Definition

A function of random variables X_1, \dots, X_n is called *Statistic*.

Definition

The probability distribution of a statistic T is called the sampling distribution of T.

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Let $T = \bar{X}$, then sampling distribution of T is

$$N(\mu, \sigma^2/n)$$
.

If $T=S^2$ then sampling distribution of S^2 is

$$(n-1)S^2/\sigma^2 \sim \chi^2_{(n-1)}$$
.

Definition

An *estimator* is a function of random variables X_1, \dots, X_n , $T = W(X_1, \dots, X_n)$.

Note:

- 1. Estimator is actually a statistic.
- 2. Estimator is also random.
- 3. An *estimate* is a function of realized values of

$$X_1 = x_1, \cdots, X_n = x_n. \ t = W(x_1, \cdots, x_n)$$

$$ightharpoonup$$
 Example: $T = \bar{X}$, $\hat{F}_n(x_0) = n^{-1} \sum_{i=1}^n I[X_i \le x_0]$, $T = (\bar{X}, S^2)$.

Methods: MME

How to estimate the parametric function $\tau(\theta)$ using the random sample X_1, \dots, X_n ? : MME, MLE, BE so on Let $X_1, \dots, X_n \stackrel{iid}{\sim} f(x|\theta)$, $\theta = (\theta_1, \dots, \theta_k) \in \Theta$.

Definition

$$j^{th}$$
 Population moment: $\mu_j(\theta) = E\left(X^j\right)$
 j^{th} Sample moment: $m_j = \frac{1}{n} \sum_{i=1}^n X_i^j$

Note:

- 1. μ_j is a function of $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_k)$.
- 2. $E[m_j] = E[n^{-1} \sum_{i=1}^n X_i^j] = \mu_j$.

Methods: MME

Definition

MME of $\theta = (\theta_1, \dots, \theta_k)$, denoted by $\tilde{\theta} = (\tilde{\theta}_1, \dots, \tilde{\theta}_k)$, is defined as a solution of the system of equations

$$m_j = \mu_j(\theta_1, \cdots, \theta_k), \ j = 1, \cdots. I$$

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Find MME of $\theta = (\mu, \sigma^2)$.

Methods: MME

$$ightharpoonup$$
 Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Gamma}(\alpha, \beta)$. Find MME of $\theta = (\alpha, \beta)$.

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathrm{Beta}(\alpha, \beta)$. Find MME of $\theta = (\alpha, \beta)$.

Methods: MME

Note:

- 1. MM equations may have multiple solutions or no solution. The solution may fall outside of the parameter space.
- MME may not be applicable if the population moments do not exist such as Cauchy distribution.
- 3. One may not successful considering the first k-moments.

$$ightharpoonup$$
 Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} f(x|\beta)$, where

$$f(x|\beta) = \frac{1}{2\beta} e^{-|x|/\beta}.$$

Definition

Let $f(x_1, \dots, x_n | \theta)$ be the joint pdf/pmf of X_1, \dots, X_n . For a fixed x_1, \dots, x_n ,

$$L(\boldsymbol{\theta}) = f(x_1, \cdots, x_n | \boldsymbol{\theta})$$

as a function of θ , is called the likelihood function. $\ln[L(\theta)]$ is called the log likelihood function.

With discrete random variable,

$$L(\boldsymbol{\theta}) = P(X_1 = x_1, \cdots, X_n = x_n).$$

$$X_1, \cdots, X_n \stackrel{iid}{\sim} f(x|\theta). \ L(\theta) =$$

Definition

Let $f(x_1, \dots, x_n | \theta)$, $\theta \in \Theta$ be the joint pdf/pmf of X_1, \dots, X_n . Then for a given set of observations (x_1, \dots, x_n) , the maximum likelihood estimate of θ is a point $\theta_0 = h(x_1, \dots, x_n)$ satisfying

$$f(x_1, \dots, x_n | \theta_0) = \max_{\theta \in \Theta} f(x_1, \dots, x_n | \theta).$$

The maximum likelihood estimator (MLE) is defined as

$$\hat{\boldsymbol{\theta}} = h(X_1, \cdots, X_n).$$

How to find MLE?

