

Telephone: 859-226-1000 Facsimile: 859-226-1040 www.intertek-etlsemko.com

TEST REPORT

Report Number: 102083831LEX-002

Project Number: G102083831

Report Issue Date: 5/29/2015

Product Name: PocketECG III, type PECGT-IIIV

FCC Standards: Title 47 CFR Part 22 and 24, RSS-

132 Issue 3, RSS-133 Issue 6

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510

Client: Medicalgorithmics SA Al. Jerozolimskie 81 02-001 Warszawa, Poland

Report prepared by

Bryan Taylor, Team Leader

Report reviewed by

Jason Centers, Staff Engineer

esar Conters

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Report Number: 102083831LEX-002 Issued: 5/29/2015

TABLE OF CONTENTS

1	Introduction and Conclusion	3
2	Test Summary	3
3	Description of Equipment Under Test	4
4	Conducted Output Power	6
5	Occupied Bandwidth	13
6	Conducted Spurious Emissions at Antenna Terminals	20
7	Radiated Output Power	27
8	Radiated Spurious Emissions (Transmitter)	28
9	Frequency Stability	32
10	Measurement Uncertainty	36
11	Revision History	37

1 Introduction and Conclusion

The tests indicated in Section 2 were performed on the product constructed as described in Section 3. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test method, a list of the actual test equipment used, documentation photos, results and raw data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complied with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

The INTERTEK-Lexington laboratory is located at 731 Enterprise Drive, Lexington Kentucky, 40510. The radiated emission test site is a 10-meter semi-anechoic chamber. The chamber meets the characteristics of CISPR 16-1 and ANSI C63.4. For measurements, a remotely controlled flush-mount metal-top turntable is used to rotate the EUT a full 360 degrees. A remote controlled non-conductive antenna mast is used to scan the antenna height from one to four meters. The test site is listed with the FCC under Registration Number 485103.

2 Test Summary

Page	Test full name	FCC Reference	Industry Canada	Result
6	Conducted Output Power	Conducted Output Power \$2.1046 §24.232(d)		Pass
13	Occupied Bandwidth	§2.1049, §22.917(b)(d), and §24.238(a) RSS-GEN (4.6.1), RSS-133 (2.3)		Pass
20	Conducted Spurious Emissions	§2.1049, §2.1051, §22.917(a)(b), and § 24.238(a)(b)	RSS-132 (4.5), RSS-133 (6.5.1)	Pass
27	Radiated Output Power § 22.913(a) and § 24.232(c)		RSS-132 (4.4), RSS-133 (6.4)	Pass
28	Radiated Spurious Emissions (Transmitter)	§2.1053, §22.917(a)(b), and §24.238(a)(b)	RSS-132 (4.5), RSS-133 (6.5)	Pass
32	Frequency Stability	§2.1055, §22.355, and §24.235	RSS-132 (4.3), RSS-133 (6.3)	Pass

3 Description of Equipment Under Test

Equip	Equipment Under Test				
Manufacturer	Medicalgorithmics SA				
Model Number	PocketECG III, type PECGT-IIIV				
Serial Number	Test Sample 1				
Receive Date	4/21/2015				
Test Start Date	5/12/2015				
Test End Date	5/18/2015				
Device Received Condition	Good				
Test Sample Type	Production				
Frequency Band	824MHz - 849MHz (CDMA Cell Band) 1850MHz – 1910MHz (CDMA PCS Band)				
Modulation Type	CDMA				
Transmission Control	Base Station Simulator				
Maximum Output Power (Conducted)	24.01dBm (Cell Band) 23.61dBm (PCS Band)				
Test Channels	1013, 384, and 777 (CDMA Cell Band) 25, 600, and 1075 (CDMA PCS Band)				
Antenna Type	Internal				
Operating Voltage	Battery Powered by 3.7VDC				

Description of Equipment Under Test	
The PocketECG III, type PECGT-IIIV is a hand held ECG meter with wireless capabilities.	

Operating modes of the EUT:

_	Opo.						
	No.	Descriptions of EUT Exercising					
	1	Transmitting a CDMA signal					
Π	2	Receive / idle mode					

3.1 System setup including cable interconnection details, support equipment and simplified block diagram

3.2 EUT Block Diagram:

Block Diagram for Radiated Tests

Block Diagram for Conducted Tests at the Antenna Port

3.3 Cables:

Cables							
Description	Longth	Shielding	Ferrites	Connection			
Description	Length			From	То		
Sensor Cables	3ft	None	None	Test Sample	Un-Terminated		

4 Conducted Output Power

4.1 Test Limits

§ 2.1046

For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8).

