Descriptive Statistics

- 1. Syllabus, logistics, etc.
- 2. Discussion of descriptive statistics

Statistics is the making of inferences about a population based on information contained in a sample from that population and to provide an associated measure of goodness for the inference.

We study statistics using $random\ variables$ typically denoted X,Y,Z, etc. Variables can be **numerical**, both continuous and discrete, or **categorical**.

Descriptive statistics are used to characterize a set of numerical measurements.

Measures of	Population (Greek letters)	Sample (Roman letters)
CENTRAL TENDENCY: mean	μ	$ar{x} =$
median		
SPREAD OR DISPERSION: variance	σ^2	$s^{2} = \sum_{i=1}^{n} \frac{1}{n-1} (y_{i} - \bar{y})^{2}$
standard deviation	$\sigma = \sqrt{\sigma^2}$	$s = \sqrt{s^2}$

Empirical Rule: For a distribution of measurements that are approximately normally distributed,

 $\mu \pm \sigma$ —contains approximately _____ % of the measurements.

 $\mu \pm 2\sigma$ —contains approximately ______ % of the measurements.

 $\mu \pm 3\sigma$ —contains approximately ______ % of the measurements.

Boxplots, frequency and relative frequency histograms, quantiles, deciles, etc.

