

Parameter Identifiability

Dina Lika

lika@uoc.gr University of Crete

Outline

- Structural and practical identifiability
- Handling non- identifiable parameters
- Quantifying accuracy of parameters of deterministic models

Parameter estimation- challenges

- Choice of appropriate loss functions
 - to fit multiple models, which share parameters, to multiple data sets, which may differ in dimensions, in a single parameter estimation.
- Identification of model parameters by the available data
- Quantification of accuracy of the parameter estimates

Parameter identification problem

- The inability to identify a best set of estimates.
- Two or more sets of parameter values generate the same observations.
- Parameter estimates may vary by orders of magnitude without significantly influencing the quality of fit.

Sources of the problem

Insufficient or noisy data
Strong parameter correlation

Identifiability analysis

structural identifiability analysis - a priori

- fix non-identifiable parameters
- substitution of the non-identifiable parameters by appropriately chosen combinations of parameters (compound parameters)
- use of pseudo-data

Example

Von Bertalanffy equation

$$L(a) = L_{\infty} - (L_{\infty} - L_b) \exp\{-\dot{r}_B a\}$$

$$L_{\infty} = f \frac{\kappa \{\dot{p}_{Am}\}}{[\dot{p}_M]}, \quad \dot{r}_B = \frac{[\dot{p}_M]}{3([E_G] + f\kappa [E_m])}$$

Estimate compound parameters L_i and \dot{r}_B with L_b =0.24 cm

Data for females *Nothobranchius_furzeri* (Turquoise killifish) from Blazek et al. (2013) EvoDevo, 4:1–24.

Picture from

https://upload.wikimedia.org/wikipedia/commons/2/22/Nothobranchius furzeri G RZ thumb.jpg

Identifiability analysis

 practical identifiability analysis - a posteriori non-identifiabilities are detected by fitting the model to data and investigating parameter estimates

Identifiability analysis

Tools

sensitivity analysis

SA investigates how the variation in the output of a model can be attributed to variations of its parameters/input (forcing) variables

confidence intervals

A confidence interval is an interval (hopefully a small) that contains a certain percentage of the total distribution of that parameter

Local Sensitivity Analysis

LSA assesses which parameters are the most influential around a reference value

- change the value of a parameter while keeping the others constant

Sensitivity index	Elasticity coefficient
$S_{\theta}(t) = \frac{\partial Y(t)}{\partial \theta}$	$e_{\theta}(t) = \frac{\theta}{Y(t)} \frac{\partial Y(t)}{\partial \theta}$

Y: output variable

θ: parameter

VB curve – local sensitivity

perturbation factor 10⁻³

Effects of pseudo-data

Elasticity coefficients

 θ a core parameter to be estimated θ_0 a typical value of the pseudo-data

$$e_{\theta} = \frac{\frac{\hat{\theta}_{1} - \hat{\theta}_{0}}{\hat{\theta}_{0}}}{\frac{\theta_{0}(1+\alpha) - \theta_{0}}{\theta_{0}}} = \frac{\hat{\theta}_{1} - \hat{\theta}_{0}}{\alpha \hat{\theta}_{0}}$$

- $\hat{\theta}_{0}$ estimate of θ given the pseudo-data θ_{0}
- $\hat{\theta}_1$ estimate of θ given the pseudo data $\theta_0(1+\alpha)$
- α percentage change in pseudo-value

The smaller the (absolute) elasticity, the less the role of that particular pseudo-data in the estimation of the parameter

Confidence intervals on the estimated parameters

A confidence interval is an interval that contains a specified percentage of the distribution of that parameter

marginal confidence set

a profile-based method

The profile method

A 2-step procedure for the assessment of marginal confidence sets

- 1. Obtain the profile of the loss function for a parameter
- 2. Obtain the distribution function of the global minimum of the loss function (calibration step)

Profile of the loss function for a parameter θ

Start from the point estimate, i.e. the parameter $\hat{\theta}$ that minimizes the loss function $F_{min} = F(\hat{\theta})$, and move the parameter step-wise up or down, while estimating the other parameters using continuation.

