TEST Special Stats Module with ceedling (CL2 boards)

This DOC in C:\cvavr328\Work3\CL2\CL2_Modules\Stats_Special\DOC

14.10.2018 / document revised 05.2022

This document explains the procedure used for testing one of the sections the /stats module in /modules/stats of the PWRC2 application running on CL2 boards, now in its version 10a. The specific section computes vector averages of wind direction based on METEO board wind-vane measurements, transmitted via RS485 to the CL2 main CPU boards. These modules are originally compiled in CVAVR Codevision IDE for AVR. Most higher level modules can be tested using Ceedling running on Linux in a separate virtual machine because they are not dependant on hardware details.

Procedure as used in testing of SpecialStats submodule:

- 1. Extract from StatsCL2-5VN.c/.h only the special Stats section
- Save in C:\cvavr328\Work3\CL2\CL2_Modules\Stats_Special\src\stats_CL2_5sp.c / .h
- 3. In CVAVr328, make a Test Project to compile it, prune the .h file

Add stdio.h, stdint.h to .h file.

4) We prune until compiles correctly

14.10.2018 Copy to CEEDLING TESTs under Ubuntu

Checking Values in Excel:

The computation function in C is atan2(y,x) = artg(y/x), whereas the same is

atan2(x,y) in Excel. ATAN2(coord_x; coord_y) - To be noted on Tests..

a) For fixed value at Samp = 120º

TESTING DE SOFTWARE CESE2018 R.OLIVA PRUEBA DE SpStats_WD() 10.2018

(Case: values fixed at 120 deg)

-	
K_PI_OVER180 =	0.017453293
K_180_OVER_PI=	57.29577951

Av_vx	Av_vy	(iniciales)
0	0	

<u> </u>	SampDeg	SampleRad	Vvx = sin(s	ampD)	Av vx	A.,	Av voc fin	Av vy fin	WD Calc1	WD Av Real
J	Sampueg	Sampierau	V VX - 5111(5	aiiipn)	AV_VX	Av_vy	AV_VX_IIII	Av_vy_IIII	WD_Calc1	WD_AV_Real
2	120.00000	2.09439510	0.86603	-0.50000	0.00000	0.00000	0.43301	-0.25000	120.00000	120.00000
3	120.00000	2.09439510	0.86603	-0.50000	0.43301	-0.25000	0.57735	-0.33333	120.00000	120.00000
4	120.00000	2.09439510	0.86603	-0.50000	0.57735	-0.33333	0.64952	-0.37500	120.00000	120.00000
5	120.00000	2.09439510	0.86603	-0.50000	0.64952	-0.37500	0.69282	-0.40000	120.00000	120.00000
6	120.00000	2.09439510	0.86603	-0.50000	0.69282	-0.40000	0.72169	-0.41667	120.00000	120.00000
7	120.00000	2.09439510	0.86603	-0.50000	0.72169	-0.41667	0.74231	-0.42857	120.00000	120.00000
8	120.00000	2.09439510	0.86603	-0.50000	0.74231	-0.42857	0.75777	-0.43750	120.00000	120.00000
9	120.00000	2.09439510	0.86603	-0.50000	0.75777	-0.43750	0.76980	-0.44444	120.00000	120.00000
10	120.00000	2.09439510	0.86603	-0.50000	0.76980	-0.44444	0.77942	-0.45000	120.00000	120.00000
11	120.00000	2.09439510	0.86603	-0.50000	0.77942	-0.45000	0.78730	-0.45455	120.00000	120.00000
12	120.00000	2.09439510	0.86603	-0.50000	0.78730	-0.45455	0.79386	-0.45833	120.00000	120.00000
13	120.00000	2.09439510	0.86603	-0.50000	0.79386	-0.45833	0.79941	-0.46154	120.00000	120.00000
14	120.00000	2.09439510	0.86603	-0.50000	0.79941	-0.46154	0.80417	-0.46429	120.00000	120.00000

// in math.h (C99) it's float atan2(double y, double x) = arctg(y/x), in Excel the function is : ATAN2(coord_x; coord_y)

WD_Calc1 = K_180_OVER_PI*(atan2(Av_vx;Av_vy) '// Av_vx is y comp, Av_vy is x to get reference to 0°= N

WD_Av_Real = if(WD_Av_Real<0) WD_Av_Real+360, else WD_Av_Real

b.)For values close to N:

TESTING DE SOFTWARE CESE2018 R.OLIVA PRUEBA DE SpStats WD() 10.2018

(Case: values close to N, near 0 or 360)

