FIGURE 1

AGGCGGCAGCAGCTGCAGGCTGACCTTGCAGCTTGGCGGAATGGACTGGCCTCACAACCTGCTGTTTCTT
CTTACCATTTCCATCTTCCTGGGGCTGGGCCAGCCCAGGAGCCCCAAAAGCAAGAGAAGGAGGGCCAAGGGCG
GCCTGGGCCCCTGGCCCTCACCAGGTGCCACTGGACCTGGTGTCACGGATGAAACCGTATGCCC
GCATGGAGGAGTATGAGAGGAACATCGAGGAGATGTGGCCCAGCTGAGGAACAGGCTCAGAGCTGGCCCAG
AGAAAGTGTGAGGTCAACTTGCAGCTGTGGATGTCCAACAAGAGGAGCCTGTCTCCCTGGGGCTACAGCAT
CAACCACGACCCCAGCCGTATCCCCGTGGACCTGCCGGAGGCACGGTGCCTGTGTCTCGGGCTGTGTAACC
CCTTCACCATGCAGGAGGACCGCAGCATGGTGAGCGTGCCGGTGTTCAGCCAGGTTCCTGTGCGCCGCC
CTCTGCCCGCCACCGCCCCCACAGGGCCTTGCCGCCAGCAGCCCAGCAGCCTGTGTGGGCTG
CACCTGCATCTTCTGAATCACCTGGCCCAGAAGCCAGGCCCGAGACCATCCTCCTTGCACCTTT
GTGCCAAGAAAGGCCTATGAAAAGTAAAACACTGACTTTTGAAAGCAAG

FIGURE 2

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRPGPLAPGPHQVPLDLVSRMKPYARMEEYERNIEEMVA QLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVDLPEARCLCLGCVNPFTMQEDRSMVSVP VFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

MTLLPGLLFLTWLHTCLAHHDPSLRGHPHSHGTPHCYSAEELPLGQAPPHLLARGAKWGQALPVALVSSLE AASHRGRHERPSATTQCPVLRPEEVLEADTHQRSISPWRYRVDTDEDRYPQKLAFAECLCRGCIDARTGRE TAALNSVRLLQSLLVLRRRPCSRDGSGLPTPGAFAFHTEFIHVPVGCTCVLPRSV

Signal peptide:

Tyrosine kinase phosphorylation site:

N-myristoylation sites:

Leucine zipper pattern:

Homologous region to IL-17:

Amino acids 1-18

Amino acids 112-121

Amino acids

32-38;55-61;133-139

Amino acids 3-25

Amino acids 99-195

GTGCCCGACTTGTGACTGAGTGTGCAGTGCCCAGCATGTACCAGGTCAGTGCAGAGGGCTGCCTGAGGGCT ${\tt GGACAGTTCTCTCATTAGCCTTTTCCTACAGGTGGTTGCATTCTTGGCAATGGTCATGGGAACCCACACCT}$ ACAGCCACTGGCCCAGCTGCCCCCAGCAAAGGGCAGGACACCTCTGAGGAGCTGCTGAGGTGGAGCACT GTGCCTGTGCCTCCCTAGAGCCTGCTAGGCCCAACCGCCACCCAGAGTCCTGTAGGGCCAGTGAAGATGGA GCAACTCGGAGCTGCTCTACCACAACCAGACTGTCTTCTACAGGCGGCCATGCCATGGCGAGAAGGGCACC GATGGGCTAGCCGGACCTGCTGGAGGCTGGTCCCTTTTTGGGAAACCTGGAGCCAGGTGTACAACCACTTG CCATGAAGGGCCAGGATGCCCAGATGCTTGGCCCCTGTGAAGTGCTGTCTGGAGCAGCAGGATCCCGGGAC AGGATGGGGGGCTTTGGGGAAAACCTGCACTTCTGCACATTTTGAAAAGAGCAGCTGCTTAGGGCCGC $\tt CGGAAGCTGGTGTCCTGTCATTTTCTCTCAGGAAAGGTTTTCAAAGTTCTGCCCATTTCTGGAGGCCACCA$ $\tt CTCCTGTCTTTTCCCATCCCCTGCTACCCTGGCCCAGCACAGGCACTTTCTAGATATTTCCCCC$ GTGCATTCTAGTGTAGTTACTAGTCTTTTGACATGGATGATTCTGAGGAGGAAGCTGTTATTGAATGTATA GAGATTTATCCAAATAAATATCTTTATTTAAAAATGAAAAA

 $\verb|MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPSKGQDTSEELLRWSTVPVPPLEPARPNRHP|$ ${\tt ESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNSELLYHNQTVFYR}$ RPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Signal peptide:

Amino acids 1-32

N-glycosylation site:

Amino acids 136-140

Tyrosine kinase phosphorylation site: Amino acids 127-135

N-myristoylation sites:

Amino acids 44-50;150-156

ATGCTGGTAGCCGGCTTCCTGCTGCGCTGCCGCCGAGCTGGGCCGCGGGCGCCCCCAGGGCGGCAGGCG CCCCGCGCGCGCGGGCTGCGCGGACCGGCCGGAGGAGCTACTGGAGCAGCTGTACGGGCGCCCTGGCGG CCGGCGTGCTCAGTGCCTTCCACCACACGCTGCAGCTGGGGCCGCGTGAGCAGGCGCGCAACGCGAGCTGC CCGGCAGGGGGCAGGCCGGCGACCGCCGCTTCCGGCCGCCCACCAACCTGCGCAGCGTGTCGCCCTGGGCGCCTGACCGGGCTGTTCGGCGAGGAGGACGTGCGCTTCCGCAGCGCCCCTGTCTACATGCCCACCGTCGTC CTGCACCTGCGTCCCCGAGCCGGAGAAGGACGCAGACATCAACTCCAGCATCGACAAACAGGGCGCCCA AGCTCCTGCTGGGCCCCAACGACGCCCCGCTGGCCCCTGAGGCCGGTCCTGCCCCGGGAGGTCTCCCCGG GAGCAAACCAAGTGCCGGAGCACCAGCGCCCTTTCCATGGAGACTCGTAAGCAGCTTCATCTGACACGG GCATCCCTGGCTTGCTTTTAGCTACAAGCAAGCAGCGTGGCTGGAAGCTGATGGGAAACGACCCGGCACGG ${\tt GCATCCTGTGTGCGGCCCGCATGGAGGGTTTGGAAAAGTTCACGGAGGCTCCCTGAGGAGCCTCTCAGATCAGATCAGAGGAGCCTCTCAGATCAGAGGAGGCTCCCTGAGGAGGCTCTCAGATCAGATCAGAGGAGGCTCCCTGAGGAGGCTCTCAGATCAGATCAGATCAGAGGAGGCTCCCTGAGGAGGCTCTCAGATCAGATCAGATCAGAGGAGGCTCCCTGAGGAGGCTCTCAGATCAGATCAGATCAGATCAGAGGAGGCTCCCTGAGGAGGCTCTCAGATCAG$ GGCTGCTGCGGGTGCAGGGCGTGACTCACCGCTGGGTGCTTGCCAAAGAGATAGGGACGCATATGCTTTTT AAAGCAATCTAAAAATAATAAGTATAGCGACTATATACCTACTTTTAAAATCAACTGTTTTGAATAGA GGCAGAGCTATTTATATTATCAAATGAGAGCTACTCTGTTACATTTCTTAACATATAAACATCGTTTTTT ACTTCTTCTGGTAGAATTTTTTAAAGCATAATTGGAATCCTTGGATAAATTTTGTAGCTGGTACACTCTGG TTCCTTCCACTGAAGGTCTTCACGGGCCTCCAGGTGGACCAAAGGGATGCACAGGCGGCTCGCATGCCCCA GGGCCAGCTAAGAGTTCCAAAGATCTCAGATTTGGTTTTAGTCATGAATACATAAACAGTCTCAAACTCGC ACAATTTTTCCCCCTTTTGAAAGCCACTGGGGCCAATTTGTGGTTAAGAGGTGGTGAGATAAGAAGTGGA ACGTGACATCTTTGCCAGTTGTCAGAAGAATCCAAGCAGGTATTGGCTTAGTTGTAAGGGCTTTAGGATCA GGCTGAATATGAGGACAAAGTGGGCCACGTTAGCATCTGCAGAGATCAATCTGGAGGCTTCTGTTTCTGCA AAAAGTTAGTAGTTCTTTTTTAAATCATTAAAAGAGGCTTGCTGAAGGAT

 $\verb|MLVAGFLL| ALPPSWAAGAPRAGRRPARPRGCADRPEELLEQLYGRLAAGVLSAFHHTLQLGPREQARNASC|$ $\verb"PAGGRPGDRRFRPPTNLRSVSPWAYRISYDPARYPRYLPEAYCLCRGCLTGLFGEEDVRFRSAPVYMPTVV"$ ${\tt LRRTPACAGGRSVYTEAYVTIPVGCTCVPEPEKDADSINSSIDKQGAKLLLGPNDAPAGP}$

Signal peptide:

Amino acids 1-15

N-glycosylation sites:

Amino acids 68-72;181-185

Tyrosine kinase phosphorylation site: Amino acids 97-106

N-myristoylation sites:

Amino acids 17-23;49-55;74-80;

118-124

Amidation site:

Amino acids 21-25

FIGURE 10

 ${\tt MTVKTLHGPAMVKYLLLSILGLAFLSEAAARKIPKVGHTFFQKPESCPPVPGGSMKLDIGIINENQRVSMS} \\ RNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRNLGCINAQGKEDISMNSVPIQQETLVVRRKHQGCSVSFQ\\ LEKVLVTVGCTCVTPVIHHVQ$

Signal sequence:

Amino acids 1-30

N-glycosylation site:

Amino acids 83-86

N-myristoylation sites:

Amino acids 106-111;136-141

FIGURE 11

CCGGCGATGTCGCTGCTGCTAAGCCTGGCCGCGCTGTGCAGGAGCGCCGTACCCCGAGAGCCGACCGTTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAATCCCCGGAGACTTGA GGGACCTCCGAGTAGAACCTGTTACAACTAGTGTTGCAACAGGGGACTATTCAATTTTGATGAATGTAAGC TGGGTACTCCGGGCAGATGCCAGCATCCGCTTGTTGAAGGCCACCAAGATTTGTGTGACGGGCAAAAGCAA $\tt CTTCCAGTCCTACAGCTGTGTGAGGTGCAATTACACAGAGGCCTTCCAGACTCAGACCCAGACCCTCTGGTG$ GTAAATGGACATTTTCCTACATCGGCTTCCCTGTAGAGCTGAACACAGTCTATTTCATTGGGGCCCATAAT ${\tt ATTCCTAATGCAAATATGAATGAAGATGGCCCTTCCATGTCTGTGAATTTCACCTCACCAGGCTGCCTAGACCTAGACTAG$ ${\tt CCACATAATGAAATATAAAAAAAGTGTGTCAAGGCCGGAAGCCTGTGGGATCCGAACATCACTGCTTGTA$ AGAAGAATGAGGAGACAGTAGAAGTGAACTTCACAACCACTCCCCTGGGAAACAGATACATGGCTCTTATC GGTGATTCCAGTGACTGGGGATAGTGAAGGTGCTACGGTGCAGCTGACTCCATATTTTCCTACTTGTGGCA GCGACTGCATCCGACATAAAGGAACAGTTGTGCTCTGCCCACAAACAGGCGTCCCTTTCCCTCTGGATAAC AACAAAAGCAAGCCGGGAGGCTGGCTGCCTCCTCCTGCTGTTCTCTGCTGGTGGCCACATGGGTGCTGGT GGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTTCCTTTTCTACCACCACACTACTGC $\tt CCCCCATTAAGGTTCTTGTGGTTTACCCATCTGAAATATGTTTCCATCACACAATTTGTTACTTCACTGAA$ TTTCTTCAAAACCATTGCAGAAGTGAGGTCATCCTTGAAAAGTGGCAGAAAAAGAAAATAGCAGAGATGGG ACAGTGTGTGCGATGGTACCTGTGGCAAGACCGAGGCGAGTCCCAGTGAGAACTCTCAAGACCTCTTCCCC $\tt CTTGCCTTTAACCTTTTCTGCAGTGATCTAAGAAGCCAGATTCATCTGCACAAATACGTGGTGGTCTACTT$ TAGAGAGATTGATACAAAAGACGATTACAATGCTCTCAGTGTCTCGCCCCAAGTACCACCTCATGAAGGATG $\tt CCACTGCTTTCTGTGCAGAACTTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAAGATCACAAGCCTGC$ CACGATGGCTGCTGCTCCTTGTAG

FIGURE 12

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYSILMNVSWV LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP NANMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMALIQH STIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNK SKPGGWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEFL QNHCRSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHD GCCSL

Signal sequence:

Amino acids 1-14

Transmembrane domain:

Amino acids 290-309

N-glycosylation sites:

Amino acids 67-70;103-106;156-159;

183-186;197-200;283-286

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 228-231;319-322

N-myristoylation site:

Amino acids 116-121

Amidation site:

