SUPPLEMENTARY FIGURES AND TABLES

- 2 Effect of water, sanitation, and hygiene interventions on detection of
- 3 enteropathogens and host-specific fecal markers in the environment: an individual-
- 4 participant data meta-analysis
- 5 Andrew Mertens PhD, Benjamin F. Arnold PhD, Jade Benjamin-Chung PhD, Prof Alexandria B. Boehm PhD, Joe
- 6 Brown PhD, Drew Capone PhD, Prof Thomas Clasen PhD, Erica Fuhrmeister PhD, Jessica A. Grembi PhD, David
- Holcomb PhD, Jackie Knee PhD, Laura H Kwong PhD, Audrie Lin PhD, Prof Stephen P. Luby MD, Rassul Nala MPH,
 - Prof Kara Nelson PhD, Sammy M. Njenga PhD, Clair Null PhD, Amy J. Pickering PhD, Mahbubur Rahman MBBS,
 - Heather E. Reese PhD, Lauren Steinbaum PhD, Prof Jill Stewart PhD, Ruwan Thilakaratne MPH, Oliver Cumming
 - PhD, Prof John M. Colford Jr. MD, Ayse Ercumen PhD

TABLE OF CONTENTS

8

9

10

1112

35

13	Supplementary FIGURES AND TABLES	1
14	Figure S1	2
15	Figure S2	2
16	Figure S3	2
17	Figure S4	2
18	Figure S5	2
19	Figure S6	2
20	Figure S7	2
21	Figure S8	2
22	Figure S9	2
23	Figure S10	2
24	Table S1. Systematic review search terms	13
25	Table S2. Pubmed search string	13
26	Table S3. PRISMA Checklist	15
27	Table S4. Risk of bias based on modified Newcastle-Ottawa scale	21
28	Table S5. Prevalence of pathogens by sample type tested in each study	24
29	Table S6. Prevalence of microbial source tracking markers by sample type tested in each study	26
30 31	Table S7. Unadjusted and adjusted results by study, sample type, and aggregated variables for pathogen targets	
32 33	Table S8. Unadjusted and adjusted results by study, sample type, and aggregated variables for MST targets	32
34	Table S9. Baseline covariates by study	36

Figure S2. Forest plots of intervention effects on the prevalence of specific MST markers.

Human (M. smithii)

1.2

0.8

0.4

0.4

1.e+06

Abundance

Holcomb et al. 2020

Figure S3. Distributions of abundance outcomes. The X-axes are displayed on the log-10 scale. Black vertical lines mark the means, and dashed lines mark the medians. Values below the limit of detection were imputed with with half the limit of detection and values below the limit of quantification were imputed with the midpoint between the limits of detections and quantification, leading to some bimodal distributions.

Figure S4. Forest plots of any enteropathogen prevalence differences or any MST prevalence differences between intervention and control arms, stratified by whether the sample was collected during the wet versus dry season (defined by the 6 months of highest average rainfall). Significant effect modification, as determined by the p-values on the regression model interaction term, is marked above points with asterisks (P < 0.05 = "*", P < 0.01 = "**", P < 0.001 = "***"). Grey crossed points denote data that were too sparse to estimate a prevalence ratio (i.e., <10 positive observations).

Figure S5. Forest plots of any enteropathogen prevalence differences or any MST prevalence differences between intervention and control arms, stratified by whether any animals were present in the compound. Significant effect modification, as determined by the p-values on the regression model interaction term, is marked above points with asterisks (P < 0.05 = "*", P < 0.01 = "***", P < 0.001 = "****"). Grey crossed points denote data that were too sparse to estimate a prevalence ratio (i.e., <10 positive observations).

Figure S6. Forest plots of any enteropathogen prevalence differences or any MST prevalence differences between intervention and control arms, stratified by whether the pathogen is zoonotically transmitted. Grey crossed points denote data that were too sparse to estimate a prevalence ratio (i.e., <10 positive observations). Significant effect modification, as determined by the p-values on the regression model interaction term, is marked above points with asterisks (P < 0.05 = "*", <math>P < 0.01 = "**", <math>P < 0.001 = "**"). Grey crossed points denote data that were too sparse to estimate a prevalence ratio (i.e., <10 positive observations).

Figure S7. Forest plots of unadjusted intervention effects on the prevalence of any enteropathogen or type of enteropathogen (any bacteria, any virus, any protozoa and any STH) in different types of environmental samples. Point estimates and confidence intervals are printed next to pooled estimates. Grey crossed points denote data that were too sparse to estimate a prevalence ratio (i.e., <10 positive observations).

Figure S8. Forest plots of unadjusted intervention effects on the prevalence of any MST marker or type of MST marker (human or animal MST markers) in different types of environmental samples. Point estimates and confidence intervals are printed next to pooled estimates. Grey crossed points denote data that were too sparse to estimate a prevalence ratio (i.e., <10 positive observations).

Figure S9. Forest plots of results from the primary analysis (orange) compared to a sensitivity analysis to the covariate prescreening method (blue) for the outcomes of any pathogen detection (top row) and any MST marker detection (bottom row) for different studies and sample types (columns). The sensitivity analysis used LASSO penalized regressions to select covariates across 200 bootstrap iterations with replacement, with 95% confidence intervals estimated with using the quantile method.

Table S1. Systematic review search terms

Search terms were combined with "OR" within columns and with "AND" across columns. We developed a search strategy from a two-step process. First, known key studies prior to the systematic review (WASH Benefits, Mapsan, Gram Vikas, Odisah [Table 1]) were examined for keywords and Medical Subject Heading (MeSH) terms relating to each of the following categories of terms comprising our search string: WASH interventions; microbial source tracking and environmental contamination; enteric infection; diarrhea; and child growth and development. Next, we performed an initial search using these terms and extracted other relevant terms and synonyms from relevant articles in the search results, resulting in the final list presented in this table.

Study design	WASH	Environmental markers	Child health
matched, trial, RCT, experiment, intervention, randomized, randomised, quasi- randomised, quasi- randomised, quasi- experimental, pseudo- randomized, pseudo- randomized, pseudo- randomized, controlled trials	Water, Sanitation, Hygiene, Handwashing, WSH, Sanitation, Water Supply, Sanitary Drainage, Toilet Facilities, Drinking Water, Hand Hygiene, Water Purification, Waste Water, disinfection	molecular source tracking, microbial source tracking, microbial source tracking, microbial transmission, diarrheal pathogen, diarrheal pathogens, diarrhoeal pathogens, fecal-oral, faecal-oral, entericpathogen, entericpathogens, ruminant, avian, Feces, Faeces, Fecal, Faecal, Fecally, Faecally	Entericinfection, Soil-transmitted helminth, Protozoan, Seroconversion, Fecal microbiology, Faecal microbiology, Fecal biomarker, Faecal biomarker, Intestinal Diseases, Parasitic, Seroconversion, Enteritis, Helminthiasis, Helminthiases, Intestinal infection, Viral infection, Bacterial infection, Parasite infection, Parasitic infection, Helminth infection, Fecal sampling, Faecal sampling, Stool sampling, Stool collection, Diarrhea, Dysentery, Child growth faltering, Growth faltering, Child development, Length-for-age, Height-for-age, Weight-for-age, Head circumference, Waist circumference, Stunting, Stunted, Wasting, Wasted, Linear growth, Anthropometric measurement, Malnutrition, Undernourished, Undernutrition, Underweight, Growth Disorders, Childnutrition disorder, Wasting syndrome, Thinness, Growth velocity

Table S2. Pubmed search string

[MH] are mesh headers and [TW] are text words. Search strings for other databases are available in the Open Science Framework analysis preregistration materials (https://osf.io/8sgzn/).

