Disciplina: Lógica Matemática

Aula 03: Cálculo Proposicional (Predicados e Quantificadores)

Cleonice F. Bracciali

UNESP - Universidade Estadual Paulista Campus de São José do Rio Preto

Revisão: Implicação Lógica

Implicação Lógica:

Dizemos que a proposição $P=P(p_1,p_2,...,p_n)$ implica logicamente a proposição $Q=Q(p_1,p_2,...,p_n)$, se, toda atribuição de valores lógicos de $p_1,p_2,...,p_n$ que tornam P verdadeira também tornam Q verdadeira.

Em outras palavras:

P implica logicamente Q se, e somente se, a proposição condicional $P\to Q$ for uma tautologia.

Notação:

$$P \Rightarrow Q$$

Revisão: Implicação Lógica

Exemplo: Considere as proposições P e Q dadas por

$$P: p$$
 e $Q: p \lor q$.

Verifique que $P\Rightarrow Q$, ou seja, verifique que $p\Rightarrow (p\vee q), p$ implica logicamente em $(p\vee q)$.

• Vamos mostar que $P\Rightarrow Q$ usando a definição "P implica logicamente Q se, e somente se, a proposição $P\rightarrow Q$ for uma tautologia".

p	q	P: p	$Q: p \lor q$	P o Q
٧	V	V	V	V
٧	F	V	V	V
F	٧	F	V	V
F	F	F	F	V

Como $P \rightarrow O$ é Tautologia, então $P \Rightarrow O$.

• lembre-se que *P* implica logicamente *Q*, se, toda atribuição de valores

Revisão: Implicação Lógica

Importante: Dadas duas proposições A e B, então as seguintes afirmações são equivalentes:

- i) $A \Rightarrow B$ (isto é, A implica logicamente $B, A \rightarrow B \equiv T$)
- ii) $\sim A \vee B$ é tautologia
- iii) $A \wedge \sim B$ é contradição

Pois,

- se $A \to B \equiv T$ e pela propriedade da condicional $A \to B \equiv \sim A \vee B$, então podemos concluir que $\sim A \vee B \equiv T$.
- ullet se $\sim A \lor B \equiv T$ então $\sim (\sim A \lor B) \equiv \sim T$, ou seja, $A \land \sim B \equiv C$.

Definição: Funções Proposicionais (ou Sentenças Abertas) são proposições que envolvem pelo menos uma variável Exemplo:

"
$$x > 0$$
", " $x = y + 3$ "

são sentenças abertas, são funções proposicionais.

• As funções proposicionais não possuem valores lógicos, a menos que as variáveis assumam valores.

Definição: A variável x na primeira sentença (e as variáveis x e y na segunda sentença aberta) é chamada de sujeito da sentença aberta. E a expressão ">0" ("maior do que zero") é chamado de predicado da sentença aberta.

• "Predicado" é o que se diz do "sujeito".

Exemplos:

- 1) Se "ele é o governador", então "ele governa por 4 anos".
 - "ele" é o sujeito "ser governador" é o predicado
 - "ele" é o sujeito "governar por 4 anos" é o predicado
- 2) "x > 0"
 - "x" é o sujeito
 - ">0" é o predicado
- 3) "x = y + 3"
 - "x" e "y" são os sujeitos
 - "um ser igual ao outro + 3" é o predicado

Notação:

$$P(x)$$
: " $x > 0$ "

$$Q(x,y)$$
: " $x = y + 3$ "

P(x): "x é governador"

Q(x): "x governa 4 anos"

• Sempre temos que estabelecer a priori o conjunto universo do discurso (denotando por U) dos possíveis valores que o sujeito (variável) pode assumir.

Exemplos:

- 1) Em 'Se "ele é o governador", então "ele governa por 4 anos", o conjunto universo pode ser U= conjunto dos cidadãos maiores de 18 anos.
- 2) Em P(x) : "x > 0", o conjunto universo U pode ser

 $\mathbb{N} =$ conjunto dos números inteiros não negativos,

 $\mathbb{N}^* = \text{conjunto dos números inteiros positivos}$,

 $\mathbb{Z} = \text{conjunto dos números inteiros},$

 $\mathbb{Q}=$ conjunto dos números racionais,

 $\mathbb{R} = \text{conjunto dos números reais,}$ etc...

- ullet Para um elemento a do universo U, por P(a) entende-se "o predicado P aplicado no elemento a.
- E P(x) é o predicado aplicado a um elemento genérico x do universo U.
- Assim, P(x) é o próprio predicado.

Em outras palavras:

Definição: Uma função proposicional (sentença aberta) sobre um conjunto não vazio U, é uma sentença que contém variáveis e que se torna uma proposição quando substituímos as variáveis por elementos de U

$$P(x)$$
 é sentença aberta \Leftrightarrow $P(a)$ é proposição para $a \in U$

Conjunto Verdade ou Conjunto Solução

Definição: O Conjunto Verdade (ou Conjunto Solução) de uma sentença aberta P(x) é o subconjunto de U constituído pelos elementos $a \in U$ que tornam a sentença aberta P(x) verdadeira.

