Probabilidad I

Santiago de Diego Braulio Valdivielso Francisco Luque

Agradecimientos

¡Un saludo a mi gente de Tinder, se os quiere!

Resumen

Contents

Agradecimientos				3
\mathbf{R}	esum	en		5
1	Conjuntos y funciones σ -aditivas			9
	1.1	Introducción: Espacio medible		9
	1.2	Límites en sucesiones de conjuntos		10
		1.2.1 Límites en sucesiones monótonas		10
		1.2.2 Límites superiores e inferiores		10
		1.2.3 Límite de una sucesión de conjuntos		11
	1.3	Funciones sobre conjuntos		12
	1.4	Concepto de σ -aditividad		12
	1.5	Continuidad en funciones sobre conjuntos		13
	1.6	Medidas y probabilidades		15
		1.6.1 Teorema de Carathéodory		17
	1.7	Funciones medibles		17
	1.8	Integrales sobre funciones de conjunto en espacios o	de medida .	19
		1.8.1 Teorema de la convergencia monótona		20
		1.8.2 Lema de Fatou		21
		1.8.3 Lema de Fatou-Lebesgue		21
	1.9	Espacios de probabilidad y variables aleatorias		21
		1.9.1 Algunas desigualdades interesantes		22
	1.10	Convergencia en probabilidad de espacios métricos		23
		1.10.1 Propiedades		24
	1.11	Convergencia casi segura de espacios métricos		25
	1.12	Funciones características y funciones de distribució	n	25
		1.12.1 Función característica		25
	1.13	Leves de la probabilidad y tipos de leves		26

8 CONTENTS

Chapter 1

Conjuntos y funciones σ -aditivas

1.1 Introducción: Espacio medible

Concepto de σ -álgebra

Sea un conjunto Ω , y sea \mathcal{A} una σ -álgebra sobre Ω . Se dice que \mathcal{A} es una σ -álgebra si cumple las siguientes propiedades:

- 1. $\Omega \in \mathcal{A}$
- 2. Si $A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$

3. Si
$$A_1, A_2, A_3 \ldots \in \mathcal{A} \Rightarrow \bigcup_{n \in \mathbb{N}}^{\infty} A_n \in \mathcal{A}$$

Es decir, una σ -álgebra es una clase de conjuntos cerrada para las operaciones complementario y unión numerable. Existen una serie de propiedades inmediatas derivadas de las propiedades que definen a la σ -álgebra:

$$\emptyset \in \mathcal{A}$$

 \mathcal{A} es cerrada para la operación intersección numerable.

Espacio medible

Al par (Ω, A) se le llama espacio medible, y a los conjuntos que pertenecen a A se les denomina conjuntos medibles.

1.2 Límites en sucesiones de conjuntos

1.2.1 Límites en sucesiones monótonas

Si tomamos la relación de inclusión entre conjuntos (\subseteq) como una relación de orden, podemos hablar sin ningún tipo de problema de sucesiones monótonas. En este sentido, una sucesión creciente de conjuntos sería una sucesión $\{A_n\}_{n\in\mathbb{N}}$ en la que se cumple que $A_i\subseteq A_{i+1}, \forall i\in\mathbb{N}$. De forma análoga se podría ver qué es una sucesión decreciente de conjuntos.

Resulta que existe una forma intuitiva de definir el límite de una sucesión monótona de conjuntos. En particular, el límite de una sucesión creciente de conjuntos $\{A_n\}_{n\in\mathbb{N}}$ se puede definir como

$$\lim_{n \to \infty} A_n = \bigcup_{k \in \mathbb{N}}^{\infty} A_k$$

Esta definición aprovecha la relación de orden entre los conjuntos de la sucesión para afirmar que si un elemento está en el último conjunto de la sucesión, entonces está en todos los anteriores, y por tanto en **todos**, por ello se puede utilizar una intersección numerable (que está perfectamente definida) para formalizar el concepto.

Con una intuición análoga se define el límite de una sucesión decreciente de conjuntos. Si $\{A_n\}_{n\in\mathbb{N}}$ es una sucesión decreciente de conjuntos, entonces:

$$\lim_{n \to \infty} A_n = \bigcap_{k \in \mathbb{N}}^{\infty} A_k$$

1.2.2 Límites superiores e inferiores

No solo se puede hablar de límites en sucesiones monótonas. Para definir los límites en sucesiones arbitrarias de conjuntos tenemos que recurrir a los conceptos de límite inferior y límite superior. La intuición de estos límites superior e inferior pasan por el concepto de las colas de la sucesión.

