Escuela Profesional de Ciencia de la Computación

Comparación de GCD

Juan Miguel Ravelo Jove
Junior Gomez Contreras
Kevin Salazar Torres
Sergio Arcos Ponce
Jorge Alfredo Tito Ccahuaya

Índice general

1.	Alg	oritmo de Dijkstra	6
	1.1.	Definición	6
	1.2.	Implementación	8
		1.2.1. Implementación basica:	8
		1.2.2. Seguimiento del algoritmo:	9
	1.3.	Implementación modificada	13
		1.3.1. Seguimiento del codigo	15
2.	Alge	oritmo de Euclides clasico	17
	2.1.	Definición	17
	2.2.	Algoritmo	17
	2.3.	Seguimiento del codigo	18
3.	Alge	oritmo Binario de Euclides	20
	3.1.	Definición	20
	3.2.	Implementación	21
	3.3.	Seguimiento del algoritmo	23
4.	Alge	oritmo Euclides Extendido	25
	4.1.	Definición	25
		4.1.1. Fundamentos	26
	4.2.	Implementación	26
	4.3.	Seguimiento del algoritmo	28

Índice general 3

5.	Alg	oritmo Lehmer GCD	29
	5.1.	Algoritmo	29
	5.2.	Implementación	30
	5.3.	Seguimiento del algoritmo	36
6.	Con	mparación de algoritmos	37
	6.1.	Tiempo de ejecución	37
		6.1.1. Dijkstra	37
		6.1.2. Euclides Clasico	38
		6.1.3. Binario Euclides	38
		6.1.4. Euclides extendido	39
		6.1.5. Lehmer GCD	39
	6.2.	Convergencia	41
	6.3.	Acumulación de variables	42
7.	Con	nclusiones	44
Bi	hliog	grafía	45

Índice de figuras

6.1.	Tiempo de ejecución de 32-Bits	40
6.2.	Tiempo de ejecución de 16-Bits	40
6.3.	Tiempo de ejecución de 8-Bits	41
6.4.	Nro de Iteraciones en 32, 16 y 8 bits	42
6.5.	Acumulación de variable de todos los algoritmos	43

Índice de cuadros

1.1.	Seguimiento del algoritmo
1.2.	Iteraciones en Dijkstra-Euclides
1.3.	Comparación de tiempos de ejecución
2.1.	Seguimiento del codigo
3.1.	Seguimiento del algoritmo
6.1.	Eficiencia en ejecución
6.2.	Eficiencia de ejecución
6.3.	Eficiencia de ejecución
6.4.	Eficiencia de ejecución
6.5.	Eficiencia de ejecución
6.6.	Promedio del tiempo de ejecución
6.7.	Numero de iteraciones por algoritmos
6.8.	Acumulación de variables por algoritmos

Algoritmo de Dijkstra

1.1. Definición

Dijkstra tiene el siguiente algoritmo:

$$GCD(m,n) = \begin{cases} m & \text{Si } m = n \\ GCD(m-n,n) & \text{Si } m > n \\ GCD(m,n-m) & \text{Si } m < n \end{cases}$$

Se propone los siguientes puntos [1]:

1. ¿Por qué?
$$d = GCD(m, n) = GCD(m - n, n)$$

2. Si
$$d\mid m\;,\; d\mid n\to\; d\mid (m-n)$$

Para el punto 2:

$$d = GCD(m, n) \rightarrow d \mid m \& d \mid n$$

 $if \ m > n :$
 $m = dq_1 \& n = dq_2$
 $\frac{m}{n} = \frac{q_1}{q_2} \rightarrow q_1 > q_2$

Restando m-n:

$$m - n = d(q_1 - q_2) \rightarrow d \mid (m - n)$$
 (1.1)

Dado que tenemos:

$$d \mid (m-n) \& d \mid n \to d \mid GCD(m-n,n)$$
 (1.2)

Para el punto 1 necesitamos tener la siguiente estructura:

$$\bullet \ a \mid b \& b \mid a \rightarrow a = b$$

Partiendo de la divisibilidad:

$$d = GCD(m, n) \rightarrow d \mid m \& d \mid n$$

$$s = GCD(m - n, n) \rightarrow s \mid (m - n) \quad s \mid n$$

$$m - n = sq_3$$

$$n = sq_4$$

$$m = s(q_3 + q_4)$$

$$m = sq_5 \rightarrow s \mid m$$

Dado que:

$$s \mid m \& s \mid n \to s \mid GCD(m, n) \tag{1.3}$$

Usando el concepto de la combinación lineal:

$$d = GCD(m, n) \rightarrow d \mid m \& d \mid n$$

$$d = mx + ny$$

$$s = GCD(m - n, n) \rightarrow s = (m - n)x + ny$$

$$s = mx + n(y - x) \rightarrow s \mid m \& s \mid n$$

$$s \mid GCD(m, n)$$

$$(1.4)$$

Para hacer uso de la esta propiedad:

$$a \mid b \& b \mid a \rightarrow a = b$$

Usaremos (2) y (4):

$$d = GCD(m, n) \& s = GCD(m - n, n)$$
$$d \mid GCD(m - n, n)$$
$$s \mid GCD(m, n)$$
$$d \mid s \& s \mid d \rightarrow d = s$$

