Streaming Slot-Value Extraction for Wikipedia Entities at Web-Scale

Morteza Shahriari Nia, Christan Grant, Yang Peng, Daisy Zhe Wang*, Milenko Petrovic†

{msnia, cgrant, ypeng, daisyw}@cise.ufl.edu, mpetrovic@ihmc.us

Abstract

In this paper we address extracting slot values from internet pertinent to entities in wikipedia, which is the most popular web-based, colaborative multilingual encyclopieda on the internet. This is comparable to Freebase in a query-driven manner. Our contributions are two fold, first we design a system to efficiently find central documents on the internet that contain directly citable content regarding a given wikipedia entity; second, we design a system to extract certain slot-values of the entity from those documents. Our results demonstrate that the system is very efficient in the web scale nature of the problem: being highly memory and I/O efficient and that we can achieve high accuracy and recall for given slot values.

Introduction

Wikipedia.org (WP) is the largest and most popular general reference work on the Internet. The website is estimated to have nearly 365 million readers worldwide. An important part of keeping WP usable it to include new and current content. Presently, there is considerable time lag between the publication of an event and its citation in WP. The median time lag for a sample of about 60K web pages cited by WP articles in the *living_people* category is over a year and the distribution has a long and heavy tail Frank et al. (2013). Such stale entries are the norm in any large reference work because the number of humans maintaining the reference is far fewer than the number of entities.

Reducing latency keeps WP relevant and helpful to its users. Given an entity page, such as wiki/Boris_Berezovsky_(businessman)¹, possible citations may come from a variety of sources. Notable news may be derived from newspapers, tweets, blogs and a variety of different sources include Twitter, Facebook, iBlogs, arxiv, etc. The actual citable information is a small percentage of the total documents that appear on the web. The goal of this system is to read web documents and recommend citable facts for WP pages.

Copyright © 2013, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Previous approaches are able to find relevant documents given a list of WP entities as query nodes Balog and Ramampiaro (2013); Bonnefoy, Bouvier, and Bellot (2013); Dalton and Dietz (2013); Ji and Grishman (2011); McNamee et al. (2012). Entities of three categories *person*, *organization* and *facility* are considered. This task involves processing large sets of information to determine which facts may contain references to a WP entity. This problem becomes increasingly more difficult when we look to extract relevant facts from each document. Each relevant document must now be parsed and processed to determine if a sentence or paragraph is worth being cited.

Discovering facts across the Internet that are relevant and citable to the WP entities is a non-trivial task. Here we produce an example sentence from a new website:

"Boris Berezovsky, who made his fortune in Russia in the 1990s, passed away March 2013."

First, we must realize that there are two *Boris Berezovsky* entities in WP, one a businessman and the other a pianist. Any extraction needs to take this into account and employ a viable distinguishing policy (entity resolution). Then, we match the sentence to find a topic such as *DateOfDeath* valued at *March 2013*. Each of these operations is expensive so an intelligent efficient framework is necessary to execute these operations at web scale.

In this paper we develop an efficient query-driven slot extraction for given WP entities from a time oriented document stream. Fact or slot extraction is defined as follows: match each sentence to the generic sentence structure of [subject - verb - adverbial/complement] Stevens (2008), where subject represents the entity and verb is the relation type (slot) we are interested in (e.g. Table 1). The third component, adverbial/complement, represents the value of the enity slot. In our example sentence, the entity of the sentence is Boris Berezovsky and the slot we extract is DateOfDeath with a slot valye of March 2013.

