Fig. 1: $A \cup (B \cap C)$ is shown by horizontal line segments in the above figure.

Fig. 3: A ∪ C is shown by vertical line segments in Fig. 3,

Fig. 2: A u B is shown by horizontal line segments in the above figure.

Fig. 4: $(A \cup B) \cap (A \cup C)$ is shown by double crossing line segments in Fig. 4.

Regions shown in Fig. 1 and Fig. 4 are equal.

Thus
$$A \cup (B \cap C) = (A \cup B') \cap (A \cup C)$$

Fig. 5:B \cup C is shown by vertical line segments in Fig. 5.

Fig. 6: $A \cap (B \cup C)$ is shown in Fig. 6 by vertical line segments.

Fig. 7: $(A \cap B) \cup (A \cap C)$ is shown in Fig. 7 by slanting line segments.

Regions displayed in Fig. 6 and Fig, 7 are equal.

Thus $A \cap (A \cup C) = (A \cap B) \cup (A \cap C)$

SOLVED EXERCISE 5.3

(i)
$$A - B = A \cap B'$$

L.H.S. = $A - B$
= $\{1, 3, 5, 7, 9\} - \{1, 4, 7, 10\}$
= $\{3, 5, 9\}$ _____(i)
R.H.S. = $A \cap B'$

```
= A \cap (\cup -B)
         = \{1, 3, 5, 7, 9\} \cap \{1, 2, 3, 4, ..., 10\} - \{1, 4, 7, 10\}
         = \{1, 3, 5, 7, 9\} \cap \{2, 3, 5, 6, 8, 9\}
         = \{3, 5, 9\}
         From (i) and (ii), we have
         L.H.S. = R.H.S.
         Hence Proved
  (ii) B - A = B \cap A'
L.H.S. = B - A
         = \{1, 4, 7, 10\} - \{1, 3, 5, 7, 9\}
         = \{4, 10\} (i)
R.H.S. = B \cap A'
         = B \cap (\cup - A)
         = \{1, 4, 7, 10\} \cap \{1, 2, 3, 4, ..., 10\} - \{1, 3, 4, 5, 7, 9\}
         = \{1, 4, 7, 10\} \cap \{2, 4, 6, 8, 10\}
         = {4, 10} ____ (ii)
         From (i) and (ii), we have
         L.H.S. = R.H.S.
         Hence Proved
 (iii) (A \cup B)' = A' \cap B'
L.H.S. = (A \cup B)'
         = \cup - (A \cup B)
         = \{1, 2, 3, 4, ..., 10\} - \{1, 3, 5, 7, 9\} \cup \{1, 4, 7, 10\}
         = \{1, 2, 3, 4, \dots 10\} - \{1, 3, 4, 5, 7, 9, 10\}
         = \{2, 6, 8\} (i)
R.H.S. = A' \cap B'
         = (\cup - A) \cap (\cup - B)
         = (\{1, 2, 3, 4, ..., 10\} - \{1, 3, 5, 7, 9\}) \cap \{1, 2, 3, 4, ..., 10\} - \{1, 4, 7, 10\})
         = \{2, 4, 6, 8, 10\} \cap \{2, 3, 5, 6, 8, 9\}
         = \{2, 6, 8\} (ii)
         From (i) and (ii), we have
         L.H.S. = R.H.S.
         Hence Proved
 (iv) (A \cap B)' = A' \cup B'
L.H.S. = (A \cup B)'
         = \cup - (A \cap B)
         = \{1, 2, 3, 4, ..., 10\} - (\{1, 3, 5, 7, 9\} \cap \{1, 4, 7, 10\})
         = \{1, 2, 3, 4, \dots 10\} - \{1, 7\}
         = \{2, 3, 4, 5, 6, 8, 9, 10\} ____(i)
R.H.S. = A' \cup B'
         = (\cup - A) \cup (\cup - B)
         = (\{1, 2, 3, 4, ..., 10\} - \{1, 3, 5, 7, 9\}) \cup (\{1, 2, 3, 4, ..., 10\} - \{1, 4, 7, 10\})
```

```
= \{2, 4, 6, 8, 10\} \cup \{2,3, 5, 6, 8, 9\}
         = \{2, 3, 4, 5, 6, 8, 9, 10\} (ii)
         From (i) and (ii), we have
         L.H.S. = R.H.S.
         Hence Proved
  (v) (A - B)' = A' \cup B
L.H.S. = (A - B)'
         = \cup -(A - B)
         = \{1, 2, 3, 4, ..., 10\} - \{1, 3, 5, 7, 9\} - \{1, 4, 7, 10\}
         = \{1, 2, 3, 4, \dots 10\} - \{3, 5, 9\}
         = \{1, 2, 3, 6, 7, 8, 10\} (i)
R.H.S. = A' \cup B'
         = (\cup - A) \cup B
