Матан

Сергей Григорян

16 сентября 2024 г.

Содержание

1	Инфа	3
2	Учебники	3
3	§1. Действительные числа 3.1 Вспомогательные конструкции	3 3 6
4	Некот. обозначения	7
5	Чем занимаемся дальше	7
6	\mathbf{M} ножество \mathbb{N}	8
7	${f M}$ ножества ${\Bbb Z}$ и ${\Bbb Q}$	9
8	Точные грани числовых мн-в	10
9	§2. Предел последовательности 9.1 Определение предела	15 15

1 Инфа

Лектор: Редкозубов Вадим Витальевич

2 Учебники

- Зорич. В. А. "Мат. анализ";
- Виноградов О. Л. "Мат. анализ".

3 §1. Действительные числа

3.1 Вспомогательные конструкции

$$x \in \{a,b\} \Rightarrow x = a$$
 или $x = b$ - неуп. пара $(a,b) - \text{ уп. пара}$ $(a,b) = (c,d) \iff a = c$ и $b = d$ $A,B - \text{ мн-ва}, A \cdot B = \{(a,b) \colon a \in A \lor b \in B\}$

Определение 3.1. Пусть X,Y - мн-ва. Ф-цией $f\colon X\to Y$ наз-ся ф-ла $\overline{P(x,y)},$ т. ч. $\forall x\in X$ сущ-ет утв. $y\in Y,$ что P(x,y) - истина. Пишут y=f(x) или $f\colon x\Rightarrow y$.

Определение 3.2. Ф-ции $f,g\colon X\to Y$ называются равными, если $\forall x\in \overline{X\colon (f(x)=g(x))}.$ Пишут f=g.

Обозначение. $f: X \to Y, X$ - область опред. ф-ции

- 1. $A \subset X$ $f(A) = \{f(x) \colon x \in A\}$, образ A. f(X) мн-во значений f.
- 2. $B \subset Y$ $f^{-1}(B) = \{x \in X : f(x) \in B\}$ $npoo6pas\ B$.
- 3. $f:X\to Y,g:Z\to X\Rightarrow f\circ g:Z\to Y,f\circ g(z)=f(g(z))$ композиция ф-ций f и g.

Утверждение 3.1. $f \circ (g \circ h) = (f \circ g) \circ h$

Определение 3.3. Ф-ция $f: X \to Y$ наз-ся инъекцией, если $\forall x_1, x_2 \in \overline{X(f(x_1) = f(x_2)} \Rightarrow x_1 = x_2), x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ сюрьекцией, если f(X) = Y биекцкией = сюрьекцией + инъекция

 ${f \Pi}$ ример. 1. $f:\{0,1,2\}
ightarrow \{1,2\}$ f(0)=1, f(1)=f(2)=2 Это сюрьекция

2.
$$f: \{1,2\} \rightarrow \{0,1,2\}$$

 $f(1) = 2, f(2) = 1$
 Это инъекция

<u>Пример.</u> $id:X\to X, \forall x\in X(id(x)=x)$ - это тождественная филя.

Пример. Пусть $f: X \to Y$ - биекция $\Rightarrow y = f(x)$ - имеет **1** решение. Тогда: $f^{-1}: Y \to X, x = f^{-1}(y) \iff y = f(x)$ - обратная к f ф-ция. $f^{-1} \circ f = id_X, f \circ f^{-1} = id_Y$

- Задача 3.1. 1. Композиция инъекций (сюрьекций, биекция) яв-ся инъекцией (сюрьекцией, биекцией).
 - 2. Обр-я ф-ция к биек. $f: X \to Y$ явл. биекцией.

Определение 3.4. Пусть $A, \Lambda \neq \emptyset$

Говорят, что A - **семейство, индексированное эл-ми** $\Lambda,$ если $\exists \phi: \Lambda \to A$ - сюрьекция.

