Tietorakenteet ja algoritmit

Antti Laaksonen

23. joulukuuta 2022

Alkusanat

Ohjelmoinnin oppiminen on pitkä prosessi, josta voi erottaa kaksi vaihetta. Ensimmäinen vaihe on oppia ohjelmoinnin perustaidot, kuten miten käytetään muuttujia, ehtoja, silmukoita ja taulukoita. Ohjelmoinnin peruskurssit käsittelevät näitä aiheita. Toinen vaihe, johon keskitymme tällä kurssilla, on oppia luomaan tehokkaita algoritmeja.

Kun saamme eteemme ohjelmointiongelman, se on portti seikkailuun, jossa voi odottaa monenlaisia haasteita. Kaikki keinot ovat sallittuja, kunhan vain saamme aikaan algoritmin, joka ratkaisee ongelman tehokkaasti. Tämä kurssi opettaa monia tekniikoita ja ideoita, joista on hyötyä algoritmisten ongelmien ratkaisemisessa.

Algoritmien suunnittelu on keskeisessä asemassa tietojenkäsittelytieteen teoreettisessa tutkimuksessa, mutta tehokkaat algoritmit ovat tärkeitä myös monissa käytännön sovelluksissa. Tulemme huomaamaan kurssin aikana jatkuvasti, mikä yhteys teoreettisilla tuloksilla on siihen, miten hyvin algoritmit toimivat käytännössä.

Sisältö

\mathbf{A}	lkusa	nat		i						
1	Joh	Johdanto								
	1.1	Mitä a	algoritmit ovat?	1						
	1.2		moinnin peruspalikat	2						
2	Teh	Tehokkuus 7								
	2.1	Aikava	aativuus	7						
		2.1.1	Laskusääntöjä	8						
		2.1.2	Yleisiä aikavaativuuksia	10						
		2.1.3	Tehokkuuden arviointi	12						
		2.1.4	Esimerkki: Merkkijonot	13						
	2.2	Lisää	algoritmien analysoinnista	15						
		2.2.1	Merkinnät O , Ω ja Θ	16						
		2.2.2	Tilavaativuus	17						
		2.2.3	Rajojen todistaminen	18						
3	Järjestäminen 21									
	3.1	•	täminen ajassa $O(n^2)$	21						
		3.1.1	Lisäysjärjestäminen	21						
		3.1.2	Inversiot	23						
	3.2	Järjest	täminen ajassa $O(n \log n)$	23						
		3.2.1	Lomitusjärjestäminen	24						
		3.2.2	Pikajärjestäminen	26						
		3.2.3	Algoritmien vertailua	28						
	3.3		tämisen alaraja	29						
	0.0	3.3.1	Alarajatodistus	30						
		3.3.2	Laskemisjärjestäminen	30						
	3.4		mointikielten toteutukset	31						
	J. 1	3.4.1	Java	31						
		3 4 2	Python	33						

	3.5	Järjestämisen sovelluksia
		3.5.1 Taulukkoalgoritmeja
		3.5.2 Binäärihaku
4	List	
	4.1	Taulukkolista
		4.1.1 Muutokset lopussa
		4.1.2 Muutokset alussa ja lopussa
	4.2	Linkitetty lista
		4.2.1 Listan operaatiot
		4.2.2 Listojen vertailua
	4.3	Pino ja jono
	4.4	Ohjelmointikielten toteutukset
		4.4.1 Java
		4.4.2 Python
	4.5	Miten valita lista?
J		
5	U	autustaulu 49
	5.1	Hajautustaulun toteutus
		5.1.1 Ketjuhajautus
		5.1.2 Avoin hajautus
		5.1.3 Hajautusfunktion valinta
		5.1.4 Miten hyvin hajautus toimii? 53
		5.1.5 Hajautustaulu hakemistona 54
	5.2	Ohjelmointikielten toteutukset
		5.2.1 Java
		5.2.2 Python
	5.3	Hajautustaulu algoritmeissa
6	Rin	äärihakupuu 59
U	6.1	•
	0.1	Taustaa binääripuista
		· · · · · · · · · · · · · · · · · · ·
	6.0	1 3 3 3 3
	6.2	Binäärihakupuun toiminta
		6.2.1 Operatioiden toteutus
	0.0	6.2.2 Operaatioiden tehokkuus
	6.3	AVL-puu
		6.3.1 Tasapainoehto
		6.3.2 Kiertojen toteuttaminen 67
	6.4	Ohjelmointikielten toteutukset
		6.4.1 Java

SISÄLTÖ v

		6.4.2 Python	71						
	6.5	Tehokkuusvertailu							
7	Kek	eko 75							
	7.1	Binäärikeko	75						
		7.1.1 Keon tallentaminen							
		7.1.2 Operaatioiden toteutus	77						
	7.2	Lisää keosta	79						
		7.2.1 Taulukosta keoksi	79						
		7.2.2 Kekojärjestäminen							
	7.3	Ohjelmointikielten toteutukset	81						
		7.3.1 Java							
		7.3.2 Python							
	7.4	Tehokkuusvertailu							
8	Peru	iuttava haku	85						
	8.1	Silmukoista rekursioon	85						
		8.1.1 Haun toteuttaminen	86						
		8.1.2 Osajoukkojen läpikäynti	87						
		8.1.3 Permutaatioiden läpikäynti	87						
	8.2	Esimerkkejä	88						
		8.2.1 Kuningatarongelma	88						
		8.2.2 Työtehtävien jakaminen	91						
	8.3	Pelin tekoäly	94						
		8.3.1 Minimax-algoritmi							
		8.3.2 Alfa-beeta-karsinta	95						
9	Dynaaminen ohjelmointi 97								
	9.1	Perustekniikat	97						
		9.1.1 Rekursiivinen esitys							
		9.1.2 Tehokas toteutus	96						
	9.2	Esimerkkejä							
		9.2.1 Pisin nouseva alijono							
		9.2.2 Reitti ruudukossa							
		9.2.3 Repunpakkaus	103						
		9.2.4 Binomikertoimet							
10	Verl	kojen perusteet	107						
	10.1	Verkkojen käsitteitä	107						
		Verkot ohjelmoinnissa							
		10.2.1 Viorneliet positive	110						

vi $SIS\ddot{A}LT\ddot{O}$

		10.2.2	Kaarilistaesitys
		10.2.3	Vierusmatriisiesitys
	10.3	Verkon	läpikäynti
			Syvyyshaku
			Leveyshaku
			Esimerkki: Labyrintti
11	Lvh	immät	polut 119
	·		mät polut lähtösolmusta
	11.1	-	Bellmanin ja Fordin algoritmi
			Dijkstran algoritmi
			Esimerkki: Reittiopas
	11 9		lyhimmät polut
	11.2		Floydin ja Warshallin algoritmi
			Algoritmien vertailua
10	a		
12			syklittömät verkot 131
	12.1		ginen järjestys
			Järjestyksen muodostaminen
	100		Esimerkki: Kurssivalinnat
	12.2		minen ohjelmointi
			Polkujen laskeminen
			Ongelmat verkkoina
	12.3		ti yhtenäisyys
			Kosarajun algoritmi
		12.3.2	Esimerkki: Luolapeli
13			ntit ja virittävät puut 141
	13.1	Union-	find-rakenne
		13.1.1	Rakenteen toteutus
		13.1.2	Esimerkki: Kaupungit
	13.2	Pienin	virittävä puu
		13.2.1	Kruskalin algoritmi
		13.2.2	Primin algoritmi
		13.2.3	Miksi algoritmit toimivat?
14	Mak	simivi	rtaus 151
_			nivirtauksen laskeminen
			Fordin ja Fulkersonin algoritmi
			Yhteys minimileikkaukseen
			Polkujen valitseminen

••	• •	
SISÄLT		•••
	7	V11
	()	VII

	14.2	Maksir	nivirtauksen sovelluksia	56
		14.2.1	Erilliset polut	56
		14.2.2	Maksimiparitus	57
		14.2.3	Pienin polkupeite	58
15	NP-	ongeln	nat 1	61
	15.1	Vaativ	uusluokat	61
		15.1.1	Luokka P	61
		15.1.2	Luokka NP	62
		15.1.3	P vs. NP	62
		15.1.4	Muita luokkia	63
	15.2	NP-täy	ydellisyys	64
			SAT-ongelma	
			Ongelmien palautukset	
			Lisää ongelmia	
			Optimointiongelmat	
	15.3		nien ratkaiseminen	
\mathbf{A}	Mat	emaat	tinen tausta 1'	73

Luku 1

Johdanto

Kurssin *Tietorakenteet ja algoritmit* tarkoituksena on opettaa menetelmiä, joiden avulla voimme ratkaista *tehokkaasti* laskennallisia ongelmia. Ohjelmoinnin peruskurssit ovat keskittyneet ohjelmointitaidon opetteluun. Nyt on aika siirtyä askel eteenpäin ja alkaa kiinnittää huomiota myös siihen, miten nopeasti algoritmit toimivat.

Algoritmien tehokkuudella on suuri merkitys käytännössä. Esimerkiksi netissä toimiva reittiopas on käyttökelpoinen sen vuoksi, että se antaa ehdotuksen reitistä heti sen jälkeen, kun olemme ilmoittaneet, mistä mihin haluamme matkustaa. Jos reittiehdotusta pitäisi odottaa vaikkapa minuutti tai tunti, tämä rajoittaisi paljon palvelun käyttöä.

Jotta reittiopas toimisi tehokkaasti, sen taustalla on hyvin suunniteltu algoritmi. Tällä kurssilla opimme, kuinka voimme luoda itse vastaavia algoritmeja. Tutustumme kurssilla sekä algoritmien suunnittelun teoriaan että käytäntöön – haluamme ymmärtää syvällisesti, mistä algoritmeissa on kysymys, mutta myös osata toteuttaa niitä käytännössä.

1.1 Mitä algoritmit ovat?

Algoritmi (algorithm) on toimintaohje, jota seuraamalla voimme ratkaista jonkin laskennallisen ongelman. Algoritmille annetaan $sy\"ote\ (input)$, joka kuvaa ratkaistavan ongelman tapauksen, ja algoritmin tulee tuottaa $tuloste\ (output)$, joka on vastaus sille annettuun sy\"otteeseen.

Tarkastellaan esimerkkinä ongelmaa, jossa syötteenä on n kokonaislukua sisältävä lista ja tehtävänä on laskea lukujen summa. Esimerkiksi jos syöte on [2,4,1,8], haluttu tuloste on 15, koska 2+4+1+8=15. Voimme ratkaista tämän ongelman algoritmilla, joka käy luvut läpi silmukalla ja laskee niiden summan muuttujaan.

Algoritmin toiminnan esittämiseen on useita mahdollisuuksia. Yksi tapa on selostaa sanallisesti, kuinka algoritmi toimii, kuten teimme äsken. Toinen tapa taas on antaa jollain ohjelmointikielellä kirjoitettu koodi, joka toteuttaa algoritmin. Esimerkiksi voimme toteuttaa lukujen summan laskevan algoritmin näin Java- ja Python-kielillä:

```
int summa = 0;
for (int i = 0; i < n; i++) {
    summa += luvut[i];
}
System.out.println(summa);</pre>
```

```
summa = 0
for i in range(n):
    summa += luvut[i]
print(summa)
```

Voimme myös esittää algoritmin pseudokoodina (pseudocode) todellisen ohjelmointikielen sijasta. Tämä tarkoittaa, että kirjoitamme koodia, joka on lähellä käytössä olevia ohjelmointikieliä, mutta voimme päättää koodin tarkan kirjoitusasun itse ja ottaa joitakin vapauksia, joiden ansiosta voimme kuvata algoritmin mukavammin. Voisimme esimerkiksi esittää äskeisen algoritmin pseudokoodina seuraavasti:

```
summa = 0
for i = 0 to n-1
   summa += luvut[i]
print(summa)
```

Pseudokoodin merkintätapoja on monenlaisia, ja käytämme tässä kirjassa melko paljon Python-kieltä muistuttavaa pseudokoodia. Esitämme algoritmeja pseudokoodin avulla, koska kurssi käsittelee yleistä ohjelmoinnin teoriaa, joka ei liity tiettyyn ohjelmointikieleen. Tämän lisäksi tutustumme siihen, miten tietyt algoritmit ja tietorakenteet on toteutettu Javan ja Pythonin standardikirjastoissa.

1.2 Ohjelmoinnin peruspalikat

Kiehtova seikka ohjelmoinnissa on, että monimutkaisetkin algoritmit syntyvät yksinkertaisista aineksista. Käymme seuraavaksi läpi ohjelmoinnin peruspalikat, jotka muodostavat pohjan algoritmien suunnittelulle.

Muuttuja

Muuttuja (variable) sisältää algoritmin käsittelemää tietoa. Pseudokoodissa käytäntönä on, että voimme käyttää muuttujia suoraan ilman erillistä määrittelyä:

```
a = 5
b = 7
c = a+b
```

Ehtolause

Ehtolause (conditional statement) saa ohjelman toiminnan haarautumaan. Käytämme pseudokoodissa seuraavaa syntaksia:

```
if x%2 == 0
    print("parillinen")
else
    print("pariton")
```

Silmukka

Silmukka (loop) toistaa sen sisällä olevaa koodia. Merkitsemme pseudokoodissa seuraavasti for-silmukan, joka käy läpi luvut väliltä 1–100:

```
for i = 1 to 100
    print(i)
```

Seuraava for-silmukka käy puolestaan läpi listassa olevat alkiot:

```
for x in lista
  print(x)
```

Toinen silmukkatyyppi on while-silmukka, joka toistaa koodia niin kauan kuin silmukan alussa annettu ehto on voimassa. Esimerkiksi seuraava silmukka jatkuu niin kauan kuin x:n arvo on ainakin 1:

```
while x >= 1
    print(x)
    x /= 2
```

Taulukko

Ohjelmoinnin perustana oleva tietorakenne on taulukko (array), joka sisältää kokoelman peräkkäin olevia alkioita. Voimme viitata taulukon alkioihin []-syntaksilla:

```
luvut[0] = 4
luvut[3] = 2
```

Noudatamme kirjassa yleistä käytäntöä, jossa taulukon alkiot on indeksoitu $0, 1, \ldots, n-1$, kun taulukossa on n alkiota.

Taulukon ominaisuuksia ovat, että siinä on kiinteä määrä alkioita ja pääsemme tehokkaasti käsiksi mihin tahansa alkioon indeksin perusteella. Taulukko vastaa tiedon tallennustapaa tietokoneen muistissa, ja voimme toteuttaa taulukon avulla minkä tahansa muun tietorakenteen.

Taulukolla on ollut vahva asema perinteisissä ohjelmointikielissä, mutta tilanne on muuttumassa. Taulukko on Javan perustietorakenne, mutta Pythonissa taulukon sijasta perustietorakenne onkin *lista* (*list*). Voimme käyttää kuitenkin Pythonin listaa taulukon tavoin, koska ainoa olennainen ero on, että sen koko voi muuttua. Listan sisäinen toteutus perustuu taulukkoon, ja luvussa 4 näemme, miten tämä tapahtuu käytännössä.

Aliohjelmat

Käytämme kirjassa termiä proseduuri (procedure) aliohjelmasta, jolla ei ole palautusarvoa, ja termiä funktio (function) aliohjelmasta, jolla on palautusarvo. Esimerkiksi seuraava proseduuri tulostaa luvut $1 \dots n$:

```
procedure tulosta(n)
  for i = 1 to n
    print(i)
```

Seuraava funktio puolestaan laskee lukujen $1 \dots n$ summan:

```
function summa(n)
    s = 0
    for i = 1 to n
        s += i
    return s
```

Aliohjelmiin liittyvä termistö vaihtelee ohjelmointikielen mukaan: esimerkiksi Javassa käytetään molemmissa tapauksissa termiä *metodi* ja Pythonissa käytetään termiä *funktio* tai *metodi* tilanteesta riippuen.

Rekursio

Usein algoritmien suunnittelussa esiintyvä ohjelmointitekniikka on *rekursio* (*recursion*), joka tarkoittaa, että aliohjelma kutsuu itseään. Tässä on yksi esimerkki rekursion käyttämisestä:

```
procedure testi(n)
  if n == 0
    return
  else
    print("moikka")
    testi(n-1)
```

Tämä proseduuri tulostaa n kertaa rivin "moikka". Esimerkiksi kutsu testi(3) saa aikaan seuraavan tulostuksen:

```
moikka
moikka
moikka
```

Ideana on, että jos n=0, proseduuri ei tee mitään, koska ei ole mitään tulostettavaa. Muussa tapauksessa proseduuri tulostaa rivin "moikka" ja kutsuu sitten itseään parametrilla n-1.

Käytämme rekursiota usein kurssin aikana, ja tutustumme pikkuhiljaa tarkemmin sen mahdollisuuksiin.

Olemme nyt käyneet läpi ainekset, joiden avulla voimme toteuttaa $mink\ddot{a}$ tahansa algoritmin. On huojentava tieto, että näinkin pieni määrä tekniikoita riittää algoritmien suunnittelussa. Nyt kaikki on vain kiinni siitä, miten osaamme soveltaa näitä tekniikoita eri tilanteissa.

Luku 2

Tehokkuus

Algoritmien suunnittelussa tavoitteena on saada aikaan algoritmeja, jotka toimivat tehokkaasti. Haluamme luoda algoritmeja, joiden avulla voidaan käsitellä myös suuria aineistoja ilman, että algoritmin suoritus kestää kauan. Ajattelemmekin, että algoritmi on $hyv\ddot{a}$, jos se antaa nopeasti vastauksen myös silloin, kun tiedon määrä on suuri.

Tässä luvussa tutustumme työkaluihin, joiden avulla voimme arvioida algoritmien tehokkuutta. Keskeinen käsite on *aikavaativuus*, joka antaa tiiviissä muodossa kuvauksen algoritmin ajankäytöstä. Aikavaativuuden avulla voimme muodostaa arvion algoritmin tehokkuudesta sen rakenteen perusteella, eikä meidän tarvitse toteuttaa ja testata algoritmia vain saadaksemme tietää, miten nopea se on.

2.1 Aikavaativuus

Algoritmin tehokkuus riippuu siitä, montako askelta se suorittaa. Tavoitteemme on nyt arvioida algoritmin askelten määrää suhteessa syötteen kokoon n. Esimerkiksi jos syötteenä on taulukko, n on taulukon koko, ja jos syötteenä on merkkijono, n on merkkijonon pituus.

Tarkastellaan esimerkkinä seuraavaa algoritmia, joka laskee, montako kertaa alkio x esiintyy n lukua sisältävässä taulukossa.

```
1  laskuri = 0
2  for i = 0 to n-1
3    if luvut[i] == x
4    laskuri += 1
```

Voimme arvioida algoritmin tehokkuutta tutkimalla jokaisesta rivistä, montako kertaa algoritmi suorittaa sen. Rivi 1 suoritetaan vain kerran al-

goritmin alussa. Tämän jälkeen alkaa silmukka, jossa rivit 2 ja 3 suoritetaan molemmat n kertaa ja rivi 4 puolestaan suoritetaan $0 \dots n$ kertaa riippuen siitä, kuinka usein luku x esiintyy taulukossa. Algoritmi suorittaa siis vähintään 2n+1 ja enintään 3n+1 askelta.

Näin tarkka analyysi ei ole kuitenkaan yleensä tarpeen, vaan riittää määrittää karkea yläraja ajankäytölle. Algoritmi toimii ajassa O(f(n)) eli sen aikavaativuus (time complexity) on O(f(n)), jos se suorittaa enintään cf(n) askelta aina silloin kun $n \geq n_0$, missä c ja n_0 ovat vakioita. Esimerkiksi äskeinen algoritmi toimii ajassa O(n), koska se suorittaa enintään 4n askelta kaikilla n:n arvoilla eli voidaan valita c=4 ja $n_0=1$.

2.1.1 Laskusääntöjä

Aikavaativuuden mukavana puolena on, että voimme yleensä päätellä aikavaativuuden helposti algoritmin rakenteesta. Tutustumme seuraavaksi laskusääntöihin, joiden avulla tämä on mahdollista.

Yksittäiset komennot

Jos koodissa ei ole silmukoita vaan vain yksittäisiä komentoja, sen aikavaativuus on O(1). Näin on esimerkiksi seuraavassa koodissa:

```
c = a+b
if c >= 0
    print(c)
```

Silmukat

Merkitsemme . . . koodia, jonka aikavaativuus on O(1). Jos koodissa on yksi silmukka, joka suorittaa n askelta, sen aikavaativuus on O(n):

```
for i = 1 to n
...
```

Jos tällaisia silmukoita on kaksi sisäkkäin, aikavaativuus on $O(n^2)$:

```
for i = 1 to n
  for j = 1 to n
   ...
```

Yleisemmin jos koodissa on vastaavalla tavalla k sisäkkäistä silmukkaa, sen aikavaativuus on $O(n^k)$.

Huomaa, että vakiokertoimet ja matalammat termit eivät vaikuta aikavaativuuteen. Esimerkiksi seuraavissa koodeissa silmukoissa on 2n ja n-1 askelta, mutta kummankin koodin aikavaativuus on O(n).

```
for i = 1 to 2*n
...
```

```
for i = 1 to n-1 ...
```

Peräkkäiset osuudet

Jos koodissa on peräkkäisiä osuuksia, sen aikavaativuus on suurin yksittäisen osuuden aikavaativuus. Esimerkiksi seuraavan koodin aikavaativuus on $O(n^2)$, koska sen osuuksien aikavaativuudet ovat O(n), $O(n^2)$ ja O(n).

```
for i = 1 to n
    ...
for i = 1 to n
    for j = 1 to n
    ...
for i = 1 to n
    ...
```

Monta muuttujaa

Joskus aikavaativuus riippuu useammasta asiasta, jolloin kaavassa on monta muuttujaa. Esimerkiksi seuraavan koodin aikavaativuus on O(nm):

```
for i = 1 to n
   for j = 1 to m
    ...
```

Rekursiiviset algoritmit

Rekursiivisessa algoritmissa laskemme, montako rekursiivista kutsua tehdään ja kauanko yksittäinen kutsu vie aikaa. Tarkastellaan esimerkkinä seuraavaa proseduuria, jota kutsutaan parametrilla n:

```
procedure f(n)
   if n == 1
       return
   f(n-1)
```

Proseduuria kutsutaan yhteensä n kertaa ja jokainen kutsu vie aikaa O(1). Saamme selville proseduurin aikavaativuuden kertomalla nämä arvot keskenään, joten proseduuri vie aikaa O(n).

Tarkastellaan sitten seuraavaa proseduuria:

```
procedure g(n)
  if n == 1
     return
  g(n-1)
  g(n-1)
```

Tässä tapauksessa jokainen proseduurin kutsu tuottaa kaksi uutta kutsua, joten proseduuria kutsutaan kaikkiaan

$$1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$$

kertaa. Jokainen kutsu vie aikaa O(1), joten aikavaativuus on $O(2^n)$.

2.1.2 Yleisiä aikavaativuuksia

Tietyt aikavaativuudet esiintyvät usein algoritmeissa. Käymme seuraavaksi läpi joukon tällaisia aikavaativuuksia.

O(1) (vakioaikainen)

 $Vakioaikainen\ (constant\ time)$ algoritmi suorittaa kiinteän määrän komentoja, eikä syötteen suuruus vaikuta algoritmin nopeuteen. Esimerkiksi seuraava algoritmi laskee summan $1+2+\cdots+n$ vakioajassa summakaavalla:

```
summa = n*(n+1)/2
```

$O(\log n)$ (logaritminen)

 $Logaritminen\ (logarithmic)$ algoritmi puolittaa usein syötteen koon joka askeleella. Esimerkiksi seuraavan algoritmin aikavaativuus on $O(\log n)$:

```
laskuri = 0
while n >= 1
    laskuri += 1
    n /= 2
```

Tärkeä seikka logaritmeihin liittyen on, että log n on pieni luku, kun n on mikä tahansa tyypillinen algoritmeissa esiintyvä luku. Esimerkiksi log $10^6 \approx 20$ ja log $10^9 \approx 30$, kun logaritmin kantaluku on 2. Niinpä jos algoritmi tekee jotain logaritmisessa ajassa, siinä ei kulu kauan aikaa.

O(n) (lineaarinen)

 $Lineaarinen\ (linear)$ algoritmi voi käydä läpi syötteen kiinteän määrän kertoja. Esimerkiksi seuraava O(n)-algoritmi laskee taulukon lukujen summan:

```
summa = 0
for i = 0 to n-1
   summa += taulu[i]
```

Kun algoritmin syötteenä on aineisto, jossa on n alkiota, lineaarinen aikavaativuus on yleensä paras mahdollinen, minkä voimme saavuttaa. Tämä johtuu siitä, että algoritmin täytyy käydä syöte ainakin kerran läpi, ennen kuin se voi ilmoittaa vastauksen.

$O(n \log n)$ (järjestäminen)

Aikavaativuus $O(n \log n)$ viittaa usein siihen, että algoritmin osana on järjestämistä, koska tehokkaat järjestämisalgoritmit toimivat ajassa $O(n \log n)$. Esimerkiksi seuraava $O(n \log n)$ -aikainen algoritmi tarkastaa, onko taulukossa kahta samaa alkiota:

```
sort(taulu) // järjestäminen
samat = false
for i = 1 to n-1
   if taulu[i] == taulu[i-1]
      samat = true
```

Algoritmi järjestää ensin taulukon, minkä jälkeen yhtä suuret alkiot ovat vierekkäin ja ne on helppoa löytää. Järjestäminen vie aikaa $O(n \log n)$ ja silmukka vie aikaa O(n), joten algoritmi vie yhteensä aikaa $O(n \log n)$.

Tutustumme tarkemmin järjestämiseen ja sitä käyttäviin algoritmeihin seuraavassa luvussa 3.

$O(n^2)$ (neliöllinen)

Neliöllinen (quadratic) algoritmi voi käydä läpi kaikki tavat valita kaksi alkiota syötteestä. Esimerkiksi seuraava $O(n^2)$ -algoritmi tutkii, onko taulukossa kahta lukua, joiden summa on x.

$O(n^3)$ (kuutiollinen)

Kuutiollinen (cubic) algoritmi voi käydä läpi kaikki tavat valita kolme alkiota syötteestä. Esimerkiksi seuraava $O(n^3)$ -algoritmi tutkii, onko taulukossa kolmea lukua, joiden summa on x.

$O(2^n)$ (osajoukot)

Aikavaativuus $O(2^n)$ viittaa usein siihen, että algoritmi käy läpi syötteen alkioiden osajoukot.

O(n!) (permutatiot)

Aikavaativuus O(n!) viittaa usein siihen, että algoritmi käy läpi syötteen alkioiden permutaatiot.

2.1.3 Tehokkuuden arviointi

Mitä hyötyä on määrittää algoritmin aikavaativuus? Hyötynä on, että aikavaativuus antaa arvion siitä, kuinka *hyvä* algoritmi on eli miten suuria syötteitä sillä voi käsitellä tehokkaasti. Aikavaativuuden avulla algoritmin tehokkuudesta pystyy saamaan hyvän käsityksen ennen algoritmin toteuttamista ja testaamista käytännössä.

syötteen kokoluokka \boldsymbol{n}	tarvittava aikavaativuus
10	O(n!)
20	$O(2^n)$
500	$O(n^3)$
5000	$O(n^2)$
10^{6}	$O(n)$ tai $O(n \log n)$
suuri	$O(1)$ tai $O(\log n)$

Taulukko 2.1: Kuinka suuren syötteen algoritmi voi käsitellä nopeasti?

Aikavaativuutta voi ajatella samalla tavalla kuin hotellin tähtiluokitusta: se kertoo tiiviissä muodossa, mistä asiassa on kysymys, eikä tarvitse ottaa selvää yksityiskohdista. Jos majoitus on neljän tähden hotellissa, tämä antaa heti jonkin käsityksen huoneen tasosta, vaikka tiedossa ei olisi tarkkaa listausta huoneen varustelusta. Vastaavasti jos jonkin algoritmin aikavaativuus on $O(n \log n)$, tämän perusteella voi heti arvioida karkeasti, miten suuria syötteitä algoritmi pystyy käsittelemään, vaikka algoritmin kaikki yksityiskohdat eivät olisi tiedossa.

Yksi kiinnostava näkökulma algoritmin tehokkuuteen on, miten suuren syötteen algoritmi voi käsitellä nopeasti (noin sekunnissa). Tämä on hyvä vaatimus, kun haluamme käyttää algoritmia jossakin käytännön sovelluksessa. Taulukossa 2.1 on joitakin hyödyllisiä arvioita, kun algoritmi suoritetaan nykyaikaisella tietokoneella. Esimerkiksi jos meillä on $O(n^2)$ -algoritmi, voimme käsitellä sillä nopeasti syötteen, jossa on luokkaa 5000 alkiota. Jos haluamme käsitellä tehokkaasti suurempia syötteitä, meidän tulisi löytää O(n)-tai $O(n \log n)$ -aikainen algoritmi.

Kannattaa silti pitää mielessä, että nämä luvut ovat vain arvioita ja algoritmin todelliseen ajankäyttöön vaikuttavat monet asiat. Saman algoritmin hyvä toteutus saattaa olla kymmeniä kertoja nopeampi kuin huono toteutus, ja suuri merkitys on myös ohjelmointikielellä, jolla algoritmi on toteutettu. Tässä kirjassa analysoimme algoritmeja sekä aikavaativuuksien avulla että mittaamalla todellisia suoritusaikoja.

2.1.4 Esimerkki: Merkkijonot

Tehtävän ratkaisemiseen on usein monenlaisia algoritmeja. Seuraavaksi ratkaisemme saman tehtävän kahdella algoritmilla, joista ensimmäinen on suoraviivainen raa'an voiman algoritmi, joka toimii ajassa $O(n^2)$. Toinen algoritmi on puolestaan tehokas algoritmi, joka vie aikaa vain O(n).

Tehtävämme on seuraava: Annettuna on merkkijono, jonka pituus on n ja jokainen merkki on 0 tai 1. Haluamme laskea, monellako tavalla voimme vali-

ta kaksi kohtaa niin, että vasen merkki on 0 ja oikea merkki on 1. Esimerkiksi merkkijonossa 01001 tapoja on neljä: <u>01</u>001, <u>0</u>100<u>1</u>, 01<u>001</u> ja 010<u>01</u>.

$O(n^2)$ -algoritmi

Voimme ratkaista tehtävän raa'alla voimalla käymällä läpi kaikki mahdolliset tavat valita vasen ja oikea kohta. Tällöin voimme laskea yksi kerrallaan, monessako tavassa vasen merkki on 0 ja oikea merkki on 1. Seuraava koodi toteuttaa algoritmin:

```
laskuri = 0
for i = 0 to n-1
    for j = i+1 to n-1
        if merkit[i] == 0 and merkit[j] == 1
            laskuri += 1
print(laskuri)
```

Algoritmin aikavaativuus on $O(n^2)$, koska siinä on kaksi sisäkkäistä silmukkaa, jotka käyvät läpi syötteen.

O(n)-algoritmi

Kuinka voisimme ratkaista tehtävän tehokkaammin? Meidän tulisi keksiä tapa, jolla saisimme pois toisen silmukan koodista.

Tässä auttaa lähestyä ongelmaa hieman toisesta näkökulmasta: kun olemme tietyssä kohdassa merkkijonoa, monellako tavalla voimme muodostaa parin, jonka oikea merkki on nykyisessä kohdassamme? Jos olemme merkin 0 kohdalla, pareja ei ole yhtään, mutta jos merkkinä on 1, voimme valita $mink\ddot{a}$ tahansa vasemmalla puolella olevan merkin 0 pariin.

Tämän havainnon ansiosta riittää käydä läpi merkkijono kerran vasemmalta oikealle ja pitää kirjaa, montako merkkiä 0 olemme nähneet. Sitten jokaisen merkin 1 kohdalla kasvatamme vastausta tämänhetkisellä merkkien 0 määrällä. Seuraava koodi toteuttaa algoritmin:

```
laskuri = 0
nollat = 0
for i = 0 to n-1
    if merkit[i] == 0
        nollat += 1
    else
        laskuri += nollat
print(laskuri)
```

syötteen koko \boldsymbol{n}	$O(n^2)$ -algoritmi	O(n)-algoritmi
10	$0.00 \; { m s}$	$0.00 \; { m s}$
10^{2}	$0.00 \mathrm{\ s}$	$0.00 \mathrm{\ s}$
10^{3}	$0.00 \mathrm{\ s}$	$0.00 \mathrm{\ s}$
10^{4}	$0.14 \mathrm{\ s}$	$0.00 \mathrm{\ s}$
10^{5}	$16.22 \ s$	$0.00 \mathrm{\ s}$
10^{6}		$0.01 \; s$

Taulukko 2.2: Algoritmien suoritusaikojen vertailu.

Algoritmissa on vain yksi silmukka, joka käy syötteen läpi, joten sen aikavaativuus on O(n).

Algoritmien vertailua

Meillä on nyt siis kaksi algoritmia, joiden aikavaativuudet ovat $O(n^2)$ ja O(n), mutta mitä tämä tarkoittaa käytännössä? Saamme tämän selville toteuttamalla algoritmit jollakin oikealla ohjelmointikielellä ja mittaamalla niiden suoritusaikoja erikokoisilla syötteillä.

Taulukko 2.2 näyttää vertailun tulokset, kun algoritmit on toteutettu Javalla ja syötteinä on satunnaisia merkkijonoja. Pienillä n:n arvoilla molemmat algoritmit toimivat hyvin tehokkaasti, mutta suuremmilla syötteillä on nähtävissä huomattavia eroja. Raakaan voimaan perustuva $O(n^2)$ -algoritmi alkaa hidastua selvästi testistä $n=10^4$ alkaen, ja testissä $n=10^6$ emme jaksa enää odottaa algoritmin valmistumista. Tehokas O(n)-algoritmi taas selvittää suuretkin testit salamannopeasti.

Tämän kurssin jatkuvana teemana on luoda algoritmeja, jotka toimivat tehokkaasti myös silloin, kun niille annetaan suuria syötteitä. Tämä tarkoittaa käytännössä sitä, että algoritmin aikavaativuuden tulisi olla O(n) tai $O(n \log n)$. Jos algoritmin aikavaativuus on esimerkiksi $O(n^2)$, se on auttamatta liian hidas suurien syötteiden käsittelyyn.

2.2 Lisää algoritmien analysoinnista

Aikavaativuuksissa esiintyvä O-merkintä on yksi monista merkinnöistä, joiden avulla voimme arvioida funktioiden kasvunopeutta. Tutustumme seuraavaksi tarkemmin näihin merkintöihin.

2.2.1 Merkinnät O, Ω ja Θ

Algoritmien analysoinnissa usein esiintyviä merkintöjä ovat:

- Yläraja: Funktio g(n) on luokkaa O(f(n)), jos on olemassa vakiot c ja n_0 niin, että $g(n) \leq cf(n)$ aina kun $n \geq n_0$.
- Alaraja: Funktio g(n) on luokkaa $\Omega(f(n))$, jos on olemassa vakiot c ja n_0 niin, että $g(n) \geq cf(n)$ aina kun $n \geq n_0$.
- Tarkka arvio: Funktio g(n) on luokkaa $\Theta(f(n))$, jos se on sekä luokkaa O(f(n)) että luokkaa $\Omega(f(n))$.

Vakion c tarkoituksena on, että saamme arvion kasvunopeuden suuruusluokalle välittämättä vakiokertoimista. Vakion n_0 ansiosta meidän riittää tarkastella kasvunopeutta suurilla n:n arvoilla. Voimme myös kirjoittaa g(n) = O(f(n)), kun haluamme ilmaista, että funktio g(n) on luokkaa O(f(n)), ja vastaavasti Ω - ja Θ -merkinnöissä.

Kun sanomme, että algoritmi toimii ajassa O(f(n)), tarkoitamme, että se suorittaa pahimmassa tapauksessa O(f(n)) askelta. Tämä on yleensä hyvä tapa ilmoittaa algoritmin tehokkuus, koska silloin annamme takuun siitä, että algoritmin ajankäytöllä on tietty yläraja, vaikka syöte olisi valittu mahdollisimman ikävästi algoritmin kannalta.

Tarkastellaan esimerkkinä seuraavaa algoritmia, joka laskee taulukon lukujen summan:

```
summa = 0
for i = 0 to n-1
   summa += taulu[i]
```

Tämä algoritmi toimii samalla tavalla riippumatta taulukon sisällöstä, koska se käy aina läpi koko taulukon. Niinpä yläraja ajankäytölle on O(n) ja alaraja ajankäytölle on samoin $\Omega(n)$, joten voimme sanoa, että algoritmi vie aikaa $\Theta(n)$ kaikissa tapauksissa.

Tarkastellaan sitten seuraavaa algoritmia, joka selvittää, onko taulukossa lukua x:

```
ok = false
for i = 0 to n-1
   if taulu[i] == x
      ok = true
      break
```

Tässä algoritmin pahin ja paras tapaus eroavat. Ajankäytön yläraja on O(n), koska algoritmi joutuu käymään läpi kaikki taulukon alkiot silloin, kun luku x ei esiinny taulukossa. Toisaalta ajankäytön alaraja on $\Omega(1)$, koska jos luku x on taulukon ensimmäinen alkio, algoritmi pysähtyy heti taulukon alussa. Voimme myös sanoa, että algoritmi suorittaa pahimmassa tapauksessa $\Theta(n)$ askelta ja parhaassa tapauksessa $\Theta(1)$ askelta.

Huomaa, että O-merkinnän antama yläraja voi olla mikä tahansa yläraja, ei välttämättä tarkka yläraja. On siis oikein sanoa esimerkiksi, että algoritmi vie aikaa $O(n^2)$, vaikka on olemassa parempi yläraja O(n). Miksi sitten käytämme O-merkintää, vaikka voisimme usein myös ilmaista tarkan ajankäytön Θ -merkinnällä? Tämä on vakiintunut ja käytännössä toimiva tapa. Olisi hyvin harhaanjohtavaa antaa algoritmille yläraja $O(n^2)$, jos näemme suoraan, että aikaa kuluu vain O(n).

Asiaa voi ajatella niin, että *O*-merkintää käytetään algoritmin *markkinoinnissa*. Jos annamme liian suuren ylärajan, algoritmista tulee väärä käsitys yleisölle. Vertauksena jos myymme urheiluautoa, jonka huippunopeus on 250 km/h, on sinänsä paikkansa pitävä väite, että autolla pystyy ajamaan 100 km/h. Meidän ei kuitenkaan kannata antaa tällaista vähättelevää tietoa, vaan kertoa, että autolla pystyy ajamaan 250 km/h.

Merkintöjä O, Ω ja Θ voi käyttää kaikenlaisissa yhteyksissä, ei vain algoritmin ajankäytön arvioinnissa. Esimerkiksi voimme sanoa, että algoritmi suorittaa silmukkaa $O(\log n)$ kierrosta tai että listassa on O(n) lukua.

2.2.2 Tilavaativuus

Aikavaativuuden lisäksi kiinnostava tieto algoritmista voi olla sen tilavaativuus (space complexity). Tämä kuvaa sitä, miten paljon algoritmi käyttää muistia syötteen lisäksi. Jos tilavaativuus on O(1), algoritmi tarvitsee muistia vain yksittäisille muuttujille. Jos tilavaativuus on O(n), algoritmi voi varata esimerkiksi aputaulukon, jonka koko vastaa syötteen kokoa.

Tarkastellaan esimerkkinä tehtävää, jossa taulukossa on luvut 1, 2, ..., n yhtä lukuun ottamatta, ja tehtävämme on selvittää puuttuva luku. Yksi tapa ratkaista tehtävä O(n)-ajassa on luoda aputaulukko, joka pitää kirjaa mukana olevista luvuista. Tällaisen ratkaisun tilavaativuus on O(n), koska aputaulukko vie O(n) muistia.

```
for i = 0 to n-2
    mukana[taulu[i]] = true
for i = 1 to n
    if not mukana[i]
        puuttuva = i
```

Tehtävään on kuitenkin olemassa myös toinen algoritmi, jossa aikavaativuus on edelleen O(n) mutta tilavaativuus on vain O(1). Tällainen algoritmi laskee ensin lukujen $1, 2, \ldots, n$ summan ja vähentää sitten taulukossa esiintyvät luvut siitä. Jäljelle jäävä luku on puuttuva luku.

```
summa = 0
for i = 1 to n
    summa += i
for i = 0 to n-2
    summa -= taulu[i]
puuttuva = summa
```

Huomaa, että muuttujien ja taulukoiden lisäksi myös rekursio voi viedä tilaa, koska rekursiivisen aliohjelman kutsuihin liittyvät tiedot ovat muistissa rekursiopinossa. Esimerkiksi seuraavan proseduurin tilavaativuus on O(n), koska muistissa on korkeimmillaan n kerrosta rekursiivisia kutsuja.

```
procedure f(n)
  if n == 1
    return
  f(n-1)
```

Käytännössä tilavaativuus on yleensä sivuroolissa algoritmeissa, koska jos algoritmi vie vain vähän aikaa, se ei *ehdi* käyttää kovin paljon muistia. Erityisesti tilavaativuus ei voi olla suurempi kuin aikavaativuus. Niinpä riittää tavallisesti keskittyä suunnittelemaan algoritmeja, jotka toimivat nopeasti, ja vertailla algoritmien aikavaativuuksia.

2.2.3 Rajojen todistaminen

Jos haluamme todistaa täsmällisesti, että jokin raja pätee, meidän täytyy löytää vakiot c ja n_0 , jotka osoittavat asian. Jos taas haluamme todistaa, että raja ei päde, meidän täytyy näyttää, että mikään vakioiden c ja n_0 valinta ei ole kelvollinen.

Jos haluamme todistaa rajan pätemisen, tämä onnistuu yleensä helposti valitsemalla vakio c tarpeeksi suureksi ja arvioimalla summan osia ylöspäin

tarvittaessa. Esimerkiksi jos haluamme todistaa, että 3n+5=O(n), meidän tulee löytää vakiot c ja n_0 , joille pätee, että $3n+5 \le cn$ aina kun $n \ge n_0$. Tässä tapauksessa voimme valita esimerkiksi c=8 ja $n_0=1$, jolloin voimme arvioida $3n+5 \le 3n+5n=8n$, kun $n \ge 1$.

Jos haluamme todistaa, että raja ei päde, tilanne on hankalampi, koska meidän täytyy näyttää, että ei ole olemassa mitään kelvollista tapaa valita vakioita c ja n_0 . Tässä auttaa tyypillisesti vastaoletuksen tekeminen: oletamme, että raja pätee ja voimme valita vakiot, ja näytämme sitten, että tämä oletus johtaa ristiriitaan.

Todistetaan esimerkkinä, että $n^2 \neq O(n)$. Jos pätisi $n^2 = O(n)$, niin olisi olemassa vakiot c ja n_0 , joille $n^2 \leq cn$ aina kun $n \geq n_0$. Voimme kuitenkin osoittaa, että tämä aiheuttaa ristiriidan. Jos $n^2 \leq cn$, niin voimme jakaa epäyhtälön molemmat puolet n:llä ja saamme $n \leq c$. Tämä tarkoittaa, että n on aina enintään yhtä suuri kuin vakio c. Tämä ei ole kuitenkaan mahdollista, koska n voi olla miten suuri tahansa, joten ei voi päteä $n^2 = O(n)$.

Määritelmistä lähtevä todistaminen on sinänsä mukavaa ajanvietettä, mutta sille on äärimmäisen harvoin tarvetta käytännössä, kun haluamme tutkia algoritmien tehokkuutta. Voimme koko kurssin ajan huoletta päätellä algoritmin aikavaativuuden katsomalla, mikä sen rakenne on, kuten olemme tehneet tämän luvun alkuosassa.

