

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Anatomy of a chromosome Sister chromatids **Telomeres** Heterochromatin p arm (dark) Centromere Euchromatin q arm (light) **Telomeres**

本章关键问题:

- 1.用什么技术可以看到并研究位于细胞内部的染色体?
- **2.**如果增加某种生物细胞中染色体组的数目,将会导致怎样的结果?
- 3.什么是多线染色体?
- 4.染色体结构的改变,将会导致怎样的结果?

一、染色体分析技术(智慧树课程)

1、核型和分组

将一个细胞内的染色体按照一定的顺序排列起来所构成的图象称为该细胞的核型(karyotype),确定其是否与正常核型一致的过程,称为核型分析(karatype analysis)。

染色体的形态与类型

用一些特定的染料和处理技术,来使染色体出现深浅或明暗带纹以鉴别染色体的技术称为染色体显带技术(chromosome banding)。

G显带(G banding):将染色体经热、 碱或蛋白酶等预处理后进行Giemsa 染色后获得的带型。其观察简便、 且标本易长期保存,因此使用最广 泛。

2、显带染色体模式图和 命名原则

界标(landmark):确认每一条染色体上具有的稳定和有显著形态学特征的指标,包括染色体两臂顶端、着丝粒和明显的带。

区(region): 位于相邻两界标之间的染色体区域。

带(band):指显带处理后染色体呈现深浅或明暗的部分,是连续的,没有非显带区。

FISH(fluorescence in situ hybridization):

荧光标记的原位杂交技术

Locus specific probes (Top) Alpha satellite centromere probes (Bottem)

第二节 染色体数目变异

- 染色体组:一个物种的基准染色体数目,用n表示。
- <mark>单倍体 (haploid, n)</mark> : 细胞核中含有一个完整染色体组的生物体或细胞。
- 二倍体 (diploid, 2n)

杰克跳蚁 2n=2

赤麂 2n=6,7

大西洋眼灰蝶 2n=446

○ 染色体数目变异的类型:

类型	公式	染色体组
整倍体		
单倍体	n	(ABCD)
双倍体	2n	(ABCD) (ABCD)
三倍体	3n	(ABCD) (ABCD)
同源四倍体	4 n	(ABCD) (ABCD) (ABCD)
异源四倍体	4n	(ABCD) (ABCD) (A'B'C'D') (A'B'C'D')
非整倍体		
单体	2n-1	(ABCD) (ABC)
三体	2n+1	(ABCD) (ABCD)(A)
四体	2n+2	(ABCD) (ABCD)(AA)
双三体	2n+1+1	(ABCD) (ABCD)(AB)
缺体	2n-2	(ABC) (ABC)

(一) 整倍体

1. 单倍体 (haploid)

○ 动物: 一般不存在单倍体,例外:某些昆虫类

植物: 相对普遍, 主要由未受精的卵细胞发育而成。

植株小、生活力弱,且基本不育。

单倍体在减数分裂时,染色体为单价体(没有可以配对的同源 染色体进行联会),从而随机地分向两极,形成的配子是高度 不育的。

育性的重要条件: 配子中具有完整的染色体组!

育种优势:可通过染色体加倍获得双单倍体,遗传稳定且表型 正常,被广泛应用于植物的花药培养。目的是为了在很短的时 间内获得纯系,缩短育种周期。

多倍体(polyploid): 具有三个或三个以上染色体组的整倍体

多倍体的特征----形态特征

- > 细胞与细胞核体积增大;
- ▶ 组织器官(叶片、花朵等) 巨大化,生物个体更高大 粗壮;
- 成熟期延迟、生育期延长。

生理特征:由于基因剂量效应,同源多倍体的生化反应与代谢活动加强;许多性状的表现更强。如:

- 大麦同源四倍体籽粒蛋白质含量比二倍体原种增加10-12%;
- 玉米同源四倍体籽粒胡萝卜素含量比二倍体原种增加43%。

- 约70%的被子植物的种具有多倍体(
 Masterson, 1994)。多倍体植物在栽培作物、果树、蔬菜中尤为常见,例如棉花是四倍体,香蕉是三倍体、山药是十二倍体等。
- 动物中罕见多倍体,多倍体动物包括美洲角蛙 (4倍体),银鲫(3倍体),马蛔虫(2,4倍 体),牡蛎(3倍体),九孔鲍(3倍体)等。

- 文昌鱼: 软体蠕虫样的生物, 具有脊索结构, 被认为是无脊椎动物到有脊椎动物的过渡阶段;
- 将人类的23个同源染色体与文昌 鱼的19个同源色体对比发现:两 个基因组有17个共同的片段,而 且每一个片段在人类基因组上都 有四个拷贝量。
- 5.5亿年以来的进化进程中脊椎动物比原始祖先的基因组多出四倍的拷贝量

