

Systèmes mécaniques et automatiques

Notes de cours IngéSpé Automatique

Année 2019–2020

Systèmes mécaniques et automatiques

Notes de cours IngéSpé Automatique

Filipe Manuel Vasconcelos

écrit sous \LaTeX , $\Tau ikZ$ v1.0 janvier 2018. v2.0 été 2018. v3.0 fevrier-mai 2019.

Ce document est mis à disposition selon les termes de la licence

Creative Commons "Attribution - Partage dans les mêmes conditions 4.0 International".

Table des matières

Table	des m	atières	5
Avant-	-propos	5	9
Chapi		Systèmes linéaires, continus	11
1.	Intro	duction	. 12
2.	Défin	nition SLCI	13
	2.1.	Système	13
	2.2.	Système à temps continu	
	2.3.	Système linéaire	
	2.4.	Système causal	. 14
	2.5.	Système invariant	
	2.6.	Modélisation d'un système linéaire continu et invariant	15
3.	$\operatorname{Mod} \epsilon$	lphalisation d'un signal	
	3.1.	Propriétés générales des signaux continus (analogiques)	18
	3.2.	Signaux usuels rencontrés	
4.	La tr	ansformée de Laplace	26
	4.1.	Définition	
	4.2.	Propriétés	. 27
	4.3.	Transformées des signaux usuels	30
	4.4.	Application de la transformée de Laplace	. 33
5.	Fonc	tion de Transfert	38
	5.1.	Définition	38
	5.2.	Fonction de transfert et réponse impulsionnelle	38
	5.3.	Représentation de la fonction de transfert	39
Chapi	itre 2	Schéma fonctionnels	45
1.	Intro	duction	46
2.	Élém	ents de base des schémas fonctionnels	46
3.	Trans	sformation des schémas fonctionnels	48
	3.1.	Réduction de schéma-bloc	48
	3.2.	Manipulation de schéma-bloc	51
4.	Cas	d'entrées multiples	. 52
5.		action de schéma-bloc de grande taille	
	5.1.	Exemple à entrée simple	
	5.2	Exemple à entrées multiples	

6.	Grap	he de fluence	57
	6.1.	Définitions	57
	6.2.	Algèbre des graphes de fluences	58
	6.3.	Règle de Mason	62
Chapit	re 3	Modélisation des SLCI	65
1.	Intro	duction	66
2.	Systè	me du premier ordre	67
	2.1.	Définition d'un système du premier ordre	67
	2.2.	Fonction de transfert d'un système du premier ordre	67
	2.3.	Pôle de la fonction de transfert du premier ordre	67
	2.4.	Réponses temporelles d'un système du premier ordre	67
3.	Systè	eme du second ordre	71
	3.1.	Définition d'un système du second ordre	71
	3.2.	Fonction de transfert d'un système du second ordre	72
	3.3.	Pôles de la fonction de transfert du second ordre	72
	3.4.	Réponses temporelles d'un système du second ordre	74
	3.5.	Cas particulier de l'oscillateur harmonique	88
4.	Autre	es modèles particuliers	90
	4.1.	Gain pur	90
	4.2.	Intégrateur pur	90
	4.3.	Dérivateur pur	91
	4.4.	Retard pur	92
5.	Géné	ralisation des modèles de SLCI	92
Chapit	re 4	Analyse fréquentielle	93
1.	Répo	nse harmonique	94
	1.1.	Exemple de réponse harmonique dans le domaine temporel .	96
2.	Repre	ésentation graphique de la réponse harmonique	98
	2.1.	Diagramme de Bode	98
	2.2.	Diagramme de Nyquist	99
	2.3.	Diagramme de Black-Nichols	100
3.	Analy	yse fréquentielle des modèles usuels	101
	3.1.	Diagrammes de Bode : méthodologie générale	
	3.2.	Diagrammes de Nyquist : méthodologie générale	
	3.3.	Diagrammes de Black : méthodologie générale	128
4.	Etud	e du transitoire de la réponse harmonique	
	4.1.	Exemple d'un système du premier ordre	
	4.2.		129
Chapit	${ m re} \; 5$	Asservissements des systèmes linéaires	131
1	Intro	duction	132

