Izvori jednosmernog napona

- Stabilizatori - regulatori napona (nastavak)

Izvori jednosmernog napajanja

Sadržaj

- 1. Uvod
- 2. Usmerači napona
 - 2.1 Jednostrano usmeravanje
 - 2.2 Dvostrano usmeravanje
 - 2.3 Umnožavažavači napona
- 4. Filtriranje usmerenog napona
- 4. Stabilizatori regulatori napona
 - 4.1 Linearni stabilizatori napona
 - 4.1.1 Stabilizatori sa Zener diodom
 - 4.1.2 Paralelni stabilizatori
 - 4.1.3 Redni stabilizatori napona
 - 4.2 Prekidački stabilizatori napona
 - 4.2.1 Spuštači napona
 - 4.2.2 Podizači napona
 - 4.2.3 Invertori

Da bi se od mrežnog napona dobio jednosmerni napon željene vrednosti, potrebno je

- 1. smanjiti njegovu vrednost
- 2. usmeriti ga (napraviti jednosmerni napon)
- 4. ukloniti naizmeničnu komponentu ("ispeglati")
- 4. stabi<mark>l</mark>isati regulisati ga

(<mark>u</mark>činiti n<mark>ezavisnim</mark> od prom<mark>ena uslova rada</mark>

Da se podsetimo

Stabilizatori - regulatori napona

Napon na izlazu stabilizatora ne treba da zavisi od promena:

- a) ulaznog napona (napona na izlazu iz filtra)
- b) otpornosti potrošača (struje kroz potrošač)

10. januar 2012.

Stabilizator je dobar ako je faktor stabilizacije mali $S=(\Delta V_{os}/\Delta V_{o}) < 0.1\%$

10. januar 2012.

Prof. dr Predrag Petković

Stabilizatori - regulatori napona Da se podsetimo

Kvalitet stabilizatora određuje osetljivost izlaznog napona na promene:

- b) otpora potrošača (napona na izlazu iz filtra)

10. januar 2012.

Prof. dr Predrag Petković

Da se podsetimo

Stabilizatori - regulatori napona

Stabilizator je idealan ako je $R_a=\theta$

Stabilizator je dobar ako je $R_o < 10\Omega$

Stabilizator

Potrošač

Stabilizator

Potrošač

$$V'_{\text{os}} = V_{\text{p}} = V_{\text{os}} - I_{\text{os}} \cdot R_o$$

$$V_{\rm DD} = V_{\rm os} - I_{\rm DD} \cdot R_o$$

Stabilizatori - regulatori napona

Realizacija stabilizatora napona

U osnovi postoje dva tipa realizacije stabilizatora

- 4.1. Linearni stabilizatori regulatori napona
 - 4.1.1 Sa Zener diodom
 - 4.1.2 Paralelni stabilizatori regulatori napona
 - 4.1.3 Redni stabilizatori regulatori napona
- 4.2. Prekidački stabilizatori regulatori napona
 - 4.2.1 Spuštači napona
 - 4.2.2 Podizači napona
 - 4.2.3 Invertori

10. januar 2012.

Prof. dr Predrag Petković

10. januar 2012.

Karakteristike stabilizatora sa Ze

-za S < 0.1%, potrebno je $R=10^3 r_* \approx X10 \text{k}\Omega^{\frac{1}{2}}$ to znači da će za $I_{os}=I_{p}=10$ mA pad napona na R biti reda veličine X100V!!! Za toliko treba da bude veći napon V_a od

Ako se ograniči vrednost R, povećaće se S!

Kako dobiti bolji stabilizator?

10. januar 2012.

Prof. dr Predrag Petković

Izvori jednosmernog napajanja

Sadržaj

- 1. Uvod
- 2. Usmerači napona
 - 2.1 Jednostrano usmeravanje
 - 2.2 Dvostrano usmeravanje
 - 2.3 Umnožavažavači napona
- 4. Filtriranje usmerenog napona
- 4. Stabilizatori regulatori napona
 - 4.1 Linearni stabilizatori napona
 - 4.1.1 Stabilizatori sa Zener diodom
 - 4.1.2 Paralelni stabilizatori
 - 4.1.3 Redni stabilizatori napona
 - 4.2 Prekidački stabilizatori napona
 - 4.2.1 Spuštači napona
 - 4.2.2 Podizači napona
 - 4.2.3 Invertori

4.1.2 Paralelni stabilizatori - regulatori napona .2 Paralelni stabilizatori - regulatori napona

$$V_{os} = V_o - RI_o$$

$$I_o = I_t + I_r + I_{os}$$

Porast V_{o} za ΔV_{o} teži da izazove porast ΔV_{os} ; tada raste V_{BE} i to približno za $\Delta V_{BE} = \frac{R_1}{R_1 + R_2} \Delta V_{os}$

To izaziva porast struje kroz tranzistor I_{ij} što dovodi do povećanja I_{o} a time i do većeg pada napona na $R(RI_a)$, čime se napon V_{os} smanjuje. $(V_{os} = V_o - R I_o)$

10. januar 2012. Prof. dr Predrag Petković

4.1.2 Paralelni stabilizatori - regulatori napona

Integrisani paralelni stabilizatori - regulatori napona

Da bi se ostvarila bolja stabilizacija, potrebno je "ubrzati" reagovanje na promenu V_{as} .

