- 1.5 Sei $f: \mathbb{R} \to \mathbb{R}, f(x) \coloneqq \sin x$. Für $n \in \mathbb{N}$ bestimme das Taylor-Polynom von f vom Grad n um den Entwicklungspunkt a = 0. Zeige, dass die Taylor-Reihe von f auf ganz \mathbb{R} gegen f konvergiert, d.h. für jedes (feste) $x \in \mathbb{R}$ gilt $R_n(x) \to 0$. Benutze dazu die Formel für das Lagrange-Restglied R_n aus HM1, Satz 21.1.
- 1.6 Zur Erinnerung: Für $x \in \mathbb{R}$ bezeichnet man mit $\lfloor x \rfloor$ die eindeutig bestimmte ganze Zahl m mit $m \leq x < m+1$. Sind die angegebenen Funktionen $\varphi_k : [0,2] \to \mathbb{R}(k=1,2,3,4)$ Treppenfunktionen? Wenn ja, ist ihr Integral zu ermitteln.
 - (a) $\varphi_1(x) = \lfloor x \rfloor;$
 - (b) $\varphi_2(x) = \lfloor 2x \rfloor;$
 - (c) $\varphi_3(x) = 7\lfloor x \rfloor 5\lfloor 2x \rfloor$
 - (d) $\varphi_4 x = \begin{cases} 0 & \text{falls } x = 0, \\ \lfloor \frac{1}{x} \rfloor & \text{falls } x \neq 0. \end{cases}$
- 1.7 Die rationalen Zahlen im Intervall [0,2) seien als Folge $(r_n)_{k\in\mathbb{N}}$ geschrieben. Entscheide, ob die angegebenen Funktionen $f_n:[0,2]\to\mathbb{R}(m=1,2,3,4)$ Riemann-integrierbar sind.
 - (a) $f_1(x) = \lfloor 2x \rfloor$;
 - (b) $f_2(x) = e^{-x^2}$;
 - (c) $f_3(x) = \sum_{k:r_k < x} 2^{-k};$
 - (d) $f_4(x) = \begin{cases} 0 & \text{falls } x = 0, \\ x^{-2} & \text{falls } x \neq 0. \end{cases}$
- 1.8 Sei a>1. gehe ähnlich wie in Aufgabe 1.4 vor, um das Riemann-Integral $\int_1^a \frac{dx}{x}$ zu bestimmen.