Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej

Teoria Algorytmów i Obliczeń Laboratorium - Etap 3

Dokumentacja końcowa

Adrian Bednarz, Bartłomiej Dach, Tymon Felski

Wersja 1.0

27.11.2017

Spis treści

1.	Problem podstawowy			
	1.1.	Opis problemu	2	
		Problem znajdowania maksymalnego przepływu	4	
	1.3.	Algorytm	4	
		1.3.1. Konstrukcja sieci podstawowej	5	
		1.3.2. Konstrukcja sieci rezydualnej	6	
		1.3.3. Wyszukiwanie ścieżek	6	
		1.3.4. Wyznaczanie przepływu maksymalnego	7	
		1.3.5. Konstrukcja rozwiązania	8	
	1.4.	Dowód poprawności	8	
		1 1		
2.	Roz	szerzenie problemu	1 3	
	2.1.	Opis problemu	13	
	2.2.	Algorytmy genetyczne	14	
	2.3.	Algorytm	14	
		2.3.1. Generacja populacji początkowej	14	
			14	
			14	
			14	
			14	
			14	
			14	
			14	
	2.4.		14	
	2.5.	• •	14	
3	Snis	zawartości załaczonej płyty CD	15	

1. Problem podstawowy

Poniższy rozdział zawiera informacje dotyczące podstawowej wersji problemu, które zostały przygotowane w ramach pierwszego etapu laboratorium. Niniejszy problem został szczegółowo opisany, sformułowano algorytm pozwalający na rozwiązanie dowolnego zadania w tym problemie i przedstawiono dowód poprawności. Implementacja tej wersji problemu została stworzona na potrzeby drugiego etapu laboratorium.

1.1. Opis problemu

Niniejszy rozdział poświęcony jest dokładnemu opisaniu podstawowej wersji zadanego problemu.

Dane są zbiory:

- E **ekspertów** realizujących projekty,
- U umiejętności posiadanych przez ekspertów,
- P projektów do zrealizowania.

Każdemu ekspertowi przypisany jest wektor binarny opisujący posiadane przez niego umiejętności. Przykładowo, jeżeli ekspert posiada umiejętność i, to w wektorze umiejętności odpowiadającemu temu ekspertowi na i-tym miejscu znajduje się znak 1, w przeciwnym wypadku — 0.

Przykład — wektory ekspertów

Załóżmy, że liczność zbioru umiejętności U jest równa 5. Wówczas ponumerujemy umiejętności rozważane w problemie liczbami z zakresu [1,5]. Niech pewien ekspert ze zbioru E posiada umiejętności 2, 3 i 5. Wówczas wektor opisujący jego umiejętności to:

Każdemu projektowi przypisany jest wektor liczbowy opisujący zapotrzebowanie na ekspertów posiadających dane umiejętności. Przykładowo, jeżeli do realizacji projektu potrzeba trzech ekspertów posiadających umiejętność i, to w wektorze umiejętności odpowiadającemu temu projektowi na i-tym miejscu znajduje się liczba 3.

Przykład — wektory zapotrzebowania projektów

Utrzymując założenie o liczności zbioru umiejętności z poprzedniego przykładu, rozważmy pewien projekt ze zbioru P. Niech jego zapotrzebowanie na ekspertów posiadających umiejętności 1 i 4 wynosi odpowiednio 4 i 3, a na pozostałe — 0. Wówczas wektor opisujący zapotrzebowanie tego projektu to:

Wszystkie projekty realizowane są w tym samym oknie czasowym, tzn. prace nad każdym z nich rozpoczynają się w momencie t_0 i kończą w późniejszym momencie t_k . Oznacza to, że jeżeli dany ekspert zostanie zatrudniony do pracy nad projektem P_1 , to nie będzie mógł brać udziału w równoległym projekcie P_2 . Ponadto każdy ekspert podczas pracy nad projektem może wykorzystywać tylko jedną z posiadanych umiejętności i nie może jej zmienić w trakcie trwania prac.

Prace nad danym projektem zostaną zakończone nawet jeżeli nie zostanie mu przydzielona wymagana liczba ekspertów posiadających potrzebne umiejętności, określona przez wektor liczbowy odpowiadający temu projektowi. Będzie on natomiast zrealizowany gorzej niż w przypadku, gdyby przypisana została odpowiednia liczba ekspertów. Może się również zdarzyć, że najbardziej optymalne okaże się takie przypisanie ekspertów, że nad pewnym projektem nie będzie pracował nikt.

Jeżeli zapotrzebowanie projektu nie zostanie wypełnione w całości, mamy do czynienia z brakami. Poprzez braki rozumiemy różnicę pomiędzy zapotrzebowaniem projektu na ekspertów o danych umiejętnościach a rzeczywistym przydziałem. Aby wyznaczyć braki w danym projekcie, należy odjąć wektor zapotrzebowania projektu na ekspertów od wektora zawierającego informację o ekspertach przydzielonych do tego projektu i zsumować elementy uzyskanej różnicy. Dokładna definicja tego pojęcia znajduje się w rozdziale zawierającym dowód poprawności (definicja 8).

Przykład — obliczanie liczby braków

Niech wektorem opisującym zapotrzebowanie pewnego projektu na ekspertów będzie:

Załóżmy, że do tego projektu zostali przypisani eksperci opisani przez wektory:

[1, 0, 1, 0, 1]	(wykorzystuje umiejętność 1)
[1, 0, 0, 0, 1]	(wykorzystuje umiejętność 1)
[1, 1, 0, 1, 0]	(wykorzystuje umiejętność 4)
[0, 0, 0, 1, 1]	(wykorzystuje umiejętność 4)

Wówczas przydział ekspertów do tego projektu można opisać wektorem:

Braki w tym projekcie obliczymy następująco:

$$\sum([4,0,0,3,0]-[2,0,0,2,0])=\sum([2,0,0,1,0])=3$$

Naszym celem jest zminimalizowanie braków w obrębie wszystkich projektów (sumy wszystkich braków), czyli znalezienie optymalnego przydziału ekspertów do projektów.

1.2. Problem znajdowania maksymalnego przepływu

Okazuje się, że problem opisany w sekcji 1.1. można uogólnić do znanego problemu znajdowania maksymalnego przepływu w sieciach. W tej sekcji zdefiniowane są podstawowe pojęcia potrzebne do opisu tego problemu.

Definicja 1. Siecią nazywamy czwórkę uporządkowaną S = (G, c, s, t), gdzie:

- G = (V, E) jest grafem skierowanym,
- $c: E \to \mathbb{N}$ to tzw. funkcja przepustowości,
- $s,t \in V, s \neq t$ są dwoma wyróżnionymi wierzchołkami grafu G kolejno źródłem i ujściem sieci.

Definicja 2. Przepływem w sieci S nazywamy funkcję $f:E\to\mathbb{N}$ spełniającą następujące warunki:

1.
$$\forall_{e \in E} \quad 0 \leqslant f(e) \leqslant c(e)$$
,

2.
$$(\forall v \in V - \{s,t\}) \sum_{u: uv \in E} f(uv) = \sum_{u: vu \in E} f(vu)$$
 — tzw. prawo Kirchhoffa.

W ogólniejszym przypadku funkcje przepustowości i przepływu mogą mieć wartości nieujemne rzeczywiste, lecz założenie o całkowitości zapewnia, że algorytmy wyznaczające maksymalny przepływ zawsze zakończą działanie.

Prawo Kirchhoffa stanowi, że suma wartości przepływu na krawędziach wchodzących do danego wierzchołka musi być równa sumie wartości przepływu na krawędziach wychodzących z tego wierzchołka.

Definicja 3. Wartością przepływu f w sieci S nazywamy liczbę

$$W(f) = \sum_{u: su \in E} f(su) - \sum_{u: us \in E} f(us)$$

Powyższe definicje wystarczą, aby zdefiniować problem maksymalnego przepływu.

Definicja 4 (Problem maksymalnego przepływu). Dana jest sieć S = (G, c, s, t). Szukamy przepływu f o maksymalnej wartości W(f), zwanego również **przepływem maksymalnym**.

