Author Search

=> FILE HCAPLUS

FILE 'HCAPLUS' ENTERED AT 14:24:38 ON 24 AUG 2007

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 24 Aug 2007 VOL 147 ISS 10 FILE LAST UPDATED: 23 Aug 2007 (20070823/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

'OBI' IS DEFAULT SEARCH FIELD FOR 'HCAPLUS' FILE

STR

=> D QUE L8 L1

Structure attributes must be viewed using STN Express query preparation: Uploading strG.str

chain nodes :
1 2 3 4 5
chain bonds :
1-2 1-3 1-4 1-5
exact/norm bonds :
1-2 1-3 1-4 1-5

Connectivity:

1:4 E exact RC ring/chain 2:1 E exact RC ring/chain 3:1 E exact RC ring/chain

5:1 E exact RC ring/chain '

Match level :

1:CLASS '2:CLASS 3:CLASS 4:CLASS 5:CLASS

L3 .	18 SEA FILE=REGISTRY SSS FUL L1
L4	13 SEA FILE=HCAPLUS ABB=ON PLU=ON L3
L5	13 SEA FILE=HCAPLUS ABB=ON PLU=ON L4 AND (PRY<=2006 OR AY<=2006
	OR PY<=2006)
L6	1160 SEA FILE=HCAPLUS ABB=ON PLU=ON FISCHER B?/AU
L7	· 1 SEA FILE=HCAPLUS ABB=ON PLU=ON NAUM V?/AU
L8	4 SEA FILE=HCAPLUS ABB=ON PLU=ON (L6 OR L7) AND L5

=> FILE WPIX

FILE 'WPIX' ENTERED AT 14:24:46 ON 24 AUG 2007 COPYRIGHT (C) 2007 THE THOMSON CORPORATION

FILE LAST UPDATED: 22 AUG 2007 <20070822/UP>
MOST RECENT THOMSON SCIENTIFIC UPDATE: 200754 <200754/DW>
DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

- >>> Now containing more than 1 million chemical structures in DCR <<<
- >>> IPC Reform backfile reclassification has been loaded to 31 May 2007. No update date (UP) has been created for the reclassified documents, but they can be identified by 20060101/UPIC and 20061231/UPIC and 20060601/UPIC. <<<
- >>> Indian patent publication number format enhanced in DWPI see NEWS <<<

FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE, PLEASE VISIT:

http://www.stn-international.de/training center/patents/stn guide.pdf

FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES, SEE http://scientific.thomson.com/support/patents/coverage/latestupdates/

>>> FOR DETAILS ON THE NEW AND ENHANCED DERWENT WORLD PATENTS INDEX PLEASE SEE

http://www.stn-international.de/stndatabases/details/dwpi r.html <<<
'BI,ABEX' IS DEFAULT SEARCH FIELD FOR 'WPIX' FILE</pre>

=> D QUE L14

L1 STR

O----B

Structure attributes must be viewed using STN Express query preparation. L10 3 SEA FILE=WPIX SSS FUL L1

1 SEA FILE=WPIX ABB=ON PLU=ON L10/DCR L11 386 SEA FILE=WPIX ABB=ON PLU=ON FISCHER B?/AU L12 L13 1 SEA FILE=WPIX ABB=ON PLU=ON NAUM V?/AU

L14 1 SEA FILE=WPIX ABB=ON PLU=ON L11 AND (L12 OR L13)

=> DUP REM L14 L8

FILE 'WPIX' ENTERED AT 14:24:59 ON 24 AUG 2007 COPYRIGHT (C) 2007 THE THOMSON CORPORATION

FILE 'HCAPLUS' ENTERED AT 14:24:59 ON 24 AUG 2007 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

PROCESSING COMPLETED FOR L14 PROCESSING COMPLETED FOR L8

4 DUP REM L14 L8 (1 DUPLICATE REMOVED)

ANSWER '1' FROM FILE WPIX ANSWERS '2-4' FROM FILE HCAPLUS

=> D IALL ABEQ TECH HITSTR 1; D IBIB ED ABS HITSTR 2-4

L15 ANSWER 1 OF 4 WPIX COPYRIGHT 2007 THE THOMSON CORP on STN DUPLICATE

1

ACCESSION NUMBER:

WPIX 2005-658168 [67]

DOC. NO. CPI:

C2005-198714 [67]

TITLE:

New inorganic boranophosphate salt for use in manufacture of pharmaceutical preparation for boron neutron-capture therapy of cancer, or as synthetic building blocks in

synthesis of borano nucleotides

DERWENT CLASS:

INVENTOR:

B05; B06; D16; D25; E11; E37 FISCHER B; NAHUM V; NAUM V

PATENT ASSIGNEE:

(UYBA-N) UNIV BAR-ILAN

COUNTRY COUNT:

106

PATENT INFORMATION:

PATENT NO	KIND DATE	WEEK LA	A PG	MAIN IPC
WO 2005072062	A2 20050811	(200567) * EN	33[6]	C01B000-00
US 20070160682	A1 20070712	(200747) EN	N .	

APPLICATION DETAILS:

PATENT NO	KIND		PLICATION	DATE
WO 2005072062			2005-IL118	·
US 20070160682	A1	WO	2005-IL118	20050202
US 20070160682	A1	US	2006-588074	20060731

PRIORITY APPLN. INFO: US 2004-540343 20040202

INT. PATENT CLASSIF.:

MAIN:

C01B

IPC ORIGINAL:

A61K0033-42 [I,A]; A61K0033-42 [I,C]; C01B0035-00 [I,C];

C01B0035-10 [I,A]; C07H0019-00 [I,C]; C07H0019-04 [I,A]

BASIC ABSTRACT:

WO 2005072062 A2 UPAB: 20051223

NOVELTY - An inorganic boranophosphate salt is new.

