

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2000-137235

(P 2 0 0 0 - 1 3 7 2 3 5 A)

(43)公開日 平成12年5月16日(2000.5.16)

(51)Int.CI.

C02F 1/1339

識別記号

505

F I

C02F 1/1339

505

テマコード (参考)

2H089

審査請求 未請求 請求項の数6 O L (全8頁)

(21)出願番号 特願平10-311784

(22)出願日 平成10年11月2日(1998.11.2)

(71)出願人 000005821

松下電器産業株式会社
大阪府門真市大字門真1006番地

(72)発明者 江上 典彦

大阪府門真市大字門真1006番地 松下電器
産業株式会社内

(72)発明者 安平 宣夫

大阪府門真市大字門真1006番地 松下電器
産業株式会社内

(74)代理人 100062144

弁理士 青山 荘 (外2名)

最終頁に続く

(54)【発明の名称】液晶基板の貼り合わせ方法

(57)【要約】

【課題】 液晶表示装置の2枚の基板の貼り合わせにおいて、2枚の基板のギャップ精度を確保して、歩留まり向上、品質向上を図る。

【解決手段】 対向する2枚の基板貼り合わせにおいて、一方の基板(23)を定盤(24)の上に搭載し固定ピン(25)で固定し、他方の基板(26)を溝穴径3mm以下又は溝幅3mm以下の吸着機構(27)による真空吸着で固定し、一方の基板及び他方の基板を相対的に移動させて位置合わせを行った後、加圧し、一方の基板と他方の基板を接着剤(21)を介して貼り合わせる。

【特許請求の範囲】

【請求項1】 真空チャンバー内で、基板表面に接着剤が塗布され液晶材料が挿入された下基板を接着剤側及び液晶材料側が上側に向くように固定し、上記下基板に対向するように所定の間隔で配置された上基板の外側面全面を、溝穴径3mm以下又は溝幅3mm以下の吸着部による真空吸着で固定し、上記下基板と上記上基板の両方の基板を相対的に基板面方向に移動させて位置合わせを行い、少なくともどちらか一方の基板を基板面垂直方向に移動させて加圧し、上記上基板と上記下基板を貼り合わせることを特徴とする液晶基板の貼り合わせ方法。

【請求項2】 上記下基板の下側の外側面全面を、溝穴径が0.5mmを超えて3mm以下又は溝幅が0.5mmを超えて3mm以下の吸着部による真空吸着で固定する請求項1に記載の液晶基板の貼り合わせ方法。

【請求項3】 真空チャンバー内で、基板表面に接着剤が塗布され液晶材料が挿入された下基板の下側に上記接着剤及び上記液晶材料の領域内にスペーサを配置して、接着剤側及び液晶材料側が上側に向くように加圧ユニットに固定し、上記下基板に対向するように所定の間隔で配置された上基板の外側面全面を吸着部による真空吸着で固定し、上記下基板と上記上基板の両方の基板を相対的に基板面方向に移動させて位置合わせを行い、少なくともどちらか一方の基板を基板面垂直方向に移動させて加圧し、上記上基板と上記下基板を貼り合わせることを特徴とする液晶基板の貼り合わせ方法。

【請求項4】 上記上基板の上側に上記下基板の上記接着剤及び上記液晶材料の領域内に相当する領域にもスペーサを配置して加圧する請求項3に記載の液晶基板の貼り合わせ方法。

【請求項5】 上記吸着部により上記上基板を固定する請求項3に記載の液晶基板の貼り合わせ方法。

【請求項6】 上記吸着部が複数の吸着穴より構成され、上記基板の吸着盤に接触する面の全面積に対しての吸着穴開口率が50%以上である請求項1～5のいずれかに記載の液晶基板の貼り合わせ方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、パーソナルコンピュータやTV受像機等の画像表示パネルとして用いられる液晶表示装置などの液晶基板の貼り合わせ方法に関する。

