Heart Disease Prediction - Analysis Documentation

Project Overview

This Jupyter Notebook presents a comprehensive machine learning project for predicting heart disease presence in patients based on various medical parameters. The project follows a structured data science workflow from data exploration to model implementation.

Dataset Description

The dataset contains 14 medical attributes with 303 total observations. Key features include:

- 1. Demographic & Clinical Attributes:
 - age: Patient's age in years
 - sex: Gender (1 = male; 0 = female)
 - cp: Chest pain type (4 categories from typical angina to asymptomatic)
 - trestbps: Resting blood pressure (mm Hg)
 - chol: Serum cholesterol (mg/dl)
 - fbs: Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
- 2. Cardiac Test Results:
 - restecg: Resting electrocardiographic results
 - thalach: Maximum heart rate achieved
 - exang: Exercise induced angina
 - oldpeak: ST depression induced by exercise
 - slope: Slope of peak exercise ST segment
 - ca: Number of major vessels colored by fluoroscopy
 - thal: Thallium stress test result
- 3. Target Variable:
 - target: Presence of heart disease (1 = yes, 0 = no)

Technical Implementation

- 1. Libraries Used:
 - Data Handling: pandas, numpy
 - Visualization: matplotlib, seaborn
 - Machine Learning: scikit-learn, XGBoost, CatBoost
 - Model Evaluation: classification report, confusion matrix, accuracy score
- 2. Key Analysis Steps:
 - Data Loading & Initial Exploration: Examination of dataset structure and basic statistics
 - Data Preprocessing: Standardization using StandardScaler
 - Model Training: Implementation of multiple classifiers including:
 - XGBoost
 - CatBoost
 - o Random Forest
 - K-Nearest Neighbors
 - Support Vector Machines

- Hyperparameter Tuning: Using RandomizedSearchCV for optimization
 Model Evaluation: Comprehensive performance assessment using multiple metrics