

Safe learning for control:

Combining disturbance estimation, reachability analysis and reinforcement learning with systematic exploration

Caroline Heidenreich

June 1, 2017

Motivational Example

- Autonomous vehicle with partly known model
- Task: find optimal control without driving off the road
- ► To simplify, we only look at the truck's position

Motivation

How can we find the optimal control?

- Model-based control:
 - Not possible without physical insight.

- 2. Learn a policy with Reinforcement Learning (RL):
 - Directly or indirectly.
 - Requires to visit all (safe) states.

Motivation

How can we make sure to stay on the road?

- RL algorithms not designed for satisfying constraints.
- We need an additional safety-preserving controller.

⇒ Safe Learning Control

Markov Decision Process

- Discretise states and actions.
- Assign rewards to each state-action pair.
- Determine objective that agent should maximise.

Reward function

Objective function

$$R_t = \sum_{k=0}^{T} \gamma^k r_{t+k+1}$$

Reinforcement Learning

Finding optimal policy by

- play action
- receive reward
- update policy

- ✓ There are algorithms that converge to the optimal policy.
- X No safety guarantees.

Safe Set Calculation

How can we ensure safety with uncertain dynamics?

- Treat the unknown dynamics as bounded disturbance.
- ▶ Determine for each state if our control manages to keep us on the road for all disturbances.

Safe Learning

- At the borders of the safe set: Apply safe control.
- Within the safe set: Reinforcement learning.

- ✓ Learn a control without leaving the road.
- **X** Small safe set due to conservative disturbance range.

Disturbance Estimation with Gaussian Processes

- Update the disturbance range with measured data.
- Gaussian Process regression: Non-parametric regression method that gives:
 - a. an estimate for the disturbance.
 - **b.** a measure how certain this estimate is.

Exploration

- Trade-off between exploration and exploitation.
- Need for visiting the whole safe set i.o. to learn policy.
- Chosen method: Promote state-action pairs that have not been visited often.

Summary of Approach

Implementation

Reinforcement Learning Version of Delayed Q-learning

Disturbance Estimation Gaussian Processes

Safe Set Hamilton-Jacobi-Isaacs Reachability

Exploration Incremental Q-learning

Evaluate approach on:

- Inverted Pendulum System.
- Two states: position and angular velocity.
- ► Four iterations with 10,000 learning steps.

Exploration

Policy Estimation

Disturbance Estimation

GP regression w/o exploration

Disturbance Estimation

GP regression w/o exploration

lteration 2 2 0 -2 2 0 x₁ -2 5 x₂ 0 -5

Disturbance Estimation

Iteration 1

0 X2

GP regression w/o exploration

GP regression with exploration

15/20

Disturbance Estimation

Trajectories

Trajectories

Trajectories with exploration in the beginning

Trajectories without exploration

Trajectories

Trajectories with exploration in the beginning 4 2 × 0 -2 -4

X 1

Trajectories

Trajectories with exploration in the beginning

Trajectories without exploration

Conclusions

- We manage to learn an accurate policy for inverted pendulum.
- System can always be brought back to safety.
- Considerably better results by incorporating exploration.

Future Work

Some theoretical & practical challenges remain:

- Joint design of safety and learning loop.
- Recursive estimation of disturbance bounds.Formal guarantees for the whole algorithm.

Thank you for listening!

Questions?

