

SÍLABO FÍSICA II

ÁREA CURRICULAR: MATEMÁTICAS Y CIENCIAS BÁSICAS

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-II
1.3 Código de la asignatura : 09007404050

1.4Ciclo:IV1.5Créditos:51.6Horas semanales totales:9

1.6.1 Horas lectivas (Teoría, Práctica. Laboratorio) : 7 (T=3, P=2, L=2))

1.6.2 Horas no lectivas : 4

1.7 Condición de la asignatura : Obligatoria

1.8 Requisito(s)1.9 Docentes1.9 Government1.9 Ing. Fredy Castro Salazar

Ing. Jorge Tejada Polo Ing. Marco Lizarazo Soto Ing. Gian Scarpati Gálvez

II. SUMILLA

La asignatura forma parte del área de formación básica, es de carácter teórico-práctico y su propósito es brindar a los alumnos los conocimientos básicos de los principios y leyes que rigen los fenómenos eléctricos y magnéticos y capacitarlo en la aplicación de este conocimiento mediante soluciones de problemas prácticos y la realización de ensayos de laboratorio.

Su contenido está organizado en cuatro unidades que son las siguientes: I. Electrostática II. Potencial eléctrico III. Electrodinámica. IV. Campo magnético e inducción electromagnética.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- . Analiza mediante la aplicación de las leyes de los campos eléctricos y magnéticos los fenómenos relacionados con electricidad y magnetismo.
- . Conduce las pruebas de ensayo para verificar los fenómenos eléctricos y magnéticos.
- . Asume su responsabilidad en la resolución de problemas de electricidad y magnetismo.

3.2 Componentes

Capacidades

- . Resuelve problemas de la realidad física aplicando las leyes de la electrostática.
- . Define el potencial eléctrico y calcula la diferencia de potencial entre dos puntos de un campo eléctrico.
- . Soluciona problemas de circuitos eléctricos de corriente continua en situaciones reales.
- . Calcula las fuerzas que ejercen los campos magnéticos y explica el fenómeno de inducción electromagnética para su aplicación en la generación de energía eléctrica

Contenidos actitudinales

- . Aprecia la importancia de la acción del campo eléctrico en el funcionamiento de los capacitores.
- . Propone problemas en el aula de clase para aplicar los conocimientos adquiridos.
- . Acepta la importancia de la existencia de los campos magnéticos para la vida humana.
- . Justifica el uso de las leyes del electromagnetismo en el progreso y desarrollo de la tecnología.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : ELECTROSTÁTICA

CAPACIDAD: Resuelve problemas de la realidad física aplicando las leyes de la electrostática.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS DEOCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE		ORAS
SEIVIANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE AFRENDIZAJE	L	T.I.
1	Primera sesión: Concepto de electrostática - Carga eléctrica - Formas de electrizar estáticamente a un cuerpo -Propiedades de las cargas eléctricas - El electroscopio – Conductores y aisladores. Segunda sesión:		Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h	7	4
	Fuerza electrostática en un sistema de cargas discretas – Problemas - Definición de Distribuciones de carga eléctrica – Problemas Primera sesión de Laboratorio: Seguridad personal y de grupo, cuidado y reconocimiento de equipos	. Define los conceptos de carga eléctrica, partícula cargada, carga distribuida y evaluar las fuerzas de interacción entre ellas.	Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	,	
2	Primera sesión: Definición de campo eléctrico - Campo eléctrico de una carga puntual – Campo eléctrico de un sistema de cargas discretas – Problemas. Segunda sesión: Campo eléctrico de una distribución continua de carga (de barra, anillo, disco). Líneas de campo eléctrico.	. Explica los conceptos de campo eléctrico y potencial eléctrico.	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	7	4
	Primera sesión: Cinemática de partículas cargadas en un campo eléctrico – Problemas. Segunda sesión: Dipolo eléctrico – Campo eléctrico de un dipolo – Problemas. Segunda sesión de laboratorio: Uso de los equipos e instrumentos	. Describe el movimiento de una partícula cargada dentro de un campo eléctrico.	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	7	4
4	Primera sesión: Flujo eléctrico - Ley de Gauss – Aplicaciones de la ley de Gauss (Esferas, planos infinitos, hilos infinitos, cilindros infinitos). Segunda sesión: Conductores en equilibrio electrostático - Problemas.	. Calcula el valor del campo eléctrico aplicando la Ley de Gauss.	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	7	4

