IE 3301: Simple Linear Regression

A company that manufactures a widget is interested in the relationship between:

Y = production person-hours

X = lot size

Production Run (i)	Person-Hours (Y _i)	Lot Size (X_i)	$x_i y_i$	x_i^2	\hat{Y}_i	e_i
1	73	30	2190	900	770	3
. 2	50	20	1000	400	50	0
3	128	60	7680	3600	130	-2
4	170	80	13600	6400	170	0
5	87	40	3480	1600	90	-3
6	108	50	5400	2500	110	-2
7	135	60	8100	3600	130	5
8	69	30	2070	900	70	-1
9	148	70	10360	4900	150	-2
10	132	60	7920	3600	130	2
Totals	1100	500	61,800	28,400		0

Solve for Least Squares Estimates:

$$\hat{\beta}_{i} = \frac{\sum x_{i} y_{i} - \frac{\sum x_{i} \sum y_{i}}{n}}{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}} = \frac{G1,800 - \frac{(500)(1100)}{10}}{28,400 - \frac{(500)^{2}}{10}} = \frac{3400}{3400} = \frac{5xy}{2x}$$

$$\hat{\beta}_0 = \frac{1}{n} \left(\sum y_i - \hat{\beta}_1 \sum x_i \right) = \frac{1}{10} \left(1100 - (20)(500) \right) = 10.0$$

Fitted values:
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i = 10 + 2x_i$$
 $\hat{y}_i = 10 + 2(30) = 70$
Residuals: $e_i = Y_i - \hat{Y}_i$ $e_1 = y_1 - \hat{y}_1 = 73 - 70 = 3$
 $e_2 = y_2 - \hat{y}_2 = 50 - 50 = 0$

Residuals:
$$e_i = Y_i - \hat{Y}_i$$
 $e_1 = y_1 - \hat{y}_1 = 73 - 70 = 3$ $e_2 = y_2 - \hat{y}_2 = 50 - 50 = 0$

3301: Graphical Illustration of Analysis of Variance (ANOVA)

IE 3301: Simple Linear Regression Muscle Mass Example

Problem Description: A person's muscle mass is expected to decrease with age. To explore this relationship in women, a nutritionist randomly selected four women from each 10-year age group (40-49, 50-59, 60-69, 70-79).

Regression Analysis

The regression equation is mass = 148 - 1.02 age

Predictor	Coef		StDev	${f T}$	P
Constant	148.05	0	11.56	12.80	0.000
age	-1.0236		0.1882	-5.44	0.000

R-Sq = 67.9%

R-Sq(adj) = 65.6%

Analysis of Variance

S = 8.344

Source	DF	SS	MS	F	P
Regression	1	2059.8	2059.8	29.59	0.000
Residual Error	14	974.7	69.6		
Total	15	3034.4			

Predicted Values

 		5567	1.4				
Fit	StDev Fit		95.0%	CI	22 5	95.0%	PI -
75.38	2.88	(69.20,	81.56)	(56.44,	94.31)
82.54	2.19	(77.84,	87.24)	(64.04,	101.04)
104.04	3.89	(95.70,	112.38)	(84.29,	123.78)
79.47	2.42	(74.27,	84.67)	(60.83,	98.11)
90.73	2.25	(85.91,	95.55)	(72.20,	109.26)
73.33	3.15	(66.57,	80.09)	(54.20,	92.46)
78.45	2.53	(73.03,	83.86)	(59.75,	97.14)
90.73	2.25	(85.91,	95.55)	(72.20,	109.26)
70.26	3.60	(62.55,	77.97)	(50.77,	89.74)
81.52	2.26	.(76.68,	86.36)	(62.98,	100.06)
101.99	3.58	(94.32,	109.66)	(82.52,	121.46)
88.68	2.14	(84.10,	93.26)	(70.21,	107.16)
101.99	3.58	(94.32,	109.66)	(82.52,	121.46)
93.80	2.51	. (88.41,	99.19)	(75.11,	112.49)
97.89	3.00	(91.47,	104.32)	(78.88,	116.91)
68.21	3.91	. (59.83,	76.59)	(48.45,	87.97)

Regression Plot

Y = 148.051 - 1.02359X R-Sq = 67.9 %

Residual Model Diagnostics

