Maths

yanQval

Tsinghua, IIIS

2020年7月23日

埃氏筛法

先将 1 筛去,然后每次选择一个未被筛去且未被标记过的数 x ,将 x 标记为质数,同时筛去 x 的倍数。 复杂度为 $O(n\log\log n)$ 。

欧拉筛法

建立一个 prime list,先将 1 筛去,从小到大枚举每一个数 x 。 如果 x 没有被筛去,那么将 x 加入 prime list。 然后枚举 prime list 里的质数 p ,将 xp 筛去,当 $p \mid x$ 时结束。 复杂度为 O(n) ,因为每个合数只会在当 p 为其最小质因子时筛去。

质数分布

平均每 $O(\log n)$ 个数中,就有一个质数。 $\leq n$ 的数中,质数的个数是 $O(\frac{n}{\log n})$ 。

质数判断

朴素的是 $O(\sqrt{n})$ 。 更高效的算法是 Miller-Robin 算法。

质数判断

朴素的是 $O(\sqrt{n})$ 。 更高效的算法是 Miller-Robin 算法。 若 p 是质数,对于 $x \in (0,p)$,方程 $x^2 \equiv 1 \pmod{p}$ 的解为 x = 1 or p - 1 。 令 $p - 1 = m * 2^q$, m 为奇数。 如果 $a^m, a^{m*2}, \ldots, a^{m*2^q}$ 中没有 1 或者存在 1 但前一个数不为 1 或 p - 1 ,则 p 不为质数。 在 p 不为质数的情况下,随机选择一个 a ,错误概率 $<\frac{1}{2}$,所以重复 尝试 $10 \sim 20$ 次即可。也可以是直接选取前 $10 \sim 20$ 个质数。

辗转相除法

$$\gcd(x,y) = \begin{cases} x & y == 0\\ \gcd(y, x \bmod y) & y \neq 0 \end{cases}$$

EXGCD

```
求解 ax + by = \gcd(a, b)。
假设已知 bx' + (a \mod b)y' = \gcd(a, b)。
因为 a \mod b = a - \lfloor \frac{a}{b} \rfloor b。
所以 bx' + (a - \lfloor \frac{a}{b} \rfloor b)y' = \gcd(a, b) \Rightarrow ay' + b(x' - \lfloor \frac{a}{b} \rfloor y') = \gcd(a, b)。
即 x = y', y = x' - \lfloor \frac{a}{b} \rfloor y'。
时间复杂度 O(\log n)。
```

快速幂

$$a^{b} = \begin{cases} (a^{2})^{\frac{b}{2}} & b \text{ is even} \\ a*(a^{2})^{\frac{b-1}{2}} & b \text{ is odd} \end{cases}$$

逆元

x 在模 m 意义下的逆元 y 满足 $xy \equiv 1 \pmod{m}$ 。 存在逆元的条件是 (x, m) = 1。 求逆元的方法有三种:利用 EXGCD,利用费马小定理,线性预处理。

EXGCD 求逆元

$$xy \equiv 1 \pmod{m}$$
$$xy + am = 1$$

解出这个方程的一组解 (y, a) 即可。

费马小定理求逆元

费马小定理:当 m 为质数时, $a^{m-1} \equiv 1 \pmod{m}$ 。 所以 x 的逆元就为 x^{m-2} 。

线性预处理逆元

下面均是在模p意义下进行运算。

$$i * \lfloor \frac{p}{i} \rfloor + (p \bmod i) \equiv 0$$
$$-i * \lfloor \frac{p}{i} \rfloor \equiv (p \bmod i)$$
$$i * (-\lfloor \frac{p}{i} \rfloor * (p \bmod i)^{-1}) \equiv 1$$

所以 $i^{-1} = -\lfloor \frac{p}{i} \rfloor * (p \mod i)^{-1}$ 。

CRT

假设 m_1, m_2, \ldots, m_k 两两互质,并记 $M = \prod_{i=1}^k m_i$,则同余方程组:

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \dots \\ x \equiv a_k \pmod{m_k} \end{cases}$$

在模 M 意义下有唯一解。

这个解 $x \equiv \sum_{i=1}^k t_i a_i M_i \pmod{M}$,其中 $M_i = \frac{M}{m_i}$, $t_i \equiv M_i^{-1} \pmod{m_i}$ 。

