

Prof. Rilder S. Pires

MBA em Ciência de Dados

Revisão: Estatística Básica:

▶ Medidas de Tendência Central

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade
- ▶ Quantils

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade
- ▶ Quantils

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade
- ► Quantils

Parte Teórica: Probabilidade:

► Espaço Amostral e Eventos

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade
- ▶ Quantils

- ► Espaço Amostral e Eventos
- ▶ Definição

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade
- ► Quantils

- ► Espaço Amostral e Eventos
- Definição
- Interpretações

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade
- ▶ Quantils

- ► Espaço Amostral e Eventos
- Definição
- Interpretações
- Propriedades

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade
- ► Quantils

- ► Espaço Amostral e Eventos
- Definição
- Interpretações
- Propriedades
- Probabilidade em Espaços Amostrais Finitos

Revisão: Estatística Básica:

- Medidas de Tendência Central
- ► Medidas de Variabilidade
- ► Quantils

- ► Espaço Amostral e Eventos
- Definição
- Interpretações
- Propriedades
- ▶ Probabilidade em Espaços Amostrais Finitos
- ► Eventos Independentes

Revisão: Estatística Básica:

- Medidas de Tendência Central
- ► Medidas de Variabilidade
- ▶ Quantils

Parte Teórica: Probabilidade:

- ► Espaço Amostral e Eventos
- Definição
- Interpretações
- Propriedades
- ▶ Probabilidade em Espaços Amostrais Finitos
- ► Eventos Independentes

Parte Prática:

Revisão: Estatística Básica:

- Medidas de Tendência Central
- ► Medidas de Variabilidade
- ► Quantils

Parte Teórica: Probabilidade:

- ► Espaço Amostral e Eventos
- Definição
- Interpretações
- Propriedades
- ▶ Probabilidade em Espaços Amostrais Finitos
- ► Eventos Independentes

Parte Prática:

► Estatística Básica

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade
- ► Quantils

Parte Teórica: Probabilidade:

- ► Espaço Amostral e Eventos
- Definição
- Interpretações
- Propriedades
- ▶ Probabilidade em Espaços Amostrais Finitos
- ► Eventos Independentes

Parte Prática:

- ► Estatística Básica
- Probabilidade: Interpretação da frequência

Revisão: Estatística Básica:

- ▶ Medidas de Tendência Central
- ► Medidas de Variabilidade
- ► Quantils

Parte Teórica: Probabilidade:

- ► Espaço Amostral e Eventos
- Definição
- Interpretações
- Propriedades
- ▶ Probabilidade em Espaços Amostrais Finitos
- ► Eventos Independentes

Parte Prática:

- ► Estatística Básica
- ▶ Probabilidade: Interpretação da frequência
- Projeto Final: Apresentação dos Dados

Projeto Final

Projeto Final

▶ Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Projeto Final

▶ Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Projeto Final

▶ Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Quão diferente são as Mesoregiões Cearenses?

Projeto Final

▶ Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Quão diferente são as Mesoregiões Cearenses?

Projeto Final

▶ Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Quão diferente são as Mesoregiões Cearenses?

Observações:

▶ Dados da Plataforma SIDRA-IBGE

Projeto Final

▶ Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Quão diferente são as Mesoregiões Cearenses?

- Dados da Plataforma SIDRA-IBGE
- Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)

Projeto Final

Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Quão diferente são as Mesoregiões Cearenses?

- ▶ Dados da Plataforma SIDRA-IBGE
- Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)
- ► Produto Interno Bruto dos Municípios (https://sidra.ibge.gov.br/tabela/5938)

Projeto Final

Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Quão diferente são as Mesoregiões Cearenses?

- Dados da Plataforma SIDRA-IBGE
- Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)
- ➤ Produto Interno Bruto dos Municípios (https://sidra.ibge.gov.br/tabela/5938)
- Estimativas de População: (https://sidra.ibge.gov.br/tabela/6579)

Projeto Final

Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Quão diferente são as Mesoregiões Cearenses?

- Dados da Plataforma SIDRA-IBGE
- Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)
- ➤ Produto Interno Bruto dos Municípios (https://sidra.ibge.gov.br/tabela/5938)
- Estimativas de População: (https://sidra.ibge.gov.br/tabela/6579)
- ► Entregar os notebooks com códigos e explicações.

Eventos Independentes:

Eventos Independentes:

▶ Se jogarmos uma moeda justa duas vezes, a probabilidade de duas caras é $\frac{1}{2} \times \frac{1}{2}$.

Eventos Independentes:

- ▶ Se jogarmos uma moeda justa duas vezes, a probabilidade de duas caras é $\frac{1}{2} \times \frac{1}{2}$.
- Multiplicamos porque consideramos as duas jogadas independentes.

