

This is to certify that
Mr. BHALANI PARTH L.
Of Mechanical Engineering,
Enrollment no: - 136490319505
Has satisfactorily completed his term work in
Project –II (3361910)
For the term ending in April- 2016

Date Student

Date Batch Teacher

Date Head of Department

Date Principal

# **INDEX**

| CD NO   | CONTENT                                                              | PAGE N | J <b>MBER</b> |
|---------|----------------------------------------------------------------------|--------|---------------|
| SR. NO. | CONTENT                                                              | FROM   | TO            |
| 1       | Preface/Acknowledgement.                                             | 03     | 03            |
| 2       | Course outcomes                                                      | 03     | 03            |
| 3       | Project title                                                        | 03     | 03            |
| 4       | Assembly and detail production drawings.                             | 04     | 09            |
| 5       | List of activities and work allocation matrix.                       | 10     | 12            |
| 6       | Plant layout with dimensions.                                        | 13     | 13            |
| 7       | List and specifications of machineries, equipment and tools.         | 14     | 16            |
| 8       | Bill of material with make or buy decision.                          | 17     | 17            |
| 9       | Specifications of bought out parts.                                  | 17     | 17            |
| 10      | Process sheets-as per format given in course industrial engineering. | 18     | 18            |
| 11      | Flow process charts.                                                 | 19     | 20            |
| 12      | Specification and consumption of consumables.                        | 21     | 21            |
| 13      | Details of inspection / testing carried out.                         | 21     | 21            |
| 14      | Cost estimation.                                                     | 21     | 21            |
| 15      | Notes on troubleshooting.                                            | 22     | 22            |
| 16      | Notes on individual achevement of skills / experience.               | 22     | 22            |
| 17      | References.                                                          | 23     | 23            |
| 18      | Presentation including moments at work-video/photographs in action.  | 23     | 24            |

#### 1. PREFACE/ACKNOWLEDGEMENT.

BOX SHIFTING/CONVEYOR MECHANISM is project about material handling.

The objective of our project is to produce a mechanism that delivers this stop and move motion using mechanical linkages. The advantage of our system over the conveyor system is that the system has a time delay between moving packages and this delay can be used to introduce any alterations in the package or move the package for any other purpose and likewise.

And Special thanks to **V.B.RATHOD SIR** for guidelines.

#### 2. COURSE OUTCOMES.

- i. Plan and identify materials, processes and other resources optimally.
- ii. Develop innovative and creative ideas.
- iii. Develop leadership, interpersonal skill and team work.
- iv. Develop sense of environmental responsibility.
- v. Purchase raw material/standard parts.
- vi. Interpret the drawings, manufacture, assemble, inspect & if necessary modify the parts/unit/assembly of the project work.
- vii. Familiar with fast changes in technology.

