

وزارة التكويين و التعليم المهنيين Ministere de la Formation et de l'Enseignement Professionnels

المركسز السوطنني للتعليسم المهني عن بعد Centre National de l'Enseignement Professionnel à Distance

Copie de devoirs et des examens

ورقة الفروض و الامتتطالالات

les champs d'informations sont abligatoires

Date	تاريخ	
Nom et Prénom		الاسم و اللقب
Spécialité: BTS Réseau	ex et Systèmes Informatiq	تخصصدها
N° d'inscription:		رقم التسجيل
Module Electricate		المادة:
Devoir n°02		فرض رقم:
Cycle: 01		دورة:
Wilaya: Dr Alger		الولاية:

1 Calculer la résistance RAB:	
En série: Req = R1 + R2	
	ea-Rr. Rz
En parallèle: 1 = 1 + 1 et R. Reg Ri Rz	RitRe
Req1 = $2R + R = 3R = 3 \times 5 = 15 \Omega$ Req2 = $\frac{15.5}{15+5} = 3,75 \Omega$	
RAB = R + Req + R = 2,5 + 3,7 2 - Calculer le courant I qui sort.	5 + 2, 5 => R4B = 8,75. du générateur E:
$I = U = 20 \Rightarrow I = 2,285A$	
$I = \frac{U}{R} = \frac{20}{8,75} \Rightarrow I = 2,285A$	

Exercice N°02:
1) Calculer la résistance équivalente R _{AB} (pour R = 5 D):
5.5 = 2,5 => Req = 2,5, 2(5) = 12,50.
5.10 -3,33 + 5 => Req2 = 50 5+10: 3 => Req2 = 50
. 1 = 1 + 1 + 1 = 1 + 1 = 0.55 => Req = 1,82 C
. RAB = Req + Req + R = 5+1,82 + 2, T => RAB = 9,32 \tag{9}. Calcular l'intensité des convants:
En appliquant la loi du pont diviseur de tension:
. On calcule U2, la tension au bornes de Rr et RAB:
U2 = R211RAB E { R211RAB = R2RAB = 8,770. R2+(R211RAB) R2+RAB
R1+(R21/RAB) L K2+ KAB
$U_2 = 8,77$ $100 = 22,62$ $30+8,77$
· On calcule Us, la tension au bornes de Ret Rz:
U1 = R11/R2 E SR1/R2 = R1-R2 = 250 R13+(R1/R2) R1+R2
U2 = 25 × 100 = 72,87 V.
$I_1 = \frac{U_1}{R_1} = \frac{72.87}{30} = I_1 = 2.43A$
. I2 = U2 _ 22,62 _ I2 = 0,15A. Ri 150
En appliquent la loi des nounds: Is=Iz => I3 = 2,43A.
3) Calculer la tensión VAB: VAB = U2 = 22,62V.

Exercice Nº03.
1). Nombre de nocuds: 4; Branches; 7; Mailles: 10
2) Les lois de Kirchoff.
· Lois des nouds: NoudA: Is = I2 + I3 + I4
Noeud B: I3 = I5 + I6
Noend C: I4+ I5+ I6 = Is
Næud D: I1=I2
a Lois des mailles.
(1) ER1AR3BR6R7R8CDRgE => E-U1-U3-U6-U7-U8-U9-0
(2) ER, AR, DR, E => E_U_1_U_2_U_g_=0
(3) ER4AR, BR, CDR, E => E - U1 - U3 - U9 = 0
(y) AR, BR6R, R8CDR2A => U2_U3_U5_U6_U8_O
$(5) AR_3 BR_5 CDR_2 A \Rightarrow U_2 - U_3 - U_5 - 0$
(6) BR6 Rq R8 CR5 B => U5-U6-U7-U8-0
(7) $AR_3BR_5CR_{14}A => U_4-U_3-U_5-0$
(8) AR4 CDR2A => U2 - U4 = 0
(9) ER, ARy CORGE => E-U1-U4-Ug=0
(10) AR, BR6R, R&CR4A => U4-U3-U2-U2-U2-0
Exercice Nº04:
Calculer la résistance équipelente RABI
$R_{eq_1} - R_1 \cdot 2R_2 - \frac{3.6}{3+6} = \frac{18}{9} = 2\Omega$
MI + UN2
A = 1 1 1 = 1 + 1 = 1 + 1 = 1,33 => Req = 0,750
RAB = Ra+ Req + Req + R1 = 2+2+0,75+1 => RAB = 5,750
Exercice Nº05:
· Calculer R _{AB} .

=> Req = 1/10 R-2R = 3.6 = 2 \Omega = 2 + R + Req + 2R + R R+2R 3+6 · Rya = 2 + 1 + 1,11 + 2 + 1,5 = 7,61 D Exercice Nº06. . Calculer I, en appliquant le théorème de Théiseanin Calculer $R_{th}: R_1=5+10=15=> R_{th}=15\cdot 20=8,579$ -Calculer I I=E=50=1,43A $R_1+R_2=15+20$ · Uth = Rs. I = 20 x1, 43 -> Uth = 28, 57 V. I_1 Uth 28,57 = I_4 = 1,54A.

Rth + Rx 8,57+10 Exercice NOO7. Evaluer le courant I en appliquant les lois de Kirchoff: (1) Ex 4×In 2×In=0 => Ex= 6 Ix => Ix= 18 = 3A (2) E, 12xI2 2xI2 2xI 12 xI F2=14I2+14I=> E2=14I2+14(I1+I2) 5I=I1+I, E2=141=+14(3)+14 Iz => 24-42=28 Iz=> I2=-0,64 $1 = I_A + I_2 = 3 + (-0.64) \Rightarrow I = 2,36A$ Exercice NOOS. · Calculer le courant Iz en appliquant le théorème de superposition: N1 - R2/1R3 E1 SR2/1R3 - R2. R3 - 0,02x6 - 0,02 12

R2+R3 0,02+6 Ra+(RellR3 0,06 × 6,3 => V1 = 2,52 V + V2 = R11/R2 & E2 \\ R_1/R_2 = R_1.R_3 = 0.03 x6 = 0.03 \\ R_2 + \left(R_1//R_2 \) \\ R_1 + R_2 \\ 0.03 + 6 \\ R2+(R1//R2 $V2 = \frac{0.03}{0.02 + 0.03} \times 4.2 \Rightarrow V_2 = 2.52$ $V = V_1 + V_2 = 5.04$ $*I_3 = \frac{V}{R_3} = \frac{5.04}{6} \Rightarrow I_3 = 0.84A$ Page n°4