AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-12 (canceled)

Claim 13 (currently amended): An N-substituted pyrazolylcarboxanilide of formula (I)

in which

 R^4

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, either

(a) R³ represents hydrogen, and

represents C_1 - C_8 -alkyl, C_4 - C_6 -alkylsulphinyl, C_4 - C_6 -alkylsulphonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_4 - C_4 -haloalkylthio, C_4 - C_4 -haloalkylsulphinyl, C_4 - C_4 -haloalkylsulphonyl, halo- C_4 - C_4 -alkoxy- C_4 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_4 - C_3 -alkyl, $(C_4$ - C_3 -alkyl)carbonyl- C_4 - C_3 -alkyl, or $(C_4$ - C_3 -alkoxy)carbonyl- C_4 - C_3 -alkyl; represents halo- $(C_4$ - C_3 -alkyl)carbonyl- C_4 - C_3 -alkyl or halo- $(C_4$ - C_3 -alkoxy)carbonyl- C_4 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents $(C_3$ - C_8 -cycloalkyl)carbonyl; represents $(C_3$ - C_8 -halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine and/or bromine atoms; or represents - $C(=O)C(=O)R^5$, - $CONR^6R^7$, or - $CH_2NR^8R^9$,

or

(b) R^3 represents halogen, C_1 - C_8 -alkyl, or C_1 - C_8 -haloalkyl, and represents C_1 - C_8 -alkyl, C_4 - C_6 -alkylsulphinyl, C_4 - C_6 -alkylsulphonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -halo-

- 2 -

CS8775

alkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkylhaving in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or $(C_1$ - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl-carbonyl- C_1 - C_3 -alkyl-or halo- $(C_1$ - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl-having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents $(C_1$ - C_8 -alkyl)carbonyl, $(C_1$ - C_8 -alkoxy)carbonyl, $(C_1$ - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or $(C_3$ - C_8 -cycloalkyl)carbonyl; represents $(C_4$ - C_6 -haloalkyl)carbonyl, $(C_4$ - C_6 -haloalkoxy)carbonyl, $(halo-C_4$ - C_4 -alkyl)carbonyl, or $(C_3$ - C_8 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents - $(C_1$ - $(C_1$ - $(C_1$ - $(C_2$)) $(C_1$ - $(C_3$ - $(C_3$)- $(C_1$ - $(C_1$)- $(C_1$ - $(C_3$)- $(C_1$ - $(C_1$)- $(C_1$

- R⁵ represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represents C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms [[,]] $\underline{\cdot}$
- R^6 -and R^7 , independently of one another, each represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represent C_1 - C_8 -haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^6 -and R^7 -together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{10} ,
- R^8 -and R^9 , independently of one another, represent hydrogen, C_4 - C_8 -alkyl, or C_3 - C_8 -cycloalkyl; or represent C_4 - C_8 -haloalkyl or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^8 -and R^9 -together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of

CS8775 - 3 -

halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰, and

R¹⁰ represents hydrogen or C₁-C₆-alkyl.

Claim 14 (currently amended): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which

- R¹ represents methyl, trifluoromethyl, or difluoromethyl,
- R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl, either
- (a) R³ represents hydrogen, and
 - R⁴ represents C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl, represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₃-C₆-cycloalkyl)carbonyl; represents (C₃-C₆-halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹;

or

- (b) R^3 represents fluorine, chlorine, bromine, iodine, C_1 - C_6 -alkyl, or C_1 - C_6 -haloalkyl having 1 to 13 fluorine, chlorine, and/or bromine atoms, and
 - represents C_1 - C_6 -alkyl, C_4 - C_4 -alkylsulphinyl, C_4 - C_4 -alkylsulphonyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_4 - C_4 -haloalkylthio, C_4 - C_4 -haloalkylsulphinyl, C_4 - C_4 -haloalkylsulphinyl, C_4 - C_4 -haloalkylhonyl, halo- C_4 - C_3 -alkoxy- C_4 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_4 - C_3 -alkyl, $(C_4$ - C_3 -alkyl)carbonyl- C_4 - C_3 -alkyl, or represents halo- $(C_4$ - C_3 -alkyl)-

- 4 -

CS8775

carbonyl- C_1 - C_3 -alkyl, halo- $(C_1$ - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; represents $(C_1$ - C_6 -alkyl)carbonyl, $(C_1$ - C_6 -alkoxy)carbonyl, $(C_1$ - C_3 -alkoxy- C_1 - C_3 -alkyl)carbonyl, or $(C_3$ - C_6 -cycloalkyl)carbonyl; represents $(C_1$ - C_4 -halo-alkyl)carbonyl, $(C_1$ - C_4 -haloalkoxy)carbonyl, $(halo-C_1$ - C_3 -alkoxy- C_1 - C_3 -alkyl)carbonyl, or $(C_3$ - C_6 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents $-C(=O)C(=O)R^5$. $-CONR^6R^7$ -or $-CH_2NR^8R^9$ - and

- represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms [[,]] .
- R^6 -and R^7 , independently of one another, each represent hydrogen, C_4 - C_6 -alkyl, C_4 - C_3 -alkoxy- C_4 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represent C_4 - C_4 -haloalkyl, halo- C_4 - C_3 -alkoxy- C_4 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^6 and R^7 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C_4 - C_4 -alkyl, where the heterocycle optionally contain 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR^{10} ,
- R^8 and R^9 , independently of one another, represent hydrogen, C_4 - C_6 -alkyl, or C_3 - C_6 -eycloalkyl; represent C_4 - C_4 -haloalkyl or C_3 - C_6 -halocycloalkyl having in each ease 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^8 and R^9 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C_4 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of exygen, sulphur, and NR^{40} , and

R¹⁰ represents hydrogen or C₁-C₄-alkyl.