- Using differentiation, Direct maximization, Numerical evaluation
 - ▶ Assume $L(\theta)$ is twice differentiable in the interior points of Θ . Then $\hat{\theta}$ maximizes $L(\theta)$ if
 - 1. $\hat{\theta}$ is the unique value satisfying

$$\frac{dL(\theta)}{d\theta} \left(\frac{d \ln[L(\theta)]}{d\theta} \right) \Big|_{\hat{\theta}} = 0$$

$$\left. \frac{d^2 L(\theta)}{d\theta^2} \left(\frac{d^2 \ln[L(\theta)]}{d\theta^2} \right) \right|_{\hat{\theta}} < 0$$

2. The maximizer does not occur at the boundary of the parameter space.

Methods: MLE

- ▶ If Θ is open, then the unique value of $\hat{\theta}$ satisfying (1) is the MLE.
- For multidimensional parameter space $\Theta \in R^k$ when $L[\theta = (\theta_1, \cdots, \theta_k)]$ has partial derivatives with respect to θ_i 's, then differentiate $L(\theta)$ or equivalently $\ln[L(\theta)]$ to find the MLE. That is, the solutions for

$$\frac{\partial L(\boldsymbol{\theta})}{\partial \theta_i} \left(\frac{\partial \ln[L(\boldsymbol{\theta})]}{\partial \theta_i} \right) = 0, \quad i = 1, \dots, k$$

are the mle of $oldsymbol{ heta}=(heta_1,\cdots, heta_k)$

Methods: MLE

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Known σ and Unknown σ [See Examples 7.2.5 and 7.2.11]

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} Bernoulli(p)$. [See Example 7.2.7. In addition, see Example 7.2.9 for binomial(n, p) with known p, unknown n.]

Theorem

Let $\hat{\theta}$ be the mle of θ . Then for any function $\tau(\theta)$, the mle of $\tau(\theta)$ is defined to be $\tau(\hat{\theta})$.

- ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Find mle of e^{μ} , μ^2 , σ/μ and $P[X \leq a]$.
- Note:
 - It is possible that the likelihood equations do not have closed-form solution. May need a numerical method.
 - 2. When the likelihood function is not differentiable, we may maximize $L(\theta)$ directly.
- \triangleright Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Gamma}(\alpha, \beta)$. (No closed form. Iterative approach is required.)

Methods: MLE

 \triangleright Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} f(x|\theta)$, where

$$f(x|\theta) = e^{-(x-\theta)}, \ \theta \le x < \infty$$

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} f(x|\theta), \ f(x|\theta) = \frac{1}{2}e^{-|x-\theta|}, \ x \in R$

$$ln[L(\theta)] = -n \log 2 - \sum_{i=1}^{n} |x_i - \theta|.$$

The first partial derivative is $\sum_{i=1}^{n} sgn(x_i - \theta)$, where sgn(t) = 1,0, or -1 depending on whether t > 0, t = 0, or t < 0. Note that we have used $\frac{d}{dt}|t| = sgn(t)$, which is true unless t = 0. Thus, $\hat{\theta}^{MLE}$ is median of $\{x_1, x_2, \dots, x_n\}$.

Methods: MLE

 \triangleright Example: $X_{ij}, i=1,\cdots,s; j=1,\cdots,n$ independently distributed as normal distribution with mean μ_i and variance σ^2 . Find the mle of μ_i and σ^2 .

Methods: Bayes estimation

So far, $X_1, \dots, X_n \stackrel{iid}{\sim} f(x|\theta)$, where θ is **unknown** and is assumed **fixed**. In **Bayesian** framework, θ is assumed **random**. The distribution of θ is called **prior distribution**, denoted by

$$\theta \sim \pi(\theta), \ \theta \in \Theta.$$

 \triangleright Example: Consider a machine which makes parts for cars. θ : fraction of defective. On a certain day, 10 pieces are examined.

$$X_i = \begin{cases} 1, & \text{if } i \text{th piece is defective,} \\ 0, & \text{otherwise,} \end{cases}$$

 $i=1,\cdots,10$. MME or MLE? (ans: \bar{X} .)

