Applying Science Models for Re-Ranking in IR

Introducing bibliometrically enhanced metadata to IR

Agenda

- 1. Introduction
- 2. Creating a Baseline
- 3. Data Preparation
- 4. Creating Graphs
 - a. Co-citation Graph
 - b. Lotka-inspired Graph
 - c. Citation Graph
 - d. Core Journal Graph
- 5. Experiments & Evaluation
- 6. Conclusion

1. Introduction

Project Motivation

Dissertation: 'Re-Ranking auf Basis von Brafordizing für die verteilte Suche in Digitalen Bibliotheken' (Mayr, 2009)

Introduction of new metrics for bibliometrically enhanced Information Retrieval (BIR) in the context of Re-Ranking.

Application Case

- Recent data sets: TREC-COVID
- In combination with Graph Construction & Network Analysis

Project Motivation

Papers: 'Science models as value-added services for scholarly information systems' (Mutschke, 2011)

Introduction of scholarly Information Retrieval (IR) as a further developed models for improving retrieval quality, involving features such as Bradford law of Information and co-authorship networks.

Application Case

- Recent data sets: TREC-COVID
- In combination with Graph Construction & Network Analysis

Ranking	Document	Score	Journal	coreness
1	Doc 10	15.4646	bioRxiv	0.35
2	Doc 15	14.3549	Emerg Infect Dis	0.24
3	Doc 101	14.3542	Journal of virology	0.12
[]	[]	[]	[]	[]
998	Doc 17	1.636	J Biomed Sci	0.01
999	Doc 4	0.002	Emerg Infect Dis	0.12
1000	Doc 90	0.000	bioRxiv	0.35

Further Motivations

As mentioned in the lectures concerning topics such as

- Network Analysis
 Centrality, Betweenness
- Power Law's Lotka's Law, Bradford law and Zipf's law
- Re-Ranking
 Based on Bibliometrics and authorships

Further Motivations

As mentioned in the lectures concerning topics such as

Stratagems (as defined by Marcia Bates)

Citation Search

Usage of provided citation connections

Author Search

Usage of provided author connections

Journal Run

Usage of given journal connections

Bradfords Law

- Identifying Core Journals
- Boosting Papers by occurrences of journal

FIG. 1. The Bradford regions. Each search region contains one-third of the articles on the subject. Each ring is five times the area of the next smaller one.

Bradfords Law

- Identifying Core Journals
- Boosting Papers by occurrence of journal

Lotkas Law

- Creating co-citation and reference graph
- Calculate and compare different graph measures
- Boost by average and maximum measures for paper authors

2. Creating a Baseline

Creating a Baseline

Cord-19

Data Set (Version 2020-07-16)

Weighting Model

BM25

Applied fields

title & abstract

Selection of Data

- → Top 1000 documents per query
- → Removing elements without DOI
- → Removing duplicates

Baseline: Performance

Cord-19 Data Set (*Version 2020-07-16*),

Query 1: 'coronavirus origin'

Run Name	map	P@20	Recall@20	MRR	ndcg_cut_20
Baseline	0.1028	0.7	0.02	0.5	0.5219

Weighting Model

BM25

Applied fields

title & abstract

3. Data Preparation

Data Enrichment

Enrichening metadata

with Semanticscholar API

Metadata used

Authors

- authors.name
- authors.affiliations
- authorId

Papers

- fieldsOfStudy
- s2FieldsOfStudy
- Citations.authors
- paperId
- Journal

4. Creating Graphs

Creating Graphs

Creating various graphs and their bibliometric measures

- 1. Co-citation Graph
- Lotka-inspired Graph
- 3. Citation Graph
 - a. Between authors
 - b. Between papers
- 4. **Journal** Graph

Co-citation Graph

Co-authors with

Author > Author

→ Undirected Relationship

ID

→ By authorId

Relevant fields

→ authorId

Co-citation Graph

ating_Treg_have_divergent_transcriptional_profiles_and_function_linke

Author

Author

Undirected Relationship

Co-authors with

→ By authorld

Relevant fields

authorld

Preprint PDF Available

DOI:10.1101/2022.12.13.520329

December 2022

Lung tumor-infiltrating Treg have divergent transcriptional profiles and function linked

However: Potential conflict

- Same name, different persons
- In different research fields

Lotka-inspired Graph

Paper → Author

→ Directed Relationship

ID

→ By authorId

Relevant fields

- → authorId
- → paperId

→ Highlights author prominent in many papers

 $n_{Papers} = 10$

Enriched Lotka-inspired Graph

Paper → Author

→ Directed Relationship

ISecondary Relationships

 Related authors through citations in the papers

→ Highlights authors prominent in many papers

 $n_{Papers} = 2$

Enriched Lotka-inspired Graph

Paper → Author

→ Directed Relationship

ISecondary Relationships

→ Related authors through citations in the papers

→ Highlights authors prominent in many papers

 $n_{Papers} = 2$

Citation Graph (between Authors)