Plot the profile of the loss function $F(\theta)$ as function of the parameter of interest.

A marginal profile-based confidence set for the parameter θ with confidence level p, 0<p<1, is the set of values of θ defined as

$$\{\theta: F(\theta) - F_{min} \le F_c^p\}$$

Calibration step for the interval estimation

Generate **Monte Carlo data-sets** by (generally) adding centered lognormally distributed scatter to the predictions for each data-point (zeroand uni-variate data), with the same coefficient of variation (cv) as the data shows from these predictions.

log-normal distribution with mean p_{ij} and variance $(cv \cdot p_{ij})^2$

$$cv = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n_i} \sum_{j=1}^{n_i} \frac{|d_{ij} - p_{ij}|}{p_{ij}}$$

For each Monte Carlo dataset estimate the parameters and compute the (global) minimum, F_{min} , of the loss function

Determine the cumulative distribution of the global minimum of the loss function

The **critical value** F_c^p that corresponds to a certain **confidence level** p

$$P(F \le F_c^p) = p$$

or

$$S(F_c^p) = P(F > F_c^p) = 1 - p$$

Contours of the loss function at various confidence leveles

Example

Von Bertalanffy equation

$$L(a) = L_{\infty} - (L_{\infty} - L_b) \exp\{-\dot{r}_B a\}$$

$$L_{\infty} = f \frac{\kappa \{\dot{p}_{Am}\}}{[\dot{p}_M]}, \quad \dot{r}_B = \frac{[\dot{p}_M]}{3([E_G] + f\kappa [E_m])}$$

Estimate compound parameters L_i and \dot{r}_B with L_b =0.24 cm

Data for females *Nothobranchius_furzeri* (Turquoise killifish) from Blazek et al. (2013) EvoDevo, 4:1–24.

Picture from

https://upload.wikimedia.org/wikipedia/commons/2/22/Nothobranchius furzeri G RZ thumb.jpg

The marginal profiles of the loss functions

Survivor function of the loss function

In green 70% CI

Boundaries of the confidence interval

Example – reduced data set

sampled from the initial part of the curve

Von Bertalanffy equation

$$L(a) = L_{\infty} - (L_{\infty} - L_b) \exp\{-\dot{r}_B a\}$$

$$L_{\infty} = f \frac{\kappa \{\dot{p}_{Am}\}}{[\dot{p}_M]}, \quad \dot{r}_B = \frac{[\dot{p}_M]}{3([E_G] + f\kappa [E_m])}$$

Estimate compound parameters L_i and \dot{r}_B with L_b =0.24 cm

The marginal profiles of the loss functions

Survivor function of the loss functions

Full dataset Reduced dataset

Boundaries of the confidence interval

Example – reduced data set

sampled from the full curve

Von Bertalanffy equation

$$L(a) = L_{\infty} - (L_{\infty} - L_b) \exp\{-\dot{r}_B a\}$$

$$L_{\infty} = f \frac{\kappa \{\dot{p}_{Am}\}}{[\dot{p}_{M}]}, \quad \dot{r}_{B} = \frac{[\dot{p}_{M}]}{3([E_{G}] + f\kappa[E_{m}])}$$

Estimate compound parameters L_i and \dot{r}_B with L_b =0.24 cm

The marginal profiles of the loss functions

Survivor function of the loss functions

Full dataset
Reduced dataset,
sampled from the initial part of the curve
Reduced dataset,
sampled from the full curve

Boundaries of the confidence interval

0.2

0.01

0.03

0.02

0.04

von Bert growth rate r_B, 1/d

0.05

0.07

0.08

0.06

Contours of the loss function at various confidence leveles

Your working folder must have:

- the run_CI.m file located in debtool_M/lib/pet_ci
- and the 3 user-defined files of your species mydata_my_pet.m predict_my_pet.m pars_init_my_pet.m (with the best estimates)

Thank you for your attention!!!

Dina Lika

lika@uoc.gr University of Crete

