Univerzita Karlova v Praze Filozofická fakulta Katedra logiky

MICHAL KETNER

Konstruktivní univerzum L The constructive universe L Bakalářská práce

Vedoucí práce: Mgr. Radek Honzík, Ph.D.

Dualia ***: *** : halai/***********************************
Prohlašuji, že jsem bakalářskou práci vypracoval samostatně a že jsem uvedl všechny použité prameny a literaturu.
V Praze 13. srpna 2016
Michal Ketner
1

Abstrakt

Tato práce zkoumá univerzum konstruktivních množin \mathbb{L} , jak ho definoval Gödel. Práce srovnává dva způsoby konstrukce \mathbb{L} : jeden přes formalizaci relace splňování, a druhý pomocí konečně mnoha tzv. rudimentárních funkcí, které \mathbb{L} generují. Práce dále povede k ověření implikace $Con(ZF) \to Con(ZFC+CH)$. Práce má podat ucelený pohled na konstrukci \mathbb{L} a ověření relativní konzistence CH

Klíčová slova: Konstruktivní univerzum L, vnitřní modely

Abstract

The theme explores the universe of constructive set \mathbb{L} as it was defined by Gödel. The work compares two methods of construction \mathbb{L} set: one through the formalization of satisfaction relationand the other one with several (finitely many) called rudimentary functions that generate \mathbb{L} . The work continues with verification of the implications $Con(ZF) \to Con(ZFC + CH)$. The goal is to give a comprehensive view of the construction \mathbb{L} and verification of 's relative consistency CH.

Key words: Constructive universe L, inner models

Obsah

1	Úvo	od	4	
2	Konstrukce univerza			
	2.1	Formalizace relace splňování	6	
		Funkce		
3	Universum $\mathbb L$			
	3.1	Základní vlasnosti L	28	
	3.2	\mathbb{L} je model ZF	41	
		Axiom konstruovatelnosti		
4	Con	$(ZF) \to Con(ZFC + GCH)$	46	
	4.1	Axiom výběru	46	
	4.2	Zobecněná hypotéza kontinua	49	
\mathbf{R}	Reference			

1 Úvod

Na počátku 20. století D. Hilbert vytvořil seznam nejdůležitějších matematických problémů. Na první místo seznamu zařadil otázku, zda-li existuje množina reálných čísel, která není ani spočetná a ani nemá mohutnost jako celá množina reálných čísel. Hypotéza, že taková množina neexistuje, se nazývá hypotéza kontinua (CH z contiuum hypothesis). Tuto otázku potažmo odpověd jde zobecnit pro každé \aleph_{α} , pak se tento problém nazývá zobecněná hypotéza kontinua (GCH z general contiuum hypothesis).

Dalším problémem, co vrtal matematikům hlavou, byla dokazatelnost axiomu výběru (AC z axiom of choice) z axiomů teorie množin. Tyto problémy nebyl schopen nikdo z matematiků vyřešit. Až v roce 1940 Kurt Gödel ukázal, že pokud předpokládáme bezespornost axiomů teorie množin, tak z axiomů nejde dokázat ani negace axiomu výběru ani negaci zobecněné hypotézy kontinua, nebo-li že axiom výběru i zobecněnou hypotézu kontinua jde bezesporně přidat k axiomům teorie množin. Gödel pro tyto účely vytvořil konstruktivní universum L. Toto universum se ukázalo jako důležité ve zkoumání vlastnostní v teorii množin a proto si tato bakalářská práce dala za cíl popsat vlastnosti L .

Práce je rozdělena na tři sekce. První sekce se věnuje přístupům ke konstrukci univerza $\mathbb L$. Druhou sekci jsem věnoval univerzu $\mathbb L$ a jeho vlastnostem. Třetí část je věnována důkazu bezezpornosti přidání AC a GCH k ZF, právě pomocí $\mathbb L$.

V první podsekci první sekce se tato práce věnuje konstrukci universa za pomocí formalizace relace splňování. Celá tato podsekce je motivovaná knihou K.Kunen, Set theory: An introduction to independence proofs. V druhé podsekci první sekce vytváříme L pomocí uzávěru na rudimentární funkce. Tato kapitola čerpá primárně z knihy T. Jech, Set theory, až na definici uzávěru, která je motivována definicí z knihy B.Balcar a P. Štěpánek, Teorie množin, ale upravena na jiné Gödelovy operace.

V první podsekci druhé sekce se práce věnuje vlastnostem univerza \mathbb{L} a připravuje prostor pro důkaz, že \mathbb{L} je model ZF, kterému se věnuje podsekce následující. Tato sekce čerpám zejména z K.Kunen, Set theory: An introduction to independence proofs. Ve třetí podsekci se věnujeme axiomu konstruovatelnosti převážně podle K.Kunen, Set theory: An introduction to independence proofs.

Poslední sekce se zabývá nezávislými hypotézami vzhledem k axiomům ZF. Průběhu důkazů dokážeme mimojiné, že \mathbb{L} je vnitřní model ZF.

Po celou tuto práci počítejme pro zjednodušení, že:

- 1. Použité logické symboly jsou pouze konjunce \land , negace \neg a existenční kvantifikátor \exists .
- 2. Formule neobsahuje predikát rovnosti =.
- 3. Výskyt predikátu náležení \in je pouze ve formulích tvaru $u_i \in u_j$, kde $i \neq j$.
- 4. Výskyt omezeného existenčního kvantifikátoru \exists je pouze ve formuli tvaru $\exists u_{m+1} \in u_i \ \psi(u_1, ...u_{m+1}), \text{ kde } i \leq m.$

Teď ke každému bodu komentář, proč takové omezení můžem přijmout.

- 1. Si můžeme dovolit díky tomu, protože ostatní spojky a kvantifikátory se dají vyjádřit pomocí \land, \neg, \exists .
- 2. Si můžeme dovolit díky axiomu extenzionality, protože ten nám dává, že formuli x=y můžeme nahradit ekvivalentní formulí

$$((\forall u \in x)(u \in y)) \land ((\forall u \in y)(u \in x)).$$

3. To je v pořádku, protože formuli $x \in x$ můžeme nahradit ekvivalentní formulí

$$(\exists u \in x)(u = x).$$

4. Můžeme, protože můžeme všechny proměnné přejmenovat tak, že vázaná proměnná bude mít nejvyšší index.

2 Konstrukce univerza

2.1 Formalizace relace splňování

V této podsekci se budeme věnovat konstrukci univerza $\mathbb L$ uvnitř teorie množin. Konstruktivní universum zde bude vytvořeno pomocí formalizace logiky uvnitř teorie množin.

Nejdříve si nadefinujme ohodnocení, které použijeme v další definici.

Definice 2.1 Ohodnocení

Pro každé n a pro každou n-tici $\langle x_0,...,x_{n-1} \rangle$ definujme **s** jako funkci s definičním oborem n a hodnotami

$$s(i) = x_i$$
.

Definujme si teď množiny n-tic, které splňují atomické formule a množinu uzávěru existenčního kvantifikátoru.

Definice 2.2

Nechť pro $n \in \omega$ a i,j < n definujme:

- $Proj(A, R, n) = \{ \mathbf{s} \in A^n : \exists t \in R(t \upharpoonright n = \mathbf{s}) \},$
- $\bullet \ Diag_{\in}(A,n,i,j) = \{ \mathtt{s} \in A^n : \mathtt{s}(i) \in \mathtt{s}(j) \},$
- $\bullet \ Diag_{=}(A,n,i,j)=\{\mathtt{s}\in A^n:\mathtt{s}(i)=\mathtt{s}(j)\}.$

Pomocí těchto definicí začnem rekurzivně uzavírat n-tice na průnik a doplněk a projekci a pak pomocí těchto množin nadefinujeme Df.

Definice 2.3

Rekurzí přes $k \in \omega$ definujeme $Df^+(k, A, n)$:

1.
$$Df^{+}(0, A, n) = \{Diag_{\in}(A, n, i, j) : i, j < n\} \cup \{Diag_{=}(A, n, i, j) : i, j < n\}$$

2.

$$Df^{+}(k+1,A,n) = Df^{+}(k,A,n) \cup \{A^{n} - R : R \in Df^{+}(k,A,n)\} \cup \{R \cap S : R, S \in Df^{+}(k,A,n)\} \cup \{Proj(A,R,n) : R \in Df^{+}(k,A,n+1)\}$$

Pomocí $Df^+(k,A,n)$ pak definujme Df které je uzávěrem na průnik, doplněk a projekci.

Definice 2.4

$$Df(A,n) = \bigcup \{ Df^+(k,A,n) : k \in \omega \}$$

Následující lemma je důkaz o tom, že Df je opravdu uzavřeno na průnik, doplněk a projekci.

Lemma 2.5

Pro relace R, S, množinu A a číslo n definujme:

a

$$R, S \in Df(A, n) \Rightarrow R \cap S \in Df(A, n)$$

b

$$R \in Df(A, n) \Rightarrow A^n - R \in Df(A, n)$$

 \mathbf{c}

$$R \in Df(A, n+1) \Rightarrow Proj(A, R, n) \in Df(A, n)$$

Důkaz.

$R \cap S$

Nechť tedy mějme nějaké přirozené číslo n, nějakou množinu A a nějaké relace R,S takové, že

$$R, S \in Df(A, n)$$
.

Z definice Df(A, n) plyne, že existuje k_1 a k_2 , tak že

$$R \in Df^+(k_1, A, n)$$

$$S \in Df^+(k_2, A, n).$$

Nechť tedy zvolme y tak, že

$$y = max\{k_1, k_2\}.$$

Použitím definice $Df^+(x, A, n)$ dostaneme

$$R \cap S \in Df^*(y+1, A, n).$$

Z toho tedy pak podle definice Df(A, n) dostaneme

$$R \cap S \in Df(A, n)$$
.

 R^C

Nechť tedy mějme nějaké přirozené číslo n, nějakou množinu A a relaci R takovou, že

$$R \in Df(A, n)$$
.

Z definice Df(A, n) plyne, že existuje k takové, že

$$R \in Df^+(k, A, n).$$

Použitím definice $Df^+(x, A, n)$ dostáváme

$$A^n - R \in Df^+(k+1, A, n).$$

Pak podle definice Df(A, n)

$$A^n - R \in Df(A, n)$$
.

Projekce

Nechť tedy mějme nějaké přirozené číslo n, nějakou množinu A a relaci R takovou, že

$$R \in Df(A, n)$$
.

Z definice $Df^+(A, n+1)$ plyne, že existuje k takové, že

$$R \in Df^+(k, A, n+1).$$

Použitím definice $Df^+(x, A, n)$ dostáváme

$$Proj(A, R, n) \in Df^*(k+1, A, n).$$

Z toho pak podle definice Df(A, n)

$$Proj(A, R, n) \in Df(A, n).$$

Nyní si nadefinujeme relativizaci formulí ve třídě \mathcal{M} , která odpovídá platnosti formulí v \mathcal{M} .

Definice 2.6 Relativizace

Nechť \mathcal{M} je třída, pak pro ϕ definujme indukcí podle složitosti formule $\phi^{\mathcal{M}}$ jako relativizaci ϕ v \mathcal{M}

- 1. $(x = y)^{\mathcal{M}} jako \ x = y$,
- 2. $(x \in y)^{\mathcal{M}} jako \ x \in y$,
- 3. $(\psi \wedge \lambda)^{\mathcal{M}}$ jako $\psi^{\mathcal{M}} \wedge \lambda^{\mathcal{M}}$,
- 4. $(\neg \psi)^{\mathcal{M}} jako \neg (\psi)^{\mathcal{M}}$
- 5. $(\exists \psi)^{\mathcal{M}}$ jako $\exists x (x \in \mathcal{M} \land (\psi)^{\mathcal{M}}),$

Teď si ukážeme že, v Df(A, n) je každá n-tice platící v A.

Lemma 2.7

Nechť $\phi(x_0,...,x_{n-1})$ je formule s volnými proměný $x_0,...,x_{n-1}$, pak

$$\forall A[\{\mathbf{s} \in A^n : \phi^{\mathbf{A}}(\mathbf{s}(0), .., \mathbf{s}(n-1)\} \in Df(A, n)].$$

Důkaz.

Indukcí podle složitosti formule s fixovaným A.

