

Deep Learning Methods for Reynolds-Averaged Navier-Stokes Simulations of Airfoil Flows

Julian Hohenadel Technical University of Munich Chair of Computer Graphics and Visualization Munich, 11. May 2020

Introduction

Background – RANS

Background – RANS

Background – Convolutions

Taken from I2DL WS19/20 (TUM)

Background – Convolutions

Low-Level Features, Mid-Level Features, High-Level Features: each filter captures different characteristics

Taken from https://arxiv.org/pdf/1311.2901.pdf

Data Generation

Airfoil shapes are provided by the UIUC database

Reynolds number: [0.5,5] · 10⁶ (highly turbulent)

Angle of attack: [-22.5, 22.5]

Ground truth generated with OpenFOAM (pressure, x velocity, y velocity)

Training data resolution: $3 \times 128 \times 128$

Pre-processing – Data

Input channels	Target channels
Bit mask representing airfoil shape	Pressure field
2. x velocity component	2. x velocity field
3. y velocity component	3. y velocity field
Reynolds number encoded as differently scaled freestream velocity vectors wrt. their magnitude	Data from the RANS solution

Pre-processing – Normalization

Motivation: Flatten space of solutions, accelerate learning by simplifing the learning task for the NN

Normaliztion of target channels by division with freestream magnitude (vector norm, default: L2): This makes pressure and velocity dimensionless

$$ilde{v_o} = rac{v_o}{\|v_i\|}, \quad ilde{p_o} = rac{p_o}{\|v_i\|^2}$$
 – important to remove quadratic scaling of pressure

For a better understanding:

Pressure: $[p]_{Sl} = 1Pa = 1\frac{kg}{m \cdot s^2}$

Density: $[\rho]_{SI} = 1 \frac{kg}{m^3}$ – constant in incompressible flow

Velocity: $[v]_{SI} = \frac{m}{s}$

Pre-processing – Offset removal & value clamping

Motivation: eliminate ill-posed learning goal & improve numerical precision

Spatially move pressure distribution into the origin

$$\hat{p_o} = \tilde{p_o} - p_{mean}$$

Clamp both input and target channels into [-1,1] range by diving by the maximum absolute value

Pre-processing – Evaluation

Vector norms used in pre-processing comparision wrt. error, default: L2 (in %)

L1 normalization achieves the best error rates (p, vel, combined: 14.19%, 2.251%, 2.646% – L2: 14.76%, 2.291%, 2.780%)

Architecture

U-Net derivative proposed in the paper:

Taken from https://arxiv.org/pdf/1810.08217.pdf

Architecture – Convolutional blocks

Encoder	Decoder
1. Activation – Leaky ReLu (0.2)	1. Activation – ReLu
2. Convolution – Width down, Depth up	2. Upsampling – linear (2.0)
3. Batch normalization	3. Convolution – Width up, Depth down
4. Dropout (1%)	4. Batch normalization
	5. Dropout (1%)

Architecture – Evaluation

Error percentage of different activation functions after 160k iterations (266 epochs).

PReLu achieves the best error rates (p, vel, combined: **14.69**%, **2.216**%, **2.676**% – Default: 14.76%, 2.296%, 2.787%)

Architecture – Evaluation

Training loss

Validation loss

Transfer

Motivation: Can the network architecture adapt to other PDE systems and how well will it perform?

Another use case for PDE systems like RANS is predicting wave propagation on shallow water

Wave propagation, in this case, is governed by the Saint-Venant equations (related with Navier-Stokes equations)

U-Net architecture changes:

- Input channels contain the last *n* time steps
- Output channels predict the next *m* time steps
- Output is refeeded as input to predict time series

RMSE with variance, validation loss and batch loss on Bigger Tub environment:

All plots in Transfer were made with https://github.com/stathius/wave_propagation

Generalization

Generalization

Error percentage of different angle of attack intervals wrt. ground truth [-22.5, 22.5]

Discussion

Discussion

Positiv	Negativ
Punkt 1	Punkt 1
Punkt 2	Punkt 2
Punkt 3	Punkt 3
Punkt 4	Punkt 4

Summary

Backup slides