Statystyka i Analiza Danych

W3: Statystyki i ich rozkłady

dr hab. inż. Katarzyna Filipiak, prof. PP

Instytut Matematyki Politechnika Poznańska

2023/2024

Próba

Cel statystyki: wyciągnięcie wnioskow o populacji na podstawie zbioru obserwowanych danych (próby)

Próba – zbiór znanych, mierzalnych jednostek reprezentujących populację posiadającą badaną cechę

Powody próbkowania:

- ekonomiczne
- aktualizacja wiedzy
- duża populacja
- destrukcyjny charakter obserwacji
- niedostępność obserwacji

Próba prosta

Obserwację przed jej pobraniem modelujemy jako zmienną losową X o rozkładzie f(x) - rozkładzie populacji.

Próba (losowa) prosta o liczebności n – zbiór n niezależnych zm. losowych X_1, X_2, \ldots, X_n o takim samym rozkładzie f(x) jak interesująca zm. losowa X w populacji.

 X_1, X_2, \ldots, X_n – zm. losowe reprezentujące nieznane pomiary, które w procesie losowania próby zamienią się w pierwszą, drugą, \ldots, n tą obserwację

 x_1, x_2, \ldots, x_n – obserwacje (realizacje zm. losowych X_1, X_2, \ldots, X_n)

Przykład 1

Badacz chce zweryfikować, ile rowerów przypada na rodzinę w pewnym mieście liczącym 50000 rodzin. Do badania wybranych zostało 100 rodzin, które następnie zapytano o liczbę posiadanych rowerów.

Niech X będzie zmienną losową zliczającą liczbę rowerów w rodzinie. Zdefiniuj populację, próbę, zmienną losową oraz podaj przykład obserwacji.

Populacja:

Próba:

Zmienna losowa:

Obserwacje (przykład):

Statystyki

Statystyka – dowolna funkcja zm. losowych X_1, X_2, \ldots, X_n stanowiących próbę, nie zawierająca nieznanych parametrów, np.

- średnia próby,
- średnie odchylenie kwadratowe (wariancja) próby,
- odchylenie standardowe próby,
- wskaźnik struktury (proporcja, prawdopodobieństwo sukcesu).

Statystyka = funkcja zmiennych losowych = ZMIENNA LOSOWA!!!

Statystyka jest zm. losową, a więc posiada swój rozkład!

Przykład 2 (rozkład średniej z próby)

Niech dane w tabeli prezentują wyniki egzaminu z fizyki populacji studentów mechaniki (tak mała populacja w praktyce nie występuje, jednakże miniaturowa skala tego przykładu pozwoli zaprezentować rozkład średniej).

```
ImięDanielRobertAnnaIwonaJanOcena32342
```

Wybrana zostanie próba dwóch studentów z populacji. Wyznacz rozkład średniej z próby. X - ocena studenta, X_1, X_2 - oceny dwóch wybranych studentów

Populacja (zwykle nieznana):

Imię	D	R	Α	Ι	J
Ocena	3	2	3	4	2

Przykład 2 – c.d.

Obserwowana cecha w populacji – zmienna losowa $X \sim N(\mu, \sigma)$, σ - znane

Próba: X_1, X_2, \dots, X_n , $X_i \sim N(\mu, \sigma)$, σ - znane

Średnia z próby:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Suma z próby:

$$T = X_1 + X_2 + \ldots + X_n \sim N(n \cdot \mu, \sqrt{n} \cdot \sigma)$$

Obserwowana cecha w populacji – zmienna losowa X (dowolny rozkład)

Próba (duża): X_1, X_2, \dots, X_n (n > 30)

Centralne Twierdzenie Graniczne

W losowym próbkowaniu z dowolnej populacji o wartości oczekiwanej μ i odchyleniu standardowym σ rozkład \overline{X} przy dużym n jest w przybliżeniu rozkładem normalnym z wartością oczekiwaną μ i odchyleniem standardowym $\sigma /\!\! \sqrt{n}$, tzn.

