Using Backdoors to Generate Learnt Information in SAT Solving

Alexander Andreev, **Konstantin Chukharev**, Stepan Kochemazov, Alexander Semenov 24 October 2024

27th European Conference on Artificial Intelligence — ECAI-2024 — Santiago de Compostela, Spain

Contents

- 1. Background: Backdoors
- 2. Main matter: ρ -backdoors
- 3. Interleave procedure
- 4. Experimental evaluation
- 5. Conclusion

Background: Backdoors

Backdoors by Williams (2003)

Consider a SAT problem for a CNF C over the set of variables X.

A **strong backdoor** (*with respect to an algorithm A*) is a subset of variables $B \subseteq X$ such that for **each** assignment α of these variables, $C[\alpha/B]$ is *easy*, that is, polynomially decidable using A. [1]

Overall, strong backdoor is a complete **unsatisfiability certificate** which can be verified in $O(p(|C|) \cdot 2^{|B|})$.

[1] R. Williams, C. P. Gomes, and B. Selman, "Backdoors to Typical Case Complexity," in IJCAI, 2003.

Sub-solver

A **sub-solver** is a (SAT/CSP) solving algorithm that, for a given input C, in *polynomial time* (i.e. O(p(|C|))), either "determines" C correctly (UNSAT or SAT with a model) or "rejects" the input ("UNKNOWN" result).

For a **sub-solver**, one can employ the **unit propatation (UP)** rule.

ECAI-2024 :: Using Backdoors to Generate Learnt Information in SAT Solving

Strong backdoors: Visualized

A Hereinafter, assume that the considered CNF *C* is **unsatisfiable**.

For each assignment $\alpha \in \{0,1\}^{|B|}$, unit propagation on $C[\alpha/B]$ can return either UNSAT (conflict under assignment), or UNKNOWN (no conflict).

For a strong backdoor, all assignments lead to a conflict:

$$C \wedge (x_1 \wedge x_2 \wedge ... \wedge x_n) \vdash_{\mathrm{UP}} \bot \text{ (conflict)}$$
 $C \wedge (\overline{x}_1 \wedge x_2 \wedge ... \wedge x_n) \vdash_{\mathrm{UP}} \bot \text{ (conflict)}$
 $...$
 $C \wedge (\overline{x}_1 \wedge \overline{x}_2 \wedge ... \wedge \overline{x}_n) \vdash_{\mathrm{UP}} \bot \text{ (conflict)}$

Main matter: ρ-backdoors

Desired properties of "better" backdoors

Our goal is to construct a thing with the following properties:

- It is similar to a strong backdoor.
- It is a *partial* unsatisfiability certificate.
- It is small and easy to find.
- It can be used to obtain logical entailments of the original formula, which might be beneficial for a SAT solver.

We are going to show that " ρ -backdoors" have these properties.

ho-backdoors: Visualized

$$B = \{x_1, x_2, x_3\}$$

$$\begin{array}{c} C \wedge (\overline{x}_{1} \wedge \overline{x}_{2} \wedge \overline{x}_{3}) \vdash_{\mathrm{UP}} \bot \\ C \wedge (\overline{x}_{1} \wedge \overline{x}_{2} \wedge x_{3}) \vdash_{\mathrm{UP}} \bot \\ C \wedge (\overline{x}_{1} \wedge x_{2} \wedge \overline{x}_{3}) \not\vdash_{\mathrm{UP}} \bot \\ C \wedge (\overline{x}_{1} \wedge x_{2} \wedge x_{3}) \not\vdash_{\mathrm{UP}} \bot \\ C \wedge (x_{1} \wedge \overline{x}_{2} \wedge \overline{x}_{3}) \vdash_{\mathrm{UP}} \bot \\ C \wedge (x_{1} \wedge \overline{x}_{2} \wedge x_{3}) \vdash_{\mathrm{UP}} \bot \\ C \wedge (x_{1} \wedge \overline{x}_{2} \wedge x_{3}) \vdash_{\mathrm{UP}} \bot \\ C \wedge (x_{1} \wedge x_{2} \wedge \overline{x}_{3}) \vdash_{\mathrm{UP}} \bot \\ C \wedge (x_{1} \wedge x_{2} \wedge \overline{x}_{3}) \vdash_{\mathrm{UP}} \bot \\ \end{array}$$