Zagadnienie znajdowania maksymalnego przepływu jest rozwiązywalne przez wiele zachłannych algorytmów opartych na metodzie Forda-Fulkersona, polegającej na znajdowaniu ścieżek w tzw. sieci rezydualnej. Szczegółowy opis jednego z takich algorytmów znajduje się w następnej sekcji.

1.3. Algorytm

W poniższym rozdziale precyzyjnie sformułowano algorytm pozwalający na rozwiązanie dowolnego zadania w postawionym problemie. Pseudokod został podzielony na fragmenty, z którego każdy będzie rozwiązywał pewien podproblem, w celu ułatwienia opisu głównej części algorytmu.

1.3.1. Konstrukcja sieci podstawowej

Niektóre podproblemy opisane w dalszej części rozdziału będą wymagać sieci reprezentowanej przez graf skierowany, który można utworzyć na podstawie danych z zadania.

- (a) Przykładowy format pliku wejściowego programu
- (b) Wygląd sieci skonstruowanej na podstawie dostarczonych danych

Rysunek 1: Przykład skonstruowanej sieci na podstawie określonego zadania problemu

Proponowany graf ${\tt G}$ będzie posiadał |E|+|U|+|P|+2 wierzchołków, które utworzą w nim pięć warstw. Wyróżnione zostaną dwa wierzchołki — źródło ${\tt s}$ i ujście ${\tt t}$ sieci, z którego każdy będzie jedynym w swojej warstwie. Pozostałe trzy warstwy pomiędzy nimi będą zawierać wierzchołki reprezentujące odpowiednio ekspertów, umiejętności i projekty. Poniżej znajduje się pseudokod pozwalający na stworzenie takiego grafu.

```
Konstrukcja sieci podstawowej
G <- graf skierowany o liczbie wierzchołków równej |E|+|U|+|P|+2
dla każdego wierzchołka e reprezentującego eksperta w G:
   dodaj krawędź (s, e) do G
   G.c[s, e] <-1
dla każdego wierzchołka e reprezentującego eksperta w G:
    dla każdej umiejętności u posiadanej przez eksperta e:
        dodaj krawędź (e, u) do G
        G.c[e, u] <- 1
dla każdego wierzchołka p reprezentującego projekt w G:
   dla każdej umiejętności u wymaganej przez projekt p:
        dodaj krawędź (u, p) do G
        G.c[e, u] <- liczba wymaganych ekspertów z u
dla każdego wierzchołka p reprezentującego projekt w G:
   dodaj krawędź (p, t) do G
    G.c[p, t] <- suma przepustowości krawędzi wchodzących do p
```

1.3.2. Konstrukcja sieci rezydualnej

W celu konstruowania w sieci ścieżek rozszerzających niezbędne jest utworzenie pomocniczej sieci rezydualnej. Przepustowość krawędzi w tej sieci zależy od wartości przepływu na krawędziach oryginalnej sieci.

Niech dana będzie krawędź uv i przepływ f. Wówczas w sieci rezydualnej istnieją krawędzie:

- uv o przepustowości c(uv) f(uv),
- vu o przepustowości f(uv).

Sieć rezydualna będzie aktualizowana po każdym zwiększeniu przepływu wzdłuż ścieżki powiększającej. Na początku działania algorytmu (przy zerowym przepływie) będzie ona wyglądać prawie tak samo, jak wyjściowa sieć. Wystarczy stworzyć sieć opisaną w poprzednim punkcie i rozszerzyć ją w sposób następujący:

```
Rozszerzenie konstrukcji sieci podstawowej

dla każdej krawędzi (u, v) w G:
  dodaj krawędź (v, u) do G
G.c[v, u] <- 0
```

