Discrete Mathematics

Homework 3 Deadline: 5/27

Exercise 4.1

18. Consider the following four equations:

- 1) 1 = 1
- 2 + 3 + 4 = 1 + 8
- 5+6+7+8+9=8+27
- 4) 10 + 11 + 12 + 13 + 14 + 15 + 16 = 27 + 64

Conjecture the general formula suggested by these four equations, and prove your conjecture.

24. A sequence of numbers a_1, a_2, a_3, \ldots is defined by

$$a_1 = 1$$
 $a_2 = 2$ $a_n = a_{n-1} + a_{n-2}, n \ge 3.$

- a) Determine the values of a_3 , a_4 , a_5 , a_6 , and a_7 .
- **b)** Prove that for all $n \ge 1$, $a_n < (7/4)^n$.

Exercise 4.2

12. For $n \ge 0$ let F_n denote the *n*th Fibonacci number. Prove that

$$F_0 + F_1 + F_2 + \cdots + F_n = \sum_{i=0}^n F_i = F_{n+2} - 1.$$

- 16. Give a recursive definition for the set of all
 - a) positive even integers
 - b) nonnegative even integers

Exercise 4.3

10. If $n \in \mathbb{Z}^+$, and n is odd, prove that $8 | (n^2 - 1)$.

12. Determine the quotient q and remainder r for each of the following, where a is the dividend and b is the divisor.

a)
$$a = 23$$
, $b = 7$

a)
$$a = 23$$
, $b = 7$ **b)** $a = -115$, $b = 12$

c)
$$a = 0$$
, $b = 42$

c)
$$a = 0$$
, $b = 42$ d) $a = 434$, $b = 31$

18. For what base do we find that 251 + 445 = 1026?

Exercise 4.4

12. Let $a, b \in \mathbb{Z}^+$ where $a \ge b$. Prove that gcd(a, b) =gcd(a-b,b).

16. Let $a, b \in \mathbb{Z}^+$. Prove that there exist $c, d \in \mathbb{Z}^+$ such that cd = a and gcd(c, d) = b if and only if $b^2|a$.

Exercise 4.5

8. a) How many positive divisors are there for

$$n = 2^{14}3^95^87^{10}11^313^537^{10}$$
?

b) For the divisors in part (a), how many are

- i) divisible by $2^33^45^711^237^2$?
- ii) divisible by 1,166,400,000?
- iii) perfect squares?
- iv) perfect squares that are divisible by $2^23^45^211^2$?
- v) perfect cubes?
- vi) perfect cubes that are multiples of 2103952751121323729
- vii) perfect squares and perfect cubes?