TEMA 2: Redes y grafos, definiciones y conceptos

Lourdes Araujo y Juan Martinez-Romo Dpto. Lenguajes y Sistemas Informáticos UNED

Redes y grafos

- Una red es una colección de objetos en la que algunos pares de objetos están conectados por un enlace.
- Un grafo es una representación matemática de una red.

 En general utilizaremos los términos indistintamente.

Redes y grafos: Definición

Una red N = (V, L, P, W) está formada por

- Un grafo G = (V,L), siendo V con conjunto de nodos o vértices de tamaño |V| y L un conjunto de enlaces de tamaño |L|.
- P son funciones o propiedades de los vértices.
 P· \/ A →
- W son funciones o pesos de los enlaces.

W: L → A.

Elección de la representación

- Elegir la representación apropiada es determinante para la utilidad de las redes.
- A veces existe una única representación.
 Otras debemos elegir entre distintas alternativas.
- La forma en la que se asignan los enlaces determina el problema que queremos analizar.

Elección de la representación: Ejemplos

- Si conectamos personas que han hablado por teléfono construimos una red de contactos.
- Si conectamos artículos científicos que se citan construimos una red de citas.
- Si conectamos documentos con un alto número de palabras en común construimos una red temática.

Grafos no dirigidos

 Los grafos son no dirigidos cuando los enlaces son simétricos

 Ejemplos: amigos en Facebook, relaciones familiares.

Grafos dirigidos

 Los grafos son dirigidos cuando los enlaces son flechas que apuntan a un nodo

 Ejemplos: llamadas de teléfono, seguidores en Twitter, la web

La web

- La web es un grafo dirigido
 - Los nodos son las páginas web
 - Los enlaces son los hiperenlaces de las páginas

Propiedades de los nodos

- Grado (degree) de un nodo deg(v) es el número de enlaces con un extremo en v.
- Grado de entrada (indegree) de un nodo v, indeg(v), es el número de enlaces que terminan en v.
- Grado de salida (outdegree) de un nodo v, outdeg(v), es el número de enlaces que parten de v.

Grafo conexo

Cualquier par de nodos está unido por un camino

Conectividad de los grafos

- Enlace puente: si se borra el grafo pasa a ser disconexo (enlace 4-5 en el ejemplo)
- Punto de articulación: nodo que si se borra (junto con las aristas que inciden en él) el grafo pasa a ser disconexo (nodos 4 y 5 en el ejemplo)

Fuerza de la conexión

- Grafos dirigidos fuertemente conexos: Existe un camino de cada nodo a cada otro nodo y viceversa (strongly connected directed graph)
- Grafos dirigidos debilmente conexos: es conexo si no tenemos en cuenta la dirección de los enlaces

Grafos dirigidos acíclicos

 Grafo dirigido acíclico: no tiene ciclos (Directed acyclic Graph, DAG)

Componentes conexas

 Un grado disconexo está compuesto por dos o más componentes conexas

Componente gigante

 La mayor componente se denomina componente gigante: A-F-D-E

Componente fuertemente conexa

Componente fuertemente conexa (Strongly connected component, SCC): Es un conjunto de nodos S tal que

- Cada par de nodos en S se puede alcanzar desde el otro
- No hay un conjunto mayor que contenga a S y cumpla esta propiedad.

Algunos resultados(1)

- Todo grafo dirigido es un DAG (Directed acyclic) en su SCC (Strong. Connected Comp.)
 - SCCs particionan los nodos de G: cada nodo está exactamente en un SCC
 - Si construimos un grafo G' cuyos nodos son SCCs y con un enlace entre ellos si lo hay entre los correspondientes SCCs en G, entonces G' es un DAG.

Algunos resultados (2)

Ejemplo

- Strongly connected components of graph G: {A,B,C,G}, {D}, {E}, {F}
- (2) G' is a DAG:

Algunos resultados (3)

 Los SCCs particionan los nodos de G: cada nodo de G pertenece exactamente a un SCC.

La web como un grafo dirigido

- 203 millones de páginas y 1.5 billones de enlaces [Broder et al. 2000]
- Mayor SCC: 28% de los nodos (56 millones)
- Alrededor de 44 millones de nodos con enlaces dirigidos a ese SCC
- Ardededor de 44 millones de nodos conectados a ese SCC por enlaces salientes.

Grafo completo

 El número máximo de enlaces en un grafo no dirigido de N nodos es

$$E_{max} = {N \choose 2} = \frac{N(N-1)}{2}$$

- Grafo completo: grafo con un número de enlaces E = Emax
- Su grado medio es N 1.