Za dobru stabilizaciju napona potrebno je uvesti dodatnu negativnu povratnu spregu.

10. januar 2012.

- Deo izlaznog napona vraća se preko razdelnika R₃, R₄.
- Referentni napon dobijen preko D₁.
- Regulacija se postiže kontrolom struje kroz Q1.

10. januar 2012.

Prof. dr Predrag Petković

Preko Zener diode na invertujući ulaz dovodi se referentni napon.

Svaka promena izlaznog napona prenosi se preko R_3 i R_{α} na neinvertujući ulaz operacionog pojačavača.

Razlikom ovih napona kontroliše se , V_{RF} tranzistora, a time i struja kroz tranzistor I_r

10. januar 2012.

Prof. dr Predrag Petković

- R₁ je redno vezan sa potrošačem i na njemu se "ublažavaju" sve promene napona ΔV_0 .
- R_2 služi da definiše struju diode $I_0 = (V_2 V_2)/R_2$
- Na operacionom pojačavaču poredi se referentni napon V_z sa naponom iz razdelnika $(R_4 V_{os})/(R_3+R_4)$.

4.1.2 Paralelni stabilizatori - regulatori napona

Porast V_o za ΔV_o teži da izazove porast ΔV_{as} ;

tada raste V_{+} i to za

$$\Delta V_{+} = \frac{R_{4}}{R_{3} + R_{4}} \Delta V_{os} \qquad ;$$

zato raste napon na izlazu OpAmp, a time i V_{RE} ; to izaziva porast struje kroz tranzistor I. što dovodi do povećanja I. a time i do većeg pada napona na $R(RI_a)$, čime se napon V_{os} smanjuje: $V_{os} = V_o - RI_o$.

Izvori jednosmernog napajanja

Sadržaj

- 1. Uvod
- 2. Usmerači napona
 - 2.1 Jednostrano usmeravanje
 - 2.2 Dvostrano usmeravanje
 - 2.3 Umnožavažavači napona
- 4. Filtriranje usmerenog napona
- 4. Stabilizatori regulatori napona
 - 4.1 Linearni stabilizatori napona
 - 4.1.1 Stabilizatori sa Zener diodom
 - 4.1.2 Paralelni stabilizatori
 - 4.1.3 Redni stabilizatori napona
 - 4.2 Prekidački stabilizatori napona
 - 4.2.1 Spuštači napona
 - 4.2.2 Podizači napona
 - 4.2.3 Invertori

4.1.3 Redni stabilizatori - regulatori napona

$$V_{os} = V_o - V_{CE}$$

$$V_{RF} = V_{\tau} - V_{os}$$

$$I_z = (V_o - V_z)/R$$

Redni tranzistor koristi se kao izvor konstantne struje;

radi u konfiguraciji sa zajedničkom bazom, tako da mu je izlazna otpornost mala.

Sve varijacije napona V_o , kompenzuju se preko V_{CE} , pri konstantnoj struji baze.

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

$$V_{os} = V_o - V_{CE}$$

$$V_{BE} = V_z - V_{os}$$

$$I_o = I_t + I_r + I_{os}$$

Porast V_o za ΔV_o teži da izazove porast V_{os} ; usled rasta V_o raste I_z , a I_B i I_C ostaju konstantne, tako da se sprečava promena V_{os} .

4.1.3 Redni stabilizatori - regulatori napona

Ukoliko postoji težnja da se V_{os} poveća usled promena u kolu potrošača (dok se V_o ne menja)

to izaziva i smanjenje napona V_{BE} ,

što dovodi do pada I_{os} ,

čime se napon V_{os} smanjuje.

Znajući da je
$$I_B << I_z$$

$$V_B \approx \frac{R}{R + r_z} V_z + \frac{r_z}{R + r_z} V_c$$

$$V_B \approx V_z + \frac{r_z}{R} V_o$$

$$V_{os} = V_B - V_{BE}$$

$$S = \frac{\partial V_{\text{os}}}{\partial V_{\text{o}}} \approx \frac{r_z}{R};$$

Iako je izraz za S isti kao kod stabilizatora sa zener diodom, R može da bude mnogo veće, jer I_z kontroliše samo baznu struju, tako da se ostvaruje mnogo manji faktor stabilnosti

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

Model za naizmenični signal

$$R_o = \frac{\Delta V_{os}}{\Delta I_{os}}$$

$$\vec{l}_{B} = -\frac{V_{os}}{h_{11} + R||r_{z}|} \approx -\frac{V_{os}}{h_{11} + r_{z}} \approx -\frac{V_{os}}{h_{11}}$$

$$\Delta I_{os} = -(h_{21} + 1)i_{B} = -(h_{21} + 1)(-\frac{\Delta V_{os}}{h_{11}})$$

$$R_o = \frac{\Delta V_{os}}{\Delta I_{os}} \approx \frac{h_{11}}{h_{21} + 1}$$

10. januar 2012.