 $x_i \in x_j$

Nechť ϕ je atomická formule $x_i \in x_j$ pak z definice Df(A, n)

$$Diag_{\in}(A, n, i, j) \in Df(A, n),$$

z čehož plyne

$$[\{s \in A^n : \phi^{\mathcal{A}}(s(0), .., s(n-1))\} \in Df(A, n)].$$

Stejně tak pro $x_i = x_i$ z

$$Diag_{=}(A, n, i, j) \in Df(A, n)$$

plyne

$$[\{s \in A^n : \phi^{A}(s(0), .., s(n-1))\} \in Df(A, n)].$$

Nechť ϕ je $\psi \wedge \chi$ a víme z indukčního předpokladu, že platí

$$[\{s \in A^n : \psi^{A}(s(0), .., s(n-1)\} \in Df(A, n)],$$

$$[\{s \in A^n : \chi^{A}(s(0), .., s(n-1))\} \in Df(A, n)],$$

podle předchozího lemma platí

$$\{ s \in A^n : \chi^A(s(0), ..., s(n-1) \} \cap \}$$

$$\cap \{ s \in A^n : \psi^{A}(s(0), .., s(n-1)) \} \in Df(A, n) \}$$

což je přesně

$$[\{s \in A^n : (\chi \wedge \psi)^A(s(0), ..., s(n-1)\} \in Df(A, n)].$$

Nechť ϕ je $\neg \psi$ a víme z indukčního předpokladu, že platí

$$[\{s \in A^n : \psi^{A}(s(0), .., s(n-1))\} \in Df(A, n)].$$

Podle předchozího lemma tedy platí

$$[A - \{ s \in A^n : \psi^A(s(0), ..., s(n-1) \} \in Df(A, n)],$$

což je přesně

$$[\{s \in A^n : (\neg \psi)^A(s(0), .., s(n-1))\} \in Df(A, n)].$$

Konečně nechť ϕ je $\exists y \ \psi$.

Nechť y není ani jedna z proměnných $x_0, ..., x_{n-1}$.

Z indukčního předpokladu

$$\{t \in A^{n-1} : \psi^{\mathcal{A}}(t(0), ...t(n))\} \in Df(A, n+1).$$

Tedy podle předchozího lemma platí

$$Proj(A, \{t \in A^{n-1}: \psi^{\mathcal{A}}(t(0), ...t(n))\}, n) \in Df(A, n),$$

což je přesně

$$\{s \in A^n : (\exists y \ \psi)^A(s(0), .., s(n-1))\}.$$

Teď si nadefinujeme kódování En(m, A, n), které v budoucnu využijeme a proto si pro něj dokážeme i pár vlastností.

Definice 2.8

Rekurzí přes $m \in \omega$.

En(m, A, n) je definována nasledujícími klauzulemi.:

- $Kdy\check{z} m = 2^i * 3^j \ a \ i, j < n, \ tak \ En(m, A, n) = Diag_{\in}(A, n, i, j)$.
- $Kdy\check{z} m = 2^i * 3^j * 5 \ a \ i, j < n, \ tak \ En(m, A, n) = Diaq_{=}(A, n, i, j)$.
- $Kdy\check{z} m = 2^i * 3^j * 5^2$, $tak En(m, A, n) = A^n En(i, A, n)$.
- $Kdy\check{z} m = 2^i * 3^j * 5^3$, $tak En(m, A, n) = E(i, A, n) \cap E(j, A, n)$.
- $Kdy\check{z} m = 2^i * 3^j * 5^4$, tak En(m, A, n) = Proj(A, E(i, A, n + 1), n).
- $Kdy\check{z} m$ není dělitelné 6 nebo je dělitenlné 5^5 , tak $En(m,A,n)=\emptyset$.

Ukážeme si, že pro každý prvek Df(A, n) máme kodování En(m, A, n).

Lemma 2.9

Pro libovolné n a A,

$$Df(A, n) = \{En(m, A, n) : m \in \omega\}.$$

Důkaz.

Mějme A a n fixované. Budeme dokazovat

$$\forall m(En(m, A, n) \in Df(A, n)).$$

Použijeme faktorizaci čísla m.

$$m = 2^{i} * 3^{j}$$
 a $i, j < n$:
Z definice $En(m, A, n)$

$$En(m, A, n) = Diaq_{\epsilon}(A, n, i, j).$$

Z definice Df(A, n) plyne

$$Diag_{\in}(A, n, i, j) \in Df(A, n).$$

Z čehož dostaneme

$$En(m, A, n) \in Df(A, n).$$

$$m = 2^i * 3^j$$
 a $i, j < n$:
Z definice $En(m, A, n)$ plyne

$$En(m, A, n) = Diaq_{=}(A, n, i, j).$$

Z definice Df(A, n) máme

$$Diag_{=}(A, n, i, j) \in Df(A, n).$$

Z čehož máme

$$En(m, A, n) \in Df(A, n).$$

Nechť máme tyto indukční předpoklady

$$En(i, A, n) \in Df(A, n),$$

$$En(j, A, n) \in Df(A, n),$$

$$En(i, A, n+1) \in Df(A, n+1).$$

$$m = 2^i * 3^j * 5^2$$
:

Z definice En(m, A, n)

$$En(m, A, n) = A^n - En(i, A, n).$$

Z indukčního předpokladu a lemma 2.5 pro komplement dostaneme

$$En(m, A, n) \in Df(A, n).$$

$$m = 2^i * 3^j * 5^3$$
:

Z definice En(m, A, n) dostaneme

$$En(m, A, n) = E(i, A, n) \cap E(j, A, n).$$

Z indukčního předpokladu a lemma 2.5 pro průnik

$$En(m, A, n) \in Df(A, n).$$

$$m = 2^i * 3^j * 5^4$$
:

Z definice En(m, A, n)

$$En(m, A, n) = Proj(A, E(i, A, n + 1), n).$$

Z indukčního předpokladu a lemma 2.5 pro projekci

$$En(m, A, n) \in Df(A, n).$$

Pokud je m je jiné než předchozí, tak

$$En(m, A, n) = \emptyset.$$

Z indukčního předpokladu a lemma 2.5 pro komplement a průnik

$$En(m, A, n) \in Df(A, n).$$

Druhý směr

$$Df(A, n) \subset \{En(m, A, n) : m \in \omega\}.$$

Nechť tedy

$$x \in Df(A, n)$$
.

Dále předpokládejme, že neexistuje m tak že

$$x = En(m, A, n).$$

Z definice Df(A, n) dostaneme, že existuje nějaké k takže

$$x \in Df^+(k, A, n).$$

Vezměme takové k nejmenší.

k = 0

Když

$$x \in Df^+(0, A, n),$$

tak

$$x = Diag_{\in}(A, n, i, j),$$

nebo

$$x = Diag_{=}(A, n, i, j).$$

Z definice 2.8 tedy existuje m, tak že

$$x = En(m, A, n).$$

 $k \neq 0$

Když

$$x \in Df^+(k, A, n),$$

tak x je doplněk, průnik nebo projekce nějaké množiny y tak, že

$$y \in Df^+(k-1, A, n),$$

ale pro tyto všechny x podle definice 2.8 existuje m, tak že

$$x = En(m, A, n).$$

Nyní si dokážeme, že každá definovatelná n-tice má svůj kód En(m, A, n).

Lemma 2.10 Nechť $\phi(x_0,...,x_{n-1})$ je formule s volnými proměnnými mezi $x_0,...,x_{n-1}$, pak existuje nějaké m, takové že

$$\forall A[\{s \in A^n : \phi^A(s(0), ..., s(n-1))\} = En(m, A, n)]$$

Důkaz.

Nechť máme nějaké n, A a nějakou formuli $\phi(x_0, ..., x_{n-1})$. Z lemma 2.7 víme, že

$$\forall A[\{s \in A^n : \phi^A(s(0), ..., s(n-1)\} \in Df(A, n)].$$

Z lemma 2.9 víme

$$\forall x (x \in Df(A, n) \to \exists m (x = En(m, A, n))).$$

Což nám dohromady dá

$$\forall A[\{s \in A^n : \phi^A(s(0), ..., s(n-1))\} = En(m, A, n)],$$

jako přímý důsledek dvou předchozích lemmat.

Zde budeme definovat konkatenaci dvou funkcí.

Definice 2.11

Nechť s a t jsou funkce takové, že

$$dom(s) = \alpha$$
,

$$dom(t) = \beta$$
,

pak definujme funkci s t, takže:

$$dom(s \hat{\ }t) = \alpha + \beta$$

$$s \hat{\ }t \upharpoonright (\alpha) = s$$

$$s \hat{\ }t(\alpha + \epsilon) = t(\epsilon) \ pro \ v\check{s}echny \ \epsilon < \beta$$

Nyní konečné definujme množinu definovalných podmnožinA pomocí formalizované relace splňování.

Definice 2.12

$$\mathfrak{D}\mathfrak{P}(A) = \{ X \subset A : (\exists n \in \omega) (\exists \mathbf{s} \in A^n) (\exists R \in Df(A, n+1) \\ X = \{ x \in A : s \hat{\ } \langle x \rangle \in R \} \}$$

Dokažme si teď, že v $\mathfrak{DP}(A)$ jsou všechny definovatelné podmnožiny A.

Lemma 2.13

Nechť $\phi(x_0,...,x_{m-1},y)$ je formule s volnými proměný $x_0,...,x_{m-1},y$, pak

$$\forall A \forall x_0, .., x_{m-1} [\{ y \in A : \phi^{A}(x_0, .., x_{m-1}, y) \} \in \mathfrak{D}\mathfrak{P}(A)].$$

Důkaz.

Nechť tedy mějme $A, m, x_0, ..., x_{m-1}$ a ϕ .

Pak máme

$$n=m,$$

$$s = (x_0, .., x_{m-1}).$$

Z lemma 2.7 víme, že pro každou $\phi^{A}(x_0,...,x_{m-1},y)$ existuje R, takže

$$R \in Df(A, m+1).$$

Z definice 2.12 máme

$$X \in \mathfrak{DP}(A),$$

takže

$$X = \{ y \in A : \phi^{A}(x_0, ..., x_{m-1}, y) \}.$$

Nyní si dokážeme pár vlastností \mathfrak{DP} . Začneme s tím, že dokážeme, že \mathfrak{DP} je vždy podmnožinou potenční množiny.

Lemma 2.14

$$\mathfrak{DP}(A) \subset P(A)$$

 $D\mathring{u}kaz$.

Plyne přímo z definice.

Nechť tedy

 $x \in \mathfrak{DP}(A)$,

z definice $\mathfrak{D}\mathfrak{P}(A)$ plyne

 $x \subset A$

a z definice P(A) plyne

 $x \in P(A)$.

Dokažme si teď, že pokud M je transitivní množina, tak každý prvek množiny M je prvek v $\mathfrak{DP}(A).$

Lemma 2.15

Nechť M je transitivní množina, pak

$$M \subset \mathfrak{DP}(M)$$
.

Důkaz.

Použijeme lemma 2.13 na formuli $y \in x$

$$\forall x \in M(\{y \in M : y \in x\} \in \mathfrak{DP}(M)).$$

Vzhledem k tomu, že M je transitivní, tak

$$(\forall x \in M)(y \in x \to y \in M).$$

Z toho plyne že

$$\{y \in M : y \in x\} = x,$$

z čehož dostaneme

$$\forall x \in M(x \in \mathfrak{DP}(M)).$$

2.2 Funkce

Nejdříve si definujme Gödelovy operace. Operace ale mohou být použity jiné. V této práci bylo čerpáno z knihy T. Jech, Set theory. Jinou definici Gödelových operací můžeme najít třeba v knize B.Balcar a P. Štěpánek, Teorie množin.

Definice 2.16 Gödelovy operace

$$G_{1}(X,Y) = \{X,Y\}$$

$$G_{2}(X,Y) = X \times Y$$

$$G_{3}(X,Y) = \epsilon(X,Y) = \{\langle u,v \rangle : u \in X \land v \in Y \land u \in v\}$$

$$G_{4}(X,Y) = X - Y$$

$$G_{5}(X,Y) = X \cap Y$$

$$G_{6}(X) = \bigcup X$$

$$G_{7}(X) = dom(X)$$

$$G_{8}(X) = \{\langle u,v \rangle : \langle v,u \rangle \in X\}$$

$$G_{9}(X) = \{\langle u,v,w \rangle : \langle u,w,v \rangle \in X\}$$

$$G_{10}(X) = \{\langle u,v,w \rangle : \langle v,w,u \rangle \in X\}$$

Teď si zadefinujme pojem z teorie vyčíslitelnosti, který využijeme také ve větě o vlastnostech Gödelových operací.

Definice 2.17

Formule $\varphi(x_0,..,x_{n-1})$ je Δ_0 -formule teorie množin, pokud:

- je atomická formule,
- $kdy\check{z} \varphi je \phi \wedge \psi a \psi a \phi jsou \Delta_0$ -formule,
- $kdy\check{z} \varphi je \neg \varphi a \varphi je \Delta_0$ -formule,
- $kdy\check{z} \varphi je (\exists x \in y) \phi a \phi je \Delta_0$ -formule.

Ukažme si lemma, které využijeme ve větě o vlastnostech Gödelových operací.

Lemma 2.18

Označme $u=(u_0,..,u_{n-1}), X=X_0\times..\times X_{n-1}$ a $u_i\in X_i$ pro všechna i. Tak pro všechny $u\in X$ platí

$$\varphi(u) \Leftrightarrow (\exists x \in u_i) \psi(u, x)$$

$$\Leftrightarrow \exists x (x \in u_i \land \psi(u, x) \land x \in \bigcup X_i)$$

$$\Leftrightarrow u \in dom\{(u, x) \in X \times \bigcup X_i : \pi(u, x)\}.$$

Dokažme si větu, že ke každé Δ_0 -formuli existuje složení Gödelových operací, které definuje stejné množiny.

