Enoncés: M. Quéffelec, V. Mayer

Corrections: A. Bodin

Continuité

Applications continues

Exercice 1

Soit *X* un espace topologique et $f: X \to \mathbb{R}$.

- 1. Montrer que f est continue si et seulement si pour tout $\lambda \in \mathbb{R}$, les ensembles $\{x \; ; \; f(x) < \lambda\}$ et $\{x \; ; \; f(x) > \lambda\}$ sont des ouverts de X.
- 2. Montrer que si f est continue, pour tout ω ouvert de \mathbb{R} , $f^{-1}(\omega)$ est un F_{σ} ouvert de X (F_{σ} = réunion dénombrable de fermés).

Indication ▼ Correction ▼ [002353

Exercice 2

- 1. Soit C l'espace des fonctions continues réelles sur [0,1] muni de la métrique $d_1(f,g) = \int_0^1 |f-g| \ dx$, puis de la métrique $d_{\infty}(f,g) = \sup_x |f(x) g(x)|$. Vérifier que l'application $f \to \int_0^1 |f| \ dx$ de C dans $\mathbb R$ est 1-lipschitzienne dans les deux cas.
- 2. Soit c l'espace des suites réelles convergentes, muni de la métrique $d(x,y) = \sup_n |x(n) y(n)|$. Si on désigne par $\ell(x)$ la limite de la suite x, montrer que ℓ est une application continue de c dans \mathbb{R} . En déduire que c_0 est fermé dans c.

Indication ▼ Correction ▼ [002354]

Exercice 3

Soit f, g deux applications continues de X dans Y, espaces topologiques, Y étant séparé. Montrer que $\{f = g\}$ est fermé dans X; en déduire que si f et g coïncident sur une partie dense de X, alors f = g.

Indication ▼ Correction ▼ [002355]

Exercice 4

Une application de *X* dans *Y* est dite *ouverte* si l'image de tout ouvert de *X* est un ouvert de *Y* ; *fermée* si l'image de tout fermé de *X* est un fermé de *Y*.

- 1. Montrer qu'une fonction polynomiale de \mathbb{R} dans \mathbb{R} est une application fermée.
- 2. Montrer que l'application $(x, y) \in X \times Y \to x \in X$ est ouverte mais pas nécessairement fermée (considérer l'hyperbole équilatère de \mathbb{R}^2).
- 3. Montrer que la fonction indicatrice de l'intervalle $[0, \frac{1}{2}]$, comme application de \mathbb{R} dans $\{0, 1\}$, est surjective, ouverte, fermée, mais pas continue.
- 4. Montrer que toute application ouverte de \mathbb{R} dans \mathbb{R} est monotone.

Indication ▼ Correction ▼ [002356]

Exercice 5

- 1. Montrer que f est continue si et seulement si $f(\overline{A}) \subset \overline{f(A)}$ pour tout A dans X. Que peut-on dire alors de l'image par f d'un ensemble dense dans X?
- 2. Montrer que f est fermée si et seulement si $\overline{f(A)} \subset f(\overline{A})$, et que f est ouverte si et seulement si $f(A) \subset f(A)$.

Indication ▼ Correction ▼ [002357]

Applications uniformément continues

Exercice 6

- 1. Soit f une fonction réelle continue sur [0,1]; montrer que f est "presque lipschitzienne" au sens : $\forall \varepsilon > 0 \ \exists C_{\varepsilon} \ ; \ \forall x,y \in [0,1] \quad |f(x)-f(y)| \le C_{\varepsilon}|x-y| + \varepsilon.$
- 2. Montrer qu'une fonction f uniformément continue de \mathbb{R} dans \mathbb{R} vérifie pour tout $x \in \mathbb{R}$, $|f(x)| \le a|x| + b$ où a et b sont des constantes.

[002358]

Exercice 7

Soit f une fonction continue de]0,1[dans \mathbb{R} . Montrer que, si f est uniformément continue, elle est bornée. Réciproque?

Exercice 8

Soit f une fonction uniformément continue sur \mathbb{R} telle que $\int_0^\infty f(t)dt$ converge. Montrer que f tend vers 0 quand $x \to +\infty$. Retrouver ainsi le fait que la fonction $\sin(x^2)$ n'est pas uniformément continue.

Indication ▼ Correction ▼ [002360]

Applications linéaires bornées

Exercice 9

Soient E_1, E_2 et F des espaces normés sur \mathbb{R} et soit $B: E_1 \times E_2 \to F$ une application bilinéaire. Montrer que B est continue si et seulement s'il existe M > 0 tel que

 $||B(x)|| \le M||x_1|| ||x_2||$ pour tout $x = (x_1, x_2) \in E_1 \times E_2$.

