Cuaternioni

Mihai-Sorin Stupariu

Sem. I, 2021 - 2022

Problematizare - generalități

Când este considerată o clasă de transformări:

- (i) de câte informații numerice este nevoie pentru a indica o transformare?
- (ii) există o structură algebrică subiacentă?

1. Translații

Context
$$2D/3D$$
 $= \frac{2/3}{(R^2,+)/(R^3,+)}$

2. Rotații 2D

Information numerice:
$$\underline{1}$$
 (unghial rotation)—same pp. veri given pot $\underline{1}$ is $R_0(e_z) = \frac{1}{e_z = (0,1)}$

$$= (-\sin\theta, \cos\theta)$$

$$e_{a} = (0,0)$$

2. Rotații 2D. De reținut

- pentru a indica o rotație 2D este necesară / suficientă o singură informație numerică,
- a descrie o rotație ⇔
 - \Leftrightarrow a indica modul în care este transformat un reper ortonormat în alt reper ortonormat păstrând orientarea \Leftrightarrow
 - $\Leftrightarrow \text{a indica matricea de transformare între repere, în cazul 2D aceasta} \\ \text{este de forma} \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right)$

Obs.
$$(\cos \theta - \sin \theta) \cdot (\cos \theta + \sin \theta) = \mathbb{I}_2$$

Definiții generale. Grupul ortogonal

Def. (i) O matrice patratica
$$A \in U_n(R)$$
 s. n. entergonala daca $A \cdot A^{\dagger} = A^{\dagger} \cdot A = I_n$

2. Rotații 2D și grupul SO(2)

· Amorazut ca unei rotații de unghi D îi corespunde a matrice $\in SO(2)$ · Si reciproc este adevarat! $\partial ac\bar{a}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SO(2) \implies ... \Rightarrow corresponde une$ notati de unghi convenabol. Conclusie: Grupul R2D al rotatiller 2D este isomerf au un grupde matrice: $(\mathcal{R}_{2D}, \circ) \simeq (SO(2), \cdot)$

2. Rotații 2D și numere complexe

Rotațiile 20 pet fi interpretate cu ajutorul numerelor complexe: (ωst, sinθ) ≡ cost +i sint 51 = {ze (| 121= 13 = { (x,y) = 12 | x2 + y2 = 13 (sfera 1- dimensionala /cerc) (S1, .) group. Avent isomorfisme naturale. $(\mathcal{R}_{zD}, \cdot) \simeq (So(z), \cdot) \simeq (S^1, \cdot)$ $R_{\theta} \iff \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \iff e^{i\theta} = \\ \cos \theta + i \sin \theta$

Remember: corpul $\mathbb C$ al numerelor complexe

Construcție: Se consideră mulțimea \mathbb{R}^2 , înzestrată cu două operații:

"+":
$$(a,b)+(a',b')=(a+a',b+b')$$

"": $(a,b)\cdot(a',b')=(aa'-bb',ab'+a'b)$

În raport cu cele două operații se obține un corp comutativ.

Remember: corpul $\mathbb C$ al numerelor complexe

Construcție: Se consideră mulțimea \mathbb{R}^2 , înzestrată cu două operații:

"+":
$$(a,b)+(a',b')=(a+a',b+b')$$

"": $(a,b)\cdot(a',b')=(aa'-bb',ab'+a'b)$

În raport cu cele două operații se obține un corp comutativ.

Notații:

$$1\equiv (1,0), \qquad i\equiv (0,1)$$

și folosind aceste notații orice pereche (a, b) se reprezintă sub forma a + ib.

Are loc relația fundamentală $i^2 = -1$.

Corpul $(\mathbb{C}, +, \cdot)$.

Remember: corpul $\mathbb C$ al numerelor complexe

Proprietăți și notații

- (i) Pentru $z = a + ib \in \mathbb{C}$, modulul lui z este $|z| = \sqrt{a^2 + b^2}$
- (ii) Dacă $z=a+ib\neq 0$, are loc relația $z^{-1}=\frac{\bar{z}}{|z|^2}$, unde $\bar{z}=a-ib$ este conjugatul lui z
- (iii) Orice număr complex $z \neq 0$ se scrie în mod unic sub forma

$$z = \rho(\cos\theta + i\sin\theta) = \rho e^{i\theta}, \qquad \rho = |z|.$$

3. Rotații 3D - generalități

Observație 1.

A indica o rotație $3D \Leftrightarrow$

 \Leftrightarrow a indica o schimbare de repere ortonormate cu păstrarea orientării

 \Leftrightarrow a indica o matrice din grupul SO(3)

De fapt

$$(\mathcal{R}_{3D}, \circ) \simeq (\mathrm{SO}(3), \cdot).$$

3. Rotații 3D - generalități

Observație 1.

A indica o rotație $3D \Leftrightarrow$

- \Leftrightarrow a indica o schimbare de repere ortonormate cu păstrarea orientării
- \Leftrightarrow a indica o matrice din grupul SO(3)

De fapt

$$(\mathcal{R}_{3D}, \circ) \simeq (\mathrm{SO}(3), \cdot).$$

Observație 2.

