IN4MATX 133: User Interface Software

Lecture:

Modeling human performance

Today's goals

By the end of today, you should be able to...

- Describe the major components of Fitts's Law
- Explain how Fitts's Law impacts how interfaces should be designed
- Describe approaches for correcting systematic errors in touch performance

Which button would be faster to click on?

В

- (A)A
- ВВ
- © Roughly equal
- D
- E

Which button would be faster to click on?

В

- (A)A
- ВВ
- Roughly equal
- D
- E

Fitts's Law (1954)

- Models time to acquire targets in aimed movement
 - Reaching for control in a cockpit
 - Moving across a dashboard
 - Pulling defective items from a conveyor belt
 - Clicking on icons using a mouse

Fitts's Law (1954)

- Very powerful, widely used
 - Holds for many circumstances (e.g., under water)
 - Allows for comparison among different experiments
 - Used both to measure and predict

Point-select task

Fitts's Law

- MT = a + b log2(A / W + 1)
 - What kind of equation does this look like?

Fitts's Law

- MT = a + b log2(A / W + 1)
 - What kind of equation does this look like?
- y = mx + b
- MT = a + bx, where x = log2(A / W + 1)
 - x is called the Index of Difficulty (ID)
 - As "A" goes up, ID goes up
 - As "W" goes up, ID goes down

Movement Time (MT)

- MT = a + b log2(A / W + 1)
- Time, in seconds, to acquire the target (e.g., click on the button)

Index of Difficulty (ID)

- log2(A / W + 1)
 - Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance or amplitude (A) to target width (W)

Index of Difficulty (ID)

- log2(A / W + 1)
 - Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance or amplitude (A) to target width (W)
- Why is it significant that it is a ratio?
 - Units of A and W don't matter
 - Allows comparison across experiments

Index of Difficulty (ID)

- log2(A / W + 1)
 - Fitts's Law claims that the time to acquire a target increases linearly with the log of the ratio of the movement distance or amplitude (A) to target width (W)
- ID units typically in "bits"
 - Because of association with information capacity and somewhat arbitrary use of base-2 logarithm

Index of Performance (IP)

- MT = a + b log2(A / W + 1)
 - b is slope
- 1/b is called Index of Performance (IP)
 - If MT is in seconds, IP is in bits/second
- Also called "throughput" or "bandwidth"
- a and b depend on the input device

[Fitts's law demo]

http://simonwallner.at/ext/fitts/

"Beating" Fitts's law

- It is the law, right?
 - MT = a + b log2(A/W + 1)
- So how can we reduce movement time?
 - Reduce amplitude (A)
 - Increase width (W)

"Beating" Fitts's law

- Put targets closer together
- Make targets bigger
- Make cursor bigger
- Make impenetrable edges

Pop-up Linear Menu

Which menu will be faster on average?

- (A)A
- (B)B
- © Roughly equal
- D
- E

Pop-up Linear Menu

- (A)A
- ВВ
- © Roughly equal
- D
- E

Fitts's Law in windowing

- Windows 95: missed by a pixel
- Windows XP: good to the end
- Corners and edges make great targets
 - Do not have to move precisely to trigger them
 - They have "infinite" width

Fitts's Law in other domains

- How would Fitts's Law apply to using touch input on a phone?
 - Shorter distances (smaller screen)
- All things being equal, movement times should be lower
 - Shorter distances, faster to move your finger than a mouse

Fitts's Law in other domains

- But in practice, touchscreens on mobile tend not to be much faster
 - Buttons are smaller
 - People tend to be slower near the edges of touchscreens

Modeling input

Modeling mouse position

- Mouse pointer is relatively small
- We model it via X, Y position on the screen
- See whether that X, Y overlaps with a button, for example
 - Targets are usually large enough that "exact" position does not matter

- One interpretation of the problem:
 our fingers are fat
 - We should use tiny styluses to make our our selection more accurate
- Another interpretation: our model of touch position is inaccurate
 - We should make our model better

- How can we improve our model?
- Make the hardware view more closely match the user view

- Hypothesis: yaw, pitch, and roll all impact touch position
 - Additionally, for each person, finger size/shape and mental model impact touch position

Yaw: angle of touch device

Pitch: angle of finger

Roll: rotation of finger

- Ran a study
 - 12 participants touched 600 points each
 - Varied yaw, pitch, and roll

user

minimum button size

Improving the model means that buttons can be 3x smaller and not be any harder to click

Modeling touch input

- Study was very controlled
 - Participant sat in a chair, the screen was on a desk
- How about the other ways that people use their phones?

Modeling phone grip

- People grip their phones in different ways
- Grip changes with phone size, hand size
 - Situational changes (e.g., walking, holding something)
- Can we detect phone grip and update our model?

Modeling phone grip

Modeling phone grip

Modeling phone grip

Modeling phone grip

Error bars show standard error

Mayank Goel, Alex Jansen, Travis Mandel, Shwetak N. Patel, and Jacob O. Wobbrock. 2013. ContextType: using hand posture information to improve mobile touch screen text entry. CHI 2013. https://doi.org/10.1145/2470654.2481386

Summary

- Modeling helps us measure and predict whether a tool or approach is beneficial for a task
- Fitts's law models time taken to click on a target
 - Demonstrates that larger, nearer buttons reduce time taken
- Improved models lead to higher accuracy
 - Adjust for finger angle and rotation rather than assuming that a user intends to touch with the center of their finger
 - Infer grip using phone sensors to improve typing accuracy

Today's goals

By the end of today, you should be able to...

- Describe the major components of Fitts's Law
- Explain how Fitts's Law impacts how interfaces should be designed
- Describe approaches for correcting systematic errors in touch performance