

Building Robust Audio DDSP Pipelines A Case Study on Artificial Reverb

Gloria Dal Santo, Aalto University, Finland

gloria.dalsanto@aalto.fi

Gloria Dal Santo 02.9.2025

Gloria Dal Santo

PhD student, Audio Signal Processing

Aalto University (FI)

PhD Team:

- Prof. Vesa Välimäki
- Prof. Sebastian J. Schlecht (FAU, Germany)
- Dr. Karolina Prawda (University of York, UK)
- Many fantastic collaborators

Topic: Machine Learning-based Artificial Reverb

- Feedback Delay Network
- Differentiable DSP
- Audio similarity measures

Outline

- Differentiable Digital Signal Processing
 - Definition
 - A few examples
 - Typical scenario and its challenges
- Building DDSPs with Frequency Sampling
 - Frequency sampling
 - Advantages and challenges
 - The FLAMO library
- Differentiable Feedback Delay Network
 - General FDN structure
 - Differentiable FDN application scenarios
 - Challenges in FDN optimization
- Choosing the right loss
 - Analyzing the loss with real data
 - Loss landscape analysis

+ Demos on FLAMO

Differentiable Digital Signal Processing

Definition
A few examples
Typical scenario and its challenges

Definition

DDSP: Concept of including digital signal processing components in machine learning models and backpropagating loss function gradients through them

- interpretability of the DSP parameters
- domain knowledge imparted into the model
- Incorporation of known signal models into neural networks

Magenta's seminal work Jesse H. Engel et al., 2020 Additive Synthesizer Bank of weighted oscillators Harmonic + Noise model Subtractive Synthesizer Filter the noise source

Definition

DDSP: Concept of including digital signal processing components in machine learning models and backpropagating loss function gradients through them

- interpretability of the DSP parameters
- domain knowledge imparted into the model
- Incorporation of known signal models into neural networks

Magenta's seminal work Jesse H. Engel et al., 2020 Timbre transfer Violin \rightarrow Flute x(t) $y_N(t)$ $y_N(t)$ $y_N(t)$

A few examples

Besides the harmonic + noise model ...

In this tutorial, we will focus only on the DDSP, and not on the neural net used to derive its parameters

- B. Kuznetsov, J. D. Parker, and F. Esqueda, "Differentiable IIR filters for machine learning applications," DAFx 2020
- S. Nercessian, "Neural parametric equalizer matching using differentiable biquads," DAFx 2020
- P. Bhattacharya, P. Nowak, and U. Zölzer, "Optimization of cascaded parametric peak and shelving filters with backpropagation algorithm." DAFx 2020
- C. J. Steinmetz, K. I. Vamsi, and P. Calamia. "Filtered noise shaping for time domain room impulse response estimation from reverberant speech." WASPAA, 2021
- S. Shan, L. Hantrakul, J. Chen, M. Avent, and D. Trevelyan, "Differentiable wavetable synthesis" ICASSP, 2022
- C. J. Steinmetz, N. J. Bryan, and J. D. Reiss, "Style transfer of audio effects with differentiable signal processing," JAES, 2022
- S. Lee, H.-S. Choi, and K. Lee, "Differentiable artificial reverberation," IEEE/ACM TASLP, 2022
- L. Renault, R. Mignot, and A. Roebel, "Differentiable piano model for MIDI-to-audio performance synthesis." DAFx 2022
- F. Caspe, A. McPherson, and M. Sandler, "DDX7: Differentiable FM synthesis of musical instrument sounds." arXiv:2208.06169, 2022
- G. Dal Santo, K. Prawda, S. Schlecht, and V. Välimäki, "Differentiable feedback delay network for colorless reverberation." DAFx 2023
- A. Carson, S. King, C. Valentini Botinhao, and S. Bilbao, "Differentiable grey-box modelling of phaser effects using frame-based spectral processing," DAFx, 2023
- N. Masuda, and D. Saito, "Improving semi-supervised differentiable synthesizer sound matching for practical applications." /EEE/ACM TASLP, 2023.
- C. Y. Yu, C. Mitcheltree, A. Carson, S. Bilbao, J. D. Reiss, and G. Fazekas, "Differentiable all-pole filters for time-varying audio systems," DAFx, 2024
- Y. Liu, C. Jin, and D. Gunawan, "DDSP-SFX: Acoustically-guided sound effects generation with differentiable digital signal processing." DAFx 2024
- G. M. De Bortoli, G. Dal Santo, K. Prawda, T. Lokki, V. Välimäki, and S. Schlecht, "Differentiable active acoustics: optimizing stability via gradient descent." DAFx2024
- B. Hayes, J. Shier, G. Fazekas, A. McPherson, and C. Saitis, "A review of differentiable digital signal processing for music and speech synthesis," Frontiers in Signal Processing, 2024.

