Лекция 12. Предел функции многих переменных.

Определение 1. Если каждой точке x из множества $X \subset \mathbb{R}^n$ ставится в соответствие по известному закону действительное число f(x), то говорят, что на множестве X задана функция n переменных f(x) (или $f(x_1,...,x_n)$). Множество X называется областью определения функции f(x) и обозначается D_f .

Определение 2 (предел функции по Коши). Число $b \in \mathbb{R}$ называется пределом функции f(x) в точке $a \in \mathbb{R}^n$, если для любого $\varepsilon > 0$ найдется число $\delta = \delta(\varepsilon) > 0$ такое, что для любой точки $x \in D_f$ такой, что $0 < \rho(x,a) < \delta$, выполнено: $|f(x) - b| < \varepsilon$.

Обозначения:
$$\lim_{x\to a}f(x)=b$$
 или $\lim_{\substack{x_1\to a_1\\ \dots\\ x_n\to a_n}}f(x_1,\dots,x_n)=b$.

Определение 3 (предел функции по Гейне). Число $b \in \mathbb{R}$ называется пределом функции f(x) в точке $a \in \mathbb{R}^n$, если для любой последовательности аргументов $\left\{x^m\right\}$, $x^m \xrightarrow[m \to \infty]{} a$, $x^m \neq a$, соответствующая последовательность значений функции $f(x^m) \xrightarrow[m \to \infty]{} b$.

Доказательство эквивалентности определении по Коши и по Гейне проводится точно так же, как в одномерном случае.

Определение 4. Число $b\in\mathbb{R}$ называется *пределом функции* f(x) *при* $x\to\infty$, если любого $\varepsilon>0$ найдется число $\delta=\delta(\varepsilon)>0$ такое, что для любой точки $x\in D_f$, $\|x\|>\delta$, выполнено: $|f(x)-b|<\varepsilon$.

Теорема 1. Пусть функции f(x) и g(x) заданы на множестве $X \subset \mathbb{R}^n$; $\lim_{x \to a} f(x) = b$, $\lim_{x \to a} g(x) = c$. Тогда $\lim_{x \to a} (f(x) \pm g(x)) = b \pm c$, $\lim_{x \to a} (f(x) \cdot g(x)) = b \cdot c$, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$ (если $c \neq 0$).

Доказательство. Рассмотрим последовательность $\left\{x^{m}\right\}$ точек множества X такую, что $x^{m} \xrightarrow[m \to \infty]{} a$, $x^{m} \neq a$. Тогда $f(x^{m}) \xrightarrow[m \to \infty]{} b$, $g(x^{m}) \xrightarrow[m \to \infty]{} c$ (определение предела по Гейне). В силу свойств числовых последовательностей получаем: $(f(x^{m}) \pm g(x^{m})) \xrightarrow[m \to \infty]{} b \pm c$, $(f(x^{m}) \cdot g(x^{m})) \xrightarrow[m \to \infty]{} b \cdot c$, $\frac{f(x^{m})}{g(x^{m})} \xrightarrow[m \to \infty]{} \frac{b}{c}$ (если $c \neq 0$).

Отсюда и из определения предела функции по Гейне сразу следует утверждение теоремы.

Определение 5. Функция f(x) удовлетворяет условию Коши в точке $a \in \mathbb{R}^n$ (при $x \to \infty$), если для любого $\varepsilon > 0$ найдется число $\delta = \delta(\varepsilon) > 0$ такое, что для любых двух точек $x', x'' \in D_f$ таких, что $0 < \rho(x', a) < \delta$, $0 < \rho(x'', a) < \delta$ ($\|x'\| > \delta$, $\|x''\| > \delta$), выполнено: $|f(x') - f(x'')| < \varepsilon$.

Теорема 2 (критерий Коши существования предела функции многих переменных). Функция f(x) имеет конечный предел в точке $a \in \mathbb{R}^n$ (при $x \to \infty$) тогда и только тогда, когда она удовлетворяет условию Коши в точке a (при $x \to \infty$).

Доказательство. Будем проводить доказательство для случая, когда $a \in \mathbb{R}^n$ (случай $a = \infty$ рассматривается аналогично).

