Inteligência Artificial – ACH2016 Aula 18 – Árvores de Decisão e Florestas Aleatórias

Norton Trevisan Roman (norton@usp.br)

13 de maio de 2019

• Uma das formas mais simples de aprendizado

- Uma das formas mais simples de aprendizado
- Entrada:

- Uma das formas mais simples de aprendizado
- Entrada:
 - Objeto ou situação descritos por um conjunto de atributos

- Uma das formas mais simples de aprendizado
- Entrada:
 - Objeto ou situação descritos por um conjunto de atributos
 - Atributos podem ser discretos ou contínuos

- Uma das formas mais simples de aprendizado
- Entrada:
 - Objeto ou situação descritos por um conjunto de atributos
 - Atributos podem ser discretos ou contínuos
- Saída:

- Uma das formas mais simples de aprendizado
- Entrada:
 - Objeto ou situação descritos por um conjunto de atributos
 - Atributos podem ser discretos ou contínuos
- Saída:
 - Uma decisão a saída prevista para a entrada (discreta ou contínua)

- Uma das formas mais simples de aprendizado
- Entrada:
 - Objeto ou situação descritos por um conjunto de atributos
 - Atributos podem ser discretos ou contínuos
- Saída:
 - Uma decisão a saída prevista para a entrada (discreta ou contínua)
 - Obtida por meio de uma sequência de testes

• Representação bastante natural

- Representação bastante natural
 - Sequência de regras do tipos "se ... então"

<u>Árvores de Decisão</u>

- Representação bastante natural
 - Sequência de regras do tipos "se ... então"
 - Fáceis de interpretar

- Representação bastante natural
 - Sequência de regras do tipos "se ... então"
 - Fáceis de interpretar

- Representação bastante natural
 - Sequência de regras do tipos "se ... então"
 - Fáceis de interpretar

Tipos:

 Quando usadas para aprender uma função de valores discretos:

- Representação bastante natural
 - Sequência de regras do tipos "se ... então"
 - Fáceis de interpretar

- Quando usadas para aprender uma função de valores discretos:
 - Árvore de Classificação

- Representação bastante natural
 - Sequência de regras do tipos "se ... então"
 - Fáceis de interpretar

- Quando usadas para aprender uma função de valores discretos:
 - Árvore de Classificação
- Quando usadas para aprender uma função de valores contínuos:

- Representação bastante natural
 - Sequência de regras do tipos "se ... então"
 - Fáceis de interpretar

- Quando usadas para aprender uma função de valores discretos:
 - Árvore de Classificação
- Quando usadas para aprender uma função de valores contínuos:
 - Árvore de Regressão

Características:

• Cada nó interno representa uma função teste $f_m(x)$ para o valor de um dos atributos de entrada x

- Cada nó interno representa uma função teste $f_m(x)$ para o valor de um dos atributos de entrada x
 - Em vez de usar todo o conjunto de atributos, diferentes subconjuntos são usados em diferentes níveis da árvore

- Cada nó interno representa uma função teste $f_m(x)$ para o valor de um dos atributos de entrada x
 - Em vez de usar todo o conjunto de atributos, diferentes subconjuntos são usados em diferentes níveis da árvore
- Os galhos são rotulados com cada valor possível do teste feito no nó que os origina

- Cada nó interno representa uma função teste $f_m(x)$ para o valor de um dos atributos de entrada x
 - Em vez de usar todo o conjunto de atributos, diferentes subconjuntos são usados em diferentes níveis da árvore
- Os galhos são rotulados com cada valor possível do teste feito no nó que os origina
 - Os valores são mutuamente exclusivos e exaustivos

- Cada nó interno representa uma função teste $f_m(x)$ para o valor de um dos atributos de entrada x
 - Em vez de usar todo o conjunto de atributos, diferentes subconjuntos são usados em diferentes níveis da árvore
- Os galhos são rotulados com cada valor possível do teste feito no nó que os origina
 - Os valores são mutuamente exclusivos e exaustivos
- Cada folha especifica o valor que deve ser retornado se a folha for atingida

Exemplo (classificação booleana):

Esperaremos para comer no restaurante no sábado?

Exemplo (classificação booleana):

Esperaremos para comer no restaurante no sábado?

Exemplo (classificação booleana):

Esperaremos para comer no restaurante no sábado?

 Cada nó representa um atributo a ser testado

Fonte: Adaptado de slides de AIMA. Russell & Norvig.

- Cada nó representa um atributo a ser testado
 - Modelo univariado

Fonte: Adaptado de slides de AIMA. Russell & Norvig.

- Cada nó representa um atributo a ser testado
 - Modelo univariado
 - Os exemplos são processados a partir da raiz seguindo até uma folha

Fonte: Adaptado de slides de AIMA. Russell & Norvig.

- Cada nó representa um atributo a ser testado
 - Modelo univariado
 - Os exemplos são processados a partir da raiz seguindo até uma folha

Fonte: Adaptado de slides de AIMA. Russell & Norvig.

• Em geral, após o primeiro atributo dividir os exemplos, cada saída é um novo problema

- Cada nó representa um atributo a ser testado
 - Modelo univariado
 - Os exemplos são processados a partir da raiz seguindo até uma folha

Fonte: Adaptado de slides de AIMA. Russell & Norvig.

- Em geral, após o primeiro atributo dividir os exemplos, cada saída é um novo problema
 - Com menos exemplos

- Cada nó representa um atributo a ser testado
 - Modelo univariado
 - Os exemplos são processados a partir da raiz seguindo até uma folha

Fonte: Adaptado de slides de AIMA. Russell & Norvig.

- Em geral, após o primeiro atributo dividir os exemplos, cada saída é um novo problema
 - Com menos exemplos
 - Com um atributo a menos

Expressividade:

 Podem expressar qualquer função booleana dos atributos de entrada

Expressividade:

- Podem expressar qualquer função booleana dos atributos de entrada
 - São totalmente expressivas dentro da classe de linguagens proposicionais

Expressividade:

- Podem expressar qualquer função booleana dos atributos de entrada
 - São totalmente expressivas dentro da classe de linguagens proposicionais
 - Para funções booleanas, uma linha da tabela verdade é um caminho até uma folha

Expressividade:

- Podem expressar qualquer função booleana dos atributos de entrada
 - São totalmente expressivas dentro da classe de linguagens proposicionais
 - Para funções booleanas, uma linha da tabela verdade é um caminho até uma folha

Fonte: Adaptado de slides de AIMA. Russell & Norvig.

Variações:

Variações:

• Os testes podem ser:

- Os testes podem ser:
 - Univariados: Os nós testam um único atributo

- Os testes podem ser:
 - Univariados: Os nós testam um único atributo
 - Multivariados: Múltiplos atributos testados

- Os testes podem ser:
 - Univariados: Os nós testam um único atributo
 - Multivariados: Múltiplos atributos testados
- Testes podem ter:

- Os testes podem ser:
 - Univariados: Os nós testam um único atributo
 - Multivariados: Múltiplos atributos testados
- Testes podem ter:
 - Duas saídas possíveis: Binárias

- Os testes podem ser:
 - Univariados: Os nós testam um único atributo
 - Multivariados: Múltiplos atributos testados
- Testes podem ter:
 - Duas saídas possíveis: Binárias
 - Mais que duas saídas

- Os testes podem ser:
 - Univariados: Os nós testam um único atributo
 - Multivariados: Múltiplos atributos testados
- Testes podem ter:
 - Duas saídas possíveis: Binárias
 - Mais que duas saídas
- Atributos podem ser categóricos ou numéricos

Árvores Booleanas

Árvores Booleanas

 Um exemplo de treino para uma árvore de decisão booleana consiste de um arranjo de atributos de entrada, e um único valor booleano de saída

Árvores Booleanas

- Um exemplo de treino para uma árvore de decisão booleana consiste de um arranjo de atributos de entrada, e um único valor booleano de saída
- Cada exemplo é classificados como positivo (verdadeiro) ou negativo (falso)

Árvores Booleanas

- Um exemplo de treino para uma árvore de decisão booleana consiste de um arranjo de atributos de entrada, e um único valor booleano de saída
- Cada exemplo é classificados como positivo (verdadeiro) ou negativo (falso)
- O conjunto completo de exemplos é o conjunto de treino

Considere o exemplo (restaurante):

Ex	Atributos										
	Alt	Bar Sex Fam Cli Pre Chu Res Tip Es					Est	Obj			
x1	S	N	N	S	Alg	\$\$\$	N	S	Fr	0-10	S
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
х3	N	S	N	N	Alg	\$	N	N	Bu	0-10	S
х4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
x 6	N	S	N	S	Alg	\$\$	S	S	It	0-10	S
х7	N	S	N	N	Nen	\$	S	N	Bu	0-10	N
x8	N	N	N	S	Alg	\$\$	S	S	Ta	0-10	S
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x11	N	N	N	N	Nen	\$	N	N	Ta	0-10	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

Ex - exemplo Alt – há alternativa Bar – tem bar iex – abre sex/sab am – estou aminto Cli – nº de clientes Pre – preço Chu – chovendo Res – reserva Γip – tipo st – estimativa de spera

Considere o exemplo (restaurante):

												₁ Ex − exemplo
Ex		Atributos										Alt – há alternativa
	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj	
х1	S	N	N	S	Alg	\$\$\$	N	S	Fr	0-10	S	Bar – tem bar
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N	Sex – abre sex/sab
х3	N	S	N	N	Alg	\$	N	N	Bu	0-10	S	Fam – estou
х4	S	N	S	S	Che	\$	S	N	Ta	10-30	S	faminto
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N	Cli – nº de clientes
х6	N	S	N	S	Alg	\$\$	S	S	It	0-10	S	
х7	N	S	N	N	Nen	\$	S	N	Bu	0-10	N	Pre – preço
x8	N	N	N	S	Alg	\$\$	S	S	Ta	0-10	S	Chu – chovendo
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N	Res – reserva
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N	Tip – tipo
x11	N	N	N	N	Nen	\$	N	N	Ta	0-10	N	Est – estimativa de
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S	
												espera

Existem muitas árvores que codificam esses exemplos sem erro.

 Tentamos encontrar a menor árvore consistente com os exemplos

- Tentamos encontrar a menor árvore consistente com os exemplos
 - Navalha de Ockham (escolha a hipótese mais simples)

- Tentamos encontrar a menor árvore consistente com os exemplos
 - Navalha de Ockham (escolha a hipótese mais simples)
 - NP-completo (Quinlan 1986, Hyafil and Rivest 1976)

- Tentamos encontrar a menor árvore consistente com os exemplos
 - Navalha de Ockham (escolha a hipótese mais simples)
 - NP-completo (Quinlan 1986, Hyafil and Rivest 1976)

Heurística:

 (Recursivamente) Escolha o atributo mais significativo como raiz da (sub)árvore

- Tentamos encontrar a menor árvore consistente com os exemplos
 - Navalha de Ockham (escolha a hipótese mais simples)
 - NP-completo (Quinlan 1986, Hyafil and Rivest 1976)

Heurística:

- (Recursivamente) Escolha o atributo mais significativo como raiz da (sub)árvore
 - Aquele que faz a maior diferença na classificação de um exemplo

- Tentamos encontrar a menor árvore consistente com os exemplos
 - Navalha de Ockham (escolha a hipótese mais simples)
 - NP-completo (Quinlan 1986, Hyafil and Rivest 1976)

Heurística:

- (Recursivamente) Escolha o atributo mais significativo como raiz da (sub)árvore
 - Aquele que faz a maior diferença na classificação de um exemplo
 - Tentativa de classificar com um pequeno número de testes

Algoritmos

Existem muitos algoritmos

Algoritmos

- Existem muitos algoritmos
 - Ex: ID3 (Quinlan 1986) e sua variação C4.5 (Quinlan 1993);
 CART (Breiman et al. 1984)

Algoritmos

- Existem muitos algoritmos
 - Ex: ID3 (Quinlan 1986) e sua variação C4.5 (Quinlan 1993);
 CART (Breiman et al. 1984)

ID3

 Emprega uma estratégia top-down gulosa de busca no espaço de possíveis árvores de decisão

Algoritmos

- Existem muitos algoritmos
 - Ex: ID3 (Quinlan 1986) e sua variação C4.5 (Quinlan 1993);
 CART (Breiman et al. 1984)

- Emprega uma estratégia top-down gulosa de busca no espaço de possíveis árvores de decisão
 - Começa com a pergunta "que atributo deve ser testado na raiz"?

