# Numeri Complessi

# Forma Algebrica e Trigonometrica ed Equazioni in $\mathbb C$

Richiami di teoria. Un numero complesso  $z \in \mathbb{C}$  può essere scritto in due diverse forme:

• Forma algebrica, mettendo in evidenza la parte reale  $(\mathcal{R}e(z) = x)$  e la parte immaginaria  $(\mathcal{I}m(z) = y)$ 

### Forma algebrica

$$z=x+iy, \qquad x,y\in \mathbb{R}.$$

• Forma esponenziale - trigonometrica, mettendo in evidenza modulo  $(|z| = \rho)$  ed argomento  $(\arg(z) = \theta)$ 

Forma esponenziale - trigonometrica (formula di Eulero)

$$z = \rho e^{\theta i} = \rho \left(\cos(\theta) + i\sin(\theta)\right), \qquad \rho \in \mathbb{R}^+, \ \theta \in \mathbb{R}.$$

Geometricamente, arg(z) è un qualsiasi angolo (misurato in radianti) formato dalla semiretta dei reali positivi e dal vettore individuato da z, pertanto può assumere infiniti valori che differiscono per multipli interi di  $2\pi$ .

Dato un numero complesso in forma esponenziale, la forma trigonometrica ci consente di portarlo in forma algebrica. Dato invece un complesso in forma algebrica, modulo e argomento principale Arg(z) (ovvero l'unico argomento  $\theta$  tale che  $-\pi \leq \theta \leq \pi$ ) possono essere ricavati dalla sua parte reale e immaginaria tramite le seguenti formule:

#### Modulo e argomento principale

$$\rho = \sqrt{x^2 + y^2}, \qquad \theta = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{se } x > 0\\ \arctan\left(\frac{y}{x}\right) + \pi & \text{se } x < 0, y \ge 0\\ \arctan\left(\frac{y}{x}\right) - \pi & \text{se } x < 0, y < 0\\ \frac{\pi}{2} & \text{se } x = 0, y > 0\\ -\frac{\pi}{2} & \text{se } x = 0, y < 0 \end{cases}$$

Esercizio 1. Semplifica

$$z = \frac{1+7i}{-1+12i}$$

Soluzione. Cerchiamo di ricondurre z alla sua semplice forma algebrica z=x+iy. Per fare questo, possiamo razionalizzare la frazione dividendo numeratore e denominatore per il coniugato di quest'ultimo; infatti, sfruttando il fatto  $z\bar{z}=|z|^2=x^2+y^2$  si ha:

$$z = \frac{1+7i}{-1+12i} = \frac{1+7i}{-1+12i} \cdot \frac{-1-12i}{-1-12i} = \frac{-1-12i-7i+84}{145} = \frac{83}{145} - \frac{19}{145}i$$

Esercizio 2. Semplifica

$$z = \frac{-2 + 2i}{1 - \sqrt{3}i}e^{-\frac{\pi}{2}i}$$

Soluzione. Visto che questa volta è presente un fattore in forma esponenziale, può convenire convertire anche il resto in forma esponenziale per poi sfruttare le proprietà delle potenze, quindi per prima cosa trasformiamo numeratore e denominatore in forma esponenziale:

- Numeratore: si ha  $\rho = \sqrt{8} = 2\sqrt{2}$  e per quanto riguarda l'argomento principale:  $\theta = \arctan(-1) + \pi = -\frac{\pi}{4} + \pi = \frac{3}{4}\pi$  e quindi  $-2 + 2i = 2\sqrt{2}e^{\frac{3}{4}\pi i}$ ;
- Denominatore: si ha  $\rho = \sqrt{4} = 2$  e per quanto riguarda l'argomento principale:  $\theta = \arctan(-\sqrt{3}) = -\frac{\pi}{3}$  e quindi  $1 \sqrt{3}i = 2e^{-\frac{\pi}{3}i}$ ;

