

Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Departamento de Ciências Exatas - DCEX
Disciplina: Cálculo Numérico
Prof. Me. Luiz C. M. de Aquino

Lista de Exercícios III

- 1. Use o Método da Secante para encontrar a raiz aproximada da função definida por $f(x) = \cos x \frac{1}{5}$ no intervalo [1; 2] (considere uma tolerância de 10^{-5}).
- 2. Use o Método da Falsa Posição para encontrar a raiz aproximada da equação $e^x e^{-x} = 2\cos x$ no intervalo [0; 1] (considere uma tolerância de 10^{-5}).
- 3. Dê exemplo de uma função contínua que possua uma única raiz no intervalo [1; 3], mas para a qual não é possível aplicar o Método da Secante para aproximar essa raiz usando os chutes iniciais $x_0 = 1, 4$ e $x_1 = 2, 6$. Justifique porque não é possível usar o método no seu exemplo.
- 4. A cada passo no Método da Falsa Posição, escolhemos $x_k = \frac{a_k |f(b_k)| + b_k |f(a_k)|}{|f(b_k)| + |f(a_k)|}$, sendo que no intervalo $[a_k; b_k]$ temos $f(a_k)f(b_k) < 0$. Prove que esta escolha de x_k coincide com a abscissa do ponto de interseção entre o eixo x e a reta passando por $(a_k, f(a_k))$ e $(b_k, f(b_k))$.

Gabarito

[1] $x \approx 1,36943838143575$ (Observação: a sua resposta pode ser um pouco diferente, porém próxima dessa. Isso depende do seu chute inicial). [2] $x \approx 0,703289145174550$. [3] Sugestão: tente montar a função de tal modo que $f(x_0)$ seja igual a $f(x_1)$. Observação: esse exercício possui várias soluções. [4] Sugestão: Primeiro, como $f(a_k)f(b_k) < 0$, deduza que $x_k = \frac{a_k|f(b_k)| + b_k|f(a_k)|}{|f(b_k)| + |f(a_k)|} = \frac{a_kf(b_k) - b_kf(a_k)}{f(b_k) - f(a_k)}$. Em seguida, determine a equação da reta que passa por $(a_k, f(a_k))$ e $(b_k, f(b_k))$. Por fim, determine a abscissa do ponto de interseção entre esta reta e o eixo x. Compare esta abscissa com x_k .