Clase 17 - El transistor de efecto de campo de juntura (JFET)

Contenido:

- 1. Estructura del JFET
- 2. Características eléctricas del JFET
- 3. Expresiones de control de corriente
- 4. Modelo de pequeña señal

Lectura recomendada:

- Müller, Kamins, "Device Electronics for Integrated Circuits", Ch. 4, §§4.5.
- Gray, Hurst, Lewis, Meyer, "Analysis and Design of Analog Integrated Circuits", Ch. 1, §§1.5–1.6.

1. Estructura de un JFET

Resistencia de un canal de Si de longitud L, ancho W, espesor x_w y resistividad ρ

$$R = \frac{\rho L}{Area} = \frac{\rho L}{x_w W}$$

Si logramos modular el área haciendo menos alto el canal (reduciendo x_w), podremos modular su resistencia.

Se puede proponer la siguiente estructura para implementar la idea anterior:

Donde las zonas desiertas de las junturas PN en inversa modulan el espesor x_w del canal de silicio tipo n.

Con algunas modificaciones se obtiene un dispositivo. Se deben agregar difusiones a ambos lados y los contactos eléctricos que se llaman Drain, Source y Gate:

Si se aplica una tensión V_{DS} pequeña, se puede calcular la corriente del canal (entrante al Drain) como:

$$I_D = \frac{V_{DS}}{R} = \left(\frac{W}{L}\right) (q \mu_n N_d x_w) V_{DS}$$
$$x_w = t - x_d$$

Pero
$$x_d = \sqrt{\frac{2 \epsilon_{Si}}{q N_D} (\phi_B - V_G)}$$

Reemplazando:

$$I_D = \frac{W}{L} q \,\mu_n \, N_d \, t \left(1 - \sqrt{\frac{2 \,\epsilon_{Si}}{q \, N_d \, t^2} (\phi_B - V_G)} \right) V_{DS}$$

Donde se puede definir la conductancia sin tensión aplicada G_0

$$I_D = G_0 \left(1 - \sqrt{\frac{2 \epsilon_{Si}}{q N_d t^2} (\phi_B - V_G)} \right) V_{DS}$$

$$G_0 = \frac{W}{L} q \,\mu_n \, N_d \, t$$

Para tensiones pequeñas de V_{DS} el JFET se comporta como una resistencia cuya resistividad está controlada por V_G .

2. Modo no lineal y saturación de I_D

Si V_{DS} no es pequeña, I_D crece, y el potencial a lo largo del canal no será constante y $x_w = f(y)$:

La caída de tensión en cada lugar del canal será:

$$d\phi = I_D dR = \frac{I_D dy}{W q \mu_n N_d (t - x_d(y))}$$

Luego:

$$x_d(y) = \sqrt{\frac{2 \epsilon_{Si}}{q N_d} (\phi_B - V_{GS} + \phi(y))}$$

Dónde hemos asumido que la tensión de Gate se referencia al terminal de Source.

Reemplazando x_d e integrando queda:

$$I_D = G_0 \left(V_{DS} - \frac{2}{3} \left(\frac{2 \epsilon_{Si}}{q N_d t^2} \right)^{1/2} \left[(\phi_B - V_{GS} + V_{DS})^{3/2} - (\phi_B - V_{GS})^{3/2} \right] \right)$$

Por otro lado, si la caída de tensión es lo suficientemente grande, puede ser que en y = L se alcance $x_w = 0$, es decir:

Lo cual puede expresarse matemáticamente como:

$$x_d(y = L) = t$$

$$\sqrt{\frac{2 \epsilon_{Si}}{q N_d} (\phi_B - V_{GS} + V_{DS})} = t$$

En esta situación diremos que $V_{DS} = V_{DS(sat)}$, luego:

$$V_{DS(sat)} = \frac{q N_d t^2}{2 \epsilon_{Si}} - (\phi_B - V_{GS})$$

Debido al pinch-off del canal, la corriente de Drain satura. Reemplazando $V_{DS(sat)}$ en la expresión de la corriente obtenemos:

$$I_{D(sat)} = G_0 \left[\frac{q N_d t^2}{6 \epsilon_{Si}} - (\phi_B - V_{GS}) \left(1 - \frac{2}{3} \sqrt{\frac{2 \epsilon_{Si} (\phi_B - V_{GS})}{q N_d t^2}} \right) \right]$$