Typical Scenario and its Challenges - Filter

- The loss landscape with respect to DDSP parameters can be highly irregular
- Restricts the neural network to a lowdimensional space with physical meaning
- The desired output is achieved with only specific DDSP parameter combinations

Typical Scenario and its Challenges - Filter

Key elements when designing DDSP pipelines:

- Differentiable implementation of the DSP
- Domain of stability and plausibility of the learnable parameters
- Smoothness of the loss landscape

No neural network
Just gradient descent
optimization

Frequency Sampling
Advantages and challenges
The FLAMO library

Example: Differentiable Biquads for Parametric EQ

Gloria Dal Santo 02.9.2025

Differentiable Filter Formulations

- Backpropagation through time, instantaneous backpropagation
- Convolutional layers with linear activations and zero bias
- Frequency sampling of (locally) time-invariant systems
 - Optimization of the FIR approximation

Transfer function coefficients **b** and $\mathbf{a} \to H(\mathbf{z}_M)_{\scriptscriptstyle{1.2}}$

$$oldsymbol{z}_{M} = egin{bmatrix} e^{\jmath\pirac{0}{M}}, e^{\jmath\pirac{1}{M}}, \dots, e^{\jmath\pirac{M-1}{M}} \end{bmatrix}$$
 $H(oldsymbol{z}_{M}) = rac{ ext{FFT}(oldsymbol{b})}{ ext{FFT}(oldsymbol{a})} = rac{b_{0} + b_{1}oldsymbol{z}_{M}^{-1} + \dots + b_{N}oldsymbol{z}_{M}^{-N+1}}{a_{0} + a_{1}oldsymbol{z}_{M}^{-1} + \dots + a_{N}oldsymbol{z}_{M}^{-N+1}}$

Advantages

- Each sample is independent \rightarrow samples of H(z) can be generated in parallel
- Filters can be chained by complex multiplication → efficiency

$$H(\mathbf{z}_M) = H_1(\mathbf{z}_M)H_2(\mathbf{z}_M)$$

$$H(\mathbf{z}_M) = (I - G(\mathbf{z}_M)F(\mathbf{z}_M))^{-1}G(\mathbf{z}_M)$$
 $H(\mathbf{z}_M) = \text{diag}(H_1(\mathbf{z}_M), H_2(\mathbf{z}_M))$

$$H(\mathbf{z}_M) = \operatorname{diag}(H_1(\mathbf{z}_M), H_2(\mathbf{z}_M))$$

Disadvantages

Sensitivity to the number of frequency samples → time-aliasing

The number of frequency sampling points N depends on the decay rate of the modeled IR

Lee S. et al. 2022

Disadvantages

Sensitivity to the number of frequency samples \rightarrow **time-aliasing**The number of frequency sampling points N depends on the decay rate of the modeled IR

Mitigating the time aliasing

Frequency domain: sampling the frequency response outside the unit circle

$$\hat{H}(e^{J\omega}) = H(e^{J\omega}/\gamma)$$

Time domain envelope: exponentially decaying function γ^n where $0 < \gamma \le 1$

$$\hat{h}[n] = h[n]\gamma^n$$

$$\hat{h}[n] = h[n]\gamma^{n}$$

$$h[n] = \hat{h}[n]\gamma^{-n} = \text{IDFT}(\hat{H}(e^{j\omega}))\gamma^{-n}$$

It will amplify numerical noise

Time (s)

FLAMO library (ICASSP '25)

- FLAMO: Frequency-sampling Library for Audio-Module Optimization
- Open-source library for implementing and optimizing differentiable LTI audio systems
- Modules support the time-aliasing mitigation system

