

Decentralized Energy Trading Model with Smart Grids and Blockchain

Authors

Jaymin Dafda SVNIT Shriniwas Patil SVNIT

Keyur Parmar SVNIT

Outline

- Introduction
- Literature Survey
- The Proposed Decentralized Energy Trading Model
- Results and Analysis
- Conclusions

Decentralized Energy Trading Model with Smart Grids and Blockchain

Introduction

What is Energy Trading?

Energy Generation and Distribution

Energy Generation Sources [1]

- Renewable 26%
- Non-renewable 74%

Energy Lost during Distribution [1]

- Distribution 5%
- Generation 59%

^[1] International Energy Agency. IEA data and statistics for energy consumption [Online]. Available: https://www.iea.org/data-andstatistics/data-tables?country=WORLDenergy=Balancesyear=2018. Accessed: June 15, 2022.

How can we minimize energy loss?

Efficient and reliable energy generation and distribution

How can we provide efficient and reliable energy distribution?

Smart Grids [9]

[9] M. Nazari, S. Khorsandi and J. Babaki, "Security and Privacy Smart Contract Architecture for Energy Trading based on Blockchains", Proceedings of ICEE: 29th Iranian Conference on Electrical Engineering, Iran, IEEE, 2021 pp. 596-600, 10.1109/ICEE52715.2021.9544155.

Energy Trading

When energy demand exceeds supply, energy trading enters scene

Who Trades Energy?

Who Trades Energy?

- Producer
- Consumer
- Prosumer

Note: Cochin Airport (CIAL) is positive-powered.

Literature Survey

State-of-the-Art Comparison between the Existing Models

Author	Anonymity	Decentralized	Eliminate trusted third-party	Micro grid	Protection from SPOF	Load balancing	Price governance
Li et al. [5], 2019	√	Х	Х	✓	Х	√	Х
Pee et al. [6], 2019	X	✓	✓	X	\checkmark	X	X
Liang et al. [10], 2020	X	✓	✓	X	\checkmark	X	X
Esmat et al. [7], 2021	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	X

Challenges in Existing Mechanisms

- Transparency for users to gain trust
- Load balancing of multiple transaction
- Insider threat from a trusted third-party
- Centralized systems are vulnerable to SPOF

What are the solutions?

Blockchain

Can blockchain and price governance provides solutions for above challenges?

Yes,
Blockchain to eliminate TTP and SPOF, and provide transparency

The Proposed Decentralized Energy Trading Model

Proposed Decentralized Energy Trading Model

- Entities
 - □ Producer
 - □ Consumer
 - □ Prosumer
- Trading Market Center (TMC)
- Blockchain Netwok

Architecture of the Proposed Decentralized Energy Trading Model

Producer Algorithm

Algorithm 2: Producer pseudo code **Data:** $PP_{add} \leftarrow Producer's publicaddress,$ $T \leftarrow get(current time stamp)$ **Result:** Verification of producer and smart contract initialization if PP_{add} is registered then $TmcOffers() \leftarrow P_Offer();$ else Terminate transaction; end while of ferSelected() is not True do if of ferSelected() then smartContract(); end

Consumer Algorithm

```
Algorithm 1: Consumer pseudo code
 Data: CP_{add} \leftarrow Consumer's publicaddress,
        T \leftarrow get(current time stamp)
 Result: Verification of consumer and smart contract
         initialization
 if CP_{add} is registered then
     get(offersFromTMC);
     energyTradeOffer \leftarrow SelectedOffer;
     smartContract();
 else
     Terminate transaction;
 end
```


Smart Contract Algorithm

Continued on next page...

Algorithm 3: Smart contract pseudo code

```
Data: PP_{add} \leftarrow Producer's publicaddress,
      CP_{add} \leftarrow Consumer's publicaddress,
      T \leftarrow get(current time stamp),
      balance \leftarrow get(WalletBalance),
      energy \leftarrow get(energyOfProducer),
       finalAmount \leftarrow get(finalAmount),
       finalEnergyUnits \leftarrow get(finalEnrgyUnits)
Result: Validate the payment amount in consumer's
        wallet and the energy units in producers
        wallet. Smart contract execution and
        termination if fails.
if balance \ge final A mount then
   if energy \ge finalEnergyUnits then
       PP_{add} \leftarrow finalAmount;
         CP_{add} \leftarrow finalEnergyUnits;
         closeContract();
    else
       closeContract(); Terminate transaction;
   end
 else
     closeContract(); Terminate transaction;
 end
```


Results and Analysis

Implementation Methodology

- RSA for public-private key generation
- Keccak Hash Function to generate public address on ethereum (20 byte)
- Remix IDE for smart contract development

Security and Privacy

- Producers and consumers Instead of real identities use public keys (addresses)
- Blockchain Provides immutability of records and transperancy
- Smart contract enables automatic energy trading

State-of-the-art comparison between proposed decentralized energy trading model and the existing models

Author	Anonymity	Decentralized	Eliminate trusted third-party	Micro grid	Protection from SPOF	Load balancing	Price governance
Li et al. [5], 2019	√	Х	Х	✓	Х	√	Х
Pee et al. [6], 2019	X	✓	✓	X	✓	X	X
Liang et al. [10], 2020	X	✓	\checkmark	X	\checkmark	X	X
Esmat et al. [7], 2021	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	X
Proposed model	✓	✓	\checkmark	✓	✓	✓	\checkmark

