classmate

Date 15.2.2020
Page 1

AX=B TO CONSTRAINED OPTIMIZATION

LAGRANGIAN AND CONSTRAINED OPTIMIZATION

eg.

$$L(x,\lambda) = f(x) - \lambda g(x)$$

maximize
$$f(x,y)$$
 st. $g(x,y)=C$

 $\frac{\partial L}{\partial x} = 0$ $\frac{\partial L}{\partial y} = 0$ $\frac{\partial L}{\partial x} = 0$

$$x^2 = 2\lambda y$$
and
$$x^2 + y^2 = 1$$

ours:
$$\left(\pm\sqrt{\frac{2}{3}},\pm\sqrt{\frac{1}{3}}\right)$$

minimiz

۲ ۲

\$

Ax

 σ

	XTX 6 - ATATIC
1 = 2/17x 11 +8	Shafil ssiminon
	Saln. as eigen vector
9 (, HH) , H = 76 7000	9 (NAA) 2 - = V
6 = d (x1A-) A 2 = d (x1A-) A	Dan ATA - = x
	0 = KTA + x2
	+ x 2x = (x,x) 1
olassiante ocos. c. 20 stad 7 sepa	

XX = XATA ,10

[9-44] = x1x = (x(x))

Connected wit. A. if you have multiple const. A= vector

L(Ax) = NATAN - Lux

NS = NATA <= 0= 6

Date 15.2.2020	$A \approx 1 \times 1$	72 to be zero - how you get smallest?	min IlAn Il	Same as min UAnll EV.	A = UDVT	(1) 1st form, A is non-singular & square.	J. optimize least squares, least norm.	closed form soln	global optimality. Convex optimization problem	ansd .	n= A+b A not bull range	Der < 0		11 Azzeb 11 - 11 x 11	
			ı										7	8	

no of non-zero

to the

equal

Y

matrix

rank of

Values

singular

SVD

approximation using

lbw rank

0

else

0 1 90

inverse

pseudo

foll rank

Ø

Square

A is

when

2 11

An

Solve

8

of interest

problems

Ax

bor

Soln.

least square

0

0

Axco

ST TO

. Mas

non-trivial

An=

Vol)

SOM.

east norm

9