Российский университет дружбы народов им. П. Лумумбы Факультет физико-математических и естественных наук

Лабораторная работа №3

Дисциплина: Вычислительные методы

Студент: Шуплецов Александр Андреевич

Группа: НФИбд-01-22

Москва

2024 г.

Оглавление

Задание	3
Теоретическая справка	5
Полный программный код, с подробным описанием функций, реализующих численное	
интегрирование	
Численные расчеты	.11
Вывол	.12

Задание

Интегрирование

- 1. Реализовать в программе методы левых и правых прямоугольников, метод трапеций и метод Симпсона для приближенного расчета интеграла $\int\limits_a^b f(x) dx$. В программной реализации предусмотреть разбиение отрезка [a;b], по которому ведется интегрирование, на M отрезков равной длины.
- 2. Вычислить аналитически значение интеграла $I = \int_a^b f(x) dx$ (функция f(x) и отрезок даны в индивидуальном задании).

Сравнить в программе полученное аналитическое значение I с приближенными значениями интеграла $\int\limits_a^b f(x)dx$, вычисленными с помощью методов левых и правых прямоугольников, метода трапеций и метода Симпсона.

Вывести в программе таблицу следующего вида

где

N = 16,

I — аналитическое значение интеграла $\int\limits_a^b f(x)dx$,

 I_L^M — приближенное значение интеграла $\int\limits_a^b f(x) dx$, вычисленное методом левых прямоугольников с помощью разбиения отрезка интегрирования [a;b] на M отрезков равной длины;

 $I_{\it R}^{\it M}$ — приближенное значение интеграла $\int\limits_a^b f(x) dx$, вычисленное методом правых прямоугольников с помощью разбиения отрезка интегрирования [a;b] на M отрезков равной длины;

 I_T^M — приближенное значение интеграла $\int\limits_a^b f(x) dx$, вычисленное методом трапеций с помощью разбиения отрезка интегрирования [a;b] на M отрезков равной длины; I_S^M — приближенное значение интеграла $\int\limits_a^b f(x) dx$, вычисленное методом Симпсона с помощью разбиения отрезка интегрирования [a;b] на M отрезков равной длины.

3. Вычислить для метода левых прямоугольников минимальное значение целого числа M, при котором погрешность интегрирования меньше, чем 10^{-3} . Вывести в программе таблицу следующего вида:

4. Вычислить для метода правых прямоугольников минимальное значение целого числа M, при котором погрешность интегрирования меньше, чем 10^{-3} . Вывести в программе таблицу следующего вида:

$$M-2$$
 I I_R^{M-2} $\left|I-I_R^{M-2}\right|$ $M-1$ I I_R^{M-1} $\left|I-I_R^{M-1}\right|$ M I I_R^M $\left|I-I_R^M\right|$ $M+1$ I I_R^{M+1} $\left|I-I_R^{M+1}\right|$

5. Вычислить <u>для метода трапеций</u> минимальное значение целого числа M, при котором погрешность интегрирования меньше, чем 10^{-3} . Вывести в программе таблицу следующего вида:

$$M-2$$
 I I_T^{M-2} $\left|I-I_T^{M-2}\right|$ $M-1$ I I_T^{M-1} $\left|I-I_T^{M-1}\right|$ M I I_T^M $\left|I-I_T^M\right|$ $M+1$ I I_T^{M+1} $\left|I-I_T^{M+1}\right|$

6. Вычислить для метода Симпсона минимальное значение целого <u>четного</u> числа M, при котором погрешность интегрирования меньше, чем 10^{-3} . Вывести в программе таблицу следующего вида:

$$\begin{array}{cccccc} M-4 & I & I_S^{M-4} & \left|I-I_S^{M-4}\right| \\ M-2 & I & I_S^{M-2} & \left|I-I_S^{M-2}\right| \\ M & I & I_S^M & \left|I-I_S^M\right| \\ M+2 & I & I_S^{M+2} & \left|I-I_S^{M+2}\right| \end{array}$$

7. В сравнить полученные в пп.3-6 значения M для каждого из реализованных методов, проанализировать полученные результаты.

Я возьму вариант 19:

19.
$$(x-1)\sin(x)$$
 [-1,1]

Теоретическая справка

Данная лабораторная работа представляет собой компьютерную реализацию численного интегрирования.

2.1. Формула Ньютона-Лейбница и численное интегрирование.

