Sparsity Methods for Systems and Control Maximum Hands-off Control

Masaaki Nagahara^{1,2}

¹The University of Kitakyushu nagahara@kitakyu-u.ac.jp ²IIT Bombay (Visiting Faculty)

Table of Contents

- \bigcirc L^0 norm and sparsity
- 2 Practical benefits of sparsity in control
- 3 Problem formulation of maximum hands-off control
- 4 Conclusion

Table of Contents

- \bigcirc L^0 norm and sparsity
- 2 Practical benefits of sparsity in control
- 3 Problem formulation of maximum hands-off control
- 4 Conclusion

• The support of a function u(t), $t \in [0, T]$:

$$supp(u) \triangleq \{t \in [0, T] : u(t) \neq 0\}.$$

$$||u||_0 \triangleq \mu(\operatorname{supp}(u)),$$

- $\mu(S)$ is the Lebesgue measure (i.e. the length) of a subset $S \subset [0,T]$
- L^0 norm: the total length of time durations on which the signal takes nonzero values.

• The support of a function u(t), $t \in [0, T]$:

$$supp(u) \triangleq \{t \in [0, T] : u(t) \neq 0\}.$$

$$||u||_0 \triangleq \mu(\operatorname{supp}(u)),$$

- $\mu(S)$ is the Lebesgue measure (i.e. the length) of a subset $S \subset [0, T]$.
- *L*⁰ norm: the total length of time durations on which the signal takes nonzero values.

• The support of a function u(t), $t \in [0, T]$:

$$supp(u) \triangleq \{t \in [0, T] : u(t) \neq 0\}.$$

$$||u||_0 \triangleq \mu(\operatorname{supp}(u)),$$

- $\mu(S)$ is the Lebesgue measure (i.e. the length) of a subset $S \subset [0, T]$.
- L^0 norm: the total length of time durations on which the signal takes nonzero values.

• The support of a function u(t), $t \in [0, T]$:

$$supp(u) \triangleq \{t \in [0, T] : u(t) \neq 0\}.$$

$$||u||_0 \triangleq \mu(\operatorname{supp}(u)),$$

- $\mu(S)$ is the Lebesgue measure (i.e. the length) of a subset $S \subset [0, T]$.
- L^0 norm: the total length of time durations on which the signal takes nonzero values.

Example: L^0 norm of a function

• The L^0 norm

$$||u||_0 = \mu(\text{supp}(u)) = t_1 + (T - t_2) = T - (t_2 - t_1).$$

• If $||u||_0$ is much smaller than the total length T (i.e., $||u||_0 \ll T$), then the signal is said to be sparse.

Example: L^0 norm of a function

• The L^0 norm

$$||u||_0 = \mu(\operatorname{supp}(u)) = t_1 + (T - t_2) = T - (t_2 - t_1).$$

• If $||u||_0$ is much smaller than the total length T (i.e., $||u||_0 \ll T$), then the signal is said to be sparse.

Table of Contents

- \bigcirc L^0 norm and sparsity
- 2 Practical benefits of sparsity in control
- 3 Problem formulation of maximum hands-off control
- 4 Conclusion

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors needs energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control.
- We can also reduce CO or CO2 emissions, noise, and vibrations.

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors needs energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control.
- We can also reduce CO or CO2 emissions, noise, and vibrations

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors needs energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control
- We can also reduce CO or CO2 emissions, noise, and vibrations

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors needs energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control.
 - This is also known as coasting.
- We can also reduce CO or CO2 emissions, noise, and vibrations

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors needs energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control.
 - This is also known as coasting.
- We can also reduce CO or CO2 emissions, noise, and vibrations

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors needs energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control.
 - This is also known as coasting.
- We can also reduce CO or CO2 emissions, noise, and vibrations.

Table of Contents

- \bigcirc L^0 norm and sparsity
- 2 Practical benefits of sparsity in control
- 3 Problem formulation of maximum hands-off control
- 4 Conclusion

L^0 -optimal control problem

L^0 -optimal control problem

For the linear time-invariant system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

find a control $\{u(t): t \in [0, T]\}$ with T > 0 that minimizes

$$J_0(u) = ||u||_0 = \int_0^T |u(t)|^0 dt$$

subject to

$$\boldsymbol{x}(T)=\mathbf{0},$$

and

$$||u||_{\infty} \leq 1.$$

L^0 -optimal control problem

L^0 -optimal control problem

For the linear time-invariant system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

find a control $\{u(t): t \in [0, T]\}$ with T > 0 that minimizes

$$J_0(u) = ||u||_0 = \int_0^T |u(t)|^0 dt$$

subject to

$$x(T)=\mathbf{0},$$

and

$$||u||_{\infty} \leq 1.$$

This is difficult!

L^1 -optimal control

L^1 -optimal control problem

For the linear time-invariant system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

find a control $\{u(t): t \in [0, T]\}$ with T > 0 that minimizes

$$J_1(u) = ||u||_1 = \int_0^T |u(t)|dt$$

subject to

$$x(T) = 0$$
,

and

$$||u||_{\infty} \leq 1.$$

L^1 -optimal control

L^1 -optimal control problem

For the linear time-invariant system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

find a control $\{u(t): t \in [0, T]\}$ with T > 0 that minimizes

$$J_1(u) = ||u||_1 = \int_0^T |u(t)|dt$$

subject to

$$\boldsymbol{x}(T)=\boldsymbol{0},$$

and

$$||u||_{\infty} \leq 1.$$

• This is easy!

Bang-off-bang control

Theorem

If (A, b) is controllable and A is nonsingular, then the L^1 optimal control u(t) takes ± 1 or 0 for almost all $t \in [0, T]$ (if it exists).

A control that takes ±1 or 0 is called a bang-off-bang control.

Bang-off-bang control

Theorem

If (A, b) is controllable and A is nonsingular, then the L^1 optimal control u(t) takes ± 1 or 0 for almost all $t \in [0, T]$ (if it exists).

• A control that takes ±1 or 0 is called a bang-off-bang control.

Equivalence between L^0 and L^1 optimal controls

Theorem

Assume that there exists an L^1 -optimal control that is bang-off-bang. Then it is also L^0 optimal.

Theorem

Assume that there exists at least one L^1 -optimal control. Assume also that (A, \mathbf{b}) is controllable and A is non-singular. Then there exists at least one L^0 -optimal control, and the set of L^0 -optimal controls is equivalent to the set of L^1 -optimal controls.

Conclusion

- Maximum hands-off control is described as L^0 -optimal control.
- Under the assumption of non-singularity, L^0 -optimal control is equivalent to L^1 -optimal control.
- Maximum hands-off control is a ternary signal that takes values of ±1 and 0. Such a ternary control is called a bang-off-bang control.