Eventos Independentes:

- ▶ Se jogarmos uma moeda justa duas vezes, a probabilidade de duas caras é $\frac{1}{2} \times \frac{1}{2}$.
- Multiplicamos porque consideramos as duas jogadas independentes.
- Definição: Dois eventos A e B são independentes se

$$\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$$

Um conjunto de eventos $\{A_i : i \in I\}$ é independente se

$$\mathbb{P}\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}\mathbb{P}(A_i)$$

para cada subconjunto finito J de I.

Eventos Independentes:

- ▶ Se jogarmos uma moeda justa duas vezes, a probabilidade de duas caras é $\frac{1}{2} \times \frac{1}{2}$.
- Multiplicamos porque consideramos as duas jogadas independentes.
- Definição: Dois eventos A e B são independentes se

$$\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$$

Um conjunto de eventos $\{A_i : i \in I\}$ é independente se

$$\mathbb{P}\left(\bigcap_{i\in J} A_i\right) = \prod_{i\in J} \mathbb{P}(A_i)$$

para cada subconjunto finito J de I.

^{*} Independência as vezes é assumida e as vezes é verificada.

Eventos Independentes:

Exemplo 1: Lançamento de uma moeda justa duas vezes

Eventos Independentes:

Exemplo 1: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

Eventos Independentes:

Exemplo 1: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 1
o. lançamento

Eventos Independentes:

Exemplo 1: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 10. lançamento

 $B = \{HT, TT\}$: Tirar coroa no 2
o. lançamento

Eventos Independentes:

Exemplo 1: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 1
o. lançamento

 $B=\{HT,TT\}$: Tirar coroa no 2
o. lançamento

 $AB = \{HT\}$: Tirar cara no 10. e coroa no 20

Eventos Independentes:

Exemplo 1: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 1
o. lançamento $B = \{HT, TT\}$: Tirar coroa no 2
o. lançamento $AB = \{HT\}$: Tirar cara no 1
o. e coroa no 2
o

Nesse caso,

Eventos Independentes:

Exemplo 1: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 10. lançamento $B = \{HT, TT\}$: Tirar coroa no 20. lançamento

 $AB = \{HT\}$: Tirar cara no 10. e coroa no 20

Nesse caso,

$$\mathbb{P}(AB) = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = \mathbb{P}(A)\mathbb{P}(B)$$

Eventos Independentes:

Exemplo 1: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 10. lançamento $B = \{HT, TT\}$: Tirar coroa no 20. lançamento $AB = \{HT\}$: Tirar cara no 10. e coroa no 20

Nesse caso,

$$\mathbb{P}(AB) = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = \mathbb{P}(A)\mathbb{P}(B)$$

Logo A e B são independentes!

Eventos Independentes:

Exemplo 2: Lançamento de uma moeda justa duas vezes

Eventos Independentes:

Exemplo 2: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

Eventos Independentes:

Exemplo 2: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT, TH\}$: Tirar pelo menos uma cara

Eventos Independentes:

Exemplo 2: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT, TH\}$: Tirar pelo menos uma cara

 $B = \{HT, TT, TH\}$: Tirar pelo menos uma coroa

Eventos Independentes:

Exemplo 2: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT, TH\}$: Tirar pelo menos uma cara $B = \{HT, TT, TH\}$: Tirar pelo menos uma coroa

 $AB = \{HT, TH\}$: Tirar uma cara e uma coroa

Eventos Independentes:

Exemplo 2: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT, TH\}$: Tirar pelo menos uma cara $B = \{HT, TT, TH\}$: Tirar pelo menos uma coroa $AB = \{HT, TH\}$: Tirar uma cara e uma coroa

Nesse caso,

Eventos Independentes:

Exemplo 2: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT, TH\}$: Tirar pelo menos uma cara $B = \{HT, TT, TH\}$: Tirar pelo menos uma coroa $AB = \{HT, TH\}$: Tirar uma cara e uma coroa

Nesse caso,

$$\mathbb{P}(AB) = \frac{1}{2} \neq \frac{3}{4} \times \frac{3}{4} = \mathbb{P}(A)\mathbb{P}(B)$$

Eventos Independentes:

Exemplo 2: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT, TH\}$: Tirar pelo menos uma cara $B = \{HT, TT, TH\}$: Tirar pelo menos uma coroa $AB = \{HT, TH\}$: Tirar uma cara e uma coroa

Nesse caso,

$$\mathbb{P}(AB) = \frac{1}{2} \neq \frac{3}{4} \times \frac{3}{4} = \mathbb{P}(A)\mathbb{P}(B)$$

Logo A e B NÃO são independentes!

