Aula 02 - KNN - Exercícios

Exercício 1

Utilizando o dataset breast_cancer_train.csv, desenvolva um modelo KNN (utilizando o sklearn) com o objetivo de prever se o resultado de uma biópsia indica a presença de câncer malígno. Procure fazer com que o seu o modelo não apresente **overfitting** e maximize a acurácia.

Ao final, reporte:

- 1 A acurácia, precisão e recall do seu modelo na base utilizada para treino e validação
- 2 A acurácia, precisão e recall do seu modelo na base breast_cancer_test.csv
- 3 O K escolhido
- 4 Qual é a variável mais importante no processo de decisão? Você pode usar uma árvore para responder

```
import pandas as pd
In [1]:
         df cancer train = pd.read csv('breast cancer train.csv')
         df cancer test = pd.read csv('breast cancer test.csv')
        df cancer train.head()
Out[4]:
                                                                                                                                                 concave
                   id diagnosis radius mean texture mean perimeter mean area mean smoothness mean compactness mean concavity mean
                                                                                                                                                             radius worst texture worst pe
                                                                                                                                             points mean
              857156
                              В
                                       13.49
                                                      22.30
                                                                      86.91
                                                                                 561.0
                                                                                                 0.08752
                                                                                                                    0.07698
                                                                                                                                    0.047510
                                                                                                                                                 0.033840 ...
                                                                                                                                                                    15.15
                                                                                                                                                                                  31.82
              844981
                                       13.00
                                                      21.82
                                                                      87.50
                                                                                 519.8
                                                                                                 0.12730
                                                                                                                    0.19320
                                                                                                                                    0.185900
                                                                                                                                                 0.093530 ...
                                                                                                                                                                    15.49
                                                                                                                                                                                  30.73
         2 88330202
                             Μ
                                       17.46
                                                      39.28
                                                                     113.40
                                                                                 920.6
                                                                                                 0.09812
                                                                                                                    0.12980
                                                                                                                                    0.141700
                                                                                                                                                 0.088110 ...
                                                                                                                                                                    22.51
                                                                                                                                                                                  44.87
                                                                                                                                                                                  41.78
         3 88203002
                                       11.22
                                                      33.81
                                                                     70.79
                                                                                 386.8
                                                                                                 0.07780
                                                                                                                    0.03574
                                                                                                                                    0.004967
                                                                                                                                                 0.006434 ...
                                                                                                                                                                    12.36
              892189
                             М
                                       11.76
                                                      18.14
                                                                      75.00
                                                                                 431.1
                                                                                                 0.09968
                                                                                                                    0.05914
                                                                                                                                    0.026850
                                                                                                                                                 0.035150 ...
                                                                                                                                                                    13.36
                                                                                                                                                                                  23.39
```

