Topic: Calculator

Hsi Chang zhan4418@purdue.edu 04/27/2024

Calculator. net

home / math

Math Calculators

Use the basic math calculator to do simple calculations or use one of the following calculators

Scientific Calculator

Fraction Calculator

Percentage Calculator

Random Number Generator

Percent Error Calculator

Exponent Calculator

Binary Calculator Hex Calculator

Half-Life Calculator

Quadratic Formula Calculator

Log Calculator

Ratio Calculator

Root Calculator

Least Common Multiple Calculator

Greatest Common Factor Calculator

Factor Calculator

Rounding Calculator

Matrix Calculator

Scientific Notation Calculator

Big Number Calculator

Statistics

Standard Deviation Calculator

Number Sequence Calculator

Sample Size Calculator

Probability Calculator

Statistics Calculator

Mean, Median, Mode, Range Calculator

Permutation and Combination Calculator

Z-score Calculator

Confidence Interval Calculator

Geometry

Triangle Calculator

Volume Calculator

Slope Calculator

Area Calculator

Distance Calculator

Circle Calculator

Surface Area Calculator

Pythagorean Theorem Calculator

Right Triangle Calculator

Guidance on Diagnosis ar

Overview -

Reference & Data ▼ Interactive Clinical Tools -Diagnosis & Treatment •

/ou are here: Home > Radiation Units and Conversion Factors

Radiation Units and Conversion Factors

- . International System of Units (SI) Unit and Common Unit Terminology
- Conversion Equivalence
- · Prefixes Often Used with SI Units
- Dose Unit Conversion Tool
- Radioactivity Unit Conversion Tool
- Exposure Unit Conversion Tool
- Conversion Factors
- References

Dose Unit Conversion Tool		
Absorbed Dose		
	rad	
	centigray (cGy)	
	gray (Gy)	
Convert Clear		
Dose Equivalent		
	rem	
	millisievert (mSv)	
	sievert (Sv)	
Convert Clear		

Radioactivity Unit Conversion Tool Insert a number with up to 2 decimal points Results are expressed in E-notation* curie (Ci) becquerel (Bq) millicurie (mCi) megabecquerel (MBq) Convert Clear *E-notation examples: 3.05e+9 = 3.05 x 109 $7.26e-3 = 7.26 \times 10^{-3}$ top of page Exposure Unit Conversion Tool Insert a number with up to 2 decimal points Results are expressed in E-notation* coulomb/kg (C/kg) Convert Clear

*E-notation examples: 3.05e+9 = 3.05 x 109 $7.26e-3 = 7.26 \times 10^{-3}$

https://www.calculator.net/half-life-calc... •

Half-Life Calculator

WEB Calculate the half-life, mean lifetime, and decay constant of a substance undergoing exponential decay using this online tool. Learn the definition, formula, and applications of half-life in radioactive and non-radioactive ...

socratic.org

EXPLORE FURTHER

Half-life problems involving carbon-14 - ChemTeam chemteam.info Half-Life Calculator - Radioactive decay calculator gigacalculator.com

Drug Half-Life Calculator omnicalculator.com

Radioactive Decay Calculator - Free Online Calculator - BYJU'S byjus.com

Recommended to you based on what's popular • Feedback

Marcan I calculate the half life of an element? | Socratic

Half-Life Calculator

WEB 3 days ago · Learn how to calculate half-life, the time required for half of a radioactive substance to decay, using this online tool. Enter the initial and final quantities, the time ...

Estimated Reading Time: 4 mins

Calculator. net

FINANCIAL

FITNESS & H

home / math / half-life calculator

Half-Life Calculator

The following tools can generate any one of the values from the other three in the half-life formula for a substance undergoing decay to decrease by half.

Half-Life Calculator

Result

half-life, $t_{1/2} = 15.051499783199$

mean lifetime, $\tau = 21.714724093908$ decay constant, $\lambda = 0.046051701862542$

TG-51 TG-21 calculate.doc (mdanderson.org)

https://irochouston.mdanderson.org/rpc/Research_tg51/TG-51/TG-51%20TG-21%20calculate.pdf

IV. Monthly/Weekly Systems

annual water calibration.

Make and model of chamber

Make and Model of electrometer

TG-51 states, for the purpose of frequent dose verification, plastic phantoms are acceptable to use. It recommends that correction factors for monthly/weekly systems be determined at the time of the

θ Correction factor

OR

θ Expected Reading

(K_{TP} corrected)

Prior to TG-51

Dose rate

(cGy/min-cGy/mu)

Dose rate

(cGy/min-cGy/mu)

CALCULATION FORM

INSTITUTION

III.