Notação:
$$V(P(x))$$
 ou V_P . Assim,

$$V_P = \{a \in U | P(a) \text{ \'e verdadeira}\}$$

ou apenas

$$V_P = \{ a \in U | P(a) \}$$

Lê-se: V_P é o conjunto dos elementos a pertencentes a U tal que a proposição P(a) é verdadeira. ou

 V_P é o conjunto dos elementos $x \in U$ que satisfazem a sentença aberta P(x).

Conjunto Verdade ou Conjunto Solução

Exemplos: 1)
$$U = \mathbb{R} e P(x) : "x^2 + 2 < 0"$$

Como $x^2 + 2 < 0 \Rightarrow x^2 < -2$ então não existe x real tal que $x^2 < -2$. $V(P(x)) = V_P = \emptyset$, pois $\nexists x \in \mathbb{R}$ que satisfaz $x^2 + 2 < 0$.

2)
$$U=\mathbb{N}\times\mathbb{R}$$
, ou seja, $(x,y)\in\mathbb{N}\times\mathbb{R}$, e $P(X)=P(x,y)$: " $x^2+y^2=4$ "

(Aqui denotamos
$$X=(x,y)$$
 e $X\in U=\mathbb{N}\times\mathbb{R}$.)

Para construir o conjunto verdade, vamos procurar todos os elementos $(x,y)\in\mathbb{N}\times\mathbb{R}$ tal que " $x^2+y^2=4$ ", começando com $x\in\mathbb{N}$:

$$x = 0 \Rightarrow 0^2 + y^2 = 4 \Rightarrow y^2 = 4 \Rightarrow y = \pm 2$$

 $x = 1 \Rightarrow 1^2 + y^2 = 4 \Rightarrow y^2 = 3 \Rightarrow y = \pm \sqrt{3}$

$$x = 1 \Rightarrow 1 + y = 4 \Rightarrow y = 3 \Rightarrow y = 1$$
$$x = 2 \Rightarrow 2^2 + y^2 = 4 \Rightarrow y^2 = 0 \Rightarrow y = 0$$

$$x = 3 \implies 3^2 + y^2 = 4 \implies y^2 = -5 \implies \nexists y \in \mathbb{R}$$

$$x > 3 \implies y^2 < -5 \implies \nexists y \in \mathbb{R}$$

Logo,
$$V_P = \{(0,2), (0,-2), (1,\sqrt{3}), (1,-\sqrt{3}), (2,0)\}.$$

- Vimos que atribuindo valores para as variáveis (sujeitos) transforma-se uma sentença aberta em proposição.
- Podemos também transformar uma sentença aberta em proposição fazendo uso dos quantificadores universal e existencial.

Ex:

- 1) U= conjunto dos polígonos. P(x): "a soma dos ângulos internos é 180^o ." Usando o quantificador universal (para todo) podemos escrever a proposição: "Para todo triângulo, a soma dos ângulos internos é 180^o ."
- 2) Usando o quantificador universal podemos escrever a proposição: "Para qualquer $x \in \mathbb{N}, x^2 > x$ ".
- 3) Usando o quantificador existencial podemos escrever a proposição:
- "Existe $x \in \mathbb{R}$, tal que $x^2 \ge x$ ".
- 4) "Todo triângulo é equilátero".
- 5) "Existe triângulo equilátero".

 As expressões "para todo", "qualquer que seja", "existe", "existem" chamam-se quantificadores.

Definição: A quantificação universal da sentença aberta P(x) é a proposição:

"Para todos os valores de x no universo do discurso, P(x) é verdadeira".

Notação: $\forall x, P(x)$ ou $\forall x \in U, P(x)$ é verdadeira.

O símbolo \forall (para todo) chama-se quantificador universal.

Importante: A proposição " $\forall x,\ P(x)$ " é verdadeira apenas quando o conjunto verdade da sentença aberta P(x) satisfaz $V_P=U$.

Definição: A quantificação existencial da sentença aberta P(x) é a proposição:

"Existe x no universo do discurso, tal que P(x) é verdadeira".

Notação: $\exists x, P(x)$ ou $\exists x \in U | P(x)$ é verdadeira.

O símbolo \exists (existe) chama-se quantificador existencial.

Importante: A proposição " $\exists x, P(x)$ " é verdadeira quando o conjunto verdade da sentença aberta $P(x), V_P$ é não vazio.

