

⑤ Int. Cl. ⑥日本分類
B 60 k 80 D 031
F 16 h 80 D 032
54 A 4
80 A 02

日本国特許庁

⑦特許出願公告

昭47-31773

⑧特許公報

⑨公告 昭和47年(1972)8月15日

発明の数 4

(全19頁)

1

2

⑩差動型無段電動変速機

⑪特 願 昭43-37230
⑫出 願 昭43(1968)5月31日
⑬發明者 毛利陽一
横浜市鶴見区馬場町402
⑭出願人 日産自動車株式会社
横浜市神奈川区宝町2
代理人 弁理士 清瀬三郎 外1名

図面の簡単な説明

第1図は本発明の一実施例の骨子図、第2~4図はその特性図で、第2図は出力軸回転速度に対する各部の回転速度図、第3図はトルク特性図、第4図は動力特性図である。第5~8図はそれぞれ変型実施例を示し、第9図は第7、8図の速度線図である。第10、11図も変型実施例を示し、第12図は第10図の速度線図である。第13~20図はモーターを2速減速した場合の説明図で、第13図はその場合のトルク特性図、第14~20図はそれぞれ変型実施例を示す。第21~27図はエンジンに対してオーバードライブができる型式の説明図で、第21、22図はその実施例、第23図はその速度線図、第24図は車速に対するトルク関係図、第25、26図は他の実施例、第27図は他のトルク特性図例を示す。第28、29図は本発明に適用され得る内歯車のない遊星歯車組の2例を示し、各図のイは正面図、ロは側面図であり、第30~32図はその実施例を示す。尚第33図は本発明の電気収受関係図例を示すものである。

発明の詳細な説明

本発明は差動型無段電動変速機であつて元来電気式の自動変速機としての考え方から出発しているが適當な蓄電池を用いることによりハイブリッド式電気自動車として利用出来る。しかも動力伝達は分割方式を用い、1つの経路は電気的に発電

機、電気モーターによりエネルギーの転換を行なうが、他の1つの経路は機械的に直接エネルギー伝達を行なうのでほとんど損失がない。しかも普通の走行では主に機械的伝達のみを用いることも可能である。これを普通のガソリン自動車に比較すると、エンジンは小容量のものを用いスロットルバルブは常時全開のまま用いるので排気による大気の汚染は少ない。全出力はエンジン出力とモーター出力の和になるので、モーター出力のみによる普通のハイブリット方式より小さいモーターですむ。エンジン出力に対し電気的出力を併用するのは発進、登坂、最高速のみで普通の平地走行には電気を使わないので蓄電池容量は小型ですむ等の利点がある。

本発明の第1の実施例に就き述べるとエンジンよりの入力は単純遊星歯車のキヤリアーに加えられてサンギヤーとリングギヤーに2分される。サンギヤーのエネルギーは発電機のローターを回し発電作用を起す。リングギヤーは直接に出力軸へつながるので機械的に車両を動かす動力を伝える。

しかしこのトルクは発進及び登坂には不充分なので、発電されたエネルギーが出力軸に直結されたモーターに加えられて大きなトルクになつて再生される。車両が止つている時はサンギヤーは入力軸より高速回転を行なうので発電機は小型化することができる。モーターから出力軸に至る経路も減速することによつてモーターの高速化が可能でありこれも一層小型にできる。

さらにこれを2速に変速することにより車両が低速走行の時にモーターを高速で回し、大きい出力を得ることができる。又エンジンより出力軸に至る間をオーバードライブの状況にして、エンジン側を出力軸より低速回転として走行抵抗に合つたエンジン出力を得ることができる。

第1図は本発明実施例の骨子図を示す。エンジンから入力軸Iに伝わった動力P_iは遊星歯車のキヤリアC₁に伝わり2分割される。遊星歯車のサン

ギヤー S_1 は発電機のローター G_R を回し、リングギヤー R_1 はフィールド G_F を回す。発電機のフィールド G_F は中間軸（出力軸） O_1 に直結しこれと同時に回転する。入力軸 I と中間軸 O_1 及び発電機のローター G_R の回転速度の関係は第2図に示した通りである。

中間軸 O_1 にはモーターのローター M_R が取付けられる。モーターのフィールド M_F は車体 B に固定され、ローター M_R は出力軸 O_2 に結合される。

