Exercise 6.107

L Answer (a).

We are given the T-periodic function x, where

$$x(t) = \frac{A}{T}t$$
 for $t \in [0, T)$.

Let x_T denote a function equal to x on the interval [0,T) and zero elsewhere. Let X_T denote the Fourier transform of x_T . Recalling the formula for the Fourier transform of a T-periodic function (expressed in terms of the Fourier transform of a single period of the function), we have

function), we have
$$X(\omega) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{T} X_T \left(\frac{2\pi}{T}k\right) \delta\left(\omega - \frac{2\pi}{T}k\right).$$
 for all function function (expressed in terms of the Fourier function). For all function function function we need to find X_T sis equation, we have

From the Fourier-transform analysis equation, we have

ation, we have
$$X_T(\omega) = \int_0^T x_T(t)e^{-j\omega t}dt$$

$$= \int_0^T \frac{A}{T}te^{-j\omega t}dt$$
 substitute X_T
$$= \frac{A}{T}\int_0^T te^{-j\omega t}dt.$$
 pull constant out of integral

To compute the integral in the preceding equation, there are two cases to consider: $\omega = 0$ and $\omega \neq 0$.

First, consider the case that $\omega \neq 0$. From (F.1), we have

From (F.1), we have
$$X_T(\omega) = \frac{A}{T} \left[\frac{1}{(-j\omega)^2} e^{-j\omega t} (-j\omega t - 1) \right]_0^T \quad \text{pull out factor}$$

$$= \frac{A}{T} \left(\frac{1}{\omega^2} \right) \left[e^{-j\omega t} (j\omega t + 1) \right]_0^T \quad \text{evaluate at T and Ω}$$

Evaluating X_T at $\frac{2\pi}{T}k$ (where $k \neq 0$), we have

$$\begin{split} X_T\left(\frac{2\pi}{T}k\right) &= \frac{A}{T(2\pi k/T)^2} \left[e^{-j2\pi k}(j2\pi k+1)-1\right] \qquad e^{-j2\pi T} = 1 \\ &= \frac{AT}{4\pi^2 k^2}(j2\pi k) \\ &= \frac{jAT}{2\pi k} \quad \text{for } k \neq 0. \end{split}$$

Now, consider the case that $\omega = 0$. We have

$$X_T(\omega) = \frac{A}{T} \int_0^T t dt$$
 integrate \mathbb{Z} $\omega = 0$

$$= \frac{A}{T} \left[\frac{1}{2} t^2 \right]_0^T$$
 actually integrate
$$= \frac{A}{T} \left(\frac{1}{2} T^2 \right)$$
 evaluate at \mathbb{T} and \mathbb{C}

$$= \frac{AT}{2}.$$
 Simplify

Evaluating X_T at $\frac{2\pi}{T}k$ (where k=0), we have

$$X_T\left(\frac{2\pi}{T}k\right) = \frac{AT}{2}$$
 for $k = 0$.

Combining the above results, we have

$$X_T\left(\frac{2\pi}{T}k\right) = \begin{cases} \frac{AT}{2} & k = 0\\ \frac{jAT}{2\pi k} & k \neq 0. \end{cases}$$

Using the formula for the Fourier transform of a periodic function from above, we have

(Note that the "\" symbol denotes set subtraction.)