# W2. Discrete Classification I - Logistic Regression

#### Guang Cheng

University of California, Los Angeles guangcheng@ucla.edu

Week 2

• A typical dataset in classification  $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ .

- A typical dataset in classification  $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ .
  - $x_i$ : the covariate vector of *i*-th instance

- A typical dataset in classification  $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ .
  - $x_i$ : the covariate vector of *i*-th instance
  - $y_i \in \{-1,1\}$ : binary label of *i*-th instance

- A typical dataset in classification  $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ .
  - $x_i$ : the covariate vector of *i*-th instance
  - $y_i \in \{-1,1\}$ : binary label of *i*-th instance
- Question: Can we directly minimize the averaged 0-1 loss?

Training Error: 
$$\frac{1}{n} \sum_{i=1}^{n} I(f(\mathbf{x}_i) \neq y_i)$$

- A typical dataset in classification  $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ .
  - $x_i$ : the covariate vector of *i*-th instance
  - $y_i \in \{-1,1\}$ : binary label of *i*-th instance
- Question: Can we directly minimize the averaged 0-1 loss?

Training Error : 
$$\frac{1}{n} \sum_{i=1}^{n} I(f(\mathbf{x}_i) \neq y_i)$$

• **Answer**: No, the 0-1 loss function is non-convex and discontinuous, so (sub)gradient methods cannot be applied.

# Classification - surrogate loss

• We can replace the 0-1 loss by other loss functions, say surrogate loss

$$\frac{1}{n}\sum_{i=1}^n I(f(\mathbf{x}_i) \neq y_i) \Rightarrow \frac{1}{n}\sum_{i=1}^n L(f(\mathbf{x}_i), y_i) = \frac{1}{n}\sum_{i=1}^n \phi(f(\mathbf{x}_i)y_i)$$

# Classification - surrogate loss

• We can replace the 0-1 loss by other loss functions, say surrogate loss

$$\frac{1}{n}\sum_{i=1}^{n}I(f(\mathbf{x}_{i})\neq y_{i})\Rightarrow\frac{1}{n}\sum_{i=1}^{n}L(f(\mathbf{x}_{i}),y_{i})=\frac{1}{n}\sum_{i=1}^{n}\phi(f(\mathbf{x}_{i})y_{i})$$

• Hinge loss:  $\phi(x) = \max\{0, 1-x\}$ 

# Classification - surrogate loss

• We can replace the 0-1 loss by other loss functions, say surrogate loss

$$\frac{1}{n}\sum_{i=1}^{n}I(f(\mathbf{x}_{i})\neq y_{i})\Rightarrow\frac{1}{n}\sum_{i=1}^{n}L(f(\mathbf{x}_{i}),y_{i})=\frac{1}{n}\sum_{i=1}^{n}\phi(f(\mathbf{x}_{i})y_{i})$$

- Hinge loss:  $\phi(x) = \max\{0, 1-x\}$
- Logistic loss  $\phi(x) = \log(1 + \exp(-x))$

# One surrogate loss - Hinge Loss

Definition of Hinge loss:

$$L_{hinge}(f(\mathbf{x}_i), y_i) = \begin{cases} 1 - f(\mathbf{x}_i)y_i & \text{if } f(\mathbf{x}_i)y_i \leq 1\\ 0, & \text{if } f(\mathbf{x}_i)y_i > 1 \end{cases}$$



• Let  $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$ . The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} \big[ L_{hinge}(f(\boldsymbol{X}), Y) \big]$$
$$= \mathbb{E}_{\boldsymbol{X}} \Big[ \eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + \big(1 - \eta(\boldsymbol{X})\big) (1 + f(\boldsymbol{X}))_{+} \Big]$$

• Let  $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$ . The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} \big[ L_{hinge}(f(\boldsymbol{X}), Y) \big]$$
  
=  $\mathbb{E}_{\boldsymbol{X}} \Big[ \eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + (1 - \eta(\boldsymbol{X})) (1 + f(\boldsymbol{X}))_{+} \Big]$ 

• Suppose that  $f(X) \in [-1,1]$ , for any X, we have (pls verify in class)

$$egin{aligned} & \eta(oldsymbol{X})(1-f(oldsymbol{X})) + ig(1-\eta(oldsymbol{X})ig)(1+f(oldsymbol{X})) \ = & \eta(oldsymbol{X}) - 2\eta(oldsymbol{X})f(oldsymbol{X}) + 1 + f(oldsymbol{X}) - \eta(oldsymbol{X}) \ = & f(oldsymbol{X})ig(1-2\eta(oldsymbol{X})ig) + 1. \end{aligned}$$

• Let  $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$ . The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} [L_{hinge}(f(\boldsymbol{X}), Y)]$$
$$= \mathbb{E}_{X} \Big[ \eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + (1 - \eta(\boldsymbol{X})) (1 + f(\boldsymbol{X}))_{+} \Big]$$

• Suppose that  $f(X) \in [-1,1]$ , for any X, we have (pls verify in class)

$$egin{aligned} & \eta(\boldsymbol{X})(1-f(\boldsymbol{X})) + ig(1-\eta(\boldsymbol{X})ig)(1+f(\boldsymbol{X})) \ = & \eta(\boldsymbol{X}) - 2\eta(\boldsymbol{X})f(\boldsymbol{X}) + 1 + f(\boldsymbol{X}) - \eta(\boldsymbol{X}) \ = & f(\boldsymbol{X})ig(1-2\eta(\boldsymbol{X})ig) + 1. \end{aligned}$$

• The optimal function  $f_{hinge}^*$  minimizing  $R_{hinge}(f)$  (why?)

