張志煥截線

 $\mathcal{L}i4 + \mathfrak{B}$

April 1, 2021

1 張志煥截線

張志煥截線是幾何王子張志煥在計算共圓時經常使用到的工具。

Proposition 1. 給定 $\triangle ABC$,一點 P 與 $\triangle ABC$ 的外接圓錐曲線 C。令 $\triangle P_A P_B P_C$ 爲 $\triangle ABC$ 的 C-西瓦三角形。對於 C 上一點 X,令

$$X_{P,A} = XP_A \cap BC$$
, $X_{P,B} = XP_B \cap CA$, $X_{P,C} = XP_C \cap AB$,

則 $P, X_{P,A}, X_{P,B}, X_{P,C}$ 共線。

Proof. 考慮 C 上的六折線們 BCP_CXP_AA , CAP_AXP_BB , 由帕斯卡定理即可得 P, $X_{P.A}$, $X_{P.B}$, $X_{P.C}$ 共線。

我們稱上述所共的直線 $PX_{P,A}X_{P,B}X_{P,C}$ 爲 X 關於 $(\triangle ABC, C)$ 的張志煥 P-截線,記爲 $\mathcal{S}_{P}^{C}(X)$ 。定義相當的簡單,我們顯然有

Proposition 2. 給定 $\triangle ABC$, 一點 P 與 $\triangle ABC$ 的外接圓錐曲線 C。我們有

$$\mathfrak{S}_P^{\mathcal{C}}:\mathcal{C}\to TP$$

爲保交比變換。

Proof. 注意到

$$\mathfrak{S}_{P}^{\mathcal{C}} = [X_{P,A} \mapsto PX_{P,A}] \circ [X \mapsto X_{P,A}].$$

Proposition 3. 給定 $\triangle ABC$,一點 P 與 $\triangle ABC$ 的外接圓錐曲線 C。設 D 爲 $\triangle ABC \cup P$ 的外接圓錐曲線,T 爲 C 與 D 的第四個交點,則對於 C 上一點 X, $\mathbf{S}^{C}_{P}(X) \cap \mathcal{D} \in TX$ 。

Proof. 令 $D = \mathcal{S}_{P}^{C}(X) \cap \mathcal{D}$,由於 \mathcal{S}_{P}^{C} 爲保交比變換,我們有

$$T(A, B; C, X) = (A, B; C, X)_{\mathcal{C}} = \mathfrak{S}_{P}^{\mathcal{C}}(A, B; C, X)$$

= $(AP, BP; CP, \mathfrak{S}_{P}^{\mathcal{C}}(X)) = (A, B; C, D)_{\mathcal{D}} = T(A, B; C, D),$

故T, X, D 共線。

Proposition 4. 給定 $\triangle ABC$ 與其外接圓錐曲線 \mathcal{C} 。對於任意兩點 P,Q 與任意一點 $X \in \mathcal{C}$,

- (i) $\mathfrak{S}_{P}^{\mathcal{C}}(X) \cap \mathfrak{S}_{Q}^{\mathcal{C}}(X) \in (ABCPQ),$
- (ii) 若 T 爲 \mathcal{C} 與 (ABCPQ) 的第四個交點,則 $T, X, \mathfrak{S}^{\mathcal{C}}_{P}(X) \cap \mathfrak{S}^{\mathcal{C}}_{Q}(X)$ 共線。

Proof. (i) 令
$$P_A = AP \cap \mathcal{C}$$
, $Q_A = AQ \cap \mathcal{C}$, $Z = \mathfrak{S}_P^{\mathcal{C}}(X) \cap \mathfrak{S}_Q^{\mathcal{C}}(X)$, 我們有
$$P(A, Z; B, C) = (AP \cap BC, XP_A \cap BC; B, C) \stackrel{P_A}{=} (A, X; B, C)_{\mathcal{C}}$$

$$\stackrel{Q_A}{=} (AQ \cap BC, XQ_A \cap BC; B, C) = Q(A, Z; B, C)$$

因此由圓錐曲線基本定理可得 $Z \in (ABCPQ)$ 。

(ii) 由 (i) 及 (3),

$$\mathfrak{S}_{P}^{\mathcal{C}}(X) \cap \mathfrak{S}_{Q}^{\mathcal{C}}(X) = \mathfrak{S}_{P}^{\mathcal{C}}(X) \cap (ABCPQ) \in TX.$$

這邊給一些未來會用到的記號。給定 $\triangle ABC$ 與其外接圓錐曲線 C 及一點 X。

(i) 對於任意兩點 P, Q, 我們記

$$\mathcal{D}_{P,Q} = (ABCPQ).$$

(ii) 對於任意兩點 P, Q, 我們記

$$\mathcal{A}_{P,Q}^{\mathcal{C}}(X) = \mathfrak{B}_{P}^{\mathcal{C}}(X) \cap \mathfrak{B}_{Q}^{\mathcal{C}}(X) \cap \mathcal{D}_{P,Q} \cap (\mathcal{C} \cap \mathcal{D}_{P,Q})X.$$

(iii) 對於任意外接圓錐曲線 T, 我們記

$$\mathcal{L}^{\mathcal{C}}_{\mathcal{D}}(X) = \mathcal{D} \cap (\mathcal{C} \cap \mathcal{D})X.$$

因此,
$$\boldsymbol{\mathcal{L}}_{P,Q}^{\,\mathcal{C}}(X) = \boldsymbol{\mathcal{L}}_{\mathcal{D}_{P,Q}}^{\,\mathcal{C}}(X)$$
。

