# Progettazione mediante mappe di Karnaugh

# Svantaggi semplificazione mediante algebra di Boole

- 1. Difficile da applicare in *maniera sistematica*
- 2. Difficile <u>capire</u> se abbiamo ottenuto o meno una soluzione minimale

Alternativa semplice e veloce: mappe di Karnaugh (o K-maps)

# Progettazione circuiti

<u>Finora abbiamo visto come progettare circuiti</u> utilizzando:

- 1. Espansione mintermini o maxtermini
- 2. Semplificazione mediante algebra di Boole

# Minimizzazione mediante mappe di Karnaugh

- Metodo *visuale* (*alternativo* al metodo analitico)
- Semplice da utilizzare
- · Limitazione:
  - · Adatto a funzioni di 2,3,4 variabili
- · Ancora applicabile con 5, in casi estremi con 6 variabili
- Per funzioni con più variabili occorre utilizzare metodi di minimizzazione algoritmici

# Mappa a 2 variabili

Simile a una tabella di verità, specifica il valore della funzione per determinate combinazioni di valori

| # | A | В | mintermine     |
|---|---|---|----------------|
| 0 | 0 | 0 | $m_0$          |
| 1 | 0 | 1 | m <sub>1</sub> |
| 2 | 1 | 0 | m <sub>2</sub> |
| 3 | 1 | 1 | m <sub>3</sub> |



# Esempio

Partiamo da una tabella di verità

| # | A | В | F |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 2 | 1 | 0 | 0 |
| 3 | 1 | 1 | 0 |

# Esempio

Costruiamo la K-map riportando i valori dalla tabella di verità

| # | A | В | F |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 2 | 1 | 0 | 0 |
| 3 | 1 | 1 | 0 |





# Esempio

I valori 1 corrispondono a mintermini

| #  | A | В | F |
|----|---|---|---|
| 0  | 0 | 0 | 1 |
| 1  | 0 | 1 | 1 |
| 2  | 1 | 0 | 0 |
| 3  | 1 | 1 | 0 |
| \A |   |   |   |









| ariabili                              |                | ip i | 1110 | 1 \ |   |
|---------------------------------------|----------------|------|------|-----|---|
| Α                                     | mintermine     | С    | В    | A   | # |
| BC 0 1                                | m <sub>0</sub> | 0    | 0    | 0   | 0 |
| 0 0 m <sub>0</sub> m <sub>4</sub>     | m <sub>1</sub> | 1    | 0    | 0   | 1 |
|                                       | m <sub>2</sub> | 0    | 1    | 0   | 2 |
| 1111115                               | m <sub>3</sub> | 1    | 1    | 0   | 3 |
| 1 1   m <sub>3</sub>   m <sub>7</sub> | m <sub>4</sub> | 0    | 0    | 1   | 4 |
| \1 0 m <sub>2</sub> m <sub>6</sub>    | m <sub>5</sub> | 1    | 0    | 1   | 5 |
|                                       | m <sub>6</sub> | 0    | 1    | 1   | 6 |
|                                       | m <sub>7</sub> | 1    | 1    | 1   | 7 |

| Gray Code                                                                |          |         |      |
|--------------------------------------------------------------------------|----------|---------|------|
| · Se su un lato della tabella ci sono due                                | Decimale | Binario | Gray |
| variabili, i valori non sono ordinati in maniera crescente o decrescente | 0        | 000     | 000  |
| maniora diodesino d'addicassino                                          | 1        | 001     | 001  |
| Invece, la sequenza segue la regola del gray                             | 2        | 010     | 011  |
| code                                                                     | 3        | 011     | 010  |
| Tra una stringa di bit e la successiva può                               | 4        | 100     | 110  |
| cambiare un solo bit                                                     | 5        | 101     | 111  |
| Ideato da Frank Gray nel 1947, utilizzato in                             | 6        | 110     | 101  |
| telecomunicazioni                                                        | 7        | 111     | 100  |
|                                                                          |          |         |      |

