Применение формулы замены переменной

Теорема Брауэра

Теорема 1. (**Брауэра**) Если f - непрерывное отображение замкнутого шара: $\overline{\mathcal{B}}(0,1) \to \overline{\mathcal{B}}(0,1)$, то:

$$\exists x_0 \in \overline{\mathcal{B}}(0,1) \colon f(x_0) = x_0$$

□ (Продолжение доказательства):

 $f: \mathbb{R}^n \to \mathbb{R}^n$ - гладкое отображение, $f: \overline{\mathcal{B}} \to \overline{\mathcal{B}}$. Предположим, что $f(x) \neq x$ на $\overline{\mathcal{B}}$, тогда проведём луч через f(x) и x до пересечения с границей:

$$F(x) = x + \lambda(x) \cdot (x - f(x)), \quad \lambda(x) = \frac{-\langle x, x - f(x) \rangle + \sqrt{\langle x, x - f(x) \rangle^2 + (1 - ||x||^2) \cdot ||x - f(x)||^2}}{||x - f(x)||^2}$$

- (1) F(x) гладкое отображение в $\mathcal{B}(0, 1 + \delta), \, \delta > 0;$
- (2) ||F(x)|| = 1, to ecth: $F: \overline{\mathcal{B}}(0,1) \to \partial \overline{\mathcal{B}}(0,1)$;
- (3) (Ретракция): $\forall x \in \partial \mathcal{B}(0,1), F(x) = x;$

<u>Идея</u>: Из того, что $f(x) \neq x$, мы построим такое отображение F(x), а затем с помощью ФЗП поймем, что такого отображения не существует и придём к противоречию. То, что такого отображения не существует и называется леммой о барабане/леммой об отсутствии ретракции шара на свою границу. Нам надо понять, что можно сказать про подкоренное выражение:

$$\psi(x) = \underbrace{\langle x, x - f(x) \rangle^2}_{\geq 0} + \underbrace{(1 - \|x\|^2)}_{\geq 0, \forall x \in \overline{\mathcal{B}}(0, 1)} \cdot \underbrace{\|x - f(x)\|^2}_{\neq 0, \forall x \in \mathcal{B}(0, 1 + \delta)} \geq 0$$

Мы показали, что $\psi(x) > 0$ в $\mathcal{B}(0, 1+\delta)$ и таким образом, мы проверили корректность всех трех свойств, ожидаемых от функции F(x).

Докажем, что такого F(x) не существует и придём к противоречию. Возьмем $t \in [0,1]$ и рассмотрим функцию (линейная гомотопия тождественного отображения и отображения F):

$$F_t(x) = (1 - t)x + tF(x)$$

Заметим, что $F_t(x)$ в окрестности $\mathcal{B}(0,1+\frac{\delta}{2})$ - гладкое отображение и $\exists\,t_0\in(0,1)\colon\forall t\in[0,t_0]$ выполнено:

- 1) $F_t(x)$ инъекция на $\mathcal{B}(0, 1 + \frac{\delta}{2});$
- 2) $\det F_t'>0$ на окрестности $\mathcal{U}\colon \overline{\mathcal{B}}(0,1)\subset \mathcal{U}=\mathcal{B}(0,1+\frac{\delta}{2})$. Рассмотрим функцию: $(t,x)\mapsto \det F_t'(x)$, она непрерывна на компакте $[0,1]\times \mathcal{B}(0,1+\frac{\delta}{2})\Rightarrow$ равномерно непрерывна на нём. Заметим, что $\det F_0'(x)=1$ и из равномерной непрерывности верно:

$$\exists t_0 \colon t \in [0, t_0], \, \forall x \in \overline{\mathcal{B}}(0, 1 + \frac{\delta}{2}), \, |\det F_t'(x) - \det F_0'(x)| \leq \frac{1}{2} \Rightarrow \forall x \in \overline{\mathcal{B}}(0, 1 + \frac{\delta}{2}), \, \det F_t'(x) \geq \frac{1}{2}$$