Eventos Independentes:

Exemplo 3: Lançamento de uma moeda justa duas vezes

Eventos Independentes:

Exemplo 3: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

Eventos Independentes:

Exemplo 3: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 1
o. lançamento

Eventos Independentes:

Exemplo 3: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 10. lançamento

 $B = \{TH, TT\}$: Tirar coroa no 1
o. lançamento

Eventos Independentes:

Exemplo 3: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 10. lançamento

 $B = \{TH, TT\}$: Tirar coroa no 10. lançamento

 $AB = {\emptyset}$: Tirar cara no 10. e coroa no 10

Eventos Independentes:

Exemplo 3: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 1
o. lançamento

 $B = \{TH, TT\}$: Tirar coroa no 10. lançamento

 $AB = {\emptyset}$: Tirar cara no 10. e coroa no 10

Nesse caso,

Eventos Independentes:

Exemplo 3: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 1
o. lançamento

 $B = \{TH, TT\}$: Tirar coroa no 1
o. lançamento

 $AB = {\emptyset}$: Tirar cara no 10. e coroa no 10

Nesse caso,

$$\mathbb{P}(AB) = 0 \neq \frac{1}{2} \times \frac{1}{2} = \mathbb{P}(A)\mathbb{P}(B)$$

Eventos Independentes:

Exemplo 3: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{HH, HT\}$: Tirar cara no 1
o. lançamento

 $B = \{TH, TT\}$: Tirar coroa no 10. lançamento

 $AB = {\emptyset}$: Tirar cara no 10. e coroa no 10

Nesse caso,

$$\mathbb{P}(AB) = 0 \neq \frac{1}{2} \times \frac{1}{2} = \mathbb{P}(A)\mathbb{P}(B)$$

Logo A e B NÃO são independentes!

Eventos Independentes

Resumo:

Eventos Independentes

Resumo:

1. A e B são independentes se e somente se $\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$

Eventos Independentes

Resumo:

- 1. A e B são independentes se e somente se $\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$
- 2. A independência às vezes é assumida e às vezes verificada

Eventos Independentes

Resumo:

- 1. A e B são independentes se e somente se $\mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$
- 2. A independência às vezes é assumida e às vezes verificada
- 3. Eventos disjuntos com probabilidade positiva $\tilde{\mathbf{nao}}$ são independentes

Probabilidade Condicional

Probabilidade Condicional

Definição:

Probabilidade Condicional

Definição:

Se $\mathbb{P}(B)>0,$ então a probabilidade condicional de Adado B é

Probabilidade Condicional

Definição:

Se $\mathbb{P}(B) > 0$, então a probabilidade condicional de A dado B é

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Probabilidade Condicional

Definição:

Se $\mathbb{P}(B) > 0$, então a probabilidade condicional de A dado B é

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Exemplo: Lançamento de uma moeda justa duas vezes $\Omega = \{HH, HT, TH, TT\}$

Probabilidade Condicional

Definição:

Se $\mathbb{P}(B) > 0$, então a probabilidade condicional de A dado B é

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Exemplo: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{TH, HT, TT\}$: Tirar pelo menos uma coroa

Probabilidade Condicional

Definição:

Se $\mathbb{P}(B) > 0$, então a probabilidade condicional de A dado B é

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Exemplo: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{TH, HT, TT\}$: Tirar pelo menos uma coroa

 $B = \{HH, HT\}$: Tirar cara no 10. lançamento

Probabilidade Condicional

Definição:

Se $\mathbb{P}(B) > 0$, então a probabilidade condicional de A dado B é

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Exemplo: Lançamento de uma moeda justa duas vezes

$$\Omega = \{HH, HT, TH, TT\}$$

 $A = \{TH, HT, TT\}$: Tirar pelo menos uma coroa

 $B = \{HH, HT\}$: Tirar cara no 10. lançamento

 $AB = \{HT\}$: Tirar cara no 10. e pelo menos uma coroa

Probabilidade Condicional

Definição:

Se $\mathbb{P}(B) > 0$, então a probabilidade condicional de A dado B é

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Exemplo: Lançamento de uma moeda justa duas vezes

 $\Omega = \{HH, HT, TH, TT\}$

 $A = \{TH, HT, TT\}$: Tirar pelo menos uma coroa

 $B = \{HH, HT\}$: Tirar cara no 10. lançamento

 $AB = \{HT\}$: Tirar cara no 10. e pelo menos uma coroa

A|B: Tirar pelo menos uma coroa, dado que tirou cara no 1o.

Probabilidade Condicional

Definição:

Se $\mathbb{P}(B) > 0$, então a probabilidade condicional de A dado B é

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Exemplo: Lançamento de uma moeda justa duas vezes $\Omega = \{HH, HT, TH, TT\}$

 $A = \{TH, HT, TT\}$: Tirar pelo menos uma coroa $B = \{HH, HT\}$: Tirar cara no 10. lançamento

 $AB = \{HT\}$: Tirar cara no 10. e pelo menos uma coroa

A|B: Tirar pelo menos uma coroa, dado que tirou cara no 1o.

