

Notes		

	Table of contents
Chapter 0:	Course information
Chapter 1:	Cryptology overview 5 (20)
Chapter 2:	Block ciphers
Chapter 3:	Public Key Cryptography
Chapter 4:	Hash functions
Chapter 5:	Digital signatures
Chapter 6:	Secret sharing
Chapter 7:	Traitor tracing
Chapter 8:	Elliptic Curve Cryptography84 (335)
Chapter 9:	Quantum Cryptography
Chapter 10:	Side channel attacks

Notes		

Notes		

Notes

Notes

Notes	

(14)	Honor Code
Documents allowed during the exams:	
 Part A: a mono or bilingual dictionary 	
• Part B:	
 The lecture slides with notes on them (paper of 	or electronic)
 A mono or bilingual dictionary 	
Group works:	
 Every student in a group is responsible for his gr 	oup's submission
• If a student breaks the Honor Code, the whole g	roup is guilty

Notes		

Notes

Notes			

17	Canvas	Notes	
Information and documents available on the Canvas platf	form:		
Course materials:			
Syllabus Projects			
Lecture slides Challenges			
Homework			
Course information:			
Announcements Grades Notifications Polls			
Notifications			
(18)	References	Notes	
Useful places where to find information:			
 Introduction to Modern Cryptography (J. Katz and \) 	Y. Lindell)		
 Cryptography, theory and practice (D. Stinson) 			
• Search information online, i.e. { websites \ {local Chin			
Search information online, i.e. { websites \ { local Chin	lese network}		
Never use Baidu in any course			
(b)	Key points	Notes	
19	Key points	Notes	
	Key points	Notes	
 Work regularly, do not wait the last minute/day 	Key points	Notes	
	Key points	Notes	
 Work regularly, do not wait the last minute/day 	Key points	Notes	
Work regularly, do not wait the last minute/dayRespect the Honor Code	Key points	Notes	
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand 	Key points	Notes	
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 		Notes	
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand 		Notes	
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 		Notes	
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 		Notes	
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 		Notes	
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 			
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 			
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 			
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 			
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us Advice and suggestions are always much appreciated 			
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us Advice and suggestions are always much appreciated 			
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us Advice and suggestions are always much appreciated 			
 Work regularly, do not wait the last minute/day Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us Advice and suggestions are always much appreciated 			

17 – 20 5

Are you following the right course?

Notes	

Notes			

Notes		

Notes		

Eve's strategy

There are the five main types of attacks:
Eve only has a copy of the ciphertext: ciphertext only
 Eve has a copy of the ciphertext but also of the corresponding plaintext: Known Plaintext Attack (KPA)
• Eve chooses the plaintext to be encrypted: Chosen Plaintext Attack (CPA)
• Eve chooses the ciphertext to be decrypted: <i>Chosen Ciphertext Attack (CCA)</i>
 Eve chooses any plaintext to be encrypted or ciphertext to be decrypted: Chosen Plaintext and Ciphertext Attack (CPCA)

Notes			

32)	Eve's strategies
Methods to collect data: On fiber cables and infrastructures as the From the servers of service providers	ne flow passes
Methods to retrieve encrypted data: Break the encryption Influence industrial standards Pressure manufacturers to make insecur Infiltrate hardware and software	re devices

Notes			

Who is Eve and why is she evil?

Eve is anyone that might want to read or temper the data:

Low threat: friends, family members, etc.

High threat: governmental agencies and companies

Reasons for mass surveillance:

Combat terrorism

Assess foreign policies and economical stability

Gather commercial secrets

What does your phone know about you?

"They (the NSA) can use the system to go back in time and scrutinize every decision you've ever made, every friend you've ever discussed something with, and attack you on that basis to sort of derive suspicion from an innocent life and paint anyone in the context of a wrongdoer."

Edward Snowden

Notes			

Principle (Kerckhoffs' principle)

A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

In other words:

Security through obscurity is not security

Data should be encrypted using standard, publicly known algorithms

The implementation must be accessible to all

Notes

Notes	

38	Modular arithmetic
Defi	nitions
Ь	et a and b be two integers, with $a \neq 0$. We say that a divides if there exists an integer k such that $b = ak$, and we denote $a b$.
C	et a , b and n be three integers with $n \neq 0$. We say that a is ongruent to b modulo n , if n divides $a - b$. It is denoted $\equiv b \mod n$
	lern cryptography: he plaintext is first converted into a numerical value
	the alphabet is composed of n symbols then each one is signed a value between 0 and $n-1$

Notes		

Caesar cipher in mathematical terms:

① Label letters as integers from 0 to 25

② Choose a key κ in the range 0-25③ Encrypt using the function $x\mapsto x+\kappa$ mod 26

② Decrypt using the function $x\mapsto x-\kappa$ mod 26

③ Label integers from 0 to 25 as letters

Exercise.

Encrypt and decrypt "students are working hard" using Caesar cipher with the key $\kappa=-5$

Notes	

Using the different types of attacks:
Ciphertext only: only 26 possible keys ⇒ exhaustive search
KPA: deduce the key from the plaintext/ciphertext pair
CPA: for the plaintext "a", the ciphertext gives κ
CCA: for the ciphertext "A", the plaintext gives -κ mod 26

Notes			

(4	4)	${\sf Decrypting\ the\ message-Digrams}$								
		[Digr	ams	S C	oun [.]	t			Rules in English
	W	В	R	S	1	V	Α	Р	N	 e contacts most of other letters
W	3	4	12	2	4	10	14	3	1	a, i, o tend to avoid each other
В	4	4	0	11	5	5	2	4	20	, ,
R	5	5	0	1	1	5	0	3	0	 80% of the letters preceding n are
S	1	0	5	0	1	3	5	2	0	vowels
- 1	1	8	10	1	0	2	3	0	0	 the most common digram is th
V	8	10	0	0	2	2	0	3	1	 h often appears before e, rarely after
Α	7	3	4	2	5	4	0	1	0	• r pairs more with vowels and s with
Р	0	8	6	0	1	1	4	0	0	consonants
N	14	3	0	1	1	1	0	7	0	• rn more common than nr and to tha ot

Notes	

Notes	

Notes			

Notes

Completing the decryption	Notes
Summarizing all the guesses and carrying on: L W N S O Z B N W V W B A Y	
LWNSOZBNWVWBAY weholdthesetru BNVBSQWVWOHWDI	
thsto b eselfevi ZWRBBNPBP	
dentthata	
	Notes
Deciphered text	Notes
The deciphered text is from the Declaration of independence:	
we hold these truths to be self evident that all men are created equal that they are endowed by their creator with certain unalienable rights	
that among these are life liberty and the pursuit of happiness that to secure these rights governments are instituted among men deriving their	
just powers from the consent of the governed that whenever any form of government becomes destructive of these ends it is the right of the	
people to alter or to abolish it and to institute new government laying its foundation on such principles and organizing its powers in such form	
as to seem most likely to effect their safety and happiness	
Mary, the queen of Scots	Notes
abcdefghiklmnopqrstuxyz O‡Λ#A□θ∞ιδη∥∮∇SmfΔεc789	
Nulles ## - d Dowbleth &	
and for with that if but where as of the from by 2 3 4 4 4 3 7 1 M 8 X 0	
so not when there this in wich is what say me my wyrt of X + He & x 5 & m n m o	
send lie receave bearer I pray you Mte your name myne	
One Time Pad	Notes
Using the One Time Pad:	
 Represent the message as a sequence of 0s and 1s of length / Generate a key of length / and composed of 0s and 1s 	
XOR the message and the key	
Breaking the One Time Pad: Ciphertext only: all the messages of same length	
have equal probability KPA, CPA, CCA: only reveal part of the key	
used during the attack	

45 – 48

A block cipher encrypts several letters at once:

Changing one letter in the plaintext impacts several letters in the ciphertext

Frequency analysis of letters and digrams cannot be applied

Hill cipher:

Invented in 1929

One of the first cipher to use algebraic methods

Never been used much in practice

Algebraic digression — Greatest common divisor

Definition

The greatest common divisor of two integers a and b, with $|a|+|b| \neq 0$, is the largest positive integer dividing both a and b. It is noted gcd(a, b), and a and b are said to be coprime if gcd(a, b) = 1.

In fact gcd(a, b) can be expressed as a linear combination of a and b with integer coefficients.

Lemma (Bézout's identity)

Let a and b be two integers where at least one of them is not zero, and d = gcd(a, b). Then there exists two integers s and t, called

Bézout coefficients, such that as + bt = d.

Notes			

Algebraic digression - Computing the gcd Algorithm. (Extended Euclidean Algorithm) **Input**: a, b, two positive integers **Output:** $r_1 = \gcd(a, b)$ and $\langle s_1, t_1 \rangle$, Bézout coefficients 1 $r_0 \leftarrow b$; $r_1 \leftarrow a$; $\mathbf{2} \ s_0 \leftarrow 0; \ s_1 \leftarrow 1;$ $\mathbf{3} \ t_0 \leftarrow \mathbf{1}; \ t_1 \leftarrow \mathbf{0};$ 4 while $r \neq 0$ do $q \leftarrow r_1 \operatorname{div} r_0;$ 5 $\langle r_1, r_0 \rangle \leftarrow \langle r_0, r_1 - q r_0 \rangle;$ $\langle s_1, s_0 \rangle \leftarrow \langle s_0, s_1 - q s_0 \rangle;$ 8 $\langle t_1, t_0 \rangle \leftarrow \langle t_0, t_1 - qt_0 \rangle;$ 9 end while 10 return r_1 , $\langle s_1, t_1 \rangle$

Notes		

Algebraic digression – Multiplicative inverse $\frac{\text{Proposition}}{\text{Let } a \text{ and } n \text{ be two coprime integers and } s \text{ and } t \text{ be such that } as+nt=1. \text{ Then } as\equiv 1 \text{ mod } n, \text{ and } s \text{ is called the } \textit{multiplicative inverse} \text{ of } a \text{ modulo } n. \text{ Besides } s \text{ is unique.}$ Example. What is the multiplicative inverse of 11111 modulo 12345?} Running the extended Euclidean algorithm confirms that 11111 and 12345 are coprime and therefore 11111 is invertible modulo 12345. Moreover since $11111 \cdot 2471 + 12345 \cdot (-2224) = 1,$ we conclude that $11111 \cdot 2471 \equiv 1 \text{ mod } 12345.$

Algebraic digression - Matrix inversion

Theorem (Cramer's rule)

Let A be an $m \times m$ matrix, then

$$Adj(A) \cdot A = \det(A) I_m, \tag{1.1}$$

where $\mathrm{Adj}(A)$ denotes the adjugate of A, $\mathrm{det}(A)$ the determinant of A, and I_m the $m\times m$ identity matrix.

From equation (1.1) we see that for A to be invertible, $\det(A)$ must be invertible. In particular if A is defined modulo n, $\det(A)$ must be invertible modulo n, that is there exists t such that

$$\det(A) \cdot t \equiv 1 \bmod n.$$

Algebraic digression - Modular matrix inversion

Example.

Compute the inverse of the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \mod 11.$$

Since det(A) = 2 and gcd(2, 11) = 1, A is invertible modulo 11 and

$$A^{-1} = \frac{1}{2} \begin{pmatrix} + \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 4 & 9 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 2 & 3 \\ - \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 1 & 9 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 3 \\ + \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \end{pmatrix} \mod 11.$$

Algebraic digression

Then calculating all the cofactors yields

$$A^{-1} = \frac{1}{2} \begin{pmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{pmatrix} \mod 11.$$

In this case it is easy to see that 6 is the inverse of 2 modulo 11, such that we get $\,$

$$A^{-1} = \begin{pmatrix} 36 & -30 & 6 \\ -36 & 48 & -12 \\ 12 & -18 & 6 \end{pmatrix} \equiv \begin{pmatrix} 3 & 3 & 6 \\ 8 & 4 & 10 \\ 1 & 4 & 6 \end{pmatrix} \bmod{11}.$$

Back to Hill cipher

Constructing Hill cipher:

- Key: generate a random $n \times n$ matrix K modulo 26, with $\gcd(\det(K),n)=1$
- Encrypt:
 - $^{\circ}$ Split the plaintext into blocks of size n, padding with extra letters if necessary
 - ullet Multiply each block considered as a vector by the matrix K
- Decrypt:
 - Split the ciphertext into blocks of size n
 - ullet Multiply each block considered as a vector by the matrix \mathcal{K}^{-1}

Notes	

Notes	

Notes			

Notes		

57											Hil	I ciphe
Example								/1	2	3)		
Encrypt "	goo	d mo	rning	" wit	h th	e key	<i>K</i> =	$\begin{pmatrix} 1\\4\\9 \end{pmatrix}$	5	6 8		
Split	and	l pad	the	plain	text			\		,		
	g 6		o 14			o 14					g 6	x 23
		Ã			B			č			Ď	
2 Mult	iply	each	vect	or by	ιK							
		Α'			B'			<i>C'</i>			D'	
	6 G	24 Y	6 G	21 V	8 I	11 L	11 L	25 Z	11 L	10 K	9 J	25 Z

KPA on Hill cipher
Knowing "goodmorningx" and "GYGVILLZLKJZ" recover the key.
• Find n : since $n 12$, try some values until the right one is found
Use the three first blocks to construct the equation
$\underbrace{\begin{pmatrix} 6 & 14 & 14 \\ 3 & 12 & 14 \\ 17 & 13 & 8 \end{pmatrix}}_{A} \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \equiv \begin{pmatrix} 6 & 24 & 6 \\ 21 & 8 & 11 \\ 11 & 25 & 11 \end{pmatrix} \mod 26$
Since A is not invertible modulo 26, try with the three last blocks
$\begin{pmatrix} 3 & 12 & 14 \\ 17 & 13 & 8 \end{pmatrix}$, $\begin{pmatrix} a & b & c \\ d & a & f \end{pmatrix} = \begin{pmatrix} 21 & 8 & 11 \\ 11 & 25 & 11 \end{pmatrix} \mod 26$

$$\underbrace{\begin{pmatrix} 3 & 12 & 14 \\ 17 & 13 & 8 \\ 13 & 6 & 23 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}}_{A} \equiv \begin{pmatrix} 21 & 8 & 11 \\ 11 & 25 & 11 \\ 10 & 9 & 25 \end{pmatrix} \mod 26$$

Notes			

Remarks on Hill cipher:

In a substitution cipher, changing one letter from the plaintext alters one letter from the ciphertext

In Hill cipher changing one letter from the plaintext alters the whole corresponding block from the ciphertext

Hill cipher is not vulnerable to frequency analysis attacks

As a drawback a small error in the transmission can induce a major error in the encrypted message and the deciphered text becomes unreadable

Notes	

Notes	

Notes		

Notes	

66 Imple	menting public key cryptography
Anybody can lock the	padlock but only Bob can unlock it
Mathematical problems used	in Public Key Cryptography (PKC):
 Easy to generate by any 	body
 Hard to solve for everyb 	ody
 Easy to solve when know 	wing a small secret
Common examples: Multiplication and facto Exponentiation and disc	

Notes	

67	Historical progression
Over time security has d	epended on:
 Early years: keeping 	g the encryption method secret
After WW I: keepin	ng the secret key unknown
 Modern cryptograp 	hy:
 The method, the known 	e encryption key, and how to find the secret key are
 Security depend 	s on the computational infeasibility of finding it
PKC adds much flexibili	ty at a high computational cost

Notes

68	Measuring security – Key space
	brute force all possible keys er the key space the harder finding the key
Example. Substitution cipher: • Key space: 26! ≈	
	eak using frequency analysis ed only if no other attack is possible

Notes		

Notes			

70	Complexity and security
The goal is to be	secure in the worst case
In the worst case the attacker:	
 Has the best computationa 	facilities
 Uses the most efficient atta 	ck available
To be secure against such an at	tacker:
 Check to complexity of the 	best algorithm available
 Adjust the parameters of the operations are required to be 	ne cipher such that more than 2 ¹²⁸ oreak the encryption

Notes		

n Complexity and security
Example.
Assuming that the best attack on a mathematical problem requires \sqrt{n} operations, where n is the size of the key, what key size should be chosen to be secure?
Since secure means that the attacker has to compute at least 2^{128} operations to break the encryption it suffices to calculate
$\left(2^{128}\right)^2 = 2^{256}.$
Hence the key space should contain 2^{256} elements, that is the key should be at least 256 bits long.

Notes	

¹ Improving security?	72
Is double encryption with two different keys enhancing security?	
Improving security:	lm
• Naive answer: for a key of length k , 2^{2k} operations are needed	
Better answer:	
 It does not change anything, e.g. Hill cipher 	
$^{\bullet}$ It is possible to do better than $2^{2k}\colon$ meet in the middle attack	
Symmetric encryption using a function f and a key k :	Sy
• Simple encryption: $c = f_k(m)$	
• Double encryption: $c = f_{k_2}(f_{k_1}(m))$	
• Decryption: $m = f_{k_1}^{-1}(f_{k_2}^{-1}(c))$	

Notes		

74	Complexity theory
Main complexity classes re	lated to cryptology:
 P: decision problems polynomial time algor 	for which there exists a deterministic ithm
·	ns for which the answer "yes" can be verified polynomial time algorithm
$ullet$ $\mathcal{NP} ext{-complete}:$ hardes	at problems in \mathcal{NP}
	lems for which the answer "no" can be ninistic polynomial time algorithm
$ullet$ co- \mathcal{NP} -complete: har	dest problems in co- \mathcal{NP}

Notes		

(75)	Complexity theory
	e. actorization is in both \mathcal{NP} and co- \mathcal{NP} a large integer and $1 < m < n$. Does n have a factor p , with
1 < p <	
	: with certificate " p a factor of n " verify in polynomial time $1 and p n$
	\mathcal{IP} : with certificate "the list of all the prime factors of n " by in polynomial time that:
•	They are all prime
•	Their product is n
•	None of them is between 1 and m

Notes			
	·	·	

Notes	
-	

Bob knows a secret path, and wants to prove it without revealing it Strategy: Alice hides while Bob chooses to go Left (L) or Right (R) Alice randomly asks Bob to exit on L or R If Bob is on the wrong side he uses the secret path or otherwise returns Repeat steps 1 to 3 many times

Mathematical digression – Graphs
efinitions
Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two simple graphs. Then we say that G_1 and G_2 are <i>isomorphic</i> if there exists a bijective function $\varphi\colon V_1\to V_2$ such that the induced map
$\varphi_* \colon E_1 o E_2, \hspace{1cm} (a, b) \mapsto (\varphi(a), \varphi(b))$
is bijective. Such a function $arphi$ is called a $\emph{graph isomorphism}.$
A $Hamilton\ circuit$ in a graph G is a simple circuit that passes through every vertex of G exactly once.

Notes			

	(80)	Zero knowledge proofs – Authentication
	Initial set	up:
		• A graph G • Bob's graph G
		A Hamiltonian circuit in G
	Process:	
	Bob	generates H , a graph isomorphic to G
	Ø Bob	commits H
	_	e randomly asks for either the isomorphism or a Hamiltonian iit in \boldsymbol{H}
	_	either shows the isomorphism or translates the Hamiltonian it in ${\it G}$ onto ${\it H}$ and shows it
ı		

Notes		

®2 Key points
What is cryptology?
Who are Alice, Bob, and Eve?
What is Kerckhoff's principle?
Explain the One-Time-Pad
Explain the underlying idea of public key cryptography
• In 2019 what security level is considered safe?

Notes				

Notes		

Block ciphers

A block cipher is composed of two functions, inverse of each other:

$$E: \{0,1\}^n \times \{0,1\}^k \to \{0,1\}^n$$
 $D: \{0,1\}^n \times \{0,1\}^k \to \{0,1\}^n$
 $(P,K) \mapsto C$ $(C,K) \mapsto P$

where n and k are the sizes of a block and the key, respectively.

Goal: given a key K, design an invertible function E whose output cannot be distinguished from a random permutation over $\{0,1\}^n$.

