Data Mining

Study Assignment Set #2

Prepared by: P V S Maruthi Rao | pvsmaruthirao@wilp.bits-pilani.ac.in

Reference Books:

Introduction to Data Mining by Tan P. N., Steinbach M and Kumar V. Pearson Education, 2006

Data Mining: Concepts and Techniques, Second Edition by Jiawei Han and Micheline Kamber

Morgan Kaufmann Publishers, 2006

Topic: Classification of Data, Decision Trees, Information Gain

Below is the generic algorithm to generate a decision tree. It results in a decision tree with nodes split on a certain criterion.

```
Node Generate_decision_tree (Dj, attribute_list) {
```

- 1. Create a Node N
- 2. if tuple in D are all of the same class, C, then $\ \ \,$
- 3. return N as a leaf node labelled with the class C;
- 4. if attribute_list is empty then
 - // majority voting
- 5. return N as a leaf node labelled with the majority class in D;
- 6. apply **Attribute_selection_method** (D, attribute_list) to find the best splitting criterion;
- 7. label node N with splitting_criterion;
- 8. if splitting_attribute is discrete-valued and
 multiway splits allowed then // not restricted to binary trees
 // remove splitting attribute

```
attribute list <- attribute list - splitting attribute;
10.
     for each outcome j of splitting criterion
     // partition the tuples and grow subtrees for each partition
11.
     let Dj be the set of data tuples in D satisfying outcome j; // a
     partition
12.
        if Dj is empty then
13.
           attach a leaf labeled with the majority class in D to node N;
        else attach the node returned by Generate_decision_tree (Dj,
14.
     attribute_list) to node N;
    endfor
15.
     return N;
```

Questions:

Q	What are popular attribute selection methods for the above decision tree generati			
	algorithm?			

А	Information Gain	В	Gain Ratio
С	Gini Index	D	All of the above.

Answer	D
Remarks	

Classification of Data Question 2

Learning objectives:

- Basics of statistical learning with Decision Trees.
- Generating Decision Tree (Refer to Question #1)
- Understanding the concept of Entropy.

Basics of statistical learning learning with Decision Trees:

Use of Information Gain for attribute selection.

- Attribute with highest information gain is chosen as the splitting attribute for a node N
- This attribute minimizes the information needed to classify the tuples in the resulting partitions and reflects the least randomness or "impurity" in these partitions.

Entropy:

The expected information needed to classify a tuple in D is given by

$$Info(D) = -\sum_{i=1}^{m} p_i log_2(p_i)$$

D: Training Data

m: Distinct values of the class label attribute.

 p_i : non-zero probability that an **attribute tuple** in D belongs to a **class Y**_i and is estimated by $|Y_i, D| / |D|$

**
$$P(Y_i | D) = P(Y_i, D) / P(D) = |Y_i, D| / |D| **$$

[Some use C_i for class.]

Example:

An online computer store uses a Decision Tree classifier with 'Info Gain' as a method of attribute selection method.

Let X is a set of attributes of the registered user.

X = {id, age, income, student, credit_rating}

Let Y is the class variable

Y = buys_computer = {yes, no}

The **training dataset**, D, is as below.

id	age	income	student	credit_rating	buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Questions:

A Find Info (D) (Entropy of the D) for the class label attribute, Y = buys_computer = {yes, no}.

Answers:

A D has a total 14 tuples (training data).

m: Distinct values of the class label attribute = 2. buys_computer has two distinct value {yes, no}.

p(buys_computer = yes \mid D) = 9/14

p(buys_computer = no $\mid D$) = 5/14

$$Info(D) = -\sum_{i=1}^{m} p_i log_2(p_i)$$

Info (D) = $-9/14 \log_2 (9/14) - 5/14 \log_2 (5/14)$ = **0.940 bits**.

It is also known as Entropy of D.

MCQ:

Α	В	
С	D	

Answer	
Remarks	

Classification of Data Question 3

Learning objectives:

- Basics of statistical learning with Decision Trees.
- Generating Decision Tree (Refer to Question #1)
- Understanding the concept of Entropy. (Refer to Question #2)
- Understanding attribute selection ('Info Gain').

Basics of statistical learning learning with Decision Trees:

Use of Information Gain for attribute selection.

- Attribute with highest information gain is chosen as the splitting attribute for a node N
- This attribute minimizes the information needed to classify the tuples in the resulting partitions and reflects the least randomness or "impurity" in these partitions.

Entropy:

The expected information needed to classify a tuple in D is given by

$$Info(D) = -\sum_{i=1}^{m} p_i log_2(p_i)$$

D: Training Data

m: Distinct values of the class label attribute.

 p_i : non-zero probability that an **attribute tuple** in D belongs to a **class Y**_i and is estimated by $|Y_i, D| / |D|$

**
$$P(Y_i | D) = P(Y_i, D) / P(D) = |Y_i, D| / |D| **$$

[Some use C_i for class.]

