PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵:
C12N 15/12, C07K 13/00, C12N 5/10,
G01N 33/68, C12P 21/08

(11) International Publication Number:

WO 94/29449

(43) International Publication Date:

22 December 1994 (22.12.94)

(21) International Application Number:

PCT/US94/06273

(22) International Filing Date:

3 June 1994 (03.06.94)

(30) Priority Data: 08/072,574

4 June 1993 (04.06.93)

US

(60) Parent Application or Grant

(63) Related by Continuation US

Filed on

08/072,574 (CIP) 4 June 1993 (04.06.93)

(71) Applicant (for all designated States except US): THE SALK INSTITUTE BIOTECHNOLOGY/INDUSTRIAL ASSOCIATES, INC. [US/US]; 505 Coast Boulevard South, La Jolla, CA 92037-4641 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DAGGETT, Lorrie [US/US]; No. V102, 5310 Repecho Drive, San Diego, CA 92124 (US). ELLIS, Steven, B. [US/US]; 8939 Oviedo Street, San Diego, CA 92129 (US). LIAW, Chen [US/US]; 7668 Salix Place, San Diego, CA 92129 (US). PONTSLER, Aaron [US/US]; 10579 Kerrigan Court, Santee, CA 92071 (US). JOHNSON, Edwin, C. [US/US]; 13240 Gunner

Avenue, San Diego, CA 92129 (US). HESS, Stephen, D. [US/US]; No. 309, 3735 Southview Drive, San Diego, CA 92127 (US).

(74) Agent: REITER, Stephen, E.; Pretty, Schroeder, Brueggemann & Clark, Suite 2000, 444 South Flower Street, Los Angeles, CA 90071 (US).

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KG, KP, KR, KZ, LK, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HUMAN METABOTROPIC GLUTAMATE RECEPTORS, NUCLEIC ACIDS ENCODING SAME AND USES THEREOF

(57) Abstract

In accordance with the present invention, there are provided nucleic acids encoding human metabotropic glutamate receptor subtypes and the proteins encoded thereby. In a particular embodiment, the invention nucleic acids encode mGluR1, mGluR2, mGluR3 and mGluR5 subtypes of human metabotropic glutamate receptors. In addition to being useful for the production of metabotropic glutamate receptor subtypes, these nucleic acids are also useful as probes, thus enabling those skilled in the art, without undue experimentation, to identify and isolate related human receptor subunits. In addition to disclosing novel metabotropic glutamate receptor subtypes, the present invention also comprises methods for using such receptor subtypes to identify and characterize compounds which affect the function of such receptors, e.g., agonists, antagonists, and modulators of glutamate receptor function.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	4					•
AT	Austria		GB	United Kingdom	MR	Mauritania
ΑŪ	Australia		GE -	Georgia	MW	Malawi
BB	Barbados		GN -	Guinea	NE	
BE	Belgium	* •	GR	Greece	NL	Niger
BF	Burkina Paso		HU	Hungary		Netherlands
BG .	Bulgaria	*	IE.	freland	NO	Norway
BJ	Benin	, IH	TT ·	Italy	NZ	New Zealand
BR	Brazil		JР	Japan	PL	Poland
BY	Belarus		KE		PT	Portugal
CA	Canada		KG	Kenya	RO	Romania
CF	Central African R	laamblia		Kyrgystan	RU	Russian Federation
CG	Congo	rebrone.	KP	Democratic People's Republic	SD	Sudan
CH				of Korea	SE	Sweden
	Switzerland		KR	Republic of Korea	SI -	- Slovenia
CI	Côte d'Ivoire		KZ	Kazakhstan	SK	Slovakia
CM	Cameroon		Ш	Liechtenstein	SN	Scoegal
CN	China		LK	Sri Lanka	TD	Chad
CS CS	Czechoslovakia		LU	Luxembourg	TG	Togo
CZ	Czech Republic	, ,	LV	Latvia	TJ	· Tajikistan
DE	G crmany		MC	Monaco	77	
DK	Denmark		MD	Republic of Moldova	UA	Trinidad and Tobago
ES	Spain		MG	Madagascar		Ukraine -
FI	Finland	A Company of the Comp	ML	Mali	US	United States of America
FR	Prance		MN		UZ	Uzbekistan
GA.	Gabon	** *** * * * * * * * * * * * * * * * * *	MIN	Mongolia	VN	Vict Nam
						•

Human Metabotropic Glutamate Receptors. Nucleic Acids Encoding Same and Uses Thereof

The present invention relates to nucleic acids and receptor proteins encoded thereby. Invention nucleic acids encode novel human metabotropic glutamate receptor subtypes. The invention also relates to methods for making such receptor subtypes and for using the receptor proteins in assays designed to identify and characterize compounds which affect the function of such receptors, e.g., agonists, antagonists, and allosteric modulators of human metabotropic glutamate receptors.

BACKGROUND OF THE INVENTION

The amino acid L-glutamate is a major excitatory neurotransmitter in the mammalian central nervous system. Anatomical, biochemical and electrophysiological analyses suggest that glutamatergic systems are involved in a broad array of neuronal processes, including fast excitatory synaptic transmission, regulation of neurotransmitter releases, long-term potentiation, learning and memory, developmental synaptic plasticity, hypoxic-ischemic damage and neuronal cell death, epileptiform seizures, as well as the pathogenesis of several neurodegenerative disorders. 20 See generally, Monaghan et al., Ann. Rev. Pharmacol. Toxicol. 29:365-402 (1980). This extensive repertoire of functions, especially those related to neurotoxicity and neuropathology, has stimulated recent 25 attempts to describe and define the mechanisms through which glutamate exerts its effects.

Currently, glutamate receptor classification schemes are based on pharmacological criteria. Glutamate has been observed to mediate its effects through receptors that have been categoriz d into two main groups: ionotropic and metabotropic. Ionotropic glutamate receptors contain integral cation-specific, ligand-gated

10

ion channels, whereas metabotropic glutamate receptors are G-protein-coupled receptors that transduce extracellular signals via activation of intracellular second messenger systems. Ionotropic receptors are further divided into at 5 least two categories based on the pharmacological and functional properties of the receptors. The two main types of ionotropic receptors are NMDA (N-methyl-D-aspartate) receptors and kainate/AMPA (α-amino-3-hydroxy-5-methyl-4isoxazole propionate, formerly called the quisqualic acid or QUIS receptor), receptors. While the metabotropic receptors bind to some of the same ligands that bind to ionotropic glutamate receptors, the metabotropic receptors alter synaptic physiology via GTP-binding proteins and second messengers such as cyclic AMP, cyclic GMP, diacylglycerol, inositol 1,4,5-triphosphate and calcium [see, for example, Gundersen et al., Proc. R. Soc. London Ser. 221:127 (1984); Sladeczek et al., Nature 317:717 (1985); Nicoletti et al., J. Neurosci. 6:1905 (1986); Sugiyama et al., Nature 325:531 (1987)].

electrophysiological and pharmacological 20 properties of metabotropic glutamate receptors have been studied using animal tissues and cell lines as a source of receptors, as well as non-human recombinant receptors. The value of such studies for application to the development of human therapeutics has been limited by the availability of only non-human receptors. Moreover, it is only recently that the characteristics and structure of metabotropic glutamate receptors have been investigated at the molecular level. Such investigation has, however, only been carried out in non-human species. Because of the potential physiological and pathological significance of metabotropic glutamate receptors, it is imperative (particularly for drug screening assays) to have available human sequences (i.e., DNA, RNA, proteins) which encode representative members of the various glutamat receptor classes. availability of such human sequences will also enable the

3

investigation of receptor distribution in humans, the correlation of specific receptor modification with the occurrence of various disease states, etc.

BRIEF DESCRIPTION OF THE INVENTION

The present invention discloses novel nucleic acids encoding human metabotropic glutamate receptor protein subtypes and the proteins encoded thereby. In a particular embodiment the novel nucleic acids encode full-length mGluR1, mGluR2, mGluR3 and mGluR5 subtypes of human metabotropic glutamate receptors, or portions thereof. In addition to being useful for the production of metabotropic glutamate receptor subtype proteins, these nucleic acids are also useful as probes, thus enabling those skilled in the art, without undue experimentation, to identify and isolate nucleic acids encoding related receptor subtypes.

In addition to disclosing novel metabotropic glutamate receptor protein subtypes, the present invention also comprises methods for using such receptor subtypes to identify and characterize compounds which affect the function of such receptors, e.g., agonists, antagonists, and modulators of glutamate receptor function. The invention also comprises methods for determining whether unknown protein(s) are functional as metabotropic glutamate receptor subtypes.

25

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 presents restriction maps of CMV promoter-based vectors pCMV-T7-2 and pCMV-T7-3.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, there
30 are provided isolated nucleic acids ncoding human

metabotropic glutamate receptor subtypes. In one aspect of the present invention, nucleic acids encoding human metabotropic glutamate receptors of the mGluR1 subtype are provided. In another aspect, nucleic acids encoding at least a portion of metabotropic glutamate receptors of the mGluR2 subtype are provided. In yet another aspect, nucleic acids encoding metabotropic glutamate receptors of the mGluR3 subtype are provided. In a further aspect, nucleic acids encoding metabotropic glutamate receptors of the mGluR3 subtype are provided. In a still further aspect, eukaryotic cells containing such nucleic acids, and eukaryotic cells expressing such nucleic acids are provided.

Also provided are protein(s) encoded by the above-described nucleic acids, as well as antibodies generated against the protein(s). In other aspects of the present invention, there are provided nucleic acid probes comprising metabotropic glutamate receptor subtype-selective portions of the above-described nucleic acids.

20 As employed herein, the phrase "human metabotropic glutamate receptor subtypes" refers isolated and/or purified proteins which participate in the G-protein-coupled response of cells to glutamatergic ligands. Such receptor subtypes are individually encoded by distinct genes which do not encode other metabotropic glutamate receptor subtypes (i.e., each subtype is encoded by a unique gene). Such receptor subtypes are typically characterized by having seven putative transmembrane domains, preceded by a large putative extracellular aminodomain and followed by 30 terminal a large putative carboxy-terminal domain. intracellular Metabotropic glutamate receptors share essentially no amino acid sequence homology with other G-protein-coupled receptors

Regarding the int r-relationship between each of the metabotropic glutamate receptor subtypes, the amino acid sequences of mGluR1 receptor subtypes are generally less than about 70% identical to the amino acid sequences 5 of other human metabotropic glutamate receptor subtypes, with identities less than about 45% typically observed. The amino acid sequences of mGluR2 receptor subtypes are generally less than 60% identical to the amino acid sequences of other human metabotropic glutamate receptor subtypes, with identities of less than 45% typically The amino acid sequences of mGluR3 receptor observed. subtypes are generally less than 60% identical to the amino acid sequences of other human metabotropic glutamate receptor subtypes, with identities of less than 45% 15 typically observed. The amino acid sequences of mGluR5 receptor subtypes are generally less than 70% identical to the amino acid sequences of other human metabotropic glutamate receptor subtypes, with identities of less than 45% typically observed.

Also included within the above definition are variants thereof encoded by mRNA generated by alternative splicing of a primary transcript, as well as fragments thereof which retain one or more of the above physiological and/or physical properties.

Use of the terms "isolated" or "purified" in the present specification and claims as a modifier of DNA, RNA, polypeptides or proteins means that the DNA, RNA, polypeptides or proteins so designated have been produced in such form by the hand of man, and thus are separated from their native in vivo cellular environment. As a result of this human intervention, the recombinant DNAs, RNAs, polypeptides and proteins of the invention are useful in ways that the DNAs, RNAs, polypeptides or proteins as they naturally occur are not, such as identification of selective drugs or compounds.

6

The term "functional", when used her in as a modifi r of rec ptor protein(s) of the present invention, means that binding of glutamatergic ligands (such as ACPD or ACPD-like ligands, QUIS, AP4, and the like) to said receptor protein(s) modifies the receptor interaction with G-proteins, which in turn affects the levels of intracellular second messengers, leading to a variety of physiological effects. Stated another way, "functional" means that a response is generated as a consequence of agonist activation of receptor protein(s).

As used herein, a splice variant refers to variant metabotropic glutamate receptor subtype-encoding nucleic acid(s) produced by differential processing of primary transcript(s) of genomic DNA, resulting in the production of more than one type of mRNA. cDNA derived from differentially processed primary transcript will encode metabotropic glutamate receptor subtypes that have regions of complete amino acid identity and regions having different amino acid sequences. Thus, the same genomic sequence can lead to the production of multiple, related mRNAs and proteins. Both the resulting mRNAs and proteins are referred to herein as "splice variants".

Accordingly, also contemplated within the scope of the present invention are nucleic acids that encode metabotropic glutamate receptor subtypes as defined above, but that by virtue of degeneracy of the genetic code do not necessarily hybridize to the disclosed nucleic acids under specified hybridization conditions. Such subtypes also form functional receptors, as assessed by methods described herein or known to those of skill in the art. Typically, unless a metabotropic glutamate receptor subtype is encoded by RNA that arises from alternative splicing (i.e., a splice variant), metabotropic glutamate receptor subtype-encoding nucleic acids and the metabotropic glutamate receptor protein encoded th reby shar substantial sequence

homology with at 1 ast one of the metabotropic glutamat receptor subtype nucleic acids (and proteins ncoded thereby) described herein. It is understood that DNA or RNA encoding a splice variant may share less than 90% overall sequence homology with the DNA or RNA provided herein, but include regions of nearly 100% homology to a DNA fragment described herein, and encode an open reading frame that includes start and stop codons and encodes a functional metabotropic glutamate receptor subtype.

- Exemplary DNA sequences encoding human mGluR1 subtypes are represented by nucleotides which encode substantially the same amino acid sequence as set forth in Sequence ID No. 2. Presently preferred sequences encode the amino acid sequence set forth in Sequence ID No. 2.
- Exemplary DNA can alternatively be characterized as those nucleotide sequences which encode an human mGluR1 subtype and hybridize under high-stringency conditions to substantially the entire sequence of Sequence ID No. 1, or substantial portions thereof (i.e., typically at least 25-20 30 contiguous nucleotides thereof).

Stringency of hybridization is used herein to refer to conditions under which polynucleic acid hybrids are stable. As known to those of skill in the art, the stability of hybrids is reflected in the melting temperature (T_m) of the hybrids. T_m can be approximated by the formula:

$$81.5^{\circ}C - 16.6(\log_{10}[Na^{\dagger}]) + 0.41(%G+C) - 600/1,$$

where l is the length of the hybrids in nucleotides. T_m decreases approximately 1-1.5°C with every 1% decrease in sequence homology. In general, the stability of a hybrid is a function of sodium ion concentration and temp rature. Typically, the hybridization reaction is performed under

conditions of lower stringency, followed by washes of varying, but higher, stringency. Reference hybridization stringency relates to such washing conditions. Thus, as used herein:

5

HIGH STRINGENCY conditions, with respect to (1) fragment hybridization, refer to conditions that permit hybridization of only those nucleic acid sequences that form stable hybrids in 0.018M NaCl at 65°C (i.e., if a hybrid is not stable in 0.018M NaCl at 65°C, it will not be stable under high stringency conditions, as contemplated herein). stringency conditions can be provided, for example, by hybridization in 50% formamide, 5X Denhart's solution, 5X SSPE, 0.2% SDS at 42°C, followed by washing in 0.1% SSPE, and 0.1% SDS at 65°C;

15

10

MODERATE STRINGENCY conditions, with respect (2) fragment to hybridization, refer conditions equivalent to hybridization in 50% formamide, 5X Denhart's solution, SSPE, 0.2% SDS at 42°C, followed by washing in 0.2% SSPE, 0.2% SDS, at 65°C; and

25

20

LOW STRINGENCY conditions, with respect to (3) fragment hybridization, refer to conditions equivalent to hybridization formamide, 5X Denhart's solution, 6X SSPE, 0.2% SDS at 42°C, followed by washing in 1X SSPE, 0.2% SDS, at 50°C.

30

HIGH STRINGENCY conditions, with respect to oligonucleotide (i.e., synthetic DNA \leq about 30 nucleotides in length) hybridization, refer to conditions equival nt to

hybridization in 10% formamide, 5X Denhart's solution, 6X SSPE, 0.2% SDS at 42°C, followed by washing in 1X SSPE, and 0.2% SDS at 50°C.

5 It is understood that these conditions may be duplicated using a variety of buffers and temperatures and that they are not necessarily precise.

Denhart's solution and SSPE (see, e.g., Sambrook, Fritsch, and Maniatis, in: Molecular Cloning, A Laboratory 10 Manual, Cold Spring Harbor Laboratory Press, 1989) are well known to those of skill in the art as are other suitable hybridization buffers. For example, SSPE is pH 7.4 phosphate-buffered 0.18M NaCl. SSPE can be prepared, for example, as a 20% stock solution by dissolving 175.3 g of NaCl, 27.6 g of NaH₂PO₄ and 7.4 g EDTA in 800 ml of water, adjusting the pH to 7.4, and then adding water to 1 liter. Denhart's solution (see, Denhart (1966) Biochem. Biophys. Res. Commun. 23:641) can be prepared, for example, as a 50X stock solution by mixing 5 g Ficoll (Type 400, Pharmacia 20 Biotechnology, INC., Piscataway, NJ), polyvinylpyrrolidone, 5 g bovine serum albumin (Fraction V; Sigma, St. Louis, MO) water to 500 ml and filtering to remove particulate matter.

Especially preferred sequences encoding human model model model model and the substantially the same nucleotide sequence as the coding sequences in Sequence ID No. 1; with polynucleic acid having the same sequence as the coding sequence in Sequence ID No. 1 being most preferred.

As used herein, the phrase "substantial sequence homology" refers to nucleotide sequences which share at least about 90% identity, and amino acid sequences which typically share more than 95% amino acid identity. It is

recognized, however, that proteins (and DNA or mRNA encoding such proteins) containing less than the above-described level of homology arising as splice variants or that are modified by conservative amino acid substitutions (or substitution of degenerate codons) are contemplated to be within the scope of the present invention.

The phrase "substantially the same" is used herein in reference to the nucleotide sequence of DNA, the ribonucleotide sequence of RNA, or the amino acid sequence of protein, that have slight and non-consequential sequence variations from the actual sequences disclosed herein. Species that are substantially the same are considered to be equivalent to the disclosed sequences and as such are within the scope of the appended claims. In this regard, "slight and non-consequential sequence variations" mean that sequences that are substantially the same as the DNA, RNA, or proteins disclosed and claimed herein functionally equivalent to the human-derived sequences disclosed and claimed herein. Functionally equivalent sequences will function in substantially the same manner to produce substantially the same compositions as the humanderived nucleic acid and amino acid compositions disclosed and claimed herein. In particular, functionally equivalent DNAs encode human-derived proteins that are the same as 25 those disclosed herein or that have conservative amino acid variations, such as substitution of a non-polar residue for another non-polar residue or a charged residue for a similarly charged residue. These changes include those recognized by those of skill in the art as those that do 30 not substantially alter the tertiary structure of the protein.

Exemplary DNA sequences encoding a portion of an human mGluR2 receptor subtype are represented by nucleotides which encode substantially the same amino acid sequence as set forth in Sequence ID No. 4 (optionally

including some or all of the 343 nucleotides of 3' untranslated sequence set forth in Sequence ID No. 13), or substantially the same amino acid sequence as that encoded by the human mGluR2-encoding portion of clone METAB40, deposited with the ATCC on May 4, 1993, under accession number 75465.

The deposited clone has been deposited on May 4, 1993, at the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland, U.S.A. 20852, under 10 the terms of the Budapest Treaty on the International Recognition of Deposits of Microorganisms for Purposes of Patent Procedure and the Regulations promulgated under this Treaty. Samples of the deposited material are and will be available to industrial property offices and other persons 15 legally entitled to receive them under the terms of the Treaty and Regulations and otherwise in compliance with the patent laws and regulations of the United States of America and all other nations or international organizations in which this application, or an application claiming priority 20 of this application, is filed or in which any patent granted on any such application is granted. In particular, upon issuance of a U.S. patent based on this or any application claiming priority to or incorporating this application by reference thereto, all restriction upon 25 availability of the deposited material will be irrevocably removed.

Presently preferred polynucleic acid sequences that encode a portion of an human mGluR2 receptor subtype are those that encode the same amino acid sequence as 30 Sequence ID No. 4, or the same amino acid sequence as that encoded by the human mGluR2-encoding portion of clone METAB40, deposited with the ATCC on May 4, 1993, under accession number 75465.

Exemplary DNAs can alternatively be characterized as those nucleotide sequences which encode a human mGluR2 receptor subtype and hybridize under high-stringency conditions to Sequence ID No. 3, or substantial portions (i.e., typically at least 25-30 contiguous nucleotides thereof), or the human mGluR2-encoding portion of clone METAB40 (ATCC accession No. 75465), or substantial portions thereof. Especially preferred sequence encoding of an human mGluR2 portion receptor subtype is represented by polynucleic acid which has the same nucleotide sequence as the coding sequence set forth in Sequence ID No. 3, or the nucleotide sequence of the coding sequence in the human mGluR2-encoding portion of clone METAB40.

15 Exemplary DNA sequences encoding human mGluR3 receptor subtypes are represented by nucleotides which encode substantially the same amino acid sequence as set forth in Sequence ID No. 6. Presently preferred polynucleic acid sequences are those that encode the same sequence as Sequence ID No. 6.

Exemplary DNAs can alternatively be characterized as those nucleotide sequences which encode a human mGluR3 receptor subtype and hybridize under high-stringency conditions to substantially the entire sequence of Sequence ID No. 5, or substantial portions thereof (i.e., typically at least 25-30 contiguous nucleotides thereof). Especially preferred sequences encoding human mGluR3 subtypes are those which have substantially the same nucleotide sequence as the coding sequences in Sequence ID No. 5, with the polynucleic acid having the same nucleotide sequence as the coding sequence set forth in Sequence ID No. 5 being the presently most preferred.

Exemplary DNA sequences encoding human mGluR5 receptor subtypes or portions thereof are represented by

nucleotides which encode substantially the same amino acid sequence as set forth in Sequence ID Nos. 8, 10 or 12. Presently preferred polynucleic acid sequences are those that encode the same sequence as Sequence ID Nos. 8, 10 or 12.

Exemplary DNAs can alternatively be characterized as those nucleotide sequences which encode a human mGluR5 receptor subtype and hybridize under high stringency conditions to substantially the entire sequence of Sequence 10 Nos. 7, 9 or 11, or substantial portions thereof (i.e., typically at least 25-30 contiguous nucleotides thereof). Especially preferred sequences encoding human mGluR5 subtypes are those which have substantially the same nucleotide sequence as the coding sequences set forth in Sequence ID Nos. 7, 9 or 11; with polynucleic acids having the same sequence as the coding sequence set forth in Sequence ID Nos. 7, 9 or 11 being the presently most preferred.

receptor subtypes may be isolated by screening suitable human cDNA or human genomic libraries under suitable hybridization conditions with DNA disclosed herein (including nucleotides derived from any of SEQ ID Nos. 1, 3, 5, 7, 9 or 11). Suitable libraries can be prepared from neural tissue samples, e.g., hippocampus and cerebellum tissue, cell lines, and the like. For example, the library can be screened with a portion of DNA including substantially the entire receptor subtype-encoding sequence thereof, or the library may be screened with a suitable oligonucleotide probe based on a portion of the DNA.

As used herein, a probe is single-stranded DNA or RNA that has a sequence of nucleotides that includes at least about 25-30 contiguous bas s that are the same as (or the complement of) any 25 or more contiguous bases set

forth in any of SEQ ID Nos. 1, 3, 5, 7, 9 or 11. Preferred regions from which to construct probes include 5' and/or 3' coding sequences, sequences predicted to encode transmembrane domains, sequences predicted to encode cytoplasmic loops, signal sequences, ligand binding sites, and the like.

thereof, or oligonucleotides based on portions of the cDNA clones can be used as probes, preferably labeled with suitable label means for ready detection. When fragments are used as probes, DNA sequences for such probes will preferably be derived from the carboxyl end-encoding portion of the DNA, and most preferably will include predicted transmembrane domain-encoding portions of the DNA sequence (the domains can be predicted based on hydropathy analysis of the deduced amino acid sequence using, for example, the method of Kyte and Doolittle (1982), J. Mol. Biol. Vol. 157:105). These probes can be used, for example, for the identification and isolation of additional members of the glutamate receptor family.

As a particular application of the invention sequences, genetic screening can be carried out using the nucleotide sequences of the invention as probes. Thus, nucleic acid samples from patients having neuropathological conditions suspected of involving alteration/modification of any one or more of the glutamate receptors can be screened with appropriate probes to determine if any abnormalities exist with respect to any of the endogenous glutamate receptors. Similarly, patients having a family history of disease states related to glutamate receptor dysfunction can be screened to determine if they are also predisposed to such disease states.

In accordance with another embodiment of the pres nt inv ntion, there is provided a method for

identifying DNA encoding human metabotropic glutamate r ceptor protein subtypes, said method comprising:

contacting human DNA with a nucleic acid probe as described above, wherein said contacting is carried out under low- to moderate-stringency hybridization conditions when the probe used is a polynucleic acid fragment, or under high-stringency hybridization conditions when the probe used is an oligonucleotide, and

identifying DNA(s) which hybridize to said probe.

After screening the library, positive clones are 10 identified by detecting a hybridization signal; the identified clones are characterized by restriction enzyme mapping and/or DNA sequence analysis, and then examined, by comparison with the sequences set forth herein to ascertain 15 whether they include DNA encoding a complete metabotropic glutamate receptor subtype (i.e., if they include translation initiation and termination codons). If the selected clones are incomplete, they may be used to rescreen the same or a different library to obtain 20 overlapping clones. If the library is genomic, then the overlapping clones may include exons and introns. If the library is a cDNA library, then the overlapping clones will include an open reading frame. In both instances, complete clones may be identified by comparison with the DNA and 25 deduced amino acid sequences provided herein.

Complementary DNA clones encoding various human metabotropic glutamate receptor subtypes (e.g., mGluR1, mGluR2, mGluR3, mGluR5) have been isolated. Each subtype appears to be encoded by a different gene. The DNA clones provided herein may be used to isolate genomic clones encoding each subtype and to isolate any splice variants by screening libraries prepared from different neural tissues. Nucleic acid amplification techniques, which are well known in the art, can be used to locate DNA encoding splice variants of human metabotropic glutamate receptor subtypes.

This is accomplished by employing oligonucleotides based on DNA sequences surrounding known or predicted divergent sequence(s) as primers for amplifying human RNA or genomic DNA. Size and sequence determinations of the amplification products can reveal the existence of splice variants. Furthermore, isolation of human genomic DNA sequences by hybridization can yield DNA containing multiple exons, separated by introns, that correspond to different splice variants of transcripts encoding human metabotropic glutamate receptor subtypes.

It has been found that not all metabotropic glutamate receptor subtypes (and variants thereof) are expressed in all neural tissues or in all portions of the Thus, in order to isolate cDNA encoding a 15 particular subtype (or splice variants thereof), it is preferable to screen libraries prepared from different neuronal or neural tissues or cells. Preferred libraries obtaining for DNA encoding each subtype include: cerebellum isolate human to mGluR1-encoding DNAs; isolate human mGluR2-encoding DNAs; 20 hippocampus to hippocampus and cerebellum to isolate mGluR3-encoding DNAs; hippocampus and cerebellum to isolate mGluR5-encoding DNAs; and the like.

Once DNA encoding a particular receptor subtype
25 has been isolated, ribonuclease (RNase) protection assays
can be employed to determine which tissues express mRNA
encoding such subtype (or splice variant thereof). These
assays provide a sensitive means for detecting and
quantitating an RNA species in a complex mixture of total
30 cellular RNA. The subtype DNA is labeled and hybridized
with cellular RNA. If complementary mRNA is present in the
cellular RNA, a DNA-RNA hybrid results. The RNA sample is
then treated with RNase, which degrades single-stranded
RNA. Any RNA-DNA hybrids are prot ct d from RNase
35 degradation and can be visualized by gel l ctrophoresis

and autoradiography. In situ hybridization techniques can also be used to determine which tissues express mRNAs encoding particular metabotropic glutamate receptor subtypes. Thus, labeled subtype DNAs can be hybridized to different brain region slices to visualize subtype mRNA expression.

It appears that the distribution of expression of some human metabotropic glutamate receptor subtypes differs from the distribution of such receptors in rat. For example, even though RNA encoding the rat mGluR5 subtype is abundant in rat hippocampus, but is not abundant in rat cerebellum [see, e.g., Abe et al., J. Biol. Chem. 267: 13361-13368 (1992)], human mGluR5-encoding cDNAs were successfully obtained from human cerebellum cDNA libraries.

Thus, the distribution of some metabotropic glutamate receptor subtypes in humans and rats appears to be different.

The above-described nucleotide sequences can be incorporated into vectors for further manipulation. As used herein, vector (or plasmid) refers to discrete elements that are used to introduce heterologous DNA into cells for either expression or replication thereof. Selection and use of such vehicles are well within the skill of the artisan.

25 An expression vector includes vectors capable of expressing DNAs that are operatively linked with regulatory sequences, such as promoter regions, that are capable of regulating expression of such DNA fragments. Thus, an expression vector refers to a recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the cloned DNA. Appropriat xpression vectors are well known to those of skill in the art and include those that are replicable in

eukaryotic cells and/or prokaryotic cells and those that remain episomal or those which integrate into the host cell genome. Presently preferred plasmids for expression of invention metabotropic glutamate receptor subtypes in eukaryotic host cells, particularly mammalian cells, include cytomegalovirus (CMV) promoter-containing vectors such as pCMV-T7-2 and pCMV-T7-3 (see Figure 1), pcDNA1, and the like, as well as SV40 promoter-containing vectors and MMTV LTR promoter-containing vectors, such as pMMTVT7(+) or pMMTVT7(-) (modified versions of pMAMneo (Clontech, Palo Alto, CA), prepared as described herein), and the like.

As used herein, a promoter region refers to a segment of DNA that controls transcription of DNA to which it is operatively linked. The promoter region includes 15 specific sequences that are sufficient for RNA polymerase recognition, binding and transcription initiation. portion of the promoter region is referred to as the In addition, the promoter region includes promoter. sequences that modulate this recognition, binding and 20 transcription initiation activity of RNA polymerase. These sequences may be cis acting or may be responsive to trans Promoters, depending upon the nature of acting factors. regulation, may be constitutive or regulated. Exemplary promoters contemplated for use in the practice of 25 the present invention include the SV40 early promoter, the cytomegalovirus (CMV) promoter, the mouse mammary tumor virus (MMTV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter, and the like.

As used herein, the term "operatively linked"

refers to the functional relationship of DNA with regulatory and effector sequences of nucleotides, such as promoters, enhancers, transcriptional and translational stop sites, and other signal sequences. For exampl, operative linkage of DNA to a promoter refers to the physical and functional relationship between the DNA and

the promoter such that the transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes, binds to and transcribes the DNA. order to optimize expression and/or transcription, it may be necessary to remove, add or alter 5' and/or 3' untranslated portions of the clones to eliminate extra, potentially inappropriate alternative translation initiation (i.e., start) codons or other sequences that may interfere with or reduce expression, 10 either at the level of transcription or translation. Alternatively, consensus ribosome binding sites (see, for example, Kozak (1991) J. Biol. Chem. 266:19867-19870) can be inserted immediately 5' of the start codon and may enhance expression. Likewise, alternative codons, encoding 15 the same amino acid, can be substituted for coding sequences of the metabotropic glutamate receptor subunits in order to enhance transcription (e.g., the codon preference of the host cells can be adopted, the presence of G-C rich domains can be reduced, and the like). 20 Furthermore, for potentially enhanced expression metabotropic glutamate receptor subunits in amphibian cocytes, the subunit coding sequence can optionally be incorporated into an expression construct wherein the 5'and 3'-ends of the coding sequence are contiguous with Xenopus β-globin gene 5' and 3' untranslated sequences, respectively. For example, metabotropic glutamate receptor subunit coding sequences can be incorporated into vector psP64T (see Krieg and Melton (1984) in Nucleic Acids Research 12:7057-7070), a modified form of pSP64 (available from Promega, Madison, WI). The coding sequence is inserted between the 5' end of the β -globin gene and the 3' untranslated sequences located downstream of the SP6 promoter. In vitro transcripts can then be generated from the resulting vector. The desirability of (or need for) such modifications may be empirically determined.

15

As used herein, expression refers to the process by which polynucleic acids are transcribed into mRNA and translated into peptides, polypeptides, or proteins. If the polynucleic acid is derived from genomic DNA, expression may, if an appropriate eukaryotic host cell or organism is selected, include splicing of the mRNA.

Particularly preferred base vectors which contain regulatory elements that can be linked to human metabotropic receptor-encoding DNAs for transfection of mammalian cells are cytomegalovirus (CMV) promoter-based vectors such as pCMV-T7-2 and pCMV-T7-3 (described herein) or pcDNA1 (Invitrogen, San Diego, CA), MMTV promoter-based vectors such as pMMTVT7(+) or pMMTVT7(-) (as described herein), and SV40 promoter-based vectors such as pSVβ (Clontech, Palo Alto, CA).