§ 24.232 (d)

Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

4.2 Test Procedure

The transmitter output was connected to a coaxial cable, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The EUT was placed into a call and the burst average power was measured with a power meter dBm. The power output at the transmitter antenna port was determined by adding the value of the cable insertion loss to the power reading. Tests were performed at three frequencies (low, middle, and high channels) and on the highest power levels, which can be setup on the transmitters.

The peak-to-average ratio (PAR) was measured using a spectrum analyzer with a RBW wider than the EBW of the measured signal. The delta between the peak and average trace was recorded.

4.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Base Station Simulator	3956	Rohde & Schwarz	CMU200	9/18/2014	9/18/2015
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/15/2014	9/15/2015
Power Divider	E18106	Weinschell Engineering	1506A	Time of Use	Time of Use

4.4 Results:

The table below shows the conducted output power delivered to the radiating antenna. Plots are also provided showing that the peak to average ratio in the Cell Band is below the 13dB limit.

Conducted Output Power

Band	Channel	Frequency (MHz)	RC1/SO55	RC3/SO55	RC3/SO32 (+F-SCH)	RC3/SO32 (+SCH)	1xEvDO Rev. 0 (RTAP)	1xEvDO Rev. A (RETAP)
	1013	824.7	23.69	23.59	23.57	23.35	23.03	23.1
	384	836.52	24.01	23.96	24	23.75	23.47	23.6
Cellular	777	848.31	23.51	23.49	23.42	23.14	23.21	23.15
	25	1851.25	23.61	23.42	23.53	23	22.85	23
	600	1880	23.6	23.42	23.48	23.15	23.2	23.04
PCS	1175	1908.75	23.47	23.09	23.23	23.17	22.64	22.53

Date: 20.MAY.2015 14:40:45

Peak to Average Ratio Channel 1013

Date: 20.MAY.2015 14:39:31

Peak to Average Ratio Channel 384

Date: 20.MAY.2015 14:41:35

Peak to Average Ratio Channel 777

Date: 4.JUN.2015 15:19:35

Peak to Average Ratio Channel 25

Date: 4.JUN.2015 15:20:29

Peak to Average Ratio Channel 600

Date: 4.JUN.2015 15:21:07

Peak to Average Ratio Channel 1175

5 Occupied Bandwidth

5.1 Test Limits

§2.1049:

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

5.2 Test Procedure

The EUT was connected to a spectrum analyzer using a coaxial cable and power divider. The EUT was placed into a call using base station simulator. The base station simulator was set to force the EUT to its maximum power setting. The occupied bandwidth function of the analyzer was used to automatically generate the occupied bandwidth plots. The ndB down function of the analyzer was used to automatically measure the 26dB emission bandwidth. A peak detector was used for this measurement.

5.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Base Station Simulator	3956	Rohde & Schwarz	CMU200	9/18/2014	9/18/2015
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/15/2014	9/15/2015
Power Divider	E18106	Weinschell Engineering	1506A	Time of Use	Time of Use

5.4 Results:

The bandwidth measurements are shown in the table below and the plots that follow.

TX Band	Channel	Frequency	99% Occupied Bandwidth	26dB Emission Bandwidth
	1013	824.7MHz	1.33MHz	1.54MHz
Cell	384	836.52MHz	1.33MHz	1.53MHz
	777	848.31MHz	1.32MHz	1.53MHz
	25	1851.25MHz	1.32MHz	1.56MHz
PCS	600	1880.00MHz	1.32MHz	1.54MHz
	1175	1908.75MHz	1.33MHz	1.54MHz

