Vv255 Lecture 23

Dr Jing Liu

UM-SJTU Joint Institute

July 20, 2017

Definition

A vector field \mathbf{F} is said to be conservative in a region \mathcal{D} if it is the gradient field for some function f in \mathcal{D} , that is, if

$$\mathbf{F} = \nabla f$$

The function f is called a potential function for F in the region.

Q: Is every vector field conservative?

$$\mathbf{F} = -y\mathbf{e}_x + x\mathbf{e}_y$$

Q: Is the potential function of a conservative vector field unique?

The general technique of finding a potential function

For a conservative vector field

$$\mathbf{F}(x,y) = P(x,y)\mathbf{e}_x + Q(x,y)\mathbf{e}_y$$

1. Integrate P(x,y) w.r.t x to obtain

$$f(x,y) = f_1(x,y) + g(y)$$
, where $f_1(x,y) = \int P(x,y) dx$, and $g(y)$

is an unknown function that plays the role of the constant of integration.

2. Differentiate $f = f_1 + g$ w.r.t y to obtain

$$\frac{\partial}{\partial y}[f_1(x,y)] + g'(y) = Q(x,y),$$
 and solve for $g'(y)$.

3. Integrate g'(y) w.r.t y to complete the definition of f, up to a constant.

A similar procedure can be used for a vector field defined on \mathbb{R}^3 .

• Suppose $\mathcal C$ be a smooth curve in $\mathbb R^2$, and defined by

$$\mathbf{r}(t) = x(t)\mathbf{e}_x + y(t)\mathbf{e}_y$$
 for $a \le t \le b$

• If f(x,y) is a continuous scalar-valued function, then

$$\begin{split} \int_{\mathcal{C}} f(x,y) \ ds &= \int_a^b f\Big(x(t),y(t)\Big) |\dot{\mathbf{r}}(t)| \ dt \\ &= \int_a^b f\Big(x(t),y(t)\Big) \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} \ dt \end{split}$$

• If $\mathbf{F}(x,y)$ is a vector field with continuous component functions P and Q,

$$\int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{a}^{b} \mathbf{F} \cdot \dot{\mathbf{r}} \, dt$$

$$= \int_{a}^{b} \left(P(x(t), y(t)) \dot{x}(t) + Q(x(t), y(t)) \dot{y}(t) \right) dt$$

ullet Suppose a vector field is actually conservative in some open region \mathcal{D} ,

$$\mathbf{F} = P\mathbf{e}_x + Q\mathbf{e}_y = \frac{\partial f}{\partial x}\mathbf{e}_x + \frac{\partial f}{\partial y}\mathbf{e}_z = \nabla f$$

where f(x,y) is continuously differentiable, then the formula becomes,

$$\begin{split} \int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \; ds &= \int_{a}^{b} \left(P\Big(x(t), y(t)\Big) \dot{x}(t) + Q\Big(x(t), y(t)\Big) \dot{y}(t) \right) \, dt \\ &= \int_{a}^{b} \left(\underbrace{\frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}}_{h} \right) \, dt \\ &= \int_{a}^{b} \frac{d}{dt} \Big[f\Big(x(t), y(t)\Big) \Big] \, dt \qquad f \text{ is an antiderivative of } h. \\ &= \Big[f\Big(x(t), y(t)\Big) \Big]_{t=a}^{t=b} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) \end{split}$$

Q: What is the significance of this derivation? Have you seen a similar formula?

The Fundamental Theorem of Line Integrals

Suppose that the vector field ${f F}$ is conservative

$$\mathbf{F}(x,y) = P(x,y)\mathbf{e}_x + Q(x,y)\mathbf{e}_y = \nabla f$$

in some open region ${\mathcal D}$ containing the points A and B and that

$$P(x,y)$$
 and $Q(x,y)$ are continuous in this region \mathcal{D} .

If $\mathcal C$ is a piecewise smooth curve given by the vector-valued function

$$\mathbf{r}(t) = x(t)\mathbf{e}_x + y(t)\mathbf{e}_y, \quad \text{for} \quad a \le t \le b$$

starts at $A = \mathbf{r}(a)$ and ends at $B = \mathbf{r}(b)$, and lies entirely in the region \mathcal{D} , then

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

ullet Fundamental Theorem of Line integrals, FTL, can be easily extended to \mathbb{R}^3 .

