Рабочая тетрадь № 3

Для представления чисел в ЭВМ обычно используют битовые наборы — последовательности нулей и единиц фиксированной длины. Позиция в битовом наборе называется разрядом.

1. Теоретический материал

Для представления целых чисел без знака удобен битовый набор, соответствующий записи в двоичной системе счисления. Для целых числе без знака как правило выделяют $k=8,\ 16,\ 32$ или 64 разряда.

Для получения компьютернойзаписи целого числа без знака требуетсяего перевод в двоичную систему счисления, далеенеобходимо дополнить результат нулями слева до стандартной разрядностиk.

2. Пример

Задача:

Найти представление беззнаковогоцелого числа 26_{10} в восьмиразрядном битовом наборе

Решение:

Переведем число 26 в двоичную систему счисления.

Результат перевода: $26_{10} = 11010_2$

Дополним полученный результат слева нулями до восьми шестнадцати $26_{10} = \mathbf{000} \ 11010_2$

Ответ:

00011010

3. 3	Задания													
1.	Задача:													
	\/ Найти п	редста	влени	е безз	накої	вого ч	числа	1321	0 в ше	естнад	ццаті	иразря	ІДНОМ	
	Х битовом	\ битовом наборе												
	Решение:	132	2											
		-132	66	2										
		0	-66	33	2									
			0	-32	16	2								
				1	-16	8	2							
					0	-8	4	2						
						0	-4	2	2					
							0	-2	1					
	00000000+10000100=0000000010000100													
	Ответ: 000000010000100													
	L													
2.	Задача:													
	Найти	миним	ально	е и	мак	сима.	пьное	зна	ачения	я чи	сел	для	16-ти	
	разрядного беззнакового представления													
	Решение:													
X														
	Ответ: 000000000000000 = 0 – МИНИМАЛЬНОЕ 111111111111 = 65535- МАКСИМАЛЬНОЕ													
		11111 =	65535	- MAK	СИМА	АЛЬНС	ЭE							
	\times													

1. Теоретический материал

Для целых чисел со знаком задействуют три варианта компьютерного представления:

- представление в прямом коде;
- представление в обратном коде;
- представление в дополнительном коде.

Во всех этих способахстарший (левый) разряд равен нулю, если число положительное и единице, если число отрицательное. Остальные разряды числа (цифровая часть или мантисса) задействованы для представления модуля числа.

Положительные числа в дополнительном, обратном и прямом кодеидентичны — мантиссавключает двоичное представление числа, а в старшем разряде располагается ноль.

Для отображения отрицательного значения в прямом коде, в разряд знакаставиться единица, а в разряды мантиссы – двоичный код его модуля.

Обратный код отрицательного числа получается инверсией всех цифр двоичного представления абсолютной величины, включая знаковый разряд: нули инвертируются в единицы, а единицы в нули.

Дополнительный код чисел с отрицательным знаком рассчитывается путем прибавления единицы к его младшему разряду обратного кода числа.

2. Пример

Задача:

Перевести число 45 в прямой, обратный и дополнительный код (k = 8)

Решение:

Сначала переведем десятичное число 45 в двоичную систему счисления.

Получилось: $45_{10} = 101101_2$.

Запишем **прямой код числа**. Первый слева разряд 0 (знак «плюс»). Оставшиеся 7 разрядов занимает число в двоичном представлении. Если в числе меньше 7 разрядов, оставшиеся дополняются нулями слева. Таким образом, для числа **45** получаем прямой код в виде **0,0101101** (первый слева 0 соответствует знаку, затем следует 0, дополняющий число до 7 разрядов, затем следует само двоичное число). Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково.

Ответ:

0,0101101

Задача:

Найти прямой, обратный и дополнительный коды в однобайтовом представлении для числа **-56**₁₀.

Решение:

Выполним перевод положительного числа **56** в двоичную систему счисления, получим: $56_{10} = 111000_2$.

Запишем **прямой код числа**. Всего в однобайтовом представлении 8 двоичных разрядов. Первый слева разряд — знаковый: 1 — для отрицательного числа. Оставшиеся 7 разрядов занимает число в двоичном представлении. Если в числе меньше 7 разрядов, оставшиеся дополняются нулями слева. Таким образом, для числа **-56** получаем прямой код в виде **1,0111000**.

Обратный код отрицательного числа получается из прямого инверсией всех разрядов, за исключением знакового. Получаем: **1,1000111**.