FLAMO library (ICASSP '25)

- FLAMO: Frequency-sampling Library for Audio-Module Optimization
- Open-source library for implementary and optimizing differentiable LTI audio systems
- ation system Modules support the time-aliasin-

FLAMO's Children

- FLARE
 - Library for synthesis and analysis of RIRs using Feedback Delay Networks
 - Designed as a data-augmentation tool

AES AIMLA Late Breaking Demo Paper

- PyRES (G. M. De Bortoli et al.)
 - Library of classes and functionality for the development, evaluation, and simulation of Reverberation Enhancement Systems (RES)
 - Utilities for the equalization and evaluation of RESs

Catch Gian Marco on Thursday at the 11 AM poster session to learn more;)

Differentiable Biquads for PEQ (Nercessian, '20)

Parametric Equalizers (PEQ) are widely used in audio DSP, including artificial reverberation

PEQ using Biquads

cascade of 2 shelving filters and K-2 peak filters

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}} \qquad H_{eq}(z) = \prod_{k=0}^{K-1} H_k(z)$$

Biguad coefficient formulae for different filter types.

Coefficient	Low shelf	High shelf	Peak
α	$\sin(\omega_0)\sqrt{(A^2+1)(1/q-1)+2A}$	$\sin(\omega_0)\sqrt{(A^2+1)(1/q-1)+2A}$	$\frac{\sin(\omega_0)}{2q}$
b_0	$A((A+1)-(A-1)\cos(\omega_0)+\alpha)$	$A((A+1)+(A-1)\cos(\omega_0)+\alpha)$	$1 + \alpha * A$
b_1	$2A((A-1)-(A+1)\cos(\omega_0))$	$-2A((A-1)+(A+1)\cos(\omega_0))$	$-2\cos(\omega_0)$
b_2	$A((A+1)-(A-1)\cos(\omega_0)-\alpha)$	$A((A+1)+(A-1)\cos(\omega_0)-\alpha)$	$1 - \alpha * A$
a_0	$(A+1) + (A-1)\cos(\omega_0) + \alpha$	$(A+1) - (A-1)\cos(\omega_0) + \alpha$	$1 + \alpha/A$
a_1	$-2A((A-1)+(A+1)\cos(\omega_0))$	$2A((A-1)-(A+1)\cos(\omega_0))$	$-2\cos(\omega_0)$
a_2	$(A+1) + (A-1)\cos(\omega_0) - \alpha$	$(A+1) - (A-1)\cos(\omega_0) - \alpha$	$1 - \alpha/A$

$$\omega_0 = 2\pi \frac{f}{f_s}$$
 $A = 10^{g/40}$

Learnable parameters for each

$$\theta = \{f, g, p\}$$

Differentiable Biquads for PEQ (Nercessian, '20)

Differentiable Feedback Delay Network

General FDN Structure
Differentiable FDN and its applications
Challenges in FDN optimization
Example: Optimization of a Feedback Delay Network

Gloria Dal Santo 02

Feedback Delay Networks for Reverb Synthesis

FDNs are recursive filters based on a generalization of the parallel comb filter structure

cheap and highly parametrizable artificial reverberators

Feedback Delay Networks for Reverb Synthesis

Parameters can be carefully designed to meet the required T_{60} accuracy and echo density

$$\Gamma_i(z) \approx \frac{-60}{f_s T_{60}(\omega)} m_i$$
 $T(z) \approx \varepsilon_h(0)$

...so why would we need differentiable FDNs?

- Parameters have non-trivial relations
- Improve echo density, given computational constraints
- Estimating the filters' response given a target RIR (or Spatial RIR)
- Blind estimation from reverberant signals
- **Automatic mixing**
- Improve the stability of reverberation enhancement systems

FDN Optimization

Differentiable via frequency-sampling

FIR approximation

$$egin{aligned} oldsymbol{z}_M &= \left[e^{\jmath\pirac{0}{M}},e^{\jmath\pirac{1}{M}},\ldots,e^{\jmath\pirac{M-1}{M}}
ight] \ oldsymbol{H}(\mathbf{z}_m) &= T(\mathbf{z}_m)\left(\mathbf{c}^ op \left[\mathbf{D_m}(\mathbf{z}_m)^{-1} - \mathbf{A}(\mathbf{z}_m)
ight]^{-1}\mathbf{b} + d
ight) \end{aligned}$$

