, \varepsilon_0)$. Отже,

$$\exists (n_1 \in \mathbb{N}, x_1 \in \overline{S}(x_0, \varepsilon_0) : ||A_{n_1}x_1||_F > 1.$$

Оскільки A_{n_1} — неперервний оператор,

$$\exists \overline{S}(x_1, \varepsilon_1) \subset \overline{S}(x_0, \varepsilon_0) : \forall x \in \overline{S}(x_1, \varepsilon_1) : ||A_{n_1}x||_F > 1.$$

На кулі $\overline{S}(x_1, \varepsilon_1)$ послідовність $\{\|A_n x\|_F\}_{n=1}^\infty$ також є необмеженою. Отже,

$$\exists \overline{S}(x_2, \varepsilon_2) \subset \overline{S}(x_1, \varepsilon_1) : \forall x \in \overline{S}(x_2, \varepsilon_2) : ||A_{n_2}x||_F > 2.$$

Нехай $A_{n_1}, A_{n_2}, \dots, A_{n_k}$ і x_1, x_2, \dots, x_k :

$$n_1 < n_2 < \dots < n_k$$
, $\overline{S}(x_0, \varepsilon_0) \supset \overline{S}(x_1, \varepsilon_1) \supset \dots \supset \overline{S}(x_k, \varepsilon_k)$.

Продовжуючи цей процес при $k \to \infty$, отримуємо послідовність вкладених замкнених куль, таких що

$$\forall x \in \overline{S}(x_k, \varepsilon_k) : ||A_{n_k}x||_F > k, \quad \varepsilon_k \to 0.$$

Оскільки E — повний простір, за принципом вкладених куль

$$\exists x^* \in \bigcap_{k=1}^{\infty} S(x_k, \varepsilon_k) : ||A_{n_k} x^*||_F \ge k, \quad \forall k \in \mathbb{N}.$$

Звідси випливає, що $\exists x^* \in E$ така, що послідовність $\{A_n x^*\}$ не збігається. Це суперечить умові теореми, згідно якої послідовність операторів $\{A_n x\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E.

Покажемо, що оператор A — лінійний. Оскільки

$$A_n(x+y) = A_n(x) + A_n(y), \quad A_n(\lambda x) = \lambda A_n(x),$$

маємо

$$A(x+y) = \lim_{n \to \infty} A_n(x+y) = \lim_{n \to \infty} A_n(x) + \lim_{n \to \infty} A_n(y) = Ax + Ay.$$
$$A(\lambda x) = \lim_{n \to \infty} A_n(\lambda x) = \lambda \lim_{n \to \infty} A_n(x) = \lambda Ax.$$

Крім того,

$$||A_n x||_F \le C ||x||_E \implies \lim_{n \to \infty} ||A_n x||_F = \left\| \lim_{n \to \infty} A_n x \right\|_F = ||Ax||_E \le C ||x||_E.$$

Отже, A — лінійний і обмежений, а значить, неперервний.

Нехай $K\subset E$ — компакт, $\varepsilon>0$. За теоремою Хаусдорфа існує скінчена $\frac{\varepsilon}{3C}$ -сітка M:

$$\forall x \in K : \exists x_{\alpha} \in M, \alpha \in A : ||x - x_{\alpha}||_{E} < \frac{\varepsilon}{3C},$$

де A — скінчена множина.

Оскільки послідовність $\{A_n x\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E, то вона збігається і в кожній точці сітки M:

$$\forall x_{\alpha} \in M : \exists n_{\alpha} : \forall n \ge n_{\alpha} : ||A_n x_{\alpha} - A x_{\alpha}||_F < \frac{\varepsilon}{3}.$$

Нехай $n_0 = \max_{\alpha \in A} n_\alpha$ (сітка M є скінченою, тому максимум існує). Тоді $\forall n \geq n_0$, $\forall x \in S\left(x_\alpha, \frac{\varepsilon}{3C}\right)$

$$||A_n x - Ax||_F \le ||A_n x - A_n x_\alpha + A_n x_\alpha - Ax_\alpha + Ax_\alpha - Ax||_F \le$$

$$||A_n x - A_n x_\alpha||_F + ||A_n x_\alpha - Ax_\alpha||_F + ||Ax_\alpha - Ax||_F <$$

$$C||x - x_\alpha||_F + \frac{\varepsilon}{3} + C||x - x_\alpha||_F = \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Отже, $\forall n \geq n_0, \ \forall x \in K \colon \|A_n x - A x\|_F < \varepsilon$, до того ж номер n_0 не залежить від точки x. Це означає, що $A_n x \to A x$ рівномірно по n на кожному компакті $K \subset E$. \square

§13.2 Повнота простору лінійних неперервних операторів

З'ясуємо, коли простір $\mathcal{L}(E,F)$ є повним у розумінні рівномірної або точкової збіжності.

Теорема 13.2

Якщо нормований простір F — банахів, то $\mathcal{L}(E,F)$ — банахів у розумінні рівномірної збіжності.

$$||A_n - A_m|| \to 0, \quad n, m \to \infty.$$

Тоді $\forall x \in E$

$$||A_n x - A_m x|| \le ||A_n - A_m|| \cdot ||x|| \to 0, \quad n, m \to \infty.$$

Для кожного фіксованого $x \in E$ послідовність $\{A_n x\}$ є фундаментальною в F. Оскільки простір F є повним за умовою теореми, то послідовність $\{A_n x\}$ збігається

до певного елемента $y \in F$. Позначимо $\lim_{n\to\infty} A_n x$. Отже, ми визначили відображення $A: E \to F$. Його лінійність випливає із властивостей границі. Покажемо його обмеженість: $\{\|A_n\|\}$ фундаментальна в \mathbb{R} , адже

$$|||A_n|| - ||A_m||| \le ||A_n - A_m|| \to 0, \quad n, m \to \infty,$$

а отже $\{\|A_n\|\}$ обмежена в \mathbb{R} , тобто

$$\exists C : \forall n \in \mathbb{N} : ||A_n|| < C.$$

Отже,

$$||A_n x|| \le ||A_n|| \cdot ||x|| \le C||x||.$$

Внаслідок неперервності норми, маємо

$$||Ax|| \lim_{n \to \infty} ||A_n x|| \le C||x||.$$

Покажемо, що A_n рівномірно збігається до A в просторі $\mathcal{L}(E,F)$. Задамо $\varepsilon > 0$ і виберемо n_0 так, щоб $\|A_{n+p}x - A_nx\| < \varepsilon$ для $n \ge n_0, \ p > 0$ і для будь-якого $x: \|x\| \le 1$. Нехай $p \to \infty$. Тоді

$$\forall n \ge n_0, x : ||x|| \le 1 : ||Ax - A_n x|| < \varepsilon,$$

звдки

$$||A_n - A|| = \sup_{\|x\| \le 1} ||(A_n - A)x|| \le \varepsilon,$$

а тому $A = \lim_{n \to \infty} A_n$ в розумінні рівномірної збіжності.

Отже, $\mathcal{L}(E, F)$ є банаховим.

Теорема 13.3

Якщо нормовані просторі E і F — банахові, то $\mathcal{L}(E,F)$ — банахів у розумінні поточкової збіжності.

Доведення. Розглянемо точку $x \in E$ і фундаментальну у розумінні поточкової збіжності послідовність $\{A_n\}_{n=1}^{\infty}$.