2.	Orga	nisation d'un asservissement	133
	2.1.	Schémas fonctionnels associés aux systèmes asservis	133
	2.2.	Fonctions de transferts associées à un système asservi	137
3.	Asser	rvissement des SLCI modèles	138
	3.1.	Asservissement d'un intégrateur	138
	3.2.	Asservissement d'un système du premier ordre	139
	3.3.	Asservissement d'un système du second ordre	140
4.	Perfo	ormances des systèmes en boucle ouverte	141
	4.1.	Stabilité en boucle ouverte	141
	4.2.	Précision en boucle ouverte	141
	4.3.	Rapidité en boucle ouverte	141
	4.4.	Dépassement en boucle	141
Chapit	tre 6	Précision et rapidité des systèmes asservis	141
1.	Défin	nitions de la précision	142
2.	Préci	ision en boucle fermée	142
Chapit	tre 7	Stabilité des systèmes asservis	143
1.	Défin	nitions de la stabilité	144
2.	Critè	ere de stabilité	145
	2.1.	Critère algébrique de Routh	147
	2.2.	Critère graphique du revers	152
	2.3.	Critère de Nyquist	158
Chapit	tre 8	Correction des systèmes asservis	163
Chapit	tre 9	Initiation à la représentation d'état	165
Annex	es		169
Annex	e A	Alphabet Grec	169
Annex	e B	Unités du Système International	171
Annex	e C	Pierre-Simon de Laplace	173
Annex	e D	Transformation de Laplace	17 5
1.	Défin	nitions	175
2.	Prop	riétés	175
3.	Table	e des transformées de Laplace	178
Annex	e E	Rappel sur les nombres complexes	181
Annex	e F	Équations différentielles à coefficients constants	187
1.	Réso	lution équation différentielle du premier ordre	187
	1.1.	Sans second membre	188
Annex	e G	Décomposition en éléments simples	191
1.	Cont	exte	191
2.	Fract	tions rationnelles rencontrées en automatique	191
3.	Déco	omposition en éléments simples	192

4.	Détermination des coefficients de la DES
	4.1. Par identification
Annex	e H Systèmes du second ordre 195
1.	Abaques
2.	Réponses temporelles
3.	Analyse fréquentielle
Annex	e I Initiation à Scilab 201
1.	Présentation générale
2.	Syntaxe: console
3.	Polynômes et fractions rationnelles
4.	Vecteurs et matrices
5.	Tracer de figures
6.	Programmation
7.	<u>SLCI avec Scilab</u>
	7.1. Définition d'un système linéaire
	7.2. Simulation temporelle d'un système linéaire 213
	7.3. Système du premier ordre
	7.4. Carte des pôles et zéros
	7.5. Asservissement
8.	Scilab-Xcos
	8.1. Lancer Xcos
	8.2. Diagramme simple
	8.3. Simulation
	8.4. Blocs « To Workspace » ou « From Workspace » 219
Annex	e J Échelle logarithmique et le décibel 221
1.	Rappel sur le logarithme décimal
2.	Échelle logarithmique décimale
3.	Le décibel
4.	Diagramme de Bode
5.	Tracé d'un diagramme de Bode avec Scilab
Annex	e K Transformée de Laplace inverse 227
1.	Contexte
2.	Méthode de Gaver-Stehfest
3.	Méthode de Talbot fixe
Référe	aces 229
Glossa	<u>re</u> 231
Liste d	es Symboles 233

Avant-propos

Programme

Ce cours est une introduction à l'automatique pour des étudiants de deuxième année de classe préparatoire scientifique.

L'objectif principal de l'automatique est de permettre le contrôle des **systèmes dynamiques** de toutes natures que ce soient : mécanique, chimique, électronique, optique, thermique, acoustique.... Tout en respectant certaines contraintes de performances (rapidité, précision, stabilité...).