Из курса математического анализа вы знакомы с вычислением определенных интегралов с помощью формулы Ньютона-Лейбница:

$$I = \int_{a}^{b} f(x)dx = F(b) - F(a), \qquad (2.1)$$

Универсальные алгоритмы вычисления определенных интегралов дают формулы численного интегрирования или, как их обычно называют, квадратурные формулы (буквально — формулы вычисления площадей). Квадратурные формулы имеют вид

$$I = \int_{a}^{b} f(x)dx = \sum_{i=1}^{n} c_{i} f(x_{i}) + R_{n}.$$
 (2.2)

Полный программный код, с подробным описанием функций, реализующих численное интегрирование.

```
import math
def func(x):
    return (x-1) *math.sin(x)
def splitter(a,b,M):
    step = (b-a)/M
    arr x = [0] * (M+1)
    for i in range (0, M+1):
        arr x[i] = a + step*i
    return arr x
def middle(a,b,M):
    arr m = [0]*(M+1)
    for i in range (0,M+1):
        arr m[i] = a + (i-1/2)*((b-a)/M)
    return arr m
def middle rectangle(a,b,M):
    f = 0
    for i in range (1,M+1):
       ksi = a + (i-1/2)*((b-a)/M)
        f = f + func(ksi)
    I = ((b-a)/M)*f
    return I
def left_rectangle(a,b,M):
    f = 0
    arr x = splitter(a,b,M)
    arr y = [0]*(M+1)
    for i in range (M):
       arr y[i] = func(arr x[i])
    for i in range (M):
       f = f + arr_y[i]
    I = ((b-a)/M)*f
    return I
def right_rectangle(a,b,M):
    f = 0
    arr x = splitter(a,b,M)
    arr y = [0] * (M+1)
    for i in range (1, M+1):
       arr y[i] = func(arr x[i])
    for i in range (1,M+1):
       f = f + arr_y[i]
    I = ((b-a)/M)*f
    return I
def trapez(a,b,M):
    arr x = splitter(a,b,M)
    arr y = [0]*(M+1)
```

```
for i in range (0, M+1):
        arr y[i] = func(arr x[i])
    summ = 0.5*(func(a) + func(b))
    f t = 0
    for i in range (1, M):
        f t = f t + arr y[i]
    T = ((b-a)/M)*(summ + f t)
    return T
def simpson(a,b,M):
    arr x = splitter(a, b, M)
    arr y = [0]*(M+1)
    for i in range (0, M+1):
        arr y[i] = func(arr x[i])
    summ = \overline{func(a)} + func(b)
    f t = 0
    for i in range (1, M):
        if i%2 == 0:
            f t = f t + 2*arr y[i]
        else:
            f t = f t + 4*arr y[i]
    T = ((b-a)/(3*M))*(summ + f t)
    return T
count tab = 10
N = 16
I = 0.6023373578795136
for i in range (4):
    if i == 0:
        print ("{:<6d}{:<10f}{:<10f}{:<10f}} :<10f}".format(N, I,</pre>
left rectangle(-1, 1, N), right rectangle(-1, 1, N), trapez(-1, 1, N),
simpson(-1,1,N))
    if i == 1:
        M = 2*N
        print ("{:<6d}{:<20}{:<10f}{:<10f}{:<10f}}".format(M, I,</pre>
left rectangle (-1, 1, M), right rectangle (-1, 1, M), trapez (-1, 1, M),
simpson(-1,1,M))
    if i == 2:
        M = 5*N
        print ("{:<6d}{:<20}{:<10f}{:<10f}{:<10f}}".format(M, I,</pre>
left rectangle(-1, 1, M), right rectangle(-1, 1, M), trapez(-1, 1, M),
simpson(-1,1,M))
    if i == 3:
        M = 10*N
        print ("{:<6d}{:<20}{:<10f}{:<10f}{:<10f}".format(M, I,</pre>
left rectangle (-1, 1, M), right rectangle (-1, 1, M), trapez (-1, 1, M),
simpson(-1,1,M))
print('----')
for i in range (1,10000):
    if (abs(I - left rectangle(-1, 1, i)) < 10**(-3)):
        print('Минимальное значение М для метода левых прямоугольников: ', i)
        min M = i
        print('\n')
        break
M = min M
for i in range (M-2, M+2):
```

```
print("{:<6d}{:<20}{:<20f}{:.20f}".format(i, I, left rectangle(-1, 1,</pre>
i), abs(I - left rectangle(-1, 1, i)))
print('----')
for i in range (1,10000):
   if (abs(I - right rectangle(-1, 1, i)) < 10**(-3)):
       print('Минимальное значение М для метода правых прямоугольников: ',
i)
       min M = i
       print('\n')
       break
M = min M
for i in range (M-2, M+2):
   print("{:<6d}{:<20f}{:<20f}".format(i, I, right rectangle(-1, 1,</pre>
i), abs(I - right rectangle(-1, 1, i))))
print('----')
for i in range (1,10000):
   if (abs(I - trapez(-1, 1, i)) < 10**(-3)):
       print('Минимальное значение М для метода трапеции: ', i)
       \min M = i
       print('\n')
       break
M = min M
for i in range (M-2, M+2):
   print("{:<6d}{:<20f}{:<20f}".format(i, I, trapez(-1, 1, i), abs(I</pre>
- trapez(-1, 1, i))))
print('----')
for i in range (1,10000):
   if (abs(I - simpson(-1, 1, i)) \leq 10**(-3)):
       print('Минимальное значение М для метода Симпсона: ', i)
       min M = i
       print('\n')
       break
M = min M
for i in range (M-2, M+2):
   if i%2 == 0:
       print("{:<6d}{:<20f}{:<20f}".format(i, I, simpson(-1, 1, i),</pre>
abs(I - simpson(-1, 1, i)))
```

