MATH 611 HOMEWORK (DUE 10/16)

HIDENORI SHINOHARA

Exercise. (Problem 16) Given maps $X \to Y \to Z$ such that both $Y \to Z$ and the composition $X \to Z$ are covering spaces, show that $X \to Y$ is a covering space if Z is locally path-connected, and show that this covering space is normal if $X \to Z$ is a normal covering space.

Proof. Let $p: X \to Y, q: Y \to Z$ be given such that q and $q \circ p$ are both covering maps. Let $y_0 \in Y$ be given. It suffices to show that there exists a neighborhood of y_0 that is evenly covered by p. (Hatcher does not require a covering map be surjective.)

Let $z_0 = q(y_0)$. Let U_{z_0} be a locally path-connected neighborhood of z_0 contained in the intersection of the following two neighborhoods:

- A neighborhood of z_0 that is evenly covered by q.
- A neighborhood of z_0 that is evenly covered by $q \circ p$.

Those two neighborhoods of z_0 must exist because q and $q \circ p$ are covering maps. Since Z is locally path-connected, any neighborhood of z_0 contains a path-connected neighborhood of z_0 . Therefore, such U_{z_0} must exist. Moreover, any neighborhood contained in an evenly covered neighborhood is evenly covered. Therefore, U_{z_0} is a path-connected neighborhood of z_0 that is evenly covered by both q and $q \circ p$.

Since U_{z_0} is evenly covered by q and $q \circ p$,

- Let $\coprod_{\alpha} U_{x_{\alpha}} = (q \circ p)^{-1}(U_{z_0})$ where $q \circ p$ maps each $U_{x_{\alpha}}$ into U_{z_0} homeomorphically.
- Let $\coprod_{\beta}^{\alpha} U_{y_{\beta}}^{\alpha} = q^{-1}(U_{z_0})$ where q maps each $U_{y_{\beta}}$ into U_{z_0} homeomorphically.

Draw a figure.

Since $z_0 = q(y_0)$ and q is an covering map, there exists U_{y_β} such that $y_0 \in U_{y_\beta}$. For simplicity, we will call it U_{y_0} . In other words, U_{y_0} is a neighborhood of y_0 such that q is a homeomorphism between U_{y_0} and U_{z_0} .

We claim that U_{y_0} is a neighborhood of y_0 that is evenly covered by p by showing that there exists a subset I of the index set such that $p^{-1}(U_{y_0}) = \prod_{\alpha \in I} U_{x_\alpha}$.

Show this!

Show that p is a homeomorphism between $U_{x_{\alpha}}$ and U_{y_0} . Let $\alpha \in I$. Then $U_{x_{\alpha}} \subset p^{-1}(U_{y_0})$. Then $p(U_{x_{\alpha}}) \subset U_{y_0}$.

Exercise. (Problem 18) For a path-connected, locally path-connected, and semilocally simply-connected space X, call a path-connected covering space $X \to X$ abelian if it is normal and has abelian deck transformation group. Show that X has an abelian covering space that is a covering space of every other abelian covering space of X, and that such a 'universal' abelian covering space is unique up to isomorphism. Describe this covering space explicitly for $X = S^1 \vee S^1$ and $X = S^1 \vee S^1 \vee S^1$.

Proof. We will consider the commutator subgroup $H = [\pi_1(X, x_0), \pi_1(X, x_0)] = \{[a, b] \mid a, b \in \pi_1(X, x_0)\}$ of $\pi_1(X, x_0)$. Since H is a subgroup of $\pi_1(X, x_0)$ and X is path-connected, locally path connected, and semilocally simply connected, there exists a path-connected covering space $p: (\tilde{X}, \tilde{x_0}) \to (X, x_0)$ such that $p_*(\pi_1(\tilde{X}, \tilde{x_0})) = H$ by Theorem 1.38.

By Proposition 1.39(b), G(X) is isomorphic to the quotient N(H)/H.

- Since H is the commutator subgroup, H is a normal subgroup of $\pi_1(X, x_0)$. Thus $N(H) = \pi_1(X, x_0)$. Moreover, Proposition 1.39(a) asserts that \tilde{X} is normal because $H = p_*(\pi_1(\tilde{X}, \tilde{x_0}))$ is normal.
- Since H is the commutator subgroup of $\pi_1(X, x_0) = N(H), N(H)/H$ is abelian.

Therefore, \tilde{X} is an abelian covering space of X.

