Formula Sheet

Sample mean \bar{x}	Sample variance	Z score:	Pearson's R				
ungrouped data:	ungrouped data:	$z = \frac{x - \bar{x}}{}$	$r = \frac{\sum_{i=1}^{n} Z_{x_i} Z_{y_i}}{n-1}$				
$\bar{x} = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i}$	$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$	$z = {s}$	$r = \frac{1}{n-1}$				
n	, , , , , , , , , , , , , , , , , , ,	$x - \mu$					
grouped data:	grouped data:	$z = \frac{x - \mu}{\sigma}$					
$\bar{x} = \frac{\sum_{i=1}^{n} X_i f(X_i)}{\sum_{i=1}^{n} X_i f(X_i)}$	$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} f(x_{i})}{n-1}$	σ					
n	$3 = \frac{n-1}{n-1}$						
Regression Line:	CLT: if $X \sim N(\mu, \sigma^2)$ then	if $X \sim B(n, p)$					
$\hat{y} = ax + b$		$\hat{p} \sim N(p, \frac{pq}{n})$					
$\langle S_{\nu} \rangle$	$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$	n.	m a				
$a = r\left(\frac{S_y}{S_z}\right)$	(",	if $\hat{p}_1 \sim N\left(p_1, \frac{p_1q_1}{n_1}\right)$	$, \hat{p}_2 \sim N(p_2, \frac{p_2q_2}{n})$				
\mathcal{L}_{χ}	if $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2)$ then	` ''1'	• • • 2				
$=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^2}$	$\bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$	$\hat{p}_1 - \hat{p}_2 \sim N(p_1 - p_2)$	$-p_2, \frac{n_1}{n_1} + \frac{n_2}{n_2}$				
4 ()	$X_1 - X_2 \sim N(\mu_1 - \mu_2, \frac{1}{n_1} + \frac{1}{n_2})$	$if p_1 = i$	$p_2 = p \rightarrow$				
$b = \bar{y} - a(\bar{x})$	$if \sigma_1 = \sigma_2 = \sigma$	$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2},$					
		1 4	n - n				
	$\sigma^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$Z = \frac{1}{2}$	$\rho_1 - \rho_2$				
	$n_1 + n_2 - 2$		$\frac{p_1 - p_2}{\hat{q}(\frac{1}{n_1} + \frac{1}{n_2})}$				
		\sqrt{p}	$(\overline{n_1} + \overline{n_2})$				
CI for a parameter θ (Mean or Proportion):							
$\hat{ heta} \pm margin \ of \ error$							
$margin\ of\ error = (Z\ or\ t)(S.E)$							

Standard Normal Distribution Values:

Z	$P(Z \leq z)$
-1.645	0.05
-2.575	0.005
-1.96	0.025
-2.05	0.02
-2.33	0.01
-2.0	0.0228
-0.675	0.25
0.675	0.75
0.25	0.5987
2.75	0.9970
1.29	0.9015
-1.25	0.1056
2.5	0.9938
-1.28	0.1003
-0.24	0.4052
-2.5	0.0062
2.06	0.9803
-1.5	0.0668
-0.5	0.3085
2.32	0.9898
2.36	0.9909
0.93	0.8238
1.65	0.9505

Goodness of fit test: $\chi^2 = \sum \frac{(O-E)^2}{E}$ T-Distribution Values:

 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

υ	t	Tail Probability $(P(T > t))$			
3	3.182	0.025			
4	2.776	0.025			
3	2.353	0.05			
4	2.132	0.05			
11	1.363	0.1			
12	1.356	0.1			
80	2.374	0.01			
80	2.639	0.005			
24	2.492	0.01			
24	2.797	0.005			
Bino	Binomial distribution sums $\sum_{r=0}^{r} P(x n, p)$				

n r 0.30 0.40 0.50 20 2 0.0355 0.0036 0.0002 3 0.1071 0.0160 0.0013 4 0.2375 0.0510 0.0059 5 0.4164 0.1256 0.0207 6 0.6080 0.2500 0.0577

 5
 0.4164
 0.1256
 0.0207

 6
 0.6080
 0.2500
 0.0577

 7
 0.7723
 0.4159
 0.1316

 8
 0.8867
 0.5956
 0.2517

 9
 0.9520
 0.7553
 0.4119

χ²-Distribution Values:

CI for variance: $\frac{(n-1)S^2}{\chi^2_{\alpha/2}(\nu)} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(\nu)}$

υ	χ^2	Tail
		Probability
		(P(T >
		$\chi^2))$
90	65.647	0.975
90	118.136	0.025
40	55.76	0.95
40	51.81	0.1
30	43.773	0.05
11	4.575	0.95
12	5.226	0.95
11	19.675	0.05
12	21.026	0.05
3	7.815	0.05
4	9.488	0.05
3	0.352	0.95
4	0.711	0.95
3	11.143	0.025
4	0.484	0.975
3	0.216	0.975
4	9.348	0.025