1.3.3. Wyszukiwanie ścieżek

Do działania algorytmu potrzebna jest podprocedura wyszukująca ścieżki rozszerzające między dwoma wierzchołkami grafu, co można dość prosto zaimplementować poprzez modyfikację przeszukiwania wszerz (ang. breadth-first search, BFS). Poniżej znajduje się pseudokod żądanej podprocedury, wyszukującej ścieżki w grafie G od wierzchołka s do t.

```
Wyszukiwanie ścieżek rozszerzających w grafie
findAugmentingPath(G, s, t):
    Q <- pusta kolejka
    dodaj s na koniec Q
    visited <- tablica o długości równiej liczbe wierzchołków grafu G
               ze wszystkimi elementami zainicjowanymi na False
    visited[s] <- True</pre>
    parent <- pusty słownik
    dopóki kolejka Q jest niepusta:
        u <- piewrszy element z kolejki Q
        jeżeli s = t:
            zwróć tracePath(parent, s, t)
        dla każdnej krawędzi (u, v) wychodzącej z u w G:
            jeżeli visisted[v] = False i G.c[u, v] > 0:
                visited[v] <- True</pre>
                parent[v] <- u
                dodaj v na koniec Q
```

Powyższe wyszukiwanie używa pomocniczych funkcji tracePath oraz constructPath, które służą odpowiednio do wyznaczenia listy wierzchołków znajdujących się na ścieżce z s do t na podstawie słownika parent i zbudowania ścieżki na podstawie listy wierzchołków L. Są one zdefiniowane następująco:

```
Funkcje pomocniczne do budowania ścieżki

tracePath(s, t, parent):
    L <- pusta lista
    dodaj t na koniec L
    dopóki ostatni element listy L jest różny od s:
        dodaj parent[ostatni element listy L] na koniec L
    odwróć kolejność elementów listy L
    zwróć constructPath(L)

constructPath(L):
    E <- pusta lista
    u <- pierwszy element listy L
    dla każdego wierzchołka v poza pierwszym z L:
        dodaj krawędź (u, v) na koniec E
        u <- v
    zwróć E
```

Przeszukiwanie wszerz jest sposobem konstrukcji ścieżek powiększających wykorzystywanym w algorytmie Edmondsa-Karpa, będącym implementacją metody Forda-Fulkersona.

1.3.4. Wyznaczanie przepływu maksymalnego

Poniżej znajduje się zapis algorytmu wyznaczającego przepływ maksymalny zgodnie z zasadą opisaną przez Forda i Fulkersona. G_res jest w tym przypadku siecią rezydualną wyznaczoną na podstawie sieci podstawowej skonstruowanej w pierwszym podrozdziale.

Algorytm ten jednak nie rozwiązuje zadania wyjściowego. Optymalną wartość braków i przyporządkowanie ekspertów do projektów należy wyznaczyć z uzyskanego przepływu.

1.3.5. Konstrukcja rozwiązania

Poniższa konstrukcja przyporządkowania ekspertów do projektów korzysta z sieci podstawowej G (nie z sieci rezydualnej G_res) i z wyznaczonego przepływu f.

Poniższa funkcja oblicza ostateczną liczbę braków w wyznaczonym przyporządkowaniu L.

```
Wyznaczanie braków

calcLosses(G, L):
    need <- 0
    dla każdej krawędzi (p, t) wchodzącej do ujścia t w G:
        need += G.c[p, t]
    flow <- liczba elementów w liście L
    zwróć (need - flow)
```

1.4. Dowód poprawności

W tej sekcji wykażemy związek między postawionym problemem a zagadnieniem wyznaczania przepływu maksymalnego oraz równoważność rozwiązań obu zadań.

Na początek zdefiniujmy w sposób formalny pojęcia użyte w oryginalnym zadaniu. Załóżmy, że dane są następujące zbiory:

- zbiór ekspertów, oznaczony E,
- zbiór umiejętności, oznaczony U,
- zbiór projektów, oznaczony P.

Definicja 5. Funkcją umiejętności nazywamy funkcję

ability :
$$E \times U \rightarrow \{0, 1\}$$

gdzie dla eksperta $e \in E$ oraz umiejętności $u \in U$ zachodzi ability(e, u) = 1 wtedy i tylko wtedy, gdy ekspert e posiada umiejętność u, zaś 0 w przeciwnym przypadku.

Definicja 6. Zapotrzebowaniem projektu nazywamy funkcję

$$\mathrm{need}: P \times U \to \mathbb{N}$$

gdzie dla projektu $p \in P$ i umiejętności $u \in U$ zachodzi need(p, u) = n wtedy i tylko wtedy, gdy w projekcie p liczba potrzebnych ekspertów w dziedzinie umiejętności u wynosi n.