The amphioxus genome and the evolution of the chordate karyotype. Nature, 2008

多倍体的形成途径

1. 未减数配子结合

- ◆桃树(2n=16)的未减数配子(n=16)融合形成同源 多倍体
 - 未减数配子⊕未减数 配子——四倍体(4n=32)
 - 未减数配子⊕正常配子 ——三倍体(3n=24)

2. 体细胞染色体数加倍

人工诱导体细胞染色体加倍

- 二倍体西瓜(2n=22)在幼苗 期用秋水仙素处理,得到 四倍体西瓜(4n=44);
- 取四倍体西瓜作为母本,
 二倍体作为父本,可以在
 四倍体西瓜上结出三倍体
 的种子(3n=33);
- 三倍体植株用二倍体的花 粉刺激,在三倍本上才能 长出无籽西瓜。

1) 不育的多倍体(倍性为奇数)

特征: 配子育性降低甚至完全不育。

1907 A

- 1) 同源染色体配对: 二价体+单价体/三价体;
- 2) 得到平衡配子(2*n* 和 *n*)的机 会仅为(1/2)^{*n*-1};
- 3) 配子中的染色体总数变化从0 到3n不等; 非整倍性配子因染色 体不平衡, 受精后死亡;
- 4)不育性通过无性繁殖来克服, 如插枝、嫁接、分芽等,比如香 蕉。

2) 可育的多倍体

四倍体烟草的染色体

在包含若干个祖先种(基本种)染色体组的物种中,每一个祖先种染色体组中所含的染色体数称为基数,符号为X。

- ●同源多倍体(autopolyploid) 同源多倍体是指增加的染色体 组来自同一物种,一般是由二 倍体的染色体直接加倍得到。
- ●异源多倍体(allopolyploid) 异源多倍体是指增加的染色体 组来自不同物种,一般是由不 同种、属间的杂交种染色体加 倍形成的。

来自不同种的染色体很少会干扰彼此在减数分裂中的分离。因此,异源多倍体体细胞内的染色体组成对存在,同源染色体能正常配对形成二价体,并分配到配子中去,因而其遗传表现与二倍体相似。异源多倍体是生物进化、新物种形成的重要因素之一。

- 被子植物纲中 30-35 %
- 禾本科植物 70%
- 许多农作物: 小麦、燕麦、甘蔗等
- 其它农作物: 烟草、甘蓝型油菜、棉花等

八倍体小黑麦的人工育种

鲍文奎 (1916-1995)

bread wheat 2n = 6x = 42

triticale 2n = 8x = 56

2n = 2x = 14

稳定的异源八倍体

异源多倍体案例—萝卜甘蓝

萝卜(2n=18, RR)和甘蓝(2n=18, BB)杂交得到2n=18(RB)的杂种子一代,但是大多数杂种是不可育的,极少数可育杂种发生了染色体加倍(2n=36, RRBB),植株很大,叶像甘蓝,根像萝卜。

在某些生物中,某些特定组织在发育到一定阶段会成为多倍体。这种多倍化可能是因为对染色体及其所携带的基因多拷贝的需要的一种反应。

(二) 非整倍体(aneuploid)

Diploid (2N) Normal chromosome complement

指体细胞核内的染色体不是染色体组的完整倍数,与该物种正常合子(2n)多或少一个以至若干个的现象。

- Nullisomic (2N-2)
- Monosomic (2N-1)
- Doubly monosomic (2N-1-1)
- Trisomic (2N+1)
- Tetrasomic (2N+2)
- Doubly tetrasomic (2N+2+2)

➤ 亚倍体(hypoploid):染色 体数少于2n。

1) 单体 (2n-1)

- > 同源染色体处于半合子状态,可产生假显性效应;
- > 动物: 某些物种的种性特征, XO型性别决定;
- 植物:不同植物的单体表现有所不同
 - 二倍体的单体: 一般生活力极低而且不育
 - 异源多倍体的单体: 具有一定的生活力和育性

2) 缺体 (2n-2)

- > 源于单体 (2n-1) 的自交;
- > 在异源多倍体生物中可以存在
 - 由于缺失一对染色体,对生物个体的性状表现的影响更大,生活力更差
 - > 普通烟草的缺体在幼胚阶段即死亡
 - ▶ 普通小麦21种缺体都能够生存

3D 3A 38

麦缺体系列

(2n+1)

- 不同物种,不同染色体的三体的变异性状及程度不同
- ▶ 直果曼陀罗(2n=24)的果 型变异
- ➤ 玉米(2n=20)有10个不同 的三体
- ▶ 普通小麦(2n=42)具有21 个三体,但性状变异较小

直果曼陀罗的12种三体的荚果形态

(三)染色体数量异常与人类疾病:

1907 JANUARY CONTRACTOR OF THE PROPERTY OF THE

染色体病:染色体数目或结构改变所致的遗传病

人类15%的可察觉妊娠以自发流产而告终,这些流产儿中

60%带有染色体畸变

500多种	•	常染色体异常占25%
33311		性染色体异常占75%

Table 21.1	Aneuploid	Abnormalities	in the	Human	Population
------------	-----------	----------------------	--------	-------	------------

Ch	romosomes	Syndrome	Frequency at Birth
Au	tosomes		
	Trisomic 21	Down	14.3/10,000
	Trisomic 13	Patau	2/10,000
	Trisomic 18	Edwards	2.5/10,000
Se	x chromosomes, fem	ales	
	XO, monosomic	Turner	4/10,000 females
	XXX, trisomic XXXX, tetrasomic XXXXX, pentasomic	Viable; most are fertile	14.3/10,000 females
Se	x chromosomes, ma	les	
	XYY, trisomic	Normal	25/10,000 males
	XXY, trisomic XXYY, tetrasomic XXXY, tetrasomic	Klinefelter	40/10,000

21三体综合征 (21 trisomy syndrome)

临床特征:

- ▶ 特殊面容: 鼻梁低, 眼距宽, 外眼角上斜, 内眦赘皮, 耳小, 低位, 张嘴流涎, 舌大外伸。
- ▶ 智力低下,智商一般在25-50。
- > 50%有先天性心脏畸形。
- > 通贯手(猿线)。
- ▶ 男患者无生育力、50%隐睾, 女患者偶有生育力、后代1/2发病,寿命短。

Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 2019

常见21三体的发生机制

- 来源:88%来源于卵细胞异常,8%来源于精子异常,其余则在受精卵发育过程中出现异常。
- 机制:21号染色体不分离,常见于减数分裂中,也有发生 在有丝分裂中的。还有少数和染色体易位有关。

嵌合型: 46/47, XX或XY, +21

- ■正常的受精卵在胚胎发育早期的卵裂过程中,21号染色体发生不分离
- ■临床症状多不严重、 不典型,
- ■低于9%时,一般 不表现出临床症状

唐氏综合征的产前筛查与诊断:

1. 血清学筛查

- 甲型胎儿蛋白(AFP):
- 游离人绒毛膜促性腺 激素β亚单位(β-hCG);
- 游离雌三醇(uE3)

学 周	14周	15周	16周	17周
甲胎蛋白 (AFP)U/ml	22.1	26.4	30.8	35.5
游离β-hCG (ng/ml)	20.7	15.6	12.8	10.7

MOM值=检测值/标准参考值,来判断母体的激素水平

2.羊膜腔穿刺术及核型分析

■1 一位医生正在从一位孕妇的羊膜腔抽取羊水样本,用 ★走行染色体及生物化学异常的产前诊断。

图 2 羊膜腔穿刺术及染色体和生物化学异常产前诊断的方法。

3. 无创产前检测 (Non-invasive prenatal testing, NIPT)

通过高通量测序技术分析母体外周血胎儿游离DNA (cell-free fetal DNA, cff DNA) ,从而对胎儿染色体非整倍体进行无创产前检测。

- ➤ 1997年用PCR技术在妊娠男胎的孕妇外周血中检到Y染色体特异DNA序列;
- ▶ 孕妇血中的cff DNA源于胎盘的滋养层细胞,占孕妇血浆中游离DNA的2-6%;
- ▶ 怀有Down's综合征患儿的孕妇血浆中cff DNA的含量显著高于正常孕妇,检测cff DNA含量或21号染色体上特异等位基因的比例均可以有效检出患儿;
- ▶ 相比血清学方法, cff DNA检测的准确率和灵敏度都有所提高; 相比染色体分析, cff DNA检测无流产风险。

18三体综合征

临床特征:

- 手呈特殊握拳状, 摇椅型 足
- 》智力和发育迟缓, 多脏器 畸型
- > 90%在6个月内死亡

图 4-26 18 三体综合征患者的特殊握拳姿态和摇椅形足

Turner 综合征(女性先天性卵巢发育不全)

主要临床特征:

1)体矮、蹼颈、后发

际低、肘外翻;

2)性幼稚、卵巢发育

萎缩;

核型: 45, X

Klinefelter 综合征

(先天性睾丸发育不全)

主要临床特征:

- 1) 表型男性,有女性化表现
- 2)睾丸小,曲细精管玻璃样变;
- 3) 无精子、不育

核型: 47, XXY

48, XXYY

48, XXXY

X三体综合征 (Trisomy X syndrome)

核型: 47, XXX

临床表现:

- ○表型正常女性,可伴有语言、运动、性格障碍;
- ○乳腺发育不良,卵巢功能异常,月经失调或闭经。

XYY综合征(XYY Syndrome)

核型: 47, XYY

临床表现:

- 表型正常男性,一般身材高大,少数可见外生殖器发育不良;
- 性格暴躁粗鲁;