### Naïve Bayes

#### Prof. Jefferson T. Oliva

Reconhecimento de Padrões (RC18EE)
Engenharia de Computação
Programa de Pós-Graduação em Engenharia Elétrica e de Computação (PPGEEC)
Universidade Tecnológica Federal do Paraná (UTFPR)
Campus Pato Branco





### Sumário

- Eventos dependentes e Independentes
- Permutabilidade
- Teorema de Bayes
- Classificador Naïve Bayes

### Introdução

- Muitos problemas de classificação não são determinísticos
  - Relação entre atributos preditivos e classe é probabilística
  - Caso os dados possuem muito ruído (ou incerteza), a mesma entrada pode ser classificada de maneiras diferentes dependendo do modelo ou do conjunto de dados utilizado
  - Algumas informações importantes não são capturadas pelos atributos preditivos usados
    - Conjunto de atributos com limitações
    - Problemas na representação dos dados
    - Fatores externos

## Introdução

- Exemplo: predizer se uma pessoal terá alguma doença cardíaca
  - Atributos preditivos
    - Peso
    - Exercícios frequentes
  - Ignorar outros eventos
    - Bebida
    - Tabagismo
    - Estresse
    - Fatores genéticos
    - ...

### Sumário

Eventos dependentes e Independentes

### Eventos dependentes

- Suponha uma caixa com duas bolas brancas e 3 pretas
- Em um hipotético experimento, considere a remoção aleatória de uma bola de uma determinada cor, com representação de Bernoulli  $(X_1)$ 
  - $X_1 = 0$ : caso a bola retirada seja branca
  - $X_1=1$ : caso a bola retirada seja preta
- Pela abordagem clássica, a probabilidade de ser retirada uma bola de determinada cor é:
  - Branca

$$P(X_1=0)=\frac{2}{5}$$

Preta

$$P(X_1=1)=\frac{3}{5}$$

#### Eventos dependentes

- Após a primeira retirada, e sem reposição, caso seja retirada mais uma bola, qual seria a probabilidade de da segunda bola ser branca?
  - A probabilidade da segunda retirada  $(X_2)$  é condicionada ao resultado da primeira
    - Se a primeira bola retirada for branca (restando 1 branca e 3 pretas), a probabilidade é  $\frac{1}{4}$
    - Caso a primeira bola seja preta (restando duas brancas e duas pretas), então a probabilidade é  $\frac{2}{4}$
- A probabilidade do evento B ser condicionada ao evento A é representada por P(B|A)
  - $P(X_2 = 0 | X_1 = 0) = \frac{1}{4}$
  - $P(X_2 = 0|X_1 = 1) = \frac{2}{4}$
  - O evento  $X_2$  é dependente do evento  $X_1$

### Probabilidade conjunta

 A probabilidade conjunta dos eventos A e B é expressa pela regra do produto:

$$P(B \cap A) = P(B|A)P(A)$$

• A probabilidade conjunta também pode ser representada por  $P(B \cap A) = P(B, A)$ 

### **Eventos independentes**

- Considere um experimento, o lançamento de uma moeda honesta e a observância da face virada para cima
- Para isso, considere a representação Bernoulli das seguintes ocorrências
  - $X_1=0$ : caso o resultado do lançamento seja coroa
  - ullet  $X_1=1$ : caso o resultado do lançamento seja cara
- Em um lançamento honesto, teríamos as seguintes probabilidades
  - $P(X_1=0)=\frac{1}{2}$
  - $P(X_1 = 1) = \frac{1}{2}$

