A. Installation Guidance for Python

You should be able to do the exercise with Python 2.7 or 3.* . if you have already installed Python proceed to Development with Python

- Check if Python is installed (on terminal)
 Get the version number of Python installation else an error
 - (Linux or MacOS): \$ python -V
 - (Windows): \$ python or \$ py (new python launcher implementation)
- 2. Instructions to install Python (to install with recommended Anaconda installation see point 3.)
 - Official guide: https://wiki.python.org/moin/BeginnersGuide/Download
 - Other useful
 - Mac: https://wsvincent.com/install-python3-mac/
 - o Windows: https://datatofish.com/add-python-to-windows-path/
- 3. Instructions to install Python with Anaconda (Recommended)
 - Anaconda is a distribution that simplifies installation and package management for Python
 - Go to Anaconda download page (https://www.anaconda.com/distribution/) and find the installer file that matches your system. Open file, start the installation wizard and follow instructions

B. Development with Python

4. Virtual environment

A virtual environment is a 'self-contained directory tree that contains a Python installation for a particular version of Python, plus a number of additional packages'

Since you will be installing helper packages to perform ML-related tasks, it is recommended to create a virtual environment wherein you will install the required packages instead of doing system-wide installation.

Below is how you create, activate, deactivate and delete virtual environment with Python

- Python
 - A tool for creating isolated Python environment is venv (Python 3) or virtualenv (Python 2)
 - Using virtualenv (Python 2) guide: https://virtualenv.pypa.io/en/stable/userguide/#usage
 - Create: \$ virtualenv ENV
 - Activate: \$ source /path/to/ENV/bin/activate
 - Deactivate: \$ deactivate
 - Using venv (Python3) guide: https://docs.python.org/3/tutorial/venv.html

DIT821 Software Engineering for AI system Intro to Python

- Create: \$ python3 -m venv [env-name]
- Activate: \$ [env-name]\Scripts\activate.bat(Windows) or \$ source [env-name]/bin/activate (Linux or MacOS)
- Deactivate: (env-name) \$ deactivate
- Anaconda
 - Using Anaconda Navigator
 - Using conda on Terminal
 - Create: \$ conda create --name [env-name]
 - Activate: \$ activate [env-name] (Windows) or
 \$ source activate [env-name] (Linux or MacOS)
 - Deactivate: \$ deactivate (Windows) or
 \$ source deactivate (Linux or MacOS)
- 5. Installing packages (ML-related packages)
 Install the following ML-related packages that you will use for the exercise:
 numpy, scipy, matplotib, scikit-learn, pandas. Remember to activate the virtual environment before installing them.
 - Python
 - Using pip:
 - \$ pip install numpy scipy matplotib scikit-learn pandas
 - Anaconda
 - Using Anaconda Navigator or conda:
 - \$ conda install numpy scipy matplotib scikit-learn pandas

C. Performing ML tasks with Python

Lab1: Linear regression with one variable (walkthrough of Python syntax)

Procedure

- 1. Install Python
- 2. Create a virtual environment in which you will install ML related packages for the coming exercises
- 3. Install on the virtual environment (numpy, scipy, matplotib, scikit-learn, pandas, jupyter**): ** If preferred
- 4. Using your preferred IDE check Example code of Lab1 (see point 5) that performs ML tasks. You can run the script from terminal e.g., using python lab1.py
- 5. From Lab1 package and ex1data1.txt dataset and Example code is provided for simple linear regression
 - Step 0: Import the required packages (os, scipy, sklearn, numpy, pandas, matplotlib.pyplot)
 - Step 1: Load data using pandas by creating a DataFrame populated with data using read_csv(). Note our dataset does not have a header and you would need to add the header: https://pandas.pydata.org/pandas-docs/stable/reference/io.html#flat-file

DIT821 Software Engineering for AI system Intro to Python

Step 2: Explore and visualize data

- Explore (e.g., using shape, head(), describe(), scatter from matplotlib etc.): https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#constructor
- Visualize (e.g., scatter):
 https://matplotlib.org/3.1.1/api/ as gen/matplotlib.pyplot.scatter.html
- Separate feature variable (X) and target variable (y) by accessing values in Population and Profits respectively

Step 3: Train linear regression using sklearn

Split dataset

 Split dataset 80% for train and 20% for test using sklearn's train_test_split() remember to import it: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train n test split.html

Train model

- Get linear model: from sklearn.linear_model import LinearRegression: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Linear_Regression.html
- Access and fit linear model
- Can view theta values with (intercept and coef)

Step 4: Evaluate model

- Plot linear model by drawing a line on scatter plot
- Get MSE value from metrics of sklearn: https://scikit-learn.org/stable/modules/model evaluation.html#mean-squared-error