INDIAN INSTITUE OF TECHNOLOGY, KHARAGPUR

MID-TERM EXAMINATION

Session: 2012-2013

Вl

Semester: Autumn

Subject: Engineering Economy, Costing, and Accounting (IM 21001)

Full Marks: 30 Time: Two hours

Answer all questions. They carry equal marks. Use the Attached Interest Table for 10 % per Year

Question 1

- a. What are the considerations for selecting a value of the minimum attractive rate of return?
- b. What are the merits and demerits of the internal rate of return method as a method of evaluating economic alternatives?
- c. How is the economic life of a challenging asset estimated in the replacement analysis?
- d. Where is the benefit-cost ratio used and why?

Question 2

There is a continuing requirement for standby electrical power at a public utility service facility. Equipment alternative S1 involves an initial cost of Rs. 720,000, a 9-year useful life, annual expenses of Rs. 22,000 in the first year and increasing by Rs.3,000 per year thereafter, and a net market value of Rs. 84,000 at the end of the useful life. Alternative S2 has an initial cost of Rs. 900,000, a 12-year useful life, annual expenses of Rs. 21,000 the first year and increasing by Rs. 2,000 per year thereafter, and a net market value of Rs. 130,000 at the end of the useful life. The current interest rate is 10 % per year. Which alternative is preferred using the capitalized worth method of analysis?

Question 3

A centerless grinder can be bought new for Rs. 180,000. It will have an eight-year useful life and no terminal market value. Reduction in operating expenses (savings) from the machine will be Rs. 80,000 in each of the first four years and Rs. 30,000 in each of the last four years. Depreciation will be by the double-declining balance method with switchover to straight-line method. A used grinder can be bought for Rs. 80,000 and will have no scrap value after eight years. It will save an amount of Rs. 30,000 per year over the eight-year period and will be depreciated Rs.10,000 per year. The effective income tax is 40 %. Determine the PW of the incremental after-tax cash flow. Which alternative is preferred? The after-tax MARR is 10 %.

TABLE C-13 Discrete Compounding; *i* = 10%

	Single Paymen	<u>t</u>	Uniform Seriee				Uniform Gradient		
	Compound Amount Factor	Present Worth Factor	Compound Amount Factor	Presen. Worth Factor	Sinking Fund Factor	Capital Recovery Factor	Gradient Present Worth Factor	Gradient Uniform Series Factor	
N	To Find F Given P F/P	To Find P Given F P/F	To Find F Given A F/A	To Find P Given A PIA	To Find A Given F A/F	To Find A Given P A/P	To Find P Given G P/G	To Find A Given G A/G	N
1	1.1000	0.9091	1.0000	0.9091	1.0000	1.1000	0.000	0.0000	
2	1.2100	0.8264	2.1000	1.7355	0.4762	0.5762	0.826	0.4762	
3	1.3310	0.7513	3.3100	2.4869	0.3021	0.4021	. 2.329	0.9366	
4	1.4641	0.6830	4.6410	3.1699	0.2155	0.3155	4.378	1.3812	
5	1.6105	0.6209	6.1051	3.7908	0.1638	0.2638	6.862	1.8101	
6	1,7716	0.5645	7.7156	4.3553	0.1296	0.2296	9.684	2.2236	
7	1.9487	0.5132	9.4872	4.8684	0.1054	0.2054	12.763	2.6216	
8	2.1436	0.4665	11.4359	5.3349	. 0.0874	0.1874	16.029	3.0045	
9	2.3579	0.4241	13.5795	5.7590	0.0736	0.1736	19.422	3.3724	
10	2.5937	0.3855	15,9374	6.1446	0.0627	0.1627	. 22.891	3.7255	1
11	2.8531	0.3505	18.5312	6.4951	0.0540	0.1540	26.396	4.0641	1
12	3.1384	0.3186	21.3843	6.8137	0.0468	0.1468	29.901	4.3884	. 1
13	3.4523	0.2897	24.5227	7.1034	0.0408	0.1408	33.377	4.6988	1
14	3.7975	0.2633	27.9750	7.3667	0.0357	0.1357	36.801	4.9955	1
15	4.1772	0.2394	31,7725	7.6061	0.0315	0.1315	40.152	5.2789	1
16	4.5950	0.2176	35.9497	7.8237	0.0278	0.1278	43.416	5.5493	1
17	5.0545	0.1978	40.5447	8.0216	0.0247	0.124	46.582	5.8071	1
18	5.5599	0.1799	45.5992	8.2014	0.0219	0.1219	49.640	6.0526	1
19	6.1159	0.1635	51.1591	8.3649	0.0195	0.1195	52.583	6.2861	1
20	6.7275	0.1486	57.2750	8.5136	0.0175	1175،0	55.407	5.5081	2
21	7.4002	0.1351	64.0025	8.6487	0.0156	0.1156	58.110	6.7189	. 2
22	8.1403	0.1228	71.4027	8.7715	0.0140	0.1140	60.689	6.9189	2
22 23	8.9543	0.1117	79.5430	8.8832	0.0126	. 0.1126	63.146	7.1085	2
24.	9.8497	0.1015	88.4973	8.9847	0.0113	0.1113	65.481	7.2881	2
25	10.8347	0.0923	98.3471	9.0770	0.0102	0.1102	67.696	7.4580	2
30	17.4494	0.0573	164.4940	9.4269	0.0061	0.1061	77.077	8.1762	3
35	28.1024	0.0356	271.0244	9.6442	0.0037	0.1037	83.987	8.7086	3
40	45.2593	0.0221	442.5926	9.7791	0.0023	0.1023	88.953	9.0962	4
45	72.8905	. 0.0137	718.9048	9.8628	0.0014	0.1014	92.454	9.3740	4
50	117.3909	0.0085	1163.9085	9.9148	0.0009	0.1009	94.889	9.5704	5
60	304.4816	0.0033	3034.8164	9.9672	0.0003	0.1003	97.701	9.8023	6
80	2048.4002	0.0005	20474.0021	9.9951	•	0.1000	99.561	9.9609	8
100	13780.6123	0.0001	137796.1234	9.9993		0.1000	99.920	9.9927	10
00			•	10.0000		0.1000			•

[&]quot; Less than 0.0001.