

BIL301 SAYISAL YÖNTEMLER 4. Hafta

Denklem Çözüm Yöntemleri

Doç. Dr. Sercan YALÇIN

DENKLEM ÇÖZÜMLERİ

- ■4.1. Grafik Yöntemleri
- ■4.2. Kapalı Yöntemler
 - ■4.3. Açık Yöntemler

Denklem kökleri mühendislikte tasarım alanında karşımıza çıkar.

- Fizik kanunlarından çıkarılan matematiksel denklemler veya modeller, bir sisteme ait bağımlı değişkenlerin tahmin edilmesinde kullanılır.
- Örnek:Bir paraşütçünün hızını bulmak için Newtonun 2. yasasını kullanalım

$$v = \frac{g m}{c} \left(1 - e^{-(c/m)t} \right)$$

Diğer parametreler bilinirse, paraşütçünün hızını, zamana bağlı olarak hesaplamak (v=f(t)) kolaydır

- fakatc=?.
- Çözüm analitik olarak mümkün değil
- $v = \frac{g m}{c} \left(1 e^{-(c/m)t} \right)$

- Sayısal çözüm:
- f(c) =0

$$f(c) = \frac{gm}{c} \left(1 - e^{-(c/m)t}\right) - v$$

Bu fonksiyonu sıfır yapan kök, tekrar tekrar c'ye değerler verilerek, grafik veya diğer sayısal yöntemlerle bulunur.

Denklemlerin sayısal olarak çözümleri de diğer problem çözümleri gibi çoğunlukla yinelemeli (iteratif) yöntemlerle yapılır.

Grafik Yöntemleri

 Kökü aramaya doğru bir noktadan başlamak çözüme ulaşmayı hızlandıracaktır

•Grafik çizimleri, kökü aramak için herhangi bir sayısal çözüm yönteminde başlangıç tahmin değerlerinin seçiminde bize yardımcı olur

• Örnek:f(x)=xe^{-x}+x³+1 fonksiyonunun yaklaşık kökünü grafikten bulalım.

Kaba bir yaklaştırma için çizilen grafik yeterli olabilecektir.

 $f(x) = xe^{-x} + x^3 + 1$ fonksiyonunun grafiği

X	f(x)		
-2	-21,7781122		
-1,5	-9,097533606		
-1	-2,718281828		
-0,5	0,050639365		
0	1		
0,5	1,42826533		
1	2,367879441		
1,5	4,70969524		
2	9,270670566		

Kapalı Yöntemler

- Fonksiyonlar kök civarında işaret değiştirdikleri için, kökü sağından ve solundan kıskaca alarak bu aralığı gittikçe daraltıp köke ulaşmak mümkündür. Bunun için iki tane başlangıç değeri belirlemek gerekir.
- Kökün, bu iki değerin arasındaki kapalı bölgede olduğu bu yöntemlere kapalı yöntemler adı verilir.

Kapalı Yöntemler

Arada başka bir kök olmaması ve kısa sürede köke yakınsaması için aralık mümkün olduğunca dar seçilmelidir.

f(x): [xa,xü]

• f(xa).f(xü)<0

$$x \in [xa,x\ddot{u}]$$

•
$$f(xa).f(x\ddot{u})=0$$
 $f(x_a)=0$ $x=x_a$
 $f(x_{\ddot{u}})=0$ $x=x_{\ddot{u}}$

Ikiye Bölme (Bisection) Yöntemi

[xa,xü] aralığındaki köke yaklaşmak için aralığın orta noktasını bulalım

$$x_o = \frac{x_a + x_{ii}}{2}$$

- Güncellenecek sınır $x_o = \frac{x_a + x_{ii}}{2}$ • $f(x_a).f(x_o) < 0$ $x_{a \text{ ile}} x_o \text{ farklı bölgelerde}$ xa(yeni) = xo xa(yeni) = xo
 - xa(yeni)=xo

Kök, x_a, x_oarasında

Kök, x_o, x_ü arasında

Örnek:
$$f(x) = x.e^{-x} + x^3 + 1$$
 fonksiyonunun kökünü = 1*10⁻⁶ duyarlılıkla \in_s bulalım, [-1,0], Cevap: x=-0.515438

Tablo.4.1. İkiye bölme yöntemiyle fonksiyonun kökünün yaklaşık olarak bulunması

n	Xa	Χü	X_{O}	$f(x_a).f(x_o)$	$\in = \left \frac{x_a - x_{ii}}{2} \right $
1	-1.000000	0.000000	-0.500000	-	0.500000
2	-1.000000	-0.500000	-0.750000	+	0.250000
3	-0.750000	-0.500000	-0.625000	+	0.125000
4	-0.625000	-0.500000	-0.562500	+	0.062500
5	-0.562500	-0.500000	-0.531250	+	0.031250
6	-0.531250	-0.500000	-0.515625	+	0.015625
7	-0.515625	-0.500000	-0.507813	-	0.007813
	•	•	•	•	•
•	•	•	•	•	•
19	-0.515449	-0.515442	-0.515446	+	0.000004
20	-0.515446	-0.515442	-0.515444	-	0.000002