UNIDAD II: POTENCIAL ELÉCTRICO

CAPACIDAD: Define el potencial eléctrico y calcula la diferencia de potencial entre dos puntos de un campo eléctrico.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS
SEIVIANA		CONTENIDOS PROCEDIMENTALES		L	T.I.
5	Primera sesión: Diferencia potencial y potencial eléctrico – Energía potencial y energía total asociada a una partícula cargada dentro de un campo eléctrico – Problemas. Segunda sesión: El Electrón Volt. – Diferencia de potencial en un campo eléctrico uniforme.	. Define potencial eléctrico y calcula la diferencia de potencial	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h	_ 7 4	4
	Problemas. Tercera sesión de laboratorio: Curvas características V-I, Ley de Ohm y resistencia	en un campo eléctrico uniforme.	Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h		
6	Primera sesión: Potencial eléctrico de una carga puntual – Potencial eléctrico de un sistema de cargas puntuales - Energía potencial de un sistema de cargas puntuales – Problemas.	. Calcula el potencial eléctrico de un sistema de cargas puntuales así como de una distribución continua de carga.	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h	7	4
	Segunda sesión: Potencial eléctrico de una distribución continua de carga (barra, anillo, disco, etc.).		Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	,	7
7	Primera sesión: Determinación del campo eléctrico a partir del potencial eléctrico – Problemas – Potencial eléctrico de un conductor cargado – Problemas. Segunda sesión: Capacidad eléctrica y Condensadores: Definición de capacitancia –	. Explica el concepto de capacidad eléctrica y su aplicación en los capacitores.	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h	7	4
	Capacidad de una esfera conductora – El condensador plano. Cuarta sesión de laboratorio: Carga y descarga de condensadores		Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h		
8	Revisión de temas previos	. Desarrolla ejercicios de temas previos.	Lectivas (L): Desarrollo de ejercicios - 7 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	7	4

UNIDAD III: ELECTRODINÁMICA

CAPACIDAD: Soluciona problemas de circuitos eléctricos de corriente continua en situaciones reales.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
9	Primera sesión: El condensador esférico – El condensador cilíndrico – Problemas – Conexión o combinación de condensadores – Problemas.	. Identifica los diferentes tipos de condensadores y calcula la	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h	7	4
	Segunda sesión: Energía almacenada en un condensador cargado. Condensadores con dieléctrico. Problemas.	energía eléctrica que puede almacenar.	Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h		
10	Primera sesión: Corriente eléctrica - Densidad de corriente – Corrientes eléctricas en materiales – Velocidad de deriva - Problemas. Segunda sesión: Resistencia eléctrica – Ley de Ohm — Resistores - Resistividad y conductividad eléctrica – Variación de la resistencia con la temperatura – Problemas. Quinta sesión de laboratorio: Análisis de circuitos resistivos – Leyes de Kirchoff	. Define los conceptos de corriente, resistencia y resistividad eléctrica.	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	7	4
11	Primera sesión: Energía y potencia eléctrica – Problemas. Circuitos eléctricos de corriente continua: Fuentes de fuerza electromotriz ideal y real. Segunda sesión: Conexión de resistencias: serie, paralelo y mixtas – Transformaciones estrella a triángulo y triángulo a estrella – Problemas.	Explica los conceptos de fuente de fuerza electromotriz y potencia eléctrica. Simplifica conexiones de resistencias a su circuito equivalente	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h	7	4
12	Primera sesión: Solución de circuitos eléctricos activos: leyes de Kirchhoff, divisor de corriente – Circuitos de varias trayectorias cerradas independientes – Problemas. Segunda sesión: Circuitos RC serie: Carga, y descarga de un condensador – Problemas. Sexta sesión de laboratorio: Magnetismo e inducción electromagnética	. Resuelve problemas de circuitos eléctricos de corriente continua.	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo – 2 h	7	4