((matched [tw]) OR (trial [tw]) OR (RCT [tw]) OR (experiment [tw]) OR (intervention [tw]) OR (randomized [tw]) OR (quasi-randomized [tw]) OR (quasi-randomized [tw]) OR (pseudo-randomized [tw]) OR (pseudo-randomized controlled trials as topic" [mh]) AND ((Water [tw]) OR (Sanitation [tw]) OR (Hygiene [tw]) OR (Handwashing [tw]) OR (WSH [tw]) OR ("Sanitation" [mh]) OR ("Water Supply" [mh]) OR ("Drainage, Sanitary" [mh]) OR (Sanitary Drainage [tw]) OR ("Toilet Facilities" [mh]) OR ("Drinking Water" [mh]) OR ("Hand Hygiene" [mh]) OR ("Water Purification" [mh]) OR ("Waste Water" [mh]) OR (disinfect* [tw]) AND ((molecular source tracking [tw]) OR (microbial source tracking [tw]) OR (microbial source tracking [tw]) OR (microbial transmission [tw]) OR (diarrheal pathogen [tw]) OR (diarrheal pathogens [tw]) OR (diarrhoeal pathogen [tw]) OR (fecal-oral [tw]) OR (fecal-oral [tw]) OR (Fecal [tw]) OR (Fecal [tw]) OR (Faecal [tw]) OR (Faecal

Parasitic/epidemiology" [mh]) OR ("Seroconversion" [mh]) OR (Seroconversion [tw]) OR ("Enteritis/epidemiology" [mh]) OR ("Helminthiasis/complications" [mh]) OR (Helminthiasis [tw]) OR (Helminthiasis/epidemiology" [mh]) OR ("Helminthiasis/prevention and control" [mh]) OR (Intestinal infection* [tw]) OR (Viral infection* [tw]) OR (Bacterial infection* [tw]) OR (Parasite infection* [tw]) OR (Parasite infection* [tw]) OR (Parasite infection* [tw]) OR (Helminth infection* [tw]) OR (Fecal sampling [tw]) OR (Faecal sampling [tw]) OR (Stool sampling [tw]) OR (Stool collection [tw])) OR (Diarrh* [tw]) OR (Diarrh* [tw]) OR (Diarrhea/epidemiology" [mh]) OR ("Diarrhea/etiology" [mh]) OR ("Diarrhea/prevention and control" [mh]) OR ("Diarrhea, Infantile" [mh]) OR ("Diarrhea/epidemiology" [mh]) OR (Child development [tw]) OR (Length-for-age [tw]) OR (Height-for-age [tw]) OR (Weight-for-age [tw]) OR (Waist circumference [tw]) OR (Waist circumference [tw]) OR (Waist circumference [tw]) OR (Waist circumference [tw]) OR (Undernourish* [tw]) OR (Undernourish* [tw]) OR (Undernourish* [tw]) OR (Undernourish* [tw]) OR (Child nutrition disorders" [mh]) OR (Child nutrition [mh]) OR (Child nutrition [mh]) OR (Child nutrition [mh]) OR (Chi

Table S3. PRISMA Checklist

	Торіс	o. Item	Location where item is reported
	TITLE		
	Title	Identify the report as a systematic review.	Page 1
	ABSTRACT		
	Abstract	See the PRISMA for Abstracts checklist below	
N	INTRODUCTIO		
	Rationale	Describe the rationale for the review in the context of existing knowledge.	Introduction paragraph 2
	Objectives	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Introduction paragraph 3
	METHODS		
criteri	Eligibility a	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Line 161-164
source	Information es	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Line 159-160, Fig. S1
strate	Search gy	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Tables S1-S2
proces	Selection ss	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Line 169-173

Topic	0.	Item	Location where item is reported
Data collection process		Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Line 169-173
Data items	0a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Line 177-179
	0b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Line 177-179
Study risk of bias assessment	1	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Line 173-174
Effect measures	2	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Line 193-253
Synthesis methods	3a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item 5)).	Line 193-253
	3b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Line 193-253
	3c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Figure captions
	3d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Line 161-193

Торіс	0.	Item	Location where item is reported
	3e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Line 224-253
	3f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Line 203-253
Reporting bias assessment	4	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Not applicable
Certainty assessment	5	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Not applicable
RESULTS			
Study selection	6a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure S1
	6b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Line 262-265
Study characteristics	7	Cite each included study and present its characteristics.	Line 219-230, Table 1
Risk of bias in studies	8	Present assessments of risk of bias for each included study.	Table S4
Results of individual studies	9	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Figures 1,2 S2- S3, S5-S8, Tables 2, S6- S9
Results of syntheses	0a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Not applicable
	0b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Figures1 ,2 S2- S3, S5-S8, Tables 2, S6- S9

Тор	ic o.	Item	Location where item is reported
	00	Present results of all investigations of possible causes of heterogeneity among study results.	Line 370-382
	00	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Line 370-382
Rep biases	orting	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Not applicable
Cert evidence	tainty of 2	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Figures1 ,2 S2- S3, S5-S8, Tables 2, S6- S9
DIS	CUSSION		
Disc	cussion 3a	Provide a general interpretation of the results in the context of other evidence.	Line 385-419
	3b	Discuss any limitations of the evidence included in the review.	Line 444-465
	30	Discuss any limitations of the review processes used.	Line 444-465
	30	Discuss implications of the results for practice, policy, and future research.	Line 466-498
OTH INFORMAT			
Reg and protoc	istration ol 4a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	https://osf.io/8sg zn/
	4t	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	https://osf.io/8sg zn/
	40	Describe and explain any amendments to information provided at registration or in the protocol.	Not applicable

Торіс	0.	Item	Location where item is reported
Support	5	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Line 73
Competing interests	6	Declare any competing interests of review authors.	Line 512
Availability of data, code and other materials	7	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Lines 513-516

	Торіс	0.	Item	Re ported?
	TITLE			
	Title		Identify the report as a systematic review.	Yes
UND	BACKGRO			
s	Objective		Provide an explicit statement of the main objective(s) or question(s) the review addresses.	Yes
s	METHOD			
criter	Eligibility ia		Specify the inclusion and exclusion criteria for the review.	Yes
on so	Informati urces	date w	Specify the information sources (e.g. databases, registers) used to identify studies and the when each was last searched.	No

	Topic	0.	Item	Re ported?
bias	Risk of		Specify the methods used to assess risk of bias in the included studies.	Yes
of res	Synthesis ults		Specify the methods used to present and synthesize results.	Yes
	RESULTS			
studie	Included es		Give the total number of included studies and participants and summarise relevant characteristics of studies.	Yes
of res	Synthesis ults		Present results for main outcomes, preferably indicating the number of included studies and participants for each. If meta-analysis was done, report the summary estimate and confidence/credible interval. If comparing groups, indicate the direction of the effect (i.e. which group is favoured).	Yes
ION	DISCUSS			
ns of	Limitatio evidence		Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk of bias, inconsistency and imprecision).	Yes
ation	Interpret	0	Provide a general interpretation of the results and important implications.	Yes
	OTHER			
	Funding	1	Specify the primary source of funding for the review.	Yes
on	Registrati	2	Provide the register name and registration number.	Yes

