Final Project

Predictive Analytics Competition (PAC) 2021 Challenge

SWCON253, Machine Learning Won Hee Lee, PhD

Final Project

Improving Brain Age Prediction Using Machine Learning

머신러닝을 활용하여 뇌연령 예측하기

당신의 뇌나이는 얼마입니까?

Introduction

- The brain changes as we age, and these changes are associated with cognitive decline, neurogenerative disease and dementia.
- Although brain aging is universal, rates of brain aging differ markedly.
- The process of brain aging includes morphological and functional changes to the brain, which can be assessed using neuroimaging.
- This raises the possibility that the variability in brain aging can be measured, and research has focused on developing such a neuroimaging biomarker of brain aging: 'brain-age' paradigm

Introduction: Brain-Age

- The idea with brain-age is that if statistical models can be developed to accurately predict chronological age in healthy people, then the apparent age of a new individual's brain can be calculated.
- Where someone's brain-age is older than their real age, this is thought to reflect poorer brain health, relative to their age.
- Older-appearing brains have been associated with psychiatric and neurological diseases, with greater risk of developing dementia and a shorter lifespan.
- Younger-appearing brains have been found in people who exercise more, have greater years of education, meditate or play musical instruments.

Introduction: Brain-Age Prediction

- The hope is that brain-age can provide a sensitive, global measure of brain health.
- These include clinical trials of neuroprotective therapies, screening groups of people at-risk or poorer cognitive aging, and provide mechanistic insights into the downstream consequences of different diseases.

뉴스홈 | 최신기사

당신의 '뇌 건강 나이'로 뇌경색 예후 예측한다(종합)

송고시간 | 2016-11-08 21:03

박주영 기자 <u>기자페이지</u>

표준연 "5천여 명 환자 빅데이터로 임상 효과 증명"

(대전=연합뉴스) 박주영 기자 = 뇌경색이 발병하기 전 질병의 예후를 미리 알 수 있는 기술이 개발됐다.

뇌졸중의 일종인 뇌경색은 뇌혈관이 막혀 뇌 기능에 장애가 생기는 질환이다. 지난해 한국인 사망원인 3위를 차지할 정도로 위험한 질환이기도 하다.

한국표준과학연구원은 '한국인 허혈 뇌지도'를 이용해 측정한 뇌 건강 나이를 토대로 뇌경색이 얼마나 악화될 지 여부를 예측하는 데 성공했다고 8일 밝혔다.

한국인 허혈 뇌지도

[해외뉴스 > 해외뉴스]

영국. 뇌 노화 분석으로 조기사망 위험 예측

MRI이용, 뇌 나이와 실제 나이 차 클수록 위험 커..추가 연구 필요

이미면 기자/minx3535@korea.com

승인 17-04-26 13:50 [최종수정 17-04-26 13:52]

글자크게 + 📗 글자작게 -

되의 노화 상태를 분석함으로써 최대 7년까지 조기 사망 위험을 사전 경고할 수 있다는 새로운 연 구결과가 발표됐다.

26일(현지시각) 더 가디언지는 Molecular Psychiatry 최신호에 발표된 연구결과를 인용, 이같이 보 도했다.

영국 Imperial College London의 James Cole 박사와 연구진은 "MRI(자기공명영상) 스캔 장치를 이용해 '뇌의 나이'를 산정해 냄으로써 조기 사망 위험성을 사전에 경고할 수 있게 됐다."고 밝혔다.

연구진은 MRI 스캔 장치를 이용해 실제 나이와 되의 나이를 비교함으로써 노화 진전에 따라 건강상 의 위험이 증가하는 정도를 파악할 수 있게됐다고 설명했다.

연구팀은 MRI 스캔을 인공자능(AI) 기반의 기계학습알고리즘(machine learning algorithms)과 결합 해 컴퓨터가 되세포 용적에 따라 되의 나이를 산정하도록 훈련했다.

이렇게 만든 알고리즘을 이용해 영국 스코틀랜드 지역 73세 노인들을 대상으로 실험했다.

그 결과 컴퓨터 추산 나이와 실제 나이 차가 클수록 정신적, 신체적 건강이 악화할 위험이 크고 80 세 이전에 사망할 위험도 크다는 점을 밝혀냈다.