Por lo tanto:

$$GCD(m-n,n) = GCD(m,n)$$
(1.5)

Para el caso de m < n por extención se repiten los pasos anteriores y obtenemos:

$$GCD(m, n - m) = GCD(m, n)$$
(1.6)

1.2. Implementación

1.2.1. Implementación basica:

Es tomada directamente del algoritmo de Dijkstra sin modificación:

```
#include < NTL/ZZ.h>
   #include < omp.h>
2
   #include < cstdio >
   using namespace std;
   using namespace NTL;
   typedef ZZ nat;
   nat mcd(nat &m,nat &n){
        if(m==n)
            return m;
        else if(m>n)
10
            return mcd(m-n,n);
11
        else if(n>m)
            return mcd(m,n-m);
13
14
   int main(){
```

```
printf("- Simply count elapsed time (CountTime) -\n");
        const double startTime = omp_get_wtime();
17
        nat a,b,c;
18
        a=4294967295;
19
        b=3294967290;
20
        int k,q;
21
        SetBit(a,31); //Seteamos a 32
22
        SetBit(b,31);
23
        k=NumBits(a); //Verificamos los bits usados
        q=NumBits(b);
25
        c=mcd(a,b);
26
        cout << "mcd: " << c << endl;</pre>
        cout << "los bits de a: " << k << endl
28
        cout << "los bits de b: " << q << endl;</pre>
29
        cout << "los bytes de a: " << size of (a) << endl;</pre>
30
        cout << "los bytes de b: " << size of (b) << endl;</pre>
31
        const double endTime = omp_get_wtime();
        printf("Duration = %lf seconds\n", (endTime-startTime));
33
34
        return 0;
35
    }
36
```

1.2.2. Seguimiento del algoritmo:

En la siguiente tabla vemos las restas sucesivas entre myn, donde i es el numero de iteraciones hechas.

i	m	n	GCD(m,n)
1	4294967295	3294967290	GCD(m,n)
2	1000000005	3294967290	GCD(m,n)
3	1000000005	2294967285	GCD(m,n)
4	1000000005	1294967280	GCD(m,n)
5	1000000005	294967275	GCD(m,n)

Sigue en la página siguiente.

i	m	n	GCD(m,n)
6	705032730	294967275	GCD(m,n)
7	410065455	294967275	GCD(m,n)
8	115098180	294967275	GCD(m,n)
9	115098180	179869095	GCD(m,n)
10	115098180	64770915	GCD(m,n)
11	50327265	64770915	GCD(m,n)
12	50327265	14443650	GCD(m,n)
13	35883615	14443650	GCD(m,n)
14	21439965	14443650	GCD(m,n)
15	6996315	14443650	GCD(m,n)
16	6996315	7447335	GCD(m,n)
17	6996315	451020	GCD(m,n)
18	6545295	451020	GCD(m,n)
19	6094275	451020	GCD(m,n)
20	5643255	451020	GCD(m,n)
21	5192235	451020	GCD(m,n)
22	4741215	451020	GCD(m,n)
23	4290195	451020	GCD(m,n)
24	3839175	451020	GCD(m,n)
25	3388155	451020	GCD(m,n)
26	2937135	451020	GCD(m,n)
27	2486115	451020	GCD(m,n)
28	2035095	451020	GCD(m,n)
29	1584075	451020	GCD(m,n)
30	1133055	451020	GCD(m,n)
31	682035	451020	GCD(m,n)
32	231015	451020	GCD(m,n)
33	231015	220005	GCD(m,n)
34	11010	220005	GCD(m,n)
35	11010	208995	GCD(m,n)

Sigue en la página siguiente.

i	m	n	GCD(m,n)
36	11010	197985	GCD(m,n)
37	11010	186975	GCD(m,n)
38	11010	175965	GCD(m,n)
39	11010	164955	GCD(m,n)
40	11010	153945	GCD(m,n)
41	11010	142935	GCD(m,n)
42	11010	131925	GCD(m,n)
43	11010	120915	GCD(m,n)
44	11010	109905	GCD(m,n)
45	11010	98895	GCD(m,n)
46	11010	87885	GCD(m,n)
47	11010	76875	GCD(m,n)
48	11010	65865	GCD(m,n)
49	11010	54855	GCD(m,n)
50	11010	43845	GCD(m,n)
51	11010	32835	GCD(m,n)
52	11010	21825	GCD(m,n)
53	11010	10815	GCD(m,n)
54	195	10815	GCD(m,n)
55	195	10620	GCD(m,n)
56	195	10425	GCD(m,n)
57	195	10230	GCD(m,n)
58	195	10035	GCD(m,n)
59	195	9840	GCD(m,n)
60	195	9645	GCD(m,n)
61	195	9450	GCD(m,n)
62	195	9255	GCD(m,n)
63	195	9060	GCD(m,n)
64	195	8865	GCD(m,n)
65	195	8670	GCD(m,n)

Sigue en la página siguiente.

