Indicator of Generalization

Introduction

Function Set of Deep Network

Training zero is zero

- ➤ If many global optimums can zero training errors, which one can obtain generalized results?
- Use the indicator to find solution that generalizes well.
- > Sharpness and Sensitivity

Brute-force Memorization?

Real labels v.s. random labels

First layer of CIFAR-10

https://arxiv.org/pdf/1706.05394.pdf

Brute-force Memorization?

Simple pattern first, then memorize exception

雖然最後train出來都可以達到1.0acc,但是其實是不同的network

(b) Noise added on classification labels.

他將label data做PCA後呈現,如果發現這個point周圍擁有許多不同的label,表示他可能加入一點noise就會產生不同結果,意味著這是saddle point

Brute-force Memorization?

Sensitivity Google Deepmind

Jacobian Matrix

$$y = f(x)$$
 $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x}$$
 size of y

Example

size of x

$$\begin{bmatrix} x_1 + x_2 x_3 \\ 2x_3 \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} \quad \frac{\partial y}{\partial x} = \begin{bmatrix} & 1 & x3 & x2 \\ & 0 & 0 & 2 & 2 \end{bmatrix}$$

Sensitivity

要有data以及network才可以算sensitivity

透過sensitivity,我們可以計算這筆test data對整個network的變化影響多大,越大表示越容易判斷錯誤

 Given a network f, the sensitivity of a data point x is the Frobenius norm of the Jacobian

$$y = f(x) \qquad \frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \end{bmatrix}$$

Sensitivity of
$$x = \sqrt{\sum_{i} \sum_{j} \left(\frac{\partial y_{j}}{\partial x_{i}}\right)^{2}}$$

By the sensitivity of a test data x, we can predict the performance.

Without label

input一個少量的變化對我們的輸出有什麼樣的影響 (x有一點變化的時候對結果y有什麼樣的變化)

It is not surprise that sensitivity is related to generalization.

Regularization is kind of minimziing sensitivity.

希望network的值越接近0越好

Sensitivity – Emprical Results

Sensitivity on and off the training data manifold

Sensitivity – Emprical Results

Sensitivity on and off the training data manifold

Generalization Gap

w/ true labels

Jacobian norm

w/ true labels

w/ data augmentation

Sensitivity v.s. Generalization

Sensitivity v.s. Generalization

individual points

Sharpness

Sharp Minima v.s Flat Minima

可能testing set的distribution與training set是有誤差的

flat minima比較能夠對應testing set的mismatch

Definition of Sharpness

Definition 1

$\frac{\varepsilon}{\theta^*}$

Definition 2

Sharpness = $L(\theta') - L(\theta^*)$

Batch Size

batch size跟sharpness是有關係的

一般來說batch_size越大 validation error越大

batch_size變化對testing acc有影響 如果epoch夠多 training acc都可以接近

Batch Size v.s. Sharpness

Name	Network Type	Data set
F_1	Fully Connected	MNIST (LeCun et al., 1998a)
F_2	Fully Connected	TIMIT (Garofolo et al., 1993)
C_1	(Shallow) Convolutional	CIFAR-10 (Krizhevsky & Hinton, 2009)
C_2	(Deep) Convolutional	CIFAR-10
C_3	(Shallow) Convolutional	CIFAR-100 (Krizhevsky & Hinton, 2009)
C_4	(Deep) Convolutional	CIFAR-100

	Training A	Accuracy	Testing Accuracy		
Name	SB	LB	SB	LB	
F_1	$99.66\% \pm 0.05\%$	$99.92\% \pm 0.01\%$	$98.03\% \pm 0.07\%$	$97.81\% \pm 0.07\%$	
F_2	$99.99\% \pm 0.03\%$	$98.35\% \pm 2.08\%$	$64.02\% \pm 0.2\%$	$59.45\% \pm 1.05\%$	
C_1	$99.89\% \pm 0.02\%$	$99.66\% \pm 0.2\%$	$80.04\% \pm 0.12\%$	$77.26\% \pm 0.42\%$	
C_2	$99.99\% \pm 0.04\%$	$99.99\% \pm 0.01\%$	$89.24\% \pm 0.12\%$	$87.26\% \pm 0.07\%$	
C_3	$99.56\% \pm 0.44\%$	$99.88\% \pm 0.30\%$	$49.58\% \pm 0.39\%$	$46.45\% \pm 0.43\%$	
C_4	$99.10\% \pm 1.23\%$	$99.57\% \pm 1.84\%$	$63.08\% \pm 0.5\%$	$57.81\% \pm 0.17\%$	
	,	s = 10-3	·	_ 5 10-4	

$C_4 = 99.10\% \pm 1$.23%	$99.57\% \pm 1$	84% 63.08%	± 0.5% 5	$07.81\% \pm 0.17\%$
		$\epsilon = 10^{-3}$		$\epsilon = 5 \cdot 10^{-4}$	
		SB	LB	SB	LB
SB = 256	F_1	1.23 ± 0.83	205.14 ± 69.52	0.61 ± 0.27	42.90 ± 17.14
	F_2	1.39 ± 0.02	310.64 ± 38.46	0.90 ± 0.05	93.15 ± 6.81
LB =	C_1	28.58 ± 3.13	707.23 ± 43.04	7.08 ± 0.88	227.31 ± 23.23
0.1 data aat	C_2	8.68 ± 1.32	925.32 ± 38.29	2.07 ± 0.86	175.31 ± 18.28
0.1 x data set	C_3	29.85 ± 5.98	258.75 ± 8.96	8.56 ± 0.99	105.11 ± 13.22
	C_4	12.83 ± 3.84	421.84 ± 36.97	4.07 ± 0.87	109.35 ± 16.57

Batch Size v.s. Sharpness

Batch Size v.s. Sharpness

Concluding Remarks

Summary

- Good generalization are associated with sensitivity
- Good generalization are associated with flatness (?)
- Understaning the indicator for generalization helps us develop algorithm in the future

知道什麼意的network可以對generalization有幫助,就把他加入net

Reference

- Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, Simon Lacoste-Julien, "A Closer Look at Memorization in Deep Networks", ICML, 2017 true label v.s. random label
- Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping Tak Peter Tang, "On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima", ICLR, 2017
- Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent Sagun, Riccardo Zecchina, "Entropy-SGD: Biasing Gradient Descent Into Wide Valleys", ICLR, 2017 想辦法把找flat的process加入training
- Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nathan Srebro, Exploring Generalization in Deep Learning, NIPS, 2017
- Laurent Dinh, Razvan Pascanu, Samy Bengio, Yoshua Bengio, Sharp Minima Can Generalize For Deep Nets, PMLR, 2017
- Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein, Sensitivity and Generalization in Neural Networks: an Empirical Study, ICLR, 2018