M2177.0043 Introduction to Deep Learning

Lecture 6: Score functions and Loss functions¹

Hyun Oh Song¹

¹Dept. of Computer Science and Engineering, Seoul National University

April 2, 2020

¹ Many slides and figures adapted Justin Johnson

Last time

- Subgradient
- ► Online method

Outline

Score functions

Loss functions

Example score function for *C***-way classification**

Example score function for 3-way classification

Interpreting a learned linear classifier

Example scores for 3-way classification

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

How can we tell whether this \boldsymbol{W} parameter is good or bad? Score functions

Outline

Score functions

Loss functions

Loss function

- ▶ A loss function is a function that maps its events or values onto a real number intuitively representing some "cost" associated with the event.
- For the classification example, given a dataset of examples $\{(x_i,y_i)\}_{i=1}^n$ where x_i is image and y_i is label, loss over the dataset is a sum of loss over examples.

$$\ell(W) = \frac{1}{n} \sum_{i} \ell_{i} \left(\underbrace{f(x_{i}, W)}_{\text{score function}}, \underbrace{y_{i}}_{\text{label}} \right)$$

Multiclass hinge loss

Given an example (x_i,y_i) where x_i is the input data (i.e. image) and y_i is the label, and using the shorthand for the scores vector $s=f(x_i,W)$, the hinge loss has the form

$$\ell_i(W) = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Multinomial logistic loss

View scores as unnormalized log probabilities of the classes.

$$P(Y = k \mid X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Want to maximize the log likelihood or minimize the negative log likelihood of the correct class.

$$\ell_i(W) = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

Comparison

$$\ell_i(W) = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \qquad \qquad \ell_i(W) = -\log\left(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}}\right)$$

Assume following scores given the ground truth $y_i=0$. What happens to the loss if you perturb a datapoint a bit?

$$[\mathbf{10}, -2, 3]$$
$$[\mathbf{10}, 9, 9]$$
$$[\mathbf{10}, -100, -100]$$

Uniqueness

Suppose that we found a ${\cal W}$ such that the loss is zero. Is this ${\cal W}$ unique?

$$f(x, W) = Wx$$

$$\ell(W) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j \neq y_i} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + 1)$$

▶ Multiples of W also satisfies *i.e.* $\ell(2W) = 0$

$$\ell(W) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell_i(W)}_{}$$

Data loss: model predictions should match the training data

$$\ell(W) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell_i(W)}_{\text{Data loss: model predictions}} + \underbrace{\lambda R(W)}_{\text{Should match the training data}} + \underbrace{\lambda R(W)}_{\text{simple. so it works on test data}}$$

should match the training data

Loss functions 14

$$\ell(W) = \underbrace{\frac{1}{n}\sum_{i=1}^{n}\ell_{i}(W)}_{\text{Data loss: model predictions should match the training data}} + \underbrace{\lambda R(W)}_{\text{Regularization: Model should be simple. so it works on test data}}$$

- ▶ ℓ_2 regularization, $R(W) = ||W||_2$ (connection to MAP inference)
- ▶ ℓ_1 regularization, $R(W) = ||W||_1$ (sparse solution more on this later on Network Pruning lectures)
- ▶ Nuclear (trace) norm, $R(W) = \|W\|_* = \mathbf{Tr}(\sqrt{W^\top W}) = \sum_{i=1}^{\min(m,n)} \sigma_i(W)$
- ▶ Dropout, Batch normalization, etc.

- ► Regularization function quantifies the complexity of the model and penalizes complex models.
- ▶ Simpler models can *underfit*. Complex models can *overfit*.
- ▶ How do you choose the regularization constant λ ?

Loss functions 15

Regularization as a constraint²

▶ A *p*-norm regularized problem can be viewed as solving a constrained problem where the *p*-norm is less than or equal to some value *s*.

Figure: (Left) ℓ_1 constraint, (Right) ℓ_2 constraint balls. ℓ_1 constraint tends to generate sparser solutions.

²Introduction to statistical learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani