

M62 : Équations Différentielles Ordinaires Louis Loiseau

L3 Mathématiques 2020-2021

Feuille d'exercice n°2

Solutions des exercices

Exercice 1. Notons $g: t \in \mathbf{R} \mapsto g(t) = f(t) + f'(t) \in \mathbf{R}$. Alors g est continue car f est \mathscr{C}^1 et $\lim_{t \to +\infty} g(t) = 0$. Alors f est solution de

(*E*):
$$y' + y = g(t)$$

.

On écrit (*E*) sous la forme y' + a(t)y = g(t). Alors *a* est continue (car constante = 1) et $A: t \to t$ est une primitive de a et $B: t \to B(t) = \int_0^t g(u)e^u du$ est une primitive de $t \to g(t)e^{At} = g(t)e^t$. Alors les solutions maximales de (*E*) sont les

$$\phi_{\lambda} : \begin{cases} \mathbf{R} \longrightarrow \mathbf{R} \\ t \mapsto \phi_{\lambda}(t) = B(t)e^{-t} + \lambda e^{-t} \end{cases}$$

Avec λ réel. Puisque f est solution de (E), il existe $\lambda \in \mathbf{R}$ tel que $f = \phi_{\lambda}$, ie : $f(t) = B(t)e^{-t} + \lambda e^{-t}$. Puisque $\lim_{t \to +\infty} \lambda e^{-t} = 0$ n il suffit de montrer que $\lim_{t \to +\infty} B(t)e^{-t} = 0$ pour montrer la limite en f.

Soit $\varepsilon > 0$. $\lim g(t) = 0$ par hypothèse, donc il existe $a \ge 0$ tel que, $\forall t \ge a$, $|g(t)| \le \varepsilon/2$. $\lim |B(a)|e^{-t} = 0$ donc il existe $b \ge 0$ tel que, $\forall t \ge b$, $|B(a)|e^{-t} \le \varepsilon/2$.

Notons $c = \max(a, b) \ge 0$.

Pour $t \ge c$,

$$B(t) = \int_0^t g(u)e^u du = \int_0^a g(u)e^u du + \int_a^t g(u)e^u du = B(a) + \operatorname{Int}_a^t g(u)e^u du$$

$$|B(t)| \le |B(a)| + \left| \int_{a}^{t} g(u)e^{u} du \right|$$

$$\le |B(a)| + \int_{a}^{t} |g(u)e^{u} du$$

$$\leq |B(a)| + \frac{\varepsilon}{2} \cdot \int_{a}^{t} e^{u} du$$

 $\leq |B(a)| + \frac{\varepsilon}{2} e^{t}$

Et donc
$$|B(t)|e^{-t} \le |B(a)|e^{-t} + \frac{\varepsilon}{2} \le 2 \cdot \frac{\varepsilon}{2} = \varepsilon$$
.
AInsi $\lim_{t \to +\infty} |B(t)|e^{-t} = 0$

Exercice 2.

1)

$$(S) \iff \begin{cases} y' = F(t, y) \\ y(0) = 1 \end{cases}$$

L'application $f: x \mapsto \sqrt{1+x^2}$ est dérivable et de dérivée majorée par 1 donc f est 1-lipschitzienne. On en déduit que F est aussi globalement lipschitzienne par rapport à la seconde variable. De plus, elle est continue. Donc, par CL, (S) admet une unique solution définie sur \mathbf{R} . (qui est donc globale).

2) Notons $\varphi : \mathbf{R} \longrightarrow \mathbf{R}$ cette solution. C'est une équation *autonome* à *variables séparées*. On peut alors calculer la solution globale de (S); $t \mapsto \varphi(t) = \frac{1+\sqrt{2}}{2}e^t - \frac{1}{2\sqrt{1+\sqrt{2}}}e^{-t}$

Exercice 3.

1) — Soit t > 0.

$$ty' + y = 0 \iff y' + \frac{1}{t}y = 0 \iff y' = F(t, y)$$

. F est \mathscr{C}^1 donc on peut appliquer CL.

— Soit $t \in \mathbf{R}$ Le système n'est pas de la forme y' = F(t, y) donc on ne peut pas appliquer CL sur \mathbf{R} .

2) Sur $]0, +\infty[$.

$$ty' + 0 \iff y' + \frac{1}{t}y = 0$$
$$= y' + a(t)y + 0 \quad (E)$$

Où $a: t \in]0, +\infty[\to a(t) = \frac{1}{t} \in \mathbf{R}$. ALors $A: t \to \ln(t)$ est une primitive de a.