Quindi

$$z = \frac{-2 + 2i}{1 - i\sqrt{3}}e^{-\frac{\pi}{2}i} = \frac{2\sqrt{2}e^{\frac{3}{4}\pi i}}{2e^{-\frac{\pi}{3}i}}e^{-\frac{\pi}{2}i} = \sqrt{2}e^{\frac{3}{4}\pi i + \frac{\pi}{3}i - \frac{\pi}{2}i} = \sqrt{2}e^{\frac{7}{12}\pi i}.$$

Alternativamente è possibile trasformare tutto in forma algebrica  $(e^{-\frac{\pi}{2}i}=-i)$  ed utilizzare la razionalizzazione:

$$z = \frac{-2+2i}{1-i\sqrt{3}}(-i) = \frac{2i+2}{1-i\sqrt{3}} \cdot \frac{1+i\sqrt{3}}{1+i\sqrt{3}} = \frac{1}{2}(1-\sqrt{3}) + \frac{1}{2}(1+\sqrt{3})i$$

Esercizio 3. Rappresenta sul piano complesso z = -8 - 8i ed esprimilo in forma trigonometrica. Soluzione. Rappresentare un numero complesso in forma algebrica sul piano complesso è immediato: parte reale e parte immaginaria sono, rispettivamente, ascissa ed ordinata.



Per esprimere un numero complesso in forma trigonometrica occorre calcolarne il modulo

$$|z| = \sqrt{\Re(z)^2 + \Im(z)^2} = \sqrt{64 + 64} = 8\sqrt{2},$$

e l'argomento, per il quale innanzitutto si calcola

$$\arctan\left(\frac{\mathcal{I}m(z)}{\mathcal{R}e(z)}\right) = \arctan\left(\frac{-8}{-8}\right) = \arctan 1 = \frac{\pi}{4}.$$

Tuttavia l'arcotangente restituisce solo un angolo nel primo o nel quarto quadrante. Occorre quindi utilizzare la rappresentazione nel piano complesso per valutare se l'argomento coincide con l'arcotangente o se occorre aggiungere o togliere  $\pi$ . Nel nostro caso, essendo il punto nel terzo quadrante dobbiamo sottrarre un angolo piatto, ovvero:

$$\theta = \frac{\pi}{4} - \pi = -\frac{3}{4}\pi,$$

quindi, in conclusione,

$$z = \rho e^{\theta i} = 8\sqrt{2}e^{-\frac{3}{4}\pi i}.$$

#### Richiami di teoria.

#### Formula di De Moivre

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Osserviamo che dalla formula di De Moivre è possibile ritrovare le note formule trigonometriche. Ad esempio, se n=2 si ottiene

$$(\cos \theta + i \sin \theta)^2 = \cos 2\theta + i \sin 2\theta$$
$$\cos^2 \theta - \sin^2 \theta + 2i \sin \theta \cos \theta = \cos 2\theta + i \sin 2\theta$$

Due numeri complessi sono uguali se hanno uguale parte reale e parte immaginaria, pertanto otteniamo

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$\sin 2\theta = 2\sin \theta \cos \theta$$

Invece per n = 3, si ottiene

$$\cos 3\theta = \cos^3 \theta - 3\sin^2 \theta \cos \theta$$
$$\sin 3\theta = 3\sin \theta \cos^2 \theta - \sin^3 \theta$$

# Esercizio 4. Calcola le sei radici seste ed il quadrato di z = 1 + i.

Soluzione. Sappiamo che ogni numero complesso z ha esattamente n radici n-esime. Per definizione, trovare queste radici significa trovare tutti i numeri complessi  $\omega$  tali per cui  $w^n=z$ . Per risolvere questa equazione, possiamo passare alla forma esponenziale e scrivere  $\omega=\rho e^{\theta i}$  e  $z=re^{\alpha i}$ . Quindi, si ha:

$$\rho^n e^{n\theta i} = r e^{\alpha i} \implies \begin{cases} \rho^n &= r \\ n\theta &= \alpha + 2k\pi \end{cases} \implies \begin{cases} \rho &= \sqrt[n]{r} \\ \theta &= \frac{\alpha}{n} + \frac{2k}{n}\pi \end{cases}$$

Notiamo che troviamo le n soluzioni distinte per  $k = 0, 1, \dots, n-1$ . Quindi, le radici sono date da:

