## Statistics for Data Science.

URL: <a href="https://www.learndatasci.com/tutorials/data-science-statistics-using-python/">https://www.learndatasci.com/tutorials/data-science-statistics-using-python/</a>)

#### By: Sagun Shakya

GITAM Institute of Science

# **Description of the problem:**

 A public school administrator makes statistical research regarding the poor performance of the students in the school.

### **Data Set:**

 https://raw.githubusercontent.com/LearnDataSci/articleresources/master/Essential%20Statistics/middle\_tn\_schools.csv (https://raw.githubusercontent.com/LearnDataSci/articleresources/master/Essential%20Statistics/middle\_tn\_schools.csv)

## Parameters used with their description:

- · Variable: Definition
- · name: The name of the school
- · school rating: The school's rating
- size: The school's student count
- reduced\_lunch : The percentage of students that got enrolled in reduced lunch
- state\_percentile\_16: The school's percentile in 2016
- state\_percentile\_15: The school's percentile in 2015
- stu teach ratio: The school's student to teacher ratio
- school\_type : The type of school (public, private, magnet, alternative, etc)
- avg score 15: The school's average test score for 2015
- avg\_score\_16: The school's average test score for 2016
- full\_time\_teachers : The school's total full time teachers
- percent black : Percentage of black students at the school
- percent white: Percentage of white students at the school
- · percent asian: Percentage of asian students at the school
- percent hispanic: Percentage of hispanic students at the school

#### NOTE:

 reduced\_lunch is a variable measuring the average percentage of students per school enrolled in a federal program that provides lunches for students from lower-income households.

## Types of statistics used:

- 1. Descriptive statistics:
  - identify patterns in the data.
  - two measures used to describe the data: central tendency and deviation.
- 2. Inferential Statistics:
  - allow us to make hypotheses (or inferences) about a sample that can be applied to the population.

```
In [1]: #imports for the problem.
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import copy
    import os

In [2]: #Changing the working directory to the folder containing the .csv file.
    os.chdir('D:\Sagun Shakya\Python\Basic-Statistics-and-Visualization-master')

In [3]: df = pd.read_csv('middle_tn_schools.csv', index_col = 'name')
    school = copy.deepcopy(df) #creating a virtual copy of the original data
```

# Checking for null values.

```
In [4]: | school.isnull().sum()
Out[4]: school rating
                                0
        size
                                0
        reduced lunch
                                0
        state_percentile_16
                                0
        state_percentile_15
                                6
        stu_teach_ratio
                                0
        school_type
                                 0
                                6
        avg score 15
        avg_score_16
                                0
        full time teachers
                                0
        percent_black
                                0
        percent white
        percent_asian
                                0
        percent hispanic
                                0
        dtype: int64
```

```
In [5]: #dropping null values.
        school.dropna(inplace = True)
        school.isnull().sum()
Out[5]: school_rating
                                0
        size
                                0
        reduced lunch
                                0
        state_percentile_16
                                0
                                0
        state_percentile_15
                                0
        stu_teach_ratio
        school_type
                                0
                                0
        avg score 15
                                0
        avg_score_16
        full time teachers
        percent_black
                                0
        percent_white
        percent_asian
                                0
        percent_hispanic
        dtype: int64
```

## Dimension of the dataframe.

```
In [6]: school.shape
Out[6]: (341, 14)
In [7]: sub = school[['reduced_lunch', 'school_rating']]
```

# Statistical Summary for the numerical data.

|       | school_rating | size        | reduced_lunch | state_percentile_16 | state_percentile_15 | stu_teach_ratio |
|-------|---------------|-------------|---------------|---------------------|---------------------|-----------------|
| count | 341.000000    | 341.000000  | 341.000000    | 341.000000          | 341.000000          | 341.000000      |
| mean  | 2.982405      | 704.923754  | 49.920821     | 59.063930           | 58.249267           | 15.459824       |
| std   | 1.685487      | 400.970851  | 25.379175     | 32.445386           | 32.702630           | 5.728366        |
| min   | 0.000000      | 53.000000   | 2.000000      | 0.500000            | 0.600000            | 7.300000        |
| 25%   | 2.000000      | 424.000000  | 30.000000     | 31.700000           | 27.100000           | 13.700000       |
| 50%   | 3.000000      | 606.000000  | 50.000000     | 67.600000           | 65.800000           | 15.000000       |
| 75%   | 4.000000      | 851.000000  | 71.000000     | 88.200000           | 88.600000           | 16.600000       |
| max   | 5.000000      | 2314.000000 | 98.000000     | 99.800000           | 99.800000           | 111.000000      |
| 4     |               |             |               |                     |                     | <b>&gt;</b>     |

- **reduced\_lunch** is a good proxy for household income which, in turn, must be correlated with the schools' performance.
- Using groupby and describe method.

```
In [12]: sub = school[['reduced_lunch', 'school_rating']]
         sub.groupby(['school_rating']).describe()
```

