A Dynamic Model of Partial Transparency in Harmony

Dynamic Modeling in Phonetics & Phonology CLS 53 May 24, 2017

Caitlin Smith

University of Southern California

Introduction

Harmony: spreading of some property (nasality, tongue root position) throughout some domain

Transparent segments: apparently skipped by a harmony process

Introduction

- Introduce Gestural Harmony Model (Smith 2016a, 2016b)
 - Harmony as gestural overlap
 - Transparency as gestural blending
- Provide analysis of apparent case of partial transparency in Coeur d'Alene Salish faucal harmony

Harmony, Transparency, and Gestural Overlap

Gestural Parameters

 Gesture: dynamically-defined, goal-based unit of representation (Browman & Goldstein 1986, 1989)

- Target articulatory state:
 - Constriction degree
 - Constriction location
- Stiffness (k): how quickly a gesture's target articulatory state is reached
- Articulators involved
- Strength (α): ability to command articulators

Gestural (Non-)Self-Deactivation

Nasal Harmony in Tuyuca

Morphemes are either oral or nasal; obstruents are transparent (Barnes & Takagi de Silzer 1976):

Full harmony

- a. [jãmi] 'night'
- b. $[\underline{\tilde{wino}}]$ 'wind'
- c. [jõrē] 'small hen'

Transparency

- d. [mi i] 'badger'
- e. [wã i] 'demon'
- f. $[\tilde{j}\tilde{o}\tilde{o}]$ 'bird'

Nasal Harmony in Tuyuca

Nasal Harmony in Tuyuca

Morphemes are either oral or nasal; obstruents are transparent (Barnes & Takagi de Silzer 1976):

Full harmony

- a. [jãmi] 'night'
- b. $[\underline{\tilde{w}}\underline{\tilde{n}}\underline{\tilde{o}}]$ 'wind'
- c. [jõre] 'small hen'

Transparency

- d. [mipi] 'badger'
- e. [wãti] 'demon'
- f. [jõsõ] 'bird'

Transparency as Gestural Antagonism

- Transparency: result of competition between two concurrently active *antagonistic* gestures
- Gestural antagonism: two concurrently active gestures with directly opposing goal articulatory states
 - Velum open vs. velum closed
 - Palatal tongue body constriction vs. pharyngeal tongue body constriction

Gestural Strength & Blending

- Gestural antagonism resolved by blending target articulatory states of concurrently active gestures
- Blending occurs according to Task Dynamic Model of speech production (Saltzman & Munhall 1989)
- Blended articulatory state = average of gestures' individual target articulatory states, weighted according to strengths (α)

Gestural Strength & Blending

- Velum opening: goal velum aperture 5 mm
- Velum closure: goal velum aperture -2 mm

Velum Opening Velum Closure		Maighted Average
Strength	Strength	Weighted Average
0.5	0.5	5*0.5 + -2*0.5 = 1.5 mm
0.9	0.1	5*0.9 + -2*0.1 = 4.3 mm
0.1	0.9	5*0.1 + -2*0.9 = -1.3 mm

Coactivation Transparency in Nasal Harmony

Advantages of Coactivation Transparency

- Correctly predicts which segments can be transparent within nasal harmony and rounding harmony
- Avoids over-generation of predicted transparent segments (see Smith (2016) for details)
- Harmony is represented locally, resulting in gestural antagonism with transparent segments

Predicted: Partial Transparency?

- Possible scenario: harmonizing gesture and overlapped gesture have similar strengths
- Result: partial transparency/partial undergoing of harmony

Coeur d'Alene Salish Faucal Harmony

Coeur d'Alene Salish Faucal Harmony

Vowels surface as retracted variants before faucal (uvular and pharyngeal) consonants

Non-Faucal Context	Faucal Context		
[t ^s <u>i</u> ∫-t] 'it is long'	[t ^s εʃ-αlq ^w] 'he is tall'		
[dlim] 'he galloped hither'	[t ^ʃ -dl <u>a</u> m-alq ^w] 'train'		
[sett ^f -nt ^s] 'he twisted it'	[$n\varepsilon$?- $s\underline{\alpha}$ tt ^[] - ε ? qs - n] 'crank (on a car)'		
[?ε-ni?-k <u>u</u> s-εlst ^ʃ n] 'hair curls	[?at-k <u>o</u> s-qn] 'his hair is curled'		
back from forehead'			
data from Doak (1992) & Bessell (1998)			

