Report: Progress until now

Instead of directly jumping into DL methods, I first tried to apply known c.v methods and create a pipeline to solve the given problem statement. (since they are more faster at execution, and more intuitive to debug)

Problem Statement:

To find the actions of the JCB arm, i.e; (dig, swing, dump)

My Approach:

- 1. Localize the lower part of the JCB arm
- 2. Compute its optical flow thereby finding the direction of movement of the arm (i.e up, left, etc).

Work Progress:

Iteration 1:

Workflow:

- 1. Segment the arm (based on colour segmentation / clustering). This localizes the arm.
- 2. Compute optical flow in the frame.
- 3. Compute the optical flow of the arm by combining the first two outputs.
- 4. Use this to find the global direction of the arm by taking weighted mean of optical flow of the arm.

Original Frames

Segmented JCB arm (k-means, color-seg)

Optical flow of JCB arm (Farneback method)

Challenges Faced:

- 1. Not able to entirely segment the arm due to illumination(shadows etc)/occlusions(dirt etc).
- 2. Optical flow not computed properly due to discontinuous frames in the dataset.

Iteration 2:

Workflow:

1. Used feature detectors like (ORB, FAST) to improve the localization of the arm.

Output:

JCB arm localization (SURF features)

Segmented Optical Flow

Challenges Faced:

- 1. Requires more template images which might not be good for scalability.
- 2. Though we get the approximate angular movement of the arm, it is still not enough to accurately measure the overall direction of the arm.

<u>Iteration 3:</u> (In Progress)

- 1. Train Faster RCNN's to localize the arm.
- 2. Use RNN's for improving the action detection.

Additional requirements:

- 1. Full video without any frame-cuts.
- 2. probably more time.