Full-length DNAs encoding human metabotropic glutamate receptor subtypes have been inserted into vectors pMMTVT7(+), pMMTVT7(-) pCMV-T7-2 or pCMV-T7-3. pCMV-T7-2 (and pCMV-T7-3) are pUC19-based mammalian cell expression vectors containing the CMV promoter/enhancer, splice/donor sites located immediately downstream of the promoter, a T7 bacteriophage RNA polymerase promoter positioned downstream of the splice sites, followed by an SV40 polyadenylation signal and a polylinker between the T7 promoter and the polyadenylation signal. Placement of metabotropic glutamate receptor subtype DNA between the CMV promoter and SV40 polyadenylation signal should provide for constitutive expression of the foreign DNA in a mammalian host cell transfected with the construct.

Vectors pMMTVT7(+) and pMMTVT7(-) were prepared by modifying vector pMAMneo (Clontech, Palo Alto, CA). pMAMneo is a mammalian expression vector that contains the Rous Sarcoma Virus (RSV) long t rminal repeat (LTR) enhancer, linked to th dexamethasone-inducible mouse

mammary tumor virus (MMTV)-LTR promoter, followed by SV40 splicing and polyadenylation sites. pMAMneo also contains the E. coli neo gene for selection of transformants, as well as the β -lactamase gene (encoding a protein which imparts ampicillin-resistance) for propagation in E. coli.

Vector pMMTVT7(+) can generated be by modification of pMAMneo to remove the neo gene and insert the multiple cloning site and T7 and T3 promoters from pBluescript (Stratagene, La Jolla, CA). Thus, pMMTVT7(+) 10 contains the RSV-LTR enhancer linked to the MMTV-LTR promoter, a T7 bacteriophage RNA polymerase promoter positioned downstream of the MMTV-LTR promoter, polylinker positioned downstream of the T7 promoter, a T3 bacteriophage RNA polymerase promoter positioned downstream 15 of the T7 promoter, and SV40 splicing and polyadenylation sites positioned downstream of the T3 promoter. β -lactamase gene (encoding a protein which imparts is retained ampicillin-resistance) from pMAMneo pMMTVT7(+), although it is incorporated in the reverse 20 orientation relative to the orientation in pMAMneo.

Vector pMMTVT7(-) is identical to pMMTVT7(+) except that the positions of the T7 and T3 promoters are switched, i.e., the T3 promoter in pMMTVT7(-) is located where the T7 promoter is located in pMMTVT7(+), and the T7 promoter in pMMTVT7(-) is located where the T3 promoter is located in pMMTVT7(+). Therefore, vectors pMMTVT7(+) and pMMTVT7(-) contain all of the regulatory elements required for expression of heterologous DNA in a mammalian host cell, wherein the heterologous DNA has been incorporated into the vectors at the polylinker. In addition, because the T7 and T3 promoters are located on either side of the polylinker, these plasmids can be used for synthesis of in vitro transcripts of heterologous DNA that has been subclon d into the vectors at the polylinker.

For inducible expression of human metabotropic glutamate receptor subtype-encoding DNA in a mammalian cell, the DNA can be inserted into a plasmid such as pMMTVT7(+) or pMMTVT7(-). These plasmids contain the mouse 5 mammary tumor virus (MMTV) LTR promoter for steroidinducible expression of operatively associated foreign DNA. If the host cell does not express endogenous glucocorticoid receptors required for uptake of glucocorticoids (i.e., inducers of the MMTV LTR promoter) into the cell, it is necessary to additionally transfect the cell with DNA encoding the glucocorticoid receptor (ATCC accession no. 67200). For synthesis of in vitro transcripts, full-length human DNA clones encoding human mGluR1, mGluR3 and mGluR5 subcloned into be pIBI24 (International Biotechnologies, Inc., New Haven, CT), pCMV-T7-2 or pCMV-T7-3 (see Figure 1), pMMTVT7(+), pMMTVT7(-), pBluescript (Stratagene, La Jolla, CA), pGEM7Z (Promega, Madison, WI), or the like.

In accordance with another embodiment of the 20 present invention, there are provided cells containing the above-described polynucleic acids (i.e., DNA or mRNA). Such host cells as bacterial, yeast and mammalian cells can be used for replicating DNA and producing metabotropic glutamate receptor subtype(s). Methods for constructing 25 expression vectors, preparing in vitro transcripts, transfecting DNA into mammalian cells, injecting oocytes, and performing electrophysiological and other analyses for assessing receptor expression and function as described herein are also described in PCT Application Nos. PCT/US91/05625 and PCT/US92/11090, and in co-pending U.S. Application Serial Nos. 07/563,751 and 07/812,254. subject matter of these documents is hereby incorporated by reference herein in their entirety.

Incorporation of cloned DNA into a suitable spression vector, transfection of eukaryotic cells with a

23

plasmid vector or a combination of plasmid vectors, encoding one or more distinct genes or with linear DNA, and selection of transfected cells are well known in the art (see, e.g., Sambrook et al. (1989) Molecular Cloning: A 5 <u>Laboratory Manual</u>, Second Edition, Cold Spring Harbor Laboratory Press). Heterologous DNA may be introduced into host cells by any method known to those of skill in the art, such as transfection with a vector encoding the heterologous DNA by CaPO, precipitation (see, e.g., Wigler 10 et al. (1979) Proc. Natl. Acad. Sci. 76:1373-1376). Recombinant cells can then be cultured under conditions whereby the subtype(s) encoded by the DNA is (are) expressed. Preferred cells include mammalian cells (e.g., cells), yeast cells (e.g., Ltk CHO and 15 methylotrophic yeast cells, such as Pichia pastoris), bacterial cells (e.g., Escherichia coli), and the like.

While the DNA provided herein may be expressed in any eukaryotic cell, including yeast cells (such as, for example, P. pastoris (see U.S. Patent Nos. 4,882,279, 4,929,555 and 4,855,231), Saccharomyces 4,837,148, cerevisiae, Candida tropicalis, Hansenula polymorpha, and the like), mammalian expression systems, including commercially available systems and other such systems known to those of skill in the art which express G-proteins (either endogenously or recombinantly), for expression of 25 DNA encoding the human metabotropic glutamate receptor subtypes provided herein are presently preferred. Xenopus oocytes are preferred for expression of in vitro mRNA transcripts of DNA encoding those human metabotropic 30 receptor subtypes that are coupled to the PI hydrolysis/Ca** signalling pathways. An endogenous inositol triphosphate second messenger-mediated pathway in oocytes permits functional expression of human metabotropic receptors in c lls. Oocytes expressing recombinant human th se 35 metabotropic receptors respond to agonists via the oocyte G-protein-coupled IP3 generation pathway, which stimulates

24

release of Ca⁺⁺ from internal stores, and reportedly activates a chloride channel that can be detected as a delayed oscillatory current by voltage-clamp recording.

Host cells for functional recombinant expression 5 of human metabotropic receptors preferably express endogenous or recombinant guanine nucleotide-binding proteins (i.e., G-proteins). G-proteins are a highly conserved family of membrane-associated proteins composed of α , β and γ subunits. The α subunit, which binds GDP and 10 GTP, differs in different G-proteins. The attached pair of β and γ subunits may or may not be unique; different α chains may be linked to an identical $\beta\gamma$ pair or to different pairs [Linder and Gilman, Sci. Am. 267:56-65] (1992)]. More than 30 different cDNAs encoding G protein 15 α subunits have been cloned [Simon et al., Science 252:802 (1991)]. Four different β polypeptide sequences are known [Simon et al., Science 252:802 (1991)]. Three of five identified γ cDNAs have been cloned [Hurley et al., PNAS U.S.A. <u>81</u>:6948 (1984); Gautam et al., Science <u>244</u>:971 20 (1989); and Gautam et al., PNAS U.S.A. 87:7973 (1990)]. The sequences of a fourth γ cDNA [Kleuss et al., Science 259:832 (1993)] and a fifth γ cDNA [Fisher and Aronson, Mol. Cell. Bio. 12:1585 (1992)] have been established, and additional γ subtypes may exist [Tamir et al., Biochemistry 25 30:3929 (1991)]. G-proteins switch between active and inactive states by guanine nucleotide exchange and GTP hydrolysis. Inactive G protein is stimulated by a ligandactivated receptor to exchange GDP for GTP. In the active form, the α subunit, bound to GTP, dissociates from the $\beta\gamma$ 30 complex, and the subunits then interact specifically with cellular effector molecules to evoke a cellular response. Because different G-proteins can interact with different effector systems (e.g., phospholipase C, adenyl cyclase systems) and different receptors, it is useful to investigate different host cells for expression of different recombinant human metabotropic receptor subtypes.

Alternatively, host cells can be transfected with G-protein subunit- ncoding DNAs for heterologous expression of differing G proteins.

In preferred embodiments, human metabotropic 5 glutamate receptor subtype-encoding DNA is ligated into a vector, and introduced into suitable host cells to produce transformed cell lines that express a specific human metabotropic glutamate receptor subtype, or specific combinations of subtypes. The resulting cell lines can 10 then be produced in quantity for reproducible quantitative analysis of the effects of known or potential drugs on receptor function. In other embodiments, mRNA may be produced by in vitro transcription of DNA encoding each subtype. This mRNA, either from a single subtype clone or 15 from a combination of clones, can then be injected into Xenopus oocytes where the mRNA directs the synthesis of functional human metabotropic glutamate receptor subtypes. Alternatively, the subtype-encoding DNA can be directly injected into occytes for expression of functional human 20 metabotropic glutamate receptor subtypes. The transfected mammalian cells or injected oocytes may then be used in the methods of drug screening provided herein.

Eukaryotic cells in which DNA or RNA may be introduced include any cells that are transfectable by such DNA or RNA or into which such DNA or RNA may be injected and which cells express (endogenously or recombinantly) G-proteins. Preferred cells are those that express little, if any, endogenous metabotropic receptors and can be transiently or stably transfected and also express invention DNA and RNA. Presently most preferred cells are those that can form recombinant or heterologous human metabotropic glutamate receptors comprising one or more subtypes encoded by the heterologous DNA. Such cells may be identified empirically or selected from among those known to be readily transfected or injected.

Exemplary cells for introducing DNA include cells of mammalian origin (e.g., COS cells, mouse L cells, Chinese hamster ovary (CHO) cells, human embryonic kidney (HEK) cells, African green monkey cells and other such cells known to those of skill in the art), amphibian cells (e.g., Xenopus laevis oöcytes), yeast cells (e.g., Saccharomyces cerevisiae, Pichia pastoris), and the like. Exemplary cells for expressing injected RNA transcripts include Xenopus laevis oocytes. Cells that are preferred for transfection of DNA are known to those of skill in the art or may be empirically identified, and include HEK293 (which are available from ATCC under accession #CRL 1573); Ltk cells (which are available from ATCC under accession #CCL1.3); COS-7 cells (which are available from ATCC under 15 accession #CRL 1651); CHO cells (which are available from ATCC under accession #CRL9618, CCL61 or CRL9096); DG44 cells (dhfr CHO cells; see, e.g., Urlaub et al. (1986) Cell. Molec. Genet. 12: 555); and BHK cells (see Waechter and Baserga, PNAS U.S.A. 79:1106-1110 (1982); 20 available from ATCC under accession #CRL10314). Presently preferred cells include CHO cells and HEK293 cells, particularly HEK293 cells that can be frozen in liquid nitrogen and then thawed and regrown (for example, those described in U.S. Patent No. 5,024,939 to Gorman (see, 25 also, Stillman et al. (1985) Mol. Cell. Biol. <u>5</u>:2051-2060)), DG44, Ltk cells, and the like. Those of skill in the art recognize that comparison experiments should also be carried out with whatever host cells are employed to determine background levels of glutamate production induced 30 by the ligand employed, as well as background levels of glutamate present in the host cell in the absence of ligand.

DNA may be stably incorporated into cells or may be transiently expressed using methods known in the art.

35 Stably transfected mammalian cells may be prepared by transfecting cells with an expression v ctor having a

27

selectable marker gene (such as, for exampl, the gene for thymidine kinase, dihydrofolate reductase, neomycin resistance, and the like), and growing the transfected cells under conditions selective for cells expressing the marker gene. To prepare transient transfectants, mammalian cells are transfected with a reporter gene (such as the E. coli B-galactosidase gene) to monitor transfection efficiency. Selectable marker genes are typically not included in the transient transfections because the transfectants are typically not grown under selective conditions, and are usually analyzed within a few days after transfection.

To produce such stably or transiently transfected cells, the cells should be transfected with a sufficient concentration of subtype-encoding nucleic acids to form human metabotropic glutamate receptors indicative of the human subtypes encoded by the heterologous DNA. The precise amounts of DNA encoding the subtypes may be empirically determined and optimized for a particular subtype, cells and assay conditions. Recombinant cells that express metabotropic glutamate receptors containing subtypes encoded only by the heterologous DNA or RNA are especially preferred.

an episomal element or may be integrated into chromosomal DNA of the cell. The resulting recombinant cells may then be cultured or subcultured (or passaged, in the case of mammalian cells) from such a culture or a subculture thereof. Methods for transfection, injection and culturing recombinant cells are known to the skilled artisan. Similarly, the human metabotropic glutamate receptor subtypes may be purified using protein purification methods known to those of skill in the art. For example, antibodies or other ligands that specifically bind to one

28

or more subtypes may be used for affinity purification of a given metabotropic glutamate receptor subtype.

As used herein, heterologous or foreign DNA and RNA are used interchangeably and refer to DNA or RNA that does not occur naturally as part of the genome of the cell in which it is present or to DNA or RNA which is found in a location or locations in the genome that differ from that in which it occurs in nature. Typically, heterologous or foreign DNA and RNA refers to DNA or RNA that is not 10 endogenous to the host cell and has been artificially introduced into the cell. Examples of heterologous DNA include DNA that encodes a human metabotropic glutamate receptor subtype, DNA that encodes RNA or proteins that mediate or alter expression of endogenous DNA by affecting 15 transcription, translation, or other regulatable biochemical processes, and the like. The cell that expresses heterologous DNA may contain DNA encoding the same or different expression products. Heterologous DNA need not be expressed and may be integrated into the host 20 cell genome or maintained episomally.

Those of skill in the art can readily identify a variety of assays which can be used to detect the expression of functional mGluRs. Examples include PI turnover assays [see, e.g., Nakajima et al., J. Biol. Chem. 25 267:2437-2442 (1992) and Example 3.C.2], cAMP assays [see, e.g., Nakajima et al., supra and Example 3.C.4.], calcium ion flux assays [see, e.g., Ito et al., J. Neurochem. 56:531-540 (1991) and Example 3.C.1], cGMP assays [see, e.g., Steiner et al., J. Biol. Chem 247:1106-1113 (1972)], arachidonic acid release assays [see, e.g., Felder et al., J. Biol. Chem. 264:20356-20362 (1989)], and the like. In addition, cation-based assays (as described herein) can be employed for monitoring receptor-induced changes in intracellular cyclic nucleotide levels. Such assays employ host cells expressing cyclic nucleotide-gated ion channels.

channels, which occur in, for example, rod photoreceptor cells, olfactory cells and bovine kidney cells (see, for example, Kaupp et al., in Nature 342:762-766 (1989), Dhallen et al., in Nature 347:184-187 (1990) and Biel et al., in Proc. Natl. Acad. Sci. USA 91:3505-3509 (1994), are permeable to cations upon activation by binding of cAMP or cGMP. Thus, in the invention assay, host cells expressing endogenous or recombinant cyclic nucleotidegated channels are transfected (or injected) with nucleic 10 acids encoding receptors suspected of influencing cyclic nucleotide levels (e.g., metabotropic glutamate receptorencoding DNA), and then monitored for changes in the amount of cyclic nucleotide activation of the channels. Measuring changes in cyclic nucleotide activation of channels allows 15 one to indirectly identify as functional those receptors that cause a change in cAMP or cGMP levels when activated. The change in the amount of activation of the cyclic nucleotide-gated channels can be determined by measuring ion flux through the channel either by electrophysiological 20 measurement of currents or by measuring a change in intracellular cation levels (e.g., by fluorescence measurement of intracellular calcium).

In assays of cells expressing receptor species that cause a decrease in cyclic nucleotides upon activation (e.g., some metabotropic glutamate receptors), it may be preferable to expose the cells to agents that increase intracellular levels of cyclic nucleotides (e.g., forskolin and IBMX) prior to adding a receptor-activating compound to the cells in the assay.

Host cells suitable for use in the above-described assay include any host cells suitable for expression of the receptor being studied (e.g., L cells, HEK293 cells, CHO, cells or Xenopus oocytes for assays of metabotropic glutamate receptors). The cells can be sequentially transfected (or injected) with nucleic acids

encoding a cyclic nucleotide-gated channel and receptorencoding nucleic acids, or the cells can be co-transfected with the two nucleic acids. Transient or stable transfection, as described in Examples 3A and 3B, can be carried out.

Cells transfected (or injected) with cyclic nucleotide-gated channel nucleic acid are incubated (typically for ~24-48 hours) before testing for function. The activity of the channels can be assessed using inside-10 out membrane patches pulled from the transfected cells (so that the concentration of cAMP reaching the cytoplasmic The transfectants can also be face can be controlled). analyzed by single-cell video imaging of internal calcium levels ([Ca"],). This method allows analysis of cyclic 15 nucleotide-gated channel activity by measurement intracellular calcium levels, which change with the amount of calcium influx through the channel, as regulated by cyclic nucleotide activation of the channel. The imaging assay can be conducted essentially as described in Example 20 3.C.4.b.

The DNA, mRNA, vectors, receptor subtypes, and cells provided herein permit production of selected metabotropic glutamate receptor subtypes, as well as antibodies to said receptor subtypes. This provides a means to prepare synthetic or recombinant receptors and receptor subtypes substantially free that are contamination from many other receptor proteins whose can interfere with analysis of a single presence metabotropic glutamate receptor subtype. The availability 30 of desired receptor subtypes makes it possible to observe the effect of a drug substance on a particular receptor subtype or combination of metabotropic glutamate receptor subtypes, and to thereby perform initial in vitro screening of the drug substance in a test system that is specific for humans and specific for a human metabotropic glutamate

31

receptor subtype or combination of metabotropic glutamate receptor subtypes. The availability of specific antibodies makes it possible to identify the subtype combinations expressed in vivo. Such specific combinations can then be employed as preferred targets in drug screening.

The ability to screen drug substances in vitro to determine the effect of the drug on specific receptor compositions should permit the development and screening of receptor subtype-specific or disease-specific drugs. Also, 10 testing of single receptor subtypes specific combinations of various receptor subtypes with a variety of potential agonists or antagonists provides additional information with respect to the function and activity of the individual subtypes and should lead to 15 identification and design of compounds that are capable of very specific interaction with one or more receptor The resulting drugs should exhibit fewer subtypes. unwanted side effects than drugs identified by screening with cells that express a variety of receptor subtypes.

Further in relation to drug development and therapeutic treatment of various disease states, the availability of DNAs encoding human metabotropic glutamate receptor subtypes enables identification of any alterations in such genes (e.g., mutations) which may correlate with the occurrence of certain disease states. In addition, the creation of animal models of such disease states becomes possible, by specifically introducing such mutations into synthetic DNA sequences which can then be introduced into laboratory animals or in vitro assay systems to determine the effects thereof.

In another aspect, the invention comprises functional peptide fragments, and functional combinations thereof, encoded by the DNAs of the invention. Such functional peptide fragments can be produced by those

32

skilled in the art, without undue experimentation, by eliminating some or all of the amino acids in the sequence not essential for the peptide to function as a glutamate receptor. A determination of the amino acids that are 5 essential for glutamate receptor function is made, for example, by systematic digestion of the DNAs encoding the peptides and/or by the introduction of deletions into the DNAs. The modified (e.g., deleted or digested) DNAs are expressed, for example, by transcribing the DNA and then introducing the resulting mRNA into Xenopus oocytes, where translation of the mRNAs will occur. Functional analysis of the proteins thus expressed in the oocytes accomplished by exposing the oocytes to ligands known to bind to and functionally activate glutamate receptors, and 15 then monitoring the oocytes to see if endogenous channels are in turn activated. If currents are detected, the fragments are functional as glutamate receptors.

In accordance with still another embodiment of the present invention, there is provided a method for identifying compounds which bind to human metabotropic glutamate receptor subtype(s), said method comprising employing receptor proteins of the invention in a competitive binding assay. Such an assay can accommodate the rapid screening of a large number of compounds to determine which compounds, if any, are capable of displacing specifically bound [3H] glutamate, i.e., binding to metabotropic glutamate receptors. Subsequently, more detailed assays can be carried out with those compounds found to bind, to further determine whether such compounds act as modulators, agonists or antagonists of invention receptors.

Another application of the binding assay of the invention is the assay of test samples (e.g., biological fluids) for the presence or absence of receptors of the present invention. Thus, for example, serum from a patient

15

20

displaying symptoms related to glutamatergic pathway dysfunction can be assayed to determine if the observed symptoms are perhaps caused by over- or under-production of such receptor subtype(s).

The binding assays contemplated by the present invention can be carried out in a variety of ways, as can readily be identified by those of skill in the art. For example, competitive binding assays can be employed, such as radioreceptor assays, and the like.

In accordance with a further embodiment of the present invention, there is provided a bioassay for identifying compounds which modulate the activity of human metabotropic glutamate receptor subtypes of the invention, said bioassay comprising:

(a) exposing cells containing DNA encoding human metabotropic glutamate receptor subtype(s), wherein said cells express functional metabotropic glutamate receptors, to at least one compound whose ability to modulate the activity of said receptors is sought to be determined; and thereafter

(b) monitoring said cells for changes in second messenger activity.

The above-described bioassay enables the identification of agonists, antagonists and allosteric modulators of human metabotropic glutamate receptors. According to this method, recombinant metabotropic glutamate receptors are contacted with an "unknown" or test substance (in the further presence of a known metabotropic glutamate agonist, when antagonist activity is being tested), the second messenger activity of the known glutamate receptor is monitored subsequent to the contact with the "unknown" or test substance, and those substances which increase or decrease the second messenger response of

the known glutamate receptor(s) are identified as functional ligands (i.e., modulators, agonists or antagonists) for human metabotropic glutamate receptors. Second messenger activities which can be monitored include changes in the concentration of intracellular calcium ions, IP3, cAMP levels, or monitoring of arachidonic acid release or activation or inhibition of ion current (when the host cell is an oocyte).

In accordance with a particular embodiment of the present invention, recombinant human metabotropic glutamate receptor-expressing mammalian cells or oocytes can be contacted with a test compound, and the modulating effect(s) thereof can then be evaluated by comparing the metabotropic glutamate receptor-mediated response in the presence and absence of test compound, or by comparing the metabotropic glutamate receptor-mediated response of test cells, or control cells (i.e., cells that do not express metabotropic glutamate receptors), to the presence of the compound.

20 As used herein, a compound or signal that "modulates the activity of a metabotropic glutamate receptor subtype" refers to a compound or signal that alters the activity of metabotropic glutamate receptors so that activity of the metabotropic glutamate receptor is 25 different in the presence of the compound or signal than in the absence of the compound or signal. In particular, such compounds or signals include agonists and antagonists. The term agonist refers to a substance or signal, such as glutamate or ACPD, that activates receptor function; and 30 the term antagonist refers to a substance that blocks agonist-induced receptor activation. Antagonists include competitive and non-competitive antagonists. A competitive antagonist (or competitive blocker) interacts with or near the site specific for the agonist (e.g., ligand or 35 neurotransmitt r) for the same or closely situated site.

35

A non-competitive antagonist or blocker inactivates the functioning of the receptor by interacting with a site other than the site that interacts with the agonist.

As understood by those of skill in the art, assay methods for identifying compounds that modulate human metabotropic glutamate receptor activity (e.g., agonists and antagonists) generally require comparison to a control. One type of a "control" cell or "control" culture is a cell or culture that is treated substantially the same as the cell or culture exposed to the test compound, except the control culture is not exposed to test compound. example, in methods that use voltage clamp electrophysiological procedures, the same cell can be tested in the presence and absence of test compound, by 15 merely changing the external solution bathing the cell. Another type of "control" cell or "control" culture may be a cell or a culture of cells which are identical to the transfected cells, except the cells employed for the control culture do not express the recombinant human 20 metabotropic glutamate receptor subtype(s) expressed in the transfected cells. In this situation, the response of test cell to test compound is compared to the response (or lack of response) of receptor-negative (control) cell to test compound, when cells or cultures of each type of cell are 25 exposed to substantially the same reaction conditions in the presence of compound being assayed.

In accordance with yet another embodiment of the present invention, the second messenger activity of human metabotropic glutamate receptors can be modulated by contacting such receptors with an effective amount of at least one compound identified by the above-described bioassay.

In accordance with yet another embodiment of the present invention, there are provided antibodies generated

against the above-described receptor proteins. Such antibodies can be employed for studying receptor tissue localization, subtype composition, structure of functional domains, purification of receptors, as well as in diagnostic applications, therapeutic applications, and the like. Preferably, for therapeutic applications, the antibodies employed will be monoclonal antibodies.

The above-described antibodies can be prepared employing standard techniques, as are well known to those of skill in the art, using the invention receptor proteins or portions thereof as antigens for antibody production. Both anti-peptide and anti-fusion protein antibodies can be used [see, for example, Bahouth et al. (1991) Trends Pharmacol Sci. vol. 12:338-343; Current Protocols in Molecular Biology (Ausubel et al., eds.) John Wiley and Sons, New York (1989)]. Factors to consider in selecting portions of the metabotropic glutamate receptor subtypes for use as immunogen (as either a synthetic peptide or a recombinantly produced bacterial fusion protein) include antigenicity, accessibility (i.e., extracellular and cytoplasmic domains), uniqueness to the particular subtype, etc.

The availability of subtype-specific antibodies makes possible the application of the technique of immunohistochemistry to monitor the distribution and expression density of various subtypes (e.g., in normal vs diseased brain tissue). Such antibodies could also be employed for diagnostic and therapeutic applications.

In accordance with still another embodiment of the present invention, there are provided methods for modulating the ion channel activity of receptor(s) of the invention by contacting said receptor(s) with an effectiv amount of the above-described antibodies.

The antibodies of the invention can be administered to a subject employing standard methods, such as, for example, by intraperitoneal, intramuscular, intravenous, or subcutaneous injection, implant or transdermal modes of administration, and the like. One of skill in the art can readily determine dose forms, treatment regiments, etc, depending on the mode of administration employed.

In accordance with a still further embodiment of the present invention, there is provided a cation-based bioassay for monitoring receptor-induced changes in intracellular cyclic nucleotide levels, said bioassay comprising:

introducing nucleic acids encoding receptors suspected of influencing intracellular cyclic nucleotide levels into host cells expressing endogenous or recombinant cyclic nucleotide-gated channels, and

monitoring changes in the amount of cyclic nucleotide activation of said cyclic nucleotide-gated channels in the presence and absence of ligand for said receptor suspected of influencing intracellular cyclic nucleotide levels.

The invention will now be described in greater detail by reference to the following non-limiting examples.

25

Example 1

Isolation of DNA Encoding Human Metabotropic Glutamate Receptors

A. mGluR5 Receptor cDNA cDNA Library Screening

RNA isolated from human hippocampus tissue was used as a template for the synthesis of oligo dt-primed, single-stranded cDNA according to standard procedures [see, for example, Gubler and Hoffman (1983) Gene 25:263-269].

The single-stranded cDNA was converted to double-stranded cDNA, and EcoRI/SnaBI/XhoI adaptors were added to the ends of the cDNAs. The cDNAs were separated by size using agarose gel electrophoresis, and those that were >2.5 kb ligated into EcoRI-digested Agt10 bacteriophage The resulting primary human hippocampus cDNA library (~2 x 10⁵ recombinants) was hybridization to a fragment of the DNA encoding the rat mGluR1 receptor (nucleotides 1 to 1723 plus 5' untranslated sequence; see Masu et al. (1991) Nature 349:760-765). 10 Hybridization was performed in 5X SSPE, 5X Denhart's solution, 50% formamide, 0.2% SDS, 200 μ g/ml denatured, sonicated herring sperm DNA at 42°C and washes were performed in 1.0X SSPE, 0.2% SDS at 65°C. One hybridizing plaque, METAB1, was identified which contains a 3273 bp insert.

obtain additional human mGluR5-encoding clones, METAB1 was radiolabeled and used to screen two human cerebellum cDNA libraries prepared as follows. cDNA 20 was synthesized using random primers to prime first-strand cDNA synthesis from RNA isolated from human cerebellum The cDNAs were pooled based on length and two libraries were generated: one with inserts greater than 2.8 kb in length (i.e., a large-insert library) and one with inserts 1 - 2.8 kb in length (i.e., a medium-insert 25 library). The libraries (1 \times 10⁶ recombinants in each) were screened for hybridization to the METAB1 probe using the same hybridization conditions as used for screening the hippocampus library for hybridization to the rat mGluR1 DNA 30 fragment. Washes were performed in 1X SSPE, 0.2% SDS at One hybridizing plaque, METAB2, was identified in the large-insert library, whereas four hybridizing plaques, METAB3-METAB6, were identified in the medium-insert library.

39

In another round of screening for human mGluR5-encoding DNAs, a randomly primed human hippocampus cDNA library (2 x 10⁶ recombinants) containing inserts ranging in size from 1 - 2 kb and the medium-insert cerebellum cDNA library were screened for hybridization to radiolabeled METAB5 using the same conditions as those used in screening the large- and medium-insert cerebellum libraries with METAB1. Three hybridizing plaques (METAB10-METAB12) were identified in the hippocampus library and five additional hybridizing plaques (METAB13-METAB17) were identified in another primary screening of the cerebellum library. Selected plaques were purified.

Characterization of Isolated Clones

Characterization of the inserts of the purified plaques by restriction enzyme mapping and DNA sequence analysis revealed that at least three apparent splice variants of the human mGluR5 transcript were represented by the isolated clones. Analysis of METAB1 indicated that it contains a translation initiation codon but no translation termination codon. The deduced amino acid sequence is ~70% identical to the rat mGluR1 deduced amino acid sequence, but >90% identical to the rat mGluR5 deduced amino acid sequence [Abe et al. (1992) J. Biol. Chem. 267:13361-13368].

DNA sequence analysis of METAB5 showed that it overlaps the 3' end of METAB1 at the 5' end and continues for an additional 343 nucleotides in the 3' direction. Comparison of the overlapping regions of METAB1 and METAB5 revealed that METAB1 contains 96 nucleotides that are not present in METAB5 (i.e., METAB1 contains a 96-nucleotide insertion relative to METAB5). METAB5 also does not contain a translation termination codon. The insert of METAB12 overlaps the 3' end of METAB5 at the 5' end,

40

however, and extends farther in the 3' direction to include a translation termination codon.

DNA sequence analysis of METAB2 showed that the first 869 nucleotides at the 5' end overlap, and are identical to a portion of the 3' end of METAB1; however, the sequences of METAB1 and METAB2 diverge at the beginning of the 96-nucleotide insertion of METAB1. METAB2 extends approximately 2700 nucleotides in the 3' direction and contains a putative translation termination codon 4 nucleotides 3' of the point of divergence with METAB1.

Partial DNA sequence analysis of METAB14 indicated that it encodes a portion of another human metabotropic receptor, mGluR1 (see Example 1.B.).

Preparation of Full-Length mGluR5 cDNA Constructs

15 Full-length constructs representing putative splice variants of the human mGluR5 transcript, designated mGluR5a, mGluR5b and mGluR5c, can be generated and incorporated into expression vectors for use in preparing in vitro transcripts of the cDNAs and/or 20 expression of the cDNAs in mammalian cells. expression vector typically used is pCMV-T7-3 or pCMV-T7-2 (see Figure 1). Plasmid pCMV-T7-3 is a pUC19-based vector that contains a cytomegalovirus (CMV) promoter/enhancer, SV40 splice donor/splice acceptor sites located immediately 25 downstream of the promoter, a T7 bacteriophage polymerase promoter positioned downstream of the SV40 splice sites, an SV40 polyadenylation signal downstream of the T7 promoter, and a polylinker between the T7 promoter and the polyadenylation signal. This vector thus contains 30 all the regulatory elements required for expression of heterologous DNA in a mammalian host cell, wherein the heterologous DNA has been incorporated into the vector at the polylinker. In addition, because the T7 promoter is

located just upstream of the polylinker, this plasmid can be used for synthesis of in vitro transcripts of heterologous DNA that has been subcloned into the vector at the polylinker. pCMV-T7-3 and pCMV-T7-2 differ only in the orientation of the restriction sites in the polylinker.

To prepare a full-length mGluR5a construct (see Sequence ID No. 7), portions of clones METAB1, METAB5, and METAB12 were ligated together. Initially, the inserts of METAB1, METAB5 and METAB12 were separately transferred from 10 λgt10 as EcoRI fragments into EcoRI-digested pGEM-7Zf (Promega, Madison, WI) for ease of manipulation. pGEM-7Zf vector containing the METAB1 insert was digested with Scal/NheI to release a 3.8 kb fragment containing the 5' half of the ampicillin resistance gene and a 5' portion of the METAB1 insert (nucleotides 1-2724 of Sequence ID No. The pGEM-7Zf vector containing the insert of METAB5 was digested with Scal/NheI to release a 2.6 kb fragment containing the 3' half of the ampicillin resistance gene and a 3' portion of METAB5 (nucleotides 2725-3469 of 20 Sequence ID No. 7), and this fragment was ligated with the 3.8 kb fragment from the pGEM-7Zf vector containing METAB1 to create pGEM-METAB1+5. pGEM-METAB1+5 was digested with Scal/NotI to release a 4.4 kb fragment containing the 5' half of the ampicillin resistance gene and nucleotides 1-3316 of Sequence ID No. 7. This 4.4 kb fragment was then ligated with a 2.6 kb fragment obtained by Scal/NotI (partial) digestion of the pGEM-7Zf vector containing the METAB12 insert [the 2.6 kb fragment contains the 3' half of the ampicillin resistance gene and a 3' portion of METAB12 30 (nucleotides 3317-4085 of Sequence ID No. 7)]. resulting vector contained the complete mGluR5a coding sequence in pGEM-72f. The full-length mGluR5a cDNA was isolated from the vector as an AatII (blunt-ended)-HindIII fragment and subcloned into NotI (blunt-ended)/HindIII-35 digested pCMV-T7-3 to generate construct mGluR5a1.