【0002】

【従来の技術】 従来の液晶表示装置の基板の貼り合わせ方法について図5～図7を用いて説明する。液晶表示装置の構造は、図5に示すように、対向して配置された透光性材料からなる下基板1と上基板2との間に一定のギャップを保ちながら、その間に紫外線硬化型の接着剤3が配置される。この図5では、予め下基板1に四角枠状の接着剤3が塗布されたのち、上基板2をかぶせて接着

するようにしている。また、図6(a)～(c)に示すように液晶材料4を接着剤3内に配置する一つの方法として、下基板1の表面に、接着剤3を厚み30μmで四角枠状に塗布した後、接着剤3の四角枠の内部に液晶材料4を滴下し、その後、上基板2を重ね合わせて上基板2と下基板1の間隔を5μmまで加圧し、紫外線5により接着剤3を硬化させてパネルを完成させる液晶滴下工法がある。

【0003】 以下、2枚の基板の貼り合わせ方法に関して図7(a)～(d)を用いて詳細に説明する。まず、図7(a)に示すように、表面に厚み30μmで四角枠状に塗布された紫外線硬化型の接着剤3及び該接着剤3の四角枠の内部に液晶4が配置された下基板1を、水平方向に移動可能なテーブル6上に搭載し、その周辺を固定ピン7で固定する。次に、図7(b)に示すように、真空チャンバーC内で、上記下基板1に対向するように所定の間隔で配置された他方の上基板2の外側面全体を吸着機構8による真空吸着で固定する。次に、図7(b)に示すように、真空チャンバーC内で、下基板1を搭載したテーブル6を水平移動して、下基板1と上基板2との位置合わせをする。次に、図7(c)に示すように、真空チャンバーC内で、上基板2を垂直方向に5μmまで加圧し、上基板2を接着剤3を介して下基板1に貼り合わせる。その後、図7(d)に示すように、紫外線5を照射して接着剤3を硬化させて、下基板1と上基板2の貼り合わせを完了する。

【0004】 【発明が解決しようとする課題】 しかしながら、このような従来の方法では、上基板2の外側面全体を吸着する吸着機構8の各吸着穴の穴径が5mm以上又は吸着溝部の溝幅が5mm以上であるため、大気中及び真空中での基板変形が大きくなり、特に0.7mmの板厚の上基板2の場合、吸着穴又は吸着溝部において基板が部分的に大きく膨らんでしまい、下基板1との間でのギャップ精度が0.1μm以上になってしまい、ギャップムラによる画像ムラ不良という問題を有していた。このような基板変形を回避すべく、吸着機構8の各吸着穴の穴径を0.5mm以下又は吸着溝部の溝幅を0.5mm以下にすると、吸着機構8の各吸着穴又は吸着溝部での流路抵抗が大きくなり、所定の吸着能力が得られないといった問題がある。また、接着剤3及び液晶4が配置されている領域外の領域も加圧してしまうため、そのような上基板2及び下基板1の接着剤3の領域外の領域が上基板と下基板との間の内側に変形てしまい、その反力を接着剤3及び液晶4の領域内が部分的に上基板と下基板との間にに対して外側に変形し大きく膨らんでしまい、ギャップ精度が0.1μm以上になってしまい、ギャップムラによる画像ムラ不良という問題を有していた。従って、本発明の目的は、上記問題を解決することにあって、接着剤及び液晶材料の領域内のギャップムラをなくし、ギャップ精

度を $0.1\mu m$ 以内に抑制し、画像ムラ不良をなくすことができて、歩留まり向上及び品質向上を図ることができる液晶表示装置の液晶基板の貼り合わせ方法を提供することにある。

