大学物理(工) I 教学大纲

(编写日期: 2018 年 7 月)

一、课程基本说明

课程名称:(中文) 大学物理(工)I (英文) College Physics (Engineering) I						
课程性质	必修	课程编码	PHY130	学分	4	
授课学时	72	主讲教师 (职称) I		开课单位	物理学院	
面向专业	工科专业	授课年级		先修课程	高等数学	

物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。本课程的目的在于向工科专业学生介绍牛顿力学、机械振动和机械波、分子动理论和热力学等领域的基本模型和概念;通过实例和练习,让学生掌握对物理问题的分析和求解的基本技能;训练学生使用物理概念和方法来解决具体问题的能力;为学生学习有关专业课程提供必要的基础知识。

课程目的与 教学基本要求

需要牢固掌握:质点运动的描述;相对运动;牛顿定律及其应用;变力下的质点动力学问题;质心;质心运动定律;质点系的动量定理及守恒;变力的功;动能定理;保守力及势能;机械能守恒定理;刚体定轴转动定律;转动惯量;质点及刚体的角动量和角动量守恒;简谐振动的数学表述;相位;简谐振动的动力学方程;简谐振动的机械能;一维简谐振动的合成;拍;机械波的基本特征;平面简谐波;波的能量和能流密度;惠更斯原理;波的衍射;机械波的多普勒效应;平衡态;态参量;热力学第零、一和第二定律;理想气体物态方程;准静态过程;热量和内能;典型热力学过程;热机效率;制冷系数;卡诺热机;玻尔兹曼熵、克劳修斯熵;理想

气体的压强与温度;能量均分定理;麦克斯韦速率分布;三种统计速率:气体分子平均自由程和碰撞频率。

一般掌握:非惯性系和惯性力;科里奥利力;对称性与守恒定律;刚体转动中的功和能;刚体进动;理想流体;伯努利方程;阻尼振动和受迫振动;整数比的简谐运动合成;狭义相对论的两个基本假设;洛伦兹变换和速度变换;多方过程;范德瓦尔斯方程;玻尔兹曼分布。

一般了解: 弹弓效应; 湍流; 混沌现象; 声波; 超声波、次声波和声强; 开放系统的熵变; 近平衡态; 远离平衡态。

(请明确基本要求的三个档次,即牢固掌握、一般掌握和一般了解)

二、课程基本内容

(一) 教学进度表

(含学时分配,学时分配要落实到"章"或"节",并对各章节的重点、难点内容加以必要的说明)

周次(细化 到每周)	主要教学内容及学时分配	其他需备注说明 的情况
第一周	质点的运动学: 质点模型; 参考系; 位矢、速度、加速度; 在笛卡尔坐标系、极坐标系、柱坐标系中对	
	质点运动的描写;相对运动;圆周运动;抛体运动。 重点:质点模型;质点运动定理;相对运动。 难点:如何使用微积分解决运动学问题;在非笛	
	卡尔坐标系中对时间求导。	
第二周	运动和力 :牛顿定理及其应用;几种常见的力; 基本相互作用力;量纲分析;非惯性系与惯性力;科 里奥利力;潮汐。 重点:牛顿定律及其应用;变力下质点的动力学 问题。	
	难点: 惯性力。	
第三周	动量与角动量:冲量与动量定理;动量守恒定理及其守恒条件;质点系;质心;质心运动定理;质点的角动量和角动量定理。 重点:质心;动量守恒定理;质心运动定理;角动量。 难点:角动量	
第四周	角动量守恒定理; 质点系的动量定理; 质点系的 角动量定理; 质心系中的角动量; 功; 动能定理; 保	

	守力; 势能; 引力势能; 势能与保守力之间的联系。 重点: 角动量守恒定理; 质点系的动量定理; 质 点系的角动量定理; 动能定理; 变力的功; 保守力的 功; 势能。	
第五周	机械能守恒定理;对称性与守恒定律;碰撞;弹 弓效应;理想流体模型;伯努利方程。 重点:机械能守恒定理;理想流体模型;伯努利 方程。	
第六周	刚体的转动: 刚体模型; 刚体运动的描述; 定轴转动定律; 转动惯量; 刚体转动中的功和能; 角动量及角动量守恒的条件; 刚体进动。 重点: 刚体模型; 定轴转动定律; 转动惯量; 刚体的角动量。 难点: 刚体进动	
第七周	振动:简谐振动的描述;相位;简谐振动的动力学;能量。 重点:简谐振动的数学描述;相位;旋转矢量法;简谐振动的动力学方程;简谐振动的机械能。	
第八周	阻尼振动; 受迫振动; 共振; 振动的合成及分解; 拍。 重点: 一维简谐振动的合成; 拍。	
第九周	波动: 机械波的基本特征; 平面简谐波; 弹性波及其波速; 波的能量。 重点: 机械波的特征; 平面简谐波; 波的能量; 能流密度。	
第十周	期中考	
第十一周	惠更斯原理;波的反射和折射;波的叠加;驻波; 波程差;波的衍射;机械波的多普勒效应;声波;水 波。 重点:惠更斯原理;波的衍射;波的叠加;驻波; 相位突变;机械波的多普勒效应。	
第十二周	狭义相对论基础: 狭义相对论的两个基本假设; 洛伦兹变换和速度变换;同时的相对性;时空收缩。 重点:狭义相对论的两个基本假设;洛伦兹变换 和速度变换;同时的相对性;时空收缩。	
第十三周	温度和气体动理论:热力学系统;平衡态;态参量;温度;温标;理想气体模型;理想气体的物态方程。 重点:平衡态;态参量;热力学第零定律;理想气体模型;理想气体的物态方程;理想气体的压强、温度。	
第十四周	气体分子的无规运动;平均自由程;温度的微观 意义;能量均分;麦克斯韦速率分布;玻尔兹曼分布。 重点:理想气体的平均自由程;能量均分;麦克	

	斯韦速率分布; 三种统计速率。	
第十五周	范德瓦尔斯方程;输运现象;热力学第一定律及 其应用。 重点:热力学第一定律及其应用。	
第十六周	准静态过程;热容;等温过程;等体过程;等压过程;绝热过程;热机;卡诺热机、热机效率;制冷机;制冷系数。 重点:典型热力学过程;卡诺循环;热机效率;制冷系数	
第十七周	卡诺定理;自然过程的方向性;不可逆过程的相 互依存;热力学第二定律及其微观意义;热力学概率 与自然过程的方向性。 重点:热力学第二定律。	
第十八周	玻尔兹曼熵、熵增加原理;可逆过程;克劳修斯 熵;熵是态函数;克劳修斯熵变化的计算;熵图。 重点:玻尔兹曼熵、熵增加原理;克劳修斯熵。 难点:克劳修斯熵的引入	
第十九周	熵和能量衰退; 开放系统的熵变; 近平衡态; 远 离平衡态。	
第二十周		