

SUPPORT VARIETIES OF $(\mathfrak{g}, \mathfrak{k})$ -MODULES OF FINITE TYPE

ALEXEY PETUKHOV

1. BRIEF STATEMENT OF RESULTS

Let \mathfrak{g} be a semisimple Lie algebra over an algebraically closed field \mathbb{F} of characteristic 0 and $\mathfrak{k} \subset \mathfrak{g}$ be a reductive in \mathfrak{g} subalgebra.

Definition 1. A $(\mathfrak{g}, \mathfrak{k})$ -module is a \mathfrak{g} -module which after restriction to \mathfrak{k} becomes a direct sum of finite-dimensional \mathfrak{k} -modules.

Definition 2. A $(\mathfrak{g}, \mathfrak{k})$ -module is of *finite type* if it is a \mathfrak{k} -module of *finite type*, i.e. has finite-dimensional \mathfrak{k} -isotypic components.

Let $Z(\mathfrak{g})$ be the center of the universal enveloping algebra $U(\mathfrak{g})$. Let $\chi : Z(\mathfrak{g}) \rightarrow \mathbb{F}$ be an algebra homomorphism.

Definition 3. We say that a \mathfrak{g} -module M *affords a central character* if for some homomorphism $\chi : Z(\mathfrak{g}) \rightarrow \mathbb{F}$ we have $zm = \chi(z)m$ for all $z \in Z(\mathfrak{g})$ and $m \in M$.

Any simple \mathfrak{g} -module M affords a central character [5]. Let X be the variety of all Borel subalgebras of \mathfrak{g} . The category of \mathfrak{g} -modules which affords a central character χ is equivalent to the category of sheaves of \mathcal{O}_X -quasicoherent modules over the sheaf of twisted differential operators $\mathcal{D}^\lambda(X)$ for a suitable twist $\lambda \in H^1(X, \Omega_X^{1, cl})$ [2], where $\Omega_X^{1, cl}$ is the sheaf of closed holomorphic 1-forms on X . In this category there is a distinguished full subcategory of holonomic sheaves of modules. Informally, holonomic sheaves of modules are $\mathcal{D}^\lambda(X)$ -modules of minimal growth. The simple holonomic modules M are in one-to-one correspondence with the pairs (L, S) , where L is an irreducible closed subvariety of X and S is a sheaf of $\mathcal{D}^\lambda(L')$ -modules which is $\mathcal{O}(L')$ -coherent after restriction to a suitable open subset $L' \subset L$. Moreover, a coherent holonomic module S is locally free on L' and one could think about it as a vector bundle S_B over L' with a flat connection. Note that flat local sections of this bundle are not necessarily algebraic.

Theorem 1. Let M be a finitely generated $(\mathfrak{g}, \mathfrak{k})$ -module of finite type which affords a central character. Then $\text{Ind}M$ is a holonomic $\mathcal{D}^\lambda(X)$ -module.

We also prove the following theorem (the necessary definitions see in the following section).

Theorem 2. Let $\mathcal{O} \subset \mathfrak{g}^*$ be a nilpotent coadjoint G -orbit, \mathfrak{k}^\perp be the annihilator of \mathfrak{k} in \mathfrak{g}^* , and $N_{\mathfrak{k}}\mathfrak{g}^*$ be the \mathfrak{k} -null-cone in \mathfrak{g}^* . Then the irreducible components of $\mathcal{O} \cap \mathfrak{k}^\perp \cap N_{\mathfrak{k}}\mathfrak{g}^*$ are isotropic subvarieties of \mathcal{O} .

Let $V_{\mathfrak{g}, \mathfrak{k}}$ be the set of all irreducible components of possible intersections of $N_K\mathfrak{k}^\perp$ with the G -orbits in $N_G\mathfrak{g}^*$. This finite set of subvarieties of \mathfrak{g}^* determines a finite set $V_{\mathfrak{g}, \mathfrak{k}}$ of subvarieties of T^*X and a finite set $L_{\mathfrak{g}, \mathfrak{k}}$ of subvarieties of X (see Definition 9 below).