Докажем сначала необходимость. Пусть $\lim_{x\to a} f(x) = b$.

Зафиксируем число $\varepsilon>0$. Тогда найдется $\delta=\delta(\varepsilon)>0$ такое, что для любых точек $x',x''\in D_f$, $0<\rho(x',a)<\delta$, $0<\rho(x'',a)<\delta$, выполнено: $\left|f(x')-b\right|<\frac{\varepsilon}{2}$, $\left|f(x'')-b\right|<\frac{\varepsilon}{2}$ (определение предела функции по Коши). Значит, $\left|f(x')-f(x'')\right|\leq \left|f(x')-b\right|+\left|f(x'')-b\right|<<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, то есть в точке a выполнено условие Коши.

Теперь докажем достаточность. Пусть функция f(x) удовлетворяет условию Коши в точке a. Выберем последовательность аргументов $\left\{x^m\right\}$ такую, что $x^m \xrightarrow[m \to \infty]{} a$, $x^m \neq a$. Пусть $\varepsilon > 0$ - произвольное число. Согласно критерию Коши, найдется такое $\delta = \delta(\varepsilon) > 0$, что для любых точек $x', x'' \in D_f$, $0 < \rho(x', a) < \delta$, $0 < \rho(x'', a) < \delta$, выполнено: $\left|f(x') - f(x'')\right| < \varepsilon$. Так как $x^m \xrightarrow[m \to \infty]{} a$, то существует натуральный номер N такой, что $0 < \rho(x^m, a) < \delta$ для любого $m \ge N$. Тем более, $0 < \rho(x^{m+p}, a) < \delta$ для любого натурального числа p и любого $m \ge N$. Значит, $\left|f(x^{m+p}) - f(x^m)\right| < \varepsilon$.

Мы показали, что для любого $\varepsilon>0$ найдется такое натуральное N, что для любого $m\geq N$, для любого натурального p выполнено: $\left|f(x^{m+p})-f(x^m)\right|<\varepsilon$. Это означает в точности, что числовая последовательность $\left\{f(x^m)\right\}$ фундаментальна. Значит, она сходится (критерий Коши сходимости числовых последовательностей).

Осталось показать, что для любого выбора последовательности аргументов $\{x^m\}$ все последовательности значений функции $\{f(x^m)\}$ будут сходиться к одному и тому же числу. Пусть $x^m \xrightarrow[m \to \infty]{} a$, $x^m \neq a$, $y^m \xrightarrow[m \to \infty]{} a$, $y^m \neq a$; $f(x^m) \xrightarrow[m \to \infty]{} b$, $f(y^m) \xrightarrow[m \to \infty]{} c$. Рассмотрим последовательность аргументов $\{z^m\} = \{x^1, y^1, x^2, y^2, ..., x^m, y^m, ...\}$. Тогда очевидно, что $z^m \xrightarrow[m \to \infty]{} a$, $z^m \neq a$. Значит, по уже доказанному нами, существует число d такое, что $f(z^m) \xrightarrow[m \to \infty]{} d$. Но последовательности $\{f(x^m)\}$ и $\{f(y^m)\}$ являются подпоследовательностями последовательности $\{f(z^m)\}$ и должны сходиться к тому же пределу. Отсюда b = c = d. Теорема полностью доказана.

Определение 6. Функция f(x) называется *бесконечно малой* в точке $a \in \mathbb{R}^n$, если $\lim_{x\to a} f(x) = 0$. Обозначение: $f(x) = \overline{o}(1), \ x \to a$.

Определение 7. Пусть функция f(x,y) определена в некоторой проколотой окрестности точки $(x_0,y_0)\in\mathbb{R}^2$. Если найдется такое $\varepsilon>0$, что для любого числа $y\in \overset{0}{B}_{\varepsilon}(y_0)$ существует $\lim_{x\to x_0}f(x,y)=\varphi(y)$ и существует $\lim_{y\to y_0}\varphi(y)=b$, то говорят, что существует *повторный предел* $\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)=b$.

Аналогично можно определить повторный предел $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$.