Usually, Info (D) is the entropy of the Root node. Our objective is to find an appropriate 'attribute' to perform a split on D.

How much more information would we still need (after partitioning) to arrive at an exact classification? Measure $Info_A(D)$ for attribute A as below.

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

 $Info_A(D)$ is the expected information required to classify a tuple from D based on the partition by the attribute A. The smaller the information (still) required, the greater the purity of the partition.

Gain (A) = Info (D) - $Info_A(D)$

Gain (A) is an indication of how much would be gained by branching on A (attribute A).

** Branch on the attribute that gives highest gain **

Example:

An online computer store uses a Decision Tree classifier with 'Info Gain' as a method of attribute selection method.

Let X is a set of attributes of the registered user.

X = {id, age, income, student, credit_rating}

Let Y is the class variable

Y = buys_computer = {yes, no}

The **training dataset**. D. is as below

1110 110	e training dataset, D, is as below.				
id	age	income	student	credit_rating	buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes

8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Questions:

4					
А	Find Info (D) (Entropy of the D) for the class label attribute, Y = buys_computer = {yes, no}.				
В	Find Info _{age} (D), Gain (age)				
С	Find Info _{income} (D), Gain (income)				
D	Find Info _{student} (D), Gain (student)				
Е	Find Info _{credit_rating} (D), Gain (credit_rating)				

Answers:

A D has a total 14 tuples (training data).

m: Distinct values of the class label attribute = 2. buys_computer has two distinct value {yes, no}.

p(buys_computer = yes \mid D) = 9/14

p(buys_computer = no | D) = 5/14

$$Info(D) = -\sum_{i=1}^{m} p_i log_2(p_i)$$

Info (D) = $-9/14 \log_2 (9/14) - 5/14 \log_2 (5/14)$

= 0.940 bits.

It is also known as Entropy of D.

B Find Info_{age}(D), Gain (age)

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

Attribute age = {youth, middle_aged, senior}. So, if we split D on age, then it will partition D into 3 partitions. Therefore v = 3.

$$\begin{split} Info_{age} &= \frac{|D_{youth}|}{|D|} \times Info(D_{youth}) \; + \\ &\frac{|D_{middle_aged}|}{|D|} \times Info(D_{middle_aged}) \; + \\ &\frac{|D_{senior}|}{|D|} \times Info(D_{senior}) \end{split}$$

Calculating Info(D_{vouth}) ----- (1)

D_{vouth} has a total 5 tuples (training data).

m: Distinct values of the class label attribute = 2. buys_computer has two distinct value {yes, no}.

p(buys_computer = yes | D_{vouth}) = 2/5

p(buys_computer = no $|D_{vouth}| = 3/5$

Info $(D_{\text{vouth}}) = -2/5 \log_2 (2/5) - 3/5 \log_2 (3/5)$ bits

Calculating Info(D_{middle aged}) ----- (2)

 $D_{\text{middle_aged}}$ has a total 4 tuples (training data).

m: Distinct values of the class label attribute = 2. buys_computer has two distinct value {yes, no}.

p(buys_computer = yes | D_{middle_aged}) = 4/4

p(buys_computer = no $|D_{middle aged}) = 0$

Info ($D_{\text{middle aged}}$) = -4/4 \log_2 (4/4) bits

Calculating Info(D_{senior}) ----- (3)

D_{senior} has a total 5 tuples (training data).

m: Distinct values of the class label attribute = 2. buys_computer has two distinct value {yes, no}.

p(buys_computer = yes $\mid D_{senior}$) = 3/5

p(buys_computer = no $|D_{senior}| = 2/5$

Info $(D_{\text{middle aged}}) = -3/5 \log_2 (3/5) - 2/5 \log_2 (2/5)$ bits

Gain (age) = Info (D) - Info (D_{age}) = 0.246 bits.

C Please do the numerical calculation of Gain (income).

$$Info_{income} \ = \ \frac{|D_{high}|}{|D|} \times Info(D_{high}) \ + \ \frac{|D_{medium}|}{|D|} \times Info(D_{medium}) \ + \frac{|D_{low}|}{|D|} \times Info(D_{low})$$

D Please do the numerical calculation of Gain (student).

$$Info_{student} = \frac{|D_{yes}|}{|D|} \times Info(D_{yes}) + \frac{|D_{no}|}{|D|} \times Info(D_{no})$$

E Please do the numerical calculation of Gain (credit_rating).

$$Info_{credit_rating} = \frac{|D_{fair}|}{|D|} \times Info(D_{fair}) + \frac{|D_{excellent}|}{|D|} \times Info(D_{excellent})$$

MCQ:

С	D	
Answer		
Remarks		