PHƯƠNG PHÁP CASIO – VINACAL BÀI 9. TÌM SỐ NGHIỆM PHƯƠNG TRÌNH – LOGARIT (P1)

1) PHƯƠNG PHÁP

Bước 1: Chuyển PT về dạng Vế trái = 0. Vậy nghiệm của PT sẽ là giá trị của x làm cho vế trái = 0

<u>Bước 2:</u> Sử dụng chức năng CALC hoặc MODE 7 hoặc SHIFT SOLVE để kiểm tra xem nghiệm . Một giá trị được gọi là nghiệm nếu thay giá trị đó vào vế trái thì được kết quả là 0

Bước 3: Tổng hợp kết quả và chọn đáp án đúng nhất

*Đánh giá chung: Sử dụng CALC sẽ hiệu quả nhất trong 3 cách

<u>Chú ý</u>: Nhập giá trị $\log_a b$ vào máy tính casio thì ta nhập $\log a : \log b$

2)VÍ DỤ MINH HỌA

VD1-[Chuyên Khoa Học Tự Nhiên 2017]

Phương trình $\log_2 x \log_4 x \log_6 x = \log_2 x \log_4 x + \log_4 x \log_6 x + \log_6 x \log_2 x$ có tập nghiệm là :

A. {1}

B. {2;4;6}

C. {1;12}

D. {1;48}

GIẢI

- ❖ Cách 1: CASIO
- > Chuyển phương trình về dạng $\log_2 x \log_4 x \log_6 x \log_2 x \log_4 x \log_4 x \log_6 x \log_6 x \log_2 x = 0$

Nhập vế trái vào máy tính Casio

 $\boxed{09_0} \ 2 \ \textcircled{ALPHA} \) \ \textcircled{O9_0} \ 4 \ \textcircled{ALPHA} \) \ \textcircled{O9_0} \ 6 \ \textcircled{ALPHA} \) \ \textcircled{O9_0} \ 2$

▶ ALPHA
) ▶ [og_|]
4 ▶ ALPHA
) ▶ [og_|]
6 ▶ ALPHA
ALPHA
) ▶ [og_|]
6 ▶ ALPHA

) • — [0g_] 6 • ALPHA) • [0g_] 2 • ALPHA)

∢o9₆(X)lög₂(XၨD̈́

Vì giá trị 1 xuất hiện nhiều nhất nên ta kiểm tra xem 1 có phải là nghiệm không. Nếu 1 là nghiệm thì đáp án đúng chỉ có thể là A, C, D. Còn nếu 1 không phải là nghiệm thì đáp án chứa 1 là A, C, D sai dẫn đến B là đáp án đúng.

Ta sử dung chức năng CALC

0

Vậy 1 là nghiệm.

Ta tiếp tục kiểm tra giá trị 12 có phải là nghiệm không (ALC) [1] [2]

log₂(X)log₄(X)1♭

-4.971815308

Đây là một kết quả khác 0 vậy 12 không phải là nghiệm ⇒ Đáp án C sai

Tiếp tục kiểm tra giá trị 48 có phải là nghiệm không

CALC 4 8 =

Vây 48 là nghiệm chứng tỏ **D** là đáp án chính xác.

- ❖ Cách tham khảo: Tự luận
- Điều kiện x > 0
- Trường hợp 1 : Với x = 1 thì $\log_2 0 = \log_4 0 = \log_6 x = 0$. Thế vào phương trình ban đầu thấy thảo mãn vậy x = 1 là 1 nghiệm.
- Trường họp 2 : Với x > 0; $x \ne 1$

Phương trình
$$\Leftrightarrow \frac{1}{\log_x 2.\log_x 4.\log_x 6} = \frac{1}{\log_x 2.\log_x 4} + \frac{1}{\log_x 4.\log_x 6} + \frac{1}{\log_x 6.\log_x 2}$$

$$\Leftrightarrow 1 = \log_x 6 + \log_x 4 + \log_x 2$$

$$\Leftrightarrow 1 = \log_{x} 48$$

$$\Leftrightarrow x = 48$$

VD2-[Thi HK1 THPT Liên Hà – Đông Anh năm 2017]

Tập nghiệm của phương trình $3^{x-1}.5^{\frac{2x-2-m}{x-m}} = 15$ (m là tham số) là :

A.
$$\{2; m \log_3 5\}$$

A.
$$\{2; m \log_3 5\}$$
 B. $\{2; m + \log_3 5\}$

D. $\{2; m \log_3 5\}$

GIÁI

- **❖** Cách 1 : CASIO
- \triangleright Đề bài không cho điều kiện ràng buộc của m nên ta chọn một giá trị m bất kì.

Ví dụ m = 5 Phương trình trở thành : $3^{x-1} \cdot 5^{\frac{2x-2-5}{x-5}} = 15 \Leftrightarrow 3^{x-1} \cdot 5^{\frac{2x-2-5}{x-5}}$ 15 = 0Nhập phương trình vào máy tính Casio

 $3x^{2}$ ALPHA)-1 \times $5x^{2}$ = 2 ALPHA)-2 = 5 $\sqrt{}$ ALPHA)-

5 • - 1 5

▶ Đáp án nào cũng có 2 nên không cần kiểm tra. Kiểm tra nghiệm $x = m \log_3 5 = 5 \log_3 5$.

Ra một kết quả khác $0 \Rightarrow \text{Đáp án } \mathbf{A} \text{ sai}$

Tương tự tra nghiệm $x = m - \log_3 5 = 5 - \log_3 5$

$$3^{X-1} \times 5^{\frac{2X-2-5}{X-5}} -15$$

Ra kết quả bằng 0 vậy \Rightarrow Đáp án chính xác là **D**

❖ Cách tham khảo: Tư luân

Phương
$$3^{x} \cdot 1 \cdot 5^{\frac{2x \cdot 2 \cdot m}{x \cdot m}} = 15 \iff 3^{x} \cdot 1 \cdot 5^{\frac{2x \cdot 2 \cdot m}{x \cdot m}} = 3^{1} \cdot 5^{1} \iff 5^{\frac{2x \cdot 2 \cdot m}{x \cdot m}} \cdot 1 = 3^{1} \cdot (x \cdot 1) \iff 5^{\frac{x \cdot 2}{x \cdot m}} = 3^{2 \cdot x} \cdot (1)$$

Logarit hóa hai vế theo cơ số 5. (1) $\Leftrightarrow \frac{x-2}{x-m} = (2-x)\log_5 3$

Trường hợp 1 : Với 2
$$x = 0 \Leftrightarrow x = 2$$

Trường họp 2:
$$\frac{1}{x - m} = \log_5 2 \Leftrightarrow x - m = \frac{1}{\log_5 2} \Leftrightarrow x = m - \log_2 5$$

<u>VD3</u>-[Chuyên Nguyễn Thị Minh Khai Tp.HCM 2017] Gọi x_1 và x_2 là 2 nghiệm của phương trình 5^{2x+1} $8.5^x + 1 = 0$. Khi đó:

A.
$$x_1 + x_2 = 1$$

B.
$$x_1 + x_2 = 2$$

A.
$$x_1 + x_2 = 1$$
 B. $x_1 + x_2 = 2$ **C.** $x_1 + x_2 = 2$ **D.** $x_1 + x_2 = 1$

D.
$$x_1 + x_2 = 1$$

trình

GIÁI

❖ Cách 1 : CASIO SHOLVE+CALC

Nhập vế trái vào máy tính Casio. Rồi nhấn phím =để lưu lại phương trình = 5 x 2 APA) + 1 > - 8 × 5 x APA) > + 1