Indication ▼ Correction ▼ [002361]

Exercice 10

Soient E et F deux espaces normés et $L: E \to F$ une application linéaire vérifiant : $(L(x_n))_n$ est bornée dans F pour toute suite $(x_n)_n$ de E tendant vers $0 \in E$. Montrer que L est continue.

Indication ▼ Correction ▼ [002362]

Exercice 11

Soient E et F deux espaces normés réels et $f: E \to F$ une application bornée sur la boule unité de E et vérifiant

$$f(x+y) = f(x) + f(y)$$
 pour tout $x, y \in E$.

Montrer que f est linéaire continue.

Indication ▼ Correction ▼ [002363]

Exercice 12

Calculer la norme des opérateurs suivants :

- Le shift sur l^{∞} défini par $S(x)_{n+1} = x_n$, $S(x)_0 = 0$.
- $-X = \mathscr{C}([0,1])$ muni de la norme $\|.\|_{\infty}$ et Tf(x) = f(x)g(x) où $g \in X$.

Calculer la norme des formes linéaires suivantes :

- $-X = \mathscr{C}([0,1])$ muni de la norme $\|.\|_{\infty}$ et $u(f) = \int_0^1 f(x)g(x) \, dx$ où $g \in X$ est une fonction qui ne s'annule qu'en x = 1/2.
- $-X = l^2$ et $u(x) = \sum a_n x_n$ où (a_n) est dans X.
- $-X = l^1$ et $u(x) = \sum a_n x_n$ où (a_n) est dans l^{∞} .
- -X l'espace des suites convergentes muni de la norme sup et $u: X \to \mathbb{R}$ l'application $u(x) = \lim_{i \to \infty} x_i$.

Indication ▼ Correction ▼ [002364]

Exercice 13

Soit $X = \mathbb{R}[x]$ l'ensemble des polynômes. Pour $P(x) = \sum_{k=0}^{p} a_k x^k$ on pose $||P|| = \sup_k |a_k|$, $U(P)(x) = \sum_{k=1}^{n} \frac{1}{k} a_k x^k$ et $V(P)(x) = \sum_{k=1}^{n} k a_k x^k$.

- 1. Montrer que $\|.\|$ définit une norme et que U et V définissent des applications linéaires de X dans X.
- 2. Examiner si *U* et *V* sont continues ?

Indication ▼ Correction ▼ [002365]

Exercice 14

Soit l^{∞} l'espace des suites réelles muni avec la norme uniforme, i.e. $||x||_{\infty} = \sup_{n} |x_n|$. On considére l'application $A: l^{\infty} \to l^{\infty}$ définie par

$$A(x_1,x_2,...,x_n,...) = (x_1,x_2/2,...,x_n/n,...)$$
.

Montrer que:

- 1. A est injective et continue avec ||A|| = 1. Par contre, A n'est pas surjective.
- 2. A admet un inverse à gauche mais qu'il n'est pas continu.

Correction ▼ [002366]

Exercice 15

Soit *X* un espace normé, $L: X \to \mathbb{R}$ une forme linéaire non nulle et $H = L^{-1}(\{0\})$ son noyau.

1. Montrer que, si L est continue, alors H est un sous-espace fermé dans X. Établir la relation

$$\operatorname{dist}(a,H) = \frac{|L(a)|}{\|L\|}$$
 pour tout $a \in X$.

- 2. Réciproquement, supposons que le noyau H est un fermé. Démontrer alors que $\operatorname{dist}(a,H) > 0$ dès que $a \in X \setminus H$ et en déduire que L est continue de norme au plus $|L(a)|/\operatorname{dist}(a,H)$.
- 3. Peut-on généraliser ceci a des applications linéaires entre espaces normés ?

Indication ▼ Correction ▼ [002367]

Exercice 16

Soit $X = \mathcal{C}([0,1])$ avec la norme $||f|| = \int_0^1 |f(t)| dt$. Montrer que la forme linéaire $f \in X \mapsto f(0) \in \mathbb{R}$ n'est pas continue. Que peut-on en déduire pour le sous-espace des fonctions de X nulles en 0?

Correction ▼ [002368]

Exercice 17

Soit $X = \{f \in \mathscr{C}(\mathbb{R}) ; (1+x^2)|f(x)| \text{ soit born\'ee}\}$. On pose $N(f) = \sup_{x \in \mathbb{R}} (1+x^2)|f(x)|$. Vérifier que N est une norme, puis montrer que la forme linéaire suivante L est continue et calculer sa norme :

$$L: X \to \mathbb{R}$$
 définie par $L(f) = \int_{\mathbb{R}} f(x) \ dx$.

