

Chapter 3 Part 2 Arithmetic for Computers -Floating Point

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
 - 4,600,000,000 or 4.6×10^9
- Like scientific notation
 - -2×10^{-7}

 $- +0.002 \times 10^{-4}$

 $- +987.02 \times 10^9$

normalized

not normalized

Can't be represented in integer

- In binary
 - $-\pm 1.xxxxxxx_2 \times 2^{yyyy}$

normalized

Types float and double in C

float a; // single precision double b; //double precision

Floating Point Standard- IEEE Std 754-1985

Single precision - 32-bit

single: 8 bits

single: 23 bits

Significand=1+fraction

	S	Exponent	Fraction			
>	$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$					
>	〈 =	$=(-1)^{S}\times(S)$	Significand)×2(Exponent-Bias	;)		

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalized number ±1.xxxxxxx₂ × 2^{yyyy}
 - Always has a leading 1, so no need to represent it explicitly (hidden bit)
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single precision: Bias = 127, Double precision: Bias = 1023

Floating-Point Example – single-precision

What number is represented by the following single-precision float?

 $x=1100000101000...00_2$ (32-bit, single precision)

- S = 1
- Fraction = $01000...00_2$
- Exponent = 10000001_2 = 129

•
$$X = (-1)^{1} \times (1 + .01_{2}) \times 2^{(129-127)}$$

= $(-1) \times (1+1/4) \times 2^{2}$
= -5.0

Floating-Point Example

- Represent –0.75 in single-precision floating point
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = ?
 - Fraction = ?
 - Exponent = ?

Hidden 1 is not represented

Floating-Point Example

- Represent –0.75 in single-precision floating point
 - $-0.75 = -(1/4+1/2)=(-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = 1000...00 Hidden 1 is not represented
 - Exponent = -1 + Bias=126=011111110₂

Answer: 1011111101000...00

Represent 3.4375×10⁻¹ in single-precision floating point

$$3.4375 \times 10^{-1} = 0.3475$$

= $0.0101100 = 1.0110000000 \times 2^{-2}$

```
0.34375 *2 =0.6875 ... (0)

0.8750 *2 = 1.375 .... (1)

0.375*2 = 0.75 .... (0)

0.75 *2 = 1.5 ... (1)

0.5 *2 = 1
```

- -S = 0
- •Fraction = 011000...00
- •Exponent = -2+Bias (127)=125= 01111101₂

Answer: 001111101011000...00

Why uses bias (excess presentation) in the exponents

- Easier to compare which exponent is larger
 - Just need to check the bit from left to right

8 bits		Bias=127		
127 126	01111111 01111110	254 253	11111110 11111101	
 1 0 -1	 00000001 00000000 111111111	 128 127 	10000000 01111111	
 -126 -127 -128	10000010 10000001 10000000	1 0 255	00000001 00000000 11111111	reserved reserved

Floating Point Standard- IEEE Std 754-1985

Double precision (64-bit)

double: 11 bits double: 52 bits

S	Exponent	Fraction
---	----------	----------

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

$$x = (-1)^{S} \times (Significand) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalized number $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
 - Have hidden 1
 Fraction=Significand-1
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Double: Bias = 1023

 What number is represented by the following double float?

- S = 1
- Fraction = $1000...00_{2}$

•
$$X = (-1)^{1} \times (1 + .1_{2}) \times 2^{(1021 - 1023)}$$

= $(-1) \times (1+1/2) \times 2^{-2}$
= $-3/8$

Floating-Point Example

 Represent –0.75 in double-precision floating point

$$-0.75 = (-1)^{1} \times 1.1_{2} \times 2^{-1}$$

S =?

Fraction =?

