

Deep Learning in NLP

From RNNs to Transformers and Beyond

Neural Networks

Neural Networks

- Based mainly on two basic mathematical components:
 - Multiplying vectors and matrices
 - Non-linear activation functions

$$egin{bmatrix} ec{oldsymbol{c}}_1 & ec{oldsymbol{c}}_2 & ec{oldsymbol{r}}_1 \ ec{oldsymbol{w}} & ec{oldsymbol{z}}_1 \ ec{oldsymbol{z}} & ec{oldsymbol{c}}_1 & ec{oldsymbol{c}}_2 \ ec{oldsymbol{c}}_1 & ec{oldsymbol{c}}_2 & ec{oldsymbol{c}}_2 \ ec{oldsymbol{c}}_1 & ec{oldsymbol{c}}_2 & ec{oldsymbol{c}}_2 \ ec{oldsymbol{c}}_1 \ ec{oldsymbol{c}}_2 \ ec{olds$$

Universal Approximation Theorem

 A neural network with one hidden layer can approximate any function*

^{*} Given enough training data and parameters...

Universal Approximation Theorem

 A neural network with one hidden layer can approximate any function*

 $f:images
ightarrow animal \ types$

^{*} Given enough training data and parameters...

Vectorization

Unfortunately, a computer can't process " "...
 We need a vector!

Vectorization

Unfortunately, a computer can't process " "...
 We need a vector!

Word vectors lack order

Words can also be vectorized, as Aron explained.
 But how do we handle sequences?

"life is work" # "work is life"

BUT they result in the same set of vectors!

Sequences with RNNs

RNNs use a hidden state

- There's nothing hidden about the hidden state
- An RNN uses a vector \vec{h}_t to **remember** the earlier states at time-step t+1

Vanishing gradients

- ullet RNNs are defined recursively: $ec{m{h}}_{t+1} = f(Wec{x}_t + Vec{m{h}}_t + ec{b})$
- Early states have a weaker impact on later states
- ullet You can think of this as $ec{h}_t$ getting crammed and leaking

$$h_4 = f(Wec{x}_3 + V f(Wec{x}_2 + V f(Wec{x}_1 + V ec{oldsymbol{h}_1} + ec{b}) + ec{b}) + ec{b}) + ec{b}) \ h_{100} = \dots$$

Memory management with LSTMs

Learn to remember and to forget

- LSTM *cells* have three *gates* (i.e., new matrices)
 - Forget gate: what is now irrelevant?
 - Input gate: what new information do we keep?
 - Output gate: produce the next hidden state
- ullet The maintain a $\emph{cell state} \colon ec{c}_t$

Some "small" mathematical tweaks

$$ec{h}_{t+1} = f(Wec{x}_t + Vec{h}_t + ec{b})$$

Some "small" mathematical tweaks

$$ec{h}_{t+1} = f(Wec{x}_t + Vec{h}_t + ec{b})$$

$$egin{aligned} f_t &= \sigma(ec{b}_f + W_f heta) \ g_t &= \sigma(ec{b}_{g_1} + W_{g_1} heta) \odot s(ec{b}_{g_2} + W_{g_2} heta) \ q_t &= \sigma(ec{b}_{q} + W_{q} heta) \end{aligned} \qquad egin{aligned} ec{c}_t &= f_t \odot ec{c}_{t-1} + g_t \ ec{h}_t &= anh(ec{c}_t) \odot q_t \end{aligned}$$

Some "small" mathematical tweaks

$$ec{h}_{t+1} = f(Wec{x}_t + Vec{h}_t + ec{oldsymbol{b}})$$

$$egin{aligned} f_t &= \sigma(ec{b}_f + W_f heta) \ g_t &= \sigma(ec{b}_{g_1} + W_{g_1} heta) \odot s(ec{b}_{g_2} + W_{g_2} heta) \ q_t &= \sigma(ec{b}_q + W_q heta) \end{aligned} \qquad egin{aligned} ec{c}_t &= f_t \odot ec{c}_{t-1} + g_t \ ec{h}_t &= anh(ec{c}_t) \odot q_t \end{aligned}$$

Pros and cons

LSTMs handle long-term dependencies quite well!

However:

- The latest input still unproportionally affects the state
- Data must be processed sequentially, word for word
- They handle transfer learning poorly

Time for a break!

Pre-trained Transformers

Attention is all you need

- Attention was first introduced to improve LSTMs
- <u>Vaswani et al. (2017)</u> realized that attention lets us do away with sequential processing!
- This resulted in a new deep learning architecture the *Transformer* was born

- Self-attention considers all combinations of words directly instead of using a hidden state
- This results in contextualized representations

 $ec{x}_{likes}
ightarrow$

Creating the contextualized representation

Creating the contextualized representation

 $ec{w} = egin{bmatrix} 0.34 \ 0.57 \ 0.09 \end{bmatrix} \implies ec{z}_{likes} = 0.34 \cdot ec{v}_{John} + 0.57 \cdot ec{v}_{likes} + 0.09 \cdot ec{v}_{cats}$

$$ec{m{q}}_{bank} \cdot ec{m{k}}_{river} = 0.25$$

$$ec{m{q}_{bank}} \cdot ec{m{k}_{river}} = \boxed{0.25}$$
 $ec{m{z}_{bank}} = 0.6 \cdot ec{m{v}_{bank}} + 0.25 \cdot ec{m{v}_{river}} \ldots$

$$ec{z}_{They} = 0.4 \cdot ec{v}_{Jennifer} + 0.4 \cdot ec{v}_{Stephanie} \; \ldots$$

$$ec{z}_{discuss} = 0.5 \cdot ec{v}_{discuss} + 0.4 \cdot ec{v}_{politics} \dots$$

