Part (b): Here X is fixed, and Y varies. Also x_0 and $f(x_0)$ are fixed. So $E_{Y|X}\left(\left(f(x_0) - \hat{f}(x_0)\right)^2\right) = f(x_0)^2 - 2.f(x_0).E_{Y|X}\left(\hat{f}(x_0)\right) + E_{Y|X}\left(\left(\hat{f}(x_0)\right)^2\right)$ $= \left(f(x_0) - E_{y|\mathcal{X}}\left(\hat{f}(x_0)\right)\right)^2 + E_{y|\mathcal{X}}\left(\left(\hat{f}(x_0)\right)^2\right) - \left(E_{y|\mathcal{X}}\left(\hat{f}(x_0)\right)\right)^2$ = (bias)² + Var($\hat{f}(x_0)$) best he same way as in (b), except that both X and Y vary Once again x_0 and $f(x_0)$ are $E_{X,Y}\left(\left(f(x_0) - \hat{f}(x_0)\right)^2\right) = f(x_0)^2 - 2.f(x_0).E_{X,Y}\left(\hat{f}(x_0)\right) + E_{X,Y}\left(\left(\hat{f}(x_0)\right)^2\right)$ $= \left(f(x_0) - E_{\mathcal{X},\mathcal{Y}}\left(\hat{f}(x_0)\right)\right)^2 + E_{\mathcal{X},\mathcal{Y}}\left(\left(\hat{f}(x_0)\right)^2\right) - \left(E_{\mathcal{X},\mathcal{Y}}\left(\hat{f}(x_0)\right)\right)^2$

= $(\text{bias})^2 + \text{Var}(\hat{f}(x_0))$ The terms in (b) can be evaluated in terms of the $\ell_i(x_0; \mathcal{X})$ and the distribution of ε_i . We

need only evaluate $E_{y|x}(\hat{f}(x_0)) = \sum \ell_i(x_0; X) f(x_i)$ and $\mathbb{E}_{Y|X}\left(\left(\hat{f}(x_0)\right)^2\right) = \sum \ell_i(x_0; X)\ell_j(x_0; X)\mathbb{E}\left(\left(f(x_i) + \varepsilon_i\right)\left(f(x_j) + \varepsilon_j\right)\right)$

 $= \sum_{i=1}^{n} \ell_i(x_0; \mathcal{X}) \ell_j(x_0; \mathcal{X}) f(x_i) f(x_j) + \sum_{i=1}^{n} \sigma^2 \ell_i(x_0; \mathcal{X})^2.$

The terms in (c) can be evaluated in terms of $E_{X,Y}(\hat{f}(x_0))$ and $E_{X,Y}(\hat{f}(x_0))^2$. This

means multiplying the expressions just obtained by