Amino acids 488-491

ACACTGGCCAAACAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGGTCAGGACTCCCAGGACAGAG AGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCCTCTGGAGGCTGAAGAGGGATTCCAGCCCCTGCCA GCCACCTGGCACCTAGAAG<u>ATG</u>CCTGTGCCCTGGTTCTTGCTGTCCTTGGCACTGGGCCGAAGCCCAGTGG ACTTGGCCGTGCATGGGCACTGGGAAGAGCCTGAAGATGAGGAAAAGTTTGGAGGAGCAGCTGACTCAGGG GTGGAGGAGCCTAGGAATGCCTCTCCCAGGCCCAAGTCGTGCTCTCCTTCCAGGCCTACCCTACTGCCCG $\tt CTGCGTCTGCAGGTGCAGTGCCTGCTGCCCTTGTGCAGTTTGGTCAGTCTGTGGGCTCTGTGGTATAT$ GACTGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTCCTATACTCAGCCCAGGTACGAGAAGGA ACTCAACCACACACAGCAGCTGCCTGCCCTGCCCTGGCTCAACGTGTCAGCAGATGGTGACAACGTGCATC TGGTTCTGAATGTCTCTGAGGAGCAGCACTTCGGCCTCTCCCTGTACTGGAATCAGGTCCAGGGCCCCCCA AAACCCCGGTGGCACAAAAACCTGACTGGACCGCAGATCATTACCTTGAACCACAGACCTGGTTCCCTG GGTCCCACCGCTTTCCTGGGAGAACGTCACTGTGGACAAGGTTCTCGAGTTCCCATTGCTGAAAGGCCACC CTAACCTCTGTGTTCAGGTGAACAGCTCGGAGAAGCTGCAGCTGCAGGAGTGCTTGTGGGCTGACTCCCTG GGGCCTCTCAAAGACGATGTGCTACTGTTGGAGACACGAGGCCCCCAGGACAACAGATCCCTCTGTGCCTT GGAACCCAGTGGCTGTACTTCACTACCCAGCAAAGCCTCCACGAGGGCAGCTCGCCTTGGAGAGTACTTAC TACAAGACCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCTGCCCC CCTCATCCTCCTCCAAAAAGGATCACGCGAAAGGGTGGCTGAGGCTCTTGAAACAGGACGTCCGCTCGG GGGCGCCCAGGGGCCCCGCGGCTCTCCTCTACTCAGCCGATGACTCGGGTTTCGAGCGCCTGGTG GGCGCCCTGGCGTCGGCCCTGTGCCAGCTGCCGCTGGCCGTAGACCTGTGGAGCCGTCGTGAACT GAGCGCGCAGGGGCCCGTGGCTTGGTTTCACGCGCAGCCGCCAGACCCTGCAGGAGGGCGGCGTGGTGG TCTTGCTCTTCTCCCGGTGCGGTGGCGCTGTGCAGCGAGTGGCTACAGGATGGGGTGTCCGGGCCCGGG GCCCGCAGCTACGTGGGGGCCTGCTTCGACAGGCTGCTCCACCCGGACGCCGTACCCGCCCTTTTCCGCA $\tt CCGTGCCCGTCTTCACACTGCCCTCCCAACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCG$ CCATCCCCGGGGACTCCCGCGCGGGACGCGGGGTGGGACCAGGGGCGGGACCTGGGGCGGGGACGGGA CTTAAATAAAGGCAGACGCTGTTTTTCTAAAAAA

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPVLAPTHLQTELV LRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLSFQAYPTARCVLLEV QVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNVSADGDNVHLVLNVS EEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQN LWOAARLRLLTLOSWLLDAPCSLPAEAALCWRAPGGDPCOPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQ VNSSEKLQLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYLLQDLQS GQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILLLKKDHAKGWLRLLKQDVRSGAAARG RAALLLYSADDSGFERLVGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRRQTLQEGGVVVLLFSP ${\tt GAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFT}$ LPSQLPDFLGALQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPGAGPGAGDGT

signal sequence:

Amino acids 1-20

transmembrane domain:

Amino acids 453-473

N-glycosylation sites:

Amino acids 118-121;186-189;198-201;

211-214;238-241;248-251;334-337;

357-360;391-394

Glycosaminoglycan attachment site: Amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 552-555

N-myristoylation sites:

Amino acids 107-112;152-157;319-324;

438-443;516-521;612-617;692-697;

