Đại số Tuyến tính Chương 6: Giá trị riêng & Vectơ riêng

Quan Nguyen

International University, VNU-HCM quannguyenuw@gmail.com

Tháng 6, 2021

Mục lục

Giá trị riêng - Vectơ riêng

Chéo hoá ma trận

Chéo hoá trực giao ma trận

6.1: Giá trị riêng - Vectơ riêng

Định nghĩa 6.1.1 (giá trị riêng - vectơ riêng)

Xét ma trận vuông n \times n A, hằng số $\lambda \in \mathbb{R}$ và vecto $x \in \mathbb{R}^n \setminus \{0\}$.

- a) Nếu $|\lambda I_n A| = 0$ (1) thì λ được gọi là một giá trị riêng của A.
- b) Nếu $(\lambda I_n A)x = 0$ thì x được gọi là một vectơ riêng của A ứng với λ .
- (1) được gọi là phương trình đặc trưng của ma trận A.

Định lí 6.1.1 (không gian riêng)

Xét ma trận vuông nimesn A với giá trị riêng λ . Khi đó tập hợp

$$\mathsf{B} = \{ \mathsf{x} \in \mathbb{R}^n : (\lambda \mathsf{I}_n - \mathsf{A}) \mathsf{x} = 0 \}$$

là một không gian con của \mathbb{R}^n , gọi là không gian riêng ứng với λ .

6.1: Giá trị riêng - Vectơ riêng

Ví dụ 6.1.1

Xét ma trận A =
$$\begin{pmatrix} 2 & -12 \\ 1 & -5 \end{pmatrix}$$
 có phương trình đặc trưng

$$|\lambda I_2 - A| = \lambda^2 + 3\lambda + 2 = 0 \Rightarrow$$
 giá trị riêng : $\lambda_1 = -1, \lambda_2 = -2$.

Với
$$\lambda_1 = -1: \begin{pmatrix} -3 & 12 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow a = 4b: \text{ chọn vector riêng } \begin{pmatrix} 4 \\ 1 \end{pmatrix}.$$

Với
$$\lambda_2 = -2: \begin{pmatrix} -4 & 12 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow a = 3b: \text{ chọn vector riêng } \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$

Định lí 6.1.2 (giá trị riêng của ma trận tam giác)

Tập hợp các giá trị riêng của một ma trận tam giác A chính là tập hợp các phần tử trên đường chéo chính của A.

6.2: Chéo hoá ma trận

Định nghĩa 6.2.1 (ma trận đồng dạng)

Hai ma trận vuông A, B được gọi là đồng dạng với nhau nếu tồn tại ma trận khả nghịch P thoả mãn $B = P^{-1}AP$.

Dinh lí 6.2.1

Hai ma trận đồng dạng cùng kích thước thì có cùng tập giá trị riêng.

Định nghĩa 6.2.2 (ma trận chéo hoá được)

Ma trận vuông A được gọi là ma trận chéo hoá được nếu tồn tại ma trận khả nghịch P thoả mãn $P^{-1}AP$ là ma trận chéo.

Nói cách khác, một ma trận là chéo hoá được khi và chỉ khi nó đồng dạng với một ma trận chéo.

Định lí 6.2.2 (điều kiện để ma trận là chéo hoá được)

Với ma trận vuông n \times n A, các mệnh đề sau tương đương:

- a) A là ma trận chéo hoá được;
- b) A có n vectơ riêng độc lập tuyến tính với nhau.

Định lí 6.2.3 (điều kiện đủ để ma trận là chéo hoá được)

Nếu ma trận $n \times n$ A có n giá trị riêng phân biệt thì A chéo hoá được.

Định lí 6.2.4 (quy trình chéo hoá ma trận)

Xét ma trận vuông n \times n A có n vectơ riêng $p_1,...,p_n$ độc lập tuyến tính với nhau, tương ứng với các giá trị riêng $\lambda_1,...,\lambda_n$. Khi đó ma trận

$$P = (p_1, ..., p_n) \text{ khả nghịch và } P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & ... & 0 \\ 0 & \lambda_2 & ... & 0 \\ ... & ... & ... & ... \\ 0 & 0 & ... & \lambda_n \end{pmatrix}.$$

6.2: Chéo hoá ma trận

Ví du 6.2.1

Với ma trận A =
$$\begin{pmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{pmatrix}$$
, $\lambda_1=2, \lambda_2=-2, \lambda_3=3$ và

$$P = (p_1, p_2, p_3) = \begin{pmatrix} -1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 4 & 1 \end{pmatrix}, P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Ví du 6.2.2

Với ma trận
$$\mathsf{B} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \lambda = 1$$
 và $\mathsf{p} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$

Theo Định lí 6.2.2, ma trận B không chéo hoá được.

6.3: Chéo hoá trực giao ma trận

Định nghĩa 6.3.1 (ma trận trực giao)

Ma trận vuông P được gọi là trực giao nếu P khả nghịch và $P^{-1} = P^{T}$.

Định nghĩa 6.3.2 (ma trận chéo hoá trực giao được)

Ma trận vuông A được gọi là ma trận chéo hoá trực giao được nếu tồn tại ma trận trực giao P thoả mãn $P^{-1}AP$ là ma trận chéo.

Định lí 6.3.1 (điều kiện để ma trận là chéo hoá trực giao được)

Với ma trận vuông n \times n A, các mệnh đề sau tương đương:

- a) A là ma trận chéo hoá trực giao được;
- b) A là ma trận đối xứng, hay $A = A^{T}$.

Quy trình chéo hoá trực giao ma trận

Xét ma trận đối xứng nimesn A. Quy trình chéo hoá trực giao A như sau:

- Tìm các giá trị riêng và vectơ riêng tương ứng $p_1,...,p_n$ của A;
- f 2 Áp dụng chu trình Gram Schmidt cho $p_1,...,p_n$ thu được $q_1,...,q_n$;
- \bullet Khi đó ma trận $P = (q_1, ..., q_n)$ trực giao và $P^{-1}AP$ là ma trận chéo.

Ví dụ 6.3.1

Với ma trận

$$\mathsf{A} = \begin{pmatrix} 2 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 4 & -1 \end{pmatrix}, \mathsf{p}_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \mathsf{p}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \mathsf{p}_3 = \begin{pmatrix} -2 \\ 4 \\ 5 \end{pmatrix} \mathsf{v\grave{a}}$$

$$\mathsf{P} = \begin{pmatrix} 1/3 & 2/\sqrt{5} & -2\sqrt{5}/15 \\ -2/3 & 1/\sqrt{5} & 4\sqrt{5}/15 \\ 2/3 & 0 & 5\sqrt{5}/15 \end{pmatrix}, \mathsf{P}^{-1}\mathsf{AP} = \begin{pmatrix} -6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$