Machine Learning in High Dimension IA317 Ensemble Methods

Thomas Bonald

2023 - 2024

Back to nearest neighbors

A set of **methods** for

- Classification
- Regression
- Clustering
- Anomaly detection

Advantages

- Simple
- Explainable

Issues

- ► Choice of distance
- Complexity

Nearest neighbor search

Exact search:

- \triangleright Exhaustive search O(n)
- ► Tree search $O(\log n) \rightarrow O(n)$

Approximate search:

ightharpoonup Locally sensitive hashing O(1)

What if data have a **simple** structure?

Outline

- Decision trees
- Bagging methods
- Boosting methods
- \rightarrow Random forests, ExtraTrees
- → Gradient boosting, XGBoost

Decision tree

Consider data samples in \mathbb{R}^d

Definition

A decision tree is a binary tree providing a **partition** of \mathbb{R}^d . Each node of the tree corresponds to a **split** along a **single** feature.

Note: Same as KD-trees, but supervised!

Classification tree

Objective

Build the **most compact** decision tree whose leaves are **pure**.

Problem: A NP-hard problem! **Solution:** Greedy algorithm

Gini impurity

Let p_1, \ldots, p_K be a probability distribution over $\{1, \ldots, K\}$.

Definition

$$G = \sum_{k=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$

Interpretation: Probability of **error** by a random prediction drawn from p_1, \ldots, p_K

- ightharpoonup G = 0 for a **pure** distribution (no randomness)
- $G = 1 \frac{1}{K}$ for a **uniform** distribution

Application: Impurity of a multi-set, e.g., $\{1, 1, 2, 3\}$

Entropy

Let p_1, \ldots, p_K be a probability distribution over $\{1, \ldots, K\}$.

Definition

$$H = -\sum_{k=1}^{K} p_k \log p_k$$

Interpretation: Average number of bits per symbol to encode a sequence of i.i.d. symbols $Y_1, Y_2, ...$

- ightharpoonup H = 0 for a **pure** distribution (no randomness)
- $ightharpoonup H = \log K$ for a **uniform** distribution

Application: Entropy of a multi-set, e.g., $\{1, 1, 2, 3\}$

Gini impurity vs. Entropy

Entropy
3
2
1
0
0.0
0.5
p

Geometric distribution

Tree construction

Training data = n samples with labels, d features

$$X \in \mathbb{R}^{n \times d}, \quad y \in \{1, \dots, K\}^n$$

Tree construction

Training data = n samples with labels, d features

$$X \in \mathbb{R}^{n \times d}, \quad y \in \{1, \dots, K\}^n$$

Algorithm

$$S \leftarrow \{1, ..., n\}$$

 $G \leftarrow$ randomness of $\{y_i, i \in S\}$ (Gini or entropy)

While G>0, find the **split** (feature j, threshold t) maximizing

$$\boxed{\Delta G = G - (\alpha_L G_L + \alpha_R G_R)}$$

with

▶
$$G_L \leftarrow \text{rand. of } \{y_i, i \in S_L\}, G_R \leftarrow \text{rand. of } \{y_i, i \in S_R\}$$

Interpretation

Each split maximizes the **information gain**:

$$\Delta G = G - (\alpha_L G_L + \alpha_R G_R)$$

$$G$$

$$G_R$$

How to interpret $\alpha_L G_L + \alpha_R G_R$?

- ▶ **Gini impurity**Probability of error by a random prediction **given** the split $(S_L \text{ or } S_R)$
- **Entropy** Conditional entropy of the labels given the decision $(S_L \text{ or } S_R)$

Exercise

$$x \in \mathbb{R}$$
, $y \in \{1, 2, 3\}$

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
y	3	1	1	1	2	2	3	3	2

What is the **gain** of the split $x \le 0.4$?

Computational cost

The samples must be **sorted** for each feature $\rightarrow O(dn \log n)$

Example (rectangle)

$$x \in \mathbb{R}^2$$
, $y \in \{0, 1\}$

Training data

Example (rectangle)

Example (noisy rectangle)

$$x\in\mathbb{R}^2,\,y\in\{0,1\}$$
Training data Model (depth 10)

Pruning

Idea

Limit the depth to avoid over-fitting

Problem: Leaves can now contain several labels...

