THE LUB OF PSD MATRICES

JAN DE LEEUW

1. Introduction

Suppose \mathcal{A}_n is the space all of real symmetric matrices of order n, and $\mathcal{P}_n \subset \mathcal{A}_n$ is the cone of positive semi-definite matrices in that space. For any two $A_1, A_2 \in \mathcal{A}_n$ we say that $A_1 \gtrsim A_2$ if $A_1 - A_2 \in \mathcal{P}_n$. This defines the *Loewner partial order* on \mathcal{A}_n .

Theorem 1.1. The poset (\mathcal{P}_n, \gtrsim) is a lattice.

Proof. We need to show that all pairs $P_1, P_2 \in \mathcal{P}$ have a least upper bound (or join) and a greatest lower bound (or meet). For any pair of positive semidefinite matrices there is a nonsingular S such that $P_1 = S\Lambda_1S'$ and $P_2 = S\Lambda_2S'$, with Λ_1 and Λ_2 diagonal. Now define

$$P_1 \cup P_2 = S \max(\Lambda_1, \Lambda_2)S'$$
.

Clearly $P_1 \cup P_2 \gtrsim P_1$ and $P_1 \cup P_2 \gtrsim P_2$, and thus $P_1 \cup P_2$ is an upper bound.

Let us assume the columns of S are ordered in such a way that the first n_+ elements of $\Lambda_1 - \Lambda_2$ along the diagonal are positive, the next n_0 elements are zero, and the last n_- elements are negative. We partition S in the same way into three submatrices S_+ , S_0 , and S_- .

Thus

$$P_1 \cup P_2 - P_2 = S(\max(\Lambda_1, \Lambda_2) - \Lambda_2)S' = S_+(\Lambda_1 - \Lambda_2)_+ S'_+,$$

$$P_1 \cup P_2 - P_1 = S(\max(\Lambda_1, \Lambda_2) - \Lambda_1)S' = S_-(\Lambda_2 - \Lambda_1)_- S'_-.$$

Date: January 2, 2006.

2000 Mathematics Subject Classification. 62H25.

Key words and phrases. Multivariate Analysis, Correspondence Analysis.

Suppose $P \gtrsim P_1$ and $P \gtrsim P_2$ and $P_1 \cup P_2 \gtrsim P$. Thus P is a smaller upper bound than $P_1 \cup P_2$. We see from

$$P_1 \cup P_2 - P_1 \gtrsim P_1 \cup P_2 - P$$
,
 $P_1 \cup P_2 - P_2 \gtrsim P_1 \cup P_2 - P$,

that the null-space of $P_1 \cup P_2 - P$ must contain both the null-space of $P_1 \cup P_2 - P_2$ and the null-space of $P_1 \cup P_2 - P_1$.

Now S_+ is $n \times n_+$ of rank n_+ . Thus there exists an $n \times n_ n_+$ matrix T_+ of rank $n_ n_+$ such that $T'_+S_+ = 0$.

It follows that if $P_1, \dots, P_m \in \mathcal{P}_n$, then the least upper bound $P_1 \cup \dots \cup P_m$ exists. Moreover it can be computed by recursively applying the associative law

$$P_1 \cup \cdots \cup P_m = (P_1 \cup \cdots \cup P_{m-1}) \cup P_m$$
.

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu