GSERM - 2018 Introduction to Survival Data

June 6, 2018 (afternoon session)

Survival Analysis

- Models for time-to-event data.
- Roots in biostats/epidemiology, plus engineering, sociology, economics.
- Examples...
 - Political careers, confirmation durations, position-taking, bill cosponsorship, campaign contributions, policy innovation/adoption, etc.
 - Cabinet/government durations, length of civil wars, coalition durability, etc.
 - War duration, peace duration, alliance longevity, length of trade agreements, etc.
 - · Strike durations, work careers (including promotions, firings, etc.), criminal careers, marriage and child-bearing behavior, etc.

Characteristics of Time-To-Event Data

- *Discrete* events (i.e., not continuous),
- Take place over time,
- May not (or never) experience the event (i.e., possibility of censoring).

Survival Data Basics: Terminology

 Y_i = the duration until the event occurs,

 Z_i = the duration until the observation is "censored"

 $T_i = \min\{Y_i, Z_i\},$

 $C_i = 0$ if observation i is censored, 1 if it is not.

Survival Data Basics: The Density

$$f(t) = \Pr(T_i = t)$$

Issues:

- $T_i = t$ iff $T_i > t 1$, t 2, etc.
- $C_i = 0$ (censoring)

Survival Data Basics: Survivor Function

$$\Pr(T_i \leq t) \equiv F(t) = \int_0^t f(t) dt$$

$$\Pr(T_i \ge t) \equiv S(t) = 1 - F(t)$$

$$= 1 - \int_0^t f(t) dt$$

Survival Data Basics: The Hazard

$$Pr(T_i = t | T_i \ge t) \equiv h(t) = \frac{f(t)}{S(t)}$$

$$= \frac{f(t)}{1 - \int_0^t f(t) dt}$$

Example: Human Mortality

Some Useful Equivalencies

$$f(t) = \frac{-\partial S(t)}{\partial t}$$

Implies

$$h(t) = \frac{\frac{-\partial S(t)}{\partial t}}{S(t)}$$
$$= \frac{-\partial \ln S(t)}{\partial t}$$

More Useful Things: Integrated Hazard

Define

$$H(t) = \int_0^t h(t) dt.$$

Implies

$$H(t) = \int_0^t \frac{-\partial \ln S(t)}{\partial t} dt$$
$$= -\ln[S(t)]$$

and

$$S(t) = \exp[-H(t)]$$

Censoring and Truncation

Censoring

- Defined by the researcher
- Conditionally independent of both T_i and X_i
- Doesn't mean that the observation provides no information

Estimating S(t)

Assume N observations, absorbing events, and no ties. Then define

 n_t = number of observations "at risk" for the event at t, and

 d_t = number of observations which experience the event

at time t.

Then

$$\widehat{S(t_k)} = \prod_{t \le t_k} \frac{n_t - d_t}{n_t}$$

Variance of $\widehat{S(t)}$

$$\mathsf{Var}[\widehat{S(t_k)}] = \left[\widehat{S(t_k)}\right]^2 \sum_{t \leq t_k} \frac{d_t}{n_t(n_t - d_t)}$$

Note:

- $Var[\widehat{S(t_k)}]$ is increasing in S(t),
- ullet is also increasing in d_t , but
- is decreasing in n_t .

Estimating H(t)

"Nelson-Aalen":

$$\widehat{H(t_k)} = \sum_{t < t_k} \frac{d_t}{n_t}$$

...which gives an alternative estimator for the survival function equal to:

$$\widehat{S(t_k)} = \exp[-\widehat{H(t_k)}]$$

$$= \exp\left[-\sum_{t \leq t_k} \frac{d_t}{n_t}\right]$$

Bivariate Hypothesis Testing

	Treatment	Placebo	Total
Event	d_{1t}	d_{0t}	d_t
No Event	$n_{1t}-d_{1t}$	$n_{0t}-d_{0t}$	$n_t - d_t$
Total	n_{1t}	n _{0t}	n _t

Log-Rank Test:

$$Q = \frac{\left[\sum (d_{1t} - \frac{n_{1t}d_t}{n_t})\right]^2}{\left[\frac{n_{1t}n_{0t}d_t(n_t - d_t)}{n_t^2(n_t - 1)}\right]}$$
$$\sim \chi_1^2$$