Bilgisayarda Çözüm: Programın Algoritması

Program

```
xa=-1; xu=0; es=1e-6
while abs(xu-xa)/2>es
 xo=(xa+xu)/2
 fa=xa*exp(-xa)+xa^3+1
 fo=xo*exp(-xo)+xo^3+1
 if fa*fo<0
   xu=xo;
 else
   xa=xo
 end
end
```

Programı daha esnek hale getirebilmek için öncelikle programda kullanılacak fonksiyon başka bir .m dosyası içinde önceden tanımlanabilir.

Adım Küçülterek Köke Yaklaşma Yöntemi

$$f(x).f(x+h) > 0 \longrightarrow x(yeni)=x+h$$

 $f(x).f(x+h) < 0 \longrightarrow h(yeni)=h/10$

Örnek: Herhangi bir f(x) fonksiyonunun kökü 5.42 olsun.

[4 6] aralığında kökü aramaya başlarsak; xa=4, h=1

Ödev: a) R=10 Ω ve diyot gerilimi $V_D = \ln(150 i_D + 1)$ olarak kabul edelim. Şekilde devrede i_D akımını $i_D = [3, 4]$ aralığında adım küçültme yöntemiyle $\in = 0.01$ duyarlılıkla hesaplayın. İlk adım büyüklüğümüz h=0,1 olarak başlasın. ($h_{yeni} = \frac{h_{eski}}{10}$)

b) Problemi bilgisayarda çözmek için bir algoritma hazırlayın ve bildiğiniz bir programlama dilinde yazın.

Yer Değiştirme (Regula Falsi) Yöntemi

$$\frac{f(x_{ii})}{f(x_{ii}) + (-f(x_a))} = \frac{x_{ii} - x_r}{x_{ii} - x_a} \qquad x_r = x_{ii} - \frac{f(x_{ii})(x_a - x_{ii})}{f(x_a) - f(x_{ii})}$$

$$x_r = x_{ii} - \frac{f(x_{ii})(x_a - x_{ii})}{f(x_a) - f(x_{ii})}$$

$$x_r = x_{ii} - \frac{f(x_{ii}) \left(x_a - x_{ii}\right)}{f(x_a) - f(x_{ii})}$$

$$\bullet f(x_a).f(x_r) < 0 \quad x_{a \text{ ile}} x_r \text{ farklı bölgelerde} \quad x \ddot{u}(\text{yeni}) = xr$$

$$\bullet f(x_a).f(x_r) > 0 \quad x_{a \text{ ile}} x_r \text{ aynı bölgelerde} \quad xa(\text{yeni}) = xr$$

$$x_a \quad x_r \quad x_{ii} \quad x_a \quad x_r \quad x$$

Kök, x_a , x_r arasında

Kök, x_r, x_ü arasında

Örnek:

Kütlesi m=68.1kg olan bir paraşütçünün, t=10 s serbest düştükten sonra 40m/s hıza sahip olabilmesi için gerekli direnç katsayısını yer değiştirme yöntemiyle iki iterasyon adımı için belirleyin.(, xa=12, xü=16)

$$f(c) = \frac{g m}{c} \left(1 - e^{-(c/m)t} \right) - v$$

Çözüm: Burada kök x=c direncidir,

• ilk iterasyon:

$$xa=12 \xrightarrow{\qquad} f(xa)=6.0699$$

$$x\ddot{u}=16 \xrightarrow{\qquad} f(x\ddot{u})=-2.2688$$

• ilk iterasyon:

$$xa=12 \longrightarrow f(xa)=6.0699$$

 $x\ddot{u}=16 \longrightarrow f(x\ddot{u})=-2.2688$

$$x_r=16 - \frac{-2.2688(12-16)}{6.0669-(-2.2688)} = 14.9113$$

$$f(xr)=-0.25413$$

•İkinci iterasyon: f(xa)*f(xr)=-1.5426 < 0

xr, xü ile aynı bölgede olduğu için bir sonraki iterasyonun üst sınırı olacaktır.

$$x\ddot{u}=14.9113 \longrightarrow f(x\ddot{u})=-0.2543$$
 $x_r=14.9113-\frac{-0.2543(12-14.9113)}{6.0669-(-0.2543)}=14.7942$ $xa=12 \longrightarrow f(xa)=6.0699$

Ödev: a) Şekildeki elektrik devresinde Kirschoff yasaları kullanılarak sistemin empedansı

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + \left(wC - \frac{1}{wL}\right)^2}$$
 şeklinde ifade edilebilir. Burada Z=empedans(Ω) ve w=açısal

frekanstır. [w_a = 50 ve $w_{\ddot{u}}$ = 300] ilk tahminlerinden başlayarak yer değiştirme (regula falsi) yöntemiyle 100 Ω empedans veren açısal frekansı ilk 3 adım için bulun.

