

Global United Technology Services Co., Ltd.

Report No.: GTS201805000108F01

FCC Report (Bluetooth)

Shenzhen Hangshi Technology Co., Ltd Applicant:

Hangshi Technology Park, Democracy West Industry **Address of Applicant:**

Area, Shajing Town, Bao'an Distric, Shenzhen, China

Manufacturer/Factory: Shenzhen Hangshi Technology Co., Ltd

Hangshi Technology Park, Democracy West Industry Address of Manufacturer/Factory: Area, Shajing Town, Bao'an Distric, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Bluetooth Keyboard

Model No.: **HB188S**

FCC ID: 2AKHJHB188S

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: May 09, 2018

Date of Test: May 10- 25, 2018

Date of report issued: May 25, 2018

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson^VLo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
V1.0	May 25, 2018	Original

Prepared By:	Trankly	Date:	May 25, 2018
	Project Engineer		
Check By:	Andy wa	Date:	May 25, 2018
	Reviewer		

3 Contents

		Pa	age
1	COV	'ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
•	5.1 5.2 5.3 5.4 5.5 5.6 5.7	GENERAL DESCRIPTION OF EUT TEST MODE TEST FACILITY. TEST LOCATION. OTHER INFORMATION REQUESTED BY THE CUSTOMER DESCRIPTION OF SUPPORT UNITS ADDITIONAL INSTRUCTIONS	5 7 7 7
6		T INSTRUMENTS LIST	
7		T RESULTS AND MEASUREMENT DATA	
	7.1 7.2	ANTENNA REQUIREMENT	
	7.2 7.3	CONDUCTED EMISSIONS	
	7.4	20DB EMISSION BANDWIDTH	
	7.5	CARRIER FREQUENCIES SEPARATION	_
	7.6	HOPPING CHANNEL NUMBER	
	7.7	DWELL TIME	
	7.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	7.9	BAND EDGE	
	7.9.1		
	7.9.2		
	7.10	SPURIOUS EMISSION	
	7.10		
_	7.10		
8	IES	T SETUP PHOTO	. 38
a	CUT	CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Bluetooth Keyboard
Model No.:	HB188S
Serial No.:	HSHB188s00001
Test sample(s) ID:	GTS201805000108-1
Sample(s) Status	Engineer sample
Hardware:	V1.0
Software:	V1.0
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK
Antenna Type:	PCB Antenna
Antenna gain:	1.87dBi
Power supply:	DC 3.7V by Li-ON battery

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Other Information Requested by the Customer

None.

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number
Emerson Network Power	USB Charger	A1299	N/A

5.7 Additional Instructions

EUT Software Settings:

	Special software is used. The software provided by client to enable the EUT under transmission
Mode	condition continuously at specific channel frequencies individually.

Power level setup in software						
Test Software Name	rare Name Broadcom BlueTool					
Mode	Channel	Channel Frequency (MHz) Soft Set				
GFSK	CH00	2402				
	CH39	2441	TX level : 0dBm			
	CH79	2480				

Run Software

6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	June 28 2017	June 27 2018	
4	Loop Antenna	Zhinan	ZN30900A	GTS534	June 28 2017	June 27 2018	
5	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	June 28 2017	June 27 2018	
6	Double-ridged horn antenna	SCHWARZBECK	9120D	GTS208	June 28 2017	June 27 2018	
7	Horn Antenna	ETS-LINDGREN	3160-09	GTS218	June 28 2017	June 27 2018	
8	RF Amplifier	HP	8347A	GTS204	June 28 2017	June 27 2018	
9	RF Amplifier	HP	8349B	GTS206	June 28 2017	June 27 2018	
10	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	June 28 2017	June 27 2018	
11	Spectrum Analyzer	Keysight	N9010A	GTS536	March 02 2017	March 01 2018	
12	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
13	Coaxial Cable	GTS	N/A	GTS210	June 28 2017	June 27 2018	
14	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018	
15	Coaxial Cable	GTS	N/A	GTS210	June 28 2017	June 27 2018	
16	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018	
17	Thermo meter	N/A	N/A	GTS256	June 28 2017	June 27 2018	
18	D.C. Power Supply	Instek	PS-3030	GTS232	June 28 2017	June 27 2018	
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	June 28 2017	June 27 2018	

