LEO ZHOU

1200 E California Blvd, MC 305-16, Pasadena, CA 91125

☑ <u>leozhou92@gmail.com</u>

% https://leozhou92.github.io

EDUCATION

Harvard University Cambridge, MA

Ph.D. in Physics 2014–21

Thesis: Complexity, Algorithms, and Applications of Programmable Quantum Many-Body Systems

Advisor: Mikhail Lukin

Massachusetts Institute of Technology

Cambridge, MA

B.Sc. in Physics and Mathematics; Minor in Economics; GPA: 5.0/5.0

2010-14

Thesis: Error-Suppression by Energy-Gap Protection for Quantum Computation in Open Systems

Advisor: Edward Farhi

RESEARCH EXPERIENCE

California Institute of Technology – Walter Burke Institute for Theoretical Physics

Pasadena, CA

DuBridge Postdoctoral Scholar with Prof. John Preskill

2021-Present

- Lead independent research in quantum algorithms for inference and optimization problems
- Investigated the complexity of finding local minima in quantum systems and the computational power of cooling
- Managed graduate and undergraduate students in multiple research projects

BlueQubit, Inc.

Los Angeles, CA

Quantum R&D Scientist

2023-Present

Advised quantum research efforts and developed quantum algorithmic solutions for sampling tasks

Harvard University - Department of Physics

Cambridge, MA

Graduate Research Fellow with Prof. Mikhail Lukin

2014-2

- Analyzed performance and mechanism of QAOA, and invented powerful heuristics for optimizing its parameters
- Designed realistic schemes of quantum information processing applications in cold atoms with error analysis
- Developed specialized software libraries for simulating many-body physics using matrix product state ansatz

Google AI Quantum

Venice, CA

Research Intern with Prof. Edward Farhi

Summer 2019

- Studied noise-resilience and error-mitigation of the Quantum Approximate Optimization Algorithm (QAOA)
- Calculated the typical-case performance of the OAOA applied to spin glass problems in the thermodynamic limit
- Developed software tools in Google's code base for running quantum algorithms on their quantum processors

Hebrew University - Department of Computer Science and Engineering

Jerusalem, Israel

Visiting Researcher with Prof. Dorit Aharonov

Summers 2014 & 2015

- Initiated the study of resource requirements of analog quantum simulation of complex systems by simpler ones
- Proved separation of classical vs. quantum systems on the possibility of reducing the degree of connectivity

Massachusetts Institute of Technology

Cambridge, MA

Undergraduate Researcher

2010-14

- Proved that the energy penalty method can suppress errors in Hamiltonian-based computations with Prof. Farhi
- Investigated hydrodynamic pilot-wave analogues of quantum systems with Prof. John W.M. Bush
- Built graphene and transition-metal dichalcogenide-based nanoelectronics with Prof. Pablo Jarillo-Herrero
- Analyzed high energy heavy ion collisions from RHIC and LHC with Dr. George S.F. Stephans

AWARDS AND HONORS

•	Outstanding Paper Award at the 17th Conference on Theory of Quantum Computation,	2022
	Communication and Cryptography (TQC'22)	
•	Grant Winner (\$5k) for Excellent Contributed Talk at QC40: Physics of Computation Conference	2021
•	Burke Prize Fellowship at the California Institute of Technology	2021
•	Bloch Fellowship at Stanford University (declined)	2021
•	Hartree Fellowship at the Institute of Advanced Computer Studies, University of Maryland (declined)	2021
•	Martin & Beate Block Award (for best poster presented by co-author ST. Wang) at the Aspen	2018
	Conference on Advances in Quantum Algorithms and Computation	
•	National Science Foundation (NSF) Graduate Research Fellowship	2014–17
•	Phi Beta Kappa (Academic Honor Society), MIT Xi Chapter	2014
•	MIT Junior Lab Edward C. Pickering Award for Outstanding Original Project, Honorable Mention	2013