Оскільки F — банахів простір, то існує елемент $y = \lim_{n\to\infty} A_n x$. Таким чином, визначений оператор $A: E\to F$, такий що y=Ax. Лінійність цього оператора випливає із лінійності границі, а обмеженість — із теореми Банаха-Штейнгауза:

$$||Ax|| = \left\| \lim_{n \to \infty} A_n x \right\| \le \lim_{n \to \infty} ||A_n|| \cdot ||x|| = C||x||.$$

§13.3 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 96–102).
- [2] **Ляшко И. И.** Основы классического и современного математического анализа / И. И. Ляшко, В. Ф Емельянов, А. К. Боярчук. К.: Вища школа, 1988 (стр. 576-578).

14 Принцип відкритості відображення

§14.1 Обмеженість на всюди щільній множині

Лема 14.1

Нехай E і F — банахові простори, $A \in \mathcal{L}(E,F), E_n$ — множина тих точок $x \in E$, для яких

$$||Ax||_F \le n||x||_E, \quad n = 1, 2, \dots$$

Тоді $E = \bigcup_{n=1}^{\infty} E_n$ і принаймні одна із множин E_n є всюди щільною в E.

Доведення. Спочатку пересвідчимось в тому, що

$$\forall x \in E : \exists n \in \mathbb{N} : x \in E_n.$$

Очевидно, що $E_n \neq \emptyset$, оскільки $\forall n \in \mathbb{N} : 0 \in E$. Якщо $x \neq 0$, позначимо через n найменше натуральне число, що задовольняє нерівність

$$n \ge \frac{\|Ax\|_F}{\|x\|_E}.$$

Тоді

$$\forall x \in E : \exists n \in \mathbb{N} : ||Ax||_F \le n||x||_E.$$

Звідси випливає, що

$$E = \bigcup_{n=1}^{\infty} E_n$$

Згідно теореми Бера, банахів простір E не може бути поданий у вигляді не більш ніж зліченного об'єднання ніде не щільних множин. Значить, одна із множин E_{n_0} не є ніде не щільною. Отже, існує відкрита куля $S(x_0, r)$, така що $S(x_0, r) \subset \overline{E}_{n_0}$.

Розглянемо замкнену кулю $\overline{S}(x_1, r_1)$ з центром $x_1 \in E_{n_0}$, таку що

$$\overline{S}(x_1, r_1) \subset S(x_0, r).$$

Візьмемо довільний елемент x з нормою $||x|| = r_1$. Оскільки

$$||x_1 + x - x_1||_E = ||x||_E = r_1,$$

отримаємо, що $x_1+x\in \overline{S}(x_1,r_1)$. Отже, $\overline{S}(x_1,r_1)\subset \overline{E}_{n_0}$, звідки

$$\exists \{y_k\}_{k=1}^{\infty} \subset S(x_1, r_1) \cap E_{n_0} : y_k \to x_1 + x, \quad k \to \infty.$$

Якщо $x_1 + x \in E_{n_0}$, ця послідовність може бути стаціонарною. Таким чином, $\exists \{x_k\}_{k=1}^\infty = \{y_k - x_1\}_{k=1}^\infty$, така що

$$\lim_{k \to \infty} x_l = \lim_{k \to \infty} y_k - x_1 = x.$$

Оскільки

$$||x||_E = r_1, \quad ||x_k||_E \le r_1,$$

можна вважати, що

$$\forall k \in \mathbb{N} : ||x_k||_E \ge \frac{r_1}{2} \tag{14.1}$$

Із умов $y_k \in E_{n_0}, x_1 \in E_{n_0}, y_k = x_k + x_1$ маємо наступні оцінки

$$||Ax_k||_F = ||Ay_k - Ax_1||_F \le ||Ay_k||_F + ||Ax_1||_F \le n_0(||y_k||_E + ||x_1||_E).$$
 (14.2)

$$||y_k||_E = ||x_k + x_1||_E \le ||x_k||_E + ||x_1||_E \le r_1 + ||x_1||_E.$$
(14.3)

Беручи до уваги умову (14.1) і оцінки (14.2), (14.3), маємо

$$||Ax_k||_F \le n_0(r_1 + 2||x_1||_E) \le \frac{2n_0|}{r_1}(r_1 + 2||x_1||_E)||x_k||_E.$$

Нехай n — найменше натуральне число, що задовольняє нерівність

$$n \ge \frac{2n_0}{r_1}(r_1 + 2||x_1||_E).$$

Тоді $||Ax_k||_F \le n||x_k||_E$, тобто $x_k \in E_n$.

Таким чином, довільний елемент x, норма якого дорівнює r_1 можна апроксимувати елементами множини E_n .

Нехай $x \in E$ — довільний ненульовий елемент. Розглянемо точку

$$\xi = r_1 \frac{x}{\|x\|_E}.$$

Вище ми довели, що існує послідовність

$$\{\xi_k\}_{k=1}^{\infty}: \xi_k \in E_n, \lim_{k \to \infty} \xi_k = \xi.$$

Тоді

$$\lim_{k \to \infty} x_k = \lim_{k \to \infty} \xi_k \frac{\|x\|_E}{r_1} = x,$$

звідки

$$||Ax_k||_F = \frac{||x||_E}{r_1} ||A\xi_k||_F \le \frac{||x||_E}{r_1} n ||\xi_k||_E = n ||x_k||_E.$$

Отже, $x_k \in E_n$ і $\lim_{k\to\infty} x_k = x, \, \forall x \in E$. Таким чином, множина E_n скрізь щільна в E.

§14.2 Лінійний обмежений обернений оператор

Теорема 14.1 (Банаха, про обернений оператор)

Нехай E і F — банахові простори, A — лінійний обмежений взаємно-однозначний оператор, що діє із E в F. Тоді існує лінійний обмежений обернений оператор $A^{-1}:F\to E$.

Доведення. Покажемо лінійність оберненого оператора. Покладемо $\forall x_1, x_2 \in E$: $Ax_1 = y_1, Ax_2 = y_2$. Внаслідок лінійності оператора A

$$\forall \alpha, \beta \in \mathbb{R} : A(\alpha x_1 + \beta x_2) = \alpha y_1 + \beta y_2. \tag{14.4}$$

Оскільки $A^{-1}y_1=x_1,\ A^{-1}y_2=x_2,$ помножимо ці рівності на α і β відповідно і складемо результати:

$$\alpha A^{-1}y_1 + \beta A^{-1}y_2 = \alpha x_1 + \beta x_2. \tag{14.5}$$

Із рівності (14.4) і означення оберненого оператора випливає, що

$$\alpha x_1 + \beta x_2 = A^{-1}(\alpha y_1 + \beta y_2).$$

Беручи до уваги рівність (14.5), отримуємо

$$A^{-1}(\alpha y_1 + \beta y_2) = \alpha A^{-1} y_1 + \beta A^{-1} y_2.$$

Отже, оператор A^{-1} є лінійним. Тепер доведемо його обмеженість.

