30/8/2000-05/04/2024 Train: Validation: Test -> 80:15:5

Feature building:

df['log_returns'] = np.log(1 + df['returns'])

<u>Hyperparameters-tuning/ results summary:</u>

training run	2024-04-13	2024-04-14-1	2024-04-14-	2024-04-17	Monte Carlo	2024-05-19
model # (for best performer)	35	57	115	27	N/A	N/A
lstm_nodes_1	10, 20	10, 20	30, 40	40	20	20
lstm_nodes_2	20 , 30	20, 30	30, 40	40	30	30
lstm_nodes_3	20, 30	20, 30	30, 40	40	30	30
lstm_nodes_4	N/A	N/A	30 , 40	30, 40	N/A	N/A
dense_nodes_1	20	20	30	30 , 40	20	20
dropout	0.05 , 0.1	0.05 , 0.1	0.05 , 0.1	0.05	0.05	0.05, 0.1, 0.2
lstm_activation	tanh, sigmoid	tanh, sigmoid	tanh, sigmoid	tanh, relu, sigmoid	tanh	tanh
dense_activation	tanh, sigmoid	tanh, relu	tanh, relu	tanh, relu, sigmoid	tanh	tanh
loss	MSE	MSE	MSE	MSE	MSE	MSE
optimizer	adam	adam	adam	adam	adam	adam
learning_rate	0.001	0.0001	0.0005	0.0001	0.00005	0.001
batch_size	32	64	64	64	64	64
stopped_epoch (for best performer)	699	699	1299	2499	N/A	N/A
early_stopping_monitor	val_loss	val_loss	val_loss	val_loss	val_loss	val_loss
patience	200	200	300	500	500	500
start_from_epoch	500	500	1000	2000	1500	1500
Train Score [RMSE] (for best performer)	\$60.60	\$68.57	\$54.02	\$40.16	N/A	N/A
Validation Score [RMSE] (for best performer)	\$77.01	\$99.92	\$93.67	\$79.57	N/A	N/A
Test Score [RMSE] (for best performer)	\$144.70	\$141.50	\$179.56	\$120.13	N/A	N/A
# of Monte Carlo Replications	N/A	N/A	N/A	N/A	100	N/A

MSE

p_value threshold: 0.05 (not applicable to Anderson test) p_value for Anderson test: 0.05

p_value for mean_squared_error: 0.1386 mean_squared_error is normally distributed based on normaltest (Shapiro-Wilk test is based on the correlation ratio)

mean: 0.0027 standard deviation: 0.0002

p_value threshold: 0.05 (not applicable to Anderson test) p_value for Anderson test: 0.05

p_value for val_mean_squared_error: 0.2839 val_mean_squared_error is normally distributed based on normaltest (Shapiro-Wilk test is based on the correlation ratio)

mean: 0.0019 standard deviation: 0.0003

p_value threshold: 0.05 (not applicable to Anderson test) p_value for Anderson test: 0.05

p_value for mean_absolute_error: 0.0008 mean_absolute_error is not normally distributed based on shapiro-wilk (Shapiro-Wilk test is based on the correlation ratio)

p_value threshold: 0.05 (not applicable to Anderson test) p_value for Anderson test: 0.05

p_value for val_mean_absolute_error: 0.5363 val_mean_absolute_error is normally distributed based on normaltest (Shapiro-Wilk test is based on the correlation ratio)

mean: 0.0407 standard deviation: 0.0034

<u>Dropout impact:</u> dropout = [0.05, 0.1, 0.2]

RMSE Score	Model 1	Model 2	Model 3
Train	\$33.54	\$84.68	\$162.18
Validation	\$62.15	\$159.64	\$295.74
Test	\$124.59	\$200.16	\$342.98

Monte Carlo Simulation

A method for solving problems using random sampling. It repeatedly generates random inputs to a model to calculate a range of possible outcomes, helping to approximate complex systems or solve mathematical problems where deterministic methods are not feasible.