The Law of Quadratic Reciprocity

Reading

- Section 11.3
- Section 11.4

Practice Problems

11.3 1-10

11.4 1-10, 13, 14

Notes

Law of Quadratic Reciprocity

The Law of Quadratic reciprocity provides us a relation between the Legendre Symbols $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$. It offers us a way to quickly determine one from the ohter.

Law of Quadratic Reciprocity

Let p, q be odd prime numbers with $p \neq q$. Then:

- 1. If at least one of p, q is equal to $1 \mod 4$, then $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$.
- 2. If both p and q are equal to $3 \mod 4$, then $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$.

Before looking at the proof, let us see how we can use this in a simple example. Say we want to see if 3 is a quadratic residue modulo 47. They are both primes. Since both 3 and 47 are equal to 3 modulo 4, we are in case 2, so we would have:

$$\left(\frac{3}{47}\right) = -\left(\frac{47}{3}\right) = -\left(\frac{2}{3}\right) = -(-1) = 1$$

The last step is by direct inspection, as 2 is not a square modulo 3. So we conclude that 3 is in fact a quadratic residue modulo 47. In fact with some inspection we can see that $12^2 = 144 = 3 \mod 47$.

As another example, consider p=127 and q=157. We want to determine if 127 is a quadratic residue modulo 157. Since $157=1 \mod 4$, we have, we are in the first case, so:

$$\left(\frac{127}{157}\right) = \left(\frac{157}{127}\right) = \left(\frac{30}{127}\right) = \left(\frac{2}{127}\right)\left(\frac{3}{127}\right)\left(\frac{5}{127}\right)$$

1

We now have 3 things to compute, but they will all be easier:

- $(\frac{2}{127})$. We will learn how to deal with this case later on. For now, suffice to say that 2 is in fact a square modulo 127, namely $16^2 = 256 = 2 \mod 127$.
- $(\frac{3}{127})$. We will have to use quadratic reciprocity again, and both 3 and 127 are $3 \mod 4$, so we would have:

$$\left(\frac{3}{127}\right) = -\left(\frac{127}{3}\right) = -\left(\frac{1}{3}\right) = -1$$

• $(\frac{5}{127})$. Again we start with quadratic reciprocity, and we have (since $5 = 1 \mod 4$):

$$\left(\frac{5}{127}\right) = \left(\frac{127}{5}\right) = \left(\frac{2}{5}\right) = -1$$

The last step is because the only squares modulo 5 are 1 and 4.

Now we put it all together:

$$\left(\frac{127}{157}\right) = \left(\frac{2}{127}\right)\left(\frac{3}{127}\right)\left(\frac{5}{127}\right) = 1 \times -1 \times -1 = 1$$

So 127 is a quadratic residue modulo 157. In fact, $21^2 = 441 = 127 \mod 157$.

Restatement of Law of Quadratic Reciprocity

We start with a restatement:

Law of Quadratic Reciprocity (restatement)

Let p, q be odd primes, $p \neq q$. Then:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$$

We start by proving that this restatement implies the law of quadratic reciprocity:

- The right-hand-side if 1 if and only if the exponent is even, which happens if and only if at least one of $\frac{p-1}{2}$ or $\frac{q-1}{2}$ is even, which is equivalent to at least one of $p=1 \mod 4$, $q=1 \mod 4$.
- The left-hand-side is 1 if and only if the two symbols have the same sign, i.e. if and only if $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$.

It is this restatement that we will prove in the following sections.

Gauss's Lemma

Gauss's lemma is a natural followup to Euler's identity. Let us review that identity:

$$\left(\frac{a}{p}\right) = \bar{a}^{\frac{p-1}{2}} \bmod p$$

The right-hand-side suggests an analogy with Fermat's theorem. In that proof, we obtained the power a^{p-1} by observing the effect that multiplying by a had on all the reduced residues. We will do something similar here.

We start with a definition:

We separate the reduced residues modulo p in two groups:

• 1, 2, ..., $\frac{p-1}{2}$ we will call **positive residues**. The remaining ones, which we can write a $-\frac{p-1}{2}$, $-\frac{p-1}{2}+1$, ..., -1, we will call **negative residues**. They are just the negatives of the positive residues.

Multiplying the positive residues by \bar{a} have a specific behavior: It results in a reordering of the positive residues, with possibly some of them replaced by their negative residues.

If p > 2 is prime and \bar{a} is a reduced residue, consider the set:

$$\left\{a\cdot 1, a\cdot 2, \dots, a\cdot \frac{p-1}{2}\right\}$$

The resulting numbers are a reordering of $\{1, 2, \dots, \frac{p-1}{2}\}$, with possibly some signs introduced.

To prove this, the only thing needed is the following:

- If ax = b and ay = -b, then $x = a^{-1}b = -y$.
- Since the *x*'s we consider are only the positive residues, this can't happen.
- In other words, the values we get from computing ax can never include a positive residue as well as the corresponding negative residue.
- So up to the question of the sign, we will see every positive residue exactly once.

