(HOW) DO YOU KNOW WHAT I MEAN? TRANSLATION & IMPLICATION

Ani Guerdjikova University of Grenoble-Alpes

Evan Piermont Royal Holloway, University of London

John Quiggin University of Queensland

Hong Kong Baptist University --- April 2025

Economists like to model uncertainty via state-spaces:

Awareness complicates the picture

- \diamond A set W; each $w \in W$ represents a complete resolution of uncertainty
- ⋄ Reasoning about states is hard everything is included in a state

Introspectively, it seems we reason	about state <i>ments</i> not states.

- ♦ This is dependent of language of the decision maker
- 8.18
- Under rationality assumptions, equivalent to the state-space model

But, what if two agents speak different languages?

This paper:

- ♦ Is a theory of translation
- Posits how an agent's language represents their understanding of uncertainty
- How this might be communicated between agents
- When there is a universal perspective that unifies the different agent's views

 A **language** is a Boolean Algebra $\mathcal L$ representing sets of statements that can be true or false:

- ⋄ closed under negation ¬
 - \diamond if λ is a statement in \mathcal{L} , then so is $\neg \lambda$
- ⋄ closed under disjunction ∨
 - \diamond if λ and η are statements in \mathcal{L} , then so is $\lambda \vee \eta$
- \diamond We define $\lambda \wedge \eta = \neg(\neg \lambda \vee \neg \eta)$

A **truth assignment** for \mathcal{L} is a function

$$w: \mathcal{L} \to \{0, 1\}$$

such that for all $\lambda, \eta \in L$:

$$\diamond \ w(\neg \lambda) = 1 - w(\lambda)$$

$$\diamond \ w(\lambda \lor \eta) = \max\{w(\lambda), w(\eta)\}\$$

$$\diamond \ \ \mathsf{Therefore}, \ w(\lambda \wedge \eta) = \min\{w(\lambda), w(\eta)\}$$

Then $W(\mathcal{L})$ is the set of all truth assignments for \mathcal{L}

$\mathcal L$ is constructed from the primitive statements

- $\diamond \lambda_{cat} = "Martin" is a cat"$
- $\diamond \lambda_{dog}$ ="Martin is a dog"
- $\diamond \lambda_{mam}$ ="Martin is a mammal"

under the axioms / presumption that:

- $\diamond \neg (\lambda_{cat} \wedge \lambda_{dog})$
 - It is not possible to be a dog and a cat
- $\diamond \ \lambda_{mam} \lor (\neg \lambda_{cat} \land \neg \lambda_{dog})$
 - Martin is either a mammal or he is not a dog and is not a cat

λ_{cat}	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$
$\neg \lambda_{dog}$	λ_{dog}	$\neg \lambda_{dog}$	$\neg \lambda_{dog}$
λ_{mam}	λ_{mam}	λ_{mam}	$\neg \lambda_{mam}$
7171	Wo	Wo	7174

IMPLICATION

Say that λ **implies** η (in \mathcal{L}) if

$$w(\lambda) \le w(\eta)$$

for all $w \in W(\mathcal{L})$. We then write:

$$\lambda \Rightarrow_{\mathcal{L}} \eta$$

- \diamond A **tautology** is a statement that gets mapped to 1 under every $w \in W(\mathcal{L})$
 - \diamond For example: $\lambda \vee \neg \lambda$
- \diamond A **contradiction** is a statement that gets mapped to 0 under every $w \in W(\mathcal{L})$
 - For example: $\lambda \land \neg \lambda$

 $W(\mathcal{L})$ acts as a state-space for \mathcal{L} :

- \diamond The event corresponding to λ is $\mathbf{v}(\lambda) = \{w \in W \mid w(\lambda) = 1\}$
 - \diamond Implication is containment: $\lambda \Rightarrow \eta$ if and only if $\mathbf{v}(\lambda) \subseteq \mathbf{v}(\eta)$
 - ♦ Tautology maps to entire state-space, Contradiction to empty-set

