

Universidade de Brasília – UnB Faculdade UnB Gama – FGA Projeto Integrador de Engenharia 2

Máquina de Reciclagem Automática

Autores: Lucas Soares Guimarães, Raphael Fernandes, Jorge Santana, Lucas de Souza Lessa, Matheus Jericó Palhares, Murilo Venturin, Beatriz Gabrielle de Carvalho Pinheiro, Fernanda do Amaral Rodrigues, Gibson Fernandes, Elmar Roberto Caixeta Filho, Gabriel de Souza Clímaco, Henrique Lopes Dutra

> Brasília, DF 2018

Lucas Soares Guimarães, Raphael Fernandes, Jorge Santana, Lucas de Souza Lessa, Matheus Jericó Palhares, Murilo Venturin, Beatriz Gabrielle de Carvalho Pinheiro, Fernanda do Amaral Rodrigues, Gibson Fernandes, Elmar Roberto Caixeta Filho, Gabriel de Souza Clímaco, Henrique Lopes Dutra

Máquina de Reciclagem Automática

Trabalho submetido ao curso de Projeto Integrador de Engenharia 2 da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em engenharia aeroespacial, automotiva, eletrônica, de energia e de software .

Universidade de Brasília – UnB Faculdade UnB Gama – FGA

Orientador: Alex Reis, Chaim, Rhander Viana e Sebatien R. M. J. Rodineau

Brasília, DF 2018

Lista de ilustrações

Figura 1 –	Processo de Gerenciamento de Mudança	19
Figura 2 -	Processo de Gerenciamento de Mudança	19
Figura 3 -	Cronograma Geral do Projeto	22
Figura 4 -	Estrutua Analítica do Projeto	28
Figura 5 –	Processo de Gerência de Riscos	34

Lista de tabelas

Tabela 1 –	Orçamento - Subsistema 1
Tabela 2 –	Marcos
Tabela 3 –	Cenário acadêmico
Tabela 4 -	Cenário de mercado
Tabela 5 -	Orçamento
Tabela 6 –	WhatIf
Tabela 7 $-$	Checklist
Tabela 8 –	Pesos para faixas de Probabilidades
Tabela 9 –	Pesos para faixas de Impacto
Tabela 10 –	Condições e Tolerâncias para as Escalas de Impacto de um Risco \dots 37
Tabela 11 –	Pesos dos Riscos (PxI)
Tabela 12 –	Faixas de cenários

Lista de abreviaturas e siglas

Fig. Area of the i^{th} component

UnB Universidade de Brasília

EAP Estrutura Analítica de Projeto

TAP Termo de Abertura

Lista de símbolos

Γ

Sumário

1	INTRODUÇÃO	13
1.1	Problematização	13
1.2	Objetivo Geral	13
1.2.1	Problema	13
1.2.2	Solução	13
1.3	Objetivos Específicos	14
1.3.1	Problema na Visão das Engenharias	14
1.3.2	Soluções na Visão das Engenharias	14
2	DEFINIÇÕES	15
2.1	Lista É/Não É	15
3	DESCRIÇÃO DAS ATIVIDADES E RESPONSABILIDADES	
3.1	Requisitos	
3.1.1	Requisitos Funcionais	
3.1.2	Requisitos Não Funcionais	17
3.2	Estudo da Viabilidade do Projeto	18
3.3	Escopo	18
3.3.1	Definição do Escopo	18
3.3.2	Processo de Formalização de Aprovação	18
3.3.3	Processo de Gerenciamento de Mudança	19
3.4	Análise Crítica de Projeto e Desenvolvimento	
3.5	Recursos Humanos	20
3.5.1	Papéis e responsabilidades	20
3.5.2	Organograma	20
4	ORÇAMENTO DO PROJETO	
4.1	Subsistema 1	
4.2	Subsistema 2	21
5	CRONOGRAMA	22
6	SUBSISTEMAS	
6.1	Subsistema 1	23
6.1.1	Apresentação e Resumo	
6.1.2	Principais Características	23
6.1.2.1		23

6.1.3	Testes	23
6.2	Subsistema 2	23
6.2.1	Apresentação e Resumo	23
6.2.2	Principais Características	23
6.2.3	Testes	23
	REFERÊNCIAS	24
	APÊNDICES	25
	APÊNDICE A – TERMO DE ABERTURA DO PROJETO	26
A.0.1	Objetivos deste documento	26
A.0.2	Descrição do Projeto	26
A.0.3	Justificativa do Projeto	26
A.0.4	Objetivos do Projeto	27
A.0.5	Critérios de sucesso do projeto	27
A.0.6	Estrutura Analítica do Projeto	27
A.0.7	Requisitos	29
A.0.7.1	Requisitos de Alto Nível	29
A.0.7.2	Principais requisitos das principais entregas/produtos	30
A.0.8	Marcos	30
A.0.9	Partes interessadas do projeto	30
A.0.9.1	Partes interessadas em cenário acadêmico	31
A.0.9.2	Partes interessadas em cenário de mercado	31
A.0.9.3	Restrições	31
A.0.9.4	Premissas	31
A.0.9.5	Riscos	32
A.0.9.6	Orçamento do Projeto	32
	APÊNDICE B – PLANO DE GERENCIAMENTO DE RISCOS	33
B.0.1	Introdução	33
B.0.2	Metodologia	33
B.0.3	Processo de Gerência de Riscos	34
B.0.4	Papéis e Responsabilidades	35
B.0.5	Prazos associados	35
B.0.6	Categoria de Riscos	35
B.0.7	Análise dos Riscos	36
B.0.8	Definições de Probabilidades e Impactos de Riscos	36
B.0.9	Matriz de Probabilidade e Impacto	37

