

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 816 378 A1

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 07.01.1998 Bulletin 1998/02
- (51) Int CLE: C07K 9/00, A61K 38/14
- (21) Application number. 97304495.1
- (22) Date of filing 25.06.1997
- (84) Designated Contracting States.

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE

 Designated Extension States:

 RO
- (30) Priority: 28.06.1996 US 20774 P 01.05.1997 US 847069
- (71) Applicant: ELI LILLY AND COMPANY Indianapolis, Indiana 46285 (US)
- (72) Inventors:
 - Cooper, Robin David Grey Indianapolis, Indiana 46220 (US)

- Rodriguez, Michael John Indianapolis, Indiana 46260 (US)
- Snyder, Nancy June Charlottesville, Indiana 46117 (US)
- Zweifel, Mark James Indianapolis, Indiana 46214 (US)
- (74) Representative: Hudson, Christopher Mark et al Lilly Industries Limited European Patent Operations Erl Wood Manor Windlesham Surrey GU20 6PH (GB)
- (54) Glycopeptide antibiotic amide derivatives
- (57) The present invention is directed to amides of antibiotic A82846B (also known as chloroorienticin A), and of N⁴-derivatives of A82846B. The present amide compounds are useful as antibacterials, especially for

the control of gram positive bacteria; the compounds are particularly useful for the control of resistant bacterial strains, such as vancomycin-resistant-enterococci ("VRE").

Description

5

The present invention is directed to glycopeptide amides more particularly to amides of antibiotic AB2B46B, also known as chloroorienticin A, and of N⁴-derivatives of A62846B. These amides are useful as antibacterials, especially for the control of gram positive bacteria, the compounds are particularly useful for the control of resistant bacterial strains, such as vancomycin-resistant-enterococci (*VRE*)

The compounds of the present invention are defined by Formula I.

wherein R1 is:

35

hydrogen or -CH₂R²;

wherein R² is:

hydrogen, 40 alkyl of C1-C15, alkenyl of C2-C15. alkynyl of C2-C15 haloalkyl of C1-C7, acenaphthenyl, 45 2-fluorenyl, 9,10-dihydro-2-phenanthrenyl, alkyl of C1-C11-R3 alkenyl of C2-C7-R3, 50 alkynyl of C_2 - C_7 - R^3 , or alkyl of C₁-C₇-O-H³.

wherein R3 is a radical of the formula

$$-R_4 = \left[linker(c \text{ or } 1)^{-R^4} \right]_{(0 \text{ or } 1)}$$

wherein each \mathbb{R}^4 independently represents phenyl, cycloalkyl of \mathbb{C}_5 - \mathbb{C}_6 , naphthyl, or thienyl, each of which is unsubstituted or is optionally substituted with one or two substituents, each of which is independently alkyl of C_1 - C_{10} , haloalkyl of C_1 - C_2 , haloalkoxy of C_1 - C_2 , alkoxy of C_1 - C_{10} , halo, cyano, or nitro, 10 and "linker" is.

- alkylene of C1-C3.
- O-alkylene of C1-C6.
- alkylene of C1-C6-O-, 15

 - N(H or loweralkyl of C₁-C₃)-,

 - SO-,
- 20 SO₂-.

25

5

- CH=CH-,
 - C≡C-,
 - N=N-,

35

or

40

- and wherein R5 is defined as follows: 45
 - (1) each R⁵ independently represents hydrogen,

cycloalkyl of C₅-C₆. 50

phenyl or substituted phenyl bearing from one to three substituents, each of which is independently halo,

nitro.

loweralkyl of C1-C4.

cycloalkyl of C5-C6, 55 loweralkoxy of C1-C4,

haloloweralkyl of C_1 - C_4 , or haloloweralkoxy of C_1 - C_4 .

naphthyl.

biphenylyl,

5

15

25

30

radical of the formula $-R^6$ - $(R^7)0$, 1, or 2, wherein R^6 is loweralkyl of C_1 - C_8 optionally substituted by from one to three substituents, each of which is independently selected from the group consisting of halo, nitro, cyano, loweralkoxy of C_1 - C_4 , haloloweralkyl of C_1 - C_4 , and haloloweralkoxy of C_1 - C_4 , and R^7 is