Methods: Bayes estimation

ightharpoonup Example -continued: Now assume that mechanic knows something about heta and gives a statistical model for heta

$$\pi(\theta) = 6\theta(1-\theta), \ 0 \le \theta \le 1.$$

Prior distribution of θ is Beta(2,2) distribution.

- ▶ In Bayesian frame, one of the goal of the inference about θ is to find a posterior distribution of θ .
- ▶ Then, how should we use the data $X_1 = x_1, \dots, X_n = x_n$ to achieve the goal? (Use Bayes' Theorem.)

Methods: Bayes estimation

The conditional distribution of θ conditioning on $X_1 = x_1, \dots, X_n = x_n$ is called **posterior distribution** of θ .

$$\pi(\boldsymbol{\theta}|x_1,\dots,x_n) = \frac{f(x_1,\dots,x_n,\boldsymbol{\theta})}{m(x_1,\dots,x_n)}$$

$$= \frac{\pi(\boldsymbol{\theta})f(x_1,\dots,x_n|\boldsymbol{\theta})}{\sum_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\pi(\boldsymbol{\theta})f(x_1,\dots,x_n|\boldsymbol{\theta})}$$

$$= \frac{\pi(\boldsymbol{\theta})f(x_1,\dots,x_n|\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\pi(\boldsymbol{\theta})f(x_1,\dots,x_n|\boldsymbol{\theta})d\boldsymbol{\theta}}$$

$$\propto \pi(\boldsymbol{\theta})f(x_1,\dots,x_n|\boldsymbol{\theta})$$

ullet Any Bayesian inference is based on this posterior distribution of ullet.

Methods: Bayes estimation

ightharpoonup Example-Continued: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(\theta)$, $\theta \sim \mathsf{Beta}(\alpha, \beta)$.

$$f(x_1, \dots, x_n | \theta) = \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}$$

$$\Gamma(\alpha + \beta)$$

$$\pi(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

 α and β are constants and known.

$$\pi(\theta|x_1,\cdots,x_n)\propto$$

- Bayes estimator with respect to squared error loss is:
- We see the Bayes estimator is a weighted average.

Methods: Bayes estimation

Definition

Let $f(x_1, \dots, x_n | \boldsymbol{\theta})$ denote the pdf/pmf for the data X_1, \dots, X_n . The prior distribution $\pi(\boldsymbol{\theta})$ belongs to family $\Pi = \{\pi(\boldsymbol{\theta})\}$. If the posterior $\pi(\boldsymbol{\theta}|x_1, \dots, x_n)$ is also in Π then Π (or the distribution of $\boldsymbol{\theta}$) is said to be a *conjugate family* [for the distribution $f(x_1, \dots, x_n | \boldsymbol{\theta})$.]

ightharpoonup Example: $X|\theta \sim N(\theta, \sigma^2)$, σ^2 is known. $\theta \sim N(\mu, \tau^2)$, μ and τ^2 are known. Find the posterior distribution of θ .

Methods: Bayes estimation

 Example: Find the posterior distribution for the following prior and likelihood.

- ▶ $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\theta), \ \theta \sim \mathsf{Gamma}(\alpha, \beta)$
- $ilde{X}_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p), \ p \sim \mathsf{Beta}(\alpha, \beta)$
- $X_1, \cdots, X_n \stackrel{iid}{\sim} f(x|\theta) = \theta e^{-\theta x}, \ \pi(\theta) = \beta e^{-\beta \theta}, \ \theta > 0.$

Mean Squared Error: MSE

- May have more than one choice of the estimator of the parameter.
 - Need to evaluate the estimators so that we can choose the best one.
 - Need a criterion to evaluate the estimator. (Unbiasedness, MSE, Consistency, BLUE, UMVUE)

Definition

An estimator $W(X_1, \dots, X_n)$ of a parametric function $\tau(\theta)$ is said to be an *unbiased* estimator (UE) if

$$E_{\theta}(W) = \tau(\theta)$$
, for all $\theta \in \Theta$.

Mean Squared Error: MSE

Definition

The function

$$\mathsf{BIAS}_{\theta}(W) = E_{\theta}(W) - \tau(\theta)$$

is called the *bias* of W as an estimator of $\tau(\theta)$.

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Find an unbiased estimator for μ and σ^2 . What about the MLE of σ^2 ?

Q) If W is an UE of θ , then is $\tau(W)$ UE of $\tau(\theta)$? Yes/No \rhd Example-Continued: S^2 is an UE of σ^2 . Is S unbiased for σ ? $E(S) - \sigma \approx \sigma/(4n)$.

Mean Squared Error: MSE

Definition

The Mean Squared Error (MSE) of an estimator W of a parameter θ is the function of θ defined by

$$MSE_{\theta}(W) = E_{\theta}(W - \theta)^2$$
.

 \triangleright Note: $\mathsf{MSE}_{\theta}(W) = \mathit{Var}_{\theta}(W) + [\mathsf{BIAS}_{\theta}(W)]^2$

$$\hat{\sigma}^2 = n^{-1}(n-1)S^2, \quad \tilde{\sigma}^2 = S^2$$
?

(We compare MSEs of the two estimators. See Example 7.3.4.)

Mean Squared Error: MSE

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$. With $\mathsf{Beta}(\alpha, \beta)$ prior, the Bayes estimator is

Posterior Mean:
$$\hat{p}^{Bayes} = \frac{n\bar{X} + \alpha}{\alpha + \beta + n}$$
.

The MLE of p is $\hat{p}^{MLE} = \bar{X}$. Compare the MSE of the two estimators.

See Example 7.3.5. for the details. Note the MSE of \hat{p}^{Bayes} depends on α, β .

Mean Squared Error: MSE

Mean Squared Error: MSE

Mean Squared Error: MSE

Definition

Let $f(\mathbf{x}|\theta) = f(x_1, \dots, x_n|\theta)$ be the pdf/pmf of X_1, \dots, X_n . An estimator W is said to be *Uniformly Minimum Variance Unbiased Estimator* (UMVUE) for $\tau(\theta)$ if

- 1. $E_{\theta}(W) = \tau(\theta)$
- 2. $Var_{\theta}(W) < \infty$
- 3. For any other UE of $\tau(\theta)$, say \tilde{W} ,

$$Var_{\theta}(W) \leq Var_{\theta}(\tilde{W})$$
 for all $\theta \in \Theta$

Note: UMVUE may not exist. If it does, it is essentially unique.

UMVUE: CRLB

Then, how to get the UMVUE?

- 1. Using Cramér-Rao Lower Bound (CRLB)
- 2. Using complete sufficient statistic and Rao-Blackwell [Theorem 7.3.17], we apply Lehmann-Scheffé Theorem [Theorem 7.5.1]. (Also, see Theorem 7.3.23 where 'best' means the minimum variance.)
- ▶ Idea of using CRLB; Show that for any UE, \tilde{W} , of $\tau(\theta)$,

$$Var_{\theta}(\tilde{W}) \geq c(\theta)$$
 for all $\theta \in \Theta$

and if we can find an UE, W, such that

$$Var_{\theta}(W) = c(\theta)$$
 for all $\theta \in \Theta$

then we can conclude W is the UMVUE of $\tau(\theta)$.

Theorem

Let $f(\mathbf{x}|\theta)$ be the pdf/pmf of X_1, \dots, X_n . Assume

- 1. Θ is an open space(subset) of R.
- 2. $\{\mathbf{x}: f(\mathbf{x}|\theta) > 0\}$ does not depend on θ .
- 3. $\partial f(\mathbf{x}|\theta)/\partial \theta$ exist on Θ
- 4. For any estimator \tilde{W} with $E_{\theta}\tilde{W}^2<\infty$, for all $\theta\in\Theta$, we have

$$\frac{\partial}{\partial \theta} E_{\theta} \tilde{W} = \begin{cases} \int \tilde{W} \left[\frac{\partial}{\partial \theta} f(\mathbf{x}|\theta) \right] d\mathbf{x} \\ \sum \tilde{W} \left[\frac{\partial}{\partial \theta} f(\mathbf{x}|\theta) \right] \end{cases}$$

5.

$$E_{\theta} \left[\left(\frac{\partial \ln f(\mathbf{x}|\theta)}{\partial \theta} \right)^{2} \right] < \infty$$

UMVUE: CRLB

Theorem (Continued)

Then for any UE of a differentiable parametric function $\tau(\theta)$,

$$Var_{\theta}(W) \geq \frac{\left[\tau(\theta)'\right]^2}{E_{\theta}\left[\left(\frac{\partial \ln f(\mathbf{x}|\theta)}{\partial \theta}\right)^2\right]}.$$

Note:

▶ The five conditions are called CR regularity conditions.

•

$$I_n(\theta) = E_{\theta} \left[\left(\frac{\partial \ln f(\mathbf{x}|\theta)}{\partial \theta} \right)^2 \right]$$

is called Fisher information of the sample.

When

$$\frac{\partial^2 \ln f(\mathbf{x}|\theta)}{\partial \theta^2}$$

exist, then by Lemma 7.3.11,

$$I_n(\theta) = -E_{\theta} \left[\left(\frac{\partial^2 \ln f(\mathbf{x}|\theta)}{\partial \theta^2} \right) \right]$$

- The five conditions are usually satisfied with exponential family.
- ▶ If $X_1, \dots, X_n \stackrel{\textit{iid}}{\sim} f(x|\theta)$ then

$$Var_{ heta}(W) \geq rac{\left[au(heta)'
ight]^2}{nE_{ heta}\left[\left(rac{\partial \ln f(x| heta)}{\partial heta}
ight)^2
ight]}.$$

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, σ^2 in known. Find the CRLB and the UMVUE of μ .

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. Find the CRLB and the UMVUE of λ .

 $X_1,\cdots,X_n\stackrel{iid}{\sim} Uniform(0,\theta).$ Then, by the factorization theorem, $X_{(n)}$ is a sufficient statistic. Example 6.2.23 shows $X_{(n)}$ is complete with $E(X_{(n)})=\frac{n}{n+1}\theta.$ Thus $\frac{n+1}{n}X_{(n)}$ is an UE for $\theta.$ Then, we apply Lehmann and Scheffé. (However, $\frac{n+1}{n}Var(X_{(n)})=\frac{\theta^2}{n(n+2)}<\frac{\theta^2}{n}$ =CRLB in Example 7.3.13. One condition of CRLB is violated.) Note: we need completeness of $X_{(n)}$, not $X_i's$.

Theorem (Corollary 7.3.15 (Attainment))

 $X_1, \dots, X_n \stackrel{iid}{\sim} f(x|\theta)$. Let W be an unbiased estimator of $\tau(\theta)$. Then $Var_{\theta}(W)$ attains the CRLB if and only if

$$a(\theta)[W-\tau(\theta)] = \frac{\partial}{\partial \theta} \ln[f(x_1, \cdots, x_n|\theta)]$$

for some function $a(\theta)$.

$$ightharpoonup$$
 Example 7.3.16 : $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. (Here, $\tau(\theta) = \sigma^2$.)

 \triangleright Example: $X_1, \dots, X_n \stackrel{iid}{\sim}$ Exponential(λ). (Here, $\tau(\theta) = \lambda$.)

UMVUE: Complete Sufficient Statistics

Theorem (Theorem 7.3.17 Rao-Blackwell)

Let W be any unbiased estimator of $\tau(\theta)$ and let T be a sufficient statistic for θ . Define $\phi(T) = E_{\theta}(W|T)$. Then

$$E_{\theta}[\phi(T)] = \tau(\theta)$$

and

$$Var_{\theta}[\phi(T)] \leq Var_{\theta}[W]$$

for all θ . That is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$ than W.

Proof: See the proof of Theorem 7.3.17. It is very simple.

Theorem (Theorem 7.3.19)

If W is a best estimator of $\tau(\theta)$, then W is unique.

UMVUE: Complete Sufficient Statistics

Theorem (Lehmann-Scheffe)

Let X_1, \dots, X_n have joint pmf/pdf $f(\mathbf{x}:\theta)$, $\theta \in \Theta$. Suppose T is a complete and sufficient statistic. If $\phi(T)$ is an unbiased estimator of $\tau(\theta)$ and it is a function of T only then $\phi(T)$ is the UMVUE of $\tau(\theta)$.

