

#### **MARWADI UNIVERSITY**

# **Faculty of Technology**

Department of Information & Communication Technology

B.Tech SEM: III WINTER: 2019

Subject: - Signals & Systems (01CT0302)

Date:- 12/10/2019

Total Marks:-100 Time: - 03:00 hours

### **Instructions:**

- 1. All Questions are Compulsory.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

| Question: 1. ( | a)          | Answer the following:                                                                                                                                                                                    | [10]                                      |  |
|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
|                | (1)         | A system whose output depends upon future input is called                                                                                                                                                |                                           |  |
|                |             | (a) Static system                                                                                                                                                                                        | (b) Causal system                         |  |
|                |             | (c) Dynamic system                                                                                                                                                                                       | (d) Non causal system                     |  |
|                | (2)         | What is the rule $x(t)*h1(t)+x(t)*h2(t)$                                                                                                                                                                 |                                           |  |
|                |             | (a) Commutative rule                                                                                                                                                                                     | (b) Associative rule                      |  |
|                |             | (c) Distributive rule                                                                                                                                                                                    | (d) Transitive rule                       |  |
|                | (4)         | Graphical representation of signal in frequency domain is called                                                                                                                                         |                                           |  |
|                |             | (a) Frequency Spectrum                                                                                                                                                                                   | (b) Frequency                             |  |
|                | <i>(</i> =) | (c) Wave form                                                                                                                                                                                            | (d) None of the above                     |  |
|                | (5)         | Y(t) = x(t/3)  is                                                                                                                                                                                        | 4) = 444                                  |  |
|                |             | (a) Compressed signal                                                                                                                                                                                    | (b) Expanded signal                       |  |
|                | (6)         | (c) Time shifted signal                                                                                                                                                                                  | (d) Amplitude scaled signal by factor 1/3 |  |
|                | (6)         | An example of a discrete set of infor                                                                                                                                                                    |                                           |  |
|                |             | (a) The trajectory of the Sun                                                                                                                                                                            | (b) Data on a CD                          |  |
|                | (7)         | (c) Universe time scale δ(n)=                                                                                                                                                                            | (d) Movement of water through a pipe      |  |
|                | ( )         | (a) $u(n)+u(n-1)$                                                                                                                                                                                        | (b) u(n)u(n-1)                            |  |
|                |             | (c) u(n)-u(n-1)                                                                                                                                                                                          | (d) u(n-1)+u(n)                           |  |
|                | (8)         | Which of the following is an example of amplitude scaling?                                                                                                                                               |                                           |  |
|                | . ,         | (a) Electronic amplifier                                                                                                                                                                                 | (b) Electronic attenuator                 |  |
|                |             | (c) Both amplifier and attenuator                                                                                                                                                                        | (d) Adder                                 |  |
|                | (9)         | A signal is power signal if                                                                                                                                                                              |                                           |  |
|                | · /         | (a) E=0, P=0                                                                                                                                                                                             | (b) E= infinite, P=Finite                 |  |
|                |             | (c) E= finite, P=0                                                                                                                                                                                       | (d) E = finite, P=infinite                |  |
|                | (10)        | Which of the following method is not used for the inverse Z-transform.                                                                                                                                   |                                           |  |
|                | . ,         | (a) Partial Fraction Expansion                                                                                                                                                                           | (b) Power series Expansion                |  |
|                |             | (c) Residue method                                                                                                                                                                                       | (d) Slope over head method                |  |
| (b)            | Attem       | [10]                                                                                                                                                                                                     |                                           |  |
| . ,            | (1)         | Examine whether the following signals are periodic or not?                                                                                                                                               |                                           |  |
|                | (2)         | (a) $(b)$                                                                                                                                                                                                | 3 Sin200πt+ 4 Cos100t                     |  |
|                | (2)         | Find even and odd component of follows:                                                                                                                                                                  | lowing signal                             |  |
|                | (2)         | $x(t) = \sin 2t + \sin 2t \cos 2t + \cos 2t$<br>Find convolution of $y_1(t) = \begin{bmatrix} 1 & 1 & 2 & 1 \end{bmatrix}$ and $y_2(t) = \begin{bmatrix} 1 & 4 & 2 & 3 \end{bmatrix}$ using tabulation m |                                           |  |
|                | (3)         | Find convolution of $x1(n) = [1 \ 1 \ 2 \ 1]$ and $x2(n) = [1 \ 4 \ 2 \ 3]$ using tabulation method. State Commutative and Associative property for CT LTI system.                                       |                                           |  |
|                | (4)<br>(5)  | Describe benefits of Z- transform.                                                                                                                                                                       | property for C1 L11 system.               |  |
|                | (5)         | Describe belieffts of Z- transform.                                                                                                                                                                      |                                           |  |

MARWADI UNIVERSITY 1

#### Question: 2.

(a) Describe classification of systems in detail with example.

