# PORTFOLIO

DATA SCIENCE

**NASSER CHAOUCHI** 



# **SUMMARY**

# **1.WHO AM !?**

# 2.MY WORK EXPERIENCE

# 3.MY PROJECTS

- a.THE MOVIE RECOMMENDER SYSTEM
- b.MULTICLASS CLASSIFICATION FOR DIABETES
- c.THE CKD AND DYALISIS PREDICTION

# **SUMMARY**



## My academic journey

I'm Nasser, a **French computer science engineer** passionate about **artificial intelligence**, **data**, and **innovation**. I **graduated from UTC** (Université de Technologie de Compiègne) in 2025 with **a major in AI and Data Science**.

### I completed:

- A dual-focused internship at Numberly as a Data Engineer and Project Manager, combining technical and management responsibilities.
- An exchange semester at the Escuela de Ingeniería y Arquitectura in Zaragoza (Spain), as part of a Data Science Master's program.
- A final-year internship at Ubisoft as a Data Scientist, working on real-world game data and predictive models.





**Curious** 

**Rigorous** 

**Positive** 

**Patient** 



Interests

Artificial Intelligence

**Sports** 

Literature

Chess

# MY WORK EXPERIENCE

An **internship** at **Ubisoft** from **October 2024** to **March 2025** as a **Data Scientist**, with the following missions:

**Audiences Understanding** 

Segmentation Based on Players' Profiles

**Player Behavior Prediction** 

I worked on the game **Avatar: Frontiers of Pandora**. My role was **to understand the game's underperformance** and to **identify and target potential players** within the **Ubisoft ecosystem** who would most likely acquire the game.

The project was divided into **three main phases**:



You can contact the team manager for a reference:

Nicolas Tatin, Associate Director, Data & Analytics

Data Analysis

**Data Science** 

# MY PROJECTS – THE MOVIE RECOMMENDER SYSTEM

### CONTEXT

- Dataset: MovieLens 32M
- Goal: Recommend movies users might like, based on behavior and content
- Type: Hybrid Recommendation System
  - Collaborative Filtering (ratings)
  - Content-Based Filtering (genres, titles)
- Size: 32M+ ratings, ~270k users, 62k movies

### **BUILT WITH**

- Scikit-learn
- · Pandas, NumPy
- Seaborn
- Matplotlib
- HuggingFace datasets
- Streamlit

**Open the repository** 

Open the interface (with MovieLens 1M)

### **APPROACH**

- Data Cleaning: Merged movies.csv and ratings.csv, extracted year, processed genres
- Collaborative Filtering: Built user-item matrix, applied cosine similarity
- Content-Based Filtering: Used TF-IDF/CountVectorizer on genres and titles
- Hybrid Strategy: Combined top recommendations from both approaches
- Implemented multiple strategies: Most rated movies, Top-rated by genre, Top-rated by year, User-user collaborative hybrid, Item-item collaborative hybrid
- **Profile-Based Recommendation**: Built a user profile from favorite movies to generate personalized suggestions

### **WHAT I LEARNED**

- Designing and comparing recommender strategies
- Using similarity metrics (cosine) on sparse data
- Evaluating trade-offs between relevance and diversity

# MY PROJECTS – THE MOVIE RECOMMENDER SYSTEM



| ★ Popular Picks                                       |   |
|-------------------------------------------------------|---|
| Choose a recommendation method:                       |   |
|                                                       |   |
| Select a genre:                                       |   |
| Action                                                | ~ |
| Recommend by Genre                                    |   |
| Recommendations:                                      |   |
|                                                       |   |
| □ 1977  \$\frac{1}{2} Action Adventure Fantasy Sci-Fi |   |
| Action Adventure Fantasy Sci-Fi                       |   |





# MY PROJECTS – THE MOVIE RECOMMENDER SYSTEM







# MY PROJECTS – MULTICLASS CLASSIFICATION FOR

### CONTEXT

- · Dataset: Multiclass Diabetes Dataset
- Goal: Classify patients into several diabetes stages
- Type: Supervised, Multiclass classification
- Size: 264 patients, 12 features

### **BUILT WITH**

- Scikit-learn
- Pandas, NumPy
- Seaborn
- Matplotlib
- Streamlit

Open the repository

**Open the interface** 

### **APPROACH**

- EDA & Preprocessing: Analyzed feature distributions, handled missing values, balanced classes, and scaled data.
- Model tested: Logistic Regression, Random Forest and K-Nearest Neighbour
- · Cross Validation: Ensured robust performance and avoided overfitting
- Evaluation: Confusion Matrix, Classification report (F1-Score, Accuracy, Recall)
- Final model (Random Forest)
  - Accuracy: 97%
  - Macro F1-score (better suited to class imbalance): 0.98

### WHAT I LEARNED

- How to handle imbalanced multiclass data
- The importance of feature engineering and model tuning
- Model explainability with SHAP or feature importance

# MY PROJECTS - MULTICLASS CLASSIFICATION FOR



# MY PROJECTS – THE CKD AND DYALISIS PREDICTION

### CONTEXT

- · Dataset: Kidney Disease Risk Dataset
- **Goal**: Predict CKD status and dialysis need based on clinical and biological data
- Type: Supervised, Binary classification (2 targets: CKD\_Status, Dialysis Needed)
- Size: 2304 patients, 9 features

### **BUILT WITH**

- Scikit-learn
- Pandas, NumPy
- Seaborn
- Matplotlib
- XGBoost
- Streamlit

**Open the repository** 

**Open the interface** 

### **APPROACH**

- **EDA & Preprocessing**: Explored feature relationships, handled missing values, encoded categorical data, scaled numerical features.
- Model tested: Logistic Regression, Random Forest, Gradient Boosting, XGBoost and K-Nearest Neighbour
- Cross Validation: Ensured robustness and reduced overfitting risk.
- Evaluation Classification Report, ROC-AUC, F1-Score, Accuracy
- Best model was Gradient Boosting, but due to class imbalance, Random Forest gave more reliable results for generalization.
  - → **Accuracy**: 100% for CKD\_Status Accuracy 100% but a F1-Score 0.97 (class imbalance) for the Dialysis Needed
  - → Separate models trained for each target

### **WHAT I LEARNED**

- Managing dual target classification
- Handling noisy and medical data
- Improving interpretability with SHAP values

# MY PROJECTS - THE CKD AND DYALISIS PREDICTION

### **Evaluation on Test Set – CKD\_Status**

| Class           | Precision | Recall | F1-Score | Support |
|-----------------|-----------|--------|----------|---------|
| 0               | 1.00      | 1.00   | 1.00     | 340     |
| 1               | 1.00      | 1.00   | 1.00     | 352     |
|                 |           |        |          |         |
| Accuracy        |           |        | 1.00     | 692     |
| Macro avg       | 1.00      | 1.00   | 1.00     | 692     |
| Weighted<br>avg | 1.00      | 1.00   | 1.00     | 692     |

### Evaluation on Test Set - Dialysis\_Needed

| Class        | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.00      | 1.00   | 1.00     | 683     |
| 1            | 1.00      | 0.89   | 0.94     | 9       |
|              |           |        |          |         |
| Accuracy     |           |        | 1.00     | 692     |
| Macro avg    | 1.00      | 0.94   | 0.97     | 692     |
| Weighted avg | 1.00      | 1.00   | 1.00     | 692     |





# DON'T HESITATE TO REACH ME OUT

