Part I

Partial Differential Equations

1 Introductory Theory and Notation

1.1 Multiindex notation

A multiindex $\alpha = (\alpha_1, \alpha_2,, \alpha_n) \in \mathbb{Z}_+^n$ denotes

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{(\partial x_1)^{\alpha_1} (\partial x_2)^{\alpha_2} ... (\partial x_n)^{\alpha_n}}$$
$$x^{\alpha} = \prod_{i=1}^{n} x_i^{\alpha_i}$$
$$|x| = \sqrt{x_1^2 + ... + x_n^2} = \sqrt{\sum_{i=1}^{n} x_i^2}$$
$$x^{\alpha} f = \{y : y = x^{\alpha} f(x)\}$$

For multiindices α and β ,

- $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n$
- $\alpha! \prod_{i=1}^{n} \alpha_i!$
- $\alpha + \beta = (\alpha_1 + \beta_1, ..., \alpha_n + \beta_n)$
- $\alpha \geq \beta$ if and only if $\alpha_i \geq \beta_i$ for i = 1, ..., n

1.2 Senses of Solution

Let $Lu=\sum\limits_{|\alpha|\leq M}a_{\alpha}(x)D^{\alpha}u$ were $a_{\alpha}(x)\in C^{\infty}(\Omega)$ so $LT\in \mathcal{D}'(\Omega)$ for $T\in \mathcal{D}'(\Omega)$

Example: If $Lu = u_{tt} - u_{xx}$ then the general solution is u(x,t) = F(x+t) + G(x-t)

1.2.0.1 Classical Solution

Lu=f in a classical sense if $u\in C^M(\Omega)$ and $u'(x)=f(x)\ orall\ x\in\Omega$ Example: We require $F,G\in C^2(\Omega)$

1.2.0.2 Weak Solution

Lu=f in a **weak sense** if $u\in L^1_{\mathrm{loc}}$ and Lu=f in \mathcal{D}' sense.

Classical solutons are always also weak solutions

Example: We require $F, G \in L^1(\Omega)$

1.2.0.3 Distributional Solution

Lu=f in a **distributional sense** if $u\in \mathcal{D}'$ and Lu=f in \mathcal{D}' sense.

Classical solutions and weak solutions are always also distributional solutions

Example: We require $F, G = \delta \in \mathcal{D}'(\Omega)$

1.3 Distributional Solutions

1.3.1 Fundamental Solutions

We say $E \in \mathcal{D}'(\mathbb{R}^N)$ is a fundamental solution of

$$L = \sum_{|\alpha| \le M} a_{\alpha}(x) D^{\alpha} \qquad a_{\alpha}(x) \in C^{\infty}$$

if $LE = \delta$.

ullet Usually fundamental solutions can be found by taking the FT of $LE=\delta$ which is

$$\left(\sum_{|\alpha| \le M} D^{\alpha} E\right)^{\wedge} = (\delta)^{\wedge} \to \sum_{|\alpha| \le M} (ik)^{\alpha} \hat{E}(k) = \frac{1}{(2\pi)^{\frac{N}{2}}}$$

- Fundamental solutions are never unique since you can add solutions to the homogenous equation H and the equation L(E+H)=f will still be valid
- **1.3.1.1 Translational Invariance** If E is a fundamental solution to and $a_{\alpha}(x) = a_{\alpha}$ (constant coefficients) and the domain of E is all of \mathbb{R}^N , then u = E * f is a solution formula for Lu = f, and E is **translationally invariant** which means it commutes with translation. That is, given $L: C_0^{\infty}(\mathbb{R}^N) \to C^{\infty}(\mathbb{R}^N)$,

$$\tau_h L \phi = L \tau_h \phi \qquad \forall \ \phi \in C_0^{\infty}, \ \forall \ h \in \mathbb{R}^N$$

Reason:

$$L\tau_h\phi = T(\tau_x(\check{\tau_h\phi})) = T(\tau_{x-h}\check{\phi}) = (T*\phi)(x-h) = L\phi(x-h) = \tau_h L\phi$$

1.3.1.1.1 Convergence If $L: C_0^\infty(\mathbb{R}^N) \to C^\infty(\mathbb{R}^N)$ such that L is translation invariant and continuous then there exists a unique $T \in \mathcal{D}'(\mathbb{R}^N)$ such that $L\phi = T * \phi$

1.3.2 Green's Function

Given a PDE, a fundamental solution that satisfies the boundary conditions is known as a **Green's Function** for that BVP. Given

$$L = \sum_{|\alpha| \le M} a_{\alpha}(x) D^{\alpha} \qquad a_{\alpha}(x) \in C^{\infty}$$

Then E = E(x, y) is a fundamental solution of $L_x E(x, y) = \delta(x - y)$ if

$$Lu(x) = \int_{\mathbb{R}^N} L_x E(x, y) f(y) dy = \int_{\mathbb{R}^N} \delta(x - y) f(y) dy = f(x)$$

E(x,y) can be of the form E(x-y) but need not be in general.

1.3.2.1 Example

$$K(x,y) = \begin{cases} y(x-1) & 0 \le y \le x \le 1 \\ x(y-1) & 0 \le x \le y \le 1 \end{cases}$$

IF Lu=u'' with u(0)=u(1)=0 then $L_xK=\delta(x-y)$. If $E(x)=\frac{|x|}{2}$, then

$$LE = \delta(x)$$
 and $LE(x - y) = \delta(x - y)$

so they should differ by a solution to the homogenous equation. If H(x,y) = K(x,y) - E(x-y) then

$$H(x,y) = \begin{cases} y(x-1) - \frac{1}{2}(x-y) & 0 \le y \le x \le 1 \\ x(y-1) - \frac{1}{2}(y-x) & 0 \le x \le y \le 1 \end{cases} = \left\{ \left(y - \frac{1}{2} \right) x - \frac{1}{2} y & 0 \le x, y \le 1 \right\}$$

so $L_xH=0 \ \forall \ y$. If $u(x)=\int_0^1 K(x,y)f(y)dy$ then u''=f but also

$$u(0) = \int_0^1 K(0,y)f(y)dy = 0$$
 and $u(1) = \int_0^1 K(1,y)f(y)dy = 0$

so we have solved the BVP using the Green's function K(x, y)

1.3.2.2 Example: For N=3, $\Delta\left(\frac{-1}{4\pi|x|}\right)=\delta$.

Further, if $f \in C_0^{\infty}(\mathbb{R}^N)$ then let u = E * f and so

$$Lu = L(E * f) = LE * f = \delta * f = f$$

Example: Let $E(x) = \frac{-1}{4\pi |x|}$ so $\Delta E(x) = \delta$ and so if $\Delta u = f$ then

$$u = (E * f)(x) = \frac{-1}{4\pi} \int_{\mathbb{R}^3} \frac{f(y)}{|x - y|} dy$$

which can be check to also be a classical solution since $E * f \in C^{\infty}$.