-N. R.

wherein each R^8 is independently hydrogen or loweralkyl of C_1 - C_4 or one R^8 is hydrogen and the other R^8 is 10 tert-butoxycarbonyl, or R7 is phenyl or substituted phenyl as defined above, or

(2) one R⁵ is hydrogen and the other R⁵ is (2-furanon-3-yl); or

(3) both R5s are taken together with the nitrogen and constitute a five- to seven-membered heterocyclic ring optionally containing in addition to the indicated nitrogen atom one additional heteroring atom which is nitrogen, oxygen, or sulfur, and which heterocyclic radical can be unsubstituted or substituted with from one or two substituents, each of which is loweralkyl of C_1 - C_2 , loweralkoxy of C_1 - C_2 , phenyl, benzyl, or C_1 - C_6 -alkanoyl; or a salt thereof.

Certain compounds of the present invention are preferred. Amides of A82846B derivatives (R1=-CH₂R²) generally exhibit antibacterial activity at concentrations lower than the amides of AB2846B itself (R1=H) 20

Antibacterial activity is further enhanced by employing certain "-CH₂R²" groups such as the following

(4-phenylbenzyl) (4-(4-chlorophenyl)benzyl)

(4-(4-methylphenyl)benzyl)

(4-phenoxybenzyl)

((4-n-butylphenyl)benzyl)

(4-benzylbenzyl)

Primary amines (H₂N-R₅) may sometimes be preferred, for availability of starting materials and convenience of synthesis. Compounds wherein R2=R3 are also preferred. Other preferences will be apparent from the further teachings herein.

The compounds of the present invention are prepared by reacting A82846B (R1=hydrogen) or an N4-derivative thereof (R1=-CH₂R²), defined by Formula II:

35

40

45

5

HO

$$H_3$$
 C
 H_3
 C
 H_3
 C
 H_3
 C
 H_4
 H_5
 C
 H_5
 H_5
 H_5
 H_7
 H_7

with an amine of the formula

30

35

45

50

55

$$HN < \frac{R^5}{R^5}$$

The Formula II compounds are known or prepared in standard procedures. A82846B (R¹=hydrogen) is the subject of U.S. Patent 5,312,738. The derivatives, those compounds of Formula II wherein R¹ is -CH₂R², are prepared from A82846B by reductive alkylation. A82846B is initially reacted with an aldehyde to form an intermediate Schiff's base, which is subsequently reduced to obtain the desired Formula II compound. Alkylation at the N⁴ position, in preference to other reactive sites in the molecule, is favored by supplying a source of soluble copper. Copper (II) acetate is a preferred source of copper. The copper is preferably supplied in an amount equimolar with the A82846B. Examples of the Formula II compounds are to be found in EPO 667,353, published August 16, 1995.

The reaction of Formula II compounds and amines of the formula

$$HN < \frac{R^5}{R^5}$$

yields the compounds of the present invention. The reaction conditions are not critical. The reaction proceeds well when carried out in a solvent such as DMF, DMSO, or a mixture of DMF and DMSO, and at reaction temperatures of 0 to 100_C, although the reaction is conveniently conducted at room temperature. Generally, the reaction is conducted with equimolar proportions of the reactants or an excess of the amine.

The reaction is facilitated by the use of a coupling agent, such as:

- a) benzotriazol-l-yloxy-tripyrrolidinophosphonium hexafluorophosphate, one form of which is sold under the trademark PyBOP® (Calbiochem-Novabiochem AG).
- b) benzotriazol-l-yloxytris(dimethylamino)phosphonium hexafluorophosphate (*BOP*);
- c) 0-benzotriazol-1-yl-N.N,N'N'-tetramethyluronium hexafluorophosphate (*HBTU*):
- d) 1,3-dicyclohexylcarbodiimide (*DCC*), alone or in combination with I-hydroxybenzotriazole hydrate (*HOBT*);
- e) N,N'-dicyclohexyl-4-morpholinecarboxamidine ("WSC"); and
- f) (2-ethoxy-1-ethoxycarbonyl)-1.2-dihydroquinoline (*EEDQ*).