#### 3. PROJEC T TITLE.

### 4. ASSEMBLY AND DETAIL PRODUCTIONDRAWINGS.













Frame



### **5. LIST OF ACTIVITIES AND WORK ALLOCATION MATRIX:**

| TY NO.       | SHORT DESCRIPTION OF                                                                                                                                                                                                                                    | WHO<br>WILL              | PLANNE<br>D<br>DATES |           | ACTUAL<br>DATES |           | WHO<br>HAS/HA            | REAS<br>ON/S<br>FOR<br>ANY<br>DELA<br>Y/DEV | INITI<br>AL<br>OF |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------|-----------------|-----------|--------------------------|---------------------------------------------|-------------------|
| ACTIVITY NO. | ACTIVITY                                                                                                                                                                                                                                                | PERFO<br>RM?             | STARTING             | ENDING    | STARTING        | ENDING    | VE<br>PERFOR<br>MED?     | IATIO<br>N<br>FROM<br>PLAN<br>NIG           | TEA<br>CHE<br>R   |
| 1            | Preparing and maintaining logbook as per Annexure-v.                                                                                                                                                                                                    | YUVRA<br>JSINH           |                      |           |                 |           |                          |                                             |                   |
| 2            | Finalization of assembly and detail drawings (this must be production drawings with suitable scale along with dimensions, tolerances, surface roughness symbols, heat treatment / other treatments, quantity per assembly for components drawings, etc. | RUTVIK<br>,TEJAS         | 05/<br>01            | 19/<br>01 | 05/<br>01       | 15/<br>01 | RUTVIK,<br>TEJAS         |                                             |                   |
| 3            | Preparing master schedule and work allocation matrix in group.                                                                                                                                                                                          | PARTH                    | 05/<br>01            | 22/<br>01 | 05/<br>01       | 26/<br>01 | PARTH                    |                                             |                   |
| 4            | Preparation of bill of material.                                                                                                                                                                                                                        | VIVEK                    | 05/<br>01            | 22/<br>01 | 05/<br>01       | 19/<br>01 | VIVEK                    |                                             |                   |
| 5            | Collecting data and specifications of available resources-mainly material and machineries / equipment/facilities and tools.                                                                                                                             | VIVEK,Y<br>UVRAJ<br>SINH | 15/<br>01            | 22/<br>01 | 15/<br>01       | 22/<br>01 | VIVEK,Y<br>UVRAJS<br>INH |                                             |                   |
| 6            | Make or buy decision.                                                                                                                                                                                                                                   | ALL                      | 29/<br>01            | 02/<br>02 | 29/<br>02       | 02/<br>02 | ALL                      |                                             |                   |

| 7  | Preparing specification of                                                                                                                                               |                                    |            |           |           |           |                                    |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------|-----------|-----------|-----------|------------------------------------|--|
|    | bought-out parts.                                                                                                                                                        | PARTH                              | 02/<br>02  | 09/<br>02 | 02/<br>02 | 09/<br>02 | PARTH                              |  |
| 8  | Preparation of process planning (sheets) for all components in standards format                                                                                          | PARTH,<br>VIVEK,Y<br>UVRAJSI<br>NH | 02/<br>02  | 09/<br>02 | 02/<br>02 | 09/<br>02 | PARTH,V<br>IVEK,YU<br>VRAJSIN<br>H |  |
| 9  | List, quantities and specifications of consumables.                                                                                                                      | RUTVIK,<br>TEJAS                   | 02/<br>02  | 09/<br>02 | 02/<br>02 | 09/<br>02 | RUTVIK,<br>TEJAS                   |  |
| 10 | Preparation of list of required tools-cutting tools, jigs, fixtures, measuring instruments and other tools along with necessary specifications and sketches if required. | ALL                                | 12/<br>02  | 19/<br>02 | 12/<br>02 | 19/<br>02 | ALL                                |  |
| 11 | Identifying and locating required resources like material, machineries / equipment / facilities and tools.                                                               | TEJAS,<br>YUVRAJ<br>SINH           | 19/<br>02  | 26/<br>02 | 19/<br>02 | 26/<br>02 | TEJAS,<br>YUVRAJ<br>SINH           |  |
| 12 | Preparing plant layout.                                                                                                                                                  | PARTH                              | 22/<br>02  | 26/<br>02 | 22/<br>02 | 26/<br>02 | PARTH                              |  |
| 13 | Manufacturing of components.                                                                                                                                             |                                    |            |           |           |           |                                    |  |
|    | a) Table                                                                                                                                                                 | ALL                                | 27/<br>02  | 02/<br>03 | 27/<br>02 | 02/<br>03 | ALL                                |  |
|    | b) Frame                                                                                                                                                                 | RUTVIK,<br>YUVRAJ<br>SINH          | 02/<br>03  | 08/<br>03 | 02/<br>03 | 08/<br>03 | RUTVIK,<br>YUVRAJ<br>SINH          |  |
|    | c) Links                                                                                                                                                                 | TEJAS,V<br>IVEK                    | 02/<br>03  | 08/<br>03 | 02/<br>03 | 08/<br>03 | TEJAS,VI<br>VEK                    |  |
| 14 | Details of inspection carried out.                                                                                                                                       | PARTH                              | 058<br>/03 | 29/<br>03 | 08/<br>03 | 29/<br>03 | PARTH                              |  |
| 15 | Assembly.                                                                                                                                                                | ALL                                | 01/<br>04  | 08/<br>04 | 01/<br>04 | 08/<br>04 | ALL                                |  |