#### **Eventos independentes**

- ullet Em seguida, a moeda é lançada novamente e o resultado representado por  $X_2$
- A probabilidade da ocorrência de cara no segundo lançamento também é igual a  $P(X_2=1)=\frac{1}{2}$
- Neste caso, o evento  $X_2$  é independente de  $X_1$ , e, temos a seguinte regra do produto

$$P(X_2, X_1) = P(X_2|X_1)P(X_1)$$

OH

$$P(X_2, X_1) = P(X_2)P(X_1)$$

# Sumário

### Permutabilidade

### Permutabilidade

- Propriedade da alteração no ordenamento de realizações em uma sequência de eventos sem que a probabilidade conjunta seja alterada
- Considere o lançamento de 5 moedas não viciadas, com representação semelhante à apresentada anteriormente, sendo observado o seguinte resultado (1,0,1,1,0), isto é, (cara, coroa, cara, coroa)
- Os lançamentos s\u00e3o independentes e que a probabilidade conjunta desse evento \u00e9:

$$P(1,0,1,1,0) = P(X_1 = 1) \times P(X_2 = 0) \times P(X_3 = 1) \times P(X_4 = 1) \times P(X_5 = 0) = \frac{1}{2^5}$$

• Nessa situação, caso fosse observado o evento (1,1,1,0,0), a probabilidade não seria alterada

### Permutabilidade

- A ordem da ocorrências dos resultados cara não altera a probabilidade conjunta, desde que seja a mesma quantidade de resultados de "sucesso"
- A independência de uma sequência de eventos garante a permutabilidade da mesma
- A independência não é condição necessária para a permutabilidade, apenas suficiente
  - Ainda que uma sequência não seja formada por eventos independente, é possível que sejam permutáveis
- Considere a mesma representação do exemplo da caixa com bolas apresentado anteriormente para o caso da retirada de 5 bolas sem reposição
  - Como visto, esses eventos não são independentes, pois a probabilidade de um determinado evento na sequência, depende do resultado observado nos

### Permutabilidade

- Dessa forma, vamos verificar se o evento (1,0,1,1,0) é permutável
  - Inicialmente, vamos calcular a probabilidade P(1,0,1,1,0)

$$P(1,0,1,1,0) = P(X_1=1) \times P(X_2=0|X_1=1) \times P(X_3=1|X_2=0,X_1=1) \times P(X_4=1|X_3=1,X_2=0,X_1=1) \times P(X_5=0|X_4=1,X_3=1,X_2=0,X_1=1)$$

$$P(1,0,1,1,0) = \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{10}$$

• Cálculo da propriedade P(1, 1, 1, 0, 0)

$$P(1, 1, 1, 0, 0) = P(X_1 = 1) \times P(X_2 = 1 | X_1 = 1) \times P(X_3 = 1 | X_2 = 1, X_1 = 1) \times P(X_4 = 0 | X_3 = 1, X_2 = 1, X_1 = 1) \times P(X_5 = 0 | X_4 = 0, X_3 = 1, X_2 = 1, X_1 = 1)$$

$$P(1,1,1,0,0) = \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \times \frac{2}{2} \times \frac{1}{1} = \frac{1}{10}$$

# Sumário

Teorema de Bayes

• Considerando os eventos A e B permutáveis, o termo  $P(A \cap B)$  é igual a  $P(B \cap A)$  e, dessa forma, pode ser escrita como

$$P(A \cap B) = P(B \cap A)$$

$$P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- A probabilidade P(A) é denominada probabilidade a priori
  - Informação sobre o evento A antes que se soubesse algo sobre o evento B
- Quando se tem conhecimento sobre B, a probabilidade relacionada ao evento A deve ser atualizada pela probabilidade do evento B
  - A probabilidade P(A|B) é agora denominada probabilidade a posteriori

- Sejam dois eventos A e B
  - A: atributo alvo (presença de doença)
    - Possíveis valores: presença ou ausência
  - B: atributo preditivo (resultado do exame)
    - Possíveis valores: positivo ou negativo
  - P(A): probabilidade do evento A (presença da doença) ocorrer
  - P(B): probabilidade do evento B (exame positivo) ocorrer

• Probabilidade a priori pode ser estimada pela frequência

| Paciente | Exame    | Doença   |
|----------|----------|----------|
| 001      | positivo | presente |
| 002      | negativo | presente |
| 003      | negativo | ausente  |
| 004      | positivo | presente |
| 005      | positivo | ausente  |
| 006      | positivo | presente |
| 007      | negativo | ausente  |
| 800      | negativo | presente |
| 009      | positivo | ausente  |
| 010      | positivo | presente |

- P(negativo) =?
- P(positivo) =?
- P(presente) =?
- P(ausente) = ?

