Odhad konstantní veličiny

Zadání semestrální práce č. 1

Uvažujme objekt, který se pohybuje po přímce s náhodným zrychlením, zatímco je s konstantní periodou T měřena jeho poloha. Cílem je na základě měření a modelu systému odhadnout neznámou, ale konstantní počáteční polohu a rychlost objektu. V diskrétním případě můžeme uvažovat lineární dynamický systém s popisem

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \mathbf{x}_k + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, q \begin{bmatrix} \frac{T^3}{3} & \frac{T^2}{2} \\ \frac{T^2}{2} & T \end{bmatrix}\right), \quad \mathbf{x}_0 = \begin{bmatrix} \bar{x}_0^{\text{poloha}} \\ \bar{x}_0^{\text{rychlost}} \end{bmatrix},$$

$$z_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}_k + v_k, \qquad v_k \sim \mathcal{N}\left(0, R\right),$$

kde q je intenzita šumu, R je variance chyby měření a procesy $[\mathbf{w}_k]_{k=1}^{+\infty}$ a $[v_k]_{k=1}^{+\infty}$ jsou vzájemně nezávislé bílé šumy. Počáteční stav \mathbf{x}_0 zvolte libovolně.

Teoretické úkoly: Odhad podle vážených nejmenších čtverců z prvních několika měření.

- (i) Sestavte rovnici $\mathbf{z} = \mathbf{H}\mathbf{x}_0 + \mathbf{e}$, kde $\mathbf{z} = [z_0, \dots, z_3]^T$. Určete kovarianční matici $\mathbf{\Sigma} = E(\mathbf{e}\mathbf{e}^T)$ chyby e a formulujte problém odhadu \mathbf{x}_0 pomocí vážených nejmenších čtverců.
- (ii) Pozorujte, co se stane, když budete využívat různá měření. Uvažujte A) z₀, z₁, B) z₀, z₂, C) z₁, z₂ a vyjádřete předpis pro odhady a kovarianční matice chyb odhadů obecně, tj. v závislosti jen na T, q, a R. Uvědomte si, že odhadujete-li konstantu, kovarianční matice odhadu a chyby odhadu jsou stejné. Jaké pravděpodobnostní rozdělení mají odhady a proč? Nápověda: stačí vynechat některé řádky z původní rovnice z = Hx₀ + e, z bodu (i).
 Dosaďte do odhadů a kovariančních matic hodnoty T = 1, q = 0.1 a R = 1. S těmito parametry také vyjádřete odhady a kovarianční matice pro D) z₀, z₁, z₂ a E) z₀, z₁, z₂, z₃. Popište, co se děje, když některé měření chybí. Co kdyby bylo měření jenom jedno?
- (iii) Interpretovat přesnost přímo z hodnot kovariančních matic může být obtížné. Lze ji ale znázornit graficky, pomocí $3-\sigma$ elips. Pro nestranný odhad s kovarianční maticí \mathbf{P} se jedná o křivku $\{\mathbf{x} \in \mathbb{R}^2 : (\mathbf{x} \mathbf{x}_0)^T \mathbf{P}^{-1} (\mathbf{x} \mathbf{x}_0) = 9\}$. Porovnejte $3-\sigma$ elipsy pro všechny případy A)–E). Lze odhady uspořádat od nejlepšího po nejhorší?

Návod: Najděte křivky $\{\mathbf{u} \in \mathbb{R}^2 : \mathbf{u}^T \mathbf{u} = 1\}$, pak použijte transformaci $\mathbf{x} = \mathbf{x}_0 + 3\mathbf{S}\mathbf{u}$, kde \mathbf{S} je maticová odmocnina matice \mathbf{P} splňující $\mathbf{S}\mathbf{S}^T = \mathbf{P}$, například Choleského faktor.

Simulační úkoly: Simulační ověření teoretických výsledků.

Pomocí funkce randn vygenerujte 1000 realizací náhodného vektoru z. Pro každý nasimulovaný vektor měření z dopočtěte realizace odhadů $\hat{\mathbf{x}}_0$ pro varianty A)–E).

- (i) Odhadněte hustoty jednotlivých odhadů *polohy* pomocí normalizovaných histogramů. Porovnejte je mezi sebou, a také je porovnejte s teoretickými hustotami s marginálními hustotami odhadů polohy, tedy $\mathcal{N}(\bar{x}_0^{\text{poloha}}, \mathbf{P}_{\text{na pozici } 1,1}^{[\text{daný případ}]})$.
- (ii) Pro variantu E) porovnejte "teoreticky odvozenou" 3-σ elipsu s příslušnými realizacemi odhadu a 3-sigma elipsou odpovídající výběrové kovarianční matici.

3. října 2022 © 2022