Summary of "Predicting Sales of every product and store on November 2015"

Kaggle Competition

Seungjun (Josh) Kim

https://www.kaggle.com/c/competitive-data-science-predict-future-sales

Given Files

- 1. sales_train.csv the training set. Daily historical data from January 2013 to October 2015.
- 2. test.csv the test set. You need to forecast the sales for these shops and products for November 2015.
- 3. sample_submission.csv a sample submission file in the correct format.
- 4. items.csv supplemental information about the items/products.
- 5. item_categories.csv supplemental information about the items categories.
- 6. shops.csv supplemental information about the shops.

Data Fields

- 7. ID an Id that represents a (Shop, Item) tuple within the test set
- 8. shop_id unique identifier of a shop
- 9. item_id unique identifier of a product
- 10. item_category_id unique identifier of item category
- 11. item_cnt_day number of products sold. You are predicting a monthly amount of this measure
- 12. item_price current price of an item
- 13. date date in format dd/mm/yyyy
- 14. date_block_num a consecutive month number, used for convenience. January 2013 is 0, February 2013 is 1,..., October 2015 is 33
- 15. item_name name of item
- 16. shop_name name of shop
- 17. item_category_name name of item category

Methodology & Analysis

- Combined four datasets(sales_train, items, item_categories, shops) into one
- □ Dropped duplicates
- F Checked for unreasonable values: The "item price" column had unreasonable values (excessively big or minus values). Dropped such values.
- ™ Exploratory Data Analysis(EDA)

Mainly looked at the following three aspects for EDA:

- Monthly Sales over time
- Monthly Sales of different shops over time
- Monthly sales of different item categories over time
- ightarrow Sales peaked at the end(October-December) of each year probably due to end-of-year holiday season
- Feature Engineering

Created new features

Date	year	monthly sales	monthly sales	Item Description	Item Description
			mean	Length	Word Count
Length of Item	Item Category	Length of Shop	Shop Name Word		
Category	Description Word	Name	Count		
Description	Count				

Various Machine Learning Models

```
col = [c for c in train.columns if c not in ['item_cnt_month','ID']]
#Validation
x1 = train[train['date_block_num']<33]
y1 = np.log1p(x1['item_cnt_month'].clip(0.,20.))
x1 = x1[col]
x2 = train[train['date_block_num']==33]
y2 = np.log1p(x2['item_cnt_month'].clip(0.,20.))
x2 = x2[col]</pre>
```

Model	Validation RMSE	Actual RMSE at Kaggle Score Calculator
Linear Regression	0.400294496205	2.52974
Passive Aggressive Regressor	0.469601300906	1.15786
Decision	0.313631350404	1.58800
Tree Regressor(max_depth=3)		
ExtraTreesRegressor(n_estimators=25, n_jobs=-1, max_depth=15)	0.298586931919	1.38177
Lasso LARS(alpha=0.01)	0.437092029485	2.03110
SGD Regressor	7.81039432528	6.49673
AdaBoostRegressor(tree.DecisionTreeRegressor(max_depth=3), n_estimators=100)	0.335047754266	1.71008

→ Passive Aggressive Regressor performed the best among the seven models tested

□ Limitations

- More room for feature engineering
- Haven't really used time-series modeling techniques including ARIMA