Пишут
$$A=\{a_{\lambda}\}_{\lambda\in\Lambda}$$
, где $a_{\lambda}=\phi(\lambda)$ $\mathscr{A}=\{A_{\lambda}\}_{\lambda\in\Lambda}$

$$\bigcup_{\lambda \in \Lambda} A_{\lambda} = \{x \colon \exists \lambda \in \Lambda (x \in A_{\Lambda})\}\$$

$$\bigcap_{\lambda \in \Lambda} A_{\lambda} = \{x \colon \forall \lambda \in \Lambda (x \in A_{\lambda})\}\$$

Пример.

$$A_1 = \{n \in \mathbb{N} : n > 1 \ u \ n \neq 2m : \forall m > 1\}$$

$$A_2 = \{n \in A_1 : n \neq 3m : \forall m > 1\}$$

$$\bigcap_{n \in \mathbb{N}} A_n - \text{мн-во простых чисел.}$$

Теорема 3.1 (Закон Де Моргана). Для любого мн-ва Е верно:

1.

$$E \setminus \bigcup_{\lambda \in \Lambda} A_{\lambda} = \bigcap_{\lambda \in \Lambda} (E \setminus A_{\lambda})$$

2.

$$E \setminus \bigcap_{\lambda \in \Lambda} A_{\lambda} = \bigcup_{\lambda \in \Lambda} (E \setminus A_{\lambda})$$

Доказательство.

1.

$$x \in E \setminus \bigcup_{\lambda \in \Lambda} A_{\lambda} \iff x \in E \land x \not\in \bigcup_{\lambda \in \Lambda} A_{\lambda} \iff x \in E \land (\forall \lambda \in \Lambda(x \not\in A_{\lambda}))$$

$$\iff \forall \lambda \in \Lambda(x \in E \land x \not\in A_{\lambda}) \iff \forall \lambda \in \Lambda(x \in E \backslash A_{\lambda}) \iff x \in \bigcap (E \backslash A_{\lambda})$$

2.

$$x \in E \backslash \bigcap_{\lambda \in \Lambda} A_{\lambda} \iff x \in E \land x \not\in \bigcap_{\lambda \in \Lambda} A_{\lambda} \iff x \in E \land \exists \lambda \in \Lambda (x \not\in A_{\lambda}).$$

$$\iff \exists \lambda \in \Lambda(x \in E \land x \not\in A_{\lambda}) \iff \exists \lambda \in \Lambda(x \in E \backslash A_{\lambda}) \iff \bigcup_{\lambda \in \Lambda} (E \backslash A_{\lambda}).$$

3.2 Аксиомат. опр-е мн-ва действ. чисел

На мн-ве $\mathbb R$ опр-ны операции "+": $(\mathbb R \cdot \mathbb R \to \mathbb R)$, "*": $(\mathbb R \cdot \mathbb R \to \mathbb R)$, удовл. аксиомам.

A1:
$$\forall a, b \in \mathbb{R}: (a+b) + c = a + (b+c);$$

A2:
$$\forall a, b \in \mathbb{R} : a + b = b + a$$
;

A3:
$$\exists 0 \in \mathbb{R}, \forall a \in \mathbb{R} : a + 0 = a$$
;

A4:
$$\forall a \in \mathbb{R} \exists (-a) \in \mathbb{R} : a + (-a) = 0.$$

M1:
$$\forall a, b, c \in \mathbb{R} : (a * b) * c = a * (b * c),$$

M2:
$$\forall a, b \in \mathbb{R} : a * b = b * a$$
,

M3:
$$\exists 1 \in \mathbb{R}, 1 \neq 0, \forall a \in \mathbb{R}, a * 1 = a,$$

M4:
$$\forall a \in \mathbb{R}, a \neq 0, \exists a^{-1} \in \mathbb{R} : a * a^{-1} = 1,$$

AM:
$$\forall a, b, c \in R$$
: $a * (b + c) = ab + ac$

На мн-ве \mathbb{R} введено отношение порядка "≤ удовл. след. аксиомам:

O1:
$$\forall a, b, c \in \mathbb{R}$$

(i):
$$a \leq a$$
;

(ii):
$$a < b, b < a \iff a = b$$
;

(iii):
$$a \le b \land b \le c \Rightarrow a \le c$$

O2:
$$\forall a, b \in \mathbb{R} : a < b \lor b < a$$

O3: Если
$$a, b, c \in \mathbb{R}$$
 и $a \le b$, то $a + c \le b + c$;