Дополнительный код отрицательного числа получается из обратного кода прибавлением к двоичному числу единицы (знаковый разряд в операции не участвует):

1000111

+

1001000

Получаем: 1,1001000

Ответ:

Прямой код 1,0111000

Обратный код 1,1000111

Дополнительный код 1,1001000

3. Задания

1. **Задача:**

Перевести число 12 в прямой, обратный и дополнительный код (k = 8)

Решение:12₁₀=1100₂

Прямой код - 0,00011002

Обратный код - 0,00011002

Дополнительный код - 0,00011002

Ответ

Прямой код - 0,00011002

Обратный код - 0,11100112

Дополнительный код -0,11101002

Задача:

Найти прямой, обратный и дополнительный коды в однобайтовом представлении для числа -35₁₀.

Решение:3510=1000112

Прямой код - 1,0100011

Обратный код - 1,1011100

Дополнительный код - 1,1011101

Ответ:

Прямой код - 1, 0100011

Обратный код - 1,1011100

Дополнительный код - 1,1011101

3. **Задача:**

Задан дополнительный код числа в однобайтовом представлении: 1,1011100. Найти число в десятичной системе счисления.

Решение:

1,1011100₂=-1 * 1011100

Доп код 1011100 = 1011011 (обратный)
Обратный код 1011011= 0100100 (прямой)
100100₂=4+32=36
-1*36=-36₁₀

Ответ: -36

1. Теоретический материал

Сложение и вычитание чисел без знака осуществляется по стандартным алгоритмам для позиционных систем счисления.

При сложении в обратном коде складываются все разряды (включая знаковый) по обычному алгоритму. Результат сложения для k-разрядных чиселв общем виде имеет длину k+1 (старший разряд единица, если при сложении старших разрядов операндов был перенос, иначе — ноль). Значение левого k+1-го разряда прибавляется к младшему разряду результата. В итоге получим k-разрядный битовый набор — сумму чисел в обратном коде. Разность чисел в обратном коде x-y можно свести к операции сложения x+(-y).

В дополнительном коде для сложения сначала по обычному алгоритму складываются все разряды (включая знаковый), азатем единицу переноса в k+1-й разряд необходимо отбросить.

2. Пример

Задача:

Сложить два числа: $A_{10} = 7$, $B_{10} = 16$.

Решение:

Переведем числа в двоичную систему счисления

$$A_2 = +111 = +0111$$
; $B_2 = +10000$.

Исходные числа имеют различную разрядность, необходимо провести выравнивание разрядной сетки:

$$[A_2]_\pi = [A_2]_{\text{ok}} = [A_2]_{\text{jk}} = 0 | 001111; \ [B_2]_\pi = [B_2]_{\text{ok}} = [B_2]_{\text{jk}} = 0 | 10000.$$

Сложение в обратном или дополнительном коде дает один и тот же результат:

$$\begin{array}{cccc} + & 0| & 00111 \\ & 0| & 10000 \\ C_2 = & 0| & 10111 \\ C_{10} = & 23 \end{array}$$

Ответ:

23

Задача:

Сложить два числа: $A_{10} = +16$, $B_{10} = -7$ в ОК (обратный код) и ДК (дополнительный код).

Решение:

Требуется преобразование A+(-B), в котором второй член записывается с учетом его знака:

$$[A_2]_\pi = [A_2]_{o\kappa} = [A_2]_{\pi\kappa} = 0|10000;$$

$$[B_2]_\pi = 1|111 = 1|00111; [B_2]_{o\kappa} = 1|11000; [B_2]_{\pi\kappa} = 1|11001$$

При складывании чисел в обратном и дополнительном кодах получены переносы в знаковый разряд и из знакового разряда. В случае первом случае (обратный код)при переносе из знакового разряда необходимо дополнительно прибавить единицу младшего разряда. Во втором случае (дополнительный код) данный перенос игнорируется.

Ответ:

9

3. Задания

Задача:

Дано два десятичных двузначных целых числа: A = 78, B = 56. Вычислить (A-B)ок, (B-A)дк.