i	m	n	GCD(m,n)	
66	195	8475	GCD(m,n)	
67	195	8280	GCD(m,n)	
68	195	8085	GCD(m,n)	
69	195	7890	GCD(m,n)	
70	195	7695	GCD(m,n)	
71	195	7500	GCD(m,n)	
72	195	7305	GCD(m,n)	
73	195	7110	GCD(m,n)	
74	195	6915	GCD(m,n)	
75	195	6720	GCD(m,n)	
76	195	6525	GCD(m,n)	
77	195	6330	GCD(m,n)	
78	195	6135	GCD(m,n)	
79	195	5940	GCD(m,n)	
80	195	5745	GCD(m,n)	
81	195	5550	GCD(m,n)	
82	195	5355	GCD(m,n)	
83	195	5160	GCD(m,n)	
84	195	4965	GCD(m,n)	
85	195	4770	GCD(m,n)	
86	195	4575	GCD(m,n)	
87	195	4380	GCD(m,n)	
88	195	4185	GCD(m,n)	
89	195	3990	GCD(m,n)	
90	195	3795	GCD(m,n)	
91	195	3600	GCD(m,n)	
92	195	3405	GCD(m,n)	
93	195	3210	GCD(m,n)	
94	195	3015	GCD(m,n)	
95	195	2820	GCD(m,n)	
	C' 1 /			

Sigue en la página siguiente.

i	m	n	GCD(m,n)
96	195	2625	GCD(m,n)
97	195	2430	GCD(m,n)
98	195	2235	GCD(m,n)
99	195	2040	GCD(m,n)
100	195	1845	GCD(m,n)
101	195	1650	GCD(m,n)
102	195	1455	GCD(m,n)
103	195	1260	GCD(m,n)
104	195	1065	GCD(m,n)
105	195	870	GCD(m,n)
106	195	675	GCD(m,n)
107	195	480	GCD(m,n)
108	195	285	GCD(m,n)
109	195	90	GCD(m,n)
110	105	90	GCD(m,n)
111	15	90	GCD(m,n)
112	15	75	GCD(m,n)
113	15	60	GCD(m,n)
114	15	45	GCD(m,n)
115	15	30	GCD(m,n)
116	15	15	GCD(m,n)

Cuadro 1.1: Seguimiento del algoritmo

1.3. Implementación modificada

Del seguimiento del algoritmo, como son restas sucesivas, podemos reducir tales restas, con *modulos* sucesivos, siendo esto un Dijkstra-Euclides.

```
#include < NTL/ZZ.h>
```

[#]include < omp.h>

```
#include < cstdio >
   using namespace std;
   using namespace NTL;
   typedef ZZ nat;
   nat mcd(nat &m,nat &n){
        if(m==0 | | n==0)
             return m+n;
        else if(m>n)
10
             return mcd(m %n,n);
        else if(n>m)
12
             return mcd(m,n%m);
13
   }
14
   int main(){
15
        printf("- Simply count elapsed time (CountTime) -\n");
16
        const double startTime = omp_get_wtime();
17
        nat a,b,c;
18
        a=4294967295;
19
        b = 3294967290;
20
        int k,q;
21
        SetBit(a,31); //Seteamos a 32
22
        SetBit(b,31);
23
        k=NumBits(a); //Verificamos los bits usados
24
        q=NumBits(b);
25
        c=mcd(a,b);
26
        cout << "mcd: " << c << endl;
27
        cout << "los bits de a: " << k << endl;</pre>
28
        cout << "los bits de b: " << q << endl;</pre>
29
        cout << "los bytes de a: " << size of (a) << endl;</pre>
        cout << "los bytes de b: " << size of (b) << endl;</pre>
31
        const double endTime = omp_get_wtime();
32
        printf("Duration = %lf seconds\n", (endTime-startTime));
        printf("-----
34
        return 0;
35
   }
36
```

1.3.1. Seguimiento del codigo

i	m	n
1	4294967295	3294967290
2	1000000005	3294967290
3	1000000005	294967275
4	115098180	294967275
5	115098180	64770915
6	50327265	64770915
7	50327265	14443650
8	6996315	14443650
9	6996315	451020
10	231015	451020
11	231015	220005
12	11010	220005
13	11010	10815
14	195	10815
15	195	90
16	15	90
17	15	0

Cuadro 1.2: Iteraciones en Dijkstra-Euclides

En ambos casos se obtiene el mismo GCD(m,n)=15, comparando de solo de estas dos implementaciones el tiempo de ejecución: Relativamente el modificado es mejor que el Dijkstra normal, por lo que los datos del Dijkstra-Euclides se usaran para comparar con los otros algoritmos.

i	Modificado	Dijkstra
1	$210\mu s$	208μ
2	$208\mu s$	215μ
3	$237\mu s$	240μ
4	$208\mu s$	154μ
5	$235\mu s$	216μ
6	$209\mu s$	219μ
7	$206\mu s$	256μ
8	$235\mu s$	251μ
9	$203\mu s$	237μ
10	$206\mu s$	267μ

Cuadro 1.3: Comparación de tiempos de ejecución

Algoritmo de Euclides clasico

2.1. Definición

El algoritmo de Euclides es un método antiguo y eficaz para calcular el máximo común divisor (MCD). Fue originalmente descrito por Euclides en su obra Elementos. El algoritmo de Euclides se basa en la aplicación sucesiva del siguiente lema: Sean $a,b,q,r\in Z$ tales que: a=bq+r con b>0 y 0r< b. Entonces mcd(a,b)=mcd(b,r)

2.2. Algoritmo

Recordemos que mod(a,b) denota el resto de la división de a por b. En este algoritmo, en cada paso r = mod(rn+1,rn) donde rn+1=c es el dividendo actual y rn=d es el divisor actual. Luego se actualiza rn+1=d y d=r. El proceso continúa mientras d no se anule.

