

Claims

1 1. A signal amplifier comprising:
2 at least two capacitive elements configured to retain a charge;
3 an interconnection of active devices between the at least two capacitive elements
4 configured to operate upon a transient charge flow as a current when in operation,
5 wherein the charge flow is partitioned into at least two parts according to a controlling
6 parameter.

1 2. A signal amplifier according to Claim 1 wherein the at least two active
2 elements are three terminal devices.

1 3. A signal amplifier according to Claim 1 wherein the at least two active
2 elements are three terminal devices configured as long tailed pairs, each having a
3 commonly connected terminal, wherein the transient charge flow enters the commonly
4 connected terminals, and the signal amplifier further comprising a partition defined by
5 the total charge sent to each output terminal and the controlling parameter is the input
6 voltage difference.

1 4. A signal amplifier according to Claim 3, wherein the three terminal
2 devices are MOSFET devices, wherein the commonly connected terminals are the source
3 terminals of the devices, wherein the partition is the total charge sent to the separate drain
4 terminals and wherein the controlling parameter is the voltage difference between the
5 gate connections.

1 5. A signal amplifier according to Claim 3 further comprising a first
2 capacitor and at least two secondary capacitors, wherein the long tailed pair is configured
3 to partition a charge that transiently flows between the first capacitor and the two
4 secondary capacitors such that, upon cessation of the transient current, an output voltage
5 difference is expressed between the two secondary capacitors that is a representation of
6 the input voltage between the two gate connections.

1 6. A signal amplifier according to Claim 3 wherein the output voltage is an
2 amplified version of the input voltage.

1 7. A current mode switched capacitor comprising:
2 a long tailed pair of transistors, each having one terminal connected to a common
3 voltage source and each connected in common by another terminal;
4 a cascode device connected at one terminal to the connected terminals of the long
5 tailed pair;
6 a switched capacitor circuit connected on one end to another terminal of the
7 cascode device and at another end to ground, and where the gate of the cascode device is
8 connected to a bias voltage source, the switched capacitor circuit having a capacitor
9 connected at one terminal to the source of the cascode device, and a switch connected at
10 one terminal to the cascode device, another terminal connected to one end of a grounded
11 current source, and yet another terminal connected to the common voltage source.

1 8. A method of amplifying a signal, comprising:
2 receiving an input signal;
3 opening a switch to cause the current from a current source to flow through the
4 long tailed pair via the cascode device until the voltage in the capacitor drops;
5 cutting off the current source in response to the voltage in the capacitor dropping;
6 and
7 closing the switch to cause the capacitor to charge up to the reference voltage.

1 9. A circuit, comprising:
2 a load circuit configured to generate a load current in response to an input signal;
3 an improved switched capacitor circuit configured to, wherein the switched
4 capacitor includes a connection charge transferring circuit configured to utilize the charge
5 transiently entering or leaving the switched capacitor circuit as an output parameter,
6 retain this charge after a charge transfer, wherein the partitioning of the charge may have
7 depended on an auxiliary input parameter.

1 10. A circuit according to Claim 3, further comprising a long tailed pair,
2 wherein the auxiliary input parameter is the difference in input gate voltages.

1 11. A circuit comprising:
2 a long tailed pair input circuit configured to operate over a finite time interval
3 over which a specified current flows such that a prescribed finite charge has passed at the
4 end of this time interval, the circuit being configured to assess the total charge that has
5 been partitioned as an output parameter during a finite time interval.