IPv6 Ready Logo Phase II
Interoperability Test Specification
Management(SNMP/MIBs)

Technical Document

Revision 1.0.0

IPv6 Forumhttp://www.ipv6forum.org/IPv6 Logo Committeehttp://www.ipv6ready.org/IPv6 Testing Lab, Chunghwa Telecom Labs (TW)http://interop.ipv6.org.tw/

MODIFICATION RECORD

Version	Date	Note
0.1.0	2007/10/31	SNMPv2C IOT test draft
0.2.0	2008/01/10	restructure according to SNMP management functions
	2008/01/18	NUT to replace TARGET_DEVICE
	2008/02/05	INFORM PDU will not be covered in this version
	2008/02/13	Get is performed to check ipNetToPhysicalTable before prefix configuration
	2008/03/07	 Hop Limit in IPv6 headers in SNMP response is used for ipv6IpDefaultHopLimit test SNMP commands are added for easy test configuration IPv6Ready/IPv6ReadyLogo is added to test SNMPv2C user defined community feature. IOT tests must follow the test sequence of public/private first and IPv6Ready/IPv6ReadyLogo later when conducting the test. No manual address configuration is used in this test. Only RA autoconfiguration will be used for the test. multiple prefixes test is deleted in ICMP echo interoperability/neighbor cache test Set with more advanced network management functions is used to check network address and ipv6 interface status Set sysContact is deleted because it is already tested in the conformance test.
	2008/03/10	Router must first send RA with prefix PF1 and Host must perform address autoconfiguration in Common Default Configuration
	2008/03/11	 use net-snmp commands for SNMP commands example udp6 is added before the SNMP commands
	2008/03/12	ipAddressType in ipAddressTable will not be checked due to anycast address result will not do in getNext command in the test OID
	2008/03/17	NICI is deleted in the document appendix is added
0.2.1	2008/03/20	Final inspection for internal review
0.2.2	2008/03/21	public/private is deleted because it is already tested in conformance test
	2008/03/24	 power on sequence of test machines factor is taken into account for ipNetToPhysicalTable test Rollback to the pre-Set state is recommended but not included for test judgement.
0.2.3	2008/04/06	Follow SMI TC inetAddressType, ipv6AddressType definitions(accept both fixed and variable length octet string encoding implementations)

		2.	Set test scenario is redesigned	
	2008/05/21	1.	Design principles and test requirement are modification on	
			Requirement	
0.2.4	2008/09/25	1.	v6SNMPv2CIOT8 ICMPv6 Echo Interoperability/Neighbor	
			Cache modified(modified EUI-64 deleted, GetBulkRequest	
			operation replaced with GetRequest)	
		2.	Test Topology modified with MAC address	
0.2.5	2008/10/06	1.	v6SNMPv2CIOT8 ICMPv6 Echo Interoperability/Neighbor	
			Cache procedure 3 TGT-AGENT pings REF-	
			ROUTER/HOST changed to REF-ROUTER/HOST pings	
			TGT-AGENT	
1.0.0	2008/12/15	1.	Version changed to 1.0.0	
		2.	Draft deleted	

ACKNOWLEDGEMENTS

The IPv6 Forum would like to acknowledge the efforts of the following organizations in the development of this test suite.

Principle Authors

IPv6 Testing Lab, Chunghwa Telecom Labs (CHT-TL)

Commentators: Stephen Nightingale (NIST) Miyata Hiroshi (TAHI)

INTRODUCTION Overview

The IPv6 forum plays a major role to promote the new generation of IP protocols by forming the IPv6 Ready Logo Committee that designs state-of-the-art interoperability platforms to help harmonize in the design, development and deployment of the new generation Internet Protocol version 6 (IPv6).

To provide the market a strong signal proving the level of interoperability across various products and to give confidence to users that IPv6 is currently operational, IPv6 Ready Logo Committee launched IPv6 Ready Logo Program in 2003 to contribute to the feeling that IPv6 is available and ready to be used.

To further provide verification for those IPv6 equipments' network management capabilities after their network layer functions are IPv6 Ready Logo certified, basic network management functions should also be tested as add-on features for managing these IPv6-capable nodes in the Internet.

The Simple Network Management Protocol (SNMP) is most commonly used protocol to exchange management information between the network management stations and the agents in the network.

How to verify the interoperability functionalities of IPv6 capable network management equipments using SNMPv2C to check the implementation of IP-MIB(RFC 4293) based on related IETF's RFCs is the main goal of this SNMP test. For conformance test, please see the IPv6 Ready Test Specification Management Specification. This document will focus only on SNMP interoperability test scenarios.

Abbreviations and Acronyms

ASN.1 Abstract Syntax Notation One MIB Management Information Base

PDU Protocol Data Unit

SMI Structure of Management Information

SNMPv2C Simple Network Management Protocol Version 2 with Community Based

TCP Transmission Control Protocol UDP User Datagram Protocol

TEST ORGANIZATION

This document organizes tests by group based on related test methodology or goals. Each group begins with a brief set of comments pertaining to all tests within that group. This is followed by a series of description blocks; each block describes a single test. The format of the description block is as follows.

Purpose	This is the description of what the test case attempts to achieve.
Resource	External resources that can help facilitate the test.
Requirements	
Initialization	The Initialization part describes how to initialize and configure TGT-
	AGENT and TGT-MANAGER before starting the test. If no value is
	provided, then the default value shall be used.
Procedure	The Procedure will describe the step-by-step instructions for executing
	the test.
Judgment	The Judgment will describe the expected test results. TGT-AGENT
	passes the test if description of the Judgment is observed.
References	This References section provides the specifications that are referred to
	in this documentation.

REQUIREMENTS

To obtain the IPv6 Ready Logo for SNMP management, the NUT(Node Under Test) must satisfy the following requirements

Equipment Type

Every NUT can be either of the following:

SNMP TARGET MANAGER:

A node that undertakes the SNMP manager role to send management commands to the SNMP agent. SNMP application on the SNMP manager must perform Get, GetNext, GetBulk, Set operations and can successfully receive Trap PDUs.

SNMP TARGET AGENT:

A node that undertakes the SNMP agent role receiving management commands from the SNMP manager. The TARGET AGENT can be either HOST or ROUTER. SNMP application on this SNMP agent must send Trap PDUs.

Design principles

Since this work is done under IPv6 Ready Logo Committee so the SNMP management functions focus mainly to check IPv6 specific issues(chiefly in IPv6 Core test specification) for the test engineers. Then the second target is to verify the SNMPv2C operations(including GetRequest, GetNextRequest, GetBulkRequest, SetRequest and Trap) to check for SNMP protocol functionality, and IP-MIB(RFC 4293), not MIB II or SNMPv2 MIB, is used in combination with SNMPv2C protocols when the judgment criteria focus is mainly on RFC 4293.