3а лемою 14.1 банахів простір F можна подати у вигляді

$$F = \bigcup_{k} F_k$$

де F_k — множина таких елементів $y \in F$, для яких

$$||A^{-1}y||_E \le k||y||_F$$

до того ж одна із множин F_k скрізь щільна в F. Позначимо цю множину через F_n . Візьмемо довільну точку $y \in F$, а її норму позначимо як $\|y\|_F = a$. Знайдемо таку точку $y_1 \in F_n$, щоб виконувались нерівності

$$||y - y_1||_F \le \frac{a}{2}, \quad ||y_1||_F \le a.$$

Такий вибір можливий, оскільки множина $\overline{S}(0,a) \cap F_n$ є щільною в замкненій кулі $\overline{S}(0,a)$ і $y \in \overline{S}(0,a)$. Знайдемо такий елемент $y_2 \in F_n$, щоб виконувались умови

$$||y - y_1 - y_2||_F \le \frac{a}{2^2}, \quad ||y_1||_F \le \frac{a}{2}.$$

Продовжуючи вибір, побудуємо елементи $y_k \in F_n$, такі що

$$||y - (y_1 + \dots + y_k)||_F \le \frac{a}{2^k}, \quad ||y_k||_F \le \frac{a}{2^{k-1}}.$$

Внаслідок вибору елементів y_k маємо

$$\lim_{m \to \infty} \left\| y - \sum_{k=1}^{m} y_k \right\|_F = 0.$$

Це означає, що ряд $\sum_{k=1}^{\infty}y_k$ збігається до елемента y. Покладемо $x_k=A^{-1}y_k$. Тоді отримуємо оцінку

$$||x_k||_E \le n||y_k||_F \le \frac{na}{2^{k-1}}.$$

Оскільки

$$||v_{k+p} - v_k||_E = \left\| \sum_{i=k+1}^{k+p} x_i \right\|_E \le \sum_{i=k+1}^{k+p} ||x_i||_E \le \sum_{i=k+1}^{\infty} ||x_i||_E \le \sum_{i=k+1}^{\infty} \frac{na}{2^{i-1}} = \sum_{i=0}^{\infty} \frac{na}{2^{i+k}} = \frac{na}{2^k} \sum_{i=0}^{\infty} \frac{1}{2^i} = \frac{na}{2^k} \frac{1}{1 - \frac{1}{2}} = \frac{na}{2^{k-1}},$$

а простір E — повний, послідовність $\{v_k\}_{k=1}^{\infty}$, де $v_k = \sum_{i=1}^k x_i$ збігається до деякої границі $x \in E$. Отже,

$$x = \lim_{k \to \infty} \sum_{i=1}^{k} x_i = \sum_{i=1}^{\infty} x_i.$$

Внаслідок лінійності і неперервності оператора A, маємо

$$Ax = A\left(\lim_{k \to \infty} \sum_{i=1}^{k} x_i\right) = \lim_{k \to \infty} \sum_{i=1}^{k} Ax_i = \lim_{k \to \infty} \sum_{i=1}^{k} y_i = y.$$

Звідси отримуємо, що

$$||A^{-1}y||_E = ||x||_E = \lim_{k \to \infty} \left\| \sum_{i=1}^k x_i \right\|_E \le \lim_{k \to \infty} \sum_{i=1}^k ||x_i||_E \le \sum_{i=1}^\infty \frac{na}{2^{i-1}} = 2na = 2n||y||_E.$$

Оскільки y — довільний елемент із простору F, обмеженість оператора A^{-1} доведено. \Box

Наслідок 14.1

Якщо E і F — банахові простори, $A \in \mathcal{L}(E, F)$, то образ будь-якого околу нуля простору E містить деякий окіл нуля простору F.

§14.3 Обернений до наближеного і резольвента

Нехай E, F — банахові простори. Відокремимо в банаховому просторі $\mathcal{L}(E, F)$ множину операторів $\mathfrak{M}(E, F)$, що мають обернений оператор.

Теорема 14.2

Нехай $A_0 \in \mathfrak{M}(E,F), \Delta \in \mathcal{L}(E,F)$ і $\|\Delta\| \cdot \|A_0^{-1}\| < 1$. Тоді $A = A_0 + \Delta \in \mathfrak{M}(E,F)$.

Доведення. Зафіксуємо довільний $y \in F$ і розглянемо відображення $B: E \to E$, таке що $Bx = A_0^{-1}y - A_0^{-1}\Delta x$.

Оскільки $\|\Delta\|\cdot\|A_0^{-1}\|<1$, відображення B є стискаючим. Простір E — банахів, тому існує єдина нерухома точка відображення B

$$x = Bx = A_0^{-1}y - A_0^{-1}\Delta x.$$

Отже,

$$Ax = A_0x + \Delta x = y.$$

Якщо існує ще одна точка x', така що Ax' = y, то x' також є нерухомою точкою відображення B. Оскільки це відображення має єдину нерухому точку, це означає, що x = x'. Отже, для будь-якого $y \in F$ рівняння Ax = y має єдиний розв'язок в просторі E. Значить, оператор A має обернений оператор A^{-1} . За теоремою Банаха про обернений оператор A^{-1} є обмеженим.

Теорема 14.3

Нехай E — банахів простір, I — тотожній оператор, що діє в E, $A \in \mathcal{L}(E,E)$ і $\|A\| < 1$. Тоді оператор $(I-A)^{-1}$ існує, обмежений і може бути поданий у вигляді

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

Доведення. Спочатку зауважимо, що із ||A|| < 1 випливає

$$\sum_{k=0}^{\infty} ||A^k|| \le \sum_{k=0}^{\infty} ||A||^k < \infty.$$

Простір E — банахів, тому із збіжності ряду $\sum_{k=0}^{\infty} \|A^k\|$ випливає, що $\sum_{k=0}^{\infty} A^k \in \mathcal{L}(E,E)$. Для довільного $n \in \mathbb{N}$:

$$(I-A)\sum_{k=0}^{n} A^{k} = \sum_{k=0}^{n} A^{k}(I-A) = I - A^{n+1}.$$

Перейдемо до границі при $n \to \infty$ і зважимо на те, що $\|A^{n+1}\| \le \|A\|^{n+1} \to 0$. Отже,

$$(I - A) \sum_{k=0}^{\infty} A^k = \sum_{k=0}^{\infty} A^k (I - A) = I.$$

Звідси випливає, що

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

§14.4 Принцип відкритості відображення

Теорема 14.4 (принцип відкритості відображення)

Лінійне сюр'єктивне і неперервне відображення банахова простору E на банахів простір F є відкритим відображенням.

Доведення. Покажемо, що образ будь-якої відкритої множини простору E є відкритою множиною простору F. Нехай $G \subset E$ — непорожня відкрита множина, $x \in G$, а G_0 — окіл нуля в E, такий що $x + G_0 \in G$. Розглянемо окіл нуля G_1 в просторі F, такий що $G_1 \subset AG_0$, який існує завдяки наслідку 14.1. Мають місце включення

$$Ax + G_1 \subset Ax + AG_0 = A(x + G_0) \subset AG.$$

Оскільки $Ax + G_1$ є околом точки Ax, а x — довільна точка із множини G і $Ax \in AG$, то множина AG разом із кожною своєю точкою містить її деякий окіл W. Отже, множина AG є відкритою і відображення A є відкритим.

§14.5 Література

- [1] **Березанский Ю. М.** Функциональный анализ / Ю. М. Березанский, Г. Ф. Ус, 3. Г. Шефтель — К.: Выща школа, 1990 (стр. 254–255).
- [2] **Ляшко И. И.** Основы классического и современного математического анализа / И. И. Ляшко, В. Ф Емельянов, А. К. Боярчук. К.: Вища школа, 1988 (стр. 578–581).
- [3] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 102–106).
- [4] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 224–233).

15 Спряжені оператори, спектр і компактні оператори

§15.1 Спряжені оператори

Нехай E і F — лінійні топологічні простори. Розглянемо неперервний лінійний оператор $A:E\to F$ і функціонал $g\in F^\star$. Застосуємо функціонал g до елемента y=Ax. Це визначає функціонал $f\in E^\star$, який визначається формулою f(x)=g(Ax).

Означення 15.1. Оператор $A^*: F^* \to E^*$, що визначається формулою f(x) = g(Ax) і ставить кожному функціоналу g із простору F^* функціонал f із простору E^* , називається спряженим до оператора A.

