Analisi 1 Appunti

Riccardo Mietto

Indice

Chapter 1		Elementi introduttivi	_ Page 4
	1.1	Irrazzionalità di $\sqrt{2}$ (d)	4
	1.2	Disuguaglianza triangolare (d)	4
	1.3	Caratterizzazione di estremo superiore e inferiore. (D)	5
	1.4	Densità di \mathbb{Q} in \mathbb{R} (d)	5
		-	
Chapter 2			D 0
Chapter 2		Limiti di funzioni di una variabile reale	_ Page 6
	2.1	Definizione di intorno sferico	6
	2.2	Proprietà di separazione degli intorni (D)	6
	2.3	Definizione di punto di accumulazione	7
	2.4	Definizione di limite	7
	2.5	Teorema di unicità del limite (D)	7
	2.6	Definizione di intorno destro e intorno sinistro	7
	2.7	Definizione di limite destro e sinistro	8
	2.8	Esistenza dei limiti destro e sinistro ed esistenza del limite (d).COMPLETARE	8
	2.9	Teorema della permanenza del segno (D)	8
		Teorema dei due Carabinieri (D)	8
		Il limite fondamentale $\sin x/x \text{ per } x \to 0 \text{ (D)}$	9
		Limiti di funzioni monotone (D)	9
		Limiti della somma (D)	10
		Limiti fondamentali derivanti da quello di $\sin x/x$ per $x \to 0$ (d)	11
		Il limite di $(1 + \frac{1}{n})^n$ per $n \to \pm \infty$ (d)	12
		Limiti fondamentali conseguenti (d)	14
		Principio di sostituzione degli infinitesimi e degli infiniti (D)	14
	2.18	Gerarchia degli infiniti tra le funzioni elementari (d)	15
Chapter 3		Successioni e serie numeriche	Page 16
	3.1	Gerarchia degli infiniti (d)	16
	3.2	Caratterizzazione del limite di funzioni con le successioni (d).	17
	3.3	Sottosuccessioni e teorema di Bolzano-Weierstrass (d) COMPLETARE Definizione di sottosuccessione — 18 • Teorema di Bolzano-Weierstrass — 18	18
	3.4	Carattere e somma di una serie geometrica (D)	18
	3.5	Carattere della somma di serie convergenti e del prodotto di una serie per una costante (d)	18
	3.6	Limite del termine generale di una serie convergente (D)	19
	3.7	Carattere della serie armonica (D)	19

	3.8	Carattere della serie armonica generalizzata (D)	19
	3.9	Carattere di una serie a termini definitivamente non negativi (D)	20
	3.10	Definizione di convergenza assoluta e sua relazione con la convergenza semplice (D)	20
	3.11	Criterio del confronto (D)	21
	3.12	Criterio asintotico del confronto (D)	21
	3.13	Criterio del rapporto	22
	3.14	Criterio del rapporto asintotico	22
	3.15	Criterio della radice (D)	23
	3.16	Criterio asintotico della radice (D)	23
	3.17	Criterio di Leibniz (D)	24
11			
Chapter 4	=	Funzioni continue di una variabile reale	Page 26
	4.1	Definizione di funzione continua	26
	4.2	Classificazione punti di discontinuità	26
	4.3	Teorema di Weierstrass (D)	26
	4.4	Teorema di Bolzano o degli zeri (D)	27
	4.5	Teorema dei valori intermedi (D)	28
Y1			
Chapter 5		Calcolo differenziale per funzioni di una variabile reale	Page 29
	5.1	Definizione di rapporto incrementale	29
	5.2	Definizione di derivata	29
	5.3	Continuità di una funzione derivabile (D)	29
	5.4	Legame tra derivabilità e derivabilità da destra e da sinistra (d) COMPLETARE	30
	5.5	Derivata della composizione di funzioni (D)	30
	5.6	Calcolo delle derivate delle principali funzioni elementari (d)	30
	5.7	Derivata del modulo di una funzione (D)	32
	5.8	Teorema di Fermat (D)	32
	5.9	Teorema di Rolle (D)	33
	5.10	Teorema di Lagrange (D)	33
	5.11	Teorema di Cauchy	33
	5.12	Costanza delle funzioni con derivata nulla (D)	34
	5.13	Legame tra monotonia e derivata prima (D)	34
	5.14	Teorema di De L'Hopital ((d) solo nel caso $\frac{0}{0}$)	34
		Teorema sul limite della derivata (d)	35
	5.16	Definizione di funzione convessa e concava	35
	5.17	Formula di Taylor con il resto di Peano (D). COMPLETARE	36
		Sviluppi delle funzioni elementari più comuni (D) COMPLETARE	36
Thomaton G			
Chapter 6		Calcolo integrale per funzioni di una variabile reale	Page 37
	6.1	Definizione di partizione e partizione puntata	37
	6.2	Definizione di somma di Cauchy	37
	6.3	Definizione di funzione integrabile secondo Cauchy-Reimann	37
	6.4	Teorema della media (D)	38
	6.5	Definizione di primitiva di una funzione	39

6.6	Legame tra primitive di una stessa funzione su un intervallo (D)	39
6.7	Teorema fondamentale del calcolo = di Torricelli-Barrow (D)	39
6.8	Teorema fondamentale del calcolo integrale, II versione (D)	40
6.9	Integrazione per parti (d)	40
6.10	Integrazione per sostituzione (d)	41
6.11	Criterio del confronto (D)	41
6.12	Criterio dell'integrale per le serie (d)	42
	Integrabilità di $\frac{1}{x^a}$ in $[0,1]$ e in $[1,+\infty[$ (D)	42
6.14	Integrabilità di $\frac{1}{x^{\alpha}(\log x)^{\beta}}$ in [2, + ∞ [(D) COMPLETARE	43
6.15	Teorema criterio dell'integrale per la convergenza delle serie	43
6.16	Convergenza delle serie $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ (D)	43
6.17	Convergenza delle serie $\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} (\ln n)^{\beta}} $ (D)	43

Capitolo 1

Elementi introduttivi

1.1 Irrazzionalità di $\sqrt{2}$ (d)

Proposizione 1.1 di Euclide

Non esiste alcun numero razionale il cui quadrato sia 2.

Dimostrazione: (per assurdo): Supponiamo per assurdo che esista un numero razionale x tale che $x^2=2$. Rappresentiamo $x=\frac{p}{q}, p\in\mathbb{Z}, q\in\mathbb{N}, q\neq 0$ con $p\in q$ primi tra loro.

Per assurdo abbiamo supposto che $(\frac{p}{q})^2=2$, cioè $\frac{p^2}{q^2}=2$, cioè $p^2=2q^2$. Quindi p^2 è pari. Siccome i fattori primi di p^2 sono i fattori primi di p contati i doppio delle volte, allora p è pari, cioè diciamo che p=2m con $m\in\mathbb{Z}$. Da $p^2=2q^2$ e p=2m, deduciamo che $4m^2=2q^2$, cioè $q^2=2m^2$.

Perciò anche q^2 è pari e quindi q è pari. Ma ciò è un assurdo, perché p e q hanno entrambi il fattore 2 in comune e avevamo supposto che fossero primi fra loro.

Quindi non esiste alcun numero razionale il cui quadrato sia 2.

1.2 Disuguaglianza triangolare (d)

Teorema 1.1

Per ogni $x,y\in\mathbb{R}$ si ha:

$$|x + y| \le |x| + |y|$$

Dimostrazione:Osserviamo preliminatamente che per ogni $x,y\in\mathbb{R}$ si ha

$$-|x| \le x \le |x|$$

$$-|y| \le y \le |y|$$

Sommo membro a membro le disuguaglianze di sopra

$$-(|x| + |y|) \le x + y \le |x| + |y|$$

Quindi:

$$|x + y| \le |x| + |y|$$

☺

1.3 Caratterizzazione di estremo superiore e inferiore. (D)

Proposizione 1.2

Sia $A \subset \mathbb{R}$ non vuoto e superiormente limitato e sia $S \in \mathbb{R}$. Allora $S = \sup A$ se e solo se:

- $S \ge a \quad \forall a \in \mathbb{R}$
- per ogni $\varepsilon > 0$ esiste $a_{\varepsilon} \in A$ tale che $a_{\varepsilon} > S \varepsilon$

Analogamente, se A è inferiormente limitato

 $S = \inf A$ se e solo se:

- $S \le a \quad \forall a \in \mathbb{R}$
- per ogni $\varepsilon>0$ esiste $a_\varepsilon\in A$ tale che $a_\varepsilon< S-\varepsilon$

Dimostrazione: Per inf.

Sia $S = \inf A$. Voglio dimostrare che valgono 1) e 2).

Per definizione di infA, S è il massimo dei minoranti di A. In particolare S è un minorante di A, cioè 1) vera. Inoltre S è il massimo dei minoranti di A, quindi per ogni $\varepsilon > 0$ $S + \varepsilon > S$ e quindi $S + \varepsilon$ non è un minorante di A, cioè esiste $a_{\varepsilon} \in A$ tale che $a_{\varepsilon} < S - \varepsilon$. Quindi 2) vera.

Viceversa: supponiamo che valgano 1) e 2) e dimostriamo che $S = \inf A$, cioè S è il massimo dei minoranti di A.

- 1) dice che S è un minorante di A.
- 2) dice che se x > S, allora esiste $\varepsilon > 0$ tale che $x = S + \varepsilon$ e quindi per 2), esiste $a_{\varepsilon} \in A$ tale che $a_{\varepsilon} < x$, cioè x non è un minorante.

Quindi S è il massimo dei minoranti di A.

⊜

Dimostrazione: per sup.

⊜

1.4 Densità di Q in R (d)

Proposizione 1.3 Proprietà di Archimede

Per ogni $a, b \in \mathbb{Q}$, con a > 0, esiste $n \in \mathbb{N}$ tale che na > b

Teorema 1.2 Densità di $\mathbb Q$ in $\mathbb R$

Siano $a, b \in \mathbb{R}$, a < b. Allora esiste $q \in \mathbb{Q}$ tale che a < q < b.

Dimostrazione: Per ipotesi b-a>0. Applichiamo la proprietà di Archimede con 1 al posto di b e b-a al posto di a: esiste $n \in \mathbb{N}$ tale che n(a-b)>1. In altre parole, il segmento [na,nb] ha lunghezza >1, quindi contiene un numero intero m. Cioè esiste $m \in \mathbb{Z}$ tale che

na < m < nb

ma allora

$$a < \frac{m}{n} < b$$

che è quello che si voleva dimostrare.

Capitolo 2

Limiti di funzioni di una variabile reale

2.1 Definizione di intorno sferico

Definizione 2.1.1

Sia $x_0 \in \overline{\mathbb{R}}$:

- 1. Se $x \in \mathbb{R}$, e r > 0, l'intorno sferico di centro x e raggio r è l'intervallo]x r, x + r[.
- 2. Gli intorni sferici di $+\infty$ sono le semirette del tipo $]a, +\infty[$, al variare di $a \in \mathbb{R}$.
- 3. Gli intorni sferici di $-\infty$ sono le semirette del tipo $]-\infty$, a[, al variare di $a \in \mathbb{R}$.

2.2 Proprietà di separazione degli intorni (D)

Proposizione 2.1

Siano $r_1, r_2 \in \mathbb{R}$ punti della retta reale estesa, con $r_1 \neq r_2$. Allora esistono un intorno U_1 di r_1 e un intorno U_2 di r_2 tali che $U_1 \cap U_2 = \emptyset$

Dimostrazione: Non è restrittivo supporre $r_1 < r_2$. Distinguiamo cari casi.

- $r_1=-\infty,\,r_2=+\infty$ Gli intorni $U_1=]-\infty,-2[$ e $U_2=]1,+\infty[$ chiaramente soddisfano la proprietà richiesta.
- $r_1 = -\infty, r_2 \in \mathbb{R}$ In tal caso basta scegliere $U_1 =]-\infty, r_2 - 2[$ e $U_2 =]r_2 - 1, r_2 + 1[$.
- $r_1 \in \mathbb{R}$, $r_2 = +\infty$ Analogamente al caso precedente, scegliamo $U_1 =]r_1 - 1$, $r_1 + 1[$ e $U_2 =]r_1 + 2$, $+\infty[$, che evidentemente soddisfano la richiesta.
- $r_1, r_2 \in \mathbb{R}$ Si scelgono

$$U_{1} = \left] r_{1} - \frac{r_{2} - r_{1}}{2}, r_{1} + \frac{r_{2} - r_{1}}{2} \right[= \left] \frac{3r_{1} - r_{2}}{2}, \frac{r_{1} + r_{2}}{2} \right[$$

$$U_{2} = \left] r_{2} - \frac{r_{2} - r_{1}}{2}, r_{2} + \frac{r_{2} - r_{1}}{2} \right[= \left] \frac{r_{1} + r_{2}}{2}, \frac{3r_{2} - r_{1}}{2} \right[$$

che sono intorni rispettivamente di r_1 e r_2 di raggio $\varepsilon = \frac{r_2 - r_1}{2}$. Allora, se $x \in U_1$, si ha $x < r_1 + \varepsilon = \frac{r_1 + r_2}{2} = r_2 - \varepsilon$, e quindi $x \notin U_2$, come si voleva dimostrare.

2.3 Definizione di punto di accumulazione

Definizione 2.1

Si dice che $y \in \overline{\mathbb{R}}$ è un punto di accumulazione per A se per ogni intorno sferico U di y esiste un punto $z \in A \cap U$, con $z \neq y$.

