

**DISTA** 

**Corso: Analisi Numerica** 

**Docente: Roberto Piersanti** 

# Risoluzione di sistema lineari: metodi iterativi Lezione 3.7a

Il metodo del gradiente e i test di arresto



### Risoluzione di sistemi lineari: metodi iterativi

- Metodo del gradiente e test di arresto
- Formulazione dei metodi di tipo gradiente
  - $\checkmark$  Criteri di scelta del parametro  $\alpha_k$
  - ✓ Metodi di tipo gradiente
  - ✓ Criterio di arresto sul residuo
  - ✓ Criterio di arresto sull'incremento



# Risoluzione di sistemi lineari (criterio di scelta di $\alpha_k$ )

 $\triangleright$  Criteri di scelta per parametro  $\alpha_k$  nel metodo di Richardson dinamico

$$\begin{cases} P\mathbf{z}^{(k)} = \mathbf{r}^{(k)} \\ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{z}^{(k)} \\ \mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{z}^{(k)} \end{cases} \quad k \ge 0$$

 $\blacktriangleright$  Nel caso  $A,\ P$  siano **SDP** scegliamo  $lpha_k$  in modo che

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}\|_A$$
 sia minima

- > L'errore in norma A sia il più piccolo possibile
- ightharpoonup Notiamo che  $\mathbf{x}^{(k+1)}$  dipende da  $lpha_k$ , quindi

$$\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} = \alpha_k \mathbf{z}^{(k)} \qquad \mathbf{x}^{(k+1)} - \mathbf{x} \to \alpha_k$$



# Risoluzione di sistemi lineari (la norma energia)

 $\blacktriangleright$  Nel caso  $A,\ P$  siano **SDP** scegliamo  $lpha_k$  in modo da

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}\|_A$$
 sia minima

> La norma A (norma energia) è così definita

$$orall \mathbf{a} \in \mathbb{R}^n \quad \|\mathbf{a}\|_A = \left(\mathbf{a}^T A \mathbf{a}
ight)^{1/2} \quad rac{ ext{Sistema lineare}}{A \mathbf{x} = \mathbf{b}}$$

Osservazione sul prodotto scalare:

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}\|_A^2 = \underbrace{(A(\mathbf{x}^{(k+1)} - \mathbf{x}), \mathbf{x}^{(k+1)} - \mathbf{x})}_{A\mathbf{e}^{(k+1)}}, \underbrace{\mathbf{x}^{(k+1)} - \mathbf{x}}_{\mathbf{e}^{(k+1)}}$$
Errore al passo  $k+1$ 



# Risoluzione di sistemi lineari (il minimo nel punto $\alpha_k$ )

 $\succ$  Definiamo il prodotto scalare come la funzione  $F(lpha_k) \in \mathbb{R}^+$ 

$$F(\alpha_k) = (A\mathbf{e}^{(k+1)}, \mathbf{e}^{(k+1)}) = \|\mathbf{x}^{(k+1)} - \mathbf{x}\|_A^2$$

$$\|\mathbf{x}^{(k+1)} - \mathbf{x}\|_A$$
 sia minima  $F'(\alpha_k) = 0$ 

- ightharpoonup La funzione  $F(lpha_k)$  abbia un minimo nel punto  $lpha_k$
- $\triangleright$  Derivando F rispetto ad  $\alpha_k$  si ottiene

$$\alpha_k = \frac{\left(\mathbf{r}^{(k)}\right)^T \mathbf{z}^{(k)}}{\left(\mathbf{z}^{(k)}\right)^T A \mathbf{z}^{(k)}}$$





### Risoluzione di sistemi lineari (metodo del gradiente)

 $\succ$  Abbiamo un criterio di scelta automatico per  $\,lpha_k\,$ 

$$\alpha_k = \frac{\left(\mathbf{r}^{(k)}\right)^T \mathbf{z}^{(k)}}{\left(\mathbf{z}^{(k)}\right)^T A \mathbf{z}^{(k)}}$$

Questa scelta Metodo del gradiente precondizionato

$$\begin{cases} P\mathbf{z}^{(k)} = \mathbf{r}^{(k)} \\ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{z}^{(k)} \\ \mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{z}^{(k)} \end{cases} \quad k \ge 0$$

 $\succ$  Se il <u>precondizionatore è la matrice l'identità</u> P=I

$$P = I$$
 Metodo del gradiente