Ponovitev analize

Odvodi

1.
$$\frac{1}{x} = -\frac{1}{x^2}$$

$$2. \ x^n = nx^{n-1}$$

$$3. \ \sqrt{x} = \frac{1}{2\sqrt{x}}$$

4.
$$\sqrt[n]{x} = \frac{1}{n\sqrt[n]{x^{n-1}}}$$

$$5. \sin(ax) = a\cos ax$$

6.
$$\cos(ax) = -a\sin(ax)$$

7.
$$\tan x = \frac{1}{\cos^2 x}$$

8.
$$e^a x = a e^{ax}$$

$$9. \ a^x = a^x \ln a$$

10.
$$x^x = x^x (1 + \ln x)$$

11.
$$lnx = \frac{1}{x}$$

12.
$$log_a x = \frac{1}{x \ln a}$$

13.
$$\arcsin x = \frac{1}{\sqrt{1-x^2}}$$

14.
$$\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

15.
$$\arctan x = \frac{1}{1+x^2}$$

16.
$$\operatorname{arccot} x = -\frac{1}{1+x^2}$$

Integrali

1.
$$\int x^a dx = \begin{cases} \frac{x^{a+1}}{a+1} + C & a \neq -1 \\ \ln|x| + C & a = -1 \end{cases}$$

$$2. \int \ln x \, dx = x \ln x - x + C$$

3.
$$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$

4.
$$\int e^x dx = e^x + C$$

5.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

6.
$$\int \cos(ax) dx = \frac{\sin(ax)}{a} + C$$

7.
$$\int \sin(ax) dx = \frac{-\cos(ax)}{a} + C$$

8.
$$\int \tan x \, dx = -\ln|\cos x| + C$$

9.
$$\int \frac{dx}{\cos^2 x} = \int \sec^2 x \, dx = \tan x + C$$

10.
$$\int \frac{dx}{\sin^2 x} = \int \csc^2 x \, dx = -\cot x + C$$

11.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$$

12.
$$\int \frac{dx}{ax+b} = \frac{1}{a} ln |ax+b| + C$$

13.
$$\int \frac{1}{x^2+1} dx = arctanx + C$$

14.
$$\int \frac{dx}{x^2+a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

15.
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

Integriranje absolutnih vrednosti (primer): Imamo funkcijo f(x) = |x|, ki je zvezna na intervalu [-1,1] Ce hocemo to funkcijo integrirati in zelimo izracunati njeno porazdelitveno funkcijo integrirati locimo 2 primera:

1.
$$-1 \le x < 0$$

 $F(x) = \int_{-1}^{x} |t| dt = \int_{-1}^{x} -t dt = -\frac{t^2}{2} \Big|_{-1}^{x} = -\frac{1}{2} (x^2 - 1)$

2.
$$0 \le x < 1$$

 $F(x) = \int_{-1}^{x} |t| dt = \int_{-1}^{0} -t dt + \int_{0}^{x} t dt = -\frac{t^{2}}{2} \Big|_{0}^{-1} + -\frac{t^{2}}{2} \Big|_{0}^{x} = \frac{1}{2} (1 + x^{2})$

$$\sqrt[n]{x}^m = (x)^{\frac{m}{n}}, x^2 + y^2 \le 1 \sim krog \ s \ ploscino \ \pi$$

1 Kombinatorika

1.1 Permutacije

1. brez ponavljanja: $P_n = n!$

2. s ponavljanjem:
$$P_n^{k_1,\dots,k_n} = \frac{n!}{k_1!\dots k_n!}$$

1.2 Variacije

1. brez ponavljanja: $V_n^r = \frac{n!}{(n-r)!}$

2. s ponavljanjem: $V_n^r = n^r$

1.3 Kombinacije

1. brez ponavljanja: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

2. s ponavljanjem: $\binom{n}{k} = \binom{n+k-1}{k}$

Lastnosti binomskega simbola: $\binom{n}{n}=1$ $\binom{n}{0}=1$ $\binom{n}{1}=n$ $\binom{n}{r}=\binom{n}{n-r}$ Binomski izrek: $(a+b)^n=\binom{n}{0}a^nb^0+\binom{n}{1}a^{n-1}b^1+\binom{n}{2}a^{n-2}b^2+\cdots+\binom{n}{n}a^0b^n$

Za kombinacije velja, da vrstni red **ni** pomemben. Medtem pa ko v splosnem za variacije in permutacije velja, da vrstni red **je** pomemben.