OSS, nella definizione di punto di accumulazione non si richiede che $y \in A$

2.4 Definizione di limite

Definizione 2.2

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$, e sia $x_0 \in \overline{\mathbb{R}}$ un punto di accumulazione per A. Sia $f : A \to \mathbb{R}$ una funzione e sia $\ell \in \overline{\mathbb{R}}$. Si dice che

$$\lim_{x \to x_0} f(x) = \ell$$

se per ogni intorno sferico U di ℓ esiste un intorno sferico V di x_0 tale che per ogni $x \in A \cap V$, $x \neq x_0$, si ha $f(x) \in U$

2.5 Teorema di unicità del limite (D)

Teorema 2.1

Sia $A \subseteq \mathbb{R}$ e sia $x_0 \in \overline{\mathbb{R}}$ un punto di accumulazione per A. Sia $l \in \overline{\mathbb{R}}$ e sia $f : A \to \mathbb{R}$ una funzione. Se $\lim_{x \to x_0} f(x) = l$ (cioè se esiste ed è uguale a l), allora è unico, cioè per ogni $l \neq l'$ non può essere $\lim_{x \to x_0} f(x) = l'$

Dimostrazione: Supponiamo per assurdo che esista $l \neq l'$ tale che $\lim_{x \to x_0} f(x) = l'$, mentre - per ipotesi- si ha $\lim_{x \to x_0} f(x) = l$.

Per la proprietà di separazione degli intorni sferici esistono un intorno sferico U di l e un intorno sferico U' di l' tali che $U \cap U' = \emptyset$.

Siccome $\lim_{x \to x_0} f(x) = l$, esiste un intorno V di x_0 tale che se $x \in A$, $x \neq x_0$ e $x \in V$, allora $f(x) \in U$. Siccome $\lim_{x \to x_0} f(x) = l'$ esiste un intorno V' di x_0 tale che se $x \in A$, $x \neq x_0$ e $x \in V'$, allora $f(x) \in U'$.

Poniamo $W=V\cap V'$. Allora $W\neq\varnothing$ (perché è il più piccolo tra V e V'). Inoltre, se $x\in A,\ x\neq x_0$ e $x\in W,$ allora $f(x)\in U\cap U'$.

(2)

Ma questo è assurdo, perché U e $U^{'}$ erano disgiunti.

2.6 Definizione di intorno destro e intorno sinistro

Definizione 2.3

Sia $x_0 \in \mathbb{R}$ e sia $\delta > 0$. Un intorno sinistro (o destro) di x_0 è un intervallo del tipo $]x_0 - \delta, x_0[$. Sia $A \subset \mathbb{R}$. Si dice che $x_0 \in \mathbb{R}$ è un punto di accumulazione sinistro per A se per ogni $\delta > 0$ esiste $x \in A$, $x \neq x_0$, tale che $x \in [x_0 - \delta, x_0]$, cioè $0 < x_0 - x < \delta$

2.7 Definizione di limite destro e sinistro

Definizione 2.4

Sia $f:A\to\mathbb{R}$ una funzione e sia x_0 un punto di accumulazione destro per A. Si dice che

$$\lim_{x \to x_0^+} f(x) = \ell$$

se per ogni intorno U di ℓ esiste $\delta > 0$ tale che se $x \in A$, $0 < x - x_0 < \delta$, allora $f(x) \in U$.

2.8 Esistenza dei limiti destro e sinistro ed esistenza del limite (d).COMPLETA

Proposizione 2.2

Sia $f: a \to \mathbb{R}$ una funzione e sia x_0 un punto di accumulazione per A. Sia $\ell \in \overline{\mathbb{R}}$. Allora:

$$\lim_{x \to x_0} f(x) = \ell \iff \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = \ell$$

Dimostrazione: DAL LIBRO PAG 150:

Supponiamo che f ammetta in x_0 limiti destro e sinistro uguali a ℓ , e dimostriamo che allora ammette limite ℓ in x_0 sfruttando

2.9 Teorema della permanenza del segno (D)

Teorema 2.2

Siano $f:A\to\mathbb{R}$ e sia x_0 un punto di accumulazione per A. Supponiamo che

$$\lim_{x \to x_o} f(x) = l \neq 0$$

(supponiamo che il $\lim_{x \to x} f(x)$ esista e sia $\neq 0$). Allora

f ha lo stesso segno di l definitivamente per $x \to x_0$

In altre parole, se $\lim_{x\to x_0} f(x) = l > 0$, allora esiste un intorno U di x_0 tale che per ogni $x \in A \cap U$, $x \neq x_0$, si ha f(x) > 0

Dimostrazione: Per l > 0.

Siccome l>0, esiste un intorno V di l tale che $V\subset]0,+\infty[$, (cioè se $y\in V$ allora y>0); se $l\in \mathbb{R}, l>0$, prendendo ad esempio $\delta=\frac{l}{2}$, l'intorno $]l-\delta, l+\delta[=]\frac{l}{2},\frac{3}{2}l[\subset]0,+\infty[$;

se $l = +\infty$, la semiretta, ad esempio, $]1, +\infty[\subset]0, +\infty[$.

Siccome $\lim_{x \to x_0} f(x) = l$, esiste un intorno U di x_0 tale che se $x \in A \cap U$ e $x \neq x_0$ allora $f(x) \in V$ e quindi f(x) > 0.

2.10 Teorema dei due Carabinieri (D)

Teorema 2.3

Sia $A \subseteq \mathbb{R}$ e sia $x_0 \in \overline{\mathbb{R}}$ un punto di accumulazione per A. Siano $f, g, h : A \to \mathbb{R}$ tali che:

1. $f(x) \le g(x) \le h(x)$ definitivamente per $x \to x_0$ [cioè esiste un intorno W di x_0 tale che se $x \in A$, $x \ne x_0$ e $x \in W$ allora $f(x) \le g(x) \le h(x)$]

2.
$$\lim_{x \to x_o} f(x) = \lim_{x \to x_o} h(x) = l \in \mathbb{R}$$

Allora anche

$$\lim_{x \to x_o} g(x) = l$$

Dimostrazione: La tesi è:

per ogni $\varepsilon > 0$ esiste un intorno V di x_0 tale che se $x \in A \cap V$ e $x \neq x_0$ allora $|g(x) - l| < \varepsilon$ Le ipotesi sono:

- 1. esiste un intorno W di x_0 tale che se $x \in A, x \neq x_0$ e $x \in W$ allora $f(x) \leq g(x) \leq h(x)$
- 2. $\lim_{x \to x_0} f(x) = l$, cioè per ogni $\varepsilon > 0$ esiste un intorno V_1 di x_0 tale che se $x \in A \cap V_1$ e $x \neq x_0$ allora $l \varepsilon < f(x) < l + \varepsilon$
- 3. $\lim_{x\to x_0}h(x)=l$, cioè per ogni $\varepsilon>0$ esiste un intorno V_2 di x_0 tale che se $x\in A\cap V_2$ e $x\neq x_0$ allora $l-\varepsilon< h(x)< l+\varepsilon$

Poniamo $V = W \cap V_1 \cap V_2 \neq \emptyset$). Se $x \in A \cap V$ e $x \neq x_0$, allora $f(x) \leq g(x) \leq h(x)$ perché $x \in W$; inoltre $h(x) < l + \varepsilon$ perché $x \in V_2$. Infine $f(x) > l + \varepsilon$ perché $x \in V_1$. Quindi

$$1 - \varepsilon < f(x) \le g(x) \le h(x) < 1 + \varepsilon$$

☺

2.11 Il limite fondamentale $\sin x/x \text{ per } x \to 0 \text{ (D)}$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Dimostrazione: Usiamo disuguaglianze geometriche.

Area del settore circolare = $\frac{x}{2}$.

Area del triangolo $OAB = \frac{tanx}{2}$.

Se $0 < x < \frac{\pi}{2}$, dal disegno si vede che

area del settore circolare ≤ area del triangolo OAB

cioè

$$sinx < x < tanx = \frac{sinx}{cosx}$$

Dividiamo i tre membri della disequazione per sinx(>0):

$$1 < \frac{x}{sinx} < \frac{1}{cosx}$$

cioè

$$cosx < \frac{sinx}{r} < 1$$

Dim. con la definizione che $\lim_{x\to 0} cos x = 1$.

Per il Teorema dei Carabinieri, $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$.

Siccome $x \mapsto \frac{\sin x}{x}$ è pari, allora $\lim_{x \to 0^-} \frac{\sin x}{x} = 1$, cioè

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

⊜

2.12 Limiti di funzioni monotone (D)

Teorema 2.4

Siano $a, b \in \overline{\mathbb{R}}$ e sia $f:]a, b[\to \mathbb{R}$ una funzione. Si ha

- 1. Se f è crescente (cioè per ogni $x_1, x_2 \in]a, b[$ con $x_1 \leq x_2$ si ha $f(x_1) \leq f(x_2)$) Allora:

 - $\lim_{x \to b^-} f(x)$ esiste e si ha $\lim_{x \to b^-} f(x) = \sup\{f(x) : x \in]a, b[\ \}$ $\lim_{x \to a^+} f(x)$ esiste e si ha $\lim_{x \to a^+} f(x) = \inf\{f(x) : x \in]a, b[\ \}$
- 2. Se f è decrescente (cioè per ogni $x_1, x_2 \in]a, b[$ con $x_1 \le x_2$ si ha $f(x_2) \le f(x_1)$) Allora:

 - $\lim_{x \to b^-} f(x)$ esiste e si ha $\lim_{x \to b^-} f(x) = \inf\{f(x) : x \in]a, b[\}$ $\lim_{x \to a^+} f(x)$ esiste e si ha $\lim_{x \to a^+} f(x) = \sup\{f(x) : x \in]a, b[\}$

Dimostrazione: Caso 2) , $\lim_{x \to a^+} f(x) = \sup\{f(x) : x \in]a,b[\ \}$, $a,b \in \mathbb{R}$ Due possibilità: 1) $S = +\infty$, 2) $S \in \mathbb{R}$, con $S = \sup\{f(x) : x \in]a,b[\ \}$

- 1. La tesi è $\lim_{x \to a} f(x) = +\infty$, cioè per ogni $N \in \mathbb{R}$ esiste $\delta > 0$ tale che per ogni $x \in]a, a + \delta[$ si ha f(x) > N. L'ipotesi è:
 - f è decrescente
 - $\sup\{f(x).x \in]a,b[\} = +\infty$, cioè per ogni $N \in \mathbb{R}$ esiste $x_N \in]a,b[$ tale che $f(x_N) > N$

Ma se $x \in]a, x_N[$, siccome f è decrescente, $f(x) \ge f(x_N) > N$. Pongo $\delta = x_N - a$

2. $S = \sup\{f(x) : x \in [a, b]\} \in \mathbb{R}$

La tesi è: $\lim_{x\to a^+} f(x) = S \in \mathbb{R}$, cioè per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che se $x \in]a,a+\delta[$ allora $|f(x)-S| < \varepsilon$ (in questo caso siccome $f(x) \leq S$, $|f(x) - S| < \varepsilon$ si scrive come $(0 \leq) S - f(x) < \varepsilon$, cioè $f(x) > S - \varepsilon$ L'ipotesi è: f è decrescente e $\sup\{f(x):x\in]a,b[\ \}=S\in\mathbb{R},$ cioè $f(x)\leqslant S$ per ogni $x\in]a,b[$ e per ogni $\varepsilon > 0$ esiste $x_{\varepsilon} \in]a,b[$ tale che $f(x_{\varepsilon}) > S - \varepsilon$ Siccome f è decrescente, se $x \in]a, x_{\varepsilon}[, f(x) \ge f(x_{\varepsilon}) > S - \varepsilon.$ Per concludere basta porre $\delta = x_{\varepsilon} - a$.

☺

Limiti della somma (D) 2.13

Teorema 2.5

Siano $A \subseteq \mathbb{R}$, $x_0 \in \overline{\mathbb{R}}$ punto di accumulazione per $A \in f$, $g: A \to \mathbb{R}$ funzioni. Supponiamo che

$$\lim_{x \to x_o} f(x) = l_1 \in \mathbb{R} \qquad \text{e} \qquad \lim_{x \to x_o} g(x) = l_2 \in \mathbb{R}$$

Allora

$$\lim_{x\to x_o}(f(x)+g(x))=l_1+l_2$$

Dimostrazione: La tesi:

per ogni $\varepsilon > 0$ esiste un intorno V di x_0 tale che se $x \in A \cap V$ e $x \neq x_0$ allora $|f(x) + g(x) - (l_1 + l_2)| < \varepsilon$. Le ipotesi: per ogni $\alpha > 0$ esiste un intorno V_1 di x_0 tale che se $x \in A \cap V_1$ e $x \neq x_0$ allora $|f(x) - l_1| < \alpha$; per ogni $\alpha > 0$ esiste un intorno V_2 di x_0 tale che se $x \in A \cap V_2$ e $x \neq x_0$ allora $|g(x) - l_2| < \alpha$. Sia $\varepsilon > 0$. Applichiamo l'ipotesi con $\alpha = \frac{\varepsilon}{2}$. Esistono un intorno V_1 di x_0 e un intorno V_2 di x_0 tali che:

$$x \in A \cap V_1, x \neq x_0 \implies |f(x) - l_1| < \frac{\varepsilon}{2}$$

 $x \in A \cap V_2, x \neq x_0 \implies |g(x) - l_2| < \frac{\varepsilon}{2}$

Poniamo $V = V_1 \cap V_2$. Se $x \in A \cap V$ allora

$$|f(x) + g(x) - (l_1 + l_2)| = |f(x) - l_1 + g(x) - l_2|$$

$$\leq |f(x) - l_1| + |g(x) - l_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2.14 Limiti fondamentali derivanti da quello di sin x/x per x \rightarrow 0 (d)

1.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

(2)

Infatti:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)}{x^2} \cdot \frac{(1 + \cos x)}{(1 + \cos x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2} \cdot \frac{1}{(1 + \cos x)}$$
$$= \lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \frac{1}{(1 + \cos x)} = 1 \cdot \frac{1}{2} = \frac{1}{2}$$

2.

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

Infatti:

$$\lim_{x \to 0} \frac{\sin x}{\cos x} \cdot \frac{1}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = 1 \cdot 1 = 1$$

3.

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

Infatti:

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{y \to 0} \frac{y}{\sin y} = 1$$

$$y = \arcsin x$$

4.