All the SNMP test cases are designed for the SNMP engineers to conduct this test easily so that the engineers can follow this test specs and get the best NMS functions with respect to IPv6 related MIBs. SNMP commands are, therefore, also provided for user friendly and easy manual-like references. Only the current connection the SNMP communication is active will be checked when examing SNMP MIB entry and OIDs details.

Test Requirement

SNMPv2C (RFC 3416) is the SNMP protocol used in conjunction with RFC 3418 and 4293 IP-MIB for this interoperability test. Acquisition of IPv6 Ready Logo Phase II Core and SNMP conformance test are the prerequisites.

Table 1 is the list of IPv6 Ready Logo Management interop test criteria. B stands for basic(mandatory) test items and A stands for Advanced(optional). To successfully pass this IOT test, NUT must pass all the basic test items.

Table 1 IPv6 Ready Logo SNMP/MIBs Interoperability Test Criteria

Management Group	Test Item	Test Name	RFC 4293 IP-MIB	SNMP operation	Required
Interface Index	v6SNMPv2CIOT	Interface Index Determination	ipv6AddressTable	Get	В
ipv6Forwarding	v6SNMPv2CIOT	ipv6Forwarding	ipv6Forwarding	Get	В
ipv6IpDefaultHopLimit	v6SNMPv2CIOT 3	ipv6IpDefaultHopLimit	ipv6IpDefaultHopLim it	Get	В
ipv6InterfaceTable	v6SNMPv2CIOT 4	ipv6InterfaceTable	ipv6InterfaceTable	Get	В
Router Advertisement Check	v6SNMPv2CIOT 5	Router Advertisement Check			
	v6SNMPv2CIOT 5.1	ipv6RouterAdvertTable	ipv6RouterAdvertTabl e	Get	B(Router only)
	v6SNMPv2CIOT 5.2	ipDefaultRouterTable	ipDefaultRouterTable	Get	B(Host only)
Address Configuration	v6SNMPv2CIOT 6	ipAddressTable	ipAddressTable	GetNext	В
prefix information check	v6SNMPv2CIOT 7	Prefix Information Check			
	v6SNMPv2CIOT 7.1	single prefix	ipPrefixTable	Get	В
	v6SNMPv2CIOT 7.2	multiple prefix	ipPrefixTable ipAddressTable	Get/GetBu lk	В
ICMPv6 Echo Interoperability/Neighbor Cache	v6SNMPv2CIOT 8	neighbor cache check	ipNetToPhysicalTable	Get	В
Trap operation check	v6SNMPv2CIOT 9	SNMP Trap Operation check	coldStart(power on/off)	Trap	В
Set operation check	v6SNMPv2CIOT 10	SNMPv2C Set operation check	ipAddressTable(ipAdd ressStatus)	Set	A

REFERENCES

The following documents are referenced in this text

- [ADDR] R. Hinden, S. Deering, Internet Protocol Version 6 (IPv6) Addressing Architecture, RFC 3315, April 2003.
- [ICMPv6] A. Conta, S. Deering, M. Gupta, Ed., Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification, RFC 4443, March 2006.
- [INA-TC] M. Daniele, B. Haberman, S. Routhier, J. Schoenwaelder, Textual Conventions for Internet Network Addresses, RFC 4001, February 2005.
- [IPv6-SPEC] Hinden, R., S. Deering, Internet Protocol, version 6 (IPv6) Specification, RFC 2460, December 1998.
- [IPv6-core] IPv6 Ready Logo Phase-2 IPv6 Core Protocols Test Specification (http://www.ipv6ready.org/about_phase2_test.html)
- [IPv6-MGT] IPv6 READY Logo Phase II Test Specification Management (Conformance)
- [MIB-DEF] M. Rose, K. McCloghrie, Concise MIB definitions, RFC 1212, March 1991.
- [MIB-II] K. McCloghrie, M. Rose, Management Information Base for Network Management of TCP/IP-based internets MIB-II, RFC 1213, March 1991
- [MIB for IP] Shawn A. Routhier, Management Information Base for the Internet Protocol (IP), RFC 4293, April 2006.
- [SIMI] M. Rose, K. McCloghrie, Structure and Identification of Management Information for TCP/IP-based Internets, RFC 1155, May 1990.
- [SMIv2] K. McCloghrie, D. Perkins, J. Schoenwaelder, Structure of Management Information version 2 (SMIv2), RFC 2578, April 1999.
- [SMIv2-cS] K. McCloghrie, D. Perkins, J. Schoenwaelder, Conformance Statements for SMIv2. RFC 2580, April 1999.
- [SMIv2-TC] K. McCloghrie, D. Perkins, J. Schoenwaelder, Textual Conventions for SMIv2, RFC 2579, April 1999.
- [SNMPv1] J. Case, M. Fedor, M. Schoffstall, J. Davin, A Simple Network Management Protocol (SNMPv1), RFC 1157, May 1990.
- [SNMP] William Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, 3rd ed., 1999.
- [SNMPv2] J. Case, K.McCloghire, M.Rose S. Waldbusser, Protocol Operations for version 2 of the Simple Network Management Protocol, RFC 3416, December 2002.
- [SNMPv2C] J. Case, K.McCloghire, M.Rose S. Waldbusser, Introduction to Community-based SNMPv2, RFC 1901, January 1996.
- [SNMPv2-MIB] Management Information Base (MIB) for the Simple Network Management Protocol (SNMP), RFC 3418, December 2002.

TABLE OF CONTENTS

MODIFICATION RECORD	1
ACKNOWLEDGEMENTS	3
INTRODUCTION	4
TEST ORGANIZATION	5
REQUIREMENTS	6
REFERENCES	
TEST DETAILS	10
v6SNMPv2CIOT1 Interface Index Determination	14
v6SNMPv2CIOT2 ipv6Forwarding	16
v6SNMPv2CIOT3 ipv6IpDefaultHopLimit	
v6SNMPv2CIOT4 ipv6InterfaceTable	20
v6SNMPv2CIOT5 Router Advertisement Check	22
v6SNMPv2CIOT5.1 ipv6RouterAdvertTable(Router Only)	22
v6SNMPv2CIOT5.2 ipDefaultRouterTable(Host Only)	
v6SNMPv2CIOT6 Address Configuration	26
v6SNMPv2CIOT7 Prefix Information Check	
v6SNMPv2CIOT7.1 Single Prefix	28
v6SNMPv2CIOT7.2 Multiple Prefix	31
v6SNMPv2CIOT8 ICMPv6 Echo Interoperability/Neighbor Cache	
v6SNMPv2CIOT9 SNMPv2C Trap Operation check	37
v6SNMPv2CIOT10 SNMPv2C Set operation check	
Appendix Required Data	42
Tables	
Table 1 IPv6 Ready Logo SNMP/MIBs Interoperability Test Criteria	7
Topology	
Topology 1 TGT-AGENT as ROUTER	
Topology 2 TGT-AGENT as HOST	13

TEST DETAILS

Detailed information including terminology used in this test will be described.

