MFE5130 – Financial Derivatives First Term, 2017-18

Midterm Examination (Solution)

Question 1

Let C(K) and P(K) be the premium of the K-strike call option and K-strike put option respectively.

We have

$$C_A(0) = C(108) - C(109)$$

$$C_B(0) = P(109) - P(108)$$

Adding $C_A(0)$ and $C_B(0)$ together, we have

$$C_A(0) + C_B(0)$$
= $C(108) - C(109) + P(109) - P(108)$
= $[S_0 - 108e^{-r}] + [109e^{-r} - S_0]$
= $e^{-r} = e^{-0.22} = 0.8025$

where S_0 is the price of the underlying stock at time 0.

Now, we can find $C_B(0)$:

$$C_A(0) + C_B(0) = 0.8025$$

 $0.3 + C_B(0) = 0.8025$
 $C_B(0) = 0.8025 - 0.3 = 0.5025$.

(a)

We make use of the version of the put-call-parity that can be applied to currency options.

We have:

$$C_{s}(x_{0}, K, T) = e^{-r_{f}T}x_{0} + P_{s}(x_{0}, K, T) - e^{-rT}K.$$

So,

$$C_{\S}(0.008, 0.008, 1) = e^{-0.02(1)}(0.008) + 0.0009 - e^{-0.06(1)}(0.008)$$

= 0.001207.

(b)

The observed option price is too high. Therefore, we sell the call option and synthetically create a long call option, perfectly offsetting the risks involved. We have:

Transaction	t = 0	t = 1, $x < 0.008$	t = 1, $x > 0.008$
Sell Call	0.0019	0	-(x - 0.008) = 0.008 - x
Buy Put	-0.0009	0.008 - x	0
Buy $e^{-r_f T}$ Spot	$-0.008e^{-0.02} = -0.007842$	X	X
Borrow PV(strike)	$0.008e^{-0.06} = 0.007534$	-0.008	-0.008
Total	0.000692	0	0

We have thus demonstrated the arbitrage opportunity.

(c)

By using

$$C_{s}\left(x_{0},K,T\right)=x_{0}KP_{yen}\left(\frac{1}{x_{0}},\frac{1}{K},1\right),$$

we have

$$C_{\$} (0.008, 0.008, 1) = (0.008)(0.008) P_{yen} \left(\frac{1}{0.008}, \frac{1}{0.008}, 1 \right)$$

$$0.001207 = (0.008)^{2} P_{yen} (125, 125, 1)$$

$$P_{yen} (125, 125, 1) = \frac{0.001207}{(0.008)^{2}}$$

$$= 18.8594 \text{ yen.}$$

(a)

Let $F_{0,T}$ be the forward price on one troy ounce of gold with T years to expiration.

It is known that

$$F_{0,T} = \frac{S_0 e^{-\delta_l T}}{P(0,T)},$$

where S_0 is the current spot price of gold and δ_l is the lease rate of gold.

So,

$$F_{0,T} = \frac{1300e^{-0.025T}}{P(0,T)},$$

T (in Years)	1	2	3	4
$F_{0,T}$	1,273.2505	1,285.3116	1,281.5498	1,292.3409

Let *R* be the fixed swap price for one troy ounce of gold.

$$R = \frac{\sum_{k=1}^{4} P(0,k) F_{0,k}}{\sum_{k=1}^{4} P(0,k)}$$

$$= \frac{(0.9958)(1,273.2505) + (0.9621)(1,285.3116) + (0.9411)(1,281.5498) + (0.9102)(1,292.3409)}{0.9958 + 0.9621 + 0.9411 + 0.9102}$$

$$= 1,282.9088.$$

Hence, the fixed swap price for one troy ounce of gold is \$1,282.9088.

(b) After 1 year, the forward prices of gold at that time are

T (in Years)	1	2	3
$F_{0,T}$	1,345.8358	1,356.8081	1,370.1482

Let R_{new} be the new fixed swap price for one troy ounce of gold in the swap.

$$R_{new} = \frac{\sum_{k=1}^{3} P(0,k) F_{0,k}}{\sum_{k=1}^{3} P(0,k)}$$

$$= \frac{(0.9852)(1,345.8358) + (0.9589)(1,356.8081) + (0.9335)(1,370.1482)}{0.9852 + 0.9589 + 0.9335}$$

$$= 1,357.3789.$$

The market value of the swap in the perspective of the long party = 200(1,357.3789 - 1,282.9088)[P(0,1) + P(0,2) + P(0,3)]= 200(1,357.3789 - 1,282.9088)[0.9852 + 0.9589 + 0.9335]= 42,872.4366.

The theoretical forward price = $(30.58 - 1.8e^{-6\% \times 0.25} - 2.5e^{-6\% \times 0.5}) e^{6\% \times (8/12)} = 27.4573$.

Now, we have the observed market forward price, \$29.15, is **higher than** the theoretical forward price. So, the strategy to realize the arbitrage profit is to short the forward contract and long the synthetic forward.

Transactions	Cash Flows			
	t = 0	t = 0.25	t = 0.5	t = 8/12
Short one forward	0	0	0	$29.15 - S_{8/12}$
Buy one share of	-30.58	0	0	$S_{8/12}$
the stock				
Borrow \$30.58 at t	30.58	0	0	$-30.58e^{(0.06)(8/12)}$
= 0				=-31.828
Receive the	0	1.8	0	0
dividend ($\$1.8$) at t				
= 0.25				
Lend \$1.8 at <i>t</i>	0	-1.8	0	$1.8e^{(0.06)(5/12)} = 1.8456$
=0.25				
Receive the	0	0	2.5	0
dividend (\$2.5) at <i>t</i>				
= 0.5				
Lend \$2.5 at $t = 0.5$	0	0	-2.5	$2.5e^{(0.06)(2/12)} = 2.5251$
Total	0	0	0	1.6927

This position requires no initial investment, has no stock price risk, and has a strictly positive payoff. We have exploited the mispricing with a pure arbitrage strategy. The accumulated arbitrage profits at the end of 8 months is \$1.6927.

Let P(K) is the price of the K-strike put option.

The prices of Option A and Option B violate the following inequality

$$P(K_1) \le P(K_2)$$
, for $K_1 \le K_2$.

This is because:

$$P(127) < P(120)$$

10 < 12.

Therefore, arbitrage profits can be earned by buying the 127-strike put and selling the 120-strike put. This is a put bear spread.

Let $S_{0.75}$ be the price of the underlying stock at the end of 9 months.

The payoff of the strategy is given as follows:

		t = 9 months (0.75 year)		
Transaction	t = 0	$0 < S_{0.75} < 120$	$120 \le S_{0.75} < 127$	$127 \le S_{0.75}$
Buy 1 unit of <i>P</i> (127)	-10	$127 - S_{0.75}$	$127 - S_{0.75}$	0
Sell 1 unit of <i>P</i> (120)	12	$-(120-S_{0.75})$	0	0
Total	2	7	$127 - S_{0.75}$	0

If the final stock price is \$118, then the accumulated profits at the end of 9 months are

$$X = 2e^{(0.11)(0.75)} + 7 = 9.172.$$

If the final stock price is \$122, then the accumulated profits at the end of 9 months are

$$Y = 2e^{(0.11)(0.75)} + (127 - 122) = 7.172.$$

Hence,

$$\frac{X}{Y} = \frac{9.172}{7.172} = 1.2789.$$