Date: 13.MAY.2015 14:22:03

Cell Channel 1013, 99% Bandwidth

Date: 13.MAY.2015 14:24:06

Cell Channel 1013, 26dB Bandwidth

Date: 13.MAY.2015 14:26:03

Cell Channel 384, 99% Bandwidth

Date: 13.MAY.2015 14:25:26

Cell Channel 384, 26dB Bandwidth

Date: 13.MAY.2015 14:27:11

Cell Channel 777, 99% Bandwidth

Date: 13.MAY.2015 14:28:18

Cell Channel 777, 26dB Bandwidth

Date: 13.MAY.2015 14:29:47

PCS Channel 25, 99% Bandwidth

Date: 13.MAY.2015 14:30:36

PCS Channel 25, 26dB Bandwidth

Date: 13.MAY.2015 14:31:50

PCS Channel 600, 99% Bandwidth

Date: 13.MAY.2015 14:31:19

PCS Channel 600, 26dB Bandwidth

Date: 13.MAY.2015 14:32:58

PCS Channel 1175, 99% Bandwidth

Date: 13.MAY.2015 14:33:43

PCS Channel 1175, 26dB Bandwidth

6 Conducted Spurious Emissions at Antenna Terminals

6.1 Test Limits

§ 2.1049

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

(h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudorandom generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

§ 2.1051

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 22.917

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

§ 24.238

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

6.2 Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The base station simulator was set to force the EUT to its maximum power setting. The resolution bandwidth of the spectrum analyzer was set at 100kHz or 1MHz depending on the transmit band and the detector was set to peak detection for general scans up to the 10th harmonic. Emissions scans near the fundamental were measured using an RMS detector. Sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

6.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Base Station Simulator	3956	Rohde & Schwarz	CMU200	9/18/2014	9/18/2015
Spectrum Analyzer	3720	Rohde & Schwarz	FSEK30	9/15/2014	9/15/2015
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/15/2014	9/15/2015
Power Divider	E18106	Weinschell Engineering	1506A	Time of Use	Time of Use

6.4 Results:

The following plots show that all spurious emissions are attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. Plots for emissions within 1MHz of the band edge as well as for emission outside of this range are shown.

Cell Channel Conducted Spurious Emissions, Low, Mid, and High Channels

PCS Band Conducted Spurious Emissions, Low, Mid, and High Channels

Date: 13.MAY.2015 16:01:33

Bandwidth Correction Factor = 10log(15.4kHz / 12.5kHz) = 0.9dB Corrected Band Edge Measurement = -17.88dBm + 0.9dB = -16.98dBm Cell Channel 1013, Low Band Edge

Date: 13.MAY.2015 16:04:16

Cell Channel 1013, Low Block Edge

Date: 13.MAY.2015 16:14:22

Bandwidth Correction Factor = 10log(15.3kHz / 12.5kHz) = 0.87dB Corrected Band Edge Measurement = -14.72 + 0.87dB = -13.85dBm

Cell Channel 777, High Band Edge

Date: 13.MAY.2015 16:06:06

Cell Channel 777, High Block Edge

Date: 13.MAY.2015 16:17:45

Bandwidth Correction Factor = 10log(15.6kHz / 12.5kHz) = 0.96dB Corrected Band Edge Measurement = -35.17dBm + 0.96dB = -34.21dBm

PCS Channel 25, Low Band Edge

Date: 13.MAY.2015 16:24:55

PCS Channel 25, Low Block Edge

Date: 13.MAY.2015 16:23:35

PCS Channel 1175, High Band Edge

Date: 13.MAY.2015 16:28:13

PCS Channel 1175, High Block Edge

7 Radiated Output Power

7.1 Test Limits

§ 22.913

(a) (2) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

§ 24.232

(c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

7.2 Test Procedure

The radiated output power was determined by adding the peak antenna gain to the measured conducted output power to determine the peak radiated power.

$$ERP = ConductedOutputPower(dBm) + AntennaGain(dBi) - 2.15$$

$$EIRP = ConductedOutputPower(dBm) + AntennaGain(dBi)$$

7.3 Results:

The PocketECG III, type PECGT-IIIV meets the radiated power requirements of FCC §22.913 and §24.232.