Věta 2.19

Nechť $\varphi(x_0,...,x_{n-1})$ je Δ_0 -formule, tak tu je G složené z Gödelových operací, takže pro všechny $X_0,...,X_{n-1}$

$$G(X_0,...,X_{n-1}) = \{(u_0,..u_{n-1}) : u_0 \in X_0,...,u_{n-1} \in X_{n-1} \land \varphi(x_0,...,x_{n-1})\}.$$

Důkaz.

Větu dokážeme pomocí indukce podle složitosti Δ_0 -formule.

Nejdříve začneme s důkazem pro atomické formule.

Nechť $\varphi(x_0,...,x_{n-1})$ je atomická formule tvaru $u_i \in u_j$, kde $i \neq j$.

Provedeme důkaz indukcí podle velikosti n.

n = 1:

Začneme důkazem pro uspořádanou dvojici (u_0, u_1) . φ může mít dva tvary $u_0 \in u_1$, nebo $u_1 \in u_0$. Začněme tvarem $u_0 \in u_1$. Pak hledáme G, takové že

$$\{(u_0, u_1) : u_0 \in X_0 \land u_1 \in X_1 \land u_0 \in u_1\}.$$

Když nahlédneme do seznamu Gödelových operací, tak to odpovídá funkci

$$G_3(X,Y) = \epsilon(X,Y),$$

konkrétně tedy v druhém případě, pro formuli tvaru $u_1 \in u_0$, hledáme G pro

$$\{(u_1, u_2) : u_1 \in X_1 \land u_2 \in X_2 \land u_2 \in u_1\}.$$

Mezi Gödelovými operacemi je funkce

$$G_8(X) = \{(u, v) : (v, u) \in X\}.$$

Můžeme tedy množinu definovat takto

$$\{(u_0, u_1) : u_0 \in X_0 \land u_1 \in X_1 \land u_1 \in u_0\} = G_8(\epsilon(X_0, X_1)).$$

 $n > 1 \land i \neq n - 1 \land j \neq n - 1$:

Z indukčního předpokladu máme

$$\{(u_0,...,u_{n-2}): u_0 \in X_0,...,u_{n-2} \in X_{n-2} \land u_i \in u_i\} = G(X_0,...X_{n-2}).$$

Lze nahlédnout, že

$$\{(u_0, ..., u_{n-1}) : u_0 \in X_0, ..., u_{n-1} \in X_{n-1} \land u_i \in u_j\} = G(X_0, ... X_{n-2}) \times X_{n-1},$$

což odpovídá

$$G_2(X,Y) = X \times Y.$$

Konrétně tedy máme

$$\{(u_0, ..., u_{n-1}) : u_0 \in X_0, ..., u_{n-1} \in X_{n-1} \land u_i \in u_j\}\} = G_2(G(X_0, ..., X_{n-2}), X_{n-1}).$$

$$n > 1 \land i \neq n - 2 \land j \neq n - 2$$
:

Většina případů byla vyřešena v předchozí podmínce. Ty nevyřešené se dají převést na tento případ.

Z indukčního předpokladu mějme

$$\{(u_0, ..., u_{n-3}, u_{n-1}, u_{n-2}) : u_0 \in X_0, ..., u_{n-1} \in X_{n-1} \land u_i \in u_j\} = G(X_1, ..., X_n)$$

Uzávorkujeme

$$(u_0, ..., u_{n-3}, u_{n-1}, u_{n-2}) = ((u_0, ..., u_{n-3}), u_{n-1}, u_{n-2}).$$

Nyní lze nahlédnout, že

$$\{(u_0, ..., u_{n-1}) : u_0 \in X_0, ..., u_{n-1} \in X_{n-1} \land u_i \in u_j\} = G_9((u_0, ..., u_{n-3}), u_{n-1}, u_{n-2}).$$

Konkrétně tedy máme

$$\{(u_0,...,u_{n-1}): u_0 \in X_0,...,u_{n-1} \in X_{n-1} \land u_i \in u_j\} = G_9(G(X_0,...X_{n-1})).$$

 $n > 1 \land i = n - 2 \land j = n - 1$:

Z indukčního předpokladu mějme

$$\{(u_0,...,u_{n-3}): u_0 \in X_0,...,u_{n-3} \in X_{n-3}\} = G(X_0,..,X_{n-3})$$

$$\{(u_{n-2},u_{n-1}): u_{n-2} \in X_{n-2} \wedge u_{n-1} \in X_{n-1} \wedge u_{n-2} \in u_{n-1}\} =$$

$$= \epsilon(X_{n-2},X_{n-1})$$

Naší hledanou $(u_0,...,u_{n-1})$ tedy dostaneme jako

$$\{(u_0,...,u_{n-1}): u_0 \in X_0,...,u_{n-1} \in X_{n-1} \land u_{n-2} \in u_{n-1}\} = G_2(G(X_0,..,X_{n-3}),\epsilon(X_{n-2},X_{n-1}))$$

 $n > 1 \land i = n - 1 \land j = n - 2$:

Z indukčního předpokladu mějme

$$\{(u_0,...,u_{n-3}): u_0 \in X_0,...,u_{n-3} \in X_{n-3}\} = G(X_0,..,X_{n-3})$$

$$\{(u_{n-2},u_{n-1}): u_{n-2} \in X_{n-2} \wedge u_{n-1} \in X_{n-1} \wedge u_{n-1} \in u_{n-2}\} = G_8(\epsilon(X_{n-2},X_{n-1}))$$

Naší hledanou $(u_0, ..., u_{n-1})$ tedy dostaneme jako

$$\{(u_0,...,u_{n-1}): u_0 \in X_0,...,u_{n-1} \in X_{n-1} \land u_{n-1} \in u_{n-2}\} = G_2(G(X_0,...,X_{n-3}), G_8(\epsilon(X_{n-2},X_{n-1}))).$$

Máme tedy dokázáno pro atomické formule a proto mějme tedy indukční předpoklady pro $\phi(x_0,..,x_{n-1})$ a $\psi(x_0,..,x_{n-1})$.

 $\varphi(x_0,..,x_{n-1}) \leftrightarrow \neg \psi(x_0,..,x_{n-1})$:

Z indukčního předpokladu máme

$$\{(u_0, ..., u_{n-1}) : u_0 \in X_0, ..., u_{n-1} \in X_{n-1}\} = G(X_0, ..., X_{n-1}), \{(u_0, ..., u_{n-1}) : u_0 \in X_0, ..., u_{n-1} \in X_{n-1} \land \psi(x_0, ..., x_{n-1})\} = G'(X_0, ..., X_{n-1}).$$

Pomocí toho si vyjádříme $\varphi(x_0,..,x_{n-1})$ jako

$$\{(u_0,...,u_{n-1}): u_0 \in X_0,...,u_{n-1} \in X_{n-1} \land \varphi(x_0,...,x_{n-1})\} = G(X_0,...,X_{n-1}) - G'(X_0,...,X_{n-1}) = G_4(G(X_0,...,X_{n-1}),G'(X_0,...,X_{n-1}))$$

 $\varphi(x_0,..,x_{n-1}) \leftrightarrow \psi(x_0,..,x_{n-1}) \land \phi(x_0,..,x_{n-1})$: Z indukčního předpokladu máme

$$\{(u_0,...,u_{n-1}): u_0 \in X_0,...,u_{n-1} \in X_{n-1} \land \phi(x_0,...,x_{n-1})\} = G(X_0,...,X_{n-1}),$$

$$\{(u_0,...,u_{n-1}): u_0 \in X_0,...,u_{n-1} \in X_{n-1} \land \psi(x_0,...,x_{n-1})\} = G'(X_0,...,X_{n-1}).$$

Pomocí toho si vyjádříme $\varphi(x_0,..,x_{n-1})$

$$\{(u_0,...,u_{n-1}): u_0 \in X_0,...,u_{n-1} \in X_{n-1} \land \varphi(x_0,...,x_{n-1})\} = G(X_0,...,X_{n-1}) \cap G'(X_0,...,X_{n-1}) = G_5(G(X_0,...,X_{n-1}),G'(X_0,...,X_{n-1})).$$

 $\varphi(x_0,..,x_{n-1}) \leftrightarrow (\exists u_n \in u_i)\psi(x_0,..,x_n)$:.

Pak vezměme formuli $\phi(x_0,...,x_n)$ ve tvaru $\psi(x_0,...,x_n) \wedge u_n \in u_i$. Podle indukční předpokladu existuje G tak, že

$$\{(u_0,...,u_n): u_0 \in X_0,...,u_n \in X_n \land \phi(x_0,...,x_n)\} = G(X_0,...,X_n)$$

pro všechny $X_0, ..., X_n$. Využitím lemma 2.18 dostaneme

$$\{(u_0,...,u_{n-1}): u_0 \in X_0,...,u_{n-1} \in X_{n-1} \land \psi(x_0,...,x_{n-1})\} = G_7(G(X_0,..,X_{n-1},G_6(X_i)))$$

Ukažme si, že všechny Gödelovy operace jsou Δ_0 -formule. V tomto lemma použijeme pro ulehčení všechny tři základní spojky a oba uzavřené kvantifikátory. Samozřejme bychom mohli použít jen předpokládanou sadu, ale zesložilo by to zápis.

Lemma 2.20

Gödelovy operace jsou Δ_0 -formule.

Důkaz.

Důkazy provedeme, tak že najdeme ekvivalentní Δ_0 -formule.

$$G_1(X,Y) = Z$$
:

$$(Z = \{X, Y\}) \Leftrightarrow (X \in Z \land Y \in Z \land (\forall a \in Z)(a = X \lor a = Y))$$

$$G_2(X,Y) = Z$$
:

Nejdříve si dokážeme, že formule $A = \langle B, C \rangle$ je Δ_0 -formule

$$A = \langle B, C \rangle) \Leftrightarrow (((\forall a \in A)(a = \{B\} \lor a = \{B, C\})) \land \land ((\exists a \in A)(\exists d \in A)(a = \{B\} \land d = \{B, C\}).$$

Teď přejdem k důkazu samotného $Z = X \times Y$.

$$(Z = X \times Y) \Leftrightarrow (((\forall z \in Z)(\exists x \in X)(\exists y \in Y)z = \langle x, y \rangle) \land \\ \land ((\forall x \in X)(\forall y \in Y)(\exists z \in Z)z = \langle x, y \rangle))$$

$$G_3(X,Y) = Z$$
:

$$(Z = \epsilon(X, Y)) \Leftrightarrow (((\forall z \in Z)(\exists x \in X)(\exists y \in Y)(z = \langle x, y \rangle \land x \in y)) \land \land ((\forall x \in X)(\forall y \in Y)(\exists z \in Z)(x \in y \to z = \langle x, y \rangle)))$$

$$G_4(X,Y) = Z$$
:

$$(Z = X - Y) \Leftrightarrow$$

$$\Leftrightarrow (((\forall z \in Z)(z \in X \land z \notin Y)) \land ((\forall x \in X)(x \notin Y \to x \in Z)))$$

$$G_5(X,Y) = Z$$
:

$$(Z = X \cap Y) \Leftrightarrow$$

$$\Leftrightarrow (((\forall z \in Z)(z \in X \land z \in Y)) \land ((\forall x \in X)(x \in Y \to x \in Z)))$$

$$G_6(X) = Z$$
:

$$(Z = \bigcup X) \Leftrightarrow$$

$$\Leftrightarrow (((\forall z \in Z)(\exists x \in X)z \in x) \land ((\forall x \in X)(\forall z \in x)(z \in Z)))$$

$$G_7(X) = Z$$
:

Nejdříve si dokážeme, že formule $z \in dom(X)$ je Δ_0 -formule

$$(z \in dom(X)) \Leftrightarrow ((\exists x \in X)(\exists u \in x)(\exists y \in u)\langle z, y \rangle = x).$$

Pokračujme, pokud ϕ je Δ_0 -formule pak i $((\forall y \in dom(X))\phi)$ bude Δ_0 -formule tvaru

$$(\forall z \in dom(X)\phi) \Leftrightarrow ((\forall x \in X)(\forall Y \in x)(\forall z, y \in Y)(\langle z, y \rangle = x \to \phi)).$$

Teď si konečně dokážeme Z = dom(X) takto

$$(Z = dom(X)) \Leftrightarrow (((\forall z \in Z)z \in dom(X)) \land ((\forall z \in dom(X))z \in Z)).$$

$$G_8(X) = Z:$$

$$(Z = \{\langle u, v \rangle : \langle v, u \rangle \in X\}) \Leftrightarrow$$

$$\Leftrightarrow ((\forall z \in Z)(\exists x \in X)(z = \langle u, v \rangle \to x = \langle v, u \rangle) \land$$

$$G_9(X) = Z$$
:

Nejdříve si dokážeme, že formule $a \in \langle x, y, z \rangle$ je Δ_0 formule

$$(a \in \langle x, y, z \rangle) \Leftrightarrow (a = \{x, \langle z, y \rangle\} \lor a = \{x\})$$