• Let  $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$ . The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} \big[ L_{hinge}(f(\boldsymbol{X}), Y) \big]$$
$$= \mathbb{E}_{\boldsymbol{X}} \Big[ \eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + \big(1 - \eta(\boldsymbol{X})\big) (1 + f(\boldsymbol{X}))_{+} \Big]$$

• Suppose that  $f(X) \in [-1,1]$ , for any X, we have (pls verify in class)

$$\eta(\mathbf{X})(1 - f(\mathbf{X})) + (1 - \eta(\mathbf{X}))(1 + f(\mathbf{X}))$$
  
= $\eta(\mathbf{X}) - 2\eta(\mathbf{X})f(\mathbf{X}) + 1 + f(\mathbf{X}) - \eta(\mathbf{X})$   
= $f(\mathbf{X})(1 - 2\eta(\mathbf{X})) + 1$ .

- The optimal function  $f_{hinge}^*$  minimizing  $R_{hinge}(f)$  (why?)
  - If  $\eta(\boldsymbol{X}) < 1/2$ , hinge loss is minimized at  $f(\boldsymbol{X}) = -1$

• Let  $\eta(\mathbf{x}) = \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$ . The expected hinge loss: hinge risk.

$$R_{hinge}(f) = \mathbb{E}_{\boldsymbol{X},Y} \big[ L_{hinge}(f(\boldsymbol{X}), Y) \big]$$
$$= \mathbb{E}_{\boldsymbol{X}} \Big[ \eta(\boldsymbol{X}) (1 - f(\boldsymbol{X}))_{+} + (1 - \eta(\boldsymbol{X})) (1 + f(\boldsymbol{X}))_{+} \Big]$$

• Suppose that  $f(X) \in [-1,1]$ , for any X, we have (pls verify in class)

$$\eta(\mathbf{X})(1 - f(\mathbf{X})) + (1 - \eta(\mathbf{X}))(1 + f(\mathbf{X}))$$

$$= \eta(\mathbf{X}) - 2\eta(\mathbf{X})f(\mathbf{X}) + 1 + f(\mathbf{X}) - \eta(\mathbf{X})$$

$$= f(\mathbf{X})(1 - 2\eta(\mathbf{X})) + 1.$$

- The optimal function  $f_{hinge}^*$  minimizing  $R_{hinge}(f)$  (why?)
  - If  $\eta(\boldsymbol{X}) < 1/2$ , hinge loss is minimized at  $f(\boldsymbol{X}) = -1$
  - If  $\eta(\mathbf{X}) > 1/2$ , hinge loss is minimized at  $f(\mathbf{X}) = 1$

• The optimal classifier (i.e., Bayes classifier) of Binary loss is defined as

$$f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) - 1/2) = \begin{cases} 1 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) > 1/2 \\ 0 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) < 1/2 \end{cases}$$

• The optimal classifier (i.e., Bayes classifier) of Binary loss is defined as

$$f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) - 1/2) = \begin{cases} 1 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) > 1/2 \\ 0 & \text{if } \mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x}) < 1/2 \end{cases}$$

#### Observation:

- (i)  $f_{hinge}^*$  is exactly the Bayes classifier defined above;
- (ii) The hinge loss is a convex function, which makes it possible to minimize the training error in practice.

#### Another surrogate loss - Logistic Loss

Definition of Logistic loss:

$$L_{log}(f(\mathbf{x}_i), y_i) = \log \left(1 + \exp(-f(\mathbf{x}_i)y_i)\right)$$



# Why Logistic Loss?

• The logistic risk:

$$\begin{split} R_{log}(f) &= \mathbb{E}_{\boldsymbol{X},Y} \Big[ \log \Big( 1 + \exp(-f(\boldsymbol{X})Y) \Big) \Big] \\ = & \mathbb{E}_{\boldsymbol{X}} \Big[ \eta(\boldsymbol{X}) \log \Big( 1 + \exp(-f(\boldsymbol{X})) \Big) + \Big( 1 - \eta(\boldsymbol{X}) \Big) \log \Big( 1 + \exp(f(\boldsymbol{X})) \Big) \Big] \end{split}$$

# Why Logistic Loss?

• The logistic risk:

$$\begin{split} R_{log}(f) &= \mathbb{E}_{\boldsymbol{X},Y} \Big[ \log \Big( 1 + \exp(-f(\boldsymbol{X})Y) \Big) \Big] \\ = & \mathbb{E}_{\boldsymbol{X}} \Big[ \eta(\boldsymbol{X}) \log \Big( 1 + \exp(-f(\boldsymbol{X})) \Big) + \Big( 1 - \eta(\boldsymbol{X}) \Big) \log \Big( 1 + \exp(f(\boldsymbol{X})) \Big) \Big] \end{split}$$

Take the derivative with respect to f, pls verify the following in class

$$\begin{split} &-\eta(\boldsymbol{X})\frac{\exp(-f(\boldsymbol{X}))}{1+\exp(-f(\boldsymbol{X}))} + \left(1-\eta(\boldsymbol{X})\right)\frac{\exp(f(\boldsymbol{X}))}{1+\exp(f(\boldsymbol{X}))} \\ &= -\eta(\boldsymbol{X})\frac{1}{1+\exp(f(\boldsymbol{X}))} + \left(1-\eta(\boldsymbol{X})\right)\frac{\exp(f(\boldsymbol{X}))}{1+\exp(f(\boldsymbol{X}))} \\ &= \frac{\exp(f(\boldsymbol{X}))}{1+\exp(f(\boldsymbol{X}))} - \eta(\boldsymbol{X}) = 0 \longleftrightarrow f_{log}^*(\boldsymbol{X}) = \log\frac{\eta(\boldsymbol{X})}{1-\eta(\boldsymbol{X})} \end{split}$$

