1. Bevezetés

Granuláris anyagoknak a nagy számú $(10^4-10^6\ db)$ makroszkópikus részecskékből $(10\mu m-10m\$ átmérőjű) álló rendszereket nevezzük. A granuláris részecskékre ható erőhatások közül a gravitációs erő, két részecske összenyomódásakor fellépő taszítóerő és az érintkezési pontokon fellépő surlódási erő tartozik a legjelentősebbek. A granuláris anyag részecskéinek az átlagos helyzeti energiájához képest az egy szabadsági fokra jutó k_BT ter mikus energia elhanyagolható. Emiatt a hőmérsékletnek az átlagoló befolyása elvész ezeknél a komplex rendszereknél. Ennek köbetkeztében nem alakul a rendszeren belül termikus egyensúly. Ez azt jelenti, hogy külső megzavarás nélkül a rendszer bármely metastabil állapota végtelen sok ideig fennmaradhat. Keveredés, homogén eloszlások kialakulása helyett rendeződés, szegregáció, komplex struktúrák alakulnak ki.

2. A mérés célja

A mérés célja a granuláris anyagokban fellépő nyomás mélységfüggésének a vizsgálata a **Janssen modellel**, majd a rendszeren belüli inhomogén erőeloszlásoknak erőláncoknak a vizsgálata a **q-modell** alkalmazasávál.

3. A mérés elve

A nyomás mélységfüggésenek a leírása granuláris oszlopokban különbözik a folyadékoszlopokban létrejövő nyomás leírásától. Granuláris anyagok esetében a folyadékoknál használt $P(z) = \rho gz$ összefüggés nem áll fent. Azért, hogy meghatározzuk a granuláris oszlopok által keletkeztetett nyomást a Jennsen-modell legfőbb feltevéseit tekintjük. Tekintsünk egy R sugarú, ρ átlagos sűrűségű hengeres edényt, amelyet granuláris anyaggal megtöltünk. A Jennsen-modell értelmében:

A függőleges nyomás nagysága csak a mélységfügtől függ

$$P(x, y, z) = P(z)$$

A vízszintes irányban mérhető nyomás arányos a függőleges nyomással

$$P_h or = KP(z)$$

Az üveghenger falainal fellépő tapadási surlódási erők felfelé mutatnak és mind a maximális értékeiket veszik fel

$$dF_f rict = \mu KP(z) 2\pi R dz$$

ahol μ a henger üvegfala és a granuláris anyag közti statikus súrlódási együttható Továbbá a Jennsen-modell szerint az anyag minden dz vastagságú és $S=\pi R^2$ felületű vízszintes szeletének egyensúlyban kell lennie. Tehát, mivel ezekre a szeletekre hat a gravitációs erő, a fölötte és alatta mérhető nyomás különbségéből adódó és az üvegfalaknál fellépő súrlódási erő, ezért a Newton-egyenlet

$$\rho g S dz - \frac{dP(z)}{dz} S dz - dF_{frict} = 0$$

A Jennsen-modell egyik feltevéséből kapott dF_{frict} -et behelyettesítjük a Newton-egyenletbe, majd átrendezve azt kapjuk, hogy

$$dP(z) + \frac{1}{\lambda P} = \rho g$$

ahol

$$\lambda = \frac{R}{2\mu K}$$

A P(0) = 0 kezdeti feltétellet a differenciálegyenlet megoldása

$$P(z)7\lambda\rho g\left(1-e^{\frac{z}{\lambda}}\right)$$

Tehát tetszőlegesen nagy z-re a nyomás nem divergál, hanem λ karakterisztikus távolságon exponenciálisan megy telítésbe. A konkrét feladatra a differenciálegyenlet megoldása

$$P(z) = m_{\infty} \left(1 - e^{\frac{z}{m_{\infty}}} \right)$$

4. A mérés során felhasznált mérési eszközök

- Különböző granuláris anyagok: köles, műanyag- és üveggolyók
- Műanyagpoharak
- \bullet Merőkanál
- \bullet Üveghenger
- Elektronikus táramérleg
- Talpas fémhenger dugattyúval
- Kartonpapír
- $\bullet\,$ Fénymásoló A4 formátumú papír
- Indigó

Granuális anyagok Modern fizika laboratórium

5. A mérés menete

T(K)	$U(\mu V)$	$U^{1/4}(\mu V^{1/4})$
339	100	3.162
336	70	2.893
334	40	2.515
332	$2\overline{5}$	2.236
331	10	1.778
$\frac{-395}{395}$	150	3.500
393	100	3.162
390	75	2.943
$\frac{390}{389}$	60	2.783
	50	
$\frac{385}{430}$		2.659
439	200	3.761
433	160	3.557
432	130	3.377
423	120	3.310
424	110	3.239
483	250	3.976
482	250	3.976
473	250	3.976
473	250	3.976
475	260	4.016
483	250	3.976
482	250	3.976
473	250	3.976
473	250	3.976
475	$\frac{260}{260}$	4.016
$\frac{-410}{529}$	300	4.162
523	410	4.500
$\frac{525}{520}$		4.729
	500	
524	500	4.729
$\frac{522}{327}$	560	4.865
627	590	4.928
627	850	5.400
627	840	5.384
627	940	5.537
628	940	5.537
673	970	5.581
673	1140	5.811
674	1230	5.922
673	1260	5.958
674	1310	6.016
718	1030	5.665
717	1450	6.171
719	1530	6.254
718	1630	6.354
719	1660	6.383
$\frac{719}{770}$	1630	6.354
773	2010	6.696
774	$\frac{2010}{2100}$	6.769
		6.849
775	2200	
775	2340	6.955

5.1. title