Programme n°25

MECANIQUE

M8 Mouvement d'un solide en rotation autour d'un axe fixe

Cours et exercices

M9 Mouvement dans un champ de force centrale (Cours et exercices)

- Forces centrales conservatives
- · Lois générales de conservation
- Etude du mouvement circulaire : La vitesse, l'énergie, la période, le mouvement des planètes
- Les satellites de la Terre
- Hypothèses
- Les vitesses cosmiques
- Le satellite géostationnaire

Lo datomio goodationnano	
5. Mouvements dans un champ de force centrale conservatif	
Point matériel soumis à un seul champ de force centrale.	Déduire de la loi du moment cinétique la conservation du moment cinétique.
	Connaître les conséquences de la conservation du moment cinétique : mouvement plan, loi des aires.
Énergie potentielle effective. État lié et état de diffusion.	Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective.
	Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective. Relier le caractère borné à la valeur de l'énergie mécanique.
Champ newtonien. Lois de Kepler.	Énoncer les lois de Kepler pour les planètes et les transposer au cas des satellites terrestres.
Cas particulier du mouvement circulaire : satellite, planète.	Montrer que le mouvement est uniforme et savoir calculer sa période.
	Établir la troisième loi de Kepler dans le cas particulier de la trajectoire circulaire. Exploiter sans démonstration sa généralisation au cas d'une trajectoire elliptique.
Satellite géostationnaire.	Calculer l'altitude du satellite et justifier sa localisation dans le plan équatorial.
Énergie mécanique dans le cas du mouvement circulaire puis dans le cas du mouvement elliptique.	Exprimer l'énergie mécanique pour le mouvement circulaire.
	Exprimer l'énergie mécanique pour le mouvement elliptique en fonction du demi-grand axe.
Vitesses cosmiques : vitesse en orbite basse et vitesse de libération.	Exprimer ces vitesses et connaître leur ordre de grandeur en dynamique terrestre.

INTRODUCTION A LA MECANIQUE QUANTIQUE (Cours uniquement)

- Dualité onde-particule de la lumière
- Le photon
- Quanta d'énergie
- L'effet photoélectrique
- Caractéristique du photon
- Optique géométrique
- Quelques expériences avec un ou des photons
- → La lame semi réfléchissante
- → Franges d'interférences et photons
- Dualité onde-particule de la matière La relation de Louis De Broglie

 - Interférences de particules
 - Fonctions d'one et probabilité → Mise en évidence
 - → Notion de fonction d'onde

- Quantification de l'énergie d'une particule confinée
- Notion de quantification, équation de Schrödinger
- Particule dans un puits de potentiel infini
- Analogie avec les modes propres d'une corde vibrante

4. Introduction au monde quantique	
Dualité onde-particule pour la lumière et la matière.	Évaluer des ordres de grandeurs typiques
Relations de Planck-Einstein et de Louis de Broglie.	intervenant dans des phénomènes quantiques.
	Approche documentaire : décrire un exemple d'expérience mettant en évidence la nécessité de la notion de photon.
	Approche documentaire : décrire un exemple d'expérience illustrant la notion d'ondes de matière.
Interprétation probabiliste associée à la fonction d'onde : approche qualitative.	Interpréter une expérience d'interférences (matière ou lumière) « particule par particule » en termes probabilistes.
Quantification de l'énergie d'une particule libre confinée 1D.	Obtenir les niveaux d'énergie par analogie avec les modes propres d'une corde vibrante.
	Établir le lien qualitatif entre confinement spatial et quantification.

SOLUTIONS AQUEUSES

AQ2 Réactions de dissolution ou de précipitation

Cours et exercices

AQ3 L'oxydoréduction (Cours et exercices)

- Concept oxydant-réducteur Echanges électroniques
 - Normalité
- Le nombre d'oxydation Conventions
 - Nombres d'oxydations extrêmes et classification périodique
 - Nombre d'oxydation et couple redox
 - Dismutation ,amphotérisation
 - Application à l'écriture des réactions
- Les piles et potentiels Principe d'une pile
 - Nécessité d'une électrode de référence
 - Le potentiel de Nernst
- Différents types d'électrodes
- Applications Couples redox dépendants
 - Recherche d'une constante d'équilibre
- Equilibre redox
- Calcul de la constante d'équilibre
- Prévision d'évolution \rightarrow Seuls Ox_1 et Red_2 sont présents en solution
 - → Les formes Ox et Red des deux couples sont présentes
 - \rightarrow Exemples

Oxydants et réducteurs	
Nombre d'oxydation.	Prévoir les nombres d'oxydation extrêmes d'un
Exemples usuels : nom, nature et formule des ions	élément à partir de sa position dans le tableau
thiosulfate, permanganate, dichromate,	périodique.
hypochlorite, du peroxyde d'hydrogène.	Identifier l'oxydant et le réducteur d'un couple.
	Décrire le fonctionnement d'une pile à partir d'une
Potentiel d'électrode, formule de Nernst, électrodes	mesure de tension à vide ou à partir des potentiels
de référence.	d'électrodes.
Diagrammes de prédominance ou d'existence.	Utiliser les diagrammes de prédominance ou
	d'existence pour prévoir les espèces incompatibles
	ou la nature des espèces majoritaires.
Réactions d'oxydo-réduction	
Aspect thermodynamique.	Prévoir qualitativement ou quantitativement le
Dismutation et médiamutation.	caractère thermodynamiquement favorisé ou
	défavorisé d'une réaction d'oxydo-réduction.
	Pratiquer une démarche expérimentale mettant
	en jeu des réactions d'oxydo-réduction.

TP

lodométrie

Pile redox pour la mesure d'un pKs ou les caractéristiques d'une complexe (Ag(NH₃)₂+)