

CLAIMS

1. A single crystal substrate comprising:

a langasite substrate with a SAW propagation surface;
and

5 input and output IDTs having electrodes on the surface
for launching and/or detecting surface acoustic waves,
wherein a direction of surface wave propagation is parallel
to an X'-axis, and the substrate further has an Z'-axis
10 perpendicular to the surface and a Y'-axis parallel to the
surface and perpendicular to the X'-axis, the langasite
substrate having a crystal orientation defined by modified
axes X, Y and Z, the relative orientation of axes X', Y' and
Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in
a range of $8^\circ \leq \phi \leq 25^\circ$, θ is in a range of $15^\circ \leq \theta \leq 30^\circ$, and
15 ψ is in a range of $55^\circ \leq \psi \leq 85^\circ$.

2. The single crystal substrate according to claim 1,
wherein optimal Euler angles of the langasite are $\phi = 10^\circ$, θ
= 23.6° and $\psi = 78.8^\circ$.

20

3. A single crystal substrate comprising:

a langasite substrate with a SAW propagation surface;
and

25 input and output IDTs having electrodes on the surface
for launching and/or detecting surface acoustic waves,
wherein a direction of surface wave propagation is parallel
to an X'-axis, and the substrate further has an Z'-axis
perpendicular to the surface and a Y'-axis parallel to the
surface and perpendicular to the X'-axis, the langasite
30 substrate having a crystal orientation defined by modified
axes X, Y and Z, the relative orientation of axes X', Y' and
Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is
 0° , θ is in a range of $12^\circ \leq \theta \leq 17^\circ$, and ψ is in a range of
 $73^\circ \leq \psi \leq 78^\circ$.

35

4. The single crystal substrate according to claim 3,
wherein optimal Euler angles of the langasite are $\phi = 0^\circ$, θ =

14.6° and ψ = 76.2°.

5 5. A single crystal substrate comprising:
a quartz substrate with a SAW propagation surface; and
input and output IDTs having electrodes on the surface
for launching and/or detecting surface acoustic waves,
wherein a direction of surface wave propagation is parallel
to an X'-axis, and the substrate further has an Z'-axis
perpendicular to the surface and a Y'-axis parallel to the
10 surface and perpendicular to the X'-axis, the quartz
substrate having a crystal orientation defined by modified
axes X, Y and Z, the relative orientation of axes X', Y' and
Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in
a range of $-5^\circ \leq \phi \leq +5^\circ$, θ is in a range of $60^\circ \leq \theta \leq 80^\circ$ and ψ
15 is in a range of $-5^\circ \leq \psi \leq +5^\circ$.

6. The single crystal substrate according to claim 5,
wherein optimal Euler angles of the quartz are ϕ = 0°, θ =
70.5° and ψ = 0°.

20 7. A single crystal substrate comprising:
a quartz substrate with a SAW propagation surface; and
input and output IDTs having electrodes on the surface
for launching and/or detecting surface acoustic waves,
25 wherein a direction of surface wave propagation is parallel
to an X'-axis, and the substrate further has an Z'-axis
perpendicular to the surface and a Y'-axis parallel to the
surface and perpendicular to the X'-axis, the quartz
substrate having a crystal orientation defined by modified
30 axes X, Y and Z, the relative orientation of axes X', Y' and
Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is
0°, θ is in a range of $17^\circ \leq \theta \leq 23^\circ$ and ψ is in a range of
 $10^\circ \leq \psi \leq 20^\circ$.

35 8. The single crystal substrate according to claim 7,
wherein optimal Euler angles of the quartz are ϕ = 0°, θ =
20° and ψ = 13.7°.

9. A single crystal substrate comprising:
a lithium tantalate substrate with a SAW propagation
surface; and

input and output IDTs having electrodes on the surface
5 for launching and/or detecting surface acoustic waves,
wherein a direction of surface wave propagation is parallel
to an X'-axis, and the substrate further has an Z'-axis
perpendicular to the surface and a Y'-axis parallel to the
surface and perpendicular to the X'-axis, the lithium
10 tantalate substrate having a crystal orientation defined by
modified axes X, Y and Z, the relative orientation of axes
X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in
which ϕ is in a range of $-5^\circ \leq \phi \leq +5^\circ$, θ is in a range of 70°
 $\leq \theta \leq 90^\circ$ and ψ is in a range of $85^\circ \leq \psi \leq 95^\circ$.

15

10. The single crystal substrate according to claim 9,
wherein optimal Euler angles of the lithium tantalate are $\phi =$
 0° , $\theta = 79^\circ$ and $\psi = 90^\circ$.

20

11. A single crystal substrate comprising:
a lithium tantalate substrate with a SAW propagation
surface; and

input and output IDTs having electrodes on the surface
for launching and/or detecting surface acoustic waves,
25 wherein a direction of surface wave propagation is parallel
to an X'-axis, and the substrate further has an Z'-axis
perpendicular normal to the surface and a Y'-axis parallel to
the surface and perpendicular to the X'-axis, the lithium
tantalate substrate having a crystal orientation defined by
30 modified axes X, Y and Z, the relative orientation of axes
X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in
which ϕ is in a range of $-5^\circ \leq \phi \leq +5^\circ$, θ is in a range of
 $160^\circ \leq \theta \leq 180^\circ$ and ψ is in a range of $85^\circ \leq \psi \leq 95^\circ$.

35

12. The single crystal substrate according to claim 11,
wherein optimal Euler angles of the lithium tantalate are $\phi =$
 0° , $\theta = 168^\circ$ and $\psi = 90^\circ$.

13. A single crystal substrate comprising:

a lithium tantalate substrate with a SAW propagation surface; and

5 input and output IDTs having electrodes on the surface for launching and/or detecting surface acoustic waves, wherein a direction of surface wave propagation is parallel to an X'-axis, and the substrate further has an Z'-axis perpendicular to the surface and a Y'-axis parallel to the
10 surface and perpendicular to the X'-axis, the lithium tantalate substrate having a crystal orientation defined by modified axes X, Y and Z, the relative orientation of axes X', Y' and Z' being defined by Euler angles ϕ , θ and ψ , in which ϕ is in a range of $-5^\circ \leq \phi \leq +5^\circ$, θ is in a range of 20°
15 $\leq \theta \leq 40^\circ$ and ψ is in a range of $5^\circ \leq \psi \leq 25^\circ$.

14. The single crystal substrate according to claim 13, wherein optimal Euler angles of the lithium tantalate are $\phi = 0^\circ$, $\theta = 30^\circ$ and $\psi = 16.5^\circ$.

20

15. A cutting method of a single crystal substrate comprising the steps of:

25 (a) defining a crystal orientation based on modified axes X, Y and Z, for the surface of the single crystal substrate which surface acoustic waves are propagated;

30 (b) defining X', Y' and Z' axes on the single crystal substrate, in which a direction of surface wave of the propagation is parallel to X'-axis and the Z'-axis is perpendicular to the surface wave and the Y'-axis is parallel to the surface and normal to the X'-axis;

35 (c) defining the X', Y' and Z' axes defined at (b) as relative orientation Euler angles of crystals, ϕ , θ and ψ ; and

 (d) setting a range of the ϕ , θ , and ψ defined at (c) in an optimal range in accordance with a type of the substrate.

16. The method according to claim 15, wherein the single

crystal substrate is a langasite substrate.

17. The method according to claim 15, wherein the single crystal substrate is a quartz substrate.

5

18. The method according to claim 15, wherein the single crystal substrate is a lithium tantalate substrate.