Geometry Problem booklet

Assoc. Prof. Cornel Pintea

E-mail: cpintea math.ubbcluj.ro

Contents

1	Wee	k 9: Quadrics	1	
	1.1 Brief theoretical background. Quadrics			
2	Qua	Quadrics		
	2.1	The ellipsoid	1	
		Hyperboloids of One Sheet		
		Th hyperboloid of two sheets		
		Problems		

Module leader: Assoc. Prof. Cornel Pintea

Department of Mathematics, "Babeş-Bolyai" University 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania

1 Week 9: Quadrics

This section briefly presents the theoretical aspects covered in the tutorial. For more details please check the lecture notes.

1.1 Brief theoretical background. Quadrics

2 Quadrics

2.1 The ellipsoid

The ellipsoid is the quadric surface given by the equation

$$\mathcal{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0, \qquad a, b, c \in \mathbb{R}_+^*.$$
 (2.1)

- The coordinate planes are all planes of symmetry of \mathcal{E} since, for an arbitrary point $M(x,y,z) \in \mathcal{E}$, its symmetric points with respect to these planes, $M_1(-x,y,z)$, $M_2(x,-y,z)$ and $M_3(x,y,-z)$ belong to \mathcal{E} ; therefore, the coordinate axes are axes of symmetry for \mathcal{E} and the origin O is the center of symmetry of the ellipsoid (2.1);
- The traces in the coordinates planes are ellipses of equations

$$\begin{cases} \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0 \\ x = 0 \end{cases}, \begin{cases} \frac{x^2}{a^2} + \frac{z^2}{c^2} - 1 = 0 \\ y = 0 \end{cases}, \begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \\ z = 0. \end{cases}$$

- The sections with planes parallel to xOy are given by setting $z=\lambda$ in (2.1). Then, a section is of equations $\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \frac{\lambda^2}{c^2} \\ z = \lambda \end{cases}$.
- If $|\lambda| < c$, the section is an ellipse

$$\begin{cases} \frac{x^2}{\left(a\sqrt{1-\frac{\lambda^2}{c^2}}\right)^2} + \frac{y^2}{\left(b\sqrt{1-\frac{\lambda^2}{c^2}}\right)^2} = 1\\ z = \lambda \end{cases};$$

- If $|\lambda| = c$, the intersection is reduced to one (tangency) point $(0,0,\lambda)$;
- If $|\lambda| > c$, the plane $z = \lambda$ does not intersect the ellipsoid \mathcal{E} .

The sections with planes parallel to *xOz* or *yOz* are obtained in a similar way.

2.2 Hyperboloids of One Sheet

The surface of equation

$$\mathcal{H}_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0, \qquad a, b, c \in \mathbb{R}_+^*,$$
 (2.2)

is called *hyperboloid* of one sheet.

- The coordinate planes are planes of symmetry for \mathcal{H}_1 ; hence, the coordinate axes are axes of symmetry and the origin O is the center of symmetry of \mathcal{H}_1 ;
- The intersections with the coordinates planes are, respectively, of equations

$$\begin{cases} \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0 \\ x = 0 \\ \text{a hyperbola} \end{cases}; \begin{cases} \frac{x^2}{a^2} - \frac{z^2}{c^2} - 1 = 0 \\ y = 0 \\ \text{a hyperbola} \end{cases}; \begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \\ z = 0 \\ \text{an ellipse} \end{cases};$$

The intersections with planes parallel to the coordinate planes are

$$\begin{cases} \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 - \frac{\lambda^2}{a^2} \\ x = \lambda \\ \text{hyperbolas} \end{cases}$$
,
$$\begin{cases} \frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{\lambda^2}{b^2} \\ y = \lambda \\ \text{hyperbolas} \end{cases}$$
,

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{\lambda^2}{c^2} \\ z = \lambda \\ \text{ellipses} \end{cases};$$

Remark: The surface \mathcal{H}_1 contains two families of lines, as

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{y^2}{b^2} \Leftrightarrow \left(\frac{x}{a} + \frac{z}{c}\right) \left(\frac{x}{a} - \frac{z}{c}\right) = \left(1 + \frac{y}{b}\right) \left(1 - \frac{y}{b}\right).$$

The equations of the two families of lines are:

$$d_{\lambda}: \begin{cases} \lambda \left(\frac{x}{a} + \frac{z}{c}\right) = 1 + \frac{y}{b} \\ \frac{x}{a} - \frac{z}{c} = \lambda \left(1 - \frac{y}{b}\right) \end{cases}, \lambda \in \mathbb{R},$$
$$d'_{\mu}: \begin{cases} \mu \left(\frac{x}{a} + \frac{z}{c}\right) = 1 - \frac{y}{b} \\ \frac{x}{a} - \frac{z}{c} = \mu \left(1 + \frac{y}{b}\right) \end{cases}, \mu \in \mathbb{R}.$$

Through any point on \mathcal{H}_1 pass two lines, one line from each family.

