NOM: PRÉNOM:

Déterminer, dans chaque cas, une primitive F de la fonction f sur l'intervalle I :

	Fonction $f(x)$	I	Primitive $F(x)$
1)	$f(x) = x^3 - 4x^2 + 3x + 5$	\mathbb{R}	$F(x) = \frac{x^4}{4} - \frac{4x^3}{3} + \frac{3x^2}{2} + 5x$
2)	$f(x) = \frac{5}{x^3}$	R*	$F(x) = -\frac{5}{2x^2}$
3)	$f(x) = \frac{8x}{(x^2 + 3)^2}$	\mathbb{R}	$F(x) = -\frac{4}{x^2 + 3}$
4)	$f(x) = e^{-3x+1}$	\mathbb{R}	$F(x) = -\frac{e^{1-3x}}{3}$
5)	$f(x) = 3xe^{x^2 - 1}$	\mathbb{R}	$F(x) = \frac{3e^{x^2 - 1}}{2}$
6)	$f(x) = \frac{3\ln x}{x}$	\mathbb{R}_+^*	$F(x) = \frac{3\log(x)^2}{2}$
7)	$f(x) = \frac{4}{1+x^2}$	\mathbb{R}	$F(x) = 4 \tan(x)$
8)	$f(x) = \frac{3}{4}\cos(x) + 2\sin(5x)$	\mathbb{R}	$F(x) = \frac{3\sin(x)}{4} - \frac{2\cos(5x)}{5}$
9)	$f(x) = \frac{1}{8\sqrt{x}}$	\mathbb{R}_+^*	$F(x) = \frac{\sqrt{x}}{4}$
10)	$f(x) = \frac{6}{3x - 5}$	$\left] \frac{5}{3}, +\infty \right[$	$F(x) = 2\log(3x - 5)$