MATH211: Linear Methods I

Matthew Burke

Tuesday 4th December, 2018

Lecture on Tuesday 4th December, 2018

Similar matrices

Dynamical systems

Markov chains

PageRank

Last time

Diagonalisation

Matrix powers

Similar matrices

Similar matrices

Definition

Two matrices A and B are similar iff there exists an invertible P such that

$$A = PBP^{-1}$$

and we write $A \sim B$.

Example

Every diagonalisable matrix is similar to a diagonal matrix.

000

Definition

The trace of a matrix is the sum of its diagonal elements:

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

Theorem

If $A \sim B$ then tr(A) = tr(B).

Dynamical systems

Dynamical systems

Definition

A dynamical system consists of a function $\alpha(t)$ that prescribes how the state of the system changes over time.

Definition

A discrete linear dynamical system consists of a sequence of vectors

$$x_0, x_1, x_2, \ldots, x_k, \ldots$$

such that $x_{k+1} = Ax_k$ for some matrix A.

Long term behaviour using eigenvectors

If x_0 is a linear combination of the eigenvectors v_{λ_i} of A then

$$x_k = A^k x_0 = A^k \left(\sum_{i=1}^n b_i v_{\lambda_i} \right) = \sum_{i=1}^n b_i A^k \left(v_{\lambda_i} \right) = \sum_{i=1}^n b_i (\lambda_i)^k v_{\lambda_i}$$

and so the long-term behaviour is determined by the limits:

$$\lim_{k\to\infty}(\lambda_i)^k$$

Dominant eigenvalue

Definition

If a is a square matrix then a dominant eigenvalue λ_{max} is one for which $|\lambda_{max}| > |\lambda_i|$ for all other eigenvalues λ_i .

$$x_k = \sum_{i=1}^n b_i(\lambda_i)^k v_{\lambda_i} \approx b_i(\lambda_{max})^k v_{\lambda_{max}}$$

and we can read off the long term behaviour. E.g.

- ▶ if $|\lambda_{max}|$ < 1 then the system converges to 0
- ightharpoonup if $|\lambda_{max}|=1$ then the system converges to $b_i v_{\lambda_{max}}$
- if $|\lambda_{max}| = -1$ then the system oscillates between $\pm b_i v_{\lambda_{max}}$
- if $|\lambda_{max} > 1|$ then the system diverges

Example

Find a formula for x_k if $x_{k+1} = Ax_k$,

$$x_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$

Example

Estimate the long term behaviour of the dynamical system with

$$x_0 = \begin{bmatrix} 100 \\ 40 \end{bmatrix}$$
 and $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 2 & 0 \end{bmatrix}$

Markov chains

Markov chains

A Markov chain consists of:-

- ightharpoonup a finite set of states x_1, x_2, \ldots, x_n
- ➤ a repeated transition interval at the end of which the system transitions between states
- ▶ a not necessarily deterministic rule for predicting the probability that the system will transition into a certain state
 - ► This probability only depends on the current state.
 - (Not the entire history of the chain.)

Markov transition matrices

This means that a Markov chain is described by a *transition matrix* A such that

$$A_{ij} = \mathbb{P}(X_1 = j | X_0 = i)$$

= the probability that the next state will be j given that the current state is i

Therefore:-

- ▶ all of the entries are between 0 and 1
 - ► (I.e. they are probabilities.)
- in any column the sum of the entries is 1
 - (The system must be in one of the states at all times.)

Steady state

Definition

A steady state vector for a matrix A is an eigenvector with eigenvalue 1.

(In other words it is a *non-zero* vector v such that Av = v.)

Definition

A steady state vector for a Markov chain is a steady state vector for the transition matrix of the Markov chain such that the entries sum to 1.

Regular Markov chains

Definition

A matrix A is regular iff there exists a positive integer k such that all of the entries of A^k are strictly positive.

Theorem

If the transition matrix of a Markov chain is regular then it has a steady state vector.

Example

The converse is false! E.g. the following matrix has two steady state vectors:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Example

Calculate and interpret x_3 given that

$$x_0 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$
 and $A = \begin{bmatrix} 0 & \frac{1}{4} \\ 1 & \frac{3}{4} \end{bmatrix}$

Example

What is the probability that we are in state 1 after two iterations if

$$x_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ and } A = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$

Examples

Example

Find a steady state vector for

$$\begin{bmatrix} 0 & \frac{1}{4} \\ 1 & \frac{3}{4} \end{bmatrix}$$

Example

Find a steady state vector for

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$

PageRank

The core part of Google PageRank (mainly due to Larry Page) is calculated recursively:-

- ▶ Suppose we have *n* pages: P_1 , P_2 ... P_n
- \triangleright denote the PageRank of P_i by PR(i)
- then (recursively) define

$$PR(i) = \sum_{j=1}^{n} \frac{PR(j) \cdot L_{ji}}{Out(j)}$$

where L_{ji} is the number of links from P_j to P_i and Out(j) is the total number of links on page j.

At first glance it is not even clear that this is well-defined. . .

Steady state vector

To work out the PageRank for each site:-

- Form the matrix with entries $A_{ij} = \frac{L_{ji}}{Out(i)}$.
- Find a steady state vector for this system.

PageRank Example

Example (Simplified PageRank)

Suppose that the internet consists of three(!) pages P_1 , P_2 and P_3 . Suppose further that:-

- \blacktriangleright there are two links from P_1 to P_2
- ▶ there is one link from P_1 to P_3
- ▶ there is one link from P₂ to P₁
- ▶ there is one link from P_2 to P_3
- ▶ there is one link from P_3 to P_2

Then calculate the (relative) PageRanks for P_1 , P_2 and P_3 .

Example

Example
If possible diagonalise

$$\begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$