1.3.2.3 Example: In $\Omega = \mathbb{R}^2$,

$$Lu = u_{tt} - u_{xx}$$
 $u(x,0) = h(x)$ $u_t(x,0) = g(x)$

Let $E(x,t) = \frac{1}{2}H\left(\left(\right)t - |x|\right)$, where H is the Heaviside function. So

$$E(x,t) = \begin{cases} 0 & t < |x| \\ \frac{1}{2} & t > |x| \end{cases}$$
 (Indicator function for the forward light cone)

If $f \in C_0^{\infty}$, u = E * f is a soluion of Lu = f.

$$u(x,t) = E * f = \int_{\mathbb{R}^2} E(x-y,t-s) dy ds = \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(t-s-|x-y|) f(y,s) dy ds$$

So

$$u(x,t) = \frac{1}{2} \int_{-\infty}^{t} \int_{x+t-s}^{x+s-t} f(y,s) dy ds$$
 (Indicator function for backward light cone)

If we assume f(x,t) = 0 for t < 0, this becomes

$$u(x,t) = \frac{1}{2} \int_0^t \int_{x+t-s}^{x+s-t} f(y,s) dy ds$$
 (Integral of cone with vertex at x,y)

Note $u(x,0) = u_t(x,0) = 0$

Also
$$(E*g)=\int_{-\infty}^{\infty}E(x-y,t)g(y)dy=\frac{1}{2}\int_{x-t}^{x+t}g(y)dy$$
 (Part of D'Alembert's Solution Formula) and $\frac{\partial}{\partial t}(E*h)(x,t)=\frac{1}{2}(h(x+t)+h(x-t))$

so solution of PDE is

$$u(x,t) = (E * f)(x,y) + (E * g) + \frac{\partial}{\partial t} (E * h)(x,t)$$

1.3.3 Symbol of Operator L

Define the **Symbol of** L to be

$$P(k) = (2\pi)^{\frac{N}{2}} \sum_{|\alpha| \le M} (ik)^{\alpha}$$

with $P(k)\hat{E}(k) = 1$.

- ullet The coefficients of the operator L yield a unique symbol and vice versa
- $P_m(k)=(2\pi)^{\frac{N}{2}}\sum_{|\alpha|=M}(ik)^{\alpha}$ is the **principal symbol of** L and excludes lower order terms L is elliptic if $P_m(k)=0$ if and only if k=0 for $k\in\mathbb{R}^N$: that is $P_m(k)$ has no real roots except 0
- A fundamental solution should satisfy (assuming $P(k) \neq 0$)

$$\hat{E}(k) = \frac{1}{P(k)} \implies E(x) = \frac{1}{(2\pi)^{\frac{N}{2}}} \int_{\mathbb{R}^N} \frac{e^{ikx}}{P(k)} dk$$

But this is not clear if $\frac{1}{p} \notin S$

- Malgrange Ehrenpreis Theorem If $L \neq 0$ everywere then a fundamental solution to Lu = f exists.
- Theorem If L is elliptic, $f \in C^{\infty}(\mathbb{R}^N)$, $u \in \mathcal{D}'(\mathbb{R}^N)$ and Lu = f, then $u \in C^{\infty}(\mathbb{R}^N)$
- **1.3.3.1** Example: $L=\Delta$ then $P(k)=-(2\pi)^{\frac{N}{2}}\sum\limits_{j=1}^{N}k_{j}^{2}$ so P(k)=0 when $k_{1}=k_{2}=0$ so is therefore elliptic
- **1.3.3.2 Example:** $Lu = u_{tt} u_{xx}$ then $P(k) = 2\pi(k_x^2 k_t^2)$ so P(k) = 0 when $k_t = \pm k_x$ and is therefore not elliptic.

1.3.4 Duhamel's Principle

Duhamel's principle is a general method for obtaining solutions to inhomogeneous linear evolution equations (Ex: see heat equation) by convolution of a fundamental solution with the inhomogeneous term.

1.3.4.1 Regularity of Solutions For $\Delta u=0$ all solutions are classical, weak, and distributional solutions.

Thus, the regularity of the solution depends on the PDE.

1.4 Characteristic Curves

of a PDE are the lines on which the solution is constant.

1.5 Types of PDEs

1.5.1 Linear PDEs

A PDE of order m is linear if it can be expressed as

$$Lu(x) = \sum_{|\alpha| < m} a_{\alpha}(x) D^{\alpha} u(x) = f(x)$$

An order k linear PDE over \mathbb{R}^n will have $\left(\begin{array}{c} n+k-1 \\ k-1 \end{array} \right)$ distinct terms

1.5.2 Semilinear PDEs

A PDE of order m is **semilinear** if it can be expressed as

$$\sum_{|\alpha|=m} a_{\alpha}(x) D^{\alpha} u(x) + a_0 \left(D^{k-1} u, ..., Du, u, x \right) = f(x)$$

1.5.3 Quasilinear PDEs

A PDE of order m is quasilinear if it can be expressed as

$$\sum_{|\alpha|=m} a_{\alpha} \left(D^{\alpha} u(x), ..., Du, u, x \right) + a_{0} \left(D^{k-1} u, ..., Du, u, x \right) = f(x)$$

1.5.4 Nonlinear PDEs

A PDE of order m is **nonlinear** if it depends nonlinearly upon the highest order derivatives. PDEs are classified by order and type (elliptic, hyperbolic, parabolic)

1.6 First Order Equations (m = 1)

1.6.1 Linear Equations

1.6.1.1 Constant Coefficients

$$\vec{\nabla}u \cdot \vec{\theta} = \frac{\partial u}{\partial \vec{\theta}} = au_x + bu_y = 0$$

A directional derivative vanishes for all points (x, y).

A characteristic curve though point $(x_0,0)$ obeys $ay=b(x-x_0)$, so $x_0=\frac{bx-ay}{b}$

If
$$u(x,0)=f(x)$$
, then $u(x,y)=u(x_0,0)=f(x_0)=f\left(\frac{bx-ay}{b}\right)$

1.6.1.2 Nonconstant Coefficients

$$a(x,y)u_x + b(x,y)u_y = 0$$

A directional derivative at each point vanishes.

A characteristic curve parameterized by (x(t), y(t)) satisfying the ODE system

$$\frac{dx}{dt} = a(x, y) \qquad \frac{dy}{dt} = b(x, y)$$

$$\frac{d}{dt}u(x(t), y(t)) = u_x \frac{dx}{dt} + u_y \frac{dy}{dt} = au_x + bu_y = 0$$

u is a solution of the PDE \implies the curves are characteristics $\implies u$ is constant along these curves Let f(x) = u(x,0), if (x,y) and $(x_0,0)$ lie on the same characteristic then $u(x,y) = u(x_0,0) = f(x_0)$

1.6.1.3 Cauchy Problem A solution u of the PDE is specified by f(s) on a curve γ

- γ can be defined parametrically by $x = \phi(s)$ and $y = \psi(s)$ then $u(\phi(s), \psi(s)) = f(s)$
- γ can be nowhere characteristic nor can it be tangent to the characteristic direction (x', y') = (a(x, y), b(x, y)) because if f = 0 anywhere, then f touches a characteristic, which means it is a characteristic
- Solution: Existence isn't guaranteed. If γ is nowhere tangent to (a,b) and $(a,b) \neq (0,0)$ then a unique solution exists locally (near γ)

Solve the ODE for (x(t,s),y(t,s)), a fixed s which is a characteristic through $(\phi(s),\psi(s))$

$$\frac{dx}{dt} = a(x, y) \qquad x(0, s) = \phi(s)$$

$$\frac{dy}{dt} = b(x, y) \qquad y(0, s) = \psi(s)$$

Perform a transformation $(x(t,s),y(t,s)) \to (t(x,y),s(x,y))$ Which means u(0,s)=f(s) becomes u(x,y)=f(s(x,y))Solution is valid at a point (x,y) if it can be connected to γ by a characteristic curve

1.6.2 Semilinear Equations

$$a(x,y)u_x + b(x,y)u_y = c(x,y,u)$$

So we have an ODE system

$$\frac{dx}{dt} = a(x, y) \qquad \qquad \frac{dy}{dt} = b(x, y)$$

$$\frac{d}{dt}(u(x(t), y(t))) = a(x, y)u_x + b(x, y)u_y = c(x, y, u) = c(x(t), y(t), u(x(t), y(t)))$$

Parameterize γ (see Cauchy Problem), solve system to get t(x,y) and s(x,y) and solve

$$u' = c(x, y, u) \qquad \qquad u(s, 0) = f(s)$$

using previously obtained x(t,s) and s(t,s) to set u(t,s) and substitute to get u=u(x,y)