Luku 3

Järjestäminen

 $J\ddot{a}rjest\ddot{a}minen~(sorting)$ on keskeinen algoritmiikan ongelma, jossa tehtävänä on järjestää n alkiota sisältävä taulukko suuruusjärjestykseen. Esimerkiksi jos taulukko on [5, 2, 4, 2, 6, 1] ja sen alkiot järjestetään pienimmästä suurimpaan, tuloksena on taulukko [1, 2, 2, 4, 5, 6].

Tavoitteena on toteuttaa järjestäminen tehokkaasti. On helppoa järjestää taulukko ajassa $O(n^2)$, mutta tämä on liian hidasta suurella taulukolla. Tässä luvussa opimme kaksi tehokasta järjestämisalgoritmia, jotka vievät aikaa vain $O(n \log n)$. Toisaalta osoittautuu, että ei ole olemassa yleistä järjestämisalgoritmia, joka toimisi nopeammin kuin $O(n \log n)$.

Voimme käyttää järjestämistä monella tavalla algoritmien suunnittelussa, koska voimme usein helpottaa ongelman ratkaisemista järjestämällä ensin aineiston. Luvun lopussa näemme esimerkkejä ongelmista, jotka saamme ratkaistua tehokkaasti järjestämisen avulla.

3.1 Järjestäminen ajassa $O(n^2)$

Tutustumme aluksi yksinkertaiseen järjestämisalgoritmiin, joka järjestää n-alkioisen taulukon ajassa $O(n^2)$ kahden silmukan avulla. Vaikka algoritmi ei ole nopea, se on tutustumisen arvoinen ja antaa hyvän lähtökohdan tehokkaampien algoritmien suunnittelemiselle.

3.1.1 Lisäysjärjestäminen

Lisäysjärjestäminen (insertion sort) käy läpi taulukon vasemmalta oikealle. Kun algoritmi tulee tiettyyn taulukon kohtaan, se siirtää kyseisessä kohdassa olevan alkion oikeaan paikkaan taulukon alkuosassa niin, että taulukon alkuosa on tämän jälkeen järjestyksessä. Niinpä kun algoritmi pääsee taulukon

 $Kuva\ 3.1: Lisäysjärjestäminen\ taulukolle\ [5,2,4,2,6,1].$

loppuun, koko taulukko on järjestyksessä.

Kuva 3.1 näyttää esimerkin lisäysjärjestämisen toiminnasta, kun järjestettävänä on taulukko [5,2,4,2,6,1]. Jokaisella rivillä algoritmi siirtää harmaataustaisen alkion sen oikealle paikalle taulukon alkuosassa. Pystyviiva ilmaisee kohdan, johon asti taulukko on järjestyksessä siirron jälkeen. Algoritmin päätteeksi tuloksena on järjestetty taulukko [1,2,2,4,5,6].

Seuraava koodi toteuttaa lisäysjärjestämisen:

```
for i = 1 to n-1
    j = i-1
    while j >= 0 and taulu[j] > taulu[j+1]
        swap(taulu[j],taulu[j+1])
        j -= 1
```

Koodi käy läpi taulukon kohdat 1...n-1 ja siirtää aina kohdassa i olevan alkion oikeaan paikkaan. Tämä tapahtuu sisäsilmukalla, jonka jokainen askel vaihtaa keskenään alkion ja sen vasemmalla puolella olevan alkion niin kauan, kuin vasen alkio on suurempi. Huomaa pseudokoodin komento swap, joka ilmaisee, että kaksi alkiota vaihdetaan keskenään.

Lisäysjärjestämisen tehokkuus riippuu siitä, mikä on järjestettävän taulukon sisältö. Algoritmi toimii sitä paremmin, mitä lähempänä järjestystä taulukko on valmiiksi. Jos taulukko on järjestyksessä, aikaa kuluu vain O(n), koska ei tarvitse siirtää mitään alkioita. Pahin tapaus algoritmille on kuitenkin, että taulukko on käänteisessä järjestyksessä, jolloin jokainen alkio

täytyy siirtää taulukon alkuun ja aikaa kuluu $O(n^2)$.

3.1.2 Inversiot

Hyödyllinen käsite järjestämisalgoritmien analysoinnissa on *inversio*: kaksi taulukossa olevaa alkiota, jotka ovat väärässä järjestyksessä. Esimerkiksi taulukossa [3, 1, 4, 2] on kolme inversiota: (3, 1), (3, 2) ja (4, 2). Inversioiden määrä kertoo taulukon järjestyksestä: mitä vähemmän inversioita taulukossa on, sitä lähempänä se on järjestystä. Erityisesti taulukko on järjestyksessä tarkalleen silloin, kun siinä ei ole yhtään inversiota.

Kun järjestämisalgoritmi järjestää taulukon, se *poistaa* siitä inversioita. Esimerkiksi aina kun lisäysjärjestäminen vaihtaa vierekkäiset alkiot keskenään, se poistaa taulukosta yhden inversion. Niinpä lisäysjärjestämisen työmäärä on yhtä suuri kuin järjestettävän taulukon inversioiden määrä.

Olemme jo todenneet, että pahin mahdollinen syöte lisäysjärjestämiselle on käänteisessä järjestyksessä oleva taulukko. Tällaisessa taulukossa jokainen alkiopari muodostaa inversion, joten inversioiden määrä on

$$\frac{n(n-1)}{2} = O(n^2).$$

Entä kuinka hyvin lisäysjärjestäminen toimii keskimäärin? Jos oletamme, että taulukossa on n eri alkiota satunnaisessa järjestyksessä, jokainen taulukossa oleva alkiopari muodostaa inversion todennäköisyydellä 1/2. Niinpä inversioiden määrän odotusarvo on

$$\frac{n(n-1)}{4} = O(n^2),$$

eli aikaa kuluu neliöllinen määrä myös keskimääräisessä tapauksessa.

Syy lisäysjärjestämisen hitauteen on, että se ei poista taulukosta inversioita riittävän tehokkaasti. Jos haluamme kehittää paremman järjestämisalgoritmin, se täytyy suunnitella niin, että se voi poistaa useita inversioita yhtä aikaa. Käytännössä algoritmin täytyy pystyä siirtämään väärässä paikassa oleva alkio tehokkaasti taulukon toiselle puolelle.

3.2 Järjestäminen ajassa $O(n \log n)$

Seuraavaksi tutustumme kahteen tehokkaaseen järjestämisalgoritmiin, jotka perustuvat rekursioon. Molemmissa algoritmeissa on ideana järjestää taulukko jakamalla se kahteen pienempään osataulukkoon ja järjestämällä ne rekursiivisesti. Tämän jälkeen järjestetyt osataulukot yhdistetään kokonaiseksi järjestetyksi taulukoksi.

Kuva 3.2: Lomitusjärjestäminen taulukolle [5, 1, 2, 9, 7, 5, 4, 2].

3.2.1 Lomitusjärjestäminen

 $Lomitusjärjestäminen\ (merge\ sort)$ on rekursiivinen järjestämisalgoritmi, joka perustuu taulukon puolituksiin. Kun järjestettävänä on n-alkioinen taulukko, se jaetaan keskeltä kahdeksi osataulukoksi, joissa molemmissa on noin n/2 alkiota. Tämän jälkeen osataulukot järjestetään erikseen rekursiivisesti ja järjestetyt osataulukot lomitetaan niin, että niistä muodostuu kokonainen järjestetty taulukko. Rekursio päättyy tapaukseen n=1, jolloin taulukko on valmiiksi järjestyksessä eikä tarvitse tehdä mitään.

Seuraava koodi esittää tarkemmin lomitusjärjestämisen toiminnan:

```
procedure jarjesta(a,b)
   if a == b
        return
   k = (a+b)/2
   jarjesta(a,k)
   jarjesta(k+1,b)
   lomita(a,k,k+1,b)
```

Proseduuri jarjesta järjestää taulukon välin $a \dots b$ (osataulukon kohdasta a kohtaan b), eli kun haluamme järjestää koko taulukon, kutsumme proseduuria parametreilla a=0 ja b=n-1. Proseduuri tarkastaa ensin, onko osataulukossa vain yksi alkio, ja jos näin on, proseduuri päättyy heti.

Muuten se laskee muuttujaan k järjestettävän välin keskikohdan ja järjestää vasemman ja oikean puoliskon rekursiivisesti. Lopuksi se kutsuu proseduuria lomita, joka yhdistää järjestetyt puoliskot. Seuraava koodi näyttää, kuinka voimme toteuttaa tämän proseduurin:

```
procedure lomita(a1, b1, a2, b2)
    a = a1, b = b2
    for i = a to b
        if a2 > b2 or (a1 <= b1 and taulu[a1] <= taulu[a2])
            apu[i] = taulu[a1]
            a1 += 1
        else
            apu[i] = taulu[a2]
            a2 += 1
    for i = a to b
        taulu[i] = apu[i]</pre>
```

Parametreina annetaan välit $a_1 ldots b_1$ ja $a_2 ldots b_2$, missä $b_1 + 1 = a_2$. Proseduuri olettaa, että näillä väleillä olevat taulukon alkiot on järjestetty, ja se lomittaa alkiot niin, että taulukon koko väli $a_1 ldots b_2$ on järjestetty. Proseduurin perustana on silmukka, joka käy läpi välejä $a_1 ldots b_1$ ja $a_2 ldots b_2$ rinnakkain ja valitsee aina seuraavaksi pienimmän alkion lopulliseen järjestykseen. Jotta lomitus ei sotke taulukkoa, proseduuri käyttää globaalia aputaulukkoa, johon se ensin muodostaa järjestetyn osataulukon, ja kopioi sitten alkiot aputaulukosta varsinaiseen taulukkoon.

Kuva 3.2 näyttää, miten lomitusjärjestäminen toimii, kun sille annetaan taulukko [5,1,2,9,7,5,4,2]. Algoritmi puolittaa ensin taulukon kahdeksi osataulukoksi [5,1,2,9] ja [7,5,4,2] ja järjestää molemmat osataulukot kutsumalla itseään. Kun algoritmi saa sitten järjestettäväksi taulukon [5,1,2,9], se jakaa taulukon edelleen osataulukoiksi [5,1] ja [2,9], jne. Loputa jäljellä on vain yhden alkion kokoisia osataulukoita, jotka ovat valmiiksi järjestyksessä. Tällöin rekursiivinen jakautuminen päättyy ja algoritmi alkaa koota järjestettyjä osataulukkoja pienimmästä suurimpaan.

Kuinka tehokas lomitusjärjestäminen on? Koska jokainen proseduurin jarjesta kutsu puolittaa taulukon koon, rekursiosta muodostuu $O(\log n)$ tasoa (kuva 3.2). Ylimmällä tasolla on taulukko, jossa on n alkiota, seuraavalla tasolla on kaksi taulukkoa, joissa on n/2 alkiota, seuraavalla tasolla on neljä taulukkoa, joissa on n/4 alkiota, jne. Proseduuri lomita toimii lineaarisessa ajassa, joten kullakin tasolla taulukoiden lomittamiset vievät yhteensä aikaa O(n). Niinpä algoritmin kokonaisaikavaativuus on $O(n \log n)$.

3.2.2 Pikajärjestäminen

Pikajärjestäminen (quick sort) tarjoaa toisenlaisen rekursiivisen lähestymistavan taulukon järjestämiseen. Kun saamme järjestettäväksi taulukon, valitsemme ensin jonkin sen alkioista jakoalkioksi (pivot). Tämän jälkeen siirrämme alkioita niin, että jakoalkiota pienemmät alkiot ovat sen vasemmalla puolella, suuremmat alkiot ovat sen oikealla puolella ja yhtä suuret alkiot voivat olla kummalla tahansa puolella. Lopuksi järjestämme rekursiivisesti osataulukot, jotka muodostuvat jakoalkion vasemmalle ja oikealle puolelle.

Seuraava koodi esittää pikajärjestämisen toiminnan:

```
procedure jarjesta(a, b)
   if a >= b
       return
   k = jako(a,b)
   jarjesta(a,k-1)
   jarjesta(k+1,b)
```

Proseduuri jarjesta järjestää taulukon välillä $a \dots b$ olevat alkiot. Jos väli on tyhjä tai siinä on vain yksi alkio, proseduuri ei tee mitään. Muuten se kutsuu funktiota jako, joka valitsee jakoalkion, siirtää taulukon alkioita sen mukaisesti ja palauttaa sitten kohdan k, jossa jakoalkio on siirtojen jälkeen. Tämän jälkeen taulukon vasen osa (väli $a \dots k-1$) ja oikea osa (väli $k+1 \dots b$) järjestetään rekursiivisesti.

Funktion jako voi toteuttaa monella tavalla, koska voimme valita minkä tahansa alkion jakoalkioksi ja lisäksi on monia tapoja siirtää alkioita. Käytämme tässä esimerkkinä seuraavaa toteutusta:

Tässä jakoalkio on aina kohdassa a oleva välin ensimmäinen alkio. Funktio käy läpi välin alkiot ja siirtää jakoalkiota pienempiä alkioita taulukon alkuosaan. Muuttuja k määrittää kohdan, johon seuraava pienempi alkio siirretään. Lopuksi jakoalkio itse siirretään keskelle kohtaan k, jonka funktio myös palauttaa.

Kuva 3.3 näyttää, miten pikajärjestäminen toimii, kun sille annetaan tau-

Kuva 3.3: Pikajärjestäminen taulukolle [5, 1, 2, 9, 7, 5, 4, 2].

lukko [5,1,2,9,7,5,4,2]. Jokaisessa vaiheessa harmaa tausta osoittaa jakoalkion sijainnin. Aluksi koko taulukon jakoalkio on 5 ja algoritmi siirtää alkioita niin, että jakoalkion vasemmalla puolella ovat alkiot [2,1,2,4] ja oikealla puolella alkiot [5,9,7]. Tämän jälkeen vasen ja oikea osataulukko järjestetään vastaavasti rekursiivisesti.

Pikajärjestämisen tehokkuuteen vaikuttaa, miten alkiot jakautuvat jakoalkion eri puolille. Jos hyvin käy, jakoalkion kummallekin puolelle siirretään suunnilleen yhtä monta alkiota. Tällöin taulukon koko puolittuu jokaisen jaon jälkeen ja pikajärjestäminen toimii tehokkaasti. Koska funktio jako toimii lineaarisessa ajassa, pikajärjestäminen vie tässä tapauksessa aikaa $O(n \log n)$ samaan tapaan kuin lomitusjärjestäminen. Uhkana on kuitenkin, että jakoalkio jakaa taulukon osiin epätasaisesti. Kuva 3.4 näyttää tilanteen, jossa jokaisessa jaossa kaikki alkiot jäävät jakoalkion oikealle puolelle. Tällöin pikajärjestäminen viekin aikaa $O(n^2)$, koska rekursiivisia tasoja on O(n). Selvästikään ei ole kaikissa tilanteissa hyvä tapa valita taulukon ensimmäinen alkio jakoalkioksi. Esimerkiksi valmiiksi järjestyksessä olevan taulukon järjestäminen vie silloin aikaa $O(n^2)$.

Oma lukunsa on tilanne, jossa taulukossa on paljon samoja alkioita. Ääritapauksena jokainen alkio on sama, mikä on käytännössä hyvin mahdollinen syöte. Tällöin tässä esitetty funktio jako tuottaa aina huonon jaon, jossa kaikki alkiot menevät jakoalkion oikealle puolelle. Ei siis riitä, että jakoalkio on valittu hyvin, vaan myös tapa, jolla alkioita siirretään taulukossa, vaikuttaa algoritmin tehokkuuteen.

Miten meidän tulisi sitten toteuttaa pikajärjestäminen? Algoritmista on kehitetty vuosien aikana suuri määrä muunnelmia, jotka pyrkivät parantamaan sen toimintaa eri tilanteissa. Yksi kehittyneempi tapa valita jakoalkio

Kuva 3.4: Pikajärjestämisen pahin tapaus: jokaisessa jaossa kaikki alkiot jäävät jakoalkion toiselle puolelle.

algoritmi	tehokkuus	lisätila	vakaa
lisäysjärjestäminen	$O(n^2)$	O(1)	kyllä
lomitusjärjestäminen	$O(n \log n)$	O(n)	kyllä
pikajärjestäminen (hyvä tapaus)	$O(n \log n)$	$O(\log n)$	ei
pikajärjestäminen (huono tapaus)	$O(n^2)$	O(n)	ei

Taulukko 3.1: Järjestämisalgoritmien vertailua.

on ottaa tarkasteluun taulukon ensimmäinen, keskimmäinen ja viimeinen alkio ja valita jakoalkioksi järjestyksessä keskimmäinen näistä kolmesta alkiosta. Tällainen valinta toimii käytännössä hyvin monissa tilanteissa. Parempi tapa toteuttaa alkioiden siirtäminen on puolestaan käydä läpi rinnakkain alkioita alusta ja lopusta ja pitää huoli siitä, että jakokohta jää keskelle, jos kaikki alkiot ovat yhtä suuria. Pikajärjestämisen toteuttaminen hyvin ei ole helppo tehtävä, vaan vaatii paljon huolellisuutta.

3.2.3 Algoritmien vertailua

Taulukossa 3.1 on yhteenveto tähän mennessä käsitellyistä järjestämisalgoritmeista. Algoritmin lisätila tarkoittaa sen tilavaativuutta, eli paljonko tilaa algoritmi tarvitsee järjestettävän taulukon lisäksi. Lisäysjärjestäminen käyttää vain yksittäisiä muuttujia, joten sen lisätila on O(1). Lomitusjärjestämisessä lomittaminen käyttää aputaulukkoa, mistä aiheutuu lisätila O(n). Pikajärjestämisessä puolestaan rekursiivinen kutsupino vie tilaa muistissa riippuen rekursion syvyydestä. Algoritmi on vakaa (stable), jos se säilyttää

yhtä suuret alkiot alkuperäisessä järjestyksessä. Lisäysjärjestäminen ja lomitusjärjestäminen ovat vakaita, koska ne eivät vaihda koskaan yhtä suurten alkioiden järjestystä, mutta pikajärjestäminen saattaa tehdä näin jakoalkion valinnan jälkeen. Algoritmin vakaudesta voi olla hyötyä sovelluksissa.

Meillä on nyt siis kaksi rekursiivista järjestämisalgoritmia: lomitusjärjestäminen toimii aina ajassa $O(n \log n)$, kun taas pikajärjestäminen toimii $ehk\ddot{a}$ ajassa $O(n \log n)$, mutta saattaa viedä aikaa $O(n^2)$. Vaatii monenlaista virittelyä, ennen kuin pikajärjestämisen saa toimimaan tehokkaasti edes tapauksissa, joissa taulukko on valmiiksi järjestyksessä tai kaikki alkiot ovat samoja. Miksi haluaisimme koskaan käyttää epävarmaa pikajärjestämistä, kun voimme käyttää myös varmasti tehokasta lomitusjärjestämistä?

Syynä on, että pikajärjestämisen vakiokertoimet ovat pienet. Kokemus on osoittanut, että kun toteutamme lomitusjärjestämisen ja pikajärjestämisen ja mittaamme algoritmien todellisia suoritusaikoja, pikajärjestäminen toimii usein nopeammin. Näin tapahtuu siitä huolimatta, että pikajärjestämisen pahimman tapauksen aikavaativuus on $O(n^2)$. Käytännössä pahin tapaus on kuitenkin harvinainen, jos jakoalkion valinta ja alkioiden siirtäminen on toteutettu huolellisesti.

Jos taulukko on pieni, $O(n^2)$ -aikainen lisäysjärjestäminen toimii käytännössä nopeammin kuin rekursiiviset algoritmit, koska sen vakiokertoimet ovat hyvin pienet. Yksi mahdollisuus onkin toteuttaa hybridialgoritmi (hybrid algorithm), jossa suuret taulukot järjestetään rekursiivisesti ja pienet taulukot järjestetään lisäysjärjestämisellä. Tällöin eri algoritmien hyvät puolet pääsevät osaksi kokonaisalgoritmia. Käytännössä hybridialgoritmin voi tehdä niin, että valitaan jokin sopiva raja k ja taulukko järjestetään rekursiivisesti, jos siinä on ainakin k alkiota, ja muuten lisäysjärjestämisellä.

3.3 Järjestämisen alaraja

Olisiko mahdollista luoda järjestämisalgoritmi, joka toimisi nopeammin kuin $O(n \log n)$? Osoittautuu, että tämä ei ole mahdollista, jos oletamme, että algoritmin tulee perustua taulukon alkioiden vertailuihin. Vertailuihin perustuva järjestämisalgoritmi järjestää taulukon tekemällä joukon vertailuja muotoa "onko alkio x suurempi kuin alkio y?".

Vertailuihin perustuva järjestämisalgoritmi on yleiskäyttöinen: se pystyy järjestämään mitä tahansa alkioita, kunhan meillä on keino saada selville kahden alkion suuruusjärjestys. Tämä on ominaisuus, jota yleensä ottaen toivomme järjestämisalgoritmilta, joten vertailuihin perustuminen on luonteva rajoitus. Kaikki tähän mennessä käsittelemämme järjestämisalgoritmit ovat olleet vertailuihin perustuvia.

3.3.1 Alarajatodistus

Voimme ajatella vertailuihin perustuvaa järjestämistä prosessina, jossa jokainen vertailu antaa tietoa taulukosta ja auttaa viemään taulukkoa lähemmäs järjestystä. Oletamme, että taulukon alkiot ovat $1, 2, \ldots, n$, jolloin on n! vaihtoehtoa, mikä on taulukon alkuperäinen järjestys. Jotta järjestämisalgoritmi voisi toimia oikein, sen täytyy käsitellä jokainen järjestys eri tavalla.

Esimerkiksi jos n=3, taulukon mahdolliset järjestykset alussa ovat [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2] ja [3,2,1]. Algoritmi voi vertailla ensin vaikkapa ensimmäistä ja toista alkiota. Jos ensimmäinen alkio on pienempi, voimme päätellä, että mahdolliset taulukot ovat [1,2,3], [1,3,2] ja [2,3,1]. Jos taas ensimmäinen alkio on suurempi, mahdolliset taulukot ovat [2,1,3], [3,1,2] ja [3,2,1]. Tämän jälkeen voimme jatkaa vertailuja samaan tapaan ja saada lisää tietoa taulukosta. Algoritmi voi päättyä vasta silloin, kun jäljellä on vain yksi mahdollinen taulukko, jotta voimme olla varmoja, että olemme järjestäneet taulukon oikein.

Tärkeä seikka on, että jokaisessa vertailussa ainakin puolet jäljellä olevista taulukoista voi täsmätä vertailun tulokseen. Niinpä jos algoritmilla käy huono tuuri, se voi enintään puolittaa taulukoiden määrän joka askeleella. Tämä tarkoittaa, että algoritmi joutuu tekemään pahimmassa tapauksessa ainakin $\log(n!)$ vertailua. Logaritmien laskusääntöjen perusteella

$$\log(n!) = \log(1) + \log(2) + \dots + \log(n).$$

Saamme tälle summalle alarajan ottamalla huomioon vain n/2 viimeistä termiä ja arvioimalla niitä alaspäin niin, että jokaisen termin suuruus on vain $\log(n/2)$. Tuloksena on alaraja

$$\log(n!) \ge (n/2)\log(n/2),$$

mikä tarkoittaa, että algoritmi joutuu tekemään pahimmassa tapauksessa $\Omega(n\log n)$ vertailua.

3.3.2 Laskemisjärjestäminen

Millainen olisi sitten järjestämisalgoritmi, joka ei perustu vertailuihin ja toimii tehokkaammin kuin $O(n \log n)$? Laskemisjärjestäminen (counting sort) on O(n)-aikainen järjestämisalgoritmi, jonka toiminta perustuu oletukseen, että taulukon alkiot ovat sopivan pieniä kokonaislukuja. Algoritmi olettaa, että jokainen alkio on kokonaisluku välillä $0 \dots k$, missä k = O(n).

Algoritmi luo kirjanpidon, joka kertoo, montako kertaa mikäkin mahdollinen luku välillä $0 \dots k$ esiintyy taulukossa. Seuraavassa koodissa kirjanpito

tallennetaan taulukkoon laskuri niin, että laskuri[x] ilmaisee, montako kertaa luku x esiintyy taulukossa. Tämän kirjanpidon avulla voimme luoda suoraan lopullisen järjestetyn taulukon.

```
for i = 0 to n-1
    laskuri[taulu[i]] += 1
i = 0
for x = 0 to k
    for j = 1 to laskuri[x]
        taulu[i] = x
        i += 1
```

Algoritmin molemmat vaiheet vievät aikaa O(n), joten se toimii ajassa O(n) ja on käytännössä hyvin tehokas. Algoritmi ei ole kuitenkaan yleinen järjestämisalgoritmi, koska sitä voi käyttää vain silloin, kun taulukon kaikki alkiot ovat sopivan pieniä kokonaislukuja.

3.4 Ohjelmointikielten toteutukset

Vaikka on hyödyllistä tuntea järjestämisen teoriaa, käytännössä ei ole hyvä idea toteuttaa itse järjestämisalgoritmia, koska nykypäivän ohjelmointikielissä on valmiit työkalut järjestämiseen. Valmiin algoritmin käyttämisessä on etuna, että se on varmasti hyvin toteutettu ja tehokas. Lisäksi ohjelmoijan aikaa säästyy, kun algoritmia ei joudu toteuttamaan itse.

3.4.1 Java

Javan standardikirjaston metodi Arrays.sort järjestää sille annetun taulukon seuraavaan tapaan:

```
int[] taulu = {4,2,5,8,2,1,5,6};
Arrays.sort(taulu);
// tulos: [1,2,2,4,5,5,6,8]
```

Metodin sisäinen toiminta riippuu siitä, minkä tyyppistä tietoa taulukossa on. Jos taulukon alkiot ovat alkeistyyppisiä (esimerkiksi int), Java käyttää pikajärjestämisen muunnelmaa, jossa on kaksi jakoalkiota. Jos taas alkiot ovat oliotyyppisiä (esimerkiksi String), algoritmina on Timsort, joka on optimoitu lomitusjärjestäminen.

Kun Arrays. sort järjestää olioita sisältävän taulukon, se kutsuu metodia compareTo aina, kun se haluaa selvittää kahden alkion suuruusjärjestyksen.

Metodin tulee palauttaa negatiivinen arvo, nolla tai positiivinen arvo sen mukaan, onko olio itse pienempi, yhtä suuri vai suurempi kuin parametrina annettu olio. Javan omissa luokissa tällainen metodi on olemassa valmiina. Esimerkiksi "apina".compareTo("banaani") palauttaa negatiivisen arvon, koska apina on ennen banaania aakkosjärjestyksessä.

Tämän ansiosta voimme järjestää suoraan taulukoita, joissa on esimerkiksi merkkijonoja. Jos haluamme, että Java pystyy järjestämään omien luokkien olioita, meidän täytyy toteuttaa itse luokkaan metodi compareTo ja merkitä, että luokka toteuttaa rajapinnan Comparable.

Esimerkiksi seuraava koodi toteuttaa luokan Piste, johon voidaan tallentaa pisteen x- ja y-koordinaatit. Luokassa on metodi compareTo, joka määrittelee, että pisteet järjestetään ensisijaisesti x-koordinaatin ja toissijaisesti y-koordinaatin mukaan.

```
public class Piste implements Comparable Piste {
    private int x, y;

    public Piste(int x, int y) {
        this.x = x;
        this.y = y;
    }

    public int compareTo(Piste p) {
        if (this.x != p.x) {
            return this.x - p.x;
        } else {
            return this.y - p.y;
        }
    }
}
```

Tässä metodi compareTo palauttaa x-koordinaattien erotuksen, jos x-koordinaatti eivät ole samat, ja muuten y-koordinaattien erotuksen. Metodi olettaa, että koordinaattien erotus voidaan esittää int-tyyppisenä arvona.

Voimme nyt järjestää taulukollisen pisteitä näin:

3.4.2 Python

Pythonissa metodi sort järjestää listan sisällön:

```
lista = [4,2,5,8,2,1,5,6]
lista.sort()
# tulos: [1,2,2,4,5,5,6,8]
```

Toinen tapa on käyttää funktiota sorted, joka palauttaa järjestetyn kopion parametrina annetusta listasta:

```
kopio = sorted(lista)
```

Python käyttää järjestämiseen Timsort-algoritmia, joka on optimoitu lomitusjärjestäminen. Sama algoritmi on käytössä Javassa silloin, kun taulukossa on olioita, ja algoritmi on kulkeutunut Javaan Pythonista.

Järjestäminen toimii automaattisesti myös silloin, kun listan alkiot muodostuvat useammasta osasta:

```
lista = [(1,3),(2,3),(1,2)]
lista.sort()
# tulos: [(1,2),(1,3),(2,3)]
```

Oletuksena alkiot järjestetään pienimmästä suurimpaan, mutta voimme muuttaa suunnan parametrilla reverse:

```
lista.sort(reverse=True)
```

Lisäksi voimme antaa parametrilla **key** funktion, joka muuntaa alkion avaimeksi, jonka mukaan järjestäminen tapahtuu. Esimerkiksi seuraava koodi järjestää luvut niiden *itseisarvon* mukaan:

```
lista = [4,-2,-7,5,1]
lista.sort(key=abs)
# tulos: [1,-2,4,5,-7]
```

3.5 Järjestämisen sovelluksia

Järjestämisen merkitys algoritmiikassa on, että voimme ratkaista monia ongelmia tehokkaasti, kunhan aineisto on järjestyksessä. Niinpä yleinen tapa luoda tehokas algoritmi on järjestää ensin syöte ajassa $O(n \log n)$ ja hyödyntää sitten tavalla tai toisella järjestystä algoritmin loppuosassa.

3.5.1 Taulukkoalgoritmeja

Järjestämisen avulla voimme ratkaista ajassa $O(n \log n)$ monia taulukoihin liittyviä tehtäviä. Käymme seuraavaksi läpi kaksi tällaista tehtävää.

Ensimmäinen tehtävämme on laskea, montako eri alkiota annetussa taulukossa on. Esimerkiksi taulukko [2,1,4,2,4,2] sisältää kolme eri alkiota: 1,2 ja 4. Voimme ratkaista tehtävän järjestämällä ensin taulukon, minkä jälkeen yhtä suuret alkiot ovat vierekkäin. Tämän jälkeen saamme laskettua vastauksen helposti, koska riittää tutkia, monessako taulukon kohdassa on vierekkäin kaksi eri alkiota. Voimme toteuttaa algoritmin näin:

```
sort(taulu)
laskuri = 1
for i = 1 to n-1
   if taulu[i-1] != taulu[i]
       laskuri += 1
print(laskuri)
```

Algoritmi järjestää ensin taulukon ajassa $O(n \log n)$, minkä jälkeen se käy läpi taulukon sisällön for-silmukalla ajassa O(n). Tämän ansiosta algoritmi vie aikaa yhteensä $O(n \log n)$.

Entä jos haluammekin selvittää, mikä on taulukon yleisin alkio? Esimerkiksi taulukon [2,1,4,2,4,2] yleisin alkio on 2, joka esiintyy kolme kertaa taulukossa. Tämäkin tehtävä ratkeaa järjestämisen avulla, koska järjestämisen jälkeen yhtä suuret alkiot ovat peräkkäin ja meidän riittää etsiä pisin samaa alkiota toistava osuus. Voimme toteuttaa algoritmin seuraavasti:

```
sort(taulu)
maara = 1
suurin = 1
yleisin = taulu[0]
for i = 1 to n-1
    if taulu[i-1] != taulu[i]
        maara = 0
    maara += 1
    if maara > suurin
        suurin = maara
        yleisin = taulu[i]
print(yleisin)
```

Tässäkin algoritmissa järjestäminen vie aikaa $O(n \log n)$ ja for-silmukka vie aikaa O(n), joten algoritmin kokonaisaikavaativuus on $O(n \log n)$.

3.5.2 Binäärihaku

 $Binäärihaku\ (binary\ search)$ on menetelmä, jonka avulla voimme löytää alkion järjestetystä taulukosta ajassa $O(\log n)$. Ideana on pitää yllä hakuväliä, jossa etsittävä alkio voi olla, ja puolittaa väli joka askeleella tutkimalla välin keskimmäisenä olevaa alkiota. Koska taulukko on järjestyksessä, voimme aina päätellä, kumpaan suuntaan hakua tulee jatkaa.

Seuraava koodi etsii binäärihaulla taulukosta alkiota x:

Algoritmi pitää yllä hakuväliä [a,b], joka on aluksi [0,n-1], koska alkio x saattaa olla missä tahansa kohdassa taulukossa. Joka askeleella algoritmi tarkastaa välin keskellä kohdassa $k = \lfloor (a+b)/2 \rfloor$ olevan alkion. Jos kyseinen alkio on x, haku päättyy. Jos taas alkio on pienempi kuin x, haku jatkuu välin oikeaan puoliskoon, ja jos alkio on suurempi kuin x, haku jatkuu välin vasempaan puoliskoon. Koska välin koko puolittuu joka askeleella, binäärihaun aikavaativuus on $O(\log n)$.

Kuva 3.5 näyttää esimerkin binäärihaun toiminnasta, kun etsimme lukua 6 järjestetystä taulukosta. Aluksi hakuvälinä on koko taulukko ja puolivälin kohdalla on luku 4. Niinpä voimme päätellä, että jos taulukossa on luku 6, sen täytyy esiintyä taulukon loppuosassa. Tämän jälkeen hakuvälinä on taulukon loppuosa ja puolivälin kohdalla on luku 7. Nyt voimme taas päätellä, että luvun 6 täytyy olla tämän kohdan vasemmalla puolella. Hakuväli puolittuu joka askeleella, ja kun jatkamme vastaavasti, kahden askeleen kuluttua hakuvälillä on vain yksi luku, joka on juuri haettu luku 6. Olemme löytäneet halutun luvun ja algoritmi päättyy.

Voimme selvittää binäärihaun avulla esimerkiksi tehokkaasti, onko taulukossa kahta alkiota a ja b niin, että a+b=x, missä x on annettu arvo. Ideana on järjestää ensin taulukko ja käydä sitten läpi kaikki taulukon luvut. Jokaisen luvun kohdalla tutkimme, voisiko kyseinen luku olla a. Tällöin taulukossa pitäisi olla toinen luku b niin, että a+b=x, eli taulukossa pitäisi

Kuva 3.5: Luvun 6 etsiminen järjestetystä taulukosta binäärihaun avulla. Harmaa alue vastaa väliä [a,b] ja nuoli osoittaa kohdan k.

olla luku x-a. Pystymme tarkastamaan tämän binäärihaulla ajassa $O(\log n)$. Tuloksena on algoritmi, joka vie aikaa $O(n \log n)$, koska sekä järjestäminen että binäärihakua käyttävä läpikäynti vievät aikaa $O(n \log n)$.

Luku 4

Lista

Lista (list) on taulukkoa muistuttava muuttuvan kokoinen tietorakenne, joka muodostuu peräkkäin olevista alkioista. Esimerkiksi [3,7,2,5] on lista, joka sisältää neljä alkiota. Haluamme toteuttaa listan niin, että pääsemme käsiksi listalla olevaan alkioon sen kohdan perusteella ja lisäksi pystymme lisäämään ja poistamaan alkioita.

Tässä luvussa tutustumme kahteen lähestymistapaan listan toteuttamiseen. Ensin toteutamme taulukkolistan, jossa listan alkiot tallennetaan taulukkoon. Tämän jälkeen toteutamme linkitetyn listan, joka muodostuu toisiinsa viittaavista solmuista. Kuten tulemme huomaamaan, molemmissa listan toteutuksissa on omat hyvät ja huonot puolensa.

4.1 Taulukkolista

 $Taulukkolista\ (array\ list)$ on lista, joka on tallennettu taulukkona. Koska taulukon alkiot ovat peräkkäin muistissa, pääsemme käsiksi mihin tahansa listan alkioon ajassa O(1). Haasteena toteutuksessa on kuitenkin, että taulukon koko on $kiinte\ddot{a}$ ja listan koon muuttamiseksi täytyy varata uusi taulukko ja kopioida sinne vanhan taulukon sisältö.

4.1.1 Muutokset lopussa

Toteutamme ensin taulukkolistan, jossa alkioiden lisäykset ja poistot tapahtuvat listan lopussa. Tallennamme listan taulukkona niin, että tietty määrä alkioita taulukon alussa on listan käytössä ja loput tyhjät kohdat on varattu tuleville alkioille. Tämän ansiosta pystymme lisäämään uuden alkion listalle ajassa O(1), jos taulukossa on tilaa, koska riittää ottaa käyttöön seuraava vapaana oleva kohta taulukosta.

38 LUKU 4. LISTA

Kuva 4.1: (a) Lista [3,7,2,5] tallennettuna taulukkoon. (b) Listan loppuun lisätään alkio 6.

3	7	2	5	6	1	2	8				
\downarrow											
3	7	2	5	6	1	2	8	4	_	_	_

Kuva 4.2: Taulukkoon ei mahdu enää uutta alkiota. Meidän täytyy varata uusi suurempi taulukko ja kopioida vanhan taulukon sisältö sinne.

Kuva 4.1 näyttää esimerkin, jossa taulukossa on tilaa yhteensä kahdeksalle alkiolle ja siihen on tallennettu lista [3, 7, 2, 5]. Taulukon neljä ensimmäistä kohtaa ovat siis listan käytössä ja muut ovat varalla tulevia alkioita varten. Kun lisäämme listan loppuun uuden alkion 6, otamme käyttöön taulukosta uuden kohdan, johon alkio sijoitetaan.

Mitä tapahtuu sitten, kun jossain vaiheessa koko taulukko on täynnä eikä uusi listalle lisättävä alkio mahdu enää taulukkoon? Tällöin täytyy ensin varata uusi suurempi taulukko ja kopioida kaikki vanhan taulukon alkiot siihen, minkä jälkeen uusi alkio voidaan lisätä listalle. Tämä vie aikaa O(n), koska kaikki listan alkiot täytyy kopioida uuteen paikkaan muistissa. Esimerkiksi kuvassa 4.2 uusi alkio 4 ei mahdu taulukkoon, joten joudumme varaamaan uuden taulukon ja kopioimaan alkiot.

Olemme saaneet siis aikaan listan, jossa lisääminen vie aikaa joko O(1) tai O(n) riippuen siitä, mahtuuko alkio nykyiseen taulukkoon vai täytyykö varata uusi taulukko. Jotta lista olisi käyttökelpoinen, hidas O(n)-operaatio ei saisi esiintyä liian usein. Osoittautuu, että tämä tavoite toteutuu, kunhan varaamme uuden taulukon aina reilusti aiempaa suuremmaksi. Tyypillinen ratkaisu on kaksinkertaistaa taulukon koko aina, kun varaamme uuden taulukon. Kun toimimme näin, jokaisen alkion lisääminen listalle vie keskimäärin vain O(1) aikaa.

Miksi aikaa kuluu keskimäärin vain O(1)? Tarkastellaan tilannetta, jossa listassa on n alkiota ja taulukko on tullut täyteen, joten alkiot täytyy kopioida uuteen taulukkoon. Tiedämme, että alkioita kopioitiin viimeksi silloin, kun listassa oli n/2 alkiota, joten listaan on lisätty välissä n/2 alkiota tehokkaasti. Niinpä n alkion kopioimisen kustannus voidaan jakaa n/2 aiem-

Kuva 4.3: Poistojen jälkeen taulukon koko on käynyt tarpeettoman suureksi, ja puolitamme taulukon koon.

min lisätylle alkiolle, ja jokaiseen alkioon kohdistuva lisäkustannus on vakio. Taulukon kasvattamisen vaikutus kokonaisuuteen on siis pieni.

Voimme poistaa alkion listan lopusta aina O(1)-ajassa, koska taulukon kokoa ei tarvitse koskaan suurentaa. Tässä voi kuitenkin tulla ongelmaksi, että monien poistojen jälkeen taulukossa on turhan paljon tyhjää tilaa lopussa. Voimme soveltaa tässä käänteisesti samaa ideaa kuin lisäämisessä: jos poistamisen jälkeen vain neljännes taulukosta on käytössä, puolitamme taulukon koon. Kuva 4.3 näyttää esimerkin tällaisesta tilanteesta. Tällä tavalla myös poistamiset vievät keskimäärin aikaa O(1).

Miksi emme voisi varata heti aluksi niin suurta taulukkoa, että lopullinen lista mahtuisi siihen varmasti? Tässä olisi huonona puolena, että listan toteutus tuhlaisi muistia. Algoritmissa saattaa olla samaan aikaan käytössä monia listoja, ja haluamme, että listalle varattu taulukko on samaa kokoluokkaa kuin listan todellinen sisältö.

4.1.2 Muutokset alussa ja lopussa

Melko samaan tapaan voimme myös luoda taulukkolistan, joka sallii tehokkaat alkioiden lisäykset ja poistot sekä listan alussa että lopussa. Jotta tämä onnistuisi, muutamme listan tallennustapaa niin, että lista voi alkaa ja päättyä missä tahansa taulukon kohdassa ja listan sisältö voi tarvittaessa jatkua taulukon lopusta alkuun.

Kuva 4.4 näyttää esimerkin listan [3,7,2,5] uudesta tallennustavasta. Merkki \rightarrow osoittaa kohdan, josta lista alkaa, ja merkki \leftarrow osoittaa kohdan, johon lista päättyy. Kun haluamme lisätä alkion listan alkuun, siirrymme vasemmalle kohdasta \rightarrow , ja kun haluamme lisätä alkion listan loppuun, siirrymme oikealle kohdasta \leftarrow . Kun haluamme poistaa alkioita listasta, menettelemme käänteisesti.

Jos kohdat \leftarrow ja \rightarrow ovat vierekkäin tässä järjestyksessä, tämä voi tarkoittaa kahta asiaa: joko lista on tyhjä tai sitten kaikki taulukon kohdat ovat käytössä. Kuva 4.5 näyttää esimerkin näistä tilanteista. Kun pidämme muistissa alkioiden määrää, voimme päätellä siitä, kumpi tilanne on kyseessä. Jos

40 LUKU 4. LISTA

Kuva 4.4: (a) Lista [3,7,2,5] tallennettuna taulukkoon. (b) Listan alkuun lisätään alkio 6. (c) Listan lopusta poistetaan alkio 5.

Kuva 4.5: Kaksi samantapaista tilannetta: (a) Listassa ei ole yhtään alkiota. (b) Listan alkiot täyttävät koko taulukon.

taulukko on täynnä ja haluamme lisätä uuden alkion, meidän täytyy varata uusi suurempi taulukko, johon listan sisältö siirretään. Voimme menetellä samalla tavalla kuin aiemmin ja esimerkiksi kaksinkertaistaa taulukon koon joka vaiheessa, jolloin operaatiot vievät keskimäärin aikaa O(1).

4.2 Linkitetty lista

Linkitetty lista (linked list) muodostuu solmuista, joista jokainen sisältää yhden listan alkion. Linkitetty lista voi olla yhteen tai kahteen suuntaan linkitetty. Yhteen suuntaan linkitetyssä listassa jokaisesta solmusta on viittaus seuraavaan solmuun, ja kahteen suuntaan linkitetyssä listassa jokaisesta solmusta on viittaus sekä seuraavaan että edelliseen solmuun.

Kuva 4.6 näyttää esimerkkinä listan [3, 7, 2, 5] yhteen ja kahteen suuntaan linkitettynä. Molemmissa listoissa tiedossa on viittaukset listan alkuun ja loppuun. Yhteen suuntaan linkitetyssä listassa voimme käydä läpi listan alkiot alusta loppuun, kun taas kahteen suuntaan linkitetyssä listassa voimme kulkea sekä alusta loppuun että lopusta alkuun.

Kuva 4.6: Lista [3,7,2,5] linkitettynä listana. (a) Yhteen suuntaan linkitetty lista. (b) Kahteen suuntaan linkitetty lista.

