# DESIGN AND CFD ANALYSIS OF BLENDED WING BODY AIRCRAFT

Submitted by: Dharmendra Yadav (16/197) Mukesh Goklani (16/203) Under the guidance of Mr. Anshul Khandelwal (Assistant professor)

#### CONTENTS

- O Introduction
- O History
- Formulation of BWB
- Advantages of BWB
- O ANSYS
- Analysis of Blended Wing Body Aircraft
- O Geometry
- O Meshing
- O Setup

#### CONTENTS

- SolidWorks
- O Conceptual Design
- O Detail of Design
- O Design Process
- O Dimensional Analysis
- O Results
- O Plots
- O Problem faced
- O Conclusion
- O References

#### INTRODUCTION

- O A Blended wing body (BWB) aircraft is also called as hybrid wing body aircraft
- Blended wing body aircraft have a flattened and airfoil shaped body
- Blended wing body aircraft is a configuration where the fuselage is merged with the wing and tail to form a single entity
- O In blended wing body aircraft wing and fuselage lift together. Thus, it increases the effective lifting surface area

#### HISTORY OF BWB

- O In early 1920s, Nicolas Woyevodsky developed a theory of BWB
- O The idea was proposed again in the early 1940s for miles M-26 airliner project
- O NASA returned to the concept in 1990s with an artificially stabilized 17- foot called bwb-17 built by Stanford university, which was flown in 1997, and showed good handling qualities.

#### HISTORY OF BWB



Horton Ho 229 by Horten brothers



The Northrop XB-35 aircraft

#### HISTORY OF BWB

Turbojet powered Ho-229 flying wing aircraft the worlds first turbojet powered Blended Wing Body aircraft



#### FORMULATION OF THE BWB CONCEPT

- O When compared to the conventional aircraft, BWB has higher lift, higher L/D ratio, and lower fuel burn
- In BWB aircraft, wetted area is 7000ft less as compared to conventional aircraft with cylindrical fuselage
- O Adding the required control surfaces to each configuration results in total wetted area difference of 14,300ft or a reduction in 33%

#### FORMULATION OF THE BWB CONCEPT



Cylindrical fuselage wing geometry



Total difference in wetted area

#### ADVANTAGES OF BWB AIRCRAFT

- Higher fuel efficiency
- Higher payload capacity
- Lower take-off weight
- Lower wetted surface area
- High L/D ratio due to a decreased relative wetted area (area which is in contact with the external flow)
- Lower production cost

#### **ANSYS**

- ANSYS is a high performance general purpose fluid dynamics program that has been applied to solve wide-ranging fluid flow problems for over 20 years
- > ANSYS Fluent consists of 4 software modulus such as-
  - Design generation software (design modeler)
  - 2. Mesh generation software
  - 3. Physics pre solver (setup)
  - 4. Solver (solution)
  - 5. Post-processor (results)

## ANALYSIS OF BLENDED WING BODY AIRCRAFT UAV IN ANSYS FLUENT

- Geometry (design modeler)
  - 1. Uniform enclosure
  - 2. Naming of the tool body and target body
  - 3. Create Boolean
  - 4. Update
  - 5. generate

## GEOMETRY





**ENCLOSURE** 

BOOLEAN

- Meshing
- 1. Start with the naming of the surfaces.
  - Inlet
  - Outlet
  - Wall
- 2. Sizing (relevant center) medium
- 3. Update mesh

- Meshing is the discretization of continuous body into finite no of elements
- Mesh process
  - 1. Select physics preference in ANSYS Meshing(CFD).
  - 2. Select the meshing method (automatic).
  - 3. Insert local meshing setting.
  - 4. Preview and generate the mesh.
  - 5. Check mesh quality.





