<u>Datenbanken und Informationssysteme - 4. JG</u>

OracleXE Installation & Konfiguration Usermanagement

Foliensatz

DI(FH) Gerald Aistleitner, 2016/17

OracleXE

Kostenlos einsetzbare Datenbank-Version von Oracle. Verfügbar für Windows und Linux.

Einschränkungen:

- Benutzer nur 1 Core
- Limitiert bis 1 GB RAM
- Datengröße: bis 4GB, seit V11.2 11GB

Nicht unterstützt:

- Partitionierung von Objekten
- Interne JVM
- Materialized View Query rewrite
- Konfiguration vom Character Set (nur AL32UTF8)

<u>Verbindungsmöglichkeiten zur Datenbank</u>

- Direkt am Server via Interprozesskommunikation
- Anwendung läuft auf anderem PC und stellt Verbindung via Netzwerk zur Datenbank her (Client/Server).
 Mehrere Clients (Front-End) können sich mit einem Server verbinden.
- Lokaler PC greift auf Applikationsserver zu (zB mittels Webbrowser). Applikationsserver kommuniziert mit DB-Server.

Connection / Session

- Connection
 ist die physische Kommunikationsverbindung
 zwischen Client und Server (Netzwerk oder auch
 Interprozesskommunikation)
- Session
 Logische Einheit im Speicher der DB-Instanz, die den aktuellen Zustand des Benutzer-Logins repräsentiert. Dauert vom Login bis zum Ende der Verbindung.

Eine Connection kann für 0 bis mehrere Sessions verwendet werden. Die Sessions sind unabhängig von der verwendeten Connection voneinander getrennt.

Instanz und Datenbank

- Datenbank: enthält die physischen Datenfiles
- Mehrere Instanzen können sich eine Datenbank teilen

Abbildung: http://itsiti.com/interacting-with-an-oracle-database

<u>Speicherstrukturen</u>

In OracleXE wird der Speicher in folgende 3 Bereiche unterteilt:

- Logische Strukturen
 z.B. Tablespace → Kennt nur die DB, nicht das BS
- Physische Strukturen
 Dateien, die im Betriebssystem sichtbar sind und die eigentlichen Daten enthalten
- Recovery-Strukturen
 zB Redo-Logs und DB-Backups, um im Fehlerfall die
 Daten wieder herstellen zu können.
 Werden in einem automatisch verwalteten
 Speicherbereich abgelegt (Flash Recovery Area)

Database Storage Structure

* Archived Redo Logs present only after turning on log archiving (ARCHIVELOG mode)

<u>Speicherstrukturen - Begriffe</u>

Database (in XE nur 1 DB, max 11 GB möglich!)
 Zusammenfassung von logischen und physischen
 Strukturen, die alle Daten und Metadaten enthalten.

Tablespace

Eine DB besteht aus 1 oder mehreren Tablespaces. Logische Gruppierung von einem oder mehreren Datenfiles (Tempfiles).

3 Typen für Tablespaces: Permanent (zB USERS), Temporary (zB für SORT), Undo (zB für Rollback, Read Consistency)

SYSTEM (zB DataDictionary, Admin Tables), SYSAUX, TEMP, UNDO, USERS

<u>Speicherstrukturen - Begriffe</u>

- Datafiles und Tempfiles
 Dateien, die im Filesystem liegen. Werden in einem proprietären Format gespeichert.
- Control File
 Datei, die Namen und Pfade für die physischen DB-Komponenten enthält und auch diverse
 Steuerungsinformationen für bspw. Backup-Files...
- Server Parameter File (SPFILE)
 Enthält Initialisierungsparameter (Binärformat).
 Steuerung über ALTER SYSTEM-Kommandos
- Password File
 Enthält Kennwort vom SYS-Benutzer

Flash Recovery Area

Backups

Oracle-Backup und Recovery basiert auf physischen Files (und nicht auf einzelnen Datenbankobjekten wie Tabellen)

Online Redo Logs

Enthalten alle Änderungen der Datenbank. Werden verwendet, um Daten im Fehlerfall rekonstruieren zu können.

Archived Redo Logs

Gefüllte Redo Logs können autom. Archiviert werden, bevor diese wiederbenutzt werden. Online und Archived Redo Logs zusammen enthalten alle Änderungen seit dem letzten Backup.

Redo Logs

- Wichtig für Recovery-Funktionalität
- Jede Änderung von Daten in der Datenbank werden hier protokolliert.
- Files werden zirkulär geschrieben. Ist eine Datei voll, wird das nächste Redo-Log-File verwendet (inactive). Sind alle Redo-Logs voll, wird von vorne begonnen und die Daten überschrieben.
- Multiplexing ermöglicht identische Redo-Logs auf verschiedenen Platten, um die Sicherheit zu erhöhen.

Archived Redo Logs

- Wenn aktiviert, erstellt der Archiving Hintergrundprozess Kopien von Redo-Logs, sobald diese voll sind (ARCHIVELOG-Mode).
- Ermöglicht Recovery im Fehlerfall, auch wenn das letzte Backup länger zurückliegt (media recovery).
- ARCHIVELOG-Mode ermöglicht Online-Backups, ansonsten muss die Datenbank niedergefahren werden um Backups zu erzeugen.

<u>Database Startup</u>

Der Start einer Datenbank erfolgt in mehreren Schritten:

SHUTDOWN

Datenbank ist gestoppt

NOMOUNT

Instanz gestartet

MOUNT

Control-File wurde geladen und Datenbank gemounted

OPEN

Alle Files geöffnet lt. Controlfile; Verbindungen möglich

```
SQL> startup;
SQL> startup nomount;
SQL> alter database mount;
SQL> alter database open;
```

Database Shutdown

Shutdown Modes	Abort	Immediate	Transactional	Normal
Erlaubt neue Verbindungen	.)se	sc .	3c
Wartet bis alle Sessions beendet sind	æ	*	x	✓
Wartet bis alle Transaktionen beendet sind	.	æ	✓	\checkmark
Erstellt Checkpoint und schließt alle Files	JC	✓	✓	✓

 shutdown abort führt zu einem inkonsistenten Zustand der Datenbank → Recovery notwendig Nur verwenden, wenn die anderen Modi nicht mehr funktionieren!

```
SQL> shutdown;
SQL> shutdown transactional;
SQL> shutdown immediate;
SQL> shutdown abort;
```