Nesse caso,

Probabilidade Condicional

Definição:

Se $\mathbb{P}(B) > 0$, então a probabilidade condicional de A dado B é

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Exemplo: Lançamento de uma moeda justa duas vezes $\Omega = \{HH, HT, TH, TT\}$

 $A = \{TH, HT, TT\}$: Tirar pelo menos uma coroa $B = \{HH, HT\}$: Tirar cara no 10. lançamento

 $AB = \{HT\}$: Tirar cara no 10. e pelo menos uma coroa

A|B: Tirar pelo menos uma coroa, dado que tirou cara no 1o.

Nesse caso,

$$\mathbb{P}(A|B) = \frac{1}{2} = \frac{1/4}{1/2} = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$$

Variáveis Aleatórias

Introdução:

Como vinculamos espaços amostrais e eventos aos dados?

Variáveis Aleatórias

Introdução:

Como vinculamos espaços amostrais e eventos aos dados?

O conexão é fornecida pelo conceito de variável aleatória.

Variáveis Aleatórias

Variável Aleatória

Variável Aleatória

Definição:

Variável Aleatória

Definição:

Uma variável aleatória é um mapeamento!

$$X:\Omega\to\mathbb{R}$$

que atribui um número real $X(\omega)$ a cada resultado ω .

Variável Aleatória

Definição:

Uma variável aleatória é um mapeamento!

$$X:\Omega\to\mathbb{R}$$

que atribui um número real $X(\omega)$ a cada resultado ω .

Observações:

Variável Aleatória

Definição:

Uma variável aleatória é um mapeamento!

$$X:\Omega\to\mathbb{R}$$

que atribui um número real $X(\omega)$ a cada resultado ω .

Observações:

▶ Na maioria dos cursos de probabilidade, em um certo momento, trabalhamos diretamente com as variáveis aleatórias.

Variável Aleatória

Definição:

Uma variável aleatória é um mapeamento!

$$X:\Omega\to\mathbb{R}$$

que atribui um número real $X(\omega)$ a cada resultado ω .

Observações:

- Na maioria dos cursos de probabilidade, em um certo momento, trabalhamos diretamente com as variáveis aleatórias.
- Mas devemos ter em mente que o espaço amostral está sempre lá.

Variável Aleatória

Variável Aleatória

Exemplo:

Variável Aleatória

Exemplo:

Jogue uma moeda dez vezes.

Variável Aleatória

Exemplo:

Jogue uma moeda dez vezes.

Seja $X(\omega)$ o número de caras na sequência ω .

Variável Aleatória

Exemplo:

Jogue uma moeda dez vezes.

Seja $X(\omega)$ o número de caras na sequência ω .

Se
$$\omega = HHTHHTHHTT$$
, então $X(\omega) = ?$.

Variável Aleatória

Exemplo:

Jogue uma moeda dez vezes.

Seja $X(\omega)$ o número de caras na sequência ω .

Se
$$\omega = HHTHHTHHTT$$
, então $X(\omega) = 6$.

Variável Aleatória

Variável Aleatória

Exemplo:

Variável Aleatória

Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

Variável Aleatória

Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

Então,
$$\mathbb{P}(X = 0) = \mathbb{P}(\{TT\}) = 1/4$$
, $\mathbb{P}(X = 1) = \mathbb{P}(\{HT, TH\}) = 1/2$ e $\mathbb{P}(X = 2) = \mathbb{P}(\{HH\}) = 1/4$.

Variável Aleatória

Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

Então,
$$\mathbb{P}(X = 0) = \mathbb{P}(\{TT\}) = 1/4$$
, $\mathbb{P}(X = 1) = \mathbb{P}(\{HT, TH\}) = 1/2$ e $\mathbb{P}(X = 2) = \mathbb{P}(\{HH\}) = 1/4$.

A variável aleatória e sua distribuição podem ser resumidas da seguinte forma:

ω	$\mathbb{P}(\{\omega\})$	$X(\omega)$	œ	$ \mathbb{P}(X=x) $
TT	1/4	0		
TH	1/4	1	1	1/4
HT	1/4	1	1	$\begin{vmatrix} 1/4 \\ 1/2 \\ 1/4 \end{vmatrix}$
HH	1/4	2	2	1/4

Projeto Final:

Projeto Final:

Perguntas

Projeto Final:

Perguntas

1. Quais produtos a sua região produz?

Projeto Final:

Perguntas

- 1. Quais produtos a sua região produz?
- $2.\ {\rm Quais}$ os produtos mais produzidos pelos municípios da sua região?

Projeto Final:

Perguntas

- 1. Quais produtos a sua região produz?
- 2. Quais os produtos mais produzidos pelos municípios da sua região?

Dica: Inicialmente, escolha um ano específico...

Fim

Obrigado pela atenção!