Terminology

ROUTER : An IPv6 node that forwards packets based on path

discovery using routing protocols

HOST : A device which is not a router

REF-HOST : Reference Host REF-ROUTER : Reference Router TARGET-AGENT : SNMP agent TARGET-MANAGER : SNMP manager

Common Default Configuration

TARGET-MANAGER communicates with TARGET-AGENT via SNMP over UDP over IPv6. The communication between TARGET-MANAGER and TARGET-AGENT must be normal before this interop test.

ROUTER must first send RA with prefix PF1(3ffe:501:ffff:100::/64) and HOST must perform stateless address autoconfiguration.

Common SNMP Configuration

The version of SNMPv2C packets between TARGET-MANAGER and TARGET-AGENT is version 2. Two pairs of community string, public/private and IPv6Ready/IPv6ReadyLogo for read/write operations, are designed for the SNMPv2C testing. But since public/private test cases have been performed in conformance test. In this test only IPv6Ready/IPv6ReadyLogo, read/write community string will be tested.

The UDP port for TARGET-AGENT is 161 and the Trap UDP port for TARGET-MANAGER is 162.

Common SNMP Packets

For TGT-MANAGER to TGT-AGENT packets:

IP Header	Source Address	TGT-MANAGER_ADDRESS
	Destination Address	TGT-AGENT_ADDRESS
UDP	Source Port	any
Header	Destination Port	161
SNMP	version	1
message	community	IPv6Ready/IPv6ReadyLogo

PDU		POROW	Get/GetNext/GetBulk/Inform/Set
			Request
reque	est-id		any
error-	-status/ <u>non-r</u>	<u>repeaters</u>	0/*
error-	-index/ <u>max-</u> 1	repetitions	0/*
Varia	ble	name	*
bindi	ngs	value	NULL

For TGT-AGENT to TGT_MANGER packets:

IP Header	Source Address		TGT-AGENT_ADDRESS
	Destination Addre	ess	TGT_MANGER_ADDRESS
UDP	Source Port		161
Header	Destination Port		Same as source port in the previous SNMP request packet
SNMP	version		1
message	community		Same as the community string previously received
	PDU		Response
	request-id		Same as the request-id in the previous SNMP message value
	error-status		0
	error-index		0
	Variable	name	*
	bindings	value	*

Note: non-repeaters and max-repetitions are for GetBulk only and * indicates variables.

For Trap PDUs:

11up 1 D e 8.				
IP	Source Address		TGT-AGENT_ADDRESS	
Header	Destination Address		TGT-MANAGER_ADDRESS	
UDP	Source Port		any	
Header	Destination Port		162	
SNMP	version		1	
message	community		IPv6Ready	
	PDU		Trap	
	request-id		any	
	error-status		0	
	error-index		0	
	Variable name		1.3.6.1.2.1.1.3.0	

•		1 OKOM
bindings		(sysUpTime.0)
	value	TimeTicks
	name	1.3.6.1.6.3.1.1.4.1.0
		(snmpTrapOID.0)
	value	Trap OID

Test Topology

For TARGET-AGENT that is a router, please refer Topology 1. Manually configure TARGET_AGENT to have global address with prefix PF1 before sending Router Advertisement. REF-HOST must perform stateless address autoconfiguration after receiving RA from ROUTER. Address assignment for TARGET-MANAGER can be manual configuration or stateless address autoconfiguration. MAC address(Physical Address) in the following topology is only for demonstration purpose.

Topology 1 TGT-AGENT as ROUTER

For TARGET-AGENT that is a host, please refer Topology 2. Manually configure REF-ROUTER to have global address with prefix PF1 before sending Router Advertisement. TARGET-AGENT must receive RA messages and perform stateless address autoconfiguration. Address assignment for TARGET-MANAGER can be manual configuration or stateless address autoconfiguration. MAC address in the following topology is only for demonstration purpose.

Topology 2 TGT-AGENT as HOST

v6SNMPv2CIOT1 Interface Index Determination

Purpose

Determine the interface index on which TGT-AGENT is using to communicate with TGT-MANAGER by checking ipAddressTable using SNMP GetRequest operation.

Resource Requirements

- Packet generator
- Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration

Procedure

TGT-MANAGER determines TGT-AGENT's interface index in ipAddressTable using the following SNMPv2C GetRequest command to TGT-AGENT.

SNMP command: snmpget –v 2C –c IPv6Ready udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455

1.3.6.1.2.1.4.34.1.3.2.63.254.5.1.255.255.1.0.2.17.34.255.254.51.68.85

SNMP	PDU		GetRequest
Message	Variable	name	1.3.6.1.2.1.4.34.1.3.2(ipAddressTy
	bindings		pe).63.254.5.1.255.255.1. 0.2.17.34.255.254.51.68.85
			(ipAddressIfIndex)
		value	NULL

Judgment

TGT-MANAGER receives SNMPv2C Response from TGT-AGENT with current ipv6AddressIfIndex value in the following packet format:

SNMP	PDU		Response
Message	Variable	name	1.3.6.1.2.1.4.34.1.3.2.63.254.5.1.2
	bindings		55.255.1.0.2.17.34.255.254.51.68.
			85 (ipAddressIfIndex)
		value	ifIndex of TGT-AGENT with
			which to talk with TGT-
			MANAGER

TGT-AGENT's ifIndex value should be with correct type and within defined range value.

Note: This ifIndex value shall be used for the following tests.

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.5

v6SNMPv2CIOT2 ipv6Forwarding

Purpose

The following test is designed to verify that SNMP agent has correct ipv6Forwarding value and cross examine this configuration data with the corresponding information in SNMP MIB.

Resource Requirements

- Packet generator
- Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Please see Common Default Configuration and Common SNMP Configuration

Procedure

TGT-MANAGER sends SNMPv2C GetRequest with ipv6IpForwarding to get TGT-AGENT's ipv6Forwarding in IP-MIB.

SNMP command: snmpget -v 2C -c IPv6Ready udp6:3ffe:501:ffff:100: 0211:22ff:fe33:4455 1.3.6.1.2.1.4.25.0

SNNP	PDU	GetRequest	
message	Variable	name	1.3.6.1.2.1.4.25.0
	bindings		(ipv6IpForwarding)
		value	NULL

Judgment

TGT-MANAGER received the following packet

SNNP	PDU	Response	
message	Variable	name	1.3.6.1.2.1.4.25.0
	bindings		(ipv6IpForwarding)
		value	TGT-AGENT's
			ipv6IpForwarding

- 1. TGT-AGENT's ipv6IpForwarding in the machine configuration data must equal to the value in the TGT-MANAGER's response PDU.
- TGT-AGENT's ipv6IpForwarding is 1(Forwarding) for routers and 2(not 2. forwarding) for hosts.

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.5

v6SNMPv2CIOT3 ipv6lpDefaultHopLimit

Purpose

This test is designed to verify that SNMP agent has correct ipv6IpDefaultHopLimit value and check if this value matches hop limit value in IPv6 header in the SNMP response packet.