Active field of research:

- Orchisama Das et al. grouped FDNs for coupled spaces (arxiv pre-print)
- Alessandro Mezza, Riccardo Giampiccolo et al. MIMO, HOM
- Ilias Ibnyahya et al. cheaper differentiable $\Gamma(z)$
- and ofc us :D Coloration and echo density optimization

.... and other things I keep procrastinating on putting into words -.-'

Challenges in FDN optimization

Common audio losses alone cannot capture common artifacts

Example: Multi-scale STFT Loss

$$\mathcal{L}_{SC}(y, \tilde{y}) = \frac{\||\text{STFT}(y)| - |\text{STFT}(\tilde{y})|\|_F}{\||\text{STFT}(y)|\|_F}$$
$$\mathcal{L}_{SM}(y, \tilde{y}) = \frac{1}{N} \|\log(|\text{STFT}(y)|) - \log(|\text{STFT}(\tilde{y})|)\|_1$$

$$\mathcal{L}_{\text{MR}}(\hat{y}, y) = \frac{1}{M} \sum_{m=1}^{M} (\mathcal{L}_{\text{SC}}(\hat{y}, y) + \mathcal{L}_{\text{SM}}(\hat{y}, y))$$

difference between H_{FDN1} H_{FDN2}

Challenges in FDN optimization

- Common audio losses alone are not able to capture common artifacts
- Need for system-specific losses Two examples:

Colorless optimization

$$\mathcal{L} = \mathcal{L}_{ ext{spectral}}(oldsymbol{H}(z)) + \mathcal{L}_{ ext{sparsity}}(oldsymbol{U}(z))$$

Init Optim
$$\mathcal{L} = \mathcal{L}_{\text{spectral}}(\boldsymbol{H}(z)) + \mathcal{L}_{\text{sparsity}}(\boldsymbol{U}(z))$$

$$\mathcal{L}_{\text{spectral}}(\boldsymbol{H}(z_{\mu})) = \frac{1}{\mu} \sum_{z \in \boldsymbol{z}_{\mu}} (|H(z)| - 1)^{2} \quad \mathcal{L}_{\text{sparsity}}(\boldsymbol{U}) = \frac{N\sqrt{N} - \sum_{i,j} |U_{ij}|}{N(\sqrt{N} - 1)}$$

$$\mathcal{L}_{ ext{sparsity}}(oldsymbol{U}) = rac{N\sqrt{N} - \sum_{i,j} |U_{ij}|}{N(\sqrt{N} - 1)}$$

RT optimization

$$\varepsilon(t; f_{\rm c}) = \sum_{\tau=t}^{L} h_{f_{\rm c}}^2(\tau) \qquad \qquad \mathcal{L}_{\rm EDC} = \frac{1}{|\mathcal{C}|} \sum_{f_{\rm c} \in \mathcal{C}} \frac{\sum_{t=0}^{L} (\varepsilon_{\rm dB}(t; f_{\rm c}) - \hat{\varepsilon}_{\rm dB}(t; f_{\rm c}))^2}{\sum_{t=0}^{L} \varepsilon_{\rm dB}^2(t; f_{\rm c})}$$

Analyzing the loss with real data Loss landscape analysis

Gloria Dal Santo 02.9.2025

Optimizing Coloration and Attenuation

Colorlessness optimization – independent on target RIR Attenuation optimization – <u>dependent on target RIR</u>

Can we design a loss function that

- Captures only the energy decay of the RIRs
- It's smooth despite the noise-like behavior of late reverb
- Does not interfere with the colorlessness optimization

Dal Santo, G. et al. "Similarity metrics for late reverberation." In 2024 58th Asilomar IEEE Conference on Signals, Systems, and Computers

Optimizing Recursive Attenuation Filters

Candidate Losses

Multi-Scale Spectral Loss

$$\mathcal{L}_{ ext{MSS}}(h,\hat{h}) = rac{1}{M} \sum_{m=1}^{M} (\mathcal{L}_{ ext{SC}}(h,\hat{h}) + \mathcal{L}_{ ext{SM}}(h,\hat{h}))$$

