Отчет по лабораторной работе №6

Разложение чисел на множители

Бурдина Ксения Павловна

23 ноября 2023

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение 3.1 Алгоритм, реализующий р-метод Полларда	6 7
4	Ход выполнения лабораторной работы	9
5	Листинг программы	11
6	Выводы	13
7	Список литературы	14

Список иллюстраций

figno «xeма работы алгоритма	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
figno Реализация метода Полларда																					9
figno Пример алгоритма																					10

1 Цель работы

Целью данной работы является освоение *p-метода Полларда*, который является одним из алгоритмом разложения составного числа на множители.

2 Задание

- 1. Изучить алгоритм разложения чисел на множители.
- 2. Реализовать представленный алгоритм и разложить на множители заданное число.

3 Теоретическое введение

Задача разложения на множители - одна из первых задач, использованных для построения криптосистем с открытым ключом.

Задача разложения составного числа на множители формулируется следующим образом: для данного положительного целого числа n найти его каноническое разложение $n=p_1^{\alpha_1}p_2^{\alpha_2}...p_s^{\alpha_s}$, где p_i - попарно различные простые числа, $\alpha_i\geqslant 1$.

На практике не обязательно находить каноническое разложение числа n. Достаточно найти его разложение на два p нетривиальных сомножителя: p q на q q q q . Далее будем понимать задачу разложения именно в этом смысле.

p-Метод Полларда. Пусть n - нечетное составное число, S=0,1,...,n-1 и $f:S\to S$ - случайное отображение. обладающее сжимающими свойствами. например. $f(x)\equiv x^2+1\ (mod\ n)$. Основная идея метода состоит в следующем. Выбираем случайный элемент $x_0\in S$ и строим последовательность $x_0,x_1,x_2,...$, определяемую рекуррентным соотношением

$$x_{i+1} = f(x_i),$$

где $i\geqslant 0$, до тех пор, пока не найдем такие числа i,j, что i< j и $x_i=x_j$. Поскольку множество S конечно, такие индексы i,j существуют (последовательность "зацикливается") [2]. Последовательность $\{x_i\}$ будет состоять из "хваста" $x_0,x_1,...,x_{i-1}$ длины $O\left(\sqrt{\frac{\pi n}{8}}\right)$ и цикла $x_i=x_j,x_{i+1},...,x_{j-1}$ той же длины.

3.1 Алгоритм, реализующий р-метод Полларда

 Bxod . Число n, начальное значение c, функция f, обладающая сжимающими свойствами.

Bыход. Нетривиальный делитель числа n.

- положить $a \leftarrow c, b \leftarrow c$
- вычислить $a \leftarrow f(a) (mod \, n), b \leftarrow f(b) (mod \, n)$
- найти $d \leftarrow (a-b,n)$
- если 1 < d < n, то положить $p \leftarrow d$ и результат: p. При d = n результат: "Делитель не найден"; при d = 1 вернуться на шаг 2

Пример [1]. Найти р-методом Полларда нетривиальный делитель числа n=1359331. Положим c=1 и $f(x)=x^2+5 (mod\ n)$. Работа алгоритма иллюстрируется следующей таблицей:

i	а	b	d = HOД(a - b, n)
	1	1	
2	6	41	1
2	41	123939	1
3	1686	391594	1
4	123939	438157	1
5	435426	582738	1
6	391594	1144026	1
7	1090062	885749	1181

Схема работы алгоритма

Таким образом, 1181 является нетривиальным делителем числа 1359331.

4 Ход выполнения лабораторной работы

Для реализации рассмотренного алгоритма разложения чисел на множители будем использовать среду JupyterLab. Выполним необходимую задачу.

- 1. Подключим необходимые для работы библиотеки, в частности, библиотеку нахождения НОД.
- 2. Пропишем функцию f, обладающую сжимающими свойствами.
- 3. Запишем алгоритм, реализующий *p-метод Полларда*, с помощью следующей функции:

```
from math import gcd
def f(x, n):
    return (x**2 + 5) % n
```

```
def Pollard(n, a, b, d):
    a = f(a, n)
    b = f(f(b, n), n)
    d = gcd(a - b, n)
    if 1 < d < n:
        print(d)
        exit()
    if d == n:
        print("Делитель не найден")
    if d == 1:
        Pollard(n, a, b, d)</pre>
```

Реализация метода Полларда

Здесь на вход подается целое число n, начальные значения a и b, вычисляемые через вышеописанную функцию. Необходимо выполнить следующее:

- положить $a \leftarrow c, b \leftarrow c$
- вычислить $a \leftarrow f(a) (mod \, n)$, $b \leftarrow f(b) (mod \, n)$
- найти $d \leftarrow (a-b,n)$
- если 1 < d < n, то положить $p \leftarrow d$ и результат: p. При d = n результат: "Делитель не найден"; при d = 1 вернуться на шаг 2

По итогу при вызове функции мы получим нетривиальный делитель числа n.

4. Проверим корректность работы алгоритма для заданных сведений. Для этого запишем условие примера с помощью следующей функции:

```
def prim():
    n = 1359331
    c = 1
    a = f(c, n)
    b = f(a, n)
    d = gcd(a - b, n)
    if 1 < d < n:
        print(d)
        exit()
    if d == n:
        pass
    if d == 1:
        Pollard(n, a, b, d)</pre>
```

Пример алгоритма

При вызове данной функции видим, что получаем то же число, что было описано в примере. То есть 1181 является нетривиальным делителем числа 1359331.

5 Листинг программы

```
from math import gcd
def f(x, n):
  return (x**2 + 5) % n
def Pollard(n, a, b, d):
  a = f(a, n)
 b = f(f(b, n), n)
  d = gcd(a - b, n)
  if 1 < d < n:
   print(d)
    exit()
  if d == n:
    print("Делитель не найден")
  if d == 1:
    Pollard(n, a, b, d)
def prim():
  n = 1359331
  c = 1
  a = f(c, n)
 b = f(a, n)
  d = gcd(a - b, n)
```

```
if 1 < d < n:
    print(d)
    exit()

if d == n:
    pass

if d == 1:
    Pollard(n, a, b, d)</pre>
```

6 Выводы

В ходе работы мы изучили и реализовали вероятностные алгоритмы проверки чисел на простоту.

7 Список литературы

- 1. Фороузан Б. А. Криптография и безопасность сетей. М.: Интернет-Университет Информационных Технологий : БИНОМ. Лаборатория знаний, 2010. - 784 с. [1]
- 2. Методические материалы курса [2]