Zauważmy, że funkcje umiejętności i zapotrzebowania projektu są tożsame z wektorami wejściowymi zadania problemu (odpowiadają wzięciu odpowiedniej ich współrzędnej).

Definicja 7. Przyporządkowaniem eksperta nazywamy relację

$$assign \subseteq E \times U \times P$$

gdzie projekt $p \in P$, umiejętność $u \in U$ oraz ekspert $e \in E$ są ze sobą w relacji assign wtedy i tylko wtedy, gdy

- ekspert e posiada umiejętność u (tj. ability(e, u) = 1),
- $\bullet\,$ ekspertezostał przyporządkowany do pracy w projekcie p w dziedzinie umiejętności u.

Każdy ekspert $e \in E$ może być w relacji z co najwyżej jedną parą postaci (u, p), gdzie $u \in U, p \in P$.

Ponadto, dla każdego projektu p i umiejętności u musi zachodzić

$$\operatorname{assigned}(p,u) \stackrel{\text{def}}{=} |\{e \in E : (e,u,p) \in \operatorname{assign}\}| \leq \operatorname{need}(p,u)$$

Definicja 8. Liczbą braków w projekcie p dla danego przyporządkowania assign nazywamy liczbę

$$\operatorname{missing}(p,\operatorname{assign}) = \sum_{u \in U} (\operatorname{need}(p,u) - \operatorname{assigned}(p,u))$$

Definicja 9. Całkowitą liczbą braków dla danego przyporządkowania assign nazywamy liczbę

$$M(assign) = \sum_{p \in P} missing(p, assign)$$

Widoczne jest, że M jest parametrem minimalizowanym w postawionym problemie, zależnym od końcowego przyporządkowania.

Na podstawie powyższych definicji skonstruujemy teraz sieć, której użyjemy do wyznaczenia rozwiązań problemu.

Definicja 10. Siecią przydziałów nazwiemy sieć S = (G, c, s, t), gdzie:

- $G = (V_G, E_G)$ jest grafem skierowanym takim, że:
 - $V_G = E \cup U \cup P \cup \{s, t\},\$
 - $E_G = \{(e, u) : \text{ability}(e, u) = 1, e \in E, u \in U\} \cup \{(u, p) : \text{need}(u, p) > 0, u \in U, p \in P\},$ tj. krawędziami połączeni są eksperci z ich opanowanymi umiejętnościami, oraz projekty z potrzebnymi do ich realizacji umiejętnościami.
- $\bullet \ c: E_G \to \mathbb{N}$ jest funkcją pojemności zdefiniowaną dla krawędzi e_G następująco:
 - jeżeli $e_G = se, e \in E$, to $c(e_G) = 1$,
 - jeżeli $e_G = eu, e \in E, u \in U$, to $c(e_G) = \text{ability}(e, u) = 1$,
 - jeżeli $e_G = up, u \in U, p \in P$, to $c(e_G) = \text{need}(p, u)$,
 - jeżeli $e_G = pt, p \in P$, to

$$c(e_G) = \sum_{sp \in E_G} c(up)$$

- (tj. pojemność tej krawędzi jest równa sumie pojemności krawędzi wchodzących do wierzchołka p).
- \bullet s, t są wyróżnionymi wierzchołkami z V_G kolejno źródłem i ujściem.

Definicja 11. Odległością $\operatorname{dist}(u,v)$ wierzchołka u od wierzchołka v w grafie G nazywamy:

- \bullet liczbę krawędzi w najkrótszej ścieżce od u do v, jeśli taka istnieje,
- 0, jeśli u=v,
- ∞ , jeśli $u \neq v$ i nie istnieje ścieżka od u do v.

Twierdzenie 1. Przepływ maksymalny w sieci przydziałów wyznacza przyporządkowanie o minimalnej możliwej wartości parametru M.