Заметим, что существование повторных пределов функции в точке и существования ее предела как функции двух переменных (такой предел называют также $\partial soundsymbol{\omega}$) не эквивалентны. Приведем соответствующие примеры.

Примеры. 1) Пусть
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
. Если $y \neq 0$, то $\lim_{x \to 0} \frac{xy}{x^2 + y^2} = \frac{0 \cdot y}{0 + y^2} = 0$, значит, $\lim_{y \to 0} \lim_{x \to 0} f(x,y) = 0$. Аналогично $\lim_{x \to 0} \lim_{y \to 0} f(x,y) = 0$.

$$\lim_{x \to 0} \frac{xy}{x^2 + y^2} = \frac{0 \cdot y}{0 + y^2} = 0, \quad \text{значит}, \quad \lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0. \quad \text{Аналогично} \quad \lim_{x \to 0} \lim_{y \to 0} f(x, y) = 0.$$

Покажем, что не существует $\lim_{\substack{x\to 0 \\ y\to 0}} f(x,y)$. Рассмотрим две последовательности:

$$\{(x_m,y_m)\} = \left\{\frac{1}{m},\frac{1}{m}\right\} \qquad \text{и} \qquad \{(x_m',y_m')\} = \left\{\frac{1}{m},-\frac{1}{m}\right\}. \qquad \text{Тогда} \qquad \{(x_m,y_m)\} \xrightarrow[m \to \infty]{} (0,0)\,,$$

$$\{(x'_m,y'_m)\}$$
 \longrightarrow \longrightarrow $(0,0)$, но $\{f(x_m,y_m)\}=\left\{\frac{1}{2}\right\}$, $\{f(x'_m,y'_m)\}=\left\{-\frac{1}{2}\right\}$, то есть для различных

последовательностей аргументов, стремящихся к точке (0,0), соответствующие последовательности значений функции могут сходиться к разным числам. Это означает, что функция f(x, y) не имеет предела в точке (0,0). Значит, из существования обоих повторных пределов не следует существования двойного.

Покажем, что и из существования двойного предела не следует существование повторных.

2) Рассмотрим функцию
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin{\frac{1}{x}}\sin{\frac{1}{y}}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$
. Если $x^2 + y^2 \to 0$, то

 $f(x, y) \to 0$ (как произведение бесконечно малой функции на ограниченную). Значит, $\lim_{x \to 0} f(x, y) = 0$ (определение предела функции по Коши). $x \rightarrow 0$ $y \rightarrow 0$

Покажем, что не существует ни один из повторных пределов (поскольку переменные входят в нашу функцию симметричным образом, то достаточно рассмотреть один из таких пределов). Пусть, например, $y \neq 0$. Тогда очевидно, что $\lim_{x \to 0} x^2 \sin \frac{1}{x} \sin \frac{1}{y} = 0$, а $\lim_{x \to 0} y^2 \sin \frac{1}{x} \sin \frac{1}{y}$ не существует. Значит, не существует предел $\lim_{x \to 0} f(x,y)$ при любом фиксированном $y \ne 0$, и тем более, не существует предел $\lim_{y \to 0} \lim_{x \to 0} f(x,y)$.

Легко показать также, что у функции могут существовать двойной и один из повторных пределов, но не быть второго повторного предела. Для этого немного изменим функцию из примера 2:

3) Пусть
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{y}, & y \neq 0 \\ 0, & y = 0 \end{cases}$$
. Тогда $\lim_{\substack{x \to 0 \\ y \to 0}} f(x,y) = 0$, $\lim_{\substack{y \to 0 \\ y \to 0}} f(x,y) = 0$,

 $\lim_{x \to 0} \lim_{x \to 0} f(x, y)$ не существует (проверьте это самостоятельно!)

И наконец, рассмотрим пример того, что оба повторных предела могут существовать, но не быть равными.

4)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
. Тогда ясно, что $\lim_{y \to 0} \lim_{x \to 0} f(x,y) = -1$, а

 $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = 1$. Покажите, что $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ в этом случае не существует.

Упражнение. Покажите, что если существует $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y) = b$ и $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y) = c$, то b = c.