Optimization Algorithms for Machine/Deep Learning

Machine Learning Models

Classifiacation

- Logistic regression
- Support vector machine(SVM)

Regression

- Ordinary least square
- Lasso
- Deep learning

Clustering

Dimension Reduction

models (with parameters)

s.t. minimize f(x) $x \in X$

Examples

1. Ordinary least square

$$(u^{(i)},v^{(i)})$$
 $i=1,\ldots,N$ where u is input and v is output $v^{(i)}pprox heta^{\mathrm{T}}u^{(i)}=\sum_{j=1}^n heta_j u^{(i)}_j$ minimize $\sum_{i=1}^N (u^{(i)}- heta^{\mathrm{T}}u^{(i)})^2$ $heta\in\mathbb{R}^n$

2. Logistic regression

$$egin{aligned} (u^{(i)},v^{(i)}) & i=1,\ldots,N \ v^{(i)} \in \{0,1\} \ v^{(i)} &= heta^{\mathrm{T}}u^{(i)} \ g(z) &= rac{1}{1+e^{-z}} \ v^{(i)} &= h(u^{(i)}) = g(heta^{\mathrm{T}}u^{(i)}) = rac{1}{1+e^{- heta T_u^{(i)}}} \end{aligned}$$

Probability distribution of
$$v^{(i)} \in \{0,1\}$$
 $max_{ heta}log\prod_{i=1}^{N}(1-h(u^{(i)}))^{1-v^{(i)}}(h(u^{(i)}))^{v^{(i)}} = max_{ heta}\sum_{i=1}^{N}log(1-h(u^{(i)}))^{1-v^{(i)}}(h(u^{(i)}))^{v^{(i)}}$

$$= max_{ heta} \sum_{i=1}^{N} log(1 - h(u^{(i)})) \qquad (h(u^{(i)}))$$
 $= max_{ heta} \sum_{i=1}^{N} (1 - v^{(i)}) log(1 - h(u^{(i)})) + v^{(i)} logh(u^{(i)})$

$$= max_{ heta} \sum_{i=1}^{N} (1-v^{(i)}) log rac{e^{- heta^{ ext{T}}u^{(i)}}}{1+e^{- heta^{ ext{T}}u^{(i)}}} + v^{(i)} log rac{1}{1+e^{- heta^{ ext{T}}u^{(i)}}}$$

3. Support vector machine

$$\begin{split} \min \frac{1}{2} ||w||^2 + \sum_{i=1} v^{(i)} \max\{0, 1 - w^{\mathrm{T}} u^{(i)} + b\} \\ \min \frac{1}{2} ||w||^2 \quad \text{s.t.} \\ \frac{w^{\mathrm{T}} u^{(i)} + b}{||w||} &\geq 0 \quad v^{(i)} = 1 \\ \frac{w^{\mathrm{T}} u^{(i)} + b}{||w||} &\leq 0 \quad v^{(i)} = -1 \\ d^{(i)} &= \frac{v^{(i)} (w^{\mathrm{T}} u^{(i)} + b)}{||w||} \\ \max_{w,b} \min_{i=1,\dots,N} \frac{v^{(i)} (w^{\mathrm{T}} u^{(i)} + b)}{||w||} \\ &\Leftrightarrow \max \frac{min_{i=1,\dots,N} v^{(i)} (w^{\mathrm{T}} u^{(i)} + b)}{||w||} \\ &\Leftrightarrow \max \frac{r}{||w||} \quad \text{s.t.} \ v^{(i)} (w^{\mathrm{T}} u^{(i)} + b) \geq r, \quad i = 1,\dots,N \\ \Leftrightarrow \max \frac{1}{||w||} \quad \text{s.t.} \ v^{(i)} (w^{\mathrm{T}} u^{(i)} + b) \geq 1, \quad i = 1,\dots,N \\ \Leftrightarrow \min ||w||^2 \quad \text{s.t.} \ v^{(i)} (w^{\mathrm{T}} u^{(i)} + b) \geq 1, \quad i = 1,\dots,N \\ \min \frac{\rho}{2} ||w||^2 + \sum_{i=1}^{N} \max\{1 - v^{(i)} (w^{\mathrm{T}} u^{(i)} + b), 0\} \end{split}$$