Пусть $t \in [0, t_0]$, тогда $F_t(\mathcal{B}(0, 1 + \frac{\delta}{2}))$ - открытое множество и $F_t \colon \mathcal{B}(0, 1 + \frac{\delta}{2}) \to F_t(\mathcal{B}(0, 1 + \frac{\delta}{2}))$ это диффеоморфизм: Возьмем шар $\mathcal{B}(0, 1 + \frac{\delta}{2})$ и точку a в нём, её образ - $F_t(a)$, матрица якоби в этой точке $F_t'(a)$ - невырождена \Rightarrow по теореме об обратной функции существуют окрестности \mathcal{V} и \mathcal{W} между которыми F_t устанавливает диффеоморфизм \Rightarrow в образе F_t' лежит образ целой окрестности из шара, следовательно $F_t(a)$ - внутренняя точка $F_t(\mathcal{B}(0, 1 + \frac{\delta}{2}))$.

- 1) Все точки отображения внутренние ⇒ образ это открытое множество;
- 2) Отображение $F_t(x)$ инъективно, а также оно сюръективно по построению \Rightarrow это биекция и локально у каждой точки в образе есть окрестность на которой обратная является диффеоморфизмом \Rightarrow непрерывно дифференцируемая в обе стороны биекция \Rightarrow диффеоморфизм;

Рассмотрим шар $\mathcal{B} = \mathcal{B}(0,1)$ - открытый шар, $\forall x \in \mathcal{B}, ||x|| < 1$, рассмотрим его образ:

$$||x|| < 1 \Rightarrow ||F_t(x)|| \le \underbrace{(1-t)}_{>0} \cdot \underbrace{||x||}_{<1} + t \cdot ||F(x)|| = (1-t) \cdot ||x|| + t < 1 - t + t < 1 \Rightarrow F_t(\mathcal{B}) \subset \mathcal{B}$$

Так как F_t - диффеоморфизм, то $F_t(\mathcal{B})$ - открытое множество в \mathcal{B} . Кроме того, $F_t(\mathcal{B})$ - замкнуто в \mathcal{B} (индуцированная топология \mathcal{B}): возьмем последовательность точек $y_n \in F_t(\mathcal{B})$: $y_n \to y \in \mathcal{B}$ и проверим, что $y \in F_t(\mathcal{B})$. Поскольку F_t - диффеоморфизм, то возьмем $x_n = F_t^{-1}(y_n) \in \mathcal{B}$, тогда по непрерывности обратной функции F_t^{-1} будет верно: $x_n \to x = F_t^{-1}(y)$. Если x окажется на границе, тогда $||x|| = 1 \Rightarrow$ очевидно, что: $||x|| \le 1$. Предположим, что ||x|| = 1, тогда:

$$||x|| = 1 \Rightarrow F(x) = x \Rightarrow F_t(x) = (1 - t)x + tx = x \Rightarrow ||F_t(x)|| = ||x|| = 1$$

С другой стороны, $||F_t(x)|| = ||y|| < 1$, поскольку $y \in \mathcal{B} \Rightarrow$ противоречие $\Rightarrow ||x|| < 1 \Rightarrow y \in F_t(\mathcal{B})$. Итого:

$$F_t(\mathcal{B}) \subset \mathcal{B}, \, F_t(\mathcal{B}) \neq \varnothing, \, F_t(\mathcal{B})$$
 - открыто и замкнуто в \mathcal{B}

Поскольку \mathcal{B} - связно, то $F_t(\mathcal{B}) = \mathcal{B}$, так как $F_t(\mathcal{B}) \neq \emptyset$. Рассмотрим объем \mathcal{B} :

$$|\mathcal{B}| = |F_t(\mathcal{B})| \stackrel{\Phi \exists \Pi}{=} \int_{\mathcal{B}} \underbrace{\det F_t'(x)}_{\geq 0} dx = P(t)$$
 - многочлен по t

