Ref-GS: Directional Factorization for 2D Gaussian Splatting

```
Youjia Zhang <sup>1</sup> Anpei Chen <sup>2,3,†</sup> Yumin Wan <sup>1</sup> Zikai Song <sup>1</sup> Junqing Yu <sup>1</sup> Yawei Luo <sup>4</sup> Wei Yang <sup>1,†</sup>
```

¹Huazhong University of Science and Technology ²University of Tübingen, Tübingen Al Center ³Westlake University ⁴Zhejiang University

About me

Youjia Zhang (张由甲)

I am currently a second-year Ph.D. student of Huazhong University of Science and Technology (HUST), School of CS, supervised by Prof. Wei Yang.

My research interests lie in neural rendering, inverse rendering, and 3D AIGC

Backpropagate onto NeRF weight

Gaussian Splatting

Low-order SH cannot model high-frequency details.

Low-order

Forward Shading

$$\mathbf{c}(\mathbf{r}) = \mathrm{SH}_1(\omega) W_1 + \mathrm{SH}_2(\omega) W_2 + \mathrm{SH}_3(\omega) W_3$$

NeRF [Mildenhall et al., 2020]

3DGS [Kerbl et al., 2023]

Forward Shading

$$egin{aligned} \mathbf{c}(\mathbf{r}) &= \mathrm{SH}_1(\omega, \mathbf{n}_1) W_1 + \mathrm{SH}_2(\omega, \mathbf{n}_3) W_2 + \ &\mathrm{SH}_3(\omega, \mathbf{n}_3) W_3 \end{aligned}$$

Ref-NeRF [Verbin et al., 2022]

GaussianShader [Jiang et al., 2024]

Deferred Shading

$$\widehat{\mathbf{n}} = \mathbf{n}_1 W_1 + \mathbf{n}_2 W_2 + \mathbf{n}_3 W_3$$
 $\widehat{\mathrm{SH}} = \mathrm{SH}_1 W_1 + \mathrm{SH}_2 W_2 + \mathrm{SH}_3 W_3$

$$\mathbf{c}(\mathbf{r}) = \widehat{\mathrm{SH}}(\omega, \widehat{\mathbf{n}})$$

Deferred Shading

$$\widehat{\mathbf{n}} = \mathbf{n}_1 W_1 + \mathbf{n}_2 W_2 + \mathbf{n}_3 W_3$$

$$\widehat{\mathrm{SH}} = \mathrm{SH}_1 W_1 + \mathrm{SH}_2 W_2 + \mathrm{SH}_3 W_3$$

$$\mathbf{c}(\mathbf{r}) = \widehat{\mathrm{SH}}(\omega, \widehat{\mathbf{n}})$$

Pre-integrated Lighting

Brute-force integrals over the lighting are expensive

$$\int_{\Omega} f(x)g(x)\,dx pprox rac{\int_{\Omega} f(x)\,dx}{\int_{\Omega} \,dx} \cdot \int_{\Omega} g(x)\,dx$$

Reflection Direction

Parameterization

Pre-integrated Lighting

Spherical Harmonics
Directional Encoding

Pre-filter (von Mises-Fisher distribution)

*

Ref-NeRF [Verbin et al., 2022]

Explicit

Cubemap Grid Directional Encoding

Pre-filter (GGX distribution)

NDE [Wu et al., 2024]

Pre-integrated Lighting

Near-field Lighting?

Far-field Mipmap Feature

Directional Factorization

Method

w/o Deferred Shading

w/o Directional Factorization

Thanks for Listening!