2 Verjetnost

2.1 Elementarna verjetnost

Izid iz dane mnozice izidov je izbran na slepo, ce so vsi izidi iz te mnozice enako verjetni. Takrat se dogodek A zgodi z verjetnostjo:

$$P(A) = \frac{st.\,izidov,\,ki\,so\,v\,A}{st.\,vseh\,izidov}$$

Nasprotni dogodek pa z verjetnostjo:

$$P(\overline{A}) = 1 - P(A)$$

Nacelo vkljucitev in izkljucitev dogodkov:

$$P(A_1 \cup \dots \cup A_n) = P(A_1) + \dots + P(A_n)$$

$$-P(A_1 A_2) - P(A_1 A_3) - \dots - P(A_{n-1} A_n)$$

$$+P(A_1 A_2 A_3) + P(A_1 A_2 A_4) + \dots + P(A_{n-2} A_{n-1} A_n) - \dots$$

$$+(-1)^{n+1} P(A_1 \dots A_n)$$

Dogodki A_1, A_2, \ldots, A_k in B so **neodvisni**, ce velja

$$P(A_1 \dots A_k) = P(A_1) \dots P(A_k)$$

ali z drugimi besedami... Verjetnost produkta paroma neodvisnih dogodkov je enaka produktu vrjetnosti teh dogodkov.

2.2 Pogojna verjetnost Verjetnost da se zgodi dogodek A, ce vemo, da se zgodi dogodek B, je

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B|A)}{P(B)}$$

Dogodka A in b sta **neodvisna**, ce velja P(A|B) = P(A) ali P(AB) = P(A)P(B). Pazi! Za par **nezdruzljivih** dogodkov A in B pa velja P(AB) = 0, P(A+B) = P(A) + P(B), P(A|B) = 0 in P(B|A) = 0.

2.3 Popolna verjetnost

Dogodki $H_1, H_2, \dots H_n$ tvorijo **popoln sistem dogodkov**, ce se nobena dva dogodka ne moreta zgoditi hrkati in se vedno zgodi vsaj en od njih. Ce dogodki izpolnjujejo ta pogoj, potem po nacelu vkljucitev/izkljucitev velja:

$$P(A) = \sum_{i=1}^{\infty} P(A \cap H_i) = \sum_{i=1}^{\infty} P(H_1)P(A|H_i)$$

Za popolni sistem dogodkov velja unija hipotez:

$$P(A|H_1 \cup \dots \cup H_n) = \frac{P(A|H_1)P(H_1) + \dots + P(A|H_n)P(H_n)}{P(H_1) + \dots + P(H_{n-1}) + P(H_n)}$$

Zanje velja tudi Bayesova formula:

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{P(A)} = \frac{P(H_i)P(A|H_i)}{\sum_{k=1}^{n} P(H_k)P(A|H_k)}$$

2.4 Geometrijska verjetnost

Tocka je izbrana na slepo iz intervala, lika, telesa.. ce za vsak dogodek A velja:

$$P(A) = \frac{mera\ izidov,\ ki\ so\ v\ A}{mera\ vseh\ izidov}$$

Pri tem je mera lahko dolzina, ploscina, volumen,.. Basically upas da narises graf pravilno.