Our system contains three main components. First, we pre-process the data and build models representing the WP query entities. Next, we use the models to filter a large stream of documents so they only contain can-

¹http://en.wikipedia.org/wiki/Boris_Berezovsky_(businessman)

Table 1: Ontology of Slots

Person	Facility	Organization
Affiliate AssociateOf Contact_Meet_PlaceTime AwardsWon DateOfDeath CauseOfDeath	Affiliate Contact_Meet_Entity	Affiliate TopMembers FoundedBy
Titles FounderOf EmployeeOf		1 ounded 2 y

didate citations. Lastly, we processes sentences from candidate extractions and return slot values. Overall, we contribute the following:

- Introduce a method to build models of WP name variations (Section ??);
- Built a system to filter a large amount of diverse documents using a natural language processing rulebased extraction system (Section ??);
- Extract, infer and filter entity-slot-value triples of information to be added to KB (Section ??).

System

In this section, we introduce the main components of the system. Our system is built with a pipeline architecture in mind giving it the advantage to run each section separately to allow stream processing without blocking the data flow of components (Figure 1). The three logical components include sections on *Model* for entity resolution purposes, *Wiki Citation* to annotate citeworthy documents, *Slot Filling* to generate the actual slot values.

If we are looking to discover facts for a single WP entity, the first step is to extract aliases of the entity. We extract several name variations from the Wikipedia api and from the WP entity page. Also, if the entity type is *person* we can change the order of user names to increase coverage (e.g. 'Boris Berezovsky' → 'Berezovsky, Boris'). Next, we iterator over documents in the stream and filter out all document that are not central to the entity. To extract relevant facts we perform pattern matching in each sentence that matches the entity based on a dictionary of patterns. If the sentence can activate on of the patterns in the dictionary we emit this sentence as a candidate contribution to the WP entity. With the candidate set, we infer new facts from the set and clean up the set by removing the set that violate a list of constraints such as duplicates. Lastly, we try to infer a new set of facts based on a list of rules.

Entity Model

We use Wikipedia API to automatically retrieve aliases. The API allows us to requests pages that redirect users to an entity page. For example, if a WP user tries to access the William Henry Gates they are sent to the page for Bill Gates therefore we treat these two names as

Figure 1: System Architecture. Components are logical groups noted with dotted boxes.

aliases. To extract more aliases is we parse the HTML source of a WP entity page. Then using regular expressions we extract the bold phrases of the initial paragraph as aliases. Based on our observation this is a very accurate method and it provides several entities of WP with more inline aliases from the wiki page itself. As an example, for 'Boris Berezovski' which was mentioned early-on, there is an alias of 'Boris Abramovich Berezovsky' given in bold in the wiki page which will be obtained via thi method.

We pass the full set of *person* entities through rules for generating proper name orders. This module produces various forms of writing entity names and titles. For example, *Bill Gates* can be written as *Gates*, *Bill*. This allows the system to capture various notation forms of aliases that appear in text documents.

Wikipedia Citation

The goal of this section is to use the models created to discover a set of documents that are relevant to the WP entity. As a stream of documents come in we first perform a string match between the model aliases and document text. We use this technique as a first filter with confidence because previous work has stated non-mentioning documents have a low chance of being citable in Wikipedia Frank et al. (2013). Given our large number of aliases we can be confident if an alias does not appear in a document it does not need to be cited.

Our stream system receives documents in the from of chunk files. Each chunk file contains thousands of documents. This corpus of documents is processed by a two-layer filter system referred to as *Document Chunk Filter* and *Document Filter*. The purpose of these fil-

ters is to reduce I/O cost while generating slot values for various entities. Document Chunk Filter removes the chunk files that do not contain a mention of any of the desired entities. Each chunk file may contain thousands of documents — each document is expensive to process. The Document Filter removes documents that do not contain a mention of an entity. This two-level filter allows us to perform detailed slower processing over a smaller set of documents. Not all chunk files contain mention of the entities so filtering out large chunk files early saves no I/O and processing. Document Chunk Filter discards non-mentioning chunk files and promotes chunk files as soon as an entity mention is found. The document filter additionally notes the sentences that contain entity mentions. This data is passed to the Slot Filling system.