O4: Если
$$a, b, c \in \mathbb{R}, a \leq b$$
 и $0 \leq c$, то $ac \leq bc$;

Аксиома непрерывности: Для любых непустых $A, B \subset \mathbb{R}$, т. ч. $\forall a \in A, b \in B, a \leq b; \exists c \in \mathbb{R} \colon \forall a \in A, b \in B (a \leq c \leq b)$

4 Некот. обозначения

- $a < b \iff a \le b \land a \ne b$
- $a > b \iff b < a$
- $a > b \iff b < a$
- a b = a + (-b)
- $\frac{a}{b} = a * b^{-1} (b \neq 0)$

5 Чем занимаемся дальше

Все дальнейшее сводим к аксиомам:

Пример. 1. $\forall a \in R : a * 0 = 0$

Доказательство.

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 | -a \cdot 0.$$
$$a * 0 + (-a * 0) = a * 0 + (a * 0 + (-a * 0)).$$
$$0 = a * 0 + 0 = a * 0.$$

2. (-1)*a+1*a=((-1)+1)*a=0*a=0

Пример. 1. $\forall a, b \in R(a \le b \Rightarrow -b \le -a)$

$$-b = a - a - b \le b - a - b = -a.$$

2. $\forall a \in R \setminus \{0\} : (a^2 > 0)$

Доказательство. a) $a > 0 \Rightarrow a^2 > 0$

b)
$$a < 0 \Rightarrow -a > 0 \Rightarrow (-a)(-a) > 0 \Rightarrow -(-a^2) = a^2$$

Задача 5.1. $P = \{x \in R : 0 < x\}$

Док-те, что :

- 1) $x, y \in P \Rightarrow x + y, x * y \in P$
- 2) $\forall x \in R \setminus \{0\} (x \in P \lor -x \in P)$

Определение 5.1.

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

Пример. 1. Если $a \in \mathbb{R}$ и $M \ge 0$, то $(|a| \le M \iff -M \le a \le M)$

Доказательство. $|a| \leq M \Rightarrow -|a| \geq -M$

- a) $a \ge 0, -M \le 0 \le a = |a| \le M$
- b) $a < 0, -M \le -|a| = a < 0 \le M$

2. $\forall a, b \in R(|a+b| \le |a| + |b|)$

Доказательство.

$$\pm a \le |a|, \pm b \le |b|.$$

$$\Rightarrow \pm (a+b) \le |a| + |b| \Rightarrow |a+b| \le |a| + |b|$$

6 Множество \mathbb{N}

Определение 6.1. Мн-во $S\subset \mathbb{R}$ наз-ся индуктивным, если $1\in S$ и $(x\in S\Rightarrow x+1\in S)$

<u>Замечание</u>. $\mathbb N$ - пересечение всех индуктивных мн-в.

На определении $\mathbb N$ основан **принцип мат. индукции.**

Пусть $P(n), n \in \mathbb{N}$. Если P(1) - истина и $(\forall n(P(n)$ - ист. $\Rightarrow P(n+1)$ - ист.)). То P(n) - истина для $\forall n \in N$ $S = \{n \in \mathbb{N} \colon P(n)$ - истина $\} \subset \mathbb{N}$ - индуктивно. $\Rightarrow S = \mathbb{N}$

<u>Замечание</u>. *Если* $x, y \in \mathbb{N}, x < y, \ mo \ y - x = n \in N, \ в частности, <math>y = x + n \ge x + 1$

Теорема 6.1. Пусть $A \subset N$ - непустое, тогда $\exists m = min(A)(m \in A: \forall n \in A(m \le n))$

Доказательство.

Предположим, что в A нет мин. эл-та.

