EKSAMEN DATABLAD VIR DIE FISIESE WETENSKAPPE (FISIKA)

TABEL 1 FISIESE KONSTANTES

NAAM	SIMBOOL	WAARDE
Versnelling as gevolg van gravitasie	g	9,8 m⋅s ⁻²
Spoed van lig in 'n vakuum	С	$3.0 \times 10^8 \text{m} \cdot \text{s}^{-1}$
Universele gravitasie konstante	G	$6.7 \times 10^{-11} \text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Coulomb se konstante	k	$9.0 \times 10^9 \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Grootte van lading op 'n elektron	е	$1,6 \times 10^{-19}\mathrm{C}$
Massa van 'n elektron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Planck se konstante	h	$6.6 \times 10^{-34} \text{ J} \cdot \text{s}$
1 elektronvolt	eV	$1.6 \times 10^{-19} \mathrm{J}$

TABEL 2 FISIESE FORMULES

BEWEGING

$v = u + at$ of $V_f = V_i + a\Delta t$	$s = \left(\frac{v+u}{2}\right)t \text{ of } \Delta x = \left(\frac{v_f + v_i}{2}\right)\Delta t$		
$v^2 = u^2 + 2as$ of $v_f^2 = v_i^2 + 2a\Delta x$	$s = ut + \frac{1}{2}at^2 \text{ of } \Delta x = V_i \Delta t + \frac{1}{2}a(\Delta t)^2$		

KRAG EN MOMENTUM

F _{net} = ma	$F_{net} = \frac{\Delta p}{\Delta t}$ of $F_{net} \Delta t = m \Delta v$	$J = \Delta p = mv - mu$ of $J = \Delta p = mv_f - mv_i$
p = mv	$F_g = mg$	$egin{aligned} m{\mathcal{F}_{fs}^{maks}} &= \mu_{s} m{\mathcal{F}_{N}} \ m{\mathcal{F}_{fk}} &= \mu_{k} m{\mathcal{F}_{N}} \end{aligned}$

WERK, ENERGIE EN DRYWING

	$V = Fs$ of $W = F\Delta x$ of $W = F\Delta x \cos \theta$ $P = \frac{W}{t}$ $P = Fv$		P = Fv	
$E_p = mgh$	E _k =	$=\frac{1}{2}mv^2$	$W_{net} = \Delta E_{\kappa}$	$effektiwiteit = \frac{drywing_{uit}}{drywing_{in}} \times 100$

IEB Copyright © 2021 BLAAI ASSEBLIEF OM

GRAVITASIE EN ELEKTRIESE VELDE

$F = G \frac{m_1 m_2}{r^2}$	$g = \frac{F}{m}$	$g = G\frac{M}{r^2}$
$F = k \frac{q_1 q_2}{r^2}$	$E = \frac{F}{q}$	$E = \frac{kQ}{r^2}$

ELEKTRIESE STROOMBANE

$I = \frac{q}{t}$	$V = \frac{W}{q}$		
$R = \frac{V}{I}$	$emk = I(R_{eks} + r)$ of $emk = V_{eks} + V_{interne}$ weerstand		
$R_{S} = R_1 + R_2 + \dots$	$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$		
$P = \frac{W}{t}$ of $W = Pt$			
W = VIt of $W =$	$= I^2 R t \qquad \text{of} \qquad W = \frac{V^2}{R} t$		
P = VI of $P = VI$	$= I^2 R \qquad \text{of} \qquad P = \frac{V^2}{R}$		

ELEKTRODINAMIKA

$\Phi = BA\cos\theta$	$emk = -\frac{N\Delta\Phi}{\Deltat}$	$F = IB\ell \sin \theta$	
$V_{\rho}I_{\rho}=V_{s}I_{s}$		$\frac{N_s}{N_p} = \frac{V_s}{V_p}$	

FOTONE EN ELEKTRONE

$c = f \lambda$		E = ht	of	$E = \frac{hc}{\lambda}$
$E = W_0 + E_{\kappa(\text{maks})}$	$W_0 =$	= hf ₀	$E_{\kappa_{(max)}}$	$_{ks)} = \frac{1}{2} m v_{maks}^2$