MATH355 2017-09-13

Throughout, V will denote an abstract vector space. If $W \subset V$ is a subspace, we will sometimes write W < V. Also, if W < V is a subspace, then W itself is a vector space, with the operations inherited by V.

Definition 1. Let $\vec{v}_1, \dots, \vec{v}_k \in V$ be vectors. A linear combination of $\vec{v}_1, \dots, \vec{v}_k$ is a sum

$$\alpha_1\vec{\nu}_1+\cdots+\alpha_k\vec{\nu}_k\in V$$

where $a_i \in \mathbf{R}$ can be any real number and $k \in \mathbf{N}$ can be any natural number.

Notice that $\vec{0} = 0\vec{v}_1$ is always a linear combination.

Example 2. Any vector in \mathbf{R}^2 is a linear combination of $\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Indeed, if $\vec{v} \in \mathbf{R}^2$, then $\vec{v} = \begin{pmatrix} \alpha \\ b \end{pmatrix}$ for $\alpha, b \in \mathbf{R}$. Hence, $\vec{v} = \alpha \vec{e}_1 + b \vec{e}_2$, which is a linear combination of \vec{e}_1 and \vec{e}_2 .

Lemma 3. Let W < V be a subspace, then W is closed under linear combinations.

Concretely, this means that if $\vec{w}_1, \dots, \vec{w}_r \in W$ then $a_1\vec{w}_1 + \dots + a_r\vec{w}_r \in W$ for any $a_1, \dots, a_r \in \mathbb{R}$.

Definition 4. Let $S \subset V$ be any subset. The *span* of S is

$$\begin{aligned} \text{Span S} &= \left\{ \text{all possible linear combinations of vectors in S} \right\} \\ &= \left\{ \alpha_1 \vec{s}_1 + \dots + \alpha_k \vec{s}_k \; \middle| \; \alpha_1, \dots, \alpha_k \in \textbf{R}, \vec{s}_1, \dots, \vec{s}_k \in \textbf{S}, \forall k \in \textbf{N} \right\} \end{aligned}$$

By convention, the "empty linear combination" is just $\vec{0}$ and Span $\emptyset = \{\vec{0}\}\$, the span of the empty set is the zero vector space.

Lemma 5. Let $S \subset V$. Then Span S is a subspace.

Proof. Let W := Span S. We must show the usual three things: $\vec{0} \in W$; if $\vec{u}, \vec{v} \in W$ then $\vec{u} + \vec{v} \in W$; if $a \in \mathbb{R}$, $\vec{u} \in W$ then $a\vec{v} \in W$.

If $S = \emptyset$, then Span $S = \{\vec{0}\}\$, which is always a subspace. If $S \neq \emptyset$, then there exists some $\vec{s} \in S$. Since $\vec{0} = 0\vec{s}$ is a linear combination of elements of S, we have $\vec{0} \in W$.

Suppose $\vec{w} = \alpha_1 \vec{s}_1 + \dots + \alpha_k \vec{s}_k$ is a linear combination of vectors in S. Thus $\vec{w} \in W$. Let $\alpha \in \mathbf{R}$, then $\alpha \vec{w} = (\alpha \alpha_1) \vec{s}_1 + \dots + (\alpha \alpha_k) \vec{s}_k$ is also a linear combination of vectors in S. Hence $\alpha \vec{w} \in W$. In other words W is closed under scalar multiplication. Closure under addition is similar (exercise).

Date: John Calabrese, September 13, 2017.

I

Example 6. Let
$$\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \in \mathbf{R}^3$$
. What is Span \vec{v} ? Well
$$\operatorname{Span} \vec{v} = \left\{ \alpha_1 \vec{v} + \dots + \alpha_k \vec{v} \mid \alpha_i \in \mathbf{R}, \forall i \right\}$$

$$= \left\{ (\alpha_1 + \dots + \alpha_k) \vec{v} \mid \alpha_i \in \mathbf{R}, \forall i \right\}$$

$$= \left\{ \alpha \vec{v} \mid \alpha \in \mathbf{R} \right\}$$

$$= \left\{ \begin{pmatrix} \alpha \\ 0 \\ 2\alpha \end{pmatrix} \mid \alpha \in \mathbf{R} \right\}$$

Example 7. Let
$$\vec{0} \in \mathbb{R}^4$$
, i.e. $\vec{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. Then

$$Span\{\vec{0}\} = \{\alpha_1 \vec{0} + \dots + \alpha_k \vec{0} \mid \alpha_i \in \mathbf{R}, k \in \mathbf{N}\} = \{\vec{0}\}.$$

Example 8. What is Span
$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$
? Call $W := \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$. Notice that

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

which is a linear combination of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, so $\begin{pmatrix} 2 \\ 0 \end{pmatrix} \in W$. Also, $\frac{1}{2} \begin{pmatrix} 2 \\ 0 \end{pmatrix} \in W$ as it is a linear combination of elements in W. Hence, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in W$. Consider instead

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \in W$$

The upshot now is that both $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are in W. By W is closed under linear combinations and we know that any vector in \mathbf{R}^2 is a linear combination of $\vec{\mathbf{e}}_1$ and $\vec{\mathbf{e}}_2$. Thus, $\mathbf{R}^2 \subset W$. But since $W \subset \mathbf{R}^2$, we have

Span
$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} = W = \mathbb{R}^2$$
.