B.0.10	Controle e Rastreabilidade		
	ANEXOS	39	
	ANEXO A – PRIMEIRO ANEXO	. 40	
	ANEXO B – SEGUNDO ANEXO	. 41	

1 Introdução

1.1 Problematização

É fato que a sociedade possui grande sede de consumo, principalmente voltada a indústria alimentícia, o evidente crescimento populacional agrava a geração de resíduos sólidos que contenham produtos que buscam saciar tais necessidades. Um fator alarmente em nível global foi a falta do processo de conscientização populacional sobre os efeitos causados caso as empresas e as pessoas não tomem parte responsável sobre aquilo que produzem e consumem, fato é que, a natureza sofre bastante com consequências advindas deste cenário.

Buscando um meio de contornar tal situação, entusiastas do meio ambiente e governos conscientizados geraram alguns projetos com intuito de minizar e controlar os danos a natureza, um deles que ficou em evidência é máquina automática de reciclagem, produto/protótipo que será desenvolvido neste projeto.

1.2 Objetivo Geral

1.2.1 Problema

Com base no que esta contido na descrição anterior, é cabível concluir que os problemas principais são: a alta produção de resíduos sólidos e que tais são jogadas sem pudor na natureza e a falta de interesse de várias pessoas por tal causa.

1.2.2 Solução

Buscando ajudar empresas de reciclagem e inserir mais pessoas a este tipo de ação, este projeto tem como objetivo geral a construção de um protótipo exemplar de uma máquina que automatiza o recolhimento de garrafas plásticas e de vidro por meio da técnica de bonificação para as pessoas. Serão utilizados os conhecimentos em conjunto as 5 áreas de engenharia presente no campus do gama da Universidade de Brasília, onde as áreas de Aeroespacial e Automativa ficarão responsáveis pela estrutura, a área de Energia pelo controle energético e de segurança, a área de Eletrônica pela automação e controle eletrônico e a área de Software pela interação usuário máquina e planejamento geral.

1.3 Objetivos Específicos

1.3.1 Problema na Visão das Engenharias

O problema apresentado pode ser visto voltado separadamente para cada engenharia em visões mais técnicas, no caso, tomando as áreas de Automotiva e de Aeroespacial
como uma em Estrutura. Já falando em âmbito de estrutura, esta cabe ter a visão de
que é complexo e trabalhoso a construção de sistema que cuida e armazena de formas
diferentes, diferentes tipos de materiais, na visão eletrônica, hoje em dia, vários processos
de separação e validação de objetos reciclavéis são realizados de forma manual,na visão
de energia, é sempre visto sistema de segurança e controle energético falhos e na visão de
Software, é complicado manter as pessoas integradas com tais ações.

1.3.2 Soluções na Visão das Engenharias

- Construção de estrutura que suporte os componentes de funcionamento da máquina
- Implantação de sistema de segurança
- Implantação de sistemas de controle de energia
- Implementação de sistema de separação e armazenamento dos materiais
- Validação de objetos inseridos na máquina
- Controle automático dos dados do usuário e sua interação com a máquina

2 Definições

Todas as informações referentes a EAP, requisitos gerais para os interessados, objetivo mais abrangente, justificativa do projeto, descrição dos interessados, marcos, premissas, restrições e orçamento preliminar se encontram no apêndice no Termo de Abertura.

2.1 Lista É/Não É

- É uma máquina de armazenamento de garrafas de plástico triturado e vidro.
- Não é um produto que possui alimentação autônoma.
- É um protótipo.
- É um sistema de comunicação sem fio entre usuário e máquina.
- É um produto com aquisição de dados através de sensores.
- É um produto que possui a alimentação direto da rede elétrica.
- $\bullet\,$ Não é um produto que aceita qualquer tipo de material
- Não é uma estrutura adaptável.
- Não é um sistema que aceita garrafas cheias.
- É um produto que identifica o usuário.

3 Descrição das atividades e responsabilidades des

3.1 Requisitos

3.1.1 Requisitos Funcionais

- Armazenar garrafas recicláveis.
- Bonificar usuário por entrega de garrafas.
- Armazenamento separado pelos tipos de materiais de garrafas.
- Triturar as garrafas de plástico.
- Validar o tipo de objeto a ser inserido na máquina.
- A alimentação energética será diretamente pela rede elétrica.
- Deverá haver a interação de reconhecimento direto entre máquina e usuário.
- Manter dados do usuário.
- Projeto de estrutura que comporte aparatos tecnológicos.
- Projeto de estrutura que comporte o motor, o separador, triturador e compartimentos de armazenagem.

3.1.2 Requisitos Não Funcionais

- Haverá sistema de segurança de desligamento do motor.
- Armazenar as garrafas de vidro de forma intacta.
- O sistema da máquina deve guardar os dados em um banco em nuvem.
- A máquina deve atender à normas legais.
- A máquina terá seu uso liberado após a identificação do usuário.
- Não deve ser exposto nenhum dado privado do usuário de forma livre.
- A estrutura do triturador deve ser extremamente fechado a qualquer contato do usuário.