[08]

(b) Sketch the following signals:



- (i) x(t-3) & x(t/2) [02]
- (i) -2r(t-2) [02]
- (iii) Check whether the signals are energy signal or power signal (i)  $(1/2)^n$  u(n) (ii)  $x(t) = \{t-2, -2 \le t \le 0\}$

i)  $(1/2)^n u(n)$  (ii)  $x(t) = \{ t-2, -2 \le t \le 0 \}$  $\{ 2-t, 0 \le t \le 2 \}$ 0, otherwise

## <u>OR</u>

(b) For each of the following systems

[80]

- (i) y(n) = x(n) + nx(n-2)
- (ii) y(t) = tx(t)

Determine which of properties "Static/dynamic", "time invariant/Variant", "linear/Nonlinear", "casual/Non causal" holds and justify your answer.

#### Question: 3.

- (a) State properties of LTI System. Prove a condition for a discrete time LTI system to be Causal and Stable. [08]
- (b) Proove that  $x(n)*\delta(\mathbf{n}-\mathbf{n}_{\theta}) = x(n-\mathbf{n}_{0})$  [04]  $x(n). \delta(\mathbf{n}-\mathbf{n}_{\theta}) = x(n_{0})$
- (c) Find a linear convolution for  $x(t) = e^{-at} u(t)$ , h(t) = u(t) [04]

# <u>OR</u>

- (a) State and prove sampling theorem also draw frequency spectrum for  $fs \ge 2$  fm, [08] fs = 2fm and  $fs \le 2$  fm.
- (b) Compute convolution for the following  $x(n) = \{1, -2, 1\}$ , and  $h(n) = \{1, 1\}$ . [04]
- (c) Find linear convolution using graphical method for  $x(n) = \{1,2\}, h(n) = \{1,1,2\}$  [04]

#### Question: 4.

- (a) Define ROC of Z- Transform. State and explain Properties of ROC. [08]
- (b) Find Z- Transform for the following also comment on ROC. [04]  $x(n) = 2^n u(n) + 3^n u(-n-1)$
- (c) Find Z-transform of  $x(n) = a^{|n|}$ ,  $0 \le a \le 1$ . Also comment on ROC. [04]

#### <u>OR</u>

- (a) State and Prove following properties of Z- Transform. [08] (i) Linearity (ii) Time Shifting (iii) Convolution (iv) Differentiation.
- (b) Find the z transform of signal  $x(n) = \cos \omega_0 n u(n)$  [04]
- (c) Define Z-transform. State the relationship in between Z-transform and DTFT. [04]

MARWADI UNIVERSITY 2 |

| Question: 5 |                                                                                                                                                                                                                                                      |      |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| (a)         | Using the partial fraction expansion technique find the inverse z transform of $1-(1/2)Z^{-1}$                                                                                                                                                       | [08] |  |
|             | $X(Z) = \frac{1-(1/2)Z^{-1}}{1+(3/4)Z^{-1} + (1/8)Z^{-2}}$ Find all possible x(n)                                                                                                                                                                    |      |  |
| (b)         | Obtain Trigonometric Fourier series of the periodic rectangular waveform.<br>$f(t) = A, -T/4 \le t T/4$<br>= 0, otherwise                                                                                                                            |      |  |
| (c)         | State and Prove Frequency Shifting Property of Fourier Transforms.                                                                                                                                                                                   | [04] |  |
|             | <u>OR</u>                                                                                                                                                                                                                                            |      |  |
| (a)         | Find homogeneous solution of given differential equation $y(n) - 3y(n-1) - 4y(n-2) = x(n)$                                                                                                                                                           | [80] |  |
| (b)         | Find Fourier transform of a rectangular pulse 2 seconds long with a magnitude of 10 volts.                                                                                                                                                           | [04] |  |
| (c)         | State Dirichlet condition for Fourier Series representation.                                                                                                                                                                                         | [04] |  |
| Question: 6 | j.                                                                                                                                                                                                                                                   |      |  |
| (a)         | Obtain Fourier transform of signal x (t)= $e^{-at}$ u(t) + $e^{at}$ u(-t) for all t.                                                                                                                                                                 | [04] |  |
| (b)         | A system is described by linear difference equation $y(n) = 0.2 \text{ x}(n) - 0.5 \text{ x}(n-2) + 0.4 \text{ x}(n-3)$ given that the digital input sequence $\{-1,1,0,-1\}$ is applied to the system. Determine the corresponding output sequence. | [04] |  |
| (c)         | Define Laplace transform. Explain mapping of S-Plane and Z- Plane.                                                                                                                                                                                   | [04] |  |
|             | <u>OR</u>                                                                                                                                                                                                                                            |      |  |
| (a)         | Compute convolution for the CT-LTI system $x(t)=1$ , $-1 \le t \le 1$<br>$h(t)=2$ $0 \le t \le 2$                                                                                                                                                    | [80] |  |
| (b)         | State application of signals and systems explain any one in detail.                                                                                                                                                                                  | [04] |  |
| (c)         | Define: The continuous time Fourier transforms. State and prove convolution properties of continuous time Fourier Transform                                                                                                                          | [04] |  |

# ---Best of Luck---

MARWADI UNIVERSITY 3 |