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

欧拉函数

定义 $\phi(n)$ 为 $\leq n$ 的数中与 n 互质的数的个数,即

$$\phi(n) = \sum_{i=1}^{n} [(i, n) = 1]$$
 •

计算式: $\phi(x) = x(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\dots(1 - \frac{1}{p_k})$,其中 p_1, p_2, \dots, p_k 是 x 的不同质因子。

递推式: $\phi(pq) = \phi(p) * \phi(q)$ 当 p, q 互质时。利用这个可以在欧拉筛法的同时预处理出 $\leq n$ 的所有数的 ϕ 。

欧拉定理

若
$$(a,p)=1$$
 则 $a^{\phi(p)}\equiv 1 (\operatorname{mod} p)$ 。 如果 $(a,p)\neq 1$ 呢?

$$a^b = \begin{cases} a^b & (b \le \phi(n)) \\ a^{(b \bmod \phi(n)) + \phi(n)} & (b > \phi(n)) \end{cases} \pmod{n}$$

莫比乌斯反演

若
$$F(n) = \sum_{d|n} f(d)$$
 ,则有 $f(n) = \sum_{d|n} \mu(d) F(\frac{N}{d})$ 。
$$\mu(d) = \begin{cases} 1 & n = 1 \\ (-1)^k & n = p_1 p_2 \dots p_k, \forall i \neq j, p_i \neq p_j \\ 0 & others \end{cases}$$

欧拉函数、莫比乌斯函数性质

$$\sum_{d|n} \phi(d) = n$$

$$\sum_{d|n} \mu(d) = [n == 1]$$

$$\sum_{d|n} \frac{\mu(d)}{d} = \frac{\phi(n)}{n}$$

BSGS

求解
$$a^x \equiv b(\bmod c)$$
。
令 $x = p * g - m$,那么

$$a^{p*g-m} \equiv b \pmod{c}$$

 $(a^g)^p \equiv b*a^m \pmod{c}$

那么我们只需要把右边 $0 \le m < g$ 的值预处理出来,然后再枚举 p 的值并查表即可。复杂度是 $O(g+\frac{c}{g})$, g 取 $O(\sqrt{c})$ 时复杂度最低,为 $O(\sqrt{c})$ 。

yanQval (Tsinghua, IIIS)

排列

从 n 个数中有序地选出 m 个数的方案数,用 P(n, m) 表示。

$$P(n,m) = n * (n-1) * (n-2) * \cdots * (n-m+1) = \frac{n!}{(n-m)!}$$

组合

从n个数中无序地选出m个数的方案数,用C(n,m)表示。

$$C(n, m) = \frac{A(n, m)}{m!} = \frac{n!}{m!(n - m)!}$$

二项式定理

$$(a+b)^n = \sum_{i=0}^n C(n,i)a^ib^{n-i}$$

将n个不同的球放到m个不同的袋子里有多少种方案?

将 n 个不同的球放到 m 个不同的袋子里有多少种方案? 直接就是 m^n 。

将n个相同的球放到m个不同的袋子里有多少种方案?

将 n 个相同的球放到 m 个不同的袋子里有多少种方案? 考虑从一排 n+m-1 个元素中选出 m-1 个,这 m-1 个元素将序列分成了 m 段,第 i 段的元素个数就是第 i 个袋子中球的个数。 不难发现选元素的方案和放球的方案——对应,因此方案数就是 C(n+m-1,m-1)。

将 n 个相同的球放到 m 个相同的袋子里有多少种方案?

