28th May 2024 Continuation from last class Proof of prop 1.17 continued: Part (B) "if part proved! (only if) part (continued) · · · Then, for every subset E of K, E = f(f'(E)) holds. Let w EY. Then w = f(t) where t & f'(r). Now, t & f'(r) implies f(t) EY. hence tex. $-' \cdot Y = f(x)$. Hence f is surjective. The proof of b is complete. Note: That the reverse inclusion $E \subset f(f'(E))$ may not hold in general. For examples let f(x) = x2 + x ∈ Z, (I the set of integers), then f (21,-23) = {x \in Z: \(\in X) \in \(\x \) = \(\x \) \(\x \) = \$1,-13 so f(f-1 {1, -2}) = f({1, -13) = {13 and so f (f'({11-23)) \$ {1,-23. Notice that this function is not surjective

Osazuwa Emmanuel Osalotiaman

(since $f(x) \geq 0 + x \in \mathbb{Z}$)
i.e of does not map \mathbb{Z} onto \mathbb{Z}

Partc

If wef (at I that) then w = f(1)

Noheve t & U that, so t & that for some

do & I.

WAR MAIL SCOW

Hence 10 = f(t) belongs to f(Aa)So, $10 \in Ae f(Aa)$, (as $40 \in I$) i. $f(U + Aa) \subset U f(Aa)$

To prove the reverse indusion, suppose that $W \in \mathcal{L}_{E} f(A_{\infty})$, then $w \in f(A_{\infty})$ foresome $d_0 \in I$.

There is = f(t), where $t \in A_{\infty}$ since $d \in I$, $t \in V_{\alpha \in I} A_{\alpha}$ and hence: w = f(t) belongs to $f(V_{\alpha \in I} A_{\alpha})$.

So, $V_{\alpha \in I} (A_{\alpha}) \subset f(V_{\alpha \in I} A_{\alpha})$.

Hence des f(Ad) = f (VAa). This provas parte

Part d

If $l\omega \in f\left(\frac{A}{\omega \varepsilon} A_{\alpha} \right)$ then $l\omega = f(t)$ where $t \in \frac{A}{\omega \varepsilon} A_{\alpha}$, so $t \in A_{\alpha} \forall \alpha \varepsilon I$,

hence $f(t) \in f\left(A_{\alpha} \right) \forall \alpha \in I$. So: $l\omega \in \mathcal{L}_{\delta} f(A_{\omega})$ $f\left(\alpha \in A_{\alpha} \right) \subset \mathcal{L}_{\delta} f(A_{\omega})$

48-th May 2024 let us prove-he second part of d. if part (When fisippective): Suppose of is injective. We are required to prove that the reverse inclusion holds If we set f(Ax), than we f(Ax) + xe I So, 10= f(1) where le Aa ta EI because of a one-b-one so, te of Au Hence f(+) E f(A A a). ·· W & f (XET Aa). So, Let (Ax) Cf (Let Ax). 'only if' part (only when f is injective) Suppose that the reverse seindusion. Then f(A, n A2) = f(A,) nf(A2) holds for all subsets A, A, of X. If x & X then for every point u of {x} $f(u) \in f(\{x\}^c).$ So, $f(u) \in f(x \setminus \{x\})$ 1.e 5(w E f (x n \$23°), so $f(u) \in f(x) \cap f(xx^c)$.

Hence f(u) & f({xx}). Therefore f(u) & f(x)

So f is injective

Note:

loith x + 3 x2-1,

(x = Y = Z, Z = the set of all integers), $T = \{1, 2\}, R_1 = \{-1, 1, 6\} \text{ and } A_2 = \{1, -6,$

-3,03,

then $f(A, \cap A) = f(z_1 3) = z_0 3$

and f(A,) = {0,353,

f(A2) = 20,35, 8,-13

So f(A,) nf(A) = {0,35}

... f(A, NA2) \$ f(A) n f(A2)