Seminární práce AŘ

Vypracovali: Martin Jahn, Ondřej Váchal

Obsah

1.	Výpočet S _p a S ₂		$S_p \ a \ S_2$	3
	1.1	Odv	ození rovnic	3
	1.2	Výp	očet výtokových ventilů S _p a S ₂	4
2.	Line	ariza	rce	4
	2.1	Line	earizovaný stavový model v pracovním bodě	5
	2.2	Line	earizovaný stavový model za zvýšeného přítoku	5
	2.2.	1	Vyšší přítok o 20%, ale stejné hodnoty ventilů => vyšší hladiny	5
	2.2.	2	Vyšší přítok o 20%, ale jiné hodnoty ventilů => stejné hladiny	6
3.	Určení přenosu systému Q_1 (t) -> H_2 (t)		6	
	3.1. Uri		ení numericky skutečné neurčitosti	7
	3.2.	Def	inice modelu neurčitosti pomocí modelu perturbace	8
4.	Regulátor			12
	4.1.	Náv	rh PI regulátoru	12
	4.1.	1	Vnitřní stabilita	15
	4.1.	2	Robustnost ve stabilitě	18
	4.1.	3	Útlum komplementární citlivostní funkce	20
	4.1.	4	Energie libobovolného šumu	21
	4.2.	Zatí	žení měření šumem a poruchou	22
	4.3.	Půs	obení poruchy na rovnovážný stav	24
	4.4.	Zesi	ílení signálů zpětnou vazbou	24

1. Výpočet S_p a S_2

1.1 Odvození rovnic

$$\frac{dV_1}{dt} = S * \frac{dH_1(t)}{dt} = Q_{10} - Q_p$$

$$\frac{dV_2}{dt} = S * \frac{dH_2(t)}{dt} = Q_p - Q_2$$

Výšky hladil jsme zvolili: H_{10} = 0.7 m a H_{20} = 0.5 m.

Průtokové a výtokové množství kapaliny můžeme vyjádřit jako:

$$Q_p = S_p * V_p * C_p$$

$$Q_2 = S_2 * V_2 * C_2,$$

kde S_p a S₂ jsou výtokové ventily.

Rychlosti proudění kapaliny lze určit z Bernoulliova zákona (součet atmosférického tlaku, hydrostatického tlaku a hydrodynamického tlaku je konstantní).

$$p_0 + \varrho g H_1(t) = p_0 + \varrho g H_2(t) + \frac{1}{2} p v_p^2(t)$$

Po dosazení dostáváme:

$$\frac{dH_1}{dt} = -\frac{1}{S}c_p S_p \sqrt{2g(H_1 - H_2)} + \frac{1}{S}Q_{10}$$

$$\frac{dH_2}{dt} = \frac{1}{S}c_p S_p \sqrt{2g(H_1 - H_2)} - \frac{1}{S}c_2 S_2 \sqrt{2gH_2}$$

1.2 Výpočet výtokových ventilů S_p a S₂

Ustálený stav (pracovní bod):

$$0 = -\frac{1}{S}c_p S_p \sqrt{2g(H1 - H2)} + \frac{1}{S}Q_{10}$$

$$0 = \frac{1}{S}c_p S_p \sqrt{2g(H_1 - H_2)} - \frac{1}{S}c_2 S_2 \sqrt{2gH_2}$$

A dosazením do předchozích rovnic dostáváme hodnoty výtokových ventilů: $S_p = 1.262 * 10^{-4} m^2$ a $S_2 = 7.982 * 10^{-5} m^2$.