Dowód. Aby dowieść to twierdzenie, wykażemy kolejno, że:

- 1. Każde zadanie problemu wyjściowego jest równoważne z pewną siecią przydziałów S.
 - \bullet (\Rightarrow) Niech dane będzie pewne zadanie problemu wyjściowego (tj. dane będą zbiory E,U,P oraz funkcje ability i need). Wówczas można dla tego zadania skonstruować sieć przydziałów za pomocą konstrukcji pokazanej w sekcji 1.3. i definicji 10.
 - (\Leftarrow) Niech dana będzie pewna sieć przydziałów S = (G, c, s, t). Zauważmy, że wierzchołki sieci przydziałów dzielą się z definicji sieci na pięć zbiorów, określonych przez ich odległość od źródła:
 - $-\operatorname{dist}(u,v) = 0 \operatorname{singleton} \{s\},\$
 - $-\operatorname{dist}(u,v) = 1$ zbiór ekspertów E,
 - $-\operatorname{dist}(u,v) = 2$ zbiór umiejętności U,
 - $-\operatorname{dist}(u,v) = 3 \operatorname{zbi\acute{o}r} \operatorname{projekt\acute{o}w} P,$
 - $-\operatorname{dist}(u,v) = 4 \operatorname{singleton} \{t\},\$

co daje nam wyjściowe zbiory E, U, P.

Na podstawie powyższych zbiorów i funkcji przepustowości c można zrekonstruować również funkcje ability i need:

– Dla każdego $e \in E$ i $u \in U$ funkcję ability możemy zdefiniować jako

ability
$$(e, u) = \begin{cases} 1, & eu \in E_G \\ 0, & eu \notin E_G \end{cases}$$

– Dla każdego $u \in U$ i $p \in P$ funkcję need możemy zdefiniować jako

$$\operatorname{need}(p, u) = \begin{cases} c(up), & up \in E_G \\ 0, & up \notin E_G \end{cases}$$

Z każdej sieci przydziałów można skonstruować więc zadanie oryginalnego problemu.

2. Dowolny przepływ w sieci przydziałów wyznacza ilość wykonanych podzadań przy danym przyporządkowaniu.

Niech dany będzie pewien przepływ f w sieci przydziałów S. Przyporządkowanie ekspertów do projektów assign $_f$ wyznaczamy w następujący sposób:

- (a) Pewnego eksperta $e \in E$ przypisujemy do umiejętności $u \in U$, jeżeli f(e, u) = 1.
- (b) Niech dana będzie pewna umiejętność $u \in U$. Oznaczmy zbiór ekspertów przypisanych do tej umiejętności w punkcie (a) jako E_u . Zbiór E_s dzielimy na rozłączne podzbiory $E_{u,p}$ takie, że $|E_{u,p}| = f(u,p)$.
- (c) Dla każdego z uzyskanych podzbiorów $E_{u,p}$, gdzie $u \in U, p \in P$, do relacji assign $_f$ dodajemy krotki

$$\{(e, u, p) : e \in E_{u,p}\}$$

Zauważmy następujące fakty:

• Rozważmy wierzchołek $e \in E$ odpowiadający pewnemu ekspertowi. Z definicji zbioru krawedzi sieci i funkcji przepustowości, do wierzcho

Z definicji zbioru krawędzi sieci i funkcji przepustowości, do wierzchołka tego wchodzi dokładnie jedna krawędź o pojemności 1, a wychodzi z niego co najwyżej |U| krawędzi o pojemności 1.

Stąd w przepływie f tylko jedna z krawędzi wychodzących może mieć przepływ 1, a więc każdy ekspert może być przyporządkowany do co najwyżej jednej umiejetności.

 \bullet Rozważmy dowolny wierzchołek $u \in U$ odpowiadający pewnej umiejętności. Z własności przepływu mamy

$$\sum_{wu \in E_G} f(wu) = \sum_{uv \in E_G} f(uv)$$

Wiedząc, że wszystkie krawędzie wchodzące do s wychodzą ze zbioru E, oraz że wszystkie krawędzie wychodzące z s wchodzą do zbioru P, mamy

$$\sum_{e \in E} f(eu) = \sum_{p \in P} f(up)$$

Krawędzie o niezerowym przepływie wchodzące do e reprezentują ekspertów przydzielonych do danej umiejętności, zaś krawędzie o niezerowym przepływie wychodzące z e reprezentują zapotrzebowanie projektów na ekspertów z umiejętnością u.

