Perceived Income Risks and Subjective Attribution

Tao Wang Johns Hopkins University

May 7, 2020

Outline

- Motivation
- 2 Model
 - Learning and attribution
- 3 Empirical facts
 - Cross-sectional patterns
 - Coutercylical perceived risks
- 4 Conclusion

This paper's agenda

- **1** Theory: a subjective heterogeneous-agent model
 - imperfect understanding of income risks
 - the size: experienced volatility \rightarrow perceived risks
 - \bullet the nature: i.e. aggregate v.s. idiosyncratic \rightarrow different perceptions
 - life-cycle agents with uninsured idioyncratic (and aggregate) risks
- Empirics: subjective risk perceptions from density surveys
 - Cross-sectional difference across age, generation and income
 - Correlation structure with current labor market outcomes: counter-cylical

Literature

- experience-based learning: Malmendier and Nagel (2015)
- subjective survey, especially on probabilistic surveys: Manski (2004), Delavande et al. (2011), Manski (2018), Bertrand and Mullainathan (2001), Armantier et al. (2017)
- "insurance or information": Kaufmann and Pistaferri (2009), Meghir and Pistaferri (2011), Pistaferri (2001), New York Fed Blog (2019), Flavin (1988)
- consumption/saving and portfolio choice under imperfect perception/understanding: Rozsypal and Schlafmann (2017), Carroll et al. (2018), Lian (2019)
- macroeconomic expectation formation: Coibion and Gorodnichenko (2012), Fuhrer (2018), etc
- counter-cyclical labor income risks: Storesletten et al. (2004), Guvenen et al. (2014), Catherine (2019)

Preview of the theory

- Learning: learns about the parameters of income process from a small sample
- Experience: past experience of volatility \rightarrow future risk perceptions
- Attribution: subjectively determine whether shocks are aggregate or idiosyncratic \rightarrow different parameter uncertainty
- Attribution errors: positive (negative) shocks \rightarrow internal (external) attribution \rightarrow zero (positive) subjective correlation \rightarrow low (high) perceived risks
- Countercylical perceived risks: positive (negative) news \rightarrow low (high) aggregate uncertainty

Outline

- Model
 - Learning and attribution
- - Cross-sectional patterns
 - Coutercylical perceived risks

Income process

$$y_{i,c,t} = \rho y_{i,c,t-1} + \epsilon_{i,c,t}$$

$$\epsilon_{i,c,t} \sim N(0, \sigma^2)$$
(1)

- individual i at time t
- cohort c: year of entering the job market
- ρ : persistence parameter
- $\epsilon_{i,c,t}$: income shock
 - Identical: constant income risks across people and time
 - Independence: purely idiosyncratic risk
 - Both can be relaxed, i.e. cross-sectional correlation for aggregate shocks

Perceived risk

• Perfect understanding

$$Var_{i,t}^*(\Delta y_{i,t+1}) = Var_{i,t}^*(\epsilon_{i,t+1})$$
$$= \sigma^2$$
 (2)

• Imperfect understanding

$$\widehat{V}ar_{i,t}(\Delta y_{i,t+1}) = y_{i,t}^2 \underbrace{\widehat{Var}_{i,t}^{\rho}}_{\text{Persistence uncertainty}} + \underbrace{\widehat{\sigma}_{i,t}^2}_{\text{Shock uncertainty}}$$
(3)

< □ > < 圖 > < 差 > < 差 > 差 夕 Q @

Learning

$$\hat{\rho}_{i,t} = (\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1}^2)^{-1} (\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1} y_{j,t-k})$$
estimated parameter (4)

- sample: past experience of both i's own and others' income
- size: $N_{i,t} = n_i(t c_i)$
 - n_i , an arbitrarily small n is sufficient
 - $t c_i$, the duration of career (approximate for age)
- learning rule: ordinary least square (OLS) (Evans and Honkapohja (2012)), Malmendier and Nagel (2015))

→□ → →□ → → □ → □ → ○ ○ ○

Shock uncertainty

$$\underbrace{\tilde{\sigma}_{i,t}^2}_{\text{estimated shock uncertainty}} = \underbrace{s_{i,t}^2}_{\text{experienced volatility}} = \underbrace{\frac{1}{N_{i,t} - 1} \sum_{j=1}^{n} \sum_{k=0}^{t-c} \hat{e}_{j,t-k}^2}_{\text{variance of residuals}}$$
(5)

• $\hat{e}_{i,t}$: unexpected income shocks

Persistence uncertainty

$$\tilde{Var}_{i,t}^{\rho} = \left(\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1}^2\right)^{-1} \left(\sum_{k=0}^{t-c} \tilde{\Omega}_{i,t-k}\right) \left(\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1}^2\right)^{-1}$$
(6)

$$\tilde{\Omega}_{i,t} = \underbrace{\tilde{E}_{i,t}(Y'_{t-1}e_te'_tY_{t-1})}_{\text{attribution matrix}}$$

$$Y'_{t-1} = [y_{1,t-1}, y_{2,t-1}...y_{n,t-1}]'$$
(7)

