Autoregressive Processes

STAT 464 / 864 | Fall 2024
Discrete Time Series Analysis
Skyepaphora Griffith, Queen's University

We learned something last time, in Time Series 🕛

Moving Average (MA) processes:

A little bit of noise from the present A little bit of noise from the past How far into the past? p steps \rightarrow Order pHow much does each step contribute? k^{th} step $\rightarrow \phi_{\nu}$

MA processes are always zero mean

There's a formula for their ACVF

What did we tell quin?

Autoregressive Process of Order 1

An AR(1) process $\{X_t\}$ satisfies the autoregressive equation,

We assume a (stationary) solution {Xt} exists

Autoregressive coefficient Assume

Assume $Cov(Z_t, X_s) = 0$ for all s < t, and for all t.

AR(1) Processes | Expectation (\square) $X_t = \phi X_{t-1} + Z_t$

$$(\Box) X_t = \phi X_{t-1} + Z_t$$

Take expectation of both sides of (\Box)

Stationarity → constant mean

Assume $\phi \neq 0$ (else {Xt} is wn)

AR(1) Processes | Variance (\square) $X_t = \phi X_{t-1} + Z_t$

Take variance of both sides of (□)

Xt-1 and Zt are uncorrelated

Final expression is time-independent

AR(1) Processes | Covariance (\square) $X_t = \phi X_{t-1} + Z_t$

$$(\Box) X_t = \phi X_{t-1} + Z_t$$

$$Cov(X_t, X_t + h) = E[X_t X_{t+h}] = E[X_{t-h} X_t]$$

$$= E[X_{t-h} \phi X_{t-1}] + E[X_{t-h} Z_t]$$

$$= \phi E[X_{t-h} X_{t-1}]$$

$$\gamma_X(h) = \phi \gamma_X(h-1)$$

AR(1) Processes | Covariance (\square) $X_t = \phi X_{t-1} + Z_t$

$$(\Box) X_t = \phi X_{t-1} + Z_t$$

AR(1) Processes: ACVF / ACF (\square) $X_t = \phi X_{t-1} + Z_t$

Autoregressive Process of Order p

Stationary {Xt} satisfying:

AR polynomial:

(Complex valued z)

Assume roots exist outside unit circle in the complex plane. |z| > '

AR(p): Expectation

Stationarity → constant mean

Assume BWOC, $\,\mu$ is nonzero

Divide both sides by $\,\mu$

z = 1 is a root of AR polynomial

But
$$|z| \le 1$$
 not allowed! (unit circle) $\rightarrow \mu$ must be zero

AR(p): Covariance

Multiply both sides of (\clubsuit) by X_{t-h} , where h>0. Take expectation.

p + 1 linear equations, **p + 1** unknowns
$$\gamma_X(0),\ldots,\gamma_X(p)$$
 \rightarrow system of linear equations

For h > p, these equations form a recursion (easy to program)

We learned something today, in Time Series 🕛

wnat did we tell quin?

AR(1) Processes in R

 ϕ can be estimated via linear regression:

Response: $y \leftarrow x_t[2:N]$

Predictor: $x \leftarrow x_t[1:(N-1)]$

Intercept: (None)

Model: $mod1 \leftarrow lm(y \sim x - 1)$

AR(p): Sample ACVFs in R

Itsmr::aacvs()
Computes ACVF for a given AR process... Or MA. (Or ARMA)