Paccm. $M = \{x \in \mathbb{N} : \forall n \in A(x < n)\}$

 $1 \in M \ (1 \not\in A)$

Пусть $x \in M$. Предпл., что $x + 1 \notin M$:

 $x+1 \notin M \iff \exists m \in A \colon (x+1 \ge m)$

По опр-ю $x \in M \Rightarrow x < m \Rightarrow x + 1 \le m \Rightarrow m = min(A)!!!$

Итак $1 \in M(x \in M \Rightarrow x + 1 \in M) \Rightarrow M \subset \mathbb{N} \Rightarrow M = \mathbb{N} \Rightarrow A = \emptyset!!!$

7 Множества \mathbb{Z} и \mathbb{Q}

$$\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}$$

$$\mathbb{Q} = \{\frac{m}{n} : m \in \mathbb{Z} \land n \in \mathbb{N}\}$$

Пример (Применение аксиомы непрерывности).

$$A = \{ a \in \mathbb{R} : a > 0 \land a^2 < 2 \} \ni 1.$$

$$B=\{b\in\mathbb{R}\colon b>0\wedge b^2>2\}\ni 2.$$

Пусть $a \in A, b \in B$

$$0 < b^2 - a^2 = (b - a)(b + a) \Rightarrow 0 < b - a \Rightarrow a < b.$$

По аксиоме непрерывности $\exists c \in \mathbb{R} \colon \forall a \in A, b \in B \colon (a \leq c \leq b)$

B част-ти 1 < c < 2. Покажем, что $c^2 = 2$

Предпл. что $c^2 < 2 \iff c \in A$. Пусть $\varepsilon \in (0;1)$; тогда:

$$(c+\varepsilon)^2 = c^2 + \varepsilon(2c+\varepsilon) < c^2 + 5\varepsilon.$$

$$\varepsilon \le \frac{2 - c^2}{5}.$$

$$(c+\varepsilon)^2 < c^2 + 5\varepsilon \le c^2 + 2 - c^2 = 2 \Rightarrow c + \varepsilon \in A!!!.$$

Аналогичным образом, доказываем, что $c^2 > 2$ не выполн-ся.

$$\Rightarrow c^2 = 2$$

8 Точные грани числовых мн-в

Определение 8.1. Пусть $E \subset \mathbb{R}$ - непусто.

 $\overline{\mathsf{Ч}}$ исло M наз-ся **верхней гранью** мн-ва E, если $\forall x \in E(x \leq M)$

Мн-во E наз-ся **ограниченным сверху**, если \exists хотя бы одна верхняя грань для E.

Число M наз-ся **нижней гранью** мн-ва E, если $\forall x \in E(x \ge M)$

Мн-во E наз-ся **ограниченным снизу**, если \exists хотя бы одна нижняя грань для E.

Мн-во E ограничено, если E ограничено сверху и снизу.

Задача 8.1. Док-ть:
$$E$$
 - огранич. $\iff \exists C > 0 \colon \forall x \in E(|x| \leq C)$

Определение 8.2. Пусть $E \subset \mathbb{R}$ - непустое числовое мн-во. Наименьшая из верхних граней мн-ва E наз-ся точной верхней гранью (супремумом) мн-ва E (sup E)

Наибольшая из нижних граней мн-ва E наз-ся **точной нижней гранью (инфимумом)** мн-ва E (inf E)

<u>Замечание</u>. Определение точных граней можно записать на языке нерств:

$$c = \sup E \iff .$$
 (1)

- 1) $\forall x \in E(x \leq c);$
- 2) $\forall \varepsilon > 0 \exists x \in E(x > c \varepsilon)$

$$b = \inf E \iff . \tag{2}$$

- 1) $\forall x \in E(x > b)$;
- 2) $\forall \varepsilon > 0, \exists x' \in E(x' < b + \varepsilon)$

Действ-но, 1) в (1) означает, что c - верх. грань E. 2) в (1) означ, что любое c' < c не явл. верх. гр. E. Сл-но, c - точная верхняя грань E. Аналогично для (2).

Теорема 8.1 (Принцип полноты Вейерштрасса). Всякое непустое огр. сверху (снизу) мн-во имеет точную верхнюю (нижнюю) грань.

Доказательство. Пусть $A \subset \mathbb{R}$ и ограничено сверху.

Рассм. $B = \{b \in \mathbb{R} : b$ - верх. грань $A\}$. Тогда $B \neq \emptyset$ и $\forall a \in A \forall b \in B (a \leq b)$. По аксиоме непр-ти $\exists c \in \mathbb{R} : \forall a \in A, \forall b \in B (a \leq c \leq b)$.

