Pontificia Universidad Javeriana Diseño de Experimentos Parcial 3

1. Se someten a estudio tres marcas de baterías. Se sospecha que las vidas (en semanas) de las tres marcas son diferentes. Se prueban 5 baterías de cada marca con los siguientes resultados:

Semanas de vida						
Marca 1	Marca 1 Marca 2 Marca 2					
200	152	216				
192	160	200				
184	150	192				
192	168	196				
184	164	200				

- a. Las vidas de estas tres marcas son diferentes, bajo una significancia del 5%.
- b. Las vidas de estas tres marcas son iguales, bajo una significancia del 5%.
- **2.** En un experimento se recogen los siguientes datos de un modelo de simulación. La respuesta y es el Costo de la Política de inventarios, x1 es el punto de reorden y x2 es el tamaño de lote. Ajustar un modelo de segundo orden.

X1	X2	Υ
-1	-1	150
-1	1	154
1	-1	159
1	1	145
-1.41	0	157
1.41	0	159
0	-1.41	151
0	1.41	154
0	0	147
0	0	145
0	0	148
0	0	144
0	0	145

```
Response: y
            Df Sum Sq Mean Sq F value
                                          Pr(>F)
FO(x1, x2) 2 5.143
                        2.572 0.3089 0.743787
TWI(x1, x2) 1 81.000 81.000 9.7286 0.016866
PQ(x1, x2) 2 218.652 109.326 13.1308 0.004276 Residuals 7 58.282 8.326
Lack of fit 3 47.482 15.827
                                 5.8619 0.060259
Pure error 4 10.800
                         2.700
Stationary point of response surface:
                 x2
       x1
0.0432170 0.1801274
Eigenanalysis:
eigen() decomposition
$values
[1] 6.549378 1.275622
$vectors
         [,1]
                    [,2]
x1 -0.8721955 -0.4891574
x2 0.4891574 -0.8721955
```

El punto óptimo se trata de:

- a. Punto mínimo
- b. Punto máximo
- **3.** Para un lambda de 0 y uno de 1.5, ¿Cuál es la transformación BoxCox correspondiente al número 62?
 - a. En ambos casos es igual a 324.8
 - b. Para lambda de 0 es 324.8 y para lambda de 1.5 es 4.1
 - c. Para lambda de 0 es 4.1 y para lambda de 1.5 es 324.8
 - d. Ninguna de las anteriores
- 4. En tratamientos térmicos, el espesor de la capa carbonizada es una variable de salida del proceso. Se estudiaron los siguientes 6 factores: A = temperatura del horno, B = duración del ciclo, C = concentración de carbono, D = duración de ciclo de carbonación, E = concentración de carbono en la parte difusa del ciclo, F = duración del ciclo difuso. Los resultados del experimento se muestran a continuación, en donde E = ABC, F = BCD.

Α	В	С	D	E	F	Espesor
-	-	1	1	-	1	74
+	-	-	-	+	-	190
-	+	-	-	+	+	133
+	+	-	-	-	+	127

-	-	+	-	+	+	115
+	-	+	-	-	+	101
-	+	+	-	-	-	54
+	+	+	-	+	-	144
-	-	-	+	-	+	121
+	-	-	+	+	+	188
-	+	-	+	+	-	135
+	+	-	+	-	-	170
-	-	+	+	+	-	126
+	-	+	+	-	-	175
-	+	+	+	-	+	126
+	+	+	+	+	+	193

Selección múltiple. La interacción AB es alias de:

- a. AF
- b. ABD
- c. CE
- d. BCDE
- e. ACDF
- f. BDEF
- **5.** En tratamientos térmicos, el espesor de la capa carbonizada es una variable de salida del proceso. Se estudiaron los siguientes 6 factores: A = temperatura del horno, B = duración del ciclo, C = concentración de carbono, D = duración de ciclo de carbonación, E = concentración de carbono en la parte difusa del ciclo, F = duración del ciclo difuso. Los resultados del experimento se muestran a continuación, en donde E = ABC, F = BCD.

Α	В	С	D	Е	F	Espesor
-	1	-	-	-	-	74
+	1	-	-	+	-	190
-	+	-	-	+	+	133
+	+	-	-	-	+	127
-	1	+	-	+	+	115
+	-	+	-	-	+	101
-	+	+	-	-	-	54
+	+	+	-	+	-	144
-	-	-	+	-	+	121
+	-	-	+	+	+	188
-	+	-	+	+	-	135

