

PolarHT[™] HiPerFET IXFH 100N25P Power MOSFET

N-Channel Enhancement Mode Fast Intrinsic Diode Avalanche Rated

=	250	V
=	100	Α
≤	27	$m\Omega$
≤	200	ns
	= ≤	= 100 ≤ 27

TO-247 (IXFH)

Symbol	Test Conditions	Maximum	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$	250 250	V		
V _{GS} V _{GSM}	Continuous Transient	±20 ±30	V V		
I _{D25}	T _C = 25°C	100	А		
I _{D(RMS)}	External lead current limit	75	Α		
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	250	Α		
I _{AR}	T _C = 25°C	60	А		
E _{AR}	$T_c = 25^{\circ}C$	60	mJ		
E _{AS}	$T_{c} = 25^{\circ}C$	2.0	J		
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}$, di/dt \leq 100 A/ μ s, $V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}$, $T_{_{\mathrm{J}}} \leq$ 150°C, $R_{_{\mathrm{G}}}$ = 4 Ω	10	V/ns		
$\overline{P_{D}}$	T _C = 25°C	600	W		
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C		
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 s	300 260	°C °C		
M _d	Mounting torque	1.13/10	Nm/lb.in.		
Weight		5.5	g		

	OFF
G D S	(TAB)

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- Fast Intrinsic Diode
- International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect

Advantages

- Easy to mount
- Space savings
- High power density

Symbol $(T_J = 25^{\circ}C, u)$	Test Conditions nless otherwise specified)		Ch Min.	stic Val	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		250		V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4 \text{ mA}$		2.5	5.0	V
I _{GSS}	$V_{GS} = \pm 20 \ V_{DC}, \ V_{DS} = 0$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125°C		25 500	μA μA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$ Pulse test, t \le 300 \mus, duty c	eycle d ≤2 %		27	mΩ

© 2006 IXYS All rights reserved DS99344E(03/06)

Symbo	ol	Test Conditions $(T_{_{J}}=25^{\circ}C,\text{un}$ Mi	less		ristic Values ise specified) Max.
\mathbf{g}_{fs}		V_{DS} = 10 V; I_{D} = 0.5 I_{D25} , pulse test	10	56	S
C _{iss})			6300	pF
$\mathbf{C}_{\mathrm{oss}}$	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		1150	pF
\mathbf{C}_{rss}	J			240	pF
t _{d(on)})			25	ns
t _r		$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = I_{D25}$		26	ns
$\mathbf{t}_{d(off)}$	($R_G = 3.3 \Omega$ (External)		100	ns
t _f)			28	ns
$\mathbf{Q}_{\mathrm{g(on)}}$)			185	nC
\mathbf{Q}_{gs}	}	$V_{gs} = 10 \text{ V}, V_{ds} = 0.5 V_{dss}, I_{d} = 0.5 I_{dss}$		43	nC
\mathbf{Q}_{gd}	J			91	nC
R_{thJC}					0.21 °C/W
R _{thCS}				0.25	°C/W

Source-Drain Diode

Characteristic Values (T₁ = 25°C, unless otherwise specified)

Symbo	ol	Test Conditions	Min.	Тур.	Max.	
Is		$V_{GS} = 0 V$			100	Α
I _{SM}		Repetitive			250	Α
V _{SD}		$\begin{split} I_{_F} &= I_{_S}, \ V_{_{GS}} = 0 \ V, \\ \text{Pulse test, } t \leq 300 \ \mu\text{s, duty cycle d} \leq 2 \ \% \end{split}$			1.5	V
t _{rr} Q _{RM} I _{RM}	}	$I_F = 25 \text{ A}, -di/dt = 100 \text{ A}/\mu\text{s}$ $V_R = 100 \text{ V}$		0.6 10	200	ns μC Α

TO-247 (IXFH) Outline

Terminals: 1 - Gate 3 - Source

2 - Drain Tab - Drain

Dim.	Mill	imeter	Inches		
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A ₁	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b_1	1.65	2.13	.065	.084	
b_2	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
Е	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ØP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
S	6.15	BSC	242	BSC	

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 125°C

Fig. 5. R_{DS(on)} Normalized to

Fig. 2. Extended Output Characteristics

Fig. 4. R_{DS(on)} Normalized to 0.5 I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case

Fig. 7. Input Admittance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Forward-Bias Safe Operating Area

Fig. 13. Maximum Transient Thermal Resistance