Datos: $a, b \in \mathbb{Z} / b \neq 0$

Salida: mcd(a, b)

$$c = |a|, d = |b|;$$

$$while \ d \neq 0 \ do$$

$$r = mod(c, d);$$

$$c = d;$$

$$d = r;$$

$$return \ mcd(a, b) = |c|;$$

2.3. Seguimiento del codigo

i	a	b
1	4294967295	3294967290
2	3294967290	1000000005
3	1000000005	294967275
4	294967275	115098180
5	115098180	64770915
6	64770915	50327265
7	50327265	14443650
8	14443650	6996315
9	6996315	451020
10	451020	231015
11	231015	220005
12	220005	11010
13	11010	10815
14	10815	195
15	195	90
16	90	15
17	15	0

Cuadro 2.1: Seguimiento del codigo

```
ZZ gcd(ZZ &a, ZZ &b){
    if (b == 0)
        return a;
    a %=b;
```

```
return gcd(b, a);

6 }
```

Algoritmo Binario de Euclides

3.1. Definición

El algoritmo binario de euclides opera con la misma idea , de cambiar mcd(a,b) por el mcd de dos numeros eventualmente pequeños , solo que esta vez solo restaremos y dividimos.

Este algoritmo opera con los siguientes teoremas:

- Si a,b son pares, mcd(a,b) = 2mcd(a/2,b/2).
- Si a es par y b impar o viceversa, mcd(a,b) = mcd(a/2,b) o mcd(a,b/2).
- Si a,b son impares, mcd(a,b) = mcd(|a-b|/2,r), donde r = mina, b;

```
Algoritmo binario para el mcd

Datos: a, b e Z, a >= 0, b > 0

Salida: mcd (a, b)

g = 1;

while a mod 2 = 0 And b mod 2 = 0 do

a = quo (a, 2), b = quo (b, 2);

g = 2 << g // removiendo potencias de 2

while a = 0 do // Ahora, a o b es impar

if a mod 2 = 0 then

a = quo (a, 2)
```

```
else if b \mod 2 = 0 then
              b = quo (b, 2)
12
          else; // ambos impares
13
              t = quo (| a b | , 2 );
14
              if a >= b then ; // reemplazamos m x { a, b } con
15
                 quo (| a - b | , 2 )
                 a = t
16
              else
17
                 b = t
18
       return g*b;
19
```

3.2. Implementación

```
#include < NTL/ZZ.h>
   #include < omp.h>
2
   #include < cmath >
   using namespace std;
   using namespace NTL;
   using nat = ZZ;
7
   nat dividir2(nat);
   nat multiplicar2(nat);
10
   nat GCD(nat &, nat &);
11
   int main(){
12
       const double startTime = omp_get_wtime();
13
      nat a, b,c;
14
       a = 768454923;
15
      b = 542167814;
16
      SetBit(a,63);
17
      SetBit(b,63);
18
      c = GCD(a,b);
19
       cout << c << endl;</pre>
20
```

```
const double endTime = omp_get_wtime();
       printf("Duration = %lf seconds\n", (endTime - startTime));
22
       return 0;
23
24
   nat dividir2(nat a){
25
       return a >> 1;
26
   }
27
   nat multiplicar2(nat a){
28
       return a << 1;
29
   }
30
   nat GCD(nat &a, nat &b){
31
      nat result, t,g;
       result = 0,g = 1,t = 0;
33
       while(( a \% 2 == 0) && (b \% 2 == 0)){
34
          a = dividir2(a);
35
          b = dividir2(b);
36
          g = multiplicar2(g);
37
       }
38
       while( a != 0 ){
39
          if (a \% 2 == 0)
             a = dividir2(a);
41
          else{
42
              if(b \% 2 == 0)
43
                 b = dividir2(b);
44
              else{
45
                 t = dividir2( abs(a-b) );
46
                 if (a >= b)
47
                    a = t;
48
                 else
49
                    b = t;
50
              }
51
          }
52
       }
53
       result = g * b;
54
       return result;
55
```

6

3.3. Seguimiento del algoritmo

i	a	b	t
1	4294967295	3294967290	0
2	4294967295	1647483645	0
3	1323741825	1647483645	1323741825
4	1323741825	161870910	161870910
5	1323741825	80935455	161870910
6	621403185	80935455	621403185
7	270233865	80935455	270233865
8	94649205	80935455	94649205
9	6856875	80935455	6856875
10	6856875	37039290	37039290
11	6856875	18519645	37039290
12	6856875	5831385	5831385
13	512745	5831385	512745
14	512745	2659320	2659320
15	512745	1329660	2659320
16	512745	664830	2659320
17	512745	332415	2659320
18	90165	332415	90165
19	90165	121125	121125
20	90165	15480	15480
21	90165	7740	15480
22	90165	3870	15480
23	90165	1935	15480
24	44115	1935	44115
25	21090	1935	21090