Cond	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May 15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 28 2017	June 27 2018
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 28 2017	June 27 2018
5	High voltage probe	SCHWARZBECK	TK9420	GTS537	June 28 2017	June 27 2018
6	ISN	SCHWARZBECK	NTFM 8158	GTS565	June 28 2017	June 27 2018
7	Coaxial Cable	GTS	N/A	GTS227	June 28 2017	June 27 2018
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Thermo meter	KTJ	TA328	GTS233	June 28 2017	June 27 2018
10	10dB Pulse Limiter	Rohde & Schwarz	N/A	GTS224	June 28 2017	June 27 2018

General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 1.87dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto	
Limit:		Limit (c	dBuV)
Littitt	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	n of the frequency.	
Test setup:	Reference Plane		
Test procedure:	AUX Filter AC power Equipment E.U.T Remark EU.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m		
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and 		
	photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement data:

Line:

Fr	eq R	eading	LISN/ISN	Cable		Limit	Over	
	1	evel	factor	loss	level	level	limit	Remark
M	Hz	dBuV	dB	dB	dBuV	dBuV	dB	
0.1	63 1	7.80	9.55	0.05	27.40	55.30	-27.90	Average
0.1	63 3	7.20	9.55	0.05	46.80	65.30	-18.50	QP
0.1	82 2	6.10	9.55	0.03	35.68	54.42	-18.74	Average
0.1	82 3	6.50	9.55	0.03	46.08	64.42	-18.34	QP
0.2	13 2	2.60	9.56	0.01	32.17	53.10	-20.93	Average
0.2	13 3	2.90	9.56	0.01	42.47	63.10	-20.63	QP
0.2	35 1	9.81	9.56	0.01	29.38	52.26	-22.88	Average
0.2	35 2	8.31	9.56	0.01	37.88	62.26	-24.38	QP
0.2	67 1	7.60	9.57	0.01	27.18	51.20	-24.02	Average
0.2	67 2	6.30	9.57	0.01	35.88	61.20	-25.32	QP
4.0	06 1	8.20	9.63	0.03	27.86	46.00	-18.14	Average
4.0	06 3	0.50	9.63	0.03	40.16	56.00	-15.84	QP

Neutral:

rred	Reading	TION/ ION	Capie			Over	
	level	factor	loss	level	level	limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
0.159	15.69	9.55	0.06	25.30	55.52	-30.22	Average
0.159	33.79	9.55	0.06	43.40	65.52	-22.12	QP
0.186	18.41	9.56	0.02	27.99	54.20	-26.21	Average
0.186	31.51	9.56	0.02	41.09	64.20	-23.11	QP
0.213	13.40	9.58	0.01	22.99	53.10	-30.11	Average
0.213	26.50	9.58	0.01	36.09	63.10	-27.01	QP
0.240	14.30	9.59	0.01	23.90	52.08	-28.18	Average
0.240	25.70	9.59	0.01	35.30	62.08	-26.78	QP
0.555	13.30	9.63	0.02	22.95	46.00	-23.05	Average
0.555	22.40	9.63	0.02	32.05	56.00	-23.95	QP
4.070	16.40	9.68	0.03	26.11	46.00	-19.89	Average
4.070	26.70	9.68	0.03	36.41	56.00	-19.59	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013	
Limit:	20.97dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-5.278		
GFSK	Middle	-4.209	20.97	Pass
	Highest	-3.639		

Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013	
Limit:	N/A	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	1.134	
GFSK	Middle	1.141	Pass
	Highest	1.136	

Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1009	756	Pass
GFSK	Middle	960	756	Pass
	Highest	1003	756	Pass

Note: According to section 7.4

9			
Mode	20dB bandwidth (kHz)	Limit (kHz)	
Wode	(worse case)	(Carrier Frequencies Separation)	
GFSK	1134	756	

Test plot as follows:

Modulation mode:

GFSK

Lowest channel

Middle channel

Highest channel

7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak					
Limit:	15 channels					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak					
Limit:	0.4 Second					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	136.00	400	Pass
2441MHz	DH3	267.20	400	Pass
2441MHz	DH5	310.40	400	Pass

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as below

DH1 time slot=0.425(ms)*(1600/(2*79))*31.6=136.00msDH3 time slot=1.670(ms)*(1600/(4*79))*31.6=267.20msDH5 time slot=2.910(ms)*(1600/(6*79))*31.6=310.40ms

Test plot as follows:

Test channel: 2441MHz

DH1

DH3

DH5

7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

7.9 Band Edge

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Test plot as follows:

GFSK Mode:

Test channel:

No-hopping mode

Lowest channel

Hopping mode

Test channel:

No-hopping mode

Highest channel

Hopping mode

7.9.2 Radiated Emission Method

Test Method: ANSI C63		ion 15.209 a	and 15.205					
	3.10:2013	FCC Part15 C Section 15.209 and 15.205						
Test Frequency Range: All restric	All restriction band have been tested, and 2.3GHz to 2.5GHz band							
worse cas		have been	tested, and	2.3GHz to	2.5GHz band is the			
Test site: Measurer	ment Dista	ance: 3m						
Receiver setup: Freque	ency	Detector	RBW 1MHz	VBW	Remark			
Above 1	Above 1GHz Peak Peak			3MHz 10Hz	Peak Value Average Value			
Limit: F	requency		1MHz Limit (dBuV/		Remark			
			54.0		Average Value			
Al	bove 1GH	Z	74.0	0	Peak Value			
	Table 50cm > 50cm	< 3m :	Test Antenna	?				
ground determ 2. The EU antenn tower. 3. The an ground horizon measu 4. For ea and the and the maxim 5. The ter Specifi 6. If the elimit specut with a specific	d at a 3 menine the political and was a menine the political and was a menine and the political and the political and was a menine and the political and was a menine and the political and the	eter camber osition of the et 3 meters a was mounte ght is varied nine the maxertical polaricated emission enna was turned as a was turned as a width with Maxevel of the Even testing of eported. Other wild be re-testing to said the context of the experted of the Even testing of eported.	The table we highest race highest race way from the don the top of the from one maximum value izations of the from 0 decorates set to Peak aximum Hole to the from 0 decorates to peak could be stop the first	was rotated diation. The interference of a variable of the field one antenna was arrangents from 1 regrees to 36 d Mode. The mode was apped and the missions the one using process of the diagrams of the mode was apped and the one using process of the interference of	1.5 meters above the 360 degrees to nce-receiving de-height antenna remeters above the strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the function and 10dB lower than the fee peak values of the nat did not have beak, quasi-peak or a data sheet.			
Test Instruments: Refer to s	Refer to section 6.0 for details							
Test mode: Refer to s	Refer to section 5.2 for details							
Test results: Pass								

Remark:

Test channe	d:			Low	est			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	41.99	27.11	3.64	36.08	36.66	74.00	-37.34	Horizontal
2400.00	44.85	27.14	3.65	36.11	39.53	74.00	-34.47	Horizontal
2390.00	41.76	27.11	3.64	36.08	36.43	74.00	-37.57	Vertical
2400.00	42.16	27.14	3.65	36.11	36.84	74.00	-37.16	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	32.38	27.11	3.64	36.08	24.96	54.00	-29.04	Horizontal
2400.00	43.54	27.14	3.65	36.11	25.70	54.00	-28.30	Horizontal
2390.00	32.23	27.11	3.64	36.08	23.32	54.00	-30.68	Vertical
2400.00	45.06	27.14	3.65	36.11	24.38	54.00	-29.62	Vertical

Test channel:	Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	43.55	27.36	3.68	36.33	38.26	74.00	-35.74	Horizontal
2500.00	45.06	27.40	3.68	36.37	39.77	74.00	-34.23	Horizontal
2483.50	45.02	27.36	3.68	36.33	39.73	74.00	-34.27	Vertical
2500.00	43.07	27.40	3.68	36.37	37.78	74.00	-36.22	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	29.68	27.36	3.68	36.33	24.39	54.00	-29.61	Horizontal
2500.00	30.12	27.40	3.68	36.37	24.83	54.00	-29.17	Horizontal
2483.50	31.09	27.36	3.68	36.33	25.8	54.00	-28.20	Vertical
2500.00	30.85	27.40	3.68	36.37	25.56	54.00	-28.44	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.10 Spurious Emission

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Test channel: Lowest channel

