William Stallings Computer Organization and Architecture 8th Edition

Chapter 2 Computer Evolution and Performance

Analytical Engine

ENIAC - background

- Electronic Numerical Integrator And Computer
- Eckert and Mauchly
- University of Pennsylvania
- Trajectory tables for weapons
- Started 1943
- Finished 1946
 - —Too late for war effort
- Used until 1955

Triode Valve

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

- Decimal (not binary)
- 20 accumulators of 10 digits
- Programmed manually by switches
- 18,000 vacuum tubes
- 30 tons
- 15,000 square feet
- 140 kW power consumption
- 5,000 additions per second

von Neumann/Turing

- Stored Program concept
- Main memory storing programs and data
- ALU operating on binary data
- Control unit interpreting instructions from memory and executing
- Input and output equipment operated by control unit
- Princeton Institute for Advanced Studies
 —IAS
- Completed 1952

von Neumann/Turing

John von Neumann with the stored-program computer at the Institute for Advanced Study, Princeton, New Jersey, in 1945. Photograph: Getty

Structure of von Neumann machine

IAS - details

- 1000 x 40 bit words
 - —Binary number
 - -2 x 20 bit instructions
- Set of registers (storage in CPU)
 - -Memory Buffer Register
 - —Memory Address Register
 - —Instruction Register
 - —Instruction Buffer Register
 - —Program Counter
 - —Accumulator
 - -Multiplier Quotient

Structure of IAS – detail

Commercial Computers

- 1947 Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
- US Bureau of Census 1950 calculations
- Became part of Sperry-Rand Corporation
- Late 1950s UNIVAC II
 - —Faster
 - —More memory

IBM

- Punched-card processing equipment
- 1953 the 701
 - —IBM's first stored program computer
 - —Scientific calculations
- 1955 the 702
 - —Business applications
- Lead to 700/7000 series

IBM

• IBM 7000 Series

Transistors

- Replaced vacuum tubes
- Smaller
- Cheaper
- Less heat dissipation
- Solid State device
- Made from Silicon (Sand)
- Invented 1947 at Bell Labs
- William Shockley et al.

Transistor Based Computers

- Second generation machines
- NCR & RCA produced small transistor machines
- IBM 7000
- DEC 1957
 - —Produced PDP-1

Microelectronics

- Literally "small electronics"
- A computer is made up of gates, memory cells and interconnections
- These can be manufactured on a semiconductor
- e.g. silicon wafer

Microelectronics

O silício metalúrgico, a lâmina (centro) e as células solares (à dir.)

Microelectronics

Generations of Computer

- Vacuum tube 1946-1957
- Transistor 1958-1964
- Small scale integration 1965 on
 - —Up to 100 devices on a chip
- Medium scale integration to 1971
 - —100-3,000 devices on a chip
- Large scale integration 1971-1977
 - -3,000 100,000 devices on a chip
- Very large scale integration 1978 1991
 - -100,000 100,000,000 devices on a chip
- Ultra large scale integration 1991 -
 - -Over 100,000,000 devices on a chip

Moore's Law

- Increased density of components on chip
- Gordon Moore co-founder of Intel
- Number of transistors on a chip will double every year
- Since 1970's development has slowed a little
 - Number of transistors doubles every 18 months
- Cost of a chip has remained almost unchanged
- Higher packing density means shorter electrical paths, giving higher performance
- Smaller size gives increased flexibility
- Reduced power and cooling requirements
- Fewer interconnections increases reliability

Growth in CPU Transistor Count

IBM 360 series

- 1964
- Replaced (& not compatible with) 7000 series
- First planned "family" of computers
 - —Similar or identical instruction sets
 - —Similar or identical O/S
 - —Increasing speed
 - —Increasing number of I/O ports (i.e. more terminals)
 - —Increased memory size
 - —Increased cost
- Multiplexed switch structure

IBM 360 series

DEC PDP-8

- 1964
- First minicomputer (after miniskirt!)
- Did not need air conditioned room
- Small enough to sit on a lab bench
- \$16,000
 - -\$100k + for IBM 360
- Embedded applications & OEM
- BUS STRUCTURE

DEC PDP-8

DEC - PDP-8 Bus Structure

Semiconductor Memory

- 1970
- Fairchild
- Size of a single core
 - —i.e. 1 bit of magnetic core storage
- Holds 256 bits
- Non-destructive read
- Much faster than core
- Capacity approximately doubles each year

Intel

- 1971 4004
 - —First microprocessor
 - —All CPU components on a single chip
 - —4 bit
- Followed in 1972 by 8008
 - _8 bit
 - —Both designed for specific applications
- 1974 8080
 - —Intel's first general purpose microprocessor

References

 AMDA67 Amdahl, G. "Validity of the Single-Processor Approach to Achieving Large-Scale Computing Capability", Proceedings of the AFIPS Conference, 1967.