2. Linearizace

$$\begin{split} \mathbf{f}_1: \ \dot{\mathbf{H}}_1 \ &= - \, \frac{1}{S} c_p S_p \sqrt{2g(H1-H2)} + \, \frac{1}{S} Q_{10} \\ \\ \mathbf{f}_2: \ \dot{\mathbf{H}}_2 \ &= \, \frac{1}{S} c_p S_p \sqrt{2g(H1-H2)} - \, \frac{1}{S} c_2 S_2 \sqrt{2gH_2} \end{split}$$

Matice získáme pomocí parciálních derivací (Jacobiho matice).

$$A = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}H_1} & \frac{\mathrm{d}f_1}{\mathrm{d}H_2} \\ \frac{\mathrm{d}f_2}{\mathrm{d}H_1} & \frac{\mathrm{d}f_2}{\mathrm{d}H_2} \end{bmatrix}, B = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}u} \\ \frac{\mathrm{d}f_2}{\mathrm{d}u} \end{bmatrix}, kde \ u = Q_{10}$$

Potom pomocí linearizace dostáváme:

$$A = \begin{bmatrix} \frac{-c_p S_p}{2S} & \frac{\sqrt{2g}}{\sqrt{H_1 - H_2}} & \frac{c_p S_p}{2S} & \frac{\sqrt{2g}}{\sqrt{H_1 - H_2}} \\ \frac{c_p S_p}{2S} & \frac{\sqrt{2g}}{\sqrt{H_1 - H_2}} & \frac{-c_p S_p}{2S} & \frac{\sqrt{2g}}{\sqrt{H_1 - H_2}} - \frac{c_2 S_2}{2S} & \frac{\sqrt{2g}}{\sqrt{H_2}} \end{bmatrix}, B = \begin{bmatrix} \frac{1}{S} \\ 0 \end{bmatrix}$$

$$C = [0 \quad 1], D = [0]$$

2.1 Linearizovaný stavový model v pracovním bodě

$$Q_{10} = 1.5*10^{-4} \text{ m}^3 \text{ s}^{-1}$$
; $S_p = 1.262*10^{-4} \text{ m}^2$; $S_2 = 7.982*10^{-5} \text{ m}^2$.

$$A = \begin{bmatrix} -0.14999 & 0.14999 \\ 0.14999 & -0.20999 \end{bmatrix}$$

$$B = \begin{bmatrix} 400 \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$D=[0]$$

2.2 Linearizovaný stavový model za zvýšeného přítoku

2.2.1 Vyšší přítok o 20%, ale stejné hodnoty ventilů => vyšší hladiny

$$Q_{11} = 1.8*10^{-4} \text{ m}^3 \text{ s}^{-1}$$
; $S_p = 1.262*10^{-4} \text{ m}^2$; $S_2 = 7.982*10^{-5} \text{ m}^2$;

$$H_{21} = \frac{Q_{11}^2}{2g} \frac{1}{(S_2 c_2)^2} = 0.72 \, m$$

$$H_{11} = H_{21} + \frac{Q_{11}^2}{2g} \frac{1}{(S_n c_2)^2} = 1 m$$

$$A = \begin{bmatrix} -0.1250 & 0.1250 \\ 0.1250 & -0.1750 \end{bmatrix}$$

$$B = \begin{bmatrix} 400 \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$D=\left[0\right]$$

2.2.2 Vyšší přítok o 20%, ale jiné hodnoty ventilů => stejné hladiny

$$Q_{11} = 1.8*10^{-4} \text{ m}^3 \text{ s}^{-1}$$
; $S_{p1} = 1.515*10^{-4} \text{ m}^2$; $S_{21} = 9.578*10^{-5} \text{ m}^2$; $H_1 = 0.7$; $H_2 = 0.5$

$$A = \begin{bmatrix} -0.1801 & 0.1801 \\ 0.1801 & -0.2521 \end{bmatrix}$$

$$B = \begin{bmatrix} 400 \\ 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$D = [0]$$

3. Určení přenosu systému Q_1 (t) -> H_2 (t)

V Matlabu pomocí funkce [n,d]=ss2tf(A,B,C,D) jsme určili num a den přenosových funkcí nebo za použití vzorce: $P(s)=C*(sI-A)^{-1}*B+D$

a. Přenosová funkce pro linearizovaný systém 2.2.1 a určení neurčitosti přenosu.

$$P(s) = \frac{50}{s^2 + 0.3s + 0.00625}$$

b. Přenosová funkce pro linearizovaný systém 2.2.2 a určení neurčitosti přenosu.

$$P(s) = \frac{72.0258}{s^2 + 0.4321s + 0.0130}$$

3.1. Určení numericky skutečné neurčitosti

Následující intervaly ukazují rozmezí [původní přítok – zvýšený přítok o 20 %].

a. Pro výšky hladin H_1 a H_2 .

