Welcome To our Presentation

Presentation on Karnaugh Map

Presented by Group 19

SL. NO	Name	ID
01	Md. Akhtarujjaman	12205025
02	Md. Munzurul Kader	12105090
03	Kawsar Ahmed	12105297

What is Karnaugh Map?

• The Karnaugh map(K-map) is a graphical technique for the representation and simplification of a Boolean expression which is a two-dimensional form of the truth table, drawn in such a way that the simplification of a Boolean expression.

How to solve Karenaugh map?

- > Sketch a Karnaugh map grid for the problem.
- > Fill in the 1's and 0's from the truth table.
- > Circle groups of 1's.
 - Circle the largest groups of 2, 4, 8,16,32 etc.
 - ◆ First Minimize the number of circles but make sure that every 1 is in a circle.

K-Map for two variables

➤ A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugh map.

×	У	minterm			>	/
0	0	×'y'			O	1
0	1	×'y		0	×'y'	x'y
1	0	×y′	X	1	XV'	XV
1	1	XV		_	• • /	/

- Now we can easily see which minterms contain common literals.
 - Minterms on the left and right sides contain y' and y respectively.
 - Minterms in the top and bottom rows contain x' and x respectively

A three-variable Karnaugh map

 For a three-variable expression with inputs x, y, z, the arrangement of minterms is more tricky:

			У			
	x'y'z'	x'y'z	x'yz	x'yz'		
X	xy'z'	xy'z	xyz	xyz'		
		Z				

Example of three variables of K-Map.

$$F(a,b,c) = \sum m(1, 2, 3, 4, 5, 6)$$

$$F = A'C + BC' + AB'$$

Four-variable K-maps

Grouping minterms is similar to the three-variable case, but:

We can have rectangular groups of 1, 2, 4, 8 or 16 minterms.

			У				У		_		
	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'			m_0	m_1	m ₃	m ₂	
	w'xy'z'	w'xy'z	w'xyz	w'xyz'			m_4	m ₅	m ₇	m ₆	
W	wxy'z'	wxy'z	wxyz	wxyz'		W	m ₁₂	m ₁₃	m ₁₅	m ₁₄	
VV	wx'y'z'	wx'y'z	wx'yz	wx'yz'		VV	m ₈	m 9	m ₁₁	m ₁₀	
		Z			-			Z	7		-

Example: Simplify $m_0+m_2+m_5+m_8+m_{10}+m_{13}$

 The expression is already a sum of minterms, so here's the K-map:

			>		
	1	0	0	1	
	0	1	0	0	_
W	0	1	0	0	X
	1	0	0	1	
		Z	7		•

			>	_	
	m_0	m_1	m_3	m ₂	
	m ₄	m ₅	m_7	m_6	
W	m ₁₂	m ₁₃	m ₁₅	m ₁₄	X
	m ₈	m 9	m ₁₁	m ₁₀	
		Z	7		-

Result, F=x'z' + xy'z.

K-Map for five Variables

- For five variable K-map 2⁵=32 Square be build in.
- First 16 square makes a square and another 16 square makes the rest one.
- One box is acts as the shadow of the another.

Example of five variables of K-Map.

 $F(A, B, C, D, E) = \Sigma m(0, 2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 24, 29, 30)$

F = B'DE + A'C'DE + A'B'C'E' + A'B'CE + AB'C'E + BCD'E + BC'D'E' + ABCDE'

That's All

Thank You

