

Présentation: Crypto-currency option pricing

EL ORFI YASSIR

le 2 Octobre 2023

Plan

1 Dynamics

▶ Dynamics

- ▶ Data
- ▶ Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014
- ▶ Calibration des modèles
- ▶ Pricing des options

Problématique

1 Dynamics

- Les cryptomonnaies sont de plus en plus présentes dans les portefeuilles d'investissement et utilisées par divers types d'investisseurs.
- Les modèles usuels, tels que le modèle de Heston, ont des limites, et faillissent à modéliser des actifs assez violents.
- Sauts fréquents dans l'évolution des cryptomonnaies en raison de leur forte volatilité.

 \longrightarrow Les modèles à sauts stochastiques.

SVJ model dynamics:

1 Dynamics

$$d \log S_t = \mu dt + \sqrt{V_t} dW_{S_t} + Z_s dN_t$$

$$dV_t = \kappa(\theta - V_t) dt + \xi \sqrt{V_t} dW_{V_t} + Z_v dN_t$$

$$Cov(dW_{S_t}, dW_{V_t}) = \rho dt$$

$$P(dN_t = 1) = \lambda dt$$

avec $\mu, \kappa, \theta, \xi, \rho, \lambda$ sont des paramètres déterministes, W_{S_t} et W_{V_t} sont des processus de Wiener indépendants, et N_t est un processus de Poisson avec un taux constant λ . Les termes Z_s et Z_v représentent les sauts dans les rendements et la volatilité, respectivement.

SVCJ model dynamics:

1 Dynamics

Les tailles de sauts peuvent être corrélées; Donc la taille du saut aléatoire Z_s conditionnelle à Z_v est supposée suivre une distribution gaussienne avec une moyenne de $\mu_s + \rho_j Z_v$ et un écart-type σ_s . Le saut dans la volatilité Z_v est supposé suivre une distribution exponentielle avec une moyenne μ_v :

$$Z_v \sim \exp(\mu_v)$$
 $Z_s | Z_v \sim N(\mu_s + \rho_{jump} Z_v, \sigma_s^2);$

Plan 2 Data

- ▶ Dynamics
- ▶ Data
- ▶ Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014
- ▶ Calibration des modèles
- ▶ Pricing des options

Site Deribit

2 Data

Les jeux données sont prix directement de API-Deribit.

Site Deribit

2 Data

Par exemple, une ligne comprend un contrat option donné comme suivant:

last_	_price	$int\epsilon$	erest_	rate	instrumen	t_name	index_	price b	oid_iv
0.00'	75	0.0		BTC	-13MAR20-	10000-C	8638.68	3 5	9.35
	best l	oid	best	bid amount	best ask	best ask	amount	ask iv	
	0.006		30.1		0.0075	9.5		63.25	
	open_	inte	rest	min_price	max_price	e mark_	_price	mark_iv	7
	201.5			0.0005	0.0205	0.0065	9739	60.95	

Plan

3 Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014

- ▶ Dynamic
- ▶ Data
- ▶ Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014
- ▶ Calibration des modèles
- ▶ Pricing des options

Mise en oeuvre

3 Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014

Soit $\sigma^{BS}(k, \tau = T - t)$ la volatilité implicite du modèle de Black-Scholes, où $k = \ln\left(\frac{K}{S_0}\right)$ est la log-moneyness et $w(k, \tau) = \left(\sigma^{BS}(k, \tau)\right)^2 \cdot \tau$ est la variance implicite totale.

Pour une échéance τ fixée, la paramétrisation du smile de volatilité implicite totale, telle que présentée initialement dans Jacquier et Gatheral 2014, est donnée par l'équation suivante :

$$w(k, \chi_*) = a + b \left\{ \rho_{svi}(k-m) + \sqrt{(k-m)^2 + (\sigma_{svi})^2} \right\}.$$

Paramètres

3 Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014

Dans l'ensemble de paramètres $\chi_* = \{a, b, \rho_{svi}, m, \sigma_{svi}\}$:

- $a \in \mathbb{R}$ régit le niveau général de variance.
- $b \ge 0$ régule les pentes des extrémités.
- $\rho_{svi} \in [-1, 1]$ contrôle l'asymétrie.
- $m \in \mathbb{R}$ permet des décalages horizontaux du smile.
- $\sigma_{svi} > 0$ est la courbure ATM du smile.

Chaque jour, le smile est recalibré pour chaque maturité.

Contraintes

3 Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014

- Δ_{25} , considérer δ des options $\in [0.25; 0.75]$.
- Ignorer Bid-ask spread et utiliser que le prix achat Bid.
- Veillez sur la convexité de la courbe: prévention d'arbitrage butterfly.
- L2 régularisation: prévention d'arbitrage calendrier.

