Probability and Statistics Tutorial 14

Siyi Wang

Southern University of Science and Technology

11951002@mail.sustech.edu.cn

December 21, 2020

Outline

Review

2 Homework

Supplement Exercises

One-sided hypotheses:

$$H_0: \theta \le \theta_0$$
 versus $H_1: \theta > \theta_0$
 $H_0: \theta \ge \theta_0$ versus $H_1: \theta < \theta_0$

Two-sided hypotheses:

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$

■ Consider a subset R of the sample space. If $X \in R$, then H_0 will be rejected. Then R is called the rejection region or critical region.

USUAL STEPS OF HYPOTHESIS TESTING

- **1** Assume the hypothesis H_0 as true
- **2** Take a sample \Rightarrow Compute the test statistic $W(X_1, \dots, X_n)$ and its sampling distribution
- 3 Form a critical region by probability theory: if the realized test statistic is *not* consistent with or too extreme under the hypothesis, then reject it.

- Type I error: *H*⁰ true, reject
- Type II error: H_0 false, fail to reject

State Decision	Fail to reject H_0	Reject H_0
H_0 True	Correct	Type I error
H_1 True	Type II error	Correct

- We want both errors to be small. However, decreasing type I error means a bigger *R* while decreasing type II error means a smaller *R*. So the two errors cannot be minimized simultaneously.
- In an extreme case, we always reject H_0 , so R is the whole sample space. No type II error but huge type I error.

Significance Level

- If $H_0: \theta \in \Theta_0$ is true, then $\alpha(\theta) = \mathbb{P}_{\theta}(X \in R)$ is the probability of a type I error.
 - If H_0 is simple, then it is a single probability.
 - lacksquare If H_0 is composite, then there is a set of probabilities.

SIGNIFICANCE LEVEL

The maximum probability of a type I error, over the set of distributions specified by H_0 ,

$$\alpha = \sup_{\theta \in \Theta_0} \alpha(\theta),$$

is the significance level of the test.

■ Usually, we target $\alpha \le 0.1$, 0.05 or even 0.01.

处理假设检验问题的一般方法和步骤

- 💠 根据实际问题,提出<mark>原假设 H。及备择假设</mark> Hı
- ♠ 依据点估计构造一个检验统计量,然后分析当H₀ 成立时,该统计量有什么"趋势",遂这个"趋势"就给出了 H₀的拒绝域形式,即 H₀的拒绝域形式由 H₁确定
- ϕ 对于给定的显著性水平 α ,按控制**I**类风险的检验原则,确定 H_0 的拒绝域
- ♠ 抽样, 判断样本观察值是否落在拒绝域内, 从而作出"拒绝"或"接受" H₀的决策

1. 设某种清漆的9个样品, 其干燥时间(单位:h)分别为6.0, 5.7, 5.8, 6.5, 7.0, 6.3, 5.6, 6.1, 5.0. 设干燥时间 $X\sim N(\mu,\sigma^2)$.

在下面两种情况下: (1) σ =0.6(h); (2) σ 未知, 求 μ 的 置信水平为0.95的置信区间.

1. Solution.
$$\bar{x} = 6$$
, $n = 9$, $S = 0.574$, $Q = 0.05$

(1) $\bar{X} - \mu$ ~ $\mathcal{N}(0,1)$

M的 0.5 置信运闭的: $(\bar{X} - \frac{6}{\sqrt{N}} \mathcal{U}_{1-\frac{3}{2}}, \bar{X} + \frac{6}{\sqrt{N}} \mathcal{U}_{1-\frac{3}{2}})$

i.e. $(5.608, 6.392)$

(2) $\bar{X} - \mu$ ~ $t(n-1)$

M的 0.5 置信运闭的 $(\bar{X} - \frac{5}{\sqrt{N}} t_{-\frac{3}{2}} | 8), \bar{X} + \frac{5}{\sqrt{N}} t_{+\frac{3}{2}} | 8)$

i.e. $(5.559, 6.441)$.