Por otro lado si la magnitud de V_{GS} es suficientemente grande la SCR se extiende a lo largo de todo el alto del canal $(x_d = t \text{ para todo } y)$ y la corriente se anula. Esto ocurre cuando:

$$V_{GS} = V_P = \phi_B - \frac{q N_d t^2}{2 \epsilon_{Si}}$$

 V_P : es la tensión umbral. Por lo tanto para que haya conducción debe cumplirse que

$$V_P < V_{GS} < 0$$

Luego se observa que

$$V_{DS(sat)} = V_{GS} - V_P > 0$$

3. Expresión simplificada de la corriente del canal

En la práctica se utilizan expresiones simplificadas para la corriente de Drain. Linealizando en polinomio de Taylor en orden 2 alrededor de $V_{GS} = V_P$, se llega al siguiente conjunto de de ecuaciones:

• En saturación con $V_P < V_{GS} < 0$ y $V_{DS} > V_{GS} - V_P$:

$$I_D = I_{Dss} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

• En triodo con $V_P < V_{GS} < 0$ y $V_{DS} < V_{GS} - V_P$:

$$I_D = I_{Dss} \left(2 \left(1 - \frac{V_{GS}}{V_P} \right) \left(-\frac{V_{DS}}{V_P} \right) - \left(\frac{V_{DS}}{V_P} \right)^2 \right)$$

$$I_D = \frac{2I_{Dss}}{V_P^2} \left(V_{GS} - V_P - \frac{V_{DS}}{2} \right) V_{DS}$$

Donde

$$I_{Dss} = \frac{G_0 V_P^2}{4(\phi_B - V_P)} = \frac{1}{2} \mu \frac{\epsilon_{Si}}{t} \frac{W}{L} V_P^2$$

Considerando el Efecto de Modulación del Largo del Canal:

$$I_D = I_{Dss} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \left(1 + \lambda V_{DS} \right)$$

Curvas características para un JFET canal n:

La tensión V_P es negativa. En conducción $V_P < V_{GS} < 0$ por lo tanto $V_{DS(sat)} = V_{GS} - V_P > 0$.

□ Símbolos

La convención para los nombres de los terminales es igual que para el MOSFET.

- Canal N: el Drain está a mayor potencial que el Source.
- Canal P: el Drain está a menor potencial que el Source.

Además la tensión de polarización debe asegurar que la juntura de Gate esté en inversa en todo momento.

4. Modelo de pequeña señal

El modelo de pequeña señal del JFET es útil en régimen de saturación.

□ Transconductancia

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} \Big|_{Q}$$

$$g_{m} = -\frac{2I_{Dss}}{V_{P}} \left(1 - \frac{V_{GS}}{V_{P}}\right)$$

□ Resistencia de salida

$$r_o^{-1} = \frac{\partial i_D}{\partial v_{DS}} \bigg|_Q = \lambda I_{Dss} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

luego considerando la expresión de I_D , puede escribirse:

$$r_o = \frac{1}{\lambda I_D}$$

□ Efectos capacitivos

Las capacidades presentes en el JFET son debido a las junturas PN polarizadas en inversa y pueden modelizarse con las siguientes expresiones:

$$C_{gs} = \frac{C_{gso}}{\sqrt{1 + \frac{V_{GS}}{\phi_0}}}$$

$$C_{gd} = \frac{C_{gdo}}{\sqrt{1 + \frac{V_{GD}}{\phi_0}}}$$

En caso de los dispositivos fabricados con tecnología planar (para integración monolítica) existe además una capacidad entre el gate y el sustrato:

$$C_{gss} = \frac{C_{gsso}}{\sqrt{1 + \frac{V_{GSS}}{\phi_0}}}$$

\square Circuito equivalente de pequeña señal

