Самостоятельная работа к занятию 22

1. Решите краевую задачу
$$\begin{cases} xy'' + y' = 1, \\ y(1) = 0, \quad y'(2) = 0. \end{cases}$$

2. Найдите $n \in \mathbb{N}$, при которых краевая задача имеет решение.

$$\begin{cases} y'' + \frac{9}{4}y = \sin\frac{n}{2}x, \\ y(0) = 0, \quad y'(\pi) = 0 \end{cases}$$

- **3.** Покажите, что оператор $L[y] = x^2y'' + 2xy' 2y$ не вырожден на множестве функций, ограниченных на $[0, +\infty)$.
- **4.** Покажите, что оператор L[y]=y''+y вырожден на множестве функций, удовлетворяющих условиям $\begin{cases} y(0)-y'(0)=0,\\ y(\pi)-y'(\pi)=0. \end{cases}$
 - 5. Найдите условие разрешимости краевой задачи

$$\begin{cases} \left(\frac{y'}{x}\right)' = f(x) \\ 2y(1) + 3y'(1) = 0, \quad y(2) = 0. \end{cases}$$

6. а) При каких значениях параметра α краевая задача

$$\begin{cases} y'' + 2y' - 3y = f(x) \\ y(0) + \alpha y'(0) = 0, & \lim_{x \to -\infty} y(x) = 0 \end{cases}$$

имеет решение при любой правой части?

- б) При каких значениях параметра α и условиях на f(x) краевая задача имеет бесконечно много решений?
- в) При каких значениях параметра α и условиях на f(x) краевая задача не имеет решения?

Ответы и указания

1. Указание: xy'' + y' = (xy')'.

Частное решение y=x, общее решение $y(x)=C_1+C_2\ln x+x$. Подставляя y(x) в краевые условия, получаем $y(x)=-1-2\ln x+x$.

2. Общее решение однородного уравнения

$$y_{\text{o.o.}}(x) = C_1 \sin \frac{3}{2}x + C_2 \cos \frac{3}{2}x.$$

Функция $e_0(x) = \sin \frac{3}{2} x$ принадлежит ядру оператора L[y]. Условия разрешимости

$$\int_{0}^{\pi} \sin \frac{n}{2} x \sin \frac{3}{2} x dx = 0.$$

Ответ: n — нечетное и $n \neq 3$, $y(x) = \frac{4}{9-n^2} \sin \frac{nx}{2} + C \sin \frac{3}{2}x$.

- 3. Указание: $y_{\text{ о.о.}}(x) = C_1 x + C_2 x^{-2}$. Следовательно, не существует функции $e_0(x) \in \text{Ker } L$, отличной от нуля, ограниченной как при $x \to 0$, так и при $x \to +\infty$.
- 4. Указание: $y_{\text{ o.o.}}(x) = C_1 \sin x + C_2 \cos x$. Функция $e_0(x) \in \operatorname{Ker} L$ при $C_2 C_1 = 0$.

Other: $e_0(x) = \sin x + \cos x$.

5. Указание: $y_{\text{ o.o.}}(x) = C_1 x^2 + C_2$. Функция $e_0(x) = x^2 - 4 \in \text{Ker } L$. Условие разрешимости

$$\int_{1}^{2} f(x)(x^{2} - 4)dx = 0.$$

6. $y_{\text{ o.o.}}(x) = C_1 e^x + C_2 e^{-3x}$. Так как $\lim_{x \to -\infty} y(x) = 0$, то $e_0(x) = C e^x$.

Если $C(1+\alpha)=0$, то $e_0(x)\in \operatorname{Ker} L$.

Приведем уравнение к самосопряженному виду:

$$(e^{2x}y')' - 3e^{2x}y = e^{2x}f(x).$$

Для разрешимости краевой задачи необходимо, чтобы правая часть уравнения была ортогональна функции из ядра:

$$\int_{-\infty}^{0} f(x)e^{3x}dx = 0.$$

Oтвет:а) при $\alpha \neq -1$ краевая задача имеет единственное решение для любой f(x);

б) если $\alpha = -1$ и $\int\limits_{-\infty}^{0} f(x)e^{3x}dx = 0$, то краевая задача имеет бесконечно много решений;

в) если $\alpha=-1$ и $\int\limits_{-\infty}^0 f(x)e^{3x}dx \neq 0$, то краевая задача не имеет решений.