Приклад 15.1

Розглянемо оператор

$$A: \mathbb{R}^n \to \mathbb{R}^m$$

і функціонал

$$y = Ax$$
,

який визначається як

$$y_i = \sum_{i=1}^n a_{i,j} x_j, \quad i = 1, 2, \dots, m.$$

Тоді

$$f(x) = g(Ax) = \sum_{i=1}^{m} g_i y_i = \sum_{i=1}^{n} \sum_{j=1}^{m} g_i a_{i,j} x_j = \sum_{i=1}^{n} x_j \sum_{j=1}^{m} g_i a_{i,j}.$$

Отже,

$$f_j = \sum_{i=1}^m g_i a_{i,j}, \quad j = 1, 2, \dots, n$$

З цього випливає, що

$$f = A^*g \implies A^* = A^\intercal.$$

Це означає, що спряжений оператор визначається транспонованою матрицею.

Позначивши значення функціонала f на елементі x символом (f,x), отримаємо, що

$$(g, Ax) = (f, x) = (A^*g, x).$$

Теорема 15.1

Якщо $A \in \mathcal{L}(E, F)$, де E, F — банахові простори, то $||A|| = ||A^*||$.

Доведення. З одного боку

$$|(A^*g, x)| = |(g, Ax)| \le ||g|| \cdot ||A|| \cdot ||x||,$$

звідки

$$||A^*q|| \le ||A|| \cdot ||q||,$$

тобто

$$||A^*|| \le ||A||.$$

З іншого боку, для $x \in E$ і $Ax \neq 0$ існує елемент

$$y_0 = \frac{Ax}{\|Ax\|} \in F \implies \|y_0\| = 1.$$

Отже, за теоремою Хана—Банаха існує функціонал g, такий що $\|g\|=1,\ (g,y_0)=1.$ З цього випливає, що

$$(g, y_0) = \left(g, \frac{Ax}{\|Ax\|}\right) = \frac{1}{\|Ax\|}(g, Ax) = 1.$$

Тоді (g, Ax) = ||Ax||. Таким чином,

$$||Ax|| = (g, Ax) = |(A^*g, x)| \le ||A^*|| \cdot ||g|| \cdot ||x|| = ||A^*|| \cdot ||x||,$$

тобто

$$||A|| \le ||A^\star||.$$

Поєднуючи дві нерівності отримуємо, що

$$||A|| = ||A^*||.$$

§15.2 Спектр оператора

Означення 15.2. Нехай $A: E \to E$, де E — комплексний банахів простір. Число λ називається **регулярним** для оператора A, якщо оператор

$$R_{\lambda} = (A - \lambda I)^{-1}$$

визначений на всьому просторі E.

Означення 15.3. Оператор $R_{\lambda} = (A - \lambda I)^{-1}$ називається **резольвентою**.

Означення 15.4. Сукупність всіх чисел λ , які не є регулярними для оператора A, називається його спектром.

Означення 15.5. Число λ , таке що рівняння

$$Ax = \lambda x$$

має ненульові розв'язки, називається **власним числом** оператора A.

Означення 15.6. Всі власні числа оператора A належать його спектру і утворюють **точковий спектр**.

Означення 15.7. Доповнення до точкового спектру називається **неперервним** спектром.

Приклад 15.2

Розглянемо простір C[a,b] і оператор

$$Ax(t) = tx(t).$$

Тоді

$$(A - \lambda I)x(t) = (t - \lambda)x(t).$$

Із умови

$$(t - \lambda)x(t) = 0, \quad \forall \lambda \in \mathbb{R}$$

випливає, що неперервна функція x(t) тотожно дорівнює нулю, тому оператор $(A - \lambda I)^{-1}$ існує для довільного λ .

Проте при $\lambda \in [a,b]$ обернений оператор, що діє за формулою

$$(A - \lambda I)^{-1}x(t) = \frac{x(t)}{t - \lambda}$$

визначений не на всьому просторі C[a,b] і не є обмеженим. Таким чином, спектром є весь відрізок [a,b], власних чисел немає, тобто оператор A має лише неперервний спектр.

Зауваження 15.1 — У скінченновимірних просторах неперервний спектр оператора є порожньою множиною, спектр збігається із точковим спектром і складається лише із власних чисел.

У нескінченновимірних просторах кожне число відносно оператора є регулярним значенням, власним значенням або елементом неперервного спектру.

Теорема 15.2

Якщо $A\in\mathcal{L}(E,E)$, де E — банахів простір і $|\lambda|>\|A\|$, то λ — регулярне значення для оператора A.

Доведення. Оскільки

$$A - \lambda I = -\lambda (I - \frac{1}{\lambda}A),$$

то

$$R_{\lambda} = (A - \lambda I)^{-1} = -\frac{1}{\lambda} \left(I - \frac{A}{\lambda} \right)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{A^k}{\lambda^k}.$$

За умови $|\lambda| > \|A\|$ цей ряд збігається і визначає на E обмежений оператор (теорема 14.4).

Зауваження 15.2 — З теореми 15.2 випливає, що спектр оператора A міститься в колі радіусу $\|A\|$ з центром в нулі.

§15.3 Компактні оператори

Означення 15.8. Оператор A, що діє із банахового простору E в банахів простір F називається **компактним**, або **цілком неперервним**, якщо кожну обмежену множину він переводить у відносно компактну множину.

Приклад 15.3

Лінійний неперервний оператор A, що переводить банахів простір E в його скінченновимірний підпростір, ϵ компактним.

Теорема 15.3

Якщо послідовність компактних операторів $\{A_n\}_{n=1}^{\infty}$ в банаховому просторі E збігається до оператора A рівномірно, то оператор A теж є компактним.

Доведення. Для доведення компактності оператора A доведемо, що для будь-якої обмеженої послідовності $\{x_n\}_{n=1}^{\infty} \subset E$ із послідовності $\{Ax_n\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність.

Оператор A_1 — компактний, тому із послідовності $\{A_1x_n\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність. Нехай $\{x_n^{(1)}\}_{n=1}^{\infty} \subset E$ — послідовність, на якій збігається послідовність, яку ми виділили із $\{A_1x_n\}_{n=1}^{\infty}$.

Оператор A_2 — компактний, тому із послідовності $\{A_2x_n^{(1)}\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність. Нехай $\{x_n^{(2)}\}_{n=1}^{\infty} \subset E$ — послідовність, на якій збігається послідовність, яку ми виділили із $\{A_2x_n^{(1)}\}_{n=1}^{\infty}$.

Продовжимо цей процес і виділимо діагональну послідовність

$$x_1^{(1)}, x_2^{(2)}, \dots, x_n^{(n)}, \dots$$

Оператори $A_1, A_2, \ldots, A_n, \ldots$ переводять її у збіжну послідовність. Покажемо, що оператор A теж переводить її в збіжну послідовність. Простір E — повний, тому достатньо показати, що $\{Ax_n^{(n)}\}_{n=1}^{\infty}$ є фундаментальною послідовністю.

$$||Ax_{n}^{(n)} - Ax_{m}^{(m)}|| \le$$

$$||Ax_{n}^{(n)} - A_{k}x_{n}^{(n)} + A_{k}x_{n}^{(n)} - A_{k}x_{m}^{(m)} + A_{k}x_{m}^{(m)} - Ax_{m}^{(m)}|| \le$$

$$||Ax_{n}^{(n)} - A_{k}x_{n}^{(n)}|| + ||A_{k}x_{n}^{(n)} - A_{k}x_{m}^{(m)}|| + ||A_{k}x_{m}^{(m)} - Ax_{m}^{(m)}||.$$

Нехай $||x_n|| \leq C$. Оскільки $||A_n - A|| \to 0$ при $n \to \infty$,

$$\exists K \in \mathbb{N} : \forall k \ge K : ||A - A_k|| < \frac{\varepsilon}{3C}.$$

Крім того, оскільки послідовність $\{A_k x_n^{(n)}\}$ є збіжною,

$$\exists N \in \mathbb{N} : \forall n, m \ge N : \left\| A_k x_n^{(n)} - A_k x_m^{(m)} \right\| < \frac{\varepsilon}{3}.$$

Вибравши $M = \max(K, N)$, отримуємо

$$\forall n, m \ge M : \left\| Ax_n^{(n)} - Ax_m^{(m)} \right\| < \varepsilon.$$

Теорема 15.4

Якщо A — лінійний компактний оператор, оператор B — лінійний обмежений, то оператори AB і BA є компактними.