コントローラ C_T は発電機のフィールド電流を制御して発電機の吸収トルクを加減してフィールドとローターの回転速度差を一定に保ちつつ発電機の回転速度を一定に保つ。

せ、その電流を蓄電池 E へ送る。そのために入力軸 I （又はエンジン）と出力軸 O_2 にはガバナ G_i 及び G_o を備える。アクセルレーターペダル A によりコントローラ C_T に指示をあたえ、出力軸回転速度を比較してモーターの駆動トルクを制御する。アクセルを踏めばモーターの発生トルクが増大して車輌を加速し、放した時はモーターをも発電機として電力を回収して制動することが出来る。尚 C_L は直結クラッチ、 P_B はパーキングブレーキを示す。

尚コントローラ C_T 及び各部電気の収受関係図を第33図に例示し、又下表に例記した。

運転条件	エンジン rpm	ガバナ 信号	発電機		充電量 信号	モーター rpm	出力軸		アクセル ペイル信号	摘要
			回転電 圧	作用			対発電機	対モーター		
アイドリング	2000	発 電 機 持	6000	発 電 機 持	充 電 条 件	0	停 止		速 度	速 度
中速	4000		8000	電	電	2000	モ ー タ ー	直 結 指 示	指 示	
高速	6000		0000	電	電	4000	出 力			直接クラッ チ結合
最高速	6000		6000	直 放 電	件	6000	直 結 指 示			直接クラッ チ結合
発電制御	4000		4000	結 充放電		4000	發電～ モーター		直 結 指 示	

上記に於いてその機能説明を下記する。

(I) 回転速度

遊星歯車のキヤリア、リングギヤー及びサンギヤーの各回転速度を N_i 、 N_o 及び N_g とすると、

$$(l+1) N_i = l N_o + N_g$$

$$(l \text{ はリングギヤー歯数のサンギヤー歯数に対する比を表わす。})$$

となる。第2図はこれ等の回転速度が N_o と共にどの様に変化するかを示した。図に於いて a ～ b 間は発電機のフィールドとローターの回転差 $N_g = N_o - N_i$ を 6000 rpm に保ち、 $l = 2.0$ とした時を示す。この時ローターは $f - g$ の変化を示し、入力軸は $d - e$ の変化を示す。ここでエンジンは最高速度に達するのでこれより高速側でエンジンの回転速度を一定に保つために発電機のローターの回転速度を $g - c$ の様に変化させると入力軸は図の $e - c$ に示す様に一定になる。

(II) トルク及び動力の N_o に対する変化を第3図及

び第4図に示す。第3図の縦軸は入力軸トルク T_i に対する各トルクの比を示す。入力軸より入ったトルクは遊星歯車でリングギヤートルク T_g と発電機ロータトルク T_g に2分される。この時

$$T_R/T_G = l \quad T_R + T_G = T_i \quad \text{であるので}$$

$$T_R = \frac{l}{l+1} T_i$$

$$T_G = \frac{1}{l+1} T_i \quad \text{となる。}$$

30 発電機では T_G はローターよりフィールドに引張りトルクとなつて伝わるので中間軸 O_1 には $T_R + T_G = T_i$ なるトルクが発生する。即ち入力軸から得た動力 $N_o T_R$ 、サンギヤーには $N_o T_G$ だけ伝わる。リングギヤーに伝わった動力はそのまま中間軸 O_1 に伝わった動力は $N_o T_G$ だけ発電エネルギーとなり、残りの

$$(N_s - N_o) T_G (= N_o T_G)$$

40 は機械的に間中軸へ伝達されるので中間軸のトルクは $N_o T_R$ と加わつて $N_o T_i$ なる。これは第

3図及び第4図のa-b-cで表わされる。

モータートルクは第3図のa-h-f-u-cとなるので全出力はo-h-f-u-pになる。

この時の動力は第4図において全出力p-uに対してモーター出力はc-uでありエンジン出力はp-cとなる。もし動力公割を用いない時はモーター、エンジン共にp-uの出力が必要なわけである。発電機で電力に転換されたエネルギーは第4図でh-d-e-cに示される。

このうちモーターで直接再生されるものはh-i-e-cであり、そのトルクは第3図のa-h-i-e-cとなる。曲線i-e-cは充放電の平衡を保つ線で、走行抵抗がこの線より下の時は充電され、上の時は放電される。