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Da questo limite si deduce

- Sia $a \neq 0$. Allora $\lim_{x \to \pm \infty} \left(1 + \frac{a}{x}\right)^x = e^a$ Dim per a > 0: $\lim_{x \to \pm \infty} \left(1 + \frac{a}{x}\right)^x = \lim_{x \to \pm \infty} \left(\left(1 + \frac{a}{x}\right)^{\frac{x}{a}}\right)^a = e^a$
- $\lim_{x \to \pm \infty} (1 + ax)^{\frac{1}{x}} = e^a$ Infatti (a > 0): $\lim_{x \to \pm \infty} (1 + ax)^{\frac{1}{x}} = \lim_{x \to \pm \infty} \left(1 + \frac{a}{y}\right)^y = e^a$

5.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Infatti:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln\left[(1+x)^{\frac{1}{x}} \right] = \ln e = 1$$

6.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Infatti:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{y \to 0} \frac{y}{\ln(y + 1)} = 1$$

$$y = e^x - 1$$

$$x = \ln(y + 1)$$

7.

$$\lim_{x \to 0} \frac{(1-x)^{\alpha} - 1}{x} = \alpha$$

- Se $\alpha = 0$ è ovvio, perché il numeratore è 0.
- Se $\alpha \neq 0$:

$$\lim_{x \to 0} \frac{(1-x)^{\alpha} - 1}{x} = \lim_{y \to 0} \frac{e^{\alpha y} - 1}{e^{y} - 1} =$$

$$y = \ln(1+x)$$

$$(1+x)^{\alpha} = e^{\alpha y}$$

$$=\lim_{y\to 0}\alpha\cdot\frac{e^{\alpha y}-1}{\alpha y}\cdot\frac{y}{e^y-1}=\alpha\cdot 1\cdot 1=\alpha$$

8.

$$\lim_{x \to 0} \frac{\sinh x}{x} = 1$$

Infatti:

$$\lim_{x \to 0} \frac{\sinh x}{x} = \lim_{x \to 0} \frac{e^x - e^{-x}}{2x} = \lim_{x \to 0} \frac{1}{e^x} \cdot \frac{e^{2x} - 1}{2x} = 1$$

9.

$$\lim_{x \to 0} \frac{\cosh x - 1}{x^2} = \frac{1}{2}$$

Infatti:

$$\lim_{x \to 0} \frac{\cosh x - 1}{x^2} = \lim_{x \to 0} \frac{(\cosh x - 1)}{x^2} \cdot \frac{(\cosh x + 1)}{(\cosh x + 1)} = \lim_{x \to 0} \frac{\cosh^2 x - 1}{x^2} \cdot \frac{1}{(\cosh x + 1)}$$
$$= \lim_{x \to 0} \frac{\sinh^2 x}{x^2} \cdot \frac{1}{(\cosh x - 1)} = 1 \cdot \frac{1}{2} = \frac{1}{2}$$

2.15 Il limite di $(1 + \frac{1}{n})^n$ per $n \to \pm \infty$ (d)

Teorema 2.6

Il limite $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$ esiste finito. Tale limite viene chiamato "e" (= Numero di Nepero). Si ha che 2 < e < 3 ed $e \notin \mathbb{Q}$ (e = 2,718...).

Dimostrazione:

1. Dimostriamo che la successione $\left(1+\frac{1}{n}\right)^n$ è strettamente crescente, cioè dimostriamo che per ogni $n \in \mathbb{N}$, $n \ge 1$, si ha

$$\left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1}$$

Sia $n \in \mathbb{N}$, $n \ge 1$, si ha

$$\left(1 + \frac{1}{n}\right)^{n} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{n}\right)^{k} \cdot 1^{n-k} = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^{k}}$$

$$= \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \frac{1}{n^{k}} = \sum_{k=0}^{n} \underbrace{\frac{n \cdot (n-1) \cdots (n-k+1)}{k!}}_{k!} \frac{1}{n^{k}}$$

$$= \sum_{k=0}^{n} \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-k+1}{n+1} \frac{1}{k!}$$

$$\leq \sum_{k=0}^{n} \frac{n+1}{n+1} \cdot \frac{n}{n+1} \cdots \frac{n+1-k+1}{n+1} \frac{1}{k!} =$$

$$= \sum_{k=0}^{n} \binom{n+1}{k} \frac{1}{(n+1)^{k}}$$

$$< \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{1}{(n+1)^{k}} = \left(1 + \frac{1}{n+1}\right)^{n+1}$$

2. Mostriamo che $\left(1+\frac{1}{n}\right)^n < 3$ per ogni $n \in \mathbb{N}, n \ge 1$. Infatti:

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = 1 + 1 + \sum_{k=2}^n \binom{n}{k} \frac{1}{n^k} =$$

$$= 2 + \sum_{k=2}^n \frac{n \cdot (n-1) \cdots (n-k+1)}{n \cdot n \cdots n} \cdot \frac{1}{k!} =$$

$$< 2 + \sum_{k=2}^n \frac{1}{k!} \le 2 + \sum_{k=2}^n \frac{1}{2^{k-1}} = 2 + \sum_{m=1}^{n-1} \frac{1}{2^m} =$$

$$= 1 + \sum_{m=0}^{n-1} \frac{1}{2^m} = 1 + \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 1 + 2\left(1 - \frac{1}{2^n}\right) = 3 - \frac{1}{2^{n-1}} < 3$$

3. $\left(1+\frac{1}{n}\right)^n > 2$ per ogni $n \in \mathbb{N}, n \ge 2$. Infatti, siccome la successione è crescente,

$$\left(1 + \frac{1}{n}\right)^n > (1+1)^1 = 2$$
 questo per $n = 1$.

4. Con i passi 1-3 abbiamo dimostrato che la successione $\left\{\left(1+\frac{1}{n}\right)^n:n\in\mathbb{N},n\geqslant1\right\}$ è (strettamente) monotona e limitata. Quindi è convergente e inoltre, per il teorema del confronto, il suo limite è compreso tra 2 e 3. > 2 perchè la successione è strettamente crescente. < 3 perchè (NO Dim) tale limite è irrazionale.

Limiti fondamentali conseguenti (d) 2.16

$$1. \lim_{n \to -\infty} \left(1 + \frac{1}{n} \right)^n = e$$

2.
$$\lim_{\substack{x \to +\infty \\ \text{Infatti: se } [x] \text{ è la parte intera di } x, \text{ allora}} (x \in \mathbb{R})$$

$$[x] \le x < [x] + 1$$

Quindi, per ogni $x \ge 1$ si ha

$$1 + \frac{1}{[x]+1} \le 1 + \frac{1}{x} \le 1 + \frac{1}{[x]}$$

Quindi:

$$\left(1+\frac{1}{[x]+1}\right)^{[x]} \leqslant \left(1+\frac{1}{[x]+1}\right)^x \leqslant \left(1+\frac{1}{x}\right)^x \leqslant \left(1+\frac{1}{[x]}\right)^x \leqslant \left(1+\frac{1}{[x]}\right)^{[x]+1}$$

Inoltre,
$$\lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]} = \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]+1} \cdot \frac{1}{1 + \frac{1}{[x]+1}} = e$$
.

Analogamente,
$$\lim_{x\to +\infty} \left(1+\frac{1}{[x]}\right)^{[x]+1}=e\,.$$

Quindi, per Carabinieri,
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$$
.

Lo stesso ragionamento delle successioni mostra che $\lim_{r \to -\infty} \left(1 + \frac{1}{r}\right)^x = e$

Principio di sostituzione degli infinitesimi e degli infiniti (D) 2.17

Siano $f, f_1, g, g_1 : A \to \mathbb{R}$ e $x_0 \in \overline{\mathbb{R}}$ di accumulazione per A. Supponiamo che f_1, g, g_1 siano $\neq 0$ definitivamente per $x \to x_0$.

•
$$f(x) - f_1(x) = o(f_1(x)) \text{ per } x \to x_0$$

 $[f(x) = f_1(x) + o(f_1(x)) \text{ per } x \to x_0]$
• $g(x) = g_1(x) + o(g_1(x)) \text{ per } x \to x_0$

•
$$g(x) = g_1(x) + o(g_1(x))$$
 per $x \to x_0$

Allora, se $\lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$ esiste, si ha

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$$

Dimostrazione:

$$\lim_{x \to x_o} \frac{f(x)}{g(x)} = \lim_{x \to x_o} \frac{f_1(x) + o(f_1(x))}{g_1(x) + o(g_1(x))} =$$

$$\lim_{x \to x_o} \frac{f_1(x)}{g_1(x)} \frac{1 + \frac{o(f_1(x))}{f_1(x)}}{1 + \frac{o(g_1(x))}{g_1(x)}} = \lim_{x \to x_o} \frac{f_1(x)}{g_1(x)} \frac{1}{1} = l$$

⊜

2.18 Gerarchia degli infiniti tra le funzioni elementari (d)

Teorema 2.8

Sia a>1e sia $\alpha\in\mathbb{R}.$ Si ha

$$\lim_{x \to +\infty} \frac{x^{\alpha}}{a^x} = 0$$

Conseguenze:

1. per ogni $\alpha > 0$, $\beta \in \mathbb{R}$, a > 0, $a \neq 1$,

$$\lim_{x \to +\infty} \frac{|\log_a x|^{\beta}}{x^{\alpha}} = 0$$

Dimostrazione. Nel caso di a > 1

$$\lim_{x \to +\infty} \frac{(\log_a x)^{\beta}}{x^{\alpha}} = \lim_{y \to +\infty} \frac{y^{\beta}}{(a^y)^{\alpha}} = \lim_{y \to +\infty} \left(\frac{y^{\frac{\beta}{\alpha}}}{a^y}\right)^{\alpha} = 0$$
$$\log_a x = y$$

2. per ogni $\alpha > 0$, $\beta \in \mathbb{R}$, a > 0, $a \neq 1$,

$$\lim_{x \to 0^+} |\log_a x|^{\beta} x^{\alpha} = 0$$

☺

⊜

☺

Dimostrazione:

$$\lim_{x \to 0^+} |\log_a x|^{\beta} x^{\alpha} = \lim_{y \to +\infty} \left| \log_a \frac{1}{y} \right|^{\beta} \frac{1}{y^{\alpha}} = \lim_{y \to +\infty} \frac{|\log_a y|^{\beta}}{y^{\alpha}} = 0$$

$$y = \frac{1}{x}$$

3. per ogni $\alpha \in \mathbb{R}$, a > 1:

$$\lim_{x \to -\infty} |x|^{\alpha} a^x = 0$$

Dimostrazione:

$$\lim_{x \to -\infty} |x|^{\alpha} a^{x} = \lim_{y \to +\infty} |y|^{\alpha} a^{-y} = \lim_{x \to +\infty} \frac{y^{\alpha}}{a^{y}} = 0$$

$$y = -x$$

4. per ogni $\alpha \in \mathbb{R}$, a > 1:

$$\lim_{x \to 0} \frac{a^{-\frac{1}{|x|}}}{|x|^{\alpha}} = 0$$

Dimostrazione: NO

5. per ogni $\alpha \in \mathbb{R}$, 0 < a < 1:

$$\lim_{x \to +\infty} \frac{a^x}{x^{\alpha}} = 0 \qquad \qquad \lim_{x \to -\infty} \frac{a^x}{|x|^{\alpha}} = +\infty$$

Dimostrazione: NO

Capitolo 3

Successioni e serie numeriche

3.1 Gerarchia degli infiniti (d)

Teorema 3.1

Per $n \to +\infty$ si ha

$$\underbrace{(\log_b n)^\alpha = o(n^k) = o(a^n)}_{\text{già noti}} = \underbrace{o(n!) = o(n^n)}_{\text{da dimostrare}}$$

Dimostrazione: che, per ogni a > 0

$$\lim_{n \to +\infty} \frac{a^n}{n!} = 0$$

è ovvio per 0 < a < 1, perchè non è una forma indeterminata. (in particolare: $\lim_{n \to +\infty} n! = +\infty$, ad esempio perchè $n! \ge n \ \forall n \ge 1$) Non è ovvio se a > 1. Distinguiamo tre casi:

1. a = 2: vogliamo dimostrare che

$$\lim_{n \to +\infty} \frac{2^n}{n!} = 0$$

Si ha:

$$\frac{n!}{2^n} = \underbrace{\frac{n(n-1)(n-2) \cdot 2 \cdot 1}{\underbrace{2 \cdot 2 \cdot 2 \cdot \dots 2 \cdot 2}}}_{n-1 \text{ fattori}} = \frac{1}{2} \cdot \frac{n}{2} \cdot \underbrace{\frac{n-1}{2}}_{\geqslant 1} \cdot \underbrace{\frac{n-2}{2}}_{\geqslant 1} \cdots \underbrace{\frac{2}{2}}_{\geqslant 1} \geqslant \frac{n}{4} \quad \forall n \geqslant 1$$

Quindi, per Carabinieri, $\lim_{n \to +\infty} \frac{2^n}{n!} = 0$.

2. 1 < a < 2. Allora $0 < a^n < 2^n$, per cui

$$0<\frac{a^n}{n!}<\frac{2^n}{n!}=0 \text{ per } n\to +\infty$$

Per Carabinieri, $\lim_{n\to+\infty} \frac{a^n}{n!} = 0$ anche per $a \in]1,2[$.