Resource Requirements

- · Packet generator
- · Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration

Procedure

TGT-MANAGER sends SNMPv2C GetRequest with ipv6IpDefaultHopLimit to get TGT-AGENT's ipv6IpDefaultHopLimit in IP-MIB.

SNMP command: snmpget –v 2C –c IPv6Ready

upd6:3ffe:501:ffff:100:0211:22ff:fe33:4455 1.3.6.1.2.1.4.26.0

SNNP	PDU	GetRequest	
message	Variable	name	1.3.6.1.2.1.4.26.0
	bindings		(ipv6IpDefaultHopLimit)
		value	NULL

Judgment

TGT-MANAGER receives the following packet

SNNP	PDU	Respons	Response	
message	Variable	name	1.3.6.1.2.1.4.26.0	
	bindings		(ipv6IpDefaultHopLimit)	
		value	TGT-AGENT's	
			ipv6IpDefaultHopLimit	

TGT-AGENT's ipv6IpDefaultHopLimit must be equal to hop limit value in IPv6 header in the SNMP response packet the TGT-MANAGER received after sending the SNMP GetRequest.

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management

Protocol, Sec 4.2.5 RFC 4293, Management Information Base for the Internet Protocol (IP), Sec 3.2.2

v6SNMPv2CIOT4 ipv6InterfaceTable

Purpose

This test will examine ipv6InterfaceIdentifier, ipv6InterfaceEnableStatus, ipv6InterfaceForwarding in ipv6InterfaceTable with interface index(ifIndex) obtained from v6SNMPv2CIOT1

Resource Requirements

- · Packet generator
- Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration ifIndex from v6SNMPv2CIOT1 shall be used for this test

Procedure

TGT-MANAGER gets TGT-AGENT's ipv6InterfaceIdentifier, ipv6InterfaceEnableStatus, and ipv6InterfaceForwarding in ipv6InterfaceTable using GetRequest.

SNMP command: snmpget –v 2C –c IPv6Ready upd6:3ffe:501:ffff:100:0211:22ff:fe33:4455 1.3.6.1.2.1.4.30.1.3.[ifIndex] 1.3.6.1.2.1.4.30.1.5.[ifIndex] 1.3.6.1.2.1.4.30.1.8.[ifIndex]

SNMP	PDU		GetRequest
message	Variable bindings	name	1.3.6.1.2.1.4.30.1.3.[ifIndex] ipv6InterfaceIdentifier
	omanigs		
		value	NULL
	n		1.3.6.1.2.1.4.30.1.5.[ifIndex]
			ipv6InterfaceEnableStatus
		value	NULL
		name	1.3.6.1.2.1.4.30.1.8.[ifIndex]
			ipv6InterfaceForwarding
		value	NULL

Judgment

TGT-MANAGER must receive SNMP Response from TGT_AGNET with the following values

SNMP	MP PDU		Response
message	Variable bindings	name	1.3.6.1.2.1.4.30.1.3.[ifIndex] ipv6InterfaceIdentifier
		value	0211:22ff:fe33:4455
		name	1.3.6.1.2.1.4.30.1.5.[ifIndex]
			ipv6InterfaceEnableStatus
		value	Up(1)
		name	1.3.6.1.2.1.4.30.1.8.[ifIndex]
			ipv6InterfaceForwarding
		value	Forwarding(1)(for router) or
			notForwarding(2)(for host)

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.5

v6SNMPv2CIOT5 Router Advertisement Check v6SNMPv2CIOT5.1 ipv6RouterAdvertTable(Router Only)

<u>Purpose</u>

This test will correlate Router Advertisement(RA) message this NUT sends with the values in ipv6RouterAdvertTable. This test is performed on routers only.

Resource Requirements

- · Packet generator
- · Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration ifIndex from v6SNMPv2CIOT1 shall be used

Procedure

TGT-MANAGER gets TGT-AGENT's Router Advertisement parameters values in ipv6RouterAdvertTable using GetRequest.

SNMP command: snmpget -v 2C -c IPv6Ready upd6:3ffe:501:ffff:100:0211:22ff:fe33:4455 1.3.6.1.2.1.4.39.1.2.[ifIndex] 1.3.6.1.2.1.4.39.1.7.[ifIndex] 1.3.6.1.2.1.4.39.1.8.[ifIndex] 1.3.6.1.2.1.4.39.1.10.[ifIndex] 1.3.6.1.2.1.4.39.1.11.[ifIndex]

SNMP	PDU		GetRequest
message	Variable	name	1.3.6.1.2.1.4.39.1.2.[ifIndex]
	bindings		ipv6RouterAdvertSendAdverts
		value	NULL
		name	1.3.6.1.2.1.4.39.1.7.[ifIndex]
			ipv6RouterAdvertLinkMTU
		value	NULL
		name	1.3.6.1.2.1.4.39.1.8.[ifIndex]
			ipv6RouterAdvertReachableTime
		value	NULL
		name	1.3.6.1.2.1.4.39.1.9.[ifIndex]
			ipv6RouterAdvertRetransmitTime
		value	NULL
		name	1.3.6.1.2.1.4.39.1.10.[ifIndex]
			ipv6RouterAdvertCurHopLimit
		value	NULL

	1.3.6.1.2.1.4.39.1.11.[ifIndex] ipv6RouterAdvertDefaultLifetime
value	NULL

Judgment

Returned values in response PDU must be equal to RA parameters in the previously received RA packet.

SNMP	PDU		GetRequest
message	Variable	name	1.3.6.1.2.1.4.39.1.2.[ifIndex]
	bindings		ipv6RouterAdvertSendAdverts
		value	true(1)(Router sends RA packet)
		name	1.3.6.1.2.1.4.39.1.7.[ifIndex]
			ipv6RouterAdvertLinkMTU
		value	same as MTU in RA MTU option
		name	1.3.6.1.2.1.4.39.1.8.[ifIndex]
			ipv6RouterAdvertReachableTime
		value	same as Reachable Timer value in
			RA packet
		name	1.3.6.1.2.1.4.39.1.9.[ifIndex]
			ipv6RouterAdvertRetransmitTime
		value	same as Retrans Timer value in
			RA packet
		name	1.3.6.1.2.1.4.39.1.10.[ifIndex]
			ipv6RouterAdvertCurHopLimit
		value	same as Cur hop limit in RA
			packet
		name	1.3.6.1.2.1.4.39.1.11.[ifIndex]
			ipv6RouterAdvertDefaultLifetime
		value	same as Router lifetime in RA
			packet

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.5

v6SNMPv2CIOT5.2 ipDefaultRouterTable(Host Only)

Purpose

This test will correlate the NUT's configuration(ipv6 default route) with those in the ipDefaultRouterTable. This test is for TGT-AGENT hosts only.