Algoritmos

- Existem muitos algoritmos
 - Ex: ID3 (Quinlan 1986) e sua variação C4.5 (Quinlan 1993);
 CART (Breiman et al. 1984)

- Emprega uma estratégia top-down gulosa de busca no espaço de possíveis árvores de decisão
 - Começa com a pergunta "que atributo deve ser testado na raiz"?
 - Avalia cada atributo para determinar qu\u00e3o bem ele classifica os exemplos de treino

ID3

• O melhor atributo é então selecionado para a raiz

- O melhor atributo é então selecionado para a raiz
- Um descendente da raiz é criado para cada valor possível desse atributo

- O melhor atributo é então selecionado para a raiz
- Um descendente da raiz é criado para cada valor possível desse atributo
- Os exemplos de treino são rearranjados conforme cada nó descendente

- O melhor atributo é então selecionado para a raiz
- Um descendente da raiz é criado para cada valor possível desse atributo
- Os exemplos de treino são rearranjados conforme cada nó descendente
 - São filtrados conforme o valor daquele atributo

- O melhor atributo é então selecionado para a raiz
- Um descendente da raiz é criado para cada valor possível desse atributo
- Os exemplos de treino são rearranjados conforme cada nó descendente
 - São filtrados conforme o valor daquele atributo
- O processo é repetido para cada descendente, usando os exemplos associados com o nó desse descendente

Há 4 casos a considerar:

 Se houver exemplos positivos e negativos, escolha o melhor atributo para separá-los

- Se houver exemplos positivos e negativos, escolha o melhor atributo para separá-los
- Se todos os exemplos forem positivos (ou negativos), terminamos: podemos dizer sim ou não

- Se houver exemplos positivos e negativos, escolha o melhor atributo para separá-los
- Se todos os exemplos forem positivos (ou negativos), terminamos: podemos dizer sim ou não
- Se não sobrarem exemplos, ou seja, nada parecido com a entrada foi observado

- Se houver exemplos positivos e negativos, escolha o melhor atributo para separá-los
- Se todos os exemplos forem positivos (ou negativos), terminamos: podemos dizer sim ou não
- Se não sobrarem exemplos, ou seja, nada parecido com a entrada foi observado
 - Retornamos um valor padrão calculado com base na classificação da maioria no nó pai

- Se houver exemplos positivos e negativos, escolha o melhor atributo para separá-los
- Se todos os exemplos forem positivos (ou negativos), terminamos: podemos dizer sim ou não
- Se não sobrarem exemplos, ou seja, nada parecido com a entrada foi observado
 - Retornamos um valor padrão calculado com base na classificação da maioria no nó pai
 - Ou então na classificação mais comum (moda), se não for binário

Há 4 casos a considerar (cont.):

 Se acabarem os atributos, e restarem tanto exemplos positivos quanto negativos, temos um problema

- Se acabarem os atributos, e restarem tanto exemplos positivos quanto negativos, temos um problema
 - Os exemplos têm a mesma descrição (conforme os atributos), mas classificações diferentes

- Se acabarem os atributos, e restarem tanto exemplos positivos quanto negativos, temos um problema
 - Os exemplos têm a mesma descrição (conforme os atributos), mas classificações diferentes
- E o que isso significa?

- Se acabarem os atributos, e restarem tanto exemplos positivos quanto negativos, temos um problema
 - Os exemplos têm a mesma descrição (conforme os atributos), mas classificações diferentes
- E o que isso significa?
 - Alguns dos dados estão incorretos há ruído; ou

- Se acabarem os atributos, e restarem tanto exemplos positivos quanto negativos, temos um problema
 - Os exemplos têm a mesma descrição (conforme os atributos), mas classificações diferentes
- E o que isso significa?
 - Alguns dos dados estão incorretos há ruído; ou
 - Os atributos não dão informação suficiente; ou

- Se acabarem os atributos, e restarem tanto exemplos positivos quanto negativos, temos um problema
 - Os exemplos têm a mesma descrição (conforme os atributos), mas classificações diferentes
- E o que isso significa?
 - Alguns dos dados estão incorretos há ruído; ou
 - Os atributos não dão informação suficiente; ou
 - O domínio é verdadeiramente não-determinístico.

- Se acabarem os atributos, e restarem tanto exemplos positivos quanto negativos, temos um problema
 - Os exemplos têm a mesma descrição (conforme os atributos), mas classificações diferentes
- E o que isso significa?
 - Alguns dos dados estão incorretos há ruído; ou
 - Os atributos não dão informação suficiente; ou
 - O domínio é verdadeiramente não-determinístico.
 - Também aqui usamos a classificação mais comum.

```
Função ID3(Exemplos, Atributos, Padrão): árvore de decisão
      se Exemplos estiver vazio então
            retorna nó com rótulo = Padrão
      se todos os Exemplos têm a mesma classificação então
             retorna nó com rótulo = classificação
      se Atributos estiver vazia então
             retorna nó com rótulo = ValorMaioria(exemplos)
      At \leftarrow \mathsf{EscolhaMelhorAtributo}(Atributos, Exemplos)
      \acute{Arvore} \leftarrow nova árvore de decisão com At como raiz
      M \leftarrow ValorMaioria(Exemplos)
      para cada valor possível, vi, de At faça
             Exemplos_{vi} \leftarrow \text{subconjunto de } Exemplos \text{ com } At = v_i
             Subárvore \leftarrow ID3(Exemplos_{vi}, Atributos-At, M))
             Adicione um galho a Árvore com o rótulo v_i e subárvore Subárvore
      retorna Árvore
```

```
Função ID3(Exemplos, Atributos, Padrão): árvore de decisão
      se Exemplos estiver vazio então
            retorna nó com rótulo = Padrão
      se todos os Exemplos têm a mesma classificação então
             retorna nó com rótulo = classificação
                                                                     Conjunto de exem-
                                                                        plos de treino
      se Atributos estiver vazia então
             retorna nó com rótulo = ValorMaioria(exemplos)
      At \leftarrow \mathsf{EscolhaMelhorAtributo}(Atributos, Exemplos)
      \acute{Arvore} \leftarrow nova árvore de decisão com At como raiz
      M \leftarrow ValorMaioria(Exemplos)
      para cada valor possível, vi, de At faça
             Exemplos_{vi} \leftarrow \text{subconjunto de } Exemplos \text{ com } At = v_i
             Subárvore \leftarrow ID3(Exemplos_{vi}, Atributos-At, M))
             Adicione um galho a Árvore com o rótulo v_i e subárvore Subárvore
      retorna Árvore
```

```
Função ID3(Exemplos, Atributos, Padrão): árvore de decisão
      se Exemplos estiver vazio então
            retorna nó com rótulo = Padrão
      se todos os Exemplos têm a mesma classificação então
             retorna nó com rótulo = classificação
                                                                      Lista de atributos
      se Atributos estiver vazia então
             retorna nó com rótulo = ValorMaioria(exemplos)
      At \leftarrow \mathsf{EscolhaMelhorAtributo}(Atributos, Exemplos)
      \acute{Arvore} \leftarrow nova árvore de decisão com At como raiz
      M \leftarrow ValorMaioria(Exemplos)
      para cada valor possível, vi, de At faça
             Exemplos_{vi} \leftarrow \text{subconjunto de } Exemplos \text{ com } At = v_i
             Subárvore \leftarrow ID3(Exemplos_{vi}, Atributos-At, M))
             Adicione um galho a Árvore com o rótulo v_i e subárvore Subárvore
      retorna Árvore
```

```
Função ID3(Exemplos, Atributos, Padrão): árvore de decisão
      se Exemplos estiver vazio então
            retorna nó com rótulo = Padrão
      se todos os Exemplos têm a mesma classificação então
             retorna nó com rótulo = classificação
                                                                     Valor padrão para a
                                                                    instância classificada
      se Atributos estiver vazia então
             retorna nó com rótulo = ValorMaioria(exemplos)
      At \leftarrow \mathsf{EscolhaMelhorAtributo}(Atributos, Exemplos)
      \acute{Arvore} \leftarrow nova árvore de decisão com At como raiz
      M \leftarrow ValorMaioria(Exemplos)
      para cada valor possível, vi, de At faça
             Exemplos_{vi} \leftarrow \text{subconjunto de } Exemplos \text{ com } At = v_i
             Subárvore \leftarrow ID3(Exemplos_{vi}, Atributos-At, M))
             Adicione um galho a Árvore com o rótulo v_i e subárvore Subárvore
      retorna Árvore
```

```
Função ID3(Exemplos, Atributos, Padrão): árvore de decisão
      se Exemplos estiver vazio então
            retorna nó com rótulo = Padrão
                                                                  Novo padrão calculado
      se todos os Exemplos têm a mesma classificação então
                                                                    com base na classi-
            retorna nó com rótulo = classificação
                                                                  ficação da maioria dos
      se Atributos estiver vazia então
                                                                   exemplos (usada nos
            retorna nó com rótulo = ValorMaioria (exemplos)
                                                                   filhos do nó com At)
      At \leftarrow \mathsf{EscolhaMelhorAtributo}(Atributos, Exemplos)
      Arvore \leftarrow nova árvore de decisão com At como raiz
      M \leftarrow ValorMaioria(Exemplos)
      para cada valor possível, vi, de At faça
            Exemplos_{vi} \leftarrow \text{subconjunto de } Exemplos \text{ com } At = v_i
            Subárvore \leftarrow ID3(Exemplos_{vi}, Atributos-At, M))
            Adicione um galho a Árvore com o rótulo v_i e subárvore Subárvore
      retorna Árvore
```