• The Bayes classifier  $f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) - 1/2)$ 

- The Bayes classifier  $f^*(x) = \text{sign}(\eta(x) 1/2)$
- ullet The optimal classifier of Hinge risk  $f^*_{hinge}(oldsymbol{x}) = \mathrm{sign}(\eta(oldsymbol{x}) 1/2)$

- The Bayes classifier  $f^*(x) = \text{sign}(\eta(x) 1/2)$
- ullet The optimal classifier of Hinge risk  $f^*_{hinge}({m x}) = {
  m sign}(\eta({m x}) 1/2)$
- ullet The optimal classifier of Logistic risk  $f_{log}^*(oldsymbol{x}) = \log rac{\eta(oldsymbol{X})}{1-\eta(oldsymbol{X})}$

- The Bayes classifier  $f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) 1/2)$
- ullet The optimal classifier of Hinge risk  $f^*_{hinge}({m x}) = {
  m sign}(\eta({m x}) 1/2)$
- ullet The optimal classifier of Logistic risk  $f_{log}^*(oldsymbol{x}) = \log rac{\eta(oldsymbol{X})}{1-\eta(oldsymbol{X})}$
- Question: what is the connection between these optimal classifiers?

- The Bayes classifier  $f^*(\mathbf{x}) = \text{sign}(\eta(\mathbf{x}) 1/2)$
- ullet The optimal classifier of Hinge risk  $f^*_{ ext{hinge}}(oldsymbol{x}) = ext{sign}(\eta(oldsymbol{x}) 1/2)$
- ullet The optimal classifier of Logistic risk  $f_{log}^*(oldsymbol{x}) = \log rac{\eta(oldsymbol{X})}{1-\eta(oldsymbol{X})}$
- Question: what is the connection between these optimal classifiers?
- **Answer**: They are consistent in sign in the sense that signs of  $f^*$ ,  $f^*_{hinge}$ ,  $f^*_{log}$  are always the same, e.g., always positive as long as  $\eta(\mathbf{x}) > 1/2$ .

• To estimate  $f_{log}^*(x)$ , we need to impose an assumption on the form of:

$$\eta(oldsymbol{\mathcal{X}}) = \mathbb{P}\Big(Y = 1 ig| oldsymbol{\mathcal{X}}\Big)$$

• To estimate  $f_{log}^*(\mathbf{x})$ , we need to impose an assumption on the form of:

$$\eta(oldsymbol{X}) = \mathbb{P}ig(Y=1ig|oldsymbol{X}ig)$$

In logistic regression, it is often assumed that

$$\eta(\mathbf{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})},\tag{1}$$

where

• To estimate  $f_{log}^*(\mathbf{x})$ , we need to impose an assumption on the form of:

$$\eta(oldsymbol{X}) = \mathbb{P}ig(Y=1ig|oldsymbol{X}ig)$$

In logistic regression, it is often assumed that

$$\eta(\mathbf{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})},\tag{1}$$

where

•  $\mathbf{x} = (x_1, \dots, x_p)^T$  is a *p*-dimensional predictor

• To estimate  $f_{log}^*(\mathbf{x})$ , we need to impose an assumption on the form of:

$$\eta(oldsymbol{\mathcal{X}}) = \mathbb{P}\Big(Y = 1 ig| oldsymbol{\mathcal{X}}\Big)$$

In logistic regression, it is often assumed that

$$\eta(\mathbf{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})},$$
 (1)

where

- $\mathbf{x} = (x_1, \dots, x_p)^T$  is a *p*-dimensional predictor
- ullet  $eta_0$  and  $oldsymbol{eta}=(eta_1,\ldots,eta_p)$  are unknown parameters to be estimated

• To estimate  $f_{log}^*(\mathbf{x})$ , we need to impose an assumption on the form of:

$$\eta(oldsymbol{\mathcal{X}}) = \mathbb{P}\Big(Y = 1 ig| oldsymbol{\mathcal{X}}\Big)$$

In logistic regression, it is often assumed that

$$\eta(\mathbf{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \mathbf{x})},\tag{1}$$

where

- $\mathbf{x} = (x_1, \dots, x_p)^T$  is a *p*-dimensional predictor
- ullet  $eta_0$  and  $oldsymbol{eta}=(eta_1,\ldots,eta_p)$  are unknown parameters to be estimated
- $\bullet \ \beta^T \mathbf{x} = \sum_{i=1}^p \beta_i x_i$

#### Rational behind logistic loss: log odds ratio

By reformulating (1), we have obtained

$$\exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}) = \frac{\mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)}{1 - \mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)} = \frac{\mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)}{\mathbb{P}\Big(Y = 0 \big| \boldsymbol{X} = \boldsymbol{x}\Big)},$$

where the last term above is the ratio between the conditional probability of Y=1 and that of Y=0 on  $\boldsymbol{X}=\boldsymbol{x}$ , i.e., "odds ratio."

#### Rational behind logistic loss: log odds ratio

• By reformulating (1), we have obtained

$$\exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}) = \frac{\mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)}{1 - \mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)} = \frac{\mathbb{P}\Big(Y = 1 \big| \boldsymbol{X} = \boldsymbol{x}\Big)}{\mathbb{P}\Big(Y = 0 \big| \boldsymbol{X} = \boldsymbol{x}\Big)},$$

where the last term above is the ratio between the conditional probability of Y=1 and that of Y=0 on  $\boldsymbol{X}=\boldsymbol{x}$ , i.e., "odds ratio."