Tavallinen tapa toteuttaa linkitetty rakenne ohjelmointikielissä on luoda luokka, jonka oliot vastaavat rakenteen solmuja. Esimerkiksi voisimme rakentaa yhteen suuntaan linkitetyn listan [1, 2, 3] tähän tapaan:

```
a.arvo = 1
a.seuraava = b
b.arvo = 2
b.seuraava = c
c.arvo = 3
c.seuraava = null
```

Tässä toteutuksessa jokaisessa solmuoliossa on kaksi kenttää: arvo on solmussa oleva arvo ja seuraava viittaa listan seuraavaan solmuun. Listan loppumisen ilmaisee viimeisessä solmussa oleva arvo null. Voisimme käydä läpi listan solmut näin:

```
s = a
while s != null
   print(s.arvo)
   s = s.seuraava
```

4.2.1 Listan operaatiot

Käytännössä järkevä tapa toteuttaa linkitetty lista on tehdä listasta kaksisuuntainen, jolloin tiedämme jokaisessa solmussa seuraavan ja edellisen solmun ja voimme kulkea listaa molempiin suuntiin.

Linkitetyn listan etuna on, että voimme lisätä ja poistaa alkioita O(1)-ajassa kaikissa listan kohdissa. Kun haluamme lisätä listalle alkion, luomme

42 LUKU 4. LISTA

Kuva 4.7: (a) Alkuperäinen lista [3,7,2,5]. (b) Listan keskelle lisätään alkio 4. (c) Listasta poistetaan alkio 2.

ensin uuden solmun ja muutamme sitten sen vieressä olevien solmujen viittauksia niin, että ne viittaavat uuteen solmuun. Vastaavasti kun haluamme poistaa alkion, muutamme viittauksia niin, että solmu ohitetaan.

Kuva 4.7 näyttää esimerkin linkitetyn listan käsittelystä. Listan sisältönä on aluksi [3,7,2,5]. Sitten lisämme listan keskelle alkion 4, jolloin luomme ensin uuden solmun alkiolle ja muutamme sitten viittauksia alkioiden 7 ja 2 välillä niin, että alkio 4 tulee niiden väliin. Lopuksi poistamme listasta alkion 2, jolloin yhdistämme alkiot 4 ja 5 suoraan toisiinsa.

Pääsemme listan ensimmäiseen ja viimeiseen solmuun tehokkaasti, koska muistissa on viittaukset niihin. Sen sijaan jos haluamme päästä johonkin muuhun listan kohtaan, matka täytyy aloittaa listan alusta tai lopusta ja kulkea askel kerrallaan viittauksia seuraten. Niinpä listan keskellä olevaan kohtaan pääseminen vie aikaa O(n). Joudumme liikkumaan solmuihin linkkejä pitkin, koska solmut voivat olla eri puolilla muistia eikä ole keinoa tietää suoraan, mihin mikäkin solmu on tallennettu.

4.2.2 Listojen vertailua

Taulukko 4.1 esittää yhteenvedon taulukkolistan ja linkitetyn listan ominaisuuksista. Kummassakin toteutuksessa on yksi operaatio, joka ei ole tehokas. Taulukkolistassa pääsemme tehokkaasti mihin tahansa listan kohtaan, mutta on hidasta muokata listaa keskeltä. Linkitetyssä listassa voimme helposti muokata listaa mistä tahansa, mutta keskelle pääseminen on hidasta.

Huomaa, että keskelle pääsemisen hitaus rajoittaa melko paljon linkitetyn listan käyttämistä. Vaikka pystymme sinänsä muokkaamaan listaa mistä tahansa kohdasta tehokkaasti, meidän tulee ensin päästä kyseiseen kohtaan.

operaatio	taulukkolista	linkitetty lista
pääsy listan alkuun	O(1)	O(1)
pääsy listan loppuun	O(1)	O(1)
pääsy listan keskelle	O(1)	O(n)
lisäys/poisto listan alussa	O(1)	O(1)
lisäys/poisto listan lopussa	O(1)	O(1)
lisäys/poisto listan keskellä	O(n)	O(1)

Taulukko 4.1: Taulukkolistan ja linkitetyn listan aikavaativuuksia.

Kuva 4.8: Esimerkki pinon käsittelystä: lisäämme tyhjään pinoon alkiot 3, 1 ja 4, poistamme kaksi ylintä alkiota ja lisäämme lopuksi alkion 5.

Jos jostain syystä on etukäteen tiedossa viittaus listan keskelle, voimme muokata kyseistä kohtaa tehokkaasti, mutta muuten tulee ensin kulkea haluttuun kohtaan, missä kuluu aikaa O(n).

4.3 Pino ja jono

Listan avulla voimme toteuttaa myös kaksi erikoistunutta tietorakennetta, pinon ja jonon, jotka sisältävät vain osan listan ominaisuuksista eli niiden operaatiot ovat listaa rajoittuneempia.

Pino (stack) on tietorakenne, jonka operaatiot ovat alkion lisääminen pinon päälle (push), ylimmän alkion poistaminen (pop) sekä ylimmän alkion hakeminen. Esimerkiksi kuvassa 4.8 lisäämme ensin tyhjään pinoon kolme alkiota, poistamme sitten kaksi alkiota ja lisäämme vielä yhden alkion.

Jono (queue) on tietorakenne, jossa voimme lisätä alkioita jonon loppuun (enqueue), poistaa alkioita jonon alusta (dequeue) ja hakea alkioita molemmista päistä. Esimerkiksi kuvassa 4.9 lisäämme ensin tyhjään jonoon kolme alkiota, poistamme sitten yhden alkion ja lisämme vielä yhden alkion.

Pystymme toteuttamaan sekä pinon että jonon helposti listana niin, että niiden operaatiot toimivat ajassa O(1). Mutta mitä järkeä on luoda uusia tietorakenteita, jotka ovat huonompia kuin lista? Listassa voimme käsitellä

44 LUKU 4. LISTA

Kuva 4.9: Esimerkki jonon käsittelystä: lisäämme tyhjään jonon alkiot 1, 5 ja 2, poistamme yhden alkion ja lisäämme vielä alkion 3.

mitä tahansa alkioita, mutta pinossa ja jonossa emme pääse käsiksi keskellä oleviin alkioihin. Selitys on siinä, että pino ja jono ovat hyödyllisiä *käsitteitä* algoritmien suunnittelussa. Voimme usein ajatella algoritmissa tarvittavaa tietorakennetta pinona tai jonona ja toteuttaa sen sitten listana.

Tarkastellaan esimerkkinä ongelmaa, jossa annettuna on n merkin pituinen sulkulauseke, joka muodostuu kaarisulkeista (ja) sekä hakasulkeista [ja]. Haluamme selvittää, onko lauseke oikein muodostettu eli onko jokaiselle aloittavalle sululle vastaava lopettava pari. Esimerkiksi lauseke [()] () on oikein muodostettu, kun taas lauseke [()]) ei ole. Voimme ratkaista ongelman O(n)-ajassa pinon avulla käymällä läpi lausekkeen merkit vasemmalta oikealle. Kun vastaan tulee aloittava sulku (tai [, lisäämme sen pinoon. Kun taas vastaan tulee lopettava sulku) tai], tutkimme, mikä on pinossa ylimpänä oleva merkki. Jos merkki on vastaava aloittava sulku, poistamme sen pinosta, ja muuten toteamme, että lauseke on virheellinen. Jos lausekkeen läpikäynnin aikana ei esiinny virheitä ja pino on lopuksi tyhjä, lauseke on oikein muodostettu.

4.4 Ohjelmointikielten toteutukset

4.4.1 Java

Javan ArrayList on taulukkolista, jossa alkion lisääminen ja poistaminen on tehokasta, kun se tapahtuu listan lopussa. Metodi add lisää tehokkaasti alkion listan loppuun:

```
ArrayList<Integer> lista = new ArrayList<>();
lista.add(1);
lista.add(2);
lista.add(3);
// tulos: [1,2,3]
```

Metodi **remove** poistaa alkion annetusta listan kohdasta. Metodi toimii tehokkaasti, kun poistokohta on listan lopussa. Esimerkiksi seuraava koodi poistaa listan viimeisen alkion:

```
lista.remove(lista.size()-1);
```

Koska lista on tallennettu taulukkona, pääsemme myös tehokkaasti käsiksi missä tahansa kohdassa olevaan alkioon metodeilla get ja set:

```
// hae alkio kohdasta 3
int x = lista.get(3);
// muuta kohdan 5 alkioksi 8
lista.set(5,8);
```

ArrayDeque on taulukkolista, joka sallii tehokkaat lisäykset ja poistot sekä listan alussa että lopussa. Metodit addFirst ja addLast lisäävät alkioita, ja metodit removeFirst ja removeLast poistavat alkioita.

```
ArrayDeque<Integer> lista = new ArrayDeque<>();
lista.addLast(1);
lista.addLast(2);
lista.addLast(3);
lista.removeFirst();
lista.addFirst(4);
// tulos: [4,2,3]
```

Lisäksi voimme hakea listan ensimmäisen ja viimeisen alkion metodeilla getFirst ja getLast:

```
int eka = lista.getFirst();
int vika = lista.getLast();
```

Rajoituksena on kuitenkin, että yleisiä metodeita get ja set ei ole tarjolla eli emme pääse tehokkaasti käsiksi listan keskellä oleviin alkioihin.

LinkedList on kaksisuuntainen linkitetty lista, jota voimme käsitellä samaan tapaan kuin ArrayDeque-listaa:

46 LUKU 4. LISTA

```
LinkedList<Integer> lista = new LinkedList<>();
lista.addLast(1);
lista.addLast(2);
lista.addLast(3);
lista.removeFirst();
lista.addFirst(4);
// tulos: [4,2,3]
```

LinkedList tarjoaa myös metodit get ja set, joiden avulla pääsee käsiksi tietyssä kohdassa listalla olevaan alkioon. Nämä metodit vievät kuitenkin aikaa O(n), koska joudumme kulkemaan ensin oikeaan kohtaan listan alusta tai lopusta.

Voimme käsitellä listaa myös *iteraattorilla* (*iterator*), joka osoittaa tiettyyn listan kohtaan. Esimerkiksi seuraava koodi luo iteraattorin, joka osoittaa listan alkuun, siirtää iteraattoria kaksi askelta eteenpäin ja lisää alkion iteraattorin kohdalle eli listan toisen ja kolmannen alkion väliin.

```
ListIterator<Integer> x = lista.listIterator();
x.next();
x.next();
x.add(5);
```

Iteraattorin avulla voimme muokata tehokkaasti linkitettyä listaa siitä kohdasta, jossa iteraattori on tällä hetkellä.

4.4.2 Python

Pythonin tavallinen lista on taulukkolista, jota voi käsitellä tehokkaasti listan lopusta. Metodi append lisää alkion listan loppuun:

```
lista = []
lista.append(1)
lista.append(2)
lista.append(3)
# tulos: [1,2,3]
```

Metodi pop puolestaan poistaa listan viimeisen alkion:

```
lista.pop()
```

Pääsemme käsiksi listan alkioihin tehokkaasti []-syntaksin avulla:

```
x = lista[3]
lista[5] = 8
```

Pythonissa on myös lista deque, joka on toteutettu linkitettynä listana. Lisäykset ja poistot ovat tehokkaita sekä listan alussa että lopussa. Saamme tietorakenteen käyttöön näin:

```
from collections import deque
```

Tavallisen listan tavoin deque tarjoaa metodit append ja pop, mutta lisäksi siinä on metodit appendleft ja popleft, joiden avulla voi lisätä ja poistaa alkioita listan alussa:

```
lista = deque()
lista.append(1)
lista.append(2)
lista.append(3)
lista.popleft()
lista.appendleft(4)
# tulos: [4,2,3]
```

Listan alkuun ja loppuun pääsee käsiksi näin:

```
eka = lista[0]
vika = lista[-1]
```

Myös listan keskellä olevia alkioita voi käsitellä []-syntaksilla, mutta tämä vie aikaa O(n), koska kyseessä on linkitetty lista.

4.5 Miten valita lista?

Voimme käyttää usein algoritmin toteutukseen joko taulukkolistaa tai linkitettyä listaa ja saada aikaan aikavaativuuden kannalta yhtä tehokkaan algoritmin. Esimerkiksi jos algoritmi lisää listan loppuun alkioita, sekä taulukkolistassa että linkitetyssä listassa lisäämisen aikavaativuus on O(1). Mutta kumpi lista on parempi valinta käytännössä?

Useimmissa tapauksissa parempi valinta on taulukkolista, koska nykyaikaiset tietokoneet suosivat taulukkolistan käyttämistä linkitetyn listan sijaan. Kuvassa 4.10 näkyy, miten taulukkolista ja linkitetty lista asettuvat tietokoneen muistissa. Taulukkolistan alkiot ovat peräkkäin, kun taas linkitetyn listan alkiot voivat olla eri puolilla muistia sekalaisessa järjestyksessä.

48 LUKU 4. LISTA

Kuva 4.10: Taulukkolista ja linkitetty lista tietokoneen muistissa.

Nykyaikaisen prosessorin välimuistit ja seuraavaksi suoritettavien komentojen ennustus on toteutettu niin, että ne ovat parhaimmillaan silloin, kun tieto on tallennettu muistissa peräkkäin – eli juuri kuten taulukkolistassa. Tämä näkyy käytännössä siinä, että taulukkolistan käsittely on selvästi tehokkaampaa kuin linkitetyn listan käsittely.

Vaikka linkitetty lista ei ole usein käytännössä hyvä tietorakenne, linkitetyn rakenteen idea on hyödyllinen ja tarvitsemme sitä myöhemmin monimutkaisemmissa tietorakenteissa.

Luku 5

Hajautustaulu

Hajautustaulu (hash table) on tietorakenne, joka tarjoaa tehokkaat operaatiot alkion lisäämiseen, hakemiseen ja poistamiseen. Voimme toteuttaa hajautustaulun avulla joukon, jossa on kokoelma alkioita, sekä hakemiston, joka sisältää avain-arvo-pareja.

Yksi tapa ajatella hajautusta on, että yleistämme taulukon ideaa: taulukossa indeksit ovat aina 0, 1, 2, jne., mutta hajautustaulussa voimme käyttää indeksien sijasta vaikkapa merkkijonoja. Tämä onnistuu käyttämällä hajautusfunktiota, joka muuttaa muun tyyppisen alkion indeksiksi, jotta löydämme sille paikan taulukosta.

5.1 Hajautustaulun toteutus

Hajautustaulun perustana on hajautusfunktio (hash function) f(x), joka antaa hajautusarvon (hash value) mille tahansa alkiolle x. Hajautusarvo on kokonaisluku väliltä $0, 1, \ldots, N-1$, missä N on hajautustaulun koko. Hajautusarvo määrää, mihin hajautustaulun kohtaan alkio tallennetaan.

Tarkastellaan esimerkkinä hajautusfunktiota $f(x) = x \mod N$, missä x on kokonaisluku. Tämä hajautusfunktio antaa hajautusarvoksi luvun x jakojäännöksen N:llä. Esimerkiksi kun N=10 ja tallennamme hajautustauluun luvun 14, saamme sen hajautusarvoksi f(14)=4. Tämä tarkoittaa, että luvun paikka hajautustaulussa on kohdassa 4. Vastaavasti f(21)=1, eli luvun 21 paikka hajautustaulussa on kohdassa 1. Kun N=10, luvun hajautusarvo on tässä tapauksessa siis luvun viimeinen numero.

Yleensä hajautustaulun koko N on selvästi pienempi kuin mahdollisten alkioiden määrä ja hajautuksessa voi tapahtua törmäys (collision) eli kahdelle alkiolle tulee sama hajautusarvo. Esimerkiksi f(14) = f(24) = 4 eli luvut 14 ja 24 kuuluvat samaan paikkaan hajautustaulussa. Tämän vuoksi

Kuva 5.1: Ketjuhajautusta käyttävä hajautustaulu, joka vastaa joukkoa $\{6, 14, 21, 24\}$. Hajautusfunktiona on $f(x) = x \mod N$.

Kuva 5.2: Kaksi hajautustaulua joukolle {6,14,21,24}. Vasen tilanne on paras mahdollinen, oikea tilanne taas huonoin mahdollinen.

hajautustaulun toteutuksessa täytyy päättää, miten törmäykset käsitellään. Kaksi tavallista tapaa tähän ovat ketjuhajautus sekä avoin hajautus.

5.1.1 Ketjuhajautus

Ketjuhajautus (chaining) on hajautustaulun toteutustapa, jossa jokainen hajautustaulun kohta sisältää listan alkioista, joilla on kyseinen hajautusarvo. Tällöin mahdolliset alkioiden törmäykset eivät haittaa, koska listoissa voi olla mikä tahansa määrä alkioita.

Kuvassa 5.1 on esimerkkinä ketjuhajautusta käyttävä hajautustaulu, johon on tallennettu joukko $\{6,14,21,24\}$ käyttäen hajautusfunktiota $f(x)=x \mod N$. Kohdassa 1 on alkio 21, kohdassa 4 on alkiot 14 ja 24 ja kohdassa 6 on alkio 6. Muissa kohdissa olevat listat ovat vielä tyhjiä.

Kun haluamme tarkastaa, onko joukossa alkiota x, laskemme ensin sen hajautusarvon f(x). Tämän jälkeen käymme läpi kaikki kohdan f(x) listassa olevat alkiot ja tarkastamme, onko jokin niistä alkio x. Vastaavasti kun haluamme lisätä alkion x joukoon tai poistaa alkion x joukosta, teemme muutoksen kohdassa f(x) olevaan listaan.

Ketjuhajautuksessa hajautustaulun operaatioiden aikavaativuus on O(m),

0	1	2	3	4	5	6	7	8	9
	21			14	24	6			

Kuva 5.3: Avointa hajautusta käyttävä hajautustaulu, joka vastaa joukkoa $\{6, 14, 21, 24\}$. Hajautusfunktiona on $f(x) = x \mod N$.

missä m on listan alkioiden määrä. Hajautustaulu toimii siis tehokkaasti, jos siinä olevat listat ovat lyhyitä. Tämä toteutuu, jos käytetty hajautusfunktio sijoittaa alkioita tasaisesti hajautustaulun eri puolille. Kuvassa 5.2 on kaksi ääriesimerkkiä hajautuksen onnistumisesta erilaisilla hajautusfunktioilla. Vasemmassa hajautustaulussa jokainen alkio on eri listassa, mikä on paras mahdollinen tilanne. Oikeassa hajautustaulussa kaikki alkiot ovat puolestaan samassa listassa, mikä on huonoin mahdollinen tilanne.

5.1.2 Avoin hajautus

Toinen tapa toteuttaa hajautustaulu on avoin hajautus (open addressing), jossa alkiot tallennetaan suoraan hajautustauluun listojen sijasta. Kuitenkin jos alkio kuuluisi paikkaan, jossa on jo valmiina jokin toinen alkio, sille valitaan toinen paikka jonkin säännön perusteella.

Avoimessa hajautuksessa alkion paikkaa hajautustaulussa etsitään kokeilufunktiolla (probe function) h(x,i), jossa x on alkio ja i ilmaisee, montako kertaa sille on yritetty etsiä paikkaa. Tarkastelemme seuraavaksi yksinkertaista kokeilufunktiota

$$h(x,i) = (f(x) + i) \bmod N,$$

mikä tarkoittaa, että alkiolle etsitään paikkaa sen hajautusarvon f(x) antamasta kohdasta lähtien kulkemalla taulukossa oikealle, kunnes vapaa paikka löytyy. Tämän menetelmän nimi on lineaarinen kokeilu (linear probing).

Kuvassa 5.3 näkyy joukon $\{6, 14, 21, 24\}$ sijoittuminen hajautustauluun käyttäen hajautusfunktiota $f(x) = x \mod N$ ja lineaarista kokeilua. Tässä alkio 14 on lisätty ennen alkiota 24, minkä vuoksi alkio 14 on sen hajautusarvon mukaisessa kohdassa 4 mutta alkio 24 on kohdassa 5, koska kohta 4 oli jo varattu. Kuvassa 5.4 mukaan lisätään vielä alkio 44, jolla on myös hajautusarvo 4. Koska kohdissa 4, 5 ja 6 on jo alkio, alkion 44 kohdaksi tulee 7. Alkio voi sijoittua siis kauaskin hajautusarvon määräämästä kohdasta, jos hajautustaulussa on täyttä.

Kun haluamme löytää alkion x hajautustaulusta avointa hajautusta käyttäen, tutkimme hajautustaulun kohtia kokeilufunktion mukaisesti, kunnes joko löydämme alkion tai tulemme tyhjään kohtaan, jolloin voimme päätellä,

0	1	2	3	4	5	6	7	8	9
	$\overline{21}$			$\overline{14}$	24	6	$\overline{44}$		

Kuva 5.4: Hajautustauluun lisätään vielä alkio 44, jonka hajautusarvo on 4. Sille löytyy paikka vasta kohdasta 7.

0	1	2	3	4	5	6	7	8	9
	21			14	24	Χ	44		

Kuva 5.5: Hajautustaulusta on poistettu alkio 6, jonka tilalla on merkki X. Tämän ansiosta alkion 44 haku ei pysähdy kohtaan 6.

että hajautustaulussa ei ole alkiota. Esimerkiksi kun haluamme löytää kuvan 5.4 hajautustaulusta alkion 44, aloitamme kohdasta f(44) = 4 ja kuljemme eteenpäin kohtaan 7 asti.

Alkion poistaminen aiheuttaa hieman ongelmia avoimessa hajautuksessa, koska jos vain merkitsemme alkion kohdan tyhjäksi, tämä voi häiritä tulevia hakuja. Esimerkiksi jos poistaisimme kuvan 5.4 hajautustaulusta alkion 6 merkitsemällä kohdan 6 tyhjäksi, emme enää löytäisi alkiota 44, koska haku pysähtyisi tyhjään kohtaan 6. Kuitenkin voimme kiertää ongelman käyttämällä jotain erikoismerkkiä poistetulle alkiolle. Kuvassa 5.5 poistetun alkion merkkinä on X, joka tarkoittaa, että kyseinen kohta on tyhjä mutta siinä on ollut alkio. Niinpä alkion 44 haku ei pääty tähän kohtaan, vaikka siihen voi myös sijoittaa uuden alkion myöhemmin.

Avoimen hajautuksen tehokkuus riippuu käytetystä hajautusfunktiosta ja kokeilufunktiosta. Hajaustustaulun operaatiot vievät aikaa O(m), missä m on kokeiltavien paikkojen määrä, kun haluamme löytää paikan uudelle alkiolle tai etsiä alkion taulusta. Käytännössä lineaarisessa kokeilussa voi tulla ongelmaksi, että alkiot kasautuvat tiettyihin hajautustaulun osiin. Kehittyneemmissä kokeilufunktioissa alkion paikan etsimisessä tehdään vaihtelevan kokoisia hyppyjä hajautustaulussa.

5.1.3 Hajautusfunktion valinta

Hajautusfunktio f(x) määrittää, mihin kohtaan hajautustaulua alkio x sijoitetaan. Sen täytyy antaa jokaiselle mahdolliselle alkiolle hajautusarvo eli kokonaisluku väliltä $0, 1, \ldots, N-1$, missä N on hajautustaulun koko. Kun tämä ehto täyttyy, hajautusfunktion voi muilta osin suunnitella periaatteessa miten tahansa. Mutta miten hajautusfunktio kannattaa valita?

Jos hajautettavat alkiot ovat kokonaislukuja, suoraviivainen hajautusfunktio on esimerkissä käyttämämme $f(x) = x \mod N$, joka muuttaa luvun välille 0...N-1 jakojäännöksen avulla. Tämä on helposti toteutettava ja yleensä hyvin toimiva hajautusfunktio. Entä jos alkiot ovat jotain muuta tyyppiä kuin kokonaislukuja? Tällöin voimme ensin keksiä jonkin järkevän keinon muuttaa alkion kokonaisluvuksi, minkä jälkeen voimme jälleen ottaa jakojäännöksen N:llä.

Tarkastellaan tilannetta, jossa haluamme hajauttaa merkkijonoja eli täytyy löytää tapa muuttaa merkkijono kokonaisluvuksi. Oletamme, että merkkijonossa on k merkkiä, joiden merkkikoodit ovat $c_0, c_1, \ldots, c_{k-1}$. Esimerkiksi jos merkkijono on testi, merkkikoodit¹ ovat $c_0 = 116$, $c_1 = 101$, $c_2 = 115$, $c_3 = 116$ ja $c_4 = 105$. Yksi tapa muuttaa merkkijono kokonaisluvuksi on laskea merkkikoodien summa

$$c_0 + c_1 + \cdots + c_{k-1}$$

jolloin merkkijonoa testi vastaa kokonaisluku

$$116 + 101 + 115 + 116 + 105 = 553.$$

Tämä on sinänsä järkevä tapa laskea hajautusarvo, mutta siinä on yksi ongelma: kaksi merkkijonoa saavat aina saman hajautusarvon, jos niissä on samat merkit eri järjestyksessä. Pystymme parantamaan hajautusarvon laskentaa lisäämällä summaan kertoimet käyttäen kaavaa

$$A^{k-1}c_0 + A^{k-2}c_1 + \dots + A^0c_{k-1},$$

missä A on vakio. Esimerkiksi jos A=7, merkkijonoa testi vastaa kokonaisluku

$$7^4 \cdot 116 + 7^3 \cdot 101 + 7^2 \cdot 115 + 7^1 \cdot 116 + 7^0 \cdot 105 = 319711.$$

Tämän menetelmän nimi on polynominen hajautus (polynomial hashing), ja se on yksi käytännössä hyvä merkkijonon hajautustapa.

5.1.4 Miten hyvin hajautus toimii?

Hajautustaulun operaatiot vievät aikaa O(m), missä m on ketjuhajautuksessa listan pituus ja avoimessa hajautuksessa kokeilujonon pituus. Mutta kuinka suuri m on? Tähän vaikuttavat alkioiden määrä n, hajautustaulun koko N, hajautusfunktio f sekä avoimessa hajautuksessa kokeilufunktio h.

Jos kaikki sujuu hyvin, hajautusfunktio jakaa alkioita tasaisesti hajautustaulun eri puolille ja listojen tai kokeilujonojen pituus on luokkaa n/N.

¹Käytämme tässä merkkien ASCII-koodeja. Javassa merkin c koodin saa selville kirjoittamalla (int)c, ja Pythonissa voi käyttää funktiota ord(c).

Niinpä jos valitsemme hajautustaulun koon niin, että N on samaa luokkaa kuin n, operaatiot toimivat tehokkaasti ajassa O(1). Kuitenkin on myös mahdollista, että hajautus epäonnistuu ja alkiot jakautuvat hajautustauluun epätasaisesti. Pahimmassa tapauksessa kaikki alkiot saavat saman hajautusarvon ja ne kaikki tallennetaan samaan listaan tai kokeilujonoon, jolloin operaatiot vievät aikaa O(n).

Hajautuksessa vaikeutena on, ettemme tiedä etukäteen, mitä alkioita hajautustauluun tallennetaan. Tarkastellaan tilannetta, jossa hajautettavat alkiot ovat kokonaislukuja ja käytössä on hajautusfunktio $f(x) = x \mod N$. Tämä on hyvä hajautusfunktio olettaen, että eri jakojäännöksiä esiintyy tasaisesti aineistossa. Tämä oletus ei kuitenkaan välttämättä päde: esimerkiksi voi olla, että jostain syystä jokainen hajautettava alkio on parillinen. Nyt jos myös N on parillinen, jokainen hajautusarvo on parillinen ja vain puolet hajautustaulun kohdista on käytössä. Parempi tapa voi olla valita N niin, että se on alkuluku. Tällöin on vähemmän todennäköistä, että aineistossa mahdollisesti olevat säännöllisyydet aiheuttaisivat törmäyksiä.

Emme voi kuitenkaan koskaan olla etukäteen varmoja, että hajautus toimii hyvin. Riippumatta hajautustavasta ilkeä vastustaja voi antaa joukon alkioita, jotka kaikki saavat saman hajautusarvon. Kaikeksi onneksi hajautus toimii yleensä aina $k\ddot{a}yt\ddot{a}nn\ddot{o}ss\ddot{a}$ hyvin ja voimme ajatella, että hajautustaulun operaatiot ovat O(1)-aikaisia, kunhan hajautustaulun koko on riittävän suuri ja hajautus on toteutettu järkevästi. Vaikka on mahdollista, että hajautus epäonnistuu, tämän riski on pieni eikä meidän tarvitse yleensä murehtia siitä käytännössä.

5.1.5 Hajautustaulu hakemistona

Tähän mennessä olemme tallentaneet hajautustauluun alkioiden joukon, mutta voimme tallentaa myös avain-arvo-pareja, joissa avaimen hajautusarvo määrittää, mihin hajautustaulun kohtaan pari sijoitetaan. Saamme näin aikaan hakemiston, jota voi ajatella taulukon yleistyksenä. Taulukossa avaimet ovat kokonaisluvut 0, 1, 2, jne., mutta hakemistossa ne voivat olla mitä tahansa arvoja kuten merkkijonoja.

Kuvassa 5.6 on esimerkkinä hajautustauluun tallennettu hakemisto, joka vastaa seuraavaa "taulukkoa":

```
taulu["abc"] = 5
taulu["xyz"] = 1
taulu["aaa"] = 8
```

Tässä tapauksessa hakemiston avaimet ovat merkkijonoja ja arvot ovat

Kuva 5.6: Hakemiston tallentaminen hajautustauluun.

kokonaislukuja. Hajautustaulun ansiosta voimme käsitellä hakemistoa taulukon tavoin niin, että operaatiot vievät aikaa O(1).

Voimme myös toteuttaa hakemiston, jonka avaimet ovat kokonaislukuja. Tällaisessa tietorakenteessa on järkeä, jos avaimet ovat niin suuria, että emme voi käyttää hajautustaulun sijasta tavallista taulukkoa. Kuitenkin jos avaimet ovat pieniä kokonaislukuja, taulukko on parempi valinta, koska sen vakiokertoimet ovat paljon hajautustaulua pienemmät.

5.2 Ohjelmointikielten toteutukset

5.2.1 Java

Javan tietorakenne HashSet on hajautusta käyttävä joukko. Esimerkiksi seuraava koodi luo joukon, johon tallennetaan kokonaislukuja:

```
HashSet<Integer> joukko = new HashSet<>();
joukko.add(3);
joukko.add(5);
joukko.add(8);
System.out.println(joukko.contains(5)); // true
joukko.remove(5);
System.out.println(joukko.contains(5)); // false
```

Tietorakenne HashMap on hajautukseen perustuva hakemisto, joka sisältää avain-arvo-pareja. Esimerkiksi seuraava koodi luo hakemiston, jossa avaimet ovat merkkijonoja ja arvot ovat kokonaislukuja:

```
HashMap<String,Integer> hakemisto = new HashMap<>();
hakemisto.put("apina",1);
hakemisto.put("banaani",2);
hakemisto.put("cembalo",3);
System.out.println(hakemisto.get("apina")); // 1
```

Java käyttää hajautuksessa ketjuhajautusta ja olettaa, että luokissa on metodi hashCode, jonka avulla olio kertoo pyydettäessä hajautusarvonsa. Metodin tulee palauttaa jokin kokonaisluku, jonka perusteella lasketaan paikka hajautustaulussa. Seuraava koodi testaa hajautusta:

```
System.out.println(((Integer)123).hashCode()); // 123
System.out.println("apina".hashCode()); // 93022541
```

Tästä näkee, että kokonaisluvun hajautusarvo on suoraan kyseinen luku. Huomaa, että meidän täytyy muuttaa luku oliotyyppiseksi (Integer), jotta voimme kutsua hashCode-metodia. Merkkijonon apina hajautusarvo on puolestaan 93022541. On tunnettua, että Java käyttää merkkijonon hajautusarvon laskemiseen polynomista hajautusta vakiolla A=31, joten voimme laskea Javan hajautusarvon myös itse seuraavasti:

```
31^4 \cdot 97 + 31^3 \cdot 112 + 31^2 \cdot 105 + 31^1 \cdot 110 + 31^0 \cdot 97 = 93022541
```

5.2.2 Python

Pythonin tietorakenne set on hajautusta käyttävä joukko. Seuraava koodi luo joukon ja lisää sinne kokonaislukuja:

```
joukko = set()
joukko.add(3)
joukko.add(5)
joukko.add(8)
print(5 in joukko) # True
joukko.remove(5)
print(5 in joukko) # False
```

Tietorakenne dict (merkitään lyhyesti {}) on puolestaan hajautukseen perustuva hakemisto. Voimme käyttää hakemistoa vaikkapa näin:

```
hakemisto = {}
hakemisto["apina"] = 1
hakemisto["banaani"] = 2
hakemisto["cembalo"] = 3
print(hakemisto["apina"]) # 1
```

Pythonissa hajautus on toteutettu avoimella hajautuksella, ja funktio hash antaa olion hajautusarvon. Voimme testata funktion toimintaa Pythontulkissa näin:

```
>>> hash(123)
123
>>> hash("apina")
-3191961394091913473
```

Pythonissa merkkijonon hajautusarvo lasketaan menetelmällä, jonka toiminta vaihtelee satunnaisesti ohjelman eri suorituskerroilla. Niinpä jos käynnistämme Python-tulkin uudestaan, saamme eri tuloksen:

```
>>> hash("apina")
-5370222958536247804
```

Tämän satunnaisuuden etuna on, että mahdollinen ilkeä vastustaja ei voi etsiä kiinteää joukkoa merkkijonoja, jotka tuottavat saman hajautusarvon Pythonissa, koska hajautustapa muuttuu joka suorituskerralla.

5.3 Hajautustaulu algoritmeissa

Hajautustaulun ansiosta voimme käyttää algoritmeissamme joukkoja ja hakemistoja, joiden operaatiot toimivat tehokkaasti. Voimme alkajaisiksi ratkoa mukavammin ajassa O(n) sellaisia ongelmia, jotka olemme ratkoneet aiemmin järjestämisen avulla ajassa $O(n \log n)$.

Aloitamme ongelmasta, jossa haluamme selvittää, montako eri alkiota taulukko sisältää. Ratkaisimme ongelman aiemmin järjestämällä taulukon ja tutkimalla sen jälkeen vierekkäisiä alkioita. Nyt kun käytössämme on hajautustaulu, voimme vain lisätä kaikki alkiot joukkoon ja hakea lopuksi joukon koon. Näin saamme aikaan seuraavan algoritmin:

```
alkiot = []
for i = 0 to n-1
    alkiot.add(taulu[i])
print(alkiot.size())
```

Tässä alkiot on hajautustaulua käyttävä joukko, minkä ansiosta algoritmi toimii ajassa O(n).

Tarkastellaan sitten ongelmaa, jossa haluamme selvittää taulukon yleisimmän alkion. Ratkaisimme tämänkin ongelman aiemmin järjestämällä taulukon, mutta hajautustaulun avulla voimme lähestyä ongelmaa toisella tavalla luomalla hakemiston, jonka avaimet ovat taulukon alkioita ja arvot niiden esiintymiskertoja. Nyt voimme vain käydä läpi taulukon sisällön ja pitää kirjaa, montako kertaa mikäkin alkio esiintyy taulukossa:

```
laskuri = []
suurin = 0
for i = 0 to n-1
    laskuri[taulu[i]] += 1
    if laskuri[taulu[i]] > suurin
        suurin = laskuri[taulu[i]]
        yleisin = taulu[i]
print(yleisin)
```

Tässä hakemisto laskuri on toteutettu hajautustaulun avulla, jolloin avaimet voivat olla mitä tahansa lukuja ja operaatiot toimivat ajassa O(1). Tuloksena on algoritmi, jonka aikavaativuus on O(n).

Kuten nämä esimerkit osoittavat, hajautustaulu *helpottaa* algoritmien luomista, koska ongelmia ei tarvitse pukea järjestämisen muotoon vaan voimme käsitellä niitä suoremmin. Mutta toisaalta olemme ratkoneet vain uudestaan ongelmia, jotka ovat hoituneet mainiosti myös järjestämisen avulla. Antaisiko hajautustaulu meille jotain todellisia uusia mahdollisuuksia algoritmien suunnittelussa?

Hajautustaulu osoittaa todelliset kyntensä silloin, kun haluamme pitää yllä aidosti dynaamista tietorakennetta eli haluamme vuorotellen muuttaa tietorakennetta ja hakea sieltä tietoa. Tällöin emme voisi enää toteuttaa algoritmia, joka järjestää koko aineiston kerran alussa. Esimerkki tällaisesta tilanteesta on, että käytössämme on funktio hae_luku, joka antaa lukuja yksi kerrallaan. Jokaisen luvun jälkeen meidän tulee ilmoittaa, montako eri lukua olemme saaneet tähän mennessä, ennen kuin voimme pyytää funktiolta seuraavan luvun. Voimme ratkaista ongelman seuraavasti ajassa O(n) hajautustaulun avulla:

```
alkiot = []
for i = 1 to n
    luku = hae_luku()
    alkiot.add(luku)
    print(alkiot.size())
```

Tällaisesta algoritmista käytetään joskus nimeä online-algoritmi. Tämä tarkoittaa, että algoritmille annetaan syötettä alkio kerrallaan ja algoritmi pystyy ilmoittamaan senhetkisen vastauksen joka alkion käsittelyn jälkeen. Vastaavasti offline-algoritmi tarvitsee käyttöönsä heti koko syötteen, jotta se voi käsitellä syötettä kokonaisuutena, kuten järjestää sen. Monissa ongelmissa online-algoritmi on vaikeampi saada aikaan kuin offline-algoritmi.

Luku 6

Binäärihakupuu

Binäärihakupuu (binary search tree) on tietorakenne, joka pitää yllä alkioiden joukkoa, samaan tapaan kuin hajautustaulu. Binäärihakupuu eroaa hajautustaulusta kuitenkin siinä, että se säilyttää alkioita järjestyksessä. Tämän ansiosta voimme esimerkiksi etsiä tehokkaasti joukon pienimmän tai suurimman alkion, mikä ei ole mahdollista hajautustaulussa.

Aloitamme luvun tutustumalla binääripuiden teoriaan, minkä jälkeen perehdymme binäärihakupuun toimintaan. Käsittelemme binäärihakupuun tehokkaasta toteutuksesta esimerkkinä AVL-puun, joka on yksinkertainen tasapainoinen binäärihakupuu. Tasapainotuksen ansiosta saamme toteutettua binäärihakupuun niin, että sen operaatiot ovat tehokkaita.

6.1 Taustaa binääripuista

Binäärihakupuun taustalla on yleisempi tietorakenne binääripuu (binary tree). Ennen kuin tutustumme binäärihakupuuhun, onkin hyvä selvittää ensin, mikä on binääripuu ja mitä ominaisuuksia siihen liittyy.

Binääripuu muodostuu n solmusta. Puussa ylimpänä on solmu, jota kutsutaan $juureksi\ (root)$. Jokaisella solmulla voi olla vasen ja oikea $lapsi\ (child)$, ja kaikilla solmuilla juurta lukuun ottamatta on yksikäsitteinen $vanhempi\ (parent)$. Puun $lehtiä\ (leaf)$ ovat solmut, joilla ei ole lapsia.

Binääripuun rakenne on rekursiivinen: jokainen solmu toimii juurena alipuulle (subtree), joka on myös binääripuu. Solmun x alipuu sisältää solmun x sekä kaikki solmut, joihin pääsee laskeutumalla alaspäin solmusta x. Voimme myös ajatella asiaa niin, että jokaisen binääripuun solmun vasen ja oikea lapsi on toinen (mahdollisesti tyhjä) binääripuu.

Kuvassa 6.1 on esimerkki binääripuusta, jossa on 8 solmua. Solmu 1 on puun juuri, ja solmut 4, 5, 7 ja 8 ovat puun lehtiä. Solmun 3 vasen lapsi on

Kuva 6.1: Binääripuu, jossa on 8 solmua. Puun juuri on solmu 1, ja puun lehtiä ovat solmut 4, 5, 7 ja 8.

Kuva 6.2: (a) Vähiten solmuja sisältävä korkeuden 2 binääripuu. (b) Eniten solmuja sisältävä korkeuden 2 binääripuu.

solmu 5, oikea lapsi on solmu 6 ja vanhempi on solmu 1. Solmun 3 alipuu sisältää solmut 3, 5, 6, 7 ja 8.

Binääripuun juuren syvyys (depth) on 0 ja jokaisen muun solmun syvyys on yhtä suurempi kuin sen vanhemman syvyys. Binääripuun korkeus (height) on puolestaan suurin puun solmussa esiintyvä syvyys eli toisin sanoen suurin askelten määrä juuresta alaspäin lehteen. Esimerkiksi kuvan 6.1 puun korkeus on 3, koska solmujen 7 ja 8 syvyys on 3.

Jos binääripuun korkeus on h, siinä on vähintään h+1 solmua, jolloin puu on pelkkä solmujen lista, ja enintään $2^{h+1}-1$ solmua, jolloin kaikilla tasoilla on kaikki mahdolliset solmut. Kuva 6.2 näyttää esimerkit näistä tapauksista, kun puun korkeus on 2.

6.1.1 Binääripuun käsittely

Voimme toteuttaa binääripuun linkitettynä rakenteena niin, että jokainen puun solmu on olio, jossa on viittaus vasempaan ja oikeaan lapseen sekä mahdollisesti muita kenttiä, kuten solmuun liittyvä arvo. Jos solmulla ei ole vasenta tai oikeaa lasta, viittauksena on null.

Rekursio on luonteva tapa toteuttaa monia binääripuun käsittelyyn liittyviä operaatioita. Esimerkiksi seuraava funktio laskee, montako solmua sille annetussa puussa on:

Funktiolle annetaan parametrina solmu, joka vastaa puun juurta. Jos puu on tyhjä, siinä ei ole yhtään solmua. Muuten puussa on juurisolmu sekä vasemman ja oikean alipuun solmut. Pystymme laskemaan alipuiden solmut rekursiivisesti kutsumalla samaa funktiota uudestaan.

Seuraava funktio puolestaan selvittää, mikä on puun korkeus. Huomaa, että jos puu on tyhjä, tulkintana on, että sen korkeus on -1.

```
function korkeus(solmu)
  if solmu == null
    return -1
  return 1 + max(korkeus(solmu.vasen), korkeus(solmu.oikea))
```

6.1.2 Läpikäyntijärjestykset

Voimme käydä läpi binääripuun solmut rekursiivisesti juuresta alkaen. Solmujen läpikäyntiin on kolme tavallista järjestystä:

- esijärjestys (pre-order): käsittelemme ensin juuren, sitten vasemman alipuun ja lopuksi oikean alipuun
- sisäjärjestys (in-order): käsittelemme ensin vasemman alipuun, sitten juuren ja lopuksi oikean alipuun
- jälkijärjestys (post-order): käsittelemme ensin vasemman alipuun, sitten oikean alipuun ja lopuksi juuren

Esimerkiksi kuvan 6.1 puussa esijärjestys on [1, 2, 4, 3, 5, 6, 7, 8], sisäjärjestys on [4, 2, 1, 5, 3, 7, 6, 8] ja jälkijärjestys on [4, 2, 5, 7, 8, 6, 3, 1].

Voimme käydä binääripuun solmut läpi kaikissa yllä mainituissa järjestyksissä rekursion avulla. Esimerkiksi seuraava proseduuri tulostaa puun solmut sisäjärjestyksessä, kun sille annetaan parametrina puun juuri:

Kuva 6.3: Joukkoa {2, 3, 5, 7, 8, 9} vastaava binäärihakupuu.

```
procedure lapikaynti(solmu)
   if solmu == null
      return
   lapikaynti(solmu.vasen)
   print(solmu.arvo)
   lapikaynti(solmu.oikea)
```

6.2 Binäärihakupuun toiminta

Binäärihakupuu on binääripuu, jonka kukin solmu vastaa yhtä joukon alkiota. Solmut on järjestetty niin, että jokaisessa solmussa kaikki vasemman alipuun solmut ovat arvoltaan pienempiä ja vastaavasti kaikki oikean alipuun solmut ovat arvoltaan suurempia. Tämän ansiosta voimme löytää kätevästi halutun alkion puusta aloittamalla haun puun juuresta.