### Out[12]:

|               | count | mean      | std       | min  | 25%   | 50%  | 75%   | max  |
|---------------|-------|-----------|-----------|------|-------|------|-------|------|
| school_rating |       |           |           |      |       |      |       |      |
| 0.0           | 42.0  | 83.500000 | 8.903959  | 53.0 | 79.25 | 86.0 | 90.00 | 98.0 |
| 1.0           | 38.0  | 74.894737 | 11.943085 | 53.0 | 65.00 | 74.5 | 84.75 | 98.0 |
| 2.0           | 43.0  | 63.976744 | 11.933323 | 37.0 | 54.50 | 62.0 | 73.50 | 88.0 |
| 3.0           | 56.0  | 50.285714 | 13.550866 | 24.0 | 41.00 | 48.5 | 63.00 | 78.0 |
| 4.0           | 85.0  | 40.458824 | 16.002643 | 4.0  | 30.00 | 41.0 | 50.00 | 86.0 |
| 5.0           | 77.0  | 21.610390 | 17.766879 | 2.0  | 8.00  | 19.0 | 30.00 | 87.0 |

```
In [13]: sub.corr()
```

## Out[13]:

|               | reaucea_iuncn | school_rating |
|---------------|---------------|---------------|
| reduced_lunch | 1.000000      | -0.818037     |
| school_rating | -0.818037     | 1.000000      |

reduced\_lunch

Creating a Box - and - Whisker Plot.

```
In [14]: plt.figure(figsize = (10,8))
    sns.set(style = 'whitegrid', font_scale = 1.2)

sns.boxplot(x = 'reduced_lunch', y = 'school_rating', data = school, palette = 'Set2',
    plt.show()
```



#### **Conclusion:**

• The higher rated schools have lower proportions of students having the 'reduced\_lunch' scheme.

# Linear Correlation between 'reduced\_lunch' and 'school\_rating'.

```
In [16]:
          plt.figure(figsize = (10,8))
          sns.set(style = 'whitegrid', font_scale = 1.2)
          sns.regplot(y = school['school_rating'], x= school['reduced_lunch'], scatter= True, mar
          plt.show()
             6
             5
             4
           school_rating
             2
              1
             0
```

40

#### **Conclusion:**

0

20

• There exists a negative correlation between these two variables meaning that as the number of students having the 'reduced\_lunch' scheme increases in a school, the rating can decrease (can be set up for hypothesis testing in the later stages of the same research).

60

reduced\_lunch

80

100

# Creating a heatmap (correlation matrix) for checking which variables further affect the school\_rating.

In [17]: school.corr()

Out[17]:

|                     | school_rating | size      | reduced_lunch | state_percentile_16 | state_percentile_15 | stu_tea |
|---------------------|---------------|-----------|---------------|---------------------|---------------------|---------|
| school_rating       | 1.000000      | 0.174402  | -0.818037     | 0.985476            | 0.937817            |         |
| size                | 0.174402      | 1.000000  | -0.268493     | 0.165095            | 0.162887            |         |
| reduced_lunch       | -0.818037     | -0.268493 | 1.000000      | -0.819148           | -0.825085           | -       |
| state_percentile_16 | 0.985476      | 0.165095  | -0.819148     | 1.000000            | 0.949694            |         |
| state_percentile_15 | 0.937817      | 0.162887  | -0.825085     | 0.949694            | 1.000000            |         |
| stu_teach_ratio     | 0.199151      | 0.140678  | -0.201650     | 0.181639            | 0.141066            |         |
| avg_score_15        | 0.941336      | 0.161788  | -0.839536     | 0.949197            | 0.991847            |         |
| avg_score_16        | 0.982491      | 0.136475  | -0.820004     | 0.994116            | 0.946101            |         |
| full_time_teachers  | 0.114626      | 0.966971  | -0.201282     | 0.110210            | 0.109569            |         |
| percent_black       | -0.606631     | -0.136791 | 0.561948      | -0.587216           | -0.564929           | -       |
| percent_white       | 0.656134      | 0.092990  | -0.674078     | 0.643632            | 0.612183            |         |
| percent_asian       | 0.156934      | 0.189146  | -0.220604     | 0.145926            | 0.181822            |         |
| percent_hispanic    | -0.387348     | -0.017239 | 0.499779      | -0.395358           | -0.371708           | -       |
|                     |               |           |               |                     |                     |         |

```
In [18]: cor = school.corr().columns.values
    print(cor)
    print(type(cor))
```

```
['school_rating' 'size' 'reduced_lunch' 'state_percentile_16'
  'state_percentile_15' 'stu_teach_ratio' 'avg_score_15' 'avg_score_16'
  'full_time_teachers' 'percent_black' 'percent_white' 'percent_asian'
  'percent_hispanic']
<class 'numpy.ndarray'>
```



Out[19]: "\nDescription of the figure:\n- Red cells indicate positive correlation.\n- Blue cell s indicate negative correlation.\n- White cells indicate no correlation. \n- The darke r the colors, the stronger the correlation (positive or negative) between those two variables as indicated by\n cmap = 'coolwarm'.\n"

## The End.

# Prepared by: Sagun Shakya

• GITAM Institute of Science.