Slot Filling

for $si \in \mathcal{S}$ do

Streaming Slot Filling (SSF) extracts fact values from sentences according to a list of pattern. Table 1 list the slot relationships that we looks to extract. In Figure 1 we refer to this task as *Slot Filling*.

SSF reads documents filtered by the Wikipedia Citation step and fetches and tags sentences containing WP entities. All entities are extracted from the document using a natural language processing tool². In the next section, we describe how WP entities are matched against the set of patterns. Following, we discuss out approach to inference over the extracted facts.

```
Algorithm 1 Slot Value Extraction Pseudocode
```

```
List of entities \mathcal{E} = \{e_0, \dots, e_{170}\}
List of patterns P = \{p_0, \dots, p_{|P|}\}
List of documents containing entities \mathcal{S} = \{s_0, \dots, s_{|\mathcal{S}|}\}
```

for $sentence \in si$ do for $entity \in \mathcal{E}$ do if Contains(sentence, entity) then for $pattern \in P$ suitable for entity do if Satisfies(sentence, pattern) then Emit(sentence, pattern)

Rule Engine A pattern is as a record representing knowledge going to be added to a WP entity. A pattern \mathcal{P} is represented as a five-tuple $\mathcal{P} = \langle p_1, p_2, p_3, p_4, p_5 \rangle$.

The first value, p_1 represents the type of entity. These entity types are in the set $\{ \text{FAC}, \text{ORG}, \text{PER} \}$ where FAC represents a type of facility, ORG represents an organization and PER represents a person. The p_2 represents a slot name. A list of slot names is present in Table 1. The third element p_3 is the pattern content — a string found

Figure 2: Pattern matching for rule evaluation. The slot value is on the right side of the entity. The pattern context discovered is 'passed away' with a value of 'March 2013'.

in the sentence that identifies a slot name. The extractor looks specifically for a pattern content. The pattern evaluator uses a direction (left or right) found in p_4 to explore sentence. The final element p_5 represents the slot value of a pattern. The type of slot value may be the entity type labeled by the named entity extractor, a noun phrase (NP) tagged by a part of speech tagger³ or a phrase described in the pattern list.

Figure 2 contains the example sentence from the introduction labeled by the rule engine.

There are three types of patterns distinguished by different types of slot values in the patterns. The matching methods using these three types of patterns are implemented according to the different structures of slot values.

Type I. This pattern type is driven by the entity type. For example, in pattern (PER, FounderOf, founder, right, ORG) the PER tag means the entity we are finding slot values for a PER entity; FounderOf means this is a pattern for FounderOf slot. founder is the anchor word we are match in a sentence; right means that we are going to the right part of the sentence to match the pattern and find the slot value; ORG means the slot value should be a ORG entity to the right of the entity.

Type II. This pattern type, after finding a matching pattern content, looks for a noun phrase (NP) that is representative of the slot value. For example, pattern (PER, AwardsWon, awarded, right, NP) is looking for a noun phrase after the awarded that may represent an award. Titles and awards are not named entity tagged hence the use of the part of speech tagger to fetch the noun phrases.

Type III. These type of facts are best discovered by hard coding the slot values. Examples of these include time phrases: $\langle PER, DateOfDeath, died, right, last night \rangle$. In this pattern, the phrase *last night* is exactly searched in the text last night to the right of the term *died*. This intuition behind this pattern is in news articles that report events in the past relative to the article. For example, an article will mention that a person died 'last night' instead of mentioning precise

²Lingpipe (available in the dataset) provides entity tags and in-document coreference. http://alias-i.com/lingpipe/

³OpenNLP was used for part of speech tagging. http://opennlp.apache.org/

date-time information. Additionally, part of speech taggers and name entity extractors did not label these terms such as *last night* as a DATE entity.