• **Attribution**: how *i* thinks about the correlation between her own income and others

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ◆○○○

Attribution

• Under constant risk across people and time (homoscedasticity)

$$\tilde{\Omega}_{i,t} \approx \sum_{j=1}^{n} y_{j,t}^{2} \tilde{(1 + \underbrace{\tilde{\delta}_{i,t}}_{j,i,t} \tilde{\delta}_{\epsilon,i,t}} (n-1)) \tilde{\sigma}_{t}^{2}$$
(8)

- $\tilde{\delta}_{i,t} \in [0,1]$: attribution parameter perceived correlation of individual outcome with others
- $\tilde{\delta}_{\epsilon,i,t}$: short-run attribution perceived correlation in income shocks
- $\tilde{\delta}_{y,i,t}$: long-run attribution -perceived correlation in income

Perceived risk under internal v.s. external attribution

• External: $\tilde{\delta}_{i,t} > 0$, i.e. "something common affects all of us"

$$\tilde{Var}_{i,t}(\Delta y_{i,t+1}) = y_{i,t-1}^2 \tilde{Var}_{i,t}^{\rho} + \tilde{\sigma}_{i,t}^2
= \left[\left(\sum_{k=0}^{t-c} \sum_{j=1}^n y_{j,t-k-1}^2 \right)^{-1} \left(1 + \tilde{\delta}_{i,t}(n-1) \right) y_{i,t}^2 + 1 \right] s_{i,t}^2$$
(9)

• Internal: $\delta_{i,t} = 0$, i.e. "my income has nothing to do with others"

$$\widehat{Var}_{i,t}(\Delta y_{i,t+1}) = \left[\left(\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1}^2 \right)^{-1} y_{i,t}^2 + 1 \right] s_{i,t}^2$$
 (10)

Comparison

$$\widetilde{Var}_{i,t}(\Delta y_{i,t+1}) > \widehat{Var}_{i,t}(\Delta y_{i,t+1})$$
 (11)

Prediction 1. higher degree of external attribution leads to higher perceived risks

Prediction 2. extrapolation of experienced volatility into perceived risks

Attribution errors

 \bullet positive (negative) shock \rightarrow internal (external) attribution

Attribution function:
$$\tilde{\delta}(\Delta y_{i,t}) = 1 - \frac{1}{(1 + e^{\alpha - \theta \Delta y_{i,t}})}$$
 (12)

- θ : degree of attribution error
- α : unbiasedness of attribution

4□ > 4□ > 4□ > 4□ > □
900

Prediction 3. Counter-cylical perceived risks under aggregate risk and attribution error

$$\tilde{Var}_{t}(\Delta y_{i,t+1}) = \underbrace{\lambda_{t}}_{\text{lucky fraction}} \tilde{Var}_{t}^{internal} + (1 - \lambda_{t})\tilde{Var}_{t}^{external}$$
(13)

- Aggregate versus idionsyncratic risks
 - Aggregate: λ_t is procyclical.
 - Idionsyncratic: $\lambda_t \approx 0.5$
- With and without attribution errors
 - Attribution error: $\tilde{Var_t}^{external} > \tilde{Var_t}^{internal}$ No error: $\tilde{Var_t}^{external} = \tilde{Var_t}^{internal}$

Outline

- - Learning and attribution
- Empirical facts
 - Cross-sectional patterns
 - Coutercylical perceived risks

Perceived risks by household income

Perceived risks by age

Perceived risks and experience

- Approximated experienced volatility: $s_{c,t}^2$, MSE of the income regression for the PSID sample between c and t
- Perceived risk: $\overline{var_{c,t}}$: average across individuals within cohort c at time t

Perceived risks and experienced volatility

$$\underbrace{log(\overline{\text{var}}_{i,c,t})}_{\text{log perceived risk}} = a + \zeta \underbrace{log(\hat{s}_{c,t}^2)}_{\text{log experienced volatility}} + Z \underbrace{\Gamma_{i,t}}_{\text{individual controls}} + \xi_{i,t}$$

	Perceived risk	Perceived risk	Perceived risk	Perceived iqr	Perceived iqr	Perceived iqr
log experienced volatility	1.291**	1.265**	1.208**	0.690**	0.713**	0.650**
	(3.08)	(3.02)	(2.61)	(3.05)	(3.16)	(2.62)
R-squre	0.0170	0.0222	0.0243	0.0118	0.0168	0.0269
N	40158	40158	33485	44454	44454	37058
Control age	Yes	Yes	Yes	Yes	Yes	Yes
Control educ	No	Yes	Yes	No	Yes	Yes
Control income	No	No	Yes	No	No	Yes

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ めぬぐ

Outline

- Motivation
- 2 Model
 - Learning and attribution
- 3 Empirical facts
 - Cross-sectional patterns
 - Coutercylical perceived risks
- 4 Conclusion