Table S4. Risk of bias based on modified Newcastle-Ottawa scale

· ·		L. · L. ·	• •			· ·		
Refer ence	Select ion bias	Respo nse bias	Follo w-up bias	Misclassi fication bias	Outco me assessment	Outco me measurement	Bias in analysis	Total
	Is there evidence of selection bias, which refers to systematic differences between baseline characteristics of the groups that are compared?a	Is there evidence of response bias? ^b	Is there evidence of bias due to missing follow- up data? ^c	Is there risk of households not receiving the intervention being misclassified as having received it, or vice versa? ^d	Is there evidence of bias arising from how the outcome was assessed? ^e	Is there evidence of ascertainment bias? ^f	Is there evidence that analysis was not appropriately adjusted for clustering and/or confounding, if appropriate?	Total number of stars (x/9 possible stars).
Clase n T, et al. Effectiveness of a rural sanitation programme on diarrhoea, soil- transmitted helminth infection, and child malnutrition in Odisha, India: a cluster- randomised trial. Lancet Glob Health. 2014.	*	* no, laboratory assessed and blinded	possib le (86% of possible weeks are reported weeks)	* household-level interventions	**	*	** adjusted for clustering	8
Luby, S.P. et al Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Bangladesh: a cluster randomised controlled trial. The Lancet Global Health	*	* no, laboratory assessed and blinded	* 94% complete FU	* household-level interventions	**	*	**	9

Table S4. Risk of bias based on modified Newcastle-Ottawa scale

· ·	, , , , ,	1. • 1. •			• 1 • •1			
Refer ence	Select ion bias	Respo nse bias	Follo w-up bias	Misclassi fication bias	Outco me assessment	Outco me measurement	Bias in analysis	Total
2018								
Null, C. et al., Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Kenya: a cluster- randomised controlled trial. The Lancet Global Health 2018	*	* no, laboratory assessed and blinded	* <1% loss to FU	* household-level interventions	**	*	**	9
Reese , H. et al. Assessing longer-term effectiveness of a combined household-level piped water and sanitation intervention on child diarrhoea, acute respiratory infection, soil- transmitted helminth infection and nutritional status: a matched cohort study in rural Odisha, India. International journal of epidemiology 2019	selecti on bias is possible, as the study is not randomized and there are some baseline differences between intervention and control group	* no, laboratory assessed and blinded	substa ntial loss to FU	* household-level interventions	**	*	**	7

Table S4. Risk of bias based on modified Newcastle-Ottawa scale

Refer ence	Select ion bias	Respo nse bias	Follo w-up bias	Misclassi fication bias	Outco me assessment	Outco me measurement	Bias in analysis	Total
Knee, J. et al. Effects of an urban sanitation intervention on childhood enteric infection and diarrhea in Maputo, Mozambique: A controlled before-and-after trial. eLife 2011	selecti on bias is possible, as the study is not randomized, but intervention and control groups were mostly balanced at baseline. Control households were more likely to have covered floors and higher quality walls and intervention groups had more people per household.	* no, laboratory assessed and blinded	substa ntial loss to FU	* household-level interventions	**	*	**	7

^a RCTs receive 1 star, unless evidence of selection bias (e.g. randomisation procedures not followed). Meaningful differences between groups at baseline in RCTs receive 0 stars. Rates of declining to participate >10% receive 0 stars. Non- or quasi-randomised studies receive 0 stars.

 $^{^{\}mbox{\scriptsize b}}$ If intervention recipient was not blinded to intervention status, 0 stars.

 $^{^{\}rm c}\!<\!10\%$ receives 1 star, greater than or equal to 10% receives 0 stars.

d Interventions delivered at the household/individual level receive 1 star. Interventions delivered at the community level that missed a substantial, i.e. greater than or equal to 10%, proportion of the target population receive 0 stars, including when there is insufficient information to verify whether this is the case. Interventions with substantial risk of contamination (control households receiving intervention) receive 0 stars.

e Parent / person recall (=0 stars). Fieldworker assessed (=1 star). Physician/microbiologically assessed (=2 stars)

 $[\]ensuremath{^{\mathrm{f}}}$ If outcome measurement staff were not blinded to intervention status, 0 stars.

g Scoring is based on losing stars (max. 2). Individual RCTs with baseline balance on covariates are unlikely to require adjustment (=2 stars). Cluster-RCTs and non-randomised trials may require adjustment for clustering (-1 star if not done). RCTs or cRCTs may require adjustment for covariates, with justification (-1 star if not done). Non-randomised studies require adjustment for covariates (-1 star if not done), but also adequate justification for covariate selection (-1 star if not included), and there can be too few or too many covariates.

Table S5. Prevalence of pathogens by sample type tested in each study

 Study	Sample	Target	(n/N)	Percent positive		PR (95% CI)	
Odagiri 2016	Source water	V. cholerae		31.7% (19/60)	1.57)	0.73 (0.34,	
-	-	Adenovirus		8.3% (5/60)	2.19)	0.25 (0.03,	
-	-	Rotavirus		23.3% (14/60)	1.93)	0.75 (0.29,	
Boehm 2016	Stored water	Rotavirus		0.6% (3/493)		-	
-	Child hand rinse	Rotavirus		6.1% (30/493)		-	
-	House soil	Rotavirus		1.4% (7/496)	12.42)	2.52 (0.51,	
 Reese 2017	Source water	Shigella		10.7% (161/1499)	1.15)	0.73 (0.46,	
 -	-	V. cholerae		13% (36/276)	1.85)	0.93 (0.46,	
 -	Stored water	Shigella		10.1% (190/1874)	1.51)	1.08 (0.77,	
 -	-	V. cholerae		23.7% (100/422)		1.03 (0.66, 1.6)	
 Steinbaum 2019	House soil	Ascaris		13% (273/2107)	1.13)	0.88 (0.68,	
 -	-	Trichuris		6.9% (146/2107)		0.86 (0.6, 1.23)	
Fuhrmeister 2020	Stored water	Pathogenic E. coli		38.6% (286/741)		1 (0.84, 1.19)	
 -	Child hand rinse	Pathogenic E. coli		34% (127/373)		-	
 -	-	Giardia		4.8% (15/311)		-	
 -	-	Norovirus		4.2% (14/337)		-	
 - rinse	Mother's hand	Pathogenic E. coli		24% (177/737)		-	
 -	-	Giardia		2.3% (14/602)		-	
 -	-	Norovirus		3.1% (21/684)		-	
 -	House soil	Pathogenic E. coli		61.3% (453/739)	1.06)	0.94 (0.84,	
 Capone 2021	Latrine soil	C. difficile		14.8% (13/88)		0.9 (0.32, 2.48)	
 -	-	Campylobacter		6.8% (6/88)	11.05)	2.09 (0.4,	
 -	-	Pathogenic E. coli		56.8% (50/88)	1.42)	0.89 (0.56,	
-	-	Salmonella		6.8% (6/88)		0.52 (0.1, 2.76)	
-	-	Shigella		21.6% (19/88)		0.28 (0.1, 0.78)	
 -	-	V. cholerae		0% (0/88)		-	