**INLET** 

OUTLET





WALL

WIREFRAME MESHING

#### DIMENSIONAL ANALYSIS

O A large number of physical parameters determine aerodynamic forces and moments.

| Parameters                | Symbols | Units            |
|---------------------------|---------|------------------|
| Lift per span             | L'      | MT <sup>-2</sup> |
| Angle of attack           | а       |                  |
| Freestream velocity       | V∞      | LT-1             |
| Freestream density        | ρ∞      | ML <sup>-3</sup> |
| Freestream viscosity      | µ∞      | ML-1T-1          |
| Freestream speed of sound | a∞      | LT-1             |
| Chord                     | С       | L                |

#### DIMENSIONLESS ANALYSIS

O BY Buckingham Pi theorem,

$$L' = f(\alpha, \rho \infty, V \infty, c, \mu \infty, \alpha \infty)$$

$$\Pi 1 = -f(\Pi_2, \Pi_3 ... \Pi_{N-K})$$

 $\Pi 1 = L/2 \rho \sim V \sim^2 c = c\ell$  (lift coefficient).

 $\Pi 2 = a = a$  (angle of attack).

 $\Pi 3 = \rho \sim V \sim c / \mu \sim = \text{Re (Reynolds number)}.$ 

 $\Pi 4 = V \infty / \alpha \infty = M \infty$  (Mach number).

$$cl = f(a, Re, M\infty)$$

O In our simulation we have kept Reynolds number (63,000), Mach (0.14) constant and varied alpha as 0,5,10,20,30,35 (degrees).

#### **SETUP**

- Setup
  - 1. Model (k- epsilon)
  - 2. Boundary conditions Inlet velocity (50 m/s)
  - 3. Solution methods
  - 4. Monitor
  - 5. Solution initialization
  - 6. Run calculation number of iteration
  - 7. Graphics

#### VIDEO EVIDENCE

#### SolidWorks

- O Solidworks is a Solid modeling computer-aided design (CAD)computer program
- Most commonly used software among engineers and designers.
- O Reason to choose this software :-
  - Ability to import different type of data
  - Flexibility
  - Accessibility
- O This software provides an innovative way to solve project challenges

#### CONCEPTUAL DESIGN

#### O AIRFOIL SELECTION:

- In the conceptual design phase, the airfoil details of different airfoils were analyzed
- Airfoil investigation database from airfoiltools.com was used
- The Martin Happerle, MH-45 was selected
- The same airfoil is used from wing root to tip

#### O Reasons for selecting MH-45:

- High maximum lift coefficient
- Successfully used in tailless model aircraft

#### DETAILS OF DESIGN

| Parameters          | Dimensions | Parameters               | Dimensions       |  |
|---------------------|------------|--------------------------|------------------|--|
| Thickness           | 9.85 %C    | $C_{m}$                  | +0.0145          |  |
| Camber              | 1.7 %C     | Max C <sub>L</sub> Angle | 9.50             |  |
| Trailing-Edge Angle | 4.40       | Max L/D                  | 66.664           |  |
| Lower Flatness      | 66.6%      | Max L/D Angle            | 6.50             |  |
| Leading Edge Angle  | 0.7%       | Max L/D C <sub>L</sub>   | 0.792            |  |
| Max C <sub>L</sub>  | 0.888      | Stall Angle              | 6.5 <sup>0</sup> |  |

| Parameters   | Dimensions | Parameters     | Dimensions           |  |
|--------------|------------|----------------|----------------------|--|
| Centre Chord | 0.89 m     | Half Span      | 0.86 m               |  |
| Root Chord   | 0.42 m     | Sweep Angle    | 300                  |  |
| Tip Chord    | 0.26 m     | Dihedral Angle | 00                   |  |
| Twist Angle  | 00         | Surface Area   | 0.714 m <sup>2</sup> |  |

**BWB** Dimensions

Airfoil Characteristics

O STEP 1- Importing of an airfoil coordinates in solid works inform of .txt or .csv Format.



O STEP 2 - Resizing the projection of airfoil in different planes according to dimensions.



O STEP 3 - Creating a projection of wingtip in the perpendicular plane to create winglets.