Из нер-ва $a \le c \Rightarrow c$ верх. грань A

Из правого нер-ва любое $c' < c \colon c' \not\in B$, т.е. c' не явл. верх. гранью A. Сл-но, $c = \sup A$.

Теорема 8.2 (аксиома Архимеда). Пусть $a, b \in \mathbb{R}, a > 0$. Тогда $\exists n \in \mathbb{N}, m. \ u. \ na > b$

Доказательство. Предположим, что $\forall n \colon na \leq b$. Тогда $A = \{na; n \in \mathbb{N}\}$ огр. сверху. По теореме $5.1 \; \exists c = \sup A$. Число c-a не явл. верх. гранью A (т. к. a>0)

Тогда $\exists n \in \mathbb{N} (na > c - a)$. Откуда:

$$na + a = (n+1)a > (c-a) + a = c$$

т. е. (n+1)a > c. Но $(n+1)a \in A$ (противоречие с тем, что c - верх. грань)!!!

Следствие. 1) $\forall b \in \mathbb{R}, \exists n \in \mathbb{N} (n > b), (a = 1)$

2)
$$\forall \varepsilon > 0, \exists n \in \mathbb{N}(\frac{1}{n} < \varepsilon) \ (\frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon})$$

Следствие.

 $\forall x \in \mathbb{R}, \exists ! m \in \mathbb{Z} (m \le x < m+1) (m$ - целая часть x)

Доказательство. (\exists) $x \geq 0$. Рассм. $S = \{n \in \mathbb{N} : n > x\}$. По аксиоме архимеда, это мн-во непусто. $\Rightarrow \exists p = min(S)$. Положим m = p - 1. Тогда m < x и m + 1 > x

x < 0 . По предыдущему пункту $\exists m' \in \mathbb{Z} (m' \le -x < m' + 1)$. Положим:

$$m = \begin{cases} -m', x = -m' \\ -m' - 1, x \neq -m' \end{cases} \Rightarrow m \le x < m + 1$$
 (3)

Единственность:

$$\begin{cases} m' \leq x < m'+1 \\ m'' \leq x < m''+1 \end{cases} \Rightarrow -1 < m'-m'' < 1, m'-m'' \in \mathbb{Z} \Rightarrow m'-m'' = 0 \Rightarrow m' = m''$$

Пример.

$$\left\lfloor \frac{3}{2} \right\rfloor = 1, \left\lfloor -\frac{3}{2} \right\rfloor = -2$$

Следствие.

$$\forall a, b \in \mathbb{R}, a < b, \exists r \in \mathbb{Q} (a < r < b)$$

Доказательство.

$$\exists n \in \mathbb{N}(\frac{1}{n} < b-a)$$

$$r = \frac{\lfloor na \rfloor + 1}{n}.$$
Тогда $r \in \mathbb{Q} \Rightarrow$
$$r > \frac{na-1+1}{n} = a, r \leq \frac{na+1}{n} = a + \frac{1}{n} < a + (b-a) = b$$

Обозначение.

$$n \in \mathbb{N} \cup \{0\} =: \mathbb{N}_0$$

Определение 8.3. Пусть $a \in \mathbb{R}$, тогда:

$$a^0 = 1, a^{n+1} = a^n a$$

Обозначение. Пусть $m, n \in \mathbb{Z}$ и $m \le n$, положим:

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n$$

$$\prod_{k=m}^{n} = a_m * a_{m+1} * \dots * a_n$$

E c л u m > n.

Теорема 8.3 (Бином Ньютона).

$$\forall a, b \in \mathbb{R}, n \in \mathbb{N}$$
:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}, \ \ \partial e \ C_n^k = \frac{n!}{k!(n-k)!}$$
$$0! = 1, (n+1)! = n! * (n+1)$$

Доказательство. Докажем по индукции:

- n = 1: Верно
- Предположим, что утв. верно для n:

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{k=0}^n C_n^k a^k b^{n-k} =$$

$$= \sum_{k=0}^n C_n^k a^{k+1} b^{n-k} + \sum_{k=0}^n C_n^k a^k b^{n-k+1} = \sum_{k=0}^n C_n^k a^k b^{n+1-k} + \sum_{k=1}^{n+1} C_n^{k-1} a^k b^{n-k+1} =$$

$$= C_n^0 b^{n+1} + \sum_{k=1}^n (C_n^k + C_n^{k-1}) a^k b^{n+1-k} + C_n^n a^{n+1} = \left[C_n^k + C_n^{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!} \right]$$

$$\left[\iff \frac{(n+1)!}{k!(n+1-k)!} = C_{n+1}^k \right] = \sum_{k=0}^{n+1} C_{n+1}^k a^k b^{n+1-k}$$

Ч. Т. Д.