3.2 Estudo da Viabilidade do Projeto

3.3 Escopo

3.3.1 Definição do Escopo

A proposta do projeto consiste em um sistema de recompensas por meio da reciclagem de garrafas vazias, as mesmas podendo ser de plástico ou de vidro.

A estrutura básica é composta por uma máquina onde o usuário poderá inserir garrafas PET transparentes de até 600ml ou garrafas de vidro de até 355ml; esta limitação é melhor explicada na seção de subsistemas. Uma vez que a garrafa é inserida na máquina, caso a mesma seja de plástico, ela deverá ser triturada e armazenada em um recipiente dedicado às garrafas de plástico. Caso contrário, a garrafa deverá ser armazenada em um recipiente dedicado às garrafas de vidro. Além disso, a máquina analisará se a garrafa inserida é valida ou não de acordo com os parâmetros definidos neste escopo, por meio de um mecanismo de pesagem e seleção.

O triturador de plástico será movido por um motor elétrico, o qual estará protegido contra possíveis irregularidas através de um relé térmico.

Além disso, o sistema contará com um processo de interação com o usuário através de um aplicativo. O mesmo precisará se identificar por meio de um QR Code vinculado à sua conta, e que será lido pela máquina. O aplicativo também disponibilizará quanto o usuário já acumulou no sistema de recompensa. Haverá também um servidor dedicado a fazer a conexão entre o aplicativo e a máquina.

Não obstante, a máquina também tomará parte na interação com o usuário, mostrando informações relevantes em um display LCD e emitindo confirmações sonoras através de um buzzer.

3.3.2 Processo de Formalização de Aprovação

Este processo tem por objetivo regular todas as entregas feitas durante o desenvolvimento do sistema.

Segue o processo e suas respectivas atividades descritas.

- Testar entrega Nesta atividade, deve-se garantir que o que foi desenvolvido está pronto para uso e integração com o resto do sistema, bem como se não apresenta falhas na possibilidade de uso extremo do que foi desenvolvido.
- Processo de Gerenciamento de Mudança Caso o que foi desenvolvido não esteja de acordo com o que foi previamente acordado nos requisitos do projeto, descritos no começo dessa seção, a mudança deve ser passada por um Processo de

Figura 1 – Processo de Gerenciamento de Mudança.

Gerenciamento de Mudança antes que possa ser aprovado. O processo em si é melhor descrito na próxima seção.

• Aprovar entrega Uma vez que a entrega está testada e de acordo com os requisitos do projeto ela pode ser dita como entregue.

3.3.3 Processo de Gerenciamento de Mudança

Sempre que for necessário que mudanças ocorram dentro do sistema, primeiro deve ser executado um processo de gerenciamento de mudança para garantir que a mesma não terá um impacto negativo sobre o projeto.

Figura 2 – Processo de Gerenciamento de Mudança.

O processo de gerenciamento de mudança envole as seguintes atividades:

- Identificar a causa da mudança Nesta atividade deve ser identificada a mudança a ser executa e a razão de tal mudança, afim de facilitar as próximas atividades do processo.
- Analisar o impacto da mudança em todos os subsistemas Uma vez identificada a causa da mudança, a equipe deverá analisar como a mudança irá afetar todos os subsistemas do projeto. Essa atividade deverá resultar na identificação de tudo o que deve ser alterado em cada subsistema, bem como em sua respectiva análise.

- Analisar o custo da mudança Nesta atividade a equipe deve analisar o custo que a mudança trará ao projeto, tanto a nível financeiro como a nível de tempo restante para desenvolvimento do projeto.
- Aprovar mudança Com base nas análises de custo e impacto feitas, a equipe deve decidir se a mesma será aprovada caso não haja prejuízo.
- Atualizar o escopo do projeto Todas as mudanças identificadas na atividade de Analisar o impacto da mudança em todos os subsistemas devem ser incorporadas ao escopo.
- Atualizar o cronograma do projeto Para que o prazo do projeto seja respeitado,
 o cronograma deve passar a englobar as mudanças feitas no escopo na atividade
 previamente descrita.

3.4 Análise Crítica de Projeto e Desenvolvimento

Este tópico se encontra inserido no apêndice no Planejamento de Riscos.

