

DDA2001: Introduction to Data Science

Lecture 5: Random Variable

Zicheng Wang

Recap: 1 - (Discrete) Random Variable

and Probability Distributions

- Toss a coin three times and count the number of heads.
- The sample space is

```
S = \{(t, t, t), (t, t, h), (t, h, t), (h, t, t), (t, h, h), (h, t, h), (h, h, t), (h, h, h)\}
```

- Lex X count the number of heads. Thus if s = (t, t, h) occurs then X(s) = 1.
- X is called a random variable as it takes a numerical value that depends on the outcome of an experiment.

- Toss a coin three times and count the number of heads.
- The sample space is

$$S = \{(t, t, t), (t, t, h), (t, h, t), (h, t, t), (t, h, h), (h, t, h), (h, h, t), (h, h, h)\}$$

- Lex X count the number of heads. Thus if s = (t, t, h) occurs then X(s) = 1.
- X is called a random variable as it takes a numerical value that depends on the outcome of an experiment.

A map from sample space to real numbers

Probability Distributions

- The probability distribution of a random variable X is a description of the probabilities associated with the possible values of X.
- For discrete random variable, the distribution is just a list of values, e.g., {0.2,0.5,0.3}.

Probability Distributions

- The probability distribution of a random variable X is a description of the probabilities associated with the possible values of X.
- For discrete random variable, the distribution is just a list of values, e.g., {0.2,0.5,0.3}.

Probability Mass Function

• For a discrete random variable X with possible values $x_1, x_2, ..., x_n$. A probability mass function $f(\cdot)$ is a function such that:

- Toss a coin three times and count the number of heads.
- The sample space is

```
S = \{(t, t, t), (t, t, h), (t, h, t), (h, t, t), (t, h, h), (h, t, h), (h, h, t), (h, h, h)\}
```

- Lex X count the number of heads. Thus if s = (t, t, h) occurs then X(s) = 1.
- What is the pmf for $X(f, f_X, P_X)$?

- Toss a coin three times and count the number of heads.
- Step 1: Figure out the range for *X*

- Toss a coin three times and count the number of heads.
- Step 1: Figure out the range for *X*
 - o {0, 1, 2, 3}

- Toss a coin three times and count the number of heads.
- Step 1: Figure out the range for X \circ $\{0, 1, 2, 3\}$
- Step 2: What are the events $\{X=0\}, \{X=1\}, \cdots$

- Toss a coin three times and count the number of heads.
- Step 1: Figure out the range for $X \circ \{0, 1, 2, 3\}$
- Step 2: What are the events $\{X = 0\}, \{X = 1\}, \dots$ • $\{X = 0\} = \{(t, t, t)\}, \{X = 1\} = \{(t, t, h), (t, h, t), (h, t, t)\} \dots$

- Toss a coin three times and count the number of heads.
- Step 1: Figure out the range for $X \circ \{0, 1, 2, 3\}$
- Step 2: What are the events $\{X = 0\}, \{X = 1\}, \dots$ • $\{X = 0\} = \{(t, t, t)\}, \{X = 1\} = \{(t, t, h), (t, h, t), (h, t, t)\} \dots$
- Step 3: Figure out $P(X = 0), P(X = 1), \cdots$

- Toss a coin three times and count the number of heads.
- Step 1: Figure out the range for X o {0, 1, 2, 3}
- Step 2: What are the events $\{X=0\}, \{X=1\}, \cdots$ $(X = 0) = \{(t, t, t)\}, \{X = 1\} = \{(t, t, h), (t, h, t), (h, t, t)\} \cdots$
- Step 3: Figure out $P(X = 0), P(X = 1), \cdots$

$$P(X = 0) = P(\{(t, t, t)\}) = \frac{1}{8}, \dots$$

- Toss a coin three times and count the number of heads.
- Step 1: Figure out the range for $X \circ \{0, 1, 2, 3\}$
- Step 2: What are the events $\{X = 0\}, \{X = 1\}, \dots$ • $\{X = 0\} = \{(t, t, t)\}, \{X = 1\} = \{(t, t, h), (t, h, t), (h, t, t)\} \dots$
- Step 3: Figure out $P(X = 0), P(X = 1), \cdots$ • $P(X = 0) = P(\{(t, t, t)\}) = \frac{1}{8}, \cdots$
- Step 4: Obtain the pmf for *X*