In summary, construct mGluR5al contains 369 bp of 5' untranslated sequence from METAB1 (nucleotides 1-369 of Sequence ID No. 7) and a complete coding sequence (nucleotides 370-3912 of Sequence ID No. 7) for the mGluR5a variant of the mGluR5 receptor, as well as 173 bp of 3' untranslated sequence (nucleotides 3913-4085 of Sequence ID No. 7). The mGluR5a-encoding sequence is operatively linked to the regulatory elements in pCMV-T7-3 for use in expressing the receptor in mammalian host cells and for use in generating in vitro transcripts of the DNA to be expressed in Xenopus oocytes.

Two additional mGluR5a constructs (mGluR5a2 and mGluR5a3) were prepared by modification of the 5 **'** untranslated region of the first mGluR5a construct. The 15 above-described mGluR5a construct contains potentially inappropriate ATG translation initiation codons in the 5' untranslated region that precedes the proposed translation initiation codon (nucleotides 370 to 372 of Sequence ID No. 7). The mGluR5al construct was digested 20 with Bal31 to accomplish the following: (1) remove 255 nucleotides of sequence (nucleotides 1-255 of Sequence ID No. 7, containing six of the seven upstream ATG triplets), thereby creating mGluR5a2 and (2) remove 348 nucleotides of sequence (nucleotides 1-348 of Sequence ID 25 containing all upstream ATG triplets), thereby creating mGluR5a3. Thus, mGluR5a2 is identical to mGluR5al except that it lacks some of the 5' untranslated sequence and thus contains only one ATG triplet upstream of the proposed translation initiation codon. Similarly, mGluR5a3 is 30 identical to mGluR5al except that it lacks all of the ATG triplets upstream of the proposed translation initiation codon and contains only 21 nucleotides of 5' untranslated sequence.

A third mGluR5a construct, MMTV-hmGluR5a, was 35 prepared for use in MMTV promoter-regulated expression of

mGluR5a as follows. mGluR5a3 was digested with XbaI. 4.1 kb fragment containing the SV40 splice sites, the fulllength mGluR5a coding sequence (plus 21 nucleotides of 5' untranslated sequence and 173 nucleotides 5 untranslated sequence) and the polyadenylation signal was isolated, blunt-ended and ligated to a 2 kb EcoRI-NdeI (blunt-ended) fragment of pBR322 to create pBR-hmGluR5. Vector pMAMneo (Clontech, Palo Alto, CA), which contains the MMTV LTR promoter, and ampicillin and neomycin 10 resistance genes, was digested with BamHI, to remove the neomycin resistance gene, and allowed to religate. vector was then digested with EcoRI, and the fragment containing the ampicillin resistance gene was religated with the larger vector fragment in the reverse orientation This vector was digested with 15 to create pMAMneo ampopp. PstI/NheI, and the 2.3 kb fragment containing a 5' portion of the ampicillin resistance gene and the MMTV-LTR was isolated. Plasmid pBR-hmGluR5 was digested with PstI/XbaI, and the 5.3 kb fragment containing a 3' portion of the ampicillin resistance gene and the mGluR5a sequence (with SV40 splice sites and polyadenylation signal) was ligated with the 2.3 kb Pst/NheI fragment of pMAMneo ampopp to create MMTV-hmGluR5a.

Thus, pMMTV-hmGluR5a contains the MMTV-LTR followed by SV40 splice sites in operative linkage with the mGluR5a DNA (containing nucleotides 349-4085 of Sequence ID No. 7) followed by a polyadenylation signal.

A fourth mGluR5a construct, pSV-hmGluR5, was prepared for use in SV40 promoter-regulated expression of mGluR5a as follows. mGluR5a3 was partially digested with XhoI, treated with Klenow and allowed to religate to itself, thereby destroying the XhoI site located 3' of the mGluR5a DNA. The plasmid was then digested with ScaI/XhoI, generating a fragment containing the SV40 splice sites, the full-length mGluR5a coding sequence (plus 21 nucleotides of

5' untranslated sequence and 173 nucleotides of 3' untranslated sequence), the polyadenylation signal and a 3' portion of the ampicillin resistance gene. Plasmid pSVβ (Clontech, Palo Alto, CA) was digested with ScaI/XhoI, and the fragment containing a 5' portion of the ampicillin resistance gene and the SV40 early promoter was ligated to the ScaI/XhoI fragment containing the mGluR5a DNA to create pSV-hmGluR5. Thus, pSV-hmGluR5 contains the SV40 early promoter followed by SV40 splice sites in operative linkage with the mGluR5a DNA (containing nucleotides 349-4085 of Sequence ID No. 7) followed by a polyadenylation signal.

To prepare a full-length mGluR5b construct, an mGluR5a construct (mGluR5a1, mGluR5a2 or mGluR5a3) was digested with NheI/PmlI to release a fragment containing nucleotides 2725-3020 of Sequence ID No. 7. The remaining vector fragment was then ligated to the NheI/PmlI fragment isolated from METAB1. The resulting vector, mGluR5b, is identical to the mGluR5a construct from which it was prepared, except that it includes a 96 bp insertion (nucleotides 3000-3095 of Sequence ID No. 9) located between nucleotides 2999 and 3000 of Sequence ID No. 7. Sequence ID No. 9 is the complete nucleotide sequence of the full-length mGluR5b cDNA prepared from vector mGluR5a1.

To prepare a full-length mGluR5c construct, an mGluR5a construct (mGluR5a1, mGluR5a2 or mGluR5a3) is digested with NheI/HindIII (the HindIII site is present in the polylinker of the pCMV-T7-3 portion of the mGluR5a vector) to release a fragment containing nucleotides 2725-4085 of Sequence ID No. 7. The remaining vector fragment is then ligated to the NheI/HindIII fragment isolated from METAB2. The resulting full-length cDNA, mGluR5c (Sequence ID No. 11), is identical to the mGluR5a construct from which it was prepared for the first 2630 nucleotides of the coding sequence; however, at nucleotide 2631 of the coding sequence, the coding sequences of mGluR5c and mGluR5a

diverge (.g., beginning at nucleotide 3000 of Sequence ID No. 7) with the mGluR5c coding sequence having a guanine nucleotide as nucleotide 2631 of the coding sequence followed immediately by a translation termination codon (nucleotides 3001-3003 of Sequence ID No. 11).

B. mGluR1 Receptor cDNA

cDNA Library Screening

The medium-insert cerebellum library was screened for hybridization to a fragment of the DNA encoding the rat mGluR1 receptor (nucleotides 1 to 3031 plus 5' untranslated sequence; see Masu et al. (1991) Nature 349:760-765). Hybridization was performed in 5X SSPE, 5X Denhart's solution, 50% formamide, 0.2% SDS, 200 µg/ml denatured, sonicated herring sperm DNA at 42°C and washes were performed in 1X SSPE, 0.2% SDS at 55°C. Three hybridizing plaques, METAB7-METAB9, were identified.

subsequent round of screening, independent plating of 1 x 10⁶ recombinants of the human medium-insert cerebellum cDNA library was probed for 20 additional human mGluR1 clones. This plating was screened sequentially for hybridization first to a DNA fragment containing nucleotides 1-1256 (plus 5' untranslated sequence) of the rat mGluR1 cDNA (i.e., a 5' probe) and then to a DNA fragment containing nucleotides 2075-3310 of the rat mGluR1a cDNA (i.e., a 3' probe) using the same 25 hybridization and wash conditions as those used in the previous screening that identified clones METAB7-METAB9. Three clones (METAB18, METAB21 and METAB22) were identified by hybridization to the 5' probe, and four clones (METAB14, 30 METAB20, METAB32 and METAB35) identified were hybridization to the 3' probe.

46

The 5' rat mGluR1 fragment was used as a probe to screen the large-insert human cerebellum cDNA library for further mGluR1 clones. Hybridization and wash conditions were essentially identical to those used in isolating the six mGluR1 clones from the medium-insert cerebellum library(except 20% formamide was used in the hybridization solution). Three plaques, METAB58, METAB59 and METAB60, hybridized to the probe.

Characterization of Isolated Clones

The inserts of the purified plaques were characterized by restriction enzyme mapping and DNA sequence analysis. METAB58 is ~2.8 kb and contains 5' untranslated sequence, a translation initiation codon and ~2.3 kb of coding sequence. The 3' end of METAB58 overlaps the 5' end of METAB14. METAB14 extends ~700 bp in the 3' direction and contains a translation termination codon. Thus, METAB58 and METAB14 overlap to encode a full-length mGluR1 receptor (see Sequence ID No. 1). The other clones are also partial mGluR1 cDNAs that contain nucleotide sequences from the portion of the mGluR1 coding sequence located between the translation initiation and termination codons.

end of the human mGluR1 transcript were present in human cDNA libraries, the cDNAs from the hippocampus/basal ganglia and cerebellum libraries were subjected to nucleic acid amplification. The 5' primer consisted of nucleotides 2218 to 2240 of Sequence ID No. 1 whereas the 3' primer was a degenerate oligonucleotide based on amino acids 890-897 of the rat mGluR1a coding sequence (see Pin et al. (1992) Neurobiology 89:10331-10335). The products of the amplification were analyzed by gel electrophoresis. A single product (i.e., a 500 bp fragment) was detected in only the hippocampus/basal ganglia library.

47

end of the mGluR1 transcript, the hippocampus and cerebellum cDNA libraries can be screened (using conditions similar to those used for obtaining human mGluR1 cDNAs described above) with a fragment from the 3' end of the rat mGluR1a cDNA (e.g., the ~2 kb NcoI/ClaI fragment of the rat mGluR1a cDNA). This probe corresponds to a portion of the 3' region of the mGluR1 cDNA that does not appear to be alternatively spliced. Hybridizing clones are then analyzed by restriction mapping and DNA sequence analysis to determine if different 3' ends are represented.

Preparation of Full-Length mGluR1 cDNA Constructs

To prepare a full-length construct encoding the B form of the human mGluR1 receptor, portions of clones 15 METAB58 and METAB14 are ligated. METAB58 is digested with EcoRI/AccI and the 2459 bp fragment containing nucleotides 154-2612 of Sequence ID No. 1 is isolated. The 704 bp fragment of METAB14 (containing nucleotides 2613-3321 of Sequence ID No. 1) is isolated by digestion of METAB14 with This fragment is then ligated to the 2459 bp 20 Acci/Xhoi. fragment of METAB58 and to EcoRI/SalI-digested vector pCMV-T7-3. The resulting construct encoding human mGluR1B contains 234 nucleotides of 5' untranslated sequence (nucleotides 154-387 of Sequence ID No. 1), the entire mGluR1B coding sequence (nucleotides 388-3108 of Sequence ID No. 1), and 213 nucleotides of 3' untranslated sequence (nucleotides 3109-3321 of Sequence ID No. 1). The mGluR1Bencoding sequence is operatively linked to the regulatory elements in pCMV-T7-3 for expression in mammalian cells.

Several methods can be employed to determine which mGluR5 and mGluR1 receptor variants are actually expressed in various human tissues. For example, oligonucleotides specific for the nucleotide sequences located 5' and 3' of the insertions/deletions (i.e.,

regions of divergence) of mGluR transcripts described herein can be used to prime nucleic acid amplifications of RNA isolated from various tissues and/or cDNA libraries prepared from various tissues. The presence or absence of amplification products and the sizes of the products indicate which variants are expressed in the tissues. The products can also be characterized more thoroughly by DNA sequence analysis.

RNase protection assays can also be used to determine which variant transcripts are expressed in various tissues. These assays are a sensitive method for detecting and quantitating an RNA species in a complex mixture of total cellular RNA. A portion of the mGluR DNA is labeled and hybridized with cellular RNA. If complementary mRNA is present in the cellular RNA, a DNA-RNA hybrid results. The RNA sample is then treated with RNase, which degrades single-stranded RNA. Any RNA-DNA hybrids are protected from RNase degradation and can be visualized by gel electrophoresis and autoradiography.

Isolation of genomic clones containing human metabotropic receptor-encoding sequences by, for example, hybridization to the human mGluR cDNAs disclosed herein and subsequent characterization of the clones provides further information on possible splice variants of the mGluR primary transcripts.

C. mGluR3 Receptor cDNA

cDNA Library Screening

A human hippocampus cDNA library (generated using random primers to prime cDNA synthesis and then selecting cDNAs that were 1.0-2.8 kb for ligation to λgt10 vectors) was screened for hybridization to a 500 bp Smal/Xbal fragment of the rat mGluR2 cDNA and a 3 kb AccI-BamHI

fragment of the rat mGluR3 cDNA [see Tanabe et al. (1992) Neuron 8:169-179]. Hybridization was performed in 5X SSPE, 5X Denhart's solution, 50% formamide, 0.2% SDS, 200 µg/ml denatured, sonicated herring sperm DNA at 42°C and washes were performed in 0.5X SSPE, 0.2% SDS at 65°C. Three hybridizing plaques, METAB40, METAB41 and METAB45, were identified.

A portion of the 5' end of METAB45 (i.e., the first 244 bp; nucleotides 2634-2877 of Sequence ID No. 5) was then used to screen an amplified cerebellum library (generated using random primers to prime cDNA synthesis and then selecting cDNAs that were >2.8 kb for ligation to λgt10 vectors) and an amplified hippocampus cDNA library (generated using random primers to prime cDNA synthesis and 15 then selecting cDNAs that were >2.0 kb for ligation to Agt10 vectors) for additional mGluR3 clones. One million clones from each library were screened. Hybridization and wash conditions were identical to those used in isolating METAB40, METAB41 and METAB45 from the hippocampus library. 20 Three hybridizing plaques were identified in each library: METAB46, METAB49 and METAB50 in the cerebellum library and METAB47, METAB48 and METAB51B in the hippocampus library.

Characterization of Isolated Clones

The inserts of the purified plaques were

25 characterized by restriction enzyme mapping and DNA
sequence analysis. Each of the isolated clones are partial
cDNAs encoding portions of the human mGluR3 receptor,
except for clone METAB40, which encodes a portion of the
human mGluR2 receptor (see Example 1.D.). Clones METAB41,

30 METAB45 and METAB47-49 contain sequence from the 3' end of
the mGluR3 coding sequence as well as a translation
termination codon. Clones METAB46, METAB50 and METAB51B
contain -sequence from the 5' end of the mGluR3 cDNA,

including a translation initiation codon, and varying amounts of 5' untranslated sequence.

Preparation of Full-Length mGluR3 cDNA Constructs

Four constructs containing the full-length human 5 mGluR3 coding sequence were prepared by ligating portions of METAB48 and METAB46 or METAB51B. The full-length coding sequence is provided in Sequence ID No. 5 (nucleotides 1064-3703). The inserts of clones METAB46 and METAB51B were separately subcloned into pCMV-T7-3 as EcoRI fragments. The insert of clone METAB48 was subcloned as an EcoRI fragment into pCMV-T7-2.

To generate construct mGluR3B, the pCMV-T7-3 plasmid containing the METAB51B insert was digested with Scal/BglII, and the 2.6 kb fragment containing the 5' half 15 of the ampicillin resistance gene and a 5' portion of the METAB51B insert (nucleotides 748-1671 of Sequence ID No. 5) was isolated. This fragment was ligated to a 4.3 kb fragment isolated from a Scal/BglII digest of the pCMV-T7-2 plasmid harboring the insert of METAB48 [the 4.3 kb 20 fragment contains the 3' half of the ampicillin resistance gene and a 3' portion of METAB48 (nucleotides 1672-3919 of Sequence ID No. 5)]. The resulting construct, mGluR3B, contains 316 nucleotides of 5' untranslated sequence (nucleotides 748-1063 of Sequence ID No. 5), the entire mGluR3 coding sequence (nucleotides 1064-3703 of Sequence ID No. 5), and 216 nucleotides of 3' untranslated sequence (nucleotides 3704-3919 of Sequence ID No. 5). The mGluR3Bencoding sequence is operatively linked to the regulatory vectors pCMV-T7-3 and pCMV-T7-2 elements from 30 expression in mammalian cells.

To generate construct mGluR3C, the pCMV-T7-3 plasmid harboring the insert of METAB46 was digested with Scal/BglII and the 3.4 kb fragment containing the 5' half

of the ampicillin resistance gene and a 5' portion of METAB46 (nucleotides 1-1671 of Sequence ID No. 5) was isolated. This fragment was ligated to the same ScaI/Bg/III fragment of METAB48 as was used in construct mGluR3B. The resulting construct, mGluR3C, contains 1063 nucleotides of 5' untranslated sequence (nucleotides 1-1063 of Sequence ID No. 5), the entire mGluR3 coding sequence (nucleotides 1064-3703 of Sequence ID No. 5), and 216 nucleotides of 3' untranslated sequence (nucleotides 3704-3919 of Sequence ID No. 5). The mGluR3C-encoding sequence is operatively linked to the regulatory elements from vectors pCMV-T7-2 and pCMV-T7-3 for expression in mammalian cells.

Construct mGluR3A was generated by digesting mGluR3C with EcoRV and NotI to remove a fragment containing nucleotides 1-1035 of Sequence ID No. 5, making the NotI site blunt-ended and then allowing the larger vector fragment to re-ligate. Construct mGluR3A contains 28 nucleotides of 5' untranslated sequence (nucleotides 1036-1063 of Sequence ID No. 5), the entire mGluR3 coding sequence (nucleotides 1064-3703 of Sequence ID No. 5) and 216 nucleotides of 3' untranslated sequence (nucleotides 3704-3919 of Sequence ID No. 5). The mGluR3A-encoding sequence is operatively linked to the regulatory elements from vectors pCMV-T7-3 and pCMV-T7-2 for expression in mammalian cells.

To generate construct pSV-hmGluR3C (for use in SV40 promoter-regulated expression of mGluR3), the pCMV-T7-3 plasmid harboring the insert of METAB46 was digested with ScaI/NotI, and the fragment containing the 3' portion of the ampicillin resistance gene and the entire METAB46 insert was isolated. Plasmid pSVβ was digested with ScaI/NotI, and the fragment containing the 5' portion of the ampicillin resistance gene and the SV40 early promoter and splice sites was ligated to the ScaI/NotI fragment from the pCMV-T7-3 vector harboring METAB46 to

25

create pSV-METAB46. Plasmid pSV-METAB46 was digested with ScaI/BglII and the fragment containing the 5' portion of the ampicillin resistance gene, the SV40 early promoter and splice sites and a 5' portion of METAB46 (nucleotides 1-1671 of Sequence ID No. 5) was isolated. This fragment was ligated to the same ScaI/BglII fragment of METAB48 as was used in constructs mGluR3B and mGluR3C. The resulting construct, pSV-hmGluR3C, contains the SV40 promoter followed by SV40 splice sites in operative linkage with the mGluR3 DNA (containing nucleotides 1-3919 of Sequence ID No. 5) followed by a polyadenylation signal.

D. mGluR2 Receptor cDNA

Clone METAB40 was isolated from a human hippocampus cDNA library as described in Example 1.C. The insert cDNA of METAB40 is 1100 bp in length and encodes the 3' end of a human mGluR2 receptor, including a translation termination codon and 3' untranslated sequence. The first 355 nucleotides of METAB40 are provided in Sequence ID No. 3; the last 343 nucleotides of METAB40 (which are all from the 3' untranslated sequence) are provided in Sequence ID No. 13).

To isolate clones containing DNA representing the 5' portion of the mGluR2 transcript, the human hippocampus cDNA library can be screened for hybridization to an oligonucleotide corresponding to the 5' end of METAB40. Hybridizing plaques are purified and characterized by DNA sequence analysis. Clones that overlap with METAB40 and contain a translation initiation codon can be ligated to METAB40 at appropriate restriction sites to generate a full-length mGluR2-encoding cDNA construct.

53

Example 2

Expression of Recombinant Human Metabotropic Glutamate Receptors in Oocytes

Xenopus oocytes were injected with in vitro

5 transcripts prepared from constructs containing DNA
encoding human metabotropic receptors.
Electrophysiological measurements of the oocyte
transmembrane currents were made using the two-electrode
voltage clamp technique (see e.g., Stuhmer (1992) Meth.

10 Enzymol. 207:319-339).

A. <u>Preparation of In Vitro Transcripts</u>

Recombinant capped transcripts of metabotropic receptor cDNAs contained in construct mGluR5a3 were synthesized from linearized plasmids using the Megascript Kit (Cat. #1334, Ambion, Inc., Austin, TX). The mass of each synthesized transcript was determined by UV absorbance and the integrity of each transcript was determined by electrophoresis through an agarose gel.

B. <u>Electrophysiology</u>

Xenopus oocytes were injected with 10-50 ng of 20 metabotropic receptor transcripts per oocyte. preparation and injection of oocytes were carried out as described by Dascal [(1987) Crit. Rev. Biochem. 22:317-Two-to-six days following mRNA injection, 387]. oocytes were examined using the two-electrode voltage clamp technique. The cells were bathed in Ringer's solution (115 mM NaCl, 2.5 mM KCl, 1.8 mM CaCl₂, 10 mM HEPES, pH 7.3), and the membrane potential was clamped at -80 to -100 mV. Drugs were applied by pipetting 60 μ l aliquots of drug-30 containing solution directly into the bath. Data were sampled at 2-5 Hz with a Labmaster data acquisition board in PC-386 using AXOTAPE version 1.2 (Axon Instruments,

54

Foster City, CA) software. Data were exported to a laser printer or plotted using Sigmaplot version 5.0.

Metabotropic receptor-modulating compounds, i.e., 0.001-0.1 μM quisqualate, 0.1-10 μM glutamate and 0.1-300 μM 1S,3R-ACPD (1-amino-cyclopentyl-1,3-dicarboxylic acid), were applied to the bath and the transmembrane currents were recorded. Significant currents were detected after application of the compounds. Dose-response studies in which the currents measured after application of varying amounts of each compound were compared revealed that the current magnitude increased with increasing concentration of each compound. Analysis of these data enabled a calculation of EC₅₀ values for each compound which were used in determining the relative potencies of the compounds.

15

Example 3

Recombinant Expression of Human Metabotropic Glutamate Receptor Subunits in Mammalian Cells

Human embryonic kidney (HEK 293) and Chinese hamster ovary (CHO) cells (i.e, DG44 cells; see Urlaub et al. (1986) Som. Cell. Molec. Genet. 12:555) were transfected with DNA encoding human metabotropic receptors. Transfectants were analyzed for expression of metabotropic receptors using various assays, e.g., inositol phosphate (IP₁) assays, Ca⁺⁺-sensitive fluorescent indicator-based assays, and [3H]-glutamate binding assays.

A. <u>Transient Transfection of HEK 293 Cells</u>

HEK 293 cells were transiently transfected with DNA encoding mGluR5a (constructs mGluR5a2 and mGluR5a3 and construct MMTV-hmGluR5a) receptors. Approximately 2 x 10⁶ HEK cells were transiently transfected with 5-18 μg (or 0.18 μg in some transf ctions, see Example 3.C.2.) of th indicated plasmid according to standard CaPO₄ transfection

procedures [see Wigler et al. (1979) Proc. Natl. Acad. Sci. USA 76:1373-1376]. In addition, 0.5-2 μ g (or 0.18 μ g in some transfections, see Example 3.C.2) of plasmid $pCMV\beta gal$ (Clontech Laboratories, Palo Alto, CA), which contains the Escherichia coli β -galactosidase gene fused to the CMV promoter, were co-transfected as a reporter gene monitoring the efficiency of transfection. transfectants were analyzed for β -galactosidase expression by direct staining of the product of a reaction involving β -galactosidase and the X-gal substrate [Jones (1986) EMBO Transfectants can also be analyzed for *5*:3133-3142]. β-galactosidase expression by measurement β -galactosidase activity [Miller (1972) in Experiments in Molecular Genetics, pp.352-355, Cold Spring Harbor Pressj.

HEK 293 cells that were transiently transfected with 5 μg of MMTV-hmGluR5A were co-transfected with 5 μg of pRShGR (ATCC accession no. 67200) which contains DNA encoding a glucocorticoid receptor operatively linked to the Rous Sarcoma virus (RSV) LTR promoter. Co-expression of glucocorticoid receptors in these cells should insure that induction of expression of the MMTV promoter-mGluR5a DNA occurs upon addition of glucocorticoid (e.g., dexamethasone) to the cells.

The efficiency of these transfections of HEK cells was typical of standard efficiencies (i.e., ~50%).

B. <u>Stable Transfection of Mammalian Cells</u>

Mammalian cells, such as HEK 293, Ltk and CHO cells (e.g., DG44 cells), can be stably transfected using the calcium phosphate transfection procedure [Current 30 Protocols in Molecular Biology, Vol. 1, Wiley Inter-Science, Supplement 14, Unit 9.1.1-9.1.9 (1990)]. When CHO cells are used as hosts, it is generally preferable to use the SV40 promoter to regulate expression of the human

metabotropic receptor-encoding cDNA. Ten-cm plates, each containing 1-2 x 10⁶ cells, are transfected with 1 ml of DNA/calcium phosphate precipitate containing approximately 5-10 µg of metabotropic receptor-encoding DNA and 0.5-1 µg of DNA encoding a selectable marker, for example, the neomycin-resistance gene (i.e., pSV2neo) for selection of HEK 293 transformants, the thymidine kinase gene for Ltk cell transfectants, or the dihydrofolate reductase (dhfr) gene for selection of DG44 cell transformants. After ~14 days of growth in the appropriate selective media, colonies form and are individually isolated using cloning cylinders. The isolates are then subjected to limiting dilution and screened to identify those that express metabotropic receptors using, for example, methods described below.

15 C. Analysis of Transfectants

1. Fluorescent indicator-based assays

Activation of G-protein-coupled metabotropic receptors by agonists leads to stimulation of the phosphatidylinositol (PI) hydrolysis/intracellular Ca⁺⁺ signalling pathway and/or the inhibitory cAMP cascade. Methods of detecting transient increases in intracellular calcium concentration can be applied to the analysis of functional expression of metabotropic receptors that are coupled to the PI hydrolysis/Ca⁺⁺ mobilization pathway or to both the PI hydrolysis/Ca⁺⁺ mobilization pathway and the inhibitory cAMP cascade. One method for measuring intracellular calcium levels relies on calcium-sensitive fluorescent indicators.

Calcium-sensitive indicators, such as fluo-3 and fura-2 (Molecular Probes, Inc., Eugene, OR) are available as acetoxymethyl esters which are membrane permeable. When the acetoxymethyl ester form of the indicator enters a cell, the ster group is removed by cytosolic esterases,

Interaction of the free indicator in the cytosol.

Interaction of the free indicator with calcium results in increased fluorescence of the indicator; therefore, an increase in the intracellular Ca⁺⁺ concentration of cells containing the indicator can be expressed directly as an increase in fluorescence (or an increase in the ratio of the fluorescence at two wavelengths when fura-2 is used). An automated fluorescence detection system for assaying metabotropic receptors has been described in commonly assigned pending US Patent Application No. 07/812,254 and corresponding PCT Patent Application No. US92/11090, both of which are hereby incorporated by reference herein. Additionally, fluorescence imaging techniques can be utilized to visualize intracellular Ca⁺⁺ oscillations.

DNA encoding a human mGluR5a receptor were analyzed for expression of functional recombinant metabotropic receptors using the automated fluorescent indicator-based assay and the fluorescence imaging assay. Likewise, cells stably transfected with metabotropic receptor DNAs can also be analyzed for functional metabotropic receptors using these assay systems.

a. Automated fluorescence assay

Untransfected HEK 293 cells (or HEK 293 cells transiently transfected with pCMV-T7-3) and HEK 293 cells that had been transfected with mGluR5a-encoding DNA were plated in the wells of a 96-well microtiter dish (Nunc Catalog No. 1-6708, distributed by Alameda Industries, Escondido, CA) that had been precoated with poly-L-lysine at a density of 2 x 10⁵ cells/well and loaded with fluo-3 by incubation for 2 hours at 20°C in a medium containing 20 µM fluo-3, 0.2% Pluronic F-127 in HBS (125 mM NaCl, 5 mM KCl, 1.8 mM CaCl₂, 0.62 mM MgCl₂, 20 mM glucose, 20 mM HEPES, pH 7.4). The cells were then washed with assay buffer (i.e.

58

microtit r dish was then placed into a HBS). Th fluorescence plate reader (e.g., Fluoroskan II, Lab Products International, Ltd., Raleigh, NC), and the basal fluorescence of each well was measured and recorded before 5 addition of metabotropic receptor-modulating compounds such glutamate, trans-ACPD as quisqualate, (1-aminocyclopentane-1,3-dicarboxylic acid), 1S,3R-ACPD, AP3 (2amino-3-phosphonopropionate) AP5 (2-amino-5phosphonopentanoate), and CNQX (6-cyano-7-nitroquinoxaline-10 2,3-dione) to the wells. The fluorescence of the wells was monitored repeatedly (75 readings at 0.63-sec intervals) following addition of agonist.

In general, the fluorescence of the untransfected HEK 293 cells did not change after addition of any of these The fluorescence of HEK 293 cells transiently 15 compounds. transfected with either the mGluR5a3 or MMTV-hmGluR5a increased in response to application constructs glutamate, quisqualate, trans-ACPD, or 15,3R-ACPD. The fluorescence increased to a peak value, then decreased over 20 time to the basal level of fluorescence in cells prior to application of the compounds. The effects of AP3, AP5 or CNQX on glutamate-, quisqualate- or trans-ACPD-stimulated fluorescence increases in cells transfected with mGluR5a2 were also investigated. Neither of these compounds (AP3, 25 AP5 or CNQX) inhibited the agonist-induced fluorescence increases in these cells.

Dose-response studies in which the fluorescence values measured after application of varying amounts of glutamate, quisqualate or 15,3R-ACPD to cells 30 transfected with mGluR5a3 were compared revealed that the magnitude of the peak fluorescence increased with increasing concentration of each compound. Analysis of these data enabled a calculation of EC_{50} values for each compound which were used in determining the relative 35 potencies of the compounds.

HEK 293 cells transiently co-transfected with MMTV-hmGluR5a and pRShGR (a glucocorticoid receptor construct) were also analyzed in the fluorescence assay. The fluorescence of these cells increased in response to 100 μM quisqualate; the peak response was greater when the cells were preincubated with dexamethasone (~1 M) for 16 hrs at 37°C before being assayed.

b. <u>Fluorescence imaging assay</u>

cells that HEK 293 been had transiently 10 transfected with mGluR5a3 and untransfected HEK 293 cells (control) were analyzed by digital video imaging in order to visualize metabotropic receptor-mediated changes in intracellular Ca^{++} concentration. Transfectants (4×10^5) cells per 35-mm culture dish with glass-insert bottom) were loaded with fura-2 by exposing the cells to 1 $\mu \rm M$ fura-2 (acetoxymethyl ester) for 25 min at room temperature in the dark. The cells were then washed three times with DMEM and four times with Ringer's (160 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 11 mM glucose, 5 mM HEPES, pH 7.3) solution.

20 The transfectants and untransfected cells were then placed on the stage of an Axiovert 100 TV inverted microscope (Zeiss, Oberkochren, Germany) equipped with a 150 W xenon lamp as the UV light source. An Image 1 Fluor System (Universal Imaging, West Chester, PA) was used to 25 control the alternate excitation of the cells at 340 and 380 nm (typically every 3 sec) through a 40x 1.3 N.A. oil immersion objective. Light emitted at greater than 510 nm was collected by a CCD 72 intensified CCD camera (MTI Dage, Michigan City, IN) and digitized. The background emitted light was subtracted from the 340 and 380 nm excitation The corrected values were used in calculating the 340/380 intensity ratio. These uncalibrated fura-2 ratio values were r liable indicators of changes in the intracellular Ca concentration.

The uncalibrated fura-2 ratios were used to generate pseudocolor images with purple corresponding to resting intracellular Ca⁺⁺ concentration (~100 nM) and red to high intracellular Ca⁺⁺ concentration (~1 μ M). For quantitative analysis, the average ratio value in a 12-by-12 pixel region over each cell was calculated by the software for each ratio image in an experiment and imported into a spreadsheet for further analysis and graphing.

To demonstrate that HEK 293 cells express the 10 intracellular components required in receptor-mediated activation of the PI hydrolysis/Ca** mobilization pathway, transfectants and untransfected cells (which express endogenous G-protein-coupled muscarinic acetylcholine receptors) were exposed to 1 mM carbamylcholine (CCh; a 15 muscarinic acetylcholine receptor agonist), and the cells monitored were for increases in intracellular Ca** Typically, a detectable increase in the concentration. intracellular Ca" concentration of the majority of the cells was observed in response to CCh addition in the 20 imaging studies.

