Improved On-Board Communication for Low-Cost Mobile Robots

Supervisor: Simon Haller, Justus Piater

Alex Hirsch 1 / 27

Content

- Problems / Goals
- The Robot
- Possible Solutions / Evaluation
- FT311D
- Atmega32
- Android App

My Experience (Summer 2013)

Alex Hirsch 3 / 27

Problems

 far too complex for communication

Multi-threaded connection

 depends on Android Version

Goals

- improved communications (new hardware)
- code examples
- none multi-threaded Android interface
- easy to use
- good documentation
- forward-compatible

The Robot

Alex Hirsch 6 / 27

2 Layers

Interior

On Top

- DC Motors
- IR Sensors
- Control Board
- Battery

- Comm Board
- Servo Motor (Catching Balls)

Interior

Alex Hirsch 8 / 27

On Top

Alex Hirsch 9 / 27

Component Interaction

Alex Hirsch 10 / 27

Evaluation

- Cost cheap components since multiple robots have to be equipped
- Simplicity easy to build, maintain and use
- Availability required components must be available
- Modularity keep or enhance present modularity
- Future Oriented keep forward compatibility to ensure robustness

Alex Hirsch 11 / 2°

Candidates

- FT311D
- Arduino Uno
- Raspberry Pi (Model B)
- Beagle Bone Black
- ATmega 32 AVR

Evaluation Result

Candidate	Cost	Simplicity	Availability	Modularity	Future Oriented	Total
FT311D	5	5	5	4	3	22
ATmega 32	4	3	5	5	4	21
Arduino Uno	3	3	4	4	3	17
Raspberry Pi	2	2	4	3	4	15
Beagle Bone	1	1	2	3	4	11

1 – 5 points per category

higher is better

Alex Hirsch 13 / 27

USB Mode: Host + Accessory

Host Accessory

Host has to recognize Accessory

USB Mode: On-The-Go (OTG)

Host Accessory

- Requires OTG Cable
- Not all Android phones support OTG

USB OTG (on the go)

Alex Hirsch 16 / 27

FT311D Prototype

Alex Hirsch 17 / 27

FT311D Prototype

- no programming required
- simple converter
- provides different interfaces (UART, SPI, I2C, ...)

Depends on Android Version

ATmega 32 Prototype

Alex Hirsch 19 / 27

ATmega 32 Prototype

- programmable
- has useful hardware peripherals
- more than just a converter
- good documentation

 not capable of USB handling requires simple USB to serial converter

Alex Hirsch 20 / 27

Communication (wired)

Benefits of Serial Connection:

- very easy compared to USB
- device / platform independent

Comm Board

Communication (wireless)

Alex Hirsch 22 / 27

Final Board

Alex Hirsch 23 / 27

USB to serial Converter

Alex Hirsch 24 / 27

Android App

- Move robot
- Toggle LEDs
- Read in sensor data
- Move cage

Alex Hirsch 25 / 27

Future

Combine CommBoard and ControlBoard

 Replace Android phone with embedded system

Improve the robot's casing

Questions?

source code:

http://git.io/wVIDzg

Alex Hirsch 27 / 27