Introduction to statistics in R

- 1. The stepwise process to analyze your data
- 2. Application
- 3. Practical on your own
- 4. Conclusion

1. The stepwise process to analyze your data

1. The stepwise process to analyze your dataFocus on linear models with continuous predictors.

- 1. What are your variables?
 - i. What is your response variable?
 - ii. What is your explanatory variable?
- 2. How are your data distributed?
- 3. How do you expect your response variable to be distributed?

Check your data structure

Build your hypothesis

- 1. What are your variables?
 - i. What is your response variable?
 - ii. What is your explanatory variable?
- 2. How are your data distributed?
- 3. How do you expect your response variable to be distributed?
- 1. What do you want to test?
- 2. What data distribution will you use?
- 3. What are the statistical hypotheses?

- 1. The stepwise process to analyze your data
- 2. Application

Who to do that using RStudio

- You need
 - RStudio
 - R version 4.0 or higher
 - The following packages:
 - Data handling: **dplyr**
 - Model quality checks: performance
 - Extract your results: ggeffects
 - Plot: ggplot2 (join the course from Steph for more details)
 - A dataset to analyze

Tree species richness

Example: tree diversity effect on litterfall abundance

- 1. What are your variables?
 - i. What is your response variable?
 - ii. What is your explanatory variable?
- 2. How are your data distributed?
- 3. How do you expect your response variable to be distributed?

1. load your data in a dataset called df:

File type	R function [package]	Example
.CSV	read.csv(file = 'name.csv')	df = read.csv(file = "my-data.csv")
.txt	read.delim(file = 'name.txt')	df = read.txt(file = "my-data.txt")
.xlsx	read_xlsx(path = 'name.xlsx', sheet = "sheet.name") [package: readxl]	df = read_xlsx(path = "my-data.xlsx", sheet = "rawdata")

1. load your data in a dataset called df:

*	TSP ‡	litterfall ‡	neigh.sp.rich	‡
1	1-E34	73.98		1
2	10-G17	21.82		1
3	100-Q21	71.98		2
4	101-Q21	38.18		2
5	102-P26	66.06		2
6	103-P26	35.30		2
7	105-06	22.71		3
8	11-027	123.49		1
9	112-H31	147.98		2
10	113-H31	102.94		2
11	115-T17	292.50		2
12	116-127	15.19		2
13	117-127	22.12		3
14	118-127	37.39		3
15	119-S18	91.97		2

- 1. load your data in a dataset called df
- 2. what are your variables?

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name			
litterfall	Quantity of litter in gram fall on 1 m2			
neigh.sp.rich	Number of species in the surrounding			

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name			
litterfall	Quantity of litter in gram fall on 1 m2			
neigh.sp.rich	Number of species in the surrounding			

str(df)

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name	Character		
litterfall	Quantity of litter in gram fall on 1 m2	Numeric		
neigh.sp.rich	Number of species in the surrounding	Integer		

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name	Character	All sample names	
litterfall	Quantity of litter in gram fall on 1 m2	Numeric	0 – 500 g/m2	
neigh.sp.rich	Number of species in the surrounding	Integer	[1;12]	

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name	Character	All sample names	-
litterfall	Quantity of litter in gram fall on 1 m2	Numeric	0 – 500 g/m2	Normal
neigh.sp.rich	Number of species in the surrounding	Integer	[1;12]	-

DANGER ZONE

Your data are not Normally distributed, your residuals should be!

DANGER ZONE

Your data are not Normally distributed, your residuals should be! Let takes people height as example:

DANGER ZONE

Your data are not Normally distributed, your residuals should be! Let takes people height as example, drinking your soup makes you grow up

DANGER ZONE

Your data are not Normally distributed, your residuals should be! Let takes people height as example, drinking your soup makes you grow up

DANGER ZONE

Height should follow a normal distribution
Therefore, your residuals should follow a normal distribution
Your population **DOES NOT** follow a normal distribution

(Same goes with other distribution types!)

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Missing values

WARNING DANGER ZONE

Only keep complete rows: df = df[complete.cases(),]

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?