Theorem 3. Let M be a finitely generated $(\mathfrak{g}, \mathfrak{k})$ -module of finite type which affords a central character and (L, S) be the corresponding pair consisting of a variety and a coherent sheaf as before. Then L is an element of $L_{\mathfrak{g}, \mathfrak{k}}$.

2. PRELIMINARIES

We work in the category of algebraic varieties over \mathbb{F} . By T^*X we denote the total space of the cotangent bundle of a smooth variety X and by T_x^*X the cotangent space to X at a point x . By $N_{Y/X}^* \subset T^*X|_Y$ we denote the conormal bundle to a smooth subvariety $Y \subset X$.

2.1. D-modules versus \mathfrak{g} -modules. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and $\Sigma \subset \mathfrak{h}$ be the root system of \mathfrak{g} and Σ_+ be a set of positive roots. Denote by $\hat{\mathfrak{h}}^*$ the set of weights λ such that $\alpha^\vee(\lambda)$ is not a strictly positive integer for any positive root α^\vee of the dual root system $\Sigma^\vee \subset \mathfrak{h}^*$.

For a fixed λ we denote by $\mathcal{D}^\lambda(X)$ the sheaf of twisted differential operators on X and by $D^\lambda(X)$ its space of global sections. The algebras $D^\lambda(X)$ and $D^\mu(X)$ are naturally identified if λ and μ lie in one shifted orbit of Weyl group [8]. Moreover, any such orbit intersects $\hat{\mathfrak{h}}^*$ [8]. If $\lambda \in \hat{\mathfrak{h}}^*$ the surjective homomorphism

$$\tau : U(\mathfrak{g}) \rightarrow D^\lambda(X)$$

identifies the category of quasicoherent $D^\lambda(X)$ -modules and the category of \mathfrak{g} -modules affording the central character $\chi = \chi_\lambda$. A. Beilinson and J. Bernstein have proved that both above categories are equivalent to the category of $\mathcal{D}^\lambda(X)$ -modules:

$$\begin{array}{ccc} \text{Res: } \mathcal{D}^\lambda(X)\text{-mod} & \longrightarrow & \mathfrak{g}\text{-mod}^\chi \\ \mathcal{F} \rightarrow \Gamma(X, \mathcal{F}) & & M \otimes_{(1 \otimes \tau)U(g)} \mathcal{D}(X) \leftarrow M \end{array} .$$

In general Res and Ind identify the category $\mathfrak{g}\text{-mod}^\chi$ with a certain quotient of the category $\mathcal{D}^\lambda(X)\text{-mod}$. For more detailed exposition of the topic see for example [8].

2.2. Three faces of the support variety. The algebra $U(\mathfrak{g})$ has a natural filtration such that $\text{gr } U(\mathfrak{g}) = S(\mathfrak{g})$. The filtration on $U(\mathfrak{g})$ induces a filtration on any finitely generated \mathfrak{g} -module M . We denote the associated graded $S(\mathfrak{g})$ -module by $\text{gr } M$. We denote the support of $\text{gr } M$ inside $\mathfrak{g}^* = \text{Spec } S(\mathfrak{g})$ by $V(M)$.

A similar argument constructs for a $\mathcal{D}^\lambda(X)$ -module \mathcal{F} a positive cycle $\mathcal{V}(\mathcal{F})$, i.e. a formal linear combination of irreducible subvarieties of T^*X with positive integer coefficients.

Definition 4. The *singular support* $\mathcal{V}(M)$ of a simple \mathfrak{g} -module M is the cycle $\mathcal{V}(\text{Ind } M)$ in T^*X .

Definition 5. The *support variety* $L(M)$ of a simple \mathfrak{g} -module M is the projection of $\mathcal{V}(M)$ to X .