The first listed of these is preferred. In general, the coupling agent is supplied in an equimolar amount or in an excess.

The product can be isolated by precipitation or by lyophilization of the reaction mixture, and purified if desired in a conventional manner, such as by HPLC. Characterization of products is best accomplished by Fast Atom Bombardment Mass Spectroscopy (FAB-MS).

When it is desired to employ a salt, a compound of the present invention can be reacted with a mineral or organic acid, in techniques well known to those skilled in the art. Pharmaceutically-acceptable salts are preferred.

The following example reports the preparation of an exemplary compound of the present invention.

Example 1:

10

5

N4-(4-PHENOXYBENZYL)A82846B, 3-(DIMETHYLAMINO)PROPYLAMIDE, TRIFLUOROACETATE SALT

A mixture of N⁴-(4-phenoxybenzyl)A82846B, trifluoroacetate salt. (0.668 g, 0.376 mmol, 1.0 equivalent) in 25 ml dimethylsulfoxide (DMSO) under an atmosphere of argon was treated with 3-(dimethylamino)propylamine (0.038 g, 0.376 mmol, 1.0 eq.) and benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP®) (0.196 g, 0.376 mmol, 1.0 eq.). The mixture was stirred at room temperature for 1 hour, diluted with 100 ml H_2O , and lyophilized to give a solid.

The analytical method for analysis was 15% CH₃CN/0.1% TFA at time 0 to 80% CH₃CN/0.1% TFA at 15 minutes. The UV wavelength used was 235 nm and the flow rate 2 ml/minute. Analysis was done using a Waters Nova-pak C18 RCM column (8 x 100 mm) with a Nova-pak C18 guard insert. The solid was purified by preparative reverse-phase high performance liquid chromatography (HPLC) using a Waters 3 x (40 x 100 mm) C18 Nova-pak cartridge with Waters C18 Nova-pak guard insert and utilizing a TFA buffer system. The desired fraction was lyophilized to give the trifluor-oacetate salt, a white solid (0.455 g, 55%). The product was characterized by FAB*MS, (M+3H), 1860.

Other products of the present invention were prepared as in Example 1 or with some modifications of the procedure. Modifications included varying the solvent, providing a longer reaction time, up to 123 hours, increasing the amount of amine and/or coupling agent up to 5 equivalents, and using the compound of Formula I as a free base. The reaction appeared to work best with DMSO, but DMF was easier to remove. The reaction was analyzed by HPLC to determine if product was present; if the reaction was incomplete, more amine (1-5 eq) and coupling agent (1-5 eq) were added with solvent and the reaction was continued from 3.5 hours to 48 hours longer.

Other examples of the present invention are listed in Table 1.

35

30

40

45

10	
15	
20	
25	
30	
35	
40	
45	
50	

55

TABLE I

Mass Spec. FAB-MS (M+3H)	1773	1814	1814	1831	1885	1841	1915
Yield	52	19	38	8.5	2.7	20	ω
Мате	N ⁴ -(4-phenylbenzyl)A82846B, methylamide, trifluoroacetate salt	N^4 -(4-phenylbenzyl)A82846B, n-butylamide, trifluoroacetate salt	N ⁴ -(4-phenylbenzyl)A82846B, tert-butylamide, trifluoroacetate salt	N ⁴ -(4-phenoxybenzyl)A82846B, tert-butylamide, trifluoroacetate salt	N ⁴ -(4-phenoxybenzyl)A82846B, n- octylamide, trifluoroacetate salt	N ⁴ -(4-phenylbenzyl)A82846B, DL- (2-furanon-3-yl)amide	N4-(4-phenylbenzyl)A82846B, (4-cyclohexylphenyl)amide, trifluoroacetate salt
R.1	4-phenylbenzyl	4-phenylbenzyl	4-phenylbenzyl	4-phenoxybenzyl	4-phenoxybenzyl	4-phenylbenzyl	4-phenylbenzyl
R 5	СН3-	n-C4H9-	(CH3)3-C-	(CH3)3-C-	n-C8H17-		4-cyclohexylphenyl
Z X O .	2	<u></u>	4	2	9		ω