Neurčitost intervalu H1: [0.7-1]

Neurčitost intervalu H2: [0.5-0.72]

Neurčitost intervalu pro Q: $[1.5*10^{-4} - 1.8*10^{-4}]$

b. Pro ventily S_p a S_2 .

Neurčitost intervalu S2: $[7.982 * 10^{-5} - 9.578 * 10^{-5}]$

Neurčitost intervalu Sp: $[1.262*10^{-4} - 1.515*10^{-5}]$

Neurčitost intervalu pro Q: $[1.5 * 10^{-4} - 1.8 * 10^{-4}]$

3.2. Definice modelu neurčitosti pomocí modelu perturbace

Nejprve jsme určili nominální přenos $P_{0a}(s)$. Ten jsme určili tak, že jsme zvýšili původní výšky hladin o 10 % a s těmito hodnotami jsme vypočítali matici A, a poté celý nový přenos. Pro přenos $P_{0b}(s)$ jsme zvýšili hodnoty připouštěcích ventilů opět o 10 %. Následně jsme s těmito hodnotami opět vypočítali matici A a přenos $P_{0b}(s)$.

Pro 2A:

$$P_{0a}(s) = \frac{54.55}{s^2 + 0.3273s + 0.007438}$$

Pro 2B:

$$P_{0b}(s) = \frac{66}{s^2 + 0.396s + 0.01089}$$

Dále jsme vypočítali aditivní neurčitost pomocí nominálního modelu a váhové funkce:

$$P(s) = P_o(s) + W_a(s)\Delta$$
, kde $\|\Delta\|_{\infty} \le 1$
$$W_a(s) = P(s) - P_o(s)$$

$$W_a(s) = \frac{5.455 \, s^2 - 0.04463}{s^4 + 0.6873 \, s^3 + 0.1343 \, s^2 + 0.005623s + 6.694 * 10^{-5}}$$

$$W_b(s) = \frac{-6 \, s^2 + 0.0549}{s^4 + 0.756 \, s^3 + 0.1625 \, s^2 + 0.007484s + 9.801 * 10^{-5}}$$

Na obrázcích je znázorněn červeně nominální přenos, zeleně perturbované přenosy, černě aditivní neurčitosti a modře velikost neurčitosti. Z obrázků je vidět, že se zvyšující frekvencí se neurčitost zmenšuje.

Z předchozího obrázku (Bode diagram) je vidět, že neurčitosti v obou případech jsou na všech frekvencích velmi podobné.

4. Regulátor

Zde předpokládáme, že přítok je Q₁ (t) je realizován vodním čerpadlem:

$$F_{\check{c}erp}(s) = \frac{1.5 * 10^{-4}}{0.5s + 1}$$

Přenos soustavy potom bude:

$$F_{sys}(s) = \frac{1.5 * 10^{-4}}{0.5s + 1} * \frac{54.55}{s^2 + 0.3273s + 0.007438} = \frac{0.008182}{0.5s^3 + 1.164 s^2 + 0.331 s + 0.007438}$$

Získali jsme přenos řízeného systému, který bude potřeba řídit PI regulátorem s přenosem

$$C(s) = K * (1 + \frac{1}{T_i s})$$

4.1. Návrh PI regulátoru

Parametry PI regulátoru jsme určili metodou pokus-omyl. Zjištěné hodnoty jsou: **K=8**, **Ti=28**. Tyto hodnoty jsme zvolili, neboť se pro ně ukázaly být splněny všechny požadavky.

