Regression Notes

Useful Link

http://web.pdx.edu/
~newsomj/mvclass/
ho_link.pdf explanation
of link functions

TABLE 1 Transformation model. Interpretation of linear predictors $\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}$ under different link functions $g = F^{-1}$

Link F ⁻¹	Interpretation of $\mathbf{x}^T \boldsymbol{\beta}$
probit	$\mathbb{E}(\alpha(Y) \mathbf{x}) = \mathbf{x}^{\top}\boldsymbol{\beta}$
logit	$\frac{F_{Y X=x}\left(y x\right)}{1-F_{Y X=x}\left(y x\right)} = \exp\left(-X^{\top}\beta\right) \frac{F_{Y}(y)}{1-F_{Y}(y)}$
cloglog	$1 - F_{Y X=x}(y x) = (1 - F_Y(y))^{exp(-x^\top \beta)}$
loglog	$F_{Y X=x}(y x) = F_Y(y)^{\exp(x^\top \beta)}$

The parameters β describe a deviation from the baseline distribution F_{γ} in terms of the linear predictor $\mathbf{x}^{\top}\boldsymbol{\beta}$. For a probit link, the linear predictor is the conditional mean of the transformed counts $\alpha(Y)$. This interpretation, except for the fact that the intercept is now understood as being part of the transformation function α , is the same as in the traditional approach of first transforming the counts and only then estimating the mean using least-squares. However, the transformation α is not heuristically chosen or defined a priori but estimated from data through parameters &, as explained below. For a logit link, $\exp(-x^{T}\beta)$ is the odds ratio comparing the conditional odds $F_{Y|X=x}/1 - F_{Y|X=x}$ with the baseline odds $F_Y/1 - F_Y$. The complementary log-log (cloglog) link leads to a discrete version of the Cox proportional hazards model, such that $\exp(-x^{T}\beta)$ is the hazard ratio comparing the conditional cumulative hazard function $log(1 - F_{Y|X=x})$ with the baseline cumulative hazard function $log(1 - F_y)$. The loglog link leads to the reverse time hazard ratio with multiplicative changes in $log(F_{\vee})$. All models in Table 1 are parameterized to relate positive values of $\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}$ to larger means independent of the specified link $g = F^{-1}$.