Indication ▼ Correction ▼ [002369]

Indication pour l'exercice 1 ▲

- 1. Utiliser le fait que tout ouvert de \mathbb{R} est l'union dénombrable d'intervalles ouverts.
- 2. Écrire un intervalle fermé comme union dénombrable d'intervalles ouverts, puis utiliser la même remarque que ci-dessus.

Indication pour l'exercice 2 A

- 1.
- 2. Pour montrer que c_0 est fermé, l'écrire comme image réciproque de quelque chose.

Indication pour l'exercice 3 A

Montrer que le complémentaire est un ouvert. Si vous le souhaitez, placez-vous dans des espaces métriques.

Indication pour l'exercice 4 A

1. Pour un polynôme P, la limite de P(x) ne vaut $\pm \infty$ que lorsque x tend vers $\pm \infty$.

Indication pour l'exercice 5 ▲

1. Pour le sens direct utiliser la caractérisation de l'adhérence par les suites. Pour le sens réciproque, montrer que l'image réciproque d'un fermé est un fermé.

Indication pour l'exercice 8 ▲

- 1. Par l'absurde, considérer $I(x) = \int_0^x f$. Trouver une suite (p_n) telle que $(I(p_n))$ ne soit pas une suite de Cauchy.
- 2. Pour montrer que cette intégrale converge utiliser le changement de variable $u=t^2$ puis faire une intégration par partie.

Indication pour l'exercice 9

Si la relation est vérifiée montrer que B est continue en x en calculant B(x+y) - B(x). Si B est continue alors en particulier B est continue en (0,0), fixer le ε de cette continuité,...

Indication pour l'exercice 10 ▲

La continuité de L sur E équivaut la continuité en 0. Par l'absurde supposer que L n'est pas continue en 0 et construire une suite (x_n) qui tend vers 0 mais avec $(L(x_n))$ non bornée.

Indication pour l'exercice 11 ▲

Il faut montrer $f(\lambda x) = \lambda f(x)$ pour $\lambda \in \mathbb{R}$. Le faire pour $\lambda \in \mathbb{N}$, puis $\lambda \in \mathbb{Z}$, puis $\lambda \in \mathbb{Q}$ et enfin $\lambda \in \mathbb{R}$.

Indication pour l'exercice 12 ▲

- 1. ||S|| = 1;
- 2. $||T|| = ||g||_{\infty}$;
- 3. $||u|| = \int_0^1 |g|$, on distinguera les cas où g reste de signe constant et g change de signe;
- 4. $||u|| = ||a_n||_2$;

5.
$$||u|| = ||a||_{\infty}$$
;

6.
$$||u|| = 1$$
.

Indication pour l'exercice 13 ▲

 \overline{U} est continue et ||U|| = 1, V n'est pas continue.

Indication pour l'exercice 15 ▲

- 1. Montrer d'abord que X se décompose sous la forme $H + \mathbb{R}.a$.
- 2. ...
- 3. Non! Chercher un contre-exemple dans les exercices précédents.

Indication pour l'exercice 17 ▲

Montrer que $||L|| = \pi$.

Correction de l'exercice 1

1. Sens direct. Si f est continue alors $\{x \mid f(x) < \lambda\} = f^{-1}(] - \infty, \lambda[)$ est un ouvert comme image réciproque par une application continue de l'intervalle ouvert $] - \infty, \lambda[$. De même avec $]\lambda, +\infty[$. Réciproque. Tout d'abord, tout intervalle ouvert]a,b[, (a < b) peut s'écrire

$$]a,b[=]-\infty,b[\cap]a,+\infty[.$$

Donc

$$f^{-1}(|a,b|) = f^{-1}(|-\infty,b|) \cap f^{-1}(|a,+\infty|)$$

est une intersection de deux ouverts donc un ouvert de X. Soit O un ouvert de \mathbb{R} , alors O peut s'écrire comme l'union dénombrables d'intervalles ouverts :

$$O = \bigcup_{i \in I}]a_i, b_i[.$$

Donc

$$f^{-1}(O) = \bigcup_{i \in I} f^{-1}(]a_i, b_i[)$$

est une union d'ouvert donc un ouvert de X.

2. Nous le faisons d'abord pour un intervalle ouvert]a,b[.

$$]a,b[=\bigcup_{j\in\mathbb{N}^*}[a+\frac{1}{n},b-\frac{1}{n}].$$

Done

$$f^{-1}(]a,b[)=\bigcup_{j\in\mathbb{N}^*}f^{-1}([a+\frac{1}{j},b-\frac{1}{j}]),$$

est une union dénombrable de fermés. Maintenant comme pour la première question, tout ouvert O de \mathbb{R} s'écrit $O = \bigcup_{i \in I} |a_i, b_i|$, avec I dénombrable. Donc on peut écrire

$$f^{-1}(O) = \bigcup_{i \in I} \bigcup_{j \in \mathbb{N}^*} f^{-1}([a_i + \frac{1}{j}, b_i - \frac{1}{j}]),$$

qui est une union dénombrable de fermés (mais c'est un ouvert!).