3.5 Recursos Humanos

3.5.1 Papéis e responsabilidades

3.5.2 Organograma

4 Orçamento do Projeto

4.1 Subsistema 1

Tabela 1 – Orçamento - Subsistema 1

Recursos	Preço Unitário	Quantidade	Preço Total
Recurso 1			
Custo Total		Total	

4.2 Subsistema 2

5 Cronograma

	(1)	Nome	Duração	Ínicio	Fim	Predecessores	Recursos	Custom 1	Custom 2	Custom 3	Custom 4	Custom 5
1	-	Gerenciar Tempo	1dia?	03/23/2018	03/23/2018							
2	-	Gerenciar Riscos	2dias?	03/23/2018	03/26/2018							
3	-	Gerenciar Recursos	3dias?	03/23/2018	03/27/2018							
4	-	Gerenciar Custos	3dias?	03/23/2018	03/27/2018							
5	-	Dimensionamento/Escolha Motor	6dias?	03/23/2018	03/30/2018							
6	-	Sensoriamento para detectar o material da garrafa	18dias?	03/26/2018	04/18/2018							
7	-	Entrega Relatório PC1	1dia?	03/28/2018	03/28/2018							
8	-	Ponto de Controle 1	6dias?	04/04/2018	04/11/2018							
9	-	Prototipação Aplicativo	11dias?	03/28/2018	04/11/2018							
10	-	Testes de Acionamento do Motor	6dias?	04/02/2018	04/09/2018							
11	-	Levantar backlog completo de histórias de usuário	1dia?	04/06/2018	04/06/2018							
12	-	Levantamento do Aplicativo S0	6dias?	04/06/2018	04/13/2018							
13	100	Montagem Sistema de Alimentação	12dias?	04/10/2018	04/25/2018							
14	100	Leitura QR Code S1	6dias?	04/13/2018	04/20/2018							
15	100	Sistema para separar o vidro e o plástico	8dias?	04/18/2018	04/27/2018							
16	100	Sistema de Proteção Elétrica	11dias?	04/18/2018	05/02/2018							
17	100	Usuário e bando de dados levantados S2	6dias?	04/20/2018	04/27/2018							
18	100	Sistema de identificação do usuário	10dias?	04/30/2018	05/11/2018							
19	100	Controle de Créditos no Aplicativo S3	6dias?	04/30/2018	05/07/2018							
20	-	Sistema de Emergência	12dias?	05/03/2018	05/18/2018							
21	-	Sistema de controle do triturador	15dias?	05/07/2018	05/25/2018							
22	-	Api Retornando dados S4	6dias?	05/07/2018	05/14/2018							
23	-	Ponto de Controle 2	6dias?	05/18/2018	05/25/2018							
24	-	Integração Energia Eletrônica	24dias?	05/18/2018	06/20/2018							
25	-	Integração Energia Estrutura	24dias?	05/18/2018	06/20/2018							
26	-	Testes da Eletrônica e integração com os subsistemas	19dias?	05/25/2018	06/20/2018							
27	-	Integração aplicativo nível usuário S6	6dias?	05/28/2018	06/04/2018							
28	-	Integração aplicativo nível garrafa S7	6dias?	06/04/2018	06/11/2018							
29	-	Integração aplicativo nível pontos obtidos S8	6dias?	06/11/2018	06/18/2018							
30	-	Conjunto geral de testes unitários integração software eletrôni	5dias?	06/18/2018	06/22/2018							
31	-	Ponto de Controle 3	5dias?	06/25/2018	06/29/2018							
32	-	Data de reapresentação do PC3	5dias?	07/02/2018	07/06/2018							
33	-	Definir requisitos e projetar estrutura	4dias?	03/23/2018	03/28/2018							
34	-	Simular projeto de Selecionador de garrafas, triturador e estrut	9dias?	03/29/2018	04/10/2018							
35	-	Construção e testes do selecionador de garrafas, triturador e	20dias?	04/11/2018	05/08/2018							
36		Integrar estrutura com demais sistemas	20dias?	05/09/2018	06/05/2018							
37	-	Testar o prototipo	10dias?	06/06/2018	06/10/2010							

PNG Generated On: 26/03/2018 18:25:45

Figura 3 — Cronograma Geral do Projeto

6 Subsistemas

- 6.1 Subsistema 1
- 6.1.1 Apresentação e Resumo
- 6.1.2 Principais Características
- 6.1.2.1
- 6.1.3 Testes
- 6.2 Subsistema 2
- 6.2.1 Apresentação e Resumo
- 6.2.2 Principais Características
- 6.2.3 Testes

Referências

APÊNDICE A – Termo de Abertura do Projeto

A.0.1 Objetivos deste documento

Mesmo já havendo um consenso de ideia geral sobre o projeto, o TAP vem para autorizar formalmente o seu desenvolvimento, seja para as fases seguintes de planejamento, seja para construção efetiva da proposta. Ele também auxilia na definição de entregas por meio da EAP, no levantamento de requisitos, premissas e restrições, além de dar o grande suporte para o resto do planejamento, custo, riscos, tempo, escopo etc.

Elaborado este documento, o gerente de projetos tem a autorização, o poder e a base para o gerenciar corretamente todos os recursos disponíveis e otimizar seu planejamento durante o desenvolvimento do produto. Não deve ser esquecido que este documento deve ser descrito de forma que forneça suporte suficiente na aceitação ou não do projeto.

A.0.2 Descrição do Projeto

O projeto é uma máquina automática que auxilia no processo de reciclagem de garrafas. A ideia central é a de que o usuário insira garrafas de vidro ou plástico e seja bonificado por essa ação, onde tal, possa ser desconto em supermecados e estes dados serão mantidos por um aplicativo com contas individuais. A máquina deverá realizar a separação e validação (material, tamanho e peso) automática dos objetos inseridos, guardando a garrfas de vidro sem quebrá-las, triturando as de plástico e rejeitando qualquer outro tipo de inserção.

A.0.3 Justificativa do Projeto

A poluição global é um tema que visivelmente está sempre em discussão na mídia e nos governos por seu grande potência destrutivo. Dois dos grandes tipos de poluição que podem ser comentadas neste projeto são as de solo e do mar, sendo o motivo desta escolha comentado mais a frente, e é evidente que se sabe que o causador dessa agressão a esses dois tipos é o grande volume de material industrial criado pelo ser humano. Buscando minimizar esse problema, são realizadas diversas ações de reciclagem e conscientização ao redor do globo, sendo assim, este projeto vem com o intuito de criar um produto que motive estes dois fatores.

