

Agenda

- Problem Statement & Framework(s) used
- Dataset
 - Datasets used & distribution
 - Data Augmentation
- Model setup
- Model Evaluation and results
- Model Deployment

Problem statement

- Imagine a scenario where a state-of-the-art AI system automatically monitors and identifies individuals not wearing masks in real-time.
- This technology can enhance public safety measures, streamline enforcement efforts, and contribute to healthier communities.
- By leveraging advanced Deep learning techniques and robust neural networks architectures, this project aims to develop an automated solution for mask detection using computer vision.

Frameworks used

After version 2.11, TF don't support GPUs on windows, use Linux instead

05

Dataset (datasets used & distribution)

4 data sets were used:

MaskNet dataset (133,782 images)

Face Mask Lite (20,000 images)

Real-time-face-mask-detection (11,042 images)

Face Mask Detection ~12K Images Dataset (11,792)

Train

5400

Total images:

176,616

Validation and test

5482

Dataset Distribution

Dataset (Data Augmentation)

- rescale=1./255,
- rotation_range=12,
- width_shift_range=0.1,
- height_shift_range=0.1,
- horizontal_flip=True,
- brightness_range=[0.8, 1.4],
- shear_range=0.2,
- channel_shift_range=0.1

Model Setup

ResNet50V2 pretrained architecture

Batch size : 32

Optimizer : Adam

Learning rate : 0.001

Loss function : binary cross entropy

Early stopping : patience set to 5 (val_loss)

Epochs: 40

Avg pooling layer

128 neuron layer

Drop out (0.5)

Output layer for binary classification

Model Evaluation

	Accuracy	Loss
Train	0.9993	0.0026
Validation	0.9619	0.1490
Test	0.9775	0.0676

Model Deployment

Thank You!