2、有一大批糖果.现从中随机地取 16 袋, 称得重量(以克计)如下:

506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 设袋装糖果的重量近似地服从正态分布,试求:

- (1) 总体均值 μ的置信水平为0.95的置信区间.
- (2) 总体标准差 σ 的置信水平为0.95的置信区间.

Solution

i.e. (20.99, 92.18)

3、为比较 Ⅰ,Ⅱ 两种型号步枪子弹的枪口速 度,随机地取 I 型子弹 10 发,得到枪口速度的平 均值 为 $\overline{x_1} = 500(m/s)$, 方差 $s_1^2 = 1.10(m/s)$, 随机 地取Ⅱ型子弹20发,得到枪口速度的平均值为 $x_1 = 496(m/s)$, 方差 $s_2^2 = 1.20(m/s)$. 假设两总体 都可认为近似地服从正态分布,且生产过程可认为 方差相等.求两总体均值差 $\mu_1 - \mu_2$ 的置信水平为 0.95 的置信区间.

3. Solution.
$$\frac{(\overline{\chi}_{1} - \overline{\chi}_{2}) - (\mu - \mu)}{S_{\omega} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \sim t(n_{1} + n_{1} - 2)$$

$$S_{\omega} = \sqrt{\frac{(n_{1} - 1) S_{1}^{2} + (n_{1} - 1) S_{2}^{2}}{n_{1} + n_{2} - 2}} \approx l.08$$

$$|P\left(\frac{l_{1} - (\mu - \mu_{2})}{l_{2} + l_{2}}\right)| \leq t_{l_{1} - \frac{n}{2}}(2l) = l - 2k$$

$$Then, \quad \mu_{1} - \mu_{2} \text{ (if } 0.55 \text{ $2 \text{ $1 \text{ $1 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text{ $1 \text{ $2 \text{ $2 \text{ $2 \text{ $2 \text{ $1 \text{ $2 \text$$

4、研究由机器 A 和机器 B 生产的钢管的内 径,随机地抽取机器 A 生产的钢管18只,测得样本 方差 $s_1^2 = 0.34(mm^2)$;随机地取机器 B 生产的钢管 13只,测得样本方差 $s_1^2 = 0.29 (mm^2)$. 设两样本相互 独立、且设由机器 A 和机器 B 生产的钢管的内径 分别服从正态分布 $N(\mu_1,\sigma_1^2),N(\mu_2,\sigma_2^2)$,这里 μ_i,σ_i^2 (i=1,2) 均未知.试求方差比 σ_i^2/σ_i^2 的置信水平为 0.90 的置信区间.

4. Solution.
$$\frac{S_{1}^{2}/S_{2}^{2}}{S_{1}^{2}/S_{2}^{2}} \sim F(n,-1,N,-1)$$

$$|P(F_{\frac{N}{2}}(17,12) < \frac{S_{1}^{2}/S_{2}^{2}}{S_{1}^{2}/S_{2}^{2}} < F_{L_{\frac{N}{2}}}(17,12)) = I-\alpha.$$

$$\overline{Ikan}, \frac{S_{1}^{2}}{S_{2}^{2}} \text{ (ff. 0.9) } \frac{S_{1}^{2}/S_{2}^{2}}{F_{L_{\frac{N}{2}}}(17,12)}, \frac{S_{1}^{2}/S_{2}^{2}}{F_{\frac{N}{2}}(17,12)}) \qquad (I-\alpha=0.9)$$

$$|I.e. \quad (0.454, 2.791).$$

1.某电器元件平均电阻值一直保持 2.64 Ω ,今测得采用新工艺生产 36个元件的平均阻值为 2.61 Ω ,假定在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻的标准差.已知改变工艺前的标准偏差为 0.06 Ω ,问新工艺对产品的电阻值是否有显著性影响(α = 0.01)?

