Category Theory

Mika Bohinen

October 11, 2023

Contents

1	Cat	tegories, Functors, Natural Transformations	1
	1.1	Abstract and concrete categories	1
	1.2	Duality	2 3
	1.3	Functors	3
	1.4	Natural Transformations	4
$egin{array}{c} 1 \ 1.1 \end{array}$		Categories, Functors, Natural Transformation Abstract and concrete categories	ıs
Ι	Defi	$oxed{nition 1.}$ A $category~\mathcal{C}$ consists of the following data:	
	(i)	a collection $ob\mathcal{C}$ of object of \mathcal{C} ,	
	(ii)	for every two objects $x,y\in {\rm ob}\mathcal{C}$ a collection ${\rm Hom}_{\mathcal{C}}(x,y)$ of morphisms,	
	(iii)	the identity morphisms,	
	(iv)	the identity morphism $\mathrm{id}_x \in \mathrm{Hom}_{\mathcal{C}}(x,x)$ for every object $x \in \mathrm{ob}\mathcal{C}$,	
	(v)	the composition map	

Definition 2. A category is **small** if it has only a set's worth of arrows.

for every triple of objects $x, y, z \in \text{ob}\mathcal{C}$

 $\circ : \operatorname{Hom}_{\mathcal{C}}(y, z) \times \operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{C}}(x, z)$

Definition 3. A category is **locally small** if between any pair of objects there is only a set's worth of morphisms.

Definition 4. An **isomorphism** in a category is a morphism $f: X \to Y$ for which there exist a morphism $g: Y \to X$ so that $fg = 1_X$ and $gf = 1_Y$. The objects X and Y are **isomorphic** whenever there exist an isomorphism between X and Y, inn which case one writes $X \cong Y$.

A subcategory \mathcal{D} of a category \mathcal{C} is defined by restricting to a subcollection of objects and subcollection of morphisms subject to the requirements that the subcategory \mathcal{D} contains the domain and codomain of any morphism in \mathcal{D} , the identity morphism of any object in \mathcal{D} , and the composite of any composable pair of morphisms in \mathcal{D} .

Lemma 1. Any category C contains a maximal groupoid, the subcategory containing all of the objects and only those morphisms that are isomorphisms.

1.2 Duality

Definition 5. Let C be any category. The opposite category C^{op} has

- 1. the same objects as in C, and
- 2. a morphism f^{op} in C^{op} for each morphism f in C so that the domain of f^{op} is defined to be the codomain of f and the codomain of f^{op} is defined to be the domain of f.
- 3. For each object X, the arrow 1_X^{op} serves as its identity in \mathcal{C}^{op} .
- 4. To define composition, observe that a pair of morphisms $f^{\text{op}}, g^{\text{op}}$ in \mathcal{C}^{op} is composable precisely when the pair g, f is composable in \mathcal{C} . We then define $g^{\text{op}} \circ f^{\text{op}}$ to be $(f \circ g)^{\text{op}}$.

Lemma 2. The following are equivalent

- 1. $f: x \to y$ is an isomorphism in \mathcal{C} .
- 2. For all objects $c \in \mathcal{C}$, post-composition with f defines a bijection

$$f_*: \mathcal{C}(c,x) \to \mathcal{C}(c,y).$$

3. For all objects $c \in \mathcal{C}$, pre-composition with f defines a bijection

$$f^*: \mathcal{C}(y,c) \to \mathcal{C}(x,c).$$

Definition 6. A morphism $fx \to y$ in a category is

- 1. a **monomorphism** if for any parallel morphisms $h, k : w \rightrightarrows x, fh = fk$ implies that h = k; or
- 2. an **epimorphism** if for any parallel morphisms $h, k : y \rightrightarrows z, hf = kf$ implies that h = k.

Since the notions of monomorphism and epimorphism are dual, their abstract categorical properties are also dual, such as exhibited by the following lemma.

Lemma 3. 1. If $f: x \to y$ and $g: y \to z$ are monomorphisms, then so is $gf: x \to z$.

2. If $f: x \to y$ and $g: y \to z$ are morphisms so that gf is monic, then f is monic.

Dually.