1.7 Second Order Equations (m=2)

Typically made easier using a linear transformation of coordinates

Let $\eta = \phi(x,y)$, $\xi = \psi(x,y)$ be an invertible transformation $(x,y) \to (\eta,\xi)$. We need to find u_x and u_{xx} in terms of the new system. Using chain rule,

$$u_{x} = u_{\eta}\phi_{x} + u_{\xi}\psi_{x}$$

$$u_{xx} = u_{\eta\eta}\phi_{x}^{2} + u_{\eta} + u_{\xi\eta}\psi_{x}\phi_{x} + u_{\xi} + u_{\eta\xi}\phi_{x}\psi_{x} + u_{\eta} + u_{\xi\xi}\psi_{x}^{2} + u_{\xi}$$

$$u_{xx} = u_{\eta\eta}\phi_{x}^{2} + 2u_{\xi\eta}\psi_{x}\phi_{x} + u_{\xi\xi}\psi_{x}^{2} + 2u_{\eta} + 2u_{\xi}$$

Now we must find u_u and u_{uu} in the new system.

$$u_{y} = u_{\eta}\phi_{y} + u_{\xi}\psi_{y}$$

$$u_{yy} = u_{\eta\eta}\phi_{y}^{2} + u_{\eta} + u_{\xi\eta}\psi_{y}\phi_{y} + u_{\xi} + u_{\eta\xi}\phi_{y}\psi_{y} + u_{\eta} + u_{\xi\xi}\psi_{y}^{2} + u_{\xi}$$

$$u_{yy} = u_{\eta\eta}\phi_{y}^{2} + 2u_{\xi\eta}\psi_{y}\phi_{y} + u_{\xi\xi}\psi_{y}^{2} + 2u_{\eta} + 2u_{\xi}$$

Now we must compute the mixed derivative u_{xy} based on u_x

$$u_{xy} = u_{\eta\eta}\phi_y\phi_x + u_{\eta} + u_{\xi\eta}\phi_y\psi_x + u_{\eta} + u_{\eta\xi}\psi_y\phi_x + u_{\xi} + u_{\xi\xi}\psi_y\psi_x + u_{\xi}$$

$$u_{xy} = u_{\eta\eta}\phi_y\phi_x + u_{\xi\eta}\left(\phi_y\psi_x + \psi_y\phi_x\right) + u_{\xi\xi}\psi_y\psi_x + 2u_{\eta} + 2u_{\xi}$$

Adding everything together, a second order equation in the original coordinates

$$au_{xx} + 2bu_{xy} + cu_{yy} + du_x + fu_y + hu = g(x, y)$$

becomes in the new coordinate system:

$$Au_{nn} + Bu_{n\xi} + Cu_{\xi\xi} + Du_n + Fu_{\xi} + Hu = g(\eta, \xi)$$

where

$$A(\eta, \xi) = a\phi_x^2 + b\phi_x\phi_y + c\phi_y^2$$

$$B(\eta, \xi) = 2a\phi_x\psi_x + b(\phi_y\psi_x + \phi_x\psi_y) + 2c\psi_y\phi_y$$

$$C(\eta, \xi) = a\psi_x^2 + b\psi_x\psi_y + c\psi_y^2$$

$$D(\eta, \xi) = d\phi_x + f\phi_y + 2a + 2b + 2c$$

$$F(\eta, \xi) = d\psi_x + f\psi_y + 2a + 2b + 2c$$

$$H(\eta, \xi) = h$$

If the transformation $\eta = \phi(x, y)$, $\xi = \psi(x, y)$ is linear, it can be expressed in the form

$$\left(\begin{array}{c} \eta \\ \xi \end{array}\right) = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right)$$

with $\alpha\delta-\beta\gamma\neq0$ to ensure invertibility. This means $\phi_x=\alpha$, $\phi_y=\beta$, $\psi_x=\gamma$, $\psi_y=\delta$, so

$$A(\eta,\xi) = a\alpha^2 + b\alpha\beta + c\beta^2$$

$$B(\eta,\xi) = 2a\alpha\gamma + b(\beta\gamma + \alpha\delta) + 2c\beta\delta$$

$$C(\eta,\xi) = a\gamma^2 + b\gamma\delta + c\delta^2$$

$$D(\eta,\xi) = d\alpha + f\beta + 2a + 2b + 2c$$

$$F(\eta,\xi) = d\gamma + f\delta + 2a + 2b + 2c$$

$$H(\eta,\xi) = h$$

1.7.1 Types of Equations

1.7.1.1 Parabolic Equations $b^2 - ac = 0$ With equations of this type, one can choose $b(\eta, \xi) = c(\eta, \xi) = 0$ to obtain

$$u_{\eta\eta} = 0$$

or equivalently $b(\eta, \xi) = a(\eta, \xi) = 0$ to get

$$u_{\xi\xi} = 0$$

1.7.1.2 Hyperbolic Equations $b^2 - ac > 0$ With equations of this type, one can choose $a(\eta, \xi) = c(\eta, \xi) = 0$ to obtain

$$u_{\xi\eta} + D^{|1|}u = 0$$

or equivalently $b(\eta, \xi) = 0$ to get

$$u_{\xi\xi} - u_{\eta\eta} + D^{|1|}u = 0$$

Where $D^{|1|}u$ is the lower order terms

If $D^{|1|}u=0$, the solutions to these equations are of the form

$$u(\eta, \xi) = \Phi(\eta) + \Psi(\xi)$$

for some functions $\Phi(\eta), \Psi(\xi)$

1.7.1.3 Elliptic Equations $b^2 - ac < 0$ With equations of this type, one can choose $a(\eta, \xi) = c(\eta, \xi) = 0$ to obtain

$$u_{\xi\eta} + D^{|1|}u = 0$$

or equivalently $b(\eta, \xi) = 0$ to get

$$u_{\xi\xi} - u_{\eta\eta} + D^{|1|}u = 0$$

Where $D^{|1|}u$ is the lower order terms

1.7.2 Separation of Variables

Seeking separable solutions $u(x_1,...,x_n)=X_1(x_1)\times...\times X_n(x_n)$ works for many kinds of PDEs in multiple dimensions. $(0 \le \theta < 2\pi, r \ge 0)$

1.7.3 Boundary Conditions

For a well-posed mth order PDE, you will have up to m side conditions, usually in the form of

$$F(u) = 0 \text{ on } \partial\Omega$$

Boundary conditions are said to be homogenous if they are closed under linear combinations, such as

$$u=0$$
 on $\partial\Omega$

The most common boundary conditions are:

1.7.3.1 Dirichlet Conditions (First Type)

$$u=g \text{ on } \partial \Omega$$

1.7.3.2 Neumann (Second Type)

$$\frac{\partial u}{\partial n} = \nabla u \cdot \vec{\mathbf{n}} = g \text{ on } \partial \Omega$$

where \vec{n} is the unit outward normal

1.7.3.3 Robin (Third Type), aka Mixed

$$\frac{\partial u}{\partial n} + \sigma u = \nabla u \cdot \vec{\mathbf{n}} + \sigma u = g \text{ on } \partial \Omega$$

1.7.4 Common Well-Posed Problems

The following equations are well-posed and have classic solutions

1.7.4.1 Poisson's Equation

$$\Delta u = f$$
 (Poisson's Equation)
 $\Delta u = 0$ (Laplace's Equation)

Solutions are harmonic functions, typically with Dirichlet, Neumann, or Robin conditions

$$u_{xx} + u_{yy} + u_{zz} = f$$
 (rectangular coordinates)

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = f$$
 (polar coordinates)

Requires product solution families to be 2π periodic in θ :

$$u_n(\theta, r) = \begin{cases} c_1 r^n \cos(n\theta) + c_2 r^n \sin(n\theta) + c_3 r^{-n} \cos(n\theta) + c_4 r^{-n} \sin(n\theta) & n = 1, 2, 3... \\ c_1 + c_2 \log(r) & n = 0 \end{cases}$$