Both transfected and untransfected HEK 293 cells were also monitored for increases in intracellular Ca^{**} concentration in response to 100 μ M quisqualate. On average, the intracellular Ca^{**} concentration of the untransfected cells did not change after exposure to quisqualate. In contrast, the intracellular Ca^{**} concentration of 26.7 \pm 22.3% of the transfected cells increased in response to application of 100 μ M quisqualate.

2. Phosphatidylinositol hydrolyis (IP₁) assays

Because activation of G-protein-coupled metabotropic receptors by agonists can lead to stimulation of the phosphatidylinositol (PI) hydrolysis pathway,

methods of detecting increases in the products of PI hydrolysis (e.g., IP₃, IP₂ or IP₁) can be applied to the analysis of functional expression of metabotropic receptors that are coupled to the PI hydrolysis/Ca⁺⁺ mobilization pathway or to both the PI hydrolysis/Ca⁺⁺ mobilization pathway and the inhibitory cAMP cascade. One method for measuring IP₁ and/or IP₂ and/or IP₃ generated by hydrolysis of PI involves incorporation of [³H]-myo-inositol into cell membrane phospholipids and subsequent separation of [³H]-IP₁, [³H]-IP₂ and [³H]-IP₃, followed by quantitation of the radioactivity in each fraction, as follows.

HEK cells that had been transiently transfected with mGluR5a3 were plated in 24-well microtiter plates at a density of 8 x 105 cells/well. After the cells 15 were allowed to settle and adhere to the bottom of the plate for a few hours, 2 μ Ci of [3 H]-myo-inositol (Amersham catalog # PT6-271, Arlington Heights, IL; specific activity = 17.7 Ci/mmol) was added to each well and incubated overnight at 37°C. The next day, the cells were examined 20 under a Nikon Diaphot inverted microscope to assess the health of the cells morphologically as well as to determine if the wells contained a confluent layer of cells. Media was then aspirated and the cells were washed twice with 0.5 ml Krebs bicarbonate buffer [117.9 mM NaCl, 4.72 mM KCl, 25 2.54 mM CaCl₂, 1.18 mM MgSO₄, 1.19 mM KH₂PO₄, 25 mM NaHCO₃, 11.1 mM dextrose (equilibrated with 95% O2, 5% CO2, pH 7.4)]. The cells were incubated for 45 min. at room temperature. The buffer was then aspirated from each well and the cells were washed and incubated in 0.5 ml/well for 30 45 min at room temperature. The buffer was aspirated from each well, and the cells were then incubated for 20 min at 37°C with 450 μ l Krebs-bicarbonate buffer containing 10 mM LiCl instead of 10 mM NaCl (to block hydrolysis of IP, to inositol and inorganic phosphate) and 10 mM unlabeled myo-35- inositol.

To begin treatment of the cells with m tabotropic receptor-modulating compounds, 50 μ l of Krebs-bicarbonate buffer (control) or 10x the final concentration of the compound was added to each well and the incubation was 5 continued for 40 min. Incubation was terminated by addition of 1 ml ice-cold methanol to each well.

In order to isolate IP, from the cells, the cells were removed from the plates by scraping with plastic pipette tips, and the cell suspension was transferred to 12 10 x 75 mm glass tubes. The tubes were thoroughly vortexed, and a 150- μ l aliquot, i.e., one-tenth of the total volume, of each reaction mixture was transferred to another tube for protein determination. The water-soluble inositol phosphates were separated from the radiolabelled membrane 15 phospholipids by extraction in 1 ml chloroform. The tubes were incubated at room temperature for 30 min before centrifugation at 500 x g for 5 min at 4°C. The aqueous (top) layer containing the [3H]-inositol phosphates was transferred to 10-ml syringes connected to Accell QMA SEP-20 PAK columns (Millipore; California), which were attached to an Amersham Superseparator apparatus that was modified to allow collection into 20-ml scintillation vials. (10 ml) was added to the cartridge to remove [3H]-inositol precursor, followed by 4 ml 0.02 M triethylammonium 25 hydrogen carbonated buffer (TEAB, Fluka; New York). separately remove [3H]-IP₁, [3H]-IP₂ and [3H]-IP₃ from the cartridge, 4 ml of 0.1 M TEAB, 4 ml of 0.3 M TEAB and 4 ml of 0.4 M TEAB were sequentially added to the cartridge and the separate eluate fractions were collected in large 30 scintillation vials. Ecolume cocktail (15 ml; California) was added to each vial for subsequent scintillation counting to determine the amount of each IP in the separate fractions. Protein concentration was determined using the Bio-Rad Protein Micro-Assay (Bio-Rad, 35 Richmond, CA).

HEK 293 cells transiently transfected with 18 μ g of mGluR5a3 displayed relatively high basal levels of IP₁ when analyzed in this assay. However, HEK 293 cells transiently transfected with 0.18 μ g of mGluR5a3 exhibited lower basal IP₁ levels and detectable increases in IP₁ levels when treated with 1 mM glutamate, 1 mM quisqualate or 1 mM 1s,3R-ACPD. The quisqualate-induced increase in IP₁ levels was not affected by 1 mM AP3.

Dose-response studies which compared the IP₁ levels measured after application of varying amounts of glutamate, quisqualate or 1S,3R-ACPD to cells transfected with mGluR5a3 revealed that IP₁ levels increased with increasing concentration of each compound. Analysis of these data enabled calculation of EC₅₀ values for each compound which were used in determining the relative potencies of the compounds.

3. Metabotropic Receptor Ligand Binding Assays

HEK cells transiently transfected with mGluR5a3 or with pUC19 (negative control) were analyzed for [3H]-20 glutamate binding. Rat brain membranes were included in the binding assays as a positive control.

a. Preparation of Membranes

i. Rat forebrain membranes

Rat forebrain membranes were prepared from rat

25 brains as described by Schoepp et al. [(1992) Neurosci.

Lett. 145:100]. Briefly, forebrains, consisting
essentially of cerebral cortex, striatum and hippocampus,
from ten rat brains were homogenized in 50 volumes of 30 mM
ice-cold Tris-HCl containing 2.5 mM CaCl₂, pH 7.6 using a

30 Polytron (Brinkman, Westbury, NY). The homog nate was
centrifuged at 30,000 x g for 15 minutes at 4°C. The

supernatant was discarded, the pellet was resuspended in 50 volumes of buffer using a Polytron and the suspension was centrifuged at 30,000 x g for 15 min. This step was repeated twice. The pellet was resuspended in buffer and incubated at 37°C for 30 min. The suspension was then centrifuged at 30,000 x g for 15 min. at 4°C. This step was repeated three times. The final pellet was resuspended in 15 volumes of 50 mM Tris-HCl, pH 7.6, buffer, aliquoted, quick frozen and stored at -70°C.

10

ii. <u>Membranes from Transfected and</u> <u>Untransfected HEK293 Cells</u>

In order to prepare membranes from HEK 293 cells transfected with mGluR5a-encoding DNA or pUC19 (negative control), cells were scraped from the tissue culture plates, and the plates rinsed with 5 ml of PBS (phosphatebuffered saline: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.7 mM KH,PO,). The cells were centrifuged at low speed in a table-top centrifuge, and the cell pellet was rinsed with PBS. The cell pellet was resuspended in 20 volumes of 50 mM Tris-HCl containing 0.5 mM PMSF, pH 7.6. The cells were homogenized on ice in a Dounce (teflon/glass) homogenizer using 10-20 strokes. The homogenate was centrifuged at 120,000 x g for 30 min. at 4°C. The final membrane pellet was resuspended in 50 mM Tris-HCl containing 0.5 mM PMSF, pH 7.6. The membrane preparations were aliquoted, quickfrozen, and stored at -70°C. The protein concentration was determined using the method of Bradford [(1976) Anal. Biochem. 72:248].

b. [3H]-Glutamate binding assays

Specific binding of [3H]-glutamate to metabotropic receptors in rat forebrain membranes was determined basically as described by Schoepp et al. (supra). On the day of the assay, frozen homogenate was thawed and washed

three times with 50 mM Tris-HCl, pH 7.6. The final pellet was resuspended in 50 mM Tris-HCl, pH 7.6. The protein concentration was determined using the method of Bradford [(1976) Anal. Biochem. 72:248]. The suspension was 5 centrifuged at 30,000 x g for 15 min. in order to be able to resuspend the pellet in the assay buffer (50 mM Tris-HCl, 0.5 mM PMSF, 0.1% BSA, pH 7.6) at a concentration of The membrane suspension was incubated in 1 mg/ml. triplicate with 10 or 100 nM [3H]-glutamate (New England 10 Nuclear, Boston, MA; catalog no. NET-490, specific activity = 57.4 Ci/mmol) in a total volume of 0.5 ml assay buffer containing 100 μ M NMDA (Sigma, St. Louis, MO), 100 μ M AMPA and 100 μ M kainate (Research Biochemicals Inc., Natick, MA) to block [3H]-glutamate binding to ionotropic glutamate 15 receptors and 100 μM SITS (Sigma, St. Louis, MO) to inhibit [3H]-glutamate binding to chloride-dependent uptake sites for 45 min on ice. Bound radioactivity was separated from free radioactivity by centrifugation for 5 min. at 20,000. x g (4°C) in an SM-24 rotor (Sorvall, Wilmington, 20 Delaware). The pellets were washed twice with 5-6 ml of ice-cold 50 mM Tris-HCl buffer, pH 7.6. The pellets were solubilized by vortexing in 5 ml of Ecolume scintillation The radioactivity was measured in a Beckman cocktail. scintillation counter. The nonspecific binding observed in 25 the presence of 1 mM glutamate was subtracted from the total binding in order to determine specific binding.

Specific binding of [3H]-glutamate to membranes prepared from HEK 293 cells transfected with mGluR5a-encoding DNA or pUC19 was determined essentially as described for measuring binding to rat brain membranes with minor modifications. On the day of the assay, frozen homogenate was thawed and centrifuged in a MR-150 high-speed refrigerated microcentrifuge (Peninsula Laboratories, Inc., Belmont, CA). The pellet was washed twice with assay buffer (50 mM Tris-HCl, 0.5 mM PMSF, 0.1% BSA, pH 7.6), and the final pellet was resuspended in assay

buffer at a concentration of 1 mg/ml. NMDA, AMPA and kainate were excluded from the assay mixture when HEK 293 cell membranes were being analyzed for [3H]-glutamate binding.

Specific binding of $[^3H]$ -glutamate to rat brain membranes was measured using 200 μ g of membrane and 100 nM $[^3H]$ -glutamate. The ratio of total-to-nonspecific binding was approximately 2:1.

Specific binding of [³H]-glutamate to membranes prepared from HEK 293 cells transfected with mGluR5a3 or pUC19 was measured using 200 μg of membranes and 100 nM [³H]-glutamate. The amount of specific binding to membranes prepared from HEK 293 cells transfected with mGluR5a3 was significantly higher than that to membranes prepared from HEK 293 cells transfected with pUC19. Competitive binding studies were conducted in which the amount of specific binding of [³H]-glutamate to membranes prepared from HEK 293 cells transfected with mGluR5a3 in the presence of various concentrations of unlabeled glutamate was determined. IC₅₀ values were calculated from the data obtained in these studies.

4. Cyclic AMP (cAMP) Assays

a. RIA-based assays

Because activation of some G-protein-coupled receptors results in decreases (as opposed to increases) in cAMP, assays that measure intracellular cAMP levels can also be used to evaluate recombinant human metabotropic receptors expressed in mammalian host cells. Mammalian cells transiently or stably transfected with human metabotropic receptor-encoding DNA or pUC19 (negative control) are plated in 24-well microtiter plates at a density of 5 x 10⁵ cells/well and allowed to incubate

overnight. The following day, cells are examined under a Nikon Diaphot inverted microscope to assess the health of the cells morphologically as well as to determine if the wells contain a confluent layer of cells. Media is then aspirated and the cells are washed twice with 0.5 ml Krebs bicarbonate buffer (same buffer used in the PI hydrolysis assay; see Example 3.C.2) containing 1 mM IBMX (3-isobutyl-1-methylxanthine; Sigma, St. Louis, MO) and 0.1% BSA. Alternatively, 1X PBS can be used in place of Krebs bicarbonate buffer. Each wash is followed with a 30-min incubation at 37°C. The buffer is aspirated from each well and the cells are then incubated for 20 min at 37°C with 0.2 ml Krebs-bicarbonate buffer containing 1 mM IBMX and 0.1% BSA.

To begin treatment of the cells with metabotropic 15 receptor-modulating compounds, 50 μ l of Krebs-bicarbonate buffer, with or without 5X the final concentration of forskolin, is added to some of the cells (basal control) and 5X the final concentration of the compound plus 5X the 20 final concentration of forskolin is added to some cells (test cells) and the incubation is continued for 15 min at At the end of this 15-min period, the reaction is terminated by adding 25 μ l of 1% Triton X-100 solution and the incubation is continued for another 10 min. The lysed 25 cells plus the cell suspension are transferred to 12 \times 75 mm polypropylene tubes with plastic pipette tips. well is rinsed with 75 μ l of Krebs-bicarbonate buffer containing 1 mM IBMX and 0.1% BSA. The rinse is combined with the cell lysate. The cell lysate suspension is 30 centrifuged at 2300 x g for 5 min and the supernatant is assayed for cAMP levels using an RIA kit (Amersham Life Sciences catalog #TRK 432; Arlington Heights, IL).

b. <u>Cyclic nucleotide-gated channel-based</u> <u>assay</u>

cells HEK293 were grown in monolayers (approximately 2 x 10⁶ cells per 10 cm poly-D-lysine-coated 5 plate) in Dulbecco's modified Eagle's medium (DMEM; Gibco) containing 5% defined supplemented calf serum (Hyclone) including 100 U/ml penicillin and 100 μ g/ml streptomycin The cells were transiently transfected by the calcium phosphate method (see Ausubel, et al., supra, pp 10 9.1.1-9.1.7) with 5 μ g of pCMV-OCNA (containing DNA encoding the olfactory cyclic nucleotide-gated channel (see Dhallen et al., supra) linked to the CMV promoter, 2 μg pCMV- β gal (Clontech, Palo Alto, CA), and 13 μ g pUC19 as a control plasmid. Vector pCMV-OCNA was constructed by isolating the olfactory cyclic nucleotide-gated channelencoding DNA as ~3.0 kb EcoRI fragment from pBluescript KS and ligating the resulting fragment to EcoRI-digested Six hours after transfection, the calcium pCMV-T7-3. phosphate precipitate was washed off and cells fed with DMEM containing 10% dialyzed fetal bovine serum (Hyclone), U/ml penicillin, 100 μ g/ml streptomycin, 100 supplemented with 2 mM glutamine. Transfection efficiencies, as determined by measuring β -galactosidase activity, were 50-70%.

nucleotide-gated channel DNA were incubated 24-48 hours before testing for function. The activity of the channels was first assessed electrophysiologically using inside-out membrane patches pulled from the transfected cells so that the concentration of cAMP reaching the cytoplasmic face could be controlled (see, e.g., <u>Single-Channel Recording</u>, Sakmann and Neher, eds., Plenum Press, N.Y. (1983)). The patch was exposed to Ca^{**}/Mg^{**}-free Ringer's solution on both surfaces. In on patch, a current was elicited by ramping the membrane potential from -100 to +100 mV in 2 seconds,

in the presence of 1 mM cAMP. This result suggested that the channel was functionally expressed.

The transfectants were also analyzed by singlecell video imaging of internal calcium levels ([Ca"],). 5 This method allows analysis of cyclic nucleotide-gated channel activity by measurement of intracellular calcium levels, which change with the amount of calcium influx through the channel, as regulated by cyclic nucleotide activation of the channel. The imaging assay was conducted 10 essentially as described in Example 3.C.1.b., with some modifications. After dye loading, the cells were examined using a Zeiss Axiovert microscope and 100 W mercury lamp, a Dage intensified CCD camera, and Image-1 hardware and software for image processing. The software controlled the 15 alternate excitation of the cells at 350 and 385 nm (typically every 5 seconds) through a 20 X 1.3 N.A. oil immersion objective. Light emitted at greater than 510 nm was collected by the CCD camera, digitized, and 350 and 385 nm excitation images were background-subtracted before calculating the 350/385 nm intensity ratio.

For quantitative analysis, the average 350/385 ratio value in a 12 by 12 pixel region over each cell was calculated by the software for each ratio image in an experiment and imported into a spreadsheet for further 25 analysis and graphing. Fura-2 signals were calibrated with an intact cell in which R_{min} was obtained by exposing the cells to Ringer's solution containing 10 $\mu \rm M$ ionomycin, 10 mM EGTA and no added Ca**. R_{max} was next obtained by exposing the cells to Ringer's solution containing 10 μM ionomycin and 10 mM Ca", with three washes. Using a K, of 250 nM for fura-2 inside living cells and the equation of Grynkiewicz et al. (J. Biol. Chem. 260:3440 (1985)), the resting [Ca⁺⁺], was typically 100 nM.

30

20

In these experiments, the HEK293 transfectants were exposed to agents which increase intracellular cAMP levels and monitored for subsequent changes in [Ca⁺⁺];. There was a small increase in [Ca⁺⁺]; in 5 the averaged results from 64 cells, and in individual cells in response to addition of 100 μM forskolin (activator of adenyl cyclase). A more significant increase was observed 1 mM IBMX (inhibitor of addition of after phosphodiesterase). In a control experiment, only 1 out of 64 untransfected HEK293 cells showed an increase in [Ca"]; in response to elevation of intracellular cAMP levels. This response was transient and clearly different from the sustained response seen in HEK293 cells transfected with the cyclic nucleotide-gated channel DNA.

These results demonstrate that HEK cells expressing cyclic nucleotide-gated channels may be used as host cells in assays of receptors that cause a change in intracellular cyclic nucleotide levels when activated (e.g., metabotropic receptors).

5. Northern Blot Hybridization Analysis

Cells transfected with human metabotropic receptor-encoding DNA can also be analyzed for expression of the corresponding transcript by northern blot analysis. Total RNA was isolated from ~1 x 10^7 cells that have been transfected with the human metabotropic receptor-encoding DNA, and $10-15~\mu g$ of RNA is used for northern hybridization analysis. The inserts from human metabotropic receptor-encoding plasmids are nick-translated and used as probes. Typical conditions for northern blot hybridization and washing are as follows:

hybridization in 5x SSPE, 5X Denhart's solution, 50% formamide, at 42°C

WO 94/29449 PCT/US94/06273

71

followed by washing in 0.2x SSPE, 0.1% SDS, at 65°C.

While the invention has been described in detail with reference to certain preferred embodiments thereof, it will be understood that modifications and variations are within the spirit and scope of that which is described and claimed.

Summary of Sequences

Sequence ID No. 1 is the nucleic acid sequence (and the deduced amino acid sequence) of a DNA encoding a metabotropic glutamate receptor subtype (mGluR1B) of the present invention.

Sequence ID No. 2 is the deduced amino acid sequence of the nucleotide sequence of Sequence ID No. 1.

Sequence ID No. 3 is a nucleotide sequence (and the deduced amino acid sequence) of a partial clone encoding a portion of an human mGluR2 receptor subtype.

Sequence ID No. 4 is the amino acid sequence of a portion of an human mGluR2 receptor subunit as encoded by the nucleotide sequence of Sequence ID No. 3.

Sequence ID No. 5 is the nucleic acid sequence 15 (and the deduced amino acid sequence) of a DNA encoding a metabotropic glutamate receptor subtype (mGluR3) of the present invention.

Sequence ID No. 6 is the deduced amino acid sequence of the nucleotide sequence of Sequence ID No. 5.

Sequence ID No. 7 is the nucleic acid sequence (and the deduced amino acid sequence) of a DNA encoding a metabotropic glutamate receptor (mGluR5al) of the present invention.

Sequence ID No. 8 is the deduced amino acid 25 sequence of the nucleotide sequence of Sequence ID No. 7.

Sequence ID No. 9 is the nucleic acid sequence (and the deduced amino acid sequence) of a DNA encoding an mGluR5 variant metabotropic glutamate receptor (mGluR5b) of the present invention.

Sequence ID No. 10 is the deduced amino acid sequence of the nucleotide sequence of Sequence ID No. 9.

Sequence ID No. 11 is the nucleic acid sequence (and the deduced amino acid sequence) of a DNA encoding an mGluR5 variant metabotropic glutamate receptor (mGluR5c) of the present invention.

Sequence ID No. 12 is the deduced amino acid sequence of the nucleotide sequence of Sequence ID No. 11.

Sequence ID No. 13 is 343 nucleotides of 3' untranslated sequence of an human mGluR2 receptor subtype.

15

20

30

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Daggett, Lorrie Ellis, Steven B. Liaw, Chen Pontsler, Aaron Johnson, Edwin C. Hess, Stephen D.

(ii) TITLE OF INVENTION: HUMAN METABOTROPIC GLUTAMATE RECEPTORS. 10 NUCLEIC ACIDS ENCODING SAME AND USES THEREOF

(iii) NUMBER OF SEQUENCES: 13

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Pretty, Schroeder, Brueggemann & Clark
(B) STREET: 444 South Flower Street, Suite 2000
(C) CITY: Los Angeles
(D) STATE: CA

(E) COUNTRY: USA

(F) ZIP: 90071

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA: 25

(A) APPLICATION NUMBER:

(B) FILING DATE: 02-JUN-1994

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/072,574

(B) FILING DATE: 04-JUN-1993

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Reiter, Stephen E.

(B) REGISTRATION NUMBER: 31,192

(C) REFERENCE/DOCKET NUMBER: FP41 9772 35

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 619-546-4737

(B) TELEFAX: 619-546-9392

(2) INFORMATION FOR SEQ ID NO:1:

40 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3321 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: both

(D) TOPOLOGY: both

45 (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 388..3108
 (D) OTHER INFORMATION: /product= "HUMAN MGLUR1B"

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
*:	GCCGAGCGTG GCCACGGYCC TCTGGCCCCG GGACCATAGC GCTGTCTACC CCGACTCAGG	. 60
٠	TACTCAGCAT CTAGCTCACC GCTGCCAACA CGACTTCCAC TGTACTCTTG ATCAATTTAC	120
	CTTGATGCAC TACCGGTGAA GAACGGGGAC TCGAATTCCC TTACAAACGC CTCCAGCTTG	180
	TAGAGGCGT CGTGGAGGAC CCAGAGGAGG AGACGAAGGG GAAGGAGGCG GTGGTGGAGG	240
10	AGGCAAAGGC CTTGGACGAC CATTGTTGGC GAGGGGCACC ACTCCGGGAG AGGCGGCGCT	300
	GGGCGTCTTG GGGGTGCGCG CCGGGAGCCT GCAGCGGGAC CAGCGTGGGA ACGCGGCTGG	360
٠	CAGGCTGTGG ACCTCGTCCT CACCACC ATG GTC GGG CTC CTT TTG TTT TTT Met Val Gly Leu Leu Phe Phe 1 5	411
15	TTC CCA GCG ATC TTT TTG GAG GTG TCC CTT CTC CCC AGA AGC CCC GGC Phe Pro Ala Ile Phe Leu Glu Val Ser Leu Leu Pro Arg Ser Pro Gly 10 15 20	459
20	AGG AAA GTG TTG CTG GCA GGA GCG TCG TCT CAG CGC TCG GTG GCC AGA Arg Lys Val Leu Leu Ala Gly Ala Ser Ser Gln Arg Ser Val Ala Arg 25 30 35 40	507
	ATG GAC GGA GAT GTC ATC ATT GGA GCC CTC TTC TCA GTC CAT CAC CAG Met Asp Gly Asp Val Ile Ile Gly Ala Leu Phe Ser Val His His Gln 45 50 55	555
25	CCT CCG GCC GAG AAA GTG CCC GAG AGG AAG TGT GGG GAG ATC AGG GAG Pro Pro Ala Glu Lys Val Pro Glu Arg Lys Cys Gly Glu Ile Arg Glu 60 65 70	603
	CAG TAT GGC ATC CAG AGG GTG GAG GCC ATG TTC CAC ACG TTG GAT AAG Gln Tyr Gly Ile Gln Arg Val Glu Ala Met Phe His Thr Leu Asp Lys 75 80 85	651
30	ATC AAC GCG GAC CCG GTC CTC CTG CCC AAC ATC ACC CTG GGC AGT GAG Ile Asn Ala Asp Pro Val Leu Leu Pro Asn Ile Thr Leu Gly Ser Glu 90 95 100	699
35	ATC CGG GAC TCC TGC TGG CAC TCT TCC GTG GCT CTG GAA CAG AGC ATT Ile Arg Asp Ser Cys Trp His Ser Ser Val Ala Leu Glu Gln Ser Ile 110 115 120	747
•	GAG TTC ATT AGG GAC TCT CTG ATT TCC ATT CGA GAT GAG AAG GAT GGG Glu Phe Ile Arg Asp Ser Leu Ile Ser Ile Arg Asp Glu Lys Asp Gly 125	795
40	ATC AAC CGG TGT CTG CCT GAC GGC CAG TCC CTC CCC CCA GGC AGG ACT Ile Asn Arg Cys Leu Pro Asp Gly Gln Ser Leu Pro Pro Gly Arg Thr	843

					GCG Ala												891
5					AAC Asn												939
·					AGC Ser											TAC Tyr 200	987
10					GTC Val 205												1035
15					CGT Arg												1083
					GGG Gly												1131
20	GCC Ala	CAG Gln 250	GAA Glu	GGC Gly	CTC Leu	TGT Cys	ATC Ile 255	GCC Ala	CAT His	TCT Ser	GAC Asp	AAA Lys 260	ATC Ile	TAC Tyr	AGC Ser	AAC Asn	1179
					AGC Ser					Leu							1227
25	CTT Leu	CCC Pro	AAG Lys	GCT Ala	AGA Arg 285	GTG Val	GTG Val	GTC Val	TGC Cys	TTC Phe 290	TGT Cys	GAA Glu	GGC Gly	ATG Met	ACA Thr 295	GTG Val	1275
30					AGC Ser												1323
					AGT Ser												1371
35	GGT Gly	TAT Tyr 330	GAG Glu	GTG Val	GAA Glu	GCC Ala	AAC Asn 335	GGG Gly	GGA Gly	ATC Ile	ACG Thr	ATA Ile 340	AAG Lys	CTG Leu	CAG Gln	TCT Ser	1419
					TCA Ser												1467
40					AAT Asn 365												1515
45					CCA Pro												1563
					AAT Asn												1611

	AAG Lys	ATG Met 410	Gly	TTT Phe	GTC Val	ATC Ile	AAT Asn 415	GCC Ala	ATC Ile	TAT	GCC Ala	ATG Met 420	Ala	CAT His	GGG Gly	CTG Leu	1659
5	CAG G1n 425	Asn	ATG Met	CAC His	CAT	GCC Ala 430	CTC Leu	TGC Cys	CCT Pro	GGC Gly	CAC His 435	Val	GGC Gly	CTC Leu	TGC	GAT Asp 440	1707
١	GCC Ala	ATG Met	AAG Lys	CCC Pro	ATC Ile 445	GAC Asp	GGC Gly	AGC Ser	AAG Lys	CTG Leu 450	Leu	GAC Asp	TTC Phe	CTC Leu	ATC Ile 455	AAG Lys	1755
10	TCC Ser	TCA Ser	TTC Phe	ATT Ile 460	GGA Gly	GTA Val	TCT Ser	GGA Gly	GAG G1u 465	GAG Glu	GTG Val	TGG Trp	TTT Phe	GAT Asp 470	GAG Glu	AAA Lys	1803
15	GGA Gly	GAC Asp	GCT Ala 475	CCT Pro	GGA Gly	AGG Arg	TAT Tyr	GAT Asp 480	ATC Ile	ATG Met	AAT Asn	CTG Leu	CAG Gln 485	TAC Tyr	ACT Thr	GAA Glu	1851
	GCT Ala	AAT Asn 490	CGC Arg	TAT Tyr	GAC Asp	TAT Tyr	GTG Val 495	CAC His	GTT Val	GGA Gly	ACC Thr	TGG Trp 500	CAT His	GAA Glu	GGA Gly	GTG Val	1899
20	CTG Leu 505	AAC Asn	ATT Ile	GAT Asp	GAT Asp	TAC Tyr 510	AAA Lys	ATC Ile	CAG Gln	ATG Met	AAC Asn 515	AAG Lys	AGT Ser	GGA Gly	GTG Val	GTG Val 520	1947
	CGG Arg	TCT Ser	GTG Val	TGC Cys	AGT Ser 525	GAG Glu	CCT Pro	TGC Cys	TTA Leu	AAG Lys 530	GGC Gly	CAG Gln	ATT Ile	AAG Lys	GTT Val 535	ATA Ile	1995
25	CGG Arg	AAA Lys	GGA Gly	GAA Glu 540	GTG Val	AGC Ser	TGC Cys	TGC Cys	TGG Trp 545	ATT Ile	TGC Cys	GCG Ala	GCC Ala	TGC Cys 550	AAA Lys	GAG Glu	2043
30	AAT Asn	GAA Glu	TAT Tyr 555	GTG Val	CAA Gln	GAT Asp	GAG Glu	TTC Phe 560	ACC Thr	TGC Cys	AAA Lys	GCT Ala	TGT Cys 565	GAC Asp	TTG Leu	GGA Gly	2091
	TGG Trp	TGG Trp 570	CCC Pro	AAT Asn	GCA Ala	GAT Asp	CTA Leu 575	ACA Thr	GGC Gly	TGT Cys	GAG Glu	CCC Pro 580	ATT Ile	CCT Pro	GTG Val	CGC Arg	2139
35	TAT Tyr 585	CTT Leu	GAG Glu	TGG Trp	AGC Ser	AAC Asn 590	ATC Ile	GAA Glu	TCC Ser	ATT Ile	ATA Ile 595	GCC Ala	ATC Ile	GCC Ala	TTT Phe	TCA Ser 600	2187
	TGC Cys	CTG Leu	GGA Gly	ATC Ile	CTT Leu 605	GTT Val	ACC Thr	TTG Leu	TTT Phe	GTC Val 610	ACC Thr	CTA Leu	ATC Ile	TTT Phe	GTA Val 615	CTG Leu	2235
40	TAC Tyr	CGG Arg	GAC Asp	ACA Thr 620	CCA Pro	GTG Val	GTC Val	AAA Lys	TCC Ser 625	TCC Ser	AGT Ser	CGG Arg	GAG Glu	CTC Leu 630	TGC Cys	TAC Tyr	2283
45	ATC Ile	Ile	CTA Leu 635	GCT Ala	GGC Gly	ATC Ile	Phe	CTT Leu 640	GGT Gly	TAT Tyr	GTG Val	TGC Cys	CCA Pro 645	TTC Phe	ACT - Thr	CTC Leu	2331
.*	ATT Ile	GCC Ala 650	AAA Lys	CCT Pro	ACT Thr	Thr	ACC Thr 655	TCC Ser	TGC Cys	TAC Tyr	CTC Leu	CAG Gln 660	CGC Arg	CTC Leu	TTG Leu	GTT Val	2379