• In other words, we can claim that the log-odds is assumed to be linear with respect to  $\beta$ :

$$eta_0 + oldsymbol{eta}^T oldsymbol{x} = \log \Big( rac{\mathbb{P} \Big( Y = 1 ig| oldsymbol{X} = oldsymbol{x} \Big)}{\mathbb{P} \Big( Y = 0 ig| oldsymbol{X} = oldsymbol{x} \Big)} \Big)$$

Interpretability:  $\beta_i$  can then be interpreted as the average change in the log-odds ratio given by a one-unit increase in  $x_i$ 

#### Maximum likelihood estimation

• Likelihood function  $L(\beta_0, \beta)$ :

$$L(eta_0,oldsymbol{eta}) = \prod_{i=1}^n \Big( \mathbb{P}ig( Y = 1 ig| oldsymbol{X} = oldsymbol{x} ig)^{y_i} \Big( \mathbb{P}ig( Y = 0 ig| oldsymbol{X} = oldsymbol{x} ig)^{1-y_i}$$

#### Maximum likelihood estimation

• Likelihood function  $L(\beta_0, \beta)$ :

$$L(eta_0,oldsymbol{eta}) = \prod_{i=1}^n \Big( \mathbb{P} ig( oldsymbol{Y} = 1 ig| oldsymbol{X} = oldsymbol{x} \Big)^{y_i} \Big( \mathbb{P} ig( oldsymbol{Y} = 0 ig| oldsymbol{X} = oldsymbol{x} \Big) \Big)^{1-y_i}$$

• Logarithm of  $L(\beta_0, \beta)$  (pls verify in class):

$$\log L(\beta_0, \boldsymbol{\beta}) = \sum_{i=1}^{n} \left[ y_i \log \left( \mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x}) \right) + (1 - y_i) \log \left( \mathbb{P}(Y = 0 | \boldsymbol{X} = \boldsymbol{x}) \right) \right]$$
$$= \sum_{i=1}^{n} \left[ y_i (\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}) - \log \left( 1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}) \right) \right]$$

# Gradient descent/ascent in the computation

Estimate  $\beta_0$  and  $\beta$  (Gradient Ascent):

$$\beta_0^{(t+1)} \leftarrow \beta_0^{(t)} + \lambda \sum_{i=1}^n \left[ y_i - \frac{\exp(\beta_0^{(t)} + \beta^{(t)T} x)}{1 + \exp(\beta_0^{(t)} + \beta^{(t)} x)} \right]$$
$$\beta^{(t+1)} \leftarrow \beta^{(t)} + \lambda \sum_{i=1}^n \left[ y_i - \frac{\exp(\beta_0^{(t)} + \beta^{(t)T} x)}{1 + \exp(\beta_0^{(t)} + \beta^{(t)T} x)} \right] x_i$$

#### Now, we are ready to do classification

We have obtained the estimate for  $\beta_0$  and  $\beta$ , denoted as  $\widehat{\beta}_0$  and  $\widehat{\beta}$ , based on which we can estimate P(Y=1|X) as follows:

$$\widehat{\eta}(\mathbf{x}) = \frac{\exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}^T \mathbf{x})}{1 + \exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}^T \mathbf{x})}$$

#### Now, we are ready to do classification

We have obtained the estimate for  $\beta_0$  and  $\beta$ , denoted as  $\widehat{\beta}_0$  and  $\widehat{\beta}$ , based on which we can estimate P(Y=1|X) as follows:

$$\widehat{\eta}(\mathbf{x}) = \frac{\exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}^T \mathbf{x})}{1 + \exp(\widehat{\beta}_0 + \widehat{\boldsymbol{\beta}}^T \mathbf{x})}$$

Then we make predictions by (recall that  $\eta({m x}) = P(Y=1|{m X}))$ 

$$\widehat{f}(\mathbf{x}) = \begin{cases} 1, & \text{if } \widehat{\eta}(\mathbf{x}) > 1/2 \\ 0, & \text{if } \widehat{\eta}(\mathbf{x}) < 1/2 \end{cases}$$

If  $\widehat{\eta}(\mathbf{x}) = 1/2$ , then just randomly assign a label to it.

#### Example

Dataset 
$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{5000}$$
, where  $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4})$ .

• Features are generated from uniform distribution  $x_{il} \sim Unif(0,2), l = 1,2,3,4.$ 

#### Example

Dataset  $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{5000}$ , where  $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4})$ .

- Features are generated from uniform distribution  $x_{il} \sim Unif(0,2), l = 1,2,3,4.$
- $\beta_0 = 0.5$  and  $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)$  with  $\beta_i \sim Unif(-1, 1)$

## Example

Dataset  $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{5000}$ , where  $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4})$ .

- Features are generated from uniform distribution  $x_{il} \sim Unif(0,2), l = 1,2,3,4.$
- $\beta_0 = 0.5$  and  $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)$  with  $\beta_i \sim Unif(-1, 1)$
- Model:

$$Y_i \sim Bernoulli(\frac{\exp(eta_0 + oldsymbol{eta}^T oldsymbol{x})}{1 + \exp(eta_0 + oldsymbol{eta}^T oldsymbol{x})}),$$

which means

$$P(Y_i = 1 | \boldsymbol{X}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x})}$$