Otros tipos de grafos (1)

- Multigrafo: puede tener varios enlaces entre los mismos nodos
- Grafos con autoenlaces: enlaces que salen y llegan al mismo nodo

Representación de algunas redes

WWW → multigrafo dirigido con autociclos

 Amistades de Facebook → no dirigido y sin pesos

Redes de citas → sin pesos, dirigido, acíclico

Llamadas a moviles → multigrafo dirigido

Otros tipos de grafos (2)

 Grafo bipartito: sus nodos pueden dividirse en dos conjuntos disjuntos U y V tales que cada enlace conecta a un nodo de U con un nodo de V (U y V son conjuntos independientes).

Otros tipos de grafos (3)

Ejemplos de grafos bipartitos:

- Autores-a-artículos (los escriben)
- Actores-a-Peliculas (las protagonizan)
- Sistemas de recomendación:
 - Usuarios-a-Peliculas (las puntuan), libros, etc.

Propiedades de las redes

¿como caracterizamos una determinada red?

- Distribución del grado
- Longitud de los caminos
- Coeficiente de clustering

Distribución del grado P(k)

- Distribución del grado P(k): Probabilidad de que un nodo tomado al azar tenga grado k
- N_k = # nodos de grado k
- Histograma normalizado P(k) = Nk / N

Caminos (walks)

- Camino (walk): secuencia de nodos de G en la que cada nodo está enlazado con el siguiente.
- Los caminos pueden intersecarse con ellos mismos y pasar por el mismo nodo varias veces.

Caminos (2)

Ejemplo: ACBDCDEG

 En los grafos dirigidos un camino sólo puede seguir la dirección de las flechas.

Número de caminos entre dos nodos

- Número de caminos entre los nodos u y v: Auv
- de long 1: si hay un enlace entre u y v, Auv=1, sino Auv = 0
- de long 2,
- •
- La forma de calcularlos depende de la representación (Tema 3).

Distancia entre nodos h

- Distancia (camino más corto o geodésica) entre un par de nodos: número de enlaces en el camino más corto que conecta los nodos
- Si no hay camino se considera infinita
- En los grafos dirigidos la distancia no es simétrica: los caminos siguen la dirección de las flechas

Diámetro de una red

- Diámetro: distancia máxima (camino más corto) entre cualquier par de nodos en el grafo
- Longitud media del camino en un grafo (o componente) conexo o en un grafo (o componente) dirigido fuertemente conexo:

$$\overline{h} = \frac{1}{2E_{max}} \sum_{i, j \neq i} h_{ij}$$

hij es la distancia del nodo i al j

 Se suele calcular sobre los nodos conectados, ignorando los caminos infinitos.

Coeficiente de clustering C

- Indica la proporción de vecinos del nodo i (con grado ki) que están conectados.
- Ci ∈ [0,1]

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

 ei es el número de enlaces entre los vecinos de i.

Coeficiente de clustering (2)

Ejemplo:

Coeficiente medio de clustering C:

$$C = \frac{1}{N} \sum_{i}^{N} C_{i}$$

Ejemplo: reticulo 1 dimensión (1)

- Nos interesan cantidades cuando N→∞
- Usamos notación O: f(x) = O(g(x)) cuando x→∞ si f(x) < g(x)*c para todo x > x0 y alguna constante c.
- k_i = 4 para todos los nodos (ignorando los extremos)
- C = 1/2

Ejemplo: reticulo 1 dimensión (2)

- P(k) = δ (k-4) (δ (x)=1 si x=0, δ (x)=0 sino, δ de Kronecker)
- Diámetro: $h_{max} = \left\lceil \frac{N-1}{2} \right\rceil = O(N)$
- Long. media del camino más corto $\bar{h} = O(N)$

Ejemplo: retículo 2 dimensiones

- K = 6 para cada nodo interno
- $P(k) = \delta(k-6)$
- C = 6/ 15 para los nodos internos
- Diámetro

$$h_{max} = O(\sqrt{N})$$

Algunos modelos importantes de redes

- Aleatorio: generación aleatoria de enlaces entre nodos.
- Regular: todos los nodos tienen el mismo grado.
- Mundo pequeño: camino medio entre vértices pequeño y coeficiente de clustering alto.
- Scale-free network: la distribución de grados sigue una ley de potencias P(k) = k⁻⁻.

Modelo de grafo aleatorio (Erdös-Renyi)

- Grafos aleatorios: se construyen generando enlaces aleatoriamente entre un conjunto de N vértices.
- Si los enlaces se generan con una determinada probabilidad p se generaría un tipo particular de grafo aleatorio conocido como modelo de Erdös-Renyi.

