Projection to latent space

MIPT

2024

Motivation

Which model is closer to f_1 ?

Principal compnent analysis

$$\boldsymbol{W} = \operatorname{arg\,max} Var(\boldsymbol{X} \boldsymbol{W})$$

Autoencoder

Autoencoder is a model of dimension reduction:

$$\mathbf{H} = oldsymbol{\sigma}(\mathbf{W}_e\mathbf{X}),$$
 $||oldsymbol{\sigma}(\mathbf{W}_d\mathbf{H}) - \mathbf{X}||_2^2
ightarrow \mathsf{min}$.

Manifold

Manifold is space that can be locally approximated by Euclidian space.

Figure 2. A manifold \mathcal{M} and the vector space $T_{\mathcal{X}}\mathcal{M}$ (in this case $\cong \mathbb{R}^2$) tangent at the point \mathcal{X} , and a convenient side-cut. The velocity element, $\dot{\mathcal{X}} = \partial \mathcal{X}/\partial t$, does not belong to the manifold \mathcal{M} but to the tangent space $T_{\mathcal{X}}\mathcal{M}$.

Manifold: do we need it?

Autoencoder: generative model?

(Alain, Bengio 2012): consider regularized autoencoder:

$$||\mathbf{f}(\mathbf{x},\sigma)-\mathbf{x}||^2$$

where σ is a noise level.

Then

$$\frac{\partial {\log p(x)}}{\partial x} = \frac{||\mathbf{f}(\mathbf{x},\sigma) - \mathbf{x}||^2}{\sigma^2} + o(1) \text{ with } \sigma \to 0.$$

Vector field induced by reconstruction error

Variational autoencoder

Let the objects **X** be generated by latent variable $\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$:

$$\mathbf{x} \sim p(\mathbf{x}|\mathbf{h},\mathbf{w}).$$

 $p(\mathbf{h}|\mathbf{x},\mathbf{w})$ is unknown.

Maximize ELBO:

$$\log p(\mathbf{x}|\mathbf{w}) \geq \mathsf{E}_{q_{\phi}(\mathbf{h}|\mathbf{x})} \! \log p(\mathbf{x}|\mathbf{h},\mathbf{w}) \! - \! D_{\mathsf{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x})||p(\mathbf{h})) o \mathsf{max} \,.$$

Distributions $q_{\phi}(\mathbf{h}|\mathbf{x})$ and $p(\mathbf{x}|\mathbf{h},\mathbf{w})$ are modeled by neural networks:

$$q_{\phi}(\mathbf{h}|\mathbf{x}) \sim \mathcal{N}(oldsymbol{\mu}_{\phi}(\mathbf{x}), oldsymbol{\sigma}_{\phi}^2(\mathbf{x})), \ p(\mathbf{x}|\mathbf{h}, \mathbf{w}) \sim \mathcal{N}(oldsymbol{\mu}_{\scriptscriptstyle W}(\mathbf{h}), oldsymbol{\sigma}_{\scriptscriptstyle W}^2(\mathbf{h})),$$

where μ, σ are neural network's outputs.

Multiple spaces

Given two spaces: \mathbf{X}, \mathbf{Y} . Ho we can build a shared latent space between them?

Multiple spaces

Given two spaces: \mathbf{X}, \mathbf{Y} .

Ho we can build a shared latent space between them?

Naive method: $||\mathbf{f}(\mathbf{x}) - \mathbf{g}(\mathbf{y})||_2^2 \to \min$ does not work.

