II GENETICKI ALGORITMI

1. Šta su evolucioni algoritmi?

Evolucioni algoritmi su postupci optimizacije, učenja i modeliranja, koji se baziraju na biološkoj i fizikalnoj evoluciji.

• Ovi algoritmi odgovaraju inžinjerskom načinu razmišljanja, tj. polazeći od nekog početnog rješenja kompleksnog problema, potrebno je pronaći poboljšano, ali ne i bezuslovno teoretsko optimalno rješenje.

2. Pristupi rješavanja problema pomoću genetičkog algoritma?

- Rješavanju problema pomoću genetičkog algoritma, može se pristupiti kroz dva pristupa:
- genetički algoritam prilagoditi specifičnostima problema ili
- prilagoditi problem genetičkom algoritmu.

3. Šta su Genetički algoritmi?

- Pod pojmom genetičkog algoritma (GA) podrazumijevaju se heuristički postupci traženja i optimizacije koji pripadaju većem skupu evolucijskih algoritama (EA).
- Genetički algoritmi služe za riješavanje standardnih problema:

$$\underline{x}^* = \arg \sup \{F(\underline{x})\}, \quad uz \quad F(\underline{x}) \ge 0$$

 $\underline{x} \in S$

tj. za pronalaženje supremuma nenegativne funkcije F(x).

4. Šta je fenotip / genotip?

- Fenotip (eng. Phenotype): karakteristike jedinke koje se mogu inerpretirati na nivou problema.
- Genotip (eng. Genotype): kodiranje fenotipa na gene; u pravilu se primjenjuje binarno kodiranje.

5. Šta je hromozom (u području GA)?

Hromozom (eng. Chromosome): hromozom (niz ili lanac) predstavlja u području GA jedinku: sastoji se od gena linerano poredanih jedan iza drugoga

6. Šta je populacija?

Populacija (eng. Population): skup svih hromozoma iste dužine niza u generaciji

7. Šta je generacija?

• Generacija (eng. Generation): populacija u diskretnom trenutku

8. Šta je Fitness funkcija?

• Fitness funkcija ili funkcija dobrote ili dobrota ili funkcija preživljavanja - svakom rješenju dodjeljuje se određena mjera kvalitete, tj. vrši se vrednovanje sposobnosti preživljavanja jedinki u odredjenim uslovima okruženja

9. Šta su genetičke transformacije?

• Reprodukcija i manipulacija genetičkim materijalom (prijelaz s generacije roditelja na generaciju djece), odvija se kroz niz transformacija nad jedinkama.

10. Navesti vrste genetičkih transformacija?

Transformacije:

- ukrštanje ili rekombinacija
- mutacije jedinki

11. Osnovna algoritamska struktura Genetičkog algoritma?

- 1. Postavljanje slučajne početne populacije P koja je sastavljena od jedinki xi , i=1,2,...,N
- 2. Određivanje sposobnosti F svih jedinki iz P
- 3. Selekcija parova roditelja iz P za stvaranje sljedeće generacije P':=Selekcija(P).
- 4. Stvaranje populacije potomaka (djece) pomoću genetičkih operatora:
- Ukrštanje P":= Ukrštanje(P'); (sa vjerovatnoćom pc)
- Mutacija P''':= Mutacija (P''); (sa vjerovatnoćom pm)
- 5. Određivanje sposobnosti svih jedinki u P: = P'''
- 6. Povrataka na 3. sve dok se ne ispune uslovi prekida

12. Operator geneticke selekcije

Selekcija (P --> P')

- Metode selekcije koriste se da bi se izabrale sposobne jedinke na početku generacijskog ciklusa za reprodukciju, a u skladu s njihovom sposobnošću kao roditelja (Darwinovo načelo).
- Metode selekcije čuvanje dobrog genetičkog materijala i prenošenje u sljedeće populacije.
- Operator selekcije se može zvati i operator reprodukcije (selektira jedinke za reprodukciju)

13. Vrste (sheme) genetičkih selekcija?

Sheme selekcije:

- a) Selekcija zasnovana na slučajnim brojevima
- b) Selekcija zasnovana na igri ruleta

14. Genetička selekcija zasnovana na slučajnim brojevima?

• U svakom selekcijskom koraku primjenjuju se dva cijela slučajna broja z $1,z2 \in [1,2,...,N]$ za izbor dviju jedinki iz populacije P i potom se preuzima za međupopulaciju P' ona jedinka xi $\in \{z1,z2\}$ koja ima veću sposobnost F(xi).

• Ovaj proces se ponavlja N puta. Postupak je lagan za implementaciju s obzirom da je izračunavanje sposobnosti jednostavno.

