

Introduction to

Algorithm Design and Analysis

[8] logn search

Yu Huang

http://cs.nju.edu.cn/yuhuang Institute of Computer Software Nanjing University

In the last class...

- Selection warm up
 - o Max and min
 - o Second largest
- Selection rank k (median)
 - o Expected linear time
 - o Worst-case linear time
- Adversary argument
 - o Lower bound

The Searching Problem

Searching vs. Selection

- o Search for "Alice" or "Bob"
 - The key itself matters
- o Select the "rank 2" student
 - The partial order relation matters

Expected cost for searching

- o Brute force case: O(n)
- o Ideal case: O(1)
- o Can we achieve O(logn)?

The Searching Problem

- Essential of searching
 - o How to *organize the data* to enable efficient search
 - o logn search
 - Each search cuts off half of the search space
 - How to organize the data to enable *logn* search
- logn search techniques
 - o Warmup
 - Binary search over *sorted* sequences
 - o Balanced Binary Search Tree (BST)
 - Red-black tree

Binary Search by Example

- Binary search for "24"
 - o Divide the search space
 - o Cut off half the space after each search

Binary Search Generalized

- Peak-number
 - o Uni-modal array
- Least number not in the array
 - o Sorted array of natural numbers
- A[i]=i
 - o Sorted array of integers

Balanced Binary Search Tree

- Binary search tree (BST)
 - o Definitions and basic operations
- Definition of Red-Black Tree (RBT)
 - o Black height
- RBT operations
 - o Insertion into a red-black tree
 - o Deletion from a red-black tree

Binary Search Tree Revisited

Node Group

As in 2-tree, the

number of

Balancing by Rotation

Red-Black Tree: Definition

- If *T* is a binary search tree in which each node has a color, red or black, and all external nodes are black, then *T* is a red-black tree if and only if:
 - o [Color constraint] No red node has a red child
 - o [*Black height constraint*] The **black length** of all external paths from a given node *u* is the same (the black height of *u*)
 - o The root is black.
- *Almost*-red-black tree(ARB tree)
 - o Root is red, satisfying the other constraints.

Balancing is under control

RB_i and ARB_i

Red-Black Tree with 6 Nodes

Recursive Definition of RBT

(A red-black tree of black height h is denoted as RB_h)

- Definition:
 - o An external node is an RB_0 tree, and the node is black.
 - o A binary tree is an ARB_h (h≥1) tree if: \longleftarrow No ARB_0
 - Its root is red, and
 - Its left and right subtrees are each an RB_{h-1} tree.
 - o A binary tree is an RB_h ($h \ge 1$) tree if:
 - Its root is black, and
 - Its left and right subtrees are each either an RB_{h-1} tree or an ARB_h tree.

Well-defined Black Height

- That "the black height of any RB_h tree or ARB_h tree is well defind" means the black length of all external paths from the root is the same.
- Proof: induction on h
- Base case: h=0, that is RB_0 (there is no ARB_0)
- In ARB_{h+1} , its two subtrees are both RB_h . Since the root is red, the black length of all external paths from the root is h, that's the same as its two subtrees.
- In RB_{h+1} :
 - o Case 1: two subtrees are RB_h 's
 - o Case 2: two subtrees are ARB_{h+1} 's
 - o Case 3: one subtree is an RB_h (black height=h), and the another is an ARB_{h+1} (black height=h+1)

Properties of Red-Black Tree

- The black height of any RB_h tree or ARB_h tree is well-defined and is h.
- Let T be an RB_h tree, then:
 - o T has at least 2^h -1 internal black nodes.
 - o T has at most 4^h -1 internal nodes.
 - o The depth of any black node is at most twice its black depth.
- Let *A* be an ARB_h tree, then:
 - o A has at least 2^h -2 internal black nodes.
 - o A has at most $(4^h)/2-1$ internal nodes.
 - o The depth of any black node is at most twice its black depth.

Bound on Depth of Node in RBTree

- Let *T* be a red-black tree with *n* internal nodes. Then no node has black depth greater than log(*n*+1), which means that the height of *T* in the usual sense is at most 2log(*n*+1).
 - o Proof:
 - o Let h be the black height of T. The number of internal nodes, n, is at least the number of internal black nodes, which is at least 2^h -1, so $h \le \log(n+1)$. The node with greatest depth is some external node. All external nodes are with black depth h. So, the depth is at most 2h.