Quick and dirty plot(df)

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?

boxplot(df\$litterfall)

Litterfall

neigh.sp.rich

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range:

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range:

```
df[df$litterfall<0 | df$litterfall>500,]
```

	TSP	litterfall	neigh.sp.rich
170	outliers	1000	50
171	outliers	1000	50
172	outliers	1000	50
173	outliers	1000	50
174	outliers	1000	50
175	outliers	1000	3
176	outliers	1000	3
177	outliers	1000	3
178	outliers	1000	3
179	outliers	1000	3
180	outliers	1000	3

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range:

```
df[df$neigh.sp.rich<1 | df$neigh.sp.rich>12,]
```

TSP	litterfall	neigh.sp.rich
165 outliers	1	-1
166 outliers	1	-1
167 outliers	1	-1
168 outliers	1	-1
169 outliers	1	-1
170 outliers	1000	50
171 outliers	1000	50
172 outliers	1000	50
173 outliers	1000	50
174 outliers	1000	50

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range
 - 2. Correct if typos or remove

Write the opposite conditional:

```
df[df$neigh.sp.rich>=1 & df$neigh.sp.rich<=12,]</pre>
```

Leave R to do it for you:

```
df[!(df$neigh.sp.rich<1 | df$neigh.sp.rich>12),]
```

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range
 - 2. Correct if typos or remove

WARNING DANGER ZONE

You will overwrite your data in r keep a safe copy df.raw = df

```
df = df[!(df$neigh.sp.rich<1 | df$neigh.sp.rich>12),]
   df = df[!(df$litterfall<0 | df$litterfall>500),]
```

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range
 - 2. Correct if typos or remove

Litterfall

neigh.sp.rich

- 1. What are your variables?
 - i. What is your response variable?
 - ii. What is your explanatory variable?
- 2. How are your data distributed?
- 3. How do you expect your response variable to be distributed?
- 1. What do you want to test?
- 2. What data distribution will you use?
- 3. What are the statistical hypotheses?

1. what do you want to test?

1. what do you want to test?

Tree species richness increase litterfall

1. what do you want to test?

Tree species richness increase litterfall

"litterfall" increase with "neigh.sp.rich"

1. what do you want to test?

Tree species richness increase litterfall

"litterfall" increase with "neigh.sp.rich"

 $litterfall \sim \mu + \alpha \times neigh.sp.rich + \epsilon$

H0: $\alpha = 0$, $litterfall \sim \mu + \epsilon$

H1: $\alpha \neq 0$, litterfall $\sim \mu + \alpha \times neigh.sp.rich + \epsilon$

what do you want to test?
 take a look at your data: plot(df\$litterfall ~ df\$neigh.sp.rich)

- 1. what do you want to test?
- 2. what distribution will you use? How do you expect your data to fall around your mean

 $litterfall \sim \mu + \alpha \times neigh.sp.rich + \epsilon$

- 1. what do you want to test?
- 2. what distribution will you use? How do you expect your data to fall around your mean

litterfall
$$\sim \mu + \alpha \times neigh.sp.rich + \epsilon$$

 $\epsilon \hookrightarrow N(0, \sigma)$

- 1. what do you want to test?
- 2. what distribution will you use?
- 3. what are you statistical hypotheses?

- 1. what do you want to test?
- 2. what distribution will you use?
- 3. what are you statistical hypotheses?

- i. Independence
- ii. Random sampling
- iii. Normally distributed error: $\varepsilon \hookrightarrow N(0, \sigma)$
- iv. Equal variances (homoscedasticity)
- v. Linearity
- vi. Predictors are fixed

- 1. what do you want to test?
- 2. what distribution will you use?
- 3. what are you statistical hypotheses? most control by your experiment structure
 - i. Independence
 - ii. Random sampling
 - iii. Normally distributed error: $\varepsilon \hookrightarrow N(0, \sigma)$
 - iv. Equal variances (homoscedasticity)
 - v. Linearity
 - vi. Predictors are fixed

1. build your model

1. build your model

Function: lm() (glm() for other residual distribution)

1. build your model

Function: lm() (glm() for other residual distribution)

Formula: $y \sim x$

1. build your model

```
Function: lm() (glm() for other residual distribution)
```

Formula: $y \sim x$

```
Together: lm(formula = litterfall ~ neigh.sp.rich, data = df)
```

2. fit the model to your data:

```
mod = lm(formula = litterfall ~ neigh.sp.rich, data = df)
```


Check outliers with performance: check_outliers(mod)

Check outliers with performance: check_outliers(mod)
Data transformation:

Check outliers with performance: check_outliers(mod)
Data transformation:

log-transformation explanatory variable

Data transformation and outliers

Check outliers with performance: check_outliers(mod)

Data transformation: **log-transformation** explanatory variable

Compare the models quality: compare_performance(mod, mod.log)

```
# Comparison of Model Performance Indices

Name | Model | AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma

mod | lm | 1360.645 | 1369.007 | 0.151 | 0.144 | 68.403 | 68.980

mod.2 | lm | 1358.819 | 1367.182 | 0.164 | 0.157 | 67.884 | 68.457
```

Data transformation and outliers

Check outliers with performance: check_outliers(mod)

Data transformation: log-transformation explanatory variable

Compare the models quality: compare_performance(mod, mod.log)

