Risk valuation using ProActive workflows

Basics

Value At Risk (VaR)

One-day 95% VaR of \$1 million ⇔ 5% probability that the portfolio worst-case loss will exceed \$1 million over a one-day period

Monte Carlo (MC) simulations

$$\widetilde{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{n \to +\infty} \mathbb{E} X$$
 The Law of Large Numbers states for large n , the empirical average is very close to the expected value

Estimating the VaR using MC simulations

$$\mathbb{P}(L_t > x) = \frac{1}{nb_VaR} \sum_{i=1}^{nb_VaR} \mathbb{1}_{L_t^i > x} = 1 - \alpha \qquad \frac{L_t \text{ the } \alpha}{\alpha \text{ the } \alpha}$$

x the portfolio VaR L_t the portfolio loss at t α the VaR probability nb_VaR the number of MC simulations

Monte_Carlo_VaR_portfolio.xml

Estimates the Monte Carlo Value at Risk (MC VaR) of a portfolio. We use the geometric Brownian motion (GBM) method to simulate stock price paths, but more advanced assets can be integrated thanks to the Quantlib C++ lib.

Monte_Carlo_VaR_portfolio.xml

Estimate the number of MC simulations per replicated task. The tasks number does not necessary divide the total number of simulations

Using Quanlib, each replicated task proceses a subset of the MC simulations and deduces the PnL (profit and loss) of each simulated path (value at horizon of a simulation - value at start). On the task side, PnLs are saved into a dedicated file

This task gathers all the PnLs into a single array, sorts them, and retrieves the VaR at the VaR_index corresponding to (1 - confidenceRate) * nbMC. Finally, it generates the corresponding frequencies bar chart and exposes it (view/download)

Monte_Carlo_VaR_portfolio.xml

incremental_Monte_Carlo_VaR_each_portfolio_asset.xml

Estimates the incremental VaR (iVaR) for each asset of the portfolio. iVaR quantifies the risk a position (or sub-portfolio) is adding to a portfolio. For instance, the iVaR related to an asset Y, is the difference between the portfolio VaR with and without Y.

nbMC	10000	number of portfolio simulations. The number of tasks does not necessary divide the total number of simulations
nbTimeSteps	255	number of time steps of the portfolio simulations paths, up to the horizon
horizon	1	horizon. Here time steps are set to 1/255
confidenceRate	0.99	VaR confidence rate. Here 99%
nbBins	50	number of bins to plot the frequencies bar chart
assets_params_file_path_from_datasp	assets.txt	file to describe assets params, a line per asset: start price, drift rate (yearly return), volatility rate (yearly return), weight
assets_correlations_file_path_from_dat	assets_correlations.txt	correlations matrix of the assets
nbTasksPerVaR	4	number of replicated tasks per VaR to parallelize the MC simulations
width_chart	1000	width of the generated chart
height_chart	500	height of the generated chart

incremental_Monte_Carlo_VaR_each_portfolio_asset.xml

Estimate the number of MC simulations per replicated task for each VaR (right branch and left branch). The tasks number must divide the total number of simulations

1st level of replicated tasks: a replicated task per asset (Y)

Each replicated task instanciates an assets params files, by setting to 0 its corresponding asset. By this way, the estimated VaR will not consider the asset

2nd level of replicated tasks: a replicated task per subset of MC simulations. Each replicated task processes a subset of the MC simulations according to its instanciated assets params file (i.e. instanciated by its father replicated task)

1st level of replicated tasks: a replicated task to merge the MC simulations processed by its sons task. Each task estimates the VaR related to Y, stores it, and generates the corresponding frequencies bar chart

Compute and println the iVaR related to each asset (portfolio VaR estimated by the right branch - portfolio VaR without the asset Y estimated by the left branch), merge all the frequencies bar charts into a single png file and exposes it

Perform the MC VaR like Monte_Carlo_VaR_portfolio.xml

stress_testing_Monte_Carlo_value_portfolio.xml

Estimates the portfolio PnL (Profit and Loss) over stressed volatilities and risk free rates.