Constraints and Inference what specifically about the algorithm causes duplicates and errors? — I asked Yang to elaborate on this as he is more familiar but still not sure what's causing those issues

The fact extractions match patterns that are general and highly susceptible to noisy. The data contains duplicates and incorrect extractions. We define rules to read ordered sets of facts to sanitize the output. The input is processed in time order, in a tuple-at-a-time fashion to allow rules to discover noisy slots that appears in close proximity. We define two classes of rules: *deduplication* and *inference* rules.

The output contains many duplicate entries. As we read the list of extracted slots we create rules to define "duplicate". Duplicates can be present in a window of rows; we use a window size of 2 meaning we only be adjacent rows. Two rows are duplicates if they have the same exact extraction or if the rows have the same slot name and a similar slot value or if the extracted sentence for a particular slot types come from the same sentence.

New slots can be deduced from existing slots by defining inference rules. For example, two slots for the task are "FounderOf" and "FoundedBy". A safe assumption is these slot names are biconditional logical connectives with the entities and slot values. Therefore, we can express a rule "X FounderOf Y" \leftrightarrow "Y FoundedBy X" where X and Y are single unique entities. Additionally, we found that the slot names "Contact_Meet_PlaceTime" could be inferred as "Contact_Meet_Entity" if the Entity was a FAC and the extracted sentence contained an additional ORG/FAC tag. We also remove erroneous slots that have extractions that are thousands of characters in length or tool small. Errors of extracting long sentences can typically be attributed to poor sentence parsing of web documents. We have some valid "small" extractions. For example, a comma may separate a name and a title (e.g. "John, Professor at MIT"). But such extraction rules can be particularly noisy, so we check to see if the extracted values have good entity values.

Evaluation

The purpose of evaluation is to measure the effectiveness of extracting slot values for various entities, metrics such as precision and recall would be considered. We perform random samplings to extract these. Our system was developed on a 32-core server described in Table 3. The corpus is a snapshot of the web in English. Each document is annotated using lingpipe and is called StreamItem, a bundle of StreamItems are put together and serialized as Apache Thrift objects, then compressed using xz compression with LempelZivMarkov chain algorithm (LZMA2) and finally encrypted using GNU Privacy Guard (GPG) with RSA asymmetric keys. The total size of the data after XZ

compression and GPG encryption is 4.5TB and just over 500M StreamItems s3. Data is stored in directories the naming of which is date-hour combination: from 2011-10-05-00 (5th of October 2011, 12am) until 2013-02-13-23 (13th of Feburary 2013, 11pm), which consists of 11952 date-hour combinations. The first four months of data (October 2011 - February 2012) is for training purposes, and we use this portion to lookup sample lines and for system parameter settings purposes. This corpora consists of various media types the distribution of which can be found in Table 2. To have a sense of the scale of objects and compression as an example a 6mb gpg.xz files would become 45 mb thrift objects which can contain a couple of thousand StreamItems depending on their size. Some of the documents have null values for their annotation fields. The source code of our system is stored as an open source project where enthusiasts can also contribute to git, also the relevant discussion mailing list is accessible here goo.

We have 172 extraction patterns covering each slotname/entity-type combinations. Our final submission was named *submission_infer*. Our results are as follows: Document extraction using query entity matching with aliases, sentence extraction using alias matching and coreference. Slot extraction using patterns, NER tags and NP tags. 158,052 documents with query entities, 17885 unique extracted slot values for 8 slots and 139 entities, 4 slots and 31 entities missing.