Proposition 5. 給定三角形 $\triangle ABC$ 與其外接圓錐曲線 C 及 C 上一點 X。令 \mathcal{D} 爲 $\triangle ABC$ 的外接圓錐曲線,則

$$\mathfrak{S}^{\mathcal{C}}_{\bullet}(X): \mathcal{D} \to T\mathcal{L}^{\mathcal{C}}_{\mathcal{D}}(X)$$

爲一保交比變換。

Proof. 因為
$$\mathfrak{S}_{P}^{\mathcal{C}}(X) = \mathfrak{L}_{\mathcal{D}}^{\mathcal{C}}(X)P$$
 °

Proposition 6. 給定三角形 $\triangle ABC$ 與其外接圓錐曲線 C 及 C 上一點 X。令 ℓ 爲任意直線,則

$$\{\mathfrak{S}_{P}^{\mathcal{C}}(X) \mid P \in \ell\}$$

的包絡線爲 $\triangle ABC$ 的内切圓錐曲線,記爲 $\mathcal{B}^{\mathcal{C}}_{\ell}(X)$,且

$$\mathfrak{S}^{\mathcal{C}}_{\bullet}(X): \ell \to T\mathcal{B}^{\mathcal{C}}_{\ell}(X)$$

爲一保交比變換。

Proof. trivial

對於任意不過頂點的直線 \mathcal{L} ,我們知道 $\triangle ABC$ 上的等共軛變換與 $\triangle ABC$ 的外接 圓錐曲線有個一一對應,即 $\varphi \mapsto \varphi(\mathcal{L})$ 。以下簡記 $\varphi(\mathcal{L})$ 爲 \mathcal{L}^{φ} ,特別地,當 $\mathcal{L} = \mathcal{L}_{\infty}$, φ 爲等角共軛變換 $(\cdot)^*$, \mathcal{L}_{∞}^* 爲 $\triangle ABC$ 的外接圓 Ω 。

Proposition 7. 令 φ 爲 $\triangle ABC$ 上的一個等共軛變換, \mathcal{D} 爲 $\triangle ABC$ 的外接圓錐曲線。則對於任意 $X \in \mathcal{L}^{\varphi}$,

$$\mathcal{D}^{\varphi} = \mathfrak{S}_{\mathbf{\mathcal{L}}^{\mathcal{C}}_{\mathcal{D}}(X)^{\varphi}}^{\mathcal{L}^{\varphi}}(X).$$

Proof. $\diamondsuit D = \mathcal{D}^{\varphi} \cap BC, \mathcal{L} = \mathcal{L}^{\mathcal{C}}_{\mathcal{D}}(X)$, \mathbb{N}

$$X(B,C;D,A(XD\cap\mathcal{L}^{\varphi})\cap BC) = T(B,C;X,A) = (B,C;\mathcal{L}_{\bullet},A)_{\mathcal{D}}$$
$$= A(C,B;\mathcal{L}^{\varphi},D) = (B,C;D,A\mathcal{L}^{\varphi}\cap BC),$$

因此 $A{m \ell}^{arphi}, XD, {\mathcal L}^{arphi}$ 共點,故 ${\mathcal D}^{arphi} = {m S}_{{m \ell}^{arphi}}^{{\mathcal L}^{arphi}}(X)$ 。

Corollary 1. 令 φ 爲 $\triangle ABC$ 上的一個等共軛變換,且 $X \in \mathcal{L}^{\varphi}$ 。對於任意點 P,設 $\mathcal{L} = \mathcal{L}^{\mathcal{L}^{\varphi}}_{P,\varphi(P)}(X)$,則

$$P\varphi(P) = \mathfrak{S}_{\mathcal{L}^{\varphi}}^{\mathcal{L}^{\varphi}}(X).$$

Proof. 在 (7) 中取
$$\mathcal{D} = \mathcal{D}_{P,\varphi(P)}$$
 °

Theorem 1 (張志煥截線基本定理). $\Diamond \varphi, \psi \land \triangle ABC$ 上的兩個等共軛變換。設 X $\land \mathcal{L}^{\varphi}$ 和 \mathcal{L}^{ψ} 的第四個交點,P 爲任意一點,則

(i) X, $A\varphi(P) \cap \mathcal{L}^{\varphi}$, $A\psi(P) \cap \mathcal{L}^{\psi}$ 共線。

(ii)
$$\varphi(P)\psi(P) = \mathfrak{B}_{\varphi(P)}^{\mathcal{L}^{\varphi}}(X) = \mathfrak{B}_{\psi(P)}^{\mathcal{L}^{\psi}}(X) \circ$$

Proof. (i) 設 $A\varphi(P)$, $A\psi(P)$ 分別交 \mathcal{L}^{φ} , \mathcal{L}^{ψ} 於 $\varphi(P)_A$, $\psi(P)_A$ 。簡單地觀察到

$$X(A, \varphi(P)_A; B, C) = A(A, \varphi(P)_A; B, C)_{\mathcal{L}^{\varphi}} \stackrel{\varphi}{=} A(\infty_{BC}, P; B, C)$$
$$\stackrel{\psi}{=} A(A, \psi(P)_A; B, C)_{\mathcal{L}^{\psi}} = X(A, \psi(P)_A; B, C).$$

(ii) 設 $X\varphi(P)_A\psi(P)_A$ 交 BC 於 X_A , 我們有

$$X_A \varphi(P) = \mathfrak{S}_{\varphi(P)}^{\mathcal{L}^{\varphi}}(X) = \mathfrak{S}_{\psi(P)}^{\mathcal{L}^{\psi}}(X) = X_A \psi(P),$$

