UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD I

CONCEPTOS BÁSICOS Y SIMPLIFICACIÓN ALGEBRAICA DE SISTEMAS DIGITALES COMBINACIONALES.

SISTEMAS DIGITALES I SDU115

Diseño de circuitos

Agenda

• Diseño de Circuitos.

Objetivo

Diseñar sistemas digitales con compuertas básicas, a partir de una tabla de verdad, obteniendo su expresión lógica mínima utilizando el álgebra de Boole, como alternativa de solución a problemas específicos.

La combinaciones en binario de las variables de entrada de una tabla de verdad, se pueden escribir con letras, de dos formas:

MINTERMINO (Término producto: donde si una variable vale cero se escribe negada y si vale uno se escribe sin negar.)

MAXTERMINO (**Término suma**: donde si una
variable vale cero se
escribe sin negar y si vale
uno se escribe negada.)

	ABC= MINTERMINO		ABC= MAXTERMINO
0	000= $ar{A}ar{B}ar{C}=m_0$	0	$000 = A + B + C = M_0$
1	001= $ar{A}ar{B}C=m_0$	1	001= A + B + $\bar{C} = M_1$
2	010= $ar{A}Bar{C}=m_2$	2	010= A + \bar{B} + C = M_2
3	011= $ar{A}BC=m_3$	2	011= $A + \bar{B} + \bar{C} = M_3$
4	100= A $ar{B}ar{C}=m_4$	4	100= $\bar{A} + B + C = M_4$
5	101= A $ar{B}$ $C=m_5$	5	101= $\bar{A} + B + \bar{C} = M_5$
6	110= AB $ar{C}=m_6$	6	110= $\bar{A} + \bar{B} + C = M_6$
7	111= ABC = m_7	7	111= $\bar{A} + \bar{B} + \bar{C} = M_7$

Mintérminos

	Entradas		Salida	
\boldsymbol{A}	В	C	X	Término producto
0	0	0	0	
0	0	1	1	$\overline{A}\overline{B}C$
0	1	0	0	
0	1	1	0	
1	0	0	1	$A\overline{B}\overline{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

Maxtérminos

	Entrada	ıs	Salida	
\boldsymbol{A}	В	C	X	Término suma
0	0	0	0	(A+B+C)
0	0	1	1	
0	1	0	0	$(A + \overline{B} + C)$
0	1	1	0	$(A + \overline{B} + \overline{C})$
1	0	0	1	
1	0	1	0	$(\overline{A} + B + \overline{C})$
1	1	0	0	$(\overline{A} + \overline{B} + C)$
1	1	1	1	

A partir de la tabla de verdad una ecuación lógica se puede escribir de dos formas:

a) Como Suma de Productos (SOP)

Se suman en una OR todos los Mintérminos (AND) que producen un 1 en la Salida de la tabla de verdad.

$$X = \sum (m_i) = = = = X = \sum m(1,2,4,...)$$

b) Como Producto de Sumas (POS)

Se multiplican en una AND todos los Maxtérminos (OR) que producen un cero en la salida de la tabla de verdad.

$$X = \prod (M_i) = = = = X = \prod M (2,5,7,...)$$

A partir de la tabla de verdad una ecuación lógica.

	Α	В	X	
0	0	0	1	m_0
1	0	1	0	M_1
2	1	0	0	M ₂
3	1	1	1	m ₃

$$X = \sum (m_0 + m_3)$$

 $X = \bar{A}\bar{B} + AB$
 $X = \prod M(1, 2)$
 $X = (A + \bar{B}).(\bar{A} + B)$

$$X=\sum m (1, 2, 3)$$

 $X=\bar{A}B+A\bar{B}+AB=A(\bar{B}+B)+B(\bar{A}+A)$
 $X=A+B$
 $X=\prod (M_0)$
 $X=A+B$ (como se suponía)

A partir de la tabla de verdad una ecuación lógica.

$$X = \sum (m_2 + m_3 + m_5 + m_7)$$

 $X = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C + ABC$
 $X = \bar{A}B (\bar{C} + C) + AC(\bar{B} + B)$
 $X = \bar{A}B + AC (Ec. 1, SOP)$
 $X = \prod M(0, 1, 4, 6)$
 $X = (A+B+C).(A+B+\bar{C}).(\bar{A}+B+C).(\bar{A}+\bar{B}+C)$
 $X = (A+B).(\bar{A}+C) (Ec. 2, POS)$

	Α	В	С	X	
0	0	0	0	0	M_0
1	0	0	1	0	M_1
2	0	1	0	1	m ₂
3	0	1	1	1	m ₃
4	1	0	0	0	M ₄
5	1	0	1	1	m ₅
6	1	1	0	0	M_6
7	1	1	1	1	m ₇

X=
$$\sum$$
 (m₁₀ --- m₁₅) léase de m₁₀ a m₁₅
X= A \bar{B} C \bar{D} + A \bar{B} CD + AB $\bar{C}\bar{D}$ + AB \bar{C} D

$$ABC\overline{D} + ABCB$$

$$X = A\overline{B}C(\overline{D} + D) + AB\overline{C}(\overline{D} + D)$$

$$ABC(\overline{D} + D).$$

$$X = A\overline{B}C + AB\overline{C} + ABC.$$

$$X = AC(\overline{B} + B) + AB(\overline{C} + C).$$

Dibuje el circuito por favor.

	Α	В	С	D	Х
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

HASTA LA PROXIMA