5 rows × 32 columns

In [5]: df_cancer_train.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 455 entries, 0 to 454
Data columns (total 32 columns):
     Column
                              Non-Null Count Dtype
     -----
                              -----
                                              ----
     id
 0
                              455 non-null
                                              int64
     diagnosis
                              455 non-null
 1
                                              object
     radius mean
                              455 non-null
 2
                                              float64
 3
     texture mean
                              455 non-null
                                              float64
                              455 non-null
     perimeter mean
                                              float64
 5
     area mean
                              455 non-null
                                              float64
                              455 non-null
     smoothness mean
                                              float64
 6
 7
     compactness mean
                              455 non-null
                                              float64
 8
     concavity mean
                              455 non-null
                                              float64
 9
     concave points mean
                              455 non-null
                                              float64
 10
    symmetry mean
                              455 non-null
                                              float64
 11 fractal dimension mean
                             455 non-null
                                              float64
 12 radius se
                              455 non-null
                                              float64
 13 texture se
                              455 non-null
                                              float64
                              455 non-null
                                              float64
     perimeter se
 15 area se
                              455 non-null
                                              float64
 16 smoothness se
                              455 non-null
                                              float64
 17 compactness se
                              455 non-null
                                              float64
 18 concavity se
                              455 non-null
                                              float64
                              455 non-null
 19 concave points se
                                              float64
                              455 non-null
 20 symmetry se
                                              float64
 21 fractal dimension se
                              455 non-null
                                              float64
 22 radius worst
                              455 non-null
                                              float64
 23 texture worst
                              455 non-null
                                              float64
 24 perimeter worst
                              455 non-null
                                              float64
 25 area worst
                              455 non-null
                                              float64
 26 smoothness worst
                              455 non-null
                                              float64
 27 compactness worst
                              455 non-null
                                              float64
 28 concavity worst
                              455 non-null
                                              float64
 29 concave points worst
                              455 non-null
                                              float64
 30 symmetry worst
                              455 non-null
                                              float64
 31 fractal dimension worst 455 non-null
                                              float64
dtypes: float64(30), int64(1), object(1)
memory usage: 113.9+ KB
df cancer train['diagnosis'] = df cancer train['diagnosis'].map({'M': 1, 'B': 0})
```

df cancer train.head()

	1	844981	1	13.00	21.82	87.50	519.8	0.12730	0.19320	0.185900	0.093530	15.49	30.73	
	2 88	3330202	1	17.46	39.28	113.40	920.6	0.09812	0.12980	0.141700	0.088110	22.51	44.87	
	3 88	8203002	0	11.22	33.81	70.79	386.8	0.07780	0.03574	0.004967	0.006434	12.36	41.78	
	4	892189	1	11.76	18.14	75.00	431.1	0.09968	0.05914	0.026850	0.035150	13.36	23.39	
	5 row	s × 32 column	S											
4													•	
													,	
In [7]:	<pre>X = df_cancer_train.drop(['id', 'diagnosis'], axis=1) y = df_cancer_train['diagnosis'] print(X.shape, y.shape)</pre>													
	(455, 30) (455,)													
In [8]:	# Ho	ld out												
	<pre>from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X,</pre>													
	y, test_size=0.3,													
						random_sta	te=12)							
	<pre>print(X_train.shape, y_train.shape) print(X_valid.shape, y_valid.shape)</pre>													
		, 30) (318,) , 30) (137,)												
In [9]:	from	sklearn.nei	ghbors im	port KNeighb	orsClassifier									
In [13]:	from	sklearn.met	rics impo	rt accuracy :	score, precisi	ion score, r	ecall score							
[]	from	matplotlib :	import py	plot as plt	, p	,								
	valo	res_k = []												
	taxa	_overfit = []											
		k in range(1												
		<pre>modelo = KNe: modelo.fit(X)</pre>			eighbors=k)									
		y_train_pred			nain)									
		y_crain_pred	- modeio	· pr eutct(x_t	aill)									

... radius worst texture worst pe

31.82

15.15

points_mean

0.033840 ...

0.047510

id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean

561.0

0.08752

0.07698

86.91

13.49

22.30

0

Out[6]:

857156

