Exercici 16. Siguin $a_1, a_2, ..., a_n \in \mathbb{Z}$ i $d = \text{mcd}(a_1, a_2, ..., a_n)$

- (a) Demostreu que existeixen nombres enters $r_1, r_2, ..., r_n$ tals que $r_1a_1 + r_2a_2 + \cdots + r_na_n = d$.
- (b) Calculeu nombres enters r, s, t tals que 17r + 51s + 45t = 1 o be demostreu que no existeixen

Solucio 16 LEMA: $mcd(a_1, a_2, ..., a_n) = mcd(a_1, mcd(a_2, ..., a_n))$, ho provarem per induccio sobre n, n=3: Tenim que sigui $\operatorname{mcd}(a_1,a_2,a_3)=d$ i $\operatorname{mcd}(a_2,a_3)=l$, sabem per Bezout que $\exists x, y \in \mathbb{Z}$ tals que $a_2x + a_3y = l$ i com $d|a_2$ i $d|a_3$, clarament $d|a_2x + a_3y = l$, ara veurem que $\nexists r > d$ tal que $r|a_1$ i r|l, suposem que existeix, aleshores tindriem que r|l i $l|a_2$ i $l|a_3$ i per la transitivitat de | tenim que $r|a_2$ i $r|a_3$ i com tambe hem suposat que $r|a_1$ i a mA(c)s r > d. tindriem que $mcd(a_1, a_2, a_3) >= r$, cosa totalment contardictoria, ara suposem que $\forall n > 3$ es compleix que $\operatorname{mcd}(a_1, a_2, ..., a_n) =$ $\operatorname{mcd}(a_1, \operatorname{mcd}(a_2, ..., a_n))$, demostrarem que per n+1, tambe; sigui $\operatorname{mcd}(a_1, a_2, ..., a_{n+1}) = d$ i $mcd(a_2,...,a_{n+1}) = l$, tenim que aplicant succesivament la Hipotesi d'induccio tenim que $mcd(a_2, mcd(a_3, ...mcd(a_n, a_{n+1}))) = l$, ara sabem que per l'dentitat de Bezout per certs $r_n, r_{n+1} \in \mathbb{Z}$ es te que $a_n r_n + a_{n+1} r_{n+1} = \text{mcd}(a_n, a_{n+1}) = k$ i per $\text{mcd}(a_{n-1}, k) = k$ $a_{n-1}r_{n-1} + ks = a_{n-1}r_{n-1} + a_nr_ns + a_{n+1}r_{n+1}s$, si anem repetint aquests pasos succesivament obtindrem per certs enters $a_2s_2 + \cdots + a_{n+1}s_{n+1} = l$. Ara toranant a la demostracio incial tenim que com $d|a_i| \forall 1 \leq i \leq n+1$ i per tant $d|a_2s_2+\cdots+a_{n+1}s_{n+1}=l$ provarem que $\nexists p > d$ tal que p|l i $p|a_1$, supostem que existis, aleshores com p|l i $l|a_i$ $\forall 2 \leq i \leq n+1$, tenim que $p|a_i \ \forall 2 \leq i \leq n+1$, pero llavors $\operatorname{mcd}(a_1, a_2, ..., a_{n+1}) >= p$, cosa que es una contradiccio, i per tant tenim que $\nexists p > d$ tal que p|l i $p|a_1 \implies$ $mcd(a_1, a_2, ..., a_{n+1}) = d = mcd(a_1, mcd(a_2, ..., a_{n+1})).$

i per tant hem provat que $mcd(a_1, a_2, ..., a_n) = mcd(a_1, mcd(a_2, ..., a_n))$

(a) Tenim que pel lema anterior $d = \operatorname{mcd}(a_1, a_2, ..., a_n) = \operatorname{mcd}(a_1, \operatorname{mcd}(a_2, ..., a_n)) = \operatorname{mcd}(a_1, \operatorname{mcd}(a_2, \operatorname{mcd}(a_3, ..., \operatorname{mcd}(a_3, ..., \operatorname{mcd}(a_1, \operatorname{mcd}(a_2, ..., a_n)))) = \operatorname{mcd}(a_1, \operatorname{mcd}(a_2, \operatorname{mcd}(a_3, ..., \operatorname{mcd}(a_n, a_n)))) = \operatorname{mcd}(a_1, \operatorname{mcd}(a_1, \operatorname{mcd}(a_2, ..., \operatorname{mcd}(a_n, a_n)))) = \operatorname{mcd}(a_1, \operatorname{mcd}(a_1, a_n)) = \operatorname{mcd}(a_1, a_1, a_1) = \operatorname{mcd}(a_1, a_1, a_1) = \operatorname{mcd}(a_1, a_1, a_1) = \operatorname{mcd}(a_1, a_1) = \operatorname{mcd}(a_1, a_1, a_1) = \operatorname{mcd}(a_1,$

$$r_1a_1 + r_2a_2 + \cdots + r_na_n = d$$

- . Que es el que voliem demostrar.
- (b) Tenim que fet us del proces amb el qual hem demostrat la propietat de l'apartat anterior, podem calcular certs enters tals que 17r + 51s + 45t = 1, tenim que aquests enters existeixen ja que mcd(17,51,45) = 1, ja que els dos unics divisors de 17, son 1 i ell mateix al ser primer. i com 17 no divideix 45, ens queda que l'unic divisors comu enter tots el nombres es 1. Ara tenim que mcd(51,45) = mcd(45,6) = mcd(6,3) = mcd(3,0) = 3, i revertint el calcul de l'algorsime d'Euclides, tenim que $3 = 45 6 \cdot 7 = 45 (51 45) \cdot 7 = 45 \cdot 8 51 \cdot 7$, ara tenim que com mcd(17,3) = 1, $\exists x, r \in \mathbb{Z}$ tals que 3x + 17r = 1, podem notar que per r = -1 i x = 6, es compleix la igualtat, per tant per

$$r = -1, s = -42, t = 48,$$

es compleix la igualtat.