• Suppose the curve C is closed in D,

that is, a curve whose the initial and terminal points of ${\cal C}$ are the same,

$$\mathbf{r}(b) = \mathbf{r}(a)$$

which means the line integral is zero,

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) = 0$$

• This is the notation for a line integral with a closed path.

• Now if we split C into two curves C_1 and C_2 , and change orientation of C_2 ,

by fact that the sign of the line integral of a vector field over a curve depends on the orientation of the curve, then we have

$$0 = \oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{\mathcal{C}}_1} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathbf{\mathcal{C}}_2} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{\mathcal{C}}_1} \mathbf{F} \cdot d\mathbf{r} - \int_{-\mathbf{\mathcal{C}}_2} \mathbf{F} \cdot d\mathbf{r}$$

that is,

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{-\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}$$

Q: What does it mean to a particle moving in a conservative force field F?

Theorem

If F is conservative with continuous component functions

$$\mathbf{F}(x,y) = P(x,y)\mathbf{e}_x + Q(x,y)\mathbf{e}_y = \nabla f$$

in some open region \mathcal{D} , then the line integral is said to be

independent of path in ${\cal D}$

that is, the line integral of ${f F}$ over a piecewise smooth ${\cal C}$ depends only initial and terminal points,

provided C is entirely in D.

- The conditions are there so that the FTL of line integral can be invoked.
- Q: Does independent of path in \mathcal{D} implies conservativeness in \mathcal{D} ?

Theorem

Suppose the region \mathcal{D} , the curve \mathcal{C} and the vector field \mathbf{F} satisfy the conditions of FTL and the line integral of a vector field \mathbf{F} is independent of path in \mathcal{D} , then

 \mathbf{F} is a conservative vector field on \mathcal{D} .

Proof

• Let $\mathbf{F} = P\mathbf{e}_x + Q\mathbf{e}_y$, we choose an arbitrary point $(a,b) \in \mathcal{D}$, and define

$$f(x,y) = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

where C is a curve between (a,b) and $(x,y) \in D$.

- ullet Since it is independent of path, any curve ${\mathcal C}$ leads to the same function f.
- Suppose $C = C_1 \cup C_2$ where C_2 is a line segment between (x_1, y) to (x, y),

$$f(x,y) = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}$$

Proof

One possible parametrization for \mathcal{C}_2 is

$$\mathbf{r}_2(t) = t\mathbf{e}_x + y\mathbf{e}_y \quad \text{for } x_1 \le t \le x$$

$$\mathbf{r}_2'(t) = \mathbf{e}_x$$

If we can show

$$P=f_x$$
 and $Q=f_y$

then it is conservative.

• There always exists a curve C_1 such that $\frac{\partial}{\partial x} \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 0$, so we have

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} = \frac{\partial}{\partial x} \int_{x_1}^x \mathbf{F} \cdot \mathbf{r}_2' dt = \frac{\partial}{\partial x} \int_{x_1}^x P dt = P$$

• The component Q can be shown to be f_y in a similar fashion.

• In order to use the Fundamental Theorem of Line Integrals to evaluate the line integral of a conservative vector field, that is, to use the formula

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

it is necessary to find the potential function f such that

$$\nabla f = \mathbf{F}$$

- Q: Can test whether a vector field is conservative or not?
- Suppose that $\mathbf{F}(x,y) = P\mathbf{e}_x + Q\mathbf{e}_y$ is a conservative vector field, then

$$\frac{\partial f}{\partial x} = P, \quad \frac{\partial f}{\partial y} = Q \qquad \text{for some function } f.$$

• If the conditions of the mixed derivative theorem are met, that is,

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial P}{\partial y}, \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial Q}{\partial x}$$

are continuous in the open region \mathcal{D} , then we have $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$.

