

Abteilung für Anästhesiologie und Intensivmedizin

TOE/TEE for patients undergoing LVAD implantation

Dr. med. Sophia Sgouropoulou

Index

- Anaesthesia induction and management
- Haemodynamic management
- Pharmacological management
- Echocardiographic control

Knowing your patient

Table 13.2 INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) stages for classifying patients with advanced heart failure

INTERMACS level	NYHA Class	Description	Device	ly survival with LVAD therapy
1. Cardiogenic shock "Crash and burn"	IV	Haemodynamic instability in spite of increasing doses of catecholamines and/or mechanical circulatory support with critical hypoperfusion of target organs (severe cardiogenic shock).	ECLS, ECMO, percutaneous support devices	52.6±5.6%
2. Progressive decline despite inotropic support "Sliding on inotropes"	IV	Intravenous inotropic support with acceptable blood pressure but rapid deterioration of renal function, nutritional state, or signs of congestion.	ECLS, ECMO, LVAD	63.1±3.1%
3. Stable but inotrope dependent "Dependent stability"	IV	Haemodynamic stability with low or intermediate doses of inotropics, but necessary due to hypotension, worsening of symptoms, or progressive renal failure.	LVAD	78.4±2.5%
4. Resting symptoms "Frequent flyer"	IV ambulatory	Temporary cessation of inotropic treatment is possible, but patient presents with frequent symptom recurrences and typically with fluid overload.	LVAD	78.7±3.0%
5. Exertion intolerant "Housebound"	IV ambulatory	Complete cessation of physical activity, stable at rest, but frequently with moderate fluid retention and some level of renal dysfunction.	LVAD	93.0±3.9% ^a
6. Exertion limited "Walking wounded"	III	Minor limitation on physical activity and absence of congestion while at rest. Easily fatigued by light activity.	LVAD / Discuss LVAD as option	-
7. "Placeholder"	Ш	Patient in NYHA Class III with no current or recent unstable fluid balance.	Discuss LVAD as option	-

Knowing your patient

Specific Considerations

- Aortic valve regurgitation
- Right ventricle function
- Ventricular arrhythmias
- Congenital cardiac defects

- Age
- BMI
- Renal dysfunction
- Infection
- Bleeding disorders
- Psychosocial factors

Knowing the device

Journal of the American Society of Echocardiography August 2015

Knowing the device

Device Type	HeartWare HVAD System	HeartMate II	HeartMate III	
Speed range, rotations per minute	2400–3200	6000-15,000	3000–9000	
Rotor design	Centrifugal	Axial	Centrifugal	
Pump position	Intrapericardial	Pump pocket	Intrapericardial	
Blood flow gaps, mm	≈0.05	≈0.08	≈0.12	
Food and Drug Administration— approved indication	Bridge to transplant (2012) Destination therapy (2017)	Bridge to transplant (2008) Destination therapy (2010)	Bridge to transplant (2017) Destination therapy (2017)	
Magnetic levitation	*		*	
Artificial pulsatility			*	
High inlet suction		*		

Circulation. 2018;138:2841-2851.

Knowing the operation technique and the device

European Journal of Heart Failure (2017) 19, 595-602 doi:10.1002/ejhf.779 **REVIEW**

Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes

Finn Gustafsson^{1*} and Joseph G. Rogers²

¹Department of Cardiology, Rigshospitalet, Copenhagen, Denmark; and ²Duke University, Durham, NC, USA Received 19 October 2016; revised 1 January 2017; accepted 5 January 2017; online publish-shead-of-print 15 February 2017

Premedication

- Preoperative anxiolytics must be used with caution
- Avoidance of oversedation and hypoventilation

Induction of Anaesthesia

- Induction of anaesthesia takes place once the patient is fully monitored
- Standard monitoring:
 - 5-lead ECG
 - Pulse oximetry
 - Invasive arterial blood pressure
 - Multi-lumen central venous catheter
 - Capnography
 - Urinary catheter
 - Core temperature
 - Central venous introducer access
 - Pulmonary artery catheter
 - Large-bore peripheral venous access
 - External defibrillator pads

re-do minimally invasive incision

Induction and Maintenance of Anaesthesia

OP room should be readily equipped The presence of a surgeon is indicated

Etomidate Fentanil Propofol Midazolam Remifentanil Anaesthesia Ketamin Rocuronium Cisatracurium Atracurium Pancuronium

Sulfentanil

Anaesthetic management

- MV -> normoxia, normocarbia
 - Tidal Volume 6-8 ml/Kg (ideal body weight)
 - PEEP 6-10 mmHg
- Monitoring depth of anaesthesia
- Monitoring cerebral oxygenation
- Fluid management
- Blood transfusion

Haemodynamic management

- Inotropes used before anaesthesia induction should be continued
- The aim is to optimize haemodynamics:
 - Preserving coronary perfusion pressure
 - Preserving RV performance

ECHOCARDIOGRAPHY

PRE-Implantation:

- LV structure and function
- RV structure and function
- Rule out intracardiac abnormalities
 - Intracardiac clots: ventricular or/and atrial
 - Intracardiac shunts: PFO, ASD, VSD
 - Valve regurgitation: AR, TR
 - Valve stenosis: MS, AS
 - Aortic diseases

