Graph App.

- **□**Topological Sort
- **□**Spanning Tree
- **□Shortest Paths**

Shortest Paths

Data Structures

□ Shortest path between two vertices in a weighted graph is *the path that has the smallest sum of its*

Shortest Paths: Dijkstra's Algorithm

Data Structures

□ Problem definition

 Find the shortest paths between a given origin and all other vertices

□ Basic idea

- A set vertexSet of selected vertices
- An array weight, where weight[v] is the cheapest weight of the shortest path from vertex 0 (origin) to vertex v that passes through only the vertices in vertexSet

Shortest Paths: Dijkstra's Algorithm

Data Structures |

5

3

0, 4, 2, 1, 3

8

4

5

Single-Source All-Destination Shortest Paths

- □ Dijkstra's algorithm [Edsger Wybe Dijkstra, 1930-2002]
 - 1. Initialize *vertexSet* & weight; $v = v_0$;
 - 2. Update *weight* for each vertex *u* not in *vertexSet*, which is *adjacent* to *v*
 - $weight[u] = min\{weight[u], weight[v] + edgeWeight[v,u]\}$
 - 3. Find the shortest path from o to u among every path that starts from o, passes vertices in <u>vertexSet</u>, and ends at a vertex not in <u>vertexSet</u>
 - if (weight[u] is minimum) vertexSet = vertexSet + {u};
 - 4. Repeat steps 2, 3 until no more vertex can be added

Single-Source All-Destination Shortest Paths

```
DijkstraAlgorithm(Vertex v_0)
   weight[0..n] = {0, \infty, ..., \infty};
                                                               8
   vertexSet = \emptyset;
                               v=v_0;
   do { Add v into vertexSet;
       for edge (v,u) where u is not in vertexSet
                weight[u] = min\{weight[u],
                                weight[v] + edgeWeight[v,u];
        cheapest = \infty;
        for vertex u not in vertexSet
                if (weight[u] < cheapest)
                       v = u; cheapest = weight[u];
   } while (cheapest < \infty);
```

Dijkstra's Algorithm: Adjacency Matrix

Data Structures

$$vertexSet_0=\{ \}$$

$$weight_0=\{0, \infty, \infty, \infty \}$$

$$vertexSet_1={A} weight_1={0, 4, 2, 8}$$

adjacency matrix

vertexSet₃={A,C,B}
$$A \rightarrow B: 4$$

weight₃={0, 3, 2, 6} $A \rightarrow C \rightarrow B: 2+1=3$

A→D: 8
$A \rightarrow C \rightarrow B \rightarrow D: 3+3=6$

	A	В	C	D
A	0	4	2	8
В	4	0	1	3
C	2	1	0	8
D	8	3	∞	0

Dijkstra's Algorithm: Adjacency List

Data Structures

vertexSet₀={} weight₀={ $0, \infty, \infty, \infty$ }

 $vertexSet_1 = \{A\}$ $weight_1 = \{0, 4, 2, 8\}$

vertexSet₂={A,C} weight₂={0, 3, 2, 8}

vertexSet₃={A,C,B} weight₃={0, 3, 2, 6}

vertexSet

T AT BT CT D

adjacency lists

Shortest Path Tree vs. Minimum Spanning Tree

Practice 9: Dijkstra's Algorithm

Data Structures |

wikipedia © P. 10

Q: Is the shortest path (20) correct?

Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let u-v be the chosen edge.
- The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$
- Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
- Let x-y be the first edge in P that leaves 5, and let P' be the subpath to x.
- P is already too long as soon as it leaves S.

All-Pairs Shortest Paths

All-Pairs Shortest Paths: Floyd's Algorithm

Data Structures

Floyd-Warshall algorithm [Robert Floyd, 1962][S. Warshall, 1962]

- 1. Initialize distance matrix $D^{-1} = adjacency matrix$;
- 2. For k = 0 to |V|-1 $D^k \leftarrow D^{k-1}$; // Add vertex k into vertexSet

