Grado en Ingeniería Informática

SISTEMAS DE AYUDA A LA DECISIÓN

Práctica 6. AHP Sort II.

Explicación Prioridades Locales.

Alumno: Sergio Perea de la Casa (spc00033@red.ujaen.es), DNI: 77433569K.

Profesor: Luis Martínez López (martin@ujaen.es)

ÍNDICE

ÍNDICE	2	
Ejercicio 1	3	
Cálculo del peso de los criterios	3	
Prioridades locales y globales para las alternativas.	3	
Prioridades Globales para los perfiles centrales	4	
Clasificación de las provincias Andaluzas	5	
Ejercicio 2	6	

Ejercicio 1

Cálculo del peso de los criterios

Primero se comprueba si la matriz de criterios del problema es consistente o no. Para ello, se usa el método del autovalor para obtener tanto el CR como los pesos asignados a cada uno de los criterios.

En este caso, la matriz **no es consistente** ya que el valor de **CR = 0.17323334864445736**. Aún así, vamos a continuar con dichos valores de comparación entre criterios.

Con el método del autovalor, obtenemos la siguiente distribución de pesos respectivos a los criterios:

Crímenes: 0.46681960926314175.

- **Robo:** 0.08093955197291693.

Relacionado con Vehículos: 0.05486934664058047.

- Orden Público: 0.11703751124465774.

Drogas: 0.2803339808787031.

Prioridades locales y globales para las alternativas.

En este ejercicio, únicamente se consideran como alternativas las provincias de Andalucía.

Para la obtención de las prioridades locales y globales de cada una de las alternativas necesitamos usar las **funciones de Prioridades Locales obtenidas a partir de los RPs y CPs** (el cuál ya nos la da el ejercicio).

La forma con la que se obtiene estas prioridades es usando la fórmula de interpolación siguiente:

$$p_{kj} = p_{oj} + \frac{p_{o+1j} - p_{oj}}{s_{o+1j} - s_{oj}} \cdot (g_j(a_k) - s_{oj})$$

- In which:
 - s_{oi} and s_{o+1j} are two consecutive representative points on criterion c_i
 - \underline{p}_{oj} and p_{o+1j} are their corresponding local priorities
 - $g_i(a_k)$ is the score of alternative a_k on criterion c_i
 - \underline{p}_{kj} is the local priority of \underline{a}_k

Tras añadir esto en el código del programa para el cálculo de las prioridades, se obtiene el siguiente valor para cada una de las alternativas:

	CRÍMENES	ROBOS	REL. VEHÍCULOS	ORDEN PÚBLICO	DROGAS	PRIORIDAD GLOBAL
Almería	0.25648113 207547174	0.22835 9956789 1555	0.3241158	0.238410 49913941 48	0.27553	0.261141189 8571807
Cádiz	0.10989320 388349515	0.20368 3297614 6917	0.205731	0.159129 08777969 018	0.043621 49532710 2806	0.109927322 74187678
Córdoba	0.277	0.23573 6117645 00899	0.3504378	0.27223	0.32432	0.290396739 0007887
Granada	0.19492452 83018868	0.22343 1002038 57613	0.3114042	0.242907 05679862 307	0.065925 92592592 593	0.173076056 9840888
Huelva	0.3124	0.24446 7408917 46382	0.368542200 00000004	0.28252	0.32801	0.310860984 9519111
Jaén	0.28585000 000000005	0.25422 9662153 92123	0.4129044	0.279416 66666666 665	0.33211	0.302477364 5704253
Málaga	0.11324271 844660194	0.15169 4117749 55135	0.128481880 12244494	0.142350 41841004 184	0.033950 61728395 0615	0.098369542 7140324
Sevilla	0.08027272 727272727	0.13619 1500172 3919	0.103358755 37335952	0.160549 05335628 225	0.097909 48275862 07	0.100405006 26833788

Prioridades Globales para los perfiles centrales

Como sabemos, por el enunciado del problema, cuáles son las prioridades locales de los CPs, entonces sólamente debemos de calcular cuál es la Prioridad Global de cada uno de ellos para poder ajustar cada una de las alternativas a sus respectivas clases.

Los datos de **Prioridades Globales de los CPs** son los siguientes:

CP 1	0.26176644306980823
CP 2	0.0639506269772442
CP 3	0.032113572910460644

Clasificación de las provincias Andaluzas

La clasificación que obtenemos a partir de las prioridades globales de las alternativas respecto al CP más cercano a dicho valor es la siguiente:

- Almería. P.G = 0.2611411898571807 ::: Clase 1 (diferencia = 6.25253212627519).
- **Cádiz**. P.G = 0.10992732274187678 ::: **Clase 2** (diferencia = 0.0459766957646325).
- **Córdoba**. P.G = 0.2903967390007887 ::: **Clase 1** (diferencia = 0.0286302959309).
- **Granada**. P.G= 0.1730760569840888 ::: **Clase 1** (diferencia = 0.088690386085719).
- **Huelva**. P.G = 0.3108609849519111 ::: **Clase 1** (diferencia = 0.0490945418821028).
- **Jaén**. P.G= 0.3024773645704253 ::: **Clase 1** (diferencia = 0.04071092150061706).
- **Málaga**. P.G = 0.0983695427140324 ::: **Clase 2** (diferencia = 0.034418915736788).
- **Sevilla**. P.G = 0.10040500626833788 ::: **Clase 2** (diferencia = 0.036454379291093).

