

Do you see the tree?

What are decision trees?

the outcome of that test, and each leaf (terminal) node contains a class with each internal (non-leaf) node a test of an attribute, each branch is problems. This tree can be applied to either categorical or continuous input & output variables. The training process resembles a flow chart, A decision tree is a supervised learning technique that has a predefined target variable and is most often used in **classification** label. The uppermost node in the tree is called the root node.

Sztuczna Inteligencja w Bioinżynierii 2024/2025

Disadvantages	Decision Trees can be unstable and change greatly with slight changes in training data.	In case of unbalanced training data (e.g. very often sunny weather) this so-called bias can also be present in the tree.	Trees can quickly become very complex and overfit the training data. As a result, they do not generalize as well to previously unseen data.	High training time	
Advantages	Easy to understand, interpret and visualize.	Applications with categorical values (sunny, cloudy, rainy) and numerical ovalues (wind speed = 10 kmh) can be mapped.	Non-linear relationships between variables do not affect the accuracy of the tree.	The number of decision-making levels is theoretically unlimited.	Several decision trees can be combined to form a so-called random forest.

How to build a tree

- CART-Classification and Regression Trees
- ID3-Iterative Dichotomiser 3
- C4.5
- CHAID-Chi-squared Automatic Interaction Detection

Main question: which feature should be use first?

Exemplary problem – prediction of heart disease

Heart Disease	ON	YES	ON	YES	etc.
Blocked Arteries	NO	YES	NO	YES	etc.
Chest Pain Good Blood Circulation Blocked Arteries Heart Disease	NO	YES	YES	NO	etc.
Chest Pain	ON	YES	YES	YES	etc.

Gini impurity score

Squared probability for each possible answer - in case of binary trees - probability of first and second answer

How different features answer to the question

CART-Classification and Regression Trees

- We use Gini impurity score to grade diffent features this describe how well they answer our main question
- We look for the feature with the least impurity
- Impurity = 0 means that the feature perfectly split the data

CART-Classification and Regression Trees

- We use Gini impurity score to grade diffent features this describe how well they answer our main question
- Impurity = 0 means that the feature perfectly split the data
- Steps:
- Calculate the Gini impurity scores.
- If the node itself has the lowest score, then there is no point in separating the patients anymore and it becomes a leaf node.
- If separating the data results in improvement then pick the separation with the lowest impurity value.

Entropy

In information theory, the entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes.

Entropy gives a number between 0 and 1, where means pure separation and 1 random separation

Entropy describes impurity of subset rather than impurity of the choice, so we use information gain to grade possible splits.

$$H(x) = \sum_{i=1}^{n} p(i) \log \frac{1}{p(i)} = -\sum_{i=1}^{n} p(i) \log p(i)$$

 $S = \log_2 2^{\mathsf{N}} = N = 2$ 0-15=16=24 0 Examples

Examples

$$H(S) = -\frac{37}{164} \log_2 \frac{37}{164} - \frac{127}{164} \log_2 \frac{127}{164}$$

$$H(S) = 0.770$$

$$H(S) = -\frac{13}{111} \log_2 \frac{13}{111} - \frac{98}{111} \log_2 \frac{98}{111}$$

$$H(S) = 0.993$$

 $-\frac{29}{53}\log_2\frac{29}{53}$

 $H(S) = -\frac{24}{53}\log_2\frac{24}{53} -$

$$H(S) = 0.521$$

What is a gain in this situation

$$Gain(S, A) = 0.77 - \frac{111}{164}0.521 - \frac{53}{164}0.993$$

$$Gain(S, A) = 0.098$$

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifi https://scikit-<u>er.html</u>

https://scikit-learn.org/stable/modules/tree.html

https://www.kaggle.com/prashant111/decision-tree-classifier-tutorial

