

mean radius	target
17,99	1
20,57	1
16,13	1
19,81	1
13,54	0
13,08	0
15,34	1
21,16	1
17,57	1
11,84	1
17,02	1
12,05	0
13,49	0
11,76	0
13,64	0
11,94	0
18,22	1

Objetivo:

Clasificación Binaria

Clasificar tumores Benignos (0) y Malignos (1) en base a su tamaño.

mean radius	target
17,99	1
20,57	1
16,13	1
19,81	1
13,54	0
13,08	0
15,34	1
21,16	1
17,57	1
11,84	1
17,02	1
12,05	0
13,49	0
11,76	0
13,64	0
11,94	0
18,22	1

¿Cómo podemos separar las clases?

Ej: Clasificador ad hoc

$$f(x) = \begin{cases} 1 & si \ x > 13 \\ 0 & si \ x \le 13 \end{cases}$$

Problemas:

- No es derivable
- Muy restrictivo

¿Cómo podemos separar las clases?

Regresión lineal:

- Valores fuera de rango
- Solución: acotar

¿Cómo podemos separar las clases?

Regresión lineal acotada:

$$g(x) = \begin{cases} 1 & si \ x \ge 17 \\ f(x) & si \ 17 > x > 9 \\ 0 & si \ x \le 9 \end{cases}$$

• Difícil de optimizar

Regresión Logística = Regresión Lineal + Función Logística

Función Logística o Sigmoidea

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
$$\sigma(f(x)) = \frac{1}{1 + e^{-wx - b}}$$

- Tiene un rango de salida entre 0 y 1.
- La función de Error es diferenciable.

Derivada= =
$$\sigma(z) * (1 - \sigma(z))$$

• $\sigma(z)$ tiene dos asíntotas horizontales:

Tiende a 1 cuando x tiende a $+\infty$ Tiende a 0 cuando x tiende a $-\infty$

Sigmoidea como Probabilidades

Otra ventaja es que puedo interpretar la función la "probabilidad de que y=1".

En el ejemplo de los tumores. Si para un ejemplo particular (supongamos x=14), la hipótesis me retorna 0.7, significa que hay un 70% de probabilidad de que sea un tumor maligno.

Formalmente: $\sigma(x) = P(y=1 \mid x; w)$

Por otro lado, P(y=0 | x; w) = 1 - P(y=1 | x; w)

Sigmoidea como Probabilidades

Finalmente, ponemos un umbral para clasificar

$$y = \begin{cases} 1 & si \ \mathbf{\sigma}(x) > 0.5 \\ 0 & si \ \mathbf{\sigma}(x) \le 0.5 \end{cases} \rightarrow \begin{aligned} wx + b > 0 \\ wx + b \le 0 \end{aligned}$$

mean radius	σ(x)	Y' (x)
17,99	0,71	1
20,57	0,88	1
19,69	0,76	1
13,54	0,42	0
9,52	0,25	0

Ge@Gebra Calculadora gráfica

Animación Función Sigmoidea

Frontera de decisión 1D

Supongamos, para nuestro problema de tumores, que

$$w = 0.3 y b = -4$$
, umbral = 0.5
Entonces, $y = 1$ si $f(x) > 0$

si
$$0.3x - 4 > 0$$

 $x > \frac{4}{0.3}$

$$y = 1$$
 si $x > 13,33$

Frontera de Decisión x=13,33

Frontera de decisión 2D

- 2 variables para cada registro
- $\sigma(x1,x2) = \sigma(w1x1+w2x2+b)$
- w = [0.47, 0.05], b = -8

```
y = 1 si si \sigma(x) > 0.5 \rightarrow w1x1 + w2x2 + b > 0
0,47x1 + 0,05x2 - 8 > 0
0,47x1 + 0,05x2 > 8
x2 = 160 - 9.4x1
```


Modelo ND

Error Cuadrático Medio

- $E = 1/n \Sigma_i^n Ei$
- Ei= $(\sigma(mx_i+b)-y_i)^2$
- Funciona, pero
 - ECM de σ(mx+b) no es apropiado
 - E no es convexa
- Entropía Cruzada
 - Convexa para σ(mx_i+b)
 - Mide distancia entre distribuciones de probabilidades.

Entropía Cruzada

$$E = \frac{1}{n} \sum_{i}^{n} E_{i}$$

$$\mathbf{E_i} = \begin{cases} -\log(\mathbf{\sigma}(x_i)) & si \ y = 1 \\ -\log(1 - \mathbf{\sigma}(x_i)) & si \ y = 0 \end{cases}$$

Si y = 0 & mi modelo dijo 1, entonces el error es muy alto

Entropía Cruzada

$$E = \frac{1}{n} \sum_{i}^{n} E_{i}$$

$$\mathbf{E_i} = \begin{cases} -\log(\mathbf{\sigma}(x_i)) & si \ y = 1 \\ -\log(1 - \mathbf{\sigma}(x_i)) & si \ y = 0 \end{cases}$$

Podemos escribir la función partida en una sola línea:

$$\mathbf{E_i} = -\mathbf{y} \, \log(\mathbf{\sigma}(x_i)) - \left((1 - \mathbf{y}) \log(1 - \mathbf{\sigma}(x_i)) \right)$$

Los coeficientes "y", "(1 - y)", actúan como "if-else"

Para cada x_i solo se computa el -log de la probabilidad de pertenencia a su clase.

Entropía Cruzada

Entr. Cruzada como Distancia entre distribuciones

- f(x) = 0.3
 - P(x es de clase = 1) = 0.3
 - P(x es de clase = 0) = 1 P(x es de clase = 1) = 1 0.3 = 0.7
 - P(x es de clase = 1) y P(x es de clase = 0) forman una distribución de probabilidad
- ECM
 - Mide distancia entre puntos. Distancia euclídea al cuadrado
- Entropía Cruzada
 - Mide distancia entre distribuciones de probabilidad
 - Distancia Kullback-Leibler

Derivadas Entropía Cruzada

•
$$\frac{\delta E}{\delta b} = \frac{1}{n} \sum_{i=1}^{n} y_i - f(x_i)$$

•
$$\frac{\delta E}{\delta m} = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i)) x_i$$

- Son iguales que las de Regresión Lineal $(f(x)=\sigma(mx+b))$
- Mismas ecuaciones de Descenso de Gradiente

$$b = b - \alpha \delta E(m,b)/\delta b$$

 $m = m - \alpha \delta E(m,b)/\delta m$

Métrica Accuracy

Valores de entropía cruzada: 0 a +∞
 Difíciles de interpretar

Υ	Y'	Acierto
1	1	1
1	0	0
0	0	1
0	1	0
0	1	0

Accuracy = % de ejemplos que clasificó correctamente.

Métrica para Clasificación.

Ejemplo: $2/5 \rightarrow Acc = 0,4$ (o 40%)

Resumen

Regresión Logística

- Permite modelar probabilidades
- Modelo Y= $f(x_1, x_2, ..., x_m) = \sigma(x_1 w_1 + x_2 w_2 + ... + x_m w_m + b)$, $\sigma(x) = 1/(1 + e^{-x})$

Interpretación de la salida del modelo como una probabilidad.

- Umbral -> Convierte probabilidades en clases.
 - -> Frontera de decisión.
- Entropía cruzada -> Métrica de error. Mide distancia entre distrib. probabilidades.