         = (\{1, 2, 3, 4, \ldots, 10\} - \{1, 3, 5, 7, 9\}) \cup \{1, 4, 7, 10\}
         = \{2, 4, 6, 8, 10\} \cup \{1, 4, 7, 10\}
         = \{1, 2, 4, 6, 7, 8, 10\} (ii)
         From (i) and (ii), we have
         L.H.S. = R.H.S.
         Hence Proved
  (vi) (B-A)'=B'\cup A
L.H.S. = (B \cup A)'
         = \cup -(B-A)
         = \{1, 2, 3, 4, ..., 10\} - \{1, 4, 7, 10\} - \{1, 3, 5, 7, 9\}
         = \{1, 2, 3, 4, ..., 10\} - \{4, 10\}
         = \{1, 2, 3, 5, 6, 7, 8, 9\} ____(i)
R.H.S. = B' \cup A
         = (\cup - B) \cup A
         = (\{1, 2, 3, 4, \ldots, 10\} - \{1, 3, 5, 7, 9\}) \cup \{1, 3, 5, 7, 9\}
         = \{2, 3, 5, 6, 8, 9\} \cup \{1, 3, 5, 7, 9\}
         = {1, 2, 3, 5, 6, 7, 8, 9} ____(ii)
         From (i) and (ii), we have
         L.H.S. = R.H.S.
         Hence Proved
2.
       If U = \{1, 2, 3, 4, -, 10\}
          A = \{1,3,5,7,9\}; B = \{1,4,7,10\}; C = \{1,5,8,10\}  then verify the following:
Solution:
  (i) (A \cup B) \cup C = A \cup (B \cup C)
L.H.S. = (A \cup B) \cup C
        = (\{1, 3, 5, 7, 9\} \cup \{1, 4, 7, 10\}) \cup \{1, 5, 8, 10\}
         = \{1, 3, 4, 5, 7, 9, 10\} \cup \{1, 5, 8, 10\}
        = \{1, 3, 4, 5, 7, 8, 9, 10\}  (i)
```

```
R.H.S. = A \cup (B \cup C)
           = \{1, 3, 5, 7, 9\} \cup (\{1, 4, 7, 10\} \cup \{1, 5, 8, 10\})
            = \{1, 3, 5, 7, 9\} \cup \{1, 4, 5, 7, 8, 10\}
           = \{1, 3, 4, 5, 7, 8, 9, 10\} (ii)
           From (i) and (ii), we have
           L.H.S. = R.H.S.
           Hence Proved
    (ii) (A \cap B) \cap C = A \cap (B \cap C)
  L.H.S. = (A \cap B) \cap C
           = (\{1, 3, 5, 7, 9\} \cap \{1, 4, 7, 10\}) \cap \{1, 5, 8, 10\}
           = \{1, 7\} \cap \{1, 5, 8, 10\}
           = {1} ____(i)
  R.H.S. = A \cap (B \cap C)
           = \{1, 3, 5, 7, 9\} \cap (\{1, 4, 7, 10\} \cap \{1, 5, 8, 10\})
           = \{1, 3, 5, 7, 9\} \cap \{1, 10\}
           = {1} ____(ii)
           From (i) and (ii), we have
           L.H.S. = R.H.S.
           Hence Proved
   (iii) A \cup (B \cup C) = (A \cup B) \cap (A \cup C)
 L.H.S. = A \cup (B \cap C)
          = \{1, 3, 5, 7, 9\} \cup \{1, 4, 7, 10\}) \cap \{1, 5, 8, 10\}
          = \{1, 3, 5, 7, 9\} \cup \{1, 10\}
          = \{1, 3, 5, 7, 9, 10\} ____(i)
 R.H.S. = (A \cup B \cap (A \cup C))
          = (\{1, 3, 5, 7, 9\} \cup (\{1, 4, 7, 10\}) \cap (\{1, 3, 5, 7, \} \cup \{1, 5, 8, 10\})
          = \{1, 3, 4, 5, 7, 9, 10\} \cap \{1, 3, 5, 7, 8, 9, 10\}
          = \{1, 3, 5, 7, 9, 10\} (ii)
          From (i) and (ii), we have
          L.H.S. = R.H.S.
          Hence Proved
 (iv) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
L.H.S. = A \cap (B \cup C)
         = \{1, 3, 5, 7, 9\} \cap (\{1, 4, 7, 10\}) \cup \{1, 5, 8, 10\}
         = \{1, 3, 5, 7, 9\} \cap \{1, 4, 5, 7, 8, 10\}
         = \{1, 5, 7\} _____(i)
R.H.S. = (A \cap B \cup (A \cap C)
         = (\{1, 3, 5, 7, 9\} \cap (\{1, 4, 7, 10\}) \cup (\{1, 3, 5, 7, 9\} \cap \{1, 5, 8, 10\})
         = \{1, 7\} \cup \{1, 5\}
        = \{1, 5, 7\} (ii)
        From (i) and (ii), we have
        L.H.S. = R.H.S.
```