DOCKER_ENABLED	● TRUE ○ FALSE	run the plotting task into a docker container for matplotlib support
nb_MC_per_ptf_value	10000	number of portfolio simulations per PnL estimation
nb_time_steps	255	number of time steps of the portfolio simulations paths, up to the horizon
stress horizon	1	horizon until which portfolio is stressed (here time steps are set to 1/255)
accete parame file path from dataen		file to describe assets params, a line per asset: start price, drift rate (yearly return
assets_params_file_path_from_datasp	assets.txt	volatility rate (yearly return), weight
assets_correlations_file_path_from_dat	assets_correlations.txt	correlations matrix of the assets
stressed_risk_free_rate_min_max_in_p	-10%,+10%,10	range of the percentages of variation to apply to the risk free rate and number of steps to consider in this range
stressed_volatility_min_max_in_percent	-5%,+5%,10	range of the percentages of variation to apply to the portolio asset volatilities and number of steps to consider in this range
nb_replicated_tasks	4	number of replicated tasks which have in charge the stressed PnL simulations

stress_testing_Monte_Carlo_value_portfolio.xml

Estimate the number of MC simulations per replicated task. The tasks number must divide the total number of simulations

Using Quanlib, each replicated task processes a subset of the MC simulations and deduces the PnL (profit and loss) of each simulated path. An expected PnL is estimated per risk free rate and volatility stressed percentage. On the task side, PnLs are saved into a dedicated file

Merge all stressed PnLs into a single csv file

Plot a 3D representation of the stressed PnLs

stress_testing_Monte_Carlo_value_portfolio.xml

Estimates a Mark-to-Future (MtF) cube of a bond portfolio. Each cell of the cube integrates the valuation of a bond at a specific time given a specific scenario. This can be easily extended thanks to the high maintenability of the implementation (C++ Quantlib for the pricing engine, inputs split in Java/Groovy, R for the cube/cubelet stats,..).

REDUCTION BY SCENARIOS

evaluation_date_start	01/12/2018	start date of the evaluations
evaluation_date_end	20/12/2018	end date of the evaluations
evaluation_frequency	monthly	evaluation frequency (monthly, biweekly)
shocked_yield_start	0	shocked yield start
		shocked yield end
shocked_yield_end	0.1	shocked yield delta
shocked_yield_delta	0.005	file to describe bonds params, a line per bond: bond id, settlement days, face
bonds_params_file_path_from_dataspace	bonds.txt	amount, coupon rate, redemption, issue date, maturity date, payment frequency
node_source_compute_memory_intens	TRUE • FALSE	boolean to either reserve compute and memory intensive nodes sources for compute and memory intensive tasks or not
node_source_compute_intensive	local	compute intensive node source name
node_source_memory_intensive	local	memory intensive node source name
data_dir_path	/tmp	data dir path to store generated data before reductions (for large data)
nb_replicated_tasks	2	number of replicated tasks to split scenarios
nb_replicated_tasks_per_cubelet	2	number of replicated tasks to split bonds

Split the scenarios and bonds over the replicated tasks

1st level of replicated tasks: a replicated task per subset of scenarios

Each replicated task pull from the catalog and submit the cubelet simulation workflow

Compute the portfolio clean prices per scenario and evaluation date (cubelets)

Merge the portfolio clean prices into a single csv file (cube). Compute portfolio prices time series for each scenario and create a csv file. Compute correlations over scenarios and create a csv file + heat map png file

Allow user to visualize/download the png/csv zip files

Init parameters

2nd level of replicated tasks: a replicated task per subset of bonds

Using Quanlib, each replicated task estimates a subset of the portfolio clean prices (cubelet)

Merge cubelets (bonds -> portfolio) and create a csv file

