Yash vilas raut Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

Classify the following functions f(x) definzed in $R \rightarrow R$ as injective, surjective, both or none.

(a)
$$f(x) = \frac{x^2+4x+30}{x^2-8x+18}$$

(b)
$$f(x) = x^3 - 6x^2 + 11x - 6$$

(c)
$$f(x) = (x^2 + x + 5)(x^2 + x - 3)$$

Let $f:(1,3) \to R$ be a function defined by $f(x) = \frac{x[x]}{1+x^2}$ where [x] denotes the greatest integer $\leq x$. 23.

Then the range of f is:

[JEE - Main 2020]

$$\text{(A)} \left(\frac{2}{5}, \frac{1}{2}\right) \cup \left(\frac{3}{5}, \frac{4}{5}\right] \qquad \text{(B)} \left(\frac{2}{5}, \frac{4}{5}\right] \qquad \text{(C)} \left(\frac{3}{5}, \frac{4}{5}\right) \qquad \text{(D)} \left(\frac{2}{5}, \frac{3}{5}\right] \cup \left(\frac{3}{4}, \frac{4}{5}\right)$$

(B)
$$\left(\frac{2}{5}, \frac{4}{5}\right]$$

(C)
$$\left(\frac{3}{5}, \frac{4}{5}\right)$$

(D)
$$\left(\frac{2}{5}, \frac{3}{5}\right] \cup \left(\frac{3}{4}, \frac{4}{5}\right)$$

If f(g(x)) = g(f(x)) = x for all real numbers x, and f(2) = 5 and f(5) = 3, then the value of 5. g(3) + g(f(2)) is

(A) 7

- (B) 5

- For every pair of continuous functions f, g: $[0,1] \rightarrow R$ such that [JEE Ad. 2014]

 $\max\{f(x): x \in [0,1]\} = \max\{g(x): x \in [0,1]\}, \text{ the correct statement(s) is (are)}:$

(A) $(f(c))^2 + 3f(c) = (g(c))^2 + 3g(c)$ for some $c \in [0,1]$

(B)
$$(f(c))^2 + f(c) = (g(c))^2 + 3 g(c)$$
 for some $c \in [0,1]$

(C) $(f(c))^2 + 3f(c) = (g(c))^2 + g(c)$ for some $c \in [0,1]$

(D) $(f(c))^2 = (g(c))^2$ for some $c \in [0,1]$

If $x = \frac{41}{1+1^2}$ and $y = \frac{2-21}{1+1^2}$ where 'l' is a parameter and range of $f(x, y) = x^2 - xy + y^2$ is [a, b] 6.

then (a + b) is equal to

- (A) 4
- (B) 6
- (C) 8
- (D) 12

Atomic Structure:

1.	The approximate size of the nucleus of 64 Ni is:			
	(A) 3 fm	(B) 4 fm	(C) 5 fm	(D) 2 fm
47.	What will be de-Broglie wavelength of an electron moving with a velocity of $1.2 \times 10^5 \text{ ms}^{-1}$:			
	(A) 6.068×10^{-9} m	(B) 3.133×10^{-37} m	(C) 6.626 × 1	0^{-9} m (D) $6.018 \times 10^{-7} \text{ m}$
34.	In a sample of H-atoms, electron transits from 6th orbit to 2nd orbit in multi step. Then total			
	spectral lines (without Balmer series) will be:			
	(A) 6	(B) 10	(C) 4	(D) 0
20.	Column-I			Column-I
	(A) Electron moving	in 2 nd orbit in He ⁺ ion	(P)	Radius of orbit in which electron is moving is 0.529 Å
	(B) Electron moving	in 3 rd orbit in H-atom	(Q)	Total energy of electron is (-)13.6 × 9eV
	(C) Electron moving	in 1st orbit in Li+2 ion	(R)	Velocity of electron is
18.	For the given orbital in Column 1, the only CORRECT combination for any hydrogen-like species is			
	$(A)\ (IV)\ (iv)\ (R)$	(B) (II) (ii) (P)	(C) (III) (iii) (P) (D) (I) (ii) (S)