Доведення. Якщо множина $M\subset E$ є обмеженою, то BM — обмежена множина, оскільки обмежений оператор переводить будь-яку обмежену множину в обмежену множину. Отже, множина ABM є відносно компактною. Це означає, що оператор AB є компактним.

Аналогічно, якщо множина $M\subset E$ є обмеженою, то AM — відносно компактна множина, оскільки компактний оператор переводить будь-яку обмежену множину у відносно компактну множину. Оператор B — неперервний, тому множина BAM є відносно компактною. Це означає, що оператор BA є компактним.

Наслідок 15.1

В нескінченновимірному просторі E компактний оператор не може мати обмеженого оберненого оператору.

Теорема 15.5

Оператор, спряжений до компактного, є компактним.

Спряжені, самоспряжені і компактні оператори відіграють особливо важливу роль у гільбертових просторах. Саме на цих поняттях побудована теорія розв'язності операторних рівнянь в гільбертових просторах.

§15.4 Література

[1] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин — М.: Наука, 1981 (стр. 230–250).

16 Гільбертові простори

§16.1 Скалярний добуток і породжена ним норма

Означення 16.1. Дійсна лінійна система H називається дійсним передгільбертовим простором (або евклідовим, або унітарним), якщо кожній парі елементів x, y поставлено у відповідність дійсне число (x, y), що задовольняє умови (аксіоми скалярного добутку):

- 1. $(x,x) \ge 0$, до того ж (x,x) = 0 тільки при $x = \vec{0}$;
- 2. (x,y) = (y,x);
- 3. $(x_1 + x_2, y) = (x_1, y) + (x_2, y);$
- 4. $(\lambda x, y) = \lambda(x, y)$.

Лема 16.1 (нерівність Коші—Буняковського)

В дійсному передгільбертовому просторі справджується нерівність

$$|(x,y)| \le \sqrt{(x,x)}\sqrt{(y,y)},$$

для довільних $x, y \in H$.

Доведення. Розглянемо вираз

$$0 \le (x + \lambda y, x + \lambda y) = (x, x) + 2\lambda(x, y) + \lambda^2(y, y).$$

Це означає, що дискримінант цього квадратного трьохчлена є недодатним:

$$(x,y)^2 - (x,x)(y,y) \le 0.$$

Отже,

$$|(x,y)| \le \sqrt{(x,x)}\sqrt{(y,y)}.$$

За скалярним добутком в H можна ввести норму $||x|| = \sqrt{(x,x)}$.

Лема 16.2

Відображення $\|\cdot\|: x \mapsto \sqrt{(x,x)}$ є нормою.

Доведення. Перевіримо аксіоми норми.

1. $\forall x \in H: ||x|| = 0 \iff x = \vec{0}:$

$$\sqrt{(x,x)} = 0 \iff (x,x) = 0 \iff x = \vec{0}.$$

2. $\|\lambda x\| = |\lambda| \cdot \|x\|, \ |\forall x \in H, \ \forall \lambda \in \mathbb{R}$:

$$\|\lambda x\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{\lambda(x, \lambda x)} = \sqrt{\lambda^2(x, x)} = |\lambda| \sqrt{(x, x)} = |\lambda| \cdot \|x\|.$$

3. $||x + y|| \le x + y, \forall x, y \in H$:

$$||x + y||^2 = (x + y, x + y) = (x, x) + 2(x, y) + (y, y) \le$$

$$||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2 \implies ||x + y|| \le ||x|| + ||y||.$$

Що і треба було довести.

Лема 16.3

Скалярний добуток є неперервним відображенням, тобто

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y \implies \lim_{n \to \infty} (x_n, y_n) = (x, y).$$

Доведення.

$$|(x,y) - (x_n, y_n)| = |(x,y) - (x,y_n) + (x,y_n) - (x_n, y_n)| = |(x,y-y_n) + (x-x_n, y_n) \le |(x,y-y_n)| + |(x-x_n, y_n)| \le ||x|| \cdot ||y-y_n|| + ||x-x_n|| \cdot ||y_n||.$$

Враховуючи, що з $\lim_{n\to\infty}y_n=y$ випливає, що $\exists C:\forall n:\|y_n\|\leq C$, можемо заключити, що

$$\lim_{n \to \infty} |(x, y) - (x_n, y_n)| \le 0,$$

як сума двох доданків вигляду $0 \cdot C$, а тому

$$\lim_{n \to \infty} (x_n, y_n) = (x, y).$$

§16.2 Скалярний добуток породжений нормою

Твердження 16.1 (характеристична властивість передгільбертових просторів)

Для того щоб нормований простір E був передгільбертовим необхідно і достатньо, щоб для довільних елементів х і у виконувалась рівність

$$\forall x, y \in H : \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2). \tag{16.1}$$

Доведення. Необхідність.

$$||x + y||^2 + ||x - y||^2 = (x + y, x + y) + (x - y, x - y) = (x, x) + 2(x, y) + (y, y) + (x, x) - 2(x, y) + (y, y) = 2(||x||^2 + ||y||^2).$$

Достатність. Нехай рівність (16.1) виконується. Покладемо

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2). \tag{16.2}$$

Покажемо, що якщо рівність (16.1) виконується, то функція (16.2) задовольняє всім аксіомам скалярного добутку.

Оскільки при x = y маємо

$$(x,x) = \frac{1}{4}(\|x+x\|^2 - \|x-x\|^2) = \|x\|^2,$$

то за допомогою такого скалярного добутку можна задати норму в просторі E.

1. (невід'ємність). Знову-таки, підставляємо x = y:

$$(x,x) = \frac{1}{4}(\|x+x\|^2 + \|x-x\|^2) = \|x\|^2 \ge 0.$$

2. (симетричність). Ця аксіома виконується за визначенням:

$$(x,y) = \frac{1}{4}(\|x+y\|^2 + \|x-y\|^2) = \frac{1}{4}(\|y+x\|^2 + \|y-x\|^2) = (y,x).$$

3. (адитивність). Для перевірки цієї аксіоми розглянемо функцію, що залежить від трьох векторів.

$$\Phi(x, y, z) = 4((x + y, z) - (x, z) - (y, z)).$$

Покажемо, що ця функція тотожно дорівнює нулю.

$$\Phi(x, y, z) = \|x + y + z\|^2 - \|x + y - z\|^2 - \|x + z\|^2 + \|x - z\|^2 - \|y + z\|^2 + \|y - z\|^2.$$
 (16.3)

Із рівності (16.1) випливає, що

$$||x + y \pm z||^2 = 2||x \pm z||^2 + 2||y||^2 - ||x \pm z - y||^2$$

Підставляючи цю рівність в (16.3), маємо

$$\Phi(x, y, z) = -\|x + y - z\|^2 + \|x - y - z\|^2 + \|x + z\|^2 - \|x - z\|^2 - \|y + z\|^2 + \|y - z\|^2.$$
 (16.4)