,			0	1964
9 benzyl	4-phenoxybenzyl	N^4 -(4-phenoxybenzyl)A82846B, benzylamide, trifluoroacetate	۰ ۲	F 001
	1 Sheny henzy 1	salt N4-(4-phenylbenzyl)A82846B,	47	1849
10 benzyl	f-mar Lind - b	benzylamide		
1 benzy 1	4-phenylbenzyl	.	433	1878
12 4-methoxybenzyl	4-phenylbenzyl	N4-(4-phenylbenzyl)A82846B, (4-methoxybenzyl)amide,		
	4-phenylbenzyl	Lrifluoroacecace 3d- N4-(4-phenylbenzyl)A82846B, (3-	N.D.	1830
13 3-methoxypropy.	4-phenoxybenzy1	Methoxypropyllamide N4-(4-phenoxybenzyl)A82846B,	27	1880
14 phenetnyı 		phenetnylamine, trifluoroacetate salt	Z.D.	1842
15 phenethyl	(4-n-butylbenzyl)	N ⁴ - (4-n-butylbenzyl) A82846B, phenethylamide,		
		thy.	27	1696
16 phenethyl	hydrogen	trifluoroacetate salt	58	1862
17 phenethyl	4-phenylbenzyl	N*-(4-phenylbene)	37	1862
18 phenethyl	4-phenylbenzyl	N4-(4-phenylbenzyl)A820402, phenethylamide, HCl salt	15	1875
19 phenethyl	4-(4- methylphenyl)-	N4-(4-(4-methylphenyl)benzyl)- A82846B, phenethylamide		
	benzy1	A82846B, (3-phenyl-n-	o z	1710
20 3-phenyl-n-propyl	nyarogen	propy1) amide (1 2 propy1) A82846B, (3-	26	1844
31 (CH3) 3N-CH2-CH2-CH2	2- 4-phenylbenzyl	N*-(4-pueny 10-11) amide	4	-

- 1				T	Υ
	1953	1678	1682	1976	1878
	16	19	48	21	61
	$N^4 - (4-phenylbenzyl)$ A82846B, (3,3-diphenyl-n-propyl) amide	A82846B, (3-(dimethylamino)-n- propyl)amide, trifluoroacetate	A82846B, benzylamide, trifluoroacetate salt	N4-(4-(4-chlorophenyl)benzyl)- A82846B, 5-(tert- butoxycarbonylamino)- pentylamide, tris(trifluoroacetate) salt	N4-(4-(4- chlorophenyl)benzyl)A82846B, 5- aminopentylamide, tetra(trifluoroacetate) salt
	4 - pheny Ibenzy I 	hydrogen	hydrogen	4-(4- chlorophenyl)- benzyl	4-(4- chlorophenyl)- benzyl
	22 3,3-diphenyl-n-propyl 4-phenylbenzyl	23 (CH3)2N-CH2-CH2-CH2-	24 benzyl	5-(tert- butoxycarbonylamino)- pentyl	5-aminopentyl
2	77	23	24		26

The invention is further illustrated by Examples 25 and 26

Example 25

N4-(4-(4-CHLOROPHENYL)BENZYL)A82846B_5-(TERT-BUTOXYCARBONYLAMINO)PENTYLAMIDE, TRIS (TRIFLUOROACETATE) SALT

A mixture of N⁴-(4-(4-chlorophenyl)benzyl)A82846B, diphosphate salt (0.5 g, 0.251 mmol, 1.0 equivalent) in 8 ml dimethylformamide (DMF) and 4 ml dimethylsulfoxide (DMSO) under an atmosphere of nitrogen was treated with benzotriazol-l-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBop®) (0.261 g, 0.502 mmol, 2.0 eq), N,N-diisopropylethylamine (0.097 g, 131 μl, 0.75 mmol, 3.0 eq), and N-(tert-butoxycarbonylamino)-1.5-diaminopentane (105 μl, 0.50 mmol, 2 eq). The mixture was stirred at room temperature for 5 days, then diluted with 80 ml acetone to produce a precipitate. The solid was collected by filtration to yield 526 mg of crude solid.

The analytical method for analysis was 100/0-25/75%, A/B over 30 minutes (A-0.1% TFA, 5% acetonitrile in water and B-acetonitrile). The UV wavelength used was 235 nm and the flow rate was 2 ml/minute. Analysis was done using a Waters µ bondapak™ C18 column (3.9 X 300 mm, 10 µm, 125 A).

The solid was purified by preparative reverse-phase high performance liquid chromatography (HPLC) on a Waters Prep 2000 system using a Waters Nova-pak® C18 cartridge [3 X (40 X 100 mm), 6 μ m, 60 A] with a Waters Nova-pak® C18 guard insert. The solvent system utilized was 0/100-75/25, B/C over 30 minutes (B-acetonitrile and C=0.1% TFA, 5% acetonitrile in water). The UV wavelength used was 235 nm and the flow rate was 50 ml/minute. The titled product was isolated (125 mg, 21% yield) and characterized by FAB-MS¹ calcd for $C_{96}H_{117}Cl_3N_{12}O_{27}$ 1974.7, found 1976.2 (M+2H).

Example 26

25

35

45

Nº-(4-(4-CHLOROPHENYL)BENZYL)A82846B, 5-AMINOPENTYLAMIDE, TETRA(TRIFLUOROACETATE) SALT

A mixture/suspension of N⁴-(4-(4-chlorophenyl)benzyl) A82846B, 5-(tert-butoxycarbonylamino)pentylamide, tris (trifluoroacetate) salt, 0.125 g, 0.0539 mmol, 1 eq) in 15 ml dichloromethane was treated with trifluoroacetic acid (500 μ i, 6.49 mmol, 120.4 eq) at 0°C. The reaction was stirred and allowed to warm to room temperature over 2.25 hours. A residue adhered to the side of the flask and was dissolved by adding methanol. The solvents were removed under vacuum and the residue was azeotroped with toluene (2X) to yield a white solid. The solid was analyzed and purified as above to yield the titled product (77 mg, 61% yield). The material was characterized by FAB-MS: calcd for $C_{91}H_{109}Cl_3N_{12}O_{25}$ 1874.7, found 1877.7 (M+3).

The compounds of Formula I are useful for the treatment of bacterial infections. Therefore, in another embodiment, the present invention is directed to a method for controlling a bacterial infection in a host animal, typically a warm-blooded animal, which comprises administering to the host animal an effective, antibacterial amount of a compound of Formula I. In this embodiment, the compounds of the present invention can be used to control and treat infections due to various bacteria, but especially gram-positive bacteria. In a preferred embodiment, the compounds are used to control and treat infections due to bacteria resistant to existing antibacterials. For example, certain bacteria are resistant to methicillin, and yet others are resistant to vancomycin and/or teicoplanin. Strains of Enterococcus resistant to vancomycin are referred to as "VRE" (vancomycin-resistant Enterococcus); these strains represent a serious problem, especially in nosocomial settings. The present compounds provide a technique for controlling and treating infections due to VRE

In carrying out this embodiment of the invention, the compounds can be administered by any of the conventional techniques, including the oral route and parenteral routes such as intravenous and intramuscular. The amount of compound to be employed is not critical and will vary depending on the particular compound employed, the route of administration, the severity of the infection, the interval between dosings, and other factors known to those skilled in the art. In general, a dose of from about 0.5 to about 100 mg./kg will be effective; and in many situations, lesser doses of from about 0.5 to about 50 mg./kg will be effective. A compound of the present invention can be administered in a single dose, but in the known manner of antibacterial therapy a compound of the present invention is typically administered repeatedly over a period of time, such as a matter of days or weeks, to ensure control of the bacterial infection.

Also in accordance with known antibacterial therapy, a compound of the present invention is typically formulated for convenient delivery of the requisite dose. Therefore, in another embodiment, the present invention is directed to a pharmaceutical formulation comprising a compound of Formula I, in combination with a pharmaceutically-acceptable diluent or carrier. Such diluents and carriers are well known for both oral and parenteral routes of delivery. In general, a formulation will comprise a compound of the present invention in a concentration of from about 0.1 to about 90% by weight, and often from about 1.0 to about 3%.

