Описание данных, полученных в процессе проведения опытно-экспериментальной работы

Данные, полученные в ходе эксперимента, можно разделить на:

- Количественные данные:
 - о Дискретные (целые числа, например, количество выполненных заданий, баллы за тест).
 - о Непрерывные (дробные значения, например, время выполнения задания в минутах).
- Качественные (категориальные) данные:
 - Номинальные (без порядка, например, "использовал геймификацию / не использовал").
 - о Порядковые (имеют градацию, например, "низкий", "средний", "высокий" уровень владения Excel).

Методы количественного описания данных

Описательная статистика

Позволяет обобщить данные с помощью:

- Меры центральной тенденции (описывают "типичное" значение):
 - о Среднее арифметическое (для нормального распределения).
 - о Медиана (для данных с выбросами).
 - о Мода (наиболее часто встречающееся значение).
- Меры изменчивости (показывают разброс данных):
 - о Размах (разница между максимумом и минимумом).
 - о Дисперсия и стандартное отклонение (степень отклонения от среднего).
 - о Межквартильный размах (разница между 75-м и 25-м процентилями).

Визуализация данных

- Гистограммы (распределение количественных данных).
- Боксплоты для сравнения групп и выявления выбросов.
- Столбчатые и линейные графики для динамики изменений.

Проверка гипотез

Для сравнения групп (экспериментальной и контрольной) применяются:

• Параметрические тесты (если данные нормально распределены).

• Непараметрические тесты (если распределение не является нормальным или данные порядковые).

Корреляционный анализ

Позволяет выявить взаимосвязи между переменными (например, "количество игровых баллов" и "результат теста"):

- Коэффициент корреляции Пирсона (для линейной связи).
- Коэффициент Спирмена (для монотонной связи).

Пример применения методов

Сравнение групп

Группа	Средний балл (до)	Средний балл (после)	Стандартное отклонение	p-value (t-критерий)
Контрольная	62.4	68.1	8.7	0.12 (незначимо)
Экспериментальная	63.2	78.5	7.2	0.003 (значимо)

Вывод: применение геймификации значимо повышает результаты обучения (р < 0.05).

Корреляция игровых элементов и успеваемости

Показатель	Корреляция с итоговым балло	
	(r Пирсона)	
Количество бейджей	0.56 (умеренная связь)	
Время в системе	0.23 (слабая связь)	

Вывод: чем больше бейджей получили педагоги, тем выше их результаты.

Выбор инструментов для обработки данных

Для обработки данных можно использовать:

- Электронные таблицы (Microsoft Excel, LibreOffice Calc, Google Sheets) для базовой статистики и графиков.
- Python (Pandas, SciPy, Matplotlib) для автоматизированной обработки.