또한 실제 나이보다 노화한 뇌를 가진 사람들은 손의 악력과 폐활량 및 걷는 속도 등도 약하거나 느 린 것으로 나타났다.

연구진은 " 이러한 기술을 활용하면 의사들은 체질량지수(BMI)와 유사한 방식으로 환자의 되가 건 강 연령 상태인지, 또는 수준 이하인지를 알려줌으로써 생활습관 변경이나 치료 등을 권고할 수 있 다. 이 검사의 정확도를 높이면 되 나이뿐 아니라 장기별 나이도 산정할 수 있게 될 것."이라고 기대 했다.

Goal

- Critical to the success of brain-age models, is the accuracy of the healthy training model.
- The goal is to build the most accurate model, using neuroimaging (training) data supplied
- Specifically, we would like to minimize brain predicted age difference (brain-PAD) which is calculated as brain-predicted age minus chronological age.

Brain Dataset

- Fully processed data, cortical thickness, derived from structural magnetic resonance imaging (sMRI)
- IXI training dataset (n=481) with label (chronological age)
 - 68 regional cortical thickness + 1 intracranial volume (ICV)
- IXI test dataset (n=100) without label
 - 68 regional cortical thickness + 1 intracranial volume (ICV)
- COBRE test dataset (n=72) without label
 - 68 regional cortical thickness + 1 intracranial volume (ICV)

Two Objectives

- The model with the smallest Mean Absolute Error (MAE) for the test datasets while keeping the highest Pearson correlation between predicted age (brain age) and chronological (actual) age.
- The model with the smallest Mean Absolute Error (MAE) for the test datasets while keeping the Spearman correlation between brain predicted age difference (brain-PAD) and chronological (actual) below r = 0.10.

Submission

- Each student has the opportunity to upload predictions (e-campus) for given test datasets.
 - IXI_test_brain_age_submission_학과_학번_이름_날짜.xlsx
 - COBRE_test_brain_age_submission_학과_학번_이름_날짜.xlsx
 - You can submit it as often as you like before the deadline

Model Evaluation

 We will evaluate model performance by comparing the uploaded prediction to actual chronological age for each individual.

We will announce the updated leaderboard weekly.

Final Evaluation (40%)

완성도	기술성	독창성	보고서	순위
8%	8%	8%	8%	8%

- 심사기준은 아래와 같으며 항목 당 최대 8점까지 평가
 - 산출물의 완성도 (8%): 얼마나 결과물의 완전한가
 - 산출물의 기술성 (8%): 얼마나 최신/고급 기술을 사용했는가
 - 아이디어의 독창성 (8%): 얼마나 참신하게 문제를 해결했는가
 - 보고서 완성도 (8%): 얼마나 목적에 맞게 작성하였나, 내용, 완성도, 가독성 등
 - 순위 (8%): 기계학습 모델 성능 평가 결과에 따라 점수 차등

Important Dates

- 5/25(화) Predictive Analytics Competition (PAC) Challenge 공지
- 6/15(화) ~ 6/21(월) 비대면 기말시험 기간
- 5/25(화) ~ 6/17(화) PAC Challenge 수행 기간 (>3주)
- 6/15(화) & 6/17(목) No Classes (집중 PAC Challenge 수행 기간)
- 6/17(목) 13:29 pm 예측된 뇌연령 제출 마감
- 6/22(화) 최종 발표 (수업시간)
 - 상위 3개 (또는 5개) 모델 및 성능 발표
- 6/22(화) 23:59pm 최종프로젝트 보고서 제출 마감일
 - 최종보고서 (양식 사용) 제출
 - 최종코드 제출
 - 최종발표자료 제출(해당학생)

Information

• Further details about final report will be announced shortly.

Announcements

- Homework #4 out
 - The homework solution should be uploaded on e-campus.
 - You can submit it as often as you like before the deadline.
 - You need to send the '.ipynb' file with your answers plus an '.html' file, which will serve as a backup for us in case the '.ipynb' file cannot be opened on my or the TA's computer.
 - Due June 1st Thursday at 11:59 pm