| 16 | Details of testing carried out.                                                                                                                                                                      | ALL                        | 08/<br>04 |           | 08/<br>04 | 08/<br>04 | ALL                        |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|-----------|-----------|-----------|----------------------------|--|
| 17 | Rework / rectification activities if required.                                                                                                                                                       | ALL                        | 08/<br>04 | 19/<br>04 | 08/<br>04 | 19/<br>04 | ALL                        |  |
| 18 | Project monitoring and control, record keeping.                                                                                                                                                      | TEJAS,R<br>UTVIK,VI<br>VEK | 05/<br>04 | 19/<br>04 | 05/<br>04 | 19/<br>04 | TEJAS,R<br>UTVIK,VI<br>VEK |  |
| 19 | Costing.                                                                                                                                                                                             | YUVRAJ<br>SINH             | 19/<br>04 | 20/<br>04 | 19/<br>04 | 20/<br>04 | YUVRAJ<br>SINH             |  |
| 20 | Preparation of notes on troubleshooting.                                                                                                                                                             | PARTH                      | 08/<br>04 | 19/<br>04 | 08/<br>04 | 19/<br>04 | PARTH                      |  |
| 21 | Preparation of notes individually on :- a. Extent to which he has achieved learning outcomes. b. Own experience in executing project. c. He has faced technical problems during and solutions found. |                            |           |           |           |           |                            |  |
| 22 | Preparation of list of references.                                                                                                                                                                   | ALL                        | 19/<br>04 | 21/<br>04 | 19/<br>04 | 21/<br>04 | ALL                        |  |
| 23 | Preparation of project report.                                                                                                                                                                       | ALL                        | 18/<br>04 | 19/<br>04 | 22/<br>04 | 25/<br>04 | ALL                        |  |
| 24 | Presentation.                                                                                                                                                                                        | ALL                        | 22/<br>04 |           |           |           | ALL                        |  |

#### **6.PLAN LAYOUT :-**



# PLANT LAYOUT

# 7.LIST AND SPECIFICATIONS OF MACHINERIES, EQUIPMENT ANDTOOLS.

#### **MACHINERIES:-**

#### 1. Lathe:-

- Type of lathe:- Engine lathe
- Distance between center:-600mm
- Height of center:-190mm
- Swing over bed:- 390mm
- Swing over cross slide:-200mm
- No of speed range:-8/45 938 rpm
- No of thread range:-36/4 60 TPI
- No of feed range:-72/0.2 6 min/rev

#### 2. **Drilling machine:**

- Drilling capacity:-40mm
- Spindle nose:-MT\_4
- Spindle travel:-215mm
- Distance between center of spindle to column:-305mm
- Number of spindle speeds:-8
- Spindle speed range:-75 to2070 rpm
- Column diameter:-130mm
- Drilling motor:-1 hp

#### **TOOLS:-**

### 5. Single point cutting tool:-

a. Material:-HSS

### 6. Drill bits:-

- a. HSS twist drill shank:
  - **i.** 6mm
  - ii. 3mm
  - **iii.** 15mm

#### 7. Rough file:-

- a. Length:-250mm
- b. Width:-5mm
- c. Height:-30mm

### 8. Cutter:-

- a. Max dia:-200mm
- b. Thickness:-3mm
- c. No of tooth:-48
- d. Material:-HCS

- **EQUIPMENTS:-**
  - 1) Spanners:-
  - 2) <u>Pliers:-</u>
  - 3) Hammer:-
  - 4) **Scale:-**
    - We use 30 cm long scale
  - 5) <u>Vise:-</u>
    - a) Bench vice
    - b) Width:-150mm
    - c) Max span:-120mm
    - d) Total length:-450mm
    - e) Length of handle:-250mm

