

MONASH BUSINESS SCHOOL

Forecasting using R

Rob J Hyndman

2.2 Transformations

Outline

1 Variance stabilization

2 Box-Cox transformations

3 Lab session 9

Forecasting using R Variance stabilization

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$

Cube root $w_t = \sqrt[3]{y_t}$ Increasing

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$
 \downarrow Cube root $w_t = \sqrt[3]{y_t}$ Increasing Logarithm $w_t = \log(y_t)$ strength

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$

Cube root $w_t = \sqrt[3]{y_t}$ Increasing

Logarithm $w_t = \log(y_t)$ strength

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$
 \downarrow Cube root $w_t = \sqrt[3]{y_t}$ Increasing Logarithm $w_t = \log(y_t)$ strength

Forecasting using R Variance stabilization

Forecasting using R Variance stabilization

Outline

1 Variance stabilization

2 Box-Cox transformations

3 Lab session 9

Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \begin{cases} \log(y_t), & \lambda = 0; \\ (y_t^{\lambda} - 1)/\lambda, & \lambda \neq 0. \end{cases}$$

- λ = 1: (No substantive transformation)
- $\lambda = \frac{1}{2}$: (Square root plus linear transformation)
- $\lambda = 0$: (Natural logarithm)
- $\lambda = -1$: (Inverse plus 1)

Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \begin{cases} \log(y_t), & \lambda = 0; \\ (y_t^{\lambda} - 1)/\lambda, & \lambda \neq 0. \end{cases}$$

- λ = 1: (No substantive transformation)
- $\lambda = \frac{1}{2}$: (Square root plus linear transformation)
- λ = 0: (Natural logarithm)
- $\lambda = -1$: (Inverse plus 1)

autoplot(BoxCox(elec,lambda=1/3))

- y_t^{λ} for λ close to zero behaves like logs.
- If some $y_t = 0$, then must have $\lambda > 0$
- if some $y_t < 0$, no power transformation is possible unless all y_t adjusted by adding a constant to all values.
- Choose a simple value of λ . It makes explanation easier.
- Results are relatively insensitive to value of λ
- Often no transformation (λ = 1) needed.
- Transformation often makes little difference to forecasts but has large effect on PI.
- Choosing λ = 0 is a simple way to force forecasts to be positive

Automated Box-Cox transformations

```
(BoxCox.lambda(elec))
```

```
## [1] 0.2654076
```

- This attempts to balance the seasonal fluctuations and random variation across the series.
- Always check the results.
- A low value of λ can give extremely large prediction intervals.

Automated Box-Cox transformations

```
(BoxCox.lambda(elec))
```

```
## [1] 0.2654076
```

- This attempts to balance the seasonal fluctuations and random variation across the series.
- Always check the results.
- A low value of λ can give extremely large prediction intervals.

Back-transformation

We must reverse the transformation (or *back-transform*) to obtain forecasts on the original scale. The reverse Box-Cox transformations are given by

$$y_t = \begin{cases} \exp(w_t), & \lambda = 0; \\ (\lambda W_t + 1)^{1/\lambda}, & \lambda \neq 0. \end{cases}$$

Forecasting using R Box-Cox transformations

14

Back-transformation

```
fit <- snaive(elec, lambda=1/3)
autoplot(fit)</pre>
```


Back-transformation

autoplot(fit, include=120)

ETS and transformations

- A Box-Cox transformation followed by an additive ETS model is often better than an ETS model without transformation.
- It makes no sense to use a Box-Cox transformation and a *non-additive* ETS model.

Outline

1 Variance stabilization

2 Box-Cox transformations

3 Lab session 9

Forecasting using R Lab session 9

Lab Session 9

Forecasting using R Lab session 9 1