A Functorial Recasting of the Measurement Problem and Observer Dependence in Quantum Mechanics

Matthew Long Magneton Labs

January 7, 2025

Abstract

Quantum measurement and observer dependence have challenged physicists and philosophers since the earliest days of quantum mechanics. Different interpretations (Copenhagen, Many-Worlds, relational quantum mechanics, etc.) offer diverse accounts of "collapse" and the role of an observer. In this paper, we present a functorial physics framework that reformulates the measurement process as a natural transformation between a "quantum category" and a "classical data" category. By regarding states, observers, and measurements as morphisms in a suitable monoidal category, the apparent sudden collapse of a wavefunction is replaced with a coherent, compositional map from quantum objects to classical records. We provide explicit mathematical formulations and discuss how the approach clarifies observer dependence and addresses interpretational puzzles. A proof-of-concept Haskell code snippet illustrates the measurement-as-functor perspective.

1 Introduction

Quantum mechanics revolutionized physics by accurately describing phenomena at atomic and subatomic scales. Yet its foundational puzzles endure: the *measurement problem* [1,2], the seeming dependence on an "observer" or measuring apparatus, and tensions with classical realism. Conventional quantum mechanics posits a wavefunction that evolves unitary via the Schrödinger equation yet inexplicably "collapses" when a measurement is made.

This dichotomy spurred many interpretations. The Copenhagen approach privileges measurement as a special process not reducible to unitary evolution. The Many-Worlds theory eliminates collapse but demands a concept of branching universes tied to observers' reference frames. A more structural approach has emerged from *category theory* and *functorial physics* [3,4], where quantum states, transformations, and measurements are recast as morphisms in a monoidal category. From this vantage:

- (i) A quantum system is an object A in the category,
- (ii) A measurement is a functor or natural transformation from the quantum category to a classical data category,
- (iii) Observer dependence is captured by changes of functorial perspective (e.g. fibered categories or changes of "base"),
- (iv) Measurement "collapse" is replaced by a compositional process that integrates quantum objects with classical readouts.

We begin by reviewing the standard measurement postulates (Section 2), then introduce the functorial reformulation (Section 3). In Section 4 we discuss how observer dependence emerges naturally from changes in the functor's domain or codomain. We present mathematical examples and diagrams that clarify how wavefunction collapse can be interpreted as a natural transformation. Finally, Section ?? provides a proof-of-concept Haskell implementation, illustrating how measurement and observer viewpoints can be modeled in a functional programming environment.

2 Measurement Problem in Standard Quantum Mechanics

2.1 Postulates and Collapse

Standard quantum mechanics associates every physical system with a Hilbert space \mathcal{H} . A pure state is a normalized vector $|\psi\rangle \in \mathcal{H}$. Unitary evolution is given by the Schrödinger equation:

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle,$$
 (1)

where \hat{H} is the Hamiltonian operator. However, upon measurement of an observable \hat{O} , with spectral decomposition $\hat{O} = \sum_k o_k \hat{P}_k$, the system is said to *collapse* to $\hat{P}_k |\psi\rangle$ with probability $\|\hat{P}_k |\psi\rangle\|^2$.

2.2 Observer's Role

The measurement postulate implicitly relies on an *observer* or *apparatus* that triggers wavefunction collapse. This special role of the observer is not derived from unitary evolution but instead stated as a separate axiom. This leads to interpretational controversies:

- Copenhagen Duality: Quantum states evolve unitarily except when observed, at which point there is a non-unitary jump.
- Wigner's Friend Paradox: Could one observer witness collapse while another does not?

• Objectivity vs. Subjectivity: If measurement and observer are purely quantum, how do we preserve a classical vantage for outcomes?

Such tensions motivate more structural or relational frameworks.

3 Functorial Measurement: A Category-Theoretic View

3.1 Monoidal Categories and Objects

A monoidal category $(\mathcal{C}, \otimes, I)$ has:

- Objects $A, B \in \text{Obj}(\mathcal{C})$,
- Morphisms $f: A \to B$,
- A tensor product functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$,
- A unit object I.

We interpret $Obj(\mathcal{C})$ as systems (e.g. Hilbert spaces), and morphisms as physical processes (e.g. unitaries).

3.2 States and Measurements as Morphisms

A state of system A can be viewed as a morphism

$$\psi: I \to A$$
.

A measurement process is more subtle. One approach is to think of a measurement as a map from quantum objects (e.g. Hilbert spaces) to a classical data category \mathcal{D} . In essence, a measurement is a functor

$$\mathcal{F}:\mathcal{C}\longrightarrow\mathcal{D}$$

that sends each system $A \in \text{Obj}(\mathcal{C})$ to a set or algebra $\mathcal{F}(A)$ representing possible outcomes, and each quantum morphism $U: A \to A'$ to a classical morphism $\mathcal{F}(U): \mathcal{F}(A) \to \mathcal{F}(A')$.