- Toss a coin three times and count the number of heads.
- Step 1: Figure out the range for $X \circ \{0, 1, 2, 3\}$
- Step 2: What are the events $\{X = 0\}, \{X = 1\}, \dots$ • $\{X = 0\} = \{(t, t, t)\}, \{X = 1\} = \{(t, t, h), (t, h, t), (h, t, t)\} \dots$
- Step 3: Figure out $P(X = 0), P(X = 1), \cdots$ • $P(X = 0) = P(\{(t, t, t)\}) = \frac{1}{9}, \cdots$
- Step 4: Obtain the pmf for X $f(0) = P(X = 0) = \frac{1}{2}, \dots$

- Toss a coin three times and count the number of heads.
- The sample space is

```
S = \{(t, t, t), (t, t, h), (t, h, t), (h, t, t), (t, h, h), (h, t, h), (h, h, t), (h, h, h)\}
```

- Lex X count the number of heads. Thus if s = (t, t, h) occurs then X(s) = 1.
- What is the cdf (cumulative distribution function) for *X*?

- Toss a coin three times and count the number of heads.
- The sample space is

$$S = \{(t, t, t), (t, t, h), (t, h, t), (h, t, t), (t, h, h), (h, t, h), (h, h, t), (h, h, h)\}$$

- Lex X count the number of heads. Thus if s = (t, t, h) occurs then X(s) = 1.
- What is the cdf (cumulative distribution function) for X?
- $\bullet \quad F(x) = P(X \le x)$

•
$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$$

- For x < 0, F(x) = 0
- For $0 \le x < 1$, $F(x) = f(0) = \frac{1}{8}$
- For $1 \le x < 2$, $F(x) = f(0) + f(1) = \frac{4}{8}$
- For $2 \le x < 3$, $F(x) = f(0) + f(1) + f(2) = \frac{7}{8}$
- For $3 \le x$, F(x) = f(0) + f(1) + f(2) + f(3) = 1

- Given the cdf F(x), how to derive the pmf f(x)?
- $f(x) = F(x) \lim_{y \uparrow x} F(y)$

- Given the cdf F(x), how to derive the pmf f(x)?
- $f(x) = F(x) \lim_{y \uparrow x} F(y)$
- $f(-1) = F(-1) \lim_{v \uparrow -1} F(y) = 0 0 = 0$
- $f(0) = F(0) \lim_{y \uparrow 0} F(y) = \frac{1}{8} 0 = \frac{1}{8}$

$$F(x) = \begin{cases} 0 & x < -2 \\ 0.2 & -2 \le x < 0 \\ 0.7 & 0 \le x < 2 \\ 1 & 2 \le x \end{cases}$$

$$f(-2)=0.2$$
 $f(0)=0.5$ $f(2)=0.3$

Mean and Variance

Mean

$$E[X] = \Sigma_{x} x P(X = x) = \Sigma_{x} x f(x)$$

Variance

$$Var[X] = \Sigma_{x}(x - E[X])^{2} f(x)$$

- Toss a coin three times and count the number of heads.
- What is E[X]?

- Toss a coin three times and count the number of heads.
- What is E[X]?
- $E[X] = 0 * f(0) + 1 * f(1) + 2 * f(2) + 3 * f(3) = \frac{3}{2}$

- Toss a coin three times and count the number of heads.
- What is E[X]?
- $E[X] = 0 * f(0) + 1 * f(1) + 2 * f(2) + 3 * f(3) = \frac{3}{2}$
- What is Var[X]?

- Toss a coin three times and count the number of heads.
- What is E[X]?
- $E[X] = 0 * f(0) + 1 * f(1) + 2 * f(2) + 3 * f(3) = \frac{3}{2}$
- What is Var[X]?
- $Var[X] = \left(0 \frac{3}{2}\right)^2 * f(0) + \left(1 \frac{3}{2}\right)^2 * f(1) + \dots = \frac{3}{4}$

- Toss a coin three times and count the number of heads.
- What is E[X]?
- $E[X] = 0 * f(0) + 1 * f(1) + 2 * f(2) + 3 * f(3) = \frac{3}{2}$
- What is Var[X]?
- $Var[X] = \left(0 \frac{3}{2}\right)^2 * f(0) + \left(1 \frac{3}{2}\right)^2 * f(1) + \dots = \frac{3}{4}$
- Is there any easy way to compute E[X] and Var[X]?

