Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	6	7	9	/	0	1	Signature	

Paper Reference(s)

6679/01

Edexcel GCE

Mechanics M3

Advanced/Advanced Subsidiary

Friday 27 January 2012 – Morning

Time: 1 hour 30 minutes

Materials required for examination	Items included with question paper
Mathematical Formulae (Pink)	Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 7 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy.

©2012 Pearson Education Ltd.

Turn over

Total

PEARSON

1. A particle of mass 0.8 kg is attached to one end of a light elastic string of natural length 0.6 m. The other end of the string is attached to a fixed point A. The particle is released from rest at A and comes to instantaneous rest 1.1 m below A. Find the modulus of elasticity of the string. (4)	1. A particle of mass 0.8 kg is attached to one end of a light elastic string of natural length	Leave blank
	0.6 m. The other end of the string is attached to a fixed point A. The particle is released	
	(4)	

2.	A particle <i>P</i> is moving in a straight line with simple harmonic motion. The centre of the oscillation is the fixed point <i>C</i> , the amplitude of the oscillation is 0.5 m and the time to complete one oscillation is $\frac{2\pi}{3}$ seconds. The point <i>A</i> is on the path of <i>P</i> and 0.2 m from <i>C</i> .					
	Find					
	(a) the magnitude and direction of the acceleration of P when it passes through A ,	(3)				
	(b) the speed of P when it passes through A ,	(2)				
	(c) the time P takes to move directly from C to A .	(3)				

3.	A particle <i>P</i> is moving in a straight line. At time <i>t</i> seconds, <i>P</i> is at a distance <i>x</i> metres a fixed point <i>O</i> on the line and is moving away from <i>O</i> with speed $\frac{10}{x+6}$ m s ⁻¹ .	from
	(a) Find the acceleration of P when $x = 14$	(4)
	Given that $x = 2$ when $t = 1$,	
	(b) find the value of t when $x = 14$	(6)

Question 3 continued	bl:

4.	A light elastic string AB has natural length 0.8 m and modulus of elasticity 19.6 N. The end A is attached to a fixed point. A particle of mass 0.5 kg is attached to the end B . The particle is moving with constant angular speed ω rad s ⁻¹ in a horizontal circle whose centre is vertically below A . The string is inclined at 60° to the vertical.
	(a) Show that the extension of the string is 0.4 m.
	(5)
	(b) Find the value of ω . (5)
_	

	blank
Question 4 continued	
	1

Leave blank

- 5. Above the Earth's surface, the magnitude of the gravitational force on a particle due to the Earth is inversely proportional to the square of the distance of the particle from the centre of the Earth. The Earth is modelled as a sphere of radius *R* and the acceleration due to gravity at the Earth's surface is *g*. A particle *P* of mass *m* is at a height *x* above the surface of the Earth.
 - (a) Show that the magnitude of the gravitational force acting on P is

$$\frac{mgR^2}{(R+x)^2} \tag{3}$$

A rocket is fired vertically upwards from the surface of the Earth. When the rocket is at height 2R above the surface of the Earth its speed is $\sqrt{\left(\frac{gR}{2}\right)}$. You may assume that air resistance can be ignored and that the engine of the rocket is switched off before the rocket reaches height R.

Modelling the rocket as a particle,

(b) find the	e speed of the	rocket when	it was at neig	gni k above the	e surface of the Ear	rtn.

Question 5 continued	l t

Leave blank

6. A particle P of mass m is attached to one end of a light inextensible string of length l. The other end of the string is attached to a fixed point O. The particle is hanging in equilibrium at the point A, vertically below O, when it is set in motion with a horizontal speed $\frac{1}{2}\sqrt{(11gl)}$. When the string has turned through an angle θ and the string is still taut, the tension in the string is T.

(a) Show that $T = 3mg\left(\cos\theta + \frac{1}{4}\right)$. (8)

At the instant when P reaches the point B, the string becomes slack. Find

(b) the speed of P at B,

(3)

(c) the maximum height above B reached by P before it starts to fall.

(4)

Question 6 continued		bl

Leave blank

7.

Figure 1

The shaded region R is bounded by the curve with equation $y = \frac{1}{2}x(6-x)$, the x-axis and the line x = 2, as shown in Figure 1. The unit of length on both axes is 1 cm. A uniform solid P is formed by rotating R through 360° about the x-axis.

(a) Show that the centre of mass of P is, to 3 significant figures, 1.42 cm from its plane face.

(9)

The uniform solid P is placed with its plane face on an inclined plane which makes an angle θ with the horizontal. Given that the plane is sufficiently rough to prevent P from sliding and that P is on the point of toppling when $\theta = \alpha$,

(b) find the angle α .

(4)

Given instead that P is on the point of sliding down the plane when $\theta = \beta$ and that the coefficient of friction between P and the plane is 0.3,

	/ \	C* 1	. 1	1	0
((C)	find	the	angle	. K

(3)

Question 7 continued		bl

