САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ФАКУЛЬТЕТ ИНФОКОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

Отчет по лабораторной работе №0 по курсу «Алгоритмы и структуры данных» Тема: Тема работы Вариант 1

Выполнила: Данилова Айаана К314

Проверила:

Артамонова В.Е.

Санкт-Петербург 2024 г.

Содержание отчета

Содержание отчета	2
Задачи по варианту	3
Задача №1. Ввод-вывод	
1. Подзадача $a + b$	
2. Подзадача $a + b^2$	
3. Подзадача $a + b$ с использованием файлов	
4. Подзадача $a + b^2$ с использованием файлов	
Задача №2. Число Фибоначчи	
Задача №3. Еще про числа Фибоначчи	
Задача №4. Тестирование алгоритмов.	8
Вывол	9

Задачи по варианту

Задача №1. Ввод – вывод

Подзадача 1.

```
def first_1():
    a, b = map(int, input().split())
    proverka = (-10e9 <= a <= 10e10 and -10e9 <= b <= 10e9)
    kolvo = 0
    while proverka == False and kolvo < 2:
        print('Попробуйте еще раз')
        kolvo += 1
        a, b = map(int, input().split())
        proverka = (-10e9 <= a <= 10e10 and -10e9 <= b <= 10e9)
        if kolvo == 3:
            break
    else:
        print(a + b)
)</pre>
```

Считываю строку и присваиваю переменным а и b целочисленное значение с помощью map, который преобразовывает вводные данные, разделенные методом split(), в int. Проверяю удовлетворяют ли числа условиям задачи, дается три попытки на ввод корректных значений. Если все хорошо, то вывожу a+b.

Результат работы кода на максимальных и минимальных значениях:

-1000000000 -1000000000	1000000000 1000000000
-2000000000	2000000000

	Время выполнения	Затраты памяти
Нижняя граница диапазона значений входных данных из текста задачи	< 1ns	14.7 mb
Верхняя граница диапазона значений входных данных из текста задачи	< 1ns	14.9 mb

Подзадача 2.

```
def first_2():
    a, b = map(int, input().split())
    proverka = (-10e9 <= a <= 10e10 and -10e9 <= b <= 10e9)
    kolvo = 0
    while proverka == False and kolvo < 2:
        print('Ποπροδυμτε εщε раз')
        kolvo += 1
        a, b = map(int, input().split())
        proverka = (-10e9 <= a <= 10e10 and -10e9 <= b <= 10e9)
        if kolvo == 3:
            break
    else:
        print(a + b ** 2)
```

Считываю строку и присваиваю переменным а и b целочисленное значение с помощью тар, который преобразовывает вводные данные, разделенные методом split(), в int. Проверяю удовлетворяют ли числа условиям задачи, дается три попытки на ввод корректных значений. Если все хорошо, то вывожу $a + b^2$.

Результат работы кода на некорректных, максимальных и минимальных значениях:

	Время выполнения	Затраты памяти
Нижняя граница диапазона значений входных данных из текста задачи	< 1ns	14.9 mb
Верхняя граница диапазона значений входных данных из текста задачи	< 1ns	15 mb

Подзадача 3.

```
with open('input.txt', 'r') as file:
    for line in file:
        a, b = map(int, line.split())
        with open('output.txt', 'a') as ans:
        if abs(a) > 10e9 or abs(b) > 10e9:
            ans.write('Incorrect data' + '\n')
        else:
            ans.write(str(a + b) + '\n')
```

С помощью with_open() считываю данные с файла input.txt. Получаю текст file. Из строки line полученного file присваиваю числа в переменные a, b. Получаю текст file. Из строки line полученного file присваиваю числа в переменные a, b.

Делаю проверку на корректность данных. В случае, когда значение выходит за ограничение условия задачи, дописываю в output.txt 'Incorrect data'. Распаковываю output.txt как ans. В файл с ответом, ans, вписываю а + b.

