《概率统计》(B)参考答案

一、选择题

1, B 2, B 3, A 4, C 5, D

二、填空题

1、0 2、
$$\int_{-\infty}^{+\infty} f(x,y)dy$$
 3、函数 4、3 5、区间估计

三、计算题

1、解: 设 $A_1 = \{ 来自甲 \}$, $A_2 = \{ 来自乙 \}$, $A_3 = \{ 来自丙 \}$, $B = \{ 取到红球 \}$,

$$\text{If } P(A_1) = P(A_2) = P(A_3) = \frac{1}{3}, \quad P(B|A_1) = \frac{2}{3}, P(B|A_2) = \frac{3}{4}, P(B|A_3) = \frac{1}{2},$$

(1) 由全概率公式得,

$$P(B) = \sum_{i=1}^{3} P(A_i) P(B|A_i) = \frac{1}{3} \times \frac{2}{3} + \frac{1}{3} \times \frac{3}{4} + \frac{1}{3} \times \frac{1}{2} = \frac{23}{36};$$

(2) 由贝叶斯公式得
$$P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B)} = \frac{8}{23};$$

2、解: (1)
$$\pm \frac{1}{8} + \frac{1}{8} + a + \frac{1}{4} + \frac{1}{4} = 1$$
解得 $a = \frac{1}{4}$;

(2)
$$E(X) = (-2)\frac{1}{8} + (-1)\frac{1}{8} + 0 \times \frac{1}{4} + 1 \times \frac{1}{4} + 2 \times \frac{1}{4} = \frac{3}{8}$$
;

(3)
$$P(Y=0) = P(X=0) = \frac{1}{4}$$
, $P(Y=1) = P(X=\pm 1) = \frac{3}{8}$,

$$P(Y = 4) = P(X = \pm 2) = \frac{3}{8}$$
, 故随机变量 X 的分布律为

Y	0	1	4
p_k	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{3}{8}$

3,
$$\mathbf{M}$$
: (1) $\int_{-\infty}^{+\infty} f(x)dx = \int_{0}^{3} axdx + \int_{3}^{4} (2 - \frac{1}{2}x)dx = \frac{9a}{2} + \frac{1}{4} = 1$

所以
$$a=\frac{1}{6}$$
;

(2)
$$P(1 < X < 3) = \int_{1}^{3} f(x)dx = \int_{1}^{3} \frac{1}{6}xdx = \frac{2}{3};$$

(3)
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \frac{1}{6} \int_{0}^{3} x^{2} dx + \int_{3}^{4} x (2 - \frac{1}{2}x) dx = \frac{7}{3}$$

4、解: (1)
$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{0}^{1} \int_{0}^{1} kxy dx dy = \frac{k}{4}$$
, 故 $k = 4$;

(2) 当
$$x < 0$$
 或 $x > 1$ 时, $f_x(x) = 0$;当 $0 \le x \le 1$ 时, $f_x(x) = \int_{-\infty}^{+\infty} f(x, y) dy = 4 \int_0^1 xy dy$

$$=2x$$
,故关于 X 的边缘分布律为: $f_X(x) = \begin{cases} 2x, \ 0 \le x \le 1 \\ 0, \ \mbox{其它} \end{cases}$ 同理可得:

$$f_{Y}(y) = \begin{cases} 2y, & 0 \le y \le 1 \\ 0, & 其它; \end{cases}$$

(3)
$$P(X+Y \le 1) = \iint_{x+y \le 1} f(x,y) dx dy = 4 \int_0^1 dx \int_0^{1-x} xy dy = \frac{1}{6}$$

5、解: 由题意可知
$$f(x) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{其它} \end{cases}$$
,故 $\mu_1 = E(X) = \int_{-\infty}^{+\infty} d(x) dx = \int_{0}^{\theta} \frac{x}{\theta} = \frac{\theta}{2}$,

解得 $\theta = 2\mu_1$, 用 \overline{X} 代替 μ_1 得 θ 的矩估计值为: $\theta = 2\overline{X}$.

6、解:期望 μ 的置信区间为 $(\bar{x}-\frac{s}{\sqrt{n}}t_{0.025}(8),\bar{x}+\frac{s}{\sqrt{n}}t_{0.025}(8))$,经计算可得置信区间为(49.6694,50.1306).

四、应用题

解:
$$H_0: \mu = 1000, H_1: \mu \neq 1000$$
, σ 已知, 取统计量 $U = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$,

$$|U| = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{1003.6 - 1000}{8 / \sqrt{16}} = 1.8 < 1.96 = u_{0.025}$$

接受 H_0 , 也就是生产正常.