

Nombre Asignatura COMPUTACIÓN VISUAL

Unidad Académica Básica

DEPARTAMENTO DE INGENIERÍA DE SISTEMAS E INDUSTRIAL BOGOTA

Horas	4
Créditos	3
Validable	Sí
Porcentaje de Asistencia	80 %
Libre Elección	No

Descripción

Brindar una introducción a los conceptos básicos de la computación gráfica y el procesamiento de imágenes, tomando como eje central el estudio del pipeline gráfico presente en diferentes plataformas modernas, que tienen en común la existencia de hardware dedicado para el procesamiento gráfico.

Conceptos Previos

Álgebra lineal. Algoritmos. Sistemas de comunicación.

Planes Relacionados

Código Nombre

2A74 INGENIERÍA DE SISTEMAS Y COMPUTACIÓN

2933 CIENCIAS DE LA COMPUTACIÓN

INGENIERÍA DE SISTEMAS Y COMPUTACIÓN 2879

Contenido

Semana	Título	Contenidos Principales	Tecnologías
1	Fundamentos Estructuras de Datos Gráficas y Modelado 3D	Estructuras de Datos Gráficas y Modelado 3D. Vértices, aristas, caras. Formatos OBJ, GLTF, STL. Jerarquías y árboles de transformación.	Unity, Three.js, Python
2	Fundamentos de Computación Visual	Visión artificial, percepción visual Transformaciones 2D y homogéneas Filtros, convoluciones Segmentación y binarización	Processing, Python (OpenCV, NumPy), Unity

3	Fundamentos de Geometría y Geometría proyectiva	Proyecciones y coordenadas. Sistemas de referencia. Matrices de cambio de base. Homografías.	Unity, Three.js, Python, OpenGL
4	Pipeline Gráfico	Pipeline gráfico moderno. Rasterización y Z-buffer. Cálculo de normales. Etapas programables vs fijas.	Unity, Three.js, Python
5	Computación Radiométrica y Color	Luz, reflejo, refracción Modelos de color (RGB, HSL, CIE) Iluminación y texturizado	Processing, Unity, Python, Three.js
6	Síntesis Visual y Texturizado 3D	Modelado procedural básico. Mapeo UV y materiales PBR. Shaders simples	Unity, Three.js
7	Animación y Cinemática	Cinemática directa e inversa (FK/IK) Interpolación de movimiento Simulación en robótica	Unity, Three.js, Processing
8	Visualización Interactiva y Dashboards 3D	Sensores en tiempo real UI 3D (sliders, botones) Gráficos integrados	Three.js (dat.GUI), Unity, Python
9	Interfaces BCI, Multimodalidad y TUI	EEG, Muse, OpenBCI Fusión de gestos, voz y mirada Interfaces Tangibles (TUI)	Python (MediaPipe), Unity
10	Fundamentos de Visión por computador	Procesamiento de imágenes. Extracción de características (bordes, esquinas). Descriptores (SIFT, ORB). Coincidencia de patrones. Flujo óptico.	Python (OpenCV, scikit-image), Unity
11	IA para Visión por Computador	Detección de objetos Modelos YOLO, MediaPipe, SAM Aplicaciones en tiempo real con cámara	Python (OpenCV, Torch)
12	Procesamiento Avanzado con IA Visual	Stable Diffusion, ControlNet Segmentación multimodal, CLIP Clasificación asistida por texto	Python (diffusers, CLIP, HuggingFace)
13	Realidad Extendida: VR, AR y MR . Imagen 360	Fundamentos XR UI inmersiva y voz Navegación, passthrough. Imagen 360.	Unity (XR Toolkit), Three.js (WebXR, AR.js)

14	Robótica Visual, SLAM e Imágenes Aéreas	SLAM visual, reconstrucción 3D Fusión RGB, LIDAR, térmico Mapas satelitales	Python (OpenCV, Rasterio), Unity
15	Aplicaciones Avanzadas de Computación Visual	Arte generativo y biomédico Digital twins, interacción espacial Evaluación final	Unity, Python, Three.js
16	Proyecto Final Interdisciplinario	Presentación funcional Demo técnica Evaluación cruzada y reflexiva	Todas las anteriores

Bibliografía recomendada

- 1. Majumder, A., & Gopi, M. (2018). Introduction to visual computing: Core concepts in computer vision, graphics, and image processing. CRC Press. https://doi.org/10.1201/9781315372846
- 2. Shapiro, L. G., & Stockman, G. C. (2001). Computer vision. Prentice Hall.
- 3. Furht, B. (Ed.). (2011). Handbook of augmented reality. Springer. https://doi.org/10.1007/978-1-4614-0064-6
- 4. Cyganek, B., & Siebert, J. P. (2009). An introduction to 3D computer vision techniques and algorithms. Wiley.
- 5. Szeliski, R. (2022). Computer vision: Algorithms and applications (2nd ed.). Springer. https://szeliski.org/Book/
- 6. Marschner, S., & Shirley, P. (2009). Fundamentals of computer graphics (3rd ed.). A K Peters/CRC Press.
- 7. Lengyel, E. (2012). Mathematics for 3D game programming and computer graphics (3rd ed.). Cengage Learning.
- 8. Dunn, F., & Parberry, I. (2011). 3D math primer for graphics and game development (2nd ed.). Jones & Bartlett Learning.

Metodología:

Lecturas 10% Prácticas 10% Presentaciones 20% Ejercicios entregables 20% Provecto 20% Examen final 20%