

PH451, PH551 February 6, 2025

Announcements

- Hands-on #3/Reading HW #2
 - due next Tue
 - Textbook: Chapter 6
- Quiz
 - Feb 13
- Mini-hackathon #1 next week
 - Feb 10-21

Outline

- Ensembles
- Bagging
- Random Forests
- Boosting

ML Methods (partial list)

- Fisher, Quadratic
- Naïve Bayes (Likelihood)
- Kernel Density Estimation
- Random Grid Search
- Rule ensembles
- Boosted decision trees
- Random forests
- Deep learning neural networks
- Support vector machines
- Genetic algorithms

Decision Trees (recap)

- Each internal node: test one attribute X_i
- Each branch: selects one value for X_i
- Each leaf node: predict Y

Yes

No

Yes

02/6/2025 Sergei Gleyzer PH451/PH551 Lecture 5

No

Decision Trees

- Classic ML tool for
 - decision trees
 - rules
 - boosted classifiers
- Written by J.R. Quinlan
 - Name: ID3 \rightarrow C4.5 \rightarrow C5.0
 - Use c5.0 to familiarize with decision tree classifiers

Pruning

Decision trees can become large and complex and risk over-fitting the data

Pruning: remove parts of the tree that are less powerful or possibly noisy

start from the leaves and work back up

Pruned trees smaller in size, easier to interpret

Ensemble Methods

Ensemble Methods

Suppose you have a **collection** of discriminants $f(x, w_k)$, which, individually, perform only marginally better than random guessing.

$$f(x) = a_0 + \sum_{k=1}^{K} a_k f(x, w_k)$$

From such discriminants, weak learners, it is possible to build highly effective ones by averaging over them:

Jerome Friedman & Bogdan Popescu (2008)

Ensemble Methods

Bagging (bootstrap aggregation)

 Each tree trained on bootstrap sample drawn from training set

Random Forest

- Bagging with randomized trees
- Random subsets of features used at each split

Boosting

 Each tree trained on a different weighting of full training set. Usually used with decision trees but is more general

Random Forest

Random Forest

- L. Breinman, 2001
- Bagging plus:
 - Random subset of features for splitting at each node
- Benefits:
 - excellent accuracy, avoids over-fitting

Boosting

Turns weak learners to strong learners with weighted ensemble of iterative learners

- Adaptation
- Many boosting algorithms
 - differ in how to weight instances
- Benefits: excellent accuracy
- R. Shapire, 1990

Adaptive Boosting

Adaptive Boosting

Train in stages

- Adaptive weights
 - ADABoost: Freund & Schapire 1997
- Misclassified events get a larger weight going into the next training stage
 - Classify with a majority vote from all trees
- Works very well to improve classification power of "greedy" decision trees

Adaptive Boosting

Repeat K times:

- 1. Create a decision tree f(x, w)
- 2. Compute its error rate ε on the weighted training set
- 3. Compute $\alpha = \ln (1 \epsilon) / \epsilon$
- 4. Modify training set: *increase weight* of *incorrectly classified examples* relative to the weights of those that are correctly classified

Then compute weighted average

$$f(x) = \sum \alpha_k f(x, w_k)$$

Y. Freund and R.E. Schapire (1997)

Illustrative Example

H → ZZ* → 4 leptons

 $pp \otimes H \otimes ZZ \otimes \ell^+\ell^-\ell\ell^+\ell\ell^-$

Background Z/γ^* Z/γ^* Z/γ^* Z/γ^*

 $pp \otimes ZZ \otimes \ell^+\ell^-\ell\ell^+\ell\ell^-$

 $x = (m_{z1}, m_{z2})$

Credit: H. Prosper

First 6 Decision Trees

First 100 Decision Trees

Averaging over a Forest

H to ZZ to 4Leptons

Build an Ensemble