Nous limiterons notre étude aux systèmes linéaires continus et invariants. La modélisation de ces systèmes passe par la mise en équation du comportement physique des systèmes sous forme d'équations différentielles. Cette étape ne fait pas à proprement parler partie d'un cours d'automatique, en effet chacunes des disciplines construisent cette modélisation en se basant sur les principes et les hypothèses les plus adaptés à un problème donné. La modélisation permet une étude systématique des équations différentielles en proposant des modèles généraux et ce quelque soit la nature du procédé.

L'analyse nous permettra de caractériser et d'identifier ces modèles à partir des réponses aux sollicitations et de leurs performances.

Le **contrôle** est un concept très générale permettant de regrouper toutes les méthodes et techniques permettant de commander un système dynamique. Dans ce cours nous présenterons que les principes d'asservissement et de régulation. Nous verrons comment il est possible d'élaborer une commande adaptée (corrigée) pour un procédé quelconque, notamment lorsque ceux-ci présenterons des défauts de performance.

Organisation du document

Les chapitres suivent un découpage classique autour des trois pilliers discutés précedemment que sont la **modélisation**, l'analyse et le **contrôle**. (c.f Figure A). Le lecteur pourra s'appuyer sur un grand nombre d'annexes qui ont pour objectifs de rappeler et de détailler des notions prérequises ou encore approfondir quelques aspects hors programme pour une deuxième lecture.

Figure A. – Organisation du document.

5. Asservissements des systèmes linéaires

Sommaire

1.	Inti	roduction
2.	Org	canisation d'un asservissement
	2.1.	Schémas fonctionnels associés aux systèmes asservis 133
	2.2.	Fonctions de transferts associées à un système asservi . 137
3.	\mathbf{Ass}	ervissement des SLCI modèles
	3.1.	Asservissement d'un intégrateur
	3.2.	Asservissement d'un système du premier ordre 139
	3.3.	Asservissement d'un système du second ordre 140
4.	Per	formances des systèmes en boucle ouverte 141
	4.1.	Stabilité en boucle ouverte
	4.2.	Précision en boucle ouverte
	4.3.	Rapidité en boucle ouverte
	4.4.	Dépassement en boucle

1. Introduction

Figure 5.1. – Exemple historique de régulateur : Régulateur de vitesse de Watt (d'après [11])

Les chapitres précédents nous ont permis de caractériser, modéliser et analyser la réponse temporelle des systèmes linéaires. Nous allons maintenant aborder la possibilité du **contrôle** de ces systèmes par l'intermédiaire de l'**asservissement** et de **régulation**. L'idée sous-jacente est de permettre le contrôle automatique d'un système sans l'intervention d'un opérateur humain dans l'établissement d'une commande d'un système. En effet, jusqu'à présent nous nous sommes intéressés à l'étude de système linéaire « isolé » (de fonction de transfert H(p)) qui pour une entrée E(p), élaborait une sortie $S(p)^1$.

$$E(p) H(p) S(p)$$

¹On conserve la représentation dans le domaine de Laplace de nos systèmes linéaires et des signaux mis en jeu physiquement dans le domaine temporel

Nous avons pu caractériser la sortie en fonction de différentes performances : rapidité, précision, stabilité et dépassement. La question est de savoir maintenant comment agir sur le signal E(p) pour contrôler la sortie S(p) en fonction de critères de performances choisis initialement.

Il existe deux approches pour élaborer la commande d'un système linéaire : en boucle ouverte ou en boucle fermée.

— En boucle ouverte : on place un correcteur C(p) en amont du système pour élaborer la commande (que nous noterons U(p)) du système que l'on souhaite contrôler. À noter que l'entrée du système appelée dans le cadre de l'asservissement consigne est maintenant l'entrée du correcteur.

— En boucle fermée : le principe consiste à mesurer le signal de sortie pour ajuster le signal de commande. Pour celà, on place le système (corrigée ou non) dans une boucle de contre-réaction chapitre 2.

En d'autre mot, Dans un sens, le signal e(t) est la commande du système De tel système

La **régulation** consiste à contrôler la sortie d'un système pour une consigne fixe quelque soit les perturbations variables au cours du temps.