Prof. dr Predrag Petković

22

4.1.3 Redni stabilizatori - regulatori napona

23

$$S_{T} = \frac{\partial V_{os}}{\partial T} \approx \frac{\partial V_{z}}{\partial T} - \frac{\partial V_{BE}}{\partial T}$$

4.1.3 Redni stabilizatori - regulatori napona

Karakteristike rednog stabilizatora mogu da se poboljšaju ako se "ubrza" reagovanje rednog tranzistora

$$V_B = -A \frac{R_2}{R_1 + R_2} V_{os}$$

$$V_{BE} = V_B - V_{os} = -\left(A \frac{R_2}{R_1 + R_2} + 1\right) V_{os}$$

Praktična realizacija u diskretnoj tehnici

Promene za ΔV_{os} pojačavaju se tranzistorom T2 i prenose na ΔV_{BEI} ;

$$V_{\text{BE2}} = \frac{R_2}{R_1 + R_2} V_{os} - V_z$$

$$V_{\text{os}} = \left(V_{\text{BE2}} + V_{z}\right)\left(1 + \frac{R_{1}}{R_{2}}\right) \approx V_{z}\left(1 + \frac{R_{1}}{R_{2}}\right)$$

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

Porast V_{os} izazvaće porast V_{B2} , odnosno V_{BE2} ; tada raste I_{C2} i smanjuje se V_{C2} , tako da se smanjuje napon V_{BEI} , što dovodi do pada I_c , a time i I_p , čime se napon V_{os} smanjuje.

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

$$S_T \approx \left(\frac{\partial V_{BE2}}{\partial T} + \frac{\partial V_z}{\partial T}\right) \left(1 + \frac{R_1}{R_2}\right)$$

4.1.3 Redni stabilizatori - regulatori napona

Domaći 13.1:

Za kolo rednog stabilizatora prikazanog na slici odrediti:

- a) Izlazni napon V_{OS}
- b) Faktor stabilizacije
- c) Izlaznu otpornost R_{iz}

Poznato je: R =200 Ω ; R_P = 50 Ω ; V_O = 10V. Parametri diode su: V_Z = 6,8V; r_Z = 10 Ω . Parametri tranzistora su: V_{BE} = 0,7V; h_{11E} = 1k Ω ; h_{12E} = 0; h_{21E} = β = 100; h_{22E} = 0.•

10. januar 2012.

Domaći 13.2:

Za kolo rednog stabilizatora prikazanog na slici odrediti:

- a) Izlazni napon V_{OS}
- b) Faktor stabilizacije
- c) Izlaznu otpornost R_{iz}

Poznato je: $R_1 = R_2 = 4k\Omega$; $R_p = 2\Omega$; $R = 10k\Omega$, $V_Q = 40V$.

Parametri diode su: $V_z = 10V$; $r_z = 0\Omega$. Parametri tranzistora su:

$$V_{BE} = 0.7V$$
; $h_{11E} = 1k\Omega$; $h_{12E} = 0$; $h_{12E} = \beta = 100$; $h_{22E} = 0.$

10. januar 2012

4.1.3 Redni stabilizatori - regulatori napona

Integrisani redni stabilizatori - regulatori napona

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

Integrisani redni stabilizatori - regulatori napona

(izvesti izraz)

- Q₁ je kontrolišući element vezan redno sa potrošačem.
- Deo izlaznog napona vraća se preko razdelnika R_2 , R_3
- Referentni napon dobijen preko D₁.
- Regulacija se postiže kontrolom struje kroz Q₁.

Preko Zener diode, na neinvertujući ulaz dovodi se referentni napon: V_{τ}

Svaka promena izlaznog napona V_{os} prenosi se na invertujući ulaz operacionog pojačavača $V = R_3 V_{os}/(R_2 + R_3)$.

Razlikom ovih napona kontroliše se V_{RE} tranzistora $\{V_{\rm B}=A(V_{\rm z}-V_{\rm z})\}$, a time i struja kroz tranzistor $I_{\rm t}$.

Prof. dr Predrag Petković

$$V_{\text{os}} \cong \left(1 + \frac{R_2}{R_3}\right) V_{\mathbf{Z}}$$

- R_I služi da definiše struju diode $I_D = (V_o V_z)/R_1$
- Na operacionom pojačavaču poredi se referentni napon V_z sa naponom iz razdelnika:

$$V_{-} = \frac{R_3}{R_2 + R_3} V_{\text{os}}$$

10. januar 2012.