UNIDAD IV: CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I
40	Primera sesión: El campo magnético: definición y propiedades – Fuerza magnética sobre hilos de corriente – Problemas. Segunda sesión:	. Define los conceptos de campo magnético y fuerza	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h	7	4
13	Momento de torsión sobre una espira de corriente – Movimiento de partículas cargadas en un campo magnético uniforme – Efecto Hall - Problemas.	magnética.	Trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo Aplicativo - 2 h		
14	Primera sesión: Ley de Ampere – Aplicaciones de la Ley de Ampere: alambre recto infinito; fuerza magnética por unidad de longitud entre dos alambres paralelos y muy largos – Problemas. Segunda sesión: Campo magnético de un solenoide y de un toroide – Problemas – Ley de	Explica y aplica las leyes del magnetismo. Calcula el campo magnético generado por una corriente eléctrica.	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h Trabajo Independiente (T.I):	7	4
	Biot - Savart. Séptima sesión de laboratorio : Circuitos RC y RL en corriente alterna		Resolución tareas - 2 h Trabajo Aplicativo – 2 h		
15	Primera sesión: Flujo magnético – Ley de Faraday y Ley de Lenz – Problemas. Segunda sesión: Fuerza electromotriz de movimiento – Bobina rotatoria dentro de un campo magnético: principio del generador eléctrico - Problemas.	. Explica el fenómeno de inducción electromagnética e interpreta la ley de Lenz.	Lectivas (L): Desarrollo del tema - 3 h Ejemplos del tema - 2 h Laboratorio - 2 h Trabajo Independiente (T.I):	7	4
16	Examen final		Resolución tareas - 2 h Trabajo Aplicativo - 2 h		<u> </u>

V. ESTRATEGIAS METODOLÓGICAS

- · Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separatas, pizarra, plumones, manual universitario, obras literarias, artículos de revistas y periódicos.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

```
PF = (2*PE + PL + EF) / 4

PE = ( P1 + P2 + P3 + P4 + P4 - MN) / 4

PL = (Lb1 + Lb2 + Lb3 + Lb4 + Lb5 + Lb6 + Lb7 - MN ) / 6
```

Donde:

PF : Promedio final

PE : Promedio de prácticas calificadas PL : Promedio de prácticas de laboratorio

EF : Examen final (escrito)

P1, ... : P4 : Prácticas Calificadas (escrito)

MN : Menor nota

Lb1,.., Lb7: Nota de práctica de Laboratorio

VIII. FUENTES DE CONSULTA

8.1 Bibliográficas

- Serway, R. & Jewett, J. (2008): Physics for scientists and engineers Volume 2. Seventh Edition.
 U.S.A.: Thomson Brooks/Cole.
- Serway, R. & Jewett, J. (2008): Física Tomo II. Séptima edición. México: Cengage Learning Editores S.A.
- · Tipler, P. (2000): Física Tomo II. Cuarta Edición. España: Reverté, S.A.

87.2 Electrónicas

· Problemas que revisan los conceptos básicos del electromagnetismo http://olimpia.uanarino.edu.co

D - valaniamada

- · Exposición de conceptos de los diversos temas del curso http://www.ifent.org/lecciones
- Videos ilustrativos de experimentos http://www.acienciasgalilei.com/videos/3electricidad-mag.htm

Decuadra vesta - ne enlica

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

V - alassa

El aporte del curso al logro de los resultados del estudiante (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial e Ingeniería Civil, se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro vacio = no aplica	
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	K
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	R
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	

(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	R

El aporte del curso al logro de los resultados del estudiante (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

$\mathbf{K} = clave$	R = relacionado	Recuadro vacío = no anlica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	K
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	R
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	K
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	