A Diversion: Survival Models and Counting Processes

Assume

- Event is absorbing,
- Y_i is duration to the event
- Z_i is duration to censoring
- Observe $T_i = \min(Y_i, Z_i)$, and
- C_i:
 - $C_i = 0$ if $T_i = Z_i$,
 - $C_i = 1$ if $T_i = Y_i$.
- $T_i \neq T_j \ \forall \ i \neq j \ (\text{no "ties"})$

Three Key Variables

1. Counting Process Indicator:

$$N_i(t) = I(T_i \leq t, C_i = 1)$$

2. Risk Indicator:

$$R_i(t) = I(T_i > t)$$

3. Intensity Process:

$$\lambda_i(t) dt = R_i(t)h(t)$$

Additional Things

With

$$\Lambda_i(t) = \int_0^t \lambda_i(t) dt$$

we can think of

$$N_i(t) = \Lambda_i(t) + M_i(t)$$

or

$$M_i(t) = N_i(t) - \Lambda_i(t).$$

Martingales!

$$E(X_{t+s}|X_0, X_1, ...X_i, ...X_t) = X_t \ \forall \ s > 0$$

Data Structure and Organization: Non-Time-Varying

id	durat	censor	timein	timeout	Х
1	4	0	30	34	0.12
2	2	1	12	14	0.19
3	5	1	5	10	0.09
N	10	1	21	31	0.22

Time-Varying Data

id	durat	censor	timein	timeout	X	Z
1	1	0	30	31	0.12	331
1	2	0	31	32	0.12	412
1	3	0	32	33	0.12	405
1	4	0	33	34	0.12	416
2	1	0	12	13	0.19	226
2	2	1	13	14	0.19	296
3	1	0	5	6	0.09	253
3	2	0	6	7	0.09	311
3	3	0	7	8	0.09	327
3	4	0	8	9	0.09	344
3	5	1	9	10	0.09	301

Analyzing Survival Data in R

```
survival object (non-time-varying):
library(survival)
NonTV<-read.csv(NonTVdata.csv)
NonTV.S<-Surv(NonTV$duration, NonTV$censor)

survival object (time-varying):
TV<-read.csv(TVdata.csv)
TV.S<-Surv(TV$starttime, TV$endtime, TV$censor)</pre>
```

An Example

OECD Cabinet survival [Strom (1985); King et al. (1990)],

N = 314 cabinets in 15 countries

Outcome: Duration of cabinet, in months

Covariates (all non-time varying):

- · Fractionalization
- · Polarization
- · Formation Attempts
- · Investiture
- · Numerical Status
- · Post-Election
- · Caretaker

Also: Indicator for whether the cabinet ended within 12 months of the end of the "constitutional inter-election period" $(\rightarrow$ censored)

KABL Data

> head(KABL)

	id	country	durat	ciep12	fract	polar	format	invest	numst2	${\tt eltime2}$	caretk2
1	1	1	0.5	1	656	11	3	1	0	1	0
2	2	1	3.0	1	656	11	2	1	1	0	0
3	3	1	7.0	1	656	11	5	1	1	0	0
4	4	1	20.0	1	656	11	2	1	1	0	0
5	5	1	6.0	1	656	11	3	1	1	0	0
6	6	1	7.0	1	634	6	4	1	1	1	0

> KABL.S<-Surv(KABL\$durat,KABL\$ciep12)

> KABL.S[1:50,]

```
[1] 0.5 3.0 7.0 20.0 6.0 7.0 2.0 17.0 27.0 49.0+
        29.0 49.0+ 6.0
[11]
    4.0
                        23.0 41.0+ 10.0
                                       12.0
                                            2.0 33.0
[21]
    1.0 16.0 2.0
                    9.0
                        3.0 5.0 5.0 6.0 45.0+ 23.0
[31] 41.0
         7.0 49.0+ 46.0
                        9.0 51.0+ 10.0
                                       32.0
                                            28.0
                                                 3.0
[41] 53.0+ 17.0 59.0+ 9.0 52.0+ 3.0 23.0
                                       33.0
                                             1.0 30.0
```