Sigue en la página siguiente.

i	a	b	t
26	10545	1935	21090
27	4305	1935	4305
28	1185	1935	1185
29	1185	375	375
30	405	375	405
31	15	375	15
32	15	180	180
33	15	90	180
34	15	45	180
35	15	15	15

Cuadro 3.1: Seguimiento del algoritmo

Algoritmo Euclides Extendido

4.1. Definición

El algoritmo de Euclides extendido permite, además de encontrar un máximo común divisor de dos números enteros $a\,y\,b$, expresarlo como la mínima combinación lineal de esos números, es decir, encontrar números enteros $s\,y\,t$ tales que mcd(a,b)=as+bt. Esto se generaliza también hacia cualquier dominio euclideano.

```
//Entrada: Valores a y b pertenecientes a un dominio euclideo
//Salida: Un MCD de a y b, y los valores s y t tales q

mcd(a,b)=as+bt;

r0=a,r1=b,s0=1,t0=0,t1=1,i=0;

Mientras ri !=0

divida ri-1 entre ri para obtener qi y ri+1

si+1 =si-1 - qi*si

ti+1 =ti-1 - qi*ti

i=i+1

Resultado ri-1 es el MCD de a y b

se expresa ri-1=a*si-1 + b*ti-1
```

4.1.1. Fundamentos

- Usar el algoritmo tradicional de Euclides. En cada paso, en lugar de a dividido entre b es q y de resto r se escribe la ecuación a = bq + r
- Se despeja el resto de cada ecuación.
- Se sustituye el resto de la última ecuación en la penúltima, y la penúltima en la antepenúltima y así sucesivamente hasta llegar a la primera ecuación, y en todo paso se expresa cada resto como combinación lineal.

4.2. Implementación

```
nat mcd(nat r1, nat r2){
     nat s1, s2, t1, t2;
      s1=1; s2=0; t1=0; t2=1;
     nat s,r,t,q;
      s=0, r=0, t=0, q=0;
      while (r2>0) {
        q=r1/r2;
        r=r1-q*r2;
        r1=r2;
9
10
        r2=r;
        s=s1-q*s2;
11
        s1=s2;
12
        s2=s;
13
        t=t1-q*t2;
14
        t1=t2;
15
        t2=t;
16
17
      return r1;}
```

4.3. Seguimiento del algoritmo

t2	1	-1	4	-13	30	-43	73	-262	597	-9217	9814	-19031	371403	-390434	21845273	-44080980	286331153
		'	7	, ,	w.	7-	2	-2	5	76-	86	-19	371	-39(2184	-4408	
t1	0	П	-1	4	-13	30	-43	73	-262	262	-9217	9814	-19031	371403	-390434	21845273	-44080980
t	0	-1	4	-13	30	-43	73	-262	262	-9217	9814	-19031	371403	-390434	21845273	-44080980	286331153
s2	0	1	-3	10	-23	33	-56	201	-458	7071	-7529	14600	-284929	299529	-16759024	33817577	-219664486
s1	П	0	1	-3	10	-23	33	-56	201	-458	7071	-7529	14600	-284929	299529	-16759024	33817577
w	0	1	-3	10	-23	33	-56	201	-458	7071	-7529	14600	-284929	299529	-16759024	33817577	-219664486
ď	0		3	က	2	Н		က	2	15	Н	\vdash	19	Н	55	2	9
ľ	0	1000000005	294967275	115098180	64770915	50327265	14443650	6996315	451020	231015	220005	11010	10815	195	06	15	0
r2	3294967290	10000000005	294967275	115098180	64770915	50327265	14443650	6996315	451020	231015	220005	11010	10815	195	06	15	0
r1	4294967295	3294967290	10000000005	294967275	115098180	64770915	50327265	14443650	6996315	451020	231015	220005	11010	10815	195	06	15

Algoritmo Lehmer GCD

5.1. Algoritmo

Primero es importante definir una base sobre la cual se trabajará, tomaremos 1000 como base. Esto significa que los dígitos de los números a tratar serán agrupados en conjuntos de 3; por ejemplo, si tenemos 657343812 y 431056703 se formarán grupos de (657)(343)(812) y (431)(056)(703), y se iterará sobre el grupo más significativo, sin importar que este grupo tenga 3, 2, ó 1 elemento, estos valores se almacenan en x₋ e y₋, pero nos aseguraremos que estas iteraciones se den siempre y cuando la cantidad de grupos restantes sea la misma (linea 1.3), si no x₋ y y₋ intercalarán valores por largo tiempo. Así cada vez se trabaja sobre un x e y más pequeño, a su vez estos estarán disminuyendo a lo largo de la ejecución, cuando uno de ellos sea menor o igual a la base se podrá proceder con otro método de cálculo del gcd.[2]

INPUT: Dos enteros positivos(x \geq y) que sean >= a la base.