Prof. dr Predrag Petković

33

4.1.3 Redni stabilizatori - regulatori napona

Porast V_o za ΔV_o teži da izazove porast ΔV_{os} ;

tada raste V_{i} i to za

$$\Delta V_{-} = \frac{R_3}{R_2 + R_3} \Delta V_{\text{os}} \qquad ;$$

zato opada napon na izlazu OpAmp,

a onda se smanjuje V_{BE} ;

to izaziva smanjenje struje kroz tranzistor I_{t} ,

što dovodi do smanjenja I_P ,

čime se napon V_{os} smanjuje: $V_{os} = R_p I_p$.

10. januar 2012.

Prof. dr Predrag Petković

34

4.1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

Tranzistor Q2 počinje \sim da vodi tek kada je V_o pad napona na R4 dovoljno veliki.

Kada provede Q2, proteče I_{C2} i smanjuje se I_{BI} , a tada se smanjuje i struja I_{CI} , a time i struja potrošača I_n

Maksimalna vrednost struje potrošača ograničena je na

$$I_{P(max)} = 0.7V/R_4$$

4.1.3 Redni stabilizatori - regulatori napona

Električna šema integrisanog rednog stabilizatora

NIC 7800C

Referentni napon

Karakteristike integrisanih stabilizatora

- Jednostavna upotreba
- · Pakuju se u standardnim kućištima
- TO-3 (20 W)

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

Karakteristike integrisanih stabilizatora

- · Pakuju se u standardnim kućištima
- TO-220 (15 W)

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

Karakteristike integrisanih stabilizatora

- Pakuju se u standardnim kućištima
- TO-92 (1 W)

4.1.3 Redni stabilizatori - regulatori napona

Karakteristike integrisanih stabilizatora

- serije 78/79XX stabilizatora prave se obično za izlazne napone od 5, 6, 8, 12, 15, 18, ili 24 V
- Maksimalna struja 0,1A; 1A; 2A; 3A
- Ugrađena zaštita od pregrevanja
- Pad napona na stabilizatoru od 3V (prave se i za manje napone – LDO Low DropOut < 1V)

10. januar 2012. Prof. dr Predrag Petković 10. januar 2012. Prof. dr Predrag Petković

Karakteristike integrisanih stabilizatora

Type number	Output voltage
7805	+5.0 V
7806	+6.0 V
7808	+8.0 V
7809	+9.0 V
7812	+12.0 V
7815	+15.0 V
7818	+18.0 V
7824	+24.0 V

(b) The 7800 series

10. januar 2012.

Prof. dr Predrag Petković

41

4.1.3 Redni stabilizatori - regulatori napona

Karakteristike integrisanih stabilizatora

TO-220

T SUFFIX

CASE 221A

Heatsink surface

connected to Pin 2.

(c) Typical packages

Output voltage
-5.0 V
-5.2 V
-6.0 V
-8.0 V
-12.0 V
-15.0 V
-18.0 V
-24.0 V

(b) The 7900 series

10. januar 2012. Prof. dr Predrag Petković

42

4.1.3 Redni stabilizatori - regulatori napona

43

- C_1 služi da neutrališe parazitne induktivnosti
- C_2 smanjuje šum (filtrira).

4.1.3 Redni stabilizatori - regulatori napona

Realizacija simetričnog napajanja uz pomoć integrisanih stabilizatora

10. januar 2012. Prof. dr Predrag Petković

10. januar 2012. Prof. dr Predrag Petković

Povećanje struje potrošača

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

Povećanje struje potrošača

10. januar 2012.

Prof. dr Predrag Petković

46

4.1.3 Redni stabilizatori - regulatori napona

Povećanje struje potrošača

- Q_{ext} počinje da vodi kada je $V_{Rext} > 0.7 \text{ V}$.
- vrednost R_{ext} bira se tako da je $I_{Rext} = I_{max} \approx 0.1 \text{ A}$ (najveća struja kroz IC).
- Disipacija na Q_{ext} je $P = (V_o V_{os})I_{ext}$.

4.1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

• Q_{lim} služi za zaštitu od kratkog spoja.

10. januar 2012.

Prof. dr Predrag Petković

10. januar 2012.

Zaštita od kratkog spoja

• Q_{lim} počinje da vodi pri , $V_{Rlim} > 0.7 V$.

10. januar 2012.

Prof. dr Predrag Petković

49

4.1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

- Cilj je da Q_{lim} počne da vodi tek kada struja kroz Q_{ext} premaši maksimalnu dozvoljenu vrednost.
- Tada se struja kroz Q_{ext} smanjuje i usmerava 10 kroz stabilizator. Prof. dr Predrag Petković

50

4.1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

- Stabilizator ima internu zaštitu od pregrevanja
- Maksimalni V_{CElim} < 1.4 V.

