1. Stable and Unstable States

Definition:

- Stable State: The system remains in the current state until an external input changes.
- **Unstable State**: The system transitions to another state due to the current state not being stable for the given inputs.

Example:

Consider an asynchronous machine controlling a traffic light at a pedestrian crossing.

- Stable State: When there is no pedestrian, the light remains green for cars.
- **Unstable State**: When a pedestrian presses the button, the system transitions to a state where the light changes to **red**.

Flow Table Representation:

Present State	Input = 0 (No Pedestrian)	Input = 1 (Pedestrian Button Pressed)
S1 (Green)	S1 (Stable)	S2 (Unstable, transitioning to red)
S2 (Red)	S3 (Yellow, unstable)	S2 (Stable)
S3 (Yellow)	S1 (Green, unstable)	S3 (Stable)

• **Key Insight**: Stability ensures the system remains predictable.

Applications:

- Elevator controls.
- Microwave ovens waiting for input.

2. Flow Table and Races

A flow table is a compact representation of state transitions.

Definition of Races:

• A race occurs when multiple state variables change simultaneously, potentially causing an unpredictable next state.

Example:

Consider an automatic door sensor that detects people entering or leaving.

Current State	Input = Entering (1)	Input = Leaving (0)
S1 (Closed)	S2 (Opening)	S1 (Closed)
S2 (Opening)	S3 (Open)	S1 (Closed)
S3 (Open)	S3 (Open)	S4 (Closing)
S4 (Closing)	S1 (Closed)	S1 (Closed)

Potential Race Condition:

If the door is transitioning between S2 (Opening) and S3 (Open), a person leaving at the same time might force a transition to S4 (Closing) too early.

Solution:

 Insert intermediate states or use race-free state assignment to ensure transitions occur sequentially.

3. State Reduction

Goal:

Simplify the system by merging states with identical behaviors.

Example: Vending Machine

A vending machine dispenses a soda after a total of 10 cents. Assume it accepts only 5-cent coins (N) or 10-cent coins (D).

Present State	Input = N	Input = D	Output
S1 (0 cents)	S2 (5)	S3 (10)	0
S2 (5 cents)	S3 (10)	S3 (10)	0
S3 (10 cents)	S3 (10)	S3 (10)	1

Reduction:

- S3 produces the same output for any transition, so it can be merged with similar states beyond 10 cents.
- New Flow Table:

Present State	Input = N	Input = D	Output
S1 (0 cents)	S2 (5)	S3 (10)	0
S2 (5 cents)	S3 (10)	S3 (10)	0

Real-world Implication:

This reduction minimizes the number of states and logic gates needed to design the vending machine.

4. State Assignment

Definition:

Assign binary codes to states to enable implementation using logic circuits.

Objective:

- Minimize the number of bit changes during transitions to avoid hazards.
- Optimize the design to reduce circuit complexity.

Example: Elevator Controller

An elevator with three floors (G, 1, 2) can be represented as:

State	Description	Binary Code
S1	Ground Floor	00
S2	1st Floor	01
S3	2nd Floor	10

Transition Table:

Present State	$\mathbf{Input} = \mathbf{Up}$	Input = Down
S1 (00)	S2 (01)	S1 (00)
S2 (01)	S3 (10)	S1 (00)
S3 (10)	S3 (10)	S2 (01)

Optimized Binary Codes:

- Gray Coding: Assign binary codes to ensure only one bit changes during transitions.
 - \circ S1 = 00
 - \circ S2 = 01
 - \circ S3 = 11

This reduces glitches and minimizes race conditions.

5. Avoiding Races and Hazards

Definition:

- Critical Races: Simultaneous changes in state variables leading to unintended states.
- Hazards: Transient fluctuations in outputs due to circuit delays.

Example: Traffic Light Controller

Consider transitions from $Green \rightarrow Yellow \rightarrow Red$. Without careful state assignment, simultaneous state changes might result in the lights turning off momentarily.

Solutions:

- 1. Use intermediate states:
 - o Insert "transitional states" to ensure a smooth progression.

2. Design hazard-free logic:

o Use redundant logic to prevent glitches during state changes.

Practical Applications

1. Elevator Controls:

• Manage states like "door opening," "door closing," and "moving" efficiently with reduced hazards.

2. Traffic Signals:

• Ensure smooth transitions between lights with stable states and reduced glitches.

3. Industrial Automation:

• Conveyor belt systems use ASMs to manage states like "load," "move," and "unload."

4. Consumer Electronics:

• Devices like washing machines use ASMs to sequence operations (wash, rinse, spin).

Conclusion

The **analysis of ASMs** involves understanding the system's behavior (stable/unstable states), optimizing it through **state reduction** and **state assignment**, and ensuring robust design by avoiding **races and hazards**. Each step enhances the machine's reliability and efficiency in real-world applications like traffic systems, vending machines, and consumer devices.