Přenos otevřené smyčky nominálního systému je tedy:

$$L_0(s) = \frac{K * T_i s + K}{T_i s} * \frac{0.008182}{0.5 s^3 + 1.164 s^2 + 0.331 s + 0.007438}$$

$$= \frac{224 s + 8}{28 s} * \frac{0.008182}{0.5 s^3 + 1.164 s^2 + 0.331 s + 0.007438}$$

$$= \frac{1.833 s + 0.06546}{14 s^4 + 32.58 s^3 + 9.269 s^2 + 0.2083 s}$$

Z tohoto grafu je vidět, že systém s regulátorem, který má parametry K = 8 a Ti = 28, je stabilní.

Pro hodnoty K = 90 a Ti = 28 je systém nestabilní.

Pro hodnoty K = 81.5 a Ti = 28 je systém ne mezi stability.

Při snížení hodnoty parametru K a zvýšení hodnoty Ti je systém stabilnější, ale konverguje pomaleji.

Naopak při zvýšení hodnoty parametru K a snížení hodnoty Ti konverguje systém rychleji, ale je méně stabilní.

4.1.1 Vnitřní stabilita

Aby byl systém vnitřně stabilní, musí být splněny 2 podmínky:

- a) Přenos 1 + CP nemá žádné nuly v oblasti Re(s) ≥ 0.
- b) Při vytváření součinu CP nedochází k žádnému kácení v oblasti Re(s) ≥ 0.

Z obrázku je vidět, že přenos 1 + CP nemá žádné nuly v oblasti Re(s) ≥ 0

Na obrázku je znázorněno Nyquistovo kritérium pro nominální přenos (červený), pro perturbované přenosy (modré) a krajní přenosy (černé). Z obrázků je vidět, že libovolně zvolená přímka protíná Nyquistovu křikvu jakéhokoliv systému z modelu neurčitosti právě jednou.

$$L_0(s) = \frac{1.833 \, s + 0.06546}{14 \, s^4 + 32.58 \, s^3 + 9.269 \, s^2 + 0.2083 \, s}$$

Nominální systém $L_0(s)$ má: Z=0 nestabilních nul a P=1 nestabilních pólů (viz následující graf). Póly systému jsou: 0, -2, -0.3027, -0.0246.

Rozložení nul a pólů nominálního systému $L_0(s)$.

Zvětšení předchozího grafu v oblasti hranice stability.

Celkový rozdíl v počtu nestabilních nul a pólů je tedy: N = P - Z = 1 - 0 = 1

Počet protnutí Nyquistovi křivky je tedy shodný s výše získaným rozdílem N a tím pádem bude uzavřený obvod stabilní. K těmto samým výsledků jsme se dostali i pro ostatní systémy z modelu neurčitosti.

Dále jsme ověřili, že při vytváření otevřené smyčky L = C * P

$$L_0(s) = \frac{K * T_i s + K}{T_i s} * \frac{0.008182}{0.5 s^3 + 1.164 s^2 + 0.331 s + 0.007438}$$

$$= \frac{224 s + 8}{28 s} * \frac{0.008182}{0.5 s^3 + 1.164 s^2 + 0.331 s + 0.007438}$$

$$= \frac{1.833 s + 0.06546}{14 s^4 + 32.58 s^3 + 9.269 s^2 + 0.2083 s}$$

nedochází ke krácení v nestabilní oblasti. Ke krácení v otevřené smyčce opět nedochází ani u žádného systému z modelu neurčitosti.

Tímto jsme splnili oba dva požadavky na vnitřní stabilitu a můžeme tedy říci, že systém je vnitřně stabilní.