Splosno za vse nastete verjetnosti velja:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
in

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

3 Diskretne s.s.

3.1 Diskretna slucjana spremenljivka Naj bo X diskretna slucajna spremenljivka $\implies X$ je funkcija s koncno ali stevno zalogo vrednosti a_1, a_2, \ldots Verjetnost, da X zavzame vrednost $a_i \in R$, oznacimo z $P(X = a_i) = p_i$. Porazdelitev X lahko podamo na dva enakovredna nacina, in sicer s:

1. s porazdelitveno shemo

$$X \sim \begin{pmatrix} a_1 & a_2 & a_3 & \dots \\ p_1 & p_2 & p_3 & \dots \end{pmatrix}$$

velja $0 \le p_i \le 1$ in $p_1 + p_2 + \cdots = 1$

2. s porazdelitveno funkcijo

$$F_x(x) := P(X \le x)$$

3.2 Bernoullijeva slucajna spremenljivka

$$X \sim B(n)$$

- V vsakem poskusu ima dogodek A verjetnost p, X pa ima vrednost 1, ce se je zgodil dogodek A, in 0 sicer.
- P(X = 1) = p, P(X = 0) = 1 p
- 3.3 Binomska slucajna spremenljivka

$$X \sim B(n, p)$$

- $\bullet~X$ je stevilo pojavitev izida Avnponovitvah poskusa
- $P(X = k) = \binom{n}{k} p^k (1-p)^{(n-k)}$ za k = 0, 1, ..., n.

Izvajamo n neodvisnih slucajnih poskusov. V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A). X nam pove kolikokrat se je zgodil dogodek A v n poskusih. npr. kovanec vrzemo 10x, koliksne so vrjetnosti, da pade cifra 0x, 2x, vsaj 3x,.. ali 5x vrzemo posteno kocko, izracunaj stevilo sestic, ki pade $\implies B(5, \frac{1}{6})$

3.4 Geometrijska slucajna spremenljivka

$$X \sim G(p)$$

- X je stevilo ponovitev poskusa do (vkljucno) prve ponovitve izida A.
- $P(X = k) = (1 p)^{k-1}p$ za k = 1, 2, ...

•
$$P(X \le k) = 1 - (1 - p)^k$$
 za $k = 1, 2, ...$

Izvajamo neodvisne slucajne poskuse, dokler se ne zgodi dogodek A. V vsakem poskusu se lahko zgodi dogodek A s **konstantno** verjetnostjo p, p = P(A). npr. koliko metov kocke je potrebnih, do prve sestice $\implies G(1/6)$.

3.5 Pascalova oz. negativna binomska slucajna spremenljivka

$$X \sim P(n, p)$$

- X je stevilo ponovitev poskusa do (vkljucno) n-te ponovitve izida A.
- $P(X = k) = {k-1 \choose n-1} (1-p)^{k-n} p^n$ za $k = n, n+1, n+2, \dots$

npr. koliko metov kocke je potrebnih, dokler sestica ne pade 5x $\implies P(5,\frac{1}{6}).$ Stevilo metov kovanca, dokler grb ne pade 2x $\implies P(2,\frac{1}{2}).$

3.6 Hipergeometrijska slucjana spremenljivka

$$X \sim H(K, N - K, n)$$

- X je stevilo elementov z doloceno lastnostjo med izbranimi.
- $P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$ za $k = 0, 1, 2, \dots min\{n, K\}$

V populaciji N imamo K elementov z doloceno lastnostjo. Izbiramo brez vracanja n elementov. npr. koliko pikov med 7 kartami, ki smo jih na slepo izbrali izmed 16 kart, kjer so bli stirje piki. imamo 400 ljudi, 100 brezposlenih, nakljucno jih izberemo 10. Zanima nas kaksna verjetnost je da sta 2 izmed teh brezposelna $\implies P(x=2) = H(100,400-100,10)$. **Pozor!** Na kolokviju/izpitu moras nujno zapisati tudi mozne vrednosti k-ja.

3.7 Poissonova slucajna spremenljivka

$$X \sim P(\lambda)$$

- X je stevilo ponovitev dogodka A na danem intervalu, pri cemer:
 - se dogodki pojavljajo neodvisno
 - povprecno stevilo dogodgov λ , ki se pojavjio na dolocenem intervalu, je konstantno.
- $P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$ za $k = 0, 1, 2, \dots$

npr. ce se dogodek pojavi v povprecju 3x na minuto, lahko uporabimo poissa za izracun kolikokrat se bo dogodek zgodil v $1/4h \implies P(45)$. St avtomobilov, ki preckajo cesto v 1min.