#### **8.BILL OF MATERIAL WITH MAKE OR BUY DECISION.**

| PART<br>NUMBER | DESCRIPTION | QUANTIT<br>Y/PROJE<br>CT | RAW<br>MATERIAL | SIZE                 | MAKE<br>OR<br>BUY | REM<br>ARK |
|----------------|-------------|--------------------------|-----------------|----------------------|-------------------|------------|
| 1              | TABLE       | 1                        | WOOD            | LENGTH=3<br>HIEGHT=2 | MAKE              |            |
| 2              | BATTERY     | 1                        |                 |                      | BUY               |            |
| 3              | MOTOR       | 1                        | ALLUMNIUM       |                      | BUY               |            |
| 4              | LINKS       | 8                        | M.S             | VARIOUS              | MAKE              |            |
| 5              | FRAME       | 1                        | WOOD            | LENGTH=2             | MAKE              |            |
| 6              | SCREW       | 24                       | M.S             | DIA=10               | BUY               |            |
| 7              | NUT         | 24                       | M.S             | DIA=10               | BUY               |            |
| 8              | WASHER      | 24                       | M.S             | DIA=10               | BUY               |            |
| 9              | WIRES       | 2                        | COPPER          | LENGTH=1             | BUY               |            |

#### 9.SPECIFICATIONS OF BOUGHT OUT PARTS.

| PART<br>NUMBER | DESCRIPTION | SPECIFICATION             |
|----------------|-------------|---------------------------|
| 1              | BATTERY     | 5 to 20 volts             |
| 2              | MOTOR       | 54 to 60 RPM              |
| 3              | SCREW       | M10                       |
| 4              | NUT         | F=16, G= 17.7, H=8.4      |
| 5              | WASHER      | ID=10.5mm , OD=21, T=1.25 |
| 6              | WIRE        | COPPER , L=2m             |

# 10. PROCESS SHEETS-AS PER FORMAT GIVEN IN COURSE INDUSTRIAL ENGINEERING: -

NAME OF COMPONENT :- TABLE, FRAME

MATERIAL :- WOOD

QUANTITY / BATCH :- 1

|           |                                 |                |                      | CUTTING              | SET<br>TIN                | OPER               |               |              |
|-----------|---------------------------------|----------------|----------------------|----------------------|---------------------------|--------------------|---------------|--------------|
| OP.<br>NO | DETAILS OF<br>OPERATION         | MACHINE        | CUTTIN<br>G<br>TOOLS | CUTTIN<br>G<br>SPEED | FEED                      | DEPTH<br>OF<br>CUT | G<br>TIM<br>E | TION<br>TIME |
| -         |                                 | USED RPM/NO OF |                      | STROKE               | (MM/RE<br>V OR<br>MM/MIN) | (MM)               | MIN           | MIN          |
| 1         | Cutting<br>( As per<br>drawing) | Hexo m/c       | Hexo<br>cutter       |                      |                           |                    |               |              |
| 2         | Drilling<br>(As per drawing)    |                |                      |                      |                           |                    |               |              |

NAME OF COMPONENT :- LINK

MATERIAL :- ALLUMINIUM

QUANTITY / BATCH :- 1

|           |                             |                        |                      | CUTTING                      | ETERS                     | SET<br>TIN         | OPER          |              |
|-----------|-----------------------------|------------------------|----------------------|------------------------------|---------------------------|--------------------|---------------|--------------|
| OP.<br>NO | DETAILS OF<br>OPERATION     | MACHINE                | CUTTIN<br>G<br>TOOLS | CUTTIN<br>G<br>SPEED         | FEED                      | DEPTH<br>OF<br>CUT | G<br>TIM<br>E | TION<br>TIME |
| •         |                             |                        | USED                 | RPM/NO.<br>OF<br>STROKE<br>S | (MM/RE<br>V OR<br>MM/MIN) | (MM)               | MIN           | MIN          |
| 1         | Cutting<br>(As per drawing) | Hexo m/c               | Hexo<br>cutter       |                              |                           |                    |               |              |
| 2         | Welding<br>(As per drawing) | Welding<br>transformer |                      |                              |                           |                    |               |              |

