Solutions to Quiz # 5

1. (I suggest first drawing a number line showing a=0, b=4, and the locations of the midpoints \tilde{x}_i .) Here n=4 so $\Delta x=1$ and $\tilde{x}_1=1/2$, $\tilde{x}_2=3/2$, $\tilde{x}_3=5/2$, $\tilde{x}_4=7/2$. Thus

$$\begin{split} M_4 &= \Delta x \left(f(\tilde{x}_1) + f(\tilde{x}_2) + f(\tilde{x}_3) + f(\tilde{x}_4) \right) \\ &= \frac{1}{2(1/2) + \cos(\pi/2)} + \frac{1}{2(3/2) + \cos(3\pi/2)} + \frac{1}{2(5/2) + \cos(5\pi/2)} + \frac{1}{2(7/2) + \cos(7\pi/2)} \\ &= \frac{1}{1+0} + \frac{1}{3+0} + \frac{1}{5+0} + \frac{1}{7+0} = \frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} = \frac{176}{105} \end{split}$$

We have used the fact that $\cos \theta = 0$ if θ is an odd multiple of $\pi/2$.

2. T_3 is an underestimate.

3. (a)

$$\int_0^8 \frac{1}{\sqrt[3]{x}} \, dx = \lim_{t \to 0^+} \int_t^8 \frac{1}{\sqrt[3]{x}} \, dx$$

3. (b)

$$\int_0^8 \frac{1}{\sqrt[3]{x}} dx = \lim_{t \to 0^+} \int_t^8 x^{-1/3} dx = \lim_{t \to 0^+} \left[\frac{3}{2} x^{2/3} \right]_t^8 = \frac{3}{2} \lim_{t \to 0^+} \left[4 - t^{2/3} \right] = \frac{3}{2} \left[4 - 0 \right] = 6$$

4. Use $u = x^3$:

$$\int_{1}^{\infty} x^{2} e^{-x^{3}} dx = \lim_{t \to \infty} \int_{1}^{t} x^{2} e^{-x^{3}} dx = \lim_{t \to \infty} \int_{1}^{t^{3}} e^{-u} \frac{du}{3} = \frac{1}{3} \lim_{t \to \infty} \left[-e^{-u} \right]_{1}^{t^{3}} = \frac{1}{3} \lim_{t \to \infty} \left[-e^{-t^{3}} + e^{-1} \right] = \frac{1}{3e}$$