OUTPUT: gcd(x, y)

- 1 While $y \ge b$ do the following:
 - 1.1 Set x_- , y_- to be the high-order digit of x, y, respectively (y_- could be 0)
 - 1.2 $A \leftarrow 1, B \leftarrow 0, C \leftarrow 0, D \leftarrow 1$
 - 1.3 If $(grupos_x == grupos_y)$ esto se agregó al algoritmo del presente libro
 - 1.4 While $(y_{-} + C)! = 0$ and $(y_{-} + D)! = 0$ do the following:

```
\circ \ q \leftarrow (x_{-} + A)/(y_{-} + C) \ , \ q_{-} \leftarrow (x_{-} + B)/(y_{-} + D)
\circ \ \text{if} \ q = q_{-} \ \text{then go to step 1.5}
\circ \ t \leftarrow A - qC, A \leftarrow C, C \leftarrow t, t \leftarrow B - qD, B \leftarrow D, D \leftarrow t
\circ \ t \leftarrow x_{-} - qy_{-}, x_{-} \leftarrow y_{-}, y_{-} \leftarrow t
1.5 If B = 0, then T \leftarrow xmody, \ x \leftarrow y, y \leftarrow T
\bullet \ \text{otherwise}, \ T \leftarrow Ax + By, \ u \leftarrow Cx + Dy, \ x \leftarrow T, \ y \leftarrow u
2 Compute v = gcd(x, y) using Algorithm 2.104
3 Return(v)
```

5.2. Implementación

```
#include <iostream>
#include <limits.h>

#define MAX_POTENCIAS 3 // para generar un arreglo de
    potencias de la base

using namespace std;
using Tipo = unsigned int;

void lehmer_gcd(Tipo x, Tipo y);
```

```
Tipo dijkstra_euclides( Tipo a,
                                        Tipo b);
11
   int main()
12
13
        double segs;
14
15
        Tipo x = 657343812;
16
        Tipo y = 431056703;
17
        cout << "Aplicando Lehmer, gcd(" << x << ',' << y << ")\n"
19
        lehmer_gcd(x,y);
20
21
        int dj;
^{22}
        clock_t t_ini = clock();
23
        dj = dijkstra_euclides(x,y);
24
        clock_t t_fin = clock();
25
        cout << dj << " en " << (double)(t_fin - t_ini)*1000.0 /</pre>
26
           CLOCKS_PER_SEC;
        return 0;
27
   }
28
29
   Tipo *genera_array_base(Tipo base);
30
   Tipo digitos_base(Tipo num, Tipo arr[], Tipo &grupos);
31
32
   void lehmer_gcd(Tipo x, Tipo y)
33
34
        clock_t t_ini = clock();
35
36
        Tipo x_{-}, y_{-}, a, b, c, d;
37
        Tipo q, q_, t, tt, u;
        Tipo grupos_x;
39
        Tipo grupos_y;
40
        Tipo base = 1000; // determina un arreglo de potencias de
41
           la base.
```

```
Tipo length_bits = sizeof(int)*CHAR_BIT;
        Tipo *arr_potencias = genera_array_base(base); // se crea
43
           un array con las potencias de la base.
                                              // si es base 2 se
44
                                                 trata de una forma
                                                 especial (moviendo
                                                 bits)
        while(y >= base){
45
            x_ = digitos_base(x, arr_potencias, grupos_x ); // x_
47
               tendr los d gitos m s significativos que unidos
                ser n <= a la base.
                                    // la funci n usa b squeda
48
                                       binaria en el array de
                                       potencias de la base
            y_ = digitos_base(y, arr_potencias, grupos_y);
49
            a = 1; b = 0; c = 0; d = 1;
51
            if(grupos_x == grupos_y){ //necesario pues en la
52
               siguiente vuelta hay que asegurar que x e y tengan
               la misma cantidad d cifras
                while ((y_+c) != 0) \&\& ((y_+d) != 0) 
53
                     q = (x_+a) / (y_+c);
54
                     q_{-} = (x_{-}+b)/(y_{-}+d);
55
                     if (q != q_{-}){
56
                         break;
57
                     }
58
                     t=a-q*c;
59
                     a = c;
60
                     c = t;
61
                     t = b - q*d;
                     b = d;
63
                     d = t;
64
                     t = x_{-} - q*y_{-};
65
                     x_{-} = y_{-};
66
```

```
y_{-} = t;
                 }
68
            }
69
             if (b == 0){
70
                 tt = x \%y;
71
                 x = y;
72
                 y = tt;
73
            }
74
            else{
75
                 tt = a*x + b*y;
76
                 u = c*x + d*y;
77
                 x = tt;
78
                 y = u;
79
            }
80
        }
81
82
        clock_t t_fin = clock();
84
        cout << "Lehmer redujo a gcd(" << x << ',' << y << ") en "
85
        double segs = (double)(t_fin - t_ini) / CLOCKS_PER_SEC;
86
        cout << segs * 1000.0 << " milisegundos. \n" << '\n';
87
88
        cout << "Aplicando euclides(dijkstra): gcd(" << x << ','</pre>
89
           << y << ") = ";
90
        t_ini = clock();
91
        Tipo v = dijkstra_euclides(x,y);
        t_fin = clock();
93
        cout << v << '\n';
94
        segs += (double)(t_fin - t_ini) / CLOCKS_PER_SEC;
        cout << "\nTiempo total:" << segs * 1000.0 << "</pre>
96
           milisegundos" << '\n';
   }
97
98
```

```
Tipo *genera_array_base(Tipo base)
100
        //repetir el primer y ltimo
                                         elemento para
101
        // retornar lo deseado en la busq. binaria
102
                 se agregan dos elementos m s
103
        Tipo *arr = new Tipo[MAX_POTENCIAS+2];
104
105
        arr[0] = base;
106
        Tipo potencia = 1;
        for(Tipo i = 1; i != MAX_POTENCIAS+1; i++){
108
             potencia *= base;
109
             arr[i] = potencia;
110
        }
111
        arr[MAX_POTENCIAS+1] = potencia;
112
113
        return arr;
114
    }
115
116
    Tipo b_binaria(Tipo num, Tipo arr[], Tipo low, Tipo high); //
117
       devuelve el valor de la
                                                              //
118
                                                                 potencia
                                                                  \leq num
                                                                  dentro
                                                                  de arr
    Tipo digitos_base(Tipo num, Tipo arr[], Tipo &grupos)
119
120
        grupos = b_binaria(num, arr, 0, MAX_POTENCIAS+2 -1);
        if (grupos == 0)
122
             grupos = 1;
123
        else
             if (grupos == MAX_POTENCIAS+1 )
125
                 grupos = MAX_POTENCIAS;
126
        return num / arr [grupos];
127
    }
128
```

```
Tipo b_binaria(Tipo x, Tipo arr[], Tipo low, Tipo high)
129
130
         Tipo medio;
131
         if (high > low)
132
             medio= (high-low)/2 + low;
133
         else
134
             medio = (low-high)/2 + low;
135
         if(arr[medio] == x \mid\mid (low > high))
136
             return (low-1); //medio == low, asi retorna la
                 potencia menor de la base
         else{
138
             if (arr[medio] < x)</pre>
139
                  return b_binaria(x,arr,medio+1, high);
140
             else
141
                  return b_binaria(x,arr,low,medio-1);
142
         }
143
144
    Tipo dijkstra_euclides( Tipo a,
                                          Tipo b){
145
         if(a==0 | | b==0)
146
             return a+b;
         else if(a>b){
148
             a\%=b;
149
             return dijkstra_euclides(a,b);
150
         }
151
         else if(b>a){
152
             b \%=a;
153
             return dijkstra_euclides(a,b);
154
         }
155
    }
156
```

