

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Pedro Gaspar – Estudiante: Benjamín Mateluna

Geometría Diferencial - MAT2860 Resumen de Curvas en  $\mathbb{R}^n$ 22 de Marzo de 2025

#### 1. Curvas en $\mathbb{R}^n$

#### 1.1. Curvas parametrizadas

**Definición 0.1.** Una curva parametrizada en  $\mathbb{R}^n$  es una función continua  $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$  con I un intervalo abierto. Escribimos  $\alpha(t) = (\alpha_1(t), \dots, \alpha_n(t))$ .

Diremos que  $\alpha$  es diferenciable si sus funciones coordenadas  $\alpha_i \in \mathcal{C}^{\infty}$ . En tal caso, el vector  $\alpha'(t) = (\alpha'_1(t), \dots, \alpha'_n(t))$  se llama vector tangente a la curva  $\alpha$  en  $t \in I$ .

**Definición 0.2.** La traza de una curva parametrizada  $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$  es  $\alpha(I) = im(\alpha)$ .

## 1.2. Longitud y Parametro de Arco

**Definición 0.3.** La longitud de una curva parametrizada  $\alpha$  sobre  $[a,b] \subseteq I$  es

$$L_a^b(\alpha) = \sup\{L_a^b(\alpha, P) : P \text{ es partición de } [a, b]\}.$$

**Proposición 0.1.** Si  $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$  es una curva parametrizada diferenciable sobre  $[a,b] \subseteq I$ , entonces

$$L_a^b(\alpha) = \int_a^b |\alpha'(t)| \, dt$$

(Para la demostración revisar Montiel-Ros, página 5)

Corolario 0.1. En general se tiene que  $|\alpha(a) - \alpha(b)| \leq L_a^b(\alpha)$ .

Corolario 0.2. Si  $F: \mathbb{R}^n \to \mathbb{R}^n$  cumple |DF(p)v| = |v| para todo  $p, v \in \mathbb{R}^n$ , entonces  $L_a^b(F \circ \alpha) = L_a^b(\alpha)$ .

Corolario 0.3. Si  $h: J \subseteq \mathbb{R} \to I \subseteq \mathbb{R}$  es un difeomorfismo  $y \alpha: I \to \mathbb{R}$  es una curva parametrizada diferenciable, entonces

$$L_a^b(\alpha \circ h) = L_c^d(\alpha)$$

 $donde\ h([a,b]) = [c,d]\ para\ todo\ [a,b] \subseteq J.$ 

La curva  $\alpha \circ h$  tiene la misma traza que  $\alpha$ , es decir,  $(\alpha \circ h)(J) = \alpha(I)$ . Decimos que  $\alpha \circ h$  es una reparametrización de la curva alpha.

**Definición 0.4.** Se dice que una curva parametrizada diferenciable  $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^n$  es regular si  $\alpha'(t) \neq 0$  para todo  $t \in I$ . Si además  $|\alpha'(t)| = 1$  para todo  $t \in I$  se dice que  $\alpha$  esta parametrizada por el arco.

**Teorema 1.** Si  $\alpha: I \to \mathbb{R}^n$  es una curva parametrizada diferenciable regular, entonces  $\alpha$  admite una parametrización por arco. Concretamente, si  $t_0 \in I$  y definimos  $s: I \to \mathbb{R}$  por

$$s(t) := \int_{t_0}^t |\alpha'(t)| \, dt$$

entonces s es un difeomorfismo sobre  $J \subseteq \mathbb{R}$  y  $\alpha \circ s^{-1} : J \to \mathbb{R}^n$  esta parametrizada por el arco.

# 1.3. Curvatura de una Curva Regular (Teoría Local de Curvas)

**Definición 1.1.** Notamos por  $\mathcal{J}$  a la función  $\mathcal{J}: \mathbb{R}^2 \to \mathbb{R}^2$  dada por  $\mathcal{J}(x,y) = (-y,x)$ .

**Definición 1.2.** Dada  $\alpha:I\to\mathbb{R}^2$  una curva parametrizada por el arco, definimos las funciones

$$T_{\alpha}: I \to \mathbb{R}^2$$
 dada por  $T_{\alpha}(s) := \alpha'(s)$   
 $N_{\alpha}: I \to \mathbb{R}^2$  dada por  $N_{\alpha}(s) := \mathcal{J}T_{\alpha}(s)$   
 $K_{\alpha}: I \to \mathbb{R}$  dada por  $K_{\alpha}(s) := \langle T'_{\alpha}(s), N_{\alpha}(s) \rangle$ 

**Observación:** El conjunto  $\{T(s), N(s)\}$  es una base ortonormal en  $\mathbb{R}^n$  para cada  $s \in I$ , llamado Diedro de Frenet.

**Proposición 1.1.** Para una curva parametrizada por el arco  $\alpha: I \to \mathbb{R}^2$  vale que T' = KN y N' = -KT.

**Proposición 1.2.** Sea  $\alpha: I \to \mathbb{R}^2$  una curva regular, entonces

- a)  $K_{\alpha} \equiv 0$  si y solo si  $\alpha$  es un segmento de recta.
- b)  $Si \phi : \widetilde{I} \to I$  es un difeomorfismo entonces  $K_{\alpha \circ \phi} = sgn(\phi')K_{\alpha} \circ \phi$ .
- c) Si  $F: \mathbb{R}^2 \to \mathbb{R}^2$  es un movimiento rigido, entonces  $K_{F \circ \alpha} = (detDF)K_{\alpha}$ .

