Broadway

A região de Manhattan, na cidade de Nova York, tem uma topologia tão peculiar que, muitas vezes, é idealizada como uma grade retangular. Assim, se alguem quiser ir de uma localização $A=(A_x,A_y)$ a outra localização $B=(B_x,B_y)$, o menor caminho tem comprimento $|A_x-B_x|+|A_y-B_y|$. Mas, na verdade, a correta definição dessa métrica tem de levar em conta a Broadway – uma via que conduz todo o sistema de ruas e avenidas.

Assim, dadas as localizações $A = (A_x, A_y)$, $B = (B_x, B_y)$ e três números racionais P, Q e R, que descrevem a Broadway, sua tarefa é encontrar o comprimento do caminho mais curto entre as localizações A e B. A rede viária é composta das seguintes ruas e avenidas:

- Para cada inteiro Z, há uma avenida descrita pela equação x=Z.
- Para cada inteiro Z, há uma rua descrita pela equação y = Z.
- A Broadway é descrita pela equação Px + Qy = R.

Ao se deslocar de A para B, só é possível passar ao longo das vias e mudar de vias nos cruzamentos.

Entrada

A primeira linha da entrada conterá um inteiro T, o número de casos de teste. Cada caso de teste consiste de uma linha contendo sete números: quatro inteiros A_x , A_y , B_x e B_y , que especificam as localizações $A = (A_x, A_y)$ e $B = (B_x, B_y)$, e três números racionais P, Q e R, que especificam a Broadway como explicado acima.

Saída

Para cada caso de teste, imprima uma única linha com o comprimento do caminho mais curto de A para B.

Exemplo

Entrada:
2
2 0 -1 1 1.0 1.0 1.0
-2 3 4 -1 1.0 -0.1 0.47
2 0 1 1 1 0 0 1 0 1 1

Saída: 3.414213562373 10.0000000000000