RIGOL

数据手册

DM3058/DM3058E 数字万用表

产品综述

DM3058/DM3058E^[1]是一款 5½ 位双显数字万用表。它是针对高精度、多功能、自动测量的用户需求而设计的产品。

应用领域

- 研发实验室
- 科研教育
- 检测维修
- 品质验证测试
- 自动化生产测试

强大的测量功能

> 基本测量功能

- 直流电压测量: 200 mV ~ 1000 V
- 直流电流测量: 200 µA ~ 10 A
- 交流电压测量: True-RMS, 200 mV ~ 750 V
- 交流电流测量: True-RMS, 20 mA ~ 10 A
- 2、4 线电阻测量: 200 Ω ~ 100 MΩ
- 电容测量: 2 nF ~ 10000 µF
- 连通性测试:量程固定在 2 kΩ
- 二极管测试: 量程固定在 2.0 V
- 频率测量: 20 Hz ~ 1 MHz
- 周期测量: 1 µs ~ 0.05 s
- 任意传感器测量:支持 DCV、DCI、Freq、 2WR、4WR、热电偶 TC 共 6 种传感器类型

> 数学运算功能

最大值、最小值、平均值、标准偏差、 Pass/Fail、dBm、dB、相对测量、直方图

人性化设计

- 256×64点阵液晶显示
- 支持双显示、中英文菜单
- 内置帮助系统,方便信息获取
- 文件管理(支持U盘及本地存储)

主要特色

- 真正的5½位读数分辨率
- 高达123 rdgs/s的测量速度
- 真有效值交流电压和交流电流测量
- 可快速存储和调用10组预存配置
- 预设10种标准传感器配置,内置热电偶冷端补偿
- 通过U盘将仪器所有配置"克隆"到其它 DM3058/DM3058E数字万用表
- 业界首个通过LXI认证的5 ½位数字万用 表,可轻松实现系统集成
- 简单、方便、灵活的UltraSensor任意传感 器测量控制软件
- 标准配置接口: USB Device, USB Host, LAN(仅DM3058), RS-232, GPIB(仅 DM3058)
- 支持远程命令控制、全面兼容主流万用表 命令集

注^[1]: DM3058 和 DM3058E 的区别仅为后者不支持 LAN 和 GPIB 接口。

2015年11月 RIGOL TECHNOLOGIES, INC.

双显模式

灵活方便的双显功能可使您的测量工作达到 事半功倍的效果。双显示屏可同时显示同一 信号的两种特性,而在以往则需要使用两台 万用表或连续进行两次测量。利用双显示 屏,还可显示被测输入信号的测量组合。

预设模式

Preset					
	-	害祸	た ‡案	•	
		<u>'円 火</u>	일 /+		
Set1	Set2	Set3	Set4	Set5	•

提供预设的工作模式。该模式可最大程度简化 产线工人的操作。用户可快速存储和调用 10 组预存配置。

独特的任意传感器功能

任意传感器测量是为满足用户需求所提出的 全新概念,用户可方便的对压力、流量、温度 等各种类型的传感器进行配接。

支持 DCV, DCI, Freq, 2WR, 4WR 和 TC 共 6 种传感器类型,同时还预置 10 组标准传感器配置。

内置热电偶冷端补偿。

镜像配置

您可以通过 U 盘将所有配置(系统配置和传感器 配置)"克隆"到产线上的其他 DM3058/DM3058E 万用表中,从而提高产线工作效率。

Pass/Fail

Pass/Fail 运算功能可根据设定的上下限参数, 对超出范围的信号进行提示,使测试结果一目 了然。

LXI 认证&Web 远程控制

DM3058是业界首个通过LXI认证的5½位数字 万用表,它使系统集成变得更加容易。

用户可通过 Web 页面对 DM3058 数字万用表进行远程控制。Web 页面提供一个虚拟面板,其操作方法与前面板一致。

简单、方便、灵活的控制软件

UltraSensor 软件界面

UltraSensor 用于任意传感器测量控制。该软件主要功能包括:

- 创建传感器测量工程,可以下载至数字万用表使 田,
- 与数字万用表连接,实现任意传感器测量功能:
- 实时监测传感器数据,图形化显示传感器数据;
- 可保存 CSV 和 TXT 格式数据,及 BMP 格式参考曲线。

技术指标

直流特性

准确度指标±(% 读数 + % 量程)[1]