For
$$i = 0$$
 to $|V| - 1$

For
$$j = 0$$
 to $|V| - 1$

 $D^{0}[1,2] = min \{D^{-1}[1,2], D^{-1}[1,0] + D^{-1}[0,2] \}$

D -1	0	1	2	3
0	0	8	3	8
1	2	0	8	∞
2	8	7	0	1
3	6	∞	∞	0

\mathbf{D}^0	0	1	2	3
0	0	8	3	8
1	2	0	5	8
2	8	7	0	1
3	6	8	8	0

Floyd's Algorithm: Directed Graph

Data Structures

D⁻¹: all-pairs shortest paths with no intermediate vertex

 D^0 : all-pairs shortest paths with intermediate vertex θ

 D^1 : all-pairs shortest paths with intermediate vertices θ , 1

 D^2 : all-pairs shortest paths with intermediate vertices 0, 1, 2

•••

$D^{2}[3,1] = min \{ D^{1}[3,1], D^{1}[3,2] + D^{1}[2,1] \}$

\mathbf{D}^1	0	1	2	3	\mathbf{D}^2	0	1
0	0	~	3	∞	0	0	10
1	2	0	5	∞	1	2	0
2	9	7	0		2	9	7
3	6	∞	9	0	3	6	16

9

3

Floyd's Algorithm: Another Example

D -1	0	1	2
0	0	4	11
1	6	0	2
2	3	∞	0

$\mathbf{D_0}$	0	1	2
0	0	4	11
1	6	0	2
2	3	7	0

\mathbf{D}^2	0	1	2
0	0	4	6
1	5	0	2
2	3	7	0

\mathbf{D}^1	0	1	2
0	0	4	6
1	6	0	2
2	3	7	0

Floyd's Algorithm: Undirected Graph

Data Structure	25
----------------	----

\mathbf{D}^{0}	A	В	C	D
A	0	4	2	8
В	4	0	1	3
C	2	1	0	10
D	8	3	10	0

\mathbf{D}^3	A	В	C	D
A	0	3	2	6
В	3	0	1	3
C	2	1	0	4
D	6	3	4	0

\mathbf{D}^1	A	В	C	D	
A	0	4	2	7	
В	4	0	1	3	
C	2	1	0	4	
D	7	3	4	0	

\mathbf{D}^2	A	В	C	D
A	0	3	2	6
В	3	0	1	3
C	2	1	0	4
D	6	3	4	0

adjacency matrix										
D -1	A	В	C	D						
A	0	4	2	8						
В	4	0	1	3						
C	2	1	0	8						
D	8	3	∞	0						

Practice 10: Floyd's Algorithm

Data Structures

☐ Find *all-pairs shortest paths*

- Show the distance matrices in each step

D -1	0	1	2	3	4	5							50	$\frac{1}{\sqrt{1}}$	10
0	0	50	10	∞	45	∞]						$\frac{44}{6}$	5 / \	
1	∞	0	15	∞	10									$\sqrt{15}$	\backslash_{20}
2	20	∞	0	15	8	\mathbf{D}^5	0	1	2	3	4	5	20^{10}		25
3	∞	20	8	0	35	0	0	45	10	25	45	8	$\frac{1}{2}$		$\setminus 35$
4	∞	8	8	30	0	1	35	0	15	30	10	8		15	
5	∞	∞	8	3	∞	2	20	35	0	15	45	8			(3)
						3	55	20	35	0	30	8			
						4	85	50	65	30	0	8			
						5	58	23	38	3	33	0			

Self-exercise 6

Data Structures

1. Use *Dijkstra's* algorithm to find the *shortest paths* from vertex 0 to any other vertex. Show the content of vertexSet and weight obtained at the end of each round.

• Choose the *smallest* label first if two or more vertices

have the minimum weights.

Self-exercise 6

Data Structures

2. Use *Floyd's* algorithm to find *all-pairs shortest paths*. Show the content of distance matrix as the final result.

Summary

- □ Topological sorting produces a linear order of the vertices in a directed graph without cycles
- ☐ Trees are connected undirected graphs without cycles
- ☐ A spanning tree of a connected undirected graph is
 - A subgraph that contains all the graph's vertices and enough of its edges to form a tree

Summary

- ☐ A minimum spanning tree for a weighted undirected graph is
 - A spanning tree whose edge-weight sum is minimal
- ☐ The shortest path between two vertices in a weighted directed graph is
 - The path that has the smallest sum of its edge weights