Devang Patel Institute of Advance Technology & Research Department of Computer Engineering/Computer Science & Engineering/IT

Subject Name: Design and Analysis of Algorithms

Semester: 5th

Practical List

Analysis of Program should contain following sub heading(s).

- 1. Impact of Input Size on the Performance of Program. Make Table and Draw graph of Input Size Vs Running Time/Total No of Instructions. Take at least Five Input of Different Size.
- 2. Impact of Input Quality on the Performance of Program. Make Table and Draw graph of Best Case, Worst Case and Average Case Input Quality Vs Running Time/ Total No. of Instructions.
- 3. Rate of Growth of Program. Make Table and Draw Graph of Input Size Vs Instruction(s) Running Maximum No of Time in the Program.
- 4. Conclusion from the above graph or Data Table
- 5. For all Test cases, add column for output, calculate the answer and write the answer in the output column and verify with the output of the program.

-	.	and verify with the output of the program.	**	T 0	DO	DEG
Exp.	Nam	e of Experiment	Hours	LO	PO	PEO
No.						
1.		ement and analyze algorithms given below.	04	1	1,3,7	2,4
	1.1	Factorial (Iterative and Recursive)				
	1.2	Euclidean algorithm				
	1.3	Matrix Addition and Matrix Multiplication (Iterative)				
	1.4	Find a subset of a given set $S = \{s1, s2,, sn\}$ of n positive integers whose sum is equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and $d = 9$ there are two solutions $\{1,2,6\}$ and $\{1,8\}$. A suitable message is to be displayed if the given problem instance doesn't have a solution.				
2.	Imple them)	ement and analyze algorithms given below. (Compare	02	1	1,3,7	2,4
	2.1	Bubble Sort				
	2.2	Selection Sort				
	2.3	Insertion Sort				
3.	Divid	e and Conquer Strategy	04	1,2	1,3,4,7	2,4
	3.1	Implement and perform analysis of worst case of Merge Sort and Quick sort. Compare both algorithms.				
	3.2	Implement the program to find X^Y using divide and conquer strategy and print the total number of multiplications required to find X^Y. Test the program for following test cases: Test Case X Y 1 2 6 2 7 25 3 5 34				

4.	Gree	dy Appro	ach				04	1,2	1,3,4, 5,7,8	2,4
	4.1	to custor number which is a cashier find a ch the total	or at any mall nemers many times of coins available described by a set to find the minimange of a particular number of coins he program for for							
		Test Case	Coin denon	ninations C	Amount A	\				
			₹1, ₹	2, ₹3	₹ 5					
		2	₹18, ₹17		₹ 22					
		3	₹100, ₹25,	₹10, ₹5, ₹1	₹ 289					
		Is the o	output of Test of ion.	case 2 is op	timal? Write	your				
	4.2	Impleme assuming	a collection of cent the fraction g we have a sack V. Check the program	al knapsack that can hol	problem fo d objects with	r S total				
		Test Case	S	profit-w	eight values	W				
		1	{A,B,C}	Profit:(1,2 Weight: (2	2,3,4)	5				
		2	$\{A,B,C,D,E,F,G\}$,	5,15,7,6,18,3) 2,3,5,7,1,4,1)	15				
		3	{A,B,C,D,E,F,G	C:(8,5),D:		18				
				21(11,0),1	.(/,1/, 0.(/,0/					
	4.3	Hall. Sta pair of (s Impleme	you want to sch art time and Finis si,fi) for ith activi ent the program Hall. (Maximum	sh time of act ty. to maximize	ivities are give	en by				
		Test Case	Number of activities (N)		(si,fi)					
		1	9	(1,2), 1,3),(1 (4,9), (5,6), (,4),(2,5),(3,7), 6,8), (7,9)					
		2	11	(1,4),(3,5),(0	,6),(3,8),(5,7), (8,12),(8,11)					
5.	Dyna	mic Prog	rammino				06	1,2	1,3,4,	2,4
	5.1	Impleme	ent a program w		**				7,5,8	

		programm	ing ation	imple of BNI	ementation	Compare the with In output, e	recurs	ive				
				est ase	n	k						
				1	5	2						
				2	11	6						
				3	12	5						
	5.2	Compare (Greedy	and D	ynamic appr		_					
	5.3	i=1,2,,n program to a way that Also calcu	matri fully minim late th	x Ai parentl nizes th ne numb	with diment hesize the properties of	In matrices, asions. Imploreduct A1,A2 scalar multiplication	ement 2,,Ar plicatio	the n in ons.				
		Test Case	n		Matrices w	ith dimensi	ons					
		1	3			2: 5*6, A3: 6						
		2	6		,	35*15, A3: 1 0*20, A6: 20		4:				
	5.4	Implement a program to print the longest common subsequence for the following strings:										
		Te Ca		St	tring1	String2	2					
		1			CDAB	BDCAB						
		3			NENTIAL ARITHM	POLYNOM						
] 3)	LUG	AKIITIVI	ALGORIT	ПМ					
6.	Grap								06	1,2	1,3,4, 7,5,8	2,4
	6.1	Write a pr	ogram	to dete	ect cycles in	an directed g	graph.					
	6.2	_	o find	l shorte	_	d graph, im o other vert	_					
		Test	Ad	ljacenc	y Matrix of	graph	Star	t				
		Case					Verte	ex				
	1									<u> </u>		

