Operações Matemáticas e Transformações Radiométricas

Jefersson Alex dos Santos

jefersson@dcc.ufmg.br

CIÊNCIA DA COMPUTAÇÃO

¹Baseado nas aulas do Prof. Alexandre Xavier Falção

Roteiro da Aula

- 2 Transformação Radiométrica
 - Transformações Simples
 - Transformações em Histogramas

- Forma simples de processamento (pixel a pixel)
- Resultados de interesse prático: identificar diferenças, redução de ruídos, ajuste de brilho, remoção de informação estática de fundo

- Forma simples de processamento (pixel a pixel)
- Resultados de interesse prático: identificar diferenças, redução de ruídos, ajuste de brilho, remoção de informação estática de fundo

Operações Matemáticas

Sejam $\hat{I}=(D_I,I)$ e $\hat{J}=(D_J,J)$ duas imagens cinzas de **mesmo domínio**, $D_I=D_J$.

- Uma operação \odot (**lógica ou aritmética**) entre \hat{I} e \hat{J} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I = D_J$, onde $K(p) = I(p) \odot J(p)$ para todo $p \in D_K$
- A operação ⊙ pode ser MINIMO (and lógico), MAXIMO (or lógico), +, -, /, *, etc.

Operações Matemáticas

Sejam $\hat{I}=(D_I,I)$ e $\hat{J}=(D_J,J)$ duas imagens cinzas de **mesmo domínio**, $D_I=D_J$.

- Uma operação \odot (**lógica ou aritmética**) entre \hat{I} e \hat{J} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I = D_J$, onde $K(p) = I(p) \odot J(p)$ para todo $p \in D_K$.
- A operação ⊙ pode ser MINIMO (and lógico), MAXIMO (or lógico), +, -, / , *, etc.

U F <u>m</u> G

Operações Matemáticas

Sejam $\hat{I} = (D_I, I)$ e $\hat{J} = (D_J, J)$ duas imagens cinzas de **mesmo domínio**, $D_I = D_J$.

- Uma operação \odot (**Iógica ou aritmética**) entre \hat{I} e \hat{J} gera uma imagem $\hat{K}=(D_K,K), D_K=D_I=D_J,$ onde $K(p)=I(p)\odot J(p)$ para todo $p\in D_K.$
- A operação ⊙ pode ser MINIMO (and lógico), MAXIMO (or lógico), +, -, /, *, etc.

Operações Matemáticas

Sejam $\hat{I} = (D_I, I)$ e $\hat{J} = (D_J, J)$ duas imagens cinzas de **mesmo domínio**, $D_I = D_J$.

- Uma operação \odot (**Iógica ou aritmética**) entre \hat{I} e \hat{J} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I = D_J$, onde $K(p) = I(p) \odot J(p)$ para todo $p \in D_K$.
- A operação ⊙ pode ser MINIMO (and lógico), MAXIMO (or lógico), +, -, /, *, etc.

Operações Matemáticas

- Uma operação **aritmética** \odot entre um escalar s e \hat{I} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I$, tal que $K(p) = I(p) \odot s$ para todo $p \in D_K$.
- A operação \odot pode ser +,-,/,*, . Por exemplo, em $\hat{K}=\hat{I}^{1/2}$, $K(p)=\sqrt{I(p)}$.

Operações Matemáticas

- Uma operação **aritmética** \odot entre um escalar s e \hat{I} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I$, tal que $K(p) = I(p) \odot s$ para todo $p \in D_K$.
- A operação \odot pode ser +,-,/,*, . Por exemplo, em $\hat{K}=\hat{I}^{1/2},$ $K(p)=\sqrt{I(p)}.$

Operações Matemáticas

- Um operador matemático \mathbf{O} sobre uma imagem \hat{I} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I$, tal que $K(p) = \mathbf{O}(I(p))$ para todo $p \in D_K$.
- O operador ${\bf O}$ pode ser o valor absoluto, logaritmo, exponencial, seno, etc. Por exemplo, em $\hat{K}=|\hat{I}-\hat{J}|,\,K(p)=|I(p)-J(p)|.$

Desta forma podemos ter expressões lógicas e aritméticas envolvendo várias imagens e escalares.