**Teorema 2.** Sea  $K: I \to \mathbb{R}$  una función diferenciable, entonces existe una unica curva parametrizada por el arco  $\alpha: I \to \mathbb{R}$ , salvo por movimientos rigidos, tal que  $K_{\alpha} = K$ .

## 1.4. Teoría Local de Curvas en el Espacio

**Definición 2.1.** Sea  $\alpha: I \to \mathbb{R}^3$  una curva parametrizada por el arco. La curvatura de  $\alpha$  en  $s \in I$  es

$$K_{\alpha} := |T'_{\alpha}(s)|$$

donde  $T_{\alpha}(s) = \alpha'(s)$ .

**Definición 2.2.** Sea  $\alpha: I \to \mathbb{R}^3$  una curva parametrizada por el arco, tal que  $K_{\alpha} > 0$ . Definimos

$$N_{\alpha}(s) := \frac{T_{\alpha}'(s)}{|T_{\alpha}'(s)|}$$

**Definición 2.3.** Sea  $\alpha: I \to \mathbb{R}^3$  una curva parametrizada por el arco. Definimos el vector binormal de  $\alpha$  en  $s \in I$  por

$$B_{\alpha}(s) = T_{\alpha}(s) \times N_{\alpha}(s)$$

**Definición 2.4.** Sea  $\alpha: I \to \mathbb{R}^3$  una curva parametrizada por el arco. Su torsión es

$$\tau_{\alpha} := \langle B'_{\alpha}(s), N_{\alpha}(s) \rangle$$

**Observación:** El conjunto  $\{T, N, B\}$  es una base ortonormal positiva de  $\mathbb{R}^3$  para todo  $s \in I$  llamada el tiedro de Frenet de  $\alpha$  en  $s \in I$ .

**Proposición 2.1.** Dada  $\alpha: I \to \mathbb{R}^3$  una curva parametrizada por el arco, se verifican las siguientes ecuaciones

- T'(s) = K(s)N(s)
- $N'(s) = -K(s)T(s) \tau(s)B(s)$
- $B'(s) = \tau(s)N(s)$

llamadas ecuaciones de Frenet-Serret.

**Proposición 2.2.** Sea  $\alpha: I \to \mathbb{R}^3$  una curva parametrizada por el arco,  $p_0 \in \mathbb{R}^3$ ,  $A: \mathbb{R}^3 \to \mathbb{R}^3$  lineal, ortogonal y positiva. Sea  $F: \mathbb{R}^3 \to \mathbb{R}^3$  con  $F(p) = Ap + p_0$ . Entonces

$$\begin{split} K_{F\circ\alpha} &= K_{\alpha} \quad , \quad \tau_{F\circ\alpha} = \tau_{\alpha} \\ T_{F\circ\alpha} &= AT_{\alpha} \quad , \quad N_{F\circ\alpha} = AN_{\alpha} \quad , \quad B_{F\circ\alpha} = AB_{\alpha} \end{split}$$

**Definición 2.5.** Sea  $\beta: I \to \mathbb{R}^3$  una curva regular. Consideremos  $\alpha = \beta \circ h$  una parametrización por el arco de  $\beta$ , con  $h: J \to I$  un difeomorfismo tal que h' > 0. Definimos su curvatura como

$$K_{\beta}(t) := K_{\alpha}(h^{-1}(t))$$

 $Si K_{\beta} > 0$ , también definimos

$$T_{\beta}(t) = T_{\alpha}(h^{-1}(t))$$

$$N_{\beta}(t) = N_{\alpha}(h^{-1}(t))$$

$$B_{\beta}(t) = B_{\alpha}(h^{-1}(t))$$

$$\tau_{\beta}(t) = \tau_{\alpha}(h^{-1}(t))$$

**Proposición 2.3.** Sea  $\beta: I \to \mathbb{R}^3$  una curva regular, entonces

a) 
$$K_{\beta} = \frac{|\beta' \times \beta''|}{|\beta'|^3}$$

b) 
$$\tau_{\beta} = \frac{-det(\beta', \beta'', \beta''')}{\left|\beta' \times \beta''\right|^2} = -\frac{\langle \beta', \beta'' \times \beta''' \rangle}{\left|\beta' \times \beta''\right|^2}$$

c) 
$$T_{\beta} = \frac{\beta'}{|\beta'|}$$

$$d) B_{\beta} = \frac{\beta' \times \beta''}{|\beta' \times \beta''|}$$

$$e) \ N_{\beta} = \frac{\left|\beta'\right|^{2} \beta'' - \left\langle \beta', \beta'' \right\rangle \beta'}{\left|\left|\beta'\right|^{2} \beta'' - \left\langle \beta', \beta'' \right\rangle \beta'\right|}$$

Teorema 3. (Teorema Fundamental de las curvas en el Espacio)

Sea  $K, \tau : I \subseteq \mathbb{R} \to \mathbb{R}$  funciones diferenciables con K(s) > 0 para todo  $s \in I$ . Entonces existe  $\alpha : I \to \mathbb{R}^3$  parametrizada por el arco tal que

$$K_{\alpha} = K$$
  $y$   $\tau_{\alpha} = \tau$ 

Además, si  $\beta: I \to \mathbb{R}^3$  es parametrizada por el arco tal que  $K_\beta = K$  y  $\tau_\beta = \tau$ . Entonces existe un movimiento rigido  $F: \mathbb{R}^3 \to \mathbb{R}^3$  tal que  $F \circ \beta = \alpha$ .