Курс «Сложности вычислений 2021». Максимизация 2-КНФ

Вячеслав Сурков, МФТИ, группа Б05-921 Январь 2022

Аннотация

Рассматривается вероятностный алгоритм Гоманса-Уильямсона для приближенного решения задач MAX-CUT и MAX-2SAT, работающий за полиномиальное от длины входа время и решающий задачу с точностью ~ 0.87856 . Описан принцип работы алгоритма, выведены оценки точности, а также проанализированы результаты тестовых запусков. Найдены случаи, в которых алгоритм работает хорошо, результаты обоснованы с точки зрения теории.

1 Введение

Пусть G — неориентированный граф с n вершинами и m ребрами. Задача MAX — CUT заключается в нахождении наибольшего разреза, другими словами, такого подмножества вершин S, что количество ребер, у которых один конец принадлежит S, а другой — не принадлежит S, наибольшее.

Если F — пропозициональная формула в конъюктивной нормальной форме с n переменными и m дизъюнктами, более того, каждый дизъюнкт — двухместный. Задача MAX — 2SAT состоит в нахождении набора значений переменных, при котором выполуено как можно больше дизъюнктов.

Задачи имеют некоторые сходства: нужно поделить объекты на два класса для максимизации некоторого функционала; обе задачи являются ${\bf NP}$ полными. Наивный точный алгоритм заключается в полном переборе всех делений на классы, и имеет экспоненциальную сложность. Для решения задач можно применить вариации алгоритма Гоманса-Уильямсона. Хотя алгоритм имеет полиномиальную сложность, он не является точным: если f_{opt}, f_{algo} — оптимальное и полученное алгоритмом значения

функционала, то $E(f_{algo}) \geq \alpha f_{opt}$, где $\alpha \sim 0.87856$. Также, будет выведено, что в некоторых случаях алгоритм возвращает точный ответ с вероятностью, равной 1.

2 Описание алгоритма

[1] Обе задачи можно свести к следующей:

$$\min \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

s.t.
$$x_i \in \{-1, 1\}$$

где (a_{ij}) — некоторая квадратная матрица. Опишем сведение.

MAX-CUT. Для каждой вершины заведем переменную $x_i=\pm 1$, отражающая класс, к которому принадлежит вершина. Тогда размер разреза равен

$$\sum_{(u,v)\in E} \frac{1}{2}(1-x_u x_v)$$

Значит, если положить a — матрица смежности G, то поиск наибольшего разреза равносилен решению

$$\frac{1}{4} \max \sum_{i,j=1}^{n} a_{ij} (1 - x_i x_j)$$
s.t. $x_i \in \{-1, 1\}$

MAX-2SAT. Для каждой переменной v_i заведем $x_i=\pm 1$, также введем вспомогательную $x_0=\pm 1$. Если $x_i=x_0$, то это означает, что переменной i соответствует истина, иначе ложь.

Теперь рассмотрим, что означает истинность дизъюнкта:

$$[v_i \lor v_j] = 1 - [v_i \land v_j] = 1 - [v_i][v_j] = 1 - \frac{1 - x_0 x_i}{2} \frac{1 - x_0 x_j}{2} = \frac{1 + x_0 x_i}{4} + \frac{1 + x_0 x_j}{4} + \frac{1 - x_i x_j}{4}$$

Если переменная v_k находится под отрицанием, то соответствующий ей x_k нужно брать с противоположным знаком.

Как видим, для решения задачи, нужно максимизировать линейную комбинацию $x_i x_j$, либо минимизировать линейную комбинацию, но с противоположными коэффициентами.

Задача минимизации сформулирована, но ее в точности решать трудно. Расширим область допустимых x_i до поверхности единичной п-мерной сферы. То есть, решим задачу

$$\min \sum_{i,j=1}^{n} a_{ij} x_i x_j$$
s.t. $||x_i|| = 1$

Это равносильно (лемма 1) решению

$$minX \cdot a$$
 $s.t. \ X \succeq 0$
 $X_{ii} = 1 \ \forall i = 1 \dots n$

Это частный случай задачи полуопределенного программирования (SDP); приближенное решение можно найти на полиномиальное время.

Более того, матрица X является матрицей Грама для векторов x_i . Чтобы восстановить какие-то x_i , которым соответствует X, можно воспользоваться \lim разложением матрицы X.

Далее, проведем случайную (n-1)-мерную гиперплоскость, проходящую через начало координат (то же самое, что случайно равномерно выбрать точку на S^n , вектор соединяющий начало координат и точку соответствует нормали гиперплоскости). Теперь можно вернуться к значениям $x_i=\pm 1$: переменным, соответствующим точкам на сфере, сопоставим ± 1 в зависимости от того, с какой стороны от гиперплоскости они находятся.

Пусть для исходных задач при таких значениях x_i , значение функционала равно f_{algo} , оптимальное значение — f_{opt} . Тогда (лемма 2.1 и 2.2) $E(f_{algo}) \geq \alpha E(f_{opt})$, где $\alpha \sim 0.87856$.