Operações Matemáticas

- Um operador matemático \mathbf{O} sobre uma imagem \hat{I} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I$, tal que $K(p) = \mathbf{O}(I(p))$ para todo $p \in D_K$.
- O operador O pode ser o valor absoluto, logaritmo, exponencial, seno, etc. Por exemplo, em $\hat{K}=|\hat{I}-\hat{J}|,\,K(p)=|I(p)-J(p)|.$

Desta forma podemos ter expressões lógicas e aritméticas envolvendo várias imagens e escalares.

Operações Matemáticas

- Um operador matemático \mathbf{O} sobre uma imagem \hat{I} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I$, tal que $K(p) = \mathbf{O}(I(p))$ para todo $p \in D_K$.
- O operador O pode ser o valor absoluto, logaritmo, exponencial, seno, etc. Por exemplo, em $\hat{K}=|\hat{I}-\hat{J}|,\,K(p)=|I(p)-J(p)|.$

Desta forma podemos ter expressões lógicas e aritméticas envolvendo várias imagens e escalares.

Transformações entre espaços de cores

No caso de imagens coloridas $\hat{I}=(D_I,\vec{I})$ em um dado espaço de cor, este espaço pode ser transformado em outro por multiplicação matricial e outras operações matemáticas.

$$\begin{bmatrix} K_1(p) \\ K_2(p) \\ K_3(p) \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} I_1(p) \\ I_2(p) \\ I_3(p) \end{bmatrix} + \begin{bmatrix} 0 \\ 128 \\ 128 \end{bmatrix}$$

Neste exemplo, o operador $\hat{K}=\mathbf{O}(\hat{I})$ transforma a imagem \hat{I} do espaço RGB para uma imagem $\hat{K}=(D_K,\vec{K}), D_K=D_I$, no espaço YC_bC_r , onde K_1 é luminância Y,K_2 é crominância C_b e K_3 é crominância C_r .

Roteiro da Aula

- 2 Transformação Radiométrica
 - Transformações Simples
 - Transformações em Histogramas

U F <u>m</u> G

Transformação Radiométrica

Aka: Realce de Imagem ou Exposure

- É um mapeamento aplicado às intensidades dos pixels, independente da localização desses pixels na imagem
- Visa alterações de brilho e contraste

Transformações Simples

UF<u>m</u>G

Transformação Radiométrica

Brilho e Contraste

Brilho

Esta associado à sensação visual da intensidade luminosa de uma fonte

- Experimentos indicam: sensibilidade do sistema visual humano possui resposta logarítmica com relação à intensidade de luz incidente no olho
- Sistema visual tende a substimar ou superestimar a intensidade próxima às transições

Contraste

É uma medida da variação relativa da luminância

- O brilho aparente de uma região depende fortemente da intensidade do fundo
- Resposta do sistema visual humano depende de variações locais de luminância

U F <u>m</u> G

Transformação Radiométrica

Transformação Radiométrica

Transformação Radiométrica

U F <u>m</u> G

Transformação Radiométrica

Transformação Radiométrica

Transformação Radiométrica

- Seja $\hat{I}=(D_I,I)$ uma imagem cinza, uma transformação radiométrica gera outra imagem cinza $\hat{J}=(D_J,J)$, onde $D_J=D_I$ e J(p)=T(I(p)) para todo $p\in D_I$.
- Suponha que l=I(p) e k=J(p). Então, l e k são variáveis aleatórias, tais que k=T(l), cujos valores variam com $p\in D_I$.
- Neste sentido, o histograma normalizado $0 \le h(l) \le 1$ representa a distribuição de probabilidades da variável aleatória l.

k=T(l) é a função de transformação!

Transformação Radiométrica

- Seja $\hat{I}=(D_I,I)$ uma imagem cinza, uma transformação radiométrica gera outra imagem cinza $\hat{J}=(D_J,J)$, onde $D_J=D_I$ e J(p)=T(I(p)) para todo $p\in D_I$.
- Suponha que l=I(p) e k=J(p). Então, l e k são variáveis aleatórias, tais que k=T(l), cujos valores variam com $p\in D_I$.
- Neste sentido, o histograma normalizado $0 \le h(l) \le 1$ representa a distribuição de probabilidades da variável aleatória l.

k = T(l) é a função de transformação!