Обчислимо напівсуму виразів (16.3) і (16.4).

$$\Phi(x, y, z) = \frac{1}{2}(\|y + z + x\|^2 + \|y + z - x\|^2) - \frac{1}{2}(\|y - z + x\|^2 + \|y - z - x\|^2) - \|y + z\|^2 + \|y - z\|^2.$$

Внаслідок (16.1) перший член дорівнює

$$||y + z||^2 + ||x||^2,$$

 $-||y - z||^2 - ||x||^2,$

Отже,

$$\Phi(x, y, z) \equiv 0.$$

4. (однорідність). Розглянемо функцію

$$\varphi(c) = (cx, y) - c(x, y).$$

Із рівності (16.2) випливає, що

$$\varphi(0) = \frac{1}{4}(\|g\|^2 - \|g\|^2) = 0,$$

а, оскільки (-x, y) = -(x, y), то

$$\varphi(-1) = 0.$$

Отже, для довільного цілого числа n:

$$(nx,y) = (\operatorname{sgn} n(x+x+\dots+x), y) = \operatorname{sgn} n((x,y) + (x,y) + \dots + (x,y)) = |n| \operatorname{sgn} n(x,y) = n(x,y).$$

Таким чином,

$$\varphi(n) = 0.$$

При цілих p, q і $q \neq 0$ маємо

$$\left(\frac{p}{q}x,y\right) = p\left(\frac{1}{q}x,y\right) = \frac{p}{q}q\left(\frac{1}{q}x,y\right) = \frac{p}{q}(x,y).$$

Отже, $\varphi(c)=0$ при всіх раціональних числах c. Оскільки функція φ є неперервною, з цього випливає, що

$$\varphi(c) \equiv 0.$$

§16.3 Ортогональність і проекції

Означення 16.2. Повний передгільбертів простір H називається **гільбертовим**.

Приклад 16.1

Простір ℓ_2 зі скалярним добутком $(x,y) = \sum_{i=1}^{\infty} x_i y_i$ і нормою $||x|| = \sqrt{\sum_{i=1}^{\infty} x_i^2}$ є гільбертовим.

Приклад 16.2

Простір $C^2[a,b]$ зі скалярним добутком $(x,y)=\int_a^b x(t)y(t)dt$ і нормою $\|x\|=\sqrt{\int_a^b x^2(t)dt}$. є гільбертовим.

Приклад 16.3

Простір $C[0,\frac{\pi}{2}]$ з нормою $\|x(t)\|=\max_{t\in[0,\frac{\pi}{2}]}|x(t)|$ не є передгільбертовим — в ньому не виконується основна характеристична властивість. Нехай $x(t)=\sin t$ і $y(t)=\cos t$. Оскільки $\|x\|=\|y\|=1, \ \|x+y\|=\sqrt{2}, \ \|x-y\|=1,$ то

$$||x+y||^2 + ||x-y||^2 = 2 + 1 = 3 \neq 4 = 2 \cdot 2 = 2(||x||^2 + ||y||^2).$$

 Γ ільбертів простір є банаховим. Отже, на нього переносяться всі попередні означення і факти.

Означення 16.3. Елементи x і y гільбертового простору називаються **ортогональними**, якщо (x,y)=0. Цей факт записується як $x\perp y$.

Означення 16.4. Якщо фіксований елемент $x \in H$ є ортогональним до кожного елемента деякої множини $E \subset H$, говорять, що елемент x є **ортогональним множині** E. Цей факт позначається як $x \perp E$.

Означення 16.5. Сукупність усіх елементів, ортогональних до даної множини $E \subset H$ є підпростором простору H. Цей підпростір називається **ортогональним доповненням множини** E.

Теорема 16.1 (Релліха)

Нехай H_1 — підпростір гільбертового простору H і H_2 — його ортогональне доповнення. Будь-який елемент $x \in H$ можна єдиним способом подати у вигляді

$$x = x' + x'', \quad x' \in H_1, \quad x'' \in H_2.$$
 (16.5)

До того ж елемент x' реалізує відстань від x до H_1 , тобто

$$||x - x'|| = \rho(x, H_1) = \inf_{y \in H_1} \rho(x, y).$$

Доведення. Позначимо $d=\rho(x,H_1)$. За означенням $\inf_{y\in H_1}\rho(x,y)$ (точної нижньої грані) існують елементи $x_n\in H_1$ такі, що

$$||x - x_n||^2 < d^2 + \frac{1}{n^2}, \quad n = 1, 2, \dots$$
 (16.6)

Застосуємо лему 16.4 до елементів $x - x_n$ і $x - x_m$:

$$\|(x - x_m) + (x - x_m)\|^2 + \|x_n - x_m\|^2 = 2(\|x - x_n\|^2 + \|x - x_m\|^2).$$

Оскільки $\frac{1}{2}(x_n + x_m) \in H_1$:

$$\|(x-x_n)+(x-x_m)\|^2=4\left\|x-\frac{x_n+x_m}{2}\right\|^2\geq 4d^2.$$

Отже,

$$||x_n - x_m||^2 \le 2\left(d^2 + \frac{1}{n^2} + d^2 + \frac{1}{m^2}\right) - 4d^2 = \frac{2}{n^2} + \frac{2}{m^2}.$$

Таким чином, послідовність $\{x_n\}_{n=1}^{\infty}$ є фундаментальною. Оскільки H — повний простір, $\exists x' = \lim_{n \to \infty} x_n$. В гільбертовому просторі будь-який підпростір є замкненою лінійною множиною, отже $x' \in H_1$.

Перейдемо до границі в нерівності (16.6). Отримаємо, що

$$||x - x'|| \le d. \tag{16.7}$$

З іншого боку,

$$\forall y \in H_1 : ||x - y|| \ge d \implies ||x - x'|| \ge d.$$
 (16.8)

Порівнюючи нерівності (16.7) і (16.8), доходимо висновку, що

$$||x - x'|| = d.$$

Доведемо твердження:

$$x'' = x - x' \perp H_1 \implies x'' \in H_2.$$

Візьмемо $y \in H_1, y \neq 0$. Тоді

$$\forall \lambda \in \mathbb{R} : x' + \lambda y \in H_1 \implies ||x'' - \lambda y||^2 = ||x - (x' + \lambda y)||^2 \ge d^2 \implies (x'' - \lambda y, x'' - \lambda y) = (x'', x'') - 2\lambda(x'', y) + \lambda^2(y, y) \ge d^2 \implies d^2 - 2\lambda(x'', y) + \lambda^2(y, y) \ge d^2 \implies -2\lambda(x'', y) + \lambda^2(y, y) \ge 0.$$

Покладемо $\lambda = \frac{(x'',y)}{(y,y)}$. Тоді

$$-2\frac{(x'',y)^2}{(y,y)} + \frac{(x'',y)^2}{(y,y)} \ge 0 \implies (x'',y)^2 \le 0.$$

Це можливо лише тоді, коли

$$(x'', y) = 0 \implies x'' \perp y.$$

Доведемо тепер єдиність подання (16.5). Припустимо, що існують два подання:

$$x = x' + x'', \quad x' \in H_1, \quad x'' \in H_2,$$

 $x = x'_1 + x''_1, \quad x'_1 \in H_1, \quad x''_1 \in H_2.$

З цього випливає, що

$$x' - x_1' = x_1'' - x'',$$

але $x' - x_1' \in H_1$, і $x_1'' - x'' \in H_2$, а ці підпростори перетинаються лише по $\vec{0}$, тобто

$$x' - x_1' = \vec{0} = x_1'' - x''.$$

Означення 16.6. Елементи x' і x'', які однозначно визначаються елементом x = x' + x'', називаються проекціями елемента x на підпростори H_1 і H_2 відповідно.