【0005】

【課題を解決するための手段】上記目的を達成するためには、本発明は以下のように構成する。本発明の第1態様によれば、真空チャンバー内で、基板表面に接着剤が塗布され液晶材料が挿入された下基板を接着剤側及び液晶材料側が上側に向くように固定し、上記下基板に対向するように所定の間隔で配置された上基板の外側面全面を、溝穴径 $3mm$ 以下又は溝幅 $3mm$ 以下の吸着部による真空吸着で固定し、上記下基板と上記上基板の両方の基板を相対的に基板面方向に移動させて位置合わせを行い、少なくともどちらか一方の基板を基板面垂直方向に移動させて加圧し、上記上基板と上記下基板を貼り合わせることを特徴とする液晶基板の貼り合わせ方法を提供する。上記構成によれば、対向する位置に配置された2枚の基板のギャップ精度を $0.1\mu m$ 以下に抑制できる。

【0006】本発明の第2態様によれば、上記下基板の下側の外側面全面を、溝穴径が $0.5mm$ を超えて $3mm$ 以下又は溝幅が $0.5mm$ を超えて $3mm$ 以下の吸着部による真空吸着で固定する第1態様に記載の液晶基板の貼り合わせ方法を提供する。上記構成によれば、対向する位置に配置された2枚の基板のギャップ精度を $0.1\mu m$ 以下に抑制できる。

【0007】本発明の第3態様によれば、真空チャンバー内で、基板表面に接着剤が塗布され液晶材料が挿入された下基板の下側に上記接着剤及び上記液晶材料の領域内にスペーサを配置して、接着剤側及び液晶材料側が上側に向くように加圧ユニットに固定し、上記下基板に対向するように所定の間隔で配置された上基板の外側面全面を吸着部による真空吸着で固定し、上記下基板と上記上基板の両方の基板を相対的に基板面方向に移動させて位置合わせを行い、少なくともどちらか一方の基板を基板面垂直方向に移動させて加圧し、上記上基板と上記下基板を貼り合わせることを特徴とする液晶基板の貼り合わせ方法を提供する。上記構成によれば、対向する位置に配置された2枚の基板のギャップ精度を $0.1\mu m$ 以下に抑制できる。

【0008】本発明の第4態様によれば、上記上基板の上側に上記下基板の上記接着剤及び上記液晶材料の領域内に相当する領域にもスペーサを配置して加圧する第3態様に記載の液晶基板の貼り合わせ方法を提供する。上記構成によれば、対向する位置に配置された2枚の基板のギャップ精度を $0.1\mu m$ 以下に抑制できる。

【0009】本発明の第5態様によれば、上記吸着部により上記上基板を固定する第3態様に記載の液晶基板の貼り合わせ方法を提供する。上記構成によれば、対向する位置に配置された2枚の基板のギャップ精度を $0.1\mu m$ 以下に抑制できる。

μm 以下に抑制できる。

【0010】本発明の第6態様によれば、上記吸着部が複数の吸着穴より構成され、上記基板の吸着盤に接触する面の全面積に対しての吸着穴開口率が 50% 以上である第1～5のいずれかの態様に記載の液晶基板の貼り合わせ方法を提供する。