Решение:

Прямой код $78=0 \mid 1001110_2 \quad -78=1 \mid 1001110_2$ $56=0 \mid 0111000_2 \quad -56=1 \mid 0111000_2$ Обратный код $78=0 \mid 1001110_2 \quad -78=1 \mid 0110001_2$ $56=0 \mid 0111000_2 \quad -56=1 \mid 1000111_2$ Дополнительный код $78=0 \mid 1001110_2 \quad -78=1 \mid 1001111_2$

```
56=0 | 0111000<sub>2</sub> -56=1 | 0111001<sub>2</sub>

A+(-B) OK:
0 | 1001110+
1 | 1000111
0 | 0010110=22<sub>10</sub>

В+(-A) ДК:
0 | 0111000
1 | 1001111
0 | 0010110 = -22<sub>10</sub>

Omsem:
0 | 0010010 - ок
0 | 0000111- дк
```

Тест 3 Задание: 1. Для представления целого числа может применяться Ответ: А) нормализованный или ненормализованный код В) прямой, обратный или дополнительный код С) естественный или экспоненциальный код D) логарифмический и показательный код 2. Задание: Положительное число Ответ: А) выглядит одинаково только в прямом и обратном кодах В) выглядит одинаково только в обратном и дополнительном кодах С) выглядит одинаково в прямом, обратном и дополнительном кодах D) выглядит различно в прямом, обратном и дополнительном кодах **3.** Задание: Если взять отрицательное число и инвертировать разряды кроме знакового, то получится Ответ: А) обратный код В) прямой код С) дополнительный код D) двоичный код 4. Задание: Дополнительный код числа получается Ответ: А) из обратного кода прибавлением единицы к младшему разряду без переноса в знаковый разряд В) из обратного кода прибавлением единицы к младшему разряду с

В) из обратного кода прибавлением единицы к младшему разряду с переносом в знаковый разряд

С) из прямого кода прибавлением единицы к младшему разряду без переноса в знаковый разряд

D) из прямого кода прибавлением единицы к младшему разряду с переносом в знаковый разряд

5.	Задание:									
	Если к двоичному числу без знака добавить знаковый разряд то									
	получится									
	Ответ:									
	\									
	В) прямой код									
	С) дополнительный код									
	/ \ D) двоичный код									
6.	Задание:									
	Число $X = 14_{10}$ в восьми разрядном двоичном дополнительном и									
	Равняется									
	00001110									
	Ответ:									
	A) 00001110 B) 0110010									
	С) 1110001 D) нет верного ответа									
7.	Задание:									
	Восьми разрядное двоичное число $X = (10001010)_2$, заданное в									
	дополнительном коде в десятичной системе равняется									
	0001001									
	1110110									
	Omsem:									
	A) -10 B) $+10$ C) -117 D) -118									
8.	Задание:									
	Восьми разрядное двоичное число $X = (00100111)_2$ заданное в обратном									
	коде в десятичной системе равняется									
	Ответ:									
	A) -39 B) +39 C) -88 D) +88									
9.	Задание:									
	$X=-63_{10}$ в прямом коде будет представлено как									
	Ответ:									
	A) 10111111 B) 00111111 C) 10011111 D) 00011111									
10.	Задание:									
	Укажите дополнительный код десятичного числа									
	-103 (минус сто три) в 8 разрядном компьютерном представлении.									
	Ответ: 10011001									

Реализация задач на языке программирования Python

При написании программ часто возникает ситуация, когда необходимо производить различные математические вычисления. Как и другие языки программирования, Python предоставляет разнообразные функции для выполнения вычислений.

1. Теоретический материал

Для математических расчетов с использованием стандартных математических функций требуется импортировать соответствующую библиотеку:

Import math

После импорта к функциям библиотеки можно обращаться следующим образом:

math.имя_функции(...)

В таблице представлен синтаксис и описание ключевых математических функций библиотеки **math** языка Python

Функция	Назначение						
ceil(x)	Округляет число x до ближайшего большего целого (округление						
	"вверх").						
floor(x)	Округляет число x до ближайшего меньшего целого						
	(округление "вниз").						
fabs(x)	Принимает абсолютное значение (модуль) числа x .						
exp(x)	Принимает значение e^x .						
	Если у функции один аргумент x , то функция принимает						
log(x[, b])	значение натурального логарифмах. При передаче двух						
	аргументов, второй выступает в качестве основания логарифма.						
pow(x, y)	Принимает значение х в степени у.						
sqrt(x)	Принимает значение квадратного корня из х.						
acos(x)	Принимает значение арккосинусах в радианах.						
asi (x)	Принимает значение арксинусах в радиан □х.						
atan(x)	Принимает значение арктангенсах в радианах.						
cos(x)	Принимает значение косинусах, где хвыражен в радианах.						
sin(x)	Принимает значение синусах, где хвыражен в радианах.						

tan(x)

Принимает значение тангенсаx, где x выражен в радианах.