O que significa ser o melhor atributo?

Considere os atributos:

Hamburgeria

O que significa ser o melhor atributo?

Considere os atributos:

Um bom atributo divide os exemplos em subgrupos que são (idealmente) "todos positivos" ou "todos negativos"

O que significa ser o melhor atributo?

Considere os atributos:

Um bom atributo divide os exemplos em subgrupos que são (idealmente) "todos positivos" ou "todos negativos"

• Clientes é uma escolha melhor que Tipo

Como medimos quão bom é um atributo?

• Terá valor máximo quando o atributo é perfeito

- Terá valor máximo quando o atributo é perfeito
 - Divide os exemplos em conjuntos ou totalmente positivos ou negativos

- Terá valor máximo quando o atributo é perfeito
 - Divide os exemplos em conjuntos ou totalmente positivos ou negativos
- Valor mínimo quando o atributo é inútil

- Terá valor máximo quando o atributo é perfeito
 - Divide os exemplos em conjuntos ou totalmente positivos ou negativos
- Valor mínimo quando o atributo é inútil
 - Torna a escolha algo aleatório igual número de exemplos para cada valor

- Terá valor máximo quando o atributo é perfeito
 - Divide os exemplos em conjuntos ou totalmente positivos ou negativos
- Valor mínimo quando o atributo é inútil
 - Torna a escolha algo aleatório igual número de exemplos para cada valor
- Uma medida possível é a quantidade esperada de informação fornecida pelo atributos

- Terá valor máximo quando o atributo é perfeito
 - Divide os exemplos em conjuntos ou totalmente positivos ou negativos
- Valor mínimo quando o atributo é inútil
 - Torna a escolha algo aleatório igual número de exemplos para cada valor
- Uma medida possível é a quantidade esperada de informação fornecida pelo atributos
 - Medida pela entropia conceito emprestado da física e teoria da informação (Shannon and Weaver, 1949)

Como medimos quão bom é um atributo?

Também conhecida como Ganho de Informação

- Também conhecida como Ganho de Informação
 - Quão bem um dado atributo separa os exemplos de treino de acordo com sua classificação

Como medimos quão bom é um atributo?

- Também conhecida como Ganho de Informação
 - Quão bem um dado atributo separa os exemplos de treino de acordo com sua classificação

Como medimos quão bom é um atributo?

- Também conhecida como Ganho de Informação
 - Quão bem um dado atributo separa os exemplos de treino de acordo com sua classificação

Caso binário:

Dada uma coleção S

Como medimos quão bom é um atributo?

- Também conhecida como Ganho de Informação
 - Quão bem um dado atributo separa os exemplos de treino de acordo com sua classificação

- Dada uma coleção S
 - ullet Seja p a proporção de exemplos positivos em S

Como medimos quão bom é um atributo?

- Também conhecida como Ganho de Informação
 - Quão bem um dado atributo separa os exemplos de treino de acordo com sua classificação

- Dada uma coleção S
 - Seja p a proporção de exemplos positivos em S
 - Seja n a proporção de exemplos negativos em S

Como medimos quão bom é um atributo?

- Também conhecida como Ganho de Informação
 - Quão bem um dado atributo separa os exemplos de treino de acordo com sua classificação

- Dada uma coleção S
 - ullet Seja p a proporção de exemplos positivos em S
 - Seja n a proporção de exemplos negativos em S
- A entropia de S em relação a essa classificação será:

$$H(S) = -p \cdot log_2p - n \cdot log_2n$$

Interpretação da entropia (teoria da informação):

 Especifica o número mínimo de bits de informação necessária para codificar a classificação de um membro arbitrário de S

- Especifica o número mínimo de bits de informação necessária para codificar a classificação de um membro arbitrário de S
 - Um membro de S escolhido aleatoriamente, em uma distribuição uniforme

- Especifica o número mínimo de bits de informação necessária para codificar a classificação de um membro arbitrário de S
 - Um membro de S escolhido aleatoriamente, em uma distribuição uniforme
 - 1 bit é suficiente para uma pregunta do tipo sim/não, sobre a qual nada sabemos

- Especifica o número mínimo de bits de informação necessária para codificar a classificação de um membro arbitrário de S
 - Um membro de S escolhido aleatoriamente, em uma distribuição uniforme
 - 1 bit é suficiente para uma pregunta do tipo sim/não, sobre a qual nada sabemos
- Quanto menos soubermos sobre a resposta, mais informação será provida nela – Conteúdo de informação da resposta

- Especifica o número mínimo de bits de informação necessária para codificar a classificação de um membro arbitrário de S
 - Um membro de S escolhido aleatoriamente, em uma distribuição uniforme
 - 1 bit é suficiente para uma pregunta do tipo sim/não, sobre a qual nada sabemos
- Quanto menos soubermos sobre a resposta, mais informação será provida nela – Conteúdo de informação da resposta
 - Mais bits ela terá