Coefficients are found using boundary conditions, initial conditions, and Fourier theory

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \phi^2} + \frac{\partial^2 u}{\partial z^2} = 0 \tag{cylindrical coordinates}$$

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right) + \frac{1}{r^2sin(\theta)}\frac{\partial^2}{\partial \theta^2}\left(\sin(\theta)\frac{\partial u}{\partial \theta}\right) + \frac{1}{r^2\sin^2(\theta)}\frac{\partial^2 u}{\partial \phi^2} = 0$$
 (spherical coordinates)

1.7.4.1.1 Using Distributions

 $u(x) = \frac{-1}{4\pi|x|}$, note $u \in L^1_{\mathrm{loc}}(\mathbb{R}^3)$ since

$$\int_{\mathbb{R}} |u(x)| \, dx = \int_{0}^{R} \int_{0}^{2\pi} \int_{-\pi}^{\pi} \frac{1}{4\pi r} r^{2} \sin(\theta) d\phi dr d\theta = \frac{C}{2} R^{2}$$

Claim: $\Delta u = \delta$. Reason:

$$u(\Delta \phi) = \int u\Delta \phi = \lim_{\epsilon \to 0} \int_{\epsilon < |x| < R} u\Delta \phi dx$$

Since ϕ has compact support and so for some R $\phi(|x| > R) = 0$. By Green's Identity this becomes

$$\lim_{\epsilon \to 0} \int_{\epsilon < |x| < R} u \Delta \phi dx = \lim_{\epsilon \to 0} \left(\int_{\epsilon < |x| < R} \phi(x) \Delta u dx + \int_{|x| = \epsilon} \phi \frac{\partial u}{\partial n} - u \frac{\partial \phi}{\partial n} ds \right)$$

Note that $\Delta u \propto \Delta \frac{1}{r} = 0$, and

$$\left| \int_{|x|=\epsilon} u \frac{\partial \phi}{\partial n} ds \right| \le \frac{1}{4\pi\epsilon} \int_{|x|=\epsilon} \left| \frac{\partial \phi}{\partial n} \right| ds = \frac{1}{4\pi\epsilon} \max \left(\left| \frac{\partial \phi}{\partial n} \right| \right) 4\pi\epsilon^2 \le C\epsilon \to 0$$

since the $4\pi\epsilon^2$ is the surface area of a sphere. We also see that since $\frac{\partial u}{\partial n} = -\frac{\partial u}{\partial r}$

$$\int_{|x|=\epsilon} \phi \frac{\partial u}{\partial n} ds = -\int_{|x|=\epsilon} \phi \frac{\partial u}{\partial r} ds = -\int_{|x|=\epsilon} \phi \frac{1}{4\pi\epsilon^2} ds = \frac{1}{4\pi\epsilon^2} \int_{|x|=\epsilon} \phi ds$$

which is the average of ϕ over the sphere $|x|=\epsilon$ which must tend to the value at the center. That is, as $\epsilon \to 0$, $\frac{1}{4\pi\epsilon^2} \int_{|x|=\epsilon} \phi ds \to \phi(0)$, so

$$\Delta u(\phi) = u(\Delta \phi) = \phi(0) = \delta(\phi)$$

In higher dimensions,

$$u(x) = \begin{cases} \frac{-1}{2\pi} \log(x) & N = 2\\ \frac{1}{A_N |x|^{N-2}} & N \ge 3 \end{cases}$$

Where A_N is the surface area of the N-Sphere.

1.7.4.2 Fundamental Solution

$$E(x) = \begin{cases} \frac{|x|}{2} & N = 1\\ \frac{1}{2\pi} \log |x| & N = 2\\ \frac{C_N}{|x|^{N-2}} & N \ge 3 \end{cases}$$

Where $C_N=rac{???}{N(N-1)a_n}$ and a_n is the volume of $B_1(0)$ in \mathbb{R}^N If Δ is replaced by the positive operator $-\Delta$, the the FS is $E_{-}(x) = -E(x)$

1.7.4.3 Wave Equation

$$u_{tt} - c^2 u_{xx} = 0$$

Typically with Dirichlet, Neumann, or Robin conditions in space and some

$$u(\vec{\mathbf{x}}, 0) = f(\vec{\mathbf{x}})$$

$$u_t(\vec{\mathbf{x}}, 0) = g(\vec{\mathbf{x}}) \qquad x \in \Omega$$

 $\eta = x + ct$ and $\xi = x - ct$, then

$$u(x,t) = \Phi(x+ct) + \Psi(x-ct)$$

If initial conditions u(x,0) = f(x) and $u_t(x,0) = g(x)$ are given, then $f(x)=\Phi(x)+\Psi(x)$ and $g(x)=\Phi'(x)+\Psi'(x)$ and so $\int_0^x g(y)dy=\Phi(x)+\Psi(x)+C$ Combining, $F(x)=\frac{1}{2}\left(f(x)+\int_0^xg(y)dy+C\right)$ giving us D'Alembert's Solution Formula

$$u(x,t) = \frac{1}{2} \left(f(x+ct) + f(x-ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(y) dy$$

1.7.4.4 Fundamental Solution

$$E(x,t) = \begin{cases} \frac{1}{2}H(t-|x|) & N=1\\ \frac{1}{2}\frac{H(t-|x|)}{\sqrt{t^2-|x|^2}} & N=2\\ \frac{\delta(t-|x|)}{4\pi|x|} & N=3 \end{cases}$$

Example: For N=3

$$(E * f) = \int_{\mathbb{R}^4} \frac{\delta(s - |y|)}{4\pi |y|} f(x - y, t - s) ds dy = \int_{\mathbb{R}^3, s = |y|} \frac{1}{4\pi |y|} f(x - y, t - |y|) dy$$

Assume f(x,t) < 0 for t < 0, so

$$(E * f) = \int_{\mathbb{R}^3, |y| < t} \frac{1}{4\pi |y|} f(x - y, t - |y|) dy = \int_{B(x, t)} \frac{1}{4\pi |x - y|} f(y, t - |x - y|) dy$$

So the solution of $u_{tt} - \Delta u = f$, u(x,0) = h(x), $u_t(x,0) = g(x)$ can be shown to be

$$u(x,t) = (E * g) + \frac{\partial}{\partial t} (E * h) + (E * f)$$

1.7.4.4.1 Uniqueness Showing the uniqueness of solutions to this problem is equivalent to showing that the homogenous problem

$$u_{tt} - c^2 u_{xx} = 0$$
 $u_t(\vec{\mathbf{x}}, 0) = u(\vec{\mathbf{x}}, 0) = 0$

with homogenous boundary conditions has only a trivial solution.