DETAILED DESCRIPTION - Inorganic boranophosphate salt of formula (2) is

new.

M = counterion.

An INDEPENDENT CLAIM is also included for a method for the preparation of inorganic boranophosphate salt (2).

USE - For use in the manufacture of pharmaceutical preparation for boron neutron-capture therapy of cancer, or as synthetic building blocks in the synthesis of borano nucleotides (claimed), as fertilizers, in detergent formulations, or as additive in melts for the glass industry.

ADVANTAGE - The inorganic boranophosphate ion is an excellent mimic of inorganic phosphate. It has high water solubility, acid-base character, and H-bonding properties. MANUAL CODE: CPI: B05-B02A; B05-B02C; B06-H; B07-H; B10-B04; B14-H01;

INORGANIC CHEMISTRY - Preparation (claimed): Inorganic boranophosphate

D05-C; D11-A; E05-T; E06-H; E07-H; E10-B04A1; E10-B04C2; E31-O08

TECH

salt of formula (2) is prepared by reacting tris(trimethylsilyl)-phosphite with borane-dimethylsulfide complex of formula BH3SMe2, in dry acetonitrile under inert gas, and treating the formed intermediate with a base MOH in water or methanol, to obtain the desired salt. Preferred Method: The method comprises treating the intermediate with triethylammonium bicarbonate buffer, thus resulting in Et3NH+ salt. ORGANIC CHEMISTRY - Preparation (claimed): Inorganic boranophosphate salt of formula (2) is prepared by reacting tris(trimethylsilyl)-phosphite with borane-dimethylsulfide complex of formula BH3SMe2, in dry acetonitrile under inert gas, and treating the formed intermediate with a base MOH in water or methanol, to obtain the desired salt.

Preferred Method: The method comprises treating the intermediate with triethylammonium bicarbonate buffer, thus resulting in Et3NH+ salt. ORGANIC CHEMISTRY - Preferred Components: The base is methanolic ammonia or aqueous ammonium hydroxide solution, thus resulting in the ammonium salt, where M is NH4+.

The base is tributylamine, Bu3N, in methanol, thus resulting in tributylammonium salt, where M is Bu3NH+.

AN.S DCR-1140350

CN.P AMMONIUM BORANOPHOSPHATE

SDCN RAJ710

CM 1

N

CM 2

AN.S DCR-1140351

CN.S TRIETHYLAMMONIUM BORANOPHOSPHATE

SDCN RAJ711

CM 1

CM 2

0 B

L15 ANSWER 2 OF 4 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2006:1342390 HCAPLUS Full-text

DOCUMENT NUMBER:

146:75332

TITLE:

Dinucleoside poly(borano)phosphate derivatives and

uses thereof

INVENTOR(S):

Fischer, Bilha; Nahum, Victoria

PATENT ASSIGNEE(S):

Bar-Ilan University, Israel

SOURCE:

U.S. Pat. Appl. Publ., 19pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2006287271	A1	20061221	US 2006-452244	20060614 <
PRIORITY APPLN. INFO.:		•	US 2005-690472P P	20050615 <
			US 2005-690475P P	20050615 <

OTHER SOURCE(S):

MARPAT 146:75332

ED Entered STN: 22 Dec 2006

AB Dinucleoside poly(borano)phosphates are provided that can be useful for prevention or treatment of diseases or disorders modulated by P2Y receptors such as type 2 diabetes, cystic fibrosis and cancer.

IT 848985-86-4

RL: RCT (Reactant); RACT (Reactant or reagent)
(dinucleoside poly(borano)phosphate derivs. and uses thereof for treatment of diseases or disorders modulated by P2Y receptors)

RN 848985-86-4 HCAPLUS

CN Borate(3-), trihydro[phosphito(3-)- κ P]-, (T-4)-, trihydrogen, compd.

with N, N-dibutyl-1-butanamine (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 697244-48-7 CMF B H3 O3 P . 3 H

CCI CCS

●3 н+

CM , 2

CRN 102-82-9 CMF C12 H27 N

n-Bu n-Bu— N— Bu-n

L15 ANSWER 3 OF 4 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: \

2006:165883 HCAPLUS Full-text

DOCUMENT NUMBER:

144:412817

TITLE:

Diadenosine and Diuridine Poly(borano)phosphate

Analogs: Synthesis, Chemical and Enzymatic Stability,

and Activity at P2Y1 and P2Y2 Receptors

AUTHOR(S):

Nahum, Victoria; Tulapurkar, Mohan; Levesque,

Sebastien A.; Sevigny, Jean; Reiser, Georg;

Fischer, Bilha
CORPORATE SOURCE: Department of

Department of Chemistry, Gonda-Goldschmied Medical

Research Center, Bar-Ilan University, Ramat-Gan,

52900, Israel

SOURCE:

Journal of Medicinal Chemistry (2006),

49(6), 1980-1990

CODEN: JMCMAR; ISSN: 0022-2623

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

OTHER SOURCE(S):