On the performance of our initial submission run we performed random sampling via two processes, the results of which are according to Table 4. You can view that we have had an accuracy of around 55%, and about 15% wrong entity identified and 30% incorrect value extracted across all entities and slot types. Most of our issues for this submission were regarding poor slot value extraction patterns and incomplete aliases whih were tried to be mtigated later on. For our final submission, we provide a more detailed statistics, which has been elaborated in Table 5 and Table 6. Table 5 shows the extent of search outreach for each slot name. You can see that Affiliate has been the slot name with highest hits and CauseOfDeath our lowest hit with 0 instances found matching our patterns, after that AwardsWon has been the next with 38 instances found. Affiliate is a very

Table 2: Document Chunk Distribution

# of Documents	Document Type	Slots Found
Arxiv	10988	
Classified	34887	
Forum	77674	
Linking	12947	
Mainstream News	141936	
Memetracker	4137	
News	280629	
Review	6347	
Social	688848	
Weblog	740987	

Table 3: Benchmark Server Specifications

ruote 3. Benefiniari Server Specifications		
Spec	Details	
Model	Dell xxx 32 cores	
OS	CentOS release 6.4 Final	
Software Stack	GCC version 4.4.7, Java 1.7.0 ₋ 25,	
	Scala 2.9.2, SBT 0.12.3	
RAM	64GB	
Drives	2x2.7TB disks, 6Gbps, 7200RPM	

Table 4: Initial Performance Measure

	Correct	Incorrect Entity name	Incorrect Value
Sampling #1	55%	17%	27%
Sampling #2	54%	15%	31%

generic term and extracting real affiliates can be quite challenging using the extraction patterns provided. This can lead to noisy results. On the other hand for more precise terms our accuracy increases but we have less recall. Table 6 addresses the relative accuracy measure per slot value. There you can view that we have had the highest accuracy of 63.6% for *AssociateOf* and the lowest of 1% - 5% for *Affiliate*, *Contact_Meet_PlaceTime* and *EmployeeOf*.

Discussions

Table 5 show a varied distribution of extracted slot names. Some slots naturally have more results than other slots. For example, AssociateOf and Affiliate have more slot values than DateOfDeath and CauseOfDeath, since there are only so few entities that are deceased. Also, some patterns are more general causing more extractions. For example, for Affiliate, we use *and*, *with* as anchor words. These words are more common than *dead* or *died* or *founded* in other patterns.

As part of future work regarding enhancing precision, we can focus on fixing the wrong entities found, remove noisy tags by the Lingpipe or use more accurate NLP taggers such as Stanford NLP (Due to the fact that Stanford NLP is very slow we avoided using it, as due to speed its use was out of question) and finally use better patterns to enahnce results matched by the patterns. On the other hand to increase recall we need to find better aliases and go for more resources to discover other ways that an entity might be addressed (e.g. twitter id, website, etc), add powerful patterns that can capture more cases of slot values. We would also use entity resolution methods and other advanced methods to improve the accuracy and recall of entity extraction part.

For slot extraction, to improve the performance, we need: 1) Using multi-class classifiers instead of pattern matching method to extract slot values in order to increase both recall and accuracy for slots "Affiliate", "AssociateOf", "FounderOf", "EmployeeOf", "FoundedBy", "TopMembers", "Contact_Meet_Entity" and so on. 2) For special slots, like "Titles", "DateOfDeath",

Table 5: Recall Measure: Generic slot names like affiliate had the most recall, compared to less popular slot names e.g. DateOfDeath

Slot Name	Instances	Entity
	Found	Coverage
Affiliate	108598	80
AssociateOf	25278	106
AwardsWon	38	14
CauseOfDeath	0	0
Contact_Meet_Entity	191	8
Contact_Meet_PlaceTime	5974	109
DateOfDeath	87	14
EmployeeOf	75	16
FoundedBy	326	30
FounderOf	302	29
Titles	26823	118
TopMembers	314	26

Table 6: Accuracy Measure: Accuracy of AffiliateOf was the best and Affiliate applied poorly due to ambiguity of being an affiliate of somebody/something

Slot Name	Correct	Wrong	Incorrect
		Entity	Value
Affiliate	1%	95%	5%
AssociateOf	63.6%	9.1%	27.3%
AwardsWon	10%	10%	80%
CauseOfDeath	0%	0%	0%
Contact_Meet_Entity	21%	42%	37%
Contact_Meet_PlaceTime	5%	20%	85%
DateOfDeath	29.6%	71%	25%
EmployeeOf	5%	30%	65%
FoundedBy	62%	17%	21%
FounderOf	50%	0%	50%
Titles	55%	0%	45%
TopMembers	33%	17%	50%

"CauseOfDeath", "AwardsWon", using different kind of advanced methods, e.g. classifiers, matching methods.