1.7.4.4.2 Four Point Property for solutions to the wave equation $u_{xx} - u_{tt} = 0$ on $\Omega \subset \mathbb{R}^2$ containing the tilted rectangle with vertices (x,t), (x+h-k,t+h+k), (x+h,t+h), u(x-k,t+k),

$$u(x,t) + u(x+h-k, t+h+k) = u(x+h, t+h) + u(x-k, t+k)$$

1.7.4.4.3 Using Distributions

Let $F \in L^1_{loc}(\mathbb{R})$, then u(x,t) = F(x+t) is one solution to the wave equation in $\mathcal{D}'(\mathbb{R}^2)$ since

$$T(\phi) = (u_{tt} - u_{xx})(\phi) = u(\phi_{tt} - \phi_{xx}) = \int \int_{\mathbb{R}^2} F(x+t)(\phi_{tt}(x,t) - \phi_{xx}(x,t)) dx dt$$

By change of coordinates, $\xi=x+t$, $\eta=x-t$, $\phi_{tt}-\phi_{xx}=-4\phi_{\xi\eta}$, $dxdt=\frac{\partial(x,t)}{\partial(\xi,\eta)}=-\frac{1}{2}d\xi d\eta$

$$=2\int_{-\infty}^{\infty}F(\eta)\int_{-\infty}^{\infty}\phi_{\xi\eta}d\xi d\eta=0$$

since ϕ has compact support

1.7.4.5 Heat Equation

$$u_t - \Delta u = 0$$
 $(\vec{\mathbf{x}}, t) \in \Omega \times [0, \infty)$

Typically with Dirichlet, Neumann, or Robin conditions in space and some

$$u(\vec{\mathbf{x}}, 0) = f(\vec{\mathbf{x}}), x \in \Omega$$

Look for separable solutions of the form $u(t,x) = \Phi(t)\Psi(x)$ where

$$\Phi(t) = c_1 e^{kt} + c_2 e^{-kt}$$
 $\Psi(x) = c_1 \sin(kx) + c_2 \cos(kx)$

Solutions will usually involve $k=k_n$ so the set of product solutions is

$$\{\Phi_n(t)\Psi_n(x)\}_0^\infty = \left\{c_1e^{k_n^2t}sin(k_nx) + c_2e^{k_n^2t}cos(k_nx) + c_3e^{-k_n^2t}sin(k_nx) + c_4e^{-k_n^2t}sin(k_nx)\right\}_0^\infty$$

Where the $c_1, ..., c_4$ is chosen to satisfy the boundary and initial conditions using Fourier theory.

1.7.4.5.1 Uniqueness Showing the uniqueness of solutions to this problem is equivalent to showing that the homogenous problem

$$u_t - \Delta u = 0$$
 $u_t(\vec{\mathbf{x}}, 0) = u(\vec{\mathbf{x}}, 0) = 0$

with homogenous boundary conditions has only a trivial solution.

1.7.4.6 Fundamental Solution

$$E(x,t) = \frac{H(t)}{(2\pi t)^{\frac{N}{2}}} e^{\frac{-|x|^2}{4t}}$$

1.7.4.7 Reason:

1.7.4.7.1 Using FT For $Lu = u_t - u_{xx}$ with u(x,0) = f(x) taking the partial FT in x yields

$$\hat{u}(k,t) = \frac{1}{(2\pi)^{\frac{N}{2}}} \int_{\mathbb{R}^N} u(x,t) e^{-ikx} dx \qquad \text{ and } (u_t)^{\wedge} = (\hat{u})_t$$

So $(-\Delta u)^{\wedge} = |k|^2 \hat{u}$ so $\hat{u}_t + |k|^2 \hat{u} = 0$, which is an ODE for \hat{u} for fixed k. Solving,

$$\hat{u}(k,t) = \hat{f}e^{-|k|^2t} \implies u(x,t) = \frac{1}{(2\pi)^{\frac{N}{2}}}\mathcal{F}^{-1}\left(\left((f*g)\right)^{\hat{}}\right) = \frac{1}{(4\pi t)^{\frac{N}{2}}} \int_{\mathbb{R}^N} e^{-\frac{|x-y|^2}{4t}} f(y) dy$$

where $\hat{g}(k)=e^{-|k|^2t}$ so $g(x)=\frac{e^{-\frac{|x|^2}{4t}}}{(2t)^{\frac{N}{2}}}.$ This is valid for $f\in L^p(\mathbb{R}^N)$ for some $1\leq p\leq \infty,\ t>0,$ and $\lim_{t\to 0^+}u(x,t)=f(x)$ a.e.

1.7.4.7.2 Using FT and Duhamel's Principle By Duhamel's Principle, we can do the same for Lu=h. Let v(x,t,s) satisfy $v_t-\Delta v=0$ $x\in\mathbb{R}^N$, t>0, v(x,0,s)=h(x,s) and let $u(x,t)=\int_0^t v(x,t-s,s)ds$.

$$u_t = v(x, 0, t) + \int_0^t v_t(x, t - s, s) ds = h(x, t) + \int_0^t \Delta v(x, t - s, s) ds = h(x, t) + \Delta u$$

So for $u_t - \Delta u = h(x,t)$ for t > 0 with u(x,0) = 0, we have

$$v(x,t,s) = \frac{1}{(2\pi t)^{\frac{N}{2}}} \int_{\mathbb{R}^N} e^{\frac{-|x-y|^2}{4t}} h(y,s) dy \implies u(x,t) = \int_0^t \int_{\mathbb{R}^N} \frac{1}{(2\pi (t-s))^{\frac{N}{2}}} e^{\frac{-|x-y|^2}{4(t-s)}} h(y,s) dy ds = E*h$$

where $E=rac{H(t)e^{rac{-|x|^2}{4t}}}{(2\pi t)^{rac{N}{2}}}$ and h(x,t)=0 for t<0. So our solution is

$$u(x,t) = (E * h)(x,t) + (E * f)(x,t)$$

So E is the fundamental solution to the Heat Equation. Note: for t>0, $E(x,t)=\left(\frac{1}{\sqrt{t}}\right)^N F\left(\frac{x}{\sqrt{t}}\right)$ if $F(x)=\frac{e^{-\frac{|x|^2}{4}}}{(2\pi)^{\frac{N}{2}}}$. Here $F\geq 0$, $F\in L^1$, and $\int_{\mathbb{R}^N}F(x)dx=1$. By previous discussion of approximate identities let $k=\frac{1}{\sqrt{t}}$

$$k^N F(kx) \to \delta$$
 as $k \to \infty \implies E(x,t) \to \delta \in \mathcal{D}'$ as $t \to 0^+$

so $(E * f)(x,t) = E(\cdot,t) * f \to f$ as $t \to 0^+$ (similar to approximate identities)

1.7.4.8 Maximum Principle The solution u is bounded by the extremes of the initial condition and the Dirichlet boundary conditions.

1.7.4.9 Shrodinger Equation

$$u_t - i\Delta u = 0$$
 $(\vec{\mathbf{x}}, t) \in \Omega \times [0, \infty)$

Typically with Dirichlet, Neumann, or Robin conditions in space and some $u(\vec{x}, 0) = f(\vec{x}), x \in \Omega$

1.7.4.10 Fundamental Solution

$$E(x,t) = \frac{H(t)}{(2\pi t)^{\frac{N}{2}}} e^{i(N-2)\frac{\pi}{4}} e^{\frac{-|x|^2}{4it}}$$

1.7.4.11 Helmholtz Equation

$$\Delta u - k^2 u = 0 \qquad (\vec{\mathbf{x}}, t) \in \Omega \times [0, \infty)$$

1.7.4.12 Fundamental Solution

$$E(x,t) = \begin{cases} \frac{1}{2\pi} K_0(k|x|) & N = 2\\ \frac{-e^{-k|x|}}{4\pi|x|} & N = 3 \end{cases}$$

Where K_i is the ith order Modified Bessel Function.