Perceived risks and recent (past) wage growth

- \bullet $\overline{\text{var}_t}$: average perceived risk across individuals
- $log(wage_t) log(wage_{t-3})$: quarterly growth in average hourly wage

Perceived risks and current labor market condition

$$\underbrace{\overline{\mathrm{risk}_t}}_{\text{average perceived risk}} = \alpha + \beta \underbrace{\left(log(\mathrm{wage}_{t-k}) - log(\mathrm{wage}_{t-k-3})\right)}_{\text{wage growth}} + \epsilon_{i,t}$$

$$\forall k = 1...6$$

k	varMean	iqrMean	rvarMean	varMed	iqrMed	rvarMed
1	-2.046**	-0.801***	-10.437***	-0.269	-0.191	-5.121***
2	-3.823***	-1.193***	-12.287***	-0.021	0.009	-5.292***
3	-2.942***	-0.938***	-9.642***	-0.147	-0.077	-4.445***
4	-3.261***	-0.994***	-9.021***	-0.142	-0.094	-4.467***
5	-2.312**	-0.892***	-6.792**	-0.441**	-0.252*	-4.718***
6	-3.419***	-1.207***	-10.791***	-0.412**	-0.274**	-5.466***

Perceived risks and current labor market condition

	(1)	(2)	(3)	(4)
	$\log(\text{var})$	$\log(\mathrm{risk})$	$\log(iqr)$	$\log(iqr)$
wage growth	-0.05***		-0.03***	
	(0.01)		(0.01)	
unemp rate		0.04*		0.04***
		(0.02)		(0.01)
Observations	3529	3529	3546	3546
R-squared	0.023	0.020	0.025	0.028

Conclusion

- Experience + Learning + Attribution \rightarrow Perception (Expectation)
- Attribution is important because of
 - imperfect understanding in both the size and the nature
 - forming perceptions about second moments, i.e. income risks
 - certain attribution errors \rightarrow aggregate patterns, i.e. counter-cyclical subjective risk

27 / 27

- Armantier, O., Topa, G., Van der Klaauw, W., and Zafar, B. (2017). An overview of the Survey of Consumer Expectations. *Economic* Policy Review, (23-2):51-72.
- Bertrand, M. and Mullainathan, S. (2001). Do people mean what they say? Implications for subjective survey data. American Economic Review, 91(2):67-72.
- Carroll, C. D., Crawley, E., Slacalek, J., Tokuoka, K., and White, M. N. (2018). Sticky expectations and consumption dynamics. Technical report, National Bureau of Economic Research.
- Catherine, S. (2019). Countercyclical Labor Income Risk and Portfolio Choices over the Life-Cycle. SSRN Scholarly Paper ID 2778892, Social Science Research Network, Rochester, NY.
- Coibion, O. and Gorodnichenko, Y. (2012). What can survey forecasts tell us about information rigidities? Journal of Political Economy, 120(1):116-159.
- Delavande, A., Giné, X., and McKenzie, D. (2011). Measuring subjective expectations in developing countries: A critical review and new evidence. Journal of development economics, 94(2):151=163.

- Evans, G. W. and Honkapohja, S. (2012). Learning and expectations in macroeconomics. Princeton University Press.
- Flavin, M. A. (1988). The Excess Smoothness of Consumption: Identification and Interpretation. Working Paper 2807, National Bureau of Economic Research.
- Fuhrer, J. C. (2018). Intrinsic expectations persistence: evidence from professional and household survey expectations.
- Guvenen, F., Ozkan, S., and Song, J. (2014). The nature of countercyclical income risk. *Journal of Political Economy*, 122(3):621–660.
- Kaufmann, K. and Pistaferri, L. (2009). Disentangling insurance and information in intertemporal consumption choices. *American Economic Review*, 99(2):387–92.
- Lian, C. (2019). Consumption with imperfect perception of wealth. Working paper.
- Malmendier, U. and Nagel, S. (2015). Learning from inflation experiences. The Quarterly Journal of Economics, 131(1):53-87.

- Manski, C. F. (2004). Measuring expectations. *Econometrica*, 72(5):1329–1376.
- Manski, C. F. (2018). Survey measurement of probabilistic macroeconomic expectations: progress and promise. *NBER Macroeconomics Annual*, 32(1):411–471.
- Meghir, C. and Pistaferri, L. (2011). Earnings, consumption and life cycle choices. In *Handbook of labor economics*, volume 4, pages 773–854. Elsevier.
- Pistaferri, L. (2001). Superior information, income shocks, and the permanent income hypothesis. *Review of Economics and Statistics*, 83(3):465–476.
- Rozsypal, F. and Schlafmann, K. (2017). Overpersistence bias in individual income expectations and its aggregate implications.
- Storesletten, K., Telmer, C. I., and Yaron, A. (2004). Cyclical dynamics in idiosyncratic labor market risk. *Journal of political Economy*, 112(3):695–717.