功能	量程 ^[2]	测试电流或	1年	温度系数
		负荷电压	23℃±5℃	0℃ - 18℃
				28℃ - 50℃
直流电压	200.000 mV		0.015 + 0.004	0.0015 + 0.0005
	2.00000 V		0.015 + 0.003	0.0010 + 0.0005
	20.0000 V		0.015 + 0.004	0.0020 + 0.0005
	200.000 V		0.015 + 0.003	0.0015 + 0.0005
	1000.00 V ^[4]		0.015 + 0.003	0.0015 + 0.0005
直流电流	200.000 μΑ	<8 mV	0.055 + 0.005	0.003 + 0.001
	2.00000 mA	<80 mV	0.055 + 0.005	0.002 + 0.001
	20.0000 mA	<0.05 V	0.095 + 0.020	0.008 + 0.001
	200.000 mA	<0.5 V	0.070 + 0.008	0.005 + 0.001
	2.00000 A	<0.1 V	0.170 + 0.020	0.013 + 0.001
	10.0000 A ^[5]	<0.3 V	0.250 + 0.010	0.008 + 0.001
电阻[3]	200.000 Ω	1 mA	0.030 + 0.005	0.0030 + 0.0006
	2.00000 kΩ	1 mA	0.020 + 0.003	0.0030 + 0.0005
	20.0000 kΩ	100 μΑ	0.020 + 0.003	0.0030 + 0.0005
	200.000 kΩ	10 μΑ	0.020 + 0.003	0.0030 + 0.0005
	2.00000 MΩ	1 μΑ	0.040 + 0.004	0.0040 + 0.0005
	10.0000 MΩ	200 nA	0.250 + 0.003	0.0100 + 0.0005
	100.000 MΩ	200 nA 10 MΩ	1.75 + 0.004	0.2000 + 0.0005
二极管测试	2.0000 V ^[6]	1 mA	0.05 + 0.01	0.0050 + 0.0005
连续性测试	2000 Ω	1 mA	0.05 + 0.01	0.0050 + 0.0005

注:

- [1] 预热 0.5 小时且"慢"速测量,校准温度为 18℃~ 28℃时的指标。
- [2] 除 DCV 1000 V, ACV 750 V, DCI 10 A 和 ACI 10 A 量程外, 所有量程为 20%超量程。
- [3] 4 线电阻测量或使用"相对"运算的 2 线电阻测量的指标。二线电阻测量在无"相对"运算时增加 $\pm 0.2~\Omega$ 的附加设差。
- [4] 超过±500 VDC 时,每超出 1 V 增加 0.02 mV 误差。
- [5] 对于大于 DC 7 A 或 AC RMS 7 A 的连续电流,接通 30 秒后需要断开 30 秒。
- [6] 精度指标仅为输入端子处进行的电压测量。测试电流的典型值为 1 mA。电流源的变动将产生二极管结上电压降的某些变动。

直流电压	
输入电阻	200 mV 和 2 V 量程 10 MΩ 或>10 GΩ 可选
	(这些量程下输入超出±2.5 V 时会通过 100 kΩ (典型值) 电阻钳位)
	20 V,200 V 和 1000 V 量程 10 MΩ ± 2%
输入偏流	<90 pA,25℃时
输入保护	1000 V,所有量程
共模抑制比	120 dB (对于LO引线的1 kΩ不平衡电阻,最大±500 VDC)。
常模抑制比	"慢"速率时 60 dB
	打开"滤波器"常模抑制比增加 20 dB (源阻抗接近零时,测量建立时间增加约 0.35
	ς)
电阻	
测试方法	4 线电阻或 2 线电阻可选
	电流源参考到 LO 输入
开路电压	限制在<8 V
最大引线电阻	200 Ω、1 kΩ 量程每条引线为 10%量程
(4线电阻)	所有其它量程每条引线为 1 kΩ
输入保护	1000 V,所有量程
直流电流	
分流电阻器	200 μA 档取样电压<8 mV
	2 mA 档取样电压<80 mV
	20 mA ,200 mA 档为 1 Ω
	2 A,10 A 档为 0.008 Ω

输入保护	位于后面板的可更换 10 A, 250 V 快熔丝	
	内部 12 A, 250 V 慢熔丝	
连续性/二极管测试		
测量方法	使用 1 mA ± 5%恒流源,<8 V 开路电压	
响应时间	123 采样/秒,带蜂鸣	
连续性阈值	1 Ω 至 2000 Ω 可调	
输入保护	1000 V	
建立时间须注意事项		
由压测量读数建立时间受源阻抗、由继介质特性及输入信号变化影响。		