故

$$\varphi(P)\psi(P) = \mathfrak{S}_{\varphi(P)}^{\mathcal{L}^{\varphi}}(X) = \mathfrak{S}_{\psi(P)}^{\mathcal{L}^{\psi}}(X).$$

Example 1 (等共軛對合). 令 φ 爲 $\triangle ABC$ 上的一等共軛變換,則對於任意兩點 P, Q,設 $P\varphi(Q)\cap\varphi(P)Q=R$, $PQ\cap\varphi(P)\varphi(Q)=S$,則 $\varphi(R)=S$ 。

Proof. 定義一等共軛變換 ψ 將 $P\mapsto Q$,考慮 \mathcal{L}^{φ} , \mathcal{L}^{ψ} 的交點 X,則由 (1) 的 (ii)。

$$\mathfrak{S}_{P}^{\mathcal{L}^{\psi}}(X) = P\varphi(Q) = \mathfrak{S}_{\varphi(Q)}^{\mathcal{L}^{\varphi}}(X),$$

$$\mathfrak{S}_{O}^{\mathcal{L}^{\psi}}(X) = \varphi(P)Q = \mathfrak{S}_{\varphi(P)}^{\mathcal{L}^{\varphi}}(X).$$

注意到 $\mathcal{L}^{\mathcal{L}^\psi}_{P,Q}(X)=R=\mathcal{L}^{\mathcal{L}^\varphi}_{\varphi(P),\varphi(Q)}(X)$,因此由 (1),

$$\varphi(R) \in PQ \cap \varphi(P)\varphi(Q) = S.$$

Proposition 8. 令 φ 爲 $\triangle ABC$ 上的等共軛變換, \mathcal{D} 爲 $\triangle ABC$ 的外接圓錐曲線,T 爲 \mathcal{D} 與 \mathcal{L}^{φ} 的第四個交點。則對於任意 $P \in \mathcal{D}$, $TP \cap \mathcal{L}^{\varphi}$, $XP^{\varphi} \cap \mathcal{L}^{\varphi}$, $\mathcal{L}^{\mathcal{C}}_{\mathcal{D}}(X)^{\varphi}$ 共線。

Proof. 令 $\mathbf{Q} = \mathbf{Q}_{\mathcal{D}}^{\mathcal{L}^{\varphi}}(X)$, $Q = TP \cap \mathcal{L}^{\varphi}$, $R = XP^{\varphi} \cap \mathcal{L}^{\varphi}$, 我們知道 $Q \mapsto R$ 爲保交比變換,因此我們只需證明 $Q \mapsto R$ 爲對合變換且對合中心爲 $\mathbf{Q}_{\mathcal{D}}^{\mathcal{C}}(X)^{\varphi}$ 。取 P = A,我們有 Q = A, $R = X(\mathcal{D}^{\varphi} \cap BC) \cap \mathcal{L}^{\varphi}$ 。由 (7),我們知道 $\mathcal{D}^{\varphi} = \mathbf{S}_{\mathbf{Q}^{\varphi}}^{\mathcal{L}^{\varphi}}(X)$,因此 QR 過 \mathbf{Q}^{φ} 。這在 P = B, C 時也是對的,因此 $Q \mapsto R$ 爲對合變換且對合中心爲 $\mathbf{Q}_{\mathcal{D}}^{\mathcal{C}}(X)^{\varphi}$ 。

現在假設 \mathcal{C} 爲 $\triangle ABC$ 的外接圓 $\Omega = \odot(ABC)$,那麼某些張志煥截線就會是一我們平常熟悉的線。

Example 2. 令 O 爲 $\triangle ABC$ 的外心,則對於任意一點 $X \in \Omega$, $\mathfrak{S}_O^{\Omega}(X)$ 爲 X 關於 $\triangle ABC$ 的正交截線 $\mathcal{O}(X)$ 。

Example 3. 令 H 爲 $\triangle ABC$ 的垂心,則對於任意一點 $X \in \Omega$, $\mathfrak{S}_H^{\Omega}(X)$ 爲 X 關於 $\triangle ABC$ 的施坦納線 \mathcal{S}_X 。

Example 4. 令 K 爲 $\triangle ABC$ 的共軛重心,則對於任意一點 $X \in \Omega$, $\mathbf{S}_K^{\Omega}(X)$ 爲 X 關於 $\triangle ABC$ 的三線性極線 \mathbf{t}_X 。

我們簡記 $\mathbf{S}_P^{\Omega}(X)$ 爲 $\mathbf{S}_P(X)$, $\mathbf{c}_D^{\Omega}(X)$ 爲 $\mathbf{c}_D(X)$,爲 X 關於 $\triangle ABC$ 的 P-張志煥 截線。事實上,我們對於 $\mathbf{S}_P(X)$ 的角度有一些刻畫。

Proposition 9. 設 $X \land \triangle ABC$ 的外接圓 Ω 上任意點,則對於任意雨點 P,Q,

$$\measuredangle(\mathfrak{S}_P(X),\mathfrak{S}_Q(X)) + \measuredangle P^*XQ^* = 0^\circ,$$

其中 P^* , Q^* 分別爲 P, Q 關於 $\triangle ABC$ 的等角共軛點。特別地,取 $Q \in BC$ 我們有

$$\angle(\mathfrak{S}_P(X), BC) = \angle AXP^*.$$

Proof. 令 $\mathcal{D} = \mathcal{D}_{P,Q}$, $\ell = \mathcal{D}^{\varphi}$,由 (5),

$$[\mathfrak{S}_P(X) \mapsto XP^*] = [P^* \mapsto XP^*] \circ [P \mapsto P^*] \circ [\mathfrak{S}_P(X) \mapsto P]$$