CASREACT 144:412817

ED Entered STN: 23 Feb 2006

Dinucleoside polyphosphates, NpnN', exert their physiol. effects via P2 receptors. They are attractive drug targets as they offer better stability and specificity compared to nucleotides, the most common P2-receptor ligands. To further improve the properties of NpnN', which are still pharmacol. unsatisfactory, we developed novel boranophosphate isosteres of dinucleoside

polyphosphates, denoted as Npn(B)N. These analogs were obtained in a facile and efficient synthesis as the exclusive products in a concerted reaction of two nucleoside phosphorimidazolides and inorg. boranophosphate. This unusual reaction is due to the pre-organization of three reactant mols. by the Mg2+ We found that Ap3/5(β/γ -B)A analogs were potent P2Y1-R agonists. Ap5(γ -B)A was equipotent to 2-MeS-ADP (EC50 6.3 + 10-8 M), thus making it one of the most potent P2Y1-R agonists currently known. Moreover, Ap5(γ-B)A did not activate P2Y2-R. In contrast, Up3/5(β/γ -B)U analogs were extremely poor agonists of both P2Y1-R and P2Y2-R. Npn(B)N analogs exhibited remarkable chemical stability under physiol. conditions. Under conditions mimicking gastric juice, Np3(β -B)N analogs exhibited a half-life (t1/2) of 1.3 h, whereas Np5(γ -B)N degraded at a much faster rate (t1/2 18 min). The hydrolysis of Ap3(β -B)A by human nucleotide pyrophosphatase phosphodiesterases (NPP1 and NPP3) was slowed by 40% and 59%, resp., as compared to Ap3A. However, this effect of the boranophosphate was position-dependent, as Np5(γ-B)N was degraded at a rate comparable to that of Np5N. In summary, Ap5(γ-B)A appears to be a highly potent and selective P2Y1-R agonist, as compared to the parent compound This promising scaffold will be applied in the design of future metabolically stable analogs.

IT 848985-86-4

RL: RGT (Reagent); RACT (Reactant or reagent)
(synthesis, chemical and enzymic stability, and activity at P2Y1 and P2Y2 receptors)

RN 848985-86-4 HCAPLUS

CN Borate(3-), trihydro[phosphito(3-)-kP]-, (T-4)-, trihydrogen, compd. with N,N-dibutyl-1-butanamine (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 697244-48-7 CMF B H3 O3 P . 3 H CCI CCS

●3 н+

CM 2

CRN 102-82-9 CMF C12 H27 N

n-Bu | n-Bu-N-Bu-n

REFERENCE COUNT: 49 THERE ARE 49 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 4 OF 4 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2004:928329 HCAPLUS Full-text

DOCUMENT NUMBER: 142:366086

TITLE: Boranophosphate salts as an excellent mimic of

phosphate salts: Preparation, characterization, and

properties

AUTHOR(S): Nahum, Victoria; Fischer, Bilha

CORPORATE SOURCE: Department of Chemistry, Gonda-Goldschmied Medical

Research Center, Bar-Ilan University, Ramat-Gan,

52900, Israel

SOURCE: European Journal of Inorganic Chemistry (2004

), (20), 4124-4131

CODEN: EJICFO; ISSN: 1434-1948 Wiley-VCH Verlag GmbH & Co. KGaA

DOCUMENT TYPE: Journal LANGUAGE: English ED Entered STN: 04 Nov 2004

PUBLISHER:

AΒ The authors report on the preparation of boranophosphate salts, BPi (2), and the exploration of their properties with a view to developing a new mimic of the parent phosphate. BPi salts were easily prepared in excellent yield in a 1-pot two-step reaction from tris(trimethylsilyl) phosphite, and were characterized by x-ray crystallog. and IR, 1H and 31P NMR spectroscopy. The authors evaluated the acid/base character of BPi by determining its acidity consts. Likewise, the authors evaluated the stability of BPi at various pH values, and calculated the decomposition-rate consts. at highly acidic pH. The authors also monitored the H-bonded clustering of BPi in organic solvents, including MeOH. Finally, the authors explored the chemical behavior of BPi with respect to various organic and inorg. reagents. BPi is stable under the following conditions: both basic and acidic pH (pH > 2), in the presence of amines, and in the presence of Mg2+ ions. However, a P-B bond cleavage is observed upon the reaction of BPi with carbodiimides or upon catalytic hydrogenation. The reducing nature of the BH3 moiety is drastically decreased in BPi. Likewise, the nucleophilicity of BPi's O atom is lower than in phosphate, Pi, salts. Based on its water solubility, acid-base character, and H-bonding properties, BPi appears as a perfect mimic of Pi and is an attractive alternative to the known phosphate isosters.

IT 848985-87-5

RL: PRP (Properties) (IR spectrum of)

RN 848985-87-5 HCAPLUS

CN Borate(3-), trihydro[phosphito(3-)- κ P]-, (T-4)-, trihydrogen, compd. with N,N-diethylethanamine (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 697244-48-7 CMF B H3 O3 P . 3 H CCI CCS

●3 H+

CM 2

CRN 121-44-8 CMF C6 H15 N

Et Et Et Et Et

IT 848985-86-4P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (preparation and hydrogen bonding in organic solvents)

RN 848985-86-4 HCAPLUS

CN Borate(3-), trihydro[phosphito(3-)- κ P]-, (T-4)-, trihydrogen, compd. with N,N-dibutyl-1-butanamine (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 697244-48-7 CMF B H3 O3 P . 3 H CCI CCS

●3 H+

CM :

CRN 102-82-9 CMF C12 H27 N

IT 848985-88-6P

RN 848985-88-6 HCAPLUS

CN 1-Butanaminium, N,N,N-tributyl-, hydrogen (T-4)-trihydro[phosphito(3-)-KP]borate(3-) (2:1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 178449-22-4 CMF B H3 O3 P CCI CCS

CM 2

CRN 10549-76-5 CMF C16 H36 N

IT 848985-85-3P

RL: PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation, crystal structure, hydrogen bonding in organic solvents, acid-base properties, and chemical reactivity)

RN 848985-85-3 HCAPLUS

CN Borate(3-), trihydro[phosphito(3-)- κ P]-, diammonium hydrogen, (T-4)- (9CI) (CA INDEX NAME)

● H+

●2 NH4+

REFERENCE COUNT:

56 THERE ARE 56 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

Structure Search

=> FILE HCAPLUS

FILE 'HCAPLUS' ENTERED AT 14:25:40 ON 24 AUG 2007 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 24 Aug 2007 VOL 147 ISS 10 FILE LAST UPDATED: 23 Aug 2007 (20070823/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.
'OBI' IS DEFAULT SEARCH FIELD FOR 'HCAPLUS' FILE

=> D QUE L5

L1

STR

Structure attributes must be viewed using STN Express query preparation.

