UNRAVELING NON-STANDARD PHYSICS THROUGH THE GLOBAL 21CM SIGNAL

Aryana Haghjoo¹, Jonathan Sievers¹,², Oscar Hernandez³ ¹ McGill University, ² University of KwaZulu-Natal, ³ Marianopolis College

Outline

Introduction

- Physical principals
- Simulating the Global 21cm Signal
- Non-Standard Effects
- Observations of Global 21cm Signal

Parameter Estimation Methods

- Levenberg-Marquardt
- Markov Chain Monte-Carlo

Results

- Test Curve
- EDGES data

• Theoretical Background

- 200<z<1100 (Dark Ages): Universe composed of hydrogen (75%), helium, small traces of heavy elements, free electrons, residual photons (CMB)
- Neutral hydrogen: convenient tracer
- Spin-flip transition on 1S ground state ($\nu = 1420.4057$ MHz, and $\lambda = 21.1$ cm)

Kit Grodias

$$\frac{n_1}{n_0} = 3e^{-h\nu/kT_s}$$

$$T_S^{-1} = \frac{T_{\gamma}^{-1} + x_{\alpha} T_{\alpha}^{-1} + x_c T_K^{-1}}{1 + x_{\alpha} + x_c}$$

 x_c : collisional coupling coefficient x_α : Ly α coupling coefficient

• Global 21cm Signal

- Average over the brightness temperature of the 21cm line
- Presents as an excess absorption or emission ($\delta T_b = T_V T_S$)
- Coupling to Lyα background: Wouthuysen-Field effect/coupling

• Simulating the Global 21cm Curve

$$\delta T_b \approx 27 \left(1 - \bar{x}_i\right) \left(\frac{\Omega_{b,0} h^2}{0.023}\right) \left(\frac{0.15}{\Omega_{m,0} h^2} \frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\gamma}}{T_S}\right)$$

- Fully hydrodynamic simulations → semi–numerical
- faster and more efficient
- Simulators: 21cmFast, Accelerated Reionization Era Simulations (ARES)
- Emulator: 21cmGEM, Radial Basis Function Interpolation (RBFI)

A. Mesinger et al, 2011

ARES documentation

Non-Standard Effects

(So you wanna see the non-standard physics? (3))

- Exotic Heating Mechanisms
- How is the signal affected, assuming different non-standard scenarios?
- Which non-standard effects demonstrate their signature in the global 21cm signal?
- Dark matter models, certain particle interaction, cosmic string wakes

The 21-cm global signal as a function of redshift for 193 different astrophysical models

Cohen et al, 2017

Observations of Global 21cm Signal

- EDGES (Experiment to Detect the Global EoR Signature)
- SARAS (Small Array for Research in Astrophysics of the South)
- PRIZM (Probing Radio Intensity at high-Z from Marion)
- REACH (Radio Experiment for the Analysis of Cosmic Hydrogen)
- BIGHORNS (Broadband Instrument for Global HydrOgen ReioNisation Signal)

• The EDGES Affair

- Data released in 2017
- Indicating that the gas temperature is cooler than what we expected
- In contrast with SARAS results

Judd D. Bowman et al, 2017

Parameter Estimation

• Parameter Estimation

• Key Astrophysical Parameters

- 1. f_X : High-redshift normalization factor in the relation between X-ray luminosity and star formation rate (SFR)
- 2. N_{ion} : Mean number of ionizing photons produced per baryon of star formation (= pop_rad_yield_2)
- f_{esc} : Fraction of ionizing photons that escape their host galaxy into the IGM
- N_{lw} : Number of photons emitted in the Lyman-Werner band (11.2 – 13.6eV) per baryon of star formation (= pop_rad_yield_o)

$$L_X = 3.4 \times 10^{40} f_X \left(\frac{SFR}{1 M_{\odot} yr^{-1}} \right) erg \ s^{-1}$$

Ionizing fraction

$$\bar{x}_i = \frac{\zeta f_{coll}}{1 + \bar{n}_{rec}}$$

Ionization efficiency
$$\zeta = A_{He} f_* f_{esc} N_{ion}$$

Markov Chain Monte-Carlo (MCMC)

• Convergence Test

Jonathan Sievers

•MCMC with ARES

- A chain of 2E4 steps
- ~ 23 hours to produce this plot!
- Still not yet fully converged!
- Approximately 4 seconds for each ARES run

•MCMC with RBFI

(Radial Basis Function Interpolation)

- A chain of 1E7 steps
- •fully converged!
- Half of the amplitude of the actual observed data

●Convergence

• Corner Plots

- An iterative damped-least squares method
- Will give us a reasonable starting point
- More critical: The covariance matrix
- We will draw samples from this covariance matrix and feed these samples to the MCMC

$$\chi^{2} \equiv \left(d - A\left(m\right)\right)^{T} N^{-1} \left(d - A\left(m\right)\right)$$

$$\chi^{2}(m + \delta m) = \chi^{2}(m) + \left(\frac{d\chi^{2}}{dm}\right)\delta m$$

$$\delta m = (A'^T N^{-1} A' + \Lambda I)^{-1} A'^T N^{-1} r$$

Curvature matrix

$$\frac{d^2\chi^2}{dm^2} = 2 (A')^T N^{-1} A'$$

• Combination of MCMC and LM

• Results of Fit to EDGES data

Value Parameter	$pop_rad_yield_0_$	$pop_rad_yield_2_$	f_{esc}	f_X
Fitted values	9.999×10^{3}	9.994×10^{2}	1.000×10^{-1}	1.000×10^{-1}
Error-bar of fit	3.541×10^{-2}	3.861×10^{0}	3.578×10^{-4}	3.392×10^{-6}

• Future Perspective

- Publishing our method as a Python package for parameters estimation of the global 21cm signal
- Analyze the data from upcoming experiments
- Updating ARES to include the desired non-standard effects
- Investigate the difference in the behavior of specific astrophysical parameters in the presence of non-standard physics