The antibacterial efficacy of the present compounds is illustrated in TABLE 2. The minimal inhibitory concentrations (MICs) were determined using a standard broth micro-dilution assay.

		T	T-						_		$\overline{}$	_		_		_	_	,									_		1			
;		S PY 203	10.06	30.06	20.06	10.06	90.04	30.05	10.06	90.05	10.06	10.06	30.05	20.05	30.0¢	20.05	30.05	90.01			90.01	90.01	90.01	0.125	90.00	90.05		0.25	ticus 415	is 270	iae P1	es 203
s (MICs)		S PN P1	10.125	30.0	90.0€	20.05			30.05	10.06	30.05	3 0.06	3 0.06	30.05	• • •	3 0.0¢	90.04	90.01		2 0.06	90.0€	3 0.0¢	90.0¢	0.125	90.04	90.0		0.25	: haemolyticus	: epidermis	: pneumon	is pyogen
Concentrations	Pathogens*	SE270	0.25	90.0€	1	0.125	4	1	0.5	2	0.5		1	2	ı	1	2	90.0		1	2	20.06	0.5	16	20.06	₹0.06		1	Staphylococcus	Staphylococcus	ptococcus	Streptococcus pyogenes 203
	1	SH415	2	0.25	2	2	2	4	1	4	1	4	1	7	6.5	2	2	0.125		2	4	0.25	2	8	0	10.06		2	11	11	н	203 = Str
TABLE 2 Minimum Inhibitory	ed Individual	SH105		0.125	0.5	1	4	1	0.5	4	!!	0.5	1	1	2	0.5	τ	90.0€		2	2		0.5	- 1	0	30.05		0.5		~	Z	ΡY
TA) Tanimum	Selected	SA 447	1	0.5		0.5	2	1	2	2	1	2	1	1	. 1	2	2	3 0.0¢		1	4	20.06	2	\sim 1	ا: ٦	20.06		1				us 105
Screen, h		SA 489	2	1	4	1	2	2	1	4	1	4	1	0.5	1	1	2	,0°06		2	- 1	10.06	2		ၧ	20.06		2	aureus 446	aureus 489	aureus 447	haemolyticus
Enterococcus S		SA 446	4	1	2	2	8	4	2	2	1	1	4	2	1	2	2	0.125		1	l	0.125	4	32	⊣ 1	20.06				occus au	coccus an	occus ha
Entero	s of 4-6 tes	Sensitive	0.13	0.041	0.11	0.082	٠١	0.44	0.048	0.33		0.14	0.11	0.13	0.072	0.01	0.22	0.25).25	0.19	0.22).22	0.054	0.87	0.44	0.38	5.0	0.44	Staphylococcus	Staphylococcus	Staphyloc	Staphyloc
l	Mean Value Isola	Resistant	. 4	. 19	. 4			. 7		. 7		.84			. 4		7	9	.4	.84				68	128	128	æ.	۲.	= 9	489 =	447 =	105 =
5	Ξ×. #	<u> </u>	1	2	3 2	4 2	5	6 1	7	9 8	9 2	10 01		12 1		14 2	1			0	19 1		21 1		^	^	25 2		•			

wherein each R4 independently represents phenyl, cycloalkyl of C_6 - C_6 , naphthyl, or thienyl, each of which is unsubstituted or is optionally substituted with one or two substituents, each of which is independently alkyl of C_1 - C_{10} , haloalkyl of C_1 - C_2 , haloalkoxy of C_1 - C_2 , alkoxy of C_1 - C_{10} , halo, cyano, or nitro; and "linker" is.

- alkylene of C₁-C₃.
- O-alkylene of C₁-C₆,
- alkylene of C₁-C₆-O-,
- **-** O-,
- N(H or loweralkyl of C₁-C₃)-.
 - S-,
 - SO-,
 - SO₂-,

15

5

0 **▮** -NH-C-

20

O | -C-NH-

- CH=CH-
- 25 C≡C-,
 - N=N-,

30

0 || -0-C-

or

35

45

0 || -C-O-:

- and wherein R5 is defined as follows:
 - (1) each R5 independently represents

hydrogen,

cycloalkyl of C₅-C₆.

cycloalkenyl of C5-C6.

phenyl or substituted phenyl bearing from one to three substituents, each of which is independently halo,

nitro.

