Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. As we have seen in the lecture videos, the dot product of vectors has a lot of applications. Here, you will complete some exercises involving the dot product.

1/1 point

We have seen that the size of a vector with two components is calculated using Pythagoras' theorem, for example the following diagram shows how we calculate the size of the orange vector $\mathbf{r} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$:

In fact, this definition can be extended to any number of dimensions; the size of a vector is the square root of the

sum of the squares of its components. Using this information, what is the size of the vector $\mathbf{s} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$?

(
$$|s| = \sqrt{30}$$

$$\bigcirc |\mathbf{s}| = 10$$

$$\bigcirc$$
 $|\mathbf{s}| = 30$

$$\bigcirc$$
 $|\mathbf{s}| = \sqrt{10}$

The size of the vector is the square root of the sum of the squares of the components.

2. Remember the definition of the dot product from the videos. For two n component vectors, $\mathbf{a}\cdot\mathbf{b}=a_1b_1+a_2b_2+\cdots+a_nb_n$.

1/1 point

What is the dot product of the vectors
$$\mathbf{r}=\begin{bmatrix} -5\\3\\2\\8 \end{bmatrix}$$
 and $\mathbf{s}=\begin{bmatrix} 1\\2\\-1\\0 \end{bmatrix}$?

$$\mathbf{r} \cdot \mathbf{s} = \begin{bmatrix} -5 \\ 6 \\ -2 \end{bmatrix}$$

$$\bigcirc \mathbf{r} \cdot \mathbf{s} = 1$$

✓ Correct

The dot product of two vectors is the total of the component-wise products.

3. The lectures introduced the idea of projecting one vector onto another. The following diagram shows the projection of ${\bf s}$ onto ${\bf r}$ when the vectors are in two dimensions:

Remember that the scalar projection is the size of the green vector. If the angle between ${\bf s}$ and ${\bf r}$ is greater than $\pi/2$, the projection will also have a minus sign.

We can do projection in any number of dimensions. Consider two vectors with three components, $\mathbf{r} = \begin{bmatrix} 3 \\ -i \end{bmatrix}$

and $\mathbf{s} = \begin{bmatrix} 10 \\ 5 \\ -6 \end{bmatrix}$

What is the scalar projection of ${f s}$ onto ${f r}$?

2

 \bigcirc -2

 \bigcirc $-\frac{1}{2}$

 $O^{\frac{1}{2}}$

Correct

The scalar projection of of ${f s}$ onto ${f r}$ can be calculated with the formula $\frac{{f s}\cdot{f r}}{|{f r}|}$

4. Remember that in the projection diagram, the vector projection is the green vector:

Let
$$\mathbf{r}=\begin{bmatrix}3\\-4\\0\end{bmatrix}$$
 and let $\mathbf{s}=\begin{bmatrix}10\\5\\-6\end{bmatrix}$.

What is the vector projection of \boldsymbol{s} onto $\boldsymbol{r}?$

$$\begin{bmatrix}
30 \\
-20 \\
0
\end{bmatrix}$$

1/1 point

1/1 point