§16.4 Лінійний функціонал як скалярне множення на елемент

Теорема 16.2 (Picca)

Якщо $f \in H^*$, то існує єдиний елемент $y(f) \in H$, такий що f(x) = (x,y) для довільного $x \in H$, та $||f||_{H^*} = ||y||_H$.

Доведення. Спочатку доведемо існування елемента y. Позначимо через $H_0 = \ker f$ множину тих елементів $x \in H$, які функціонал f відображає в нуль:

$$H_0 = \{x \in H : f(x) = 0\}.$$

Оскільки $f \in H^*$, він є лінійним і неперервним, отже, $H_0 = \ker f$ — підпростір, тобто замкнена лінійна множина. Якщо $H_0 = H$, покладемо y = 0.

Розглянемо випадок, коли $H_0 \neq H$. Нехай $y_0 \in H \setminus H_0$. За теоремою Релліха подамо його у вигляді

$$y_0 = y' + y'', \quad y' \in H_0, \quad y'' \perp H_0.$$

Якщо $y'' \neq 0$, то $f(y'') \neq 0$. Значить, можна покласти

$$f(y'') = 1$$

(інакше ми могли б взяти замість y'' елемент $\frac{y''}{f(y'')}$. Виберемо довільний елемент $x \in H$ і позначимо $f(x) = \alpha$. Розглянемо елемент $x' = x - \alpha y''$. Тоді

$$f(x') = f(x) - \alpha f(y'') = \alpha - \alpha = 0.$$

Отже,

$$x' \in H_0 \implies (x, y'') = (x' + \alpha y'', y'') = \alpha(y'', y'') \implies$$

$$f(x) = \alpha = \left(x, \frac{y''}{(y'', y'')}\right) \implies y = \frac{y''}{(y'', y'')}.$$

Доведемо єдиність цього елемента. Дійсно, якщо

$$\exists y, y_1 \in H : \forall x \in H : (x, y) = (x, y_1),$$

то

$$(x, y - y_1) = 0 \implies y - y_1 \perp H \implies y = y_1.$$

Оцінимо норму функціонала.

$$|f(y)| \le ||f|| \cdot ||y|| \implies ||f|| \ge f\left(\frac{y}{||y||}\right) = \frac{(y,y)}{||y||} = ||y||.$$

З іншого боку,

$$|f(x)| = |(x,y)| \le ||x|| \cdot ||y|| \implies ||f|| \le ||y||.$$

Зауваження 16.1 — З теореми Рісса випливає, що між гільбертовим простором H і спряженим простором H^{\star} існує ізоморфізм, і скалярні добутки вичерпують весь запас функціоналів, які можна задати на просторі H.

§16.5 Література

- [1] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 143–147).
- [2] **Канторович Л. В.** Функциональный анализ / Л. В. Канторович, Г. П. Акилов М.: 1977 (стр. 160–167, 197–198).

17 Теорема про ізоморфізм

Обравши в n-вимірному евклідовому просторі ортогональний нормований базис e_1, e_2, \ldots, e_n , можна кожний вектор $x \in \mathbb{R}^n$ записати у вигляді

$$x = \sum_{k=1}^{n} c_k e_k,$$

де

$$c_k = (x, e_k).$$

Постає питання, як узагальнити цей розклад на випадок нескінченновимірного евклідова простору. Введемо наступні поняття.

§17.1 Базиси у гільбертових просторах

Означення 17.1. Система ненульових векторів $\{e_k\} \subset E$ називається **ортогональною**, якщо $(e_k, e_l) = 0$ при $k \neq l$.

Означення 17.2. Система $\{e_k\} \subset E$, елементи якої задовольняють умову

$$(e_k, e_l) = \begin{cases} 0, & k \neq l, \\ 1, & k = l. \end{cases}$$

називається ортонормованою.

Нагадаємо означення із теорії лінійних просторів.

Означення 17.3. Найменший лінійний підпростір, що містить множину A у лінійному просторі X, називається **лінійною оболонкою** множини A, або лінійним підпростором, що породжений множиною A. Цей підпростір позначається як span A.

Зауваження 17.1 — Лінійна оболонка лінійної множини A є замкненою, але якщо множина A є довільною, це не обов'язково так. В той же час у нормованих просторах підпростори є замкненими за означенням, тому лінійна оболонка множини в нормованому просторі є замкненою.

Означення 17.4. Система $\{e_k\} \subset E$ називається **повною**, якщо її лінійна оболонка є скрізь щільною в E, тобто $\overline{\operatorname{span}\{e_k\}} = E$.

Означення 17.5. Повна ортонормована система $\{e_k\} \subset E$ називається **ортонормованим базисом**.

Приклад 17.1

В просторі ℓ_2 ортонормований базис утворюють послідовності

$$e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, 0, \dots).$$

Скалярний добуток: $(x,y) = \sum_{n=1}^{\infty} x_n y_n$.

Приклад 17.2

В просторі $C^2(a,b)$ ортонормований базис утворюють вектори

$$\frac{1}{2}, \cos \frac{2\pi t}{b-a}, \sin \frac{2\pi t}{b-a}, \dots \cos \frac{2\pi nt}{b-a}, \sin \frac{2n\pi t}{b-a}, \dots$$

Скалярний добуток: $(f,g) = \int_a^b f(t)g(t)dt$.

Лема 17.1

В сепарабельному евклідовому просторі будь-яка ортогональна система є не більш ніж зліченною.

Доведення. Не обмежуючи загальності, розглянемо ортонормовану систему $\{\varphi_k\}\subset E$. Тоді

$$\|\varphi_k - \varphi_l\| = \sqrt{(\varphi_k - \varphi_l, \varphi_k - \varphi_l)} = \sqrt{(\varphi_k, \varphi_k) - 2(\varphi_k, \varphi_l) + (\varphi_l, \varphi_l)} = \sqrt{(\varphi_k, \varphi_k) + (\varphi_l, \varphi_l)} = \sqrt{1 + 1} = \sqrt{2}.$$

Розглянемо сукупність куль $S\left(\varphi_k, \frac{1}{2}\right)$. Ці кулі не перетинаються. Якщо зліченна множина $\{\psi_k\}$ є скрізь щільною в E, то в кожну кулю потрапить принаймні один елемент ψ_k . Отже, потужність множини таких куль не може перевищувати потужність зліченої множини.

§17.2 Елементи аналізу Фур'є

Означення 17.6. Ортонормована система $\{\varphi_k\} \subset E$ називається **замкненою**, якщо для довільного $f \in E$ виконується **рівність Парсеваля**

$$\sum_{k=1}^{\infty} c_k^2 = ||f||^2. \tag{17.1}$$

Означення 17.7. Нехай $\{\varphi_k\}\subset E$ — ортонормована система в евклідовому просторі, а f — довільний елемент із E. Поставимо у відповідність елементу $f\in E$ послідовність чисел

$$c_k = (f, \varphi_k), \quad k = 1, 2, \dots$$

Числа c_k називаються координатами, або коефіцієнтами Фур'є елемента f по системі $\{\varphi_k\}\subset E$, а ряд

$$\sum_{k=1}^{\infty} c_k \varphi_k$$

називається рядом $\Phi yp'\varepsilon$ елемента f по системі $\{\varphi_k\}\subset E$.

Теорема 17.1

Ряд Фур'є збігається тоді і лише тоді, коли система $\{\varphi_k\} \subset E$ є замкненою.

