Notes Summary: Surfaces ECHE 464, Lecture 1, Aug. 25, 2015

Consider the system:

Where α is a liquid or gas phase of composition $\{c_i^{\alpha}\}$ in mole numbers/volume and β is a liquid phase of composition $\{c_i^{\beta}\}$. The total volume is V and the total entropy is S, the total mole number of component i is $\{n_i\}$ and the interfacial area is A.

The internal energy of the system is U=U(S, V, {n_i}, A) and by the chain rule of calculus

$$dU = \frac{\partial U}{\partial S}dS + \frac{\partial U}{\partial V}dV + \sum_{i=1}^{\text{\#components}} \frac{\partial U}{\partial n_i}dn_i + \frac{\partial U}{\partial A}dA$$

It is a result of the combination of the first and second laws of thermodynamics that

$$dU = TdS - pdV + \sum_{i=1}^{\#components} \mu_i dn_i + \gamma dA$$

So that in particular $\gamma=\frac{\partial U}{\partial A}$, which justifies naming γ as the surface energy. (Note that you may then call p the volume energy, if you wish.) However, just as we use p as the scalar component of the pressure tensor:

$$\vec{P} = p\vec{\delta} + visco - elastic terms$$

where $\ddot{\mathcal{S}}$ is the 3-d identity tensor ($\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$). Then consider

$$\ddot{\gamma} = \gamma \overline{\ddot{\delta}} + surface\ visco - elastic\ terms$$

where $\overline{\ddot{\mathcal{S}}}$ is the 2-d identitytensor. Here, γ can be considered a tension . γ [=] N/m **or** γ [=] J/m²!