Note as $k \to 0$, E(x) tends toward the E(x) corresponding to $L = \Delta$

1.7.4.13 Euler-Tricomi Equation

$$u_{xx} - xu_{yy} = 0$$

Hyperbolic in the half plane x>0, parabolic at x=0, elliptic in x<0 Characteristics are along $y\pm\frac{2}{3}x^{\frac{2}{3}}=C$ Particular solutions are

$$u = c_1 xy + c_2 x + c_3 y + c_4$$

$$u = c_1 (3y^2 + x^3) + c_2 (y^3 + x^3 y) + c_3 (6xy^2 + x^4)$$

1.7.4.14 Biharmonic Oscillator

$$\Delta^2 u = 0 \qquad (\vec{\mathbf{x}}, t) \in \Omega \times [0, \infty)$$

1.7.4.15 Fundamental Solution ??

1.7.4.16 Klein Gordon Equation

$$Lu = u_{tt} - u_{xx} + u \qquad (\vec{\mathbf{x}}, t) \in \Omega \times [0, \infty)$$

1.7.4.17 Fundamental Solution

$$E(x,t) = \frac{1}{2}H(t-|x|)J_0(\sqrt{t^2-x^2})$$

2 Distribution Theory in DE

If f'(x)=0 for $a\leq x\leq b$ then f(x)=c classically If $T'=0\in\mathcal{D}'(a,b)$ then T=c Reason: Choose $\phi_0\in C_0^\infty$ with $\int_a^b\phi_0(x)dx=1$. If $\phi\in C_0^\infty(a,b)$ let $\psi(x)=\phi(x)-\int_a^b\phi(y)dy\phi_0(x)$. Note $\int_a^b\psi(x)dx=0$. Let $\zeta=\int_a^x\psi(s)ds$ so $\zeta'=\psi(x)$ since $\zeta\in C^\infty(a,b)$ and further $\zeta\in C_0^\infty$ since $\zeta(a)=\zeta(b)=0$ and $\zeta'=0$ for x< a or x>b. Then $0=T'(\zeta)=-T(\zeta')=-T(\psi)=-T(\phi)+\left(\int_a^b\phi ydy\right)T(\phi_0)$ so $T(\phi)=\int_a^bT(\phi_0)\phi(y)dy=\int_a^bc\phi(y)dy=c$ in \mathcal{D}' sense.

2.1 ODEs in \mathcal{D}' sense

$$T' = f$$
 $f \in L^1_{loc}(\mathbb{R})$

Let $g(x)=\int_a^x f(s)ds$ (antiderivative of f). Claim g'=f in $\mathcal{D}'(a,b)$. Reason:

$$T'_{g}(\phi) = -T_{g}(\phi') = -\int_{a}^{b} g(x)\phi'(x)dx = -\int_{a}^{b} \int_{a}^{x} f(s)ds\phi'(x)dx = -\int_{a}^{b} f(s)\int_{s}^{b} \phi'(x)dxds$$

Using FTC and compact support of ϕ ,

$$T'_g(\phi) = -\int_a^b f(s)(\phi(b) - \phi(s))ds = \int_a^b f(s)\phi(s)ds = T_f(\phi)$$

So the general solution of T'=f in $\mathcal{D}'(a,b)$ is

$$T = \int_{a}^{x} f(s)ds + C$$

3 Advanced Theory

4 New Notes

Notation Let $A \in \mathbb{C}^{n \times m}$, $B \in \mathbb{C}^{n \times m}$, then the Hadamar product

$$A: B = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$$

 $||A|| = |A:A|^2$

 \mathbb{S}^n are the symmetric $n \times n$ matrices. $\mathbb{S}^n \subset \mathbb{C}^{n \times n}$.

B(x,r) is the unit ball in \mathbb{R}^n centered at x B(x,1) is the unit ball in \mathbb{R}^n centered at x. B(0,1) is the unit ball in \mathbb{R}^n centered at the origin.

 S^{n-1} is the unit sphere in \mathbb{R}^n . $S^{n-1} = \partial B(0,1)$

 e_i is the ith coordinate vector in \mathbb{R}^n .

 $\mathbb{R}^n_+ = \{y \in \mathbb{R}^n : y_n > 0\}$ is the upper half space of \mathbb{R}^n .

Let U,V,W be open subsets of \mathbb{R}^n . $V\subset\subset U$ means V is compactly contained in U. That is $\overline{V}\subset U$, \overline{V} is compact. ∂U is the boundary of U. $\overline{U}=\partial U\cup U$ $U_T=U\times (0,T]$

 $\Gamma_T = \overline{U}_T - U_T$ (parabolic boundary) $\alpha(n) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$ is the volume of the B(0,1) in \mathbb{R}^N . $n\alpha(n)$ is the surface area of $\partial B(0,1)$ in \mathbb{R}^N $\natural_0 = \natural \cup \{0\}$

Du is the Gradient of u D^2u is the Hessian of u

The Laplacian of u is $\Delta u = \sum_{i=1}^n u_{x_i x_i} = \operatorname{tr}(D^2 u)$

Airy eqn -3rd order linear

$$u_t + u_{xxx} = g(x)$$

KdV egn -3rd order semilinear

$$u_t + uu_x + u_{xxx} = g(u)$$

Monge-Ampere egn - fully nonlinear, second order

$$\det(D^2 u) = f(u)$$

Transport equation solutions

$$u_t + b \cdot Du = f, (\vec{\mathbf{x}}, t) \in \mathbb{R}^n \times (0, \infty)$$

Laplace Poisson eqn

$$\Delta u = f$$

Heat Equation

$$u_t - \Delta u = f$$

Wave Eqn

$$u_{tt} - \Delta u = f$$

Wave Eqn

$$\Delta u = \int_{B(0,\epsilon)} \Phi(y) \Delta_x f(x-y) dy + \int_{\mathbb{R}^N \setminus B(0,\epsilon)} \Phi(y) \Delta_x f(x-y) dy$$

The first part vanishes by FTC, and the second part becomes

$$= \int_{\mathbb{R}^N \setminus B(0,\epsilon)} \Delta_y \Phi(y) \Delta_x f(x-y) dy - \int_{\partial B(0,\epsilon)} \frac{\partial}{\partial n} \Phi(y) f(x-y) dS(y) + \int_{\partial B(0,\epsilon)} \Phi(y) \frac{\partial}{\partial n} f(x-y) dS(y)$$

 $\frac{\partial}{\partial n}f(x-y)=0$ away from the origin. We also note that

$$-D_n\Phi(y) = -\left(-\frac{d}{dr}\right)\left(\frac{-1}{2\pi}\log(r)\right)|_{r=\epsilon} = \frac{1}{2\pi\epsilon}$$

So

$$\Delta u(x) = -\int_{\partial B(0,\epsilon)} \frac{f(x-y)}{2\pi\epsilon} dS(y) = -f(x) \int_{\partial B(x,\epsilon)} \frac{1}{2\pi\epsilon} dS(y) = -f(x)$$

So $\Delta u(x) \to f(x)$ uniformly as $\epsilon \to 0$.

If $u \in C^2(U)$ is Harmonic, then it satisfies the Mean Value Property

$$u(x) = \int_{\partial B(x,r)} u dS = \frac{\int_{\partial B(x,r)} u dS}{\int_{\partial B(x,r)} dS}$$

For all $B(x,r) \subset U$

Proof. Set

$$\varphi(\nu) = \int_{\partial B(x,r)} v(\nu) dS(y) = \frac{\int_{\partial B(0,1)} v(x+rz) dS(z) r^{n-1}}{\|\partial B(0,1)\|} = \int_{\partial B(0,1)} v(x+rz) dS(z)$$

Since $\|\partial B(0,1)\| = n\alpha(n)r^{n-1}$

The average value of a Harmonic function over a sphere is the value at the center of the sphere.

$$\varphi'(r) = \int_{\partial B(0,1)} Du(x+rz)zdS(z) = \int_{\partial B(x,r)} Du(y) \cdot \frac{y-x}{r}dS(z)$$

Since $\frac{y-x}{r} = \frac{z}{n}$ (?) it is the outward unit normal

$$= \oint_{\partial B(x,r)} \frac{\partial u}{\partial n} dS = \frac{\int_{\partial B(x,r)} \Delta u ds}{|\partial B(x,r)|} = 0$$

This implies $\varphi(r)$ is a constant.

$$\lim_{\epsilon \to 0} \varphi(\epsilon) = \lim_{\epsilon \to 0} ?/ \implies \phi(r) =$$

Corollary: Same holds on B(x,r). $u(x)=\int_{B(x,r)}u(y)dy$. Proof. Use the shell method

$$\int_{B(x,r)} u(y) dy = \int_0^r \left(\int_{\partial B(x,s)} u dS \right) ds = \dots = u(x) \alpha(n) r^n = u(x) \left| \partial B(x,r) \right|$$

Theorem. Converse. If $u \in C^2(U)$ satisfies $u(x) = \int_{\partial B(x,r)} u ds \ \forall \ B(x,r) \subset U$ then u is harmonic. Proof. If not, there exists r > 0: $\Delta u > 0$ on $B(x_0,r)$. As before,

$$\varphi'(r) = 0 = \frac{\int_{B(x_0, r)} \Delta u dy}{|\partial B(x_0, r)|} > 0 \Rightarrow \Leftarrow$$

Strong Maximum Principle Suppose $u\in C^2(U)\cap C(\overline{U})$ is harmonic on U, and assume U is bounded. Let $M=\max_{\overline{U}}u$.