L3 18 SEA FILE=REGISTRY SSS FUL L1

L4 13 SEA FILE=HCAPLUS ABB=ON PLU=ON L3

L5 13 SEA FILE=HCAPLUS ABB=ON PLU=ON L4 AND (PRY<=2006 OR AY<=2006)

OR PY < =2006)

=> S L5 NOT L8

L16 9 L5 NOT L8

=> FILE WPIX

FILE 'WPIX' ENTERED AT 14:25:52 ON 24 AUG 2007 COPYRIGHT (C) 2007 THE THOMSON CORPORATION

FILE LAST UPDATED: 22 AUG 2007 <20070822/UP>
MOST RECENT THOMSON SCIENTIFIC UPDATE: 200754 <200754/DW>
DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> Now containing more than 1 million chemical structures in DCR <<<

>>> IPC Reform backfile reclassification has been loaded to 31 May 2007. No update date (UP) has been created for the reclassified documents, but they can be identified by 20060101/UPIC and 20061231/UPIC and 20060601/UPIC. <<<

>>> Indian patent publication number format enhanced in DWPI - see NEWS <<<

FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE, PLEASE VISIT:

http://www.stn-international.de/training center/patents/stn guide.pdf

FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES, SEE http://scientific.thomson.com/support/patents/coverage/latestupdates/

>>> FOR DETAILS ON THE NEW AND ENHANCED DERWENT WORLD PATENTS INDEX PLEASE SEE

http://www.stn-international.de/stndatabases/details/dwpi r.html
'BI,ABEX' IS DEFAULT SEARCH FIELD FOR 'WPIX' FILE

=> D QUE L11

L1 STR

Structure attributes must be viewed using STN Express query preparation.

L10 3 SEA FILE=WPIX SSS FUL L1

L11 · 1 SEA FILE=WPIX ABB=ON PLU=ON L10/DCR

=> S L11 NOT L14

L17 0 L11 NOT L14

=> DUP REM L17 L16

L17 HAS NO ANSWERS

FILE 'HCAPLUS' ENTERED AT 14:26:15 ON 24 AUG 2007 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 24 Aug 2007 VOL 147 ISS 10

FILE LAST UPDATED: 23 Aug 2007 (20070823/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

'OBI' IS DEFAULT SEARCH FIELD FOR 'HCAPLUS' FILE

PROCESSING COMPLETED FOR L17

PROCESSING COMPLETED FOR L16

L18 9 DUP REM L17 L16 (0 DUPLICATES REMOVED)
ANSWERS '1-9' FROM FILE HCAPLUS

=> D IBIB ED ABS HITSTR 1-9

L18 ANSWER 1 OF 9 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2006:638056 HCAPLUS Full-text

DOCUMENT NUMBER: 145:261858

TITLE: Lewis base stabilized phosphanylborane

AUTHOR(S): Schwan, Karl-Christian; Timoskin, Alexey Y.; Zabel,

Manfred; Scheer, Manfred

CORPORATE SOURCE: Institut fuer Anorganische Chemie der Universitaet

Regensburg, Regensburg, 93040, Germany

SOURCE: Chemistry--A European Journal (2006),

12(18), 4900-4908

CODEN: CEUJED; ISSN: 0947-6539 Wiley-VCH Verlag GmbH & Co. KGaA

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 145:261858

ED Entered STN: 02 Jul 2006

The abstraction of the Lewis acid from [W(CO)5(PH2BH2·NMe3)] (1) by an excess of P(OMe3)3 leads to the quant. formation of the first Lewis base stabilized monomeric parent compound of phosphanylborane [H2PBH2·NMe3] (2). D. functional theory (DFT) calcns. showed a low energetic difference between the crystallog. determined antiperiplanar arrangement of the lone pair and the trimethylamine group relative to the P-B core and the synperiplanar conformation. Subsequent reactions with the main-group Lewis acid BH3 as well as with an [Fe(CO)4] unit as a transition-metal Lewis acid gave [(BH3)PH2BH2·NMe3] (3), containing a central H3B-PH2-BH2 unit, and [Fe(CO)4(PH2BH2·NMe3)] (4), resp. In oxidation processes with O2, Me3NO, elemental sulfur, and selenium, the boranylphosphine chalcogenides [H2P(Q)BH2·NMe3] (Q = S 5b; Se 5c) as well as the novel boranylphosphonic acid [(HO)2P(O)BH2·NMe3] (6a) are formed. All products were characterized by spectroscopic as well as by single-crystal x-ray structure anal.

IT 905911-76-4P

PUBLISHER:

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (preparation and crystal structure)

RN 905911-76-4 HCAPLUS

CN Borate(2-), (N,N-dimethylmethanamine)dihydro[phosphito(3-)- κ P]-, dihydrogen, (T-4)- (9CI) (CA INDEX NAME)

●2 H+

REFERENCE COUNT:

THERE ARE 33 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L18 ANSWER 2 OF 9 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2004:430908 HCAPLUS Full-text

DOCUMENT NUMBER:

141:17622

TITLE:

Preparation of 2'-fluoro substituted

oligoribonucleotides and compositions for use in

treatment of obesity and diabetes

INVENTOR(S):

Allerson, Charles; Bhat, Balkrishen; Eldrup, Anne B.; Manoharan, Muthiah; Griffey, Richard H.; Baker, Brenda

F.; Swayze, Eric E.

PATENT ASSIGNEE(S):

Isis Pharmaceuticals, Inc., USA

SOURCE:

PCT Int. Appl., 149 pp.

CODEN: PIXXD2 Patent

DOCUMENT TYPE:

eacenc

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

r: 46

PATENT INFORMATION:

	PAT	CENT	NO.			KINI)	DATE		į	APPL	ICAT:	ION 1	۷O.		Dž	ATE		٠
		2004 2004	-					2004 2005		1	WO 20	003-	US350	071		20	0031	L04 <	:
		W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	ĒE,	EG,	ES,	FI,	GB,	GD,	GE,	
			GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	ΚP,	KR,	ΚZ,	LC,	LK,	
			·LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	ΝZ,	OM,	
			PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	ТJ,	TM,	TN,	
			TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW				
		RW:	BW,	GH,	GM,	ΚE,	LS,	MW,	MZ,	SD,	SL,	SZ,	ΤZ,	UG,	ZM,	ZW,	AM,	ΑZ,	
			BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	
			ES,	FI,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	
	,		TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	ΤG
	CA	2504	929			A1		2004	0527		CA 20	003-	2504	929		2	0031	104 <	(
	ΑU	2003	2875	02		A1		2004	0603		AU. 20	003-	2875	02		. 2	0031	LO4 <	(
	EΡ	1560																LO4 <	
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	ĒΕ,	ΗU,	SK		
PRIO	RIT	Y APP	LN.	INFO	.:						US 20	002-	4237	60P		P 2	0021	L05 <	(
						•				1	WO 2	003-	US35	071	I	W 2	0031	L04 <	(
	***		OFFI	0	7 14-	- 00	O 4												

ED Entered STN: 27 May 2004

AB The present invention provides methods for preparation of 2'-fluoro substituted oligoribonucleotides and compns. for use in treatment of obesity and diabetes. The compns. are useful for targeting selected nucleic acid mols. and modulating the expression of one or more genes. In preferred embodiments the compns. of the present invention hybridize to a portion of a target RNA resulting in loss of normal function of the target RNA.

IT 697244-48-7

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES

(phosphodiester internucleoside linking group; preparation of 2'-fluoro substituted oligoribonucleotides and compns. for use in treatment of obesity and diabetes)

697244-48-7 HCAPLUS RN

Borate (3-), trihydro[phosphito $(3-)-\kappa P$]-, trihydrogen, (T-4)-(9CI)CN (CA INDEX NAME)

3 H+

L18 ANSWER 3 OF 9 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2004:414675 HCAPLUS Full-text

DOCUMENT NUMBER: 140:405475

Modulation of immunostimulatory properties of TITLE:

oligonucleotide-based compounds by optimal

presentation of 5' ends

INVENTOR(S): Agrawal, Sudhir; Kandimalla, Ekambar R.; Yu, Dong;

Bhagat, Lakshmi

PATENT ASSIGNEE(S): Hybridon, Inc., USA

U.S. Pat. Appl. Publ., 67 pp. SOURCE: .

Patent

CODEN: USXXCO

DOCUMENT TYPE:

LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
PATENT NO US 2004097719 US 2006019909 US 2007173469 US 2006287262 PRIORITY APPLN. INFO.:	KIND A1 A1 A1 A1	DATE 20040520 20060126 20070726 20061221	US 2002-279684 US 2004-925872 US 2004-925873 US 2005-174450 US 2001-344767P US 2002-376623P US 2002-399181P US 2002-399287P US 2002-399302P	- P P P P	20021024 < 20040825 < 20040825 < 20050701 < 20011024 < 20020430 < 20020729 < 20020729 < 20020729 <
			US 2002-399343P US 2002-399344P US 2002-279684	. Р Р АЗ	20020729 < 20020729 < 20021024 <

OTHER SOURCE(S): MARPAT 140:405475

ED Entered STN: 21 May 2004

AΒ The authors disclose the therapeutic use of oligonucleotides as immunostimulatory agents in immunotherapy applications. More particularly, the invention provides linear and branched oligonucleotides joined by their 3'-terminus (immunomers) for generating an immune response or for treating a

patient in need of immunostimulation. The immunomers of the invention comprise at least two oligonucleotides linked at their 3' ends, internucleoside linkages or functionalized nucleobase or sugar to a nonnucleotidic linker, at least one of the oligonucleotides being an immunostimulatory oligonucleotide and having an accessible 5' end.

ΙT 178449-22-4

> RL: BSU (Biological study, unclassified); BIOL (Biological study) (as linker for linear and branched immunostimulatory oligonucleotides joined by their 3'-terminus)

178449-22-4 HCAPLUS RN

CN Borate(3-), trihydro[phosphito(3-)- κ P]-, (T-4)- (9CI) (CA INDEX NAME)

L18 ANSWER 4 OF 9 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2003:937534 HCAPLUS Full-text

DOCUMENT NUMBER:

TITLE:

(C6H14N2) { Zn [ZnB2P4O15 (OH) 2] · (C6H13N2) Cl }: A

New Templated Zincoborophosphate

AUTHOR(S):

Huang, Ya-Xi; Schaefer, Gerd; Carrillo-Cabrera, Wilder; Borrmann, Horst; Gil, Raul Cardoso; Kniep,

Ruediger

CORPORATE SOURCE:

