

Automated Evaluation Of Approximate Matching Algorithms On Real Data

Ву

Frank Breitinger and Vassil Roussev

Presented At

The Digital Forensic Research Conference

DFRWS 2014 EU Amsterdam, NL (May 7th - 9th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

DFRWS EU 2014, May 7-9, 2014, Amsterdam

Automated evaluation of approximate matching algorithms on real data

FRANK BREITINGER & VASSIL ROUSSEV

CASED, GERMANY

University of New Orleans

FRANK.BREITINGER@CASED.DE

VASSIL@ROUSSEV.NET

outline

APPROXIMATE MATCHING ALGORITHMS /AMA/

PRIOR EVALUATIONS OF AMA

- # controlled data experiments
- # real data experiments

GROUND TRUTH

- # longest common substring (LCS) criterion
- # approximate LCS

APPLICATION TO EXISTING AMA

definition

"APPROXIMATE MATCHING IS A GENERIC TERM DESCRIBING ANY TECHNIQUE DESIGNED TO IDENTIFY SIMILARITIES BETWEEN TWO DIGITAL ARTIFACTS.

IN THIS CONTEXT, AN ARTIFACT (OR AN OBJECT) IS DEFINED AS AN ARBITRARY BYTE SEQUENCE, SUCH AS A FILE, WHICH HAS SOME MEANINGFUL INTERPRETATION."

DRAFT NIST Special Publication 800-168 "Approximate Matching: Definition and Terminology"

bytewise AM

TREATS ARTIFACTS AS STRINGS OF BYTES

- # and attempts to establish commonality
- # w/o parsing, or interpretation.

RATIONALE

common representation often implies common semantics

EXISTING WORK

ssdeep, sdhash, mrsh, ...

CHALLENGES

AMAs not well understood & not easily compared

overall research goals

ESTABLISH RELIABLE AMA EVALUATION METHODOLOGY

- # benchmarks
- # reference data sets
- # automated implementation

PERFORM EVALUATION OF EXISTING WORK

- # run experiments
- # characterize strong/weak points
- # provide guidance to analysts

today's topic

HOW TO BRING AUTOMATION TO REAL DATA EVALUATION STUDIES OF BYTEWISE AMA?

flashback: controlled data studies

MAIN PROBLEM -> WHAT IS THE GROUND TRUTH?

CONTROLLED DATA IDEA (2011)

use pseudo-random data to construct the data sets

→ ground truth is trivially known

EXAMPLE SCENARIOS

embedded object

single common block

multiple common blocks

summary: controlled data

PRO

- # automation
- # precise ground truth knowledge
- # statistical studies
- # arbitrary evaluation scenarios

CON

not real data -> use scenario different from practice

flashback: real data study

USER STUDY (2011)

establish ground truth by manual comparison

PRO

as close to practice as possible

CON

not scalable

difficult to make uniform comparisons

goal: real data + automation

ACTUAL PROBLEM

algorithmic ground truth discovery

APPROACH

use longest common substring (LCS) as an approximation of commonality

PRO

compatible with what AMAs actually do

CON

quadratic complexity \rightarrow not practical for larger files

new idea: use approximate LCS

APPROACH

- # use rolling hash to break up data into variable-sized chunks (40 bytes avg)
 - » this is similar to what ssdeep does
- # hash chunks and look for the longest match
- # linear complexity

ALCS: does it work?

$$d_r = \lceil 100 \times \frac{lcs(f_1, f_2) - alcs(f_1, f_2)}{\min(|f_1|, |f_2|)} \rceil, d_r \in \{0, 1, ..., 100. \}$$