Para o desenvolvimento de um protótipo foram escolhidos dois tipos de materiais a serem coletados a partir das informações a seguir. O primeiro foi o plástico, pois segundo o site Ecycle, pesquisadores da The University of Western Australia e da CSIRO Wealth

from Oceans Flagship realizaram um estudo no mar australiano e concluíram que a cada quilômetro quadrado de água de sua superfície está contaminado por cerca de quatro mil pequenos fragmentos de plástico. Segundo o site da Globo, até 2015 tinham sido produzidos cerca de 6,3 bilhões de toneladas de resíduos plásticos e 79% deste montante se encontra em aterros ou na natureza. Segundo o site Meio Ambiente Cultura Mix, sacolas plásticas e garrafas PETs são os maiores vilões da natureza pelo tempo de decomposição e pelo consumo destes materiais por animais. E o segundo foi o vidro pelo alto consumo de produtos mantidas em recipientes feitos deste material, o vidro pode causar queimadas na natureza por potencializar os raios solares e animais podem morrer ao ingerir pedaços cortantes. Portanto, serão dois materiais que causarão um grande impacto de projeto e eles estão diretamente ligados às poluições marítimas e de solo.

Outro fator que justifica a proposta deste projeto, são os impactos positivos para os usuários, que poderão receber créditos pela sua ação, empresas de reciclagem, que terão economia de armazenamento e manuseio, o governo, que terá seu nome em um projeto de apoio ambiental, os mercados, que poderão atrair mais clientes com promoções por conta da máquina e empresas geradoras dos resíduos já que pela lei nacional, elas são responsáveis pelo seus resíduos sólidos.

A.0.4 Objetivos do Projeto

O máquina tem como objetivos principais o incetivo a reciclagem por meio de um sistema de bonificações, o auxílio a coleta de material para as empresas de reciclagem e auxílio às empresas geradoras de resíduos sólidos já que elas são responsáveis pelo o que produz.

A.0.5 Critérios de sucesso do projeto

Tomando como referência o contexto de implantação do produto, os critérios de sucesso do projeto envolvem a dedicação máxima e estudo contínuo da equipe em seus subsistemas já que em sua maioria não se há investimento e nem experiência de trabalho. Rigorosa adesão ao planejamento e gerenciamento do projeto. Alcance dos requisitos levantados e integração completa.

A.0.6 Estrutura Analítica do Projeto

A EAP deste projeto está divida com base nas entregas definidas pelos orientadores. Como em todo projeto que se preze, o desenvolvimento do produto se sustenta na definição de um problema, elaboração de uma solução, construção do produto da solução e implantação e teste deste produto, logo abaixo estão descritos cada tópico da estrutura analítica voltados às necessidades de acompanhamento e gerência dos subsistemas deste projeto.

Figura 4 – Estrutua Analítica do Projeto.

- Definição do projeto Todo novo desenvolvimento de produto se inicia com a definição completa e planejada de um escopo geral e validado. Para começar, de forma geral, não seria viável a elaboração de um produto que não se resolve nenhum problema, sendo assim, é interessante a fase de definição ser divida na Problematização e Concepção baseada no ideia levantada.
 - Problematização Essa fase envolve a aplicação de brainstormings para que

o grupo possa avaliar o que há de problemas baseados na ideia central de projeto, para que assim, sejam anotados de forma planejada alguma de suas soluções que estejam ao alcance às áreas de conhecimento dos cursos da FGA. Em seguida, o problema deve ser refinado, de forma, que forneça base para a concepção completa e compreensível do escopo geral do produto que no caso é a solução proposta e para a análise da viabilidade técnica e financeira.

- Concepção Tendo sido levantada a ideia geral do projeto, aqui devem ser feitas os detalhamentos da arquitetura básica da solução, dos objetivos, regras de negócio e planejamento.
- Construção de Subsistemas Após concretizado a definição do projeto, é o momento de iniciar o processo de desenvolvimento da máquina. Procurando facilitar a visão geral e organização, este processo foi divido em 4 atividades chaves:
 - Modelagem / Simulações Uso do CAD, realização de cálculos diversos, uso de ferramentas de modelagem e geração de modelos de protótipos.
 - Construir componentes / Subsistemas O sistema total do projeto foi dividido em 4 subsistemas com base nas áreas das engenharias com o intuito de otimizar a produtividade desacoplando as áreas. Nesta fase que acontece a construção real da máquina.
 - Testar componentes / Subsistemas Fase de aplicação de plano de testes do componentes dentro dos subsistemas.
 - Avaliar e homologar resultados Finalizado os testes, este é o momento de avaliar os resultados para levantamento do que deve ser otimizado afim de adaptar os componentes à atividade de integração.
- Integração de Subsistemas Esta em tese é a atividade mais complexa e que se tem um histórico alto de falhas, sendo assim, é necessário uma ótima preparação antecipada.

A.0.7 Requisitos

A.0.7.1 Requisitos de Alto Nível

O sistema proposta será um máquina com sua estrutura do tamanho de uma geladeira pequena no formato retangular, a estrutura interna será dividida em acordo com os subsistemas do produto total. Haverão dois compartimentos removíveis, um para o armazenamento de plástico triturado e outro para armazenar vidro, sendo os materiais aceitos pela máquina apenas como garrafas. Contando que o plástico será guardado em pedaços triturados, deverá haver um triturador que será ligado a partir de um motor em conjunto com um redutor. Já o vidro deverá ser armazenado intacto pilhando as garrafas.

