制約なし最適化の解法②

山下信雄

講義内容

- 1. 具体的な直線探索法
 - 最急降下法
 - ニュートン法
 - 準ニュートン法
- 2. 信頼領域法

3. 確率的勾配法

直線探索法

ステップ1: 降下方向 d^k を求める.

ステップ 2: ステップ幅 t_k を定める.

ステップ3: $x^{k+1} = x^k + t_k d^k$ として, ステップ1へ

適当な仮定のもとで、停留点($\nabla f(x^*)=0$)に大域的収束する。

最急降下法

最急降下方向:

$$d^{k} = -\nabla f(x^{k}) = -I\nabla f(x^{k})$$

$$\nabla f(x^k)^{\top} d^k = -\nabla f(x^k)^{\top} \nabla f(x^k) = -\left\| \nabla f(x^k) \right\|^2$$
$$\left\| d^k \right\| = \left\| \nabla f(x^k) \right\|$$

大域的収束の仮定を満たす

最急降下法の性質

良いところ:

- 各反復の計算が簡単
- 大域的収束する

悪いところ:

• 収束が遅い(高々一次収束)

ニュートン方向:

$$d^{k} = -\nabla^{2} f(x^{k})^{-1} \nabla f(x^{k})$$

ニュートン方向は次の最小化問題(部分問題)の最適解

$$\min m_k(d)$$

s.t.
$$d \in \mathbb{R}^n$$

$$0 = \nabla m_k(d) = \nabla f(x^k) + \nabla^2 f(x^k) d$$
$$d = -\nabla f(x^k)^{-1} \nabla f(x^k)$$

ここで
$$m_k(d) = f(x^k) + \nabla f(x^k)^\top d + \frac{1}{2} d^\top \nabla^2 f(x^k) d$$

$$f(x^k + d) \text{ の2次近似}$$

ニュートン法の収束性

- ニュートン方向は一般には降下方向にならない.
 - ⇒ 直線探索法では大域的収束しないことがある.

大域的収束と2次収束するための十分条件:

次の不等式をみたす定数 $c_1, c_2 > 0$ が存在する.

$$|c_1||v||^2 \le v^\top \nabla^2 f(x)^{-1} v \le c_2 ||v||^2 \quad \forall v, x \in \mathbb{R}^n$$

ニュートン法の2次収束性

ステップ幅は $t_k = 1$ とする.

$$||x^{k+1} - x^*|| = ||x^k - \nabla^2 f(x^k)^{-1} \nabla f(x^k) - x^*||$$

$$= ||\nabla^2 f(x^k)^{-1} (\nabla f(x^*) - \nabla f(x^k) - \nabla^2 f(x^k)(x^k - x^*))||$$

$$\leq c_2 ||\nabla f(x^*) - \nabla f(x^k) - \nabla^2 f(x^k)(x^k - x^*)||$$

f を2回連続的微分可能とすると

$$\nabla f(x^*) = \nabla f(x^k) + \nabla^2 f(x^k)(x^* - x^k) + O(\|x^* - x^k\|^2)$$

$$||x^{k+1}-x^*|| \le O(||x^k-x^*||^2)$$

ニュートン法の性質のまとめ

よいところ

・ 収束すれば、収束は速い(2次収束)

わるいところ

- 直線探索法では大域的収束しない
- 各反復で線形方程式(ニュートン方程式)を解かなければならない.

$$\nabla f(x^k) + \nabla^2 f(x^k) d = 0$$

一般に計算量は $O(n^3)$

準ニュートン法

準ニュートン方向:

$$d^{k} = -(\mathbf{B}_{k})^{-1} \nabla f(x^{k}) = -\mathbf{H}_{k} \nabla f(x^{k})$$

$$H_k = B_k^{-1}$$
 が正定値行列のとき

$$\nabla f(x^k)^{\top} d^k = -\nabla f(x^k)^{\top} H_k \nabla f(x^k) < 0$$

→ 降下方向

近似ヘッセ行列の望ましい条件

近似ヘッセ行列 B_k とその逆行列 H_k

- H_k が正定値 \Rightarrow 大域的収束
- $H_k \approx \nabla^2 f(x^k)^{-1} \Rightarrow$ 速い収束

近似ヘッセ行列のセカント条件

$$\nabla f(x_k)$$
のテーラー展開を考えると、
$$\nabla f(x_{k+1}) - \nabla f(x_k) \approx \nabla^2 f(x_{k+1})(x_{k+1} - x_k)$$

を得る。

とする. 近似ヘッセ行列が

$$y_k = B_{k+1} s_k$$
 or $H_{k+1} y_k = s_k$

を満たせば、ヘッセ行列と似た性質をもつ.