L'asservissement consiste à suivre une consigne variable au cours du temps. Imaginons que l'on souhaite étudier la température de l'eau fournie par une douche. Dans ce chapitre, nous allons aborder la notion d'asservissement des systèmes linéaires que nous avons maitenant caractérisé, modélisisé et analysé dans les chapitres précédents. L'idée d'asservissement

2. Organisation d'un asservissement

2.1. Schémas fonctionnels associés aux systèmes asservis

Figure 5.2. – Schéma fonctionnel classique de l'asservissement d'un système présentant un correcteur et un capteur.

Figure 5.3. – Décomposition en chaîne d'information et chaîne d'énergie d'un schéma bloc d'asservissement complet

Composants	Description	Fonction de transfert ou signal associés
Consigne/Entrée	La valeur que l'on souhaite atteindre en sortie du système asservi. Cette consigne peut être constante ou dépendante du temps.	E(p)
Adaptateur	Adapte le signal de consigne à l'image de la sortie.	$A_d(p)$
Correcteur	Élabore à partir du signal d'écart $\epsilon(p)$ la commande $U(p)$ ou la grandeur réglante du système.	C(p)
Actionneur	L'organe d'action qui apporte l'énergie au système.	$A_c(p)$
Commande	Le signal de commande du système élaboré par l'actionneur ou le correcteur.	U(p)
Système	Le système que l'on souhaite contrôler et/ou asservir	H(p)
Régulateur	Le régulateur se compose d'un comparateur qui élabore le signal d'écart $\epsilon(p)$ à partir de la consigne et de la mesure, formellement le régulateur incorpore le correcteur et du correcteur.	$\epsilon(p)$
Perturbation	Phénomène physique intervenant sur le système qui en modifie la sortie	P(p)
Capteur	Le capteur prélève le sortie pour en donner une image (la mesure) utile au régulateur. Intervenant dans la boucle ouverte, son étude est indispensable pour la caractérisation des performances du système asservi.	G(p)
Mesure	Le signal de la mesure de la sortie ou image de la sortie élaboré par le capteur.	M(p)
Sortie	Le signal de sortie du système que l'on souhaite régulé et/ou asservir	S(p)

Tableau 5.1. – Terminologie et définition associés à l'asservissement des systèmes.

2.2. Fonctions de transferts associées à un système asservi

Fonction de transfert de la chaîne directe

La fonction de transfert de la chaîne directe (FTCD), que nous noterons $H_{CD}(p)$ est liée à la chaîne d'action de l'asservissement. Elle lie la sortie S(p) à l'écart $\epsilon(p)$. Formellement,

$$H_{CD}(p) = \frac{S(p)}{\epsilon(p)} \tag{5.1}$$

Fonction de transfert de la chaîne de retour

La fonction de transfert de la chaîne de retour (FTCR), que nous noterons $H_{CR}(p)$ est liée à la chaîne de mesure de l'asservissement. Elle lie l'image de la sortie M(p) à la sortie S(p) Formellement,

$$H_{CR}(p) = \frac{M(p)}{S(p)} \tag{5.2}$$

Dans le cas d'un retour unitaire $H_{CR}(p) = 1$, c'est à dire que la sortie est la consigne sont de même nature.

Fonction de transfert en boucle ouverte

La fonction de transfert en boucle ouverte (FTBO), que nous noterons $H_{BO}(p)$ correspond à la fonction de transfert du système non asservi. Elle lie l'image de la sortie M(p) à l'écart $\epsilon(p)$. Formellement,

$$H_{BO}(p) = \frac{M(p)}{\epsilon(p)} = \frac{M(p)}{S(p)} \frac{S(p)}{\epsilon(p)} = H_{CR}(p)H_{CD}(p)$$
 (5.3)