λ_{cat} $\neg \lambda_{dog}$	$ \begin{array}{c} \neg \lambda_{cat} \\ \lambda_{dog} \end{array} $	$\neg \lambda_{cat} \\ \neg \lambda_{dog}$	$\neg \lambda_{cat} \\ \neg \lambda_{dog}$
λ_{mam}	λ_{mam}	λ_{mam}	$\neg \lambda_{mam}$
w_1	w_2	w_3	w_4

Xeat Adag	$\neg \lambda_{cat}$ λ_{dog}		$\neg \lambda_{cat} \\ \neg \lambda_{dog}$
λ_{mam}	λ_{mam}	λ_{mam}	$\neg \lambda_{mam}$
w_1	w_2	w_3	w_4

Event $\mathbf{v}(\lambda_{cat})$ = "Martin is a cat"

$\lambda_{ m cat}$	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$
$ eg \lambda_{dog}$	λ_{dog}	$ eg \lambda_{dog}$	$\neg \lambda_{dog}$
λ_{mam}	λ_{mam}	λ_{mam}	$\neg \lambda_{mam}$
w_1	w_2	w_3	w_4

Event $\mathbf{v}(\lambda_{mam})$ = "Martin is a Mammal"

λ_{cat}	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$
$\neg \lambda_{dog}$	λ_{dog}	$ eg \lambda_{dog}$	$\neg \lambda_{dog}$
λ_{mam}	λ_{mam}	λ_{mam}	$\neg \lambda_{mam}$
w_1	w_2	w_3	w_4

 $\mathbf{v}(\lambda_{cat}) \subseteq \mathbf{v}(\lambda_{mam})$, cat implies mammal

$\begin{array}{c c} \lambda_{cat} \\ \neg \lambda_{dog} \\ \lambda_{mam} \end{array}$	$ abla_{cat} $ $ \lambda_{dog} $ $ \lambda_{mam} $		$ eg \lambda_{cat} $ $ eg \lambda_{dog} $ $ eg \lambda_{mam} $
w_1	w_2	w_3	w_4

Event $\mathbf{v}(\neg(\lambda_{cat} \lor \lambda_{dog}))$ = "Martin is not a cat or a dog"

The second secon

There are two agents, 1 and 2, each endowed with a language \mathcal{L}_1 and \mathcal{L}_2

- \diamond let \Rightarrow_i denote implication in *i*'s language
- \diamond let t_i and f_i denote the tautology and contradiction

A translation operator (from i to j) is a function

$$\mathsf{T}_{i o j} : \mathcal{L}_i^* o \mathcal{L}_i^*$$

- \diamond $\mathsf{T}_{i \to j}(\lambda)$ is the translation of λ into the language j.
- $\diamond \ \mathcal{L}^* = \mathcal{L} \cup \{*\}$
- \diamond We allow $\mathsf{T}_{i\to j}(\lambda)=*$ to indicate that the translation of λ is undefined

We consider two kinds of translations

- \diamond Inner Translation operator $\mathsf{T}_{i\to i}^-$
 - Provides a more specific approximation
- \diamond Outer Translation operator $\mathsf{T}^+_{i o j}$
 - Provides a more general approximation

Consider a Spanish speaker, \mathcal{L}_{j} , who is never heard of 'mammals'

- ϕ η_{qat} ="Martin es un gato"
- $\diamond \ \eta_{per} =$ "Martin es un perro"
- ϕ η_{ani} ="Martin es un animal"

η_{gat}	$ eg \eta_{gat}$	$ eg \eta_{gat}$	$ eg \eta_{gat}$
$\neg \eta_{per}$	η_{per}	$\neg \eta_{per}$	$\neg \eta_{per}$
η_{ani}	η_{ani}	η_{ani}	$\neg \eta_{ani}$
w'_1	w_2'	w_3'	w_4'

We could translation λ_{cat} = "Martin is a cat" from i o j:

$$\mathsf{T}^-_{i\to j}(\lambda_{cat}) = \eta_{gat} = \mathsf{T}^+_{i\to j}(\lambda_{cat})$$

- \diamond There is no gap between $\mathsf{T}^-_{i o j}$ and $\mathsf{T}^+_{i o j}$
- ♦ This is a 'perfect' translation

How then should we translation λ_{mam} = "Martin is a mammal" from $i \rightarrow j$?