Multi-headed attention

Why Transformers are great

- Long term dependencies easy to learn because every word "sees" every other word
- Doing away with sequential processing allows for parallelization
- Most importantly: they are great at transfer learning

The NLP pyramid

LSTMs need more labeled data

Pre-trained transformers need less

Language Models

- Language modelling is traditionally done "left-to-right"
- GPT-{1, 2, 3} do this
 - These are autoregressive language models

$$x_{i+1} = \underset{w \in V}{\operatorname{argmax}} P(w|x_1, x_2, ..., x_i)$$

BERT

- BERT (popular model) is a masked language model
- Trained by learning to "fill in the gaps"

Thomas Vakili is a PhD **[MASK]** at DSV

↓
Thomas Vakili is a PhD **student** at DSV

$$x_{mask} = \operatorname*{argmax}_{w \in V} P(w|X \setminus x_{mask})$$

Traditional pipeline

Thomas Vakili is a PhD student at DSV

```
Word splitting ↓

["Thomas", "Vakili", "is", "a", "PhD", "student", "at", "DSV"]

Lemmatization ↓

["Thomas", "Vakili", "be", "a", "PhD", "student", "at", "DSV"]
```


Traditional pipeline

Thomas Vakili is a PhD student at DSV

```
Word splitting ↓

["Thomas", "Vakili", "is", "a", "PhD", "student", "at", "DSV"]

Lemmatization ↓

["Thomas", "Vakili", "be", "a", "PhD", "student", "at", "DSV"]

Vocabulary lookup ↓

["Thomas", "[UNK]", "be", "a", "PhD", "student", "at", "[UNK]"]
```


SentencePiece

- Sub-word tokenizers go beneath the word level
- SentencePiece¹ learns the vocabulary from data
- Vocabulary is not (only) words

^{1:} Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71, Brussels, Belgium. Association for Computational Linguistics.

Tokenization

```
Python 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from transformers import AutoTokenizer
>>> t = AutoTokenizer.from_pretrained('bert-base-cased')
>>> t.tokenize('Thomas Vakili is a PhD student at DSV')
```


Tokenization

```
Python 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> from transformers import AutoTokenizer

>>> t = AutoTokenizer.from_pretrained('bert-base-cased')

>>> t.tokenize('Thomas Vakili is a PhD student at DSV')

['Thomas', 'V', '##aki', '##li', 'is', 'a', 'PhD', 'student', 'at', 'DS', '##V']
```


Let's take a few minutes to process that

Why Transformers are also *not* so great

Explosion in parameters

Explosion in parameters

Mini quiz: pre-training and CO₂

Strubell et al. found that training this model resulted in CO₂ emissions equal to a trans-American flight:

- A. GPT-2 (1.5 billion parameters)
- B. T5-11B (11 billion parameters)
- C. BERT-large (340 million parameters)

Mini quiz: pre-training and CO₂

Strubell et al. (2019) found that training this model resulted in CO₂ emissions equal to a trans-American flight:

- A. GPT 2 (1.5 billion parameters)
- B. T5 11B (11 billion parameters)
- C. BERT large (340 million parameters)
- **→ D.** BERT-base (110 million parameters)

Cost of pre-training

- Pre-training is extremely expensive, requires very powerful computers and consumes a lot of energy
- You only need to do it once, but...
 - Models are more or less monolingual (in English)
 - SOTA results require domain-adaptation
 - Reproducing results is basically impossible
 - It's probably Google/OpenAI who trained it

Explosion in data use

Enormous data

- Labeled training data is expensive because actual human beings need to process it
- Learning from unlabeled data is cheap but...
 - It is impossible to guarantee its quality
 - How do we avoid learning stereotypes?
 - Who's language does the data represent?
 - Does the data contain personally identifiable info?

Whose language is being modeled?

- BERT uses Wikipedia and a corpus of books
- GPT-3 mainly uses a large data dump of the internet
 - Links collected from Reddit (22%)
 - Data from CommonCrawl (60%)
 - Rest is similar to BERT
- Question: what could be the problems with learning to model language based on this data?

Language is not static

- A perfect model would still need to be re-trained
- Word use changes: nobody says "groovy" anymore
- The world changes!

The PM of Sweden is: Magdalena Andersson Ulf Kristersson

The Winter Olympics will be held in: Pyeongchang Beijing

Some things shouldn't be learned

- Carlini et al. (2020) showed that GPT-2 memorizes
 - Entire Reddit threads
 - Social security numbers
 - Phone numbers
- They could extract this sensitive information by prompting it cleverly

Thomas' personal number is: 950208-1234 (not really)

Stereotypes in language models

- All language is cultural and reflects biases and prejudices that exist in society
- Language on the internet is even worse
- Language models have been shown to:
 - Associate African-American names with negative words
 - Stereotypically label professions by gender

```
ional as F
ons import Categorical
ed bert import BertTokenizer, BertForMaskedLM, BertForMaskedLM
, tokenizer):
e sentence by tokenizing and converting to tensor. """
er.convert tokens to ids(tokens)
n.tensor([tok ids]) # pylint: disable=not-callable
d_sentence, tokenizer, masking, n_append_mask=0):
entence to decode from, possible with masks.
masking):
"none":
== "random":
= [int(d) for d in masking.split(',')]
sk ids(masking)
cting [MASK]
eed_sentence.replace(MASK, MASK_ATOM)
tokenize(seed sentence)
merate(toks):
ATOM:
append(i)
```

sk ids:

Demo time!