Trigonalisation

Exercice 1 [00816] [correction]

Montrer qu'une matrice triangulaire inférieure est trigonalisable.

Exercice 2 [00817] [correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose χ_A scindé.

- a) Justifier que A est trigonalisable.
- b) Etablir que pour tout $k \in \mathbb{N}$,

$$\operatorname{Sp}(A^k) = \{\lambda^k / \lambda \in \operatorname{Sp}(A)\}$$

Exercice 3 [00818] [correction]

Soit $A \in \mathcal{M}_n(\mathbb{Z})$ de polynôme caractéristique

$$\prod_{i=1}^{n} (X - \lambda_i) \text{ avec } \lambda_i \in \mathbb{C}$$

Déterminer une matrice à coefficients entiers de polynôme caractéristique

$$\prod_{i=1}^{n} (X - \lambda_i^p)$$

Exercice 4 [00819] [correction]

Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{C})$,

$$\det(\exp(A)) = \exp(\operatorname{tr} A)$$

Exercice 5 [03120] [correction]

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$.

On suppose le polynôme caractéristique de A de la forme

$$\chi_A(X) = \prod_{k=1}^n (X - \lambda_k)$$

Exprimer le polynôme caractéristique de P(A).

Exercice 6 [00820] [correction]

Soit

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{array}\right)$$

- a) Calculer le polynôme caractéristique de A.
- b) Trigonaliser la matrice A.

Exercice 7 [00821] [correction]

Soit

$$A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{array}\right)$$

- a) Calculer le polynôme caractéristique de A.
- b) Trigonaliser la matrice A.

Exercice 8 [03583] [correction]

Trigonaliser la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{array}\right)$$

Exercice 9 [02526] [correction]

Montrer que la matrice

$$\begin{pmatrix}
13 & -5 & -2 \\
-2 & 7 & -8 \\
-5 & 4 & 7
\end{pmatrix}$$

est trigonalisable et préciser une matrice de passage.

Exercice 10 [02389] [correction]

- a) Soient A et B dans $\mathcal{M}_2(\mathbb{K})$ telles que AB = BA. Montrer que $B \in \mathbb{K}[A]$ ou $A \in \mathbb{K}[B]$.
- b) Le résultat subsiste-t-il dans $\mathcal{M}_3(\mathbb{K})$?

Exercice 11 [02395] [correction]

Soit E un espace vectoriel complexe de dimension finie non nulle. Soient u et v des endomorphismes de E; on pose [u,v]=uv-vu.

- a) On suppose [u, v] = 0. Montrer que u et v sont cotrigonalisables.
- b) On suppose $[u, v] = \lambda u$ avec $\lambda \in \mathbb{C}^*$. Montrer que u est nilpotent et que u et v sont cotrigonalisables.
- c) On suppose l'existence de complexes α et β tels que $[u,v]=\alpha u+\beta v.$ Montrer que u et v sont cotrigonalisables.

Exercice 12 [02954] [correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\operatorname{tr}(A^m) \to 0$ quand $m \to +\infty$. Montrer que les valeurs propres de A sont de module < 1

Exercice 13 [03284] [correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant $AB = O_n$.

- a) Montrer que les matrices A et B ont un vecteur propre en commun.
- b) Etablir que A et B sont simultanément trigonalisables.

Exercice 14 [03479] [correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant

$$\forall m \in \mathbb{N}, \operatorname{tr}(A^m) = \operatorname{tr}(B^m)$$

Montrer que les matrices A et B ont les mêmes valeurs propres.

Exercice 15 [03551] [correction]

Expliquer pourquoi le déterminant de $A \in \mathcal{M}_n(\mathbb{R})$ est le produit des valeurs propres complexes de A, valeurs propres comptées avec multiplicité.

Corrections

Exercice 1 : [énoncé]

Son polynôme caractéristique est scindé.