Band	Channel	Frequency (MHz)	Cond Power (dBm)	Antenna Gain (dBi)	EIRP (dBi)	ERP (dBm)
	1013	824.7	23.69	1.4	25.09	22.94
	384	836.52	24.01	1.4	25.41	23.26
Cellular	777	848.31	23.51	1.4	24.91	22.76
	25	1851.25	23.61	1.1	24.71	22.56
	600	1880	23.6	1.1	24.7	22.55
PCS	1175	1908.75	23.47	1.1	24.57	22.42

8 Radiated Spurious Emissions (Transmitter)

8.1 Test Limits

§ 2.1053

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

§ 22.917

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

§ 24.238

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

8.2 Test Procedure

The EUT was placed on a non-conductive turntable. The measurement antenna was placed at a distance of 3 meters from the EUT. The EUT was forced to transmit at its maximum output power setting. During the tests, the antenna height and EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to tenth harmonic was investigated in order to identify the spurious emission. Once the spurious emissions were identified, the power of the emission was determined using the substitution method described in TIA-603-C. The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and at the spurious emissions frequency.

8.3 Test Equipment Used:

0.5 Test Equipment Osed.									
Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due				
EMI Test Receiver	1302.6005.40	Rohde&Schwarz	ESU40	9/17/2014	9/17/2015				
Preamplifier	122005	Rohde&Schwarz	TS-PR18	11/26/2014	11/26/2015				
Horn Antenna	6556	ETS	3115	12/1/2014	12/1/2015				
Horn Antenna	00154521	ETS	3117	10/21/2014	10/21/2015				
Bilog Antenna	2362	ETS	3142B	1/16/2015	1/16/2016				
Bilog Antenna	00051864	ETS	3142C	1/20/2015	1/20/2016				
System Controller	121701-1	Sunol Sciences	SC99V	Time of Use	Time of Use				
High Pass Filter	1	Wainwright	WHKX12- 2533.85-2710- 18000-40SS	Time of Use	Time of Use				
High Pass Filter	25	Wainwright	WHKX12- 1028.5-1100- 1500-40SS	Time of Use	Time of Use				
Base Station Simulator	2522	Rohde&Schwarz	CMU200	9/19/2014	9/19/2015				
Signal Generator	3915	Rohde&Schwarz	SMB100A	9/23/2014	9/23/2015				

8.4 Results:

All radiated spurious emissions were attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB which is equivalent to -13dBm. The emissions were measured using an RMS detector and the analyzer was gated so that the emission was only measured during the on-times of the transmitter.

Worst Case Spurious Measurements - Cell Band - Channel 1013

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBm)	(dBm)	(dB)	(kHz)	(cm)		(deg)
1650.105000	-46.91	-13.00	33.91	1000.000	132.3	Н	343.0
2467.242000	-56.76	-13.00	43.76	1000.000	189.9	٧	0.0
3304.840500	-57.13	-13.00	44.13	1000.000	163.7	٧	127.0
4125.480000	-47.71	-13.00	34.71	1000.000	113.0	٧	65.0
4946.944500	-55.65	-13.00	42.65	1000.000	200.0	٧	272.0
5771.578500	-53.03	-13.00	40.03	1000.000	127.2	V	6.0
6595.893000	-51.83	-13.00	38.83	1000.000	200.0	٧	316.0
7415.701500	-51.53	-13.00	38.53	1000.000	113.5	٧	268.0
8250.108000	-50.01	-13.00	37.01	1000.000	101.5	Н	318.0
9072.889500	-50.68	-13.00	37.68	1000.000	102.8	Н	104.0

Worst Case Spurious Measurements - Cell Band - Channel 384

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBm)	(dBm)	(dB)	(kHz)	(cm)		(deg)
1672.241000	-52.90	-13.00	39.90	1000.000	226.5	Н	324.0
1672.377000	-53.58	-13.00	40.58	1000.000	101.0	Н	307.0
2509.495500	-55.71	-13.00	42.71	1000.000	214.7	Н	0.0
3346.080000	-53.66	-13.00	40.66	1000.000	100.0	V	0.0
4182.600000	-50.13	-13.00	37.13	1000.000	100.0	V	0.0
4184.000000	-51.85	-13.00	38.85	1000.000	100.0	٧	0.0
5019.120000	-54.84	-13.00	41.84	1000.000	100.0	Н	0.0
5855.640000	-52.37	-13.00	39.37	1000.000	100.0	Н	0.0
6692.160000	-51.93	-13.00	38.93	1000.000	100.0	Н	0.0
7528.680000	-50.86	-13.00	37.86	1000.000	100.0	V	0.0
8365.200000	-52.46	-13.00	39.46	1000.000	100.0	Н	0.0
9201.720000	-51.38	-13.00	38.38	1000.000	100.0	V	0.0

