Apuntes de Análisis Armónico

Autor: Andrés David Cadena Simons

2 de abril de 2025

UNIVERSIDAD NACIONAL DE COLOMBIA

Sede Bogotá Departamento de Matemáticas

2029662 ANÁLISIS ARMÓNICO

Programa: Maestría en Ciencias Matemáticas

Créditos de la asignatura: 4

Profesor: Ricardo Pastrán. Edificio: 404. Oficina: 314. Atención: L y C: 16-17

Email: rapastranr@unal.edu.co

DESCRIPCIÓN

Este curso ofrece una exploración profunda del análisis armónico, un área central en el análisis moderno con amplias aplicaciones en ecuaciones diferenciales parciales y teoría de números. El curso cubrirá tanto resultados clásicos como técnicas modernas, centrándose en el estudio de funciones y operadores a través del análisis de Fourier y herramientas relacionadas. Los estudiantes comenzarán repasando el operador transformada de Fourier, conceptos fundamentales que descomponen las funciones en sus componentes de frecuencia. A partir de ahí, el curso profundizará en temas avanzados como la teoría de Calderón-Zygmund, funciones maximales, integrales singulares, la teoría de Littlewood-Paley y aplicaciones a la teoría analítica de números y a las ecuaciones diferenciales parciales. El papel del análisis armónico en la comprensión de la regularidad y el comportamiento de las soluciones de las ecuaciones diferenciales parciales también será un área clave de enfoque.

OBJETIVOS

- Adquirir un dominio sólido de las técnicas clásicas y modernas del análisis armónico.
- Comprender y aplicar métodos avanzados de análisis armónico a diversos problemas matemáticos.
- Utilizar las herramientas que proporciona el análisis armónico en el estudio de las EDP.

CONTENIDO

- 1. Transformada de Fourier e Interpolación de Operadores.
 - 1.1. Definición de la Transformada de Fourier
 - 1.2. La transformada en espacios L^p
 - 1.3. Teoremas de Interpolación para operadores lineales
- 2. Función Maximal de Hardy-Littlewood.
 - 2.1. Aproximaciones de la identidad
 - 2.2. Desigualdades tipo fuerte y tipo débil
 - 2.3. Teorema de interpolación de Marcinkiewicz
 - 2.4. La función maximal de Hardy-Littlewood

3. Transformada de Hilbert.

- 3.1. El conjugado del núcleo de Poisson
- 3.2. Los teoremas de Riesz y Kolmogorov
- 3.3. Integrales truncadas y convergencia puntual
- 3.4. Multiplicadores

4. Integrales singulares.

- 4.1. Definición de operadores integrales singulares
- 4.2. El método de las rotaciones
- 4.3. Integrales singulares con núcleo par
- 4.4. Integrales singulares con núcleo variable

5. Teorema de Calderón-Zygmund y generalizaciones.

- 5.1. El teorema de Calderón-Zygmund
- 5.2. Integrales truncadas y el valor principal
- 5.3. Operadores generalizados de Calderón-Zygmund
- 5.4. Integrales singulares de Calderón-Zygmund

6. Propiedades de diferenciabilidad en términos de espacios de funciones.

- 6.1. Potenciales de Riesz
- 6.2. Espacios de Sobolev
- 6.3. Potenciales de Bessel
- 6.4. Los espacios de funciones continuas de Lipschitz

7. Espacios H^1 y BMO.

- 7.1. El espacio atómico H^1
- 7.2. El espacio BMO
- 7.3. Un resultado de interpolación
- 7.4. La desigualdad John-Nirenberg

8. Teoría de Littlewood-Paley y Multiplicadores.

- 8.1. Teoría de Littlewood-Paley
- 8.2. Teorema del multiplicador de Hörmander
- 8.3. Multiplicadores de Bochner-Riesz
- 8.4. La función maximal y la transformada de Hilbert a lo largo de una parábola
- 9. Aplicaciones a la Teoría Analítica de Números y a las Ecuaciones Diferenciales Parciales (Por ejemplo: teoremas de restricción y estimativas de Strichartz).