Dada una sucesión de conjuntos $\{A_n\}_{n\in\mathbb{N}}$ podemos considerar el conjunto

$$B_n = \bigcap_{k=n}^{\infty} A_k$$

y este conjunto contiene aquellos elementos que están en **todos** los A_k para $k \geq n$. Es fácil probar que la sucesión $\{B_n\}_{n\in\mathbb{N}}$ es una sucesión creciente de conjuntos, y por tanto se puede obtener el límite $\lim_{n\to\infty} B_n$. Informalmente, ese límite es un conjunto que contiene a todos los elementos de A_n que están en todos los conjuntos A_k a partir de cierto $n \in \mathbb{N}$. Definimos el límite inferior de A_n como

$$\lim\inf A_n = \lim_{n \to \infty} B_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k=n}^{\infty} A_n$$

Análogamente, podríamos definir la sucesión de conjuntos $\{C_n\}_{n\in\mathbb{N}}$ como

$$C_n = \bigcup_{k=n}^{\infty} A_n$$

Cada C_n contiene todos los elementos que están presentes en algún A_k para $k \geq n$. Es fácil también ver que la sucesión $\{C_n\}_{n\in\mathbb{N}}$ es una sucesión decreciente de conjuntos, y por tanto su límite también está bien definido. Se puede definir entonces el límite superior de $\{A_n\}_{n\in\mathbb{N}}$ como

$$\limsup A_n = \lim_{n \to \infty} C_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k=n}^{\infty} A_n$$

Informalmente se puede pensar en este límite superior de A_n como el conjunto de los elementos que están en infinitos conjuntos de la sucesión.

A partir de estas definiciones, es fácil comprobar que

$$\lim\inf A_n\subseteq \lim\sup A_n$$

1.2.3 Límite de una sucesión de conjuntos

Diremos que una sucesión de conjuntos tiene límite si su límite inferior y superior coinciden, y el límite tendrá como valor efectivamente el de estos límites. Es decir:

$$\lim A_n = \lim \inf A_n = \lim \sup A_n$$

en caso de que límite superior e inferior coincidan.

1.3 Funciones sobre conjuntos

Una vez definidos los conceptos sobre conjuntos con los que vamos a trabajar, pasamos a definir las funciones sobre conjuntos. Vamos entonces a definir lo que es una función de conjunto. Sean los espacios medibles (Ω, \mathcal{A}) y (Ω', \mathcal{A}') , definimos la función:

$$X: \mathcal{A} \to \mathcal{A}'$$

 $A \longrightarrow X(A)$

A raíz de esta definición podemos definir también lo que se conoce como función inversa. Dada una función X, la función inversa de X, X^{-1} , asigna a cada conjunto $A' \in \mathcal{A}'$ el conjunto $A \in \mathcal{A}$ tal que X(A) = A'. La propiedad básica que cumplen las funciones inversas es que preservan las operaciones e inclusiones de conjuntos.

1.4 Concepto de σ -aditividad

Sea un conjunto Ω y una σ -álgebra \mathcal{A} sobre Ω . Definimos la función de conjunto:

$$\varphi: \mathcal{A} \to \mathbb{R}$$

$$\varphi(A) \text{ es único}$$

Se dice que φ es aditiva si $\varphi(\sum_1^n A_k) = \sum_1^n \varphi(A_k)$

Se dice que φ es σ -aditiva si $\varphi(\sum_{1}^{\infty} A_k) = \sum_{1}^{\infty} \varphi(A_k)$

Función subaditiva

Sea φ definida como antes. Se dice que φ es **subaditiva** si $\varphi(A \cup B) \le \varphi(A) + \varphi(B)$

Lema 1.4.1
$$Si \exists B : \varphi(B) < \infty \Rightarrow \varphi(\emptyset) = 0$$

Teorema 1.4.1 Si
$$\varphi$$
 es σ -aditiva $y \sum \varphi(A_i) < \infty \Rightarrow \sum (|\varphi(A_i)|) < \infty$

Demostración 1.4.1 Tomemos las sucesiones:

$$Si \ \varphi(A_n) \ge 0 \Longrightarrow A_n^+ = A_n \ y \ A_n^- = \emptyset$$

$$Si \ \varphi(A_n) < 0 \Longrightarrow A_n^+ = \emptyset \ y \ A_n^- = A_n$$

$$Entonces \ \varphi(\sum A_n^+) = \sum \varphi(A_n^+) \ y \ \varphi(\sum A_n^-) = \sum \varphi(A_n^-), \ ambas \ finitas.$$

$$Sumando \ ambas \ cantidades \ obtenemos \ que \sum (|\varphi(A_i)|) < \infty$$

Teorema 1.4.2 Si φ es σ -aditiva, $\varphi \geq 0$, entonces: φ es no decreciente y subaditiva

Demostración 1.4.2 Veamos que es no decreciente $(A \subseteq B \Rightarrow \varphi(A) \leq \varphi(B))$. Podemos escribir $B = (B \cap A) + (B \cap \overline{A}) = A + (B \cap \overline{A})$. Entonces $\varphi(A) \leq \varphi(A) + \varphi(B \cap \overline{A}) = \varphi(B)$.