Результат работы:

	Время	Затраты
	выполнения	памяти
Нижняя граница диапазона значений	0.006 s	15.1mb
входных данных из текста задачи		
Пример из задачи	0.006 s	15.4mb
Пример из задачи	0.005 s	15.4 mb
Верхняя граница диапазона значений	0.007 s	15.5mb
входных данных из текста задачи		

Подзадача 4.

```
with open('input.txt', 'r') as file:
    for line in file:
        a, b = map(int, line.split())
        with open('output.txt', 'a') as ans:
        if abs(a) > 10e9 or abs(b) > 10e9:
            ans.write('Incorrect data' + '\n')
        else:
            ans.write(str(a + b ** 2) + '\n')
```

С помощью with_open() считываю данные с файла input.txt. Получаю текст file. Из строки line полученного file присваиваю числа в переменные a, b. Делаю проверку на корректность данных. В случае, когда значение выходит за ограничение условия задачи, дописываю в output.txt 'Incorrect data'. Распаковываю output.txt как ans. В файл с ответом дописываю(тк для меня удобнее все тесты в один файлик запихнуть) $a + b^2$.

Результат работы кода:

	Время	Затраты
	выполнения	памяти
Нижняя граница диапазона значений	0.007s	15.4mb
входных данных из текста задачи		
Пример из задачи	0.006 s	15.4mb
Пример из задачи	0.005 s	15.3 mb
Верхняя граница диапазона значений	0.006 s	15.5mb
входных данных из текста задачи		

Вывод по задаче: узнала как считывать с файла на питоне.

Задача №2. Число Фибоначчи

Считываю п. Делаю проверку на корректность данных. В случае, когда значение выходит за ограничение условия задачи, дописываю в output.txt 'Incorrect data'. Если все хорошо, то проверяю равен ли п нулю. При равенстве дописываю 0 в output.txt, иначе создаю список a = [0, 1] и в цикле for, элементам списка с индексами от 2 до п присваиваю a[i-1] + a[i-2]. Каждый раз новое число Фибоначчи добавляю в конец списка а. Таким образом нахожу F_n и дописываю в файл ответ.

	Время выполнения	Затраты памяти
Нижняя граница диапазона значений входных данных из текста задачи	0.0039 s	15.2mb
Пример из задачи	0.0048 s	15.1mb

Верхняя	граница	диапазона	значений	0.004 s	15.2mb
входных данных из текста задачи					

Вывод по задаче: вспомнила как вычислять числа Фибоначчи.

Задача №3. Еще про число Фибоначчи

Считываю п. Делаю проверку на корректность данных. В случае, когда значение выходит за ограничение условия задачи, дописываю в output.txt 'Incorrect data'. Если все хорошо, то проверяю равен ли п нулю. При равенстве дописываю 0 в output.txt, иначе создаю список a = [0, 1] и в цикле for, элементам списка с индексами от 2 до п присваиваю a[i-1]+a[i-2]. В случае, когда полученный результат больше или равен 10, то уменьшаю его значение на 10. Каждый раз добавляю остаток нового числа Фибоначчи в конец списка а. Таким образом нахожу F_n и дописываю в файл ответ.

Результат работы кода:

	Время выполнения	Затраты памяти
Нижняя граница диапазона значений входных данных из текста задачи	0.005 s	15.4 mb
Пример из задачи	0.006 s	15.4 mb
Пример из задачи	0.007 s	15.5 mb
Верхняя граница диапазона значений входных данных из текста задачи	0.008 s	15.5 mb

Вывод по задаче: вспомнила остатки и операции над ними

Задача №4. Тестирование алгоритмов

```
def time_test():
   import time
   t_start = time.perf_counter()
   print("Время работы %s ", (time.perf_counter() - t_start))
```

Подключаем библиотеку time. Фиксируем в переменной t_start время начала с помощью time.perf_counter(). При выводе вычитаем из времени окончания работы t_start. Непосредственно функцию вызываем после second() и third().

Вывод

Благодаря вводной лабораторной работе я повторила основу основ питона и узнала, как считывают данные с файла на данном языке программирования, получила опыт пользования функциями библиотеки sys и time в целях определения количества затраченного времени и места памяти на компьютере.