Ejercicio 2

Datos de criminalidad de España (normalizada) en 2017

La tabla siguiente muestra los datos de criminalidad para una normalización de unos 10.000 habitantes para España. Sabiendo que hemos cogido los datos de cantidad de habitantes en España del Instituto Nacional de España (INE) del 1 de Julio de 2017.

A partir de esto, obtenemos las prioridades locales a partir de los nuevos puntos de RPs y CPs para los nuevos intervalos de datos. Se han obtenido a partir de una distribución desde el 0 hasta el máximo valor de los obtenidos.

Además, se ha tenido que tener en cuenta una nueva comparación por pares de las alternativas (en este caso, los puntos RPs y CPs) para obtener el nuevo valor de Prioridad Local correspondiente. Le adjunto a continuación un enlace donde se encuentran todas las imágenes de las matrices de comparación por cada uno de los criterios. Todas las matrices son suficientemente consistentes.

Imágenes de comparación por pares de Alternativas respecto a cada Criterio

CP1	PRIORIDADES L	OCALES (EJE '	'Y") PARA LAS AL	TERNATIVAS	POR CADA CRI	TERIO RESPI	ECTO A LOS RPS	Y CPs (EJE	"X")	
	CRÍMENES	MENES ROBOS		R. VEHÍCULOS		O. PÚBLICO		DROGAS		
CP2	RPs y CPs	Pr. Local	RPs y CPs	Pr. Local	RPs y CPs	Pr. Local	RPs y CPs	Pr. Local	RPs y CPs	Pr. Local
	0	0,53961455	0	0,4444444	0	0,70097357	0	0,57142857	0	0,68334046
CP3	0,102804448	0,296961331	8,120327532	0,4444444	9,428529413	0,19288031	1,535569639	0,28571429	4,982733839	0,19980996
	0,211777163	0,163424119	82,68832082	0,11111111	13,24783811	0,10614613	3,914678867	0,14285714	5,341490676	0,11684958
	0,423554327	0,089935758	154,2862231	0,04166667	26,49567622	0,03103732	7,829357733	0,07142857	9,965467679	0,03416702
	0,514022241	0,049493555	165,3766416	0,04166667	35,82841177	0,01815073	9,213417835			0,019981
	0,63533149	,		,	,	,	,	,		0,00584248
	0,822435586	0,012373389	,	0,00551181	50,91405883	,		,	, , , , , , , , , , , , , , , , , , , ,	,
	0,847108653				52,99135243				,	0,00089173
	1,058885817	0,006186694	,							
	SUMATORIA	1,195109563		1,10583722		1,06378853		1,15625		1,06458985
		0,451518896		0,40190766	4	0,65894071		0,49420849		0,64188144
		0,248480424		0,40190766		0,18131452		0,24710425		0,18768727
		0,136744047		0,10047691		0,09978123		0,12355212		0,10976018
	NORMALIZADO		NORMALIZADO		NORMALIZADO		NORMALIZADO		NORMALIZADO	0,03209407
		0,041413404		0,03767884		0,01706235		0,03088803		0,01876873
		0,020706702		0,01186809		0,00976576		0,01544402		0,00548801
		0,010353351		0,00498429		0,00186317		0,01544402	-	0,00320941
		0,010353351		0,00274296	-	0,00186317		0,00772201		0,00083763
		0,005176676		0,00075475		0,0002329		0,003861		0,00027327

Le adjunto también a continuación el excel donde se recogen todos los cálculos realizados para obtener todas las tablas mostradas anteriormente:

Excel para calcular las Prioridades Locales de los RPs y CPs para 10.000 habitantes

Para crear estos RPs/CPs con sus respectivas Prioridades Locales ha sido necesario **normalizar las prioridades** de forma que las funciones tuvieran coherencia tras hacer las matrices de comparaciones por pares sólamente con 3 alternativas mediante un **punto de unión**.

Gracias a los datos obtenidos anteriormente, debemos de volver a calcular los valores de la tabla de prioridades locales para cada una de las alternativas (en este caso, para toda España).