50 loweralkyl of C₁-C₄,

cycloalkyl of C5-C6.

loweralkoxy of C1-C4.

haloloweralkyl of C1-C4, or

haloloweralkoxy of C1-C4

55 naphthyl.

biphenylyl

radical of the formula $-R^6-(R^7)_0$, 1, or 2, wherein R^6 is loweralkyl of C_1-C_8 optionally substituted by from one to three substituents, each of which is independently selected from the group consisting of halo, nitro.

Claims

1. A compound of the formula:

5 $R = \frac{10}{10}$ $R = \frac{10}{10}$ R

wherein R1 is:

hydrogen or -CH₂R²;

35 wherein R2 is:

30

40

45

50

hydrogen,
alkyl of C₁-C₁₅,
alkenyl of C₂-C₁₅,
alkynyl of C₂-C₁₅,
haloalkyl of C₁-C₇,
acenaphthenyl,
2-fluorenyl,
9,10-dihydro-2-phenanthrenyl,
R³,
alkyl of C₁-C₁₁-R³,
alkenyl of C₂-C₇-R³
alkynyl of C₂-C₇-R³, or
alkyl of C₁-C₇-O-R³

wherein R3 is a radical of the formula.

$$-R_{4}-\left[\text{linker}_{(0\text{ or }1)}-R^{4}\right]_{(0\text{ or }1)}$$

cyano, loweralkoxy of C_1 - C_4 , haloloweralkyl of C_1 - C_4 , and haloloweralkoxy of C_1 - C_4 ; and R^7 is

wherein each R^8 is independently hydrogen or loweralkyl of C_1 - C_4 or one R^8 is hydrogen and the other R^8 is tert-butoxycarbonyl, or R^7 is phenyl or substituted phenyl as defined above, or

- (2) one R5 is hydrogen and the other R5 is (2-furanon-3-yl); or
- (3) both R5s are taken together with the nitrogen and constitute a five- to seven-membered heterocyclic ring optionally containing in addition to the indicated nitrogen atom one additional hetero ring atom which is nitrogen, oxygen, or sulfur, and which heterocyclic radical can be unsubstituted or substituted with from one or two substituents, each of which is loweralkyl of C_1 - C_2 , loweralkoxy of C_1 - C_2 , phenyl, benzyl, or C_1 - C_6 -alkanoyl; or a salt thereof.
- 2. A compound of Claim 1 wherein R1 is -CH₂R2 and R2=R3
- 3. A compound of either of Claims 1-2 wherein R1 is 4-phenylbenzyl.
- 4. A compound of either of Claims 1-2 wherein R1 is 4-(4-chlorophenyl)benzyl
 - 5. A pharmaceutical formulation comprising a compound of any of Claims 1-4 in combination with a pharmaceutically-acceptable diluent or carrier
 - 6. A method of treating a bacterial infection in a host comprising the step of administering to the host an effective amount of a compound of any of Claims 1-4.
- 7. A method of Claim 6 wherein the bacterial infection is attributable to a vancomycin-resistant-enterococcus.
- 8. A compound of any of Claims 1-4 for use in antibacterial therapy.
- 9. A compound of any of Claims 1-4 for use in antibacterial therapy against vancomycin-resistant-enterococcus.
- 35 10. A process for the preparation of a compound of Claim 1 which comprises reacting a compound of Formula II,

5

10

15

20

25

30

45

HO
$$H_3$$
C CH_2 OH

 H_3 C CH_3 H_4 H_5 H_5 H_5 H_6 H_6 H_7 H_8 H_8

wherein R1 is:

10

15

20

25

30

35

40

45

50

55

hydrogen or -CH₂R²;

wherein R2 is:

hydrogen,
alkyl of C₁-C₁₅,
alkenyl of C₂-C₁₅,
alkynyl of C₂-C₁₅,
haloalkyl of C₁-C₇,
acenaphthenyl,
2-fluorenyl,
9,10-dihydro-2-phenanthrenyl,
R³,
alkyl of C₁-C₁₁-R³,
alkenyl of C₂-C₇-R³,
alkynyl of C₂-C₇-R³,
alkyl of C₁-C₇-O-R³

wherein R3 is a radical of the formula:

$$-R_4 - \left[linker(c cr 1) - R^4 \right]_{(0 cr 1)}$$

wherein each R^4 independently represents phenyl, cycloalkyl of C_5 - C_6 , naphthyl, or thienyl, each of which is unsubstituted or is optionally substituted with one or two substituents, each of which is independently alkyl of $C_{1^{+}}$ C_{10} haloalkyl of $C_{1^{+}}$ $C_{2^{+}}$ haloalkcyy of $C_{1^{+}}$ $C_{2^{+}}$ $C_{2^{+}}$ haloalkcyy of $C_{1^{+}}$ $C_{2^{+}}$ $C_{2^{+}}$

and "linker" is.

- alkylene of C₁-C₃,
- O-alkylene of C₁-C₆,
- 5 alkylene of C₁-C₆-O-,
 - O-,
 - N(H or loweralkyl of C₁-C₃)-.
 - S-,
 - SO-,
- 10 - SO₂-,

15

- 20 CH=CH-,
 - C≡C-.
 - N=N-,

or

25

30

35

with an amine of the formula

40

(1) each R5 independently represents

wherein R5 is defined as follows:

45

50

55

hydrogen,

cycloalkyl of C₅-C₆ cycloalkenyl of C₅-C₆.

phenyl or substituted phenyl bearing from one to three substituents, each of which is independently

HN : R5

halo,

nitro,

loweralkyl of C₁-C₄,

cycloalkyl of C₅-C₆.

loweralkoxy of C_1 - C_4 ,

haloloweralkyl of C_1 - C_4 , or haloloweralkoxy of C_1 - C_4 :

naphthyl.

biphenylyl,

radical of the formula -R6-(R7)0, 1, or 2, wherein R6 is loweralkyl of C1-C8 optionally substituted by from

one to three substituents, each of which is independently selected from the group consisting of halo_nitro. cyano, loweralkoxy of C_1 - C_4 , haloloweralkyl of C_1 - C_4 , and haloloweralkoxy of C_1 - C_4 : and R^7 is

$$-N \lesssim \frac{R^8}{R^8}$$

wherein each R^B is independently hydrogen or loweralkyl of C_1 - C_4 or one R^B is hydrogen and the other R^B is tert-butoxycarbonyl, or R^7 is phenyl or substituted phenyl as defined above, or

(2) one R5 is hydrogen and the other R5 is (2-furanon-3-yl); or

(3) both R5s are taken together with the nitrogen and constitute a five- to seven-membered heterocyclic ring optionally containing in addition to the indicated nitrogen atom one additional hetero ring atom which is nitrogen, oxygen, or sulfur, and which heterocyclic radical can be unsubstituted or substituted with from one or two substituents, each of which is loweralkyl of C₁-C₂, loweralkoxy of C₁-C₂, phenyl, benzyl, or C₁-C₆-alkanoyl; and optionally forming a salt thereof

EUROPEAN SEARCH REPORT EP 97 30 4495

Application Number

	DOCUMENTS CONSIDER			
ategory	Citation of document with indication of relevant passages	on, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
γ,γ	EP 0 667 353 A (LILLY C 1995 * the whole document *	O ELI) 16 August	1-10	C07K9/D0 A61K38/14
Y	EP 0 435 503 A (LILLY C * the whole document *		1-10	
				TECHNICAL FIELDS SEARCHED (Int.Cl.6)
				C07 K
	The present search report has been d	rawa un for all claims	-	
	Place of search	Date of completion of the search		Examiner
	MUNICH	25 August 1997	De	effner, C-A
Υ.ρ. da Α:te	CATEGORY OF CITED DUCTUMENTS surficularly relevant if taken alone currentarly relevant if combined with another occurrent of the same category chological background	I : theory or pri E : earlier paten after the fill D : document of 1 : decument of	naple underlying to todoument, but po- ng date ted in the applicati led for other reason	the avention ablished on, or ion as
	on written átschosure itermiediate documient	& . member of t document	he same patent fai	mily, corresponding