- $\diamond j$ has never heard of a mammal, there is no statement in his language that captures it exactly
- $\diamond~$ All cats and dogs are mammals so $(\eta_{gat} \lor \eta_{per})$ is more specific

$$T_{i \to j}^-(\lambda_{mam}) = (\eta_{gat} \vee \eta_{per})$$

 \diamond All mammals are animals so η_{ani} is a more general

$$\diamond \mathsf{T}^+_{i \to j}(\lambda_{mam}) = \eta_{ani}$$

$$\mathcal{L}_i$$

$$\mathcal{L}_{j}$$

$$\lambda_{egg}$$
 ="Tonya lays eggs"

$$\eta_{huev}$$
 ="Tonya pone huevos"

$$\lambda_{mam}$$
 ="Tonya is a mammal"

$$\eta_{mam}$$
 ="Tonya es un mamífero"

$$\lambda_{plat}$$
 ="Tonya is a platypus"

- $\diamond~i$ is aware of platypus, so $(\lambda_{egg} \wedge \lambda_{mam}) \Rightarrow_i \lambda_{plat}$
- $\diamond~j$ is not aware of platypus, so $(\eta_{huev} \wedge \eta_{mam}) \Rightarrow_j f_j$

How should we translate λ_{mam} from $i \to j$?

- $\diamond~\eta_{mam}$ is more specific than λ_{mam} , so $\mathsf{T}^-_{i o j}(\lambda_{mam}) = \eta_{mam}$ makes sense
- \diamond But there is *no* element in \mathcal{L}_j more general
 - ⋄ Nothing in *j*'s language allows for platypus
- \diamond So, we can set $\mathsf{T}^+_{i\to j}(\lambda_{mam})=*$

In the example, we use exogenously impose what is more specific / general:

- \diamond i.e., took for granted that gato \Rightarrow mammal, etc
 - Where do they come from?
- \diamond What if we just observe the operators $\mathsf{T} = \langle \mathsf{T}_{i \to j}^-, \mathsf{T}_{i \to j}^+, \mathsf{T}_{i \to j}^-, \mathsf{T}_{i \to j}^+ \rangle$
 - When does T behave like a translation?

The state of the s

C1: Galois

For all $\lambda \in \mathcal{L}_i^*$ and $\eta \in \mathcal{L}_j^*$:

$$\eta \Rightarrow_j \mathsf{T}^-_{i \to j}(\lambda)$$

if and only if

$$\mathsf{T}^+_{j\to i}(\eta) \Rightarrow_i \lambda.$$

- \diamond If η is more specific than the $\mathsf{T}^-_{i o j}(\lambda) ...$
 - $\diamond \ \eta_{gat}$ was more specific than $\mathsf{T}^-_{i o j}(\lambda_{mam}) = (\eta_{gat} \lor \eta_{per})$
- \diamond Then λ is more general than $\mathsf{T}^+_{j \to i}(\eta)$.
 - $\diamond~\lambda_{mam}$ was more general than $\mathsf{T}^+_{j o i}(\eta_{gat}) = (\lambda_{cat})$
- ⋄ C1 is abstract but provides a lot of structure

T1. T^- and T^+ preserve contradiction:

$$\mathsf{T}_{i\to j}^-(f_i) = \mathsf{T}_{i\to j}^+(f_i) = f_j$$

T2. T^- and T^+ preserves implication:

$$\lambda \Rightarrow_i \lambda' \text{ implies } \begin{cases} \mathsf{T}^-_{i \to j}(\lambda) \Rightarrow_j \mathsf{T}^-_{i \to j}(\lambda') \text{ and } \\ \mathsf{T}^+_{i \to j}(\lambda) \Rightarrow_j \mathsf{T}^+_{i \to j}(\lambda') \end{cases}$$