PUBLICATIONS

- C.-F. Chen, H.-Y. Huang, J. Preskill, L. Zhou†. Local minima in quantum systems. Preprint on arXiv:2309.16596, (2023). Accepted to QIP'24.
- J. Basso, D. Gamarnik, S. Mei, L. Zhou†. Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin glass models. In Proceedings of the 63rd Symposium on Foundations of Computer Science, FOCS'22 (2022). arXiv:2204.10306.
- S. Ebadi, ..., L. Zhou, ..., M.D. Lukin. Quantum Optimization of Maximum Independent Set using Rydberg Atom Arrays. Science 376, 1209 (2022). arXiv:2202.09372.
- J. Basso, E. Farhi, K. Marwaha, B. Villalonga, L. Zhou†. *The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model.* In Proceedings of the 17th Conference on the Theory of Quantum Computation, Communication and Cryptography, <u>TQC '22</u> (2022), Outstanding Paper Award. arXiv:2110.14206.
- L. Zhou, D. Aharonov. Strongly Universal Hamiltonian Simulators. QIP'21 (2021). arXiv:2102.02991.
- M.P. Harrigan, ..., L. Zhou, ..., R. Babbush. *Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor*. Nature Physics 17, 332 (2021). arXiv:2004.04197.
- S.H. Cantu, A.V. Venkatramani, W. Xu, L. Zhou, B. Jelenković, M.D. Lukin, V. Vuletić. *Repulsive photons in a quantum nonlinear medium*. Nature Physics 16, 921 (2020). arXiv:1911.02586.
- E. Farhi, J. Goldstone, S. Gutmann, L. Zhou†. The Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick Model at Infinite Size. Quantum 6, 759 (2022). Also in QIP'21. arXiv:1910.08187.
- Z. Eldredge, **L. Zhou**, A. Bapat, J.R. Garrison, A. Deshpande, F.T. Chong, A.V. Gorshkov. *Entanglement bounds on the performance of quantum computing architectures*. Phys. Rev. Research 2, 033316 (2020). arXiv:1908.04802.
- L. Zhou*, S.-T. Wang*, S. Choi, H. Pichler, and M.D. Lukin. *Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices*. Phys. Rev. X 10, 021067 (2020). arXiv:1812.01041.
- H. Pichler*, S.-T. Wang*, L. Zhou*, S. Choi, and M.D. Lukin. Computational complexity of the Rydberg blockade in two dimensions. Preprint on arXiv:1809.04954, (2018).
- H. Pichler*, S.-T. Wang*, L. Zhou, S. Choi, and M.D. Lukin. *Quantum Optimization for Maximum Independent Set Using Rydberg Atom Arrays*. Preprint on <u>arXiv:1808.10816</u>, (2018).

LEO ZHOU PAGE 2 / 4

- D. Aharonov and L. Zhou†. *Hamiltonian Sparsification and Gap-Simulation*. In Proceedings of the 2019 ACM Conference on Innovations in Theoretical Computer Science, <u>ITCS'19 (2019)</u>. <u>arXiv:1804.11084</u>.
- L. Zhou*, S. Choi*, and M.D. Lukin. Symmetry-protected dissipative preparation of matrix product states. Phys. Rev. A (2021). arXiv:1706.01995.
- A.D. Bookatz, E. Farhi, and L. Zhou†. Error suppression in Hamiltonian based quantum computation using energy penalties. Phys. Rev. A 92, 022317 (2015). arXiv:1407.1485.
- **L. Zhou** and G.S.F. Stephans. *Energy and centrality dependence of particle multiplicity in heavy ion collisions* from $\sqrt{s_{NN}} = 20$ to 2760 GeV. Phys. Rev. C 90, 0149902 (2014). arXiv:1312.3656.

* indicates that authors contributed equally † indicates alphabetical ordering of authors

PRESENTATIONS

Quantum Advantages in Energy Minimization	
Colloquium talk at the University of Southern California	11.2023
o Invited talk at the IPAM "Mathematical and Computational Challenges in Quantum	11.2023
Computing" program at the University of California, Los Angeles	
• Exploring Quantum Advantages in Optimization Problems	
o Invited talk at the NISQ Algorithms and Hardware (NISQAH 2023) conference [video]	06.2023
• Quantum computing with Rydberg atom arrays	
o Tutorial talk at the 2023 APS March Meeting	03.202
• Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin	
glass models	
 Accepted talk, 18th Conference on Theory of Quantum Computation, Communication and 	07.2023
Cryptography (TQC) [video]	
 Accepted talk, 63rd Annual Symposium on Foundations of Computer Science (FOCS) 	11.202
Advantages and Limitations of the Quantum Approximate Optimization Algorithm	
o Invited talk at the 2023 Information: Theory and Applications (ITA) workshop	02.202
o Invited talks at the MIT Center for Theoretical Physics and QuEra Computing, Inc.	06.202
• The QAOA at High Depth for MaxCut on Large-Girth Regular Graphs and the SK Model	
Outstanding Paper Award talk at the 17th Conference on Theory of Quantum Computation,	07.202
Communication and Cryptography (TQC) [video]	
Quantum Approximate Optimization: Challenges and Opportunities	
o Invited talk at the 2021 INFORMS Annual Meeting	10.202
• Strongly Universal Hamiltonian Simulators	
o Invited talk at the Simons Institute Quantum Wave in Computing Reunion Workshop	07.202
 Accepted talk at QC40: Physics of Computation Conference 40th Anniversary 	05.202
o Invited talk at the QCDA (Quantum Code Design and Architecture) seminar	04.202
o Accepted talk, 24th Annual Conference on Quantum Information Processing (QIP) [video]	02.202
The QAOA and the Sherrington-Kirkpatrick Model at Infinite Size	
 Accepted talk, 24th Annual Conference on Quantum Information Processing (QIP) [video] 	02.202
• Quantum Simulation and Optimization in Near-Term Quantum Computers	
o Invited talk at the Stanford Q-FARM Special Seminar	12.202
o Invited talk at the MIT Center for Theoretical Physics	12.202
 Invited talk at the QM seminar, UC Berkeley [video] 	12.202
o Invited talk at the Institute for Quantum Information (IQI) Seminar, Caltech	12.2020

