Digital Communication

October 22, 2023

Table of Contents

Theory of Communications

Pulse Shaping

Outline

Theory of Communications

Pulse Shaping

Information Theory

$$C = B\log(1 + \frac{S}{N})$$

Information Theory 2

Optimal Capacity

A 10KHz channel operating in a SNR of 15dB

The Channel has a theoretical maximum information rate of

Optimal Capacity

A 10KHz channel operating in a SNR of 15dB

The Channel has a theoretical maximum information rate of

$$C = 10,000\frac{1}{5}\log_2(1+10^{\frac{15}{10}}) = 50278\frac{Bits}{s}$$

Optimal Capacity

A channel operating in a SNR of 7dB in order to transmit the same amount of information per second, we need

Optimal Capacity

A 10KHz channel operating in a SNR of 15dB

The Channel has a theoretical maximum information rate of

$$C = 10,000\frac{1}{5}\log_2(1+10^{\frac{15}{10}}) = 50278\frac{Bits}{S}$$

Optimal Capacity

A channel operating in a SNR of 7dB in order to transmit the same amount of information per second, we need

$$B = \frac{C}{\log_2(1+SNR)} = 19.4 \text{kHz}$$

How to Transmit the Amount of X Bytes?

- Bandwidth?
- Signal Strength?
- Noise Considerations?

Bandwidth is Limited

Bit Rate vs. Symbol Rate

Symbol Rate, Bit Rate

The bit Rate R_b describes the bits transmitted per second.

In the transmitter a symbol generator generates symbols with M states, where $M=2^m$, from m consecutive bits of the input bit stream.

For a bit rate R_b (bit/s) at the modulator input, the symbol rate R_s at the modulator output (the number of changes of state of the carrier per second) is given by:

$$R_s = \frac{R_b}{m} = \frac{R_b}{\log_2 M}$$

Signals at Frequency f have two "Variables"

Signal is a Phasor with Real and Imag Part

Varying Phase

Amplitude Modulation

Code Mapping:

Phase Modulation

Modulation Scheme Constellations

• The bit error rate or bit error ratio (BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval.

- The bit error rate or bit error ratio (BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval.
- When the noise superimposes the signal, there is a certain chance, that the signal is detected wrongly, i.e. a transmitted "1" is detected as "0" or vise verse.

- The bit error rate or bit error ratio (BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval.
- When the noise superimposes the signal, there is a certain chance, that the signal is detected wrongly, i.e. a transmitted "1" is detected as "0" or vise verse.
- In a noisy channel, the *BER* is often expressed as a function of the ratio E_b/n_o , where

- The bit error rate or bit error ratio (BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval.
- When the noise superimposes the signal, there is a certain chance, that the signal is detected wrongly, i.e. a transmitted "1" is detected as "0" or vise verse.
- In a noisy channel, the *BER* is often expressed as a function of the ratio E_b/n_o , where
 - E_b is the **energy per channel bit**. This is the product of the power of the received carrier for the duration of one bit, namely $E_b = P_b \cdot T_b = \frac{P_b}{R_b}$

- The bit error rate or bit error ratio (BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval.
- When the noise superimposes the signal, there is a certain chance, that the signal is detected wrongly, i.e. a transmitted "1" is detected as "0" or vise verse.
- In a noisy channel, the *BER* is often expressed as a function of the ratio E_b/n_o , where
 - E_b is the **energy per channel bit**. This is the product of the power of the received carrier for the duration of one bit, namely $E_b = P_b \cdot T_b = \frac{P_b}{R_b}$
 - P_b is here the carrier power, which we referred to as the received signal power S in the last Section.

- The bit error rate or bit error ratio (BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval.
- When the noise superimposes the signal, there is a certain chance, that the signal is detected wrongly, i.e. a transmitted "1" is detected as "0" or vise verse.
- In a noisy channel, the *BER* is often expressed as a function of the ratio E_b/n_o , where
 - E_b is the **energy per channel bit**. This is the product of the power of the received carrier for the duration of one bit, namely $E_b = P_b \cdot T_b = \frac{P_b}{R_b}$
 - P_b is here the carrier power, which we referred to as the received signal power S in the last Section.
 - n_o refers to the **noise power density in W/Hz**, where The total **received noise power** is hence $N = B \cdot n_o$

$$E_b/n_o = \frac{S/R_b}{n_0} = \frac{S}{N} \frac{B}{R_b} = SNR \frac{B}{R_b}$$

BPSK, QPSK

$$BER = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_b}{n_0}}$$

for M-PSK with m bits per symbol

$$BER = \frac{1}{m} \operatorname{erfc} \left(\sqrt{m \frac{E_b}{n_0}} \sin \frac{\pi}{M} \right)$$

Bit Error Ratios for Various Modulation Schemes

Outline

Theory of Communications

Pulse Shaping

Pulse Shaping

•••

Pulse Shaping

Zero ISI at the sampling instances for three consecutive symbols using a Nyquist Sinc pulse shape

The Nyquist Sinc pulse, extending from negative infinity to infinity, results in a <u>brickwall</u> spectrum of 1/T wide. (Not realizable)

4/15/2012 Copyright © 2012, Dan Boschen

RRC Filtering

Bandwidth of RRC

Grundlagen der Informationstechnik, Prof. Dr.-Ing. Mario Goldenbaum ©HSB

227

$$B = 2 \cdot (1 + \alpha) \frac{R_s}{2} = \frac{(1 + \alpha)}{T_s} \tag{1}$$

Impact of α

Spectral Efficiency

the spectral efficiency Γ describes how many bits per 1 Hz bandwidth can be transmitted.

$$\Gamma = \frac{R_b}{B}$$

Therefore the spectral efficiency Γ for an M-ary modulation scheme is following eqn. 1:

$$\Gamma = \frac{R_b}{B} = \frac{R_b T_S}{1 + \alpha} = \frac{\log_2(M)}{1 + \alpha}$$

where $m = \log_2 M$ is the number of bits per symbol.

Roll-off Factor $\alpha = 0.35$

- \bullet required bandwidth is 1.35/ T_S and
- \bullet the spectral efficiency is $\Gamma=0.7\frac{bits/s}{\it Hz}$ for BPSK and
- $\Gamma = 1.5 \frac{\text{bits/s}}{\text{Hz}}$ for QPSK

Eye Diagram - QPSK

Alpha = 0.25 RRC Filter

After 2nd RRC (in receiver): RC response

4/15/2012 Copyright © 2012, Dan Boschen

82

Digital Modulation			
Modulation		QPSK	
Bitrate	Rb=	300	Mbit/s
Symbol Rate	Rs=	150	Msym/s
Symbol duration	Ts=	6.67E-009	S
Filterung		Raised-cos	
Roll-Off Faktor	Alpha=	0.35	
Bandbreitenbedarf	B=	202.5	Mhz
Spektraleffizienz	Gamma=	1.5	bit/Hz
E/No für QPSK	E/No=	9.78	dB
Bit Error Probability	BEP=	6.5E-006	
C/No	C/No=	94.6	dBHz