легко устанавливается из правил дифференцирования, но мы не будем специально следить за этим, чтобы не удлинять изложение.

Пример 1. Равномерное движение:

$$z(t)=z_0+vt$$
.

Тогда z'(t) = v — постоянная величина.

Пример 2. Равноускоренное движение:

$$z = z_0 + v_0 t + \frac{at^2}{2}$$

здесь v_0 — начальная скорость, a — ускорение. В этом случае $z'(t) = v_0 + at$ по известным правилам дифференцирования. Напомним, что если даны две функции f(t), g(t) и постоянная a, то (f+g)'=f'+g', (af)'=af', (fg)'=f'g+fg', $\left(\frac{f}{g}\right)'=\frac{f'g-fg'}{g^2}$ (последняя формула верна в случае, когда $g(t) \neq 0$ в рассматриваемой точке t).

Из предпоследней формулы следует, что $(t^2)'=2t$. При любом целом n легко доказать (например, индукцией по n), что $(t^n)'=nt^{n-1}$. Можно доказать, что при t>0 эта формула верна и для нецелых n (об этом ещё будет идти речь ниже).

Укажем геометрический смысл производной: если нарисовать график функции z=z(t), то $z'(t)=\operatorname{tg}\alpha$, где α — угол наклона касательной, проведённой к графику в точке (t,z(t)), к оси t (рис. 1).

Правило дифференцирования сложной функции: если даны две функции F(z) и z(t), то для функции g(t) = =F(z(t)) производную можно найти по формуле

$$g'(t) = (F(z(t)))' = F'(z(t)) z'(t),$$

вытекающей из того, что

$$g'(t) = \lim_{\Delta t \to 0} \frac{\Delta g}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta F(z(t))}{\Delta t} = \lim_{\Delta t \to 0} \left(\frac{\Delta F}{\Delta z} \frac{\Delta z}{\Delta t} \right) = F'(z(t)) z'(t)$$

(здесь использовалось, что если $\Delta t \rightarrow 0$, то и $\Delta z \rightarrow 0$).

Правило дифференцирования обратной функции. Пусть функция $z\!=\!f(t)$ строго монотонна на отрезке $[t_1,\,t_2]$ и имеет производную в каждой точке этого отрезка. Строгая мо-

нотонность означает, что функция f либо возрастающая (если t' < t'', то f(t') < f(t'')), либо убывающая (если t' < t'', то f(t') > f(t'')). Будем для определённости считать функцию f возрастающей. Тогда множество значений функции f на отрезке $[t_1, t_2]$ представляет собой отрезок $[z_1, z_2]$, где $z_1 = f(t_1)$, $z_2 = f(t_2)$ (рис. 2). При этом каждому значению $z = [z_1, z_2]$ отвеча-