Physics 8.321, Fall 2020 Homework #6

Due Friday, November 12 by 8:00 PM.

1. [Sakurai and Napolitano Problem 16, Chapter 2 (page 151)]

Consider a function, known as the **correlation function**, defined by

$$C(t) = \langle x(t)x(0) \rangle$$
,

where x(t) is the position operator in the Heisenberg picture. Evaluate the correlation function explicitly for the ground state of a one-dimensional simple harmonic oscillator.

2. [Modified from Sakurai and Napolitano Problem 17, Chapter 2 (page 152)]

Consider again a one-dimensional simple harmonic oscillator. Do the following algebraically – that is, without using wavefunctions.

- (a) Construct a (normalized) linear combination of $|0\rangle$ and $|1\rangle$ such that $\langle x \rangle$ is as large as possible.
- (b) Suppose the oscillator is in the state constructed in (a) at t = 0. What is the state vector for t > 0 in the Schrödinger picture? Evaluate the expectation value $\langle x \rangle$ as a function of time for t > 0, using (i) the Schrödinger picture and (ii) the Heisenberg picture. Evaluate $\langle p \rangle$ as a function of time as well and confirm Ehrenfest's theorem giving the classical equations of motion.
- (c) Evaluate $\langle (\Delta x)^2 \rangle$ as a function of time using either picture.
- 3. Consider a simple harmonic oscillator of frequency ω which begins in the state

$$|\psi(0)\rangle = c_0 e^{\phi_0 a^{\dagger}} |0\rangle$$

where $\phi_0 = \alpha + i\beta$ is an arbitrary complex number and $c_0 = \exp(-|\phi_0|^2/2)$.

- (a) Solve the equation of motion for $|\psi(t)\rangle$.
- (b) Evaluate $\langle x \rangle, \langle p \rangle$ as functions of time.
- (c) Describe the wavefunction associated with $|\psi(t)\rangle$ in terms of modulus $\rho(x)$ and phase S(x). Give the physical interpretation of the modulus and phase. Describe qualitatively what happens to the wavefunction over time. Compare with the time-development of a free particle given an initial Gaussian state.