【0011】

【発明の実施の形態】以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。

- 10 10 【0012】(第1実施形態)本発明の第1実施形態にかかる液晶基板の貼り合わせ方法の一例としての2枚の基板の貼り合わせ方法について、液晶装置の場合を例に、図1(a), (b), (c), (d)及び図2を用いて説明する。図1(a), (b), (c), (d)は貼り合わせ方法を説明するための模式的断面図である。まず、図1(a)に示すように、表面に例えば厚み $30\mu m$ で四角枠状に塗布された紫外線硬化型の接着剤21及びその接着剤21の四角枠の内部に液晶材料22が滴下等により配置されかつ透光性材料からなる下基板23を水平方向に移動可能なテーブル24上に搭載し、固定ピン25で下基板23の外周をテーブル24に移動不可に固定する(ステップS1)。この固定方法は吸着でもよい。上記テーブル24の例としては、X方向及びY方向駆動装置のそれぞれにより、独立的にX方向と該X方向と直交するY方向との2方向に水平方向面内で往復移動可能かつ回転可能なXYテーブルがよい。なお、接着剤21の厚みは $30\mu m$ に限らず、他の例として $15\mu m$ ～ $35\mu m$ が多用されている。
- 20 20 【0013】次に、図1(b)に示すように、テーブル24に固定された下基板23を真空チャンバーCに入れ、真空吸引装置127に連結された各穴径 $3mm$ 以下の多数の吸着穴又は溝幅 $3mm$ 以下の吸着溝部などの吸着部27aを有する吸着盤27により、透光性材料からなる上基板26の外側全面すなわち図1(b)では上面を真空吸着(例えば、吸着部27aの圧力が約 $0.1Torr$ レベルとなるように真空吸着)で固定して、上基板26の内側全面すなわち図1(b)では下面が水平方向沿いに沿うように配置する。その後、下基板23を搭載したテーブル24を水平方向に移動させて、下基板23と上基板26との位置合わせをする(ステップS2)。上基板26の透光性材料の具体例及び下基板23の材料の具体例としては、ガラスやプラスチックがある。
- 30 30 【0014】なお、図8の(B)には、吸着部27の吸着部27aの構成の一例として、吸着盤27の基板面内に対応する領域に配置された吸着穴27a-2の各穴径 $3mm$ 以下の多数の吸着穴の配置例の平面図である。図8の(A), (C)には、それぞれ、吸着部27の吸着部27aの構成の一例として、吸着盤27の基板面内に対応する領域に配置された、溝幅 $3mm$ 以下の矩形状の吸着溝部27a-1の配置例の平面図及び溝幅 $3mm$ 以下の
- 40 40 50

矩形渦巻き状の吸着溝部27a-3の配置例の平面図を示す。このとき、上記吸着盤27の吸着部27aの全ての吸着穴又は吸着溝部の開孔面積の50%以上、すなわち、上記基板の吸着盤27に接触する面の全面積に対しての吸着穴又は吸着溝部の開口率の50%以上を確保するようすれば、基板がガラスの場合を想定したとき、例えば厚さ0.7mmのガラス製の基板をチャンバー圧力0.8Torrの状態で持ち上げることが可能となる。また、吸着機構の各吸着穴の穴径を0.5mm以下又は吸着溝部の溝幅を0.5mm以下にしたときの従来の欠点を確実に回避するためには、吸着機構の各吸着穴の穴径を0.5mmを超えて3mm以下又は吸着溝部の溝幅を0.5mmを超えて3mm以下にする。なお、安定して実際に使用するためには、吸着穴開口率は70%以上を確保するのが好ましい。

【0015】次に、図1(c)に示すように、加圧ユニットの一例としてのエアシリンダーのような押圧装置128により、吸着盤27を垂直方向に下降させて、上基板26を接着剤21を介して下基板23に貼り合わせ、上基板26と下基板23との間隔が5μmになるまで加圧する(ステップS3)。なお、上基板26と下基板23との間隔が5μmになるまで加圧するものに限らず、8μm前後もあれば3μm前後になるまで加圧するようにもよい。その後、図1(d)に示すように、貼り合せた2つの基板26、23をテーブル24とともに真空チャンバーCから取り出し、貼り合せた2つの基板26、23の上方から紫外線照射ランプ28から紫外線を照射する。このとき、上基板26は透光性材料からなっているため紫外線照射ランプ28からの紫外線を透過することができ、貼り合せた2つの基板26、23間の接着剤21にこの紫外線を照射することができて該接着剤21を紫外線硬化させて、下基板23と上基板26の貼り合わせは完了する(ステップS4)。