## 11. FLOW PROCESS CHART:-

| FL     | OW PRO                    | CE      | ss c   | H A | RT    | - ( | (PF   | ROF        | 0 9     | S E D         | 1  | ΡI       | RES    | S E N | IT)  |
|--------|---------------------------|---------|--------|-----|-------|-----|-------|------------|---------|---------------|----|----------|--------|-------|------|
| СНА    | RT NO.:1 SHE              | ET NO   | OF1    | S   |       | U   |       | M          |         | M             |    | E        | F      | 2     | Y    |
| MAT    | ERIAL / MAN / I           | EQUIP   | MENT   | A   | СТ    | ΙV  | V I 7 | ΓΥ         | PRESENT |               | PF | PROPOSED |        | SAV   | /ING |
|        |                           | I T     |        | OP  | ERA   | TI  | ON    |            | 4       |               |    |          |        |       |      |
|        | d Cutting, Drillin        | ng (fra | me ,   | TR  | ANS   | PO  | RT    | $\Diamond$ | 2       |               |    |          |        |       |      |
| Tabl   | e)                        |         |        | D   | E L   | A   | Y     | D          | 0       |               |    |          |        |       |      |
| MET    | THOD: PRESENT             | T / DD  | OPOSEI |     | SPEC  |     |       |            | 2       |               |    |          |        |       |      |
| IVIL   | METHOD: PRESENT / PROPOSE |         |        |     | OR    |     |       | $\bigvee$  | 4       |               |    |          |        |       |      |
|        |                           |         |        |     | TANCI |     |       |            |         | 0 m           |    |          |        |       |      |
|        |                           | I O     | N :    |     | ME (N |     |       |            | 5 0     | min           |    |          |        |       |      |
|        | RATOR(S)                  | CLO     | CK NO. |     | ВО    |     |       |            |         |               |    |          |        |       |      |
| CHA    | ARTED BY:                 |         |        | MA  | ATER  | CIA | L CO  | OST        | 150     | 0 rs.         |    |          |        |       |      |
| APP    | ROVED BY:                 |         |        | TC  | ТА    | L   | СО    | ST         | 150     | 0 rs.         |    |          |        |       |      |
| D      | A T E :                   |         |        |     |       |     |       |            |         |               |    |          |        |       |      |
|        |                           |         |        |     |       |     |       |            |         |               |    |          |        |       |      |
| SR.NO. | DESCRIPTI                 | NOI     | QTY    | DIS | TANC  | CE  | TI    | ΜЕ         |         | Y M           | _  | ВС       | L      | R     | ЕМ   |
|        |                           |         | ,      |     |       |     |       |            | 0       | $\Rightarrow$ | D  |          | $\vee$ |       |      |
| (1)    | Storage RAW mat           | terial  | 1      |     |       |     | 2 m   | in         |         |               |    |          |        |       |      |
| 2      | Transport to hexo         | cutter  | 1      | 5   | 0     | m   |       | [ i n      |         | 2             |    |          |        |       |      |
| 3      | Cutting                   |         | 1      |     |       |     |       | nin        | 9       |               |    |          |        |       |      |
| 4      | Drilling                  | 9       | 2      |     |       |     | 3 M   | l i n      |         |               |    |          |        |       |      |
| 5      | Inspection                | o n     | 1      |     |       |     | 2 m   | in         |         |               |    |          |        |       |      |
| 6      | Storage of                | part    | 1      | 5   | 0     | m   | ı     | -          |         |               |    |          | P      |       |      |
| (2)    | P A R T<br>Table          | 2       |        |     |       |     |       |            |         |               |    |          |        |       |      |
| 1      | Storage of raw ma         | terial  | 1      |     |       |     |       |            |         |               |    |          |        |       |      |
| 2      | Transport to cu           | itting  | 1      | 5   | 0     | m   | 3 m   | i n        |         | 2             | _  |          |        |       |      |
| 3      | Cutting                   |         | 1      |     |       |     | 1 5 r | min        | •       |               |    |          |        |       |      |
| 4      | Drilling                  |         | 1 2    |     |       |     | 15 r  | min        | •       |               |    |          |        |       |      |
| 5      | Inspection                |         | 1      |     |       |     | 2 m   | in         |         |               |    | Q        |        |       |      |
| 6      | Storage of p              | part    | 1      | 5   | 0 1   | m   | -     |            |         |               |    |          | 9      |       |      |