где $F'_t(x) = (1-t)\mathrm{I} + tF'(x) \Rightarrow$ определитель $F'_t(x)$ даст многочлен от t по формуле определителя. Заметим, что на отрезке $[0, t_0], P(t) \equiv |\mathcal{B}| > 0$, тогда $P(t) \equiv |\mathcal{B}| > 0$, $\forall t$. Рассмотрим P(1):

$$P(1) = \int_{\mathcal{B}} \det F_1'(x) dx = \int_{\mathcal{B}} \det F'(x) dx = \int_{\mathcal{B}} 0 dx = 0$$

где последнее верно поскольку: $F: \overline{\mathcal{B}}(0,1) \to \partial \overline{\mathcal{B}}(0,1)$ и если $\exists x \in \mathcal{B}: \det F'(x) \neq 0$, то существует локальный диффеоморфизм \Rightarrow в образе есть целая открытая окрестность \Rightarrow у точки в образе целый шар лежит в этом образе, но у границы шара внутренних точек нет $\Rightarrow \det F'(x) = 0$, $\forall x \in \mathcal{B}$. Итого получаем $P(1) = 0 \Rightarrow$ противоречие.

Пусть теперь $f: \mathbb{R}^n \to \mathbb{R}^n$ - непрерывное отображение и $f: \overline{\mathcal{B}} \to \overline{\mathcal{B}}$. Чтобы приблизить функцию гладкими - возьмем свёртки \Rightarrow возьмем гладкую функцию ω с компактным носителем на \mathbb{R}^m (то есть $\omega \in C_0^\infty(\mathbb{R}^m)$ и $\omega \equiv 0$ вне некоторого бруса $[-c,c]^m$, см. лекцию 25 семестра 3) такую, что:

$$\omega \in C_0^{\infty}(\mathbb{R}^m), \ \omega \ge 0, \ \int \omega dx = 1, \ \omega_{\frac{1}{m}}(x) = m^n \cdot \omega(mx)$$

где $\omega_{\frac{1}{m}}(x)$ - δ -образная последовательность, обозначим I - брус, содержащий носитель ω , тогда:

$$f_m = f * \omega_{\frac{1}{m}}, \quad f_m(x) = \int_{\mathbb{T}} f(x - y)\omega_{\frac{1}{m}}(y)dy$$

Мы знаем, что f_m - гладкая, $f_m \Rightarrow f$ на каждом брусе, в том числе на тех, что содержат $\overline{\mathcal{B}}$. Одновременно заметим, что если $f \colon \overline{\mathcal{B}} \to \overline{\mathcal{B}}$, то совершенно не ясно, что $f_n \colon \overline{\mathcal{B}} \to \overline{\mathcal{B}} \Rightarrow$ рассмотрим:

$$\varepsilon_m = \max_{\overline{\mathcal{B}}} \|f(x) - f_m(x)\| \to 0 \Rightarrow g_m(x) = \frac{f_m(x)}{1 + \varepsilon_m} \Rightarrow |g_m(x)| \le 1, \ \forall x \in \overline{\mathcal{B}}$$

где g_m - гладкие, оценим числитель:

$$|f_m| \le |f| + |f - f_m| \le 1 + \varepsilon_m \Rightarrow |g_m(x)| \le \frac{1 + \varepsilon_m}{1 + \varepsilon_m} = 1 \Rightarrow g_m \colon \overline{\mathcal{B}} \to \overline{\mathcal{B}}$$

$$g_m \stackrel{\overline{\mathcal{B}}}{\Longrightarrow} f \Rightarrow \exists x_m \colon g_m(x_m) = x_m \in \overline{\mathcal{B}} \Rightarrow \exists m_k \colon x_{m_k} \to x_0 \in \overline{\mathcal{B}}$$

- Упр. 1. Вспомнить и повторить утверждения про свёртки из прошлого семестра.
- **Упр. 2.** Доказать, что $g_{m_k}(x_{m_k}) \to f(x_0) \Rightarrow x_0 = f(x_0)$.