### Python Codes – data generation

```
import numpy as np
np.random.seed(2)
n,p = 5000,4 # Set training datasize and dimension of features
X = np.random.uniform(-1,1,[n,p]) # Generation of features
beta = np.random.uniform(0,2,4) # Generation of parameters
beta_0 = 0.5 # Set the intercept term to 0.5
logOdd = (X * beta).sum(axis=1)+beta_0 # Log-odds
Prob = np.exp(logOdd)/(1+np.exp(logOdd)), # Probability
Y = np.array(Prob - np.random.uniform(0,1,n)>0,dtype=int) # Generate labels
```

```
Beta_0_hat = 0. # Initialization of intercept term
Beta_hat = np.zeros(p) # Initialization of beta
lamb = 0.1 \# Learning rate
Error = \prod \# Error set
for i in range(2000):# Iterations of gradient ascent
  logOdd_hat = (X * Beta_hat).sum(axis=1)+Beta_0_hat
  Beta_0_hat = Beta_0_hat + lamb * np.mean(Y - np.exp(logOdd_hat)/(1+np.exp(logOdd_hat)))
  Beta_hat = Beta_hat + lamb * ((Y - np.exp(logOdd_hat)/(1+np.exp(logOdd_hat))) * X.T).mean(axis=1)
  Error.append(np.linalg.norm(Beta_hat-beta)**2)
import matplotlib.pyplot as plt
plt.plot(np.arange(0,2000),Error)
plt.xlabel('Number of iterations')
plt.ylabel('$\Vert \\beta - \hat{\\beta}\Vert_2^2$')
plt.grid()
```

## Example: gradient ascent for logistic regression



#### Over/under-fitting problem

• Overfitting occurs when a model learns the training data too well, capturing noise and making it perform poorly on new, unseen data.

## Over/under-fitting problem

- Overfitting occurs when a model learns the training data too well, capturing noise and making it perform poorly on new, unseen data.
- Underfitting, on the other hand, happens when a model is too simple to capture the underlying patterns in the data, resulting in poor performance on both the training and test data.

## Over/under-fitting problem

- Overfitting occurs when a model learns the training data too well, capturing noise and making it perform poorly on new, unseen data.
- Underfitting, on the other hand, happens when a model is too simple to capture the underlying patterns in the data, resulting in poor performance on both the training and test data.
- Let's use a simple example with polynomial regression and visualize the above with the out-of-sample (OOS) metrics.

#### An example - underfitting

Degree 1: Underfitting (Too simple) - The model is not able to capture the underlying pattern in the data.



#### An example - good fit

Degree 5: Good fit - The model captures the underlying pattern well and generalizes to the test data.



#### An example - overfitting

Degree 15: Overfitting (Too complex) - The model fits the training data too closely, capturing noise and performing poorly on new data.



# Confusion matrix – measure the performance of classification

• In Machine Learning, to measure the performance of the classification model, such as logistic regression, we use the confusion matrix.

# Confusion matrix – measure the performance of classification

- In Machine Learning, to measure the performance of the classification model, such as logistic regression, we use the confusion matrix.
- A confusion matrix is a matrix that displays the number of accurate and inaccurate classification outcomes for each input instance **X**.

To measure the performance of classification, we have the following metrics:

• true positives (TP): occurs when the model accurately predicts a positive data point, i.e.,  $\hat{y} = y = 1$ .

To measure the performance of classification, we have the following metrics:

- true positives (TP): occurs when the model accurately predicts a positive data point, i.e.,  $\hat{y} = y = 1$ .
- true negatives (TN): occurs when the model accurately predicts a negative data point, i.e.,  $\hat{y} = y = -1$ .

To measure the performance of classification, we have the following metrics:

- true positives (TP): occurs when the model accurately predicts a positive data point, i.e.,  $\hat{y} = y = 1$ .
- true negatives (TN): occurs when the model accurately predicts a negative data point, i.e.,  $\hat{y} = y = -1$ .
- false positives (FP): occurs when the model predicts a positive data point incorrectly, i.e.,  $\hat{y} = 1$  but y = -1.

To measure the performance of classification, we have the following metrics:

- true positives (TP): occurs when the model accurately predicts a positive data point, i.e.,  $\hat{y} = y = 1$ .
- true negatives (TN): occurs when the model accurately predicts a negative data point, i.e.,  $\hat{y} = y = -1$ .
- false positives (FP): occurs when the model predicts a positive data point incorrectly, i.e.,  $\hat{y} = 1$  but y = -1.
- false negatives (FN): occurs when the model predicts a negative data point incorrectly, i.e.,  $\hat{y} = -1$  but y = 1.

#### An example : dog recognition

Dog: Y = 1 & Not Dog: Y = -1 (pls verify this table in class!)

|       |         | ,         |        |
|-------|---------|-----------|--------|
| index | actual  | predicted | Result |
| 1     | Dog     | Dog       | TP     |
| 2     | Dog     | Not Dog   | FN     |
| 3     | Dog     | Dog       | TP     |
| 4     | Not Dog | Not Dog   | TN     |
| 5     | Dog     | Dog       | TP     |
| 6     | Not Dog | Dog       | FP     |
| 7     | Dog     | Dog       | ТР     |
| 8     | Dog     | Dog       | TP     |
| 9     | Not Dog | Not Dog   | TN     |
| 10    | Not Dog | Not Dog   | TN     |

Pls take a min to count....

Actual Dog Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?
- True Positive Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?
- True Positive Counts = ?
- False Positive Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?
- True Positive Counts = ?
- False Positive Counts = ?
- True Negative Counts = ?

- Actual Dog Counts = ?
- Actual Not Dog Counts = ?
- True Positive Counts = ?
- False Positive Counts = ?
- True Negative Counts = ?
- False Negative Counts = ?

