TRIGONOMETRY **Chapter 1**

Verano 2021

SAN MARCOS

Razones trigonométricas de un ángulo agudo I

O T

TRIÁNGULO RECTÁNGULO

- c es la hipotenusa
- a y b son catetos

TEOREMA DE PITÁGORAS

EJEMPLOS:

En cada figura mostrada, calcule x

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

H: Hipotenusa

 ${\bf CO}$: Cateto opuesto al ángulo α

 ${\sf CA}$: Cateto adyacente al ángulo α

DEFINICIONES

senα	COSα	tanα	cotα	secα	CSCα
CO	CA	CO	CA	I	Н
Н	Н	CA	СО	CA	CO

1. En un triángulo rectángulo, un cateto es el triple del otro. Determine la cosecante del mayor ángulo agudo del triángulo.

D)
$$\frac{\sqrt{10}}{10}$$

RESOLUCIÓN

Teorema de Pitágoras:

$$H^2 = (k)^2 + (3k)^2$$

$$\Rightarrow H^2 = k^2 + 9k^2$$

$$\Rightarrow H^2 = 10k^2$$

$$\Rightarrow$$
 H = $\sqrt{10}$ k

Piden:

$$csc\theta = \frac{\sqrt{10} k}{3k}$$

$$\therefore \csc\theta = \frac{\sqrt{10}}{3}$$

2. En un triángulo rectángulo, los lados menores miden 5 cm y 12 cm. Si el menor ángulo agudo del triángulo mide α , calcule: $P = \csc\alpha + \cot\alpha$

A) 2

B) 3

C)3/2

D) 5

Recordar:

$$\csc \alpha = \frac{H}{CO}$$

$$\cot \alpha = \frac{CA}{CO}$$

RESOLUCIÓN

Teorema de Pitágoras:

$$H^2 = (12)^2 + (5)^2$$

$$\Rightarrow H^2 = 144 + 25$$

$$\Rightarrow$$
 H² = 169

$$\Rightarrow H = 13$$

Piden: $P = \csc\alpha + \cot\alpha$

$$\Rightarrow P = \frac{13}{5} + \frac{12}{5}$$

$$\Rightarrow P = \frac{25}{5}$$

∴ P = 5

3. Dado cosx = 1/3, halle:

$$E = csc^2x + cot^2x$$

Si x es un ángulo agudo.

Recordar:

$$csc = \frac{H}{CO} cot = \frac{CA}{CO}$$

RESOLUCIÓN

Dato:
$$\cos x = \frac{1}{3} = \frac{CA}{H}$$

Teorema de Pitágoras $H^2 = CA^2 + CO^2$

$$\Rightarrow$$
 (3k)² = (k)² + CO²

$$\Rightarrow$$
 9k² = k² + CO²

$$\Rightarrow$$
 8k² = CO²

$$\Rightarrow$$
 CO = $\sqrt{8}$ k

$$H = 3k$$

$$CO = \sqrt{8} k$$

$$CA = k$$

Piden: $E = csc^2x + cot^2x$

$$\Rightarrow E = \left(\frac{3k}{\sqrt{8k}}\right)^2 + \left(\frac{k}{\sqrt{8k}}\right)^2$$

$$\Rightarrow E = \frac{9}{8} + \frac{1}{8} = \frac{10}{8}$$

$$\therefore E = \frac{5}{4}$$

4. Siendo cosx = 8/17 y x es agudo, calcule:

$$E = \frac{7secx}{tanx - 1}$$

- A) 9
- C) 13

RESOLUCIÓN Dato:
$$\cos x = \frac{8}{17} = \frac{CA}{H}$$

 CO^2

Teorema de Pitágoras: $H^2 = CA^2 +$

$$\Rightarrow$$
 (17k)² = (8k)² + CO²

$$\Rightarrow 289k^2 = 64k^2 + CO^2$$

$$\Rightarrow$$
 225 $k^2 = CO^2$

$$\Rightarrow$$
 CO = 15k

Piden:

$$E = \frac{7 \text{secx}}{\text{tanx} - 1} \Rightarrow = \frac{\sqrt{x} - 1}{\sqrt{x} - 1}$$

Recordar:

$$\sec = \frac{H}{CA} = \frac{CO}{CA}$$

5. Halle el valor de x, si sen $\theta = \frac{4}{5}$

A) 10

C) 13

D) 11

Recordar:

$$sen \theta = \frac{CO}{H}$$

RESOLUCIÓN

Del gráfico:

$$\begin{cases} CO = 3x - 4 \\ H = 3x + 4 \end{cases}$$

Luego:

$$sen\theta = \frac{3x - 4}{3x + 4} \Rightarrow \frac{4}{5} = \frac{3x - 4}{3x + 4}$$
$$\Rightarrow 4(3x + 4) = 5(3x - 4)$$
$$\Rightarrow 12x + 16 = 15x - 20$$
$$\Rightarrow 36 = 3x$$