Based on

| Author → | Author

→ Directed Relationship

- → The source of **citations**
- → Authors that often get cited

Citation Graph (between Authors)

Based on

Author → Author

→ Directed Relationship

- → The source of **citations**
- → Authors that often get cited

Citation Graph (between Papers)

Based on

references

Paper → Paper

→ Directed Relationship

- Direction of references
- → Papers that often get references
- → Distinctive reciprocal citation clusters

 $n_{Papers} = 50$

Citation Graph (between Papers)

Based on

references

IPaper → **I**Paper

→ Directed Relationship

- → Direction of references
- → **Papers** that often get **references**
- → Distinctive reciprocal citation clusters

 $n_{Papers} = 50$

Journal Graph

Based on

is part of

Paper → Journal

→ Directed Relationship

- Prominent Core Journals that feature most papers
- → Visualizes the influence of a core journal in the subject

5. Experiments & Evaluation

Observing the effects of boosting in re-ranking

Centrality Measures

Degree Centrality

→ Dfss

Betweenness Centrality

→ Fdas

Closeness Centrality

Experiments

Boost by

→ maximum {centrality measure} from author/papers/journals

Boost by

→ average {centrality measure} from all authors/papers/journals

Boost by connection to most popular author

→ For *high/low* distance

...in the re-ranking process

Evaluation

Execute PyTerrier Runs on

 Experimental graphs with bibliometrical metadata

- 1. Author co-citation
- 2. Author popularity
- 3. Citation between papers
- 4. Journal Coreness

Compare IR metrics

→ [map], [P@10], [P@20], [P@100], [Recall@20], [Recall@100] [RecipRank], [ndcg_cut _20]

Results: Author Co-Citation

Based on → centrality

name	map	P_10	P_20	P_100	recall_20	recall_100	recip_rank	ndcg_cut_20
Baseline	0.102866	0.9	0.70	0.49	0.020029	0.070100	0.5	0.519000
reranker_degree_mean	0.103915	0.9	0.70	0.48	0.020029	0.068670	0.5	0.524213
reranker_degree_max	0.103710	0.8	0.60	0.50	0.017167	0.071531	0.5	0.487725
reranker_closeness_mean	0.103760	0.8	0.65	0.51	0.018598	0.072961	0.5	0.499142
reranker_closeness_max	0.105412	0.8	0.65	0.52	0.018598	0.074392	1.0	0.579050
reranker_betweeness_mean	0.103230	0.9	0.70	0.48	0.020029	0.068670	0.5	0.525544
reranker_betweeness_max	0.102602	0.8	0.70	0.49	0.020029	0.070100	1.0	0.563768

→ Slight increases in [map, recip_rank & recall@100 & ndcg]

Based on

→ Distance to most popular author

name	map	P_10	P_20	P_100	recall_20	recall_100	recip_rank	ndcg_cut_20
Baseline	0.102866	0.9	0.70	0.49	0.020029	0.070100	0.50	0.519000
$reranker_most_popular_user_high_dist_mean$	0.092684	0.7	0.70	0.46	0.020029	0.065808	1.00	0.561533
reranker_most_popular_user_high_dist_max	0.092689	0.7	0.70	0.46	0.020029	0.065808	1.00	0.561533
reranker_most_popular_user_short_dist_mean	0.092371	0.4	0.60	0.40	0.017167	0.057225	0.50	0.329489
reranker_most_popular_user_short_dist_max	0.091112	0.3	0.55	0.40	0.015737	0.057225	0.25	0.294177
name	map	P_10	P_20	P_100	recall_20	recall_100	recip_rank	ndcg_cut_20
Baseline	0.102866	0.9	0.70	0.49	0.020029	0.070100	0.5	0.519000
eranker_most_popular_user_high_dist_mean	0.103087	0.8	0.70	0.49	0.020029	0.070100	1.0	0.603958
reranker_most_popular_user_high_dist_max	0.103077	0.8	0.70	0.49	0.020029	0.070100	1.0	0.604214
eranker_most_popular_user_short_dist_mean	0.101879	0.6	0.65	0.48	0.018598	0.068670	0.5	0.477122
reranker_most_popular_user_short_dist_max	0.101573	0.6	0.65	0.47	0.018598	0.067239	0.5	0.475326
name	map	P_10	P_20	P_100	recall_20	recall_100	recip_rank	ndcg_cut_20
Baseline	0.102866	0.9	0.70	0.49	0.020029	0.070100	0.5	0.519000
eranker_most_popular_user_high_dist_mean	0.103023	0.8	0.70	0.49	0.020029	0.070100	1.0	0.603958
reranker_most_popular_user_high_dist_max	0.102999	8.0	0.70	0.49	0.020029	0.070100	1.0	0.604214
eranker_most_popular_user_short_dist_mean	0.103076	0.7	0.60	0.49	0.017167	0.070100	0.5	0.462294
reranker_most_popular_user_short_dist_max	0.103077	0.7	0.65	0.50	0.018598	0.071531	0.5	0.476451