## K-map a 3 variabili: Esempio

| A | В                          | C                                      | F                                                                                                                                     |                                                                                                                                                                                 |
|---|----------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0                          | 0                                      | 0                                                                                                                                     |                                                                                                                                                                                 |
| 0 | 0                          | 1                                      | 0                                                                                                                                     |                                                                                                                                                                                 |
| 0 | 1                          | 0                                      | 1                                                                                                                                     |                                                                                                                                                                                 |
| 0 | 1                          | 1                                      | 1                                                                                                                                     |                                                                                                                                                                                 |
| 1 | 0                          | 0                                      | 1                                                                                                                                     |                                                                                                                                                                                 |
| 1 | 0                          | 1                                      | 0                                                                                                                                     |                                                                                                                                                                                 |
| 1 | 1                          | 0                                      | 1                                                                                                                                     |                                                                                                                                                                                 |
| 1 | 1                          | 1                                      | 0                                                                                                                                     |                                                                                                                                                                                 |
|   | 0<br>0<br>0<br>0<br>1<br>1 | 0 0<br>0 0<br>0 1<br>0 1<br>1 0<br>1 0 | 0     0     0       0     0     1       0     1     0       0     1     1       1     0     0       1     0     1       1     1     0 | 0     0     0     0       0     0     1     0       0     1     0     1       0     1     1     1       1     0     0     1       1     0     1     0       1     1     0     1 |



#### Procedura

 Identificare gruppi di celle adiacenti contenenti lo stesso valore logico (1 per SOP, 0 per POS)

#### I gruppi di celle:

- · Devono essere adiacenti
- Devono essere un <u>numero potenza di 2 (</u>es. 1, 2, 4, 8, ...)

#### Celle adiacenti:

- · <u>Differiscono per il valore logico di una sola delle variabili</u>
- Quindi, una cella sul <u>bordo</u> della K-map è adiacente alla cella corrispondente sul bordo opposto

# Progettazione mediante SOP o POS

È possibile usare le K-maps per ottenere SOP o POS

#### Come?

- Esattamente come fatto in precedenza per l'espansione in mintermini o maxtermini
- Identificando gruppi di celle adiacenti contenenti 1 nel caso di SOP o 0 nel caso di POS
- <u>Le celle 1 sono da interpretare come mintermini, le</u> celle 0 come maxtermini

# Quanto semplifico?

- <u>Maggiore il numero di celle raggruppate</u>, <u>migliore il</u> livello di semplificazione
  - · Ovvero, variabili che semplifico
- Minore il numero di gruppi utilizzati, minore il numero di termini nella somma



# Esempio

Minimizzare la seguente funzione:

$$F(a, b, c) = \Sigma m(1, 3, 5) = \prod M(0, 2, 4, 6, 7)$$





## Esercizio

Derivare la forma SOP minima per la seguente espressione:

 $F(A,B,C) = \Sigma m(1, 3, 4, 6)$ 

# Esercizio

Determinare, data la seguente tabella di verità

- 1. Espansione in mintermini
- 2. Espansione in maxtermini
- 3. Forma SOP minimizzata
- 4. Forma POS minimizzata

| # | A | В | C | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 2 | 0 | 1 | 0 | 0 |
| 3 | 0 | 1 | 1 | 1 |
| 4 | 1 | 0 | 0 | 1 |
| 5 | 1 | 0 | 1 | 0 |
| 6 | 1 | 1 | 0 | 0 |
| 7 | 1 | 1 | 1 | 1 |
|   |   |   |   | _ |

## Esercizio

Determinare la forma POS minima per la seguente espressione:

 $F(A,B,C) = \Pi M(0, 2, 6)$ 

# Esempio

- Usiamo le K-map per determinare la forma SOP minima per la seguente espressione:
- $F(a,b,c) = \Sigma m(0, 1, 2, 5, 6, 7)$

# Costruiamo la K-map

 $F(a,b,c) = \Sigma m(0, 1, 2, 5, 6, 7)$ 

| # | A | В | С | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 2 | 0 | 1 | 0 | 1 |
| 3 | 0 | 1 | 1 | 0 |
| 4 | 1 | 0 | 0 | 0 |
| 5 | 1 | 0 | 1 | 1 |
| 6 | 1 | 1 | 0 | 1 |
| 7 | 1 | 1 | 1 | 1 |

| oc\a | 0  | 1  |
|------|----|----|
| 00   | m0 |    |
| 01   | m1 | m5 |
| 11   |    | m7 |
| 10   | m2 | m6 |
|      |    |    |

Come raggruppiamo i mintermini?

# Due forme minimali alternative





# Teorema del consenso

- XY + X'Z + YZ = XY + X'Z
- · Come lo dimostriamo con le K-Map?