3) Using other NLP tools or using classifiers to overcome the drawbacks of the LingPipes inaccurate tags. The first and second tasks are the most important tasks we need to do.

Some of the entities are not popular. For example, a 'Brenda Weiler' Google search result has 860,000 documents over the whole web. For our small portion of the web it might make sense. The histogram of the entities shows that more than half of the entities have appeared in less than 10 StreamItems. A good portion have appeared only once.

Alltogether, We experimented through different tools and approaches to best process the massive amounts of data on the platform that we had available to us. We generate aliases for wikipedia entities using Wiki API and extract some aliases from wikipedia pages text itself. We process documents that mention entities for slot value extraction. Slot values are determined using

pattern matching over coreferences of entities in sentences. Finally post processing will filter, cleanup and infers some new slot values to enhance recall and accuracy.

We noticed that some tools that claim to be performant for using the hardware capabilities at hand sometimes don't really work as claimed and you should not always rely on one without a thorough A/B testing of performance which we ended up in generating our inhouse system for processing the corpus and passing through the filter. Furthermore, on extracting slot values, pattern matching might not be the best options but definitely can produce some good results at hand. We have plans on generating classifiers for slot value extraction purposes. Entity resolution on the other hand was a topic we spent sometime on but could not get to stable grounds for it. Entity resolution will distinguish between entities of the same name but different contexts. Further improvements on this component of the system are required.

We sampled documents from the training data period to generate an initial set of patterns. We then use these patterns to generate results. By manully looking at these results, we prune some patterns with poor performance and add more patterns that we identified from these results. We use several iterations to find the best patterns. We found that it is very time consuming to identity quality patterns.

Acknowledgements

Christan Grant is funded by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-0802270.

References

- Balog, K., and Ramampiaro, H. 2013. Cumulative citation recommendation: Classification vs. ranking. In *Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '13, 941–944. New York, NY, USA: ACM.
- Bonnefoy, L.; Bouvier, V.; and Bellot, P. 2013. A weakly-supervised detection of entity central documents in a stream. In *Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '13, 769–772. New York, NY, USA: ACM.
- Dalton, J., and Dietz, L. 2013. Bi-directional linkability from wikipedia to documents and back again: Umass at tree 2012 knowledge base acceleration track. *TREC'12*.
- Frank, J. R.; Kleiman-Weiner, M.; Roberts, D. A.; Niu, F.; Zhang, C.; Ré, C.; and Soboroff, I. 2013. Building an entity-centric stream filtering test collection for trec 2012. In *21th Text REtrieval Conference (TREC'12)*. National Institute of Standards and Technology.

- Gatordsr opensource project. https://github.com/cegme/gatordsr.
- Gatordsr mailing list. https://groups.google.com/forum/#!forum/gatordsr.
- Ji, H., and Grishman, R. 2011. Knowledge base population: Successful approaches and challenges. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT '11, 1148– 1158. Stroudsburg, PA, USA: Association for Computational Linguistics.
- McNamee, P.; Stoyanov, V.; Mayfield, J.; Finin, T.; Oates, T.; Xu, T.; Oard, D. W.; and Lawrie, D. 2012. Hltcoe participation at tac 2012: Entity linking and cold start knowledge base construction. *TAC KBP*.
- Trec kba stream corpora. http://aws-publicdatasets.s3.amazonaws.com/trec/kba/index.html.
- Stevens, S. 2008. Introduction to sentence patterns. In *Tutoring and testing at UHV*. University of Houston Victoria.