将 n 个相同的球放到 m 个相同的袋子里有多少种方案? 由于袋子是相同的,我们通过保证球数是单调不减的来防止重复统计。用 f[i][j] 表示将 i 个相同的球放到 j 个相同的袋子里的方案数。 考虑第 1 个袋子是否放球,如果放的话,由于球数单调不减,我们必须在每个袋子里都放一个球。如果不放的话,那我们直接考虑后面的袋子。 f[i][j] = f[i-j][j] + f[j][j-1]。 时间复杂度 O(nm)。

Lucas 定理

$$\binom{n}{m} = \binom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{m}{p} \rfloor} \binom{n \bmod p}{m \bmod p} \pmod{p}$$

其中 p 是质数。

抽屉原理

把 n+1 个东西放入 n 个抽屉,必有一个拥有至少两个东西。 扩展:把 m 个东西放入 n 个抽屉,至少有一个抽屉拥有至少 $\lceil \frac{m}{n} \rceil$ 个东西,至少有一个抽屉拥有至多 $\lfloor \frac{m}{n} \rfloor$ 。

加法原理

完成 A 有 n 种方法,完成 B 有 m 种方法,那么完成 AB 中的一个有 n+m 种方法。

乘法原理

完成 A 有 n 种方法,完成 B 有 m 种方法,那么先完成 A 再完成 B 有 nm 种方法。

容斥原理

记 f(S) 为满足集合 S 中至少一个条件的方案数,g(S) 表示满足集合 S 中所有条件的方案数。

那么有 $f(S) = \sum_{T \subseteq S, |T| \neq 0} (-1)^{|T|-1} g(T)$ 。

记 h(S) 表示不满足集合 S 中所有条件的方案数。

那么有 $g(S) = \sum_{T \subset S} (-1)^{|T|} h(T)$ 。

概率

概率空间

样本空间 Ω , 事件集合 F, 概率测度 P。

概率

概率空间

样本空间 Ω , 事件集合 F, 概率测度 P。

事件是 Ω 的一个子集。所有事件的集合为 F。

概率

概率空间

样本空间 Ω , 事件集合 F, 概率测度 P。

事件是 Ω 的一个子集。所有事件的集合为 F。

概率测度 $P \neq F$ 到 \mathbb{R} 的一个函数。合理的概率测度,需要满足以下 3 条概率公理:

- (1) 对于任意的事件 A,有 $P(A) \ge 0$ (非负性);
- (2) $P(\Omega) = 1$ (规范性);
- (3) 对于事件 A 和 B, 如果 $A \cap B = \Phi$, 有 $P(A \cap B) = P(A) + P(B)$ (可加性)。

条件概率

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

条件概率

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

全概率公式

如果 $B_1, B_2, B_3, ..., B_n$, 那么有:

$$P(A) = \sum_{k} P(A \mid B_{k}) P(B_{k})$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Bayes 公式

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$P(A_k \mid B) = \frac{P(B \mid A_k)P(A_k)}{\sum_j P(B \mid A_j)P(A_j)}$$

随机变量与期望

随机变量的定义

函数 $X:\Omega\to\mathbb{R}$ 被称为一个随机变量。

随机变量与期望

随机变量的定义

函数 $X: \Omega \to \mathbb{R}$ 被称为一个随机变量。

随机变量的期望

$$E[X] = \sum_{\omega} P(\omega)X(\omega) = \sum_{x} xP(X = x)$$

这里 X = x 表示的是一个事件,等价于 $\omega \mid \omega \in \Omega, X(\omega) = x$ 。

随机变量与期望

随机变量的独立性与乘积的期望

对于两个随机事件 X_1, X_2 和实数 $x_1 \in X_1(\Omega), x_2 \in X_2(\Omega)$,如果有 $P(X_1 = x_1, X_2 = x_2) = P(X_1 = x_1)P(X_2 = x_2)$ 就称 X_1, X_2 相互独立。两个独立的随机变量的积的期望等于期望的积。

$$E[X_1X_2]=E[X_1]E[X_2]$$

期望的线性性

$$E[\alpha X_1 + \beta X_2] = \alpha E[X_1] + \beta E[X_2]$$

全期望公式

$$P((X \mid A) = x) = \frac{P(X = x, A)}{P(A)}$$

全期望公式

$$P((X \mid A) = x) = \frac{P(X = x, A)}{P(A)}$$
$$E[E[X \mid Y]] = E[X]$$

概率转移网络

状态转移网络是一个有向网络,由点集(状态集)V,转移概率矩阵 $G: V \times V \to [0,1]$,以及起点 v_0 组成。 其中, $\forall u \in V, \sum_{v} G[u,v] \leq 1$ 。