	GGC Gly 665	Leu	TCC Ser	TCT	GCG Ala	ATG Met 670	TGC Cys	TAC Tyr	TCT Ser	GCT Ala	TTA Leu 675	Val	ACT	AAA Lys	ACC Thr	AAT Asn 680	2427
5	CGT Arg	ATT	GCA Ala	CGC Arg	ATC Ile 685	Leu	GCT Ala	GGC Gly	AGC Ser	AAG Lys 690	AAG Lys	AAG Lys	ATC Ile	TGC Cys	ACC Thr 695	CGG Arg	2475
	AAG Lys	CCC Pro	AGG Arg	TTC Phe 700	Met	AGT Ser	GCC Ala	TGG Trp	GCT Ala 705	CAG Gln	GTG Val	ATC Ile	ATT Ile	GCC Ala 710	TCA Ser	ATT Ile	2523
10	CTG Leu	ATT Ile	AGT Ser 715	GTG Val	CAA Gln	CTA Leu	ACC Thr	CTG Leu 720	GTG Val	GTA Val	ACC Thr	CTG Leu	ATC Ile 725	ATC Ile	ATG Met	GAA Glu	2571
: 15	CCC Pro	CCT Pro 730	ATG Met	CCC Pro	ATT Ile	CTG Leu	TCC Ser 735	TAC Tyr	CCA Pro	AGT Ser	ATC Ile	AAG Lys 740	GAA Glu	GTC Val	TAC Tyr	CTT Leu	2619
	ATC Ile 745	TGC Cys	AAT Asn	ACC Thr	AGC Ser	AAC Asn 750	CTG Leu	GGT Gly	GTG Val	GTG Val	GCC Ala 755	CCT Pro	TTG Leu	GGC Gly	TAC Tyr	AAT Asn 760	2667
20	GGA Gly	CTC Leu	CTC Leu	ATC Ile	ATG Met 765	AGC Ser	TGT Cys	ACC Thr	TAC Tyr	TAT Tyr 770	GCC Ala	TTC Phe	AAG Lys	ACC Thr	CGC Arg 775	AAC Asn	2715
	GTG Val	CCC Pro	Ala	AAC Asn 780	TTC Phe	AAC Asn	GAG Glu	GCC Ala	AAA Lys 785	TAT Tyr	ATC Ile	GCG Ala	TTC Phe	ACC Thr 790	ATG Met	TAC Tyr	2763
25	ACC Thr	ACC Thr	TGT Cys 795	ATC Ile	ATC Ile	TGG Trp	CTA Leu	GCT Ala 800	TTT Phe	GTG Val	CCC Pro	ATT Ile	TAC Tyr 805	TTT Phe	GGG Gly	AGC Ser	2811
30	AAC Asn	TAC Tyr 810	AAG Lys	ATC Ile	ATC Ile	ACA Thr	ACT Thr 815	TGC Cys	TTT Phe	GCA Ala	GTG Val	AGT Ser 820	CTC Leu	AGT Ser	GTA Val	ACA Thr	2859
	GTG Val 825	GCT Ala	CTG Leu	GGG Gly	TGC Cys	ATG Met 830	TTC Phe	ACT Thr	CCC Pro	AAG Lys	ATG Met 835	TAC Tyr	ATC Ile	ATT Ile	ATT Ile	GCC Ala 840	2907
35	AAG Lys	CCT Pro	GAG Glu	AGG Arg	AAT Asn 845	GTC Val	CGC Arg	AGT Ser	GCC Ala	TTC Phe 850	ACC Thr	ACC Thr	TCT Ser	GAT Asp	GTT Val 855	GTC Val	2955
	CGC Arg	ATG Met	CAT His	GTT Val 860	GGC Gly	GAT Asp	GGC Gly	AAG Lys	CTG Leu 865	CCC Pro	TGC Cys	CGC Arg	TCC Ser	AAC Asn 870	ACT Thr	TTC Phe	3003
40	CTC Leu	AAC Asn	ATC Ile 875	TTC Phe	CGA Arg	AGA Arg	AAG Lys	AAG Lys 880	GCA Ala	GGG Gly	GCA Ala	GGG Gly	AAT Asn 885	GCC Ala	AAG Lys	AAG Lys	3051
45	AGG Arg	CAG Gln 890	CCA Pro	GAA Glu	TTC Phe	TCG Ser	CCC Pro 895	ACC Thr	AGC Ser	CAA Gln	TGT Cys	CCG Pro 900	TCG Ser	GCA Ala	CAT His	GTG Val	3099
	CAG Gln 905	CTT Leu	TGAA	AACC	CC C	ACAC	TGCA	G TG	AATG	TTTC	TAA	TGGC	AAG	TCTG	TGTC	AT	3155
	GGTC	TGAA	CC A	GGTG	GAGG	A CA	.GGTG	CCCA	AGG	GACA	GCA	TATG	TGGC	AC C	GCCI	CTCTG	3215

TGCACGTGAA	GACCAATGAG	ACGGCCTGCA	ACCAAACAGC	CGTCATCAAA	CCCCTCACTA	3275
AAAGTTACCA	AGGCTCTGGC	AAGAGCCTGA	CCTTTTCAGA	TACCAG		3321

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 906 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:2: Met Val Gly Leu Leu Phe Phe Phe Pro Ala Ile Phe Leu Glu Val 10 Ser Leu Leu Pro Arg Ser Pro Gly Arg Lys Val Leu Leu Ala Gly Ala 20 25 30 Ser Ser Gln Arg Ser Val Ala Arg Met Asp Gly Asp Val Ile Ile Gly 15 Ala Leu Phe Ser Val His His Gln Pro Pro Ala Glu Lys Val Pro Glu Arg Lys Cys Gly Glu Ile Arg Glu Gln Tyr Gly Ile Gln Arg Val Glu 65 75 80 Ala Met Phe His Thr Leu Asp Lys Ile Asn Ala Asp Pro Val Leu Leu Pro Asn Ile Thr Leu Gly Ser Glu Ile Arg Asp Ser Cys Trp His Ser Ser Val Ala Leu Glu Gln Ser Ile Glu Phe Ile Arg Asp Ser Leu Ile 115 25 Ser Ile Arg Asp Glu Lys Asp Gly Ile Asn Arg Cys Leu Pro Asp Gly 130 135 140
- Gln Ser Leu Pro Pro Gly Arg Thr Lys Lys Pro Ile Ala Gly Val Ile 145 150 155 160 145 Gly Pro Gly Ser Ser Ser Val Ala Ile Gln Val Gln Asn Leu Leu Gln
- Leu Phe Asp Ile Pro Gln Ile Ala Tyr Ser Ala Thr Ser Ile Asp Leu 180 185 190
- Ser Asp Lys Thr Leu Tyr Lys Tyr Phe Leu Arg Val Val Pro Ser Asp 195 200 205 35
 - Thr Leu Gln Ala Arg Ala Met Leu Asp Ile Val Lys Arg Tyr Asn Trp 210 215 220
 - Thr Tyr Val Ser Ala Val His Thr Glu Gly Asn Tyr Gly Glu Ser Gly 225 230 235 240

Met Asp Ala Phe Lys Glu Leu Ala Ala Gln Glu Gly Leu Cys Ile Ala 245 250 255 His Ser Asp Lys Ile Tyr Ser Asn Ala Gly Glu Lys Ser Phe Asp Arg Leu Leu Arg Lys Leu Arg Glu Arg Leu Pro Lys Ala Arg Val Val Val 275 285 Cys Phe Cys Glu Gly Met Thr Val Arg Gly Leu Leu Ser Ala Met Arg Arg Leu Gly Val Val Gly Glu Phe Ser Leu Ile Gly Ser Asp Gly Trp 305 310 315 320 10 Ala Asp Arg Asp Glu Val Ile Glu Gly Tyr Glu Val Glu Ala Asp Gly 325 330 335 Gly Ile Thr Ile Lys Leu Gln Ser Pro Glu Val Arg Ser Phe Asp Asp 340 345 350 Tyr Phe Leu Lys Leu Arg Leu Asp Thr Asn Thr Arg Asn Pro Trp Phe Pro Glu Phe Trp Gln His Arg Phe Gln Cys Arg Leu Pro Gly His Leu 370 380 Leu Glu Asn Pro Asn Phe Lys Arg Ile Cys Thr Gly Asn Glu Ser Leu 20 Glu Glu Asn Tyr Val Gln Asp Ser Lys Met Gly Phe Val Ile Asn Ala 405 410 415 Ile Tyr Ala Met Ala His Gly Leu Gln Asn Met His His Ala Leu Cys Pro Gly His Val Gly Leu Cys Asp Ala Met Lys Pro Ile Asp Gly Ser
435 440 445 Lys Leu Leu Asp Phe Leu Ile Lys Ser Ser Phe Ile Gly Val Ser Gly Glu Glu Val Trp Phe Asp Glu Lys Gly Asp Ala Pro Gly Arg Tyr Asp 465 470 475 480 30. Ile Met Asn Leu Gln Tyr Thr Glu Ala Asn Arg Tyr Asp Tyr Val His Val Gly Thr Trp His Glu Gly Val Leu Asn Ile Asp Asp Tyr Lys Ile 500 505 510 Gln Met Asn Lys Ser Gly Val Val Arg Ser Val Cys Ser Glu Pro Cys Leu Lys Gly Gln Ile Lys Val Ile Arg Lys Gly Glu Val Ser Cys Cys 530 540 Trp Ile Cys Ala Ala Cys Lys Glu Asn Glu Tyr Val Gln Asp Glu Phe 545 550 560 Thr Cys Lys Ala Cys Asp Leu Gly Trp Trp Pro Asn Ala Asp Leu Thr
565 570 575 Gly Cys Glu Pr Ile Pro Val Arg Tyr Leu Glu Trp Ser Asn Ile Glu 580 585 590

Ser Ile Ile Ala Ile Ala Phe Ser Cys Leu Gly Ile Leu Val Thr Leu 600 Phe Val Thr Leu Ile Phe Val Leu Tyr Arg Asp Thr Pro Val Val Lys Ser Ser Ser Arg Glu Leu Cys Tyr Ile Ile Leu Ala Gly Ile Phe Leu Gly Tyr Val Cys Pro Phe Thr Leu Ile Ala Lys Pro Thr Thr Thr Ser Cys Tyr Leu Gln Arg Leu Leu Val Gly Leu Ser Ser Ala Met Cys Tyr 10 Ser Ala Leu Val Thr Lys Thr Asn Arg Ile Ala Arg Ile Leu Ala Gly Ser Lys Lys Ile Cys Thr Arg Lys Pro Arg Phe Met Ser Ala Trp Ala Gln Val Ile Ile Ala Ser Ile Leu Ile Ser Val Gln Leu Thr Leu Val Val Thr Leu Ile Ile Met Glu Pro Pro Met Pro Ile Leu Ser Tyr Pro Ser Ile Lys Glu Val Tyr Leu Ile Cys Asn Thr Ser Asn Leu Gly
740 745 750 20 Val Val Ala Pro Leu Gly Tyr Asn Gly Leu Leu Ile Met Ser Cys Thr Tyr Tyr Ala Phe Lys Thr Arg Asn Val Pro Ala Asn Phe Asn Glu Ala 770 780 Lys Tyr Ile Ala Phe Thr Met Tyr Thr Thr Cys Ile Ile Trp Leu Ala Phe Val Pro Ile Tyr Phe Gly Ser Asn Tyr Lys Ile Ile Thr Thr Cys 805 810 815 Phe Ala Val Ser Leu Ser Val Thr Val Ala Leu Gly Cys Met Phe Thr 30 Pro Lys Met Tyr Ile Ile Ile Ala Lys Pro Glu Arg Asn Val Arg Ser Ala Phe Thr Thr Ser Asp Val Val Arg Met His Val Gly Asp Gly Lys 855 Leu Pro Cys Arg Ser Asn Thr Phe Leu Asn Ile Phe Arg Arg Lys Lys 35 Ala Gly Ala Gly Asn Ala Lys Lys Arg Gln Pro Glu Phe Ser Pro Thr Ser Gln Cys Pro Ser Ala His Val Gln Leu 40

	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:3	:								•	
5		(i	(,	QUENCA) L.B) TC) S'D) TC	ENGT YPE ; TRAN	H: 3 nuc DEDN	55 b leic ESS:	ase aci boti	pair. d	s	=		,					
	-	(ii)) MO	LECU	LE T	YPE:	cDN.	A	.*	,								
10		(ix	() ()	ATURI A) NA B) LA D) O'	AME/I	ION:	1	354	: /p:	rodu	ct-	"HUM	AN M	GLUR:	2 FR	agmei	NT"	
		(xi) SE	QUEN	CE D	ESCR:	IPTI(ON:	SEQ :	ID NO	0:3:	,				8		
15	GCC Ala 1	AAG Lys	CCA Pro	TCC Ser	ACG Thr 5	GCA Ala	GTG Val	TGT Cys	ACC Thr	TTA Leu 10	CGG Arg	CGT Arg	CTT Leu	GGT Gly	TTG Leu 15	GGC Gly		48
•	ACT Thr	GCC Ala	TTC	TCT Ser 20	GTC Val	TGC Cys	TAC Tyr	TCA Ser	GCC Ala 25	CTG Leu	CTC Leu	ACC Thr	AAG Lys	ACC Thr 30	AAC Asn	CGC Arg	•	96
20	ATT Ile	GCA Ala	CGC Arg 35	ATC Ile	TTC Phe	GGT Gly	GGG Gly	GCC Ala 40	CGG Arg	GAG Glu	GGT Gly	GCC Ala	CAG Gln 45	CGG Arg	CCA Pro	CGC Arg		144
	TTC Phe	ATC Ile 50	AGT Ser	CCT Pro	GCC Ala	TCA Ser	CAG Gln 55	GTG Val	GCC Ala	ATC Ile	TGC Cys	CTG Leu 60	GAA Glu	CTT Leu	ATC Ile	TCG Ser	•	192
25	GGC Gly 65	CAG Gln	CTG Leu	CTC Leu	Ile	GTG Val 70	Val	GCC Ala	TGG Trp	Leu	GTG Val 75	GTG Val	GAG Glu	GCA Ala	CCG Pro	GGC Gly 80		240
30	ACA Thr	GGC Gly	AAG Lys	GAG Glu	ACA Thr 85	GCC Ala	CCC Pro	GAA Glu	CGG Arg	CGG Arg 90	GAG Glu	GTG Val	GTG Val	ACA Thr	CTG Leu 95	CGC Arg		288
-				CGC Arg 100														336
35				GCG Ala				•					•				-8-	355
	(2)			rion		Ţ,					,	8	•			*	a.	
40		· · ·	(1) :		LEN TYI	NGTH:	: 118 amino		ino a id	acids	;	•		,				¥'
		(i	ii) N	10LE	CULE	TYPI	E: pi	rotei	in									
		(3	ki) S	EQUI	ENCE	DESC	CRIP	CION	SEC) ID	NO : 4	+ :						
45	Ala 1	Lys	Ē٢,	S_r	Thr 5	Ala	Val	Cys	Thr	Leu 10	Arg	Arg	Leu	Gly	Leu 15	Gly	•	

Thr Ala Phe Ser Val Cys Tyr Ser Ala Leu Leu Thr Lys Thr Asn Arg 20 Ile Ala Arg Ile Phe Gly Gly Ala Arg Glu Gly Ala Gln Arg Pro Arg 35 Phe Ile Ser Pro Ala Ser Gln Val Ala Ile Cys Leu Glu Leu Ile Ser Gly Gln Leu Leu Ile Val Val Ala Trp Leu Val Val Glu Ala Pro Gly 65 Thr Gly Lys Glu Thr Ala Pro Glu Arg Arg Glu Val Val Thr Leu Arg 90 Cys Asn His Arg Asp Ala Ser Met Leu Gly Ser Leu Ala Tyr Asn Val Leu Leu Ile Ala Leu Cys 115

15 (2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3919 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
- (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1064..3703
- 25 (D) OTHER INFORMATION: /product= "HUMAN MGLUR3"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CGGCCTCCCT GGCTCTCACA CTCCCTCTCT GCTCCCGCTC TCCTAATCTC CTCTGGCATG 60 CGGTCAGCCC CCTGCCCAGG GACCACAGGA GAGTTCTTGT AAGGACTGTT AGTCCCTGCT 120 TACCTGAAAG CCAAGCGCTC TAGCAGAGCT TTAAAGTTGG AGCCGCCACC CTCCCTACCG 180 CCCCATGCCC CTTCACCCCA CTCCGAAATT CACCGACCTT TGCATGCACT GCCTAAGGAT 240 TTCAGAGTGA GGCAAAGCAG TCGGCAAATC TACCCTGGCT TTTCGTATAA AAATCCTCTC 300 GTCTAGGTAC CCTGGCTCAC TGAAGACTCT GCAGATATAC CCTTATAAGA GGGAGGGTGG 360 GGGAGGGAAA AGAACGAGAG AGGGAGGAAA GAATGAAAAG GAGAGGATGC CAGGAGGTCC 420 GTGCTTCTGC CAAGAGTCCC AATTAGATGC GACGGCTTCA GCCTGGTCAA GGTGAAGGAA 480 AGTTGCTTCC GCGCCTAGGA AGTGGGTTTG CCTGATAAGA GAAGGAGGAG GGGACTCGGC 540 TGGGAAGAGC TCCCCTCCCC TCCGCGGAAG ACCACTGGGT CCCCTCTTTC GGCAACCTCC 600 TCCCTCTCTT CTACTCCACC CCTCCGTTTT CCCACTCCCC ACTGACTCGG ATGCCTGGAT 660 GTTCTGCCAC CGGGCAGTGG TCCAGCGTGC AGCCGGGAGG GGGCAGGGGC AGGGGGCACT 720 GTGACAGGAA GCTGCGCGCA CAAGTTGGCC ATTTCGAGGG CAAAATAAGT TCTCCCTTGG 780 ATTTGGAAAG GACAAAGCCA GTAAGCTACC TCTTTTGTGT CGGATGAGGA GGACCAACCA 840

-						107						,		•			
	TGA	GÇÇA	GAG	CCCG	GCTG	CA G	GCTC	ACCG	C CG	CCGC	TGCC	ACC	GCGG	TCA	GCTC	CAGTTC	900
	CTG	CCAG	GAG	TTGT	CGGT	GC G	AGGA	ATTT	T GT	GACA	GGCT	CTG	TTAG	TCT	GTTC	CTCCCT	960
	TAT	TTGA	AGG	ACAG	GCCA	AA G	ATCC	AGTT	T GG	AAAT	GAGA	GAG	GACT	AGC	ATGA	CACATT	1020
	GGC'	TCCA	CCA	TTGA	TATC	TC C	CAGA	GGTA	C AG	AAAC	AGGA	TTC	ATG	AAG	ATG	TTG	1075
5				•					,	•			Met 1	Lys	Met	Leu	
-	A CA	ΆΛΛ	CTC		Отт	CTT	A CC		CCT	ጥ ጥ 🔿	TTTT	· 	440	004			. 1100
	Thr 5	Arg	Leu	Gln	Val	Leu 10	Thr	Leu	Ala	Leu	Phe 15	Ser	Lys	GGA Gly	Phe	TTA Leu 20	1123
10	CTC Leu	TCT	TTA Leu	GGG Gly	GAC Asp 25	CAT His	AAC Asn	TTT Phe	CTA Leu	AGG Arg 30	AGA Arg	GAG Glu	ATT Ile	AAA Lys	ATA Ile 35	GAA Glu	1171
15	GGT Gly	GAC Asp	CTT Leu	GTT Val 40	TTA Leu	GGG Gly	GGC Gly	CTG Leu	TTT Phe 45	CCT	ATT Ile	AAC Asn	GAA Glu	AAA Lys 50	GGC Gly	ACT Thr	1219
	GGA Gly	ACT Thr	GAA Glu 55	GAA Glu	TGT Cys	GGG Gly	CGA Arg	ATC Ile 60	AAT Asn	GAA Glu	GAC Asp	CGA Arg	GGG Gly 65	ATT Ile	CAA Gln	CGC Arg	1267.
20	CTG Leu	GAA Glu 70	GCC Ala	ATG Met	TTG Leu	TTT Phe	GCT Ala 75	ATT Ile	GAT Asp	GAA Glu	ATC Ile	AAC Asn 80	AAA Lys	GAT Asp	GAT Asp	TAC Tyr	1315
•	TTG Leu 85	CTA Leu	CCA Pro	GGA Gly	GTG Val	AAG Lys 90	TTG Leu	GGT Gly	GTT Val	CAC His	ATT Ile 95	TTG Leu	GAT Asp	ACA Thr	TGT Cys	TCA Ser 100	1363
25	AGG Arg	GAT Asp	ACC Thr	TAT Tyr	GCA Ala 105	Leu	GAG Glu	CAA Gln	TCA Ser	CTG Leu 110	GAG Glu	TTT Phe	GTC Val	AGG Arg	GCA Ala 115	TCT Ser	1411
30	TTG Leu	ACA Thr	AAA Lys	GTG Val 120	GAT Asp	GAA Glu	GCT Ala	GAG Glu	TAT Tyr 125	ATG Met	TGT Cys	CCT Pro	GAT Asp	GGA Gly 130	TCC Ser	TAT Tyr	1459
	GCC Ala	ATT Ile	CAA Gln 135	GAA Glu	AAC Asn	ATC Ile	CCA Pro	CTT Leu 140	Leu	ATT Ile	GCA Ala	GGG Gly	GTC Val 145	ATT Ile	GGT Gly	GGC Gly	1507
35	TCT Ser	TAT Tyr 150	Ser	AGT Ser	GTT Val	TCC Ser	ATA Ile 155	CAG Gln	GTG Val	GCA Ala	AAC Asn	CTG Leu 160	CTG Leu	CGG Arg	CTC Leu	TTC Phe	1555
	CAG Gln 165	ATC Ile	CCT Pro	CAG Gln	ATC Ile	AGC Ser 170	TAC Tyr	GCA Ala	TCC Ser	ACC Thr	AGC Ser 175	GCC Ala	AAA Lys	CTC Leu	AGT Ser	GAT Asp 180	1603
40	AAG Lys	TCG Ser	CGC Arg	TAT Tyr	GAT Asp 185	TAC Tyr	TTT Phe	GCC Ala	AGG Arg	ACC Thr 190	GTG Val	CCC Pro	CCC Pro	GAC Asp	TTC Phe 195	TAC Tyr	1651
45	CAG Gln	GCC Ala	AAA Lys	GCC Ala 200	ATG Met	GCT Ala	GAG Glu	ATC Ile	TTG Leu 205	CGC Arg	TTC Phe	TTC Phe	AAC Asn	TGG Trp 210	ACC Thr	TAC Tyr	1699
	GTG Val	TCC Ser	ACA Thr 215	GTA Val	GCC Ala	TCC Ser	GAG Glu	GGT Gly 220	GAT Asp	TAC Tyr	GGG Gly	GAG Glu	ACA Thr 225	GGG Gly	ATC Ile	GAG Glu	1747

						•				٠.	,	•	•	٠.				
	GCC Ala	TTC Phe 230	GAG Glu	CAG Gln	GAA Glu	GCC Ala	CGC Arg 235	CTG Leu	CGC Arg	AAC Asn	ATC Ile	TGC Cys 240	ATC Ile	GCT Ala	ACG Thr	GCG Ala	17	95
5.	GAG Glu 245	AAG Lys	GTG Val	GGC Gly	CGC Arg	TCC Ser 250	AAC Asn	ATC Ile	CGC Arg	AAG Lys	TCC Ser 255	TAC	GAC Asp	AGC Ser	GTG Val	ATC Ile 260	18	43
,	CGA Arg	GAA Glu	CTG Leu	TTG Leu	CAG Gln 265	AAG Lys	CCC Pro	AAC Asn	GCG Ala	CGC Arg 270	GTC Val	GTG Val	GTC Val	CTC Leu	TTC Phe 275	ATG Met	18	91
10 •				GAC Asp 280													19	39
15	GCC Ala	TCC Ser	TTC Phe 295	ACC Thr	TGG Trp	GTG Val	GCC Ala	AGC Ser 300	GAC Asp	GGT Gly	TGG Trp	GGC Gly	GCG Ala 305	CAG Gln	GAG Glu	AGC Ser	19	87
**(GGC Gly													20	35
20	CTG Leu 325	GCC Ala	TCC Ser	CAG Gln	CCT Pro	GTC Val 330	CGC Arg	CAG Gln	TTC Phe	GGC Gly	CGC Arg 335	TAC Tyr	TTC Phe	CAG Gln	AGC Ser	CTC Leu 340	20	83
- 101	AAC Asn	CCC Pro	TAC Tyr	AAC Asn	AAC Asn 345	CAC His	CGC Arg	AAC Asn	CCC Pro	TGG Trp 350	TTC Phe	CGG Arg	GAC Asp	TTC Phe	TGG Trp 355	GAG Glu	21	31
25	CAA Gln	AAG Lys	TTT Phe	CAG Gln 360	TGC Cys	AGC Ser	CTC Leu	CAG Gln	AAC Asn 365	AAA Lys	CGC Arg	AAC Asn	CAC His	AGG Arg 370	CGC Arg	GTC Val	21	79、
30	TGC Cys	GAA Glu	AAG Lys 375	CAC His	CTG Leu	GCC Ala	ATC:	GAC Asp 380	AGC Ser	AGC Ser	AAC Asn	TAC	GAG G1u 385	CAA Gln	GAG Glu	TCC Ser	22	27
00	AAG Lys	ATC Ile 390	ATG Met	TTT Phe	GTG Val	GTG Val	AAC Asn 395	GCG Ala	GTG Val	TAT	GCC Ala	ATG Met 400	GCC Ala	CAC His	GCT Ala	TTG Leu	22	75 [°]
35	CAC His 405	Lys	ATG Met	CAG Gln	CGC Arg	ACC Thr 410	CTC Leu	TGT Cys	CCC Pro	AAC Asn	ACT Thr 415	ACC Thr	AAG Lys	CTT Leu	TGT Cys	GAT Asp 420	23	23
	GCT Ala	ATG Met	AAG Lys	ATC Ile	CTG Leu 425	GAT Asp	GGG Gly	AAG Lys	AAG Lys	TTG Leu 430	TAC Tyr	AAG Lys	GAT Asp	TAC Tyr	TTG Leu 435	CTG Leu	23	71
40	AAA Lys	ATC Ile	AAC Asn	TTC Phe 440	ACG Thr	GCT Ala	CCA Pro	Phe	AAC Asn 445	CCA Pro	AAT Asn	AAA Lys	GAT Asp	GCA Ala 450	GAT Asp	AGC Ser	24	19
45	ATA Ile	GTC Val	AAG Lys 455	TTT Phe	GAC Asp	ACT Thr	TTT Phe	GGA Gly 460	GAT Asp	GGA Gly	ATG Met	GGG Gly	CGA Arg 465	TAC Tyr	AAC Asn	GTG Val	24	57
. '				CAA Gln													25	L5
50				GAA Glu													250	63 ⁻

											Ь		- •				٠
	CGG Arg	AAC Asn	TCA Ser	GTC Val	CCC Pr 505	Thr	TCC Ser	CAG Gln	TGC Cys	AGC Ser 510	GAC Asp	CCC Pro	TGT Cys	GCC Ala	Pro 515	AAT Asn	2611
5	GAA Glu	ATG Met	AAG Lys	AAT Asn 520	ATG Met	CAA Gln	CCA Pro	GGG Gly	GAT Asp 525	GTC Val	TGC	TGC Cys	TGG Trp	ATT Ile 530	Cys	ATC Ile	2659
	CCC	TGT Cys	GAA Glu 535	Pro	TAC Tyr	GAA Glu	TAC Tyr	CTG Leu 540	GCT Ala	GAT Asp	GAG Glu	TTT Phe	ACC Thr 545	Cys	ATG Met	GAT Asp	2707
10	TGT Cys	GGG Gly 550	TCT	GGA Gly	CAG Gln	TGG Trp	CCC Pro 555	ACT Thr	GCA Ala	GAC Asp	CTA Leu	ACT Thr 560	GGA Gly	TGC Cys	TAT Tyr	GAC Asp	2755
15	CTT Leu 565	Pro	GAG Glu	GAC Asp	TAC Tyr	ATC Ile 570	AGG Arg	TGG Trp	GAA Glu	GAC Asp	GCC Ala 575	TGG Trp	GCC Ala	ATT Ile	GGC Gly	CCA Pro 580	2803
	GTC Val	ACC Thr	ATT Ile	GCC Ala	TGT Cys 585	CTG Leu	GGT Gly	TTT Phe	ATG Met	TGT Cys 590	ACA Thr	TGC Cys	ATG Met	GTT Val	GTA Val 595	ACT Thr	2851
20	GTT Val	TTT Phe	ATC Ile	AAG Lys 600	CAC His	AAC Asn	AAC Asn	ACA Thr	CCC Pro 605	TTG Leu	GTC Val	AAA Lys	GCA Ala	TCG Ser 610	GGC Gly	CGA Arg	2899
	GAA Glu	CTC Leu	TGC Cys 615	TAC Tyr	ATC Ile	TTA Leu	TTG Leu	TTT Phe 620	GGG Gly	GTT Val	GGC Gly	CTG Leu	TCA Ser 625	TAC Tyr	TGC Cys	ATG Met	2947
25	ACA Thr	TTC Phe 630	TTC Phe	TTC Phe	ATT Ile	GCC Ala	AAG Lys 635	CCA Pro	TCA Ser	CCA Pro	GTC Val	ATC Ile 640	TGT Cys	GCA Ala	TTG Leu	CGC Arg	2995
30	CGA Arg 645	CTC Leu	GGG Gly	CTG Leu	GGG Gly	AGT Ser 650	TCC Ser	TTC Phe	GCT Ala	ATC Ile	TGT Cys 655	TAC Tyr	TCA Ser	GCC Ala	CTG Leu	CTG Leu 660	3043
	ACC Thr	AAG Lys	ACA Thr	AAC Asn	TGC Cys 665	ATT Ile	GCC Ala	CGC Arg	ATC Ile	TTC Phe 670	GAT Asp	GGG Gly	GTC Val	AAG Lys	AAT Asn 675	GGC Gly	3091
35	GCT Ala	CAG Gln	AGG Arg	CCA Pro 680	AAA Lys	TTC Phe	ATC Ile	AGC Ser	CCC Pro 685	AGT Ser	TCT Ser	CAG Gln	GTT Val	TTC Phe 690	ATC Ile	TGC Cys	3139
	CTG Leu	GGT Gly	CTG Leu 695	ATC Ile	CTG Leu	GTG Val	CAA Gln	ATT Ile 700	GTG Val	ATG Met	GTG Val	TCT Ser	GTG Val 705	TGG Trp	CTC Leu	ATC Ile	3187
40	CTG Leu	GAG Glu 710	GCC Ala	CCA Pro	GGC Gly	ACC Thr	AGG Arg 715	AGG Arg	TAT Tyr	ACC Thr	CTT Leu	GCA Ala 720	GAG Glu	AAG Lys	CGG Arg	GAA Glu	3235
45	ACA Thr 725	GTC Val	ATC Ile	CTA Leu	AAA Lys	TGC Cys 730	AAT Asn	GTC Val	AAA Lys	GAT Asp	TCC Ser 735	AGC Ser	ATG Met	TTG Leu	ATC Ile	TCT Ser 740	3283
	CTT Leu	ACC Thr	TAC Tyr	GAT Asp	GTG Val 745	ATC Ile	CTG Leu	GTG Val	ATC Ile	TTA Leu 750	TGC Cys	ACT Thr	GTG Val	TAC Tyr	GCC Ala 755	TTC Phe	3331
50	AAA Lys	ACG Thr	CGG Arg	AAG Lys 760	TGC Cys	CCA Pro	GAA Glu	AAT Asn	TTC Phe 765	AAC Asn	GAA Glu	GCT Ala	AAG Lys	TTC Phe 770	ATA Ile	GGT Gly	3379

		:
	TTT ACC ATG TAC ACC ACG TGC ATC ATC TGG TTG GCC TTC CTC CCT ATA Phe Thr Met Tyr Thr Thr Cys Ile Ile Trp Leu Ala Phe Leu Pro Ile 775 780 785	342
5	TTT TAT GTG ACA TCA AGT GAC TAC AGA GTG CAG ACG ACA ACC ATG TGC Phe Tyr Val Thr Ser Ser Asp Tyr Arg Val Gln Thr Thr Met Cys 790 795 800	347
*	ATC TCT GTC AGC CTG AGT GGC TTT GTG GTC TTG GGC TGT TTG TTT GCA Ile Ser Val Ser Leu Ser Gly Phe Val Val Leu Gly Cys Leu Phe Ala 805 810 815 820	352
10	CCC AAG GTT CAC ATC ATC CTG TTT CAA CCC CAG AAG AAT GTT GTC ACA Pro Lys Val His Ile Ile Leu Phe Gln Pro Gln Lys Asn Val Val Thr 825 830 835	357
15	CAC AGA CTG CAC CTC AAC AGG TTC AGT GTC AGT GGA ACT GGG ACC ACA His Arg Leu His Leu Asn Arg Phe Ser Val Ser Gly Thr Gly Thr Thr 840 845 850	361
	TAC TCT CAG TCC TCT GCA AGC ACG TAT GTG CCA ACG GTG TGC AAT GGG Tyr Ser Gln Ser Ser Ala Ser Thr Tyr Val Pro Thr Val Cys Asn Gly 855 860 865	366
20	CGG GAA GTC CTC GAC TCC ACC TCA TCT CTG TGATTGTGAA TTGCAGTTCA Arg Glu Val Leu Asp Ser Thr Thr Ser Ser Leu 870 875 880	372
	GTTCTTGTGT TTTTAGACTG TTAGACAAAA GTGCTCACGT GCAGCTCCAG AATATGGAAA	378
* = '	CAGAGCAAAA GAACAACCCT AGTACCTTTT TTTAGAAACA GTACGATAAA TTATTTTTGA	384
	GGACTGTATA TAGTGATGTG CTAGAACTTT CTAGGCTGAG TCTAGTGCCC CTATTATTAA	390
25	CAGTCCGAGT GTACGTACC	391
	(2) INFORMATION FOR SEQ ID NO:6:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 879 amino acids (B) TYPE: amino acid	
30	(D) TOPOLOGY: linear	4
*	(ii) MOLECULE TYPE: protein	;
7 1	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
* ,*	Met Lys Met Leu Thr Arg Leu Gln Val Leu Thr Leu Ala Leu Phe Ser 1 5 10 15	
35	Lys Gly Phe Leu Leu Ser Leu Gly Asp His Asn Phe Leu Arg Arg Glu 20 25 30	
	Ile Lys Ile Glu Gly Asp Leu Val Leu Gly Gly Leu Phe Pro Ile Asn 35 40 45	
40	Glu Lys Gly Thr Gly Thr Glu Glu Cys Gly Arg Ile Asn Glu Asp Arg 50 55 60	