Max-Planck-Institut fuer Chemische Physik fester

Stoffe, Dresden, D-01187, Germany

SOURCE:

Chemistry of Materials (2003), 15(26),

4930-4935

CODEN: CMATEX; ISSN: 0897-4756

American Chemical Society

DOCUMENT TYPE:

Journal

PUBLISHER:

LANGUAGE:

English

ED Entered STN: 02 Dec 2003

Colorless crystals of (C6H14N2) {Zn[ZnB2P4O15(OH)2] · (C6H13N2)C1} (1) were AB prepared from mixts. of ZnCl2, B2O3, diazabicyclo[2.2.2]octane (DABCO), and 85% H3PO4 under mild hydrothermal conditions (170°). The crystal structure was determined by single-crystal x-ray diffraction (monoclinic, space group P21/c, a 1704.3(1), b 937.03(5), c 1619.75(8) pm, β 96.894(3)°, Z = 2). crystal structure contains tetrahedral zigzag ribbons, 1∞{[ZnB2P4015(OH)2]4-}, running along [010]. Addnl. ZnO2NCl tetrahedra at the borders complete the ribbons by sharing common O-corners with the zincoborophosphate polymer. The N atoms of the quaternary ZnO2NCl tetrahedra belong to monoprotonated (HDABCO) + ions. A 2nd (diprotonated) species, (H2DABCO) 2+, acts as a pure template and is fixed to adjacent zincoborophosphate ribbons along [100] via H bonds. The title compound 1 can be described as an adduct of (C6H14N2) {Zn[ZnB2P4O15(OH)2]} with diazabicyclo[2.2.2]octane- hydrochloride. Thermoanal. and x-ray powder diffraction studies to high temps. (740°) show the decomposition of 1 and the formation of a NH4[ZnBP208] polymorph as an intermediate.

648416-69-7 IT

> RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative) (formation in thermal decomposition of zincoborophosphate with DABCO)

RN 648416-69-7 HCAPLUS

CN Phosphoric acid, B-monoanhydride with boronophosphonic acid, ammonium zinc salt (1:2:1) (9CI) (CA INDEX NAME)

ОН H₂O₃P— В— ОРО₃H₂

●2 NH3

Zn

REFERENCE COUNT:

THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L1'8 ANSWER 5 OF 9 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2004:256208 HCAPLUS Full-text

DOCUMENT NUMBER:

140:400753

TITLE:

Reading, writing, and modulating genetic information with boranophosphate mimics of nucleotides, DNA, and

RNA

AUTHOR(S):

Shaw, Barbara Ramsay; Dobrikov, Mikhail; Wang, Xin; Wan, Jing; He, Kaizhang; Lin, Jin-Lai; Li, Ping; Rait, Vladimir; Sergueeva, Zinaida A.; Sergueev, Dmitri

CORPORATE SOURCE:

Paul M. Gross Chemical Laboratory, Department of Chemistry, Duke University, Durham, NC, 27708-0346,

USA

SOURCE:

Annals of the New York Academy of Sciences (2003), 1002(Therapeutic Oligonucleotides),

12-29

CODEN: ANYAA9; ISSN: 0077-8923 New York Academy of Sciences Journal; General Review

DOCUMENT TYPE: LANGUAGE:

PUBLISHER:

English

ED Entered STN: 29 Mar 2004

A review. The P-boranophosphates are efficient and near perfect mimics of AB natural nucleic acids in permitting reading and writing of genetic information with high yield and accuracy. Substitution of a borane (-BH3) group for oxygen in the phosphate ester bond creates an isoelectronic and isosteric mimic of natural nucleotide phosphate esters found in mononucleotides, i.e., AMP and ATP, and in RNA and DNA polynucleotides. Compared to natural nucleic acids, the boranophosphate RNA and DNA analogs demonstrate increased lipophilicity and resistance to endo- and exonucleases, yet they retain neg. charge and similar spatial geometry. Borane groups can readily be introduced into the NTP and dNTP nucleic acid monomer precursors to produce α -P-borano nucleoside triphosphate analogs (e.g., NTP α B and dNTP α B). The NTP α B and $dNTP\alpha B$ are, in fact, good to excellent substrates for RNA and DNA polymerases, resp., and allow ready enzymic synthesis of RNA and DNA with P-boranophosphate linkages. Further, boranophosphate polymer products are good templates for replication, transcription, and gene expression; boronated RNA products are also suitable for reverse transcription to cDNA. Fully substituted boranophosphate DNA can activate the RNase H cleavage of RNA in RNA-DNA hybrids. Moreover, certain dideoxy-NTPαB analogs appear to be better

substrates for viral reverse transcriptases than the regular ddNTPs, and may offer promising prodrug alternatives in antiviral therapy. These properties make boranophosphates promising candidates for diagnostics; aptamer selection; gene therapy; and antiviral, antisense, and RNAi therapeutics. The boranophosphates constitute a versatile family of phosphate mimics for processing genetic information and modulating gene function. 148099-10-9

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES

(modulating genetic information with boranophosphate mimics of nucleotides, DNA and RNA)

RN 148099-10-9 HCAPLUS

CN Borate(3-), trihydro[phosphito(3-)- κ P]-, dihydrogen, (T-4)- (9CI) (CA INDEX NAME)

ΙT

2 H+

REFERENCE COUNT:

THERE ARE 89 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L18 ANSWER 6 OF 9 HCAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 1996:379885 HCAPLUS Full-text

89

DOCUMENT NUMBER:

125:87085

TITLE:

Hydrolysis of Thymidine Boranomonophosphate and Stepwise Deuterium Substitution of the Borane

