DPM Gradient Computation

January 11, 2025

The gradient w.r.t \mathbf{w} can be rewritten as

$$G_{\mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j \neq i} \frac{\exp((E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{j}) - E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \zeta_{j})/\tau)}{\exp(-\xi/\tau) + \sum_{j' \neq i} \exp((E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{j'}) - E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \zeta_{j'})/\tau)} (\nabla_{\mathbf{w}} E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{j}) - \nabla_{\mathbf{w}} E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i})) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{B-1}{n-1} \sum_{j \neq i} \frac{\exp((E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{j}) - E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \zeta_{j})/\tau)}{\frac{B-1}{n-1} \exp(-\xi/\tau) + \frac{B-1}{n-1} \sum_{j' \neq i} \exp((E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{j'}) - E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \zeta_{j'})/\tau)} (\nabla_{\mathbf{w}} E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{j}) - \nabla_{\mathbf{w}} E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i})) \right)$$

$$(1)$$

We use $s^{(i)}$ to estimate $\frac{B-1}{n-1}\sum_{j'\neq i}\exp((E_{\mathbf{w}}(\mathbf{x}_i,\mathbf{y}_{j'})-E_{\mathbf{w}}(\mathbf{x}_i,\mathbf{y}_i)-\zeta_{j'})/\tau)$, which is

$$s^{(i)} \leftarrow (1 - \gamma)s^{(i)} + \gamma \sum_{j \in \mathcal{B} \setminus \{i\}} \exp((E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_{j'}) - E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) - \zeta_{j'})/\tau)$$

The stochastic gradient estimator is

$$\hat{G}_{\mathbf{w}} = \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\sum_{j \in \mathcal{B} \setminus \{i\}} \frac{\exp((E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_j) - E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) - \zeta_j)/\tau)}{\frac{B-1}{n-1} \exp(-\xi/\tau) + s^{(i)}} (\nabla_{\mathbf{w}} E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_j) - \nabla_{\mathbf{w}} E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i)) \right)$$

This corresponds to Line 592 - 633 in the code and the term $\frac{B-1}{n-1}\exp(-\xi/\tau)$ is called offset. The red part above is computed by autodiff.

The full derivative w.r.t. $\zeta^{(j)}$ can be written as

$$G_{\zeta^{(j)}} = -\frac{1}{n} \sum_{i=1}^{n} \frac{\frac{1}{n-1} \exp((E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{j}) - E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \zeta^{(j)})/\tau)}{\frac{1}{n-1} \sum_{j'=1}^{n} \exp((E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{j'}) - E_{\mathbf{w}}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \zeta^{(j')})/\tau)} + \frac{1}{n}.$$

In $G_{\zeta^{(j)}}$, we need an estimator $\tilde{s}^{(i)}$ of $\frac{1}{n-1}\sum_{j'=1}^{n}\exp((E_{\mathbf{w}}(\mathbf{x}_i,\mathbf{y}_{j'})-E_{\mathbf{w}}(\mathbf{x}_i,\mathbf{y}_i)-\zeta_{j'})/\tau)$. We can obtain $\tilde{s}^{(i)}$ from $s^{(i)}$, where $s^{(i)} \leftarrow (1-\gamma)s^{(i)} + \gamma\sum_{j\in\mathcal{B}\setminus\{i\}}\exp((E_{\mathbf{w}}(\mathbf{x}_i,\mathbf{y}_{j'})-E_{\mathbf{w}}(\mathbf{x}_i,\mathbf{y}_i)-\zeta_{j'})/\tau)$ is the moving average estimator of $\frac{B-1}{n-1}\sum_{j'\neq i}\exp((E_{\mathbf{w}}(\mathbf{x}_i,\mathbf{y}_{j'})-E_{\mathbf{w}}(\mathbf{x}_i,\mathbf{y}_i)-\zeta_{j'})/\tau)$. Note that

$$\frac{1}{n-1} \sum_{j'=1}^{n} \exp((E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_{j'}) - E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) - \zeta_{j'})/\tau)$$

$$= \frac{1}{n-1} \exp(-\zeta^{(i)}/\tau) + \frac{1}{B-1} \left(\frac{B-1}{n-1} \sum_{j'\neq i} \exp((E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_{j'}) - E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) - \zeta_{j'})/\tau) \right).$$

Then, we use

$$\tilde{s}^{(i)} = \frac{1}{n-1} \exp(-\zeta^{(i)}/\tau) + \frac{1}{B-1} s^{(i)}.$$

Then, the stochastic derivative w.r.t. $\zeta^{(j)}$, $j \in \mathcal{B}$ can be defined as

$$\hat{G}_{\zeta^{(j)}} = -\frac{1}{B} \sum_{i \in \mathcal{B}} \frac{\frac{1}{n-1} \exp((E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_j) - E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) - \zeta^{(j)})/\tau)}{\tilde{s}^{(i)}} + \frac{1}{n}$$

$$= -\frac{1}{B} \sum_{i \in \mathcal{B}} \frac{\frac{1}{n-1} \exp((E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_j) - E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) - \zeta^{(j)})/\tau)}{\frac{1}{n-1} \exp(-\zeta^{(i)}/\tau) + \frac{1}{B-1} s^{(i)}} + \frac{1}{n}.$$

In our implementation, we rescale the stochastic derivative w.r.t. $\zeta^{(j)}$ for the convenience of tuning the learning rate. The stochastic derivative rescaled by n is

$$n\hat{G}_{\zeta^{(j)}} = -\frac{n}{n-1} \frac{1}{B} \sum_{i \in \mathcal{B}} \frac{\exp((E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_j) - E_{\mathbf{w}}(\mathbf{x}_i, \mathbf{y}_i) - \zeta^{(j)})/\tau)}{\frac{1}{n-1} \exp(-\zeta^{(i)}/\tau) + \frac{1}{B-1} s^{(i)}} + 1.$$

This corresponds to Line 645 - 675 in the code and the term $\frac{1}{n-1}\exp(-\zeta^{(i)}/\tau)$ is called offset_tilde.