Kuvassa 6.3 on esimerkkinä joukkoa $\{2,3,5,7,8,9\}$ vastaava binäärihakupuu, jonka juurena on alkio 5. Vasemmassa alipuussa on kaikki alkiota 5 pienemmät alkiot, eli se vastaa joukkoa $\{2,3\}$. Oikeassa alipuussa taas on kaikki alkiota 5 suuremmat alkiot, eli se vastaa joukkoa $\{7,8,9\}$. Huomaa, että tämä on yksi monista tavoista muodostaa binäärihakupuu kyseiselle joukolle ja voisimme valita myös minkä tahansa muun alkion puun juureksi.

6.2.1 Operaatioiden toteutus

Seuraavaksi käymme läpi, kuinka voimme toteuttaa binäärihakupuun avulla operaatioita joukon alkioiden käsittelemiseen. Osoittautuu, että voimme toteuttaa kaikki operaatiot ajassa O(h), missä h on puun korkeus.

Alkion etsiminen

Kun haluamme etsiä joukosta alkiota x, lähdemme liikkeelle puun juuresta ja kuljemme alaspäin puussa. Kun olemme solmussa, jossa on alkio a, vaih-

Kuva 6.4: Alkion 7 etsiminen joukosta {2, 3, 5, 7, 8, 9} juuresta alkaen.

Kuva 6.5: Alkion 4 lisääminen joukkoon $\{2, 3, 5, 7, 8, 9\}$.

toehtoja on kolme. Jos a=x, olemme löytäneet halutun alkion, jos a>x, jatkamme hakua solmun vasempaan lapseen, ja jos a< x, jatkamme hakua solmun oikeaan lapseen. Jos kuitenkaan solmulla ei ole lasta, johon meidän tulisi edetä, toteamme, ettei joukossa ole alkiota x.

Kuva 6.4 näyttää, kuinka löydämme alkion 7 joukosta $\{2,3,5,7,8,9\}$. Juurena on alkio 5, joten alkion 7 täytyy olla juuren oikeassa alipuussa. Tämän alipuun juurena on alkio 8, joten nyt taas tiedämme, että alkion 7 täytyy olla vasemmassa alipuussa, josta se löytyykin.

Alkion lisääminen

Kun haluamme lisätä joukkoon alkion x, jota ei vielä ole joukossa, kuljemme ensin puussa aivan kuin etsisimme alkiota x. Sitten kun olemme päässeet solmuun, jolla ei ole lasta, johon meidän tulisi edetä, luomme uuden solmun alkiolle x ja lisäämme sen tähän kohtaan lapseksi.

Kuva 6.5 näyttää, kuinka lisäämme alkion 4 joukkoon $\{2,3,5,7,8,9\}$. Kun haemme puusta alkiota 4, päädymme solmuun, jossa on alkio 3 ja jolla ei ole oikeaa lasta. Niinpä luomme alkiolle 4 uuden solmun, jonka asetamme alkion 3 solmun oikeaksi lapseksi.

Pienin alkio / suurin alkio

Kun haluamme löytää joukon pienimmän alkion, lähdemme liikkeelle juuresta ja etenemme joka askeleella solmun vasempaan lapseen. Kun solmulla ei ole enää vasenta lasta, olemme löytäneet joukon pienimmän alkion.

Kuva 6.6: Alkion 5 poistaminen joukosta {2,3,5,7,8,9}. (a) Koska alkiolla 5 on kaksi lasta, etsimme seuraavan suuremman alkion 7. (b) Vaihdamme keskenään alkiot 5 ja 7, minkä jälkeen voimme poistaa helposti alkion 5.

Vastaavalla tavalla löydämme joukon suurimman alkion etenemällä koko ajan oikeaan lapseen juuresta.

Seuraava suurempi alkio / edellinen pienempi alkio

Kun haluamme löytää joukon pienimmän alkion, joka on suurempi kuin x, lähdemme liikkeelle puun juuresta. Kun olemme solmussa, jossa on alkio a, etenemme vasempaan lapseen, jos a > x, ja oikeaan lapseen, jos $a \le x$. Jatkamme näin, kunnes emme voi edetä alemmas. Haluttu alkio on pienin alkiota x suurempi alkio kaikista alkioista, joiden kautta kuljimme.

Kun haluamme vastaavasti löytää joukon suurimman alkion, joka on pienempi kuin x, menettelemme käänteisesti edelliseen nähden.

Alkion poistaminen

Kun haluamme poistaa joukosta alkion x, etsimme ensin alkiota x vastaavan solmun tavalliseen tapaan. Jos solmulla ei ole lapsia tai vain yksi lapsi, on helppoa poistaa solmu puusta ja säilyttää puun rakenne muuten ennallaan. Jos kuitenkin solmulla on kaksi lasta, tilanne on hankalampi. Tällöin etsimme alkion y, joka on pienin x:ää suurempi alkio, ja vaihdamme keskenään alkiot x ja y puussa. Tämän jälkeen on helppoa poistaa solmu, jossa on nyt alkio x, koska sillä ei voi olla kahta lasta (jos solmulla olisi vasen lapsi, y ei olisi pienin x:ää suurempi alkio).

Kuva 6.6 näyttää, kuinka poistamme joukosta $\{2, 3, 5, 7, 8, 9\}$ alkion 5. Alkio on puun juuressa ja solmulla on kaksi lasta, joten meidän tulee etsiä ensin pienin alkiota 5 suurempi alkio, joka on 7. Vaihdamme sitten keskenään arvot 5 ja 7, minkä jälkeen on helppoa poistaa alkio 5.

6.3. AVL-PUU 65

Kuva 6.7: Kaksi binäärihakupuuta joukolle $\{1, 2, 3, 4, 5\}$. Vasemman puun korkeus on 2 ja oikean puun korkeus on 4.

6.2.2 Operaatioiden tehokkuus

Binäärihakupuun operaatiot vievät aikaa O(h), missä h on puun korkeus, joten operaatioiden tehokkuus riippuu puun korkeudesta. Operaatioiden tehokkuuteen vaikuttaa siis, miten olemme rakentaneet puun. Esimerkiksi kuvassa 6.7 on kaksi mahdollista binäärihakupuuta joukolle $\{1, 2, 3, 4, 5\}$. Vasemman puun korkeus on 2, kun taas oikean puun korkeus on 4.

Jotta binäärihakupuu toimisi tehokkaasti, haluamme, että puun korkeus ei kasva liian suureksi. Tarkemmin ottaen tavoitteena on, että solmut ovat jakautuneet tasaisesti puun eri puolille ja puun korkeus on $O(\log n)$ eli puu on tasapainoinen (balanced). Jos onnistumme tässä, kaikki puun operaatiot toimivat tehokkaasti ajassa $O(\log n)$. Saavutamme tavoitteen lisäämällä puuhun ehtoja, jotka rajoittavat sen korkeutta sopivasti.

Binäärihakupuun tasapainottamiseen tunnetaan monia menetelmiä. Tutustumme seuraavaksi AVL-puuhun, joka on varhaisin tunnettu tasapainoinen binäärihakupuu. AVL-puu on yksinkertaisempi kuin monet myöhemmin kehitetyt rakenteet, minkä vuoksi se sopii hyvin esittelemään puiden tasapainotuksen ideoita. Ohjelmointikielten standardikirjastoissa käytetään kuitenkin yleensä muita rakenteita kuten punamustaa puuta.

6.3 AVL-puu

AVL-puu (AVL tree) on tasapainoinen binäärihakupuu, jonka korkeus on aina $O(\log n)$, minkä ansiosta puun operaatiot toimivat tehokkaasti ajassa $O(\log n)$. AVL-puussa jokaiseen solmuun liittyy tasapainoehto, joka takaa, että puu on tasapainoinen. Puuta päivittäessä täytyy pitää huolta siitä, että tasapainoehto säilyy voimassa kaikissa solmuissa.

Kuva 6.8: Vähiten solmuja sisältävät AVL-puut korkeuksille 0, 1, 2 ja 3.

6.3.1 Tasapainoehto

AVL-puun tasapainoehtona on, että jokaisessa solmussa vasemman ja oikean lapsen alipuiden korkeusero on enintään 1.

Esimerkiksi kuvan 6.7 vasen puu on AVL-puu, kun taas oikea puu ei ole. Oikea puu ei ole AVL-puu, koska esimerkiksi solmussa 1 vasemman lapsen alipuun korkeus on -1 mutta oikean lapsen alipuun korkeus on 3. Korkeuksien erona on siis 4, vaikka ero saisi olla enintään 1.

Kutsumme AVL-puun tasapainoehtoa AVL-ehdoksi. Osoittautuu, että jos binäärihakupuu täyttää AVL-ehdon, sen korkeus on $O(\log n)$. Eli jos pystymme toteuttamaan puun operaatiot niin, että AVL-ehto säilyy, saamme aikaan binäärihakupuun, jonka operaatiot toimivat ajassa $O(\log n)$.

Miksi sitten AVL-ehto takaa, että binäärihakupuun korkeus on $O(\log n)$? Voimme lähestyä asiaa pahimman tapauksen kautta: kun tiedämme, että AVL-puussa on n solmua, mikä on sen suurin mahdollinen korkeus? Voimme selvittää tämän laskemalla ensin käänteisesti, mikä on pienin mahdollinen solmujen määrä AVL-puussa, jonka korkeus on h.

Merkitään f(h):lla korkeutta h olevan AVL-puun pienintä mahdollista solmujen määrää. Kuvan 6.8 mukaisesti funktion ensimmäiset arvot ovat f(0) = 1, f(1) = 2, f(2) = 4 ja f(3) = 7. Yleisemmin

$$f(h) = 1 + f(h-1) + f(h-2),$$

kun $h\geq 2$, koska jos haluamme rakentaa AVL-puun korkeutta h, jossa on mahdollisimman vähän solmuja, meidän kannattaa laittaa juuren lapsiksi AVL-puut korkeutta h-1 ja h-2 niin, että kummassakin alipuussa on mahdollisimman vähän solmuja. Funktiolle pätee

$$f(h) \ge 2f(h-2),$$

eli funktion arvo ainakin kaksinkertaistuu kahden askeleen välein. Voimme ilmaista tämän alarajan

$$f(h) \ge 2^{h/2},$$

6.3. AVL-PUU 67

Kuva 6.9: Kierrot, joiden avulla korjaamme AVL-puuta.

jonka voimme taas muuttaa ylärajaksi

$$h \le 2\log f(h)$$
.

Tarkastellaan sitten puuta, jossa on n solmua ja jonka korkeus on h. Korkeudelle täytyy päteä $f(h) \leq n$, koska korkeutta h olevassa puussa on vähintään f(h) solmua. Niinpä saamme ylärajan

$$h \leq 2 \log n$$
,

mikä tarkoittaa samaa kuin $h = O(\log n)$.

6.3.2 Kiertojen toteuttaminen

Voimme toteuttaa AVL-puun operaatiot muuten samaan tapaan kuin yleisessä binäärihakupuussa, mutta alkion lisäämisen ja poistamisen jälkeen täytyy varmistaa, että AVL-ehto on edelleen voimassa. Tämä onnistuu tekemällä sopivia kiertoja (rotation), jotka muuttavat puun rakennetta. Jotta voimme toteuttaa kierrot, pidämme jokaisessa solmussa tietoa siitä, mikä on solmusta alkavan alipuun korkeus.

Osoittautuu, että voimme korjata puun rakenteen kaikissa tilanteessa käyttäen kahta kiertotyyppiä, jotka on esitetty kuvassa 6.9. Kierrämme solmuja x ja y, joihin liittyvät alipuut A, B ja C. Voimme tehdä kierron joko vasemmalta oikealle, jolloin solmu y nousee ylöspäin, tai oikealta vasemmalle, jolloin solmu x nousee ylöspäin.

Kun lisäämme AVL-puuhun solmun, jonkin solmun AVL-ehto voi rikkoontua. Tämä ilmenee niin, että jossain solmussa lasten alipuiden korkeudet ovat ennen lisäämistä h ja h+1 ja lisäämisen jälkeen h ja h+2. Kuva 6.10 näyttää esimerkin tällaisesta tilanteesta. Vasemmassa puussa solmun 3 lasten korkeudet ovat 0 ja 1, joten AVL-ehto on kunnossa. Oikeassa puussa olemme lisänneet solmun 9, minkä seurauksena solmun 3 lasten korkeudet ovat 0 ja 2 eikä AVL-ehto enää päde.

Kuva 6.10: (a) Jokaisessa puun solmussa pätee AVL-ehto. (b) AVL-ehto menee rikki solmussa 3, kun lisäämme puuhun solmun 9.

 $Kuva\ 6.11:\ Tapaus\ 1:\ nostamme\ solmua\ y\ yl\"osp\"{a}in.$

Kuva 6.12: Tapaus 2: nostamme solmua z kahdesti ylöspäin.

6.3. AVL-PUU 69

Kuva 6.13: Kierrämme solmun 7 puun juureksi, jolloin AVL-ehto pätee taas.

Solmun lisäämisen jälkeen kuljemme puussa ylöspäin lisätystä solmusta juureen ja päivitämme solmujen korkeudet. Jos jokin solmu ei täytä AVLehtoa, korjaamme asian tekemällä yhden tai kaksi kiertoa. Oletetaan, että x on alimpana puussa oleva solmu, jossa AVL-ehto ei päde, y on x:n lapsi, jonka alipuussa on lisätty solmu, ja z on puolestaan y:n lapsi, jonka alipuussa on lisätty solmu. Tapauksia on kaksi: jos y ja z ovat samanpuoleisia lapsia, kierrämme solmua y kerran ylöspäin (kuva 6.11), ja muuten kierrämme solmua z kahdesti ylöspäin (kuva 6.12). Tämän korjauksen jälkeen AVL-ehto on jälleen voimassa kaikissa puun solmuissa, eli riittää aina korjata ehto alimmassa solmussa, jossa se ei ole voimassa.

Kuvassa 6.10(b) AVL-ehto ei ole voimassa solmussa 3, koska vasemman alipuun korkeus on 0 ja oikean alipuun korkeus on 2. Tässä tapauksessa $x=3,\ y=7$ ja z=8. Koska y on x:n oikea lapsi ja z on y:n oikea lapsi, meidän riittää tehdä yksi kierto, joka nostaa solmua 7 ylöspäin puun juureksi. Tuloksena on kuvan 6.13 mukainen puu, jossa AVL-ehto on jälleen voimassa, koska solmun 7 kummankin alipuun korkeus on nyt 1.

Kun poistamme puusta solmun, menettelemme melko samalla tavalla kuin lisäämisessä. Nyt on mahdollista, että ennen poistoa jossakin solmussa lasten alipuiden korkeudet ovat h ja h-1 ja poiston jälkeen h ja h-2. Poiston jälkeen nousemme puussa ylöspäin poistetun solmun vanhemmasta alkaen, ja jos vastaan tulee solmu x, jossa AVL-ehto ei päde, korjaamme asian. Tällä kertaa valitsemme solmut y ja z niin, että y on x:n lapsi, jonka korkeus on suurin, ja samoin z on y:n lapsi, jonka korkeus on suurin. Jos y:n kummankin lapsen korkeus on sama, valitsemme z:n niin, että se on samanpuoleinen lapsi kuin y. Sitten korjaamme AVL-ehdon kierroilla kuten solmun lisäämisessä. Toisin kuin lisäämisessä, saatamme joutua korjaamaan ehdon useassa solmussa, koska ehdon korjaaminen yhdessä solmussa voi rikkoa sen jossain ylemmässä solmussa. Kun lopulta saavumme juureen, AVL-ehto pätee jälleen kaikissa solmuissa.

Koska AVL-puun korkeus on $O(\log n)$ ja jokainen kierto tapahtuu vakioajassa, pystymme korjaamaan tasapainon sekä lisäämisen että poistamisen jälkeen ajassa $O(\log n)$. Lisäämisen jälkeen kuljemme puuta ylöspäin $O(\log n)$

askelta ja teemme enintään kaksi kiertoa. Poistamisen jälkeen taas kuljemme puuta ylöspäin $O(\log n)$ askelta ja teemme enintään $O(\log n)$ kiertoa.

6.4 Ohjelmointikielten toteutukset

6.4.1 Java

Javan tietorakenteet TreeSet ja TreeMap toteuttavat tasapainoisen binäärihakupuun. Ne perustuvat punamustaan puuhun, joka on AVL-puun tapainen puurakenne mutta monimutkaisempi. Nämä rakenteet tarjoavat samat metodit kuin HashSet ja HashMap, mutta lisäksi tehokkaita metodeita, jotka liittyvät alkioiden järjestykseen puussa.

Seuraava koodi luo TreeSet-rakenteen ja lisää siihen lukuja:

```
TreeSet<Integer> luvut= new TreeSet<>();
luvut.add(4);
luvut.add(1);
luvut.add(8);
luvut.add(7);
```

Koska joukko on järjestyksessä, pystymme etsimään tehokkaasti pienimmän ja suurimman alkion metodeilla first ja last:

```
int pienin = joukko.first(); // 1
int suurin = joukko.last(); // 8
```

Pystymme myös etsimään tehokkaasti seuraavan tiettyä alkiota suuremman tai pienemmän alkion metodeilla higher ja lower:

```
int suurempi = joukko.higher(5); // 7
int pienempi = joukko.lower(5); // 4
```

Seuraava koodi luo sanakirjan TreeMap-rakenteen avulla:

```
TreeMap<String,String> sanakirja = new TreeMap<>();
sanakirja.put("apina","monkey");
sanakirja.put("banaani","banana");
sanakirja.put("cembalo","harpsichord");
```

Tämä sanakirja muodostuu avain-arvo-pareista, joissa avaimet ovat suomen kielen sanoja ja arvot ovat englannin kielen sanoja. Sanakirjan sisältö on järjestetty avainten perusteella. Esimerkiksi voimme selvittää, mikä on aakkosjärjestyksessä ensimmäinen ja viimeinen avain:

```
String eka = sanakirja.firstKey(); // apina
String vika = sanakirja.lastKey(); // cembalo
```

Samoin voimme selvittää lähinnä tiettyä avainta olevat avaimet:

```
String seuraava = sanakirja.higherKey("biisoni"); // cembalo
String edellinen = sanakirja.lowerKey("biisoni"); // banaani
```

6.4.2 Python

Pythonin standardikirjastossa *ei* ole tasapainoisen binäärihakupuun toteutusta. Tämä on kielen suunnittelussa tehty päätös, joka liittyy ihanteeseen, että kielessä on yksi selkeä tapa toteuttaa tietty asia. Koska Pythonissa on hajautustaulua käyttävät tietorakenteet set ja dict, binäärihakupuulle ei ole nähty tarvetta.

Miten selviämme Pythonissa ilman binäärihakupuuta? Mahdollisia ratkaisuja ovat:

- Useissa tilanteissa hajautustaulu riittää: binäärihakupuuta tarvitaan vain, jos haluamme etsiä alkioita järjestyksen perusteella.
- Vaikka järjestykselle olisi tarvetta, voimme käyttää usein binäärihakupuun sijasta listan järjestämistä tai seuraavassa luvussa käsiteltävää binäärikekoa, jonka toteutus on Pythonin standardikirjastossa.
- Voimme tarvittaessa käyttää myös jotain standardikirjaston ulkopuolista binäärihakupuun toteutusta.

Itse asiassa yleinen suuntaus suosituissa ohjelmointikielissä vaikuttaa olevan, että standardikirjastossa on tarjolla hajautustaulu mutta ei binäärihakupuuta. Näin on myös JavaScript-kielessä, jossa tietorakenteet Set ja Map käyttävät hajautustaulua. Vaikuttaa siltä, että käytännön ohjelmoinnissa ei ole usein tarvetta säilyttää joukon alkioita järjestyksessä.

Miksi sitten kahdesta vaihtoehtoisesta tietorakenteesta (hajautustaulu ja binäärihakupuu) on valittu hajautustaulu, jossa on vähemmän ominaisuuksia? Syynä on, että hajautustaulun toteutus on paljon yksinkertaisempi, minkä seurauksena se toimii yleensä tehokkaammin. Ero näkyy myös aikavaativuuksissa: hajautustaulun operaatiot vievät keskimäärin aikaa O(1), kun taas binäärihakupuussa aikaa kuluu $O(\log n)$.

6.5 Tehokkuusvertailu

Monissa ongelmissa on kaksi mahdollista lähestymistapaa: voimme käyttää joko joukkorakenteita tai taulukon järjestämistä. Vaikka molemmat tavat johtavat tehokkaaseen ratkaisuun, vakiokertoimissa voi olla merkittäviä eroja, jotka vaikuttavat käytännön tehokkuuteen.

Tarkastelemme seuraavaksi ongelmaa, jossa meille on annettu n lukua sisältävä taulukko, ja haluamme selvittää, montako eri lukua taulukossa on. Ratkaisemme ongelman Javalla kolmella eri tavalla ja tutkimme sitten ratkaisujen tehokkuutta.

Ratkaisu 1: TreeSet

Ensimmäinen tapa ratkaista tehtävä on luoda TreeSet, johon lisäämme taulukon luvut. Koska jokainen luku voi esiintyä joukossa vain kerran, joukon koko ilmaisee meille, montako eri lukua taulukossa on. Tämä ratkaisu vie aikaa $O(n \log n)$, koska jokainen add-operaatio vie aikaa $O(\log n)$.

Ratkaisu 2: HashSet

Emme tarvitse TreeSet-rakenteen alkioiden järjestystä, joten saamme toisen ratkaisun käyttämällä sen sijaan HashSet-rakennetta. Koodi säilyy muuten täysin samanlaisena. Tämä ratkaisu vie aikaa O(n) hajautuksen ansiosta.

Ratkaisu 3: järjestäminen

Kolmas tapa ratkaista tehtävä on käyttää järjestämistä: kopioimme ensin luvut uuteen taulukkoon, järjestämme tämän taulukon ja tutkimme sitten, monessako kohdassa järjestetyssä taulukossa luku vaihtuu. Tämä ratkaisu vie aikaa $O(n \log n)$, koska taulukon järjestäminen vie aikaa $O(n \log n)$.

Vertailun tulokset

Taulukko 6.1 esittää tehokkuusvertailun tulokset. Jokaisessa testissä taulukossa on satunnaisia lukuja väliltä $1...10^9$.

Osoittautuu, että ratkaisujen välillä on merkittäviä tehokkuuseroja. Ensinnäkin HashSet-ratkaisu on noin kolme kertaa nopeampi kuin TreeSetratkaisu. Tämä onkin odotettavaa, koska hajautustaulun operaatiot vievät aikaa O(1), kun taas binäärihakupuun operaatiot vievät aikaa $O(\log n)$. Selvästi nopein ratkaisu on kuitenkin kolmas järjestämistä käyttävä ratkaisu, joka on noin kymmenen kertaa TreeSet-ratkaisua nopeampi.

taulukon koko n	TreeSet	HashSet	järjestäminen
-10^{6}	$0.74 \; {\rm s}$	$0.25 \; { m s}$	0.09 s
$2 \cdot 10^{6}$	$1.60 \mathrm{\ s}$	$0.45 \mathrm{\ s}$	$0.19 \; s$
$4 \cdot 10^{6}$	$5.60 \mathrm{\ s}$	$1.56 \mathrm{\ s}$	$0.52 \mathrm{\ s}$
$8 \cdot 10^{6}$	$12.19 \; s$	$4.50 \; {\rm s}$	$0.97 \mathrm{\ s}$

Taulukko 6.1: Algoritmien suoritusaikojen vertailu.

Miten on mahdollista, että sekä TreeSet-ratkaisun että järjestämisratkaisun aikavaativuus on $O(n \log n)$, mutta järjestämisratkaisu on kymmenen kertaa nopeampi? Tämä johtuu siitä, että taulukon järjestäminen on hyvin kevyt operaatio ja se tehdään vain kerran. Kun sitten käytetään TreeSet-rakennetta, sen taustalla joudutaan ylläpitämään tasapainoista binäärihakupuuta. Tällöin alkioiden lisäykset ovat raskaita operaatioita, koska jokaiselle uudelle alkiolle täytyy etsiä paikka puusta ja mahdollisesti korjata lisäyksen jälkeen puun rakennetta kiertojen avulla.

Vaikka hajautustaulu ja binäärihakupuu ovat käteviä, niitä ei siis kannata käyttää turhaan. Jos haluamme ratkaista ongelman todella tehokkaasti, kannattaa miettiä, voisimmeko käyttää tavalla tai toisella järjestämistä näiden tietorakenteiden sijaan.

Luku 7

Keko

Keko (heap) on tietorakenne, jonka operaatiot ovat alkion lisääminen sekä pienimmän tai suurimman alkion etsiminen ja poistaminen. Vaikka voisimme toteuttaa nämä operaatiot myös binäärihakupuun avulla, keon etuna on, että saamme aikaan yleistä joukkorakennetta kevyemmän rakenteen, kun rajoitumme tilanteeseen, jossa käytössämme on vain nämä operaatiot.

Tutustumme tässä luvussa binäärikeko-rakenteeseen, joka on tavallisimmin käytetty kekorakenne. Binäärikeko toteutetaan binääripuuna, ja se mahdollistaa alkion etsimisen ajassa O(1) sekä alkioiden lisäykset ja poistot ajassa $O(\log n)$. Pystymme toteuttamaan binäärikeon tehokkaasti taulukkona, koska sen toiminnot ovat yleistä binääripuuta rajatumpia.

7.1 Binäärikeko

Binäärikeko (binary heap) on binääripuu, jonka kaikki tasot alinta tasoa lukuun ottamatta ovat täynnä solmuja. Alimman tason solmut on puolestaan sijoitettu mahdollisimman vasemmalle ylempien solmujen lapsiksi.

Keon luonnissa täytyy päättää, onko se minimikeko vai maksimikeko. Minimikeossa voimme etsiä ja poistaa pienimmän alkion, kun taas maksimikeossa voimme etsiä ja poistaa suurimman alkion. Keon toiminta perustuu siihen, että jokainen keon solmu täyttää kekoehdon. Minimikeossa ehtona on, että jokaisen solmun arvo on pienempi tai yhtä suuri kuin sen kummankin lapsen arvo. Maksimikeossa puolestaan ehtona on, että jokaisen solmun arvo on suurempi tai yhtä suuri kuin sen kummankin lapsen arvo. Kekoehdon ansiosta minimikeon juuressa on keon pienin alkio ja maksimikeon juuressa on keon suurin alkio.

Kuvassa 7.1 on minimikeko, johon on tallennettu kymmenen alkiota. Keon kolme ensimmäistä tasoa ovat täynnä ja neljännellä tasolla kolme en76 LUKU 7. KEKO

Kuva 7.1: Minimikeko, joka sisältää alkiot [1, 3, 4, 5, 5, 5, 7, 8, 8, 9].

simmäistä kohtaa on käytetty. Keon juurena on joukon pienin alkio 1, ja kaikki solmut täyttävät kekoehdon. Huomaa, että sama alkio voi esiintyä monta kertaa keossa, kuten tässä keossa alkiot 5 ja 8.

7.1.1 Keon tallentaminen

Tallennamme binäärikeon taulukkona, joka sisältää keon solmujen arvot järjestyksessä ylhäältä alaspäin ja vasemmalta oikealle. Tämä tehokas tallennustapa on mahdollinen, koska keon kaikki tasot ovat täynnä solmuja. Tavallinen tapa on tallentaa keko taulukkoon niin, että indeksointi alkaa 1:stä. Esimerkiksi kuvan 7.1 keko vastaa seuraavaa taulukkoa:

1									
1	3	5	4	5	8	9	7	8	5

Taulukkototeutuksen etuna on, että voimme laskea helposti, missä kohdissa keon alkiot ovat taulukossa. Ensinnäkin keon juuri eli pienin tai suurin alkio on aina kohdassa 1. Lisäksi jos tiedämme, että tietty solmu on kohdassa k, niin solmun vasen lapsi on kohdassa 2k, solmun oikea lapsi on kohdassa 2k+1 ja solmun vanhempi on kohdassa $\lfloor k/2 \rfloor$. Esimerkissämme solmu 3 on taulukossa kohdassa 2, joten sen vasen lapsi on kohdassa 4, oikea lapsi on kohdassa 5 ja vanhempi on kohdassa 1.

Käytännössä haluamme yleensä, että pystymme lisäämään kekoon uusia alkioita, jolloin saattaa olla tarpeen suurentaa taulukkoa. Voimme toteuttaa tämän samalla tavalla kuin taulukkolistassa, jolloin taulukon suurentaminen ei hidasta keon operaatioita.

Kuva 7.2: Lisäämme alkion 2 kekoon ja nostamme sitä ylöspäin, kunnes kekoehto tulee jälleen voimaan.

7.1.2 Operatioiden toteutus

On helppoa etsiä minimikeon pienin alkio tai maksimikeon suurin alkio O(1)-ajassa, koska tämä alkio on aina keon juuressa. Seuraavaksi näemme, kuinka voimme toteuttaa alkion lisäämisen sekä pienimmän tai suurimman alkion poistamisen $O(\log n)$ -ajassa.

Alkion lisääminen

Kun lisäämme uuden alkion kekoon, lisäämme sen ensin seuraavaan vapaana olevaan paikkaan puussa. Jos alimmalla tasolla on tilaa, lisäämme sen sinne mahdollisimman vasemmalle, ja muuten aloitamme uuden tason, jossa on toistaiseksi vain lisättävä solmu. Alkion lisäämisen jälkeen täytyy varmistaa, että kekoehto säilyy edelleen voimassa. Tämä tapahtuu siirtämällä alkiota ylöspäin keossa, kunnes kekoehto tulee voimaan.

Kuva 7.2 näyttää, mitä tapahtuu, kun lisäämme alkion 2 esimerkkike-koomme. Lisäämme alkion ensimmäiseen vapaaseen kohtaan keon alimmalla tasolla. Koska alkio 2 on pienempi kuin sen vanhempi 5, vaihdamme nämä alkiot keskenään. Tämän jälkeen alkio 2 on pienempi kuin sen vanhempi 3, joten vaihdamme myös nämä alkiot keskenään. Nyt kekoehto on voimassa eikä meidän tarvitse enää tehdä muutoksia kekoon.

78 LUKU 7. KEKO

Kuva 7.3: Poistamme keon juuressa olevan alkion korvaamalla sen viimeisellä alkiolla ja laskettamalla sitä alaspäin puussa.

Alkion lisääminen kekoon vie aikaa $O(\log n)$, koska keossa on $O(\log n)$ tasoa ja kuljemme aina ylöspäin keon pohjalta huippua kohden, kunnes olemme löytäneet alkiolle sopivan paikan keosta.

Alkion poistaminen

Kun haluamme poistaa keon juuressa olevan alkion, siirrämme ensin keon viimeisen alkion keon juureksi ja poistamme sille kuuluneen solmun. Tämän jälkeen lasketamme juureen nostettua alkiota alaspäin keossa, kunnes kekoehto on jälleen voimassa kaikkialla. Koska solmulla voi olla kaksi lasta, voi olla kaksi vaihtoehtoa, kumman lapsista nostamme ylemmäs. Jos keko on minimikeko, valitsemme lapsen, jossa on pienempi arvo, ja jos keko on maksimikeko, valitsemme vastaavasti lapsen, jossa on suurempi arvo.

Kuva 7.3 näyttää, kuinka poistamme esimerkkikeostamme pienimmän alkion eli juuressa olevan alkion 1. Aluksi korvaamme alkion 1 keon viimeisellä alkiolla 5 ja poistamme keosta alkiolle 5 kuuluneen solmun. Tämän jälkeen vaihdamme keskenään alkion 5 ja sen vasemman lapsen alkion 3, ja sitten vielä alkion 5 ja sen vasemman lapsen alkion 4. Tämän jälkeen kekoehto on voimassa ja olemme onnistuneet poistamaan pienimmän alkion keosta.

Alkion poistaminen keosta vie aikaa $O(\log n)$, koska keossa on $O(\log n)$ tasoa ja kuljemme polkua alaspäin keon huipulta pohjaa kohden.

Kuva 7.4: Muutamme taulukon keoksi korjaamalla kekoehdon alipuissa.

7.2 Lisää keosta

Koska keko on tallennettu taulukkona, voimme tulkita minkä tahansa taulukon kekona, kunhan vain kekoehto on voimassa taulukon kaikissa kohdissa. Käymme seuraavaksi läpi menetelmän, jonka avulla voimme muuttaa taulukon keoksi O(n)-ajassa. Tämän jälkeen tutustumme kekojärjestämiseen, joka on $O(n \log n)$ -aikainen järjestämisalgoritmi.

7.2.1 Taulukosta keoksi

Oletetaan, että meillä on n alkiota sisältävä taulukko ja haluamme muuttaa sen keoksi. Suoraviivainen tapa on luoda tyhjä keko ja lisätä jokainen taulukon alkio siihen erikseen $O(\log n)$ -ajassa. Tällä tavalla saamme rakennettua keon $O(n \log n)$ -ajassa. Osoittautuu kuitenkin, että pystymme myös muuttamaan taulukon suoraan keoksi tehokkaammin ajassa O(n).

Ideana on järjestää alkuperäisen taulukon alkioita uudestaan niin, että kekoehto tulee voimaan taulukon jokaiseen kohtaan – jolloin taulukko on muuttunut keoksi. Käymme läpi taulukon alkiot lopusta alkuun ja varmistamme jokaisessa kohdassa, että kekoehto on voimassa kyseisestä kohdasta alkavassa alipuussa. Jos kekoehto ei ole voimassa, korjaamme sen laskettamalla kyseisen kohdan alkiota alaspäin keossa. Kun lopulta pääsemme taulukon alkuun, kekoehto on voimassa koko taulukossa.

Kuva 7.4 näyttää esimerkin, jossa muutamme taulukon [7,4,6,1,3,5,2] minimikeoksi. Kun tulkitsemme taulukon kekona, kekoehto on aluksi rikki monessa taulukon kohdassa. Ensin korjaamme kekoehdon tason 2 alipuissa vaihtamalla keskenään alkiot 2 ja 6 ja sitten alkiot 1 ja 4. Tämän jälkeen

80 LUKU 7. KEKO

korjaamme kekoehdon tason 1 alipuussa eli koko keossa laskettamalla alkion 7 keon huipulta pohjalle. Nyt kekoehto on voimassa kaikkialla taulukossa, joten olemme onnistuneet muuttamaan taulukon keoksi.

Miksi tämä vie aikaa vain O(n)? Oletetaan, että keossa on h tasoa ja kaikki tasot ovat täynnä solmuja eli keossa on $n=2^h-1$ solmua. Laskemme jokaiselle tasolle, montako alkiota laskeutuu enintään jostakin tämän tason solmusta alaspäin. Ensinnäkin tasolta 1 tasolle 2 laskeutuu enintään 1 alkio – juuressa oleva alkio. Vastaavasti tasolta 2 tasolle 3 laskeutuu enintään 1+2 alkiota ja tasolta 3 tasolle 4 laskeutuu enintään 1+2+4 alkiota. Yleisemmin tasolta k tasolle k+1 laskeutuu enintään k+1+1 alkiota Koska tasoja on k ja alimmalta tasolta ei voi laskeutua alaspäin, kokonaistyömäärä on enintään

$$(2^{1}-1)+(2^{2}-1)+\cdots+(2^{h-1}-1)=2^{h}-h-1\leq n,$$

joten aikaa kuluu vain O(n).

7.2.2 Kekojärjestäminen

 $Kekoj \ddot{a}rjest \ddot{a}minen\ (heap\ sort)$ on järjestämisalgoritmi, jonka toiminta perustuu kekoon. Ideana on muuttaa järjestettävä taulukko ensin keoksi ja sen jälkeen poistaa alkiot keosta yksi kerrallaan järjestyksessä. Kekojärjestäminen vie aikaa $O(n\log n)$, koska taulukon muuttaminen keoksi vie aikaa O(n) ja n alkion poistaminen keosta vie aikaa $O(n\log n)$.

Kuva 7.5 näyttää esimerkin kekojärjestämisestä, kun järjestämme taulukon [5,2,3,1,7,4,6] pienimmästä suurimpaan. Muutamme ensin taulukon maksimikeoksi, jolloin taulukosta tulee [7,5,6,1,2,4,3]. Tämän jälkeen poistamme yksi kerrallaan keon juuressa olevan alkion vaihtamalla sen keon viimeisen alkion kanssa. Tämän seurauksena keosta poistuneet alkiot (merkitty katkoviivoilla) muodostavat lopulta järjestetyn taulukon.

Olemme siis saaneet aikaan kolmannen $O(n \log n)$ -aikaisen järjestämisalgoritmin lomitusjärjestämisen ja pikajärjestämisen rinnalle. Kekojärjestämisen etuna on, että sen tilavaativuus on vain O(1), koska keon operaatiot
käyttävät vain yksittäisiä muuttujia. Kekojärjestäminen ei ole käytännössä
yhtä tehokas algoritmi kuin lomitusjärjestäminen tai pikajärjestäminen, minkä vuoksi se ei ole saavuttanut samanlaista asemaa järjestämisalgoritmien
joukossa. Siinä on kuitenkin yksi kiinnostava ominaisuus: jos haluamme selvittää vain taulukon k pienintä tai suurinta alkiota, tämä onnistuu ajassa $O(n+k\log n)$, koska keon luonti vie aikaa O(n) ja sen jälkeen riittää poistaa
keosta k kertaa pienin tai suurin alkio ajassa $O(\log n)$.

Kuva 7.5: Esimerkki kekojärjestämisestä.

7.3 Ohjelmointikielten toteutukset

7.3.1 Java

Javassa kekorakenteesta käytetään nimeä prioriteettijono (priority queue). Tietorakenne PriorityQueue toteuttaa binäärikeon, joka on oletuksena minimikeko. Metodi peek hakee pienimmän alkion, ja metodi poll hakee ja poistaa pienimmän alkion.

```
PriorityQueue<Integer> jono = new PriorityQueue<>();
jono.add(5);
jono.add(3);
jono.add(8);
jono.add(7);
System.out.println(jono.peek()); // 3
System.out.println(jono.poll()); // 3
System.out.println(jono.poll()); // 5
```

Jos haluamme luoda prioriteettijonon, joka onkin maksimikeko, voimme tehdä tämän seuraavasti:

82 LUKU 7. KEKO

```
PriorityQueue<Integer> jono =
  new PriorityQueue<>(Collections.reverseOrder());
```

7.3.2 Python

Pythonin standardikirjaston moduulissa **heapq** on funktioita, joiden avulla listaa voi käsitellä binäärikekona. Toteutuksessa keko on minimikeko ja tavallisesta käytännöstä poiketen keko on 0-indeksoitu eli keon pienin alkio on aina listan kohdassa 0.

Seuraava koodi näyttää, miten voimme käsitellä kekoa:

```
from heapq import heappush, heappop

keko = []
heappush(keko,5)
heappush(keko,3)
heappush(keko,8)
heappush(keko,7)
print(keko[0]) # 3
heappop(keko)
print(keko[0]) # 5
```

Lisäksi saatavilla on funktio heapify, joka muuttaa olemassa olevan listan minimikeoksi lineaarisessa ajassa:

```
from heapq import heapify, heappop

keko = [5,3,8,7]
heapify(keko)
print(keko[0]) # 3
heappop(keko)
print(keko[0]) # 5
```

7.4 Tehokkuusvertailu

Mitä hyötyä keosta oikeastaan on? Meillähän on olemassa jo binäärihakupuu, jonka avulla voimme toteuttaa kaikki keon operaatiot ja *enemmänkin*. Keossa voimme hakea ja poistaa vain pienimmän tai suurimman alkion, mutta binäärihakupuussa voimme käsitellä myös muita alkioita.

taulukon koko n	PriorityQueue	TreeSet
10^{6}	$0.29 \; { m s}$	$0.78 \; { m s}$
$2 \cdot 10^{6}$	$0.71 \; s$	$1.50 \mathrm{\ s}$
$4 \cdot 10^{6}$	$1.56 \mathrm{\ s}$	$3.72 \mathrm{\ s}$
$8 \cdot 10^{6}$	$3.68 \mathrm{\ s}$	$9.43 \mathrm{\ s}$

Taulukko 7.1: Algoritmien suoritusaikojen vertailu.

Keon etuna on, että siinä on tehokkaan taulukkototeutuksen ansiosta pienemmät *vakiokertoimet* kuin binäärihakupuussa. Jos meille riittää, että voimme hakea ja poistaa vain pienimmän tai suurimman alkion, voi siis olla hyvä ratkaisu käyttää kekoa binäärihakupuun sijasta. Mutta kuinka suuria erot ovat käytännössä?

Tästä antaa kuvaa testi, jossa vertailemme keskenään Javan tietorakenteita PriorityQueue ja TreeSet. Testissä aineistona on taulukko, jossa on satunnaisessa järjestyksessä luvut $1, 2, \ldots, n$. Lisäämme ensin taulukon n/2 ensimmäistä lukua joukkoon. Tämän jälkeen käymme läpi loput n/2 lukua ja jokaisen luvun kohdalla lisäämme sen joukkoon ja poistamme joukon pienimmän luvun.

Taulukko 7.1 näyttää testin tulokset. Tämän testin perusteella näyttää siltä, että keon käyttämisestä on todellista hyötyä, koska PriorityQueue toimii 2–3 kertaa nopeammin kuin TreeSet.

84 LUKU 7. KEKO

Luku 8

Peruuttava haku

Peruuttava haku (backtracking) on menetelmä, jonka avulla voimme käydä järjestelmällisesti kaikki yhdistelmät, jotka voidaan muodostaa annetuista aineksista. Peruuttava haku on raa'an voiman algoritmi, jonka toteutus on yleensä suoraviivainen, ja menetelmä on käyttökelpoinen silloin, kun yhdistelmien määrä on niin pieni, että ehdimme käydä kaikki läpi.

Tässä luvussa tutustumme ensin peruuttavan haun algoritmeihin, jotka käyvät läpi lukujen yhdistelmiä. Tämän jälkeen näemme, miten peruuttavaa hakua voi käyttää kahdessa vaikeammassa ongelmassa ja miten hakua voi tehostaa. Lopuksi toteutamme pelin tekoälyn minimax-algoritmilla, joka perustuu peruuttavaan hakuun.

8.1 Silmukoista rekursioon

Oletetaan, että haluamme käydä läpi kaikki n luvun yhdistelmät, joissa jokainen luku on kokonaisluku väliltä 1...m. Tällaisia yhdistelmiä on yhteensä m^n , koska kohtia on n ja joka kohdassa luvun voi valita m tavalla. Esimerkiksi jos n=3 ja m=4, yhdistelmät ovat [1,1,1], [1,1,2], [1,1,3], [1,1,4], [1,2,1], [1,2,2], [1,2,3], [1,2,4], jne.

Jos lukujen määrä n on etukäteen tiedossa, voimme luoda n sisäkkäistä silmukkaa, joista jokainen käy m lukua läpi. Esimerkiksi seuraava koodi käy läpi kaikki yhdistelmät tapauksessa n=3:

```
for a = 1 to m
    for b = 1 to m
        for c = 1 to m
            print(a,b,c)
```

Tämä on sinänsä mainio ratkaisu, mutta siinä on yksi ongelma: lukujen

Kuva 8.1: Yhdistelmien muodostaminen alkaa (n = 3 ja m = 4).

määrä n vaikuttaa silmukoiden määrään. Jos haluaisimme muuttaa n:n arvoa, meidän täytyisi muuttaa koodin silmukoiden määrää, mikä ei ole hyvä asia. Peruuttavan haun avulla voimme kuitenkin toteuttaa ratkaisun rekursiivisesti niin, että sama koodi toimii kaikille n:n arvoille.

