Detection and segmentation of locomotor cycle in mice movement using processed data from marker-based 3D motion capture on voluntary treadmill running

FACULTY OF INFORMATION ENGINEERING, INFORMATICS AND STATISTICS

MASTER COURSE IN COMPUTER SCIENCE

Advisor: Prof. Maria De Marsico

External Advisor: Lakshmipriya Swaminathan

Candidate: Federico Barreca

ID number: 1736423

Exploring Information Hidden in Movement

What does the whole body do when a mouse takes a step?

Exploring Information Hidden in Movement

What are the components of movement?

What does the whole body do when a mouse takes a step?

Exploring Information Hidden in Movement

What is the structure of a gait?

What does the whole body do when a mouse takes a step?

What are the components of movement?

Data Science Approach

Neuronal Rhythms in Movement Unit

Research Internship at Okinawa Institute of Science and Technology

My contribution to the research:

- Data Processing
- Delay Embedding Threshold Criterion
- Data Visualization

Data Collection

High-Quality 3D Marker-based Motion Capture

Qualisys Track Manager calibration process

3D Motion Capture environment setup

Data Collection

High-Quality 3D Marker-based Motion Capture

10 markers skin implantation setup

Mouse running on treadmill at 30 m/min

Mouse running on treadmill at 30 m/min slowed to 25% speed

Data Processing

Labeling and Gap-filling

Manual labeling and gap-filling editor on Qualisys Track Manager

Gap-filling with polynomial interpolation

Labeled and gap-filled running animation at 30 m/min

Running animation at 30 m/min slowed to 25% speed

Data Processing

Reshape and Egocentric Tranform

$$(10,3,T) \rightarrow (30,T)$$

Where:

T is the total number of frames

- Highlight how different parts of the move relatively to each other
- Remove translation and rotation

Data Analysis: Movement Decomposition

Principal Component Analysis

PCA data pre-processing:

- Mean Subtraction
- Dataset Shuffle
- Parallel Analysis
- No Standardization

Data Analysis: Movement Decomposition

Modes of Deformation

Project data on a Principal Component to observe the variation along a specific direction

Study the **deformation** of the mean body configuration and compare the movement with traditionally defined gaits

Recurrence Quantification Analysis

Delay Embedding

$$\tau = 1 \text{ frame} = \frac{1}{300} ms$$

Overembedding Handling

Focus Measure

Variance of the Laplacian Operator on an Image

Quantify the unfolding of the underlying attractor obtained from the delay embedding

Focus Measure: 195.17

Focus Measure: 106.85

Focus Measure: 52.96

Focus Measure: 35.86

Unitary Movements and Segmentation

Unitary Movement = coordination pattern + unit of locomotion

Plots obtained from a correct 333ms delay

Mouse Movement: A Web Application for 3D and 2D Visualization and Interaction

Mouse Movement: 3D Visualization and Interaction

Mouse Movement: 2D Visualization and Interaction

Mouse Movement: 2D Visualization and Interaction

Thank you for your attention!