Nome .	
Cognome .	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica Prima Parte Prova Finale - 31 Gennaio 2014

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.

1.	(2 punti) Codificare il numero -23 nelle notazioni in modulo e segno e complemento a 2 a 8 bit		
	modulo e segno a 8 bit		
	complemento a 2 a 8 bit		
2. (3 punti) Determinare l'intero (in base 10) rappresentato dalla sequenza di bit 11010010 codifiche in complemento a 2 e in modulo e segno.			
	Modulo e segno Complemento a due		
3.	(2 punti) Convertire da base 9 a base 16 il seguente numero		
	1789		

4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	-
0	0	0	1	-
0	0	1	0	0
0	0	1	1	-
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

SOP ____

5. (3 punti) Dimostrare che l'operatore NAND é funzionalmente completo.

6.	(7 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x)
	e singola uscita (z) tale che agli istanti $3, 6, 9, \ldots$ e in generale $j = 3i$ per $i \ge 1, z_j = 1$ se e solo se
	gli ultimi 3 bit letti x_{j-2} x_{j-1} x_j sono tutti uguali a 0, mentre in tutti gli altri istanti $z_j = 0$.

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

j_1 :	k_1 :
j_2 :	k_2 :

Disegno della rete :