| FLO      | W PRO                   | CESS       | S С Н | A   | RT (   | PR     | O P                                  | o s      | E D      | 1   | ΡF          | RES      | EI | NT)  |
|----------|-------------------------|------------|-------|-----|--------|--------|--------------------------------------|----------|----------|-----|-------------|----------|----|------|
| CHART    | NO.2:                   | SHEET NO.  | OF 2  | s   | U      |        | M                                    |          | M        |     | E           | F        | 3  | Υ    |
| MATER    | IAL / MAN               | / EQUIPI   | MENT  | Α   | СТІ    | V I    | ΓΥ                                   | PRE      | SENT     | PF  | ROPO        | SED      | SA | VING |
| A C      | TIV                     | ΙT         | Υ :   | OF  | PERAT  | ION    |                                      | 4        |          |     |             |          |    |      |
|          |                         |            |       | TR  | ANSP   | ORT    | $\stackrel{\textstyle \frown}{\Box}$ | 2        |          |     |             |          |    |      |
| LINK'S   | WELDING                 | }          |       | D   | E L /  | A Y    | D                                    | 2        |          |     |             |          |    |      |
|          |                         |            |       |     | SPECT  |        |                                      |          |          |     |             |          |    |      |
| NACTI 16 | ND. DDE01               | CNT / DD   | 0000  |     | ΓORA   |        | $\nabla$                             | 2        |          |     |             |          |    |      |
| METHO    | METHOD: PRESENT / PROPO |            |       |     |        | N METI | ERS.                                 | 1 7      | 0 m      |     |             |          |    |      |
| L O      | C A T                   |            | N :   |     | ME (MI |        |                                      |          | min      |     |             |          |    |      |
| OPERAT   |                         |            | K NO. |     | BOR    |        |                                      |          | ) rs.    |     |             |          |    |      |
|          | TED BY                  |            |       |     | ATERIA |        |                                      |          | Ors.     |     |             |          |    |      |
|          | OVED B                  | Y:         |       | T ( | DTAL   | CO     | ST                                   | 600      | ) rs.    |     |             |          |    |      |
| D A      | T E                     | :          |       |     |        |        |                                      |          |          |     |             |          |    |      |
|          |                         |            |       |     |        | 1      |                                      | 0        | \        | 4 5 |             | <u> </u> |    |      |
| SR.NO.   | DESCRI                  | PTION      | QTY   | DIS | STANCE | TII    | ΜE                                   | S<br>O   | Y N<br>⇒ | D   | 3 C         |          | R  | E M  |
| 1        | Storage Raw             | v Material | 1     |     |        |        |                                      |          |          |     |             |          |    |      |
| 2        | Transp<br>Hexo cutting  |            | 1     | 4   | 0 m    | 4 m    | nin                                  |          |          |     |             |          |    |      |
| 3        | D e I                   | a y        | 1     |     |        | 2 m    | nin                                  |          |          |     |             |          |    |      |
| 4        | Hexo C                  | utting     | 1     |     |        | 6 m    | nin                                  | •        |          |     |             |          |    |      |
| 5        | Inspec                  | tion       |       |     |        | 3 m    | in                                   |          |          | //  |             |          |    |      |
| 6        | Transport to            | Drill m/c  | 1     | 6   | 0 m    | 4 m    | nin                                  |          | Q        |     |             |          |    |      |
| 7        | D e I                   | a y        |       |     |        |        | nin                                  |          |          |     |             |          |    |      |
| 8        | Drill the               |            | 1 6   |     |        | 30r    | min                                  | 8        | /        |     |             |          |    |      |
| 9        | Inspec                  |            |       |     |        | 3 m    |                                      |          |          |     | <b>&gt;</b> |          |    |      |
| 1 0      | WELD                    |            | 6     |     |        | 301    | MIN                                  |          |          |     |             |          |    |      |
| 1 0      | Finish                  | •          | 1     |     |        | 6 m    | in                                   | <b>S</b> |          |     |             |          |    |      |
| 1 1      | Inspec                  |            | 1     |     |        | 3 m    |                                      |          |          |     | 2           |          |    |      |
| 1 2      | Storage                 | of part    | 1     | 7   | 0 m    | 6 n    | nin                                  |          |          |     |             | •        |    |      |

