Báo cáo tuần 3

A, Full adder

- 1. Đặc tả chức năng
- Bảng chân lý

	Inputs	Outputs		
Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

2. Mô tả mạch bằng ModelSim

- Full_adder.sv

Full_adder_tb.sv

```
`timescale lns/lns
module fulladder tb;
     reg A_tb, B_tb, Cin_tb;
     wire S, Cout;
     fulladder uut (
          .A(A tb),
          .B(B tb),
          .Cin(Cin_tb),
          .S(S),
          .Cout (Cout)
      );
      always begin
          A tb = 0;
          #10 A_tb = 1;
          #10;
      end
      always begin
          B tb = 0;
          #15 B_tb = 1;
          #15;
      end
      always begin
         Cin_tb = 0;
          #25 Cin_tb = 1;
          #25;
      end
      initial begin
          #200;
          $finish;
      end
  endmodule
```

3. Mô tả hành vi

4. Chạy trên Quartus

5. Chạy kiểm thử trên Board mạch

- Giải thích:

- +) Đặt A là Switch 1
- +) Đặt B là Switch 2
- +) Đặt Cin là Switch 3
- +) Đặt S là LED 1
- +) Đặt Cin là LED 2

Khi đặt A = 0, B = 0, Cin = 0 thì S = 0 (LED 1 sáng), Cout = 0 (LED 2 sáng)

B. Full Subtractor

- 1. Đặc tả chức năng
- Bảng chân lý

	Inputs	Outpus		
Α	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

2. Mô tả mạch bằng ModelSim

- Full_subtractor.sv

```
module full_subtractor (
  input a,
  input b,
  input bin,
  output d,
  output bout
  );

assign d = a ^ b ^ bin;
  assign bout = (~a & b) | (bin & (~a ^ b));
endmodule
```

- Full_subtractor_tb.sv

```
'timescale lns/lns
module full subtractor tb;
     reg a_tb, b_tb, bin_tb;
      wire d, bout;
      full_subtractor uut (
          .a(a_tb),
          .b (b_tb),
          .bin(bin_tb),
          .d(d),
          .bout (bout)
      );
      always begin
          a_tb = 0;
          #10 a_tb = 1;
          #10;
      end
      always begin
          b_tb = 0;
          #15 b_tb = 1;
          #15;
      end
      always begin
          bin_tb = 0;
          #25 bin_tb = 1;
          #25;
      end
      initial begin
          #200;
          Sfinish;
      end
  endmodule
```

3. Mô tả hành vi

4. Chạy trên Quartus

5. Chạy kiểm thử trên Board mạch

C. NAND

- 1. Đặc tả chức năng
- Bảng chân lý

	Inputs			
Α	В	С	Output N	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	0	

- Công thức: $N = \overline{ABC}$
- 2. Mô tả mạch bằng ModelSim
- NAND.sv

```
module NAND (
input a, b, c,
output n

);
assign n = ~(a & b & c);
endmodule
```

- NAND_tb.sv

```
'timescale lns/lns
module NAND tb;
      reg a_tb, b_tb, c_tb;
      wire n;
      NAND uut (
          .a(a_tb),
          .b(b_tb),
          .c(c_tb),
          .n(n)
      );
      always begin
          a_tb = 0;
          #10 a_tb = 1;
          #10;
      end
      always begin
          b_tb = 0;
          #15 b_tb = 1;
          #15;
      end
      always begin
          c tb = 0;
          #25 c_tb = 1;
          #25;
      end
      initial begin
          #200;
          Sfinish;
      end
  endmodule
```

3. Mô tả hành vi

4. Chạy trên Quartus

5. Kiểm thử trên Board mạch

			1			
Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard
🖺 a	Input	PIN_J12	6	B6_N0	PIN_R7	2.5 V (default)
<u></u> b	Input	PIN_H11	6	B6_N0	PIN_A5	2.5 V (default)
<u>□</u> - c	Input	PIN_H12	6	B6_N0	PIN_P8	2.5 V (default)
≌ n	Output	PIN_N15	5	B5_N0	PIN_K4	2.5 V (default)
< <new node="">></new>						

D. Bộ ghép kênh 2:1

- 1. Đặc tả chức năng
- Bảng chân lý

	Output		
Α	X1	X2	Y
0	X1	X2	X1
1	X1	X2	X2

- Công thức : $Y = \overline{A} X_1 + A X_2$
- 2. Mô tả mạch bằng ModelSim
- Mul_2_1.sv

Mul_2_1_tb.sv

```
`timescale lns/lns
module Mul 2 1 tb;
      reg a_tb, x1_tb, x2_tb;
      wire y;
      Mul_2_1 uut (
          .a(a_tb),
          .xl(xl_tb),
          .x2(x2_tb),
          · y (y)
      );
      always begin
          a tb = 0;
          #10 a_tb = 1;
          #10;
      end
      always begin
          xl tb = 0;
          #15 xl_tb = 1;
          #15;
      end
      always begin
          x2 tb = 0;
          #25 x2_tb = 1;
          #25;
      end
      initial begin
          #200;
          $finish;
      end
  endmodule
```

3. Mô tả hành vi

4. Chạy trên Quartus

5. Chạy kiểm thử trên Board mạch

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard
in_ a	Input	PIN_J12	6	B6_N0	PIN_P8	2.5 V (default)
<u>in</u> _ x1	Input	PIN_J9	5	B5_N0	PIN_A5	2.5 V (default)
<u>i</u> x2	Input	PIN_K14	5	B5_N0	PIN_R7	2.5 V (default)
^{out} y	Output	PIN_N15	5	B5_N0	PIN_K4	2.5 V (default)

E. Bộ ghép kênh 4:1

- 1. Đặc tả chức năng
- Bảng chân lý

	Output						
Α	A B X0 X1 X2 X3						
0	0	X0	X1	X2	Х3	XO	
0	1	X0	X1	X2	Х3	X1	
1	0	X0	X1	X2	Х3	X2	
1	1	X0	X1	X2	Х3	Х3	

Công thức

$$Y = \overline{AB} X_0 + \overline{AB} X_1 + A\overline{B} X_2 + ABX_3$$

- 2. Mô tả mạch bằng ModelSim
- Mul_4_1.sv

- Mul_4_1_tb.sv

3. Mô tả hành vi

4. Chạy trên Quartus

5. Chạy kiểm thử trên Board mạch

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard
<u></u> a	Input	PIN_J12	6	B6_N0	PIN_P1	2.5 V (default)
<u>i</u> b	Input	PIN_H11	6	B6_N0	PIN_M5	2.5 V (default)
<u>□</u> x0	Input	PIN_J9	5	B5_N0	PIN_L7	2.5 V (default)
<u></u> x1	Input	PIN_K14	5	B5_N0	PIN_P4	2.5 V (default)
<u>□</u> x2	Input	PIN_J11	5	B5_N0	PIN_R3	2.5 V (default)
<u>⊩</u> x3	Input	PIN_J14	5	B5_N0	PIN_M4	2.5 V (default)
ºut ∨	Output	PIN N15	5	B5 N0	PIN P2	2.5 V (default)