P1: Universal Shift Register Code:

```
'timescale 1ns/10ps
module usr(Data Out, MSB out, LSB out, Data In, MSB In, LSB In,s1,s0,clk,rst);
output Data Out;
output MSB out, LSB out;
input [3:0] Data In;
input MSB In, LSB In;
input s1,s0,clk,rst;
reg [3:0] Data Out;
        assign MSB out = Data Out[3];
        assign LSB out = Data Out[0];
        always @ (posedge clk)begin
         if(rst == 1'b1) Data Out <= 0;
         else case({s1,s0})
          0:
                Data Out <= Data Out;
                                                                  //hold
                Data Out <= {MSB In, Data Out[3:1]};
                                                         //Serial shift from MSB
          1:
                Data Out <= {Data Out[2:0], LSB In};
                                                         //Serial shift from LSB
          2:
                Data Out <= Data In;
                                                                  //Parallel load
          3:
         endcase
        end
```

endmodule

Testbench:

```
initial
                                                                                                      begin
timescale 1ns/10ps
                                                                                                       #0
                                                                                                               s0=1'b0;
module usr t();
                                                                                                       #20
                                                                                                               s0=1'b1:
        wire [3:0] Data out;
                                                                                                               s0=1'b0;
                                                                                                       #40
         wire MSB out, LSB out:
                                                                                                       #55
                                                                                                               s0=1'b1:
        reg [3:0] Data_In;
reg MSB_In, LSB_In;
                                                                                                      #95
                                                                                                               s0=1'b0:
                                                                                              initial
        reg s1,s0,clk,rst;
                                                                                                       begin
                                                                                                       #0
                                                                                                               s1=1'b0;
         usr T1(.Data Out(Data Out),
                                                                                                       #70
                                                                                                               s1=1'b1:
                 .MSB out(MSB out),
                                                                                                               s1=1'b0;
                  .LSB out(LSB out),
                                                                                                       #10
                                                                                                               s1=1'b1:
                  .Data In(Data In),
                                                                                                       #90
                                                                                                               s1=1'b0;
                  .MSB_In(MSB_In),
                                                                                                       end
                                                                                              initial
                  .LSB In(LSB In),
                                                                                                       begin
                  .s1(s1),
                                                                                                               LSB_In=1'b1;
MSB_In=1'b1;
                                                                                                       #0
                  .s0(s0),
                  .clk(clk)
                                                                                                               Data In=4'b1111;
                  .rst(rst));
                                                                                                      end
         initial
                                                                                              initial
                  clk=1'b0;
                                                                                                               $shm_open ("mywave.db");
$shm_probe (usr_t,"AS");
$shm_save;
                  always #5 clk=~clk;
         initial
                                                                                                       end
                                                                                      endmodule
                  $display ("time\t clk\t rst\t s1\t s0\t out\t");
                  $monitor ("%g\t %b\t %b\t %b\t %b\t %b\t", $time,clk,rst,s1,s0,Data_Out);
                          rst=1'b1;
                  #10
                           rst=1'b0:
                  #45
                           rst=1'b1;
                           rst=1'b0;
                  #10
                  #45
                           rst=1'b1;
                  #10
                  #1000
                          $finish;
                  end
```

Output result:

time	clk	rst	s1	s0	out
Θ	0	1	0	0	XXXX
5	1	1	0	0	0000
10	0	Θ	0	0	0000
15	1	Θ	0	0	0000
20	0	Θ	Θ	1	0000
25	1	Θ	Θ	1	1000
30	0	Θ	Θ	1	1000
35	1	Θ	Θ	1	1100
40	0	0	Θ	1	1100
45	1	Θ	Θ	1	1110
50	0	Θ	Θ	1	1110
55	1	1	Θ	1	0000
60	0	1	Θ	Θ	0000
65	1	Θ	Θ	Θ	0000
70	0	0	1	0	0000
75	1	Θ	1	Θ	0001
80	0	0	1	Θ	0001
85	1	Θ	1	Θ	0011
90	0	0	1	0	0011
95	1	Θ	1	Θ	0111
100	0	Θ	1	0	0111
105	1	Θ	1	Θ	1111
110	0	1	Θ	Θ	1111

Waveform result:

Problem-2

8bit counter with negedge, active-low enable. Made by 2 4-bit counter, connected by RCO.

