FA2_INTERPOLATION_KHAFAJI

March 3, 2025

```
[1]: import numpy as np
import polars as pl
from sympy import *
import scipy.interpolate as spi
```

0.1 1.

Use Neville's Method algorithm to generate the table of approximations for Lagrange interpolating polynomials of degree one, two, and three to approximate f(0.43)

```
if f(0) = 1, f(0.25) = 1.64872, f(0.5) = 2.71828, and f(0.75) = 4.48169
```

```
[2]: def nevilles(x, values):
         n = len(values[0])
         for col in range(1, n): # iteration for creation of columns
             temp_list = []
              # temporary list
             for j in range(col, n): # iteration for getting j (larger n)
                  # j-col is the distance (for Q2, i is 1 below j, in Q3, i is 2 \rfloor
      \hookrightarrow below j).
                  # j and i refers to x values.
                  i = j-col
                  # j and j-1 functions as indexes to the P(x) values.
                  # use the Neville's method formula
                  numerator = ((x-values[0][i])*values[col][j]) -__
      \hookrightarrow((x-values[0][j])*values[col][j-1])
                  p = numerator/(values[0][j] - values[0][i])
                  # append result to temp list
                  temp_list.append(p)
              # append np.nan multiple times to the left in temporary list
             temp list = [np.nan]*col + temp list
```

```
# append temp list to values
values = np.append(values, [temp_list], axis=0)

# create list of column names
column_names = ["x"] + [f"Q{n}" for n in range(values.shape[0]-1)]

# turn rows into columns
values_T = np.transpose(values)

return pl.DataFrame(values_T, schema=column_names)
```

```
[3]: given_values = np.array([
        [0, 0.25, 0.5, 0.75],
        [1, 1.64872, 2.71828, 4.48169]
])

x = 0.43
```

[4]: nevilles(x, given_values)

[4]: shape: (4, 5)

x	QO	Q1	Q2	Q3
f64	f64	f64	f64	f64
0.0	1.0	NaN	NaN	NaN
0.25	1.64872	2.1157984	NaN	NaN
0.5	2.71828	2.4188032	2.376383	NaN
0.75	4.48169	2.224525	2.348863	2.360605

0.1.1 Answer for 1

 $f(0.43) \approx 2.360605$

0.2 2.

Use the Newton Divided Differences Algorithm to construct the interpolating polynomials of degree three and approximate f(8.4)

```
given f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, and f(8.7) = 18.82091
```

```
x_divdiff = 8.4
```

```
[6]: def newtonDivDiff(x, values):
         n = len(values[0])
         b_{vals} = [values[1][0]]
         for col in range(1, n): # iteration for creation of columns
             temp_list = []
             # temporary list
             for j in range(col, n): # iteration for getting j (larger n)
                 # j-col is the distance (for Q2, i is 1 below j, in Q3, i is 2_{\square}
      ⇔below j).
                 # j and i refers to x values.
                 i = j-col
                 # j and j-1 functions as indexes to the P(x) values.
                 # use the Newton's Divided Difference Method
                 numerator = values[col][j] - values[col][j-1]
                 p = numerator/(values[0][j] - values[0][i])
                 # append result to temp list
                 temp_list.append(p)
             # append first value on retrieved values to our list of b values
             # before we insert np.nan
             b_vals.append(temp_list[0])
             # append np.nan multiple times to the left in temporary list
             temp_list = [np.nan]*col + temp_list
             # append temp list to values
             values = np.append(values, [temp_list], axis=0)
         # creating dataframe
         # create list of column names
         column_names = ["x"] + ["f(x)"] + [f"{n}th division" for n in_{\square}]
      \negrange(1, values.shape[0]-1)]
         # turn rows into columns
         values_T = np.transpose(values)
         df = pl.DataFrame(values T, schema=column names)
         # create polynomial for approximation
```

```
[7]: divdiff_df, divDiff_approx = newtonDivDiff(x_divdiff, given_values_divdiff) divdiff_df
```

```
[7]: shape: (4, 5)
```

```
f(x)
                1th division 2th division 3th division
X
     f64
               f64
                              f64
                                            f64
f64
8.1
    16.9441
               {\tt NaN}
                              {\tt NaN}
                                            NaN
8.3 17.56492 3.1041
                              NaN
                                            NaN
8.6 18.50515 3.1341
                              0.06
                                            NaN
8.7 18.82091 3.1576
                              0.05875
                                            -0.002083
```

