

Contents

- What is DCF?
- DCF steps
- Forecast free cash flows
- Weighted average cost of capital
- Terminal value
- Discounting
- Enterprise to implied share price via bridge
- Mid year adjustment
- Appendix

FINANCIALEDGE^T

What Are DCF And WACC?

A DCF takes a cash flow occurring in the future and calculates how much would be paid for it today.

Imagine investing 100.0 today with a 10.0% return.

But what if it happened in reverse? You are offered 133.1 in 3 years time, and you require a 10.0% return. How much should you pay *now*?

The 100.0 represents the present value of a 133.1 future cash flow.

The investor's 10.0% required return also represents a cost of capital of 10.0% for the company being invested in.

When the company sources cash from a variety of places, a weighted average cost of capital (or WACC) is calculated.

Forecast Free Cash Flow **EBIT** Adjusted operating profit Tax on EBIT EBIT * long run tax rate NOPAT / EBIAT Net operating profit after taxes D&A A non cash item Investment in PP&E Capex Change in OWC Cash used by extra investment in OWC Other Changes in other operating assets / liabilities Free Cash Flow Cash flow produced by operations FINANCIALEDGE

Terminal Value –Two Approaches

	Growing perpetuity	Terminal EV multiple
Formula	$TV_n = \frac{FCF_n * (1+g)}{(w-g)}$	$TV_n = LTM EBITDA_n * Multiple$
Sense check	$EV \ multiple = \frac{TV_n}{LTM \ EBITDA_n}$	$\label{eq:loss_total} \text{LT growth rate} = \frac{(w*\text{TV}_n - \text{FCF}_n)}{\text{FCF}_n + \text{TV}_n}$

TV = Terminal value FCF_n = FCF in final year of forecasting w = WACC g = growth rate in perpetuity

	Period 1	Period 2	Period 3	Period 4	Period 5
Cash flow	FCF 1	FCF 2	FCF 3	FCF 4	FCF 5
Terminal value					TV
Discount factor	$\frac{1}{(1 + WACC)^1}$	$\frac{1}{(1 + WACC)^2}$	$\frac{1}{(1 + WACC)^3}$	$\frac{1}{(1 + WACC)^4}$	$\frac{1}{(1 + WACC)^5}$
Present value	FCF * discount factor				
Sum of PV of FCFs	(FCFs 1 – 5) * discount factor (1 – 5)				
PV of TV	TV * discount factor 5				
Enterprise value	Sum of PV of FCFs + PV of TV				

FINANCIAL**EDGE**

Share price

Equity

Terminal value calculation using an exit multiple assumes that the company is valued on the basis of LTM EBITDA at the end of the forecast period

FINANCIAL**EDGE**

Terminal Value - Two Approaches With Mid Year Adjustment

	Growing perpetuity	Terminal EV multiple
Formula	$TV_{n(GP)} = \frac{FCF_n * (1+g)}{(w-g)}$	$TV_{n(MM)} = LTM EBITDA_n * Multiple$
Sense check	$EV multiple = \frac{TV_{n(GP)} * (1 + w)^{0.5}}{LTM EBITDA_n}$	$\begin{split} LT \ \text{growth rate} = \\ \frac{(w*\frac{TV_{n(MM)}}{(1+w)^{0.5}} - FCF_n)}{FCF_n + \frac{TV_{n(MM)}}{(1+w)^{0.5}}} \end{split}$

TV = Terminal value

FCF_n = FCF in final year of forecasting

w = WACC

g = growth rate in perpetuity

MM = Multiple method

GP = Growing perpetuity method

