Дубовицкий Н. А. Вариант 5

ГИСТОГРАММА РАСПРЕДЕЛЕНИЯ					
Ин	тервал		Кол-во	Норм.частота	Меньше или равно
[0.2649)			
[0.1480	
[0.1170	
[0.7947 ;	1.0597)	95	0.0950	0.5690
[1.0597 ;	1.3246)	86	0.0860	0.6550
[1.3246 ;	1.5895)	59	0.0590	0.7140
[1.5895 ;	1.8544)	51	0.0510	0.7650
[1.8544 ;	2.1193)	53	0.0530	0.8180
[2.1193 ;	2.3842)	36	0.0360	0.8540
[2.3842 ;	2.6492)	28	0.0280	0.8820
[2.6492 ;	2.9141)	24	0.0240	0.9060
[2.9141 ;	3.1790)	19	0.0190	0.9250
[3.1790 ;	3.4439)	17	0.0170	0.9420
[3.4439 ;	3.7088)	7	0.0070	0.9490
[3.7088 ;	3.9737)	9	0.0090	0.9580
[3.9737 ;	4.2387)	10	0.0100	0.9680
[4.2387 ;	4.5036)	5	0.0050	0.9730
[4.5036 ;	4.7685)	2	0.0020	0.9750
[4.7685 ;	5.0334)	5	0.0050	0.9800
[5.0334 ;	5.2983)	6	0.0060	0.9860
[5.2983 ;	5.5632)	1	0.0010	0.9870
[5.5632 ;	5.8281)	3	0.0030	0.9900
[6.0931)			0.9910
[6.0931 ;	6.3580)	3	0.0030	0.9940
[6.3580 ;	6.6229)	1	0.0010	0.9950

СТАТИСТИЧЕСКИЕ КРИТЕРИИ

Критерий Колмогорова:

D = 0.02209 (D+=0.02209, D-=0.01201)

Критическое значение (α=0.05): 0.04301

Результат: не отвергаем НО

Сущность метода Марсальи и Брея (или *полярного метода Бокса-Маллера*) заключается в получении нормально распределённых случайных величин из двух независимых равномерных случайных чисел U_1 и U_2 , сгенерированных на интервале [0,1).

В отличие от исходного метода Бокса-Маллера, который использует вычисления тригонометрических функций, метод Марсальи и Брея основан на **полярных координатах** и позволяет избежать дорогостоящих операций sin и cos, что делает его более быстрым и численно устойчивым.

Алгоритм состоит в следующем:

- 1. Генерируются два независимых случайных числа $V_1, V_2 \in (-1,1)$.
- 2. Вычисляется $S=V_1^2+V_2^2$. Если $S\geq 1$ или S=0, пары V_1,V_2 отбрасываются и процесс повторяется.
- 3. После получения пары, удовлетворяющей условию S < 1, вычисляются:

$$Z_1 = V_1 \sqrt{\frac{-2\ln S}{S}}, Z_2 = V_2 \sqrt{\frac{-2\ln S}{S}},$$

где $Z_1, Z_2 \sim N(0,1)$.

4. Для получения нормального распределения $N(\mu,\sigma^2)$ выполняется линейное преобразование:

$$X = \mu + \sigma Z$$
.

Таким образом, метод Марсальи и Брея является **усовершенствованным вариантом метода Бокса–Маллера**, позволяющим эффективно и точно генерировать последовательности случайных величин с нормальным законом распределения без использования тригонометрических функций.