Table S5. Prevalence of pathogens by sample type tested in each study

	Study	Sample	Target (n/N)		Percent positive		PR (95% CI)
	-	-	Yersinia		4.5% (4/88)		-
	-	-	Ascaris		60.2% (53/88)	1.02)	0.65 (0.41,
	-	-	Trichuris		17% (15/88)	2.33)	0.92 (0.36,
	-		Cryptosporidium		8% (7/88)	3.36)	0.78 (0.18,
	-	- histolyt	Entamoeba tica		1.1% (1/88)		-
	-	-	Giardia		31.8% (28/88)	1.07)	0.47 (0.21,
	-	-	Adenovirus		20.5% (18/88)	0.68)	0.21 (0.06,
	-	-	Astrovirus		29.5% (26/88)	2.43)	1.27 (0.67,
	-	-	Norovirus		2.3% (2/88)		-
	-	-	Rotavirus		4.5% (4/88)		-
	-	-	Sapovirus		0% (0/88)	-	
prep	Capone 2022 in	Flies	Campylobacter		1.2% (1/86)		-
	-	-	Pathogenic E. coli		30.2% (26/86)		-
	-	-	Shigella		2.3% (2/86)		-
	-	-	V. cholerae		2.3% (2/86)		-
	-	-	Ascaris		0% (0/86)		-
	-	-	Trichuris		3.5% (3/86)		-
	-	-	Giardia		4.7% (4/86)		-
	-	-	Adenovirus		4.7% (4/86)		-
	-	-	Astrovirus		0% (0/86)		-
	-	-	Norovirus		2.3% (2/86)		-
		-	Pan enterovirus		0% (0/86)		-
	-	-	Rotavirus		1.2% (1/86)		-
	-	-	Sapovirus		0% (0/86)		-
	Kwong 2021	House soil	Ascaris		62.1% (886/1426)	1.08)	0.97 (0.87,
	-	-	Trichuris		56% (798/1426)	1.15)	1.03 (0.91,

Table S6. Prevalence of microbial source tracking markers by sample type tested in each study

					-
Study	Sample	Target	Percent positive (n/N)		PR (95% CI)
Odagiri 2016	Source water	Animal (BacCow)	91.7% (55/60)	1.21)	1.04 (0.89,
-	-	Human (BacHum)	71.7% (43/60)	1.45)	1.05 (0.76,
Boehm 2016	Stored water	Avian (GFD)	9.3% (46/493)	1.36)	0.71 (0.37,
-	-	Ruminant (BacR)	21.9% (108/493)	0.9)	0.62 (0.43,
-	-	Human (HumM2)	0% (0/493)		-
-	Child hand rinse	Avian (GFD)	16.2% (80/493)		-
-	-	Ruminant (BacR)	54.2% (267/493)		-
-	-	Human (HumM2)	2.4% (12/493)		-
-	House soil	Avian (GFD)	33.3% (165/496)	1.27)	0.98 (0.76,
-	-	Ruminant (BacR)	66.7% (331/496)	1.12)	0.98 (0.85,
-	-	Human (HumM2)	8.9% (44/496)	1.75)	0.94 (0.5,
Fuhrmeister 2020	Stored water	Animal (BacCow)	68.5% (482/704)	1.08)	0.97 (0.87,
-	-	Human (HumM2)	2.6% (17/651)	1.23)	0.44 (0.16,
-	Child hand rinse	Animal (BacCow)	97.5% (356/365)		-
-	-	Human (HumM2)	21.9% (74/338)		-
- rinse	Mother's hand	Animal (BacCow)	96.7% (702/726)		-
-	-	Human (HumM2)	18.1% (118/651)		-
-	House soil	Animal (BacCow)	90.6% (572/631)	1.04)	0.99 (0.94,
-	-	Human (HumM2)	20.1% (127/631)	1.7)	1.24 (0.91,
Holcomb 2021	Source water	Avian (GFD)	0% (0/41)		-
-	-	Human (HF183)	2.4% (1/41)		-
-	-	Human (M. smithii)	0% (0/41)		-
-	Stored water	Avian (GFD)	1.1% (1/94)		-
-	-	Human (HF183)	14.9% (14/94)	5.18)	1.72 (0.57,
-	-	Human (M. smithii)	0% (0/94)		-
-	Latrine soil	Avian (GFD)	3.3% (2/60)		-

Table S6. Prevalence of microbial source tracking markers by sample type tested in each study

	Study	Sample	Target	Percent positive (n/N)		PR (95% CI)
	-	-	Human (HF183)	50% (30/60)	1.52)	0.88 (0.51,
	-	-	Human (M. smithii)	45% (27/60)	1.55)	0.74 (0.36,
	-	House soil	Avian (GFD)	3.6% (3/83)		-
	-	-	Human (HF183)	42.2% (35/83)	1.34)	0.81 (0.49,
	-	-	Human (M. smithii)	24.1% (20/83)	2.73)	1.3 (0.62,
prep	Capone 2022 in	Flies	Animal (BacCow)	12.8% (11/86)		-
	-	-	Dog (BacCan)	30.2% (26/86)		-
	-	-	Human (BacHum)	72.1% (62/86)		-

Unadjusted and adjusted results by study, sample type, and aggregated variables for pathogen targets (any pathogen, any bacteria, any viruses, any protozoa, any STH).

St .	arget	Т		Posi tive, Intervention	Nega tive, Intervention	P ositive, Control	N egative, Control	Tot al observation s	Unadjust ed Prevalence Ratio	adjusted p-value	Un	Adji d Prevalence R
Ca in	ny pathogen		ny	. 7	13	2 0	17	57	PR=0.65 (95% CI: 0.33, 1.28)	1	0.2	PR= (95% CI: 0.21, 1.19)
Са	ny pathogen		ny	37	6	4 3	2	88	PR=0.9 (95% CI: 0.78, 1.03)	3	0.1	PR= (95% CI: 0.78, 1.03)
Fu	ny pathogen		ny sample	314	136	3 48	12 3		PR=0.94 (95% CI: 0.87, 1.02)	7	0.1	PR= (95% CI: 0.87, 1.02)
Ste 19	ny pathogen		ny	206	979	1 73	70 7		PR=0.88 (95% CI: 0.7, 1.11)	9	0.2	PR= (95% CI: 0.7,
Re	ny pathogen		ny sample	185	792	2 38	82 5	2,0 40	PR=0.85 (95% CI: 0.66, 1.08)	8	0.1	PR= (95% CI: 0.68, 1.09)
Во	ny pathogen		ny	19	229	1 5	23 4	49 7	PR=1.27 (95% CI: 0.6, 2.68)	3	0.5	PR= (95% CI: 0.62, 2.66)
Od	ny pathogen		ny	. 12	18	1 5	15	60	PR=0.8 (95% CI: 0.45, 1.42)	5	0.4	
Re	ny pathogen		ource	68	588	1 22	74 7		PR=0.74 (95% CI: 0.49, 1.12)	5	0.1	PR= (95% CI: 0.5,
Od	ny pathogen		ource water	12	18	1 5	15	60	PR=0.8 (95% CI: 0.45, 1.42)	5	0.4	
Fu	ny pathogen		tored water	138	218	1 48	23 7		PR=1.01 (95% CI: 0.85, 1.2)		0.9	PR= (95% CI: 0.84, 1.19)
Re	ny pathogen		tored water	134	786	1 47	86 0	1,9 27	PR=1 (95% CI: 0.75, 1.32)	9	0.9	PR= (95% CI: 0.77, 1.34)
Во	ny pathogen		tored water	2	243	1	24 5	49 1	Not estimated			Not estimated
۲w	ny pathogen		ouse	363	125	6 87	22 1	1,3 96	PR=0.98 (95% CI: 0.91, 1.06)	7	0.6	PR= (95% CI: 0.91, 1.06)
Fu	ny pathogen		ouse soil	217	144	2 36	14 2	73 9	PR=0.96 (95% CI: 0.86, 1.08)	3	0.5	PR= (95% CI: 0.84, 1.06)
Ste 19	ny pathogen		ouse	209	1,000	1 73	72 5	2,1 07	PR=0.9 (95% CI: 0.72, 1.13)	5	0.3	PR= (95% CI: 0.71, 1.11)
Во	ny pathogen	Α	ouse	5	242	2	24 7	49 6	PR=2.52 (95% CI: 0.51, 12.42)	6	0.2	PR= (95% CI: 0.51, 12.42)

Unadjusted and adjusted results by study, sample type, and aggregated variables for pathogen targets (any pathogen, any bacteria, any viruses, any protozoa, any STH).

