컴퓨터 비전을 이용한 3쿠션 가이드

서정현, 송민준

3 Cushion Guide Using Computer Vision

Jeong Hyeon Seo, Min Joon Song

요 약

컨투어 분석, HSV색 공간 추출, Perspective Transformation을 이용하여 당구대와 당구공을 평면 이미지 상에 나타내고, Tensorflow와 Keras를 통해 당구공 좌표를 학습시켜 득점 가능한 3쿠션 가이드 이미지를 생성할 수 있다.

Abstract

Using Contour Analysis, HSV Color Space Extraction, and Perspective Transformation, billiard tables and billiard balls can be displayed on a plane image, and a three-cushion guide image that can be scored can be generated by learning billiard ball coordinates through Tensorflow and Keras.

Key words

Contour Analysis, HSV Color Space Extraction, Perspective Transformation, Object Detection, Deep Learning

1. 서 론

당구는 현대인들이 즐기는 스포츠 중 하나이다. 그중에서 3쿠션은 포켓볼이나 4구에 비해 진입장벽이 높은 편으로 알려져 있다. 따라서 입문자가 3쿠션에서 득점을 얻기 위해서는 기본적인 공 배치와 경로를 알고 있어야 한다. 따라서 입문자는 당구 프로의 경기나, 당구 서적을 참고하여 3쿠션을 배울수 있는데, 이 방법들의 문제는 입문자가 배우지 못한 경로에 대해서는 해결할 방법이 없다는 것이다. 따라서 이 문제를 해소하기 위해 이 연구를 진행하게 되었다.

11. 사전 연구 조사

본 연구를 진행하기 전에 이와 유사한 연구를 발 견하였다.

[그림 1] 사전 조사한 Deep-Learning 3Cushion Hint 연구

Tensorflow와 Keras를 사용하여, 사용자에게 공의 위치를 수동으로 입력받아서 미리 학습된 모델로 예측하면 공 배치의 이름을 알려주는 연구가 있었다. 해당 연구의 문제로는 두 가지가 있는데 첫 번째는 수구와 적구의 위치를 사용자가 직접 설정해야 하는데, 이는 불편할 뿐 아니라 정밀한 설정에어려움이 있다. 두 번째는 기존 프로그램은 공 3개의 배치를 설정하면 단순히 득점할 수 있는 경로의이름(앞돌리기, 제각돌리기 등..)만 알려주어 해당용어를 모르는 사람은 어떻게 쳐야될 지 모를 수있다.

III. 컴퓨터 비전을 이용한 당구대 좌표계 변환 작업

먼저 당구공 3개가 포함된 당구대 사진을 인풋으로 받는다. 그리고 low_bound와 upper_bound를 사용해 사진에서 Blue area binary image를 획득한다.

[그림 2] HSV 색 영역 추출을 통한 Blue area binary image

그리고 모폴로지 닫힘 연산을 사용하여 Blue area 에서 빈 공간을 채워준다.

[그림 3] Blue area binary image에 모폴로지 닫힘 연산을 사용한 결과

빈 공간을 채워주고 나서 컨투어를 추출해서 가장 큰 사각형 영역이 되는 곳을 line으로 표시해준다.

[그림 4] 컨투어 추출 후 당구대 사각형 영역 표 시

마지막으로 Perspective Transform을 이용하여 원 근 이미지를 평면 이미지로 변환한다. 그리고 평면 사진에서 공 위치를 HSV 색 영역을 각각 흰 공, 빨 간 공, 노란 공에 적용하고 각 공에 모폴로지 열림 연산을 먼저 적용하고 그 후 모폴로지 닫힘 연산을 해서 다른 색의 공인데 잘못 검출이 된 경우를 제 거했다. 각각의 공의 좌표를 획득하여 완전한 평면 상에 좌표계로 나타낼 수 있게 됐다.

Warped table

[그림 5] Perspective Transform을 수행한 후 나온 평면상의 당구대와 당구공 이미지

IV. 머신러닝을 활용한 득점 경로 예측

먼저 데이터 수집은 당구공 3개를 의도대로 혹은 무작위로 배치하는 프로그램을 만들어, 해당 공 3개의 좌표와 직접 수동으로 라벨링한 값을 학습 데이터 csv에 쉽게 추가할 수 있게 작업을 하였다.

