Results and Discussion

Each test's feed stream PSD results were first compared to confirm that their distributions were simmilar to allow for comparitive statictics.

Feed stream unmoddeled solids frequency distribution.

The two most commmonly used distributions in Geology and Mineral Processing and specifically comminution circuits are the Roslin-Rammler and the Gates-Gaudin-Schumann distributions.

sieve

Both models were used to model all PSD screening data to, and the subsequent best fit model was selected in each case. Model selection was determined by comparing each PSD's transformed linear model's determinant (R^2) . Interpolation between measured sizing points is conducted by the back-transformation of the model-fitted points along the respective model's distribution function.

Table	1:	RR	Model	(formula)	١

		(/	
stream	r.square	dadj.r.squap	revolue	AIC
F13m	0.996	0.995	0	-26.0
F14m	0.996	0.995	0	-25.7
OS13m	0.935	0.928	0	11.2
OS14m	0.919	0.910	0	14.2
US13m	0.972	0.968	0	0.8
US14m	0.971	0.967	0	0.5

Table 2: GGS Model(formula)

stream	r.square	AIC		
F13m	0.838	0.820	0.0001	14.4
F14m	0.839	0.821	0.0001	13.4
OS13m	0.682	0.646	0.0017	17.0
OS14m	0.655	0.617	0.0025	16.9
US13m	0.778	0.750	0.0007	38.8
US14m	0.764	0.735	0.0009	40.0

stream	r.squaredadj.r.squa red alue		AIC	stream	r.squaredadj.r.squ ared alue			AIC	
F13m	0.996	0.995	0	-26.0	F13m	0.838	0.820	0.0001	14.4
F14m	0.996	0.995	0	-25.7	F14m	0.839	0.821	0.0001	13.4
OS13m	0.935	0.928	0	11.2	OS13m	0.682	0.646	0.0017	17.0
OS14m	0.919	0.910	0	14.2	OS14m	0.655	0.617	0.0025	16.9
US13m	0.972	0.968	0	0.8	US13m	0.778	0.750	0.0007	38.8
US14m	0.971	0.967	0	0.5	US14m	0.764	0.735	0.0009	40.0