Resource Requirements

- · Packet generator
- Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration ifIndex from v6SNMPv2CIOT1 shall be used for this test

Procedure

Part A: ipDefaultRouterTable with router lifetime set to 1800 secs

- 1. REF-ROUTER sends RA router lifetime = 1800 secs
- 2. TGT-MANAGER gets TGT-AGENT's ipDefaultRouteLifeTime in ipDefaultRouterTable using GetRequest OID ipDefaultRouteLifeTime.ipDefaultRouterAddressType.ipDefaultRouterAddress.ipDefaultRouterIfIndex where ipDefaultRouteLifeTime=1.3.6.1.2.1.4.37.1.4, ipDefaultRouterAddressType = 4(ipv6z), ipDefaultRouterAddress=ROUTER link-local address(254.128.0.0.0.0.0.0.2.17.34.255.254.51.68.85) and

SNMP command: snmpget –v 2C –c IPv6Ready udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455 1.3.6.1.2.1.4.37.1.4.4. 4.254.128.0.0.0.0.0.0.2.17.34.255.254.51.68.85.[ifIndex]

ipDefaultRouterIfIndex=same as ifIndex from v6SNMPv2CIOT1.

SNMP	PDU		GetRequest
message	Variable bindings	name	1.3.6.1.2.1.4.37.1.4.4. 4.254.128.0.0.0.0.0.0.2.17.34. 255.254.51.68.85.ifIndex
		value	NULL

Part B: ipDefaultRouterTable with RA router lifetime is zero

- 1. REF-ROUTER sends RA router lifetime=0
- 2. Same as Step 2 in Part A
- 3. Wait for TGT-AGENT's Response.

		FURUN	1
SNMP	PDU		GetRequest
message	Variable bindings	name	1.3.6.1.2.1.4.37.1.4.4. 4.254.128.0.0.0.0.0.2.17.34. 255.254.51.68.85.ifIndex
		value	NULL

Judgment

Part A:

1. TGT-AGENT's ipDefaultRouteLifeTime must be 1800 secs.

SNMP	PDU		GetResponse
message	Variable bindings	name	1.3.6.1.2.1.4.37.1.4.4. 4.254.128.0.0.0.0.0.0.2.17.34. 255.254.51.68.85.ifIndex
		value	1800

Part \overline{B} :

1. ipDefaultRouteLifeTime value in TGT-AGENT's Response must be noSuchInstance.

Beruartitout	attended the varieting 10111021(1 8 1temporate mast be noble				
SNMP	PDU		GetResponse		
message	Variable bindings	name	1.3.6.1.2.1.4.37.1.4.4. 4.254.128.0.0.0.0.0.2.17.34. 255.254.51.68.85.ifIndex		
		value	noSuchInstance		

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.5

v6SNMPv2CIOT6 Address Configuration

Purpose

Verify that TGT-AGENT can perform lexicographical ordering correctly on ipAddressTable after receiving GetNext from TGT-MANAGER.

Resource Requirements

- Packet generator
- •Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration

Procedure

TGT-MANAGER performs SNMPv2C GetNextRequest operation on TGT-AGENT's ipAddressTable to get ipAddressIfIndex, ipAddressPrefix and ipAddressOrigin with ipAddressType=2(ipv6) and ipAddressAddr(3ffe:501:ffff:100::0).

SNMP	PDU		GetNextRequest
message	Variable	name	1.3.6.1.2.1.4.34.1.3.2.63.254.5.1.255.2
	bindings		55.1.0.0.0.0.0.0.0.0
			ipAddressIfIndex
		value	NULL
		name	1.3.6.1.2.1.4.34.1.4.2.63.254.5.1.255.2
			55. 1.0.0.0.0.0.0.0.0
			ipAddressType
		value	NULL
		name	1.3.6.1.2.1.4.34.1.5.2.63.254.5.1.255.2
			55. 1.0.0.0.0.0.0.0.0
			ipAddressPrefix
		value	NULL
		name	1.3.6.1.2.1.4.34.1.6.2.63.254.5.1.255.2
			55. 1.0.0.0.0.0.0.0.0
			ipAddressOrigin

Judgment

Returned variable bindings value fields in TGT_AGENT's Response are values for the test interface index in ipAddressTable with correct syntax type and within the defined value range. Please see the following for the correct format.

SNMP	PDU		Response
message	Variable bindings	name	ipAddressIfIndex.ipv6.63.254.0. 0.255.255.1.0.2.17.34.255.254.5 1.68.85
		value	same as the ifIndex from v6SNMPv2CIOT1
		name	ipAddressType.ipv6.63.254.0.0. 255.255.1.0.2. 17.34.255.254.51.68.85
		value	Unicast(1)
		name	ipAddressPrefix.ipv6.63.254.0.0 .255.255.1.0.2. 17.34.255.254.51.68.85
		value	ipAddressPrefixPrefix.ifIndex.2. 63.254.5.1.255.255.1.0.0.0.0.0.0. 0.0.0.64
		name	ipAddressOrigin.ipv6.63.254.0.0 .255.255.1.0.2. 17.34.255.254.51.68.85
		value	manual(2)(for router) or RouteAdv(5)(for host)

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.1

v6SNMPv2CIOT7 Prefix Information Check v6SNMPv2CIOT7.1 Single Prefix

Purpose

This test is to correlate the prefix information for PF1, learned through RA for hosts or from manual configuration for routers, with those in the ipAddressPrefixTable using SNMP commands.

Resource Requirements

- · Packet generator
- Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration

Procedure

TGT-MANAGER gets TGT-AGENT's ipAddressPrefixOrigin, ipAddressPrefixOnLinkFlag, ipAddressPrefixAutonomousFlag, ipAddressPrefixAdvPreferredLifetime, ipAddressPrefixAdvValidLifetime in ipAddressPrefixTable indexed by ipAddressPrefixIfIndex ipAddressPrefixType(2), ipAddressPrefix(3ffe:501:ffff:100) and ipAddressPrefixLength(64) using GetRequest.

SNMP command: snmpget -v 2C -c IPv6Ready udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455
1.3.6.1.2.1.4.32.1.5.3.2.63.254.5.1.255.255.1.0.0.0.0.0.0.0.0.0.64
1.3.6.1.2.1.4.32.1.6.3.2.63.254.5.1.255.255.1.0.0.0.0.0.0.0.0.0.64
1.3.6.1.2.1.4.32.1.7.3.2.63.254.5.1.255.255.1.0.0.0.0.0.0.0.0.0.64
1.3.6.1.2.1.4.32.1.8.3.2.63.254.5.1.255.255.1.0.0.0.0.0.0.0.0.0.64
1.3.6.1.2.1.4.32.1.9.3.2.63.254.5.1.255.255.1.0.0.0.0.0.0.0.0.0.64

SNMP	PDU		GetRequest
message	Variable bindings	name	1.3.6.1.2.1.4.32.1.5.3.2.63.254 .5.1.255.255.1.0.0.0.0.0.0.0.0 0.64
		value	NULL
		name	1.3.6.1.2.1.4.32.1.6.3.2.63.254
			.6.1.255.255.1.0.0.0.0.0.0.0.0.
			0.64
		value	NULL

FORUM					
	name	1.3.6.1.2.1.4.32.1.7.3.2.63.254			
		.5.1.255.255.1.0.0.0.0.0.0.0.0.			
		0.64			
	value	NULL			
	name	1.3.6.1.2.1.4.32.1.8.3.2.63.254			
		.5.1.255.255.1.0.0.0.0.0.0.0.0.0.			
		0.64			
	value	NULL			
	name	1.3.6.1.2.1.4.32.1.9.3.2.63.254			
		.5.1.255.255.1.0.0.0.0.0.0.0.0.0.			
		0.64			
	value	NULL			

<u>Judgment</u>

TGT-MANAGER receives the following Response PDU's from TGT-AGENT and these values match the Prefix Information on link, auto, valid lifetime and preferred lifetime values in RA packet.