Vì đáp án không cho 1 giá trị cụ thể nên ta không thể sử dụng được chức năng CALC mà phải sử dụng chức năng dò nghiệm SHIFT SOLVE. Ta dò nghiệm với giá trị x gần 1 chả hạn

Vậy 1 là nghiệm. Ta lưu nghiệm này vào biến A rồi coi đây là nghiệm x_1

Ta có $x_1 = A$ Nếu đáp án **A** là $x_1 + x_2 = 1$ đúng thì $x_2 = 1$ A phải là nghiệm. Ta gọi lại phương trình ban đầu rồi CALC với giá trị 1 A

▲ CALC 1 — ALPHA (—) =

32.04020126

Kết quả ra khác 0 vậy 1 A không phải là nghiệm hay đáp án $\bf A$ sai Tương tự như vậy ta CALC với các giá trị x_2 của đáp án $\bf B$, $\bf C$, $\bf D$. Cuối cùng ta thấy giá trị 1 A là nghiệm. \Rightarrow Vậy đáp số chính xác là $\bf D$

CALC
$$\bigcirc$$
 1 \bigcirc APHA \bigcirc \bigcirc Math \blacktriangle $5^{2\times +1} - 8\times 5^{\times} +1$

Π

❖ Cách 2: CASIO 2 LẦN SHIFT SOLVE

Nhập vế trái vào máy tính Casio. Nhấn nút $\,$ để lưu vế trái lại rồi SHIFT SOLVE tìm nghiệm thứ nhất và lưu vào $\,$

5
$$x^{-}$$
 2 ALPHA) + 1 \longrightarrow 8 \times 5 x^{-} ALPHA) \longrightarrow + 1 \Longrightarrow SHIFT CALC 1 \Longrightarrow SHIFT RCL (\frown)

Gọi lại vế trái. SHIFT SOLVE một lần nữa để tìm nghiệm thứ hai và lưu vào $\it B$

SHIFT CALC — 2 = SHIFT RCL
$$\odot$$
 99

 $5^{2\times +1} - 8\times 5^{\times} + 1$

X = -1.236549178

L-R = 0

Ta có $A + B = 1$

❖ Cách tham khảo: Tự luận

- Đặt $5^x = t$ khi đó $5^{2x} = (5^x)^2 = t^2$. Phương trình $\Leftrightarrow 5t^2$ 8t + 1 = 0 $\Leftrightarrow t = \frac{4 \pm \sqrt{11}}{5}$
- Với $t = \frac{4 + \sqrt{11}}{5} \Leftrightarrow 5^x = \frac{4 + \sqrt{11}}{5} \Leftrightarrow x = \log_5 \frac{4 + \sqrt{11}}{5}$ Với $t = \frac{4 + \sqrt{11}}{5} \Leftrightarrow 5^x = \frac{4 + \sqrt{11}}{5} \Leftrightarrow x = \log_5 \frac{4 + \sqrt{11}}{5}$
- $Vay x_1 + x_2 = \log_5 \frac{4 + \sqrt{11}}{5} + \log_5 \frac{4 + \sqrt{11}}{5} = \log_5 \left(\frac{4 + \sqrt{11}}{5}\right) \cdot \left(\frac{4 + \sqrt{11}}{5}\right) = \log_5 \frac{1}{5} = 1$

<u>VD4</u>-[Chuyên Vị Thanh – Hậu Giang 2017] Phương trình 9^x $3.3^x + 2 = 0$ có hai nghiệm x_1, x_2 ($x_1 < x_2$). Giá trị $A = 2x_1 + 3x_2$ là:

GIẢI

- **❖** Cách 1: CASIO SHIFT SLOVE + CALC
- Nhập vế trái vào máy tính Casio rồi nhấn nút để lưu phương trình

Vì chưa biết 2 đáp án , mà 2 đáp án vai trò không bình đẳng trong quan hệ ở đáp án. Nên ta phải sử dụng dò cả 2 nghiệm với chức năng SHIFT SOLVE ở mức độ khó hơn . Đầu tiên ta dò nghiệm trong khoảng dương, chả hạn chọn X gần với 1

Lưu nghiệm này vào giá trị A ta được 1 nghiệm.

0.6309297536

- \blacktriangleright Vì vừa dò với 1 giá trị dương rồi bây giờ ta dò nghiệm trong khoảng âm, chả hạn chọn X gần 2 . Gọi là phương trình và dò nghiệm
 - ▲ SHIFT CALC 2 =

Ta được 1 nghiệm nữa là 0. Vì 0 < A nên $x_1 = 0; x_2 = A$ ta có $2x_1 + 3x_2 = 2.0 + 3.A \approx 1.8927 = 3\log_3 2$

Vậy đáp số đúng là C

❖ Cách 2: CASIO 2 LẦN SHIFT SOLVE

Nhập vế trái vào máy tính Casio. Nhấn nút $\,$ để lưu vế trái lại rồi SHIFT SOLVE tìm nghiệm thứ nhất và lưu vào $\,$ A

9
$$x^*$$
 ALPHA) \bullet = 3 x 3 x^* ALPHA) \bullet + 2 = SHFT CALC 1 = SHFT RCL

Gọi lại vế trái. SHIFT SOLVE một lần nữa để tìm nghiệm thứ hai và lưu vào ${\it B}$

Ta có $2A + 3B \approx 1.8927 = 3 \log_3 2$

- ❖ Cách tham khảo: Tư luân
- Đặt $3^x = t$ khi đó $9^x = (3^2)^x = 3^{2x} = (3^x)^2 = t^2$
- Phương trình $\Leftrightarrow t^2$ $3t+2=0 \Leftrightarrow \begin{bmatrix} t=1 \\ t=2 \end{bmatrix}$.
- Với $t = 1 \Leftrightarrow 3^x = 1 \Leftrightarrow x = 0$ Với $t = 2 \Leftrightarrow 3^x = 2 \Leftrightarrow x = \log_3 2$ Vậy $2x_1 + 3x_2 = 2.0 + 3.\log_3 2 = 3\log_3 2$

BÀI TẬP TỰ LUYỆN

<u>**Bài 1-[Thi thử tính Lâm Đồng - Hà Nội 2017]** Giải phương trình $2^{2x^2-4x+1} = 8^{x-1}$ </u>

$$\mathbf{B.} \quad x = \frac{5}{2}$$

$$| x = 2$$

D.
$$x = \frac{7 \pm \sqrt{17}}{4}$$

Bài 2-[Chuyên Nguyễn Thị Minh Khai 2017] Phương trình $\log_2 x + \log_2 \left(x^2\right) = \log_2 \left(4x\right)$

A.
$$\{0; 2; 2\}$$

<u>Bài 3</u>-[THPT Lục Ngạn – Bắc Giang 2017] Phương trình $(\sqrt{2} \quad 1)^x + (\sqrt{2} + 1)^x \quad 2\sqrt{2} = 0$ có tích các nghiệm là:

Bài 4-[THPT Nguyễn Gia Thiều -HN 2017]

Tích các nghiệm của phương trình $(5+\sqrt{24})^x + (5-\sqrt{24})^x = 10 \, \text{là}$:

A. 1

B. 6

D. 1

Bài 5-[THPT Nguyễn Gia Thiều -HN 2017]

Tổng các nghiệm của phương trình 25^x $2(3 x).5^x + 2x$ 7 = 0 là:

C. 2

D. 9

Bài 6-[THPT Phạm Hồng Thái -HN 2017]

Phương trình $\log_2(2x).\log_{\frac{1}{2}}(\frac{1}{x})=2$ có hai nghiệm $x_1;x_2$ thỏa mãn biểu thức :

A.
$$x_1 x_2 = 2$$

B.
$$x_1 + x_2 = \frac{3}{4}$$

C.
$$x_1 x_2 = \frac{1}{2}$$

A.
$$x_1 x_2 = 2$$
 B. $x_1 + x_2 = \frac{3}{4}$ **C.** $x_1 x_2 = \frac{1}{2}$ **D.** $x_1 + x_2 = 1$

Bài 7-[THPT Phạm Hồng Thái -HN 2017]

Tìm tất cả các giá trị của m để phương trình $\log_3^2 x$ $(m+2)\log_3 x+3m$ 1=0 có 2 nghiệm $x_1x_2 = 27$

A.
$$m = \frac{4}{3}$$

B.
$$m = 1$$

C.
$$m = 25$$

D.
$$m = \frac{28}{3}$$

LỜI GIẢI BÀI TẬP TỰ LUYỆN

<u>Bài 1</u>-[Thi thử tính Lâm Đồng - Hà Nội 2017] Giải phương trình $2^{2x^2-4x+1} = 8^{x-1}$

$$\mathbf{B.} \int_{-\infty}^{\infty} x = \frac{5}{2}$$

B.
$$x = \frac{5}{2}$$
 C. $x = \frac{5}{2}$ **D.** $x = \frac{7 \pm \sqrt{17}}{4}$

D.
$$x = \frac{7 \pm \sqrt{17}}{4}$$

GIÅI

■ Phương trình 2^{2x^2-4x+1} $8^{x-1}=0$. Nhập vào máy tính Casio rồi kiểm tra giá trị x=222X²-4X+1_8X-1

$$F(2) = 6 \Rightarrow \text{Đáp số } \mathbf{B} \text{ và } \mathbf{C} \text{ sai}$$

• Kiểm tra giá trị $x = \frac{7 + \sqrt{17}}{4}$ và $x = \frac{7 + \sqrt{17}}{4}$

(ALC (7 + 17) \div 4 = (ALC (7 - 17) \div 4 = $2^{2\times^2-4\times+1}-8^{\times-1}$ $2^{2\times^2-4\times+1}-8^{\times-1}$

П

⇒ D là đáp án chính xác

Bài 2-[Chuyên Thi Nguyễn Minh Khai 2017] Phương trình $\log_2 x + \log_2 (x^2) = \log_2 (4x)$

GIÁI

 \blacksquare Phương trình $\log_2 x + \log_2 \left(x^2 \right) \;\; \log_2 \left(4x \right) = 0 \;$. Nhập vào máy tính Casio rồi kiểm tra giá trị x = 0

 $\boxed{09_0} \ 2 \ \blacktriangleright \ ALPHA \) \ \blacktriangleright \ \boxed{09_0} \ 2 \ \blacktriangleright \ ALPHA \) \ x^2 \ \blacktriangleright \ \boxed{09_0} \ 2 \ \blacktriangleright \ 4 \ ALPHA \) \ CALC \ 0$

Math ERROR

[AC] :Cancel [4][#]:Goto

Không tính được (vì x = 0 không thuộc tập xác định) \Rightarrow Đáp số **A** và **B** sai

▶ ■ 1 0 SHIFT CALC 2 =

Trang 8/10

$$(5+\sqrt{24})^{+}+(5-\sqrt{24})$$

 $X=$ 1
 $L-R=$ 0

■ Tiếp tục SHIFT SOLVE một lần nữa để tìm nghiệm còn lại ⇒ Nghiệm còn lại là x = 1

SHIFT CALC
$$-$$
 2 $=$ (5+ $\sqrt{24}$) $^{\circ}$ + (5- $\sqrt{24}$) $^{\circ}$ + (5- $\sqrt{24}$) $^{\circ}$ + 1 L-R= 0

⇒ Đáp số chính xác là **A**

Bài 5-[THPT Nguyễn Gia Thiều -HN 2017]

Tổng các nghiệm của phương trình 25^x $2(3 x).5^x + 2x$ 7 = 0 là:

A. 1

C. 2

GIÁI

■ Phương trình 25^x $2(3 x).5^x + 2x$ 7 = 0. Nhập vế trái vào máy tính Casio rồi dùng chức năng SHIFT SOLVE để dò nghiệm. Ta được 1 nghiệm là 1

 $2 5 x^{\bullet} \text{ ALPHA}) \bigcirc - 2 (3 - \text{ ALPHA})) \times 5 x^{\bullet} \text{ ALPHA}) \bigcirc + 2 \text{ ALPHA})$

─ 7 = SHIFT CALC 1 = 25^X-2(3-X)⁸×5^X+2⁶ X= 1 I-R=

■ Tiếp tục SHIFT SOLVE một lần nữa để tìm nghiệm còn lại ⇒ Nghiệm còn lại là

 $\begin{array}{c} x = 1 \\ \text{SHFT CALC 5} \equiv \text{SHFT CALC} = 5 \equiv \\ 25^{\times} - 2(3 - \text{X}) \times 5^{\times} + 2 \text{D} \quad 25^{\times} - 2(3 - \text{X}) \times 5^{\times} + 2 \text{D} \\ \text{X} = 1 \quad \text{X} = 1 \\ \text{O} \quad 1 - \text{D} = 0 \end{array}$

Không còn nghiệm nào ngoài 1 vậy phương trình có nghiệm duy nhất ⇒ Đáp số chính xác là **A**

Bài 6-[THPT Phạm Hồng Thái -HN 2017]

Phương trình $\log_2(2x).\log_{\frac{1}{2}}(\frac{1}{x})=2$ có hai nghiệm $x_1;x_2$ thỏa mãn biểu thức:

A. $x_1x_2 = 2$ **B.** $x_1 + x_2 = \frac{3}{4}$ **C.** $x_1x_2 = \frac{1}{2}$ **D.** $x_1 + x_2 = 1$

GIẢI

■ Phương trình $\Leftrightarrow \log_2(2x).\log_{\frac{1}{2}}(\frac{1}{x})$ 2 = 0. Nhập vế trái vào máy tính Casio rồi dùng

chức năng SHIFT SOLVE để dò nghiệm. Ta được 1 nghiệm là 2

• Tiếp tục SHIFT SOLVE một lần nữa để tìm nghiệm còn lại \Rightarrow Nghiệm còn lại là x=1

SHFT CALC
$$-$$
 2 $=$ $109_2(2X) \times 109_{0.5}$ $\times =$ 0.25 1.25

Rõ ràng $x_1.x_2 = \frac{1}{2} \Rightarrow$ Đáp số chính xác là **C**

Bài 7-[THPT Phạm Hồng Thái -HN 2017]

Tìm tất cả các giá trị của m để phương trình $\log_3^2 x$ $(m+2)\log_3 x + 3m$ 1=0 có 2 nghiệm $x_1x_2=27$