Notes	

Notes		

Notes		

Notes	


```
Notes
```


Notes			

91	Random bits generation
Generating true randomness is not sim	ple:
• Toss a coin	
Measure physical phenomena that	t are expected to be random
 In case of a lack of entropy the o 	utput is blocked
Example. The thermal noise from a semiconduct A nuclear decay radiation source meas	

Notes	

92	Pseudo-random bits generation
Rar	ndom function from the C standard:
1 2	/* Linear congruential generator */ static unsigned long next = 1;
3	/* RAND_MAX assumed to be 32767 */
5	<pre>int rand(void) {</pre>
6 7	<pre>next = next * 1103515245 + 12345; return((unsigned)(next/65536) % 32768);</pre>
8	}
10	<pre>void srand(unsigned int seed) { next = seed;</pre>
11	next = seed; }

Notes		

93 Pseudo-random bits generation – BBS generator
A secure method from Blum, Blum and Shub: • Generate two large primes p and q , both being 3 mod 4 • Set $n = pq$
Choose a random integer x coprime to n
$ \begin{cases} x_0 & \equiv x^2 \bmod n \\ x_{i+1} & \equiv x_i^2 \bmod n \end{cases} $
$lacktriangle$ At each iteration select the least significant bit of x_i

Notes		

94	Why is BBS secure?
	Can bits generated using BBS be predicted?
Prob	olem (Quadratic Residuosity (QR))
	$n=pq$ be the product of two primes. Given an integer y , is it have mod n , i.e. is there an x such that $x^2 \equiv y \mod n$?
This lo	oose formulation will be refined in the next chapter (3.166).
Strateg	gy:
• Pı	rove that the QR problem is hard
• If	this is hard the previous bit cannot be predicted
	sequence a pseudo-random bits generated by BBS cannot be

Notes			

33)	Reminder
few res	er to prove that the QR problem is hard we first recall and prove sults from number theory. The goal is to prove that solving the oblem is as hard as factoring. That is, knowing how to solve one s knowing how to solve the other one.
The	orem (Fermat's little theorem)
Let µ	$p\in\mathbb{N}$ and $a\in\mathbb{Z}$. If p is prime and $p\nmid a$, then
	$a^{p-1} \equiv 1 \bmod p$.
More	e generally, for any $p\in\mathbb{N}$ and $a\in\mathbb{Z}$,
	$a^p \equiv a \bmod p$.

Notes			

96)	Squares modulo a prime
L	emma
	$p\equiv 3 \bmod 4$ is prime, then the equation $x^2\equiv -1 \bmod p$ has no slution.
	pof. spose such an x exists. Then raising it to the power of $(p-1)/2$ applying Fermat's little theorem (2.95) yields
	$(x^2)^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \bmod p.$
On	the other hand $p\equiv 3$ mod 4, implies $(p-1)/2$ odd and
	$(-1)^{rac{p-1}{2}} \equiv -1 mod p$.

Notes			

Square roots modulo a prime

Proposition

Let $p \equiv 3 \mod 4$ be a prime, y be an integer and $x \equiv y^{\frac{p+1}{4}} \mod p$.

- If y has a square root mod p, then its square roots are $\pm x \mod p$
- If y has no square root mod p, then the square roots of -y are $\pm x \bmod p$

Proof

The case $y \equiv 0 \mod p$ being trivial, we assume $y \not\equiv 0 \mod p$. Applying Fermat's little theorem (2.95) we get

$$x^4 \equiv y^{p+1} \equiv y^2 y^{p-1} \equiv y^2 \mod p.$$
 (2.1)

Square roots modulo a prime

Proof (continued).

Since p is prime all the non zero elements have a multiplicative inverse (prop. 1.52). Therefore rewriting eq. (2.1) into

$$(x^2 - y)(x^2 + y) \equiv 0 \bmod p,$$

implies $x^2 \equiv \pm y \bmod p$. Hence at least one of y and -y is a square mod p.

Suppose that both y and -y are square mod p, i.e. there exist a and b such that $y\equiv a^2 \mod p$ and $-y\equiv b^2 \mod p$.

Then $\left(b^{-1}a\right)^2\equiv -1 \bmod p$, that is -1 is a square mod p, contradicting lem. 2.96.

Hence exactly one of y and -y has square roots $\pm x \mod p$.

Reminder

Keeping in mind the initial goal of studying the BBS generator where the squares are computed mod n=pq, with both p and q congruent to 3 modulo 4, we recall the following result.

Theorem (Chinese Remainder Theorem (CRT))

Let $m_1,\ldots,m_k\in\mathbb{N}\setminus\{0\}$ be pairwise relatively prime and $a_1,\ldots,a_k\in\mathbb{Z}$. Then the system of congruences

$$\begin{cases} x \equiv a_1 \mod m_1, \\ x \equiv a_2 \mod m_2, \\ \vdots \\ x \equiv a_n \mod m_k. \end{cases}$$

has a unique solution modulo $m = m_1 m_2 \dots m_k$.

100

Square roots for a composite modulus

Example.

Find x such that $x^2 \equiv 71 \mod 77$.

As $77 = 7 \times 11$, the congruency can be rewritten

$$\begin{cases} x^2 \equiv 71 \equiv 1 \mod 7 \\ x^2 \equiv 71 \equiv 5 \mod 11. \end{cases}$$

As both 7 and 11 and 3 mod 4, from prop. 2.97 we derive

$$\begin{cases} x \equiv \pm 1 \mod 7 \\ x \equiv \pm 4 \mod 11. \end{cases}$$

Finally, by applying the CRT (2.99) the four solutions can be recombined modulo 77 such as to get

 $x \equiv \pm 15, \pm 29 \mod 77.$

Notes	

Notes	

Notes	

Notes	

102	Remarks on the BBS generator
We s	howed that:
•	Solving the factorization problem allows to solve the QR problem
•	Solving the QR problem gives the factorization of the modulus
	previous reasoning is: Not a formal security reduction
	Enough to "informally" consider BBS as a secure pseudo-random number generator

103	Building a block cipher
A few informal de	finitions:
	 A random oracle is a "black box" that returns a truly uniform random output on an input. Submitting the same input more than once leads to the same output. A pseudorandom function is a function that emulates a random oracle
'	lom function that cannot be distinguished from a utation is called <i>pseudo random permutation</i>
A blockcipher	r is a pseudorandom permutation
• A one way fun	ction is a function easy to evaluate but hard to invert

Notes

Notes	

Notes	

Notes	

106	Inverse funct	ion			
Proposition					
For any functio	n F , Ψ_F is a bijection and $\Psi_F^{-1} = \sigma \circ \Psi_F \circ \sigma$, with $\sigma: \{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$ $[L,R] \longmapsto [R,L]$	h			
Equivalently, Moreover	$ \Psi_{F}, \ \Psi_{F} ([L_{0}, R_{0}]) = [R_{0}, L_{0} \oplus F(R_{0}, K)] = [L_{1}, R_{1}]. $ $ \begin{cases} R_{0} = L_{1} \\ L_{0} = R_{1} \oplus F(L_{1}, K). \end{cases} $ $ \Gamma([L_{1}, R_{1}]) = \sigma \circ \Psi_{F} \circ \sigma([R_{0}, L_{0} \oplus F(R_{0}, K)]) $ $ = \sigma (\Psi_{F}([L_{0} \oplus F(R_{0}, K), R_{0}])) $				
$= \sigma \left(\Psi_F([L_0 \oplus F(R_0, K), R_0]) \right)$ = $\sigma \left(R_0, L_0 \oplus F(R_0, K) \oplus F(R_0, K) \right)$ = $[L_0, R_0]$.					

Notes			

Notes		

Notes	

Number of plaintext/ciphertext pairs needed: $\mathcal{O}(\sqrt{2^n})$ 1 Find a collision over the $m_{i_R}, \ 1 \le i \le 2^n$ 2 If a collision is found for m_j and m_l check if $m_{j_{L_2}} \oplus m_{l_{L_2}} = m_{j_{L_0}} \oplus m_{l_{L_0}}$ • Step 1: $\mathcal{O}(\sqrt{2^n})$ messages (birthday paradox, 4.231)

• Step 2: no better than $\mathcal{O}(\sqrt{2^n})$:
• Collision on $m_{i_2} = m_{i_0} \oplus F_{K_1}(m_{iR_0})$ for two messages
• The variables m_{i_2} , m_{i_0} , and m_{iR_0} are fixed

• It only depends on F_{K_1} , which can take 2^n different values

• From I messages $\frac{I(I-1)}{2}$ pairs can be constructed

• Probability of collision: $\approx \frac{l(l-1)}{2\cdot 2^n}$

Notes			

Data Encryption Standard
Data Encryption Standard (DES):
• 1974: IBM uses Feistel networks to create LUCIFER
• 1975: LUCIFER is sent to NSA for review and modifications
1977: renamed DES and becomes the official encryption standard
• 2002: DES is not secure anymore and is replaced by AES

Notes		

Notes	ĺ

114	Advanced Encryption Standard
	ranced Encryption Standard (AES): 1997: call for candidates to replace DES
•	Requirements: Possible key sizes: 128, 192 and 256 bits Input block size: 128 bits Work on various hardware (e.g. 8-bit processors) Speed
	Five finalists: MARS, RC6, Rijndael, Serpent, and Twofish 2001: Rijndael is chosen to become AES

Notes		

115	AES – General description		
Brief out	tline of AES:		
• 10 :	rounds for a 128-bit key (12 and 14 for 192 and 256-bit)		
• A re	ound is formed of layers		
•	SubBytes: substitution operation		
•	ShiftRows: linear mixing step on the rows		
•	• MixColumns: linear mixing on the columns		
•	AddRoundKey: apply a round key derived from the main key		

Notes		

116)	AES – Encryption
Plaintext (AddRoundKey) SubBytes ShiftRows MixColumns AddRoundKey	AES setup: • The 128 bits are grouped into 16 bytes • Each byte is composed of 8 bits: • $a_{0,0}, a_{1,0}, a_{2,0}, a_{3,0}, a_{1,1}, \cdots, a_{3,3}$ • Bits are arranged in a 4 × 4 matrix:
SubBytes ShiftRows AddRoundKey Ciphertext	$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}$

Notes	

Invertible elements

So far we worked with the set $S=\{0,\cdots,n-1\}$ using modular congruences (def. 1.38). In the proof of prop. 2.97 we noted that when n is prime all the non-zero elements of S are invertible. Example.

lacktriangledown The set $S=\{0,\cdots,4\}$ has five elements, and since five is prime all the non-zero elements are invertible. Indeed,

$$1 \cdot 1 \equiv 1 \mod 5$$
, $2 \cdot 3 = 6 \equiv 1 \mod 5$, and $4^2 = 16 \equiv 1 \mod 5$.

1 The set $S=\{0,\cdots,5\}$ has six elements, and as six is not prime some non-zero elements are not invertible. In fact since

$$2 \cdot 3 = 6 \equiv 0 \mod 6$$

we conclude that 2 and 3 are not invertible mod 6.

Finite fields

Loosely speaking a set where the addition and multiplication operations are defined and such that every non-zero element is invertible for the multiplication is called a *field*.

When a field has a finite number of elements it is called *finite field*. For each prime p and positive integer n there exists a finite field with p^n elements, often denoted $\operatorname{GF}(p^n)$ or \mathbb{F}_{p^n} (GF standing for Galois Field). Remark.

The set $S=\{0,\cdots,8\}$ has $9=3^2$ elements and is not a field since 3 is not invertible. Therefore the question remaining to answer is "how to construct a finite field with nine elements", or more generally with p^n elements

Polynomials over finite fields

Similarly to how polynomials are defined over common fields such as the real numbers, they can also be defined over finite fields. The main difference relies on their coefficients which take their values in the base field.

In a field, a polynomial which cannot be written as the product of two polynomials of lower degree is said to be *irreducible*. Example.

- ① In $\mathbb{F}_2[X]$, $X^2 + 3X + 1$ and $X^2 + X + 1$ are equal.
- ① In $\mathbb{F}_5[X]$, $X^3 + X + 3 = (X + 4)(X^2 + X + 2)$ is not irreducible.
- \blacksquare In $\mathbb{F}_{17}[X]$, $X^3 + X + 3$ is irreducible.

Non-prime fields

Theorem

Let P(X) be an irreducible polynomial of degree n in $\mathbb{F}_p[X]$, and F be the set of all the polynomials of degree less than n. Then F is a finite field with p^n elements.

Proof.

Assuming addition and multiplication are properly defined we need to prove that F has p^n elements and that all but 0 are invertible.

It is simple to see that F has p^n elements since each of the n monomials (from degree 0 to n-1) can take p different values (from 0 to p-1).

Notes	

Notes	

Notes

Notes			

Non-prime fields

Proof (continued).

Let A(X), B(X) and C(X) be three distinct non-zero polynomials such that

$$A(X)B(X) \equiv A(X)C(X) \mod P(X)$$
.

This implies $A(X) \left(B(X) - C(X) \right) \equiv 0 \bmod P(X)$, which is not possible since P(X) is irreducible.

Hence multiplying a polynomial A(X) by all the non-zero elements of F results in covering all the non-zero polynomials of F, meaning that there is a polynomial B(X) such that

$$A(X)B(X) \equiv 1 \mod P(X)$$
.

Notes

122

Finite fields in the AES

In Rijndael \mathbb{F}_{2^8} is used:

- $P(X) = X^8 + X^4 + X^3 + X + 1$ is the irreducible over $\mathbb{F}_2[X]$
- \bullet Each element of \mathbb{F}_{2^8} is a polynomial of the form

$$a_7X^7 + a_6X^6 + a_5X^5 + a_4X^4 + a_3X^3 + a_2X^2 + a_1X + a_0$$

- The polynomial is described as a byte $a_7a_6a_5a_4a_3a_2a_1a_0$
- The sum of two polynomials is the XOR of their bit representation
- Multiplying a polynomial Q(X) by X:
 - ${\color{red} \textcircled{\scriptsize 1}}$ Shift left the byte representation of Q(X) and append a 0
 - ② If the first bit is 0 stop and otherwise XOR with P(X)
- Multiplying Q(X) by R(X):
 - ① Split R(X) into the monomials $M_i(X)$, $i \leq \deg R(X)$
 - ② For $M_i(X)$ applying the multiplication by $X \deg M_i(X)$ times
 - Add all the results using XOR

(123)

Finite fields in the AES

Example.

Let $Q(X)=X^7+X^4+X+1$ and $R(X)=X^2+1$. Determine the product Q(X)R(X) in $\mathbb{F}_{2^8}[X]$.

- 1. Regular strategy: multiply and reduce mod P(X)
 - $Q(X)R(X) = X^9 + X^7 + X^6 + X^4 + X^3 + X^2 + X + 1$
 - Since P(X) = 0, $X^9 = X^5 + X^4 + X^2 + X$ and

$$Q(X)R(X) \equiv X^7 + X^6 + X^5 + X^3 + 1 \mod P(X)$$

2. Represent polynomials as bytes and apply XOR operations:

Write Q(X) = 10010011 and decompose R(X) as $X \cdot X + 1$

- $Q(X) \cdot X = 100100110 \oplus 100011011 = 000111101$
- $(Q(X) \cdot X) \cdot X = 001111010$
- $(Q(X) \cdot X) \cdot X + Q(X) = 011111010 \oplus 10010011 = 11101001$
- $Q(X)R(X) \equiv X^7 + X^6 + X^5 + X^3 + 1 \mod P(X)$

124						Tł	ne Si	ubBy	ytes	layer
	a _{0.0}	a _{0,1}	a _{0.2}	a _{0.3}]	$b_{0,0}$	b _{0,1}	b _{0,2}	b _{0.3}	
	- 7		- "	-71					- 77	
	a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}		$b_{1,0}$	$b_{1,1}$	<i>b</i> _{1,2}	b _{1,3}	
	a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}		b _{2,0}	b _{2,1}	b _{2,2}	b _{2,3}	
	a _{3,0}	a _{3,1}	a ₃ 2	a _{3,3}		b _{3,0}	b _{3,1}	<i>b</i> ,2	b _{3,3}	
S-Box										
For e	ach by	te in	the n	natrix	:					
• 9	 Split it into two 4-bit numbers a and b 									
• [
•	 Replace the original byte by c 									

Notes		

125)														S	-Box
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	99	124	119	123	242	107	111	197	48	1	103	43	254	215	171	118
1	202	130	201	125	250	89	71	240	173	212	162	175	156	164	114	192
2	183	253	147	38	54	63	247	204	52	165	229	241	113	216	49	21
3	4	199	35	195	24	150	5	154	7	18	128	226	235	39	178	117
4	9	131	44	26	27	110	90	160	82	59	214	179	41	227	47	132
5	83	209	0	237	32	252	177	91	106	203	190	57	74	76	88	207
6	208	239	170	251	67	77	51	133	69	249	2	127	80	60	159	168
7	81	163	64	143	146	157	56	245	188	182	218	33	16	255	243	210
8	205	12	19	236	95	151	68	23	196	167	126	61	100	93	25	115
9	96	129	79	220	34	42	144	136	70	238	184	20	222	94	11	219
10	224	50	58	10	73	6	36	92	194	211	172	98	145	149	228	121
11	231	200	55	109	141	213	78	169	108	86	244	234	101	122	174	8
12	186	120	37	46	28	166	180	198	232	221	116	31	75	189	139	138
13	112	62	181	102	72	3	246	14	97	53	87	185	134	193	29	158
14	225	248	152	17	105	217	142	148	155	30	135	233	206	85	40	223
15	140	161	137	13	191	230	66	104	65	153	45	15	176	84	187	22

Notes			

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \end{pmatrix}$$

• The entry located at row $(a_7\cdots a_4)_2$ and column $(a_3\cdots a_0)_2$ of the S-Box is $(c_7\cdots c_0)_2$

Notes	

Notes	

132)	Generating a round key							
Example. $K(i)$ being simple to generate for $i \not\equiv 0 \mod 4$, we focus on the case $i \equiv 0 \mod 4$. For instance if $i = 40$ and $K(39)$ is the column vector (10001100, 00001100, 11000110, 11110011), then • Cyclical top shit: (00001100, 11000110, 11110011, 10001100) • SubBytes transformation:								
$\begin{array}{cccc} 00001100 & \to & 111111110, \\ 11110011 & \to & 00001101, \end{array}$								
• $r(40) = X^9 \equiv X^5 + X^4 + X^2 + X \mod P(X) = 00110110$ • Get the final column vector $T(K(39))$								
$T(K(39)) = (111111110 \oplus 00110110, 10110100, 00001101, 01100100)$ $= (11001000, 10110100, 00001101, 01100100)$								
 Finally define K(40) as K(36) ⊕ ? 	T(K(39))							

Notes	

Notes	

Notes

Notes	

Notes

Notes

Notes	

Notes

A ring is called *commutative* if in addition to the above properties

 \bigcirc Commutativity: $a \cdot b = b \cdot a$ for all $a, b \in R$

137 – 140 35

/	
	141)
٦	\smile

Mathematical structures

Definition (Field)

Let $(F,+,\cdot)$ be a commutative ring with unit element of addition 0 and unit element of multiplication 1. Then F is a *field* if

- $0 \neq 1$

$$a\cdot a^{-1}=1.$$

Remark.

Another way of writing this definition is to say that $(F,+,\cdot)$ is a field if (F,+) and $(F\setminus\{0\},\cdot)$ are abelian groups and $0\neq 1$, and \cdot distributes over +.

Mathematical structures

Example.

Let n be an integer, and $\mathbb{Z}/n\mathbb{Z}$ be the set of the integers modulo n

- $(\mathbb{Z}/n\mathbb{Z},+)$ also denoted $(\mathbb{Z}_n,+)$ is a group
- $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ is a ring
- If *n* is prime then $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ is the field \mathbb{F}_n
- The invertible elements of $\mathbb{Z}/n\mathbb{Z}$, with respect to '-', form a group denoted $\mathrm{U}(\mathbb{Z}/n\mathbb{Z})$ or sometimes \mathbb{Z}_n^\times or \mathbb{Z}_n^*
- $(\mathbb{Z}/n\mathbb{Z}[X], +, \cdot)$ is the ring of the polynomials over $\mathbb{Z}/n\mathbb{Z}$
- If n is prime and the polynomial P(X) is irreducible then $(\mathbb{F}_n[X]/\langle P(X)\rangle,+,\cdot)$ is a field; this is $\mathbb{F}_{n^{\deg P(X)}}$

Order

Definitions

Let G be a group.

- The order of G is its cardinality
- $\ \, \textbf{9} \,$ The order of an element $g \in \textit{G}$ is the smallest positive integer m such that $g^m = 1$
- An element of order equal to the order of the group is called a primitive element or a generator
- **1** When $G=\mathbb{Z}/n\mathbb{Z}$, Euler's totient function $\varphi(n)$ counts the number of invertible elements, that is the number of elements k such that $\gcd(n,k)=1$

Order

${\sf Example}.$

The order of $U(\mathbb{Z}/13\mathbb{Z}) = 12$ and 2 is a generator:

	,		,		•			
i	2 ⁱ mod 13	i	2 ⁱ mod 13	i	2 ⁱ mod 13	i	2 ⁱ mod 13	
1	2	4	3	7	11	10	10	d
2	4	5	6	8	9	11	7	
3	8	6	12	9	5	12	1	

Remark.