4.1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

10. januar 2012.

Prof. dr Predrag Petković

10. januar 2012.

Zaštita od kratkog spoja

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

Zaštita od kratkog spoja

10. januar 2012.

Prof. dr Predrag Petković

4.1.3 Redni stabilizatori - regulatori napona

Povećanje izlaznog napona na potrošaču

• R₁ se bira tako da je $R_1 \approx 0.1 \ V_{ref}/I_0$, gde je I_O mirna struja stabilizatora (neopterećenog). 10. januar 2012 Prof. dr Predrag Petković

• V_{as} može da bude i veći od nominalnog napona stabilizatora

$$V_{\text{os}} = V_{\text{ref}} + \left(\frac{V_{\text{ref}}}{\mathbf{R}_{1}} + \mathbf{I}_{\mathbf{Q}}\right) \mathbf{R}_{2}$$

odnosno

$$\mathbf{R}_2 = \frac{\mathbf{R}_1(V_{\text{os}} - V_{\text{ref}})}{V_{\text{ref}} + \mathbf{I}_{\mathbf{Q}}\mathbf{R}_1}$$

4.1.3 Redni stabilizatori - regulatori napona

Stabilizatori - regulatori napona promenljivog napona

- Moguće je realizovati stabilizator promenljivog napona ako se R_2 zameni potenciometrom. Međutim:
 - Minialni izlazni napon je V_{ref} (a ne 0 V).
 - I_O je relativno veliko.
 - Disipacija na R, može da bude velika tako da zahteva glomazan potenciometar.
- Postoji više tipova IC stabilizatora namenjenih za promenljive napone n.p.r. LM317 (za pozitivne) ili LM 337 (za negativne napone).

10. januar 2012.

Između OUT i ADJ pinova postoji referentni napon od V_{ref} =1.25V (na R_I =100-240 Ω)

10. januar 2012.

Prof. dr Predrag Petković

57

4.1.3 Redni stabilizatori - regulatori napona

Izborom R, moguća regulacija u opsegu 1.25V-30V

$$V_{\rm os} = V_{\rm ref} + \left(\frac{V_{\rm ref}}{\mathbf{R}_{\rm 1}} + \mathbf{I}_{\rm adj}\right) \! \mathbf{R}_{\rm 2}$$

 $I_{adj} = 50 \mu A$

10. januar 2012.

Prof. dr Predrag Petković

58

4.1.3 Redni stabilizatori - regulatori napona

59

Kondenzator C₂ smanjuje šumove (10µF)

4.1.3 Redni stabilizatori - regulatori napona

D₁ i D₂ štite kolo od prenapona u primenama sa većim strujama i naponima

60

Izvori jednosmernog napajanja

Sadržaj

- 1. Uvod
- 2. Usmerači napona
 - 2.1 Jednostrano usmeravanje
 - 2.2 Dvostrano usmeravanje
 - 2.3 Umnožavažavači napona
- 4. Filtriranje usmerenog napona
- 4. Stabilizatori regulatori napona
 - 4.1 Linearni stabilizatori napona
 - 4.1.1 Stabilizatori sa Zener diodom
 - 4.1.2 Paralelni stabilizatori
 - 4.1.3 Redni stabilizatori napona
 - 4.2 Prekidački stabilizatori napona
 - 4.2.1 Spuštači napona
 - 4.2.2 Podizači napona
 - 4.2.3 Invertori

4.2 Prekidački stabilizatori - regulatori napona

- Kontrolišući element (tranzistor) radi u prekidačkom režimu tako da je disipacija na njemu mala
- Kada je tranzistor zakočen I_C =0A, a kada vodi, onda radi u zasićenju sa V_{CE} = V_{CES} \approx 0.2V).

10. januar 2012.

Prof. dr Predrag Petković

62

4.2. Prekidački stabilizatori - regulatori napona

61

Prednosti

- Bar dva puta efikasniji od linearnih, stepen iskorišćenja 70%-90%.
- Idealni su za primene u kojima se traže velike struje (zbog male disipacije).
- Izlazni napon može biti i veći od ulaznog
- Mogu da invertuju ulazni napon $(V_{os}=-kV_{o})$
- Realizacija ne zahteva glomazne komponente.

4.2. Prekidački stabilizatori - regulatori napona

Nedostaci

- · Znatno su složeniji.
- · Unose VF šum.
- Problemi sa EMC
- · "Zagađuju" mrežni napon harmonicima

4.2. Prekidački stabilizatori - regulatori napona

- Mogu da se realizuju kao
 - spuštači napona V_{os}<V_o (Step-Down)
 - podizači napona V_{os}>V_o (Step-Up, boost)
 - invertori napona V_{os}=-V_o (Inverter, fly-back; podizači/spuštači)

10. januar 2012.

