FEUILLE D'EXERCICES N°9 Optimisation sous contraintes

Démonstrations de cours

Les exercices de cette section **ne seront pas** traités en TD, les corrigés se trouvant dans le polycopié. Les exercices marqués **&** sont exigibles au partiel et à l'examen.

♣ Exercice 1 – Unicité de la solution

Module B₄ – Propositions 1 et 5

Soient $\mathcal{A} \subset \mathcal{X}$ un ensemble et $f: \mathcal{X} \to \mathbb{R}$ une fonction strictement convexe. On considère le problème d'optimisation sous contraintes

Minimiser
$$f(x)$$
 sous les contraintes $x \in \mathcal{A}$ (\mathcal{P})

- (a) On suppose que A est convexe. Supposons que (P) admet deux solutions x_1 et x_2 . Montrer que $x_1 = x_2$. Indication: on pourra s'intéresser à $f((x_1 + x_2)/2)$.
- (b) On suppose que A est ouvert et que f est différentiable. Supposons que (P) admet une solution x^* . Montrer que x^* est minimiseur local de f. En déduire que x^* est point critique de f, puis que (P) admet au plus une solution.

♣ Exercice 2 – Inéquation variationnelle dans le cas convexe

Module B₄ – Proposition 11

Soient $\mathcal{C} \subset \mathcal{X}$ un ensemble convexe et $f: \mathcal{C} \to \mathbb{R}$ une fonction convexe Gateaux-différentiable.

(a) On suppose que (\mathcal{P}_c) admet une solution x^* . Soit $x \in \mathcal{C}$ et $t \in]0;1]$. En utilisant la convexité de \mathcal{C} , iustifier que

$$f(x^*) \le f(t x + (1 - t) x^*) = f(x^* + t (x - x^*))$$

En déduire que

$$\frac{f(x^* + t(x - x^*)) - f(x^*)}{t} \ge 0$$

puis montrer que

$$\forall x \in \mathcal{C}, \qquad f'(x^*; x - x^*) \ge 0$$

(b) On suppose qu'il existe $x^* \in \mathcal{C}$ tel que $f'(x^*; x - x^*) \geq 0$ pour tout $x \in \mathcal{C}$. Justifier que

$$\forall x \in \mathcal{C}, \qquad f(x) = f(x^* + 1 \times (x - x^*)) > f(x^*) + 1 \times f'(x^*; x - x^*)$$

En déduire que x^* est solution de (\mathcal{P}_c) .

Exercices fondamentaux

Exercice 3 – Étude de fonctions : optimisation sous contraintes Déterminer les solutions $t^* \in \mathbb{R}$ des problèmes suivants en réalisant une étude de fonctions. Que vaut $f'(t^*)$?

- (a) Minimiser $f(t) = t^2$ sous les contraintes $1 \le t \le 2$
- (b) Minimiser $f(t) = t^2$ sous les contraintes $-1 \le t \le 2$
- (c) Minimiser $f(t) = -t^2$ sous les contraintes $-1 \le t \le 2$
- (d) Minimiser $f(t) = t^2$ sous les contraintes $|t| \ge 5$

Exercice 4 – Variables d'écart Soient $f: \mathcal{X} \to \mathbb{R}$ et $h_j: \mathcal{X} \to \mathbb{R}$ des fonctions, avec $j \in [1; m]$. On considère les deux problèmes d'optimisation sous contraintes suivantes :

Minimiser
$$f(x)$$
 sous les contraintes
$$\begin{cases} h_1(x) \le 0 \\ \vdots \\ h_m(x) \le 0 \end{cases}$$
 (\mathcal{P}_{ci})

et

Minimiser
$$F(x, \varepsilon_1, \dots, \varepsilon_m) = f(x)$$
 sous les contraintes
$$\begin{cases} h_1(x) + \varepsilon_1^2 = 0 \\ \vdots \\ h_m(x) + \varepsilon_m^2 = 0 \end{cases}$$
 (\mathcal{P}_{ce})

(a) Montrer que tout point $(x, \varepsilon_1, \dots, \varepsilon_m)$ est admissible pour le problème (\mathcal{P}_{ce}) si et seulement si $h_j(x) \leq 0$ pour tout $j \in [1; m]$, et si et seulement si

$$\forall j \in [1; m], \quad |\varepsilon_j| = \sqrt{-h_j(x)}$$

(b) Montrer que $(x^*, \varepsilon_1^*, \dots, \varepsilon_m^*)$ est une solution du problème (\mathcal{P}_{ce}) si et seulement si

$$\forall j \in [1; m], \quad h_j(x^*) \le 0, \quad |\varepsilon_j^*| = \sqrt{-h_j(x^*)}$$

et que x^* est solution du problème (\mathcal{P}_{ci}) .

Compléments

Exercice 5 – Optimisation linéaire On considère le problème suivant :

Minimiser
$$f(x,y) = x - y$$
 sous les contraintes
$$\begin{cases} x \le 4 \\ x + y \ge 2 \\ y \le 5 \\ (x,y) \in (\mathbb{R}^+)^2 \end{cases}$$
 (\mathcal{P}_{ci})

- (a) Représenter graphiquement l'ensemble admissible.
- (b) Tracer les lignes de niveaux $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = c\}$ avec $c \in \{-1,0,1\}$. Que peut-on conjecturer quant à la solution optimale?
- (c) Montrer que le problème (\mathcal{P}_{ci}) est équivalent au problème suivant :

Minimiser
$$J(x, y, \varepsilon_1, \varepsilon_2, \varepsilon_3) = -5 + x + varepsilon_3$$
 sous les contraintes
$$\begin{cases} x + \varepsilon_1 = 4 \\ -x - y + \varepsilon_2 = -2 \\ y + \varepsilon_3 = 5 \\ (x, y, \varepsilon_1, \varepsilon_2, \varepsilon_3) \in (\mathbb{R}^+)^5 \end{cases}$$

(d) En déduire la solution optimale du problème (\mathcal{P}_{ci}) .

* Exercice 6 – Pénalisation Soit $f: \mathbb{R}^n \to \mathbb{R}$ et $(g_i)_{1 \leq i \leq p}$ des fonctions convexes et différentiables. On considère le problème suivant :

Minimiser
$$f(x)$$
 sous les contraintes $g_i(x) \leq 0$ pour tout $i \in [1; p]$ (\mathcal{P}_{ci})

On suppose que ce problème est réalisable et admet une solution x^* . On définit les fonctions suivantes :

$$\Xi: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \sum_{i=1}^p \left(\max \left(0, g_i(x) \right) \right)^2 & \text{et} & \forall k \in \mathbb{N}, & f_k = f + k \Xi \end{array} \right.$$

Pauline TAN 2 V2.4.2024

- (a) Montrer que f_k est convexe pour tout $k \in \mathbb{N}$.
- (b) Soit $x \in \mathbb{R}^n$. Déterminer la limite de $(f_k(x))_{k \in \mathbb{N}}$.
- (c) On suppose que f est fortement convexe de module $\alpha > 0$. Justifier que les f_k admettent un unique minimiseur, que l'on note x_k .
- (d) Montrer que $\forall k \in \mathbb{N}, \quad f(x_k) \leq f(x^*)$

En déduire que $(x_k)_{k\in\mathbb{N}}$ admet une sous-suite qui converge, de limite notée \tilde{x} .

(e) On admet que \tilde{x} est un point admissible pour le problème (\mathcal{P}_{ci}) . En déduire que \tilde{x} est solution de (\mathcal{P}_{ci}) .