St	arget	T	ample	Posi tive, Intervention	Nega tive, Intervention	P ositive, Control	N egative, Control	absorvation	ed Prevalence Ratio	adjusted p-value	b	Adji d Prevalence R
Са	ny pathogen		atrine soil	37	6	4 3	2	88	PR=0.9 (95% CI: 0.78, 1.03)	3	0.1	PR= (95% CI: 0.78, 1.03)
Ca in	ny pathogen			8	23	2 5	30	86	PR=0.57 (95% CI: 0.28, 1.15)	2	0.1	PR= (95% CI: 0.16, 0.85)
=u	ny pathogen	A		75	113	7 2	11 6	37 6	PR=1.04 (95% CI: 0.8, 1.35)	6	0.7	PR= (95% CI: 0.81, 1.37)
-u	ny pathogen	A		96	266	1 10	26 7	73 9	PR=0.91 (95% CI: 0.72, 1.15)	3	0.4	PR= (95% CI: 0.72, 1.16)
Во	ny pathogen	A		16	231	1 4	23 2	49	PR=1.14 (95% CI: 0.52, 2.48)	5	0.7	PR= (95% CI: 0.52, 2.44)
Ca in	ny bacteria		ny sample	7	13	1 7	20	57	PR=0.76 (95% CI: 0.38, 1.54)	5	0.4	PR= (95% CI: 0.24, 1.46)
Са	ny bacteria	A r	ny sample	28	15	3 5	10	88	PR=0.84 (95% CI: 0.64, 1.1)		0.2	PR= (95% CI: 0.65, 1.11)
∓u	ny bacteria		ny sample	306	144	3 40	13 1	92 1	PR=0.94 (95% CI: 0.86, 1.03)	8	0.1	PR= (95% CI: 0.86, 1.02)
Re	ny bacteria		ny sample	185	792	2 38	82 5		PR=0.85 (95% CI: 0.66, 1.08)	8	0.1	PR= (95% CI: 0.68, 1.09)
Dd	ny bacteria		ny sample	8	22	1	19	60	PR=0.73 (95% CI: 0.34, 1.57)	2	0.4	
Re	ny bacteria		ource water	68	588	1 22	74 7	1,5 25	PR=0.74 (95% CI: 0.49, 1.12)	5	0.1	PR= (95% CI: 0.5,
Dd	ny bacteria		ource water	8	22	1 1	19	60	PR=0.73 (95% CI: 0.34, 1.57)	2	0.4	
Fu	ny bacteria		tored water	138	218	1 48	23 7	74 1		3	0.9	PR= (95% CI: 0.84, 1.19)
Re	ny bacteria		tored water	134	786	1 47	86 0	1,9 27	PR=1 (95% CI: 0.75, 1.32)	9	0.9	PR= (95% CI: 0.77, 1.34)
Fu	ny bacteria		ouse soil	217	144	2 36	14 2	73 9	PR=0.96 (95% CI: 0.86, 1.08)	3	0.5	PR= (95% CI: 0.84, 1.06)
Са	ny bacteria		atrine soil	28	15	3 5	10	88	PR=0.84 (95% CI: 0.64, 1.1)		0.2	PR= (95% CI: 0.65, 1.11)

Unadjusted and adjusted results by study, sample type, and aggregated variables for pathogen targets (any pathogen, any bacteria, any viruses, any protozoa, any STH).

St	arget	T ample	Posi tive, Intervention	Nega tive, Intervention	P ositive, Control	N egative, Control	Tot al observation s	Unadjust ed Prevalence Ratio	Un adjusted p-value	Adji d Prevalence R
Ca in	ny bacteria	А	8	23	2 1	34	86	PR=0.68 (95% CI: 0.32, 1.41)	0.3	PR= (95% CI: 0.28, 1.38)
- u	ny bacteria	А	64	122	6 3	12 4	37 3	PR=1.02 (95% CI: 0.78, 1.35)	0.8	PR= (95% CI: 0.78, 1.35)
∓u	ny bacteria	А	81	281	9 6	27 9	73 7	PR=0.87 (95% CI: 0.68, 1.13)	0.3	PR= (95% CI: 0.67, 1.09)
Ca in	ny virus	A ny sample	0	20	4	33	57	Not estimated		Not estimated
Са	ny virus	A ny sample	16	27	2 2	23	88	PR=0.76 (95% CI: 0.46, 1.25)	0.2	PR= (95% CI: 0.35, 1.14)
∓u	ny virus	A ny sample	17	330	1 4	33 8	69 9	PR=1.23 (95% CI: 0.63, 2.4)	0.5	PR= (95% CI: 0.63, 2.34)
Во	ny virus	A ny sample	19	229	1 5	23 4	49 7	PR=1.27 (95% CI: 0.6, 2.68)	0.5	PR= (95% CI: 0.62, 2.66)
Od	ny virus	A ny sample	7	23	1 0	20	60	PR=0.7 (95% CI: 0.3, 1.62)	0.4	
Od	ny virus	A ource water	7	23	1 0	20	60	PR=0.7 (95% CI: 0.3, 1.62)	0.4	
Во	ny virus	A tored water	2	243	1	24 5	49 1	Not estimated		Not estimated
Во	ny virus	A ouse soil	5	242	2	24 7	49 6	PR=2.52 (95% CI: 0.51, 12.42)	0.2	PR= (95% CI: 0.51, 12.42)
Са	ny virus	A atrine soil	16	27	2 2	23	88	PR=0.76 (95% CI: 0.46, 1.25)	0.2	PR= (95% CI: 0.35, 1.14)
Ca in	ny virus	Α	0	31	5	50	86	PR=0 (95% CI: 0, 0)	0	PR= (95% CI: 0, 0)
∓u	ny virus	Α	7	162	7	16 1	33 7	PR=0.99 (95% CI: 0.37, 2.69)	9 0.9	PR= (95% CI: 0.37, 2.69)
Fu	ny virus	А	11	331	1 0	33 2	68 4	PR=1.1 (95% CI: 0.47, 2.57)	0.8	PR= (95% CI: 0.45, 2.46)
Во	ny virus	А	16	231	1 4	23 2	49 3	PR=1.14 (95% CI: 0.52, 2.48)	0.7 5	PR= (95% CI: 0.52, 2.44)

Unadjusted and adjusted results by study, sample type, and aggregated variables for pathogen targets (any pathogen, any bacteria, any viruses, any protozoa, any STH).

