Association Testing with X Chromosome Data An Application To HCHS/SOL

Caitlin McHugh, with Tim Thornton

Department of Biostatistics University of Washington

9 Feb 2015

			Autosomes	X Chromosome
		Self, Female	$\frac{1}{2}$	$\frac{1}{2}$
		Self, Male	$\frac{1}{2}$	1
		Mother-Daughter	$\frac{1}{4}$	$\frac{1}{4}$
		Mother-Son, Father-Daughter	$\frac{1}{4}$	$\frac{1}{2}$
		Father-Son	$\frac{1}{4}$	0
		Full sisters	$\frac{1}{4}$	$\frac{6}{16}$
h()		Full brothers	$\frac{1}{4}$	$\frac{1}{2}$
2 1		Sister-Brother	$\frac{1}{4}$	$\frac{1}{4}$
2 1 6 3 4 7 5 8		Aunt-Niece	$\frac{1}{8}$	3 16
	Maternal	Aunt-Nephew	18	$\frac{6}{16}$
		Uncle-Niece	$\frac{1}{8}$	$\frac{1}{8}$
		Uncle-Nephew	$\frac{1}{8}$	$\frac{1}{4}$
		Grandma-Granddaughter	$\frac{1}{8}$	$\frac{1}{8}$
		Grandma-Grandson	$\frac{1}{8}$	$\frac{1}{4}$
		Grandpa-Granddaughter	$\frac{1}{8}$	$\frac{1}{4}$
		Grandpa-Grandson	$\frac{1}{8}$	$\frac{1}{2}$
9 10 11 12 13 14 15 16		Aunt-Niece	$\frac{1}{8}$	$\frac{1}{8}$
		Aunt-Nephew	$\frac{1}{8}$	0
	7	Uncle-Niece	$\frac{1}{8}$	0
	TDS	Uncle-Nephew	$\frac{1}{8}$	0
	Paternal	Grandma-Granddaughter	$\frac{1}{8}$	$\frac{1}{4}$
	Д	Grandma-Grandson	$\frac{1}{8}$	0
		Grandpa-Granddaughter	18	0
		Grandpa-Grandson	$\frac{1}{8}$	0

- ► We estimated PCs in the SOL subjects using 3,600 LD-pruned X chromosome SNPs and PC-AiR.
- ► The unrelated set unrelated.pcair.deg4 of 10,272 samples as defined from the autosomes was set, and only study samples (subj.plink & geno.cntl==0) excluding gengrp6.outliers were projected for a total of 12,747 samples.

▶ We compare these results which use only 3,600 X chromosome SNPs to a pruned set of 4,413 chromosome 20 SNPs.

▶ We examine results which use both 155,196 pruned autosomal and 3,582 pruned X chromosome SNPs together, for a total SNP set of 158,778 SNPs across the genome.

 Φ_X was estimated for all OLGA samples using the following scenarios:

	SNP set	PCA run	EVs used
1	all X chr	-	-
2	all X chr	$autosomes + X \; chr$	1-5
3	all X chr	autosomes	1-5
4	all X chr	X chr	1-2
5	pruned X chr	-	-
6	pruned X chr	$autosomes + X \; chr$	1-5
7	pruned X chr	autosomes	1-5
8	pruned X chr	X chr	1-2
9	pruned autosomal	autosomes	1-5

All settings used the autosomal unrelated set of 10,272 samples and estimated Φ_X for 12,734 study samples posted to dbGaP with no X chromosome anomalies.

Estimate of Φ_X in 10,272 autosomal-unrelated samples models 1-4: unpruned X chr SNPs models 5-8: pruned X chr SNPs

- ▶ We calculate PCs using a pruned set of autosomal SNPs.
- ▶ We then estimate Φ_X using a pruned set of X chromosome SNPs, adjusting for PCs 1-5 on the autosomes.
- ▶ We then calculate PCs using a pruned set of X chromosome SNPs, adjusting for the calculated Φ_X , which is adjusted for autosomal structure.
- ▶ We consider Φ_X thresholds of 0.025 and 0.2 for unrelated pairs.

