Multiple Access Protocols

ALOHA **CSMA** Collision Free Limited WDMA Wireless

- Aloha
- **CSMA Protocols**
- Collision Free Protocols
- Limited Contention Protocols
- Wavelength Division Multiple Access **Protocols**
- Wireless LAN Protocols

MAC Sublayer, Topic 8.[2,3], Multiple Access Protocols

Pure ALOHA

ALOHA

CSMA Collision Free Limited WDMA Wireless

- Dynamic Allocation
 - Stations transmit at completely arbitrary times on a shared channel.
- Therefore there is contention for the channel
 - And this results in collisions,
 - Stations listen to detect collision and then retransmit after a random wait time.

Α		
В		
С		
User	Time -	

CSMA: Carrier Sense Multiple Access

ALOHA
CSMA
Collision Free
Limited

- Stations can <u>detect what is happening</u>,
- WDMA Wireless

- 1-persistent CSMA
 - Stations sense the medium and begin transmitting <u>as</u> soon as it idle. Probability to transmit is 1, hence 1-p.
 - If a collision occurs, we must wait a random time and retransmit.
- Nonpersistent CSMA
 - If the line is busy <u>waits a random time</u>, rather than wait <u>for an idle state</u>,
- p-persistent CSMA
 - Applies to slotted channels
 - If the line is idle transmits a frame with probability p
- Performance <u>At values of G > 1, the system can</u> never transmit all packets.

CSMA / CD: CSMA with Collision Detection

ALOHA CSMA

Collision Free Limited

- Should be able to detect a collision almost wDMA Wireless immediately so there is no reason to continue transmitting a frame,
- The line can be in one of 3 states:
 - Idle: no stations transmitting,
 - Transmission: one station is transmitting successfully,
 - Contention: multiple stations transmitting
- How long does it take to detect a collision?
 - The minimum time to detect a transmission is the propagation time from one station to the other,
 - The contention period though is <u>twice as long</u> as <u>it is possible for a station to transmit just as the signal arrives.</u>
 - To place an upper bound on the contention period we must <u>place an upper bound on the maximum distance between stations</u>,
 - This also means imposing a minimum length on a frame.

MAC Sublayer, Topic 8.[2,3], Multiple Access Protocols

Collision-Free

Collision Free
Limited

ALOHA

CSMA

WDMA

Wireless

- There are also protocols which <u>prevent collisions</u>
- Assume N stations each with an address (0..N-1)
- Basic bit map method:
 - N contention slots (one for each station)
 - If a station wants to transmit, <u>it transmits a 1 in its slot</u> <u>corresponding to its address</u>,
 - The stations then, <u>transmit their frames in order of their</u> addresses,
 - Performance
 - Low load: <u>stations have to wait on average the length of the contention period (all the contention slots)</u>
 - High load: stations may have to wait until a frame is transmitted by every other station

MAC Sublayer, Topic 8.[2,3], Multiple Access Protocols	Collision-Free (2) Length of contention periods: Each contention slot must be the maximum propagation time	ALOHA CSMA Collision Free Limited WDMA Wireless		
3], Mult	 Binary countdown method: Assume N stations with <u>addresses in the range 02^N</u> 			
Topic 8.[2,	 Use N contention slots, If a station wants to transmit, it transmits its address bits in order , 	Bit time 0 1 2 3		
olayer,	- If a stations sees a higher number, it stops 0 0 1	0 0		
AC Sul	transmitting its station address and waits for the next slot.	0 0		
M	Performance:	1 100-		
	2011 10401 11401 11101 11101 11101	0 1010		
	as there are less contention slots, Result 1 0 1 0 - High load: we have starvation for lower number of stations			

Limited-Contention (2)

ALOHA CSMA Collision Free Limited WDMA Wireless

- Adaptive Tree Walk Protocol
 - Start with a single contention slot which any station can claim,
 - If there is a collision then another contention slot is used which any station under 2 can claim,
 - If successful then next contention slot is under 3,
 - This is done until a single station is identified
 - Next time done the tree the order is reversed (3 before 2)

- Under a heavy load the starting position needs to be dependent on the system load.

MAC Sublayer, Topic 8.[2,3], Multiple Access Protocols

WDMA: Wavelength Division Multiple Access

ALOHA CSMA Collision Free Limited

- Available bandwidth is divided into 2N channels WDMA Wireless (where N is the no. of stations). Each station is allocated
 - A Control channel so that other stations can signal it
 - A Data channel so it can transmit data
 - n slots & 1 status slot
- Each station needs
 - Fixed transmitter: to transmit its data and status,
 - Fixed receiver: to receive control requests,
 - Tunable receiver: to sense other data and status
 - Tunable transmitter: to transmit on other control channels

WDMA

ALOHA CSMA Collision Free Limited

■ To set up a connection oriented connection

WDMA Wireless

- Sense the status slot for the station they want to send data to,
- Make a connection request using a free control slot
- Sense the status slot to <u>know control slot was allocated</u> and announce an available data slot in the allocated control slot,
- Two way communications requires two channels,
- Fixed data rate can be achieved by <u>dedicating a particular data slot to</u> <u>a particular station</u>,
- Datagram communication (once off message)
 - Indicate "Data in Slot" using the control slot of the receiver,
 - Problem if two stations use the same slot number simultaneously

MAC Sublayer, Topic 8.[2,3], Multiple Access Protocols

Wireless LAN

ALOHA CSMA Collision Free Limited WDMA

Wireless

- Problems for wireless networks:
 - Hidden Station Problem: <u>C cannot see that A</u>
 is transmitting to B. So C might transmit.
 - Result: Collision
 - Exposed Station Problem: <u>C can see that B is</u>
 <u>transmitting to A, but doesn't know that it could safely</u>
 <u>transmit to D</u>
 - Result: Wasted Time
- The root of the problem is that the Sender can only detect activity around themselves, whereas they would like to know the activity around the receiver

the receiver.

MAC Sublayer, Topic 8.[2,3], Multiple Access Protocols ALOHA **CSMA** Collision Free Wireless LAN (3) Limited WDMA Wireless MACA vs. MACA for Wireless - In MACA, there were problems without data link layer acknowledgements. MACAW added acknowledgements after each successful frame, - MACAW also added carrier sense, - The back-off algorithm was run separately for each data stream (source-destination pair), rather than for each station, Congestion control was also added in MACAW.