Rendering Algorithms

Spring 2014 Matthias Zwicker Universität Bern

Path tracing

10 paths/pixel

Problems with path tracing

10 paths/pixel

Problems with path tracing

100 paths/pixel

Caustics

 Focusing of light by reflective and refractive surfaces

http://en.wikipedia.org/wiki/Caustic_(optics)

Light transport notation

- Path tracing not suitable to render caustics
- Light L, diffuse reflection D, specular reflection S, eye E
- Caustics are paths L{S}+DE
 - {S}⁺ means one ore more specular bounces
 - Focusing of light through reflections and refractions on diffuse surfaces

Today

- More sophisticated methods to sample light paths
 - Bidirectional path tracing
 - Photon mapping

Overview

- Background
 - Three-point form of rendering equation
 - Measurement equation
- Reformulation of path tracing
- Bidirectional path tracing
 - MIS weights

Hemispherical form

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{\mathcal{H}} L(\mathbf{x}_{\mathcal{M}}(\mathbf{x}, \omega_i), -\omega_i) f(\mathbf{x}, \omega_i, \omega_o) \cos(\theta_i) d\omega_i,$$

Integration over surface area

Change of integration variables:

$$d\omega_i = \frac{\cos(\theta_{\mathbf{x} \to \mathbf{x}'})}{\|\mathbf{x} - \mathbf{x}'\|^2} d\mathbf{x}$$

Geometry term:

$$\begin{split} G(\mathbf{x} \leftrightarrow \mathbf{x}') &= V(\mathbf{x} \leftrightarrow \mathbf{x}') \cdot \\ \frac{\cos(\theta_{\mathbf{x}' \to \mathbf{x}}) \cos(\theta_{\mathbf{x} \to \mathbf{x}'})}{\|\mathbf{x} - \mathbf{x}'\|^2} \end{split}$$

Three point form

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{\mathcal{H}} L(\mathbf{x}_{\mathcal{M}}(\mathbf{x}, \omega_i), -\omega_i) f(\mathbf{x}, \omega_i, \omega_o) \cos(\theta_i) d\omega_i,$$

$$L(\mathbf{x}' \to \mathbf{x}'') = L_e(\mathbf{x}' \to \mathbf{x}'') + \int_{\mathcal{M}} L(\mathbf{x} \to \mathbf{x}') f(\mathbf{x} \to \mathbf{x}' \to \mathbf{x}'') G(\mathbf{x} \leftrightarrow \mathbf{x}') d\mathbf{x},$$

Three-point form, integration over surface area

Measurement equation

• Expresses pixel value I_j of pixel i

Importance function W^j for pixel j, here a box function

$$I_j = \int_{\mathcal{H}} W^j(\omega_i) L(\mathbf{e}, \omega_i) \cos(\theta_i) d\omega_i$$

Hemispherical integral

$$I_j = \int_{\mathcal{M}} W^j(\mathbf{x} \to \mathbf{e}) L(\mathbf{x} \to \mathbf{e}) G(\mathbf{x} \leftrightarrow \mathbf{e}) d\mathbf{x}$$
 Surface area integral

Recursive expansion (3-point form)

Initial guess $L(\mathbf{x}' \to \mathbf{x}'') = L_e(\mathbf{x}' \to \mathbf{x}'')$, plug recursively into

$$L(\mathbf{x}' \to \mathbf{x}'') = L_e(\mathbf{x}' \to \mathbf{x}'') + \int_{\mathcal{M}} L(\mathbf{x} \to \mathbf{x}') f(\mathbf{x} \to \mathbf{x}' \to \mathbf{x}'') G(\mathbf{x} \leftrightarrow \mathbf{x}') d\mathbf{x}$$

Plug result into
$$I_j = \int_{\mathcal{M}} W^j(\mathbf{x} \to \mathbf{e}) L(\mathbf{x} \to \mathbf{e}) G(\mathbf{x} \leftrightarrow \mathbf{e}) d\mathbf{x}$$

$$I_{j} = \sum_{k=1}^{\infty} \int_{\mathcal{M}^{k}} L_{e}(\mathbf{x}_{0} \to \mathbf{x}_{1}) G(\mathbf{x}_{0} \leftrightarrow \mathbf{x}_{1}) \left(\prod_{i=1}^{k-1} f(\mathbf{x}_{i-1} \to \mathbf{x}_{i} \to \mathbf{x}_{i+1}) G(\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i+1}) \right)$$

$$\cdot W^{j}(\mathbf{x}_{k-1} \to \mathbf{x}_{k}) d\mathbf{x}_{0} \dots d\mathbf{x}_{k-1}$$

