פעולה	זמן ריצה במקרה הגרוע	זמן ריצה לשיעורין
insert(k, info)	O(1)	O(1)
findMin()	O(1)	O(1)
deleteMin()	O(n)	O(log(n))
decreaseKey(x, d)	O(n)	O(1)
delete(x)	O(n)	O(log(n))
totalLinks()	O(1)	O(1)
totalCuts()	O(1)	O(1)
meld(heap2)	O(1)	O(1)
size()	O(1)	O(1)
numTrees()	O(1)	O(1)

חלק תאורטי:

i-c הפחות לכל הפחות y_i הלמה תהיה אותו דבר רק שדרגת

 $y_1,...y_{i-1}$ ילדים, i-1 ילדים, i בנים x כאשר לx היה x יהיה $y_1,y_2...,y_n$ יהיה $y_1,y_2...,y_n$ יהיה ילדים, $y_1,y_2...,y_n$

אז נובע שגם לu נובע שלכל היותר יכולנו u איז מהגדרת איחדנו אותו עם איז נובע שלכל היותר יכולנו i-1 ילדים כאשר איחדנו אותו עם y_i לחתוך ל

לכל היותר c-1 ילדים בלי i-1-(c-1) גם יחתוך אותו, ולכן לi-1-(c-1) ילדים בלי מיותר בלי ישלכל היותר מיותר בלי ישלכל גם יחתוך אותו, ולכן ל וזו בדיוק הטענה שרצינו להוכיח. i-c

ב.

 $\lambda^k - \lambda^{k-1} - 1 = 0$, $\lambda^n - \lambda^{n-1} - \lambda^{n-k} = 0 \Leftarrow a_n - a_{n-1} - a_{n-k} = 0$ נשתמש בפולינום האופיני של נוסחת הנסיגה, אז אז יש k פתרונות לפולינום.

נשים לב שאחד הפתרונות האלה גדול מ1 ממשפט ערך הבניים של קושי, כי $1 \leq 1 \leq 1$ אבל אבל $2^{k} - 2^{k-1} - 1 = 2^{k-1} - 1 \ge 0$

לכן יש שורש ב[2,1]. נסמן את השורש הזה ב λ_r , נשים לב שגם זה השורש היחיד שגדול מ[2,1]. אפשר לראות זאת מהעבודה ש עבור $\lambda > 1$ הנגזרת

של הפולינום חיובית ממש לכל λ , לכן נחצה את 0 רק פעם אחת. אז עבור כל סדרה a_n שמשלב מסויים גדלה $lpha_r$, λ_r ממש חייב להיות שהמקדם של

איננו n. לכן נניח שהסדרה עולה ממש ממקום מסויים ונקבל את המשוואה הזו, עבור n גדול מספיק ועבור $.1 < b < \lambda_r$

$$|a_n| = |\sum_{i=1}^k \alpha_i \lambda_i^n| \ge |\alpha_r| |b^n| = |\alpha_r| |b^n \underset{\alpha_r \ne 0}{\Longrightarrow} |a_n| = \Omega(b^n) \Rightarrow a_n = \Omega(b^n)$$

נשים לב שבערימה עם n אברים בעלת עץ עם דרגה מקסימלית, מכל הערימות האפשריות עם n אברים יהיה בהכרח עץ 1.

 S_k נגדיר סדרה בצורה הבאה, מספר הילדים המינימלי האפשרי לעץ בדרגה מספר מספר נגדיר

נגדיר נוסחת נסיגה a_n צאצאים כולל עצמו. $0 \leq i < c$, $a_i = i+1$ $a_n = a_{n-1} + a_{n-c}$ נגדיר נוסחת נסיגה

נשתמש באינדוקציה שלמה, אז הבסיס לטענה זו עבור $0 \le i < c$, לעץ מדרגה i יש בדיוק i ילדים, ולכן לכל הפחות $S_i \geq i+1=a_i$ יש לו i+1 צאצאים כולל עצמו לכן i+1

נסתכל על עץ בדרגה k, אז ללא הצומת האחרונה שהוספנו אליו הוא עץ מדרגה k-1, נשתמש בטענה ונקבל שיש לו לפחות a_{k-1} צאצאים כולל עצמו, נסתכל על הילד הk שלו.

ס"כם אצאים, לכן בסה"מ מדרגה לכל הפחות k-c, לכן מהאינדוקציה יש לו לכל הפחות a_{k-c} צאצאים, לכן בסה . לעץ יש לו לפחות $S_k \geq a_{k-1} + a_{k-c} = a_k$ צאצאים

 $a_k > 1$ עבור $a_k = \Omega(b^k)$ מתקיים ש $a_k = \Omega(b^k)$ עבור ממש ומקודם הוכחנו שנוסחת נסיגה כזו מקיימת

, אז אם אם אם אונס חוגם O(n) אז אם אם בערימה אוkבדרגה כל עץ בדרגה אברים, בעלת אברים אז אם אז אם לכן לכן לכן אברים, כל עץ בדרגה אברים, כל עץ בדרגה לכן

$$k = O(log(n)) \Leftarrow k \le log_b(c \cdot n) \Leftarrow b^k \le \underbrace{c}_{c>0} \cdot n \Leftarrow b^k = O(n)$$