MATH-F307 - Mathématiques Discrètes Laurent LA FUENTE Notes de cours

André Madeira Cortes Nikita Marchant TABLE DES MATIÈRES 2

Table des matières

	Théorie des Graphes 1.1 Définitions 1.2 Chemins dans les graphes 1.3 Arbres	4
2	Arithmétique Modulaire	5
3	Combinatoire énumérative	6
4	Théorie des Codes	7
5	Transformées de Fourier discrètes	8

1 Théorie des Graphes

1.1 Définitions

Définition 1.1. Un graphe Γ est un triplet (V, E, γ) où V est un ensemble fini dont les éléments sont appelés sommets, E est un ensemble fini dont les éléments sont appelés arêtes, γ est une fonction $\gamma: E \to Paires(V)$. On nottera le plus souvent $\Gamma = (V, E)$ en omettant la fonction γ .

Soit $\gamma(e) = \{x, y\}$ pour $e \in E, x, y \in V$:

- 1. On dit que x et y sont adjacents.
- 2. On dit que e est incidente à x et y.

Définition 1.2. Soit $\Gamma = (V, E, \gamma)$ un graphe.

- 1. $\gamma(e) = \{x, x\}$ pour $e \in E, x \in V$ est appellé un lacet.
- 2. Si au moins 2 arêtes sont incidentes à 2 mêmes somments, on les appelle arêtes multiples.
- 3. Un graphe est simple s'il n'a ni lacet, ni arêtes multiples. Dans ce cas, on omet la fonction γ , on note $\Gamma = (V, E)$ et E est identifié un sous-ensemble de Paires(V).

Définition 1.3. Soit $\Gamma = (V, E)$ un graphe. Le degré d'un sommet $v \in V$ est le nombre d'arêtes incidentes à v, les lacets comptant pour 2 arêtes. On note le degré de v par deg(V).

Exemple. Dans la figure suivante, nous avons 2 sommets de degré 4 et 6 sommets de degré 1.

FIGURE 1 – Exemple degrés des sommets dans la molécule C_2H_6 .

Théorème 1.1. Soit $\Gamma = (V, E)$, alors

$$\sum_{i=1}^{\#V} deg(v_i) = 2\#E$$

Démonstration. Chaque arête contribue 2 fois dans la somme des degrés.

Corollaire. La somme des degrés des sommets d'un graphe est paire.

Définition 1.4. Le graphe complet K_n est le graphe simple à n sommets pour lequel chaque paire de sommets est une arête.

Exemple. <Dessin des graphes complets $K_1K_5>$

Définition 1.5. Un graphe $\Gamma' = (U, F)$ est un sous-graphe de $\Gamma = (V, E)$ si $U \subseteq V$ et $F \subseteq E$. On nottera $\Gamma' \leq \Gamma$.

Exemple. $K_m \leq K_n \text{ si } m \leq n$.

Exercice. Montrer que K_m possède $q = \frac{1}{2}n(n-1)$ arêtes.

1.2 Chemins dans les graphes

Définition 1.6.

Définition 1.7.

Définition 1.8.

1.3 Arbres

Définition 1.9.

Définition 1.10.

Exemple.

Proposition 1.1.

Démonstration.

Théorème 1.2.

Démonstration.

2 Arithmétique Modulaire

3 Combinatoire énumérative

4 THÉORIE DES CODES 7

4 Théorie des Codes

5 Transformées de Fourier discrètes