爲保交比變換。因此由對稱性我們只需證明

$$\angle B \mathbf{\ell} C + \angle \ell_b X \ell_c = 0^{\circ},$$

其中 \pounds = \pounds _D(X), $\ell_b = \ell \cap CA$, $\ell_c = \ell \cap AB$ 。由 (8),我們可以得到 \pounds _B* = $X\ell_b \cap B$ \pounds *, \pounds _C* = $X\ell_c \cap C$ \pounds ∈ Ω ,因此

$$\angle B \mathbf{\mathcal{L}} C = \angle A B \mathbf{\mathcal{L}}^* + \angle \mathbf{\mathcal{L}}^* C A = \angle A \mathbf{\mathcal{L}}^* C \mathbf{\mathcal{L}}^*_B + \angle \mathbf{\mathcal{L}}^* C \mathbf{\mathcal{L}}^*_B A = \angle \mathbf{\mathcal{L}}^* C A \mathbf{\mathcal{L}}^*_B = \angle \ell_c X \ell_b.$$

Remark. 關於特例的敘述有以下的純幾證明,而事實上也可由此推得廣義的情形:

令 $P_A=AP\cap\Omega,\,P_A^*=AP^*\cap\Omega,\,D=AP\cap BC,\,X_{P,A}=XP_A\cap BC$ 。由 $P_AP_A^*\parallel BC$,我們易得 $\triangle X_{P,A}P_AD$ \sim $\triangle AP_A^*X$ 。在 $P_AX_{P,A}$ 上取點 E 使得

 $DE \parallel PX_{PA} = \mathfrak{S}_{P}(X)$,由常見的等角共軛比例 Lemma,我們有

$$\frac{AP^*}{P^*P_A^*} = \frac{PD}{DP_A} = \frac{X_{P,A}E}{EP_A}.$$

因此我們有 $\triangle X_A ED \sim \triangle AP^*X$, 最後由算角度可得

$$\angle AXP^* = \angle EDX_{P,A} = \angle (PX_{P,A}, BC) = \angle (\mathfrak{S}_P(X), BC).$$

以下假設 $\mathcal{L} = \mathcal{L}_{\infty}$ 無窮遠線。我們來看看幾何王子是怎麼計算共圓的吧!

Theorem 2 (a). 令 $\Omega = \mathcal{L}^*$ 爲 $\triangle ABC$ 的外接圓。對於任意等共軛變換 φ ,設 X 爲 \mathcal{L}^{φ} 與 Ω 的第四個交點。對於任意點 P,設 T 爲 \mathcal{L}^{φ} 與 $(ABCP\varphi(P))$ 的第四個交點, P^* , $\varphi(P)^*$ 分別爲 P, $\varphi(P)$ 關於 $\triangle ABC$ 的等角共軛點。則 TX, $P\varphi(P)^*$, $P^*\varphi(P)$, $\odot(P\varphi(P)X)$, $(ABCP\varphi(P))$ 共於一點 $\mathcal{L}_{P,\varphi(P)}^{\mathcal{L}^{\varphi}}$ 。

Proof. 由 (4) 及 (1) 的 (ii), 我們有

$$TX\cap (ABCP\varphi(P))=\mathbf{G}_{P,\varphi(P)}^{\mathcal{L}^{\varphi}}=\mathbf{S}_{P}^{\mathcal{L}^{\varphi}}(X)\cap \mathbf{S}_{\varphi(P)}^{\mathcal{L}^{\varphi}}(X)=P\varphi(P)^{*}\cap P^{*}\varphi(P).$$

因此由 (1) 的 (ii) 及 (9),

$$\angle P\mathcal{L}_{P,\varphi(P)}^{\mathcal{L}^{\varphi}}\varphi(P) = \angle (P\varphi(P)^*, \varphi(P)P^*) = \angle (\mathfrak{S}_{\varphi(P)^*}(X), \mathfrak{S}_{P^*}(X))$$

$$= \angle AX\varphi(P) + \angle PXA = \angle PX\varphi(P),$$

即
$$P, \varphi(P), X, \mathcal{L}_{P,\varphi(P)}^{\mathcal{L}^{\varphi}}$$
 共圓。

上面這個定理我們常用的是以下的敘述。

Theorem 2 (b). 令 $\Omega = \mathcal{L}^*$ 爲 $\triangle ABC$ 的外接圓。對於任意等共軛變換 φ ,設 X 爲 \mathcal{L}^{φ} 與 Ω 的第四個交點。對於任意點 P,設 $\mathcal{L} = P^*\varphi(P) \cap P\varphi(P)^*$,其中 $(\cdot)^*$ 爲等角 共軛變換。則 $P, \varphi(P), X, \mathcal{L}$ 四點共圓。

因此我們有以下推論

Corollary 2. 令 $\Omega = \mathcal{L}^*$ 爲 $\triangle ABC$ 的外接圓。對於任意等角共軛點 P, P^* ,以及外接圓上一點 X,設 $(ABCPP^*)$ 和 $\odot(ABC)$ 的第四個交點爲 T,XT 和 $(ABCPP^*)$ 交於一點 \mathcal{L} 。則 P, P^*, X, \mathcal{L} 四點共圓。

事實上,(4)有如下的推廣:

Proposition 10. 若 X 位於 $\triangle ABC$ 的外接圓錐曲線 \mathcal{C} 上,P 爲 $\triangle ABC$ 與 $\mathfrak{p}_{\mathcal{C}}(\triangle ABC)$ 的透視中心,則 $\mathfrak{S}^{\mathcal{C}}_{\mathcal{P}}(X)$ 爲 X 關於 $\triangle ABC$ 的三線性極線 \mathfrak{t}_{X} 。