696-701;700-705

FIGURE 15

CGAGGGCTCCTGCTGCTACTGTTCGCTGCTGCACAGCAAGGCCCTGCCACCCTCAGGCCATGCAG TCCTCCTCATAGTCATCGACCTCTCTGACTCTGCTGGGATTGGCTTTCGCCACCTGCCCCACTGGAACACC CGCTGTCCTCTGGCCTCCCACACGGATGACAGTTTCACTGGAAGTTCTGCCTATATCCCTTGCCGCACCTG GTGGGCCCTCTTCTCCACAAGCCTTGGTGTGTGCGAGTCTGGCACTGTTCCCGCTGTTTGTGCCAGCATCTGC TTCAAGTTCTATAGGAGACACAAGATGCCAGCACCTGCTCAGAGGAAGCTGCTGCTCGTCGTCACCTGTC TGAGAAGAGCCATCACATTTCCATCCCCTCCCCAGACATCTCCCACAAGGGACTTCGCTCTAAAAGGACCC AACCTTCGGATCCAGAGACATGGGAAAGTCTTCCCAGATTGGACTCACAAAGGCATGGAGGACCCGAGTTC TCCTTTGATTTGCTGCCTGAGGCCCGGGCTATTCGGGTGACCATATCTTCAGGCCCTGAGGTCAGCGTGCG TCTTTGTCACCAGTGGGCACTGGAGTGTGAAGAGCTGAGCAGTCCCTATGATGTCCAGAAAATTGTGTCTG GAGGACACTGTGAGGCGCAAAAAATGTCCCTTCCAGAGCTGGCCAGAAGCCTATGGCTCGGACTTCTGGAA GTCAGTGCACTTCACTGACTACAGCCAGCACACTCAGATGGTCATGGCCCTGACACTCCGCTGCCCACTGA AGCTGGAAGCTGCCCTCTGCCAGAGGCACGACTGGCATACCCTTTGCAAAGACCTCCCGAATGCCACGGCT $\tt CGAGAGTCAGATGGGTATGTTTTGGAGAAGGTGGACCTGCACCCCAGCTCTGCTTCAAGTTCTCTTT$ TGGAAACAGCAGCCATGTTGAATGCCCCCACCAGACTGGGTCTCTCACATCCTGGAATGTAAGCATGGATA $\tt CCCAAGCCCAGCAGCTGATTCTTCACTTCTCCTCAAGAATGCCATCACTTCAGTGCTGCCTGGAGCCTC$ $\tt CCAGGCTTGGGGCAGGACACTTTGGTGCCCCCGTGTACACTGTCAGCCAGGCCCGGGGCTCAAGCCCAGT$ GTCACTAGACCTCATCATTCCCTTCCTGAGGCCAGGGTGCTGTTCCTGGTGTGGCGGTCAGATGTCCAGT $\tt TTGCCTGGAAGCACCTCTTGTGTCCAGATGTCTCTTACAGACACCTGGGGCTCTTGATCCTGGCACTGCTG$ GCCCTCCTCACCCTACTGGGTGTTGTTCTGGCCCTCACCTGCCGGCGCCCACAGTCAGGCCCGGGCCCAGC TCCTACGGCAGCGCTGGCCGCGGCGCGACGTGATCGTGGACCTGTGGAGGGGAGGCACGTGGCGCGCGT GGAGCGGCCGACCTTCGCCCGGTCAGCGGCCCCGACCCCCGCGCCCCCTGCTCGCCCTGCTCCAC GCTGCCCGCGCCGCTGCTGCTGCTCGCTTACTTCAGTCGCCTCTGCGCCAAGGGCGACATCCCCCCGCC AGCCGGCTTGAACGAGAGGCCGCCCGACTTGCAGACCTAGGTTGAGCAGAGCTCCACCGCAGTCCCGGGTGTCT

FIGURE 16

MGSSRLAALLLPLLLIVIDLSDSAGIGFRHLPHWNTRCPLASHTDDSFTGSSAYIPCRTWWALFSTKPWCV RVWHCSRCLCQHLLSGGSGLQRGLFHLLVQKSKKSSTFKFYRRHKMPAPAQRKLLPRRHLSEKSHHISIPS PDISHKGLRSKRTQPSDPETWESLPRLDSQRHGGPEFSFDLLPEARAIRVTISSGPEVSVRLCHQWALECE ELSSPYDVQKIVSGGHTVELPYEFLLPCLCIEASYLQEDTVRRKKCPFQSWPEAYGSDFWKSVHFTDYSQH TQMVMALTLRCPLKLEAALCQRHDWHTLCKDLPNATARESDGWYVLEKVDLHPQLCFKFSFGNSSHVECPH $\tt QTGSLTSWNVSMDTQAQQLILHFSSRMHATFSAAWSLPGLGQDTLVPPVYTVSQARGSSPVSLDLIIPFLR$ ${\tt PGCCVLVWRSDVQFAWKHLLCPDVSYRHLGLLILALLALLTLLGVVLALTCRRPQSGPGPARPVLLLHAAD}$ SEAQRRLVGALAELLRAALGGGRDVIVDLWEGRHVARVGPLPWLWAARTRVAREQGTVLLLWSGADLRPVS GPDPRAAPLLALLHAAPRPLLLLAYFSRLCAKGDIPPPLRALPRYRLLRDLPRLLRALDARPFAEATSWGR LGARQRRQSRLELCSRLEREAARLADLG