Let p be a prime and α be a generator of $G=\mathrm{U}(\mathbb{Z}/p\mathbb{Z})$. Then any element $\beta\in G$ can be written $\beta=\alpha^i,\ 1\leq i\leq p-1$. Noting $d=\gcd(i,p-1)$ we have

$$eta^{rac{p-1}{d}} = \left(lpha^i
ight)^{rac{p-1}{d}} = \left(lpha^{p-1}
ight)^{rac{i}{d}} = 1.$$

Suppose that the order of β divides $\frac{p-1}{d}$. Then $\operatorname{ord}(\beta) = \frac{p-1}{kd}$ for some k>1 such that $kd\nmid i$, meaning that $\frac{p-1}{k}\cdot\frac{i}{d}$ is not a multiple of p-1. Hence the order of β is $\frac{p-1}{d}$.

Notes

Notes

Notes			

Notes	

,	$\overline{}$	
	145)
	$\overline{}$	

Revisiting the CRT

In theorem 2.99 we recalled that a system of congruences has a unique solution modulo the product of all the moduli of the system. In fact this result can be rephrased in term of group structure.

We first recall that an *isomorphism* is a bijection that preserves algebraic structures.

Theorem (Chinese Remainder theorem (CRT))

Let n be a positive integer with prime decomposition $n=\prod p_i^{e_i}$

Then there exists a ring isomorphism between $\mathbb{Z}/n\mathbb{Z}$ and $\prod_i \mathbb{Z}/p_i^{e_i}\mathbb{Z}$.

Order of the group of units

From the previous theorem (3.145)

$$\mathsf{U}(\mathbb{Z}/n\mathbb{Z}) pprox \mathsf{U}\left(\prod_i \mathbb{Z}/p_i^{\mathsf{e}_i}\mathbb{Z}\right)$$

Noting that a non invertible element of $\mathbb{Z}/p_i^{\mathfrak{s}_i}\mathbb{Z}'$ is of the form kp_i for some integer k, it cannot be coprime to n and as such is not invertible modulo n. Conversely an element that is not invertible mod n is a multiple of some p_i . Therefore

$$\mathsf{U}(\mathbb{Z}/n\mathbb{Z}) \approx \mathsf{U}\left(\prod_i \mathbb{Z}/p_i^{\mathsf{e}_i}\mathbb{Z}\right) \approx \prod_i \mathsf{U}\left(\mathbb{Z}/p_i^{\mathsf{e}_i}\mathbb{Z}\right).$$

Proposition

If m and n are two coprime integers then $\varphi(mn) = \varphi(m)\varphi(n)$. In particular if m and n are prime $\varphi(mn) = (m-1)(n-1)$.

Lagrange's theorem

Having a way to determine the order of $U(\mathbb{Z}/n\mathbb{Z})$, we now focus on the order of its elements. We first recall a fundamental result from group theory.

Theorem (Lagrange's theorem)

Let G be a finite group and H be a subgroup of G. Then the order of H divides the order of G.

Noting that each element x of G generates a subgroup of order ord $_G x$, it follows that the order of any element x of G divides the order of G.

Using Lagrange's theorem it is then possible to derive a result to quickly verify whether an invertible element modulo a prime p is a generator of $\mathrm{U}(\mathbb{Z}/p\mathbb{Z})$. But first we provide an example and then extend Fermat's little theorem (2.95).

Lagrange's theorem

Example.

For n=5, $U(\mathbb{Z}/5\mathbb{Z})=\{1,2,3,4\}$ which is a group of order 4. Therefore each of those four elements generates a subgroup of $U(\mathbb{Z}/5\mathbb{Z})$. Moreover these subgroups will have order 1, 2, or 4, since 4 is divisible by 1, 2, and 4.

In fact we have

$$\langle 1 \rangle = \{1\}$$
 , $\langle 2 \rangle = \{2,4,3,1\}$,

$$\langle 4
angle = \{ 4, 1 \}$$
 ,

$$\langle 3 \rangle = \{3, 4, 2, 1\}.$$

That is, we have two groups of order 4 ($\langle 2 \rangle$ and $\langle 3 \rangle$), one group of order 2 ($\langle 4 \rangle$), and one group of order 1 ($\langle 1 \rangle$).

In particular note that the order of an element is equal to the order of the subgroup it generates.

Notes	

Notes	

Notes

Notes

149			
3			

Theorem (Euler's theorem)

Let a and n be two coprime integers. Then

$$a^{\varphi(n)} \equiv 1 \mod n$$
.

Proof

From the previous reasoning on Lagrange's theorem (3.147) there exists k>0 such that $k|\varphi(n)$ and $a^k=1$. Writing $\varphi(n)=kl$ for some integer l we have

$$a^{\varphi(n)} = a^{kl} \equiv (a^k)^l \equiv 1^l = 1 \mod n.$$

Notes

150

Simple calculation

Euler's theorem

Example.

Calculate 2⁶³⁹⁶¹³ mod 5353.

First we note that 5353 can be written as the product of two primes: 101 and 53. Therefore $\varphi(5353)=100\,\cdot\,52=5200.$

Observing that $639613 \equiv 13 \bmod 5200$ we need to consider $2^{13} \bmod 5353.$

As $2^{13} = 8192$ we obtain $2^{639613} \equiv 2839 \mod 5353$.

Remark.

The previous discussion can be simply summarized as follows: when working modulo n, the exponent must be considered mod $\varphi(n)$.

151

Finding primitive elements

Theorem

Let p>2 be a prime and $\alpha\in \mathrm{U}(\mathbb{Z}/p\mathbb{Z})$. Then α is a generator of $\mathrm{U}(\mathbb{Z}/p\mathbb{Z})$ if and only if for all primes q such that q|(p-1), $\alpha^{(p-1)/q}\not\equiv 1 \bmod p$.

Proof.

- (\Rightarrow) Since α is a generator, for all $1 \le i < p-1$, $\alpha^i \not\equiv 1 \mod p$.
- $(\Leftarrow) \ \, \text{Suppose that} \, \, \alpha \, \text{ is invertible but does not generate } \, \text{U}(\mathbb{Z}/p\mathbb{Z}). \\ \, \text{Calling its order} \, \, d \, , \, \text{the fraction} \, \, (p-1)/d \, \text{defines an integer larger} \\ \, \text{than} \, \, 1. \, \, \text{This is true because} \, \, d | (p-1) \, \, (\text{Lagrange's} \\ \, \text{theorem} \, \, (3.147)) \, \text{and} \, \, d < (p-1). \, \, \text{If} \, \, q \, \text{is a prime divisor of} \\ \, (p-1)/d \, , \, \text{then} \, \, d \, \, \text{divides} \, \frac{p-1}{q}. \, \, \text{So} \, \, \alpha^{(p-1)/q} \equiv 1 \, \text{mod} \, \, p. \\ \, \end{array}$

Notes		

152

Finding primitive elements

Corollary

Let α be a generator of $U(\mathbb{Z}/p\mathbb{Z})$.

- **1** Let n be an integer. Then $\alpha^n \equiv 1 \mod p$ if and only if $n \equiv 0 \mod (p-1)$.
- **9** Let j and k be two integers. Then $\alpha^j \equiv \alpha^k \mod p$ if and only if $j \equiv k \mod (p-1)$.

Proof.

- (1) This is straightforward from the previous theorem (3.151).
- (2) Without loss of generality assume $j \geq k$. First suppose that $\alpha^j \equiv \alpha^k \mod p$. Dividing both sides by α^k yields $\alpha^{j-k} \equiv 1 \mod p$. From (1) we have $j-k \equiv 0 \mod (p-1)$.

Conversely if $j\equiv k \mod (p-1)$ then $j-k\equiv 0 \mod (p-1)$, and by (1) $\alpha^{j-k}\equiv 1 \mod p$. Finally we multiply by α^k .

Notes	

38

\sim
153
$\overline{}$

Order and factorization

We now relate the order of the elements in $U(\mathbb{Z}/n\mathbb{Z})$, where n is a composite integer, to factoring n.

Let x be an element of order r in $\mathrm{U}(\mathbb{Z}/n\mathbb{Z})$. By definition we have $x^r\equiv 1 \bmod n$, that is $n|(x^r-1)$.

If the order r is even then $x^r-1=(x^{r/2}-1)(x^{r/2}+1)$. In this case both $\gcd(x^{r/2}-1,n)$ and $\gcd(x^{r/2}+1,n)$ are factors of n.

Conversely knowing the factorization of n gives $\varphi(n)$. Since the order of an element x in $\mathrm{U}(\mathbb{Z}/n\mathbb{Z})$ divides $\varphi(n)$ it suffices to write $\varphi(n) = \prod_i p_i$, where the p_i are the prime factors of $\varphi(n)$. Then calculate x^{a/p_i} mod n, with $a = \varphi(n)$. If $x^{\varphi(n)/p_k} \equiv 1 \mod n$, for some k, then redefine a as a/p_k .

When all the p_i have been tested a defines the order of x. If none of the $x^{\varphi(n)/p_i}$ mod n is 1 then x is a generator, i.e. has order $\varphi(n)$.

Square roots modulo p

The previous discussion highlights the difficulty of determining the order of a random element of $U(\mathbb{Z}/n\mathbb{Z})$, since it is equivalent to factoring n.

Another hard problem related to factorization was presented in chapter 2, namely the QR problem (2.94). In that chapter we studied the case where the primes are congruent to 3 modulo 4.

We now provide a more general result that gives a method to determine whether or not an element is a square modulo an arbitrary prime p.

Proposition

For p an odd prime and a such that $a\not\equiv 0$ mod p, $a^{\frac{p-1}{2}}\equiv \pm 1$ mod p. Moreover a is a square mod p if and only if $a^{\frac{p-1}{2}}\equiv 1$ mod p.

Square roots modulo p

Proof.

Defining $y\equiv a^{p-1\over 2}$ mod p and applying Fermat's little theorem (2.95), we have $y^2\equiv a^{p-1}\equiv 1$ mod p. Therefore we have

$$y^2 - 1 \equiv (y - 1)(y + 1) \equiv 0 \mod p$$
.

As ρ is prime all the elements but 0 are invertible, meaning that either $y\equiv 1 \bmod \rho$ or $y\equiv -1 \bmod \rho.$

If $a \equiv x^2 \mod p$, then $a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \mod p$.

Conversely let g be a generator mod p and write $a\equiv g^j$ for some j. If $a^{\frac{p-1}{2}}\equiv 1 \bmod p$, then

$$g^{j\frac{p-1}{2}} \equiv a^{\frac{p-1}{2}} \equiv 1 \bmod p.$$

From corollary 3.152 we see that $j\frac{p-1}{2}\equiv 0 \mod (p-1)$ implying that j must be even. Hence $a\equiv g^j\equiv g^{2k}$ and a is a square. \square

Legendre symbol

Proposition 3.154 provides a simple way to computationally check if an element is a square modulo a prime. Since this criteria is difficult to use by hand we now introduce an alternative strategy.

Definition (Legendre symbol)

Given p be an odd prime and $a \not\equiv 0 \bmod p$, we define the *Legendre symbol* by

$$\left(\frac{a}{p}\right) = \begin{cases} +1 \text{ if a is a square mod } p \\ -1 \text{ if a is not a square mod } p \end{cases}$$

Notes	

Notes

Notes			

Proposition

Let p be an odd prime.

- 1 If $a \equiv b \mod p$, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.
- ② If $a \not\equiv 0 \mod p$, then $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$.
- **3** If $ab \not\equiv 0 \mod p$, then $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.

Proof.

- ① The solutions to the congruence $x^2 \equiv a \mod p$ and $x^2 \equiv b \mod p$ are the same when $a \equiv b \mod p$.
- Combining the definition of Legendre symbol (3.156) with proposition 3.154 yields the result.

Legendre symbol

Proof (continued).

From (2), we have

$$\left(\frac{ab}{p}\right) = (ab)^{\frac{p-1}{2}} \equiv a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \bmod p.$$

Both ends being congruent to ± 1 modulo the odd prime p they are equal.

4 Applying (2) with a = -1 we have

$$\left(\frac{-1}{p}\right) \equiv (-1)^{\frac{p-1}{2}} \bmod p.$$

Again, since both ends are congruent to ± 1 modulo the odd prime p they are equal. Noting that when $p\equiv 1$ mod 4, (p-1)/2 is even gives the result. $\hfill\Box$

Legendre symbol

Example.

Is 12 a square mod 31?

Since $12 = 2^2 \cdot 3$ we write

$$\left(\frac{12}{31}\right) = \left(\frac{2}{31}\right)^2 \left(\frac{3}{31}\right).$$

Moreover

$$\left(\frac{3}{31}\right) \equiv 3^{15} \equiv -1 \text{ mod } 31.$$

Hence 12 is not a square mod 31.

Extending Legendre symbol

In definition 3.156 the Legendre symbol is defined for primes. We would like to extend this definition to any odd integer $\it n$.

As a first attempt we define the symbol to be +1 if an integer $\it a$ is a square and -1 otherwise.

Example.

Is 6 a square mod 35?

Noting that $6=2\cdot 3$ we need to consider whether 2 and 3 are squares mod 35. In fact neither of them is, since they are not squares mod 5. Similarly 6 is not a square mod 7, and as such cannot be a square mod 35.

Consequently, none of 2, 3, and 6 is a square mod 35, implying the third property of proposition 3.157 to give $(-1)\cdot(-1)=-1$.

Notes		

Notes			

Notes		 	

$\overline{}$	
(161)	
$\overline{}$	

Jacobi symbol

To preserve the third property of the Legendre symbol (3.157) we define the Jacobi symbol as follows.

Given $n=\prod_i p_i^{e_i}$ an odd integer and a a non-zero integer coprime to n, we define the $Jacobi\ symbol$ by

$$\left(\frac{a}{n}\right) = \prod_{i} \left(\frac{a}{p_i}\right)^{e_i},$$

where each of the $\left(\frac{a}{p_i}\right)$ is a Legendre symbol.

162

Jacobi symbol

Remark.

- When *n* is prime the Jacobi symbol reduces to the Legendre symbol
- Let $n = 135 = 3^3 \cdot 5$. Then

$$\left(\frac{2}{135}\right) = \left(\frac{2}{3}\right)^3 \left(\frac{2}{5}\right) = (-1)^3 (-1) = 1.$$

However 2 is not a square mod 135 since it is not a square mod 5. Hence a value of +1 for the Jacobi symbol does not imply that an integer is a square mod n.

Jacobi symbol

Let n be an odd integer.

- 1 If $a \equiv b \mod n$ and gcd(a, n) = 1, then $\left(\frac{a}{n}\right) = \left(\frac{b}{n}\right)$.
- ② If gcd(ab, n) = 1 then $\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right) \left(\frac{b}{n}\right)$.
- $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}.$
- \bigcirc If m and n are odd coprime positive integers, then

$$\left(\frac{m}{n}\right) = \begin{cases} -\left(\frac{n}{m}\right) & \text{if } m \equiv n \equiv 3 \text{ mod } 4\\ +\left(\frac{n}{m}\right) & \text{otherwise} \end{cases}$$

Jacobi symbol

Example. Calculate $\left(\frac{4567}{12345}\right)$.

Notes

Notes			

Notes	

Notes	

Remark.

- In proposition 3.163 the fifth point is called the *quadratic* reciprocity law. When m and n are primes it relates the question of m being a square mod n to the one of n being a square mod m.
- Let n be the product of two primes p and q and a be an integer. If $\left(\frac{a}{n}\right)=-1$, then a is not a square mod n. What can be concluded if $\left(\frac{a}{n}\right)=+1$?

As
$$\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{q}\right)$$
, either

$$\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = -1 \text{ or } \left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = +1.$$

In the first case a is not a square mod p and as such cannot be a square mod n, while in the second case a is a square.

	-
/	
	166)

The Quadratic Residuosity Problem

From the previous remark (3.165) we see that if $\left(\frac{a}{n}\right)=+1$ then a can be either a square or a non-square. Deciding which one holds is known as the *Quadratic Residuosity Problem*, loosely introduced in problem 2.94.

Problem (Quadratic Residuosity (QR))

Let n=pq be the product of two primes. Let y be an integer such that $\left(\frac{y}{n}\right)=1$. Determining whether or not y is a square modulo n is called the *Quadratic Residuosity Problem*.

168

From mathematics to cryptography

From the previous mathematical discussions in chapters 1 and 3 we know that given two primes p and q, it is easy to compute their product n as well as $\varphi(n)$ (proposition 3.146).

Then if an integer e, coprime to $\varphi(n)$, is chosen, it suffices to run the extended Euclidean algorithm (1.51) in order to determine the integer d such that $ed \equiv 1 \mod \varphi(n)$.

Therefore given e and n it is possible to compute $c \equiv m^e \mod n$ for any integer m. Then computing $c^d \mod n$ yields m since

$$c^d \equiv (m^e)^d \equiv m^{ed \bmod \varphi(n)} \equiv m \bmod n.$$

The goal is now to use this mathematical setup in order to build a trapdoor one-way function and design a public key cryptosystem.

Notes			

Notes	

Notes			

Notes	

42

169 Toward a new cryptosystem Intuition: • Generate p and q, then compute n and $\varphi(n)$ • Choose e coprime to $\varphi(n)$ and determine d• Anybody can encrypt: n and e are public ullet Only one person can decrypt: d is secret Questions: • How to effectively define the cryptosystem? • Can the modular exponentiations to encrypt and decrypt be

efficiently computed? • How to efficiently generate p and q?

- How secure is it?

This cryptosystem, named RSA after its inventors Rivest, Shamir and Adleman, is the most popular public key cryptosystem.

Notes

(172)	Modular exponentiation
m	the modular exponentiations required to encrypt and decrypt the essage can be done efficiently in $\mathcal{O}((\log n)^2 \log d)$ bit operations, ing the following algorithm.
A	gorithm. (Square and multiply)
In	put : m an integer, $d = (d_{k-1} \dots d_0)_2$ and n two positive integers
0	$\mathbf{utput:} \ x = m^d \bmod n$
1 pc	$ower \leftarrow 1;$
2 fo	$\mathbf{r} \ i \leftarrow k-1 \ \mathbf{to} \ 0 \ \mathbf{do}$
3	$power \leftarrow (power \cdot power) \bmod n;$
4	if $d_i = 1$ then $power \leftarrow (m \cdot power) \mod n$;
5 er	nd for
	turn power

Notes	

169 - 17243

Modular exponentiation

Example.

Calculate 9726³⁵³³ mod 11413.

We run the previous algorithm with: m = 9726, n=11413 and $d = 3533 = (110111001101)_2$.

i	d_i	power mod 11413	i	d_i	power mod 11423
11	1	$1^2 \cdot 9726 \equiv 9726$	5	0	$7783^2 \equiv 6298$
10	1	$9726^2 \cdot 9726 \equiv 2659$	4	0	$6298^2 \equiv 4629$
9	0	$2659^2 \equiv 5634$	3	1	$4629^2 \cdot 9726 \equiv 10185$
8	1	$5634^2 \cdot 9726 \equiv 9167$	2		
7	1	$9167^2 \cdot 9726 \equiv 4958$	1	0	$105^2 \equiv 11025$
6	1	$4958^2 \cdot 9726 \equiv 7783$	0	1	$11025^2 \cdot 9726 \equiv 5761$

174

Faster decryption

Notes

Two useful optimizations to the decryption can be applied. The first and most obvious consists in saving $d \mod \varphi(n)$ such that it is not recomputed at each decryption.

The second idea consists in using the CRT (2.99, 3.145) to speed up the computation. Instead of storing $d \mod \varphi(n)$ one can save $d \mod (p-1)$ as well as $d \mod (q-1)$, recover the "two sub-messages" in $\mathbb{Z}/p\mathbb{Z}$ and $\mathbb{Z}/q\mathbb{Z}$, and combine them over $\mathbb{Z}/n\mathbb{Z}$. Example.

Let p=11, q=23 and e=3. Then n=253, $\varphi(n)=220$ and d=147. To encrypt m=57 we compute $c=57^3\equiv 250$ mod 253. Instead of computing $m\equiv 250^{147}$ mod 253 we do

$$\begin{cases} 250^{147 \text{ mod } 10} \equiv 8^7 \equiv 2 \text{ mod } 11 \\ 250^{147 \text{ mod } 22} \equiv 20^{15} \equiv 11 \text{ mod } 23. \end{cases}$$

175

Faster decryption

It now suffices to combine the results mod p and q into a single result mod n.

Bézout's identity gives $(-2)\cdot 11+1\cdot 23=1$. Therefore 1_ρ is mapped into 23 mod 253 and 1_q into $-22\equiv 231$ mod 253. Hence,

$$(2,11) = 2 \cdot 1_p + 11 \cdot 1_q$$

$$= 2 \cdot 23 + 11 \cdot 231 \mod 253$$

$$\equiv 2587 \mod 253$$

$$\equiv 57 \mod 253.$$

And the plaintext is recovered.