Proof. 令 $\triangle P_A P_B P_C$ 爲 P 關於 $\triangle ABC$ 的 C-西瓦三角形,則 $ABP_A C$ 爲 C 上的調和四邊形,因此

$$(B, C; AX \cap BC, \mathfrak{S}_{P}^{\mathcal{C}}(X) \cap BC) \stackrel{X}{=} (B, C; A, P_{A})_{\mathcal{C}} = -1.$$

同理有

$$(C,A;BX\cap CA, \mathbf{S}_{P}^{\mathcal{C}}(X)\cap CA)=(A,B;CX\cap AB,\mathbf{S}_{P}^{\mathcal{C}}(X)\cap AB)=-1,$$

故
$$\mathfrak{S}_{P}^{\mathcal{C}}(X)=\mathfrak{t}_{X}$$
。

Example 5. 令 St 爲三角形 $\triangle ABC$ 的施坦納外接橢圓,則重心 G 爲透視中心,因此 $\mathbf{S}_G^{St}(X)$ 爲 X 關於 $\triangle ABC$ 的三線性極線 \mathbf{t}_X 。

Example 6. 設 \mathcal{L}° 為 \mathcal{L}_∞ 的正交共軛軌跡,則垂心 H 為透視中心,因此 $\mathfrak{S}_H^{\mathcal{L}^\circ}(X)$ 為 X 關於 $\triangle ABC$ 的三線性極線 \mathfrak{t}_X 。

2 配極

接著我們可以來討論和配極有關的一些性質。

Theorem 3. 令 $\Omega = \mathcal{L}^*$ 爲 $\triangle ABC$ 的外接圓,則對於任意等角共軛點 P, P^* ,和一點 $X \in \Omega$,設 Γ 爲以 X 爲圓心的圓,設 $A^{\mathfrak{p}} = \mathfrak{p}_{\Gamma}(BC), B^{\mathfrak{p}} = \mathfrak{p}_{\Gamma}(CA), C^{\mathfrak{p}} = \mathfrak{p}_{\Gamma}(AB)$,則

- (i) $X \in \odot(A^{\mathfrak{p}}B^{\mathfrak{p}}C^{\mathfrak{p}})$
- (ii) $\triangle ABC \cup P \cup P^* \stackrel{-}{\sim} \triangle A^{\mathfrak{p}}B^{\mathfrak{p}}C^{\mathfrak{p}} \cup \mathfrak{p}_{\Gamma}(\mathfrak{S}_{P^*}(X)) \cup \mathfrak{p}_{\Gamma}(\mathfrak{S}_{P}(X))$

Proof. (i) 由算角度我們顯然有

$$\angle B^{\mathfrak{p}}XC^{\mathfrak{p}} = \angle(AC,AB) = \angle CAB = \angle CXB = \angle(A^{\mathfrak{p}}B^{\mathfrak{p}},A^{\mathfrak{p}}C^{\mathfrak{p}}) = \angle B^{\mathfrak{p}}A^{\mathfrak{p}}C^{\mathfrak{p}}$$

(ii) 首先注意到

$$\angle BAC + \angle B^{\mathfrak{p}}A^{\mathfrak{p}}C^{\mathfrak{p}} = 0$$

因此我們顯然有 $\triangle ABC \sim \triangle A^{\mathfrak{p}}B^{\mathfrak{p}}C^{\mathfrak{p}}$

設 $\mathfrak{p}_{\Gamma}(\mathfrak{S}_{P}(X)), \mathfrak{p}_{\Gamma}(\mathfrak{S}_{P^{*}}(X))$ 為 Q, Q^{*} ,則

$$\angle QA^{\mathfrak{p}}B^{\mathfrak{p}} = \angle (\mathfrak{S}_{P}(X) \cap BC)XC = \angle PAC = -\angle P^{*}AB$$

故顯然有

$$\triangle ABC \cup P \cup P^* \stackrel{-}{\sim} \triangle A^{\mathfrak{p}} B^{\mathfrak{p}} C^{\mathfrak{p}} \cup Q^* \cup Q.$$

事實上配極某種程度上也可以保共斯坦納外接橢圓。

Proposition 11. 設 St 爲 $\triangle ABC$ 的斯坦納外接橢圓,則對於 St 上一點 X,設 (X) 爲以 X 爲中心的圓錐曲線,設 $A^{\mathfrak{p}} = \mathfrak{p}_{(X)}(BC), B^{\mathfrak{p}} = \mathfrak{p}_{(X)}(CA), C^{\mathfrak{p}} = \mathfrak{p}_{(X)}(AB)$,則 X 在 $\triangle A^{\mathfrak{p}}B^{\mathfrak{p}}C^{\mathfrak{p}}$ 的斯坦納外接橢圓上。

Proof. 設 St^p 爲 △ $A^pB^pC^p$ 的斯坦納外接橢圓,則

$$A(A, B; C, X)_{\mathcal{S}\mathbf{t}} = (\infty_{BC}, B; C, AX \cap BC)$$

$$\stackrel{\mathfrak{p}_{(X)}}{=} (A^{\mathfrak{p}}X, A^{\mathfrak{p}}C^{\mathfrak{p}}; A^{\mathfrak{p}}B^{\mathfrak{p}}, A^{\mathfrak{p}}\infty_{B^{\mathfrak{p}}C^{\mathfrak{p}}})$$

$$= A^{\mathfrak{p}}(A^{\mathfrak{p}}, B^{\mathfrak{p}}; C^{\mathfrak{p}}, X)_{\mathcal{S}\mathbf{t}^{\mathfrak{p}}}$$