The approximation yielded by the formula for f(8.4) is: 17.877142499999998

1 Machine Exercise

```
given f(x) = x\cos(x) - 2x^2 + 3x - 1
and the data:
```

```
[9]: data_example_3 = {
    "x" : [0.1, 0.2, 0.3, 0.4],
    "fx" : [-0.62049958, -0.28398668, 0.00660095, 0.24842440],
    "f'x" : [3.58502082, 3.14033271, 2.66668043, 2.16529366]
}
df_machine_excercise = pl.DataFrame(data_example_3)
```

```
df_machine_excercise
```

```
[9]: shape: (4, 3)

x fx f'x
--- ---
f64 f64 f64

0.1 -0.6205 3.585021
0.2 -0.283987 3.140333
0.3 0.006601 2.66668
0.4 0.2484244 2.165294
```

1.1 3.

Use Hermite Interpolation to construct an approximating polynomial to approximate f(0.25) and find the absolute error.

```
[10]: x = \text{symbols}('x')

\text{func}_3 = x*\cos(x) -2*(x**2) +3*x -1
```

```
[11]: def lagrange_range(x_s):
    x=symbols('x')
    lagrange_list = []
    lagrange_derivative_list = []

    for x_val in x_s:
        usable_x = [xnot for xnot in x_s if xnot != x_val]
        lag_expr = 1
        for p in usable_x:
            lag_expr = lag_expr * (x-p)/(x_val - p)
        lagrange_list.append(lag_expr)
        lagrange_derivative_list.append(diff(lag_expr, x))

return lagrange_list, lagrange_derivative_list
```

The hermite polynomial is: 0.00296296301530674*x**7 - 0.00726851855870336*x**6 + 0.0466490743565373*x**5 - 0.00180268517578952*x**4 - 0.499630898146279*x**3 - 2.00004254629857*x**2 + 4.00000255777809*x - 1.00000005866667

The approximation is: -0.132771890847391

```
[14]: print("The absolute error is:", abs(func_3.subs(x,0.25)-approximation))
```

The absolute error is: 3.72494743383633e-9

1.2 4.

Construct the Natural cubic spline and approximate f(0.25) and f'(0.25) and find the absolute error.

```
[15]: x_vals = np.array(data_example_3["x"])
y_vals = np.array(data_example_3["fx"])
spline = spi.CubicSpline(x_vals, y_vals, bc_type='natural')
```

The approximation of f(0.25) is -0.13159115625, and it's first derivative approximation is 2.908242058333334

The absolute error for the function approximation is 0.00118073832233881. The absolute error for the derivative approximation is 3.03865258814701.

1.3 5.

Construct the Clamped cubic spline and approximate f(0.25) and f'(0.25) and find the absolute error

```
[17]: y_prime_vals = np.array(data_example_3["f'x"])

# Construct Clamped Cubic Spline
spline_clamped = spi.CubicSpline(
    x_vals, y_vals,
    bc_type=((1, y_prime_vals[0]), (1, y_prime_vals[-1]))
)

# Approximate f(0.25) and f'(0.25)
x_target = 0.25
f_approx = spline_clamped(x_target)
f_prime_approx = spline_clamped.derivative()(x_target)
```

```
[18]: print(f"The approximation of f({x_target}) is {f_approx}, and it's first derivative approximation is {f_prime_approx}")
```

The approximation of f(0.25) is -0.1327722135833333, and it's first derivative approximation is 2.9070627590000004

The absolute error for the function approximation is 3.19010994481728E-7 The absolute error for the derivative approximation is 3.03983364548035