Содержание

1	17 февраля	1
2	24 февраля	1
3	3 марта	2
4	10-17-24 марта	3
	Последнее обновление 23 марта 2021 г. актуальная версия этого файла лежит по адресу http://mathcenter.spb.ru/nikaan/2021/topology4.pdf	

Топология и геометрия-4, практика, СПбГУ 2021, факультет математики и компьютерных наук

Никита Сергеевич Калинин, Нина Дмитриевна Лебедева, Евгений Анатольевич Фоминых Для всех групп: 201,202,203

1 17 февраля

задачи и кусочек теории

http://mathcenter.spb.ru/nikaan/2021/zaniatie1parallPerenosNew.pdf

2 24 февраля

Для решения следующей задачи Вам может пригодиться уравнение параллельного переноса http://mathcenter.spb.ru/nikaan/2021/eq.pdf

Задача 8. В полярных координатах (ρ, φ) на плоскости найдите

- а) символы Кристоффеля (первого рода, здесь и далее) "внешним" (то есть через вложение плоскости в \mathbb{R}^3 и вычисление ковариантной проиводной базисных векторов, как проекции обычной производной на касательное пространство) и "внутренним" (решение системы, в которой коэффициенами являютя координаты метрического тензора g_{ij} и их производные) способом.
- б) используя символы Кристоффеля и соответствующее уравнение, параллельный перенос вектора $v \in T_pM$ с координатами (0,1) из точки p=(2,0) в точку $q=(2,\pi/3)$ вдоль кривой $\rho=2$. Найдите декартовы координаты начального и конечного вектора.

Задача 9. Рассмотрим три векторных поля на плоскости: $A = \frac{\partial}{\partial x}, B = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}, C = \frac{\partial}{\partial y}$. Рассмотрим верхнюю полусферу S_+ , заданную как $z = \sqrt{1 - x^2 - y^2}, |x|^2 + |y|^2 < 1$. Проекция вдоль оси z даёт диффеоморфизм между S_+ и открытым кругом, поэтому можно векторные

поля A,B,C перенести на сферу. Назовём полученные векторные поля на сфере A',B',C'. Найдите

- а) скобку Ли [A', B'] (иногда её называют коммутатором векторных полей A', B');
- 6) [[A', B'], C'] + [[B', C'], A'].
- в) символы Кристоффеля
- г) В точке с координатами (0,0) ковариантную производную B' вдоль A' "внутренним" (используя символы Кристоффеля) и "внешним" способом (по определению ковариантной производной, как проекции обычной на касательное пространство).

Гладкое векторное поле на гладком многообразии называется **полным**, если поток определен на всем многообразии, для всех t.

Задача 10. Приведите пример неполного гладкого векторного поля на \mathbb{R} .

Задача 11. Дано гладкое многообразие M и гладкое векторное поле $V \in \mathfrak{X}(M)$. Докажите, что если $V_p = 0$, то для любой точки $q \neq p$ и $t \in \mathbb{R}$ $\Phi^t_V(q) \neq p$ (иначе говоря, никакая траектория потока не приведет в точку, где поле нулевое.)

Задача 12. Найдите явное выражение для потока, порожденного векторным полем на плоскости, изобразите интегральные линии, докажите полноту этого поля.

- $A = c_1 \frac{\partial}{\partial x} + c_2 \frac{\partial}{\partial y}$
- $B = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$
- $C = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$

Задача 13. *** Докажите, что векторное поле с компактным носителем является полным. (Следствие: для любого векторного поля и компакта найдется полное векторное поле, совпадающее с данным на компакте.)

3 3 марта

Домашняя контрольная: дедлайн 3 марта 23:59.

https://forms.yandex.ru/u/60361605943981e439166432/

Задача 14. Пусть $c: I \to M$ гладкий путь, c(0) = p. Тогда c'(t) — путь в TM, поэтому в общем случае $c''(t) \in TTM$.

- а) Приведите пример, показывающий, что в общем случае вторая производная зависит от выбора карты, если вычислять ее в координатах $d_{\varphi(p)}\varphi^{-1}(\varphi \circ c)''(0) \neq d_{\psi(p)}\psi^{-1}(\psi \circ c)''(0)$
- б) Пусть c'(0) = 0, докажите, что отображение $D_p : \mathcal{F}(M) \to \mathbb{R}$, действующее по правилу $D_p(f) = (f \circ c)''(0)$ линейно и удовлетворяет правилу Лейбница. Покажите, что соответствующий вектор в координатах имеет вид $(\varphi \circ c)''(0)$.

• в) Пусть $a, b: I \to M$ гладкие пути, такие что a(0) = b(0) = p и a'(0) = b'(0). докажите, что отображение $D_p: \mathcal{F}(M) \to \mathbb{R}$, действующее по правилу $D_p(f) = (f \circ a)''(0) - (f \circ b)''(0)$ линейно и удовлетворяет правилу Лейбница. Найдите выражение соответствующего вектора в координатах.