5.3. Seguimiento del algoritmo

-b	\vdash		T		\vdash	1	6		33	\vdash	\vdash		-		2		\vdash	2		3	2	
ď	Н		1		Н	∞	6		Н	2	\vdash		Н		2		9	2		2	က	
p	\vdash		2	2	-3		П	6-		\vdash	\vdash	3		-4		11		1	-2		\vdash	
ပ	0	Н		7	2		0			0	0	-2		က		∞		0	\vdash		0	
q	0	П	-1	7	2		0	1		0	0	-		3		-4		0	П		0	
в	П	0		\vdash	7		П	0		П	\vdash	_		-2		3		1	0		\vdash	
y_	431		226		205	21	21		15	11	10		133		58		17	23		6	2	
×	299		431		226	205	204		21	21	11		191		133		28	22		23	23	
grupos_y	2						2			2	2							1			1	
grupos_x	2						2			2	2							1			1	
y	431056703						21517515			111111959	10405556							23830			7893	151
×	657343812						204769594			21517515	111111959							55553			23830	7893

Comparación de algoritmos

6.1. Tiempo de ejecución

6.1.1. Dijkstra

	32b	16b	8b
1	$210\mu s$	$67\mu s$	$123\mu s$
2	$208\mu s$	$149\mu s$	$66\mu s$
3	$237\mu s$	$63\mu s$	$66\mu s$
4	$208\mu s$	$51\mu s$	$49\mu s$
5	$235\mu s$	$106\mu s$	$57\mu s$
6	$209\mu s$	$51\mu s$	$62\mu s$
7	$206\mu s$	$74\mu s$	$70\mu s$
8	$235\mu s$	$46\mu s$	$141\mu s$
9	$203\mu s$	$50\mu s$	$47\mu s$
10	$206\mu s$	$47\mu s$	$57\mu s$

Cuadro 6.1: Eficiencia en ejecución

6.1.2. Euclides Clasico

	32b	16b	8b
1	$195\mu s$	$193\mu s$	$228\mu s$
2	$1981\mu s$	$271\mu s$	$231\mu s$
3	$587\mu s$	$596\mu s$	$226\mu s$
4	$213\mu s$	$210\mu s$	$223\mu s$
5	$621\mu s$	$601\mu s$	$225\mu s$
6	$218\mu s$	$213\mu s$	$229\mu s$
7	$214\mu s$	$186\mu s$	$217\mu s$
8	$552\mu s$	$219\mu s$	$210\mu s$
9	$550\mu s$	$205\mu s$	$211\mu s$
10	$561\mu s$	$213\mu s$	$219\mu s$