STAR

- Shunts
- Thrombi
- Al
- RV

- LV structure and function
 - » LVED Volume and end-diastolic internal diameter
 - Primary clinical measure of LVAD-mediated LV unloading
 - □ LVIDd < 63 mm associated with increased morbidity and mortality rates</p>

- RV structure and function
 - RV size
 - RV systolic function
 - 3D
 - Strain Rate
 - FAC: fractional area change
 - TAPSE: tricuspid annular plane systolic excursion
 - S'
 - RA pressure
 - Tricuspid valve regurgitation

RV systolic function: 3D and strain rate

end-diastolic area

end-systolic area

RV-dysfunction: FAC < 35%

TAPSE = Systole - Diastole

RV-dysfuction: TAPSE < 17 mm

- TAPSE < 7.5 mm
- TR > II
- RV- FAC < 20%
- RV: LV end diastolic ratio < 0.75
- RV short axis: long axis ratio > 0.62
- Tissue Doppler
 - S' < 4,4 cm/sec, RV E/E' > 10, RV Strain < 14

- Rule out:
 - Intracardiac clots: ventricular or atrial

LA Thrombus

LV Thrombus

- Rule out:
 - Intracardiac shunts:

Iatrogenic ASD post-Mitraclip implantation

VSD

PFO

- Rule out valve disfunctions that will interfere with correct LVAD performance:
 - Valve regurgitation: MR, AR, TR

Mitral regurgitation

Aortic regurgitation < mild "blind" loop

Tricuspid regurgitation - < moderate

Valve stenosis: MS, AS

Mitral stenosis Aorta stenosis

- Rule out:
 - Aortic diseases

Atheroma Plaque

Aortic aneurysm

Aortic dissection

- Rule out:
 - Valve endocarditis

Mitral valve endocarditis

Aortic valve endocarditis

ECHO during LVAD - Implantation

ECHO during LVAD - Implantation

-Inflow cannula positioning:

- LV apex palpation
- LV apex needle placement

ECHO during LVAD - Implantation

 Rule out the presence of air in LV, inflow cannula and ascending aorta

I !

ECHO during LVAD - Activation

- Appropriated positioning of the Inflow-Cannula
- Absence of air in LV/ Aorta
- INFLOW Cannula flow Color / PW / CW Doppler
- OUTFLOW Cannula flow Color / PW / CW Doppler
- LV unloading
- RV-Function control
- Severity of TR
- Absence of intracardiac shunts
- Absence of AR

- INFLOW - Cannula Position

- Appropriate position
- Direct contact of the cannula with the interventricular septum or left ventricular wall should be avoided

ECHO during LVAD

Check for air

- INFLOW - Cannula

- unidirectional laminar flow from ventricle to the inflow cannula
- Low velocity, slightly pulsatile pattern of flow
- PW Doppler: (Vmax ≤ 1,5 m/s)

OUTFLOW- Cannula

- It is normally anastomosed to the ascending aorta
- Flow pattern is similar to the inflow cannula (unidirectional laminar flow)
- PW Doppler: (Vmax ≤ 2 m/s)

- LVAD and left Ventricle

- LV should be unloaded
- LA should be unloaded
- IV-Septum is expected to remain neutral

- LVAD and left ventricle
 - IV Septum shifts rightwards
 - » Inadequate LV unloading (inadequate LVAD speed, suboptimal LVAD Function, Inflow-cannula obstruction)

- LVAD and left ventricle
 - IV Septum shifts leftwards
 - » Excessive LV-unloading
 - Hypovolemie
 - High pump speed
 - RV Failure
 - » Result in RV dysfunction, worsening of TR and onset of RV failure

LVAD and right ventricle

- LV mechanical decopmression -> ↓ RV after-load
- ↑ Left-side output -> ↑ RV pre-load
- Excessive unloading LV -> leftward shift of septum
- Air in the RCA -> RV dysfunction

Re-evaluation of AR

closed loop

S. Bouchez et.al EHJ 2019 20 373-382

- Intracardiac shunts
 - LA-pressure reduces
 - RA-pressure remains
 - PFO / ASD: R-L Shunt
 - 20% of PFO may be unmasked after LVAD activation

RV dysfunction after LVAD

- Pre-existing increased transpulmonary gradient
- Increase CO by LVAD leading to increased RV-preload
- RV- ischaemic injury
- Altered RV geometry septum position
- Chest closure
- RV cardiac tamponade

S. Bouchez et.al EHJ 2019 20 373-382

Haemodynamic management after LVAD activation

- Optimize the RV function by:
 - Reducing PVR iNO, PG
 - Increasing the RV contractility:
 - PDE inhibitors
 - Adrenaline
 - SVO2, CI, PAP-diastolic, CVP
- Administer enough fluid volume to allow sufficient LVAD performance, avoiding the overloading of the RV
- Individualize blood transfusion for anaemia (TRALI)
- Treat vasoplegia with norepinephrine or vasopressin to preserve perfusion pressure

- Maintain MAP < 90 mmHg
- Maintain CVP 10-15 mmHg
- Maintain Hct arround 30%
- Normoxia, normocarbia
- Reverse Heparin with Protamin
- TOE till the end of surgery:
 - RV
 - Inflow Cannula
 - Outflow Cannula

Thank you for your attention

Re-evaluation of AR

closed loop

 Rule out the presence of air in the LV, the inflow cannula and the ascending aorta