Let \mathcal{X} be a G -variety for a reductive group G with Lie algebra \mathfrak{g} . The map $\phi : T^*\mathcal{X} \times \mathfrak{g} \rightarrow \mathbb{F}(\{(l, x), g\} \rightarrow l(gx), x \in X, l \in T_x^*\mathcal{X}, g \in \mathfrak{g})$ determines a map $\phi_{\mathcal{X}} : T^*\mathcal{X} \rightarrow \mathfrak{g}^*$ called the *moment map*. D.Barlet and M.Kashiwara [1], have proved that $V(M) = \phi_{\mathcal{X}}(\mathcal{V}(\text{Ind } M))$. Therefore we have a diagram

$$\begin{array}{ccc} \mathcal{V}(M) \subset T^*X & & \\ \swarrow \phi_{\mathcal{X}} & & \searrow \text{pr} \\ V(M) \subset \mathfrak{g}^* & & L(M) \subset X \end{array} .$$

Lemma 1 ([10]). Let K be a reductive algebraic group with a Lie algebra \mathfrak{k} and let X be an affine K -variety. Then $\mathbb{F}[X]$ is a \mathfrak{k} -module of finite type if and only if X contains finitely many closed K -orbits. In this case any irreducible component of X contains precisely one closed K -orbit.

Lemma 2. A finitely generated $(\mathfrak{g}, \mathfrak{k})$ -module M is of finite type if and only if its associated variety $V(M)$ has finitely many closed \mathfrak{k} -orbits. In this case the set of closed orbits consists just of the zero orbit.

Proof. Let J_M be the annihilator of $V(M)$ in $S(\mathfrak{g})$. Consider the $S(\mathfrak{g})$ -modules

$$J_M^{-i}\{0\} := \{m \in \text{gr } M \mid j_1 \dots j_i m = 0 \text{ for all } j_1, \dots, j_i \in J_M\}.$$

One can easily see that these modules form an ascending filtration of $\text{gr } M$ such that $\cup_{i=1}^{\infty} J_M^{-i}\{0\} = \text{gr } M$. Since $S(\mathfrak{g})$ is a Noetherian ring, the filtration stabilizes, i.e. $J_M^{-i}\{0\} = \text{gr } M$ for some i . By $\overline{gr} M$ we denote the corresponding graded object. By definition, $\overline{gr} M$ is an $S(\mathfrak{g})/J_M$ -module. Suppose that $f \overline{gr} M = 0$ for some $f \in S(\mathfrak{g})$. Then $f^i \text{gr } M = 0$ and hence $f \in J_M$. This proves that the annihilator of $\overline{gr} M$ in $S(\mathfrak{g})/J_M$ equals zero.

Suppose $V(M)$ has a unique closed \mathfrak{k} -orbit. Let M_0 be a \mathfrak{k} -stable space of generators of $\overline{gr} M$. Then there is a surjective homomorphism $M_0 \otimes_{\mathbb{F}} (S(\mathfrak{g})/J_M) \rightarrow \overline{gr} M$. Since $V(M)$ has finitely many closed \mathfrak{k} -orbits, $M_0 \otimes_{\mathbb{F}} (S(\mathfrak{g})/J_M)$ is a \mathfrak{k} -module of finite type. Therefore $\overline{gr} M$ is of finite type, which implies that M is a $(\mathfrak{g}, \mathfrak{k})$ -module of finite type.