Legend:

easy

hard

$$\rho = 1 - 3/8 = 0.625$$

 ρ is the proportion of "easy" tasks

- ρ -backdoor is a **partial** unsatisfiability certificate: *not for all* assignments $\alpha \in \{0,1\}^{|B|}$ the formula $C[\alpha/B]$ has an "easy" proof.
- Generally, there are many small ρ -backdoors with ρ close to 1. 80% of SAT Comp instances have ρ -backdoors with |B|<20 and $\rho>0.8$
- ρ can be calculated very fast using **tree-based** unit propagation. [AAAI'23]
- Multiple small ρ -backdoors can be combined into larger ρ -backdoors with strictly greater ρ . [AAAI'22, **ECAI-2024**]
- New **learnt clauses** can be derived from a ρ -backdoor. [**ECAI-2024**]

- ρ -backdoor is a **partial** unsatisfiability certificate: *not for all* assignments $\alpha \in \{0,1\}^{|B|}$ the formula $C[\alpha/B]$ has an "easy" proof.
- Generally, there are **many** small ρ -backdoors with ρ close to 1. 80% of SAT Comp instances have ρ -backdoors with |B|<20 and $\rho>0.8$
- ρ can be calculated very fast using **tree-based** unit propagation. [AAAI'23]
- Multiple small ρ -backdoors can be combined into larger ρ -backdoors with strictly greater ρ . [AAAI'22, **ECAI-2024**]
- New **learnt clauses** can be derived from a ρ -backdoor. [**ECAI-2024**]

- ρ -backdoor is a **partial** unsatisfiability certificate: *not for all* assignments $\alpha \in \{0,1\}^{|B|}$ the formula $C[\alpha/B]$ has an "easy" proof.
- Generally, there are **many** small ρ -backdoors with ρ close to 1. 80% of SAT Comp instances have ρ -backdoors with |B|<20 and $\rho>0.8$
- ρ can be calculated very fast using **tree-based** unit propagation. [AAAI'23]
- Multiple small ρ -backdoors can be combined into larger ρ -backdoors with strictly greater ρ . [AAAI'22, **ECAI-2024**]
- New **learnt clauses** can be derived from a ρ -backdoor. [**ECAI-2024**]

- ρ -backdoor is a **partial** unsatisfiability certificate: *not for all* assignments $\alpha \in \{0,1\}^{|B|}$ the formula $C[\alpha/B]$ has an "easy" proof.
- Generally, there are **many** small ρ -backdoors with ρ close to 1. 80% of SAT Comp instances have ρ -backdoors with |B|<20 and $\rho>0.8$
- ρ can be calculated very fast using **tree-based** unit propagation. [AAAI'23]
- Multiple small ρ -backdoors can be combined into larger ρ -backdoors with **strictly** greater ρ . [AAAI'22, **ECAI-2024**]
- New **learnt clauses** can be derived from a ρ -backdoor. [**ECAI-2024**]

- ρ -backdoor is a **partial** unsatisfiability certificate: *not for all* assignments $\alpha \in \{0,1\}^{|B|}$ the formula $C[\alpha/B]$ has an "easy" proof.
- Generally, there are **many** small ρ -backdoors with ρ close to 1. 80% of SAT Comp instances have ρ -backdoors with |B|<20 and $\rho>0.8$
- ρ can be calculated very fast using **tree-based** unit propagation. [AAAI'23]
- Multiple small ρ -backdoors can be combined into larger ρ -backdoors with **strictly** greater ρ . [AAAI'22, **ECAI-2024**]
- New **learnt clauses** can be derived from a ρ -backdoor. [**ECAI-2024**]

Searching for ρ -backdoors

Combining ρ -backdoors

Theorem. It is possible to use two small ρ -backdoors B_1 and B_2 (for simplicity, assume $B_1 \cap B_2 = \emptyset$) to construct a ρ -backdoor $B' = B_1 \cup B_2$ of larger size $|B'| = |B_1| + |B_2|$ with $\rho_3 > \max(\rho_1, \rho_2)$.

For this, just perform a **Cartesian product** of the two sets of hard tasks, **concatenating** the cubes and filtering out all trivially conflicting ones.

Note: no need to check all $2^{|B_1|+|B_2|}$ cubes, since most of them $(\rho_1 \text{ and } \rho_2)$ have been proven to be conflicting. We get **larger** ρ -backdoor **for free**!

