```
Algorithm mergeSort(S, C)
```

Input sequence \boldsymbol{S} with \boldsymbol{n} elements, comparator \boldsymbol{C}

Output sequence S sorted according to C

if S.size() > 1 then // O(1)

$$(S_1, S_2) \leftarrow partition(S, n/2)$$
 // O(n)
mergeSort(S_1, C) // T(n/2)
merge(S_1, S_2, C, S) // O(n)

$$T(n) = 2 T(n/2) + c n$$

Recurrence equation looks like T(n)=a T(n/b) + f(n) so Merge-sort: T(n)=2 T(n/2) + cn

(where a=#recursive calls, 1/b is fraction of n in recursive calls, f(n) is time to do all but recursive calls)

Guess and Test:

$$T(n) \le c n \log n$$

Proof:

$$T(n) = 2 T(n/2) + k n$$

$$T(n) \le 2 (c n/2 log (n/2)) + k n$$

$$T(n) \le (c n (log n - log 2)) + k n$$

$$T(n) \le c n \log n - c n + k n$$

$$T(n) \le c n \log n$$
, for all $c \ge k$

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

1. if
$$f(n)$$
 is $O(n^{\log_b a - \varepsilon})$, then $T(n)$ is $\Theta(n^{\log_b a})$

2. if
$$f(n)$$
 is $\Theta(n^{\log_b a} \log^k n)$, then $T(n)$ is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if
$$f(n)$$
 is $\Omega(n^{\log_b a + \varepsilon})$, then $T(n)$ is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example 1.
$$T(n) = 4 T(n/2) + n$$

$$\log_2 4 = 2$$

Case 1: Is $f(n) = n O(n^{2-e})$? yes for 0 < e < 1, pick e = 1

Conclusion: Therefore, T(n) is $\Theta(n^2)$ (To receive full credit, you must give conclusion!)

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example 2. T(n) = 2T(n/2) + bn log n

$$\log_2 2 = 1 => O(n)$$

Case 1: Is
$$f(n)=bn \log n O(n^{1-e})$$
? (no)

Case 2: Is $f(n)=bn \log n \Theta(n^1 \log^k n)$ for some $k \ge 0$? Yes for k=1

Conclusion: Therefore, T(n) is $\Theta(n^1 \log^{k+1} n) = \Theta(n \log^2 n)$

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example 3.
$$T(n) = T(n/3) + n \log n$$

$$\log_3 1 = 0$$

Case 1: Is
$$f(n)=n \log n O(n^{0-e})$$
? (no)

Case 2: Is
$$f(n)=n \log n \Theta(n^0 \log^k n)$$
 for some $k \ge 0$? No

Case 3: Is
$$f(n)=n \log n \Omega(n^{0+e})$$
 for some $e > 0$? Yes for $e=1$

Show that: a $f(n/b) \le \delta f(n)$ for some $\delta < 1$

$$1 f(n/3) = (n/3) log (n/3) \le \delta n log n$$

(n/3)
$$\log (n/3) = (n/3) (\log n - \log 3) < n/3 \log n$$

< (n/3) $\log n < \delta n \log n$ for $\delta = 1/3 < 1$

Conclusion: Therefore, T(n) is $\Theta(n \log n)$

(Must give conclusion and solve for δ to receive full credit for Case 3!)

Fastest way to decide which case: (fewer mistakes if we try case 2 first, then compare f(n) vs. n log b a sa follows)

Case 2 applies if there exists a k such that f(n) is $\Theta(n^{\log_b a} \log^k n)$;

Case 1 applies if f(n) grows slower than $n^{\log_b a}$ (cannot be the same growth rate which is the reason e must be greater than 0);

Case 3 applies if f(n) grows faster than $n^{\log_b a}$ (cannot be the same rate); then solve for δ .

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example 4:

$$T(n) = 8 T(n/2) + n^2$$

$$\log_{2} 8 = 3$$

Case 2 does not apply since $f(n) = n^2$ is not $\Theta(n^3 \log^k n)$ for any k, so compare growth of $f(n) = n^2$ vs. n^3 . Answer f(n) grows slower, so case 1 applies.

Case 1: Is
$$n^2$$
 O(n^{3-e})? yes, for e=1

Therefore, T(n) is $\Theta(n^3)$

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example 5:

$$T(n) = 9 T(n/3) + n^3$$

$$\log_{3} 9 = 2$$

Case 2 does not apply (why?), so compare growth of $f(n)=n^3$ vs. n^2 . Answer f(n) grows faster, so case 3 applies.

Case 3: Is $n^3 \Omega(n^{2+e})$? yes, for e=1

Must solve for δ :

$$9 (n/3)^3 < \delta n^3$$

 $1/3 (n)^3 < \delta n^3$ which is true for $\delta = 1/3 < 1$

Therefore, T(n) is $\Theta(n^3)$

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example 6: Recursive Binary Search and DownHeap

$$T(n) = T(n/2) + 1$$

$$\log_2 1 = 0$$

$$n^0 = 1$$

Case 2: compare f(n)=1 to $\Theta(n^0 \log^k n)$? true for k=0 Therefore, T(n) is $\Theta(\log n)$

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example 7: Quick Select

$$T(n) = T(3n/4) + 2bn$$

$$\log_{4/3} 1 = 0$$

Case 2 does not apply, so compare f(n)=2bn to n^0 ; f(n) grows faster so case 3 applies, so solve for δ . $2b(3n/4) \le \delta 2bn$ which is true for $\delta=3/4 < 1$ Therefore, T(n) is $\Theta(n)$.

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example 8:

$$T(n) = T(n/2) + \log n$$

$$\log_2 1 = 0$$

$$n^0 = 1$$

Case 2: compare $f(n)=\log n$ to $\Theta(n^0 \log^k n)$? true for k=1

Therefore, T(n) is $\Theta(\log^2 n)$

Master Theorem

$$T(n) = a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example 9: Heap

$$T(n) = 2T(n/2) + \log n$$

$$log_b a = 1$$

$$f(n) = log n$$

$$n^{1-.25}$$
, i.e., $e=1/4 > 0$

Case 2 does not apply since $f(n)=\log n$ is not $\Theta(n^1 \log^k n)$ for any k.

Case 1: n¹ grows faster than log n, i.e. log n is O(n^{1-.25})

Therefore, T(n) is $\Theta(n)$ since $n^{\log_b a} = n^1$