Assume now that M is of finite \mathfrak{k} -type. Set

$$\text{Rad } M = \{m \in \overline{gr} M \mid \text{there exists } f \in S(\mathfrak{g})/J_M \text{ such that } fm = 0 \text{ and } f \neq 0\}.$$

Then $\text{Rad } M$ is a proper \mathfrak{k} -stable submodule of $\overline{\text{gr}}M$. Therefore there exists a finite-dimensional \mathfrak{k} -subspace $M_0 \subset \overline{\text{gr}}M$ such that $M_0 \cap \text{Rad } M = 0$. The homomorphism $M_0 \otimes_{\mathbb{F}} (\mathbf{S}(\mathfrak{g})/\mathbf{J}_M) \rightarrow \overline{\text{gr}}M$ induces an injective homomorphism $\mathbf{S}(\mathfrak{g})/\mathbf{J}_M \rightarrow M_0^* \otimes_{\mathbb{F}} \overline{\text{gr}}M$. Therefore $\mathbf{S}(\mathfrak{g})/\mathbf{J}_M$ is of finite \mathfrak{k} -type and $V(M)$ has only finitely many closed \mathfrak{k} -orbits. As $V(M)$ is \mathbb{F}^* -stable, any irreducible component of it contains point 0 and this point is a closed \mathfrak{k} -orbit. \square

Lemma 3 (S. Fernando [6]). If M is a finitely generated $(\mathfrak{g}, \mathfrak{k})$ -module then

$$V(M) \subset \mathfrak{k}^\perp := \{x \in \mathfrak{g}^* : \forall k \in \mathfrak{k} \ x(k) = 0\}.$$

2.3. Hilbert-Mumford criterion. Let K be a reductive group, X be an affine K -variety, V be a K -module.

Theorem 4 (Hilbert-Mumford criterion). The closure of any orbit $\overline{Kx} \subset X$ contains a unique closed orbit $K\bar{x} \subset X$. There exists a homomorphism $\mu : \mathbb{F}^* \rightarrow K$ such that $\lim_{t \rightarrow 0} \mu(t)x = \bar{x} \in K\bar{x}$.

The *null-cone* $N_{\mathfrak{k}} V := \{x \in V : 0 \subset \overline{Kx}\}$ is a closed algebraic subvariety of V [10].

Theorem 5. Let $x \in V$ be a point. Then $0 \in \overline{Kx}$ if and only if there exists a nonzero rational semisimple element $h \in \mathfrak{k}$ such that $x \in V_h^{>0}$, where $V_h^{>0}$ is the direct sum of h -eigenspaces in V with positive eigenvalues.

Corollary 1 ([10]). There exists a finite set H of rational semisimple elements of \mathfrak{k} such that $N_K V := \bigcup_{h \in H} KV_h^{>0}$, where $KV_h^{>0} := \{v \in V \mid v = kv_h \text{ for some } k \in K \text{ and } v_h \in V_h^{>0}\}$.

2.4. Gabber's theorem. Let G be the adjoint group of \mathfrak{g} and M be a finitely generated \mathfrak{g} -module.

Definition 6. Suppose \mathcal{X} is a smooth G -variety with a closed G -invariant nondegenerate 2-form ω . Such a pair (\mathcal{X}, ω) is called a *symplectic G-variety*.

Definition 7. Let (\mathcal{X}, ω) be a symplectic G -variety. We call a subvariety $Y \subset \mathcal{X}$

- a) *isotropic* if $\omega|_{T_y Y} = 0$ for a generic point $y \in Y$;
- b) *coisotropic* if $\omega|_{(T_y Y)^\perp} = 0$ for a generic point $y \in Y$;
- c) *Lagrangian* if $T_y Y = (T_y Y)^\perp$ for a generic point $y \in Y$ or equivalently if it is both isotropic and coisotropic.

Theorem 6 (O. Gabber [7]). The variety $V(M) \subset N_G \mathfrak{g}^*$ is a coisotropic subvariety of \mathfrak{g}^* with respect to the Kirillov symplectic structure. The variety $\mathcal{V}(M)$ is a coisotropic subvariety of T^*X with respect to the natural symplectic structure.

Definition 8. A finitely generated $(\mathfrak{g}, \mathfrak{k})$ -module M which affords a central character is called *holonomic* if \tilde{V} is a Lagrangian subvariety of $G\tilde{V}$ for any irreducible component \tilde{V} of $V(M)$.

