# An adversary method for quantum communication complexity

**QuIC-meets** 

Mathieu Brandeho

#### Motivation



 $\Sigma$ : an alphabet

X,Y : subsets of the set  $\Sigma^{\mathrm{n}}$ 

 $x\in X,y\in Y$ 

 $f: X \times Y \to Z$ 

 $\mathrm{QCC}(f)$  : the minimum number of qbits needed to compute f

#### Motivation



Σ : an alphabet

X,Y : subsets of the set  $\Sigma^{\mathsf{n}}$ 

 $x\in X,y\in Y$ 

 $f: X \times Y \to Z$ 

 $\mathrm{QCC}(f)$  : the minimum number of qbits needed to generate  $\Psi(x,y)$ 

#### How we construct our new lower bound method?

We use a lower bound method of another model.

**Adversary method Query model** 

Quantum communication model

Protocols  ${\mathcal P}$ 

(communication cost QCC)

Reduction

Quantum query model

Query algorithm  ${\cal A}$ 

(query cost Q)

Reduction with this property

Adversary method

$$\mathrm{QCC}(\mathcal{P}) \geq \mathrm{Q}(R(\mathcal{P}))$$
  $\mathrm{Q}(\mathcal{A}) \geq \mathrm{Adv}(\mathcal{A})$ 

$$Q(A) \ge Adv(A$$

 $QCC(\mathcal{P}) \geq Adv(R(\mathcal{P}))$ 

### Can we construct the reduction R?

Between classical models: Yes

Between quantum models: I don't know

## Communication model and protocol



A **protocol** *P* is defined by a set of functions

$$ig\{m_iig\}_{i=0}^L$$

Such that

 $m_{2k+1}$  only depends of  $\emph{x}$  and  $\emph{previous messages}$ 

 $m_{2k+2}$  only depends of  $\emph{y}$  and  $\emph{previous messages}$ 

Communication cost

$$ext{CC}(\mathcal{P}) = \sum_{i=1}^L |m_i|$$

# Query model and query algorithm



Projection functions

$$i: \Sigma^n o \Sigma \ x \mapsto x_i$$

A **query algorithm** *A* is defined by a set of functions

$$\{i_k\}_{k=1}^L$$

Such that each function only depends of x and previous queries

Query cost  $R(\mathcal{A}) = L$ 

## Looking for similarities

#### Communication model

A **protocol** *P* is defined by a set of functions

$$ig\{m_iig\}_{i=0}^L$$

Such that

 $m_{2k+1}$  only depends of  $\emph{x}$  and  $\emph{previous messages}$ 

 $m_{2k+2}$  only depends of  $\emph{y}$  and  $\emph{previous messages}$ 

Communication cost

$$ext{CC}(\mathcal{P}) = \sum_{i=1}^L |m_i|$$

#### Query model

A **query algorithm** *A* is defined by a set of functions

$$\{i_k\}_{k=1}^L$$

Such that

each function only depends of x and previous queries

Query cost

$$R(\mathcal{A}) = L$$

#### Generalization of the oracle

We precise which functions we can query to the oracle

$$\Pi = \{\text{All projection functions}\}$$

$$\mathcal{F}_X = \{f: X o \Sigma\}$$

$$\mathcal{F}_Y = \{f: Y o \Sigma\}$$

$$\mathcal{F}_{X imes Y}=\mathcal{F}_X \uplus \mathcal{F}_Y$$







Generalized oracle

# Equivalence



Communication model

Generalized query model

# Proof: communication to query

Communication

cost

Simulate a message  $\,m:X o \Sigma^k\,$ 



Query

cost



# Proof: query to communication

Simulate a query  $f: X imes Y o \Sigma$ 



## Extend to the equivalence to randomized models

 $\Omega$  : Shared randomness

 $R_A, R_B$  : Private randomness







## Extend the equivalence to quantum models?



# Summary



# Adapt the Adversary method to generalized oracle

Adversary method

Reminder

$$\operatorname{Adv}(f) = \max_{\Gamma,u}\operatorname{tr}([\Gamma \circ uu^*]F)$$

 $\Pi = \{All \text{ projection functions}\}\$ 

$$F(z,z')=1-\delta_{f(z),f(z')}$$

$$orall i \in \Pi, \quad \Gamma \circ \Delta_i \leq Id \pm \Gamma$$

 $F(z,z')=1-\delta_{f(z),f(z')}$  u is a unit vector  $orall i\in\Pi,\quad \Gamma\circ\Delta_i\leq Id\pm\Gamma$  where  $\Delta_i(z,z')=\delta_{i(z),i(z')}$ 

$$\overline{\operatorname{Adv}}\!(f) = \max_{\Gamma,u}\operatorname{tr}(\lceil\Gamma\circ uu^*
ceil F)$$

$$F(z,z')=1-\delta_{f(z),f(z')}$$
  $u$  is a unit vector  $orall m\in \mathcal{F}_{X imes Y}, \quad \Gamma\circ\Delta_m\leq Id\pm\Gamma$  where  $\Delta_m(z,z')=\delta_{m(z),m(z')}$ 

## Summary