Actual Dog Counts = 6

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4
- True Positive Counts = 5

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4
- True Positive Counts = 5
- False Positive Counts = 1

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4
- True Positive Counts = 5
- False Positive Counts = 1
- True Negative Counts = 3

- Actual Dog Counts = 6
- Actual Not Dog Counts = 4
- True Positive Counts = 5
- False Positive Counts = 1
- True Negative Counts = 3
- False Negative Counts = 1

#### An example - construct the confusion matrix

#### Construct the Confusion Matrix

|           |         | Actual                    |                          |
|-----------|---------|---------------------------|--------------------------|
|           |         | Dog                       | Not Dog                  |
| Predicted | Dog     | True Positive<br>(TP =5)  | False Positive<br>(FP=1) |
|           | Not Dog | False Negative<br>(FN =1) | True Negative<br>(TN=3)  |

#### An example - construct the confusion matrix

Construct the Confusion Matrix

|           |         | Actual                    |                          |
|-----------|---------|---------------------------|--------------------------|
|           |         | Dog                       | Not Dog                  |
| Predicted | Dog     | True Positive<br>(TP =5)  | False Positive<br>(FP=1) |
|           | Not Dog | False Negative<br>(FN =1) | True Negative<br>(TN=3)  |

• How to use the Confusion Matrix for assessing a classification model's performance ?

#### Classification metrics based on confusion matrix: Accuracy

 Accuracy is used to measure the performance of the model. It is the ratio of total correct instances to the total instances.

#### Classification metrics based on confusion matrix: Accuracy

- Accuracy is used to measure the performance of the model. It is the ratio of total correct instances to the total instances.
- Accuracy =  $\frac{TP+TN}{TP+TN+FP+FN}$

- Accuracy is used to measure the performance of the model. It is the ratio of total correct instances to the total instances.
- Accuracy =  $\frac{TP+TN}{TP+TN+FP+FN}$
- For the above case: Accuracy = ?

- Accuracy is used to measure the performance of the model. It is the ratio of total correct instances to the total instances.
- Accuracy =  $\frac{TP+TN}{TP+TN+FP+FN}$
- For the above case: Accuracy = ?
- For the above case: Accuracy = (5+3)/(5+3+1+1) = 8/10 = 0.8

 Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"

- Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"
- It is defined as the ratio of true positive predictions to the total number of positive predictions made by the model.

- Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"
- It is defined as the ratio of true positive predictions to the total number of positive predictions made by the model.
- Precision =  $\frac{TP}{TP+FP}$

- Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"
- It is defined as the ratio of true positive predictions to the total number of positive predictions made by the model.
- Precision =  $\frac{TP}{TP+FP}$
- For the above case: Precision = ?

- Precision is a measure of how accurate a model's positive predictions are. Basically, it answers the question "What proportion of positive identifications was actually correct?"
- It is defined as the ratio of true positive predictions to the total number of positive predictions made by the model.
- Precision =  $\frac{TP}{TP+FP}$
- For the above case: Precision = ?
- For the above case: Precision = 5/(5+1) = 5/6 = 0.8333

 Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"

- Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"
- It is defined as the ratio of the number of true positive (TP) instances to the sum of true positive and false negative (FN) instances.

- Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"
- It is defined as the ratio of the number of true positive (TP) instances to the sum of true positive and false negative (FN) instances.
- Recall =  $\frac{TP}{TP+FN}$

- Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"
- It is defined as the ratio of the number of true positive (TP) instances to the sum of true positive and false negative (FN) instances.
- Recall =  $\frac{TP}{TP+FN}$
- For the above case: Recall = ?

- Recall measures the effectiveness of a classification model in identifying all relevant instances from a dataset. Basically, it answers the question "What proportion of actual positives was identified correctly?"
- It is defined as the ratio of the number of true positive (TP) instances to the sum of true positive and false negative (FN) instances.
- Recall =  $\frac{TP}{TP+FN}$
- For the above case: Recall = ?
- For the above case: Recall = 5/(5+1) = 5/6 = 0.8333

• F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall

- F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall
- The F1 score is named as such because it is a combination of two other metrics: precision (P) and recall (R). The "F" in F1 stands for "F-measure" or "F-score," and the "1" indicates that it is computed as the harmonic mean of precision and recall.

- F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall
- The F1 score is named as such because it is a combination of two other metrics: precision (P) and recall (R). The "F" in F1 stands for "F-measure" or "F-score," and the "1" indicates that it is computed as the harmonic mean of precision and recall.
- The harmonic mean is often used to calculate the average of the ratios or rates.

- F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall
- The F1 score is named as such because it is a combination of two other metrics: precision (P) and recall (R). The "F" in F1 stands for "F-measure" or "F-score," and the "1" indicates that it is computed as the harmonic mean of precision and recall.
- The harmonic mean is often used to calculate the average of the ratios or rates.
- The harmonic mean can be expressed as the reciprocal of the arithmetic mean of the reciprocals of the given set of observations.

- F1-score is used to evaluate the overall performance of a classification model. It is the harmonic mean of precision and recall
- The F1 score is named as such because it is a combination of two other metrics: precision (P) and recall (R). The "F" in F1 stands for "F-measure" or "F-score," and the "1" indicates that it is computed as the harmonic mean of precision and recall.
- The harmonic mean is often used to calculate the average of the ratios or rates.
- The harmonic mean can be expressed as the reciprocal of the arithmetic mean of the reciprocals of the given set of observations.
- For example, harmonic mean of 1, 4, 4 is

$$(\frac{1^{-1}+4^{-1}+4^{-1}}{3})^{-1}=2$$

• Pls verify this in class: F1-score =  $\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$ 

- Pls verify this in class: F1-score =  $\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$
- For the above case: F1-Score=?

- Pls verify this in class: F1-score =  $\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$
- For the above case: F1-Score=?
- For the above case: F1-Score = (2\*0.8333\*0.8333)/(0.8333+0.8333) = 0.8333

#### Problem statement

 You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:

- You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:
  - 40 emails are correctly identified as spam (True Positives).

- You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:
  - 40 emails are correctly identified as spam (True Positives).
  - 10 emails are incorrectly identified as spam (False Positives).