4 Zvezne s.s.

4.1 Zvezna slucajna spremenljivka Naj bo X zvezna slucajna spremenljivka $\Longrightarrow X$ je realna funkcija, za katero obstaja integrabilna funkcija $p_X: R \to [0,\infty)$, tako da za vsak $x \in R$ velja:

$$F_X(x) := P(X \le x) = \int_{-\infty}^x p_X(t) dt$$

Funkciji p_X pravimo **gostota verjetnosti**, funkciji F_X pa **porazdelitvena** funkcija. Mnozici vrednosti, ki jih zavzame spremenljivka X, pravimo **zaloga vrednosti** in jo oznacimo z Z_X . Lastnosti:

- $\bullet \int_{-\infty}^{+\infty} p_X(x) \, dx = 1$
- $P(a < X < b) = \int_a^b p_X(x) dx = F_X(b) F_X(a), \ a, b \in R, \ a < b$
- $P(X=a) = 0, a \in R$
- P(|X| < 1) = P(-1 < X < 1)

ce je funkcija zvezna v x, potem za njo velja tudi F'(x) = p(x). Za zvezno slucajno spremenljivko X je funkcija prezivetja S(x) = P(X > x) vedno zvezna, nenarascujoca in zavzema vrednosti na intervalu [0,1]. **4.2 Enakomerna zvezna** slucajna spremenljivka

$$X \sim U[a, b]$$

- $p_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & sicer \end{cases}$
- $F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & x > b \end{cases}$

Vsi izidi na intervalu [a, b] so enako verjetni.

4.3 Eksponentna slucajna spremenljivka

$$X \sim \epsilon(\lambda)$$

- $p_X(x) = \begin{cases} 0 & x < 0 \\ \lambda e^{-\lambda x} & x \ge 0 \end{cases}$
- $F_X(x) = \begin{cases} 0 & x < 0 \\ 1 e^{-\lambda x} & x \ge 0 \end{cases}$

Slucajna spremenljivka X - cas med zaporednima dogodkoma, pri cemer so dogodki neodvisni in se pojavijo s konstantno stopnjo λ . λ predstavlja povprecno stevilo dogodkov na izbrano casovno enoto.

4.4 Normalna slucajna spremenljivka

$$X \sim N(\mu, \sigma)$$

- $p_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ za $x \in R$
- Za $F_X(x)$ ne obstaja eksplicitna formula. Vrednost preberemo iz porazdelitvenih tabel.

Po centralnem limitnem izreku sta vsota in povprecje veliko neodvisnih, enako porazdeljenih spremenljivk, normalno porazdeljeni. Porzadelitev N(0,1) je standardna normalna porazdelitev \Longrightarrow potem za vsak x velja P(X < x) = 1 - P(X > x).

4.5 Gamma slucajna spremenljivka

$$X \sim \Gamma(n, \lambda)$$

•
$$p_X(x) = \begin{cases} 0 & x \le 0\\ \frac{\lambda^n x^{n-1} e^{-\lambda x}}{\Gamma(n)} & x > 0 \end{cases}$$

V povprecju imamo na casovno enoto λ ponovitev dogodka A, X pa je cas med prvo in (n+1) ponovitvijo dogodka A.

4.6 Hi kvadrat slucajna spremenljivka

$$X \sim \chi^2(n) = \Gamma(\frac{n}{2}, \frac{1}{2})$$

•
$$p_X(x) = \begin{cases} 0 & x \le 0 \\ \frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} & x > 0 \end{cases}$$

Je vsota kvadratov \boldsymbol{n} neodvisnih standardnih normalnih slucajnih spremenljivk.

5 Matematicno upanje

5.1 Matematicno upanje diskretne slucajne spremenljivke

$$X \sim \begin{pmatrix} a_1 & a_2 & a_3 & \dots \\ p_1 & p_2 & p_3 & \dots \end{pmatrix}$$

oz. zvezne slucajne spremenljivke z gostoto p_X je

$$E(X^n) = \sum_{k=0}^{\infty} x_k^n p_k \text{ oz.}$$

$$E(X^n) = \int_{-\infty}^{\infty} \mathbf{x}^n p_X(x) dx.$$

Za vsaki slucajni spremenljivki X in Y (lahko sta odvisni, lahko je ena zvezna in druga diskretna) ter $a,b,n\in R$ velja

$$E(aX + bY) = aE(X) + bE(Y)$$

in

$$nE(X^aY^b) = nE(X^a)E(Y^b)$$

in

$$E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$
 itn...