St	arget	T ample	Posi tive, Intervention	Nega tive, Intervention	P ositive, Control	N egative, Control	Tot al observation s	Unadjust ed Prevalence Ratio	Un adjusted p-value	Adjı d Prevalence R
Ca in	ny protozoa	A ny sample	. 0	20	3	34	57	Not estimated		Not estimated
Са	ny	A ny sample	. 15	28	1 9	26	88	PR=0.83 (95% CI: 0.48, 1.42)	9 0.4	PR= (95% CI: 0.48, 1.42)
Fu	ny	A ny sample	12	293	1 6	29 1	61	PR=0.75 (95% CI: 0.35, 1.65)	0.4	PR= (95% CI: 0.35, 1.67)
Са	ny protozoa	A atrine soil	15	28	1 9	26	88	PR=0.83 (95% CI: 0.48, 1.42)	9	PR= (95% CI: 0.48, 1.42)
Ca in	ny protozoa	Α	0	31	4	51	86	Not estimated		Not estimated
Fu	ny protozoa	Α	7	147	8	14 9	31	PR=0.89 (95% CI: 0.33, 2.38)	0.8	PR= (95% CI: 0.33, 2.38)
Fu	ny protozoa	Α	5	296	9	29 2	60 2	PR=0.56 (95% CI: 0.14, 2.13)	9 0.3	PR= (95% CI: 0.14, 2.13)
Ca in	ny STH	A ny sample	0	20	3	34	57	Not estimated		Not estimated
Са	ny STH	A ny sample	20	23	3 4	11	88	PR=0.62 (95% CI: 0.43, 0.89)	0.0	PR= (95% CI: 0.45, 1.07)
Ste 19	ny STH	A ny sample	206	979	1 73	70 7	2,0 65	PR=0.88 (95% CI: 0.7, 1.11)	9	PR= (95% CI: 0.7,
Kw	ny STH	A ouse soil	363	125	6 87	22 1	1,3 96	PR=0.98 (95% CI: 0.91, 1.06)	0.6	PR= (95% CI: 0.91, 1.06)
Ste 19	ny STH	A ouse soil	209	1,000	1 73	72 5	2,1 07	PR=0.9 (95% CI: 0.72, 1.13)	0.3	PR= (95% CI: 0.71, 1.11)
Са	ny STH	A atrine soil	20	23	3 4	11	88	PR=0.62 (95% CI: 0.43, 0.89)	0.0	PR= (95% CI: 0.45, 1.07)
Ca in	ny STH	А	0	31	3	52	86	Not estimated		Not estimated

Table S8.Unadjusted and adjusted results by study, sample type, and aggregated variables for MST targets (any MST, any general MST, any human MST, any animal MST).

St	t	Targe	ample	Pos itive, Intervention	Neg ative, Intervention	P ositive, Control	N egative, Control	To tal observation s	Unadjus ted Prevalence Ratio	Un adjusted p-value	ed
Ca in	MST Marker	Any	ny sample	20	0	3 2	5	57	PR=1.16 (95% CI: 1.02, 1.32)	3	PF 6 (95% CI: 1 1.32)
Ho 1	MST Marker	Any	ny sample	41	28	4 4	1 7	13 0	PR=0.82 (95% CI: 0.62, 1.09)	0.1	PF 6 (95% CI: 0 1.13)
Fu	MST Marker	Any	ny sample	421	26	4 38	2 9	91 4	PR=1 (95% CI: 0.97, 1.04)	0.8	PF 1 (95% CI: 0 1.04)
Во	MST Marker	Any	ny sample	220	28	2 22	2 7	49 7	PR=0.99 (95% CI: 0.93, 1.06)	0.8	PF 9 (95% CI: 0 1.06)
0	MST Marker	Any	ny sample	30	0	2 8	2	60	Not estimated		
Ho 1	MST Marker	Any	ource water	1	21	0	1 9	41	Not estimated		No estimated
0	MST Marker	Any	ource water	30	0	2 8	2	60	Not estimated		
Ho 1	MST Marker	Any	tored water	9	39	6	4 0	94	PR=1.44 (95% CI: 0.51, 4.08)	0.5	PF 4 (95% CI: 0 4.08)
Fu	MST Marker	Any	tored water	230	119	2 56	1 19	72 4	PR=0.97 (95% CI: 0.87, 1.07)	0.5	PF 7 (95% CI: 0 1.08)
Во	MST Marker	Any	tored water	57	188	8 2	1 64	49 1	PR=0.7 (95% CI: 0.51, 0.96)	3	PF 9 (95% CI: 0 0.95)
Ho 1	MST Marker	Any	ouse soil	21	18	2 6	1 8	83	PR=0.91 (95% CI: 0.6, 1.38)	0.6	PF 9 (95% CI: 0 1.28)
- u	MST Marker	Any	ouse soil	283	38	2 97	3 6	65 4	PR=0.99 (95% CI: 0.93, 1.05)	0.7	PF 9 (95% CI: 0 1.05)
Во	MST Marker	Any	ouse soil	180	67	1 87	6 2	49 6	PR=0.97 (95% CI: 0.87, 1.08)	0.5 9	PF 7 (95% CI: 0 1.08)
Ho 1	MST Marker	Any	atrine soil	21	9	2 2	8	60	PR=0.95 (95% CI: 0.69, 1.32)	0.7	PF 5 (95% CI: 0 1.32)
Ca in	MST Marker	Any		27	4	4 2	1 3	86	PR=1.14 (95% CI: 0.93, 1.39)	0.2	PF 4 (95% CI: 0 1.39)
Fu	MST Marker	Any		174	11	1 82	1	36 8	PR=0.95 (95% CI: 0.91, 0.98)	0.0	PF 5 (95% CI: 0 0.98)

Table S8.Unadjusted and adjusted results by study, sample type, and aggregated variables for MST targets (any MST, any general MST, any human MST, any animal MST).

St t		Targe	ample	Pos itive, Intervention	Neg ative, Intervention	P ositive, Control	N egative, Control	To tal observation s	Unadjus ted Prevalence Ratio	U adjusted p-value	n Ao ed Prevalence
	/IST //arker	Any		346	14	3 59	9	72 8	PR=0.99 (95% CI: 0.96, 1.01)	6	.2 PF 9 (95% CI: 0 1.01)
	/IST //arker	Any		145	102	1 48	9 8	49 3	PR=0.98 (95% CI: 0.82, 1.16)	0.	.7 7 (95% CI: 0 1.15)
	uman Ms larker		ny sample	17	3	3 0	7	57	PR=1.05 (95% CI: 0.82, 1.34)	0.	.7 PF 5 (95% CI: 0 1.34)
	uman M larker		ny sample	41	28	4 3	1 8	13 0	PR=0.84 (95% CI: 0.63, 1.12)	0.	.2 PF 9 (95% CI: 0 1.18)
	uman M larker	ST	ny sample	124	313	1 33	3 30	90	PR=0.99 (95% CI: 0.8, 1.22)	0.	.9 PF 1 (95% CI: 0 1.25)
	uman Ms larker		ny sample	26	222	2 6	2 23	49 7	PR=1 (95% CI: 0.57, 1.75)	9	.9 (95% CI: 0.5 1.76)
	uman M larker		ny sample	22	8	2	9	60	PR=1.05 (95% CI: 0.76, 1.45)	0.	7
	uman M larker		ource water	1	21	0	1 9	41	Not estimated		No estimated
	uman Ms larker		ource water	22	8	2	9	60	PR=1.05 (95% CI: 0.76, 1.45)	8	7
	uman M larker		tored water	9	39	5	4	94	PR=1.72 (95% CI: 0.57, 5.18)	0.	.3 2 (95% CI: 0 5.18)
		Any ST	tored water	5	310	1 2	3 24	65 1	PR=0.44 (95% CI: 0.16, 1.23)	2	.1 4 (95% CI: 0 1.23)
	uman M larker	ST	tored water	0	245	0	2 46	49 1	Not estimated		No estimated
	uman M larker	ST	ouse soil	20	19	2 6	1 8	83	PR=0.87 (95% CI: 0.57, 1.32)	0.	PF .5 6 (95% CI: 0 1.24)
	uman Ms larker	ST	ouse soil	68	243	5 9	2 61	63 1	PR=1.19 (95% CI: 0.87, 1.61)	0.	.2 PF 4 (95% CI: 0 1.7)
	uman Ms larker		ouse soil	21	226	2 3	2 26		PR=0.92 (95% CI: 0.5, 1.71)	9	.7 4 (95% CI: 0 1.75)
	uman Ms larker		atrine soil	21	9	2 2	8	60	PR=0.95 (95% CI: 0.69, 1.32)	0.	.7 PF 5 (95% CI: 0 1.32)

Table S8.Unadjusted and adjusted results by study, sample type, and aggregated variables for MST targets (any MST, any general MST, any human MST, any animal MST).