同理可得

$$B(A, B; C, X)_{\mathcal{S}t} = B^{\mathfrak{p}}(A^{\mathfrak{p}}, B^{\mathfrak{p}}; C^{\mathfrak{p}}, X)_{\mathcal{S}t^{\mathfrak{p}}}, C(A, B; C, X)_{\mathcal{S}t} = C^{\mathfrak{p}}(A^{\mathfrak{p}}, B^{\mathfrak{p}}; C^{\mathfrak{p}}, X)_{\mathcal{S}t^{\mathfrak{p}}}$$
因此 $X \in \mathcal{S}t^{\mathfrak{p}}$ 。

Proposition 12. 令 φ 爲 $\triangle ABC$ 上的等截共軛變換, $St = \mathcal{L}^{\varphi}$ 爲 $\triangle ABC$ 的斯坦納外接橢圓,則對於任意點 P,和一點 $X \in St$,設 (X) 爲以 X 爲中心的任意錐線,設 $A^{\mathfrak{p}} = \mathfrak{p}_{(X)}(BC), B^{\mathfrak{p}} = \mathfrak{p}_{(X)}(CA), C^{\mathfrak{p}} = \mathfrak{p}_{(X)}(AB)$,則

$$\mathfrak{p}_{(X)}(\mathfrak{S}_{P}^{\mathcal{S}t}(X)),\mathfrak{p}_{(X)}(\mathfrak{S}_{\varphi(P)}^{\mathcal{S}t}(X))$$

爲 △ $A^{p}B^{p}C^{p}$ 的一對等截共軛點。

$$Proof.$$
 令 $Q = \mathfrak{p}_{(X)}(\mathfrak{S}_{P}^{\mathcal{S}t}(X)), R = \mathfrak{p}_{(X)}(\mathfrak{S}_{\varphi(P)}^{\mathcal{S}t}(X))$,則我們等價要證明
$$A^{\mathfrak{p}}(B^{\mathfrak{p}}, C^{\mathfrak{p}}; A^{\mathfrak{p}}, Q)_{\mathcal{S}t^{\mathfrak{p}}} = A^{\mathfrak{p}}(C^{\mathfrak{p}}, B^{\mathfrak{p}}; A^{\mathfrak{p}}, R)_{\mathcal{S}t^{\mathfrak{p}}}$$

然而這等價於要證明

$$(C,B;AX\cap BC,\mathfrak{B}_{P}^{\mathcal{S}t}(X)\cap BC)=(B,C;AX\cap BC,\mathfrak{B}_{\varphi(P)}^{\mathcal{S}t}(X)\cap BC)$$

但這是顯然的。

Theorem 4. 延續 (12) 的標號,設 $Q = \mathfrak{p}_{(X)}(\mathfrak{S}_P^{St}(X)), R = \mathfrak{p}_{(X)}(\mathfrak{S}_{\varphi(P)}^{St}(X)),$ 设 $\mathcal{L}_{P,\varphi(P)}^{St}(X) = \mathcal{L}, \mathcal{L}_{Q,R}^{St}(X) = \mathcal{L}^{\mathfrak{p}},$ 設 $\mathcal{L}^{\mathfrak{p}}$ 關於 $\triangle A^{\mathfrak{p}}B^{\mathfrak{p}}C^{\mathfrak{p}}$ 的等截共軛點爲 $\mathcal{L}^{\mathfrak{p}'}$,則

$$\frac{P\varphi(\mathbf{\mathcal{L}})}{\varphi(P)\varphi(\mathbf{\mathcal{L}})} = \frac{R\mathbf{\mathcal{L}}^{\mathfrak{p}'}}{Q\mathbf{\mathcal{L}}^{\mathfrak{p}'}}$$

Proof. 設 $\infty_{P\varphi(P)}$ 關於 $\triangle ABC$ 的等截共軛點爲 $T_{\triangle ABC}$, ∞_{QR} 關於 $\triangle A^{\mathsf{p}}B^{\mathsf{p}}C^{\mathsf{p}}$ 的等截共軛點爲 $T_{\triangle A^{\mathsf{p}}B^{\mathsf{p}}C^{\mathsf{p}}}$,則

$$\begin{split} \frac{P\varphi(\mathbf{\mathcal{L}}_{\mathbf{\mathcal{E}}})}{\varphi(P)\varphi(\mathbf{\mathcal{L}}_{\mathbf{\mathcal{E}}})} &= (P,\varphi(P);\varphi(\mathbf{\mathcal{L}}_{\mathbf{\mathcal{E}}}),\infty_{P\varphi(P)}) = A(\varphi(P),P;\mathbf{\mathcal{L}}_{\mathbf{\mathcal{E}}},T_{\triangle ABC})_{(ABCP\varphi(P))} \\ \frac{R\mathbf{\mathcal{L}}_{\mathbf{\mathcal{E}}}^{\mathfrak{p}'}}{Q\mathbf{\mathcal{L}}^{\mathfrak{p}'}} &= (R,Q;\mathbf{\mathcal{L}}^{\mathfrak{p}'},\infty_{RQ}) = A^{\mathfrak{p}}(Q,R;\mathbf{\mathcal{L}}^{\mathfrak{p}},T_{\triangle A^{\mathfrak{p}}B^{\mathfrak{p}}C^{\mathfrak{p}}})_{(A^{\mathfrak{p}}B^{\mathfrak{p}}C^{\mathfrak{p}}QR)} \end{split}$$

注意到我們有

$$\begin{split} Q &= \mathfrak{p}_{(X)}(\mathfrak{S}_{P}^{\mathcal{S}\boldsymbol{t}}(X)), \ R = \mathfrak{p}_{(X)}(\mathfrak{S}_{\varphi(P)}^{\mathcal{S}\boldsymbol{t}}(X)) \\ \boldsymbol{\mathcal{L}}^{\,\mathfrak{p}} &= \mathfrak{p}_{(X)}(\mathfrak{S}_{\varphi(\boldsymbol{\mathcal{L}})}^{\mathcal{S}\boldsymbol{t}}(X)), \ T_{\triangle A^{\mathfrak{p}}B^{\mathfrak{p}}C^{\mathfrak{p}}} = \mathfrak{p}_{(X)}(\mathfrak{S}_{\infty_{P\varphi(P)}}^{\mathcal{S}\boldsymbol{t}}(X)) \end{split}$$

則我們有

$$\frac{R\mathcal{L}^{\mathfrak{p}'}}{Q\mathcal{L}^{\mathfrak{p}'}} = A^{\mathfrak{p}}(Q, R; \mathcal{L}^{\mathfrak{p}}, T_{\triangle A^{\mathfrak{p}}B^{\mathfrak{p}}C^{\mathfrak{p}}}) = (\mathfrak{S}_{P}^{\mathcal{S}t}(X), \mathfrak{S}_{\varphi(P)}^{\mathcal{S}t}(X); \mathfrak{S}_{\varphi(Q)}^{\mathcal{S}t}(X), \mathfrak{S}_{\infty_{P\varphi(P)}}^{\mathcal{S}t}(X))$$

$$= A(P, \varphi(P); \varphi(\mathcal{L}), \infty_{P\varphi(P)})$$

$$= A(\varphi(P), P; \mathcal{L}, \infty_{AT_{\triangle ABC}})$$

$$= A(\varphi(P), P; \mathcal{L}, T_{\triangle ABC}) = \frac{P\varphi(\mathcal{L})}{\varphi(P)\varphi(\mathcal{L})}.$$

Problem 1. $\triangle ABC$ 三角形, $\triangle D'E'F'$ 爲三個旁切圓切點,A' 爲 A 關於外接圓的對鏡點,AI 交 $\odot(ABC)$ 於 $M \neq A$,MA' 交 BC 於 X。 證明: $XI \parallel E'F'$ 。

3 心世界

Problem 2 (幾何毒書會 X_n 馬拉松 P2). X_3, X_4, X_{69}, X_{99} 四點共圓

Proof. 注意到 X_{99} 的三線姓極線爲 X_2X_6 ,且我們知道 X_{69} 爲 X_6 的反補點且在 (ABCOH) 上,因此 $X_{69} = \mathcal{C}_{X_3,X_4}^*(X_{99})$,故由 (2), X_3 , X_4 , X_{69} , X_{99} 四點共圓。

Problem 3 (幾何毒書會 X_n 馬拉松 P5). $X_{69}X_{99}$ 交歐拉線在 X_2 對 X_3 對稱點。

Proof. 注意到我們有 $X_{69} = \mathcal{L}_{\mathcal{H}_{\mathcal{T}}}^{\mathcal{L}^*}(X_{99})$,因此我們算角

$$\angle GX_{99}X_{69} = \angle AX_{99}X_{74} + \angle GX_{99}A$$

$$= \angle (OH, BC) + \angle (BC, \mathfrak{S}_{K}^{\Omega}(X_{99}))$$

$$= \angle (OG, BC) + \angle (BC, GX_{69}) = \angle (OG, GX_{69})$$

即 $\odot(GX_{69}X_{99})$ 和歐拉線相切於 G。設 $X_{69}X_{99}$ 交 OH 於 T,則由上一題我們知道 X_3 , X_4 , X_{69} , X_{99} 四點共圓,故 T 滿足

$$\overline{TG}^2 = \overline{TO} \times \overline{TH} \implies T \in X_2$$
對 X_3 的對稱點

Problem 4 (幾何毒書會 X_n 馬拉松 P12). 三角形 $\triangle ABC$,I 爲内心,O 爲外心,Ge 爲格爾鋼點,設 X_{104} 爲 OI 上無窮遠點的等角共軛點, X_{999} 爲 I, X_{57} 中點,則 Ge, X(104), X(999) 三點共線。

Proof. 設 $X_{104}Ge$ 交 $\odot(ABC)$ 於 X,則我們有 $Ge=\mathbf{G}_{\mathcal{H}_{Fe}}^{\Omega}(X)$,因此由我們有

$$\angle GeXI = \angle AXGe + \angle AXI$$

$$= \angle (OI, BC) + \angle (BC, \mathfrak{S}_I(X)) = \angle (OI, IGe)$$

即 OI 和 ⊙(XGeI) 相切。

另一方面,我們有 X_{56} , Ge, X_{21} 共線,因此

$$\angle X_{65}X_{56}Ge = \angle(OI, \mathfrak{S}_{21}(X))$$

$$= \angle(OI, BC) + \angle(BC, \mathfrak{S}_{X_{21}}(X))$$

$$= \angle AXGe + \angle X_{65}XA = \angle X_{65}XGe$$

因此 X_{56} , Ge, X_{21} , X 四點共圓,且注意到我們有

$$-1 = (I, X_{57}; X_{65}, X_{56}) \implies \overline{X_{999}I}^2 = \overline{X_{999}X_{57}}^2 = \overline{X_{999}X_{56}} \times \overline{X_{999}X_{65}}$$

故 X_{999} 在 $\odot(X_{56}GeX_{21}X)$ 和 $\odot(XGeI)$ 的根軸上,即 $X_{999}\in XGe=GeX_{104}$