Power Convergence Loss

$$\mathcal{L}_{ ext{PC}} = rac{\left\| |H(t,f)|^2 * W - |\hat{H}(t,f)|^2 * W
ight\|_{ ext{F}}}{\left\| (|H(t,f)|^2 * W)
ight\|_{ ext{F}} \left\| (|\hat{H}(t,f)|^2 * W)
ight\|_{ ext{F}}}$$

 time-frequency averaging using Hann window W

Energy Decay Curve Loss

$$\mathcal{L}_{ ext{EDC}} = rac{1}{|\mathcal{C}|} \sum_{f_{ ext{c}} \in \mathcal{C}} rac{\sum_{t=0}^{L} (arepsilon_{ ext{dB}}(t; f_{ ext{c}}) - \hat{arepsilon}_{ ext{dB}}(t; f_{ ext{c}}))^2}{\sum_{t=0}^{L} arepsilon_{ ext{dB}}^2(t; f_{ ext{c}})}$$

Low Anchor Loss: Error to Signal Ratio (time domain)

 EDCs are normalized to 0dB prior to computing the loss

$$\mathcal{L}_{\text{ESR}}(h, \hat{h}) = \frac{\sum_{t_{\text{mix}}}^{L} |h(t) - \hat{h}(t)|^2}{\sum_{t_{\text{mix}}}^{L} |h(t)|^2}$$

Optimizing Recursive Attenuation Filters – Analyzing the loss with real data

Variable Acoustics Dataset (K. Prawda et al. 2022)

5342 recorded panel configurations

- 55 variable acoustics panels
- 5 microphone positions

Subset sampling

11 partitions {0-4, 5-9,, 45-49, 50-55}

25 RIRs per partition (5 RIRs per mic position)

Floor plan of the variable acoustics room at Aalto Acoustics Lab

Optimizing Recursive Attenuation Filters – Analyzing the loss with real data

Reverberation condition differences

Median of loss values after normalization to $\mu=0$ and $\sigma=1$

Optimizing Recursive Attenuation Filters – Analyzing the loss with real data

Optimizing Recursive Attenuation Filters – Analyzing the loss with real data

Reverberation condition differences

Median of loss values after normalization to $\mu = 0$ and $\sigma = 1$

Optimizing Recursive Attenuation Filters – Loss Landscape Analysis

How do certain parameters interfere with the optimization of other parameters?

Example:

Attenuation optimization

Mixing matrix variations

How does the attenuation loss get influenced by variations of *U*?

Compute the loss at numerous instances of the parameters under analysis

Effect of feedback matrix

Target: shaped Gaussian noise

Filter: First-order low-pass with parameters RT at DC, and cutoff frequency

- 200 steps
- 25 perturbations

Effect of feedback matrix

Target: shaped Gaussian noise

Filter: First-order low-pass with parameters RT at DC, and cutoff frequency

200 steps

• 25 perturbations

Effect of feedback matrix

Target: FDN response

Filter: First-order low-pass with parameters RT at DC, and cutoff frequency

200 steps

• 25 perturbations

Effect of feedback matrix

Target: FDN response

Filter: First-order low-pass with parameters RT at DC, and cutoff frequency

200 steps

25 perturbations

Loss Landscape

Target: shaped Gaussian noise

Filter: First-order low-pass with parameters RT at DC, and cutoff frequency

100 steps

Loss Landscape

Target: shaped Gaussian noise

Filter: First-order low-pass with parameters RT at DC, and cutoff frequency

100 steps

Key Takeaways

When optimizing DDSP models, the choice of loss function is crucial. Ask yourself:

- Does the loss function actually capture the parameter changes I want to optimize?
- How do different losses interact?
 - Does optimizing one objective interfere with another?
- What does the loss landscape look like?
 - Is it smooth enough to allow stable optimization, or too rough/noisy?

The effectiveness of DDSP pipelines depends not only on the model architecture, but equally on well-chosen, task-specific loss functions.