2. Пример

Задача:

Для введенных чисел х и у найти значение функции

$$f(x,y) = 2y^x + \ln|x + y^3|$$

Решение (код программы):

```
import math
x = float(input('Введите x '))
y = float(input('Введите y '))
f = 2 * math.pow(y, x) + math.log(math.fabs(x + y ** 3))
print('f = ', f)
```

Задача:

Для введенных чисел x и y найти значение функции

$$\sin(xe^{y}), xy \le -1$$

$$f(x,y) = \{\sqrt{|\cos(xy)|}, -1 < xy < 5$$

$$x^{2} + \operatorname{tgy}, xy \ge 5$$

Решение (кодпрограммы):

```
import math
x = float(input(' Введите х '))
y = float(input(' Введите у ' ))
if x * y <= -1:
    f = math.sin(x * math.exp(y))
elif x * y >= 5:
    f = x * x + math.tan(y)
else:
    f = math.sqrt(math.fabs(math.cos(x * y)))
print('f = ', f)
```

Задача:

Вычислить значение функции $f(x) = \sin(x - e^2) + 3x$ на отрезке [xn, xk] с шагом hx

Решение (кодпрограммы):

```
import math
xn = float(input('Введитехп '))
xk = float(input('Введитехк '))
hx = float(input('Введитенх '))
x = xn #устанавливаем x в начало отрезка в xn
whilex<= xk: #пока не дойдем до конца отрезка xk
f = math.sin(x + math.exp(2)) + math.pow(3, x)
print('x = ', x, ' f = ', f)
x = x + hx #прибавляем к аргументу шаг
```

Задача*:

Вычислить значения функции

$$f(x,y) = \begin{cases} \sqrt[5]{y+x}, & \text{при } x+y \le 2; \\ \left|\sin x\right|^{y}, & \text{при } x+y > 2. \end{cases}$$

При этом x изменяется в отрезке $0 \le x \le 1$ с шагом hx = 0.2; y изменяется в отрезке $1 \le y \le 2$ с шагом hy = 0.5.

Решение (кодпрограммы):

ax, bx, hx = 0.0, 1.0, 0.2

ay, by, hy = 1.0, 2.0, 0.5

import math

```
#или print(f'x = {x:.3}, y = {y:.3}, f = {f:.3}')
y = y + hy #прибавляем к у шаг
x = x + hx #прибавляем к х шаг
```

3. Задания

1. | *Задача*:

Для введенных чисел х и у найти значение функции

$$f(x,y) = \ln |\sin(x+y)|$$

Решение (код программы):

```
import math
x, y= int(input()), int(input())
def f(x,y):
    return math.log(abs(math.sin(x+y)), math.e)
print(f(x,y))
```

2. Задача:

Для введенных чисел х и у найти значение функции

$$\arctan \frac{3\sqrt{|x-y|}(xe^y), \sin(x+y) \le -0.5}{f(x,y) = \{3\log_3(|xy|), -0.5 < \sin(x+y) < 0.5 \\ x^3 + y^{1.5}, \sin(x+y) \ge 0.5}$$

Решение (код программы):

```
import math
x, y= int(input()), int(input())
def f(x,y):
    if math.sin(x+y)<=-0.5:
        return math.atan(math.pow(abs(x-y),1/3))*(x*(math.e)**y)
    if -0.5<math.sin(x+y)<0.5:
        return 3*math.log(abs(x*y),3)
    if math.sin(x+y)>=0.5:
        return x**3+y**(3/2)
```

3. Задача:

Вычислить значение функции $f(x) = \cos^3(e^*x) + \sin|x|$ на отрезке [a, b] с шагом hx

Решение (код программы):

```
import math
a, b, h= int(input()), int(input()), int(input())
def f(x):
    return (math.cos(math.e*x))**3 + math.sin(abs(x))
for x in range(a, b + 1, h):
    print(f(x))
```

4. **Задача:**

Вычислить значения функции

$$f(x,y) = \begin{cases} \sqrt[3]{\sin(xe^{0.1y})}, & \text{при } x + y \le 2; \\ \left| \log_2(x+y) \right|, & \text{при } x + y > 2. \end{cases}$$

При этом x изменяется в отрезке $1 \le x \le 2.5$ с шагом hx = 0.5; y изменяется в отрезке $1 \le y \le 4$ с шагом hy = 1.

Решение (код программы):

```
import math
x = 1
hx = 0.5
y = 1
hy = 1
def f(x, y):
    if x + y <= 2: return math.sin(x*math.e**(0.1*y))**(1/3)
    else: return abs(math.log(x+y, 2))
for xn in range(4):
    x = x + hx * xn
    for yn in range(4):
    y = y + hy * yn
    print(f(x,y))</pre>
```