R OLS and Instrumental Variable Regression M Outcomes and N RHS Alternatives

Fan Wang

2020-04-01

Contents

1	IV	Loop o	over RHS
	1.1	Const	ruct Program
	1.2	Prepa	re Data
			am Testing
		1.3.1	Test Program OLS Z-Stat
		1.3.2	Test Program IV T-stat
		1.3.3	Test Program OLS Coefficient
		1.3.4	Test Program IV coefficient
		1.3.5	Test Program OLS Return All
		1.3.6	Test Program IV Return All
	1.4		am Line by Line
			Lapply
		1.4.2	Nested Lapply Test
		1.4.3	Nested Lapply All
		1.4.4	Nested Lapply Select

1 IV Loop over RHS

Go to the RMD, R, PDF, or HTML version of this file. Go back to fan's REconTools Package, R Code Examples Repository (bookdown site), or Intro Stats with R Repository (bookdown site).

Regression with a Variety of Outcome Variables and Right Hand Side Variables. There are M outcome variables, and there are N alternative right hand side variables. Regress each M outcome variable and each N alternative right hand side variable, with some common sets of controls and perhaps shared instruments. The output file is a M by N matrix of coefficients, with proper variable names and row names. The matrix stores coefficients for this key endogenous variable.

• Dependency: R4Econ/linreg/ivreg/ivregdfrow.R

1.1 Construct Program

The program relies on double lapply. lapply is used for convenience, not speed.

```
if (time) {
    start_time <- Sys.time()</pre>
  if (return_all) {
    df.reg.out.all <-</pre>
      bind_rows(lapply(list.vars.x,
                        function(x) (
                          bind_rows(
                            lapply(list.vars.y, regf.iv,
                                   vars.x=x, vars.c=vars.c, vars.z=vars.z, df=df))
                        )))
  } else {
    df.reg.out.all <-
      (lapply(list.vars.x,
              function(x) (
                bind_rows(
                  lapply(list.vars.y, regf.iv,
                          vars.x=x, vars.c=vars.c, vars.z=vars.z, df=df)) %>%
                  select(vars_var.y, starts_with(x)) %>%
                  select(vars_var.y, ends_with(stats_ends))
              ))) %>% reduce(full_join)
 }
  if (time) {
    end_time <- Sys.time()</pre>
    print(pasteO('Estimation for all ys and xs took (seconds):',
                 end_time - start_time))
 }
 return(df.reg.out.all)
}
```

1.2 Prepare Data

```
# Library
library(tidyverse)
library(AER)

# Load Sample Data
setwd('C:/Users/fan/R4Econ/_data/')
df <- read_csv('height_weight.csv')

# Source Dependency
source('C:/Users/fan/R4Econ/linreg/ivreg/ivregdfrow.R')

# Setting
options(repr.matrix.max.rows=50, repr.matrix.max.cols=50)</pre>
```

```
Parameters.
```

```
var.y1 <- c('hgt')
var.y2 <- c('wgt')</pre>
```

```
var.y3 <- c('vil.id')
list.vars.y <- c(var.y1, var.y2, var.y3)

var.x1 <- c('prot')
var.x2 <- c('cal')
var.x3 <- c('wealthIdx')
var.x4 <- c('p.A.prot')
var.x5 <- c('p.A.nProt')
list.vars.x <- c(var.x1, var.x2, var.x3, var.x4, var.x5)

vars.z <- c('indi.id')
vars.c <- c('sex', 'wgt0', 'hgt0', 'svymthRound')</pre>
```

1.3 Program Testing

1.3.1 Test Program OLS Z-Stat

$vars_var.y$	prot_tvalue	cal_tvalue	wealthIdx_tvalue	$p.A.prot_tvalue$	p.A.nProt_tvalue
hgt	18.8756010031786	23.4421863484661	13.508899618216	3.83682180045518	32.5448257554855
wgt	16.3591125056062	17.3686031309332	14.1390521528113	1.36958319982295	12.0961557911467
vil.id	-14.9385580468907	-19.6150110809452	34.0972558327347	8.45943342783186	17.7801422421419

1.3.2 Test Program IV T-stat

vars_var.y	prot_zvalue	cal_zvalue	wealthIdx_zvalue	p.A.prot_zvalue	p.A.nProt_zvalue
hgt	8.87674929300964	12.0739764947235	4.62589553677969	26.6373587567312	32.1162192385744
wgt	5.60385871756365	6.1225187008946	5.17869536991717	11.9295584469998	12.3509307017263
vil.id	-9.22106223347162	-13.0586007975839	-51.5866689219593	-29.9627476577329	-38.3528894620707

1.3.3 Test Program OLS Coefficient

```
vars.z <- NULL
suppressWarnings(suppressMessages(
  ff_reg_mbyn(list.vars.y, list.vars.x,</pre>
```

vars_var.y	prot_Estimate	cal_Estimate	wealthIdx_Estimate	p.A.prot_Estimate	p.A.nProt_Estimate
hgt	0.049431093806755	0.00243408846205622	0.21045655488185	3.86952250259526e-05	0.00542428867316449
wgt	16.5557424523585	0.699072500364623	106.678721085969	0.00521731297924587	0.779514232050632
vil.id	-0.0758835879205584	-0.00395676177098486	0.451733304543324	0.000149388430455142	0.00526237555581024

1.3.4 Test Program IV coefficient

vars_var.y	prot_Estimate	cal_Estimate	wealthIdx_Estimate	p.A.prot_Estimate	p.A.nProt_Estimate
hgt	0.859205733632614	0.0238724384575419	0.144503490136948	0.00148073028434642	0.0141317656200726
wgt	98.9428234201406	2.71948246216953	69.1816142883022	0.221916473012486	2.11856940494335
vil.id	-6.02451379136132	-0.168054407187466	-1.91414470908345	-0.00520794333267238	-0.0494468877742109

1.3.5 Test Program OLS Return All

1.3.6 Test Program IV Return All

```
| Margine | Marg
```

1.4 Program Line by Line

Set Up Parameters

```
vars.z <- c('indi.id')
vars.z <- NULL
vars.c <- c('sex', 'wgt0', 'hgt0', 'svymthRound')</pre>
```

1.4.1 Lapply

1.4.2 Nested Lapply Test

```
mean(df[[y]], na.rm=TRUE)))))
# lapplytwice
```

1.4.3 Nested Lapply All

1.4.4 Nested Lapply Select

vars_var.y	prot_tvalue	cal_tvalue	wealthIdx_tvalue	p.A.prot_tvalue	p.A.nProt_tvalue
hgt	18.8756010031786	23.4421863484661	13.508899618216	3.83682180045518	32.5448257554855
wgt	16.3591125056062	17.3686031309332	14.1390521528113	1.36958319982295	12.0961557911467
vil.id	-14.9385580468907	-19.6150110809452	34.0972558327347	8.45943342783186	17.7801422421419