서울지역의 모기 활동량 분석 및 예측

2020105045_정초의

발표일: 2023.11.22.

>> 목차

1 개요 및 필요성

6 데이터 전처리

2 관련 내용

7 상관관계 분석

3 기대 효과

8 데이터 분할

4 데이터셋

9 모델 학습

5 데이터 분석

10 소감

1. 개요 및 필요성

- 지구온난화, 이상기후가 나날이 심화됨에 따라 환경이 크게 바뀌고 있다.
- 올해 11월 초까지 한낮 기온이 20도를 오르내리는 초여름 날씨였고, 이상 고온 현 상과 맞물려 모기 등 해충의 번식량이 급증해 큰 문제가 되고 있다.

이렇게 추운데 모기가?..."12월초까지 계속 물릴 것" 왜?

머니투데이 | 김지성 기자, 정진솔 기자

입동 코앞인데 모기 기승…"기후변화 탓에 활동 기간↑"

등록 2023.11.03 12:56:21 | 수정 2023.11.03 13:57:15

사회

한강공원에 송충이 닮은 해충 '습격'…기후변화에 피해 지속

송고시간 2023-11-05 09:55:12

2. 관련 내용

- 7일 서울시에 따르면 관내 디지털 모기 측정기(DMS) 51개를 통해 채집한 모기 수는 지 난달 둘째 주 기준 총 933마리다.
- 9월 마지막 주 607마리보다 오히려 1.5배가량 늘었다. 지난해 같은 기간(357마리)에 비해서도 약 2.6배 증가했다.

DMS의 위치

공원, 학교 등 공공이용시설과 모기 피해 취약 지역, 주거 밀집지역, 인구밀집지역에 주로 위치

출처 < 이렇게 추운데 모기가?…"12월초까지 계속 물릴 것" 왜? >, 김지성, 정진솔 기자, 머니투데이, 2023.11.08. , https://news.mt.co.kr/mtview.php?no=2023110722275399994

2. 관련 내용

- 질병관리청이 지난달 발표한 권역별 기후 변화 매개체 감시 현황에 따르면 지난달 1일부터 7일까지 전국 도심·철새도래지의 모기 트랩지수*는 47.1개체로 지난해 (28.8개체)보다 63.6% 증가했다. 5년 평균치(41.8)와 비교해도 12.7% 늘었다.
- 도심은 같은 기간 트랩지수가 72.5개체로 작년에 비해 두 배 늘었다.

*트랩지수 : 하룻밤 모기 유인 포집기(트랩) 한 대에서 잡힌 모기 개체수

3. 기대 효과

• 목표 : 온도, 강수량 등 환경요인에 따른 모기 활동량 예측 모델

방제, 방역 활동을 촉진하여 피해를 줄일 수 있다.

기관, 사회 차원에서 시설을 효율적으로 관리할 수 있다.

4. 데이터셋

출처

https://www.kaggle.com/datasets/kukuroo3/mosquito-indicator-in-seoul-korea/data

Mosquito Indicator in Seoul, Korea

2016~ 2019, daily data with Temperature, precipitation

About Dataset

Context

- This dataset deals with Mosquito Indicator and Temperature, precipitation in Seoul, South Korea.
- Mosquito Indicator is a number of Mosquito per Specific area.

Content

- This data provides six cols (date, mosquito_Indica, rain(mm), mean_T(°C), min_T(°C), max_T(°C))
- Data were measured every day between 2016-05 and 2019-12.
- Data were measured for Specific area in Seoul.

4. 데이터셋

출처 https://www.kaggle.com/datasets/kukuroo3/mosquito-indicator-in-seoul-korea/data

Mosquito Indicator in Seoul, Korea

2016~ 2019, daily data with Temperature, precipitation

- date: YYYY-MM-DD 날짜
- mosquito_Indicator: number of mosquito per area 모기 활동지수
- rain(mm): daily precipitation 일강수량
- mean_T(°C): mean temperature of day 일평균기온
- min_T(°C): min temperature of day 일최저기온
- max_T(°C): max temperature of day 일최고기온

5. 데이터 분석

1. 라이브러리 불러오기

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

2. csv 파일 로드

df = pd.read_csv('/kaggle/input/mosquito-indicator-in-seoul-korea/mosquito_Indicator.csv')

5. 데이터 분석

df.head()

	date	mosquito_Indicator	rain(mm)	mean_T(°C)	min_T(°C)	max_T(°C)
0	2016-05-01	254.4	0.0	18.8	12.2	26.0
1	2016-05-02	273.5	16.5	21.1	16.5	28.4
2	2016-05-03	304.0	27.0	12.9	8.9	17.6
3	2016-05-04	256.2	0.0	15.7	10.2	20.6
4	2016-05-05	243.8	7.5	18.9	10.2	26.9

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1342 entries, 0 to 1341
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	date	1342 non-null	object
1	mosquito_Indicator	1342 non-null	float64
2	rain(mm)	1342 non-null	float64
3	mean_T(°C)	1342 non-null	float64
4	min_T(°C)	1342 non-null	float64
5	max_T(°C)	1342 non-null	float64

dtypes: float64(5), object(1)

memory usage: 63.0+ KB

df.describe().T

	count	mean	std	min	25%	50%	75%	max
mosquito_Indicator	1342.0	251.991803	295.871336	0.0	5.5	91.9	480.400	1000.0
rain(mm)	1342.0	3.539866	13.868106	0.0	0.0	0.0	0.400	144.5
mean_ T (°C)	1342.0	14.166021	10.943990	-14.8	4.5	16.5	23.300	33.7
min_T(°C)	1342.0	10.005663	11.109489	-17.8	0.3	11.5	19.500	30.3
max_T(°C)	1342.0	19.096870	11.063394	-10.7	9.3	21.9	28.175	39.6