Sabiendo que las Prioridades Globales de los CPs son los siguientes para las 3 clases de seguridad que existen en el problema:

CP 1	0.24000995531141914		
CP 2	0.03219506797289085		
CP 3	0.008046038819896469		

Tras realizar dicha interpolación de valores de las Alternativas de todas las provincias de España, se obtiene la siguiente **Clasificación Global** siguiente:

- Clase 1 = [Ávila, Burgos, Cuenca, Lugo, Palencia, Segovia, Soria].
- Clase 2 = [Álava, Albacete, Alicante, Almería, Badajoz, Balears, Barcelona, Cáceres, Cádiz, Castellón, Ciudad Real, Córdoba, Coruña, Girona, Granada, Guadalajara, Gipuzkoa, Huelva, Huesca, Jaén, León, Lleida, Rioja, Madrid, Málaga, Murcia, Navarra, Ourense, Asturias, Palmas, Pontevedra, Salamanca, Santa Cruz, Cantabria, Sevilla, Tarragona, Teruel, Toledo, Valencia, Valladolid, Bizkaia, Zamora, Zaragoza].
- Clase 3 = [Ceuta, Melilla].

Clasificación de las alternativas por cada criterio

Crímenes

- Clase 1 = [Alicante, Ávila, Burgos, Cuenca, Guadalajara, Huelva, Rioja, Lugo, Ourense, Asturias, Palencia, Pontevedra, Cantabria, Segovia, Soria, Bizkaia, Zaragoza, Ceuta].
- Clase 2 = [Álava, Albacete, Almería, Badajoz, Balears, Barcelona, Cáceres, Cádiz, Castellón, Ciudad Real, Córdoba, Coruña, Girona, Granada, Gipuzkoa, Huesca, Jaén, León, Lleida, Madrid, Málaga, Murcia, Navarra, Palmas, Salamanca, Santa Cruz, Sevilla, Tarragona, Toledo, Valencia, Valladolid, Zamora].
- Clase 3 = [Teruel, Melilla].

Robos

- Clase 1 = [].
- CLASE 2 = [Álava, Albacete, Ávila, Badajoz, Burgos, Cáceres, Cádiz, Ciudad Real, Córdoba, Coruña, Cuenca, Granada, Guadalajara, Gipuzkoa, Huelva, Huesca, Jaén, León, Lleida, Rioja, Lugo, Navarra, Ourense, Asturias, Palencia, Palmas, Pontevedra, Salamanca, Cantabria, Segovia, Soria, Teruel, Valladolid, Zamora, Zaragoza, Ceuta].
- **CLASE 3** = [Alicante, Almería, Balears, Barcelona, Castellón, Girona, Madrid, Málaga, Murcia, Santa Cruz, Sevilla, Tarragona, Toledo, Valencia, Bizkaia, Melilla].

Relacionado con Vehículos

- CLASE 1 = [Álava, Albacete, Ávila, Badajoz, Burgos, Cáceres, Ciudad Real, Gipuzkoa, Huesca, Jaén, León, Rioja, Lugo, Navarra, Ourense, Asturias, Palencia, Salamanca, Cantabria, Segovia, Soria, Teruel, Valladolid, Bizkaia, Zamora, Ceuta].
- CLASE 2 = [Alicante, Almería, Cádiz, Castellón, Córdoba, Coruña, Cuenca,
 Granada, Guadalajara, Huelva, Lleida, Málaga, Murcia, Palmas, Pontevedra, Santa Cruz, Toledo, Valencia, Zaragoza].
- **CLASE 3** = [Balears, Barcelona, Girona, Madrid, Sevilla, Tarragona, Melilla].

Orden Público

Clase 1 = [Ávila, Badajoz, Barcelona, Cáceres, Ciudad Real, Córdoba, Coruña, Cuenca, Guadalajara, Huelva, Huesca, Jaén, León, Lleida, Lugo, Ourense, Pontevedra, Salamanca, Cantabria, Segovia, Soria, Teruel, Toledo, Valladolid, Bizkaia, Zamora].

- **Clase 2** = [Álava, Albacete, Alicante, Almería, Balears, Burgos, Cádiz, Castellón, Girona, Granada, Gipuzkoa, Rioja, Madrid, Málaga, Murcia, Navarra, Asturias, Palencia, Palmas, Santa Cruz, Sevilla, Tarragona, Valencia, Zaragoza].
- Clase 3 = [Ceuta, Melilla].

Drogas

- **Clase 1** = [Álava, Ávila, Burgos, Cuenca, Guadalajara, Huelva, Lugo, Ourense, Palencia, Pontevedra, Cantabria, Segovia, Soria, Bizkaia, Zamora, Zaragoza].
- Clase 2 = [Albacete, Alicante, Almería, Badajoz, Balears, Barcelona, Cáceres, Cádiz, Castellón, Ciudad Real, Córdoba, Coruña, Girona, Granada, Gipuzkoa, Huesca, Jaén, León, Lleida, Rioja, Madrid, Málaga, Murcia, Navarra, Asturias, Palmas, Salamanca, Santa Cruz, Sevilla, Tarragona, Teruel, Toledo, Valencia, Valladolid].
- Clase 3 = [Ceuta, Melilla].