Dans le cas d'un retour unitaire on obtient $H_{BO}(p) = H_{CD}(p)$

Fonction de transfert en boucle fermée

La fonction de transfert en boucle fermée (FTBF), que nous noterons $H_{BF}(p)$ correspond explicitement à la fonction de transfert du système asservi. Elle lie la sortie du système S(p) à la consigne E(p). Formellement et en appliquant la réduction des schémas blocs (c.f section 3.1),

$$H_{BF}(p) = \frac{S(p)}{E(p)} = \frac{H_{CD}(p)}{1 + H_{CR}(p)H_{CD}(p)} = \frac{H_{CD}(p)}{1 + H_{BO}(p)}$$
(5.4)

Remarquons que dans le cas d'une boucle de contre réaction unitaire (c.a.d $H_{CR}(p) = 1$), la FTBF se réduit à :

$$H_{BF}(p) = \frac{H_{BO}(p)}{1 + H_{BO}(p)}$$

3. Asservissement des SLCI modèles

Dans cette partie, nous présentons les asservissements par boucle de contre-réaction unitaire par de systèmes modèles déjà introduits au chapitre 3. Nous pourrons dégager la règle générale suivante : l'ordre n d'une fonction de transfert en boucle ouverte $H_{BO}(p)$ est conservé en boucle fermée par l'asservissement.

3.1. Asservissement d'un intégrateur

Considérons un système intégrateur asservi et régi par le schéma-bloc suivant :

La fonction de transfert en boucle ouverte $H_{BO}(p)$ est telle que :

$$H_{BO}(p) = \frac{K}{p}$$

avec K le gain statique. La FTBF est alors donnée :

$$H_{BF}(p) = \frac{H(p)}{1 + H(p)} = \frac{K}{p + K} = \frac{1}{\tau_{BF}p + 1}$$

Remarquons qu'un intégrateur asservi devient un système du premier ordre de gain statique unité et de constante de temps $\tau_{BF} = \frac{1}{K}$ où K est le gain statique de la FTBO².

²Un intégrateur étant un système du premier ordre particulier, nous avons bien l'ordre de $H_{BO}(p)$ qui est égal à l'ordre de $H_{BF}(p)$.

Au chapitre 3, nous avons pu conclure que les systèmes du premier ordre sont fondamentalement stable (du moins pour $\tau > 0$) et que les intégrateurs sont instables. Ainsi, nous observons que l'asservissement permet de stabiliser un système intrinsèquement instable.

3.2. Asservissement d'un système du premier ordre

Considérons un système du premier ordre asservi et régi par le schéma-bloc suivant :

La fonction de transfert en boucle ouverte $H_{BO}(p)$ du procédé est alors tel que :

$$H_{BO}(p) = \frac{K}{1 + \tau p}$$

où K est le gain statique et τ la constante de temps du système en boucle ouverte. La FTBF est alors donnée :

$$H_{BF}(p) = \frac{H(p)}{1 + H(p)} = \frac{K}{(1 + K) + \tau p}$$

Remarquons que comme attendu la FTBF reste du premier ordre. Sous sa forme canonique cette fonction de transfert devient :

$$H_{BF}(p) = \frac{\frac{K}{1+K}}{1+\frac{\tau}{1+K}p} = \frac{K_{BF}}{1+\tau_{BF}p}$$

où K_{BF} est le gain statique et τ_{BF} la constante de temps du système boucle fermée. Par identification, on alors les rélations suivantes entre les paramètres du premier ordre de la FTBO et les paramètres du premier ordre de la FTBF :

$$K_{BF} = \frac{K}{1+K}$$
$$\tau_{BF} = \frac{\tau}{1+K}$$

Constatons que le gain statique en boucle ouverte K intervient dans la définition du gain statique K_{BF} et de la constante de temps τ_{BF} en boucle fermée. Ainsi en

modifiant le paramètre K, il est possible de jouer sur les deux paramètres régissant la boucle fermée. Pour K > 0, le domaine de définition des paramètres du système en boucle fermée sont $K_{BF} \in [0, 1[$ et $\tau_{BF} \in]0, \tau]$

3.3. Asservissement d'un système du second ordre

Considérons un système du second ordre asservi et régi par le schéma-bloc suivant :