Prof. dr Predrag Petković

4.2. Prekidački stabilizatori - regulatori napona

4.2.1 Spuštači napona V_{os} pulse-width oscillator

- · Operacioni pojačavač radi kao komparator.
- Referentni napon obezbeđuje D_z.
- Razdelnik R_2 i R_3 definiše izlazni napon u odnosu na V_* .

10. januar 2012.

Prof. dr Predrag Petković

4.2.1 Spuštači napona

- R_1 služi da polariše D_2 .
- L i C čine filtar.
- D_1 sprečava da napon na emitoru bude $V_E < 0$.

4.2.1 Spuštači napona

• Kada je $V_{R3} < V_z$, izlaz OP je u pozitivnom zasićenju (+ V_{CC}) i tranzistor vodi, a D1 zakočena.

10. januar 2012.

Prof. dr Predrag Petković

10. januar 2012.

4.2.1 Spuštači napona

•Kada je V_{R3} > V_z , izlaz OP je u negativnom zasićenju $(-V_{CC})$ i tranzistor je zakočen, kondenzator se prazni. Kada D1 provede, kroz kalem se dopunjuje C.

10. januar 2012.

Prof. dr Predrag Petković

4.2.1 Spuštač napona

• Napon na emitoru biće

 $V_E = V_o - V_{CES} \approx V_o$ kada tranzistor radi u zasićenju

 V_{DI} =0, kada tranzistor ne vodi.

10. januar 2012.

Prof. dr Predrag Petković

70

4.2.1 Spuštač napona

71

• Struja kroz kalem nastavlja da teče i kada tranzistor prestane da vodi, jer D1 provede i dopunjuje *C*.

10. januar 2012.

ili

4.2.1 Spuštač napona

• Napon na izlazu nalazi se u granicama $V_{ref} \pm v_u$

4.2.1 Spuštač napona

4.2.1 Spuštač napona

10. januar 2012.

Prof. dr Predrag Petković

73

10. januar 2012.

Prof. dr Predrag Petković

74

4.2.1 Spuštač napona

75

4.2.1 Spuštač napona

4.2.1 Spuštač napona

(a) $V_{\rm OUT}$ depends on the duty cycle.

(b) Increase the duty cycle and $V_{\rm OUT}$ increases.

10. januar 20 (c) Decrease the duty cycle and $V_{\rm OUT}$ decreases.

4.2.1 Spuštač napona

$$V_{os} = \frac{t_{on}}{T} V_{o} < V_{o}$$

10. januar 2012.

Prof. dr Predrag Petković

78

Izvori jednosmernog napajanja

79

77

Sadržaj

- 1. Uvod
- 2. Usmerači napona
 - 2.1 Jednostrano usmeravanje
 - 2.2 Dvostrano usmeravanje
 - 2.3 Umnožavažavači napona
- 4. Filtriranje usmerenog napona
- 4. Stabilizatori regulatori napona
 - 4.1 Linearni stabilizatori napona
 - 4.1.1 Stabilizatori sa Zener diodom
 - 4.1.2 Paralelni stabilizatori
 - 4.1.3 Redni stabilizatori napona
 - 4.2 Prekidački stabilizatori napona
 - 4.2.1 Spuštači napona
 - 4.2.2 Podizači napona
 - 4.2.3 Invertori

4.2 Prekidački stabilizatori - regulatori napona

4.2.2 Podizači napona

- Napon na izlazu veći je od ulaznog napona za V_L.
- Osnovna razlika odnosi se na funkciju Q1 i L.

10. januar 2012. Prof. dr Predrag Petković

4.2.2 Podizači napona

• Kada Q₁vodi (u zasićenju) => D₁ je zakočena.

$$v_L = L \frac{di_L}{dt}$$
 \Rightarrow $i_L = \frac{1}{L} \int (V_o - V_{CES}) \cdot dt = \frac{(V_o - V_{CES})}{L} t$

$$V_L \approx V_o \cdot \frac{t_{on}}{T}$$
10. januar 2012.

Prof. dr Predrag Petković

• Kada je Q_1 zakočen => D_1 vodi,

energija se iz L prenosi u C.

• Napon na C veći je za V_L od ulaznog napona.

10. januar 2012.

Prof. dr Predrag Petković

82

4.2.2 Podizači napona

81

• Napon na C:

$$V_{os} = \frac{V_{o}}{1 - \frac{t_{on}}{T}} > V_{o}$$

Izvori jednosmernog napajanja

Sadržaj

- 1. Uvod
- 2. Usmerači napona
 - 2.1 Jednostrano usmeravanje
 - 2.2 Dvostrano usmeravanje
 - 2.3 Umnožavažavači napona
- 4. Filtriranje usmerenog napona
- 4. Stabilizatori regulatori napona
 - 4.1 Linearni stabilizatori napona
 - 4.1.1 Stabilizatori sa Zener diodom
 - 4.1.2 Paralelni stabilizatori
 - 4.1.3 Redni stabilizatori napona
 - 4.2 Prekidački stabilizatori napona
 - 4.2.1 Spuštači napona
 - 4.2.2 Podizači napona
 - 4.2.3 Invertori

4.2 Prekidački stabilizatori - regulatori napona

4.2.3 Invertori napona

• Izlazni napon ima suprotan polaritet od ulaznog

10. januar 2012.