Exercice 2 : [énoncé]

- a) A est annule le polynôme χ_A qui est scindé donc A est trigonalisable.
- b) Soit T une matrice triangulaire semblable à A. Les coefficients diagonaux de T sont les valeurs propres de A comptées avec multiplicité. Cependant A^k est semblables à T^k donc les valeurs propres de A^k sont les coefficients diagonaux de T^k or ceux-ci sont les puissances d'ordre k des coefficients diagonaux de T c'est-à-dire des valeurs propres de A.

Exercice 3: [énoncé]

La matrice A est semblable à une matrice triangulaire de la forme

$$\left(\begin{array}{ccc}
\lambda_1 & & \star \\
& \ddots & \\
0 & & \lambda_n
\end{array}\right)$$

et donc A^q est semblable à

$$\left(\begin{array}{ccc} \lambda_1^q & & \star \\ & \ddots & \\ 0 & & \lambda_n^q \end{array}\right)$$

Ainsi le polynôme caractéristique de A^q est celui voulu avec $A^q \in \mathcal{M}_n(\mathbb{Z})$.

Exercice 4 : [énoncé]

A est semblable à une matrice triangulaire supérieure de la forme

$$\begin{pmatrix}
\lambda_1 & & \star \\
& \ddots & \\
0 & & \lambda_n
\end{pmatrix}$$

 $\exp(A)$ est alors semblable à une matrice de la forme

$$\begin{pmatrix}
\exp(\lambda_1) & \star' \\
& \ddots \\
0 & \exp(\lambda_n)
\end{pmatrix}$$

Cela suffit pour conclure.

Exercice 5 : [énoncé]

Puisque le polynôme χ_A est scindé, la matrice A est trigonalisable. Plus précisément, la matrice A est semblable à une matrice de la forme

$$\left(\begin{array}{ccc}
\lambda_1 & & \star \\
& \ddots & \\
(0) & & \lambda_n
\end{array}\right)$$

La matrice P(A) est alors semblable à

$$\begin{pmatrix}
P(\lambda_1) & \star \\
& \ddots \\
(0) & P(\lambda_n)
\end{pmatrix}$$

et donc

$$\chi_{P(A)} = \prod_{k=1}^{n} (X - P(\lambda_k))$$

Exercice 6 : [énoncé]

- a) $\chi_A(X) = (X+1)(X-1)^2$.
- b) $E_{-1} = \text{Vect}^t (1 \ 1 \ 2), E_1 = \text{Vect}^t (1 \ 0 \ 1).$

La matrice A n'est pas diagonalisable mais on peut la rendre semblable à la matrice

$$T = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

On prend $C_1 = {}^t (1 \ 1 \ 2), C_2 = {}^t (1 \ 0 \ 1).$

On détermine C_3 tel que $AC_3 = C_3 + C_2$. $C_3 = t'(0 -1 0)$ convient.

$$P = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{array}\right)$$

on a $P^{-1}AP = T$.

Exercice 7 : [énoncé]

- a) $\chi_A(X) = (X-1)^3$.
- b) $E_1 = \text{Vect}^t (1 \ 0 \ 1)$.

La matrice A n'est pas diagonalisable mais on peut la rendre semblable à la matrice

$$T = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

On prend $C_1 = {}^t (1 \ 0 \ 1)$.

On détermine C_2 tel que $AC_2 = C_2 + C_1$. $C_2 = {}^t (0 \ 1 \ 0)$ convient. On détermine C_3 tel que $AC_3 = C_3 + C_2$. $C_3 = {}^t (0 \ -1 \ 1)$ convient. Pour

$$P = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{array}\right)$$

on a $P^{-1}AP = T$.

Exercice 8 : [énoncé]

Le polynôme caractéristique $\chi_A(X) = (X-1)^3$ est scindé donc A est trigonalisable.

On a

$$E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}\right)$$

et puisque

$$A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

on a $A = PTP^{-1}$ avec

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Exercice 9 : [énoncé]

Notons A la matrice étudiée.

