

Machine learning

OUTLOOK

Artificial Intelligence

Machine Learning

Deep Learning

Artificial Intelligence

Robo Revolution: The Age of Automation

What is machine learning?

Days before OpenAI

Developer coding - 2 hours Developer debugging - 6 hours

Days after OpenAI

What we need?

Data: For training and improving models.

Algorithms: For processing and analyzing data.

Machine learning models: Such as neural networks.

Computational infrastructure : For processing and storing data.

Data

Database of prior knowledge

Library

What is python Library? A library is a collection of code that makes everyday tasks more efficient.

Two important definitions

1-Model: A "model" in machine learning is the output of a machine learning algorithm run on data. A model represents what was learned by a machine learning algorithm.

2-algorithm : An "algorithm" in machine learning is a procedure that is run on data to create a machine learning "model." Machine learning algorithms perform "pattern recognition." Algorithms "learn" from data, or are "fit" on a dataset. There are many machine learning algorithms. For example, we have algorithms for classification, such as k-nearest neighbors. We have algorithms for regression, such as linear regression, and we have algorithms for clustering, such as k-means.

Machine Learning Process

Supervised vs. unsupervised learning Supervised Learning

Supervised vs. unsupervised learning

Unsupervised Learning

Data in Supervised vs. Unsupervised Learning

Machine Learning Types

Regression intro

- Continuous value
- Independent / dependent variables
- Y = Continuous
- Y = ax+b
- Intercept / coefficient

Regression types

Simple : linear / non-linearY=ax+b

Multiple : linear / non-linearY=ax1+bx2+c

Multiple Linear Regression

Non-Linear Regression

Logistic Regression

LINEAR REGRESSION

MULTIPLE REGRESSION

Parent Functions Review Domain & Range

Model evaluation

For what?

- Train and test on same data
- Train/test split

Model Evaluation

Errors

- · mean absolute error (MAE)
- mean squared error (MSE)
- root mean squared error (RMSE); interpretable in the same units as the response vector or y units
- Relative absolute error, also known as residual sum of square (RAE)
- Relative squared error (RSE)
- R2; Popular metric for the accuracy of your model. represents how close the data values are to the fitted regression line. The higher the better

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

$$RAE = \frac{\sum_{j=1}^{n} |y_{j} - \hat{y}_{j}|}{\sum_{j=1}^{n} |y_{j} - \bar{y}|}$$

$$RSE = \frac{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}{\sum_{j=1}^{n} (y_j - \bar{y})^2}$$

$$R^2 = 1 - RS$$

Reported happiness as a function of income

Classification intro

- Supervised
- Categorizing
- Multi-class/binary
- KNN / Decision Trees / Logistic Regression / SVM

Mutliclass Classification vs multilabel classification

Multiclass Classification

Classes

(pick one class)

- ✓ Dog
- Cat
- Horse
- Mouse

Multilabel Classification

Classes

(pick all the labels present in the image)

- ✓ Dog
- ✓ Cat
- Horse
- Mouse

Labeled Data

Machine Learning Algorithms - Classification

Classification

Intro

Age	Sex	BP	Cholesterol	Na	K	Drug
23	F	HIGH	HIGH	0.793	0.031	drugY
47	M	LOW	HIGH	0.739	0.056	drugC
47	M	LOW	HIGH	0.697	0.069	drugC
28	F	NORMAL	HIGH	0.564	0.072	drugX
61	F	LOW	HIGH	0.559	0.031	drugY
22	F	NORMAL	HIGH	0.677	0.079	drugX
49	F	NORMAL	HIGH	0.79	0.049	drugY
41	M	LOW	HIGH	0.767	0.069	drugC
60	M	NORMAL	HIGH	0.777	0.051	drugY
43	M	LOW	NORMAL	0.526	0.027	drugY

Age	Sex	BP	Cholesterol	Na	K	Drug
36	F	LOW	HIGH	0.697	0.069	

Categorical Variable

9

KNN k-nearest neighbors

- Reservoir
- Overfitting/underfitting

KNN k-nearest neighbors

Decision trees intro

- Internal node / branch / leaf
- Choose attribute from dataset
- Split data based on value of the best attribute

$$Gain(T,X) = Entropy(T) - Entropy(T,X)$$

$$\mathbf{G}(\mathsf{PlayGolf}, \mathsf{Outlook}) = \mathbf{E}(\mathsf{PlayGolf}) - \mathbf{E}(\mathsf{PlayGolf}, \mathsf{Outlook})$$

$$= 0.940 - 0.693 = 0.247$$

Logistic regression

- supervised
- Close to regression but here, y is a categorical or binary
- All y should be continues

Logistic regression

SVM support vector machines

- Supervised
- Based on separator
- High-dimensional/hyper plane

A hyperplane in \mathbb{R}^2 is a line

A hyperplane in \mathbb{R}^3 is a plane

Other definitions

- Libraries
- Normalization
- Imbalanced Dataset

Evaluation

- $\cdot Y(t)-Y(h) = evaluation$
- Jaccard index
- F1_score/confusion matrix
- Log loss/Logarithmic Loss/Cross-Entropy Loss

Classification

KNN Evaluation / LogLoss

Performance of a classifier where the predicted output is a probability

Clustering intro

- Unsupervised
- Partitioning / clustering
- Finding clusters in datasets (data pointents)
- There is no Y!
- prediction is not the goal
- Retail/marketing/banking/insurance/biology

K-means

- Unsupervised
- Divides data into K non-overlapping subset
- There is no Y!
- Understand the similarity and dissimilarity
- Distance(x1,x2) & distance(clu1,clu2)
- K=centroid / elbow method

Hierarchical

- Unsupervised
- Agglomerative(bottom up) / divisive
- Distance matrix / Similarity matrix

Upper Triangular Matrix

Grouping Similar Clusters

DBSCAN

- Unsupervised
- Density-based spatial clustering of applications with noise
- K-means = assign every data point to a cluster no outlier/always spherical shape clusters
- Good for anomaly detection
- density-based

Clustering

DBSCAN

point types:

core: within our neighborhood of the point there are at least M points.

- less than M in neighborhood
- reachable from a core point

Recommenders intro

- Behavioral patterns
- Recommender system capture the pattern of people's behavior and use it to predict what else they might want or like
- Amazon / Digikala / Spotify / Netflix / Snapfood

COLLABORATIVE FILTERING

CONTENT-BASED FILTERING

Recommender systems

Content based methods

Define a model for user-item interactions where users and/or items representations are given (explicit features).

Collaborative filtering methods

Model based

Define a model for user-item interactions where users and items representations have to be learned from interactions matrix.

Memory based

Define no model for user-item interactions and rely on similarities between users or items in terms of observed interactions.

Hybrid methods

Mix content based and collaborative filtering approaches.

Recommenders / content based

Works based user profiles(like , view ,...

Recommenders / collaborative

- Based on the user's similarity or neighborhoods
- Finds similarity between users
- Based on items similarity
- Item based / user based

Collaborative Filtering

VS

Content-based Filtering

 Uses past interactions to recommend new items

Item features are not required

- Uses ML algorithms to predict and recommend new items
- Item features are used to group similar items

Collaborative Filtering

Content-Based Filtering

ALTERNATIVE RESOURCES

PHOTOS:

- Close up of hacker
- Teacher talking with his students online
- Hacking concept
- Young woman enjoying new technologies
- Close up of hacker
- Man using laptop in cafe

RESOURCES

Did you like the resources on this template? Get them for free at our other websites.

VECTORS:

- Landing page template with programming concept
- Development Icon Pack
- Realistic multimedia player
- Concept of flat computer engineering