1 Моменты инерции для простых однородных тел

Момент инерции $(I=\int_m r^2dm)$ - мера инертности во вращательном движении вокруг оси. Он характеризует сопротивление тела изменению его угловой скорости при приложении вращательного момента. Момент инерции тела зависит от его массы и распределения массы относительно оси вращения.

Вывод формулы

Рис. 1: Тело с осью вращения

 ω_z : L_z ω_z — угловая скорость L_z — момент импульса (нас интересует) $L_z = I_{zx}\omega_x + I_{zy}\omega_y + I_{zz}\omega_z = I_{zz}\omega_z$ $\vec{\omega} = \omega_z \vec{k}$ $(x^2 + y^2)$ - это расстояние до оси вращения $I_{zz} = \int_m (x^2 + y^2) dm = \int_m R^2 dm$

Примеры расчёта моментов инерции для тел симметричной формы:

Тонкий стержень массы m и длины L, если ось вращения перпендикулярна стержню и проходит через его центр масс: $I=\frac{mL^2}{12}$

Тонкое кольцо массы m и радиуса R, если ось вращения перпендикулярна плоскости кольца и проходит через центр масс: $I=mR^2$ (радиус постоянный, поэтому просто интегрируем).

Тонкостенная труба (полый цилиндр) массы m, радиуса R и длины L, если ось вращения совпадает с осью симметрии трубы: $I=mR^2$ (радиус постоянный, просто интегрируем).

Сплошной цилиндр массы m и радиуса R, если ось вращения совпадает с осью симметрии цилиндра: $I=\frac{mR^2}{2}$. (Для вывода распишите: $dm=\frac{m}{\pi R^2}2\pi dr$)

2 Теорема Гюйгенса-Штейнера (теорема о переносе оси)

Теорема позволяет рассчитать момент инерции тела относительно оси, параллельной оси, проходящей через центр масс, на расстоянии a от неё.

Формула: $I_B = I_A + ma^2$, где I_B — момент инерции относительно новой оси, I_A — момент инерции относительно оси, проходящей через центр масс, m — масса тела, a — расстояние между осями.

Применение: если точка A совпадает с центром масс тела, то $I_B = I_C + ma^2$, где I_C — момент инерции относительно оси через центр масс. Момент инерции тела относительно оси, проходящей через его центр масс, является наименьшим для всех параллельных осей.

Вывод

Рис. 2: основа вывода формулы

$$J_A=\int R_A^2 dm$$

$$J_B=\int (\vec{R_A}-\vec{a})^2 dm=...=I_A+ma^2-2\vec{a}\vec{R_c}m$$
 R_c - расстояние до оси A

Пример применения теоремы Гюйгенса-Штейнера

Задача: Рассчитать момент инерции тонкого стержня массы m и длины L относительно оси, проходящей через один из его концов и перпендикулярной стержню.

Решение:

1. Момент инерции относительно центра масс (ось A):

$$I_A = \frac{mL^2}{12}$$

2. Расстояние между осями A и B (ось через конец стержня):

$$a = \frac{L}{2}$$

3. Применение теоремы Гюйгенса-Штейнера:

$$I_B = I_A + ma^2$$

Подставляем значения:

$$I_B = \frac{mL^2}{12} + m\left(\frac{L}{2}\right)^2$$

$$I_B = \frac{mL^2}{3}$$

Ответ: Момент инерции тонкого стержня относительно оси, проходящей через его конец, равен $\frac{mL^2}{3}$.