【0016】この方法によれば、吸着部27aの圧力が約0.1Torrレベルであるとき吸着盤27の吸着部27aの各吸着穴の穴径又は各吸着溝部の溝幅を3mm以下(好ましくは、0.5mmを超えて3mm以下)とすることにより、対向する位置に配置された2枚の基板26、23のギャップ精度を0.1μm以下に抑制でき、画像ムラ不良をなくすことができる。これに対して、もし、吸着盤27の吸着部27aの各吸着穴の穴径又は各吸着溝部の溝幅が3mmを超えるようにすると、吸着による基板の変形量が大きくなり、2枚の基板26、23のギャップ精度を0.1μm以下に抑制できなくなり、画像ムラ不良を発生させる可能性がある。

【0017】また、図2に示すように、下基板23の下側の外側面全面を、真空吸引装置129に連結された各穴径3mm以下(好ましくは、0.5mmを超えて3mm以下)の多数の吸着穴又は溝幅3mm以下(好ましくは、0.5mmを超えて3mm以下)の吸着溝部

などの吸着部120aを有する吸着盤120による真空吸着で固定してもよい。図2の例は、テーブル24の表面に、このような吸着盤を配置している状態を示す。

【0018】(第2実施形態)本発明の第2実施形態にかかる液晶基板の貼り合わせ方法の一例としての2枚の基板の貼り合わせ方法について、液晶装置の場合を例に、図3(a)、(b)、(c)、(d)及び図4を用いて説明する。図3(a)、(b)、(c)、(d)は貼り合わせ方法を説明するための模式的断面図である。まず、図3(a)に示すように、表面に例えれば厚み30μmで四角柱状に塗布された紫外線硬化型の接着剤21及びその接着剤21の四角柱の内部に液晶材料22が滴下等により配置されかつ透光性材料からなる下基板23の下側の、接着剤21及び液晶22の領域内に相当する領域に対応する領域に、スペーサ29を配置して、下基板23を吸着可能かつ水平方向に移動可能かつ回転可能なテーブル24上に搭載し、固定ピン25で下基板23の外周をテーブル24に移動不可に固定する(ステップS11)。上記テーブル24の例としては、X方向及びY方向駆動装置のそれぞれにより、独立的にX方向と該X方向と直交するY方向との2方向に水平方向面内で往復移動可能なXYテーブルがよい。スペーサ29の一例として、その材質はゴムであり、厚さは0.5~3mmであり、その形状としては、テーブル24にスペーサ29を介して下基板23を吸着させるための吸引用の多数の穴があいており、かつ、スペーサ29自体としてはやわらかいものであり、0.1kg/mm²程度の剛性を有するものが好ましい。上記接着剤21及び液晶22の領域内に相当する領域に対応する領域にスペーサ29を配置することにより、上記接着剤21及び液晶22の領域での2枚の基板26、23のギャップ精度を所定範囲内により確実に確保することができる。

【0019】次に、図3(b)に示すように、テーブル24に固定された下基板23を真空チャンバーCに入れ、真空吸引装置127に連結された各穴径3mm以下の多数の吸着穴又は溝幅3mm以下の吸着溝部などの吸着部27aを有する吸着盤27により、透光性材料からなる上基板26の外側全面を、上基板26の内側全面を、上基板26の外側全面をなす(図3(b)では上面を真空吸着で固定して、上基板26の内側全面をなす(図3(b)では下面が水平方向沿いに沿うように配置する)。その後、下基板23を搭載したテーブル24を水平方向に移動させて、下基板23と上基板26との位置合わせをする(ステップS12)。

【0020】次に、図3(c)に示すように、加圧ユニットの一例としてのエアシリンダーのような押圧装置128により、吸着盤27を垂直方向に下降させて、上基板26を接着剤21を介して下基板23に貼り合わせ、上基板26と下基板23との間隔が5μmまで加圧する(ステップS13)。その後、図3(d)に示すように、貼り合せた2つの基板26、23をテーブル24と