Hydrogens. 31P and 11B NMR Studies

AUTHOR(S):

Li, Hong; Hardin, Charles; Shaw, Barbara Ramsay

CORPORATE SOURCE:

Department of Chemistry, Duke University, Durham, NC,

27708, USA

SOURCE:

Journal of the American Chemical Society (1996

), 118(28), 6606-6614

CODEN: JACSAT; ISSN: 0002-7863

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

ED Entered STN: 02 Jul 1996

The α-P-boranophosphate nucleosides comprise a new class of modified nucleotides that may find use as therapeutic and DNA diagnostic agents. Hydrolysis of thymidine 5'-boranomonophosphate, d(pBT), has been studied in H2O and D2O using 1H, 31P, and 11B NMR spectroscopies. Although d(pBT) is quite stable at 25 °C, it hydrolyzes slowly at higher temps. At 50 or 60 °C, d(pBT) hydrolyzes first into thymidine (dT) and boranophosphate (O3P-BH33-), followed by subsequent hydrolysis of the O3P-BH33- to produce phosphonate and boric acid. A three-step deuterium substitution of the borane hydrogens in O3P-BH33- was detected in D2O by the presence of a 31P isotope shift. The 31P resonances shifted downfield by 0.14 ppm upon substitution of each of three 1H atoms by 2H. Exchange of the borane hydrogens with D2O occurs as sequential processes superimposed upon hydrolysis of O3P-BH33-. The hydrolysis and deuteration steps were characterized in terms of pseudo-first-order rate

consts. Hydrolysis of O3P-BH33- is about 10-fold slower than deuterium substitution.

IT 178449-22-4P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(hydrolysis of thymidine boranomonophosphate and stepwise deuterium substitution of the borane hydrogens)

RN 178449-22-4 HCAPLUS

CN Borate(3-), trihydro[phosphito(3-)- κ P]-, (T-4)- (9CI) (CA INDEX NAME)

IT 178449-24-6P 178449-25-7P 178449-26-8P

RL: SPN (Synthetic preparation); PREP (Preparation) (hydrolysis of thymidine boranomonophosphate and stepwise deuterium substitution of the borane hydrogens)

N 178449-24-6 HCAPLUS

CN Borate(3-), trihydro-d-[phosphito(3-)-P]-, (T-4)- (9CI) (CA INDEX NAME)

RN 178449-25-7 HCAPLUS

CN Borate(3-), trihydro-d2-[phosphito(3-)-P]-, (T-4)- (9CI) (CA INDEX NAME)

RN 178449-26-8 HCAPLUS

CN Borate(3-), trihydro-d3-[phosphito(3-)-P]-, (T-4)- (9CI) (CA INDEX NAME)

L18 ANSWER 7 OF 9 HCAPLUS COPYRIGHT 2007 ACS on SIN

ACCESSION NUMBER: 1993:408879 HCAPLUS Full-text

DOCUMENT NUMBER: 119:8879

TITLE: Phosphonates as mimics of phosphate biomolecules: ab

initio calculations on tetrahedral ground states and pentacoordinate intermediates for phosphoryl transfer

AUTHOR(S): Thatcher, Gregory R. J.; Campbell, A. Stewart

CORPORATE SOURCE: Dep. Chem., Queen's Univ., Kingston, ON, K7L 3N6, Can.

SOURCE: Journal of Organic Chemistry (1993), 58(8),

2272-81

CODEN: JOCEAH; ISSN: 0022-3263

DOCUMENT TYPE: Journal LANGUAGE: English ED Entered STN: 10 Jul 1993

GI .

O P X I H II

AB The use of phosphonates as analogs of phosphate biomols. was explored using ab initio SCF calcns. at the 3-21+G(*) levels. Fully optimized geometries were obtained for the tetrahedral ground-state monoanions CHF2PO3H-, CH2FPO3H-, CH3PO3H-, BH3PO3H2-, H2PO3-, and I (X = O, CFH) and torsional energy profiles obtained for CH2FPO3H- and H2PO3. Comparison was made of (1) structure and conformational dependence for these species and (2) electrostatic potential maps for ethylene phosphate and its (monofluoromethylene)phosphonate analog. The results suggest that, despite the isopolar relationship of (fluoromethyl)phosphonates and the parent phosphates, binding at a receptor site may be considerably perturbed for the phosphonate analogs. Fully optimized geometries were located for isomers of the pentacoordinate trigonal bipyramidal species PH4X (X = CH3, CF3, CF2H, CFH2, BH3-, BF3-, O-, OH) and II (X = O, CH2, CFH, CF2). Torsional energy profiles were explored for PH4X (X = CH3, CF3, CF2H, CFH2). The calculated relative apicophilicity scale in PH4X (CF3 > CF2H > CFH2 > CH3 > OH > O- \geq BF3- > BH3-) varies in the five-membered cyclic phosphoranes II only by reversal of CH3 and OH. It is concluded that (mono- and difluoromethylene) phosphonates have similar ligand preferences to the parent phosphates in the pentacoordinate state. These phosphonates are capable of forming transition-state analogs at the active site of phosphoryl transfer enzymes.

IT 148099-10-9

RL: PRP (Properties)

(MO calcns. and conformation of)

RN 148099-10-9 HCAPLUS

CN Borate(3-), trihydro[phosphito(3-)- κ P]-, dihydrogen, (T-4)- (9CI) (CA INDEX NAME)

●2 H+

L18 ANSWER 8 OF 9 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1991:680124 HCAPLUS Full-text

DOCUMENT NUMBER:

115:280124

TITLE:

Boron analogs of phosphonoacetates: synthesis,

characterization and antitumor properties of sodium diethyl phosphite-carboxyborane and related compounds

AUTHOR(S):

Sood, Anup; Sood, Cynthia K.; Hall, Iris H.;

Spielvogel, B. F.