Siamese networks

Metric learning

$$D(\boldsymbol{x}_1, \boldsymbol{x}_2) = \sqrt{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^\mathsf{T} \boldsymbol{M} (\boldsymbol{x}_1 - \boldsymbol{x}_2)}$$

Triplet loss

The loss function for each sample in the mini-batch is:

$$L(a,p,n) = \max\{d(a_i,p_i) - d(a_i,n_i) + \mathrm{margin}, 0\}$$

where

$$d(x_i,y_i) = \left\|\mathbf{x}_i - \mathbf{y}_i
ight\|_p$$

Triplet loss

Bayesian representation learning with oracle constraints

 $p(t_{i,j,l}) = \int\limits_{z} p(t_{i,j,l}|z_i,z_j,z_l) p(\boldsymbol{z}_i) p(\boldsymbol{z}_j) p(\boldsymbol{z}_k) dz_i dz_j dz_k,$

this gives the following likelihood:

$$p(t_{i,j,l}) = Ber(t_{i,j,l}) = \frac{e^{-D_{i,j}}}{e^{-D_{i,j}} + e^{-D_{i,l}}}$$

with

$$D_{a,b} = \sum_{b=1}^H D_{a,b}^h = -\sum_{b=1}^H \left[extsf{JS} \Big(p(oldsymbol{z}_a^h) || p(oldsymbol{z}_b^h) \Big)
ight].$$

Bayesian representation learning with oracle constraints

Variational learning across domains with triplet information

Figure 1: VBTA generative process

Variational learning across domains with triplet information

$$\mathcal{L}_{VBTA} = \mathbb{E}_{q_{\phi_{x}}(\mathbf{z}_{x}|\mathbf{x})} \log \frac{p_{\theta_{x}}(\mathbf{x}, \mathbf{y}, \mathbf{t}, \mathbf{z}_{x})}{q_{\phi_{x}}(\mathbf{z}_{x}|\mathbf{x})} + \mathbb{E}_{q_{\phi_{y}}(\mathbf{z}_{y}|\mathbf{y})} \log \frac{p_{\theta_{y}}(\mathbf{x}, \mathbf{y}, \mathbf{t}, \mathbf{z}_{y})}{q_{\phi_{y}}(\mathbf{z}_{y}|\mathbf{y})} = \\ = \underbrace{-\left[KL\left(q_{\phi_{\mathbf{x}}(\mathbf{z}_{x}|\mathbf{x})}(\mathbf{z}_{x}|\mathbf{x}) \parallel p_{\theta_{\mathbf{x}}}(\mathbf{z}_{x})\right) + KL\left(q_{\phi_{\mathbf{y}}(\mathbf{z}_{y}|\mathbf{y})}(\mathbf{z}_{y}|\mathbf{y}) \parallel p_{\theta_{\mathbf{y}}}(\mathbf{z}_{y})\right)\right] + \\ \underbrace{-\left[\mathbb{E}_{q_{\phi_{\mathbf{x}}}(\mathbf{z}_{x}|\mathbf{x})}\left[\log p_{\theta_{\mathbf{x}}}(\mathbf{x}|\mathbf{z}_{x})\right] + \mathbb{E}_{q_{\phi_{\mathbf{y}}}(\mathbf{z}_{y}|\mathbf{y})}\left[\log p_{\theta_{\mathbf{y}}}(\mathbf{y}|\mathbf{z}_{y})\right]\right] + \\ \underbrace{-\left[\mathbb{E}_{q_{\phi_{\mathbf{x}}}(\mathbf{z}_{x}|\mathbf{x})}\left[\log p_{\theta_{\mathbf{x}}}(\mathbf{y}|\mathbf{z}_{x})\right] + \mathbb{E}_{q_{\phi_{\mathbf{y}}}(\mathbf{z}_{y}|\mathbf{y})}\left[\log p_{\theta_{\mathbf{y}}}(\mathbf{x}|\mathbf{z}_{y})\right]\right] + \\ \underbrace{-\left[\mathbb{E}_{q_{\phi_{\mathbf{x}}}(\mathbf{z}_{x}|\mathbf{x})}\left[\log p_{\theta_{\mathbf{x}}}(\mathbf{y}|\mathbf{z}_{x})\right] + \mathbb{E}_{q_{\phi_{\mathbf{y}}}(\mathbf{z}_{y}|\mathbf{y})}\left[\log p_{\theta_{\mathbf{y}}}(\mathbf{x}|\mathbf{z}_{y})\right]\right] + \\ \underbrace{-\left[\mathbb{E}_{q_{\phi_{\mathbf{x}}}(\mathbf{z}_{x}|\mathbf{x})}\left[\log p_{\theta_{\mathbf{x}}}(\mathbf{y}|\mathbf{z}_{x})\right] + \mathbb{E}_{q_{\phi_{\mathbf{y}}}(\mathbf{z}_{y}|\mathbf{x})}\left[\log p_{\theta_{\mathbf{x}}}(\mathbf{z}_{y}|\mathbf{z}_{y})\right]\right] + \\ \underbrace{-\left[\mathbb{E}_{q_{\phi_{\mathbf{x}}}(\mathbf{z}_{x}|\mathbf{x})}\left[\log p_{\theta_{\mathbf{x}}}(\mathbf{y}|\mathbf{z}_{x})\right] + \mathbb{E}_{q_{\phi_{\mathbf{y}}}(\mathbf{z}_{y}|\mathbf{x})}\left[\log p_{\theta_{\mathbf{y}}}(\mathbf{z}_{y}|\mathbf{z}_{y})\right]\right]}_{\mathbf{Triplet likelihood}}$$