Probability Rule. If $\psi: I \to A$ is a state, then applying measurement \mathcal{F} yields a distribution over classical outcomes $\mathcal{F}(A)$. Symbolically,

$$\mathcal{F}(\psi) : \mathcal{F}(I) \to \mathcal{F}(A).$$

Often, $\mathcal{F}(I)$ is a single-element set (the trivial outcome of measuring "nothing").

3.3 Collapse as a Natural Transformation

Rather than a discontinuous wavefunction collapse, the functorial picture sees *collapse* or *update* as a *natural transformation* that reassigns quantum states to classical data consistently across different systems and processes. A *natural transformation* $\eta: \mathcal{F} \Rightarrow \mathcal{G}$ between two measurement functors might model varying degrees of coarse graining. For instance, \mathcal{F} might record a precise outcome, while \mathcal{G} only logs a yes/no threshold. In all cases, the compositional structure clarifies how measurement maps states to outcomes without resorting to an external classical domain.

4 Observer Dependence in the Functorial Framework

4.1 Observer as a Choice of Functor

In many interpretations, the observer's perspective is a set of preferred measurement settings or an entire apparatus. Functorially, switching observers corresponds to switching the functor \mathcal{F} to a different functor \mathcal{F}' . These can differ by chosen bases, detection efficiencies, or classical readout schemes. Hence the apparent subjectivity (which basis do you measure in?) is a systematic *change of functor* rather than a contradiction in physical law.

4.2 Consistency Across Observers

When two observers measure the same system from different vantage points, the theory demands a consistency condition: measurements are *coherently* related by natural transformations. A Wigner's Friend-type scenario can be recast in a 2-categorical or fibered category setting, where each observer has a local slice category. The puzzle of "who sees collapse first?" becomes a statement about how local transformations factor through the global functor from quantum processes to classical outcomes.

5 Mathematical Formulation: A Simple Example

Let \mathcal{C} be a monoidal category of finite-dimensional Hilbert spaces $(Ob(\mathcal{C}) = \{\mathcal{H}\}, Mor(\mathcal{C}) = \{\text{linear maps}\})$, and let \mathcal{D} be a category of finite sets $(Ob(\mathcal{D}) = \{X\}, Mor(\mathcal{D}) = \{f : X \to Y\})$. Define a measurement functor $\mathcal{M} : \mathcal{C} \to \mathcal{D}$ by:

$$\mathcal{M}(\mathcal{H}) = \{\text{classical outcomes}\}, \quad \mathcal{M}(U: \mathcal{H} \to \mathcal{H}') = (f_U: \mathcal{M}(\mathcal{H}) \to \mathcal{M}(\mathcal{H}')).$$

For a state $|\psi\rangle: I \to \mathcal{H}$, the induced map

$$\mathcal{M}(|\psi\rangle): \mathcal{M}(I) \to \mathcal{M}(\mathcal{H})$$

represents a probability distribution over outcomes. Typically $\mathcal{M}(I)$ is a single element set (e.g. $\{\star\}$), so $\mathcal{M}(|\psi\rangle)$ is effectively a single function $\star \mapsto$ (outcome probabilities).

If $|\psi\rangle$ belongs to an entangled system $\mathcal{H}_A \otimes \mathcal{H}_B$, the measurement functor can simultaneously measure subfactors of \mathcal{H}_A or \mathcal{H}_B , leading to correlated outcomes. Crucially, the

formalism does not require a non-unitary step; the "collapse" emerges from the definitional choice of \mathcal{M} as a functor to classical sets.

6 Discussion and Outlook

In this functorial approach, the *measurement problem* is not a separate postulate but a natural consequence of specifying how quantum systems map to classical data. Rather than wavefunction collapse, one sees a consistent *compositional* rule for extracting classical information from a quantum category. Observer dependence becomes a difference in how measurement functors are defined and composed.

Future work may embed these ideas in higher categories, incorporate realistic continuous-variable systems, or connect them to advanced formulations like the BFV/BV quantization with boundary data. In all cases, the *unifying principle* is that measurement is a structured process (a *functor*), making explicit which parts of quantum evolution remain coherent and which yield classical records.

Acknowledgments

Matthew Long thanks colleagues at Magneton Labs for feedback on early drafts of this work. Insights from category-theory circles (particularly Abramsky, Coecke, Vicary) have shaped the methodology.

References

- [1] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).
- [2] J. A. Wheeler and W. H. Zurek (Eds.), Quantum Theory and Measurement, Princeton University Press (1983).
- [3] S. Abramsky and B. Coecke, "Categorical Quantum Mechanics," in *Handbook of Quantum Logic and Quantum Structures*, Elsevier (2009), pp. 261–323.
- [4] C. Heunen and J. Vicary, Categories for Quantum Theory: An Introduction, Oxford University Press (2019).