Kalman Filter Theory and Applications Equation Drilldown

https://github.com/musicarroll/kalman_course

Michael L. Carroll

June 17, 2023

©2023 by Michael L. Carroll

Part I

The Five Basic Kalman Equations Topics

Part I The Five Basic Kalman Equations Topics

• Understanding the Equations: Heuristic Introduction

Part I The Five Basic Kalman Equations Topics

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart
- State Space Concepts

Part | The Five Basic Kalman Equations Topics

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart
- State Space Concepts

Mathematical Formulation of the Problem

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples: Resistor Revisited

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples: Resistor Revisited
- Exercises

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples: Resistor Revisited
- Exercises

Number of states: 1
 x(k) represents resistance in Ohms at time step k

- Number of states: 1
 x(k) represents resistance in Ohms at time step k
- System Dynamics: x(k) = x(k-1)

- Number of states: 1
 x(k) represents resistance in Ohms at time step k
- System Dynamics: x(k) = x(k-1)
- Measurement Model: z(k) = x(k) + v(k), where v(k) is zero mean, Gaussian white noise with variance σ^2

- Number of states: 1
 x(k) represents resistance in Ohms at time step k
- System Dynamics: x(k) = x(k-1)
- Measurement Model: z(k) = x(k) + v(k), where v(k) is zero mean, Gaussian white noise with variance σ^2
- Thus, $\Phi = 1$, $H_k = 1$, $Q_k = 0$, $R_k = \sigma^2$

- Number of states: 1
 x(k) represents resistance in Ohms at time step k
- System Dynamics: x(k) = x(k-1)
- Measurement Model: z(k) = x(k) + v(k), where v(k) is zero mean, Gaussian white noise with variance σ^2
- Thus, $\Phi = 1$, $H_k = 1$, $Q_k = 0$, $R_k = \sigma^2$

• State extrapolation and covariance extrapolation are simple:

$$\hat{x}^-(k) = \hat{x}^+(k-1)$$

$$P^{-}(k) = P^{+}(k-1)$$

where P is a 1×1 matrix or scalar.

• State extrapolation and covariance extrapolation are simple:

$$\hat{x}^{-}(k) = \hat{x}^{+}(k-1)$$
 $P^{-}(k) = P^{+}(k-1)$

where P is a 1×1 matrix or scalar.

• The Kalman gain equation

$$K(k) = P^{-}(k) H(k)^{\top} [H(k)P^{-}(k) H(k)^{\top} + R(k)]^{-1}$$
 becomes:

$$K_k = P^-(k) (P^-(k) + \sigma^2)^{-1}$$

• State extrapolation and covariance extrapolation are simple:

$$\hat{x}^{-}(k) = \hat{x}^{+}(k-1)$$
 $P^{-}(k) = P^{+}(k-1)$

where P is a 1×1 matrix or scalar.

• The Kalman gain equation

$$K(k) = P^{-}(k) H(k)^{\top} [H(k)P^{-}(k) H(k)^{\top} + R(k)]^{-1}$$
 becomes:

$$K_k = P^-(k) (P^-(k) + \sigma^2)^{-1}$$

State update equation

$$\hat{x}^{+}(k) = \hat{x}^{-}(k) + K(k) [z(k) - H(k)\hat{x}^{-}(k)] \text{ becomes}$$

$$\hat{x}^{+}(k) = \hat{x}^{-}(k) + \frac{P^{-}(k)}{P^{-}(k) + \sigma^{2}} (z(k) - \hat{x}^{-}(k))$$

• State update equation $\hat{x}^+(k) = \hat{x}^-(k) + K(k)[z(k) - H(k)\hat{x}^-(k)]$ becomes

$$\hat{x}^{+}(k) = \hat{x}^{-}(k) + \frac{P^{-}(k)}{P^{-}(k) + \sigma^{2}} (z(k) - \hat{x}^{-}(k))$$

• Covariance update equation $P^{+}(k) = [I - K(k)H(k)]P^{-}(k)$ becomes

$$P^{+}(k) = \left(1 - \frac{P^{-}(k)}{P^{-}(k) + \sigma^{2}}\right)P^{-}(k)$$

• State update equation $\hat{x}^+(k) = \hat{x}^-(k) + K(k)[z(k) - H(k)\hat{x}^-(k)]$ becomes

$$\hat{x}^{+}(k) = \hat{x}^{-}(k) + \frac{P^{-}(k)}{P^{-}(k) + \sigma^{2}} \left(z(k) - \hat{x}^{-}(k) \right)$$

• Covariance update equation $P^{+}(k) = [I - K(k)H(k)]P^{-}(k)$ becomes

$$P^{+}(k) = \left(1 - \frac{P^{-}(k)}{P^{-}(k) + \sigma^{2}}\right) P^{-}(k)$$

Scalar Resistor Example Using Kalman Filter

Scalar Resistor Example Using Kalman Filter

Scalar Resistor Example Using Kalman Filter

Static, Scalar Example: Resistor Revisited: Comparing KF and Running Average

Static, Scalar Example: Resistor Revisited: Comparing KF and Running Average

Figure: Comparing Running Average and Kalman Estimators

Static, Scalar Example: Resistor Revisited: Comparing KF and Running Average

Figure: Comparing Running Average and Kalman Estimators

Kalman Sawtooth Plots

With constant dynamics $(\Phi = I)$ and no process noise $(Q = 0) \rightarrow$ no upticks:

Kalman Sawtooth Plots

With constant dynamics $(\Phi = I)$ and no process noise $(Q = 0) \rightarrow$ no upticks:

Kalman Sawtooth Plots

With constant dynamics $(\Phi = I)$ and no process noise $(Q = 0) \rightarrow$ no upticks:

Summary

Vector Check

Summary

Vector Check

• Where are we?

Summary Vector Check

- Where are we?
 - We reformulated the resistor model as a very simple Kalman filter

• Where are we?

- We reformulated the resistor model as a very simple Kalman filter
- We've looked at the plots produced by kf_resistor_demo.py and seen that they are almost identical to the running average plots

• Where are we?

- We reformulated the resistor model as a very simple Kalman filter
- We've looked at the plots produced by kf_resistor_demo.py and seen that they are almost identical to the running average plots

Summary Vector Check

- Where are we?
 - We reformulated the resistor model as a very simple Kalman filter
 - We've looked at the plots produced by kf_resistor_demo.py and seen that they are almost identical to the running average plots
- What's next?

• Where are we?

- We reformulated the resistor model as a very simple Kalman filter
- We've looked at the plots produced by kf_resistor_demo.py and seen that they are almost identical to the running average plots
- What's next?
 - In the next video, we will look a bona fide matrix model: the 2-state constant velocity system.

• Where are we?

- We reformulated the resistor model as a very simple Kalman filter
- We've looked at the plots produced by kf_resistor_demo.py and seen that they are almost identical to the running average plots
- What's next?
 - In the next video, we will look a bona fide matrix model: the 2-state constant velocity system.