Key Takeaways

When optimizing DDSP models, the choice of loss function is crucial. Ask yourself:

- Does the loss function actually capture the parameter changes I want to optimize?
- How do different losses interact?
 - Does optimizing one objective interfere with another?
- What does the loss landscape look like?
 - Is it smooth enough to allow stable optimization, or too rough/noisy?

The effectiveness of DDSP pipelines depends not only on the model architecture, but equally on well-chosen, task-specific loss functions.

Summary

- Differentiable Digital Signal Processing
 - Brings interpretability and domain knowledge into audio deep learning models
- Building DDSPs with Frequency Sampling
 - Enables efficient differentiable filter design, but requires aliasing mitigation
 - FLAMO: Open-source library for DDSP modules (with FLARE, PyRES extensions)
- Differentiable Feedback Delay Network
 - Powerful for reverb synthesis, but optimization remains challenging
- Choosing the right loss
 - Must be adequate for the underlying model and learned parameters

Bibliography

- Engel, J., Hantrakul, L., Gu, C., & Roberts, A. (2020). DDSP: Differentiable digital signal processing. arXiv preprint arXiv:2001.04643.
- Müller, M., Liem, C., McFee, B., & Schwär, S. (2025). Learning with Music Signals: Technology Meets Education (Dagstuhl Seminar 24302). *Dagstuhl Reports*, *14*(7), 115-152.
- Hayes, B., Shier, J., Fazekas, G., McPherson, A., & Saitis, C. (2024). A review of differentiable digital signal processing for music and speech synthesis. *Frontiers in Signal Processing*, *3*, 1284100.
- Vahidi, C., Han, H., Wang, C., Lagrange, M., Fazekas, G., & Lostanlen, V. (2023). Mesostructures: Beyond spectrogram loss in differentiable time-frequency analysis. *arXiv preprint arXiv:2301.10183*.
- Nercessian, S. (2020, September). Neural parametric equalizer matching using differentiable biquads. In *Proc. Int. Conf. Digital Audio Effects (eDAFx-20)* (pp. 265-272).
- Yu, C. Y., Mitcheltree, C., Carson, A., Bilbao, S., Reiss, J. D., & Fazekas, G. (2024). Differentiable all-pole filters for time-varying audio systems. *arXiv preprint arXiv:2404.07970*.
- Lee, S., Choi, H. S., & Lee, K. (2022). Differentiable artificial reverberation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 2541-2556.
- Dal Santo, G., De Bortoli, G. M., Prawda, K., Schlecht, S. J., & Välimäki, V. (2025, April). FLAMO: An Open-Source Library for Frequency-Domain Differentiable Audio Processing. In *ICASSP 2025-2025 IEEE International* Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.
- Nercessian, S. (2020, September). Neural parametric equalizer matching using differentiable biquads. In *Proc. Int. Conf. Digital Audio Effects (eDAFx-20)* (pp. 265-272).

Bibliography

- Nercessian, S. (2020, September). Neural parametric equalizer matching using differentiable biquads. In Proc. Int. Conf. Digital Audio Effects (eDAFx-20) (pp. 265-272).
- J.-M. Jot and A. Chaigne, "Digital delay networks for designing artificial reverberators," in Proc. 90th Conv. Audio Eng. Soc., Paris, France, Jan. 1991, preprint no. 3030.
- Dal Santo, G., Prawda, K., Schlecht, S. J., & Välimäki, V. (2025). Optimizing tiny colorless feedback delay networks. *EURASIP Journal on Audio, Speech, and Music Processing*, 2025(1), 13.
- Välimäki, V., Prawda, K., & Schlecht, S. J. (2024). Two-stage attenuation filter for artificial reverberation. *IEEE Signal Processing Letters*, *31*, 391-395.
- K. Prawda, S. J. Schlecht, and V. Välimäki, "Calibrating the Sabine and Eyring formulas," J. Acoustical Society of America, 2022.
- Dal Santo, G., Prawda, K., Schlecht, S. J., & Välimäki, V. (2024, October). Similarity metrics for late reverberation. In 2024 58th Asilomar Conference on Signals, Systems, and Computers (pp. 1409-1413). IEEE.

Q&A Time!

Building Robust Audio DDSP Pipelines

A Case Study on Artificial Reverb

Gloria Dal Santo