St	Targe t	ample	Pos itive, Intervention	Neg ative, Intervention	P ositive, Control	N egative, Control	To tal observation s	Unadjus ted Prevalence Ratio	adjusted p-value	In ed Prevalend
Ca in	Any human MST Marker		24	7	3 8	1 7	86	PR=1.12 (95% CI: 0.83, 1.51)	6	2 (95% CI 1.41)
-u	Any human MST Marker		30	142	4 4	1 22	33 8	PR=0.66 (95% CI: 0.44, 0.99)	4	.0 2 (95% CI 1.07)
Fu	Any human MST Marker		58	268	6 0	2 65	65 1	PR=0.96 (95% CI: 0.68, 1.37)	4	.8 6 (95% CI 1.35)
Во	Any human MST Marker		7	240	5	2 41	49 3	PR=1.39 (95% CI: 0.46, 4.2)	6	⁹ 9 (95% CI 4.2)
Ca in	Any animal MST Marker	ny sample	12	8	1 7	2 0	57	PR=1.31 (95% CI: 0.78, 2.17)	0	.3 (95% CI: (1.99)
Ho 1	Any animal MST Marker	ny sample	3	66	2	5 9	13 0	PR=1.33 (95% CI: 0.18, 9.59)	8	3 (95% CI 9.59)
Fu	Any animal MST Marker	ny sample	419	26	4 37	2 8	91 0	PR=1 (95% CI: 0.97, 1.04)	1	.9 (95% CI: (1.04)
Во	Any animal MST Marker	ny sample	219	29	2 21	2 8	49 7	PR=0.99 (95% CI: 0.93, 1.06)	8	^{.8} 9 (95% CI 1.06)
0	Any animal MST Marker	ny sample	28	2	2 7	3	60	PR=1.04 (95% CI: 0.89, 1.21)	5	.6
Ho 1	Any animal MST Marker	ource water	0	22	0	1 9	41	Not estimated		estimated
0	Any animal MST Marker	ource water	28	2	2 7	3	60	PR=1.04 (95% CI: 0.89, 1.21)	5	.6
Ho 1	Any animal MST Marker	tored water	0	48	1	4 5	94	Not estimated		estimated
-u	Any animal MST Marker	tored water	229	113	2 53	1 09	70 4	PR=0.96 (95% CI: 0.86, 1.07)	3	.4 7 (95% CI 1.08)
Во	Any animal MST Marker	tored water	57	188	8 2	1 64	49 1	PR=0.7 (95% CI: 0.51, 0.96)	3	.0 9 (95% CI 0.95)
Ho 1	Any animal MST Marker	ouse soil	2	37	1	4 3	83	Not estimated		estimated
∓u	Any animal MST Marker	ouse soil	281	30	2 91	2 9	63 1	PR=0.99 (95% CI: 0.94, 1.05)	2	.8 9 (95% CI 1.04)

Table S8.Unadjusted and adjusted results by study, sample type, and aggregated variables for MST targets (any MST, any general MST, any human MST, any animal MST).

St	Targe t	ample	Pos itive, Intervention	Neg ative, Intervention	P ositive, Control	N egative, Control	To tal observation s	Unadjus ted Prevalence Ratio	adjusted	Un	Ad ed Prevalence
Во	Any animal MST Marker	ouse soil	178	69	1 86	6 3	49 6	PR=0.96 (95% CI: 0.86, 1.08)	3	0.5	PF 6 (95% CI: 0 1.08)
Ho 1	Any animal MST Marker	atrine soil	2	28	0	3 0	60	Not estimated			No estimated
Ca in	Any animal MST Marker		12	19	1 8	3 7	86	PR=1.18 (95% CI: 0.7, 2)	3	0.5	PF 3 (95% CI: 0 2.86)
Fu	Any animal MST Marker		174	8	1 82	1	36 5	PR=0.96 (95% CI: 0.93, 1)	3	0.0	PF 6 (95% CI: 0 1)
Fu	Any animal MST Marker		344	15	3 58	9	72 6	PR=0.98 (95% CI: 0.96, 1.01)	7	0.1	PF 8 (95% CI: 0 1.01)
Во	Any animal MST Marker		144	103	1 47	9	49 3	PR=0.98 (95% CI: 0.82, 1.16)	8	0.7	PF 7 (95% CI: 0 1.15)

Table S9.

Baseline covariates by study. Note that Odigari et al. 2016 is not included as data shared from this study were from village water sources and did not have associated covariates from individual households; therefore all estimates

		m 2016	Boeh	eese 2017	F einb 2019	aum	meister	Fuhr 2020	H olcomb 2021	apone 2021	C ne 202	Capo 2 in prep.	ng 2021	Kwo
rooms	Number of													
in the hou	usehold													
wealth	Household													
	Low	(25.2%)	125	8 (11.6%	2) 1 (40	86 0.9%)		153	5 (27.6%) 4		2 (24.6%	14	(25.4%)	355
	Medium-low	(24.9%)	124	1 (21.1%	5) 9 (20		(24.3%)	145	4 6 (28.2%)		2 (31.6%	18	(24.6%)	343
	Medium-high	(25.2%)	125	9 (16.1%	3) 2 (19				3 5 (21.5%)		2 (21.1%	12)	(25.1%)	351
	High	(24.7%)	123	5 (26.9%	6) 3 (19	40 9.1%)		152	3 7 (22.7%)		2 (22.8%	13)	(24.9%)	347
	Missing	(0%)	0	9 (24.4%		2 %)	(0%)	0	0 (0%)		0	0 (0%)	(0%)	0
people in the hou	Number of usehold													
	<5	(54.5%)	271				(56.1%)				0	0 (0%)	(56.1%)	783
	5-8	(40.0%)	199	71 (70.7%)	1 49 (11 54.5%)	(37.5%)	224	4 4 (27.0%)	(8.0%)	7 (5.3%)	3	(37.8%)	528
	5-8	(40.0%)	199	71 (70.7%)	1 49 (5	11 54.5%)	(37.5%)	224	4 4 (27.0%)		7 (5.3%)	3	(37.8%)	528
	>8	(5.4%)	27	4 (22.3%	5) 5 (1′	24 1.6%)	(6.4%)	38	8 1 (49.7%)		8 (94.7%		(6.1%)	85
	Missing	(0%)	0	(0%)	0 1 (4.	10 8%)	(0%)	0	(0%)	(0%)	0	0 (0%)	(0%)	0
rooms in the hou	Number of usehold													
	1-2	(0%)	0	(0%)	0 (0%)	0	(0%)	0	9 8 (60.1%)		6 (71.9%	41	(0%)	0
	>3	(0%)	0	(0%)	0 (0%)	0	(0%)	0	6 5 (39.9%)	7 (30.7%)	2 (28.1%	16)	(0%)	0
	Missing	(100%)	497	42 (100%)	2 07 (′	21 100%)	(100%)	597	0 (0%)	(0%)	0	0 (0%)	(100%)	1396
	Improved roof													
	0	(1.6%)	8	(0%)	0 3 (32	69 2.9%)	(1.3%)	8	(0%)	(0%)	0	0 (0%)	(1.6%)	23

