

2020 Mathematical Methods Trial Exam 2 Solutions © itute 2020

SECTION A – Multiple-choice questions

1	2	3	4	5	6	7	8	9	10
В	В	D	C	Е	В	A	В	Α	C
11	12	13	14	15	16	17	18	19	20
D	Α	С	D	В	Α	Е	С	Е	Α

Q1
$$y = ax^2 + \frac{b}{a}$$
, $ay = (ax)^2 + b$

Q2
$$a_0 = 1$$
, $a_1 = -1$, $a_2 = 1$, $a_3 = -1$, ..., $a_{n-1} = 1$
: sum = 1

Q3
$$\alpha = \beta$$
, .: $\alpha^{-1} = \beta^{-1}$

Q4
$$5^{\log_a b} = 5^{\frac{\log_5 b}{\log_5 a}} = \left(5^{\log_5 b}\right)^{\frac{1}{\log_5 a}} = b^{\frac{1}{\log_5 a}} = b^{(\log_5 a)^{-1}}$$

Q5

Q6
$$\frac{2^{n}-1}{1-0} = \frac{\int_{0}^{1} (x+1)^{n} dx}{1-0}, n \approx 1.53$$

Q7
$$A = 4 \times \int_{0}^{1} \left(x - \frac{1}{3} x (4x^{2} - 1) \right) dx = \frac{4}{3}$$

Q8 $y = \sin\left(\frac{x}{m}\right)$ is an odd function. The number of intersections it makes with y = mx cannot be 2.

Q9 $y = a\cos(nx)$ is an even function. When b > 1, $0 < \frac{1}{b} < 1$. If p is a solution, then -p is also a solution. .: Sum = 0

Q10
$$g'(b) = \frac{1}{f'(a)} = \frac{1}{b} = b^{-1}$$

Q12
$$f(t+10) = f(t)$$
 has a period of 10.
Given $f(5+a) = -f(5-a)$ for $0 < a < 5$, .: $f(6) = -f(4)$
Hence $f(26) = -f(34)$.

Q13 If the common tangent touches y = f(x) at (a, b), then it touches y = f(x+h)+k at (a-h, b+k).

Gradient of the common tangent =
$$\frac{(b+k)-b}{(a-h)-a} = -\frac{k}{h}$$

Q14 Let P(x, y) on the curve be the point closest to O.

Gradient $OP = \frac{y}{x}$, gradient of tangent to curve at $P = \frac{1}{x}$.

At
$$P$$
, $\frac{y}{x} \times \frac{1}{x} = -1$, $x^2 + y = 0$, $x^2 + \log_e x = 0$

Q15
$$a \times 1 + \int_{2}^{4} \left(\left(\frac{b-a}{2} \right) x + 2a - b \right) dx = 1, :: 2a + b = 1$$

Q16
$$\Pr(B') = \Pr(A \cap B') + \Pr(A' \cap B')$$

 $\Pr(A \cap B') = \Pr(B') - \Pr(A' \cap B') = \frac{2}{3} - \frac{7}{12} = \frac{1}{12}$
 $\Pr(A' \cup B)' = \Pr(A \cap B') = \frac{1}{12}$

Q18 Sum of hidden numbers = 63 - 58 = 5Possibilities: (113), (131), (311), (122), (212), (221)

$$Pr(58) = \frac{6}{6 \times 6 \times 6} = \frac{1}{36}$$

Q19
$$E(\hat{P}) = 0.20$$
, $sd(\hat{P}) = \sqrt{\frac{0.20 \times 0.80}{100}} = 0.04$
 $Pr(\hat{P} < 0.22) \approx 0.6915$

$$Pr(at least one) = 1 - Pr(none) \approx 1 - 0.0028 = 0.9972$$

Q20
$$\Pr(X \le 1) < 0.1$$

 $\Pr(X = 0) + \Pr(X = 1) < 0.1$
 $(0.2)^n + n(0.2^{n-1})(0.8) < 1, ... n \ge 4$

SECTION B

Q1a
$$h = \frac{2}{9} \left(\frac{10}{t+1} - 1 \right) = 0$$
, $t = 9$, time taken = 9.000 min.

