

Stat GR5205 Lecture 4

Jingchen Liu

Department of Statistics Columbia University

- ► Testing of hypotheses
- ► Basic setting
 - 1. Two families of models without overlap: the null hypothesis (H_0) and the alternative hypothesis (H_1)
 - 2. Which family were the data sampled from?

- ▶ The decision: reject the null or do not reject the null
- ► Two types of errors
 - Type I error
 - ► Type II error

- ► The rationale: assuming the null hypothesis and trying to reach contradiction
- Rejection region
- ► Test statistic: differentiating the null and the alternative

► Formulation

$$H_0: \beta_1 = 0$$
 versus $H_1: \beta_1 \neq 0$

- $\hat{\beta}_1 = 0.80 \text{ and } SD(\hat{\beta}_1) = 0.10.$
- ▶ The sampling distribution of β_1

- The rationale
- Test statistic
- Reference distribution
- ▶ p-value: the probability of observing a test statistic that is as extreme as or more extreme than the observed one.
- ► The null hypothesis is rejected is the *p*-value is less than a threshold, such as 5%.

Hypothesis testing – reference distribution

- ▶ Reference distribution
- ▶ The *Z*-test
- ► The *t*-test
- ▶ The p-value

- ► Size of a test: the probability of making type I error.
- ► Power of a test: the probability of rejecting the null under the alternative hypothesis

► The *Z*-test

$$z = \frac{\beta_1}{\sigma\sqrt{\frac{1}{\sum(x_i - \bar{x})}}} \sim N(0, 1)$$

► The *t*-test

$$t = \frac{\hat{\beta}_1}{\hat{\sigma}\sqrt{\frac{1}{\nabla(\mathbf{x} - \bar{\mathbf{x}})}}} \sim t_{n-2}$$

Hypothesis testing -p-value

► Two-sided *p*-value: $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$

$$P(|Z| \ge |z|)$$
 or $P(|t_{n-2}| \ge |t|)$

▶ One-sided *p*-value: $H_0: \beta_1 \leq 0$ $H_1: \beta_1 > 0$

$$P(Z \ge z)$$
 or $P(t_{n-2} \ge t)$

One-sample and two-sample t-test

One-sample and two-sample t-test

$$ightharpoonup ar{Y}_{MALE} = 5957, \ ar{Y}_{FEMALE} = 5139$$

$$\overline{Y}_{MALE} - \overline{Y}_{FEMALE} = 818, \ \hat{\sigma} = 596$$

$$t-statistic = rac{ar{Y}_{MALE} - ar{Y}_{FEMALE}}{\hat{\sigma}\sqrt{rac{1}{n_2} + rac{1}{n_2}}} = 6.2926.$$

Hypothesis testing - Duality

- Hypothesis testing and confidence interval
- ► The null is rejected if the confidence interval does not cover the hypothesized value. Justification!

Analysis of variance

▶ The decomposition

$$\sum (y_i - \bar{y})^2 = \sum (y_i - \hat{y}_i)^2 + \sum (\hat{y}_i - \bar{y})^2$$

$$SS_{total} = SS_{error} + SS_{regression}$$

► The analysis of variance table

	d.f.	Sum Sq	Mean Sq	F-value	<i>p</i> -value
×	p-1	$\sum (\hat{y}_i - \bar{y})^2$	$\frac{\sum (\hat{y}_i - \bar{y})^2}{p-1}$	$\frac{(n-p)\sum(\hat{y}_i-\bar{y})^2}{(p-1)\sum(y_i-\hat{y}_i)^2}$	*
Residuals	n-p	$\sum (y_i - \hat{y}_i)^2$	$\frac{\sum (y_i - \hat{y}_i)^2}{n-p}$		
Total	n-1	$\sum (y_i - \bar{y})^2$	•		

Analysis of variance

▶ The analysis of variance table of the Iris setosa data

	d.f.	Sum Sq	Mean Sq	<i>F</i> -value	<i>p</i> -value
×	1	3.9	3.2	59.0	7×10^{-10}
Residuals	48	3.2	0.066		
Total	49	7.1			

F-test and t-test

Inferential tools of simple linear model

- ► The four assumptions
- Point estimate
 - Understanding the least squares estimate
 - variance estimate
 - Frequentist's distribution
- Interval estimate
 - Regression coefficients
 - Prediction: conditional mean, future observation, simultaneous confidence band
- Hypothesis testing
 - ► Z-test
 - ▶ t-test: special case two sample test
 - ► F-test: analysis of variance, R²

Diagnosis - linearity

Some possible deviation away from the assumption

Diagnosis – graphical analysis

Diagnosis – box plot

Diagnosis – quantile-quantile plot

Diagnosis – quantile-quantile plot

Diagnosis – residuals

Some possible deviation away from the assumption

Diagnostic test

- ► Pure significant test
- ▶ Equal variance test: Brown-Forsythe test and Levene's test

Howard Levene

Transformation 101

▶ Logarithm!

Box-Cox tranformation

$$f_{\lambda}(y)$$

- $f_{\lambda}(y) = (y^{\lambda} 1)/\lambda$ if $\lambda \neq 0$; $f_{\lambda}(y) = \log y$, if $\lambda = 0$.
- ▶ Choice of λ : maximum likelihood estimate
- ▶ library{car}: box.cox.powers

Some other transformations

$$y$$
 ∈ [0, 1]

- ▶ Logit transform: $\log \frac{y}{1-y}$
- ▶ Probit transform: $F^{-1}(y)$ where $F(x) = P(Z \le x)$
- etc.