1 Definition

 f_s = sampling rate

 λ = wavelength

T = period

 ω = angular frequency

 f_s = sampling rate λ = wavelength

T = period

Frequency Domain

1 Definition

 ω = angular frequency

2 Wavelength λ

$$\lambda = \frac{c}{f}$$

3 Period T

$$T = 1 ms = 1000 Hz$$

4 Angular Frequency ω

$$\omega = 2\pi f$$
$$= \frac{2\pi}{T}$$

$$\omega_0 = 2\pi T$$
$$= \pi \frac{f_0}{f s}$$

5 Unit Pulse & Unit Step

unit pulse:

$$\delta(n) = \begin{cases} 1, & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

unit step:

$$u(n) = \begin{cases} 1, & \text{if } n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

6 Harmonic Signals

$$n = [1:t\cdot f_s]$$

$$x[n] = sin(\omega_0 n + \varphi)$$

$$= sin(2\pi f_0 T + \varphi)$$

$$= sin(2\pi \frac{f_0}{f_s} n + \varphi)$$