3. PROOFS

Let \mathfrak{g} be a semisimple Lie algebra and $\mathfrak{k} \subset \mathfrak{g}$ be a reductive in \mathfrak{g} subalgebra. Let G be the adjoint group of \mathfrak{g} and $K \subset G$ be a connected reductive subgroup such that $\text{lie } K = \mathfrak{k}$.

Theorem 2. Let $\mathcal{O} \subset \mathfrak{g}^*$ be a nilpotent coadjoint orbit, \mathfrak{k}^\perp be the annihilator of \mathfrak{k} in \mathfrak{g}^* , and $N_{\mathfrak{k}} \mathfrak{g}^*$ be the \mathfrak{k} -null-cone in \mathfrak{g}^* . Then the irreducible components of $\mathcal{O} \cap \mathfrak{k}^\perp \cap N_{\mathfrak{k}} \mathfrak{g}^*$ are isotropic subvarieties of \mathcal{O} .

Proof. As \mathfrak{g} is semisimple, we can freely identify \mathfrak{g} with \mathfrak{g}^* . Let h be a nonzero rational semisimple element of \mathfrak{k} . By definition $\mathfrak{g}_h^{>0}$ is the direct sum of all h -eigenspaces in \mathfrak{g} with nonnegative eigenvalues. Let $G_h^{\geq 0} \subset G$ be the parabolic subgroup with Lie algebra $\mathfrak{g}_h^{\geq 0}$, and let $S_G := G/G_h^{\geq 0}$ be a quotient. In the same way we define $\mathfrak{k}_h^{\geq 0}, K_h^{\geq 0}, S_K$. Let \mathfrak{n}_h be the nilpotent radical of $\mathfrak{g}_h^{\geq 0}$. Obviously $Ke \subset S_G$ is isomorphic to S_K . By definition,

- $G\mathfrak{n}_h := \{x \in \mathfrak{g} \mid x = gn \text{ for some } n \in \mathfrak{n}_h, g \in G\}$,
- $K\mathfrak{n}_h := \{x \in \mathfrak{g} \mid x = kn \text{ for some } n \in \mathfrak{n}_h, k \in K\}$,
- $K(\mathfrak{n}_h \cap \mathfrak{k}^\perp) := \{x \in \mathfrak{g} \mid x = kn \text{ for some } n \in \mathfrak{n}_h \cap \mathfrak{k}^\perp, k \in K\}$.

Let $\phi : T^*S_G \rightarrow \mathfrak{g}^*$ be the moment map. It is a straightforward observation that $G\mathfrak{n}_h$ coincides with $\phi(T^*S_G)$, $K\mathfrak{n}_h$ coincides with $\phi(T^*S_G|_{S_K})$, $K(\mathfrak{n}_h \cap \mathfrak{k}^\perp)$ coincides with $\phi(N_{S_K/S_G}^*)$.

$$\begin{array}{ccccc} T^*S_G & \xleftarrow{\text{inclusion}} & T^*S_G|_{S_K} & \xleftarrow{\text{inclusion}} & N_{S_K/S_G}^* \\ \downarrow \phi & & \downarrow \phi & & \downarrow \phi \\ G\mathfrak{n}_h & \xleftarrow{\text{inclusion}} & K\mathfrak{n}_h & \xleftarrow{\text{inclusion}} & K(\mathfrak{n}_h \cap \mathfrak{k}^\perp) \end{array}$$

As N_{S_K/S_G}^* is an isotropic subvariety of T^*S_G , the variety $\phi(N_{S_K/S_G}^*)$ is isotropic in $G(\mathfrak{n}_h \cap \mathfrak{k}^\perp)$ and any subvariety \tilde{V} of $K(\mathfrak{n}_h \cap \mathfrak{k}^\perp)$ is isotropic in $G\tilde{V}$. Therefore by Corollary 1 any subvariety \tilde{V} of $\mathfrak{k}^\perp \cap N_{\mathfrak{k}\mathfrak{g}}$ is isotropic in $G\tilde{V}$. \square

Definition 9.

