

IIC 3800 Tópicos en CC NLP

https://github.com/marcelomendoza/IIC3800

- EVALUACIÓN -

CoLA (Corpus of Linguistic Acceptability): Esta es una tarea de clasificación binaria en la que los sistemas deben predecir si una oración en inglés es gramaticalmente correcta o no.

SST-2 (Stanford Sentiment Treebank): Esta es otra tarea de clasificación binaria en la que los sistemas deben predecir el sentimiento de una oración, ya sea positivo o negativo.

MRPC (Microsoft Research Paraphrase Corpus): En esta tarea, los sistemas deben determinar si dos oraciones son paráfrasis la una de la otra.

STS-B (Semantic Textual Similarity Benchmark): Aquí, los sistemas deben predecir qué tan similar es el significado de dos oraciones en una escala de 0 a 5.

QQP (Quora Question Pairs): En esta tarea, los sistemas deben determinar si dos preguntas son semánticamente equivalentes.

MNLI (Multi-Genre Natural Language Inference): Esta tarea requiere que los sistemas determinen la relación entre una oración de premisa y una oración de hipótesis: si la hipótesis es un entailment, una contradicción, o neutra.

QNLI (Question Natural Language Inference): Esta es una versión de la tarea de Natural Language Inference, en la que se presenta a los sistemas una pregunta y un párrafo, y deben determinar si la respuesta a la pregunta se puede inferir del párrafo.

RTE (Recognizing Textual Entailment): Similar a MNLI, pero las parejas de oraciones provienen de varios sets de datos anteriores.

WNLI (Winograd NLI): Esta tarea está diseñada para evaluar la capacidad de un sistema para la comprensión de la referencia de pronombres, es decir, a qué se refiere un pronombre en un texto.

Corpus	Train	Test	Task	Metrics	Domain							
Single-Sentence Tasks												
CoLA SST-2	8.5k 67k	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews							
	Similarity and Paraphrase Tasks											
MRPC STS-B QQP	3.7k 7k 364k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions							
	Inference Tasks											
MNLI QNLI RTE WNLI	393k 105k 2.5k 634	20k 5.4k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc.	misc. Wikipedia news, Wikipedia fiction books							

Fine-tuning:

Predecir el fragmento del

la pregunta

Codificación para GLUE (fine tuning), también se evalúa en SquAD y CoNLL NER:

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Resultados (GLUE):

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

SuperGLUE

BoolQ (BoolQ boolean questions): Los participantes deben responder preguntas de sí o no basadas en un párrafo corto de un artículo de Wikipedia.

CB (CommitmentBank): Se evalúa la capacidad de un modelo para predecir la postura de un hablante hacia una afirmación que ha hecho, basándose en la evidencia proporcionada.

COPA (Choice of Plausible Alternatives): Los modelos tienen que seleccionar la causa o el efecto más plausible de una situación dada.

MultiRC (Multi-Sentence Reading Comprehension): Los modelos deben responder preguntas sobre un párrafo, donde cada pregunta tiene múltiples respuestas correctas.

WiC (Word-in-Context): Esta tarea evalúa si un modelo puede entender el significado de una palabra en dos oraciones diferentes.

WSC (Winograd Schema Challenge): Es una tarea de resolución de la correferencia de pronombres que requiere una comprensión profunda del sentido común y del contexto.

RTE (Recognizing Textual Entailment): Los modelos deben determinar si una oración es verdadera (entails), es falsa (contradicts) o es neutral (neither) en base a una oración previa.

SQuAD v1.1 (Stanford Question Answering Dataset): Es una tarea de respuesta a preguntas basada en la comprensión de un párrafo.

SuperGLUE

Corpus	Train	Dev	Test	Task	Metrics	Text Sources
BoolQ	9427	3270	3245	QA	acc.	Google queries, Wikipedia
CB	250	57	250	NLI	acc./F1	various
COPA	400	100	500	QA	acc.	blogs, photography encyclopedia
MultiRC	5100	953	1800	QA	$F1_a/EM$	various
ReCoRD	101k	10k	10k	QA	F1/EM	news (CNN, Daily Mail)
RTE	2500	278	300	NLI	acc.	news, Wikipedia
WiC	6000	638	1400	WSD	acc.	WordNet, VerbNet, Wiktionary
WSC	554	104	146	coref.	acc.	fiction books

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, Samuel R. Bowman: SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems. NeurIPS2019: 3261-3275

SuperGLUE

Model	Avg	BoolQ	CB	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	\mathbf{AX}_b	$\mathbf{A}\mathbf{X}_g$
Metrics		Acc.	F1/Acc.	Acc.	$F1_a/EM$	F1/EM	Acc.	Acc.	Acc.	MCC	GPS Acc.
Most Frequent	47.1	62.3	21.7/48.4	50.0	61.1 / 0.3	33.4/32.5	50.3	50.0	65.1	0.0	100.0/ 50.0
CBoW	44.3	62.1	49.0/71.2	51.6	0.0 / 0.4	14.0/13.6	49.7	53.0	65.1	-0.4	100.0/50.0
BERT	69.0	77.4	75.7/83.6	70.6	70.0 / 24.0	72.0/71.3	71.6	69.5	64.3	23.0	97.8 / 51.7
BERT++	71.5	79.0	84.7/90.4	73.8	70.0 / 24.1	72.0/71.3	79.0	69.5	64.3	38.0	99.4 / 51.4
Outside Best	-	80.4	- / -	84.4	70.4*/24.5*	74.8/73.0	82.7	-	-	-	- / -
Human (est.)	89.8	89.0	95.8/98.9	100.0	81.8*/51.9*	91.7/91.3	93.6	80.0	100.0	77.0	99.3 / 99.7

Métrica para evaluación de resúmenes automáticos.

ROUGE-N: Mide la superposición de N-gramas entre el resumen generado y el de referencia. N puede ser cualquier número entero, aunque típicamente se usa 1 (para palabras individuales, es decir, unigramas) y 2 (para pares de palabras, es decir, bigramas). Esta es una medida de precisión y recuperación.

ROUGE-L: Considera la superposición de secuencias más largas de palabras, utilizando la subsecuencia común más larga (LCS, por sus siglas en inglés). Esto ayuda a capturar relaciones más largas entre las palabras y puede ser menos sensible a pequeñas diferencias en la formulación exacta.

ROUGE-S: Mide la superposición de skip-grams.

ROUGE-N

ROUGE-1: 1-grams

ROUGE-L

ROUGE-S

Skip bi-gram

BLEU score (Bilingual Evaluation Understudy)

BLEU (Bilingual Evaluation Understudy) es una métrica que se utiliza para evaluar la calidad de las traducciones producidas por sistemas de traducción automática.

BLEU: % de MT output n-grams que coinciden con el texto de referencia.

Reference (Human) translation: The U.S. island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself the Saudi Arabian Osama bin Laden and threatening a biological/chemical attack against public places such as the airport. Machine translation: The American [?] international airport and its the office all receives one calls self the sand Arabirich business [?] and so on electronic mail , which sends out; The threat will be able after public place and so on the airport to start the biochemistry attack, [?] highly alerts after the

maintenance.