Homework No.1

CS520 / KAIST Fall 2015

Due: October 5, 2015 2:30PM

1.	Consider the	expressions	defined	by the	following	abstract	syntax

$$e \rightarrow 0 \mid 3 \mid e+e \mid e*e$$

where "+" and "*" are addition and multiplication, respectively.

- (a) Define the denotational semantics of *e* precisely. You need to state what are the domain of meaning and the signature of semantic function.
- (b) Show by structural induction that every expression's value is the multiple of 3.
- (c) Define natural semantics (operational semantics) for e. \square
- 2. Let **P** be the vertical domain of the natural numbers, $\{0, 1, 2, ..., \infty\}$ where

$$0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq 3 \sqsubseteq \dots \sqsubseteq \infty$$
, and **P'** the two-element domain $\{\bot, \top\}$ where $\bot \sqsubseteq \top$.

Then the monotone function " $fx \equiv ifx = \infty$ then \top else \bot " is not continuous.

- (a) Why is the function f "not continuous"? Explain.
- (b) Let a function f_k be $f_k x \equiv \text{if } x \leq k \text{ then } \bot \text{ else } \top$. Then is the function f_k continuous? Exlain why or why not?
- (c) Does a sequence f_0 f_1 f_2 ... constitute a chain? Why or why not? What is the least element among f_k where $k = 0, 1, ..., \infty$?

$$(f \sqsubseteq g \text{ iff } \forall x \in P.fx \sqsubseteq gx)$$

3. Define the denotational semantics of the function f that satisfies the following equation. Then describe the function in plain English. Does your intuition match with your denotational semantics?

$$f = \lambda z \in \mathbb{Z}$$
. if $z \geq 0$ then 1 else $(1 + f(z+1))$