Matematicno upanje nam pove pricakovano vrednost, kolikokrat oz. kdaj (odvisno od porazdelitve) se bo dolocen dogodek zgodil. Po definiciji disperzije velja tudi:

$$E(X^2) = D(X) + E(X)^2$$

5.2 Matematicno upanje funkcije $f: R \to R$ slucajne spremenljivke X je

$$E(f(X)) = \sum_{k=0}^{\infty} f(x_k) p_k \text{ oz.}$$

$$E(f(X)) = \int_{-\infty}^{\infty} f(x) p_X(x) dx.$$

5.3 Matematicna upanja dss in zss

- $X \sim Bernoulli(p) \implies E(X) = p$
- $X \sim Binom(n, p) \implies E(X) = np$
- $X \sim G(p) \implies E(X) = \frac{1}{p}$
- $X \sim Pascal(n, p) \implies E(X) = \frac{n}{n}$
- $X \sim H(R, B, n) \implies E(X) = \frac{nR}{R+R}$
- $X \sim Pois(\lambda) \implies E(X) = \lambda$
- $X \sim U[a,b] \implies E(X) = \frac{a+b}{2}$
- $X \sim \epsilon(\lambda) \implies E(X) = \frac{1}{\lambda}$
- $X \sim N(\mu, \sigma) \implies E(X) = \mu$
- $X \sim \chi^2(n) \implies E(X) = n$

6 Disperzija in std. odklon

 ${\bf 6.1~Disperzija}$ ali variancaslucajnje spremenljivke Xje definirana kot

$$D(X) = E((X - E(X))^{2}) = E(X^{2}) - E(X)^{2}$$

Za $a,b \in R$ velja

$$D(aX + b) = a^2 D(X).$$

Ce sta X in Y neodvisni je

$$D(aX + bY) = a^2 D(X) + b^2 D(Y) \text{in}$$

$$D(XY) = E(X^2 Y^2) - E(XY)^2 = E(X^2) E(Y^2) - E(X)^2 E(Y)^2$$

 ${f 6.2}$ Standardni odklon slucajnje spremenljivke X je enak

$$\sigma(X) = \sqrt{D(X)}.$$

- 6.3 Disperzije dss in zss
- $X \sim B(p) \implies D(X) = p(1-p)$
- $X \sim B(n, p) \implies D(X) = np(1-p)$
- $X \sim G(p) \implies D(X) = \frac{1-p}{p^2}$
- $X \sim P(n,p) \implies D(X) = \frac{n(1-p)}{p^2}$
- $X \sim H(R, B, n) \implies$

$$\frac{nRB(R+B-n)}{(R+B)^2(R+B-1)}$$

- $X \sim P(\lambda) \implies D(x) = \lambda$
- $X \sim U[a,b] \implies D(X) = \frac{(b-a)^2}{12}$
- $X \sim \epsilon(\lambda) \implies D(X) = \frac{1}{\lambda^2}$
- $X \sim N(\mu, \sigma) \implies D(X) = \sigma^2$
- $X \sim \chi^2(n) \implies D(X) = 2n$

7 Slucajni vektorji

7.1 Diskretni slcuajni spremenljivki X in Y lahko dolocata (dvorazsesni) **diskretni slucajni vektor** (X, Y). Verjetnost, da (X, Y) zavzame vrednost $(x_i, y_i) \in R$,

oznacimo s
$$P(X = x_i, Y = y_i) = p_{ii}$$
.

Porazdelitev (X, Y) lahko podamo na dva enakovredna nacina, in sicer:

1. s porazdelitveno tabelo

[$X \setminus Y$	y_1	y_2	 y_m	 X
(X, Y)	x_1	p_{11}	P12	 p_{1m}	 p_1
	x_2	p_{21}	p_{22}	 p_{2m}	 p_2
	x_n	p_{n1}	p_{n2}	 p_{nm}	 p_n
		· ·			
ľ	Y	q_1	q_2	 q_m	 1

pri cemer je $0 \leq p_{ij} \leq 1$, $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$, $\sum_{i=1}^{\infty} p_{ij} = p_i$ za vsak $i \in N$ in $\sum_{i=1}^{\infty} p_{ij} = q_j$ za vsak $j \in N$.