3 Формулировка и доказательство лемм

Лемма 1.[2] Рассматривается задача (1)

$$\min \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

s.t.
$$||x_i|| = 1$$

Набор $\{x_i\}$ с матрицей Грама X является оптимальным для задачи (1) тогда и только тогда, когда X оптимально для задачи (2)

$$min X \cdot a$$

s.t.
$$X \succeq 0$$

$$X_{ii} = 1 \ \forall i = 1 \dots n$$

Доказательство. Во-первых, X матрица Грама $\Leftrightarrow X$ неотрицательно определена. Тогда будем рассматривать только $X\succeq 0$.

$$X$$
 допустима для (2) \Leftrightarrow $X_{ii}=1 \ \forall i \Leftrightarrow ||x_i||=1 \ \forall i \Leftrightarrow \{x_i\}$ допустимы для (1)

Также, минимизируемый функционал в обеих задачах один и тот же, что завершает доказательство.

Лемма 2.1.[2] Рассматривается задача MAX-CUT. Алгоритм Гоманса-Уильямсона находит разрез, математическое ожидание величины которого составляет не менее α от максимального разреза, где $\alpha \sim 0.87856$.

Доказательство. Рассмотрим последний шаг алгоритма (проведение случайной гиперплоскости). Вероятность того, что точки, соответствующие вершинам фиксированного ребра (a,b) попадут по разные стороны от гиперплоскости H равна $\frac{arccos(x_a\cdot x_b)}{\pi}$. Действительно, для того, чтобы x_a , x_b находились по разные стороны от гиперплоскости H, необходимо и достаточно, чтобы прямая пересечения плоскости $(O;x_a;x_b)$ с H попала внутрь угла (x_aOx_b) .

Обозначим C как величину разреза, полученного алгоритмом; f_{opt} — величина оптимального разреза.

$$R := \frac{1}{4} \max \sum_{i,j=1}^{n} a_{ij} (1 - x_i x_j)$$
s.t. $x_i \in S^n$

R легко получается из решения

$$\min \sum_{i,j=1}^{n} a_{ij} x_i x_j$$

s.t.
$$||x_i|| = 1$$

Обозначим β наибольшее число, такое что $arccos(t) \geq \beta(1-t) \ \forall t \in [-\frac{\pi}{2};\frac{\pi}{2}]. \ \alpha:=\frac{2\beta}{\pi}. \ \alpha \sim 0.87856.$ Тогда:

$$E(C) = \sum_{(a,b) \in E} \frac{\arccos(x_a \cdot x_b)}{\pi} \geq \sum_{(a,b) \in E} \frac{\beta}{\pi} (1 - x_a x_b) = \sum_{(a,b) \in E} \frac{\alpha}{2} (1 - x_a x_b) = \alpha R \geq \alpha f_{opt}$$

Последнее неравенство выполнено, так как ± 1 также лежат на сфере. Доказательство завершено.

Лемма 2.2[1]. Рассматривается задача MAX-2SAT. Алгоритм Гоманса-Уильямсона находит распределение значений переменных так, что математическое ожидание количества выполненных дизъюнкторв составляет не менее α от оптимального, где $\alpha \sim 0.87856$.

Доказательство во многом повторяет доказательство леммы 2.1, поэтому опустим его.

4 Тестовые наборы

Тесты разделены на две части: для MAX-CUT и для MAX-2SAT. Для того, чтобы оценить математическое ожидание значения функционала, я провожу случайную плоскость 1000 раз. Такое количество дает достаточную точность (точность метода Монте-Карло обратно пропорциональна квадратному корню количества запусков), и вычисления занимают разумное время.

4.1 MAX-CUT

- Графы G(n,p), для $n=6..14,\ p\in\{0.2,0.5,0.8\}$. Для каждого случая сгенерировано 15 графов.
- Двудольные графы с размерами долей от 5 до 25 с шагом 5. Ребра между долями генерируются независимо с вероятностью 0.2, 0.5, 0.8. Для каждого случая сгенерировано 15 графов.

4.2 MAX-2SAT

- Случайные 2-КНФ с количеством переменных от 2 до 6 и количеством дизъюнктов от 2 до 11. Для каждого случая сгенерировано 10 формул.
- Случайные 2-КНФ с теми же количествами переменных и дизъюнктов, но существует набор, на котором все дизъюнкты истинны. Для каждого случая сгенерировано 10 формул.
- 100 выполнимых 2-КНФ с 10 переменными и 50 дизъюнктами.
- Случайные 2-КНФ с количеством переменных от 2 до 6 и количеством дизъюнктов от 2 до 11. В каждом дизъюнкте одинаковые переменные (отрицания могут быть разными). Для каждого случая сгенерировано 10 формул.

5 Запуски

5.1 MAX-CUT

На графиках точность означает отношение оценки математического ожидания и оптимального ответа.