176

Generating primes

Which strategy to choose:

- Generate a random integer, pick the next prime
- Generate random integers until one of them is prime

Remark.

- The prime number theorem states that in the range 1-n approximately $n/\ln n$ integers are prime. As we will discuss later, the primes p and q are expected to be about 1024 bits long. Therefore the probability for a random integer between 1 and 2^{1024} to be prime is $1/\ln 2^{1024} \approx 1/710$.
- Although a deterministic polynomial time algorithm exists for primality testing (AKS), Monte Carlos algorithms, which are much faster solutions, are often used in practice.

Notes		

173 – 176 4

The Solovay-Strassen primality test

From proposition 3.157 we know that if n is prime then for any $a \not\equiv 0 \mod n$,

$$\left(\frac{a}{n}\right) \equiv a^{(n-1)/2} \bmod n. \tag{3.1}$$

Unfortunately there exist some integers a for which it is also true although n is not prime. It is therefore impossible to derive a deterministic algorithm from this proposition.

On the other hand, we can observe the following property. Let n be composite and $A = \{a \mid gcd(a,n) = 1 \text{ and } (3.1) \text{ holds} \}$. Since n is composite there exists an integer b such that gcd(b,n) = 1 and

$$\left(\frac{b}{n}\right) \not\equiv b^{(n-1)/2}$$
. For any $a \in A$ we have

$$(ab)^{\frac{n-1}{2}} = a^{\frac{n-1}{2}}b^{\frac{n-1}{2}} = \left(\frac{a}{n}\right)b^{\frac{n-1}{2}} \not\equiv \left(\frac{a}{n}\right)\left(\frac{b}{n}\right) \bmod n.$$

Hence, for any $a \in A$ there is an element coprime to n that does not belong to A. It is then possible to construct a Monte Carlo Algorithm that determines whether or not n is prime.

178

The Solovay-Strassen primality test

The following algorithm requires $\mathcal{O}(k(\log n)^3)$ operations to test the primality of n, k being the number of random elements generated for the test.

Algorithm. (Solovay-Strassen)

 $\textbf{Input} \quad \textbf{:} \ n \ \text{an integer, and} \ k \ \text{the number of tests to run}$

Output: n is composite or probably prime

- 1 for $i \leftarrow 1$ to k do
- 2 | $a \leftarrow \operatorname{rand}(2, n-2)$;
- if $gcd(a, n) \neq 1$ then return n is composite;
- $x \leftarrow \left(\frac{a}{n}\right);$
- 5 $y \leftarrow a^{(n-1)/2} \mod n$;
- 6 if $x \not\equiv y \mod n$ then return n is composite;
- 7 end for
- 8 return n is probably prime

The Miller-Rabin primality test

The Miller-Rabin test is a Monte Carlo Algorithm that determines whether or not an integer is prime.

Let $n\in\mathbb{N}$ be an odd integer. Then $n-1=2^sm$, where s is an integer and m is odd. The integer n passes the *Miller-Rabin test to base a* if either

$$a^m \equiv 1 \mod n$$
 or $a^{2^{j}m} \equiv -1 \mod n$

for some j with $0 \le j \le s - 1$.

To see it, observe that if n is prime then $x^2\equiv 1 \bmod n$ has only two solutions: +1 and -1. Moreover Fermat's little theorem (2.95) applies and $a^{n-1}\equiv 1 \bmod n$.

Therefore taking the square root of a^{n-1} yields 1 or -1. On -1 the second congruence holds. If this is 1 then the square root can be taken again until it is either -1 or only m is left. Hence one of the two congruences holds.

The Miller-Rabin primality test

Finally the contrapositive states that if neither of the congruences holds then n is composite.

Noticing the two following points we can now derive a probabilistic algorithm which returns whether an integer is composite or probably prime.

- If n is prime and 1 < a < n, then n passes Miller's test to base a.
- If n is composite, then there are fewer than n/4 bases a with 1 < a < n such that n passes Miller's test to base a.

Notes

Notes	

Notes			

177 - 180 45

The Miller-Rabin primality test

The Monte Carlo algorithm now randomly selects k bases a and performs the Miller-Rabin test.

- If n fails the test for any of the bases used, the algorithm will return "true" (n is composite).
- If *n* passes each test, the answer is still unknown. Nevertheless, the algorithm will return "false" (*n* is probably prime).

The probability that n is composite and still passes the test each of the k times is

$$p_k = \frac{1}{4^k}$$

For instance if k=30 tests are performed, $p_k<10^{-18}$. It is almost certain that a number that the algorithm returns as prime actually is prime.

182

The Miller-Rabin primality test

```
Algorithm. (Miller-Rabin)
    Input : n an odd integer, and k the number of tests to run
     \textbf{Output} \hspace{0.2cm} \textbf{:} \hspace{0.1cm} n \hspace{0.1cm} \text{is composite or probably prime} \\
   m \leftarrow (n-1)/2; s \leftarrow 1;
    while 2|m do m \leftarrow m/2; s \leftarrow s+1;
    for i \leftarrow 1 to k do
          a \leftarrow \operatorname{rand}(2, n-2);
          if gcd(a, n) \neq 1 then return n is composite;
          a \leftarrow a^m \mod n;
          if a=\pm 1 then continue;
          for j \leftarrow 1 to s - 1 do a \leftarrow a^2 \mod n;
                if a \equiv 1 \mod n then return n is composite;
10
                 \text{ if } a \equiv -1 \bmod n \text{ then } b \leftarrow 1 \text{ ; break; } \\
         end for if b=1 then continue else return n is composite;
13
14 end for
15 return n is probably prime
```

183

Testing RSA security

The last question that remains to be answered is related to the security of RSA. The RSA cryptosystem can be viewed as having three secret parameters: p,q and d.

If n and $\varphi(n)$ are known, then p and q can be efficiently recovered. Note that

$$n - \varphi(n) + 1 = pq - (p-1)(q-1) + 1 = p + q.$$

Since we know pq and p+q, p and q are the roots of the quadratic equation $X^2-(n-\varphi(n)+1)X+n$. Hence

$$p, q = \frac{n - \varphi(n) + 1 \pm \sqrt{(n - \varphi(n) + 1)^2 - 4n}}{2}.$$

Said otherwise, if $\varphi(n)$ can be computed then n can be factorised. Since factorizing n is believed to be hard there should be no way of efficiently compute $\varphi(n)$.

184

Testing RSA security

Suppose that both \emph{e} and \emph{d} are known. Then \emph{n} can be efficiently factorised.

Since $de \equiv 1 \mod \varphi(n)$, for any a coprime to n, $a^{de-1} \equiv 1 \mod n$. The idea is now to select some random a coprime to n, and apply the strategy described on slide 3.153. Note that if a and n are not coprime then $\gcd(a,n)$ is factor of n. Therefore lets assume their \gcd to be 1.

We start by writing ed-1 as 2^sm and then define $b_0=a^m$ and $b_{i+1}\equiv b_i^2 \mod n$. As we expect to find the order of a we want $b_{i+1}\equiv 1 \mod n$, while $b_i\not\equiv 1 \mod n$. Moreover if $b_i\equiv -1 \mod n$ then the factors are trivial. Therefore our aim is to find an a such that $b_i\not\equiv \pm 1$ and $b_{i+1}\equiv 1 \mod n$. In this case, $\gcd(b_i-1,n)$ and $\gcd(b_i+1,n)$ are non-trivial factors of n.

Hence finding d should be hard since it allows to factorize n.

Notes			

Notes	

Notes	

Notes	

Э.)	
٠	,	
_	-	/

The RSA problem

From the previous discussion it appears that the RSA cryptosystem relies on the hardness of factoring large composite integers. But more precisely it is the hardness of determining $\varphi(n)$ when only n is known without its prime decomposition. The RSA problem can be formally stated as follows.

Problem (RSA problem)

Let n be a large integer and e>0 be coprime to $\varphi(n)$. Given y in $\mathrm{U}(\mathbb{Z}/n\mathbb{Z})$, compute $y^{1/e} \bmod n$, i.e. find x such that $x^e \equiv y \bmod n$.

Although factoring $\varphi(n)$ or computing d solves the RSA problem there is no proof that no other way of solving it exists. Therefore it cannot be concluded that the RSA problem is as hard as factoring. Indeed it may be that the RSA problem can be solved in polynomial time even though the factoring problem cannot.

Factoring integers

Complexity of a few factorization algorithms for n a k-bit integer:

Algorithm	Complexity
Trial division	$\mathcal{O}\left(2^{k/2}/k)\right)$
Pollard- $ ho$	$\mathcal{O}\left(\sqrt[4]{n}\right)$
ECM	$L_p\left[1/2,\sqrt{2}\right]$
GNFS	$L_n\left[1/3, \sqrt[3]{64/9}\right]$

The $L_n(\alpha, c)$ function is defined by

$$L_n(\alpha,c)=e^{\left(c+o(1)\right)\left((\ln n)^{\alpha}(\ln \ln n)^{1-\alpha}\right)\right)}.$$

Factoring integers

Given a large random integer N, the probability for N to be divisible by 2 is 1/2; by 3, 1/3; by 5, 1/5 etc. One can deduce that about 88% of integers have a factor smaller than 100 and 92% a factor smaller than 1000

Therefore, despite its exponential complexity, trial division is used in almost all factoring programs. All the small factors are first removed before more advanced strategies are employed to totally factorize N.

In practice, trial division is implemented through a large table containing all the primes, or alternatively the difference between two consecutive primes, up to 10 million. Then even for a 1000 digit long integer it only takes a few seconds to perform all the trial divisions and ensure that N is free of any small factor.

Factoring integers

Another simple idea in order to remove small factors consists in computing $\gcd(n,P)$ where P corresponds to the product of all the prime numbers below a given bound B. Compared to trial division this strategy seems appealing since computing a gcd can be done in polynomial time. In practice, this method is much more efficient when considering primes below 1000 but it becomes extremely slow when checking prime factors of size around one million.

In the first case the product of all the primes is about 1,400 bits while in the second case it is approximately 1,500,000! Computing the gcd of an integer around 2^{2048} and P, then takes much longer.

This simple example highlights how practical cases can highly diverge from the theoretical asymptotic analysis.

Notes

Notes		

Notes		

185 - 188 47

Pollard's Rho Algorithm

We now introduce an example of a more sophisticated factoring scheme. It is asymptotically faster than trial factorization and can be used when small numbers have been eliminated as possible factors.

Let n be a composite integer with an unknown prime factor $p \leq \sqrt{n}$. Define the function

$$f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, \qquad f(x) = x^2 + 1 \mod n$$

(other functions $f\colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ can be used). We now recursively define a sequence (x_k) by

$$x_0=2,$$
 $x_{k+1}=f(x_k),$ $k\in\mathbb{N}$

Since there are exactly n elements in $\mathbb{Z}/n\mathbb{Z}$, the sequence must at some point produce a repeated value and enter a cycle.

Pollard's Rho Algorithm

We then **hope** that the cycle contains two or more elements with the same remainder modulo p, i.e., that we can find x_i and x_j , $i \neq j$, in the cycle such that

$$x_i \equiv x_j \mod p$$
.

If that is the case, then $x_i - x_j$ is divisible by p and $\gcd(x_i - x_j, n)$ gives a factor of n.

In summary, when testing all of the x_i and x_j of the cycle, this GCD can evaluate as follows:

$$\gcd(x_i - x_j, n) = \begin{cases} n & \text{if } x_i = x_j, \\ 1 & \text{if } x_i \not\equiv x_j \bmod p \text{ for all factors } p \text{ of } n, \\ t & \text{if } x_i \equiv x_j \bmod p, \text{ where } p \mid t \text{ and } t \mid n. \end{cases}$$

Pollard's Rho Algorithm

The algorithm now uses the following method to evaluate pairs x_i, x_j in the cycle: two sequences (x_k) and (y_k) are defined,

$$x_0 = 2$$
, $x_{k+1} = f(x_k)$ and $y_0 = 2$, $y_{k+1} = f(f(y_k))$.

The sequences (x_k) traverses the cycle normally, while the sequence (y_k) traverses the cycle in double steps. This is intended to be an efficient manner of generating "random" pairs (x_i, x_j) . For each pair, $\gcd(x_i-x_j,n)$ is evaluated.

Example.

Suppose that we want to factor the number n=8051. We start with $x_0=2$ and set $x_{k+1}=x_k^2+1$ mod 8051. We obtain the sequence

 $(x_i) = (2, 5, 26, 677, 7474, 2839, 871, 1848, 1481, 3490, 6989, 705, 5915, 5631, 3324, 3005, 4855, 5749, 1647, 7474, 2839,...$

and we have found a cycle starting at $x_4 = 7474$.

Pollard's Rho Algorithm

In practice, we simply generate the sequences (x_k) and (y_k) and evaluate the GCDs:

x_k	2	5	26	677	7474	2839
y_k	2	26	7474	871	1481	6989
$\gcd(x_k - y_k, n)$	8051	1	1	97	1	83
x_k	871	1848	1481	3490	6989	705
Уk	5915	3324	4855	1647	2839	1848
$\gcd(x_k-y_k,n)$	97	1	1	97	83	1
x_k	5915	5631	3324	3005	4855	5749
Уk	3490	705	5631	3005	5749	7474
$\gcd(x_k - y_k, n)$	97	1	1	8051	1	1

Even before the cycle is entered by (x_k) , a factor p=97 of n=8051 is found.

Notes		 	

Notes	
	_

Notes			

Notes		

Pollard's Rho Algorithm

Algorithm. (Pollard- ρ – Factorization)

Input: n, a composite integer, $f(x) = x^2 + 1 \mod n$.

Output: d a non-trivial factor of n, or failure.

- 1 $a \leftarrow 2$; $b \leftarrow 2$;
- 2 repeat
- $a \leftarrow f(a); b \leftarrow f(f(b));$
- $d \leftarrow \gcd(a-b,n);$
- 5 until $d \neq 1$;
- 6 if d = n then
- 7 return failure
- 8 else
- 9 return d
- 10 end if

194

Complexity of Pollard's Rho Algorithm

The Pollard Rho algorithm derives its name from the shape of the sequence (x_k) . At some point in the sequence, $x_k \equiv x_{k+T} \mod \rho$ for some T>0 and the sequence can be represented as a cycle from that point onwards - this is the circle of the letter ρ . The sequence terms $x_0, x_1, \dots x_{k-1}$ then form the "tail" of ρ .

• The role of f is to "randomly" select numbers in $\mathbb{Z}/n\mathbb{Z}$. Its precise form is not essential, but it should be a polynomial for

$$f(f(x) \bmod n) \bmod n = f(f(x)) \bmod n$$

when calculating the sequence (y_k) .

• It is not guaranteed that the Pollard Rho algorithm actually will be successful - it could happen that all of the x_i in the cycle have distinct remainders modulo p. In that case, a different starting point x₀ should be chosen and the algorithm run once more.

195)

Complexity of Pollard's Rho Algorithm

We now attempt to make a rough estimate of the average time complexity of the algorithm. Let us ignore the specifics and suppose that the algorithm simply selects random numbers $x_i, x_j \in \mathbb{Z}/n\mathbb{Z}$ for comparison of their remainders.

Suppose that any given number between 0 and n has an equal probability 1/p of having a remainder m modulo p, $0 \le m < p$:

$$P[\mathsf{x}_k \bmod p = m] = \frac{1}{p} \quad \text{ for all } m = 0, \dots, p-1 \text{ and all } k \in \mathbb{N}.$$

Suppose that for any two x_i and x_j , $i \neq j$, these probabilities are independent. Then the probability that x_0 and x_1 have different remainders is

$$P[x_i \not\equiv x_j \bmod p] = \frac{p-1}{p},$$

Complexity of Pollard's Rho Algorithm

Suppose that x_0, \ldots, x_{k-1} have distinct remainders modulo p, then the probability of x_k to have a remainder different from x_0, \ldots, x_{k-1} is $\frac{p-k}{p}$.

Then (assuming the independence of the value of the remainder) the probability that a group of k numbers has distinct remainders mod p is

$$P_k := P[x_i \not\equiv x_i \mod p, \ 0 \le i \le i \le k]$$

$$= \prod_{l=0}^{k} \frac{p-l}{p} = \frac{p!}{(p-k-1)!p^{k}}.$$

It can be shown that $1 - P_k < 1/2$ if $k > 1.177\sqrt{p}$.

This indicates that the average-case complexity of Pollard's Rho algorithm should be

$$\mathcal{O}(\sqrt{p}) = \mathcal{O}(\sqrt[4]{n}).$$

Notes		
1		

Notes		

Notes		

Notes

ı,	
	197)
	\smile

Factoring the RSA modulus

In the RSA case n is known to be product of two large primes. Therefore the algorithm of choice is the GNFS. Then applying the strategy described on slide 1.70 we set

$$2^{128} = e^{\sqrt[3]{\frac{64}{9}}(\ln n)^{1/3}(\ln \ln n)^{2/3}},$$

which gives approximately $n=7.65\cdot 10^{763}$. In terms of bit length, n should be about 2500 bits long. In practice, this is rounded up to 3072 bits (2048+1024), and a bit length of 2048 to 3072 is considered "secure" as it corresponds to 112 to 128 bits security.

As of 2014, the largest product of two large primes officially factorized occurred in the breaking of RSA-768 (a 768 bits RSA modulus):

123018668453011775513049495838496272077285356959533479219732245215172640050726365751874520219978649589564749427740582459251525572250394537315482685079170261221429134616704292143116022212404792747377040805535141995745895002134413

 $= \\ 347807169895689878604416984821269081770479498371376856891243138898288379387800228761471165253174\\ 3087737814467999489$

 $\times \\ 3674604366679959042824463379962795263227915816434308764267603228381573966651127923337341714339681\\ 0270092796736308917$

Attacks on RSA

Strategy for short messages and small e:

- A message $m < n^{1/e}$
- The ciphertext is $c \equiv m^e \mod n$
- The encryption does not require any modular reduction
- Over the integers c is also m^e
- ullet Solve $c^{1/e}$ over the integers recovers m

Typical use: encrypt a 128 bits long secret key using RSA

Attacks on RSA

Strategy for short messages:

- A message m of less than about 10^{17} bits
- The ciphertext is $c = m^e \mod n$
- Compute and store in a table $cx^{-e} \mod n$, for all $1 \le x \le 10^9$
- Compute $y^e \mod n$, for all $1 \le y \le 10^9$, and test for a collision
- If a collision is found then $c = (xy)^e \mod n$
- If $m \le 10^{17}$ it is likely that such x and y exist

Attacks on RSA

Strategy for small e:

- ullet A message m sent to $i \geq e$ persons using the keys $\langle n_i, e \rangle$
- If $gcd(n_k, n_i) \neq 1$ then one of the n_i can be factorized
- Otherwise set $n = \prod_i n_i$
- Use the CRT over all the ciphertext $c_i=m^e \mod n_i$, to compute $c\equiv m^e \mod n$
- $\bullet \ \ \mathsf{As} \ m < \mathsf{min}_i(n_i) \ \mathsf{and} \ i \geq e, \ \mathsf{then} \ m^e < n$
- ullet Finally $m=c^{1/e}$ can be computed in ${\mathbb N}$

Notes

Notes			

Notes			

Notes			

202	Toward a secure RSA
	timal Asymmetric Encryption Padding (RSA-OAEP): Due to Bellare and Rogaway Standardized as PKCS #1 v2 Similar to feistel network in the construction Proved to be CCA secure
•	tations: Concatenation of two bit strings a and b : $a\ b$ Repetition of a bit b , d times: b^d Random oracle are informaly defined on slide 2.103

Notes			

Notes	

		-	7	١.	
1	'n	n	ĸ	١	
ď	۰	•	,	J	

The Discrete Logarithm Problem

After investigating the RSA problem (3.185) we now turn our attention to another hard problem from number theory.

Problem (Discrete Logarithm Problem (DLP))

Let \mathbb{F}_q be a finite field, with $q=p^n$, for a positive integer n. Given lpha a generator of G, a subgroup of \mathbb{F}_q^* , and $eta \in G$, find x such that $\beta = \alpha^{\times}$ in \mathbb{F}_q .

Note that x is unique only up to congruence mod |G|, therefore x is usually restricted to $0 \le x < \operatorname{ord}_{\mathbb{F}_a^*}(\alpha)$.

The Discrete Logarithm Problem

Example.

For p=13 and n=1 the field of concern is $\mathbb{Z}/13\mathbb{Z}$. The multiplicative group $U(\mathbb{Z}/13\mathbb{Z})$ has order 12 and as such has a subgroup of order 6 (Lagrange's theorem (3.147)).

From example 3.144, 2 has order 12 and is a generator of $U(\mathbb{Z}/13\mathbb{Z})$. Therefore 4 generates a subgroup of order 6, namely

$$G = \{4, 3, 12, 9, 10, 1\}$$
.