Correction de l'exercice 2

1. Soit *F* l'application définie par $F(f) = \int_0^1 |f|$. Alors

$$|F(f) - F(g)| = |\int_0^1 |f| - |g|| \le \int_0^1 |f - g| = d_1(f, g) \le d_{\infty}(f, g).$$

Donc pour les deux distances d_1 et d_{∞} , F est lipschitzienne de rapport 1.

2. Soit $\varepsilon > 0$ alors en posant $\eta = \varepsilon$ on obtient la continuité : si $d(x,y) < \varepsilon$ alors

$$|\ell(x) - \ell(y)| \le \varepsilon$$
.

Donc ℓ est continue, et $c_0 = \ell - 1(\{0\})$ est un fermé , car c'est l'image réciproque du fermé $\{0\}$ par l'application continue ℓ .

Correction de l'exercice 3

Soit $A = \{x \in X \mid f(x) = g(x)\}$. Alors soit $C = X \setminus A = \{x \in X \mid f(x) \neq g(x)\}$. Soit $x \in C$ comme $f(x) \neq g(x)$ et que Y est séparé, il existe un voisinage ouvert V_1 de f(x) et V_2 de g(x) tel que $V_1 \cap V_2 = \emptyset$. Notons $U = \{x \in X \mid f(x) \neq g(x)\}$

 $f^{-1}(V_1) \cap g^{-1}(V_2)$. Alors U est un ouvert de X contenant x. Maintenant pour $x' \in U$, alors $f(x') \in V_1$, $g(x') \in V_2$ donc $f(x') \neq g(x')$, donc $x' \in C$. Bilan U est inclus dans C. Donc C est ouvert.

Application : si A est dense dans X alors $\bar{A} = X$, mais comme A est fermé $A = \bar{A}$. Donc A = X, c'est-à-dire f et g sont égales partout.

Correction de l'exercice 4 A

- 1. Soit P un polynôme, et F un fermé de \mathbb{R} . Soit (y_n) une suite convergente d'éléments de P(F), et $y \in \mathbb{R}$ sa limite. Il existe $x_n \in F$ tel que $y_n = P(x_n)$. Comme (y_n) est bornée (car convergente) alors (x_n) aussi est bornée, en effet un polynôme n'a une limite infini qu'en $\pm \infty$. Comme (x_n) est une suite bornée de \mathbb{R} on peut en extraire une sous-suite convergente $(x_{\phi(n)})$ de limite x. Comme F est fermé, $x \in F$. Comme P est continue (c'est un polynôme) alors $y_{\phi(n)} = P(x_{\phi(n)}) \to P(x)$, mais $(y_{\phi(n)})$ converge aussi vers y. Par unicité de la limite $y = P(x) \in P(F)$. Donc P(F) est fermé.
- 2. Soit $X = Y = \mathbb{R}$ et H = (xy = 1) est un fermé de $X \times Y$, mais si $\pi(x,y) = x$ alors $\pi(H) = \mathbb{R}^*$ n'est pas un fermé de $X = \mathbb{R}$.
- 3. A vérifier...

Correction de l'exercice 5

- 1. \Rightarrow . Soit f continue et $y \in f(\bar{A})$. Il existe $x \in \bar{A}$ tel que y = f(x). Soit $x_n \in A$ tel que (x_n) converge vers x. Alors $y_n = f(x_n) \in A$. Comme f est continue alors (y_n) converge vers f(x) = y. Donc y est adhérent à f(A). Conclusion $f(\bar{A}) \subset \overline{f(A)}$.
 - \Leftarrow . Soit $f: X \to Y$ et soit F un fermé de Y. Notons $A = f^{-1}(F)$. Alors $f(A) \subset F$ donc l'équation $f(\bar{A}) \subset \overline{f(A)}$ devient $f(\bar{A}) \subset \bar{F} = F$ car F est fermé. Donc $\bar{A} \subset f^{-1}(F) = A$. Donc $\bar{A} \subset A$, d'où $\bar{A} = A$. Donc A est fermé. Bilan l'image réciproque de tout fermé F est un fermé, donc f est continue.
 - Application : si A est dense, alors $\bar{A}=X$, et sous les hypothèses précédentes alors f(A) est dense dans l'image de X par f : en effet $\overline{f(A)}$ contient $f(\bar{A})=f(X)$
- 2. \Rightarrow . Soit f fermé et soit $A \subset X$. Alors $A \subset \bar{A}$ donc $f(A) \subset f(\bar{A})$, donc comme \bar{A} est un fermé et f est fermée alors $f(\bar{A})$ est un fermé contenant f(A). Mais comme $\overline{f(A)}$ est le plus petit fermé contenant f(A) alors $\overline{f(A)} \subset f(\bar{A})$.
 - \Leftarrow . La relation pour un fermé F donne $\overline{f(F)} \subset f(\overline{F}) = f(F)$. Donc $\overline{f(F)} = f(F)$. Donc f(F) est fermé. Donc f est fermée.