- 1. $\max_{\partial U} = M$
- 2. If *U* is connected and $\exists x_0 \in U : u(x_0) = M$, then u = M.

Corollary, Strong Minimum principle also holds. Suppose $u \in C^2(U) \cap C(\overline{U})$ is harmonic on U, and assume U is bounded. Let $m = \min_{\overline{U}} u$.

- 1. $\min_{\partial U} = m$
- 2. If U is connected and $\exists x_0 \in U : u(x_0) = m$, then u = m.

Proof of Strong Maximum Principle If $\exists x_0 \in U : u(x_0) = M$ then if $B(x_0,r) \subset U$, $M = \int_{B(x_0,r)} u(y) dy \leq M$ with equality if and only if u = M on $B(x_0,r)$. This implies u = M on $B(x_0,r)$. This implies if $S = \{x \in U : u(x) = M\} \implies S$ is relatively open in U. u is continuous $u^{-1}(M)$ is closed in $U \implies S$ is relatively open, closed. If U is connected, nonempty then U = S. So (2) holds. The continuity implies that (1) holds.

Corollary. Consider

$$\begin{cases} \Delta u = 0, x \in U \\ v = g, x \in \partial U \end{cases}$$

Assume U is connected, $u \in C^2(U) \cap C(\overline{U})$

- If q > 0, then u > 0.
- If also $\exists s_0 \in \partial U : g(s_0) > 0$, then u > 0 in U.

Theorem 5. This problem has at most one solution. If u_1, u_2 are solutions, then $y = u_1 - u_2$ solves this problem with g = 0 (the homogenous case). Maximum principle implies $y \ge 0$, minimum principle implies $y \le 0$, so $y = 0 \implies u_1 = u_2$.

Mollifiers

The standard mollifier

$$\eta_{(x)} = \begin{cases} ce^{(|x|^2 - 1)^{-1}} & |x| < 1\\ 0 & |x| \ge 1 \end{cases}$$

 $\eta(x) \in C_0^{\infty}(\mathbb{R}^N)$

If $f: U \to \mathbb{R} \in L^1_{loc}$, define $f^{\epsilon} = \eta_{\epsilon} * f = \int_U \eta_{\epsilon}(x-y) f(y) dy$ in U_{ϵ} . $\eta_{\epsilon} = \frac{1}{\epsilon^n} \eta\left(\frac{x}{\epsilon}\right) \eta_{\epsilon}(x)$ is a delta sequence

- $\int_{\mathbb{R}^N} \eta_{\epsilon} dx = 1$
- supp $\eta_{\epsilon} = \overline{B(0, \epsilon)} \subset \overline{B(0, 1)}$
- $\eta_{\epsilon} > 0$.

Theorem p 714

- $f \in C^{\infty}(U_{\epsilon}), U_{\epsilon} = \{x \in U : \operatorname{dist}(x, \partial U) > \epsilon\}$
- $f^{\epsilon} \to f$ a.e. as $\epsilon \to 0$
- If $f \in C(U)$ then $f^{\epsilon} \to f$ uniformly on compact subsets of U
- $f \in L^{P}_{loc}(U) \implies f^{\epsilon} \to f \text{ in } L^{p}_{loc}(U)$

Theorem If $U \in C(U)$ satisfies the mean value property on each $B(x,r) \subset U$ then $u \in C^{\infty}$ by showing

$$U(x) = ?^{\epsilon}(x), x \in U^{\epsilon}(x) = \int_{U} \eta_{\epsilon}(x - y)u(y)dy = \frac{1}{\epsilon^{n}} \int_{B(x,\epsilon)} \eta\left(\frac{|x - y|}{\epsilon}\right)u(y)dy$$
$$= \frac{1}{\epsilon^{n}} \int_{0}^{\epsilon} \eta\left(\frac{r}{\epsilon}\right) \left(\int_{\partial B(x,r)} Uds\right) dr$$
$$= \frac{1}{\epsilon^{n}} \int_{0}^{\epsilon} \eta\left(\frac{r}{\epsilon}\right) U(x) |\partial B(x,r)| dr$$

$$= U(x) \int_{B(0,\epsilon)} \eta_{\epsilon} dy = U(x)$$

If u is harmonic on U then $|D^{\alpha}u(x_0)| \leq \frac{c_k}{r^{n+k}} ||u||_{L^1(B(x_0,r))}$ for all $B(x_0,r) \subset U$. $|\alpha| = k$. where $C_0 = \frac{1}{\alpha(n)}$ and $C_k = \frac{(2^{n+1}nk)^k}{\alpha(n)}$ Proof k=0

$$|U(x_0)| = \left| \int_{B(x_0, r)} u(x) dx \right| \le \frac{\int_{B(x_0, r)} |u| dx}{\alpha(n) r^n} = \frac{C_0}{r^n} ||U||_{L^1(B(x_0, r))}$$

Proof k=1

$$|U_{x_{i}}(x_{0})| = \left| \int_{B(x_{0}, \frac{r}{\epsilon})} u_{x_{i}}(x) dx \right| \leq \frac{\int_{B(x_{0}, \left(\frac{r}{\epsilon}\right))} u \cdot n_{i} dx}{\alpha(n) \left(\frac{r}{\epsilon}\right)^{n}} \leq ||u||_{\infty} \frac{\int_{B(x_{0}, \left(\frac{r}{\epsilon}\right))} ds}{|B(x_{0}, \left(\frac{r}{\epsilon}\right))|} = ||U||_{L^{1}(B(x_{0}, r))} = ||U||_{L^{1}(B(x_{0}, r))} \frac{2n}{r}$$

Liouville's Theorem. Suppose $u:\mathbb{R}^n \to \mathbb{R}$ is harmonic and bounded. Then $u \equiv \mathrm{const.}$. Proof. Let $B = B(x_0, r)$

$$|D(x_0)| \le \frac{\sqrt{nC_1}}{r^{n+1}} ||U||_{L^1(B)} \le \frac{C_1}{r^{n+1}} ||U||_{L^{\infty}(B)} |B| \le \frac{C}{r} ||U||_{L^{\infty}(\mathbb{R})} \, \forall \, r$$

 $\implies |D(x_0)| \to 0 \\ r \to \infty \implies |Du| = 0 \implies u \equiv \text{const.}$

Theorem 9. Let $f \in C_0^2(\mathbb{R}^n)$, $n \geq 3$. Then any bdd solution of $-\Delta u = f$ in \mathbb{R}^n satisfies

$$u = \int_{\mathbb{D}^n} \Phi(x - y) f(y) dy + C$$

Proof. For $n\geq 3$ Φ is bdd, $\Phi\to 0$ as $|x|\to\infty \implies \int_{\mathbb{R}^n}\Phi(x-y)f(y)dy$ is bounded. Let v be another bdd solution to $\Delta v=f$, then y=u-v satisfies $\Delta y=0,\,y$ bdd. so $y\equiv {\rm const.}\,.$

Theorem 10. u harmonic in U implies u analytic on U. u is analytic on U if for all $x_0 \in U$, u(x) is given by its Taylor series in a neighborhood of x_0 . le $u(x) = \sum_{\alpha} \frac{D^{\alpha}}{u} (x_0) \alpha! (x - x_0)^{\alpha}$. Idea of pf, use Cauchy estimates to show that (the Taylor remainder term) $\mathbb{R}_N(x_0,x) \to 0$ as $N \to \infty$.