Transformação Radiométrica

- Seja $\hat{I}=(D_I,I)$ uma imagem cinza, uma transformação radiométrica gera outra imagem cinza $\hat{J}=(D_J,J)$, onde $D_J=D_I$ e J(p)=T(I(p)) para todo $p\in D_I$.
- Suponha que l=I(p) e k=J(p). Então, l e k são variáveis aleatórias, tais que k=T(l), cujos valores variam com $p\in D_I$.
- ullet Neste sentido, o histograma normalizado $0 \le h(l) \le 1$ representa a distribuição de probabilidades da variável aleatória l.

k = T(l) é a função de transformação!

U F <u>m</u> G

Transformação Radiométrica

- Seja $\hat{I}=(D_I,I)$ uma imagem cinza, uma transformação radiométrica gera outra imagem cinza $\hat{J}=(D_J,J)$, onde $D_J=D_I$ e J(p)=T(I(p)) para todo $p\in D_I$.
- Suponha que l = I(p) e k = J(p). Então, l e k são variáveis aleatórias, tais que k = T(l), cujos valores variam com $p \in D_I$.
- Neste sentido, o histograma normalizado $0 \le h(l) \le 1$ representa a distribuição de probabilidades da variável aleatória l.

k = T(l) é a função de transformação!

Transformação linear

Sejam $[l_1, l_2]$, $l_1 \le l_2$, e $[k_1, k_2]$ dois intervalos de cinza no conjunto de valores de I e J. A transformação (stretching) linear é dada por:

$$k \quad = \quad \left\{ \begin{array}{ll} k_1, & \text{se } l < l_1, \\ \frac{(k_2 - k_1)}{(l_2 - l_1)} (l - l_1) + k_1, & \text{se } l_1 \leq l < l_2, \\ k_2, & \text{se } l \geq l_2. \end{array} \right.$$

Transformação linear

Sejam $[l_1, l_2]$, $l_1 \le l_2$, e $[k_1, k_2]$ dois intervalos de cinza no conjunto de valores de I e J. A transformação (stretching) linear é dada por:

$$k = \begin{cases} k_1, & \text{se } l < l_1, \\ \frac{(k_2 - k_1)}{(l_2 - l_1)} (l - l_1) + k_1, & \text{se } l_1 \le l < l_2, \\ k_2, & \text{se } l \ge l_2. \end{cases}$$

Transformações Simples

Transformação linear

Sejam $[l_1, l_2]$, $l_1 \le l_2$, e $[k_1, k_2]$ dois intervalos de cinza no conjunto de valores de I e J. A transformação (stretching) linear é dada por:

$$k \quad = \quad \left\{ \begin{array}{ll} k_1, & \text{se } l < l_1, \\ \frac{(k_2 - k_1)}{(l_2 - l_1)} (l - l_1) + k_1, & \text{se } l_1 \leq l < l_2, \\ k_2, & \text{se } l \geq l_2. \end{array} \right.$$

Casos particulares:

- Normalização em [0,H] (e.g., H=255): $k_2=H$, $k_1=0$, $l_1=l_{\min}$, e $l_2=l_{\max}$, onde l_{\min} e l_{\max} são os valores mínimo e máximo de \hat{l} .
- Negativo: $k_2 = l_{\min}, k_1 = l_{\max}, l_1 = l_{\min}, e l_2 = l_{\max}.$
- Largura & Nível (width & level): $k_2 = H$, $k_1 = 0$, e $l_1 < l_2$, onde o nível $\frac{l_1 + l_2}{2}$ altera o brilho e a largura $l_2 l_1$ altera o contraste.
- Limiarização/Binarização (thresholding): $k_2 = H$, $k_1 = 0$ e $l_1 = l_2$.

Imagem escura com baixo contraste

(a) Carcinoma de mama em RM

(b) Seu histograma

Após transformação linear

(a) Imagem transformada

(b) Histogramas antes e depois

Transformações Simples

Transformação exponencial

A transformação exponencial pode ser definida por:

$$\bullet$$
 $k = l_{\max} \exp(\frac{l - l_{\min}}{l_{\max} - l_{\min}}) - l_{\max}$ e

•
$$k = H \exp(\frac{-(l-\mu)^2}{2\sigma^2})$$
.

O primeiro caso aumenta o contraste no intervalo $[l_{\min}, l_{\max}]$ e o segundo aumenta o contraste em relação a um valor μ (e.g., μ pode ser o brilho médio de um objeto na imagem).