2. s porazdelitveno funkcijo

$$F_{X,Y}(x,y) = P(X \le x, Y \le y).$$

Velja
$$F_{X,Y}(x,y)=\sum_{i=1}^\infty\sum_{j=1}^\infty p_{ij}I_{[x_i,\infty)}(x)I_{[y_j,\infty)}(y)$$
, kjer je

$$I_{[x_i,\infty)}(x) = \begin{cases} 1 & x_i \le x \\ 0 & sicer \end{cases}$$
$$I_{[y_j,\infty)}(y) = \begin{cases} 1 & y_j \le y \\ 0 & sicer \end{cases}$$

Podan imamo vektor $(X \in [0, a], Y \in [0, b])$. Potem velja slednje:

- $P(X < 1) = P(X \le 1, Y \le b)$
- $P(X < 1, Y > \frac{1}{2}) = P(X \le 1, Y \le 1) P(X \le 1, Y \le \frac{1}{2})$
- $P(X > 1, Y > \frac{1}{2}) =$

$$P(X \leq a, \frac{1}{2} \leq Y \leq b) - P(X \leq 1, \frac{1}{2} \leq Y \leq b) = (P(X \leq a, Y \leq b) - P(X \leq a, Y \leq \frac{1}{2})) - (P(X \leq 1, Y \leq b) - P(X \leq 1, Y \leq \frac{1}{2}))$$

 ${\bf Robne\ porazdelitve\ so\ porazdelitve\ komponent}$

$$p_i = P(X = x_i) = \sum_{i=1}^{\infty} p_{ij}$$

 $q_j = P(Y = y_i) = \sum_{j=1}^{\infty} p_{ij}$

Slucajni spremenljivki X in Y sta **neodvisni**, ce za poljublni stevili $x,y\in R$ velja

$$P(X=x,Y=y) = P(X=x)P(Y=y)$$
 in
$$P(X=x\,|\,Y=y) = \frac{P(X=x,Y=y)}{P(Y=y)}$$

7.2 dvorazsezna gostota verjetnosti Naj bosta X,Y z.s.s. Par (X, Y) je zvezni slucajni vektor, ce obstaja integrabilna funkcija $p_{X,Y}: R^2 \to R$ (gostota verjetnosti), tako da za vsak par $(x,y) \in R^2$ velja

$$F_{X,Y}(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p_{X,Y}(x,y) \, dx \, dy.$$

Funkciji $F_{X,Y}$ pravimo porazdelitvena funkcija. Velja

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{X,Y}(x,y) \, dx \, dy = 1$$

Robni gostoti sta

$$p_X(x) = \int_{-\infty}^{\infty} p_{XY}(x,y) \, dy$$
 in $p_Y(y) = \int_{-\infty}^{\infty} p_{XY}(x,y) \, dx$

Zvezni slucajni spremenljivki X in Y sta **neodvisni**, ce za vsaki realni stevili $x,y\in R$ velja

$$p_{X,Y}(x,y) = p_X(x)p_Y(y).$$

7.3 Matematicno upanje funkcije

 $f:R^2\to R$ dvorazseznega slucajnega vektorja (X, Y) je za diskretni slucajni vektor definirano s predpisom

$$E(f(X,Y)) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f(x_i, y_i) P(X = x_i, Y = y_i)$$

za zvezni slucjani vektor pa s predpisom

$$E(f(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) P_{X,Y}(x,y) dx dy.$$

Ce sta X in Y **neodvisni** velja

$$E(XY) = E(X)E(Y).$$

 ${\bf 7.4~Kovarianca}$ slucajnih spremenljivkX in Y je definirana kot

$$Cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y).$$

XY mores posebi zracunat porazdelitev(ampak pazi, ni nujno da sta neodvisni, zato, ce imas tabelo, poberi vrednosti za npr. P(XY = 1) iz tabele)!