• Probabilidade a priori pode ser estimada pela frequência

| Paciente | Exame    | Doença   |  |  |
|----------|----------|----------|--|--|
| 001      | positivo | presente |  |  |
| 002      | negativo | presente |  |  |
| 003      | negativo | ausente  |  |  |
| 004      | positivo | presente |  |  |
| 005      | positivo | ausente  |  |  |
| 006      | positivo | presente |  |  |
| 007      | negativo | ausente  |  |  |
| 800      | negativo | presente |  |  |
| 009      | positivo | ausente  |  |  |
| 010      | positivo | presente |  |  |

- *P*(*negativo*) = 0,4
- *P*(*positivo*) = 0,6
- *P*(*presente*) = 0,6
- *P*(*ausente*) = 0,4

- As frequências a priori são fáceis de serem estimadas
  - P(B): probabilidade do resultado do exame ser positivo
  - P(A): probabilidade do paciente estar doente (doença presente)
  - P(B|A): probabilidade do resultado do exame ser positivo dado que o paciente está doente
- A probabilidade posteriori é considerada difícil de ser estimada
  - P(A|B): probabilidade do paciente estar doente dado que seu exame deu positivo
  - O Teorema de Bayes tenta estimar esse tipo de probabilidade

 Teorema de Bayes permite o cálculo da probabilidade a posteriori de um evento

• 
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- $posteriori = \frac{\text{verosimilhança} \times priori}{\text{evidência}}$ 
  - Verosimilhança P(D|H): probabilidade de observarmos D, supondo que a hipótese H seja verdadeira
  - ullet Priori P(H): probabilidade de uma hipótese ser verdade antes da coleta dos dados
  - ullet Evidência P(D): probabilidade de observarmos esses dados sob todas as hipóteses possíveis
  - Posteriori P(H|D): probabilidade da hipótese ser verdadeira dado o conjunto de dados coletados

$$P(H|D) = \frac{P(D|H) \times P(H)}{P(D)}$$

### Sumário

- Todos os classificadores naïve Bayes (NB) assumem que o valor de uma característica particular é independente do valor de qualquer outra característica, dada a variável de classe
  - Uma fruta pode ser considerada uma laranja se a mesma for laranjada, redonda e ter diâmetro aproximadamente de 10 cm
  - O classificador NB considera que cada uma dessas características contribui independentemente para a probabilidade de que essa fruta seja uma laranja, independentemente de quaisquer correlações possíveis entre as características de cor, forma e diâmetro
- Em diversas aplicações, a estimativa de parâmetros para modelos NB utiliza o método da máxima verossimilhança

- NB é um modelo de probabilidade condicional
  - Dada uma instância de problema a ser classificada, representada por um vetor x representando n características independentes
    - A seguinte instância de probabilidades é atribuída:

$$p(C_k|x_1,...,x_n)$$

 Com o teorema de Bayes, a probabilidade condicional pode ser decomposta na seguinte equação

$$p(C_k|x) = \frac{p(C_k)p(x|C_k)}{p(x)}$$

O numerador é equivalente ao modelo de probabilidade conjunta

$$p(C_k|x_1,...,x_n)$$

 Uso da regra da cadeia para aplicações repetidas da definição de probabilidade condicional

$$p(C_k|x_1,...,x_n) = p(x_1,...,x_n, C_k) = p(x_1|x_2...,x_n, C_k)p(x_2,...,x_n, C_k) = p(x_1|x_2...,x_n, C_k)p(x_2|x_3...,x_n, C_k)p(x_3...,x_n, C_k) = ... = p(x_1,...,x_n, C_k)p(x_2|x_3...,x_n, C_k)...p(x_{n-1}|x_n...,x_n, C_k)p(C_k)$$