Worst Case Spurious Measurements - Cell Band - Channel 777

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBm)	(dBm)	(dB)	(kHz)	(cm)		(deg)
1696.072500	-49.21	-13.00	36.21	1000.000	113.0	V	222.0
2541.646500	-56.27	-13.00	43.27	1000.000	200.0	Н	127.0
3392.539500	-55.21	-13.00	42.21	1000.000	152.1	V	147.0
4239.832500	-45.98	-13.00	32.98	1000.000	98.0	V	62.0
5096.265000	-54.65	-13.00	41.65	1000.000	98.1	Н	228.0
5944.593000	-53.02	-13.00	40.02	1000.000	128.1	V	329.0
6782.995500	-53.14	-13.00	40.14	1000.000	150.9	V	102.0
7641.448500	-52.31	-13.00	39.31	1000.000	175.9	V	56.0
8477.206500	-51.69	-13.00	38.69	1000.000	200.0	Н	0.0
9334.828500	-51.56	-13.00	38.56	1000.000	200.1	V	162.0

Intertek

Report Number: 102083831LEX-002 Issued: 5/29/2015

Worst Case Spurious Measurements - PCS Band - Channel 1175

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBm)	(dBm)	(dB)	(kHz)	(cm)		(deg)
3817.558500	-40.23	-13.00	27.23	1000.000	97.9	٧	125.0
5720.854500	-52.97	-13.00	39.97	1000.000	98.0	Н	318.0
7633.261500	-50.86	-13.00	37.86	1000.000	200.1	٧	94.0
9538.827000	-50.33	-13.00	37.33	1000.000	127.2	Н	272.0
11457.711000	-50.07	-13.00	37.07	1000.000	115.1	Н	280.0
13362.235500	-46.76	-13.00	33.76	1000.000	200.0	Н	54.0
15268.636500	-45.05	-13.00	32.05	1000.000	125.9	Н	76.0
17176.548000	-44.15	-13.00	31.15	1000.000	113.1	Н	217.0

Worst Case Spurious Measurements - PCS Band - Channel 25

-					•		
Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBm)	(dBm)	(dB)	(kHz)	(cm)		(deg)
5549.019000	-51.09	-13.00	38.09	1000.000	152.4	Н	292.0
7399.543000	-52.29	-13.00	39.29	1000.000	138.4	Н	268.0
9250.998500	-51.14	-13.00	38.14	1000.000	200.1	Н	160.0
11114.383500	-49.38	-13.00	36.38	1000.000	156.0	Н	184.0
12953.134000	-46.99	-13.00	33.99	1000.000	150.9	٧	9.0
14814.825500	-46.10	-13.00	33.10	1000.000	138.0	Н	114.0
16662.252000	-42.94	-13.00	29.94	1000.000	101.3	٧	9.0
3703.200000	-39.35	-13.00	26.35	1000.000	108.7	٧	26.0

Worst Case Spurious Measurements – PCS Band – Channel 600

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBm)	(dBm)	(dB)	(kHz)	(cm)		(deg)
1878.137000	-59.02	-13.00	46.02	1000.000	139.9	Н	7.0
3759.859000	-41.91	-13.00	28.91	1000.000	103.5	٧	124.0
5642.491500	-52.02	-13.00	39.02	1000.000	200.0	Н	243.0
7520.606000	-51.41	-13.00	38.41	1000.000	200.1	٧	6.0
9399.052000	-50.50	-13.00	37.50	1000.000	151.6	٧	166.0
11276.763000	-49.35	-13.00	36.35	1000.000	126.2	٧	180.0
13166.486000	-46.68	-13.00	33.68	1000.000	154.7	٧	36.0
15041.533000	-46.29	-13.00	33.29	1000.000	97.9	٧	80.0
16924.992000	-43.55	-13.00	30.55	1000.000	199.9	٧	192.0

9 Frequency Stability

9.1 Test Limits

§ 2.1055, §22.355, §24.235

The frequency stability of the transmitter was required to maintain a ± 2.5 ppm tolerance.

9.2 Test Procedure

The equipment under test was connected to an AC variac and the RF output was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for that purpose. After the temperature stabilized for approximately 30 minutes, the frequency error was read from the base station simulator. At 20C the input voltage was varied from 85% to 115% and the frequency stability vs input voltage was recorded.

