Imperial College London

Fast Decomposable Submodular Function Minimization using Constrainted Total Variation

K. S. Sesh Kumar

Francis Bach

Thomas Pock

DSI, Imperial College London, UK INRIA/ENS/PSL, Paris, France Graz Institute of Technology, Graz, Austria

____ 1. Decomposable SFM _____

- Ground Set : V of n elements
- Submodular functions: $\forall i \in [r], F_i : 2^V \to \mathbb{R}, F_i(\varnothing) = 0,$

 $\forall A, B \subset V, F_i(A) + F_i(B) \ge F_i(A \cup B) + F_i(A \cap B)$

- Goal: (SFMD) $\min_{A \subset V} \sum_{i=1}^{r} F_i(A)$
- Oracles: (SFMD_i) $\min_{A \subset V} F_i(A)$
- Contribution: Propose a related new continuous optimization problem and algorithms to optimize it using $\mathrm{SFM}\textbf{D}_i$ oracles. The solution of the new continuous optimization problem solves $\mathrm{SFM}\textbf{D}$

2. Continuous Optimization ———

• Given all submodular function $i \in [r], F_i : 2^V \to \mathbb{R}$, the corresponding Lovász extension $f_i : \mathbb{R}^n \to \mathbb{R}$ is given by

$$f_i(w) = \sum_{k=1}^{n-1} (w_{j_k} - w_{j_{k+1}}) F_i(\{j_1, \dots, j_k\}) + w_{j_p} F_i(\{j_1, \dots, j_p\}),$$

where $w \in \mathbb{R}^n$ such that $w_{j_1} \geqslant \cdots \geqslant w_{j_p}$.

Continuous Optimization

$$\circ$$
 (SFMC) $\min_{w \in \mathbb{R}^n} \sum_{i=1}^r f_i(w) + \sum_{j=1}^n \psi(w_j)$,

$$\circ$$
 (SFM**C**_i) $\min_{w \in \mathbb{R}^n} f_i(w) + \sum_{j=1}^n \psi(w_j)$,

where $\psi:\mathbb{R}\to\mathbb{R}$ is a convex function with Fenchel-conjugate everywhere.

- Related work. Total variation [1, 2, 3] considers $\psi(v) = \frac{1}{2}v^2$.
- ullet Our work. Let $arepsilon\in\mathbb{R}_+$ and

$$\psi(w) = \begin{cases} \frac{1}{2} w^2 & \text{if } |w| \leqslant \varepsilon, \\ +\infty & \text{otherwise,} \end{cases}$$

• Continuous to Discrete: SFMC \to SFMD. If w^* is the optimal solution of SFMC, then $\{w^* \geq 0\}$ is the optimal solution of SFMD.

3 . Discrete to Continuous : $\mathrm{SFM}\textbf{D}_i \to \mathrm{SFM}\textbf{C}_i$ $\boldsymbol{\searrow}$

- 1: Input: SFMD_i for $F_i: 2^V \to \mathbb{R}$ and $\varepsilon \in \mathbb{R}_+$.
- 2: $\mathbf{Output}:(w^*,s^*)$ primal-dual optimal pair of $\mathrm{SFM}\mathbf{C}_i$ for f_i .
- 3: $A_+ = \operatorname{argmin}_{A \subset V} F_i(A) + \varepsilon |A|$ with a dual certificate $s_+ \in B(F_i)$.
- 4: $A_{-} = \operatorname{argmin}_{A \subset V} F_{i}(A) \varepsilon |A|$ with a dual certificate $s_{-} \in B(F_{i})$.
- 5: $w^*(A_+)=-arepsilon$, $s^*(A_+)=s_+$, $w^*(V\setminus A_-)=arepsilon$, $s^*(V\setminus A_-)=s_-$
- 6: $U := A_- \setminus A_+$ and a discrete function $G_i : 2^U$ s.t. $G_i(B) = F_i(A_+ \cup B) F_i(A_+)$ with Lovász extension $g_i : \mathbb{R}^{|U|} \to \mathbb{R}$.
- 7: Solve for optimal solutions of $\min_{w \in \mathbb{R}^{|U|}} g_i(w) + \frac{1}{2}w^2$ and its dual using divide-and-conquer algorithm [2] to obtain (w_U^*, s_U^*) .
- 8: $(w^*(U), s^*(U)) = (w_U^*, s_U^*)$