Surface de volatilité simulée

3 Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014

date	ttm	a	b	rho	m	sigma	penalty
20190402	0.0082	0.0038	0.0155	0.3004	-0.0117	0.0417	0.0266
20190402	0.0274	0.0049	0.0385	-0.1975	-0.0938	0.1421	0.0189
20191002	0.0055	0.0012	0.0391	0.0166	0.0206	0.0446	0.1131
20191002	0.0247	0.0011	0.0631	-0.1459	0.0074	0.2327	0.0156
20200202	0.1479	0.0115	0.1300	0.1570	0.0384	0.3282	0.0245
20200202	0.3973	0.0406	0.2022	-0.0622	-0.1353	0.6656	0.0094

Table: Table of an example of parametres series of each TTM and different periods

Surface de volatilité simulée en 2D

3 Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014

Surface de volatilité simulée en 3D

3 Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014

Plan

- **▶** Dynamics
- ▶ Data
- ▶ Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014
- ▶ Calibration des modèles
- ▶ Pricing des option

Paramètres B&S

4 Calibration des modèles

Chaque jour, pendant chaque période, nous effectuons une calibration en utilisant l'approche d'optimisation: Pour la volatilité Black & Scholes:

date	cost	rmse	penalty	SIGMA
2019-04-01	0.0493	0.0493	0.0000	0.6453
2019-04-02	0.0390	0.0390	0.0000	0.7234
2019-04-03	0.0828	0.0828	0.0000	0.8210
2019-04-04	0.0732	0.0732	0.0000	0.8498
2019-04-05	0.0531	0.0531	0.0000	0.8210

Table: Example of daily minimisation to calibrate B&S parameters

Paramètres SVCJ

4 Calibration des modèles

date	rmse	κ	ρ	V_0	θ	ξ	λ	μ_S	σ_S	μ_V
190505	0.0094	1.1512	0.1016	0.3566	0.5283	0.8975	0.8439	0.0519	0.0000	0.0214
190402	0.0488	1.0383	-0.0527	0.4172	0.1216	0.9231	0.7099	-0.0385	0.0000	0.0118
190401	0.0112	0.9483	-0.2329	0.1507	0.5259	0.5262	0.4351	0.3758	0.0000	0.0638
190501	0.0075	0.0394	0.1134	0.2925	0.3402	0.5366	0.4069	0.3109	0.0000	0.5862
190415	0.0241	0.9983	0.0241	0.2796	0.6069	0.0000	0.3583	0.0626	0.3758	0.2769

Table: Example of daily minimization to calibrate SVCJ parameters

Volatilité BS vs Vol de Vol SVCJ

Figure: σ_{BS} and V_{SVCJ} comparison

Intensité des sauts

Figure: $\lambda_{SVJ}, \lambda_{SVCJ}$ comparison

Corrélation

Figure: Fluctuation du paramètre ρ

Plan

5 Pricing des options

- ightharpoonup Dynamics
- ▶ Data
- ▶ Simulation de surface de volatilité inspirée par Jacquier et Gatheral 2014
- ▶ Calibration des modèles
- ▶ Pricing des options

Génération des trajectoires

5 Pricing des options

Après avoir calibrer les modèles et fixer ses paramètres, la génération des trajectoires est faite grâce à la discrétisation d'Euler–Maruyama suivante:

$$X(t + \Delta t) = X(t) + \mu(X(t), t) \cdot \Delta t + \sigma(X(t), t) \cdot \Delta W(t)$$

- X(t) est la valeur du processus à l'instant t.
- $\mu(X(t),t)$ est la dérive du processus (la tendance).
- $\sigma(X(t),t)$ est la volatilité du processus (l'écart-type).
- Δt est le pas de temps discret.
- $\Delta W(t)$ est un incrément de Wiener $\sim N(0, \Delta t)$.

Pour le modèle SVCJ

5 Pricing des options

Algorithm Generating Underlying Asset Paths with the SVCJ Model

```
Require: npaths \geq 0, S_0 \geq 0, \kappa, \rho, V_0, V_{BAB}, \xi, \lambda, \mu_Y, \sigma_Y, \mu_V; rate = 0
   for i \leftarrow 1 to npaths do ...
        for date in period do ...
             Update volatility using the SVCJ model:
             volatility = volatility + \kappa \cdot (V_{\text{BAR}} - \max(0, \text{volatility})) \cdot dt + \xi
   \sqrt{\max(0, \text{volatility}) \cdot dt} \cdot W_2 + Z_V \cdot di
             Update price using the SVCJ model:
             price = price \cdot \left(1 + (rate - \lambda \cdot (\mu_Y + \rho \cdot \mu_V)) \cdot dt + \sqrt{\max(0, \text{volatility}) \cdot dt} \cdot W_1\right)
   +Z_{\mathbf{V}}\cdot di
        end for
   end for
```


Pricing des options

5 Pricing des options

On mène ensuit du Monte Carlo afin de pricer les options souhaitées, voici un exemple:

	label	price
0	2019-04-01-3000-30	1093.3829
1	2019-04-01-3000-90	1154.0951
2	2019-04-01-4000-30	251.2697
3	2019-04-01-4000-90	459.6578
4	2019-04-01-5000-30	25.5785
5	2019-04-01-5000-90	149.3338

	label	price
0	2019-04-01-3000-30	1146.8142
1	2019-04-01-3000-90	1038.1730
2	2019-04-01-4000-30	926.8615
3	2019-04-01-4000-90	816.8852
4	2019-04-01-5000-30	707.1821
5	2019-04-01-5000-90	634.0468

(a) Black & Scholes Prices

(b) SVCJ Prices

Q&A

Merci de votre attention!