Note:

- 1. If we can find an unbiased estimator $\phi(T)$ of $\tau(\theta)$ which is a function of CSS T only then it is the UMVUE.
- 2. For any unbiased estimator of $\tau(\theta)$, W, E(W|T) is the UMVUE of $\tau(\theta)$.

UMVUE: Complete Sufficient Statistics

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \text{Binomial}(k, \theta)$. Find the UMVUE of θ and $k\theta(1-\theta)^{k-1}$.

UMVUE: Complete Sufficient Statistics

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Geometric}(p)$. Find the UMVUE of p.

UMVUE: Complete Sufficient Statistics

ightharpoonup Example: $X_1,\cdots,X_n\stackrel{iid}{\sim} \mathsf{Bernoulli}(\theta).$ Find the UMVUE of $\theta^2.$

Decision Theory: Loss function optimality

- Data: X
- ▶ Model(Distribution): $f(\mathbf{x}|\boldsymbol{\theta})$, $\boldsymbol{\theta} \in \Theta$
- ▶ Action space (set of possible decisions): \mathcal{A} Point estimation: $\mathcal{A} = \Theta$ Testing: \mathcal{A} ={Reject \mathcal{H}_0 , Accept \mathcal{H}_0 }
- ▶ Loss function: $L(\theta, a)$, a is an action.
- ▶ Decision rule: $\delta(\mathbf{x})$: Sample space $\rightarrow \mathcal{A}$
- Risk function: Expected loss

$$R(\boldsymbol{\theta}, \delta) = E[L(\boldsymbol{\theta}, \delta(\mathbf{X}))] = \int L(\boldsymbol{\theta}, \delta(\mathbf{x})) f(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}$$

▶ Goal: Find $\delta(\mathbf{x})$ that has small risk somehow.

Decision Theory: Loss function optimality

Definition

A real valued function $L(\theta, a)$ satisfying

- 1. $L(\theta, a) \ge 0$ for all θ , a
- 2. $L(\theta, a) = 0$ for $a = \theta$

is called a loss function of the action a.

Definition

Let $\delta(\mathbf{X})$ be an estimator of a parametric function $\tau(\boldsymbol{\theta})$. Then

$$R(\boldsymbol{\theta}, \delta) = E[L(\boldsymbol{\theta}, \delta(\mathbf{X}))]$$

is called the *risk function* of $\delta(\mathbf{X})$ in estimating $\tau(\boldsymbol{\theta})$.

Decision Theory: Loss function optimality

1. Squared error loss

$$L(\theta, \delta(\mathbf{X})) = (\delta(\mathbf{X}) - \theta)^2, \ R(\theta, \delta) = E[(\delta(\mathbf{X}) - \theta)^2]$$

2. Absolute error loss

$$L(\theta, \delta(\mathbf{X})) = |\delta(\mathbf{X}) - \theta|, \ R(\theta, \delta) = E[|\delta(\mathbf{X}) - \theta|]$$

3. Stein's loss

$$L(heta, \delta(\mathbf{X})) = rac{\delta(\mathbf{X})}{ heta} - 1 - \ln\left(rac{\delta(\mathbf{X})}{ heta}
ight)$$

Decision Theory: Loss function optimality

Definition

1. An estimator $\delta_1(\mathbf{X})$ is said to be at least as good as another estimator $\delta_2(\mathbf{X})$ if

$$R(\theta, \delta_1(\mathbf{X})) \leq R(\theta, \delta_2(\mathbf{X}))$$

for all $\theta \in \Theta$.

2. An estimator $\delta_1(\mathbf{X})$ is better than $\delta_2(\mathbf{X})$ if

$$R(\theta, \delta_1(\mathbf{X})) \leq R(\theta, \delta_2(\mathbf{X}))$$

for all $\theta \in \Theta$ and

$$R(\theta, \delta_1(\mathbf{X})) < R(\theta, \delta_2(\mathbf{X}))$$

for at least one $\theta \in \Theta$.