4.1.2 Robustnost ve stabilitě

Podmínka pro robustní kvalitu řízení je:

$$||W_1(s)S_0(s)| + |W_2(s)T_0(s)||_{\infty} < 1$$

kde $S_0(s)$ je nominální citlivostní funkce:

$$S_0(s) = \frac{1}{1 + L_0(s)} = \frac{s^4 + 2.327 \, s^3 + 0.662 \, s^2 + 0.01488 \, s}{s^4 + 2.327 \, s^3 + 0.662 \, s^2 + 0.1458 \, s + 0.004676}$$

 $T_0(s)$ je nominální komplementární citlivostní funkce:

$$T_0(s) = \frac{L_0(s)}{1 + L_0(s)} = \frac{0.1309s + 0.004676}{s^4 + 2.327s^3 + 0.662s^2 + 0.1458s + 0.004676}$$

 $W_1(s)$ je určena z požadavku na kvalitu řízení

$$W_1(s) = 0.5$$

a odpovídá 1/Ms, kde Ms je požadavek na maximální amplitudu citlivostní funkce.

 $W_2(s)$ odpovídá podílu nominálního přenosu a váhové funkci modelu neurčitosti.

$$W_2(s) = \frac{W_a(s)}{P_{0a}(s)} = \frac{0.1 \, s^2 - 1.388 * 10^{-18} \, s + 0.0008182}{s^2 + 0.36s + 0.009}$$

Náš úkol ovšem je určit, aby robustnost ve stabilitě byla < 1. Tuhle podmínku splňuje druhá část rovnice pro robustní kvalitu řízení, tj.

$$|||W_2(s)T_0(s)|||_{\infty} < 1$$

Po provedení výpočtu jsme dostali výsledek:

$$||W_2(s)T_0(s)||_{\infty} = 0.0909 < 1$$

Dále jsme ověřili, že maximální amplituda citlivostní funkce S(jw) je menší než 2.

$$|||S(jw)|||_{\infty} = 1.5478 < 2$$

Z výsledků vidíme, že i tento požadavek jsme splnili.

4.1.3 Útlum komplementární citlivostní funkce

Dále kvůli nepřesnostem, šumu a nelinearitám bylo nutné, aby útlum komplementární citlivostní funkce T0 byl minimálně -10 dB na frekvenci Ω_a = 10 rad/sec. Pro zjištění, zda tento předpoklad platí, jsme využili následného vztahu:

Útlum nominální komplementární citlivostní funkce

$$T0_{nom} = 20log\left(\left|\frac{C(jw)*Q_{cer}(jw)*P_{0a}(jw) + W_{a}(jw)}{1 + C(jw)*Q_{cer}(jw)*P_{0a}(jw) + W_{a}(jw)}\right|\right) = -62.8519~dB$$

Útlum krajních komplementárních citlivostních funkcí

$$T01 = 20log\left(\left|\frac{C(jw) * Q_{cer}(jw) * P_{0a}(jw) + W_{a}(jw)}{1 + C(jw) * Q_{cer}(jw) * P_{0a}(jw) + W_{a}(jw)}\right|\right) = -62.0962 dB$$

$$T09 = 20log\left(\left|\frac{C(jw) * Q_{cer}(jw) * P_{0a}(jw) + W_{a}(jw)}{1 + C(jw) * Q_{cer}(jw) * P_{0a}(jw) + W_{a}(jw)}\right|\right) = -63.5362 dB$$

Bodeho diagram komplementární citlivostní funkce pro systémy z modelu neurčito: -73.5 -74 -74.5 T0_nom Magnitude (dB) -75 T01-krajní T02 -75.5 T03 -76 T04 T05 -76.5 T06 -77 T07 T08 -77.5T09 - krajní 10

Zvětšení na frekvenci Ω_a = 10 rad/sec.

Frequency (rad/s)

Z předchozích grafů je vidět, že všechny komplementární citlivostní funkce splňují výše uvedený požadavek.