交流特性

准确度指标±(% 读数 + % 量程)[1]

	[2]	der de de Eri		/0
功能	量程 ^[2]	频率范围	1年	温度系数
			23℃±5℃	0℃ - 18℃
				28℃ - 50℃
真有效值交流电压[3]	200.000 mV	20 Hz – 45 Hz	1.5 + 0.10	0.01 + 0.005
		45 Hz – 20 kHz	0.2 + 0.05	0.01 + 0.005
		20 kHz – 50 kHz	1.0 + 0.05	0.01 + 0.005
		50 kHz – 100 kHz	3.0 + 0.05	0.05 + 0.010
	2.00000 V	20 Hz – 45 Hz	1.5 + 0.10	0.01 + 0.005
		45 Hz – 20 kHz	0.2 + 0.05	0.01 + 0.005
		20 kHz – 50 kHz	1.0 + 0.05	0.01 + 0.005
		50 kHz – 100 kHz	3.0 + 0.05	0.05 + 0.010
	20.0000 V	20 Hz – 45 Hz	1.5 + 0.10	0.01 + 0.005
		45 Hz – 20 kHz	0.2 + 0.05	0.01 + 0.005
		20 kHz – 50 kHz	1.0 + 0.05	0.01 + 0.005
		50 kHz – 100 kHz	3.0 + 0.05	0.05 + 0.010
	200.000 V	20 Hz – 45 Hz	1.5 + 0.10	0.01 + 0.005
		45 Hz – 20 kHz	0.2 + 0.05	0.01 + 0.005
		20 kHz – 50 kHz	1.0 + 0.05	0.01 + 0.005
		50 kHz – 100 kHz	3.0 + 0.05	0.05 + 0.010
	750.000 V	20 Hz – 45 Hz	1.5 + 0.10	0.01 + 0.005
		45 Hz – 20 kHz	0.2 + 0.05	0.01 + 0.005
		20 kHz – 50 kHz	1.0 + 0.05	0.01 + 0.005
		50 kHz – 100 kHz	3.0 + 0.05	0.05 + 0.010
真有效值交流电流[5]	20.0000 mA	20 Hz – 45 Hz	1.5 + 0.10	0.015 + 0.015
		45 Hz – 2 kHz	0.50 + 0.10	0.015 + 0.006
		2 kHz – 10 kHz	2.50 + 0.20	0.015 + 0.006
	200.000 mA	20 Hz – 45 Hz	1.50 + 0.10	0.015 + 0.005
		45 Hz – 2 kHz	0.30 + 0.10	0.015 + 0.005
		2 kHz – 10 kHz	2.50 + 0.20	0.015 + 0.005
	2.00000 A	20 Hz – 45 Hz	1.50 + 0.20	0.015 + 0.005
		45 Hz – 2 kHz	0.50 + 0.20	0.015 + 0.005
		2 kHz – 10 kHz	2.50 + 0.20	0.015 + 0.005
	10.0000 A ^[5]	20 Hz – 45 Hz	1.50 + 0.15	0.015 + 0.005
		45 Hz – 2 kHz	0.50 + 0.15	0.015 + 0.005
		2 kHz – 5 kHz	2.50 + 0.20	0.015 + 0.005

附加波峰因素误差(非正弦波)[6]		
波峰系数 误差(% 量程)		
1 - 2	0.05	
2 - 3	0.2	

注:

- [1] 预热 0.5 小时且"慢"速测量,校准温度为 18℃~ 28℃时的指标。
- [2] 除 DCV 1000 V, ACV 750 V, DCI 和 ACI 10 A 量程外, 所有量程为 20%超量程。
- [3] 幅值 > 5% 量程的正弦信号下的技术指标。750 VAC 量程限制至 $8x10^7$ Volts-Hz。当输入在 1%到 5%量程内,且 频率 < 50 kHz 时,增加 0.1%量程的附加误差;若频率为 50 kHz ~ 100 kHz 时,增加 0.13%量程的附加误差。
- [4] 幅值>5% 量程的正弦信号下的技术指标。当输入在1%到5%量程内时,增加0.1%量程的附加误差。
- [5] 对于大于 DC 7 A 或 AC RMS 7 A 的连续电流,接通 30 秒后需要断开 30 秒。
- [6] 对于频率<100 Hz。