Harmek's theorem. For all connected open sets $V \subset\subset U$, for all nonnegative Harmonic functions u defined on U, there exists C > 0 for which $(C = C_V)$

$$\sup_{V} u \le C \inf_{V} u$$

In particular,

$$\frac{1}{C}u(y) \le u(x) \le Cu(y) \ \forall \ x, y \in V$$

Proof. Let $r = \frac{\operatorname{dist}(V, \partial U)}{4}$. Let $x, y \in V$, $|x - y| \le r$.

$$u(x) = \int_{B(x,2r)} \ge \frac{1}{\alpha(n)(2r)^n} \int_{B(y,r)} u dz = \frac{1}{2^n} \int_{B(y,r)} u dz = \frac{1}{2^n} u(y)$$

so $\frac{1}{2n}u(y) \le u(x) \le 2^n u(y)$, where the upper inequality is obtained by symmetry of the first inequality. Then cover \overline{V} with a finite set of balls of radius $\frac{r}{2}$ (since V is compact and connected), then apply this theorem to each ball $\{B_i\}_{i=1}^N$ with $B_i \cap B_{i-1} \neq \emptyset, i=2,3,...N$.

5 Green's function for $-\Delta u = f$

$$-\Delta u = f \ \forall \ x \in U, u = g \ \forall \ x \in \partial U$$

for some open bounded U where $\partial U \in C^1$.

Let $V_{\epsilon} = U - B(x, \epsilon)$, $x \in U$. Apply Green's formula to $\Phi(y - x)$, u(y).

$$\int_{V_{\epsilon}} u(y) \Delta \Phi(y-x) - \Phi(y-x) \Delta(y) = \int_{\partial V_{\epsilon}} u(y) \frac{\partial}{\partial n} \Phi(y-x) - \Phi(y-x) \frac{\partial}{\partial n} u(y) dS(y)$$

Which as $\epsilon \to 0$, we obtain

$$u(x) = \int_{\partial U} \Phi(y - x) \frac{\partial}{\partial n} u(y) - g(y) \frac{\partial}{\partial n} \Phi(y - x) dS(y) + \int_{U} \Phi(y - x) f(x) dy$$

Corrector function. Suppose we can find $\phi^*(y)$ that solves

$$\Delta_y u = 0\Phi(y - x) \in U, \phi^*(y) = \Phi(y - x) \in \partial U$$

Apply Green's function to $u_1\phi^*$:

$$-\int_{U} \phi^{*}(y) \Delta u(y) dy = \int_{\partial U} u(y) \frac{\partial}{\partial n} \phi^{*}(y) - \Phi(y - x) \frac{\partial}{\partial n} u(y) dS(y)$$

Combining this with the above equation,

$$u(x) = \int_{\partial U} u(y) \left(\frac{\partial}{\partial n} \phi^*(y) - \frac{\partial}{\partial n} \Phi(y - x) \right) dS(y) + \int_{U} \left(\psi^*(y) - \Phi(y - x) \right) \Delta u(y) dS(y)$$

So we have the Green's function $G(x,y) = \Phi(y-x) - \phi^*(y) \ x,y \in U \ x \neq y$. So

$$u(x) = -\int_{\partial U} u(y) \frac{\partial}{\partial n} G(x, y) dS(y) - \int_{U} G(x, y) \Delta u(y) dy, x \in U$$

Theorem 12. If $u \in C^2(\overline{U})$ solves the Poisson problem, then

$$u(x) = -\int_{\partial U} g(y) \frac{\partial}{\partial n} G(x, y) dS(y) - \int_{U} G(x, y) f(y) dy, x \in U$$

That is, IF a solution exists and if ϕ^* can be found, the above is the solution.

5.1 Properties of Green's functions

• G(x,y) = G(y,x)

Green's functions on a half-space. Let $\mathbb{R}^n_+=\{(x_1,...,x_n):x_n>0\}$. If $x\in\mathbb{R}^n_+$, define The reflection of x as $\tilde{x}=(x_1,...,-x_n)$. Define $\phi^*(y)=\Phi(y-\tilde{x}),\,x,y\in\mathbb{R}^n_+$. Then

$$\Delta \phi^* = 0, x \in \mathbb{R}_n^*, \phi^*(y)|_{\partial \mathbb{R}_\perp^n} = \Phi(y - x) = \Phi(y - \tilde{x})$$

Consequently, $G(x,y)=\Phi(y-x)-\Phi(y-\tilde{x})$ is the Green's function. So a solution to the Poisson Problem is

$$\frac{\partial}{\partial n}G = -G_{y_n}(x,y) = -\left(y_n\Phi(y-x) - y_n\Phi(y-\tilde{x})\right) = \frac{1}{n\alpha(n)} \left[\frac{y_n - x_n}{|y-x|^n} - \frac{y_n + x_n}{|y-\tilde{x}|^n}\right]$$

SO

$$\frac{\partial}{\partial n}G|_{\partial\mathbb{R}^n_+} = \frac{-2x_n}{n\alpha(n)|x - y^n|}$$

Define the Poisson Kernel

$$K(x,y) = \frac{2x_n}{n\alpha(n)|x - y^n|}$$

then

$$u(x) = \int_{y_n=0} K(x,y)g(y)dy + \int_U G(x,y)f(y)dy$$

Assume $g\in C(\mathbb{R}^{n-1})\cap L^\infty(\mathbb{R}^{n-1})$ then $u=\int_{??}K(x,y)g(y)dy$ satisfies

- $u = C^{\infty}(\mathbb{R}^{n-1}_+) \cap L^{\infty}(\mathbb{R}^{n-1}_+)$
- $\Delta u = 0$ in \mathbb{R}^n_{\perp}
- $\lim_{x \to x_0} u(x) = g(x_0) \ \forall \ x_0 \in \partial \mathbb{R}^n_+$

5.1.1 Green's function on the unit ball

If $x \in \mathbb{R}^n \setminus \{0\}$ define $\tilde{x} = \frac{x}{|x|^2}$. \tilde{x} is the dual point to x with respect to $\partial B(0,1)$. Note x, \tilde{x} are parallel vectors, and $|\tilde{x}| = \frac{1}{|x|}$. We say $R: x \to \tilde{x}$ is the **inversion map**.

Find $\phi^*(y)$ such that

$$\Delta \phi^*(y) = 0 \in B^0(0,1), \phi^*(y) = \Phi(y-x) \in \partial B(0,1)$$

Note that $\Phi(y-\tilde{x})$ is harmonic in y in $B^0(0,1)$ for all $x\in B(0,1)$ so $\Phi(|x|\,(y-\tilde{x}))$ is harmonic in y in $B^0(0,1)$. Define the Green's function for the unit Ball

$$G(x,y) = \Phi(y-x) - \Phi(|x|(y-\tilde{x})) = \Phi(y-x) - \phi^*(y)$$

where

$$\frac{\partial}{\partial n}G(x,y) = \frac{-1}{n\alpha(n)} \frac{1 - |x|^2}{|x - y|^n}$$

Define Poisson Kernel for B(0,1) by

$$K(x,y) = \frac{1}{n\alpha(n)} \frac{1 - |x|^2}{|x - y|^n}$$

Then $u = \int_{\partial B(0,1)} K(x,y) u(y) dy$ and so $\Delta u = 0 \in B(0,1)$, and $u = g \in \partial B(0,1)$.