Même type de raisonnement avec f ouverte.

Correction de l'exercice 8 A

- 1. Supposons que f ne tende pas vers 0. Soit $\varepsilon > 0$ fixé. Pour tout $n \ge 0$, il existe $x_n \ge n$ tel que $|f(x_n)| > \varepsilon$. Sans perte de généralité nous supposons $f(x_n) > \varepsilon$. Appliquons l'uniforme continuité : soit $\varepsilon' = \frac{\varepsilon}{2}$, Il existe η tel que pour $|x_n y| \le \eta$ on ait $|f(x_n) f(y)| < \varepsilon'$. Donc pour un tel y, $f(y) > \frac{\varepsilon}{2} > 0$. Donc f est strictement positive sur $[x_n \eta, x_n + \eta]$. Notons alors (p_n) définie par $p_{2n} = x_n \eta$, $p_{2n+1} = x_n + \eta$. Soit $I(x) = \int_0^x f$. Alors $I(p_{2n+1}) I(p_{2n}) = \int_{x_n \eta}^{x_n + \eta} f(t) dt \ge \frac{\varepsilon}{2} \cdot 2\eta = \varepsilon \eta$. Donc la suite $(I(p_n))$ n'est pas de une suite de Cauchy, donc ne converge pas, donc la fonction $x \mapsto I(x)$ ne converge pas non plus, et donc $\int_0^\infty f(t) dt$ diverge.
- 2. Par le changement de variable $u = t^2$ puis une intégration par partie, on montre que l'intégrale $\int_0^\infty \sin(t^2) dt$ converge, mais comme $f(x) = \sin(x^2)$ ne tend pas vers 0 alors f n'est pas uniformément continue sur \mathbb{R} .

Correction de l'exercice 9 A

Pour $x = (x_1, x_2) \in E_1 \times E_2$ on définit $||x|| = \max(||x_1||, ||x_2||)$.

1. Sens \Leftarrow . Soit M > 0 tel que $||B(x)|| \le M||x_1|| ||x_2||$. Montrons que B en continue au point $x = (x_1, x_2)$ fixé. Soit $y = (y_1, y_2)$ alors

$$B(x+y) - B(x) = B(x_1 + y_1, x_2 + y_2) - B(x_1, x_2) = B(x_1, y_2) + B(x_2, y_1) + B(y_1, y_2).$$

Donc

$$||B(x+y)-B(x)|| \le M||x_1||||y_2|| + M||x_2||||y_1|| + M||y_1||||y_2||.$$

Pour $\|y_1\| \le \frac{\varepsilon}{M\|x_1\|}$ on a $M\|x_1\|\|y_2\| \le \varepsilon$ (si $x_1 = 0$ il n'y a rien à choisir ici). Pour $\|y_2\| \le \frac{\varepsilon}{M\|x_2\|}$ on a $M\|x_2\|\|y_1\| \le \varepsilon$ (si $x_2 = 0$ il n'y a rien à choisir ici). Enfin pour $\|y_1\| \le \sqrt{\frac{\varepsilon}{M}}$ et $\|y_2\| \le \sqrt{\frac{\varepsilon}{M}}$ on a $M\|y_1\|\|y_2\| \le \varepsilon$. Donc en prenant $\eta = \min(\frac{\varepsilon}{M\|x_1\|}, \frac{\varepsilon}{M\|x_2\|}, \sqrt{\frac{\varepsilon}{M}})$, on obtient que pour $\|y\| = \max(\|y_1\|, \|y_2\|) \le \eta$ on a $\|B(x+y) - B(x)\| \le 3\varepsilon$. Ce qui prouve la continuité. Donc B est continue sur $E_1 \times E_2$.

2. Sens \Rightarrow . Si B est continue partout, en particulier elle est continue en 0. Je choisis $\varepsilon=1$, il existe $\eta>0$ tel que $\|x\| \leq \eta$ alors $\|B(x)\| \leq 1$. Donc pour $\|x_1\| \leq \eta$ et $\|x_2\| \leq \eta$ on a $\|B(x_1,x_2)\| \leq 1$. Soit maintenant $y=(y_1,y_2)\in E_1\times E_2, (y_1\neq 0,y_2\neq 0)$ on a $(\eta\frac{y_1}{\|y_1\|},\eta\frac{y_2}{\|y_2\|})$ de norme $\leq \eta$ donc $B(\eta\frac{y_1}{\|y_1\|},\eta\frac{y_2}{\|y_2\|})\leq 1$ et par bilinéarité cela fournit : $B(y_1,y_2)\leq \frac{1}{\eta^2}\|y_1\|\|y_2\|$, et ce pour tout (y_1,y_2) . La constante cherchée étant $\frac{1}{\eta^2}$.

