Exercice de base sur la complexité

Exercice 1: On considère dans cet exercice les problèmes de décision 3-sat et clique définis de la manière suivante :

3-SAT

Input : U un ensemble de variables booléennes, C un ensemble de clauses de 3 termes chacunes.

Question : Peut on fixer les valeurs des variables de sorte que toutes les clauses soient vérifiées ?

Clique

Input : Un graphe non orienté G = (V, E), un entier k > 0;

Question : Est-ce que G possède une clique de taille k au minimum, ie. un ensemble de sommmets $V' \subseteq V$ avec $|V'| \ge k$ et pour tout couple $(u, v) \in V'^2$, $\{u, v\} \in E$?

- 1. Décrire le fonctionnement d'un algorithme naif non déterministe pour résoudre le problème CLIQUE. Quelle est sa complexité pour une NDTM? Pouvez vous en déduire que CLIQUE $\in NP$?
- 2. Décrire un certificat et un vérificateur pour les problèmes 3-SAT et CLIQUE.
- 3. On souhaite démontrer que 3-SAT \propto CLIQUE. Pour cela, on considère une instance \mathcal{I} de 3-SAT définie par $U=\{x_1,\ldots,x_n\}$ l'ensemble des variables booléennes et $C=\{c_1,\ldots,c_m\}$ l'ensemble des clauses de taille 3. Chaque clause est de la forme $c_j=\ell_j^1\vee\ell_j^2\vee\ell_j^3$ avec $\ell_j^i\in\{x_1,\ldots,x_n,\bar{x_1},\ldots,\bar{x_n}\}$.

Soit alors $f(\mathcal{I})$ l'instance associée à \mathcal{I} de CLIQUE définie de la manière suivante :

- 1. $V = \bigcup_{j=1}^{m} \{\ell_j^1, \ell_j^2, \ell_j^3\};$
- 2. L'arête $\{u,v\} \in E$ si les sommets u et v ne sont pas dans la même clause, et u n'est pas la négation de v;
- 3. k = m.

On considère dans cette question l'instance \mathcal{I} de 3-SAT définie par $U = \{x_1, x_2, x_3, x_4\}$ et $C = \{c_1, c_2, c_3\}$ avec $c_1 = x_1 \vee \bar{x}_3 \vee \bar{x}_4$, $c_2 = \bar{x}_1 \vee \bar{x}_2 \vee x_3$ et $c_3 = x_1 \vee x_2 \vee \bar{x}_4$.

- 1. Décrire l'instance $f(\mathcal{I})$ de CLIQUE associée à l'instance \mathcal{I} de 3-SAT;
- 2. A partir d'une solution que vous déterminerez de \mathcal{I} , donnez une solution de $f(\mathcal{I})$;
- 3. A partir d'une solution que vous déterminerez de $f(\mathcal{I})$, donnez une solution de \mathcal{I} .
- 4. Démontrez que f est une réduction polynomiale. Que peut-on en déduire de la complexité de CLIQUE?

Exercice 2: Dans cet exercice, on considère les problèmes Independent-Set et Vertex-Cover definis par :

Independent-Set

Input : Un graphe non orienté G = (V, E), un entier k > 0;

Question : Est-ce que G contient un stable (« Independent Set » en anglais) de taille au moins k, ie. un ensemble d'au moins k sommets $V' \subseteq V$ tels que pour tout couple $(u,v) \in V'^2$, l'arête $\{u,v\} \notin E$?

Vertex-Cover

Input: Un graphe non orienté G = (V, E), un entier $\ell > 0$;

Question : Est-ce que G possède un couverture de taille au plus ℓ , ie. un ensemble d'au plus ℓ sommets $V' \subseteq V$ tel que, pour toute arête $\{u,v\} \in E, u \in V'$ ou $v \in V'$?