(III) 発電制御

自動車が平地走行を行なつている時の抵抗を第3図のj-k-u線にあるとするとj-k間はそのエネルギーはエンジンのみで充分供給出来る。k-l間はこれに発電機のエネルギーを加えただけで充分である。蓄電池のエネルギーを放出するのはl-u間だけであるが、この区間は車速120km/h以上であり、普通の走行では余り使われない。この放電域の使われるのはこの様な特殊な高速又は登坂、加速時のみであるのでこれを使用する時間は比較的短かく充電時間の方が長くなるのでこれを制限する必要がある。

その時には蓄電池の充電状況に応じてエンジンの制御回転速度を設定し、例えば第2図のm点に達すればそれ以後はm+n線に沿つて制御することも可能である。この時は発電機のロー

タ回転速度はs-nに沿つて制御される。又制御装置を簡単にするためにはエンジン回転速度はm-t、発電機ローターはs-tに沿うように制御しても差支えない。その時はエンジンの最高速度制御はe点よりエンジンはe-bに、発電機ローターはg-bに沿つて制御されることになるであろう。この制御は直結クラッチCLを電磁的に作用させるのが便利である。

(IV) 電力回収

これはエンジンのスロットルバルブを閉めないのでエンジンブレーキを利用出来ない。しかしモーターに発電機能をもたらすことによつて電気ブレーキを用いることが出来る。又第4図からもわかるように低速においては機械伝達動力だ

けでも走行抵抗より大きいので速度制御のためにもモーターによる電気ブレーキが必要となる。

(V) その他

低速の時はエンジンを用いなくてもモーターだけで充分に走行出来る。もしエンジンのスタートモーターが利かないか、無い時にはモーター走行を行なつてその後に発電機に電流を流してエンジンを始動することも出来る。

後退時はモーターのみで走つても良いので逆転歯車は不要である。

車両を止める時はフートブレーキと電気ブレーキを併用すればモーターの制動力を出力軸の回転速度に連ずけて制御出来るため高速走行時のスキッド防止に役立ち得る。この装置のついた車両は停車中にエンジンより入力トルクを受けクリープする心配があるのでパーキングブレーキを用い常時は機械的にこれがロックして発進に際して自動的に解除する方法を用いると良い。

20 本装置の特徴をまとめると下記の通りである。

- (1) 動力分割式であるので損失が少なく効率が良い。
- (2) 無段変速であるので変速ショックの心配がない。

25 (3) 電気系統には一部の動力しか伝わらないので発電機、モーターが小さい。

- (4) 比較的小さいエンジンで大きい駆動力が得られる。
- (5) 適当な蓄電池を用いると短時間は電気のみで動く。

(6) 低速時でもエンジンのスロットルバルブは閉めないので排気による大気の汚染は少ない。

- (7) 電気制動によるエネルギーの一部回収あるいはスキッド防止が出来る。

35 (8) 蓄電池の状況に応じてエンジンの常用回転速度の制御を行なつて充電の調整が出来る。

尚第1図実施例の変型配置例として第5~12図を掲げる。添加符号は第1図のそれに対応するものである。尚追加符号としてl₁, l₂等は第1、第2等の遊星歯車組を示す。

第5図は寸法の大きいモーターをエンジンに近く置くので配置が良い。

第6図は遊星歯車を発電機の後部に配置するのでそれに対する潤滑油の供給が容易で、かつ油の

温度を下げ得る。

第7図では発電機は入力軸Iに対して増速され、出力軸O₂はモーターに対して減速される。第8図の如く発電機を前置すればフランジの配置も都合が良く、発電機とモーターを分離してプロペラ軸でつなぐこともできる。

第9図はl₁=3, l₂=2とした時の第7, 8図の速度線図であり (N_{i max}=5000 rpm, N_{s max}=15000 rpmとした)、各縦線はそれぞれの歯車の回転速度を示す関数尺で傾線は各状態における歯車の速度関係が一直線上にあることを示す。

第10図はモーターの回転方向は反対になるがモーターの減速比を小さくすることができる。

第11図の如くダブルビニオン遊星歯車組R₂, C₂, S₂を用いるとモーターは正方向の回転で減速比は小さくなる。

第12図はl₁=3, l₂=2.5とした時の第10図の速度線図である(発電機とモーターの最高回転速度が一致する)。

上記各実施例では急坂で始動する様な場合には充分な力がでない心配がある。その対策としてはモーターから出力軸に至る動力伝達経路を2速減速装置とし、発進及び登坂には低速域を用い、平地走行には高速域を用いると良い。