A.
$$m = \frac{4}{3}$$

B.
$$m = 1$$

C.
$$m = 25$$

D.
$$m = \frac{28}{3}$$

GIẢI

- Để dễ nhìn ta đặt ẩn phụ $t = \log_3 x$. Phương trình $\Leftrightarrow t^2 \quad (m+2)t + 3m \quad 1 = 0$ (1) Ta có : $x_1x_2 = 27 \Leftrightarrow \log_3(x_1x_2) = \log_3 27 \Leftrightarrow \log_3 x_1 + \log_3 x_2 = 3 \Leftrightarrow t_1 + t_2 = 3$
- Khi đó phương trình bậc hai (1) có 2 nghiệm thỏa mãn $t_1+t_2=3$ \Rightarrow $\begin{cases} \Delta=\left(m+2\right)^2 & 4(3m-1)>0\\ S=t_1+t_2=m+2=3 \end{cases}$

(APHA) + 2)
$$x^2$$
 - 4 (3 APHA) - 1) CALC 1 = $(X+2)^2-4(3X-1)$

1

Vậy m=1 thỏa mãn hệ phương trình (*) \Rightarrow Đáp số chính xác là **C.**

PHƯƠNG PHÁP CASIO – VINACAL BÀI 10. TÌM SỐ NGHIỆM PHƯƠNG TRÌNH – LOGARIT (P1)

1) PHƯƠNG PHÁP SỬ DUNG MODE 7

Tổng hợp phương pháp

Bước 1: Chuyển PT về dạng Vế trái = 0

Bước 2: Sử dụng chức năng MODE 7 để xét lập bảng giá trị của về trái

Bước 3: Quan sát và đánh giá : +) Nếu $F(\alpha) = 0$ thì α là 1 nghiệm

+) Nếu F(a).F(b) < 0 thì PT có 1 nghiệm thuộc (a;b)

2) VÍ DỤ MINH HỌA

VD1-[THPT Pham Hồng Thái – Hà Nôi 2017]

Số nghiệm của phương trình 6.4^x $12.6^x + 6.9^x = 0$ là;

A. 3

B. 1

C. 2

D. 0

GIÁI

- ❖ Cách 1: CASIO
- Khởi động chức năng lập bảng giá trị MODE 7 của Casio rồi nhập hàm :

 x^{\bullet} (ALPHA)

- ➤ Thiết lập miền giá trị của *X* là : Start 9 End 10 Step 1

Máy tính cho ta bảng giá trị:

- 1

Ta thấy khi x = 0 thì F(0) = 0 vậy x = 0 là nghiệm.

Tiếp tục quan sát bảng giá trị F(X) nhưng không có giá trị nào làm cho F(X) = 0 hoặc khoảng nào làm cho F(X) đổi dấu. Điều này có nghĩa x = 0 là nghiệm duy nhất

Kết luận: Phương trình ban đầu có 1 nghiệm \Rightarrow Ta chọn đáp án **B**

- ❖ Cách tham khảo: Tư luân
- Vì $9^x > 0$ nên ta có thể chia cả 2 vế cho 9^x

Phương trình đã cho $\Leftrightarrow 6.\frac{4^x}{9^x}$ 12. $\frac{6^x}{9^x} + 6 = 0$

$$\Leftrightarrow 6.\left(\frac{2}{3}\right)^{2x} \quad 12.\left(\frac{2}{3}\right)^{x} + 6 = 0 \quad (1)$$

• Vậy
$$\left(\frac{2}{3}\right)^x = 1 \Leftrightarrow x = 0$$

❖ Bình luân:

 Để sử dụng phương pháp Casio mà không bị sót nghiệm ta có thể sử dụng vài thiết lập miền giá trị của X để kiểm tra. Ngoài Start 9 End 10 Step 1 ta có thể thiết lập Start 4 End 5 Start 0.5

Ta quan sát bảng giá trị vẫn có 1 nghiệm x = 0 duy nhất vậy ta có thể yên tâm hơn về lựa chọn của mình.

- Theo cách tự luận ta thấy các số hạng đều có dạng bậc 2. Ví dụ $4^x = (2^x)^2$ hoặc $6^x = 2^x . 3^x$ vậy ta biết đây là phương trình dạng đẳng cấp bậc 2.
- Dạng phương trình đẳng cấp bậc 2 là phương trình có dạng $ma^2 + nab + pb^2 = 0$ ta giai bằng cách chia cho b^2 rồi đặt ẩn phụ là $\frac{a}{b} = t$

VD2-[Thi thử chuyên Thái Bình lần 1 năm 2017]

Số nghiệm của phương trình $e^{\sin\left(x-\frac{\pi}{4}\right)} = \tan x$ trên đoạn $[0;2\pi]$ là :

A. 1 **B.** 2

D. 4

GIẢI

❖ Cách 1: CASIO

> Chuyển phương trình về dạng : $e^{\sin\left(x-\frac{\pi}{4}\right)}$ $\tan x = 0$ Sử dụng chức năng MODE 7 với thiết lập Start 0 End 2π Step $\frac{2\pi}{19}$

Quan sát bảng giá trị ta thấy 3 khoảng đổi dấu như trên :

 $f(0.6613).f(0.992) < 0 \implies \text{c\'o nghiệm thuộc khoảng}(0.6613;0.992)$ $f(1.3227).f(1.6634) < 0 \Rightarrow \text{có nghiệm thuộc khoảng } (1.3227;1.6534)$ $f(3.6376).f(3.9683) < 0 \implies \text{c\'o nghiệm thuộc khoảng} (3.6376;3.9683)$

 $f(4.6297).f(4.9604) < 0 \Rightarrow \text{c\'o nghiệm thuộc khoảng} (4.6297; 4.9604)$

Kết luận: Phương trình ban đầu có 4 nghiệm ⇒ Ta chọn đáp án **D**

- ❖ Bình luận:
- Đề bài yêu cầu tìm nghiệm thuộc $[0; 2\pi]$ nên Start = 0 và End = 2π
- Máy tính Casio tính được bảng giá trị gồm 19 giá trị nên bước nhảy Step = 19

<u>VD3</u>-[THPT Nhân Chính – Hà Nội 2017] Phương trình $(\sqrt{3} + \sqrt{2})^{\frac{3x}{x-1}} = (\sqrt{3} - \sqrt{2})^x$ có số nghiệm âm là:

A. 2 nghiêm B. 3 nghiêm C. 1 nghiệm

D. Không có

GIÁI

- ❖ Cách 1 : CASIO
- > Chuyển phương trình về dạng: $(\sqrt{3} + \sqrt{2})^{\frac{3x}{x-1}} (\sqrt{3} + \sqrt{2})^x = 0$

Khởi động chức năng lập bảng giá trị MODE 7 của Casio rồi nhập hàm :

$$f(X) = 4(\sqrt{3} - \sqrt{2})^X$$

 \triangleright Vì đề bài yêu cầu nghiệm âm nên ta hiết lập miền giá trị của X là : Start End 0 Step 0.5

Máy tính cho ta bảng giá trị:

Ta thấy khi x = 4 thì F(4) = 0 vậy x = 4 là nghiệm.

 \triangleright Tiếp tục quan sát bảng giá trị F(X) nhưng không có giá trị nào làm cho F(X) = 0 hoặc khoảng nào làm cho F(X) đổi dấu.