Теорема о еже

Теорема 2. (О еже) Пусть S^{2n} - единичная сфера с центром в нуле в \mathbb{R}^{2n+1} и $V(x) = (V_1(x), \dots, V_{2n+1}(x))$ это гладкое (непрерывно дифференцируемое) в окрестности S^{2n} векторное поле:

Шапошников С.В.

$$\forall x \in S^{2n}, \langle x, V(x) \rangle = 0$$

то есть это вектора, лежащие в касательном пространстве к сфере (ортогональны вектору нормали) или по-другому, это касательное векторное поле. Тогда существует особая точка:

$$\exists x_0 \in S^{2n} : V(x_0) = 0$$

 ${\bf Rm: 1.}$ Аналогичная задача существует в дифференциальных уравнениях: каждому векторному полю соответствует решение системы для некоторой траектории x(t):

$$\dot{x} = V(x), x_0 : V(x_0) = 0$$

тогда x_0 это стационарная точка.

 \mathbf{Rm} : 2. Теорема называется теоремой о еже, так как говорят, что ежа невозможно причесать. Возьмем любое векторное поле F и вычтем из него проекцию на x:

$$V(x) = F(x) - \langle x, F(x) \rangle x$$

Это векторное поле уже является касательным \Rightarrow обязательно есть точка x_0 , где:

$$F(x_0) = c \cdot x_0$$

то есть такая точка, что вектор сонаправлен с $x \Leftrightarrow$ волос никак не ложиться.

Рис. 1: Невозможность причесать ежа.

Пример касательного векторного поля: Рассмотрим S^1 , тогда касательным векторным полем можно рассматривать: $V(x) = (x_2, -x_1) \Rightarrow$ если посчитать его в точках сферы, то $\langle x, V(x) \rangle = 0$.

 \square (От противного) Пусть $V(x) \neq 0$ на $S^{2n} \Rightarrow V(x) \neq 0$ в окрестности S^{2n} , тогда рассмотрим новое векторное поле, получаемое нормировкой:

$$W(x) = \frac{V(x)}{\|V(x)\|} \colon \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}$$

это гладкое в окрестности S^{2n} отображение из \mathbb{R}^{2n+1} в \mathbb{R}^{2n+1} . Рассмотрим функцию:

$$g(x) = ||x|| \cdot W\left(\frac{x}{||x||}\right)$$

это гладкая функция на $\mathbb{R}^{2n+1}\setminus\{0\}$ (можно доопределить до непрерывной в нуле). Рассмотрим функцию:

$$F_t(x) = x + tg(x), t \in [0, 1]$$

для каждого t это гладкая функция в окрестности S^{2n} . Рассмотрим множество:

$$V_{a,b} = \{x \colon a < ||x|| < b\}, \ 0 < a < b < 1$$

это есть ничто иное, как сферический слой.

Рис. 2: Сферический слой.

Пусть верно: $0 < a_1 < a < b < b_1 < 1$, тогда $\exists t_0 \colon \forall t \in [0, t_0]$ такое, что выполнены два пункта:

1) F_t на \overline{V}_{a_1,b_1} - инъекция (по аналогии с теоремой Брауэра):

$$\forall x, z \in \overline{V}_{a_1,b_1} \colon ||F_t(x) - F_t(z)|| \ge ||x - z|| - t||g(x) - g(z)|| \ge (1 - t \cdot L)||x - z||$$

где неравенство снова следует из гладкости g, далее выбираем t так, чтобы последнее выражение было полжительным \Rightarrow получаем инъективность;