第13図はこの場合は性能曲線で。h f u pは高速域、O h f u pは低速域の性能曲線を示す。トルクの大きさα hはc uの3倍であるが減速比2.5と仮定してあるのでα hはc uの7.5倍で。hはp uの3倍となる。p点の車速を150 km/hと仮定するとp点は60 km/hとなる。

このような性能をもつ減速歯車付のモーターをもつ配列は色々ある。第14図に示す実施例は2つの単純遊星歯車を直列したものである。モーターから出力軸O₂に至る伝動経路は低速及び後退の時はハイクラッチCHを開放し、ローブレーキLBを結合して第3遊星歯車組l₃のリングギヤーを固定する。低速ではモーターを正転し、後退では逆転する。高速ではローブレーキLBを開放しハイクラッチCHを結合する。今仮に第2遊星歯車組l₂と第3遊星歯車組l₃の寸法を同じとし、両者のリングギヤーのピッチ円半径がサンギヤーのピッチ円半径のl倍であるとすると各速域に於ける出力軸のモーターのローターに対する域速比は

低速: R₁ = (l + 1)²

高速: R₂ = (l + 1)

∴ R₁/R₂ = (l + 1) となる。

例えばl=2.0であるとすると、R₁=9.0, R₂=3.0, R₁/R₂=3.0となる。

この図では発電機G FとモーターM Rの間はプロペラ軸Pで繋いである。それは発電機をエンジンと一緒にし、モーターはこれと分離して後車軸に近く配置することで車両の重量分布を改善するのに役立たせることができる。第15~17図は他の減速歯車組の配列を示す。この3つの例は何れもプロペラ軸Pは第2遊星歯車組l₂のリングギヤー、第3遊星歯車l₃のキヤリアと結合し出力軸に接続する。又第2遊星歯車組のサンギヤーと第3遊星歯車組のリングギヤーは結合し、ハイブレーキHBと接続する。第2遊星歯車の組キヤリアはローブレーキLBに接続し、第3遊星歯車組のサンギヤーはモーターのロータMRに接続する。車両が低速又は後退運動をする時はハイブレーキHBを開放してローブレーキLBを結合して第2遊星歯車のキヤリアを固定する。車両を高速で前進させる時はローブレーキLBを開放し、ハイブレーキHBを結合して第3遊星歯車組のリングギヤーを固定する。この時は第2遊星歯車組のキヤリアは低速で生転するのでローブレーキと並列に図の点線で示す様な一方向クラッチCOを用い、第2遊星歯車のキヤリアは正転を許すが逆方向にロックされる様にすると低速前進では何れのブレーキも固定せずに開放しても第2遊星歯車は反力を受けて逆転しようとするのを止められてローブレーキを作用させたと同じ条件になつて出力軸は低速前進する。高速になる時はハイブレーキを作らせると直ちに高速状態となり低速から高速に移る時の変速ショックを防止できる。(第14図の場合も点線の位置にワンウェークラッチCOを用いることができる)。

これ等の歯車組のリングギヤーのサンギヤーに対する歯数比を第2遊星歯車組ではl₂、第3遊星歯車組ではl₃とすると、各減速比は
 低速: R₁ = l₂ (l₃ + 1) + 1
 高速: R₂ = l₃ + 1
 ∴ R₁/R₂ = (l₂ l₃ + l₃ + 1) / (l₃ + 1)
 例としてl₂=l₃=2.4と仮定するとR₁=9.16, R₂=3.4, R₁/R₂=2.7となる。