Person doing Calibrations and/or Calculations __

(to document changes in	absorbed dose a	as a result of	implementing the
AAPM	TG-51* dosime	try protocol)	

DATE

institution. Also complete, as far as possible, the worksheets f institution; Worksheet A for calibrating photon beams, Worksh	alibrating photon beams, Worksheet B for calibrating electron beams		ial	Density			
using Cylindrical Chambers, Worksheet C to calculate $k_{\rm coal}N_0^F$ Worksheet D for calibrating electron beams using Plane-Parallel calculation form and the worksheets in the protocol be comeasurements are made. If you utilize different measurement syindicate.	Chambers. It is suggested that this npleted as far as possible before	Mac	hine	Treatment Beam (e.g. 6x, 9e)	Field Size (cm x cm)	Depth (cm) Distance SCD [†] (cm)	e θ Corn θ Exp (K ₁
Dosimetry System <u>prior</u> to implementing the TG-51 Protocol. a. For photons Make and model of chamber Cobalt-60 chamber exposure Calibration factor, N _X							
Make and Model of electrometer							
Electrometer calibration factor, N _E							
Polarizing Potential volts. Phantom: Material volts.	Densityg/cm ³						
How is chamber protected for measurements in phantom: Material	Thickness						
Equation used to determine dose rate if different from TG-21							
b. For electrons (complete if different from photons) Make and model of chamber Cobalt-60 chamber exposure Calibration factor, NX N ₂₀₀ for parallel plate chamber assigned with farmer chamber		to det	termine the chang	ge in the calcula	ted absorbed dose	iy/mu). Please follow the (rate).	•
Make and Model of electrometer		pro	evious calibration			information. (Please do r	
Electrometer calibration factor, N _E		me	onitor yet).	Prior to TG	-51 prior to ad	justing monitor	
Polarizing Potential volts. Phantom: Material	Density g/cm ³	For TO	G-21 Dose is spec				
How is chamber protected for measurements in phantom:	Delisityg/enr	Machine	Treatment Beam	Field Size	Calibration	Dose Specification Point	Prior to TG- Dose rate
Material	Thickness	Machine	(e.g. 6x, 9e)	(cm x cm)	Depth(cm)/ SSI	Depth(cm)/ SSD	(cGy/min-cGy
edical Physics 26 (9), Sept. 1999	G:\web\TG-51 TG-21 calculate.doc						
1	G://web/1G-51/1G-21 calculate.doc						
Dosimetry System for TG-51 Protocol a. For photons		acc W	cording to the	TG-51 protoco nd D begun earl TG-51	 Please fill in ier. (Please do not prior to adjusti 	nonitor for each photon a the following informati adjust the monitor yet). ing monitor	
Make and model of chamber			Treatment	Field Size	Calibration	Dose Specification	TG-51
Absorbed dose Calibration factor for Cobalt-60, $N_{D,W}^{^{60}Co}$	(cGy/coul)	Machine	Beam (e.g. 6x, 9e)	(cm x cm)	Depth(cm)/ SSI	Point Depth(cm)/ SSD	Dose rate (cGy/min-cGy
Make and Model of electrometer Electrometer calibration factor P _{elec} (coul/rdg)			(e.g. 6x, 9e)			Depun(cm)/ SSD	(edy/min-edy
Polarizing Potential volts. How is chamber protected for measurements in water:							
Material Comments:	Thicknessg/cm ²						
Comments.							
If chamber or equivalent chamber is not listed in TG-51, provi							
Wall: Material	Inickness						
How was K _Q determined?							