3. a > 2. Pongo $k = \lfloor a \rfloor + 1$ Sia

$$\frac{n!}{a^n} > \frac{n!}{k^n} = \underbrace{\frac{n(n-1)\cdots(n-(n-k))(k-1)!}{k^{n-k+1}\cdot k^{k-1}}}_{16}$$

$$\geqslant \frac{n}{k} \cdot \frac{n-1}{k} \cdots \frac{k}{k} \cdot \frac{k-1}{k^{k-1}} \geqslant \frac{n}{k} \cdot \frac{(k-1)!}{k^{k-1}} \to +\infty$$

Per Carabiniere, $\lim_{n\to+\infty} \frac{n!}{a^n} = +\infty$ anche per a > 2

Dimostrazione: che $\lim_{n \to +\infty} \frac{n!}{n^n} = 0$ Infatti,

$$\frac{n^n}{n!} = \underbrace{\frac{\overbrace{n \cdot n \cdot \cdots n}^{n \text{ fattori}}}{\underbrace{n \cdot (n-1) \cdots 2 \cdot 1}}}_{n-1 \text{ fattori}} \ge n \to +\infty \text{ per } n \to +\infty$$

☺

⊜

Quindi, per Carabiniere, $\lim_{n\to+\infty} \frac{n^n}{n!} = +\infty$

Caratterizzazione del limite di funzioni con le successioni (d). 3.2

Teorema 3.2

Sia $f:A\to\mathbb{R}$ una funzione e sia $x_0\in\overline{\mathbb{R}}$ punto di accumulazione per A. Sia $\ell\in\overline{\mathbb{R}}$. Le seguenti affermazioni

- 1. $\lim_{x \to x_0} f(x) = \ell;$
- 2. per ogni successione $\{x_n:n\in\mathbb{N}\}$ tale che:
 - $x_n \in A$ per ogni $n \in \mathbb{N}$;
 - $x_n \neq x_0$ definitivamente per $n \to +\infty$;
 - $\bullet \lim_{n \to +\infty} x_n = x_0.$

Si ha: $\lim_{n \to +\infty} f(x_n) = \ell$

$Dimostrazione: 1) \implies 2$

Segue dal teorema sul limite delle funzioni composte: $\{x_n\}$ è $g: \mathbb{N} \to \mathbb{R}$, $g(n) = x_n$, per cui $f(x_n) = f(g(n))$. Se $n \to +\infty$, $g(n) = x_n \to x_0$, $g(n) \neq x_0$ definitivamente per $n \to +\infty$ e quindi $f(g(n)) \to \ell$. $2) \implies 1$

Supponiamo per assurdo che non sia vero che $\lim_{x\to x_0} f(x) = \ell$, cioè non è vero che per ogni intorno U di ℓ esiste un

intorno V di x_0 tale che se $x \in A \cap V$ e $x \neq x_0$, allora $f(x) \in U$, cioè esiste un intorno \overline{U} di ℓ tale che per ogni intorno V di x_0 esiste $\overline{x} \in A \cap V$, $\overline{x} \neq x_0$ tale che $f(\overline{x}) \in \overline{U}$.

Usando l'ultima affermazione voglio costruire una successione $\{\overline{x}_n : n \in \mathbb{N}\}$ tale che $\overline{x}_n \in A$ per ogni $n, \overline{x}_n \neq x_0$ definitivamente per $n \to +\infty$, $\lim_{n \to +\infty} \overline{x}_n = x_0$ MA $f(\overline{x}_n) \notin \overline{U}$, cioè $\lim_{n \to +\infty} f(x_n)$ non esiste oppure è ℓ .

La costruzione della successione $\{\overline{x}_n : n \in \mathbb{N}\}$ dipende da come sono fatti gli intorni sferici di x_0 , quindi ci sono tre casi: a) $x_0 \in \mathbb{R}$, b) $x_0 = +\infty$, c) $x_0 = -\infty$.

Caso a): esiste \overline{U} tale che per ogni $\delta > 0$ esiste $x_{\delta} \in A, x_{\delta} \neq x_{0}, |x_{\delta} - x_{0}| < \delta$ tale che $f(x_{\delta}) \notin \overline{U}$. Scelgo $\delta = \frac{1}{n}$ e pongo $\overline{x}_n = x_{\frac{1}{n}}$. Si ha $|\overline{x}_n - x_0| < \frac{1}{n}$ e quindi $\lim_{n \to +\infty} \overline{x}_n = x_0$. Per costruzione $f(\overline{x}_n) \notin \overline{U}$ e quindi ho negato

Caso b): esiste \overline{U} tale che per ogni $M \in \mathbb{R}$ esiste $x_M \in A, x_M > M$ tale che $f(x_M) \notin \overline{U}$. Scelgo M = n e pongo $\overline{x}_n = x_{M=n}$. Si ha $\overline{x}_n > M$ e $f(x_M) \notin \overline{U}$, cioè ho negato l'ipotesi. ⊜

Caso c) esercizio (scelgo le semirette $]-\infty,-n[$).

3.3 Sottosuccessioni e teorema di Bolzano-Weierstrass (d) COMPLE-TARE

3.3.1 Definizione di sottosuccessione

Definizione 3.1

Sia $\{a_n:n\in\mathbb{N}\}$ una successione reale e sia $\{n_k:k\in\mathbb{N}\}$ una successione di numeri naturali, tale che $\lim_{k\to+\infty}n_k=+\infty$.

La successione $\{a_{n_k}: n \in \mathbb{N}\}\$ si dice sottosuccessione di $\{a_n: n \in \mathbb{N}\}.$

Esempio.

 $a_n = (-1)^n$ ammette due sottosuccessioni costanti (in realtà ne ammette infinite):

$$(-1)^{2k} = 1 \ \forall k \in \mathbb{N}$$

$$(-1)^{2k+1} = -1 \ \forall k \in \mathbb{N}$$

3.3.2 Teorema di Bolzano-Weierstrass

CONTINUA

3.4 Carattere e somma di una serie geometrica (D)

Teorema 3.3

Sia $q \in \mathbb{R}$. Si ha:

$$\sum_{k=0}^{+\infty} q^k = \lim_{n \to +\infty} \sum_{k=0}^n q^k = \lim_{n \to +\infty} \frac{1 - q^{n+1}}{1 - q} = \begin{cases} = \frac{1}{1 - q} & \text{se } |q| < 1 \\ = +\infty & \text{se } q \ge 1 \\ \not\equiv \text{e la somma } S_n \text{ è limitata} & \text{se } q = -1 \\ \not\equiv \text{e la somma } S_n \text{ è illimitata} & \text{se } q < -1 \end{cases}$$

Dimostrazione: vari casi:

- Se q=1, le somme parziali S_n sono: $S_0=1, S_1=1+1, \ldots, S_n=S_{n-1}+1^n=n+1$, quindi $\lim_{n\to+\infty}S_n=+\infty$, cioè la serie geometrica q=1 è divergente.
- Se $q \neq 1$: La somma parziale n-esima relativa alla successione q^n è $\sum_{k=0}^n q^k = \frac{1-q^n+1}{1-q}$ già calcolata per induzione.

(3)

3.5 Carattere della somma di serie convergenti e del prodotto di una serie per una costante (d)

Proposizione 3.1

Siano $\sum_{n=0}^{+\infty}a_n,\,\sum_{n=0}^{+\infty}b_n$ due serie convergenti a A e B e siano $\alpha,\beta\in\mathbb{R}.$ Allora:

$$\sum_{n=0}^{+\infty} (\alpha a_n + \beta b_n) = \alpha A + \beta B$$

Dimostrazione:

$$\sum_{n=0}^{+\infty} (\alpha a_n + \beta b_n) = \lim_{n \to +\infty} \sum_{k=0}^{n} (\alpha a_k + \beta b_k) = \lim_{n \to +\infty} (\alpha \sum_{k=0}^{n} a_k + \beta \sum_{k=0}^{n} b_k) =$$

$$= \alpha \lim_{n \to +\infty} \sum_{k=0}^{n} a_k + \beta \lim_{n \to +\infty} \sum_{k=0}^{n} b_k = \alpha A + \beta B$$

☺

☺

3.6 Limite del termine generale di una serie convergente (D)

Proposizione 3.2

Condizione necessaria ma non sufficiente per la convergenza di una serie:

- 1. Se una serie converge, allora il suo resto $n\mbox{-esimo}$ è infinitesimo;
- $2.\,$ Se una serie converge, allora il suo termine generale è infinitesimo.

Dimostrazione: 1. $R_n = S - S_n \xrightarrow{n \to +\infty} S - S = 0$.

$$2. \ a_n = S_n - S_{n-1} \xrightarrow{n \to +\infty} S - S = 0$$

3.7 Carattere della serie armonica (D)

La serie armonica, cioè la serie $\sum_{n=1}^{+\infty} \frac{1}{n}$, è divergente. Infatti il suo resto n-esimo è:

$$\sum_{k=n+1}^{+\infty} \frac{1}{k} \ge \sum_{n+1}^{2n} \frac{1}{k} \ge \frac{n}{2n} = \frac{1}{2}$$

quindi non tende a 0.

3.8 Carattere della serie armonica generalizzata (D)

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

converge se e solo se $\alpha > 1$.

Carattere di una serie a termini definitivamente non negativi (D) 3.9

Teorema 3.4

Una serie a termini di segno costante non è mai indeterminata: è convergente oppure divergente.

Dimostrazione: Ricordiamo che il comportamento riguardo alla convergenza (= il "carattere") di una serie è il comportamento asintotico della successione delle somme parziali.

Nel caso in cui la serie abbia termini di segno costante, la successione delle somme parziali è monotona, e quindi ha sempre limite per $n \to +\infty$, cioè la serie non può essere indeterminata.

Nota:-

Perciò la serie armonica, che non è convergente in quanto resto n-esimo non è infinitesimo, è per forza divergente:

$$\sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$$

Definizione di convergenza assoluta e sua relazione con la con-3.10vergenza semplice (D)

Definizione 3.2

Si dice che la serie $\sum_{n=0}^{+\infty} a_n$ è assolutamente convergente se la serie $\sum_{n=0}^{+\infty} |a_n|$ è convergente.

Teorema 3.5

Se la serie $\sum_{n=0}^{\infty} a_n$ converge assolutamente, allora converge e

$$\left| \sum_{n=0}^{+\infty} a_n \right| \leqslant \sum_{n=0}^{+\infty} |a_n|$$

Dimostrazione: (è diversa da quella del libro)

Per ipotesi $\lim_{n\to +\infty}\sum_{k=0}^n |a_k| = \sum_{n=0}^{+\infty} |a_n| = A \in \mathbb{R}$

Chiamiamo $A_n = \sum_{k=0}^{n} |a_k|$ e $B_n = \sum_{k=0}^{n} a_k$ Ci interessa dimostrare che $\lim_{n \to +\infty} B_n$ esiste finito, sapendo che $\lim_{n \to +\infty} A_n$ esiste finito. Osserviamo che per ogni $k \in \mathbb{N}$ si ha $-|a_k| \le a_k \le |a_k|$, cioè $a_k \le |a_k|$ e $-a_k \le |a_k|$ Quindi $0 \le |a_k| - a_k \le 2|a_k|$.

Perciò possiamo applicare il criterio del confronto alla serie a termini ≥ 0

$$\sum_{k=0}^{+\infty} (|a_k| - a_k) \le 2 \sum_{k=0}^{+\infty} |a_k| < +\infty$$

Ne deduciamo che la serie $\sum_{k=0}^{\infty} (|a_k| - a_k)$ è convergente, cioè

$$+\infty > \lim_{n \to +\infty} \sum_{k=0}^{+\infty} (|a_k| - a_k) = \lim_{n \to +\infty} (A_n - B_n) = S \in \mathbb{R}$$

Perciò

$$\lim_{n \to +\infty} B_n = \lim_{n \to +\infty} (B_n - A_n + A_n) = -S + A \in \mathbb{R}$$

cioè esiste finito, come volevamo dimostrare.

☺

3.11Criterio del confronto (D)

Siano $\sum_{n=0}^{+\infty} a_n$ e $\sum_{n=0}^{+\infty} b_n$ due serie tali che $0 \le a_n \le b_n$ per ogni $n \in \mathbb{N}$ (oppure definitivamente per $n \to \infty$)

1. se
$$\sum_{n=0}^{+\infty} b_n$$
 converge $(\sum_{n=0}^{+\infty} b_n < +\infty)$, allora anche $\sum_{n=0}^{+\infty} a_n$ converge;

2. se
$$\sum_{n=0}^{+\infty} a_n$$
 diverge $(\sum_{n=0}^{+\infty} b_n = +\infty)$, allora anche $\sum_{n=0}^{+\infty} b_n$ diverge.

Dimostrazione: Poniamo $A_n = \sum_{k=0}^{n} a_k \in B_n = \sum_{k=0}^{n} b_k$.

Siccome $a_k, b_k \ge 0$ per ogni k, allora le due successioni $\{A_n\}$ e $\{B_n\}$ sono crescenti. Siccome $a_k \le b_k \forall k$, allora $A_n \le B_n \forall n$. Perciò, se la successioni B_n è convergente $(\lim_{n \to +\infty} B_n = \sup\{B_n : n \in \mathbb{N}\} = B \in \mathbb{R})$ allora $\sup\{A_n:n\in\mathbb{N}\}\leqslant B<+\infty.$

Siccome $\sup\{A_n: n \in \mathbb{N}\} = \lim_{n \to +\infty} A_n$, allora $\sum a_n < +\infty$. Simmetricamente, se $+\infty = \lim_{n \to +\infty} A_n = \sup\{A_n: n \in \mathbb{N}\}$ allora anche $\sup\{B_n: n \in \mathbb{N}\} = +\infty$, cioè $\sum b_n = +\infty$

Criterio asintotico del confronto (D) 3.12

Siano $\{a_n\}, \{b_n\}$ successioni con termini > 0 e tali che

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \in \overline{\mathbb{R}} \qquad \text{cioè il limite esiste}$$

Allora:

1. Se
$$\ell \in \mathbb{R}, \ell > 0$$
 [cioè $a_n \sim b_n$ per $n \to +\infty$] allora $\sum_{n=0}^{+\infty} a_n$ converge se e solo se $\sum_{n=0}^{+\infty} b_n$ converge;

2. Se
$$\ell=0$$
 [cioè se $a_n=o(b_n)$ per $n\to\infty$] e $\sum_{n=0}^{+\infty}b_n<+\infty$ allora anche $\sum_{n=0}^{+\infty}a_n<+\infty$

3. Se
$$\ell = 0$$
 e $\sum_{n=0}^{+\infty} a_n = +\infty$, allora anche $\sum_{n=0}^{+\infty} b_n = +\infty$

Nota:-

Il criterio ci dice, in sostanza, che - per le serie a termini positivi - la comvergenza dipende solo da come va a zero il termine generale.