Gly Ile Gln Arg Leu Glu Ala Met Leu Phe Ala Ile Asp Glu Ile Asp 65 70 75 80

Asp Thr Cys Ser Arg Asp Thr Tyr Ala Leu Glu Gln Ser Leu Glu Phe Val Arg Ala Ser Leu Thr Lys Val Asp Glu Ala Glu Tyr Met Cys Pro 115 120 125 Asp Gly Ser Tyr Ala Ile Gln Glu Asn Ile Pro Leu Leu Ile Ala Gly 135 Val Ile Gly Gly Ser Tyr Ser Ser Val Ser Ile Gln Val Ala Asn Leu 145 150 150 160 Leu Arg Leu Phe Gln Ile Pro Gln Ile Ser Tyr Ala Ser Thr Ser Ala 10 170 Lys Leu Ser Asp Lys Ser Arg Tyr Asp Tyr Phe Ala Arg Thr Val Pro 180 185 190 Pro Asp Phe Tyr Gln Ala Lys Ala Met Ala Glu Ile Leu Arg Phe Phe Asn Trp Thr Tyr Val Ser Thr Val Ala Ser Glu Gly Asp Tyr Gly Glu 210 215 220 Thr Gly Ile Glu Ala Phe Glu Gln Glu Ala Arg Leu Arg Asn Ile Cys Ile Ala Thr Ala Glu Lys Val Gly Arg Ser Asn Ile Arg Lys Ser Tyr 245 250 255 20 Asp Ser Val Ile Arg Glu Leu Leu Gln Lys Pro Asn Ala Arg Val Val Val Leu Phe Met Arg Ser Asp Ser Arg Glu Leu Ile Ala Ala Ala 275 280 285 Ser Arg Ala Asn Ala Ser Phe Thr Trp Val Ala Ser Asp Gly Trp Gly 295 Ala Gln Glu Ser Ile Ile Lys Gly Ser Glu His Val Ala Tyr Gly Asp Ile Thr Leu Glu Leu Ala Ser Gln Pro Val Arg Gln Phe Gly Arg Tyr 330 Phe Gln Ser Leu Asn Pro Tyr Asn Asn His Arg Asn Pro Trp Phe Arg 340 345 350 Asp Phe Trp Glu Gln Lys Phe Gln Cys Ser Leu Gln Asn Lys Arg Asn His Arg Arg Val Cys Glu Lys His Leu Ala Ile Asp Ser Ser Asn Tyr 370 380 Glu Gln Glu Ser Lys Ile Met Phe Val Val Asn Ala Val Tyr Ala Met 390 Ala His Ala Leu His Lys Met Gln Arg Thr Leu Cys Pro Asn Thr Thr 40 Lys Leu Cys Asp Ala Met Lys Ile Leu Asp Gly Lys Lys Leu Tyr Lys Ile Asn Phe Thr Ala Pro Phe Asn Pro Asn Lys

Asp Ala Asp Ser Ile Val Lys Phe Asp Thr Phe Gly Asp Gly Met Gly Arg Tyr Asn Val Phe Asn Phe Gln Asn Val Gly Gly Lys Tyr Ser Tyr 465 470 475 480 5 Leu Lys Val Gly His Trp Ala Glu Thr Leu Ser Leu Asp Val Asn Ser Ile His Trp Ser Arg Asn Ser Val Pro Thr Ser Gln Cys Ser Asp Pro Cys Ala Pro Asn Glu Met Lys Asn Met Gln Pro Gly Asp Val Cys Cys 520 10 Trp Ile Cys Ile Pro Cys Glu Pro Tyr Glu Tyr Leu Ala Asp Glu Phe Thr Cys Met Asp Cys Gly Ser Gly Gln Trp Pro Thr Ala Asp Leu Thr Gly Cys Tyr Asp Leu Pro Glu Asp Tyr Ile Arg Trp Glu Asp Ala Trp Ala Ile Gly Pro Val Thr Ile Ala Cys Leu Gly Phe Met Cys Thr Cys Met Val Val Thr Val Phe Ile Lys His Asn Asn Thr Pro Leu Val Lys 20 Ala Ser Gly Arg Glu Leu Cys Tyr Ile Leu Leu Phe Gly Val Gly Leu Ser Tyr Cys Met Thr Phe Phe Phe Ile Ala Lys Pro Ser Pro Val Ile 25 Cys Ala Leu Arg Arg Leu Gly Leu Gly Ser Ser Phe Ala Ile Cys Tyr Ser Ala Leu Leu Thr Lys Thr Asn Cys Ile Ala Arg Ile Phe Asp Gly Val Lys Asn Gly Ala Gln Arg Pro Lys Phe Ile Ser Pro Ser Ser Gln Val Phe Ile Cys Leu Gly Leu Ile Leu Val Gln Ile Val Met Val Ser 690 Val Trp Leu Ile Leu Glu Ala Pro Gly Thr Arg Arg Tyr Thr Leu Ala Glu Lys Arg Glu Thr Val Ile Leu Lys Cys Asn Val Lys Asp Ser Ser Met Leu Ile Ser Leu Thr Tyr Asp Val Ile Leu Val Ile Leu Cys Thr Val Tyr Ala Phe Lys Thr Arg Lys Cys Pro Glu Asn Phe Asn Glu Ala
755 760 765 Lys Phe Ile Gly Phe Thr Met Tyr Thr Thr Cys Ile Ile Trp Leu Ala Phe Leu Pro Ile Phe Tyr Val Thr Ser Ser Asp Tyr Arg Val Gln Thr 785 790 795 800

		•
٠,	Thr Thr Met Cys Ile Ser Val Ser Leu Ser Gly Phe Val Val Leu Gly 805 810 815	
•	Cys Leu Phe Ala Pro Lys Val His Ile Ile Leu Phe Gln Pro Gln Lys 820 825 830	
5	Asn Val Val Thr His Arg Leu His Leu Asn Arg Phe Ser Val Ser Gly 835 840 845	
*	Thr Gly Thr Thr Tyr Ser Gln Ser Ser Ala Ser Thr Tyr Val Pro Thr 850 860	· ·
10	Val Cys Asn Gly Arg Glu Val Leu Asp Ser Thr Thr Ser Ser Leu 865 870 875	(0)
	(2) INFORMATION FOR SEQ ID NO:7:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4085 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both 	. (0)
	(ii) MOLECULE TYPE: cDNA	
20	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3703912 (D) OTHER INFORMATION: /product= "HUMAN MGLUR5A"	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	CAGCTCGGCT GTTCTGCGCA CGCTGAGCGG AGGGAATGAG CTTGAGATCA TCTTGGGGGG	60
	GAAGCCGGGG ACTGGAGAGG CCGGCTCTGC CCTGCTGATC CCCGTGGCCC AACTTTTCGG	120
25	GGGGCTAGCT AGACCGAGTC TCACTGCTCG CAGCGCAGCC AACAGGGGGG TTTAGAAGAT	180
	CATGACCACA TGGATCATCT AACTAAATGG TACATGGGGA CAAAATGGTC CTTTAGAAAA	240
	TACATCTGAA TTGCTGGCTA ATTTCTTGAT TTGCGACTCA ACGTAGGACA TCGCTTGTTC	300
	GTAGCTATCA GAACCCTCCT GAATTTTCCC CACCATGCTA TCTTTATTGG CTTGAACTCC	360
30	TTTCCTAAA ATG GTC CTT CTG TTG ATC CTG TCA GTC TTA CTT TGG AAA Met Val Leu Leu Leu Ile Leu Ser Val Leu Leu Trp Lys 1 5 10	408
·	GAA GAT GTC CGT GGG AGT GCA CAG TCC AGT GAG AGG AGG GTG GCT Glu Asp Val Arg Gly Ser Ala Gln Ser Ser Glu Arg Arg Val Val Ala 15 20 25	456
35	CAC ATG CCG GGT GAC ATC ATT ATT GGA GCT CTC TTT TCT GTT CAT CAC His Met Pro Gly Asp Ile Ile Ile Gly Ala Leu Phe Ser Val His His 30 45	504
40	CAG CCT ACT GTG GAC AAA GTT CAT GAG AGG AAG TGT GGG GCG GTC CGT Gln Pro Thr Val Asp Lys Val His Glu Arg Lys Cys Gly Ala Val Arg 50 55 60	552
- -	GAA CAG TAT GGC ATT CAG AGA GTG GAG GCC ATG CTG CAT ACC CTG GAA Glu Gln Tyr Gly Ile Gln Arg Val Glu Ala Met Leu His Thr Leu Glu	600

					•			,		_	_	:				8	
	AGG Arg	ATC Ile	AAT Asn 80	TCA Ser	GAC Asp	CCC Pro	ACA Thr	CTC Leu 85	Leu	CCC	AAC Asn	ATC Ile	ACA Thr 90	CTG Leu	GGC Gly	TGT Cys	648
5	GAG Glu	ATA Ile 95	AGG Arg	GAC Asp	TCC	TGC	TGG Trp 100	CAT H1s	TCG Ser	GCT Ala	GTG Val	GCC Ala 105	Leu	GAG Glu	CAG Gln	AGC Ser	696
	ATT Ile 110	Glu	TTC Phe	ATA Ile	AGA Arg	GAT Asp 115	TCC Ser	CTC Leu	ATT Ile	TCT Ser	TCA Ser 120	Glu	GAG Glu	GAA Glu	GAA Glu	GGC Gly 125	744
10	TTG Leu	GTA Val	CGC Arg	TGT Cys	GTG Val 130	Asp	GGC Gly	TCC Ser	TCC Ser	TCT Ser 135	TCC Ser	TTC Phe	CGC Arg	TCC Ser	AAG Lys 140	•	792
15	CCC Pro	ATA Ile	GTA Val	GGG Gly 145	GTC Val	ATT Ile	GGG Gly	CCT Pro	GGC Gly 150	TCC Ser	AGT Ser	TCT Ser	GTA Val	GCC Ala 155	Ile	CAG Gln	840
•	GTC Val	Gln	AAT Asn 160	TTG Leu	CTC Leu	CAG Gln	CTT Leu	TTC Phe 165	AAC Asn	ATA Ile	CCT	CAG Gln	ATT Ile 170	GCT Ala	TAC Tyr	TCA	888
20	GCA Ala	ACC Thr 175	AGC Ser	ATG Met	GAT Asp	CTG Leu	AGT Ser 180	GAC Asp	AAG Lys	ACT Thr	CTG Leu	TTC Phe 185	AAA Lys	TAT	TTC Phe	ATG Met	936
	AGG Arg 190	GTT Val	GTG Val	CCT Pro	TCA Ser	GAT Asp 195	GCT Ala	CAG Gln	CAG Gln	GCA Ala	AGG Arg 200	GCC Ala	ATG Met	GTG Val	GAC Asp	ATA Ile 205	984
25	GTG Val	AAG Lys	AGG Arg	TAC Tyr	AAC Asn 210	TGG	ACC Thr	TAT Tyr	GTA Val	TCA Ser 215	GCC Ala	GTG Val	CAC His	ACA Thr	GAA Glu 220	GGC Gly	1032
30	AAC Asn	TAT Tyr	GGA Gly	GAA Glu 225	AGT Ser	GGG Gly	ATG Met	GAA Glu	GCC Ala 230	TCC	AAA Lys	GAT Asp	ATG Met	TCA Ser 235	GCG Ala	AAG Lys	1080
	GAA Glu	GGG Gly	ATT 11e 240	TGC Cys	ATC Ile	GCC Ala	CAC His	TCT Ser 245	TAC Tyr	AAA Lys	ATC Ile	TAC	AGT Ser 250	AAT Asn	GCA Ala	GGG Gly	1128
35	GAG Glu	CAG Gln 255	AGC Ser	TTT Phe	GAT Asp	AAG Lys	CTG Leu 260	CTG Leu	AAG Lys	AAG Lys	CTC Leu	ACA Thr 265	AGT Ser	CAC His	TTG Leu	CCC Pro	1176
•	AAG Lys 270	GCC Ala	CGG Arg	GTG Val	GTG Val	GCC Ala 275	TGC Cys	TTC Phe	TGT Cys	GAG Glu	GGC Gly 280	ATG Met	ACG Thr	GTG Val	AGA Arg	GGT Gly 285	1224
40	CTG Leu	CTG Leu	ATG Met	GCC Ala	ATG Met 290	AGG Arg	CGC Arg	CTG Leu	GGT Gly	CTA Leu 295	GCG Ala	GGA Gly	GAA Glu	TTT Phe	CTG Leu 300	CTT Leu	1272
45	CTG Leu	GGC Gly	AGT Ser	GAT Asp 305	GGC Gly	TGG Trp	GCT Ala	GAC Asp	AGG Arg 310	TAT Tyr	GAT Asp	GTG Val	ACA Thr	GAT Asp 315	GGA Gly	TAT Tyr	1320
*	CAG Gln	CGA Arg	GAA Glu 320	GCT Ala	GTT Val	GGT Gly	GGC Gly	ATC Ile 325	ACA Thr	ATC Ile	AAG Lys	CTC Leu	CAA Gln 330	TCT Ser	CCC Pro	GAT Asp	1368
50	GTC Val	AAG Lys 335	TGG Trp	TTT Phe	GAT Asp	GAT Asp	TAT Tyr 340	TAT Tyr	CTG Leu	AAG Lys	CTC Leu	CGG Arg 345	CCA Pro	GAA Glu	ACA Thr	AAC Asn	1416
			4														

				Ť						٠	_						
	CAC His 350	Arg	A AA(g Asi	C CCI	TGG Trp	TTT Phe 355	GIn	GAA Glu	TTI Phe	TGG	G1r 360	ı His	CGT Arg	TT:	r cac e Gli	TGC Cys 365	1464
5	CGA Arg	Leu	G GAA	GCG Ala	TTT Phe 370	Pro	CAG Gln	GAG Glu	AAC Asn	AGC Ser 375	Lys	TAC	AAC Asn	AA(Ly:	G ACT Thi 380	TGC Cys	1512
	AAT Asn	AGT Ser	TCI Ser	CTG Leu 385	Thr	CTG Leu	AAA Lys	ACA Thr	CAT His 390	His	GTT Val	CAG Gln	GAT Asp	TC(Ser 395	Lys	ATG Met	1560
10	GGA Gly	TTT	GTG Val 400	. ile	AAC Asn	GCC Ala	ATC Ile	TAT Tyr 405	Ser	ATG Met	GCC Ala	TAT Tyr	GGG Gly 410	Leu	CAC His	AAC Asn	1608
15	ATG Met	CAG Gln 415	Met	TCC	CTC Leu	TGC Cys	CCA Pro 420	GGC Gly	TAT Tyr	GCA Ala	GGA Gly	CTC Leu 425	TGT Cys	GAT Asp	GCC Ala	ATG Met	1656
	AAG Lys 430	CCA Pro	ATT Ile	GAT Asp	GGA Gly	CGG Arg 435	AAA Lys	CTT	TTG Leu	GAG Glu	TCC Ser 440	CTG Leu	ATG Met	AAA Lys	ACC Thr	AAT Asn 445	1704
20	TTT Phe	ACT Thr	GGG Gly	GTT Val	TCT Ser 450	GGA Gly	GAT Asp	ACG Thr	ATC Ile	CTA Leu 455	TTC Phe	GAT Asp	GAG Glu	AAT Asn	GGA Gly 460	GAC Asp	1752
	TCT Ser	CCA	GGA Gly	AGG Arg 465	TAT Tyr	GAA Glu	ATA Ile	ATG Met	AAT Asn 470	TTC Phe	AAG Lys	GAA Glu	ATG Met	GGA Gly 475	AAA Lys	GAT Asp	1800
25	TAC Tyr	TTT Phe	GAT Asp 480	TAT Tyr	ATC Ile	AAC Asn	GTT Val	GGA Gly 485	AGT Ser	TGG Trp	GAC Asp	AAT Asn	GGA Gly 490	GAA Glu	TTA Leu	AAA Lys	1848
30	ATG Met	GAT Asp 495	GAT	GAT Asp	GAA Glu	GTA Val	TGG Trp 500	TCC Ser	AAG Lys	AAA Lys	AGC Ser	AAC Asn 505	ATC Ile	ATC Ile	AGA Arg	TCT Ser	1896
•	GTG Val 510	TGC Cys	AGT Ser	GAA Glu	CCA Pro	TGT Cys 515	GAG Glu	AAA Lys	GGC Gly	CAG Gln	ATC Ile 520	AAG Lys	GTG Val	ATC Ile	CGA Arg	AAG Lys 525	1944
35	GGA Gly	GAA Glu	GTC Val	AGC Ser	TGT Cys 530	TGT Cys	TGG Trp	ACC Thr	TGT Cys	ACA Thr 535	CCT Pro	TGT Cys	AAG Lys	GAG Glu	AAT Asn 540	GAG Glu	1992
	TAT Tyr	GTC Val	TTT Phe	GAT Asp 545	GAG Glu	TAC Tyr	ACA Thr	TGC Cys	AAG Lys 550	GCA Ala	TGC Cys	CAA Gln	CTG Leu	GGG Gly 555	TCT Ser	TGG Trp	2040
40	CCC Pro	ACT Thr	GAT Asp 560	GAT Asp	CTC Leú	ACA Thr	GGT Gly	TGT Cys 565	GAC Asp	TTG Leu	ATC Ile	CCA Pro	GTA Val 570	CAG Gln	TAT Tyr	CTT Leu	2088
45	CGA Arg	TGG Trp 575	GGT	GAC Asp	CCT Pro	GIu	CCC Pro 580	ATT Ile	GCA Ala	GCT Ala	GTG Val	GTG Val 585	TTT Phe	GCC Ala	TGC Cys	CTT Leu	2136
	GGC Gly 590	CTC Leu	CTG Leu	GCC Ala	ACC Thr	CTG Leu 595	TTT Phe	GTT Val	ACT Thr	Val	GTC Val 600	TTC Phe	ATC Ile	ATT Ile	TAC Tyr	CGT Arg 605	2184
50	GAT Asp	ACA Thr	CCA '	Val	GTC Val 610	AAG Lys	TCC Ser	TCA Ser	Ser	AGG Arg 615	GAA Glu	CTC Leu	TGC Cys	TAC Tyr	ATT Ile 620	ATC. Ile	2232

				: , , ,	*				٠.	-			-		`.	•		•
																GCG Ala		2280
5	AAG Lys	CCC Pro	AAA Lys 640	Gln	ATT	TAC	TGC Cys	TAC Tyr 645	CTT Leu	CAG Gln	AGA Arg	ATT	GGC Gly 650	ATT	GGT Gly	CTC Leu	· .	2328
	TCC Ser	CCA Pro 655	Ala	ATG Met	AGC Ser	TAC	TCA Ser 660	Ala	CTT Leu	GTA Val	ACA Thr	AAG Lys 665	ACC Thr	AAC Asn	CGT	ATT Ile	0(0	2376
10	GCA Ala 670	AGG Arg	ATC Ile	CTG Leu	GCT Ala	GGC Gly 675	AGC Ser	AAG Lys	AAG Lys	AAG Lys	ATC Ile 680	TGT Cys	ACC	CCC Pro	AAG Lys	CCC Pro 685		2424
15	AGA Arg	TTC Phe	ATG Met	AGT Ser	GCC Ala 690	TGT Cys	GCC Ala	CAG Gln	CTA Leu	GTG Val 695	ATT Ile	GCT Ala	TTC Phe	ATT Ile	CTC Leu 700	ATA Ile		2472
, , , , , , , , , , , , , , , , , , ,	TGC Cys	ATC Ile	CAG Gln	TTG Leu 705	GGC Gly	ATC Ile	ATC Ile	GTT Val	GCC Ala 710	CTC Leu	TTT Phe	ATA Ile	ATG Met	GAG Glu 715	CCT	CCT Pro	est.	2520
20	GAC Asp	ATA Ile	ATG Met 720	CAT His	GAC Asp	TAC Tyr	CCA Pro	AGC Ser 725	ATT Ile	CGA Arg	GAA Glu	GTC Val	TAC Tyr 730	CTG Leu	ATC Ile	TGT Cys		2568
	AAC Asn	ACC Thr 735	ACC Thr	AAC Asn	CTA Leu	GGA Gly	GTT Val 740	GTC Val	ACT Thr	CCA Pro	CTT Leu	GGA Gly 745	AAC Asn	AAT Asn	GGA Gly	TTG Leu	*	2616
25	TTG Leu 750	ATT Ile	TTG Leu	AGC	TGC Cys	ACC Thr 755	TTC Phe	TAT Tyr	GCG Ala	TTC Phe	AAG Lys 760	ACC Thr	AGA Arg	AAT Asn	GTT Val	CCA Pro 765		2664
30	GCT. Ala	AAC Asn	TTC Phe	CCC	GAG Glu 770	GCC Ala	AAG Lys	TAT Tyr	ATC Ile	GCC Ala 775	TTC Phe	ACA Thr	ATG Met	TAC Tyr	ACG Thr 780	ACC Thr	e de despe	2712
•	TGC Cys	ATT Ile	ATA Ile	TGG Trp 785	CTA Leu	GCT Ala	TTT Phe	GTT Val	CCA Pro 790	ATC Ile	TAC Tyr	TTT Phe	GGC Gly	AGC Ser 795	AAC Asn	TAC Tyr		2760
35	AAA Lys	ATC Ile	ATC Ile 800	ACC Thr	ATG Met	TGT Cys	TTC Phe	TCG Ser 805	GTC Val	AGC Ser	CTC Leu	AGT Ser	GCC Ala 810	ACA Thr	GTG Val	GCC Ala	•	2808
	CTA Leu	GGC Gly 815	TGC Cys	ATG Met	TTT Phe	GTG Val	CCG Pro 820	AAG Lys	GTG Val	TAC Tyr	ATC Ile	ATC Ile 825	CTG Leu	GCC Ala	AAA Lys	CCA Pro	*	2856
40	GAG Glu 830	AGA Arg	AAC Asn	GTG Val	CGC Arg	AGC Ser 835	GCC Ala	TTC Phe	ACC Thr	ACA Thr	TCT Ser 840	ACC Thr	GTG Val	GTG Val	CGC Arg	ATG Met 845	•	2904
45	CAT His	GTA Val	GGG Gly	GAT Asp	GGC Gly 850	AAG Lys	TCA Ser	TCC Ser	TCC Ser	GCA Ala 855	GCC Ala	AGC Ser	AGA Arg	TCC Ser	AGC Ser 860	AGC Ser		2952
*	CTA Leu	GTC Val	AAC Asn	CTG Leu 865	TGG Trp	AAG Lys	AGA Arg	AGG Arg	GGC Gly 870	TCC Ser	TCT Ser	GGG Gly	GAA Glu	ACC Thr 875	TTA Leu	AGT Ser		3000
50	TCC Ser	AAT Asn	GGA Gly 880	AAA Lys	TCC Ser	GTC Val	ACG Thr	TGG Trp 885	GCC Ala	CAG Gln	AAT Asn	GAG Glu	AAG Lys 890	AGC Ser	AGC S r	CGG Arg		3048
					· .	•						•			1.00			

					•						•						
	GGG Gly	CAG Gln 895	CAC His	CTG Leu	TGG Trp	CAG Gln	CGC Arg 900	CTG Leu	TCC Ser	ATC Ile	CAC His	ATC Ile 905	AAC Asn	AAG Lys	AAA Lys	GAA Glu	3096
· 5	AAC Asn 910	Pro	AAC Asn	CAA Gln	ACG Thr	GCC Ala 915	GTC Val	ATC Ile	AAG Lys	CCC	TTC Phe 920	CCC Pro	AAG Lys	AGC Ser	ACG Thr	GAG Glu 925	3144
	AGC Ser	CGT Arg	GGC Gly	CTG Leu	GGC Gly 930	GCT Ala	GGC Gly	GCT Ala	GGC Gly	GCA Ala 935	GGC Gly	GGG Gly	AGC Ser	GCT Ala	GGG Gly 940	Gly	3192
10	GTG Val	GGG Gly	GCC Ala	ACG Thr 945	GGC Gly	GGT Gly	GCG Ala	GGC Gly	TGC Cys 950	GCA Ala	GGC Gly	GCC Ala	GGC Gly	CCA Pro 955	GGC Gly	GGG Gly	3240
15	CCC Pro	GAG Glu	TCC Ser 960	CCA Pro	GAC Asp	GCC Ala	GGC Gly	CCC Pro 965	AAG Lys	GCG Ala	CTG Leu	TAT Tyr	GAT Asp 970	GTG Val	GCC Ala	GAG Glu	3288
	GCT Ala	GAG Glu 975	GAG Glu	CAC His	TTC Phe	CCG Pro	GCG A1a 980	CCC Pro	GCG Ala	CGG Arg	CCG Pro	CGC Arg 985	TCA Ser	CCG Pro	TCG Ser	CCC Pro	3336
20	ATC Ile 990	AGC Ser	ACG Thr	CTG Leu	AGC Ser	CAC His 995	CGC Arg	GCG Ala	GGC Gly	TCG Ser	GCC Ala 1000	Ser	CGC Arg	ACG Thr	GAC Asp	GAC Asp 1005	3384
	GAT Asp	GTG Val	CCG Pro	TCG Ser	CTG Leu 1010	CAC His)	TCG Ser	GAG Glu	CCT	GTG Val 1015	Ala	CGC Arg	AGC Ser	AGC Ser	TCC Ser 1020	Ser	3432
25	CAG Gln	GGC Gly	TCC Ser	CTC Leu 1025	Met	GAG Glu	CAG Gln	ATC Ile	AGC Ser 1030	Ser	GTG Val	GTC Val	ACC Thr	CGC Arg 103	Phe	ACG Thr	3480
30	GCC Ala	AAC Asn	ATC Ile 1040	Ser	GAG Glu	CTC Leu	AAC Asn	TCC Ser 1045	Met	ATG Met	CTG Leu	TCC Ser	ACC Thr 1050	Ala	GCC Ala	CCC Pro	3528
	AGC Ser	CCC Pro 1055	Gly	GTC Val	GGC Gly	GCC Ala	CCG Pro 1060	Leu	TGC Cys	TCG Ser	TCC Ser	TAC Tyr 1065	Leu	ATC Ile	CCC Pro	AAA Lys	3576
35	GAG Glu 1070	Ile	CAG Gln	TTG Leu	CCC Pro	ACG Thr 1075	Thr	ATG Met	ACG Thr	ACC Thr	TTT Phe 1080	Ala	GAA Glu	ATC Ile	CAG Gln	CCT Pro 1085	3624
	CTG Leu	CCG Pro	GCC Ala	ATC Ile	GAA Glu 1090	GTC Val	ACG Thr	GGC Gly	GGC Gly	GCT Ala 1095	Gln	CCC Pro	GCG Ala	GCA Ala	GGG Gly 1100	Ala	3672
40	CAG Gln	GCG Ala	Ala	GGG Gly 1105	Asp	GCG Ala	GCC Ala	CGG Arg	GAG Glu 1110	Ser	CCC Pro	GCG Ala	GCC Ala	GGT Gly 1115	Pro	GAG Glu	3720
45	GCT Ala	GCG Ala	GCC Ala 1120	Ala	AAG Lys	CCA Pro	GAC Asp	CTG Leu 1125	Glu	GAG Glu	CTG Leu	GTG Val	GCT Ala 1130	Leu	ACC Thr	CCG Pro	3768
	CCG Pro	TCC Ser 1135	Pro	TTC Phe	AGA Arg	GAC Asp	TCG Ser 1140	Val	GAC Asp	TCG Ser	GGG Gly	AGC Ser 1145	Thr	ACC Thr	CCC Pro	AAC Asn	3816
50	TCG Ser 1150	Pr	GTG Val	TCC Ser	GAG Glu	TCG Ser 1155	Ala	CTC Leu	TGT Cys	ATC Ile	CCG Pro 1160	Ser	TCT Ser	CCC Pr	AAA Lys	TAT Tyr 1165	3864

4029

95

	GAC ACT	CTT AT	C ATA A e Ile A 1170	GA GAT	TAC Tyr	ACT Thr	CAG Gln 117	Ser	TCC Ser	TCG Ser	TCG Ser	TTG Leu 118	•	3909
	TGAATGT	CCC TGG	AAAGCAC	GCCGC	CCTG	C GC	GTGC	GGAG	CGG	AGCC	CCC	CGTG	TTCAC	A 3969
5	CACACAC	CAAT GGC	AAGCATA	GTCGC	CTGG	T TA	CGGC	CCAG	GGG	GAAG	ATG	CCAA	GGGCA	C 4029
,	CCCTTAA	TGG AAA	CACGAGA	TCAGI	AGTG	C TA	TCTC	ATGA	CAA	CCGA	CGA	AGAA.	AC	4085
	(2) INF	ORMATIO	N FOR S	EQ ID	NO:8	:			·	•				
10		(1) SEQ		HARACT TH: 11	ERIS 80 a o ac	TICS mino id		ds						•
•		ii) MOL	ECULE T	YPE: p	rote	in								
	(xi) SEQ	UENCE D	ESCRIP	TION	: SE	Q ID	NO:	8:					
1 5	Met Val	Leu Le	u Leu I	le Leu	Ser	Val	Leu 10	Leu	Trp	Lys	Glu	Asp 15	Val	
	Arg Gly	Ser Al		er Ser	Glu	Arg 25	Arg	Val	Val	Ala	His 30	Met	Pro	
	Gly Asp	Ile Ile 35	e Ile G	ly Ala	Leu 40	Phe	Ser	Val	His	His 45	Gln	Pro	Thr	•
20	Val Asp 50	Lys Va	l His G	lu Arg 55	Lys	Cys	Gly	Ala	Val 60	Arg	Glu	Gln	Tyr	
•	Gly Ile 65	Gln Ar		lu Ala 70	Met	Leu	His	Thr 75	Leu	Glu	Arg	Ile	Asn 80	- 1
25	Ser Asp	Pro Th	r Leu L 85	eu Pro	Asn	Ile	Thr 90	Leu	Gly	Cys	Glu	Ile 95	Arg	
•	Asp Ser	Cys Tri 100	His S	er Ala	Val	Ala 105	Leu	Glu	Gln	Ser	Ile 110	Glu	Phe	
,	Ile Arg	Asp Ser 115	c Leu I	le Ser	Ser 120	Glu	Glu	Glu	Glu	Gly 125	Leu	Val	Arg	
30	Cys Val 130	Asp Gly	y Ser S	er Ser 135	Ser	Phe	Arg	Ser	Lys 140	Lys	Pro	Ile	Val	:,
	Gly Val 145		1.	50		,		155			•		160	
35	Leu Leu		165				170	•	-		•	175		• •
. ,	Met Asp	Leu Sei 180	Asp L	ys Thr	Leu	Phe 185	Lys	Tyr	Phe	Met	Arg 190	Val	Val	·.
	Pro Ser	195			200					205				
40	Tyr Asn 210	Trp Thi	Tyr V	al Ser 215	Ala	Val	His	Thr	Glu 220	Gly	Asn	Tyr	Gly	
	Glu Ser 225	Gly Met		La Ser 30	Lys	Asp	Met	Ser 235	Ala	Lys	Glu	Gly	Ile 240	

Cys Ile Ala His Ser Tyr Lys Ile Tyr Ser Asn Ala Gly Glu Gln Ser 245 250 255 Phe Asp Lys Leu Lys Lys Leu Thr Ser His Leu Pro Lys Ala Arg 260 265 270 Val Val Ala Cys Phe Cys Glu Gly Met Thr Val Arg Gly Leu Leu Met 275 280 285 Ala Met Arg Arg Leu Gly Leu Ala Gly Glu Phe Leu Leu Gly Ser 290 295 300 Asp Gly Trp Ala Asp Arg Tyr Asp Val Thr Asp Gly Tyr Gln Arg Glu 305 310 320 10 Ala Val Gly Gly Ile Thr Ile Lys Leu Gln Ser Pro Asp Val Lys Trp 325 330 335 Phe Asp Asp Tyr Tyr Leu Lys Leu Arg Pro Glu Thr Asn His Arg Asn 340 345 Pro Trp Phe Gln Glu Phe Trp Gln His Arg Phe Gln Cys Arg Leu Glu 355 360 365 Ala Phe Pro Gln Glu Asn Ser Lys Tyr Asn Lys Thr Cys Asn Ser Ser 370 380 Leu Thr Leu Lys Thr His His Val Gln Asp Ser Lys Met Gly Phe Val 385 390 395 400 20 Ile Asn Ala Ile Tyr Ser Met Ala Tyr Gly Leu His Asn Met Gln Met
405 410 415 Ser Leu Cys Pro Gly Tyr Ala Gly Leu Cys Asp Ala Met Lys Pro Ile 420 425 430 Asp Gly Arg Lys Leu Leu Glu Ser Leu Met Lys Thr Asn Phe Thr Gly 435 Val Ser Gly Asp Thr Ile Leu Phe Asp Glu Asn Gly Asp Ser Pro Gly 450 455 Arg Tyr Glu Ile Met Asn Phe Lys Glu Met Gly Lys Asp Tyr Phe Asp 465 470 475 480 Tyr Ile Asn Val Gly Ser Trp Asp Asn Gly Glu Leu Lys Met Asp Asp 485 490 495 Asp Glu Val Trp Ser Lys Lys Ser Asn Ile Ile Arg Ser Val Cys Ser 500 505 510 Glu Pro Cys Glu Lys Gly Gln Ile Lys Val Ile Arg Lys Gly Glu Val 515 525 Ser Cys Cys Trp Thr Cys Thr Pro Cys Lys Glu Asn Glu Tyr Val Phe 530 535 Asp Glu Tyr Thr Cys Lys Ala Cys Gln Leu Gly Ser Trp Pro Thr Asp 545 550 550 560 40 Asp Leu Thr Gly Cys Asp Leu Ile Pro Val Gln Tyr Leu Arg Trp Gly 565 570 575

Ala Thr Leu Phe Val Thr Val Val Phe Ile Ile Tyr Arg Asp Thr Pro Val Val Lys Ser Ser Ser Arg Glu Leu Cys Tyr Ile Ile Leu Ala Gly 610 620 Ile Cys Leu Gly Tyr Leu Cys Thr Phe Cys Leu Ile Ala Lys Pro Lys Gln Ile Tyr Cys Tyr Leu Gln Arg Ile Gly Ile Gly Leu Ser Pro Ala Met Ser Tyr Ser Ala Leu Val Thr Lys Thr Asn Arg Ile Ala Arg Ile Leu Ala Gly Ser Lys Lys Ile Cys Thr Pro Lys Pro Arg Phe Met Ser Ala Cys Ala Gln Leu Val Ile Ala Phe Ile Leu Ile Cys Ile Gln Leu Gly Ile Ile Val Ala Leu Phe Ile Met Glu Pro Pro Asp Ile Met His Asp Tyr Pro Ser Ile Arg Glu Val Tyr Leu Ile Cys Asn Thr Thr Asn Leu Gly Val Val Thr Pro Leu Gly Asn Asn Gly Leu Leu Ile Leu 740 745 750 20 Ser Cys Thr Phe Tyr Ala Phe Lys Thr Arg Asn Val Pro Ala Asn Phe Pro Glu Ala Lys Tyr Ile Ala Phe Thr Met Tyr Thr Thr Cys Ile Ile Trp Leu Ala Phe Val Pro Ile Tyr Phe Gly Ser Asn Tyr Lys Ile Ile Thr Met Cys Phe Ser Val Ser Leu Ser Ala Thr Val Ala Leu Gly Cys Met Phe Val Pro Lys Val Tyr Ile Ile Leu Ala Lys Pro Glu Arg Asn Val Arg Ser Ala Phe Thr Thr Ser Thr Val Val Arg Met His Val Gly Asp Gly Lys Ser Ser Ser Ala Ala Ser Arg Ser Ser Ser Leu Val Asn Leu Trp Lys Arg Gly Ser Ser Gly Glu Thr Leu Ser Ser Asn Gly Lys Ser Val Thr Trp Ala Gln Asn Glu Lys Ser Ser Arg Gly Gln His Leu Trp Gln Arg Leu Ser Ile His Ile Asn Lys Lys Glu Asn Pro Asn Gln Thr Ala Val Ile Lys Pro Phe Pro Lys Ser Thr Glu Ser Arg Gly Gly Ala Gly Gly Ser Ala Gly Gly Val Gly Ala 935 940

Thr Gly Gly Ala Gly Cys Ala Gly Ala Gly Pro Gly Gly Pro Glu Ser 955 950

Pro Asp Ala Gly Pro Lys Ala Leu Tyr Asp Val Ala Glu Ala Glu Glu 965 970 975

5 His Phe Pro Ala Pro Ala Arg Pro Arg Ser Pro Ser Pro Ile Ser Thr 980 985 990

Leu Ser His Arg Ala Gly Ser Ala Ser Arg Thr Asp Asp Asp Val Pro 995 1000 1005

Ser Leu His Ser Glu Pro Val Ala Arg Ser Ser Ser Ser Gln Gly Ser 10 1010 1015 1020

Leu Met Glu Gln Ile Ser Ser Val Val Thr Arg Phe Thr Ala Asn Ile 1025 1030 1035 1040

Ser Glu Leu Asn Ser Met Met Leu Ser Thr Ala Ala Pro Ser Pro Gly 1045 1050 1055

15 Val Gly Ala Pro Leu Cys Ser Ser Tyr Leu Ile Pro Lys Glu Ile Gln 1060 1065 1070

Leu Pro Thr Thr Met Thr Thr Phe Ala Glu Ile Gln Pro Leu Pro Ala 1075 1080 1085

Ile Glu Val Thr Gly Gly Ala Gln Pro Ala Ala Gly Ala Gln Ala Ala 20 1090 1095 1100

Gly Asp Ala Ala Arg Glu Ser Pro Ala Ala Gly Pro Glu Ala Ala Ala 1105 1110 1120

Ala Lys Pro Asp Leu Glu Glu Leu Val Ala Leu Thr Pro Pro Ser Pro 1125 1130 1135

25 Phe Arg Asp Ser Val Asp Ser Gly Ser Thr Thr Pro Asn Ser Pro Val 1140 1150

Ser Glu Ser Ala Leu Cys Ile Pro Ser Ser Pro Lys Tyr Asp Thr Leu 1155 1160 1165

Ile Ile Arg Asp Tyr Thr Gln Ser Ser Ser Leu 1170 1175 1180

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4181 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: both

(D) TOPOLOGY: both

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

35

(A) NAME/KEY: CDS

40 (B) LOCATION: 370..4008

(D) OTHER INFORMATION: /product= "HUMAN MGLUR5B" /note= "Variant of MGLUR5A with 96 base pair insertion between nucleotides 2998 and 2999."