How we can embed models into (probabilistic) vector space?

What do we want from these embeddings?

Differentiable Neural Architecture Search in Equivalent Space with Exploration Enhancement

- Structure representation: graph supervised encoder
- $\bullet \ \, \mathsf{Structure} \ \, \mathsf{optimization} \colon \mathsf{DARTS} \, + \, \mathsf{exploration} \\$

Table 1: Comparison results with state-of-the-art NAS approaches on NAS-Bench-201.

	CIEAR 10		CIEA	D 100	I		
Method	CIFAR-10		CIFA	R-100	ImageNet-16-120		
	Valid(%)	Test(%)	Valid(%)	Test(%)	Valid(%)	Test(%)	
ENAS	37.51 ± 3.19	53.89 ± 0.58	13.37 ± 2.35	13.96 ± 2.33	15.06 ± 1.95	14.84 ± 2.10	
RandomNAS*	85.63 ± 0.44	88.58 ± 0.21	60.99 ± 2.79	61.45 ± 2.24	31.63 ± 2.15	31.37 ± 2.51	
DARTS (1st)	39.77 ± 0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	16.43 ± 0.00	16.32 ± 0.00	
DARTS (2nd)	39.77 ± 0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	16.43 ± 0.00	16.32 ± 0.00	
SETN	84.04 ± 0.28	87.64 ± 0.00	58.86 ± 0.06	59.05 ± 0.24	33.06 ± 0.02	32.52 ± 0.21	
NAO*	82.04 ± 0.21	85.74 ± 0.31	56.36 ± 3.14	59.64 ± 2.24	30.14 ± 2.02	31.35 ± 2.21	
GDAS*	90.03 ± 0.13	93.37 ± 0.42	70.79 ± 0.83	70.35 ± 0.80	40.90 ± 0.33	41.11 ± 0.13	
E ² NAS	$90.94{\pm}0.83$	93.89 ± 0.47	71.83 ± 1.84	$72.05{\pm}1.58$	45.44 ± 1.24	45.77±1.00	

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?

- Structure representation: graph VAE
- Optimization: unsupervised for encoding models, then RL+BO

Figure 4: Latent space 2D visualization [65] comparison between *arch2vec* (left) and supervised architecture representation learning (right) on NAS-Bench-101. Color encodes test accuracy. We randomly sample 10,000 points and average the accuracy in each small area.

