Plateforme .NET - ESIEE 2016

Langage C# - Huffman tree

Key Consulting / Raphaël Escure (Raphael.escure@keyconsulting.fr)

Compression : Construction du dictionnaire (Déterminer le code Huffman)

- 1) Recherche du nombre d'occurrences de chaque symbole (caractère ici 1 octet)
 - ⇒ Création d'une table de fréquences :

A:10	B:10	C:25	D:16	E:36	F:6
		0.20			•

- 2) Création d'un arbre binaire :
 - ⇒ Chaque élément de la table de fréquence est une feuille terminale de l'arbre
 - ⇔ Chaque nœud de l'arbre est la somme des fréquences des feuilles ou des nœuds fils
 - ⇒ On commence avec une forêt, la forêt finale est composée d'un unique arbre.
 - ⇒ Algorithme « greedy » :
 - a. On sélectionne les arbres de poids minimaux (soit n1 et n2), et les remplace par l'arbre binaire pondéré d'enfants n1 et n2.
 - b. Tant qu'il y a plusieurs arbres on répète l'opération précédente

F: 6 A: 10 B: 10 D: 16 C: 25 E: 36	Etape 0
B: 10	Etape 1
D: 16	Etape 2
26 E: 36 41 B: 10 16 C: 25 F: 6 A: 10	Etape 3

Plateforme .NET - ESIEE 2016

Langage C# - Huffman tree

Key Consulting / Raphaël Escure (Raphael.escure@keyconsulting.fr)

3) Construction du code Huffman

- a. Le code d'un symbole est déterminé par le chemin depuis la racine de l'arbre jusqu'à la feuille associée au symbole.
- b. Concaténation d'un « 0 » lorsque le chemin emprunte une branche à gauche
- c. Concaténation d'un « 1 » lorsque le chemin emprunte une branche à droite

A:1011	B:100	C · 01	D:00	F · 11	F: 1010
A . 1011	D. 100	C.01	D.00	L . 11	1 . 1010

Compression: Remplacer les symboles par leur code Huffman

- 1) Trouver une structure de donnée efficace pour manipuler des bits
- 2) Le résultat doit être stocké dans un tableau d'octets (byte[])

Décompression : Remplacer le code Huffman par les symboles

- 1) Trier le dictionnaire par code Huffman
- 2) La lecture des bits des données compressées se fait par bit. Dès que l'on rencontre un code Huffman connu, celui-ci est remplacé par son symbole.
- 3) Stocker le résultat dans un tableau d'octets