Informe de Análisis de Tráfico -TCPDump

Curso "Introducción al Análisis de Redes" – Security Blue Team

Tabla de contenidos

- 1. Resumen ejecutivo
- 2. Objetivo
- 3. Entorno y herramientas
- 4. Metodología
- 5. Resultados
 - o 5.1 PCAP4
 - 5.2 PCAP5
- 6. Conclusiones y lecciones aprendidas
- 7. Recomendaciones
- 8. Referencias
- 9. Anexos

1. Resumen ejecutivo

Se analizaron dos capturas de tráfico (.pcap), (PCAP 4 y PCAP 5) suministradas por el curso gratuito de Security Blue Team para adquirir destrezas básicas en TCPDump. Las actividades consistieron en filtrado de paquetes, conteo rápido y extracción de metadatos (versiones de software, nombres de archivos, puertos y marcas de tiempo).

2. Objetivo

- Dominar filtros y contadores básicos de TCPDump.
- Replicar consultas típicas de Wireshark en CLI.
- Documentar comandos + resultados para futura automatización.

3. Entorno y herramientas

Elemento	Descripción	
Sistema operativo	Kali Linux 2024.2 (VM)	
Analizador de paquetes	tcpdump v4.99.x	
Capturas analizadas	pcap4.pcap, pcap5.pcap (descargadas del portal del curso)	
Conectividad	Red NAT (sin exposición directa a Internet)	
Consideraciones de seguridad	Archivos verificados por Security Blue Team como no maliciosos; descarga efectuada en VM aislada por precaución.	

4. Metodología

1. Visión general preliminar

- tcpdump -nn -vv -r <pcap> para identificar protocolos, puertos y hosts predominantes sin resolución DNS.
- Registro de tiempo total y tamaño de cada captura para dimensionar el ejercicio.

2. Diseño de filtros específicos

- Capa 3/4 → Selectores udp, tcp, ip[8]==TTL, tcp[tcpflags]&0x12==0x12.
- Capa 7 / Strings → -A + grep -Ei 'png|zip|openssh|chrome'.
- Validación de cada filtro con --count para medir impacto antes de volcar datos.

3. Extracción de indicadores

- Métricas de volumen (--count, wc -l) y temporales (-tttt) para series cronológicas.
- Conversión de campos binarios → hex o decimal (e.g., checksum, flags) con printf "%x" y bc.

4. Verificación cruzada

- Comparación de salidas con Wireshark (ground truth) en caso de dudas (p. ei. checksum 0xCFD3).
- Uso de tshark para confirmaciones rápidas (tshark -r <pcap> -Y 'ip.ttl==38').

5. Documentación de cada hallazgo con captura de pantalla (ver Anexos) y breve explicación.

5. Resultados

5.1 PCAP 4

#	Pregunta	Procedimiento	Respuesta
1	Paquetes UDP capturados	tcpdump -r SBT-PCAP4.pcap udp wc -l	3290
2	Paquetes TCP con **SYN + ACK**	tcpdump -r SBT-PCAP4.pcap 'tcp[tcpflags] & (tcp-syn tcp-ack) == (tcp-syn tcp-ack)' wc -l	20
3	Versión de **Chrome** hacia *securityblue.team*	tcpdump -A -r SBT-PCAP5.pcap grep -E "Chrome securityblue.team"	80.0.3987.87
4	Paquetes con **TTL 38**	tcpdump -r SBT-PCAP4.pcap 'ip[8]==38' wc -l	710

5.2 PCAP 5

#	Pregunta	Procedimiento	Respuesta
1	Archivo **.png** servido por 192.168.56.111	tcpdump -vvv -r SBT-PCAP5.pcap grep OpenSSH	proprietary.png
2	Versión de **OpenSSH** del servidor	tcpdump -vv -r SBT-PCAP5.pcap \ grep OpenSSH	7.9p1
3	Puerto que sirve el archivo **.zip**	tcpdump -A -n -l -r SBT-PCAP5.pcap grep ".zip"	3016
4	Timestamp del paquete con checksum TCP **53203 (0xCFD 3)**	tcpdump -x -r SBT-PCAP5.pcap "tcp[16:2]=5302"	06:04:46.207925

6. Conclusiones y lecciones aprendidas

- 'tcpdump --count' agiliza métricas (no hace *dump* completo).
- `-A` es imprescindible para extraer nombres de archivos en HTTP.
- Filtrar flags con valores hex/dec (`0x12 → 18`) evita confusión.
- Hallar checksums específicos requiere combinar salida hex (`-x`) + pipes a `grep`.

7. Recomendaciones

- 1. Crear un **cheat-sheet** de flags TCP, offsets IP y ejemplos.
- 2. Automatizar reportes con pequeños scripts Bash ('tshark' + 'awk/wc').
- 3. Revisar `tcpdump -x -s0` para análisis de checksums y firmas binarias.

8. Referencias

- Security Blue Team *Network Analysis Training (Beginner)*
- Manuales `tcpdump(8)` y `grep(1)`
- Baeldung "Grep show surrounding lines"

9. Anexos

Las capturas de pantalla **A-1 ... A-12** que ilustran cada pregunta se encuentran en la carpeta `Imagenes/` del repositorio.

Cada imagen está enlazada en el README para consulta rápida.