Điều này có nghĩa x = 4 là nghiệm âm duy nhất

Kết luận: Phương trình ban đầu có 1 nghiệm âm ⇒ Ta chọn đáp án **C**

- ❖ Cách tham khảo: Tự luận
- Logarit hai vế theo cơ số dương $\sqrt{3} + \sqrt{2}$

Phương trình

$$\left(\sqrt{3} + \sqrt{2}\right)^{\frac{3x}{x-1}} = \left(\sqrt{3} \quad \sqrt{2}\right)^{x} \Leftrightarrow \log_{\sqrt{3} + \sqrt{2}}\left(\sqrt{3} + \sqrt{2}\right)^{\frac{3x}{x-1}} = \log_{\sqrt{3} + \sqrt{2}}\left(\sqrt{3} \quad \sqrt{2}\right)^{x}$$

$$\Leftrightarrow \frac{3x}{x+1} = x\log_{\sqrt{3} + \sqrt{2}}\left(\sqrt{3} \quad \sqrt{2}\right)$$

$$\Leftrightarrow \frac{3x}{x+1} = -x \Leftrightarrow x\left(\frac{3}{x+1} + 1\right) = 0 \Leftrightarrow \begin{cases} x = 0 \\ x + 1 = 3 \Leftrightarrow x = 4 \end{cases}$$

x = 4 thỏa điều kiên. Vây ta có x = 4 là nghiêm âm thỏa phương trình

Bình luân :

- Phương trình trên có 2 cơ số khác nhau và số mũ có nhân tử chung. Vậy đây là dấu hiệu của phương pháp Logarit hóa 2 vế
- Thực ra phương trình có 2 nghiệm x = 0; x = 4 nhưng đề bài chỉ hỏi nghiệm âm nên ta chỉ chọn nghiệm x = 4 và chọn đáp án C là đáp án chính xác
- Vì đề bài hỏi nghiệm âm nên ta thiết lập miền giá trị của x cũng thuộc miền âm (9;0)

VD4-[THPT Yến Thế - Bắc Giang 2017] Số nghiệm của phương $(3-\sqrt{5})^x + 7(3+\sqrt{5})^x = 2^{x+3}$ là: **C.** 3 **D**. 1

GIÁI

- Cách 1: CASIO
- > Chuyển phương trình về dạng: $(3 \sqrt{5})^x + 7(3 + \sqrt{5})^x = 2^{x+3} = 0$

Khởi động chức năng lập bảng giá trị MODE 7 của Casio rồi nhập hàm : x APHA $\rightarrow \bigcirc$ = 2x APHA \rightarrow + 3 $f(X) = \sqrt{5}$ \times -2^{X+3}

Thiết lập miền giá trị của X là : Start 9 End 10 Step 1

Máy tính cho ta bảng giá trị:

Ta thấy khi x = 0 thì F(0) = 0 vậy x = 0 là nghiệm.

 \triangleright Tiếp tục quan sát bảng giá trị F(X)

Ta lại thấy f(3).f(2)<0 vậy giữa khoảng (3; 2) tồn tại 1 nghiệm

Kết luận : Phương trình ban đầu có 2 nghiệm \Rightarrow Ta chọn đáp án **A**

- * Cách tham khảo: Tư luân
- Vì $2^x > 0$ nên ta có thể chia cả 2 vế cho 2^x

Phương trình đã cho $\Leftrightarrow \left(\frac{3}{2}, \frac{\sqrt{5}}{2}\right)^x + 7\left(\frac{3+\sqrt{5}}{2}\right)^x = 0$

- Với $t = 1 \Leftrightarrow \left(\frac{3 + \sqrt{5}}{2}\right)^x = 1 \Leftrightarrow x = 0$ Với $t = 7 \Leftrightarrow \left(\frac{3 + \sqrt{5}}{2}\right)^x = 7 \Leftrightarrow x = \log_{\frac{3+\sqrt{5}}{2}} 7$

Vậy phương trình ban đầu có 2 nghiệm $x = 0; x = \log_{\frac{3-\sqrt{5}}{2}} 7$

❖ Bình luận:

- Nhắc lại một lần nữa nếu f(a).f(b)<0 thì phương trình có nghiệm thuộc (a;b)
- Ta nhận thấy 2 đại lượng nghịch đảo quen thuộc $\frac{3+\sqrt{5}}{2}$ và $\frac{3-\sqrt{5}}{2}$ nên ta tìm cách để tạo ra 2 đại lượng này bằng cách chia cả 2 vế của phương trình cho 2^x

<u>VD 5</u>: Số nghiệm của bất phương trình $(2+\sqrt{3})^{x^2-2x+1} + (2-\sqrt{3})^{x^2-2x-1} = \frac{4}{2-\sqrt{3}}$ (1) là : **A.** 0 **B.** 2 **C.** 3 **D.** 5

GIẢI

❖ Cách 1: CASIO

- Thuyển bất phương trình (1) về dạng $\left(2+\sqrt{3}\right)^{x^2-2x+1} + \left(2-\sqrt{3}\right)^{x^2-2x-1} \frac{4}{2\sqrt{3}} = 0$
- Nhập vế trái vào máy tính Casio : $F(X) = (2 + \sqrt{3})^{x^2 + 2x + 1} + (2 \sqrt{3})^{x^2 + 2x + 1} \frac{4}{2\sqrt{3}}$

- Thiết lập miền giá trị cho x với Start -9 End 9 Step 1 \bigcirc 9 \bigcirc 9 \bigcirc 1 \bigcirc
- Máy tính Casio cho ta bảng giá trị :

C. 0

A. 3

B. 2

D. 1

<u>BÀI TẬP TỰ LUYỆN</u>

<u>Bài 1</u>-[Chuyên Khoa Học Tự Nhiên 2017] Số nghiệm của phương trình $\log(x \ 1)^2 = \sqrt{2}$ là

A. 2

B. 1

C. 0

D. Một số

khác

GIÁI

■ Phương trình $\Leftrightarrow \log(x-1)^2 - \sqrt{2} = 0$. Sử dụng chức năng MODE 7 để tìm số nghiệm với Start 9 End 10 Step 1

Ta thấy có hai khoảng đổi dấu ⇒ Phương trình ban đầu có 2 nghiệm

 \Rightarrow **A** là đáp án chính xác

<u>Chú ý</u>: Để tránh bỏ sót nghiệm ta thường thử thêm 1 hoặc 2 lần nữa với hai khoảng Start End khác nhau Ví dụ Start 29 End 10 Step 1 hoặc Sart 11 End 30 Step 1. Ta thấy không có khoảng đổi dấu nào nữa

⇒ Chắc ăn hơn với 2 nghiệm tìm được

Bài 2-[THPT Lục Ngạn - Bắc Giang 2017]

Số nghiệm của phương trình $\begin{pmatrix} x & 2 \end{pmatrix} \lceil \log_{0.5} \begin{pmatrix} x^2 & 5x+6 \end{pmatrix} + 1 \rceil = 0$ là :

A. 1

B. 3

C. 0

D. 2

GIÅI

■ Tìm điều kiện của phương trình : x^2 $5x+6>0 \Leftrightarrow \begin{bmatrix} x>3\\ x<2 \end{bmatrix}$

XKA, BKX

■ Phương trình $(x \ 2) \Big[\log_{0.5} (x^2 \ 5x + 6) + 1 \Big] = 0$. Vì điều kiện chia hai khoảng nên ta MODE 7 hai lần. Lần thứ nhất với Start 7 End 2 Step 0.5