1.5 Continuidad en funciones sobre conjuntos

Una vez introducido el concepto de límite para una sucesión de conjuntos, vamos a tratar de definir la continuidad para funciones de conjunto. Tendremos tres tipos de continuidad, cada uno relacionado con un tipo de sucesiones de conjuntos de las que hemos definido anteriormente. En esta sección trabajaremos con una función $\varphi: \Omega \to \Omega'$

Diremos que φ es continua por abajo si cumple que, dada una sucesión creciente de elementos $A_n \uparrow A$, se tiene que

$$\lim \varphi(A_n) = \varphi(A)$$

Por otra parte, diremos que φ es continua por arriba si cumple que dada una sucesión decreciente de elementos $A_n \downarrow A$, se tiene que

$$\lim \varphi(A_n) = \varphi(A)$$

Por último, diremos que una función es continua si lo es por arriba y por abajo.

Teorema 1.5.1 Teorema de continuidad para funciones sobre conjuntos

Sea φ una función σ -aditiva. Entonces, φ es aditiva y continua. Inversamente, si φ es aditiva y, o bien continua por abajo, o finita y continua en \emptyset , entonces φ es σ -aditiva.

Demostración 1.5.1 Por un lado, sea φ una función σ -aditiva. Entonces es trivialmente aditiva. Ahora, veamos que es continua por abajo y por arriba. Sea $A_n \uparrow A$, entonces:

$$A = \lim A_n = \bigcup A_n = A_1 + (A_2 - A_1) + (A_3 - A_2) + \dots$$

Unión de conjuntos disjuntos. Por tanto:

$$\varphi(A) = \varphi(\lim A_n) = \lim_{n \to \infty} \{\varphi(A_1) + \varphi(A_2 - A_1) + \dots + \varphi(A_n - A_{n-1})\} = \lim \varphi(A_n)$$

Veamos la continuidad por arriba. Sea $A_n \downarrow A$, tomamos A_{n_0} tal que $\varphi(A_{n_0})$ es finito. Entonces $A_{n_0} - A_n \uparrow A_{n_0} - A$, y por el apartado anterior tenemos la convergencia desde abajo, por tanto:

$$\varphi(A_{n_0}) - \varphi(A) = \varphi(\lim(A_{n_0} - A_n)) = \lim \varphi(A_{n_0} - A_n) = \varphi(A_{n_0}) - \lim \varphi(A_n)$$

De donde se deduce que $\varphi(A) = \lim \varphi(A_n)$.

Inversamente, sea φ una función aditiva. Si φ es continua por abajo, tenemos

$$\varphi\left(\sum_{n=1}^{\infty}A_{n}\right) = \varphi\left(\lim\sum_{k=1}^{n}A_{k}\right) = \lim\varphi\left(\sum_{k=1}^{n}A_{k}\right) = \lim\sum_{k=1}^{n}\varphi\left(A_{k}\right) = \sum_{n=1}^{\infty}\varphi(A_{n})$$

Y por tanto es σ -aditiva. Si es finita y continua en \emptyset , entonces se obtiene la σ -aditividad de:

$$\varphi\left(\sum_{n=1}^{\infty}A_{n}\right) = \varphi\left(\sum_{k=1}^{n}A_{k}\right) + \varphi\left(\sum_{k=n+1}^{\infty}A_{k}\right) = \sum_{k=1}^{n}\varphi(A_{k}) + \varphi\left(\sum_{k=n+1}^{\infty}A_{k}\right)$$

Y tenemos que

$$\varphi\left(\sum_{k=n+1}^{\infty} A_k\right) \to \varphi(\emptyset) = 0$$

Una vez demostrado este teorema, vamos a ver un teorema que nos relaciona las propiedades del supremo e ínfimo de una función σ -aditiva con los conjuntos sobre los que está dicha función definida:

Teorema 1.5.2 Teorema del supremo e ínfimo

Sea φ una función σ -aditiva sobre una σ -álgebra \mathcal{A} . Entonces, existen $C, D \in \mathcal{A}$ tales que $\varphi(C) = \sup \varphi \ y \ \varphi(D) = \inf \varphi$

Demostración 1.5.2 Probaremos la existencia del conjunto C. La del conjunto D es análoga. Si $\varphi(A) = \infty$ para algún $A \in \mathcal{A}$, entonces podemos establecer A = C y la demostración del teorema es trivial. Entonces, supongamos que $\varphi < \infty$ y dado que el valor $-\infty$ está excluido, φ es finita.

Entonces, existe una sucesión $\{A_n\} \subset \mathcal{A}$ tal que $\varphi(A_n) \to \sup \varphi$. Sea $A = \bigcup A_n$ y para cada n, consideramos la partición de A en 2^n conjuntos A_{nm} de la forma $\bigcap_{k=1}^n A'_k$, donde $A'_k = A_k$ o $A - A_k$. Para n < n', cada conjunto A_{nm} es una suma finita de conjuntos $A_{n'm'}$. Sea ahora B_n la suma de los conjuntos A_{nm} para los cuales φ es no negativa. Si no hay ninguno, entonces $B_n = \emptyset$

1.6 Medidas y probabilidades

Definición de medida: Una función de conjuntos μ_0 es una medida si verifica:

- Es σ -aditiva, es decir, $\mu_0(\cup A_j) = \sum \mu_0(A_j)$
- Es no decreciente $A \subset B \mu^{\circ}(A) \leq \mu^{\circ}(B)$
- $\mu^{\circ}(\emptyset) = 0$

A la tupla $(\Omega, \mathcal{A}, \mu_{\mathcal{A}})$ se le denomina espacio de medida.

