1 Orthogonal Polynomials with respect to a Discrete Measure

1.1 A Discrete Measure

A discrete N-point measure $d\lambda_N$ supported on a finite number of distinct points can be represented with the set of N support points $\{t_i\}$ and the corresponding weights $\{w_i\}$, $i = 1, 2, \dots, N$. Given functions u and v, their inner product on $d\lambda_N$ is defined as:

$$\langle u, v \rangle_{d\lambda_N} = \sum_{i=1}^N w_i u(t_i) v(t_i). \tag{1}$$

If $\langle u,v\rangle_{d\lambda_N}=0$, u and v are orthogonal with respect to $d\lambda_N$. The norm of u is defined as:

$$||u||_{d\lambda_N} = \sqrt{\langle u, u \rangle_{d\lambda_N}} = \left(\sum_{i=1}^N w_i u(t_i)^2\right)^{1/2}.$$

1.2 Objection

Given the set of N support points $\{t_i\}$ with positive weights $\{w_i\}$, our goal is to establish a set of monic polynomials $\{\pi_k\}$, $k=0,1,2,\cdots,N-1$, that are mutually orthogonal with respect to the discrete measure $d\lambda_N$.

1.3 Orthogonal Polynomials with respect to $d\lambda_N$

The monic orthogonal polynomials with respect to a discrete measure $d\lambda_N$, denoted as $\pi_k(\cdot) = \pi_k(\cdot, d\lambda_N)$, $k = 0, 1, 2, \dots, N$, satisfy the three-term recurrence relationship:

$$\pi_{k+1}(t) = (t - \alpha_k)\pi_k(t) - \beta_k \pi_{k-1}(t), \quad k = 0, 1, 2, \dots, N - 2,$$

$$\pi_{-1}(t) = 0, \ \pi_0(t) = 1,$$
(2)

where the recurrence coefficients $\{\alpha_k\}$ and $\{\beta_k\}$ are determined by

$$\alpha_{k} = \frac{\langle t\pi_{k}, \pi_{k} \rangle_{d\lambda_{N}}}{\langle \pi_{k}, \pi_{k} \rangle_{d\lambda_{N}}}, \quad k = 0, 1, 2, \cdots, N - 1,$$

$$\beta_{k} = \frac{\langle \pi_{k}, \pi_{k} \rangle_{d\lambda_{N}}}{\langle \pi_{k-1}, \pi_{k-1} \rangle_{d\lambda_{N}}}, \quad k = 1, 2, \cdots, N - 1,$$

$$\beta_{0} = \langle \pi_{0}, \pi_{0} \rangle_{d\lambda_{N}} = \langle 1, 1 \rangle_{d\lambda_{N}}.$$

$$(3)$$

If we normalize every monic polynomial π_k by $\tilde{\pi}_k = \pi_k/||\pi_k||_{d\lambda_N}$, we obtain a set of orthonormal polynomials $\{\tilde{\pi}_k\}$ with a similar three-term recurrence relationship:

$$\sqrt{\beta_{k+1}}\tilde{\pi}_{k+1}(t) = (t - \alpha_k)\tilde{\pi}_k(t) - \sqrt{\beta_k}\tilde{\pi}_{k-1}(t), \quad k = 0, 1, 2, \dots, N - 2,$$

$$\tilde{\pi}_{-1}(t) = 0, \quad \tilde{\pi}_0(t) = 1/\sqrt{\beta_0}.$$
(4)

For $n \leq N$, the n^{th} order Jacobi matrix associated with the measure $d\lambda_N$ is a symmetric tridiagonal matrix defined in the form:

$$\mathbf{J_n} = \mathbf{J_n}(d\lambda_N) = \begin{bmatrix} \alpha_0 & \sqrt{\beta_1} & 0\\ \sqrt{\beta_1} & \alpha_1 & \ddots & \\ & \ddots & \ddots & \sqrt{\beta_{n-1}}\\ 0 & & \sqrt{\beta_{n-1}} & \alpha_{n-1} \end{bmatrix},$$
(5)

where $\{\alpha_k\}$ and $\{\beta_k\}$ are from (3). We write $\mathbf{J_n}(d\lambda_N)$ if we want to exhibit the measure $d\lambda_N$.

Let $\tilde{\boldsymbol{\pi}}(t) = (\tilde{\pi}_0(t), \tilde{\pi}_1(t), \dots, \tilde{\pi}_{n-1}(t))^T$, the three-term recurrence relationship in (4) can be written in the matrix form:

$$t\tilde{\boldsymbol{\pi}}(t) = \mathbf{J_n}\tilde{\boldsymbol{\pi}}(t) + \sqrt{\beta_n}\tilde{\boldsymbol{\pi}}_n(t)\mathbf{e_n},\tag{6}$$

where $\mathbf{e_n} = (0, 0, \dots, 1)^T$ is the last column of the identity matrix I_n .

Denote the zeros of $\tilde{\pi}_n$ (i.e. zeros of π_n) as $\{\tau_v\}$, $v = 1, 2, \dots, n$. Setting $t = \tau_v$ in (6), we obtain that $\{\tau_v\}$ are eigenvalues of $\mathbf{J_n}$, and $\tilde{\boldsymbol{\pi}}(\tau_v)$ are the corresponding eigenvectors. Thus, we can decompose the Jacobi matrix in the following way:

$$\mathbf{J_n} = \mathbf{V}\mathbf{D}_{\tau}\mathbf{V^T},\tag{7}$$

where $\mathbf{V} = (\tilde{\boldsymbol{\pi}}(\tau_1), \tilde{\boldsymbol{\pi}}(\tau_2), \cdots, \tilde{\boldsymbol{\pi}}(\tau_n))$ and $\mathbf{D}_{\tau} = diag(\tau_1, \tau_2, \cdots, \tau_n)$.