LEO ZHOU PAGE 3 / 4

Hamiltonian Sparsification and Gap-Simulation	
 Accepted talk, 22nd Annual Conference on Quantum Information Processing (QIP) [video] 	01.2019
 Accepted talk, 10th Innovations in Theoretical Computer Science conference (ITCS) 	01.2019
• Quantum Approximate Optimization: Performance and Applications with MaxCut and Maximum	01.2015
Independent Set Problems	
 Talk at the 50th Meeting of APS Division of Atomic, Molecular & Optical Physics 	05.2019
Poster at the Quantum Science Gordon Research Conference	08.2018
o Poster at the Aspen Conference on Advances in Quantum Algorithms and Computation	03.2018
Symmetry-protected dissipative preparation of matrix product state	
o Invited talk at the Mathematical Picture Language Project Seminar, Harvard University	11.2019
o Poster at the 48th Meeting of APS Division of Atomic, Molecular & Optical Physics	06.2017
 Talk at the Quantum Science: Implementation workshop in Benasque, Spain 	07.2016
 Robust quantum information processing with atomic cat states 	
 Poster at the Atomic Physics Gordon Research Conference 	06.2015
A	
ADDITIONAL EXPERIENCES	
Teaching	
 Guest lecturer for the "Rydberg Computers" tutorial at the 2023 APS March Meeting 	2023
 Supporting Teaching Fellow for Physics of Quantum Information (Physics 271) and Modern 	2016–20
Atomic and Optical Physics II (Physics 285b) at Harvard University	
 Teaching Fellow for Electrodynamics (Physics 153) at Harvard University 	2018
 Teacher & Mentor at MIT China Development Initiative's Service Leadership Program 	2013
 Teaching high school students in Gaildorf, Germany through MIT's Global Teaching Lab 	2012
 Teaching high school students at the Splash event for the MIT Educational Studies Program 	2011
Service	
 Program committee for TQC'23 (18th conference on Theory of Quantum Computation) 	2023
Referee for Physical Review journals	2022–23
• Reviewer for leading quantum computer science conferences (including: QIP, TQC, STOC, SODA)	2019–23
• Referee for <i>Quantum</i> (journal)	2019–22
Referee for ACM Transactions on Quantum Computing	2021
MIT Society of Physics Students, Executive Council	2011-14
Mentorship	
Chi-Fang (Anthony) Chen, graduate student at Caltech	2022–23
Ishaan Kannan, undergraduate student at Caltech	2021–23
William (Robbie) King, graduate student at Caltech	2021–23
Hsin-Yuan (Robert) Huang, graduate student at Caltech (now at Google, future Caltech faculty)	2021–23
 Joao Basso, undergraduate student at Tufts (now UC Berkeley graduate student) 	2019–23
Beatrice Nash, graduate student at Harvard	2020-21
Katherine van Kirk, graduate student at Harvard	2020–21
Madelyn Cain, graduate student at Harvard	2019–21
Dylan Li, undergraduate student at Harvard	Fall 2020
Amir Shanehsazzadeh, undergraduate student at Harvard	Fall 2020
Abhishek Anand, undergraduate student at Harvard (now Caltech graduate student)	2018–19
Software	

LEO ZHOU PAGE 4 / 4

• MATLAB, Python, Julia, Mathematica, Java, C++, GPGPU computing