 $\wedge (\forall x \in X)(\exists z \in Z)(x = \langle u, v \rangle \to z = \langle v, u \rangle))$

To použijeme k důkazu, že $A = \langle x, y, z \rangle$ je Δ_0 formule

$$(A = \langle x, y, z \rangle) \Leftrightarrow ((\forall a \in A)(a \in \langle x, y, z \rangle) \land \{x, \langle y, z \rangle\} \in A \land \{x\} \in A)$$

což použijem k důkazu, že $\langle x, y, z \rangle \in A$ je Δ_0 formule.

$$(\langle x, y, z \rangle \in A) \Leftrightarrow ((\exists a \in A)a = \langle x, y, z \rangle)$$

a konečně pomocí toho dokážeme, že $(Z = \{\langle u, v, w \rangle : \langle u, w, v \rangle \in X\})$

$$(Z = \{\langle u, v, w \rangle : \langle v, w, u \rangle \in X\}) \Leftrightarrow$$

$$\Leftrightarrow (((\forall z \in Z)(\exists x \in X)(z = \langle u, v, w \rangle \to x = \langle v, w, u \rangle)) \land$$

$$\land ((\forall x \in X)(\exists z \in Z)(x = \langle v, w, u \rangle \to z = \langle u, v, w \rangle))).$$

$$G_{10}(X) = Z:$$

$$(Z = \{\langle u, v, w \rangle : \langle u, w, v \rangle \in X\}) \Leftrightarrow$$

$$\Leftrightarrow (((\forall z \in Z)(\exists x \in X)(z = \langle u, v, w \rangle \to x = \langle u, w, v \rangle)) \land$$

$$\land ((\forall x \in X)(\exists z \in Z)(x = \langle u, w, v \rangle \to z = \langle u, v, w \rangle))).$$

Definice 2.21

 $\check{R}ikame$, že třída T je uzavřená na operaci F: $když\ F(x_1,...,x_n)\in T$ $kdykoliv\ když\ x_1,...,x_n\in T$

Teď si definujme uzávěr na Gödelovy operace $\mathfrak{D}(A)$ množiny A.

Definice 2.22

Rekurzí přes $n < \omega$ definujme:

$$X_0 = A,$$

$$X_n^* = \{x : (\exists y, z \in X_n)(x = G_1(z, y) \lor ... \lor x = G_{10}(z))\},$$

$$X_{n+1} = X_n \cup X_n^*,$$

pak definujme uzávěr $\mathfrak{D}(A)$ takto

$$\mathfrak{D}(A) = \bigcup_{j < \omega} X_j.$$

Dokažme si, že ke každé množině z uzávěru existuje Δ_0 -formule, která ji definuje.

Lemma 2.23

Metamatematickou indukcí sestrojíme Δ_0 -formule pro X_n : Definujme pro n=0

$$(X_0 = Y) \Leftrightarrow ((\forall y \in Y)(y \in X_0) \land (\forall y \in X_0)(y \in Y)).$$

Nechť tedy máme Δ_0 -formuli pro $y \in X_n$ z toho pak pro následníka definujme

$$(x \in X_n^*) \Leftrightarrow ((\exists y \in X_n)(\exists z \in X_n)(x = G_1(z, y) \lor ... \lor x = G_{10}(z)),$$
$$x \in (X_{n+1}) \Leftrightarrow ((\exists y \in X_n)y = x) \lor ((\exists y \in X_n^*)x = y)).$$

Lemma 2.24

Nechť A je transitivní množina a mějme formuli ϕ , pak každá relativizace formule ϕ^A je Δ_0 -formule.

$D\mathring{u}kaz$.

Jediný tvar formule, kdy $\phi(x_0, ...x_{n-1})$ není Δ_0 -formule, je když nějaká podformule je tvaru $\exists y \varphi$. Relativizace formule $\phi(x_0, ...x_{n-1})$ na $\phi^A(x_0, ...x_{n-1})$ znamená přepsání podformule na $(\exists y \in A)\varphi$ a tedy se stane také Δ_0 -formulí. Ostatní tvary formule jsou Δ_0 -formule podle definice.

Definujme si pojem absolutní formule a dokážeme si lemma o jejich vlastnostech v transitivním modelu.

Definice 2.25

Formule splňující následující lemma se nazývá absolutní vůči tranzitivnímu modelu M.

V lemma si dokážeme, že každá relativizovaná formule v transitivní třídě je $\Delta_0\text{-formule}.$

Lemma 2.26

 $Kdy\check{z} M$ je tranzitivní třída a ϕ je Δ_0 formule, tak pro všechny $x_0, ..., x_{n-1}$:

$$(\psi^M(x_0,..,x_{n-1})) \Leftrightarrow (\psi(x_0,..,x_{n-1}))$$

Důkaz.

Indukcí podle složitosti formule:

x = y:

Podle definice 2.6 je

$$(x=y)^M \Leftrightarrow x=y.$$

 $x \in y$:

Podle definice 2.6 je

$$(x \in y)^M \Leftrightarrow x \in y.$$

Nechť tedy máme indukční předpoklad

$$\phi^M \Leftrightarrow \phi$$

$$\pi^M \Leftrightarrow \pi$$

 $\phi \wedge \pi$:

Podle definice 2.6 je

$$(\phi \wedge \pi)^M \Leftrightarrow \phi^M \wedge \pi^M,$$

a z indukčního předpokladu dostáváme

$$\phi^M \wedge \pi^M \Leftrightarrow (\phi \wedge \pi).$$

Dohromady tedy

$$(\phi \wedge \pi)^M \Leftrightarrow (\phi \wedge \pi).$$

 $\neg \phi$:

Podle definice 2.6 je

$$(\neg \phi)^M \Leftrightarrow \neg (\phi^M)$$

a z indukčního předpokladu dostaneme

$$\neg(\phi^M) \Leftrightarrow \neg\phi.$$

Dohromady tedy

$$(\neg \phi)^M \Leftrightarrow (\neg \phi).$$

 $(\exists u \in x) \phi(u, x, ...)$:

Podle definice 2.6 je

$$(\exists u(u \in x \land \phi))^M \Leftrightarrow ((\exists u \in M)(u \in x \land \phi^M))$$

a z indukčního předpokladu a transitivity M

$$(\exists u \in M)(u \in x \land \phi^M)) \Leftrightarrow (\exists u \in x) \land \phi).$$

Teď když se kouknem na předchozí lemmata máme materiál pro toho, abychom zapsali každý prvek uzávěru jako Δ_0 -formuli.

Teď už máme dostatek materiálu proto abychom srovnali oba přistupy tvorby \mathfrak{DP}

Věta 2.27

Nechť A je tranzitivní množina

$$\mathfrak{DP}(A) = \mathfrak{D}(A \cup \{A\}) \cap P(A)$$

Důkaz.

Nechť máme nějaké

$$x \in \mathfrak{D}(A \cup \{A\}) \cap P(A)$$
.

Podle lemma 2.23 máme z

$$x \in \mathfrak{D}(A \cup \{A\})$$

 Δ_0 -formuli tvaru

$$x = G(X_0, ..., X_{n-1}).$$

Podle lemma 2.20 je to Δ_0 -formule

$$\phi(y_0,..,y_m,z),$$

která definuje prvky x. Podle lemma 2.26 máme

$$\phi^{\mathbf{A}}(y_0,..,y_m,z)$$

a podle lemma 2.13 a předpokladu $x \in P(A)$ máme množinu

$$x = \{z \in A : \phi^{A}(y_0, ..., y_m, z)\} \in \mathfrak{DP}(A).$$

Tím jsme dokázali

$$\mathfrak{D}(A \cup \{A\}) \cap P(A) \subset \mathfrak{DP}(A).$$

Ted si dokážeme druhou inkluzi. Nechť máme nějaké

$$x \in \mathfrak{DP}(A)$$
.

Z definice 2.12 víme, že

$$x \in P(A)$$
.

Teď si musíme dokázat už jen

$$x \in \mathfrak{D}(A \cup \{A\}).$$

Nechť tedy máme nějaké

$$x \in \mathfrak{D}\mathfrak{P}(A),$$

takové že

$$x = \{z \in A : \phi^{A}(y_0, ..., y_m, z)\}.$$

Podle lemma 2.24 je ϕ^A Δ_0 -formule, což podle věty 2.19 znamená, že existuje $G(A,y_0,..,y_m)$ takové, že

$$G(A, y_0, .., y_m) = x.$$

Z čehož plyne, že existuje X_n takové, že

$$x \in X_n$$
.

Z definice $\mathfrak{D}(A \cup \{A\})$ pak plyne

$$x \in \mathfrak{D}(A \cup \{A\}).$$

Tímto jsme dokázali

$$\mathfrak{D}(A \cup \{A\}) = \mathfrak{D}\mathfrak{P}(A).$$

V této kapitole jsme tedy díky větě 2.27 dokázali, že oba případy konstrukce univerza $\mathbb L$ budou aspoň z pohledu výsledku stejné. Čím se tyto konstrukce liší, je přístup ke konstrukci $\mathbb L$. První přístup vyžaduje prostředky matematické logiky a na $\mathbb L$ nahlížíme metamatematicky jako na model teorie množin. Využili jsme k tomu formalizace relace splňování. Druhý přístup studuje $\mathbb L$ matematicky jako speciální třídu definovatelnou v teorii množin. Využíváme takzvané schéma Δ_0 -vydělení, které odpovídá schéma vydělení aplikovaného na Δ_0 -formule.

3 Universum \mathbb{L}

3.1 Základní vlasnosti L

Díky větě 2.27 tedy můžem definice ztotožnit. Nejdříve si tedy použitím transfinitní indukce zkonstruujeme samotné universum \mathbb{L} .

Definice 3.1

Transfinitní indukcí definujme

 $\alpha = \emptyset$:

$$L_{\alpha} = \varnothing$$
,

 $\alpha = \beta + 1$:

$$L_{\alpha} = \mathfrak{D}\mathfrak{P}(L_{\beta}),$$

 α je limitní ordinál:

$$L_{\alpha} = \bigcup_{\beta < \alpha} L_{\beta}.$$

Tímto jsme zkonstruovali L_{α} pro každé $\alpha \in On$. Teď pomocí L_{α} zkonstruujeme \mathbb{L}

$$\mathbb{L} = \bigcup_{\alpha \in On} L_{\alpha}.$$

Dokažme si, že L je podmnožinou WF.

Lemma 3.2

$$\mathbb{L} \subset \mathbb{WF}$$

Důkaz.

Nejdříve indukcí pro každé $\alpha \in On$ dokážeme, že platí

$$L_{\alpha} \subset R_{\alpha}$$

 $\alpha = \emptyset$:

Z definice L_{α} dostaneme

$$L_{\alpha} = \varnothing$$
.

Z definice R_{α} dostaneme

$$R_{\alpha} = \varnothing$$
.

Což nám tedy dává

$$R_{\alpha} = L_{\alpha}$$
.

$$\alpha = \beta + 1$$
:

Z definice L_{α} dostaneme

$$L_{\alpha} = \mathfrak{D}\mathfrak{P}(L_{\beta}).$$

Z definice R_{α} dostaneme

$$R_{\alpha} = P(L_{\beta}).$$

Podle lemma 2.14 máme pro každé $\alpha=\beta+1$

$$L_{\alpha} \subset R_{\alpha}$$
.

α je limitní ordinál:

Nechť tedy mějme

$$x \in L_{\alpha}$$
.

Z definice L_{α} plyne, že existuje ordinál $\beta < \alpha$ takový, že

$$x \in L_{\beta}$$
.

Z indukčního předpokladu dostaneme

$$x \in R_{\beta}$$
.

Z definice R_{α} dostáváme

$$x \in R_{\alpha}$$
.

Takže i pro limitní ordinál α dostáváme také

$$L_{\alpha} \subset R_{\alpha}$$
.

Důkaz pro $\mathbb L$ a $\mathbb W\mathbb F$ je prakticky identický jako důkaz pro limitní ordinál Nechť tedy

$$x \in \mathbb{L}$$
.

Z definice \mathbb{L} plyne, že existuje ordinál β takový, že

$$x \in L_{\beta}$$
.

Z indukčního předpokladu dostaneme

$$x \in R_{\beta}$$
.

Z definice WF dostáváme

$$x \in \mathbb{WF}$$
.

Tím jsme tedy dokázali

 $\mathbb{L} \subset \mathbb{WF}$.

V následujícím lemma si dokážeme, že každé L_{α} je transitivní.

Lemma 3.3

$$(\forall \alpha \in On)(\forall x \in L_{\alpha})(y \in x \to y \in L_{\alpha})$$

Důkaz.

Dokazujme indukcí přes $\alpha \in On$.

 $\alpha = \emptyset$:

 L_{α} neobsahuje žádný prvek, tedy formule je triviálně splněna.

 $\alpha = \beta + 1$:

Nechť tedy máme lemma dokázáno pro $\forall \gamma (\gamma < \alpha)$ a $\alpha = \beta + 1$ pak

$$L_{\alpha} = \mathfrak{D}\mathfrak{P}(L_{\beta}).$$

Nechť tedy mějme

$$x \in L_{\alpha}$$
.