- → Boosting by short distance to most popular author worsens the results
- → Boosting by long distance slightly increases [map, recip_rank, ndcg]

Based on

→ Distance to most popular author

- → Boosting by short distance to most popular author worsens the results
- → Boosting by long distance slightly increases [map, recip_rank, ndcg]

Based on

→ Distance to most popular author

	Halli		шар			1_100 10	C411_20	100011_100	o recip_rar	ik ildeg_ede_20
	Baselin	e 0.10	2866	0.9	0.70	0.49	.020029	0.070100	0.5	0.519000
reranker_most_popular_user_	_high_dist_mea	n 0.09	92684	0.7	0.70	0.46	.020029	0.065808	3 1.0	
reranker_most_popular_use	r_high_dist_ma	x 0.09	92689	0.7	0.70	0.46	.020029	0.065808	3 1.0	
reranker_most_popular_user_s	short_dist_mea	n 0.08	92371	0.4	0.60	0.40	.017167	0.057225	0.5	0.329489
name	map	P_10	P_20	P_1	100	recall_20	recal	.l_100 re	cip_rank	ndcg_cut_20
Baseline	0.102866	0.9	0.70	0	.49	0.020029	0.0	70100	0.5	0.519000
reranker_most_popular_user_high_dist_mean	0.103087	0.8	0.70	0	.49	0.020029	0.0	70100	1.0	0.603958
reranker_most_popular_user_high_dist_max	0.103077	0.8	0.70	0	.49	0.020029	0.0	70100	1.0	0.604214
reranker_most_popular_user_short_dist_mean	0.101879	0.6	0.65	0	.48	0.018598	0.0	68670	0.5	0.477122
reranker_most_popular_user_short_dist_max	0.101573	0.6	0.65	0	.47	0.018598	0.0	67239	0.5	0.475326
	Baseline	0.10	2866	0.9	0.70	0.49 0.	020029	0.070100	0.5	0.519000
reranker_most_popular_user_l	nigh_dist_mean	0.10		0.8	0.70	0.49 0.	020029	0.070100	1.0	
reranker_most_popular_user	_high_dist_max	0.10	2999	8.0	0.70	0.49 0.	020029	0.070100	1.0	0.604214
reranker_most_popular_user_s	hort_dist_mean	0.10	3076	0.7		0.49 0.	017167	0.070100	0.5	0.462294
reranker_most_popular_user_	short_dist_max	0.10	3077	0.7	0.65	0.50 0.	018598	0.071531	0.5	0.476451

10 P 20 P 100 recall 20 recall 100 recip rank ndcg cut 20

- → Boosting by short distance to most popular author worsens the results
- → Boosting by long distance slightly increases [map, recip_rank, ndcg]

Based on

→ Distance to most popular author

		Base	line 0	.102866	0.9	0.70	0.49	0.020029	0.070100		0.50	0.519000
	reranker_most_popular_user	r_high_dist_m	ean 0	.092684	0.7	0.70	0.46	0.020029	0.065808		1.00	
	reranker_most_popular_use	er_high_dist_r	max 0	.092689	0.7	0.70	0.46	0.020029	0.065808		1.00	
	reranker_most_popular_user_	_short_dist_m	ean 0	.092371	0.4	0.60	0.40	0.017167	0.057225		0.50	0.329489
	reranker_most_popular_use	er_short_dist_r	max 0	.091112		0.55	0.40	0.015737	0.057225		0.25	0.294177
		n	ame	map	P_10	P_20	P_100	recall_20	recall_100	recip_	rank	ndcg_cut_20
		Base	line 0	.102866	0.9	0.70	0.49	0.020029	0.070100		0.5	0.519000
	reranker_most_popular_user	r_high_dist_m	ean 0	.103087	0.8	0.70	0.49	0.020029	0.070100		1.0	
	name	map	P_10	P_20	P_10	0 re	call_2	0 recall	_100 reci	p_rank	nd	cg_cut_20
	Baseline	0.102866	0.9	0.70	0.4	.9	0.02002	9 0.07	0100	0.5		0.519000
reranker_most_popu	lar_user_high_dist_mean	0.103023	0.8	0.70	0.4	9 (0.02002	9 0.07	0100	1.0		0.603958
reranker_most_pop	ular_user_high_dist_max	0.102999	0.8	0.70	0.4	9 (0.02002	9 0.07	0100	1.0		0.604214
eranker_most_popul	ar_user_short_dist_mean	0.103076	0.7	0.60	0.4	.9	0.01716	0.07	0100	0.5		0.462294
			0.7	0.65	0.5	_	0.01859		1531	0.5		0.476451

