西安交通大学考试题

成绩

课 程 线性代数与解析几何 (A卷)

考试日期 2019 年1 月 8日

专业班号

姓

学 号 期中期末

	·								
一 15 分	1	三	四	五	六	七	八		九
15分	15分	10分	13 分	13 分	13 分	9分	6	分	九 6分

-、单项选择(请将正确选项填写在后面的括号中,每小题 3 分,共 15 分)

 $\begin{vmatrix} a_{11} + x & a_{12} + x & a_{13} + x \end{vmatrix}$ 1. 设有非零多项式 $f(x) = \begin{vmatrix} a_{21} + x & a_{22} + x & a_{23} + x \end{vmatrix}$, 其中 $a_{ij}(i, j = 1, 2, 3)$ 为实常数, $|a_{31} + x \quad a_{32} + x \quad a_{33} + x|$

则多项式 f(x) 的次数为

1

- (A) 3次. (B) 2次. (C) 1次. (D) ≤1次.

2. 下列矩阵中不是初等矩阵的是

$$(\mathbf{A}) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

$$\begin{array}{c|cccc}
(\mathbf{B}) & 0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}$$

(C)
$$\begin{vmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$

(A)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
. (B) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. (C) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. (D) $\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

3. 设 $\alpha_1, \alpha_2, \alpha_3$ 齐次线性方程组Ax = 0 的一个基础解系,则该方程组的基础解系 还有 1

- (A) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_3$. (B) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 \alpha_1$.

- (C) $\alpha_1 \alpha_2, \alpha_2 \alpha_3, \alpha_3 \alpha_1$. (D) $\alpha_1 + 2\alpha_2, 2\alpha_2 + \alpha_3, \alpha_3 \alpha_1$.

4. 在欧氏空间 \mathbb{R}^3 中,下述哪个集合可构成 \mathbb{R}^3 的子空间

1

- (A) $W_1 = \{(x, y, z)^T \in \mathbb{R}^3 \mid x = y = z + 1\}$.
- **(B)** $W_2 = \{(x, y, z)^T \in \mathbb{R}^3 \mid x y + z = 0\}$.
- (C) $W_3 = \{(x, y, z)^T \in \mathbb{R}^3 \mid x^2 y^2 = z\}$.
- **(D)** $W_4 = \{(x, y, z)^T \in \mathbb{R}^3 \mid x + y + z = 0 \text{ } \vec{x} = y\}$.

第1页

5.	设 $A = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 0 \end{bmatrix}$	$\mathbf{B} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	0	. 则下列正确的答案是	ľ	1
----	--	--	---	---	-------------	---	---

- (A) A = B 相似且等价. (B) A = B 不相似但等价.
- (C) $A \ni B$ 相似但不等价. (D) $A \ni B$ 不相似且不等价.

二、填空题(每小题3分,共15分)

- 1. 设A为n (n > 1) 阶方阵, det(A) = 5, A^* 为A 的伴随矩阵,则 $\det \left[\left(\boldsymbol{A}^* \right)^{-1} - \boldsymbol{A} \right] =$
- 2. 已知三阶方阵 A 的特征值为 1,2,2 ,且不能与对角矩阵相似,则 $r(2\boldsymbol{E} - \boldsymbol{A}) = ...$
- 3. 设 3 元非齐次线性方程组 Ax = b 的两个解向量 η_1, η_2 满足 $\eta_1 + 2\eta_2 = (1, 0, 1)^{\mathrm{T}}, \quad \eta_2 + \eta_1 = (2, -2, 1)^{\mathrm{T}}$

且r(A) = 2. 则该方程组的通解是

4. 已知空间曲线 $C:\begin{cases} x^2+y^2=1\\ z=0 \end{cases}$,则曲线C绕x轴旋转所得的旋转曲面方程

为

(注意: 学习了第八章线性变换者做第6题, 其余同学做第5题)

- 5. 设 $\mathbb{R}[x]$ 。(次数不超过3的一元实系数多项式全体并上零多项式按通常多 项式的加法和实数与多项式的乘法作为数乘构成的实线性空间)的内积为 $\langle f, g \rangle = \int_{0}^{2018} f(x)g(x) dx$,又设 $W = \{k_1(1+x) + k_2 \in \mathbb{R}[x]_3 \mid k_1, k_2 \in \mathbb{R}\}$,则 $\mathbb{R}[x]_3$ 的 子空间 W 的一个标准正交基为
- 6. 设T为2维线性空间V上的一个线性变换,T在V的基 α_1,α_2 下的矩阵为 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$,且由基 α_1, α_2 到基 β_1, β_2 的过渡矩阵为 $\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$,则T在V的基 β_1, β_2 下的

矩阵为	

西安交通大学考试题

三、(10 分) 计算n 阶行列式

$$D_n = \begin{vmatrix} a_1 + x & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 + x & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 + x & \cdots & a_n \\ \vdots & \vdots & \vdots & & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n + x \end{vmatrix}, 其中 a_1, \dots, a_n, x 为任意实常数.$$

四、(13分) λ取何值时,线性方程组

$$\begin{cases} \lambda x_1 + (\lambda + 3)x_2 + x_3 = -2, \\ x_1 + \lambda x_2 + x_3 = \lambda, \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

有惟一解、无解、无穷多解?在有无穷多解时,求结构式通解.

五、(13 分) \mathbb{R}^3 中有一直线 L 过点 P(1,2,3) 且垂直于平面 x + 2y + 3z = 4.

- 1) 求此直线 L 的直线方程;
- 2) 证明过此直线 L 的平面都垂直于平面 x + 2y + 3z = 4;
- 3) 求此直线 L 绕 z 轴旋转所得旋转面的曲面方程.

六、(13 分) 已知二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2tx_2x_3 + x_3^2$.

- 1) 问t取何值时,该二次型是正定的;
- 2) 取t=1,试用正交变换化相应的二次型为标准形,并写出所用的正交变换;
- 3) t=1时, f=1表示何种二次曲面?

西安交通大学考试题

七、(9 分) 设 α_1 和 α_2 分别是n阶方阵A 对应特征值 λ_1 和 λ_2 的特征向量,且已知 $\lambda_1 \neq \lambda_2$. 试证明:向量 $\alpha_1 + \alpha_2$ 不是A 的特征向量.

八、 $(6\, \mathcal{G})$ 设 A,B 是两个n 阶实方阵, $M = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$ 是一个分块矩阵,试证明: $r(M) = r(A+B) + r(A-B) \, .$