Solution : Return the **most frequent** label of the leaf!

Example (noisy rectangle)

Feature importance

Idea: A feature is important if it reduces **randomness**.

Definition

The **importance** of feature j is:

$$F_j = \sum_{s \text{ using } j} \alpha_s \Delta G_s$$

where

- s is a split (internal node of the tree)
- lacktriangledown $lpha_s$ is the **proportion of samples** concerned by the split s
- $ightharpoonup \Delta G_s$ is the **information gain** brought by the split s

Note: In the absence of pruning, $G = \sum_{j=1}^{d} F_j$

Exercise

$$x \in \mathbb{R}^2$$
, $y \in \{0, 1\}$

Training data

What is the most important feature?

Regression tree

Training data = n samples with **values**, d features

$$X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^n$$

Objective

Build a decision tree whose leaves have similar values.

Tree construction

Training data = n samples with values, d features

$$X \in \mathbb{R}^{n \times d}, \quad y \in \mathbb{R}^n$$

Tree construction

Training data = n samples with values, d features

$$X \in \mathbb{R}^{n \times d}, \quad y \in \mathbb{R}^n$$

Algorithm

$$S \leftarrow \{1, \dots, n\}$$

 $V \leftarrow$ variance of $\{y_i, i \in S\}$

While V>0, find the ${f split}$ (feature j, threshold t) maximizing

$$\Delta V = V - (\alpha_L V_L + \alpha_R V_R)$$

with

▶
$$V_L \leftarrow \text{rand. of } \{y_i, i \in S_L\}, V_R \leftarrow \text{rand. of } \{y_i, i \in S_R\}$$

Feature importance

Idea: A feature is important if it reduces **variance**.

Definition

The **importance** of feature j is:

$$F_j = \sum_{s \text{ using } j} \alpha_s \Delta V_s$$

where

- s is a split (internal node of the tree)
- $lacktriangleright lpha_s$ is the proportion of samples concerned by this split
- $ightharpoonup \Delta V_s$ the gain in variance

Note: In the absence of pruning, $V = \sum_{j=1}^{d} F_j$

Outline

- Decision trees
- Bagging methods
- Boosting methods
- \rightarrow Random forests, ExtraTrees
- → Gradient boosting, XGBoost

Bagging¹

Idea: Generate a strong learner by **aggregating** the decisions of several weak learners (typically, decision trees)

- Classification through majority vote
- Regression through averaging

Require **diversity** in learners → sampling

¹Bootstrap Aggregating

Random Forests

Training data = n samples, d features

Principle

Use m decision trees, each for n data samples selected uniformly at random with replacement \rightarrow **bootstrap**

Random Forests

Training data = n samples, d features

Principle

Use m decision trees, each for n data samples selected uniformly at random with replacement \rightarrow **bootstrap**

Notes:

- ► Each bootstrap contains a proportion $1 (1 \frac{1}{n})^n \approx 1 e^{-1} \approx \frac{2}{3}$ of samples
- Deep trees (no pruning)
- For **each** tree and **each** split, use k features selected uniformly at random (typically, $k = \sqrt{d}$)

Example (disk)

Real data: Digits

1797 pictures of digits 8×8 pixels 16 grey levels

Algorithm	Accuracy
Decision tree	86%
Forest (1 tree)	76%
Forest (10 trees)	94%
Forest (100 trees)	97%

ExtraTrees¹

Idea: Add randomness in the splits.

Principle

Same as Random Forests, but with a **random threshold** for each feature. The best split (for these random thresholds) is selected.

¹Extremely Randomized Trees

Real data: Digits

 $\begin{array}{c} 1797 \text{ pictures of digits} \\ 8\times8 \text{ pixels} \\ 16 \text{ grey levels} \end{array}$

Algorithm	Accuracy		
Decision tree	86%		
Forest (1 tree)	76%		
Forest (10 trees)	94%		
Forest (100 trees)	97%		
ExtraTrees (1 tree)	81%		
ExtraTrees (10 trees)	97%		
ExtraTrees (100 trees)	99%		

Outline

- Decision trees
- Bagging methods
- → Random forests, ExtraTrees
- Boosting methods → Gradient boosting, XGBoost

Boosting

Idea: Improve the estimator sequentially by correcting the errors

Let $y_1, \ldots, y_n \in \mathbb{R}$ the values to predict Let $f: x \mapsto y$ be the estimator

Principle

Init
$$f \leftarrow \frac{1}{n} \sum_{i=1}^{n} y_i$$

Repeat

- ▶ $h \leftarrow \arg \min_{h} \mathcal{L}(f + \alpha h)$
- $ightharpoonup f \leftarrow f + \alpha h$

Notes:

- ▶ A regression problem, also applicable to binary classification
- \triangleright \mathcal{L} is the **loss function**
- $ightharpoonup \alpha \in (0,1]$ is the **learning rate**

Gradient Boosting

Let $y_1, \ldots, y_n \in \mathbb{R}$ the values to predict

Let $f: x \mapsto y$ be the estimator

Algorithm

Init $f \leftarrow \frac{1}{n} \sum_{i=1}^{n} y_i$

Repeat

- ▶ $h \leftarrow$ regression tree for values $y_1 f(x_1), \dots, y_n f(x_n)$
- $ightharpoonup f \leftarrow f + \alpha h$

Notes:

- ► The regression tree has **small depth**
- **Equivalent to gradient descent** for the loss function:

$$\mathcal{L}(f) = \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

XGBoost¹

Key idea: Add regularization

Let $y_1, \ldots, y_n \in \mathbb{R}$ the values to predict

Let $f: x \mapsto y$ be the estimator

Principle

Init $f \leftarrow \frac{1}{n} \sum_{i=1}^{n} y_i$

Repeat

- ▶ $h \leftarrow$ regression tree minimizing $\mathcal{L}(f + \alpha h) + \Omega(h)$
- $ightharpoonup f \leftarrow f + \alpha h$

Regularization for regression tree h, with partition A_1, \ldots, A_L :

$$\Omega(h) = \sum_{l=1}^{L} (\gamma + \frac{\lambda}{2} v_l^2)$$
 for $h = \sum_{l=1}^{L} v_l 1_{A_l}$

¹eXtreme Gradient Boosting

Regression tree in XGBoost

Consider the loss function:

$$\mathcal{L}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{y}_i, y_i)$$
 $\hat{y}_1 = f(x_1), \dots, \hat{y}_n = f(x_n)$

For the partition A_1, \ldots, A_L , the criterion to minimize is:

$$J = \sum_{I=1}^{L} \left(\gamma - \frac{1}{2} \frac{G_I^2}{\lambda + H_I} \right)$$

with

$$G_I = \sum_{i \in A_I} \frac{\partial \ell}{\partial \hat{y}} (\hat{y}_i, y_i) \quad H_I = \sum_{i \in A_I} \frac{\partial^2 \ell}{\partial \hat{y}^2} (\hat{y}_i, y_i)$$

The regression tree is built recursively, with a split whenever the criterion *J* decreases.

Loss functions

The regression tree depends on the loss function:

Regression

$$\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$$

$$\frac{\partial \ell}{\partial \hat{y}}(\hat{y}, y) = \hat{y} - y, \quad \frac{\partial^2 \ell}{\partial \hat{y}^2} = 1$$

Binary classification

$$\ell(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y}) \quad \text{with} \quad \hat{y} = \frac{e^2}{1 + e^2}$$

$$\frac{\partial \ell}{\partial z}(\hat{y}, y) = -|\hat{y} - y|, \quad \frac{\partial^2 \ell}{\partial z^2} = \hat{y}(1 - \hat{y})$$

Real data: Digits

1797 pictures of digits 8×8 pixels 16 grey levels

Algorithm	Accuracy		
Decision tree	86%		
Forest (1 tree)	76%		
Forest (10 trees)	94%		
Forest (100 trees)	97%		
Gradient boosting	95%		
XGBoost	96%		

Summary

Ensemble methods

- ▶ Bagging → Random Forests
 Parallel training
 Aggregation
- ▶ Boosting → Gradient Boosting, XGBoost Sequential training Correction