∴ x = 12

6. En un triángulo rectángulo ABC(B=90°). Reduzca: E = a.secC + b.senA + c, si su perímetro es 20 cm.

B) 10 cm

C) 5 cm

D) 40 cm

Recordar:

$$\sec \theta = \frac{H}{CA}$$
 $\sec \theta = \frac{CO}{H}$

RESOLUCIÓN

Piden: E = a.secC + b.senA + c

$$\Rightarrow E = a \cdot \frac{b}{a} + b \cdot \frac{a}{b} + c$$

$$\Rightarrow$$
 E = b + a + c

Perímetro ****

 \therefore E = 20 cm

7. En un triángulo rectángulo ABC(B=90°). Reduzca: $E = \sec^2 C - \cot^2 A$

C) 3

D)
$$a^2 - c^2$$

Recordar:

$$\sec = \frac{H}{CA}$$

$$\cot = \frac{CA}{CO}$$

RESOLUCIÓN

Teorema de Pitágoras:

$$b^2 = a^2 + c^2$$

$$b^2 - c^2 = a^2$$
 ... (*)

Piden:

$$E = \sec^2 C - \cot^2 A \Rightarrow E = \left(\frac{b}{a}\right)^2 - \left(\frac{c}{a}\right)^2$$

$$\Rightarrow E = \frac{b^2}{a^2} - \frac{c^2}{a^2} = \frac{b^2 - c^2}{a^2}$$

Usando (*):
$$E = \frac{a^2}{a^2}$$

8. Si $\cos \phi = \frac{\sqrt{3}}{4}$; ϕ es agudo, calcule: RESOLUCIÓN Dato: $\cos \phi = \frac{\sqrt{3}}{4} = \frac{CA}{H}$

$$E = 13csc^2\phi + 3tan^2\phi$$

A) 23

B) 25

C) 27

Recordar:

$$\csc \phi = \frac{H}{CO}$$

$$\tan \phi = \frac{\text{CO}}{\text{CA}}$$

Dato:
$$\cos \phi = \frac{\sqrt{3}}{4} = \frac{CA}{H}$$

 CO^2

Teorema de Pitágoras $H^2 = CA^2 +$

$$\Rightarrow$$
 (4k)² = $(\sqrt{3}k)^2 + CO^2$

$$1 \Rightarrow 16k^2 = 3k^2 + CO^2 \qquad H = 4k$$

$$\Rightarrow 13k^2 = CO^2$$

$$\Rightarrow$$
 CO = $\sqrt{13}$ k

$$H = 4k$$

$$CA = \sqrt{3}k$$

I Piden: $E = 13 \csc^2 \phi + 3 \tan^2 \phi$

$$\Rightarrow E = 13 \left(\frac{4k}{\sqrt{13}k} \right)^2 + 3 \left(\frac{\sqrt{13}k}{\sqrt{3}k} \right)^2$$

$$\Rightarrow E = 13. \frac{16}{13} + 3. \frac{13}{3} = 16 + 13$$

 $\therefore E = 29$

9. Del gráfico, calcule $tan\theta$.

A) 1/3

B) 2/3

C) 1

Recordar:

$$\tan \theta = \frac{\text{CO}}{\text{CA}}$$

RESOLUCIÓN

 \Rightarrow CA = CD = 13

D) 4/3 * ABC: Teorema de Pitágoras:

$$13^2 = 5^2 + c^2$$
 $\Rightarrow 169 = 25 + c^2$

$$\Rightarrow 144 = c^2 \implies c = 12$$

1
 * ▲ ABD: tanθ = $\frac{12}{18}$

∴
$$tan\theta = 2/3$$

10. Un terreno en forma de un **RESOLUCIÓN** Dato $1:\cos\theta = \frac{12}{13} = \frac{CA}{H}$ triángulo rectángulo el coseno de uno de sus ángulos agudos es 12/13, si el menor de sus lados es 20 m. Determine el área de \Rightarrow (13k)² = (12k)² + CO² dicho terreno.

- A) 360 m^2
- 2) 480 m²

Dato 1:
$$\cos \theta = \frac{12}{13} = \frac{CA}{H}$$

Teorema de Pitágoras $H^2 = CA^2 +$

$$\Rightarrow$$
 (13k)² = (12k)² + CO²

$$\Rightarrow 169k^2 = 144k^2 + CO^2$$

B)
$$450 \text{ m}^2$$
 $\Rightarrow 25k^2 = CO^2$
D) 390 m^2 $\Rightarrow CO = 5k$

$$\Rightarrow$$
 CO = 5k

Dato 2:Lado menor
$$5k = 20 \implies k = 4$$

Piden: Área del terreno = S

$$\Rightarrow \mathbf{S} = \frac{48.20}{2} = 480$$

 \therefore Área terreno = 480 m²