8.1.1 Haun toteuttaminen

Seuraava rekursiivinen proseduuri haku muodostaa yhdistelmiä peruuttavan haun avulla. Parametri k tarkoittaa kohtaa, johon seuraava luku asetetaan. Jos k=n, jokin yhdistelmä on valmistunut, jolloin se tulostetaan. Muuten haku käy läpi kaikki tavat sijoittaa kohtaan k luku 1...m ja jatkaa rekursiivisesti kohtaan k+1. Haku lähtee käyntiin kutsulla haku(0), ja luvut on n-kokoinen taulukko, johon yhdistelmä muodostetaan.

```
procedure haku(k)
   if k == n
        print(luvut)
   else
      for i = 1 to m
        luvut[k] = i
        haku(k+1)
```

Kuva 8.1 näyttää, miten haku lähtee liikkeelle tapauksessa n=3 ja m=4. Merkki "—"tarkoittaa lukua, jota ei ole vielä valittu. Haun ensimmäinen taso valitsee yhdistelmän ensimmäisen luvun kohtaan 0. Tämän valintaan on neljä vaihtoehtoa, koska mahdolliset luvut ovat $1\ldots 4$, joten haku haarautuu neljään osaan. Tämän jälkeen haku jatkaa rekursiivisesti eteenpäin ja valitsee muihin kohtiin tulevat luvut.

Voimme arvioida algoritmin tehokkuutta laskemalla, montako kertaa pro-

seduuria haku kutsutaan yhteensä haun aikana. Proseduuria kutsutaan kerran parametrilla 0, m kertaa parametrilla 1, m^2 kertaa parametrilla 2, jne., joten kutsujen määrä on yhteensä

$$1 + m + m^2 + \dots + m^n = \frac{m^{n+1} - 1}{m - 1} = O(m^n).$$

Tästä näkee, että kutsujen yhteismäärä on samaa luokkaa kuin viimeisen tason kutsujen määrä. Viimeisellä tasolla tehdäänkin enemmän kutsuja kuin kaikilla muilla tasoilla yhteensä.

8.1.2 Osajoukkojen läpikäynti

Tarkastellaan sitten tilannetta, jossa haluamme käydä läpi kaikki n alkion joukon osajoukot. Osajoukkoja on yhteensä 2^n , koska jokainen alkio joko kuuluu tai ei kuulu osajoukkoon. Esimerkiksi joukon $\{2,3,5,9\}$ osajoukkoja ovat $\{2,5\}$ ja $\{3,5,9\}$.

Osoittautuu, että voimme muodostaa osajoukot käymällä läpi kaikki n luvun yhdistelmät, joissa jokainen luku on 0 tai 1. Ideana on, että jokainen yhdistelmän luku kertoo, kuuluuko tietty alkio osajoukkoon, Alkio kuuluu osajoukkoon tarkalleen silloin, kun sen kohdalla on luku 1. Esimerkiksi kun joukkona on $\{2,3,5,9\}$, yhdistelmä [1,0,1,0] vastaa osajoukkoa $\{2,5\}$ ja yhdistelmä [0,1,1,1] vastaa osajoukkoa $\{3,5,9\}$.

Seuraava koodi näyttää, miten voimme käydä osajoukot läpi peruuttavan haun avulla. Proseduuri haku valitsee, otetaanko kohdassa k oleva alkio mukaan osajoukkoon vai ei, ja merkitsee tämän tiedon taulukkoon valinta. Kuten ennenkin, haku lähtee käyntiin kutsulla haku(0).

```
procedure haku(k)
  if k == n
      // käsittele osajoukko
  else
    for i = 0 to 1
      valinta[k] = i
      haku(k+1)
```

8.1.3 Permutaatioiden läpikäynti

Peruuttavan haun avulla voimme myös käydä läpi joukon permutaatiot eli erilaiset järjestykset. Kun joukossa on n alkiota, siitä voidaan muodostaa kaikkiaan n! permutaatiota. Esimerkiksi joukon $\{1,2,3,4\}$ permutaatioita ovat $\{2,4,1,3\}$ ja $\{4,3,1,2\}$.

Tässä tilanteessa haluamme käydä läpi n luvun yhdistelmiä, joissa jokainen luku on väliltä 1...n ja lisäksi mikään luku ei toistu. Saamme tämän aikaan lisäämällä hakuun uuden taulukon mukana, joka kertoo, onko tietty luku jo mukana. Joka vaiheessa haku valitsee yhdistelmään vain sellaisia lukuja, joita ei ole valittu siihen aiemmin.

```
procedure haku(k)
   if k == n
        print(luvut)
   else
      for i = 1 to n
        if not mukana[i]
            mukana[i] = true
        luvut[k] = i
        haku(k+1)
            mukana[i] = false
```

8.2 Esimerkkejä

Käymme seuraavaksi läpi kaksi vaativampaa esimerkkiä peruuttavan haun soveltamisesta. Ratkaisemme ensin shakkiin liittyvän ongelman, ja tämän jälkeen etsimme parhaan tavan työtehtävien jakamiseen. Molemmissa sovelluksissa näemme myös, miten peruuttavaa hakua voi tehostaa.

8.2.1 Kuningatarongelma

Tehtävämme on laskea, monellako tavalla $n \times n$ -shakkilaudalle voidaan asettaa n kuningatarta niin, etteivät mitkään kaksi kuningatarta uhkaa toisiaan. Shakissa kuningattaret voivat uhata toisiaan vaaka-, pysty- tai vinosuuntaisesti. Esimerkiksi tapauksessa n=4 mahdollisia sijoitustapoja on kaksi, jotka on esitetty kuvassa 8.2.

Kuva 8.2: Kuningatarongelman ratkaisut tapauksessa n = 4.

Voimme ratkaista tehtävän toteuttamalla algoritmin, joka käy laudan läpi

Kuva 8.3: Peruuttavan haun toiminta kuningatarongelmassa.

ylhäältä alaspäin ja asettaa yhden kuningattaren jokaiselle riville. Kuva 8.3 esittää haun toimintaa tapauksessa n=4. Ensimmäisen rivin kuningatar voidaan asettaa mihin tahansa sarakkeeseen, mutta seuraavilla riveillä aiemmat valinnat rajoittavat hakua. Kuvassa näkyy toisen kuningattaren sijoittaminen, kun ensimmäinen kuningatar on toisessa sarakkeessa. Tällöin ainoa vaihtoehto on, että toinen kuningatar on viimeisessä sarakkeessa, koska kaikissa muissa tapauksissa kuningattaret uhkaisivat toisiaan.

Seuraava proseduuri haku esittää peruuttavan haun algoritmin, joka laskee kuningatarongelman ratkaisut:

```
procedure haku(y)
   if y == n
        laskuri += 1
   else
      for x = 0 to n-1
        if voi_sijoittaa(y,x)
            kohta[y] = x
        haku(y+1)
```

Oletamme, että laudan rivit ja sarakkeet on numeroitu $0 \dots n-1$. Parametri y kertoo, mille riville seuraava kuningatar tulee sijoittaa, ja haku lähtee käyntiin kutsulla $\mathtt{haku}(0)$. Jos rivinä on n, kaikki kuningattaret on jo sijoitettu, joten yksi ratkaisu on löytynyt. Muuten suoritetaan silmukka, joka käy läpi mahdolliset sarakkeet muuttujan x avulla. Jos kuningatar voidaan sijoittaa sarakkeeseen x eli se ei uhkaa mitään aiemmin sijoitettua kuningatarta, merkitään taulukkoon kohta, että kuningatar y on sarakkeessa x, ja haku jatkuu eteenpäin rekursiivisesti.

Lisäksi täytyy toteuttaa funktio voi $_$ sijoittaa, joka tutkii, voidaanko uusi kuningatar sijoittaa rivin y sarakkeeseen x. Tämä voidaan selvittää taulukon kohta avulla näin:

```
function voi_sijoittaa(y,x)
  for i = 0 to y-1
    if kohta[i] == x
        return false
    if abs(i-y) == abs(kohta[i]-x)
        return false
  return true
```

Funktio käy läpi kaikki aiemmin sijoitetut kuningattaret. Jos aiemmin sijoitettu kuningatar olisi samassa sarakkeessa (ensimmäinen ehto) tai samalla vinorivillä (toinen ehto) kuin uusi kuningatar, tällaista sijoitusta ei voida tehdä ja funktio palauttaa false. Jos taas mikään aiempi kuningatar ei uhkaa uutta kuningatarta, funktio palauttaa true. Huomaa jälkimmäisessä ehdossa kätevä tapa tarkastaa itseisarvon (funktio abs) avulla, ovatko kuningattaret samalla vinorivillä. Kuningattaret ovat samalla vinorivillä tarkalleen silloin, kun niiden vaaka- ja pystysuuntaiset erot ovat samat.

Nyt meillä on valmis algoritmi, jonka avulla voimme käydä läpi kuningatarongelman ratkaisuja. Taulukko 8.1 näyttää ratkaisujen määrät tapauksissa $n=1\dots 10$. Algoritmi selvittää nämä tapaukset salamannopeasti, mutta suuremmilla n:n arvoilla algoritmi alkaa viedä paljon aikaa. Syynä tähän on, että kuningatarten sijoitustapojen määrä kasvaa eksponentiaalisesti eli räjähdysmäisen nopeasti. Esimerkiksi tapauksessa n=20 erilaisia ratkaisuja on jo yli 39 miljardia.

Voimme kuitenkin koettaa nopeuttaa algoritmia parantamalla sen toteutusta. Yksi helppo tehostus on hyödyntää symmetriaa. Jokaista kuningatarongelman ratkaisua vastaa toinen ratkaisu, joka saadaan peilaamalla ratkaisu vaakasuuntaisesti. Esimerkiksi kuvassa 8.2 ratkaisut voidaan muuttaa toisikseen peilaamalla. Tämän havainnon ansiosta voimme puolittaa algoritmin suoritusajan lisäämällä vaatimuksen, että ensimmäinen kuningatar

laudan koko n	ratkaisujen määrä
1	1
2	0
3	0
4	2
5	10
6	4
7	40
8	92
9	352
10	724

Taulukko 8.1: Kuningatarongelman ratkaisujen määriä.

asetetaan laudan vasempaan puoliskoon, ja kertomalla lopuksi vastauksen kahdella. Jos laudan koko on pariton, täytyy vielä käsitellä erikseen tapaus, jossa ensimmäinen kuningatar sijoitetaan keskisarakkeeseen.

Toinen mahdollinen tehostus olisi toteuttaa funktio $voi_sijoittaa$ paremmin. Tällä hetkellä se käy läpi kaikki aiemmin sijoitetut kuningattaret ja vie aikaa O(n), mutta funktio on mahdollista toteuttaa myös ajassa O(1) ottamalla käyttöön uusia aputaulukoita, joissa on tietoa, mitkä sarakkeet ja vinorivit ovat uhattuina. Tämä tehostus on kuitenkin vaikeampi toteuttaa kuin symmetristen ratkaisujen karsinta.

Kuningatarongelma on kuitenkin pohjimmiltaan vaikea ongelma, eikä sen ratkaisuun tunneta mitään oleellisesti raakaa voimaa parempaa tapaa. Tällä hetkellä suurin tapaus, jonka ratkaisu tunnetaan, on n=27. Tämän tapauksen käsittely vei aikaa noin vuoden laskentaklusterilla, jossa oli suuri määrä rinnakkain laskevia suorittimia¹.

8.2.2 Työtehtävien jakaminen

Tarkastellaan tilannetta, jossa on n työtehtävää ja n työntekijää. Tehtävät tulee jakaa työntekijöille niin, että jokainen työntekijä suorittaa tarkalleen yhden työtehtävän. Jokaisesta työtehtävästä tiedetään, paljonko sen suorittaminen maksaa kullakin työntekijällä, ja tavoitteena on etsiä ratkaisu, jossa kokonaishinta on pienin mahdollinen.

Kuvassa 8.4 on esimerkki tilanteesta, jossa n=3. Tässä optimaalinen tapa jakaa työtehtävät on, että B suorittaa ensimmäisen työtehtävän, C suo-

 $^{^127\}text{-}Queens$ Puzzle: Massively Parellel Enumeration and Solution Counting. https://github.com/preusser/q27

Työntekijä A	4	8	5
Työntekijä B	1	1	3
Työntekijä C	4	2	6

Kuva 8.4: Optimaalinen tapa jakaa työtehtävät.

rittaa toisen työtehtävän ja A suorittaa kolmannen työtehtävän. Tämän ratkaisun kustannus on 1+2+5=8.

Oletamme, että työtehtävät ja työntekijät on numeroitu 0...n-1 ja voimme lukea taulukosta hinta[a][b], paljonko työtehtävän a suorittaminen maksaa työntekijällä b. Toteutamme peruuttavan haun algoritmin, joka käy läpi työtehtävät järjestyksessä ja valitsee jokaiselle työntekijän.

Seuraava proseduuri haku saa kaksi parametria: k on seuraavaksi käsiteltävä työtehtävä ja h on tähän mennessä muodostunut hinta. Haku lähtee käyntiin kutsulla haku(0,0). Taulukko mukana pitää kirjaa, mitkä työntekijät on jo valittu, ja muuttujassa p on yhteishinta parhaassa tähän mennessä löytyneessä ratkaisussa. Ennen hakua muuttujan p arvona on ∞ , koska mitään ratkaisua ei ole vielä olemassa.

```
procedure haku(k,h)
   if k == n
        p = min(p,h)
   else
      for i = 0 to n-1
        if not mukana[i]
            mukana[i] = true
            haku(k+1,h+hinta[k][i])
            mukana[i] = false
```

Tämä on toimiva peruuttavan haun algoritmi, ja haun päätteeksi muuttujassa p on parhaan ratkaisun yhteishinta. Algoritmi on kuitenkin hidas, koska se käy aina läpi kaikki n! mahdollista ratkaisua. Koska haluamme vain löytää parhaan ratkaisun emmekä käydä läpi kaikkia ratkaisuja, pystymme tehostamaan algoritmia lisäämään siihen ehdon, joka lopettaa ratkaisun muodostamisen, jos siitä ei voi tulla aiempaa parempi.

Testaamme seuraavaksi algoritmia tapauksella, jossa n=20 ja jokainen taulukossa hinta oleva arvo on satunnainen kokonaisluku välillä 1...100. Tässä tapauksessa edellä kuvattu algoritmi kävisi läpi

eri ratkaisua, mikä veisi aikaa satoja vuosia. Jotta voimme ratkaista tapauksen, meidän täytyy parantaa algoritmia niin, että se ei käy läpi kaikkia ratkaisuja mutta löytää kuitenkin parhaan ratkaisun. Tässä avuksi tulee tekniikka, josta käytetään usein nimeä branch and bound. Siinä ideana on tehostaa peruuttavaa hakua vähentämällä tutkittavien ratkaisujen määrää sopivien yläja alarajojen avulla.

Keskeinen havainto on, että voimme rajoittaa hakua muuttujan p avulla. Tässä muuttujassa on joka hetkellä tähän mennessä parhaan löydetyn ratkaisun yhteishinta, joten tämä on yläraja sille, kuinka suuri parhaan ratkaisun yhteishinta voi olla. Toisaalta muuttujassa h on muodosteilla olevan ratkaisun hinta tässä vaiheessa, joka on alaraja yhteishinnalle. Jos $h \geq p$, muodosteilla olevasta ratkaisusta ei voi tulla aiempaa parempaa. Voimmekin lisätä algoritmin alkuun seuraavan tarkastuksen:

```
procedure haku(k,h)
  if h >= p
    return
  ...
```

Tämän ansiosta ratkaisun muodostaminen päättyy heti, jos sen hinta on yhtä suuri tai suurempi kuin parhaan tiedossa olevan ratkaisun hinta. Tämän tehostuksen avulla saamme ratkaistua muodostamamme tapauksen testikoneella 152 sekunnissa. Tämä on hieno saavutus, koska alkuperäinen algoritmi ei kyennyt ratkaisemaan tapausta lainkaan.

Voimme kuitenkin tehostaa algoritmia vielä lisää laskemalla tarkemman arvion alarajalle. Muodosteilla olevan ratkaisun hinta on varmasti ainakin h, mutta voimme lisäksi arvioida, paljonko myöhemmin valittavat työntekijät lisäävät kustannusta:

```
procedure haku(k,h)
  if h+arvio(k) >= p
    return
  ...
```

Tässä funktion **arvio** tulee antaa jokin arvio, paljonko ainakin maksaa suorittaa jäljellä olevat työtehtävät $k \dots n-1$. Yksi kätevä tapa saada arvio on käydä läpi jäljellä olevat työtehtävät ja valita jokaisen tekijäksi halvin työntekijä välittämättä siitä, onko kyseinen työntekijä mahdollisesti valittu aiemmin. Tämä antaa alarajan sille, paljonko kustannuksia on ainakin vielä tiedossa. Tämän tehostuksen jälkeen tapauksen n=20 käsittely vie testikoneella vain 7 sekuntia. Paremman alarajan ansiosta saimme siis algoritmin vielä noin 20 kertaa nopeammaksi verrattuna edelliseen versioon.

Kuva 8.5: Esimerkki minimax-algoritmin toiminnasta.

8.3 Pelin tekoäly

Peruuttavan haun avulla voi myös toteuttaa tekoälyn kahden pelaajan peliin, kuten ristinollaan tai shakkiin. Tällaisen tekoälyn täytyy pystyä päättämään, miten toimia annetussa pelin tilanteessa. Ideana on luoda haku, joka käy läpi järjestelmällisesti mahdollisia siirtoja, joita pelaajat voivat tehdä.

8.3.1 Minimax-algoritmi

Minimax-algoritmi on peruuttavaan hakuun perustuva algoritmi, joka valitsee tekoälyn siirron pelissä. Se käy läpi pelinkulkuja tiettyyn syvyyteen asti, arvioi pelitilanteet ja valitsee siirron, joka takaa mahdollisimman hyvältä vaikuttavan tuloksen. Algoritmin nimi tulee siitä, että se vuorotellen *minimoi* ja *maksimoi* tulosta puun kerroksissa.

Kuvassa 8.5 on esimerkki algoritmin toiminnasta, kun hakusyvyytenä on kolme tasoa ja joka tilanteessa on kaksi mahdollista siirtoa. Puun juuressa oleva solmu vastaa nykyistä pelitilannetta, jossa tekoälyn täytyy päättää seuraava siirto, ja jokainen askel puussa alaspäin tarkoittaa yhtä siirtoa. Tässä tekoäly tutkii, mitä kaikkea voi tapahtua, kun se siirtää ensin itse, sitten vastustaja siirtää, ja sitten se siirtää uudestaan. Puun alimmalla tasolla on jokaisen kolmen siirron päässä olevan pelitilanteen hyvyys eli tekoälyn arvio, kuinka hyvä kyseinen tilanne on sen itsensä kannalta.

Tekoäly valitsee aina siirron, joka on mahdollisimman hyvä sen itsensä kannalta. Toisaalta tekoäly olettaa, että vastustaja valitsee siirron, joka on mahdollisimman huono tekoälyn kannalta. Niinpä joka toisella tasolla solmuissa on maksimi lasten arvoista ja joka toisella tasolla minimi. Tässä esimerkissä tekoäly tekee siirron, joka takaa, että kolmen siirron päästä pelitilanteen hyvyys on ainakin 5 riippumatta vastustajan toimista.

Kuva 8.6: Alfa-beeta-karsinnan vaikutus.

Tekoälyn pelitaito riippuu kahdesta asiasta: (1) montako tasoa alemmas se tutkii puuta ja (2) miten hyvin se osaa arvioida pohjalla olevia pelitilanteita. Mitä syvemmälle haku jatkuu, sitä paremmin tekoäly pelaa, koska se saa enemmän tietoa pelinkuluista, mutta sitä kauemmin vie, ennen kuin tekoäly tekee päätöksen. Pelitilanteen arviointi puolestaan vaatii tietoa pelattavasta pelistä. Esimerkiksi shakissa pelitilannetta voi arvioida tutkimalla, mitä nappuloita itsellä ja vastustajalla on jäljellä.

8.3.2 Alfa-beeta-karsinta

Minimax-algoritmin toimintaa on mahdollista tehostaa alfa-beeta-karsinnalla, joka jättää puun osia tutkimatta, jos on selvää, että ne eivät voi vaikuttaa tekoälyn valintaan. Tämä muistuttaa aiemmin peruuttavan haun yhteydessä hyödyntämäämme branch and bound -tekniikaa.

Kuva 8.6 näyttää, kuinka alfa-beeta-karsinta onnistuu tehostamaan hakua esimerkkitilanteessamme. Katkoviivoilla esitetyt puun osat ovat sellaisia, joita ei ole tarpeen tutkia, koska ne eivät voisi vaikuttaa ylempänä puussa olevaan osittain laskettuun minimiin tai maksimiin.

Kun tekoäly saapuu vasemmassa haarassa solmuun, jonka arvona on 7, sen ei enää tarvitse tutkia muita vasemman haaran solmuja. Tämä johtuu siitä, että tekoäly tietää jo tässä vaiheessa, että vasemman haaran minimi on enintään 5. Niinpä sen ei tarvitse laskea maksimia luvusta 7 ja jostain toisesta luvusta, koska tämä ei voisi muuttaa minimiä.

Kun sitten oikeassa haarassa tekoäly on laskenut toiseksi alimmalla tasolla olevaan solmuun maksimin 2, sen ei enää tarvitse tutkia muita oikean haaran solmuja. Tämä johtuu siitä, että juuren maksimi on ainakin 5 ja oikeassa haarassa valittaisiin minimi luvusta 2 ja jostain toisesta luvusta, mikä ei voisi kasvattaa juuressa olevaa maksimia.

Luku 9

Dynaaminen ohjelmointi

Dynaaminen ohjelmointi (dynamic programming) on tekniikka, jonka avulla voi monessa tilanteessa laskea ongelman ratkaisujen yhteismäärän tai löytää ratkaisun, joka on jollain tavalla optimaalinen. Ideana on muotoilla ongelma rekursiivisesti niin, että ongelman ratkaisu voidaan muodostaa pienemmistä osaongelmista. Tämän jälkeen saamme aikaan tehokkaan algoritmin, kun käsittelemme jokaisen osaongelman vain kerran.

Tässä luvussa tutustumme ensin dynaamisen ohjelmoinnin perusteisiin toteuttamalla tehokkaan algoritmin, joka laskee palikkayhdistelmien määrän. Tämän jälkeen käymme läpi kokoelman muita esimerkkejä, jotka esittelevät lisää dynaamisen ohjelmoinnin mahdollisuuksia.

9.1 Perustekniikat

Aloitamme dynaamiseen ohjelmointiin tutustumisen tehtävästä, jossa haluamme rakentaa palikoista tornin, jonka korkeus on n. Kunkin palikan korkeus on 1, 2 tai 3, ja jokaista palikkatyyppiä on saatavilla rajattomasti. Monellako tavalla voimme rakentaa tornin?

Esimerkiksi kun tornin korkeus on n=4, voimme rakentaa sen 7 tavalla

Kuva 9.1: Voimme rakentaa korkeuden 4 tornin 7 tavalla palikoista, joiden korkeudet ovat 1, 2 ja 3.

Kuva 9.2: Rekursiivinen idea: kun alamme rakentaa tornia, voimme laittaa pohjalle korkeuden 1, 2 tai 3 palikan.

kuvan 9.1 mukaisesti. Jos n on pieni, voimme laskea tornien määrän helposti käymällä läpi kaikki tavat, mutta tornien määrä kasvaa nopeasti emmekä voi käyttää raakaa voimaa suuremmilla n:n arvoilla. Seuraavaksi ratkaisemmekin ongelman tehokkaasti dynaamisella ohjelmoinnilla.

9.1.1 Rekursiivinen esitys

Jotta voimme käyttää dynaamista ohjelmointia, ongelma täytyy pystyä esittämään rekursiivisesti niin, että saamme laskettua ongelman ratkaisun käyttäen osaongelmina pienempiä vastaavia ongelmia. Tässä tehtävässä luonteva rekursiivinen funktio on tornit(n): monellako tavalla voimme rakentaa tornin, jonka korkeus on n? Esimerkiksi tornit(4) = 7, koska voimme rakentaa korkeuden 4 tornin 7 tavalla.

Funktion pienten arvojen laskeminen on helppoa. Ensinnäkin tornit(0) = 1, koska on tarkalleen yksi tapa rakentaa tyhjä torni: siinä ei ole mitään palikoita. Sitten tornit(1) = 1, koska ainoa tapa rakentaa korkeuden 1 torni on valita palikka, jonka korkeus on 1, ja tornit(2) = 2, koska voimme rakentaa korkeuden 2 tornin valitsemalla joko kaksi palikkaa, jonka kummankin korkeus on 1, tai yhden palikan, jonka korkeus on 2.

Kuinka voisimme sitten laskea funktion arvon yleisessä tapauksessa, kun tornin korkeus on n? Tässä voimme miettiä, kuinka tornin rakentaminen alkaa. Mahdollisuuksia on kolme: voimme laittaa ensin palikan, jonka korkeus on 1, 2 tai 3. Jos aloitamme korkeuden 1 palikalla, sen päälle täytyy rakentaa korkeuden n-1 torni. Vastaavasti jos aloitamme korkeuden 2 tai 3 palikalla, sen päälle täytyy rakentaa torni, jonka korkeus on n-2 tai n-3. Kuva 9.2 havainnollistaa tämän idean. Niinpä voimme laskea tornien määrän rekursiivisesti kaavalla

$$tornit(n) = tornit(n-1) + tornit(n-2) + tornit(n-3),$$

kun $n \geq 3$. Esimerkiksi voimme laskea

$$tornit(3) = tornit(2) + tornit(1) + tornit(0) = 4$$

korkeus n	$\mathtt{tornit}(n)$			
0	1			
1	1			
2	2			
3	4			
4	7			
5	13			
6	24			
7	44			
8	81			
9	149			

Taulukko 9.1: Tornien määrät, kun korkeus n on $0, 1, \ldots, 9$.

```
ja tornit(4) = tornit(3) + tornit(2) + tornit(1) = 7,
```

jolloin olemme saaneet laskettua esimerkkitapaustamme vastaavasti, että voimme rakentaa korkeuden 4 tornin 7 tavalla.

Taulukko 9.1 näyttää funktion tornit(n) arvot, kun $n=0,1,\ldots,9$. Kuten taulukosta voi huomata, funktion arvo kasvaa nopeasti: se lähes kaksinkertaistuu joka askeleella. Kun n on suuri, onkin valtavasti mahdollisuuksia tornin rakentamiseen.

9.1.2 Tehokas toteutus

Nyt kun olemme saaneet aikaan rekursiivisen funktion, voimme toteuttaa sen ohjelmoimalla seuraavasti:

```
function tornit(n)
  if (n == 0) return 1
  if (n == 1) return 1
  if (n == 2) return 2
  return tornit(n-1)+tornit(n-2)+tornit(n-3)
```

Tämä on toimiva ratkaisu, mutta siinä on yksi ongelma: funktion arvon laskeminen vie kauan aikaa, jos n on vähänkin suurempi. Käytännössä laskenta alkaa hidastua parametrin n=30 tienoilla. Esimerkiksi arvon $\mathtt{tornit}(40)$ laskeminen vie aikaa noin minuutin ja arvon $\mathtt{tornit}(50)$ vie aikaa niin kauan, että emme jaksa odottaa laskennan valmistumista.

Syynä laskennan hitauteen on, että funktiota tornit kutsutaan uudestaan ja uudestaan samoilla parametreilla ja tornien määrä lasketaan loppujen

lopuksi summana luvuista 1 ja 2 pohjatapauksista. Niinpä kun tornien määrä on suuri, laskenta on tuomittu viemään kauan aikaa. Voimme kuitenkin tehostaa laskentaa toteuttamalla sen hieman toisella tavalla.

Tässä astuu kuvaan dynaamisen ohjelmoinnin keskeinen idea taulukointi (memoization): laskemme funktion arvon kullekin parametrille vain kerran ja tallennamme tulokset taulukkoon myöhempää käyttöä varten. Tätä varten luomme taulukon tornit, jossa kohtaan tornit[i] tallennetaan funktion arvo tornit(i). Kun haluamme laskea korkeuden n tornien määrän, täytämme taulukon kohdat $0, 1, \ldots, n$. Seuraava koodi toteuttaa laskennan:

```
tornit[0] = 1
tornit[1] = 1
tornit[2] = 2
for i = 3 to n
    tornit[i] = tornit[i-1]+tornit[i-2]+tornit[i-3]
```

Koodin suorituksen jälkeen taulukon arvo tornit[n] kertoo, monellako tavalla voimme rakentaa korkeuden n tornin.

Tämän toteutuksen etuna on, että se on huomattavasti nopeampi kuin rekursiivinen funktio. Koska koodissa on vain yksi for-silmukka, se vie aikaa vain O(n), eli voimme käsitellä tehokkaasti myös suuria n:n arvoja. Esimerkiksi voimme nyt laskea salamannopeasti, että

```
tornit(50) = 10562230626642
```

eli on yli 10562 miljardia tapaa rakentaa korkeuden 50 torni.

9.2 Esimerkkejä

Olemme nyt tutustuneet dynaamisen ohjelmoinnin perusideaan, mutta tämä on vasta alkua sille, mitä kaikkea tekniikan avulla pystyy tekemään. Seuraavaksi käymme läpi kokoelman tehtäviä, jotka esittelevät lisää dynaamisen ohjelmoinnin mahdollisuuksia.

9.2.1 Pisin nouseva alijono

Ensimmäinen tehtävä on selvittää, kuinka pitkä on n alkiota sisältävän taulukon pisin nouseva alijono (longest increasing subsequence) eli mahdollisimman pitkä vasemmalta oikealle etenevä jono alkioita, jossa seuraava alkio on aina edellistä suurempi. Kuvassa 9.3 on esimerkki taulukosta, jonka pisin nouseva alijono [2, 5, 7, 8] on pituudeltaan 4.

Kuva 9.3: Taulukon pisin nouseva alijono on [2, 5, 7, 8].

Voimme lähestyä tehtävää laskemalla jokaiselle taulukon kohdalle $k = 0, 1, \ldots, n-1$ arvon pisin(k): kuinka pitkä on pisin nouseva alijono, joka päättyy kohtaan k. Kun olemme laskeneet kaikki nämä arvot, suurin arvoista kertoo meille, kuinka pitkä on pisin nouseva alijono koko taulukossa. Esimerkiksi kuvan 9.3 taulukossa pisin(6) = 4, koska kohtaan 6 päättyvä pisin nouseva alijono on pituudeltaan 4.

Millainen on sitten pisin kohtaan k päättyvä alijono? Yksi mahdollisuus on, että alijonossa on vain kohdan k alkio, jolloin $\mathtt{pisin}(k) = 1$. Muussa tapauksessa alijonossa on ensin kohtaan x päättyvä pisin nouseva alijono, missä x < k, ja sitten vielä kohdan k alkio. Tämä edellyttää, että kohdan k alkio on pienempi kuin kohdan k alkio. Tuloksena olevan alijonon pituus on $\mathtt{pisin}(x) + 1$. Tämä antaa mahdollisuuden dynaamiseen ohjelmointiin: kun haluamme laskea arvon $\mathtt{pisin}(k)$, käymme läpi kaikki mahdolliset tavat valita kohta k ja valitsemme niistä parhaan vaihtoehdon.

Seuraava koodi laskee jokaiselle k = 0, 1, ..., n-1 pisimmän kohtaan k päättyvän alijonon pituuden yllä kuvattua ideaa käyttäen. Koodi olettaa, että taulukon sisältö on taulukossa taulu, ja se muodostaa taulukon pisin, jossa on pisimpien alijonojen pituudet.

```
for k = 0 to n-1
    pisin[k] = 1
    for x = 0 to k-1
        if taulu[x] < taulu[k] and pisin[x]+1 > pisin[k]
            pisin[k] = pisin[x]+1
```

Koodin suorituksen jälkeen pisimmän nousevan alijonon pituus on siis suurin taulukon pisin arvoista. Tämä algoritmi vie aikaa $O(n^2)$, koska käymme jokaisessa kohdassa k läpi kaikki taulukon edelliset kohdat.

Mitä jos haluaisimme selvittää pisimmän nousevan alijonon pituuden lisäksi, mistä alkioista se muodostuu? Tämä onnistuu laajentamalla hieman koodia. Rakennamme taulukon aiempi, joka kertoo jokaisessa kohdassa, missä on tähän kohtaan päättyvän pisimmän alijonon edellinen alkio. Voimme muodostaa taulukon seuraavasti:

Kuva 9.4: Mahdolliset reitit vasemmasta yläkulmasta oikeaan alakulmaan.

```
for k = 0 to n-1
   pisin[k] = 1
   aiempi[k] = -1
   for x = 0 to k-1
      if taulu[x] < taulu[k] and pisin[x]+1 > pisin[k]
        pisin[k] = pisin[x]+1
      aiempi[k] = x
```

Tämän jälkeen jokaisessa kohdassa k arvo $\mathtt{aiempi}[k]$ kertoo pisimmän alijonon edellisen alkion kohdan. Kuitenkin jos alijonon pituus on 1, taulukossa on arvo -1. Voimme nyt selvittää kohtaan k päättyvän alijonon alkiot käänteisesti seuraavasti:

```
while k != -1
  print(taulu[k])
  k = aiempi[k]
```

Voimme käyttää vastaavaa tekniikkaa dynaamisessa ohjelmoinnissa aina, kun haluamme selvittää, mistä aineksista paras ratkaisu muodostuu.

9.2.2 Reitti ruudukossa

Olemme $n \times n$ -ruudukon vasemmassa yläkulmassa ja haluamme päästä oikeaan alakulmaan. Jokaisella vuorolla voimme siirtyä askeleen alaspäin tai oikealle. Kuitenkin joissakin ruuduissa on este, emmekä voi kulkea sellaisen ruudun kautta. Montako mahdollista reittiä on olemassa? Esimerkiksi kuvassa 9.4 on 4×4 -ruudukko, jossa on kolme mahdollista reittiä ruudukon vasemmasta yläkulmasta oikeaan alakulmaan.

Tässä tehtävässä osaongelmat ovat kaksiulotteisia, koska olemme reitin joka vaiheessa tietyn rivin tietyssä sarakkeessa. Niinpä määrittelemme rekursiivisen funktion, jolla on kaksi parametria: reitit(y, x) kertoo, montako reittiä on vasemmasta yläkulmasta ruutuun (y, x). Numeroimme rivit ja sarakkeet $1, 2, \ldots, n$ ja haluamme laskea arvon reitit(n, n), joka on reittien

määrä vasemmasta yläkulmasta oikeaan alakulmaan.

Hyödyllinen havainto on, että jokaisessa ruudussa on kaksi mahdollisuutta, kuinka reitti voi tulla ruutuun, koska voimme tulla joko ylhäältä tai vasemmalta. Kun haluamme laskea reittien määrää, laskemmekin yhteen ylhäältä ja vasemmalta tulevat reitit. Rajoituksena jos ruudussa on este, siihen tulevien reittien määrä on aina nolla. Tämän perusteella saamme aikaan seuraavan dynaamisen ohjelmoinnin algoritmin:

```
for y = 1 to n
    for x = 1 to n
    if este[y][x]
        reitit[y][x] = 0
    else if y == 1 and x == 1
        reitit[y][x] = 1
    else
        reitit[y][x] = reitit[y-1][x]+reitit[y][x-1]
```

Koodi laskee jokaiseen ruutuun reittien määrän vasemmasta yläkulmasta kyseiseen ruutuun. Jos ruudussa on este, reittien määrä on 0, koska mitään reittiä ei ole olemassa. Jos ruutu on vasen yläkulma (eli y = 1 ja x = 1), reittien määrä on 1, koska reitti alkaa siitä ruudusta. Muuten reittien määrä saadaan laskemalla yhteen ylhäältä ja vasemmalta tulevat reitit. Tuloksena on algoritmi, joka vie aikaa $O(n^2)$.

Huomaa, että tässä käytämme taulukon kohtia $1, 2, \ldots, n$ ja oletamme, että kohdissa 0 on arvona nolla. Tämä on kätevää, koska meidän ei tarvitse tehdä erikoistapauksia ruudukon yläreunaa ja vasenta reunaa varten.

9.2.3 Repunpakkaus

Termi repunpakkaus (knapsack) viittaa ongelmaan, jossa halutaan selvittää, millaisia yhdistelmiä voidaan muodostaa tavaroista, joilla on tietyt painot. Ongelmasta on monia muunnelmia, joiden yhdistävänä tekijänä on, että ne voi ratkaista tehokkaasti dynaamisella ohjelmoinnilla.

Seuraavaksi keskitymme ongelmaan, jossa meillä on n tavaraa, joilla on painot p_1, p_2, \ldots, p_n . Haluamme selvittää kaikki mahdolliset yhteispainot, jotka voimme muodostaa valitsemalla jonkin osajoukon tavaroista. Esimerkiksi jos tavaroiden painot ovat [1, 3, 3, 4], niin mahdolliset yhteispainot ovat

Esimerkiksi yhteispaino 6 on listalla, koska saamme sen painoista 3+3=6, ja yhteispaino 8 on listalla, koska saamme sen painoista 1+3+4=8.

	0	1	2	3	4	5	6	7	8	9	10	11
k = 0	\checkmark											
k = 1	\checkmark	√										
k = 2	√	√		√	√							
k = 3	√	✓		√	✓		✓	√				
k = 4	√	√		√	√	✓	√	√	√		✓	\checkmark

Kuva 9.5: Mahdolliset yhteispainot, kun painot ovat [1, 3, 3, 4].

On helppoa laskea, mikä on suurin mahdollinen tavaroiden yhteispaino, koska saamme sen valitsemalla kaikki tavarat. Suurin yhteispaino on siis

$$s = p_1 + p_2 + \dots + p_n.$$

Tämä on meille hyödyllinen yläraja, koska tiedämme nyt, että tavaroiden yhteispaino on aina jokin luku välillä $0 \dots s$.

Voimme lähestyä tehtävää dynaamisella ohjelmoinnilla luomalla funktion $\mathtt{painot}(k)$: mitkä kaikki yhteispainot voimme muodostaa, jos käytössämme on tavarat $1,2,\ldots,k$? Oletamme, että funktio palauttaa taulukon, jossa on s+1 alkiota: jokaiselle yhteispainolle $0,1,\ldots,s$ tieto siitä, voimmeko muodostaa sen painoista p_1,p_2,\ldots,p_k . Tapaus $\mathtt{painot}(0)$ on helppo, koska kun ei ole mitään tavaroita, ainoa mahdollinen yhteispaino on 0. Tämän jälkeen pystymme laskemaan tapauksen $\mathtt{painot}(k)$ ottamalla lähtökohdaksi tapauksen $\mathtt{painot}(k-1)$ ja selvittämällä, mitä uusia yhteispainoja voimme muodostaa, kun saamme käyttää myös painoa p_k .

Kuva 9.5 näyttää dynaamisen ohjelmoinnin taulukoiden sisällön esimerkissämme, jossa painot ovat [1,3,3,4]. Ensimmäisellä rivillä k=0, joten ainoa yhteispaino on 0. Toisella rivillä k=1, joten saamme käyttää painoa $p_1=1$ ja voimme muodostaa yhteispainot 0 ja 1. Kolmannella rivillä k=2, jolloin saamme käyttöömme painon $p_2=3$ ja voimme muodostaa yhteispainot 0, 1, 3 ja 4. Viimeisellä rivillä käytössämme ovat kaikki painot, joten se vastaa ongelman ratkaisua.

Voimme toteuttaa dynaamisen ohjelmoinnin kätevästi niin, että koodissa on vain yksi boolean-taulukko \mathtt{painot} , jossa on s+1 alkiota. Taulukko kertoo laskennan jokaisessa vaiheessa, mitkä yhteispainot ovat mahdollisia sillä hetkellä. Aluksi taulukon kohdassa 0 on arvo \mathtt{true} ja kaikissa muissa kohdissa on arvo \mathtt{false} . Tämän jälkeen päivitämme taulukkoa lisäämällä mukaan painoja yksi kerrallaan.

```
painot[0] = true
for i = 1 to n
   for j = s to 0
      if painot[j]
      painot[j+p[i]] = true
```

Tärkeä yksityiskohta algoritmissa on, että käymme jokaisen painon kohdalla taulukon läpi *lopusta alkuun*. Syynä tähän on, että tällä tavalla saamme laskettua oikealla tavalla, mitä uusia yhteispainoja voidaan muodostaa, kun saamme käyttää uutta painoa kerran. Laskennan jälkeen voimme tulostaa kaikki mahdolliset yhteispainot näin:

```
for i = 0 to s
  if painot[i]
    print(i)
```

Tuloksena olevan algoritmin aikavaativuus on O(ns). Algoritmin tehokkuus riippuu siis paitsi tavaroiden määrästä, myös niiden painoista. Jotta algoritmi on käyttökelpoinen, painojen summan s täytyy olla niin pieni, että voimme varata niin suuren taulukon.

9.2.4 Binomikertoimet

Binomikerroin $\binom{n}{k}$ ilmaisee, monellako tavalla voimme muodostaa n alkion joukosta k alkion osajoukon. Esimerkiksi $\binom{5}{3} = 10$, koska voimme muodostaa joukosta $\{1, 2, 3, 4, 5\}$ seuraavat 3 alkion osajoukot:

- $\{1, 2, 3\}$ $\{1, 3, 5\}$
- {1,2,4} {1,4,5}
- {1,2,5} {2,3,4}
- {1,3,4} {2,3,5}

Binomikertoimien laskemiseen on monia tapoja. Dynaamisen ohjelmoinnin kannalta kiinnostava tapa on rekursiivinen kaava

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Voimme perustella kaavan tarkastelemalla k alkion osajoukon muodostamista joukosta $\{1, 2, ..., n\}$. Jos otamme osajoukkoon mukaan alkion n, tämän

jälkeen tulee muodostaa vielä k-1 alkion osajoukko joukosta $\{1, 2, \ldots, n-1\}$. Jos taas emme ota osajoukkoon mukaan alkiota n, tämän jälkeen tulee muodostaa k alkion osajoukko joukosta $\{1, 2, \ldots, n-1\}$.

Lisäksi pohjatapauksina

$$\binom{n}{0} = 1,$$

koska voimme muodostaa tyhjän osajoukon yhdellä tavalla, ja

$$\binom{n}{k} = 0$$
, jos $k > n$,

koska n alkiosta ei voi muodostaa osajoukkoa, jossa on yli n alkiota.

Tämä rekursiivinen kaava tarjoaa meille tavan laskea tehokkaasti binomikertoimia dynaamisen ohjelmoinnin avulla. Voimme toteuttaa laskennan seuraavasti:

```
binom[0][0] = 1
for i = 1 to n
    binom[i][0] = 1
    for j = 1 to k
        binom[i][j] = binom[i-1][j-1]+binom[i-1][j]
```

Koodin suorituksen jälkeen taulukon kohdassa $\mathtt{binom}[n][k]$ on binomikerroin $\binom{n}{k}$. Algoritmi vie aikaa O(nk), joten sitä voi käyttää melko suurten binomikertoimien laskemiseen.

Luku 10

Verkkojen perusteet

Voimme ratkaista monia algoritmiikan ongelmia esittämällä tilanteen $verkkona\ (graph)$ ja käyttämällä sitten sopivaa verkkoalgoritmia. Tyypillinen esimerkki verkosta on tieverkosto, joka muodostuu kaupungeista ja niiden välisistä teistä. Tällaisessa verkossa ongelmana voi olla selvittää vaikkapa, kuinka voimme matkustaa kaupungista a kaupunkiin b.

Tässä luvussa aloitamme verkkoihin tutustumisen käymällä läpi verkkojen käsitteitä sekä tapoja esittää verkkoja ohjelmoinnissa. Tämän jälkeen näemme, miten voimme tutkia verkkojen rakennetta ja ominaisuuksia syvyyshaun ja leveyshaun avulla. Seuraavissa kirjan luvuissa jatkamme verkkojen käsittelyä ja opimme lisää verkkoalgoritmeja.

10.1 Verkkojen käsitteitä

Verkko muodostuu solmuista (node tai vertex) ja niiden välisistä kaarista (edge). Kuvassa 10.1 on verkko, jossa on viisi solmua ja seitsemän kaarta. Merkitsemme verkon solmujen määrää kirjaimella n ja kaarten määrää kirjaimella m. Lisäksi numeroimme verkon solmut kokonaisluvuin $1, 2, \ldots, n$.

