Cours de Statistiques Inférentielles

CQLS: cqls@upmf-grenoble.fr

5 juillet 2014

Assertion d'intérêt : Alfred est compétent \Leftrightarrow $\mathbf{H_1}$: $\sigma_{\mathcal{A}}^2 < 0.1$.

Décision (au vu des n = 20 données) :

Accepter $\mathbf{H_1}$ si $\widehat{\delta_{\sigma_A^2,0.1}}\left(\mathbf{y^A}\right) < \delta_{lim,\alpha}^-$

Assertion d'intérêt : Alfred est compétent \Leftrightarrow $\mathbf{H_1}$: $\sigma_{\mathcal{A}}^2 < 0.1$.

Décision (au vu des n = 20 données) :

Accepter H_1 si $p-valeur(gauche) < \alpha$

Question: Peut-on pour autant plutôt penser au vu de ce même jeu de données qu'Alfred n'est pas compétent (i.e. $\mathbf{H_1}:\sigma_A^2>0.1$)?

Réponse : p-valeur droite = ?

Question: Peut-on pour autant plutôt penser au vu de ce même jeu de données qu'Alfred n'est pas compétent (i.e. $\mathbf{H_1}:\sigma_A^2>0.1$)? **Réponse**: p-valeur droite = 1-(p-valeur gauche)=1-21.16%=78.84% car la somme des p-valeurs droite et gauche est égale à 1!

Problématique de la dictée

Assertion d'intérêt : Il y a un effet sur le niveau des bacheliers en orthographe \Leftrightarrow $\mathbf{H_1}: \mu^D \neq 6.3$.

Décision (au vu des n = 25 données) :

Accepter \mathbf{H}_1 si $\widehat{\delta_{\mu^{\mathsf{D}},6.3}}\left(\mathbf{y}^{\mathsf{D}}\right)<\delta_{\lim,\alpha/2}^{-}$ ou $\widehat{\delta_{\mu^{\mathsf{D}},6.3}}\left(\mathbf{y}^{\mathsf{D}}\right)>\delta_{\lim,\alpha/2}^{+}$

Problématique de la dictée

Assertion d'intérêt : Il y a un effet sur le niveau des bacheliers en orthographe \Leftrightarrow $\mathbf{H_1}: \mu^D \neq 6.3$.

Décision (au vu des n = 25 données) :

Accepter H_1 si p-valeur (bi)=2×min(p-valeur gauche,p-valeur droite) < α

Hétérogénéité des notes

Assertion d'intérêt : Les variances des notes entre les sections C et D sont différentes \Leftrightarrow $\mathbf{H_1}$: $d_{\sigma^2} \neq 0$.

Décision (au vu des données) :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{d_{\sigma^2},0}}\left(\mathbf{y^C},\mathbf{y^D}\right) < \delta_{\lim,\alpha/2}^-$ ou $\widehat{\delta_{d_{\sigma^2},0}}\left(\mathbf{y^C},\mathbf{y^D}\right) > \delta_{\lim,\alpha/2}^+$

Hétérogénéité des notes

Assertion d'intérêt : Les variances des notes entre les sections C et D sont différentes \Leftrightarrow $\mathbf{H_1}$: $d_{\sigma^2} \neq 0$.

Décision (au vu des données) :

Accepter H_1 si p-valeur (bi)=2×min(p-valeur gauche,p-valeur droite)< α