CF 113D

一张图,A,B 两个人初始在 a,b 两点。每分钟每个人有 p_i 的概率不动,有 $1-p_i$ 的概率等概率随机移动到一个相邻点,i 是当前点的编号。 两个人只能在点处相遇,不能再边上相遇。问在每个点相遇的概率。

CF 113D

一张图,A,B 两个人初始在 a,b 两点。每分钟每个人有 p_i 的概率不动,有 $1-p_i$ 的概率等概率随机移动到一个相邻点,i 是当前点的编号。两个人只能在点处相遇,不能再边上相遇。问在每个点相遇的概率。状态集 V 为 $V_0 \times V_0$, V_0 为题目中点的集合。转移概率矩阵不难得到。 $v_0 = (a,b)$ 。再定义停止状态集合 $S = (a,a) \mid a \in V_0$ 。

解法一: 迭代法

将 S 中状态的转移概率特殊处理,将其转移概率除了转移到自己为 1 以外其它的全部为 0。

记网络中时刻 t 时,质点位于每个点的概率为 x_t^t ,不难发现 $x_{t+1} = x^t G$ 。 而我们需要的是 x^{∞} ,当 t 足够大时, $x^t \approx x^{\infty}$ 。这个是可以用快速幂来 尽可能高地算出 G^{2^K} 。

解法二:解线性方程组

将 S 中状态的转移概率全部设为 0。 设质点停留在每个点的次数的期望 E_u 。

$$E_{u} = x_{u}^{0} + \sum_{t=1}^{\infty} x_{u}^{t} = x_{u}^{0} + \sum_{t=1}^{\infty} \sum_{v} x_{v}^{t-1} G[v, u]$$
$$= x_{u}^{0} + \sum_{v} G[v, u] \sum_{t=0}^{\infty} x_{v}^{t} = x_{u} + \sum_{v} G[v, u] E_{v}$$

两个常用不等式

Markov 不等式

$$P(X \ge a) \le \frac{E[x]}{a}$$

大多数情况下取不到等号,并且左边会远小于右边。

应用:对算法运行时间的估计。

Chebyshev 不等式

称随机变量 X 的方差 Var[x] 为 $E[(x-E[x])^2]$,标准差 σ 为 $\sqrt{Var[X]}$ 。

$$P(|X - E[x]| \ge a) \le \frac{Var[x]}{a^2}$$

$$P(|X - E[x]| \ge c\sigma) \le \frac{1}{c^2}$$

错位排列

有多少个长度为 n 的排列 P 满足对于任意的 i 有 $p_i \neq i$ 。 $n \leq 10^5$

用 f[i] 表示 i 个数的错位排列个数。 假设 $P_j = i$ 。如果 $P_i = j$,那么剩下的 i - 2 个数构成错位排列。否则 交换 p_i 和 p_i ,前面 i - 1 个数构成错位排列。

$$f[i] = f[i-2] * (i-1) + f[i-1] * (i-1)$$

时间复杂度 O(n)。

考虑容斥原理,枚举哪些位置满足 $p_i=i$ 。 设有 i 个位置满足,那么选出 i 个位置的方案是 $C(n,i)=\frac{n!}{i!(n-i)!}$,这 i 个位置满足条件的方案数是 (n-i)!,乘起来就是 n!/i!。 那么答案就是 $\sum_{i=0}^{n} (-1)^{i} \frac{n!}{i!}$ 。 时间复杂度 O(n)。

硬币购物

有 k 种硬币,面值分别为 c_1, c_2, \ldots, c_k 。某人去商店买东西,去了 m 次,每次带 d_i 枚 c_i 硬币,买价值为 n 的东西。请问每次有多少种付款方法。 $n < 10^5, m < 1000, k < 4$

令 f[i] 表示不考虑 d 的限制下,购买价值为 i 的东西的方案数。

$$f[i] = f[i - c_1] + f[i - c_2] + \cdots + f[i - c_k]$$

根据容斥原理,我们可以将"所有硬币不超过限制"转化为枚举"一些硬币超过限制"。

超过限制很好处理,只要将这种硬币强制使用 d_i 个,然后就变成没有限制了。

时间复杂度 $O(nk + m * 2^k)$ 。

RedIsGood

桌面上有 n 张红牌和 m 张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到 1 美元,黑牌则付出 1 美元。可以随时停止翻牌,在最优策略下期望能得到多少钱。 n,m < 1000

用 f[i][j] 表示剩下 i 张红牌和 j 张黑牌获得钱的期望。

$$\mathit{f[i][j]} = \max(0, (\mathit{f[i-1][j]} + 1) * \frac{\mathit{i}}{\mathit{i+j}} + (\mathit{f[i][j-1]} - 1) * \frac{\mathit{j}}{\mathit{i+j}})$$

时间复杂度 O(nm)。

yanQval (Tsinghua, IIIS)

GCD SUM

$$\dot{\overline{X}} \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)$$
 o $n,m \leq 10^6$

yanQval (Tsinghua, IIIS)

令 f[i] 为 gcd 是 i 的倍数的数对的个数,那么 $f[i] = \lfloor \frac{n}{i} \rfloor * \lfloor \frac{m}{i} \rfloor$ 。 令 g[i] 为 gcd 等于 i 的数对个数,因为 $f[i] = g[i] + g[2i] + g[3i] + \dots$,所以 $g[i] = f[i] - g[2i] - g[3i] - \dots$ 。 有了 g 之后就可以直接计算答案了。

经典题

求
$$\sum_{i=1}^n \lfloor \frac{n}{i} \rfloor$$
 和 $\sum_{i=1}^n (n \mod i)$ 。 $n \leq 10^9$

yanQval (Tsinghua, IIIS)

当 $i \le \sqrt{n}$ 时暴力; 当 $i > \sqrt{n}$ 时 $\frac{n}{i} \le \sqrt{n}$, 枚举 $\lfloor \frac{n}{i} \rfloor$ 的值即可。 $n \mod i = n - \lfloor \frac{n}{i} \rfloor * i$,类似分段计算即可。

Endless Punishment

 S_1, S_2 是 $\{1, 2, 3, ..., n\}$ 的两个子集。 有一个长度为 n 的 01 序列,每次按以下规则生成下一个序列:

- 查看下标在 S_1 中的元素有多少个 0 ,如果是奇数个则在序列后添加一个 1 ,否则添加一个 0 ;
- 删除序列的第一个数;
- 将下标在 S_2 中的元素取反;
- 例如: $S_1 = \{1,3\}, S_2 = \{2,4\}$,原串为 1000 ,则变化过程为: $1000 \rightarrow 10001 \rightarrow 0001 \rightarrow 0100$ 。

给出 S_1, S_2 ,初始状态 s 和目标状态 t ,问最少多少步能从初始状态变成目标状态。

 $n \le 31$

显然答案不会超过 2^n 。

可以构建一个 (n+1)*(n+1) 的矩阵 M,使得对于任一序列 s 的下一个序列为 sM 。

那么要求的就是 $sM^x = t$ 的最小解。

BSGS。复杂度 $O(n^22^{\frac{n}{2}})$ 。

Fast wyh2000 Transform

给出两个模 3 意义下的下标为
$$0 \sim n-1$$
 的数列 A,B ,求: $c_i \equiv \sum_{j+k=i} \binom{r}{j} a_j b_k \pmod{3}$ $n \leq 50000$

满足 $\binom{i}{j} \not\equiv 0 \pmod{3}$ 的 (i,j) 数量,因为转成三进制后 i 的每一位都要 $\geq j$ 的对应位。 直接按位枚举即可。 复杂度 $O(n^{\frac{\ln 6}{\ln 3}})$ 。

Privateparty

N 个参加聚会,和一个数组 a, a_i 表示第 i 个人讨厌的人,如果一个到聚会门口的时候发现他讨厌的人已经在聚会里面,则他不会参加聚会,否则他会参加聚会。 $a_i=i$ 表示他没有讨厌的人。N 个人来的先后顺序是任意的,也就是说 n 个来的先后顺序构成的 1 到 n 的排列是任意的。问参加聚会的人的期望是多少?