速い収束が期待できる。

Broyden-Fletcher-Goldfarb-Shanno (BFGS)更新

BFGS更新:

$$B_{k+1} = B_k - \frac{B_k S_k (B_k S_k)^{\top}}{S_k^{\top} B_k S_k} + \frac{y_k y_k^{\top}}{S_k^{\top} y_k}$$

$$H_{k+1} = H_k - \frac{H_k y_k S_k^{\top} + S_k (H_k y_k)^{\top}}{S_k^{\top} y_k} + \left(1 + \frac{y_k^{\top} H_k y_k}{S_k^{\top} y_k}\right) \frac{S_k S_k^{\top}}{S_k^{\top} y_k}$$

セカント条件を満たす。

$$B_{k+1} S_k = B_k S_k - \frac{B_k S_k (B_k S_k)^{\top} S_k}{S_k^{\top} B_k S_k} + \frac{y_k y_k^{\top} S_k}{S_k^{\top} y_k} = y_k$$

• H_k が正定値行列で、 $s_k^\top y_k > 0$ であれば正定値行列となる.

準ニュートン法の性質

適当な条件のもとで

- ・大域的収束する.
- ・超一次収束する.
- ・ H_{k+1} の更新と、ベクトル $\nabla f(x^k)$ と H_{k+1} の掛け算は $O(n^2)$

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_{k} - \frac{\boldsymbol{H}_{k} \boldsymbol{y}_{k} \boldsymbol{s}_{k}^{\top} + \boldsymbol{s}_{k} (\boldsymbol{H}_{k} \boldsymbol{y}_{k})^{\top}}{\boldsymbol{s}_{k}^{\top} \boldsymbol{y}_{k}} + \left(1 + \frac{\boldsymbol{y}_{k}^{\top} \boldsymbol{H}_{k} \boldsymbol{y}_{k}}{\boldsymbol{s}_{k}^{\top} \boldsymbol{y}_{k}}\right) \frac{\boldsymbol{s}_{k} \boldsymbol{s}_{k}^{\top}}{\boldsymbol{s}_{k}^{\top} \boldsymbol{y}_{k}}$$

注意:行列と行列の掛け算は $O(n^3)$

準ニュートン法の問題点

BFGS更新:
$$H_{k+1} = H_k - \frac{H_k y_k s_k^\top + s_k (H_k y_k)^\top}{s_k^\top y_k} + \left(1 + \frac{y_k^\top H_k y_k}{s_k^\top y_k}\right) \frac{s_k s_k^\top}{s_k^\top y_k}$$

$$\mathbf{s}_{k} = (1, 1, \dots, 1)^{\top} \quad \emptyset \geq \mathbf{z},$$

$$\mathbf{s}_{k} \mathbf{s}_{k}^{\top} = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

ヘッセ行列が疎であっても, H_{k+1} は密な行列となる.

→ 大規模な問題には使えない!

補足:スパース性(疎性)について

スパース性:ベクトルや行列の成分がほとんど0になる性質*0の成分は、足し算や掛け算で計算する必要がない.

ニュートン方程式は O(n)で計算できる.

準ニュートン法+直線探索

[良いところ]

- ・大域的収束かつ超1次収束
- 実装が簡単

[悪いところ]

• H_k は非ゼロ要素がほとんどないため、 大規模な問題(数万変数以上)には適用できない.

講義内容

- 1. 具体的な直線探索法
 - 最急降下法
 - ニュートン法
 - 準ニュートン法

- 2. 信頼領域法
- 3. 確率的勾配法

大域的収束性を持たせる技術

- 直線探索法と信頼領域法 -

直線探索法

信頼領域法

信頼領域法

モデル関数のコンパクト集合上での最小解を探索報告とする.

min
$$m_k(d)$$

s.t. $\|d\| \le \Delta_k$

- この部分問題には最適解 d^k が存在する.
- Δ_k を信頼半径という.
- $B(x_k; \Delta) = \{x \mid ||x x_k|| \le \Delta\}$ を信頼領域という.

モデル関数は 2 次近似関数なので、信頼半径が小さいときは、 $f(x^{tri}) < f(x_k)$

が成り立つ. ただし, $x^{tri} = x^k + d^k$

信頼半径の更新

モデルの信頼性を測る指標

$$\rho_k = \frac{\text{目的関数の減少量}}{\text{モデル関数の減少量}}$$

$$= \frac{f(x_k) - f(x^{\text{tri}})}{m_k(0) - m_k(d^k)}$$

$$\begin{split} m_k(0) &= f(x^k) \\ m_k(d^k) &= f(x^k) + \nabla f(x^k)^\top d^k + \frac{1}{2} (d^k)^\top \nabla^2 f(x^k) d^k \\ &= f(x^k) + \nabla f(x^k)^\top (x^{\text{tri}} - x^k) + \frac{1}{2} (x^{\text{tri}} - x^k)^\top \nabla^2 f(x^k) (x^{\text{tri}} - x^k) \\ &\approx f(x^{\text{tri}}) \end{split}$$

