Графы знаний

Knowledge Graph Embeddings

М. Галкин, Д. Муромцев

Так можно представить граф знаний с помощью онтологии и триплетов.

Вспоминаем дистрибутивную семантику 2

- Самый просто способ представления one-hot кодировка (каждое слово представлено в виде двоичного вектора длины п, где i-ое значение кодируется единицей на i-ой позиции и нулями на всех остальных)
- Более подробно можно посмотреть тут https://habr.com/ru/company/ods/blog/329410/
- Почему размер вектора отличается от размера словаря можно посмотреть тут https://neurohive.jo/ru/osnovy-datascience/word2vec-vektornye-predstavlenija-slovdlja-mashinnogo-obuchenija/

Так можно представить граф знаний с помощью онтологии и триплетов.

Вспоминаем дистрибутивную семантику

	Рабо- та	Деятель- ность	Труд	Дейст- вие	Дело	Созда- ние	Творче- ство
Работа		16	13	12	10	6	0
Деятельность	18		9	12	5	6	2
$Tpy\partial$	37	7		6	7	4	0
Действие	26	26	9	-	6	8	2
Дело	39	11	22	27	-	3	0
Создание	1	0	2	0	1	100	3
Творчество	4	1	4	1	4	3	

- Пример для слов: работа, действие, деятельность, труд, дело, создание, творчество
- Сила семантических связей между этими словами определялась по словарным статьям толковых словарей
- если слова этой группы встречаются рядом в пределах словарных статей толковых и двуязычных словарей, то между словами регистрируются семантические связи
- чем чаще встречается та или иная пара слов вместе в словарных статьях, тем сильнее между словами этой пары
- Таким образом для каждого слова получается векторное представление, которое также можно вычислить применительно к различным документам из корпуса (с помощью TF-IDF)

Так можно представить граф знаний с помощью онтологии и триплетов.

Knowledge Graph Embeddings

Tensor Factorization Поставим задачу: представим узлы графа так, чтобы их близость в векторном пространстве приблизительно соответствовало сходству в исходном графе

Translation

Convolution

Graph Neural Nets

Knowledge Graph Embeddings

Если нам удалось закодировать узлы и связи с помощью векторов Zu и Zv то, тогда становится возможным вычисление семантической близости узлов в векторном пространстве как $similarity(u,v) \approx Zv^T Zu$

$$h + r \approx t$$

Knowledge Graph Embeddings - KGE

Идея — минимизация функции расстояния между верными и схожими утверждениями, и максимизация между ложными.

- □ Разные функции расстояния
- □ 50-75-мерные пространства
- □ Семантика скрыта в векторе
- □ Сложность интерпретации
- □ Больше размер графа точнее векторные представления
- □ Вычислительно затратно

Spock Science Fiction Obi-Wan Kenobi played starredin Leonard Nimoy Star Trek Star Wars Alec Guinness

Nickel et al. A review of relational machine learning for knowledge graphs. IEEE. 2015

KGE - Graphs as Tensors

Элементарная матрица для представления связи starredIn

Матрицы всех отношений могут быть совмещены в общий тензор. Элемент тензора $y_{ijk}=1$ обозначает факт, что существует отношение (*i-th entity, k-th predicate, j-th entity*). В противном случае, для несуществующих или неизвестных отношений элемент приравнивается к нулю.

Для моделирования бинарных отношений на графе удобно использовать трёхсторонний тензор <u>Y</u>, в котором две моды образованы идентично на основе конкатенированных сущностей объектов-узлов, а третья мода содержит отношения между ними Подобный подход получил название тензорная факторизация.

KGE - алгоритм RESCAL

Tensor Factorization

Задача тензорной факторизации - разложить трехмерный тензор на векторы E (узлы) и R (связи)

$$\mathrm{E}:\mathbb{R}^{|E| imes n}$$

$$\mathrm{W}: \mathbb{R}^{|k| imes n imes n}$$

Nickel et al. A review of relational machine learning for knowledge graphs. IEEE. 2015

Сущности ГЗ могут быть эффективно представлены векторами их латентных свойств. Данные свойства называют латентными, т.к. они напрямую не описаны в данных, но могут быть выведены из имеющихся данных в процессе МО. В работе [29] предложена модель графовых латентных свойств RESCAL, представляющая тройки посредством парного взаимодействия этих латентных свойств. Вычисление вероятности существования какой-либо тройки в ГЗ осуществляется с помощью специальной оценочной функции. Тензорное представление графа позволяет эффективным образом вычислять подобные оценки через факторизацию срезов тензора F_k . является матрицей, содержащей все оценки для k-й связи (отношения) и i-го ряда в матрице E. W^k является матрицей весов, элементы которой W_{abk} показывают, насколько латентные свойства a и b взаимосвязаны в k-том отношении