Prof. dr Predrag Petković

- Kada Q₁ vodi,
- D1 je inverzno polarisana
- napon na kalemu jednak je ulaznom naponu (umanjenom za V_{CES}),
- •napon na C zadržava vrednost (sporo se prazni kroz R_L)

10. januar 2012.

Prof. dr Predrag Petković

- Kada je Q₁ zakočen,
- napon na L menja polaritet,
- D₁ vodi,
- C se preko r_d puni na $V_L = V_{os}$

• manji ,
$$(t_{on}/T) < 0.5$$

• veći,
$$(t_{on}/T)>0.5$$
 ili

$$V_{os} = -\frac{\binom{t_{on}}{T}}{1 - \binom{t_{on}}{T}}V_{os}$$

• jednak ulaznom naponu, $(t_{on}/T)=0.5$

10. januar 2012.

Prof. dr Predrag Petković

10. januar 2012.

Integrisani stabilizatori - regulatori napona napona **Zaključak**

Stabilizatori - regulatori napona napona

- Obezbeđuju konstantni DC napon na izlazu, nezavisno od promena napona na ulazu i struje kroz potrošač.
- Osnovni tipovi stabilizatora su linearni i prekidački
- Linearni se realizuju kao redni i paralelni
- Prekidački mogu biti spuštači, podizači ili invertori napona

10. januar 2012.

Prof. dr Predrag Petković

90

Integrisani stabilizatori - regulatori napona napona

Zaključak

- Prekidački stabilizatori regulatori napona znatno su efikasniji od linearnih i pogodni za primene koje zahtevaju veće struje
- Prekidački i linearni stabilizatori-regulatori napona realizuju se u integrisanoj tehnici
- Postoje *integrisani* stabilizatori regulatori napona za *fiksne* i *promenljive* <u>pozitivne</u> ili <u>negativne</u> napone
- Mogućnosti integrisanih stabilizatora mogu da se prošire ubacivanjem spoljašnjih tranzistora.

10. januar 2012.

Prof. dr Predrag Petković

Pretvarači jednosmernog u jednosmerni napon (DC to DC converter) mogu se realizovati na istim principima kao prekidački stabilizatori - regulatori napona.

Više o ovoj temi na kursu "Energetska elektronika"

Šta smo naučili?

- Uporediti karakteristike linearnih i prekidačkih stabilizatora (regulatora) napona.
 - Skicirati el. šemu stabilizatora sa rednim tranzistorom i objasniti kako se ostvaruje stabilizacija (regulacija) napona..
 - Skicirati osnovnu el. šemu stabilizatora (regulatora) napona realizovanog sa integrisanim stabilizatorom 78XX
 - Osnovna blok šema i klasifikacija prekidačkih stabilizatora (regulatora) napona.

10. januar 2012. Prof. dr Predrag Petković 10. januar 2012. Iyvori jednosmernog napajanja 2 92

Ispitna pitanja

3.00

- 2. Princip rada i faktor stabilizacije rednog stabilizatora (regulatora) napona.
- 3. Blok šema i princip rada integrisanog rednog stabilizatora (regulatora) napona.
- 4. Princip povećanja struje potrošača kod integrisanog stabilizatora (regulatora) napona.
- 5. Princip zaštite integrisnih stabilizatora (regulatora) napona od kratkog spoja.
- 6. Električna šema realizacije simetričnog napajanja na osnovu integrisanih stabilizatora (regulatora) napona 78XX i 79XX.
- 7. Princip rada prekidačkih stabilizatora/regulatora spuštača napona.
- 8. Princip rada prekidačkih stabilizatora/regulatora podizača napona.
- 9. Princip rada prekidačkih stabilizatora/regulatora invertora napona.

10. januar 2012.

Iyvori jednosmernog napajanja 2

93

93

94

Sledi:

- -Šumovi
- -Rekapitulacija (pitanja/odgovori)

10. januar 2012.