K-Maps: Aumentiamo il numero di variabili...

|    |   |   |   |   | K-n          | าลเ     | o a      |         |        |    |
|----|---|---|---|---|--------------|---------|----------|---------|--------|----|
| #  | Α | В | С | D |              |         |          |         |        |    |
| 0  | 0 | 0 | 0 | 0 | 4 va         | arıa    | abii     | l       |        |    |
| 1  | 0 | 0 | 0 | 1 |              |         |          |         |        |    |
| 2  | 0 | 0 | 1 | 0 | Le celle cor |         |          |         | _      | dı |
| 3  | 0 | 0 | 1 | 1 | una tabe     | elia di | verita a | a 4 var | iabili |    |
| 4  | 0 | 1 | 0 | 0 | ∖AE          |         |          |         |        |    |
| 5  | 0 | 1 | 0 | 1 | CD           | 00      | 01       | 11      | 10     |    |
| 6  | 0 | 1 | 1 | 0 | 00           | 0       | 4        | 12      | 8      |    |
| 7  | 0 | 1 | 1 | 1 |              |         | Ľ.       |         | Ů      |    |
| 8  | 1 | 0 | 0 | 0 | 01           | 1       | 5        | 13      | 9      |    |
| 9  | 1 | 0 | 0 | 1 | 01           | '       | 3        | 2       | ٦      |    |
| 10 | 1 | 0 | 1 | 0 | 11           | 3       | 7        | 15      | 11     |    |
| 11 | 1 | 0 | 1 | 1 | ''           | 3       | <b>'</b> | 15      | ''     |    |
| 12 | 1 | 1 | 0 | 0 |              | _       |          | 4.4     | 40     |    |
| 13 | 1 | 1 | 0 | 1 | 10           | 2       | 6        | 14      | 10     |    |
| 14 | 1 | 1 | 1 | 0 | 1            |         |          |         |        | '  |
| 15 | 1 | 1 | 1 | 1 |              |         |          |         |        |    |

## Identifichiamo le adiacenze



## Identifichiamo le adiacenze



## Identifichiamo le adiacenze



## Identifichiamo le adiacenze













# Esempio

Minimizziamo la funzione:

 $F = \Sigma m(1, 3, 4, 5, 10, 12, 13)$ 





# Esempio

Minimizziamo la funzione:

 $F = \Sigma m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15)$ 

| #  | а | b | С | d | Esempio                       |
|----|---|---|---|---|-------------------------------|
| 0  | 0 | 0 | 0 | 0 | $F = \Sigma m(0, 2, 3, 5, 6,$ |
| 1  | 0 | 0 | 0 | 1 |                               |
| 2  | 0 | 0 | 1 | 0 | 7, 8, 10, 11, 14, 15)         |
| 3  | 0 | 0 | 1 | 1 | •                             |
| 4  | 0 | 1 | 0 | 0 | cd 00 01 11 10                |
| 5  | 0 | 1 | 0 | 1 |                               |
| 6  | 0 | 1 | 1 | 0 | 00   1     1                  |
| 7  | 0 | 1 | 1 | 1 |                               |
| 8  | 1 | 0 | 0 | 0 | 01   1   1                    |
| 9  | 1 | 0 | 0 | 1 |                               |
| 10 | 1 | 0 | 1 | 0 | 11   1   1   1   1            |
| 11 | 1 | 0 | 1 | 1 |                               |
| 12 | 1 | 1 | 0 | 0 | 10   1   1   1                |
| 13 | 1 | 1 | 0 | 1 | 10 [ '   '   '   '            |
| 14 | 1 | 1 | 1 | 0 | <del></del>                   |
| 15 | 1 | 1 | 1 | 1 |                               |

# Esempio: soluzione I quattro angoli si combinano in b'd' od 00 01 11 10 od 1 1 1 1 1 od 1 1 1 1 1 1 od 1 1

# Minimizzazione POS

Minimizziamo la funzione:

 $F(a,b,c,d) = \Pi M(1, 3, 9, 12)$ 





# Simulatore di circuiti

# Logisim

#### http://sourceforge.net/projects/circuit/

- · Consente di tracciare circuiti combinatori e sequenziali
- · Packaging di sottocircuiti in componenti
- · Simulazione e analisi circuiti
- Generazione automatica di circuiti a partire da tabelle di verità
- · Semplificazione mediante Mappe di Karnaugh

# Esercizio

- Ricordate il comparatore visto nella prima lezione?
- · Bene, ora realizziamolo per il caso di ingressi a 2 bit



# Esercizio

Determinare la forma POS minima per la seguente funzione

 $F(A,B,C,D) = \Sigma m(1, 5, 6, 8, 9, 12, 13, 14)$ 

Infine, produrre un'implementazione mediante porte NOR

## Esercizio

Determinare la forma SOP minima per la seguente espressione:

 $F(A,B,C,D) = \Sigma m(1, 5, 6, 8, 9, 12, 13, 14)$ 

Quindi, implementarla sia mediante AND/OR/NOT che mediante NAND

# Esercizio

Determinare l'espressione minima per la funzione:

 $F(A,B,C,D) = \Pi M(0, 2, 3, 7, 9, 10, 11, 14)$ 

Nota: provare a realizzare la funzione sia in forma SOP che POS

Qual è la più conveniente?

