Tema: Densidad normal multivariante y sus propiedades

- 1. Considere una distribución normal bivariada con $\mu_1=1, \mu_2=3, \sigma_{11}=2, \sigma_{22}=1$ y $\rho_{12}=-.8$
 - (a) Escriba la densidad normal bivariada.
 - (b) Escriba la expresión de distancia estadística al cuadrado $(\mathbf{x} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})$ como una función cuadrática de x_1 y x_2 .
- 2. Sea $\mathbf{X} N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ con $\boldsymbol{\mu}' = [-3, 1, 4]$ y

$$\Sigma = \left[\begin{array}{rrr} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{array} \right]$$

¿Cuáles de las siguientes variables aleatorias son independientes? Explique.

- (a) $X_1 y X_2$
- (b) $X_2 y X_3$
- (c) (X_1, X_2) y X_3
- (d) $\frac{X_1 + X_2}{2}$ y X_3
- (e) $X_2 y X_2 \frac{5}{2}X_1 X_3$
- (f) Especifique la distribución condicional de X_2 , dado que $X_1=x_1$ y $X_3=x_3$
- 3. Sea **X** $N_3(\mu, \Sigma)$ con $\mu' = [2, -3, 1]$ y

$$\Sigma = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{array} \right]$$

- (a) Encuentra la distribución de $3X_1 2X_2 + X_3$
- (b) Vuelva a etiquetar las variables si es necesario, y encuentre un vector 2×1 tal que X_2 y

$$X_2 - \mathbf{a}' \begin{bmatrix} X_1 \\ X_3 \end{bmatrix}$$
 son independientes.

4. Sea X distribuido como $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, donde $\boldsymbol{\mu}' = [1, -1, 2]$ y

$$\Sigma = \left[\begin{array}{rrr} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{array} \right]$$

especifique cada uno de los siguientes:

- (a) La distribución condicional de X_1 , dado que $X_3=x_3$
- (b) La distribución condicional de X_1 , dado que $X_2=x_2$ y $X_3=x_3$

- 5. Sean X_1, X_2, X_3 , y X_4 vectores aleatorios independientes $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
 - (a) Encuentre las distribuciones marginales para cada uno de los vectores aleatorios

$$\mathbf{V}_1 = \frac{1}{4}\mathbf{X}_1 - \frac{1}{4}\mathbf{X}_2 + \frac{1}{4}\mathbf{X}_3 - \frac{1}{4}\mathbf{X}_4$$

у

$$\mathbf{V}_2 = \frac{1}{4}\mathbf{X}_1 + \frac{1}{4}\mathbf{X}_2 - \frac{1}{4}\mathbf{X}_3 - \frac{1}{4}\mathbf{X}_4$$

(b) Encuentre la densidad conjunta de los vectores aleatorios \mathbf{V}_1 y \mathbf{V}_2 definidos en (a).