Inference for a Single Mean Estimating a population average

Download the section 16 .Rmd handout to STAT240/lecture/sect16-single-mean.

Download the file TIM.txt to STAT240/data.

The Boston Marathon is a prestigious 26.2 mile annual race.

It is held in April, but was held in October in 2011.

TIM.txt contains times of Boston Marathon runners from 2010 to 2011.

Possible questions of interest

- Average running time for a given year
- Change in running time from 2010 to 2011

Let's tidy and explore the data first.

What is the average time μ of all finishers? Write each individual observation as a random variable X_i .

We must assume that each X_i is independent with the same distribution with mean μ and sd σ .

$$X_i \sim D(\mu, \sigma)$$

Let's focus on the 3557 18-34 female finishers from 2010. The point estimate for μ is the sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

By the CLT, this variable is approximately normal for large enough n.

Our observed mean is $\bar{x} = 235.5$. How reliable is this guess?

The theoretical mean \bar{X} has $E(\bar{X} = \mu, sd(\bar{X}) = \frac{\sigma}{\sqrt{n}})$. The CLT gives

$$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

which will be the basis of our CI and H-test.

A CI, in general, is

point estimate \pm critical value imes standard error

- For μ , the point estimate is \bar{x}
- The standard error is $\frac{\sigma}{\sqrt{n}}$

We should be able to use a Z critical value:

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}} \; \dot{\sim} \; \, {\it N}(0,1)$$

Problem: we don't have σ . Instead, use a T critical value.

$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$$

The T bell curve is wider than N(0,1).

T CI for μ :

$$\bar{X} \pm t_{\alpha/2,n-1} \cdot \frac{S}{\sqrt{n}}$$

We are 95% confident that the true average time for an 18-34 year old female runner in 2010 is within (234.3, 236.7).

Check with t.test.

Is the true average time for an 18-34 year old female runner in 2010 equal to 240 minutes?

$$H_0$$
: $\mu=240$ versus H_A : $\mu \neq 240$

We need to gather evidence against H_0 with our observed $\bar{x} = 235.5$.

If $\mu=$ 240, then \bar{X} should be close to 240, and $\bar{X}-$ 240 should be small.

We also have to take estimation error (standard error) into account.

$$\frac{\bar{X} - 240}{\sigma / \sqrt{n}}$$

should be close to 0.

Formally, our model is

$$X_i \sim D(\mu, \sigma)$$

and our null is H_0 : $\mu=240$. The test statistic must have a known distribution if H_0 is true.

$$rac{ar{X}-240}{\sigma/\sqrt{n}} \ \dot{\sim} \ N(0,1)$$

will not work.

Instead, use

$$\frac{\bar{X}-240}{S/\sqrt{n}} \; \dot{\sim} \; t_{n-1}$$

Our observed test statistic is -7.41. For a two-sided p-value, calculate

$$P(t_{n-1} < -7.41) + P(t_{n-1} > 7.41)$$

We get a very small p-value, so we reject H_0 .

We can verify this result in t.test by specifying our null value.

In general, perform a T test on independent draws from the same population. Use hypotheses

$$H_0: \mu = \mu_0$$
 versus $H_A: \mu \neq \mu_0$

and test statistic

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

and null distribution t_{n-1} .

P-value calculation:

- If the alternative is H_A : $\mu < \mu_0$, the p-value is the area *below* the test statistic.
- If the alternative is H_A : $\mu > \mu_0$, the p-value is the area *above* the test statistic.
- If the alternative is H_A : $\mu \neq \mu_0$, the p-value is $2 \times$ the area *outside* of the test statistic.