Видим, что не получилось приблизиться к теоретической оценке ни при каких $n,\ p,$ наихудшая точность получилась равной $\sim 0.92.$ Также можно заметить, что в среднем при p=0.2 точность выше, но виден тренд, что отрыв уменьшается с ростом n. Также, видим, что для двудольных графов алгоритм дал точный ответ. Позже докажем, что в данном случае ответ точный почти наверное.

5.2 MAX-2SAT

Здесь под потерей точности имеется в виду величина дополнения точности до единицы.

На случайных формулах точность оказалась очень высокой — не получилось найти формулу, для которой точность оказалась ниже 1-0.061=0.939. Среди больших выполнимых формул тоже не удалось получить низкую точность. Примечательно распределение точности — для примерно половины формул алгоритм не совершил ошибку (либо совершил небольшую ошибку

на малом числе запусков), а за исключением этого высокого столбика плотность унимодальна с локальным максимумом при точности около 0.985. На однобуквенных дизъюнктах алгоритм отработал точно, это докажем далее.

6 Доказательства закономерностей

Утверждение 1. Для двудольных графов алгоритм Гоманса-Уильямсона даёт точный ответ почти наверное.

Доказательство. Рассмотрим точки x_i, x_j , принадлежащие единичной сфере. Из неравенства Коши-Буняковского следует, что $x_i \cdot x_j \geq -1$, равенство достигается только при $x_i = -x_j$. Так как граф двудольный, то зафиксировав точку a на сфере, положим переменные соответствующие правой доле равными a, а остальные -a. Тогда в сумме $\sum_{(u,v)\in E} \frac{1}{2}(1-x_u\cdot x_v)$ все $x_u\cdot x_v$ равны -1. Значит сумма принимает наименьшее возможное значение. Обратно: если сумма принимает наименьшее значение, то все скалярные произведения равны -1, переменные, соответствующие вершинам на разных концах ребра, должны лежать в противоположных точках сферы. Тогда случайная плоскость пересечет все ребра почти наверное.

 \mathbf{y} тверждение $\mathbf{2}$. Для 2-КНФ с однобуквенными дизъюнктами алгоритм Гоманса-Уильямсона даёт точный ответ почти наверное.

Доказательство. Рассмотрим задачу в формулировке нахождения минимума скалярного произведения матрицы Грама X с матрицей a. В 2-КНФ F присутствуют дизъюнкты трех типов:

- $v \vee \bar{v}$
- \bullet $v \lor v$
- $\bar{v} \vee \bar{v}$

Из раздела 2 известно:

$$[v_i \lor \bar{v}_i] = \frac{1 + x_0 x_i}{4} + \frac{1 - x_0 x_i}{4} + \frac{1 + 1}{4} = 0.5$$

Следовательно, этот дизъюнкт не влияет на ответ. Его можно убрать из формулы, и множество оптимальных выполняющих наборов не изменится.

$$[v_i \lor v_i] = \frac{1 + x_0 x_i}{4} + \frac{1 + x_0 x_i}{4} + \frac{1 - 1}{4} = \frac{1 + x_0 x_i}{2} = -[\bar{v}_i \lor \bar{v}_i]$$

Значит, в сумме ненулевые слагаемые стоят только перед $x_0 \cdot x_i$. Наименьшее значение скалярного произведения равно -1, и достигается только

когда $x_i=-x_0$, а наибольшее значение равно 1 (из неравенства Коши-Буняковского), и достигается только при $x_i=x_0$. Тогда для минимизации суммы нужно положить $x_i=x_0$, если $a_{0i}<0$, и $x_i=-x_0$, если $a_{0i}>0$. Более того, только при выполнении этих условий достигается минимум. Дизъюнкты, для переменных v_k которых выполнено $a_{0k}=0$ никак не влияют на ответ ни в задаче на сфере, ни в задаче на ± 1 . Тогда случайная гиперплоскость разделит $x_i=x_0$ и $x_j=-x_0$ почти наверное. После замены всех x_i на ± 1 значение функционала не поменяется, а оно было наименьшим для задачи на сфере, следовательно будет наименьшим для задачи на ± 1 . Отсюда полученный ответ — точный.

7 Выводы

Не удалось найти граф для MAX-CUT и формулу для MAX-2SAT, на котором точность алгоритма близка к теоретической оценке. Это мотивирует искать более точные оценки.

Существуют объекты, на которых алгоритм Гоманса-Уильямсона работает точно почти наверное: это двудольные графы в задаче MAX-CUT и 2-КНФ в каждом дизъюнкте которой присутствует лишь один вид переменной.

Список литературы

- [1] Michel X. Goemans, David P. Williamson, Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming, https://klein.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf
- [2] Simon Fraster University. Semidefinite Programming. Lecture notes. The Goemans-Williamson Algorithm, https://www.sfu.ca/~mdevos/notes/semidef/GW.pdf