Medical Physics Tools https://www.medical-physics-tools.org/

TG51 second check (cylindrical chamber with pulsed beam) Disclaimer This online TG51 spread sheet is meant as a secondary independent check of TG51 measurement, or for educational purposes. It should not be used as a primary calculation $\text{for } k_Q \text{ are chosen from the fit } k_Q = A + B \cdot 10^{-3} \cdot \% dd(10)_x + C \cdot 10^{-5} \cdot (\% dd(10)_x)^2, \\ \text{given in the TG51 Addendum (McEwen et al. 2014) Table I.}$ If a photon energy is selected, the electron specific entries are grayed out, and are highlighted with lavender if an electron energy is selected. The calcualtion is performed copying the data text from the I/O box below (JSON format). Pasting the text from the saved file can later be used to populate the table using the 'read' button. P_{ion} and P_{pot} can be typed directly if those are known in advance, in which case, the reading at opposite polarity and lower voltage should not be entered. Copy table to clipboard Read data into table Hide needless stuff for printing Physicist Append Column Calc Linac Modality Energy Chamber model Capintec PR-06C/G* ✓ Chamber s/r Cavity radius [cm] $P_{ m elec}$ $N_{D,w}^{ m 60Co}$ [cGy/nC] %dd(10) $R_{\rm 50}$ [cm] $d_{ m ref} = 0.6 R_{ m 50} - 0.1 \; ext{[cm]}$ T [°C] P [mmHg] +300V V $M_{ m raw}^+$ [nC] $M_{ m raw}^-$ [nC] M_{raw}^H [nC] $M_{ m raw}^L$ [nC] $M_{ m raw}(d_{ m ref} + 0.5 r_{ m cav})$ [nC] P_{TF} P_{pol} P_{ion} $D^{ m ph}_{ m 10cm}$ or $D^{ m e-}_{d_{ m ref}}$ [cGy] clinical $\mathrm{TMR}_{10 \times 10}(10)$ or $\frac{1}{100}\mathrm{PDD}(d_{\mathrm{ref}})$ MU delivered $\frac{D}{MU}$ at d_{max} [cGy/MU]

Shahid Naqvi (He/Him) · 3rd

Medical Physicist at Holy Cross Hospital Silver Spring

Baltimore, Maryland, United States · Contact info

397 connections

Trinity Health

About

https://medical-physics-tools.org

Specialties: Medical Physics: Radiation Therapy.

Medical Linear Accelerators (Varian, Elekta, Tomotherapy),

Other radiation machines: Gamma Knife, CT simulator

HDR Brachytherapy: Accuboost, Mammosite, skin applicators, gyn applicators.

LDR Brachytherapy: SIRS infusion, Prostate implants, Gliasite.

EMR systems: Mosaiq, Aria.

Radiation treatment planning systems: Pinnacle, Eclipse, Oncentra.

Programming Languages: C++/PHP/Html/CSS/Javascript/MySQL/OpenGL/SVG/postscript.

Research Interests: Radiation Physics dose calculations and Monte Carlo radiation transport.

TG51 Protocol Calculator

N_d,w(Co-60):	
1	
kQ:	
0.906	
0.500	
M_raw:	
13.64nC	
P_ion:	
1	
P_pol:	
0.99	
p_tp: 0.9933	
0.9955	
p_elec:	
1.001	
P_leak:	
0.992	
0.592	
p_rp:	
1.1	
Calculate	
Result: 13.273841663073929	
The equation is:	
	$D_{w,Q} = N_{d,w(Co-60)} \cdot kQ \cdot M_{raw} \cdot P_{ion} \cdot P_{pol} \cdot p_{tp} \cdot p_{elec} \cdot P_{leak}$
The equation with input numbers is:	
	$D_{w,Q} = 1 \cdot 0.906 \cdot 13.64 \cdot 1 \cdot 0.99 \cdot 0.9933 \cdot 1.001 \cdot 0.992 \cdot 1000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.00000 \cdot 0.00000 \cdot 0.00000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.0000 \cdot 0.$

https://axz91.github.io/medical_physics_calculator/TG51_c alculator.html

Radionuclide - Radium Equivalent Msss Converter

Choose Radionuclide: 192lr 🗸
Activity in mCi: 15
Convert
Activity in mg-RaEq: 8.527272727272727
Activity in Bar 3.16 \times 10\(\lambda \)

Calculation Process:

$$15~\text{mCi} \times \frac{4.69~\frac{\text{R}\cdot\text{cm}^2}{\text{mCi}\cdot\text{h}}}{8.25~\frac{\text{R}\cdot\text{cm}^2}{\text{mg}\cdot\text{h}}} = 8.527272727272727~\text{mg-RaEq}$$

$$8.5272727272727272727~\text{mg-RaEq} \times 37 \times 10^6~\frac{\text{Bq}}{\text{mg-RaEq}} = 3.16 \times 10^8~\text{Bq}$$

https://axz91.github.io/medical_physics_calculator/Radionuclide_Radium_Equivalent_Msss_Converter.html

Further

Hsi Chang zhan4418@purdue.edu xz87@iu.edu