Term Project ECE - 111

Viterbi Decoder

1.

a. RTL schematic

b. Post mapping schematic

c. Resource usage

	Resource	Usage
1	▼ ALUTs Used	391 / 36,100 (1%)
1	Combinational ALUTs	391 / 36,100 (1%)
2	Memory ALUTs	0 / 18,050 (0 %)
3	LUT_REGs	0 / 36,100 (0 %)
2	Dedicated logic registers	255 / 36,100 (< 1 %)
3		
4	▼ Combinational ALUT usage by number of inputs	
1	7 input functions	8
2	6 input functions	73
3	5 input functions	16
4	4 input functions	28
5	<=3 input functions	266
5		
6	▼ Combinational ALUTs by mode	
1	normal mode	215
2	extended LUT mode	8
3	arithmetic mode	168
4	shared arithmetic mode	0
7		
8	▼ Logic utilization	516 / 36,100 (1%)
1	Difficulty Clustering Design	Low
2	 Combinational ALUT/register pairs used in final Placement 	481
1	Combinational with no register	226
2	Register only	90
3	Combinational with a register	165
3	Estimated pairs recoverable by pairing ALUTs and registers as design grows	-38
4	 Estimated Combinational ALUT/register pairs unavailable 	73
1	Unavailable due to Memory LAB use	0
2	Unavailable due to unpartnered 7 LUTs	8

d. Simulation (ZOOM IN TO SEE DATA)

ENCODER


```
10
             10
 yaa
      0
          10
             10
 yaa
# yaa
      0
         00 00
      0 00 00
# yaa
# yaa
      0 10 10
# yaa
      0 00 00
 yaa
      0
        10 10
 yaa
      0
         10 10
 yaa
      0
         10
             10
        00 00
# yaa
      0
      0 00 00
# yaa
# yaa
      0 10 10
# yaa
      0 00 00
# yaa
      0 10 10
        10 10
      0
# yaa
        10 10
      0
 yaa
      0
         00 00
# yaa
     0 00 00
# yaa
# yaa 0 10 10
# yaa 0 00 00
              40, bad =
# good =
# ** Note: $stop : C:/Users/Venz/Downloads/encoder/encoder_tb.sv(51)
    Time: 810 ps Iteration: 0 Instance: /encoder_tb
```

Explanation (Encoder) -

Our Encoder is designed by using 8 case states. Depending on each current state a certain value is assigned to the next state concurrent with the state table for the encoder. As well as a d_out_reg. Then on the next clk or rst a value is assigned to current state. Either the next state for 3'b000.

DECODER

Explanation (Decoder)-

Here we can see that our viterbi decoder was able to get 0 bad bits showcasing that our code works perfectly. Our expected values were correct.

e. Verilog Design Code

Github Repository - https://github.com/Vnz01/ECE-111-HW-Assignments.git