9.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Base Station Simulator	3956	Rohde & Schwarz	CMU200	9/18/2014	9/18/2015
Environmental Chamber	32692	Thermotron	SM-8C	2/24/2015	2/24/2016
Multimeter/Temp Meter	3400	Fluke	289	5/29/2014	5/29/2015

9.4 Results:

The tables below show the frequency stability data for both Cell and PCS Bands. In both cases the test sample met the ± 2.5 ppm limit.

Frequency Stability for CDMA Cell Band

Frequency Stability for Coma Cell Band								
Operating	Freqeuncy:	824,700,000	Hz					
Channel:		1013						
Reference	e Voltage:	3.7	VDC					
Deviation	Limit:	2.5	ppm					
Notes:	Frequency St	tability in CDMA	Cell Band					
Voltage	Voltage		Frequency	Deviation	Deviatio			
(%)	(VDC)	Temp (℃)	Error (Hz)	(%)	n (ppm)			
100%	3.7	-30	8	0.0000010	0.0097			
100%	3.7	-20	4	0.0000005	0.0049			
100%	3.7	-10	6	0.0000007	0.0073			
100%	3.7	0	5	0.0000006	0.0061			
100%	3.7	10	7	0.0000008	0.0085			
100%	3.7	20	3	0.0000004	0.0036			
100%	3.7	30	-7	-0.0000008	-0.0085			
100%	3.7	40	-4	-0.0000005	-0.0049			
100%	3.7	50	2	0.0000002	0.0024			
100%	3.7	60	7	0.0000008	0.0085			
115%	3.145	20	-3	-0.000004	-0.0036			
85%	4.255	20	-6	-0.0000007	-0.0073			

Frequency Stability for CDMA Cell Band

Frequency Stability for Collina Cell Band								
Operating	Frequuncy:	836,520,000	Hz					
Channel:		384						
Reference	Voltage:	3.7	VDC					
Deviation	Limit:	2.5	ppm					
Notes:	Frequency Sta	ability in CDMA	Cell Band					
Voltage	Voltage		Frequency	Deviation	Deviatio			
(%)	(VDC)	Temp (℃)	Error (Hz)	(%)	n (ppm)			
100%	3.7	-30	9	0.0000011	0.0108			
100%	3.7	-20	4	0.0000005	0.0048			
100%	3.7	-10	9	0.0000011	0.0108			
100%	3.7	0	-2	-0.0000002	-0.0024			
100%	3.7	10	-6	-0.0000007	-0.0072			
100%	3.7	20	-7	-0.0000008	-0.0084			
100%	3.7	30	6	0.0000007	0.0072			
100%	3.7	40	6	0.0000007	0.0072			
100%	3.7	50	7	0.0000008	0.0084			
100%	3.7	60	-6	-0.0000007	-0.0072			
115%	3.145	20	-6	-0.0000007	-0.0072			
85%	4.255	20	7	0.0000008	0.0084			

Frequency Stability for CDMA Cell Band

Operating Frequency:	848,310,000 Hz							
Channel:	777							
Reference Voltage:	3.7 VDC							
Deviation Limit:	2.5 ppm							
Notes: Frequency S	tability in CDMA Cell Band							

Notes:	Frequency 5	tability in CDM <i>F</i>			
Voltage	Voltage		Frequency	Deviation	Deviatio
(%)	(VDC)	Temp (℃)	Error (Hz)	(%)	n (ppm)
100%	3.7	-30	13	0.0000016	0.0158
100%	3.7	-20	8	0.0000010	0.0097
100%	3.7	-10	10	0.0000012	0.0121
100%	3.7	0	-7	-0.0000008	-0.0085
100%	3.7	10	10	0.0000012	0.0121
100%	3.7	20	8	0.0000010	0.0097
100%	3.7	30	6	0.0000007	0.0073
100%	3.7	40	-5	-0.0000006	-0.0061
100%	3.7	50	6	0.0000007	0.0073
100%	3.7	60	-8	-0.0000010	-0.0097
115%	3.145	20	-7	-0.0000008	-0.0085
85%	4.255	20	6	0.0000007	0.0073