Prof. dr Predrag Petković

Rešenje 12.1:

4. Filtriranje usmerenog napona

Potrošač $R=100\Omega$ priključen je preko usmerača sa Grecovim spojem na naizmenični napon frekvencije 50Hz i amplitude 12V. Ako je pad napona na diodama V_d =0.8V odrediti:

- a) vrednost C kapacitivnog filtra priključenog paralelno potrošaču koja će obezbediti odstupanje napona $\Delta V < 1V$;
- b) vrednost jednosmernog napona na potrošaču;
- c) vrednost jednosmerne struje kroz potrošač;

a)
$$\Delta V_0 = \frac{V_m - 2V_d}{2 \cdot f \cdot R \cdot C} \Rightarrow C = \frac{V_m - 2V_d}{2 \cdot f \cdot R \cdot \Delta V_0} = \frac{12 - 1.6}{2 \cdot 50 \cdot 100 \cdot 1} = 1.04 \text{mF}$$

b)
$$V_0 = \frac{V_m'}{\left(1 + \frac{\pi}{\omega RC}\right)} = \frac{\left(V_m - 2V_d\right)}{\left(1 + \frac{1}{2fRC}\right)} = \frac{10.4}{\left(1 + \frac{1}{2 \cdot 50 Hz \cdot 100\Omega \cdot 1.04 mF}\right)} =$$

$$V_0 = (V_m - 2V_d) - \frac{\Delta V_0}{2} = 12 - 1,6 - 1 = 9,4V$$

c)
$$I_0 = \frac{V_0}{R} = 94mA$$

Rešenje 12.2:

4. Filtriranje usmerenog napona

Za usmerač sa kapacitivnim filtrom iz prethodnog primera odrediti:

- ugao provođenja diode i iskazati ga u % u odnosu na periodu ulaznog signala (50Hz);
- b) srednju struju kroz diodu;
- c) maksimalnu struju kroz diodu;
- d) maksimalni inverzni napon na diodi;
- e) predložiti tip diode koji se može primeniti za ovu namenu

a)
$$\omega \Delta t \approx \sqrt{2\Delta V/V_{\mathbf{m}}'} \Rightarrow \Delta t = \frac{\sqrt{2\Delta V/V_{\mathbf{m}}'}}{\omega} = \frac{\sqrt{2\Delta V/V_{\mathbf{m}}'}}{2\pi} T$$

$$\frac{\Delta t}{T} = \frac{\sqrt{2\Delta V/(V_{\mathbf{m}} - 2V_{\mathbf{d}})}}{2\pi} \cdot 100 = \frac{\sqrt{2 \cdot 1/10.4}}{2 \cdot 3.14} \cdot 100 = 5.9\%$$

T
$$2\pi$$
 2·3,14
b) $I_D \approx I_o \left(1 + \pi \sqrt{\frac{V_{m'}}{2\Delta I V}} \right) = I_o \left(1 + \pi \sqrt{\frac{(V_m - 2V_d)}{2\Delta I V}} \right) = 94mA \cdot 7,16 = 6734mA$

c)
$$I_{D\max} \approx I_o \left(1 + 2\pi \sqrt{\frac{V_m'}{2\Delta V}} \right) = I_o \left(1 + 2\pi \sqrt{\frac{(V_m - 2V_d)}{2\Delta V}} \right) = 94mA \cdot 15,33 = 1,53A$$

10. januar 2012.

Izvori jednosmernog napajanja

Rešenje 12.2:

4. Filtriranje usmerenog napona

Za usmerač sa kapacitivnim filtrom iz prethodnog primera odrediti:

- a) ugao provođenja diode i iskazati ga u % u odnosu na periodu ulaznog signala (50Hz);
- b) srednju struju kroz diodu;
- c) maksimalnu struju kroz diodu;
- d) maksimalni inverzni napon na diodi;
- e) predložiti tip diode koji se može primeniti za ovu namenu

d)
$$-V_{d \max} = \frac{V_m - 2V_d - (-V_m)}{2} = \frac{2V_m - 2V_d}{2} = V_m - V_d = 11,2V > 12V$$

e)
$$P_d = V_d I_D = 0.8V \cdot 673.4 mA = 538.7 mW$$

Videti: pod Silicon Rectifier Diodes na

http://www.fagorelectronica.com/semi/pdf/producto/1n4000.pdf

1N4001 zadovoljava jer je

Peak recurrent reverse voltage (V) $V_{RRM}=30V > 12V$

Forward current at $T_{amb} = 75^{\circ}C$ $I_{F(AV)} = 1A > 0,673A$

Recurrent peak forward current $I_{FRM} = 10A > 1,53A$

Rešenje 12.3: 4.1.1 Stabilizatori - regulatori napona sa Zener diodom Odrediti R i C u stabilizatoru sa slike tako da jednosmerni napon na potrošaču $R_{\rm pmin}=200\Omega$ bude 5V, a $\Delta V_{\rm Cmax}=0.5$ V. Upotrebiti zener diodu 1N5231B iz Tabele 1. Usvojiti da je efektivna vrednost napona na izlazu transformatora 2x12V i da je na diodama 1N4148 pad napona $V_D=0.7$ V kada vode.

10. januar 2012.

Izvori jednosmernog napajanja

98