- · Nor K, Average Value, Probability
- · How to compute the average Value of a function

. Average value of f over [a,b]

$$\approx \frac{y_1 + \dots + y_n}{n}$$
, where $y_1 = f(x_1)$, $y_2 = f(x_2)$,...

• The length Δx of each subinterval is $\Delta x = \frac{b-q}{n}$ (equal lengths)

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f(x)$$

Thus: $\lim_{n\to\infty} \frac{y_1 + \dots + y_n}{n} = \frac{1}{b-a} \int_{a}^{b} f(x)dx$ where $\lim_{n\to\infty} \frac{y_1 + \dots + y_n}{n} = \frac{1}{b-a} \int_{a}^{b} f(x)dx$ where $\lim_{n\to\infty} \frac{y_1 + \dots + y_n}{n} = \frac{1}{b-a} \int_{a}^{b} f(x)dx$

Ex: The average of a constant c is equal to c:
$$\frac{1}{b-a}$$
 $\int_{a}^{b} 31 dx = 31$

Ex:

The average height of $Y = \sqrt{1-x^2}$ on the interval $-1 \le x \le 1$ is $\frac{1}{2} \int \sqrt{1-x^2} dx = \frac{1}{2} \times \text{Area of Semicircle} = \frac{11}{4}$

Ex: Find the average height y on a senicircle with respect to

arc length (use do, not dx)

This is an average

Computed using a different weight

than in the previous example

· Along the circle, Y = Sino, $0 \le 0 \le \pi$

Thus, Average =
$$\frac{1}{\pi} \int_{0}^{\pi} \sin d\theta = \frac{1}{\pi} \left[-\cos \theta \right]_{0}^{\pi} = \frac{$$

Ex: Dart poord:

- · lou dim for the center, but your dim is not perfect.
- . Let r denote the distance from the center
- · Let's assume that your accuracy is "normally distributed":

. The number of hits within a given ring with $r_1 < r < r_2$ is $c \int e^{-r^2} (2\pi r) dr$

· C is a constant such
that c $\int_{0}^{\infty} e^{-r^{2}}(2\pi r) dr = 1$ "The total probability is 1"

Above: ce = probability Adensity 1)

of hitting some fixed point

at a distance r from the

Center

· 277 dr = arez of a ring of width dr and radius r

Cer (277)dr = probability of hith.

· Cer2 (2777)dr = probability of hitting Somewhere within the ring of width dr and radius r

Shaded resion makes up

to of the area in between 21, and 31,

Let's find the probability of hitting he shaded region

Probability =
$$\frac{part}{while}$$

= $\frac{1}{6} \int_{0}^{3r} ce^{-r^{2}} (2\pi r) dr$
 $\int_{0}^{\infty} ce^{r^{2}} (2\pi r) dr$

$$\int_{a}^{b} re^{r^{2}} dr = -\frac{1}{2} e^{r^{2}} \int_{a}^{b} = \frac{1}{2} (e^{-q^{2}} - e^{-b^{2}})$$

$$\int_{0}^{\infty} re^{r^{2}} dr = -\frac{1}{2} e^{r^{2}} \int_{0}^{R \to \infty} = -\frac{1}{2} e^{-R^{2}} + \frac{1}{2} e^{-0^{2}} = \frac{1}{2}$$

Thus, probability =
$$\frac{\frac{3r_{1}}{6} \int_{0}^{3r_{1}} e^{-r^{2}} r dr}{\int_{0}^{3r_{1}} e^{-r^{2}} r dr} = \frac{1}{3} \int_{0}^{3r_{1}} e^{-r^{2}} r dr = \frac{1}{6} \left(e^{-(2r_{1})^{2}} - e^{-(3r_{1})^{2}} \right)$$

$$= \frac{1}{6} \left(e^{-4r_{1}^{2}} - e^{-qr_{1}^{2}} \right)$$

Ex: Compute
$$T = \int_{-\infty}^{\infty} e^{-x^2} dx$$

This integral represents the area under the curve $Y = e^{-x^2}$ for $-\infty < x < \infty$:

- . This is one of the most important integrals in calculus
- · Let's first revolve this graph about the Y-axis and find the volume using the Shell method:

Shell thickness

$$V = \int_{0}^{\infty} e^{-x^{2}} 2\pi x \, dx = -\pi e^{x^{2}} \int_{0}^{\infty} e^{-x^{2}} dx = \pi e^{x^{2}} \int$$

· Let's now find the volume of the same solid by using slices of Constant X values.

- . Let AW = area of the stice
- · dx= thickness of Slice

$$y = e^{-r^2} = e^{-(x^2+z^2)} = e^{-x^2} = z^2$$

Note that
$$A(x) = \int_{e^{-x^2}}^{\infty} dz = e^{-x^2} \int_{e^{-z^2}}^{\infty} dz = e^{-x^2} I$$

$$z=-\infty$$

It follows that

from before of

$$T = V = \int_{-\infty}^{\infty} A(x) dx = \int_{-\infty}^{\infty} e^{x^2} I dx = I$$

$$\int_{-\infty}^{\infty} e^{x^2} I dx = I^2$$

. Thus,
$$I = \sqrt{\pi} = \int_{e^{-x}dx}^{\infty}$$

• Equivalently:
$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2} dx = 1.$$

Here is 2 rescaled version of the above formula (it can be derived by a substitution). $\frac{1}{\sqrt{2\pi}6} = \int_{-262}^{\infty} e^{-\frac{x^2}{262}} dx = 1$

with Standard deviation 6