La fonction de transfert en boucle ouverte du procédé $H_{BO}(p)$ est tel que :

$$H_{BO}(p) = \frac{K\omega_0^2}{\omega_0^2 + 2\xi\omega_0 p + p^2}$$

où K est le gain statique, ω_0 la pulsation propre et ξ le coefficient d'amortissement du système en boucle ouverte. La FTBF est donnée par :

$$H_{BF}(p) = \frac{H(p)}{1 + H(p)} = \frac{K\omega_0^2}{\omega_0^2(1 + K) + 2\xi\omega_0 p + p^2}$$

Une nouvelle fois, nous constatons que la fonction de transfert en boucle fermée est du même ordre que celle en boucle ouverte. Sous une forme canonique la FTBF devient :

$$H_{BF}(p) = \frac{K\omega_0^2}{\omega_0^2(1+K) + 2\xi\omega_0p + p^2} = \frac{K_{BF}\omega_{0,BF}^2}{\omega_{0,BF}^2(1+K_{BF}) + 2\xi_{BF}\omega_{0,BF}p + p^2}$$

Par identification, on alors les rélations suivantes entre les paramètres du premier ordre de la FTBO et les paramètres du premier ordre de la FTBF :

$$K_{BF} = \frac{K}{1+K}$$

$$\omega_{0,BF} = \omega_0 \sqrt{1+K}$$

$$\xi_{BF} = \frac{\xi}{\sqrt{1+K}}$$

4. Performances des systèmes en boucle ouverte

- 4.1. Stabilité en boucle ouverte
- 4.2. Précision en boucle ouverte
- 4.3. Rapidité en boucle ouverte
- 4.4. Dépassement en boucle

A. Alphabet Grec

Nom	Minuscule	Majuscule	Correspondance latine	Usages courants
alpha	α	A	a	angles
bêta	β	В	b	angles
gamma	γ	Γ	g	angles
delta	δ	Δ	d	variations
epsilon	ϵ, ε	E	e	petite quantité
zéta	ζ	Z	Z	-
êta	η	Н	é (long)	rendement
thêta	θ, ϑ	Θ	th	angles
iota	l	I	i	-
kappa	κ, \varkappa	K	k	-
lambda	λ	Λ	1	longueur, densité linéique
mu	μ	M	m	masse réduite
nu	ν	N	n	fréquence
ksi	ξ	[1]	ks	coefficient sans dimension
omicron	О	О	O	-
pi	π , ϖ	П	p	П :plan
rhô	ρ , ϱ	Р	r	densité volumique
sigma	σ , ς	Σ	s	σ : densité surfacique, Σ : Système
tau	τ	Т	t	temps, durée relative
upsilon	v	Y	u	-
phi	ϕ, φ	Φ	f,ph	angles
khi	χ	X	kh	coefficients
psi	ψ	Ψ	ps	fonction d'onde
oméga	ω	Ω	ô	vitesse angulaire angle solide

Références

- [1] Régulation automatique (analogique) (REG). http://php.iai.heig-vd.ch/~mee/.
- [2]
- [3] Xcos pour les vrais debutants. https://scilab.developpez.com/tutoriels/debuter/apprendre-xcos-debutant/.
- [4] Denis Arzelier. Représentation et analyse des systèmes lineaires (pc7bis), 2005.
- [5] B. Bayle and J. Gangloff. Systèmes et asservissements à temps continu, 2009.
- [6] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah. *Modeling and Simulation in Scilab/Scicos*. Springer, 2006.
- [7] H. Garnier. http://w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching.
- [8] Y. Granjon. Automatique: systèmes linéaires, non linéaires, à temps continu, à temps discret, représentation d'état, événements discrets. Dunod, Paris, 2015.
- [9] E. Laroche and H. Halalchi. Asservissement des systèmes lineaires à temps continu. http://eavr.u-strasbg.fr/~laroche/student.
- [10] O. Le Gallo. Automatique des systèmes mécaniques : Cours, travaux pratiques et exercices corrigés. Sciences de l'ingénieur. Dunod, 2009.
- [11] Joe Mabel. Régulateur à boules au Georgetown PowerPlant Museum à Seattle. CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5694146.
- [12] B. Marx. Outils Mathématiques pour l'ingénieur Traitement du Signal. http://w3.cran.univ-lorraine.fr/perso/benoit.marx/enseignement.html.
- [13] B. Marx. Contrôle des systèmes linéaires. http://w3.cran.univ-lorraine.fr/perso/-benoit.marx/enseignement.html.
- [14] F. Orieux. Automatique : Systèmes linéaires et asservissements. Notes de Cours, Master 2 Outils et systèmes de l'astronomie et de l'Espace, 20017-1018.