Após transformação Gaussiana

(a) Original transformada

(b) Imagem de bordas transformada

Transformação logarítmica

A transformação logarítmica reduz a dinâmica da imagem (intervalo de brilho), sendo muito usada para visualizar a magnitude da transformada de Fourier.

$$J(p) = H\log(1 + \left| \vec{I}(p) \right|),$$

onde $\vec{I} = \{I_1, I_2\}$ contém a parte real I_1 e a imaginária I_2 do espectro.

U F <u>m</u> G

Transformação Radiométrica

Resumo

Transformações radiométricas para imagens coloridas

- Transformações radiométricas devem preservar a informação de matiz da imagem colorida. Neste caso, as transformações acima podem ser aplicadas na imagem de brilho (ou de saturação) usando algum espaço descorrelacionado: HSV, Luv, Lab, YCbCr.
- Por exemplo: Converte-se a imagem de RGB para YCbCr, aplica-se a transformação radiométrica em Y, e volta a imagem transformada de YCbCr para RGB.

Transformações radiométricas para imagens coloridas

- Transformações radiométricas devem preservar a informação de matiz da imagem colorida. Neste caso, as transformações acima podem ser aplicadas na imagem de brilho (ou de saturação) usando algum espaço descorrelacionado: HSV, Luv, Lab, YCbCr.
- Por exemplo: Converte-se a imagem de RGB para YCbCr, aplica-se a transformação radiométrica em Y, e volta a imagem transformada de YCbCr para RGB.

Histograma acumulado

Sendo h(l) o histograma normalizado de uma imagem cinza $\hat{I}=(D_I,I)$, o histograma acumulado de \hat{I} é uma função $h_a(l)$ que produz o valor acumulado do histograma h(l) (área abaixo da curva) para cada nível de cinza $l_{\min} \leq l \leq l_{\max}$ (vamos assumir que $0 \leq l_{\min}$).

$$h_a(l) = \sum_{l'=0}^{l} h(l').$$

Note que $h_a(l_{\max})=1.$ Este conceito pode ser explorado para equalização da imagem.

UFmG

Histograma acumulado

Histograma acumulado da imagem de mama.

UFmG

Equalização

Considere uma imagem \hat{I} cinza e normalizada em $0 \le l \le 1$. A equalização k = T(l) visa gerar uma imagem $\hat{J} = (D_J, J)$ com intensidades $0 \le k \le 1$ e histograma uniforme (i.e., todas as intensidades equiprováveis), por aplicação direta do histograma acumulado.

$$k = h_a(l)$$

Esta transformação tem como propriedades ser:

- bijetora e monotonicamente crescente em [0,1], e
 - limitada, $0 \le T(l) \le 1$, para $0 \le l \le 1$.

Após equalização, os valores $0 \le k \le 1$ podem ser multiplicados por H para gerar valores inteiros de brilho.

UF<u>m</u>G

Equalização

Considere uma imagem \hat{I} cinza e normalizada em $0 \le l \le 1$. A equalização k = T(l) visa gerar uma imagem $\hat{J} = (D_J, J)$ com intensidades $0 \le k \le 1$ e histograma uniforme (i.e., todas as intensidades equiprováveis), por aplicação direta do histograma acumulado.

$$k = h_a(l)$$

Esta transformação tem como propriedades ser:

- ullet bijetora e monotonicamente crescente em [0,1], e
- limitada, $0 \le T(l) \le 1$, para $0 \le l \le 1$.

Após equalização, os valores $0 \le k \le 1$ podem ser multiplicados por H para gerar valores inteiros de brilho.

Após equalização

(a) Original equalizada

(b) Histogramas antes e depois

UF<u>m</u>G

Após equalização

Transformações em Histogramas

Equalização – Exemplo de Cálculo

Tabela 4.1: Histograma a ser equalizado.

Níveis de cinza (k)	0	1	2	3	4	5	6	7
Número de pixels (n_k)	1314	3837	5820	4110	2374	921	629	516

Equalização – Exemplo de Cálculo

Tabela 4.1: Histograma a ser equalizado.