ともに真空チャンバーCから取り出し、貼り合せた2つの基板26、23の上方から紫外線照射ランプ28から紫外線をする。このとき、上基板26は透光性材料からなっているため紫外線照射ランプ28からの紫外線を透過することができ、貼り合せた2つの基板26、23間の接着剤21にこの紫外線を照射することができて該接着剤21を紫外線硬化させて、下基板23と上基板26の貼り合わせは完了する(ステップS14)。

【0021】この方法によれば、下基板23の接着剤21及び液晶22の領域内に相当する領域にスペーサ29を配置することにより、テーブル24や吸着盤27の平面度に影響されずに、対向する位置に配置された2枚の基板26、23のギャップ精度を $0.1\mu m$ 以下に抑制でき、画像ムラ不良をなくすことができる。

【0022】なお、第2実施形態でも、第1実施形態と同様に吸着盤27の吸着部27aの構成を各穴径3mm以下(好ましくは、0.5mmを超えて3mm以下)の多数の吸着穴又は溝幅3mm以下(好ましくは、0.5mmを超えて3mm以下)の吸着溝部より構成するとともに、上記吸着盤27の吸着部27aの全ての吸着穴又は吸着溝部の開孔面積の50%を確保することにより、対向する位置に配置された2枚の基板26、23のギャップ精度を $0.1\mu m$ 以下にさらに確実に抑制でき、画像ムラ不良をより一層なくすことができる。このように構成することにより、基板がガラスの場合を想定したとき、例えば厚さ0.7mmのガラス製の基板をチャンバー圧力 0.8 Torr の状態で持ち上げることが可能となる。また、吸着機構の各吸着穴の穴径を 0.5 mm 以下又は吸着溝部の溝幅を 0.5 mm 以下にしたときの従来の欠点を確実に回避するためには、吸着機構の各吸着穴の穴径を 0.5 mm を超えて3mm以下又は吸着溝部の溝幅を 0.5 mm を超えて3mm以下にする。なお、安定して実際に使用するためには、吸着穴開口率は70%以上を確保するのが好ましい。また、図4に示すように、上基板26の上側に、下基板23の接着剤21及び液晶22の領域内に相当する領域にもスペーサ30を配置することにより、吸着盤27の平面度に影響されずに、対向する位置に配置された2枚の基板26、23のギャップ精度を $0.1\mu m$ 以下に抑制でき、画像ムラ不良をなくすことができる。

【0023】このように、上基板26の上側に、下基板23の接着剤21及び液晶22の領域内に相当する領域にもスペーサ30を配置することにより、吸着盤27の平面度に影響されずに、対向する位置に配置された2枚の基板26、23のギャップ精度を $0.1\mu m$ 以下に抑制でき、画像ムラ不良をなくすことができる。

【0024】

【発明の効果】以上のように、本発明によれば、真空チャンバー内にて下基板を固定し、上基板の外側面全面を溝穴径3mm以下(好ましくは、0.5mmを超えて3mm以

下)又は溝幅3mm以下(好ましくは、0.5mmを超えて3mm以下)の吸着機構による真空吸着で固定し、位置合わせを行った後、基板面垂直方向に移動させて加圧する方法により、2枚の基板のギャップ精度を向上させることができるという効果がある。より詳しくは、上記吸着機構による真空吸着の圧力が約 0.1 Torr レベルであり、上記吸着機構の各吸着穴の穴径を3mm以下(好ましくは、0.5mmを超えて3mm以下)又は各吸着溝部の溝幅を3mm以下(好ましくは、0.5mmを超えて3mm以下)とすることにより、対向する位置に配置された2枚の基板のギャップ精度を例えれば $0.1\mu m$ 以下に抑制でき、画像ムラ不良をなくすことができる。これに対して、もし、上記吸着機構の各吸着穴の穴径又は各吸着溝部の溝幅が3mmを超えるようにすると、吸着による基板の変形量が大きくなり、2枚の基板のギャップ精度を $0.1\mu m$ 以下に抑制できなくなり、画像ムラ不良を発生させる可能性がある。また、本発明においては、少なくとも上記吸着機構の全ての吸着穴又は全ての吸着溝部の開孔面積の50%を確保するようにすれば、仮に基板がガラスの場合を想定したとき、例えれば厚さ0.7mmのガラス製の基板をチャンバー圧力 0.8 Torr の状態で持ち上げうることが可能となる。また、吸着機構の各吸着穴の穴径を 0.5 mm 以下又は吸着溝部の溝幅を 0.5 mm 以下にしたときの従来の欠点を確実に回避するためには、吸着機構の各吸着穴の穴径を 0.5 mm を超えて3mm以下又は吸着溝部の溝幅を 0.5 mm を超えて3mm以下にする。なお、吸着穴開口率は70%以上を確保すれば、より安定して使用することができる。