REFERENCIAS

- 1. J. DUOANDIKOETXEA, Fourier Analysis, Graduate Studies in Mathematics, 29, AMS 2001.
- 2. E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, 1970.
- **3.** E. M. STEIN y G. WEISS, Fourier Analysis on Euclidean spaces, Princeton University Press, 1971.
- 4. E. M. STEIN, Harmonic Analysis, Princeton University Press, 1993.

- **5.** C. MUSCALU y W. SCHLAG, Classical and multilinear harmonic analysis, Vol. I. Cambridge University Press, 2013.
- L. GRAFAKOS, Classical Fourier Analysis, Tercera edición, Grad. Text in Math., 269, Springer, 2014

CALIFICACIÓN

Dos exámenes parciales valiendo cada uno el 25% de la nota. Otro 25% se obtendrá de talleres. El 25% restante se obtendrá de un trabajo investigativo desarrollado por el estudiante a lo largo del semestre que abarque o use algunos de los temas del curso. El primer examen parcial se realizará el día miércoles 28 de mayo y el segundo examen parcial el día miércoles 23 de julio.

Índice general

1.	Tra	nsformada de Fourier e Interpolación de Operadores.	7
	1.1.	Transformada de Fourier	7
	1.2.	La transformada de Fourier en $L^p(\mathbb{R}^n)$	8

Capítulo 1

Transformada de Fourier e Interpolación de Operadores.

1.1. Transformada de Fourier.

Insertar historia de la transformada de Fourier (1807) y la vida de Fourier (1768-1830).

Todo esto inspirado en la ecuación del calor

$$\begin{cases} \partial_t U = \partial_x^2 u, & \text{con } (x,t) \in (0,\pi) \times (0,\infty), \\ u(0,t) = u(\pi,t) = 0, & \text{para todo } t \geq 0 \ , \\ u(x,0) = f(x) & f(0) = f(\pi) = 0. \end{cases}$$

Fourier se inspira en buscar una solución de la forma separación de variables

$$u(x,t) = X(x)T(t).$$

Esto motiva a pensar en qué condiciones tiene que cumplir una función f periódica de periodo 2π para poderla escribir como combinación lineal de funciones trigonométricas, es decir

$$f(x) = \sum_{k=0}^{\infty} a_k \cos(kx) + b_k \sin(kx).$$

Por cuestiones de facilidad en la escritura vamos a pensar el problema en funciones de periodo 1, para esto recordemos que

$$e^{ixk} = \cos(kx) + i\sin(kx),$$

luego podemos reescribir la expresión anterior de la forma

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{2\pi i x k}$$

donde

$$c_k = \widehat{f}(k) = \int_0^1 f(x)e^{-2\pi ixk} dx$$
, para todo $k \in \mathbb{Z}$.

El restante de teoría de Fourier se deja como lectura o motivante para entrar al curso de Series de Fourier.

1.2. La transformada de Fourier en $L^p(\mathbb{R}^n)$.

Definición 1.2.1: Transformada de Fourier en $L^1(\mathbb{R}^n)$

Sea $f \in L^1(\mathbb{R}^n)$, llamaremos la transformada de Fourier de f a \widehat{f} definida por

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi} dx, \qquad (1.1)$$

donde $\xi \in \mathbb{R}^n$ y $x \cdot \xi$ es el producto punto entre x y ξ .

Nota 1.2.1:

Veamos que \widehat{f} tiene sentido como integral.

Para ver esto note que

$$\left| \widehat{f}(\xi) \right| \le \left| \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} \, dx \right|,$$

$$\le \int_{\mathbb{R}^n} \left| f(x) e^{2\pi i x \cdot \xi} \right| \, dx,$$

$$\le \int_{\mathbb{R}^n} \left| f(x) \right| \, dx,$$

$$\le \|f\|_1.$$

luego se puede ver que

$$\|\widehat{f}\|_{\infty} \leq \|f\|_1 < \infty.$$

Lo que nos permite definir la transformada de Fourier como un operador $: L^1(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$.

