

#### **RELÓGIO ALARME COM STM32F103C6**

#### **Equipe:**

1. John Vasconcelos dos Santos

2. Renato Avelino

3. Rayane Gadelha Melo de Lima

Disciplina: Sistemas Microprocessados.

Data de Entrega do Projeto: 11 de abril de 2021

Matrícula: 414953 Matrícula: 485369 Matrícula: 368610





Fortaleza 2021

### Microprocessador STM32F103XX



- RISC de 32 bits ARM® Cortex TM -M3;
- Frequência de 72 MHz;
- Memória Flash incorporada de até 32
   Kbytes e SRAM de até 6 Kbytes);
- 02 ADCs de 12 bits;
- 03 temporizadores de 16 bits de uso geral;
- 01 temporizador PWM;
- 02 I2Cs e SPIs, 03 USARTs, um USB e um CAN





Real Time Clock (RTC):



### Microprocessador STM32F103C6



- Prescaler programável
- Contador programável de 32 bits para medição de longo prazo
- Dois relógios separados: PCLK1 para a interface APB1 e relógio RTC.
- A fonte de relógio RTC pode ser qualquer uma das seguintes: HSE clock divided by 128, LSE oscillator clock E LSI oscillator clock.
- Três linhas de interrupção dedicadas: Interrupção de alarme, para gerar uma interrupção de alarme programável por software, Interrupção de segundos, para gerar um sinal de interrupção periódica com uma duração de período programável (até 1 segundo), Interrupção de estouro, para detectar quando o contador programável interno chega a zero.





#### **OBJETIVOS**

Projetar e simular no Proteus de um relógio digital com alarme utilizado o microprocessador STM32F103C6.

#### 1. MATERIAIS

- Simulador de circuitos digitais Proteus;
- Microprocessador STM32F103C6;
- Chave digital micro Switch;
- 07 chaves Botões circuitos integrais e digitais;
- 06 Display 7 segmentos;
- 01 Led vermelho;
- 07 Resistores de  $10k\Omega$ ;
- 08 Resistores de  $330k\Omega$ .





### Configuração das portas do microprocessador STM32F103C6

| Porta       | Configuração | Utilização                                                                    |
|-------------|--------------|-------------------------------------------------------------------------------|
| PA01-PA15   | GPIO_OUTPUT  | Representação das horas, minutos e segundos no Display 7 segmentos.           |
| PB0-PB08    | GPIO_OUTPUT  | Representação das horas, minutos e segundos no Display 7 segmentos.           |
| PB009-PB015 | GPIO_EXTI    | Interrupção da função principal através de chaves digitais.                   |
| PC15        | GPIO_OUTPUT  | Acendimento de um<br>LED quando o tempo do<br>relógio for igual do<br>Alarme. |
| PD0-PD01    | RCC_OSC      | Cristal ressonador interno                                                    |





### Configuração RTC







/\* Declaração de variáveis globais do RTC \*/

```
/* Private variables -----*/
RTC HandleTypeDef hrtc;
/* USER CODE BEGIN PV */
uint8 t alarmflag = 0;
RTC_TimeTypeDef sTime = {0};
RTC AlarmTypeDef sAlarm = \{0\};
/* USER CODE END PV */
/* Private function prototypes -----*/
```





## /\* SET do valor inicial do alarme \*/

```
/* Infinite loop */

sAlarm.AlarmTime.Hours = 9;
sAlarm.AlarmTime.Minutes = 16;
sAlarm.AlarmTime.Seconds = 20;
sAlarm.Alarm =

RTC_ALARM_A;

/* USER CODE BEGIN WHILE
*/
```

```
/** Initialize RTC and set the Time and
Date */
  sTime.Hours = 0x9;
  sTime.Minutes = 0x16;
  sTime.Seconds = 0x20;
  if (HAL RTC SetTime(&hrtc, &sTime,
RTC_FORMAT_BCD) != HAL_OK)
   Error Handler();
  DateToUpdate.WeekDay =
RTC WEEKDAY MONDAY;
  DateToUpdate.Month =
RTC MONTH JANUARY;
  DateToUpdate.Date = 0x1;
     DateToUpdate.Year = 0x0;
```