Следствие. Пусть $a \ge 0, n, k \in \mathbb{N}, 1 \le k \le n$. Тогда:

$$(1+a)^n \ge 1 + C_n^k a^k$$

Обозначение.

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$$

- расширенная числовая прямая

Считают, что $\forall x \in \mathbb{R}(-\infty < x < +\infty)$ Введём допус. операции $x \in \mathbb{R}$

•
$$x + (+\infty) = x - (-\infty) = +\infty$$

•
$$x - (-\infty) = x + (-\infty) = -\infty$$

•
$$x * (\pm \infty) = \pm \infty, x > 0$$

•
$$x * (\pm \infty) = \mp \infty, x < 0$$

$$\bullet \ \frac{x}{\pm \infty} = 0$$

Кроме того:

- $(+\infty) + (+\infty) = +\infty$
- $(-\infty) + (-\infty) = -\infty$
- $(+\infty) * (+\infty) = (-\infty) * (-\infty) = +\infty$
- $(+\infty)(-\infty) = (-\infty)(+\infty) = -\infty$

НЕДОПУСТИМЫЕ операции:

- $(+\infty) (+\infty)$
- $(+\infty) + (-\infty)$
- $(-\infty) (-\infty)$
- $(-\infty) + (+\infty)$
- $0*\pm\infty$
- $\pm \infty * 0$
- ±∞

Соглащение: $E \subset \mathbb{R}, E \neq \emptyset$.

- Если E не огр. сверху, то $\sup E = +\infty$
- \bullet Если E не огр. снизу, то $\inf E = -\infty$

Определение 8.4. $I\subset R$ называется промежутком, если $\forall a,b\in I, \forall x\in \mathbb{R} (a\leq x\leq b\Rightarrow x\in I)$

<u>Лемма</u> 8.4. Любой промежуток - одно из следующих мн-в:

- Ø
- \bullet \mathbb{R}
- $(a, +\infty)$

- $[a, +\infty)$
- $(-\infty,b)$
- $(-\infty, b]$
- [*a*, *b*]
- \bullet (a,b)
- [*a*, *b*)
- (a, b]

Доказательство. I - промежуток, $I \neq \emptyset$

$$a := \inf I, b := \sup I \Rightarrow a < b$$

- Если a = b, то $I = \{a\}$
- \bullet Если a < b и a < x < b. По опр. точных граней $\exists x', x'' \in I \colon (x' < x < x'') \Rightarrow x \in I$

Итак, $(a,b) \subset I \subset [a,b]$

9 §2. Предел последовательности

9.1 Определение предела

Определение 9.1. $a: \mathbb{N} \to A$ - п-ть эл-ов мн-а A. Значение a(n) - наз-ся n-ым членом п-ти. (Обозначается a_n). Сама п-ть обозначается $\{a_n\}$ или $a_n, n \in \mathbb{N}$

Если $A=\mathbb{R}$ - то $\{a_n\}$ - числовая п-ть.

Пример. 1)

$$a:\mathbb{N}\to\{c\},c\in\mathbb{R}$$

3десь постоянная n-ть $(a_n = c, \forall n \in \mathbb{N})$

- 2) $a_n = n^2, n \in \mathbb{N}$
- (3) $a_{n+2}=a_{n+1}+a_n, a_1=a_2=1$ n-ть Фиббоначи.