Correction de l'exercice 10 ▲

Comme L est linéaire il suffit de montrer que L est continue en 0. Supposons que cela ne soit pas vrai, alors il faut nier la continuité de L en 0 qui s'écrit :

$$\forall \varepsilon > 0$$
 $\exists \eta > 0$ $\forall x \in E$ $(\|x\| < \eta \Rightarrow \|L(x)\| < \varepsilon).$

La négation s'écrit alors :

$$\exists \varepsilon > 0 \quad \forall \eta > 0 \quad \exists x \in E \quad (\|x\| < \eta \text{ et } \|L(x)\| \ge \varepsilon).$$

Soit donc un tel $\varepsilon > 0$ de la négation, pour η de la forme $\eta = \frac{1}{n}$, on obtient y_n tel que $||y_n|| < \frac{1}{n}$ et $||L(y_n)|| \ge \varepsilon$. On pose $x_n = \sqrt{n}y_n$, alors $||x_n|| = \sqrt{n}||y_n|| < \frac{1}{\sqrt{n}}$ donc (x_n) est une suite de E qui tend vers 0. Par contre $||L(x_n)|| = \sqrt{n}||L(y_n)|| \ge \varepsilon \sqrt{n}$, donc la suite $(L(x_n))$ n'est pas bornée. Par contraposition nous avons obtenu le résultat souhaité.

Correction de l'exercice 11

- 1. Si f est linéaire et bornée sur la boule unité alors elle est continue (voir le cours ou refaire la démonstration).
- 2. Il reste à montrer que f est linéaire : on a déjà f(x+y) = f(x) + f(y) pour tout x, y reste donc à prouver $f(\lambda x) = \lambda f(x)$. Pour tout $\lambda \in \mathbb{R}$ et $x \in E$.
 - Pour $\lambda \in \mathbb{Z}$, c'est une récurrence, f(2x) = f(x+x) = f(x) + f(x) = 2f(x). Puis f(3x) = f(2x+x) = f(2x) + f(x) = 2f(x) + f(x) = 3f(x) etc. Donc f(nx) = nf(x) pour $n \in \mathbb{N}$. De plus 0 = f(0) = f(x+(-x)) = f(x) + f(-x) donc f(-x) = -f(x). Ensuite on a f(-nx) = -nf(x) pour $n \in \mathbb{N}$. Bilan: pour tout $\lambda \in \mathbb{Z}$ on a $f(\lambda x) = \lambda f(x)$.
 - Pour $\lambda \in \mathbb{Q}$, soit $\lambda = \frac{p}{q}$, $p, q \in \mathbb{Z}$.

$$f(\frac{p}{q}x) = pf(\frac{1}{q}x) = \frac{p}{q}qf(\frac{x}{q}) = \frac{p}{q}f(q\frac{x}{q}) = \frac{p}{q}f(x).$$

Nous avons utilisé intensivement le premier point.

- Soit $\lambda \in \mathbb{R}$ alors il existe une suite (λ_n) d'élément de \mathbb{Q} qui converge vers λ . Fixons $x \in E$.

$$f(\lambda x) - \lambda f(x) = f(\lambda x) - f(\lambda_n x) + f(\lambda_n x) - \lambda f(x) = f((\lambda - \lambda_n)x) + (\lambda_n - \lambda)f(x).$$

Nous avons utilisé le second point. Soit $\varepsilon \in \mathbb{Q}_+^*$. Pour n assez grand on a $\|(\lambda - \lambda_n)x\| < \varepsilon$. Donc $\|\frac{1}{\varepsilon}(\lambda - \lambda_n)x\| \in B(0,1)$ or f est bornée sur la boule unité donc il existe M > 0 tel que $f(\frac{1}{\varepsilon}(\lambda - \lambda_n)x) \le M$ (quelque soit n). Donc $f(\lambda - \lambda_n)x) \le M\varepsilon$ (ε est rationnel donc on peut le "sortir"). De même pour n assez grand on a $(\lambda_n - \lambda)f(x) < \varepsilon$. Maintenant

$$||f(\lambda x) - \lambda f(x)|| \le ||f((\lambda - \lambda_n)x)|| + ||(\lambda_n - \lambda)f(x)|| < M\varepsilon + \varepsilon.$$

Donc pour x, λ fixés, $||f(\lambda x) - \lambda f(x)||$ est aussi petit que l'on veut, donc est nul ! D'où $f(\lambda x) = \lambda f(x)$ pour $\lambda \in \mathbb{R}$.

