Sistemas de Computação

Mestrado Integrado em Engenharia de Comunicações

2012/2013

Multiprocessamento

- Sonho dos arquitectos dos computadores
 - Criar computadores poderosos simplesmente ligando muitos computadores pequenos actualmente existentes
 - Visão de num modelo ideal as pessoas encomendam o computador com o número de processadores que podem pagar
 - Os sistemas com multiprocessadores seriam escaláveis: o hardware e o software é desenhado para ser vendido e funcionar com um número variável de processadores
 - Se um processador falhar, o sistemas continua a funcionar com *n-1*

Multiprocessamento (II)

- Algumas questões
 - Como é que os processadores partilham os dados?
 - Como é que se coordena a execução do(s) programa(s)?
 - Quantos processadores?

Multiprocessamento (II)

Partilha de dados

- Espaço único de endereçamento (também se chama de shared-memory processors) –
 existe um espaço de endereçamento de memória único. Os processadores comunicam
 através de variáveis partilhadas em memória, sendo que todos os processadores são
 capazes de aceder a qualquer posição de memória
 - Necessário coordenação entre os processadores a isto chama-se synchronization
 - · Duas opções:
 - UMA Uniform Memory Access ou SMP Symmetric Multiprocessors Leva o mesmo tempo a aceder à memória principal independentemente do processador que quer aceder e da posição da memória que é necessário aceder
 - NUMA NonUniform Memory Access Algumas memórias são mais rápidas do que outras, dependendo do processador que está a aceder
- Comunicação usando mensagens
 - Este modelo é o único possível quando se trata de sistemas com memória "privada".
 - Exemplo extremo: um conjunto de computadores ligados numa rede local e que funcionam como sendo um grande sistema multiprocessador CLUSTER

Multiprocessamento (III)

- Poucas aplicações foram escritas/reescritas para completarem uma determinada tarefa de forma mais célere em sistemas multiprocessador
- Porque é que os programas com processamento paralelo são muito mais difíceis de desenvolver do que os programas sequenciais?
 - Tem de obter uma boa performance e eficiência de um programa paralelo a ser executado num multiprocessador.
 - Senão o melhor é continuar com o sistema para um só processador que é mais simples de implementar
 - Porque é difícil criar programas para sistemas multiprocessador?
 - Overhead
 - Nota: recordar exemplo das primeiras aula em que vários jornalistas escreviam uma história
 - Necessidade de conhecer o hardware para tirar partido dele. Num sistema uni processador isso não acontece (faz-se sempre da mesma forma, escrevendo numa linguagem de alto nível e ignorando o hardware). Por outro lado, uma solução específica para um determinado modelo paralelo poderá não funcionar noutro modelo.

Multiprocessamento (IV)

Clusters

- O custo de administrar um cluster com N máquinas é quase o mesmo que administrar N máquinas independentes. O custo de administrar um sistema com N processadores e um espaço de endereçamento partilhado é quase o mesmo que administrar um máquina com um processador;
- Nos cluters as várias máquinas comunicam usando o bus de I/O (rede) enquanto que os sistemas com múltiplos processadores comunicam usando a memória;
- A memória está dividida pelas N máquinas do cluster que possuem N memórias independentes onde estão N cópias do sistemas operativo;
- As fraquezas da memória partida por várias máquinas é, afinal, a sua maior força em termos de disponibilidade e expansibilidade:
 - Cada máquina pode ser substituída sem desligar o cluster;
 - É quase impossível isolar e substituir um processador de uma máquina sem a desligar (como acontece num sistema SMP).
 - Como o software de cluster é uma camada executada sobre o sistemas operativo então é mais fácil desligar e substituir uma máquina
 - Da mesma forma: torna-se mais fácil expandir o sistema, sem paragem no serviço

Multiprocessamento (IV)

- Clusters
 - Outra grande diferença: preço
 - Os sistemas multiprocessador são poucos pelo que os custos de desenvolvimento tem de ser amortizado num número reduzido de sistemas, tornando-os caros.
 - Sistemas híbridos

Cloud computing

- Cloud computing uso de recursos computacionais (hardware e software)
 que é disponibilizado como um serviço através de uma rede (tipicamente
 a Internet).
- Os fornecedores de cloud gerem a infra-estrutura e a plataforma na qual as aplicações são executadas
- Modelos fundamentais:
 - Infrastructure as a service (laaS)
 - Exemplo: Máquinas virtuais, servidores, espaço em disco, etc.
 - Platform as a service (PaaS)
 - Exemlo: Base de dados, web server, etc.
 - Software as a service (SaaS)
 - Exemplo: CRM, E-mail, etc.
 - Network as a service (NaaS)
 - · Exemplo: VPN
 - Communication as a service (CaaS)
 - Exemplo: serviço de gravação de voz, serviço de fax, etc.

SaaS (I)

- Software as a Service (SaaS)
 - Por vezes designado de "on-demand software"
 - Modelo de disponibilização de software no qual as aplicações e os dados associados são executados e guardados algures na Internet
 - Os utilizadores acedem usando pequenos clientes (muitas vezes via browser)
 - Nos últimos anos tornou-se muito popular em inúmeras áreas: colaboração, contabilidade, finanças, gestão de clientes (incluindo CRM), etc.
 - Apresentado aos clientes como sendo um excelente modelo porque potencialmente reduz o custo com o suporte de IT, ao fazer o outsourcing da manutenção do hardware e do software
 - É considerado parte do "cloud computing", tal como
 - infrastructure as a service (laaS)
 - platform as a service (PaaS)
 - · backend as a service (BaaS)
 - Ftc.

SaaS (II)

- Software as a Service (SaaS)
 - Custo: em vez de uma licença perpetua, é vendido ao mês/ano, ou com base no número de utilizadores, no número de transacções, etc.
 - Apresenta muitas vezes um custo inicial inferior face à solução "tradicional"
 - Baseado numa arquitectura que permite suportar inúmeros clientes
 - Os parâmetros da aplicação permitem configura-la segundo as necessidades de cada cliente
 - Software actualizado frequência
 - Protocolos normalizados permitem a interacção com aplicações específicas do cliente
 - Desvantagens
 - Segurança dos dados;
 - Velocidade
 - Sendo executado na rede (Internet), o tempo de resposta poderá ser inferior;
 - Sendo uma aplicação que é disponibilizada a inúmeros clientes então o nível de personalização pode ser limitado;
 - Mudança da SaaS pode ser complexo e lento, dado o imenso volume de dados que poderá ser necessário transferir;
 - Algumas organizações podem não querer migrar para as novas versões do software pelos custos que isso representa em termos de formação/aprendizagem.