

Research Project Progress Report Week [9] – SIT723

Student Name:	Satvik Sharma			
Supervisors' Names:	Prof. Maia Angelova			
Project Title:	Financial Time Series Analysis with Machine Learning			
SIT723 Target Grade:	Distinction I believe I have completed the tasks according to the deadline I chose. I have completed the literature review and have started working on the Project design.			
Overleaf Project Link:	https://www.overleaf.com/read/frvfvmnnrstb			
Project Folder Link:	https://deakin365.sharepoint.com/:f:/r/sites/SIT723- FinancialTimeSeriesAnalysiswithMachineLearning/Shared%20Documents/ General/Satvik%20Sharma(218595095)?csf=1&web=1&e=laxNjw			
Worklog:	242 hours https://deakin365.sharepoint.com/:x:/r/sites/SIT723- FinancialTimeSeriesAnalysiswithMachineLearning/Shared%20Documents/ General/Satvik%20Sharma(218595095)/Worklog.xlsx?d=w2cfbd3ab588d4 2f58966474ef14f85c2&csf=1&web=1&e=2nMoH6			
Project Plan				

Summary of the
work planned with
your supervisor:

In the first four weeks, the first and foremost task was to complete the Literature Review. The advantage of doing the literature review was to understand what kind of machine learning models are used by the people by the researchers.

Next step was to create a research design and start with the machine learning project. Choose a machine learning model and evaluate stocks with the help of the chosen machine learning model.

Summary of the work done:

The literature review has been completed and a number of papers have been reviewed. The next part, that is, completing of the research design has been started along with the creation of the artefact. The machine learning model will be created in the Jupyter notebook. The data preprocessing has been started and the machine learning model will be made. Research on different machine learning algorithms is still in process and the best machine learning model(s) will be chosen for the project. For this task I chose a dataset of 10 years of Nifty-50 stock data and worked on the return value of the stock. The return value for me is defined as the previous date closing value subtracting from closing value divided by previous closing value. The models which I chose to work on were all statistical models and belonged from the ARIMA family. throughout the next five weeks I worked on developing them and correcting them.

I have also worked out on evaluating the models using the mean absolute error, R², and root mean squared error. The comparison table for different algorithms implemented is given below. The stock chosen for this table is HDFC, which is one of the top stocks in NIFTY-50. The graphs of the predictions are given below

	MAE	R ²	RMSE
AR	1.297	-0.033	1.738
ARIMA	1.299	-0.036	1.7412
ARIMAX	0.415	0.89	0.589
SARIMA	1.307	-0.05	1.752
SARIMAX	0.812	0.814	1.18
HWES	1.309	-0.03	1.74

Next steps:	The next step is to finish up the model and start with the research article completion on the Overleaf and submit with the proper forecasting for at least one year or six months depending on how accurate the model is. Furthermore, the next step could be developing the hybrid machine learning model in the next iteration of the project, that is in the second part of the project. Including that, what I really want to do is like create portfolios for different people based on their duration they want to invest their money.
Overall project progress:	The project is going on with the good speed and with the current progress the project will be completed on time.

Reflection against Assessment Rubric

Add comments and evidence against your target grade for each criterion in the assessment rubric. You should also provide evidence (relevant to your target grade) on how you meet all the relevant criteria for that grade based on your progress so far.

In case you have not started work on a specific criterion, e.g., research evaluation, leave it blank.

Your reflection on work done so far against the assessment rubric criteria				
Literature Review	High Distinction			
Technical & Academic Writing	High Distinction			
Research Design	Credit			
Project Management	High Distinction			
Artefact Development	Distinction			
Research Evaluation	Credit			
Research Dissemination	Credit			

OVERALL	Distinction

Additional Evidence

Add any evidence that supports your case for your target grade. For example, screenshot of git commits log, screenshot of your cloud storage folder, progress in your research report or artefact development, or a visual chart to illustrate project progress so far.

This is your research project, and you need to demonstrate (with evidence) how you meet criteria for a certain grade. Make this project report easy to read and help anyone reading this report assess, with least effort, the progress you have made.

Trello Board

GitHub

https://github.com/satviksharmase/Financial-Time-Series-Analysis-with-Machine-Learning

Literature review

used in comparison with the Logical regression, SVM, and Denoising Autoencoders and it was found that the other machine learning models performed better than ARIMA because the other machine learning models took externals factors into account as <code>well[4]</code>. One of the papers, compares the performance of LSTM and ARIMA, and in conclusion it was found that LSTM based models run much better than the ARIMA based models even if the dataset was for one month [5].