Orice matrice $A \in SO(3)$ (i.e. orice rotație în context 3D) admite o valoare proprie reală și un vector propriu (axă a rotației) . De asemenea, rotația este caracterizată de un unghi, măsurat în planul perpendicular pe axă. Pentru rotația de unghi θ și axă (v1, v2, v3):

$$glm :: rotate(\theta, vec3(v1, v2, v3))$$

3. Rotații 3D - problematizare: structura grupului SO(3)

Două posibilități:

- folosind unghiurile lui Euler
- folosind cuaternioni

3. Rotații 3D - unghiurile lui Euler: intuiție

Sursa: https://upload.wikimedia.org/wikipedia/commons/7/7e/Rollpitchyawplain.png

Altă reprezentare:

https://upload.wikimedia.org/wikipedia/commons/8/85/Euler2a.gif

3. Rotații 3D - unghiurile lui Euler: intuiție

Fapl vice matrice du SO(3) prote firegrejentata
ca produs al unor rotații (3) în jurul acelor
de coordonate, a unophini alese convenabil

maghinile lui Euler

3. Rotații 3D - unghiurile lui Euler: formalizare

Sursa: https://upload.wikimedia.org/wikipedia/commons/8/82/Euler.png

3. Rotații 3D - unghiurile lui Euler: *Gimbal Lock* Ilustrare *Gimbal Lock*

Exemplu:
$$R(\alpha, (1,0,0))$$
 (rotatie de unghi ac)

 $R(\frac{X}{Z}, (0,1,0))$
 $R(y, (0,0,1))$

compunere (scrieur matrice, ûrmulţirm...)

matricea ($\frac{X}{Z}$) cos($\frac{X}{Z}$)

matricea ($\frac{X}{Z}$) cos($\frac{X}{Z}$)

"se piente o

liketate de

- cos ($\frac{X}{Z}$) xii ($\frac{X}{Z}$) 0

signare"

 $\frac{X}{Z}$ > So(3)

Observatie. Fie

$$\mathcal{H} = \left\{ M \in \mathcal{M}_2(\mathbb{C}) \mid M = s \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) + a \left(\begin{array}{cc} i & 0 \\ 0 & i \end{array} \right) + b \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) + c \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array} \right), \ s, a, b, c \in \mathbb{R} \right\}.$$

Au loc relatiile

$$\left(\begin{array}{cc} i & 0 \\ 0 & i \end{array}\right)^2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right), \ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)^2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right), \ \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right)^2 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right).$$

De fapt, $(\mathcal{H}, +, \cdot) \simeq (\mathbb{H}, +, \cdot)$.

Exercitus Calculation
$$(2-4i+3j-k) \cdot (1+2i-j+k).$$

Notatie: Fie
$$q = S + ai + bj + ck = (S, V)$$
,

unde $V = (a, b, c)$

Cu accent a motatie:

(i) inequality rea este data de

 $q \cdot q' = (S \cdot S' - V \cdot V', S V' + S' V + V \times V')$

(ii) $1q1^2 = S^2 + ||V||^2$

(iii) Ptr $\cdot q \neq 0$; $q^{-1} = \frac{q}{|q|^2}$, $q = (S, -V)$

Notatie $S^3 = \{q \in |H| \mid ||q| = 1\}$

Propoziție. (legătura dintre rotații 3D și cuaternioni)

(i) Fie rotația 3D având axa dată de versorul u și unghiul heta. Fie cuaternionul $q\in S^3$ dat de

Fie $P \in \mathbb{R}^3$ și P' punctul obținut aplicând rotația de unghi θ și axă u lui P, adică

$$P'=R_{\mathsf{u},\theta}(P).$$

Atunci în $\mathbb H$ are loc relația

$$(0,P')=q\cdot(0,P)\cdot q^{-1}.$$

Altfel spus, pentru a determina P' efectuăm în \mathbb{H} calculul $q \cdot (0, P) \cdot q^{-1}$ și rezultatul ne va conduce la cuaternionul (0, P').

(ii) Fie $q=s+ai+bj+cK\in S^3$ un cuaternion de normă 1. El corespunde unei rotații având matricea 3×3

$$\left(\begin{array}{cccc} s^2 + a^2 - b^2 - c^2 & 2ab - 2sc & 2ac + 2sb \\ 2ab + 2sc & s^2 - a^2 + b^2 - c^2 & 2bc - 2sa \\ 2ac - 2sb & 2bc + 2sa & s^2 - a^2 - b^2 + c^2 \end{array}\right).$$

Exemplu. Considerăm rotația $R_{u,\theta}$ dată de vectorul $\mathbf{u}=\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$ și de unghi $\theta=\frac{2\pi}{3}(120^\circ)$. De exemplu, avem $R_{u,\theta}(1,0,0)=(0,1,0)$. Interpretarea acestei relații folosind cuaternioni este următoarea.

(i) Vectorul u se scrie cu cuaternioni u = $(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}) \equiv \frac{1}{\sqrt{3}}i + \frac{1}{\sqrt{3}}j + \frac{1}{\sqrt{3}}k$. Conform propoziției anterioare, rotației $R_{\mathrm{u},\theta}$ i se asociază cuaternionul

$$q = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} u = \cos \frac{2\pi}{6} + \sin \frac{2\pi}{6} (\frac{1}{\sqrt{3}}i + \frac{1}{\sqrt{3}}j + \frac{1}{\sqrt{3}}k) = \dots$$

Prin calcul, se deduce

$$q = \frac{1}{2}(1+i+j+k), \quad q^{-1} = \frac{1}{2}(1-i-j-k).$$

(ii) Versorii axelor Ox, Oy, Oz corespund cuaternionilor i, j, k, deci $R_{\mathrm{u},\theta}(1,0,0)=(0,1,0)$ se rescrie $R_{\mathrm{u},\theta}(i)=j$. Se poate verifica faptul că are loc relația $(0,j)=q\cdot(0,i)\cdot q^{-1}$, care este exact rescrierea din propoziția anterioară (cu $P=(1,0,0)\equiv i,P'=(0,1,0)\equiv j$).

Alte detalii teoretice și despre implementare:

K. Shoemake, Quaternions

https://www.cprogramming.com/tutorial/3d/quaternions.html