CS8775 - 5 -

Claim 15 (currently amended): An N-substituted pyrazolylcarboxanilide of formula (lb)

$$H_3C$$
 F
 H_3C
 H_3

in which

represents C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; represents halo-(C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C_3 - C_8 -cycloalkyl)carbonyl; represents (C_3 - C_8 -halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O) R^5 , - $CONR^6R^7$, or - $CH_2NR^8R^9$,

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, and

represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represents C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms [[,]] .

 R^6 -and R^7 , independently of one another, each represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_4 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represent C_4 - C_8 -haloalkyl, halo- C_4 - C_4 -alkoxy- C_4 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^6 -and R^7 -together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_4 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-

CS8775 - 6 -

adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰, and

R⁸ and R⁹, independently of one another, represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰.

Claim 16 (currently amended): An N-substituted pyrazolylcarboxanilide of formula (lc)

$$H_3C$$
 F
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 CH_3

in which

R^{3B} represents halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl,

 $R^{4B} \quad \text{represents C_1-C_8-alkyl, C_4-C_6-alkylsulphinyl, C_4-C_6-alkylsulphonyl, C_1-C_4-alkoxy-C_1-C_4-alkyl, or C_3-C_8-cycloalkyl; represents C_1-C_6-haloalkyl, C_4-C_4-haloalkylthio, C_4-C_4-haloalkylsulphinyl, C_4-C_4-haloalkylsulphonyl, halo-C_4-C_4-alkoxy-C_4-C_4-alkyl, or C_3-C_8-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C_4-C_3-alkyl, $(C_4$-C_3-alkyl)carbonyl-C_4-C_3-alkyl, or $(C_4$-C_3-alkoxy)carbonyl-C_4-C_3-alkyl; represents halo-$(C_4$-C_3-alkyl)carbonyl-C_4-C_3-alkyl or halo-$(C_4$-C_3-alkoxy)carbonyl-C_4-C_3-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents $(C_4$-C_8-alkyl)carbonyl, $(C_4$-C_8-alkoxy)carbonyl, $(C_4$-C_4-alkoxy-C_4-C_4-alkyl)carbonyl, or $(C_3$-C_8-cycloalkyl)carbonyl; represents $(C_4$-C_6-haloalkoxy)$-carbonyl, $(halo-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkyl)carbonyl, $(C_4$-C_6-haloalkoxy)carbonyl, $(halo-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkyl)carbonyl, $(C_4$-C_6-haloalkoxy)$-carbonyl, $(halo-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkyl)carbonyl, $(C_4$-C_6-haloalkoxy)$-carbonyl, $(halo-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-alkyl)$-carbonyl, $(C_4$-C_6-haloalkoxy)$-carbonyl, $(halo-$C_4$-$C_4$-alkoxy-$C_4$-$C_4$-a$

CS8775 - 7 -

- fluorine, chlorine, and/or bromine atoms; or represents $-C(=O)C(=O)R^5$, $-CONR^6R^7$, or $-CH_2NR^8R^9$,
- R¹ represents methyl, trifluoromethyl, or difluoromethyl,
- R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, <u>and</u>
- R⁵ represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represents C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms [[,]] .
- R^6 and R^7 , independently of one another, each represent hydrogen, C_4 -C_8-alkyl, C_4 -C_4-alkoxy-C_4-C_4-alkyl, or C_3 -C_8-cycloalkyl; represent C_4 -C_8-haloalkyl, halo-C_4-C_4-alkoxy-C_4-C_4-alkyl, or C_3 -C_8-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^6 and R^7 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_4 -C_4-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{10} , and
- R^8 -and R^9 , independently of one another, represent hydrogen, C_4 - C_8 -alkyl, or C_3 - C_8 -eycloalkyl; or represent C_4 - C_8 -haloalkyl or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^8 -and R^9 -together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_4 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{10} -

Claim 17 (canceled)

Claim 18 (previously presented): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which R^4 represents $-C(=O)C(=O)R^5$ and R^5 is as defined in Claim 13.

CS8775 - 8 -

Claim 19 (canceled)

Claim 20 (previously presented): A composition for controlling unwanted microorganisms comprising one or more N-substituted pyrazolylcarboxanilides of formula (I) according to Claim 13 and one or more extenders and/or surfactants.

Claim 21 (withdrawn): A method of controlling unwanted microorganisms comprising applying an effective amount of an N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 to the microorganisms and/or their habitat.

Claims 22-24 (canceled)

CS8775 - 9 -