Para ver el comportamiento de la transformada de Fourier anteriormente definida en $L^p(\mathbb{R}^n)$, veamos la siguiente definición.

Definición 1.2.2:

Una función $f \in L^p(\mathbb{R}^n)$ es diferenciable en $L^p(\mathbb{R}^n)$ con respecto a la k-ésima variable si existe $g \in L^p(\mathbb{R}^n)$ tal que

$$\lim_{|h| \to 0} \left\| \frac{f(x + he_k - f(x))}{h} - g(x) \right\|_p = 0,$$

en donde e_k es el vector k-ésimo de la base canónica de \mathbb{R}^n . Si tal función g existe es llamada la derivada parcial respecto a la k-ésima variable de f en $L^p(\mathbb{R}^n)$, lo denotaremos por $\frac{\partial f}{\partial x_k}$.

Ahora sí veamos el siguiente resultado.

Teorema 1.2.1:

Sean $f, g \in L^1(\mathbb{R}^n)$, entonces se satisface que

- 1. $\|\widehat{f}\|_{\infty} \leq \|f\|_1$.
- 2. Si $\tau_h f(x) = f(x-h)$ con $h \in \mathbb{R}^n$, entonces

$$\widehat{\tau_h f}(\xi) = e^{-2\pi i h \cdot \xi} \widehat{f}(\xi),$$

$$\tau_h \widehat{f}(\xi) = \widehat{e^{2\pi i x \cdot h}} f(\xi).$$

3. $T: \mathbb{R}^n \to \mathbb{R}^n$ es transformación lineal invertible y $S = (T^{-1})^t = (T^t)^{-1}$, entonces

$$\widehat{f \circ T} = |det(T)|^{-1} \left(\widehat{f} \circ S\right).$$

En particular, si T es una rotación

$$\widehat{f \circ T} = \widehat{f} \circ T.$$

Si T es dilatación (o contracción) Tx = rx, entonces

$$\widehat{f \circ T}(\xi) = \frac{1}{r^n} \widehat{f}\left(\frac{\xi}{r}\right).$$

- 4. Si $x^{\alpha} f \in L^1(\mathbb{R}^n)$, para $|\alpha| \leq k$ entonces $\widehat{f} \in C^k(\mathbb{R}^n)$ y $\partial^{\alpha} \widehat{f} = (-\widehat{2\pi i x})^{\alpha} f$.
 - Si $f \in L^1(\mathbb{R}^n)$ y $x_k f \in L^1(\mathbb{R}^n)$, entonces

$$\frac{\partial \widehat{f}}{\partial \xi_k} = -\widehat{2\pi i x_k} f(\xi)$$

en la norma de $L^1(\mathbb{R}^n)$.

5. Si $f \in C^k(\mathbb{R}^n)$, $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$ para todo $|\alpha| \leq k$ y $\partial^{\alpha} f \in C^0_{\infty}(\mathbb{R}^n)$ para todo $|\alpha| \leq k-1$, entonces

$$\widehat{\partial^{\alpha} f}(\xi) = (2\pi i \xi)^{\alpha} \widehat{f}(\xi).$$

■ Si $f \in L^1(\mathbb{R}^n)$ y $g = \frac{\partial f}{\partial x_k}$ en la norma de $L^1(\mathbb{R}^n)$, entonces

$$\widehat{g}(\xi) = \frac{\widehat{\partial f}}{\partial x_k}(\xi) = 2\pi i \xi_k \widehat{f}(\xi)$$

Demostración

1. $\|\widehat{f}\|_{\infty} \le \|f\|_{1}$.
Demostrado en la nota (1.2).