4.1.4 Energie libobovolného šumu

Jako poslední požadavek byl, aby energie libovolného šumu nebyla zesílena více než 1.5 krát. K tomu jsme využili normu $\|T\|_{\infty}$ komplementární citlivostní funkce systémů z modelu neurčitosti. Výsledky jsme určili pro nominální přenos modelu neurčitosti.

$$T_{nom} = \left\| \frac{0.1309s + 0.004676}{s^4 + 2.327s^3 + 0.662s^2 + 0.1458s + 0.004676} \right\|_{\infty} = 1.1873$$

a krajní přenosy modelu neurčitosti.

$$T_{01} = \left\| \frac{0.144s + 0.005143}{s^4 + 2.36s^3 + 0.729s^2 + 0.162s + 0.005143} \right\|_{\infty} = 1.1373$$

$$T_{09} = \left\| \frac{0.12s + 0.004286}{s^4 + 2.3s^3 + 0.6063s^2 + 0.1326s + 0.004286} \right\|_{\infty} = 1.2442$$

Energie žádného systému z modelu neurčitosti nepřekročila zmíněnou hodnotu. Z toho plyne, že i tento požadavek je splněn.

4.2. Zatížení měření šumem a poruchou

Dále jsme měli zjistit, jestli harmonický šum na frekvenci 50 Hz není na výstupu uzavřeného systému zesílen. Přenos $n(t) \to y(t)$ je komplementární citlivostní funkce T(jw). Pro frekvenci 50 Hz dostáváme:

Z grafu je vidět, že pro frekvenci 50 Hz, což odpovídá 314 rad/s je šum zeslaben (-167 dB až -168 dB pro celý model neurčitosti).

Poté jsme to samé provedli pro harmonickou poruchu o frekvenci 0.1 Hz, která odpovídá citlivostní funkci S(jw).

Z grafu je vidět, že pro frekvenci 0,1 Hz, což odpovídá 0.628 rad/s je šum lehce zesílen (1.55 dB až 1.35 dB pro celý model neurčitosti).

4.3. Působení poruchy na rovnovážný stav

Nyní jsme předpokládali, že na vstup systému, který je v rovnovážné poloze s nulovou odchylkou začne působit porucha s omezenou energií $\|d_i\|_2 < 1$. Úkolem bylo zjistit, k jakému maximálnímu kolísání hladiny mže dojít.

Přenos $d_i(t) \to y(t)$ je vyjádřen citlivostní funkcí S_0 . Zde jsme použili vztah pro zesílení systému, pokud je vstup měřen ve 2 normě a výstup v ∞ normě.

$$\sup_{\|u\|_2=1} \frac{\|y\|_{\infty}}{\|u\|_2} \le \|H\|_2$$

Výsledky jsme znovu spočítali pro nominální systém a krajní systémy modelu neurčitosti.

$$||S_{01}||_2 = 0.0394$$

 $||S_{nom}||_2 = 0.04$
 $||S_{09}||_2 = 0.0406$

4.4. Zesílení signálů zpětnou vazbou

V posledním úkolu jsme se zabývali signály n(t) a d(t), kde $||n(t)||_{\infty} < 1$ a $||d(t)||_{\infty} < 1$, které jsou zpětnovazební smyčkou nejvíce zesíleny ve smyslu maximální hodnoty signálu a energie signálu.

a) Zesílení ve smyslu maximální hodnoty signálu

Nejvíce zesílen bude signál $u(t-\tau)=sgn(h(\tau))$. Jeho nejmenší horní mez jsme určili (jako viz výše) z tabulek:

$$\sup_{\|u\|_{2}=\infty} \frac{\|y\|_{\infty}}{\|u\|_{\infty}} \le \|h\|_{1}$$

Zesílení signálů n(t) je dáno komplementární citlivostní funkcí a zesílení signálu d(t) je dáno citlivostní funkcí. Pak tedy:

$$||T(s)||_1 = 1.4381$$

$$||S(s)||_1 = 2.4381$$

b) Zesílení ve smyslu energie signálu

Podle tabulek jsme zjistili, že největší zesílení je v obou případech pro vstupní signál $u(t) = sin(\omega t)$, pro který je energie výstupu $||y||_2 = \infty$.