浅谈拥塞控制与 bbr 算法 摘要

先帝创业未半而中道崩殂

关键词: 关键词1; 关键词2; 关键词3

Abstract

The founding emperor passed away before his endeavor was half completed, and now the empire is divided into three parts. Yizhou is exhausted and in decline, and this is truly a critical moment of survival or destruction. Ho

Key Words: Keyword 1; Keyword 2; Keyword 3

1 绪论

1.1 研究背景

随着互联网的普及和应用范围的不断扩大,网络中的信息呈现爆炸式增长,对网络 及其基础设施提出了更高的要求。网络数据传输的条件也在不断变化:在地面互联网中, 传输带宽越来越高,链路构成越来越复杂;而在一些特殊网络中,如卫星网络中,通信 距离越来越远,传播延时越来越大。这都为当前的传输协议带来了前所未有的挑战[1]。

TCP 作为一种可靠传输协议,通过在数据传输中引入确认和重传机制保证可靠性。 当链路不稳定时,丢包率和错误率都会上升;当网络拥挤时,排队的分组总量超出了路 由器缓存的大小,导致后续到达的分组被丢弃。由此,大量数据需要重传,从而加剧了 网络拥塞。

1983 年,TCP 被默认部署在当时的互联网——ARPANet 上。1986 年 10 月,由于ARPANET 网络中的一个路由器出现了故障,大量数据包被重复发送。在加州大学伯克利分校和 400 码外的劳伦斯伯克利国家实验室之间的 32 kbps 链路上检测到互联网拥塞崩溃,在此期间吞吐量下降了近 1000 倍,降至 40 bps^[2]。这一现象引起了网络研究者的注意,因此提出了拥塞控制,使其成为一门新的研究领域。

1.2 拥塞控制概述

拥塞控制算法是 TCP 协议中非常重要的一部分。在网络拥塞时,主机不再贪婪地发出数据,而是采取更加保守的策略,降低自身发送数据包的速率,从而保证互联网的可用性,尽可能提高带宽利用率。

1.3 主机通信模型

本文不考虑路由器的转发寻址功能,因此将复杂的计算机网络抽象为点对点的通信 链路,如图 1 所示。

图 1: 网络抽象模型

每个路由器具有一个缓存池,用于缓存路由器接收到的分组。若将链路当成水管,每个数据包分组作为水流,则缓存相当于水池,具有积蓄作用。当某个路由器的输入速率大于输出速率时,多余的分组将在缓存中排队。若分组到达路由器,而缓存已满,该分组将会被丢弃。

空闲网络中的数据包增加,可以提高网络吞吐量。但是当拥塞发生时,网络中的每台主机都需要降低自身的数据发送速率。这必然会导致网络的总体利用率变低,就像在堵车时,道路的车流量实际是减少的。

图 2: 随着负载的增加,吞吐量会上升,然后在拥塞崩溃点下降。[3]

2 拥塞控制

计算机与路由器构成了一个庞大的网络,任一时间任一节点的数据传输量都在变化。拥塞控制算法运行于主机之上,(在不改变现有网络协议与结构条件下)不能直接访问路由的缓存状态。因此拥塞控制算法需要通过其他办法探知网络的拥挤程度,并控制主机行为缓解拥塞。

图 3: 传输速率与往返时间的关系[4]

参考文献

- [1] 曹涛涛. 拥塞控制算法的性能评估及公平性分析. 2017.
- [2] NETLAB C. Communication Networks[EB/OL]. (2023). http://netlab.caltech.edu/research/communication-networks/.
- [3] FISHER B, MICHELONI G, BEMMEL J van, 等. Introduction[EB/OL]. (2023). https://tcpcc.systemsapproach.org/intro.html.
- [4] CARDWELL N, CHENG Y, GUNN C S, 等. BBR: Congestion-Based Congestion Control[J/OL]. ACM Queue, 2016: 20–53. http://queue.acm.org/detail.cfm?id=3022184.