# Funzioni non completamente specificate

# Esempio

Minimizzare la seguente funzione non completamente specificata:

 $F = \Sigma m(1, 3, 5, 7, 9) + \Sigma d(6, 12, 13)$ 

# Funzioni non completamente specificate

- Come visto in precedenza, il valore assunto dalla funzione F è "don't care" ovvero una X
- Nell'espansione in mintermini o maxtermini, potevamo assegnare alla X il valore 1 o 0
- Nelle mappe di Karnaugh, <u>posso includere o</u> <u>meno le celle con la X</u>
  - Lo faccio <u>se ciò mi aiuta a minimizzare i</u> termini o le literal in ciascun termine

| #  | а | b | С | d | Esempio                                             |    |     |          |    |   |  |
|----|---|---|---|---|-----------------------------------------------------|----|-----|----------|----|---|--|
| 0  | 0 | 0 | 0 | 0 |                                                     | •  |     |          |    |   |  |
| 1  | 0 | 0 | 0 | 1 | $F = \Sigma m(1, 3, 5, 7, 9) + \Sigma d(6, 12, 13)$ |    |     |          |    |   |  |
| 2  | 0 | 0 | 1 | 0 |                                                     |    |     |          |    |   |  |
| 3  | 0 | 0 | 1 | 1 |                                                     |    |     |          |    |   |  |
| 4  | 0 | 1 | 0 | 0 |                                                     |    |     |          |    |   |  |
| 5  | 0 | 1 | 0 | 1 | cd                                                  | 00 | 01  | 11       | 10 |   |  |
| 6  | 0 | 1 | 1 | 0 | ca\                                                 |    |     |          | 10 | 1 |  |
| 7  | 0 | 1 | 1 | 1 | 00                                                  |    |     | Х        |    |   |  |
| 8  | 1 | 0 | 0 | 0 |                                                     |    |     |          |    |   |  |
| 9  | 1 | 0 | 0 | 1 | 01                                                  | 1  | 1   | X        | 1  |   |  |
| 10 | 1 | 0 | 1 | 0 | 01                                                  |    |     |          |    |   |  |
| 11 | 1 | 0 | 1 | 1 | 11                                                  | 1  | 1   |          |    |   |  |
| 12 | 1 | 1 | 0 | 0 |                                                     | '  | '   |          |    |   |  |
| 13 | 1 | 1 | 0 | 1 |                                                     |    | , , |          |    |   |  |
| 14 | 1 | 1 | 1 | 0 | 10                                                  |    | Х   |          |    |   |  |
| 15 | 1 | 1 | 1 | 1 |                                                     |    | !   | <u>!</u> |    | ı |  |

## Minimizzazione SOP



= a'd + c'd

## Esercizio

Determinare la forma minima SOP per la seguente funzione non completamente specificata:

 $F(A,B,C,D) = \Sigma m(1, 5, 9, 13, 14) + \Sigma d(4, 7, 8, 15)$ 

# Esercizio

Determinare la forma minima POS per la seguente funzione non completamente specificata:

 $F(A,B,C,D) = \Pi M(1, 3, 4, 9, 10, 12) \cdot \Pi D(2, 6, 11, 14)$ 

Implicanti, Implicanti primi, Implicanti primi essenziali

# Implicanti e implicanti primi

#### Literal

· Ciascuna variabile nella forma vera o complementata

#### Implicante (SOP)

- Gruppo di 1 (o singolo 1) che può essere combinato seguendo le regole di adiacenza delle K-map
- · Corrisponde a un prodotto di termini

#### Implicante primo (SOP)

 Un prodotto di termini che NON può essere combinato con un altro per eliminare una literal







# Implicanti primi essenziali

Se un mintermine <u>è coperto da un solo implicante primo</u>, <u>allora tale implicante primo è detto implicante primo</u> <u>essenziale</u>, e quindi deve essere incluso nella SOP minimale