Task-Adaptive Neural Network Search with Meta-Contrastive Learning

Task-Adaptive Neural Network Search with Meta-Contrastive Learning

Target Dataset	Method	# Epochs	FLOPs (M)	Params (M)	Search Time (GPU sec)	Training Time (GPU sec)	Speed Up	Accuracy (%)
Averaged Performance	MobileNetV3 [26] PC-DARTS [65]	50_	_132.94 _ 566.55	- 4.00 3.54	1100,37±22.20	257.78±09.77 5721.13±793.71	- 1.00× 0.04×	94.20±0.70 79.22±1.69
	DrNAS [10]	500	623.43	4.12	1501.75 ± 43.92	5659.77 ± 403.62	0.04× 0.04×	84.06±0.97
	FBNet-A [60] OFA [8] MetaD2A [31]	50 50 50	246.69 148.76 512.67	4.3 6.74 6.56	$121.90{\scriptstyle \pm 0.00}\atop{\scriptstyle 2.59{\scriptstyle \pm 0.13}}$	$\substack{293.42 \pm 57.45 \\ 226.58 \pm 03.13 \\ 345.39 \pm 28.36}$	0.88× 0.74× 0.74×	$93.00\pm1.95\ 93.89\pm0.84\ 95.24\pm1.14$
	TANS (Ours) TANS (Ours)	10 50	181.74 181.74	5.51 5.51	0.002 ± 0.00 0.002 ± 0.00	40.19 ± 03.06 200.93 ±11.01	1.28×	95.17 ± 2.20 96.28 ± 0.30
Colorectal Histology Dataset (Easy)	MobileNetV3 [26]	50	132.94	4.00		577.18±04.15	1.00×	96.23 ± 0.07
	PC-DARTS [65] DrNAS [10]	500 500	534.64 614.23	4.02 4.12	$\substack{2062.42 \pm 49.14 \\ 4183.20 \pm 188.60}$	$12124.18 \pm 1051.16 \\ 11355.18 \pm 1352.62$	0.04× 0.04×	$\begin{array}{c} 96.17 \pm 0.68 \\ 97.51 \pm 0.13 \end{array}$
	FBNet-A [60] OFA [8] MetaD2A [31]	50 50 50	215.45 134.85 506.88	4.3 6.74 5.93	$121.90 \scriptstyle{\pm 0.00} \atop 2.58 \scriptstyle{\pm 0.12}$	$696.00\pm295.19\ 537.61\pm03.52\ 784.45\pm79.32$	$0.83 \times 0.88 \times 0.73 \times$	95.43 ± 0.57 96.40 ± 0.52 96.57 ± 0.56
	TANS (Ours) TANS (Ours)	10 50	171.74 171.74	4.95 4.95	$\substack{0.001 \pm 0.00 \\ \textbf{0.001} \pm \textbf{0.00}}$	98.56±04.24 492.81 ±21.19	1.17×	96.87 ± 0.21 97.67 ± 0.05
Food Classification Dataset (Hard)	MobileNetV3 [26]	50_	132.94	4.00		235.57±07.57	1.00×	87.52±0.78
	PC-DARTS [65] DrNAS [10]	500 500	567.85 632.67	3.62 4.12	$^{1018.49\pm_{6.31}}_{1276.38\pm_{0.00}}$	$\substack{6323.40 \pm 938.83 \\ 5079.89 \pm 161.05}$	0.03× 0.04×	55.42±2.46 61.45±0.68
	FBNet-A [60] OFA [8] MetaD2A [31]	50 50 50	251.29 152.34 521.11	4.3 6.74 8.23	$121.90{\scriptstyle \pm 0.00}\atop{\scriptstyle 2.60}{\scriptstyle \pm 0.23}$	251.24 ± 3.31 190.86 ± 03.48 324.62 ± 34.97	0.94× 0.75× 0.72×	$84.33\pm1.41\ 87.43\pm0.59\ 89.72\pm1.53$
	TANS (Ours) TANS (Ours)	10 50	179.83 179.83	5.07 5.07	0.002±0.00 0.002 ±0.00	$\substack{40.59 \pm 04.84 \\ 202.93 \pm 24.21}$	1.16×	93.11±0.24 93.71±0.24

Task-Adaptive Neural Network Search with Meta-Contrastive Learning

Recap: PCA (1 component)

Given a dataset \mathbf{X} . We want to find a weight vector $\mathbf{p}, ||\mathbf{p}||^2 = 1$ that the linear combination

$$\sum_{\mathbf{x}} \sum_{j=1}^d p_j \mathbf{x}_j o \mathsf{max}$$

Can we repeat the same technique for the functions?