 $\overline{X} \ \underset{\mbox{\tiny app}}{\sim} \ N(\mu, \frac{\sigma}{\sqrt{n}}).$

Suma z próby: $T = X_1 + X_2 + \ldots + X_n \sim N(n \cdot \mu, \sqrt{n} \cdot \sigma)$

Obserwowana cecha w populacji – zmienna losowa $X \sim N(\mu, \sigma)$, σ - nieznane

Próba:

$$X_1, X_2, \ldots, X_n$$

$$X_1, X_2, \ldots, X_n$$
, $X_i \sim N(\mu, \sigma)$, σ - nieznane

(Standaryzowana) średnia z próby:

$$t = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

$$S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \cdot \overline{X}^{2} \right)$$

Rozkład t-Studenta

Rozkład t-Studenta

$$P(t < t_{n-1,\alpha}) = \alpha$$

 $t_{n-1,\alpha}$ – kwantyl rzędu α rozkładu t_{n-1} : $\operatorname{qt}(\alpha, n-1)$

Przykład 3

Załóżmy, że waga dorosłych Polaków jest zmienną losową o rozkładzie normalnym ze średnią $\mu=70$ i odchyleniem standardowym $\sigma=10$.

9 studentów wsiadło do windy. Jakie jest prawdopodobieństwo, że ich całkowita waga przekroczyła dopuszczalną normę $650~{\rm kg?}$

Rozkład średniej z próby – podsumowanie

(1): $X_i \sim N(\mu, \sigma)$, μ, σ – znane:

$$\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \Rightarrow \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$$T \sim N(n \mu, \sqrt{n} \sigma)$$

(2): X_i ze znanymi μ , σ , rozkład X_i jest dowolny, duża próba:

$$\overline{X} \underset{\text{app}}{\sim} N(\mu, \frac{\sigma}{\sqrt{n}}) \quad \Rightarrow \quad \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \underset{\text{app}}{\sim} N(0, 1)$$

$$T \underset{\text{app}}{\sim} N(n \, \mu, \sqrt{n} \, \sigma)$$

(3):
$$X_i \sim N(\mu, \sigma)$$
, μ – znane, σ – nieznane: $\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$

Wariancja z próby

Obserwowana cecha w populacji – zmienna losowa $X \sim N(\mu, \sigma)$, σ - znane

Próba:
$$X_1, X_2, \dots, X_n$$
, $X_i \sim N(\mu, \sigma)$, σ - znane

Wariancja z próby:
$$S^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n \overline{X}^2 \right)$$

Rozkład wariancji z próby:

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

Rozkład χ^2 (chi-kwadrat)

Rozkład χ^2

$$P(\chi^2 < \chi^2_{n-1,\alpha}) = \alpha$$

 $\chi^2_{n-1,lpha}$ – kwantyl rzędu lpha rozkładu χ^2_{n-1} : qchisq(lpha,n-1)

Proporcja populacyjna (prawdopodobieństwo sukcesu)

Obserwowana cecha w populacji – zmienna losowa $X \sim bin(1, p)$

Próba (duża):
$$X_1, X_2, \dots, X_n$$
 ($n>100$), $X_i \sim \text{bin}(1,p)$
$$T = \sum_{i=1}^n X_i - \text{liczba "sukcesów" w próbie}$$

Proporcja z próby:
$$\widehat{p} = \frac{T}{n}$$

Rozkład proporcji populacyjnej:

$$\widehat{p} \sim N\left(p, \sqrt{pq/n}\right)$$

Przykład 5

Agencja reklamowa uruchomiła kampanię mającą wprowadzić na rynek nowy produkt. Na koniec kampanii przeprowadzono badanie na podstawie którego stwierdzono, że co najmniej 25% konsumentów kojarzy reklamowany produkt. Jeżeli 25% konsumentów rzeczywiście zna nowy produkt, to jakie jest prawdopodobieństwo, że nie więcej niż 232 losowo wybranych konsumentów spośród 1000 zna produkt?