Guía 8 - Circuitos Combinacionales

Instructor: Ricardo González

Contenido

Análisis de Circuitos Combinacionales	3
¿Qué es un Circuito Combinacional?	
Definir las variables	
Rellenar la tabla de verdad	
Expresión lógica y tabla de verdad	4
Editar la función lógica	5
Simplificar la función lógica	5
Construir el circuito	6

Análisis de Circuitos Combinacionales

Existen dos tipos de circuitos digitales

- Combinacionales: la salida depende sólo de la entrada
- Secuenciales: la salida depende de la entrada y el estado anterior del circuito (entrada + memoria)

¿Qué es un Circuito Combinacional?

Las salidas tienen que estar completamente determinadas a partir de las entradas en cualquier instante.

Logisim permite construir y analizar circuitos Combinacionales, en los que las salidas solo dependen de la combinación de los valores de las entradas.

Hay tres formas de expresar el comportamiento de un circuito Combinacional:

Su función lógica: una expresión algebraica de cómo funciona el circuito.

Su tabla de verdad: que resume todas las combinaciones de entradas y salidas.

Su circuito lógico: que muestra las conexiones eléctricas entre puertas.

El análisis de un circuito Combinacional se inicia desde el menú Ventana -> Análisis Combinacional

Definir las variables

1 Desde la pestaña Entradas introducimos el nombre de cada una de las variables de entrada y pulsamos Añadir

Rellenar la tabla de verdad

Expresión lógica y tabla de verdad

Para cada variable de salida, el análisis Combinacional mantiene 2 estructuras equivalentes: una columna en la tabla de verdad y su expresión algebraica, que especifica de qué modo se relaciona cada salida con las entradas.

Puedes modificar la tabla de verdad o la expresión booleana; la otra cambiará automáticamente para mantener ambas estructuras consistentes.

Entradas | Salidas | T

x ~z + y ~z + x z

Expresión | Minimizado

Salida: Q1 🕶 $\overline{xz} + y\overline{z} + xz$

-UX

.

•

Editar la función lógica

La pestaña Expresión te permite ver y modificar la expresión booleana o función lógica actual de la variable seleccionada en la ventana Salida.

Debajo aparece la función con su formato Análisis Comb habitual: un OR se representa como suma, un AND se representa como producto y la negación con una barra sobre la variable.

El panel de texto <u>muestra la función con</u> caracteres ASCII. Aquí la negación se representa con una virgulilla ~

Puedes modificar la función en el panel de texto y pulsar el botón Intro para que tenga efecto. Al hacerlo se modificará la tabla de verdad correspondiente.

 $Q1 = ^X ^Z + Y ^Z + X Z$ $Q2 = ^YZ + Y ^Z$

Simplificar la función lógica

La pestaña Minimizado muestra la <u>función en suma de productos (minterms)</u> ya simplificada, que se corresponde con una salida de la tabla de verdad.

Si hay cuatro variables de entrada o menos, aparece un mapa de Karnaugh correspondiente a la salida seleccionada, mostrando los términos elegidos para la función simplificada como rectángulos de color semitransparentes.

Puedes modificar el mapa de Karnaugh y cambiarán los valores equivalentes de la tabla de verdad

Construir el circuito

Con este botón el simulador construirá un circuito de puertas que proporciona la función lógica de cada salida, dibujado de forma elegante y proporcionada.

Al pulsar el botón aparece un cuadro de diálogo para que escribas los nombres de tu proyecto y tu circuito. Si el nombre del circuito ya existe, te pedirá que confirmes su reemplazo

El cuadro e diálogo incluye también dos opciones:

- * Usar sólo puertas de dos entradas y
- * Usar sólo puertas NAND. Esto significa convertir el circuito para utilizar únicamente este tipo de puertas universales.

Ejercicio 1:

Para efectos de un mayor entendimiento de los circuitos Combinacionales vamos a realizar el siguiente ejercicio propuesto para poder determinar el diseño del circuito a partir de la tabla de verdad dada, así como su función lógica.

A continuación, se propone la siguiente tabla para realizar la creación del circuito Combinacional:

Verificar después de la creación el circuito los estados de la salida, según datos de entrada asignados.

Ejercicio 2:

Vamos ahora a crear un circuito a partir de una expresión booleana dada, para obtener el circuito y asignar su tabla de verdad respectiva.

Para ellos vamos a utilizar la siguiente expresión booleana: ~A ~B ~C ~D + ~A ~B ~ C D + ~A B C ~D + ~A B ~C ~D

Asignamos las entradas involucradas en la expresión, para nuestro caso son: A, B, C, D

Nuestra salida la denominamos "X" para nuestro caso para que genere los valores respectivos en la tabla de verdad para efectos de poder realizar la comprobación de resultados.

Vamos a la pestaña de "Expresión" y damos el botón de "Intro" para generar la expresión a partir de los datos ingresados manualmente:

Verificar después de la creación el circuito los estados de la salida, según datos de entrada asignados.