Estadística

Guía 3: Teoría de Estimación

Mq. Sc. Luis Patricio Riquelme

Para las distribuciones que se presentan a continuación, definiremos como X una variable aleatoria, para lo que se pide lo siguiente:

1) Sea $X \sim Ber(\theta)$. Con función de cuantía:

$$f(x) = \theta^x (1 - \theta)^{1 - x}$$

- a) Identifique el recorrido de la Variable Aleatoria y el espacio parámetrico de θ .
- b) Calcule el primer momento poblacional, E(X), de la variable aleatoria.
- c) Calcule el estimador por el método de los momentos de θ .
- d) Calcule el estimador Máximo Verosímil de θ .
- e) ¿Es el estimador Máximo Verosímil de θ insesgado? Si la respuesta es NO, proponga un estimador insesgado para θ .
- 2) Sea $X \sim Bin(m, \theta)$. Con función de cuantía:

$$f(x) = \binom{m}{x} \theta^x (1 - \theta)^{m-x}$$

- a) Identifique el recorrido de la Variable Aleatoria y el espacio parámetrico de θ
- b) Calcule el primer momento poblacional, E(X), de la variable aleatoria.
- c) Calcule el estimador por el método de los momentos de θ .
- d) Calcule el estimador Máximo Verosímil de θ .

- e) ¿Es el estimador Máximo Verosímil de θ insesgado? Si la respuesta es NO, proponga un estimador insesgado para θ .
- 3) Sea $X \sim Poisson(\delta)$. Con función de densidad:

$$f(x) = \frac{\delta^x e^{-\delta}}{x!}$$

- a) Identifique el recorrido de la Variable Aleatoria y el espacio parámetrico de δ
- b) Calcule el primer momento poblacional, E(X), de la variable aleatoria.
- c) Calcule el estimador por el método de los momentos de δ .
- d) Calcule el estimador Máximo Verosímil de δ .
- e) ¿Es el estimador Máximo Verosímil de δ insesgado? Si la respuesta es NO, proponga un estimador insesgado para δ .
- 4) Sea $X \sim Gamma(\alpha, \beta)$. Con función de densidad:

$$f(x) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$$

- a) Identifique el recorrido de la Variable Aleatoria y el espacio parámetrico de
 α y β
- b) Calcule el primer y segundo momento poblacional, E(X) y $E(X^2)$, de la variable aleatoria.
- c) Calcule el estimador por el método de los momentos de α y β .
- d) Calcule el estimador Máximo Verosímil de α y β .
- e) ¿Es el estimador Máximo Verosímil de α y β insesgado? Si la respuesta es NO, proponga un estimador insesgado para α y β .
- 5) Sea $X \sim Exp(\eta)$. Con función de densidad:

$$f(x) = \eta e^{-\eta x}$$

- a) Identifique el recorrido de la Variable Aleatoria y el espacio parámetrico de η
- b) Calcule el primer momento poblacional, E(X), de la variable aleatoria.
- c) Calcule el estimador por el método de los momentos de η .
- d) Calcule el estimador Máximo Verosímil de η .
- e) ¿Es el estimador Máximo Verosímil de η insesgado? Si la respuesta es NO, proponga un estimador insesgado para η .
- 6) Sea $X \sim N(\mu, \sigma^2)$. Con función de densidad:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- a) Identifique el recorrido de la Variable Aleatoria y el espacio parámetrico de μ y σ^2
- b) Calcule el primer y segundo momento poblacional, E(X) y $E(X^2)$, de la variable aleatoria.
- c) Calcule el estimador por el método de los momentos de μ y σ^2 .
- d) Calcule el estimador Máximo Verosímil de μ y $\sigma^2.$
- e) ¿Es el estimador Máximo Verosímil de μ y σ^2 insesgado? Si la respuesta es NO, proponga un estimador insesgado para μ y σ^2 .