

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE INFORMATICA

Ficha del curso: 2022-2023

Grado: MÁSTER INGENIERÍA INFORMÁTICA (2019)	Curso: 1° (1C)	Idioma: Español
Asignatura : 609417 - Computación de altas prestaciones y aplicaciones	Abrev: CAP	6 ECTS
Asignatura en Inglés: High performance computing	Carácter: Obligatoria	
Materia: Arquitectura y redes de computadores	18 ECTS	
Otras asignaturas en la misma materia:		
Redes de nueva generación e Internet	6 ECTS	
Sistemas empotrados distribuidos	6 ECTS	
Módulo: Tecnologías informáticas		
Departamento: Arquitectura de Computadores y Automática	Coordinador: García Sánchez, C	Carlos

Descripción de contenidos mínimos:

- Introducción a la ciencia e ingeniería computacional. Complejidad. Rendimiento. Granularidad y particionado. Localidad.
- Arquitecturas: jerarquía de memoria. Multicores homogéneos y heterogéneos. Memoria compartida y distribuida. Aceleradores. E/S y sistemas de archivos.
- Programación paralela. Paralelismo de tareas y funcional. Planificación. Sincronización. Sintonización de aplicaciones.
- Algoritmos paralelos y diseño de aplicaciones: técnicas básicas.

Programa detallado:

- * Módulo 1. Introducción a la computación de altas prestaciones
 - * Complejidad, grado de paralelismo y granularidad
 - * Niveles de paralelismo
- * Evaluación de rendimiento y métricas
- * Módulo 2. Arquitecturas paralelas
 - * Algo de historia en las arquitecturas paralelas
 - * Evolución de los sistemas de altas prestaciones
 - * Listados de rendimiento
 - * Algoritmos paralelos: paralelismo de tareas vs datos
- * Módulo 3. Paralelismo de datos
 - * Historia de las extensiones SIMD
 - * Niveles de paralelismo de datos
 - * Vectorización con intrínsecas, directivas y automática
- * Módulo 4. Paralelización basada en memoria compartida
 - * Sincronización y compartición de recursos
 - * Directivas de paralelización (OpenMP)
 - * Directivas OpenMP: expresando paralelismo en bucles
 - * Directivas OpenMP: control de datos
 - * Directivas OpenMP: sincronización y barreras
 - * Directivas OpenMP: paralelismo de tareas
- * Módulo 5. Paralelización basada en memoria distribuida
 - * Paso de mensajes, paradigma MPI
 - * Comunicaciones punto a punto
 - * Comunicaciones colectivas
 - * Topologias virtuales
- * Módulo 6. Computación heterogénea
 - * Introducción
 - * Procesadores gráficos y aceleradores
 - * Modelo de programación OpenACC
- * Modelo de programación OpenMP para aceleradores

Programa detallado en inglés:

- * Module 1. An Introduction to High Performance Computing
 - * Complexity, parallelism grade and granularity
 - * Levels of parallelism
 - * Performance evaluation and metrics
- * Module 2. Parallel Architectures
 - * Parallel Architectures History
 - * High Performance System evolution
 - * Performance rankings list
 - * Parallel algorithms: task vs data parallelism
- * Module 3. Data Parallel Exploitation
 - * SIMD history
 - * Data level parallelism

Fecha: de	_ de
Firma del Director del Departamento:	

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE INFORMATICA

- * Vectorization by means of intrinsic, pragmas and auto-vectorization
- * Module 4: Parallelism in Shared Memory
 - * Synchronization and shared resources
 - * Parallelization with directives (OpenMP)
 - * OpenMP directives: loop
 - * OpenMP directives: data control
 - * OpenMP directives: synchronizations and barriers
 - * OpenMP directives: task
- * Module 5. Parallelism in Distributed Memory
 - * Message passing, MPI paradigm
 - * Point to point communication
 - * Collective communication
 - * Virtual topology
- * Module 6: Heterogeneous computing
 - * Introduction
 - * GPUs and accelerators
 - * OpenACC model
- * OpenMP model with offloading extensions

Competencias de la asignatura:

Generales:

MCG1-Capacidad para proyectar, calcular y diseñar productos, procesos e instalaciones en todos los ámbitos de la ingeniería informática.

