Rövid bevezetés a differenciálegyenlet rendszerekbe

Kmeť Tibor

Matematika és Informatika Tanszék GTK UJS

Modellezés és szimuláció, 2019/20

Outline

- 1 Közönséges differenciálegyenlet rendszerek DER
- 2 Lineáris differenciálegyenlet rendszerek
- 3 Egyensúlyi helyzetek (pontok) és stabilitásuk
- 4 A mátrix sajátértékei
- Vektormező
- 6 DER megodása MATLAB segítségével

Közönséges differenciálegyenlet rendszerek

Közönséges differenciálegyenlet rendszer alakja

$$\dot{x}(t) = f(x(t), t)$$
, ahol $f: \mathbb{R}^n \times \mathbb{R} \longrightarrow \mathbb{R}$

Autonóm, ha időfüggetlen

$$\dot{x}(t) = f(x(t)), \text{ ahol } f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

Az f függvényt jobboldalnak nevezzük, $x:\mathbb{R}\longrightarrow\mathbb{R}^n$ az ismeretlen függvény. Kezdeti feltétel $x(0)=x_0$.

Definíció

A DER megoldás olyan x(t) függvény, amely teljesíti az $\dot{x}(t) = f(x(t))$ egyenletet és $x(0) = x_0$.

Az $O = \{x(t) : t \ge 0\}$ halmazt trajektóriának nevezzük.

Lineáris differenciálegyenlet rendszerek

Állandó együtthatókkal

$$\dot{x}(t) = \mathbb{A}x(t)$$
, ahol $\mathbb{A} \in \mathbb{R}^n x \mathbb{R}^n$

Egyensúlyi helyzetek (pontok) és stabilitásuk

Definíció (egyensúlyi helyzet)

Az autonóm DER egy konstans $x(t) = \bar{x}$ megoldását ami teljesíti az f(x) = 0 algebrai egyenletrendszert, egyensúlyi helyzetnek (pontnak) nevezzük.

A trajektóriák viselkedése az egyensúlyi pontok kis környezetében linearizálással határozható meg. A linearizált egyenlet, melynek mátrixát Jakobi-mátrixnak nevezzük meghatározza a fázisképet (iránymezőt)a következő alakú

$$\dot{y}(t) = \frac{\partial f(\bar{x})}{\partial x} y(t),$$

ahol $y(t) = x(t) - \bar{x}$ (lineáris DER állandó együtthatókkal).

Definíció

Az \bar{x} egyensúlyi helyzetet stabilisnak nevezzük, ha tetszőleges $\epsilon>0$ értékhez létezik olyan $\beta>0$, hogy bármely olyan x(t) megoldásra, melyre $x(0)=x_0$ és $|\bar{x}-x_0|<\beta$, teljesül $|x(t)-\bar{x}|<\epsilon$, minden $t\geq 0$ értékre. Az egyensúlyi helyzet instabilis, ha nem stabil. Az egyensúlyi helyzet aszimptotikusan stabilis, ha stabilis és létezik olyan $\alpha>0$, hogy $\lim_{t\to\infty}=\bar{x}$

Tétel

minden $|\bar{x} - x_0| < \beta$.

- 1. Ha az $\frac{\partial f(\bar{x})}{\partial x}$ mátrix minden sajátértékének negatív a valós része, akkor \bar{x} aszimptotikusan stabilis egyensúlyi pontja a DER-nek.
- 2. Ha az $\frac{\partial f(\bar{x})}{\partial x}$ mátrixnak van pozitív valósrészű sajátértéke, akkor \bar{x} instabilis egyensúlyi pontja az DER-nek.

A mátrix sajátértékei

Definíció

Azt mondjuk, hogy a λ szám az $\mathbb A$ mátrix sajátértéke, ha létezik olyan nemnulla v vektor, melyre érvényes $\mathbb A v = \lambda v$. Az ilyen v vektorokat az $\mathbb A$ mátrix λ sajátértékhez tartozó sajátvektorainak nevezzük.

A nem nullvektor v pontosan akkor egy λ sajátértékhez tartozó sajátvektor, ha kielégíti az $\mathbb{A}v = \lambda v$ egyenletet, azaz az $\mathbb{A}v - \lambda v = 0$ egyenletet, vagyis ha megoldása a homogén lineáris $(\mathbb{A} - \lambda I)v = 0$ egyenletnek. Tehát minden λ a következő karakterisztikus polinom gyöke $\det(\mathbb{A} - \lambda I) = 0$. (A gyökök lehetnek komplex számok is.)

Vektormező

Közönséges differenciálegyenlet rendszer alakja

$$\dot{x}(t) = f(x(t), t)$$
, ahol $f: \mathbb{R}^n x \mathbb{R} \longrightarrow \mathbb{R}$

Autonóm, ha időfüggetlen

$$\dot{x}(t) = f(x(t)), \text{ ahol } f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

Jelöljük n=1 t idő esetén

$$G = \{m_{ij} | m_{ij} = (1, f(x_i, t_j)), \text{ ahol } x_i = c + ih, t_j = a + kj\}$$

Jelöljük n = 2 időfüggetlen esetén

$$G = \{m_{ij} | m_{ij} = f(x_{1i}, x_{2j}), \text{ ahol } x_{1i} = c + ih, x_{2j} = a + kj\}$$

$$i = 1, ..., N, j = 1, ..., M, h = \frac{d - c}{N}, k = \frac{b(T) - a(0)}{M}$$

DER megodása MATLAB segítségével

- ODE SOLVER-ek használata a MATLAB-ban
- ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb.
- $[t, x] = solver(odefun, tspan, x_0)$
- $[t, x] = solver(odefun, tspan, x_0, options, const1, constn)$
- Bemenő argumentumok
- odefun Annak a function-nak a neve, amiben letároltuk az egyenletünket.
- tspan Az integrálás határait megadó vektor.
- x₀ A kezdeti feltételek vektora.
- options Plusz opciókat is készíthetünk a solver számára az odeset függvény segítségéve.
- A modellben előforduló konstánsok.
- Kimenet
- $t \text{ Idő, ahol } t = (0, t_1, \dots, t_N)$
- x Megoldás, ahol $x = (x(0), x(t_1), \dots, x(t_N))$