Student University Roll No .:

Printed Pages: 2

School of Engineering

Second Sessional Examination, Odd Semester (AS: 2023-24)

B. Tech: CSE/CSAI/CCML/IOTBC

Year: II

Semester: III

Course Title: Discrete Mathematics

Max Marks: 60

Course Code: BCS3301

Time: 3hrs

Q.1 a)	SECTION 'A' N.1. Attempt all parts of the following:	Course Objective	Marks
-,	For set A and B prove that $(A \cap B) \cup (A \cap B) = A$	CO1	1
b)	If $f(x) = 3x+1$ and $g(x) = x^2$, then determine $gof(x)$	CO1	1
c)d)	Define Modular Lattice.	CO2	1
-/-	Define Cosets.	CO2	1
e)	Use quantifier to Convert the following statement in quantified expressions of predicate logic "All rational numbers are real numbers."	CO3	1
f)_	Define Complemented Lattice.	CO2	1
g)	Define Hamiltonian Path	CO4	1
h)	Define Binary Search Tree	CO4	1
Q.I	SECTION 'B' N.2. Attempt any two parts of the following:	Course Objective	Mark
a)	For each of these relations defined on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive. (i) {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}	CO1	6
	(ii) {(1, 1), (2, 2), (3, 3), (4, 4)} (iii) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}		
b)		CO4	6

	lattices.				
	of of		+		
	te, de re				
	c > d X				1
	76 64 >c				
	·a ·a				
	(i) Suppose that		-		
	C = "The cheese is good."				
	F = "The french fries are greasy."		CO3 6		
	W = "The wings are spicy."				
d)	Translate the following logical				6
	statements into words $($				
	(ii) Draw a Truth table for the following				
	compound statement $(PVQ) \leftrightarrow (Q \rightarrow R)$				
	SECTION 'C'		Cours	ie	Marks
			Objec	tive	
Q.N	i.3. Attempt any two parts of the following:				
	For any three non empty set A, B, and C			T	
a)	prove that	1	COI		5
	$A \times (B-C) = A \times B - A \times C$ Show that the mapping defined by			-	
b)	f: R-{3} \rightarrow R-{1} such that $f(x) = (x-1)/(x-3)$		CO1 5		
	is bijective and find the inverse of this	(5
	function, where R is a set of real numbers.				
c)	Use mathematical induction to prove that $6^{n+2}+7^{2n+1}$ is divisible by 43 for $n\ge 1$	(CO1		5
Q.N	N.4. Attempt any two parts of the following:				
1			177		
	Prove that set $R = \{0, 1, 2, 3, 4, 5\}$ is a commutative ring with respect to addition				
a)	module 6 (+6) and multiplication module 6	(002		5
	(Λ_6) .	1			
b)	Draw a Hasse Diagram of $(P(A), \subseteq)$ where A = {a, b, c}. Then prove that it is a Lattice.	(002		5
	Let G = {1,-1,i,-i} with the operation of				
(c)	ordinary multiplication on G be an algebraic	C	O2		5
-	structure, where i=\-1.		- ye		

	(i) Determine whether G is abelian or not. (ii) Determine the order of each element in G.		
	(iii) Determine whether G is a cyclic group, if G is a cyclic group, then determine the		
	generator/generators of the group G.		
Q.N	1.5. Attempt any two parts of the following:		
a)	Simplify following Boolean function using K map $F(A,B,C,D) = \sum (m_0, m_1, m_2, m_4, m_5, m_6, m_8, m_9, m_{12}, m_{13}, m_{14})$	CO3	5
b)	Use rules of inference to show that the hypotheses "Randy works hard," "If Randy works hard, then he is a dull boy," and "If Randy is a dull boy, then he will not get the job" imply the conclusion: "Randy will not get the job."	CO3	5
c)	Write the contra-positive, converse and inverse of the following statements: (i) If today is Sunday, then I will wash the car. (ii) If x+5=8 then x=3	CO3	5
Q.1	N.6. Attempt any two parts of the following:		1
a)	Write short notes on following: i) Multi Graphs ii) Planar Graphs iii) Euler Graph iv) Pigeon hole principle. v) Chromatic Number	CO4	5
b)	Solve following recurrence relation. $a_r + 6a_{r-1} + 9a_{r-2} = 3$ given that $a_0 = 0$ and $a_1 = 1$	CO4	5
c)	How many vertices do the graph will have if it contains, 3 vertices of degree 2, 4 vertices of degree 3, rest vertices have degree 4. Number of edges in a graph is 15.	CO4	5
	Tramot of eage 3 1		1

Table Is Manuel of COs may vary from course to course

	Questions Numbers	Total Marks
COs		23
COI	Q1.(a).(b). Q2.(a). Q3	23
CO2	Q1.(c)(d),Q2(c),Q4	23
CO3	Q1.(e)(f) Q2.(d), Q5	23
CO4	Q1.(g)(h),Q2(b), Q6	