Ponieważ suma przepływów krawędzi wchodzących i wychodzących jest taka sama, każdego eksperta przydzielonego do u można przypisać do dokładnie jednego podzadania (do dokładnie jednego projektu w dziedzinie umiejętności u), a więc można wykonać punkt (b) konstrukcji.

• Rozważmy dowolne dwa wierzchołki $u \in U, p \in P$ takie, że $up \in E_G$. Z definicji sieci mamy c(u, p) = need(u, p), a z konstrukcji rozwiązania wynika, że $f(u, p) = \text{assigned}_f(u, p)$. Stąd na mocy definicji przepływu mamy

assigned
$$f(u, p) = f(u, p) \le c(u, p) = \text{need}(u, p)$$

• Rozważmy dowolny wierzchołek $p \in P$. Z definicji funkcji pojemności, jeśli wszystkie krawędzie wchodzące do p będą wysycone przepływem (tj. f(e) = c(e)), to przepływ ten można przekazać w całości do ujścia krawędzią pt, bo

$$c(pt) = \sum_{up \in E_G} c(up)$$

Stąd pojemność krawędzi pt nie ogranicza wartości maksymalnego przepływu.

Wyznaczone przyporządkowanie assign $_f$ spełnia więc wszystkie warunki prawidłowego przyporządkowania ekspertów do projektów, a ilość elementów w tej relacji odpowiada liczbie wykonanych podzadań.

3. Przepływ maksymalny wyznacza minimalną wartość parametru M.

Na mocy punktu 1., każde zadanie oryginalnego problemu jest równoważne pewnej sieci przydziałów, zaś na mocy punktu 2 dowolny przepływ w sieci przydziałów wyznacza ilość wykonanych podzadań. Wobec tego przepływ maksymalny $f_{\rm max}$ wyznacza maksymalną ilość wykonanych podzadań, równą |assign_{f_{\rm max}}|.

Zauważmy, że

$$\begin{split} M(\operatorname{assign}) &= \sum_{p \in P} \operatorname{missing}(p, \operatorname{assign}) = \\ &= \sum_{p \in P} \sum_{u \in U} (\operatorname{need}(p, u) - \operatorname{assigned}(p, u)) = \\ &= \left(\sum_{p \in P} \sum_{u \in U} \operatorname{need}(p, u) \right) - \left(\sum_{p \in P} \sum_{u \in U} \operatorname{assigned}(p, u) \right) = \\ &= \left(\sum_{p \in P} \sum_{u \in U} \operatorname{need}(p, u) \right) - |\operatorname{assign}| \,, \end{split}$$

gdzie ostatnia równość wynika z definicji 7 (przyjęto, że jeden ekspert może być w relacji z co najwyżej jedną parą (u, p)).

W związku z tym maksymalizacja liczności przyporządkowania assign jest równoważna minimalizacji parametru M, co kończy dowód.

2. Rozszerzenie problemu

Niniejszy rozdział dotyczy rozszerzenia podstawowego problemu, które zostało przygotowane i zaimplementowane na porzeby trzeciego etapu laboratorium. Opisano sposób rozszerzenia problemu i przedstawiono algorytm, który pozwoli na rozwiązanie dowolnego zadania w tym problemie. Oszacowano także złożoność czasową wspomnianego algorytmu.

2.1. Opis problemu

Wybrane rozszerzenie problemu wprowadza czas jako czynnik wpływający na przyporządkowanie ekspertów do projektów. Zbiory ekspertów E, umiejętności U i projektów P z poprzedniej definicji pozostają bez zmian. Nowym elementem jest założenie, że każdy projekt trwa określoną liczbę kolejnych jednostek czasu (tzn. proces wytwórczy nie może zostać podzielony), a czas na wykonanie wszystkich projektów jest z góry określony i wszystkie muszą się w nim zmieścić.

