TD Maths discrètes

William Hergès*

10 octobre 2025

^{*}Sorbonne Université

Retour sur les copies

Les résultats ne sont pas bons. Tout le monde devrait pouvoir avoir 5/10 (la moyenne est à 4/10). Il y a un problème de vitesse et d'apprentissage du cours.

Soient a un plus grand élément de A et m le maximum de A. Par anti-symétrie, $a \preceq M$ et $M \preceq a$ par leurs définitions, alors a = M. Si m_1 et m_2 sont deux maximums de A, par anti-symétrie, ils sont égaux.

 $\mathbb{N} \cup \{a\}$ munie de \leqslant possède un élément maximal (a), mais pas de maximum (il n'existe pas de majorant dans \mathbb{N}).

Soient m_1 et m_2 deux éléments maximals de A. Comme \preceq est totale, on a $m_1 \preceq m_2$ et $m_2 \preceq m_1$. Par anti-symétrie, $m_1 = m_2$, i.e. l'élément maximal est unique.

Il y a le même nombre d'élément dans $P=\mathcal{P}(\{a,b,c\})$ et dans $E=\{1,2,3,6,7,14,21,42\}.$ Si on définit f de P dans E tels que $f(p)=\prod_{a\in p}a$ où l'équivalent dans $\mathbb N$ est $\varnothing=1,\ \{a\}=2,\ \{b\}=3$ et $\{c\}=7.$ Cette application est bijective (la réciproque est $f^{-1}(e)=\{p,p|e\}$ avec la même clé). Elle est aussi monotone car $p_1\subseteq p_2$ et $f(p_1)|f(p_2)$ car $f(p_2)$ est une mulitple de p_1 .

Sinon, on dessine le graphe couvrant : c'est plus propre.

Version propre de mon idée : après avoir défini les valeurs, on définit f comme étant $f(A \cup B) = f(A) \times f(B)$.

Elle n'est clairement pas bijective car $8=f(\{1,3,4\})=f(\{8\}).$

« α est un préfixe de β » est :

$$\forall k < \min(n_1, n_2), \quad \alpha_k = \beta_k$$

avec n_1 la taille de α et n_2 est la taille de β . On note cette relation \preceq .

$$(\exists i, \forall k < i, a_k = b_k \land a_i \preceq_A b_i) \lor a = b$$

C'est un ordre total car \leq_A est total.

Soit $n \in \mathbb{N}$. On a $a^nb \preceq a^{n+1}b$. Donc \preceq n'est pas bien fondé.

Exercice en plus

Soit A un alphabet composé de $\{a,b\}$. On définit un langage $L\subseteq A^*$ par induction structurelle :

```
\begin{array}{l} \boldsymbol{--} \ a \in L \\ \boldsymbol{--} \ \forall (u,v) \in L^2, uvb \in L \end{array}
```

Soit $u\in L$ où u possède une taille de 2. Ainsi, u est soit égal à a, soit de la forme v_1v_2b . Donc b est forcément dans u. Ainsi, $v_1=a$ ou $v_1=\varepsilon$ et v_2 est le choix restant. Or, ε n'est pas dans L, donc u est impossible.

 $u\in L$. Donc aua est aussi dans L. Ainsi, le miroir de aua est $a\tilde{u}a$. Donc bub est aussi dans L. Ainsi, le miroir de bub est $b\tilde{u}b$. Comme $\tilde{u}=u$, on a que la propriété est vraie.