2. Some Useful formulas

Formula 1

Linearity:
$$E[\Sigma_i X_i] = \Sigma_i E[X_i]$$

No assumption on X_i

An Example

Toss a coin:

- If Head, you earn 2 dollar
- If Tail, you lose 1 dollar

Suppose you toss twice, how much you will earn on average?

Sample Space	НН	TT	HT	TH
Earnings: Σ_i	4	-2	1	1
Probability	0.25	0.25	0.25	0.25

Average earning (mean): 4*0.25 - 2*0.25 + 1*0.25 + 1*0.25 = 1\$

An Example

Toss a coin:

- If Head, you earn 2 dollar
- If Tail, you lose 1 dollar

Suppose you toss n times, how much you will earn on average?

Sample Space	ннн	•••	•••	TTT
Earnings: Σ_i	2n			-n
Probability	$\left(\frac{1}{2}\right)^n$			$\left(\frac{1}{2}\right)^n$

Difficult to calculate directly!

An Example

Toss a coin:

- If Head, you earn 2 dollar
- If Tail, you lose 1 dollar

Suppose you toss n times, how much you will earn on average?

Linearity:
$$E[\Sigma_i X_i] = \Sigma_i E[X_i]$$

- For each toss, you win: 2*0.5-1*0.5=0.5
- In total, you win 0.5*n.

Much easier!

Hat Check

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is E[X]?

Hat Check

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is E[X]?

Brute Force: $\Omega_X = \{0,1,2,...,n-2,n\}.$

Sample space

Hat Check

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is E[X]?

Brute Force: $\Omega_X = \{0,1,2,...,n-2,n\}.$

$$p_X(n) = \frac{1}{n!}$$

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is E[X]?

Brute Force: $\Omega_X = \{0,1,2,...,n-2,n\}.$

$$p_X(n)=\frac{1}{n!}$$

$$p_X(0) = ???$$

Too hard → Use linearity!

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is E[X]?

Quick question: does it matter where you are in line?

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is E[X]?

Quick question: does it matter where you are in line?

If first in line, $P(\text{get hat back}) = \frac{1}{n}$, because there are n in total.

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is E[X]?

Quick question: does it matter where you are in line?

If first in line, $P(\text{get hat back}) = \frac{1}{n}$, because there are n in total.

If last in line, $P(\text{get hat back}) = \frac{1}{n}$, because there is 1 left, and the chance it is yours is $\frac{1}{n}$.

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is

For i = 1, ..., n, let $X_i = \begin{cases} 1, & \text{if } i^{th} \text{ person got hat back} \\ 0, & \text{otherwise} \end{cases}$. Then $X = \sum_{i=1}^n X_i$.

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is

For
$$i = 1, ..., n$$
, let $X_i = \begin{cases} 1, & \text{if } i^{th} \text{ person got hat back} \\ 0, & \text{otherwise} \end{cases}$. Then $X = \sum_{i=1}^n X_i$.

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is

For
$$i = 1, ..., n$$
, let $X_i = \begin{cases} 1, & \text{if } i^{th} \text{ person got hat back} \\ 0, & \text{otherwise} \end{cases}$. Then $X = \sum_{i=1}^n X_i$.

$$E[X_i] = 1 \cdot P(X_i = 1) + 0 \cdot P(X_i = 0) = 1$$

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is

For
$$i = 1, ..., n$$
, let $X_i = \begin{cases} 1, & \text{if } i^{th} \text{ person got hat back} \\ 0, & \text{otherwise} \end{cases}$. Then $X = \sum_{i=1}^n X_i$.

$$E[X_i] = 1 \cdot P(X_i = 1) + 0 \cdot P(X_i = 0) = P(X_i = 1) = P(i^{th} \text{ person got hat back}) = \frac{1}{n}$$

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is

For
$$i = 1, ..., n$$
, let $X_i = \begin{cases} 1, & \text{if } i^{th} \text{ person got hat back} \\ 0, & \text{otherwise} \end{cases}$. Then $X = \sum_{i=1}^n X_i$.