Доведення. Розглянемо суму

$$S_n = \sum_{k=1}^n \alpha_k \varphi_k$$

і для заданого числа n відшукаємо коефіцієнти α_k , що мінімізують $||f - S_n||^2$.

$$||f - S_n||^2 = \left(f - \sum_{k=1}^n \alpha_k \varphi_k, f - \sum_{k=1}^n \alpha_k \varphi_k\right) =$$

$$(f, f) - 2\left(f, \sum_{k=1}^n \alpha_k \varphi_k\right) + \left(\sum_{k=1}^n \alpha_k \varphi_k, \sum_{k=1}^n \alpha_k \varphi_k\right) =$$

$$||f||^2 - 2\sum_{k=1}^n \alpha_k c_k + \sum_{k=1}^n \alpha_k^2 = ||f||^2 - \sum_{k=1}^n c_k^2 + \sum_{k=1}^n (\alpha_k - c_k)^2.$$

Мінімум цього виразу досягається тоді, коли останній член дорівнює нулю, тобто, коли

$$\alpha_k = c_k, \quad k = 1, 2, \dots, n.$$

В цьому випадку

$$||f - S_n||^2 = ||f||^2 - \sum_{k=1}^n c_k^2.$$
 (17.2)

Оскільки $||f - S_n||^2 \ge 0$, то

$$\sum_{k=1}^{n} c_k^2 \le ||f||^2.$$

Переходячи до границі при $n \to \infty$, отримуємо нерівністю Бесселя:

$$\sum_{k=1}^{\infty} c_k^2 \le ||f||^2.$$

Із тотожності (17.2) випливає, що рід Фур'є збігається тоді і лише тоді, коли виконується рівність Парсеваля, тобто система є замкненою.

Теорема 17.2 (Рісса—Фішера)

Нехай $\{\varphi_k\}\subset E$ — довільна ортонормована система в гільбертовому просторі E, а числа $c_1,c_2,\ldots,c_n,\ldots$ є такими, що ряд $\sum_{k=1}^n c_k^2$ є збіжним. Тоді існує такий елемент $f\in E$, що $c_k=(f,\varphi_k)$ і $\sum_{k=1}^n c_k^2=(f,f)=\|f\|^2$.

Доведення. Розглянемо суму

$$f_n = \sum_{k=1}^n c_k \varphi_k.$$

Тоді,

$$||f_{n+p} - f_n||^2 = ||c_{n+1}\varphi_{n+1} + \dots + c_{n+p}\varphi_{n+p}||^2 = \sum_{k=n+1}^{n+p} c_k^2.$$

Оскільки ряд $\sum_{k=1}^{n} c_k^2$ є збіжним, а простір E — повним, послідовність $\{f_n\}_{n=1}^{\infty}$ збігається до деякого елемента $f \in E$. Оцінимо наступний скалярний добуток.

$$(f, \varphi_i) = (f_n, \varphi_i) + (f - f_n, \varphi_i).$$

При $n \geq i$ перший доданок дорівнює c_i , а другий доданок при $n \to \infty$ прямує до нуля, оскільки

$$|(f - f_n, \varphi_i)| < ||f - f_n|| \cdot ||\varphi_i||.$$

Ліва частина рівності від n не залежить. Переходячи до границі при $n \to \infty$, доходимо висновку, що

$$(f, \varphi_i) = c_i$$
.

Оскільки за означенням елемента f

$$\lim_{n \to \infty} ||f - f_n|| = 0,$$

то

$$\left(f - \sum_{k=1}^{n} c_k \varphi_k, f - \sum_{k=1}^{n} c_k \varphi_k\right) = (f, f) - \sum_{k=1}^{\infty} c_k^2 \to 0, \quad n \to \infty.$$

Отже,

$$\sum_{k=1}^{n} c_k^2 = (f, f).$$

§17.3 Сепарабельний простір

Теорема 17.3

В сепарабельному евклідовому просторі E будь-яка повна ортонормована система є замкненою, і навпаки.

Доведення. Необхідність. Нехай система $\{\varphi_k\} \subset E$ є замкненою. Тоді за теоремою 17.1 для довільного елемента $f \in E$ послідовність часткових сум його ряду Фур'є збігається до f. Це означає, що $\overline{\operatorname{span}\{\varphi_k\}} = E$, тобто система $\{\varphi_k\}$ є повною.

Достатність. Нехай система $\{\varphi_k\}$ є повною, тобто довільний елемент $f \in E$ можна скільки завгодно точно апроксимувати лінійною комбінацією $\sum_{k=1}^{n} \alpha_k \varphi_k$ елементів системи $\{\varphi_k\}$:

$$\forall \varepsilon > 0 : \exists \sum_{k=1}^{n} \alpha_k \varphi_k : \left\| f - \sum_{k=1}^{n} \alpha_k \varphi_k \right\| < \varepsilon.$$

За теоремою 17.1 елементом найкращого наближення серед усіх сум вигляду $\sum_{k=1}^{n} \alpha_k \varphi_k$ є ряд Фур'є. Отже, цей ряд збігається, а, значить, виконується рівність Парсеваля, тобто система $\{\varphi_k\}$ є замкненою.

Теорема 17.4 (про ізоморфізм)

Довільні два сепарабельних гільбертових простора ε ізоморфними один до одного.

Доведення. Покажемо, що кожний гільбертів простір H є ізоморфним простору ℓ_2 . Це доведе теорему про ізоморфізм.

Виберемо в H довільну повну ортонормовану систему $\{\varphi_k\} \subset H$ і поставимо у відповідність елементу $f \in H$ сукупність його коефіцієнтів Фур'є за цією системою $c_1, c_2, \ldots, c_n, \ldots$ Оскільки $\sum_{k=1}^{\infty} c_k^2 < \infty$, то послідовність $\{c_1, c_2, \ldots, c_n, \ldots\}$ належить ℓ_2 .

І навпаки, за теоремою Рісса—Фішера довільному елементу $\{c_1, c_2, \ldots, c_n, \ldots\} \in \ell_2$ відповідає деякий елемент $f \in H$, у якого числа $c_1, c_2, \ldots, c_n, \ldots$ є коефіцієнтами Фур'є за системою $\{\varphi_k\} \subset H$. Ця відповідність є взаємно-однозначною.

Крім того, якщо

$$f \leftrightarrow \{c_1, c_2, \dots, c_n, \dots\},$$

$$g \leftrightarrow \{d_1, d_2, \dots, d_n, \dots\},$$

то

$$f + g \leftrightarrow \{c_1 + d_1, c_2 + d_2, \dots, c_n + d_n, \dots\},\$$

 $\alpha f \leftrightarrow \{\alpha c_1, \alpha c_2, \dots, \alpha c_n, \dots\}.$

Нварешті, із рівності Парсеваля випливає, що

$$(f, f) = \sum_{k=1}^{\infty} c_k^2, \quad (g, g) = \sum_{k=1}^{\infty} d_k^2,$$

а тому

$$2(f,g) = (f+g,f+g) - (f,f) - (g,g) = \sum_{k=1}^{\infty} (c_k + d_k)^2 - \sum_{k=1}^{\infty} c_k^2 - \sum_{k=1}^{\infty} d_k^2 = 2\sum_{k=1}^{\infty} c_k d_k.$$

Отже,

$$(f,g) = \sum_{k=1}^{\infty} c_k d_k.$$

Таким чином, установлена відповідність між елементами просторів H і ℓ_2 є ізоморфізмом.

§17.4 Література

[1] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин — М.: Наука, 1981 (стр. 149–157).