Summary of Used Code in the Tutorial

Base

Data Type	When to use it	Methods/Operators	Example
Bool		Declare with True or False	x = True
Integer		Declare with integer number	x = 1
Float		Declare with float number	x = 1.0
String		Declare with commas	x = "I am a string"
		+	<pre>>>> "I am" + " a string" "I am a string"</pre>
List	To contain a list of objects	Declare with brackets	x = [1,"3",4.,"elephant"]
		Access by element	>>> x[1] 1
		Access by slice	>>> x[1:3] ["3",4.]

		>>> x[1:] ["3",4.,"elephant"] >>> x[:3] [1,"3",4.] >>> x[:] [1,"3",4.,"elephant"]
	Add elements	>>> x.append(5.) [1,"3",4.,"elephant",5.]
To contain a list of objects to be accessed by a key	Declare with curly brackets and key:value separated by commas	x = {"Var1":1,"Var2":"hi"}
	Access by key	>>> x["Var1"] 1
	Get keys	>>> x.keys() ["Var1","Var2"]

Functions

Function	Description	Example
len	Get the length of a container	>>> len([1,2,3]) 3
help	Print description of a object	<pre>>>> help(len) len(obj, /) Return the number of items in a container.</pre>
print	Print the value of a variable	>>> x = 3

Matplotlib.Pyplot

Habitual abbreviation: plt

Data Type	When to use it	Methods/Operators	Example
Figure	To make an image	Constructor	>>> fig = plt.figure()
		Save	<pre>>>> fig = plt.figure() >>> fig.savefig("Name.png")</pre>
Axes	To make a panel in a figure	hist	>>> ax.hist(x)
		plot	>>> ax.plot(x)
		scatter	>>> ax.scatter(x)
		set_title	>>> ax.set_title("Title",fontsize=20)
		set_axis	>>> ax.set_axis([0,1,0,2])
		set_xlabel	>>> ax.set_xlabel("Title",fontsize=20)
		set_ylabel	>>> ax.set_ylabel("Title",fontsize=20)
		set_legend	>>> ax.set_legend("Title",fontsize=20)

Functions

Function	Description	Example
subplots	Make a figure and axis list with a grid of panels	>>> fig, ax = plt.subplots(1,3,figsize=[20,5])
		10 10 10 10 10 10 10 10 10 10 10 10 10 1
subplots_mosaic	Make a figure and axis dictionary with a grid of panels	>>> fig, ax = plt.subplot_mosaic([["A","B","B"],["A","D","E"]],figsize=[10,8])
		10 01 04 04
		01 10 10 10 10 10 10 10 10 10 10 10 10 1

Combined examples

```
Input code

fig, ax = plt.subplots(1,1,figsize=[10,5])

ax.plot([1,2,3,4,5],[1,4,9,16,25],linewidth=4,linestyle="dashed",label="Our understanding of Python")

ax.plot([1,2,3,4,5],[25,16,9,4,1],linewidth=2,linestyle="dotted",label="The fear of programming")

ax.set_title("Confidence of the students in their programming skills",fontsize=20)

ax.set_xlabel("time",fontsize=20)

ax.set_ylabel("some functions",fontsize=20)
```


Seaborn

Habitual abbreviation: sns

Functions

Function	Description	Example	
lineplot	Make a line plot	<pre>>>> fig, ax = plt.subplots(1,1,figsize=[20,5]) >>> sns.scatterplot(data=d,x="x",y="y",hue="color",ax=ax)</pre>	
scatterplot	Make a scatter plot	<pre>>>> fig, ax = plt.subplots(1,1,figsize=[20,5]) >>> sns.scatterplot(data=d,x="x",y="y",hue="color",size="size",ax=ax)</pre>	
violinplot	Make a violin plot	<pre>>>> fig, ax = plt.subplots(1,1,figsize=[20,5]) >>> sns.violinplot(data=d,x="color",y="y",hue="size",ax=ax)</pre>	
boxplot	Make a box plot	<pre>>>> fig, ax = plt.subplots(1,1,figsize=[20,5]) >>> sns.boxplot(data=d,x="size",y="y",hue="color",ax=ax)</pre>	

Combined example

```
Input code

(assumes you have a pandas.DataFra me assigned to variable d)

fig, ax = plt.subplots(1,3,figsize=[30,10])

sns.scatterplot(data=d,x="x",y="y",hue="color",size="size",ax=ax[0])
sns.violinplot(data=d,x="color",y="y",hue="size",ax=ax[1])
sns.boxplot(data=d,x="size",y="y",hue="color",ax=ax[2])
```


Numpy

Habitual abbreviation: np

Data Type	When to use it	Methods/Operators	Example
Array	Container that has: - N dimensions - All the same data type		>>> a = np.zeros([2,3],int) array([[0, 0, 0],
		Construct filled with zeros	>>> a = np.ones([2,3],int) array([[1, 1, 1],

		[1, 1, 1]])
	Get shape	>>> x = np.array([1,2,3]) >>> x.shape (3,)
	Get type	>>> x = np.array([1,2,3]) >>> x.dtype dtype('int64')
	Access by coordinate	>>> x= np.array([[1,2,3],[4,5,6],[7,8,9]]) >>> x[0,0] 1
	Access by slicing	>>> x= np.array([[1,2,3],[4,5,6],[7,8,9]]) >>> x[:,1:] [[2 3] [5 6] [8 9]]
	Access by condition	<pre>>>> x= np.array([[1,2,3],[4,5,6],[7,8,9]]) >>> get_even = (x % 2 > 0) array([[True, False, True],</pre>
	Transpose	>>> a = np.zeros([2,3],int) array([[0, 0, 0],

cay([[0, 0],
[0, 0],
[0, 0]])

Functions

Function	Description	Example
mean	Make mean of the array or along a specified axis	>>> np.mean(a,axis=0)
std	Compute the standard deviation of the array or of a specific axis	>>> np.std(a,axis=0)
corrcoef	Make the correlation matrix from a matrix of variables x observations	>>> np.corrcoef(a)

Pandas

Habitual abbreviation: pd

Data Type	When to use it	Methods/Operators	Example
	Object to work with data tables	Construct	>>> d = pd.DataFrame()
		Construct from csv	>>> d = pd.load_csv("data.csv", sep=",")
		Save to csv	>>> d.to_csv("data.csv")
		Access by column	>>> d["age"]

		Access by location	>>> d.loc[:3,"age"]
		Access by index location	>>> d.iloc[:3,:2]
		Access by condition	>>> get = d["color"] == "red" >>> d.loc[get,["x","y","color"]]
		Get matrix in numpy array format	>>> d.values
		Compute mean	>>> d.mean()
		Compute standard deviation	>>> d.std()
		Group by condition	>>> d.groupby("color").std()