ID. UG-02-47-18-003.

Question-1

of cohen-Sutherland abjorithm. step # propositions by step and finally establish the algorithms.

=> The algorithm · divider a two-dimensional space into o regions (8 side outside regions and one inside region), and then efficiently determines the lines and portions of lines that are visible in the central region of . + corot ni TONYO PUNT WANT FREE

· D'regions with binary code.

"It is the state of the second of the

	(i) sho		(A) 2600		
,	Ymax 1001	1000	1010		
3) 0	0001	0000	0010	,	(-1)
2,4	Yan	01000	: /		
1 1		min	(max	ý	

and the state of t · each bit records position of x on y

- 1st bit: > Ymax

- 2nd bit: < Ymin

- 3nd bit: > Xmax

bit: < xmin

2.4 1,1 2/Victor 200 1001 establishing algorithms.

Calculate positions of both end point code (P2) and code (P2).

it (code (Pa) 1 code les) giver 0000 then the line is visible

else if (code(P2) y code(P2) != 0000 then line is invisible, (outside). else line is intersect.

Line is considered the clipped case.

ease-1: if 1st bit is "1" then line intersects
with the boundary of window.

30, Y = Ymax

and nix = not 4-70/ (2/2-20)

case-2: if 2nd bit is "I" then line intersects with lower boundary of window.

BO. Y = Ymin

:. $x = x_0 + \frac{y_- y_0}{y_- y_0} (x_1 - x_0)$

case-3: if 3nd bit is "1" then Line intersects with Right boundary of window so, $x = x_{max}$

case-4: it 4th bit is it then Line interest with left boundary of window. $x = x_{min}$.

 $\therefore \gamma = \gamma_0 + \frac{\gamma_1 - \gamma_0}{\gamma_1 - \gamma_0} \left(\gamma_2 - \gamma_0 \right)$

step-3: repeat these steps with accept /. visible

The design of with with I'm or that it's the second

. I don't to formal manof

5/1 - 1/2 -

water. I will malt "I" di for her he serve

where I have produced by this this

2720 mil

1D: U402-47-18-008

given,

Here,

$$code(P_2) = 0110$$

 $code(P_2) = 1001$

1st test:
$$(\operatorname{code}(P_3) \mid \operatorname{code}(P_2) = 1111$$

 $\rightarrow \text{No conclusion}$.

Here, eade
$$(P_a) = 0120$$
 and bit = 2

so that theline intersect with Ymin

$$y = 7min = 40$$

and, $\chi = \chi_0 + \frac{y-y_0}{y_1-y_0} (\chi_1 - \chi_0)$
= 190+ $\frac{40+0}{230+0} (50190)$

$$= 190 + \frac{30}{220}(-140)$$

News point & in (170.01,40)

And, code
$$(P_2) = 1002$$
 1st bit=2
so that $y = y_{max} = 170$
and, $y-y_0$ (x_0-x_0)

$$\chi = \chi_0 + \frac{y - y_0}{y_2 - y_0} (\eta_0 - \chi_0)$$

$$=190 + \frac{270-20}{230-20} (50-190)$$
$$=190 + -101.818$$

Hore, NOW, Pa = (170.91,40) and P2 = (88.18, 270)

2nd test code (Pa) y code (P2) = 0000

Here, code (P2) = 0020 351d bit = 21

-- no the line is intersect with Xmax

$$= 40 + \frac{260 - 270.02}{88.18 - 170.02} (270 - 40)$$

Therefore, PR in inside the window so there no intereseting point. PR (88:18, 170)

Node,
$$\operatorname{code}(P_2) \mid \operatorname{code}(P_2) = 0000$$

 $\rightarrow \operatorname{Aecept}$.

Question-\$ #3

 $Y_{max} = 120$ $Y_{min} = 30$ $X_{min} = 50$ $X_{min} = 50$

Ymax 120 1000 1000 1010

Ymin 30 1000 000 0010

Smin 30 100 000 0010

Xmin 30 Xmax /

Here, $code(P_3) = 1010$ $code(P_3) = 0101$

1st test : code (P2) + code (P2) = 1111

-> No conclusion.