Example survfit Object

```
> KABL.fit<-survfit(KABL.S~1)
> str(KABL.fit)
List of 13
$ n : int 314
$ time : num [1:54] 0.5 1 2 3 4 5 6 7 8 9 ...
$ n.risk : num [1:54] 314 303 294 284 265 255 237 230 212 200 ...
$ n.event : num [1:54] 11 9 10 19 10 18 7 18 12 7 ...
$ n.censor : num [1:54] 0 0 0 0 0 0 0 0 0 ...
$ surv : num [1:54] 0.965 0.936 0.904 0.844 0.812 ...
$ type : chr "right"
$ std.err : num [1:54] 0.0108 0.0147 0.0183 0.0243 0.0271 ...
$ upper : num [1:54] 0.986 0.964 0.938 0.885 0.856 ...
$ lower : num [1:54] 0.945 0.91 0.873 0.805 0.77 ...
$ conf.type: chr "log"
$ conf.int : num 0.95
$ call : language survfit(formula = KABL.S ~ 1)
- attr(*, "class")= chr "survfit"
```

Plotting $\widehat{S(t)}$

Plotting $\widehat{H(t)}$

Comparing $\widehat{S(t)}$ s

```
Log-rank test:
```

> survdiff(KABL.S~invest,data=KABL,rho=0)

Call:

survdiff(formula = KABL.S ~ invest, data = KABL, rho = 0)

N Observed Expected (0-E)^2/E (0-E)^2/V invest=0 172 137 178.7 9.72 30.5 invest=1 142 134 92.3 18.81 30.5

Chisq= 30.5 on 1 degrees of freedom, p= 3.26e-08

Comparing $\widehat{S(t)}$ s

A General Parametric Model

$$f(t) = \lim_{\Delta t \to 0} \frac{\Pr(t \le T < t + \Delta t)}{\Delta t}$$

$$S(t) = \Pr(T \ge t)$$

$$= 1 - \int_0^t f(t) dt$$

$$= 1 - F(t)$$

$$h(t) = \frac{f(t)}{S(t)}$$

$$= \lim_{\Delta t \to 0} \frac{\Pr(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

Likelihood

$$L = \prod_{i=1}^{N} [f(T_i)]^{C_i} [S(T_i)]^{1-C_i}$$

$$\ln L = \sum_{i=1}^{N} \left\{ C_{i} \ln \left[f(T_{i}) \right] + (1 - C_{i}) \ln \left[S(T_{i}) \right] \right\}$$

$$\ln L|\mathbf{X},\boldsymbol{\beta} = \sum_{i=1}^{N} \left\{ C_{i} \ln \left[f(T_{i}|\mathbf{X},\boldsymbol{\beta}) \right] + (1 - C_{i}) \ln \left[S(T_{i}|\mathbf{X},\boldsymbol{\beta}) \right] \right\}$$

The Exponential Model

$$h(t) = \lambda$$

$$H(t) = \int_0^t h(t) dt$$
$$= \lambda t$$

$$S(t) = \exp[-H(t)]$$
$$= \exp(-\lambda t)$$

$$f(t) = h(t)S(t)$$

= $\lambda \exp(-\lambda t)$

The Exponential Model, Illustrated

Covariates

$$\lambda_i = \exp(\mathbf{X}_i \beta).$$

$$S_i(t) = \exp(-e^{\mathbf{X}_i\beta}t).$$

Exponential (log-)Likelihood

$$\ln L = \sum_{i=1}^{N} \left\{ C_{i} \ln \left[\exp(\mathbf{X}_{i}\beta) \exp(-e^{\mathbf{X}_{i}\beta}t) \right] + (1 - C_{i}) \ln \left[\exp(-e^{\mathbf{X}_{i}\beta}t) \right] \right\}$$

$$= \sum_{i=1}^{N} \left\{ C_{i} \left[(\mathbf{X}_{i}\beta)(-e^{\mathbf{X}_{i}\beta}t) \right] + (1 - C_{i})(-e^{\mathbf{X}_{i}\beta}t) \right\}$$

Exponential: "AFT"

$$\ln T_i = \mathbf{X}_i \gamma + \epsilon_i$$

$$T_i = \exp(\mathbf{X}_i \gamma) \times u_i$$

$$\epsilon_i = \ln T_i - \mathbf{X}_i \gamma$$

Interpretation: Hazard Ratios

$$\begin{aligned} \mathsf{HR}_k &= \frac{h(t)|\widehat{X_k} = 1}{h(t)|\widehat{X_k} = 0} \\ h_i(t) &= \exp(\beta_0) \exp(\mathbf{X}_i \beta) \end{aligned}$$

$$\mathsf{HR}_k &= \frac{h(t)|\widehat{X_k} = 1}{h(t)|\widehat{X_k} = 0} \\ &= \frac{\exp(\hat{\beta}_0 + X_1 \hat{\beta}_1 + \dots + \hat{\beta}_k (1) + \dots)}{\exp(\hat{\beta}_0 + X_1 \hat{\beta}_1 + \dots + \hat{\beta}_k (0) + \dots)} \\ &= \frac{\exp(\hat{\beta}_k \times 1)}{\exp(\hat{\beta}_k \times 0)} \\ &= \exp(\hat{\beta}_k) \end{aligned}$$

More Generally

$$HR_k = \frac{\hat{h}(t)|X_k + \delta}{\hat{h}(t)|X_k}$$
$$= \exp(\delta \, \hat{\beta}_k)$$

$$\mathsf{HR}_{\frac{i}{j}} = \frac{\mathsf{exp}(\mathbf{X}_i\hat{eta})}{\mathsf{exp}(\mathbf{X}_j\hat{eta})}$$

Example: King et al. (1990) Data

> summary(KABL)

```
id
                                      durat
                                                      ciep12
                    country
Min.
       : 1.00
                 Min. : 1.000
                                  Min. : 0.50
                                                 Min.
                                                         :0.0000
1st Qu.: 79.25
                 1st Qu.: 4.000
                                 1st Qu.: 6.00
                                                 1st Qu.:1.0000
Median :157.50
                 Median : 7.000
                                 Median :14.00
                                                 Median :1.0000
Mean
       :157.50
                 Mean
                        : 7.182
                                 Mean
                                         :18.44
                                                 Mean
                                                         :0.8631
3rd Qu.:235.75
                 3rd Qu.:10.000
                                  3rd Qu.:28.00
                                                 3rd Qu.:1.0000
Max.
       :314.00
                 Max.
                        :15.000
                                 Max.
                                        :59.00
                                                 Max.
                                                       :1.0000
   fract
                   polar
                                    format.
                                                    invest
Min.
       :349.0
                Min.
                       : 0.00
                               Min.
                                       :1.000
                                               Min.
                                                       :0.0000
1st Qu.:677.0
                1st Qu.: 3.00
                               1st Qu.:1.000
                                               1st Qu.:0.0000
Median :719.0
                Median :14.50
                               Median :1.000
                                               Median :0.0000
Mean
       :718.8
               Mean
                       :15.29
                               Mean
                                       :1.904
                                             Mean
                                                       :0.4522
3rd Qu.:788.0
                3rd Qu.:25.00
                               3rd Qu.:2.000
                                               3rd Qu.:1.0000
Max.
       :868.0
                Max.
                       :43.00
                               Max.
                                       :8.000
                                               Max.
                                                       :1.0000
   numst2
                    eltime2
                                    caretk2
Min.
       :0.0000
                 Min.
                        :0.0000
                                 Min.
                                         :0.00000
1st Qu.:0.0000
                 1st Qu.:0.0000
                                 1st Qu.:0.00000
                Median :0.0000
                                 Median :0.00000
Median :1.0000
       :0.6306
                       :0.4873
                                        :0.05414
Mean
                 Mean
                                 Mean
3rd Qu.:1.0000
                 3rd Qu.:1.0000
                                  3rd Qu.:0.00000
Max.
       :1.0000
                 Max.
                       :1.0000
                                  Max.
                                         :1.00000
```

Cabinet Durations: Kaplan-Meier

Exponential Model (AFT form)

```
> KABL.S<-Surv(KABL$durat.KABL$ciep12)</p>
> xvars<-c("fract","polar","format","invest","numst2","eltime2","caretk2")
> MODEL<-as.formula(paste(paste("KABL.S ~ ", paste(xvars,collapse="+"))))
> KABL.exp.AFT<-survreg(MODEL.data=KABL.dist="exponential")
> summary(KABL.exp.AFT)
Call:
survreg(formula = MODEL, data = KABL, dist = "exponential")
              Value Std. Error
                                  z
(Intercept) 3.72460 0.630834 5.90 3.54e-09
fract
          -0.00116 0.000905 -1.29 1.98e-01
polar
          -0.01610 0.006097 -2.64 8.28e-03
format.
         -0.09097 0.045544 -2.00 4.58e-02
invest -0.36937 0.139398 -2.65 8.06e-03
numst2 0.51464 0.129233 3.98 6.83e-05
eltime2 0.72316 0.134999 5.36 8.47e-08
caretk2
         -1.30035 0.259566 -5.01 5.45e-07
Scale fixed at 1
Exponential distribution
Loglik(model) = -1025.6 Loglik(intercept only) = -1100.7
Chisq= 150.21 on 7 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n = 314
```

Exponential Model (hazard form)

```
> KABL.exp.PH<-(-KABL.exp.AFT$coefficients)
```

> KABL.exp.PH

(Intercept) fract polar format invest -3.724598700 0.001163784 0.016098468 0.090965318 0.369367997

numst2 eltime2 caretk2 -0.514643548 -0.723161401 1.300349770

Exponential: Hazard Ratios

- > KABL.exp.HRs<-exp(-KABL.exp.AFT\$coefficients)
- > KABL.exp.HRs

```
(Intercept) fract polar format invest numst2 0.02412278 1.00116446 1.01622875 1.09523102 1.44681993 0.59771361
```

eltime2 caretk2 0.48521587 3.67058030

Hazard Ratios: Interpretation

- On average, an investiture requirement *increases* the *hazard* of cabinet failure by $100 \times (1.447 1) = 44.7$ percent.
- On average, an investiture requirement *decreases* the predicted *survival* time by

```
100 \times [1 - \exp(-0.369)] = 100 \times (1 - 0.691)
= 30.1 percent.
```

Comparing Predicted Survival

Comparing Predicted Survival

The Weibull Model, I

$$h(t) = \lambda p(\lambda t)^{p-1}$$

$$S(t) = \exp \left[-\int_0^t \lambda p(\lambda t)^{p-1} dt \right]$$
$$= \exp(-\lambda t)^p$$

$$f(t) = \lambda p(\lambda t)^{p-1} \times \exp(-\lambda t)^{p}$$

The Importance of p

- $p=1 o ext{exponential model}$
- $p > 1 \rightarrow \text{rising hazards}$
- 0 declining hazards

Weibull Hazards Illustrated

Weibull Survival

Covariates

$$\lambda_i = \exp(\mathbf{X}_i \beta)$$

Weibull: AFT

$$T_i = \exp(\mathbf{X}_i \gamma) \times \sigma u_i$$

Means:

$$p = 1/\sigma$$

$$\beta = -\gamma/\sigma$$

Weibull Example (AFT)

```
> KABL.weib.AFT<-survreg(MODEL,data=KABL,dist="weibull")
> summary(KABL.weib.AFT)
Call:
survreg(formula = MODEL, data = KABL, dist = "weibull")
              Value Std. Error
                                          р
(Intercept) 3.69641 0.491590 7.52 5.51e-14
fract.
           -0.00106 0.000705 -1.50 1.33e-01
polar
         -0.01508 0.004677 -3.22 1.26e-03
       -0.08675 0.035133 -2.47 1.35e-02
format
invest -0.33019 0.106991 -3.09 2.03e-03
numst2 0.46352 0.100367 4.62 3.87e-06
eltime2 0.66381 0.104265 6.37 1.93e-10
caretk2 -1.31758 0.201065 -6.55 5.64e-11
Log(scale) -0.26079 0.049971 -5.22 1.80e-07
Scale= 0.77
Weibull distribution
Loglik(model) = -1013.5 Loglik(intercept only) = -1100.6
Chisq= 174.23 on 7 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n = 314
```

Weibull Example (hazard)

```
> KABL.weib.PH<-(-KABL.weib.AFT$coefficients)/(KABL.weib.AFT$scale)
```

> KABL.weib.PH

```
(Intercept) fract polar format invest -4.797770943 0.001374065 0.019573990 0.112598478 0.428574214
```

numst2 eltime2 caretk2 -0.601628072 -0.861597589 1.710156135

Weibull Hazard Ratios

```
> KABL.weib.HRs<-exp(KABL.weib.PH)
> KABL.weib.HRs

(Intercept) fract polar format invest numst2
0.008248112 1.001375009 1.019766817 1.119182466 1.535067285 0.547918858
eltime2 caretk2
0.422486583 5.529824807
```

Interpretation:

• On average, an investiture requirement *increases* the *hazard* of cabinte failure by $100 \times (1.535 - 1) = 53.5$ percent.

Comparing Predicted Survival Curves

The Gompertz Model (hazard)

$$h(t) = \exp(\lambda) \exp(\gamma t)$$

$$S(t) = \exp\left[-rac{e^{\lambda}}{\gamma}(e^{\gamma t}-1)
ight]$$

with

$$\lambda_i = \exp(\mathbf{X}_i \beta)$$

 γ is for "Gompertz"

- $\gamma = 0 o$ constant hazard
- $\gamma > 0 \rightarrow {\rm rising\ hazard}$
- $\gamma <$ 0 \rightarrow declining hazard

Gompertz Hazards

Gompertz Estimates

```
> library(flexsurv)
```

> KABL.Gomp

Call:

flexsurvreg(formula = MODEL, data = KABL, dist = "gompertz")

Estimates:

	data mean	est	L95%	U95%	exp(est)	L95%	U95%
shape	NA	0.02320	0.01150	0.03490	NA	NA	NA
rate	NA	0.01520	0.00407	0.05680	NA	NA	NA
fract	719.00000	0.00140	-0.00039	0.00319	1.00000	1.00000	1.00000
polar	15.30000	0.01890	0.00666	0.03120	1.02000	1.01000	1.03000
format	1.90000	0.10700	0.01590	0.19800	1.11000	1.02000	1.22000
invest	0.45200	0.41200	0.13700	0.68600	1.51000	1.15000	1.99000
numst2	0.63100	-0.60800	-0.86800	-0.34900	0.54400	0.42000	0.70500
eltime2	0.48700	-0.87300	-1.15000	-0.59400	0.41800	0.31600	0.55200
caretk2	0.05410	1.46000	0.94500	1.98000	4.32000	2.57000	7.24000

N = 314, Events: 271, Censored: 43 Total time at risk: 5789.5

Log-likelihood = -1018.317, df = 9

AIC = 2054.634

> KABL.Gomp<-flexsurvreg(MODEL,data=KABL,dist="gompertz")

The Log-Logistic Model

$$In(T_i) = \mathbf{X}_i \beta + \sigma \epsilon_i$$

$$S(t) = \frac{1}{1 + (\lambda t)^p}$$

$$h(t) = \frac{\lambda p(\lambda t)^{p-1}}{1 + (\lambda t)^p}$$

$$f(t) = \frac{\lambda p(\lambda t)^{p-1}}{1 + (\lambda t)^p} \times \frac{1}{1 + (\lambda t)^p}$$

$$= \frac{\lambda p(\lambda t)^{p-1}}{[1 + (\lambda t)^p]^2}$$

$$\lambda_i = \exp(\mathbf{X}_i \beta)$$

Log-Logistics Illustrated

Example: Log-Logistic

```
> KABL.loglog<-survreg(MODEL,data=KABL,dist="loglogistic")
> summary(KABL.loglog)
Call:
survreg(formula = MODEL, data = KABL, dist = "loglogistic")
              Value Std. Error
                                   z
                                           р
(Intercept) 3.333841 0.54735 6.09 1.12e-09
fract.
          -0.000913 0.00079 -1.15 2.48e-01
polar
         -0.019092 0.00588 -3.24 1.18e-03
       -0.096975 0.04315 -2.25 2.46e-02
format
invest -0.357403 0.12876 -2.78 5.51e-03
numst2 0.479507 0.12104 3.96 7.45e-05
eltime2 0.627837 0.12405 5.06 4.16e-07
caretk2 -1.252349 0.23151 -5.41 6.32e-08
Log(scale) -0.568276
                     0.05116 -11.11 1.14e-28
Scale = 0.567
Log logistic distribution
Loglik(model) = -1024 Loglik(intercept only) = -1099
Chisq= 150.05 on 7 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n = 314
```

Other Parametric Survival Models

- Log-Normal
- Rayleigh (Weibull w/p = 2)
- Logistic
- t
- Generalized Gamma

Software

R:

- survreg (in survival)
- rms package
- flexsurv package
- eha package
- SurvRegCensCov package (Weibull models)

Software

Notes on parametric models with time-varying covariate data:

- · Stata handles time-varying data with aplomb.
- · R does not.
 - survreg (in the survival package) will not estimate models with time-varying data (it will not take a survival object of the form Surv(start,stop,censor)).
 - · psm (in the rms package) will also not accept time-varying data.
 - aftreg and phreg (part of the eha package) will accept time-varying data. phreg accepts survival objects of the form Surv(start, stop, censor). aftreg does as well, and notes in its documentation that "(I)f there are [sic] more than one spell per individual, it is essential to keep spells together by the id argument. This allows for time-varying covariates." In practice, this functions somewhat inconsistently.
- Recommendations: If you want to use R to fit parametric survival models with time-varying covariate data, stick with proportional hazards formulations, and use phreg. Also, Weibull models tend to be easier to fit than exponentials in this framework.