Verilog code

```
`timescale 1ns/10ps
module ebcounter(out,ebout,outh,rco,reset,enable,clk);
output out;
output outh;
output rco;
output ebout;
input clk, reset, enable;
reg [3:0] out;
reg [3:0] outh;
reg [1:0] rco;
wire [7:0] ebout;
assign ebout = {outh,out};
always @(negedge clk)
if (reset)
        out<=1'b0;
else
        if (enable==1'b0)
        out<=out+1;
always @(posedge clk)
if (out==4'b1111)
        rco<=1'b1;
else
        rco<=1'b0;
always @(negedge clk)
if (reset)
        outh<=1'b0;
else
        if(rco==1'b1)
        outh<=outh+1;
endmodule
```

Testbench

```
`timescale 1ns/10ps
module ebcounter t();
        wire [3:0] out;
        wire [3:0] outh;
        wire [1:0] rco;
        wire [7:0] ebout;
        reg clk, reset, enable;
        ebcounter T1(.out(out),
                         .ebout(ebout),
                         .outh(outh),
                         .rco(rco),
                         .clk(clk),
                         .enable(enable),
                         .reset(reset));
        initial
                 clk = 1'b1;
                 always #5 clk=~clk;
        initial
                 $display ("time\t clk\t reset\t enable\t 8counter\t");
                 $monitor ("%g\t %b\t %b\t %b\t %b\t", $time,clk,reset,enable,ebout);
                 #0 reset=1'b1;
                         enable=1'b1;
                 #10 reset=1'b0;
                         enable=1'b0;
                 #1800 $finish;
                 end
        initial
                 begin
                         $shm open ("mywave.db");
                         $shm probe (ebcounter t, "AS");
                         $shm save;
                 end
endmodule
```

Output result

time	clk	reset	enable	8counter	145	0	Θ	Θ	00001110
0	1	1	1	XXXXXXXX	150	1	Θ	Θ	00001110
5	0	1	1	00000000	155	0	Θ	Θ	00001111
10	1	0	Θ	00000000	160	1	0	Θ	00001111
15	Θ	0	0	00000000	165	0	Θ	Θ	00010000
20	1	0	0	00000001	170	1	Θ	Θ	00010000
25	0	0	Θ	00000010	175	0	Θ	Θ	00010001
30	1	0	0	00000010	180	1	Θ	Θ	00010001
35	0	0	0	00000010	185	0	Θ	Θ	00010010
40	1	0	Θ	00000011	190	1	0	0	00010010
45	0	0	0	0000011	195	0	0	0	00010011
50	1	0	0	00000100	200	1	0	0	00010011
55	0	0	0	00000100	205	0	0	0	00010111
60	1	0	0	00000101	210	1	0	Θ	00010100
65	0	0	0	00000101	215	0	0	Θ	00010100
	1	_	_		220	1	0	Θ	00010101
70	1	0	0	00000110	225	0			00010101
75	0	0	0	00000111		1	0	0	
80	1	0	0	00000111	230	1	0	0	00010110
85	Θ	0	0	00001000	235	0	0	0	00010111
90	1	0	0	00001000	240	1	0	Θ	00010111
95	0	Θ	0	00001001	245	0	Θ	Θ	00011000
100	1	Θ	Θ	00001001	250	1	Θ	Θ	00011000
105	0	Θ	Θ	00001010	255	Θ	Θ	Θ	00011001
110	1	Θ	Θ	00001010	260	1	Θ	Θ	00011001
115	Θ	Θ	Θ	00001011	265	0	Θ	Θ	00011010
120	1	Θ	Θ	00001011	270	1	Θ	Θ	00011010
125	0	Θ	Θ	00001100	275	0	0	Θ	00011011
130	1	Θ	Θ	00001100	280	1	Θ	Θ	00011011
135	Θ	0	Θ	00001101	285	Θ	Θ	Θ	00011100
140	1	Θ	Θ	00001101	290	1	Θ	Θ	00011100
145	Θ	Θ	Θ	00001110	295	0	0	0	00011101

Waveform