T3. $\mathsf{T}_{i \to j}^-$ preserves conjunction:

$$\mathsf{T}^-_{i \to i}(\lambda \wedge \lambda') = \mathsf{T}^-_{i \to i}(\lambda) \wedge \mathsf{T}^-_{i \to i}(\lambda')$$

T4. $T_{i \to j}^+$ preserves disjunction:

$$\mathsf{T}^+_{i \to i}(\lambda \lor \lambda') = \mathsf{T}^+_{i \to i}(\lambda) \lor \mathsf{T}^+_{i \to i}(\lambda')$$

C2: Approximation

For all $\lambda_i \in \mathcal{L}_i^*$ we have $\mathsf{T}_{i \to j}^-(\lambda_i) \Rightarrow_j \mathsf{T}_{i \to j}^+(\lambda_i)$.

⋄ The inner translation should be more specific than the outer translation

Cross Language Implication

CROSS LANGUAGE IMPLICATION

Consider a binary relation \Rightarrow^* over $\mathcal{L}_i \cup \mathcal{L}_j$

- ⋄ represents when one statement implies another, *across* languages
- this is, in principle, able to arise naturally
- further is is observable to some outside modeler

CROSS LANGUAGE IMPLICATION

- ⋄ *j* is trying to ascertain whether *perro* (dog) implies *mammal*.
 - ⋄ *j* could point to various *perros*
 - ♦ *i* affirm that these are all also *mammals*
 - exhibits the implication holds
- \diamond now *i* is trying to ascertain whether *mammal* implies *perro*:
 - ⋄ *i* could point to various *mammals*
 - ⋄ when pointing at a cat, j can deny that it is a mammal
 - refutes the implication holds

We posit four axioms that ⇒* should satisfy

I1: Within Language Consistency

 $\lambda_i \Rightarrow^{\star} \lambda_i'$ if and only if $\lambda_i \Rightarrow_i \lambda_i'$.

For all
$$\lambda_i, \lambda_i' \in \mathcal{L}_i$$
:

I2: Transitivity

⇒* is transitive

3: Connective Consistency

(i) $\lambda_i \Rightarrow^* \eta_i$ and $\lambda_i \Rightarrow^* \eta_i'$ implies $\lambda_i \Rightarrow^* (\eta_i \wedge \eta_i')$

(ii) $\eta_j \Rightarrow^{\star} \lambda_i$ and $\eta'_i \Rightarrow^{\star} \lambda_i$ implies $(\eta_j \wedge \eta'_i) \Rightarrow^{\star} \lambda_i$

Let
$$\eta_j, \eta_j' \in \mathcal{L}_j$$
 and $\lambda_i \in \mathcal{L}_j$. Then:

I4: Principle of Explosion

For all $\lambda_j \in \mathcal{L}_j$,

 $f_i \Rightarrow^{\star} \lambda_j$

Theorem

The following are equivalent:

- (1) T satisfies C1 and C2
- (2) There exists some \Rightarrow^* satisfying I1—I4 such that

$$egin{aligned} \mathsf{T}^-_{i o j}(\lambda_i) &= \bigvee \{\eta_j \in \mathcal{L}_j \mid \eta_j \Rightarrow^\star \lambda_i\}, \quad \mathsf{and} \ \mathsf{T}^+_{i o j}(\lambda_i) &= \bigwedge \{\eta_j \in \mathcal{L}_j \mid \lambda_i \Rightarrow^\star \eta_j\}, \end{aligned}$$

$$\diamond$$
 We define $\bigwedge \varnothing = *$

 $\diamond W(\mathcal{L}_i)$ and $W(\mathcal{L}_i)$ act as 'local' state-spaces

♦ As in measure theory, etc

- \diamond If W^* is some 'global' state-space that nests both:

 - Then translation operators appear as inner and outer approximation

	η_{gat}	λ_{cat}	$\neg \eta_{gat}$	$\neg \lambda_{cat}$						
W^{\star}	$\neg \eta_{per} \neg \lambda$	λ_{dog}	η_{per}	λ_{dog}	$\neg \eta_{per}$	$\neg \lambda_{dog}$	$\neg \eta_{per}$	$\neg \lambda_{dog}$	$\neg \eta_{per}$	$\neg \lambda_{dog}$
	η_{ani}	λ_{mam}	η_{ani}	λ_{mam}	η_{ani}	λ_{mam}	η_{ani}	$\neg \lambda_{mam}$	$\neg \eta_{ani}$	$\neg \lambda_{mam}$

	λ_{cat}	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$
$W(\mathcal{L}_i)$	$\neg \lambda_{dog}$	λ_{dog}	$\neg \lambda_{dog}$	$ eg \lambda_{dog}$
	λ_{mam}	λ_{mam}	λ_{mam}	$\neg \lambda_{mam}$

$W(\mathcal{L}_j)$	$\eta_{gat} \ abla \eta_{per}$	$ eg \eta_{gat} onumber onumbe$	$ eg \eta_{gat} \ eg \eta_{per}$	$ eg \eta_{gat}$ $ eg \eta_{per}$
	η_{ani}	η_{ani}	η_{ani}	$\neg \eta_{ani}$

	η_{gat} λ_{cat}	$\neg \eta_{gat} \ \neg \lambda_{cat}$			
W^{\star}	$\neg \eta_{per} \ \neg \lambda_{dog}$	η_{per} λ_{dog}	$\neg \eta_{per} \ \neg \lambda_{dog}$	$\neg \eta_{per} \ \neg \lambda_{dog}$	$\neg \eta_{per} \ \neg \lambda_{dog}$
	η_{ani} λ_{mam}				$\neg \eta_{ani} \ \neg \lambda_{mam}$

$W(\mathcal{L}_i)$ $\neg \lambda_{dog}$ λ_{dog} $\neg \lambda_{dog}$ $\neg \lambda_{dog}$ $\neg \lambda_{mam}$ $\neg \lambda_{mam}$		λ_{cat}	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$
λ_{mam} λ_{mam} λ_{mam} $\neg \lambda_{mam}$	1/1/(// .)	$\neg \lambda_{dog}$	λ_{dog}	$\neg \lambda_{dog}$	$\neg \lambda_{dog}$
		λ_{mam}	λ_{mam}	λ_{mam}	$ eg \lambda_{mam}$

$W(\mathcal{L}_j)$	η_{gat} $ eg\eta_{per}$ η_{ani}	$ eg \eta_{gat} onumber onumbe$	$ eg \eta_{gat} \ eg \eta_{per} \ eg \eta_{ani}$	$ eg \eta_{gat}$ $ eg \eta_{per}$ $ eg \eta_{ani}$
--------------------	---	---	--	--

W^{\star}			
			$\neg \eta_{ani} \ \neg \lambda_{mam}$

	λ_{cat}	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$
$W(\mathcal{L}_i)$	$\neg \lambda_{dog}$	λ_{dog}	$\neg \lambda_{dog}$	$ eg \lambda_{dog}$
	λ_{mam}	λ_{mam}	λ_{mam}	$ eg \lambda_{mam}$

$W(\mathcal{L}_j)$	Ngat Hyper Nanci	Ngat Nper Novo	$ eg \eta_{gat} \ eg \eta_{per} \ eg \eta_{ani}$	$ eg \eta_{gat} $ $ eg \eta_{per} $ $ eg \eta_{ani} $	
--------------------	------------------------	----------------------	--	---	--

