

Learning Dirichlet Priors for Affordance Aware Planning

David Abel, Gabriel Barth-Maron, James MacGlashan, Stefanie Tellex Dept. of Computer Science, Brown University

Goal

Previous Work: Provided an MDP with knowledge in order to solve extremely complex, previously unsolved tasks.

Proposal: Learn this knowledge to remove dependence on expert.

Background

Affordances: Direct agent toward relevant action possibilities.

"What [the environment] offers [an] animal, what [the environment] provides or furnishes, either for good or ill"

- J.J. Gibson, 1977

Formalism:

$$\Delta = \langle p, g \rangle \longmapsto \mathcal{A}'$$

p = predicate on states

g = lifted goal description

A' = subset of OO-MDP Actions

Domain: Minecraft

≈ Turing Complete Legos

Affordance Example

 $\Delta_1 = \langle nearPlane, atLoc \rangle \longmapsto \{move\}$ $\Delta_2 = \langle nearTrench, atLoc \rangle \longmapsto \{place\}$

If Δ 's predicate is true and Δ 's goal type matches the current goal, use Δ 's actions

Learning

Goal: For a given state, for each affordance, learn which actions are most relevant:

$$\Pr(\mathcal{A}^* \mid s, \Delta_1 \dots \Delta_K)$$

Graphical Model:

s= 00-MDP State

 $\Delta=$ Affordance

lpha= Action Counts

eta — Action Set Size Counts

 $\lambda=$ Distribution on Actions

 $\eta=$ Distribution on Action Set Size

 $\mathcal{A}' = \mathit{One}$ Affordance's Action Set $\mathcal{A}^* = igcup_{\mathcal{A}'_i}^{\mathit{K}}$

Where:

$$\Pr(\lambda \mid \alpha) = DirMult(\alpha)$$

$$\Pr(n \mid \beta) = Dir(\beta)$$

Learning Example

1. For each activated affordance, count:

 $\alpha = \underset{\text{each action was used}}{\text{number of worlds in which}}$

 $\beta=rac{ ext{number of unique actions}}{ ext{used in each world}}$

 $\Delta_{i}^{:}.\alpha \leftarrow \{moveRight++, moveForward++, placeRight++\}$ $\Delta_{i}.\beta \leftarrow \{3++\}$

2. We have:

 $\Delta_i.getActions(s)$:

 $\begin{array}{c} \lambda \leftarrow DirMult(\Delta_i.\alpha) \\ n \leftarrow Dir(\Delta_i.\beta) \\ \mathcal{A}' \leftarrow_n \lambda \\ \text{return:} \quad \mathcal{A}' \end{array}$

3. When solving the MDP on a new state space, in each state s:

$$\mathcal{A}^* = \bigcup_{i=1}^K (\Delta_i.getActions(s))$$

Results

Avg. # Bellman Updates Per Converged Policy

No Affordances With Expert Affordances 9000 6750 4500 2250

Small World Medium World Large World