Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 (1)

1 Vectors

parameters	values	description	
m ₁	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	AB	
\mathbf{m}_2	$\begin{pmatrix} -2 \\ -2 \end{pmatrix}$	ВС	
m ₃	$\begin{pmatrix} 0 \\ -2 \end{pmatrix}$	CA	
A - B	4.47	length of AB	
B-C	2.82	length of BC	
C - A	2	length of CA	
	3	non collinear	
n ₁	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	AB	
c_1	10		
n ₂	$\begin{pmatrix} -2\\2 \end{pmatrix}$	ВС	
c_2	-2		
n ₃	$\begin{pmatrix} -2 \\ 0 \end{pmatrix}$	CA	
<i>c</i> ₃	-4		
Area	2	Area of Triangle	
∠A	26.57°	Angles	
∠B	18.43°		
∠C	135°		

TABLE 1: Vectors.

Fig. 1: triangle plotted using python

2 Median

	•	1		
parameters	value	description		
D	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	BC midpoint		
E	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	CA midpoint		
F	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	AB midpoint		
m ₄	$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$	AD		
n ₄	$\begin{pmatrix} 3 \\ -1 \end{pmatrix}$			
c_4	7			
m ₅	$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$	BE		
n ₅	$\begin{pmatrix} -3\\2 \end{pmatrix}$			
c ₅	-6			
m ₆	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	C.F.		
n ₆	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	CF		
c_6	-1			
G	$\begin{pmatrix} 2.67 \\ 1 \end{pmatrix}$	Centroid		
$\begin{array}{c} \underline{BG} \\ \overline{GE} \\ \underline{CG} \\ \overline{GF} \\ \underline{AG} \\ \overline{GD} \end{array}$	2	Division ratio by G		
	2	collinear		
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix}$				

TABLE 2: Median.

Fig. 2: medians plotted using python

Fig. 3: altitudes plotted using python

4 Perpendicular Bisector

description

value

parameters

3 ALTITUDE

			parameters	varac	description
			m ₁₀	$\begin{pmatrix} -2\\2 \end{pmatrix}$	A.D.
m a mann at a ma	volvo	description	n ₁₀	$\begin{pmatrix} -2 \\ -2 \end{pmatrix}$	AD_1
parameters	value	description	-		-
\mathbf{D}_1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	Foot of altitude from A	C ₁₀	-10 (2)	
$\mathbf{E_1}$	(2)	Foot of altitude from B	. m ₁₁	(0)	BE_1
L 1	(3)	root of attitude from B	n ₁₁	$\begin{pmatrix} 0 \\ 2 \end{pmatrix}$	DL ₁
$\mathbf{F_1}$	(2.8)	Foot of altitude from C			-
-1	(0.6)		c_{11}	0	
\mathbf{m}_7	$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$	4.0	m ₁₂	$\begin{pmatrix} -4 \\ 2 \end{pmatrix}$	CF_1
n ₇	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	AD_1	n ₁₂	$\begin{pmatrix} -2 \\ -4 \end{pmatrix}$	
c_7	1		c_{12}	-10	
m ₈	$\begin{pmatrix} -2 \\ 0 \end{pmatrix}$	D.F.	О	$\begin{pmatrix} 5 \\ 0 \end{pmatrix}$	Circumcentre
n ₈	$\begin{pmatrix} 0 \\ 2 \end{pmatrix}$	BE_1	O - A O - B		
c ₈	6		$\ \mathbf{O} - \mathbf{C}\ $	3.16	OA = OB = OC = R
	(0.8)		R		
m ₉	(-0.4)	CF_1	∠BOC	53.13°	$\angle BOC = 2\angle BAC$
n 9	(-0.4)		∠BAC	26.565°	2BOC = 22BAC
119	(-0.8)		∠AOC	36.8°	
C 9	-1.6		∠ABC	18.4°	$\angle AOC = 2\angle ABC$
Н	$\begin{pmatrix} -2\\3 \end{pmatrix}$	Orthocentre	∠AOB	270°	$\angle AOB = 2\angle BCA$
			∠BCA	135°	

TABLE 3: Altitude.

TABLE 4: Perpendicular Bisector.

Fig. 4: perpendicular bisectors plotted using python

5 Angle Bisector

narameters	value	description	
parameters	(-0.45)	description	
m ₁₃	$\begin{pmatrix} -0.43 \\ -1.89 \end{pmatrix}$	AI	
n ₁₃	$\begin{pmatrix} -1.89 \\ 0.45 \end{pmatrix}$		
c_{13}	-4.23		
m ₁₄	$\begin{pmatrix} -1.15 \\ -1.6 \end{pmatrix}$	BI	
m ₁₄	$\begin{pmatrix} 1.6 \\ -1.15 \end{pmatrix}$		
c_{14}	2.943		
m ₁₅	$\begin{pmatrix} -0.71\\ 0.29 \end{pmatrix}$	CI	
n ₁₅	$\begin{pmatrix} -0.29 \\ -0.70 \end{pmatrix}$		
C ₁₅	-1.29		
I	$\begin{pmatrix} 2.43 \\ 0.82 \end{pmatrix}$	Incentre	
\mathbf{D}_3	$\binom{2.13}{1.13}$	Point of contact with BC	
E ₃	$\begin{pmatrix} 2 \\ 0.82 \end{pmatrix}$	Point of contact with AC	
F ₃	$\begin{pmatrix} 2.81 \\ 0.62 \end{pmatrix}$	Point of contact with AB	
$ \mathbf{I} - \mathbf{D_3} $			
$ I-E_3 $	0.42		
$ I-F_3 $	0.43	$ID_3 = IE_3 = IF_3 = r$	
r			
∠BAI	13.28°	$\angle BAI = \angle CAI$	
∠CAI			
∠ABI ∠CBI	9.21°	$\angle ABI = \angle CBI$	
∠ACI			
∠BCI	67.5°	$\angle ACI = \angle BCI$	

TABLE 5: Angle Bisectors.

Fig. 5: Angle bisectors plotted using python