- Let $V_{\mathfrak{g}, \mathfrak{k}}$ be the set of all irreducible components of all possible intersections of $N_K \mathfrak{k}^\perp$ with a G -orbit in $N_G \mathfrak{g}^*$.
- Let $\mathcal{V}_{\mathfrak{g}, \mathfrak{k}}$ be the set of all irreducible components of the preimages of $V_{\mathfrak{g}, \mathfrak{k}}$ under the moment map $T^*X \rightarrow \mathfrak{g}^*$.
- Let $L_{\mathfrak{g}, \mathfrak{k}}$ be the set of all images of elements of $\mathcal{V}_{\mathfrak{g}, \mathfrak{k}}$ in X .

Theorem 3. Let M be a finitely generated $(\mathfrak{g}, \mathfrak{k})$ -module of finite type which affords a central character. The irreducible components of $V(M)$ are elements of $V_{\mathfrak{g}, \mathfrak{k}}$, the irreducible components of $\mathcal{V}(M)$ are elements of $\mathcal{V}_{\mathfrak{g}, \mathfrak{k}}$, the irreducible components of $L(M)$ are elements of $L_{\mathfrak{g}, \mathfrak{k}}$.

Proof. Let \tilde{V} be an irreducible component of $V(M)$ and \mathcal{O} be the closure of $G\tilde{V}$. By Theorem 6 the variety \tilde{V} is coisotropic. As $\tilde{V} \subset N_K \mathfrak{k}^\perp \cap \mathcal{O}$, \tilde{V} is isotropic, and therefore \tilde{V} is Lagrangian and is an irreducible component of $\mathcal{O} \cap N_K \mathfrak{g}^* \cap \mathfrak{k}^\perp$. \square

Proof of Theorem 1. As any irreducible component $\tilde{\mathcal{V}}$ of $\mathcal{V}(M)$ is Lagrangian in T^*X , the module $\text{Ind}M$ is holonomic. \square

4. ACKNOWLEDGEMENTS

I thank my scientific advisor Ivan Penkov for his attention to my work and the great help with the text-editing.

REFERENCES

- [1] Daniel Barlet, Masaki Kashiwara, Duality of D-modules on Flag manifolds, IMRN(2000), p. 1243–1257
- [2] Alexandre Beilinson, Joseph Bernstein, Localisation de \mathfrak{g} -modules (French), C. R. Acad. Sci. Paris Ser. I Math. **292**(1981), p. 1–18
- [3] Alexandre Beilinson, Localization of representations of reductive Lie algebras, Proc. of the ICM 1983, p. 699–710
- [4] Walter Borho, Jean-Luc Brylinski, Differential operators on homogeneous spaces. III, Invent. Math. **80**(1985), p. 1–68
- [5] Jacques Dixmier, Algèbres Enveloppantes, Gauthier-Villars, Paris, 1974
- [6] Suren L. Fernando, Lie algebra modules with finite dimensional weight spaces. I”, Trans. Amer. Math. Soc. **322** (1990), p. 757–781
- [7] Ofer Gabber, The integrability of the characteristic variety, Amer. J. Math. **103** no. 3(1981), p. 445–468
- [8] Henryk Hecht, Dragan Milicic, Wilfried Schmidt, Localization and standard modules for real semisimple Lie groups I: The duality theorem, Inv.
- [9] Ivan Penkov, Vera Serganova, Gregg Zuckerman, On the existence of $(\mathfrak{g}, \mathfrak{k})$ -modules of finite type, Duke Math. J. **125** (2004), p. 329–349
- [10] Ernest B. Vinberg, Vladimir L. Popov, Invariant theory (Russian) Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, p. 137–314