Example of DLP in G: find x such that $4^x \equiv 9 \mod 13$. Clearly 4 is a solution, but also 10, 16, 22...However, restricting x to the range 0-6 makes it unique.

Pollard's Rho Algorithm

In the previous section Pollard's Rho algorithm was investigated as a way to solve the factorization problem. Since Factorization and Discrete Logarithm have much in common Pollard's Rho algorithm can be adjusted to this new context. We now present its details

Let α be a generator of a group G of prime order p. Any element of Gcan be written $\alpha^a \beta^b$ for some $a, b \in \mathbb{N}$ and $\beta \in G$.

Assuming two integers x and y such that $x \equiv y \mod p$ can be found, then there exist a_1 , b_1 such that $x \mod p$ can be written $\alpha^{a_1}\beta^{b_1}$, and a_2, b_2 such that $\alpha^{a_2}\beta^{b_2} \equiv y \mod p$.

Rewriting $x \equiv y \mod p$ as $\alpha^{a_1}\beta^{b_1} \equiv \alpha^{a_2}\beta^{b_2} \mod p$ yields

$$\beta^{b_1-b_2} \equiv \alpha^{a_2-a_1} \bmod p.$$

Taking the \log_{α} on both sides leads to

$$(b_1 - b_2)\log_{\alpha}\beta = a_2 - a_1 \bmod p.$$

Pollard's Rho Algorithm

As long as $p \nmid (b_1 - b_2)$ we get

$$\log_{\alpha}\beta = \frac{a_2 - a_1}{b_1 - b_2}.$$

Therefore the goal of Pollard's Rho algorithm is to find x and y with $x \equiv y \mod p$. This is achieved by considering three partitions S_1 , S_2 and S_3 of G of approximately the same size, based on an easily testable property, and defining three functions f, g and h.

$$f(x) = \begin{cases} \beta x & x \in S_1 \\ x^2 & x \in S_2 \\ \alpha x & x \in S_2 \end{cases}$$

$$f(x) = \begin{cases} \beta x & x \in S_1 \\ x^2 & x \in S_2 \\ \alpha x & x \in S_3 \end{cases}$$

$$g(a,x) = \begin{cases} a & x \in S_1 \\ 2a \mod p & x \in S_2 \\ a+1 \mod p & x \in S_2 \end{cases} h(b,x) = \begin{cases} b+1 \mod p & x \in S_1 \\ 2b \mod p & x \in S_2 \\ b & x \in S_3 \end{cases}$$

Notes		

Notes	

Notes

Notes

200	
209	

Pollard's Rho Algorithm

Starting with two elements x = y = 1, f is iteratively applied, once to x and twice to y. Since G is a cyclic group repeatedly applying f to xand y will result in a collision at some stage.

The function f, g and h are defined such as the progress of x and yappears "random", while y goes twice as fast as x. Then by the birthday paradox (4.231) a collision can be expected in time \sqrt{p} , since p is the order of the group G.

The cyclic group G is taken as generic and no further assumption is made. This means that Pollard's Rho method applies to any group G of prime order p.

Pollard's Rho Algorithm

Algorithm. (Pollard- ρ – Discrete Logarithm)

Input: α a generator of G, a group of prime order p and $\beta \in G$, f, g and h three functions.

Output: $\log_{\alpha} \beta$, or failure.

- $1 \ a_1 \leftarrow 0; \ b_1 \leftarrow 0; \ x \leftarrow 1; \ a_2 \leftarrow 0; \ b_2 \leftarrow 0; \ y \leftarrow 1;$
- 2 repeat
- 3
- $a_1 \leftarrow g(a_1, x); b_1 \leftarrow h(b_1, x);$
- $x \leftarrow f(x)$;
- $a_2 \leftarrow g(g(a_2,y),f(y)); \ b_2 \leftarrow h(h(b_2,y),f(y));$ 5
- $y \leftarrow f(f(y));$
- 7 until $x \not\equiv y \mod p$;
- 8 $r \leftarrow b_1 b_2$;
- 9 **if** $r \neq 0$ **then return** $r^{-1}(a_2 a_1) \mod p$;
- 10 else return failed;

Pollard's Rho Algorithm

Example.

Let $\alpha=2$ be a generator of G, the subgroup of order 191 of $\mathbb{Z}^*_{383}.$ Let $\beta = 228$. Partition G into $S_1 = \{x \in G | x \equiv 1 \mod 3\}$,

 $S_2=\{x\in G|x\equiv 0 \text{ mod } 3\} \text{ and } S_3=\{x\in G|x\equiv 2 \text{ mod } 3\}.$

$\begin{array}{c} x \\ a_1 \\ b_1 \end{array}$	228	279	92	184	205	14	28
	0	0	0	1	1	1	2
	1	2	4	4	5	6	6
y	279	184	14	256	304	121	144
a ₂	0	1	1	2	3	6	12
b ₂	2	4	6	7	8	18	38
$\begin{array}{c} x \\ a_1 \\ b_1 \end{array}$	256	152	304	372	121	12	144
	2	2	3	3	6	6	12
	7	8	8	9	18	19	38
y	235	72	14	256	304	121	144
a ₂	48	48	96	97	98	5	10
b ₂	152	154	118	119	120	51	104

Then compute $(38-104)^{-1}(10-12)\equiv 110 \text{ mod } 191.$ Hence in \mathbb{Z}^*_{383} $\log_2(228) = 110.$

Polhig-Hellman Algorithm

Although slightly more advanced Polhig-Hellman Algorithm is interesting in the sense that it takes advantage of the structure of the prime p. In fact it was noticed that if p-1, the order of the multiplicative group of \mathbb{Z}_p , is featuring many small primes then the Discrete Logarithm Problem can be solved using the Chinese Remainder Theorem.

Let $p-1=q_1^{e_1}q_2^{e_2}\dots q_r^{e_r}$, $r\in\mathbb{N}.$ If $x=\log_lphaeta$ then it suffices to determine $x_i = x \mod q_i^{e_i}$ for $1 \le i \le r$ and then use the Chinese Remainder Theorem in order to recover x. Therefore it only remains to compute all the x_i . This can be efficiently achieved at the cost of some mathematical technicalities.

Notes	

Notes	

Notes		

213)

More on the Discrete Logarithm Problem

Remark.

A common mathematical strategy consists in transposing a difficult problem over a given structure into an easier one over a similar structure. Following this idea one could think of solving a hard Discrete Logarithm Problem into an isomorphic group and then map it back to the original group.

In particular since the Discrete Logarithm Problem is easy to solve in the additive group \mathbb{Z}_n , $n \in \mathbb{N}$, it is possible to map the multiplicative group of \mathbb{Z}_p into the additive group $\mathbb{Z}_{p-1}.$ Solving the problem in this simpler group and mapping back the solution to \mathbb{Z}_p seems to be a very attractive solution.

The major problem with this approach is finding the map. In fact such a map would have to be built element by element, which would be time consuming. As a result this solution is not applicable in practice.

The DLP in cryptography

It is simple to see that the DLP is the inverse operation of the modular exponentiation, which can be very efficiently computed (3.172). However solving the DLP is not an easy task if the group is carefully chosen

For instance as we will study in chapter 8, in groups having only a very basic algebraic structure the best algorithm available is the Pollard's $\,$ Rho algorithm.

For more common groups over finite fields the best algorithms have a sub-exponential complexity similar to the one of the GNFS. Therefore in a cryptographic context, that is for the DLP to be intractable, the group is expected to have order larger than 2^{2048} .

We now present several cryptographic protocols based on the hardness of solving the DLP. .

Diffie-Hellman key exchange

Alice and Bob publicly agree on some parameters:

G a group of order p α a generator of G

Both Alice and Bob generate a random secret:

Choose a random element x in G

Choose a random element y in G

Alice and Bob send each other α^{secret} :

• x in G and α^y

• y in G and α^x

Diffie-Hellman problems

Clearly solving the DLP implies breaking the Diffie-Hellman key exchange protocol. However in order to determine α^{xy} it might not be necessary to solve the DLP, but only to solve the so called Computational Diffie-Hellman problem.

Problem (Diffie-Hellman problems)

- Let G be a group of prime order p and α be a generator of G.
- **1** Computational Diffie-Hellman (CDH): given α^x and α^y , for some unknown integers x and y, compute α^{xy}
- 2 Decisional Diffie-Hellman (DDH): given α^x and α^y , decide whether or not some $c \in G$ is equal to α^{xy} .

While solving the DLP implies solving the CDH problem, it is not known whether or not solving the CDH problem solves the DLP.

At present no method to solve CDH from DDH is known, and in fact in some groups DDH is efficiently solved while CDH remains hard.

Notes

Notes

Notes			

Notes			

213 - 21654

217) Initial setup: G a group of prime α from Bob α a generator of ${\it G}$ • $\beta \equiv \alpha^x \mod p$ x a secret integer from Bob Encryption: A message m • $r \equiv \alpha^k \mod p$ for some random integer k• Compute $t \equiv \beta^k m$ • Send $c = \langle r, t \rangle$ to Bob Decryption:

Notes			

Notes

Notes			

Notes		

Notes			

223)	Data integrity
Components of modern cryptograph Confidentiality Authentication	ny: Data integrity Non-repudiation
Common setup for data integrity: Insecure environment Unencrypted data	 Data must not be altered
Example. • Files in an OS	t will if our training
 Software to be downloaded or 	installed from internet

Notes	

(224)	Fingerprint
Simple high-level idea: Construct a short fingerprint of the data Store the fingerprint in a secure place Recompute and compare the fingerprint on a regul Fingerprint is changed: data was altered Fingerprint is unchanged: data was not altered	ar basis
Construction goals: The fingerprint must be a few hundreds of bits lon A tiny change in that data radically impacts the fin It is impossible to alter the data without totally che fingerprint	ngerprint

Notes	

(25) Hash func	tic
Definition (Hash function)	
A <i>hash function</i> is a function <i>h</i> that verifies the following propert • Efficiently computed for any input.	ies
1 Pre-image resistant: given y it is computationally infeasible find x such that $h(x) = y$.	to
® Second pre-image resistant: given x , it is computationally infeasible to find $x' \neq x$ with $h(x) = h(x')$.	
© Collision resistant: it is computationally infeasible to find x a x' with $x' \neq x$ and $h(x) = h(x')$.	ano
The output of a hash function is called message digest or digest	:
226) Rem	ar

Notes	

Notes		

Notes			

Notes

225 – 228 57

z	2	y	1	
		٠.	,	
	2	22	229	229)

The DLP hash function

Proposition

If two values $x \neq x'$ with h(x) = h(x') are known then the discrete logarithm of β in base α can be efficiently computed.

In order to prove this result we recall the following lemma.

Lemma

Let $a,b\in\mathbb{Z}$ and $m\in\mathbb{N}\setminus\{0\}$ and $d=\gcd(a,m)$. The linear congruence $ax\equiv b \bmod m$ has a solution if and only if $d\mid b$. In that case, it has d solutions that are mutually incongruent $mod\ m$.

The DLP hash function

Proof

Suppose h(x)=h(x'), with $x=x_0+x_1q$ and $x'=x_0'+x_1'q$. Since α is a generator of $\mathrm{U}(\mathbb{Z}/p\mathbb{Z})$, $\beta=\alpha^a$ for some integer a and

$$\alpha^{(x_0+ax_1)} \equiv \alpha^{x_0'+ax_1'} \bmod p.$$

From corollary 3.152, $a(x_1-x_1')\equiv x_0'-x_0 \bmod (p-1)$. To solve this equation for a we see that if $x_1=x_1'$ then $x_0=x_0'$ and $x=x_2'$.

Therefore we assume $x_1 \neq x_1'$, and find $d = \gcd(x_1 - x_1', p - 1)$ incongruent solutions (lemma 4.229). But as $q = \frac{p-1}{2}$ is prime, the only factors of p-1 are 1, 2, q, and p-1. Also note that $0 \leq x_1, x_1' \leq q-1$ implies $-(q-1) \leq x_1 - x_1' \leq q-1$. And since $x_1 - x_1' \not\equiv 0 \bmod (p-1)$ it means that d is either 1 or 2.

Thus it suffices to test the two solutions to determine a. Hence finding $x \neq x'$ with h(x) = h(x') implies solving the DLP.

The birthday paradox

As we have already mentioned the birthdays paradox on several occasions (2.109, 3.209) we now present some more details on this "birthday attack".

The essence of the birthday paradox can be expressed by considering the birthdays of 23 persons. We first assume the birthdays to be independent and equiprobable. If those 23 people all have a different birthday, it means that the second person has 364/365 chance of not sharing a birthday with the first one. Then for the third one the probability is 363/365 and so on until the twenty-third whose probability is 343/365. Therefore the probability of at least two sharing the same birthday is

$$1 - \prod_{i=1}^{22} \frac{365 - i}{365} = 0.507 > \frac{1}{2}.$$

The birthday paradox

Suppose we now have a large number of objects n, that are randomly chosen with replacement by two groups of r persons each. The probability of someone in the first group choosing the same object as someone in the second group can be approximated by $1-e^{-r^2/n}$. And the probability of i matches is $\left(\frac{r^2}{n}\right)^i \frac{e^{-r^2/n}}{i!}$.

As the probability of a match (i.e. two persons choosing the same object) is expected to be larger than 1/2 we set r^2/n to be ln 2. This yields $r\approx 1.117\sqrt{n}$. Since for $a\ll n$, $a\sqrt{n}$ is of the same order of magnitude as \sqrt{n} , it means that a match will be found in average after $\mathcal{O}(\sqrt{n})$ persons have chosen an object.

¹This approximation will be derived in the homework

Notes

Notes			

Notes	

58

	233)
٦	\smile

The birthday attack

Let h be a hash function which digest are of length n. The first obvious strategy is to compute h(x) for about $\mathcal{O}\left(\sqrt{n}\right)$ random x and hope for a collision, as the probability is larger than a half.

Example.

Let h be a hash function whose output is 128 bits long. Then the above attack leads to a collision in $\mathcal{O}(2^{64})$ steps.

An important drawback in this attack is the amount of storage required, since all the values must be stored in order to be tested for collisions.

Example.

What is the hardest: perform 2⁶⁴ operations or store 2⁶⁴ bytes?

An improved birthday attack

Following the Pollard's rho idea (3.209) it is possible to decrease the amount of storage necessary by computing and comparing two hash sequences

Select a random initial x_0 and then compute $x_i = h(x_{i-1})$ and $x_{2i} = h(h(x_{2(i-1)}))$. At each step compare x_i and x_{2i} : a collision on x_{i-1} and $h(x_{2(i-1)})$ is found as soon as $x_i = x_{2i}$.

Note that we implicitly assumed h to act as a random oracle (2.103) such that the probability of having x_{i-1} equal to $h(x_{2(i-1)})$ is very low. In such case no information would be gained.

So far we focused on how to find collisions from a theoretical point of view, that is without considering whether or not the generated hash originates from a meaningful message.

A real life birthday attack

Alice is happy: she has received a nice contract for a new job in Eve's company.

Contrac

Alice will work 16 hours a week for a base salary of 50,000 RMB a month. Alice can take as much paid holidays as she

Contract

Alice will work 16 hours a day for a base salary of 500 RMB a month; Alice can take as little paid holidays as Eve

Eve constructed the two contracts such that they have the same hash. Alice signed one but Eve can pretend it was the other one.

A real life birthday attack

Why is it working?

- Eve generated many good and bad contracts
- She altered each base contract by
 - Changing the punctuation
 - Expressing the same idea using different synonyms
 - Adding extra spaces
- She computed their hash and found a collision

Example.

How many ways are there to read this short paragraph?

Notes

Notes	

Notes			

Notes			

233 – 236 59

Notes			

(238)	Designing hash functions
The goal is to design collision	on resistant hash functions
Difficulty:	
 Number of possible input: infin 	ite
Number of possible output: finitely	ite
Conclusion: any hash function has a	n infinite number of collisions
Merkle-Damgård construction: meth function on strings of fixed length in arbitrary input lengths	6,5
We will prove that if the original has then so is the constructed one.	sh function is collision resistant

Notes		

Notes		

Notes		

Merkle-Damgård theorem

Theorem (Merkle-Damgård)

Let g be a collision resistant compression function defined from $\{0,1\}^{m+t}$ into $\{0,1\}^m$, with $t\geq 2$. Then the Merkle-Damgård construction is a collision resistant hash function.

Remark.

Before proving this theorem we first note that the map $x\mapsto y$ must be injective. In fact if it is not injective then it is possible to find $x\neq x'$ such that y=y'. As a result we have h(x)=h(x'), that is h is not collision resistant.

Merkle-Damgård theorem

Proof.

Assuming we have a collision on h, i.e. $x \neq x'$ and h(x) = h(x'), we will prove that a collision on the compression function g can be efficiently found.

First note that if $|x| \neq |x'|$, then they are padded with two different values d and d', respectively. Similarly k+1 and k'+1 denote the number of blocks for x and x'.

Case 1: consider $x \neq x'$ with $|x| \not\equiv |x'| \mod (t-1)$. Then $d \neq d'$ and $y_{k+1} \neq y'_{k'+1}$. We then have

$$g(z_k||1||y_{k+1}) = z_{k+1} = h(x)$$

= $h(x') = z'_{k'+1}$
= $g(z'_{k'}||1||y'_{k'+1})$

which is a collision on g since $y_{k+1} \neq y'_{k'+1}$.

243

Merkle-Damgård theorem

Proof (continued).

Case 2a: consider $|x|\equiv |x'| \mod (t-1)$ with k=k'. This implies $y_{k+1}=y_{k'+1}$, and we have

$$g(z_k||1||y_{k+1}) = z_{k+1} = h(x)$$

$$= h(x') = z'_{k+1}$$

$$= g(z'_k||1||y'_{k+1}).$$

If $z_k \neq z_k'$ then a collision is found. Otherwise we repeat the process and get

$$g(z_{k-1}||1||y_k) = z_k = h(x)$$

$$= h(x') = z'_k$$

$$= g(z'_{k-1}||1||y'_k).$$

Then either we have found a collision or we continue backward until one is obtained. If none is found then we get

$$z_1 = z_1', \cdots, z_{k+1} = z_{k+1}'$$

244)

Merkle-Damgård theorem

Proof (continued).

Case 2b: consider $|x|\equiv |x'| \mod (t-1)$ with $k\neq k'$. Without loss of generality assume k'>k and proceed as in case 2a. If no collision is found before k=1 then we have

$$\begin{split} g(0^{m+1} \| y_1) &= z_1 \\ &= z'_{k'-k+1} \\ &= g(z'_{k'-k} \| 1 \| y'_{k'-k+1}). \end{split}$$

By construction the m+1st bit on the left is 0 while on the right it is 1. Hence we have found a collision.

All the cases being covered this completes the proof.

Notes	

Notes		

Notes			

Notes			

61

Constructing hash functions

Remark.

We have proven the Merkle-Damgård theorem in the case $t \ge 2$. In fact this is true for any $t \geq 1$ but the case t=1 requires a different approach as $|x| \mod (t-1)$ cannot be considered²

 $\label{eq:merkle-Damgard} \mbox{Merkle-Damgard construction served as a basis for the design of}$ various hash functions. Two common examples are MD5 and SHA-1.

MD5 hash function:

- Designed in 1991
- First flaw discovered in 1996
- · Collisions found in 2004
- Practical collisions demonstrated in 2005
- · Flame malware used collisions on Windows certificates to infect computers... in 2012!

²This case will be proven in the homework.

Basics on hash functions	Merkle- Damgård con- struction	SHA-1
	Hash functions	

Secure Hash Algorithm

Secure Hash Algorithm (SHA):

- 1993: SHA-0, 160 bits hash function, never widely adopted
- 1995: SHA-1, similar to SHA-0, with several weaknesses fixed
- 2001: SHA-2, significantly different from SHA-1
- 2005: first attacks against SHA-1
- 2008: SHA-0 totally broken (< 1 hour to find collisions)
- 2012: best theoretical attack on SHA-1 in 261 operations
- 2012: Keccak hash function is selected to become SHA-3
- 2017: major companies have stopped accepting SHA-1 certificates

Padding

Given x of length |x|:

- Append 1 to the message
- ② Append 0s until the length is $-64 \mod 512$
- Append |x| written in base 2 over 64 bits

Let y be the padded value of x. By construction $|y| \equiv 0 \mod 512$. Break y into

$$k = \left\lfloor \frac{|x|}{512} \right\rfloor + 1$$

blocks of 512 bits each.

Example.

Assume |x|=2800 bits. Since $2800\equiv 240 \bmod 512$ append a 1followed by 207 0s, and the bit representation of 2800 over 64 bits. Thus y is composed of k = 6, 512-bit blocks.