Определение 9.2. Число a наз-ся пределом п-ти $\{a_n\}$, если для любого $\varepsilon>0$ найдётся такой номер N, что $|a_n-a|<\varepsilon$ для всех $n\geq N$. Обозначается, как $\lim_{n\to\infty}a_n=a$

Определение 9.3 (В кванторах).

$$\lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 \exists N \in \mathbb{N} \colon \forall n \in \mathbb{N} (n \ge N \Rightarrow |a_n - a| < \varepsilon)$$

Или, $a_n \to a$ (при $n \to \infty$)

Замечание.

$$\lim_{n\to\infty} a_n = a \iff \forall \varepsilon > 0, M = \{n \in \mathbb{N} : a_n \notin (a - \varepsilon, a + \varepsilon)\}, M - конечно$$

Определение 9.4. Если $\exists \lim_{n\to\infty} a_n$, то $\{a_n\}$ наз-ся сходящейся птью, иначе - расходящейся птью

Пример.

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Зафикс. $\varepsilon > 0$. Рассмотрим $|\frac{1}{n} - 0| < \varepsilon \iff \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon} \Rightarrow$ нам подойдёт $N = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$. Если $n \geq N \Rightarrow n > \frac{1}{\varepsilon} \Rightarrow |\frac{1}{n} - 0| < \varepsilon$

Теорема 9.1. (О единственности предела) Если $\lim_{n\to\infty} a_n = a\ u \lim_{n\to\infty} a_n = b$.

Доказательство. Зафикс. $\varepsilon > 0$. По опред. предела $\exists N_1, \forall n \geq N_1(|a_n - a| < \frac{\varepsilon}{2})$ и $\exists N_2, \forall n \geq N_2(|a_n - b| < \frac{\varepsilon}{2})$.

 Π оложим $N = max(N_1, N_2)$:

$$|a-b| = |a-a_N + a_N - b| \le |a-a_N| + |b-a_N| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Т. к.
$$\varepsilon > 0$$
 - любое \Rightarrow , то $|a-b|=0$, т. е. $a=b$

Задача 9.1.

$$\lim_{n \to \infty} a_n = a \iff \lim_{n \to \infty} |a_n| = |a|$$

<u>Определение</u> **9.5.** П-ть $\{a_n\}$ наз-ся **ограниченной**, если $\{a_n \colon n \in \mathbb{N}\}$ ограничено.

Теорема 9.2. (Об ограниченности сходящейся n-ти) Если $\{a_n\}$ сходит-ся, то она ограничена.

Доказательство. Пусть $\lim_{n\to\infty} a_n = a$. По опред. предела (для $\varepsilon = 1$) $\exists N, \forall n \geq N (a-1 < a_n < a+1)$. Положим $m = min\{a_1, \dots, a_{N-1}, a-1\}, M = max\{a_1, \dots, a_{N-1}, a+1\}$. Тогда $m \leq a_n \leq M$ для всех $n \in \mathbb{N}$. \square

Замечание. Обратное утв. неверно:

Пример.

$$a_n = (-1)^n, n \in \mathbb{N}$$

Предположим, что a_n сходится:

По опред. предела $(\varepsilon = 1)$ $\exists N, \forall n \geq N(a-1 < (-1)^n < a+1)$

- При чётном $n \Rightarrow 1 < a + 1$
- При нечётном $n \Rightarrow a-1 < -1$

 $\Rightarrow a < 0 \land a > 0!!!$ - противоречие

<u>Лемма</u> 9.3. Для всякого $m \in \mathbb{N}$ n- $mu \{a_n\}$ $u \{b_n\}$, где $b_n = a_{n+m}, \forall n \in \mathbb{N}$ имеют предел одновременно, u если имеют, m0 пределы равны.

Доказательство. Зафикс. $\varepsilon > 0 \Rightarrow$

$$\forall n \ge N_1 \colon (|a_n - a| < \varepsilon) \Rightarrow (\forall n \ge N_1 (|a_{n+m} - a| < \varepsilon))$$
$$(\forall n \ge N_2 (|a_{n+m} - a| < \varepsilon)) \Rightarrow (\forall n \ge N_2 + m(|a_n - a| < \varepsilon))$$
$$\Rightarrow \lim_{n \to \infty} a_n = a \iff \lim_{n \to \infty} b_n = a$$

Определение 9.6. П-ть $\{b_n\}$ об-ся $\{a_{n+m}\}$ и наз-ся m-ным хвостом $\{a_n\}$