Q1b
$$V(t) = \pi \times 1^2 \times \frac{2}{9} \left(\frac{10}{t+1} - 1 \right), \ \frac{dV}{dt} = -\frac{2\pi}{9} \times \frac{10}{(t+1)^2}$$

$$\left| \frac{dV}{dt} \right| = \frac{20\pi}{9(t+1)^2} \text{ m}^3 \text{ min}^{-1}$$

Q1c Max =
$$\frac{20\pi}{9}$$
 m³ min⁻¹, min = $\frac{2\pi}{90}$ m³ min⁻¹

Q1di At lowest level,
$$\frac{dV}{dt} = 1 - \frac{20\pi}{9(t+1)^2} = 0$$
, $(t+1)^2 = \frac{20\pi}{9}$

Q1dii
$$V(t) = 1 \times t + \frac{2\pi}{9} \left(\frac{10}{t+1} - 1 \right)$$
,

$$V(1.642) \approx 1.642 + \frac{2\pi}{9} \left(\frac{10}{1.642 + 1} - 1 \right) \approx 3.586 \,\mathrm{m}^3$$

Q1diii
$$V(t) = 1 \times t + \frac{2\pi}{9} \left(\frac{10}{t+1} - 1 \right) = 2\pi, \ t \approx 5.981 \text{ min.}$$

Q1div Let $r \text{ m}^3 \text{min}^{-1}$ be the constant rate,

$$r \times 9 + \frac{2\pi}{9} \left(\frac{10}{9+1} - 1 \right) = 2\pi , \ r = \frac{2\pi}{9} \approx 0.698$$

Q2a

$$PQ = \sqrt{1 - r^2} ,$$

Area E = area
$$\triangle POQ$$
 - sector F = $\frac{1}{2}r\sqrt{1-r^2} - \frac{1}{2}r^2\theta$

A = area of circle + 2×area E =
$$\pi r^2 + r\sqrt{1-r^2} - r^2\theta$$

Q2b
$$0 < r < 1$$

Q2ci
$$\lim_{r\to 1} \theta = 0$$

Q2cii
$$\lim_{r \to 1} A = \pi \times 1^2 + 1\sqrt{1 - 1^2} - 1^2 \times 0 = \pi$$

2

Q2di
$$\frac{dA}{dr} = 2\pi r + \sqrt{1 - r^2} - 2r\cos^{-1} r$$
, $0 < r < 1$

Q2dii
$$0 < r < 1, :: 0 < \theta < \frac{\pi}{2}$$

$$\therefore \pi r + \sqrt{1 - r^2} < \frac{dA}{dr} < 2\pi r + \sqrt{1 - r^2} , \therefore \frac{dA}{dr} > 0$$

A(r) is a strictly increasing function in 0 < r < 1

Q2e

Q3a
$$\frac{2\pi}{m} = 12$$
, $m \approx 0.5236$

Q3b
$$T_P = 12 \times \frac{34}{24} = 17$$
, $\frac{2\pi}{n} = 17$, $n \approx 0.3696$

Q3c
$$h_P(t) = 17\sin(0.3696t) + 20 = 17\cos\left(\frac{\pi}{2} - 0.3696t\right) + 20$$

= $17\cos(0.3696(4.25 - t)) + 20$

Q3d
$$h_0(5) = 12\sin(0.5236 \times 5) + 34.95 \approx 40.95$$

Q3e
$$h_p(t) = 17 \sin(0.3696t) + 20 = 30$$

$$t = \frac{1}{0.3696} \sin^{-1} \left(\frac{10}{17}\right) \approx 1.70$$

Q3f
$$t \approx 7.03 \ (\pm 0.02)$$

Q3g $LCM(T_P, T_Q) = LCM(12,17) = 204$ s or by graphs (see below)

Q4a
$$y = 5e^{\frac{x}{3}-2} + 5$$
, $\frac{y}{5} - 1 = e^{\frac{x}{3}-2}$

Sequence of transformations: Right 2, up 1, dilate from *y*-axis by 3, dilate from *x*-axis by 5.

$$c = -2$$
, $d = -1$, $a = 3$, $b = 5$

Q4b Equation of curve B:
$$\frac{x}{5} - 1 = e^{\frac{y}{3} - 2}$$
, $\frac{y}{3} - 2 = \log_e \left(\frac{x}{5} - 1\right)$

$$y = 3\log_e\left(\frac{x}{5} - 1\right) + 6$$

Q4c Range of A: When x = 0, $y = 5e^{-2} + 5$

Domain of B is the range of A, i.e. $\left[5e^{-2} + 5, 40\right]$

Curve B: When
$$x = 40$$
, $y = 3\log_e \left(\frac{40}{5} - 1\right) + 6 = 3\log_e 7 + 6$