MCG4-Capacidad para el modelado matemático, cálculo y simulación en centros tecnológicos y de ingeniería de empresa, particularmente en tareas de investigación, desarrollo e innovación en todos los ámbitos relacionados con la Ingeniería en Informática.

MCG8-Capacidad para la aplicación de los conocimientos adquiridos y de resolver problemas en entornos nuevos o poco conocidos dentro de contextos más amplios y mulitidisciplinares, siendo capaces de integrar estos conocimientos.

Específicas:

MCETI6-Capacidad para diseñar y evaluar sistemas operativos y servidores, y aplicaciones y sistemas basados en computación distribuida.

MCETI7-Capacidad para comprender y poder aplicar conocimientos avanzados de computación de altas prestaciones y métodos numéricos o computacionales a problemas de ingeniería.

Básicas y Transversales:

MCB6-Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

MCB7-Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio;

MCB10-Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

MCT1-Capacidad para desarrollar un espíritu innovador y emprendedor, conociendo y entendiendo la organización y funcionamiento de las empresas informáticas.

MCT2-Capacidad para trabajar en equipo, ya sea como un miembro más o realizando la labor de dirección del mismo, promoviendo el libre intercambio de ideas.

MCT3-Capacidad para fomentar la creatividad tanto propia como de los compañeros de trabajo.

MCT4-Capacidad de razonamiento crítico como vía para mejorar la generación y desarrollo de ideas en un contexto profesional.

MCT5-Capacidad para desarrollar la actividad profesional respetando y promocionando los compromisos éticos y sociales.

MCT6-Capacidad para la búsqueda, análisis y síntesis de información.

Resultados de aprendizaje:

El estudiante adquirirá capacidad para evaluar el rendimiento de las aplicaciones y analizar si existen posibilidades de mejora en distintas arquitecturas.

Será capaz de sintonizar aplicaciones para explotar eficientemente la jerarquía de memoria.

Fecha:	de	_ de
Firma de	el Director del Departamento:	

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE INFORMATICA

Podrá paralelizar aplicaciones en arquitectura de memoria compartida y en sistemas distribuidos.		
Estará capacitado para optimizar aplicaciones utilizando aceleradores.		
Evaluación detallada:		
- 40% correspondiente al examen/test final.		
- 40% correspondiente a las desarrollo de las prácticas.		
- 20% correspondiente a la exposición de trabajos.		

Las prácticas tratarán los siguientes temas:

- * Práctica 1: Programación SIMD Vectorización
- * Practica 2: Programación OpenMP
- * Práctica 3: Programación paso de mensajes o MPI
- * Práctica 4: Programación de Aceleradores y GPUs

Actividades docentes:

Reparto de créditos: Otras actividades: Teoría: 3,00 No tiene

Problemas: 0,00 Laboratorios: 3,00

Bibliografía:

- * Georg Hager, Gerhard Wellein. Introduction to High Performance Computing for Scientists and Engineers. CRC Press, 2010.
- * Thomas Sterling, Matthew Anderson, Maciej Brodowicz. High Performance Computing: Modern Systems and Practices. Morgan Kaufmann, 2018.
- * James Jeffers, James Reinders, Avinash Sodani. Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition, Morgan Kaufmann, 2016
- * MPI: The Complete Reference
- * Nicholas Wilt. The CUDA handbook: a comprehensive guide to GPU, Addison-Wesley Professional 2013

Ficha docente guardada por última vez el 21/07/2020 15:55:00 por el usuario: Coordinador MII

Fecha: de	de
recha: de	_ de
Firma del Director del Departamento:	

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE INFORMATICA

Fecha: de	de
Firma del Director del Departamento:	