Interpretação da entropia (teoria da informação):

• Ex:

- Ex:
 - $p = 1 \Rightarrow$ o receptor sabe que o exemplo sorteado é positivo

- Ex:
 - ullet $p=1\Rightarrow$ o receptor sabe que o exemplo sorteado é positivo
 - Nenhuma mensagem precisa ser enviada entropia 0

- Ex:
 - ullet $p=1\Rightarrow$ o receptor sabe que o exemplo sorteado é positivo
 - Nenhuma mensagem precisa ser enviada entropia 0
 - $p = 0.5 \Rightarrow$ é necessário 1 bit para indicar se o exemplo sorteado é positivo ou negativo

- Ex:
 - ullet $p=1\Rightarrow$ o receptor sabe que o exemplo sorteado é positivo
 - Nenhuma mensagem precisa ser enviada entropia 0
 - $p = 0.5 \Rightarrow$ é necessário 1 bit para indicar se o exemplo sorteado é positivo ou negativo
 - $p = 0.8 \Rightarrow$ um conjunto de mensagens pode ser codificadas usando em média menos de 1 bit/mensagem

- Ex:
 - $p=1 \Rightarrow$ o receptor sabe que o exemplo sorteado é positivo
 - Nenhuma mensagem precisa ser enviada entropia 0
 - $p = 0.5 \Rightarrow$ é necessário 1 bit para indicar se o exemplo sorteado é positivo ou negativo
 - $p = 0.8 \Rightarrow$ um conjunto de mensagens pode ser codificadas usando em média menos de 1 bit/mensagem
 - Associando-se códigos mais curtos a conjuntos de exemplos positivos e maiores aos menos prováveis exemplos negativos

Em geral, se o atributo alvo pode assumir n valores diferentes, então a entropia de S relativa a essa classificação é definida como

$$H(S) \equiv -\sum_{i=1}^{n} P_i \cdot log_2 P_i$$

onde P_i é a proporção de S pertencente à classe i.

Em geral, se o atributo alvo pode assumir n valores diferentes, então a entropia de S relativa a essa classificação é definida como

$$H(S) \equiv -\sum_{i=1}^{n} P_i \cdot log_2 P_i$$

onde P_i é a proporção de S pertencente à classe i.

Alternativamente...

Em geral, se as saídas (classes) possíveis v_i em S tiverem probabilidades $P(v_i|S)$, o conteúdo de informação I da resposta (ou sua impureza), no conjunto S relativo a um determinado nó, será:

$$I(S) = I(P(v_1), \dots, P(v_n)) = -\sum_{i=1}^{n} P(v_i) log_2 P(v_i)$$

Usamos $P(v_i)$ em vez de $P(v_i|S)$ para simplificar.

Exemplo

 Suponha que temos p exemplos positivos e n negativos a partir da escolha de um atributo

- Suponha que temos p exemplos positivos e n negativos a partir da escolha de um atributo
 - Qual o grau de desordem desse conjunto, sabendo que $n_p = n_n = 6$?

- Suponha que temos p exemplos positivos e n negativos a partir da escolha de um atributo
 - Qual o grau de desordem desse conjunto, sabendo que $n_p = n_n = 6$?

$$I(P(v_1),\ldots,P(v_n)) = -\sum_{i=1}^n P(v_i)log_2P(v_i)$$

- Suponha que temos p exemplos positivos e n negativos a partir da escolha de um atributo
 - Qual o grau de desordem desse conjunto, sabendo que $n_p = n_n = 6$?

$$I(P(v_1), \dots, P(v_n)) = -\sum_{i=1}^{n} P(v_i) log_2 P(v_i)$$

$$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{n_p}{n_p+n_n} log_2\left(\frac{n_p}{n_p+n_n}\right) - \frac{n_n}{n_p+n_n} log_2\left(\frac{n_n}{n_p+n_n}\right)$$

- Suponha que temos p exemplos positivos e n negativos a partir da escolha de um atributo
 - Qual o grau de desordem desse conjunto, sabendo que $n_p = n_n = 6$?

$$I(P(v_1), ..., P(v_n)) = -\sum_{i=1}^{n} P(v_i) log_2 P(v_i)$$

$$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{n_p}{n_p + n_n} log_2\left(\frac{n_p}{n_p + n_n}\right) - \frac{n_n}{n_p + n_n} log_2\left(\frac{n_n}{n_p + n_n}\right)$$

$$= -\left(\frac{1}{2} log_2 \frac{1}{2}\right) - \left(\frac{1}{2} log_2 \frac{1}{2}\right)$$

- Suponha que temos p exemplos positivos e n negativos a partir da escolha de um atributo
 - Qual o grau de desordem desse conjunto, sabendo que $n_p = n_n = 6$?

$$I(P(v_1), \dots, P(v_n)) = -\sum_{i=1}^{n} P(v_i) \log_2 P(v_i)$$

$$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{n_p}{n_p+n_n} \log_2 \left(\frac{n_p}{n_p+n_n}\right) - \frac{n_n}{n_p+n_n} \log_2 \left(\frac{n_n}{n_p+n_n}\right)$$

$$= -\left(\frac{1}{2} \log_2 \frac{1}{2}\right) - \left(\frac{1}{2} \log_2 \frac{1}{2}\right)$$

$$= 1$$

E como afinal escolhemos o atributo?

 Verificamos quanta informação ainda precisaremos após o teste de cada atributo

- Verificamos quanta informação ainda precisaremos após o teste de cada atributo
 - Cada atributo A separa o conjunto de treino S em subconjuntos S_1 , ..., S_v , de acordo com cada valor distinto v_i de A

- Verificamos quanta informação ainda precisaremos após o teste de cada atributo
 - Cada atributo A separa o conjunto de treino S em subconjuntos S_1 , ..., S_v , de acordo com cada valor distinto v_i de A
 - Assim, S_i é o subconjunto de S em que $A = v_i$

- Verificamos quanta informação ainda precisaremos após o teste de cada atributo
 - Cada atributo A separa o conjunto de treino S em subconjuntos S_1 , ..., S_v , de acordo com cada valor distinto v_i de A
 - Assim, S_i é o subconjunto de S em que $A = v_i$
 - Cada um (espera-se) necessitando de menos informação para completar a classificação

- Verificamos quanta informação ainda precisaremos após o teste de cada atributo
 - Cada atributo A separa o conjunto de treino S em subconjuntos S_1 , ..., S_v , de acordo com cada valor distinto v_i de A
 - Assim, S_i é o subconjunto de S em que $A = v_i$
 - Cada um (espera-se) necessitando de menos informação para completar a classificação
 - Suponha que S_i tenha p_i exemplos positivos e n_i exemplos negativos:

- Verificamos quanta informação ainda precisaremos após o teste de cada atributo
 - Cada atributo A separa o conjunto de treino S em subconjuntos S_1 , ..., S_v , de acordo com cada valor distinto v_i de A
 - Assim, S_i é o subconjunto de S em que $A = v_i$
 - Cada um (espera-se) necessitando de menos informação para completar a classificação
 - Suponha que S_i tenha p_i exemplos positivos e n_i exemplos negativos:
 - Para classificar um novo exemplo, a partir desse ponto, serão necessários $I\left(\frac{p_i}{p_i+n_i},\frac{n_i}{p_i+n_i}\right)$ bits

E como afinal escolhemos o atributo?

