Robust Control overview

Jan-Willem van Wingerden

Delft Center for Systems and Control Delft University of Technology J.W.vanWingerden@TUDelft.nl

SC42145, 2024/25

LQG

Optimal control theory reached maturity in *the sixties* (aerospace, etc).

For everyday industrial problems: no accurate plant model available and white noise disturbances not always realistic.

LQG control (cont'd)

The problem: Given the covariances W (of w_d) and V (of w_n) and weighting matrices Q and R minimize

$$E\left\{\lim_{T\to\infty}\frac{1}{T}\int_0^T\left[x^TQx+u^TRu\right]dt\right\}$$

LQG controller consists out of (separation principle):

- Kalman Filter (solve one Riccati equation)
- State feedback (solve one Riccati equation)

Trick required to include integral action

What about robustness margins?

Guaranteed Margins for LQG Regulators

JOHN C. DOYLE

Abstract—There are none.

 \mathcal{H}_2 and \mathcal{H}_∞ control

\mathcal{H}_2 and \mathcal{H}_{∞} control

Due to robustness issues people looked at \mathcal{H}_{∞} optimization for robust control in the eighties.

$$P = \left[\begin{array}{c|c} P_{11} & P_{12} \\ \hline P_{21} & P_{22} \end{array} \right]$$

$$F_l(P, K) = P_{11} + P_{12}K (I - P_{22}K)^{-1} P_{21}$$

$$\mathcal{H}_2 \text{ control: } \sqrt{E\left\{\lim_{T\to\infty} \frac{1}{T} \int_0^T z^T z dt\right\}} = ||F_l(P,K)||_2$$

 \mathcal{H}_{∞} control: $\max_{w\neq 0} \frac{||z||_2}{||w||_2} = ||F_l(P,K)||_{\infty}$

+separation principle + we have to solve two riccati egns

LQG: a special \mathcal{H}_2 controller ($||F_l(P,K)||_2$)

Trends

- lacktriangle Formulate the \mathcal{H}_{∞} problem in the LMI framework
- Research in the area of fixed-structure robust control
- Research in the area of LPV control

$$\dot{x} = A(\mu)x + B(\mu)u + w_d$$

$$y = C(\mu)x + D(\mu)u + w_n$$

Identification for robust controller design

Purpose of the course

- Formulate control objectives in a mixed-sensitivity design
- Define stability and performance for MIMO LTI systems
- Construct a generalized plant for complex system interconnections
- Design MIMO controllers on the basis of the mixed-sensitivity
- Describe parametric and dynamic uncertainties
- Translate concrete controller synthesis problem into abstract framework of robust control
- Reproduce definition, properties and computation of the structured singular value
- Master application of structured singular value for robust stability and performance analysis
- Design robust controllers on the basis of the \mathcal{H}_{∞} control algorithm

The steps

- Study the system (poles, zeros, dominant directions)
- Explore decoupling possibilities
- Define objectives of the controller and translate to open or closed loop properties
- Design a nominal controller
- Introduce uncertainty structures
- Robustness analysis
- If necessary design a robust controller

μ -The structured singular value

RS if
$$\det(I - M\Delta(j\omega)) \neq 0$$
, $\forall \omega$, $\forall \Delta$, $\overline{\sigma}(\Delta(j\omega)) \leq 1$

Note that this is a yes or no condition

Find the smallest k_m such that $\det(I - k_m M \Delta(j\omega)) = 0$

From the definition of μ we have $\mu = \frac{1}{k_m}$ and allowing only structured uncertainty

RS iff
$$\mu(M(j\omega)) < 1$$
, $\forall \omega$

General conditions for analysis

NS: N internally stable

NP:
$$\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ (or } \mu_{\Delta_P}(N_{22}) < 1 \text{) and NS}$$

RS:
$$\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega \text{ and NS}$$

$$\mathbf{RP:}\ \mu_{\hat{\Delta}}(N)<1\quad\forall\omega,\,\hat{\Delta}=\begin{bmatrix}\Delta&0\\0&\Delta_P\end{bmatrix}\ \text{and}\ \mathbf{NS}$$

Summary

General conditions for analysis

NS: N internally stable

NP:
$$\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ (or } \mu_{\Delta_P}(N_{22}) < 1 \text{) and NS}$$

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega \text{ and NS}$

$$\mathbf{RP:}\ \mu_{\hat{\Delta}}(N)<1\quad\forall\omega,\,\hat{\Delta}=\begin{bmatrix}\Delta&0\\0&\Delta_P\end{bmatrix}\ \mathrm{and}\ \mathbf{NS}$$

General conditions for analysis

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ (or } \mu_{\Delta_P}(N_{22}) < 1) \text{ and NS}$

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega$ and **NS**

$$\mathbf{RP:}\ \mu_{\hat{\Delta}}(N)<1\quad\forall\omega,\,\hat{\Delta}=\begin{bmatrix}\Delta&0\\0&\Delta_P\end{bmatrix}\ \mathrm{and}\ \mathbf{NS}$$

General conditions for analysis

NS: N internally stable

NP: $\overline{\sigma}(N_{22}) < 1 \quad \forall \omega \text{ (or } \mu_{\Delta_P}(N_{22}) < 1) \text{ and NS}$

RS: $\mu_{\Delta}(N_{11}) < 1 \quad \forall \omega$ and **NS**

$$\mathbf{RP:}\ \mu_{\hat{\Delta}}(N)<1\quad\forall\omega,\,\hat{\Delta}=\begin{bmatrix}\Delta&0\\0&\Delta_P\end{bmatrix}\ \mathrm{and}\ \mathbf{NS}$$

D-K iterations

We have an upperbound: $\mu(N) \leq \min_{D \in \mathcal{D}} \overline{\sigma}(DND^{-1})$

Seek a controller that: $\min_K(\min_{D\in\mathcal{D}}||DND^{-1}||_{\infty})$

Alternate, between minimizing $||DND^{-1}||_{\infty}$ using D or K.

From manual loopshaping to modern tools

Pictures taken from: Respect the unstable, Gunter Stein

From manual loopshaping to modern tools

Pictures taken from: Respect the unstable, Gunter Stein