Frequency Stability for CDMA PCS Band

rioquoney oluminity for oblinit i oo bund				
Operating Frequency:	1,851,250,000 Hz			
Channel:	25			
Reference Voltage:	3.7 VDC			
Deviation Limit:	2.5 ppm			
Notes: Frequency Stability in CDMA PCS Band				

140163.	r requericy Stability in ODIVIA i OS Danu				
Voltage	Voltage		Frequency	Deviation	Deviatio
(%)	(VDC)	Temp (℃)	Error (Hz)	(%)	n (ppm)
100%	3.7	-30	23	0.0000027	0.0275
100%	3.7	-20	17	0.0000020	0.0203
100%	3.7	-10	12	0.0000014	0.0143
100%	3.7	0	-32	-0.0000038	-0.0383
100%	3.7	10	-32	-0.0000038	-0.0383
100%	3.7	20	-15	-0.0000018	-0.0179
100%	3.7	30	18	0.0000022	0.0215
100%	3.7	40	-19	-0.0000023	-0.0227
100%	3.7	50	-24	-0.0000029	-0.0287
100%	3.7	60	19	0.0000023	0.0227
115%	3.145	20	-16	-0.0000019	-0.0191
85%	4.255	20	8	0.0000010	0.0096

Frequency Stability for CDMA PCS Band

Operating	Frequuncy:	1,800,000,000	Hz		
Channel:		600			
Reference	Voltage:	3.7	VDC		
Deviation	Limit:	2.5	ppm		
Notes: Frequency Stability in CDMA PCS Band					

110103.	requeries stability in obtain to band				
Voltage	Voltage		Frequency	Deviation	Deviatio
(%)	(VDC)	Temp (℃)	Error (Hz)	(%)	n (ppm)
100%	3.7	-30	12	0.0000015	0.0146
100%	3.7	-20	16	0.0000019	0.0194
100%	3.7	-10	-14	-0.0000017	-0.0170
100%	3.7	0	-15	-0.0000018	-0.0182
100%	3.7	10	17	0.0000021	0.0206
100%	3.7	20	-16	-0.0000019	-0.0194
100%	3.7	30	7	0.0000008	0.0085
100%	3.7	40	-13	-0.0000016	-0.0158
100%	3.7	50	-15	-0.0000018	-0.0182
100%	3.7	60	16	0.0000019	0.0194
115%	3.145	20	-12	-0.0000015	-0.0146
85%	4.255	20	9	0.0000011	0.0109

Frequency Stability for CDMA PCS Band					
Operating	ating Freqeuncy: 1,908,750,000 Hz				
Channel:		1175			
Reference	Voltage:	3.7	VDC		
Deviation	Limit:	2.5	ppm		
Notes:	Frequency St	ability in CDMA	PCS Band		
Voltage	Voltage		Frequency	Deviation	Deviatio
(%)	(VDC)	Temp (℃)	Error (Hz)	(%)	n (ppm)
100%	3.7	-30	-32	-0.000038	-0.0383
100%	3.7	-20	-30	-0.000036	-0.0359
100%	3.7	-10	-35	-0.0000042	-0.0418
100%	3.7	0	-18	-0.0000022	-0.0215
100%	3.7	10	12	0.0000014	0.0143
100%	3.7	20	17	0.0000020	0.0203
100%	3.7	30	-21	-0.0000025	-0.0251
100%	3.7	40	-18	-0.0000022	-0.0215
100%	3.7	50	14	0.0000017	0.0167
100%	3.7	60	-12	-0.0000014	-0.0143
115%	3.145	20	-10	-0.0000012	-0.0120

20

85%

4.255

0.0096

0.0000010

Intertek

Report Number: 102083831LEX-002 Issued: 5/29/2015

10 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements.

The measurement uncertainty figures were calculated and correspond to a coverage factor of k = 2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Measurement uncertainty Table

Parameter	Uncertainty	Notes
Radiated emissions, 30 to 1000 MHz	<u>+</u> 3.9dB	
Radiated emissions, 1 to 18 GHz	<u>+</u> 4.2dB	
Radiated emissions, 18 to 40 GHz	<u>+</u> 4.3dB	
Power Port Conducted emissions, 150kHz to 30	+2.8dB	
MHz		

Intertek

Report Number: 102083831LEX-002 Issued: 5/29/2015

11 Revision History

Revision Level	Date	Report Number	Notes
0	5/29/2015	102083831LEX-002	Original Issue