$$E[X_i] = 1 \cdot P(X_i = 1) + 0 \cdot P(X_i = 0) = P(X_i = 1) = P(i^{th} \text{ person got hat back}) = \frac{1}{n}$$

$$E[X] = E\left|\sum_{i=1}^{n} X_i\right| =$$

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is

job. Let
$$X$$
 be the number of people who get their original hat back. What is $E[X]$? For $i=1,\ldots,n$, let $X_i=\begin{cases} 1, & \text{if } i^{th} \text{ person got hat back} \\ 0, & \text{otherwise} \end{cases}$. Then $X=\sum_{i=1}^n X_i$.

We will use linearity of expectation.
$$E[X_i] = 1 \cdot P(X_i = 1) + 0 \cdot P(X_i = 0) = P(X_i = 1) = P(i^{th} \text{ person got hat back}) = \frac{1}{n}$$
Linearity

Linearity
$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{n} = n \cdot \frac{1}{n} = 1$$

n people go to a party and leave their hat with a hat-check person. At the end of the party, she returns hats randomly since she doesn't care about her job. Let X be the number of people who get their original hat back. What is

For
$$i=1,...,n$$
, let $X_i=\begin{cases} 1, & \text{if } i^{th} \text{ person got hat back} \\ 0, & \text{otherwise} \end{cases}$. Then $X=\sum_{i=1}^n X_i$.

We will use linearity of expectation. NOT independent Random variables (why?)

$$E[X_i] = 1 \cdot P(X_i = 1) + 0 \cdot P(X_i = 0) = P(X_i = 1) = P(i^{th} \text{ person got hat back}) = \frac{1}{n}$$

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{n} = n \cdot \frac{1}{n} = 1$$

Formula 2

$$E[g(X)] = \sum_{x} g(x)P(X = x) = \sum_{x} g(x)f(x)$$

• Note: $\mathbf{E}[g(X)] \neq g(\mathbf{E}[X])$

- Toss a coin: head as 1, tail as -1.
- Then $E[X^2] = 1^2 \times \frac{1}{2} + (-1)^2 \times \frac{1}{2} = 1$ $g(x) = x^2$
- But $(E[X])^2 = 0$

Variance

$$E[(X - E[X])^{2}]$$

$$X^{2} - 2XE[X] + (E[X])^{2}$$

$$E[X^{2}] - 2E[X]E[X] + (E[X])^{2}$$

$$- (E[X])^{2}$$

Variance

$$E[(X - E[X])^{2}]$$

$$X^{2} - 2XE[X] + (E[X])^{2}$$

$$E[X^{2}] - 2E[X]E[X] + (E[X])^{2}$$
$$- (E[X])^{2}$$

More useful

$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

$$Var(X) = E[X^2] - E[X]^2$$

$$Var(X) = E[X^2] - E[X]^2$$

$$E[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$$

$$Var(X) = E[X^2] - E[X]^2$$

$$E[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$$

$$E[X^2] = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + \dots + 6^2 \cdot \frac{1}{6} = \frac{91}{6}$$

$$Var(X) = E[X^2] - E[X]^2$$

$$E[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$$

$$E[X^2] = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + \dots + 6^2 \cdot \frac{1}{6} = \frac{91}{6}$$

$$E[X^{2}] = 1^{2} \cdot \frac{1}{6} + 2^{2} \cdot \frac{1}{6} + 3^{2} \cdot \frac{1}{6} + \dots + 6^{2} \cdot \frac{1}{6} = \frac{1}{6}$$

$$Var(X) = E[X^{2}] - E[X]^{2} = \frac{91}{6} - (3.5)^{2} = \frac{35}{12}$$

Exercise

- Toss a coin three times and count the number of heads.
- What is E[X]?
- $E[X] = 0 * f(0) + 1 * f(1) + 2 * f(2) + 3 * f(3) = \frac{3}{2}$
- What is Var[X]?
- $Var[X] = \left(0 \frac{3}{2}\right)^2 * f(0) + \left(1 \frac{3}{2}\right)^2 * f(1) + \dots = \frac{3}{4}$
- Is there any easy way to compute E[X] and Var[X]?