Z definice $\mathfrak{DP}(L_{\beta})$ dostaneme

$$x \subset L_{\beta}$$
.

 L_{β} je transitivní množina z indukčního předpokladu a podle lemma 2.15 máme

$$L_{\beta} \subset L_{\alpha}$$
.

Kombinaci těchto dvou tvrzení dostáváme

$$x \subset L_{\alpha}$$
.

α limitní ordinál:

Nechť tedy máme lemma dokázáno pro $\forall \gamma (\gamma < \alpha)$ a nechť

$$x \in L_{\alpha}$$
.

Z definice L_{α} plyne,že existuje $\gamma < \alpha$, tak že

$$x \in L_{\gamma}$$
.

Z indukčního předpokladu víme, že L_{γ} je transitivní tedy

$$x \subset L_{\gamma}$$
.

Což opětovným použitím definice L_{α} dává

$$x \subset L_{\alpha}$$
.

Nadefinujme si několik vlastností relací.

Definice 3.4 Úzká relace

Relaci R nazveme úzkou právě tehdy když $\{x:xRy\}$ je množina pro každé y.

Definice 3.5

 $Když x \in A$, a R je úzká relace na A, tak definujme

$$pred(A, x, R) = \{ y \in A : yRx \}.$$

Definice 3.6

Relaci R nazveme extenzionální na A, právě tehdy když

$$\forall x, y \in A(\forall z \in A(zRx \leftrightarrow zRy) \Rightarrow x = y).$$

Následující lemma použijeme k důkazu extenzionality relace R.

Lemma 3.7

$$(pred(A,x,R) = pred(A,y,R)) \Leftrightarrow (\forall z \in A(zRx \leftrightarrow zRy))$$

Důkaz.

Nechť tedy platí

$$pred(A, x, R) = pred(A, y, R).$$

Zvolme libovolné $z \in A$, tak že zRx.

Z rovnosti

$$pred(A, x, R) = pred(A, y, R),$$

dostaneme zRy.

Teď zvolme libovolné $z \in A$, tak že $\neg zRx$.

Z rovnosti

$$pred(A, x, R) = pred(A, y, R),$$

dostaneme $\neg zRy$.

Teď dokážem druhou část implikace.

Nechť tedy platí

$$\forall z \in A(zRx \leftrightarrow zRy).$$

Vezmeme libovolné $a \in pred(A,x,R)$. Z definice pred(A,x,R) víme

$$a \in A \wedge aRx$$
.

Z předpokladu

$$\forall z \in A(zRx \leftrightarrow zRy)$$

tedy máme

$$a \in A \wedge aRy$$
.

Pak tedy z definice pred(A, y, R) dostaneme

$$a \in pred(A, y, R)$$
.

Opačná inkluze se dokáže obdobně.

Dokažme si další lemma o vlastnostech transitivních množin.

Lemma 3.8

Nechť M je transitivní, tak

$$pred(\mathsf{M}, x, \in) = x.$$

Důkaz.

Nechť tedy pro nějaké $x \in M$ máme

$$y \in x$$
.

Podle definice 3.5 je

$$y \in \mathsf{M} \to y \in pred(\mathsf{M}, x, \in).$$

Z transitivity M plyne pro každé $x \in M$

$$y \in x \to y \in M$$
.

Z transitivity implikace tedy plyne

$$y \in x \to y \in pred(\mathsf{M}, x, \in).$$

Tedy z toho dostaneme

$$x \subset pred(\mathsf{M}, x, \in)$$
.

Dokazujme opačnou inkluzi. Nechť tedy pro nějaké $x \in M$ je

$$y \in pred(M, x, \in)$$
.

Podle definice 3.5 tedy platí

$$y \in x$$
.

A tedy dostáváme

$$pred(\mathsf{M},x,\in)\subset x.$$

Teď si dokážeme lemma o extenzionalitě relace.

Lemma 3.9

 $Kdy\check{z}\ \langle M,\in \rangle$ je transitivní model, tak relace \in je extenzionální na M

 $D\mathring{u}kaz$.

Použitím lemma 3.7 na definici 3.5 dostaneme

$$\forall x, y \in A((pred(A, x, R)) = pred(A, y, R)) \Rightarrow x = y).$$

Pokud aplikujeme lemma 3.8 dostáváme pro transitivní množiny podmínku

$$\forall x, y \in A(x = y \rightarrow x = y).$$

Dokážme si lemma o fundovanosti relace.

Lemma 3.10

 $Kdy\check{z} M \subset \mathbb{WF} \ pak M \ splňuje \ axiom \ fundovanosti.$

Důkaz.

Pro každé $x \in \mathbb{WF}$ platí axiom fundovanosti. Pokud

$$M \subset \mathbb{WF}$$
,

pak pro libolné $x \in M$ platí axiom fundovanosti.

Definujme pojem podmnožinově uzavřeného seznamu formulí.

Definice 3.11

Nazveme seznam formulí $\phi_0, ..., \phi_{n-1}$ podmnožinově uzavřený, právě tehdy když každá podformule libovolé formule ϕ_i je v seznamu a žádná formule neobsahuje universální kvantifikátor.

Dokažme si lemma o uzavřenosti na existenční kvantifikátor.

Lemma 3.12

Nechť $\phi_0, ..., \phi_{n-1}$ je podmnožinově uzavřený seznam formulí a A, B jsou neprázdné třídy tak, že $A \subset B$, tak nasledující je ekvivaletní: Pro každou $\phi_i(x_0, ..., x_i)$ ze seznamu platí:

$$(\forall x_0, ..., x_t \in A)((\phi_t^{A}(x_0, ...x_t) \leftrightarrow \phi_t^{B}(x_0, ...x_t)))(1)$$

Pro každou existenční formuli $\phi_i(x_0,...,x_i)$ tvaru $\exists a(\phi_j(x_0,...,x_i,a))$ ze seznamu platí:

$$(\forall x_0, ..., x_i \in A)((\exists a \in B)(\phi_i^{\mathrm{B}}(x_0, ..x_i) \to (\exists a \in A)\phi_i^{\mathrm{B}}(x_0, ..x_i, a)))(2)$$

Důkaz.

Nechť tedy máme nějaké $x_0,...,x_i\in A$ a nechť platí předpoklad

$$(\forall x_0, ..., x_t \in A)((\phi_t^{A}(x_0, ..x_t) \leftrightarrow \phi_t^{B}(x_0, ..x_t))).$$

Předpokládejme

$$\phi_i^{\mathrm{B}}(x_0,..x_i),$$

z předpokladu pro ϕ_i platí

$$\phi_i^{\rm A}(x_0, ... x_i)$$
.

To je podle definice a relativizace

$$(\exists a \in A)(\phi_j^{\mathcal{A}}(x_0,..x_j,a)).$$

Z předpokladu pro ϕ_j platí

$$(\exists a \in A)(\phi_i^{\mathrm{B}}(x_1, ..x_n, a)).$$

Druhou implikaci dokážeme indukcí podle složitosti formule. Pro všechny formule ψ_i bez kvantifikátoru platí (1) z lemma 2.26. Nechť tedy ψ_i je $\exists a \ \psi_j(x_0,..x_j,a)$ fixujme $x_0,...,x_i \in A$. Z definice relativizace dostaneme

$$(\phi_i^{\mathbf{A}}(x_0,..x_i)) \Leftrightarrow ((\exists a \in A)(\phi_i^{\mathbf{A}}(x_0,..x_i,a))).$$

Z indukčního předpokladu dostaneme

$$((\exists a \in A)(\phi_i^{\mathbf{A}}(x_0, ..x_i, a))) \Leftrightarrow ((\exists a \in A)(\phi_i^{\mathbf{B}}(x_0, ..x_i, a))).$$

 $Z A \subset B$ plyne

$$((\exists a \in A)(\phi_i^{\mathrm{B}}(x_0, ...x_i, a))) \Rightarrow ((\exists a \in B)(\phi_i^{\mathrm{B}}(x_0, ...x_i, a))).$$

A z předpokladu věty

$$((\exists a \in A)(\phi_i^{\mathrm{B}}(x_0, ..x_i, a))) \Leftarrow ((\exists a \in B)(\phi_i^{\mathrm{B}}(x_0, ..x_i, a))).$$

Z definice relativizace dostaneme

$$((\exists a \in B)(\phi_i^{\mathrm{B}}(x_0, ..x_i, a))) \Leftrightarrow (\phi_i^{\mathrm{B}}(x_0, ..x_i)).$$

Dokažme si větu, která je jedna z verzí Principu reflexe.

Věta 3.13 Princip reflexe

Nechť $\phi_0, ..., \phi_{n-1}$ je seznam formulí, máme neprázdnou třídu \mathbb{T} , pro každé $\alpha \in On$ je T_α množina a pro libovolné $\alpha, \beta, \gamma \in On$ platí:

•

$$\alpha < \beta \to T_{\alpha} \subset T_{\beta}$$

• pro limitní ζ

$$T_\zeta = \bigcup_{\rho < \zeta} T_\rho$$

•

$$\mathbb{T} = \bigcup_{\rho \in On} T_{\rho}$$

 $pak \ \forall \alpha (\exists \beta > \alpha) \ tak\check{z}e \ pro \ n\check{e}j \ plati$

• β je limitní ordinál

•

$$\bigwedge_{i \le n} (\phi_i^{\mathbb{T}_\beta} \Leftrightarrow \phi_i^{\mathbb{T}})$$

Důkaz.

Nechť seznam formulí $\phi_0, ..., \phi_{n-1}$ je podmnožinově uzavřený, pokud není tak ho rozšíříme, tak aby byl.

Pro každé i = 0, 1, ..., n - 1, tak že ϕ_i je $\exists x \phi_i(x, y_1, ..., y_l)$ definujme G_i takto:

$$G_i: \mathbb{T}^n \to On.$$

Když $(\neg \exists x \in \mathbb{T})(\phi_i^{\mathrm{T}}(x, y_1, ..., y_l))$, pak

$$G_i(y_1, ..., y_l) = 0.$$

Pro $(\exists x \in \mathbb{T})(\phi_j^{\mathrm{T}}(x,y_1,..,y_l))$ definujme

$$G_i(y_1,..,y_l) = \alpha$$

tak, že α je nejmenší takové α , že

$$(\exists x \in T_{\alpha})(\phi_i^{\mathrm{T}}(x, y_1, .., y_l)).$$

Ted' definujme

$$F_i: On \to On$$

Když ϕ_i není $\exists x \phi_i(x, y_1, ..., y_l)$, tak

$$F_i(\alpha) = 0.$$

Jinak když ϕ_i je $\exists x \phi_j(x, y_1, ..., y_l)$

$$F_i(\alpha) = \sup\{G_i(y_1, ..., y_l) : y_1, ..., y_l \in T_\alpha\}.$$

Z toho teď definujme

$$K(\alpha) = max(\{F_i(\alpha) : i < n\} \cup \{\alpha + 1\}).$$

Nechť tedy máme α dané. Ukážeme si jak zkonstruovat $\beta > \alpha$, tak že:

- $T_{\beta} \neq \emptyset$,
- $\bullet\,$ splňuje lemma 3.12 pro T_β a $\mathbb T$.

Tak nechť γ_0 je nejmenší $\gamma>\alpha,$ tak že $T_\gamma\neq\emptyset$. Rekurzí pak zkonstruujeme

$$\gamma_{n+1} = K(\gamma_n).$$

Z konstrukce plyne

$$\beta < \gamma_0 < \gamma_1 < \dots$$

Definujme

$$\beta = \sup\{\gamma_k : k \in \omega\}.$$

Máme tedy β limitní ordinál pro který platí

$$\bigwedge_{i < n} (\phi_i^{\mathbf{T}_\beta} \Leftrightarrow \phi_i^{\mathbb{T}}).$$

Dokážeme si lemma, o tom že $\mathfrak{DP}(L_{\alpha})$ obsahuje jako prvek L_{α} .

Lemma 3.14

$$L_{\alpha} \in L_{\alpha+1}$$

Důkaz.

$$L_{\alpha} = \{ x \in L_{\alpha} : (x = x)^{\mathcal{L}_{\alpha}} \},$$

což podle lemma 2.13 znamená

$$L_{\alpha} \in \mathfrak{DP}(L_{\alpha}) = L_{\alpha+1}.$$

Definujme si $\rho(x)$ jako L-rank.

Definice 3.15

 $Kdy\check{z} \ x \in \mathbb{L}, \rho(x) \ je \ \mathbb{L}$ -rank roven nejmenšímu $\beta \ tak, \ \check{z}e \ x \in L_{\beta+1}$.

Dokažme si lemma pro platnost schéma nahrazení.

Lemma 3.16

Pro libovolnou formuli $\phi(x, y, A, a_1, ..., a_n)$ a libovolné $A, a_1, ..., a_n \in M$, kde A je $dom(\phi)$ a M je transtivní.

Když platí

$$((\forall x \in A)(\exists! y \in M)\phi^{M}(x, y, A, a_1, ..., a_n)) \Rightarrow$$

$$\Rightarrow ((\exists Y \in M)(\{y : (\exists x \in A)\phi^{M}(x, y, A, a_1, ..., a_n)\} \subset Y)$$

tak schéma nahrazení platí v M.