MODE 7 (ALPHA) = 2) (\log_{\bullet} 0 • 5 ALPHA) x^2 = 5 ALPHA) + 6 + 1) = = 7 = 2 = 0 • 5 =

1

Ta thấy có 1 nghiệm x = 1

Lần thứ hai với Start 3 End 12 Start 0.5

4

Ta lại thấy có nghiệm $x=4 \Rightarrow$ Phương trình có 2 nghiệm 1 và 4 . \Rightarrow Đáp án chính xác là **D**

Bài 3-[THPT Lục Ngạn - Bắc Giang 2017] Phương trình $3^{x^2-2x-3}+3^{x^2-3x+2}=3^{2x^2-5x-1}+1$

- **A.** Có ba nghiệm thực phân biệt
- **B.** Vô nghiệm
- C. Có hai nghiệm thực phân biệt
- D. Có bốn nghiệm thực phân biệt

GIẢI

■ Phương trình \Leftrightarrow $3^{x^2-2x-3}+3^{x^2-3x+2}-3^{2x^2-5x-1}-1=0$. Sử dụng MODE 7 với Start 9 End 0 Step 0.5

- 1

Ta thấy có 1 nghiệm x = 1

■ Tiếp tục MODE 7 với Start 0 End 9 Step 0.5

2

Ta lại thấy có thêm ba nghiệm $x=1;2;3 \Rightarrow$ Tổng cộng 4 nghiệm \Rightarrow Đáp án chính xác là **D**

<u>Bài 4</u>-[THPT HN Amsterdam 2017] Tìm số nghiệm của phương trình $2^{\frac{1}{x}} + 2^{\sqrt{x}} = 3$:

A. 1

B. 2

C. Vô số

D. Không

có nghiệm

GIẢI

■ Phương trình $\Leftrightarrow 2^{\frac{1}{x}} + 2^{\sqrt{x}}$ 3 = 0 (điều kiện $x \ge 0$). Sử dụng MODE 7 với Start 0 End 4.5 Step 0.25

О

Trên đoạn [0;4.5] không có nghiệm nào

■ Tiếp tục MODE 7 với Start 4.5 End 9 Step 0.25

4.5

Dự đoán phương trình vô nghiệm. Để chắn ăn hơn ta thử lần cuối với Start 9 End 28 Step 1

Giá trị của F(X) luôn tăng đến $+\infty$ \Rightarrow Phương trình vô nghiệm \Rightarrow Đáp án chính xác là $\mathbf D$

Bài 5-[THPT Nhân Chính - Hà Nội 2017]

Cho phương trình $2\log_2 x + \log_{\frac{1}{3}} \left(1 - \sqrt{x}\right) = \frac{1}{2}\log_{\sqrt{2}} \left(x - 2\sqrt{x} + 2\right)$. Số nghiệm của phương trình là ;

trinh la ; **A.** 2 nghiệm **B.** Vô số nghiệm **C.** 1 nghiệm **D.** Vô nghiệm

GIẢI

Phương trình
$$\Leftrightarrow 2\log_2 x + \log_{\frac{1}{3}} \left(1 \sqrt{x}\right) \frac{1}{2}\log_{\sqrt{2}} \left(x 2\sqrt{x} + 2\right) = 0$$
 (điều kiện $0 \le x \le 1$). Sử dụng MODE 7 với Start 0 End 1 Step 0.1 MODE 7 2 [Og.] 2 [Og.] 4 [Og.] $=$ 1 \bigcirc 3 [Og.] 4 [O

0.6

Ta thấy có 1 nghiệm duy nhất thuộc khoảng $(0.6;0.7) \Rightarrow \text{Đáp}$ án chính xác là C

Bài 6-[Thi HK1 chuyên Nguyễn Du - Đắc Lắc năm 2017]

Tìm số nghiệm của phương trình $\log(x - 2)^2 = 2\log x + \log_{\sqrt{10}}(x + 4)$

A. 3 **B.** 2 **C.** 0 **D.** 1

GIẢI

■ Phương trình $\Leftrightarrow \log(x \ 2)^2 \ 2\log x \ \log_{\sqrt{10}}(x+4) = 0$ (điều kiện $x \ge 0$). Sử dụng MODE 7 với Start 0 End 4.5 Step 0.25

Trên đoạn [0;4.5] có 1 nghiệm

■ Tiếp tục MODE 7 với Start 4.5 End 9 Step 0.25

Trên khoảng này không thu được nghiệm nào. Để chắn ăn hơn ta thử lần cuối với Start 9 End 28 Step 1

Cũng không thu được nghiệm \Rightarrow Tóm lại phương trình có nghiệm duy nhất \Rightarrow Đáp án chính xác là \mathbf{C} .

PHƯƠNG PHÁP CASIO – VINACAL BÀI 11. TÌM SỐ NGHIỆM PHƯƠNG TRÌNH MỮ – LOGARIT (P2)

1) PHƯƠNG PHÁP SỬ DỤNG SHIFT SOLVE

Bài toán đặt ra : Tìm số nghiệm của phương trình $\sqrt{x} + \sqrt{2x+1} = x^2 - 3x + 1$? **Xây dựng phương pháp :**

- Chuyển bài toán về dạng Vế trái = 0 khi đó $\sqrt{x} + \sqrt{2x+1} x^2 + 3x 1 = 0$ và đặt $f(x) = \sqrt{x} + \sqrt{2x+1} x^2 + 3x 1$
- > Nhập vế trái vào màn hình máy tính Casio

APHA) \bullet + \bullet 2 APHA) + 1 \bullet APHA) x^2 + 3 APHA) - 1 Sử dụng chức năng dò nghiệm SHIFT SOLVE với nghiệm gần giá trị 3

SHIFT CALC 3

Máy tính báo có nghiệm x = 4

- \triangleright Để tìm nghiệm tiếp theo ta tiếp tục sử dụng chức năng SHIFT SOLVE, **tuy nhiên câu** hỏi được đặt ra là làm thế nào máy tính không lặp lại giá trị nghiệm x=4 vừa tìm được?
 - +) Để trả lời câu hỏi này ta phải triệt tiêu nghiệm x = 4 ở phương trình f(x) = 0 đi bằng cách thực hiện 1 phép chia $\frac{f(x)}{x-4}$
 - +) Sau đó tiếp tục SHIFT SOLVE với biểu thức $\frac{f(x)}{x-4}$ để tìm nghiệm tiếp theo.
 - +) Quá trình này liên tục đến khi nào máy tính báo hết nghiệm thì thôi.