Sum over path lengths k

Path contribution function $f_j(\bar{x})$

Path contribution function

$$f_j(\bar{x}) = L_e(\mathbf{x}_0 \to \mathbf{x}_1)G(\mathbf{x}_0 \leftrightarrow \mathbf{x}_1)f(\mathbf{x}_0 \to \mathbf{x}_1 \to \mathbf{x}_2)G(\mathbf{x}_1 \leftrightarrow \mathbf{x}_2)f(\mathbf{x}_1 \to \mathbf{x}_2 \to \mathbf{x}_3) \\ \cdot G(\mathbf{3}_1 \leftrightarrow \mathbf{x}_3)f(\mathbf{x}_2 \to \mathbf{x}_3 \to \mathbf{x}_4)G(\mathbf{x}_3 \leftrightarrow \mathbf{x}_4)W^j(\mathbf{x}_3 \to \mathbf{x}_4)$$

Symmetry!

Monte Carlo integration

Estimate

$$I_j pprox rac{1}{N} \sum_{i=1}^N rac{f_j(ar{X}_i)}{p(ar{X}_i)}$$

- Random paths $ar{X}_i$
- Path probabilities (conceptually): product of vertex probabilities $p(x_i)$ (area densities!) and probability of p(k) for length k

$$p(\bar{X}_i) = \left(\prod_{i=0}^k p(\mathbf{x}_i)\right) p(k)$$

Path contribution

$$\frac{f_j(\bar{X}_i)}{p(\bar{X}_i)} = \frac{L_e(\mathbf{x}_0 \to \mathbf{x}_1)G(\mathbf{x}_0 \leftrightarrow \mathbf{x}_1)\left(\prod_{i=1}^{k-1} f(\mathbf{x}_{i-1} \to \mathbf{x}_i \to \mathbf{x}_{i+1})G(\mathbf{x}_i \leftrightarrow \mathbf{x}_{i+1})\right) \cdot W^j(\mathbf{x}_{k-1} \to \mathbf{x}_k)}{\left(\prod_{i=0}^{k} p(\mathbf{x}_i)\right)p(k)}$$

Path tracing

- Sample paths incrementally from eye
- At each step connect to light to obtain path $ar{X}_{k,i}$ of length k
- Terminate path using Russian roulette, implemented with binary random variable R_k
- Conceptually, each path tracing step evaluates sum over all lengths $k=0...\infty$

Relation of densities

• Conversion to area density p(x), if we sampled x by sampling direction $\omega_{x'\to x}$ from x' with density $p(\omega_{x'\to x})$

Relation of densities:

$$p(\mathbf{x}) = p(\omega_{\mathbf{x}' \to \mathbf{x}}) \frac{\cos(\theta_{\mathbf{x} \to \mathbf{x}'})}{\|\mathbf{x} - \mathbf{x}'\|^2}$$
$$= p(\omega_{\mathbf{x}' \to \mathbf{x}}) \frac{G(\mathbf{x}' \leftrightarrow \mathbf{x})}{\cos(\theta_{\mathbf{x}' \to \mathbf{x}})}$$

Path tracing

$$\frac{f_{j}(\bar{X}_{k,i})}{p(\bar{X}_{k,i})} = \underbrace{L_{e}(\mathbf{z}_{k} \to \mathbf{z}_{k-1}) \frac{G(\mathbf{z}_{k} \leftrightarrow \mathbf{z}_{k-1})}{p(\mathbf{z}_{k})} f(\mathbf{z}_{k} \to \mathbf{z}_{k-1} \to \mathbf{z}_{k-2})}_{\mathbf{z}_{k}} \qquad \alpha_{1} = 1$$

$$\alpha_{1} = 1$$

$$\alpha_{2} = \alpha_{1} \frac{G(\mathbf{z}_{1} \leftrightarrow \mathbf{z}_{0})}{p(\mathbf{z}_{1})} W^{j}(\mathbf{z}_{1} \to \mathbf{z}_{0}) = W^{j}(\mathbf{z}_{1} \to \mathbf{z}_{0})$$

$$\prod_{i=1}^{k-2} \frac{G(\mathbf{z}_{i+1} \leftrightarrow \mathbf{z}_{i})}{p(\mathbf{z}_{i+1})} f(\mathbf{z}_{i+1} \to \mathbf{z}_{i} \to \mathbf{z}_{i-1}) \cdot \frac{G(\mathbf{z}_{1} \leftrightarrow \mathbf{z}_{0})}{p(\mathbf{z}_{1})} \frac{W^{j}(\mathbf{z}_{1} \to \mathbf{z}_{0})}{p(\mathbf{z}_{0})}$$

$$\alpha_{i} = \alpha_{i-1} \frac{\cos(\theta_{i-2 \to i-1})}{p(\omega_{i-2 \to i-1})} f(\mathbf{z}_{i-1} \to \mathbf{z}_{i-2} \to \mathbf{z}_{i-3})$$