7. Backtracking 7.1 Implement a string. 8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, there	0 1 2 3 4 5 6 7 1				
7. Backtracking 7. Backtracking 7.1 Implement a string. 8. String Matching A consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, there	2				
7. Backtracking 7. Backtracking 7.1 Implement a string. 8. String Matching A consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, there	7				
7. Backtracking 7. Backtracking 7.1 Implement a string. 8. String Matching A consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, there	3				
7. Backtracking 7. Backtracking 7.1 Implement a string. 8. String Matching A string.	3 2				
7. Backtracking 7. Backtracking 7.1 Implement a string. 8. String Matching A consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, their	3 1 7				
7. Backtracking 7. Backtracking 7.1 Implement a string. 8. String Matching A string.	5 9				
7. Backtracking 7.1 Implement a string. 8. String Matching A string. 8.1 Suppose you length n, cou are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, their	3 7 1 9				
7. Backtracking 7.1 Implement a string. 8. String Matching A string. 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, there	7				
7. Backtracking 7.1 Implement a string. 8. String Matching A string. 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, there	0 1 2 3 4 5 6 7 3				
7. Backtracking 7.1 Implement a string. 8. String Matching A string. 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, there					
7. Backtracking 7.1 Implement a string. 8. String Matching A string. 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, there					
7. Backtracking 7.1 Implement a string. 8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, then					
7. Backtracking 7.1 Implement a string. 8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, then					
7. Backtracking 7.1 Implement a string. 8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, there	3 0				
7. Backtracking 7.1 Implement a string. 8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, then	4 1				
7. Backtracking 7.1 Implement a string. 8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, then	5 7				
7. Backtracking 7.1 Implement a string. 8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whin other symbol output a sor are position substring S [P = ab*, then	6 9 4 3				
8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, there	7 1 6				
8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, there					
8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, there					
8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, there					
8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the		02	1,2	1,3,4, 5,7,8	2,4
8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the				3,7,0	
8. String Matching A 8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the	a program to print all permutations of a given				
8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the	Test String				
8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the	Case				
8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the	1 ACT				
8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the	2 NOTE				
8.1 Suppose you length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the					
length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the	Algorithm	02	1,2	1,3,4,	2,4
length n, con are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the	ou are given a source string S[0n - 1] of			5,7,8	
are given a consisting of be found in symbol, whi other symbol output a sor are position substring S [P = ab*, the	onsisting of symbols a and b. Suppose that you				
be found in symbol, whi other symbol output a sor are position substring S [P = ab*, then	pattern string P[0m - 1] of length m < n,				
symbol, whi other symbol output a sor are position substring S [P = ab*, the	of symbols a, b, and *, representing a pattern to				
other symboloutput a sor are position substring S [P = ab*, then	n string S. The symbol * is a "wild card" ich matches a single symbol, either a or b. The				
output a sor are position substring S [P = ab*, the	ols must match exactly. The problem is to				
substring S [P = ab*, the	rted list M of valid "match positions", which				
$P = ab^*$, the	ited list W or valid match positions, which				
	ns j in S such that pattern P matches the				
Suaighnoiw	ns j in S such that pattern P matches the $[jj + P -1]$. For example, if S = ababbab and				
2348	ins j in S such that pattern P matches the $[jj+ P -1]$. For example, if S = ababbab and the output M should be $[0, 2]$. Implement a				
8.2 Implement 1	ns j in S such that pattern P matches the $[jj + P -1]$. For example, if S = ababbab and				
	ns j in S such that pattern P matches the $[jj + P -1]$. For example, if S = ababbab and				

followin	ng test cases:			
Test Case	String	Pattern		
1	2359023141526739921	31415 q=13		
2	ABAAABCDBBABCDDEBCABC	ABC q=101		

Student Learning Outcomes(LO):

Upon completion of this course, students will be able to do the following:

- Students will able to develop efficient and effective computer algorithm. This will help for development of high quality software and problem solving approach.
- Students will get confidence for programming and problem solving methodology.

Program Educational Objectives:

- To prepare the student(s) for successful career as an engineer, a corporate or a government professional, a scientist, an academician, a technocrat, an administrator and an entrepreneur.
- To make students demonstrate their abilities to adapt to a rapidly changing environment by having learned approach and apply new skills and new technologies to solve the problems.
- To create an ambience where the students are cared for in every aspect and motivated to become excellent working professionals who will continue to cherish their association with the organization as a whole, staff and colleagues.
- To provide continued professional development and lifelong learning throughout their Program Outcomes:
 - To prepare the graduates with the latest technologies and skills, with more practical hands-on experience and industry exposure.
 - To prepare industry-ready professional(s) with a strong focus on delivering results according to the industry/society need(s) and expectation(s).
 - To make student able to function effectively as an individual, and as a team member (leader) in accomplishing a common goal.
 - To enhance the employability with the skills like ethics, integrity, responsibility, the respect for laws and regulations, productive, etiquette and punctuality.
 - To make them understand about professionalism, ethical, legal, security, social issues and their responsibilities.
 - To make them able to use different methodologies, various techniques, modern technologies, modern engineering tools and soft (interpersonal) skills for engineering practice to foster learning environment.
 - To make students participate and qualify in competitive examinations like GATE, TOEFL, CAT, GRE, GMAT, IELTS etc.
 - To make students to learn from international as well as domestic institutions and experts as they illustrate the best practices in their fields to function effectively on multi-disciplinary environment.
 - To increase and sustain the interest of the students in professional society chapters and its related activities and various certifications.