Функции

func(x): определяет функцию $((x-1)\sin(x))$, которую мы будем интегрировать.

splitter(a, b, M): создает массив точек (узлов) для разбивки интервала ([a, b]) на (M) частей.

middle(a, b, M): создает массив средних значений между узлами для вычисления суммы в методе средних прямоугольников.

middle_rectangle(a, b, M): вычисляет интеграл по методу средних прямоугольников. Здесь выбирается точка в середине каждого подотрезка и суммируется значение функции в этих средних точках.

left_rectangle(a, b, M): вычисляет интеграл по методу левых прямоугольников, используя левую границу каждого подотрезка как точку, в которой вычисляется значение функции.

right_rectangle(a, b, M): вычисляет интеграл по методу правых прямоугольников, используя правую границу каждого подотрезка.

trapez(a, b, M): реализует метод трапеций. Это метод использует среднее значение функции на каждом подотрезке.

simpson(a, b, M): реализует метод Симпсона, который является более сложной техникой, использующей квадратичное приближение и чередующиеся коэффициенты (2) и (4) для внутренних точек по отношению к крайним точкам.

Основной код

N изначально установлено как 16, это начальное количество подотрезков для разбиения интервала.

I — истинное значение интеграла на интервале ([-1, 1]), предварительно вычислено.

Проходят 4 итерации увеличивая количество подотрезков (M) (M = N, M = 2N, M = 5N, M = 10*N) и вычисляют аппроксимированное значение интеграла для каждого из методов вывода на экран результата и сравнения с (I).

Затем, в отдельных циклах for, с силой набора подотрезков ((M)) проверяется, при каком наименьшем (M) каждый из методов дает приближение с точностью (10^{-3}) .

Распечатка значений при (M-2, M-1, M, M+1) позволяет увидеть ближайшие значения вокруг найденного минимального (M) для более детального анализа.

Цель кода состоит в сравнении различных методов численного интегрирования по их точности и скорости сходимости к истинному значению интеграла.

Численные расчеты

16				0.605938			
	0.6023373578795136			0.603237			
	0.6023373578795136						
160	0.6023373578795136	0.612892	0.591855	0.602373	0.602337		
Миним	лальное значение М дл	я метода л	евых прямо	угольников	: 1684		
1682	0.6023373578795136	0.603338		0.0010008	8563637756867		
1683	0.6023373578795136	0.603338		0.00100029073973795235			
1684	0.6023373578795136	0.603337		0.00099969654985287981			
	0.6023373578795136			0.00099910306546413530			
	иальное значение М дл		равых прям	юугольнико	в: 1683		
1681	0.6023373578795136	0.601337		0.001001			
1682	0.6023373578795136	0.601337 0.001000					
1683	0.6023373578795136	0.601338		0.001000			
1684	0.6023373578795136	0.601338		0.000999			
Миним	лальное значение М дл	я метода т	рапеции:	31			
29	0.6023373578795136	0.603433		0.001096			
30				0.001024			
31	0.6023373578795136			0.000959		0.000959	
32	0.6023373578795136	0.603237		0.000900			
Миним	лальное значение М дл	я метода C	импсона:	6			
4	0.6023373578795136	0.600107		0.002230			
6	0.6023373578795136	0.601908		0.000429			

Вывод

Я реализовал численное интегрирование с помощью компьютерной программы на языке Python.