Důkaz.

Nejdříve si dokážeme

$$(\forall x, y, z \in M)(F(x, y) \land F(x, z) \to z = y) \Rightarrow$$
$$\Rightarrow ((\forall x \in A)(\exists! y \in M)\phi^{M}(x, y, A, a_{1}, ..., a_{n})).$$

Formule $\phi^{\mathrm{M}}(x,y,A,a_1,..,a_n)$ definuje funkci tak, že

$$A = dom(F)$$
.

Pak z definice dom(F) pro libovolné $x \in A$ existuje y tvaru

$$y = F(x)$$

a z předpokladu může existovat právě jedno y.

Teď dokážeme

$$((\exists Y \in M)(\{y : (\exists x \in A)\phi^{M}(x, y, A, a_{1}, ..., a_{n})\} \subset Y) \Rightarrow \\ \Rightarrow (\exists W \in M)(\forall y \in M)(y \in W \leftrightarrow \exists x(x \in A \land F(x, y)).$$

Z předpokladu $\phi^{M}(x, y, A, a_1, ..., a_n)$ definujme funkci F, takže W = Rng(F).

Ukážeme si, že další vlastnost je Δ_0 -formule.

Lemma 3.17

x je ordinál je Δ_0 formule.

Důkaz.

Ordinál je definovaný takto

x je ordinál \Leftrightarrow ((x je transitivní množina) \land (x je totálně uspořádaná \in)).

Teď si ukážeme, že levá i pravá část konjunkce jsou Δ_0 formule a tedy i formule je podle definice Δ_0 formule.

Definujme takto transitivní množinu

$$(x \text{ je transitivní množina}) \Leftrightarrow ((\forall v \in x)(\forall z \in v)(z \in x)).$$

Definujme si, že x je totální uspořádaná relací ∈ jako

$$(x \text{ je totálně uspořádaná } \in) \Leftrightarrow ((\forall y \in x)(\forall z \in x)(y \in z \lor y = z \lor z \in y))$$

Dokažme si lemma, o tom že pro každé α platí ($\alpha \in L_{\alpha+1}$).

Lemma 3.18

$$(\forall \alpha \in On)(\alpha \in L_{\alpha+1})$$

Důkaz.

Vzhledem k tomu že L_{α} je transitivní množina, tak formule x je ordinál je absolutní a tedy definujme

$$\alpha = L_{\alpha} \cap On = \{ x \in L_{\alpha} : (x \in On)^{\mathbf{L}_{\alpha}} \}.$$

Což podle lemma 2.12 je

$$\alpha \in L_{\alpha+1}$$

pokud pro α platí

$$\alpha \subset L_{\alpha}$$
.

Tak si to tedy dokážeme transfinitní indukcí.

$$\alpha = \emptyset$$
:

Prázdná množina je podmnožina, každé množiny, specialně tedy platí

$$\emptyset \subset L_{\emptyset}$$
.

$$\alpha = \beta + 1$$
:

Nechť tedy pro všechny $\beta < \alpha$ platí

$$\beta \subset L_{\beta}$$
.

Vezměme tedy

$$x \in \alpha$$
.

Z $\alpha=\beta+1$ dostaneme že

$$x = \beta \lor x \in \beta$$
.

Pro oba případy provedeme důkaz.

$$x = \beta$$

Podle předpokladu platí

$$\beta \in L_{\beta}$$
.

Z lemma 2.15 dostaneme

$$L_{\beta} \subset L_{\alpha}$$
.

Z toho pak tedy dostaneme

$$\beta \in L_{\alpha}$$
.

Takže pro tento případ máme

$$\alpha \subset L_{\alpha}$$
.

 $x \in \beta$

Z indukčního předpokladu

$$x \in L_{\beta}$$
.

Z lemma 2.15 máme

$$L_{\beta} \subset L_{\alpha}$$
.

A pak tedy

$$\beta \in L_{\alpha}$$
.

Takže i pro tento případ dostaneme

$$\alpha \subset L_{\alpha}$$
.

α limitní ordinál:

Nechť tedy máme dokázáno pro $\forall \gamma (\gamma < \alpha)$ a nechť

$$x \in \alpha$$
.

Z definice α plyne, že existuje $\gamma < \alpha,$ tak že

$$x \in \gamma$$
.

Z indukčního předpokladu víme, že

$$\gamma \subset L_{\gamma}$$
.

Z čehož tedy dostaneme

$$x \in L_{\gamma}$$
.

Opětovným použitím definice L_{α} máme

$$x \in L_{\alpha}$$
.

Takže i pro tento případ dostaneme

$$\alpha \subset L_{\alpha}$$
.

3.2 L je model ZF

Věta 3.19 L splňuje axiomy ZF

Důkaz.

Axiom extenzionality

Podle lemma 3.3 je $\mathbb L$ transitivní a tedy podle lemma 3.9 v $\mathbb L$ platí axiom extenzionality.

Schéma nahrazení

Podle lemma 3.16 stačí ověřit

$$((\forall x \in A)(\exists! y \in L)\phi^{\mathbb{L}}(x, y, A, a_1, ..., a_n)) \Rightarrow$$
$$\Rightarrow ((\exists Y \in L)(\{y : (\exists x \in A)\phi^{\mathbb{L}}(x, y, A, a_1, ..., a_n)\} \subset Y).$$

Budeme tedy předpokládat

$$((\forall x \in A)(\exists! y \in L)\phi^{\mathbb{L}}(x, y, A, a_1, ..., a_n)).$$

Ted' definujme

$$\alpha = \sup \{ \rho(y) + 1 : (\exists x \in A) \phi^{\mathbb{L}}(x, y, A, a_1, ..., a_n) \},$$

z toho dostaneme naše hledané Y jako

$$Y = L_{\alpha}$$
.

O L_{α} víme podle lemma 3.14, že

$$Y \in L_{\alpha+1}$$
.

Což pak nám z definice L dává

$$Y \in \mathbb{L}$$
.

Schéma vydělení

Nechť je daná formule $\phi(x,z)$, tak pro ni musíme dokázat

$$\forall y (\{x \in y : \phi^{\mathbb{L}}(x, z)\} \in \mathbb{L}.$$

Podle věty 3.13 máme pro ϕ ordinál α takový, že

$$Y = \{x \in y : \phi^{\mathbb{L}}(x, y)\} = \{x \in L_{\alpha} : \phi^{\mathbb{L}_{\alpha}}(x, y) \land x \in y\}.$$

Z lemma 3.14 víme, že

$$Y = \{ x \in L_{\alpha} : \phi^{\mathbf{L}_{\alpha}}(x, y) \land x \in y \} \in L_{\alpha+1}.$$

Konečně tedy z definice L dostaneme

$$Y \in \mathbb{L}$$
.

Axiom dvojice

Máme dokázat formuli

$$(\forall a \in \mathbb{L})(\forall b \in \mathbb{L})(\exists c \in \mathbb{L})(\forall x \in \mathbb{L})(x \in c \Leftrightarrow (x = a \lor x = b)).$$

Nechť tedy máme dané

$$a \in L_{\alpha}$$

$$b \in L_{\beta}$$
.

Tak definujme

$$\gamma = max\{\beta, \alpha\}.$$

Je zřejmé,že

$$a, b \in L_{\gamma}$$
.

Z definice uzávěru na Gödelovy operace dostaneme

$$\{a,b\} \in L_{\gamma+1}$$
.

A nakonec tedy z definice $\mathbb L$

$$\{a,b\} \in \mathbb{L}$$
.

Axiom sumy

Dokazujeme formuli

$$(\forall a \in \mathbb{L})(\exists c \in \mathbb{L})(\forall x \in \mathbb{L})(x \in c \Leftrightarrow \exists y \in \mathbb{L}(x \in y \land y \in a)).$$

Nechť tedy máme dané

$$a \in \mathbb{L}$$
.

Z definice \mathbb{L} dostaneme

$$a \in L_{\alpha}$$
.

Z definice uzávěru na Gödelovy operace dostaneme

$$\bigcup a \in L_{\alpha+1}.$$

Pak tedy z definice \mathbb{L} dostaneme

$$\bigcup a \in \mathbb{L}.$$

Axiom potence

Ač se to zdá neintuivní dokážeme, že

$$(\forall a \in \mathbb{L})(\exists c \in \mathbb{L})(\forall x \in \mathbb{L})(x \in c \Leftrightarrow x \subset a)).$$

Na to si ale nejdříve dokážeme, že $x \subset a$ je Δ_0 -formule

$$(x \subset a) \Leftrightarrow ((\forall y \in x)(y \in a)).$$

Nechť tedy máme dané

$$a \in \mathbb{L}$$
.

Z definice \mathbb{L} dostaneme

$$a \in L_{\alpha}$$
.

Teď definujme množinu

$$\{y \in L_{\alpha} : y \subset a)\},\$$

pro kterou podle lemma 2.13 platí

$$\{y \in L_{\alpha} : y \subset a)\} \in L_{\alpha+1}.$$

A pak použitím definice L dostaneme

$$\{y \in L_{\alpha} : y \subset a)\} \in \mathbb{L}.$$

Axiom nekonečna

Teď dokazujme

$$\exists a \in \mathbb{L} (\emptyset \in a \land (x \in a \Rightarrow x \cup \{x\} \in a)).$$

Takové a je pro které formule platí je evidentně ω , pro kterou podle lemma 3.18 platí

$$\omega \in L_{\omega+1}$$
.

Z čehož podle definice L dostaneme

$$\omega \in \mathbb{L}$$
.

Axiom fundovanosti

A konečně dokážeme

$$(\forall a \in \mathbb{L})(a \neq \emptyset \Rightarrow (\exists b \in \mathbb{L})(b \in a \land b \cap a = \emptyset)).$$

Podle lemma 3.2 je

$$\mathbb{L} \subset \mathbb{WF}$$

a podle lemma 3.3 je $\mathbb L$ transitivní. Můžeme tedy použít lemma 3.10, tím dostáváme, že platí axiom fundovanosti.

3.3 Axiom konstruovatelnosti

Definice 3.20 Axiom konstruovatelnosti

$$\mathbb{L} = \mathbb{V}$$

nebo-li

$$\forall x \exists \alpha (x \in L_{\alpha})$$

Lemma 3.21

 L_{α} je absolutní

 $D\mathring{u}kaz$.

Podle lemma 2.23 $\mathfrak D$ je absolutní funkce a podle lemma 3.3 je L_{α} transitivní. Transfinitní indukcí:

 $\alpha = \emptyset$

Prázdná množina je absolutní, protože

$$\emptyset = \{x : x \neq x\}$$

a $b \neq b$ je Δ_0 formule.

 $\alpha = \beta + 1$

Nechť tedy L_{β} je absolutní a tedy $L_{\beta+1}$ je absolutní z definice,

$$L_{\beta+1}=\mathfrak{D}(L_{\beta}),$$

protože \mathfrak{D} je absolutní funkce a tedy kdyby

$$L_{\beta+1} \neq L_{\beta+1}^{\mathbb{L}},$$

tak by to bylo ve sporu s tím, že $\mathfrak D$ je absolutní funkce.

α je limitní ordinál

Nechť tedy pro všechny $\beta < \alpha$

$$L_{\beta} = L_{\beta}^{\mathbb{L}}.$$

Budem postupovat sporem. Nechť ať platí

$$L_{\alpha} \neq L_{\alpha}^{\mathbb{L}}$$
.

Z definice L_{α} musí existovat $\gamma < \alpha$ tak, že

$$L_{\gamma} \neq L_{\gamma}^{\mathbb{L}},$$

což je spor s předpokladem.

Věta 3.22

$$\mathbb{L} \ je \ model \ ZF + \mathbb{L} = \mathbb{V}$$

Důkaz.

Podle věty 3.19 ZF platí v $\mathbb{L},$ tedy stačí dokázat, že

$$(\forall x \in \mathbb{L})(\exists \alpha \in \mathbb{L})(x \in L_{\alpha})^{\mathbb{L}}.$$

Nechť tedy fixujeme

$$x \in \mathbb{L}$$
.

Z definice $\mathbb L$ máme

$$x \in L_{\alpha}$$
.

Podle lemma 3.18 je $\alpha \in \mathbb{L}$ a podle lemma 3.21 je $x \in L_{\alpha}$ absolutní.

4
$$Con(ZF) \rightarrow Con(ZFC + GCH)$$

4.1 Axiom výběru

Věta 4.1

$$WO \Rightarrow AC$$

Nebo-li že princip dobrého uspořádání implikuje axiom výběru.

Důkaz.

Nechť máme množinu A a definujme množinu

$$B = \bigcup_{a \in A} a.$$

Z předpokladu máme možnost B dobře uspořádat. Což znamená, že každá neprázdná množina má nejmenší prvek. Označme ho min_a , kde a je množina, kde je min_a je minimální prvek. Teď pomocí toho definujme výběrovou fuknci z A jako

$$F:A\to\bigcup_{a\in A},$$

$$F(a) = min_a$$

Takže máme výběrovou funkci F z libovolného A, tedy platí axiom výběru.