- Show that \tilde{X} is the 'universal' abelian covering space.
- Show uniqueness.
- What is the hypothesis?
 - -X is a path-connected, locally path-connected, semilocally simply-connected space.
- What is the conclusion?
 - There exists a normal covering space of $X p : \tilde{X} \to X$ such that $G(\tilde{X})$ is abelian.
 - -X has an abelian covering space that is a covering space of every other abelian covering space of X.
 - A universal abelian covering space is unique up to isomorphism.
 - Find the universal covering space of $S^1 \vee S^1$ and $S^1 \vee S^1 \vee S^1$.
- Introduce suitable notations.
 - $-H = p_*(\pi_1(X, x_0)).$
- Separate the various parts of the hypothesis.
- Find the connection between the hypothesis and the conclusion.
 - "X is a path-connected, locally path-connected, semilocally simply-connected space." This condition sounds a lot like Theorem 1.38 on P.67. By using theorem 1.38, we can associate some group to each covering map.
 - " \dot{X} is a normal covering space of X." By Proposition 1.39 on P.71, \dot{X} is normal if and only if H is a normal subgroup of $\pi_1(X, x_0)$.
 - $-G(\tilde{X})$ is abelian. By Proposition 1.39 on P.71, $G(\tilde{X})$ is isomorphic to the quotient $\pi_1(X, x_0)/H$ because \tilde{X} is normal. Thus $\pi_1(X, x_0)/H$ is abelian.
- Have you seen it before?
 - This might be similar to constructing the universal covering space.
- Look at the conclusion! And try to think of a familiar theorem having the same or a similar conclusion.
 - Showing uniqueness up to isomorphism sounds like the universal covering space theorem.
- Keep only a part of the hypothesis, drop the other part; is the conclusion still valid?
- Could you derive something useful from the hypothesis?
- Could you think of another hypothesis from which you could easily derive the conclusion?

• Could you change the hypothesis, or the conclusion, or both if necessary, so that the new hypothesis and the new conclusion are nearer to each other?

• Did you use the whole hypothesis?

Exercise. (Problem 19) Use the preceding problem to show that a closed orientable surface M_g of genus g has a connected normal covering space with deck transformation group isomorphic to \mathbb{Z}^n (the product of N copies of \mathbb{Z}) if and only if $n \leq 2g$. For n = 3 and $g \geq 3$, describe such a covering space explicitly as a subspace of \mathbb{R}^3 with translations of \mathbb{R}^3 as deck transformations.

Proof. Suppose $n \leq 2g$. Then $\pi_1(M_g) = \langle a_1, \cdots, a_{2g} \mid [a_1, a_2] \cdots [a_{2g-1}, a_{2g}] \rangle$. Let H be the subgroup of $\pi_1(M_g)$ generated by a_1, \cdots, a_{2g-n} and the set $\{[a_i, a_j] \mid i \neq j\}$. Since H is a subgroup of $\pi_1(M_g)$, there exists a covering space $p: \tilde{M}_g \to M_g$ by Theorem 1.38 such that $p_*(\pi_1(\tilde{M}_g)) = H$.

Prove that H is a normal subgroup of $\pi_1(M_q)$.

Therefore, by Proposition 1.39(a), \tilde{M}_g is normal.

By Proposition 1.39(b), $G(\tilde{M}_g)$ is isomorphic to the quotient N(H)/H. Since H is normal, $N(H) = \pi_1(M_g)$. Therefore, $G(\tilde{M}_g)$ is isomorphic to $\pi_1(M_g)/H$ where H contains all commutators of $\pi_1(M_g)$. Thus $G(\tilde{M}_g)$ is abelian, so \tilde{M}_g is an abelian covering space.

Moreover,

$$G(\tilde{M}_g) = \pi_1(M_g)/H$$

$$= a_1, \dots, a_{2g} \mid a_1, \dots, a_{2g-n}, \forall i, j, [a_i, a_j]$$

$$= a_{2g-n+1}, \dots, a_{2g} \mid \forall i, j, [a_i, a_j]$$

$$\cong \mathbb{Z}^n.$$

Finish the rest of the problem.

- List examples. n = 1, 2, g = 1 and n = 1, g = 2 are done. Try others.
- What is the hypothesis? M_q is a closed orientable surface M_q of genus g.
- What is the conclusion? M_g has a connected normal covering space with deck transformation group isomorphic to \mathbb{Z}^n if and only if $n \leq 2g$.
- Separate the various parts of the hypothesis.

Closed orientable surface? I don't know what to do with it. Can I just assume that this means $M_g = (S^1 \times S^1) \vee \cdots \vee (S^1 \times S^1)$?

- Find the connection between the hypothesis and the conclusion.
 - The fundamental group of M_g is generated by 2g elements with no relations. If we abelianize the fundamental group of M_g , we obtain \mathbb{Z}^{2g} .
- Look at the conclusion! And try to think of a familiar theorem having the same or a similar conclusion.
 - The previous problem shows the existence of an abelian covering space, and a normal covering space with deck transformation group isomorphic to \mathbb{Z}^n is also abelian.
- Keep only a part of the hypothesis, drop the other part; is the conclusion still valid?

- Could you derive something useful from the hypothesis?
- Could you think of another hypothesis from which you could easily derive the conclusion?
 - If g = 1, then this problem is easy. For n = 2, consider the xy plane, and for n = 1, consider the infinite chain of squares.

- Could you change the hypothesis, or the conclusion, or both if necessary, so that the new hypothesis and the new conclusion are nearer to each other?
- Did you use the whole hypothesis?

Exercise. (Problem 20) Construct non-normal covering spaces of the Klein bottle by a Klein bottle and by a torus.

Proof. Figure 1 is the idea that I have for the first part. But I don't know how to show that there exists no deck transformation with that permutation.

FIGURE 1. Problem 20 (Klein)

FIGURE 2. Problem 20 (Torus)