Exponent = ?

$$0.75*2 = 1.5 \dots 1$$

Hidden 1 is not represented

成功方學

Floating-Point Example

- Represent –0.75 in double-precision floating point
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$

 $0.75*2 = 1.5 \dots 1$

0.5 *2 = 1.01

 $0.75_{10} = 0.11_2$

Hidden 1 is not represented

• Exponent = -1 + Bias= -1+1023= 1022_{10} = 01111111110_2

Ans: 10111111111101000...00

Floating point - Half-precision

Half precision

5 bits

10 bits

S	Exponent	Fraction
---	----------	----------

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

• Bias = 15

Represent –0.75 in half-precision floating point

$$-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$$

- •S = 1
- •Fraction = 1000000000_2
- •Exponent = $-1 + 15 = 14 = 01110_2$

Ans: 101110 1000000000₂

IEEE 754 Encoding of FP number

- Exp.=0 and Fract.=0 => 0
- Exp.=0 and Fract. != 0 => denormalized number (discuss later)
- Exp.=111..111 and Fract.= $0 \Rightarrow \pm \infty$ (discuss later)
- Exp.=111...111 and Fract.!=0 => Non a Number (NaN) (discuss later)

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1-254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Denormalized Numbers

- (Review) Smallest normalized value
 - -00000010000000.....0000
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - Exponent = 1 127 = -126
 - Smallest value = 1.0×2^{-126}
- How to represent number smaller than 1.0x2⁻¹²⁶?
- E.g. 0.5x2⁻¹²⁶ =>Use denormalized number

S	Exponent	Fraction
---	----------	----------

Denormalized Numbers (32-bit)

- Exponent = 00000000
- Fraction ⇒ hidden bit is 0 (not 1)

$$x = (-1)^{S} \times (Fraction) \times 2^{-126}$$

 $0.5x2^{-126}$: Exponent = 0.00000000

: Fraction = 1000000000000...000

Allow for gradual underflow, with diminishing precision

Special number: Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - $-\pm\infty$
 - Can be used in subsequent calculations, avoiding need for overflow check
 - E.g. F+(+∞)=+∞, or F/∞=0

- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result (e.g., 0.0 / 0.0)
 - Indicates Unrepresentable result (e.g. Sqrt(-4)
 - X op NaN = NaN, op can be +, -, *....

Example

Smallest positive single precision normalized number

$$1.00000000...00000_2$$
 x 2^{-126}

 Smallest positive single precision denormalized no. (Hint: Fraction is 23-bit)

Example

Smallest positive single precision normalized number

 $1.00000000...00000_2$ x 2^{-126}

Smallest positive single precision denormalized no.

(Hint: Fraction is 23-bit)

Floating Point Addition

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent

$$9.999 \times 10^{1} + 0.016 \times 10^{1}$$

2. Add significands

$$9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$$

3. Normalize result & check for over/underflow

$$1.0015 \times 10^{2}$$

• 4. Round and renormalize if necessary

$$1.002 \times 10^{2}$$

Why shift smaller number?

- 9.99999 x 10⁴⁰+ 1.610x10⁻¹
- If shifting 9.99999 x 10^{40} to 999999999999....x 10^{-1} => significand may be to large => overflow
- 1.610x10⁻¹ to 10⁴⁰ => significand may be very small, but still don't overflow, using round
- Therefore, we shift the smaller exponent

成め方字

Floating-Point Addition

Now consider a 4-digit binary example

$$-1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} \quad (0.5 + -0.4375)$$

- 1. Align binary points
 - Shift number with smaller exponent

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$$

2. Add significands

$$1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$$

3. Normalize result & check for over/underflow

$$1.000_2 \times 2^{-4}$$
, with no over/underflow

4. Round and renormalize if necessary

$$1.000_2 \times 2^{-4}$$
 (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
 - Steps includes shift exponents and fraction, add fraction, ..., etc.
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined (see Chapter 4 about pipeline)

FP addition flow

The normal path is to execute steps 3 and 4 once, but if rounding causes the sum to be unnormalized, we must repeat step 3.

See an example in the next page

 $1.10x2^2 + 1.01x2^4$

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $-1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands

$$-1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^{5}$$

- 3. Normalize result & check for over/underflow
 - -1.0212×10^6
- 4. Round and renormalize if necessary
 - -1.021×10^{6}
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^{6}$

Floating-Point Multiplication

Remove one bias

Now consider a 4-digit binary example

$$1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} \ (0.5 \times -0.4375)$$

1. Add exponents

- \rightarrow Unbiased: -1 + -2 = -3
- \triangleright Biased: (-1 + 127) + (-2 + 127) 127 = -3 + 254 127
- 2. Multiply significands

$$\triangleright 1.000_2 \times 1.110_2 = 1.110_2 \implies 1.110_2 \times 2^{-3}$$