- 1. If $f: x \to y$ and $g: y \to z$ are epimorphisms, then so is $gf: x \to z$.
- 2. If $f: x \to y$ and $g: y \to z$ are morphisms so that $gf: x \to z$ is epic, then g is epic.

1.3 Functors

Definition 7. A functor $\mathcal{F}: \mathcal{C} \to \mathcal{D}$, between categories \mathcal{C} and \mathcal{D} , consists of the following data:

- An object $\mathcal{F}c \in \mathcal{D}$, for each object $c \in \mathcal{C}$.
- A morphism $\mathcal{F}f: \mathcal{F}c \to \mathcal{F}c' \in \mathcal{D}$, for each morphism $f: c \to c' \in \mathcal{C}$, so that the domain and codomain of $\mathcal{F}f$ are, respectively, equal to \mathcal{F} applied to the domain and codomain of f.

The assignments are required to satisfy the following two functoriality axioms:

- For any composable pair f, g in $C, \mathcal{F}g \circ \mathcal{F}f = \mathcal{F}(g \circ f)$.
- For each object $c \in \mathcal{C}$, $\mathcal{F}1_c = 1_{\mathcal{F}c}$.

There is also the dual notion of a **contravariant functor** which simply has as domain C^{op} instead of C.

Lemma 4. Functors preserve isomorphisms.

Proof. Straightforward.

Corollary 1. When a group G acts functorially on an object X in a category C, its elements g must act by automorphisms $g_*: X \to X$ and, moreover, $(g_*)^{-1} = (g^{-1})_*$.

Definition 8. If C is locally small, then for any object $c \in C$ we may define a pair of covariant and contravariant functors represented by c:

Definition 9. If ${\mathcal C}$ is locally small, then there is a two-sided represented functor

$$\mathcal{C}(-,-):\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\mathrm{Set}$$

defined in the evident manner. A pair of objects (x,y) is mapped to the hom-set $\mathcal{C}(x,y)$. A pair of morphisms $f:w\to x$ and $h:y\to z$ is sent to the function

$$\mathcal{C}(x,y) \xrightarrow{(f^*,h_*)} \mathcal{C}(w,z)$$
$$g \mapsto hgf.$$

1.4 Natural Transformations

Definition 10. Let $F, G : \mathcal{C} \to \mathcal{D}$ be two functors. A natural transformation $\eta : F \Rightarrow G$ consists of morphisms $\eta_x \in \operatorname{Hom}_{\mathcal{D}}(F(x), G(x))$ for every object $x \in \mathcal{C}$ such that the diagram

$$F(x) \xrightarrow{F(f)} F(y)$$

$$\downarrow^{\eta_x} \qquad \qquad \downarrow^{\eta_y}$$

$$G(x) \xrightarrow{G(f)} G(y)$$

commutes for every morphism $f \in \text{Hom}_{\mathcal{C}}(x, y)$.

We say that a natural transformation $\eta: F \Rightarrow G$ is a natural isomorphism if the morphisms η_x are isomorphisms for any $x \in \mathcal{C}$.

Definition 11. An equivalence of categories \mathcal{C}, \mathcal{D} is a pair of functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ together with natural isomorphisms $e: \mathrm{id}_{\mathcal{C}} \Rightarrow GF$ and $\varepsilon: FG \Rightarrow \mathrm{id}_{\mathcal{D}}$.

Definition 12. An adjoint equivalence of categories \mathcal{C}, \mathcal{D} is an equivalence (F, G, e, ε) satisfying the following axioms:

1. The composite natural transformation

$$F \cong F \circ \operatorname{id}_{\mathcal{C}} \xrightarrow{\operatorname{id}_F \circ e} FGF \xrightarrow{\varepsilon \circ \operatorname{id}_F} \operatorname{id}_{\mathcal{D}} \circ F \cong F$$

is the identity natural transformation on F.

2. The composite natural transformation

$$G \cong \mathrm{id}_{\mathcal{C}} \circ G \xrightarrow{e \circ \mathrm{id}_{G}} GFG \xrightarrow{\mathrm{id}_{G} \circ \varepsilon} G \circ \mathrm{id}_{\mathcal{D}} \cong G$$

is the identity natural transformation on G.