	η_{gat} λ_{cat}	$\neg \eta_{gat} \ \neg \lambda_{cat}$			
W^{\star}	$\neg \eta_{per} \ \neg \lambda_{dog}$	η_{per} λ_{dog}	$\neg \eta_{per} \ \neg \lambda_{dog}$	$\neg \eta_{per} \ \neg \lambda_{dog}$	$\neg \eta_{per} \ \neg \lambda_{dog}$
	η_{ani} λ_{mam}				$\neg \eta_{ani} \ \neg \lambda_{mam}$
,					

	λ_{cat}	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$	$ eg \lambda_{cat}$
$W(\mathcal{L}_i)$	$\neg \lambda_{dog}$	λ_{dog}	$\neg \lambda_{dog}$	$ eg \lambda_{dog}$
	λ_{mam}	λ_{mam}	λ_{mam}	$\neg \lambda_{mam}$

$$W(\mathcal{L}_j)$$
 Reper Reper Reper η_{gat} η_{gat} η_{gat} η_{gat} η_{per} η_{per} η_{per} η_{ani}

	η_{gat} λ_{cat}	$\neg \eta_{gat} \ \neg \lambda_{cat}$			
W^{\star}	$\neg \eta_{per} \ \neg \lambda_{dog}$	η_{per} λ_{dog}	$\neg \eta_{per} \ \neg \lambda_{dog}$	$\neg \eta_{per} \ \neg \lambda_{dog}$	$\neg \eta_{per} \ \neg \lambda_{dog}$
	η_{ani} λ_{mam}				$\neg \eta_{ani} \ \neg \lambda_{mam}$
,					

	λ_{cat}	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$	$\neg \lambda_{cat}$
$W(\mathcal{L}_i)$	$\neg \lambda_{dog}$	λ_{dog}	$\neg \lambda_{dog}$	$\neg \lambda_{dog}$
	λ_{mam}	λ_{mam}	λ_{mam}	$ eg \lambda_{mam}$

$$W(\mathcal{L}_j)$$
 η_{gat} η_{gat} η_{gat} η_{gat} η_{gat} η_{gat} η_{per} η_{per} η_{per} η_{per} η_{ani}

W^{\star}	$egin{array}{ll} \lambda_{egg} \ \eta_{huev} & \lambda_{max} \ \eta_{mam} & \lambda_{plat} \end{array}$	$ eg \eta_{huev} $ $ eg \eta_{mam} $	λ_{mam}	η_{huev} $\neg \eta_{mam}$	$\neg \lambda_{mam}$	$ eg \eta_{huev} $ $ eg \eta_{mam} $	$\neg \lambda_{mam}$	ı
1	7		7		7		P	1

$W(\mathcal{L}_i)$	$\lambda_{egg} \ \lambda_{mam}$	$ egliphi_{egg} \ \lambda_{mam}$	$\lambda_{egg} \ eg \lambda_{mam}$	$ egg$ $ eg \lambda_{mam}$
	λ_{plat}	$ eg \lambda_{plat}$	$ eg \lambda_{plat}$	$ eg \lambda_{plat}$

$W(\mathcal{L}_j)$	$ eg\eta_{huev}$ η_{mam}	$\eta_{huev} \ eg \eta_{mam}$	$ eg \eta_{huev} onumber onumb$
--------------------	-------------------------------	--------------------------------	---

W^{\star}	$egin{array}{ll} \lambda_{egg} & \lambda_{mam} \ \eta_{mam} & \lambda_{plat} \end{array}$	$egin{array}{cccc} & & \neg \lambda_{egg} \ & & & \lambda_{mam} \ & & & & \gamma_{huev} \ & & & & & \neg \lambda_{plat} \end{array}$	η_{huev} $\neg \lambda_{mam}$	$ \begin{array}{ccc} $

	λ_{egg}	$ eg \lambda_{egg}$	λ_{egg}	$\neg \lambda_{egg}$
$W(\mathcal{L}_i)$	λ_{mam}	λ_{mam}	$\neg \lambda_{mam}$	$\neg \lambda_{mam}$
	λ_{plat}	$ eg \lambda_{plat}$	$\neg \lambda_{plat}$	$ eg \lambda_{plat}$
'				