Bidirectional path tracing

- Trace paths from eye and light (eye and light subpaths)
 - Terminate each using Russian roulette
- Evaluate all connections and sum up

Bidirectional path tracing

- Path of length k+1 sampled with s vertices from light, t from eye, denoted $\bar{X}^{s,t}$
- Each length k can be sampled in k+2 ways, or with k+2 "sampling techniques"
 - s = 0,1,...k+1 and t = k+1-s
 - Probability density for technique s,t denoted $p_{s,t}$

Example

s:number of light vertices t: number of eye vertices

s=1, *t*=2, *k*=2

$$s=2, t=1, k=2$$

$$s+t = 4, k=3$$

$$s+t = 5, k=4$$

s + t = 6

[Veach] 21

Bidirectional path tracing

- Conceptually, each bidirectional path tracing operation samples all techniques for all path lengths
- In practice, many are not evaluated because of Russian roulette, implemented with binary variable $R_{s,t}$
- Techniques combined with multiple importance sampling, weights w_{st}

One bidirectional path tracing step

$$I_{j} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{\infty} \sum_{s+t-1=k} \frac{R_{s,t}}{p(R_{s,t}=1)} w_{s,t}(\bar{X}_{i}^{s,t}) \frac{f_{j}(\bar{X}_{i}^{s,t})}{p_{s,t}(\bar{X}_{i}^{s,t})}$$

Path contribution

Path contribution

MIS weights

Balance heuristics

$$w_{s,t} = \frac{p_{s,t}}{\sum_{0 < i \le s} p_{s-i,t+i} + p_{s,t} + \sum_{0 < i \le t} p_{s+i,t-i}}$$

$$= \frac{1}{\sum_{0 < i \le s} \frac{p_{s-i,t+i}}{p_{s,t}} + 1 + \sum_{0 < i \le t} \frac{p_{s+i,t-i}}{p_{s,t}}}$$

Probabilities to sample path with all other techniques

• Example with s=2, t=2

Notation

- Probability $p_L(\mathbf{y}_i)$ to sample vertex \mathbf{y}_i on light path from light
- Probability $p_E(\mathbf{y}_i)$ to sample from eye
- Similar: $p_E(\mathbf{z}_i)$ and $p_L(\mathbf{z}_i)$

MIS weights

• Note
$$\frac{p_{s-i,t+i}}{p_{s,t}} = \prod_{j=1}^i \frac{p_E(\mathbf{y}_{s-j})}{p_L(\mathbf{y}_{s-j})}, \quad 0 < i \le s$$

$$-$$
, $0 < i \le t$

"Change i vertices from light to eye"

 $rac{p_{s+i,t-i}}{p_{s,t}} = \prod_{i=1}^i rac{p_L(\mathbf{z}_{t-j})}{p_E(\mathbf{z}_{t-j})}, \quad 0 < i \leq t$ "Change i vertices from eye to light"

Change 1 vertex from light to eye

$$rac{p_{s-1,t+1}}{p_{s,t}} = rac{p_E(\mathbf{y}_{s-1})}{p_L(\mathbf{y}_{s-1})}$$

Change 2 vertices from light to eye

$$\frac{p_{s-2,t+2}}{p_{s,t}} = \frac{p_E(\mathbf{y}_{s-1})}{p_L(\mathbf{y}_{s-1})} \frac{p_E(\mathbf{y}_{s-2})}{p_L(\mathbf{y}_{s-2})}$$

MIS weights

Ned to compute

$$w_{s,t} = \frac{1}{\sum_{0 < i \le s} \prod_{j=1}^{i} \frac{p_E(\mathbf{y}_{s-j})}{p_L(\mathbf{y}_{s-j})} + 1 + \sum_{0 < i \le t} \prod_{j=1}^{i} \frac{p_L(\mathbf{z}_{t-j})}{p_E(\mathbf{z}_{t-j})}}$$

"Change 1 to s vertices from light to eye" "Change 1 to t vertices from eye to light"

Example

• Same render time

Bidirectional with multiple importance sampling

Standard path tracing

Implementation details

- Short paths (s,t<=2) need special attention
 - See definition of α^E , α^L values and connection terms $c_{s,t}$ in document
- For t=1, paths do not necessarily go through sampled pixel!
 - Accumulate in separate image buffer, see document

Next time

Photon mapping