Math 74: Algebraic Topology

Sair Shaikh

April 29, 2025

Problem 1. Suppose that $f: X \to Y$ is a homotopy equivalence. Show that the map $\pi_0(f): \pi_0(X) \to \pi_0(Y)$ from Homework 1, Problem 5 is a bijection.

Problem 2. (0.11) Show that a continuous map $f: X \to Y$ is a homotopy equivalence if there exist continuous maps $g, h: Y \to X$ such that $f \circ g \simeq \operatorname{id}_Y$ and $h \circ f \simeq \operatorname{id}_X$. More generally, show that f is a homotopy equivalence if $f \circ g$ and $h \circ f$ are homotopy equivalences.

Problem 3. Suppose that G is a group and G_1, \ldots, G_n are subgroups that generate G such that $G_i \cap G_j = \{1\}$ for $i \neq j$. Show that G is the free product $G_1 * \ldots * G_n$ if and only if for every group H and collection of homomorphisms $h_j : G_j \to H$, there exists a unique homomorphism $h : G \to H$ such that $h_j = h \circ i_j$ where $i_j : G_j \to G$ is the inclusion.

Problem 4. Find the fundamental group of each arrangement of three spheres below.

1. A chain.

2. A triangle.

Problem 5. (1.2.3) Let X be the union of n lines through the origin in \mathbb{R}^3 . Compute the fundamental group of $\mathbb{R}^3 \setminus X$.