FOICE - LISTA 1 - PARTE 1

Davi Maciel Versão: 5 de outubro de 2019

1 Linha focal

- a) Mostre que a imagem de uma linha reta criada por uma lente delgada é também uma linha reta. Considere apenas geometria bidimensional, isto é, assuma que o eixo óptico principal da lente e a linha reta estão no mesmo plano (x,y). Dica: use o sistema de eixos coordenados onde a origem coincide com o centro da lente e represente linhas algebricamente (y = ax + b).
- b) Na Figura 1, desenhe a imagem da linha dada e indique qual parte da imagem é virtual e qual é real.

Figura 1: Problema 1 (b)

c) Um fotógrafo quer tirar uma foto de um campo de flores. A fim de obter uma imagem onde todas as flores (tanto próximas quanto distantes) são nítidas, ele tem que usar uma lente com recursos de mudança de inclinação. O campo de flores (o qual se estende efetivamente para o infinito) e a imagem de sua borda distante, junto com o plano da imagem, estão representados na Figura 2. Encontre a posição da lente. O comprimento focal é dado em escala.

Figura 2: Problema 1 (c)

2 Quadrilátero inscritível

O quadrilátero mostrado na Figura 3 é a imagem real de um quadrado formada por uma lente delgada ideal. Tanto o quadrado quanto o eixo óptico da lente estão no mesmo plano da imagem. Determine a posição da lente e a orientação do seu eixo óptico.

Figura 3: Problema 2

3 Temos imagens

A elipse mostrada na Figura 4 é a imagem real de uma circunferência formada por uma lente delgada ideal. O ponto indicado na figura é a imagem do centro da circunferência, a lente e a elipse pertencem ao mesmo plano. Determine a posição e a orientação da lente.

Figura 4: Problema 3

4 IPhO do Irodov

Durante uma olimpíada, os competidores receberam uma tarefa para determinar as distâncias focais de duas lentes convergentes finas colocadas nas extremidades de um cilindro vazio, cujo comprimento é $L=20,0\ cm$. O esquema do experimento está ilustrado na Figura 5. O competidor Igor Evgenyevich fez o experimento precisamente e obteve os seguintes resultados:

Figura 5: Problema 4

1. Se uma fonte pontual de luz é colocada no lado esquerdo do cilindro a uma distância $l_1=5,0\ cm,$ a luz que passa pelo sistema sai da extremidade direita como um feixe paralelo.

2. Se um feixe paralelo incide na extremidade esquerda, a luz que sai da extremidade direta converge para um ponto no eixo do cilindro a uma distância $l_2 = 10,0 \ cm$ da mesma.

Entretanto, Igor não conseguiu determinar as distâncias focais F_1 e F_2 dessas lentes usando esses dados. Por favor, ajude o pobre Igor.

5 Construções geométricas com conta

Existe um desenho de um esquema óptico encontrado no artigo de Snell. O desenho ilustra uma lente, uma fonte de luz pontual S_0 e sua imagem S_1 . A tinta desbotou com o tempo, então apenas é possível ver o eixo óptico da lente, a fonte S_0 , a imagem S_1 , e um dos pontos focais F, os quais estão na Figura 6. Restaure as possíveis posições da lente utilizando uma régua (sem graduação) e um compasso.

Figura 6: Problema 5

6 Bastos

Um homem alto, bonito e forte, está de pé na borda de uma piscina e olha para uma pedra que está no fundo. A profundidade da piscina é igual a h. Em qual distância, a partir da superfície da água, a imagem da pedra é formada, considerando que a linha de visão faz um angulo θ com a normal à superfície?

7 Dioptro esférico valendo

Uma fonte pontual de luz está dentro de uma esfera sólida feita de vidro de índice de refração n. A esfera tem raio r e a fonte está a uma distância d do centro da esfera (Figura 7). O curioso é que a esfera forma uma imagem virtual per feita da fonte de luz, isto é, a continuação pra esquerda de todos os raios de luz que, iniciando na fonte, refratam na superfície da esfera e vão pro lado direito da figura, se intersectam em um ponto comum.

Figura 7: Problema 7

Qual é a distância d, e onde a imagem da fonte de luz é 10- a) $R = \frac{1}{6}$ formada?

8 Óptica geométrica sem aproximações

Um feixe luminoso paralelo abandona o vácuo em direção a uma superfície contendo um meio com índice de refração n. Encontre a equação dessa superfície sabendo que o feixe é trazido ao foco a uma distância f a partir do vértice. Qual é o raio máximo de um feixe que ainda pode ser focado? Considere agora que o feixe vem do meio com índice de refração n e todos os raios de luz são focados no vácuo. Qual é a equação da nova superfície? Considere simetria de rotação em torno do eixo do feixe.

9 Gradiene

Um raio luminoso propaga-se num meio com índice de refração \boldsymbol{n} variando gradualmente de ponto a ponto, possuindo um raio de curvatura ρ determinado pela fórmula

$$\frac{1}{\rho} = \frac{\partial \ln n}{\partial N},$$

onde a derivada é tomada em ralação à normal principal ao raio. Deduza essa fórmula, considerando que nesse meio a lei de refração $n \cdot sen\theta = cte$ seja válida. Aqui, θ é o angulo entre o raio e a direção do vetor ∇n num determinado ponto.

10 La vuelta al mundo

a) Em um planeta esférico, o índice de refração da atmosfera, como função da altitude h acima da superfície, varia de acordo com a fórmula

$$n(h) = \frac{n_0}{1 + \epsilon h},$$

onde n_0 e ϵ são constantes. Curiosamente, qualquer feixe de laser, direcionado horizontalmente, mas a uma altura arbitrária, descreve uma trajetória que circula o planeta. Qual é o raio do planeta?

b) Encontre o raio de curvatura de um raio luminoso propagando - se numa direção horizontal, próximo à superfície da Terra, onde o gradiente do índice de refração no ar é igual a, aproximadamente, $3 \cdot 10^{-8} m^{-1}$. Em qual valor desse gradiente o raio luminoso se propagaria por todo o caminho ao redor da Terra?

Respostas

4-
$$(F_1)_{1,2} = \frac{L^2 + 2l_1L \pm L\sqrt{L^2 + 4l_1l_2}}{2(L + l_1 - l_2)} = 20,0 \pm 16,3 \ cm$$

 $(F_2)_{1,2} = \frac{L^2 + 2l_2L \pm L\sqrt{L^2 + 4l_1l_2}}{2(L + l_2 - l_1)} = 16,0 \pm 9,8 \ cm$

6-
$$h' = \frac{hn^2cos^3\theta}{(n^2 - sen^2\theta)^{3/2}}$$

7- $d = \frac{r}{r}$; D = nr (distância da imagem ao centro da esfera)

8-
$$\frac{(y-a)^2}{a^2} + \frac{x^2}{b^2} = 1$$
, com $a = \frac{nf}{n+1}$ e $b = f\sqrt{\frac{n-1}{n+1}}$; $r_{m\acute{a}x} = b$; $\frac{(y+c)^2}{c^2} - \frac{x^2}{b^2} = 1$, com $c = \frac{f}{n+1}$

0- a)
$$R = \frac{1}{2}$$

b)
$$\rho = 3 \cdot 10^7$$
; $|\nabla n| = 1, 6 \cdot 10^{-7} m^{-1}$