V další části provedeme důkaz, že axiom konstruovatelnosti implikuje axiom výběru. Využijeme předchozí větu a důkaz povedeme tak, že \mathbb{L} jde dobře uspořádat. K uspořádání využijeme dvě definice a to definici 2.8 a definici 3.15. Budememe postupovat tak, že nejdříve seřadíme L_{α} pro každé α a pak podle α seřadíme L_{α} .

Definice 4.2

Nechť tedy rekurzí přes α definujme uspořádání $\triangleleft_{\alpha} = \triangleleft(\alpha)$ pro L_{α}

$$\alpha = \emptyset$$

$$L_{\alpha} = \emptyset$$

$$\alpha = \beta + 1$$

Z indukčního předpokladu mějme uspořádaní \lhd_{β} , definujme indukcí podle n lexikografické uspořádání \lhd_{β}^n na L_{β}^n jako

$$a \vartriangleleft_{\beta}^{n} b \leftrightarrow ((\exists k < n)(a \upharpoonright k = b \upharpoonright k \land a(k) \vartriangleleft_{\beta} b(k)).$$

Teď definujme pro každé $a \in L_{\alpha}$ n_a tak, že to je nejmenší n, takže platí

$$(\exists s \in L_{\beta}^n)(\exists R \in Df(L_{\beta}, n+1))(X = \{x \in L_{\beta} : s \hat{x} \in R\}\}).$$

Teď definujme s_a jako nejmenší $s \in L^{n_a}_\beta$ vzhledem k uspořádaním $\triangleleft^{n_a}_\beta$ pro které platí

$$(\exists R \in Df(L_{\beta}, n_a + 1))(X = \{x \in L_{\beta} : s \hat{\ } \langle x \rangle \in R\}\}).$$

Konečně definujme m_a jako nejmenší $m \in \omega$ takové, že platí

$$X = \{ x \in L_{\beta} : s_a \hat{\ } \langle x \rangle \in En(m, L_{\beta}, n_a) \}.$$

A teď konečně pro každé $X,Y \in L_{\alpha}$ definujme $X \triangleleft_{\alpha} Y$, když platí jedna z následujících třech podmínek:

1.
$$X \in L_{\beta} \land Y \in L_{\beta} \land X \vartriangleleft_{\beta} Y$$

2. $X \in L_{\beta} \wedge Y \notin L_{\beta}$

 $X \in L_{\beta} \wedge Y \notin L_{\beta}$

 $X \notin L_{\beta} \land Y \notin L_{\alpha} \land [(n_x < n_y) \lor (n_x = n_y \land s_x \lhd_{\beta}^{n_x} s_y) \lor$ $\lor n_x = n_y \land s_x = s_y \land m_x < m_y]$

α je limitní ordinál

3.

Tak teď máme uspořádané L_{α} pomocí uspořádaní \lhd pro každé α a pomocí toho definujme uspořádaní pomocí $<_{\mathbb{L}}$

Definice 4.3

$$x<_{\mathbb{L}}y \leftrightarrow \\ \leftrightarrow (y\in\mathbb{L}\wedge y\in\mathbb{L}\wedge(\rho(x)<\rho(y)\vee(\rho(x)=\rho(y)\wedge(x,y)\in\lhd(\rho(x)+1))))$$

Věta 4.4

 \mathbb{L} lze dobře uspořádat.

Důkaz.

Použijeme uspořádání z definice 4.3 a definice 4.2 pro každé $x \in \mathbb{L}$, pak existuje α tak, že $x \subset L_{\alpha}$ a x je tedy dobře uspořádáno uspořádáním $\triangleleft_{\alpha} \square$

Věta 4.5

 $Axiom\ konstruovatelnosti \rightarrow axiom\ výběru.$

$D\mathring{u}kaz$.

Axiom konstruovatelnosti nám říká, že \mathbb{L} je celé universum a věta 4.4 nám říká, že každou množinu z \mathbb{L} lze dobře uspořádat a tedy platí WO. Pomocí věty 4.1 dostaneme, že platí axiom výběru.

4.2 Zobecněná hypotéza kontinua

Definice 4.6

Definujme

$$|A| \le |B| \Leftrightarrow existuje \ prost\'afunkce \ f \ f : A \to B,$$
 $|A| = |B| \Leftrightarrow existuje \ bijekce \ f \ f : A \to B.$

Lemma 4.7

Předpokládejme platnost axiom výběru: Když máme funkci f z A na B, tak

$$|B| \leq |A|$$
.

Důkaz.

Z axiom výběru máme, že A je dobře uspořádaná nějakou relací R. Definujme funkci g

$$q: B \to A$$

tak, že g(y) je R-nejmenší prvek $f^{-1}(\{y\})$. Kdyby g nebyla prostá, tak existuje x, y pro které platí

$$x \neq y \land q(x) = q(y),$$

což by z definice g znamenalo, že existuje c takové, že $f(c)=y \land f(c)=x$, což použitím transitivnosti relace rovnosti dostaneme x=y, což je spor s předpokladem.

Toto teď použijeme spolu s poznatkem z lemma 2.9 k dalšímu důkazu.

Lemma 4.8

Předpokládejme platnost axiom výběru:

$$|Df(A,n)| \le \omega$$

Důkaz.

Definujme funkci H

$$H: \omega \to Df(A, n),$$

 $H(m) = En(m, A, n).$

Funkce H bude na, protože v lemma 2.9 jsme si mimojiné dokázali, že pro každé x platí

$$x \in Df(A, n) \to (\exists m \in \omega) x = En(m, A, n).$$

Díky předpokladu platnosti axiom výběru použijeme lemma 4.7 a dostaneme

$$|Df(A,n)| \le \omega.$$

Lemma 4.9

Předpokládejme platnost axiom výběru:

$$|A| > \omega \rightarrow |\mathfrak{DP}(A)| = |A|$$

Důkaz.

Mějme tedy axiom výběru a $|A| \ge \omega$:

Pro každé $m \in \omega$ platí

$$|A^m| = |A|.$$

Z definice $\mathfrak{DP}(A)$ víme, že

$$|\mathfrak{DP}(A)| \le \omega \times |A^m| \times |Df(A,n)|.$$

Pak pomocí lemma 4.8 dostaneme

$$|\mathfrak{DP}(A)| \le \omega \times |A| \times \omega.$$

Což nám s předpokladem

$$|A| \ge \omega$$

dává

$$|\mathfrak{DP}(A)| \leq |A|$$
.

Z lemma 2.15 dostaneme

$$A \subset \mathfrak{DP}(A)$$
.

Definujme ted' funkci H

$$H: A \to \mathfrak{D}\mathfrak{P}(A),$$

$$H(a) = a$$
.

Tato funkce H je identita na A, která je prostá protože pro každé $a,b\in A$

$$H(a) = H(b) \rightarrow a = b,$$

platí z definice funkce H.

Pak tedy

$$|A| \leq |\mathfrak{DP}(A)|.$$

Čímž jsme dokázali

$$|A| = |\mathfrak{DP}(A)|.$$

Lemma 4.10

Předpokládejme platnost axiom výběru, pak

$$|\mathbb{L}_{\omega}| = \omega.$$

Důkaz.

Víme, že

$$\mathbb{L}_{\omega} = \bigcup_{\alpha < \omega} \mathbb{L}_{\alpha}.$$

Pro $(\forall \alpha < \omega)$ platí

$$|\mathbb{L}_{\alpha}| \leq \omega.$$

Z toho dostaneme, že platí

$$|\mathbb{L}_{\omega}| < \omega \times \omega.$$

Z definice kardinálního součinu dostaneme

$$|\mathbb{L}_{\omega}| < \omega$$
.

V lemma 3.18 jsme dokázali, že

$$\omega \subset \mathbb{L}_{\omega}$$
.

Definujme funkci H

$$H: \omega \to \mathbb{L}_{\omega},$$

$$H(a) = a$$
.

Tato funkce H je identita na A, která je prostá, protože pro každé $a,b\in A$ platí

$$H(a) = H(b) \rightarrow a = b$$

z definice funkce H. Z toho tedy použitím definice 4.6 dostaneme

$$\omega \leq |\mathbb{L}_{\omega}|.$$

Tímto jsme dokázali

$$|\mathbb{L}_{\omega}| = \omega.$$

Lemma 4.11

Předpokládejme platnost axiomu výběru:

 $Pak \ pro \ každ\'e \ \alpha \geq \omega$

$$|\mathbb{L}_{\alpha}| = \alpha.$$

Důkaz.

Transfinitní indukcí pro $\alpha \geq \omega$:

 $\alpha = \omega$

Jsme dokázali v lemma 4.10.

 $\alpha = \beta + 1$

Nechť tedy pro všechny $\omega \leq \gamma < \alpha$

$$|\mathbb{L}_{\gamma}| = |\gamma|.$$

Tedy

$$\mathbb{L}_{\alpha} = \mathfrak{DP}(\mathbb{L}_{\beta})$$

Z lemma 4.9 máme

$$|\mathfrak{DP}(L_{\beta})| = |L_{\beta}|.$$

Z kardinální aritmetiky víme

$$|\alpha| = |\beta|$$
.

A konečně z toho tedy

$$|\mathbb{L}_{\alpha}| = \alpha.$$

 α je limitní ordinál různý od ω

Nechť tedy pro všechny $\omega \leq \beta < \alpha$

$$|\mathbb{L}_{\beta}| = |\beta|.$$

Víme, že

$$\mathbb{L}_{\alpha} = \bigcup_{\beta < \alpha} \mathbb{L}_{\beta}.$$

Z indukčního předpokladu pro $(\forall \beta < \alpha)$ máme

$$|\mathbb{L}_{\beta}| \leq |\alpha|$$
.

Tedy z toho dostaneme, že platí

$$|\mathbb{L}_{\alpha}| \le |\alpha| \times |\alpha|.$$

Z definice kardinálního součinu dostaneme

$$|\mathbb{L}_{\alpha}| \leq \alpha.$$

V lemma 3.18 jsme dokázali, že pro každé α platí

$$\alpha \subset \mathbb{L}_{\alpha}$$
.

Definujme funkci H předpisem

$$H: \alpha \to \mathbb{L}_{\alpha},$$

$$H(a) = a$$
.

Tato funkce je identita na $\alpha,$ která je prostá, protože pro každé $a,b\in A$ platí

$$H(a) = H(b) \rightarrow a = b$$

z definice funkce H. Z toho tedy použitím definice 4.6 dostaneme

$$\alpha \leq |\mathbb{L}_{\alpha}|.$$

Tím jsme dokázali

$$|\mathbb{L}_{\alpha}| = \alpha.$$

Definice 4.12

$$o(M) = M \cap On$$

Věta 4.13

Je tady konečná konjunkce ς axiomů ZF - P + V = L, tak že

$$\forall M(M \ je \ transitivni \land \varsigma^M \to (L_{o(M)} = M)).$$

Důkaz.

Nechť ς obsahuje axiomy dokazující, že tu není největší ordinál.

Mějme transitivní M a nechť platí ς^M , pak o(M) je limitní ordinál, protože kdyby o(M) byl následník β , tak β je největší ordinál. $o(M) = \emptyset$ nemůže být, protože z axiomů ZF musí obsahovat ordinál \emptyset .

Tedy z toho, že o(M) je limitní ordinál dostaneme

$$L_{o(M)} = \bigcup_{\alpha \in M} L_{\alpha}.$$

Mějme

$$\mathbb{L}^M = \{ x \in M : (\exists \alpha (x \in L_\alpha))^M \}.$$

Z absolutnosti L_{α} dostaneme

$$\{x \in M : (\exists \alpha (x \in L_{\alpha}))^M\} = \bigcup_{\alpha \in M} L_{\alpha}.$$

Dohromady nám to dává

$$L_{o(M)} = \mathbb{L}^M$$
.

Z definice $\{x \in M : (\exists \alpha (x \in L_{\alpha}))^M\}$ dostáváme, že platí

$$L_{o(M)} \subset M$$
.

Z axiomu konstruovatelnosti relativizovaném v M dostaneme

$$(\forall x (x \in \mathbb{L}))^M$$
,

z čehož dostáváme, že platí

$$M \subset L_{o(M)}$$
.

Z toho tedy pak dostaneme

$$M = L_{o(M)}$$
.

Definice 4.14 Mostowského kolapsující zobrazení

Nechť R je úzká fundovaná relace na A. Definujme Mostowského kolapsující zobrazení G z A, R takto:

$$G(x) = \{G(y) : y \in A \land yRx\}.$$

Mostowského kolaps M je pak množina

$$M = \{G(y) : y \in A\}.$$

Věta 4.15

Mějme Mostowského kolapsující zobrazení. Pokud R na A je extenzionalní, tak G je jednoznačný izomorfimus na M. M je jednoznačně určená transtitivní třída.

Důkaz.