Conclusions

Conclusions

- Proposed a model for the management of energy trading
- Used blockchain to eliminate centralized management
- Provides a transparency in the energy trading management
- Ensures security and privacy of users (producers and consumers)
- Ensures users will get correct price

References

- [1] International Energy Agency. IEA data and statistics for energy consumption [Online]. Available: https://www.iea.org/data-andstatistics/data-tables?country=WORLDenergy=Balancesyear=2018. Accessed: June 15, 2022.
- [2] International Energy Agency. (2021) Net Zero by 2050 [Online]. Available: https://www.iea.org/articles/net-zero-by-2050. Accessed: June 15, 2022.
- [3] N. Z. Aitzhan and D. Svetinovic, "Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams.", Transactions on Dependable and Secure Computing, vol. 15, no. 5, pp. 840-852, IEEE, 2018, 10.1109/TDSC.2016.2616861.
- [4] Suleiman, H., Svetinovic, D. "Evaluating the effectiveness of the security quality requirements engineering (SQUARE) method: a case study using smart grid advanced metering infrastructure.", Requirements Eng. Volume 18, Issue 4, 251–279, 2013, 10.1007/s00766-012-0153-4.
- [5] T. Li, W. Zhang, N. Chen, M. Qian and Y. Xu, "Blockchain Technology Based Decentralized Energy Trading for Multiple-Microgrid Systems", Proceedings of EI2: 3rd Conference on Energy Internet and Energy System Integration, Changsha, China, IEEE, 2019, pp. 631-636, 10.1109/EI247390.2019.9061928.
- [6] S. J. Pee, E. S. Kang, J. G. Song and J. W. Jang, "Blockchain based smart energy trading platform using smart contract", Proceedings of International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, pp. 322-325, IEEE, 2019, 10.1109/ICAIIC.2019.8668978.
- [7] Ayman Esmat, Martijn de Vos, Yashar Ghiassi-Farrokhfal, Peter Palensky, Dick Epema. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology", Applied Energy. Volume 282. Part A. 2021, 10.1016/j.apenergy.2020.116123.
- [8] P. Ganguly, M. Nasipuri and S. Dutta, "Challenges of the Existing Security Measures Deployed in the Smart Grid Framework", Proceedings of SEGE: 7th International Conference on Smart Energy Grid Engineering, Oshawa, Canada, pp. 1-5, IEEE, 2019, 10.1109/SEGE.2019.8859917.
- [9] M. Nazari, S. Khorsandi and J. Babaki, "Security and Privacy Smart Contract Architecture for Energy Trading based on Blockchains", Proceedings of ICEE: 29th Iranian Conference on Electrical Engineering, Iran, IEEE, 2021 pp. 596-600, 10.1109/ICEE52715.2021.9544155.
- [10] M. -T. Chen, C. X. Liang and C. C. Chen, "A Traceable Smart Grid Trading System under Blockchain", International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, pp. 380-383, IEEE, 2020, 10.1109/IS3C50286.2020.00104.

[11] E. S. Kang, S. J. Pee, J. G. Song and J. W. Jang, "A Blockchain-Based Energy Trading Platform for Smart Homes in a Microgrid", Proceedings of ICCĆS: 3rd International Conference on Computer and Communication Systems, Nagoya, Japan, pp. 472-476, IEEE, 2018, 10.1109/CCOMS.2018.8463317. [12] Investopedia. Equilibrium. Retrived from https://www.investopedia.com/terms/e/equilibrium.asp.

Accessed: June 15, 2022.

[13] H. Farhangi, "The path of the smart grid", Power and Energy Magazine, vol. 8, no. 1, pp. 18-28, IEEE, 10.1109/MPE.2009.934876. 2010.

[14] M. Lehtonen, A. Seppala, V. Kekkonen, P. Koponen, G. Koreneff and B. Lemstrom, "Distribution energy management in the environment of deregulated electricity market", Proceedings of International Conference on Energy Management and Power Delivery EMPD, Singapore, pp. 516-521 vol.2, IEEE, 1995, 10.1109/EMPD.1995.500781.

[15] G. Suter and T. G. Werner, "The distribution control centre in a SmartGrid", Proceedings of CIRED - 20th International Conference and Exhibition on Electricity Distribution - Part 1, Prague, Czech Republic, pp. 1-4,

IET, 2009, 10.1049/cp.2009.0521.

[16] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang and E. Hossain, "Enabling Localized Peer-to-Peer Electricity Trading Ámong Plug-in Hybrid Electric Vehicles Using Consortium Blockchains", Transactions on Industrial Informatics, vol. 13, no. 6, pp. 3154-3164, IEEE, 2017, 10.1109/TII.2017.2709784.

[17] Team KECCAK. KECCAK hash function [Online]. Available: https://keccak.team/keccak.html. Accessed:

June 15, 2022.

[18] Ethereum GitHub. Yellow Paper. Retriven from https://ethereum.github.io/yellowpaper/paper.pdf. Accessed: 2022-06-20.

[19] S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing and T. Basar, "Dependable Demand Response Management in the Smart Grid: A Stackelberg Game Approach", Transactions on Smart Grid, vol. 4, no. 1, pp. 120-132, IEEE, 2013, 10.1109/TSG.2012.2223766.

Thank You

Centralized Vs Decentralized Architecture

