Мы пока работаем только с каскадом из пяти реакторов, но вообще-то их количество изменяется от 1 до 5

Шкала ротаметра:

Может быть, сделать так, чтобы при его передвижении появлялся расход соответствующий положению курсора и существующим данным (30, 40...). Потому что если делать полную шкалу, то будет очень мелко. Либо нужно, чтобы шкала как-то появлялась и потом пропадала.

Дополнительные данные в таблице:

Можно, например, выводить абсолютное отклонение электропроводности между соседними экспериментальными точками или с электропровожногстью воды (в этом больше смысла), а также концентрацию трасера (см. ниже).

Дополнительные пункты меню:

Если из файла не загружать данные, а делать опыт, то можно выбирать тип реактора для того, чтобы открывалась мнемосхема:

Reactor type ->

Continuous stirred tank teactor (CSTR)

Caskade reactor system -> 2 Reaktors

3 Reaktors

4 Reaktors

5 Reaktors

Tubular reactor -> L/d<50

L/d<50, packed bed

1/d > 50

Analysis ->

Parameter calculation

Model adequacy

Optimization

Models ->

Cell model

Diffusion model

Laminar flow model

Exercises ->

Exercise 1

Exercise 2

Сейчас на графиках отображается реальное время и реальная концентрация. Может быть, сделать еще одну закладку, на которой график показывался бы для безразмерной концентрации и безразмерного времени. Или же делать это переключение после окончания эксперимента, при обработке данных.

Также было бы интересно строить суммарную функцию отклика $F(\theta)$.

Расчет концентрации трасера (индикатора):

Из данных, сначала нужно выделять диапазон данных, т.е. данные с момента времени инициализации трасера в реактор (выключения шунта) ($t=t_0=0$) и до полного его выхода из реактора ($t=t_{\text{конечное}}$). Конечный момент времени характеризуется тем, что значения электропроводности снова возвращаютсяна начальное значение, т.е. измеряется электропроводности воды.

После этого необходимо пересчитать электропроводность в концентрацию по калибровочной функции.

Алгоритм расчета:

1) Рассчитываются концентрации трассера C_1 и C_2 в реакторе в начальный момент времени t=0 и в конечный момент времени t= $t_{\text{конечное}}$ по калибровочной функции:

 C_1 = 2,3480623E-18 x^5 - 1,3123250E-14 x^4 + 2,7014011E-11 x^3 - 2,4703301E-08 x^2 + 1,7735139E-05x,

 C_2 = 2,3480623E-18 x^5 - 1,3123250E-14 x^4 + 2,7014011E-11 x^3 - 2,4703301E-08 x^2 + 1,7735139E-05x

где х-электропроводность в момент времениt=0 (для C_1) или $t=t_{\text{конечное}}$ в конечный момент времени (для C_2).

2) Так как измерение происходит раз в секунду, то можно узнать скорость изменения концентрации трассера за данную единицу времени:

$$R=(C_1-C_2)/t_{\kappa o h e v h o e}$$

3) Рассчитываетсяконцентрация трассера для каждого момента времени на основе известного значения электропроводности (при правильном расчете она должна быть равна 0 при t=0 и при $t=t_{\text{конечное}}$):

$$C_{4i}$$
=2,3480623E-18 x_i^5 - 1,3123250E-14 x_i^4 + 2,7014011E-11 x_i^3 - 2,4703301E-08 x_i^2 + 1,7735139E-05 x_i - C_1 - t_i *R

где x_i – электропроводность в момент времени t_i.

Три метода расчета по ячеечной модели (комментарии):

<u>1 метод:</u>

Расчет количества ячек из числа Пекле (диффузионная модель). Нам не подходит, потому что у нас количество ячеек для каскада будет около 5 всегда, а этот метод расчета можно использовать при большом значении количества ячеек, т.е. для трубчатого реактора.