Dimostrazione: (è un corollario del teorema del confronto)

1. Ipotesi: $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell \in \mathbb{R} \setminus \{0\}$ Tesi: $\sum a_n \in \sum b_n$ hanno lo stesso carattere.

Usiamo la definizione di limite con $\varepsilon = \frac{\ell}{2}$: esiste \overline{n} tale che per ogni $n \ge \overline{n}$ si ha

$$\left|\frac{a_n}{b_n} - \ell\right| < \frac{\ell}{2}$$

cioè

$$\frac{\ell}{2} < \frac{a_n}{b_n} < \frac{3}{2}\ell$$

cioè

$$\frac{\ell}{2}b_n < a_n < \frac{3}{2}\ell\ b_n$$

⊜

Si può applicare il criterio del confronto alle tre serie a termini positivi $\sum \frac{\ell}{2} b_n$, $\sum a_n$, $\sum \frac{3}{2} \ell b_n$. Risulta:

se
$$\sum b_n < +\infty$$
, allora $\sum \frac{3}{2}\ell \ b_n < +\infty$ e quindi $\sum a_n < +\infty$ se $\sum b_n = +\infty$, allora $\sum \frac{\ell}{2}b_n = +\infty$ e quindi $\sum a_n = +\infty$

Ipotesi: $\forall \varepsilon \exists n_{\varepsilon} : n > n_{\varepsilon} \Longrightarrow (0 <) \frac{a_n}{b_n} < \varepsilon$ Tesi: se $\sum a_n = +\infty$, allora $\sum b_n = +\infty$

se $\sum b_n < +\infty$, allora $\sum a_n < +\infty$

Usiamo l'ipotesi con $\varepsilon=1$: esiste \overline{n} tale che se $n>\overline{n}$ allora $\frac{a_n}{b_n}<1$, cioè $(0<)a_n< b_n$

La tesi segue immediatamente dal criterio del confronto.

3.13 Criterio del rapporto

Teorema 3.8

Sia $\{a_n : n \in \mathbb{N}\}\$ una successione a termini > 0 definitivamente per $n \to +\infty$). Si ha:

1. Se esiste $\ell < 1$ tale che $\frac{a_{n+1}}{a_n} < \ell$ definitivamente per $n \to +\infty$, allora $\sum_{n=1}^{+\infty} a_n < +\infty$;

2. Se $\frac{a_{n+1}}{a} \ge 1$ definitivamente per $n \to +\infty$, allora la serie diverge e $a_n \to +\infty$ per $n \to +\infty$.

Dimostrazione: NO

3.14Criterio del rapporto asintotico

Teorema 3.9

Sia $\{a_n:n\in\mathbb{N}\}$ una successione a termini >0 definitivamente per $n\to+\infty$). Si ha:

1. Se
$$\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} = \ell < 1$$
, allora $\sum_{n=0}^{+\infty} a_n < +\infty$;

2. Se
$$\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} = \ell > 1$$
, allora $\sum_{n=0}^{+\infty} a_n = +\infty$.

Dimostrazione: NO.

Anche questo criterio non da informazioni se $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1$

(

Criterio della radice (D) 3.15

Teorema 3.10

Sia $\{a_n : n \in \mathbb{N}\}$ una successione a termini ≥ 0 (definitivamente per $n \to +\infty$). Si ha:

- Se esiste ℓ < 1 tale che lim √an ≤ ℓ definitivamente per n → +∞ allora ∑ an < +∞.
 Se √an ≥ ℓ definitivamente per n → +∞ allora ∑ an = +∞.

Dimostrazione: .

1. $\lim_{n \to +\infty} \sqrt[n]{a_n} \le \ell$ equivale a $a_n \le \ell^n$.

Siccome $(0 \le)$ $\ell \le 1$, la serie $\sum_{n=0}^{+\infty} \ell^n < +\infty$ e quindi per il teorema del confronto, la serie a termini positivi $\sum a_n$ converge.

2. $\lim_{n\to+\infty} \sqrt[n]{a_n} \ge 1$ equivale ad $a_n \ge 1$. In particolare il termine generale della serie non è infinitesimo e quindi $\sum a_n = +\infty$.

3.16 Criterio asintotico della radice (D)

Teorema 3.11

Sia $\{a_n:n\in\mathbb{N}\}$ una successione a termini ≥ 0 (definitivamente per $n\to+\infty$). Si ha:

- 1. Se esiste $\ell < 1$ tale che $\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell$, allora $\sum a_n < +\infty$
- 2. Se esiste $\ell > 1$ tale che $\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell$, allora $\sum a_n = +\infty$ e $a_n \to +\infty$ per $n \to +\infty$

Dimostrazione:

1. Siccome $\ell < 1$, esiste $\varepsilon > 0$ tale che $\ell + \varepsilon < 1$. Siccome $\lim_{n\to +\infty} \sqrt[n]{a_n} = \ell$, in corrispondenza di questo ε esiste \overline{n} tale che se $n > \overline{n}$ allora

$$|\sqrt[n]{a_n} - \ell| < \varepsilon$$

in particolare, $\sqrt[n]{a_n} < \ell + \varepsilon$ (< 1).

Quindi, ponendo $\ell' = \ell + \varepsilon$ (< 1), ho ottenuto che $\sqrt[n]{a_n} < \ell'$ definitivamente per $n \to +\infty$. Per il criterio della radice, la serie converge.

2. Siccome $\ell > 1$, esiste $\varepsilon > 0$ tale che $\ell - \varepsilon > 1$. Siccome $\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell$, esiste $\overline{n} \in \mathbb{N}$ tale che se $n > \overline{n}$ allora $\sqrt[n]{a_n} > \ell - \varepsilon = \ell'$. Perciò $\sqrt[n]{a_n} > \ell'$ definitivamente per $n \to +\infty$, cioè $a_n > (\ell')^n \xrightarrow{n \to +\infty} +\infty$. In particolare, $\sum a_n = +\infty$.

⊜

Nota:-

Il criterio asintotico della radice non ci dà nessuna informazione nel caso in cui $\lim_{n\to+\infty} \sqrt[n]{a_n} = 1$. Infatti, questo criterio si basa sul confronto con una serie geometrica e se $\lim_{n\to+\infty} \sqrt[n]{a_n} = 1$ non si riesce a trovare una serie geometrica con cui fare il confronto.

Ci sono serie convergenti o divergenti per le quali il criterio asintotico della radice non dà informazioni (tipicamente quelle in cui il termine generale ha un ordine polinomiale).

$$\sum_{n=1}^{+\infty} \frac{1}{n} = +\infty, \qquad \sqrt[n]{a_n} = \frac{1}{\sqrt[n]{n}} \xrightarrow{n \to +\infty} 1 \quad (\sqrt[n]{n^k} \xrightarrow{n \to +\infty} 1 \forall k)$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} < +\infty, \qquad \sqrt[n]{a_n} = \frac{1}{\sqrt[n]{n^2}} \xrightarrow{n \to +\infty} 1$$

Quindi si vede che il criterio asintotico della radice non può dare informazioni sulla convergenza se $\lim_{n\to+\infty} \sqrt[n]{a_n} = 1$.

3.17 Criterio di Leibniz (D)

Teorema 3.12

Sia $\{a_n : n \in \mathbb{N}\}$ una successione monotona e infinitesima. (cioè $a_{n+1} \leq a_n$ per ogni n e $\lim_{n \to \infty} a_n = 0$, cioè " $a_n \downarrow 0$ " oppure $a_{n+1} \geq a_n$ per ogni n e $\lim_{n \to \infty} a_n = 0$, cioè " $a_n \uparrow 0$ ").

Allora $\sum_{n=0}^{+\infty} (-1)^n a_n$ converge.

Inoltre, detta S la somma della serie e detta S_n la somma parziale n-esima (cioè $S_n = \sum_{k=0}^n (-1)^k a_k$) si ha

 $|S - S_n| \le |a_{n+1}|$, cioè se al posto della somma della serie uso la somma parziale n-esima commetto un errore che - in valore assoluto - è minore o uguale del valore assoluto del primo termine trascurato.

Dimostrazione: Caso " $a_n \downarrow 0$ ".

Consideriamo separatamente le somme parziali con ultimo addendo di indice pari e di indice dispari, cioè

$$S_{2n} = \sum_{k=0}^{2n} (-1)^k a_k,$$
 $S_{2n+1} = \sum_{k=0}^{2n+1} (-1)^k a_k$

Osserviamo che $S_{2n+1} - S_{2n} = -a_{2n+1}$.

-consideriamo la successione $\{S_{2n}:n\in\mathbb{N}\}$ e ne studiamo la monotonia

$$S_{2(n+1)} = S_{2n}$$
 $-a_{2n+1} + a_{2n+2} \leqslant S_{2n}$ $\leqslant 0$ perchè $\{a_k\}$ è decrescente

cioè $n \longmapsto S_{2n}$ è decrescente.

-consideriamo la successione $\{S_{2n+1}:n\in\mathbb{N}\}$ e ne studiamo la monotonia

$$S_{2(n+1)+1} = S_{2n+1} + a_{2n+2} - a_{2n+3} \ge S_{2n+1}$$

$$\geqslant 0 \text{ perchè } \{a_k\} \text{ è decrescente}$$

cioè $n \longmapsto S_{2n+1}$ è crescente. Osserviamo che

$$S_1 \leqslant S_{2n-1} \leqslant S_{2n-1} + a_{2n} = S_{2n} \leqslant S_2$$

Quindi le due successioni $\{S_{2n}:n\in\mathbb{N}\}$ e $\{S_{2n+1}:n\in\mathbb{N}\}$ sono monotone e limitate, quindi sono convergenti. Le due successioni convergono allo stesso limite perché $|S_{2n}-S_{2n-1}|=a_{2n}=a_{2n}\xrightarrow{n\to+\infty}0$ per ipotesi. Quindi la successione $\{S_n:n\in\mathbb{N}\}$ converge, cioè la serie converge. La stima dell'errore. Sia S la somma della serie:

$$\sum_{n=0}^{+\infty} (-1)^n a_n = S = \inf\{S_{2n} : n \in \mathbb{N}\} = \sup\{S_{2n+1} : n \in \mathbb{N}\}$$

In particolare, $S_{2n+1} \leq S \leq S_{2n}$. Si ha

$$0 \le S_{2n} - S = \sum_{k=0}^{2n} (-1)^k a_k - \sum_{k=0}^{+\infty} (-1)^k a_k$$
$$\le \sum_{k=0}^{2n} (-1)^k a_k - \sum_{k=0}^{2n+1} (-1)^k a_k$$
$$= a_{2n+1} \qquad (= |a_{2n+1}|)$$

Analogamente,

$$0 \le S - S_{2n+1} \le S_{2n+2} - S_{2n+1} = a_{2n+2} \qquad (= |a_{2n+2}|)$$

⊜

Capitolo 4

Funzioni continue di una variabile reale

4.1 Definizione di funzione continua

Definizione 4.1

Sia $A \subseteq \mathbb{R}$ e sia $x_0 \in A$. Sia $f: A \to \mathbb{R}$. Si dice che f è continua in x_0 se $\lim_{x \to x_0} f(x) = f(x_0)$, cioè se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che se $x \in A$ e $|x - x_0| < \delta$, allora $|f(x) - f(x_0)| < \varepsilon$. Si dice che f è continua in A se f è continua in ogni $x_0 \in A$.

Significato intuitivo: Il grafico di f si disegna senza mai staccare la penna dal foglio.

4.2 Classificazione punti di discontinuità

Definizione 4.2

Sia $A \subseteq \mathbb{R}$ e sia $f : A \to \mathbb{R}$. Sia $x_0 \in A$ un punto in cui f non è continua oppure $x_0 \in \mathbb{R} \setminus A$ un punto di accumulazione di A.

1. Si dice che x_0 è un punto di discontinuità eliminabile se $\lim_{x \to x_0} f(x) = \ell$ esiste finito. In tal caso la nuova funzione:

$$\overline{f}(x) = \begin{cases} f(x) & \text{se } x \neq x_0 \\ \ell & \text{se } x = x_0 \end{cases}$$

è una funzione continua in x_0 (in altre parole è una estensione di f continua in x_0).

- 2. Si dice che f ha in x_0 una discontinuità di salto (o di prima specie) se $\lim_{x \to x_0^+} f(x)$ e $\lim_{x \to x_0^-} f(x)$ esistono finito e sono diversi.
- 3. Si dice che x_0 è un punto di discontinuità di seconda specie negli altri casi.

4.3 Teorema di Weierstrass (D)

Teorema 4.1

Sia [a,b] un intervallo chiuso e limitato e sia $f:[a,b]\to\mathbb{R}$ una funzione continua. Allora f ammette massimo e minimo in [a,b], cioè esistono $x_m,x_M\in[a,b]$ tali che

$$f(x_m) = \inf\{f(x) : x \in [a, b]\} = \min\{f(x) : x \in [a, b]\}$$

$$f(x_M) = \sup\{f(x) : x \in [a, b]\} = \max\{f(x) : x \in [a, b]\}$$

Nota:-

Osservazione sulle tre ipotesi:

- 1. Supponiamo che l'intervallo <u>non sia chiuso</u>: $f:]0,1[\to \mathbb{R}, f(x)=x$, che è evidentemente continua, ma $0=\inf\{f(x):x\in]0,1[\}$ non è il minimo dei valori di f in]0,1[perchè 0=f(0), ma $0\notin]0,1[$. Lo stesso per $1=\sup\{f(x):x\in]0,1[\}$, che non è il massimo di f in]0,1[, che non c'è.
- 2. Supponiamo che l'intervallo <u>non sia limitato</u>: $f: \mathbb{R} \to \mathbb{R}$, f(x) = x: $\sup = \{f(x) : x \in \mathbb{R}\} = +\infty$, $\inf = \{f(x) : x \in \mathbb{R}\} = -\infty$, cioè non ci sono nè massimo ne minimo.
- 3. Supponiamo che f non sia continua: $f:[-1,1] \to \mathbb{R}$,

$$f(x) = \begin{cases} x & \text{se } x < 0 \\ x - \frac{3}{2} & \text{se } x \ge 0 \end{cases}$$

 $\sup\{f(x):x\in[-1,1]\}=0$, ma 0 non è il massimo di f(x) in [-1,1], perchè non esiste alcun valore $x\in[-1,1]$ tale che f(x)=0.