Níveis de cinza (k)	0	1	2	3	4	5	6	7
Número de pixels (n _k)	1314	3837	5820	4110	2374	921	629	516

Inicialmente, deve-se encontrar a probabilidade p_f com que cada nível de cinza k aparece na imagem f, ou seja

$$\begin{split} p_f(f_0) &= 1314/19521 \approx 0.067 & p_f(f_1) &= 3837/19521 \approx 0.197 & p_f(f_2) &= 5820/19521 \approx 0.298 \\ p_f(f_3) &= 4110/19521 \approx 0.211 & p_f(f_4) &= 2374/19521 \approx 0.122 & p_f(f_5) &= 921/19521 \approx 0.047 \\ p_f(f_6) &= 629/19521 \approx 0.032 & p_f(f_7) &= 516/19521 \approx 0.026 \end{split}$$

UF<u>m</u>G

Equalização – Exemplo de Cálculo

Tabela 4.1: Histograma a ser equalizado.

Níveis de cinza (k)	0	1	2	3	4	5	6	7
Número de pixels (n _k)	1314	3837	5820	4110	2374	921	629	516

Inicialmente, deve-se encontrar a probabilidade p_f com que cada nível de cinza k aparece na imagem f, ou seja

$$\begin{split} p_f(f_0) &= 1314/19521 \approx 0.067 & p_f(f_1) = 3837/19521 \approx 0.197 & p_f(f_2) = 5820/19521 \approx 0.298 \\ p_f(f_3) &= 4110/19521 \approx 0.211 & p_f(f_4) = 2374/19521 \approx 0.122 & p_f(f_5) = 921/19521 \approx 0.047 \\ p_f(f_6) &= 629/19521 \approx 0.032 & p_f(f_7) = 516/19521 \approx 0.026 \end{split}$$

Calculando a função distribuição acumulada de probabilidade, obtém-se

$$g_0 = T(f_0) = \sum_{i=0}^{0} p_f(f_0) = 0.067$$
 $g_1 = T(f_1) = \sum_{i=0}^{1} p_f(f_1) = 0.264$

De forma similar

$$g_2 = 0.562$$
 $g_3 = 0.773$ $g_4 = 0.895$ $g_5 = 0.942$ $g_6 = 0.974$ $g_7 = 1$

Equalização – Exemplo de Cálculo

Como a imagem foi quantizada com oito níveis de cinza, cada valor g_k deverá ser substituído pelo nível de cinza mais próximo, ou seja

$$g_0 = g_0 \times 7 = 0.067 \times 7 = 0.469 \approx 0$$

Analogamente para os outros valores de g_k , tem-se

$$g_1 = 0.264 \times 7 = 1.848 \approx 2 \quad g_2 = 0.562 \times 7 = 3.934 \approx 4 \quad g_3 = 0.773 \times 7 = 5.411 \approx 5$$

$$g_4 = 0.895 \times 7 = 6.265 \approx 6 \quad g_5 = 0.942 \times 7 = 6.594 \approx 7 \quad g_6 = 0.974 \times 7 = 6.818 \approx 7$$

$$g_7=1\times 7=7$$

Equalização – Exemplo de Cálculo

Como a imagem foi quantizada com oito níveis de cinza, cada valor g_k deverá ser substituído pelo nível de cinza mais próximo, ou seja

$$g_0 = g_0 \times 7 = 0.067 \times 7 = 0.469 \approx 0$$

Analogamente para os outros valores de g_k , tem-se

$$\begin{split} g_1 &= 0.264 \times 7 = 1.848 \approx 2 \\ g_4 &= 0.895 \times 7 = 6.265 \approx 6 \end{split} \quad \begin{aligned} g_2 &= 0.562 \times 7 = 3.934 \approx 4 \\ g_3 &= 0.773 \times 7 = 5.411 \approx 5 \end{aligned}$$

$$q_7 = 1 \times 7 = 7$$

$$g_7 = 1 \times 7 = 7$$

Equalização por ordenação

Uma forma de garantir que o histograma de \hat{J} seja mesmo uniforme é equalizar a imagem seguindo os passos abaixo.

- \blacksquare Ordene os pixels da imagem \hat{I} por ordem crescente de brilho.
- 2 Divida a sequência ordenada de pixels em H+1 intervalos, $k=0,1,\ldots,H$, com um mesmo número de pixels cada.
- Gere a imagem \hat{J} , onde J(p) é o intervalo k no qual o pixel p tem seu brilho I(p) mapeado.