Notes		

Notes	

Notes		

Notes

```
249)
                                                             SHA-1 algorithm
   As SHA-1 follows the Merkle-Damgård construction it is simply
   described as an algorithm, while most of the work if performed by the
   compression function.
   Algorithm. (SHA-1)
   Input: x a bit string
   Output: h(x), where h is SHA-1
1 \ \textit{H}_0 \leftarrow 67452301; \ \textit{H}_1 \leftarrow \text{EFCDAB89}; \ \textit{H}_2 \leftarrow 98\text{BADCFE}; \\
2 H_3 ←10325476; H_4 ←C3D2E1F0;
3 d \leftarrow (447 - |x|) \mod 512;
4 y \leftarrow x ||1||0^d||(|x|)_2;
                                         /* \mid x \mid expressed over 64 bits */
5 for i \leftarrow 1 to k do
6 H_0, H_1, H_2, H_3, H_4 \leftarrow \text{compress}(H_0, H_1, H_2, H_3, H_4, y_i)
7 end for
8 return H_0 \| H_1 \| H_2 \| H_3 \| H_4
```

Notes

250

SHA-1 compression function

The compression function onto which SHA-1 relies uses:

• The functions f_0, \dots, f_{79} defined by

$$f_{i}(B,C,D) = \begin{cases} (B \land C) \lor (\neg B \land D) & \text{if } 0 \le i \le 19 \\ B \oplus C \oplus D & \text{if } 20 \le i \le 39 \\ (B \land C) \lor (B \land D) \lor (C \land D) & \text{if } 40 \le i \le 59 \\ B \oplus C \oplus D & \text{if } 60 \le i \le 79 \end{cases}$$

• The constants $K_0, ..., K_{79}$ defined by

$$K_i = \begin{cases} 5A827999 & \text{if } 0 \le i \le 19 \\ 6ED9EBA1 & \text{if } 20 \le i \le 39 \\ 8F1BBCDC & \text{if } 40 \le i \le 59 \\ CA62C1D6 & \text{if } 60 \le i \le 79 \end{cases}$$

Notes

251 SHA-1 compression function Algorithm. (SHA-1 compression function) Input : Five 32-bit values H_0 , H_1 , H_2 , H_3 , H_4 and a 512-bit block yOutput: Five 32-bit values H_0 , H_1 , H_2 , H_3 , H_4 Function compress $(H_0, H_1, H_2, H_3, H_4)$: split y into 16 words W_0, \dots, W_{15} ; $\quad \textbf{for } i \leftarrow 16 \textbf{ to } 79 \textbf{ do}$ $| W_i \leftarrow \textit{ROTL}(W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16})$ end for $A \leftarrow H_0$; $B \leftarrow H_1$; $C \leftarrow H_2$; $D \leftarrow H_3$; $E \leftarrow H_4$; $for \ i \leftarrow 0 \ to \ 79 \ do$ $T \leftarrow ROTL^{5}(A) + f_{i}(B, C, D) + E + W_{i} + K_{i};$ $E \leftarrow D; D \leftarrow C;$ $C \leftarrow ROTL^{30}(B);$ 10 $B \leftarrow A; A \leftarrow T;$ 11 end for 13 $H_0 \leftarrow H_0 + A; H_1 \leftarrow H_1 + B; H_2 = H_2 + C; H_3 = H_3 + D; H_4 = H_4 + E;$ 14 return H₀, H₁, H₂, H₃, H₄

Notes		
	·	

252

15 end

Comments on SHA-1

Remark.

- \bullet Compared to SHA-0, SHA-1 only adds ROTL in the construction of W_{16} to W_{79}
- All the constant in SHA-1 are constructed such as to be above any suspicion
- Weaknesses on SHA-1 lead to the SHA-3 competition
- SHA-2 is a family of six hash functions
- SHA-2 digests can have values 224, 256, 384 and 512
- To date there is no known security issue on any of the SHA-2 hash functions

Notes	

249 – 252 63

256	Real life signatures
Middle age: Document sealed with a wax imprint Nobody can reproduce the insignia	of an insignia
Modern time: Sign credit card slip Compare to the signature at the back	of the credit card
Reusing a signature: • Photocopy	
Cut and pasteHighly noticeable	

Notes	

Signing an electronic document: Digitalize the signature Paste it on the electronic document Reusing a signature: Copy and paste on any document Anybody can do it Signature is not specific to an individual Basic idea for a solution: Prevent the signature from being separated from its message Signature must be easily verified Digital signatures Setup for signatures: Message to encrypt is not necessarily secret A message might be encrypted after being signed

	0		
Setup for signatures	s:		
 Message to end 	crypt is not necessarily secret		
 A message mig 	ht be encrypted after being signe	d	
The signature must	be:		
 Tied to the sig 	ner and to the message being sign	ned	
 Easy to verify 	by anybody		
 Hard to forge 			
S	imilar to public key cryptography		

Signatures and h	ash functions
Drawback:	
 Public key cryptography primitives are used 	
ullet Signing a whole message m is then slow	
Solution: sign the hash of m using a public hash func	tion
Benefits:	
 Faster to generate 	
 Smaller to store or send 	
ullet Conveys the same knowledge as m itself	
Given a hash function h , denote the signature of the m by $sig(h(m))$	nash of a message

Notes
Notes
Notes

Notes			

Notes		

261 Signatures and hash functions Existential forgery: • Using known message attack:

Signatures and the birthday attack	Notes
 Considered impossible if h is pre-image resistant 	
② Compute a signature on $h(m)$ for some unknown m ③ Determine such an m	
 Using key-only attack: Take a signature scheme, without hash function, which is vulnerable to existential forgery using key-only attack 	
Considered impossible if h is collision resistant	
 Find two message m and m such that n(m) = n(m) Persuade the signer to sign m Attach sig(h(m)) = sig(h(m')) to m' 	
 Using chosen message attack: Find two message m and m' such that h(m) = h(m') 	
 Get a pair \langle m, sig(h(m)) \rangle Compute h(m) and attempt to find m' such that h(m) = h(m') Considered impossible if h is second pre-image resistant 	

Notes

262	Signatures and the birthday attack
illu	the previous chapter we investigated the birthday paradox an ustrated how Eve could use this attack to cheat Alice when signing a ntract (4.235).
of th	ich an attack can be conducted as soon as the hash is used in place the whole document. Therefore Alice should be careful and not sign e document. She should rather slightly alter it, for instance by ding a coma or space.
to	ne document being different from the original its hash will be a tally different value. Hence, Eve cannot append Alice signature to e fraudulent contract.
Ev	e is then defeated and Alice can enjoy a nice contract.

Notes			

264)		RSA	A signatures
Initial set	• p , q two primes • $n = pq$ and $\varphi(n)$ • e , d such that $ed \equiv 1 \mod \varphi(n)$	The <i>n</i> from BobThe <i>e</i> from Bob	
Signature	• Compute $s \equiv m^d$ n • Share m and s	nod <i>n</i>	
Comp	on: message m from Bob oute $m' \equiv s^e \mod n$ oare m' to m		

Notes	

Comments on RSA signatures

Reusing a signature:

- Given a signature s with its message m
- Impossible to sign m' using s since $s^e \not\equiv m' \mod n$

Generating a signature:

- Given a message m find s such that $s^e \equiv m \mod n$
- This is exactly solving the RSA problem (3.185)

Generating a message:

- Given a signature s generate a message $m \equiv s^e \mod n$
- It is very unlikely that m is meaningful

Elgamal signatures

Initial setup:

- \boldsymbol{G} a group of prime
 - G from Bob α from Bob
- α a generator of ${\it G}$ x a secret integer
- $\beta \equiv \alpha^x \mod p$

- Select a random k, with gcd(k, p 1) = 1
- Compute $r \equiv \alpha^k \mod p$
- Compute $s \equiv k^{-1}(m xr) \mod (p 1)$

Verification:

- The triple $\langle m, r, s \rangle$
- Compute

$$v = \beta^r r^s \equiv \alpha^{xr} \alpha^{k \cdot k^{-1}(m - xr)} \equiv \alpha^m \mod p$$

• The signature is valid only if $v \equiv \alpha^m \mod p$

Elgamal signatures

Set p=467, $\alpha=2$ and x=127. Then $\beta=2^{127}\equiv 132$ mod 467. The variable x is kept secret, all the others are publicly known.

Signing the message m = 100:

- Randomly choose k=213 and keep it since gcd(213,466)=1
- Compute $r = 2^{213} \equiv 29 \mod 467$
- As $k^{-1} \equiv 431 \mod 466$, $s = 466 \cdot (100 127 \cdot 29) \equiv 51 \mod 466$

To verify the signature $\langle 100, 29, 51 \rangle$, anyone can compute both:

- $132^{29} \cdot 29^{51} \equiv 189 \mod 467$
- $2^{100} \equiv 189 \mod 467$

Comments on Elgamal signatures

First we notice that if x is discovered by an attacker, he can signed any document.

Then we observe that given only a message m he can try to:

Find s such that

$$\beta^r r^s \equiv \alpha^m \bmod p. \tag{5.1}$$

This can be rewritten $r^s \equiv \beta^{-r} \alpha^m \mod p$, and finding s means solving the DLP.

- Set s and solve eq. (5.1) for r. No feasible solution is known.
- Find r and s simultaneously. It is not known how to do it, but there is no prove that it is impossible to do.

Note that k must remain secret otherwise it is simple to recover x. Indeed if gcd(r, p-1) = 1, then $x \equiv (m - ks)r^{-1} \mod (p-1)$.

Notes

Notes		

Notes			

Key-only attack on Elgamal signatures

Generating a message and its signature only knowing the public key

Let i and j be two integers such that $0 \le i, j \le p-2$. Define r as $\alpha^i \beta^j \mod p$. Then α^m can be expressed as

$$\alpha^m \equiv \beta^r \left(\alpha^i \beta^j\right)^s \mod p.$$

Rearranging the different terms yields $\alpha^{m-is} \equiv \beta^{r+js} \mod p$. This congruence is clearly true if both m-is and r+js are $0 \mod (p-1)$. Assuming $\gcd(j,p-1)=1$, we can determine m and s from the two previous equations. Therefore, by construction the signature

$$\langle m, r, s \rangle = \langle -rij^{-1} \mod (p-1), \alpha^i \beta^j \mod p, -rj^{-1} \mod (p-1) \rangle$$

is a valid signature. Note that m is very unlikely to be meaningful.

270

Key-only attack on Elgamal signatures

Example.

Set $p=467,\,\alpha=2$ and $\beta=132.$ Select i=99 and j=179, and then $j^{-1}\equiv 151$ mod 466.

The signature is defined by $\langle m, r, s \rangle$ with

$$\begin{cases} r \equiv 2^{99} \cdot 132^{179} & \equiv 117 \bmod 467 \\ s \equiv -117 \cdot 151 & \equiv 41 \bmod 466 \\ m \equiv 99 \cdot 41 & \equiv 331 \bmod 466 \end{cases}$$

The verification is given by

$$132^{117} \cdot 117^{41} \equiv 303 \equiv 2^{331} \bmod 467$$

271

Known message attack on Elgamal signatures

Given a valid signature $\langle m,r,s\rangle$ an attacker can construct and sign various other messages.

Generate h,i, and j such that $\gcd(hr-js,p-1)=1$. Then the triple $\langle m',r',s'\rangle$ defines a valid signature if

$$\begin{cases} r' \equiv r^h \alpha^i \beta^j \mod p \\ s' \equiv sr'(hr - js)^{-1} \mod (p-1) \\ m' \equiv r'(hm + is)(hr - js)^{-1} \mod (p-1) \end{cases}$$

Again this method leads to an existential forgery but cannot be modified into selective forgery. As such those two attacks represent no real threat for Elgamal signatures.

272

Misuse of Elgamal signatures

Let $\langle m_1, r_1, s_1 \rangle$ and $\langle m_2, r_2, s_2 \rangle$ be the two signatures. If they are generated using a common k, then $r_1 = r_2 = r = \alpha^k \mod p$ and

$$\begin{cases} \beta^r r^{s_1} & \equiv \alpha^{m_1} \bmod p \\ \beta^r r^{s_2} & \equiv \alpha^{m_2} \bmod p. \end{cases}$$

Thus $\alpha^{m_1-m_2} \equiv \alpha^{k(s_1-s_2)} \mod p$, and from corollary 3.152 we get

$$m_1 - m_2 \equiv k(s_1 - s_2) \mod (p - 1).$$

Since this congruence has $d=\gcd(s_1-s_2,p-1)$ solutions (lemma 4.229) it is simple to test all of them and recover k. Once k is known x can be recovered as noticed on slide 5.268, and signatures can be forged at will.

Notes	

273)

Digital Signature Algorithm

Digital Signature Algorithm (DSA):

- Proposed in 1991 by the NSA
- Adopted as a standard in 1994
- Variant of Elgamal signature scheme
- As in Elgamal the hash of the message is signed
- SHA-1 is the historical choice but SHA-2 (SHA-3) is now
- For a given security level DSA defines two lengths l_1 and l_2 for the DLP and the hash to feature a balanced security

p from Bob

q from Bob

α from Bob

Bob

• $\beta \equiv \alpha^x \mod p$ from

Digital Signature Algorithm

Initial setup:

- A prime q, $|q| = l_2$
- A prime p, $|p| = l_1$
- and $q \mid (p-1)$
- \boldsymbol{g} a generator of
- $G = U(\mathbb{F}_p)$ $\alpha \equiv g^{(p-1)/q} \mod p$
- x a secret integer
- Signature:

- Select a random k, 0 < k < q
- Compute $r \equiv (\alpha^k \mod p) \mod q$
- Compute $s \equiv k^{-1}(m+xr) \mod q$

Verification:

- The triple $\langle m, r, s \rangle$ Compute $v = (\alpha^{s^{-1}m \bmod q} \beta^{s^{-1}r \bmod q} \bmod p) \bmod q$
- The signature is valid only if v = r

DSA signature verification

Observe how the verification works:

By definition of s we know that $m \equiv (-xr + ks) \bmod q$. This implies $s^{-1}m \equiv (-xrs^{-1} + k) \mod q$. Therefore we can write

$$k \equiv s^{-1}m + xrs^{-1} \bmod q.$$

And we finally get

$$r \equiv \alpha^k \mod p$$

$$\equiv \alpha^{s^{-1}m + xrs^{-1} \mod q} \mod p$$

$$\equiv \alpha^{s^{-1}m \mod q} \beta^{s^{-1}r \mod q} \mod p$$

$$= v.$$

Comments on DSA

Why is DSA different from Elgamal?

- ullet r only "carries part of the information" on ke.g. if $\mathit{l}_{1}=3072$ and $\mathit{l}_{2}=256,$ then about 2^{2816} values mod p reduce to a same integer mod q
- From the initial setup (slide 5.274), $\alpha^q \equiv 1 \mod p$. Pohlig-Hellman attack (3.212) does not apply, since q is prime. Not even a little piece of information can be recovered.
- Verification step requires only two modular exponentiations vs. three in Elgamal case

Notes

Notes	

Notes		

Blind signatures
Basic idea: sign a document without knowing its content
Typical setup: Bob made a new discovery and wants to record it publicly without unveiling it
Strategy: Bob gets his discovery signed by some known authority but without revealing or showing it the content
Danger: what is signed?

Notes		

Notes

RSA blind signatures
Remark.
$ullet$ k being random $k^e \mod n$ is also random and so is $k^e m \mod n$
 Alice cannot get any information on what she is signing
 The final value is the same as if Bob had gotten his message signed following the standard procedure
 Verification happens as in "regular RSA signatures"
ullet There is no need to keep d,p and q

Notes	

Undeniable signatures

Primary goal: design a signature that cannot be verified without the cooperation of the signer

Secondary goals:

- Prevent the signer to disavow a previous signature
- · Allow the signer to prove that a forged signature is a forgery

Applications: prevent the illegal distribution of documents without the approval of the author

Structure: composed of three algorithm: signature, verification, and disavowal

282

Chaum-van Antwerpen signatures

Initial setup:

- p and q two primes
- p = 2q + 1
- G a subgroup of \mathbb{F}_p^* of
- α from Bob • $\beta \equiv \alpha^x \mod p$ from
- Bob

G from Bob

- order a α a generator of G
- x a secret integer

Signature:

- A message m in G
- Compute $s \equiv m^x \mod p$

Verification:

- Compute $t \equiv r^{x^{-1} \bmod q} \bmod p$
- \emph{e}_{1} , $\emph{e}_{2} \in \mathbb{F}_{q}^{*}$ Share t with Alice
 - - Valid if and only if $t \equiv m^{e_1} \alpha^{e_2} \mod p$

Choose random

Chaum-van Antwerpen signatures

Remark.

On a valid signature we have:

$$t \equiv r^{x^{-1}} \bmod p$$

$$\equiv s^{e_1 x^{-1}} \beta^{e_2 x^{-1}} \bmod p$$

Noting that $s \equiv m^x \mod p$, and $\beta \equiv \alpha^x \mod p$, we get

$$t \equiv m^{e_1} \alpha^{e_2} \bmod p$$
.

Example.

Let p=467, then 2 is a primitive element of \mathbb{F}_p^* and 4 is a generator of the group G of order 233. Taking x=101, $\beta\equiv 4^{101}\equiv 449$ mod 467.

Signing the message m = 119 yields $119^{101} \equiv 129 \mod 467$.

To verify the signature, randomly select $e_1=38$ and $e_2=397$, then send r=13 while t=9 is replied. Finally test that 9 is congruent to 119³⁸4³⁹⁷ mod 467.

Chaum-van Antwerpen signatures – Disavowal

2-round verification:

Play the verification protocol using two random values $\emph{e}_{1},\emph{e}_{2}\in\mathbb{F}_{\emph{q}}^{*}$ and expect

Re-play the verification protocol using two random values f_1 , $f_2 \in \mathbb{F}_q^*$ and expect

$$\left(t_1 lpha^{-\mathsf{e}_2}\right)^{\mathsf{f}_1} \equiv \left(t_2 lpha^{-\mathsf{f}_2}\right)^{\mathsf{e}_1} mod p$$

Notes

Notes			

Notes		 	

© Chaum-van Antwerpen signatures – Disavowal	Notes
Remark. The disavowal protocol has two goals:	
Convince Alice that an invalid signature is a forgery	
Prevent Bob from pretending that a valid signature is a forgery	
If the signature is invalid then the verification fails. The question is	
then to know if Bob played a fair game, following the protocol when	
constructing t_1 and t_2 .	
The last step, testing the congruence	
$\left(t_1 \alpha^{-e_2}\right)^{f_1} \equiv \left(t_2 \alpha^{-f_2}\right)^{e_1} mod p,$	
ensures Alice that Bob is not trying to disavow a valid signature.	
From authentication to signature	Notes
As investigated earlier (1.80), zero-knowledge proofs can be used to	
authenticate. In fact this can also be extended to signatures.	
General strategy:	
• Send at once all the committed values C_1, \cdots, C_n	
• For a message m compute H , the hash of $\langle C_1, \cdots, C_n, m \rangle$	
 Extract n bits from H to represent the random requests 	
• Define H_1, \cdots, H_n to be the result of the challenges	
• Define the signature of m as $\langle H_1, \dots, H_n, R_1, \dots, R_n \rangle$, where R_i is the response to challenge H_i for the committed C_i	
• To ensure a proper security level <i>n</i> should be at least 128	
(287) Key points	Notes
(287) Key points	
How to overcome the birthday attack on digital signatures?	
Cite two famous solutions for digital signatures	
What is the reference choice in terms of digital signatures?	
How to transform a zero-knowledge authentication scheme into a	
signature scheme?	
	Notes
6 Secret aboring	
6. Secret sharing	

285 – 288 72

Notes			

Notes	

Notes	

	2	q	3	١	
١	Ξ	_	5	/	

Secret sharing

Definition

Let t and w be two integers such that $t \le w$. A (t, w)-threshold scheme is a way to share a secret m among w people, such that any subset of at least t participants can reconstruct m, while no smaller subset is able to do it.

In practice, (t, w)-threshold schemes constitute a basic building block for many applications where information need to be shared among many users. For instance they can be used for broadcasting.

