

Sahi Prep Hai Toh Life Set Hai

MENSURATION-2D

Part – 2

Area of D formed by joining mid

pts of all sides of D is

— the original D Perimeter of D joined by joining mid pt of all sides of D is I of the original triangle.

If D, E & F are midpoints of the sides AB, BC, CA Then,

Area of
$$\triangle DFE = \frac{1}{4}$$
 (Area of $\triangle ABC$)

USAGE OF GP or Ratio

(i) Area of
$$T_3$$
 = $\frac{64}{1}$ = $\frac{64}{1}$

(ii) Perimeter of
$$T_{11}$$
Perimeter of T_{6}

32

Ans. (i) 64:1

(ii) 1:32

Infinite GP

20,
$$10, 5, 2.5, 1-25, --- a \rightarrow first town $si = \frac{T_2}{T_1} = \frac{T_3}{T_2}$
 $a = 20$$$

$$= 20$$

$$91 = \left(\frac{1}{2}\right)$$

$$\frac{200}{1-91} = \frac{20}{(-\frac{1}{2})}$$

$$A = \frac{a}{1-91} = \frac{400}{1-\frac{1}{2}} = \frac{800}{2}$$

.

Equilateral (iii) If side of T₁ = 20 cm

Find area of (T_1) + T_2 + T_{∞})

Ans.
$$\frac{400\sqrt{3}}{3}cm^2$$

Equilded D

(iv) If side of $T_1 = 20$ cm

Find perimeter of
$$(T_1 + T_2 + \dots T_{\infty})$$

Ans. 120 cm

If corners of equilateral triangle are cut to form a regular hexagon.

all sides are egral all angles are 120

side of Regular Hexcen _ 1 Side of Original A 3

Area of Regular
Hexagon
- 352 S

Eg. If corners of an equilateral triangle of side 12 cm are cut to form a regular hexagon. Find the area of regular hexagon.

Area =
$$\frac{3\sqrt{3}}{2} \times (4)^{2}$$

$$= \frac{24\sqrt{3} \cos^{2}}{2}$$

Ans. 24√3 cm²

Eg. If corners of a square of side 10 cm are cut to form a REGULAR OCTAGON. Find the side of the REGULAR OCTAGON.

Ans. $10(\sqrt{2}-1)$

Eg. If corners of a rectangle of sides 6 & 8 cm, are cut to form a OCTAGON (whose all sides are equal). Find the side of the OCTAGON.

2 min PYO of SSC

$$x+2z=6$$
 $x+2y=8$
 $y^2+z^2=x^2$
 $\left(\frac{8-x}{2}\right)^2+\left(\frac{6-x}{2}\right)^2=x^2$
 $64+x^2-16x+36+x^2-12x=4x^2$
 $2x^2+28x-100=0$
 $x^2+14x-50=0$

$$x = -b + \sqrt{b^2 - 49}$$

•

Ans.
$$-7 + \sqrt{99}$$

USAGE OF RATIO

All are equilateral Δ 's

If area of Green: Orange: Blue = 1:3:5

Find the ratio of their sides.

DABC: DDEF: DGHI
Guentowy tour Guentowy Guen

Govern

Areas

If two sides of a triangle are given, then the maximum area is of right angle triangle.

Eg. If two sides of a triangle are 8 and 10 cm, find the maximum area of the triangle.

Ans. 40 cm²

If perimeter of a triangle is given, then the maximum area is of equilateral triangle.

Eg. If perimeter of a triangle is 60 cm. What is the maximum area of Δ ?

$$3.5 = 60$$

 $S = 20$
Area = $\sqrt{3}.(20)^2 = 7 (00 \sqrt{3})$

Ans. 100√3 cm²

Eg. If hypotenuse of a right angle triangle is 12 cm. Find the maximum area of a triangle.

Area of Right angle D

=
$$\frac{H^2}{4}$$
 Sin 20

For Max Area of

Right angle D

= $\frac{H}{4}$ = 36cm

Ans. 36 cm²

BASICS OF CIRCLE

Area of Circle =
$$\pi r^2$$

Circumference of Circle = $2\pi r$

Area of Semi-Circle =
$$\frac{\pi r^2}{2}$$

Circumference of Semi-Circle = $\pi r + 2r$

Eg. If circumference of a semi-circle is 72 cm. Find its area.

(Take $\pi = 22/7$)

Ans. 308 cm²

Eg. Find the area of the largest triangle that can be drawn inside a semi-circle of radius 14 cm.

Ans. 196 cm²

Circumference of Quadrant of a Circle =
$$\frac{\pi r}{2} + 2r$$

SECTOR OF A CIRCLE

$$\frac{2\pi r\theta}{360^{\circ}}$$

$$A = \frac{\pi x^{2} 0}{36^{\circ}} - 0$$

$$L = \frac{2\pi x 0}{36^{\circ}} - 0$$

Eg. If length of the arc = 6 cm and radius of circle = 5 cm.

Find area of sector of a circle.