$W(\mathcal{L}_j)$	$ eg\eta_{huev} $ $ eg\eta_{mam}$	$\eta_{huev} \ abla \eta_{mam}$	$ eg \eta_{huev} onumber onumb$	
--------------------	-----------------------------------	----------------------------------	---	--

117*	η_{huev} ,	$\neg \eta_{huev}$ $\neg \lambda_{egg}$	η_{huev} ,	$\neg \eta_{huev}$ $\neg \lambda_{egg}$
W*	$\eta_{mam} egin{array}{c} \lambda_{mam} \ \lambda_{plat} \end{array}$	λ_{mam}	$\neg \lambda_{mam}$	

$W(\mathcal{L}_i)$	$\lambda_{egg} \ \lambda_{mam}$	$ egg \ \lambda_{mam}$	$\lambda_{egg} \ abla \lambda_{mam}$	$ egg$ $ eg \lambda_{mam}$
	λ_{plat}	$ eg \lambda_{plat}$	$\neg \lambda_{plat}$	$ eg \lambda_{plat}$

$W(\mathcal{L}_j)$	-Meaco Brasis	$\eta_{huev} \ abla \eta_{mam}$	$ eg\eta_{huev}$ $ eg\eta_{mam}$
--------------------	------------------	----------------------------------	----------------------------------

W^{\star}	$egin{array}{ll} \lambda_{egg} & \lambda_{mam} \ \eta_{mam} & \lambda_{plat} \end{array}$	$egin{array}{cccc} & & \neg \lambda_{egg} \ & & & \lambda_{mam} \ & & & & \gamma_{huev} \ \end{array}$	$\neg \lambda_{mam}$	$ \begin{array}{ccc} $	
					_

т

$W(\mathcal{L}_i)$	$\lambda_{egg} \ \lambda_{mam}$	$ egliphi_{agg} \ \lambda_{mam}$	$\lambda_{egg} \ abla \lambda_{mam}$	$ egline \lambda_{egg}$ $ egline \lambda_{mam}$
	λ_{plat}	$ eg \lambda_{plat}$	$\neg \lambda_{plat}$	$ eg \lambda_{plat}$

$W(\mathcal{L}_j)$	$^{\neg\eta_{huev}}_{\eta_{mam}}$	$\eta_{huev} \ abla \eta_{mam}$	$ eg \eta_{huev} onumber onumb$
--------------------	-----------------------------------	----------------------------------	---

W^{\star}	$egin{array}{ll} \lambda_{egg} & \lambda_{huev} & \lambda_{mam} \ \eta_{mam} & \lambda_{plat} \end{array}$	$egin{array}{lll} & & \neg \lambda_{egg} \ & \neg \eta_{huev} & & \lambda_{mam} \ & \eta_{mam} & & \neg \lambda_{plat} \end{array}$	$\neg \lambda_{mam}$	$ \begin{array}{c} $
'				

$W(\mathcal{L}_i)$	$\lambda_{egg} \ \lambda_{mam}$	$ egg \ \lambda_{mam}$	$\lambda_{egg} \ abla \lambda_{mam}$	$ egg \ egg \ egg \ egg$
	λ_{plat}	$ eg \lambda_{plat}$	$\neg \lambda_{plat}$	$ eg \lambda_{plat}$

$W(\mathcal{L}_j)$	** Theory Trease	η_{huev} $ eg\eta_{mam}$	$ eg \eta_{huev} \ eg \eta_{mam}$
--------------------	------------------	-------------------------------	------------------------------------

Does such a state-space W^* always exist?