자신의 공이 흰 공이라고 가정했을 때, 칠 수 있는 공의 경우를 빨간색 공 왼쪽, 빨간색 공 오른쪽, 노란색 공 왼쪽, 반 쿠션 이렇게 총 5개의 경우로 나눠서 라벨링 하였고, 당구 특성상 좌우 반전과 상하 반전 등을 진행하여도 진행경로가 같다는 성질을 이용하여 데이터셋을 4배로만들 수 있었다. 총 1800개의 데이터로 학습을 하였고 epoch는 1000, batch size=16으로 학습을 진행하였다.

노란공 좌측 겨냥

[그림 6] 좌우대칭 후 경로가 결국에 같다는 것을 보여주는 이미지

그리고 뉴럴 네트워크 구조는 아래와 같이 총 레이어 7개로 작업하였고 각 레이어의 뉴런 개수는 8,

노란공 우측 겨냥 16, 16, 16, 16, 5개로 구성하였고 중간에 Dropout의 rate를 0.08로 두 개의 레이어에 걸었다.

[그림 7] 학습을 진행한 모델의 뉴럴 네트워크 구조

총 1000개의 Epoch를 진행한 후 train set의 Accuracy는 약 0.74에 수렴하였고, loss는 약 0.62에 수렴하였다.

[그림 8] 모델의 Accuracy와 Loss 그래프

V. 3쿠션 가이드 결과 표시

Tensorflow와 Keras를 사용하여 예측 모델을 생성하고 test data를 예상한 결과를 사용자가 찍은 인풋 사진에 올바른 방향으로 가이드 표시를 하기 위해서는, 약간의 계산이 필요하다.

[그림 9] 화살표 가이드를 표시하는 계산을 위한 그림

결국엔 화살표 가이드가 공의 왼쪽 혹은 오른쪽을 가리키게 되는데 그러기 위해선 흰 공의 중심에서 노란 공의 중심으로 그은 직선에서 Θ 만큼 회전시킨 직선을 계산해야 한다.

 $\sin \Theta = r / 1$

radian = $asin(sin \Theta)$

위 식을 통해 쉽게 각도를 구할 수 있고,

X = math.cos(radian) * x - math.sin(radian) * y

 $Y = \text{math.sin}(\text{radian}) *_{X} + \text{math.cos}(\text{radian}) *_{Y}$

위의 식을 통해 노란 공과 접선과 만나는 점을 구할 수 있다. 따라서 흰 공의 중심점과 접선과 만나는 점을 직선으로 그어주면 아래 사진과 같이 가이드 화살표 표시를 할 수 있게 된다.

[그림 10] 3쿠션 가이드 결과 표시

결 론

학습된 모델을 사용하여 test data를 10개 정도 확인했더니 거의 대부분의 데이터가 의도한 라벨과 일치하는 것을 확인할 수 있었고, 일치하지 않더라 도 또 다른 경로로 득점할 수 있다는 것을 확인하였다.

[그림 10] 모델에 test data로 예측한 결과

그리고 또한 거의 대부분의 뒤돌리기, 제각돌리기(안돌리기), 빈 쿠션, 대회전 등의 공 배치에서 정확하게 예측하는 모습을 보여줬다.

이번 연구를 통해 컨투어 분석과 HSV 색 공간 추출, Perspective Transformation 등에 대해 탐구하고 허프 변환을 활용해서 변환된 이미지에서 당구공을 찾을 수 있었다.

또한 딥러닝을 활용해 당구대와 당구공 좌표, 수 구의 경로를 학습시켜 적합한 득점 방법과 경로를 획득할 수 있었다.

만약 신형 당구대에 설치된 디지털 점수판(버드 아이 뷰 카메라가 연동되어 있음)에 이 기술을 접 목한다면 보다 효용성이 높아질 수 있을 것이다.

Ⅳ. 부 록

- GitHub 주소

https://github.com/tjwjdgus12/computer-vision

참 고 문 헌

[1] dl-3cushion-hint - 딥러닝을 이용한 3쿠션 힌트 안드로이드 앱

https://github.com/choonguri/dl-3cushion-hint