Area of sector
$$=$$
 $\frac{1}{2}$ l. or $=$ $\frac{1}{2}$. 6. 5 $=$ $\frac{1}{2}$. 6. 5 $=$ 15 cm

Ans. 15 cm²

SEGMENT OF A CIRCLE

Chord of a circle divides a circle in 2 segments.

AREA OF SEGMENT

Area of Sector — Area of ∆AOB

$$\frac{\pi r^2 \theta}{360^{\circ}} - \frac{1}{2} r^2 \sin \theta$$

LENGTH OF CHORD OF A CIRCLE

$$\frac{AB}{CD} = \frac{12}{52}$$

$$\frac{AB}{CD} = \frac{52}{1}$$

AREA ENCLOSED BY TWO CONCENTRIC CIRCLES

If R and r are radii of two concentric circles, then

Area enclosed by the two circles
$$=\pi R^2-\pi r^2$$
 $=\pi \left(R^2-r^2\right)$ $=\pi (R+r)(R-r)$

Some useful results:

- (i) If two circles touch internally, then the distance between their centres is equal to the difference of their radii.
- (ii) If two circles touch externally, then the distance between their centres is equal to the sum of their radii.
 - (iii) Distance moved by a rotating wheel in one revolution is equal to the circumference of the wheel. (2π.)
 - (iv) the number of revolutions completed by a rotating wheel in one minute = $\frac{Distance \ moved \ in \ one \ minute}{Circumference}$

Circles Touching Internally

00'= R-9

Circles Touching Externally

00 = R+ >1

Q. Two circles touch externally. The sum of their areas is 130 π sq. cm and the distance between their centres is 14 cm. Find the radii of the circles.

TV (R+ 92) = 130 TV

$$R^{2} + (14-R)^{2} = 130$$

$$2R^{2} - 28R + 196 = 130$$

$$R^{2} - 14R + 33 = 0$$

$$R = 11 / 26$$

Ans. R = 11 cm and r = 3 cm.

Q. A car has wheels which are 80 cm in diameter. How many complete revolutions does each wheel make in 10 min. when the car is travelling at a speed of 66 km per hour?

Ans. 4375

Eg. Radius of each of the circle is 10 cm. Find the area of shaded region.

Ans. $(100\sqrt{3} - 50\pi) cm^2$

AREA GRAZED BY COW

An equilateral triangle whose side is 20 cm. Find the area grazed by the cows if they are attached by rope of length 6 cm, 5 cm and 4 cm on the 3 vertices.

Ans.
$$\frac{121}{3} cm^2$$

Eg. A triangle whose sides are 20 cm, 18 cm and 16 cm. Find the area grazed by the cows if they are attached by rope of length 6 cm on all the 3 vertices.

Ans.
$$\frac{396}{7} cm^2$$

LENGTH OF RUBBER BAND

If the radius of each circle is 10 cm. Find the length of rubber band.

Equilateral Δ

If radius of each circle is 10 cm.

Find the side of equilateral Δ .

Equilateral Δ

If r = inradius

R = circumradius

S = Side of equilateral triangle

Equilateral A

- (i) Find : $\frac{r}{R}$
- (ii) $\frac{Area \ of \ incircle}{Area \ of \ circumcircle}$
- (iii) Find the ratio of r:S:R

Eg. If side of an equilateral triangle is 12 cm. Find the area of shaded region.

Ans. 12 π

Equilateral A

Eg. Find : $\frac{Area\ of\ Orange\ region}{Area\ of\ Blue\ region}$

Ans. 3:4

Equilateral Δ

Eg. Find :
$$\frac{r}{R}$$

Ans. 1:3

Diameter of bigger circle (AB) = 12 cm

If AQ = QO and O is centre of the bigger circle

Semi-circles are drawn taking AQ and QB as diameter as shown in the figure.

Find: $\frac{Area\ of\ shaded\ part}{Area\ of\ complete\ circle}$

Ans. 5:16

AB = Diameter of bigger circle

AC = CD = DE = EF = FB

Find: Area of shaded part

Area of complete circle

Ans. 7:25

Eg. O iscentre of larger circle.

AB is diameter

AB = 20 cm

Find the area of shaded part.

Ans. 25π

O' is the centre of the larger circle

AB = 20 cm

AO and OB are diameters of smaller circle

- (i) Find the area of shaded region.
- (ii) Find circumference of shaded region.

Ans. (i) Can't be determined

(ii) 20π

CONCENTRIC CIRCLES

Circles with the same centre.

Radius of circles are in the ratio 1:2:3

Find the ratio of areas of region P:Q:R

If area of region P, Q and R are equal and radius of the largest circle is 12 cm.

Find the radius of the smallest circle.

Ans. 4√3

Eg. If radius of a circle is reduced by n, then its area becomes half of its original area. Find the original radius of circle in terms of n.

Ans.
$$R = \frac{\sqrt{2}n}{\sqrt{2}-1}$$

Prep Smart. Score Better.

Practise topic-wise quizzes

Keep attending live classes