3. Normalize result & check for over/underflow

$$\geq$$
 1.110₂ \times 2⁻³ (no change) with no over/underflow

4. Round and renormalize if necessary

$$> 1.110_2 \times 2^{-3}$$
 (no change)

5. Determine sign: +ve \times -ve \Rightarrow -ve

$$> -1.110_2 \times 2^{-3} = -0.21875$$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But do multiplication for significands instead of an addition
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - $FP \leftrightarrow integer conversion$
- Operations usually takes several cycles
 - Can be pipelined (See Chapter 4)

FP Multiplication

The normal path is to execute steps 3 and 4 once, but if rounding causes the sum to be unnormalized, we must repeat step 3.

Improve Accuracy

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
- Guard & round bits: two extra (hidden) bits on the right during intermediate additions
 - Improve precision

Consider the addition $2.56 \times 10^{0} + 2.34 \times 10^{2} = 236.56$

Without guard and round bit

$$0.02 \times 10^2 + 2.34 \times 10^2 = 2.36 \times 10^2$$

With guard and round bit

$$0.0256 \times 10^2 + 2.3400 \times 10^2 = 2.3656 \times 10^2 = 2.37 \times 10^2$$

closer to accurate answer

Improve Accuracy: sticky bit

- Sticky bit: one bit is set when there are nonzero bits to the right of the round bit.
 - Allow computer to see the difference between
 0.50000..0₁₀ and 0.50000..1₁₀

- Without Sticky bit
 - 2.3450000000001 will be stored as 2.345
- With Sticky bit
 - 2.345000000001 will be stored as 2.345 and sticky bit =1
- Used for rounding

2.345 with sticky bit=1 is larger than 2.345

Rounding: Round to nearest even

Guard, Round and Sticky bits are three bits are only used while doing calculations and aren't stored in the floating-point variable before or after the calculations.

GRS: Action

0xx: <0.5, round down = do nothing (x means any bit value,

0 or 1)

101: >0.5, round up **GRS**

110: >0.5 round up **01 100** \implies **10 \frac{000}{000}**

111 : >0.5 round up **00 100 ⇒ 00 000**

100 - this is a tie: round up if the fraction's bit just before G is1, else round down(=do nothing)

3.29 Calculate the sum of 2.6125×10^{1} and $4.150390625 \times 10^{-1}$ by hand, assuming both are stored in the 16-bit half precision. Assume 1 guard, 1 round bit, and 1 sticky bit and round to the nearest even.

```
2.6125 \times 10^{1} + 4.150390625 \times 10^{-1}
2.6125 \times 10^{1} = 26.125 = 11010.001 = 1.1010001000 \times 2^{4}
4.150390625 \times 10^{-1} = .4150390625 = .0110101001 = 1.10101001 \times 2^{-2}
For the second number, shift binary point 6 to the left to align exponents,
 1.10101001111 \times 2^{-2} = 0.000001101010101111 \times 2^{4}
                 GR
1.1010001000\ 00 (Guard bit = 0, Round bit = 0, Sticky bit= 0)
0.0000011010 10 0111 (Guard bit = 1, Round bit = 0, Sticky bit= 1) Right shift 6 bits
1.1010100010 101 (Guard bit = 1, Round bit = 0, Sticky bit= 1)
The extra bit (G,R,S) is more than half of the least significant bit (0).
Thus, the value is rounded up.
```

 $1.1010100011 \times 2^4 = 11010.100011 \times 2^0 = 26.546875 = 2.6546875 \times 10^1$

Fallacy: Right Shift and Division

 Left shift by i places multiplies an integer by 2ⁱ and thus right shift divides by 2ⁱ

Correct for unsigned number, incorrect for signed number

- For unsigned number, this is correct $00001011_2 >> 2 = 00000010_2 (11/4=2)$
- For signed integers, this is incorrect

$$-e.g., -5/4 = -1....-1$$

$$11111011_2 >> 2 = 001111110_2 = 62$$
 not -1

Pitfall: FP addition is not associative

Is (x+y)+z equal to x+(y+z)???

May be not true

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

- Parallel Programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail
- Need to validate parallel programs under varying degrees of parallelism

3.10 Concluding Remarks

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow

Backup slides