第18～20図まではモーターを車両の最後部に配置し減速歯列とモーターの中間にハイポイドギヤーH.P.G., H.C.G.を用いて後車軸R.Sを回転させる場合を示す。減速歯車列の配列はそれぞれ第15～17図と同様であり、各歯車の作動も同じであるが、出力軸O₂は第3遊星歯車組のキヤリアに対しアロペラ軸とは反対側に取りつけられている点が相違している。これ等の図はエンジンよりの入力軸、発電機その他は省略してあるがその機能も前例と同じである。この場合の出力軸O₂は中空軸となり、その中にはモーターよりの伝導軸があつて後方よりモーターのトルクを第3遊星歯車組のサンギヤーに伝える。出力軸にはハイポイドビニオルギヤーH.P.G.を取りつけ、これに噛み合うクラウンギヤーH.C.G.に動力を伝え後車軸R.Sを回転させる。第1～15図の実施例では第3図に示す横に走行抵抗が機械的伝達トルクと平衡を保つた点における出力軸の回転速度は4000 rpmになり、これを車速に直すとほぼ100km/hに近い。これは郊外を走るには丁度良いが市内走行には早すぎるので市内では常にその余裕馬力は発電に消費しなければならないので発電が過剰になる心配がある。その1つの対策はエンジンを比較的小さくしてモーターの負担する馬力を大きくすることである。他の一つの対策はエンジンに対し出力軸をオーバードライブの状況にして発進、登坂、最高速走行の時はエンジン出力を充分に利用し、市内走行の時は出力軸よりもエンジン回転速度を低くしてエンジンの発生馬力を切限してその出力のみをもつて走行抵抗と平衡を保つ方法である。以下その内容について説明を行なう。第21図はその基本型となるもので、第1図に対し遊星歯車組と発電機を反対配置とし、発電機のロータG.RをオーバードライブブレーキO.B.によって停止する時はエンジンに対し出力軸はオーバードライブの関係になる。第22図はさらにモーター側のロータより出力軸O₂に対して減速して伝導するようにし、モーターを高速軽量化するものでモーターの作用は第8図と同じである。第9,

10図の配置も可能であるがその作用も同じであるので説明は省略する。この両者における出力軸回転速度に対する各メンバーの回転速度の関係を第23図に示す。点線はオーバードライブにしない時のサンギヤーの回転速度N_sとキヤリアの回転

速度N_iであるが、オーバードライブにするためにブレーキを作動させるとサンギヤーは止まりN_{s,d}に示す様になる。さらに入力軸につながるキヤリアの回転速度はN_{i,b}となり、出力軸よりは低い速度で回転する。これ等のトルクの関係はオーバードライブにしない時は第3図と同じであるが、オーバードライブにした時は第24図に示した様に機械的伝達トルクは減少する。モータートルクはその上に加えられるが全体としては第3図より小さい出力トルクとなる。又この時は発電機には発電作用を行なわせていないので電気的にはモータートルクは全域が放電域になる。もしこの時に発電機に発電作用を行なわせるとそれに消費された動力に相当する分だけ機械的伝達トルクは減少する。

15 平地における走行抵抗を*i k l*とするとその線と機械的伝達トルク線a-cの交点kが機械的伝達トルクと走行抵抗の平衡する点である。図ではこの点の走行速度は約50km/h附近になつているがもしこれより低速で走る時は発電機を作動させ、高速にする時はモーターを作動させる様にアクセルペダルの指示によりコントローラーを操作すると良い。

この状態ではエンジンは常に出力軸より低速回転を行なうので静かな運転を期待出来るが、もしその回転が下がりすぎてエンジンがノックする位25になるとオーバードライブブレーキを解除して平常の状態にすることができる。第25図はモーター側に2速減速装置をつけた場合で第14図に相当する歯車列である。第15～17図に相当するものも可能であるが、これ等の図を比較すれば容易に理解できるので省略する。第26図は最終減速歯車をハイポイドギヤーにして減速歯車列とモーターの中間に頭した場合でも第18図に相当した歯車列の場合を示す。第19, 20図に相当した歯車例も可能であることは容易に理解できるので説明は省略する。第27図はこの場合のトルク曲線を示す。横軸に出力軸の回転速度を取り、縦軸に各種の運転条件に応じた出力軸トルクをエンジントルクにする対比で示した。点線及び一点鎖線は第13図に示す低速域と高速域と同じである。実線は市内走行に適する中速域で発電機側はオーバードライブの状況にしてモーターは第25図ではハイクラッチC.G.を結合し、第26図の時はハイブレーキH.B.を結合して高速

状態にした場合である。この構造では発進及び登坂の時は低速域の状態とし、市内走行では中速域、最高性能を要求される時は高速域の状況にアクセルペダルと車速ガバナーの信号によりコントローラー C T を作用させ、それぞれオーバードライブブレーキ O B 、ローブレーキ L B 又はハイブレーキ H B を作動させ発電機及びモーターの制復を行なえるあらゆる走行条件に適合した運転操作が可能であり、現在の強力なエンジンによる走行運動性をそれより小さいエンジンと蓄電池エネルギーによつて達成出来る。尚前記各種実施例中に示された遊星歯車装置は第 28, 29 図に示す如き内歯歯車のない遊星歯車組装置に変更実施することもできる。第 28, 29 図に於いて C はキヤリア、 S₁, S₂, S₃ は第 1 、第 3 のサンギヤー、 P₁, P₂, P₃ は第 1 、第 2 、第 3 のプラネットギヤーに相当し、単純遊星歯車組と同様の作用をする。