Dimostrazione: Per il massimo. (per il min. è simmetrica). Il teorema è un corollario del teorema di Bolzano-Weierstrass.

Passo 1. Costruiamo una "successione massimizzante", cioè una successione $\{x_n : n \in \mathbb{N}\} \subset [a,b]$ tale che

$$\lim_{n \to +\infty} f(x_n) = \sup\{f(x) : x \in [a, b]\}$$

Sia $S = \sup\{f(x) : x \in [a,b]\}$ e sia $\{y_n : n \in \mathbb{N}\}$ una successione di numeri reali tale che $y_n < S$ per ogni S e $\lim_{n \to +\infty} y_n = S$.

(se $S \in \mathbb{R}$, prendo -ad esempio- $y_n = S - \frac{1}{n}$; se $S = +\infty$, prendo -ad esempio- $y_n = n$).

Siccome $y_n < \sup\{f(x) : x \in [a,b]\}$, esiste $x_n \in [a,b]$ tale che $S \ge f(x_n) > y_n$. Siccome $y_n \to S$, per Carabinieri anche $f(x_n) \to S$.

Passo 2. La successione $\{x_n : n \in \mathbb{N}\}$ è contenuta nell'intervallo limitato [a,b], e quindi è limitata. Per il teorema di Bolzano- Weierstrass esiste una sottosuccessione convergente, cioè esiste una sottosuccessione $\{x_{n_k} : k \in \mathbb{N}\}$ di $\{x_n : n \in \mathbb{N}\}$ ed esiste \overline{x} tale che $\lim_{k \to +\infty} x_{n_k} = \overline{x}$. Per il teorema del confronto, $\overline{x} \in [a,b]$ (perchè [a,b] è chiuso).

Infatti $a \leq x_{n_k} \leq b$ per ogni k. Per il teorema del confronto, $a \leq \overline{x} \leq b$.

Per costruzione, $\lim_{k\to +\infty} x_{n_k} = \sup\{f(x) : x \in [a,b]\}$. Siccome f è continua, $\lim_{k\to +\infty} x_{n_k} = f(\overline{x})$. Quindi $f(\overline{x}) = \sup\{f(x) : x \in [a,b]\}$, cioè \overline{x} è un punto di massimo per f.

4.4 Teorema di Bolzano o degli zeri (D)

Teorema 4.2

Sia [a,b] un intervallo chiuso e limitato di \mathbb{R} e sia $f:[a,b] \to \mathbb{R}$ una funzione continua. Supponiamo che f(a)f(b) < 0 (cioè f assume agli estremi dell'intervallo valori di segno diverso). Allora esiste $\overline{x} \in]a,b[$ tale che $f(\overline{x}) = 0$

Dimostrazione: Metodo di Bisezione. Caso f(a) > 0, f(b) < 0.

Poniamo $c = \frac{a+b}{2}$. Ci sono tre casi:

- 1. Se f(c) = 0, ho trovato (per caso!) quello che volevo;
- 2. Se f(c) > 0, pongo $a_1 = c$ e $b_1 = b$, $b_1 a_1 = \frac{b-a}{2}$ e ho $f(a_1)f(b_1) < 0$;
- 3. Se f(c) < 0, pongo $a_1 = a$ e $b_1 = c$, $b_1 a_1 = \frac{b-a}{2}$ e ho $f(a_1)f(b_1) < 0$;

Costruiamo in modo ricorsivo una successione di intervalli $[a_n, b_n]$ tali che: o $f(a_n) = 0$ o $f(b_n) = 0$ oppure $f(a_n) > 0$ e $f(b_n) < 0$ e $f(a_n) = 0$ oppure $f(a_n) > 0$ e $f(a_n) = 0$ o $f(a_n) = 0$ oppure $f(a_n) = 0$ oppure $f(a_n) = 0$ oppure $f(a_n) = 0$ of $f(a_n) = 0$ oppure $f(a_n) =$

 $-[a_1,b_1]$ già costruito con queste proprietà.

-Supponiamo di aver costruito questa successione di intervalli fino all'indice n e costruiamo $[a_{n+1}, b_{n+1}]$ con queste proprietà: poniamo $c_n = \frac{a_n + b_n}{2^n}$.

Se $f(c_n) = 0$, stop.

Se $f(c_n) > 0$ pongo $a_{n+1} = c_n$ e $b_{n+1} = b_n$.

Se $f(c_n) < 0$ pongo $a_{n+1} = a_n$ e $b_{n+1} = c_n$.

Siccome gli intervalli $[a_n, b_n]$ sono annidati l'uno dentro l'altro, la successione $\{a_n\}$ è crescente e la successione $\{b_n\}$ è decrescente: si ha $a \le a_n < b_n \le b$ per ogni n, e - a meno che non mi sia fermato perchè uno dei c_n è uno zero di f - si ha $f(a_n) > 0$ e $f(b_n) < 0$.

Siccome $\{a_n\}$ e $\{b_n\}$ sono monotone e limitate, e quindi convergenti, esistono $\overline{a}, \overline{b} \in [a, b]$ tali che $a_n \longrightarrow \overline{a}$ e $b_n \longrightarrow \overline{b}$ per $n \to +\infty$.

☺

(3)

Siccome $b_n - a_n = \frac{b-a}{2^n} \longrightarrow 0$ per $n \to +\infty$, si ha che $\overline{a} = \overline{b} = \overline{x}$.

Siccome f è continua, $f(\overline{x}) = \lim_{n \to +\infty} f(a_n) \ge 0$ e $f(\overline{x}) = \lim_{n \to +\infty} f(b_n) \le 0$.

Quindi $f(\overline{x}) = 0$.

4.5 Teorema dei valori intermedi (D)

Teorema 4.3

Sia $I \subseteq \mathbb{R}$ un intervallo (non necessariamente chiuso e limitato) e sia $f: I \to \mathbb{R}$ una funzione continua. Allora $f(I)(=\{f(x): x \in I\})$ è un intervallo, cioè f assume tutti i valori compresi tra $\inf\{f(x): x \in I\}$ e $\sup\{f(x): x \in I\}$, cioè per ogni $y \in \inf\{f(x): x \in I\}$, sup $\{f(x): x \in I\}$ [esiste $x \in I$ tale che f(x) = y

🛉 Nota:- 🛉

cioè il grafico di f interseca almeno una volta la retta parallela all'asse x di ordinata = y

Dimostrazione: Siano $s = \inf\{f(x) : x \in I\}, S = \sup\{f(x) : x \in I\}.$

Se s = S, allora f è costante e la tesi vuota.

Se s < S: sia $\overline{y} \in]s, S[$. Vogliamo dimostrare che esiste $\overline{x} \in I$ tale che $f(\overline{x}) = \overline{y}$.

Siccome $\overline{y} > s$, esiste $x_1 \in I$ tale che $s < f(x_1) < \overline{y}$.

Siccome $\overline{y} < S$, esiste $x_2 \in I$ tale che $\overline{y} < f(x_2) < S$.

Chiamiamo I_0 l'intervallo chiuso e limitato di estremi x_1 e x_2 . Siccome I è un intervallo, $I_0 \subset I$. Poniamo $g(x) = f(x) - \overline{y}$. Si ha che $g(x_2) > 0$ e $g(x_1) < 0$, cioè agli estremi dell'intervallo I_0 la funzione g assume valori di segno diverso. Inoltre g è continua perchè è somma di una funzione continua e di una funzione costante.

Per il teorema degli zeri, esiste $\overline{x} \in I_0$ tale che $g(\overline{x}) = 0$, cioè $f(\overline{x}) = \overline{y}$.

Capitolo 5

Calcolo differenziale per funzioni di una variabile reale

5.1 Definizione di rapporto incrementale

Definizione 5.1

Sia $f: I \to \mathbb{R}$ una funzione; I intervallo. Siano $x_0 \in I$. Per ogni $x \in I$, $x \neq x_0$, la quantità $\frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$ si chiama rapporto incrementale, e misura il tasso di variazione della variabile dipendente f rispetto alla variabile indipendente x.

5.2 Definizione di derivata

Definizione 5.2

Si dice che f è derivabile in x_0 se

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 esiste finito.

Il rapporto incrementale si scrive anche come:

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$$

Significato geometrico: f è derivabile in x_0 se la retta $y = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$ è tangente al grafico di f in $(x_0, f(x_0))$.

5.3 Continuità di una funzione derivabile (D)

Proposizione 5.1

Se f è derivabile in x_0 , allora è continua in x_0 .

DERIVABILE in
$$x_0 \Longrightarrow \text{CONTINUA}$$
 in x_0
No viceversa

Dimostrazione: Vogliamo dimostrare che $\lim_{x\to x_0} f(x) = f(x_0)$, cioè che $\lim_{x\to x_0} (f(x) - f(x_0)) = 0$. Si ha

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) = 0$$

☺

5.4 Legame tra derivabilità e derivabilità da destra e da sinistra (d) COMPLETARE

5.5 Derivata della composizione di funzioni (D)

Teorema 5.1

Siano $f:I\to J$ e $g:J\to \mathbb{R},\, x_0\in I$ e $y_o\in I.$

Supponiamo che f sia derivabile in x_0 e g sia derivabile in $y_0 = f(x)$.

Allora $f \circ g$ è derivabile in x_0 e

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$$

Dimostrazione: Poniamo

$$\varphi(y) = \begin{cases} \frac{g(y) - g(f(x_0))}{y - f(x_0)} & \text{se } y \neq f(x_0) \\ g'(f(x_0)) & \text{se } y = f(x_0) \end{cases}$$

Osserviamo che φ è continua in $f(x_0)$: infatti

$$\lim_{y \to f(x_0)} \varphi(y) = \lim_{y \to f(x_0)} \frac{g(y) - g(f(x_0))}{y - f(x_0)} \quad = \quad g'(f(x_0))$$
per ipotesi

Allora

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \varphi(f(x)) \frac{f(x) - f(x_0)}{x - x_0}$$

e questa uguaglianza è vera anche quando $f(x) = f(x_0)$.

Passando al limite

$$\lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = \lim_{x \to x_0} \varphi(f(x)) \frac{f(x) - f(x_0)}{x - x_0} = g'(f(x_0))f'(x_0)$$

⊜

5.6 Calcolo delle derivate delle principali funzioni elementari (d)

1.
$$f(x) = c \quad \forall x \mid (f \text{ costante})$$

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{c - c}{x - x_0} = \frac{0}{x - x_0} \to 0$$

$$Dc = 0$$

$$2. \ \boxed{f(x) = ax + b}$$

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{ax + b - (ax_0 + b)}{x - x_0} = \frac{a(x - x_0)}{x - x_0} = a$$

3.
$$f(x) = x^m$$
, $m \in \mathbb{N}$, $m \ge 1$

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{(x_0+h)^m - x_0^m}{h} = \frac{\sum_{k=0}^m \binom{m}{k} x_0^{m-k} h^k - x_0^m}{h}$$

$$= \frac{1}{h} \left(x_0^m + m x_0^{m-1} h + \binom{m}{2} x_0^{m-2} h^2 + \dots + \binom{m}{m} h^m - x_0^m \right) =$$

$$= m x_0^{m-1} + o(1) \xrightarrow{h \to 0} m x_0^{m-1}$$

$$4. \quad f(x) = \sin x$$

$$\frac{\sin{(x_0+h)}-\sin{x_0}}{h} = \frac{\sin{x_0}\cos{h} + \cos{x_0}\sin{h} - \sin{x_0}}{h}$$
$$\sin{x_0}\frac{\cos{h} - 1}{h} + \cos{x_0}\frac{\sin{h}}{h} \xrightarrow{h \to 0} \cos{x_0}$$

$$5. \quad f(x) = \cos x$$

$$\frac{\cos\left(x_0+h\right)-\cos x_0}{h} = \frac{\cos x_0\cos h - \sin x_0\sin h - \cos x_0}{h} = \\ \cos x_0\frac{\cos h - 1}{h} - \sin x_0\frac{\sin h}{h} \xrightarrow{h\to 0} - \sin x_0$$

$$6. \ f(x) = e^x$$

$$\frac{e^{x_0+h}-e^{x_0}}{h}=e^{x_0}\frac{e^h-1}{h}\xrightarrow{h\to 0}e^{x_0}$$

7.
$$f(x) = \ln x, (x > 0)$$

$$\frac{\ln x_0 + h - \ln x_0}{h} = \frac{\ln x_0 + \ln (1 + \frac{h}{x_0}) - \ln x_0}{h} = \frac{\ln (1 + \frac{h}{x_0})}{h} \xrightarrow{h \to 0} \frac{1}{x_0}$$

8.
$$D \cosh x$$

$$= D\frac{e^x + e^{-x}}{2} = \frac{e^x - e^{-x}}{2} = \sinh x$$

9.
$$D \sinh x$$

$$= D\frac{e^x - e^{-x}}{2} = \frac{e^x + e^{-x}}{2} = \cosh x$$

10.
$$D \tan x$$

$$= D\frac{\sin x}{\cos x} = \frac{\cos x \cos x - \sin x(-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

11.
$$D \tanh x$$

$$= D\frac{\sinh x}{\cosh x} = \frac{\cosh^2 x - \sinh^2 x}{\cosh^2 x} = \frac{1}{\cosh^2 x} = 1 - \tanh^2 x$$

12.
$$D \cot x$$

$$= D\frac{\cos x}{\sin x} = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x} = -1 - \cot^2 x$$

5.7 Derivata del modulo di una funzione (D)

f(x) = |x| è derivabile in ogni $x \neq 0$ e non è derivabile in x = 0.

$$f(x) = \begin{cases} x & \text{per } x \ge 0\\ x & \text{per } x < 0 \end{cases}$$

Se x > 0, f'(x) = 1 perché se x > 0 e h è sufficientemente piccolo allora x + h > 0 per cui $\frac{|x + h| - |x|}{h} = 1 \xrightarrow{h \to 0} 1$ Se x < 0, f'(x) = -1 perché se x < 0 e h è sufficientemente piccolo allora x + h < 0 per cui $\frac{|x + h| - |x|}{h} = \frac{-x - h - (-x)}{h} = -1 \xrightarrow{h \to 0} -1$

Invece f(x) = |x| non è derivabile in x = 0 perchè

$$f'_{+}(0) = 1$$
 , $f'_{-}(0) = -1$

In sintesi: $D|x| = \operatorname{sgn}(x)$ per ogni $x \neq 0$

5.8 Teorema di Fermat (D)

(condizione necessaria per i punti di estremo)

Teorema 5.2

Sia I un intervallo APERTO e sia $x_0 \in I$ un punto di estremo locale per f. Supponiamo che f sia derivabile in x_0 . Allora f'(x) = 0

Nota:- commento

Dimostrazione: Sia x_0 un punto di massimo locale per f (per il minimo la dimostrazione è simmetrica). Siccome I è un intervallo aperto, esiste $\delta > 0$ tale che $]x_0 - \delta, x_0 + \delta[\subset I$ e inoltre per ogni $x \in]x_0 - \delta, x_0 + \delta[$ si ha $f(x) \leq f(x_0)$.

