100.64524 陳宏育 HW3.

1. Let α be the root of m(x) = x + 4 in $\mathbb{F}_{x}[x]$.

 $m(\alpha) = 0 = \alpha^{2} + 4 \Rightarrow \alpha^{2} = -4 = 3 \mod 7$.

 $\Rightarrow \alpha^4 = 9 \mod 7 = 2 \mod 7 \Rightarrow \alpha^8 = 4 \mod 7 \Rightarrow \alpha^{16} = 16 \mod 7 = 2 \mod 7$

 $\Rightarrow \{\alpha^2, \alpha^4, \alpha^8\}$ are primitive elements.

 \Rightarrow ord $(\alpha^2) = 3$.

2. (11) represents x+1 and (22) represents 2x+2.

At a for a=0,1,...,48.

 $\chi^2 + \chi + \alpha$ for $\alpha = 0, ..., 48$ except 0, 7, 42.

x+a for a=0,..., 48 except 0, 13, 36, 75, 24, 40, 48.

3. x+a for a=0,...,48 x^2+x+a for a=0,...,48 except 0,7,42.

 χ^{2} +a for a=0,..., 48 except 0,13,24,75,36,40,48.

4. x+1, x, x+2, x+3, x+4, x+5, x+6.

 $\chi^{2}+\chi+1$, $\chi^{2}+\chi+2$, $\chi^{2}+\chi+3$, $\chi^{2}+\chi+4$, $\chi^{2}+\chi+5$, $\chi^{2}+\chi+6$.

x+1, x+2, x+4, x+5