Definición de medida exterior: Una medida exterior es una función de conjuntos positiva y σ -subaditiva, es decir, no se cumple la primera propiedad. La σ -subaditividad implica que $\mu(A \cup B) \leq \mu(A) + \mu(B)$.

Para que una medida exterior fuera una medida tendría que ser σ -aditiva. Es decir, la falla la primera condición. Sí que es positiva ya que $\mu^{\circ}(\emptyset) = 0$ y es creciente. Esta medida exterior se aplica a cualquier conjunto. Va a haber unos subconjuntos en los que la función se comporte como si fuera aditiva.

Definición: Un conjunto $A \in S(\Omega)$ es μ° medible si se cumple que $\mu^{\circ}(D) = \mu^{\circ}(AD) + \mu^{\circ}(A^cD), \forall D \in S(\Omega)$

Teorema 1.6.1 Si μ° es una medida exterior, entonces:

- a° es un σ -campo
- μ° en a° es una medida

Demostración 1.6.1

Lema 1.6.1 Sea $X:A\longrightarrow B$

 $\mathbb{X} \text{ es medible} \iff \mathbb{X}^{-1}(S) \in A, S \in B$

Teorema 1.6.2 Si g es continua $\Longrightarrow g(\mathbb{X})$ es medible

Demostración 1.6.2 $g()\mathbb{X}$ es medible si la puedo escribir como límite de funciones medibles, es decir, $g(\mathbb{X}) = \lim g(\mathbb{X}_n)$

Teorema 1.6.3 Sea $\mathbb{X} = (\mathbb{X}_1 \dots \mathbb{X}_n)$ un vector. Será medible $\iff \forall j = 1 \dots k, \mathbb{X}_j$ son medibles.

Demostración 1.6.3

$$\mathbb{X}^{-1}(-\infty, -\infty, \dots, x_j, \dots, \infty) = [\mathbb{X}_j < x_j]$$

De la medibilidad de X se deduce la medibilidad de todas las componentes, poniendo el x_i donde nos interesa

Supongamos que las componentes son medibles:

$$\left[\mathbb{X}_{n} \leq X_{n}\right] = \left[\mathbb{X}_{1} \leq x_{1}, \dots, \mathbb{X}_{k} \leq X_{k}\right] = \bigcap_{i=1}^{k} \left[\mathbb{X}_{j} \leq x_{j}\right] \in a$$

Teorema 1.6.4 Si $\mathbb X$ es medible $\Longrightarrow g(\mathbb X)$ es medible si g es Borel

Demostración 1.6.4

$$g(\mathbb{X})^{-1}B = \mathbb{X}^{-1}(g^{-1}(B)) \in a$$
$$P[|\mathbb{X} - \mathbb{Y}| \ge \epsilon] \le P[[|\mathbb{X}_n - \mathbb{X}| \ge \frac{\epsilon}{2}] + P[|\mathbb{X}_n - \mathbb{Y}| \ge \frac{\epsilon}{2}] \underset{n \to \infty}{\longrightarrow} 0$$

Una vez definido el concepto de medida, vamos a dar ahora el de probabilidad. Una probabilidad \mathcal{P} sobre un espacio medible (Ω, \mathcal{A}) es una medida que además cumple que $\mathcal{P}(\Omega) = 1$. Por tanto, tiene las siguientes propiedades:

$$\mathcal{P}(\emptyset) = 0$$

 $\forall A \in \mathcal{A}, 0 \leq \mathcal{P}(A) \leq 1$
Es una función σ -aditiva

De forma análoga al concepto de espacio de medida, podemos definir ahora el de espacio probabilístico. Un espacio probabilístico es una tupla formada por un conjunto Ω , una σ -álgebra sobre ese conjunto, \mathcal{A} , y una función de probabilidad \mathcal{P} .

17

1.6.1 Teorema de Carathéodory

1.7 Funciones medibles

Una vez definidos los conceptos sobre espacios de medida y espacios probabilísticos, vamos a aproximarnos al concepto de función medible. Para ello, daremos des definiciones de función medible, para demostrar más adelante que estas dos definiciones son equivalentes. Empecemos con la definición constructiva de función medible. Dado que nos interesa que el codominio sea \mathbb{R} , trabajaremos con funciones definidas entre un espacio medible (Ω, \mathcal{A}) y $(\mathbb{R}, \mathcal{B})$, donde \mathcal{B} representa la σ -álgebra de Borel.

Sea entonces la función $X = \sum_{i} x_{j} I_{A_{j}}$, donde A_{j} son conjuntos medibles

y I_{A_j} denota la función indicadora de dicho conjunto. Estas funciones se llaman funciones elementales, y cuando el número de valores distintos que toma la función X es finito, se conocen como funciones simples. Entonces, la definición constructiva de función medible es la que sigue:

Definición constructiva de función medible: Una función es medible si es límite de una sucesión de funciones simples $\{X_n\}$ convergentes.

Esta definición que hemos dado es constructiva, y por tanto, nos será muy útil para la definición constructiva de las integrales. No obstante, para enunciar y demostrar las propiedades de las funciones medibles, suele ser más útil la definición descriptiva siguiente:

Definición descrptiva de función medible: Sea una función $\varphi : \mathcal{A} \to \mathcal{B}$. Se dice que φ es medible si $\forall B \in \mathcal{B} \Rightarrow \varphi^{-1}(B) \in \mathcal{A}$. Es decir, una función se dice medible si la imagen inversa de todo conjunto medible es medible.

No obstante, se puede dar, a raíz de esta, otra definición más económica:

Para la difición anterior, es suficiente con exigir la medibilidad de las imágenes inverss de los elementos de una subclase \dashv para la cual la σ -álgebra minimal sobre \dashv sea $\mathcal B$

Veamos ahora que las dos definiciones que hemos dado son equivalentes.

Teorema 1.7.1 Teorema de medibilidad

Las definiciones constructiva y descriptiva de una función medible son

equivalentes, y la clase de funciones medibles es cerrada bajo las operaciones usuales del análisis.

Demostración 1.7.1 Sean X_n funciones medibles en el sentido descriptivo. Entonces todos los conjuntos de la forma

$$[\inf X_n < x] = \cup [X_n < x], [-X_n < x] = [X_n > -x]$$

son medibles, y por tanto, las funciones

$$\sup X_n = -\inf(-X_n), \liminf(X_n) = \sup(\inf_{k \ge n} X_k)$$

$$\lim \sup X_n = -\lim \inf (-X_n)$$

son medibles en el sentido descriptivo. Por un lado, las funciones de este tipo son claramente cerradas bajo las operaciones de supremo, ínfimo, y límites. Además, toda función simple es medible en el sentido descriptivo, ya que todos los conjuntos $[X \leq x] = \sum_{x_i \leq x} A_j$ son medibles. Entonces, el límite de

sucesiones convergentes de funciones simples son medibles, y por tanto las funciones medibles en sentido constructivo lo son en sentido descriptivo.

Veamos la otra implicación, es decir, que las funciones medibles en sentido descriptivo lo son en sentido constructivo. Sea una función X medible en sentido descriptivo. Entonces, las funciones

$$X_n = -nI_{[X < -n]} + \sum_{-n2^n + 1}^{n2^n} \frac{k - 1}{2^n} I_{\left[\frac{k - 1}{2^n} \le X < \frac{k}{2^n}\right]} + nI_{X \ge n}, n \in \mathbb{N}$$

son simples. Entonces, dado que

$$\mid X_n(\omega) - X(\omega) \mid < \frac{1}{2^n} \quad para \quad \mid X(\omega) \mid < n$$

y

$$X_n(\omega) = \pm n \quad para \quad X(\omega) = \pm \infty$$

se tiene entonces que $X_n \to X$ y esto, con lo anterior, prueba la equivalencia de las dos definiciones de función medible.

1.8 Integrales sobre funciones de conjunto en espacios de medida

Para el cálculo de probabilidades, nos será muy útil el concepto de integral sobre funciones de conjunto. Vamos a tratar de aproximarnos al concepto de función que dió Lebesgue. En este apartado trabajaremos sobre el espacio de probabilidad $(\Omega, \mathcal{A}, \mathcal{P})$. Comenzaremos definiendo la integral para las funciones simples, para dar luego una definición de integral para funciones no negativas y por último para funciones cualesquiera.

Sea entonces $\{A_k\} \in \mathcal{A}$, tal que $\sum_k A_k = \Omega$, partición medible del espacio.

Sea entonces la función simple $X = \sum_{j=1}^{m} x_j I_{A_j}, x_j \ge 0$. La integral de la función X se define como:

$$\int_{\Omega} X d\mathcal{P} = \sum_{j=1}^{m} x_j \mathcal{P}_{A_j}$$

Ahora, para cualquier función no negativa X, se define la integral de la función como:

$$\int_{\Omega} X d\mathcal{P} = \lim \int_{\Omega} X_n d\mathcal{P}$$

Donde $\{X_n\} \to X$. Finalmente, la integral en Ω de una función medible X se define como:

$$\int_{\Omega} X d\mathcal{P} = \int_{\Omega} X^{+} d\mathcal{P} - \int_{\Omega} X^{-} d\mathcal{P}$$

donde $X^+ = XI_{[X \ge 0]}$ y $X^- = -XI_{[X < 0]}$. Si $\int_{\Omega} Xd\mathcal{P}$ es finita, es decir, si los dos términos de la diferencia anterior son finitos, entonces se dice que X es integrable en Ω . Ahora, una vez definida la integral, vamos a ver algunas de sus propiedades. Tenemos primero una serie de propiedades relacionadas con la aditividad de la integral. Sean X, Y dos funciones medibles, entonces (no se demostrarán las propiedades triviales):

$$\int (X+Y)d\mathcal{P} = \int Xd\mathcal{P} + \int Yd\mathcal{P}$$

Demostración 1.8.1 Sean
$$X = \sum_{i} x_{j} I_{A_{j}} y y = \sum_{i} y_{k} I_{B_{k}}$$
. Entonces $X + Y = \sum_{i} \sum_{j} x_{j} I_{A_{j}B_{k}} + \sum_{i} \sum_{j} y_{k} I_{A_{j}B_{k}} = \sum_{i} \sum_{j} (x_{i} + y_{j}) I_{A_{j}B_{k}}$