30MHz~25GHz

Test channel: Middle channel

30MHz~25GHz

Test channel: Highest channel

30MHz~25GHz

7.10.2 Radiated Emission Method

7.10.2 Radiated Emission Method									
Test Requirement:	FCC Part15 C Section	on 1	5.209						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: :	3m						
Receiver setup:	Frequency		Detector	RB'	W	VBW	1	Value	
	9KHz-150KHz	Qı	uasi-peak	200	Hz	600Hz	z	Quasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9KI	Ηz	30KH	z	Quasi-peak	
	30MHz-1GHz	Qı	uasi-peak	100k	Ήz	300KH	lz	Quasi-peak	
	4011		Peak	1MI	Ηz	3MHz	<u> </u>	Peak	
	Above 1GHz		Peak	1MI	Ηz	10Hz		Average	
Limit: (Spurious Emissions)	Frequency		Limit (u\	//m)	٧	/alue	M	leasurement Distance	
(Opanicus Innesions)	0.009MHz-0.490M	lHz	2400/F(KHz)			QP	300m		
	0.490MHz-1.705M	lHz	24000/F(24000/F(KHz)		QP	300m		
	1.705MHz-30MH	lz	z 30		QP		30m		
	30MHz-88MHz		100		QP				
	88MHz-216MHz		150		QP				
	216MHz-960MH	Z	200		QP			3m	
	960MHz-1GHz		500		QP				
	Al 4011		500		Average				
	Above 1GHz		5000		Peak				
Test setup: Below 30MHz Turntable Ground Plane Coaxial Cable									
	Below 1GHz								

Test Procedure:

1. The EUT was placed on the top of a rotating table (0.8 meters below 1G and 1.5 meters above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Receiver+

Preamplifier-

- 2. The EUT was set 3 meters away from the interferencereceiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function

	and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

Measurement data:

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Horizontal:

Vertical:

■ Above 1GHz

Test channel:	Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	44.30	31.23	5.45	36.27	44.71	74.00	-29.29	Vertical
7206.00	44.21	35.87	6.94	34.25	52.67	74.00	-21.33	Vertical
9608.00	43.20	37.79	7.77	34.13	54.63	74.00	-19.37	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	41.58	31.23	5.45	36.27	41.99	74.00	-32.01	Horizontal
7206.00	38.95	35.87	6.94	34.25	47.41	74.00	-26.59	Horizontal
9608.00	39.64	37.79	7.77	34.13	51.07	74.00	-22.93	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	29.33	31.23	5.45	36.27	34.81	54.00	-19.19	Vertical
7206.00	29.91	35.87	6.94	34.25	36.59	54.00	-17.41	Vertical
9608.00	29.53	37.79	7.77	34.13	40.31	54.00	-13.69	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	30.11	31.23	5.45	36.27	39.09	54.00	-23.48	Horizontal
7206.00	27.63	35.87	6.94	34.25	38.79	54.00	-17.91	Horizontal
9608.00	27.43	37.79	7.77	34.13	40.08	54.00	-15.14	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:	Middle
. 551 5.151.1151.	

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	40.11	31.41	5.41	36.24	40.69	74.00	-33.31	Vertical
7323.00	41.26	36.14	7.28	34.36	50.32	74.00	-23.68	Vertical
9764.00	40.13	38.08	7.98	34.20	51.99	74.00	-22.01	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	43.68	31.41	5.41	36.24	44.26	74.00	-29.74	Horizontal
7323.00	39.50	36.14	7.28	34.36	48.56	74.00	-25.44	Horizontal
9764.00	39.10	38.08	7.98	34.20	50.96	74.00	-23.04	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	29.36	31.41	5.41	36.24	29.94	54.00	-24.06	Vertical
7323.00	28.90	36.14	7.28	34.36	37.96	54.00	-16.04	Vertical
9764.00	26.77	38.08	7.98	34.20	38.63	54.00	-15.37	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	32.35	31.41	5.41	36.24	32.93	54.00	-21.07	Horizontal
7323.00	28.35	36.14	7.28	34.36	37.41	54.00	-16.59	Horizontal
9764.00	26.86	38.08	7.98	34.20	38.72	54.00	-15.28	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	41.54	31.60	5.36	36.21	42.29	74.00	-31.71	Vertical
7440.00	47.38	36.41	7.44	34.47	56.76	74.00	-17.24	Vertical
9920.00	39.31	38.36	8.05	34.27	51.45	74.00	-22.55	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	41.98	31.60	5.36	36.21	42.73	74.00	-31.27	Horizontal
7440.00	43.22	36.41	7.44	34.47	52.60	74.00	-21.40	Horizontal
9920.00	39.90	38.36	8.05	34.27	52.04	74.00	-21.96	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	29.73	31.60	5.36	36.21	30.48	54.00	-23.52	Vertical
7440.00	31.22	36.41	7.44	34.47	40.60	54.00	-13.40	Vertical
9920.00	26.72	38.36	8.05	34.27	38.86	54.00	-15.14	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.79	31.60	5.36	36.21	30.54	54.00	-23.46	Horizontal
7440.00	29.57	36.41	7.44	34.47	38.95	54.00	-15.05	Horizontal
9920.00	26.45	38.36	8.05	34.27	38.59	54.00	-15.41	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----