Problem 5 (幾何毒書會 X_n 馬拉松 P13). X_7, X_8, X_{21}, X_{99} 四點共圓

Proof. 注意到我們有 $X_{99} \in \mathcal{L}^* \cap \mathcal{L}^{\varphi}$,其中 φ 為等截共軛變換,現在取 $P = X_7$,因此由 (2),我們有

$$X_7, X_8, \mathcal{L}_{X_7, X_8}^{\mathcal{L}^{\varphi}}(X_{99}), X_{99},$$
 四點共圓

且我們注意到 $X_{21} = X_7 X_{56} \cap X_8 X_{55} = \mathcal{L}_{X_7,X_8}^{\mathcal{L}^{\varphi}}(X_{99})$,故得證。

Problem 6. $X_{21}, X_{55}, X_{56}, X_{110}$ 四點共圓。

Proof. 設 φ 爲等截共軛變換,則考慮等共軛 $\psi: (\cdot)^* \circ \varphi \circ (\cdot)^*$,則我們有

$$\psi: X_{55} \mapsto X_{56}$$

設 X 爲 \mathcal{L}^* 和 \mathcal{L}^ψ 的第四個交點,則我們有 $X_{55}X_8\cap X_{56}X_7=X_{21}$ 因此由 (2),

$$X_{55}, X_{56}, X_{21}, X$$
 四點共圓

接著我們證明 $X = X_{110}$ 。

這等價要證明 $\psi(X_{110}) \in \mathcal{L}_{\infty}$ 但注意到

$$\psi: [x:y:z] \mapsto \left[\frac{a^4}{x}: \frac{b^4}{y}: \frac{c^4}{z}\right]$$

且我們有 $X_{110}=\left[\frac{a^2}{b^2-c^2}:\frac{b^2}{c^2-a^2}:\frac{c^2}{a^2-b^2}\right]$,因此

$$\psi(X_{110}) = \left[a^2(b^2 - c^2) : b^2(c^2 - a^2) : c^2(a^2 - b^2)\right]$$

顯然滿足無窮遠線的方程式 x+y+z=0,因此 $X=X_{110}$,故得證。

Problem 7. 設 K_{θ} 爲 Kiepert 雙曲線上角度爲 θ 的點,則對於任意的 θ ,我們都有 $G, K_{\theta}^*, K_{-\theta}^*, X_{110}$ 四點共圓。特別地,我們有 $G, X_{15}, X_{16}, X_{110}$ 四點共圓。

Proof. (純幾) 首先我們知道 X_{110} 的斯坦納線爲 HG,因此由 $\mathcal{S}_H(X_{110})=HG$ 我們知道 $\mathcal{G}^{\Omega}_{\mathcal{H}_k}(X_{110})=G$,並且注意到對於任意的 α ,我們都有 K, K_{α} , $K_{-\alpha}$ 共線和 G, K_{α}^* , $K_{-\alpha}$ 共線,即

$$\mathfrak{S}_{K_{\theta}}(X_{110}) = GK_{-\theta}^*, \, \mathfrak{S}_{K_{-\theta}}(X_{110}) = GK_{\theta}^*$$

因此由算角引理

$$\angle K_{\theta}^* G K_{-\theta}^* = \angle (GK_{\theta}^*, GK_{-\theta}^*) = \angle (\mathfrak{B}_{K_{-\theta}}(X_{110}), \mathfrak{B}_{K_{\theta}}(X_{110})) = \angle K_{\theta}^* X_{110} K_{-\theta}^*.$$

Proof. (重心坐標) 我們只要證明 X_{110} 會被把 $K_{\theta}^* \mapsto K_{-\theta}^*$ 的等共軛變換 φ 打到無窮遠即可,注意到對於所有的 K_{θ} 我們有重心坐標

$$K_{\theta} = \left[\frac{a}{\sin(A+\theta)} : \frac{b}{\sin(B+\theta)} : \frac{c}{\sin(C+\theta)} \right]$$

$$\implies K_{\theta}^* = \left[a\sin(A+\theta) : b\sin(B+\theta) : c\sin(C+\theta) \right]$$

$$\implies \varphi([x:y:z])$$

$$= \left[\frac{a^2\sin(A+\theta)\sin(A-\theta)}{x} : \frac{b^2\sin(B+\theta)\sin(B-\theta)}{y} : \frac{c^2\sin(C+\theta)\sin(C-\theta)}{z} \right]$$

$$= \left[\frac{a^2(\sin^2 A - \sin^2 \theta)}{x} : \frac{b^2(\sin^2 B - \sin^2 \theta)}{y} : \frac{c^2(\sin^2 C - \sin^2 \theta)}{z} \right]$$

代入
$$X_{110}$$
 則我們有 $\sum_{\text{cyc}} (\sin^2 A - \sin^2 \theta) (b^2 - c^2) = 0$ 故得證

Problem 8. 九點圓圓心 N 在 $\mathcal{D}_{N,H}$ 上的切線平行 OKo。

Problem 9. N, Ko, X_{110} 三點共線。

Proof. 注意到 $\mathcal{L}_{\mathcal{D}_{N,H}}(X_{110}) = N$, $\mathcal{L}_{\mathcal{H}_{\mathcal{J}}}(X_{110}) = O$,並且我們有 N 的正交截線垂直 OKo ,因此我們有 OKo 平行 N 在 $\mathcal{D}_{N,H}$ 上的切線,即 $OKo \parallel S_N(X_{110})$,故

$$\angle AX_{110}N = \angle (BC, \mathfrak{S}_{Ko}(X_{110})) = \angle (BC, OKo) = \angle (BC, \mathfrak{S}_{N}(X_{110})) = \angle AX_{110}Ko$$

13