K_PI_OVER180 =	0.017453293
K_180_OVER_PI=	57.29577951

Av_vx	Av_vy	(iniciales)
0	0	

J	SampDeg	SampleRad	Vvx = sin(s	ampR)	Av_vx	Av_vy	Av_vx_fin	Av_vy_fin	WD_Calc1	WD_Av_Real
2	0.00000	0.00000000	0.00000	1.00000	0.00000	0.00000	0.00000	0.50000	0.00000	0.00000
3	0.00000	0.00000000	0.00000	1.00000	0.00000	0.50000	0.00000	0.66667	0.00000	0.00000
4	0.00000	0.00000000	0.00000	1.00000	0.00000	0.66667	0.00000	0.75000	0.00000	0.00000
5	5.00000	0.08726646	0.08716	0.99619	0.00000	0.75000	0.01743	0.79924	1.24940	1.24940
6	350.00000	6.10865238	-0.17365	0.98481	0.01743	0.79924	-0.01442	0.83017	-0.99481	359.00519
7	5.00000	0.08726646	0.08716	0.99619	-0.01442	0.83017	0.00009	0.85389	0.00636	0.00636
8	2.00000	0.03490659	0.03490	0.99939	0.00009	0.85389	0.00445	0.87207	0.29206	0.29206
9	357.00000	6.23082543	-0.05234	0.99863	0.00445	0.87207	-0.00186	0.88614	-0.12050	359.87950
10	358.00000	6.24827872	-0.03490	0.99939	-0.00186	0.88614	-0.00517	0.89746	-0.32989	359.67011
11	1.00000	0.01745329	0.01745	0.99985	-0.00517	0.89746	-0.00311	0.90677	-0.19657	359.80343
12	0.00000	0.00000000	0.00000	1.00000	-0.00311	0.90677	-0.00285	0.91454	-0.17866	359.82134
13	359.00000	6.26573201	-0.01745	0.99985	-0.00285	0.91454	-0.00397	0.92110	-0.24725	359.75275
14	0.00000	0.00000000	0.00000	1.00000	-0.00397	0.92110	-0.00369	0.92674	-0.22819	359.77181

// in math.h (C99) it's float atan2(double y, double x) = arctg(y/x), in Excel the function is : ATAN2(coord_x; coord_y)

WD_Calc1 = K_180_OVER_PI*(atan2(Av_vx;Av_vy) '// Av_vx is y comp, Av_vy is x to get reference to 0°= N

WD_Av_Real = if(WD_Av_Real<0) WD_Av_Real+360, else WD_Av_Real

NOTES 14.10.18

Test compilation correct, problems on linking with math.h functions. Adding —Im to linker desde Ceedling. First version on Github, Professor E. Volentini makes revision

-> Mail to E.Volentini, 22:50 revision requested.

15.10.2018 CORRECTED with con Defaults.rb (see issue #92 Ceedling github)

TESTING DE SOFTWARE CESE2018 R.OLIVA PRUEBA DE SpStats_WD() 10.2018

(Case: values close to N, near 0 or 360, as in sp_stats_test.c)

Av_vx	Av_vy	(iniciales)
0	0	

K_PI_OVER180 =	0.017453293
K 180 OVER PI=	57.29577951

ī .	SampDeg	SampleRad	Vvx = sin(s	amnR)	Av_vx	Av_vy	Δv vv fin	Av vy fin	WD Calc1	WD Av Real
2	0.00000	•	<u> </u>		_	′			0.00000	
2	0.00000								0.00000	
1	5.00000						0.00000		1.66620	
- 4	356.00000								0.24961	
6								0.73873	0.60010	
- 7	0.00000									
8									0.49997	0.49997
	555.00000		-0.01745	0.99985					0.28550	
9	5.00000			0.99619			0.01356		0.87489	
10				0.99985					0.88881	0.88881
11	358.20000	6.25176938	-0.03141	0.99951	0.01395	0.89890	0.00982	0.90805	0.61973	0.61973

// in math.h (C99) it's float atan2(double y, double x) = arctg(y/x), in Excel the function is : ATAN2(coord_x; coord_y)

WD_Calc1 = K_180_OVER_PI*(atan2(Av_vx;Av_vy) '// Av_vx is y comp, Av_vy is x to get reference to 0⁰= N

WD_Av_Real = if(WD_Av_Real<0) WD_Av_Real+360, else WD_Av_Real

The computed value in tests is 0.619717, good approximation.