Correction de l'exercice 12

- 1. Pour tout x, ||S(x)|| = ||x|| donc ||S|| = 1.
- 2. $||T(f)||_{\infty} = ||f \times g||_{\infty} \le ||f||_{\infty} ||g||_{\infty}$. Donc pour $f \ne 0$, $\frac{||T(f)||_{\infty}}{||f||_{\infty}} \le ||g||_{\infty}$. De plus en g, on obtient $\frac{||T(g)||_{\infty}}{||g||_{\infty}} = \frac{||g^2||_{\infty}}{||g||_{\infty}} = ||g||_{\infty}$. Donc $||T|| = ||g||_{\infty}$.
- 3. On a $|u(f)| \le ||f||_{\infty} \int_0^1 |g(x)| dx$ donc $||u|| \le \int_0^1 |g(x)| dx$. Si g ne change pas de signe sur [0,1] alors pour f la fonction constant égale à 1, on obtient $|u(f)| = ||f||_{\infty} \int_0^1 |g(x)| dx$ donc $||u|| = \int_0^1 |g(x)| dx$. Si g change de signe alors il ne le fait qu'une fois et en $\frac{1}{2}$. Soit h_n la fonction définie par $h_n(x) = 1$ si $x \in [0, \frac{1}{2} \frac{1}{n}]$, $h_n(x) = -1$ si $x \in [\frac{1}{2} + \frac{1}{n}, 1]$ et h_n est affine sur $[\frac{1}{2} \frac{1}{n}, \frac{1}{2} + \frac{1}{n}]$ et continue sur [0, 1]. Cette fonction est construite de telle sorte que si g est positive puis négative alors $h_n \times g$ est une fonction continue qui converge uniformément vers $|g| : ||h_n g |g|||_{\infty} \to 0$. Donc $|u(h_n)| = \int_0^1 h_n \times g$ et par la convergence uniforme alors $|u(h_n)|$ converge vers $\int_0^1 |g|$. Donc $||u|| = \int_0^1 |g|$.
- 4. $|u(x)| = |\sum a_n x_n| \le ||a_n||_2 ||x_n||_2$ (c'est Cauchy-Schwartz) donc $||u|| \le ||a_n||_2$. Pour la suite x = a on a égalité d'où $||u|| = ||a_n||_2$.
- 5. $|u(x)| = |\sum a_n x_n| \le \sum |a_n x_n| \le ||a||_{\infty} \sum |x_n| = ||a||_{\infty} ||x_n||_1$, donc $||u|| \le ||a||_{\infty}$. Soit p fixé, soit i(p) un indice tel que $|a_{i(p)}| = \max_{j=1,\ldots,p} |a_j|$. On construit une suite x^p de la manière suivante : $x^p = (0,0,\ldots,0,a_{i(p)},0,0,0\ldots)$ (des zéros partout sauf $a_{i(p)}$ à la place i(p)). Alors $||x^p||_1 = |a_{i(p)}|$ et $|u(x^p)| = a_{i(p)}^2$. Donc $\frac{|u(x^p)|}{||x^p||_1} = |a_{i(p)}|$. Lorsque p tend vers $+\infty$, $|a_{i(p)}| \to ||a||_{\infty}$. Donc $||u|| = ||a||_{\infty}$.
- 6. $|u(x)| = |\lim x_n| \le ||x||_{\infty}$, donc $||u|| \le 1$. Pour x = (1, 1, 1, ...) on obtient l'égalité ||u|| = 1.

Correction de l'exercice 13

- 1. Il suffit de l'écrire...
- 2. Calculons la norme de $U: ||U(P)|| = \sup_k |\frac{1}{k}a_k|| \le \sup_k |a_k| \le ||P|||$. Donc pour tout $P, \frac{||U(P)||}{||P||} \le 1$. Et pour P(x) = x on a égalité donc ||U|| = 1.
- 3. Pour V, prenons $P_k(x) = x^k$, alors $||P_k|| = 1$, mais $||V(P_k)|| = k$. Donc V n'est pas bornée sur la boule unité donc V n'est pas continue.

