Paper Name	Existing Work	Future Work	Dataset and Tagset
Fine-grained	1.	1.	It used the Nepali
part-of-speech	Experiment with 3 DL models (<i>BiLSTM</i> , <i>BiGRU</i> , <i>and</i>	While our models achieved great results	National Corpus (NNC)
tagging in	BiLSTM-CRF) for fine-grain POS tagging for the	on fine-grained tags, there are a few	for all of its
Nepali text	Nepali language.	tags that the models fail to learn	experiments. NNC is the
(2021)		accurately. So, future work will be to	largest Nepali POS-
	(Result showed that DL models could capture fine-	study these errors and employ	tagged corpus with over
	grained morphological features like gender, person,	techniques to mitigate	17 million manually and
	number, and honorifics that are encoded within words		semi-manually words
	in highly inflectional languages like Nepali with a	2.	tagged with 112
	large enough dataset.	The models performed better for the	NELRALEC tags.
	BiLSTM-CRF with the Bare embedding performed the	randomly initialized and trained Bare	_
	best and achieved a new state-of-the-art F1 score of	embedding than for the pre-trained	
	98.51% for fine-grained Nepali POS tagging)	mBERT embedding. While mBERT	
		embedding has been proven to be great	
		for cross-lingual generalization, our	
	2.	results show for a more downstream	
	Experiment with randomly initialized Bare	task like POS tagging for Nepali,	
	embeddings and compared its results to the new	training a randomly initialized Bare	
	mBERT embeddings for Nepali POS tagging.	embedding gives better results. This	
		indeed gives a strong motivation to	
	(Result showed that training a much smaller randomly	further explore the mBERT vocabulary	
	initialized embedding can be more useful for fine and	and embedding specific to Nepali	
	coarse-grained tagging in Nepali)	language.	
	Course-gramea tagging in Nepair)		
Nepali POS	Implementing and comparing different deep learning	1.	Data were collected
Tagging using	based POS tagger for Nepali.	The vocabulary size and tag set can be	from Madan Puraskar
Deep Learning		increased to increase the efficiency.	Pustakalaya. It consists
Approaches	(The accuracy obtained for simple RNN, LSTM, GRU		of Nepali English
(2019)	and Bidirectional LSTM was 96.84%, 96.48%,	2.	parallel corpus
	96.86% and 97.27% respectively. Therefore, Bi-	Similarly, reinforcement learning can	annotated with 43 POS
	directional LSTM outperformed all other three	be added for efficient training.	tag developed and
	variants of RNN)		contains nearly 88000
			words. The design of
			this Nepali POS Tag-set
			was inspired by the
			PENN Treebank POS
			Tag-set.

A Deep Learning Approach for Part-of-Speech Tagging in Nepali Language	A deep learning based POS tagger for Nepali text is proposed which is built using RNN, LSTM, GRU and their bidirectional variants. (Bi-directional versions of RNN, LSTM and GRU achieved the maximum performance scores with binary cross entropy as the loss function.		The dataset used for this research is POS Tagged Nepali Corpus, 100720 English words and 4325 English sentences were translated from PENN Treebank corpus, which
(2018)	The accuracy of the system also increases with the increase in the size of word embedding vector.)		is available through Linguistic Data Consortium (LDC). The dataset consists of 43 tags.
Deep Learning based Tamil Parts of Speech (POS) Tagger (2021)	Train and evaluate using various deep learning approaches such as RNN, LSTM, Bi-LSTM and GRU. All the models were trained with 4, 16, 32 and 64 hidden states, and the number of epochs taken was 10. The learning rate was fixed as 0.01. The loss function used was cross-entropy, the optimizer was Adam, the activation function was softmax and batch size was chosen as 128. (Bi-LSTM with 64 hidden states yielded the best accuracy (94%) and F1-Score at the word level out of all the models.)	Corpus size could be increased, and tags can be further morphologically analyzed 2. Attention-based transformer architecture could be implemented in future	tag set of 32 tags and 225 000 tagged Tamil words was utilized for training
Deep Neural Network Architecture for Part-of-Speech Tagging for Turkish Language (2018)	In this study, we trained and evaluated the Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM). (The experiment indicates that LSTM outperforms RNN with 88.7% F1-score. In addition, while LSTM has 89.0% accuracy score, RNN has 79.7%.)	In the future, other NNLM models such as CNN, GRU, etc. can be taken into the evaluation for POS tagging for Turkish.	The IMST Universal Dependencies (IMST- UD) Treebank, there are 48000 words and 14 POS tags.
Improving part- of-speech tagging in Amharic language using deep neural network (2023)	Performed a comparison between CRF and DNN (LSTM, BiLSTM and CNN- BiLSTM-CRF) models. (best performance obtained by an end-to-end deep neural network model, CNN + BiLSTM + CRF, is 97.23% accuracy)	Use a transfer learning approach to reduce errors in automated tagging.	Dataset contained 321 K tokens and manually tagged with 31 POS tags.

Parts-of-Speech	Experimented with different deep learning models	As future work, the authors would like	dataset with a total of
tagging for	such as LSTM, GRU and Bi-LSTM. The experiment	to explore the possibility of creating	287588 tagged words
Malayalam	were conducted with 4, 16, 32 and 64 hidden layers,	more tagged datasets for further	and the tag set of 36 tags
using deep	started with the number of iterations (epochs) as 30	research in Malayalam computing	from the Bureau of
learning	and later increased the same to 50 and the last set of	areas.	Indian Standard (BIS)
techniques	experiments used 100 epochs. For the models		
(2020)	specified here, They have used the hidden layer size		
	as 32 and the activation function is set as 'tanh'. A		
	dropout parameter is also used after many trial and		
	error mechanisms to improve the training and the		
	network used a learning parameter of 0.01.		
	(It was claimed that the Bi-LSTM model with 64		
	hidden layers achieved an f-measure of 98%.)		

Section2: Coding wise implementation

Hyper Parameters

Hyper-Parameters	Multiclass Classification
Input layer shape(in_feature)	Same as number of features (eg, 4 for age, sex, height, weight)
Hidden layers	Problem specific, minimum = 1, maximum = unlimited
Neurons per hidden layer	Problem specific, generally 10 to 512
Output layer shape (out_features)	1 per class (eg 3 for food, person, dog)
Hidden layer activation	Usually ReLU (rectified linear unit) but can be many others
Output activation	Softmax (torch.softmax in Pytorch)
Loss function	Cross entropy (torch.nn.CrossEntropyLoss in Pytorch)
Optimizer	SGD (stochastic gradient descent) or Adam etc.
Epoch (loop)	50
Batch size (number of neurons)	128
Dropout	0.3