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:9: CAGCTCGGCT GTTCTGCGCA CGCTGAGCGG AGGGAATGAG CTTGAGATCA TCTTGGGGGG 60 GAAGCCGGGG ACTGGAGAGG CCGGCTCTGC CCTGCTGATC CCCGTGGCCC AACTTTTCGG 120 GGGGCTAGCT AGACCGAGTC TCACTGCTCG CAGCGCAGCC AACAGGGGGG TTTAGAAGAT 180 CATGACCACA TGGATCATCT AACTAAATGG TACATGGGGA CAAAATGGTC CTTTAGAAAA 240 TACATCTGAA TTGCTGGCTA ATTTCTTGAT TTGCGACTCA ACGTAGGACA TCGCTTGTTC 300 GTAGCTATCA GAACCCTCCT GAATTTTCCC CACCATGCTA TCTTTATTGG CTTGAACTCC 360 TTTCCTAAA ATG GTC CTT CTG TTG ATC CTG TCA GTC TTA CTT TGG AAA 408 Met Val Leu Leu Ile Leu Ser Val Leu Leu Trp Lys 10 GAA GAT GTC CGT GGG AGT GCA CAG TCC AGT GAG AGG AGG GTG GCT 456 Glu Asp Val Arg Gly Ser Ala Gln Ser Ser Glu Arg Arg Val Val Ala CAC ATG CCG GGT GAC ATC ATT ATT GGA GCT CTC TTT TCT GTT CAT CAC 504 His Met Pro Gly Asp Ile Ile Ile Gly Ala Leu Phe Ser Val His His 30 CAG CCT ACT GTG GAC AAA GTT CAT GAG AGG AAG TGT GGG GCG GTC CGT 552 Gln Pro Thr Val Asp Lys Val His Glu Arg Lys Cys Gly Ala Val Arg GAA CAG TAT GGC ATT CAG AGA GTG GAG GCC ATG CTG CAT ACC CTG GAA 600 Glu Gln Tyr Gly Ile Gln Arg Val Glu Ala Met Leu His Thr Leu Glu AGG ATC AAT TCA GAC CCC ACA CTC TTG CCC AAC ATC ACA CTG GGC TGT 648 Arg Ile Asn Ser Asp Pro Thr Leu Leu Pro Asn Ile Thr Leu Gly Cys 25 85 GAG ATA AGG GAC TCC TGC TGG CAT TCG GCT GTG GCC CTA GAG CAG AGC 696 Glu Ile Arg Asp Ser Cys Trp His Ser Ala Val Ala Leu Glu Gln Ser ATT GAG TTC ATA AGA GAT TCC CTC ATT TCT TCA GAA GAG GAA GAA GGC 744 Ile Glu Phe Ile Arg Asp Ser Leu Ile Ser Ser Glu Glu Glu Gly 110 TTG GTA CGC TGT GTG GAT GGC TCC TCC TCC TCC TTC CGC TCC AAG AAG 792 Leu Val Arg Cys Val Asp Gly Ser Ser Ser Ser Phe Arg Ser Lys Lys 130 CCC ATA GTA GGG GTC ATT GGG CCT GGC TCC AGT TCT GTA GCC ATT CAG 35 840 Pro Ile Val Gly Val Ile Gly Pro Gly Ser Ser Ser Val Ala Ile Gln GTC CAG AAT TTG CTC CAG CTT TTC AAC ATA CCT CAG ATT GCT TAC TCA 888 Val Gln Asn Leu Leu Gln Leu Phe Asn Ile Pro Gln Ile Ala Tyr Ser 40 160 170 GCA ACC AGC ATG GAT CTG AGT GAC AAG ACT CTG TTC AAA TAT TTC ATG 936 Ala Thr Ser Met Asp Leu Ser Asp Lys Thr Leu Phe Lys Tyr Phe Met 175 AGG GTT GTG CCT TCA GAT GCT CAG CAG GCA AGG GCC ATG GTG GAC ATA 984 Ser Asp Ala Gln Gln Ala Arg Ala Met Val Asp Ile 195 200 205

					·												
• # .	GTG Val	AAG Lys	AGG Arg	TAC Tyr	AAC Ast 210	Trp	ACC Thr	TAT	GTA Val	TCA Ser 215	Ala	GTG Val	CAC His	ACA Thr	GAA G1u 220	GGC Gly	1032
5	AAC Asn	TAT	GGA Gly	GAA Glu 225	AGT Ser	GGG Gly	ATG Met	GAA Glu	GCC Ala 230	Ser	AAA Lys	GAT Asp	ATG Met	TCA Ser 235	Ala	AAG Lys	1080
	GAA Glu	GGG	ATT 11e 240	Cys	ATC	GCC Ala	CAC His	TCT Ser 245	Tyr	AAA Lys	ATC Ile	TAC	AGT Ser 250	Asn	GCA Ala	GGG Gly	1128
10	GAG Glu	CAG Gln 255	Ser	TTT	GAT Asp	AAG Lys	CTG Leu 260	CTG Leu	AAG Lys	AAG Lys	CTC Leu	ACA Thr 265	AGT Ser	CAC	TTG Leu	CCC	1176
15	AAG Lys 270	Ala	CGG Arg	GTG Val	GTG Val	GCC Ala 275	TGC Cys	TTC Phe	TGT Cys	GAG Glu	GGC Gly 280	ATG Met	ACG Thr	GTG Val	AGA Arg	GGT Gly 285	1224
	CTG Leu	CTG Leu	ATG Met	GCC Ala	ATG Met 290	AGG Arg	CGC Arg	CTG Leu	GGT Gly	CTA Leu 295	GCG Ala	GGA Gly	GAA Glu	TTT Phe	CTG Leu 300	CTT Leu	1272
20	CTG Leu	GGC Gly	AGT Ser	GAT Asp 305	GGC Gly	TGG Trp	GCT Ala	GAC Asp	AGG Arg 310	TAT Tyr	GAT Asp	GTG Val	ACA Thr	GAT Asp 315	GGA Gly	TAT Tyr	1320
	CAG Gln	CGA Arg	GAA Glu 320	GCT Ala	GTT Val	GGT Gly	GGC Gly	ATC Ile 325	ACA Thr	ATC Ile	AAG Lys	CTC Leu	CAA Gln 330	TCT Ser	CCC Pro	GAT Asp	1368
25	GTC Val	AAG Lys 335	TGG Trp	TTT	GAT Asp	GAT Asp	TAT Tyr 340	TAT Tyr	CTG Leu	AAG Lys	CTC Leu	CGG Arg 345	CCA Pro	GAA Glu	ACA	AAC Asn	1416
30	CAC His 350	CGA Arg	AAC Asn	CCT Pro	TGG Trp	TTT Phe 355	CAA Gln	GAA Glu	TTT Phe	TGG Trp	CAG Gln 360	CAT His	CGT Arg	TTT Phe	CAG Gln	TGC Cys 365	1464
	CGA Arg	CTG Leu	GAA Glu	GCG Ala	TTT Phe 370	CCA	CAG Gln	GAG Glu	AAC Asn	AGC Ser 375	AAA Lys	TAC Tyr	AAC Asn	AAG Lys	ACT Thr 380	TGC Cys	1512
35	AAT Asn	AGT Ser	TCT Ser	CTG Leu 385	ACT Thr	CTG Leu	AAA Lys	ACA Thr	CAT His 390	CAT His	GTT Val	CAG Gln	GAT Asp	TCC Ser 395	AAA Lys	ATG Met	1560
	GGA Gly	TTT Phe	GTG Val 400	ATC Ile	AAC Asn	GCC Ala	ATC Ile	TAT Tyr 405	TCG Ser	ATG Met	GCC Ala	TAT Tyr	GGG Gly 410	CTC Leu	CAC His	AAC Asn	1608
40	ATG Met	CAG Gln 415	ATG Met	TCC Ser	CTC Leu	TGC Cys	CCA Pro 420	GGC Gly	TAT Tyr	GCA Ala	GGA Gly	CTC Leu 425	TGT Cys	GAT Asp	GCC Ala	ATG Met	1656
45	AAG Lys 430	CCA Pro	ATT Ile	GAT Asp	GGA Gly	CGG Arg 435	AAA Lys	CTT Leu	TTG Leu	Glu	TCC Ser 440	CTG Leu	ATG Met	AAA Lys	ACC Thr	AAT Asn 445	1704
	TTT Phe	ACT Thr	GGG Gly	Val	TCT Ser 450	GGA Gly	GAT Asp	ACG Thr	ATC Ile	CTA Leu 455	TTC Phe	GAT Asp	GAG Glu	AAT Asn	GGA Gly 460	GAC Asp	1752
50	TCT Ser	CCA Pro	Gly	AGG Arg 465	TAT Tyr	GAA Glu	ATA Ile	ATG Met	AAT Asn 470	TTC Phe	AAG Lys	GAA Glu	Met	GGA Gly 475	AAA Lys	GAT Asp	1800

						•					_						
	TAC Tyr	TTT Phe	GAT Asp 480	TAT	ATC Ile	AAC Asn	GTT Val	GGA Gly 485	AGT Ser	TGG Trp	GAC Asp	AAT Asn	GGA Gly 490	GAA Glu	TTA Leu	AAA Lys	1848
5	ATG Met	GAT Asp 495	GAT Asp	GAT Asp	GAA Glu	GTA Val	TGG Trp 500	TCC Ser	AAG Lys	AAA Lys	AGC Ser	AAC Asn 505	ATC Ile	ATC Ile	AGA Arg	TCT Ser	1896
	GTG Val 510	TGC Cys	AGT Ser	GAA Glu	CCA Pro	TGT Cys 515	GAG Glu	AAA Lys	GGC Gly	CAG Gln	ATC Ile 520	AAG Lys	GTG Val	ATC Ile	CGA Arg	AAG Lys 525	1944
10	GGA Gly	GAA Glu	GTC Val	AGC Ser	TGT Cys 530	TGT Cys	TGG Trp	ACC Thr	TGT Cys	ACA Thr 535	CCT Pro	TGT Cys	AAG Lys	GAG Glu	AAT Asn 540	GAG Glu	1992
15												CAA Gln					2040
	CCC Pro	ACT Thr	GAT Asp 560	GAT Asp	CTC Leu	ACA Thr	GGT Gly	TGT Cys 565	GAC Asp	TTG Leu	ATC Ile	CCA Pro	GTA Val 570	CAG Gln	TAT	CTT Leu	2088
20	CGA Arg	TGG Trp 575	GGT Gly	GAC Asp	CCT Pro	GAA Glu	CCC Pro 580	ATT Ile	GCA Ala	GCT Ala	GTG Val	GTG Val 585	TTT Phe	GCC Ala	TGC Cys	CTT Leu	2136
	GGC Gly 590	CTC Leu	CTG Leu	GCC Ala	ACC Thr	CTG Leu 595	TTT Phe	GTT Val	ACT Thr	GTA Val	GTC Val 600	TTC Phe	ATC Ile	ATT Ile	TAC Tyr	CGT Arg 605	2184
25	GAT Asp	ACA Thr	CCA Pro	GTA Val	GTC Val 610	AAG Lys	TCC Ser	TCA Ser	AGC Ser	AGG Arg 615	GAA Glu	CTC Leu	TGC Cys	TAC Tyr	ATT Ile 620	ATC Ile	2232
30	CTT Leu	GCT Ala	GGC Gly	ATC Ile 625	TGC Cys	CTG Leu	GGC Gly	TAC Tyr	TTA Leu 630	TGT Cys	ACC Thr	TTC Phe	TGC Cys	CTC Leu 635	ATT Ile	GCG Ala	2280
	AAG Lys	CCC Pro	AAA Lys 640	CAG Gln	ATT Ile	TAC Tyr	TGC Cys	TAC Tyr 645	CTT Leu	CAG Gln	AGA Arg	ATT Ile	GGC Gly 650	ATT Ile	GGT Gly	CTC Leu	2328
35	TCC Ser	CCA Pro 655	GCC Ala	ATG Met	AGC Ser	TAC Tyr	TCA Ser 660	GCC Ala	CTT Leu	GTA Val	ACA Thr	AAG Lys 665	ACC Thr	AAC Asn	CGT Arg	ATT Ile	2376
4	GCA Ala 670	AGG Arg	ATC Ile	CTG Leu	GCT Ala	GGC Gly 675	AGC Ser	AAG Lys	AAG Lys	AAG Lys	ATC Ile 680	TGT Cys	ACC Thr	CCC Pro	AAG Lys	CCC Pro 685	2424
40	AGA Arg	TTC Phe	ATG Met	AGT Ser	GCC Ala 690	TGT Cys	GCC Ala	CAG Gln	CTA Leu	GTG Val 695	ATT Ile	GCT Ala	TTC Phe	ATT Ile	CTC Leu 700	ATA Ile	2472
45	TGC Cys	ATC Ile	CAG Gln	TTG Leu 705	GGC Gly	ATC Ile	ATC Ile	GTT Val	GCC Ala 710	CTC Leu	TTT Phe	ATA Ile	ATG Met	GAG Glu 715	CCT Pro	CCT Pro	2520
,	GAC Asp	ATA Ile	ATG Met 720	CAT His	GAC Asp	TAC Tyr	CCA Pro	AGC Ser 725	ATT Ile	CGA Arg	GAA Glu	GTC Val	TAC Tyr 730	CTG Leu	ATC Ile	TGT Cys	2568
50	AAC Asn	ACC Thr 735	ACC Thr	AAC Asn	CTA Leu	GGA Gly	GTT Val 740	GTC Val	ACT Thr	CCA Pro	CTT Leu	GGA Gly 745	AAC Asn	AAT Asn	GGA Gly	TTG L u	2616

														•			
	TTG Leu 750	Ile	TTG Leu	AGC Ser	TGC Cys	ACC Thr 755	TTC Phe	TAT Tyr	GCG Ala	TTC Phe	AAG Lys 760	ACC Thr	AGA Arg	AAT Asn	GTT Val	CCA Pro 765	2664
5	GCT Ala	AAC Asn	TTC Phe	CCC Pro	GAG Glu 770	GCC Ala	AAG Lys	TAT Tyr	ATC Ile	GCC Ala 775	TTC Phe	ACA Thr	ATG Met	TAC Tyr	ACG Thr 780	Thr	2712
_	TGC Cys	ATT Ile	ATA Ile	TGG Trp 785	CTA Leu	GCT Ala	TTT Phe	GTT Val	CCA Pro 790	ATC Ile	TAC Tyr	TTT Phe	GGC Gly	AGC Ser 795	AÀC Asn	TAC	2760
10	AAA Lys	ATC Ile	ATC Ile 800	ACC Thr	ATG Met	TGT Cys	TTC Phe	TCG Ser 805	GTC Val	AGC Ser	CTC Leu	AGT Ser	GCC Ala 810	ACA Thr	GTG Val	GCC Ala	2808
15	CTA Leu	GGC Gly 815	TGC Cys	ATG Met	TTT Phe	GTG Val	CCG Pro 820	AAG Lys	GTG Val	TAC Tyr	ATC Ile	ATC Ile 825	CTG Leu	GCC Ala	AAA Lys	CCA Pro	2856
	GAG Glu 830	Arg	AAC Asn	GTG Val	CGC Arg	AGC Ser 835	GCC Ala	TTC Phe	ACC Thr	ACA Thr	TCT Ser 840	ACC Thr	GTG Val	GTG Val	CGC Arg	ATG Met 845	2904
20	CAT His	GTA Val	GGG Gly	GAT Asp	GGC Gly 850	AAG Lys	TCA Ser	TCC Ser	TCC Ser	GCA Ala 855	GCC Ala	AGC Ser	AGA Arg	TCC Ser	AGC Ser 860	AGC Ser	2952
•	CTA Leu	GTC Val	AAC Asn	CTG Leu 865	TGG	AAG Lys	AGA Arg	AGG Arg	GGC Gly 870	TCC Ser	TCT Ser	GGG Gly	GAA Glu	ACC Thr 875	TTA Leu	AGG Arg	3000
25	TAC Tyr	AAA Lys	GAC Asp 880	AGG Arg	AGA Arg	CTG Leu	GCC Ala	CAG Gln 885	.CAC His	AAG Lys	TCG Ser	GAA Glu	ATA Ile 890	GAG Glu	TGT Cys	TTC Phe	3048
30	ACC Thr	CCC Pro 895	AAA Lys	GGG Gly	AGT Ser	ATG Met	GGG Gly 900	AAT Asn	GGT Gly	GGG Gly	AGA Arg	GCA Ala 905	ACA Thr	ATG Met	AGC Ser	AGT Ser	3096
. , .	TCC Ser 910	AAT Asn	GGA Gly	AAA Lys	TCC Ser	GTC Val 915	ACG Thr	TGG Trp	GCC Ala	CAG Gln	AAT Asn 920	GAG Glu	AAG Lys	AGC Ser	AGC Ser	CGG Arg 925	3144
35	GGG Gly	CAG Gln	CAC	CTG Leu	TGG Trp 930	CAG Gln	CGC Arg	CTG Leu	TCC Ser	ATC Ile 935	CAC His	ATC Ile	AAC Asn	AAG Lys	AAA Lys 940	GAA Glu	3192
	AAC Asn	CCC Pro	AAC Asn	CAA Gln 945	ACG Thr	GCC Ala	GTC Val	ATC Ile	AAG Lys 950	CCC Pro	TTC Phe	CCC Pro	AAG Lys	AGC Ser 955	ACG Thr	GAG Glu	3240
40	AGC Ser	CGT Arg	GGC Gly 960	CTG Leu	GGC Gly	GCT Ala	GGC Gly	GCT Ala 965	GGC Gly	GCA Ala	GGC Gly	GGG Gly	AGC Ser 970	GCT Ala	GGG Gly	GGC Gly	3288
45	GTG Val	GGG Gly 975	GCC Ala	ACG Thr	GGC Gly	GGT Gly	GCG Ala 980	GGC Gly	TGC Cys	GCA Ala	GGC Gly	GCC Ala 985	GGC Gly	CCA Pro	GGC Gly	GGG Gly	3336
	CCC Pro 990	GAG Glu	TCC Ser	CCA Pro	GAC Asp	GCC Ala 995	GGC Gly	CCC Pro	AAG Lys	GCG Ala	CTG Leu 1000	Tyr	GAT Asp	GTG Val	GCC Ala	GAG Glu 1005	3384
50	-GCT Ala	GAG Glu	GAG Glu	CAC His	TTC Phe 1010	Pro	GCG Ala	CCC Pr	GCG Ala	CGG Arg 1015	Pro	CGC Arg	TCA Ser	CCG Pro	TCG Ser 1020	Pro	3432
		-			• .												

						4	•		
	ATC AGC Ile Ser	ACG CTG Thr Leu 102	Ser His	CGC GCC Arg Ala	GGC TCG Cly Ser 1030	GCC AGC Ala Ser	CGC ACG Arg Thr 103	Asp Asp	3480
5	GAT GTG Asp Val	CCG TCG Pro Ser 1040	CTG CAC Leu His	TCG GAG Ser Glu 104	CCT GTG Pro Val	GCG CGC Ala Arg	AGC AGC Ser Ser 1050	TCC TCG Ser Ser	3528
	CAG GGC Gln Gly 1055	Ser Leu	ATG GAG Met Glu	CAG ATO	AGC AGT Ser Ser	GTG GTC Val Val 106	Thr Arg	TTC ACG Phe Thr	3576
10	GCC AAC Ala Asn 1070	ATC AGC Ile Ser	GAG CTC Glu Leu 107	Asn Ser	ATG ATG Met Met	CTG TCC Leu Ser 1080	ACC GCG Thr Ala	GCC CCC Ala Pro 1085	3624
15	AGC CCC Ser Pro	GGC GTC Gly Val	GGC GCC Gly Ala 1090	CCG CTC Pro Leu	TGC TCG Cys Ser 109	Ser Tyr	CTG ATC Leu Ile	CCC AAA Pro Lys 1100	3672
	GAG ATC Glu Ile	CAG TTG Gln Leu 110	Pro Thr	ACC ATG Thr Met	ACG ACC Thr Thr 1110	TTT GCC Phe Ala	GAA ATC Glu Ile 1115	Gln Pro	3720
20	CTG CCG Leu Pro	GCC ATC Ala Ile 1120	GAA GTC Glu Val	ACG GGC Thr Gly 112	Gly Ala	CAG CCC Gln Pro	GCG GCA Ala Ala 1130	GGG GCG Gly Ala	3768
	CAG GCG Gln Ala 1135	Ala Gly	GAC GCG Asp Ala	GCC CGG Ala Arg 1140	GAG AGC Glu Ser	CCC GCG Pro Ala 114	Ala Gly	CCC GAG Pro Glu	3816
25	GCT GCG Ala Ala 1150	GCC GCC Ala Ala	AAG CCA Lys Pro 1155	Asp Leu	GAG GAG Glu Glu	CTG GTG Leu Val 1160	GCT CTC Ala Leu	ACC CCG Thr Pro 1165	3864
30	CCG TCC Pro Ser	CCC TTC Pro Phe	AGA GAC Arg Asp 1170	TCG GTG Ser Val	GAC TCG Asp Ser 1175	Gly Ser	ACA ACC Thr Thr	CCC AAC Pro Asn 1180	3912
	TCG CCA Ser Pro	GTG TCC Val Ser 1185	Glu Ser	GCC CTC Ala Leu	TGT ATC Cys Ile 1190	CCG TCG Pro Ser	TCT CCC Ser Pro 1195	Lys Tyr	3960
35	GAC ACT Asp Thr	CTT ATC Leu Ile 1200	ATA AGA Ile Arg	GAT TAC Asp Tyr 120	Thr Gln	AGC TCC Ser Ser	TCG TCG Ser Ser 1210	TTG Leu	4005
	TGAATGTC	CC TGGAA	AGCAC GC	CGGCCTG	C GCGTGCG	GAG CGGA	AGCCCCC C	GTGTTCACA	4065
	CACACACA	AT GGCAA	GCATA GI	CGCCTGG	TACGGCC	CAG GGG	GAAGATG C	CAAGGGCAC	4125
•	CCCTTAAT	GG AAACA	CGAGA TO	AGTAGTG	C TATCTCA	TGA CAAC	CCGACGA A	GAAAC	4181

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1212 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Val Leu Leu Ile Leu Ser Val Leu Leu Trp Lys Glu Asp Val Arg Gly Ser Ala Gln Ser Ser Glu Arg Arg Val Val Ala His Met Pro Gly Asp Ile Ile Gly Ala Leu Phe Ser Val His His Gln Pro Thr Val Asp Lys Val His Glu Arg Lys Cys Gly Ala Val Arg Glu Gln Tyr
50 55 60 Gly Ile Gln Arg Val Glu Ala Met Leu His Thr Leu Glu Arg Ile Asn 65 70 75 80 Ser Asp Pro Thr Leu Leu Pro Asn Ile Thr Leu Gly Cys Glu Ile Arg Asp Ser Cys Trp His Ser Ala Val Ala Leu Glu Gln Ser Ile Glu Phe 100 105 110 15 Ile Arg Asp Ser Leu Ile Ser Ser Glu Glu Glu Glu Gly Leu Val Arg
115 120 125 Cys Val Asp Gly Ser Ser Ser Ser Phe Arg Ser Lys Lys Pro Ile Val Gly Val Ile Gly Pro Gly Ser Ser Ser Val Ala Ile Gln Val Gln Asn 145 150 155 160 Leu Leu Gln Leu Phe Asn Ile Pro Gln Ile Ala Tyr Ser Ala Thr Ser Met Asp Leu Ser Asp Lys Thr Leu Phe Lys Tyr Phe Met Arg Val Val 180 185 25 Pro Ser Asp Ala Gln Gln Ala Arg Ala Met Val Asp Ile Val Lys Arg Tyr Asn Trp Thr Tyr Val Ser Ala Val His Thr Glu Gly Asn Tyr Gly 210 Glu Ser Gly Met Glu Ala Ser Lys Asp Met Ser Ala Lys Glu Gly Ile 30 Cys Ile Ala His Ser Tyr Lys Ile Tyr Ser Asn Ala Gly Glu Gln Ser 245 250 255 Phe Asp Lys Leu Lys Lys Leu Thr Ser His Leu Pro Lys Ala Arg 35 Val Val Ala Cys Phe Cys Glu Gly Met Thr Val Arg Gly Leu Leu Met Ala Met Arg Arg Leu Gly Leu Ala Gly Glu Phe Leu Leu Gly Ser 290 295 300 Asp Gly Trp Ala Asp Arg Tyr Asp Val Thr Asp Gly Tyr Gln Arg Glu 305 Ala Val Gly Gly Ile Thr Ile Lys Leu Gln Ser Pro Asp Val Lys Trp Phe Asp Asp Tyr Tyr Leu Lys Leu Arg Pr Glu Thr Asn His Arg Asn

Pro Trp Phe Gln Glu Phe Trp Gln His Arg Phe Gln Cys Arg Leu Glu 355 360 365 Ala Phe Pro Gln Glu Asn Ser Lys Tyr Asn Lys Thr Cys Asn Ser Ser 370 380 Leu Thr Leu Lys Thr His His Val Gln Asp Ser Lys Met Gly Phe Val Ile Asn Ala Ile Tyr Ser Met Ala Tyr Gly Leu His Asn Met Gln Met
405 410 415 Ser Leu Cys Pro Gly Tyr Ala Gly Leu Cys Asp Ala Met Lys Pro Ile 420 425 430 10 Asp Gly Arg Lys Leu Leu Glu Ser Leu Met Lys Thr Asn Phe Thr Gly 435 Val Ser Gly Asp Thr Ile Leu Phe Asp Glu Asn Gly Asp Ser Pro Gly 450 455 460 Arg Tyr Glu Ile Met Asn Phe Lys Glu Met Gly Lys Asp Tyr Phe Asp 465 470 475 480 Tyr Ile Asn Val Gly Ser Trp Asp Asn Gly Glu Leu Lys Met Asp Asp Asp Glu Val Trp Ser Lys Lys Ser Asn Ile Ile Arg Ser Val Cys Ser 500 505 510 20 Glu Pro Cys Glu Lys Gly Gln Ile Lys Val Ile Arg Lys Gly Glu Val 515 520 525 Ser Cys Cys Trp Thr Cys Thr Pro Cys Lys Glu Asn Glu Tyr Val Phe 530 535 Asp Glu Tyr Thr Cys Lys Ala Cys Gln Leu Gly Ser Trp Pro Thr Asp 545 550 555 560 Asp Leu Thr Gly Cys Asp Leu Ile Pro Val Gln Tyr Leu Arg Trp Gly 565 570 575 Asp Pro Glu Pro Ile Ala Ala Val Val Phe Ala Cys Leu Gly Leu Leu 30 Ala Thr Leu Phe Val Thr Val Val Phe Ile Ile Tyr Arg Asp Thr Pro Val Val Lys Ser Ser Ser Arg Glu Leu Cys Tyr Ile Ile Leu Ala Gly Ile Cys Leu Gly Tyr Leu Cys Thr Phe Cys Leu Ile Ala Lys Pro Lys 625 630 630 635 Gln Ile Tyr Cys Tyr Leu Gln Arg Ile Gly Ile Gly Leu Ser Pro Ala 645 650 655 Met Ser Tyr Ser Ala Leu Val Thr Lys Thr Asn Arg Ile Ala Arg Ile 40 Leu Ala Gly Ser Lys Lys Ile Cys Thr Pro Lys Pro Arg Phe Met S r Ala Cys Ala Gln Leu Val Ile Ala Phe Ile Leu Il Cys Ile Gln 695