【0025】また、真空チャンバー内にて下基板の下側に接着剤及び液晶の領域内にスペーサを配置して、接着剤側及び液晶側が上側に向くよう加圧ユニットに固定し、上基板を吸着機構による真空吸着で固定し、位置合わせを行った後、基板を基板面垂直方向に移動させて加圧する方法により、下基板を載置する部材や吸着盤などの平面度に影響されずに、2枚の基板のギャップ精度を向上させることができると効果がある。以上により、液晶表示装置の貼り合わせの場合では、従来の方法で発生した画像不良や画像ムラ不良の発生を防止することができる。

40 【図面の簡単な説明】

【図1】(a), (b), (c), (d)は本発明の第1実施形態にかかる液晶基板の貼り合わせ方法である2枚の基板を貼り合わせる方法を説明するための模式的説明図である。

【図2】本発明の第1実施形態にかかる2枚の基板を貼り合わせる方法の変形例を示す模式的断面図である。

【図3】(a), (b), (c), (d)は本発明の第2実施形態にかかる液晶基板の貼り合わせ方法である2枚の基板を貼り合わせる方法を説明するための模式的断面図である。

【図4】 本発明の第2実施形態にかかる2枚の基板を貼り合わせる方法の変形例を示す模式的断面図である。

【図5】 一般的な液晶表示装置の構造を説明するための模式的な分解斜視図である。

【図6】 (a), (b), (c)は従来の液晶滴下工法を説明するための模式的断面図である。

【図7】 (a), (b), (c), (d)は従来例における2枚の基板を貼り合わせる方法を説明するための模式的断面図である。

【図8】 (A)は、吸着盤27の吸着部27aの構成の一例として、溝幅3mm以下の矩形状の吸着溝部27a-1の配置例の平面図、(B)は、吸着盤27の吸着部27aの構成の一例として、吸着穴27a-2の各穴径

3mm以下の多数の吸着穴の配置例の平面図、(C)は、吸着盤27の吸着部27aの構成の一例として、溝幅3mm以下の矩形渦巻き状の吸着溝部27a-3の配置例の平面図である。

【符号の説明】

21…接着剤、22…液晶材料、23…下基板、24…テーブル、25…固定ピン、26…上基板、27…吸着盤、27a…吸着部、27a-2…吸着穴、27a-1、27a-3…吸着溝部、28…紫外線照射ランプ、
10 29…スペーサ、30…スペーサ、120…吸着盤、120a…吸着部、127…真空吸引装置、128…押圧装置、129…真空吸引装置、C…真空チャンバー。

【図1】

【図2】

【図4】

【図3】

【図5】

【図6】

【図7】

【図8】

フロントページの続き

(72)発明者 炭田 祉郎

大阪府門真市大字門真1006番地 松下電器
産業株式会社内

(72)発明者 酒井 直人

大阪府門真市大字門真1006番地 松下電器
産業株式会社内

(72)発明者 松川 秀樹

大阪府門真市大字門真1006番地 松下電器
産業株式会社内

Fターム(参考) 2H089 NA24 NA38 NA44 NA48 NA53

NA56 NA60 QA12 QA13 QA14
TA01 TA06