Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks

Yuan, Yuan and Liu, Siyuan and Zhang, Jiawei and Zhang, Yongbing and Dong, Chao and Lin, Liang

CVPR2018

Motivation

1) Why applying unsupervised training?

unavailability of the down-sampling process unavailability of the low-/high-resolution pairs

2) What is the difference between SR and image-to-image translation?

SR accepts an LR image and outputs a HR image with much larger resolution and higher quality and is not just a different style.

cycleGAN model

Figure 3: (a) Our model contains two mapping functions $G: X \to Y$ and $F: Y \to X$, and associated adversarial discriminators D_Y and D_X . D_Y encourages G to translate X into outputs indistinguishable from domain Y, and vice versa for D_X and F. To further regularize the mappings, we introduce two *cycle consistency losses* that capture the intuition that if we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency loss: $x \to G(x) \to F(G(x)) \approx x$, and (c) backward cycle-consistency loss: $y \to F(y) \to G(F(y)) \approx y$

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017 IEEE International Conference on Computer Vision (ICCV),2017.

cycleGAN

CinCGAN model

Figure 2. The framework of the proposed CinCGAN, where G_1 , G_2 and G_3 are generators and SR is a super-resolution network. D_1 and D_2 are discriminators. The G_1 , G_2 and D_1 compose the first $LR \rightarrow clean LR$ CycleGAN model, mapping the degrade LR images to clean LR images. The G_1 , SR, G_3 and D_2 compose the second $LR \rightarrow HR$ CycleGAN model, mapping the LR images to HR images.

Solution pipeline : three steps

- First, deblur and denoise the input images at low resolution by learning a mapping from an LR image set X to a "clean" LR image set Y.
- Second, up-sampling images generated by step one with a pretrained deep model.
- In the end, combining and fine-tune these two models simultaneously to get the final HR images.

LR Image Restoration

The purpose of the first CycleGAN framework is to map an LR image x to a clean LR image y.

$$\mathcal{L}_{GAN}^{LR} = \frac{1}{N} \sum_{i}^{N} ||D_{1}(G_{1}(x_{i})) - 1||_{2}, \qquad (1)$$

$$\mathcal{L}_{cyc}^{LR} = \frac{1}{N} \sum_{i}^{N} ||G_{2}(G_{1}(x_{i})) - x_{i}||_{2}. \qquad (2)$$

$$\mathcal{L}_{idt}^{LR} = \frac{1}{N} \sum_{i}^{N} ||G_{1}(y_{i}) - y_{i}||_{1}. \qquad (3)$$

$$\mathcal{L}_{TV}^{LR} = \frac{1}{N} \sum_{i}^{N} (||\nabla_{h}G_{1}(x_{i})||_{2} + ||\nabla_{w}G_{1}(x_{i})||_{2}), \qquad (4)$$

$$\mathcal{L}_{total}^{LR} = \mathcal{L}_{GAN}^{LR} + w_{1}\mathcal{L}_{cyc}^{LR} + w_{2}\mathcal{L}_{idt}^{LR} + w_{3}\mathcal{L}_{TV}^{LR} \qquad (5)$$

CinCGAN model

Figure 2. The framework of the proposed CinCGAN, where G_1 , G_2 and G_3 are generators and SR is a super-resolution network. D_1 and D_2 are discriminators. The G_1 , G_2 and D_1 compose the first $LR \rightarrow clean LR$ CycleGAN model, mapping the degrade LR images to clean LR images. The G_1 , SR, G_3 and D_2 compose the second $LR \rightarrow HR$ CycleGAN model, mapping the LR images to HR images.

Jointly Restoration and Super-Resolution

For the desired size, author directly adopt EDSR as the SR network stacked after G1.

$$\mathcal{L}_{GAN}^{HR} = \frac{1}{N} \sum_{i=1}^{N} ||D_2(SR(G_1(x_i))) - 1||_2, \tag{6}$$

$$\mathcal{L}_{cyc}^{HR} = \frac{1}{N} \sum_{i}^{N} ||G_3(SR(G_1(x_i))) - x_i||_2, \tag{7}$$

$$\mathcal{L}_{TV}^{HR} = \frac{1}{N} \sum_{i}^{N} (||\nabla_{h} SR(G_{1}(x_{i}))||_{2} + ||\nabla_{w} SR(G_{1}(x_{i}))||_{2}).$$

$$\mathcal{L}_{idt}^{HR} = \sum_{i} ||SR(z') - z||_2.$$

$$\mathcal{L}_{total}^{HR} = \mathcal{L}_{GAN}^{HR} + \lambda_1 \mathcal{L}_{cyc}^{HR} + \lambda_2 \mathcal{L}_{idt}^{HR} + \lambda_3 \mathcal{L}_{TV}^{HR}$$
 (10)

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced deep residual networks for single image super-resolution. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, volume 1, page 3, 2017.

Experimental Results

Experimental Results

Experimental Results

Table 1. Quantitative evaluation on NTIRE 2018 track 2 dataset of the proposed CinCGAN model, in terms of PSNR and SSIM.

method	bicubic	FSRCNN [4]	EDSR [17]	EDSR ⁺	SRGAN ⁺ [16]	BM3D+EDSR	CinCGAN (ours)
PSNR	22.85	22.79	22.67	25.77	24.33	22.88	24.33
SSIM	0.65	0.61	0.62	0.71	0.67	0.68	0.69