SNMP	PDU		Response
message	Variable	name	1.3.6.1.2.1.4.32.1.5.3.2.63.254
	bindings		.5.1.255.255.1.0.0.0.0.0.0.0.0.0.
			0.64
		value	manual(2) or RouteAdv
		name	1.3.6.1.2.1.4.32.1.6.3.2.63.254
			.5.1.255.255.1.0.0.0.0.0.0.0.0.0.
			0.64
		value	true(1)
		name	1.3.6.1.2.1.4.32.1.7.3.2.63.254
			.5.1.255.255.1.0.0.0.0.0.0.0.0.
			0.64
		value	true(1)(HOST) or
			false(2)(ROUTER)
		name	1.3.6.1.2.1.4.32.1.8.3.2.63.254
			.5.1.255.255.1.0.0.0.0.0.0.0.0.
			0.64
		value	same as preferred lifetime in
			Prefix Information
		name	1.3.6.1.2.1.4.32.1.9.3.2.63.254
			.5.1.255.255.1.0.0.0.0.0.0.0.0.
			0.64
		value	same as valid lifetime in
			Prefix Information

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.5

v6SNMPv2CIOT7.2 Multiple Prefix

Purpose

This test is to correlate the NUT's ICMPv6 prefix information changes with those in the ipAddressPrefixTable and ipAddressTable when a new prefix(PF2=3ffe:501:ffff:101/64) is added in the network using SNMP commands.

Resource Requirements

- · Packet generator
- Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration

Procedure

- 1. Configure IPv6 address with PF2
- 2. Configure ROUTER to transmit Router Advertisement with PF2=3ffe:501:ffff:101::/64 and prefix option lifetime=60 seconds.
- 3. Configure ROUTER's PF2 address lifetime = 60 seconds
- 4. TGT-MANAGER gets TGT-AGENT's ipAddressPrefixOrigin, ipAddressPrefixOnLinkFlag, ipAddressPrefixAutonomousFlag ipAddressPrefixAdvPreferredLifetime, ipAddressPrefixAdvValidLifetime in ipAddressPrefixTable indexed by ipAddressPrefixIfIndex obtained in SNMPv2CIOT1 ipAddressPrefixType(2), ipAddressPrefixPrefix(3ffe:501:ffff:101) and ipAddressPrefixLength(64) using GetRequest.

SNMP command: snmpget -v 2C -c IPv6Ready udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455
1.3.6.1.2.1.4.32.1.5.ifIndex.2.63.254.5.1.255.255.1.1.0.0.0.0.0.0.0.0.64
1.3.6.1.2.1.4.32.1.6.ifIndex.2.63.254.5.1.255.255.1.1.0.0.0.0.0.0.0.0.64
1.3.6.1.2.1.4.32.1.7.ifIndex.2.63.254.5.1.255.255.1.1.0.0.0.0.0.0.0.0.64
1.3.6.1.2.1.4.32.1.8.ifIndex.2.63.254.5.1.255.255.1.1.0.0.0.0.0.0.0.0.64
1.3.6.1.2.1.4.32.1.9.ifIndex.2.63.254.5.1.255.255.1.1.0.0.0.0.0.0.0.0.64

SNMP	PDU		GetRequest
message	Variable name bindings		1.3.6.1.2.1.4.32.1.5. ifIndex.2.63.254.5.1.255.255. 1.1.0.0.0.0.0.0.0.64
		value	NULL
		name	1.3.6.1.2.1.4.32.1.6.

5. TGT-MANAGER performs SNMPv2C GetBulkRequest(non-repeaters=0, max-repetitions=2) to get all the prefixes in TGT-AGENT's ipAddressTable with OID 1.3.6.1.2.1.4.34.1.5.2.63.254.5.1.255.255

SNMP command: snmpbulkget -v 2C -Cn0 -Cr2 -c IPv6Ready udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455 1.3.6.1.2.1.4.32.1.5.3.2.63.254.5.1.255.255

SNNP	PDU		GetBulkRequest
message	non-repeaters		0
	max-repetitions		2
	Variable	name	1.3.6.1.2.1.4.34.1.5.2.63.254.5.1.255.2
	bindings		55
		value	NULL

- 6. Wait for 65 seconds
- 7. TGT-MANAGER gets again TGT-AGENT's ipAddressPrefixOrigin, ipAddressPrefixOnLinkStatus, ipAddressPrefixAutonomousFlag ipAddressPrefixAdvPreferredLifetime, ipAddressPrefixAdvValidLifetime in ipAddressPrefixTable using GetRequest(repeat SNMP command in Step 3)
- 8. TGT-MANAGER performs SNMPv2C GetBulkRequest(non-repeaters=0, max-repetitions=1) to get all the prefixes on TGT-AGENT's ipAddressTable with OID 1.3.6.1.2.1.4.34.1.5.2.63.254.5.1.255.255.(Repeat Step 4 SNMP command with max-repetitions=1)
- 9. End this test by removing this prefix(PF2) from ROUTER

<u>Judgment</u>

SNMP/MIBs

1.Test result from procedure 4:

Received Response from TGT-AGENT with the following format:

SNMP	PDU		Response
message	Variable bindings	name	1.3.6.1.2.1.4.32.1.5.ifIndex.2. 63.254.5.1.255.255.1.1.0.0.0.0 .0.0.0.0.64
		value	manual(2)(ROUTER) or routeadv(5)(HOST)
		name	1.3.6.1.2.1.4.32.1.6.ifIndex.2. 63.254.5.1.255.255.1.1.0.0.0.0 .0.0.0.64
		value	true(1)
		name	1.3.6.1.2.1.4.32.1.7.ifIndex.2. 63.254.5.1.255.255.1.1.0.0.0.0 .0.0.0.64
		value	true(1)(HOST) or false(2)(ROUTER)
		name	1.3.6.1.2.1.4.32.1.8.ifIndex.2. 63.254.5.1.255.255.1.1.0.0.0.0 .0.0.0.64
		value	60
		name	1.3.6.1.2.1.4.32.1.9.ifIndex.2. 63.254.5.1.255.255.1.1.0.0.0.0 .0.0.0.64
		value	60

2.Test result from procedure 5:

received packet with

 $ip Address Prefix Prefix. if Index. 2.63.254.5.1.255.255.1.0.0.0.0.0.0.0.0.0.64 \ and ip Address Prefix Prefix. if Index. 2.63.254.5.1.255.255.1.1.0.0.0.0.0.0.0.0.0.64 \ in ip Address Table.$

3.Test result from procedure 7:

After 65 seconds, all entries from ipAddressPrefixTable response PDU for PF2 are noSuchInstance.