O STEP 4 – Creating loft (BLEND) between these surfaces to get the final model ready.





#### **RESULTS**

 $\circ$  This simulation result is for Mach (0.14), Reynolds number (63,000) and alpha (0°)



Pressure Distribution Over BWB

#### **RESULTS**

#### O Contours:





Pressure Contour Over Center Plane (alpha=0°)

Velocity Contour Over Center Plane (alpha=0°

## RESULTS

| AoA | Lift Force | Drag<br>Force | L/D   | q       | S     | CL    | C <sub>D</sub> | C <sub>L</sub> /C <sub>D</sub> |
|-----|------------|---------------|-------|---------|-------|-------|----------------|--------------------------------|
| 0   | 521.3      | 15.4          | 33.85 | 1531.25 | 0.714 | 0.476 | 0.014          | 33.85                          |
| 5   | 520.3      | 15.7          | 33.14 | 1531.25 | 0.714 | 0.475 | 0.014          | 33.14                          |
| 10  | 603.0      | 17.1          | 35.20 | 1531.25 | 0.714 | 0.551 | 0.015          | 35.20                          |
| 20  | 890.0      | 18.66         | 47.68 | 1531.25 | 0.714 | 0.814 | 0.017          | 47.68                          |
| 30  | 1012.1     | 27.81         | 36.38 | 1531.25 | 0.714 | 0.925 | 0.025          | 36.38                          |
| 35  | 999.3      | 27.96         | 35.31 | 1531.25 | 0.714 | 0.914 | 0.025          | 35.31                          |

#### **PLOTS**



Variation of C<sub>L</sub> with Alpha (Calculated)



Variation of C<sub>L</sub> with Alpha (Experimental)

#### **PLOTS**







Variation of  $C_L$  with  $C_D$  (Experimental)

#### **PLOTS**



Cl/Cd v Alpha

80

60

40

20

-20

-10.0 -5.0 0.0 5.0 10.0 15.0 20.0

Variation of L/D with Alpha (calculated)

Variation of L/D with Alpha (experimental)

#### PROBLEMS FACED

- O OPEN-SOURCE Softwares
- O De-featuring of Geometry
- ANSYS free version
- O Finding of Cracked ANSYS.

#### CONCLUSION

- The lift-to-drag ratio (L/D) is a very significant parameter
- O Higher lift to drag ratio leads to better fuel economy, climb performance, and glide ratio

| AIRCRAFT     | L/D ratio |
|--------------|-----------|
| Boeing-747   | 17.7      |
| Lockheed-U-2 | 25.6      |
| Airbus A-320 | 19.2      |
| BWB Design   | 33.85     |

Lift to Drag Ratio (cruise) of different aircraft.

- The lift generated by the BWB was found to be more than the conventional aircraft
- Drag is also less
- O The fuselage of the BWB generates lift which was confirmed by the analysis of the center body

#### REFRENCES

[1] "Blended Wing Body Aircraft"

https://en.wikipedia.org/wiki/Blended\_wing\_body

[2] "Blended Wing Body Design"

https://www.nasa.gov/centers/langley/news/factsheets/FS-2003-11-81-LaRC.html

- [3] R. Devaraju, R. Naveen Kumar, J. Naresh, Computational Aerodynamic Analysis of Blended Wing Body Aircraft, International Research Journal of Engineering and Technology, Volume: 02, Issue:05, 2015.
- [4] Michael Farrow, Wing Embedded Engines for Large Blended Wing Body Aircraft, A Computational Investigation, University of Surrey, 2009.
- [5] Zhoujie Lyu and Joaquim R. R. A. Martins, Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft, Journal of Aircraft, 2013.
- [6] R.H. Liebeck, Design of the Blended Wing Body Subsonic Transport, Journal of Aircraft, Vol. 41, No.1, 2004.
- [7] Spiridon Souris and Ning Qin, Study of the effects of wing sweep on the aerodynamic performance of a blended wing body aircraft, Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2007.

## THANK YOU