# Comparison of Model Performance Indices						
Name	Model	AIC	BIC	R2 R2	(adj.)	RMSE Sigma
		1360.645 136 1358.819 136				68.403 68.980 67.884 68.457

AIC: fit quality – weighted by the number of variables

BIC: fit quality – weighted by the number of variables and the sample size

Sigma: residual standard error

RMSE: Mean Root Standard Error – standard error of the residuals

R: fit quality – part of variance explained

Data transformation and outliers

Check outliers with performance: check_outliers(mod)

Data transformation: log-transformation explanatory variable

Compare the models quality: compare_performance(mod, mod.log)

```
# Comparison of Model Performance Indices

Name | Model | AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma

mod | lm | 1360.645 | 1369.007 | 0.151 | 0.144 | 68.403 | 68.980
mod.2 | lm | 1358.819 | 1367.182 | 0.164 | 0.157 | 67.884 | 68.457
```

AIC: fit quality – weighted by the number of variables

 $\Delta AIC > [2,8]$: the model are different Can be completed by ANOVA (see following lecture)

R: fit quality – part of variance explained

summary(mod)

 $litterfall \sim \mu + \alpha \times log(neigh.sp.rich) + \epsilon$

```
Call:
       lm(formula = "litterfall ~ log(neigh.sp.rich)", data = df.fall)
       Residuals:
          Min
                   10 Median
                                  3Q
                                         Max
       -118.83 -47.15 -13.37 38.85 213.10
\mu
       Coefficients:
                         Estimate Std. Frror t value Pr(>|t|)
       (Intercept)
                                      9.339 5.445 2.02e-07 ***
                           50.852
\alpha
       log(neigh.sp.rich) 53.960
                                      8.147 6.624 5.61e-10 ***
      Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
       Residual standard error: 65.01 on 153 degrees of freedom
       Multiple R-squared: 0.2228, Adjusted R-squared: 0.2178
       F-statistic: 43.87 on 1 and 153 DF, p-value: 5.614e-10
```

Mean litterfall when diversity null = 50.852 + /- 18.304 g/m2 (Estimate +/- $1.96 \times \text{SE}$) Effect species richness = 53.960 + /- 15.958 g/m2/species

summary(mod)

Mean litterfall when diversity null = 50.852 + /- 18.304 g/m2 (Estimate +/- $1.96 \times \text{SE}$) Effect species richness = 53.960 + /- 15.958 g/m2/species

summary(mod)

DANGER ZONE: the factors

lm(formula = litterfall ~ species, data = df)

summary(mod)

DANGER ZONE: the factors

lm(formula = litterfall ~ species, data = df)

 $litterfall \sim \alpha_A \times specie_A + \alpha_B \times specie_B + \alpha_C \times specie_C + \alpha_D \times specie_D + \epsilon$ $specie_i$ is 0 or 1

summary(mod)

DANGER ZONE: the factors

 $litterfall \sim \alpha_A \times specie_A + \alpha_B \times specie_B + \alpha_C \times specie_C + \alpha_D \times specie_D + \varepsilon$

If you like to test the differences between the different factors you need to do an ANOVA and a Tukey test

```
summary(mod)
```

DANGER ZONE: the factors

If you like to test the differences between the different factors you need to do an ANOVA and a Tukey test

```
mod = lm(formula = litterfall ~ species, data = df)
mod.aov = aov(mod)
TukeyHSD(mod.aov)
```

summary(mod)

 $litterfall \sim \mu + \alpha \times log(neigh.sp.rich) + \epsilon$

```
Call:
lm(formula = "litterfall ~ log(neigh.sp.rich)", data = df.fall)
Residuals:
   Min
           1Q Median
                                 Max
                           3Q
-118.83 -47.15 -13.37 38.85 213.10
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                              9.339 5.445 2.02e-07 ***
                   50.852
log(neigh.sp.rich) 53.960
                              8.147 6.624 5.61e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 65.01 on 153 degrees of freedom
Multiple R-squared: 0.2228, Adjusted R-squared: 0.2178
F-statistic: 43.87 on 1 and 153 DF, p-value: 5.614e-10
```

```
summary(mod)
```

Extract the coefficients: summary(mod)\$coefficients

```
> summary(mod.2)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 50.85248 9.338548 5.445437 2.017066e-07
log(neigh.sp.rich) 53.95982 8.146519 6.623666 5.613835e-10
```

To extract the predictions from your models: ggeffect package pred = ggpredict(model = mod, terms = 'neigh.sp.rich')

In this lecture:

- 1. The stepwise process to analyses your data
- 2. Application on an example with R
- 3. Practical on your own

Your time to play