Range of B is $[0, 3\log_{e} 7 + 6]$

Q4d Curve A:
$$y = 5e^{\frac{x}{3}-2} + 5$$
. Let $\frac{dy}{dx} = \frac{5}{3}e^{\frac{x}{3}-2} = 1$, $\frac{x}{3} - 2 = \log_e \frac{3}{5}$

$$x = 3\log_e \frac{3}{5} + 6$$
, $y = 3 + 5 = 8$, $\left(3\log_e \frac{3}{5} + 6, 8\right)$

Curve B:
$$(8, 3\log_e \frac{3}{5} + 6)$$

Shortest distance

$$= \sqrt{\left(8 - 3\log_e \frac{3}{5} - 6\right)^2 + \left(3\log_e \frac{3}{5} + 6 - 8\right)^2} = \sqrt{2}\left(2 - 3\log_e \frac{3}{5}\right)$$

Q4e Area between curve A and curve B

$$= 40^2 - 2 \int_{5e^{-2} + 5}^{40} \left(3\log_e \left(\frac{x}{5} - 1 \right) + 6 \right) dx \approx 977.30 \text{ m}^2$$

Q4f At
$$(a, b)$$
, $\frac{dy}{dx} = \frac{5}{3}e^{\frac{x}{3}-2} = \frac{5}{3}e^{\frac{a}{3}-2}$, gradient from (p, p) to

$$(a,b) = \frac{p-b}{p-a}$$
, $\therefore \frac{5}{3}e^{\frac{a}{3}-2} \times \frac{p-b}{p-a} = -1$, $\frac{p-b}{p-a} = -\frac{3}{5}e^{2-\frac{a}{3}}$

Q4g
$$p = 25.17$$

3

Q5a $k \times \text{area under graph} = 1$

$$k\left(\frac{1}{2}(2\times0.5+3\times3)+\frac{1}{2}(0.5+3)3\right)=1, \ k=\frac{4}{41}$$

Q5b Pr(bus A late by > 5) =
$$\frac{4}{41} \left(\frac{1}{2} \times 3 \times 3 \right) \approx 0.4390$$

Q5c Pr(miss either bus)

= Pr(bus A late by < 7) + Pr(bus B late by < 2)

 $-\Pr(\text{bus A late by} < 7 \text{ and bus B late by} < 2)$

$$= \left(1 - \frac{4}{41} \left(\frac{1}{2} \times 1 \times 1\right)\right) + \frac{4}{41} \left(\frac{1}{2} \times 0.5 \times 2\right)$$
$$- \left(1 - \frac{4}{41} \left(\frac{1}{2} \times 1 \times 1\right)\right) \times \frac{4}{41} \left(\frac{1}{2} \times 0.5 \times 2\right) \approx 0.9536$$

Q5d Binomial: $p \approx 0.4390244$, n = 5Pr $(X \ge 2) \approx 0.7271$

Q5e

$$f(t) = \begin{cases} \frac{t}{4} & 0 \le t \le 2\\ \frac{5t-7}{6} & 2 < t \le 5\\ 8-t & 5 < t \le 8\\ 0 & \text{elsewhere} \end{cases}$$

Mean

$$= \int_{0}^{2} t \times kf(t)dt + \int_{2}^{5} t \times kf(t)dt + \int_{5}^{8} t \times kf(t)dt$$
$$= \frac{8}{123} + \frac{81}{41} + \frac{108}{41} = \frac{575}{123} \approx 4.674797$$

Q5f
$$\int_{4.674797}^{8} kf(t)dt \approx 0.5299$$

Q5g Binomial: n = 20, $p \approx 0.529907$ Pr $(X = 12) \approx 0.1473$

Q5h
$$\left(\frac{11}{20} - 1.96\sqrt{\frac{\frac{11}{20} \times \frac{9}{20}}{20}}, \frac{11}{20} + 1.96\sqrt{\frac{\frac{11}{20} \times \frac{9}{20}}{20}}\right)$$

 $\approx (0.3320, 0.7680)$

Let p be the long term proportion of week days the 7:35 am bus of

Company B is late for more than $\frac{575}{123}$ min.

If many similar surveys were carried out and the 95% confidence interval calculated in each survey, 95% of them would have p in the interval.

Please inform mathline@itute.com re conceptual and/or mathematical errors