fvIO SPI 汎用プラグイン 機能仕様書

Rev1.10 2019年07月23日

シマフジ電機(株)

変 更 履 歴 表

版	変 更 内 容	変更日付
	2.表を修正。3.表を修正。4.項目を全て修正。	2019/07/23
1. 00	初版	2019/01/23

目次

はじめに	4
動作環境	4
ļ.	はじめに 動作環境

1. はじめに

本書は RZ/T1 IoT-Engine で各種デバイスを制御するための fvIO SPI 汎用プラグインの機能仕様書である。

2. 動作環境

本プラグインが動作する環境は以下の通り。

項目	種類	備考
CPU	ルネサス製マイコン RZ/T1	

3. fvIO シーケンス一覧

実行可能な fvIO シーケンスは以下の通り。

SADR	fvIO シーケンス	シーケンス内容
SADIN	1010 2 722	ン
0x00	データの汎用ライト 1	1.OPT1、OPT2 レジスタに従って CS 信号を有効にする。 2.IREGn レジスタに入力した値を送信る。送信数は、SLEN レジスタ で設定する。 3. OPT1 レジスタに従って CS 信号を無効にする。
0x01	データの汎用ライト 2	以下の手順でデータの R/W を実行する。 1.OPT1、OPT2 レジスタに従って CS 信号を有効にする。 2.FIFO0 レジスタに入力した値を送信する。送信数は、SLEN レジスタで設定する。
		3. OPT1 レジスタに従って CS 信号を無効にする。
0×02	データの汎用リード/ラ イト 1	以下の手順でデータの R/W を実行する。 1.OPT1、OPT2 レジスタに従って CS 信号を有効にする。 2. IREGn レジスタに入力した値を送信し、受信したデータを FIFO0 レジスタに出力する。送受信数は、SLEN レジスタで設定する。 3. OPT1 レジスタに従って CS 信号を無効にする。
0×03	データの汎用リード/ラ イト 2	以下の手順でデータの R/W を実行する。 1.OPT1、OPT2 レジスタに従って CS 信号を有効にする。 2. FIFO0 レジスタに入力した値を送信し、受信したデータを FIFO0 レジスタに出力する。送受信数は、SLEN レジスタで設定する。 3. OPT1 レジスタに従って CS 信号を無効にする。

- 4. fvIO シーケンスの入出力フォーマット
- 4.1 データの汎用ライト 1 シーケンス(CMD=0x00)

(1)入力フォーマット

レジスタシンボル	フォーマット※1
SLEN	送受信数-1
IREG0	データ(1byte 目)
IREG1	データ(2byte 目)
IREG2	データ(3byte 目)
IREG3	データ(4byte 目)
IREG4	データ(5byte 目)
IREG5	データ(6byte 目)
IREG6	データ(7byte 目)
IREG7	データ(8byte 目)

※1 送受信数の範囲は 1~8。送受信数に合わせてフォーマット(データの数)を調整する。

(2)出力フォーマット 出力データなし

4.2 データの汎用ライト 2 シーケンス(CMD=0x01)

(1)入力フォーマット

レジスタシンボル	データ※1
SLEN	送受信数-1
FIFO0 (1 ワード目)	データ(1byte 目)
FIFO0 (2 ワード目)	データ(2byte 目)
FIFO0 (3 ワード目)	データ(3byte 目)
FIFO0 (4 ワード目)	データ(4byte 目)
FIFO0 (5 ワード目)	データ(5byte 目)
FIFO0 (6 ワード目)	データ(6byte 目)
FIFO0 (7 ワード目)	データ(7byte 目)
FIFO0 (8 ワード目)	データ(8byte 目)

※1 送受信数の範囲は 1~8。送受信数に合わせてフォーマット(データの数)を調整する。

(2)出力フォーマット 出力データなし

4.3 データの汎用リード/ライト 1 シーケンス(CMD=0x02)

(1)入力フォーマット

レジスタシンボル	フォーマット※1
SLEN	送受信数-1
IREG0	データ(1byte 目)
IREG1	データ(2byte 目)
IREG2	データ(3byte 目)
IREG3	データ(4byte 目)
IREG4	データ(5byte 目)
IREG5	データ(6byte 目)
IREG6	データ(7byte 目)
IREG7	データ(8byte 目)

※1 送受信数の範囲は 1~8。送受信数に合わせてフォーマット(データの数)を調整する。

(2)出力フォーマット

レジスタシンボル	出力※1
FIFO0 (1 ワード目)	データ(1byte 目)
FIFO0 (2 ワード目)	データ(2byte 目)
FIFO0 (3 ワード目)	データ(3byte 目)
FIFO0 (4 ワード目)	データ(4byte 目)
FIFO0 (5 ワード目)	データ(5byte 目)
FIFO0 (6 ワード目)	データ(6byte 目)
FIFO0 (7 ワード目)	データ(7byte 目)
FIFO0 (8 ワード目)	データ(8byte 目)

※1 入力フォーマットのデータ送受信数を超えた数は出力されない。

4.4 データの汎用リード/ライト 2 シーケンス(CMD=0x03)

(1)入力フォーマット

レジスタシンボル	データ※1
SLEN	送受信数-1
FIFO0 (1 ワード目)	データ(1byte 目)
FIFO0 (2 ワード目)	データ(2byte 目)
FIFO0 (3 ワード目)	データ(3byte 目)
FIFO0 (4 ワード目)	データ(4byte 目)
FIFO0 (5 ワード目)	データ(5byte 目)
FIFO0 (6 ワード目)	データ(6byte 目)
FIFO0 (7 ワード目)	データ(7byte 目)
FIFO0 (8 ワード目)	データ(8byte 目)

※1 送受信数の範囲は 1~8。送受信数に合わせてフォーマット(データの数)を調整する。

(2)出力フォーマット

レジスタシンボル	出力※1
FIFO0 (1 ワード目)	データ(1byte 目)
FIFO0 (2 ワード目)	データ(2byte 目)
FIFO0 (3 ワード目)	データ(3byte 目)
FIFO0 (4 ワード目)	データ(4byte 目)
FIFO0 (5 ワード目)	データ(5byte 目)
FIFO0 (6 ワード目)	データ(6byte 目)
FIFO0 (7 ワード目)	データ(7byte 目)
FIFO0 (8 ワード目)	データ(8byte 目)

※1 入力フォーマットのデータ送受信数を超えた数は出力されない。

5. 制限事項

制限事項は以下の通り。

- ・通信速度の範囲は、0.0390[Mbps]~10[Mbps]。ただし、OPTO レジスタで設定したサンプリング遅延時間分さらに遅延する。
- ・送受信数の最大値は 8byte。