Donc les solutions maximales de E sont les $\varphi_{\lambda}: t \mapsto \lambda e^{-A(t)} = \frac{\lambda}{t}$.

Ainsi, les solutions de ty'+y=0 définies sur un intervalle ouvert inclus dans $]0,+\infty[$ sont les restrictions de φ_{λ}

3) Sur] $-\infty$, 0[.

$$ty' + y = 0 \iff y' + \frac{1}{t} = 0 \ (E^{-})$$

Une primitive de $\frac{1}{t}$ est $t \to \ln|t|$ Donc les solutions maximales de (E^-) sont les $\psi_{\lambda}: t \in]-\infty, 0[\to \lambda e^{-\ln|t|} = \frac{-\lambda}{t}$.

Soit $f: \mathbf{R} \to \mathbf{R}$ une solution de ty' + y = 0 sur \mathbf{R} . ALors f est continue en 0 et donc, d'après les points précédents, f(t) = 0 sur tout \mathbf{R} . Réciproquement, la fonction nulle est bien solution. D'où ty' + y = 0 admet une unique solution définie sur \mathbf{R} qui est $t \mapsto 0$

Exercice 4.

1) y' = F(t, y) où

$$F: \begin{cases} \mathbf{R} \times \mathbf{R} \longrightarrow \mathbf{R} \\ (t, x) \mapsto \frac{x}{2} \left(1 - \frac{3}{x^2 + 2} \right) \end{cases}$$

Notons $f: x \to f(x) = F(\cdot, x)$. Alors f est dérivable et on peut montrer qu'elle est $\frac{5}{4}$ -lipschitzienne. Donc F est globalement lipschitzienne par rapport à la seconde variable et continue, ainsi F vérifie les hypothèses de CL.

2) Soi φ la solution maximale de

$$\begin{cases} y' = F(t, y) \\ y(0) = y_0 > 0 \end{cases}$$

Puisque F est globalement lipschitzienne, alors φ est définie sur \mathbf{R} . En particulier, le temps maximal positif d'existence est $+\infty$.

- 3) On remarque que la fonction nulle est une autre solution maximale. DOnc $\varphi \neq 0$. Alors, comme φ est continue (car dérivable), qu'elle ne s'annule pas et que $\varphi(0) > 0$, d'après le TVI, $\forall t \in \mathbf{R}, \ \varphi(t) > 0$.
- 4) A FAIRE (notes du 11 février)

Exercice 5.

1)

(S):
$$\begin{cases} y'' = 4y - 6y^2 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

Notons $Y = \begin{pmatrix} y \\ y' \end{pmatrix}$. Alors

$$(S) \iff (S'): \begin{cases} Y' = F(t, Y) \\ Y(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \text{Où } F: \begin{cases} \mathbf{R} \times \mathbf{R}^2 \longrightarrow \mathbf{R}^2 \\ \left(t, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) \mapsto \begin{pmatrix} x_2 \\ 4x_1 - 6x_1^2 \end{pmatrix} \end{cases}$$

F est \mathcal{C}^1 donc, par CL, (S') admet une unique solution maximale. D'où, (S) admet une unique solution maximale.

2) Notons $\varphi: I \longrightarrow \mathbf{R}$ la solution maximale de (S). Par CL, I est un intervalle ouvert. De plus, $0 \in I$. Notons

$$\psi: \begin{cases} -I \longrightarrow \mathbf{R} \\ t \mapsto \psi(t) = \varphi(-t) \end{cases}$$

Alors ψ est deux fois dérivable car φ l'est et, pour tout $t \in -I$,

$$\psi'(t) = -\varphi'(-t)$$

$$\psi''(t) = \varphi''(-t) = 4\varphi(-t) - 6\varphi(-t)^{2}$$

$$= 4\psi(t) - 6\psi(t)^{2}$$

De plus,

$$\begin{cases} \psi(0) = \varphi(-0) = \varphi(0) = 1 \\ \psi'(0) = -\varphi'(-0) = -\varphi'(0) = -0 = 0 \end{cases}$$

Donc ψ est solution de (S). Ainsi, par CL, ψ est restriction à -I de la solution maximale de (S): $\psi = \varphi_{|-I}$

En particulier, $-I \subset I$ et donc -I = I.