Para armazenar algo, deve-se ter a devida validação daquilo que for aceito como armazenável ou não, e também deve-se ter uma estrutura de separação de materiais que os conduzam por estruturas diferentes, para que assim, atenda os cuidados requeridos que inferem aos requisitos necessários a cada material. Sendo assim, logo na frente da máquina, terá a validação do objeto inserido por meio de um QR Code que virá contido no rótulo, logo no bocal de inserção haverá uma outra validação mais completa em que passada dela, a garrafa será direcionada ao ponto final de armazenamento.

A máquina deverá ter um sistema de recompensa ao usuário por cada garrafa depositada, onde essa atividade será administrada por meio de um aplicativo. Haverá um banco de dados com as características de cada rótulo identificado para validação de entrada e de pontuação. Por fim terá um sistema de segurança de parada do motor.

A.0.7.2 Principais requisitos das principais entregas/produtos

- Armazenamento de garrafas de plástico e vidro
- Armazenamento separado dos tipos de material
- Triturar as garrafas de plástico
- Armazenar em intacta as garrafas de vidro
- Bonificar os usuários por cada garrafa
- Manter dados do usuário em um aplicativo

A.0.8 Marcos

Tabela 2 – Marcos

Fase	Marcos	Previsão
Iniciação	Projeto Aprovado	28/03/2018
Planejamento	Plano de Gerenciamento de Projetos Aprovado	28/03/2018
	Linhas de Base de Custos, Prazo e Escopos Salvas	28/03/2018
Execução, Monitora-	Desenvolvimento dos subsistemas	16/05/2018
mento e Controle		
Encerramento	Integração	26/05/2018
	Testes	06/06/2018
	Projeto Entregue	22/06/2018

A.0.9 Partes interessadas do projeto

É preferível pela equipe de trabalho que as partes interessadas sejam divididas em dois grupos, o primeiro são os reais interessados dentro do contexto e escopo atual que é a

matéria do curso, e o segundo são os possíveis interessados em uma possível implantação comercial deste produto.

A.0.9.1 Partes interessadas em cenário acadêmico

Tabela 3 – Cenário acadêmico

Nome	Função	Interesse
Professores da Matéria Projeto	Orientar e avaliar os alunos no	Orientar e avaliar os alunos no
Integrador II do Campus de	desenvolvimento do projeto	desenvolvimento do projetoSa-
Engenharias da UnB		ber se os alunos da matéria es-
		tão hábeis a serem egressos da
		universidade
Alunos da Matéria Projeto In-	Desenvolver o projeto	Receber feedback da qualidade
tegrador II do Campus de En-		do projeto e da qualidade de
genharias da UnB		trabalho.

A.0.9.2 Partes interessadas em cenário de mercado

Tabela 4 – Cenário de mercado

Nome	Função	Interesse		
Clientes de supermercado	Utilizar a máquina	Ser bonificado pelo uso		
Empresas de reciclagem	Buscar e reciclar o material ar-	Economizar em manuseio e		
	mazenado pela máquina	transporte do material		
Empresas geradoras de Resí-	Gerar os resíduos sólidos	Economia na gerência de seus		
duos Sólidos		resíduos		
Governo	Aplicar e apoiar serviços deste	Ter um projeto deste cunho		
	cunho	vinculado ao seu nome		

A.0.9.3 Restrições

O projeto está restrito a ser um protótipo por conta do tempo de projeto (um semestre letivo), inexperiência da equipe (primeiro experiência de projeto em conjunto com o intuito de integração de várias áreas de engenharia) e falta de orçamento (máximo de R\$ 3.900,00).

A.0.9.4 Premissas

- Os testes de uso serão realizados apenas com os integrantes do time de desenvolvimento
- O tempo de trituração poderá ser avaliado apenas durante o desenvolvimento

- A prova de integração entre o aplicativo e a máquina será via display simples
- A disponibilidade de horário comum da equipe é apenas no horário de aula
- Não haverá recursos vindos de fora da equipe

A.0.9.5 Riscos

Os principais riscos levantados inicialmente são:

- Inexperiência dos membros da equipe com ferramentas e tecnologias a serem utilizadas
- Peças que demoram a ser obtidas estarem com defeito
- Aceito não gratuito a equipamentos de alto curto realmente necessários
- Falta de espaço para construção da estrutura
- Falha na integração

A.0.9.6 Orçamento do Projeto

Tabela 5 – Orçamento

Ambiente do Usuário	R\$ 00,00				
Sistema de Controle de Energia e Segurança	R\$ 1370,00				
Estrutura	R\$ -				
Sistema Eletrônico	R\$ 520,00				
R\$ 1.890,00					

APÊNDICE B – Plano de Gerenciamento de Riscos

B.0.1 Introdução

O propósito deste documento é identificar e mapear os riscos em busca de controlálos e assim, minimizar fortemente os percentuais de falhas e possíveis fracassos em relação a gestão e desenvolvimento.

B.0.2 Metodologia

A metodologia para o gerenciamento dos riscos será baseada no modelo espiral definido por Boehm em 2004, onde a cada ciclo da espiral, é feito uma análise de riscos para validação. Neste projeto, será feito uma adaptação do modelo, as análises serão realizadas ao final de cada sprint.