295

Basics on the scheme

Shamir threshold scheme was invented by Shamir in 1979

- ullet Choose a prime p larger than the number of participants and the secret m
- \bullet Split m among w people such that t persons can reconstruct it
- ullet Choose t-1 random integers, r_1,\ldots,r_{t-1} mod p and define

$$S(X) = m + r_1X + \cdots + r_{t-1}X^{t-1} \bmod p$$

- Give each participant a pair (x_i, y_i) , with $y_i \equiv S(x_i) \mod p$
- Keep S(X) secret

If t people get together and share their pairs they can recover m

Recovering the secret

Lets see how t people can recover m

- Assume the t participants have the pairs $(x_1, y_1), \dots, (x_t, y_t)$
- They can derive the following expression

$$\underbrace{\begin{pmatrix} 1 & x_1 & \cdots & x_1^{t-1} \\ 1 & x_2 & \cdots & x_2^{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_t & \cdots & x_t^{t-1} \end{pmatrix}}_{V} \begin{pmatrix} m \\ r_1 \\ \vdots \\ r_{t-1} \end{pmatrix} \equiv \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_t \end{pmatrix} \mod p \qquad (6.1)$$

ullet V is the Vandermonde matrix, which has determinant

$$\det V = \prod_{1 \le j \le k \le t} (x_k - x_j)$$

- ullet Eq. (6.1) has a unique solution when V is invertible
- From theorem 1.53, V is invertible if $\det V \not\equiv 0 \bmod p$, i.e. for all k and j, $x_k \not\equiv x_j \bmod p$

Notes		

Notes

Notes	

	$\overline{}$	
(297)	
٩		

Shamir threshold scheme

Example.

We want to construct a (3,8)-threshold scheme to protect the secret message "secret", which corresponds to m=190503180520.

We choose p=1234567890133 to be larger than m and 8, and generate $r_1=482943028839$ and $r_2=1206749628665$. Then the polynomial of concern is

 $S(X) = 190503180520 + 482943028839X + 1206749628665X^{2}.$

We now distribute the pairs (x_i, y_i) , with $1 \le i \le 8$:

Xi	Уi	Χį	Уi
1	645627947891	5	675193897882
2	1045116192326	6	852136050573
3	154400023692	7	973441680328
4	442615222255	8	1039110787147

Shamir threshold scheme

If 2, 3, and 7 want to recover the message they construct

$$\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 7 & 49 \end{pmatrix} \begin{pmatrix} m \\ r_1 \\ r_2 \end{pmatrix} \equiv \begin{pmatrix} 1045116192326 \\ 154400023692 \\ 973441680328 \end{pmatrix} \mod 1234567890133.$$

This yields

 $(m, r_1, r_2) = 190503180520, 482943028839, 1206749628665.$

What if only two participants try to reconstruct the m?

Remark

A quadratic polynomial is defined by three points, and more generally a polynomial of degree n is defined by n+1 points. Therefore if two participants share their information they will still miss a point and as such will not be able to reconstruct the polynomial at discover m. Note that there are infinite number of possibilities for this last point.

More advanced sharing

Example.

In a company a secret is split into eight shares. The boss decides eight employees should be required to recover the secret. However he also requests that only four managers or only two board members should be able to recover the secret.

Give each regular employee one share, two to managers, and four to board members. The problem is solved, but note that now one board member together with one manager and two employees can recover the

More advanced sharing

Example.

Two companies share a bank vault. They want a setup where four employees from the first company and three from the second are required to be together in order to reconstruct the secret combination.

As each company needs more than 4 or 3 shares, each one could reconstruct the whole secret by itself. The idea is then to write the secret $s=s_1+s_2$, and give s_1 as a shared secret for the first company while s_2 becomes a shared secret for the second company. Each of them can apply Shamir threshold scheme to recover its part of the secret. Finally they only need to meet to totally recover the secret combination.

Notes	

Notes	

Notes	

Notes		

Notes		

Notes		

300	Recovering the secret				
In a 3-dimensional setup three people • Each participant has a plane	can deduce the secret x_s :				
$a_i x + b_i y + c_i \equiv z$ ı	$p, 1 \le i \le 3$				
They construct the matrix equation					
$\underbrace{\begin{pmatrix} a_1 & b_1 & -1 \\ a_2 & b_2 & -1 \\ a_3 & b_3 & -1 \end{pmatrix}}_{M} \begin{pmatrix} x_s \\ y_s \\ z_s \end{pmatrix}$	$ \equiv \begin{pmatrix} -c_1 \\ -c_2 \\ -c_3 \end{pmatrix} \bmod p $				
• If det M is invertible mod p then solved and x_s can be recovered	the system of equations can be				

Notes	

305	Example	Notes	
Let $p = 73$, and suppose five people	are given the following shares		
$\int A: z = 4x$	+ 19y + 68		
$\begin{cases} B: & z = 52 \\ C: & z = 36 \end{cases}$	x + 27y + 10 x + 65y + 18		
$\begin{cases} A: & z = 4x \\ B: & z = 52x \\ C: & z = 36x \\ D: & z = 57x \\ E: & z = 34x \end{cases}$	(4-12y+16)		
A, B , and C decide to recover the s			
$\begin{pmatrix} 4 & 19 & -1 \\ 52 & 27 & -1 \\ 36 & 65 & -1 \end{pmatrix} \begin{pmatrix} x_s \\ y_s \\ z_s \end{pmatrix}$			
The solution yields $x_s = 42$, $y_s = 29$,		
306)	Blakley vs. Shamir	Notes	
	,		
Blakley's scheme	Shamir's threshold scheme		
• Matrix <i>M</i> not always invertible	• Matrix V is invertible, as long		
 Hard to select a_i, b_i, and c_i for M to be always invertible 	as no two shares are congruent mod <i>p</i>		
More general setup	 Method can be view as a particular case of Blakley 		
• Much information carried by each participant (a_i, b_i, \cdots)	Little information carried by each participant (x, y, y)		
	each participant (x_i, y_i)		
		N.	
307)	Key points	Notes	
• Explain what is secret sharing			
Describe Shamir's threshold sch	eme		
What is the key idea behind Bla	akley's scheme?		
 Provide several examples where 	secret sharing is useful		

7. Traitor tracing

305 – 308 77

Notes		

Notes		

Notes	

309 – 312 78

314)	Generalities
Types of schemes: Symmetric vs. asymmetric: how is encryption do Static vs. dynamic: keys changes at certain inte Alternate approach: include credit card number	rvals
or use watermarking Components of a Traitor Tracing scheme: Key generation and distribution Encryption and decryption methods	
 Tracing algorithm 	

Notes		

Notes

Notes		

Method

Given n users u_1, \ldots, u_n and $2 \log n$ keys

$$k_{1,0}, \, k_{1,1}, \, k_{2,0}, \, \dots, \, k_{\log n,0}, \, k_{\log n,1},$$

define the key K_i of user u_i by

$$K_i = \langle k_{1,b_{i,1}}, k_{2,b_{i,2}}, \dots, k_{\log n, b_{i,\log n}} \rangle$$
,

where $b_{i,j}$ is the j-th bit in the binary representation of i.

Applying this strategy, minimizes the number of keys as well as the bandwidth necessary to transmit the encrypted program to all the

Example.

For eight users six keys $k_{1,0}$, $k_{1,1}$, $k_{2,0}$, ..., $k_{3,1}$ are defined. Since $(5)_{10} = (101)_2$, user u_5 has key $K_5 = \langle k_{1,1}, k_{2,0}, k_{3,1} \rangle$.

Method

Given some information m to broadcast, it is encrypted using a symmetric encryption protocol E with a secret key S. Then proceed as follows.

• Choose s_i , $1 \le i \le \log n$ such that

$$S = s_1 \oplus s_2 \oplus \cdots \oplus s_{\log n}$$

- Encrypt s_i using E and $k_{i,0}$, $k_{i,1}$
- \bullet Broadcast both the encrypted version of m and of the secret key ς

As each user u_i , $1 \le i \le n$, knows either $k_{i,0}$ or $k_{i,1}$, everybody can recover the secret key S and then decrypt the information m contained in $E_S(m)$.

Formalism

Definition

Let E be a symmetric encryption protocol with keys of size I.

- **1** A codeword is a k-tuple of elements from \mathbb{F}_q , where $q=2^l$
- ② A set of codewords is called a code
- Let C ⊂ (F_q)^k be a code and d = ⟨d₁,..., d_k⟩ be a codeword that is not in C. If for all 1 ≤ i ≤ k there exists a codeword c = ⟨c₁,..., c_k⟩ in C such that d_i = c_i, then d is called a descendant of C. All the descendants of C form a descendant code of C, denoted desc(C)

$$c \in \bigcap_{\mathcal{C}_p \in \mathcal{S}_d}$$

 ${\sf Explanations}$

In the context of a PayTV the previous definitions can be interpreted by identifying each codeword to a decoder.

The idea is then to define a code $\mathcal C$ by assigning a codeword to each decoder, in such a way that $\operatorname{desc}(\mathcal C) \cap \mathcal C$ is empty.

The key used in a pirate decoder being constructed from elements of \mathcal{C} , it is a descendant of \mathcal{C} . Then \mathcal{S}_d defines the set of suspects who could be involved in the generation of d.

An identifiable parent c from \mathcal{S}_d is a suspect decoder which can be identified as guilty, since d is derived from c.

Notes

Notes

Notes			

Notes

321

Explanations

Example.

Let $\mathcal C$ be the code defined by

$$\begin{split} c_1 &= \langle 0,0,0 \rangle, \quad c_2 &= \langle 0,1,1 \rangle, \quad c_3 &= \langle 0,2,2 \rangle, \quad c_4 &= \langle 1,0,3 \rangle, \\ c_5 &= \langle 2,0,4 \rangle, \quad c_6 &= \langle 3,3,0 \rangle, \quad c_7 &= \langle 4,4,0 \rangle. \end{split}$$

Assume that among the c_i , $1 \le i \le 7$, two traitors collude to construct a codeword $d = \langle d_1, d_2, d_3 \rangle$. If any coordinate of d is non-zero then at least one parent can be identified:

$$d_1=1\rightarrow c_4, \hspace{0.5cm} d_1=2\rightarrow c_5, \hspace{0.5cm} d_1=3\rightarrow c_6, \hspace{0.5cm} d_1=4\rightarrow c_7,$$

$$d_2 = 1 \to c_2$$
, $d_2 = 2 \to c_3$, $d_2 = 3 \to c_6$, $d_1 = 4 \to c_7$,

$$d_3 = 1 \rightarrow c_2$$
, $d_3 = 2 \rightarrow c_3$, $d_3 = 3 \rightarrow c_4$, $d_3 = 4 \rightarrow c_5$.

Finally if $d = \langle 0, 0, 0 \rangle$, then c_1 is an identifiable parent.

322

Distance

Definitions

- **●** The hamming distance between two elements a and b of $(\mathbb{F}_q)^k$ is defined as dist $(a,b) = |\{i: a_i \neq b_i, 1 \leq i \leq k\}|$
- $\ \, \textbf{②} \,\,$ Let $\mathcal C$ be a code, then the minimal distance of $\mathcal C$ is

$$dist(C) = min \{ dist(a, b) : a, b \in C, a \neq b \}$$

Example.

Reusing the code from example 7.321 we note that $\operatorname{dist}(c_1,c_i)$, $2 \leq i \leq 7$, is 2, while $\operatorname{dist}(c_2,c_4)=3$. We can observe that no distance is smaller than 2 such that $\operatorname{dist}(\mathcal{C})=2$.

323

Attributing the codewords

We now introduce a result which provides some hint on how to choose the distance in order to be able to identify at least one parent of an illegal decoder.

Theorem

Let $\mathcal{C}\subset \left(\mathbb{F}_q\right)^k$ be a code of length k and minimal distance D. If $D>k(1-1/w^2)$, where w is the size of the coalition, then it is possible to identify a parent of a descendant of \mathcal{C} .

Proof

For any a, b in $(\mathbb{F}_q)^k$, we define $\mathrm{match}(a,b)=k-\mathrm{dist}(a,b)$. Let $\mathcal{S}_d=\left\{\mathcal{C}_p\subseteq\mathcal{C}:d\in\mathrm{desc}(\mathcal{C}_p)\right\}$ denote the set of suspects and d be a descendant of $\mathcal{C}_p\subseteq\mathcal{S}_d$. Let c be the closest element from d. We will now prove that c belongs to \mathcal{C}_p .

Attributing the codewords

Proof (continued).

First note that since d is a descendant of \mathcal{C}_p , it follows that

$$\sum_{\textit{cPrime} \in \mathcal{C}_p} \mathsf{match}(\textit{d},\textit{c}') \geq \textit{k}.$$

Then as the coalition features w users it means that $|\mathcal{C}_p| \leq w$, and we can find a codeword c' in \mathcal{C}_p such that

$$match(d, c') \ge \frac{k}{w}$$

Recalling that c is the closest element from d we get

$$match(d, c) \ge \frac{k}{w}$$

Notes	

Notes

Notes	

325

Attributing the codewords

Proof (continued).

Finally we consider the number of common coordinates between $b\in\mathcal{C}\backslash\mathcal{C}_p$ and $d\in\mathrm{desc}(\mathcal{C}_p)$

$$\mathsf{match}(d,b) \leq \sum_{cPrime \in \mathcal{C}_p} \mathsf{match}(cPrime,b)$$

 $\leq w(k-D).$

If $D>k(1-1/w^2)$, then clearly $\mathrm{match}(d,b)<\mathrm{match}(d,c)$. Since this is true for any $b\not\in\mathcal{C}_p$, this means that c belongs to \mathcal{C}_p .

This result is extremely useful as it provides information on how to construct the code and appropriately select the distance in order to trace traitors. As a general rule, the larger the minimum distance between two codewords, the easier to trace. On the other hand, having a large minimum distance will decrease the number of possible codewords in the code.

Back to Chor-Fiat-Nahor scheme

We notice the following properties:

- The scheme is using symmetric cryptography
- ullet The number of decoders is n
- Each decoder is represented by a k-tuple of \mathbb{F}_q , with $k = \log n$
- The scheme is 1-resilient

The key aspect of this method is to choose a "good code"

The representation problem

Problem (Representation Problem)

Let G be a cyclic group of order n and g_1,\cdots,g_m , be m distinct generators of G. Then any element $y\in G$ can be expressed as $\prod_{i=1}^m g_i^{e_i}$, for some $0\leq e_i\leq \varphi(n)$. We say that (e_1,\cdots,e_m) is a representation of y in the base (g_1,\cdots,g_m) . Given G, y and a base (g_1,\cdots,g_m) , find the representation of y.

This problem can be seen as a generalisation of the DLP (3.205). Moreover when the generators are chosen randomly, finding two different representations of a given element is as hard as solving the DLP.

Notes		

Notes		

Notes		

Notes

Setup

Simple description:

- p is prime
- \bullet G is a subgroup of prime order q
- ullet g is a generator of G
- ullet m is the maximal size of the coalition the scheme can trace
- $l \ge 2m + 2$ is the number of private keys
- ullet $\mathcal{C}=\{\mathit{c}_1,\cdots,\mathit{c}_\mathit{l}\}$ is a code of \mathbb{Z}^{2m}

The scheme now described is CPA-1 secure but it can be extended into an enhanced CCA-2 version. This has the effect of more closely mirroring a real life context.

Key generation

The public and private keys are generated as follows:

- ① Choose 2m random elements r_i , $1 \leq i \leq 2m$, in \mathbb{F}_q and for each r_i compute $g_i = g^{r_i}$
- @ Set the public key to $\langle y,g_1,\cdots,g_{2m}\rangle$, where $y=\prod_{i=1}^{2m}g_i^{\alpha_i}$, with the α_i being random elements from \mathbb{F}_q
- Set the private key k_i ∈ \mathbb{F}_q such that k_ic_i is a representation of y in the base (g_1, \cdots, g_{2m}) . That is

$$k_i = rac{\sum_{j=1}^{2m} r_j lpha_{i_j}}{\sum_{j=1}^{2m} r_j c_{i_j}} mod q$$

Encryption and decryption

Encryption:

- A message M in G
- ullet Generate a random a in \mathbb{F}_q
- Define the ciphertext as $C = \langle My^a, g_1^a, \cdots, g_{2m}^a \rangle$

Decryption

- A ciphertext $C = \langle \mathit{My}^a, \mathit{g}_1^a, \cdots, \mathit{g}_{2m}^a \rangle$
- Use the *i*-th secret key k_i to compute $U = \left(\prod_{j=1}^{2m} \left(g_j^a\right)^{c_{i_j}}\right)^{k_i}$

$$U = \left(g^{\sum_{j=1}^{2m} r_j c_{i_j}}\right)^{k_i a}$$
$$= \left(g^{\sum_{j=1}^{2m} r_j \alpha_{i_j}}\right)^a$$

• Recover $My^a/U = M$

Tracing

The tracing algorithm being more advanced we do not detail it here but only highlight the main ideas.

The key principle behind the tracing ability is related to the difficulty of finding new representations. In fact if several users collude they are able to construct a new representation y. However this construction leads to a so called "convex combination" of the traitor's keys. It can be proved that if one can find a new representation that is not a convex combination of already known representations then one can solve the DLP.

By analysing the newly generated representation it is then possible to trace at least one traitor. $\;$

Notes	

Notes	

Notes			

Notes

Notes	

Notes	

Notes		

Notes	

(337)

Complexity and security

Main public key cryptography problems:

- RSA problem (3.185)
- Discrete Logarithm Problem (3.205)

Both problems can be solved using algorithms with sub-exponential $% \left(1\right) =\left(1\right) \left(1\right) \left$ complexity; that is algorithm with complexity neither polynomial nor exponential but somewhere in-between.

Consequence on the key size:

Security level (bits)	80	112	128	192	256
Key size (bits)	1024	2048	3072	7680	15360

Toward Algebra and Geometry

In chapter 3 it was noted that Pollard's rho was a generic algorithm solving the DLP (remark 3.209). In contrast with more efficient algorithms, such as the NFS, Pollard's rho algorithm does not take advantage of the underlying structure of the group.

Therefore a simple idea for the DLP consists in finding a group where no algorithm performs better than Pollard-rho (3.207).

Abstract algebraic structures can be be studied from the perspective of geometry. A simple example is the group structure of the integers $\left(\mathbb{Z},+\right)$ which can be represented on the number line.

	$\overline{}$	
í	240)	

Elliptic curves

The red curve:

- Is called an elliptic curve
- Is defined over a field, here the reals
- · Can be defined over other fields
- Is given by the equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
 (8.1)

In most cases, a change of variable allows to rewrite equation (8.1) in the more simple form

$$y^2 = x^3 + bx + c$$

Notes		

Notes	
	_

Notes			

Notes	

(341)

An elliptic curve as a group

By construction this is almost a group: only a unit element is missing. Therefore we adjoin the point \mathcal{O} , called *point at the infinity*. This point can be viewed as the point where all the vertical lines intersect.

Proposition

Let E be an elliptic curve of equation $y^2=x^3+bx+c$. Taking two point $P_1=(x_1,y_1)$ and $P_2=(x_2,y_2)$ on E, we define the addition law over E by $P_1+P_2=P_3=(x_3,y_3)$ by

$$x_3 = m^2 - x_1 - x_2,$$
 $y_3 = m(x_1 - x_3) - y_1,$

with

$$m = \begin{cases} (y_2 - y_1)/(x_2 - x_1) & \text{if } P_1 \neq P_2 \\ (3x_1^2 + b)/(2y_1) & \text{if } P_1 = P_2. \end{cases}$$

This addition law is both associative and commutative. If taking $\mathcal O$ as unit element, then E is an abelian group.

(342)

Elliptic curves modulo p

Example.

Let E be the elliptic curve defined by $y^2 \equiv x^3 + 4x + 4 \mod 5$. The points on E are all the pairs of elements (x,y) in $\mathbb{F}_5 \times \mathbb{F}_5$ that satisfy the equation.

<i>x</i> mod 5	$y^2 \mod 5$	<i>y</i> mod 5	Points on <i>E</i>
0	4	2 or 3	(0,2) and (0,3)
1	4	2 or 3	(1,2) and (1,3)
2	0	0	(2,0)
3	3		
4	4	2 or 3	(4,2) and (4,3)

The elliptic curve E has eight points: seven calculated from the equation plus the point at the infinity \mathcal{O} .

Elliptic curve modulo p

Example.

We now determine the sum of the two points (1,2) and (4,3) on E. First we note that as 3 is invertible mod 5 then

$$m = \frac{3-2}{4-1} \equiv 2 \mod 5.$$

Then we compute x_3 and y_3 ,

$$x_3 \equiv 2^2 - 1 - 4 \equiv 4 \mod 5$$

 $y_3 \equiv 2(1 - 4) - 2 \equiv 2 \mod 5$.

Finally we have (1, 2) + (4, 3) = (4, 2) on E.

Number of points modulo p

Simple strategy to count points on any elliptic curve mod p:

- Compute $t = x^3 + bx + c$ for $0 \le x \le p 1$
- If t is square then (x, \sqrt{t}) and $(x, -\sqrt{t})$ are on E
- Approximately one over two values of t are squares
- An elliptic curve mod p has about p points

Theorem (Hasse's theorem)

If E is an elliptic curve with n points, then

$$|n-p-1|<2\sqrt{p}.$$

Notes	

Notes	

Notes

Notes

Elliptic Curve Discrete Logarithm Problem

Since an elliptic curve gives rise to a group structure it means that we can define a discrete logarithm problem on them.