【信頼半径の更新】

$$\Delta_{k+1} = \begin{cases} \alpha_1 \| x^{\text{tri}} - x_k \| & \text{if } \rho_k < \eta_1 \\ \Delta_k & \text{if } \eta_1 \le \rho_k < \eta_2 \\ \max\{\alpha_2 \| x^{\text{tri}} - x_k \|, \Delta_k\} & \text{if } \eta_2 \le \rho_k \end{cases}$$

$$\alpha_1 < 1 < \alpha_2$$

$$0 < \eta_1 < \eta_2 < 1$$

ニュートン法+信頼領域法

[問題点]

- ヘッセ行列の計算
 - → 自動微分
- 非凸の部分問題の求解
 - ⇒ 高速の近似解法の開発

(線形方程式を1回解く程度の計算時間)

大規模な問題では, 準ニュートン法+直線探索 よりも優れている.

講義内容

- 1. 具体的な直線探索法
 - 最急降下法
 - ニュートン法
 - 準ニュートン法

2. 信頼領域法

3. 確率的勾配法

大規模な最適化問題

$$\min \frac{1}{M} \sum_{i=1}^{M} f_i(x)$$

s.t. $x \in \mathbb{R}^n$

大規模となるもの

- 変数の数 n
- 目的関数を構成する関数の数 M

応用例: データ解析

$$\min \frac{1}{M} \sum_{i=1}^{M} \theta(x, a^i)$$

• a^i はデータ. θ は損失関数

• $\frac{1}{M}\sum_{i=1}^{M}\theta(x,a^{i})$ は経験的損失とよばれる.

想定する問題

- ・Mが大きい、大規模な問題
 - → 関数値や勾配の計算が大変
- 似たような関数 f_i (データ a^i)が多い

例: ディープラーニング, SVM, L1正則化問題, etc

確率勾配法

以下では、目的関数を $f(x) = \frac{1}{M} \sum_{i=1}^{M} f_i(x)$ とする.

最急降下法:
$$x^{k+1} = x^k - t_k \nabla f(x^k)$$

 $\nabla f_i(x^k)$ の計算量が O(n) のとき,

1回の反復の計算量は O(nM)

確率的勾配法: $i_k \in \{1, 2, ..., M\}$ をランダムに選ぶ

$$x^{k+1} = x^k - t_k \nabla f_{i_k}(x^k)$$

1回の反復の計算量は O(n)

いろいろな呼び方

- Stochastic gradient descent method i_k をランダムにとってくるとき ニューラルネットワークの学習では誤差逆伝播法という
- Incremental gradient method i_k を $\{1,2,\cdots,M\}$ から順番に取ってくるとき
- Online gradient descent method 逐次的に 暫定解 x^k を``実行(利用)"するとき

確率的勾配 $g^k = \nabla f_{i_k}(x^k)$ の特徴

• i_k を確率 $p_i = \frac{1}{M}$ で取ってきたとき、探索方向の期待値は目的関数の最急降下方向と一致する.

$$E_{i}[g^{k}] = E_{i}[\nabla f_{i}(x^{k})] = \sum_{i=1}^{M} p_{i} \nabla f_{i}(x^{k}) = \frac{1}{M} \sum_{i=1}^{M} \nabla f_{i}(x^{k}) = \nabla f(x^{k})$$

• 分散 $E_i \left[\left(g^k - E \left[\nabla f_i(x^k) \right] \right)^2 \right]$ は 0 とならない.

→分散が小さいとき、最急降下法に近づく

ステップ幅 tk を固定したとき

例:
$$\min \frac{1}{2}(x-1)^2 + \frac{1}{2}(x+1)^2$$

 $f_1(x) = \frac{1}{2}(x-1)^2, f_2(x) = \frac{1}{2}(x+1)^2$

最適解は
$$x^* = 0$$

$$x^0 = -0.5, t_k = 0.5$$
 とした最急降下法
$$x^1 = x^0 - t_k f'(x^0) = -0.5 - 0.5 \times \{(-1.5) + 0.5\} = 0$$

$$x^0 = -0.5, t_k = 0.5$$
 とした確率的勾配降下法

$$i_k = 1$$
: $x^1 = x^0 - t_k f_1'(x^0) = -0.5 - 0.5 \times \{-1.5\} = 0.25$
 $i_k = 2$: $x^1 = x^0 - t_k f_2'(x^0) = -0.5 - 0.5 \times \{0.5\} = -0.75$

ステップ幅を固定すると、一般に収束しない

ステップ幅の取り方と収束

Diminishing Rule:

$$t_k \to 0, \ \sum_{k=1}^{\infty} t_k = +\infty$$

Diminishing Ruleを用いた確率勾配降下法は大域的収束する.

• f_i が凸であれば最適解に収束。そうでないときは停留点に収束。