Reinforcement Learning II

CSE 4711: Artificial Intelligence

Md. Bakhtiar Hasan

Assistant Professor
Department of Computer Science and Engineering
Islamic University of Technology

Exploration vs. Exploitation

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ϵ -greedy)
 - Every time step, flip a coin
 - \triangleright With (small) probability ϵ , act randomly
 - lacktriangle With (large) probability $1-\epsilon$, act on current policy

Videos: q-bridge, q-epsilon

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ϵ -greedy)
 - Every time step, flip a coin
 - \triangleright With (small) probability ϵ , act randomly
 - \blacktriangleright With (large) probability 1ϵ , act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - ightharpoonup One solution: lower ϵ over time
 - Another solution: exploration functions

Videos: q-bridge, q-epsilon

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

$$f(u,n) = u + k/n$$

Regular Q-Update: $Q(s,a) \leftarrow_a R(s,a,s') + \gamma \max_{a'} Q(s',a')$

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

```
\begin{split} f(u,n) &= u + k/n \\ \text{Regular Q-Update: } Q(s,a) \leftarrow_a \\ R(s,a,s') &+ \gamma \max_{a'} Q(s',a') \\ \text{Modified Q-Update: } Q(s,a) \leftarrow_a \\ R(s,a,s') &+ \gamma \max_{a'} f(Q(s',a'),N(s',a')) \end{split}
```


- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

$$f(u,n) = u + k/n$$

Regular Q-Update: $Q(s,a) \leftarrow_a$
 $R(s,a,s') + \gamma \max_{a'} Q(s',a')$
Modified Q-Update: $Q(s,a) \leftarrow_a$
 $R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$

 Note: this propagates the "bonus" back to states that lead to unknown states as well!

Regret

- Even if you learn the optimal policy, you still make mistakes along the way
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

■ Basic Q-Learning keeps a table of all q-values

■ Basic Q-Learning keeps a table of all q-values

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Let's say we discover through experience that this state is bad:

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - ► I/(dist to dot)²
 - ▶ Is Pacman in a tunnel? (0/1)
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

■ Using a feature representation, we can write a Q-function for any state using a few weights:

$$\hat{Q}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

$$\hat{Q}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

$$\hat{Q}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

$$\hat{Q}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

 $\mathsf{Transition} = (s, a, r, s')$

$$\hat{Q}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

$$\begin{aligned} & \text{Transition} = (s, a, r, s') \\ & \text{Difference} = \left[r + \gamma \max_{a'} Q(s', a') \right] - \hat{Q}(s, a) \end{aligned}$$

$$\hat{Q}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

$$\mathsf{Transition} = (s, a, r, s')$$

Difference =
$$\begin{bmatrix} r + \gamma \max_{a'} Q(s', a') \end{bmatrix} - \hat{Q}(s, a)$$
 Exact Q's
$$Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]}$$

$$\hat{Q}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

$$\begin{aligned} & \text{Transition} = (s, a, r, s') \\ & \text{Difference} = \begin{bmatrix} r + \gamma \max_{a'} Q(s', a') \end{bmatrix} - \hat{Q}(s, a) \\ & \text{Exact Q's} \qquad Q(s, a) \leftarrow Q(s, a) + \alpha \\ & \text{Approximate Q's} \qquad w_i \leftarrow w_i + \alpha \\ & \text{Idifference} \end{bmatrix} f_i(s, a) \end{aligned}$$

$$\hat{Q}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

$$\begin{aligned} & \text{Transition} = (s, a, r, s') \\ & \text{Difference} = \begin{bmatrix} r + \gamma \max_{a'} Q(s', a') \end{bmatrix} - \hat{Q}(s, a) \\ & \text{Exact Q's} & Q(s, a) \leftarrow Q(s, a) + \alpha \\ & \text{Approximate Q's} & w_i \leftarrow w_i + \alpha \\ & \text{[difference]} f_i(s, a) \end{aligned}$$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features

$$\hat{Q}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

$$\begin{aligned} & \text{Transition} = (s, a, r, s') \\ & \text{Difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - \hat{Q}(s, a) \\ & \text{Exact Q's} \qquad Q(s, a) \leftarrow Q(s, a) + \alpha \\ & \text{Approximate Q's} \qquad w_i \leftarrow w_i + \alpha \\ & \text{Idifference} \\ & f_i(s, a) \end{aligned}$$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

$$\hat{Q}(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$\hat{Q}(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$\hat{Q}(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a)$$

$$\hat{Q}(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$\hat{Q}(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$\hat{Q}(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

Video: q-approx-pacman

Q-Learning and Least Squares

Linear Approximation: Regression

Prediction:
$$\hat{y} = w_0 + w_1 f_1(x)$$

Linear Approximation: Regression

Prediction: $\hat{y} = w_0 + w_1 f_1(x)$

Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$

Optimization: Least Squares

Optimization: Least Squares

total error =
$$\sum_{i} (y_i - \hat{y}_i)^2$$

Optimization: Least Squares

$$error(w) = \frac{1}{2} \left(y - \sum_{k} (w_k f_k(x)) \right)^2$$

$$error(w) = \frac{1}{2} \left(y - \sum_{k} (w_k f_k(x)) \right)^2$$
$$\frac{\partial error(w)}{\partial w_m} = - \left(y - \sum_{k} w_k f_k(x) \right) f_m(x)$$

$$\begin{aligned} error(w) &= \frac{1}{2} \left(y - \sum_{k} (w_k f_k(x))^2 \right. \\ &\frac{\partial error(w)}{\partial w_m} = - \left(y - \sum_{k} w_k f_k(x) \right) f_m(x) \\ &w_m \leftarrow w_m + \underline{\alpha} \left(y - \underbrace{\sum_{k} (w_k f_k(x))}_{\mathbf{e} \times \mathbf{p}} \right) \underline{f_m(x)} \end{aligned}$$

$$error(w) = \frac{1}{2} \left(y - \sum_{k} (w_k f_k(x)) \right)^2$$

$$\frac{\partial error(w)}{\partial w_m} = - \left(y - \sum_{k} w_k f_k(x) \right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left(y - \sum_{k} (w_k f_k(x)) \right) f_m(x)$$

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$error(w) = \frac{1}{2} \left(y - \sum_{k} (w_k f_k(x))^2 \right)$$

$$\frac{\partial error(w)}{\partial w_m} = -\left(y - \sum_{k} w_k f_k(x) \right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left(y - \sum_{k} (w_k f_k(x)) \right) f_m(x)$$

Approximate q-update:

Overfitting: Why Limiting Capacity Can Help

Overfitting: Why Limiting Capacity Can Help

Overfitting: Why Limiting Capacity Can Help

Often the feature-based policies that work well aren't the ones that approximate
 V/Q best

- Often the feature-based policies that work well aren't the ones that approximate
 V/Q best
- Solution: Policy Search
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Often the feature-based policies that work well aren't the ones that approximate
 V/Q best
- Solution: Policy Search
 - Start with an initial linear value function or O-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Often the feature-based policies that work well aren't the ones that approximate
 V/Q best
- Solution: Policy Search
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Conclusion

- We are done with Search and Planning!
- We have seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next? Uncertainty and Learning

Suggested Reading

Russell & Norvig: Chapter 21