Za disperzijo velja

$$D(X) = Cov(X,X) \text{ in }$$

$$D(aX + bY) = a^2D(X) + b^2D(Y) + 2abCov(X,Y)$$

Za slucajne spremenljivke X,Y,Z ter $a,b\in R$ velja:

- Cov(X + a, Y + b) = Cov(X, Y),
- Cov(aX + bY, Z) =aCov(X, Z) + bCov(Y, Z),
- $\bullet \ Cov(X,Y) = Cov(Y,X),$
- $|Cov(X,Y)| \le \sqrt{D(X)D(Y)}$,
- Cov(aX, bY) = abCov(X, Y)
- Cov(a, X) = 0 (neodvisni)

Ce sta s.
sXin Y neodvisnije njuna kovarianca enak
a $\mathbf{0},$ Cov(X,Y)=0.

7.5 Korelacijski koeficient izracunamo po formuli

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$$

Korelacijski koeficient zavzema vrednosti na intervalu [-1, 1]. Ce velja $\rho(X,Y)=0$, lahko sklepamo da sta spremenljivki X in Y **nekorelirani**. Za $a,b,c,d\in R$ ter a,c>0 velja:

$$\rho(aX + b, cY + d) = \rho(X, Y)$$

Ce je $|Cov(X,Y)| = \sqrt{D(X)D(Y)}$, tj. $\rho(X,Y) = \pm 1$, potem sta X in Y v linearni zvezi

$$Y = \pm \frac{D(Y)}{D(X)}(X - E(X)) + E(Y).$$

Ker iz neodvisnosti sledi E(XY) = E(X)E(Y), sta neodvisni slucajni spremenljivki tudi nekorelirani. Obratno pa ne velja!

8 Normalna porazdelitev

8.1 Normalna porazdelitev je odvisna od dveh parametrov: $\mu = E(X)$ in $\sigma = \sigma(X)$. Gostota njene porazdelitve je:

$$p_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Standardizacija:

$$Z = \frac{X-\mu}{\sigma} \sim N(\mu = 0, \sigma = 1)$$

Vrednost $F(X) = P(X \le x)$ dobimo tako da integriramo funkcijo gostote na intervalu $[-\infty, x]$:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

Velja : $P(a \le Z \le b) = F(b) - F(a)$ in $x \ge 4 \Rightarrow F(x) \approx 1(std.napaka)$.

Ce je spremenljivka $X \sim N(0,1)$ normalno porazdeljena, velja tudi da so lihi momenti normalne porazdelitve enaki 0 ($E(X^3) = E(X^5) = 0$).

8.2 σ pravila

- $1\sigma \Rightarrow P(\mu \sigma < X < \mu + \sigma) = 0.683$
- $2\sigma \Rightarrow P(\mu 2\sigma < X < \mu + 2\sigma) = 0.954$
- $3\sigma \Rightarrow P(\mu 3\sigma \le X \le \mu + 3\sigma) = 0.997$

8.3 q_x pravila

- $P(X \le q_1) = 0.25$
- $P(X \le q_2(m)) = 0.5$

- $P(X \le q_3) = 0.75$
- 8.4 Standardizacija binomske porazdelitve

$$X_B \sim B(n,p)$$

kjer velja $\mu = np$ in $\sigma = \sqrt{np(1-p)}$. velja:

$$P(a \le X_B \le b) \approx P(a - \frac{1}{2} \le X_N \le b + \frac{1}{2}) = F(\frac{b + \frac{1}{2} - \mu}{\sigma}) - F(\frac{a - \frac{1}{2} - \mu}{\sigma})$$

in

$$P(X_B \leq b) \approx P(X_N \leq b + \tfrac{1}{2}) = F(\tfrac{b + \tfrac{1}{2} - \mu}{\sigma})$$

. **Pazi** za normalizirane *diskretne* porazdelitve velja:

- $P(X_B < k) = P(X_B \le k 1)$
- $P(X_B > k) = P(X_B \ge k + 1) = 1 P(X_B \le k)$
- 8.5 Aproksimacija binomske porazdelitve