一个人是否参加舞会,会受到一些人的影响,这些人是: $w_1, w_2, w_3, \ldots, w_k$,其中 $w_1 = i$, w_1 讨厌 w_2 , w_2 讨厌 w_3 , … … , w_{k-1} 讨厌 w_k , w_k 讨厌 w_1 到 w_k 的某个人。那么他参加的概率就是: $1 - (w_2$ 比 w_1 先来的概率) + $(w_3$ 比 w_2 先来且 w_2 比 w_1 先来的概率) — … 。

无向联通图计数

n 个点的带标号无向联通图计数。 $n \leq 1000$

经典题

从 (0,0) 走到 (n,m) ,每次只能 x++ 或 y++ 。 有 k 个不可经过点 (x_i,y_i) 。 求方案数。 $n,m \le 10^5, k \le 1000$

方程

求方程
$$x_1 + x_2 + \cdots + x_n = m$$
 的非负整数解数。
要求对于 $1 \le i \le n_1, x_i \le A_i$ 。
对于 $n_1 < i \le n_1 + n_2, x_i \ge B_i$ 。
 $n, m \le 10^6, n_1, n_2 \le 8$

某 noip 模拟题

n*m 的棋盘上放棋子,棋子有 c 种颜色,每个格子最多放一个棋子。要求每行每列至少一个,整个棋盘上每种颜色至少一个。求方案数。 n,m,c < 1000

and

将 $\{a_1, a_2, ..., a_n\}$ 分成两个集合 S_1, S_2 ,使得两个集合元素的 and 和相同。求方案数。 $n < 50, a_i < 2^{20}$

substring pairs 简化

给出一个字符串 T ,求有多少个长度为 n 的串 S 满足 S 包含 T 。 $n \le 100$

substring pairs 简化

给出一个字符串 T ,求有多少个长度为 n 的串 S 满足 S 包含 T 。 $n \leq 100$ $n \leq 1000$

YetAnotherNim

现在有一个博弈游戏。 有 n 堆石子,每堆石子的数量在 $1 \sim m$ 之间,其中 $m+1=2^u$ 。 先手先从中选出连续 K 堆石子,删掉其他的所有堆。 后手接着删去任意堆石子,可以不删,但是不能全删。 然后两人开始玩 NIM 游戏。 求后手必胜的初始局面数量。 $n, m < 10^9$

题目等价于求长度为 n,每个数均在 $1 \sim m$ 之间,任意连续 K 个数线性相关的序列个数。

显然当 $K > log_2(m+1)$ 时,任意 K 个数肯定线性相关,答案就是 m^n 。 当 $K <= log_2(m+1)$ 时,补集转化为求存在某 K 个数线性无关的序列 个数。

设 $f_{i,j}$ 表示考虑了前 i 个数,且恰好后 j 个数线性无关的序列个数。

$$f_{i+1,j+1} + = f_{i,j} * (m+1-2^{j})$$

 $f_{i+1,j+1} + = f_{i,k} * 2^{j}$
 $Ans+ = f_{i,k} * m^{n-i}$

矩阵乘法优化即可。

Trichylnequality

求出满足 $\sum_{i=1}^{m} x_i \leq s, \forall i \leq m, x_i > 0, \forall i \leq n, x_i \leq t$. 的向量 X 的解数。

Trichylnequality

求出满足 $\sum_{i=1}^{m} x_i \le s, \forall i \le m, x_i > 0, \forall i \le n, x_i \le t$. 的向量 X 的解数。 $m \le 10^9, \max(1, m - 100) \le n \le m, t \le 10^5, s \le 10^{18}$

首先我们枚举前 $n \cap x$ 的取值。

则根据简单的组合数学原理我们知道答案是 $\sum_{\sum_{i=1}^n x_i = k, \forall i, 1 \leq x_i \leq t} {s-k \choose m-n}$.

注意到那个组合数对于 k 是一个 m-n 次多项式,我们可以比较方便地展开并求出每一项的系数。

将系数提前,就变成了 $\sum_{i=1}^{m-n} a_i * \sum_{\sum_{i=1}^n x_i = k, \forall i, 1 \leq x_i \leq t} k^i$.

如何求 *kⁱ*?

不妨设 $f_{n,m} = \sum_{\sum_{i=1}^n x_i = k, \forall i, 1 \leq x_i \leq t} k^m$.

可以很容易地将 k 写成 $k' + x_n$,然后二项式展开得到递推式。

矩乘加速将 $f_{n,0} \sim f_{n,m-n}$ 求出来即可。