Surface Area of Prisms and Pyramids

Let's revisit some important terms!

perimeter	The distance around the outside of a 2D figure
area	The amount of space occupied by a 2D figure, measured in square units
surface area	The amount needed to cover the surface of a 3D object, measured in square units
Volume	The amount of space that an 3D object occupies, measured in cubic units
prism	A polyhedron whose top and base is the same polygon and whose faces are rectangles connecting the top and the base
pyramid	A polyhedron whose base is a polygon and whose faces are triangles that meet at a common vertex apex
lateral faces	Faces of a prism or pyramid that are not bases

Example 1: A modern example of a pyramid can be found at the Louvre in Paris, France. The glass square-based pyramid was built as an entrance to this famous museum. Given that the base is 35 m long and the slant height is 27.8 m, calculate the surface area of the pyramid, including the base area.

... The surface area is 3171 m².

Example 2: Chocolate is sometimes packaged in a box that is shaped like a triangular prism. Calculate the amount of material required to make this box, to the nearest square centimeter, if each side of the triangle is 3 cm and the length of the chocolate bar is 12 cm.

Find h (Pythagorean Thm)

$$a^2 + b^2 = c^2$$

 $(\frac{3}{2})^2 + h^2 = 3^2$
 $2.25 + h^2 = 9$
 $h^2 = 9 - 2.25$
 $h^2 = 6.75$
 $h = \sqrt{6.75}$
 $h = 2.6$ cm

2)
$$SA = 2A_{base} + 3A_{lateral}$$

= $2(\frac{bh}{2}) + 3(l\omega)$
= $2(\frac{1}{2})(3)(2.6) + 3(12)(3)$
= $7.8 + 108$
= 115.8 cm^2

.. The surface area is about 115.8 cm2.

Example 3: 5 tennis balls are packed in a rectangular prism package. The diameter of one ball is 10 cm. What is the minimum amount of material needed to make the box?

$$5A = 2A_{base} + 4A_{lateral}$$

$$= 2(s^{2}) + 4(l\omega)$$

$$= 2(\lambda^{2}) + 4(5\lambda)(\lambda)$$

$$= 2(10^{2}) + 4(5)(10)(10)$$

$$= 200 + 2000$$

. The minimum amount of material needed is 2200 cm²

Example 4: Calculate the surface area of the house below (not including the floor) given the roof is the same on both sides.

= 2200 cm²

$$SA_{House} = 2(8)(7) + 2(7)(12)$$

= 112 + 168
= 280 m²

$$5A_{Root} = 2(\frac{1}{2})(8)(3) + 2(12)(5)$$

= 24 + 120
= 144 m²

.. The surface area is 424 m2.