8.5.1 Poissonov Priblizek

Naj bo

$$X_B \sim B(n,p) \ in \ X_P \sim P(np)$$

Ce je

- $n \ge 20$ in $p \in (0, 0.05)$ ali pa
- $n \ge 100 \text{ in } np \in (0, 10],$

ponavadi velja:

$$P(X_B = k) \approx P(X_P = k) = \frac{(np)^k}{k!} e^{-np}.$$

8.5.2 Laplaceov Priblizek

Naj bo

$$X_B \sim B(n,p) \ in \ X_N \sim N(np, \sqrt{np(1-p)}).$$

Ce je $np \geq 10$ in $n(1-p) \geq 10$, potem za k dovolj blizu np velja:

$$P(X = k) \approx P(X_N = k) = \frac{e^{-(k-np)^2/(2np(1-p))}}{\sqrt{2\pi np(1-p)}}$$

9 <u>CLI</u>

9.1 Normalne spremenljivke: Naj bosta $X \sim N(\mu_1, \sigma_1), Y \sim N(\mu_2, \sigma_2)$ neodvisni. Potem je

$$X + Y \sim N(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$$

Posledica: Naj bodo

$$X_1 \sim N(\mu_1, \sigma_1), \dots, X_n \sim N(\mu_n, \sigma_n)$$

neodvisne, normalno porazdeljene s.s. Potem velja:

$$X_1 + \dots + X_n \sim N(\sum_{i=1}^n \mu_i, \sqrt{\sum_{i=1}^n \sigma_i^2}).$$

9.2 CLI za vsoto sl. spremenljivk Naj bodo $X_1, + \cdots +, X_n$ neodvisne in enako porazdeljene slucajne spremenljivke, kjer velja $E(X_i) = \mu, D(X_i) = \sigma^2 < \infty$. Potem za dovolj velik n (dobra aproksimacija : $n \geq 30$) velja, da je porazdelitev vsote $S = X_1, + \cdots +, X_n$ priblizno normalna.

$$S \sim N(n\mu, \sigma\sqrt{n})$$

Pri aproksimaciji **diskretne** porazdelitvene vsote z normalno porazdelitvijo, uporbljamo popravek za zveznost.

$$P(a \le S \le b) \approx P(a - \frac{1}{2} \le Y \le b + \frac{1}{2}) = F(\frac{b + \frac{1}{2} - n\mu}{\sigma\sqrt{n}}) - F(\frac{b - \frac{1}{2} - n\mu}{\sigma\sqrt{n}})$$

9.3 Enostavni slucajni vzorec Naj bo X s.s. Enostavni slucajni vzorec je slucajni vektor $(X_1, + \cdots +, X_n)$, za katerega velja:

- \bullet vsi cleni vektorja X_i imajo isto porazdelitev kot spremenljivka
- \bullet cleni X_i so med seboj neodvisni
- 9.4 Vzorcno povprecje normalno porazdeljenega vzorca Naj bo $(X_1, +\dots +, X_n)$ enostavni slucajni vzorec, $X_i \sim N(\mu, \sigma)$. Potem je porazdelitev vzorcnega povprecja $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ tudi normalna:

$$\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$$

Pozor! Pri racunanju disperzije ne pozabi kvadrirati $\frac{1}{n}$. 9.5 CLI za vzorcno povprecje Naj bo $(X_1,+\cdots+,X_n)$ enostavni slucajni vzorec in

$$E(X_i) = \mu, D(X_i) = \sigma^2 \ (\mu \ in \ \sigma^2 \ morata \ biti \ koncni)$$

Za dovolj veliki vzorec $(n \geq 30)$ je porazdelitev vzorenega povprecja $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ priblizno normalna

$$\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$$

9.6 Racunanje razpona Naj bo s.s. X normalno porazdeljena $X \sim N(\mu, \sigma)$

$$P(E(X) - a \le X \le E(X) + a) = p$$
$$I = [E(X) - a, E(X) + a]$$

- $\bullet \ A^T = (USV^T)^T = VSU^T$
- $\bullet \ A^T U S^{-1} = V S U^T U S^{-1}$
- $\bullet \ \ V = A^T U S^{-1}$
- $d = d^T U S^{-1}$