→ Boosting by short distance to most popular author worsens the results

P_10 P_20 P_100 recall_20 recall_100 recip_rank ndcg_cut_20

→ Boosting by long distance slightly increases [map, recip_rank, ndcg]

Results: Lotka-Inspired Graph

Based on

→ activity of an author

name	map	P_10	P_20	P_100	recall_20	recall_100	recip_rank	ndcg_cut_20
Baseline	0.102866	0.9	0.7	0.49	0.020029	0.07010	0.5	0.519000
reranker_lotka_degree_mean	0.103161	0.9	0.7	0.49	0.020029	0.07010	0.5	0.520775
reranker_lotka_degree_max	0.103370	0.9	0.7	0.48	0.020029	0.06867	0.5	0.523919
reranker_lotka_closeness_mean	0.103345	0.9	0.7	0.49	0.020029	0.07010	0.5	0.521625
reranker_lotka_closeness_max	0.103685	0.9	0.7	0.48	0.020029	0.06867	0.5	0.525544

→ Slight increases in [map & ndcg_cut@20]

Results: Citation Graph (between papers)

Based on

→ centrality between papers

name	map	P_10	P_20	P_100	recall_20	recall_100	recip_rank	ndcg_cut_20
Baseline	0.102866	0.9	0.7	0.49	0.020029	0.070100	0.5	0.519000
reranker_citation_paper_degree	0.104598	8.0	0.7	0.51	0.020029	0.072961	0.5	0.504761
reranker_citation_paper_closeness	0.105153	0.8	0.7	0.52	0.020029	0.074392	1.0	0.514877

→ Slight increases in [map, recip_rank & recall@100]

Results: Journal Graph

Based on

→ Coreness of the Journals

name	map	P_10	P_20	P_100	recall_20	recall_100	recip_rank	ndcg_cut_20
Baseline	0.102866	0.9	0.7	0.49	0.020029	0.0701	0.5	0.519000
reranker_graph_coreness	0.106561	0.9	0.8	0.49	0.022890	0.0701	1.0	0.643262

→ Increases in [map, recall, recip_rank and ndcg_cut@20]

6. Conclusion

Conclusion

Observations concerning the boosting of certain metrics in the re-ranking

→ Author co-citation: Leads to ► slight increases in map, recall@100 & ndcg_cut@20, but leads to worse results in P@20 and Recall@20

→ Popularity: Boosting by shortest path to the most popular node
 ▼worsens the results for top results but ▲improves results within the
 Top 100

Conclusion

Observations concerning the boosting of certain metrics in the re-ranking

- → Lotka: Boosting papers according to the productivity of an author leads to
 ► small gains in map and ndcg_cut_20, but \(\nsigma\) losses in recall@100
- → Citations between papers: Results in Agains in map, p@100 and recall@100
- → Coreness: Improves ranking only > slightly with no visible losses

Lesson's learned

NetworkX's bad scalability for extensive graph analysis

→ External programs such as GraphVis, Cytoscape, etc. might be more suitable

Semanticscholar API

→ lead to insufficient metadata for Field of Science (FOS) and Affiliations for Graph Analysis

Future Work

Limited scope

- Encorporate graphs of other topic queries
- → Apply and compare with a more robust baseline

Limited Interactivity

→ NetworkX graphs only allow static views of graphs

Contributions

Andreas Kruff:

Research, Preprocessing, Implementation of Graphs & Metrics, Visualizations of Graphs

Anh Huy Tran:

Research, Implementation of Metrics, Experiments, Analysis and Evaluation of Experiments

References

- [1] Mayr, P. (2009, März). Re-Ranking auf Basis von Bradfordizing für die verteilte Suche in Digitalen Bibliotheken. https://www.researchgate.net. Abgerufen am 28. November 2022, von
 - https://www.researchgate.net/publication/260282769_Re-Ranking_auf_Basis_von_Bradfordizing_fur_die_verteilte_Suche_in_Digitalen_Bibliotheken
- [2] Sahraoui, A. K. & Mayr, P. (2018, März). Users are not influenced by high impact and core journals while searching. https://www.researchgate.net. Abgerufen am 28. November 2022, von

https://www.researchgate.net/publication/324562131 Users are not influenced by high impact and core journals while searching

THANKS FOR LISTENING!

Any questions?