Second vector for testing South Direction IS – expected vector average of 188.1939

TESTING DE SOFTWARE CESE2018 R.OLIVA PRUEBA DE SpStats_WD() 10.2018

(Case 5: values close to S, near 180deg, as in sp_stats_test.c)

K_PI_OVER180 =	0.017453293
K_180_OVER_PI=	57.29577951

Av_vx	Av_vy	(iniciales)
0	0	

J	SampDeg	SampleRad	Vvx = sin(s	ampR)	Av_vx	Av_vy	Av_vx_fin	Av_vy_fin	WD_Calc1	WD_Av_Real
2	190.00000	3.31612558	-0.17365	-0.98481	0.00000	0.00000	-0.08682	-0.49240	-170.00000	190.00000
3	190.00000	3.31612558	-0.17365	-0.98481	-0.08682	-0.49240	-0.11577	-0.65654	-170.00000	190.00000
4	175.00000	3.05432619	0.08716	-0.99619	-0.11577	-0.65654	-0.06504	-0.74145	-174.98723	185.01277
5	180.00000	3.14159265	0.00000	-1.00000	-0.06504	-0.74145	-0.05203	-0.79316	-176.24701	183.75299
6	190.00000	3.31612558	-0.17365	-0.98481	-0.05203	-0.79316	-0.07230	-0.82510	-174.99235	185.00765
7	190.80000	3.33008821	-0.18738	-0.98229	-0.07230	-0.82510	-0.08874	-0.84756	-174.02296	185.97704
8	191.00000	3.33357887	-0.19081	-0.98163	-0.08874	-0.84756	-0.10150	-0.86432	-173.30238	186.69762
9	193.00000	3.36848546	-0.22495	-0.97437	-0.10150	-0.86432	-0.11521	-0.87654	-172.51188	187.48812
10	192.00000	3.35103216	-0.20791	-0.97815	-0.11521	-0.87654	-0.12448	-0.88671	-172.00850	187.99150
11	190.00000	3.31612558	-0.17365	-0.98481	-0.12448	-0.88671	-0.12895	-0.89562	-171.80675	188.19325

// in math.h (C99) it's float atan2(double y, double x) = arctg(y/x), in Excel the function is : ATAN2(coord_x; coord_y)

WD_Calc1 = K_180_OVER_PI*(atan2(Av_vx;Av_vy) '// Av_vx is y comp, Av_vy is x to get reference to 0°= N

WD_Av_Real = if(WD_Av_Real<0) WD_Av_Real+360, else WD_Av_Real

Output values found to be correct.

ANNEX I – Test file (test_sp_stats.c) Listing:

```
#include "unity.h"
#include "stats_CL2_5sp.h"
// Vector global para ensayo cerca de WDIR= Norte (0==360°)
// primeros 2 ignorados
float SampleDeg[] ={
         0.0,0.0,
         0.0,0.0,5.0,356.0,2.0,
         0.0,359.0,5.0,1.0,358.2 };
// Vector global para ensayo cerca de WDIR= SUR (180°)
// primeros 2 ignorados
float SampleDeg2[] ={
         0.0,0.0,
          190.0,190.0,175.0,180.0,190.0,
          190.8,191.0,193.0,192.0,190.0);
void setUp(void) {
   Stats Call Init();
   AUX.DSampleDeg = 120.0;
   AUX.CSampleRho = 1.1;
void tearDown(void) {
void test SpStats WD(void) {
   SpStats_WD(&j_aver);
   // TEST ASSERT FLOAT WITHIN (delta, expected, actual);
   TEST_ASSERT_FLOAT_WITHIN(0.1, 0.43301, AUX.A_v_vx);
   TEST_ASSERT_FLOAT_WITHIN(0.1, -0.25, AUX.A_v_vy);
   Stats Find WDIR Av();
   TEST ASSERT FLOAT WITHIN (0.1, 120.0, AUX.WD Av);
void test SpStatsIter WDN(void) {
       Stats_Call_Init();
   // Leer vector de valores de muestras cerca del N
   do{
         AUX.DSampleDeg = SampleDeg[j_aver];
         SpStats_WD(&j_aver); // Computa promedio vector
       j aver++;
   } while(j_aver <12);</pre>
   Stats Find WDIR Av();
   // TEST_ASSERT_FLOAT WITHIN(delta, expected,actual);
   TEST ASSERT_FLOAT_WITHIN(0.1, 0.6, AUX.WD_Av);
void test SpStatsIter WDS(void) {
   Stats Call Init();
          AUX.DSampleDeg = SampleDeg2[j aver];
         SpStats_WD(&j_aver);
       j_aver++;
   } while(j_aver <12);</pre>
   Stats_Find_WDIR_Av();
   // TEST_ASSERT_FLOAT WITHIN(delta, expected, actual);
   TEST ASSERT FLOAT WITHIN (0.1, 188.0, AUX.WD Av);
}
```