5. Solution.
$$n=3b$$
 , $\mu_0=2.64$, $\sigma=\alpha_0b$, $\overline{\chi}=26$, $\alpha=0.0$ Ho: $\mu=\mu_0$ Us μ_1 : $\mu\neq\mu_0$. $\frac{\overline{X}-\mu}{\sigma/3\overline{n}}\sim\mathcal{N}(0,1)$ Ho 敞柜绝场: $\{\frac{1\overline{X}-\mu_0}{\sigma/3\overline{n}}>u_{J-\frac{\alpha}{2}}\}$ (e. $\{\frac{1\overline{X}-\mu_0}{\sigma/3\overline{n}}>2.57f\}$ Since $\frac{1\overline{X}-\mu_0}{\sigma/3\overline{n}}\approx 3>2.57f$ then we reject Ho.

2. 某厂生产的某种钢索的断裂强度服从正态 $N(\mu,\sigma^2)$,其中 $\sigma=40$ (kg/cm²),现在一批这种钢索的容量为 9 的一个样本测得断裂强 度平均值为 \bar{X} ,与以往正常生产的 μ 相比, \bar{X} 较 μ 大 20(kg/cm²).设总 体方差不变,问在 $\alpha=0.01$ 能否认为这批钢索质量显著提高?

b. Solution.
$$n=9$$
, $s=40$, $\alpha=0.01$, $\overline{x}-\mu_0=20$
Ho: $\mu \leq \mu_0$ us μ_1 : $\mu > \mu_0$

$$\frac{\overline{X}-\mu}{6/5\pi} \sim \mathcal{N}(0.1)$$
Ho 的拒绝场: $f = \frac{\overline{X}-\mu_0}{6/5\pi} > u_{1-2}$
i.e. $f = \frac{\overline{X}-\mu_0}{6/5\pi} > 2.33$
Since $\frac{\overline{x}-\mu_0}{6/5\pi} = 1.5 < 2.33$
then we fail to reject Ho.

国此,天黑著程前.

3. 某种零件的尺寸方差为 $\sigma^2 = 1.21$,对一批这类零件检查 6 件得尺寸数据

(mm): 32.56, 29.66, 31.64, 30.00, 21.87, 31.03. 设零件尺寸服从正态分布, 问这批

零件的平均尺寸能否认为是 32.50mm ($\alpha = 0.05$)?

7. Solution.
$$\bar{\chi} = 29.46, \mu_0 = 32.50, G = 11$$
, $d = 0.05$
 $\mu = \mu_0$ us. $\mu_1 : \mu \neq \mu_0$.

 $\frac{\bar{X} - \mu}{G/\sqrt{3n}} \sim \mathcal{N}(0.1)$
 $\mu_0 \approx 1.5 + \mu_0 \approx 1.5 + \mu_0 \approx 1.5 = 1.5$
 $\mu_1 = \frac{3}{G/\sqrt{3n}} = \mu_0 \approx 1.5$

Since $\frac{1\bar{x} - \mu_0 1}{G/\sqrt{3n}} = \frac{3.04}{0.449} = 6.77 > 1.96$,

then we reject the.

1. 设 x_1, \dots, x_n 是来自 $N(\mu, 1)$ 的样本,考虑如下假设检验问题

$$H_0: \mu = 2 \text{ vs } H_1: \mu = 3$$
,

若检验由拒绝域为 ₩ = {x̄ ≥ 2.6} 确定.

- (1) 当 n = 20 时求检验犯两类错误的概率;
- (2) 如果要使得检验犯第二类错误的概率 β ≤ 0.01,n 最小应取多少?

Solution

解 (1)由定义知,犯第一类错误的概率为

$$\alpha = P(\bar{x} \ge 2.6 \mid H_0) = P\left(\frac{\bar{x} - 2}{\sqrt{1/20}} \ge \frac{2.6 - 2}{\sqrt{1/20}}\right) = 1 - \Phi(2.68) = 0.0037,$$

这是因为在 H_0 成立下, $\bar{x}\sim N(2,1/20)$. 而犯第二类错误的概率为

$$\beta = P(\bar{x} < 2.6 \mid H_1) = P\left(\frac{\bar{x} - 3}{\sqrt{1/20}} < \frac{2.6 - 3}{\sqrt{1/20}}\right) = \Phi(-1.79)$$

$$= 1 - \Phi(1.79) = 0.036.7$$

这是因为在 H_1 成立下, $\bar{x} \sim N(3,1/20)$.