PCA for functional spaces

Given a set of functions $\mathbf{X}(s)$ in a Banach space. We want to find a weight vector \mathbf{p} , $||\mathbf{p}||^2 = 1$ that the linear combination

$$\sum_{\mathbf{x}} \sum_{j=1}^d \int (\mathbf{p}(s)\mathbf{x}(s)ds)^2 o \mathsf{max}$$

- How the X(s) and X are connected?
- What are «good» functions for use this method?

Operator learning

Example 1 We want to approximate a differential operator \mathcal{P}_x .

$$(\mathcal{P}_{x}y)(s)=0\forall s\in D,$$

where x and y are functions from Banach space, and $D \subset \mathbb{R}^d$.

Operator learning

Example 2

(a) Directly design algorithm at fixed (b) Design algorithm at limit of infinite resolution N

PCA-net

- Learn PCA for input (the input functions are discretized, so we can use a simple Euclidean basis for learning PCA)
- 2 Learn PCA for output
- 3 Learn NN to transform input to output

References

- Brehmer, Johann, and Kyle Cranmer. "Flows for simultaneous manifold learning and density estimation." Advances in Neural Information Processing Systems 33 (2020): 442-453.
- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. No. 9.
- Bishop C. Bayesian pca //Advances in neural information processing systems. 1998. T. 11.
- Sola J., Deray J., Atchuthan D. A micro Lie theory for state estimation in robotics //arXiv preprint arXiv:1812.01537. 2018.
- Alain G., Bengio Y. What regularized auto-encoders learn from the data-generating distribution //The Journal of Machine Learning Research. – 2014. – T. 15. – No. 1. – C. 3563-3593.
- Kingma D. P., Welling M. Auto-encoding variational bayes //arXiv preprint arXiv:1312.6114. 2013.
- Ranasinghe T., Or asan C., Mitkov R. Semantic textual similarity with siamese neural networks //Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019). 2019. C. 1004-1011.
- https://russianblogs.com/article/5172713037/
- Karaletsos T., Belongie S., Ratsch G. Bayesian representation learning with oracle constraints //arXiv preprint arXiv:1506.05011. 2015.
- Kuznetsova R., Bakhteev O., Ogaltsov A. Variational learning across domains with triplet information //arXiv preprint arXiv:1806.08672. –
 2018.
- Zhang M. et al. Differentiable neural architecture search in equivalent space with exploration enhancement //Advances in Neural Information Processing Systems. - 2020. - T. 33. - C. 13341-13351.
- Luo R. et al. Neural architecture optimization //Advances in neural information processing systems. 2018. T. 31.
- Yan S. et al. Does unsupervised architecture representation learning help neural architecture search? //Advances in Neural InformationProcessing Systems. 2020. T. 33. C. 12486-12498
- Jeong, Wonyong, et al. "Task-adaptive neural network search with meta-contrastive learning." Advances in Neural Information Processing Systems 34 (2021): 21310-21324.
- Ramsay, James O., and James B. Ramsey. "Functional data analysis of the dynamics of the monthly index of nondurable goods production." Journal of econometrics 107.1-2 (2002): 327-344.
- Kovachki, Nikola B., Samuel Lanthaler, and Andrew M. Stuart. "Operator Learning: Algorithms and Analysis." arXiv preprint arXiv:2402.15715 (2024).