2. Si $\tau_h f(x) = f(x-h)$ con $h \in \mathbb{R}^n$, entonces

$$\widehat{\tau_h f}(\xi) = e^{-2\pi i h \cdot \xi} \widehat{f}(\xi),$$

$$\tau_h \widehat{f}(\xi) = \widehat{e^{2\pi i x \cdot h}} f(\xi).$$

Note que

$$\widehat{\tau_h f}(\xi) = \int_{\mathbb{R}^n} f(x - h) e^{-2\pi i x \cdot \xi} dx \qquad \text{Haciendo } u = x - h,$$

$$= \int_{\mathbb{R}^n} f(u) e^{-2\pi i (u + h) \cdot \xi} du,$$

$$= e^{-2\pi i h \cdot \xi} \int_{\mathbb{R}^n} f(u) e^{-2\pi i u \cdot \xi} du,$$

$$= e^{-2\pi i h \cdot \xi} \widehat{f}(\xi).$$

Por otro lado

$$\tau_h \widehat{f}(\xi) = \widehat{f}(\xi - h),$$

$$= \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot (\xi - h)} dx,$$

$$= \int_{\mathbb{R}^n} e^{2\pi i x \cdot h} f(x) e^{-2\pi i x \cdot \xi} dx,$$

$$= e^{2\pi i x \cdot h} \widehat{f}(\xi).$$

3. $T: \mathbb{R}^n \to \mathbb{R}^n$ es transformación lineal invertible y $S = (T^{-1})^t = (T^t)^{-1}$, entonces

$$\widehat{f \circ T} = |\det(T)|^{-1} \left(\widehat{f} \circ S\right).$$

En particular, si T es una rotación

$$\widehat{f \circ T} = \widehat{f} \circ T.$$

Si T es dilatación (o contracción) Tx = rx, entonces

$$\widehat{f \circ T}(\xi) = \frac{1}{r^n} \widehat{f}\left(\frac{\xi}{r}\right).$$

Note que

$$\widehat{f \circ T}(\xi) = \int_{\mathbb{R}^n} f(Tx)e^{-2\pi i x \cdot \xi} dx \qquad \text{Haciendo } u = Tx,$$

$$= \int_{\mathbb{R}^n} f(u)e^{-2\pi i u \cdot S\xi} \frac{du}{|\det(T)|},$$

$$= |\det(T)|^{-1}\widehat{f}(S\xi),$$

$$= |\det(T)|^{-1}(\widehat{f} \circ S)(\xi).$$

Ahora, note que si T es una rotación, entonces |det(T)| = 1

- 4. Si $x^{\alpha}f \in L^{1}(\mathbb{R}^{n})$, para $|\alpha| \leq k$ entonces $\widehat{f} \in C^{k}(\mathbb{R}^{n})$ y $\partial^{\alpha}\widehat{f} = \widehat{(-2\pi ix)^{\alpha}}f$.
 - Si $f \in L^1(\mathbb{R}^n)$ y $x_k f \in L^1(\mathbb{R}^n)$, entonces

$$\frac{\partial \widehat{f}}{\partial \xi_k} = \widehat{-2\pi i x_k} f(\xi)$$

en la norma de $L^1(\mathbb{R}^n)$.

5. Si $f \in C^k(\mathbb{R}^n)$, $\partial^{\alpha} f \in L^1(\mathbb{R}^n)$ para todo $|\alpha| \leq k$ y $\partial^{\alpha} f \in C^0_{\infty}(\mathbb{R}^n)$ para todo $|\alpha| \leq k - 1$, entonces

$$\widehat{\partial^{\alpha} f}(\xi) = (2\pi i \xi)^{\alpha} \widehat{f}(\xi).$$

■ Si $f \in L^1(\mathbb{R}^n)$ y $g = \frac{\partial f}{\partial x_k}$ en la norma de $L^1(\mathbb{R}^n)$, entonces

$$\widehat{g}(\xi) = \widehat{\frac{\partial \widehat{f}}{\partial x_k}}(\xi) = 2\pi i \xi_k \widehat{f}(\xi)$$

Bibliografía