- You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:
  - 40 emails are correctly identified as spam (True Positives).
  - 10 emails are incorrectly identified as spam (False Positives).
  - 30 emails are correctly identified as not spam (True Negatives).

- You have a binary classification model used to predict whether an email is spam (positive class) or not spam (negative class). After testing the model on a dataset of 100 emails, you get the following results:
  - 40 emails are correctly identified as spam (True Positives).
  - 10 emails are incorrectly identified as spam (False Positives).
  - 30 emails are correctly identified as not spam (True Negatives).
  - 20 emails are incorrectly identified as not spam (False Negatives).

### Your task

Construct a confusion matrix from these results.

- Construct a confusion matrix from these results.
- Calculate the following metrics:

- Construct a confusion matrix from these results.
- Calculate the following metrics:
  - Accuracy

- Construct a confusion matrix from these results.
- Calculate the following metrics:
  - Accuracy
  - Precision

- Construct a confusion matrix from these results.
- Calculate the following metrics:
  - Accuracy
  - Precision
  - Recall

- Construct a confusion matrix from these results.
- Calculate the following metrics:
  - Accuracy
  - Precision
  - Recall
  - F-1 Score

### Solution

confusion matrix:

- confusion matrix:
  - True Positives (TP): 40

- confusion matrix:
  - True Positives (TP): 40
  - False Positives (FP): 10

- confusion matrix:
  - True Positives (TP): 40
  - False Positives (FP): 10
  - True Negatives (TN): 30

- confusion matrix:
  - True Positives (TP): 40
  - False Positives (FP): 10
  - True Negatives (TN): 30
  - False Negatives (FN): 20

- confusion matrix:
  - True Positives (TP): 40
  - False Positives (FP): 10
  - True Negatives (TN): 30
  - False Negatives (FN): 20
- Calculate Accuracy: Accuracy =  $\frac{40+30}{40+30+10+20} = 0.7$

- confusion matrix:
  - True Positives (TP): 40
  - False Positives (FP): 10
  - True Negatives (TN): 30
  - False Negatives (FN): 20
- Calculate Accuracy: Accuracy =  $\frac{40+30}{40+30+10+20} = 0.7$
- Precision =  $\frac{40}{40+10}$  = 0.8

- confusion matrix:
  - True Positives (TP): 40
  - False Positives (FP): 10
  - True Negatives (TN): 30
  - False Negatives (FN): 20
- Calculate Accuracy: Accuracy =  $\frac{40+30}{40+30+10+20} = 0.7$
- Precision =  $\frac{40}{40+10}$  = 0.8
- Recall =  $\frac{40}{40+20} = \frac{2}{3}$

- confusion matrix:
  - True Positives (TP): 40
  - False Positives (FP): 10
  - True Negatives (TN): 30
  - False Negatives (FN): 20
- Calculate Accuracy: Accuracy =  $\frac{40+30}{40+30+10+20} = 0.7$
- Precision =  $\frac{40}{40+10}$  = 0.8
- Recall =  $\frac{40}{40+20} = \frac{2}{3}$
- F-1 Score =  $2 \times \frac{0.8 \times 0.667}{0.8 + 0.667} \approx 0.727$

 The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
  - $\beta_0$ : the intercept term;

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
  - $\beta_0$ : the intercept term;
  - $\beta_1, \beta_2, \beta_3, \beta_4$  are the coefficients associated with each feature.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
  - $\beta_0$ : the intercept term;
  - $\beta_1, \beta_2, \beta_3, \beta_4$  are the coefficients associated with each feature.
  - $x_1$  represents the Variance of the Wavelet Transformed image.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
  - $\beta_0$ : the intercept term;
  - $\beta_1, \beta_2, \beta_3, \beta_4$  are the coefficients associated with each feature.
  - $x_1$  represents the Variance of the Wavelet Transformed image.
  - $x_2$  represents the Skewness of the Wavelet Transformed image.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
  - $\beta_0$ : the intercept term;
  - $\beta_1, \beta_2, \beta_3, \beta_4$  are the coefficients associated with each feature.
  - $x_1$  represents the Variance of the Wavelet Transformed image.
  - $x_2$  represents the Skewness of the Wavelet Transformed image.
  - $x_3$  represents the Curtosis of the Wavelet Transformed image.

- The Banknote authentication dataset is used for the task of classifying whether a banknote is authentic or not based on certain features extracted from images.
- Variables meaning
  - $\beta_0$ : the intercept term;
  - $\beta_1, \beta_2, \beta_3, \beta_4$  are the coefficients associated with each feature.
  - $x_1$  represents the Variance of the Wavelet Transformed image.
  - $x_2$  represents the Skewness of the Wavelet Transformed image.
  - $x_3$  represents the Curtosis of the Wavelet Transformed image.
  - $x_4$  represents the Entropy of the image.

• The logistic regression model makes the following assumption:

$$P(\text{authentic}) = \frac{1}{1 + \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4\}}$$

• The logistic regression model makes the following assumption:

$$P(\text{authentic}) = \frac{1}{1 + \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4\}}$$

• This probability is then used to make a classification decision.