Signal peptide:

Amino acids 1-23

Transmembrane domain:

Amino acids 455-472

N-glycosylation sites:

Amino acids 318-322;347-351;364-368

Glycosaminoglycan attachment site: Amino acids 482-486

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 104-108;645-649

Tyrosine kinase phosphorylation site:

Amino acids 322-329

N-myristoylation sites:

Amino acids 90-96;358-364;470-476

Eukaryotic cobalamin-binding proteins: Amino acids 453-462

FIGURE 17

GAAACAGTGGGCTGTACAACATCACCTTCAAATATGACAATTGTACCACCTACTTGAATCCAGTGGGGAAG CATGTGATTGCTGACGCCCAGAATATCACCATCAGCCAGTATGCTTGCCATGACCAAGTGGCAGTCACCAT TCTTTGGTCCCCAGGGGCCCTCGGCATCGAATTCCTGAAAGGATTTCGGGTAATACTGGAGGAGCTGAAGT CGGAGGGAAGACAGTGCCAACAACTGATTCTAAAGGATCCGAAGCAGCTCAACAGTAGCTTCAAAAGAACT GGAATGGAATCTCAACCTTTCCTGAATATGAAATTTGAAACGGATTATTTCGTAAAGGTTGTCCCTTTTCC TTCCATTAAAAACGAAAGCAATTACCACCCTTTCTTCTTTAGAACCCGAGCCTGTGACCTGTTGTTACAGC AGGTGTCCTTCGACCACGCACCGCATGGCTCGGACATGCAGGTGTCCTTCGACCACGCACCGCACAACTTC GGCTTCCGTTTCTTCTATCTTCACTACAAGCTCAAGCACGAAGGACCTTTCAAGCGAAAGACCTGTAAGCA GGAGCAAACTACAGAGATGACCAGCTGCCTCCTTCAAAATGTTTCTCCAGGGGATTATATAATTGAGCTGG TGGATGACACTAACACAACAAGAAAAGTGATGCATTATGCCTTAAAGCCAGTGCACTCCCCGTGGGCCGGG $\tt CCCATCAGAGCCGTGGCCATCACAGTGCCACTGGTAGTCATATCGGCATTCGCGACGCTCTTCACTGTGAT$ GTGCCGCAAGAAGCAACAAGAAAATATATATTCACATTTAGATGAAGAGAGCTCTGAGTCTTCCACATACA $\tt CTGCAGCACTCCCAAGAGAGGGCTCCGGCCGGCCGAAGGTCTTTCTCTGCTATTCCAGTAAAGATGGC$ CAGAATCACATGAATGTCGTCCAGTGTTTCGCCTACTTCCTCCAGGACTTCTGTGGCTGTGAGGTGGCTCT GGACCTGTGGGAAGACTTCAGCCTCTGTAGAGAAGGGCAGAGAATGGGTCATCCAGAAGATCCACGAGT CCCAGTTCATCATTGTGGTTTGTTCCAAAGGTATGAAGTACTTTGTGGACAAGAAGAACTACAAACACAAA GGAGGTGGCCGAGGCTCGGGGAAAGGAGAGCTCTTCCTGGTGGCGGTGTCAGCCATTGCCGAAAAGCTCCG CCAGGCCAAGCAGAGTTCGTCCGCGGCGCTCAGCAAGTTTATCGCCGTCTACTTTGATTATTCCTGCGAGGGAGACGTCCCCGGTATCCTAGACCTGAGTACCAAGTACAGACTCATGGACAATCTTCCTCAGCTCTGTTCC CACCTGCACTCCCGAGACCACGGCCTCCAGGAGCCGGGGCAGCACACGCGACAGGGCAGCAGAAGGAACTA CTTCCGGAGCAAGTCAGGCCGGTCCCTATACGTCGCCATTTGCAACATGCACCAGTTTATTGACGAGGAGC $\tt CCGACTGGTTCGAAAAGCAGTTCGTTCCATCCTCCACTGCGCTACCGGGAGCCAGTCTTGGAG$ AAATTTGATTCGGGCTTGGTTTTAAATGATGTCATGTGCAAACCAGGGCCTGAGAGTGACTTCTGCCTAAA GGTAGAGGCGGCTGTTCTTGGGGCAACCGGACCAGCCGACTCCCAGCACGAGAGTCAGCATGGGGGCCTGG ACCAAGACGGGGAGGCCCGGCCTTGACGGTAGCGCCCCTGCAACCCCTGCTGCACACGGTGAAA GCCGGCAGCCCTCGGACATGCCGCGGGACTCAGGCATCTATGACTCGTCTGTGCCCTCATCCGAGCTGTC $\tt CTTCAGGCCTGGGTGAGGAACCTCCTGCCCTTCCTTCCAAGCTCCTCTCTTCTGGGTCATGCAAAGCA$ GATCTTGGTTGCCGCAGCTACACTGATGAACTCCACGCGGTCGCCCCTTTGTAACAAAACGAAAGAGTCTA