### Radici n-esime di un numero complesso

$$z_k = \sqrt[n]{r}e^{\left(\frac{\alpha}{n} + \frac{2k}{n}\pi\right)i}, \qquad k = 0, 1, \dots, n-1$$

Se applichiamo quanto detto al nostro esercizio, si trova che:

$$1 + i = \sqrt{2}e^{\frac{\pi}{4}i},$$

e calcoliamo le sei radici come

$$z_k = \sqrt[12]{2}e^{\frac{\pi}{24}i + k\frac{\pi}{3}i}, \quad k = 0, 1, 2, 3, 4, 5$$

Il suo quadrato è ottenuto semplicemente come

$$z^2 = 2e^{\frac{\pi}{2}i}$$

**Esercizio 5.** Risolvi l'equazione z|z| - 2z + i = 0

Soluzione. L'equazione può essere risolta ponendo z in forma algebrica, ovvero: z=x+iy; si ottiene:

$$(x+iy)\sqrt{x^2+y^2} - 2(x+iy) + i = 0 \Rightarrow x\sqrt{x^2+y^2} - 2x + \left(y\sqrt{x^2+y^2} - 2y + 1\right)i = 0$$

la quale può essere riscritta come un sistema di due equazioni, uno per la parte reale ed uno per quella immaginaria:

$$\begin{cases} x\sqrt{x^2+y^2} - 2x = 0\\ y\sqrt{x^2+y^2} - 2y + 1 = 0 \end{cases}$$

Se supponiamo  $x \neq 0$ , si ottiene dalla prima equazione  $\sqrt{x^2 + y^2} = 2$  che però, sostituito nella seconda equazione, porta subito ad un risultato impossibile. Poniamo allora x = 0, e in questo caso si ha:

$$\begin{cases} x = 0 \\ y|y| - 2y + 1 = 0 \end{cases}$$

distinguendo i due casi  $y \ge 0$  e y < 0 si ottiene rispettivamente:

$$\begin{cases} x = 0 \\ y^2 - 2y + 1 = 0, \end{cases} \qquad \begin{cases} x = 0 \\ -y^2 - 2y + 1 = 0 \end{cases}$$

da cui segue facilmente:

$$\left\{ \begin{array}{ll} x=0 \\ y=1, \end{array} \right. \quad \left\{ \begin{array}{ll} x=0 \\ y=-1-\sqrt{2} \end{array} \right.$$

Notiamo che l'equazione  $-y^2-2y+1=0$  ammette le due soluzioni  $y=-1\pm\sqrt{2}$  ma quella positiva va scartata in quanto stiamo supponendo y<0. In definitiva, le due soluzioni dell'equazione di partenza sono date da: z=i e  $z=-(1+\sqrt{2})i$ .

L'equazione può anche essere risolta utilizzando la forma esponenziale  $z = \rho e^{\theta i}$ , otteniamo:

$$\rho^2 e^{\theta i} - 2\rho e^{\theta i} = -i \implies (\rho^2 - 2\rho) e^{\theta i} = e^{-\frac{\pi}{2}i}.$$

Imponiamo l'uguaglianza di modulo e argomento. Per il modulo, si ha:

$$|\left(\rho^2-2\rho\right)e^{\theta i}|=|e^{-\frac{\pi}{2}i}|\implies |\left(\rho^2-2\rho\right)|=1\implies \rho=1+\sqrt{2},\ \rho=1\ .$$

Veniamo adesso all'argomento, dove occorre prestare attenzione al segno del termine  $\rho^2 - 2\rho$ , vediamo come:

•  $\rho = 1 \implies \rho^2 - 2\rho = -1 < 0$  e quindi l'uguaglianza degli argomenti diventa:

$$\arg\left(\left(\rho^{2}-2\rho\right)e^{\theta i}\right) = \arg\left(e^{-\frac{\pi}{2}i}\right) \implies \arg\left(-e^{\theta i}\right) = -\frac{\pi}{2}$$

$$\implies \arg\left(e^{\pi i}e^{\theta i}\right) = -\frac{\pi}{2} \implies \arg\left(e^{(\theta+\pi)i}\right) = -\frac{\pi}{2}$$

$$\implies \theta + \pi = -\frac{\pi}{2} \implies \theta = -\frac{3}{2}\pi.$$

•  $\rho=1+\sqrt{2} \implies \rho^2-2\rho=1>0$  e quindi l'uguaglianza degli argomenti diventa:

$$\arg\left(\left(\rho^{2}-2\rho\right)e^{\theta i}\right) = \arg\left(e^{-\frac{\pi}{2}i}\right) \implies \arg\left(e^{\theta i}\right) = -\frac{\pi}{2}$$

$$\implies \theta = -\frac{\pi}{2}.$$

Da cui, otteniamo le due soluzioni:  $z_1 = e^{-\frac{3}{2}\pi i} = i, z_2 = (1+\sqrt{2})e^{-\frac{\pi}{2}i} = -(1+\sqrt{2})i.$ 

# Esercizi aggiuntivi svolti.

**Esercizio 6.** Rappresenta sul piano complesso  $z = 5e^{\frac{5}{6}\pi i}$  ed esprimilo in forma algebrica.

Soluzione. Rappresentare un numero complesso in forma trigonometrica sul piano complesso è immediato: basta disegnare la circonferenza centrata nell'origine con raggio pari al modulo, l'argomento identifica l'angolo rispetto all'asse reale (vedi coordinate polari in Analisi II).



Per esprimere z in forma algebrica basta utilizzare l'uguaglianza

$$z = 5e^{\frac{5}{6}\pi i} = 5\left[\cos\left(\frac{5}{6}\pi\right) + i\sin\left(\frac{5}{6}\pi\right)\right] = 5\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = -\frac{5\sqrt{3}}{2} + \frac{5}{2}i.$$

**Esercizio 7.** Risolvi l'equazione  $(z-i)^2 = 2(\bar{z}+i)$ .

Soluzione. Per risolvere l'equazione, può essere utile notare che  $\overline{z-i}=\bar{z}+i$ . Ponendo t=z-i, si può quindi riscrivere l'equazione come:

$$t^2 = 2\bar{t}$$

la quale può essere risolta in vari modi. Si può ad esempio sfruttare la forma esponenziale

$$t = \rho e^{\theta i}$$

e si ottiene:

$$\rho^2 e^{2\theta i} = 2\rho e^{-\theta i}$$

e quindi si può scrivere il sistema:

$$\begin{cases} \rho^2 = 2\rho \\ 2\theta = -\theta + 2k\pi \end{cases} \implies \begin{cases} \rho = 0, \rho = 2 \\ \theta = \frac{2}{3}k\pi \end{cases}$$

Per la periodicità dell' esponenziale complesso, le uniche soluzioni distinte sono quelle con k=0,1,2. Le soluzioni in t, scritte in forma algebrica, sono quindi:  $t_1=0; t_2=2; t_3=2\cos\left(\frac{2}{3}\pi\right)+2i\sin\left(\frac{2}{3}\pi\right)=-1+\sqrt{3}i$ . A questo punto, ricordando che z=t+i, si trovano subito le soluzioni dell'equazione di partenza:  $z_1=i; z_2=2+i; z_3=-1+(\sqrt{3}+1)i$  e  $z_4=-1+(1-\sqrt{3})i$ .

**Esercizio 8.** Risolvi l'equazione  $iz^2 - 2\bar{z} - 2 - i = 0$ .

Soluzione. Esprimiamo l'incognita in forma algebrica z = x + iy. L'equazione diventa:

$$i(x+iy)^2 - 2(x-iy) - 2 - i = 0 \implies ix^2 - iy^2 - 2xy - 2x + 2iy - 2 - i = 0$$

la quale può essere riscritta come un sistema di due equazioni, uno per la parte reale ed uno per quella immaginaria:

$$\begin{cases} xy + x + 1 = 0 \\ x^2 - y^2 + 2y - 1 = 0. \end{cases}$$

Dalla seconda otteniamo  $y=1\pm x$ , che, sostituito nella prima da:

$$\begin{cases} y = 1 + x \\ x(1+x) + x + 1 = 0 \implies x^2 + 2x + 1 = 0 \implies x = -1, y = 0, \end{cases}$$

е

$$\begin{cases} y = 1 - x \\ x(1 - x) + x + 1 = 0 \implies x^2 - 2x - 1 = 0 \implies x = 1 \pm \sqrt{2}, \ y = \mp \sqrt{2}. \end{cases}$$

Le tre soluzioni sono quindi:  $z_1 = -1$ ,  $z_2 = 1 + \sqrt{2} - i\sqrt{2}$  e  $z_3 = 1 - \sqrt{2} + i\sqrt{2}$ .