Задача 15. Скобка Ли — мера некоммутативности потоков. Дано гладкое многообразие M и гладкие векторные поля $X,Y\in\mathfrak{X}(M)$ зафиксмруем точку $p\in M$. Докажите, что для $c_p(t)=\Phi_Y^t\circ\Phi_X^t(p)-\Phi_X^t\circ\Phi_Y^t(p)$

$$[X,Y]_p = \frac{1}{2}c_p''(0)$$
 (*),

где $c_p''(0)$ понимается в смысле пункта в) предыдущей задачи. План доказательства.

- Пусть $X_p \neq 0$. Использовать теорему о выпрямлении, после этого в координатах:
 - Проверить корректность. (Показать, что выражение $c_p''(0)$ имеет смысл.) То есть, рассмотреть кривые $a(t) = \Phi_X^t \circ \Phi_Y^t(p)$ и $b(t) = \Phi_Y^t \circ \Phi_X^t(p)$ и проверить, что выполняются условия из пункта в) предыдущей задачи.
 - Проверить равенство (*) в координатах.
- Если $X_p = 0$ и $Y_p = 0$ добавить координату и поле.

4 10-17-24 марта

Задача 16. Докажите, что преобразования $z \to \frac{az+b}{cz+d}, a, b, c, d \in \mathbb{R}, ad-bc > 0$ на верхней полуплоскости Imz>0 являются изометриями. Например, можно доказать это для образующих этой группы.

Задача 17. Докажите, что преобразования $z \to \frac{az+b}{cz+d}, a, b, c, d \in \mathbb{R}, ad-bc>0$ на верхней полуплоскости Imz>0 переводят вертикальные прямые и окружности с центром на оси абсцисс в вертикальные прямые и окружности с центром на оси абсцисс.

Задача 18. Правда ли, что инверсия в \mathbb{R}^3 является конформным отображением?

Задача 19. Рассмотрем модель гиперболической плоскости в единичном диске D^2 . Покажите, что инверсия относительно окружности, перпендикулярной абсолюту – то есть границе ∂D^2 диска – изометрия. (Это гиперболическое "отражение" относительно "прямой")

Задача 20. Сколько неподвижных точек может иметь изометрия гиперболической плоскости?

Задача 21. Для модели верхней полуплоскости, для данной точки z_0 и геодезической через неё укажите изометрию, переводящую их в точку i и вертикальную прямую соответственно.

Задача 22. Для модели верхней полуплоскости покажите, что расстояние d между точками $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$ считается по формуле

$$ch \ d(z_1, z_2) = 1 + \frac{|z_1 - z_2|^2}{2y_1y_2}.$$

Задача 23. Для прямоугольного треугольника на плоскости Лобачевского со сторонами a, b, c покажите гиперболическую "теорему Пифагора": $ch\ a \cdot ch\ b = ch\ c$.

Задача 24. Покажите, что на гиперболической плоскости треугольник с углами α , β , γ имеет площадь $\pi - (\alpha + \beta + \gamma)$. Выведите отсюда, что сумма углов любого треугольника и площадь любого треугольника меньше π . Для сколь угодно большого R приведите пример треугольника со сторонами, большими R.

Задача 25. Докажите гиперболическую теорему синусов

$$\frac{sh\ a}{\sin\alpha} = \frac{sh\ b}{\sin\beta} = \frac{sh\ c}{\sin\gamma}.$$

Задача 26. Покажите, что на торе не существует метрики локально изометричную метрике на гиперболической плоскости (или, что то же самое, постоянной кривизны -1.)

Задача 27. Правда ли, что а)медианы б)высоты в)биссектрисы треугольника на гиперболической плоскости пересекаются в одной точке?

Задача 28. Докажите следующие соотношения в четырёх-,пяти-,шести-сторонниках:

Задача 29. Сколько неподвижных точек может иметь сохраняющая ориентацию изометрия гиперболической плоскости, если учитывать точки на абсолюте? (Рассматриваем модель в верхней полуплоскости.) При каких значениях параметров a, b, c, d дробно-линейного преобразования получается данное число точек?

В зависимости от числа этих точек сохраняющие ориентацию изометрии называются гиперболическими (две неподвижных точки на абсолюте), параболическими (одна неподвижная точка на абсолюте) и эллиптическим (одна неподвижная точка внутри).

Сколько неподвижных точек может иметь меняющая ориентацию изометрия гиперболической плоскости, если учитывать точки на абсолюте? При каких значениях параметров a, b, c, d получается данное число точек?

Задача 30. Определение: идеальным называется треугольник из геодезических с "вершинами"на абсолюте. Докажите, что для любых двух идеальных треугольников существует изометрия, переводящая один треугольник в другой.

Задача 31. Определение: Треугольник из геодезических $\gamma_1, \gamma_2, \gamma_3$ называется δ -тонким, если каждая сторона лежит в δ -окрестности двух других: $\gamma_i \subset U_\delta(\gamma_j, \gamma_k)$

Докажите, что на гиперболической плоскости любой треугольник из геодезических 2-тонкий.

Информация: Пространство, в котором любой треугольник из кратчайших δ -тонкий называется δ -гиперболическим (или гиперболическим по Громову).

Задача 32. Докажите, что углы равностороннего треугольника стремятся к нулю с ростом сторон.

Докажите, что углы правильного n-угольника стремятся к нулю с ростом сторон.

Задача 33. Докажите, что на сфере с двумя ручками можно ввести метрику локально изометричную метрике на гиперболической плоскости.

Задача 34. Докажите сложную задачу.

Пусть G — группа, порожденная отражениями относительно сторон треугольника T с углами $(\pi/p,\pi/q,\pi/r)$. Тогда сферу, плоскость или плоскость Лобачевского можно представить в виде объединения треугольников gT $(g \in G)$, причем треугольники g_1T и g_2T при $g_1 \neq g_2$ не имеют общих внутренних точек. Последнее свойство обеспечивается требованием поточечного совпадения образов треугольников. В самом деле, если треугольники g_1T и g_2T имеют общую внутреннюю точку, то $g_1(x) = g_2(x)$ для всех $x \in T$, а значит, $g_1 = g_2$.

Назовем треугольник T фундаментальной областью группы G. Это определение допускает следующее обобщение. Пусть G — подгруппа группы движений сферы, плоскости или плоскости Лобачевского. Назовем D фундаментальной областью группы G, если выполняются следующие условия:

- 1) D выпуклый многоугольник (в случае плоскости Лобачевского у него могут быть бесконечно удаленные вершины и стороны);
- 2) многоугольники $gD\ (g\in G)$ покрывают всю сферу, плоскость или плоскость Лобачевского;
- 3) многоугольники g_1D и g_2D при $g_1 \neq g_2$ не имеют общих внутренних точек.

Отметим, что не у любой подгруппы группы движений есть фундаментальная область. Например, у всей группы движений нет фундаментальной области.

В качестве простого примера найдем фундаментальную область для подгруппы собственных движений в группе, порожденной отражениями относительно сторон треугольника T типа (p,q,r). Нетрудно понять,

что если s — симметрия относительно одной из сторон треугольника T, то объединение T с sT представляет собой искомую фундаментальную область. В самом деле, треугольники вида gT можно разбить на пары $\{gT,gsT\}$. Дело в том, что треугольник gsT определяет ту же самую пару, так как (gs)sT=gT

Перейдем теперь к более интересному примеру фундаментальной области. Напомним, что в модели Пуанкаре в верхней полуплоскости собственные движения имеют вид $z\mapsto \frac{az+b}{cz+d}$, где $a,b,c,d\in\mathbb{R}$ и ad-bc=1. Группу матриц размером 2×2 с вещественными элементами и определителем 1 обозначают $SL(2,\mathbb{R})$. Любым двум пропорциональным матрицам (и только им) соответствует одно и то же дробно-линейное преобразование. Поэтому группа собственных движений плоскости Лобачевского изоморфна факторгруппе $SL(2,\mathbb{R})/\pm I=PSL(2,\mathbb{R});$ здесь I единичная матрица. В $SL(2,\mathbb{R})$ есть важная подгруппа $SL(2,\mathbb{Z}),$ состоящая из матриц с целочисленными элементами. Ей соответствует подгруппа $PSL(2,\mathbb{Z})$ в $PSL(2,\mathbb{R})$. Группу $PSL(2,\mathbb{Z})$ называют модулярной группой.

Теорема. Треугольник D с углами $\left(0,\frac{\pi}{3},\frac{\pi}{3}\right)$, изображенный на рис. 19, является фундаментальной областью модулярной группы.

вам пригодятся следующие две леммы

Лемма 1. Если Im(z) > 0, то при $g \in G$ величина Im(gz) принимает лишь конечное число значений, превосходящих Im(z).

Лемма 2. Если z — внутренняя точка области D и $gz \in D$ для $g \in G$, то g — тождественное преобразование.

Фундаментальная область группы $PSL(2,\mathbb{Z})$ представляет собой треугольник с углами $(0,\frac{\pi}{3},\frac{\pi}{3})$. Но ее удобнее рассматривать как четырехугольник ABCD с углами $0,\frac{\pi}{3},\pi,\frac{\pi}{3}$ (рис. 20). Дело в том, что стороны этого четырехугольника разбиваются на пары; стороны каждой пары переводятся друг в друга некоторыми элементами группы $PSL(2,\mathbb{Z})$.