Ex: 1) $U = \mathbb{N}$. A sentença aberta $P(x): x^2 \ge x$,

- usando o quantificador universal torna-se a proposição $\forall x \in \mathbb{N}, P(x)$, que significa "para todo x natural, $x^2 \geq x$ vale". Esta proposição é verdadeira, pois $V_P = \mathbb{N}$.
- usando o quantificador existencial torna-se a proposição $\exists x \in \mathbb{N}, P(x)$, que lê-se "existe x natural, tal que $x^2 \geq x$ ". Esta proposição é verdadeira, pois V_P não é vazio, por exemplo $0 \in V_P$, $2 \in V_P$.
- 2) $U = \{1,2,3,4\}$ e " $P(x): x^2 < 10$ ", note que $V_P = \{1,2,3\}$
- $\forall x, P(x)$ equivale a $P(1) \land P(2) \land P(3) \land P(4)$ que é falsa, pois P(4) é falsa.
- $\exists x, P(x)$ equivale a $P(1) \lor P(2) \lor P(3) \lor P(4)$ que é verdadeira.

3) U conjunto dos triângulos. Com predicado P(x): x é equilátero

A quantificação existencial " $\exists x, P(x)$ " que significa "Existe triângulo equilátero" é verdadeira, pois o triângulo de lados iguais é equilátero e então V_P não é vazio.

A quantificação universal " $\forall x, P(x)$ " que significa "Todo triângulo é equilátero" é falsa, pois há triângulos não equilátero (triângulos com lados diferentes), ou seja, $V_P \neq U$.

Observação: A quantificação de uma proposição é a própria fórmula da proposição.

Exemplo:

Qualquer que seja x, D. Pedro II foi imperador do Brasil.

é equivalente a

D. Pedro II foi imperador do Brasil.

 $\forall x, Q$ equivale a Q.

 $\exists x, Q$ equivale a Q.

Dupla Quantificação

Exemplo de Dupla Quantificações:

$$\forall x, \ \forall y, \ P(x,y)$$

 $\forall x, \ \exists y, \ P(x,y)$
 $\exists x, \ \forall y, \ P(x,y)$
 $\exists x, \ \exists y, \ P(x,y)$

Muitas vezes as sentenças abertas contém 2 ou mais variáveis, então temos que quantificar cada variável.

Exemplo: 1) "Para todo $x \in \mathbb{Z}$ e para todo $y \in \mathbb{R}, \ x+y=4$." Tomando P(x,y): "x+y=4", escrevemos

$$\forall x \in \mathbb{Z}, \ \forall y \in \mathbb{R}, \ P(x, y)$$

que é falsa, pois P(0,0) é falsa, e $V_P
eq \mathbb{Z} imes \mathbb{R}$.

16

Dupla Quantificação

Exemplo: 2) "Para qualquer $x \in \mathbb{Z}$, existe $y \in \mathbb{R}$, tal que x+y=4." Tomando P(x,y): "x+y=4", escrevemos

$$\forall x \in \mathbb{Z}, \ \exists y \in \mathbb{R}, \ P(x, y)$$

que é verdadeira, pois basta tomar y=4-x, temos que P(x,4-x) é verdadeira.

3) "Existe inteiro x, tal que para y real, x+y=4." Tomando P(x,y): "x+y=4", escrevemos

$$\exists x \in \mathbb{Z}, \ \forall y \in \mathbb{R}, \ P(x, y)$$

que é falsa, pois não existe x inteiro de forma que x+y=4 quando $y=\sqrt{2}$, por exemplo. Veja se $y=\sqrt{2}$ então $x+\sqrt{2}=4$ implica que x não é inteiro.

Dupla Quantificação

4) "Existe inteiro x e existe real y tal que x+y=4." Tomando P(x,y) : "x+y=4", escrevemos

$$\exists x \in \mathbb{Z}, \ \exists y \in \mathbb{R}, \ P(x,y)$$

que é verdadeira, pois P(0,4) é verdadeira e V_P é não vazio.

Negação Quantificação

Para negar uma proposição quantificada, trocam-se os quantificadores (universal e existencial) e nega-se a sentença aberta P(x), ou seja

$$``\sim [\forall x, P(x)]" \quad \text{\'e a proposição} \quad ``\exists x, \sim P(x)", \\ ``\sim [\exists x, P(x)]" \quad \text{\'e a proposição} \quad ``\forall x, \sim P(x)".$$

Exemplo:

$$i) \sim [\exists x \in \mathbb{N}, \ x+1=7] \equiv \forall x \in \mathbb{N}, \ x+1 \neq 7$$

$$ii) \sim [\forall x \in \mathbb{N}, \ x+1=7] \equiv \exists x \in \mathbb{N}, \ x+1 \neq 7$$

$$iii) \sim [\forall x \in \mathbb{Z}, \forall y \in \mathbb{R}, \ x+y=4] \equiv \exists x \in \mathbb{Z}, \exists y \in \mathbb{R}, \ x+y \neq 4$$

$$iv) \sim [\forall x \in \mathbb{Z}, \exists y \in \mathbb{R}, \ x+y=4] \equiv \exists x \in \mathbb{Z}, \forall y \in \mathbb{R}, \ x+y \neq 4$$

Verifique se as proposições acima são verdadeiras ou falsas.

Predicado e Quantificadores

Exercícios:

Faça todos os exercícios das, páginas 72 e 73 do Livro

A.F. da Silva e C.M. dos Santos, "Aspectos Formais da Computação".