4. $SFMC_i \rightarrow SFMC$

- SFMC
- \circ Primal $\min_{w \in [-\varepsilon,\varepsilon]^n} \sum_{i=1}^r f_i(w) + \frac{1}{2} ||w||_2^2$.
- o Dual $\max_{(s_1,...,s_r) \in \mathbb{R}^{n \times r}} \sum_{i=1}^r g_i^*(s_i) \frac{1}{2} \|\sum_{i=1}^r s_i\|_2^2$, where

$$g_i(w) = egin{cases} f_i(w) & ext{if } |w| \leqslant arepsilon \ +\infty & ext{otherwise,} \end{cases}$$

with the Fenchel-conjugate

$$g_i^*(s_i) = \inf_{t_i \in B(F_i)} \sup_{w \in [-\varepsilon, \varepsilon]^n} w^\top(s_i - t_i) = \varepsilon \inf_{t_i \in B(F_i)} ||s_i - t_i||_1.$$

- Optimization algorithms
- \circ BCD

$$\forall i \in [r], \ s_i^{\text{new}} = \underset{s_i^{\text{new}} \in \mathbb{R}^n}{\operatorname{argmin}} \ g_i^*(s_i^{\text{new}}) + \frac{1}{2} \| \sum_{j=1}^i s_j^{\text{new}} + \sum_{j=i+1}^r s_j \|_2^2.$$

 \circ Acceleration for r=2

$$egin{aligned} s_2^{ ext{new}} &= rgmin_{s_2^{ ext{new}}} g_2^*(s_2^{ ext{new}}) + rac{1}{2} \|t_1 + s_2^{ ext{new}}\|^2 \ s_1^{ ext{new}} &= rgmin_{s_1^{ ext{new}}} g_1^*(s_1^{ ext{new}}) + rac{1}{2} \|s_1^{ ext{new}} + s_2^{ ext{new}}\|_2^2 \ t_1^{ ext{new}} &= s_1^{ ext{new}} + eta(s_1^{ ext{new}} - s_1), \end{aligned}$$

with $\beta = (t-1)/(t+2)$ at iteration t

igstar 5. Suboptimality from SFMC ightarrow SFMD igstarrow

Proposition 1. Given a feasible primal candidate w for SFM \boldsymbol{C} with suboptimality $\eta_{\rm C}$, one of the suplevel sets $\{w \geqslant \alpha\}$ of w is an $\eta_{\rm D}$ -optimal minimizer of SFM \boldsymbol{D} , with $\eta_{\rm D} = \frac{\eta_{\rm C}}{4\varepsilon} + \sqrt{\frac{\eta_{\rm C} n}{2}}$.

- $\eta_{\rm C}=\frac{\Delta^2}{t^{\alpha}}$ where Δ is a notion of diameter of the base polytopes and $\alpha=2$ for accelerated algorithms and $\alpha=1$ for plain algorithms.
- $ullet \eta_{
 m D} = rac{\Delta \sqrt{n}}{t^{lpha/2}} + rac{\Delta^2}{arepsilon t^{lpha}}.$

6. Experiments - SFM of 2D and 3D cuts

• Take home message. Adding box constraints to the continuous optimization problem reduces individual SFM calls significantly.

7. References

- [1] S. Jegelka, F. Bach, and S. Sra, "Reflection methods for user-friendly submodular optimization," in *Advances in Neural Information Processing Systems*, 2013.
- [2] K. S. Sesh Kumar and F. Bach, "Active-set methods for submodular minimization problems," *Journal of Machine Learning Research*, vol. 18, no. 1, pp. 4809–4839, 2017.
- [3] A. Ene, H. Nguyen, and L. A. Végh, "Decomposable submodular function minimization: discrete and continuous," in *Advances in Neural Information Processing Systems*, 2017.