Funkce G je určitě na, protože M definováno jako obor hodnot funkce G. Teď budeme pokračovat důkazem,že G je prostá. Důkaz povedeme sporem. Nechť máme x jako R-nejmenší prvek pro který platí:

$$\{x \in A : (\exists y \in A)(x \neq y \land G(y) = G(X))\}.$$

Vzhledem k extenzionalitě relace R můžou nastat tyto dva případy:

1. Mějme nějaké $z \in A$ takové, že zRx a $\neg zRy$: Z definice funkce G dostaneme

$$G(z) \in G(x)$$
.

Z předpokladu máme

$$G(x) = G(y).$$

Z toho plyne, že existuje nějaké $w \in A$, takové že wRy.

Z toho dostaneme, že $w \neq z$.

Což znamená, z je R-nejmenší prvek, což je spor s předpokladem.

2. Druhy případ je, že máme $a \in A$ takové, že aRy a $\neg aRx$: Z definice funkce G dostaneme

$$G(a) \in G(y)$$
.

Z předpokladu máme

$$G(x) = G(y).$$

Z toho plyne, že existuje nějaké $b \in A$, takové že bRx.

Z toho dostaneme, že $b \neq a$.

Což znamená, b je R-nejmenší prvek, což je spor s předpokladem.

Teď si ověříme vzájemnost relací nebo-li:

$$(\forall x, y \in A)(xRy \leftrightarrow G(x) \in G(y)).$$

Tato ekvivalence plyne přímo z definice G.

Ověřme jednoznačnost G. Mějme tedy G' splňující podmínky.

Máme tedy

$$(\forall x,y \in A)(xRy \leftrightarrow G(x) \in G(y)),$$

$$(\forall x, y \in A)(xRy \leftrightarrow G'(x) \in G'(y)).$$

Z toho dostaneme

$$(\forall x, y \in A)(G(x) \in G(y) \leftrightarrow G'(x) \in G'(y)).$$

Takže z toho máme

$$G=G'$$

Nakonec mějme tedy M' splňující podmínky. Z jednoznačnosti G dostaneme

$$M = M'$$
.

Nakonec mějme

$$x \in M$$
.

 ${\bf Z}$ definice ${\cal M}$ pro nějaké

$$y \in A$$

dostaneme

$$G(y) \in M$$
.

Mějme teď

$$w \in G(y)$$
.

Z definice G pro nějaké

$$c \in A$$

dostaneme

$$G(c) = w$$
.

Z definice M tedy

$$w \in M$$
.

M je tedy transitivní.

Věta 4.16

Mějme formule $\phi_0, ..., \phi_n$, tak

$$(\forall X\subset \mathbb{L})(\exists A)[X\subset A\subset \mathbb{L}\wedge (\phi_0,...,\phi_n \ \textit{jsou absolutn\'e pro}\ A,\mathbb{L})\wedge$$

$$\wedge |A| \leq \max(\omega, |X|)].$$

Důkaz.

Mějme $\phi_0, ..., \phi_n$ podmnožinově uzavřený seznam formulí.

Najděme teď α tak, že $X\subset L_{\alpha}$ a podle věty 3.13 existuje $\beta>\alpha$ tak, že $\phi_0,...,\phi_n$ je absolutní pro $L_{\beta},\mathbb{L}.$ L_{β} je podle věty 4.4 dobře uspořádaná uspořádaním \triangleleft . Když ϕ_i má d_i volných formulí $y_1,...,y_{d_i}$ definujme funkci H_i

$$H_i: L_{\beta}^{d_i} \to L_{\beta}.$$

Nechť tedy ϕ_i je formule tvaru $(\exists x)(\phi_j(x,y_1,...,y_{d_i}))$, pak $H_i(y_1,...,y_{d_i})$ je \lhd -nejmenší takové x, že pro něj platí

$$(\exists x \in L_{\beta})(\phi_j(x, y_1, ..., y_{d_i})).$$

Pokud pro nějaké x platí

$$\neg(\exists x \in L_{\beta})(\phi_j(x, y_1, ..., y_{d_i})),$$

pak $H_i(y_1,...,y_{d_i})$ je \triangleleft -nejmenší prvek L_{β} .

Pokud ϕ_i není existenční formule, pak $H_i(y_1,...,y_{d_i})$ je \triangleleft -nejmenší prvek L_{β} .

Pro konstantu definujme H jako nějaký prvek L_{β} .

Definujme A jako uzávěr X na funkce $H_0, ..., H_n$.

Podle lemma 3.12 jsou $\phi_0, ..., \phi_n$ absolutní pro A, \mathbb{L} .

Pak z definice A vidíme

$$|A| \le \omega \times |X|$$
.

Z čehož plyne

$$|A| \le max(\omega, |X|).$$

Lemma 4.17

Nechť G je bijekce z A na M s izomorfismem pro relaci \in , tak pro libovolnou formuli $\phi(x_0,...,x_n)$

$$\forall x_0, ..., x_n \in A[\phi(x_0, ..., x_n)^A \leftrightarrow \phi(G(x_0), ..., G(x_n))^M].$$

Důkaz. Indukcí podle složitosti formule:

x = y:

Podle definice G a z definice relativizace dostaneme

$$G(y) = G(x) \leftrightarrow y = x.$$

 $x \in y$:

Z izomorfismu pro relaci \in a z definice relativizace máne

$$(x \in y) \leftrightarrow G(x) \in G(y).$$

Nechť tedy máme indukční předpoklady

$$\phi(x_0, ..., x_n)^A \leftrightarrow \phi(G(x_0), ..., G(x_n))^M$$

$$\pi(x_0,...,x_n)^A \leftrightarrow \pi(G(x_0),...,G(x_n))^M$$
.

 $\phi \wedge \pi$:

Podle definice 2.6 je

$$(\phi(x_0,...,x_n \land \pi(x_0,...,x_n))^A \leftrightarrow (\phi(x_0,...,x_n)^A \land \pi(x_0,...,x_n)^A).$$

Z indukčního předpokladu dostáváme

$$(\phi(x_0, ..., x_n)^A \wedge \pi(x_0, ..., x_n)^A) \leftrightarrow \leftrightarrow (\phi(G(x_0), ..., G(x_n))^M \wedge \pi(G(x_0), ..., G(x_n))^M),$$

což podle definice 2.6 je

$$(\phi(G(x_0),...,G(x_n)) \wedge \pi(G(x_0),...,G(x_n)))^M$$
.

 $\neg \phi$:

Podle definice 2.6 je

$$(\neg \phi(x_0, ..., x_n)^A \leftrightarrow (\neg \phi(x_0, ..., x_n)^A).$$

Z indukčního předpokladu dostáváme

$$(\neg \phi(x_0, ..., x_n)^A) \leftrightarrow (\neg \phi(G(x_0), ..., G(x_n))^M),$$

což podle definice 2.6 je

$$(\neg \phi(G(x_0),...,G(x_n)))^M$$
.

 $(\exists u \in x) \phi(u, x, ...)$:

Podle definice 2.6 je

$$(\exists u(u \in x \land \varphi(x_0, ..., x_n)))^A \leftrightarrow ((\exists u \in A)(u \in x \land \varphi(x_0, ..., x_n))^A).$$

Z indukčního předpokladu a definice G

$$((\exists u \in A)(u \in x \land \varphi(x_0, ..., x_n))^A) \leftrightarrow \leftrightarrow (((\exists G(u) \in M)(G(u) \in G(x) \land \varphi(G(x_0), ..., G(x_n)))^M).$$

Věta 4.18 Nechť $\phi_0, ..., \phi_{n-1}$ jsou sentence tak

$$(\forall X \subset \mathbb{L})[X \text{ je transitivn} i \to \exists M[X \subset M \land \bigwedge_{i < n} (\phi_i^M \leftrightarrow \phi_i^{\mathbb{L}}) \land \\ \land M \text{ je transitivn} i \land |M| \leq \max(\omega, |X|)]]$$

Důkaz.

Bez újmy na obecnosti nechť ϕ_{n-1} je axiom extenzionality.

 $V \mathbb{L}$ platí axiom extenzionality, takže podle věty 4.16 máme A pro které platí

$$\bigwedge_{i < n} (\phi_i^A \leftrightarrow \phi_i^{\mathbb{L}}).$$

V A platí axiom extenzionality.

Máme tedy A, \in tak, že \in je extenzionální, úzká, fundovaná relace na A. Podle věty 4.15 máme M, které je transitivní.

Z bijekce G pro M platí

$$|M| = |A|$$
.

Z toho tedy

$$|M| \leq max(\omega, |X|).$$

Z lemma 4.17 dostaneme

$$\bigwedge_{i < n} (\phi_i^M \leftrightarrow \phi_i^{\mathbb{L}}).$$

Nakonec si dokažme $X \subset M$: Mějme pro libovolné $x \in X$

$$G(x) = \{G(y) : y \in X \land y \in x\},\$$

z transitivity X dostaneme, že pro každé $y \in x$ platí

$$y \in X$$
.

To nám dává, že pro libovolné $x \in X$ můžem G(x) definovat ekvivalentně jako

$$G(x) = \{G(y) : y \in x\}.$$

Z čehož \in -indukcí přes x plyne, že pro každé $x \in X$ platí

$$G(x) = x$$
.

Z definice M tedy dostaneme

$$x \in M$$
.

Lemma 4.19

Pro libovolné α platí

$$(\forall \beta \leq \alpha)(L_{\beta} \subset L_{\alpha}).$$

Důkaz.

Indukcí podle α :

$$\alpha = \emptyset$$

Jediná možnost zde je, že β může jen \emptyset , protože pak máme

$$L_{\emptyset} \subset L_{\emptyset}$$
,

což je splněno triviálně.

 $\alpha = \gamma + 1$

Nechť lemma platí pro všechna $\beta \leq \gamma$.

Z lemma 3.3 pro L_{γ} víme že L_{γ} je transitivní.

Použijeme lemma 2.15 a dostaneme

$$L_{\gamma} \subset L_{\alpha}$$
.

Pro $\beta < \gamma$ máme

$$L_{\beta} \subset L_{\alpha}$$

z tranzitivity podmnožin.

α je limitní ordinál

Plyne přímo z definice L_{α} .

Věta 4.20

$$V = \mathbb{L} \to ((\forall \alpha \in On)((\alpha \ge \omega) \to P(L_{\alpha}) \subset L_{\alpha^+})$$

Důkaz.

Nechť ς je konečná konjunkce axiomů z věty 4.13, pak vezměme formuli $\chi \leftrightarrow \varsigma \wedge V = \mathbb{L}$.

Nechť tedy platí $V = \mathbb{L}$ a nechť mějme nějaké x tak, že

$$x \in P(L_{\alpha}).$$

Položme

$$X = L_{\alpha} \cup \{x\}.$$

Z lemma 4.11 a pravidel kardinalní aritmetiky dostaneme

$$|X| = |\alpha|$$
.

Z věty 4.5 víme, že platí axiom výběru.

Pak podle věty 4.18 dostaneme transitivní M, v kterém platí χ^M .

Podle věty 4.13 dostaneme, že

$$M = L_{o(M)}$$
.

Z věty 4.18 dále víme, že

$$|M| = |\alpha|$$
.

Z toho dostáváme, že

$$|o(M)| < |\alpha^+|,$$

jinak by o(M) bylo v rozporu s lemma 4.11. Podle lemma 4.19 dostáváme

$$L_{o(M)} \subset L_{\alpha^+}$$
.

Z věty 4.18 dále víme, že

$$X \subset M$$
.

Což nám dohromady dá

$$x \in L_{\alpha^+}$$
.

Tím jsme dokázali

$$P(L_{\alpha}) \subset L_{a^+}$$
.

Věta 4.21

$$V = \mathbb{L} \to (\forall \alpha \ge \omega(2^{\aleph_{\alpha}} = \aleph_{\alpha^+}))$$

Důkaz.

Nechť platí $V = \mathbb{L}$ a mějme dané $\kappa \geq \omega$.

Podle věty 4.20

$$P(L_{\kappa}) \subset L_{\kappa^+}$$
.

Z monotonie potence množin a z

$$\kappa \subset L_{\kappa}$$

což jsme dokázali v průběhu důkazu 3.18, dostaneme

$$P(\kappa) \subset P(L_{\kappa}).$$

Z transitivity podmnožin dostaneme

$$P(\kappa) \subset L_{\kappa}^+$$
.

Podle toho existuje f, takže

$$f: P(\kappa) \to L_{\kappa}^+,$$

$$f(x) = x$$
.

Funkce f je prostá Z toho tedy použitím definice 4.6 dostaneme

$$2^{\kappa} < \kappa^+$$
.

Druhá nerovnost je důsledek Cantorovy věty. A tedy dostáváme

$$2^{\kappa} = \kappa^+$$
.

REFERENCE Reference

Reference

[Ku] K.Kuhnen, Set theory: An introduction to independence proofs North Holland, Elsevier, 1980.

- [Je] T. Jech, Set theory, Springer, 2003.
- $[{\rm BaS}] \qquad {\rm B.~Balcar~a~P.~\check{S}t\check{e}p\acute{a}nek},~\textit{Teorie~mno\check{z}in},~{\rm Academia},~2000.$