Problem (Elliptic Curve Discrete Logarithm Problem (ECDLP))

	Let E be an elliptic curve over a finite field \mathbb{F}_q , $q=p^n$ for some prime p and integer n , and P be a generator of the group. Given a point Q on the E , find k in \mathbb{N} such that $\lfloor k \rfloor P = Q$, where $\lfloor k \rfloor P$ represent the operation of adding $k-1$ times the point P to itself.		
	From a geometrical point of view it is clear that given k and P is it easy to find $\lfloor k \rfloor P$. However given Q and P is it hard to determine k such that $\lfloor k \rfloor P = Q$. Therefore the ECDLP allows the definition of a 1-way function.		
_		- 1	
	Security of the ECDLP		Notes

Notes

In the general case, the best known algorithm to solve the ECDLP is Pollard's rho algorithm. From a cryptographic angle it means that the key size, in terms of bits, is only twice the security level.

Cognity lovel (bits)	Key size (bits)		
Security level (bits)	DLP	ECDLP	
80	1024	160	
112	2048	224	
128	3072	256	
192	7680	384	
256	15360	512	

Notes			

(347)	Chapter organisation
Elliptic	Paring based cryptography Identity based cryptography Elliptic Curve Cryptography

Notes			

348)	Solving the ECDLP

In remark 3.213 we noted that it was possible to map a hard instance of the DLP into an easier one, for instance in an additive group. Unfortunately this strategy is not practical since computing the map is too time consuming and as such would not provide an speedup.

The question now needs to be reconsidered in the case of elliptic curves. As mentioned earlier (8.346) the best algorithm to solve the ECDLP has exponential complexity. Therefore exhibiting a map from an elliptic curve into a subgroup of a finite field could bring much improvement in solving the ECDLP.

Although such maps exist only a few families of elliptic curves are vulnerable to this attack as in most cases the map is again to hard to compute. In the case where is can be efficiently computed it is called a *cryptographic pairing*.

Notes

Pairing

A cryptographic paring is a map e from two additive groups \mathcal{G}_1 and G_2 into a multiplicative group G_T . For some given P_1 , P_2 , $P \in G_1$

• Bilinearity:

Non-degeneracy:

• The map e is efficiently computable.

Notes

Notes

(350)

Pairings in practice

History of elliptic curves in cryptography:

- Discovered in the mid 80es
- In the 90es pairings were used to attack the ECDLP
- Then some families were abandoned since they were insecure
- Around 2000 pairings were used in a "constructive way"

The most useful property of a pairing is bilinearity. It was realised that it could be used to construct new efficient protocols. We now describe one such example, due to Joux, where three parties can construct a common secret key in only one round.

Notations:

- For p a prime and n an integer, $q = p^n$
- An elliptic curve over \mathbb{F}_q , $E(\mathbb{F}_q)$
- A subgroup of $E(\mathbb{F}_q)$, $G=G_1=G_2$

Tripartite key exchange protocol

Initial setup:

Common: G a subgroup of $E(\mathbb{F}_q)$, and P a generator of G Personal: a secret key x_b (Bob), x_a (Alice), or x_c (Charly)

Key broadcasting:

Common: broadcast $Q_i = [x_i]P$, $a \le i \le c$

Personal: $e(Q_a, Q_c)^{x_b}$ (Bob), $e(Q_b, Q_c)^{x_a}$ (Alice), or $e(Q_a, Q_b)^{x_c}$ (Charly) Shared secret key:

Common: $e([x_ax_bx_c]P, P) = e(P, P)^{x_ax_bx_b}$

Security of pairings

Security:

- x_a, x_b, and x_c must remain secret
- $e(P, P)^{x_a x_b x_c}$ must remain secret

Conclusion: both the DLP and the ECDLP must be secure

Efficiency:

- Pairings become more expensive as $E(\mathbb{F}_q)$ gets larger
- The group G_T is a subgroup of \mathbb{F}_{q^k} , for some integer k
- Arithmetic in \mathbb{F}_{q^k} becomes more expensive as p, n, and k grow

Conclusion: balance both security and efficiency

Always ensure both the ECDLP and DLP have a similar security level

Notes			
Notes			

Notes

	-
- (324
- 1	334

From PKC to IBC

All the protocols presented in chapter 3 require the use of a directory. This implies first that the user must register with a directory provider when he generates his keys but also that any other user who wants to communicate with should must connect to the directory in order to retrieve a public key.

An alternative, and more convenient solution, would be to use the identity of a user to automatically generate his public key. This would in turn eliminate the necessity of a directory.

Two common ways to solve this problem are to use pairings, or lattice based cryptography. We now present the first identity based protocol proposed by Boneh and Franklin in 2001.

(355)

Initial setup

Trusted Authority (TA)

The TA prepares the system:

- Select an elliptic curve $E(\mathbb{F}_q)$
- Choose G, a subgroup of $E(\mathbb{F}_q)$, and P a generator of G
- $\bullet \ \, \mathsf{Pick} \,\, \mathsf{a} \,\, \mathsf{random} \,\, \mathsf{s} \,\, \mathsf{and} \,\, \mathsf{set} \,\, \mathsf{Q} = [\mathsf{s}] \mathsf{P} \,\,$
- Choose a hash function H_1 mapping a string into a point in G
- ullet Choose a hash function H_2
- For each user identity ID compute the secret key

 $s_{ID} = [s]H_1(ID)$

• Public parameters: $\langle H_1, H_2, G, G_T, P, Q \rangle$

	_
- /	arch
- (350]

Encryption

Alice sends a message to Bob

Given a message m:

- Get Bob's ID, e.g. bob@ve475.sjtu.edu.cn
- Compute $g = e(H_1(bob@ve475.sjtu.edu.cn), Q)$
- Select a random r in \mathbb{Z}_q^*
- Compute $t = m \oplus H_2(g^r)$
- Send the ciphertext $C = \langle [r]P, t \rangle$

Notes			

353 – 356

1.		٠,	١
1:	S	1)

Decryption

Bob recovers Alice's message

Given a ciphertext $C = \langle [r]P, t \rangle$:

- Set ID to bob@ve475.sjtu.edu.cn
- Compute $h = e(s_{ID}, [r]P)$

$$h = e([s]H_1(ID), [r]P) = e(H_1(ID), P)^{sr}$$

= $e(H_1(ID), [s]P)^r = e(H_1(ID), Q)^r$
= g^r

• Recover the message as

$$t\oplus H_2(h)=m\oplus H_2(g^r)\oplus H_2(g^r)=m$$

358

Security

Basic remarks on the security:

- If s can be recovered then all the secret keys can be revealed
- If r can be computed from [r]P then the message can be recovered
- The hash functions must be collision resistant e.g. $h=e(H_1(ID),[r]P)^s=g_p^s=g^r$. Neither s nor g^r is known but if we can find s' such that $H_2(g_p^{s'})=H_2(g^r)$ then m can be recovered
- The TA must be trusted

(359)

Attribute based cryptography

Identity Based Cryptography: public key generated from an ID

Attribute Based Cryptography: public key generated from attributes

Typical use:

- Company: a class of employees is sent some encrypted information; no need to encrypt using the public key of each employee
- Social media: people can belong to many different groups and want to share information only with a certain group without encrypting a special version for each member of the group
- Broadcast encryption: different class of users have payed for different services

Notes

360

Key points

- What is an elliptic curve?
- What is the main advantage of elliptic curves in cryptography?
- What is the most useful property of a pairing?
- Explain what Identity Based Cryptography and Attribute Based Cryptography are

Notes	

9. Quantum C	ryptography	

Notes

(362)	Chapter organisation
Quantum mechanics	Quantum cryptog-raphy Quantum Cryptog-raphy

Notes	

Quantum mechanics
Basics on quantum mechanics:
 Physics at the atomic and subatomic levels
 Accurate and precise theory
 The state of the system is not given by a physical observation
 Impossible to know exactly the state of the system
 Probabilistic predictions can be made

Notes		

(364) Formalism	
Mathematical formulation:	
 Every system is associated with a separable Hilbert space H A state of the system is represented by a unit vector in H 	
• The Ket A denoted $ A\rangle$ represents the column vector $A=a_1 e_1\rangle+a_2 e_2\rangle+\cdots+a_n e_n\rangle$, where $ e_1\rangle,\ldots, e_n\rangle$ form a basis for H $ A\rangle=\begin{pmatrix}a_1\\a_2\\\vdots\\a_n\end{pmatrix}$	
$ullet$ The $Bra\ B$ denoted $\langle B $ is the conjugate transpose of $ B angle$	
$\langle B = \begin{pmatrix} b_1^* & b_2^* & \cdots & b_n^* \end{pmatrix}$	

Notes		

Mathematical formulation:

• The inner product of B and A is

$$\langle B|A\rangle = b_1^*a_1 + b_2^*a_2 + \cdots + b_n^*a_n$$

• The *outer product* of A and B is the tensor product of A and B and is denoted

$$|A\rangle\langle B| = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \otimes \begin{pmatrix} b_1^* & b_2^* & \cdots & b_n^* \end{pmatrix} = \begin{pmatrix} a_1b_1^* & a_1b_2^* & \cdots & a_1b_n^* \\ a_2b_1^* & a_2b_2^* & \cdots & a_2b_n^* \\ \vdots & \vdots & \ddots & \vdots \\ a_nb_1^* & a_nb_2^* & \cdots & a_nb_n^* \end{pmatrix}$$

• An observable quantity is represented by an Hermitian matrix M

(366)

Quantum Principles

Basic ideas behind quantum physics:

- M can be unitarily diagonalized
 - The possible outcomes of M are its eigenvectors
 - Its eigenvectors $|\phi_i\rangle$, $1 \le i \le n$, generate an orthogonal basis
 - Any vector $|\psi\rangle$ can be written as a *superposition* of the $|\phi_i\rangle$

$$|\psi\rangle = c_1|\phi_1\rangle + \cdots + c_n|\phi_n\rangle$$

- A measurement of M results in $|\phi_i\rangle$ with probability $|c_i|^2$
- Two quantum objects, whose states can only be described with reference to each other, are said to be *entangled*

367

Example

$$\text{For } |A\rangle = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} \text{, } \langle A|A\rangle = \begin{pmatrix} 1/2 & 1/2 & 1/2 & 1/2 \end{pmatrix} \cdot \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = 1 \text{, and }$$

$$|A\rangle\langle A| = \begin{pmatrix} 1/2\\1/2\\1/2\\1/2 \end{pmatrix} \otimes \left(1/2 \quad 1/2 \quad 1/2 \quad 1/2 \quad 1/2 \right)$$

$$= \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4\\1/4 & 1/4 & 1/4 & 1/4\\1/4 & 1/4 & 1/4 & 1/4\\1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}.$$

(368)

Example

Given two particles which can collapse in the states 0 or 1, the four possible outcomes are $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$.

The general state of the two particles is given by the superposition

$$|\psi
angle=a_0|00
angle+a_1|01
angle+a_2|10
angle+a_3|11
angle, \ ext{with}\ \sum_{i=0}^3|a_i|^2=1.$$

Some states might be written as a product of states for each particle.

$$\frac{1}{2}\left(\left|00\right\rangle + \left|01\right\rangle + \left|10\right\rangle + \left|11\right\rangle\right) = \frac{1}{\sqrt{2}}\left(\left|0\right\rangle + \left|1\right\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(\left|0\right\rangle + \left|1\right\rangle\right).$$

However in some other cases, such as $\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$, it cannot be factorized. The particles are then said to be entangled.

Notes	

92

(369) Ei

EPR paradox

Einstein Podolsky Rosen paper (1935):

- Two particles interact and get entangled
- They form a system which remains in this superposition until a measurement is performed
- The two particles travel far from each other

For instance if a measurement is realised on the first particle from the previous example (9.368) and the outcome is $|0\rangle$ then the second particle must be in state $|1\rangle$.

This idea conflicts with the theory of relativity which states that nothing can travel faster than the speed of light. In fact the measurement of $|0\rangle$ on the first particle implies probability 1 of getting $|1\rangle$ whatever the distance between the two particles.

Schrödinger's cat

Basic idea: create a system where a radioactive atom is "entangled with a cat". If the atom decays and emit radiation some poison is released and the cat dies.

Quantum teleportation

High level idea:

- Alice and Bob meet to construct an EPR pair (A,B), Alice takes A and Bob B
- \bullet Alice wants to share quantum information on a particle ${\it C}$ with Bob
- Alice creates an EPR pair (A, C) such that A, B, and C are now entangled
- ullet Alice measures A such that B collapses in a state that "resembles" the state of C
- Using a classical channel Alice sends the state of A to Bob
- When Bob knows the state of *A* he can easily work out the state

	r	-		
- 1			٦,	
- (3	12	- 1	

Experiencing quantum mechanics

Notes	

Notes			

Notes			

Notes			

Notes		

(376) Qı	uantum gates
Diffusion transform for a superposition of two qubits:	
$D = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}$	D
Calling the initial superposition of n states $ \psi_0 angle$ it is g	eneralized as
$D=2 \psi_0\rangle\langle\psi_0 -I_n,$	
where I_n is the identity matrix of dimension n .	

Notes	

Notes

(378)	Grov	er's algorithm
0.5 0		
-1		

Notes		

(370
(313

Finding the horse

For the sake of simplicity we define $wolf=|00\rangle$, $horse=|01\rangle$, $fish=|10\rangle$, and $snake=|11\rangle$. Therefore only two qubits are needed.

We start with the superposition

$$rac{1}{2}\left(\ket{00}+\ket{01}+\ket{10}+\ket{11}
ight)=rac{1}{2}egin{pmatrix}1\\1\\1\\1\end{pmatrix}$$

This is achieved by setting the two qubits to $|0\rangle$ an applying an Hadamard transform to each of them:

$$\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}.$$

Notes

Finding the horse

Then applying the transform F_{horse} yields

$$\frac{1}{2}\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}\begin{pmatrix}1\\1\\1\\1\end{pmatrix}=\frac{1}{2}\begin{pmatrix}1\\-1\\1\\1\end{pmatrix}.$$

Finally after applying D we get

$$\frac{1}{4} \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

Notes	

Notes

Notes

Notes

387

Notes	

387)	Security	Notes	
Security of the protocol:			
 Alice generates the 0,1 and cannot cheat 	the basis but has no idea on b , so she		
If Rob has access to a large	quantum memory he can copy the		
9	pasis and their copy in the other basis		
 Qubits are very hard to stor that Bob cannot store the r 	e, so it is a fair assumption to assume qubits		
 As a measurement destroys again in another basis and a 	the information he cannot measure as such he cannot cheat		

Notes

388 Bit commitment
Bit commitment protocols are very simple, and can easily be realised without the help of quantum cryptography.
Example. Simple bit commitment protocol: Bob generates a 100-bit long string
 He appends his bit b and another 100-bit long string
 He sends the hash of the 201-bit long string to Alice
 To reveal b Bob sends the 201-bit long string

Notes		

97 385 - 388

® Key points
• For two particles what does it mean to be entangled?
• What is a qubit?
• What is the advantage of quantum computing over classical computing?
What is a bit commitment protocol?

Notes			

Computers leak information when performing an operation:

• Amount of power used

• Time spent

• Area of the memory used

• Electromagnetic radiations

• Sounds (hard disk, beep...)

• Frequency of sending packets on the network

Notes	

(397)

General remarks

A few important notes:

- Side channel attacks apply to any protocol
- A secure cipher with no attack on the protocol is not immune to side channel attacks
- Not many way to get protected

Example.

SSH is a secure way to connect to a remote computer. If a user authenticate using a password, the time between each keystroke, or packet sent on the network, can be analysed and the password

An audio recording of someone typing on a keyboard is enough to know what he is writing.

(399)

RSA implementations

To break RSA the goal is to find the secret key:

- When a user decrypts a message
- · When a user signs a message

The attacker can access to the host device to:

- Run some malicious code
- Perform measurements

As running RSA leaks information the attacker only needs to read it and then perform some analysis in order to interpret it.

Timing attack

General approach:

- RSA decryption/signature uses the square and multiply algorithm (3.172)
- On a 0 only a squaring occurs
- On a 1 a squaring and a multiplication occur

The mean not being precise enough the variance is used to analyse a large number of decryption requests. The attacker then uses the fact that the variance of the sum of two independent random processes is the sum of their respective variance. He gains little information on the secret key but he reuses it to perform more accurate measurements and in the end he is able to totally recover the key.

Notes

Notes	

Notes	<u> </u>	<u> </u>	

Power analysis attack

In this attack the key idea is to observe the power consumption of the computer when decrypting or signing a message.

On a 1 both a square and a multiply are carried out. When only a squaring occurs the power consumption is much lower. This attack is clearly much more powerful and efficient than the previous one. In fact no more than one decryption is necessary to recover the secret key.

We know present an algorithm that performs modular exponentiation without leaking much information.

403

Preventing attacks on RSA

The previous algorithm has the advantage of performing both multiplication and squaring whatever the bit considered. Therefore monitoring the power consumption would not bring any information on the secret key as it would look as on the following picture.

Note that the Montgomery's ladder technique is still vulnerable to cache timing attacks. Indeed an attacker could measure the time necessary to access the memory, and as this depends on which variable is used he could recover some information on the bits composing the secret key.

Notes		

Notes		

Notes	

Notes	

(405)	Reverse engineering	Notes
Extract i	nformation on the design and process of a program:	
• Get	the binary file	
• Disa	ssemble it	
• Und	erstand the generated assembly code	
• Extr	ract some important information	
Neve	er store a secret key in a binary, "everybody" can retrieve it	
406	Background on memory	Notes
Page sha	ring: re parts of the memory between processes	
	id replicated copies of identical content	
Ŭ	es are read-only	
	a write request, copy the page onto a new writable location	
	ructure in modern processors: h core has two levels of cache L1 and L2	
	nird level L3 is shared among all the cores	
	noving data from L3 also flushes it from both L1 and L2	
	closer from the CPU the faster to retrieve data	
	timing attack measures how long it takes the CPU to fetch This leaks information on what operation is performed.	
	L3 cache side channel attack	Notes
(407)	ES Cache Side Channel attack	
High leve	el idea applied by the attacker:	
Use	mmap to map the victim's executable file into the attacker's	
	ress space k up memory lines related to specific operations	
	th the memory line from the L3 cache and wait	
	the memory line and measure how long it takes it load it	
Slov	v loading: the line was not called by the victim	
Fast	: loading: the line is in the cache, meaning it was used	
	ossible to prevent this attack on a multi-user system as it is	
	to the implementation of the X86 architecture. Only a fix could solve this weakness.	
408	Preventing side channel attacks	Notes
Simple c	onclusion:	
•	impossible to prevent all the kinds of side channel attack	
• A sy	stem can never be 100% secure	
	n be done:	
	se secure protocols	
Sele	ct secure libraries	

GMP implements function intended for a cryptographic use
Such functions are slower but more resistant to side channel

attacks

405 – 408

409

A final example

VMWare View is a popular remote desktop protocol. VMWare recommends to switch from AES-128 to SALSA20-256 for the "best user experience".

A closer look at the specs shows that AES-128 refers to AES-128-GCM, which includes AES and message authentication. On the other hand SALSA20-256 refers to SALSA20-256-Round12, which does not feature any message authentication.

Although SALSA20 has speed and security advantages over AES an attacker can easily forge packets if it is not used in conjunction with with message authentication.

Is it worth sacrificing security for the sake of speed?

Notes

410	Key points
Explain what are side channel attacks	
List two examples of side channel attacks	
How to prevent side channel attacks?	
• Can a system be made fully secure?	

Notes

Notes		

	References i		
1.31	https://www.xkcd.com/538/		
1.47	Simon Singh, The Code Book – How to make it, break it, hack it, crack it?		
1.61	https://cdn.globalauctionplatform.com/7187abcf-14de-4d26-9a48-a48e012a3bd3/		
	1f194fa9-87f4-45cd-b6db-a48e012de5c7/original.jpg		
2.86	86 https://upload.wikimedia.org/wikipedia/commons/5/56/Tux.jpg		
2.86	6 https://upload.wikimedia.org/wikipedia/commons/f/f0/Tux_ecb.jpg		
2.86	https://upload.wikimedia.org/wikipedia/commons/a/a0/Tux_secure.jpg		
2.89	https://www.xkcd.com/221/		
10.401	G. Hollestelle, W. Burgers, J. den Hartog, <i>Power analysis on smartcard algorithms using simulation</i>		
10.403	G. Hollestelle, W. Burgers, J. den Hartog, <i>Power analysis on smartcard algorithms using simulation</i>		