MPRASASGVPALFVSGEQGVGPASRNSGLYNITFKYDNCTTYLNPVGKHVIADAQNITISQYACHDQVAVT ${\tt ILWSPGALGIEFLKGFRVILEELKSEGRQCQQLILKDPKQLNSSFKRTGMESQPFLNMKFETDYFVKVVPF}$ PSIKNESNYHPFFFRTRACDLLLQPDNLACKPFWKPRNLNISQHGSDMQVSFDHAPHGSDMQVSFDHAPHN FGFRFFYLHYKLKHEGPFKRKTCKQEQTTEMTSCLLQNVSPGDYIIELVDDTNTTRKVMHYALKPVHSPWA GPIRAVAITVPLVVISAFATLFTVMCRKKQQENIYSHLDEESSESSTYTAALPRERLRPRPKVFLCYSSKD GQNHMNVVQCFAYFLQDFCGCEVALDLWEDFSLCREGQREWVIQKIHESQFIIVVCSKGMKYFVDKKNYKH KGGGRGSGKGELFLVAVSAIAEKLRQAKQSSSAALSKFIAVYFDYSCEGDVPGILDLSTKYRLMDNLPQLC SHLHSRDHGLQEPGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDWFEKQFVPFHPPPLRYREPVL ${\tt EKFDSGLVL} {\tt NDVMCKPGPESDFCLKVEAAVLGATGPADSQHESQHGGLDQDGEARPALDGSAALQPLLHTV}$ KAGSPSDMPRDSGIYDSSVPSSELSLPLMEGLSTDQTETSSLTESVSSSSGLGEEEPPALPSKLLSSGSCK ADLGCRSYTDELHAVAPL

Amino acids 283-307 Transmembrane domain:

N-glycosylation sites: Amino acids 31-34;38-41;56-59; 113-116;147-150;182-185;266-269

Glycosaminoglycan attachment sites: Amino acids 433-436;689-692

cAMP- and cGMP-dependent protein kinase phosphorylation: Amino acids 232-235

Tyrosine kinase phosphorylation sites: Amino acids 312-319;416-424

N-myristoylation site: Amino acids 19-24;375-380;428-433;

429-434;432-437;517-522;574-579;

652-657;707-712

1	30 NPGCPNSEDKNFPRTVMVNLNIHNRNTNTNPK	66 YYNRSTSPWNLHRNEDPERYPSVIWEAKCRHLGCINAD-GNVDYHMNSVP 101 THQRSISPWRYRVDTDEDRYPQKLAFAECLCRGCVNPFTMQEDRSMWSVP 86 TNLRSVSPWAYRISYDPARYPRYLPEAYCLCRGCLTGLEGVNPFTMOEDRSMVSVP 82 LNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNSE 83 LNSRAISPWRYTVTWDPNRYPSEVVQAQCRNLGCINAQ-GKEDISMNSVP	115 I Q O E I L V L R R E P P H C P N S F R L E K I L L V S V G C T C V T P I V H H V A 143 V F S Q V P V R R R L C P P P P R T G P C R Q R A V M E T I A V G C T C I F
h-IL17 h-IL17B h-IL17C h-IL17D h-IL17E h-IL17F	h-11.17 h-11.17B h-11.17C h-11.17D h-11.17E	h-IL17 h-IL17B h-IL17C h-IL17D h-IL17E h-IL17F	h-IL.17 h-IL.17B h-IL.17C h-IL.17D h-IL.17E h-IL.17E

FIG. 19

h-II.17D 179 SINSSIDKQGAKLLIGPNDAPAGPX

FIG. 23

FIG. 31A

FIG. 31B

1

FIG. 32A

FIG. 32B

FIG. 34

IL-17 FAMILY OF CYTOKINES HAS COMPLEX PATTERN OF OVERLAPPING RECEPTOR-LIGAND SPECIFICITIES

FIG. 35

FIG. 36B

FIG. 38A

FIG. 38B

INHIBITION OF NITRIC OXIDE RELEASE DOES NOT BLOCK THE DETRIMENTAL EFFECTS OF IL 17 ON MATRIX BREAKDOWN OR SYNTHESIS

INHIBITION OF NO RELEASE ENHANCES IL1- α -INDUCED MATRIX BREAKDOWN BUT NOT MATRIX SYNTHESIS

FIG. 42

IL-17C DETRIMENTAL EFFECTS ON ARTICULAR CARTILAGE

INFLAMMATORY BOWEL DISEASE:

□ IL-17E

Z IL-17

■ IL-17B

□ IL-17D

IL-17D, PRESENT IN BRAIN, DECREASES RAPIDLY FOLLOWING STROKE

FIG. 46C

\$5.1

FIG. 49B

FIG. 49A

FIG. 49C

					•	
IL-17A IL-17B IL-17C	QPRS HHDPSLRGHP	PKSKRKGQGR HSHGTPH YS	PGPLAPGPHQ AEELPLGQAP	IVKAG VPLDLVSRMK PHLLARGAKW	ITIPRNP.G PYARMEEYER GQALPVALVS	17 14 44 50 22
		2 0				
IL-17F	PPVPGG	SMKLDI	GIINENQ RVS	MSRNIESRST	PWNYTVTWD	59
	PNSEDKNFPR					62
IL-17B	NIEEMVAOLR	NSSELAQR	K EVNL	QLWMSNKRSL	PWGYSINHD	88
IL-17C	SLEAASHRGR	HERPSATT	Q PVLRPEEV	LEADTHQRSI	PWRYRVDTD	98
	STVPVPPLEP	ARPNRHPE	S RASE	. DGPLNSRAI	PWRYELDRD	65
TT 175	PNRYPSEVV O	2	AND AND THE	3	MINIGHTUO	106
	PERYPSVIWE					
14-1/A	PSRIPVDLPE	AL BURN AN	M. DEMORDE	MIN VEL . UQE	TOTODO T	122
TT170	EDRYPORLAF	AR L BG VN	CAUGAUMT. 11	TAT VET. TO	TIVIDE PD	144
Tr17E	LNRLPODLYH	AR I. DH VS	T.OTGSHMDDR	GN RI.I.VHNO	TVEVERD	112
	*	A-2 20 2	4	7		
	SV					133
	PN					136
IL-17B				が A T (本)		160
	PPPPRTGP.		VILETIAVG T	LF · · · · · · ·		
IL-17C	PPPPRTGP. SRDGSGLPT HGEKGTHKG	PGAFAFHTEF	IHVPVG I	V.LPRSVAA	ALE	184 145

FIG. 50

FIG. 52C

FIG. 52A

IL-17E is highly conserved between human and mouse

ß CP U -- YSHWPS VAFLAMIV GTHTV SLRIQEGC SLISLFLQVVAFLAMVMGTHT 1 1 1 MRERPRLGEDS ŧ mlL-17E **NL-17E**

35 KEQEPPEEWLKWSSASVSPPEPLSHTHHAESCRASKDGPLNSRAISPWSY 43 KGQDTSEELLRWSTVPVPPLEPARPNRHPESCRASEDGPLNSRAISPWRY mL-17E **ML-17E**

85 ELDRDLNRIVPQDLYHARCLCPHCVSLQTGSHMDPLGNSIVPLYHNQTVFYRI ELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNSELLYHNQTVFYR 93 mlL-17E **ML-17E**

143 RPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG 135 КРСН G EE G ТНR RY C L E K R L Y KV S LA C V C V K P K V MA mL-17E **ML-17E**

FIG. 53

IL-17E is not induced in activated T cells

sətsət

uəəjds

Bunj

liver

heart

prain

FIG. 54A

Taqman assay

mIL-17E transgenics are growth retarded

IL-17E transgenics are jaundiced by 6 weeks of age

FIG. 56

FIG. 58B

FIG. 58C

5

oĖ

IL-1 IL-4

FIG. 58E

IL-5 IL-9 IL-10 IL-12 IFNγTNFα GROαMCP1 VCAM1

Elevated serum IL-5, IL-13 and TNF α in mIL-17E transgenics

FIG. 60

Serum IgE and IgG1, but not IgG2a is elevated in mIL-17E transgenics

FIG. 61

FIG. 62B FIG. 62A 13.1% Neutrophilia in mIL-17E transgenics (8 wks, PBMC by FACS) 19 85.1% 1.6% PE GR-1 (neutrophils) FITC CD3 55.1% Non-TG Non-TG be cD19

Neutrophilia and eosinophilia in mIL-17E transgenics (hematology)

G-CSF is elevated in mIL-17E transgenics

FIG. 64

IL-17E induces production of G-CSF in vitro