 Um exemplo aleatório de S terá o valor v_i para A, no nó em que A é testado, com probabilidade

$$\frac{|S_i|}{|S|} = \frac{p_i + n_i}{p + n}$$

E como afinal escolhemos o atributo?

- Um exemplo aleatório de S terá o valor v_i para A, no nó em que A é testado, com probabilidade $\frac{|S_i|}{|S|} = \frac{p_i + n_i}{p + n}$
- Em média, após testarmos A, precisaremos de

Restante(
$$S, A$$
) = $\sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$

bits de informação para classificar o exemplo, onde v é o número de valores distintos do atributo A

E como afinal escolhemos o atributo?

- Um exemplo aleatório de S terá o valor v_i para A, no nó em que A é testado, com probabilidade $\frac{|S_i|}{|S|} = \frac{p_i + n_i}{p + n}$
- Em média, após testarmos A, precisaremos de

$$Restante(S,A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$
necessária a partir de cada v_i

bits de informação para classificar o exemplo, onde v é o número de valores distintos do atributo A

E como afinal escolhemos o atributo?

 Ganho de informação a partir do teste do atributo em A

- Ganho de informação a partir do teste do atributo em A
 - Diferença entre a necessidade anterior de informação e a nova

- Ganho de informação a partir do teste do atributo em A
 - Diferença entre a necessidade anterior de informação e a nova

$$Ganho(S, A) = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) - Restante(S, A)$$

E como afinal escolhemos o atributo?

- Ganho de informação a partir do teste do atributo em *A*
 - Diferença entre a necessidade anterior de informação e a nova

$$Ganho(S, A) = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) - Restante(S, A)$$

Necessidade no pai do nó com A (ou seja, antes do teste de A). Os valores de p e n são os que restam após a escolha feita no pai de A

E como afinal escolhemos o atributo?

 A heurística usada para selecionar o atributo é escolher aquele com maior ganho

- A heurística usada para selecionar o atributo é escolher aquele com maior ganho
 - Ex:

- A heurística usada para selecionar o atributo é escolher aquele com maior ganho
 - Ex:

$$\textit{Ganho(clientes)} = 1 - \left[\frac{2}{12}\textit{I}\left(\frac{0}{2},\frac{2}{2}\right) + \frac{4}{12}\textit{I}\left(\frac{4}{4},\frac{0}{4}\right) + \frac{6}{12}\textit{I}\left(\frac{2}{6},\frac{4}{6}\right)\right] \approx 0,541 \, \textit{bits}$$

- A heurística usada para selecionar o atributo é escolher aquele com maior ganho
 - Ex:

$$\textit{Ganho(clientes)} = 1 - \left[\frac{2}{12}\textit{I}\left(\frac{0}{2},\frac{2}{2}\right) + \frac{4}{12}\textit{I}\left(\frac{4}{4},\frac{0}{4}\right) + \frac{6}{12}\textit{I}\left(\frac{2}{6},\frac{4}{6}\right)\right] \approx 0,541 \ \textit{bits}$$

$$\textit{Ganho(tipo)} = 1 - \left[\frac{2}{12}\textit{I}\left(\frac{1}{2},\frac{1}{2}\right) + \frac{2}{12}\textit{I}\left(\frac{1}{2},\frac{1}{2}\right) + \frac{4}{12}\textit{I}\left(\frac{2}{4},\frac{2}{4}\right) + \frac{4}{12}\textit{I}\left(\frac{2}{4},\frac{2}{4}\right)\right] \approx 0 \; \textit{bit}$$

ID3 – Exemplo

Ex	Atributos										
LX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
х1	S	N	N	S	Alg	\$\$\$	N	S	Fr	0-10	S
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
х3	N	S	N	N	Alg	\$	N	N	Bu	0-10	S
х4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
х6	N	S	N	S	Alg	\$\$	S	S	It	0-10	S
x7	N	S	N	N	Nen	\$	S	N	Bu	0-10	N
x8	N	N	N	S	Alg	\$\$	S	S	Ta	0-10	S
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x11	N	N	N	N	Nen	\$	N	N	Ta	0-10	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

Exemplos: {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12} Atributos: Alt, Bar, Fri, Hun, Pat, Price, Rain, Res, Type, Est Padrão: N (Não esperar)

ID3 – Exemplo

 O ID3 determina o ganho de informação para cada atributo candidato, e seleciona aquele com maior ganho.

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208

- O ID3 determina o ganho de informação para cada atributo candidato, e seleciona aquele com maior ganho.
- "Clientes" é o atributo com melhor previsão do atributo-alvo (se esperaremos para comer)

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208

- O ID3 determina o ganho de informação para cada atributo candidato, e seleciona aquele com maior ganho.
- "Clientes" é o atributo com melhor previsão do atributo-alvo (se esperaremos para comer)
 - Separemos então o conjunto de dados para cada um dos valores de "Clientes"

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208

Ex	Atributos										O.L.:
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x1	S	N	N	S	Alg	\$\$\$	N	S	Fr	0-10	S
х3	N	S	N	N	Alg	\$	N	N	Bu	0-10	S
х6	N	S	N	S	Alg	\$\$	S	S	It	0-10	S
x8	N	N	N	S	Alg	\$\$	S	S	Ta	0-10	S

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208

_					Atri	butos					
Ex	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x1	S	N	N	S	Alg	\$\$\$	N	S	Fr	0-10	S
х3	N	S	N	N	Alg	\$	N	N	Bu	0-10	S
х6	N	S	N	S	Alg	\$\$	S	S	It	0-10	S
x8	N	N	N	S	Alg	\$\$	S	S	Ta	0-10	S

Ex		Atributos									
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
х7	N	S	N	N	Nen	\$	S	N	Bu	0-10	N
x11	N	N	N	N	Nen	\$	N	N	Ta	0-10	N