15. Genetička selekcija zasnovana na igri ruleta?

Selekcija zasnovana na igri ruleta

Ova selekcijska metoda provodi se analogno igri ruleta.
Najprije se izračunavaju vrijednosti sposobnosti svih x_i u populaciji P:

$$F(x_i) = i=1,2,...,N$$

 Iz sume ovih vrijednosti sposobnosti F(x_i) dobije se ukupna vrijednost sposobnosti populacije

$$F_{\Sigma} = \sum_{i=0}^{N} F(xi) \qquad F(x_i) > 0$$

• Ako se $F(x_i)$ normira na F_{Σ} , dobija se diskretna vjerovatnoća selekcije:

$$p_i = p(x_i) = \frac{F(x_i)}{F_{\Sigma}}$$
 gdje je $0 < p_i < 1$

Ima jos..

16. Šta je Genetičko ukrštanje?

Ukrštanje - miješanje genetičkog materijala dvije jedinke, kao rezultat nastaje jedna ili dvije nove jedinke.

Genetičko ukrštanje

- Ukrštanje (P' → P'')
- •lz međupopulacije P' dobivene selekcijom izaberu se potencijalni roditelji za ukrštanje (rekombinaciju).
- · Izbor se obavlja u skladu sa vjerovatnoćom pc
- Pri tom se generiše za svaku jedinku x_i iz populacije P' realni slučajni broj $z \in [0,1]$ i ako je $z < p_c$, x_i se podvrgava parenju.
- Očekivani broj parova je $p_c \frac{N}{2}$

17. Kakva genetička ukrštanja mogu biti?

- Ukrštanje može biti:
- A) jednotačkasto (one-point crossover) i
- B) višetačkasto (multiple-point crossover)

18. Jednotačkasto ukrštanje

Jednotačkasto ukrštanje

- •Za svaki par koji dolazi u obzir za ukrštanje, određuje se razdijelno mjesto u nizovima para (brojeno s lijeva).
- To se postiže tako da se generiše broj iz skupa jednakoraspodjeljenih cijelih slučajnih brojeva. ,∈[1,2,...,m] (m+1) dužina niza
- •Zamjena desnih dijelova niza tada formira potomstvo za populaciju P".

19. Dvotačkasto ukrštanje?

Dvotačkasto ukrštanje

- Višetačkasto ukrštanje omogućava dobivanje kvalitetnijih potomaka u odnosu na jednotačkasto ukrštanje.
- •Za dvotačkasto ukrštanje bira se Nc=2, tj. nizovi roditelja dijele se u tri dijela.
- To se postiže generisanjem dva slučajna broja z1 i z2 za odredjivanje mjesta dijeljenja

20. Šta je Genetička mutacija?

lako selekcija i ukrštanje generišu nove nizove, oni ne uvode nove informacije u populaciju na nivou bita.

- Mutacija se uvodi kao izvor novih bitova, tj. pojedini bitovi jedinki u populaciji P'' mijenjaju se s vjerovatnoćom mutacije pM.
- Mutacija predstavlja slučajnu promjenu jednog ili više gena (bita)

21. Koje su glavne karakteristike genetičke mutacije?

- Glavne karakteristike su:
 - vrsta mutacije i
 - vjerovatnoća mutacije pm.

22. Uticaja vjerovatnoće ukrštanja (mjera rekombinacije) pc na funkcionalnost GA?

Vjerovatnoća ukrštanja (mjera rekombinacije) pc:

• Povećanjem vjerovatnoće ukrštanja povećava se stepen ukrštanja "starih" elemenata u nizovima u skladu sa tzv. teorijom shema. Medjutim, pri tome se povećava stepen uništenja jedinki s većom sposobnošću

23. Uticaj vjerovatnoće mutacije (mjera mutacije) pm na funkcionalnost GA?

Vjerovatnoća mutacije (mjera mutacije) pM:

- Povećanjem vjerovatnoće mutacije remeti se ravnoteža izmedju postupaka porasta i slučajnog traženja. Za pM=1 obavlja se čisto slučajno traženje.
- Mala vjerovatnoća mutacije pomaže da se genetički materijal izgubljen tokom traženja ponovo stavi u proces evolucije. Time se povećava šansa da se pronađe globalni maksimum.

24. Uticaj veličine populacije N na funkcionalnost GA?

Veličina populacije N

• Povećanjem populacije povećava se raznovrsnost čime se smanjuje vjerovatnoća ulaska u lokalni maksimum. Veća populacija ima za posljedicu veće zahtjeve na računar i duže vrijeme traženja.