Kaksi solmua ovat *vierekkäin* (*adjacent*), jos niiden välillä on kaari. Solmun *naapureja* (*neighbor*) ovat kaikki solmut, joihin se on yhteydessä kaarella, ja solmun *aste* (*degree*) on sen naapureiden määrä. Kuvassa 10.1 solmun

Kuva 10.1: Verkko, jossa on viisi solmua ja seitsemän kaarta.

Kuva 10.2: Kaksi polkua solmusta 1 solmuun 5.

Kuva 10.3: Verkossa on sykli $2 \rightarrow 4 \rightarrow 5 \rightarrow 2$.

2 naapurit ovat 1, 4 ja 5, joten solmun aste on 3.

Polku ja sykli

Verkossa oleva polku (path) on kaaria pitkin kulkeva reitti lähtösolmusta kohdesolmuun. Kuva 10.2 näyttää kaksi mahdollista polkua solmusta 1 solmuun 5. Polut ovat $1 \to 2 \to 5$ ja $1 \to 3 \to 4 \to 5$.

Polku on sykli~(cycle), jos sen alku- ja loppusolmu on sama, siinä on ainakin yksi kaari eikä se kulje kahta kertaa saman solmun tai kaaren kautta. Kuvassa 10.3 on esimerkkinä sykli $2 \to 4 \to 5 \to 2$. Jos verkossa ei ole yhtään sykliä, verkko on syklitön~(acyclic).

Yhtenäisyys ja komponentit

Verkko on yhtenäinen (connected), jos minkä tahansa kahden solmun välillä on polku. Kuvan 10.1 verkko on yhtenäinen, mutta kuvan 10.4 verkko ei ole yhtenäinen, koska esimerkiksi solmujen 1 ja 2 välillä ei ole polkua.

Verkko voidaan esittää aina kokoelmana yhtenäisiä komponentteja (component). Kuvassa 10.4 yhtenäiset komponentit ovat $\{1,3\}$ ja $\{2,4,5\}$.

Verkko on puu (tree), jos se on sekä yhtenäinen että syklitön. Puussa kaarten määrä on aina yhden pienempi kuin solmujen määrä, ja jokaisen

Kuva 10.4: Verkon yhtenäiset komponentit ovat $\{1,3\}$ ja $\{2,4,5\}$.

Kuva 10.5: Puu eli yhtenäinen, syklitön verkko.

kahden solmun välillä on yksikäsitteinen polku. Kuvassa 10.5 on esimerkkinä puu, jossa on viisi solmua ja neljä kaarta.

Suunnattu verkko

Kun verkko on suunnattu (directed), jokaisella kaarella on tietty suunta, jonka mukaisesti kaarta pitkin tulee kulkea. Suunnat rajoittavat siis verkossa liikkumista. Kuvassa 10.6 on esimerkkinä suunnattu verkko, jossa voimme kulkea solmusta 1 solmuun 5 polkua $1 \to 2 \to 5$, mutta emme voi kulkea mitenkään solmusta 5 solmuun 1.

Painotettu verkko

Kun verkko on painotettu (weighted), jokaiseen kaareen liittyy jokin paino, joka kuvaa tyypillisesti kaaren pituutta. Kun kuljemme polkua painotetussa verkossa, polun pituus on kaarten painojen summa. Kuvassa 10.7 on esimerkkinä painotettu verkko, jossa polun $1 \to 2 \to 5$ pituus on 5+8=13 ja polun $1 \to 3 \to 4 \to 5$ pituus on 2+4+3=9.

Kuva 10.6: Suunnattu verkko.

Kuva 10.7: Painotettu verkko.

Kuva 10.8: Verkko, joka ei ole yksinkertainen.

Yksinkertainen verkko

Usein oletuksena on, että verkko on *yksinkertainen* (*simple*), jolloin siinä ei ole kahta samanlaista kaarta ja jokainen kaari yhdistää kaksi eri solmua. Kaikki tähän mennessä kirjassa esitetyt verkot ovat olleet yksinkertaisia.

Kuvassa 10.8 on esimerkkinä verkko, joka ei ole yksinkertainen. Tähän on kaksi syytä: solmujen 1 ja 2 välillä on kaksi kaarta ja lisäksi solmusta 5 on kaari itseensä.

10.2 Verkot ohjelmoinnissa

Verkon esittämiseen ohjelmoinnissa on monia mahdollisuuksia. Sopivan esitystavan valintaan vaikuttaa, miten haluamme käsitellä verkkoa algoritmissa, koska jokaisessa esitystavassa on omat etunsa. Seuraavaksi käymme läpi kolme tavallista esitystapaa.

Kuva 10.9: Verkon vieruslistaesitys.

10.2.1 Vieruslistaesitys

Tavallisin tapa esittää verkko on luoda kullekin solmulle *vieruslista* (*adjacency list*), joka kertoo, mihin solmuihin voimme siirtyä solmusta kaaria pitkin. Kuvassa 10.9 on esimerkkinä verkko ja sitä vastaava vieruslistaesitys. Voimme luoda vieruslistat näin ohjelmoinnissa:

```
verkko[1].add(2)
verkko[1].add(3)
verkko[1].add(4)
verkko[2].add(4)
verkko[2].add(5)
verkko[3].add(4)
verkko[4].add(5)
```

Vieruslistaesitys on monessa tilanteessa hyvä tapa tallentaa verkko, koska haluamme usein selvittää, mihin solmuihin pääsemme siirtymään tietystä solmusta kaaria pitkin. Esimerkiksi seuraava koodi käy läpi solmut, joihin voimme siirtyä solmusta a kaarella:

```
for b in verkko[a]
// käsittele solmu b
```

Suuntaamaton verkko voidaan esittää vieruslistoina niin, että jokainen kaari tallennetaan molempiin suuntiin. Jos taas verkko on painotettu, voimme tallentaa jokaisesta kaaresta sekä kohdesolmun että painon.

10.2.2 Kaarilistaesitys

Toinen tapa tallentaa verkko on luoda *kaarilista* (*edge list*), joka sisältää kaikki verkon kaaret. Voisimme luoda esimerkkiverkon kaarilistan näin:

```
kaaret.add((1,2))
kaaret.add((1,3))
kaaret.add((1,4))
kaaret.add((2,4))
kaaret.add((2,5))
kaaret.add((3,4))
kaaret.add((4,5))
```

Tässä tapauksessa jokainen listan alkio on pari, jossa on kaaren alku- ja loppusolmu. Vastaavasti voisimme tallentaa myös kaaret kolmikkoina, joissa on lisäksi mukana kaaren paino.

Kaarilista on hyvä esitystapa algoritmeissa, joissa tulee pystyä käymään helposti läpi kaikki verkon kaaret eikä ole tarvetta selvittää tietystä solmusta lähteviä kaaria.

Kuva 10.10: Verkon vierusmatriisiesitys.

10.2.3 Vierusmatriisiesitys

Vierusmatriisi (adjacency matrix) on kaksiulotteinen rakenne, joka kertoo jokaisesta verkon kaaresta, esiintyykö se verkossa. Matriisin rivin a sarakkeessa b oleva arvo ilmaisee, onko verkossa kaarta solmusta a solmuun b. Kuvassa 10.10 on esimerkki verkon vierusmatriisiesityksestä. Tässä tapauksessa matriisin jokainen arvo on 0 (ei kaarta) tai 1 (kaari).

Ohjelmoinnissa voimme tallentaa vierusmatriisin kaksiulotteisena taulukkona tai listana. Tässä on esimerkkiverkkoa vastaava vierusmatriisi:

```
verkko[1][2] = 1
verkko[1][3] = 1
verkko[1][4] = 1
verkko[2][4] = 1
verkko[2][5] = 1
verkko[3][4] = 1
verkko[4][5] = 1
```

Jos verkko on painotettu, kaarten painot voidaan vastaavasti merkitä vierusmatriisiin. Vierusmatriisin etuna on, että siitä voi tarkastaa helposti, onko tietty kaari verkossa. Esitystapa kuluttaa kuitenkin paljon muistia, eikä sitä voi käyttää, jos verkon solmujen määrä on suuri.

10.3 Verkon läpikäynti

Tutustumme seuraavaksi kahteen keskeiseen verkkoalgoritmiin, jotka käyvät läpi verkossa olevia solmuja ja kaaria. Ensin käsittelemme syvyyshakua, joka on yleiskäyttöinen algoritmi verkon läpikäyntiin, ja sen jälkeen leveyshakua, jonka avulla voimme löytää lyhimpiä polkuja verkossa.

Kuva 10.11: Esimerkki syvyyshaun toiminnasta.

10.3.1 Syvyyshaku

Syvyyshaku (depth-first search eli DFS) on verkkojen käsittelyn yleistyökalu, jonka avulla voimme selvittää monia asioita verkon rakenteesta. Kun alamme tutkia verkkoa syvyyshaulla, tulee päättää ensin, mistä solmusta haku lähtee liikkeelle. Haku etenee vuorollaan kaikkiin solmuihin, jotka ovat saavutettavissa lähtösolmusta kulkemalla kaaria pitkin.

Syvyyshaku pitää yllä jokaisesta verkon solmusta tietoa, onko solmussa jo vierailtu. Kun haku saapuu solmuun, jossa se ei ole vieraillut aiemmin, se merkitsee solmun vierailluksi ja alkaa käydä läpi solmusta lähteviä kaaria. Jokaisen kaaren kohdalla haku etenee verkon niihin osiin, joihin pääsee kaaren kautta. Lopulta kun haku on käynyt läpi kaikki kaaret, se perääntyy taaksepäin samaa reittiä kuin tuli solmuun.

Kuvassa 10.11 on esimerkki syvyyshaun toiminnasta. Jokaisessa vaiheessa harmaat solmut ovat solmuja, joissa haku on jo vieraillut. Tässä esimerkissä haku lähtee liikkeelle solmusta 1, josta pääsee kaarella solmuihin 2 ja 3. Haku etenee ensin solmuun 2, josta pääsee edelleen solmuihin 4 ja 5. Tämän jälkeen haku ei enää löydä uusia solmuja tästä verkon osasta, joten se perääntyy takaisin kulkemaansa reittiä solmuun 1. Lopuksi haku käy vielä solmussa 3, josta ei pääse muihin uusiin solmuihin. Nyt haku on käynyt läpi kaikki solmut, joihin pääsee solmusta 1.

Syvyyshaku on mukavaa toteuttaa rekursiivisesti seuraavaan tapaan:

```
procedure haku(solmu)
  if vierailtu[solmu]
    return
  vierailtu[solmu] = true
  for naapuri in verkko[solmu]
    haku(naapuri)
```

Haku käynnistyy, kun kutsumme proseduuria haku parametrina haun lähtösolmu. Jokaisessa kutsussa proseduuri tarkistaa ensin, onko se jo käynyt parametrina annetussa solmussa, ja päättyy heti tässä tilanteessa. Muuten proseduuri merkitsee, että solmussa on nyt käyty, ja etenee rekursiivisesti kaikkiin solmun naapureihin. Haku vie aikaa O(n+m), koska jokainen solmu ja kaari käsitellään enintään kerran.

Mihin voisimme sitten käyttää syvyyshakua? Seuraavassa on joitakin esimerkkejä syvyyshaun käyttökohteista:

Polun etsiminen

Syvyyshaun avulla voimme etsiä verkosta polun solmusta a solmuun b, jos tällainen polku on olemassa. Tämä tapahtuu aloittamalla haku solmusta a ja pysähtymällä, kun vastaan tulee solmu b. Jos polkuja on useita, syvyyshaku löytää jonkin niistä riippuen solmujen käsittelyjärjestyksestä.

Yhtenäisyys ja komponentit

Suuntaamaton verkko on yhtenäinen, jos kaikki solmut ovat yhteydessä toisiinsa. Voimmekin tarkastaa verkon yhtenäisyyden aloittamalla syvyyshaun jostakin solmusta ja tutkimalla, saavuttaako haku kaikki verkon solmut. Lisäksi voimme löytää verkon yhtenäiset komponentit käymällä läpi solmut ja aloittamalla uuden syvyyshaun aina, kun vastaan tulee vierailematon solmu. Jokainen syvyyshaku muodostaa yhden komponentin.

Syklin etsiminen

Jos suuntaamaton verkko sisältää syklin, huomaamme tämän syvyyshaun aikana siitä, että tulemme toista kautta johonkin solmuun, jossa olemme käyneet jo aiemmin. Niinpä löydämme syvyyshaun avulla jonkin verkossa olevan syklin, jos sellainen on olemassa.

Toinen tapa tutkia syklin olemassaolo on laskea jokaisesta verkon komponentista solmujen ja kaarten määrä. Jos komponentissa on x solmua ja siinä

Kuva 10.12: Esimerkki leveyshaun toiminnasta.

ei ole sykliä, siinä tulee olla tarkalleen x-1 kaarta eli komponentin tulee olla puu. Jos kaaria on enemmän, komponentissa on varmasti sykli.

10.3.2 Leveyshaku

Leveyshaku (breadth-first search eli BFS) käy syvyyshaun tavoin läpi kaikki verkon solmut, joihin pääsee kaaria pitkin annetusta lähtösolmusta. Erona on kuitenkin, missä järjestyksessä solmut käydään läpi. Leveyshaku käy solmuja läpi kerroksittain niin, että se käsittelee solmut siinä järjestyksessä kuin ne ovat tulleet ensimmäistä kertaa vastaan haun aikana.

Vaikka voisimme käyttää leveyshakua yleisenä algoritmina verkon läpikäyntiin syvyyshaun tavoin, käytämme sitä tavallisesti silloin, kun olemme kiinnostuneita verkon *lyhimmistä poluista*. Leveyshaun avulla pystymme nimittäin määrittämään lyhimmän polun pituuden eli *etäisyyden* lähtösolmusta kuhunkin haun aikana kohtaamaamme solmuun. Tässä oletamme, että polun pituus tarkoittaa sen kaarten määrää eli lyhin polku on mahdollisimman vähän kaaria sisältävä polku.

Kuvassa 10.12 on esimerkki leveyshaun toiminnasta, kun aloitamme haun solmusta 1 lähtien. Käsittelemme ensin solmun 1, josta pääsemme uusiin solmuihin 2 ja 3. Tämä tarkoittaa, että lyhimmät polut solmuihin 2 ja 3 ovat $1 \rightarrow 2$ ja $1 \rightarrow 3$ eli etäisyys näihin solmuihin on 1. Sitten käsittelemme

solmun 2, josta pääsemme uusiin solmuihin 4 ja 5. Tämä tarkoittaa, että lyhimmät polut solmuihin 4 ja 5 ovat $1 \to 2 \to 4$ ja $1 \to 2 \to 5$ eli etäisyys näihin solmuihin on 2. Lopuksi käsittelemme vielä solmut 3, 4 ja 5, joista emme kuitenkaan pääse enää uusiin solmuihin.

Tavallinen tapa toteuttaa leveyshaku on käyttää jonoa, jossa on käsittelyä odottavia solmuja. Jonon ansiosta pystymme käymään läpi solmut siinä järjestyksessä kuin olemme löytäneet ne leveyshaun aikana. Oletamme, että jonossa on metodi enqueue, joka lisää alkion jonon loppuun, sekä metodi dequeue, joka hakee ja poistaa jonon ensimmäisen alkion. Seuraava koodi suorittaa leveyshaun lähtösolmusta alku alkaen:

```
jono.enqueue(alku)
vierailtu[alku] = true
etaisyys[alku] = 0
while not jono.empty()
    solmu = jono.dequeue()
    for naapuri in verkko[solmu]
        if vierailtu[naapuri]
            continue
        jono.enqueue(naapuri)
        vierailtu[naapuri] = true
        etaisyys[naapuri] = etaisyys[solmu]+1
```

Lisäämme ensin jonoon lähtösolmun ja merkitsemme, että olemme vierailleet siinä ja että etäisyys siihen on 0. Tämän jälkeen alamme käsitellä solmuja siinä järjestyksessä kuin ne ovat jonossa. Käsittelemme solmun käymällä läpi sen naapurit. Jos emme ole aiemmin käyneet naapurissa, lisäämme sen jonoon ja päivitämme taulukoita. Haku vie aikaa O(n+m), koska käsittelemme jokaisen solmun ja kaaren enintään kerran.

10.3.3 Esimerkki: Labyrintti

Olemme labyrintissa ja haluamme päästä ruudusta A ruutuun B. Joka vuorolla voimme siirtyä yhden askeleen ylöspäin, alaspäin, vasemmalle tai oikealle. Miten löydämme reitin? Esimerkiksi kuvassa 10.13 voimme kulkea ruudusta A ruutuun B reittiä, joka muodostuu 9 askeleesta.

Voimme esittää ongelman verkkona niin, että jokainen lattiaruutu on yksi verkon solmuista ja kahden solmun välillä on kaari, jos vastaavat ruudut ovat vierekkäin labyrintissa. Kuva 10.14 näyttää esimerkkilabyrinttimme verkkona. Tätä esitystapaa käyttäen ruudusta A on reitti ruutuun B tarkalleen silloin, kun vastaavat verkon solmut kuuluvat samaan yhtenäiseen komponenttiin. Voimme käytännössä etsiä reitin syvyyshaulla tai leveyshaulla.

Kuva 10.13: Reitti labyrintissa ruudusta A ruutuun B.

Kuva 10.14: Labyrintin esittäminen verkkona.

Tässä tapauksessa labyrinttia ei tarvitse erikseen muuttaa verkoksi, vaan voimme toteuttaa haut *implisiittiseen* verkkoon eli teemme haun labyrinttiin sen omassa esitysmuodossa. Käytännössä labyrintti on kätevää tallentaa kaksiulotteisena taulukkona, joka kertoo, mitkä ruudut ovat seinäruutuja.

Esimerkiksi seuraava koodi toteuttaa syvyyshaun labyrintissa:

```
procedure haku(y,x)
    if y < 0 or x < 0 or y >= n or x >= n
        return
    if seina[y][x] or vierailtu[y][x]
        return
    vierailtu[y][x] = true
    haku(y+1,x)
    haku(y-1,x)
    haku(y,x+1)
    haku(y,x-1)
```

Syvyyshaku löytää jonkin reitin ruudusta A ruutuun B, mutta ei välttämättä lyhintä reittiä. Jos haluamme löytää lyhimmän reitin, meidän tulee käyttää vastaavasti leveyshakua.

Luku 11

Lyhimmät polut

Monissa verkkoihin liittyvissä ongelmissa on kysymys siitä, että haluamme löytää *lyhimmän polun* (*shortest path*) verkon solmusta toiseen. Esimerkiksi voimme haluta selvittää, mikä on nopein reitti kahden katuosoitteen välillä tai mikä on halvin tapa lentää kaupungista toiseen. Näissä ja muissa sovelluksissa on tärkeää, että löydämme lyhimmän polun tehokkaasti.

Olemme käyttäneet aiemmin leveyshakua lyhimpien polkujen etsimiseen. Tämä onkin hyvä ratkaisu, kun haluamme löytää polut, joiden kaarten määrä on pienin. Tässä luvussa keskitymme kuitenkin vaikeampaan tilanteeseen, jossa verkko on *painotettu* ja haluamme löytää polut, joissa painojen summa on pienin. Tällöin emme voi enää käyttää leveyshakua vaan tarvitsemme kehittyneempiä menetelmiä.

Lyhimpien polkujen etsimiseen painotetussa verkossa on monia algoritmeja, joilla on erilaisia ominaisuuksia. Tässä luvussa käymme läpi ensin Bellmanin ja Fordin algoritmin ja Dijkstran algoritmin, jotka etsivät lyhimmät polut annetusta lähtösolmusta kaikkiin verkon solmuihin. Tämän jälkeen tutustumme Floydin ja Warshallin algoritmiin, joka etsii samanaikaisesti lyhimmät polut kaikkien verkon solmujen välillä.

11.1 Lyhimmät polut lähtösolmusta

Tavallisin tilanne käytännön verkko-ongelmissa on, että haluamme löytää lyhimmän polun solmusta a solmuun b. Yksittäisen lyhimmän polun etsiminen vaatii usein kuitenkin, että etsimme sitä ennen muitakin lyhimpiä polkuja. Niinpä keskitymme alusta asti yleisempään ongelmaan, jossa olemme valinneet jonkin solmun lähtösolmuksi ja haluamme määrittää jokaiselle verkon solmulle, kuinka pitkä on lyhin polku lähtösolmusta solmuun eli mikä on solmun etäisyys lähtösolmusta.

Kuva 11.1: Lyhimpien polkujen pituudet solmusta 1 alkaen.

Kuvassa 11.1 on esimerkkinä verkko, jossa lähtösolmuna on solmu 1 ja jokaisen solmun viereen on merkitty sen etäisyys. Esimerkiksi solmun 5 etäisyys on 9, koska lyhin polku solmusta 1 solmuun 5 on $1 \to 3 \to 5$, jonka pituus on 2+7=9. Käytämme tätä verkkoa esimerkkinä, kun tutustumme seuraavaksi kahteen algoritmiin lyhimpien polkujen etsimiseen.

11.1.1 Bellmanin ja Fordin algoritmi

Bellmanin ja Fordin algoritmi etsii lyhimmät polut annetusta lähtösolmusta kaikkiin verkon solmuihin. Algoritmi muodostaa taulukon, joka kertoo jokaiselle verkon solmulle sen etäisyyden lähtösolmusta. Algoritmi toimii missä tahansa verkossa, kunhan verkossa ei ole negatiivista sykliä eli sykliä, jonka painojen summa on negatiivinen.

Bellmanin ja Fordin algoritmi pitää yllä arvioita solmujen etäisyyksistä niin, että aluksi etäisyys lähtösolmuun on 0 ja etäisyys kaikkiin muihin solmuihin on ääretön. Tämän jälkeen algoritmi alkaa parantaa etäisyyksiä etsimällä verkosta kaaria, joiden kautta kulkeminen lyhentää polkuja. Jokaisella askeleella algoritmi etsii kaaren $a \to b$, jonka avulla pääsemme solmuun b aiempaa lyhempää polkua solmun a kautta. Algoritmi merkitsee solmun b uudeksi etäisyysarvioksi tämän polun pituuden. Kun mitään etäisyysarviota ei voi enää parantaa, algoritmi päättyy ja kaikki etäisyydet vastaavat todellisia lyhimpien polkujen pituuksia.

Kuva 11.2 näyttää esimerkin Bellmanin ja Fordin algoritmin toiminnasta, kun lähtösolmuna on solmu 1. Jokaisen solmun vieressä on ilmoitettu sen etäisyysarvio: aluksi etäisyys solmuun 1 on 0 ja etäisyys kaikkiin muihin solmuihin on ääretön. Jokainen etäisyyden muutos näkyy kuvassa omana vaiheenaan. Ensin parannamme etäisyyttä solmuun 2 kulkemalla kaarta $1 \rightarrow 2$, jolloin etäisyydeksi tulee 8. Sitten parannamme etäisyyttä solmuun 3 kulkemalla kaarta $1 \rightarrow 3$, jolloin solmun uudeksi etäisyydeksi tulee 2. Jatkamme samalla tavalla, kunnes emme voi enää parantaa mitään etäisyyttä ja kaikki etäisyydet vastaavat lyhimpien polkujen pituuksia.

Bellmanin ja Fordin algoritmi on mukavaa toteuttaa käyttäen verkon kaa-

Kuva 11.2: Esimerkki Bellmanin ja Fordin algoritmin toiminnasta.

rilistaesitystä, jossa jokaisesta kaaresta on tallennettu alku- ja loppusolmu sekä paino. Toteutamme algoritmin niin, että se muodostuu *kierroksista*, joista jokainen käy läpi kaikki verkon kaaret ja koettaa parantaa etäisyysarvioita niiden avulla. Voimme toteuttaa algoritmin näin:

```
while true
  muutos = false
  for kaari in kaaret
       nyky = etaisyys[kaari.loppu]
       uusi = etaisyys[kaari.alku]+kaari.paino
       if uusi < nyky
            etaisyys[kaari.loppu] = uusi
            muutos = true
  if not muutos
       break</pre>
```

Algoritmi käy jokaisella kierroksella läpi verkon kaaret ja tutkii kunkin kaaren kohdalla, mikä on nykyinen etäisyys kaaren kohdesolmuun sekä mikä

Kuva 11.3: Negatiivinen sykli $2 \to 4 \to 5 \to 2$, jonka avulla voimme lyhentää polkuja loputtomasti.

on uusi etäisyys, jos kuljemmekin solmuun kaaren kautta. Jos uusi etäisyys on pienempi, päivitämme sen solmun etäisyysarvioksi. Muuttujassa muutos on tieto siitä, onko jokin etäisyys muuttunut kierroksen aikana, ja algoritmi päättyy, kun mikään etäisyys ei muuttunut.

Algoritmin analyysi

Olemme nyt kuvailleet ja toteuttaneet Bellmanin ja Fordin algoritmin, mutta miten voimme olla varmoja, että se löytää lyhimmät polut, ja miten nopeasti se toimii? Jotta voimme vastata näihin kysymyksiin, tarvitsemme kaksi havaintoa koskien verkon lyhimpiä polkuja.

Ensimmäinen havainto on, että jos $s_1 \to s_2 \to \cdots \to s_k$ on lyhin polku solmusta s_1 solmuun s_k , niin myös $s_1 \to s_2$ on lyhin polku solmusta s_1 solmuun s_2 , $s_1 \to s_2 \to s_3$ on lyhin polku solmusta s_1 solmuun s_3 , jne., eli jokainen lyhimmän polun alkuosa on myös lyhin polku vastaavaan solmuun. Jos näin ei olisi, voisimme parantaa lyhintä polkua solmusta s_1 solmuun s_k parantamalla jotain polun alkuosaa, mikä aiheuttaisi ristiriidan.

Toinen havainto on, että n solmun verkossa jokainen lyhin polku voi sisältää enintään n-1 kaarta, kun oletamme, että verkossa ei ole negatiivista sykliä. Jos polkuun kuuluisi n kaarta tai enemmän, jokin solmu esiintyisi polulla monta kertaa. Tämä ei ole kuitenkaan mahdollista, koska ei olisi järkeä kulkea monta kertaa saman solmun kautta, kun haluamme saada aikaan lyhimmän polun.

Tarkastellaan nyt, mitä tapahtuu algoritmin kierroksissa. Ensimmäisen kierroksen jälkeen olemme löytäneet lyhimmät polut, joissa on enintään yksi kaari. Toisen kierroksen jälkeen olemme löytäneet lyhimmät polut, joissa on enintään kaksi kaarta. Sama jatkuu, kunnes n-1 kierroksen jälkeen olemme löytäneet lyhimmät polut, joissa on enintään n-1 kaarta. Koska missään lyhimmässä polussa ei voi olla enempää kaaria, algoritmi päättyy ja olemme löytäneet kaikki lyhimmät polut. Algoritmin suorittaa siis enintään n-1 kierrosta, joista jokainen käy läpi kaikki verkon kaaret ajassa O(m). Niinpä algoritmi löytää kaikki lyhimmät polut ajassa O(nm).

Kuva 11.4: Esimerkki Dijkstran algoritmin toiminnasta.

Mitä tapahtuu sitten, jos verkossa on negatiivinen sykli? Esimerkiksi kuvan 11.3 verkossa on negatiivinen sykli $2 \to 4 \to 5 \to 2$, jonka paino on -2. Tässä tilanteessa Bellmanin ja Fordin algoritmi jatkuu ikuisesti, koska syklin kautta kulkevia polkuja voi lyhentää loputtomasti. Oikeastaan ongelma on siinä, että lyhin polku ei ole mielekäs käsite, jos polun osana on negatiivinen sykli. Voimme kuitenkin havaita verkossa olevan negatiivisen syklin Bellmanin ja Fordin algoritmin avulla: verkossa on negatiivinen sykli tarkalleen silloin, kun jotain etäisyyttä voi parantaa vielä n-1 kierroksen jälkeen.

11.1.2 Dijkstran algoritmi

Dijkstran algoritmi on Bellmanin ja Fordin algoritmin tehostettu versio, jonka toiminta perustuu oletukseen, että verkossa ei ole negatiivisen painoisia kaaria. Bellmanin ja Fordin algoritmin tapaan Dijkstran algoritmi pitää yllä arvioita etäisyyksistä lähtösolmusta muihin solmuihin. Erona on kuitenkin tapa, miten Dijkstran algoritmi parantaa etäisyyksiä.

Dijkstran algoritmissa verkon solmut kuuluvat kahteen luokkaan: käsittelemättömiin ja käsiteltyihin. Aluksi kaikki solmut ovat käsittelemättömiä. Algoritmi etsii joka askeleella käsittelemättömän solmun, jonka etäisyysarvio on pienin. Sitten algoritmi käy läpi kaikki solmusta lähtevät kaaret ja koettaa parantaa etäisyyksiä niiden avulla. Tämän jälkeen solmu on käsitelty eikä sen etäisyys enää muutu, eli aina kun olemme käsitelleet solmun, olemme saaneet selville sen lopullisen etäisyyden.

Kuva 11.4 näyttää esimerkin Dijkstran algoritmin toiminnasta. Solmun

harmaa väri tarkoittaa, että se on käsitelty. Aluksi valitsemme käsittelyyn solmun 1, koska sen etäisyys 0 on pienin. Sitten jäljellä ovat solmut 2, 3, 4 ja 5, joista valitsemme käsittelyyn solmun 3, jonka etäisyys 2 on pienin. Tämän jälkeen valitsemme käsittelyyn solmun 2, jonka etäisyys on 6. Sama jatkuu, kunnes olemme käsitelleet kaikki verkon solmut.

Dijkstran algoritmi etsii joka askeleella verkosta käsittelemättömän solmun, jonka etäisyysarvio on pienin. Koska haluamme saada algoritmista tehokkaan, solmut täytyy pystyä löytämään nopeasti. Tavallinen tapa toteuttaa Dijkstran algoritmi on käyttää kekoa, jonka avulla pienimmän etäisyyden solmu löytyy logaritmisessa ajassa. Tallennamme kekoon pareja, joissa on solmun etäisyys ja tunnus ja jotka järjestetään etäisyyden mukaan pienimmästä suurimpaan. Aluksi keossa on vain lähtösolmua vastaava solmu, jonka etäisyys on 0. Tämän jälkeen haemme joka askeleella keosta solmun, jonka etäisyys on pienin. Jos solmu on jo käsitelty, emme tee mitään. Muuten käymme läpi kaikki solmusta lähtevät kaaret ja tarkastamme, voimmeko parantaa etäisyyksiä niiden avulla. Aina kun voimme parantaa etäisyyttä, lisäämme uuden etäisyyden kekoon.

Dijkstran algoritmi on mukavaa toteuttaa käyttäen verkon vieruslistaesitystä. Voimme toteuttaa algoritmin seuraavasti:

```
keko.push((0,alku))
while not keko.empty()
    solmu = keko.pop().tunnus
    if kasitelty[solmu]
        continue
    kasitelty[solmu] = true
    for kaari in verkko[solmu]
        nyky = etaisyys[kaari.loppu]
        uusi = etaisyys[solmu]+kaari.paino
        if uusi < nyky
            etaisyys[kaari.loppu] = uusi
            keko.push((uusi,kaari.loppu))</pre>
```

Tässä merkintä keko.pop().tunnus tarkoittaa, että keosta poistetaan ylin alkio, josta erotetaan parin toinen osa eli solmun tunnus.

Huomaa, että keossa voi olla samaan aikaan useita etäisyyksiä samalle solmulle, koska lisäämme kekoon uuden solmun aina etäisyyden parantuessa. Käsittelemme kuitenkin jokaisen solmun vain kerran, koska aina kun olemme hakeneet uuden solmun keosta käsittelyä varten, varmistamme ensin, että emme ole käsitelleet sitä aiemmin.

Kuva 11.5: Dijkstran algoritmi ei toimi oikein negatiivisen kaaren takia.

Algoritmin analyysi

Dijkstran algoritmi on ahne algoritmi, koska se etsii joka vaiheessa vielä käsittelemättömän solmun, jonka etäisyys on pienin, minkä jälkeen kyseisen solmun etäisyys ei enää muutu. Miten voimme olla varmoja, että olemme löytäneet tässä vaiheessa oikean etäisyyden?

Voimme ajatella asiaa siltä kannalta, että jos etäisyyttä olisi mahdollista parantaa, niin verkossa olisi oltava jokin toinen vielä käsittelemätön solmu, jonka kautta voisimme muodostaa lyhemmän polun. Kuitenkin tiedämme, että kaikkien muiden tarjolla olevien solmujen etäisyydet ovat suurempia tai yhtä suuria eivätkä etäisyydet voi lyhentyä, koska verkossa ei ole negatiivisia kaaria. Tästä syystä voimme turvallisesti valita käsittelyyn pienimmän etäisyyden solmun ja kiinnittää sen etäisyyden.

Dijkstran algoritmi toimii siis oikein, jos verkossa ei ole negatiivisia kaaria, mutta kuinka nopeasti algoritmi toimii? Ensinnäkin algoritmi käy läpi verkon solmut ja kaaret, missä kuluu aikaa O(n+m). Lisäksi algoritmissa on joukko kekoon liittyviä operaatioita, jotka vaikuttavat tehokkuuteen. Pahimmassa tapauksessa lisäämme jokaisen kaaren kohdalla kekoon uuden alkion, eli lisäykset kekoon vievät aikaa $O(m \log m)$. Toisaalta poistamme kaikki alkiot aikanaan keosta, mihin menee myös aikaa $O(m \log m)$. Algoritmin kokonaisaikavaativuus on siis $O(n+m \log m)$.

Voimme vielä hieman siistiä aikavaativuutta, kun oletamme, ettei verkossa ole kahta kaarta, joiden alku- ja loppusolmu ovat samat. Tällöin $m \leq n^2$, joten $\log m \leq \log(n^2) = 2\log n$ ja saamme algoritmin aikavaativuudeksi $O(n + m \log n)$.

Entä mitä tapahtuu, jos verkossa kuitenkin on negatiivinen kaari? Tällöin Dijkstran algoritmi ei toimi välttämättä oikein. Kuva 11.5 näyttää esimerkin tällaisesta tilanteesta. Algoritmi seuraa ahneesti ylempää polkua ja toteaa, että pienin etäisyys solmusta 1 solmuun 5 on 8. Kuitenkin parempi tapa olisi kulkea alempaa polkua, jolloin polun pituus on vain 6.

Kuva 11.6: Nopeimman reitin etsiminen paikasta 1 paikkaan 3. (a) Matka alkaa kello 13:15. (b) Käymme läpi paikasta 2 lähtevät yhteydet. (c) Käymme läpi paikasta 3 lähtevät yhteydet.

11.1.3 Esimerkki: Reittiopas

Nyt meillä on tarvittavat tiedot, joiden avulla voimme luoda reittioppaan eli järjestelmän, jonka avulla voi etsiä eri kulkuvälineitä käyttäviä reittejä kaupungissa. Voimme mallintaa kaupungin verkkona, jonka solmut ovat kaupungin paikkoja ja kaaret ovat mahdollisia yhteyksiä paikkojen välillä. Reittioppaan tulisi ilmoittaa nopein reitti paikasta a paikkaan b.

Reittioppaan toteuttamiseen liittyy yksi lisähaaste: kulkuvälineillä on tietyt aikataulut, jotka rajoittavat niiden käyttöä. Esimerkiksi bussilinjan lähtöjä saattaa olla 10 minuutin välein. Meidän tulee siis ottaa huomioon reitin etsimisessä, mihin aikaan saavumme mihinkin paikkaan. Voimme toteuttaa tämän tallentamalla verkon kaaret muodossa "matka alkaa ajanhetkenä x ja päättyy ajanhetkenä y".

Koska kaikissa matkoissa kuluu positiivinen määrä aikaa, voimme etsiä reittejä Dijkstran algoritmin avulla. Toteutamme algoritmin niin, että määritämme jokaiseen paikkaan *varhaisimman* ajan, jolloin voimme päästä kyseiseen paikkaan. Alussa tiedämme, että olemme lähtöpaikassa matkamme alkuhetkenä. Sitten kun otamme käsittelyyn uuden paikan, käymme läpi siitä lähteviä yhteyksiä, joihin ehdimme optimaalista aikataulua noudattaen. Saamme tehostettua hakua merkittävästi ottamalla huomioon jokaisesta linjasta vain ensimmäisen lähdön, johon ehdimme. Tämä on perusteltua, koska ei voi missään tilanteessa olla hyvä idea odottaa myöhempään lähtöön.

Kuva 11.6 näyttää esimerkkitilanteen, jossa haluamme kulkea paikasta 1 paikkaan 3 ja lähdemme matkaan kello 13:15. Paikasta 1 lähtee 10 minuutin välein yhteys paikkaan 2 (kesto 7 minuuttia) sekä 30 minuutin välein yhteys paikkaan 3 (kesto 10 minuuttia). Niinpä pääsemme paikkaan 2 kello 13:27 ja paikkaan 3 kello 13:40. Sitten paikasta 2 lähtee 5 minuutin välein yhteys paikkaan 3 (kesto 2 minuuttia). Tämän avulla pääsemme paikkaan 3 kello 13:32, eli nopein reitti kulkee paikan 2 kautta.

Käytännössä hakua voisi vielä tehostaa monella tavalla. Esimerkiksi kun löydämme jonkin reitin kohdepaikkaan, voimme siitä lähtien hylätä kaikki paikat, joihin ehdimme myöhemmin kuin kohdepaikkaan.

11.2 Kaikki lyhimmät polut

Tarkastellaan seuraavaksi ongelmaa, jossa haluamme etsiä lyhimmät polut verkon kaikista solmuista kaikkiin solmuihin. Yksi tapa ratkaista tehtävä olisi suorittaa Bellmanin ja Fordin tai Dijkstran algoritmi jokaisesta verkon solmusta alkaen. Voimme kuitenkin ratkaista tehtävän suoremmin etsimällä kaikki polut samanaikaisesti Floydin ja Warshallin algoritmilla.

11.2.1 Floydin ja Warshallin algoritmi

Floydin ja Warshallin algoritmi muodostaa $n \times n$ -kokoisen etäisyysmatriisin (distance matrix), jossa rivin a sarakkeessa b on lyhimmän polun pituus solmusta a solmuun b. Algoritmi alustaa ensin matriisin niin, että siihen on merkitty vain etäisyydet, jotka toteutuvat kulkemalla yksittäistä kaarta, ja kaikissa muissa matriisin kohdissa etäisyys on ääretön. Sitten algoritmi suorittaa n kierrosta, jotka on numeroitu $1, 2, \ldots, n$. Kierroksella k algoritmi etsii polkuja, joissa on välisolmuna solmu k sekä mahdollisesti muita välisolmuja joukosta $1, 2, \ldots, k-1$. Jos tällainen polku parantaa etäisyyttä, algoritmi päivittää uuden etäisyyden matriisiin. Lopulta jokainen solmu on ollut välisolmuna poluilla, jolloin on saatu selville kaikki lyhimmät polut.

Kuva 11.7 näyttää esimerkin Floydin ja Warshallin algoritmin toiminnasta. Kierroksella 1 etsimme polkuja, joissa solmu 1 on välisolmuna. Tällaisia polkuja ei ole, koska solmuun 1 ei pääse mistään solmusta, joten matriisi ei muutu. Kierroksella 2 huomaamme, että voimme kulkea solmun 2 kautta solmusta 1 solmuun 4, jolloin saamme etäisyyden 8. Samoin voimme kulkea solmun 2 kautta solmusta 3 solmuun 4, jolloin saamme etäisyyden 5. Jatkamme vastaavasti, kunnes kierroksen 4 jälkeen olemme saaneet selville kaikki etäisyydet ja etäisyysmatriisi on lopullinen.

Floydin ja Warshallin algoritmin mukavana puolena on, että se on helppo toteuttaa: riittää luoda kolme sisäkkäistä for-silmukkaa, jotka suorittavat matriisin päivitykset. Seuraavassa koodissa pääsilmukan muuttuja k kertoo, mikä kierros on kyseessä eli mikä solmu on välisolmu. Kaksi muuta silmukkaa käyvät läpi kaikki solmuparit (i,j) ja koettavat parantaa niiden etäisyyksiä kulkemalla solmun k kautta.

Kuva 11.7: Esimerkki Floydin ja Warshallin algoritmin toiminnasta.

Algoritmin aikavaativuus on $O(n^3)$, koska se muodostuu kolmesta sisäkkäisestä for-silmukasta.

Algoritmin analyysi

Miksi Floydin ja Warshallin algoritmi toimii? Voimme ymmärtää algoritmia tarkastelemalla sen toimintaa "käänteisesti" rekursiivisesti. Kun verkossa on lyhin polku solmusta a solmuun b, millainen tämä polku voi olla?

Yksi mahdollisuus on, että polku on vain kaari solmusta a solmuun b. Tällöin sen pituus on merkitty etäisyysmatriisiin algoritmin alussa. Muussa tapauksessa polussa on yksi tai useampi välisolmu. Oletetaan, että x on välisolmu, jonka tunnus on suurin. Saamme nyt kaksi osatehtävää: meidän tulee ensin kulkea solmusta a solmuun x ja sen jälkeen solmusta x solmuun b niin, että kummallakin polulla jokaisen välisolmun tunnus on pienempi kuin x. Voimme käsitellä nämä osatehtävät rekursiivisesti.

Floydin ja Warshallin algoritmi muodostaa joka vaiheessa polkuja, joissa voi olla välisolmuina solmuja $1, 2, \ldots, i$. Kun haluamme muodostaa lyhimmän polun solmusta a solmuun b, meillä on kaksi vaihtoehtoa: Jos solmu i on

algoritmi	aikavaativuus	erityistä
leveyshaku	O(n+m)	ei salli painoja kaarissa
Bellmanin ja Fordin algoritmi	O(nm)	
Dijkstran algoritmi	$O(n + m \log n)$	ei salli negatiivisia kaaria
Floydin ja Warshallin algoritmi	$O(n^3)$	etsii kaikki polut

Taulukko 11.1: Algoritmit lyhimpien polkujen etsimiseen.

välisolmuna, yhdistämme lyhimmän polun solmusta a solmuun i ja solmusta i solmuun b. Jos taas solmu i ei ole välisolmuna, olemme käsitelleet polun jo aiemmin. Algoritmin päätteeksi välisolmuina voi olla solmuja $1, 2, \ldots, n$, eli mikä tahansa verkon solmu voi olla välisolmu.

11.2.2 Algoritmien vertailua

Olemme nyt käyneet läpi monia algoritmeja lyhimpien polkujen etsintään ja voimme alkaa muodostaa yleiskuvaa aiheesta. Taulukko 11.1 näyttää yhteenvedon algoritmien tehokkuudesta ja ominaisuuksista.

Käytännössä leveyshaku ja Dijkstran algoritmi ovat yleisimmin tarvittavat algoritmit: jos kaarilla ei ole painoja, käytämme leveyshakua, ja muuten Dijkstran algoritmia. Dijkstran algoritmin rajoituksena on, että verkossa ei saa olla negatiivisia kaaria, mutta tällä rajoituksella ei ole yleensä merkitystä käytännön ongelmissa, koska kaarten painot eivät useimmiten voi olla negatiivisia. Esimerkiksi tien pituus tai lennon hinta ei voi yleensä olla negatiivinen. Jos kuitenkin verkossa voi olla negatiivisia kaaria, voimme turvautua Bellmanin ja Fordin algoritmiin.

Miten sitten Floydin ja Warshallin algoritmi vertautuu muihin algoritmeihin? Tämä riippuu siitä, onko verkko harva (sparse) vai tiheä (dense). Harvassa verkossa on vähän kaaria ja $m \approx n$, kun taas tiheässä verkossa on paljon kaaria ja $m \approx n^2$. Floydin ja Warshallin algoritmi on parhaimmillaan silloin, kun verkko on tiheä, koska sen aikavaativuus ei riipu kaarten määrästä. Esimerkiksi jos etsimme kaikki lyhimmät polut suorittamalla n kertaa Dijkstran algoritmin, harvassa verkossa aikaa kuluu $O(n^2 \log n)$, mutta tiheässä verkossa aikaa kuluu $O(n^3 \log n)$. Siis harvassa verkossa aikavaativuus on parempi kuin Floydin ja Warshallin algoritmissa, mutta tiheässä verkossa se on huonompi. Toisaalta Floydin ja Warshallin algoritmin vakiokertoimet ovat hyvin pienet sen yksinkertaisen rakenteen ansiosta, minkä ansiosta algoritmi voi toimia käytännössä yllättävänkin nopeasti.

Luku 12

Suunnatut syklittömät verkot

Verkkoalgoritmien suunnittelussa aiheuttavat usein vaikeuksia verkossa olevat syklit, ja monen ongelman ratkaiseminen on vaikeaa nimenomaan sen takia, että täytyy ottaa huomioon, mitä tapahtuu sykleissä. Tässä luvussa katsomme, miten asiat muuttuvat, kun voimmekin olettaa, että käsiteltävänä on suunnattu verkko, jossa ei ole syklejä.

Kun verkko on suunnattu ja syklitön, voimme muodostaa sille aina topologisen järjestyksen, joka antaa luontevan järjestyksen käsitellä verkon solmut niiden riippuvuuksien mukaisesti. Tämän ansiosta voimme myös hyödyntää dynaamista ohjelmointia verkon polkujen käsittelyssä. Itse asiassa tulemme huomaamaan, että mikä tahansa dynaamisen ohjelmoinnin algoritmi voidaan nähdä suunnatun syklittömän verkon käsittelynä.

Entä jos verkossa kuitenkin on syklejä? Osoittautuu, että voimme silti esittää sen syvärakenteen syklittömänä verkkona muodostamalla verkon vahvasti yhtenäiset komponentit. Tämän ansiosta voimme tietyissä tilanteissa käsitellä verkkoa mukavasti syklittömän verkon tavoin, vaikka se ei olisikaan alun perin syklitön.

Kuva 12.1: Verkko ja yksi sen topologinen järjestys [1, 3, 5, 2, 4].

Kuva 12.2: Esimerkki topologisen järjestyksen muodostamisesta.

12.1 Topologinen järjestys

Topologinen järjestys (topological sort) on suunnatun verkon solmujen järjestys, jossa pätee, että jos solmusta a on kaari solmuun b, niin solmu a on ennen solmua b järjestyksessä. Topologinen järjestys voidaan esittää listana, joka ilmaisee solmujen järjestyksen. Kuvassa 12.1 on esimerkkinä verkko ja yksi sen topologinen järjestys [1, 3, 5, 2, 4].

Osoittautuu, että voimme muodostaa suunnatulle verkolle topologisen järjestyksen tarkalleen silloin, kun verkko on syklitön ($directed\ acyclic\ graph$ eli DAG). Tutustumme seuraavaksi tehokkaaseen algoritmiin, joka muodostaa topologisen järjestyksen tai toteaa, ettei järjestystä voi muodostaa verkossa olevan syklin takia.

12.1.1 Järjestyksen muodostaminen

Voimme muodostaa topologisen järjestyksen suorittamalla joukon syvyyshakuja, joissa jokaisella solmulla on kolme mahdollista tilaa:

- tila 0 (valkoinen): solmussa ei ole käyty
- tila 1 (harmaa): solmun käsittely on kesken
- tila 2 (musta): solmun käsittely on valmis

Kuva 12.3: Topologista järjestystä ei voi muodostaa syklin takia.

Algoritmin alussa jokainen solmu on valkoinen. Käymme läpi kaikki verkon solmut ja aloitamme aina syvyyshaun solmusta, jos se on valkoinen. Aina kun saavumme uuteen solmuun, sen väri muuttuu valkoisesta harmaaksi. Sitten kun olemme käsitelleet kaikki solmusta lähtevät kaaret, solmun väri muuttuu harmaasta mustaksi ja lisäämme solmun listalle. Tämä lista käänteisessä järjestyksessä on verkon topologinen järjestys. Kuitenkin jos saavumme jossain vaiheessa toista kautta harmaaseen solmuun, verkossa on sykli eikä topologista järjestystä ole olemassa.

Kuva 12.2 näyttää, kuinka algoritmi muodostaa topologisen järjestyksen esimerkkiverkossa. Tässä tapauksessa suoritamme kaksi syvyyshakua, joista ensimmäinen alkaa solmusta 1 ja toinen alkaa solmusta 5. Algoritmin tuloksena on lista [4,2,3,1,5], joten käänteinen lista [5,1,3,2,4] on verkon topologinen järjestys. Huomaa, että tämä on eri järjestys kuin kuvassa 12.1 – topologinen järjestys ei ole yksikäsitteinen ja voimme yleensä muodostaa järjestyksen monella tavalla. Kuva 12.3 näyttää puolestaan tilanteen, jossa topologista järjestystä ei voida muodostaa verkossa olevan syklin takia. Tässä verkossa on sykli $2 \to 4 \to 3 \to 2$, jonka olemassaolon huomaamme siitä, että tulemme uudestaan harmaaseen solmuun 2.

Algoritmin analyysi

Miksi algoritmi toimii? Tarkastellaan ensin tilannetta, jossa verkossa on sykli. Jos algoritmi saapuu uudestaan harmaaseen solmuun, on selvää, että verkossa on sykli, koska algoritmi on onnistunut pääsemään harmaasta solmusta itseensä kulkemalla jotain polkua verkossa. Toisaalta jos verkossa on sykli, algoritmi tulee jossain vaiheessa ensimmäistä kertaa johonkin syklin solmuun x. Tämän jälkeen se käy läpi solmusta lähtevät kaaret ja aikanaan käy varmasti läpi kaikki syklin solmut ja saapuu uudestaan solmuun x. Niinpä algoritmi tunnistaa kaikissa tilanteissa oikein verkossa olevan syklin.

Jos sitten verkossa ei ole sykliä, algoritmi lisää jokaisen solmun listalle sen jälkeen, kun se on käsitellyt kaikki solmusta lähtevät kaaret. Jos siis verkossa on kaari $a \to b$, solmu b lisätään listalle ennen solmua a. Lopuksi lista käännetään, jolloin solmu a tulee ennen solmua b. Tämän ansiosta jokaiselle

Kuva 12.4: Kurssien esitietovaatimukset verkkona.

Kuva 12.5: Topologinen järjestys antaa kurssien suoritusjärjestyksen.

kaarelle $a \to b$ pätee, että solmu a tulee järjestykseen ennen solmua b, eli algoritmi muodostaa kelvollisen topologisen järjestyksen.

Algoritmin aikavaativuus on O(n+m), koska se käy kaikki verkon solmut ja kaaret läpi syvyyshaun avulla.

12.1.2 Esimerkki: Kurssiyalinnat

Yliopiston kurssit ja niiden esitietovaatimukset voidaan esittää suunnattuna verkkona, jonka solmut ovat kursseja ja kaaret kuvaavat, missä järjestyksessä kurssit tulisi suorittaa.

Kuvassa 12.4 on esimerkkinä joitakin tietojenkäsittelytieteen kandiohjelman kursseja. Tällaisen verkon topologinen järjestys antaa yhden tavan suorittaa kurssit esitietovaatimusten mukaisesti. Kuvassa 12.5 näkyy esimerkkinä topologinen järjestys, joka vastaa suoritusjärjestystä OHPE, OHJA, OHTE, TITO, JYM, TIRA, LAMA.

On selvää, että kurssien ja esitietovaatimusten muodostaman verkon tulee olla syklitön, jotta kurssit voi suorittaa halutulla tavalla. Jos verkossa on sykli, topologista järjestystä ei ole olemassa eikä ole mitään mahdollisuutta suorittaa kursseja esitietovaatimusten mukaisesti.

Kuva 12.6: Mahdolliset polut solmusta 1 solmuun 5.

12.2 Dynaaminen ohjelmointi

Kun tiedämme, että suunnattu verkko on syklitön, voimme ratkaista helposti monia verkon polkuihin liittyviä ongelmia dynaamisen ohjelmoinnin avulla. Tämä on mahdollista, koska topologinen järjestys antaa selkeän järjestyksen, jossa voimme käsitellä solmut.

12.2.1 Polkujen laskeminen

Tarkastellaan esimerkkinä ongelmaa, jossa haluamme laskea, montako polkua suunnatussa syklittömässä verkossa on solmusta 1 solmuun n. Esimerkiksi kuvan 12.6 verkossa solmusta 1 solmuun 5 on kolme mahdollista polkua: $1 \to 2 \to 5, 1 \to 3 \to 5$ ja $1 \to 3 \to 2 \to 5$.

Polkujen määrän laskeminen on vaikea ongelma yleisessä verkossa, jossa voi olla syklejä. Itse asiassa tehtävä ei ole edes mielekäs sellaisenaan: jos verkossa on sykli, voimme kiertää sykliä miten monta kertaa tahansa ja tuottaa aina vain uusia polkuja, joten polkuja tulee äärettömästi. Nyt kuitenkin oletamme, että verkko on syklitön, jolloin polkujen määrä on rajoitettu ja voimme laskea sen tehokkaasti dynaamisella ohjelmoinnilla.

Jotta voimme käyttää dynaamista ohjelmointia, meidän täytyy määritellä ongelma rekursiivisesti. Sopiva funktio on polut(x), joka antaa polkujen määrän solmusta 1 solmuun x. Tätä funktiota käyttäen polut(n) kertoo, montako polkua on solmusta 1 solmuun n. Esimerkiksi kuvan 12.6 tilanteessa funktion arvot ovat seuraavat:

polut(1) = 1

polut(2) = 2

polut(3) = 1

polut(4) = 0

polut(5) = 3

Nyt meidän täytyy enää löytää tapa laskea funktion arvoja. Pohjatapauksessa olemme solmussa 1, jolloin on aina yksi tyhjä polku:

$$polut(1) = 1$$

Entä sitten, kun olemme jossain muussa solmussa x? Tällöin käymme läpi kaikki solmut, joista pääsemme solmuun x kaarella, ja laskemme yhteen näihin solmuihin tulevien polkujen määrät. Kun oletamme, että solmuun x on kaari solmuista u_1, u_2, \ldots, u_k , saamme seuraavan rekursiivisen kaavan:

$$polut(x) = polut(u_1) + polut(u_2) + \cdots + polut(u_k)$$

Esimerkiksi kuvan 12.6 verkossa solmuun 5 on kaari solmuista 2, 3 ja 4, joten

$$polut(5) = polut(2) + polut(3) + polut(4) = 2 + 1 + 0 = 3.$$

Koska tiedämme, että verkko on syklitön, voimme laskea funktion arvoja tehokkaasti dynaamisella ohjelmoinnilla. Oleellista on, että emme voi joutua koskaan silmukkaan laskiessamme arvoja. Käytännössä laskemme arvot jossakin solmujen topologisessa järjestyksessä.

12.2.2 Ongelmat verkkoina

Itse asiassa voimme esittää *minkä tahansa* dynaamisen ohjelmoinnin algoritmin suunnatun syklittömän verkon käsittelynä. Ideana on, että muodostamme verkon, jossa jokainen solmu on yksi osaongelma ja kaaret ilmaisevat, miten osaongelmat liittyvät toisiinsa.

Tarkastellaan esimerkkinä luvusta 9 tuttua tehtävää, jossa haluamme laskea, monellako tavalla voimme muodostaa korkeuden n tornin, kun voimme käyttää palikoita, joiden korkeudet ovat 1, 2 ja 3. Voimme esittää tämän tehtävän verkkona niin, että solmut ovat tornien korkeuksia ja kaaret kertovat, kuinka voimme rakentaa tornia palikoista. Jokaisesta solmusta x on kaari solmuihin x+1, x+2 ja x+3, ja polkujen määrä solmusta 0 solmuun n on yhtä suuri kuin tornin rakentamistapojen määrä. Esimerkiksi kuva 12.7 näyttää verkon, joka vastaa tapausta n=4. Solmusta 0 solmuun 4 on yhteensä 7 polkua, eli voimme rakentaa korkeuden 4 tornin 7 tavalla.

Olemme saaneet siis uuden tavan luonnehtia dynaamista ohjelmointia: voimme käyttää dynaamista ohjelmointia, jos pystymme esittämään ongelman suunnattuna syklittömänä verkkona.

Kuva 12.7: Tornitehtävän tapaus n = 4 esitettynä verkkona.

Kuva 12.8: (a) Verkon vahvasti yhtenäiset komponentit. (b) Komponenttiverkko, joka kuvaa verkon syvärakenteen.

12.3 Vahvasti yhtenäisyys

Jos suunnatussa verkossa on sykli, emme voi muodostaa sille topologista järjestystä emmekä käyttää dynaamista ohjelmointia. Mikä neuvoksi, jos kuitenkin haluaisimme tehdä näin?

Joskus voimme selviytyä tilanteesta käsittelemällä verkon vahvasti yhtenäisiä komponentteja. Suunnattu verkko on vahvasti yhtenäinen (strongly connected), jos mistä tahansa solmusta on polku mihin tahansa solmuun. Voimme esittää suunnatun verkon aina yhtenä tai useampana vahvasti yhtenäisenä komponenttina, joista muodostuu syklitön komponenttiverkko. Tämä verkko esittää alkuperäisen verkon syvärakenteen.

Kuvassa 12.8 on esimerkkinä verkko, joka muodostuu kahdesta vahvasti yhtenäisestä komponentista. Ensimmäinen komponentti on $\{1, 2, 3, 4\}$ ja toinen komponentti on $\{5, 6\}$. Komponenteista muodostuu syklitön komponenttiverkko, jossa on kaari solmusta $\{1, 2, 3, 4\}$ solmuun $\{5, 6\}$. Tämä tarkoittaa, että voimme liikkua miten tahansa joukon $\{1, 2, 3, 4\}$ solmuissa sekä joukon $\{5, 6\}$ solmuissa. Lisäksi pääsemme joukosta $\{1, 2, 3, 4\}$ joukkoon $\{5, 6\}$, mutta emme pääse takaisin joukosta $\{5, 6\}$ joukkoon $\{1, 2, 3, 4\}$.

12.3.1 Kosarajun algoritmi

Kosarajun algoritmi on tehokas algoritmi, joka muodostaa suunnatun verkon vahvasti yhtenäiset komponentit. Algoritmissa on kaksi vaihetta, joista kumpikin käy läpi verkon solmut syvyyshaulla. Ensimmäinen vaihe muistuttaa topologisen järjestyksen etsimistä ja tuottaa listan solmuista. Toinen vaihe

Kuva 12.9: Kosarajun algoritmin ensimmäinen vaihe.

muodostaa vahvasti yhtenäiset komponentit tämän listan perusteella.

Algoritmin ensimmäisessä vaiheessa käymme läpi verkon solmut ja aloitamme uuden syvyyshaun aina, jos emme ole vielä käyneet solmussa. Syvyyshaun aikana lisäämme solmun listalle, kun olemme käyneet läpi kaikki solmusta lähtevät kaaret. Toimimme siis kuten topologisen järjestyksen muodostamisessa, mutta emme välitä, jos tulemme toista reittiä solmuun, jota ei ole vielä käsitelty loppuun.

Algoritmin toisen vaiheen alussa käännämme jokaisen verkon kaaren suunnan. Tämän jälkeen käymme läpi käänteisessä järjestyksessä listalla olevat solmut. Aina kun vuoroon tulee solmu, jossa emme ole vielä käyneet, aloitamme siitä solmusta syvyyshaun, joka muodostaa uuden vahvasti yhtenäisen komponentin. Lisäämme komponenttiin kaikki solmut, joihin pääsemme syvyyshaun aikana ja jotka eivät vielä kuulu mihinkään komponenttiin.

Tarkastellaan seuraavaksi, kuinka Kosarajun algoritmi toimii esimerkkiverkossa. Kuva 12.9 näyttää algoritmin ensimmäisen vaiheen, joka muodostaa solmuista listan [2,5,6,4,3,1]. Kuva 12.10 näyttää algoritmin toisen vaiheen, jossa käännämme ensin verkon kaaret ja käymme sitten läpi solmut järjestyksessä [1,3,4,6,5,2]. Vahvasti yhtenäiset komponentit syntyvät solmuista 1 ja 6 alkaen. Kaarten kääntämisen ansiosta solmusta 1 alkava vahvasti yhtenäinen komponentti ei "vuoda" solmujen 5 ja 6 alueelle.

Kuva 12.10: Kosarajun algoritmin toinen vaihe.

Algoritmin analyysi

Kosarajun algoritmin kriittinen osa on sen toinen vaihe, jossa algoritmi muodostaa vahvasti yhtenäiset komponentit. On selvää, että jokainen syvyyshaku löytää vahvasti yhtenäiseen komponenttiin kuuluvat solmut, mutta miksi komponenttiin ei voi tulla lisäksi ylimääräisiä solmuja?

Voimme tarkastella asiaa muodostettavan komponenttiverkon näkökulmasta. Jos meillä on komponentti A, josta pääsee kaarella komponenttiin B, algoritmin ensimmäisessä vaiheessa jokin A:n solmu lisätään listalle kaikkien B:n solmujen jälkeen. Kun sitten käymme läpi listan käänteisessä järjestyksessä, jokin A:n solmu tulee vastaan ennen kaikkia B:n solmuja. Niinpä alamme rakentaa ensin komponenttia A emmekä mene komponentin B puolelle, koska verkon kaaret on käännetty. Sitten kun myöhemmin muodostamme komponentin B, emme mene käännettyä kaarta komponenttiin A, koska komponentti A on jo muodostettu.

Algoritmin aikavaativuus on O(n+m), koska se käy kahdesti verkon solmut ja kaaret läpi syvyyshaun avulla.

12.3.2 Esimerkki: Luolapeli

Olemme pelissä luolastossa, joka muodostuu n luolasta ja joukosta käytäviä niiden välillä. Jokainen käytävä on yksisuuntainen. Jokaisessa luolassa on

Kuva 12.11: Luolasto, jossa on 7 luolaa ja 10 käytävää. Haluamme kulkea luolasta 1 luolaan 7 keräten mahdollisimman paljon aarteita.

Kuva 12.12: Luolaston vahvasti yhtenäiset komponentit.

yksi aarre, jonka voimme ottaa mukaamme, jos kuljemme luolan kautta. Peli alkaa luolasta 1 ja päättyy luolaan n. Montako aarretta voimme saada, jos valitsemme parhaan mahdollisen reitin? On sallittua kulkea saman luolan kautta monta kertaa tarvittaessa.

Voimme mallintaa tilanteen verkkona, jonka solmut ovat luolia ja kaaret ovat käytäviä. Haluamme löytää reitin solmusta 1 solmuun n niin, että kuljemme mahdollisimman monen solmun kautta. Esimerkiksi kuva 12.11 näyttää verkkona luolaston, joka muodostuu seitsemästä luolasta ja kymmenestä käytävästä. Yksi optimaalinen reitti luolasta 1 luolaan 7 on

$$1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 6 \rightarrow 7$$
.

jota seuraten saamme kerättyä kaikki aarteet paitsi luolassa 5 olevan aarteen. Ei ole olemassa reittiä, jota noudattamalla saisimme haltuumme kaikki luolaston aarteet.

Voimme ratkaista ongelman tehokkaasti määrittämällä ensin verkon vahvasti yhtenäiset komponentit. Tämän jälkeen riittää löytää solmun 1 komponentista solmun n komponentiin kulkeva polku, jossa komponentiien kokojen summa on suurin mahdollinen. Koska verkko on syklitön, tämä onnistuu dynaamisella ohjelmoinnilla.

Kuva 12.12 näyttää vahvasti yhtenäiset komponentit esimerkkiverkossa. Tästä esityksestä näemme suoraan, että optimaalisia reittejä on olennaisesti kaksi: voimme kulkea joko luolan 3 tai luolan 5 kautta.

Luku 13

Komponentit ja virittävät puut

Tähän mennessä olemme tarkastelleet verkkoja, joiden rakenne säilyy samana koko algoritmin ajan. Mitä tapahtuu sitten, jos verkkoon tuleekin *muutoksia*, kuten lisäämme verkkoon uusia kaaria?

Tutustumme tässä luvussa union-find-rakenteeseen, joka on hyödyllinen työkalu verkkojen käsittelyssä. Rakenteen avulla voimme pitää kirjaa verkon yhtenäisistä komponenteista ja päivittää rakennetta tehokkaasti, kun lisäämme verkkoon kaaria. Voimme esimerkiksi tarkkailla, montako yhtenäistä komponenttia verkossa on milläkin hetkellä.

Käsittelemme myös pienimmän virittävän puun ongelmaa, jossa haluamme kytkeä verkon solmut toisiinsa kaaria käyttäen niin, että kaarten yhteispaino on pienin. Voimme ratkaista ongelman tehokkaasti Kruskalin algoritmilla, joka perustuu union-find-rakenteeseen, tai Primin algoritmilla, joka muistuttaa Dijkstran algoritmia.

13.1 Union-find-rakenne

Union-find-rakenne on tietorakenne, joka pitää yllä kokoelmaa alkioiden joukkoja ja tarjoaa seuraavat tehokkaat operaatiot:

- tarkasta, ovatko kaksi alkiota samassa joukossa
- yhdistä kaksi joukkoa samaksi joukoksi

Oletamme, että alkiot ovat 1, 2, ..., n, ja jokainen alkio kuuluu tarkalleen yhteen joukkoon. Esimerkiksi kun n = 8, joukot voisivat olla $A = \{1, 4\}$, $B = \{2, 5, 6\}$ ja $C = \{3, 7, 8\}$. Tässä esimerkiksi alkiot 1 ja 2 ovat eri joukoissa. Kun yhdistämme sitten joukot A ja B, niistä syntyy joukko $\{1, 2, 4, 5, 6\}$. Tästä lähtien alkiot 1 ja 2 ovatkin samassa joukossa.

Kuva 13.1: Union-find-rakenne joukoille $\{1,4\}$, $\{2,5,6\}$ ja $\{3,7,8\}$.

13.1.1 Rakenteen toteutus

Toteutamme union-find-rakenteen niin, että jokaisessa joukossa yksi alkioista on joukon edustaja. Kutakin joukkoa vastaa puu, jonka juurena on joukon edustaja ja muut alkiot viittaavat edustajaan yhden tai useamman kaaren kautta. Kun haluamme tarkastaa, ovatko kaksi alkiota samassa joukossa, selvitämme alkioiden edustajat ja vertaamme edustajia toisiinsa.

Kuvassa 13.1 on esimerkkinä union-find-rakenne, joka vastaa joukkoja $A=\{1,4\},\ B=\{2,5,6\}$ ja $C=\{3,7,8\}$. Tässä tapauksessa joukkojen edustajat ovat 1, 5 ja 3. Esimerkiksi jos haluamme tarkastaa, ovatko alkiot 2 ja 6 samassa joukossa, selvitämme ensin alkioiden edustajat kulkemalla polkuja $2\to 5$ ja $6\to 5$. Kummankin alkion edustaja on 5, joten alkiot ovat samassa joukossa.

Jotta saamme toteutettua union-find-rakenteen, pidämme yllä jokaiselle alkiolle x arvoa vanhempi[x], joka kertoo seuraavan alkion ylempänä puussa. Kuitenkin jos x on joukon edustaja, vanhempi[x] = x. Esimerkiksi kuvassa 13.1 vanhempi[2] = 5 ja vanhempi[5] = 5. Tämän ansiosta pystymme selvittämään alkion x edustajan seuraavasti:

```
function edustaja(x)
  while x != vanhempi[x]
    x = vanhempi[x]
  return x
```

Tämän jälkeen voimme tarkastaa seuraavalla funktiolla, ovatko alkiot a ja b samassa joukossa. Alkiot ovat samassa joukossa täsmälleen silloin, kun niillä on sama edustaja.

```
function sama(a,b)
  return edustaja(a) == edustaja(b)
```

Haluamme toteuttaa vielä operaation, jolla voimme yhdistää kaksi joukkoa toisiinsa. Tämän operaation toteutus ratkaisee, kuinka tehokas tietora-

Kuva 13.2: Tehokas yhdistäminen. Alkion 1 joukon koko on 2 ja alkion 5 joukon koko on 3, joten yhdistämme alkion 1 alkioon 5.

kenne on. Alkion edustajan etsiminen vie aikaa O(k), missä k on polun pituus, joten yhdistäiset tulisi toteuttaa niin, että puussa on vain lyhyitä polkuja. Saavutamme tämän tavoitteen yhdistämällä kaksi joukkoa aina niin, että pienemmän joukon edustaja alkaa osoittaa suuremman joukon edustajaan. Jos joukot ovat yhtä suuria, voimme toteuttaa yhdistämisen kummin päin vain.

Kuva 13.2 näyttää, mitä tapahtuu, kun yhdistämme joukot $A = \{1,4\}$ ja $B = \{2,5,6\}$. Joukon A edustaja on 1 ja siinä on kaksi alkiota, kun taas joukon B edustaja on 5 ja siinä on kolme alkiota. Koska joukko A on pienempi, asetamme joukon A edustajan osoittamaan joukon B edustajaan. Tämän jälkeen kaikki alkiot kuuluvat samaan joukkoon ja alkio 5 on tästä lähtien koko joukon edustaja.

Nyt olemme valmiita toteuttamaan operaation, joka yhdistää toisiinsa joukot, joissa on alkiot a ja b. Oletamme, että alkiot ovat eri joukoissa ennen yhdistämistä. Jotta voimme toteuttaa yhdistämisen tehokkaasti, täytyy myös pitää kirjaa kunkin joukon koosta. Seuraavassa toteutuksessa koko[x] kertoo, montako alkiota alkion x edustama joukko sisältää. Aluksi koko[x] = 1 jokaiselle alkiolle x, koska jokainen alkio on omassa joukossa.

```
procedure yhdista(a,b)
    a = edustaja(a)
    b = edustaja(b)
    if koko[a] < koko[b]
        swap(a,b)
    vanhempi[b] = a
    koko[a] += koko[b]</pre>
```

Kun toteutamme yhdistämiset näin, jokainen puussa esiintyvä polku sisältää vain $O(\log n)$ alkiota. Tämä johtuu siitä, että aina kun kuljemme polkua askeleen ylöspäin alkiosta a alkioon b, koko $[b] \geq 2 \cdot \text{koko}[a]$ eli edustajaa vastaavan joukon koko ainakin kaksinkertaistuu. Koska joukossa on enintään n alkiota, kuljemme siis yhteensä enintään $O(\log n)$ askelta. Niinpä kaikki union-find-rakenteen operaatiot toimivat ajassa $O(\log n)$.

Kuva 13.3: Esimerkki kaupunkien yhdistämisestä teillä. Vaiheen 5 jälkeen kaikki kaupungit ovat yhteydessä toisiinsa.

13.1.2 Esimerkki: Kaupungit

Bittimaassa on n kaupunkia, joiden välillä ei ole vielä yhtään tietä. Sitten teitä aletaan rakentaa yksi kerrallaan, yhteensä m tietä. Jokainen tie yhdistää kaksi kaupunkia toisiinsa. Minkä tien rakentamisen jälkeen kaikki kaupungit ovat ensimmäistä kertaa yhteydessä toisiinsa?

Kuva 13.3 näyttää esimerkkitapauksen, jossa n=5, m=6 ja tiet rakennetaan järjestyksessä (1,2), (1,3), (2,3), (4,5), (2,4) ja (2,5). Kaikki kaupungit ovat yhteydessä toisiinsa vaiheen 5 jälkeen.

Ratkaisu 1: Union-find-rakenne

Pidämme yllä verkon komponentteja union-find-rakenteen avulla. Aluksi jokainen solmu on omassa komponentissaan eli joukot ovat $\{1\}, \{2\}, \ldots, \{n\}$. Sitten jokaisen kaaren kohdalla tarkastamme, ovatko sen päätesolmut eri joukoissa, ja jos ovat, yhdistämme joukot. Kun lopulta kaikki solmut ovat samassa joukossa, verkko on tullut yhtenäiseksi.

Tuloksena oleva algoritmi vie aikaa $O(n + m \log n)$, koska luomme ensin n komponenttia ajassa O(n) ja käsittelemme tämän jälkeen m kaarta. Jokaisen kaaren kohdalla suoritamme enintään kaksi operaatiota union-findrakenteessa ajassa $O(\log n)$.

Ratkaisu 2: Binäärihaku

Toinen tapa ratkaista tehtävä on hyödyntää binäärihakua. Jos on olemassa arvaus, että kaikki kaupungit ovat yhteydessä x lisäyksen jälkeen, voimme

Kuva 13.4: Verkko ja yksi sen virittävistä puista.

Kuva 13.5: Painotettu verkko ja kaksi virittävää puuta, joiden painot ovat 4+1+2+5=12 ja 2+1+2+5=10.

tarkastaa helposti, pitääkö arvaus paikkansa: lisäämme ensin x ensimmäistä tietä tyhjään verkkoon ja tarkastamme sitten, onko verkko yhtenäinen. Tämä vie aikaa O(n+m) käyttäen syvyyshakua.

Jos verkko on yhtenäinen ensimmäistä kertaa vaiheessa k, verkko ei ole yhtenäinen vaiheissa $1, 2, \ldots, k-1$ ja on yhtenäinen vaiheissa $k, k+1, \ldots, m$, koska kaarten lisääminen ei voi poistaa verkon yhtenäisyyttä. Tämän ansiosta voimme etsiä arvon k binäärihaun avulla. Binäärihaku suorittaa $O(\log m)$ askelta ja ratkaisu vie aikaa $O((n+m)\log m)$.

13.2 Pienin virittävä puu

Verkon virittävä puu (spanning tree) on kokoelma verkon kaaria, jotka kytkevät kaikki verkon solmut toisiinsa. Kuten puut yleensäkin, virittävä puu on yhtenäinen ja syklitön eli jokaisen kahden solmun välillä on yksikäsitteinen polku. Kuvassa 13.4 on esimerkkinä verkko ja yksi sen virittävistä puista.

Jos verkko on painotettu, kiinnostava ongelma on etsiä verkon *pienin virittävä puu (minimum spanning tree)*. Tämä on virittävä puu, jonka kaarten painojen summa on mahdollisimman pieni. Esimerkiksi kuvassa 13.5 on painotettu verkko ja kaksi sen virittävää puuta, joiden painot ovat 12 ja 10. Näistä jälkimmäinen on verkon pienin virittävä puu.

13.2.1 Kruskalin algoritmi

Kruskalin algoritmi muodostaa verkon pienimmän virittävän puun aloittamalla tyhjästä verkosta, jossa on vain verkon solmut, ja lisäämällä siihen

Kuva 13.6: Esimerkki Kruskalin algoritmin toiminnasta.

kaaria. Algoritmi käy läpi tarjolla olevat kaaret järjestyksessä niiden painon mukaan kevyimmästä raskaimpaan. Jokaisen kaaren kohdalla algoritmi ottaa kaaren mukaan, jos se yhdistää kaksi eri komponenttia. Kun kaikki komponentit on yhdistetty, pienin virittävä puu on valmis.

Kuva 13.6 näyttää, kuinka Kruskalin algoritmi löytää pienimmän virittävän puun esimerkkiverkossamme. Verkon kaaret järjestyksessä kevyimmästä raskaimpaan ovat:

kaari	paino
(2,3)	1
(1, 2)	2
(2, 4)	2
(1, 3)	4
(4, 5)	5
(3, 5)	7

Algoritmi käsittelee ensin kaaren (2,3). Solmut 2 ja 3 ovat eri komponenteissa, joten kaari otetaan mukaan puuhun. Tämän jälkeen algoritmi käsittelee kaaret (1,2) ja (2,4), jotka valitaan myös puuhun. Seuraavaksi vuorossa on kaari (1,3), mutta tämä kaari ei tule puuhun, koska solmut 1 ja 3 ovat jo samassa komponentissa. Lopuksi algoritmi ottaa mukaan kaaren (4,5), jolloin pienin virittävä puu on valmis.

Voimme toteuttaa Kruskalin algoritmin tehokkaasti käyttäen union-findrakennetta. Algoritmin alussa järjestämme kaaret painojärjestykseen, missä

Kuva 13.7: Esimerkki Primin algoritmin toiminnasta.

kuluu aikaa $O(m \log m)$. Kun oletamme, että jokaisen solmuparin välillä on enintään yksi kaari, tämä sievenee muotoon $O(m \log n)$. Tämän jälkeen luomme kullekin solmulle komponentin, käymme kaaret läpi ja jokaisen kaaren kohdalla otamme kaaren mukaan, jos se yhdistää kaksi eri komponenttia. Tässä kuluu aikaa $O(n + m \log n)$, kun käytämme union-find-rakennetta. Algoritmi vie siis yhteensä aikaa $O(n + m \log n)$.

13.2.2 Primin algoritmi

Primin algoritmi tarjoaa toisen lähestymistavan pienimmän virittävän puun muodostamiseen. Algoritmi aloittaa puun muodostamisen tilanteesta, jossa puussa on vain yksi solmu. Tämän jälkeen se etsii joka vaiheessa kevyimmän kaaren, jonka toinen päätesolmu kuuluu puuhun ja toinen päätesolmu on vielä puun ulkopuolella, ja lisää puuhun tämän kaaren. Kun kaikki solmut on lisätty puuhun, pienin virittävä puu on valmis.

Kuva 13.7 näyttää esimerkin Primin algoritmin toiminnasta. Voimme aloittaa puun rakentamisen mistä tahansa solmusta, ja tässä esimerkissä aloitamme solmusta 1. Solmuun 1 on yhteydessä kaksi kaarta (1,2) ja (1,3), joista valitsemme kaaren (1,2), koska se on kevyempi. Seuraavaksi tarjolla ovat kaaret (1,3), (2,3) ja (2,4), joista valitsemme kaaren (2,3). Tämän jälkeen lisäämme puuhun vastaavalla tavalla kaaret (2,4), (4,5), minkä jälkeen pienin virittävä puu on valmis.

Primin algoritmi muistuttaa paljon Dijkstran algoritmia. Erona on, että Dijkstran algoritmissa valitsemme seuraavaksi solmun, jonka etäisyys *al*-

Kuva 13.8: Kruskalin algoritmi: Pienin virittävä puu sisältää varmasti kaaren (2,3), koska muuten saisimme paremman ratkaisun sen avulla.

Kuva 13.9: Primin algoritmi: Pienin virittävä puu sisältää varmasti kaaren (1,2), koska muuten saisimme paremman ratkaisun sen avulla.

kusolmuun on pienin, mutta Primin algoritmissa valitsemme solmun, jonka etäisyys johonkin solmuun puussa on pienin. Voimme myös toteuttaa Primin algoritmin tehokkaasti samaan tapaan kuin Dijkstran algoritmin keon avulla, jolloin algoritmi vie aikaa $O(n+m\log n)$. Aikavaativuus on siis sama kuin Kruskalin algoritmissa, ja on käytännössä makuasia, kumman algoritmin valitsemme.

13.2.3 Miksi algoritmit toimivat?

Kruskalin ja Primin algoritmit ovat ahneita algoritmeja: ne lisäävät joka askeleella kevyimmän mahdollisen kaaren puuhun. Miksi algoritmit tuottavat pienimmän virittävän puun joka tilanteessa?

Voimme ajatella asiaa näin: Jos on kaksi solmua a ja b, jotka ovat eri komponenteissa, ne on yhdistettävä jotenkin samaan komponenttiin algoritmin aikana. Jos kevyin saatavilla oleva kaari on solmujen a ja b välillä, se kannattaa valita, koska ilman tätä kaarta komponentit tulisi yhdistää myöhemmin käyttäen raskaampaa kaarta.

Tarkastellaan ensin Kruskalin algoritmia. Mitä tapahtuu, jos emme valitse kevyintä kaarta algoritmin alussa? Kuvassa 13.8 näkyy kuvitteellinen tilanne, jossa katkoviivoilla esitetty pienin virittävä puu ei sisällä kevyintä kaarta (2,3), jonka paino on 1. Ei ole kuitenkaan mahdollista, että tämä olisi todellisuudessa pienin virittävä puu, koska voisimme vaihtaa jonkin puun kaaren kaareen (2,3), jolloin puun paino pienenee. Voimme siis huoletta va-

lita kevyimmän kaaren puuhun Kruskalin algoritmin alussa. Samasta syystä voimme tämän jälkeen valita seuraavaksi kevyimmän kaaren, jne.

Primin algoritmissa voimme käyttää melko samanlaista päättelyä. Oletetaan, että algoritmi lähtee liikkeelle solmusta 1, ja tarkastellaan ensimmäisen kaaren valintaa. Kuvassa 13.9 näkyy kuvitteellinen pienin virittävä puu, jossa emme ole valinneet alussa kevyintä kaarta (1,2). Saamme kuitenkin aikaan paremman ratkaisun, kun tutkimme, minkä kaaren kautta solmu 1 on yhteydessä solmuun 2, ja korvaamme tämän kaaren kaarella (1,2). Niinpä Primin algoritmin alussa on optimaalista valita puuhun kevyin kaari. Voimme soveltaa vastaavaa päättelyä algoritmin joka vaiheessa.

Huomaa, että Kruskalin ja Primin algoritmit toimivat myös silloin, kun verkossa on negatiivisia kaaria, koska ainoastaan kaarten painojärjestys merkitsee. Tämän ansiosta voimme etsiä algoritmien avulla myös verkon suurimman virittävän puun (maximum spanning tree) eli virittävän puun, jossa kaarten painojen summa on suurin. Tämä onnistuu muuttamalla ensin jokaisen verkossa olevan kaaren paino käänteiseksi ja etsimällä sitten pienimmän virittävän puun. Toinen tapa on vain toteuttaa Kruskalin tai Primin algoritmi niin, että joka vaiheessa valitaan painavin mahdollinen kaari.

Luku 14

Maksimivirtaus

Tässä luvussa tarkastelemme ongelmaa, jossa haluamme välittää mahdollisimman paljon virtausta (flow) verkon solmusta toiseen, kun jokaisella kaarella on tietty kapasiteetti, jota emme saa ylittää. Voimme esimerkiksi haluta siirtää tietokoneverkossa tietoa mahdollisimman tehokkaasti koneesta toiseen, kun tiedämme verkon rakenteen ja yhteyksien nopeudet.

Tutustumme aluksi Fordin ja Fulkersonin algoritmiin, jonka avulla voimme sekä selvittää maksimivirtauksen että ymmärtää paremmin, mistä ongelmassa on kysymys. Tämän jälkeen tarkastelemme joitakin verkko-ongelmia, jotka pystymme ratkaisemaan palauttamalla ne maksimivirtaukseen.

14.1 Maksimivirtauksen laskeminen

Käsittelemme suunnattua verkkoa, jossa on kaksi erityistä solmua: lähtösolmu (source) ja kohdesolmu (sink). Haluamme muodostaa verkkoon mahdollisimman suuren virtauksen eli maksimivirtauksen (maximum flow) lähtösolmusta kohdesolmuun niin, että jokaiseen välisolmuun tuleva virtaus on yhtä suuri kuin solmusta lähtevä virtaus. Kullakin verkon kaarella on kapasiteetti (capacity), jota virtauksen määrä kaarta pitkin ei saa ylittää.

Kuva 14.1: Maksimivirtaus solmusta 1 solmuun 5.

Kuva 14.2: Verkon esitysmuoto Fordin ja Fulkersonin algoritmissa.

Kuvassa 14.1 näkyy esimerkkinä verkon maksimivirtaus, kun lähtösolmu on 1 ja kohdesolmu 5. Tässä tapauksessa maksimivirtauksen suuruus on 7. Jokaisessa kaaressa merkintä v/k tarkoittaa, että kaaren kautta kulkee virtausta v ja kaaren kapasiteetti on k. Solmusta 1 lähtevä virtauksen määrä on 4+3=7, solmuun 5 saapuva virtauksen määrä on 3+4=7 ja kaikissa muissa solmuissa saapuva virtaus on yhtä suuri kuin lähtevä virtaus.

14.1.1 Fordin ja Fulkersonin algoritmi

Fordin ja Fulkersonin algoritmi on tavallisin menetelmä verkon maksimivirtauksen etsimiseen, ja tutustumme seuraavaksi tämän algoritmin toimintaan. Algoritmi muodostaa lähtösolmusta kohdesolmuun polkuja, jotka kasvattavat virtausta pikkuhiljaa. Kun mitään polkua ei voi enää muodostaa, algoritmi on saanut valmiiksi maksimivirtauksen.

Jotta voimme käyttää algoritmia, esitämme verkon erityisessä muodossa, jossa jokaista alkuperäisen verkon kaarta vastaa *kaksi* kaarta: alkuperäinen kaari, jonka painona on kaaren kapasiteetti, sekä sille käänteinen kaari, jonka painona on 0. Käänteisten kaarten avulla pystymme tarvittaessa *peruuttamaan* virtausta algoritmin aikana. Kuva 14.2 näyttää, kuinka esitämme esimerkkiverkon algoritmissa¹.

Algoritmi muodostaa joka vaiheessa $t\ddot{a}ydennyspolun$ (augmenting~path), joka on mikä tahansa polku lähtösolmusta kohdesolmuun, jossa jokaisen kaaren paino on positiivinen. Polun muodostamisen jälkeen virtauksen suuruus lähtösolmusta kohdesolmuun kasvaa p:llä, missä p on pienin kaaren paino polulla. Lisäksi jokaisen polulla olevan kaaren paino vähenee p:llä ja jokaisen niille käänteisen kaaren paino kasvaa p:llä. Etsimme tällä tavalla uusia polkuja, kunnes mitään täydennyspolkua ei voi enää muodostaa.

 $^{^1}$ Kirjallisuudessa tällaisesta verkosta käytetään usein termiä jäännösverkko (residual graph), kuitenkin sillä erotuksella, että mukana ovat kulloinkin vain kaaret, joiden paino on positiivinen. Kuitenkin käytännössä algoritmin toteutus on mukavampi, kun verkon rakenne on aina sama ja mukana ovat myös 0-painoiset kaaret.

Kuva 14.3: Esimerkki Fordin ja Fulkersonin algoritmin toiminnasta.

Kuva 14.3 näyttää, kuinka Fordin ja Fulkersonin algoritmi muodostaa maksimivirtauksen esimerkkiverkossa. Algoritmi muodostaa ensin polun $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$, jossa pienin paino on 4. Tämän seurauksena virtaus kasvaa 4:llä, polulla olevien kaarten paino vähenee 4:llä ja käänteisten kaarten paino kasvaa 4:llä. Tämän jälkeen algoritmi muodostaa polun $1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 5$, jolloin virtaus kasvaa 3:lla. Huomaa, että tämä polku peruuttaa kaarta $2 \rightarrow 3$ menevää virtausta, koska se kulkee käänteisen kaaren $3 \rightarrow 2$ kautta. Tämän jälkeen algoritmi ei enää pysty muodostamaan mitään täydennyspolkua, joten verkon maksimivirtauksen suuruus on 4 + 3 = 7.

Kun olemme saaneet maksimivirtauksen muodostettua, voimme selvittää jokaisessa alkuperäisessä kaaressa kulkevan virtauksen tutkimalla, miten kaaren paino on muuttunut algoritmin aikana. Kaarta pitkin kulkeva virtaus on yhtä suuri kuin kaaren painon vähennys algoritmin aikana. Esimerkiksi kuvassa 14.3 kaaren $4 \rightarrow 5$ paino on alussa 5 ja algoritmin suorituksen jälkeen 2, joten kaarta pitkin kulkevan virtauksen määrä on 5-2=3.

14.1.2 Yhteys minimileikkaukseen

Fordin ja Fulkersonin algoritmin toimintaidea on sinänsä järkevä, koska täydennyspolut lähtösolmusta kohdesolmuun kasvattavat virtausta, mutta ei ole silti päältä päin selvää, miksi algoritmi löytää varmasti *suurimman* mahdol-

Kuva 14.4: Minimileikkaus, jossa poistamme kaaret $2 \rightarrow 4$ ja $3 \rightarrow 5$.

Kuva 14.5: Solmut 1, 2 ja 3 ovat saavutettavissa lähtösolmusta.

lisen virtauksen. Jotta voimme ymmärtää paremmin algoritmin toimintaa, tarkastelemme seuraavaksi toista verkko-ongelmaa, joka antaa meille uuden näkökulman maksimivirtaukseen.

Lähtökohtamme on edelleen suunnattu verkko, jossa on lähtösolmu ja kohdesolmu. Sanomme, että joukko kaaria muodostaa leikkauksen (cut), jos niiden poistaminen verkosta estää kulkemisen lähtösolmusta kohdesolmuun. Minimileikkaus (minimum cut) on puolestaan leikkaus, jossa kaarten yhteispaino on mahdollisimman pieni. Kuvassa 14.4 on minimileikkaus, jossa poistamme kaaret $2 \to 4$ ja $3 \to 5$ ja jonka paino on 3 + 4 = 7.

Osoittautuu, että verkon maksimivirtauksen suuruus on aina sama kuin minimileikkauksen paino, ja tämä yhteys auttaa perustelemaan, miksi Fordin ja Fulkersonin algoritmi toimii. Ensinnäkin voimme havaita, että $mink\ddot{a}$ tahansa verkon leikkauksen paino on vähintään yhtä suuri kuin maksimivirtauksen määrä. Tämä johtuu siitä, että virtauksen täytyy ylittää leikkaukseen kuuluva kaaria, jotta se pääsee lähtösolmusta kohdesolmuun. Esimerkiksi kuvassa 14.4 virtaus voi päästä solmusta 1 solmuun 5 joko kulkemalla kaarta $2 \to 4$ tai kaarta $3 \to 5$. Niinpä virtauksen suuruus ei voi ylittää näiden kaarten painojen summaa.

Toisaalta Fordin ja Fulkersonin algoritmi muodostaa sivutuotteenaan verkon leikkauksen, jonka paino on sama kuin verkossa olevan virtauksen suuruus. Löydämme leikkauksen etsimällä ensin kaikki solmut, joihin pääsemme lähtösolmusta positiivisia kaaria pitkin algoritmin lopputilanteessa. Esimerkkiverkossamme nämä solmut ovat 1, 2 ja 3 kuvan 14.5 mukaisesti. Kun va-

Kuva 14.6: Verkko, joka voi aiheuttaa ongelmia algoritmille.

litsemme sitten alkuperäisen verkon kaaret, jotka johtavat näiden solmujen ulkopuolelle ja joiden kapasiteetti on käytetty kokonaan, saamme aikaan verkon leikkauksen. Esimerkissämme nämä kaaret ovat $2 \to 4$ ja $3 \to 5$.

Koska olemme löytäneet virtauksen, jonka suuruus on sama kuin leikkauksen paino, ja toisaalta virtauksen suuruus ei voi ylittää minkään leikkauksen painoa, olemme siis löytäneet maksimivirtauksen ja minimileikkauksen, joten Fordin ja Fulkersonin algoritmi toimii oikein.

14.1.3 Polkujen valitseminen

Voimme muodostaa täydennyspolkuja Fordin ja Fulkersonin algoritmin aikana miten tahansa, mutta polkujen valintatapa vaikuttaa algoritmin tehokkuuteen. Riippumatta polkujen valintatavasta jokainen polku kasvattaa virtausta ainakin $yhdell\ddot{a}$ yksiköllä. Niinpä joudumme etsimään enintään f täydennyspolkua, kun verkon maksimivirtauksen suuruus on f. Jos muodostamme polut syvyyshaulla, jokaisen polun muodostaminen vie aikaa O(m), joten saamme algoritmin ajankäytölle ylärajan O(fm).

Voiko todella käydä niin, että jokainen polku parantaa virtausta vain yhdellä? Tämä on mahdollista, ja kuva 14.6 tarjoaa esimerkin asiasta. Tässä Z on jokin suuri vakio, joka on kaaren kapasiteetti. Jos muodostamme polut syvyyshaulla ja valitsemme haussa aina solmun, jonka tunnus on pienin, muodostamme vuorotellen polkuja $1 \to 2 \to 3 \to 4$ ja $1 \to 3 \to 2 \to 4$ niin, että lisäämme ja peruutamme edestakaisin kaarta $2 \to 3$ kulkevaa virtausta. Tämän vuoksi joudumme muodostamaan 2Z polkua, ennen kuin olemme saaneet selville verkon maksimivirtauksen.

Voimme kuitenkin estää tämän ilmiön määrittelemällä tarkemmin, miten muodostamme täydennyspolkuja algoritmin aikana. $Edmondsin\ ja\ Karpin\ algoritmi$ on Fordin ja Fulkersonin algoritmin versio, jossa muodostamme polut leveyshaulla. Tämä tarkoittaa, että valitsemme aina polun, jossa on mahdollisimman vähän kaaria. Leveyshakua käyttäen muodostamme kuvan 14.6 verkossa vain kaksi täydennyspolkua $1 \to 2 \to 4$ ja $1 \to 3 \to 4$, jotka antavat suoraan maksimivirtauksen.

Osoittautuu, että Edmondsin ja Karpin algoritmin täytyy muodostaa ai-

na vain O(nm) täydennyspolkua, joten algoritmi vie aikaa $O(nm^2)$ riippumatta virtauksen suuruudesta. Voimme perustella tämän aikavaativuuden kahden havainnon avulla:

Havainto~1: Kun x on mikä tahansa verkon solmu, etäisyys lyhintä polkua pitkin lähtösolmusta solmuun x ei voi koskaan pienentyä täydennyspolun muodostamisen jälkeen. Voimme perustella tämän tekemällä vastaoletuksen, että täydennyspolku on juuri pienentänyt etäisyyttä solmuun x. Tarkastellaan lyhintä polkua lähtösolmusta solmuun x ja ensimmäistä tällä polulla olevaa kaarta $a \to b$, jossa etäisyys solmuun a ei ole pienentynyt mutta etäisyys solmuun b on pienentynyt täydennyspolun seurauksena. Tämä tarkoittaa, että ennen täydennyspolun muodostamista verkossa ei ollut positiivista kaarta $a \to b$, vaan tämä kaari on syntynyt siitä, että täydennyspolku on kulkenut positiivista kaarta $b \to a$ ja virtaukset ovat muuttuneet. Tämä ei kuitenkaan ole mahdollista, koska tällöin a:n etäisyys olisi ollut suurempi kuin b:n etäisyys ennen täydennyspolun muodostamista eikä kaari $a \to b$ voisi olla osana uutta lyhintä polkua.

Havainto~2: Jokaiseen täydennyspolkuun liittyy jokin kaari $a \to b$, jonka kapasiteetti käytetään kokonaan, ja jokainen kaari voi esiintyä enintään n/2 kertaa tässä roolissa. Syynä on, että kun kaaren $a \to b$ kapasiteetti käytetään kokonaan, algoritmin täytyy muodostaa täydennyspolku, joka kulkee vastakkaiseen suuntaan kaarta $b \to a$, ennen kuin kaaren $a \to b$ kapasiteettia voi käyttää uudestaan. Koska etäisyys lähtösolmusta solmuun ei voi pienentyä, etäisyys lähtösolmusta kaaren alkusolmuun a kasvaa ainakin kahdella aina, kun täydennyspolku kulkee toiseen suuntaan kaarta $b \to a$.

Näiden havaintojen perusteella Edmondsin ja Karpin algoritmi muodostaa enintään nm/2 täydennyspolkua, koska voidaan valita enintään m tavalla, minkä kaaren kapasiteetti käytetään kokonaan, ja enintään n/2 tavalla, mikä on kaaren alkusolmun etäisyys.

14.2 Maksimivirtauksen sovelluksia

Maksimivirtauksen etsiminen on tärkeä ongelma, koska pystymme palauttamaan monia verkko-ongelmia maksimivirtaukseen. Tämä tarkoittaa, että muutamme toisen ongelman jotenkin sellaiseen muotoon, että se vastaa maksimivirtausta. Tutustumme seuraavaksi joihinkin tällaisiin ongelmiin.

14.2.1 Erilliset polut

Tehtävämme on muodostaa mahdollisimman monta *erillistä* polkua verkon lähtösolmusta kohdesolmuun. Erillisyys tarkoittaa, että jokainen verkon kaari

Kuva 14.7: Kaksi erillistä polkua solmusta 1 solmuun 5.

Kuva 14.8: Erilliset polut tulkittuna maksimivirtauksena.

saa esiintyä enintään yhdellä polulla. Saamme kuitenkin halutessamme kulkea saman solmun kautta useita kertoja. Esimerkiksi kuvassa 14.7 voimme muodostaa kaksi erillistä polkua solmusta 1 solmuun 5, mutta ei ole mahdollista muodostaa kolmea erillistä polkua.

Voimme ratkaista ongelman tulkitsemalla erilliset polut maksimivirtauksena. Ideana on etsiä maksimivirtaus lähtösolmusta kohdesolmuun olettaen, että jokaisen kaaren kapasiteetti on 1. Tämä maksimivirtaus on yhtä suuri kuin suurin erillisten polkujen määrä. Kuva 14.8 näyttää maksimivirtauksen esimerkkiverkossa.

Miksi maksimivirtauksen suuruus on sama kuin erillisten polkujen määrä? Ensinnäkin erilliset polut muodostavat yhdessä virtauksen, joten maksimivirtauksen suuruus ei voi alittaa erillisten polkujen määrää. Toisaalta jos verkossa on virtaus, jonka suuruus on k, voimme muodostaa k erillistä polkua valitsemalla kaaria ahneesti lähtösolmusta alkaen, joten maksimivirtauksen suuruus ei voi myöskään ylittää erillisten polkujen määrää.

14.2.2 Maksimiparitus

Verkon paritus (matching) on joukko kaaria, joille pätee, että jokainen solmu on enintään yhden kaaren päätepisteenä. Maksimiparitus (maximum matching) on puolestaan paritus, jossa on mahdollisimman paljon kaaria. Keskitymme tapaukseen, jossa verkko on kaksijakoinen (bipartite) eli voimme jakaa verkon solmut vasempaan ja oikeaan ryhmään niin, että jokainen kaari kulkee ryhmien välillä.

Kuvassa 14.9 on esimerkkinä kaksijakoinen verkko, jonka maksimiparitus

Kuva 14.9: Kaksijakoisen verkon maksimiparitus.

Kuva 14.10: Maksimiparitus tulkittuna maksimivirtauksena.

on 3. Tässä vasen ryhmä on $\{1, 2, 3, 4\}$, oikea ryhmä on $\{5, 6, 7\}$ ja maksimiparitus muodostuu kaarista (1, 6), (3, 5) ja (4, 7).

Voimme tulkita maksimiparituksen maksimivirtauksena lisäämällä verkkoon kaksi uutta solmua: lähtösolmun ja kohdesolmun. Lähtösolmusta pääsee kaarella jokaiseen vasemman ryhmän solmuun, ja jokaisesta oikean ryhmän solmusta pääsee kaarella kohdesolmuun. Lisäksi suuntaamme alkuperäiset kaaret niin, että ne kulkevat vasemmasta ryhmästä oikeaan ryhmään. Kuva 14.10 näyttää tuloksena olevan verkon esimerkissämme. Maksimivirtaus tässä verkossa vastaa alkuperäisen verkon maksimiparitusta, kun valitsemme paritukseen kaikki kaaret, joiden kautta kulkee virtausta.

14.2.3 Pienin polkupeite

Polkupeite (path cover) on joukko verkon polkuja, jotka kattavat yhdessä kaikki verkon solmut. Oletamme, että verkko on suunnattu ja syklitön, ja haluamme muodostaa mahdollisimman pienen polkupeitteen niin, että jokainen solmu esiintyy tarkalleen yhdessä polussa. Kuvassa 14.11 on esimerkkinä verkko ja sen pienin polkupeite, joka muodostuu kahdesta polusta.

Voimme ratkaista pienimmän polkupeitteen etsimisen ongelman maksimivirtauksen avulla muodostamalla verkon, jossa jokaista alkuperäistä solmua

Kuva 14.11: Polkupeite, joka muodostuu poluista $1 \rightarrow 2$ ja $5 \rightarrow 3 \rightarrow 4$.

Kuva 14.12: Polkupeitteen etsiminen maksimivirtauksen avulla.

vastaa kaksi solmua: vasen ja oikea solmu. Vasemmasta solmusta on kaari oikeaan solmuun, jos alkuperäisessä verkossa on vastaava kaari. Lisäämme vielä verkkoon lähtösolmun ja kohdesolmun niin, että lähtösolmusta pääsee kaikkiin vasempiin solmuihin ja kaikista oikeista solmuista pääsee kohdesolmuun. Tämän verkon maksimivirtaus antaa meille alkuperäisen verkon pienimmän polkupeitteen.

Kuva 14.12 näyttää tuloksena olevan verkon esimerkissä. Ideana on, että maksimivirtaus etsii, mitkä kaaret kuuluvat polkuihin: jos kaari solmusta a solmuun b kuuluu virtaukseen, niin vastaavasti polkupeitteessä on polku, jossa on kaari $a \to b$. Koska virtauksessa voi olla valittuna vain yksi kaari, joka alkaa tietystä solmusta tai päättyy tiettyyn solmuun, tuloksena on varmasti joukko polkuja. Toisaalta mitä enemmän kaaria saamme laitettua polkuihin, sitä pienempi on polkujen määrä.

Luku 15

NP-ongelmat

Olemme tässä kirjassa tutustuneet moniin algoritmeihin, jotka toimivat tehokkaasti. Kuitenkin on myös suuri määrä ongelmia, joiden ratkaisemiseen ei tällä hetkellä tunneta mitään tehokasta algoritmia. Jos vastaamme tulee tällainen ongelma, hyvät neuvot ovat kalliit.

Vaikeiden ongelmien yhteydessä esiintyy usein kirjainyhdistelmä NP. Erityisen tunnettu on kysymys P vs. NP, jonka ratkaisijalle on luvattu miljoonan dollarin potti. Hankalalta tuntuvasta ongelmasta saatetaan arvella, että se on NP-täydellinen tai NP-vaikea. Nyt on aika selvittää, mitä nämä käsitteet oikeastaan tarkoittavat.

15.1 Vaativuusluokat

Laskennallisia ongelmia luokitellaan vaativuusluokkiin (complexity class), joista jokaisessa on joukko ongelmia, joiden ratkaisemisen vaikeudessa on jotain yhteistä. Tunnetuimmat vaativuusluokat ovat P ja NP.

Keskitymme tässä luvussa päätösongelmiin (decision problem), joissa algoritmin tulee antaa aina vastaus "kyllä" tai "ei". Esimerkiksi ongelma "onko verkossa polkua solmusta a solmuun b?" on päätösongelma. Tulemme huomaamaan, että voimme muotoilla monenlaisia ongelmia päätösongelmina eikä tämä rajoita juurikaan, mitä ongelmia voimme tarkastella.

15.1.1 Luokka P

Luokka P sisältää päätösongelmat, joiden ratkaisemiseen on olemassa polynominen algoritmi eli algoritmi, jonka aikavaativuus on enintään $O(n^k)$, missä k on vakio. Lähes kaikki tässä kirjassa esitetyt algoritmit ovat olleet polynomisia. Tuttuja polynomisia aikavaativuuksia ovat esimerkiksi O(1), $O(\log n)$

O(n), $O(n \log n)$, $O(n^2)$ ja $O(n^3)$.

Esimerkiksi ongelma "onko verkossa polkua solmusta a solmusu b?" kuuluu luokkaan P, koska voimme ratkaista sen monellakin tavalla polynomisessa ajassa. Voimme vaikkapa aloittaa syvyyshaun solmusta a ja tarkastaa, pääsemmekö solmuun b. Tuloksena on algoritmi, joka toimii lineaarisessa ajassa, joten ongelma kuuluu luokkaan P.

Luokan P tarkoituksena on kuvata ongelmia, jotka voimme ratkaista jossain mielessä tehokkaasti. Tässä tehokkuuden määritelmä on varsin karkea: pidämme algoritmia tehokkaana, jos sillä on mikä tahansa polynominen aikavaativuus. Onko $O(n^{100})$ -aikainen algoritmi siis tehokas? Ei, mutta käytännössä vakio k on yleensä pieni ja polynominen aikavaativuus on osoittautunut toimivaksi tehokkuuden mittariksi.

15.1.2 Luokka NP

Luokka NP sisältää päätösongelmat, joissa jokaisessa "kyllä"-tapauksessa on olemassa todiste, jonka avulla voimme tarkastaa polynomisessa ajassa, että vastaus todellakin on "kyllä". Todiste on merkkijono, jonka koko on polynominen suhteessa syötteeseen, ja se antaa meille lisätietoa siitä, minkä takia "kyllä"-vastaus pitää paikkansa syötteelle.

Esimerkki luokkaan NP kuuluvasta ongelmasta on "onko verkossa polkua solmusta a solmuun b, joka kulkee tasan kerran jokaisen verkon solmun kautta?". Tämän ongelman ratkaisemiseen ei tunneta polynomista algoritmia, mutta jokaisessa "kyllä"-tapauksessa on olemassa todiste: halutunlainen polku solmusta a solmuun b. Voimme tarkastaa helposti polynomisessa ajassa, että todisteen kuvaamalla polulla on vaaditut ominaisuudet.

Jos vastaus syötteeseen on "ei", tähän ei tarvitse liittyä mitään todistetta. Usein olisikin hankalaa antaa todiste siitä, että jotain asiaa *ei* ole olemassa. Esimerkiksi jos etsimme verkosta tietynlaista polkua, on helppoa todistaa polun olemassaolo, koska voimme vain näyttää kyseisen polun, mutta ei ole vastaavaa keinoa todistaa, että polkua ei ole olemassa.

Huomaa, että kaikki luokan P ongelmat kuuluvat myös luokkaan NP. Tämä johtuu siitä, että luokan P ongelmissa voimme tarkastaa "kyllä"-vastauksen *tyhjän* todisteen avulla: voimme saman tien ratkaista koko ongelman alusta alkaen polynomisessa ajassa.

15.1.3 P vs. NP

Äkkiseltään voisi kuvitella, että luokassa NP täytyy olla enemmän ongelmia kuin luokassa P. Luokassa NP meidän riittää vain tarkastaa "kyllä"-vastauksen todiste, mikä tuntuu helpommalta kuin muodostaa ongelman rat-

Kuva 15.1: P vs. NP: Voisiko olla yhtä helppoa muodostaa ratkaisu tyhjästä kuin tarkastaa, onko annettu ratkaisu oikein?

kaisu tyhjästä (kuva 15.1). Monet uskovatkin, että luokka NP on suurempi kuin luokka P, mutta kukaan ei ole onnistunut todistamaan asiaa.

Tietojenkäsittelytieteen merkittävä avoin kysymys on, päteekö P = NP vai $P \neq NP$. Monet tutkijat ovat tarttuneet haasteeseen 70-luvulta lähtien, mutta tähän mennessä kaikki ovat epäonnistuneet. Ongelman ratkaisija saisi maineen ja kunnian lisäksi myös tuntuvan rahallisen korvauksen, koska Clayinstituutti on luvannut miljoonan dollarin palkinnon sille, joka todistaa, että P = NP tai $P \neq NP$. Voi olla kuitenkin, että tämä on yksi vaikeimmista tavoista ansaita miljoona dollaria.

Jos pätee $P \neq NP$, kuten uskotaan, vaikeutena on keksiä keino todistaa, että jotakin luokan NP ongelmaa on mahdotonta ratkaista polynomisessa ajassa. Tämän todistaminen on vaikeaa, koska meidän pitää näyttää, että tehokasta algoritmia ei ole olemassa, vaikka laatisimme algoritmin miten tahansa. Vaikka moni on koettanut tuloksetta ratkoa tunnettuja NP-ongelmia, kysymys saattaa silti olla siitä, että tehokas algoritmi olisi olemassa mutta kukaan ei vain ole vielä löytänyt sitä.

15.1.4 Muita luokkia

P ja NP ovat tunnetuimmat vaativuusluokat, mutta niiden lisäksi on suuri määrä muitakin luokkia. Yksi tällainen luokka on PSPACE, joka sisältää ongelmat, joiden ratkaisuun riittää polynominen määrä *muistia*. PSPACE sisältää kaikki luokan NP ongelmat, mutta siinä on myös ongelmia, joiden ei tiedetä kuuluvan luokkaan NP.

Luokat BPP ja ZPP puolestaan liittyvät satunnaisuuteen. Luokka BPP sisältää ongelmat, joiden ratkaisuun on polynomiaikainen algoritmi, joka antaa oikean vastauksen ainakin todennäköisyydellä 2/3. Luokka ZPP taas sisältää ongelmat, joiden ratkaisuun on algoritmi, jonka suoritusajan odotusarvo on polynominen. Sekä BPP että ZPP sisältävät luokan P, jonka ongelmat voi ratkaista polynomisessa ajassa ilman satunnaisuuttakin.

Vaativuusluokkien suhteet toisiinsa tunnetaan yleensä ottaen huonosti. Vaikka kysymys P vs. NP on saanut eniten huomiota, myös vastaavat kysymykset esimerkiksi luokkien PSPACE, BPP ja ZPP kohdalla ovat avoimia

ongelmia. Kukaan ei tiedä, onko näissä luokissa loppujen lopuksi mitään ongelmaa, joka ei kuuluisi myös luokkaan P.

15.2 NP-täydellisyys

Sanomme, että ongelma on *NP-täydellinen* (*NP-complete*), jos se kuuluu luokkaan NP ja mikä tahansa luokan NP ongelma voidaan *palauttaa* siihen polynomisessa ajassa. NP-täydelliset ongelmat ovat luokan NP vaikeimpia ongelmia: jos voisimme ratkaista jonkin NP-täydellisen ongelman tehokkaasti, voisimme ratkaista minkä tahansa luokan NP ongelman tehokkaasti.

Kiinnostava ilmiö on, että lähes kaikki tunnetut luokan NP ongelmat joko kuuluvat myös luokkaan P tai ovat NP-täydellisiä. Nykyään tunnetaankin tuhansia erilaisia NP-täydellisiä ongelmia. Jos keksisimme mihin tahansa niistä polynomisessa ajassa toimivan ratkaisun, olisimme samalla onnistuneet todistamaan, että P = NP.

15.2.1 SAT-ongelma

Ensimmäinen löydetty NP-täydellinen ongelma oli SAT-ongelma, jossa annettuna on konjunktiivisessa normaalimuodossa oleva looginen kaava ja haluamme selvittää, voimmeko valita muuttujien arvot niin, että kaava on tosi. Konjunktiivinen normaalimuoto tarkoittaa, että kaava koostuu lausekkeista, jotka on yhdistetty ja-operaatiolla (\land) , ja jokainen lauseke muodostuu muuttujista ja niiden negaatioista, jotka on yhdistetty tai-operaatiolla (\lor) .

Esimerkiksi kaava

$$(\neg x_1 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (\neg x_2 \lor \neg x_3)$$

on mahdollista saada todeksi, koska voimme esimerkiksi asettaa muuttujat x_1 ja x_2 epätosiksi ja muuttujan x_3 todeksi. Vastaavasti kaava

$$(x_1 \lor x_2) \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2)$$

ei ole tosi, vaikka valitsisimme muuttujien arvot miten tahansa.

Kun haluamme osoittaa, että SAT on NP-täydellinen ongelma, meidän täytyy näyttää, että se kuuluu luokkaan NP ja mikä tahansa luokan NP ongelma voidaan palauttaa siihen. Luokkaan NP kuuluminen on helppoa nähdä: "kyllä"-tapauksessa todiste on kullekin muuttujalle valittu arvo. Huomattavasti vaikeampaa on osoittaa, että *jokainen* luokan NP ongelma voidaan palauttaa SAT-ongelmaan polynomisessa ajassa.

Tässä kirjassa emme käsittele todistusta yksityiskohtaisesti, mutta voimme kuitenkin kuvailla sen perusideaa. Tarkastellaan tiettyä luokan NP ongelmaa, joka meidän täytyy pystyä palauttamaan SAT-ongelmaan. Koska ongelma voi olla mikä tahansa luokkaan NP kuuluva, tiedämme siitä vain, että on olemassa algoritmi, joka tarkastaa polynomisessa ajassa "kyllä"-tapauksen todisteen. Tämä vastaa sitä, että on olemassa epädeterministinen Turingin kone, joka rakentaa ja tarkastaa tällaisen todisteen polynomisessa ajassa. Nyt kun haluamme tarkastaa annetusta syötteestä, onko vastaus siihen "kyllä", voimme muodostaa konjunktiivisessa normaalimuodossa olevan loogisen kaavan, joka luonnehtii Turingin koneen laskentaa, kun koneelle annetaan kyseinen syöte. Voimme muodostaa kaavan niin, että sen voi saada todeksi tarkalleen silloin, kun vastaus syötteeseen on "kyllä". Niinpä olemme onnistuneet palauttamaan alkuperäisen ongelman SAT-ongelmaan.

15.2.2 Ongelmien palautukset

Kun tiedämme, että SAT-ongelma on NP-täydellinen, voimme osoittaa muita ongelmia NP-täydellisiksi palautusten avulla. Ideana on, että jos ongelma A on NP-täydellinen ja voimme palauttaa sen polynomisessa ajassa ongelmaksi B, myös ongelma B on NP-täydellinen.

Palautus SAT \rightarrow 3SAT

Aloitamme osoittamalla, että 3SAT-ongelma on NP-täydellinen. 3SAT-ongelma on SAT-ongelman erikoistapaus, jossa jokaisessa ∧-merkeillä yhdistetyssä lausekkeessa on tarkalleen kolme muuttujaa. Esimerkiksi kaava

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)$$

on kelvollinen 3SAT-ongelman syöte. Jotta saamme palautettua SAT-ongelman 3SAT-ongelmaan, meidän on näytettävä, että voimme muuttaa polynomisessa ajassa minkä tahansa SAT-ongelman syötteen 3SAT-ongelman syötteeksi, jonka totuusarvo on sama.

Ideana on muokata jokaista SAT-ongelman syötteen lauseketta niin, että tuloksena on yksi tai useampia kolmen muuttujan lausekkeita. Merkitään k:lla lausekkeen muuttujien määrää. Jos k=1 tai k=2, toistamme viimeistä muuttujaa uudestaan, jotta saamme lausekkeeseen kolme muuttujaa. Esimerkiksi jos lauseke on (x_1) , muutamme sen muotoon $(x_1 \vee x_1 \vee x_1)$, ja jos lauseke on $(x_1 \vee x_2)$, muutamme sen muotoon $(x_1 \vee x_2 \vee x_2)$. Jos k=3, meidän ei tarvitse tehdä mitään, koska lausekkeessa on valmiiksi kolme muuttujaa. Jos sitten k>3, jaamme lausekkeen osiin, jotka ketjutetaan uusien

Kuva 15.2: Solmut {2, 3, 5} muodostavat solmupeitteen.

apumuuttujien avulla. Ketjun jokaisessa kohdassa vasemman lausekkeen viimeinen muuttuja on a_i ja oikean lausekkeen ensimmäinen muuttuja on $\neg a_i$. Tämä takaa, että ainakin yksi alkuperäinen muuttuja saa oikean arvon. Esimerkiksi jos lauseke on $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)$, muutamme sen kolmeksi lausekkeeksi $(x_1 \lor x_2 \lor a_1)$, $(\neg a_1 \lor x_3 \lor a_2)$ ja $(\neg a_2 \lor x_4 \lor x_5)$.

Tämä palautus osoittaa, että 3SAT on NP-täydellinen ongelma, eli SAT-ongelman oleellinen vaikeus syntyy jo siitä, että lausekkeissa voi olla kolme muuttujaa¹. Palautuksen hyötynä on myös se, että myöhemmissä todistuksissa meidän on helpompaa käsitellä kolmen muuttujan lausekkeita kuin vaihtelevan pituisia lausekkeita.

Palautus $3SAT \rightarrow solmupeite$

Seuraavaksi osoitamme, että on NP-täydellinen ongelma tarkastaa, onko verkossa solmupeitettä (vertex cover), jossa on k solmua. Solmupeite on verkon solmujen osajoukko, joka on valittu niin, että jokaisessa kaaressa ainakin toinen päätesolmu kuuluu solmupeitteeseen. Esimerkiksi kuvassa 15.2 on verkko ja sen solmupeite, johon kuuluu kolme solmua.

Kun haluamme palauttaa 3SAT-ongelman solmupeiteongelmaan, meidän täytyy näyttää, että voimme tulkita minkä tahansa 3SAT-ongelman tapauksen verkon solmupeitteen etsimisenä. Meidän tulee keksiä systemaattinen tapa muuttaa looginen kaava verkoksi, jonka k solmun solmupeite vastaa sitä, että kaava on totta.

Oletamme, että kaavassa esiintyy n muuttujaa x_1, x_2, \ldots, x_n ja siinä on m lauseketta. Muodostamme verkon, jossa on ensinnäkin n solmuparia, jotka vastaavat kaavan muuttujia. Kussakin solmuparissa on muuttujat x_i ja $\neg x_i$, joiden välillä on kaari. Lisäksi verkossa on m kolmen solmun ryhmää, jotka vastaavat lausekkeita. Jokaisessa ryhmässä kaikki solmut ovat yhteydessä toisiinsa, minkä lisäksi kukin solmu on yhteydessä sitä vastaavaan solmuun pareissa. Esimerkiksi kaavaa

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_3 \vee x_4),$$

 $^{^1}$ Entä ongelma 2SAT, jossa jokaisessa lausekkeessa on kaksi muuttujaa? Tämä ei ole NP-täydellinen ongelma, vaan kuuluu luokkaan P.

Kuva 15.3: Kaava $(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$ verkkona.

Kuva 15.4: Ratkaisu, jossa x_1 , x_2 ja x_4 ovat tosia ja x_3 on epätosi.

vastaa kuvan 15.3 mukainen verkko.

Osoittautuu, että voimme saada kaavan todeksi tarkalleen silloin, kun verkossa on solmupeite, jossa on enintään k=n+2m solmua. Tällaiseen peitteeseen kuuluu toinen solmu jokaisesta parista x_i ja $\neg x_i$. Tämä määrittää, miten muuttujien arvot asetetaan. Lisäksi peitteeseen kuuluu kaksi solmua jokaisesta kolmen solmun ryhmästä. Koska ryhmässä on yksi solmu, joka ei kuulu peitteeseen, kyseisen solmun täytyy olla yhteydessä kaarella peitteeseen kuuluvaan solmuun. Tämä varmistaa, että jokaisessa lausekkeessa ainakin yksi kolmesta muuttujasta on asetettu oikein. Kuva 15.4 näyttää esimerkin solmupeitteestä, joka saa kaavan todeksi. Tämä vastaa ratkaisua, jossa x_1 , x_2 ja x_4 ovat tosia ja x_3 on epätosi.

Olemme siis onnistuneet palauttamaan 3SAT-ongelman solmupeiteongelmaksi niin, että verkon koko on polynominen suhteessa kaavan pituuteen, joten solmupeiteongelma on NP-täydellinen.

Kuva 15.5: Kaksi verkkoa, jotka ovat isomorfiset.

15.2.3 Lisää ongelmia

Palautusten avulla on onnistuttu löytämään tuhansia NP-täydellisiä ongelmia. Esimerkiksi myös seuraavat ongelmat ovat NP-täydellisiä:

- \bullet onko verkossa k-kokoista klikkiä (clique) eli k solmun joukkoa, jossa jokaisen kahden solmun välillä on kaari?
- voimmeko värittää verkon solmut kolmella värillä niin, että jokaisen kaaren päätesolmut ovat eri värisiä?
- onko verkossa polkua, joka kulkee tasan kerran jokaisen verkon solmun kautta (eli *Hamiltonin polkua* (*Hamiltonian path*))?
- voiko annetuista n luvusta valita osajoukon, jonka summa on x?
- \bullet onko olemassa k-merkkistä merkkijonoa, jonka alijonoja ovat kaikki annetut merkkijonot?

Entä millainen olisi luokan NP ongelma, joka ei kuulu luokkaan P eikä ole NP-täydellinen? Kukaan ei tiedä, onko tällaista ongelmaa olemassa, koska ei edes tiedetä, ovatko P ja NP eri luokat. Yksi ehdokas tällaiseksi ongelmaksi on kuitenkin ongelma, jossa haluamme tarkastaa, ovatko kaksi verkkoa isomorfiset eli onko verkkojen rakenne samanlainen, jos solmut asetetaan vastaamaan toisiaan sopivalla tavalla. Esimerkiksi kuvassa 15.5 olevat verkot ovat isomorfiset, koska voimme valita solmuille vastaavuudet (1, c), (2, a), (3, d) ja (4, b).

Verkkojen isomorfisuuden ongelma kuuluu luokkaan NP, koska on helppoa tarkastaa, onko verkoilla sama rakenne, jos tiedämme solmujen vastaavuudet. Ongelmaan ei kuitenkaan tunneta polynomiaikaista algoritmia, joten sen ei tiedetä kuuluvan luokkaan P. Toisaalta emme myöskään osaa tehdä mitään palautusta, joka osoittaisi ongelman olevan NP-täydellinen.

15.2.4 Optimointiongelmat

Käytännössä haluamme usein ratkaista päätösongelman sijasta optimointiongelman ($optimization\ problem$): haluamme etsiä pienimmän tai suurimman mahdollisen ratkaisun. Esimerkiksi emme halua tarkastaa, onko verkossa enintään k solmun solmupeitettä (päätösongelma), vaan haluamme etsiä pienimmän solmupeitteen (optimointiongelma). Osoittautuu kuitenkin, että päätösongelmat ja optimointiongelmat ovat loppujen lopuksi hyvin lähellä toisiaan.

Oletetaan, että meillä on keino tarkastaa tehokkaasti, onko verkossa k solmun solmupeitettä. Miten voimme menetellä, jos haluammekin etsiä pienimmän solmupeitteen? Ratkaisuna on käyttää binäärihakua: etsimme pienimmän arvon x, jolle pätee, että verkossa on x solmun solmupeite. Tämä tarkoittaa, että verkon pienin solmupeite sisältää x solmua. Koska käytämme binäärihakua, meidän riittää ratkaista päätösongelma vain logaritminen määrä kertoja, joten saamme ratkaistua optimointiongelman lähes yhtä tehokkaasti kuin päätösongelman.

Sanomme, että ongelma on *NP-vaikea* (*NP-hard*), jos voimme palauttaa kaikki luokan NP ongelmat siihen mutta ongelman ei tarvitse kuulua luokkaan NP. Jos ongelma on NP-vaikea, se on siis ainakin yhtä vaikea kuin luokan NP vaikeimmat ongelmat. Tyypillisiä NP-vaikeita ongelmia ovat NP-täydellisten päätösongelmien optimointiversiot, koska voimme palauttaa niihin NP-täydellisiä ongelmia mutta ne eivät kuulu luokkaan NP.

Käytännössä termejä ei käytetä aina näin täsmällisesti ja optimointiongelmaa saatetaan sanoa NP-täydelliseksi, vaikka se oikeastaan on NP-vaikea. Voimme myös vain puhua yleisesti NP-ongelmista, kun tarkoitamme NP-täydellisiä ja NP-vaikeita ongelmia.

15.3 Ongelmien ratkaiseminen

Jos saamme ratkaistavaksemme NP-vaikean ongelman, tilanne ei näytä hyvältä, koska edessämme on silloin ongelma, johon ei tunneta mitään tehokasta algoritmia. Emme voi toivoa, että osaisimme ratkaista tehokkaasti ongelmaa, jota kukaan muukaan ei ole osannut. Peli ei ole kuitenkaan välttämättä vielä menetetty, vaan voimme koettaa lähestyä ongelmaa monella tavalla.

Tarkastellaan seuraavaksi ongelmaa, jossa meille annetaan n kokonaislukua ja haluamme jakaa luvut kahteen ryhmään niin, että ryhmien summat ovat mahdollisimman lähellä toisiaan. Esimerkiksi jos n=5 ja luvut ovat [1,2,4,5,7], paras ratkaisu on muodostaa ryhmät [1,2,7] ja [4,5], joiden summat ovat 1+2+7=10 ja 4+5=9. Tällöin summien ero on 1, eikä

ole olemassa ratkaisua, jossa ero olisi 0.

Tämä ongelma on NP-vaikea, joten kukaan ei tiedä tehokasta algoritmia sen ratkaisemiseen. Seuraavaksi käymme läpi joukon tapoja, joiden avulla voimme kuitenkin yrittää ratkaista ongelmaa.

Raaka voima

Vaikka ongelma olisi NP-vaikea, voimme silti ratkaista sen pieniä tapauksia. Tässä tehtävässä voimme tehdä algoritmin, joka käy läpi kaikki tavat jakaa luvut kahteen ryhmään ja valitsee parhaan vaihtoehdon. Tämä vastaa sitä, että käymme läpi kaikki tavat valita toiseen ryhmään tulevat luvut eli kaikki lukujen osajoukot.

Koska n luvusta voi muodostaa 2^n osajoukkoa, tällainen algoritmi vie aikaa $O(2^n)$. Voimme toteuttaa algoritmin esimerkiksi rekursiolla samaan tapaan kuin teimme luvussa 8. Tuloksena oleva algoritmi on käyttökelpoinen, jos n on niin pieni, että ehdimme käydä kaikki osajoukot läpi. Käytännössä voimme ratkaista tehokkaasti tapauksia, joissa n on enintään noin 20.

Heuristiikat

Yksi mahdollisuus selviytyä vaikeasta ongelmasta on tyytyä optimaalisen ratkaisun sijasta johonkin *melko hyvään* ratkaisuun, joka ei välttämättä ole optimaalinen. Saamme tällaisen ratkaisun aikaan keksimällä jonkin *heuristiikan* (*heuristic*), joka muodostaa ratkaisun. Heuristiikka on jokin järkevä sääntö, jonka avulla algoritmi rakentaa ratkaisua eteenpäin askel kerrallaan.

Tässä tehtävässä yksinkertainen heuristiikka on käydä luvut läpi suurimmasta pienimpään ja sijoittaa luku aina ryhmään, jonka summa on sillä hetkellä pienempi. Jos kummankin ryhmän summa on yhtä suuri, sijoitamme luvun ensimmäiseen ryhmään. Tämä on järkevä heuristiikka, koska näin saamme monessa tapauksessa jaettua lukuja melko tasaisesti ryhmiin.

Esimerkiksi jos luvut ovat [1,2,4,5,7], sijoitamme ensin luvun 7 ensimmäiseen ryhmään, sitten luvut 5 ja 4 toiseen ryhmään ja lopuksi luvut 2 ja 1 ensimmäiseen ryhmään. Saamme muodostettua näin ryhmät [1,2,7] ja [4,5], joiden summien ero on 1 eli ratkaisu on optimaalinen.

Tällainen algoritmi ei kuitenkaan tuota aina optimaalista ratkaisua. Kun tunnemme algoritmin toiminnan, voimme keksiä tilanteita, joissa se antaa huonomman ratkaisun. Tällainen tapaus on esimerkiksi [2,2,2,3,3]. Heuristiikkaa käyttävä algoritmi tuottaa ryhmät [2,3] ja [2,2,3], joiden summien ero on 2. Kuitenkin optimaalinen ratkaisu olisi muodostaa ryhmät [2,2,2] ja [3,3], joiden summien ero on 0.

Satunnaisuus

Voimme hyödyntää ongelman ratkaisemisessa myös satunnaisuutta. Voimme tehdä algoritmin, joka tekee satunnaisia valintoja, ja lisäksi toistaa algoritmia monta kertaa ja valita parhaan ratkaisun.

Esimerkiksi voimme parantaa äskeistä heuristista algoritmia niin, että se sekoittaa alussa lukujen järjestyksen. Tämän jälkeen voimme toistaa algoritmia vaikkapa miljoona kertaa ja valita parhaan ratkaisun. Tämä voi parantaa merkittävästi algoritmin toimintaa, ja on vaikeampaa keksiä tapauksia, joissa algoritmi toimii huonosti.

Rajoittaminen

Joskus voimme saada aikaan tehokkaan algoritmin, kun rajoitamme sopivalla tavalla tehtävää. Esimerkiksi tässä tehtävässä on mahdollista luoda tehokas dynaamisen ohjelmoinnin ratkaisu, kunhan oletamme, että luvut ovat sopivan pieniä kokonaislukuja.

Ideana on tarkastella osaongelmia muotoa "voimmeko valita a ensimmäisestä luvusta osajoukon, jonka lukujen summa on b?" Jos luvut ovat pieniä, niin myös summat ovat pieniä, joten voimme ratkaista kaikki tällaiset osaongelmat rekursiivisesti. Tämän jälkeen riittää etsiä mahdollinen jako, jossa a=n ja b on mahdollisimman lähellä lukujen summan puoliväliä.

Tällainen ratkaisu vie aikaa O(ns), missä s on lukujen summa. Sanomme, että algoritmi on pseudopolynominen, koska sen aikavaativuus on polynominen mutta riippuu lukuarvojen suuruudesta. Yleisessä tapauksessa syötteenä annetut luvut voivat kuitenkin olla suuria kokonaislukuja, jolloin emme voi käyttää tällaista ratkaisua.

Liite A

Matemaattinen tausta

Tämä liite käy läpi matematiikan merkintöjä ja käsitteitä, joita käytetään kirjassa algoritmien analysoinnissa.

Merkintöjä

Merkinnät $\lfloor x \rfloor$ ja $\lceil x \rceil$ tarkoittavat, että pyöristämme luvun x alaspäin ja ylöspäin kokonaisluvuksi. Esimerkiksi $\lfloor 5.23 \rfloor = 5$ ja $\lceil 5.23 \rceil = 6$.

Kertoma n! lasketaan $1 \cdot 2 \cdot 3 \cdots n$. Esimerkiksi $5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$.

Merkintä $a \mod b$ tarkoittaa, mikä on jakojäännös, kun a jaetaan b:llä. Esimerkiksi 32 mod 5 = 2, koska 32 = $6 \cdot 5 + 2$.

Summakaavat

Voimme laskea lukujen $1, 2, \ldots, n$ summan kaavalla

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

Usein hyödyllinen on myös kaava

$$a^{0} + a^{1} + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1},$$

joka pätee, kun $a \neq 1$. Tämän erikoistapaus on kaava

$$2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1.$$

Logaritmi

Logaritmin määritelmän mukaan $\log_b n = x$ tarkalleen silloin kun $b^x = n$. Esimerkiksi $\log_2 32 = 5$, koska $2^5 = 32$.

Logaritmi $\log_b n$ kertoo, montako kertaa meidän tulee jakaa luku n luvulla b, ennen kuin pääsemme lukuun 1. Esimerkiksi $\log_2 32 = 5$, koska tarvitsemme 5 puolitusta:

$$32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Tässä kirjassa oletamme, että logaritmin kantaluku on 2, jos ei ole toisin mainittu, eli voimme kirjoittaa lyhyesti $\log 32 = 5$.

Logaritmeille pätevät kaavat

$$\log_b(x \cdot y) = \log_b(x) + \log_b(y)$$

ja

$$\log_b(x/y) = \log_b(x) - \log_b(y).$$

Ylemmästä kaavasta seuraa myös

$$\log_b(x^k) = k \log_b(x).$$

Lisäksi voimme vaihtaa logaritmin kantalukua kaavalla

$$\log_u(x) = \frac{\log_b(x)}{\log_b(u)}.$$

Odotusarvo

Odotusarvo kuvaa, mikä on keskimääräinen tulos, jos satunnainen tapahtuma toistuu monta kertaa eli mitä tulosta voimme tavallaan odottaa.

Kun tapahtumalla on \boldsymbol{n} mahdollista tulosta, odotusarvo lasketaan kaavalla

$$p_1t_1+p_2t_2+\cdots+p_nt_n,$$

missä p_i ja t_i ovat tapahtuman i todennäköisyys ja tulos. Esimerkiksi kun heitämme noppaa, tuloksen odotusarvo on

$$1/6 \cdot (1+2+3+4+5+6) = 7/2.$$