Tổng hợp phương pháp

Bước 1: Chuyển PT về dạng Vế trái = 0

Bước 2: Sử dụng chức năng SHIFT SOLVE dò nghiệm

Bước 3: Khử nghiệm đã tìm được và tiếp tục sử dụng SHIFT SOLVE để dò nghiệm

2) VÍ DỤ MINH HỌA

<u>VD1</u>-[THPT Phạm Hồng Thái – Hà Nội 2017]

Số nghiệm của phương trình 6.4^x $12.6^x + 6.9^x = 0$ là;

A. 3

B. 1

C. 2

D. 0

GIÅI

- ❖ Cách 1 : CASIO
- Nhập vế trái của phương trình 6.4^x $12.6^x + 6.9^x = 0$ vào máy tính Casio :
 - 6 X 4 x ALPHA) - 1 2 X 6 x ALPHA) + 6 X 9 x ALPHA)

> Sử dụng chức năng SHIFT SOLVE để tìm được nghiệm thứ nhất :

SHIFT CALC 2
$$\equiv$$
 $6\times4^{\times}-12\times6^{\times}+6\times9^{\times}$ $X=$ 0

Ta thu được nghiệm thứ nhất x = 0

ightharpoonup Để nghiệm x=0 không xuất hiện ở lần dò nghiệm SHIFT SOLVE tiếp theo ta chia phương trình F(X) cho nhân tử x

Tiếp tục SHIFT SOLVE lần thứ hai:

 10^{50} ta hiểu là 0 (do cách làm tròn của máy tính Casio) Có nghĩa là máy tính không thấy nghiệm nào ngoài nghiệm x=0 nữa \Rightarrow Phương trình chỉ có nghiệm duy nhất.

⇒ Đáp số chính xác là **B**

<u>VD2</u>: Số nghiệm của bất phương trình 2^{x^2} $= \frac{3}{2}$ (1) là :

A. 3

B. 2

 \boldsymbol{C}

D. 4

GIÁI

* Cách 1: CASIO

- > Chuyển bất phương trình (1) về dạng : $2^{x^2-2x} \frac{3}{2} = 0$
- Nhập vế trái của phương trình $2^{x^2-2x} = \frac{3}{2} = 0$ vào máy tính Casio rồi nhất \blacksquare để lưu vế trái vào máy tính . Dò nghiệm lần thứ nhất với x gần 1

$$2x^{2}APA)x^{2}-2APA) \triangleright - = 3 \cdot 2 \cdot = SHFT CALC - 1 =$$

$$2^{\times 2} - 2^{\times} - \frac{3}{2} \Big|_{X=0.258952938}^{\text{Math}}$$

Ta được nghiệm x = 0.2589...

ightharpoonup Tiếp theo ta sẽ khử nghiệm x = 0.2589... nhưng nghiệm này lại rất lẻ, vì vậy ta sẽ lưu vào biến A

Sau đó gọi lại phương trình và thực hiện phép chia nhân tử x = A để khử nghiệm A

$$\hat{\P}^{-2X} = \frac{3}{2} \div (X - A)$$

Tiếp tục SHIFT SOLVE với x gần 1. Ta được nghiệm thứ hai và lưu vào B SHIFT (ALC) = 1 = SHIFT (RCL) 9.99

2.414213562

Math A

SHIFT RCL (-)

Ans⇒A

GIÁI

 \blacktriangleright Khử nghiệm x = 1; x = A rồi dò nghiệm thứ ba. Lưu nghiệm này vào B(ALPHA) (-) SHIFT (CALC) Math A 1/2+137 Ans∍R -0.414213562 -0.4142135624 \blacktriangleright Khử nghiệm x = 1; x = A; x = B rồi dò nghiệm thứ tư. → (ALPHA) — ALPHA (***) > SHIFT (CALC) = = 0 = Can't Solve [AC] :Cancel [4][#]:Goto Hết nghiệm \Rightarrow Phương trình (1) có 3 nghiệm \Rightarrow Chọn đáp án C VD4-[Thi thử chuyên Thái Bình lần 1 năm 2017] $e^{\sin\left(x\frac{\pi}{4}\right)} = \tan x$ trên đoạn $[0; 2\pi]$ là: Số nghiệm của phương trình e **C.** 3 **A.** 1 **D.** 4 **B.** 2 GIÅI **❖** Cách 1 : CASIO \triangleright Chuyển phương trình về dang : $e^{\frac{1}{2}}$ $\tan x = 0$. Dò nghiệm thứ nhất rồi lưu vào ASHIFT (CALC) 2 SHIFT $\times 10^{x}$ \div 4 = SHIFT RCL (-) ⁴⁾–̃tan̈()́⊳ Ans⇒A ightharpoonup Gọi lại phương trình ban đầu . Khử nghiệm x=A hay $x=\frac{\pi}{A}$ rồi dò nghiệm thứ hai. Lưu nghiệm tìm được vào B 4 = ---(-- 4[§] -tan• 22.77654674 -R= Ra một giá trị nằm ngoài khoảng $\left[0;2\pi\right]$. \Rightarrow Ta phải quay lại phương pháp 1 dùng MODE 7 thì mới xử lý được. Vậy ta có kinh nghiệm khi đề bài yêu cầu tìm nghiệm trên miền $[\alpha; \beta]$ thì ta chọn phương pháp lập bảng giá trị MODE 7 <u>VD5</u>-[THPT Nhân Chính – Hà Nội 2017] Phương trình $(\sqrt{3} + \sqrt{2})^{\frac{3x}{x-1}} = (\sqrt{3} - \sqrt{2})^x$ có số nghiệm âm là: A. 2 nghiệm B. 3 nghiệm C. 1 nghiệm D. Không có **GIAI**

❖ <u>Cách 1</u> : CASIO

Foi lại phương trình, khử nghiệm x = 0; x = A rồi dò nghiệm thứ ba.

BÀI TẬP TỰ LUYỆN

<u>Bài 1</u> -[Chuyên Khoa Học Tự Nhiên 2017] Số nghiệm của phương trình $\log(x + 1)^2 = \sqrt{2}$ là								
: A. 2	B. 1	C. 0	D.	Một số				
khác	n' c'	2017						
Bài 2-[THPT Lục N		_						
Số nghiệm của phương trình $\begin{pmatrix} x & 2 \end{pmatrix} \log_{0.5} \begin{pmatrix} x^2 & 5x+6 \end{pmatrix} + 1 = 0$ là :								
A. 1	B. 3	C. 0	D.					
A. Có ba nghiệmC. Có hai nghiệm	thực phân biệt thực phân biệt	2017] Phương trình $3^{x^2-2x-3} + 3^{x^2-3x+2} = 3^{2x^2}$ B. Vô nghiệm D. Có bốn nghiệm thực phân biệt						
<u>Bài 4-[THPT HN Amsterdam 2017]</u> Tìm số nghiệm của phương trình $2^{\frac{1}{x}} + 2^{\sqrt{x}} = 3$:								
A. 1	B. 2	C. Vô số	D.	Không				
có nghiệm				_				
Bài 5-[THPT Nhân Chính – Hà Nội 2017]								
Cho phương trình	$2\log_2 x + \log_{\frac{1}{3}} \left(1\right)$	\sqrt{x}) = $\frac{1}{2}\log_{\sqrt{2}}(x - 2\sqrt{x} + 2)$. Số nghiệm	của	phương				
trình là ;								
A. 2 nghiệm	B. Vô số nghiệ	èm C. 1 nghiệm	D.	Vô				
nghiệm	_							
<u>Bài 6</u> -[Thi HK1 chuyên Nguyễn Du – Đắc Lắc năm 2017]								
Tìm số nghiệm của phương trình $\log(x + 2)^2 = 2\log x + \log_{\sqrt{10}}(x+4)$								
A. 3	B . 2	C . 0	D.	1				

BÀI TẬP TỰ LUYỆN

<u>Bài 1</u> -[Chuyế	ên Khoa Học Tự Nhiên	2017] Số nghiệm của phương trình $\log(x)$	$1)^2 = \sqrt{2} \text{ là}$
: A. 2 khác	B. 1	C. 0	D. Một số
GIÅI			