```
y_valid_pred = modelo.predict(X_valid)
acc_train = accuracy_score(y_train, y_train_pred)
prec_train = precision_score(y_train, y_train_pred)
rec_train = recall_score(y_train, y_train_pred)
acc_valid = accuracy_score(y_valid, y_valid_pred)
prec_valid = precision_score(y_valid, y_valid_pred)
rec_valid = recall_score(y_valid, y_valid_pred)
valores_k.append(k)
taxa_overfit.append(acc_train-acc_valid)
print('\n##############\n')
print(f'Treino k={k}:\nAcc: {acc_train:.2f}, Precision: {prec_train:.2f}, Recall: {rec_train:.2f}')
print(f'Validação k={k}:\nAcc: {acc_valid:.2f}, Precision: {prec_valid:.2f}, Recall: {rec_valid:.2f}')
plt.figure(figsize=(8,8))
plt.plot(valores_k, taxa_overfit)
plt.show()
```

#############

Treino k=1:

Acc: 1.00, Precision: 1.00, Recall: 1.00

Validação k=1:

Acc: 0.96, Precision: 0.94, Recall: 0.96

###############

Treino k=2:

Acc: 0.94, Precision: 1.00, Recall: 0.83

Validação k=2:

Acc: 0.93, Precision: 0.97, Recall: 0.81

#############

Treino k=3:

Acc: 0.94, Precision: 0.95, Recall: 0.89

Validação k=3:

Acc: 0.97, Precision: 0.96, Recall: 0.96

#############

Treino k=4:

Acc: 0.94, Precision: 0.97, Recall: 0.87

Validação k=4:

Acc: 0.96, Precision: 0.98, Recall: 0.90

##############

Treino k=5:

Acc: 0.94, Precision: 0.94, Recall: 0.90

Validação k=5:

Acc: 0.97, Precision: 0.98, Recall: 0.94

#############

Treino k=6:

Acc: 0.93, Precision: 0.97, Recall: 0.84

Validação k=6:

Acc: 0.96, Precision: 0.98, Recall: 0.92

##############

Treino k=7:

Acc: 0.94, Precision: 0.94, Recall: 0.90

Validação k=7:

Acc: 0.96, Precision: 0.98, Recall: 0.92

#############

Treino k=8:

Acc: 0.94, Precision: 0.96, Recall: 0.86 Validação k=8: Acc: 0.95, Precision: 0.98, Recall: 0.88 ############## Treino k=9: Acc: 0.94, Precision: 0.95, Recall: 0.88 Validação k=9: Acc: 0.96, Precision: 0.98, Recall: 0.90 ################ Treino k=10: Acc: 0.93, Precision: 0.96, Recall: 0.84 Validação k=10: Acc: 0.96, Precision: 0.98, Recall: 0.90 ############## Treino k=11: Acc: 0.93, Precision: 0.95, Recall: 0.86 Validação k=11: Acc: 0.97, Precision: 0.98, Recall: 0.94 ############# Treino k=12: Acc: 0.93, Precision: 0.97, Recall: 0.84 Validação k=12: Acc: 0.96, Precision: 0.98, Recall: 0.90 ############## Treino k=13: Acc: 0.93, Precision: 0.94, Recall: 0.85 Validação k=13: Acc: 0.97, Precision: 0.98, Recall: 0.94 ############### Treino k=14: Acc: 0.93, Precision: 0.97, Recall: 0.83 Validação k=14: Acc: 0.96, Precision: 0.98, Recall: 0.90 ############# Treino k=15: Acc: 0.93, Precision: 0.94, Recall: 0.85 Validação k=15: Acc: 0.96, Precision: 0.98, Recall: 0.90

##############

Treino k=16:

Acc: 0.93, Precision: 0.97, Recall: 0.83

Validação k=16:

Acc: 0.96, Precision: 0.98, Recall: 0.90

#############

Treino k=17:

Acc: 0.92, Precision: 0.94, Recall: 0.84

Validação k=17:

Acc: 0.96, Precision: 0.98, Recall: 0.92

##############

Treino k=18:

Acc: 0.92, Precision: 0.96, Recall: 0.83

Validação k=18:

Acc: 0.95, Precision: 0.98, Recall: 0.88

##############

Treino k=19:

Acc: 0.92, Precision: 0.95, Recall: 0.83

Validação k=19:

Acc: 0.96, Precision: 0.98, Recall: 0.90

#############

Treino k=20:

Acc: 0.92, Precision: 0.95, Recall: 0.82

Validação k=20:

Acc: 0.96, Precision: 0.98, Recall: 0.90

##############

Treino k=21:

Acc: 0.92, Precision: 0.95, Recall: 0.82

Validação k=21:

Acc: 0.96, Precision: 0.98, Recall: 0.90

#############

Treino k=22:

Acc: 0.92, Precision: 0.96, Recall: 0.80

Validação k=22:

Acc: 0.95, Precision: 0.98, Recall: 0.88

##############

Treino k=23:

Acc: 0.92, Precision: 0.96, Recall: 0.80

Validação k=23:

Acc: 0.96, Precision: 0.98, Recall: 0.90

##############

Treino k=24:

Acc: 0.92, Precision: 0.97, Recall: 0.80

Validação k=24:

Acc: 0.94, Precision: 0.98, Recall: 0.85

##############

Treino k=25:

Acc: 0.92, Precision: 0.97, Recall: 0.80

Validação k=25:

Acc: 0.94, Precision: 0.98, Recall: 0.85

##############

Treino k=26:

Acc: 0.92, Precision: 0.97, Recall: 0.80

Validação k=26:

Acc: 0.94, Precision: 0.98, Recall: 0.85

################

Treino k=27:

Acc: 0.92, Precision: 0.97, Recall: 0.80

Validação k=27:

Acc: 0.94, Precision: 0.98, Recall: 0.85

##############

Treino k=28:

Acc: 0.92, Precision: 0.97, Recall: 0.79

Validação k=28:

Acc: 0.94, Precision: 0.98, Recall: 0.85

#############

Treino k=29:

Acc: 0.92, Precision: 0.97, Recall: 0.80

Validação k=29:

Acc: 0.95, Precision: 0.98, Recall: 0.88


```
Treino:
    Acc: 0.93, Precision: 0.97, Recall: 0.84
    Validação:
    Acc: 0.96, Precision: 0.98, Recall: 0.90

In [20]: from sklearn.tree import DecisionTreeClassifier, plot_tree
    arvore_auxiliar = DecisionTreeClassifier(max_depth=2)
    arvore_auxiliar.fit(X_train, y_train)
    plt.figure(figsize=(20, 20))
    plot_tree(arvore_auxiliar, feature_names=X_train.columns)
    plt.show()
```