It can be shown that there exists an orthogonal similarity transformation from $\{\tau_v\}$ in \mathbf{D}_{τ} to the recurrence coefficients $\{\alpha_k\}$ and $\{\beta_k\}$ in $\mathbf{J_n}$:

$$\begin{bmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & \mathbf{V} \end{bmatrix} \begin{bmatrix} 1 & \sqrt{\lambda}^T \\ \sqrt{\lambda} & \mathbf{D}_{\tau} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & \mathbf{V}^T \end{bmatrix} = \begin{bmatrix} 1 & \sqrt{\beta_0} \mathbf{e_1}^T \\ \sqrt{\beta_0} \mathbf{e_1} & \mathbf{J_n} \end{bmatrix}, \tag{8}$$

where $\mathbf{J_n} = \mathbf{J_n}(d\lambda_N)$ is from (5), \mathbf{V} , \mathbf{D}_{τ} are from (7), and

$$\sqrt{\lambda} = (\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n})^T,$$

with λ_v denoting the weight of the point τ_v in the *n*-point Gauss quadrature rule.

1.4 A Stable Method to Compute Recurrence Coefficients

In order to evaluate the discrete orthogonal polynomials $\{\pi_k\}$, we have to compute the recurrence coefficients $\{\alpha_k\}$ and $\{\beta_k\}$. An intuitive method, known as the Stieltjes precedure, focuses on the three-term recurrence relationship in (2) and computes $\{\pi_k\}$ and $\{\alpha_k\}$, $\{\beta_k\}$ alternatively. However, this procedure is numerically unstable as k increases. Below we introduce a stable method to obtain $\{\alpha_k\}$ and $\{\beta_k\}$ through the Lanczos process.

1.4.1 The Lanczos Process

The k^{th} Krylov subspace of a matrix $\mathbf{A} \in \mathbb{C}^{N \times N}$ and a nonzero vector $\mathbf{b} \in \mathbb{C}^N$ is defined as

$$K_k(\mathbf{A}, \mathbf{b}) = span\{\mathbf{b}, \mathbf{Ab}, \cdots, \mathbf{A}^{k-1}\mathbf{b}\}, \ 1 \le k \le N.$$

Given a Hermitian matrix $\mathbf{A} \in \mathbb{C}^{N \times N}$ and a vector $\mathbf{b} \in \mathbb{C}^N$, the Lanczos process computes the Hessenberg reduction of \mathbf{A} , defined as $\mathbf{H} = \mathbf{Q}^* \mathbf{A} \mathbf{Q}$, where $\mathbf{H} \in \mathbb{C}^{N \times N}$ is symmetric tridiagonal, and $\mathbf{Q} \in \mathbb{C}^{N \times N}$ is unitary. The columns of \mathbf{Q} , denoted as $\{\mathbf{q_1}, \mathbf{q_2}, \cdots, \mathbf{q_N}\}$, where $\mathbf{q_1} = \mathbf{b}/||\mathbf{b}||_2$, form a orthonormal basis of $K_N(\mathbf{A}, \mathbf{b})$.

1.4.2 The Stable Method (?)

Starting with N support points $\{t_i\}$ and their weights $\{w_i\}$, we define vector $\sqrt{\mathbf{w}}$ and diagonal matrix $\mathbf{D_t}$ as follows:

$$\sqrt{\mathbf{w}} = (\sqrt{w_1}, \sqrt{w_2}, \cdots, \sqrt{w_N})^T,$$

 $\mathbf{D_t} = diaq(t_1, t_2, \cdots, t_N).$

Similar to (8), we have

$$\begin{bmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & \mathbf{Q_1}^T \end{bmatrix} \begin{bmatrix} 1 & \sqrt{\mathbf{w}}^T \\ \sqrt{\mathbf{w}} & \mathbf{D_t} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & \mathbf{Q_1} \end{bmatrix} = \begin{bmatrix} 1 & \sqrt{\beta_0} \mathbf{e_1}^T \\ \sqrt{\beta_0} \mathbf{e_1} & \mathbf{J_N} \end{bmatrix}.$$
(9)

Accordingly, we construct a Hermitian matrix $\mathbf{A} = \begin{bmatrix} 1 & \sqrt{\mathbf{w}}^T \\ \sqrt{\mathbf{w}} & \mathbf{D_t} \end{bmatrix}$ and take $\mathbf{b} = \mathbf{e_1}$. The Lanczos process leads to a symmetric tridiagonal matrix as on the right of (9), the major and

minor diagonal elements of which are the recurrence coefficients of interest.

For any given order $K \leq N-1$, , we tridiagonalize **A** iteratively till the result contains $\mathbf{J}_{\mathbf{K}}$. With the recurrence coefficients $\{\alpha_k\}$ and $\{\beta_k\}$ from $\mathbf{J}_{\mathbf{K}}$, and the three-term recurrence relationship in (2), we can evaluate $\{\pi_k\}, k=0,1,\cdots,K$ at all support points $\{t_i\}, i=1,2,\cdots,N$.