4.Test result from procedure 8:

Response PDU from ipAddressTable after the expiration of prefix 3ffe:501:ffff:101/64 is only ipAddressPrefixPrefix.ifIndex.2.63.254.5.1.255.255.1.0.0.0.0.0.0.0.0.64.

References

SNMP/MIBs

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.5

v6SNMPv2CIOT8 ICMPv6 Echo Interoperability/Neighbor Cache

Purpose

Verify that SNMP agent has implemented ipNetToPhysicalTable(neighbor cache) correctly.

Resource Requirements

- · Packet generator
- Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration.

Procedure

The test sequence is as follows

- 1. TGT-AGENT clears neighbor cache.
- 2. TGT-MANAGER checks TGT-AGENT's ipNetToPhysicalTable does not have REF-ROUTER/HOST's physical address entry.

SNMP command: snmpget –v 2C –c IPv6Ready udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455
1.3.6.1.2.1.4.35.1.4.ifIndex.2.63.254.5.1.255.255.1.0.2.17.34.255.254.51.68.102

- 3. REF-ROUTER/HOST pings TGT-AGENT.
- 4. TGT-MANAGER checks TGT-AGENT's ipNetToPhysicalAddressTable again to see if REF-ROUTER/HOST's physical address is already in the table.

SNMP command: snmpget –v 2C –c IPv6Ready udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455
1.3.6.1.2.1.4.35.1.4.ifIndex.2.63.254.5.1.255.255.1.0.2.17.34.255.254.51.68.102

Judgment

1.Test result from procedure 2 : Can't find REF-ROUTER/HOST's physical address entry in TGT-AGENT's ipNetToPhysicalTable.

SNNP	PDU		Response
message	Variable bindings	name	1.3.6.1.2.1.4.35.1.4.ifIndex.2.63.254.5 .1.255.255.1.0.2.17.34.255.254.51.68.
		value	noSuchInstance

2. Test result from procedure 4: Find the following variable bindings in the received

Response from TGT-AGENT's GetRequest

SNMP	PDU		Response
message	Variable bindings	name	1.3.6.1.2.1.4.35.1.4.ifIndex.2.63.254.5 .1.255.255.1.0.2.17.34.255.254.51.68. 102
		value	00:11:22:33:44:66

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.5

RFC 4293, Management Information Base for the Internet Protocol (IP), Sec 3.2.2

Possible Problems

Power on sequence will determine the link local address entries in the ipNetToPhysicalTable. To simplicity the test, only global address will be judged for this test.

Clearing the neighbor cache will flush all entries in ipNetToPhysicalTable.

v6SNMPv2CIOT9 SNMPv2C Trap Operation check

Purpose

Verify that TGT-AGENT can properly send Trap PDU to the SNMPv2C MANAGER.

Resource Requirements

- · Packet generator
- Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Configure TGT-AGENT Trap PDU destination address=TGT_MANAGER address, destination port=162

TGT-AGENT starts trap daemon

TGT-MANAGER must have the trap receiver function

Refer Common Default Configuration and Common SNMP Configuration

Procedure

- 1. Shutdown TGT-AGENT(SNMP agent) to generate SNMPv2C Trap PDU to TGT-MANAGER
- 2. Power on TGT-AGENT to generate SNMPv2C Trap PDU to TGT-MANAGER.
- 3. TGT-MANAGER receives this trap and does not need to respond.

Judgment

TGT-MANAGER will receive the SNMPv2C Trap with sysUpTime, sysTrapOID with cause value.

Shutdown TRAP PDU:

SNM	version		1
P messa	community		public
ge	PDU		Trap
request-id			any
	error-status error-index		0
			0
	Variable bindings	name	1.3.6.1.2.1.1.3.0 (sysUpTime.0)
		value	TimeTicks
		name	1.3.6.1.6.3.1.1.4.1.0

		(snmpTrapOID.0)
	value	coldStart(0)

Power-On TRAP PDU

-Oil TRAI TDU				
SNM	version		1	
P	community		public	
ge	nessa ge PDU		Trap	
	request-id		any	
	error-status		0	
	error-index Variable name bindings		0	
			1.3.6.1.2.1.1.3.0	
			(sysUpTime.0)	
		value	TimeTicks	
	name		1.3.6.1.6.3.1.1.4.1.0	
			(snmpTrapOID.0)	
		value	coldStart(0)	

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.1

v6SNMPv2CIOT10 SNMPv2C Set operation check

Purpose

Verify that TGT-MANAGER can properly Set TGT-AGENT to bring down and up ipAddressStatus(Read/Create object in ipAddressTable) correctly.

Resource Requirements

- · Packet generator
- Monitor to capture packets

Initialization

Network Topology

Please refer Test Topology

Setup

Please see Common Default Configuration and Common SNMP Configuration

Procedure

1. TGT-MANAGER creates a new row with PF1::100(setting ipAddressRowStatus to createAndWait and then to active after all the columns are also set) by sending the following SetRequests:

SNMP command: snmpset –v 2C –c IPv6ReadyLogo udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455
1.3.6.1.2.1.4.34.1.10.ifIndex.2.63.254.5.1.255.255.1.0.0.0.0.0.0.0.0.100 integer 5

 $snmpset -v \ 2C -c \ IPv6ReadyLogo \ udp6:3ffe:501:fffff:100:0211:22ff:fe33:4455 \\ ipAddressIfIndex.ipv6. \ "3f:fe:05:01:ff:ff:01:00:00:00:00:00:00:00:00:00:00." \ integer 4 \\ ipAddressType.ipv6. \ "3f:fe:05:01:ff:ff:01:00:00:00:00:00:00:00:00:00:00:00." \ integer 1 \\ ipAddressRowStatus.ipv6. \ "3f:fe:05:01:ff:ff:01:00:00:00:00:00:00:00:00:00:00." \ integer 5 \\$

TGT-MANAGER brings down the current ipAddressStatus of PF1:100(set ipAddressStatus to invalid) by the following SetRequest. SNMP command: snmpset –v 2C –c IPv6ReadyLogo udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455 1.3.6.1.2.1.4.34.1.10.ifIndex.2.63.254.5.1.255.255.1.0.0.0.0.0.0.0.0.100 integer 3

SNMP command: snmpset -v 2C -c IPv6ReadyLogo udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455 ipAddressStatus.ipv6.\"3f:fe:05:01:ff:ff:01:00:00:00:00:00:00:00:00:00\" integer 3

SNMP command: snmpset –v 2C –c IPv6ReadyLogo udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455 1.3.6.1.2.1.4.34.1.7.ifIndex.2.63.254.5.1.255.255.1. 0.0.0.0.0.0.0.0.100 integer 3

SNMP	community		IPv6ReadyLogo
message	PDU		SetRequest
	Variable bindings	name	1.3.6.1.2.1.4.34.1.7.ifIndex.2.63.254. 5.1.255.255.1. 0.0.0.0.0.0.0.0.100 (ipAddressStatus)
		value	invalid(3)

2. TGT-MANAGER verifies the new ipv6 address status using GetRequest.

SNMP command: snmpget –v 2C –c IPv6Ready udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455 $1.3.6.1.2.1.4.34.1.7. if Index. 2.63.254.5.1.255.255.1.\ 0.0.0.0.0.0.0.0.0.100$

- 3. TGT-MANAGER pings PF1::100.
- 4. TGT-MANAGER brings back the current ipAddressStatus.