EXAMPLE

 \mathcal{L}_i

$$\mathcal{L}_{i}$$

 $\lambda =$ "God exists"

$$\eta=$$
 "Dios es bueno"

 $\neg \lambda =$ "God does not exist"

$$\neg \eta =$$
 "Dios es malvado"

- $\diamond i$ defines God as benevolent, but is unsure God exists
 - i cannot conceive of an evil God
- j defines God as what is in the universe, but is unsure of the moral character God
 - ⋄ j cannot conceive God that does not exist

EXAMPLE

$$\mathcal{L}_i$$

$$\mathcal{L}_j$$

$$\lambda =$$
 "God exists"

$$\neg \lambda =$$
 "God does not exist"

$$\mathsf{T}^-_{i\to j}(f_i) = f_j \qquad \qquad \mathsf{T}^+_{i\to j}$$

$$\begin{aligned} \mathbf{T}^-_{i \to j}(\lambda) &= \eta \\ \mathbf{T}^-_{i \to j}(\neg \lambda) &= f_j \end{aligned}$$

$$\mathsf{T}^-_{i\to j}(\mathit{t}_i) = \mathit{t}_j$$

$$\eta=$$
 "Dios es bueno"

$$\neg \eta =$$
 "Dios es malvado"

$$\mathsf{T}_{i\to j}^+(f_i) = f_j$$
$$\mathsf{T}_{i\to j}^+(\lambda) = \eta$$

$$\mathsf{T}^+_{i\to j}(\neg\lambda) = t_j$$
$$\mathsf{T}^+_{i\to j}(\neg\lambda) = t_j$$

$$\mathsf{T}^+_{i \to j}(t_i) = t_j$$

This satisfies our axioms but admits no state-space representation:

- $\diamond \;$ That ${\sf T}^-_{i\to j}(t_i)=t_j={\sf T}^+_{i\to j}(t_i)$ requires that t_i and t_j map to the same event
 - \diamond That $\mathsf{T}^-_{i o j}(\lambda)=\eta=\mathsf{T}^+_{i o j}(\lambda)$ requires that λ and η map to the same event
 - \diamond Then, preservation of \neg as complementarities requires that $\neg\lambda$ and $\neg\eta$ map to the same event
 - But this last requirement does not hold!

If
$$\mathsf{T}^-_{i\to j}(t_i)=t_j=\mathsf{T}^+_{i\to j}(t_i)$$
:

- ⋄ i.e., aware of the same states
- then a state-space exists iff and only if

C3: Duality

$$\mathsf{T}^-_{i \to j}(\neg \lambda_i) = \neg \mathsf{T}^+_{i \to j}(\lambda_i)$$

$$\diamond \ \ \text{In the example:} \ \mathsf{T}^-_{i\to j}(\neg\lambda) = f_j \neq \neg \eta = \neg \mathsf{T}^+_{i\to j}(\lambda)$$

For $\lambda_i \in \mathcal{L}_i$ and $\eta_j \in \mathcal{L}_j$ such that $\lambda_i \Rightarrow^* t_j$ (or $\lambda_i \Rightarrow_i \mathsf{T}_{j \to i}^-(t_j)$ or $\mathsf{T}_{i \to j}^+(\lambda_i) \neq *$):

C3: Strong (Inner) Consistency
$$\eta_j \Rightarrow_j \mathsf{T}^-_{i \to j}(\neg \lambda_i) \qquad \text{implies} \qquad \lambda_i \Rightarrow_i \mathsf{T}^-_{j \to i}(\neg \eta_j).$$

$$\mathsf{T}^-_{i o j}(\lnot\lambda_i) = \lnot \mathsf{T}^+_{i o j}(\lambda_i) \land \mathsf{T}^-_{i o j}(t_i).$$

C3: Negation Consistency

$$\eta_j \Rightarrow^{\star} \neg \lambda_i \quad \text{implies} \quad \lambda_i \Rightarrow^{\star} \neg \eta_j.$$

Theorem

A translation T satisfies C1 and C2 any (hence all) version of C3 if and only if there exists a joint state-space that represents both \mathcal{L}_i and \mathcal{L}_j .

 \diamond there exists $\mathbf{v}_i: \mathcal{L}_i \to 2^W$ and $\mathbf{v}_i: \mathcal{L}_i \to 2^W$ are 'locally' Boolean

Thank You & Thank or a secretary and the secreta