Теорема 9.4 (О пределе в нер-вах). Если $a_n \leq b_n$ для всех $n \in \mathbb{N}$ и $\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b, mo$ $a \leq b$

 $\ensuremath{\mathcal{A}}$ оказательство. От прот. Пусть b < a. По опред. предела

$$\exists N_1 \colon \forall n \ge N_1 (a - \frac{a - b}{2} < a_n)$$

$$\exists N_2 \colon \forall n \ge N_2(b_n < b + \frac{a-b}{2})$$

Положим $N = max(N_1, N_2)$, тогда:

$$\frac{a+b}{2} < a_N$$
 и $b_N < \frac{a+b}{2} \Rightarrow b_N < a_N!!!$

Замечание.

Пример.

$$0 < \frac{1}{2}$$
, $no \lim_{n \to \infty} \frac{1}{n} = 0$

Следствие. Eсли $\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b, a < b \Rightarrow \exists N, \forall n \geq a$ $\overline{N(a_n < b_n)}$

Теорема 9.5 (О зажатой п-ти). *Если* $a_n \le c_n \le b_n, \forall n \in \mathbb{N}$ $u \lim_{n \to \infty} a_n =$ $\overline{\lim_{n\to\infty} b_n} = a, \ mo \ \exists \lim_{n\to\infty} c_n = a$

Доказательство. Зафикс. $\varepsilon > 0$. По опр. предела:

$$\exists N_1, \forall n \geq N_1(a - \varepsilon < a_n)$$

$$\exists N_2, \forall n \geq N_2(b_n < a + \varepsilon)$$

Положим $N = max(N_1, N_2)$. Тогда при всех $n \ge N$ имеем:

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon \Rightarrow |c_n - a| < \varepsilon$$

$$\Rightarrow \lim_{n\to\infty} c_n = a$$
. Ч. Т. Д.

Пример.

$$\lim_{n \to \infty} q^n = 0, |q| < 1$$

- q = 0: верно
- $q \neq 0 \Rightarrow \frac{1}{|q|} > 1 \Rightarrow \frac{1}{|q|} = 1 + \alpha, \alpha > 0$

$$\frac{1}{|q|^n} = (1+\alpha)^n \ge 1 + n\alpha > n\alpha$$

$$\Rightarrow 0 < |q|^n < \frac{1}{n\alpha} (\frac{1}{n\alpha} \to 0) \Rightarrow |q|^n \to 0$$

Теорема 9.6. (Арифметические операции с пределами) Пусть $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Тогда:

- 1) $\lim_{n\to\infty} (a_n + b_n) = a + b$
- 2) $\lim_{n\to\infty} (a_n b_n) = ab$
- 3) Если $b \neq 0$ и $b_n \neq 0, \forall n \in \mathbb{N}$, то

$$\frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{a}{b}$$

Доказательство. 1) Заф. $\varepsilon > 0$. По опр. предела:

$$\exists N_1, n \ge N_1(|a_n - a| < \frac{\varepsilon}{2})$$

$$\exists N_2, n \ge N_2(|b_n - b| < \frac{\varepsilon}{2})$$

Положим $N = max(N_1, N_2)$. Тогда $\forall n \geq N$:

$$|(a_n + b_n) - (a + b)| \le |(a_n - a) + (b_n - b)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2) По теор. 2 п-ть $\{a_n\}$ огр., т. е.

$$\exists C > 0, \forall n \in \mathbb{N}(|a_n| \le C)|b| \le C$$

Заф. $\varepsilon > 0$. По опр. предела:

$$\exists N_1, \forall n \ge N_1(|a_n - a| < \frac{\varepsilon}{2C})$$

$$\exists N_2, \forall n \ge N_2(|b_n - b| < \frac{\varepsilon}{2C})$$

Тогда $\forall n > N = max(N_1, N_2)$:

$$|a_nb_n - ab| = |a_nb_n - a_nb + a_nb - ab| \le |a_n||b_n - b| + |b||a_n - a| < C\frac{\varepsilon}{2C} + C\frac{\varepsilon}{2C} = \varepsilon$$