+	+	-	+	-	-	170
-	-	+	+	+	1	126
+	-	+	+	-	1	175
-	+	+	+	-	+	126
+	+	+	+	+	+	193

	Coeficientes	Efectos	SumaCuadrados
A1	50.5	101	40804
B1	-1.0	-2	16
C1	-13.0	-26	2704
D1	37.0	74	21904
E1	34.5	69	19044
F1	4.5	9	324
A1:B1	-4.0	-8	256
A1:C1	-2.5	-5	100
A1:D1	4.0	8	256
A1:E1	1.0	2	16
A1:F1	-22.0	-44	7744
B1:D1	4.5	9	324
B1:F1	14.5	29	3364
A1:B1:D1	0.5	1	4
A1:B1:F1	6.0	12	576

Selección múltiple. Los efectos principales del experimento y que contribuyen en un porcentaje mayor al 10% en relación con la suma de errores cuadrados del modelo ANOVA, son:

- a. A:C
- b. A:E
- c. A:F
- d. A:B:D
- e. B:D
- f. A
- g. A:B
- h. D
- i. A:D
- j. F
- k. A:B:F
- l. E
- m. B:F
- n. C
- o. B
- **6.** En un experimento se recogen los siguientes datos de un modelo de simulación. La respuesta y es el Costo de la Política de inventarios, x1 es el punto de reorden y x2 es el tamaño de lote. Ajustar un modelo de segundo orden.

X1	X2	Υ
-1	-1	150
-1	1	154
1	-1	159
1	1	145
-1.41	0	157
1.41	0	159
0	-1.41	151
0	1.41	154
0	0	147
0	0	145
0	0	148
0	0	144
0	0	145

```
Response: y
           Df Sum Sq Mean Sq F value
                                       Pr(>F)
FO(x1, x2) 2 5.143 2.572 0.3089 0.743787
TWI(x1, x2) 1 81.000 81.000 9.7286 0.016866
PQ(x1, x2) 2 218.652 109.326 13.1308 0.004276
Residuals
            7 58.282
                      8.326
Lack of fit 3 47.482 15.827
                              5.8619 0.060259
Pure error 4 10.800
                      2.700
Stationary point of response surface:
      x1
                x2
0.0432170 0.1801274
Eigenanalysis:
eigen() decomposition
$values
[1] 6.549378 1.275622
$vectors
        [,1]
                   [,2]
x1 -0.8721955 -0.4891574
x2 0.4891574 -0.8721955
```

Se sabe que el nivel mínimo del punto de reorden es 100 (-1) unidades y el nivel máximo es de 200 (1), mientras que el nivel mínimo del tamaño de lote es 200 (-1) y el nivel máximo es 400 (1). Para minimizar el costo de la política de inventarios las condiciones de operación que recomendaría en unidades reales son:

```
    a. X2 = 301.7 un, X1 = 165.7 un
    b. X2 = 320.7 un, X1 = 153.7 un
```

c. X2 = 318.0 un, X1 = 152.2 un

d. Ninguna de las demás alternativas.

e. X2 = 328.7 un, X1 = 154.2 un

- 7. En un experimento los investigadores identifican un factor perturbador que no pueden controlar, pero si medir, y un factor perturbador que pueden controlar y medir. En orden, ¿cuáles serían las mejores herramientas experimentales que deberían aplicar en cada caso?
 - a. Bloques aleatorizados y aleatorización
 - b. Bloqueas aleatorizados y ANCOVA
 - c. ANCOVA y aleatorización
 - d. ANCOVA y bloques aleatorizados
 - e. Ninguna de las anteriores
- **8.** A partir de una toma de muestras, se ajusto el siguiente modelo de primer orden en un diseño de superficie de respuesta:

$$\hat{y} = 152 + 9.8 x_1 + 2.3 x_2$$

¿Cuál es la trayectoria de ascenso más pronunciado?

- a. X1 = 2.3 y X2 = 9.8
- b. X1 = 9.8 y X2 = 2.3
- c. X1 = 2.3 y X2 = 152
- d. X1 = 152 y X2 = 9.8
- e. Ninguna de las anteriores
- **9.** En un experimento se recogen los siguientes datos de un modelo de simulación. La respuesta y es el Costo de la Política de inventarios, x1 es el punto de reorden y x2 es el tamaño de lote. Ajustar un modelo de segundo orden.

X1	X2	Υ
-1	-1	150
-1	1	154
1	-1	159
1	1	145
-1.41	0	157
1.41	0	159
0	-1.41	151
0	1.41	154
0	0	147

0	0	145
0	0	148
0	0	144
0	0	145

¿Cómo se llama el anterior diseño experimental?

- a. Diseño central compuesto
- b. Diseño 2k fraccionado
- c. Diseño 2k
- d. Diseño factorial
- e. Ninguna de las anteriores

10. ¿Qué es un factor/interacción alias?

- a. Un factor/interacción cuyo efecto de confunde con el de otro factor/interacción
- b. Un factor/interacción cuyo efecto es predominante
- c. Un factor/interacción cuyo efecto es irrelevante
- d. Un factor/interacción que se usa como bloque en un diseño experimental
- e. Ninguna de las anteriores