- As suposições de independência condicional "naïves" (ingênuas) são consideradas
  - Suponha que todas as características x não mutualmente independentes, condicionais à classe  $C_k$

$$p(C_k \mid x_1, \dots, x_n) \propto p(C_k, x_1, \dots, x_n)$$
 $\propto p(C_k) p(x_1 \mid C_k) p(x_2 \mid C_k) p(x_3 \mid C_k) \cdots$ 
 $\propto p(C_k) \prod_{i=1}^n p(x_i \mid C_k),$ 

$$P(B \mid A_1, ..., A_n) = \frac{P(B) \cdot \prod_{i=1}^{n} P(A_i \mid B)}{\prod_{i=1}^{n} P(A_i)}$$

$$\hat{y} = rgmax_{k \in \{1,\ldots,K\}} p(C_k) \prod_{i=1}^n p(x_i \mid C_k).$$

- Naïve Bayes é um algoritmo que utiliza o Teorema de Bayes com a hipótese de independência de atributos
- Por que estimar independência entre atributos  $A_1, ..., A_n$ ?
  - Estimar probabilidades conjuntas  $P(A_1, A_2, ..., A_n)$  e  $P(A_1, A_2, ..., A_n|B)$  demandaria uma quantidade mínima de exemplos de cada combinação possível de valores de  $A_1, ..., A_n$
  - Impraticável, especialmente para quantidades elevadas de atributos!
- Apesar da hipótese ser quase sempre violada, o método (Naïve Bayes) se mostra bastante competitivo na prática

| Outlo    | Outlook (A <sub>1</sub> ) |     | Temperature (A <sub>2</sub> ) |     |     | Humidity (A <sub>3</sub> ) |     | Windy (A <sub>4</sub> ) |       |     | Play (B) |      |      |
|----------|---------------------------|-----|-------------------------------|-----|-----|----------------------------|-----|-------------------------|-------|-----|----------|------|------|
|          | Yes                       | No  |                               | Yes | No  |                            | Yes | No                      |       | Yes | No       | Yes  | No   |
| Sunny    | 2                         | 3   | Hot                           | 2   | 2   | High                       | 3   | 4                       | False | 6   | 2        | 9    | 5    |
| Overcast | 4                         | 0   | Mild                          | 4   | 2   | Normal                     | 6   | 1                       | True  | 3   | 3        |      |      |
| Rainy    | 3                         | 2   | Cool                          | 3   | 1   |                            |     |                         |       |     |          |      |      |
| Sunny    | 2/9                       | 3/5 | Hot                           | 2/9 | 2/5 | High                       | 3/9 | 4/5                     | False | 6/9 | 2/5      | 9/14 | 5/14 |
| Overcast | 4/9                       | 0/5 | Mild                          | 4/9 | 2/5 | Normal                     | 6/9 | 1/5                     | True  | 3/9 | 3/5      |      |      |
| Dainy    | 3/0                       | 2/5 | Cool                          | 3/0 | 1/5 |                            |     |                         |       |     |          | 1    |      |

| $P(B \mid A_1,, A_n) =$      | $P(B) \cdot \prod_{i=1}^{n} P(A_i \mid B)$ |
|------------------------------|--------------------------------------------|
| $\Gamma(D \mid A_1,, A_n) =$ | $\prod_{i=1}^{n} P(A_i)$                   |

| Outlook  | Temp | Humidity | Windy | Play |
|----------|------|----------|-------|------|
| Sunny    | Hot  | High     | False | No   |
| Sunny    | Hot  | High     | True  | No   |
| Overcast | Hot  | High     | False | Yes  |
| Rainy    | Mild | High     | False | Yes  |
| Rainy    | Cool | Normal   | False | Yes  |
| Rainy    | Cool | Normal   | True  | No   |
| Overcast | Cool | Normal   | True  | Yes  |
| Sunny    | Mild | High     | False | No   |
| Sunny    | Cool | Normal   | False | Yes  |
| Rainy    | Mild | Normal   | False | Yes  |
| Sunny    | Mild | Normal   | True  | Yes  |
| Overcast | Mild | High     | True  | Yes  |
| Overcast | Hot  | Normal   | False | Yes  |
| Rainy    | Mild | High     | True  | No   |