There are number of papers which have been mentioned in the table below, that have been reviewed and thus analysed what machine learning algorithms outperforms others. The table will show a small summary of what machine learning models were used and what was the conclusion of the papers

Model Name	Pap er	Performa nce criteria	feature dataset	Time period	environment	conclusion
ARIMA, LR, MLP, SVM, DAE	[4]	-	S&P, Nasdaq, Dow 30	5-years (2012- 2016)	Python Statsmodels, Sklearn, Theano	Machine learning models perform better than ARIMA and SVM outperforms all other models
ARIMA, LSTM	[5]	% Reduction in RMSE	Dow Jones Index	1-month	Python with Keras and Theano	LSTM based models work better than ARIMA
SVM, ANN, KNN	[6]	RMSE	DAX 30, S&P500	10-years (2004- 2014)	-	KNN outperforms other models
KNN, SVM, Gaussian progress, MLP	[7]	-	M3 time series competitio n data	Monthly for thousan d time series	-	Best two models are MLP and gaussian progression
ANN, ARMAX, 3-D Hydrodynam ic model	[8]	MAE, RMSE, R	Water level fluctuation in alpine lake	1-year (2009- 2010)	Python Statsmodels	The best working models are ANN and ARIMAX
ARIMA, ANN, LSTM	[9]	P values, graphical observati ons	Dell's stock price	1 year (2010)	-	ANN model is better than ARIMA model and LSTM, but the hybrid of ARIMA- GARCH model can be used for more accuracy.
ANN, LSTM	[10]	nRMSE, MAPE, R ²	Prediction of Solar irradiance	Hourly	Google Colab, Python scikit-learn, Keras	Due to small dataset, the ANN model works better than the LSTM, but both works much better than the persistence model
ARIMA, GARCH, regime- switching	[11]	RMSE	Home price indices by the OFHEO	20- years (1980- 2000)	-	Regime switching models perform better than ARIMA and GARCH.

ARIMA-ANN, ARIMA- Kalman	[12]	MAE, MAPE, MSE	Wind speed prediction	-		Both hybrid models have good forecasting accuracy and suitable for wind samplings
ARIMA-SVM, ARIMA-ANN, ARIMA- Random Forest	[13]	-	Indian stock trend	5-years (2004- 2009)	MATLAB6.1, SPSS13.0	The hybrid model ANN_ARIMA, was able to predict great values than other models
AR, ARDL, KNN, SVR, Naïve, VAR, MLP	[14]	RMSE, R ²	Inflation forecasting	30-years (1984- 2014)	-	SVR and ARDL outperforms other models and machine learning models work best with more volatile and irregular series,
Hybrid ARIMA models	[15]	-	Canadian lynx time series, sunspot time series, airline and star data	Differen t time periods	-	The hybrid system leads to a higher accuracy in prediction
ANN, KNN	[16]	-	Recorded EEG signals	Patient data set	-	ANN classifier's accuracy and sensitivity was higher than that of KNN classifier.
ANN, LSTM, MLR	[17]	MSE, r, RMSE	Prediction of irrigation groundwat er quality	-	Python	ANN and MLR model have highest accuracy in multiple scenarios
LR, LSTM	[18]	RMSE, MAPE	For hire vehicles and yellow taxi	-	-	LR is used to select the important variables and LSTM helps to improve the accuracy.
ARIMA	[19]	-	New York Stock exchange and Nigeria stock exchange	-	python	ARIMA has strong potential for short term prediction
MLR, KNN, ANN, ANFIS	[20]	Mash- Sutcliff coefficien t	Stream flow prediction	Monthly	-	The accuracy of each of the model depends on the condition, but the hybridisation was effective

After observing the table above, it can be clearly seen that the ARIMA is not a good option for the analysis of financial time series even though it is one of the most common methods used. Multiple machine learning methods like LSTM and ANN are also most commonly used as well as have good

Project folder

Worklog

Machine learning evaluation table

	MAE	R^2	RMSE
AR	1.297	-0.033	1.738
ARIMA	1.299	-0.036	1.7412
ARIMAX	0.415	0.89	0.589
SARIMA	1.307	-0.05	1.752
SARIMAX	0.812	0.814	1.18
HWES	1.309	-0.03	1.74