2.3 Th hyperboloid of two sheets

The hyperboloid of two sheets is the surface of equation

$$\mathcal{H}_2: \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} + 1 = 0, \qquad a, b, c \in \mathbb{R}_+^*.$$
 (2.3)

- The coordinate planes are planes of symmetry for \mathcal{H}_1 , the coordinate axes are axes of symmetry and the origin O is the center of symmetry of \mathcal{H}_1 ;
- The intersections with the coordinates planes are, respectively,

$$\begin{cases} \frac{y^2}{b^2} - \frac{z^2}{c^2} + 1 = 0 \\ x = 0 \end{cases}$$
,
$$\begin{cases} \frac{x^2}{a^2} - \frac{z^2}{c^2} + 1 = 0 \\ y = 0 \end{cases}$$
,
$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0 \\ z = 0 \end{cases}$$
, the empty set

• The intersections with planes parallel to the coordinate planes are

$$\begin{cases} \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 - \frac{\lambda^2}{a^2} \\ x = \lambda \end{cases}$$

$$\begin{cases} \frac{x^2}{a^2} - \frac{z^2}{c^2} = -1 - \frac{\lambda^2}{b^2} \\ y = \lambda \\ \text{hyperbolas} \end{cases}$$

and
$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = -1 + \frac{\lambda^2}{c^2} \\ z = \lambda \end{cases}.$$

- If $|\lambda| > c$, the section is an ellipse;
- If $|\lambda| = c$, the intersection reduces to a point $(0,0,\lambda)$;
- If $|\lambda| < c$, one obtains the empty set.

The hyperboloid of two theets

The hyperboloids of one and two sheets and their common asymptotic cone

2.4 Problems

1. Show the following identities:

(a)
$$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = (\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d}) \xrightarrow{\overrightarrow{b}} -(\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}) \xrightarrow{\overrightarrow{a}} = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}) \xrightarrow{\overrightarrow{c}} -(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \xrightarrow{\overrightarrow{d}}$$
.
(b) $(\overrightarrow{u} \times \overrightarrow{v}, \overrightarrow{v} \times \overrightarrow{w}, \overrightarrow{w} \times \overrightarrow{u}) = (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})^2$.

2. The *reciprocal vectors* of the noncoplanar vectors \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} are defined by

$$\overrightarrow{u}' = \frac{\overrightarrow{v} \times \overrightarrow{w}}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})}, \ \overrightarrow{v}' = \frac{\overrightarrow{w} \times \overrightarrow{u}}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})}, \ \overrightarrow{w}' = \frac{\overrightarrow{u} \times \overrightarrow{v}}{(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})}.$$

Show that:

(a) $\overrightarrow{a} = (\overrightarrow{a} \cdot \overrightarrow{u}') \overrightarrow{u} + (\overrightarrow{a} \cdot \overrightarrow{v}') \overrightarrow{v} + (\overrightarrow{a} \cdot \overrightarrow{w}') \overrightarrow{w} \\
= (\overrightarrow{a}, \overrightarrow{v}, \overrightarrow{w}) \overrightarrow{u} + (\overrightarrow{u}, \overrightarrow{a}, \overrightarrow{w}) \overrightarrow{v} + (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{a}) \overrightarrow{w} \\
= (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \overrightarrow{u} + (\overrightarrow{u}, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \overrightarrow{v} + (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{a}) \overrightarrow{w}.$

- (b) the reciprocal vectors of \overrightarrow{u}' , \overrightarrow{v}' , \overrightarrow{w}' are the vectors \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} .
- 3. Let d_1 , d_2 , d_3 , d_4 be pairwise skew straight lines. Assuming that $d_{12} \perp d_{34}$ and $d_{13} \perp d_{24}$, show that $d_{14} \perp d_{23}$, where d_{ik} is the common perpendicular of the lines d_i and d_k .
- 4. Find the value of the parameter α for which the pencil of planes through the straight line AB has a common plane with the pencil of planes through the straight line CD, where $A(1,2\alpha,\alpha)$, B(3,2,1), $C(-\alpha,0,\alpha)$ and D(-1,3,-3).
- 5. Find the value of the parameter λ for which the straight lines

$$(d_1)$$
 $\frac{x-1}{3} = \frac{y+2}{-2} = \frac{z}{1}$, (d_2) $\frac{x+1}{4} = \frac{y-3}{1} = \frac{z}{\lambda}$

are coplanar. Find the coordinates of their intersection point in that case.

References

- [1] Andrica, D., Ţopan, L., Analytic geometry, Cluj University Press, 2004.
- [2] Galbură Gh., Radó, F., Geometrie, Editura didactică și pedagogică-București, 1979.
- [3] Pintea, C. Geometrie. Elemente de geometrie analitică. Elemente de geometrie diferențială a curbelor și suprafețelor, Presa Universitară Clujeană, 2001.
- [4] Radó, F., Orban, B., Groze, V., Vasiu, A., Culegere de Probleme de Geometrie, Lit. Univ. "Babeş-Bolyai", Cluj-Napoca, 1979.