ZONGHAO LI

EDUCATION		
EDUCATION	McGill University	Montreal, QC
	M.Eng., Electrical Engineering (thesis-based)	2017 - Present
	University of British Columbia	Kelowna, BC
	B.A.Sc., Electrical Engineering (with distinction)	2013 - 2017
PUBLICATIONS	Z. Li and S. Bhadra, "A Flexible Printed Complementary Split-Ring Resona	•

HONORS AND AWARDS

Graduate Excellence Fellowship (\$6000)	2018
Capstone Design Competition Second Placement (out of 46 groups)	2017
International Student Faculty Award (\$5000)	2016
International Student Research Award (\$5000)	2016
International Undergraduate Student Research Award (\$5000)	2016
Dean's Honor List of the Faculty of Applied Science	2015, 2016
Deputy Vice-Chancellor Scholarship for International Student (\$1500)	2015, 2016
Chancellor's Scholar Award	2013

RESEARCH EXPERIENCES

A Flexible Printed Chipless RFID based Smart Electric Nose

Montreal, QC

Research Assistant

September 2017 - Present

- Exploring the chipless radio-frequency identification (RFID) technology, including transmission line theory, ultra-wide-band (UWB) antennas, and passive microwave circuits.
- Using printing technologies to fabricate chipless RFID tag on flexible substrates.
- Wireless characterizations of the tag in the ambient environment.
- Using the tag to sense the gases in a testing environment to collect sensor data; the classifications and quantifications will be evaluated simultaneously by further processed the signals using artificial neural network (ANN) in TensorFlow.

Spatial Tracking Algorithm for Wearable Sensors

Kelowna, BC

Project Team Captain

September 2016 – April 2017

- The purpose of this project is to obtain sensor (magnetometer) data and improve its reliability for accurately modeling the human body motion by proposing a new calibration algorithm, which is implemented in Matlab, C and Python.
- An inertia-measurement-unit sensor is provided, and the algorithm is embedded in an STM32F4 Series microcontroller, the sensor operates wirelessly through the Bluetooth communications.
- Beside the above tasks, Zonghao Li's responsibilities also include group meeting conducting, industrypartner video call scheduling, project progress tracking and task organizing.
- This project is supervised by Dr. Thomas Johnson and sponsored by Kinetic Reality. It received the second place in the 2017 Capstone Design Competition.

TECHNICAL SKILLS

- Microfabrication and Cleanroom Experience (vapor deposition system, mask aligner)
- Measurement and Test (source meter, oscilloscope, spectrometer, vector-network-analyzer)
- Programming Skills (Python, Matlab, C, C++, HTML)
- Digital System Design (Verilog, Modelsim, Xilinx-Vivado, Quartus-II)
- Analog Circuits (LTspice, PSIM, Cadence-Virtuoso)
- RF and Microwave Circuits (NI-AWR, ANSYS-HFSS, Keysight-ADS)
- PCB Layout Tool (Altium Designer, DipTrace)