Après calcul, son polynôme caractéristique est $\chi_A = (X - 9)^3$. Celui-ci est scindé et par conséquent la matrice A est trigonalisable.

Après résolution

$$E_9(A) = \text{Vect}(1, 1, -1/2)$$

 $\dim E_9(A) = 1$ et $X_1 = {}^t \left(\begin{array}{cc} 1 & 1 & -1/2 \end{array} \right)$ est vecteur propre. Complétons ce vecteur en une base et considérons la matrice de passage associée

$$P = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1/2 & 0 & 1 \end{array}\right)$$

On a

$$P^{-1}AP = \left(\begin{array}{ccc} 9 & -5 & -2\\ 0 & 12 & -6\\ 0 & 3/2 & 6 \end{array}\right)$$

Considérons alors la sous matrice

$$A' = \left(\begin{array}{cc} 12 & -6\\ 3/2 & 6 \end{array}\right)$$

de polynôme caractéristique $(X-9)^2$ car $\chi_A(X)=(X-9)\chi_{A'}(X)$. Après résolution

$$E_9(A') = \text{Vect}(1, 1/2)$$

Considérons la matrice de passage

$$P' = \left(\begin{array}{cc} 1 & 0\\ 1/2 & 1 \end{array}\right)$$

On a

$$(P'^{-1})A'P' = \begin{pmatrix} 9 & -6 \\ 0 & 9 \end{pmatrix}$$

Enfin, pour

$$Q = P \times \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1/2 & 1/2 & 1 \end{pmatrix}$$

on obtient

$$Q^{-1}AQ = \left(\begin{array}{ccc} 9 & -6 & -2\\ 0 & 9 & -6\\ 0 & 0 & 9 \end{array}\right)$$

Exercice 10: [énoncé]

a) Commençons par quelques cas particuliers.

Si $A=\left(\begin{array}{cc}\lambda&0\\0&\lambda\end{array}\right)$ alors $A\in\mathbb{K}\left[B\right]$ en s'appuyant sur un polynôme constant.

Si $A=\left(\begin{array}{cc}\lambda_1&0\\0&\lambda_2\end{array}\right)$ avec $\lambda_1\neq\lambda_2$ alors les matrices qui commutent avec A sont

diagonales donc B est de la forme $\begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{pmatrix}$. En considérant P = aX + b tel que $P(\lambda_1) = \alpha_1$ et $P(\lambda_2) = \alpha_2$, on a $B = P(A) \in \mathbb{K}[A]$.

Si $A = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ avec $\mu \neq 0$, une étude de commutativité par coefficients

inconnus donne $B = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$. Pour $P = \frac{\beta}{\mu}X + \gamma$ avec $\frac{\beta\lambda}{\mu} + \gamma = \alpha$, on a $B = P(A) \in \mathbb{K}[A]$.

Enfin, dans le cas général, A est semblable à l'un des trois cas précédent via une matrice $P \in GL_2(\mathbb{K})$. La matrice $B' = P^{-1}BP$ commute alors avec $A' = P^{-1}AP$ donc B' est polynôme en A' et par le même polynôme B est polynôme en A.

b) On imagine que non, reste à trouver un contre-exemple.

Par la recette dite des « tâtonnements successifs »ou saisi d'une inspiration venue d'en haut, on peut proposer

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

On vérifie que A et B commutent et ne sont ni l'un ni l'autre polynôme en l'autre car tout polynôme en une matrice triangulaire supérieure est une matrice triangulaire supérieure.

