Prénom :

Documents et calculatrices interdits

EXERCICE 1. QCM (4 POINTS - Pas de points négatifs)

- **Q1**. Trois vecteurs \overrightarrow{u}_1 , \overrightarrow{u}_2 et \overrightarrow{u}_3 forment un repère orthonormé si et seulement si ?
- a. Ils sont tous de norme égale à 1 et deux à deux perpendiculaires.
- b. Ils sont de norme égale à 1 et deux à deux parallèles.
- Ils appartiennent tous au même plan.
- d. Leur somme est un vecteur nul.
- **Q2.** Soit le mouvement d'une particule en coordonnées polaires $(\overrightarrow{u}_{\rho}, \overrightarrow{u}_{\theta})$ avec ρ la coordonnée radiale et heta la cordonnée angulaire. Une seule des assertions ci-dessous est fausse. Laquelle?

a.
$$\overrightarrow{OM}(t) = \rho \overrightarrow{u}_{\rho}$$

c. $\dot{\overrightarrow{u}}_{\rho} = \dot{\theta} \overrightarrow{u}_{\theta}$

b.
$$v(t) = \dot{\rho} \overrightarrow{u}_{\rho} + \rho \dot{\theta} \overrightarrow{u}_{\theta}$$

d. $\dot{\overrightarrow{u}}_{\theta} = \dot{\theta} \overrightarrow{u}_{\rho}$

c.
$$\overrightarrow{u}_{\rho} = \dot{\theta} \overrightarrow{u}_{\theta}$$

d.
$$\overrightarrow{u}_{\theta} = \dot{\theta} \overrightarrow{u}_{\rho}$$

- **Q3**. Au sujet des vecteurs \overrightarrow{u}_T et \overrightarrow{u}_N qui forment la base de Frenet: en un point M de la trajectoire curviligne d'un mobile, une seule des affirmations ci-dessous est vraie. Laquelle?
 - a. \overrightarrow{u}_T est un vecteur normal à la trajectoire
 - b. \overrightarrow{u}_N est toujours dirigé vers l'intérieur de la concavité de la trajectoire
 - c. \overrightarrow{u}_T et \overrightarrow{u}_N sont colinéaires
 - d. Le produit scalaire de \overrightarrow{u}_T et de \overrightarrow{u}_N est égal au rayon de courbure
- **Q4**. Dans la base de Frenet, la norme du vecteur vitesse v(t) est une primitive de l'abscisse curviligne s(t).

Q5. Dans la base de Frenet, l'abscisse curviligne s(t) est une dérivée, par rapport au temps, du module de la vitesse v(t).

- **Q6**. Dans la base de Frenet $(\overrightarrow{u}_T, \overrightarrow{u}_N)$, un mobile animé d'un mouvement d'abscisse curviligne s(t) et de vitesse v(t) possède une accélération $\overrightarrow{a}(t)$ dont l'expression est :
 - a. $\overrightarrow{a}(t) = \overrightarrow{s}(t)\overrightarrow{u}_T + \frac{v^2}{R}\overrightarrow{u}_N$ b. $\overrightarrow{a}(t) = \overrightarrow{s}(t)\overrightarrow{u}_T + \frac{2v}{R^2}\overrightarrow{u}_N$ c. $\overrightarrow{a}(t) = \dot{v}(t)\overrightarrow{u}_T + \frac{R^2}{v}\overrightarrow{u}_N$

c.
$$\overrightarrow{a}(t) = \dot{v}(t)\overrightarrow{u}_T + \frac{R^2}{v}\overrightarrow{u}_N$$

- Q7. Le mouvement d'une particule M se déplaçant dans le plan (xoy) est décrit par les équations horaires suivantes : $x(t) = V_0 t \cos(t)$ et $y(t) = V_0 t \sin(t)$. V_0 est une constante. Au temps $t = \pi$ secondes, la particule se trouve :
 - a. Sur l'axe des Y b. Sur l'axe des X.
- c. A l'origine des axes.
- d. Nulle part.
- Q8. Le système idéal pour étudier un mouvement hélicoïdal est le système des coordonnées :
 - a. Polaires
- b. Cartésiennes
- c. Sphériques
- d. Cylindriques

EXERCICE 2 : COORDONNÉES CARTESIENNES ET BASE DE FRENET (11 POINTS)

Soit un point matériel M dont la cinématique est décrite par les équations ho	oraires
suivantes en coordonnées cartésiennes :	

$$x(t) = R\cos(\alpha t^2)$$
$$y(t) = R\sin(\alpha t^2)$$

Où R et α sont des constantes strictement positives.

1) Montrer que le point M possède une trajectoire circulaire de centre $\mathcal O$ et de rayon $\mathcal R$.
2) En coordonnées cartésiennes, écrire le vecteur position puis déterminer le vecteur vitesse en fonction de α , R et t .
3) En déduire que la norme du vecteur vitesse s'exprime $v(t)=2\alpha Rt$. Le mouvement est-il uniforme ?

- 4) A l'aide d'une analyse dimensionnelle, donner l'unité de α .
- 5) Le point M est initialement au point A (à t=0), représenter la base de Frenet au point A. Vous indiquerez le sens du mouvement sur le cercle.
- 6) Déduire des questions précédentes le vecteur vitesse en base de Frenet.

7) Déterminer l'abscisse curviligne s(t) en fonction de α , R et t.

3) Déterminer le temps t_1 , nécessaire au point M pour effectuer un tour complet, en fonction de $lpha$.
9) a. Exprimer les composantes normale et tangentielle du vecteur accélération $\overrightarrow{a}(t)$ e pase de Frenet.
b. En déduire la norme de l'accélération du point M en fonction de $lpha$, R et t .

EXERCICE 3 : COORDONNÉES POLAIRES (6 POINTS)

Un point matériel M décrit, par rapport à un repère cartésien (\overrightarrow{u}_x , \overrightarrow{u}_y), une trajectoire définie par les équations horaires suivantes:

$$x(t) = b \sin(\omega t)$$

$$y(t) = b[1 - \cos(\omega t)]$$

Avec b une constante strictement positive.

1.	a) Donner l'expression de la coordonnée polaire radiale $ ho(t)$ du mouvement de M .

b) Sachant que $1 - \cos(\omega t) = 2\sin^2(\omega t)$	$\left(\frac{\omega t}{2}\right)$, trouver l'expression simplifiée de $ ho(t)$

2.	a) Donner l'expression de la coordonnée polaire angulaire $ heta(t)$.	

2.	a) Donner l'expression de la coordonnée polaire angulaire $ heta(t)$.

b) Sachant que	$\frac{1 - \cos \omega t}{\sin \omega t} = \tan \theta$	$\left(\frac{\omega t}{2}\right)$, trouver l'expression simplifiée de $ heta(t)$
	$\sin \omega t$	\ \ \ \ \ \	/

3. a) Donner l'expression du vecteur position $\overrightarrow{OM}(t)$ en coordonnées polaires du mouvement du point M.

b) En déduire l'expression en coordonnées polaires du vecteur vitesse $\overrightarrow{v}(t)$ du point M.