#### 12.SPECIFICATION AND CONSUMPTION OF CONSUMABLES.

| SR. NO. | NAME OF CONSUMABLES | SPECIFICATION | UNIT OF CONSUMPTION | TOTAL CONSUMPTION |
|---------|---------------------|---------------|---------------------|-------------------|
| 1       | Welding Torch       |               |                     |                   |
| 2       | Electrodes          | 2 inch        | Pieces              | 7 Pieces          |
| 3       | Drill 0.02          | High Accuracy | Pieces              | 1 Pieces          |

#### 13.DETAILS OF INSPECTION / TESTING CARRIEDOUT.

After completing our project we have testing the project. In our project 1 friend has connect the wires to battery fastly. After connecting the wires, the frame is moving in oscillating motion. After this process the box is moving one place to another place by frame.

Our inspection of project is complete and our project is working.

#### 14. COST ESTIMATION.

MATERIAL COST :- 2500 + 50 + 500 + 50 + 1500 = 4600 Rs.

PROCESS COST:- = 100 Rs.

TOTAL COST:- 4600 + 100 = 4700 Rs.

| Part<br>No. | Description | Unit   | Qty/project | Mat.<br>cost/unit | Procees cost/unit | Total cost/unit | Total cost/project |
|-------------|-------------|--------|-------------|-------------------|-------------------|-----------------|--------------------|
| 140.        |             |        |             | rs.               | rs.               | rs.             | rs.                |
| 1           | TABLE       | Kg     | 1           | 600               | 250               | 600             | 850                |
| 2           | BATTERY     | Volt   | 1           |                   |                   |                 |                    |
| 3           | MOTOR       | Rpm    | 1           |                   |                   |                 | 2500               |
| 4           | LINKS       | Length | 8           | 300               | 200               | 300             | 500                |
| 5           | FRAME       | Kg     | 1           | 400               | 200               | 400             | 600                |
| 6           | SCREW       | Dia    | 24          | 50                |                   | 50              | 50                 |
| 7           | NUT         | Dia    | 24          | 50                |                   | 50              | 50                 |
| 8           | WASHER      | Dia    | 48          | 100               |                   | 100             | 100                |
| 9           | WIRES       | m      | 2           | 50                |                   | 50              | 50                 |
| 10          | Total Cost  |        |             |                   |                   |                 | 4600 Rs.           |

#### 15.NOTES ON TROUBLE SHOOTING.

- 1) Our first trouble is our two motor damaged by DC overload.
- 2) Our second trouble is project's mechanism we are try and successful in making of project's mechanism.
- 3)Our third trouble is alignment of links is very hard.

# 16. NOTES ON INDIVIDUAL ACHIEVEMENT OF SKILLS/EXPERIENCE/PROBLEMS / SOLUTIONS.

#### **SKILLS AND EXPERINCE:-**

- First time I manually operate drilling machine.
- My welding knowledge is improve.
- I get practical knowledge of safety.
- My leadership quality and trouble shooter quality is improve.

#### **PROBLEMS:-**

- Some time drilling tool is fitted on work piece when in drilling operation.
- Some time we cannot get the electrode for welding.
- Some of drilling holes not on marking.

•

#### **SOLUTION:**-

- We tight the tools.
- We take new material making again and also drilling again.
- We hide some electrode for our daily work.

#### 17.REFERENCES.

- <a href="http://www.mekanizmalar.com/transport01.html">http://www.mekanizmalar.com/transport01.html</a>
- http://projectseminars.org/report-box-transport-mechanism-project-report-in-pdf
- <a href="http://seminarprojects.com/s/box-transport-mechanism">http://seminarprojects.com/s/box-transport-mechanism</a>
- https://www.youtube.com/watch?v=tDLof06nBjU

# 18. PRESENTATION INCLUDING MOMENTS AT WORK-VIDEO/PHOTOGRAPHSIN ACTION.







# **THANK YOU...**