### Econometric Methods Homework 11

#### Chinying Lin

December 9, 2024

#### Problem 1

prove that under Ho,  $ff\hat{\rho}(k) \stackrel{d}{\to} N(0,1)$ , then  $f\hat{\rho}^2(k) \stackrel{d}{\to} \chi^2(1)$  is proved lag-k autocorrelation wefficient  $\rho(k) = \omega rr(K, K r k) = \frac{\omega v \cdot Y_{t}, Y_{t} \cdot k}{\sqrt{2}}$  under Ho:  $\rho(k) = 0$   $\hat{\rho}(k) = \frac{1}{1-k} \sum_{t \in k+1}^{T} \left(\frac{Y_{t} - \hat{Y}}{\sqrt{2}}\right) \left(\frac{Y_{t} - \hat{Y}}{\sqrt{2}}\right), \hat{\sigma} = \frac{1}{T} \sum_{i \neq 1}^{T} \left(Y_{i} - \hat{Y}\right)^{*}, \hat{\sigma} \rightarrow \sigma$   $\hat{\rho}(k) \sim \frac{1}{T} \cdot \frac{1}{\sigma^2} \sum_{t \in k+1}^{T} \left(Y_{t} - \hat{Y}\right) \left(Y_{t} - \hat{Y}\right) \text{ as } T \rightarrow \infty$   $\Rightarrow \text{fluxording to CLT}, \hat{T} \sum_{t \neq k+1}^{T} \left(Y_{t} - \hat{Y}\right) \left(Y_{t} - \hat{Y}\right) \text{ has mean = 0}$   $\text{and has variance} = \sigma^{*}/T \Rightarrow \sigma^{*}/T \times \hat{\sigma}^{2} = \sigma^{*}/T$   $\Rightarrow \text{under Ho}, \hat{T} \hat{\rho}(k) \stackrel{d}{\to} N(0,1) : T \hat{\rho}^{*}(k) \stackrel{d}{\to} \chi^{*}(1) \not A$ 

#### Problem 2

fluording to \$1, we have  $T\hat{\rho}^{2}(k) \stackrel{d}{\hookrightarrow} \mathcal{V}^{2}(1)$  VFCT For  $\{Yt\}_{t=1}^{T}$  is an IID sequence, there's no correlation between Ye and Yek for different k:  $T\hat{\rho}^{2}(k)$  are asymptotic independent for different k:  $L(m) = TL_{k=1}^{m}\hat{\rho}^{2}(k) = L_{k=1}^{m}\mathcal{T}_{k}^{2}(1) = \mathcal{F}^{2}(m)$  as  $T \rightarrow \infty$ ?

# Problem 3



| Series    | Lag_12_P_Value | Lag_24_P_Value | Q_12        | Q_24       |
|-----------|----------------|----------------|-------------|------------|
| $x_dfy$   | 0.00000000     | 0.000000e+00   | 2810.909115 | 3376.77507 |
| x_infl    | 0.00000000     | 0.000000e+00   | 235.120420  | 289.65187  |
| x_svar    | 0.00000000     | 3.330669e-16   | 126.842991  | 128.12640  |
| $x_{tms}$ | 0.00000000     | 0.000000e+00   | 3035.224545 | 3354.72766 |
| $x_{tbl}$ | 0.00000000     | 0.000000e+00   | 4742.989144 | 7443.11281 |
| x_dfr     | 0.23714455     | 2.804238e-01   | 15.079000   | 27.52858   |
| x_dp      | 0.00000000     | 0.000000e+00   | 5172.397798 | 8723.78726 |
| x_ltr     | 0.65434920     | 7.850608e-01   | 9.561726    | 18.36284   |
| x_ep      | 0.00000000     | 0.000000e+00   | 3572.369411 | 4422.18379 |
| x_bmr     | 0.00000000     | 0.000000e+00   | 4973.900401 | 7891.05780 |
| x_ntis    | 0.00000000     | 0.000000e+00   | 3595.622964 | 4174.72253 |
| Υ         | 0.02750482     | 8.120110e-02   | 23.026142   | 34.19858   |

## GitHub Link

Econometric Methods-homework 11-b 1090 1069