Applied Time Series

Course timetable:

- Thursday 5 October 2023 8:30-11:45 AM D303
- Thursday 12 October 2023 8:30-11:45 AM D303
- \bullet Thursday 19 October 2023 - 8:30-11:45 AM - D
303
- Friday 26 October 2023 8:30-11:45 AM D303
- \bullet Thursday 9 November 2023 8:30-11:45 AM D303
- \bullet Thursday 16 November 2023 8:30-11:45 AM D303
- Thursday 23 November 2023 8:30-11:45 AM D303
- Thursday 30 November 2023 8:30-11:45 AM D303

Assessment:

- Assignment (30%, due date: December 29, 2023, at midnight)
- Final Exam (70%, December 15, 2022 Salle A Bis from 10:15 to 12:15 PM)

References:

- 1. Brooks, C. (2008), Introductory Econometrics for Finance, Cambridge University Press.
- 2. Enders, W. (2014), Applied Econometric Time Series, 4th Edition, Wiley.
- 3. Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press.
- 4. Hilpisch, Y. (2015), Python for Finance: Analyze Big Financial Data, O'Reilly Publishing.
- 5. Sargent, T. J. and Stachurski (2018), Lectures in Quantitative Economics.
- 6. Sheppard, K. (2018), Introduction to Python for Econometrics, Statistics and Numerical Analysis.
- 7. Tsay, R. S. (2010), Analysis of Financial Time Series, 3rd Edition, Wiley.

Assignment 2023

Part 1 (10 points): Theoretical exercises

Exercise 1 (2 points): The AR(1)-ARCH(1) model

Consider the model $Y_t = \beta_0 + \beta_1 Y_{t-1} + \varepsilon_t$, $h_t = V_{t-1}(\varepsilon_t) = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$ with $\alpha_0 > 0, \alpha_1 > 0$ and $\alpha_1 < 1$.

- 1. Find the conditional and unconditional mean of Y_t .
- 2. Find the conditional and unconditional variance of Y_t .

Exercise 2 (3 points): The seasonal $MA(1) \times MA(1)_{12}$ process

Suppose that Y_t is a seasonal $MA(1) \times MA(1)_{12}$ process, that is:

$$Y_t = (1 - \theta L)(1 - \Theta L^{12})\varepsilon_t$$

where ε_t is a zero mean white noise process with variance $V(\varepsilon_t) = \sigma_{\varepsilon}^2$.

- 1. Derive expressions for $\mu = E(Y_t)$ and $\gamma_0 = V(Y_t)$.
- 2. Derive the autocovariance function, that is, calculate $\gamma_k = \text{cov}(Y_t, Y_{t-k})$, for $k = 1, 2, 3, \dots, 15$.
- 3. Derive the s-steps ahead forecasts of Y_t for $s = 1, 2, 3, \dots, 15$.

Exercise 3 (1 points): The AR(1) process

Consider the time series model:

$$Y_t = \mu + \phi^2 Y_{t-1} + \varepsilon_t,$$

where μ and ϕ are fixed parameters and ε_t is a white noise process with mean zero and variance σ_{ε}^2 .

- 1. Derive the s=1 step ahead forecast of Y_t , $f_{t,1}=\mathrm{E}_t[Y_{t+s}]$.
- 2. Forecast error is the difference between the forecast and the true value, compute the error forecast, $e_{t,1} = f_{t,1} y_{t+1}$, and its variance.
- 3. When this process is stationary? Let assume that stationarity holds, what is the value forecast of $f_{t,s}$ when the lead time s is very large.

Exercise 4 (4 points): The ARMA(2,2) process

Consider the following ARMA(2,2) model:

$$Y_t = 1.3Y_{t-1} - 0.4Y_{t-2} + \varepsilon_t - 1.2\varepsilon_{t-1} + 0.2\varepsilon_{t-2}$$

where $\{\varepsilon_t\}$ is independently and identically distributed by a normal distribution with mean zero and variance $\sigma_{\varepsilon}^2 = 1$.

1. Is Y_t weakly stationary? If so compute the autocovariance function. In this ARMA(2,2), the general solution to the second order difference equation for γ_h is given by

$$\gamma_h = c_1 \ 0.5^h - c_2 \ 0.8^h$$

where c_1 and c_2 are constants to be determined by the three initial conditions $(\gamma_0, \gamma_1 and \gamma_2)$.

2. Is Y_t invertible? If so, find the infinite order MA representation (coefficients of $\Psi_{\infty}(L)$). Note that we can write the equation for Y_t :

$$Y_t = \Phi_2^{-1}(L)\Theta_2(L)\varepsilon_t = \Psi_\infty(L)\varepsilon_t$$

where $\Psi_{\infty}(L) = \Psi_0 + \Psi_1 L + \Psi_2 L^2 + \dots$ Note that the above equation implies that:

$$\Psi_{\infty}(L)\Phi_2(L) = \Theta_2(L)$$

Do the multiplication of the two polynomials from the left hand side to match terms (for each L operator) within the polynomial from the right hand side.

¹Note that 0.5 and 0.8 are the eigenvalues of the system defined by γ_h which is why they are the roots which define the motion of γ_h .

Part 2 (10 points): Computing exercises

Exercise 5 (3 points): ARMA and GARCH models

Guided exercise. Retrieve the daily (monthly) asset price (macro-variable) of your choice from Yahoo Finance (or from DBnomics) and fit the appropriate SARIMA-GARCH models to this time series by using a rolling window of 4 years with a frequency of 1 day (1 month) to re-estimate your model from January 1, 2016 to June 30, 2020. Use your fitted models to produce 1-step ahead forecasts on the out-of-sample period (from January 1, 2020 until June 30, 2020). Describe precisely in a Jupyter Notebook the different steps you follow.

Bonus question: Are you able to apply Darts to do some forecasts on your time series? Use the RMSE to select the best model.

Exercise 6 (4 points): Markov Switching Autoregression Models

Do It Yourself. Go to Bloomberg or Yahoo Finance to download the daily commodity price of your choice from January 1, 2020 until September 30, 2023. Compute its continuous daily, monthly and quarterly return. Specify a markov switching autoregression model on these 3 time series from the beginning of your sample till December 31, 2022. Next, do some forecasts over the next 3 quarters, 9 months and the subsequent days (for this daily prediction, please predict 20-step ahead forecasts and next re-estimaste your model by including the true realizations and predict again 20-step ahead forecasts, do it till the end of the sample). You may use statmodels to do it. Be careful, you have to figure out which SARIMA-GARCH model you should apply first on the time series before adding a Markov Switching process. Describe your models and comment your results in a Jupyter Notebook.

Exercise 7 (3 points): Applied Finance with Principal Component Analysis

Replication exercise. Please do one of the following replication exercises on the CAC 40 database.

- 1. Eigen-portfolio construction using Principal Component Analysis.
- 2. Trading Strategy based on Principal Component Analysis.

Describe precisely in a Jupyter Notebook the different steps you follow and comment your results.

²Please use the *daily log return* *100 if you fit a model on daily returns.

³6 forecasts have to be done with a monthly variable whereas approximately 120 forecasts have to be done with a daily variable.