Cuadro 6.2: Eficiencia de ejecución

6.1.3. Binario Euclides

	32b	16b	8b
1	$232\mu s$	$604\mu s$	$220\mu s$
2	$582\mu s$	$572\mu s$	$224\mu s$
3	$644 \mu s$	$608\mu s$	$576\mu s$
4	$224\mu s$	$212\mu s$	$220\mu s$
5	$228\mu s$	$225\mu s$	$608\mu s$
6	$203\mu s$	$217\mu s$	$219\mu s$
7	$229\mu s$	$211\mu s$	$619\mu s$
8	$228\mu s$	$220\mu s$	$694\mu s$
9	$206\mu s$	$218\mu s$	$612\mu s$
10	$579\mu s$	$567\mu s$	$218\mu s$

Cuadro 6.3: Eficiencia de ejecución

6.1.4. Euclides extendido

	32b	16b	8b
1	$195\mu s$	$180\mu s$	$234\mu s$
2	$167\mu s$	$145\mu s$	$168\mu s$
3	$157\mu s$	$147\mu s$	$178\mu s$
4	$205\mu s$	$175\mu s$	$157\mu s$
5	$169\mu s$	$228\mu s$	$148\mu s$
6	$163\mu s$	$146\mu s$	$167\mu s$
7	$172\mu s$	$154\mu s$	$175\mu s$
8	$191\mu s$	$182\mu s$	$190\mu s$
9	$172\mu s$	$178\mu s$	$175\mu s$
10	$168\mu s$	$163\mu s$	$171\mu s$

Cuadro 6.4: Eficiencia de ejecución

6.1.5. Lehmer GCD

	32b	16b	8b
1	$642\mu s$	$484\mu s$	$440\mu s$
2	$1077\mu s$	$964\mu s$	$530\mu s$
3	$1135\mu s$	$461\mu s$	$537\mu s$
4	$624\mu s$	$803\mu s$	$557\mu s$
5	$640\mu s$	$467\mu s$	$453\mu s$
6	$676\mu s$	$465\mu s$	$449\mu s$
7	$696\mu s$	$491\mu s$	$948\mu s$
8	$621\mu s$	$474\mu s$	$2261\mu s$
9	$609\mu s$	$468\mu s$	$441\mu s$
10	$1168\mu s$	$456\mu s$	$447\mu s$

Cuadro 6.5: Eficiencia de ejecución

Figura 6.1: Tiempo de ejecución de 32-Bits

Figura 6.2: Tiempo de ejecución de 16-Bits

Figura 6.3: Tiempo de ejecución de 8-Bits

	dijkstra	clasico	binario	extendido	lehmer
8-bits	$73.8\mu s$	$221.9\mu s$	$421\mu s$	$176.2 \mu s$	$706.3 \mu s$
16-bits	$70.4\mu s$	$290.7 \mu s$	$365.4\mu s$	$169.8 \mu s$	$553.3\mu s$
32-bits	$215.7\mu s$	$569.2\mu s$	$335.5\mu s$	$175.9 \mu s$	$788.8 \mu s$

Cuadro 6.6: Promedio del tiempo de ejecución

6.2. Convergencia

	32b	16b	8b
Dijkstra	17	8	8
E. Clasico	17	8	8
E. Binario	36	21	12
E. Extendido	17	8	8
Lehmer	24	24	24

Cuadro 6.7: Numero de iteraciones por algoritmos

Figura 6.4: Nro de Iteraciones en 32, 16 y 8 bits

6.3. Acumulación de variables

	32b	16b	8b
Dijkstra	50	50	50
E. Clasico	44	44	44
E. Binario	5	5	5
E. Extendido	10	10	10
Lehmer	23	23	23

Cuadro 6.8: Acumulación de variables por algoritmos

Figura 6.5: Acumulación de variable de todos los algoritmos

Conclusiones

Tiempo de ejecución

- El algoritmo de *Lehmer* tiende a un tiempo de ejecución de $500\mu s$, para cualquier cantidad de bits.
- El tiempo de ejecución del resto de algortimos es directamente proporcional al número de bits.
- El algoritmo de *Euclides Binario* presenta mayor inestabilidad(*picos en el gra-fico*) en el tiempo de ejecución.

Número de iteraciones

- EL algoritmo de Dijkstra(sin modificar) tiene el mayor número de iteraciones.
- El algoritmo de *Lehmer* sus iteraciones son independientes del número de bits.
- El resto de algoritmos son directamente proporcionales al número de bits.

Acumulación de variables

- Los algoritmos son independientes en cuanto a la acumulación de varibles.
- La mayor cantidad de variables esta reflejado en el algoritmo de Dijkstra.
- La menor cantidad de variables esta en el Euclides Binario.

Bibliografía

- [1] Haroon Altarawneh. A comparison of several greatest common divisor (gcd) algorithms. *International Journal of Computer Applications* (09758887), 26(5), 2011.
- [2] Alfred J Menezes, Paul C Van Oorschot, y Scott A Vanstone. *Handbook of applied cryptography*. CRC press, 1996.