Combination of ρ -backdoors: Visualized

Deriving clauses from ρ -backdoors

Hard cubes: Count table:

$\overline{x}_1 \ x_2 \ \overline{x}_3 \ \overline{x}_4 \ \overline{x}_5$	$\left(x_i,x_j\right)$	$x_i x_j$	$x_i \overline{x}_j$	$\overline{x}_i x_j$	$\overline{x}_i\overline{x}_j$	Derived clauses
$\overline{x}_1 x_2 x_3 \overline{x}_4 \overline{x}_5$	(x_1, x_2)	1	2	2	0	(x_1, x_2)
$x_1 \overline{x}_2 \overline{x}_3 x_4 x_5$	(x_1, x_3)	1	2	1	1	
	(x_{1}^{-}, x_{4}^{-})	3	0	0	2	$(\overline{x}_1, \underline{x}_4), (x_1, \overline{x}_4), (x_1, \overline{x}_4)$
$x_1 \overline{x}_2 x_3 x_4 \overline{x}_5$	(x_{1}, x_{5})	2	1	0	2	(x_1, \overline{x}_5)
$x_1 x_2 \overline{x}_3 x_4 x_5$	(x_{2}^{-}, x_{3}^{-})	1	2	1	1	
1 7/20	(x_2, x_4)	1	2	2	0	(x_2, x_4)
$\rho = 1 - 5/32$	(x_2, x_5)	1	2	1	1	
= 0.844	(x_3, x_4)	1	1	2	1	
0.011	(x_3, x_5)	0	2	2	1	$(\overline{x}_3,\overline{x}_5)$
	(m m)	7	1	\cap	2	$(m - \overline{m})$

Interleave procedure

Overview of the Interleave procedure

- Alternate between the two phases:
 - 1. ρ -backdoor phase: identify and combine ρ -backdoors, derive clauses.
 - 2. CDCL solving phase: just run CaDiCaL for some time.
- Each phase is granted an initial conflict **budget**, which increases incrementally (e.g., by a factor of 1.1) after each round.

Step-by-Step process (7 steps)

- 0. **Initialize** the CDCL SAT solver on the given CNF.
- 1. **Pre-solve** the CNF using a limited conflict budget (e.g., 10 000 conflicts).
- 2. <u>Iterative process</u>: alternate ρ -backdoor phase and plain CDCL solving.

Iterative process: ρ -backdoor identification

- 3. **Identify** ρ **-backdoor** using Evolutionary Algorithm.
 - Determine hard tasks for the ρ -backdoor using UP.
 - Augment CaDiCaL to propagate multiple cubes in a tree-like manner.
- 4. **Combine** ρ **-backdoors** using Cartesian product.
 - Combine previously found hard tasks with those for the new backdoor.
 - Reset the large set of hard tasks (e.g, once it exceeds 10 000 cubes).

Iterative process: Limited filtering

- 5. Filter the set of hard tasks using limited solver (yet polynomial).
 - Use conflict budget of, e.g., 1000 conflicts per cube, and 100 000 total.
 - Use heuristic to select the most promising cubes.
- 6. **Derive clauses** from the set of hard tasks.

Iterative process: Exit condition

- 7. **Exit** the iterative process if:
 - The satisfying assignment is found problem is SAT.
 - The set of hard tasks is empty, i.e., the strong backdoor is found problem is UNSAT with a polynomial certificate.
 - Else, switch to other mode (plain CDCL) and continue.

Experimental evaluation

Results: Cactus plot on 116 instances from SAT Competition

Results: Scatter plot for the best configuration and VBS

Conclusion

Conclusion and Future plans

- In this work, we further explored the concept of ρ -backdoors:
 - Partial unsatisfiability certificates.
 - Easy to search for using evolutionary algorithms.
 - Can be used to derive new clauses that are beneficial for a SAT solver.
- Open-source implementation is available on GitHub: https://github.com/Lipen/backdoor-solver
- Future plans:
 - Parallel implementation.
 - Proofs!

Thank you for your attention!

Some questions you might want to ask:

How long the EA runs comparing to solving?

[Very little.]

☆ Have you tried BDDs for storing hard tasks?

[Yes! It exploded. <u>\(\formalle{\psi}\)</u>]

☆ Have you tried using a sub-solver other than UP?

[Yes, we tried.]