Przykład — czas na wykonanie projektów

Jeżeli parametr określający liczbę jednostek czasu dostępnych na realizację projektów wynosi 5, to wszystkie projekty muszą zaczynać się nie wcześniej niż w chwili czasu 0 i kończyć nie później niż w chwili czasu 5.

Definicja wektora przypisanego ekspertowi ze zbioru E pozostaje bez zmian – nadal jest to wektor binarny opisujący umiejętności danego eksperta. Zmianie uległa definicja wektora odpowiadającego projektowi ze zbioru P. Jest on wciąż wektorem liczbowym, jednak jego ostatni element mówi o liczbie jednostek czasu potrzebnych na wykonanie danego projektu.

Przykład — wektor projektu

Załóżmy, że liczność zbioru umiejętności U jest równa 5. Wówczas ponumerujemy umiejętności rozważane w problemie liczbami z zakresu [1,5]. Rozważmy pewien projekt ze zbioru P. Niech jego zapotrzebowanie na ekspertów posiadających umiejętności 1 i 3 wynosi odpowiednio 2 i 5, a na pozostałe — 0. Ponadto długość procesu wytwórczego tego projektu została oszacowana na 3 jednostki czasu. Wówczas wektor opisujący zapotrzebowanie tego projektu to:

Ważnym jest, że jednostki czasu są niepodzielne i zarówno ogólny czas przeznaczony na wykonanie wszystkich projektów, jak i czas realizacji poszczególnych projektów musi wynosić przynajmniej jedną jednostkę czasu.

Ekspert zatrudniony do pracy nad projektem P_1 w jednostce czasu od chwili t_k do chwili t_{k+1} nie będzie mógł brać udziału w równoległym projekcie P_2 w tej jednostce czasu. Ponadto każdy ekspert podczas pracy nad projektem może nadal wykorzystywać tylko jedną z posiadanych umiejętności i nie może jej zmienić w trakcie trwania jednostki czasu.

Jest możliwa natomiast zmiana projektu i/lub umiejętności po upływie danej jednostki czasu. Wspomniany ekspert mógłby w jednostce czasu od chwili t_{k+1} do chwili t_{k+2} dalej pracować nad projektem P_1 wykorzystując tę samą lub inną umiejętność albo zmienić projekt na P_2 i pracować na wcześniej wspomnianych zasadach.

Definicja braków i założenia ich dotyczące są nadal podtrzymywane. Różnica w rozszerzonym problemie dotyczy ich interpretacji, ponieważ braki i przyporządkowania rozpatrujemy teraz w danej jednostce czasu. Oznacza to, że zarówno braki jak i przyporządkowania ekspertów do danego projektu mogą się różnić na przestrzeni czasu, a ostateczna liczba braków jest równa sumie wszystkich braków w czasie trwania procesu wytwórczego projektu.

Przykład — obliczanie ostatecznej liczby braków

Załóżmy, że pewien projekt ze zbioru P jest realizowany przez 3 jednostki czasu. Każdej jednostce czasu odpowiada pewne przyporządkowanie ekspertów do tego projektu i określają one braki odpowiednio 21, 3 i 7. Wówczas ostateczna liczba braków w tym projekcie jest zdefiniowana przez liczbę będącą sumą braków w poszczególnych jednostkach czasu, czyli:

$$21 + 3 + 7 = 31$$

Naszym celem jest zminimalizowanie braków w obrębie wszystkich projektów na przestrzeni wszystkich jednostek czasu, czyli znalezienie takiego planu projektów (chwil czasu, w których projekty mają się rozpoczynać), aby możliwe było optymalne przydzielenie ekspertów do projektów.

- 2.2. Algorytmy genetyczne
- 2.3. Algorytm
- 2.3.1. Generacja populacji początkowej
- 2.3.2. Funkcja przystosowania
- 2.3.3. Ocena przystosowania populacji
- 2.3.4. Warunki stopu
- 2.3.5. Kontrola populacji
- 2.3.6. Krzyżowanie osobników
- 2.3.7. Mutacja osobników
- 2.3.8. Działanie
- 2.4. Dowód poprawności
- 2.5. Oszacowanie złożoności czasowej

3. Spis zawartości załączonej płyty CD