Course: CSC707, Automata, Computability and Computational Theory Homework 4: Finite automata (FA), DFA, NFA, regular expressions,

Pumping lemma, and closure properties

Submission: Use Wolfware File Format: LaTeX and PDF

NOTE: If you create images, make sure you submit them as well.

Due Date: 11:00 AM, Saturday, March 13, 2010

- 1. Assuming $L_1, L_2, ...$ are regular, which of the following languages are regular. Prove your answers.
 - (a) $\bigcup_{i=1}^{n} L_i$
 - (b) $\bigcup_{i=1}^{\infty} L_i$
 - (c) $\bigcap_{i=1}^{n} L_i$
 - (d) $\bigcap_{i=1}^{\infty} L_i$
 - (a) **Theorem 1** $\bigcup_{i=1}^{n} L_i$ is regular language.

Proof. Prove by induction.

Basis: For n = 1, $\bigcup_{i=1}^{n} L_i = L_1$. Since L_1 is regular, $\bigcup_{i=1}^{n} L_i$ is regular.

Inductive Hypothesis: Assume that $\bigcup_{i=1}^{n} L_i$ is regular for $\forall n \geq 1, n \in \mathbb{N}$

Inductive Step: Prove that $\bigcup_{i=1}^{n+1} L_i$ is regular.

Note: $\bigcup_{i=1}^{n+1} L_i = \bigcup_{i=1}^n L_i \bigcup L_{i+1}$. By assumption, L_{i+1} is regular. By inductive hypothesis, $\bigcup_{i=1}^n L_i$ is regular. Since regular languages are closed under union, $\bigcup_{i=1}^n L_i \bigcup L_{i+1}$ is regular. Therefore, $\bigcup_{i=1}^{n+1} L_i$ is regular.

(b) **Theorem 2** $\bigcup_{i=1}^{\infty} L_i$ may be regular language or non-regular language.

Proof. Prove by example.

- i. Regular: Let $L_1=0^1, L_2=0^2, \ldots, L_n=0^n, \ldots$ Each L is a finite sequence of 0s, so each L is a regular language. The union $\bigcup_{i=1}^{\infty} L_i=0^*$, which is a regular language. Thus, $\bigcup_{i=1}^{\infty} L_i$ is regular. ii. Non-regular: Let $L_1=0^4, L_2=0^6, L_3=0^8, \ldots, L_n=0^{composite}, \ldots$
- ii. Non-regular: Let $L_1 = 0^4$, $L_2 = 0^6$, $L_3 = 0^8$, ..., $L_n = 0^{composite}$, Since each L is a finite sequence of 0s, they are regular languages. The union of all these regular languages that have composite number of 0s is a non-regular language, $L = \{0^{composite}\}$, which is proved in the class.

(c) **Theorem 3** $\bigcap_{i=1}^{n} L_i$ is a regular language.

Proof. Prove by induction.

Basis: For n = 1, $\bigcap_{i=1}^{n} L_i = L_1$. Since L_1 is regular, $\bigcap_{i=1}^{n} L_i$ is regular.

Inductive Hypothesis: Assume that $\bigcap_{i=1}^{n} L_i$ is regular for $\forall n \geq 1, n \in \mathbb{N}$

Inductive Step: Prove that $\bigcap_{i=1}^{n+1} L_i$ is regular.

Note: $\bigcap_{i=1}^{n+1} L_i = \bigcap_{i=1}^n L_i \cap L_{i+1}$. By assumption, L_{i+1} is regular. By inductive hypothesis, $\bigcap_{i=1}^n L_i$ is regular. Since the intersection of two regular languages $L_1 \cap L_2 = \overline{L_1 \cup L_2}$, and union and complement are the two closed operators for regular languages, the intersection of two regular languages is a regular language. Thus, $\bigcap_{i=1}^n L_i \cap L_{i+1}$ is regular, which means $\bigcap_{i=1}^{n+1} L_i$ is regular.

- (d) **Theorem 4** $\bigcap_{i=1}^{\infty} L_i$ may be regular language or non-regular language. **Proof.** Prove by example.
 - i. **Regular:** Let $L_1 = 0^1, L_2 = 0^2, \dots, L_n = 0^n, \dots$ Each L is a finite sequence of 0s, thus a regular language. In this case, $\bigcap_{i=1}^{\infty} L_i = \emptyset$. Thus, $\bigcap_{i=1}^{\infty} L_i$ is regular.
 - ii. Non-regular: Let $L = \{0^{composite}\} = 0^4 \underbrace{\bigcup 0^6 \underbrace{\bigcup 0^8 \underbrace{\bigcup \dots \bigcup 0^{composite} \bigcup \dots}}_{0^6 \text{ order}} \dots$ The composite of L is $\overline{L} = \{\overline{0^{composite}}\} = \overline{0^4 \cap 0^6 \cap 0^8 \cap \dots \cap 0^{composite} \cap \dots}$ Since $0^4, 0^6, \dots, 0^{composite}, \dots$ are all finite, they are all regular languages. Thus, the complement of them are also regular, since regular languages are closed on the operator of union. In

this way, $\overline{L}=\{\overline{0^{composite}}\}$ is the infinite intersections of each $\overline{0^{composite}}$. Assuming $\overline{L}=\{\overline{0^{composite}}\}$ is regular, then its complement, $L=\{0^{composite}\}$, is also regular, since regular languages are closed on the operator intersection, which is proved in (c). However, we know that $L=\{0^{composite}\}$ is not regular, which is a contradiction. Therefore, $\overline{0^{composite}}$ is not regular. Thus, the infinite intersections of regular languages may produce a non-regular language.

- 2. Prove that the following languages are regular:
 - (a) $MIN(L) = \{x \in L | \text{ no prefix of } x \text{ is in } L\}$
 - (b) $L^R = \{x | \text{ reverse of } x \text{ is in } L\}$
 - (a) **Theorem 5** $MIN(L) = \{x \in L | no prefix of x is in L\}$ is a regular language.

Proof.

Given a regular language L, construct a DFA for it. For each final state, we cut off all the outgoing edges from it. In this way, we build a DFA that recognizes no prefix of x is in L. Thus, $MIN(L) = \{x \in L | \text{no prefix of } x \text{ is in } L\}$ is a regular language.

- (b) **Theorem 6** $L^R = \{x | reverse \ of \ x \ is \ in \ L \}$ is a regular language. **Proof.** Given a regular language L that recognizes x, we can construct a DFA for it. Using this DFA, we can build a DFA for $L^R = \{x | \text{ reverse of } x \text{ is in } L \}$ as follows:
 - Reverse each transition.
 - Turn the start state into a final state.
 - Add a new start state, and add a λ -transition from the start state to each final state.
 - Turn the original final states into normal states.

In this way, we can recognize the reverse of x. Thus, $L^R = \{x | \text{ reverse of } x \text{ is in } L\}$ is a regular language.