TD 3: PGCD, nombres premiers, congruences

Arithmétique Semestre 1

Exercice 1

Résoudre sur \mathbb{Z}^2 :

$$51x + 9y = 36$$
, $104x + 951y = 1$ et $610x + 987y = 1$.

Exercice 2

Trouver \mathbf{pgcd} (360, 294) de deux façons : utiliser la décomposition en facteurs premiers, puis l'algorithme d'Euclide.

Exercice 3 (Lemme de Gauss et d'Euclide)

Soient $a, b, c \in \mathbb{Z}$ et $p \in \mathbb{N}$ un nombre premier.

1. Montrer le lemme de Gauss :

$$\left(a\mid bc \text{ et } \mathbf{pgcd}\left(a,b\right)=1\right) \implies a\mid c.$$

Donner un contre-exemple quand a et b ne sont pas premiers entre eux.

2. Montrer que si p ne divise pas a, alors $\mathbf{pgcd}(a,p)=1$. En déduire le lemme d'Euclide :

$$p \mid ab \implies (p \mid a \text{ ou } p \mid b).$$

3. Montrer que

$$\operatorname{\mathbf{pgcd}}(a,bc) = 1 \iff (\operatorname{\mathbf{pgcd}}(a,b) = 1 \text{ et } \operatorname{\mathbf{pgcd}}(a,c) = 1).$$

Exercice 4

Soient $a, b \in \mathbb{Z}$ deux entiers premiers entre eux. Démontrer chacune des assertions suivantes.

1. Soient $\alpha, \beta \in \mathbb{Z}$. Alors

$$\left(\alpha \mid a \text{ et } \beta \mid b\right) \implies \mathbf{pgcd}\left(\alpha, \beta\right) = 1.$$

- 2. Pour tous $n, m \in \mathbb{N}^*$, $\mathbf{pgcd}(a^n, b^m) = 1$.
- 3. **pgcd** $(a+b, a-b) \in \{1, 2\}.$
- 4. **pgcd** $(a+b, a^2 ab + b^2) \in \{1, 3\}.$

Exercice 5

Démontrer les résultats suivants à l'aide des congruences.

- 1. 7 divise $3 \times 2^{101} + 9$.
- 2. Tout entier de la forme $n^3 n$ est divisible par 6.
- 3. Tout carré parfait se termine par un 0, 1, 4, 5, 6 ou 9.
- 4. La différence de deux cubes consécutifs n'est pas divisible par 3.
- 5. Un nombre de la forme 3k-1 ne peut pas s'écrire sous la forme x^2+3y^2 .
- 6. L'équation $4x^{10} + x^4 8x 2 = 0$ n'a pas de solution entière.
- 7. Si $7 | a^2 + b^2$ alors 7 | a et 7 | b.