Mesh evaluation

The estimation of the spacing for the mesh along the y direction is performed through one of the utilities that can be found inside the folder utilities/Stretching Mesh. For a channel flow case, the default function of Incompact3d can be used, stretching_parameter_channel.f90.

For a temporal TBL case instead, a new function was developed, starting from the stretching subroutine that can be found inside the original solver of Incompact3d. This new function is a Python script, mesh_evaluation.py. This function allows to estimate the mesh size by introducing the following inputs:

- Number of points: n_x, n_y, n_z .
- Domain dimensions: L_x, L_y, L_z .
- Stretching parameter: β .
- Skin friction coefficient: c_f .
- Kinematic viscosity: ν .
- Velocity of the wall: U_w .
- Time step: Δt .
- Tripping wire diameter: D.

And it produces the following outputs:

- Non-dimensional domain dimensions: L_x^+, L_y^+, L_z^+ .
- CFL, Péclet and Numerical Fourier: $P\acute{e}$, Co, \mathcal{D} .
- Mesh size at the first element near the wall: Δy_1^+ .
- Mesh size at the last element away from the wall: Δy_n^+ .
- Mesh spacings in x and z directions: Δx^+ , Δz^+ .
- Aspect ratios (ARs) of grid elements at bottom and top walls in x and z directions: AR_{x_1} , AR_{x_n} , AR_{z_1} , AR_{z_n} .
- Number of mesh nodes in the viscous sublayer and in the initial shear layer.
- Approximate and calculated values of initial shear layer thickness $heta_{sl}$.

It is worth noticing that in a temporal BL simulation, the peak c_f value constraints the height of the first cell at the wall Δy_1 , as in standard CFD simulations. However, the decrease of c_f along the simulation (and thus the increase in viscous length δ_{ν}) imposes a constraint for the domain dimensions L_x , L_y , L_z since they appear progressively "smaller" (their non-dimensional counterparts decreases). Too low values of L_x^+, L_y^+, L_z^+ must be avoided in order to do not enforce a too strong periodicity in the turbulent structures at the wall.