SNMP command: snmpset -v 2C -c IPv6ReadyLogo udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455

1.3.6.1.2.1.4.34.1.7.ifIndex.2.63.254.5.1.255.255.1. 0.0.0.0.0.0.0.0.0.100 integer 1

		<u></u>	
SNMP	community		IPv6ReadyLogo
message	PDU		SetRequest
	Variable	name	1.3.6.1.2.1.4.34.1.7.ifIndex.2.63.254.
	bindings		5.1.255.255.1. 0.0.0.0.0.0.0.0.100
			(ipAddressStatus)
		value	preferred(1)

TGT-MANAGER verifies the current ipv6 address status again 5.

SNMP command: snmpget –v 2C –c IPv6Ready udp6:3ffe:501:ffff:100:0211:22ff:fe33:4455 1.3.6.1.2.1.4.30.1.5.3.ifIndex.2.63.254.5.1.255.255.1. 0.0.0.0.0.0.0.0.100

6. TGT-MANAGER pings PF1::100

Judgment

ipAddressRowStatus of PF1::100 is CreateAndWait and then Active

Step 2:

TGT-MANAGER received SNMPv2C response from TGT-AGENT responding to SNMPv2C SetRequest correctly.

Step 3:

Ping is not successful

Step 4:

TGT-MANAGER received SNMPv2C response from TGT-AGENT responding to SNMPv2C SetRequest correctly with the preferred ipAddressStatus.

SNMP	community		private
message	PDU		Response
	Variabl	name	1.3.6.1.2.1.4.34.1.7.ifIndex.2.
	e		63.254.5.1.255.255.1.
	bindin		0.0.0.0.0.0.0.100
	gs		(ipAddressStatus)
		value	preferred(1)

Step 5:

TGT-MANAGER receives the same Response PDU as Judgment 4.

SNMP	community		public
message	PDU		Response
	Variable bindings	name	1.3.6.1.2.1.4.34.1.7.ifIndex.2.63.254. 5.1.255.255.1.0. 0.0.0.0.0.0.0.0.100 (ipAddressStatus)
		value	preferred(1)

Step 6:

Receives response from PF1::100

Note: Rollback operation to the pre SET state is highly recommended to complete this test. But they will not be used for test judgment.

References

RFC 3416, Protocol Operations for version 2 of the Simple Network Management Protocol, Sec 4.2.5

RFC 4293, Management Information Base for the Internet Protocol (IP), Sec 3.2.2 RFC 2579, Textual Conventions for SMIv2

Appendix Required Data

The logs must be submitted for application of an IPv6 Ready Logo Phase II(SNMP). In this appendix, the detail requirement for the test log shall be described.

1.1 Required Data Type

a) Topology Map

Network topology figure or address list with IPv6 address and MAC address of this IOT LAN interface are required. Please see Topology 1 for network topology example. Address List example is as follows:

1. Interface Index Determination

Link 1:

prefix: 3ffe:501:ffff:100::/64

TGT-MANAGER:

Vendor name: VendorA / Device name: ModelType

Version: 1.0

Link 1:eth0

Global Address: 3ffe:0501:ffff:0100:0211:22ff:fe33:4477 Link-Local Address: fe80:0000:0000:0000:0211:22ff:fe33:4477

MAC Address: 00:11:22:33:44:77

b) Command Log

SNMP commands are used for this IOT test and Ping is also used to check the status of the network connection. Any SNMP tools are also acceptable as long as the SNMP commands can be correctly sent and received.

Please save the command log and attach it into each file. Save the command files for each node for each test.

c) Packet Capture File

Capture all packets for LAN during the test. Hub which is not part of the test can be used to facilitate the test.

Make separate tcpdump(pcap) format file for each test.

For tcpdump, please specify packet size as 4096. Example: tcpdump –I if0 –s 4096 –w 1.VendorA.dump

d) Test Result Table

Collect all test result tables in a file and fill the tables as required. This file must contain a table where all passes are clearly marked.

1.2 Data File Name Syntax

Please follow the data file name syntax described below:

a) Topology Map

Syntax: Chapter. [Section.] ON. topology

For "ON", use the Node's vendor name which behaves as an Opposite Side Target Node(ON)

If the test device is a SNMP agent and a router, the name should be like the following: ON: SNMPAgentRouter[vendor: vendor A, model: rhost1, version: 1.0]

1. Vendor A. Router. topology

If the test device is a SNMP agent and a host, the name should be like the following: ON: SNMPAgentHost[vendor: vendor A, model: rhost1, version: 1.0]

1. Vendor A. Host. topology

If the test device is a SNMP manager, the name should be like the following: ON: SNMPManager[vendor: vendor A, model: rhost1, version: 1.0] 1.VendorA.topology

b) Command Results

Syntax: Chapter[.Section].SRC.DST.result

For SRC, use the vendor name on which the SNMP commands are run. If SRC is a Reference Host or Router, just specify "REF" as SRC. "DST" stands for destination of SNMP and ping commands. If DST is a Reference Host or Router, just specify "REF" as DST

- 1 Interface Index Determination
- 1.VendorA.VendorB.result

SNMP/MIBs

8 Neighbor Cache 8.VendorA.VendorB.result 8.REF.VendorA.result

c) Captured packet file

Syntax:Chapter[.Section].ON.Link.dump
For link, use the captured link name
For "ON", use the Node's vendor name which behaves as an Opposite Side Target
Node(ON)

Example: 8. Neighbor Cache

8. Vendor A. Link 0. dump

d) Test Result Table

Syntax: VendorName_Model_Version.table

Test Case	Vendor A	Vendor B
1. Interface Index		
Determination		

For failures, please briefly summarize the failed test results.

1.3 Data Archive

Please organize the final test data using the following directory structure

\$VendorName_Model_Version/ Conformance/ Interoperability/

Put all conformance data file under "Conformance" and all interoperability data file under "Interoperability" directory.

Make a tar.gz format archive file and put all the files under "VendorName_Model_Version" in this tar.gz file.