■ Dò nghiệm thứ nhất của phương trình $\log(x + 1)^2 - \sqrt{2} = 0$ rồi lưu vào biến A [log] (ALPHA) — 1) x^2) — $\sqrt{2}$ 2 = SHIFT (CALC) 1 = SHIFT (RCL) (—)

log((X-1)²)-√2^{*} X=_ -4.09456117 Math 🔺 Ans∍A -4.09456117 • Khử nghiệm thứ nhất x = A rồi dò nghiệm thứ hai. Lưu nghiệm thứ hai vào B (log((X-1)²)-√2♭ Ans∍B 6.09456117 • Khử nghiệm x = A; x = B rồi dò nghiệm thứ ba. Continue:[=] -300974756.6 -R=1.715814×ā¹6 Không có nghiệm thứ $3 \Rightarrow A$ là đáp án chính xác Bài 2-[THPT Lục Ngạn - Bắc Giang 2017] Số nghiệm của phương trình $\begin{pmatrix} x & 2 \end{pmatrix} \lceil \log_{0.5} \begin{pmatrix} x^2 & 5x + 6 \end{pmatrix} + 1 \rceil = 0$ là : **A.** 1 **C.** 0 **D.** 2 GIÅI $(x \ 2) \lceil \log_{0.5} (x^2 \ 5x + 6) + 1 \rceil = 0$ trình Dò nghiêm thứ nhât của phương $(APHA) - 2) (O_{\bullet} O \cdot 5) APHA) x^2 - 5 (APHA) + 6) + 1$) = SHIFT CALC 2 • 5 = (X-2)(log_{o.5}(Ẍ́[∠]́Þ Χ= l –R= Ta được nghiệm thứ nhất x = 1. Khử nghiệm này và tiến hành dò nghiệm thứ hai. ((X−2)(log_{o s}ĺX•̇́́́) Χ= l –R= Ta được thêm nghiệm thứ hai x = 4. Khử hai nghiệm x = 1; x = 4 và tiến hành dò nghiệm thứ : (ALPHA) = 4 SHIFT CALC = 1 =Continue:[=] X= -9.52466×m¹³ L-R=9.645845×ā¹³

Bài 3-[THPT Lục Ngạn - Bắc Giang 2017] Phương trình $3^{x^2-2x-3}+3^{x^2-3x+2}=3^{2x^2-5x-1}+1$

Không có nghiệm thứ ba \Rightarrow Đáp số chính xác là **D**

	 A. Có ba nghiệm thực phân biệt B. Vô nghiệm D. Có bốn nghiệm thực phân biệt
	GIÅI
•	Dò nghiệm thứ nhất của phương trình $3^{x^2-2x-3}+3^{x^2-3x+2}-3^{2x^2-5x-1}-1=0$ 3 x^2 ALPHA) x^2 — 2 ALPHA) — 3 x^2 ALPHA) x^2 — 3 ALPHA) + 2 • 3 x^2 2 ALPHA) x^2 — 5 ALPHA) — 1 x^2 SHIFT CALC 1 =
	3X4-2X-3+3X4-3/b X= 1 L-R= 0
	Ta thấy có 1 nghiệm $x = 1$
•	Khử nghiệm $x = 1$ rồi tiếp tục dò nghiệm thứ hai \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet
	13×4-2×-3°+3× ^{4×+} 5⟩ X=
_	
•	Ta thu được nghiệm $x=3$. Khử hai nghiệm trên rồi tiếp tục dò nghiệm thứ ba \blacksquare
	13×4-2×-3°+3× ^{Math}
	Ta thu được nghiệm $x = 2$. Khử ba nghiệm trên rồi tiếp tục dò nghiệm thứ tư
	(3×4-2×-3+3×4-5)
	X= -1 L-R= 0
•	Ta thu được nghiệm $x = 1$. Khử bốn nghiệm trên rồi tiếp tục dò nghiệm thứ năm
	Can't Solve
	[AC] :Cancel [4][\bullet]:Goto Không có nghiệm thứ năm \Rightarrow Đáp án chính xác là D
	<u>Bài 4-[THPT HN Amsterdam 2017]</u> Tìm số nghiệm của phương trình $2^{\frac{1}{x}} + 2^{\sqrt{x}} = 3$:
	A. 1 B. 2 C. Vô số D. Không có nghiệm
	GIẢI
•	Dò nghiệm thứ nhất của phương trình $\Leftrightarrow 2^{\frac{1}{x}} + 2^{\sqrt{x}} 3 = 0$ (điều kiện $x \ge 0$). 2 x^* $=$ 1 \longrightarrow ALPHA \longrightarrow \longrightarrow \longrightarrow ALPHA \longrightarrow \longrightarrow ALPHA \longrightarrow \longrightarrow SHIFT CALC 1 $=$ Can't Solve
	[AC] :Cancel [4][]:Goto

	Thấy ngay phương trình vô nghiệm ⇒ Đáp án chính xác là D								
	<u>Bài 5-[THPT Nhân Chính – Hà Nội 2017]</u> Cho phương trình $2\log_2 x + \log_{\frac{1}{2}} \left(1 - \sqrt{x}\right) = \frac{1}{2}\log_{\sqrt{2}} \left(x - 2\sqrt{x} + 2\right)$. Số nghiệm	của	phương						
	trình là ; A. 2 nghiệm nghiệm GIẢI C. 1 nghiệm	D.	Vô						
	Dò nghiệm thứ nhất của phương trình $\Leftrightarrow 2\log_2 x + \log_{\frac{1}{2}} \left(1 - \sqrt{x}\right) = \frac{1}{2}\log_{\sqrt{2}} \left(x - \sqrt{x}\right)$	$2\sqrt{x}$	+2)=0						
	$(x>0)$. Lưu nghiệm thứ nhất vào A 2 [Og_1] 2 [Og_2] $\sqrt{2}$	•							
	_ © Math Δ ⇔ Δης∋Δ								
ı	Ans+A $X=0.6243584652$ $L-R=0$ Can't Solve Ans+A Ans+A O.6243584652 O.6243584652 SHIFT CALC = 3 = Can't Solve								
	[AC] :Cancel [4][\triangleright]:Goto Không có nghiệm thứ hai \Rightarrow Đáp án chính xác là C								
	Bài 6-[Thi HK1 chuyên Nguyễn Du – Đắc Lắc năm 2017]								
	Tìm số nghiệm của phương trình $\log(x + 2)^2 = 2\log x + \log_{\sqrt{10}}(x+4)$ A. 3 B . 2 C . 0	D . 1	1						
	GIÅI	D .	1						
I	Dò nghiệm thứu nhất của phương trình $\log(x + 2)^2 + 2\log x + \log_{\sqrt{10}}(x+4) = 0$	(x >	0). Lưu						
	nghiệm này vào A $Og (ALPHA) = 2)x^2) = 2 Og ALPHA) - Og I I O $ $H = SHIFI (ALC) = SHIFI (CL) - Og I I I I I I I I I I I I I I I I I I $	● A	LPHA))						
•	X = 0.3722813233 L - R = 0 0.3722813233 Khử nghiệm $x = A$ và tiếp tục dò nghiệm thứ hai :	_							
	A A A A A A A A A A A A A A A A A A A	J							