X	0	1	2	3	4	5	10	15	20
$Pr\{d_r = X\}$ $Pr\{d_r \le X\}$	0.8869 0.8869	0.0449 0.9318	0.0155 0.9473	0.0040 0.9513	0.0047 0.9561	0.0116 0.9677	0.0062 0.9834	0.0001 0.9992	0.0000 0.9999

for 95%+ of files, difference is no more then 3%

experimental setup

DATA: T5 CORPUS

jpg	gif	doc	xls	ppt	html	pdf	txt
362	67	533	250	368	1093	1073	711

BASELINE SCENARIO

threshold = 0

→ *any* positive comparison result is counted

some notation

$$L_a = alcs_a(f_1, f_2)$$
, where $0 \le L_a \le min(|f_1|, |f_2|)$.

$$L_r = \lceil 100 \times \frac{L_a}{\min(|f_1|, |f_2|)} \rceil$$
, where $0 \le L_r \le 100$.

$$TP_{alcs}(f_1, f_2) \equiv L_a \geq 100 \land L_r \geq 1.$$

baseline results

	ssdeep	mrsh-v2	sdhash
TP	951	3679	5474
FP	15	23,453	790
TN	9,472,047	9,448,609	9,471,272
FN	457,183	454,455	452,660
Precision	0.98447	0.13560	0.87388
Recall	0.00010	0.00039	0.00058
TNR	1.00000	0.99752	0.99992
Accuracy	0.95396	0.95187	0.95434
F_1	0.00020	0.00078	0.00115
F_2	0.00013	0.00049	0.00072
$F_{0.5}$	0.00050	0.00192	0.00288
MCC	0.04412	0.02232	0.09913

similarity: containment vs. resemblance

CONTAINMENT QUERY

- # small vs. larger object
- # interpretation
 - » does the larger object contain (trace of) the smaller one?

RESEMBLANCE QUERY

- # two peer object (~ same size)
- # interpretation
 - » what is the level of commonality b/w these two objects?

FOR THIS STUDY

$|f_1| >= 2|f_2| \rightarrow$ containment; otherwise, resemblance

SAMPLES

	TP	TP_{ratio}	TN	TN_{ratio}	Total	Total _{ratio}
gt-con	354,914	0.775	7,382,141	0.779	7,737,055	0.779
gt-res	103,220	0.225	2,089,921	0.221	2,193,141	0.221
gt	458,134	1.000	9,472,062	1.000	9,930,196	1.000

RESULTS BY SIMILARITY SCENARIO

	Precision	Recall	<i>F</i> ₁	F_2	F _{0.5}	MCC
ssdeep-con	0.93671	0.00001	0.00002	0.00001	0.00005	0.01361
ssdeep-res	0.98873	0.00042	0.00084	0.00052	0.00209	0.08944
ssdeep	0.98447	0.00010	0.00020	0.00013	0.00050	0.04412
mrsh-con	0.12647	0.00030	0.00060	0.00038	0.00149	0.01834
mrsh-res	0.15217	0.00070	0.00140	0.00088	0.00345	0.03297
mrsh	0.13560	0.00039	0.00078	0.00049	0.00192	0.02232
sdhash-con	0.87478	0.00047	0.00094	0.00059	0.00235	0.08976
sdhash-res	0.87233	0.00096	0.00191	0.00120	0.00476	0.12612
sdhash	0.87388	0.00058	0.00115	0.00072	0.00288	0.09913

conclusions

INTRODUCED NEW APPROACH FOR AUTOMATED TESTING OF AMA ON REAL DATA

PROPOSED AN ANALYTICAL FRAMEWORK FOR QUANTIFYING AMA PERFORMANCE

ANALYZED EXISTING AMA

- # recall rates are low
 - » i.e., absence of proof *definitely* not proof of absence
- # precision rates for ssdeep & sdhash are high
 - » i.e., positive results are a strong hint
- # overall, sdhash does best

caveats & future work

THIS IS JUST A FIRST STEP; NEED TO

- # make a bigger study with more artifacts
- # study correlation of commonality and userobservable similarity
 - » i.e., does the user see the commonality?
- # control for sparse data
 - » e.g., long strings of zeroes
- # make this part of a tool (FRASH)

thank you!

Q & A