- 6.10

 1) (a) L'énoncé du théorème d'Euler suppose que $\operatorname{pgcd}(a,m)=1$.

 Puisque $\overline{r_i}$ est une unité de $\mathbb{Z}/m\mathbb{Z}$, on a que $\operatorname{pgcd}(r_i,m)=1$.

 L'exercice 6.1 permet de conclure que $\operatorname{pgcd}(a\,r_i,m)=1$.

 C'est pourquoi $\overline{a\,r_i}$ est une unité de $\mathbb{Z}/m\mathbb{Z}$.
 - possède donc un inverse \overline{a}^{-1} . L'application $f: (\mathbb{Z}/m\mathbb{Z})^* \longrightarrow (\mathbb{Z}/m\mathbb{Z})^*$ est bijective, car elle $\overline{r_i} \longmapsto \overline{a}\overline{r_i}$ admet pour fonction réciproque ${}^r f: (\mathbb{Z}/m\mathbb{Z})^* \longrightarrow (\mathbb{Z}/m\mathbb{Z})^*$. $\overline{r_i} \longmapsto \overline{a}^{-1}\overline{r_i}$

(b) Puisque a est m sont premier entre eux, \overline{a} est une unité de $\mathbb{Z}/m\mathbb{Z}$ et

2) En multipliant tous les éléments de $(\mathbb{Z}/m\mathbb{Z})^* = \{\overline{r_i} : 1 \leqslant i \leqslant \varphi(m)\} = \{\overline{ar_i} : 1 \leqslant i \leqslant \varphi(m)\}$, on obtient : $\overline{ar_1} \cdot \overline{ar_2} \cdot \overline{ar_3} \cdot \ldots \cdot \overline{ar_{\varphi(m)}} = \overline{r_1} \cdot \overline{r_2} \cdot \overline{r_3} \cdot \ldots \cdot \overline{r_n}$ $\overline{(ar_1)(ar_2)(ar_3) \ldots (ar_{\varphi(m)})} = \overline{r_1r_2r_3 \ldots r_{\varphi(m)}}$ $(ar_1)(ar_2)(ar_3) \ldots (ar_{\varphi(m)}) \equiv r_1r_2r_3 \ldots r_{\varphi(m)} \mod m$ $a^{\varphi(m)} r_1 r_2 r_3 \ldots r_{\varphi(m)} \equiv r_1 r_2 r_3 \ldots r_{\varphi(m)} \mod m$

Comme $\operatorname{pgcd}(r_i, m) = 1$ pour tout $1 \leqslant i \leqslant \varphi(m)$, l'exercice 4.2 nous autorise à simplifier cette congruence par $r_1 r_2 r_3 \dots r_{\varphi(m)}$, ce qui donne $a^{\varphi(m)} \equiv 1 \mod m$