Si calculamos ahora las integrales:

Veamos ahora algunas propiedades relacionadas con el orden:

$$X \ge 0 \to \int X d\mathcal{P} \ge \int 0 = 0$$

$$X \ge Y \to \int X d\mathcal{P} \ge \int Y d\mathcal{P}$$

$$X \stackrel{c.s}{=} Y \to \int X d\mathcal{P} = \int Y d\mathcal{P}$$

1.8.1 Teorema de la convergencia monótona

Una vez vista la definición de la integral y algunas de sus propiedades, vamos a enunciar y demostrar un teorema de convergencia que nos será de mucha utilidad para el estudio de variables aleatorias. Veamos su enunciado y demostración:

Teorema 1.8.1 Teorema de la convergencia monótona para funciones medibles no negativas

Sea
$$\{X_n\} \geq 0$$
 tal que $X_n \uparrow X$. Entonces, se tiene que $\int X_n \uparrow \int X$

Demostración 1.8.2 Tomamos las sucesiones $X_{km} \uparrow X_k$. La sucesión $Y_n = \max_{k \geq n} X_{kn}$ es una sucesión de funciones simples no negativas y no decreciente, y además

$$X_{kn} \le Y_n \le X_n \to \int X_{kn} \le \int Y_n \le \int X_n$$

Ahora, cuando $n \to \infty$, tenemos que

$$X_k \le \lim Y_n \le X \to \int X_k \le \int \lim Y_n \le \int X$$

Por último, cuando $K \to \infty$, obtenemos

$$X \le \lim Y_n \le X \to \lim \int X_n \le \int \lim Y_n \le \lim \int X_n$$

De donde extraemos que $\lim Y_n = X$ y que $\int X = \lim \int X_n$

1.8.2 Lema de Fatou

Lema 1.8.1 Sean Y, Z dos funciones integrables (pueden no mantener su signo), entonces:

•
$$Si Y_n \leq X_n \Longrightarrow \int \lim_{i \neq j} X_n \leq \lim_{i \neq j} \int X_n$$

•
$$Si \ X_n \le Z_n \Longrightarrow \lim_{sup} \int X_n \le \int \lim_{sup} X_n$$

1.8.3 Lema de Fatou-Lebesgue

Lema 1.8.2 Sean Y, Z dos funciones integrables (pueden no mantener su signo) y \mathbb{X}_n una sucesión de variables aleatorias, entonces:

- $Si \ X_n \le Y \ \forall n \Longrightarrow E(\lim_{\sup} \mathbb{X}_n) \ge \lim_{\sup} E(\mathbb{X}_n)$
- Si $X_n \geq Z \, \forall n \Longrightarrow si \ la \ sucesi\'on \ es \ convergente \ y \ acotada \ se \ cumple que: <math>E(\lim \mathbb{X}_n) \geq \lim E(\mathbb{X}_n)$

1.9 Espacios de probabilidad y variables aleatorias

Lema 1.9.1 de Borel-Cantelli

Sea
$$(\Omega, a, P)$$
, $A_n \in a$. Entonces, si $\sum P A_n < \infty \Longrightarrow P(\lim_{sup} A_n) = 0$

Demostración 1.9.1

$$\lim_{\sup} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} B_n$$

$$P(\lim_{\sup} A_n) = P \lim B_n = \lim P B_n \le \lim_n P \bigcup_{k=n}^{\infty} A_k \le \lim_n \sum_{k=n}^{\infty} P A_k = 0$$

El recíproco no es cierto

Teorema 1.9.1 (de extensión de Caratheodory) Una medida μ sobre \mathbb{C} se extiende a $A(\mathbb{C})$. La extensión es mínima si μ es finita.

$$(\Omega, \mathbb{C}, \mu) \xrightarrow{extension} (\Omega, S(\Omega), \mu^{\circ}) \xrightarrow{restriccion} (\Omega, A^{\circ}, \mu^{\circ}) \xrightarrow{restriccion} (\Omega, A(\mathbb{C}), \mu^{\circ})$$

donde:

 μ° es la medida exterior que es extensión de μ A° es el σ -campo

 μ° es medida exterior si es subaditiva, no decreciente y $\mu^{\circ}(\emptyset) = 0$

$$A \in \Omega, \ \mu^{\circ}(A) = \inf \sum (A_j)$$

$$\mu^{\circ}(\emptyset) \leq \mu(\emptyset)$$

 $a \in A^{\circ} \text{ si } D \in S(\Omega) \text{ se cumple que } \mu^{\circ}(D) \geq \mu^{\circ}(AD) + \mu^{\circ}(A^{c}D)$

Lema 1.9.2
$$\mathbb{X}(w) = \varphi(w) \, \forall w \in \Omega - \Lambda \, t.q. \, P(\Lambda) = 0.$$
 Entonces, $\mathbb{X} = \varphi$

$$P(\mathbb{X} = \varphi) = 1$$

Definimos la relación de equivalencia $\mathbb{X}R\varphi \leftrightarrow P(\mathbb{X}=\varphi)=1$

Lema 1.9.3 Sea $Y \leq \mathbb{X}_n \leq Z$ con Y, Z integrables y tal que $\mathbb{X}_n \xrightarrow{c.s.} \mathbb{X}$. Entonces se tiene que $\int \mathbb{X}_n \to \int \mathbb{X}$

1.9.1 Algunas desigualdades interesantes

Lema 1.9.4
$$|a+b|^r \le C_r |a|^r + C_r |b|^r \ con \ C_r = 1 \ si \ r = 1 \ y \ C_r = 2^r \ si \ r > 1$$

Entonces se tiene $E|\mathbb{X} + \mathbb{Y}|^r \leq C_r E|\mathbb{X}|^r + C_r E|\mathbb{Y}|^r$

Desigualdad de Hölder-Schwartz

$$E|XY| \le (E|X|^r)^{\frac{1}{r}} (E|Y|^s)^{\frac{1}{s}} \text{ con } r > s ; \frac{1}{r} + \frac{1}{s} = 1$$

1.10. CONVERGENCIA EN PROBABILIDAD DE ESPACIOS MÉTRICOS23

Desigualdad de Markvov

Sea X una v.a. y sea g una función borel. Entonces se tiene que si g es par y no decreciente en $[0, \infty) \forall a > 0$, entonces:

$$\frac{Eg(\mathbb{X}) - g(a)}{\sup g(\mathbb{X})} \le P[|\mathbb{X}| \ge a] \le \frac{Eg(\mathbb{X})}{g(a)}$$

1.10 Convergencia en probabilidad de espacios métricos

Definición de convergencia en probabilidad: Si $P(|\mathbb{X}_n - \mathbb{X}| \ge \epsilon) \to 0$, entonces se dice que $\mathbb{X}_n \xrightarrow{P} \mathbb{X}$, es decir, \mathbb{X}_n converge en probabilidad a \mathbb{X}

Lema:
$$\mathbb{X}_n \xrightarrow{P} \mathbb{X} \bigwedge \mathbb{X}_n \xrightarrow{P} \varphi \Longrightarrow P(\mathbb{X} = \varphi) = 1$$

Demostraci'on

$$|\mathbb{X} - \varphi| = |-\mathbb{X}_n + \mathbb{X} - \varphi + \mathbb{X}_n| \le |\mathbb{X}_n - \mathbb{X}| + |\mathbb{X}_n - \varphi|$$
$$P(|\mathbb{X} - \varphi| \ge \epsilon) \le P(|\mathbb{X}_n - \mathbb{X}| \ge \frac{\epsilon}{2}) + P(|\mathbb{X}_n - \varphi| \le \frac{\epsilon}{2}) \to 0$$

Teorema: Una sucesión \mathbb{X}_n converge en probabilidad a \mathbb{X} si y solo si:

$$P(|\mathbb{X}_{n+\delta} - \mathbb{X}_n| \ge \epsilon) \longrightarrow 0$$

Demostración

$$|\mathbb{X}_{n+\delta} - \mathbb{X}_n| = |\mathbb{X}_{n+\delta} - \mathbb{X} + \mathbb{X} - \mathbb{X}_n|$$

Y se termina aplicando la desigualdad de Cauchy como antes.

En el siguiente ejemplo consideramos una sucesión de variables aleatorias indicadoras tal que:

$$P(X_n = 1) = \frac{1}{n} \text{ y } P(X_n = 0) = 1 - \frac{1}{n}$$

La pregunta es, ¿a dónde converge en probabilidad \mathbb{X}_n ?

Podemos afirmar que $\mathbb{X}_n \xrightarrow{P} 0$ ya que:

$$P(|\mathbb{X}_n - 0| \ge \epsilon) = P(|\mathbb{X}_n| \ge \epsilon) = P(|\mathbb{X}_n| = 1) = \frac{1}{n} \to 0$$

1.10.1 Propiedades

1.
$$\mathbb{X}_n \xrightarrow{P} \mathbb{X} \bigwedge \varphi_n \xrightarrow{P} \varphi \Longrightarrow \mathbb{X}_n + \varphi_n \xrightarrow{P} \mathbb{X} + \varphi$$

$$2. \ \mathbb{X}_n \xrightarrow{P} \mathbb{X} \Longrightarrow K \mathbb{X}_n \xrightarrow{P} K \mathbb{X}$$

3.
$$\mathbb{X}_n \xrightarrow{P} K$$
 (es decir, que degenera), entonces $\mathbb{X}_n^2 \xrightarrow{P} K^2$.