- 1. Est-ce que les problèmes Independent-Set et Vertex-Cover sont dans NP? Justifiez votre réponse.
- 2. On considère dans cette question le graphe non orienté G = (V, E) avec $V = \{1, 2, 3, 4, 5\}$ et $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 5\}, \{4, 5\}, \{2, 4\}\}$.
 - 1. Quelle est la réponse à CLIQUE pour k = 3? k = 4?
 - 2. Le complément d'un graphe non orienté G = (V, E) est un graphe non oriente $\overline{G} = (V, \overline{E})$ avec $\overline{E} = \{\{u, v\}, (u, v) \in V^2 \text{ et } \{u, v\} \notin E\}$. Construire le complémentaire de G.
 - 3. Proposez une transformation de notre instance de Clique avec k=3 vers une instance de Independent-Set.
- 3. Soit $\mathcal I$ une instance de CLIQUE quelconque.
 - 1. Proposez une transformation de \mathcal{I} vers une instance $f(\mathcal{I})$ de Independent-Set.
 - 2. Démontrez qu'il s'agit d'une transformation polynomiale.
 - 3. Que pouvez vous en déduire de la complexité de Independent-Set?
 - 4. Que pensez-vous de f^{-1} . Conclusion?
- 4. Soit G = (V, E) un graphe non orienté.
 - 1. Démontrez que S est un stable de G ssi $V \setminus S$ est une couverture de G.
 - 2. En déduire une transformation polynomiale g de Independent-Set vers Vertex-Cover.
 - 3. Que peut-on en déduire de Vertex-Cover?

Exercice 3: On considère dans cet exercice le problème suivant :

Vertex k-coloring

Input: Un graphe non orienté G = (V, E), un entier k > 0;

Question : Est-ce que les sommets de G peuvent être coloriés en au plus k couleurs différentes telles que, pour toute arête $e = \{u, v\} \in E$, les sommets u et v ont des couleurs différentes.

- 1. Dans cette question, on considère le graphe G = (V, E) avec $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ et $E = \{\{1, 2\}, \{1, 3\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 4\}, \{4, 5\}, \{5, 6\}, \{5, 7\}, \{6, 8\}, \{7, 8\}\}$. Quelle est la réponse au problème VERTEX k-COLORING pour G et k = 2? k = 3? Justifiez votre réponse.
- 2. Démontrez que Vertex k-coloring $\in NP$.
- 3. Démontrez que le problème VERTEX k-COLORING est polynomial pour k=2. Quelle est la complexité de l'algorithme obtenu?
- 4. On veut démontrer que 3-Sat \propto Vertex 3-coloring. Pour cela, on considère une instance \mathcal{I} de 3-Sat définie par $U=\{x_1,\ldots,x_n\}$ l'ensemble des variables booléennes et $C=\{c_1,\ldots,c_m\}$ l'ensemble des clauses de taille 3. Chaque clause est de la forme $c_j=\ell_j^1\vee\ell_j^2\vee\ell_j^3$ avec $\ell_j^i\in\{x_1,\ldots,x_n,\bar{x_1},\ldots,\bar{x_n}\}$.

On définie partiellement la transformation suivante. L'ensemble des sommets V du graphe G est composé de :

- 1. 3 sommets spéciaux VRAI, FAUX et ROUGE;
- 2. des sommets x_i et \bar{x}_i pour $i \in \{1, \ldots, n\}$;
- 3. de 5 sommets c_j^1, \ldots, c_j^5 associés à toute clause c_j pour $i \in \{1, \ldots, m\}$.

L'ensemble des arêtes E est partitionné en deux ensembles E_1 et E_2 :

- 1. E_1 est associé aux littéraux : $E_1 = \bigcup_{i \in \{1,\dots,n\}} \{\{x_i,\bar{x}_i\}, \{x_i, \text{Rouge}\}, \{\bar{x}_i, \text{Rouge}\}\} \cup \{\{\text{Rouge}, \text{Faux}\}, \{\text{Rouge}, \text{Vrai}\}, \{\text{Vrai}, \text{Faux}\}\};$
- 2. E_2 est associé aux clauses et sera définie ultérieurement.

On note alors c(x) la couleurs d'un sommet.

Pour tout $i \in \{1, ..., n\}$, quelle sont les valeurs possibles des couples $(c(x_i), c(\bar{x}_i)), i \in \{1, ..., n\}$ en fonction de c(VRAI), c(FAUX) et c(ROUGE)?

5. On considère le sous-graphe partiel représenté par la figure 1 et associé à la clause $c_1 = (x \vee y \vee z)$.

Montrez que si chacun des noeuds x, y et z est colorié en c(VRAI) ou c(FAUX), alors le coloriage est réalisable si et seulement si au moins un des trois sommets x, y ou z est colorié en c(VRAI).

FIGURE 1 – Sous-graphe partiel correspondant à une clause $c_1 = (x \vee y \vee z)$.

- 6. Complétez la transformation et la preuve pour démontrer que 3-Sat \propto Vertex 3-coloring. Quelle est la complexité de Vertex 3-coloring?
- 7. Pour tout k>3, montrez que Vertex 3-coloring \propto Vertex k-coloring. Conclusion ?