第 30 図に示すものはその基本的なもので、第 8 図に相当するものである。

第 31 図はモーターの減速を 2 速に変える場合であつて、その第 2 遊星歯車組は第 29 図に示したものである。

第 32 図は終減速歯車をハイポイドギヤーにしてモーターをとの後に配列した例である。その作用は第 30 図と同一であるので特に説明しない。又この場合に第 2 遊星歯車組を第 29 図と同様にすることも可能なことは前列より容易に理解できる。

又これ等の配列は前記したようにプロペラ軸をエンジンに対してオーバードライブすることも可能である。特にそのためには図示しなあが一例として第 30 図の場合は車両が高速になつた場合にロータリーフィールド G F を固定すればアーマチュア側なキヤリアより高速に回転する。即ち第 14 図の回転フィールドと発電機ローターの関係を第 30 図では置き換えて発電機アーマチュアと回転フィールドにすれば良いので、このためには回転フィールドにオーバードライブブレーキを付け、プロペラ軸にはパーキルグブレーキを取り付ければ容易に構成できる。

特許請求の範囲

1 内燃機関を原動機とし発電機と電気モーター組を合せて変速機とする車両用伝動装置において、

内燃機関よりの入力軸は単純遊星歯車組のキヤリアに結合し、単純遊星歯車組のサンギヤーは発電機のアーマチュアに結合し、その単純遊星歯車組のリングギヤーは発電機の回転フィールド及び出力軸に結合し、モーターのフィールドは車両に固定し、モーターのアーマチュアは前記の出力軸に結合し、この出力軸に与えられた原動機のトルクとモーターのトルクの和で車両を駆動し、前記遊星歯車組のサンギヤーとリングギヤーの回転速度の差で発電を行ない、別に備えられた蓄電池に電力を一時貯え、発進、急加速、登坂、高速高時等においてこの電力を再生して電気モーターに送り高出力を得ることを特徴とする差動型無段電動変速機。

2 内燃機関を原動機とし発電機と電気モーターを組合せて変速機とする車両用伝動装置において内燃機関よりの入力軸は単純遊星歯車組のキヤリアに結合し、該単純遊星歯車組のサンギヤーは発電機のアーマチュアに結合し、その単純遊星歯車組のリングギヤーは発電機の回転フィールド及び出力軸に結合し、モーターのフィールドは車両に固定し、モーターのアーマチュアは前記の出力軸に減速装置を介し結合して電気モーターを高速回転させて小型化する事を特徴とする差動型無段電動変速機。

3 請求範囲 1,2 において発電機の第 1 回転子にオーバードライブブレーキをケースとの間にもうけ、この回転部分を回転又は停止の何れの作用も可能とし、通常の運転ではこの出力軸にあたえられた原動機のトルクと電気モーターのトルクの和で車両を駆動し、発電出力は蓄電池に電力を一時貯え、発進、急加速、登坂、高速時等にこの電力を再生して電気モーターに送つて高出力を得ると共に経済運転の時にはオーバードライブブレーキを作用させて原動機に対して出力軸を高速で回転させ、同一車両速度に対し原動機の回転速度を低下させて出力を減少させ、その出力と車両走行抵抗の過不足は発電機で吸収させるか、電気モーターによって出力を発生させるかによつて調整することを特徴とする差動型無段電動変速機。

4 請求範囲 1 ~ 3 に於いて単純遊星歯車組を内歯歯車のない遊星歯車組に置きかえたことを特徴とする差動型無段電動変速機。

才 2 図

方 5 図

方 6 図

方7図

方8図

方9図

才10図

才11図

才12図

第13図

第14図

フ 15 図

フ 16 図

フ 17 図

(14)

特公 昭47-31773

第18図

第19図

第20図

第21図

(15)

特公 昭47-31773

図22

図23

図24

ア 25 図

ア 26 図

才 27 図

才 28 図

才 29 図

図30

図31

図32

九三三

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.