Анализ на постоянно-токов режим на биполярен транзистор

1 Режими на работа на биполярен транзистор в схема общ емитер

1.1 Активен режим

$$U_{BE} = 0.7V \quad 0 < I_B \le I_{Bsat}$$

$$I_C = \beta I_B \quad I_C = \alpha I_E \quad I_E = (\beta + 1)I_B$$

1.2 Режим на насищане

$$U_{BE} = 0.7V \quad I_B > I_{Bsat}$$
$$I_C = I_{Csat}$$

1.3 Режим на отсечка

$$U_{BE} < 0.7V$$

$$I_B = 0 \quad I_C = 0 \quad I_E = 0$$

Фигура 1: Изходна характеристика на ВЈТ в схема с общ емитер.

2 Анализ

На фигура 2 е показана схема на усилвател с биполярен NPN транзистор свързан в общ емитер. Целта на анализа е да се определят $U_{BE},\,U_{CE},\,I_{B}$ и $I_{C}.$

Фигура 2: NPN транзистор в схема с общ емитер.

• Изчисляваме базовият ток на насищане I_{Bsat}

$$I_{Csat} = \frac{U_{CC}}{R_C} \quad I_{Bsat} = \frac{I_{Csat}}{\beta}$$

• Изчисляваме базовият ток I_B Според законът на Кирхоф за напреженията:

$$U_{BB} - I_B R_B - U_{BE} = 0$$

$$I_B = \frac{U_{BB} - U_{BE}}{R_B}$$

Ако за I_B се получи отрицателна стойност, приемеме че $I_B = 0$.

• Определяме режима на работа на транзистора

Ако при изчисленията в предишната стъпка е получено $I_B = 0$ то транзисторът е в режим на отсечка.

Ако $I_B > 0$ то сравняваме с I_{Bsat}

$$I_B > I_{Bsat} \Rightarrow$$
 режим на насищане

$$I_B \leq I_{Bsat} \Rightarrow$$
 активен режим

- Изчисляваме колекторния ток I_C
 - режим на отсечка $\Rightarrow I_C = 0$
 - режим на насищане $\Rightarrow I_C = I_{Csat}$
 - активен режим $\Rightarrow I_C = \beta I_B$
- Изчисляваме напрежението колектор-емитер U_{CE}

Според законът на Кирхоф за напреженията:

$$U_{CC} - I_C R_C - U_{CE} = 0$$

$$U_{CE} = U_{CC} - I_C R_C$$

3 Пример — активен режим

Определете работната точка на транзистора в схемата от фигура 2. Транзисторът има коефициен на усилване по ток $\beta=300.~R_B=10k\Omega,~R_C=100\Omega,~U_{CC}=9V$ и $U_{BB}=3V$.

• Изчисляваме I_{Bsat}

$$I_{Csat} = \frac{U_{CC}}{R_C} \quad I_{Csat} = \frac{9V}{100\Omega} = 90mA$$

$$I_{Bsat} = \frac{I_{Csat}}{\beta} \quad I_{Bsat} = \frac{90mA}{300} = 0.3mA$$

• Изчисляваме I_B

$$I_{BB} - I_{B}R_{B} - U_{BE} = 0$$

$$I_{B} = \frac{U_{BB} - U_{BE}}{R_{B}} = \frac{3V - 0.7V}{10k\Omega} = 0.23mA$$

• Определяме режима на работа на транзистора

$$I_B = 0.23 mA \le I_{Bsat} = 0.3 mA \Rightarrow$$
 активен режим

ullet Изчисляваме I_C

Тъй като транзисторът е в активен режим, получаваме

$$I_C = \beta I_B \quad I_C = 300 \cdot 0.23 mA = 69 mA$$

• Изчисляваме U_{CE}

$$U_{CE} = U_{CC} - I_{CR} = 9V - 69mA \cdot 100\Omega = 9 - 6.9 = 2.1V$$

Резултат

Режим	активен
U_{BE}	0.7V
I_B	$0.23 \mathrm{mA}$
I_C	69mA
U_{CE}	2.1V

4 Пример — режим на насищане

Определете работната точка на транзистора в схемата от фигура 2. Транзисторът има коефициен на усилване по ток $\beta=500.~R_B=10k\Omega,~R_C=100\Omega,~U_{CC}=9V$ и $U_{BB}=3V$.

• Изчисляваме I_{Bsat}

$$I_{Csat} = \frac{U_{CC}}{R_C} \quad I_{Csat} = \frac{9V}{100\Omega} = 90mA$$

$$I_{Bsat} = \frac{I_{Csat}}{\beta} \quad I_{Bsat} = \frac{90mA}{500} = 0.18mA$$

• Изчисляваме I_B

$$I_{BB} - I_{B}R_{B} - U_{BE} = 0$$

$$I_{B} = \frac{U_{BB} - U_{BE}}{R_{B}} = \frac{3V - 0.7V}{10k\Omega} = 0.23mA$$

• Определяме режима на работа на транзистора

$$I_B = 0.23 mA > I_{Bsat} = 0.18 mA \Rightarrow$$
 режим на насищане

ullet Изчисляваме I_C

Тъй като транзисторът е в режим на насищане

$$I_C = I_{Csat} = 90mA$$

• Изчисляваме U_{CE}

$$U_{CE} = U_{CC} - I_{C}R_{C} = 9V - 90mA \cdot 100\Omega = 9 - 9 = 0V$$

Резултат

Режим	насищане
U_{BE}	0.7V
I_B	$0.23 \mathrm{mA}$
I_C	90mA
U_{CE}	0V

5 Пример — режим на отсечка

Определете работната точка на транзистора в схемата от фигура 2. Транзисторът има коефициен на усилване по ток $\beta=100.~R_B=10k\Omega,~R_C=100\Omega,~U_{CC}=9V$ и $U_{BB}=100mV$.

• Изчисляваме I_{Bsat}

$$I_{Csat} = \frac{U_{CC}}{R_C} \quad I_{Csat} = \frac{9V}{100\Omega} = 90mA$$

$$I_{Bsat} = \frac{I_{Csat}}{\beta} \quad I_{Bsat} = \frac{90mA}{100} = 0.9mA$$

• Изчисляваме I_B

$$I_{BB} - I_{B}R_{B} - U_{BE} = 0$$

$$I_{B} = \frac{U_{BB} - U_{BE}}{R_{B}} = \frac{0.1V - 0.7V}{10k\Omega} = -0.06mA$$

Тъй като за I_B се получи отрицателна стойност, приемеме че $I_B=0.$

• Определяме режима на работа на транзистора

$$I_B = 0 \Rightarrow$$
 режим на отсечка

ullet Изчисляваме I_C

Тъй като транзисторът е в режим на отсечка

$$I_C = 0$$

• Изчисляваме U_{CE}

$$U_{CE} = U_{CC} - I_{CR} = 9V - 0 \cdot 100\Omega = 9 - 0 = 9V$$

Резултат

Режим	отсечка
U_{BE}	100mV
I_B	0
I_C	0
U_{CE}	9V