• The logistic regression model makes the following assumption:

$$P(\mathsf{authentic}) = \frac{1}{1 + \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4\}}$$

- This probability is then used to make a classification decision.
  - If  $P(\text{authentic}) \ge 0.5$ , the model predicts the banknote as authentic (Class 1)

• The logistic regression model makes the following assumption:

$$P(\mathsf{authentic}) = \frac{1}{1 + \exp\{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4\}}$$

- This probability is then used to make a classification decision.
  - If  $P(\text{authentic}) \ge 0.5$ , the model predicts the banknote as authentic (Class 1)
  - If P(authentic) < 0.5, the model predicts the banknote as not authentic (Class 0)

#### Application of logistic regression: Results

#### Pls verify confusion matrix, precision, recall.... by hand after class

```
Variance Skewness Curtosis Entropy Class
   3.62160 8.6661
                    -2.8073 -0.44699
                                           0
  4.54590 8.1674 -2.4586 -1.46210
 3.86600 -2.6383 1.9242 0.10645
3 3.45660 9.5228 -4.0112 -3.59440
   0.32924 -4.4552 4.5718 -0.98880
Accuracy: 0.98
Confusion Matrix:
[[144 4]
   2 125]]
Classification Report:
             precision
                         recall f1-score
                                           support
          0
                  0.99
                           0.97
                                    0.98
                                               148
                 0.97
                           0.98
                                    0.98
                                               127
                                    0.98
                                               275
   accuracy
                           0.98
                                    0.98
                                               275
  macro avg
                  0.98
weighted avg
                 0.98
                           0.98
                                    0.98
                                               275
```

#### Statsmodels: Python package

 Statsmodels is primarily focused on statistical modeling and hypothesis testing. It provides tools for estimating and testing various statistical models, including linear regression, logistic regression, time-series analysis, and more.

#### Statsmodels: Python package

- Statsmodels is primarily focused on statistical modeling and hypothesis testing. It provides tools for estimating and testing various statistical models, including linear regression, logistic regression, time-series analysis, and more.
- Statsmodels includes modules for performing hypothesis tests, constructing confidence intervals, and fitting different types of statistical models with an emphasis on providing detailed statistical information.

#### Statsmodels: Python package

- Statsmodels is primarily focused on statistical modeling and hypothesis testing. It provides tools for estimating and testing various statistical models, including linear regression, logistic regression, time-series analysis, and more.
- Statsmodels includes modules for performing hypothesis tests, constructing confidence intervals, and fitting different types of statistical models with an emphasis on providing detailed statistical information.
- Statsmodels is commonly used in academic research, econometrics, and any scenario where a detailed statistical analysis is required.

#### Statsmodels: Linear regression example

```
import statsmodels.api as sm
import numpy as np
# Generate some random data for demonstration
np.random.seed(42)
X = np.random.rand(100, 2)
y = 3 * X[:, 0] + 2 * X[:, 1] + 1 + 0.1 * np.random.randn(100)
# Add a constant term to the independent variable
X = sm.add constant(X)
# Create a linear model
model = sm.OLS(y, X)
results = model.fit()
# Print detailed statistical summary
print(results.summary())
```

#### Statsmodels: output

#### OLS Regression Results

| Dep. Variable:    |        |               | У     | R-sq  | uared:          |        | 0.991     |
|-------------------|--------|---------------|-------|-------|-----------------|--------|-----------|
| Model:            |        | OLS           |       | Adj.  | Adj. R-squared: |        | 0.991     |
| Method:           |        | Least Squares |       | F-st  | F-statistic:    |        | 5655.     |
| Date:             |        | Thu, 21 Dec   | 2023  | Prob  | (F-statistic)   | :      | 3.86e-101 |
| Time:             |        | 10:           | 0:14  | Log-  | Likelihood:     |        | 89.304    |
| No. Observations: |        |               | 100   | AIC:  |                 |        | -172.6    |
| Df Residuals:     |        |               | 97    | BIC:  |                 |        | -164.8    |
| Df Model:         |        |               | 2     |       |                 |        |           |
| Covariance Type:  |        | nonrobust     |       |       |                 |        |           |
|                   |        |               |       |       |                 |        |           |
|                   | coef   | std err       |       | t     | P> t            | [0.025 | 0.975]    |
| const             |        | 0.006         |       | 7 654 |                 | 0.006  | 4 000     |
|                   | 0.9772 |               |       |       |                 | 0.926  |           |
| x1                | 3.0339 |               |       |       |                 | 2.968  |           |
| x2                | 2.0355 | 0.035         | 5     | 7.426 | 0.000           | 1.965  | 2.106     |
|                   |        |               |       |       |                 |        |           |
| Omnibus:          |        |               | .986  |       | in-Watson:      |        | 2.104     |
| Prob(Omnibus):    |        |               | 0.050 |       | ue-Bera (JB):   |        | 5.624     |
| Skew:             |        |               | .439  |       | ` '             |        | 0.0601    |
| Kurtosis:         |        | 3             | 3.761 | Cond  | . No.           |        | 5.22      |
|                   |        |               |       |       |                 |        |           |

#### Scikit-learn: Python Lib (a collection of Python packages)

 Purpose: Scikit-learn is a versatile machine learning library that provides tools for various machine learning tasks, including classification, regression, clustering, dimensionality reduction, and more.

#### Scikit-learn: Python Lib (a collection of Python packages)

- Purpose: Scikit-learn is a versatile machine learning library that provides tools for various machine learning tasks, including classification, regression, clustering, dimensionality reduction, and more.
- Functionality: Scikit-learn focuses on providing a consistent interface for various machine learning algorithms, making it easy to train models, perform feature engineering, and evaluate model performance.

#### Scikit-learn: Python Lib (a collection of Python packages)

- Purpose: Scikit-learn is a versatile machine learning library that provides tools for various machine learning tasks, including classification, regression, clustering, dimensionality reduction, and more.
- Functionality: Scikit-learn focuses on providing a consistent interface for various machine learning algorithms, making it easy to train models, perform feature engineering, and evaluate model performance.
- Use Cases: Scikit-learn is widely used in industry for building and deploying machine learning models in areas such as image recognition, natural language processing, and predictive analytics.