Modelo de Erdös-Renyi (1)

- Dos variantes:
 - Gn,p: grafo no dirigido con n nodos y cada enlace (u,v) aparece independiente e identicamente distribuido con probabilidad p
 - Gn,m: grafo no dirigido con n nodos y m enlaces tomados al azar uniformemente.

Modelo de Erdös-Renyi (2)

- ¿qué tipo de redes producen estos modelos?
- N y p no determinan el grafo de forma unívoca

Propiedades de Gnp (1)

- La distribución de grados de Gnp es binomial
- P(k) denota la fracción de nodos con grado k:

$$p(k) = {n-1 \choose k} p^k (1-p)^{n-1-k}$$

- p: prob de que un nodo tenga k enlaces
- Primer factor: formas de seleccionar k nodos de entre n – 1 (con los que se puede enlazar un nodo).
- Ultimo factor: prob de que le falten n 1 k enlaces

Propiedades de Gnp (2)

- Longitud del camino O(log n)
- Coeficiente de clustering C = p

Evolución de la estructura de Gnp

Evolución de la estructura de Gnp con p:

• c = p(n-1)

Correspondencia de Gnp con redes reales

- ¿Son las redes reales grafos aleatorios? NO!
 - Tienen un componente gigante y la longitud media de los caminos es similar pero...
 - El coeficiente de clustering y la distribución de grados son diferentes!
 - El coeficiente de clustering de las redes aleatorias es muy bajo al no tener estructura local.
- Entonces ¿porqué estudiar redes aleatorias?

Utilidad de las redes aleatorias

- Son un modelo de referencia para el resto de las clases.
- Nos ayudan a calcular muchas cantidades que podemos comparar con datos reales.
- Nos ayudan a estudiar hasta qué punto una propiedad es el resultado de un proceso aleatorio.

Modelo del mundo pequeño

- ¿Hay redes con caminos cortos y un coeficiente de clustering alto?
- Experimento de Milgram ([Milgram '67])
 - ¿cual es al camino más corto entre cualquier par de personas en una red social?

Experimento de Milgram (1)

- Se tomaron 300 personas de Omaha, Nebraska y Wichita, Kansas.
- Se les pidió que hicieran llegar una carta a un corredor de bolsa de Boston pasandola entre amigos.
- ¿cuantos pasos se necesitaron en media?

Experimento de Milgram (2)

- Se completaron 64 entregas
- Se necesitó una media de 6,2 pasos

- 6 grados de separación!
- Algunas críticas al experimento
 - El número de muestras es pequeño
 - La gente podía tener información adicional ...
- Pero se ha confirmado en otros experimentos

Estudio de Columbia (2003)

- Correo electrónico
- 18 destinos de distinto tipo
- 24000 puntos de partida
- 65% de abandono por paso
- Se completaron 384 entregas
- Longitud media de la cadena: 4.01

No tan inesperado!

- Si cada persona está conectada a otras 100:
 - 1 paso: conecta con 100 personas
 - 2 pasos: con 10000
 - 3 pasos: 1000000
 - 4 pasos: 100M
 - 5 pasos: 10 billones

- Redes Aleatorias:
 - Distribución de grados binomial, Poisson
 - Distancia media entre nodos pequeña
 - Coeficiente de clustering muy pequeño (para redes grandes se anula)

- Mundos pequeños:
 - Diámetro de la red pequeño
 - Distancia media entre nodos pequeña (≈ In(N))
 - Coeficiente de clustering >> Coef. en redes aleatorias

- Redes libres de escala (scale-free):
 - Distribución de grados sigue ley de potencias
 - Se ve más claramente en un representación en escala log-log

- ¿Puede una red libre de escala ser un mundo pequeño?
 - SI, depende del exponente asociado a la red

Referencias

Networks, Crowds, and Markets:

Reasoning About a Highly Connected World David Easley and Jon Kleinberg

http://www.cs.cornell.edu/home/kleinber/networks-book/

Capítulo 2, 13, 20

 Milgram, Stanley. (1963). "Behavioral Study of Obedience". Journal of Abnormal and Social Psychology 67, 371-378.

http://www.radford.edu/~jaspelme/_private/gradsoc_a rticles/obedience/Migram_Obedience.pdf

Subgrafos y particiones

- Un subgrafo G'=(V',L') de un grafo G=(V,L) con V'⊆V y L'⊆L con V' conteniendo todos los nodos de los extremos de L'.
- Un subgrafo es un subgrafo de recubrimiento (spanning) si y solo si V' = V.