| Outlook (A <sub>1</sub> ) |     | Temperature (A <sub>2</sub> ) |      |     | Humidity (A <sub>3</sub> ) |        |     | Windy (A <sub>4</sub> ) |       |     | Play (B) |      |      |
|---------------------------|-----|-------------------------------|------|-----|----------------------------|--------|-----|-------------------------|-------|-----|----------|------|------|
|                           | Yes | No                            |      | Yes | No                         |        | Yes | No                      |       | Yes | No       | Yes  | No   |
| Sunny                     | 2   | 3                             | Hot  | 2   | 2                          | High   | 3   | 4                       | False | 6   | 2        | 9    | 5    |
| Overcast                  | 4   | 0                             | Mild | 4   | 2                          | Normal | 6   | 1                       | True  | 3   | 3        |      |      |
| Rainy                     | 3   | 2                             | Cool | 3   | 1                          |        |     |                         |       |     |          |      |      |
| Sunny                     | 2/9 | 3/5                           | Hot  | 2/9 | 2/5                        | High   | 3/9 | 4/5                     | False | 6/9 | 2/5      | 9/14 | 5/14 |
| Overcast                  | 4/9 | 0/5                           | Mild | 4/9 | 2/5                        | Normal | 6/9 | 1/5                     | True  | 3/9 | 3/5      |      |      |
| Rainy                     | 3/9 | 2/5                           | Cool | 3/9 | 1/5                        |        |     |                         |       |     |          |      |      |

| Outlook | Temp. | Humidity | Windy | Play |  |  |  |  |  |
|---------|-------|----------|-------|------|--|--|--|--|--|
| Sunny   | Cool  | High     | True  | ???  |  |  |  |  |  |
|         |       |          |       |      |  |  |  |  |  |

 $P(\text{Yes}|\text{Sunny, Cool, High, True}) = (2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ P(\text{No}|\text{Sunny, Cool, High, True}) = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High, True}) \\ = (3/5 \times 1/5 \times 3/5 \times 5/14) \ / \ P(\text{Sunny, Cool, High,$ 

P(Yes|Sunny, Cool, High, True) = 0.0053 / P(Sunny, Cool, High, True)
P(No|Sunny, Cool, High, True) = 0.0206 / P(Sunny, Cool, High, True)



Play = No

$$\hat{y} = rgmax_{k \in \{1,\ldots,K\}} p(C_k) \prod_{i=1}^n p(x_i \mid C_k).$$

#### Problema da frequência zero

- O que acontece se um determinado valor de atributo n\u00e3o aparece na base de treinamento, mas aparece no exemplo de teste?
  - Por exemplo: "Outlook = Overcast" para classe "No"
    - Probabilidade correspondente será zero: P(Overcast|No) = 0
    - Probabilidade a posteriori será também zero: P(No|Overcast,...)
  - Não importa as probabilidades referentes aos demais atributos
  - Muito radical, especialmente considerando que a base de treinamento pode não ser totalmente representativa
    - Classes minoritárias com instâncias raras

#### Problema da frequência zero

- Uma solução:
  - Adicionar unidades fictícias para cada combinação de valor-classe (estimador de Laplace)
    - Probabilidades zero não existirão
    - Exemplo:  $sunny = \frac{3+1}{5+3}$ ,  $overcast = \frac{0+1}{5+3}$  e  $rainy = \frac{2+1}{5+3}$
  - Obs.: a inclusão de uma unidade fictícia deve ser adicionada para todas as classes para evitar viés nas probabilidades de apenas uma classe

### Problema da frequência zero

- Solução mais geral (Estimativa m):
  - Adição de múltiplas unidades fictícias para cada combinação de valor-classe
  - Exemplo  $sunny = \frac{3+\frac{m}{3}}{5+m}, \ overcast = \frac{0+\frac{m}{3}}{5+m} \ e \ rainy = \frac{2+\frac{m}{3}}{5+m}$
- Solução ainda mais geral: substituir o termo  $\frac{1}{n}$  no numerador (onde n é quantidade de valores do atributo) por uma probabilidade p qualquer

