MCMT Homework 17

Shun Zhang

Exercise 17.1

- 1. Consider v, λ so that $Pv = \lambda v$. Let v_k be the component of x with the maximum magnitude. $\lambda |v_k| = |\sum_i P_{ik} v_i| \leq \sum_i P_{ik} |v_i| \leq \sum_i P_{ik} |x_k| = |x_k|$. So $\lambda \leq 1$.
- 2. It is proved that the nullity of P-I is 1. $(1,1,\dots,1)^T$ is a solution to Pv=v, so it is the unique solution.
- 3. Suppose that Pv = -v. Let $v = v^+ v^-$ where v^+ and v^- have nonnegative coordinates and disjoint support.

Because P perserves the sum of components of v, so

$$\sum_{v} Pv^{+} = \sum_{v} v^{+}$$

$$\sum_{v} Pv^{-} = \sum_{v} v^{-}$$

$$\sum_{v} Pv = \sum_{v} v \Rightarrow \sum_{v} P(v^{+} - v^{-}) = \sum_{v} (v^{-} - v^{+}).$$

By these linear equations, we have $\sum v^+ = \sum v^-$.

Because $P(v^+-v^-)=v^--v^+$, where Pv^+,Pv^-,v^+,v^- are all nonnegative vectors. $\sum Pv^+=\sum Pv^-=\sum v^+=\sum v^-$. We have $Pv^+=v^-,Pv^-=v^+$.

For a state x in the support of v^+ , we know P(x,x)=0 because $Pv^+=v^-$. Because $P^{2k+1}v^+=v^-$, $P^{2k+1}(x,x)=0$. As the transition matrix is irreducible, the period must be a multiple of 2.