This ques	stion pape	er contains 4 printed p	pages]					
·	-	•	Roll N	lo.				
S. No. of	Question	Paper : 841		. '				
Unique P	aper Code	234201				E		
Name of	the Paper	: Data Struct	ures [CSHT-203]		•		
Name of:	the Course	e : B.Sc. (H) C	omputer Sc.				-	
Semester		: II		•				
Duration	: 3 Hours		•		Maximum Marks	: 75		
	·		on No. 1 is com	pulsory.		·	·	
·	Attemp	Parts of a ques	out of the rema			o Q. No. 7.	·	
1. (a)	Give	Give template class definition for a circular linked list. Write a member function to delete						
	a particular node from this linked list.						5	
(b)	For each of the following operations on an array of values, specify whether it can be							
	perfo	ormed faster if the arr	ay is sorted:				5	
	(i)	Checking if one wo	ord is anagram o	f another	word e.	g. plum and lump.		
	(ii)	Finding an item with	n minimum value			• .		
,		•	•			P.:	.О	

- (iii) Computing mean of values
- (iv) Computing median of values
- (v) Finding the value that appears most frequently in the data.
- (c) Write a recursive function for binary search. The function should return the index of the element if it is found else it should return -1.
- (d) Show the contents of the stack while evaluating the following postfix expression: 5

BAC + BC
$$\times$$
 + A- \times where, B = 5, A = 9, C = 8.

(e) Construct a binary search tree for the following keys in the given order: 5

35 70 54 48 18 108 97 45.

Show the preorder, inorder and postorder traversals for the constructed tree.

- Consider an array data [20] [20] each element of which requires 4 bytes of storage.

 Base address of data is 2000. Determine the location of data [10] [10] when the array is stored as:
 - (i) Row major
 - (ii) Column major.
- Insert the keys 26, 37, 59, 76, 65, 86 into a hash table of size m = 11 using linear probing with hash function as h'(k) = k mod m. Show the status of the table after each insertion. What problem arises if element 26 is deleted from the table. What is the solution to this problem?

- 2. (a) Define a class to implement a tridiagonal matrix as a 1-D array. Write the member functions to store and retrieve its elements.
 - (b) Consider the following recursive function:

4

int f(int x)

{

if
$$(x < 2)$$

return 1;

else return f(x-1) + f(x-2);

}

What will be the value of f(5) based on the above code?

- 3. Write member functions to perform the following operations on a binary search tree: 3+3+4=10
 - (i) Counting the no. of right children
 - (ii) Calculating the height of the tree
 - (iii) Deleting a node by merging.
- 4. (a) Consider the following B tree of order 5:

6

Insert the following keys one by one in the above B tree:

Show the status of the tree after each insertion.

(4) 841

(b) Give the postfix and prefix forms for the following infix expression:

$$((A + B) * (C - D)) ^ (F + G)$$

- 5. (a) Write the necessary class definition for a queue implemented as a circular array. Include functions for inserting and deleting elements from this queue.
 - (b) Write a function to convert a given integer to its binary equivalent using a stack. 4
- 6. Write functions for the following:

3+3+4=10

4

- (i) Reversing a singly linked list of integers using only one pass through the list.
- (ii) Inserting an element at the end of a doubly linked list of integers.
- (iii) Merging two ordered singly linked lists of integers into one ordered list.
- 7. (a) What are self-organizing lists? List the *four* methods generally used to self-organize the list. Explain any *one* in brief.
 - (b) What is an activation record? Explain its use in the context of recursion.