6. 데이터 전처리

1. date를 string에서 date 타입으로 변환

```
df['date'] = pd.to_datetime(df['date'])
```

2. 결측치 확인

```
df.isnull().sum()
```

추가한 부분

```
df.hist(edgecolor='black', linewidth=1.2)
fig = plt.gcf()
fig.set_size_inches(12,10)
plt.show()
```


추가한 부분

```
\label{limited_potential} $$\operatorname{plt.figure(figsize=(16,8))}$$ sns.lineplot(data=df, x='date', y='max_T(^\circ)', label='Max Temperature') $$ sns.lineplot(data=df, x='date', y='mean_T(^\circ)', label='Mean Temperature') $$ sns.lineplot(data=df, x='date', y='min_T(^\circ)', label='Min Temperature') $$ plt.xlabel('Date') $$ plt.ylabel('Temperature') $$ plt.legend() $$ plt.show() $$
```


• 연도별 온도변화 추이는 비슷한 양상을 띄고 있다.

```
plt.figure(figsize=(16,8))
sns.lineplot(data=df, x="date", y="mosquito_Indicator")
plt.show()
```

- 날짜에 따른 모기 활동지수
- 겨울에는 모기 활동지수가 급감한다.


```
추가한 부분
```


- ▶ 평균 온도에 대한 모기 활동지수
- 대략 20~30℃일 때 모기 활동지수가 높다.
- 온도가 너무 높거나 낮아도 모기 활동 지수는 감소한다.

df_max_dates = df.loc[df['mosquito_Indicator'] == df['mosquito_Indicator'].max()]
df_max_dates.head()

2017
2017
2017
2017
2017
2017
2017
2017
2017
2017
.8 .4 .9 .5

• 모기 활동수치가 최대인 데이터를 가져와 새로운 데이터 프레임을 만든다.

```
g2 = sns.histplot(df_max_dates['mean_T(^c)'])
g2.set(title = 'Mean_T(^c) when mosquito_Indicator shows max. value')
plt.show()
```


• 모기 활동지수가 최대인 데이터에 대해 평균 온도 분포

추가한 부분

• 온도가 약 22~32 ℃ 일 때 모기 활동지수가 가장 높다.

```
g1 = sns.histplot(df_max_dates['rain(mm)'])
g1.set(title = 'Rain(mm) when mosquito_Indicator shows max. value')
plt.show()
```


- 모기 활동지수가 최대인 데이터에 대해 강수량 분포
- 강수량이 낮을 수록 모기가 활동하기 쉬울 것이다.

```
#Calculating Correlation
corr=df.corr()

#Plotting Correlation
plt.figure(figsize=(12,12))
sns.heatmap(corr,annot=True,cmap="GnBu")
```

• 모기 활동지수와 관련성이 높은 속성은 일최저기온, 일평균기온, 일최고기온이다.

8. 데이터 분할

```
from sklearn.model_selection import train_test_split # 데이터 분할 모듈

train, test = train_test_split(df, train_size = 0.8)

# 학습용 문제, 정답
train_X = train[['min_T(℃)']]
train_y = train.mosquito_Indicator

# 테스트용 문제, 정답
test_X = test[['min_T(℃)']]
test_y = test.mosquito_Indicator
```

- 학습용 데이터와 테스트용 데이터를 8:2의 비율로 분리
- 문제는 온도, 정답은 모기 활동지수로 설정

9. 모델 학습

from sklearn tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import GradientBoostingRegressor

- from sklearn.linear model import LinearRegression from sklearn, ensemble import RandomForestRegressor
- 예측 알고리즘 모델 학습
- 모델 정확도 비교 : <u>GradientBoostingRegressor</u> > RandomForestRegressor > KNeighborsRegressor > DecisionTreeRegressor > LinearRegression

DT = DecisionTreeRegressor() DT.fit(train X, train y) score = DT.score(test_X, test_y) print('Score:', format(score,'.3f'))

Score: 0.739

LR = LinearRegression()LR.fit(train_X, train_y) score = LR.score(test_X, test_y) print('Score:', format(score,'.3f'))

Score: 0.606

KN = KNeighborsRegressor() KN.fit(train X, train y) score = KN.score(test_X, test_y) print('Score:', format(score,'.3f'))

Score: 0.750

GB = GradientBoostingRegressor() GB.fit(train_X, train_y) score = GB.score(test_X, test_y) print('Score:', format(score,'.3f'))

Score: 0.807

RF = RandomForestRegressor() RF.fit(train X, train y) score = RF.score(test_X, test_y) print('Score:', format(score,'.3f'))

Score: 0.774

추가한 부분

10. 소감

- 관심 가는 주제를 선택해 데이터 분석, 머신러닝을 학습할 수 있는 좋은 기회였다.
- 관심 있는 소재라 선정했지만, 컬럼이 적은 데이터셋을 이용하여 모기 활동량에 영향을 끼치는 요인을 다방면으로 분석하지 못한 것 같아 아쉬웠다.
- 관측지의 습도, 인구밀집도, 지리 형태, 방역 상태 등 더 다양한 항목의 데이터가 수집된 데이터셋이 있다면 모기 활동량에 대한 상관관계를 다시금 분석하고 싶다.

감사합니다