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208

F.					Atributos									
Ex	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj			
x1	S	N	N	S	Alg	\$\$\$	N	S	Fr	0-10	S			
х3	N	S	N	N	Alg	\$	N	N	Bu	0-10	S			
x6	N	S	N	S	Alg	\$\$	S	S	It	0-10	S			
x8	N	N	N	S	Alg	\$\$	S	S	Ta	0-10	S			

Ex		Atributos									Obi
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
х7	N	S	N	N	Nen	\$	S	N	Bu	0-10	N
x11	N	N	N	N	Nen	\$	N	N	Та	0-10	N

Ex		Atributos									
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
x4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

ID3 – Exemplo

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208 /

Note que para todo exemplo em que Cli = Alg, Obj = S; e para todo em que Cli = Nen, Obj = N

Ex		Atributos									
ΕX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x 1	S	N	N	S	Alg	\$\$\$	N	S	Fr	0-10	S
х3	N	S	N	N	Alg	\$	N	N	Bu	0-10	S
х6	N	S	N	S	Alg	\$\$	S	S	It	0-10	S
х8	N	N	N	S	Alg	\$\$	S	S	Ta	0-10	S

Ex	Atributos									Obi	
LX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
х7	N	S	N	N	Nen	\$	S	N	Bu	0-10	N
x11	N	N	N	N	Nen	\$	N	N	Ta	0-10	N

Ex					Atri	butos					Obi
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
x4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
x5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
x9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

ID3 – Exemplo

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208

Esses nós da árvore tornam-se folhas com as respectivas classificações

Ex					Atri	butos					Obi
E X	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x1	S	N	N	S	Alg	\$\$\$	N	S	Fr	0-10	S
х3	N	S	N	N	Alg	\$	N	N	Bu	0-10	S
х6	N	S	N	S	Alg	\$\$	S	S	It	0-10	S
x8	N	N	N	S	Alg	\$\$	S	S	Ta	0-10	S

Ex		Atributos Alt Bar Sex Fam Cli Pre Chu Res Tip Est										
LX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj	
х7	N	S	N	N	Nen	\$	S	N	Bu	0-10	N	
x11	N	N	N	N	Nen	\$	N	N	Ta	0-10	N	

Ex					Atri	butos					Obj
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
x4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
x5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

Atributo	Ganho
Alternativa	0,0
Bar	0,0
Sex/Sáb	0,021
Faminto	0,196
Clientes	0,541
Preço	0,196
Chuva	0,0
Reserva	0,021
Tipo	0,0
Estimativa	0,208

Ex					Atri	butos					Obj
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x 1	S	N	N	S	Alg	\$\$\$	N	S	Fr	0-10	S
х3	N	S	N	N	Alg	\$	N	N	Bu	0-10	S
х6	N	S	N	S	Alg	\$\$	S	S	It	0-10	S
x8	N	N	N	S	Alg	\$\$	S	S	Ta	0-10	S

Ex		Atributos Alt Bar Sex Fam Cli Pre Chu Res Tip Est									
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
х7	N	S	N	N	Nen	\$	S	N	Bu	0-10	N
x11	N	N	N	N	Nen	\$	N	N	Ta	0-10	N

Ex					Atri	butos					Obi
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
x4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

ID3 – Exemplo

 Por outro lado, os descendentes correspondendo a Cli = Che têm entropia não nula

					Λ 4:						
Ex		_	_	_		butos		_			Obj
	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	,
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
х4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
x9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	lt	10-30	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

- Por outro lado, os descendentes correspondendo a Cli = Che têm entropia não nula
 - A árvore deve ser desenvolvida abaixo deste nó

_					Atri	butos					01.				
Ex	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	st				
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N				
х4	S	N	S	S	Che	\$	S	N	Ta	10-30	S				
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N				
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N				
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N				
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S				

ID3 – Exemplo

 O processo de selecionar um novo atributo é repetido para cada nó descendente não terminal

- O processo de selecionar um novo atributo é repetido para cada nó descendente não terminal
 - Usando apenas os exemplos de treino associados a esse nó

- O processo de selecionar um novo atributo é repetido para cada nó descendente não terminal
 - Usando apenas os exemplos de treino associados a esse nó
 - Atributos mais altos na árvore são descartados não mais usados

ID3 – Exemplo

- O processo de selecionar um novo atributo é repetido para cada nó descendente não terminal
 - Usando apenas os exemplos de treino associados a esse nó
 - Atributos mais altos na árvore são descartados não mais usados

Ex					Atri	butos					Ohi
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
x4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
x5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

Usamos apenas os dados em que Clientes = cheio.

$$I\left(\frac{2}{6}, \frac{4}{6}\right) \approx 0.918$$

Ex					Atri	butos					Obi
EX	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
x4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

Atributo	Ganho
Alternativa	0,109
Bar	0,0
Sex/Sáb	0,109
Faminto	0,251
Preço	0,251
Chuva	0,044
Reserva	0,251
Tipo	0,251
Estimativa	0,251

ID3 – Exemplo

Ex	Atributos										
	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
x4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

 Nesse caso, houve um empate

Atributo	Ganho				
Alternativa	0,109				
Bar	0,0				
Sex/Sáb	0,109				
Faminto	0,251				
Preço	0,251				
Chuva	0,044				
Reserva	0,251				
Tipo	0,251				
Estimativa	0,251				

Ex	Atributos										
	Alt	Bar	Sex	Fam	Cli	Pre	Chu	Res	Tip	Est	Obj
x2	S	N	N	S	Che	\$	N	N	Ta	30-60	N
x4	S	N	S	S	Che	\$	S	N	Ta	10-30	S
х5	S	N	S	N	Che	\$\$\$	N	S	Fr	>60	N
х9	N	S	S	N	Che	\$	S	N	Bu	>60	N
x10	S	S	S	S	Che	\$\$\$	N	S	It	10-30	N
x12	S	S	S	S	Che	\$	N	N	Bu	30-60	S

- Nesse caso, houve um empate
 - Escolhemos uma das opções: "Faminto"

Atributo	Ganho				
Alternativa	0,109				
Bar	0,0				
Sex/Sáb	0,109				
Faminto	0,251				
Preço	0,251				
Chuva	0,044				
Reserva	0,251				
Tipo	0,251				
Estimativa	0,251				

ID3 – Exemplo

 O processo continua para cada nó folha até que uma de duas condições ocorram:

- O processo continua para cada nó folha até que uma de duas condições ocorram:
 - Todo atributo já foi incluído no caminho; ou

- O processo continua para cada nó folha até que uma de duas condições ocorram:
 - Todo atributo já foi incluído no caminho; ou
 - Os exemplos de treino associados com essa folha têm todos o mesmo atributo-alvo (sua entropia é 0)

- O processo continua para cada nó folha até que uma de duas condições ocorram:
 - Todo atributo já foi incluído no caminho; ou
 - Os exemplos de treino associados com essa folha têm todos o mesmo atributo-alvo (sua entropia é 0)