4. Neural Network

$$(u^{(i)},v^{(i)})$$

$$wu^i \in \mathbb{R}^m \Rightarrow g(wu^{(i)}) = egin{pmatrix} rac{1}{1+e^{(-wu^{(i)})_1}} \ rac{1}{1+e^{(-wu^{(i)})_2}} \ rac{1}{1+e^{(-wu^{(i)})_m}} \end{pmatrix}$$
 , $w \in \mathbb{R}^{m imes n}$, $g: \mathbb{R}^m o \mathbb{R}^m$

$$heta \in \mathbb{R}^m$$

$$egin{aligned} v^{(i)} &pprox heta^{ ext{T}} g(wu^{(i)}) \ min \sum_{i=1}^{N} (v^{(i)} - heta^{ ext{T}} g(wu^{(i)}))^2 \end{aligned}$$

multi-layer:

$$min \sum_{i=1}^{N} (v^{(i)} - heta^{ ext{T}} g(w_e g(w_{e-1} g(w_{e-2} \dots w_2 g(w_1, u^{(i)})))))^2$$

5. Lasso regression

$$min \sum_{i=1}^{N} (v^{(i)} - heta^{ ext{T}} u^{(i)})^2 +
ho || heta||_1$$

★ Stochastic Optimization Formulation

$$egin{aligned} min_{ heta}E_{(u,v)}[(v- heta^{\mathrm{T}}u)^2] +
ho|| heta||_1 \ (u^{(i)},v^{(i)}) \quad i=1,\ldots,N \end{aligned}$$

$$min_{ heta}rac{1}{N}\sum_{i=1}^{N}(v^{(i)}- heta^{ ext{T}}u^{(i)})^{2}+
ho|| heta||_{1}$$

General Form

 $minf(\theta) + \gamma(\theta)$, $\theta \in X$

$$egin{cases} f(heta) pprox rac{1}{N} \sum_{i=1}^N F(heta, u^{(i)}, v^{(i)}) \ f(heta) = E[F(heta, u^{(i)}, v^{(i)})] \end{cases}$$

Review of Convex Analysis

Convex functions

todo:

Subgradient

Let $X \subseteq \mathbb{R}^n$ be a convex set

 $f:X
ightarrow \mathbb{R}$ be a convex function

 $g \in \mathbb{R}^n$ is called a subgradient of f at $x \in X$ if $f(y) \geq f(x) + \langle g, y - x \rangle$, $\ orall y \in X$

The subgradient of f at x exists if $x \in Int(X)$

Projection

$$Proj_{X}(x) = argmin ||y-x||^{2}$$
, $y \in X$

$$Proj_X(x) = \left\{ egin{array}{ll} x, & \quad ||x|| \leq 1 \ rac{x}{||x||}, & \quad ||x|| > 1 \end{array}
ight.$$

e.g.
$$X = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i \leq 1, x_i \geq 0\}$$

$$min||a-x||^2$$
, $\sum_{i=1}^n x_i = 1$, $x_i \ge 0$

Use (KKT) Optimality conditions to solve the problem.

Review of Optimality Conditions

$$minf(x)$$
, $x \in X$

Simple Optimality Condition

 x^* is an optimal solution if \exists subgradient $g(x^*)$, s.t. $< g(x^*), x-x^*> \ge 0$, $\forall x \in X$

Review of Convex Analysis

If f is differentiable, $< riangle f(x^*), x-x^*> \geq 0$, $orall x \in X$

$$x = x^* - arepsilon rac{igtriangledown f(x^*)}{||igtriangledown f(x^*)||}$$

$$< riangle f(x^*), x-x^*> = < riangle f(x^*), -arepsilon rac{ riangle f(x^*)}{|| riangle f(x^*)||}> = -arepsilon || riangle f(x^*)|| \geq 0$$

e.g.
$$min \sum_{i=1}^n [a_i x_i + rac{1}{2} x_i^2]$$
, $x_i > 0, i=1,\ldots,n$

$$min(a_ix_i+rac{1}{2}x_i^2)$$
, $x_i\geq 0$

$$\triangledown f(x^*) = a_i + x_i^*$$

$$< a_i, x_i > \geq 0$$
, $orall x_i \geq 0$

$$< a_i + x_i^*, x_i - x_i^* > \geq 0$$
, $orall x_i \geq 0$

Suppose $x_i*\geq 0$

$$a_i + x_i^* = 0$$

$$x_i^* = -a_i$$

If
$$a_i < 0$$
, $x_i^* = -a_i$

If
$$a_i \geq 0$$
, $x_i^* = 0$

$$x_i^* = \left\{egin{array}{ll} -a_i, & a_i < 0 \ 0, & otherwise \end{array}
ight.$$