[四月在 11] 成立 [, , , , , , ,] [] [] [] []

(2) 若使犯第二类错误的概率满足

$$\beta = P(\bar{x} < 2.6 \mid H_1) = P\left(\frac{\bar{x} - 3}{\sqrt{1/n}} < \frac{2.6 - 3}{\sqrt{1/n}}\right) \le 0.01,$$

即 1 - $\Phi\left(\frac{0.4}{\sqrt{1/n}}\right) \le 0.01$,或 $\Phi(0.4\sqrt{n}) \ge 0.99$,查表得: $0.4\sqrt{n} \ge 2.33$,由此给出

n ≥ 33.93, 因而 n 最小应取 34, 才能使检验犯第二类错误的概率 $\beta ≤ 0.01$.

Solution

(3) 在样本量为 n 时,检验犯第一类错误的概率为

$$\alpha = P(\bar{x} \ge 2.6 \mid H_0) = P\left(\frac{\bar{x} - 2}{\sqrt{1/n}} \ge \frac{2.6 - 2}{\sqrt{1/n}}\right) = 1 - \Phi(0.6\sqrt{n}),$$

当 $n \to \infty$ 时, $\Phi(0.6\sqrt{n}) \to 1$, 即 $\alpha \to 0$.

检验犯第二类错误的概率为

$$\beta = P(\bar{x} < 2.6 \mid H_1) = P\left(\frac{\bar{x} - 2}{\sqrt{1/n}} < \frac{2.6 - 3}{\sqrt{1/n}}\right) = \Phi(-0.4\sqrt{n}) = 1 - \Phi(0.4\sqrt{n})$$

当 $n \to \infty$ 时, $\Phi(0.4\sqrt{n}) \to 1$, 即 $\beta \to 0$.

注:从这个例子可以看出,要使得 α 与 β 都趋于 0 ,必须 $n \to + \infty$ 才可实现,这一结论在一般场合仍成立,即要使得 α 与 β 同时很小,必须样本量 n 很大.由于样本量 n 很大在实际中常常是不可行的,故一般情况下人们不应要求 α 与 β 同时很小.

- * (0. >0) - * (2. >0) - * (0. >0) | * (2. >0) | 1 - 0. 00.

4. 设总体为均匀分布 $U(0,\theta),x_1,\dots,x_n$ 是样本,考虑检验问题 $H_0:\theta \ge 3$ vs $H_1:\theta < 3$,

拒绝域取为 $\mathbf{W} = \{x_{(n)} \leq 2.5\}$,求检验犯第一类错误的最大值 α . 若要使得该最大值 α 不超过 0.05, n 至少应取多大?

Solution

解 均匀分布 $U(0,\theta)$ 的最大次序统计量 $x_{(n)}$ 的密度函数为

$$f_n(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n}, & 0 < x < \theta, \\ 0, & \text{其他,} \end{cases}$$

因而检验犯第一类错误的概率为

$$\alpha(\theta) = P(x_{(a)} \leq 2.5 \mid H_0) = \int_0^{2.5} n \frac{x^{a-1}}{\theta^a} dx = \left(\frac{2.5}{\theta}\right)^a,$$

它是 θ 的严格单调递减函数,故其最大值在 θ =3处达到,即

$$\alpha = \alpha(3) = \left(\frac{2.5}{3}\right)^{n}.$$

若要使得 $\alpha(3) \le 0.05$,则要求 $n\ln(2.5/3) \le \ln 0.05$,这给出 $n \ge 16.43$,即n至少为17.

5. 在假设检验问题中,若检验结果是接受原假设,则检验可能犯哪一类错误? 若检验结果是拒绝原假设,则又有可能犯哪一类错误?

Thank you!