Leu Gly Ile Ile Val Ala Leu Phe Ile Met Glu Pro Pro Asp Ile Met His Asp Tyr Pro Ser Ile Arg Glu Val Tyr Leu Ile Cys Asn Thr Thr 725 730 735 Asn Leu Gly Val Val Thr Pro Leu Gly Asn Asn Gly Leu Leu Ile Leu Ser Cys Thr Phe Tyr Ala Phe Lys Thr Arg Asn Val Pro Ala Asn Phe Pro Glu Ala Lys Tyr Ile Ala Phe Thr Met Tyr Thr Thr Cys Ile Ile 10 775 Trp Leu Ala Phe Val Pro Ile Tyr Phe Gly Ser Asn Tyr Lys Ile Ile 785 790 795 800 Thr Met Cys Phe Ser Val Ser Leu Ser Ala Thr Val Ala Leu Gly Cys Met Phe Val Pro Lys Val Tyr Ile Ile Leu Ala Lys Pro Glu Arg Asn Val Arg Ser Ala Phe Thr Thr Ser Thr Val Val Arg Met His Val Gly Asp Gly Lys Ser Ser Ser Ala Ala Ser Arg Ser Ser Ser Leu Val Asn 20 Leu Trp Lys Arg Arg Gly Ser Ser Gly Glu Thr Leu Arg Tyr Lys Asp Arg Arg Leu Ala Gln His Lys Ser Glu Ile Glu Cys Phe Thr Pro Lys Gly Ser Met Gly Asn Gly Gly Arg Ala Thr Met Ser Ser Ser Asn Gly 900 905 910 Lys Ser Val Thr Trp Ala Gln Asn Glu Lys Ser Ser Arg Gly Gln His 915 920 925 Leu Trp Gln Arg Leu Ser Ile His Ile Asn Lys Lys Glu Asn Pro Asn 30 935 Gln Thr Ala Val Ile Lys Pro Phe Pro Lys Ser Thr Glu Ser Arg Gly 945 Leu Gly Ala Gly Ala Gly Gly Ser Ala Gly Gly Val Gly Ala
965
970
975 Thr Gly Gly Ala Gly Cys Ala Gly Ala Gly Pro Gly Gly Pro Glu Ser Pro Asp Ala Gly Pro Lys Ala Leu Tyr Asp Val Ala Glu Ala Glu Glu His Phe Pro Ala Pro Ala Arg Pro Arg Ser Pro Ser Pro Ile Ser Thr 40 1010 Leu Ser His Arg Ala Gly Ser Ala Ser Arg Thr Asp Asp Asp Val Pro 1035 1040 Ser Leu His Ser Glu Pro Val Ala Arg Ser Ser Ser Gln Gly Ser 1045 1050

	•	
	Leu Met Glu Gln Ile Ser Ser Val Val Thr Arg Phe Thr Ala Asn Ile 1060 1065 1070	
	Ser Glu Leu Asn Ser Met Met Leu Ser Thr Ala Ala Pro Ser Pro Gly 1075 1080 1085	
5	Val Gly Ala Pro Leu Cys Ser Ser Tyr Leu Ile Pro Lys Glu Ile Gln 1090 1095 1100	
•	Leu Pro Thr Thr Met Thr Thr Phe Ala Glu Ile Gln Pro Leu Pro Ala 1105 1110 1115 1120	
10	Ile Glu Val Thr Gly Gly Ala Gln Pro Ala Ala Gly Ala Gln Ala Ala 1125 1130 1135	
	Gly Asp Ala Ala Arg Glu Ser Pro Ala Ala Gly Pro Glu Ala Ala Ala 1140 1145 1150	
·	Ala Lys Pro Asp Leu Glu Glu Leu Val Ala Leu Thr Pro Pro Ser Pro 1155 1160 1165	
15	Phe Arg Asp Ser Val Asp Ser Gly Ser Thr Thr Pro Asn Ser Pro Val 1170 1175 1180	
	Ser Glu Ser Ala Leu Cys Ile Pro Ser Ser Pro Lys Tyr Asp Thr Leu 1185 1190 1195 1200	
20	Ile Ile Arg Asp Tyr Thr Gln Ser Ser Ser Leu 1205 1210	
	(2) INFORMATION FOR SEQ ID NO:11:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3282 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both 	
	(ii) MOLECULE TYPE: cDNA	
30	<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3703003 (D) OTHER INFORMATION: /product= "HUMAN MGLUR5C"</pre>	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
. 1	CAGCTCGGCT GTTCTGCGCA CGCTGAGCGG AGGGAATGAG CTTGAGATCA TCTTGGGGGG	60
35	GAAGCCGGGG ACTGGAGAGG CCGGCTCTGC CCTGCTGATC CCCGTGGCCC AACTTTTCGG	120
	GGGGCTAGCT AGACCGAGTC TCACTGCTCG CAGCGCAGCC AACAGGGGGG TTTAGAAGAT	180
ř.	CATGACCACA TGGATCATCT AACTAAATGG TACATGGGGA CAAAATGGTC CTTTAGAAAA	240
	TACATCTGAA TTGCTGGCTA ATTTCTTGAT TTGCGACTCA ACGTAGGACA TCGCTTGTTC	300
	GTAGCTATCA GAACCCTCCT GAATTTTCCC CACCATGCTA TCTTTATTGG CTTGAACTCC	360
40	TTTCCTAAA ATG GTC CTT CTG TTG ATC CTG TCA GTC TTA CTT TGG AAA Met Val Leu Leu Leu Ile Leu Ser Val Leu Leu Trp Lys	408

	GAA Glu	GAT Asp	GTC Val	CGT Arg	GGG Gly	AGT Ser	GCA Ala 20	Gln	TCC	AGT Ser	GAG Glu	AGG Arg	AGG Arg	GTG Val	GTG Val	G GCT	456
5	CAC His 30	Met	CCG Pro	GGT Gly	GAC Asp	ATC Ile 35	ATT	ATT	GGA Gly	GCT Ala	CTC Leu 40	TTT	TCT Ser	GTT Val	CAT His	CAC His 45	504
	CAG Gln	CCT Pro	ACT Thr	GTG Val	GAC Asp 50	AAA Lys	GTT Val	CAT	GAG Glu	AGG Arg 55	AAG Lys	TGT Cys	GGG Gly	GCG Ala	GTC Val	CGT	552
10	GAA Glu	CAG Gln	TAT Tyr	GGC Gly 65	ATT Ile	CAG Gln	AGA Arg	GTG Val	GAG Glu 70	GCC Ala	ATG Met	CTG Leu	CAT His	ACC Thr 75	CTG	GAA Glu	600
15	AGG Arg	ATC Ile	AAT Asn 80	TCA Ser	GAC Asp	CCC Pro	ACA Thr	CTC Leu 85	TTG Leu	CCC Pro	AAC Asn	ATC Ile	ACA Thr 90	Leu	GGC Gly	TGT Cys	648
	GAG Glu	ATA Ile 95	AGG Arg	GAC Asp	TCC Ser	TGC Cys	TGG Trp 100	CAT His	TCG Ser	GCT Ala	GTG Val	GCC Ala 105	CTA Leu	GAG Glu	CAG Gln	AGC Ser	696
20	ATT Ile 110	GAG Glu	TTC Phe	ATA Ile	AGA Arg	GAT Asp 115	TCC Ser	CTC Leu	ATT Ile	TCT Ser	TCA Ser 120	GAA Glu	GAG Glu	GAA Glu	GAA Glu	GGC Gly 125	744
	TTG Leu	GTA Val	CGC Arg	TGT Cys	GTG Val 130	GAT Asp	GGC Gly	TCC Ser	TCC Ser	TCT Ser 135	TCC Ser	TTC Phe	CGC Arg	TCC Ser	AAG Lys 140	AAG Lys	792
25	CCC Pro	ATA Ile	GTA Val	GGG Gly 145	GTC Val	ATT Ile	GGG Gly	CCT Pro	GGC Gly 150	TCC Ser	AGT Ser	TCT Ser	GTA Val	GCC Ala 155	ATT Ile	CAG Gln	840
30	GTC Val	CAG Gln	AAT Asn 160	TTG Leu	CTC Leu	CAG Gln	CTT Leu	TTC Phe 165	AAC Asn	ATA Ile	CCT Pro	CAG Gln	ATT Ile 170	GCT Ala	TAC Tyr	TCA Ser	888
	GCA Ala	ACC Thr 175	AGC Ser	ATG Met	GAT Asp	CTG Leu	AGT Ser 180	GAC Asp	AAG Lys	ACT Thr	CTG Leu	TTC Phe 185	AAA Lys	TAT Tyr	TTC Phe	ATG Met	936
35	AGG Arg 190	GTT Val	GTG Val	CCT Pro	TCA Ser	GAT Asp 195	GCT Ala	CAG Gln	CAG Gln	GCA Ala	AGG Arg 200	GCC Ala	ATG Met	GTG Val	GAC Asp	ATA Ile 205	984
	GTG Val	AAG Lys	AGG Arg	TAC Tyr	AAC Asn 210	TGG Trp	ACC Thr	TAT Tyr	GTA Val	TCA Ser 215	GCC Ala	GTG Val	CAC His	ACA Thr	GAA Glu 220	GGC Gly	1032
40	AAC Asn	TAT Tyr	Gly	GAA G1u 225	AGT Ser	GGG Gly	ATG Met	GAA Glu	GCC Ala 230	TCC Ser	AAA Lys	GAT Asp	ATG Met	TCA Ser 235	GCG Ala	AAG Lys	1080
45	GAA Glu	GGG Gly	ATT Ile 240	TGC Cys	ATC Ile	GCC Ala	CAC His	TCT Ser 245	TAC Tyr	AAA Lys	ATC Ile	TAC Tyr	AGT Ser 250	AAT Asn	GCA Ala	GGG Gly	1128
	GAG Glu	CAG Gln 255	AGC Ser	TTT Phe	GAT Asp	AAG Lys	CTG Leu 260	CTG Leu	AAG Lys	AAG Lys	CTC Leu	ACA Thr 265	AGT Ser	CAC His	TTG Leu	CCC Pro	1176
50	AAG Lys 270	GCC Ala	CGG Arg	GTG Val	GTG Val	GCC Ala 275	TGC Cys	TTC Phe	TGT Cys	GAG Glu	GGC Gly 280	ATG Met	ACG Thr	GTG Val	AGA Arg	GGT Gly 285	1224

										_	-						
	CTG Leu	CTC Leu	ATG Met	GCC Ala	ATG Met 290	: Arg	CGC Arg	CTG Leu	GGI Gly	CTA Leu 295	Ala	G GGA	GAA Glu	TTI Phe	CTC Leu 300	G CTT Leu	1272
5	CTG Leu	GGC	AGT Ser	GAT Asp 305	Gly	TGG	GCT Ala	GAC Asp	AGG Arg 310	TAT	GAT Asp	GTG Val	ACA Thr	GAT Asp 315	G1y	TAT Tyr	1320
	CAG Gln	CGA Arg	GAA Glu 320	Ala	GTT Val	GGT Gly	GGC Gly	ATC Ile 325	ACA Thr	ATC	AAG Lys	CTC Leu	CAA Glr 330	Ser	CCC	GAT Asp	1368
10	GTC Val	AAG Lys 335	Trp	TTT Phe	GAT Asp	GAT Asp	TAT Tyr 340	TAT Tyr	CTG Leu	AAG Lys	CTC Leu	CGG Arg 345	CCA Pro	GAA Glu	ACA Thr	AAC Asn	1416
15	CAC His 350	Arg	AAC Asn	CCT Pro	TGG Trp	TTT Phe 355	CAA Gln	GAA Glu	TTT Phe	TGG Trp	GAG Gln 360	CAT His	CGT Arg	TTT Phe	CAG Gln	TGC Cys 365	1464
	CGA Arg	CTG Leu	GAA Glu	GCG Ala	TTT Phe 370	CCA Pro	CAG Gln	GAG Glu	AAC Asn	AGC Ser 375	AAA Lys	TAC Tyr	AAC Asn	AAG Lys	ACT Thr 380	TGC Cys	1512
20	AAT Asn	AGT Ser	TCT Ser	CTG Leu 385	ACT Thr	CTG Leu	AAA Lys	ACA Thr	CAT His 390	CAT His	GTT Val	CAG Gln	GAT Asp	TCC Ser 395	AAA Lys	ATG Met	1560
	GGA Gly	TTT Phe	GTG Val 400	ATC Ile	AAC Asn	GCC Ala	ATC Ile	TAT Tyr 405	TCG Ser	ATG Met	GCC Ala	TAT Tyr	GGG Gly 410	CTC Leu	CAC His	AAC Asn	1608
25.	ATG Met	CAG Gln 415	ATG Met	TCC Ser	CTC Leu	TGC Cys	CCA Pro 420	GGC Gly	TAT Tyr	GCA Ala	GGA Gly	CTC Leu 425	TGT Cys	GAT Asp	GCC Ala	ATG Met	1656
30	AAG Lys 430	CCA Pro	ATT Ile	GAT Asp	GGA Gly	CGG Arg 435	AAA Lys	CTT Leu	TTG Leu	GAG Glu	TCC Ser 440	CTG Leu	ATG Met	AAA Lys	ACC Thr	AAT Asn 445	1704
	TTT Phe	ACT Thr	GGG Gly	GTT Val	TCT Ser 450	GGA Gly	GAT Asp	ACG Thr	ATC Ile	CTA Leu 455	TTC Phe	GAT Asp	GAG Glu	AAT Asn	GGA Gly 460	GAC Asp	1752
35	TCT Ser	CCA Pro	GGA Gly	AGG Arg 465	TAT Tyr	GAA Glu	ATA Ile	ATG Met	AAT Asn 470	TTC Phe	AAG Lys	GAA Glu	ATG Met	GGA Gly 475	AAA Lys	GAT Asp	1800
	TAC	TTT Phe	GAT Asp 480	TAT Tyr	ATC Ile	AAC Asn	Val	GGA G1y 485	AGT Ser	TGG Trp	GAC Asp	AAT Asn	GGA Gly 490	GAA Glu	TTA Leu	AAA Lys	1848
40	met	GAT Asp 495	GAT Asp	GAT Asp	GAA Glu	GTA Val	TGG Trp 500 .	TCC Ser	AAG Lys	AAA Lys	AGC Ser	AAC Asn 505	ATC Ile	ATC Ile	AGA Arg	TCT Ser	1896
45	GTG Val 510	TGC Cys	AGT Ser	GAA Glu	CCA Pro	TGT Cys 515	GAG Glu	AAA Lys	GGC Gly	CAG Gln	ATC Ile 520	AAG Lys	GTG Val	ATC Ile	CGA Arg	AAG Lys 525	1944
	GGA Gly	GAA Glu	GTC Val	AGC Ser	TGT Cys 530	TGT Cys	TGG Trp	ACC Thr	TGT Cys	ACA Thr 535	CCT Pro	TGT Cys	AAG Lys	GAG Glu	AAT Asn 540	GAG Glu	1992
50	TAT Tyr	GTC Val	TTT Ph	GAT Asp 545	GAG Glu	TAC Tyr	ACA Thr	Cys	AAG Lys 550	GCA Ala	TGC Cys	CAA Gln	CTG Leu	GGG Gly 555	TCT S r	TGG Trp	2040

	,					2	•								*			
	Pr	ACT Thr	GAT Asp 560	Asp	CTC	ACA Thr	GGT Gly	TGT Cys 565	Asp	TTG Leu	ATC Ile	CCA Pro	GTA Val 570	. Gln	TAT	CTT Leu	2088	}
5	CGA Arg	TGG Trp 575	GGT Gly	GAC Asp	CCT Pro	GAA Glu	CCC Pro 580	Ile	GCA Ala	GCT Ala	GTG Val	GTG Val 585	Phe	GCC Ala	TGC Cys	CTT Leu	2136	•
	GGC Gly 590	CTC Leu	CTG Leu	GCC Ala	ACC Thr	CTG Leu 595	Phe	GTT Val	ACT Thr	GTA Val	GTC Val 600	TTC Phe	ATC Ile	ATT Ile	TAC Tyr	CGT Arg 605	2184	··
10	GAT Asp	ACA Thr	CCA Pro	GTA Val	GTC Vál 610	AAG Lys	TCC Ser	TCA Ser	AGC Ser	AGG Arg 615	GAA Glu	CTC Leu	TGC Cys	TAC Tyr	ATT Ile 620	ATC Ile	2232	,
15	CTT Leu	GCT Ala	GGC Gly	ATC Ile 625	TGC Cys	CTG Leu	GGC Gly	TAC Tyr	TTA Leu 630	TGT Cys	ACC Thr	TTC Phe	TGC Cys	CTC Leu 635	ATT Ile	GCG Ala	2280	
	AAG Lys	CCC Pro	AAA Lys 640	CAG Gln	ATT Ile	TAC Tyr	TGC Cys	TAC Tyr 645	CTT Leu	CAG Gln	AGA Arg	ATT Ile	GGC Gly 650	ATT	GGT Gly	CTC	2328	
20	TCC Ser	CCA Pro 655	GCC Ala	ATG Met	AGC Ser	TAC Tyr	TCA Ser 660	GCC Ala	CTT Leu	GTA Val	ACA Thr	AAG Lys 665	ACC Thr	AAC Asn	CGT Arg	ATT Ile	2376	
	GCA Ala 670	AGG Arg	ATC Ile	CTG Leu	GCT Ala	GGC Gly 675	AGC Ser	AAG Lys	AAG Lys	AAG Lys	ATC Ile 680	TGT Cys	ACC Thr	CCC Pro	AAG Lys	CCC Pro 685	2424	;
25	AGA Arg	TTC Phe	ATG Met	AGT Ser	GCC Ala 690	TGT	GCC Ala	CAG Gln	CTA Leu	GTG Val 695	ATT Ile	GCT Ala	TTC Phe	ATT Ile	CTC Leu 700	ATA Ile	2472	
3.0	TGC Cys	ATC Ile	CAG Gln	TTG Leu 705	GGC Gly	ATC Ile	ATC Ile	GTT Val	GCC Ala 710	CTC Leu	TTT Phe	ATA Ile	ATG Met	GAG Glu 715	CCT Pro	CCT Pro	2520	•
	GAC Asp	ATA Ile	ATG Met 720	CAT His	GAC Asp	TAC Tyr	CCA Pro	AGC Ser 725	ATT Ile	CGA Arg	GAA Glu	GTC Val	TAC Tyr 730	CTG Leu	ATC Ile	TGT Cys	2568	
35	AAC Asn	ACC Thr 735	ACC Thr	AAC Asn	CTA Leu	GGA Gly	GTT Val 740	GTC Val	ACT Thr	CCA Pro	CTT Leu	GGA Gly 745	AAC Asn	AAT Asn	GGA Gly	TTG Leu	2616	
	TTG Leu 750	ATT Ile	TTG Leu	AGC Ser	TGC Cys	ACC Thr 755	TTC Phe	TAT Tyr	GCG Ala	TTC Phe	AAG Lys 760	ACC Thr	AGA Arg	AAT Asn	GTT Val	CCA Pro 765	2664	•
40	GCT Ala	AAC Asn	TTC Phe	CCC Pro	GAG Glu 770	GCC Ala	AAG Lys	TAT Tyr	ATC Ile	GCC Ala 775	TTC Phe	ACA Thr	ATG Met	TAC Tyr	ACG Thr 780	ACC Thr	2712	
45	TGC Cys	ATT Ile	ATA Ile	TGG Trp 785	CTA Leu	GCT Ala	TTT Phe	GTT Val	CCA Pro 790	ATC Ile	TAC Tyr	TTT Phe	GGC Gly	AGC Ser 795	AAC Asn	TAC Tyr	2760	
	AAA Lys	ATC Ile	ATC Ile 800	ACC Thr	ATG Met	TGT Cys	TTC Phe	TCG Ser 805	GTC Val	AGC Ser	CTC Leu	AGT Ser	GCC Ala 810	ACA Thr	GTG Val	GCC Ala	2808	
50	Leu	GGC Gly 815	TGC ' Cys	ATG Met	TTT - Phe	GTG Val	CCG Pro 820	ACG Thr	GTG Val	TAC Tyr	Il	ATC 11 825	CTG L u	GCC Ala	AAA Lys	CCA Pro	2856	

	GAG AGA AAC GTG CGC AGC GCC TTC ACC ACA TCT ACC GTG GTG CGC ATG Glu Arg Asn Val Arg Ser Ala Phe Thr Thr Ser Thr Val Val Arg Met 830 835 840	
5	CAT GTA GGG GAT GGC AAG TCA TCC TCC GCA GCC AGC AGA TCC AGC AGC His Val Gly Asp Gly Lys Ser Ser Ser Ala Ala Ser Arg Ser Ser Ser 850 850 860	2952
	CTA GTC AAC CTG TGG AAG AGA AGG GGC TCC TCT GGG GAA ACC TTA AGG Leu Val Asn Leu Trp Lys Arg Arg Gly Ser Ser Gly Glu Thr Leu Arg 865 870 875	
10	TAAAAGTTGT GGGGGCTTAC AGGGATGCTG GCCCCTAAAA CTGGAGCAGA GGCATGTG	TT 3060
	TCCTGGGTCT TTTAAATGGG AGAAATCTGG GTAAATGACA CCATCTGAGG CAGGGTGA	CT 3120
•	TACGGCATGG ACCTCCTCAT AAAATGGTAT TTATGGGGTT AATGGGATGT GGCTCCAC	TT 3180
	ACTTAGCCCA AGTCTAGAAA CATGGAAGTC AAACTCTCTA ATAAAGCAGA GCTACAGC	GT 3240
	CGGGGGAGTG ACGTTTGACA GGGCAGACAG ACCAGAGTTC AG	3282
15	(2) INFORMATION FOR SEC ID NO.12.	
19	(2) INFORMATION FOR SEQ ID NO:12:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 877 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 	
20	(ii) MOLECULE TYPE: protein	:
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	Met Val Leu Leu Ile Leu Ser Val Leu Leu Trp Lys Glu Asp Val 1 5 10 15	.*
25	Arg Gly Ser Ala Gln Ser Ser Glu Arg Arg Val Val Ala His Met Pro 20 25 30	
	Gly Asp Ile Ile Gly Ala Leu Phe Ser Val His His Gln Pro Thr 35 40 45	
	Val Asp Lys Val His Glu Arg Lys Cys Gly Ala Val Arg Glu Gln Tyr 50 60	
30	Gly Ile Gln Arg Val Glu Ala Met Leu His Thr Leu Glu Arg Ile Asn 65 70 75 80	
.: `	Ser Asp Pro Thr Leu Leu Pro Asn Ile Thr Leu Gly Cys Glu Ile Arg 85 90 95	
35	Asp Ser Cys Trp His Ser Ala Val Ala Leu Glu Gln Ser Ile Glu Phe 100 105 110	
	Ile Arg Asp Ser Leu Ile Ser Ser Glu Glu Glu Glu Gly Leu Val Arg 115 120 125	*
,	Cys Val Asp Gly Ser Ser Ser Phe Arg Ser Lys Lys Pro Ile Val 130 135 140	
40	Gly Val Ile Gly Pro Gly Ser Ser Ser Val Ala Ile Gln Val Gln Asn 145 150 155 160	•
	Leu Leu Gln Leu Phe Asn Ile Pr Gln Ile Ala Tyr Ser Ala Thr Ser	

Met Asp Leu Ser Asp Lys Thr Leu Phe Lys Tyr Phe Met Arg Val Val 180 185 190 Pro Ser Asp Ala Gln Gln Ala Arg Ala Met Val Asp Ile Val Lys Arg Tyr Asn Trp Thr Tyr Val Ser Ala Val His Thr Glu Gly Asn Tyr Gly 210 215 220 Glu Ser Gly Met Glu Ala Ser Lys Asp Met Ser Ala Lys Glu Gly Ile 225 230 240 Cys Ile Ala His Ser Tyr Lys Ile Tyr Ser Asn Ala Gly Glu Gln Ser 245 250 255 10 Phe Asp Lys Leu Lys Lys Leu Thr Ser His Leu Pro Lys Ala Arg 260 265 270 Val Val Ala Cys Phe Cys Glu Gly Met Thr Val Arg Gly Leu Leu Met 275 280 285 Ala Met Arg Arg Leu Gly Leu Ala Gly Glu Phe Leu Leu Gly Ser 290 295 300 Asp Gly Trp Ala Asp Arg Tyr Asp Val Thr Asp Gly Tyr Gln Arg Glu 305 310 315 320 Ala Val Gly Gly Ile Thr Ile Lys Leu Gln Ser Pro Asp Val Lys Trp 325 20 Phe Asp Asp Tyr Tyr Leu Lys Leu Arg Pro Glu Thr Asn His Arg Asn 340 345 Pro Trp Phe Gln Glu Phe Trp Gln His Arg Phe Gln Cys Arg Leu Glu 355 360 365 Ala Phe Pro Gln Glu Asn Ser Lys Tyr Asn Lys Thr Cys Asn Ser Ser 370 380 Leu Thr Leu Lys Thr His His Val Gln Asp Ser Lys Met Gly Phe Val 385 390 400 Ile Asn Ala Ile Tyr Ser Met Ala Tyr Gly Leu His Asn Met Gln Met 405 410 415 30 Ser Leu Cys Pro Gly Tyr Ala Gly Leu Cys Asp Ala Met Lys Pro Ile 420 425 430 Asp Gly Arg Lys Leu Leu Glu Ser Leu Met Lys Thr Asn Phe Thr Gly 435 Val Ser Gly Asp Thr Ile Leu Phe Asp Glu Asn Gly Asp Ser Pro Gly 450 455 Arg Tyr Glu Ile Met Asn Phe Lys Glu Met Gly Lys Asp Tyr Phe Asp 465 470 475 480 Tyr Ile Asn Val Gly Ser Trp Asp Asn Gly Glu Leu Lys Met Asp Asp 485 490 495 Asp Glu Val Trp Ser Lys Lys Ser Asn Ile Ile Arg Ser Val Cys Ser 500 505 510 505 Lys Gly Gln Ile Ly 520

Ser Cys Cys Trp Thr Cys Thr Pro Cys Lys Glu Asn Glu Tyr Val Phe Asp Glu Tyr Thr Cys Lys Ala Cys Gln Leu Gly Ser Trp Pro Thr Asp 545 550 550 560 Asp Leu Thr Gly Cys Asp Leu Ile Pro Val Gln Tyr Leu Arg Trp Gly 565 570 575 Asp Pro Glu Pro Ile Ala Ala Val Val Phe Ala Cys Leu Gly Leu Leu Ala Thr Leu Phe Val Thr Val Val Phe Ile Ile Tyr Arg Asp Thr Pro 10 Val Val Lys Ser Ser Ser Arg Glu Leu Cys Tyr Ile Ile Leu Ala Gly
610 620 Ile Cys Leu Gly Tyr Leu Cys Thr Phe Cys Leu Ile Ala Lys Pro Lys Gln Ile Tyr Cys Tyr Leu Gln Arg Ile Gly Ile Gly Leu Ser Pro Ala 645 655 Met Ser Tyr Ser Ala Leu Val Thr Lys Thr Asn Arg Ile Ala Arg Ile Leu Ala Gly Ser Lys Lys Ile Cys Thr Pro Lys Pro Arg Phe Met 675 680 685 20 Ser Ala Cys Ala Gln Leu Val Ile Ala Phe Ile Leu Ile Cys Ile Gln Leu Gly Ile Ile Val Ala Leu Phe Ile Met Glu Pro Pro Asp Ile Met His Asp Tyr Pro Ser Ile Arg Glu Val Tyr Leu Ile Cys Asn Thr Thr 725 730 735 Asn Leu Gly Val Val Thr Pro Leu Gly Asn Asn Gly Leu Leu Ile Leu 740 745 750 Ser Cys Thr Phe Tyr Ala Phe Lys Thr Arg Asn Val Pro Ala Asn Phe 30 Pro Glu Ala Lys Tyr Ile Ala Phe Thr Met Tyr Thr Cys Ile Ile Trp Leu Ala Phe Val Pro Ile Tyr Phe Gly Ser Asn Tyr Lys Ile Ile Thr Met Cys Phe Ser Val Ser Leu Ser Ala Thr Val Ala Leu Gly Cys Met Phe Val Pro Thr Val Tyr Ile Ile Leu Ala Lys Pro Glu Arg Asn Val Arg Ser Ala Phe Thr Thr Ser Thr Val Val Arg Met His Val Gly Asp Gly Lys Ser Ser Ser Ala Ala Ser Arg Ser Ser Leu Val Asn Leu Trp Lys Arg Arg Gly 865

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 343 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
	(ii) MOLECULE TYPE: cDNA	
10	<pre>(ix) FEATURE: (A) NAME/KEY: misc feature (B) LOCATION: 1343 (D) OTHER INFORMATION: /note= "Partial sequence of MGLUR2"</pre>	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	TGGAGACGCC ATACTGCCGC GCTGACACAG CTGCTCCTGG GCACCTAGTG CAGACCCACG	60
	TCCAGGGCCA GGAGGAAGTT GGCTGGAGCA CTGCAATAAT TTATTACCCA GCCTATGTCT	120
15	GCCCCCCGAG TCACTTACCC ACCTCCTTAC CCCAGCTCTT CAGACTCAGA AGTCAGGAGC	180
	CTTGGCCAGG AGCCTCTGCA GTGGCCACTA ACTGCCCTTG TAGCTGTGTT TCCTCCTGGC	240
	CAGGCCCAGG GCTCAGAGAG GAGCAAGCCA GGGTTCACTC TGCCCTGGAC CCGGGTGGCT	300
	GAGGACGCCA GGCCCCAGTC CTAACCAGCA AAGGTGCTTC CAG	343

PCT/US94/06273

That which is claimed is:

- 1. Isolated DNA encoding a human metabotropic glutamate receptor subtype.
- 2. DNA according to Claim 1 wherein said subtype is mGluR1.
- 3. DNA according to Claim 2 wherein the nucleotides of said DNA encode substantially the same amino acid sequence as set forth in Sequence ID No. 2.
- 4. DNA according to Claim 2 wherein the nucleotides of said DNA hybridize under high stringency conditions to substantially the entire coding region of Sequence ID No. 1.
- 5. DNA according to Claim 2 wherein the nucleotides of said DNA have substantially the same nucleotide sequence as Sequence ID No. 1.
- 6. DNA according to Claim 1 wherein said subtype is mGluR2.
- 7. DNA according to Claim 6 wherein the nucleotides of said DNA include a segment encoding substantially the same amino acid sequence as set forth in Sequence ID No. 4, or the amino acid sequence of the human mGluR2-encoding portion of clone METAB40 (ATCC accession no. 75465).
 - 8. DNA according to Claim 6 wherein the nucleotides of said DNA hybridize under high stringency conditions to substantially the entire sequence of Sequence ID No. 3, or the human mGluR2-encoding portion of clone METAB40 (ATCC accession no. 75465).

- 9. DNA according to Claim 6 wherein the nucleotides of said DNA include substantially the same nucleotide sequence as Sequence ID No. 3, or the human mGluR2-encoding portion of clone METAB40 (ATCC accession no. 75465).
- 10. DNA according to Claim 1 wherein said subtype is mGluR3.
- 11. DNA according to Claim 10 wherein the nucleotides of said DNA encode substantially the same amino acid sequence as set forth in Sequence ID No. 6.
- 12. DNA according to Claim 10 wherein the nucleotides of said DNA hybridize under high stringency conditions to substantially the entire coding region of Sequence ID No. 5.
- 13. DNA according to Claim 10 wherein the nucleotides of said DNA have substantially the same nucleotide sequence as Sequence ID No. 5.
- 14. DNA according to Claim 1 wherein said subtype is mGluR5.
- 15. DNA according to Claim 14 wherein the nucleotides of said DNA encode substantially the same amino acid sequence as set forth in Sequence ID No. 8.
- 16. DNA according to Claim 14 wherein the nucleotides of said DNA hybridize under high stringency conditions to substantially the entire coding region of Sequence ID No. 7.
- 17. DNA according to Claim 14 wherein the nucleotides of said DNA have substantially the same nucleotide sequence as Sequence ID No. 7.

WO 94/29449 PCT/US94/06273

- 18. Isolated protein encoded by the DNA of Claim 1.
- 19. Nucleic acid probes comprising at least 14 contiguous bases of the DNA according to Claim 1 or the complement thereof.
- 20. Isolated mRNA complementary to DNA according to Claim 1.
- 21. Eukaryotic cells containing DNA according to Claim 1.
 - 22. Eukaryotic cells expressing DNA of Claim 1.
- 23. Amphibian oocytes expressing the mRNA of Claim 20.
- 24. A method for identifying DNA encoding human metabotropic glutamate receptor protein subtype(s), said method comprising:
- contacting human DNA with a probe according to 5 Claim 19, wherein said contacting is carried out under low-to moderate-stringency hybridization conditions when the probe used is a polynucleic acid fragment, or under high-stringency hybridization conditions when the probe used is an oligonucleotide, and
- identifying DNA(s) which hybridize to said probe.
 - 25. A method for identifying compounds which bind to human metabotropic glutamate receptor subtype(s), said method comprising employing a receptor protein according to Claim 18 in a competitive binding assay.

- 26. A bioassay for identifying compounds which modulate the activity of human metabotropic glutamate receptor subtype(s), said bioassay comprising:
 - (a) exposing cells of Claim 22 to at least one compound whose ability to modulate the second messenger activity of said receptor subtype(s) is sought to be determined; and thereafter
- (b) monitoring said cells for changes in second messenger activity.
 - 27. A method for modulating the second messenger activity of human metabotropic glutamate receptor subtype(s), said method comprising:

contacting said receptor with an effective amount of at least one compound identified by the bioassay of Claim 26.

- 28. Modulators of human metabotropic glutamate receptor subtypes identified by the method of Claim 26.
- 29. An antibody generated against the protein of Claim 18 or an immuogenic portion thereof.
- 30. An antibody according to Claim 29, wherein said antibody is a monoclonal antibody.
 - 31. A method for modulating the second messenger activity of human metabotropic glutamate receptor subtype(s), said method comprising:

contacting said receptor with an effective amount of the antibody of Claim 30.

32. A cation-based bioassay for monitoring receptor-induced changes in intracellular cyclic nucleotide levels, said bioassay comprising:

introducing nucleic acids encoding receptors

5 suspected of influencing cyclic nucleotide levels into host
cells expressing endogenous or recombinant cyclic
nucleotide-gated channels, and

monitoring changes in the amount of cyclic nucleotide activation of said cyclic nucleotide-gated channels in the presence and absence of ligand for said receptors suspected of influencing cyclic nucleotide levels.

1 / 1

FIGURE 1