真有效值交流电压	
测量方法	AC 耦合真有效值测量,任意量程下可以有最高 1000 V 直流偏置
波峰因数	满量程波峰因数 ≤ 3
输入阻抗	所有量程下为 1 MΩ ± 2%并联<100 pF 电容
AC 滤波器带宽	20 Hz ~ 100 kHz
共模抑制比	60 dB (对于 LO 引线中的 1 kΩ 不平衡电阻和<60 Hz,最大±500 VDC)
真有效值交流电流	·
测量方法	直流耦合到保险丝和分流电阻器,AC 耦合到真有效值测量(测量输入的 AC 成分)
波峰因数	满量程波峰因数 ≤ 3
最大输入	DC+AC 电流峰值必须<300%量程。包含 DC 电流成分的 RMS 电流<10 A。
分流电阻器	2 A,10 A 档为 0.008 Ω,20 mA 和 200 mA 档为 1 Ω
输入保护	位于后面板的可更换10 A, 250 V快熔丝
	内部 12 A, 250 V 慢熔丝

建立时间注意事项

在精确测量前必须确保输入端的RC回路已经完全稳定(超过1s)。

输入>300 Vrms(或>5 Arms)将引起信号调理元件自热,由此引起的误差包括在仪器特性中。由自热引起的内部温度变化将给较小的交流档位带来额外的误差。额外的误差小于0.03%读数,且一般会在几分钟内消失。

频率和周期特性

准确度指标±(% 读数 + %量程)^[1]

功能	量程	频率范围	1年	温度系数
			23℃±5℃	0℃ - 18℃
				28℃ - 50℃
频率、周期	200 mV 至 750 V ^[2]	20 Hz – 2 kHz	0.01 + 0.003	0.002 + 0.001
		2 kHz – 20 kHz	0.01 + 0.003	0.002 + 0.001
		20 kHz – 200 kHz	0.01 + 0.003	0.002 + 0.001
		200 kHz – 1 MHz	0.01 + 0.006	0.002 + 0.002
	20 mA 至 10 A ^[3]	20 Hz – 2 kHz	0.01 + 0.003	0.002 + 0.001
		2 kHz – 10 kHz	0.01 + 0.003	0.002 + 0.001

注:

- [1] 预热0.5小时后的指标。
- [2] 除标明外, <100 kHz时,指标指15%至120%量程交流输入电压,>100 kHz时,指标指40%至120%量程,750 V 量程限制在750 Vrms。200 mV量程为满量程输入或比满量程大的输入。对于30 mV至200 mV,将%读数误差乘以10。
- [3] 除标明外,指标指15%至120%量程交流输入电流。20 mA量程为满量程输入,对于5 mA至20 mA,将%读数误差乘以10。10 A量程为25%至100%量程的交流输入电流。

频率和周期

测量方法: 倒计数测频技术,AC耦合输入,使用交流电压或交流电流功能。

测量注意事项

所有频率计数器都在小电压,低频信号时引入误差。屏蔽输入非常有助于减小外部噪声带来的测量误差。

建立时间注意事项

当被测信号含有变化的直流分量时,测量周期或频率时会出现误差。在精确测量时必须确保输入端的 RC 回路已经完全稳定(超过 $1\,s$)。

电容特性

准确度指标±(%读数 + %量程)[1]

			1年97/文1日	你主 (70)庆然 1 70 重任/
功能	量程 ^[2]	最大测试电流	1年	温度系数
			23℃±5℃	0℃ - 18℃
				28℃ - 50℃
电容	2.000 nF	200 nA	3 + 1.0	0.08 + 0.002
	20.00 nF	200 nA	1 + 0.5	0.02 + 0.001
	200.0 nF	2 μΑ	1 + 0.5	0.02 + 0.001
	2.000 μF	10 μΑ	1 + 0.5	0.02 + 0.001
	200 μF	100 μΑ	1 + 0.5	0.02 + 0.001
	10000 μF	1 mA	2 + 0.5	0.02 + 0.001

注:

- [1] 预热0.5小时且打开"相对"运算时的指标。非薄膜电容器可能产生附加误差。
- [2] 指标适用于如下情况, 2 nF量程时被测电容介于1%至120%量程; 其他量程下,被测电容介于10%至120%量程。