17

Coeur d'Alene Salish Faucal Harmony

Vowel shift in domain of faucal harmony:

- $/\epsilon \sim æ/$, $/i_2/$, /u/ all fully undergo faucal harmony
- /i₁/ undergoes faucal harmony to an intermediate degree

Coeur d'Alene Salish Faucal Harmony: Proposals

- Faucal harmony is result of overlap by harmonizing tongue body retraction gesture
- Medium-strength /i₁/ partially resists (remains transparent to) effect of retraction gesture due to similar gestural blending strengths
- Weak /i₂/ is fully overpowered by retraction gesture when gestural blending occurs

Full Retraction of Weak /i/

• Weak /i₂/ is fully overpowered by harmonizing retraction gesture:

Surfaces as fully retracted [a]

Partial Transparency of Medium-Strength /i/

• Medium-strength /i₁/ partially resists (remains transparent to) effect of retraction gesture due to similar gestural blending strengths:

• Surfaces as partially retracted [ε]or [æ]

Computational Modeling in TADA

TADA Modeling of Partial/Full Retraction

- TADA (Task Dynamic Application; Nam et al. 2004): MATLAB toolkit for synthesizing articulatory trajectories and acoustic outputs from gestural scores
- Synthesized sequence with /i/ in medial syllable:

TADA Modeling of Partial/Full Retraction

 Three conditions distinguished by relative strengths of palatal constriction and uvular retraction gestures:

	a for /i/	α for Retraction
Strong /i/	25	5
Medium /i/	5	5
Weak /i/	1	5

- Strong /i/ = fully transparent /i/ found in other varieties of Salish
- Medium $/i/ = /i_1/i$ in Coeur d'Alene
- Weak $/i/ = /i_2/$ in Coeur d'Alene

TADA Modeling: Weak /i/

TADA Modeling: Medium /i/

TADA Modeling: Strong /i/

Results of TADA Modeling

- $/i/ \rightarrow [a], /i/ \rightarrow [\epsilon],$ and $/i/ \rightarrow [i]$ can all be modeled as blending between gestures of palatal constriction and uvular-pharyngeal retraction
- Gestures can be specified for strength parameter settings beyond 'strong' and 'weak'
 - Weak /i/ corresponds to Coeur d'Alene /i₂/, undergoing full retraction
 - Medium /i/ corresponds to Coeur d'Alene /i₁/,
 exhibiting partial retraction/partial transparency
 - Strong /i/ corresponds to transparent /i/ in other Interior Salish languages (e.g., Montana Salish), fully resisting retraction

Alternative Analysis

Alternative Analysis: Chain Shift in Coeur d'Alene

 Faucal harmony produces apparent chain shift in vowel quality

$$i_1 \rightarrow \epsilon \rightarrow a$$

- Synchronic chain shifts in non-derivational framework via conjunction of faithfulness constraint (Kirchner 1996)
- Coeur d'Alene Salish:
 - Conjoined constraint IDENT(high)&IDENT(back)
 - Difference in degree of uvularization in /i₁/ and /i₂/ due to /i₁/ being indexed to conjoined faithfulness

Strengths of Coactivation Transparency Analysis

Representing faucal harmony as blending of vocalic gestures of different strengths with retraction gesture:

- Eliminates need to represent pattern of retraction in domain of faucal harmony as chain shift
- All underlying gestures and their parameter settings are preserved in output
- Produces full uvularization of $/i_2/$, $/\epsilon/$, and /u/ from low gestural strength and partial transparency of $/i_1/$ from medium gestural strength

Conclusion

Conclusion

- Transparency in Gestural Harmony Model: result of competition between target states of dynamically-defined units of representation
- Partial transparency in Coeur d'Alene Salish faucal harmony fulfills prediction of model of transparency as competition/resistance
- Future work: examination of potential contrastive function of gestural strength