Il rapporto incrementale è:

$$\frac{f(x_0 + h) - f(x_0)}{h} \begin{cases} \leq 0 & \text{se } 0 < h < \delta \\ \geq 0 & \text{se } -\delta < h < 0 \end{cases}$$

D'altra parte

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) \qquad \text{esite}$$

e

$$f'(x_0) = f'_+(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$$
$$= f'_+(x_0) = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

Perciò

$$0 \le f'(x_0) \le 0$$

5.9 Teorema di Rolle (D)

Teorema 5.3

Sia $f:[a,b] \to \mathbb{R}$ tale che

- f è continua in [a,b]
- f è derivabile in]a, b[
 f(a) = f(b)

Allora esiste $\overline{x} \in]a,b[$ tale che $f'(\overline{x}) = 0$

Dimostrazione: Caso 1: f costante. Allora f'(x) = 0 per ogni $x \in [a, b]$.

Caso 2: f non costante. Per il teorema di Weierstrass, f ammette massimo e minimo in [a,b]. Almeno uno dei due è assunto all'interno dell'intervallo [a,b]: infatti, se entrambi fossero agli estremi, allora per l'ipotesi f(a) = f(b) il massimo coincide con il minimo e quindi f sarebbe costante. Per il teorema di Fermat nel punto di estremo interno, la derivata è nulla.

5.10Teorema di Lagrange (D)

Teorema 5.4

Sia $f:[a,b] \to \mathbb{R}$ tale che

- f è continua in [a,b]
- f è derivabile in]a,b[

Allora esiste $\overline{x} \in]a,b[$ tale che $f'(x) = \frac{f(b) - f(a)}{b - a}$

Dimostrazione: Definiamo $g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$.

Allora g è continua in [a,b] e g è derivabile in]a,b[, con $g'(x)=f'(x)-\frac{f(b)-f(a)}{b-a};$ inoltre g(a)=f(a), g(b)=f(b)-f(b)+f(a)=f(a). Quindi g soddisfa le ipotesi del teorema di Rolle. Perciò esiste $\overline{x}\in]a,b[$ tale che $g'(\overline{x})=0.$ Ma $g'(x)=f'(x)-\frac{f(b)-f(a)}{b-a},$ perciò g'(x)=0 significa $f'(x)=\frac{f(b)-f(a)}{b-a},$ che è la tesi. ☺

5.11Teorema di Cauchy

Teorema 5.5

Siano $f, g : [a, b] \to \mathbb{R}$ tali che:

- f, g sono continue in [a, b];
- f, g sono derivabili in]a, b[.

Allora esiste $\overline{x} \in]a, b[$ tale che

$$(f(b) - f(a))g'(\overline{x}) = (g(b) - g(a))f'(\overline{x})$$

No dim, ma si osserva che il teorema di Lagrange è un caso particolare del teorema di Cauchy: basta prendere g(x) = x

5.12 Costanza delle funzioni con derivata nulla (D)

Teorema 5.6

Sia I un intervallo e sia $f: I \to \mathbb{R}$ derivabile. Allora f è costante in I se e solo se f'(x) = 0 per ogni $x \in I$.

Dimostrazione: " \Longrightarrow ": ovvio.

" \Leftarrow ": Fissiamo arbitrariamente $x_1, x_2 \in I$, $x_1 \neq x_2$. Voglio dimostrare che $f(x_1) = f(x_2)$. Siccome x_1 e x_2 sono arbitrari, ne segue che f è costante in I.

Siccome I è un intervallo, allora $[x_1, x_2] \subset I$. Applichiamo il teorema di Lagrange a f in $[x_1, x_2]$: esiste $\overline{x} \in]x_1, x_2[$ tale che $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\overline{x})$. Ma $f'(\overline{x}) = 0$ e quindi $f(x_2) = f(x_1)$.

5.13 Legame tra monotonia e derivata prima (D)

Teorema 5.7

Sia I un intervallo e sia $f:I\to\mathbb{R}$ derivabile. Allora:

- f è crescente in I se e solo se $f'(x) \ge 0 \forall x \in I$;
- f è decrescente in I se e solo se $f'(x) \leq 0 \forall x \in I$;
- f è strettamente crescente in I se $f'(x) > 0 \forall x \in I$;
- f è strettamente decrescente in I se $f'(x) < 0 \forall x \in I$;

Dimostrazione: Solo il caso decrescente; il caso crescente è del tutto analogo.

1. Supponiamo che f sia decrescente e derivabile in I e dimostriamo che $f'(x) \leq 0$ per ogni $x \in I$. Infatti

$$f'(x) = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} \le 0$$

⊜

Supponiamo che $f'(x) \leq 0$ per ogni $x \in I$ e dimostriamo che f è decrescente in I.

Fissiamo $x_1, x_2 \in I$, $x_1 < x_2$, x_1, x_2 arbitrari. Vogliamo dimostrare che $f(x_1) \ge f(x_2)$.

Siccome I è un intervallo, $[x_1, x_2] \subset I$. Applico il teorema di Lagrange a f in $[x_1, x_2]$: esiste $\overline{x} \in]x_1, x_2[$ tale che $f(x_2) - f(x_1)$

 $f'(\overline{x}) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le 0$ per ipotesi. Siccome $x_2 > x_1$, necessariamente $f(x_2) \le f(x_1)$.

5.14 Teorema di De L'Hopital ((d) solo nel caso $\frac{0}{0}$)

Teorema 5.8

Siano $f,g:]a,b[\to \mathbb{R}$ (con $a,b\in \overline{\mathbb{R}}$) funzioni derivabili e tali che:

- 1. $g'(x) \neq 0$ per ogni $x \in]a, b[$;
- 2. $\lim_{\substack{x \to a^+ \\ x \to b^-}} f(x) = \lim_{\substack{x \to a^+ \\ x \to b^-}} g(x) = 0$ (oppure $\lim_{\substack{x \to a^+ \\ x \to b^-}} f(x) = \lim_{\substack{x \to a^+ \\ x \to b^-}} g(x) = +\infty$)

Allora, se

$$\lim_{\substack{x \to a^+ \\ x \to b^-}} \frac{f'(x)}{g'(x)} = \ell \in \overline{\mathbb{R}})$$

si ha anche

$$\lim_{\substack{x \to a^+ \\ x \to b^-}} \frac{f(x)}{g(x)} = \ell$$

Dimostrazione: Solo per il caso $\frac{0}{0}$, $x \to a^+$ Estendo f e g al punto a ponendo f(a) = g(a) = 0. Per f e g così estese sono soddisfatte le ipotesi del teorema di Cauchy.

Consideriamo $f, g: [a, \frac{a+b}{2}] \to \mathbb{R}$, che sono continue in $[a, \frac{a+b}{2}]$ e derivabili in $]a, \frac{a+b}{2}[$. Quindi per ogni $x < \frac{a+b}{2}$ esiste $c_x \in]a, x[$ tale che

$$\frac{f'(c_x)}{g'(c_x)} = \frac{f(x) - f(a)}{g(x) - g(a)}$$
 [Applico il teorema di Cauchy all'intervallo [a, b]]

Per l'ipotesi,

$$\ell = \lim_{y \to c_x} \frac{f'(y)}{g'(y)} = \lim_{x \to a^+} \frac{f'(c_x)}{g'(c_x)} = \lim_{x \to a^+} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a^+} \frac{f(x)}{g(x)}$$

☺

(3)

Teorema sul limite della derivata (d) 5.15

Siano]a,b[un intervallo aperto e $x_0 \in]a,b[$. Sia $f:]a,b[\to \mathbb{R}$ tale che:

- 1. f è continua in x_0
- 2. fè derivabile in $]a,b[\backslash\{x_0\}$
- 3. $\lim_{x \to x_0} f'(x) = \ell \in \mathbb{R}$ (esiste finito)

Allora f è derivabile in x_0 e $f'(x) = \ell$

La proposizione ci da una condizione sufficiente perchè f sia derivabile in x_0 con derivata continua in x_0

Dimostrazione:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x) = \ell$$

Siccome f è continua in x_0 , è una forma indeterminata $\frac{0}{0}$, \rightarrow H.

Definizione di funzione convessa e concava 5.16

Definizione 5.3

Sia I un intervallo e sia $f:I\to \mathbb{R}$ una funzione. Si dice che f è convessa in I se: per ogni $x_1,x_2\in I$ e per ongi $t\in [0,1]$ vale

$$f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2)$$

5.17 Formula di Taylor con il resto di Peano (D). COMPLETARE

Dimostrazione: Ipotesi: f è derivabile n-1 volte in I e n volte in x_0 Tesi:

$$\lim_{x \to x_0} \frac{f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}{(x - x_0)^n} = 0$$

Calcoliamo:

$$\lim_{x \to x_0} \frac{f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}{(x - x_0)^n} =$$
(5.1)

$$f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$= \lim_{x \to x_0} \frac{1}{(x - x_0)^n} = \begin{bmatrix} \frac{0}{0} \end{bmatrix} \text{ applico de l'Hopital}$$
(5.2)

$$\stackrel{\text{H}}{=} \lim_{x \to x_0} \frac{f(x) - f(x_0) - \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}{(x - x_0)^n} =$$
(5.3)

$$f(x) - f(x_0) - \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$= \lim_{x \to x_0} \frac{1}{(x - x_0)^n} = (5.4)$$

⊜

DA CONTINUARE E CONTROLLARE

5.18 Sviluppi delle funzioni elementari più comuni (D) COMPLE-

• $\cos x$, $\cos 0 = 1$, $D \cos x|_{x=0} = -\sin 0 = 0$, $D^2 \cos x|_{x=0} = -\cos 0 = 1$ $D^3 \cos x|_{x=0} = \sin 0 = 0$, $D^4 \cos x = \cos 0 = 1$, ...

Perciò $D^{2k+1}\cos x|_{x=0}=0$

TARE

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2n}) \text{ per } x \to 0$$

$$= 1 - \frac{1}{2} x^2 + \frac{1}{24} x^4 - \frac{1}{6!} x^6 + \dots + \frac{(-1)^n}{(2n)!} x^{2n} + o(x^{2n}) \text{ per } x \to 0$$

•
$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n) \text{ per } x \to 0$$

= $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n-1}}{n} x^n + o(x^n) \text{ per } x \to 0$

• $\sinh x =$

Capitolo 6

Calcolo integrale per funzioni di una variabile reale

6.1 Definizione di partizione e partizione puntata

Definizione 6.1

Sia [a,b] un intervallo chiuso e limitato. Una partizione P di [a,b] è una famiglia di punti:

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$$

L'ampiezza |P| della partizione è la massima lunghezza degli intervalli $[x_{i-1}, x_i], i = 1, ..., n$, cioè $|P| = \max\{x_i - x_{i-1} : i = 1, ..., n\}$. Una partizione puntata è una coppia (P, ξ) , dove $\xi = (\xi_1, ..., \xi_n)$ è una n-upla di numeri reali $\xi_1, ..., \xi_n$ tali che

$$\xi_i \in [x_{i-1,x_i}] : i = 1, \dots, n$$

6.2 Definizione di somma di Cauchy

Definizione 6.2

Sia $f:[a,b]\to\mathbb{R}$ una funzione limitata definita nell'intervallo chiuso e limitato [a,b]. La somma di Cauchy relativa alla partizione puntata (P,ξ) è il numero

$$S(f, P, \xi) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

6.3 Definizione di funzione integrabile secondo Cauchy-Reimann

Definizione 6.3

Siano $[a,b] \subset \mathbb{R}$ un intervallo chiuso e limitato e $f:[a,b] \to \mathbb{R}$ una funzione limitata. Si dice che f è integrabile secondo Cauchy-Reimann in [a,b], con valore dell'integrae uguale a $I \in \mathbb{R}$, se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni partizione puntata (P,ξ) di [a,b] con $|P| < \delta$, si ha $|S(f,P,\xi)| < \varepsilon$

In tal caso, I si chiama l'integrale di f in [a,b], che viene indicato con $\int_a^b f(x) dx$

Nota:-

Funzione "o pettine" di Dirichlet

$$f:[0,1]\to\mathbb{R}$$

$$f(x) = \begin{cases} 0 & \text{se } x \in \mathbb{Q} \cap [0, 1] \\ 1 & \text{se } x \notin \mathbb{Q} \land x \in [0, 1] \end{cases}$$

Questa funzione non è integrabile secondo Cauchy-Reimann perchè per ogni partizione P di [0,1] posso scegliere $\xi = (\xi_1, \ldots, \xi_n)$ tale che $\xi_i \in \mathbb{Q}$ per ogni i, oppure $\xi_i \notin \mathbb{Q}$ per ogni i [ad esempio]. Nel primo caso, $S(f, P, \xi) = 0$, mentre nel secondo caso $S(f, P, \xi) = 1$. Perciò è chiaro che questa funzione non può essere integrabile secondo C-R.