2) $\det(F'_t) > 0$ на \overline{V}_{a_1,b_1} (по аналогии с теоремой Брауэра): $(t,x) \to \det(F'_t(x))$ - непрерывна на $\overline{V}_{a_1,b_1} \Rightarrow$ равномерно непрерывна, $\det(F'_0(x)) = 1 \Rightarrow$ по аналогии $\exists \, t_0$, когда $\det(F'_{t_0}(x)) > \frac{1}{2}$;

Тогда, $F_t(V_{a_1,b_1})$ - открытое множество и $F_t\colon V_{a_1,b_1}\to F_t(V_{a_1,b_1})$ - диффеоморфизм (проверка такая же, как в теореме Брауэра). Рассмотрим образ кольца: $F_t(V_{a,b})$, чтобы понять что это мы рассмотрим образ сферы, радиуса $r\colon a < r < b\colon \{x\colon \|x\| = r\} = S_r$. Заметим, что:

$$\langle x, V(x) \rangle = 0 \Rightarrow \langle x, W(x) \rangle = 0 \Rightarrow \langle x, g(x) \rangle = 0$$

следовательно x и tg(x) - перпендикулярны \Rightarrow по теореме Пифгора будет верно:

$$\|x\| = r \Rightarrow \|F_t(x)\|^2 = \|x\|^2 + t^2 \cdot \|g(x)\|^2 = r^2 + t^2 \cdot \|x\|^2 = (1+t^2)r^2 \Rightarrow F_t(S_r) \subset S_{r\sqrt{1+t^2}}$$

 F_t это диффеоморфизм \Rightarrow образ компакта - компакт \Rightarrow $F_t(S_r)$ это компакт, в частности, это замкнутое множество в $S_{r\sqrt{1+t^2}}$. С другой стороны: $F_t(S_r)$ это открытое множество в $S_{r\sqrt{1+t^2}}$: пусть мы взяли некоторую точку $a \in S_r$, рассмотрим её образ $F_t(a)$, поскольку F_t это диффеоморфизм, то существует окрестность точки a в \mathbb{R}^{2n+1} и окрестность точки $F_t(a)$ в \mathbb{R}^{2n+1} между которыми F_t осуществляет диффеоморфизм.

Рис. 3: Диффеоморфизм.

Поскольку диффеоморфизм переводит внутренние точки во внутренние, внешние во внешние, то пересечения этих окрестностей со сферами переходят друг в друга. Но пересечение открытого множества со сферой это и есть открытое множество на этой сфере \Rightarrow в образе, $F_t(a)$ лежит с некоторой окрестностью. Сфера связное множество, тогда:

$$F_t(S_r) = S_{r\sqrt{1+t^2}} \Rightarrow F_t(V_{a,b}) = V_{\sqrt{1+t^2}a,\sqrt{1+t^2}b}$$

При маленьких t, используем $\Phi 3\Pi$:

$$|V_{\sqrt{1+t^2}a,\sqrt{1+t^2}b}| = (1+t^2)^{\frac{2n+1}{2}} \cdot |V_{a,b}| = \int_{V_{a,b}} \det(F'_t(x))dx = P(t)$$

где последнее верно, так как $x\mapsto \sqrt{1+t^2}x$ и мы снова получили многочлен от t, следовательно:

$$(1+t^2)^{\frac{2n+1}{2}} \cdot c = P(t), \ c > 0$$

Такого быть не может, поскольку слева будет $(1+t^2)^n \cdot \sqrt{1+t^2} = P(t) \Rightarrow$ поскольку всё от t^2 , то понятно, что многочлен P(t) - четная функция \Rightarrow обозначим $s=1+t^2$, тогда:

$$c \cdot s^{n + \frac{1}{2}} = \widetilde{P}(s)$$

Это невозможно, поскольку справа многочлен после конечного числа дифференцирований будет равен нулю, а выражение слева после любого числа дифференцирования не ноль, поскольку степень - дробная \Rightarrow мы получили противоречие.