Decision Theory: Loss function optimality

Definition

An estimator $\delta(\mathbf{X})$ is said to be *admissible* if no other estimator is better than $\delta(\mathbf{X})$.

$$ho$$
 Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\theta, 1)$. $L(\theta, \delta(\mathbf{X})) = (\delta(\mathbf{X}) - \theta)^2$. $\delta_1(\mathbf{X}) = c$, $\delta_2(\mathbf{X}) = \bar{X}$.

Decision Theory: Loss function optimality

ho Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Bernoulli}(\theta)$. $L(\theta, \delta(\mathbf{X})) = (\delta(\mathbf{X}) - \theta)^2$. $\delta_1(\mathbf{X}) = \bar{X}$,

$$\delta_2(\mathbf{X}) = \frac{n\bar{X} + \sqrt{n/4}}{n + \sqrt{n}}.$$

 $\delta_2(\mathbf{X})$ is a Bayes estimator with a *Beta* prior. See Example 7.3.5. for the details.

Decision Theory: Loss function optimality

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Estimation of σ^2 using different loss function. We restrict our estimator of the form $\delta_b(\mathbf{X}) = bS^2$. The loss function considered are squared error loss, Stein's loss.

Figure 7.3.2. Risk functions for three variance estimators in Example 7.3.26

Decision Theory: Loss function optimality

In general, there does not exist an estimator $\delta(\mathbf{X})$ such that for any other estimator $\tilde{\delta}(\mathbf{X})$ we have

$$R(\theta, \delta(\mathbf{X})) \leq R(\theta, \tilde{\delta}_2(\mathbf{X}))$$

for all $\theta \in \Theta$.

- To define the best estimator w.r.t. the given loss function, we can proceed two ways.
 - Restrict attention to a smaller class of estimators such as unbiased estimators or linear estimators
 - 2. Define a criterion for comparing estimators such minimax or Bayes rule

Decision Theory: Loss function optimality

Definition

An estimator $\delta(\mathbf{X})$ is called a *minimax estimator* if

$$\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} R(\boldsymbol{\theta}, \delta(\mathbf{X})) \leq \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} R(\boldsymbol{\theta}, \tilde{\delta}(\mathbf{X}))$$

for all other estimator $\tilde{\delta}(\mathbf{X})$.

Definition

The *Bayes risk* of an estimator $\delta(\mathbf{X})$ w.r.t. prior distribution $\pi(\theta)$ is defined as

$$B(\pi, \delta(\mathbf{X})) = E_{\pi} [R(\theta, \delta(\mathbf{X}))] = \int R(\theta, \delta(\mathbf{X})) \pi(\theta) d\theta$$

Decision Theory: Loss function optimality

Definition

An estimator $\delta(\mathbf{X})^{\pi}$ is said to be a *Bayes estimator* w.r.t. prior distribution $\pi(\theta)$ if it minimizes Bayes risk over all estimators. That is

$$B(\pi, \delta(\mathbf{X})^{\pi}) = \inf_{\tilde{\delta}} B(\pi, \tilde{\delta}(\mathbf{X}))$$

Theorem

Consider a point estimation problem for a real-valued parameter θ . The Bayes estimator is $E(\theta|\mathbf{X})$ for squared error loss and median of $\pi(\theta|\mathbf{X})$ for absolute error loss.

Decision Theory: Loss function optimality

ightharpoonup Example 7.3.30: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$. $p \sim \mathsf{Uniform}(0,1)$. Find the Bayes estimator with squared error loss function.

Table 7.3.1. Three estimators for a binomial p

$n = 10$ prior $\pi(p) \sim \text{uniform}(0,1)$				
			Bayes	Bayes
			absolute	squared
	y	MLE	error	error
	0	.0000	.0611	.0833
	1	.1000	.1480	.1667
	2	.2000	.2358	.2500
	3	.3000	.3238	.3333
	4	.4000	.4119	.4167
	5	.5000	.5000	.5000
	6	.6000	.5881	.5833
	7	.7000	.6762	.6667
	8	.8000	.7642	.7500
	9	.9000	.8520	.8333
	10	1 0000	9389	9137