6.4 Teorema della media (D)

Teorema 6.1

Sia $f:[a,b]\to\mathbb{R}$ integrabile secondo Cauchy-Reimann. Siano

$$m = inf f(x) : x \in [a, b] \quad (\in \mathbb{R} \text{ perchè } f \text{ è limitata})$$

$$M = \sup f(x) : x \in [a, b] \ (\in \mathbb{R} \text{ perchè } f \text{ è limitata})$$

Allora

1.
$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

2. Se
$$f$$
 è continua, esiste $c \in [a, b]$ tale che

$$\int_a^b f(x) \, \mathrm{d}x = f(c)(b-a)$$

Nota:-

Si chiama teorema della media perchè la parte 2) dell'enunciato può essere scritta come: esiste $c \in [a, b]$ tale che

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x = f(c)$$
media integrale di f

Dimostrazione: 1.

Per ogni $x \in [a, b]$, si ha

$$m \leq f(x) \leq M$$

Per la monotonia dell'integrale

$$m(b-a) = \int_a^b m \, \mathrm{d}x \le \int_a^b f(x) \, \mathrm{d}x \le \int_a^b M \, \mathrm{d}x = M(b-a)$$

Dimostrazione: 2.

Per 1), il numero

$$m \le \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \le M$$

Siccome f è continua, per il teorema dei valori intermedi f assume tutti i valori compresi tra m e M, cioè esiste $c \in [a,b]$ tale che

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x$$

⊜

☺

6.5 Definizione di primitiva di una funzione

Definizione 6.4

Sia I un intervallo di \mathbb{R} e sia $f: I \to \mathbb{R}$ una funzione. Una funzione $F: I \to \mathbb{R}$, derivabile, si dice primitiva di f in I, se F'(x) = f(x) per ogni $x \in I$.

6.6 Legame tra primitive di una stessa funzione su un intervallo (D)

Teorema 6.2

Sia I un intervallo e sia $f: I \to \mathbb{R}$ una funzione.

Se F e G sono entrambe primitive di f in I, allora F - G è costante in I.

(cioè due primitive della stessa funzione in un intervallo differenziano tra loro per una costante infatti: $e^x + 15$ è una primitiva di e^x in \mathbb{R})

Dimostrazione: Definiamo H(x) = F(x) - G(x). Allora, per ogni $x \in I$, H'(x) = F'(x) - G'(x) = f(x) - g(x) = 0. Siccome H ha derivata nulla nell'intervallo I, allora H è costante.

6.7 Teorema fondamentale del calcolo = di Torricelli-Barrow (D)

Teorema 6.3

Sia $f:[a,b] \to \mathbb{R}$ continua. Sia $c \in [a,b]$ fissato.

Allora la funzione integrale $F_c: [a,b] \to \mathbb{R}$ è derivabile e $F'_c(x) = f(x)$ per ogni $x \in [a,b]$.

Nota:-

 $F'_c(x) = f(x)$ singifica che il tasso di crescita in x della funzione integrale (cioè dell'area della parte di piano compresa tra l'asse x e il grafico di f) è l'integrando in x.

Dimostrazione: Fissiamo $x \in [a, b]$. Vogliamo dimostrare che

$$\lim_{h\to 0} \frac{F_c(x+h) - F_c(x)}{h} = f(x)$$

Calcoliamo

$$\frac{F_c(x+h) - F_c(x)}{h} = \frac{1}{h} \left(\int_c^{x+h} f(t) dt - \int_c^x f(t) dt \right)$$

$$= \frac{1}{h} \left(\int_c^{x+h} f(t) dt + \int_x^c f(t) dt \right) [\text{Def. di integrale su un interval o orientato}]$$

$$= \frac{1}{h} \int_x^{x+h} f(t) dt [\text{Additività dell'integrale rispetto all'interval o di integrazione}]$$

$$= f(c_h).$$

Per il teorema della media integrale: siccome f è continua, esiste c_h compreso tra x e x + h tale che la media integrale di f nell'intervallo di estremi x e x + h è $f(c_h)$.

Quindi:

$$\lim_{h\to 0} \frac{F_c(x+h) - F_c(x)}{h} = f(x)$$

Perchè quando $h \to 0$, $c_h \to x$ ($x \le c_h \le x + h$ oppure $x + h \le c_h \le x$ a seconda del segno di h) e quindi, siccome f è continua,

$$\lim_{h \to 0} f(c_h) = f(x)$$

(2)

Nota:-

Il teorema fondamentale del calcolo integrale dice che - se f è continua in [a,b] - allora ogni sua funzione integrale è una primitiva di f.

6.8 Teorema fondamentale del calcolo integrale, II versione (D)

Teorema 6.4

Sia $f:[a,b] \to \mathbb{R}$ continua e sia F una primitiva di f. Allora

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \qquad \underbrace{=}_{\text{notazione}} F(x) \Big|_{0}^{1} = [F(x)]_{x=a}^{x=b}$$

Dimostrazione: Poniamo $G(x) = \int_a^x f(t) dt$. Dal teorema precedente, sappiamo che G è una primitiva di f. Quindi la differenza tra F e G è costante in [a,b], cioè esiste $k \in \mathbb{R}$ tale che

$$F(x) = G(x) + k$$
 per ogni $x \in [a, b]$

Allora

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(t) dt - \int_{a}^{a} f(t) dt = G(b) - G(a)$$
$$= F(b) - k - (F(a) - k) = F(b) - F(a)$$

(2)

6.9 Integrazione per parti (d)

Proposizione 6.1

Segue dalla regola di derivazione del prodotto. Se $f,g:[a,b]\to\mathbb{R}$ sono di classe C^1 , allora

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

Quindi

$$\int_{a}^{b} (fg)'(x) dx = \int_{a}^{b} f'(x)g(x) dx + \int_{a}^{b} f(x)g'(x) dx$$

Per il teorema fondamentale del calcolo si ottiene

$$= f(x)g(x)\Big|_a^b$$

Perciò, se $f,g\in C^1([a,b])$, allora

$$\int_{a}^{b} f(x)g'(x) \, \mathrm{d}x = f(x)g(x) \Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, \mathrm{d}x$$

Versione "indefinita":

$$\int f(x)g'(x)\,\mathrm{d}x = f(x)g(x) - \int f'(x)g(x)\,\mathrm{d}x$$

6.10 Integrazione per sostituzione (d)

Proposizione 6.2

Segue dalla derivazione della funzione composta.

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua e sia F una sa primitiva. Sia $\varphi:[c,d]\to[a,b]$ di classe C^1 e tale che $\varphi(c)=a,\,\varphi(d)=b$.

Allora

$$\frac{\mathrm{d}}{\mathrm{d}t}F(\varphi(t)) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$$

Perciò

$$\int_c^d \frac{\mathrm{d}}{\mathrm{d}t} F(\varphi(t)) \, \mathrm{d}t = \int_c^d f(\varphi(t)) \varphi'(t) \, \mathrm{d}t$$

Per il teorema fondamentale del calcolo integrale

$$= F(\varphi(t))|_{c}^{d} = F(\varphi(d)) - F(\varphi(c)) = F(b) - F(a) = \int_{a}^{b} f(x) dx$$

Cioè: regola di integrazione per sostituzione

Se $\varphi:[c,d] \to [a,b]$ è di classe C^1 , con $\varphi(c)=a,\, \varphi(d)=b,$ allora

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(\varphi(t))\varphi'(t) dt$$

Come si fa a ricordarsela e a non sbagliare:

$$\int_{a}^{b} f(x) dx = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t)) \varphi'(t) dt$$

$$x = \varphi(t)$$

$$\frac{d}{dt} = \varphi'(t)$$

$$dx = \varphi'(t) dt$$

6.11 Criterio del confronto (D)

Teorema 6.5

Siano $f,g:[a,b[\to\mathbb{R} \text{ con } 0\leq f(x)\leq g(x) \text{ per ogni } x\in[a,b[.$ Allora

- 1. Se $\int_a^b g(x) dx$ è convergente, allora anche $\int_a^b f(x) dx$ è convergente;
- 2. Se $\int_a^b f(x) dx$ è divergente, allora anche $\int_a^b g(x) dx$ è divergente.

Dimostrazione:

$$(0 \leq) \lim_{c \to b^-} \int_a^c f(x) \, \mathrm{d}x \leq \lim_{c \to b^-} \int_a^c g(x) \, \mathrm{d}x$$

e i due limiti esistono perché f e g sono ≤ 0

(2)

Criterio dell'integrale per le serie (d) 6.12

Sia $f:[1,+\infty[\to\mathbb{R} \text{ decrescente e} \ge 0. \text{ Allora } \sum_{k=1}^{+\infty} f(k) \text{ converge se e solo se } \int_{1}^{+\infty} f(x) \, \mathrm{d}x \text{ converge.}$

Dimostrazione: Per:

$$\sum_{k=2}^{n} f(k) \leqslant \int_{1}^{n} f(x) \, \mathrm{d}x \leqslant \sum_{k=1}^{n} f(k)$$

se $\sum_{k=1}^{+\infty} f(k) < +\infty$, allora $\lim_{n \to +\infty} \sum_{k=1}^{n} f(k)$ esiste finito e quindi $\lim_{n \to +\infty} \int_{1}^{n} f(x) dx$ esiste finito (esiste perché $f(x) \ge 0$).

Viceversa, se $\lim_{n\to+\infty} \int_1^n f(x) dx$ converge, allora anche $\lim_{n\to+\infty} \sum_{k=1}^n f(k)$ converge.

Integrabilità di $\frac{1}{x^{\alpha}}$ in [0,1] e in $[1,+\infty[$ (D)

Proposizione 6.3

 $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx \text{ è convergente se solo se } \alpha > 1$

Dimostrazione:

$$\lim_{c \to +\infty} \int_{1}^{c} \frac{1}{x^{\alpha}} \, \mathrm{d}x$$

Caso
$$\alpha = 1$$

$$= \lim_{n \to \infty} \ln c = +\infty$$

Caso
$$\alpha = 1$$

$$= \lim_{c \to +\infty} \ln c = +\infty$$
Caso $\alpha \neq 1$

$$= \lim_{c \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{c} = \frac{1}{\alpha - 1} + \lim_{c \to +\infty} \frac{c^{1-\alpha}}{1-\alpha}$$
 $(\alpha > 1) \to \frac{1}{\alpha - 1}$
 $(\alpha < 1) \to +\infty$

⊜

Proposizione 6.4

$$\int_0^1 \frac{1}{x^{\alpha}} \, \mathrm{d}x \, \, \mathrm{e} \, \, \text{convergente se solo se} \, \, \alpha < 1$$

Dimostrazione:

$$\lim_{c \to 0^+} \int_c^1 \frac{1}{x^{\alpha}} \, \mathrm{d}x$$

Caso
$$\alpha = 1$$

$$= \lim_{c \to 0^+} \ln c = +\infty$$

Caso
$$\alpha = 1$$

$$= \lim_{c \to 0^{+}} \ln c = +\infty$$
Caso $\alpha \neq 1$

$$= \lim_{c \to 0^{+}} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{c}^{1} = \frac{1}{1-\alpha} - \lim_{c \to 0^{+}} \frac{c^{1-\alpha}}{1-\alpha}$$
 $(\alpha > 1) \to +\infty$
 $(\alpha < 1) \to \frac{1}{1-\alpha}$

$$(\alpha < 1) \rightarrow \frac{1}{1-\alpha}$$

☺

6.14 Integrabilità di $\frac{1}{x^{\alpha}(\log x)^{\beta}}$ in $[2, +\infty[$ (D) COMPLETARE

$$\int_2^{+\infty} \frac{1}{x^\alpha (logx)^\beta} \text{ converge per ogni } \beta \in \mathbb{R} \text{ e } \alpha > 1, \text{ oppure per } \alpha = 1 \text{ e } \beta > 1 \text{ PAG } 122$$

6.15 Teorema criterio dell'integrale per la convergenza delle serie

Teorema 6.7

Sia $f:[1,+\infty[\to\mathbb{R} \text{ decrescente e} \ge 0. \text{ Allora } \sum_{n=1}^{+\infty} f(x) \text{ converge se e solo se } \int_1^{+\infty} f(x) \, \mathrm{d}x \text{ converge.}$

Dimostrazione: Dato che vale

$$\sum_{k=2}^n f(k) \leqslant \int_1^n f(x) \,\mathrm{d} x \leqslant \sum_{k=1}^n f(k)$$

, se $\sum_{k=1}^n f(k) < +\infty$, allora $\lim_{n \to +\infty} \sum_{k=1}^n f(k)$ esiste finito e quindi $\lim_{n \to +\infty} \int_1^n f(x) \, \mathrm{d}x$ esiste finito (esiste perchè $f(x) \ge 0 \, \forall x$).

Viceversa, se $\lim_{n \to +\infty} \int_1^n f(x) dx < +\infty$, allora anche $\lim_{n \to +\infty} \sum_{k=1}^n f(k) < +\infty$

6.16 Convergenza delle serie $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ (D)

Proposizione 6.5

 $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \text{ converge se e solo se } \alpha > 1 \text{ perchè } \int_{1}^{+\infty} \frac{1}{n^{\alpha}} \, \mathrm{d}x \text{ converge se e solo se } \alpha > 1.$

6.17 Convergenza delle serie $\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$ (D)

Proposizione 6.6

 $\sum_{n=2}^{+\infty} \frac{1}{n^{\alpha} (\ln n)^{\beta}} \text{ converge se e solo se } \alpha > 1 \text{ e } \beta \in \mathbb{R} \text{ oppure } \alpha = 1 \text{ e } \beta > 1 \text{ e diverge in tutti gli altri casi.}$