2 метод:

Общая функция отклика ячеечной модели для N ячеек:

$$C_{_{\mathrm{ИНД},N}} = C_{_{\mathrm{ИНД},H}} \left(\frac{t}{\bar{t}}\right)^{N-1} \frac{1}{(N-1)!} e^{\left(-\frac{t}{\bar{t}}\right)}$$

где $\mathcal{C}_{_{\mathrm{ИНД},H}}$ - начальная концентрация индикатора, моль/л,

 ${\cal C}_{{ ext{
m инд}},N}$ - концентрация индикатора на выходе из каскада, моль/л,

N - количество ячеек.

После ввода безразмерной концентрации $\mathrm{C}(\theta) = C_{_{\mathrm{ИНД},H}}/C_{_{\mathrm{ИНД},N}}$, и безразмерного времени: $\theta = \frac{t}{\bar{t}}$.

$$C(\theta) = \frac{N^N e^{N-1}}{(N-1)!} e^{-N\theta}$$
 (1)

Тогда сначала необходимо провести сглаживание экспериментального графика и для определения числа ячеек в модели минимизировать сумму квадрата отклонения расчетных концентраций от экспериментальных.

3 метод:

Сначала расчитывают среднее время пребывания индикатора в потоке:

$$\bar{t} = \frac{\int_0^\infty t \cdot C_{\text{инд}}(t)dt}{\int_0^\infty C_{\text{инд}}(t)dt}$$

Переход к нормированной С-кривой:

$$C(t) = \frac{C_{\text{инд}}(t)}{\int_0^\infty C_{\text{инд}}(t)dt}$$

Начальный размерный момент второго порядка:

$$M_2^t = \int_0^\infty t^2 C(t) dt$$

Безразмерная дисперсия С-кривой:

$$\sigma_{\theta}^2 = \frac{M_2^t}{\bar{t}} - 1$$

Тогда количество ячеек:

$$N = \frac{1}{\sigma_{\theta}^2}$$

Проверка адекватности ячеечной модели:

Мне кажется, для учебных целей целесообразно проводить проверку адекватности. Особенно интересно будет, если будут разные реакторы и разные модели. См. предложенный пункт меню.

- 1) Расчет по формуле 1 с найденным числом ячеек N.
- 2) Расчет среднего значения безразмерной кривой отклика $\mathrm{C}(\theta)$:

$$\overline{C}(\theta) = \frac{C(\theta)_j}{n}$$

где $\mathrm{C}(\theta)_j$ - каждая экспериментальная точка, n – общее количество экспериментальных точек.

3) Дисперсия относительно среднего:

$$S_{\rm cp}^2 = \frac{\sum_{j=1}^n \left(C(\theta)_j - \overline{C}(\theta) \right)^2}{f_{\rm cp}}$$

$$f_{\rm cp} = n - 1$$

4) Дисперсия адекватности:

$$S_{\mathrm{a}\mathrm{d}}^2 rac{\sum_{j=1}^n \left(\mathsf{C}_j - \mathsf{C}_{j,\mathrm{модель}}
ight)^2}{f_{\mathrm{a}\mathrm{d}}}$$

$$f_{\rm aд}=n-1$$

5) F-отношение:

$$F = \frac{S_{\rm cp}^2}{S_{\rm ag}^2}$$

Если F больше табличного значения критерия Фишера при $f_{\rm cp}$ и $f_{\rm ag}$ и выбранной степени значимости α (можно делать при разных, например при 1% и 5%), значит, дисперсия относительно среднего значимо отличается от дисперсии адекватности и модель адекватна.

Что должна выводить программа

Тип реактора	KIK
Количество реакторов в каскаде	-
Температура	°C
Объем реактора	л
Объемный расход	л/с
Время пребывания, т	С
Среднее время пребывания, $ar{t}$	С
Абсолютное отклонение	С
Относительное отклонение	%

Стандартное отклонение	С
Начальный размерный момент	
второго порядка, M_2^t (можно в	
принципе все моменты	
выводить, хотя мы их не	
используем)	
Безразмерная дисперсия С-	c^2
кривой,	
Адекватность модели	да/нет
Теоретическое количество ячеек,	-
N	
α	%
F	-
Re*	-
Pe*	-
Тип течения*	Ламинатрое/турбулентное/переходный
	режим

^{*}Не выводится для каскада