### /\* Leitura do valor contido no Time do RTC e no Alarme e transformação de binária decimal (BCD) em binário para o Display 7 segmentos\*/





```
while (1)
  /* USER CODE END WHILE */
  /* USER CODE BEGIN 3 */
    HAL Delay(100);
    RTC TimeTypeDef tmpTime;
    RTC AlarmTypeDef tmpAlarm;
    HAL RTC GetTime(&hrtc, &tmpTime, RTC FORMAT BIN);
    HAL RTC GetAlarm(&hrtc, &tmpAlarm, RTC ALARM A, RTC FORMAT BIN);
    if(alarmflag == 0) {
           uint8 t secFirstDigit = tmpTime.Seconds%10;
           uint8 t secSecondDigit = tmpTime.Seconds/10;
           //uint8 t secFirstDigit = alarmflag?(tmpAlarm.AlarmTime.Seconds%10):(tmpTime.Seconds%10);
           //uint8 t secSecondDigit = alarmflag?(tmpAlarm.AlarmTime.Seconds/10):(tmpTime.Seconds/10);
           HAL GPIO WritePin(GPIOA, GPIO PIN 1, secFirstDigit & 0x01);
                 HAL GPIO WritePin(GPIOA, GPIO PIN 2, secFirstDigit & 0x02);
                 HAL GPIO WritePin(GPIOA, GPIO PIN 3, secFirstDigit & 0x04);
                 HAL GPIO WritePin(GPIOA, GPIO PIN 4, secFirstDigit & 0x08);
                 HAL GPIO WritePin(GPIOA, GPIO PIN 5, secSecondDigit & 0x01);
                 HAL GPIO WritePin(GPIOA, GPIO PIN 6, secSecondDigit & 0x02);
                 HAL GPIO WritePin(GPIOA, GPIO PIN 7, secSecondDigit & 0x04);
                 HAL GPIO WritePin(GPIOA, GPIO PIN 8, secSecondDigit & 0x08);
```



/\* Função comparativa entre Time e alarme, se for igual faz piscar um Led na Porta C Pino 15\*/

/\*\* Interrupção do Time do RTC através da chave no Porta B Pino 09, adicionando ou subtraindo valores conforme o botão acionado \*/

```
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
    UNUSED(GPIO_Pin);
    switch(GPIO_Pin) {
        case AlarmSet_Pin: if (alarmflag) alarmflag = 0; else alarmflag = 1; break;
        case SecondPlus_Pin: if (alarmflag) sAlarm.AlarmTime.Seconds++; break;
        case MinutePlus_Pin: if (alarmflag) sAlarm.AlarmTime.Minutes++; break;
        case HourPlus_Pin: if (alarmflag) sAlarm.AlarmTime.Hours++; break;
        case SecondMinus_Pin: if (alarmflag) sAlarm.AlarmTime.Seconds--; break;
        case MinuteMinus_Pin: if (alarmflag) sAlarm.AlarmTime.Hours--; break;
        case HourMinus_Pin: if (alarmflag) sAlarm.AlarmTime.Hours--; break;
    }
    if(alarmflag) HAL_RTC_SetAlarm(&hrtc, &sAlarm, RTC_FORMAT_BIN);
}
```





| Dispositivo | Configuração              | Utilização                     |
|-------------|---------------------------|--------------------------------|
| Display 01  | Interligado nas PA01-PA04 | segundos                       |
| Display 02  | Interligado nas PA05-PA08 | segundos                       |
| Display 03  | Interligado nas PA09-PA12 | Minutos                        |
| Display 04  | Interligado nas PA13-PB0  | Minutos                        |
| Display 05  | Interligado nas PB01-PA04 | Horas                          |
| Botão 01    | Interligado nas PB10      | set segundos alarme para mais  |
| Botão 02    | Interligado nas PB11      | set segundos alarme para menos |
| Dispositivo | Configuração              | Utilização                     |
| Botão 03    | Interligado nas PB12      | set minutos alarme para mais   |
| Botão 04    | Interligado nas PB13      | set minutos alarme para menos  |
| Botão 05    | Interligado nas PB14      | set horas alarme para mais     |
| Botão 05    | Interligado nas PB15      | set horas alarme para menos    |
| Led         | Interligado nas PC15      | Pisca quando alarme = Time     |
|             |                           |                                |





















# Diagrama

CONFIGURAÇÃO PORTAS, RTC E SET DATA E ALARME INTERUPÇÃO ESTADO DO ALARME ALARME =1 ALARME =0 ATIVADO INTERRUPÇÃO, CHAVE FECHADA PB09, DISPLAY MOSTRA ALARME E POSSIBILIDADA TIME ATIVADO DISPLAY MOSTRA MODIFICA O TEMPO DO ALARME RELÓGIO, ATIVADO CONTAGEM DE TEMPO SE APERTAR O BOTÃO 01 SEGUNDOS ++; SE BOTÃO 02 SEGUNDOS --, SE SE TEMPO RELÓGIO = TEMPO ALARME =0 BOTÃO 03 MINUTOS ++, SE BOTÃO **ALARME** 04 MINUTOS --, SE BOTÃO 05 HORAS ++, SE BOTÃO 06 HORAS --FINAL DE INTERRUPÇÃO, CHAVE ABERTA PB09, DISPLAY RETORNA LED PC15 PISCA PARA RELÓGIO, ATIVANDOA A **CONTAGEM DE TEMPO** 







# Thank you 15