2nd test: code (P2) & code (P2) = 0000

- Intersect

Replace P. P2 with new Points

Pa (170,130)

P2 (20,20)

colund

so the line intersect with Ymax.

$$\chi = \chi_0 + \frac{\gamma - \gamma_0}{\gamma_3 - \gamma_0} (\chi_3 - \chi_0)$$

$$= 170 + \frac{120 - 130}{20 - 130} (20 - 170)$$

 $((y) \cdot (y) \cdot (y)$

so the line intersect with Ymin.

$$\chi = \chi_0 + \frac{\gamma - \gamma_0}{\gamma_1 - \gamma_0} (\chi_1 - \chi_0)$$

$$= 170 + \frac{30-130}{20-130} (20-170)$$

Here,
$$P_2 = (155.4, 120)$$
 $P_2 = (24.55, 30)$

Here, code $(P_2) = 0010$ code $(P_2) = 0001$

1st test: code(P) | code(P2) = 0011

No conclusion

2nd test: code (Pi) & code (Pn) = 0000

7 Replace P, and P2 with new point

Wo a, ende $(P_1) = 0000000$ 3nd bit = 1

So the line intereseet with xmax X = X = 140 $Y = Y_0 + \frac{x - x_0}{x_1 - x_0} (y_1 - y_0) = 120 + \frac{360 - 120}{30 - 120}$

$$Y = 109.375$$

$$\frac{1}{24.55 - 155.4} \left(30 - 120 \right)$$

Here,
$$P_{\Delta} = (140, 109.38)$$

 $P_{2} = (50, 47.5)$

Question no-9

20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.5020.50

Ymax 80	1000	1000	1010					
Ymin 20	0001	0000	0010					
	0101	0100	0,110					
60 00 Xmin Xmax								

Here,

1st test: code (Pi) reade (P2) = 0011

- No conclusion

2nd test, code (P2) 4 code (P2). = 0000.

-> Intersect

-> replace P1, P2 with new points.

Now, ede (P2) =0002 4th bit = 2

so the line intersect with Xmin.

$$7 = xmin = 60$$

$$50, y = 50 + \frac{60-20}{100-20} (40-50)$$

$$= 45$$

$$20 + \frac{60}{100-20} (40-50)$$

$$= 45$$

$$20 + \frac{60}{100-20} (40-50)$$

$$20 + \frac{60}{100-20} (40-50)$$

$$30, y = 50 + \frac{90-20}{100-20} (40-50)$$

$$= 41.25$$

$$20 + \frac{90-20}{100-20} (40-50)$$

$$= 60 + \frac{90-20}{100-20} (40-50)$$

Question no-5:

Xmax = 70 Ymax = 120 $P_1 = (75, 125)$ Xmin = 10 Ymin = 60 $P_2 = (55, 65)$

311	· · · · · · · · · · · · · · · · · · ·	7	5 /	19 1107 S
Ymax 120	1001	1000	Pa 1010	
	0001	0000	2010	
Michie O	0101	0000	0110	
		10 7 Kmin >	20 Kmax	

Istlest: $code(P_1) \mid code(P_2)$ $\Rightarrow (1010) \mid (2000) = 1010$ $\Rightarrow no expelusion$

Now, 2nd test: code (P2) x code (P2) = 0000

Therseet

Therseet

Therseet

Therseet

Therefore P1, P2 withness points

Now, code $(P_A) = 1010$ and bit is I so the line intersect with Xmax x = xmax = 70

$$\begin{array}{c} 20, \ \gamma = 125 + \frac{70 - 75}{55 - 75} \left(65 - 125\right) \\ = 110. \end{array}$$

and code (P2) = 0000

so this point already inside the window.

$$Y_{max} 120$$
 $\frac{1001}{001} \frac{1000}{1000} \frac{1010}{000} \frac{1000}{0010} \frac{1000}{0010} \frac{1000}{0010} \frac{1000}{0010} \frac{1000}{0010} \frac{1000}{0010} \frac{1000}{0010} \frac{1000}{0010} \frac{1000}{0010} \frac{1000}{00100} \frac{10$

-> Accepted.

Question-6/7

Xmax = 70

Kmax = 120

Pr= (75,125)

Xmin = 10

Ymin = 60

Pr = (65,55)

9st test ? code (Pi) ! code (P2) = 1110

-> No conclusion

and test: code(P2) & code(P2) = 0000

- Intersect

-> replace PI, Pz with new pointy

Here, code (Pa) = 1010 37d bit =]

go the line intersect with xmax.

$$30, \gamma = 125 + \frac{70-75}{65-75} (55-125)$$

$$code(P_2) = 0100$$
 and bit = 1

$$\mathcal{L} = 75 + \frac{60 - 125}{55 - 125} (65 - 75)$$

The Aller of the state of the second

The first of some state of the some

no - Continues of All Dollars of the best

Location .

Here,
B=(70,00)
P2=(65.71,60)

Here,

9

944494949

1st test: code (Pi) | code (P2) = 0000

- Accepted.