Theorem

Suppose the vector field

$$\mathbf{F} = P\mathbf{e}_x + Q\mathbf{e}_y = \nabla f$$

is a conservative vector field in some open region $\ensuremath{\mathcal{D}},$ and the component functions

$$P(x,y)$$
 and $Q(x,y)$

have continuous first-order partial derivatives in \mathcal{D} , then throughout \mathcal{D} we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

• This is a necessary condition for conservativeness, is it sufficient?

Definition

A region \mathcal{D} is known to be connected if any two points in \mathcal{D} can be connected by a path \mathcal{C} entirely within \mathcal{D} .

Q: Consider the following regions, are they open and connected?

Definition

A subset of S of \mathbb{R}^n is called simply connected if it is connected and every close curve in S can be contracted to a point in S.

- Intuitively, if the domain \mathcal{D} is simply connected, then
 - one piece
 - does not have any "holes" that go all the way through
- Q: Are the above regions open simply connected? How about

$$\{(x,y) \in \mathbb{R}^2 \mid (x,y) \neq (0,0)\}$$

$$\{(x,y) \in \mathbb{R}^2 \mid (x,y) \neq (0,0)\}\$$
 $\{(x,y,z) \in \mathbb{R}^2 \mid (x,y,z) \neq (0,0,0)\}$

Conservative Field Test

Suppose the vector field

$$\mathbf{F} = P\mathbf{e}_x + Q\mathbf{e}_y$$

is defined on an open simply connected region \mathcal{D} , and the partial derivatives

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

are equal and continuous throughout the region \mathcal{D} , then

F is conservative.

Similarly, in an open simply connected region $\mathcal{E} \subset \mathbb{R}^3$,

$$\mathbf{F} = P\mathbf{e}_x + Q\mathbf{e}_y + R\mathbf{e}_z$$

is conservative if P, Q and R have continuous first-order partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \qquad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} \qquad \text{and} \quad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$$

Q: Are inverse-square fields in \mathbb{R}^2 conservative?

$$\mathbf{F} = \frac{c}{|\mathbf{r}|^3} \mathbf{r} = c \left(x^2 + y^2 \right)^{-3/2} \left(x \mathbf{e}_x + y \mathbf{e}_y \right)$$

Q: Can we judge using the conservative field test?

$$\frac{\partial P}{\partial y} = -3cxy(x^2+y^2)^{-5/2} \qquad \frac{\partial Q}{\partial x} = -3cxy(x^2+y^2)^{-5/2}$$

Consider the gradient of the following scalar-valued function

$$f(x,y) = \frac{-c}{\sqrt{x^2 + y^2}} = \frac{-c}{r} \implies \nabla f = \frac{\partial f}{\partial r} \mathbf{e}_r = \frac{c}{r^3} r \mathbf{e}_r = \frac{c}{|\mathbf{r}|^3} \mathbf{r}$$

Exercise

(a) Suppose $\mathbf{F}=(2xz+y^2)\mathbf{e}_x+2xy\mathbf{e}_y+(x^2+3z^2)\mathbf{e}_z$. Evaluate the following

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

where C is the curve defined by

$$\mathbf{r}(t) = t^2 \mathbf{e}_x + (t+1)\mathbf{e}_y + (2t-1)\mathbf{e}_z$$
 for $0 \le t \le 1$.

(b) Suppose $\mathbf{F} = \frac{-y}{x^2 + y^2} \mathbf{e}_x + \frac{x}{x^2 + y^2} \mathbf{e}_y$. Evaluate the line integral

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

where C is a circle of radius 1 centred at the point (2,2).

(c) What if the circle is centred at the origin instead?

Characterization of conservative vector fields

Suppose P(x,y) and Q(x,y) are continuously differentiable on some open simply connected region \mathcal{D} , then then the following statements are equivalent :

- 1. $\mathbf{F} = P\mathbf{e}_x + Q\mathbf{e}_y$ is a conservative vector field on the region \mathcal{D} .
- 2. $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ at every point in \mathcal{D} .
- 3. $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0$ for every piecewise smooth *closed* curve \mathcal{C} in \mathcal{D} .
- 4. $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ is independent of the path.
 - All of the results above can be easily extended to \mathbb{R}^3 .