Random Forest

Idea: build a forest of trees and combine their results

Bootstrapped datasets

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease	
No	No	No	125	No	
Yes	Yes	Yes	180	Yes	
Yes	Yes	No	210	No	
Yes	No	Yes	167	Yes	

	Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
•	Yes	Yes	Yes	180	Yes
	No	No	No	125	No
7	Yes	No	Yes	167	Yes
	Yes	No	Yes	167	Yes

Select a subset of the features and start the procedure to build the corresponding tree

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

Continue building the tree by considering the remaining features

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

Build the final tree

Buid the tree only considering a random subset of features at each step.

Create a forest of trees from bootstrapped datasets

Classify a new sample with «bagging» (bootstrapping + aggregation)

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	No	168	

Evaluate the accuracy of a Random Forest: Out-of-Bag Error

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

- For each tree
- 1. Create the Out-of-Bag Dataset
- 2. Evaluate the misclassification error on the tree by using the Out-of-Bag Dataset
- Return the proportion of misclassified samples in the Out-of-Bag Datasets overall

Better Random Forests

Select a subset of the features and start the procedure to build the corresponding tree <u>and the</u> <u>corresponding forest</u>

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

Missing values

Missing Data

In the original dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	???	???	No

In the new sample

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	???	

Missing values in the dataset

Initial guess - Categorical

		Blocked Arteries		Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	Yes	???	???	No

Consider the most common value found in the other samples that have NO as value for Heart Disease

Initial Guess - Numerical

		Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	Yes	No	167.5	No

Consider the median value among the ones found in the other samples that have NO as value for Heart Disease

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	Yes	No	167.5	No

1. Build a Random Forest

2. Run the data through the forest by considering each tree

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	Yes	No	167.5	No

Sample 3 and 4 end up at the same leaf node.

This seems they are similar.

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	Yes	No	167.5	No

Keep track of the similarity via a proximity matrix

	1	2	3	4
1				
2				
3				1
4			1	

	Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
	No	No	No	125	No
<	Yes	Yes	Yes	180	Yes
<	Yes	Yes	No	210	No
<	Yes	Yes	No	167.5	No

Sample 2, 3 and 4 end up at the same leaf node.

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	Yes	No	167.5	No

Update the proximity matrix

	1	2	3	4
1				
2			1	1
3		1		2
4		1	2	

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	Yes	No	167.5	No

Update the proximity matrix with respect to all the trees and then normalize with respect to the total number of trees

	1	2	3	4
1		2	1	1
2	2		1	1
3	1	1		8
4	1	1	8	

	1	2	3	4
1		0.2	0.1	0.1
2	0.2		0.1	0.1
3	0.1	0.1		8.0
4	0.1	0.1	8.0	

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	???	???	No

Use the proximity matrix to compute the value

Compute the frequency

Yes =
$$1/3$$

$$No = 2/3$$

	1	2	3	4
1		0.2	0.1	0.1
2	0.2		0.1	0.1
3	0.1	0.1		8.0
4	0.1	0.1	8.0	

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	???	???	No

$$Yes = \frac{1}{3} \cdot proximity^{YES}$$

$$= \frac{1}{3} \cdot \frac{0.1}{01. + 0.1 + 0.8} = 0.03$$

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	???	???	No

No =
$$\frac{2}{3} \cdot proximity^{YES}$$

$$= \frac{2}{3} \cdot \frac{0.1 + 0.8}{01. + 0.1 + 0.8} = 0.6$$

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	???	???	No

	1	2	3	4
1		0.2	0.1	0.1
2	0.2		0.1	0.1
3	0.1	0.1		8.0
4	0.1	0.1	0.8	

Compute the weighted average

$$w = 125 \cdot \frac{0.1}{0.1 + 0.1 + 0.8} + 180 \cdot \frac{0.1}{0.1 + 0.1 + 0.8} + 210 \cdot \frac{0.8}{0.1 + 0.1 + 0.8} = 198.5$$

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	Yes	NO	198.5	No

- Build a new Random Forest
- Repeat all the previous steps until until the missing values converge

Missing values in the new samples

Create two copies of the sample with missing data

ASSUMPTION: we already have trained

a random forest

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	???	168	

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	???	168	YES

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	???	168	NO

Use the method for missing values in the dataset to guess a value

Run the two samples in the random forest

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	YES	168	YES

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	NO	168	NO

Count all the times the two samples are correctly labelled

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	YES	168	YES

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	No	(NO)	168	NO