Profa. Edith Ranzini

GABARITO - Exercícios de Propriedade

1°) Na figura abaixo apresenta-se um DFA que reconhece a Linguagem L do alfabeto $\Sigma = \{0,1\}.$

Pede-se:

a) Desenhar o DFA que reconhece \overline{L} . (Reconhece cadeias que $\mathbf{n}\mathbf{\tilde{a}o}$ terminam por 110)

b) Desenhar um autômato finito que reconhece L^R . (Geralmente obtém-se um NFA) $L^R \rightarrow$ cadeias que começam por 011

TEORIA DA COMPUTAÇÃO I

c) Dê exemplos de cadeias, que contenham os símbolos **0** e **1**, com comprimento igual a 8 que são aceitas por:

L: w = 00000110

 $\overline{L}: w = 00000111$

 $L^{R}: w = 01100000$

2°)

a) Apresentar a tabela de estados do DFA, em $\Sigma = \{0,1\}$, que reconhece L:

 $L = \{ w \mid w \text{ contém a subcadeia } 0 \text{ } 1 \text{ } 0 \text{ e possui número de zeros } \text{múltiplo de } 3 \}$

Exemplo: 0 0 0 1 0 0 0

Construir o DFA usando a técnica de produto cartesiano

DFA que aceita cadeias que contêm a sub cadeia 010

	0	1
 → I	A_{θ}	I
A_{θ}	A_{θ}	A_{01}
A_{01}	A_{010}	I
*A ₀₁₀	A_{010}	A_{010}

DFA que aceita cadeias com número de zeros múltiplo de 3

	0	1
→ *p	\boldsymbol{q}	p
\boldsymbol{q}	r	\boldsymbol{q}
r	p	r

Solução:

	0	1
→ Ip	$A_0 q$	I p
I q	$A_{\theta} r$	I q
I r	$A_0 p$	I r
$A_{\theta}p$	$A_0 q$	$A_{01} p$
$A_{\theta} q$	$A_{\theta} r$	$A_{01} q$
$A_0 r$	$A_0 p$	$A_{01} r$
$A_{01} p$	$A_{010} \ q$	I p
$A_{01} q$	$A_{010} r$	I q
$A_{01} r$	$A_{010} p$	I r
* A ₀₁₀ p	$A_{010} q$	$A_{010} p$
$A_{010} q$	$A_{010} r$	$A_{010} q$
A ₀₁₀ r	$A_{\theta I\theta} p$	$A_{\theta I \theta} r$

b) Como seria modificada a tabela do item a) se a descrição de \boldsymbol{L} fosse:

 $L = \{ w \mid w \text{ contém a subcadeia } \mathbf{0} \ \mathbf{1} \ \mathbf{0} \text{ ou } w \text{ possui número de zeros múltiplo de 3 (3 k, com k = 0,1,2,...)} \}$

<u>Resposta</u>: (Indicar, através de texto, quais seriam as modificações)

A tabela seria a mesma, exceto no que se refere aos estados finais. Teríamos os seguintes estados de aceitação.

$$\underbrace{Ip, A_0p, A_{01}p, A_{010}p, A_{010}q, A_{010}r}$$
par de zeros possui 010