Baseline covariates by study. Note that Odigari et al. 2016 is not included as data shared from this study were from village water sources and did not have associated covariates from individual households; therefore all estimates

		m 2016	Boeh	eese 2017	einbaum 2019	St	meister 2	Fuhr 2020	olcomb 2021	н	apone 2021	С	ne 2022	Capo in prep.		Kwo
	1	(98.4%)	489	(0%)	14 (67.1%	14 o)	(98.7%)	589	(0%)	0	(0%)	0		0 (0%)	(98.4%)	1373
	Missing	(0%)	0	42 (100%)	(0%)	0	(0%)	0	63 (100%)	1	8 (100%)	8	(100%)	57	(0%)	0
agricultur	Father in e															
	0	(66.8%)	332	26 (52.1%)	(0%)	0	(70.2%)	419	(0%)	0	(0%)	0		0 (0%)	(68.2%)	952
	1	(33.2%)	165	9 (36.8%)	(0%)	0	(29.8%)	178	(0%)	0	(0%)	0		0 (0%)	(31.8%)	444
	Missing	(0%)	0	7 (11.2%)		21)	(0%)	0	63 (100%)	1	8 (100%)	8	(100%)	57	(0%)	0
	Land owned															
	0	(0%)	0	7 (40.1%)		0	(0%)	0	(0%)	0	(0%)	0		0 (0%)	(0%)	0
	1	(0%)	0	17 (48.3%)	(0%)	0	(0%)	0	(0%)	0	(0%)	0		0 (0%)	(0%)	0
	Missing	(100%)	497	8 (11.6%)		21	(100%)	597	63 (100%)	1	8 (100%)	8	(100%)	57	(100%)	1396
land own	Acres of ed													_		_
	Mean (SD)	(0.128)	0.110	N issing	ssing	Mi	(0.206)	0.150	issing	М	issing	М	g	Missin	(0.212)	0.142
Max]	Median [Min,	0 [0.0100	0.070 , 1.23]	N issing	ssing		0 [0.0100,	0.080 , 2.10]	issing	М	issing	М	g	Missin	0 [0.0100	0.080), 3.15]
	Missing	(2.6%)	13	42 (100%)	07 (100%)	21	(3.5%)	21	63 (100%)	1		8		57	(4.4%)	62
education	Maternal า															
	No education	(17.1%)	85	(0%)	(0%)	0	(14.4%)	86	(3.7%)	6	(0%)	0		0 (0%)	(14.8%)	207
Primary	Incomplete	(0%)	0	3 (34.3%)		10)	(0%)	0	8 (23.3%)	3	(0%)	0		0 (0%)	(0%)	0
	Primary	(36.2%)	180	3 0 (12.4%)		51	(30.7%)	183	4 (8.6%)		(0%)	0		0 (0%)	(32.2%)	449
	Secondary	(46.7%)	232	7 0 (28.9%)		49	(54.9%)	328	1 (25.2%)	4	(0%)	0		0 (0%)	(53.0%)	740
secondar	More than	(0%)	0	1 1 (4.5%)		0	(0%)	0	(0%)	0	(0%)	0		0 (0%)	(0%)	0

Table S9.Baseline covariates by study. Note that Odigari et al. 2016 is not included as data shared from this study were from the study were fr

village water sources and did not have associated covariates from individual households; therefore all estimates

		m 2016	Boeh		einbaur 2019		meister :	Fuhr 2020	H olcomb 2021	apone 2021	С		Capo in prep.	ng 2021	Kwo
	Missing	(0%)	0	8 (19.8%)	4 (0.1%)	2	(0%)	0	6 4 (39.3%)	8 (100%)	8		57	(0%)	0
age	Maternal														
	Mean (SD)	(5.18)	23.7	issing	.4 (6.32)	26	(5.08)	23.7	M issing	issing	M	g	Missin	(5.03)	24.0
Max]	Median [Min,	[15.0, 42	23.0 .0]	issing	^V .5 [14.9, 47.9]	25	[15.0, 41	23.0 .0]	M issing	issing	М	g	Missin	[15.0, 43	24.0 .0]
	Missing	(0%)	0	42 (100%)	(0.5%)	11	(0%)	0	1 63 (100%)	8 (100%)	8	(100%)	57	(0.1%)	2
	Improved wall														
	0	(15.7%)	78	(0%)) 19 (95.8	20 %)	(33.0%)	197	4 1 (25.2%)		1	(17.5%)	10	(26.4%)	369
	1	(84.3%)	419	(0%)	(4.2%)	88	(67.0%)	400	1 22 (74.8%)	2 (81.8%	7	(82.5%)	47	(73.6%)	1027
	Missing	(0%)	0	42 (100%)	2 (0%)	0	(0%)	0	(0%)	(0%)	0		0 (0%)	(0%)	0
	Improved floor														
	0	(92.8%)	461	(0%)	99 (94.9	19 %)	(87.8%)	524	(2.5%)	(1.1%)	1	(1.8%)	1	(89.8%)	1253
	1	(7.2%)	36	(0%)	8 (5.1%)		(12.2%)	73	1 59 (97.5%)	7 (98.9%	8	(98.2%)	56	(10.2%)	143
	Missing	(0%)	0	42 (100%)	2 (0%)	0	(0%)	0	(0%)	(0%)	0		0 (0%)	(0%)	0
	Electricity														
	0	(47.1%)	234	4 (14.0%)	3 58 (92.9	19 %)	(41.2%)	246	(1.8%)	(4.5%)	4	(3.5%)	2	(41.8%)	584
	1	(52.9%)	263	02 (83.5%)	7 (7.0%)	14	(58.8%)	351	1 60 (98.2%)	4 (95.5%	8	(96.5%)	55	(58.2%)	812
	Missing	(0%)	0	(2.5%)	6 (0.1%)	2	(0%)	0	(0%)	(0%)	0		0 (0%)	(0%)	0
ownersh	Animal iip														
	Mean (SD)	(0.206)	0.956	.423 (0.495)) 899 (0.3	0. 02)	(0.208)	0.955	.896 (0.307)	.966 (0.183)	0	(0.132)	0.982	(0.177)	0.968

Table S9.

Baseline covariates by study. Note that Odigari et al. 2016 is not included as data shared from this study were from village water sources and did not have associated covariates from individual households; therefore all estimates

		m 2016	Boeh	eese 2017	F einbaum 2019	St	meister	Fuhr 2020	olcomb 2021	Н	apone 2021	С	ne 2022	Capo in prep.	ng 2021	Kwo
Max]	Median [Min,	[0, 1.00]	1.00	[0, 1.00]	0 00 [0, 1.0	1.)0]	[0, 1.00]	1.00	.00 [0, 1.00]	1	.00 [0, 1.00]	1	[0, 1.00]	1.00	[0, 1.00]	1.00
	Missing	(0.2%)	1	9 (12.0%)	2	0	(0.2%)	1	(0%)	0	(0%)	0		0 (0%)	(0.1%)	1