As ferramentas que serão utilizadas para a gerência dos riscos seguem uma ordem de apoio bem sincronizada, a primeira é o What if, que "é uma técnica qualitativa de cunho geral, de simples aplicação e muito útil como primeira abordagem na identificação e detecção de riscos, em qualquer fase do projeto ou processo." [2], esta técnica será usada ao início de cada sprint e quando a equipe ver a necessidade e seus resultados serão guardados no registro de riscos. Método de utilização: Construir a seguinte tabela em grupo pensando nas atividades mais influenciadoras para sequência do projeto:

Tabela 6 – WhatIf

Atividade	O que aconteceria se ?	Causas	Consequências	Observações

A segunda é o Checklist, onde "trata-se de uma ferramenta de contribuição, uma vez que precisa que os riscos já tenham sido identificados anteriormente em outros processos. Serve para verificar a aplicação das medidas recomendadas em processos de análise de risco anteriores."[4], ou seja, é uma ótima técnica para complementar o levantamento e monitoramento de aplicações de medidas contra os riscos. Método de uso do checklist:

Após identificado os riscos, usando o What If e o registro dos riscos, deve-se elaborar uma lista com checklists verificando se as respostas ao riscos encontrados surtiram efeito. Então as ações de sucesso ficam guardadas. Exemplo:

Tabela 7 – Checklist

Risco	Solução	Resposta	Observações

B.0.3 Processo de Gerência de Riscos

É definido, ainda no PMBOK, como será realizada a gerência, ou seja, a sequência de atividades que possibilitará o monitoramento dos riscos. Abaixo se encontra um diagrama que demonstra o processo que envolve este plano e logo em seguida é explicado cada etapa e sua associação com as ferramentas e fontes de dados escolhidos. O planejamento da gerência não é listado, pois já está fazendo parte da elaboração deste documento.

Figura 5 – Processo de Gerência de Riscos

• Planejar o Gerenciamento dos Riscos

- Objetivo Nesta fase é definido como as atividades de gerenciamento dos riscos serão dirigidas ao longo do projeto [1].
- Ferramentas e técnicas Reuniões e opinião especializada.

• Identificar Riscos

- Objetivo Processo de determinação dos riscos que podem afetar o projeto e de documentação das suas características [1].
- Ferramentas e técnicas What If e análise de premissas.

• Analisar Qualitativamente

- Objetivo O processo de priorização de riscos para análise ou ação posterior através da avaliação e combinação de sua probabilidade de ocorrência e impacto
 [1].
- Ferramentas e técnicas Checklist, Avaliação de probabilidade e impacto dos riscos, matriz de probabilidade e impacto.

• Analisar Quantitativamente

- Objetivo O processo de analisar numericamente o efeito dos riscos identificados nos objetivos gerais do projeto.
- Ferramentas e técnicas Apresentação de dados e opinião especializada.

• Planejar Respostas

- Objetivo O processo de desenvolvimento de opções e ações para reduzir as ameaças aos objetivos do projeto.
- Ferramentas e técnicas Estratégias para riscos negativos ou ameaças e estratégias de respostas de contingência.

• Monitorar

- Objetivo O processo de implementar planos de respostas aos riscos, acompanhar os riscos identificados, monitorar riscos residuais, identificar novos riscos e avaliar a eficácia do processo de gerenciamento dos riscos durante todo o projeto.
- Ferramentas e técnicas Reavaliação de riscos, revisão técnica em pares e reuniões.

B.0.4 Papéis e Responsabilidades

Os papéis e responsabilidades do projeto foram determinadas de forma que todos os líderes participem em conjunto nas áreas de identificação, no planejamento de respostas e no monitoramento colocando em prática as ferramentas escolhidas.

B.0.5 Prazos associados

Como foi definido no tópico de metodologia, ao iniciar cada sprint será realizada a análise e o planejamento das respostas. O monitoramento será feito ao longo de todo o processo. Mais precisamente, ao início de cada sprint, começará a gerência daquele ciclo de trabalho, acontecerão as análises, planejamentos e reavaliação para mudanças, pedido formal (volátil) e atualização de documentos (volátil).

B.0.6 Categoria de Riscos

Os riscos podem ser divididos em internos e externos. A montagem da EAR é interessantes pois, dividir os riscos em categorias facilita a ter uma visão mais ampla dos pontos "fracos" do projeto e que devem possuir uma maior atenção dos gestores. Essa categorização é possível de ser feita utilizando esse modelo, a qual ilustra bem as categorias dos riscos e sua hierarquia.

B.0.7 Análise dos Riscos

Em um Projeto de Engenharia, os riscos podem causar grande impacto caso não sejam bem mapeados e, visto isso, qualquer tipo de risco deve ser identificado e analisado cautelosamente. Devido essa necessidade, foi definido quatro atributos para analisar os riscos (Probabilidade, Impacto, Peso e Prioridade).

Relacionado às possibilidades e chances de acontecimento de determinado risco, foram classificados 5 níveis: Raro, Improvável, Moderado, Provável e Quase Certo.

Em relação à impacto e quantificando o efeito potencial sobre o risco no projeto, comumente relacionados a escopo, custo, qualidade e tempo foram definidos outros 5 níveis distintos: Insignificante, Baixo, Moderado, Alto e Catastrófico.