3. If U = N; then verify De-Morgan's laws by using $A = \phi$ and B = P.

Solution:

$$\cup = N$$
, $A = \emptyset$, $B = P$

(i)
$$(A \cap B)' = A' \cup B'$$

L.H.S. =
$$(A \cap B)'$$

$$= \cup - (A \cap B)$$

$$= N - (\phi \cap P)$$

$$= N - \phi$$

$$= N_{(i)}$$

R.H.S.
$$= A' = B'$$

$$= (\cup -A) \cup (\cup -B)$$

$$= (N - \phi) \cup (N - P)$$

$$= N \cup (N - P)$$

$$=N_{\perp}$$
 (ii)

From (i) and (ii), we have

$$L. H.S. = R.H.S$$

Hence Proved

(ii)
$$(A \cup B)' = A' \cap B'$$

L.H.S. =
$$(A \cup B)'$$

$$= \cup - (A \cup B)$$

$$= N - (\phi \cup P)$$

$$= N - \phi$$

$$= N_{\underline{}}$$
 (i)

R.H.S. =
$$A' \cap B'$$

$$= (\cup - A) \cap (\cup - B)$$

$$= (N - \phi) \cap (N - P)$$

$$= N \cap (N - P)$$

$$= N - P \qquad (ii)$$

From (i) and (ii), we have

$$L. H.S. = R.H.S$$

Hence Proved

4. If $U = \{1, 2, 3, 4, ... 10\}$, $A - \{1, 3, 5, 7, 9\}$ and $B = \{2, 3, 4, 5, 8\}$ then prove the following questions by Venn diagram:

(i)
$$A - B = A \cap B'$$

$$U = \{1, 2, 3, 4, ..., 10\}, A = \{1, 3, 5, 7, 9\}$$
 $B = \{2, 3, 4, 5, 9\}$

$$B = \{2, 3, 4, 5, 8\}$$

(i)
$$A - B = A \cap B'$$

L.H.S.
$$= A - B$$

$$= \{1, 3, 5, 7, 9\} - \{2, 3, 4, 5, 8\}$$

$$= \{1, 7, 9\}$$
 _____(i)

R.H.S. =
$$A \cap B'$$

$$= A \cap (\cup - B)$$

$$= \{1, 3, 5, 7, 9\} \cap (\{1, 2, 3, 4, ..., 10\} - \{2, 3, 4, 5, 8\})$$

$$= \{1, 3, 5, 7, 9\} \cap \{1, 6, 7, 9, 10\}$$

From (i) and (ii), we have

L. H.S. = R.H.S

Hence Proved

(ii)
$$B - A = B \cap A'$$

Solution:

$$= \{2, 3, 4, 5, 8\} - \{1, 3, 5, 7, 9\}$$

$$= \{2, 4, 8\}$$
 ____(i)

R.H.S. =
$$B \cap A'$$

$$= B \cap (\cup - A)$$

$$= \{2, 3, 4, 5, 8\} \cap (\{1, 2, 3, 4, ..., 10\} - \{1, 3, 5, 7, 9\})$$

$$= \{2, 3, 4, 5, 8\} \cap \{2, 4, 6, 8\}$$

From (i) and (ii), we have

L. H.S. = R.H.S

Hence Proved

 $B \cap A$

(iii)
$$(A \cap B)' = A' \cap B'$$

(iv)
$$(A \cap B)' = A \cup B'$$

$$(\mathbf{v}) \ (\mathbf{A} - \mathbf{B})' = \mathbf{A}' \cup \mathbf{B}$$

Solution:

L.H.S. =
$$(A - B)'$$

= $(A - B)$
= $\{1, 2, 3, 4, ..., 10\} - (\{1, 3, 5, 7, 9\} - \{2, 3, 4, 5, 8\})$
= $\{1, 2, 3, 4, ..., 10\} - \{1, 7, 9\}$
= $\{2, 3, 4, 5, 6, 8, 10\}$ (i)

R.H.S. =
$$A' \cup B$$

= $(\cup - A) \cup B$

$$= \{1, 2, 3, 4, ..., 10\} - (\{1, 3, 5, 7, 9\}) \cup \{2, 3, 4, 5, 8\}$$

$$= \{2, 4, 6, 8, 10\} \cup \{2, 3, 4, 5, 8\}$$

$$= \{2, 3, 4, 5, 6, 8, 10\}$$
 (ii)

From (i) and (ii), we have

L. H.S. = R.H.S, Hence Proved

(vi)
$$(B-A)' = B' \cup A$$

L.H.S. =
$$(B - A)'$$

= $\cup - (B - A)$
= $\{1, 2, 3, 4, ..., 10\} - (\{2, 3, 4, 5, 8\} - \{1, 3, 5, 7, 9\})$
= $\{1, 2, 3, 4, ..., 10\} - \{2, 4, 8\}$
= $\{1, 3, 4, 5, 6, 7, 9, 10\}$ (i)
R.H.S. = $B' \cap A$
= $(\cup - B) \cup A$
= $(\{1, 2, 3, 4, ..., 10\} - \{2, 3, 4, 5, 8\}) \cup \{1, 3, 5, 7, 9\}$
= $\{1, 3, 5, 7, 9, 10\} \cup \{1, 3, 5, 7, 9\}$
= $\{1, 3, 5, 7, 9, 10\}$ (ii)

From (i) and (ii), we have

L. H.S. = R.H.S Hence Proved

 $B' \cup A$

5.1.4 (viii) Ordered pairs and Cartesian product:

5.1.4(a) Ordered pairs:

Any two numbers x and y, written in the form (x, y] is called an ordered pair. In an ordered pair (x, y), the order of numbers is important, that is, x is the first co-ordinate and y is the second co-ordinate. For example, (3, 2) is different from (2, 3).

It is obvious that $(x, y) \neq (y, x)$ unless x = y.

Note that (x, y) = (s, t), iff x = s and y = t

5.1.4 (b) Cartesian product:

Cartesian product of two non-empty sets A and B denoted by A x B consists of all ordered pairs (x, y) such that $x \in A$ and $y \in B$.

Example: If $A = \{1, 2, 3\}$ and $B = \{2, 5\}$, then find $A \times B$ and $B \times A$.

Solution: $A \times B = \{(1,2), (1,5), (2,2), (2,5), (3,2), (3,5)\}$

Since set A has 3 elements and set B has 2 elements.

Hence product set $A \times B$ has $3 \times 2 = 6$ ordered pairs.

We note that $B \times A - \{(2, 1), (2, 2), (2, 3), (5, 1), (5, 2), (5, 3)\}$

Evidently $A \times B \neq B \times A$.

SOLVED EXERCISE 5.4

1. If $A = \{a, b\}$ and $5 = \{c, d\}$, then find $A \times B$ and $B \times A$.

Solution:

$$A = \{a, b\} \text{ and } B = \{c, d\}$$

$$A \times B = \{a, b\} \times \{c, d\}$$

$$= \{(a, c), (a, d), (b, c), (b, d)\}$$

$$B \times A = \{c, d\} \times \{a, b\}$$

$$= \{(c, a), (c, b), (d, a), (d, b)\}$$

2. If $A = \{0,2,4\}$, $B = \{-1,3\}$, then find $A \times B$, $B \times A$, $A \times A$, $B \times B$.

A =
$$\{0, 2, 4\}$$
 and B = $\{-1, 3\}$
A × B = $\{0, 2, 4\} \times \{-1, 3\}$
= $\{(0, -1), (0, 3), (2, -1), (4, -1), (4, 3)\}$
B × A = $\{-1, 3\} \times \{0, 2, 4\}$