ID3 – Exemplo

E continuando o processo chegaremos a

Exemplo – Comparando as árvores

Exemplo – Comparando as árvores

 As árvores diferem porque o algoritmo olha para os exemplos, e não para a função correta

Exemplo – Comparando as árvores

- As árvores diferem porque o algoritmo olha para os exemplos, e não para a função correta
- A árvore resultante é consideravelmente mais simples

Exemplo – Comparando as árvores

- As árvores diferem porque o algoritmo olha para os exemplos, e não para a função correta
- A árvore resultante é consideravelmente mais simples
 - O algoritmo não tem razão para incluir a Chuva e a Reserva, uma vez que pode classificar todos os exemplos sem elas

Exemplo – Comparando as árvores

 Também detectou um padrão não-previsto: o autor da árvore esperará pela comida tailandesa nas sextas e sábados

Florestas Aleatórias

Fonte: https://epoca.globo.com/colunas-e-blogs/blog-do-planeta/noticia/2016/08/floresta-perdida-do-brasil.html

Florestas Aleatórias

 Nesse algoritmo, são criadas múltiplas árvores de decisão

Fonte: https://epoca.globo.com/colunas-e-blogs/blog-do-planeta/noticia/2016/08/floresta-perdida-do-brasil.html

Florestas Aleatórias

- Nesse algoritmo, são criadas múltiplas árvores de decisão
- Para classificar um novo exemplo:

Fonte: https://epoca.globo.com/colunas-e-blogs/ blog-do-planeta/noticia/2016/08/ floresta-perdida-do-brasil.html

Florestas Aleatórias

- Nesse algoritmo, são criadas múltiplas árvores de decisão
- Para classificar um novo exemplo:
 - Passe o exemplo a cada uma das árvores na floresta

Fonte: https://epoca.globo.com/colunas-e-blogs/ blog-do-planeta/noticia/2016/08/ floresta-perdida-do-brasil.html

Florestas Aleatórias

- Nesse algoritmo, são criadas múltiplas árvores de decisão
- Para classificar um novo exemplo:
 - Passe o exemplo a cada uma das árvores na floresta

Fonte: https://epoca.globo.com/colunas-e-blogs/blog-do-planeta/noticia/2016/08/floresta-perdida-do-brasil.html

 O resultado da floresta será a classificação conforme o resultado da maioria das árvores nela

Florestas Aleatórias

- Nesse algoritmo, são criadas múltiplas árvores de decisão
- Para classificar um novo exemplo:
 - Passe o exemplo a cada uma das árvores na floresta

Fonte: https://epoca.globo.com/colunas-e-blogs/blog-do-planeta/noticia/2016/08/floresta-perdida-do-brasil.html

- O resultado da floresta será a classificação conforme o resultado da maioria das árvores nela
 - Votação simples ou ponderada

Florestas Aleatórias – Crescimento

• Defina $m' \ll m$, onde m é o número de atributos (variáveis a serem consideradas) do problema

- Defina $m' \ll m$, onde m é o número de atributos (variáveis a serem consideradas) do problema
 - O valor de m' é mantido constante durante o crescimento da floresta

- Defina $m' \ll m$, onde m é o número de atributos (variáveis a serem consideradas) do problema
 - O valor de m' é mantido constante durante o crescimento da floresta
- Para cada árvore na floresta:

- Defina $m' \ll m$, onde m é o número de atributos (variáveis a serem consideradas) do problema
 - O valor de m' é mantido constante durante o crescimento da floresta
- Para cada árvore na floresta:
 - Tome uma amostra aleatória, com reposição, de n elementos do conjunto de treino, onde n é o tamanho do próprio conjunto de treino

- Defina $m' \ll m$, onde m é o número de atributos (variáveis a serem consideradas) do problema
 - O valor de m' é mantido constante durante o crescimento da floresta
- Para cada árvore na floresta:
 - Tome uma amostra aleatória, com reposição, de n elementos do conjunto de treino, onde n é o tamanho do próprio conjunto de treino
 - Essa amostra será o conjunto de treino da árvore

- Para cada árvore na floresta (cont.):
 - Em cada nó, selecione aleatoriamente m' atributos dos m possíveis

- Para cada árvore na floresta (cont.):
 - Em cada nó, selecione aleatoriamente m' atributos dos m possíveis
 - Verifique cada um deles no nó, e escolha o melhor desses m' para expandir o nó

- Para cada árvore na floresta (cont.):
 - Em cada nó, selecione aleatoriamente m' atributos dos m possíveis
 - Verifique cada um deles no nó, e escolha o melhor desses m' para expandir o nó
 - Continue o processo até não conseguir crescer mais a árvore

- Para cada árvore na floresta (cont.):
 - Em cada nó, selecione aleatoriamente m' atributos dos m possíveis
 - Verifique cada um deles no nó, e escolha o melhor desses m' para expandir o nó
 - Continue o processo até não conseguir crescer mais a árvore
 - Cada árvore cresce até seu máximo \rightarrow não há poda

Referências

- Russell, S.; Norvig P. (2010): Artificial Intelligence: A Modern Approach. Prentice
 Hall. 3a ed.
 - Slides do livro: aima.eecs.berkeley.edu/slides-pdf/
- Mitchell, T.M.: Machine Learning. McGraw-Hill. 1997.
- Alpaydın, E.: Introduction to Machine Learning. 2 ed. MIT Press. 2010.
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C.J.: <u>Classification and Regression</u> Trees. Wadsworth. 1984.
- Fayyad, U.M.: On the induction of decision trees for multiple concept leaning. Tese de Doutorado. EECS Department, University of Michigan. 1991.
- Harrington, P.: Machine Learning in Action. Manning. 2012.
- Hyafil, L.; Rivest, R. Constructing Optimal Binary Decision Trees is NP-complete. Information Processing Letters 5(1), 15–17. 1976.
- Nilsson, N.J.: Introduction to Machine Learning. 1998.
- Quinlan, J.R.: <u>Induction of Decision Trees</u>. Machine Learning, 1(1), 81–106. 1986.

Referências

- Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann. 1993.
- Shannon, C. E.; Weaver, W.: <u>The Mathematical Theory of Communication</u>. University of Illinois Press. 1949.
- Theodoridis, S.; Koutroumbas, K.: Pattern Recognition. 4 ed. Academic Press. 2009.
- Webb, A.R.; Copsey, k.D.: Statistical Pattern Recognition. 3 ed. Wiley. 2011.
- $\verb| https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd| \\$
- https://medium.com/machina-sapiens/o-algoritmo-da-floresta-aleat%C3% B3ria-3545f6babdf8
- https: //www.datacamp.com/community/tutorials/random-forests-classifier-python
- https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm