

Losing Customers?

By Collin Loo

- In general, it cost 5 to 7 times more to acquire new customers.
- Studies show it is easier to sell cross products to existing customers than to new subscribers.
- Losing customers hinders growth and represents lost investments.

Our Objectives

- Use Machine Learning (ML) to identify the features that contribute to customer churn.
- Present to the Customer Service,
 Marketing and Sales departments.
- Make recommendations.

The OSEMN framework provides high level guidance on handling a data

 Following the processes outlined by OSEMN allows for efficient data modeling.

science project.

Data Science Process

The OSEMN Framework

- Data come from within the company.
- In the Scrub process:
 - Examine columns to determine if they are text or numbers?
 - Remove columns that do not contribute values to our ML model, such as phone numbers.
 - Handle missing values in columns, if any.

The OS EMN Framework

Explore Process

- There are 3,333 records in the dataset.
- The oldest account in the dataset is 8 months old. The average account age is 3.5 months.
- The dataset is composed of mainly new customers.
- We've lost 14.49% or 500 fairly new customers.

Explore Process

- Customers with heavy daily usage are more likely to leave than customers with less total daily usage.
- We tend to lose customers when they make a high number of calls to our customer service lines.

The OSEMN Framework

Explore Process

- Customers without a voice mail plan leave more often than those that have a voice mail plan.
- For customers with heavy usage during evening hours, the higher the risk they will leave.

Classification Algorithms

- In predicting customer Churn, we are basically predicting a Yes or No outcome. In data science, this is commonly known as a classification problem.
- There are several methods at our disposal to address this issue. We will evaluate four algorithms at this stage, namely Logistic Regression, K-Nearest Neighbors, Random Forest and XGBoost.
- The method that can predict more true positives and less false negatives will be our final model.

The OSEMN Framework

Model Process

The OSE MN Framework

Model Process – Final Model

- As our objective is to maximize model prediction for true positives and minimize false negatives, this information is captured in the recall score.
- The XGBoost algorithm delivers the highest recall scores in predicting both the 'Churn' and 'Not Churn' labels.

The OSE MN Framework

Model Process – Evaluation

- A useful model not only works well on controlled data but also need to perform equally well for unseen data.
- Our final model yields a 99.92 accuracy score on controlled data and 95.2 accuracy score on unseen data. Therefore, it will work well with new data in the future.
- The AUC score is another measure for model performance. Our model has an AUC score of 89.48% which means it has a probability of 89.48% chance of correctly distinguishing between the 'Churn' and 'Not Churn' labels.

***** AUC Score: 89.48% *****

The OSEM N Framework

Model Interpretation

- We utilize a SHAP package to help us explain our model.
- The feature that impacts our model prediction for Churn the most is 'total day minutes'.
- 'Voice mail plan_yes' comes in second, followed by 'customer service calls' and 'total eve minutes'.
- 'Total day minutes' has twice the influence over the model outcomes than 'customer service calls'.

The OSEM N Framework

Model Interpretation

- This plot explains how an individual customer with a given feature contributes to the model outcome.
- Customers without a voice mail plan or with low voice mail messages (blue dots) have a tendency to leave.
- In the case of number of call to service lines, the more frequent a customer contacts our service lines, the more likely he/she will leave.

• We will use the top four most influential features to make recommendations on how to stop customer churn.

Customer with heavy daily usage are most likely to leave.

Proposal

- Micro segment day time minutes rate.
 Review current day time rate structures to see if additional rate levels make sense.
- 'Frequent-flyers' approach. Create VIP class for heavy usage users and reward them with benefits.

Customers without a voice mail plan are most likely to leave.

Proposal

- Undertake comparative analysis to see what our competitors are doing.
- Match or beat their offerings.

Customers with more calls to the customer service lines are most likely to leave.

Proposal

- Review nature of the calls.
- Conduct customer satisfaction surveys.
- Evaluate performance of customer service agents.

Customers with heavy evening usage are most likely to leave.

Proposal

 We recommend taking the same proposal for total day minutes, that is micro segment evening call rates and VIP status.

Future Work

- Include other algorithms like Bayesian Classification and Support Vector Machines in our model.
- Employ different data sampling techniques.
- Introduce additional algorithm tuning parameters.

Appendix

Model Selection Process

- Model Baseline
- Model Tuning vs Baseline
- Model Tuning Results

Change things

At Flatiron School you learn how the future is being built, so you can change anything, starting with a new career in code, data science, or cybersecurity.

ThankYou

GitHub

The OSE MN Framework

Model Process – Baseline

- To judge how well a model performs, one approach is to look at the various scores it produces, such as the precision score, the recall score, the F1_score and the accuracy score.
- As our objective is to maximize model prediction for true positives and minimize false negatives, this information is captured in the recall score.
- The XGBoost algorithm delivers the highest recall scores in predicting both the 'Churn' and 'Not Churn' labels.

The OSE MN Framework

Model Process – Tuning vs Baseline

- Due to the fact that the data contains less number of customers leaving, this can cause an issue in our model. We address this by resampling our data.
- The models themselves come with various parameters for fine tuning. We ran our models through different combinations of parameters to find the best one.

The OSEMN Framework

Model Process – Tuning Results

• XGBoost method outperformed the other three methods in most scoring. It will be our model of choice.

