1 Chapter 7 Discrimination and Detection

Problem 7.7 We want to choose our criterion k for a decision-making task such that the probability of being correct is maximized. Starting from equation (7.20), derive an expression for the criterion k.

Answer

Here is the situation, assume we are in a binary classification setting with two categories C = -1 and C = +1. The observer sees a stimulus s and has noisy measurements.

Based on these, they choose a criterion k such that they respond:

$$\hat{C} = \begin{cases} +1 & \text{if } x > k \\ -1 & \text{if } x < k \end{cases}$$

Let p(C) denote the prior over class and $p(x \mid C)$ denote the class-conditional stimulus distribution (assume Gaussian with mean μ_C , shared variance σ^2).

From Eq. (7.20), the probability of being correct is:

$$p(\text{correct}) = p(C = +1) \cdot \Phi\left(\frac{\mu_1 - k}{\sigma}\right) + p(C = -1) \cdot \Phi\left(\frac{k - \mu_{-1}}{\sigma}\right)$$

Our goal is to maximize this with respect to k. Differentiate with respect to k:

$$\frac{d}{dk}p(\text{correct}) = -p(C = +1) \cdot \phi\left(\frac{\mu_1 - k}{\sigma}\right) \cdot \left(\frac{1}{\sigma}\right) + p(C = -1) \cdot \phi\left(\frac{k - \mu_{-1}}{\sigma}\right) \cdot \left(\frac{1}{\sigma}\right)$$

Maximizing so derivative should be set to zero:

$$-p(C=+1)\cdot\phi\left(\frac{\mu_1-k}{\sigma}\right)+p(C=-1)\cdot\phi\left(\frac{k-\mu_{-1}}{\sigma}\right)=0$$

Now use the fact that $\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$:

$$p(C = +1) \cdot \exp\left(-\frac{(\mu_1 - k)^2}{2\sigma^2}\right) = p(C = -1) \cdot \exp\left(-\frac{(k - \mu_{-1})^2}{2\sigma^2}\right)$$

Take log of both sides:

$$\log p(C = +1) - \frac{(\mu_1 - k)^2}{2\sigma^2} = \log p(C = -1) - \frac{(k - \mu_{-1})^2}{2\sigma^2}$$

Multiply both sides by $2\sigma^2$ and rearrange:

$$(\mu_1 - k)^2 - (k - \mu_{-1})^2 = 2\sigma^2 \log \left(\frac{p(C = +1)}{p(C = -1)} \right)$$

Solve the left-hand side:

 $(\mu_1-k)^2-(k-\mu_{-1})^2=(\mu_1^2-2k\mu_1+k^2)-(k^2-2k\mu_{-1}+\mu_{-1}^2)=\mu_1^2-2k\mu_1-k^2+2k\mu_{-1}-\mu_{-1}^2$ Simplify:

$$(\mu_1^2 - \mu_{-1}^2) + 2k(\mu_{-1} - \mu_1) = 2\sigma^2 \log \left(\frac{p(C = +1)}{p(C = -1)} \right)$$

Solve for k:

$$k = \frac{1}{2(\mu_{-1} - \mu_1)} \left[2\sigma^2 \log \left(\frac{p(C = +1)}{p(C = -1)} \right) - (\mu_1^2 - \mu_{-1}^2) \right]$$

This is the optimal criterion k that maximizes the probability of being correct.

2