+-				
İ	Input Size (n)	Best Case Time (s)	Worst Case Time (s)	Average Case Time (s)
	10	2.14577e-05	4.29153e-06	1.35899e-05
1	50	5.57899e-05	5.96046e-06	6.81877e-05
	100	0.00010705	1.07288e-05	0.000128269
]	500	0.000574827	3.91006e-05	0.000789881
1	1000	0.00112534	9.05991e-05	0.00167465
1	10000	0.0145483	0.000739098	0.02125

Quicksort Benchmarks Best Case Worst Case 0.020 Average Case 0.015 Execution Time (seconds) 0.010 0.005 0.000

4000

6000

Input Size (n)

2000

10000

8000

- 3. mathematically derive the average rurrtime Complexity of the non-random Pivot Version of Quick Sort.
- A) Reccurrance relation is

$$T(n) = T(k) + T(n-k-1) + O(n)$$

Here,

T(n) = Time complexity of Quicksortfor an array of Sizen.

K = number of elements in the left Subarray.

n-K-1 = no roof elements in right

O(n) = represents time array.

Considering Average Case

Here, 2T(n/2) represents average time for recursively.

So,
$$T(n) = O(n) + 2 \cdot T(n/2)$$

 $T(n) = O(n) + 2 \left(O(\frac{n}{2}) + 2 \cdot T(\frac{n}{4})\right)$
 $T(n) = O(n) + 2 \left(O(\frac{n}{2})\right) + 4 \cdot T(\frac{n}{4})$
 $T(n) = K \cdot O(\frac{n}{2K}) + 2^{K} \cdot T(\frac{n}{2K})$
Therefore, Runtime complexity of Quick

Therefore, Runtime complexity of Quick Sort for Average case is $O(n \log n)$ $T(n) = O(n \log n)$