Correction de l'exercice 14 A

- 1. A injective : Si $A(x_1, x_2, ...) = A(y_1, y_2, ...)$ alors $(x_1, x_2/2, ..., x_n/n, ...) = (y_1, y_2/2, ..., y_n/n, ...)$ donc $x_1 = y_1, x_2 = y_2, ..., x_n = y_n, ...$ Donc A est injective. A continue : $||A(x)||_{\infty} = \sup_n \frac{x_n}{n} \le \sup_n x_n \le ||x||_{\infty}$. Donc $||A|| \le 1$ donc A est continue. Norme de A : Pour x = (1, 0, 0, ...). On a $||x||_{\infty} = 1$ et $||A(x)||_{\infty} = 1$ Donc la norme de A est exactement 1. A n'est pas surjective : posons $y = (1, 1, 1, ...) \in l^{\infty}$. Soit x une suite telle que A(x) = y alors x = (1, 2, 3, 4, ...). Mais $||x||_{\infty} = +\infty$ donc $x \notin l^{\infty}$. En conséquence $A : l^{\infty} \to l^{\infty}$ n'est pas surjective.
- 2. L'inverse à gauche de A est B définie par

$$B(x_1, x_2, ..., x_n, ...) = (x_1, 2x_2, ..., nx_n, ...)$$

de sorte que pour $x \in l^{\infty}$ on ait $B \circ A(x) = x$. Posons la suite $x^p = (0,0,\ldots,0,1,0,0\ldots) \in l^{\infty}$ (des zéros partout et le 1 à la p-ième place). Alors $||x^p||_{\infty} = 1$ et $||B(x^p)||_{\infty} = p$. Donc $\frac{||B(x^p)||_{\infty}}{||x^p||_{\infty}} = k$, donc la norme de B n'est pas finie et B n'est pas continue.

Correction de l'exercice 15

1. Si L(a)=0 alors $a\in H$ donc dist(a,H)=0 donc la relation est vraie. Supposons que $L(a)\neq 0$. Alors on a $X=H+\mathbb{R}.a$. En effet pour $x\in X$, il existe $\lambda\in\mathbb{R}$ tel que $L(x)=\lambda L(a)$. Donc $L(x-\lambda a)=0$. Posons $h=x-\lambda a$, alors $h\in H$ et $x=h+\lambda a$ est la décomposition suivant $H+\mathbb{R}.a$. Si L est continue alors $\|L\|$ est finie.

$$||L|| = \sup_{x \in X, x \neq 0} \frac{||L(x)||}{||x||}$$

$$= \sup_{h \in H, \lambda \in \mathbb{R}, h + \lambda a \neq 0} \frac{||L(h + \lambda a)||}{||h + \lambda a||}$$

$$= |L(a)| \sup_{h \in H, \lambda \in \mathbb{R}, h + \lambda a \neq 0} \frac{|\lambda|}{||h + \lambda a||}$$

$$= |L(a)| \sup_{h \in H} \frac{1}{||h + a||}$$

$$= |L(a)| \frac{1}{\inf_{h \in H} ||h + a||}$$

$$= |L(a)| \frac{1}{\operatorname{dist}(a, H)}$$

Ce qui était l'égalité demandée.

- 2. Si H est fermé alors dist(a, H) > 0 si $a \notin H$ (voir les exercices sur les compacts), par l'égalité démontrée ci-dessus on a ||L|| finie donc L est continue.
- 3. Soit $X = \mathbb{R}[x]$. Pour $P(x) = \sum_{k=0}^{p} a_k x^k$ on pose $||P|| = \sup_k |a_k|$, et $V(P)(x) = \sum_{k=1}^{n} k a_k x^k$. Alors $\text{Ker } V = \{0\}$ est fermé mais V n'est pas continue (voir l'exercice 13).

Correction de l'exercice 16

Notons $L: X \to \mathbb{R}$ l'application linéaire définie par L(f) = f(0). Prenons f_n définie par $f_n(t) = 2n(1-nt)$ pour $t \in [0, \frac{1}{n}]$ et f(t) = 0 si $t > \frac{1}{n}$. Alors $||f_n|| = 1$ alors que $L(f_n) = 2n$. Donc le rapport $\frac{|L(f_n)|}{||f_n||} = 2n$ n'est pas borné, donc L n'est pas continue. Si $H = \{f \mid f(0) = 0\}$ alors $H = \text{Ker } L = L^{-1}(0)$. Comme L n'est pas continue alors H n'est pas fermé (voir l'exercice 15).

Correction de l'exercice 17 ▲

N est bien une norme. Et on a pour tout x, $(1+x^2)|f(x)| \le N(f)$.

$$|L(f)| = |\int_{\mathbb{R}} f| \le \int_{\mathbb{R}} |f| \le \int_{\mathbb{R}} \frac{N(f)}{1+x^2} dx \le N(f) \int_{\mathbb{R}} \frac{1}{1+x^2} = N(f) [\operatorname{Arctan} x]_{-\infty}^{+\infty} = N(f) \pi.$$

Donc pour tout f on a

$$\frac{\int f}{N(f)} \le \pi.$$

De plus pour $f(x) = \frac{1}{1+x^2}$ on obtient l'égalité. Donc la norme $\|L\|$ de l'application L est π .