# Identificazione copertura minima

- · Identificare implicanti primi
- · Tra questi, identificare gli implicanti primi essenziali
- Quindi, cercare di coprire quanto non ancora coperto dagli implicanti primi essenziali
- · A volta, la scelta non è ovvia...
- L'espressione Booleana <u>risultante potrebbe non</u> essere unica

# Implicanti primi essenziali I mintermini in blu sono coperti da un solo implicante primo. Negli altri casi è possibile trovare almeno 2 implicanti primi che coprono quel mintermine

# Determinare la copertura minima



Gli 1 in blu sono coperti solo da un implicante primo. Implicanti primi essenziali: A'B, AB'D'

AC'D Copre gli 1 restanti

# Copertura minima

Una copertura minima consiste <u>nel numero minore</u> <u>possibile di termini prodotto</u> (per un'espressione SOP<u>) o termini somma</u> (espressione POS) e, per ciascun termine, nel <u>numero minimo possibile di</u> <u>literal</u>

# Applicazione

Decoder per display a 7 segmenti

# Display a 7 segmenti



# Codifica

Come noterete il display sarebbe in grado di pilotare tutte le cifre esadecimali (0-9 e A-F)



# 

## Esercizio

- · Progettare un decoder per display a 7 segmenti
- Ingressi: 4 bit: ABCD (A è il bit più significativo)
- Uscite: X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, X<sub>4</sub>, X<sub>5</sub>, X<sub>6</sub>, X<sub>7</sub>
  - · pilotano i segmenti del display
- Nota: supponiamo che gli ingressi siano in BCD (Binary-Coded-Decimal), quindi ignoriamo l'uscita per ingressi >1001

# Conversione POS-SOP

## Conversione POS-SOP

Effettuare conversioni POS-SOP e vicerversa mediante mappe di Karnaugh è molto semplice

#### Procedimento:

- 1. Data l'espressione di partenza, tracciare i corrispondenti zeri (POS) o uni (SOP) sulla mappa
- Quindi, riempire le restanti celle con uni (passaggio a SOP) o zeri (passaggio a POS)
- 3. Infine, identificare gruppi sugli uni o zeri appena tracciati

# Esempio

(A'+B'+C+D)(A+B'+C+D)(A+B+C+D')(A+B+C'+D')(A'+B+C+D)(A+B'+C'+D)



# Aggiungiamo gli uni...

| CD | 3 00 | 01 | 11 | 10 |
|----|------|----|----|----|
| 00 | 1    | 0  | 0  | 0  |
| 01 | 0    | 1  | 1  | 1  |
| 11 | 0    | 1  | 1  | 1  |
| 10 | 1    | 0  | 1  | 1  |





## Esercizio

Convertire l'espressione

(W+X'+Y+Z')(W'+X+Y'+Z')(W'+X+Y'+Z)(W'+X'+Z')

in forma SOP minima

# Circuiti a più output

- In teoria, simile alla progettazione di circuiti a input singolo
- · Progettiamo il circuito di ogni singolo output
- Successivamente si cerca di <u>sfruttare al massimo</u> <u>i sotto-circuiti in comune</u>

# Design di circuiti con più output

# Esempio

 $F_1(A,B,C,D) = \sum m(11,12,13,14,15)$ 

 $F_2(A,B,C,D) = \sum m(3,7,11,12,13,15)$ 

 $F_3(A,B,C,D) = \sum m(3,7,12,13,14,15)$ 







# Alternativa

 $F_1(A,B,C,D)=AB+ACD$ 

 $F_2(A,B,C,D)=CD+ABC'$ 

 $F_3(A,B,C,D)=AB+A'CD$ 

- · AB è in comune tra F1 e F3
- In F<sub>2</sub> potrei scrivere CD= ACD+A'CD = CD (A+A')
  - · A questo punto il termine CD non mi serve più



Un <u>numero maggiore di</u>
<u>implicanti ci ha</u>
<u>permesso di ottenere un</u>
<u>circuito più semplice</u>...





# Altro esempio...

 $F_1(A,B,C,D) = \sum m(2,3,5,7,8,9,10,11,13,15)$ 

 $F_2(A,B,C,D) = \sum m(2,3,5,6,7,10,11,14,15)$ 

 $F_3(A,B,C,D)=\sum m(6,7,8,9,13,14,15)$ 

# 



# Come possiamo migliorare?

# Non preoccupiamoci di minimizzare la singola funzione

Identifichiamo gli implicanti in comune

# Esercizio

Contate, nei due casi precedenti, il numero totale degli ingressi delle porte considerate



# Esercizio

Ridurre il numero di gate da utilizzare per la realizzazione del 7-segment display decoder