Esercizio 9. Risolvi l'equazione  $z|z|=\bar{z}.$ 

Soluzione. Esprimiamo l'incognita in forma trigonometrica  $z = \rho e^{\theta i}$ . L'equazione diventa:

$$\rho e^{\theta i} \rho = \rho e^{-\theta i} \implies \rho^2 e^{\theta i} = \rho e^{-\theta i}.$$

Identificata la soluzione banale  $\rho = 0$ , dividiamo entrambi i membri per  $\rho$  e riscriviamo l'equazione come un sistema di due equazioni, una per il modulo e una per l'argomento:

$$\begin{cases} \rho = 1 \\ -\theta = \theta + 2k\pi \implies \theta = k\pi, \qquad k \in \mathbb{Z} \end{cases}$$

Per la periodicità dell'esponenziale complesso, le uniche due soluzioni distinte sono per k=0 e k=1. In conclusione le soluzioni sono  $z_1=0,\,z_2=1$  e  $z_3=-1$ .

# Esercizi da svolgere a casa.

- 1. Semplifica  $z = \frac{3+4i}{2+\sqrt{5}+i} \frac{2}{i+2}$ .
- 2. Rappresenta sul piano complesso ed esprimi in forma trigonometrica i seguenti numeri complessi: 9+6i,  $\sqrt{3}+2i$ ,  $3e^{\frac{7}{3}\pi i}$ ,  $\sqrt{2}e^{-\frac{\pi}{2}i}$ .
- 3. Disegna i seguenti insiemi:
  - $I_1 = \{z \in \mathcal{C} : Re(iz) = 2\}$
  - $I_2 = \{ z \in \mathcal{C} : Im(z 2iz) = 0 \}$
  - $I_3 = \{ z \in \mathcal{C} : Re(z 2i) = 1 \}$
  - $I_4 = \{z \in \mathcal{C} : Re(iz) \ge 0, Im(2z+3) \le 0\}$
- 4. Se z = x + iy, determina la parte reale e parte immaginaria di  $z^4$ ,  $\frac{z-1}{z+1}$ ,  $e^{-\overline{z}}$ ,  $e^{-z^2}$ .
- 5. Calcola i seguenti numeri complessi:  $(1-i)^4$ ,  $(1+2i)^3$ ,  $(1+i)^n + (1-i)^n$ .
- 6. Risovi  $z^7 = 3$ ,  $z^5 = -i$  e  $z^3 = \frac{-2+i}{3-2i}$ .
- 7. Calcola il cubo di z = 1 i e di  $\frac{1}{i}$ .
- 8. Trova gli zeri di  $z^2 (2+3i)z + 3i$ ,  $z^3 2z^2 + z 2$  e  $z^2 iz 1 + i$ .
- 9. \* Se  $\omega \in \mathcal{C}$  è tale che  $\omega^n = 1$  e  $\omega \neq 1$ , calcola  $1 + \omega + \omega^2 + \cdots + \omega^{n-1}$ .
- 10. Esprimi (usando la formula di  $De\ Moivre$ )  $\cos(4\theta)$  e  $\cos(5\theta)$  in termini di  $\cos\theta$  e  $\sin\theta$ .
- 11. Dimostra che  $\forall z_1, z_2 \in \mathcal{C}$ , vale la formula:  $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$
- 12. \* Dato un punto  $z_0 \in \mathcal{C}$  e un angolo  $\tau$ , determina  $a, b \in \mathcal{C}$  tali che la funzione f(z) = az + b sia la rotazione di angolo  $\tau$  rispetto al punto  $z_0$ .

<sup>\*</sup> Esercizi non standard.