CORPORATE SOURCE:

P. M. Gross Chem. Lab., Duke Univ., Durham, NC, 27706,

USA

SOURCE:

Tetrahedron (1991), 47(34), 6915-30

CODEN: TETRAB; ISSN: 0040-4020

DOCUMENT TYPE:

Journal

LANGUAGE:

English

OTHER SOURCE(S):

CASREACT 115:280124

ED Entered STN: 27 Dec 1991

AB Several methods were investigated for the synthesis of functionalized phosphite-borane adducts. The monosodium salt of diethylphosphite-carboxyborane (a B analog of Na diethylphosphonoacetate) and related precursors and derivs. were prepared A brief description of their cytotoxic

and antitumor properties is also presented.

IT 137484-31-2P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and cytotoxic activity of)

RN 137484-31-2 HCAPLUS

CN Borate(3-), (cyano-C)dihydro[phosphito(3-)-P]-, trihydrogen, (T-4)- (9CI) (CA INDEX NAME)

●2 H+

L18 ANSWER 9 OF 9 HCAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1989:594820 HCAPLUS Full-text

DOCUMENT NUMBER:

111:194820

TITLE:

Homolytic reactions of ligated boranes. Part 10. Electron spin resonance studies of radicals derived

from ligated arylboranes

AUTHOR(S):

Paul, Vikram; Roberts, Brian P.

• CORPORATE SOURCE:

Christopher Ingold Lab., Univ. Coll. London, London,

WC1H OAJ, UK

SOURCE:

Journal of the Chemical Society, Perkin Transactions

2: Physical Organic Chemistry (1972-1999) (

1988), (10), 1895-901

CODEN: JCPKBH; ISSN: 0300-9580

DOCUMENT TYPE:

LANGUAGE:

Journal English

OTHER SOURCE(S):

CASREACT 111:194820

ED Entered STN: 25 Nov 1989

AΒ The ligated arylboryl radicals $L\rightarrow B\bullet HR$ [L = Me3N, Et3P, (MeO)3P; R = Ph, 4-Me3CC6H4] were generated in oxirane solvent by hydrogen atom abstraction from L→BH2R using tert-butoxyl radicals produced by UV photolysis of di-tert-Bu peroxide. The ESR spectra of the phosphine- or phosphite-ligated radicals show that there is substantial conjugative delocalization of the unpaired electron from B onto the aromatic rings, although this delocalization is less extensive than in comparable benzylic carbon-centered radicals. The results of ab initio MO calcns. support the proposal that hyperconjugative delocalization onto the P ligand completes with conjugative delocalization onto the ring in the complexed arylboryl radicals. The ESR spectra of the amine-arylboryl radicals were too weak to detect, although these radicals and Et3P→B•HR abstract halogen atoms readily from alkyl bromides to afford spectra of the corresponding alkyl radicals. The ligated arylboryl radicals are less reactive and more selective in bromine atom abstraction than homoleptic ligated alkylboryl radicals, presumably because the former are appreciably stabilized by conjugative delocalization of the unpaired electron onto the aromatic rings.

IT 123324-74-3

RL: PROC (Process)

(ab initio MO calcn. of)

RN 123324-74-3 HCAPLUS

CN Phosphoranyl, boryltrihydroxy- (9CI) (CA INDEX NAME)

Search History

•		300000
L1		STRUCTURE UPLOADED
L2		0 SEA SSS SAM L1
L3		18 SEA SSS FUL L1
		10 0211 930 101 21
	CTTC	'HCAPLUS' ENTERED AT 13:45:13 ON 24 AUG 2007
T 4	ETDE	
L4		13 SEA ABB=ON PLU=ON L3
L5		13 SEA ABB=ON PLU=ON L4 AND (PRY<=2006 OR AY<=2006 OR PY<=2006)
$^{ m L6}$		1160 SEA ABB=ON PLU=ON FISCHER B?/AU
L7		1 SEA ABB=ON PLU=ON NAUM V?/AU
L8		4 SEA ABB=ON PLU=ON (L6 OR L7) AND L5
-		
	FILE	'WPIX' ENTERED AT 14:22:06 ON 24 AUG 2007
L9		O SEA SSS SAM L1
L10		3 SEA SSS FUL L1
L11		1 SEA ABB=ON PLU=ON L10/DCR
L12		386 SEA ABB=ON PLU=ON FISCHER B?/AU
L13		1 SEA ABB=ON PLU=ON NAUM V?/AU
L14		1 SEA ABB=ON PLU=ON L11 AND (L12 OR L13)
	FILE	'WPIX, HCAPLUS' ENTERED AT 14:24:59 ON 24 AUG 2007
L15		4 DUP REM L14 L8 (1 DUPLICATE REMOVED)
штэ		4 DOL KEN BI4 BO (I DOLLICATE KENOVED)
	PITE	LUCADIUGI PAMEDED AM 14.05.40 ON 24 AUG 2007
	LILE	'HCAPLUS' ENTERED AT 14:25:40 ON 24 AUG 2007
		D QUE L5
L16		9 SEA ABB=ON PLU=ON L5 NOT L8
	FILE	'WPIX' ENTERED AT 14:25:52 ON 24 AUG 2007
		D QUE L11
L17		O SEA ABB=ON PLU=ON L11 NOT L14
ر	FILE	'HCAPLUS' ENTERED AT 14:26:15 ON 24 AUG 2007
L18	TIME	·
r_1		9 DUP REM L17 L16 (0 DUPLICATES REMOVED)