Problem 0.1 (1 (Principal G-bundles as a locally trivial bundle theory). Let G be a discrete group. We consider the category Sm^G , where objects are smooth manifolds equipped with a free,fixed point free action by G which is properly discontinuous: there exists a cover $\{U_\alpha\}_{\alpha\in A}$ of M so that $\{g\cdot U_\alpha\}$ are pairwise disjoint for all $\alpha\in A$ and $g\in G$. Furthermore, morphisms are smooth maps which are G-equivariant: $f\colon M\to N$ is such that $f(g\cdot x)=g\cdot f(x)$ for all $g\in G$ and $x\in M$.

- (1) Show that for $M \in \mathrm{Sm}^G$, the quotient M/G admits a structure of a smooth manifold so that the map $M \to M/G$ is a local diffeomorphism.
- (2) Check that the association $M \mapsto M/G$ defines a functor $\mathrm{Sm}^G \to \mathrm{Sm}$, and show that this defines a locally trivial bundle theory on smooth manifolds.