Exercice 11 : [énoncé]

- a) u admet une valeur propre λ et le sous-espace propre associé est stable par v. Cela assure que u et v ont un vecteur propre en commun e_1 . On complète celui-ci en une base (e_1, e_2, \ldots, e_n) . Les matrices de u et v dans cette base sont de la
- forme $A = \begin{pmatrix} \lambda & \star \\ 0 & A' \end{pmatrix}$ et $B = \begin{pmatrix} \mu & \star \\ 0 & B' \end{pmatrix}$. Considérons les endomorphismes u' et v' de $E' = \text{Vect}(e_2, \ldots, e_n)$ représentés par A' et B' dans (e_2, \ldots, e_n) . AB = BA donne A'B' = B'A' et donc [u', v'] = 0. Cela permet d'itérer la méthode jusqu'à obtention d'une base de cotrigonalisation.
- b) Par récurrence, on vérifie $[u^k, v] = k\lambda u^k$. L'endomorphisme $w \mapsto [w, v]$ de $\mathcal{L}(E)$ ne peut avoir une infinité de valeurs propres donc il existe $k \in \mathbb{N}^*$ tel que $u^k = 0$. L'endomorphisme u est nilpotent donc ker $u \neq \{0\}$ ce qui permet d'affirmer que u et v ont un vecteur propre commun. On peut alors reprendre la démarche de la question a) sachant qu'ici $A'B' B'A' = \lambda A'$.
- c) Si $\alpha = 0$, l'étude qui précède peut se reprendre pour conclure. Si $\alpha \neq 0$, on introduit $w = \alpha u + \beta v$ et on vérifie $[w, v] = \alpha w$. Ainsi w et v sont cotrigonalisables puis u et v aussi cas $u = \frac{1}{\alpha}(w \beta v)$.

Exercice 12: [énoncé]

La matrice A est trigonalisable et si l'on note $\lambda_1, \ldots, \lambda_p$ ses valeurs propres distinctes alors $\operatorname{tr}(A^m) = \sum_{j=1}^p \alpha_j \lambda_j^m$ avec α_j la multiplicité de la valeur propre λ_j .

Pour conclure, il suffit d'établir résultat suivant :

« Soient $\alpha_1, \ldots, \alpha_p \in \mathbb{C}^*$ et $\lambda_1, \ldots, \lambda_p \in \mathbb{C}$ deux à deux distincts.

Si
$$\sum_{j=1}^{p} \alpha_j \lambda_j^m \xrightarrow[m \to +\infty]{} 0$$
 alors $\forall 1 \leqslant j \leqslant p, |\lambda_j| < 1$ ».

Raisonnons pour cela par récurrence sur $p \geqslant 1$.

Pour p = 1, la propriété est immédiate.

Supposons la propriété vraie au rang $p \ge 1$.

Soient $\alpha_1,\ldots,\alpha_{p+1}\in\mathbb{C}^\star$ et $\lambda_1,\ldots,\lambda_{p+1}\in\mathbb{C}$ deux à deux distincts tels que

$$\sum_{j=1}^{p+1} \alpha_j \lambda_j^m \xrightarrow[m \to +\infty]{} 0 (1)$$

Par décalage d'indice, on a aussi

$$\sum_{j=1}^{p+1} \alpha_j \lambda_j^{m+1} \xrightarrow[m \to +\infty]{} 0 (2)$$

 $\lambda_{p+1} \times (1) - (2)$ donne

$$\sum_{j=1}^{p} \alpha_j (\lambda_{p+1} - \lambda_j) \lambda_j^m \xrightarrow[m \to +\infty]{} 0$$

qui se comprend encore

$$\sum_{j=1}^{p} \beta_j \lambda_j^m \xrightarrow[m \to +\infty]{} 0$$

avec les β_1, \ldots, β_p non nuls.

Par hypothèse de récurrence, on a alors $\forall 1 \leq j \leq p, |\lambda_j| < 1$.

On en déduit $\sum_{j=1}^{p} \alpha_j \lambda_j^m \xrightarrow[m \to +\infty]{} 0$ et la relation (1) donne alors

 $\alpha_{p+1}\lambda_{p+1}^m \xrightarrow[m \to +\infty]{j-1} 0$ d'où l'on tire $|\lambda_{p+1}| < 1$.