- [15] E. Ostertag. Systèmes et asservissements continus : Modélisation, analyse, synthèse des lois de commande. Ellipses Marketing, 2004.
- [16] R. Papanicola. Schéma-blocs avec PGF/TIKZ. https://sciences-indus-cpge.papanicola.info/IMG/pdf/schema-bloc.pdf.
- [17] R. Papanicola. Sciences industrielles PCSI: Mécanique et automatique. Ellipses Marketing, 2003.
- [18] R. Papanicola. Sciences industrielles PSI: Mécanique et automatique. Ellipses Marketing, 2010.
- [19] Marsyas-Travail personnel. Clepsydre athénienne reconstituée, Musée de l'Agora antique d'Athènes. CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=476174.
- [20] Consortium Scilab. Introduction to Scilab. www.scilab.org/content/download/247/1702/file/introscilab.pdf.
- [21] S. Steer and Y. Degré. Scilab: De la théorie à la pratique II. Modéliser et simuler avec Xcos. Éditions D-BookeR, 2014.
- [22] C. Sueur, P. Vanheeghe, and P. Borne. Automatique des systèmes continus. Editions Technip.
- [23] E. Thomas. TP Scilab. http://cpgeptljg.free.fr/scenari/TP_INFO/TP_info_12_ordre/co/module_TP_1_2_ordre_5.html.

Glossaire

FTBF Fonction de Transfert en Boucle Fermée

FTBO Fonction de Transfert en Boucle Ouverte

FTCD Fonction de Transfert de la Chaîne Directe

FTCR Fonction de Transfert de la Chaîne de Retour

Liste des Symboles

t	Variable temporelle
p	Indéterminée de polynôme
s(t)	Fonction/Signal dans le domaine temporel
S(p)	Fonction/Signal dans le domaine de Laplace de la fonction $\boldsymbol{s}(t)$
u(t)	Fonction échelon unité ou de Heaviside
$\delta(t)$	Distribution de Dirac
r(t)	Fonction rampe unité
$\mathscr{L}\left\{ f(t)\right\}$	Transformation de Laplace de la fonction $f(t)$
$\mathscr{L}^{-1}\left\{ F(p)\right\}$	Transformation de Laplace inverse de la fonction $\mathcal{F}(p)$
H(p)	Fonction de transfert
N(p)	Polynôme du numérateur d'une fraction rationnelle
D(p)	Polynôme du dénominateur d'une fraction rationnelle
ω	Pulsation
$H(j\omega)$	Nombre complexe associé à la fonction de transfert $\mathcal{H}(p)$
E_0	Paramètre dimensionnelle d'amplitude de l'entrée
K	Gain statique
ω_0	Pulsation propre

${\rm Im}[H(j\omega)]$	Partie imaginaire du nombre complexe $H(j\omega)$
$\mathrm{Re}[H(j\omega)]$	Partie réelle du nombre complexe $H(j\omega)$
ξ	Coefficient d'amortissement
$G(\omega)$	Gain naturel de la réponse harmonique en fonction de la pulsation
$G_{dB}(\omega)$	Gain en decibel de la réponse harmonique en fonction de la pul-
	sation
$\phi(\omega)$	Déphasage de la réponse harmonique en fonction de la pulsation
D_k	k-ème dépassement
$t_{5\%}$	Temps de réponse à 5%