Examen Intégration et Probabilité 1 Session principale

Durée: 1H30

Documents et calculatrices interdits. Les réponses doivent être justifiées. La qualité de la rédaction sera prise en compte.

Ythia Chammemi

Exercice 1

1- Soient A et B deux événements tels que $P(A) = \frac{3}{4}$ et $P(B) = \frac{1}{3}$.

1-a- Montrer que $\frac{1}{12} \le P(A \cap B) \le \frac{1}{3}$.

1-b- Donner un encadrement pour $P(A \cup B)$.

2- Soit (Ω, \mathcal{F}, P) un espace de probabilité. On dit qu'un événement $A \in \mathcal{F}$ est trivial si P(A) = 0 ou P(A) = 1. Montrer qur l'ensemble des événements triviaux est une tribu sur Ω .

Exercice 2

Soient (E, \mathcal{T}, μ) un espace mesuré et $f: E \to [0, +\infty[$ une fonction μ -intégrable.

1- Montrer que $A = \{x \in E; f(x) = +\infty\}$ est μ -négligeable.

2- On pose pour tout $n \in \mathbb{N}^*$, $A_n = \{x \in E; f(x) \ge n\}$.

2-a- Montrer que:

,
$$\lim_{n\to+\infty} \int_{A_n} f d\mu = 0.$$

2-b- En déduire que, pourtout $n \in \mathbb{N}^*$, $\mu(A_n)$ est finie et $\lim_{n \to +\infty} n\mu(A_n) = 0$.

3- Montrer sur un contre exemple que $\lim_{n\to+\infty} n\mu(A_n)=0$ n'entraine pas que f est μ -intégrable.

Exercice 3

Soient μ une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et F l'application de \mathbb{R} dans [0,1] définie par:

$$F(x) = \mu(] - \infty, x]).$$

- 1- Montrer que F est croissante sur \mathbb{R} , continue à droite et admet une limite à gauche en tout point de \mathbb{R} et que $\lim_{x\to-\infty} F(x) = 0$ et $\lim_{x\to+\infty} F(x) = 1$.
- 2- Montrer que $\mu(a,b) = F(b) F(a)$; avec a < b.
- 3- Prouver que $\mu(\{a\}) = F(a) F(a^{-})$.
- 4- Vérifier que F est continue en a si et seulement si, $\mu(\{a\}) = 0$.
- 5- Soit D l'ensemble des points de $\mathbb R$ où F est discontinue.

5-a- Montrer que
$$D = \bigcup_{n\geq 1} D_n$$
, avec $D_n = \left\{ t \in \mathbb{R}/\mu(\{a\}) \geq \frac{1}{n} \right\}$.

5-b- Déduire que D est au plus dénombrable.

Exercice 4

On admet que
$$\int_0^{+\infty} \exp(-x^2) dx = \frac{\sqrt{\pi}}{2}$$
.
1- On pose
$$f_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-m)^2}{2\sigma^2}) \text{ pour tout } x \in \mathbb{R}, \text{ avec } m \in \mathbb{R} \text{ et } \sigma > 0.$$

Vérifier que la fonction f_{m,σ^2} est une densité de probabilité.

2- Soit X une variable aléatoire réelle de densité f_{m,σ^2} . Montrer que

$$P(X \le x + m) = P(X \ge m - x)$$
, pour tout $x \in \mathbb{R}$.

- 3- Vérifier que les variables aléatoires X m et m X ont même loi.
- 4- On prend m=0 et $\sigma=1$. Déterminer la fonction de répartition et la densité de la variable aléatoire $Y=X^2$.
- 5- En déduire la valeur de

$$\int_0^{+\infty} \frac{1}{\sqrt{x}} \exp(-x) dx.$$