Récurrence établie.

Exercice 13: [énoncé]

a) Si $B = O_n$ alors tout vecteur propre de A (et il en existe car le corps de base est \mathbb{C}) est aussi vecteur propre de B.

Si $B \neq O_n$ alors l'espace ImB est stable par B et il existe alors un vecteur propre de B dans ImB. Puisque Im $B \subset \ker A$ car $AB = O_n$, ce vecteur propre de B est aussi vecteur propre de A (associé à la valeur propre 0).

b) Par récurrence sur la taille n des matrices.

Pour n = 1, c'est immédiat.

Supposons la propriété vérifiée au rang $n-1 \ge 1$.

Soit $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant $AB = O_n$. Soit X_1 un vecteur propre commun aux matrices A et B associé aux valeurs propres λ et μ respectivement. Soit P une matrice inversible dont la première colonne est X_1 . Par changement de base on a

$$P^{-1}AP = \begin{pmatrix} \lambda & \star \\ 0 & A' \end{pmatrix} \text{ et } P^{-1}BP = \begin{pmatrix} \mu & \star \\ 0 & B' \end{pmatrix}$$

Puisque $AB = O_n$ on a $\lambda \mu = 0$ et $A'B' = O_{n-1}$.

Par hypothèse de récurrence, il existe une matrice $Q \in GL_{n-1}(\mathbb{C})$ telle que $Q^{-1}A'Q$ et $Q^{-1}B'Q$ sont triangulaires supérieures. Pour la matrice

$$R = P \times \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \in GL_n(\mathbb{C})$$

on obtient $R^{-1}AR$ et $R^{-1}BR$ triangulaires supérieures. Récurrence établie

Exercice 14: [énoncé]

Notons $\lambda_1, \ldots, \lambda_p$ et μ_1, \ldots, μ_q les valeurs propres deux à deux distinctes des matrices A et B respectivement.

L'hypothèse de travail donne

$$\forall m \in \mathbb{N}, \sum_{j=1}^{p} m_{\lambda_j}(A) \lambda_j^m = \sum_{j=1}^{q} m_{\mu_k}(B) \mu_k^m$$

Avec des notations étendues, ceci donne

$$\forall m \in \mathbb{N}, \sum_{\lambda \in \operatorname{Sp} A \cup \operatorname{Sp} B} a_{\lambda} \lambda^{m} = 0$$

avec $a_{\lambda} = m_{\lambda}(A) - m_{\lambda}(B)$.

Indexons alors les valeurs propres de A et B de sorte que

$$\operatorname{Sp} A \cup \operatorname{Sp} B = \{\alpha_1, \dots, \alpha_r\}$$

avec $\alpha_1, \ldots, \alpha_r$ deux à deux distinctes. On obtient donc

$$\forall m \in \mathbb{N}, \sum_{j=1}^{r} a_{\alpha_j} \alpha_j^m = 0$$

Considérons alors la matrice carrée de Vandermonde

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_r \\ \vdots & \vdots & & \vdots \\ \alpha_1^{r-1} & \alpha_2^{r-1} & \cdots & \alpha_r^{r-1} \end{pmatrix}$$

Celle-ci est inversible car les α_1,\ldots,α_r sont deux à deux distincts. Or les égalités qui précèdent donnent

$$\sum_{j=1}^{r} a_{\alpha_j} C_j = 0$$

en notant C_j les colonnes de la matrice de Vandermonde précédente. On en déduit

$$\forall 1 \leqslant j \leqslant r, a_{\alpha_i} = 0$$

ce qui donne

$$\forall \lambda \in \operatorname{Sp} A \cup \operatorname{Sp} B, m_{\lambda}(A) = m_{\lambda}(B)$$

Exercice 15 : [énoncé]

Sur \mathbb{C} , A est trigonalisable semblable à une matrice triangulaire supérieure ou sur la diagonale figurent les valeurs propres complexes de A comptées avec multiplicité.