Logo após todas as definições, é realizada as de prioridades, onde foram classificados três níveis distintos: Prevenir, Controlar e Mitigar.

B.0.8 Definições de Probabilidades e Impactos de Riscos

Foram definidos faixas de valores e definições. Logo abaixo, foram construídas tabelas para fornecer base ao registro dos riscos.

A equipe deve se reunir para, com base nas experiências, no material de referência e nas ferramentas propostas, definir qual a probabilidade de determinado risco acontecer e seu impacto no projeto. As escalas de probabilidade são definidas em Raro, Improvável, Moderado, Provável e Quase Certo, e as escalas de impacto são definidas em Insignificante, Baixo, Moderado, Alto e Catastrófico.

Probabilidade (P)	Peso
Raro(<10%)	0.2
Improvável (10% - 25%)	0.4
Moderado (25% - 50%)	0.6
Provável (50% - 75%)	0.8
Quase Certo (>75%)	1.0

Tabela 8 – Pesos para faixas de Probabilidades

Tabela 9 – Pesos para faixas de Impacto

Impacto (I)	Descrição	Peso
Insignificante	Quase que imperceptível	0.05
Baixo	Pouca influência no desenvolvimento do projeto	0.10
Moderado	Notável ao projeto, mas sem grandes consequên-	0.20
	cias	
Alto	Dificulta o desenvolvimento do projeto	0.40
Catastrófico	Impossibilita o prosseguimento do projeto	0.80

A equipe definiu, usando como base no guia PmBok, que os principais objetivos do projeto são Custo, Tempo, Escopo e Qualidade. Com isso, foi construída uma tabela, com base nas escalas de impacto dos riscos, em que é inserido descrições de condições e tolerâncias dentro de cada objetivo de projeto para que assim, se tenha noção do que pode ocorrer caso o risco não seja controlado.

Tabela 10 – Condições e	Tolerâncias p	para as Escala	s de Impacto	de um Risco
-------------------------	---------------	----------------	--------------	-------------

Impacto /	Custo	Tempo	Escopo	Qualidade
Objetivo				
Insignificante	Aumento insig-	Aumento den-	Diminuição in-	Degradação in-
	nificante	tro do esperado	significante	significante
Baixo	Aumento den-	Aumento nego-	Áreas secundá-	Somente aplica-
	tro do esperado	ciável	rias afetadas	ções muito exi-
				gentes são afe-
				tadas
Moderado	Aumento nego-	Trabalho lento	Áreas principais	Redução requer
	ciável		afetadas	aprovação,do
				orientador
Alto	Recurso com fa-	Produto final	Redução do es-	Redução de
	lhas ou defeitos	incompleto	copo,inaceitável	qualidade ina-
			para os orienta-	ceitável para os
			dores	orientadores
Catastrófico	Recursos inúteis	Produto final	Produto final	Produto final
		é efetivamente	é efetivamente	é efetivamente
		inútil	inútil	inútil

B.0.9 Matriz de Probabilidade e Impacto

A tabela abaixo, definida como matriz, e baseada nas tabelas 1 e 2, possibilita a definição de um valor de peso para o risco.

Tabela 11 – Pesos dos Riscos (PxI)

Impacto /	Insignificante	Baixo	Moderado	Alto	Catastrófico
Objetivo					
Raro	0.01	0.02	0.04	0.08	0.16
Improvável	0.02	0.04	0.08	0.16	0.32
Moderado	0.03	0.06	0.12	0.24	0.48
Provável	0.04	0.08	0.16	0.32	0.64
Quase Certo	0.05	0.10	0.20	0.40	0.80

Com base na matriz elaborada, é possível definir o cenário do projeto para cada peso (PxI).

Impacto /	Insignificante	Baixo	Moderado	Alto	Catastrófico
Objetivo					
Raro	Equilibrado	Equilibrado	Equilibrado	Alerta	Alerta
Improvável	Equilibrado	Equilibrado	Alerta	Alerta	Crítico
Moderado	Equilibrado	Alerta	Alerta	Crítico	Crítico
Provável	Equilibrado	Alerta	Alerta	Crítico	Crítico
Quase Certo	Alerta	Alerta	Crítico	Crítico	Crítico

Tabela 12 – Faixas de cenários

Resposta:

- Equilibrado -> Prevenir
- Alerta -> Controlar
- Crítico -> Mitigar

Caso se tenha que escolher entre dois riscos que tenha o mesmo cenário e a mesma resposta, a prioridade é do com o maior valor de peso, e se esse valor também for igual, os riscos analisados devem ser avaliados ao mesmo tempo.

B.0.10 Controle e Rastreabilidade

Utilizando este documento como base, é possível elaborar o Registro dos Riscos (RR) para se ter noção de todos os riscos que podem afetar o projeto de forma negativa ou positiva. Os riscos sendo mapeados no RR, é possível ter a noção da prioridade e forma de controle de cada um criando assim, a rastreabilidade de todos. Para garantir a qualidade das atividades de controle sobre os riscos, serão feitas inspeções informais ao início de cada sprint elaborando assim, um relatório de controle com situação de combate, prioridade e pedidos de mudanças sobre os riscos monitorados.

ANEXO A - Primeiro Anexo

Texto do primeiro anexo.

ANEXO B - Segundo Anexo

Texto do segundo anexo.