Após equalização por ordenação

(a) Original equalizada

(b) Histogramas antes e depois

Casamento de histogramas

Sejam $\hat{I}_1 = (D_{I_1}, I_1)$ e $\hat{I}_2 = (D_{I_2}, I_2)$ duas imagens cinza. Suponha que desejamos fazer com que o histograma de \hat{I}_1 fique parecido com o histograma de \hat{I}_2 .

- Sejam T₁ e T₂ as transformações de equalização para Î₁ e Î₂. Após equalização, podemos assumir que os histogramas das imagens resultantes são iguais e uniformes.
- A inversa T_2^{-1} aplicada à equalização T_1 , deve gerar uma imagem $\hat{J}=(D_{I_1},J)$ com histograma parecido com o de \hat{I}_2 .

$$I(p) = T_2^{-1}(T_1(I_1(p)))$$

Casamento de histogramas

Sejam $\hat{I}_1 = (D_{I_1}, I_1)$ e $\hat{I}_2 = (D_{I_2}, I_2)$ duas imagens cinza. Suponha que desejamos fazer com que o histograma de \hat{I}_1 fique parecido com o histograma de \hat{I}_2 .

- Sejam T_1 e T_2 as transformações de equalização para \hat{I}_1 e \hat{I}_2 . Após equalização, podemos assumir que os histogramas das imagens resultantes são iguais e uniformes.
- A inversa T_2^{-1} aplicada à equalização T_1 , deve gerar uma imagem $\hat{J}=(D_{I_1},J)$ com histograma parecido com o de \hat{I}_2 .

$$J(p) = T_2^{-1}(T_1(I_1(p)))$$

U F <u>m</u> G

Casamento de histogramas

Sejam $\hat{I}_1=(D_{I_1},I_1)$ e $\hat{I}_2=(D_{I_2},I_2)$ duas imagens cinza. Suponha que desejamos fazer com que o histograma de \hat{I}_1 fique parecido com o histograma de \hat{I}_2 .

- Sejam T₁ e T₂ as transformações de equalização para Î₁ e Î₂. Após equalização, podemos assumir que os histogramas das imagens resultantes são iguais e uniformes.
- A inversa T_2^{-1} aplicada à equalização T_1 , deve gerar uma imagem $\hat{J}=(D_{I_1},J)$ com histograma parecido com o de \hat{I}_2 .

$$J(p) = T_2^{-1}(T_1(I_1(p)))$$

U F <u>m</u> G

Casamento de histogramas

Sejam $\hat{I}_1 = (D_{I_1}, I_1)$ e $\hat{I}_2 = (D_{I_2}, I_2)$ duas imagens cinza. Suponha que desejamos fazer com que o histograma de \hat{I}_1 fique parecido com o histograma de \hat{I}_2 .

- Sejam T₁ e T₂ as transformações de equalização para Î₁ e Î₂. Após equalização, podemos assumir que os histogramas das imagens resultantes são iguais e uniformes.
- A inversa T_2^{-1} aplicada à equalização T_1 , deve gerar uma imagem $\hat{J}=(D_{I_1},J)$ com histograma parecido com o de \hat{I}_2 .

$$J(p) = T_2^{-1}(T_1(I_1(p)))$$

UF<u>m</u>G

Casamento de histogramas: original e linearmente transformada

(a) Após casamento

(b) Histogramas antes e depois

└─ Transformações em Histogramas

Exercícios

Considerando imagens cinzas, escreva os algoritmos em linguagem de alto nível para:

- Transformação linear.
- 2 Equalização pelo histograma acumulado.
- Casamento de histogramas.

Bibliografia

- Processamento de Imagens Digitais (Gonzalez & Woods)
 - Seção 2.4.6 Operações Lógico-Aritméticas
 - Cap. 4 Realce de Imagens
- Análise de Imagens (Pedrini & Schwartz)
 - Seção 2.11.8 Operações Lógicas e Aritméticas
 - Cap. 4 Realce de Imagens
- Notas de aula do Prof. Falcão:
 - http://www.ic.unicamp.br/~afalcao/mo443/aula2.pdf (Seção 4)
 - http://www.ic.unicamp.br/~afalcao/mo443/aula6.pdf
 - http://www.ic.unicamp.br/~afalcao/mo443/aula7.pdf
- Skimage:
 - Histogram exposure module: http://scikit-image.org/docs/dev/api/skimage.exposure.html