电容测量		
测量方法	测量电流输入电容所产生的电压变化速率	
连接形式	2线	
输入保护	所有量程 1000 V	
测量注意事项		
小电容测量时容易受外部噪声导致测量误差,屏蔽输入非常有助于减小外部噪声带来的测量误差。		

其他测量特性

触发和存储器			
采样/触发	1 ~ 2000		
触发延迟	8 ms至2000 ms可设置		
外部触发输入	输入电平	TTL 兼容(输入端悬空时为高)	
	触发条件	上升沿/下降沿可选	
	输入阻抗	>20 kohm 并联 400 pF, 直流耦合	
	最小脉宽	500 μs	
VMC 输出	电平	TTL 兼容(输入到>=1 kohm 负载)	
	输出极性	正极性, 负极性可选	
	输出阻抗	200 ohm,典型	
任意传感器测量			
支持热电偶、直流电压、	直流电流、电阻(2线或4线)和频率输出势	类型传感器,内置热电偶冷端补偿。	
输出极性: 正极性,负	极性可选		
预设B、E、J、K、N、R、	S、T型热电偶的ITS-90变换和Pt100、Pt3	85铂电阻温度传感器变换。	
数学运算功能			
Pass/Fail、相对(RELativ	ass/Fail、相对(RELative)、最小值/最大值/平均值、dBm、dB、Hold、直方图、标准偏差		
历史记录功能			
易失性存储器	2000读数历史数据记录		
非易失性存储	10组历史数据存储(2000读数/组);10组传感器数据存储(1000读数/组);		

10组仪器设置存储; 10组任意传感器设置存储; 支持U盘外部存储扩展。

通用技术指标

电源	
AC 100 V ~ 120 V	45 Hz ~ 440 Hz
AC 200 V ~ 240 V	45 Hz ~ 66 Hz
功耗	20 VA 峰值
机械	
高×宽×深	107.0 mm×231.6 mm×290.5 mm
重量	2.5 kg
其它特性	
显示屏	256×64 点阵 LCD 显示,支持双显、菜单、中英文双语言和操作帮助
工作环境	全 0℃ ~ 50℃, 80% R.H., 40℃, 无凝结
	存储温度: -20℃ ~ 70℃
	冲击和振动: 符合MIL-T-28800E,III类,5级(仅正弦)
	海拔高度: 上限3000米
安全性	符合IEC61010-1: 2001。测量CAT I 1000 V/CAT II 600 V。污染等级2。
远程接口	GPIB (仅DM3058), 10/100Mbit LAN (仅DM3058), USB2.0 Full Speed Device & Host
	(支持U盘),RS-232C
编程语言	RIGOL 3058 SCPI、FLUKE45、Agilent34401A
LXI 兼容性	LXI Class C, Version1.1 (仅DM3058)
热机时间	30分钟

订购信息

产品名称

RIGOL DM3058/DM3058E 数字万用表

标准配件

- 一根符合所在国标准的电源线
- 两根表笔(黑、红)
- 两个鳄鱼夹(黑、红)
- 一根 USB 数据线
- 一个备份保险丝
- 一本《快速指南》
- 一份《产品保修卡》
- 一张光盘(《用户手册》,上位机应用软件)

选购配件

- 开尔文测试夹
- RS-232 串口线

保修概要

非常感谢您使用 RIGOL 的产品!

北京普源精电科技有限公司及其授权生产的苏州 普源精电科技有限公司(**RIGOL**

TECHNOLOGIES, INC.)承诺其生产仪器的主机和 附件,在产品保修期内无任何材料和工艺缺陷。 在保修期内,若产品被证明有缺陷,**RIGOL** 将为 用户免费维修或更换。详细保修说明请参见 **RIGOL** 官方网站或产品保修卡。

欲获得维修服务或索取保修说明全文,请与我们 的维修中心或各地办事处联系。

除本概要或其他适用的保修卡所提供的保证以外,**RIGOL**公司不提供其他任何明示或暗示的保证,包括但不局限于对产品可交易性和特殊用途适用性之任何暗示保证。在任何情况下,**RIGOL**公司对间接的,特殊的或继起的损失不承担任何责任。

联系我们

如您在使用此产品或本手册的过程中有任何问题或需求,可与 RIGOL 联系:

电子邮箱: service@rigol.com 网 址: www.rigol.com