De plus, $\forall t \in I$, $\varphi(-t) = \psi(t) = \varphi(t)$

3)

$$\varphi'(t)^{2} = \varphi'(0)^{2} + \int_{0}^{t} (\varphi(u)^{2})' du$$

$$= \int_{0}^{t} 8\varphi'(u)\varphi(u) - 12\varphi'(u)\varphi(u)^{2} du$$

$$= [4\varphi(u)^{2} - 4\varphi(u)^{3}]_{0}^{t}$$

$$= 4\varphi'(t)^{2} - 4\varphi(t)^{3} - 4\varphi(0)^{2} - 4\varphi(0)^{3}$$

$$= 4\varphi(t)^{2} - 4\varphi(t)^{3}$$

$$= 4\varphi(t)^{2}(1 - \varphi(t))$$

4) Supposons qu'il existe un temps $t_0 \in I$ tel que $\varphi(t_0) = 0$. Alors $\varphi'(t_0) = 0$. Ainsi, φ est solution du système de CAUCHY

$$\begin{cases} y'' = 4y - 6y^2 \\ y(t_0) = 0 \\ y'(t_0) = 0 \end{cases}$$

Or, ce systèùe admet une unique solution maximale qui est la fonction nulle n sur tout \mathbf{R} .

Donc $\varphi = n_{|I|}$ et, pour tout $t \in I$, $\varphi(t) = 0 \nleq$. D'où, $\forall t \in I$, $\varphi(t) \neq 0$.

Comme $\varphi: I \longrightarrow \mathbf{R}$ est continue, que I est un intervalle qui contient 0 et que φ ne s'annulle pas, d'après le TVI, $\forall t \in I, \varphi(t) > 0$. C'est-à-dire

$$\varphi > 0$$

De plus, $\forall t \in I$, $1 - \varphi(t) = \frac{\varphi'(t)p^2}{4\varphi(t)^2} \ge 0$ et donc $\varphi(t) \le 1$. C'est-à-dire :

$$\varphi \leq 1$$

 $\varphi: I \longrightarrow \mathbf{R}$ est la solution maximale de (S) donc

$$\phi: \begin{cases} I \longrightarrow \mathbf{R}^2 \\ t \mapsto \begin{pmatrix} \varphi(t) \\ \varphi'(t) \end{pmatrix} \end{cases}$$

est la solution maximale de (S'). Pour tout $t \in I$,

$$0 < \varphi(t) \le 1$$
$$\varphi'(t)^2 = 4\varphi(t)^2 (1 - \varphi(t)) \le 4$$
$$|\varphi'(t)| \le 2$$

Et donc $\|\phi(t)\|_{\infty} = \max(|\varphi(t)|, |\varphi'(t)|) \le 2$ D'où ϕ est bornée, et donc $I = \mathbf{R}$ par CL. Soit $E = \{a \in \mathbf{R}_+ \mid \forall t \in [0, a], \varphi'(t) \le 0\}$.

 $E \neq \emptyset$ car $0 \in E$.

Supposons *E* majoré. Alors $\alpha = \sup E \in \mathbf{R}$ existe. on a :

- $\forall t \in [0, \alpha[, t \in E \text{ et donc } \varphi'(t) \leq 0.$ Puisque φ' est continue en α , on en déduit $\varphi'(\alpha) \leq 0$
- Pour $n \ge 1$, $\alpha + \frac{1}{n} \not\in E$ et donc il existe un temps $t_n \in]\alpha, \alpha + \frac{1}{n}[$ tel que $\varphi'(t_n) > 0$. Ainsi, $\varphi'(\alpha) = \lim_{n \to +\infty} \varphi'(t_n) \ge 0$

D'où $\varphi'(\alpha) = 0$. Ainsi

$$0 = \varphi'(\alpha)^2 = 4\varphi(\alpha)^2 (1 - \varphi(\alpha))$$

Et donc $\varphi(\alpha) = 1$ (car $\varphi(\alpha) > 0$).

Par conséquent, $\varphi''(\alpha) = 4\varphi(\alpha) - 6\varphi(\alpha)^2 = -2$.

 φ'' est continue en α donc il existe $\mu > 0 \ \forall t \in [\alpha, \alpha + \mu \ \varphi''(t) \le -1$.