This was a preamble to Gauss's Lemma:

Gauss's Lemma

Let p > 2 be prime, and \bar{a} be a reduced residue. Let g be the number of negative residues appearing in the list:

$$\left\{a\cdot 1, a\cdot 2, \dots, a\cdot \frac{p-1}{2}\right\}$$

Then

$$\left(\frac{a}{p}\right) = (-1)^g$$

Let us prove Gauss's lemma:

• Per our previous discussion, we have:

$$(a \cdot 1)(a \cdot 3) \cdots (a \cdot \frac{p-1}{2}) = (-1)^g 1 \cdot 2 \cdots \frac{p-1}{2}$$

• We can cancel out the common terms, and get:

$$\bar{a}^{\frac{p-1}{2}} = (-1)^g$$

• Euler's identity already tells us how to do the next step:

$$\left(\frac{a}{p}\right) = \bar{a}^{\frac{p-1}{2}} = (-1)^g$$

Let us do an illustration:

We'll work modulo p=13. The positive residues are then the numbers $1,2,\ldots,6$.

We consider $\bar{a}=3$. We will multiply all the positive residues with it:

$$3 \cdot 1 = 3$$

 $3 \cdot 2 = 6$
 $3 \cdot 3 = 9 = -4$
 $3 \cdot 4 = 12 = -1$
 $3 \cdot 5 = 15 = 2$
 $3 \cdot 6 = 18 = 5$

So notice that up to the signs we just permuted the numbers 1 through 6. And we got 2 signs, so g=2.

Therefore $\left(\frac{3}{13}\right) = (-1)^2 = 1$ and 3 is a quadratic residue. In particular $4^2 = 16 = 3 \mod 13$. Let's try another number, a = 5 which will turn out to be a quadratic nonresidue. We would have:

$$5 \cdot 1 = 5$$
$$5 \cdot 2 = 10 = -3$$

$$5 \cdot 3 = 15 = 2$$

 $5 \cdot 4 = 20 = -6$
 $5 \cdot 5 = 25 = -1$
 $5 \cdot 6 = 30 = 4$

Notice once again how the numbers 1 through 6 got permuted. This time we got 3 negative signs, so g=3 and $\left(\frac{5}{13}\right)=(-1)^3=-1$, so 5 is a quadratic nonresidue.

The quadratic character of 2

We will use Gauss's lemma in our explorations on quadratic reciprocity, starting with determining when 2 is a quadratic residue.

Quadratic Character of 2

Let p > 2 be prime. Then:

- 1. If $p = \pm 1 \mod 8$, then $\binom{2}{p} = 1$. 2. If $p = \pm 3 \mod 8$, then $\binom{2}{p} = -1$.
- 3. We have:

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}$$

We proceed with the proof:

We will use Gauss's lemma. In order to do that, we need to undestand how many of the products

$$\left\{2\cdot 1, 2\cdot 2, \dots, 2\cdot \frac{p-1}{2}\right\}$$

are negative. Note that the last of these is exactly, p-1 so the values never "roll over to the positives", they are already reduced.

- The product 2k is a positive residue exactly when $2k \leq \frac{p-1}{2}$, or in other words when $k \leq \frac{p-1}{4}$.
- Therefore the number of positive residues in the products is equal to $\lfloor \frac{p-1}{4} \rfloor$, the largest integer less than or equal to $\frac{p-1}{4}$.
- So the number of negative residues equals the rest:

$$g = \frac{p-1}{2} - \lfloor \frac{p-1}{4} \rfloor$$

- All that remains is to perform this computation for the various cases of p that we have to deal with:
 - **-** If $p = 1 \mod 8$, then: * $\frac{p-1}{2}$ is even. * $\lfloor \frac{p-1}{4} \rfloor = \frac{p-1}{4}$ and is even. * $g = \frac{p-1}{2} - \frac{p-1}{4} = \frac{p-1}{4}$ is **even**.
 - **–** If $p = 3 \mod 8$, then:
 - * $\frac{p-1}{2}$ is odd. * $\lfloor \frac{p-1}{4} \rfloor = \frac{p-1}{4} \frac{1}{2} = \frac{p-3}{4}$ and is even. * $g = \frac{p-1}{2} \frac{p-3}{4} = \frac{p+1}{4}$ is **odd**.
 - If $p = -3 = 5 \mod 8$, then:

 - * $\frac{p-1}{2}$ is even. * $\lfloor \frac{p-1}{4} \rfloor = \frac{p-1}{4}$ and is odd. * $g = \frac{p-1}{2} \frac{p-1}{4} = \frac{p-1}{4}$ is **odd**.
 - **-** If $p = -1 = 7 \mod 8$, then:

 - * $\frac{p-1}{2}$ is odd. * $\lfloor \frac{p-1}{4} \rfloor = \frac{p-1}{4} \frac{1}{2} = \frac{p-3}{4}$ and is odd. * $g = \frac{p-1}{2} \frac{p-3}{4} = \frac{p+1}{4}$ is **even**.

As an illustration, recall that earlier we needed to compute $\left(\frac{2}{127}\right)$. Since $127 = -1 \mod 8$, we see that $\left(\frac{2}{127}\right) = 1$ and that 2 is a quadratic residue.