#### Valores ausentes

- Exclusão de exemplos com valores ausentes do conjunto de treinamento
- Ou considerar apenas os atributos sem valores ausentes

|                                                                              | Outlook              | Temp.            | Humidity           | Windy    | Play |  |  |  |  |
|------------------------------------------------------------------------------|----------------------|------------------|--------------------|----------|------|--|--|--|--|
|                                                                              | ?                    | Cool             | High               | True     | ???  |  |  |  |  |
| Verossimilhança para "Yes                                                    | $s'' = 3/9 \times 3$ | $3/9 \times 3/9$ | $\times$ 9/14 = 0. | 0238     |      |  |  |  |  |
| Verossimilhança para "No" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$ |                      |                  |                    |          |      |  |  |  |  |
| Probabilidade Estimada ("Yes") = 0.0238 / (0.0238 + 0.0343) = 41%            |                      |                  |                    |          |      |  |  |  |  |
| Probabilidade Estimada (                                                     | No'') = 0.03         | 343 / (0.0       | 238 + 0.03         | 43) = 59 | %    |  |  |  |  |

#### Atributos numéricos

- Alternativa 1: discretização
- Alternativa 2: assumir ou estimar alguma função de densidade de probabilidade para estimar as probabilidades
  - Distribuição Gaussiana (normal)

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Exemplo

| Outlook  |     | Temperature |                | Humid          | Windy           |                |       | Play |     |      |      |
|----------|-----|-------------|----------------|----------------|-----------------|----------------|-------|------|-----|------|------|
|          | Yes | No          | Yes            | No             | Yes             | No             |       | Yes  | No  | Yes  | No   |
| Sunny    | 2   | 3           | 64, 68,        | 65, 71,        | 65, 70,         | 70, 85,        | False | 6    | 2   | 9    | 5    |
| Overcast | 4   | 0           | 69, 70,        | 72, 80,        | 70, 75,         | 90, 91,        | True  | 3    | 3   |      |      |
| Rainy    | 3   | 2           | 72,            | 85,            | 80,             | 95,            |       |      |     |      |      |
| Sunny    | 2/9 | 3/5         | μ =73          | μ =75          | μ =79           | μ =86          | False | 6/9  | 2/5 | 9/14 | 5/14 |
| Overcast | 4/9 | 0/5         | $\sigma = 6.2$ | $\sigma = 7.9$ | $\sigma = 10.2$ | $\sigma = 9.7$ | True  | 3/9  | 3/5 |      |      |
| Rainy    | 3/9 | 2/5         |                |                |                 |                |       |      |     |      |      |

$$p(temperature|66, yes) = \frac{1}{\sqrt{2\pi6, 2^2}} \exp\left(-\frac{(66-73)^2}{26, 2^2}\right) = 0,0340$$

#### Atributos numéricos

- A distribuição binomial com parâmetros n e p, denotada B(n,p) é a distribuição de probabilidade discreta do número de sucessos em uma sequência de n experimentos independentes
  - Se n for grande o suficiente, então a assimetria da distribuição não é muito grande
  - Uma aproximação razoável é dada pela distribuição normal







#### Atributos numéricos



- Características do classificador Naïve Bayes
  - Robusto a ruídos e atributos irrelevantes
  - Capaz de classificar instâncias com valores ausentes
  - Assume que atributos são igualmente importantes
  - Desempenho pode ser afetado pela presença de atributos correlacionados

### Referências I

BISHOP, C. M.

Pattern Recognition and Machine Learning. Springer, 2006.

DE CARVALHO, A. P. L. F.

Métodos probabilísticos. Aprendizado de Máquina.

*Slides.* Ciência de Computação e Matemática Computacional. ICMC/USP, 2015.

CASANOVA, D.

Naïve Bayes. Aprendizado de Máquina.

Slides. Engenharia de Computação. Dainf/UTFPR, 2020.

DUDA, Richard O.; HART, Peter E.; STORK, David G. Pattern classification.

2nd ed. New York, NY: J. Wiley & Sons, 2001.

### Referências II



RASCHKA, S.; MIRJALILI, V. *Python Machine Learning*. *Packt*, 2017.