Para demostrarlo basta notar que: $\mathbb{X}_n^2 - K^2 = (\mathbb{X}_n + K)(\mathbb{X}_n - K)$

4.
$$\mathbb{X}_n \xrightarrow{P} a \bigwedge \varphi_n \xrightarrow{P} b \Longrightarrow \mathbb{X}_n \varphi_n \xrightarrow{P} a \cdot b$$

Para demostrarlo tenemos que notar que:

$$\mathbb{X}_n \varphi_n = \frac{(\mathbb{X}_n + \varphi_n)^2 - \mathbb{X}_n - \varphi_n^2}{4} \xrightarrow{P} \frac{(a+b)^2 - (a-b)^2}{4} = ab$$

$$5. \ \mathbb{X}_n \xrightarrow{P} 1 \Longrightarrow \frac{1}{\mathbb{X}_n} \xrightarrow{P} 1$$

6.
$$\mathbb{X}_n \xrightarrow{P} a \wedge \varphi_n \xrightarrow{P} b \Longrightarrow \mathbb{X}_n \varphi_n^{-1} \xrightarrow{P} ab^{-1}$$

7.
$$\mathbb{X}_n \xrightarrow{P} \mathbb{X} \bigwedge \varphi_n \xrightarrow{P} \varphi \Longrightarrow \mathbb{X}_n \varphi_n \xrightarrow{P} \mathbb{X} \varphi$$

Para demostrarlo basta notar que: $(\mathbb{X}_n - \mathbb{X})(\varphi_n - \varphi) \xrightarrow{P} 0$ y luego $\mathbb{X}_n \varphi_n - \mathbb{X} \varphi_n - \mathbb{X} \varphi - \mathbb{X} \varphi \xrightarrow{P} 0$ (Por la propiedad siguiente)

8.
$$\mathbb{X}_n \xrightarrow{P} \mathbb{X}$$
, entonces $\varphi \mathbb{X}_n \xrightarrow{P} \varphi \mathbb{X}$

Teorema 1.10.1 Si $\mathbb{X}_n \xrightarrow{P} \mathbb{X}$ y $g(\cdot)$ es continua, entonces se cumple que:

$$g(\mathbb{X}_n) \xrightarrow{P} g(\mathbb{X})$$

1.11 Convergencia casi segura de espacios métricos

Definición de convergencia casi segura: Una sucesión de variables aleatorias, X_n , converge con probabilidad 1, o de forma casi segura, a una variable aleatoria X (que puede degenerar en una constante K) cuando se cumple que:

$$P(\lim_{n\to\infty} \mathbb{X}_n = \mathbb{X}) = 1$$

De esta forma interpretamos que $\mathbb{X}_n \xrightarrow{c.s.} \mathbb{X}$ cuando la probabilidad de que en el límite la sucesión de variables aleatorias y aquella a la que converge sean iguales es uno

Teorema 1.11.1

$$\mathbb{X}_n \xrightarrow{c.s.} \mathbb{X} \Longrightarrow \mathbb{X}_n \xrightarrow{P} \mathbb{X}$$

$$\mathbb{X}_n \xrightarrow{P} \mathbb{X} \Longrightarrow \exists \mathbb{X}_{nk} : \mathbb{X}_{n_k} \xrightarrow{c.s.} \mathbb{X}$$

Demostración 1.11.1

$$0 = \lim_{n \to \infty} P \bigcup_{m \ge n} [|\mathbb{X}_m - \mathbb{X}| \ge \epsilon] \ge \lim_{n \to \infty} P[|\mathbb{X}_n - \mathbb{X}| \ge \epsilon]$$

1.12 Funciones características y funciones de distribución

1.12.1 Función característica

Función puntual que se define sobre la recta real, no negativa, no decreciente, continua por la izquierda y finita. Para nosotros será la función que está entre $0 \ v \ 1$.

Verifica estas tres propiedades:

- $0 \le F[a, b] \le \infty$
- $F[a,b] \rightarrow 0$, $a \rightarrow b$
- Si $a_1 \le b_1 \le a_2 \le b_2 \le \ldots \le a_n \le b_n$, entonces:

$$\sum_{k=1}^{n} F[a_k, b_k] - \sum_{k=1}^{n-1} F[b_k, a_{k+1}] = F[a_1, b_n]$$

Las funciones de distribución representan medidas

Teorema 1.12.1 La relación $\mu[a,b] = F[a,b]$ establece una correspondencia uno a uno (da igual pasar de una a otra)

$$\int_{\mathbb{R}} g(\mathbb{X}) dP_{\mathbb{X}}(x) = \int_{\mathbb{R}} g \, Pg = \int_{\Omega} g(\mathbb{X}(\omega)) dP(\omega)$$

1.13 Leyes de la probabilidad y tipos de leyes