Donc, pour tout $t \in [\alpha, \alpha + \mu]$,

$$\varphi'(t) = \varphi'(\alpha) + (t - \alpha)\varphi''(\theta)$$

avec $\theta \in [\alpha, t]$ et donc

$$\varphi'(t) \le -(t - \alpha) \le 0$$

D'où E n'est pas majoré et

$$\forall t \in \mathbf{R}_+, \ \varphi'(t) \leq 0$$

5) Pour $t \in \mathbf{R}$

$$-\varphi'(t) \leq 0$$

$$-0 < \varphi(t) \le 1$$

$$- \varphi'(t)^2 = 4\varphi(t)^2(1 - \varphi(t))$$

Et donc $\varphi'(t) = -2\varphi(t)\sqrt{1-\varphi(t)}$. L'application

$$\begin{cases}]0,1[\longrightarrow \mathbf{R} \\ x \mapsto \frac{1}{-2x\sqrt{1-x}} \end{cases}$$

est continue et une primitive de cette application est

$$G(x) = \int \frac{1}{-2x\sqrt{1-x}} dx$$

$$= \int \frac{1}{-2(1-u^2)u} - 2u du$$

$$= \int \frac{1}{1-u} du$$

$$= \frac{1}{2} (\ln|u+1| - \ln|u-1|)$$

$$= \frac{1}{2} \ln \frac{1+u}{1-u}$$

$$= \frac{1}{2} \ln \left(\frac{1+\sqrt{1-x}}{1-\sqrt{1-x}t} \right)$$

Soit $F = \{a > 0 \mid \forall t \in]0, a], \varphi(t) \neq 1\}.$ $F \neq \emptyset$. En effet :

 $\varphi(0) = 1$ et donc $\varphi'' = -2 < 0$. Donc i lexiste a > 0 tel que $\forall t \in [0, a], \varphi'' \leq -1$ (par

continuité de φ'' en 0). Soit $t \in]0, a]$.

$$\varphi'(t) = \varphi'(0) + (t - 0)\varphi''(\theta)$$
$$= t\varphi''(\theta) \le -t < 0$$

Où l'on a appliqué le TAF et $\theta \in [0, t]$.

Ainsi, $\forall t \in]0, a], \varphi'(t) neq0.$

Donc $\forall t \in [0, a], \ \varphi(t) \neq \operatorname{car} 0 \neq \varphi'(t)^2 = 4\varphi(t)^2(1 - \varphi(t)).$

Notons $\alpha = \sup F \in \mathbf{R}_+^* \cup \{\infty\}$. on a :

$$\forall t \in]0, \alpha[-2\varphi(t)\sqrt{1-\varphi(t)} \neq 0$$

et

$$\frac{\varphi'(t)}{-2\varphi(t)\sqrt{1-\varphi(t)}} = 1$$

Soit $t_0 \in]0, \alpha[$.

$$\int_{t_0}^{t} \frac{\varphi'(t)}{-2\varphi(t)\sqrt{1-\varphi(t)}} du$$

$$= [F(\varphi(u))]_{t_0}^{t}$$

$$= G(\varphi(t)) - G(\varphi(t_0))$$

Donc $G(\varphi(t)) = t + G(\varphi(t_0)) - t_0 = t + b$ où $b = G(\varphi(t_0)) - t_0 \in \mathbf{R}$.

Pour $t \in]0, \alpha[$,

$$\varphi(t) = \frac{1}{\operatorname{ch}^2(t+b)}$$

(calcul à faire!!) Et

$$0 = \varphi(0) = \lim_{t \to 0^+} \varphi(t) = \lim_{t \to 0^+} \frac{1}{\operatorname{ch}^2(t+b)} = \frac{1}{\operatorname{ch}^2(b)}$$

Donc $\operatorname{ch}^2(b) = 1$ puis $\operatorname{cj}(b) = 1$ (car ch est positive) et b = 0. Ainsi, $\forall t \in]0, \alpha[$, $\varphi(t) = \frac{1}{\operatorname{ch}^2(t)}$. Puisque $\alpha = \sup F$ et $\forall t > 0$, $\frac{1}{\operatorname{ch}^2(t)} < 1$, on obtient $\alpha = +\infty$. Donc $\forall t \in]0, +\infty[$, $\varphi(t) = \frac{1}{\operatorname{ch}^2(t)}$. Puisque $\varphi(0) = 1 = \frac{1}{1^2} = \frac{1}{\operatorname{ch}^2(0)}$ et que φ est paire, on en déduit que pour tout $t \in \mathbf{R}$, $\varphi(t) = \frac{1}{1}$ $\frac{1}{\cosh^2(t)}$. Ainsi

$$\varphi: \begin{cases} \mathbf{R} \longrightarrow \mathbf{R} \\ t \mapsto \varphi(t) = \frac{1}{\operatorname{ch}^2(t)} \end{cases}$$