```
gini = 0.375
samples = 24
value = [6, 18]
```

```
gini = 0.0 

samples = 1 

value = [1, 0]
```

```
gini = 0.0
samples = 90
value = [0, 90]
```

Resultados

1 - A acurácia, precisão e recall do seu modelo na base utilizada para treino e validação

```
In [21]: print(f'Treino:\nAcc: {acc_train:.2f}, Precision: {prec_train:.2f}, Recall: {rec_train:.2f}')
    print(f'Validação:\nAcc: {acc_valid:.2f}, Precision: {prec_valid:.2f}, Recall: {rec_valid:.2f}')

Treino:
    Acc: 0.93, Precision: 0.97, Recall: 0.84
    Validação:
    Acc: 0.96, Precision: 0.98, Recall: 0.90
```

2 - A acurácia, precisão e recall do seu modelo na base breast_cancer_test.csv

```
In [22]: df_cancer_test['diagnosis'] = df_cancer_test['diagnosis'].map({'M': 1, 'B': 0})

df_cancer_test.head()
```

Out[22]:

]:		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	•••	radius_worst	texture_worst	pe
	0	84348301	1	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520		14.91	26.50	
	1	84358402	1	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430		22.54	16.67	
	2	843786	1	12.45	15.70	82.57	477.1	0.12780	0.17000	0.15780	0.08089		15.47	23.75	
	3	846226	1	19.17	24.80	132.40	1123.0	0.09740	0.24580	0.20650	0.11180		20.96	29.94	
	4	855133	1	14.99	25.20	95.54	698.8	0.09387	0.05131	0.02398	0.02899		14.99	25.20	

5 rows × 32 columns

4 - Qual é a variável mais importante no processo de decisão? Você pode usar uma árvore para responder

Baseado na árvore, a variável mais importante é a perimeter_worst.

Exercício 2

Out[26]

Utilizando o dataset movies_data.csv, desenvolva um modelo que, dada a escolha de um filme, apresente uma sugestão com os 3 filmes mais parecidos.

Dica: adapte a classe KNN_Custom, vista na aula, para resolver esse problema.

```
In [26]: df_movies = pd.read_csv('movies_data.csv')
    df_movies.head()
```

:	Movie Name	IMDB Rating	Biography	Drama	Thriller	Comedy	Crime	Mystery	History	Label
(The Imitation Game	8.0	1	1	1	0	0	0	0	0
1	Ex Machina	7.7	0	1	0	0	0	1	0	0
2	A Beautiful Mind	8.2	1	1	0	0	0	0	0	0
3	Good Will Hunting	8.3	0	1	0	0	0	0	0	0
4	Forrest Gump	8.8	0	1	0	0	0	0	0	0

```
In [89]: import numpy as np
    from scipy import stats

# Definição da nossa classe

class KNN_Custom:
```

```
def init (self, k, data):
                  # Inicializando nosso modelo
                 self. k = k + 1
                 self. data = data.copy()
             def predict(self, movie, features):
                 # Garantimos que estamos tratando uma array do numpy
                 X = self. data.loc[self. data['Movie Name'] == movie, features].to numpy().reshape(-1)
                 # Criamos nossa tabela de distâncias
                 self. dist table = pd.DataFrame(columns=['sample index', 'distance'])
                 # Iteramos sobre todos os pontos
                 for i in range(len(self. data)):
                     # Selecionamos o ponto atual
                     ponto atual = self. data[features].iloc[i].to numpy()
                     # Calculamos a distância
                     dist = np.linalg.norm(X-ponto atual)
                     # Adicionamos o valos à tabela
                     self. dist table = self. dist table.append({'sample index': i, 'distance': dist}, ignore index=True)
                 # Ordenamos a tabela pela distância
                 self. dist table = self. dist table.sort values('distance')
                 # Selecionamos os índices com as K menores distâncias
                 self. vetor indices = self. dist table.sort values('distance')['sample index'].to numpy()[1:self. k]
                 # Retornamos a moda das categorias selecionadas
                 return self. data.loc[self. vetor indices, 'Movie Name']
             def repr (self):
                 return f'KNN implementado manualmente! K={self._k}'
In [90]: modelo = KNN_Custom(k=3, data=df_movies)
In [91]: features = df movies.drop('Movie Name', axis=1).columns.to list()
          features
```

```
['IMDB Rating',
           'Biography',
          'Drama',
          'Thriller',
          'Comedy',
          'Crime',
          'Mystery',
          'History',
          'Label']
In [94]: movie = 'Forrest Gump'
         modelo.predict(movie, features)
         12.0
                      Interstellar
Out[94]:
         3.0
                 Good Will Hunting
         15.0
                         Inception
         Name: Movie Name, dtype: object
 In [ ]:
```