RBT in Practice

CFS uses a red-black tree to manage the list of runnable processes and efficiently find the process with the smallest vruntime. A red-black tree, called an rbtree in Linux, is a type of self-balancing binary search tree. We discuss self-balancing binary search trees in general and red-black trees in particular in Chapter 6. For now, if you are unfamiliar, you need to know only that red-black trees are a data structure that store nodes of arbitrary data, identified by a specific key, and that they enable efficient search for a given key. (Specifically, obtaining a node identified by a given key is logarithmic in time as a function of total nodes in the tree.)

Black-depth Convention

Influences of Insertion to an RBT

- Black height constraint:
 - No violation *if* inserting a red node.

Repairing 4-node Critical Cluster

Repairing 4-node Critical Cluster

Patterns of 3-node Critical Cluster

Shown as properly drawn

Repairing 3-Node Critical Cluster

Root of the critical cluster is changed to *M*, and the parentship is adjusted accordingly

Implementing Insertion: Class

```
class RBtree

Element root;

RBtree leftSubtree;

RBtree rightSubtree;

int color; /* red, black */

static class InsReturn

public RBtree newTree;

public int status /* ok, rbr, brb, rrb, brr */
```


Implementing Insertion: Procedure

RBtree rbtlnsert (RBtree oldRBtree, Element newNode)

InsReturn an
If (ans.newTr
ans.newTr
return ans.ne
the wrapper

```
InsReturn rbtlns(RBtree oldRBtree, Element newNode)
  InsReturn ans, ansLeft, ansRight;
  if (oldRBtree = nil) then <Inserting simply>;
  else
    if (newNode.key <oldRBtree.root.key)</pre>
       ansLeft = rbtlns (oldRBtree.leftSubtree, newNode);
       ans = repairLeft(oldRBtree, ansLeft);
    else
       ansRight = rbtlns(oldRBtree.rightSubtree, newNode);
       ans = repairRight(oldRBtree, ansRight);
                                       the recursive function
  return ans
```

Correctness of Insertion

- If the parameter oldRBtree of rbtIns is an RB_h tree or an ARB_{h+1} tree(which is true for the recursive calls on rbtIns), then the newTree and status fields returned are one of the following combinations:
 - o Status=ok, and newTree is an RB_h or an ARB_{h+1} tree,
 - o Status=rbr, and newTree is an RB_h,
 - o Status=brb, and newTree is an ARB_{h+1} tree,
 - o Status=rrb, and newTree.color=red, newTree.leftSubtree is an ARB_{h+1} tree and newTree.rightSubtree is an RB_h tree,
 - Status=brr, and newTree.color=red, newTree.rightSubtree is an ARB_{h+1} tree and newTree.leftSubtree is an RB_h tree
- For those cases with red root, the color will be changed to black, with other constraints satisfied by repairing subroutines.

Deletion: Logical and Structural

Deletion from RBT - Examples

Deletion in RBT

Procedure of Red-Black Deletion

- 1. Do a standard BST search to locate the node to be logically deleted, call it *u*
- 2. If the right child of *u* is an external node, identify *u* as the node to be structurally deleted.
- 3. If the right child of u is an internal node, find the tree successor of u, call it σ , copy the key and information from σ to u. (color of u not changed) Identify σ as the node to be deleted structurally.
- 4. Carry out the structural deletion and repair any imbalance of black height.

Imbalance of Black Height

Analysis of Black Imbalance

• The imbalance occurs when:

- o A black node is deleted structurally, and
- o Its right subtree is black (external)

• The result is:

o An RB_{h-1} occupies the position of an RB_h as required by its parent, coloring it as a "gray" node.

• Solution:

- o Find a red node and turn it black as locally as possible.
- o The gray color might propagate up the tree.

Propagation of Gray Node

Map of the vicinity of **g**, the gray node

g-subtree gets well-defined black height, but that is less than that required by its parent

Repairing without Propagation

Repairing without Propagation

Red p: form an RB₁ or ARB₂ tree

•Black p: form an RB₂ tree

Complexity of Operations on RBT

- With reasonable implementation
 - o A new node can be inserted correctly in a red-black tree with n nodes in $\Theta(\log n)$ time in the worst case.
 - o Repairs for deletion do O(1) structural changes, but may do $O(\log n)$ color changes.

Thank you!

Q & A

Yu Huang

http://cs.nju.edu.cn/yuhuang