Hesaplamalarda virgülden sonra 5 basamağı dikkate alın $R=225\,\Omega$, $C=0.6*10^{-6}\,F$ ve $L=0.5\,H$.

Regula Falsi Formülü
$$x_r = x_{ii} - \frac{f(x_{ii})(x_a - x_{ii})}{f(x_a) - f(x_{ii})}$$

b) soruyu mutlak yüzde yaklaşım hatası $|\%e_a| \le 10^{-3}$ duyarlılıkla bulan program algoritmasını oluşturun ve programı yazın.

Açık Yöntemler

Kökü iki başlangıç değeri arasında kıskaca alma (f(xa).f(xü) <0)
 sorgulaması yok

aradığımız kök

Açık yöntemler hızlıdır fakat bazen başlangıç noktası uygun seçilmediğinde ıraksayabilirler.

Basit Sabit Noktalı İterasyon:

• Bütün açık yöntemler kökün bulunması için bir formül kullanırlar.

•
$$x_{i+1} = g(x_i)$$

Örnek: Basit sabit noktalı iterasyon kullanarak $f(x)=e^{-x}-x$ fonksiyonunun kökünün yerini yüzde yaklaşım hatası % 1.2 hin altına düşene kadar hesaplayınız. Her adım için % yaklaşım hatasını mutlak değer olarak bulunuz. $(x_0=0)$

Çözüm: $x_{i+1} = e^{-x_i}$, İlk tahmin olarak $x_0 = 0$ ile başlayarak tablodaki ____ değerler bulunabilir.

i	X _i	$ \in_{a} = \frac{X_{i+1} - X_{i}}{X_{i+1}} * \%100 $
0	Ď	
1	1.000000	100
2	0.367879	171,8285
3	0.692201	46,85373
4	0.500473	38,30936
5	0.606244	17,44694
6	0.545396	11,15666
7	0.579612	5,903259
8	0.560115	3,480892
9	0.571143	1,930865
10 ^{s.yilmaz,kou.}	ELO-HAE02564879	1,10891 29

Sabit noktalı iterasyon için algoritma


```
x0=0; es=1.2; n=0; Nmax=100;
xkeski=x0;
while (n<Nmax)
  n=n+1;
  xkyeni=g(xkeski)
  if xkyeni~=0
    ea=abs((xkyeni-xkeski)/xkyeni)*100
    if ea<es
      disp('Kök='); disp(xkyeni);
      disp('Tekrar Sayisi='); disp(n);
      disp('Yüzde bagil Hata=');disp(ea);
      n=Nmax;
    end
  else disp('Sifira bolme hatasi');
  end
  xkeski=xkyeni;
end
```

```
g.m dosyası
function [xkyeni] = g(xkeski)
xkyeni=1.0*exp(-xkeski);
```

Newton-Raphson Yöntemi

$$f'(x_i) = \frac{f(x_i) - 0}{x_i + x_{i+1}} \qquad x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Örnek: Newton-Raphson yöntemini kullanarak, $f(x)=e^{-x}-x$ fonksiyonunun kökünü $x_0=0$ ilk tahminini yaparak bulun. (Yüzde bağıl yaklaşma hatası $3*10^{-5}$ 'in altına düşene kadar iterasyona devam edin)

• Çözüm: Fonksiyonun birinci türevi

$$f'(x) = -e^{-x} - 1$$

fonksiyon ve türevi denklemde yerine konulursa

$$x_{i+1} = x_i - \frac{e^{-x_i} - x_i}{-e^{-x_i} - 1}$$

$$x_0 = 0$$

i	X _i	(%) _∈ _a
0	0	
1	0.500000000	100
2	0.566311003	11,70929095
3	0.567143165	0,146728736
4	0.567143290	2,20403E-05

 f.m dosyasının içeriği: function [fx] = f(x) fx=1.0*exp(-x)-x;

fturev.m dosyasının içeriği: function [fturevx] = fturev(x) fturevx=-1.0*exp(-x)-1;

```
es=3e-5; n=0; Nmax=100;
xkeski=0;
while (n<Nmax)
  n=n+1;
  if fturev(xkeski)==0
    disp('Sifira bolme hatasi');
  else
    xkyeni=xkeski-f(xkeski)/fturev(xkeski)
    if xkyeni~=0
      ea=abs((xkyeni-xkeski)/xkyeni)*100
      if ea<es
        disp('Kök='); disp(xkyeni);
        disp('Tekrar Sayisi='); disp(n);
        disp('Yüzde bagil Hata=');disp(ea);
        n=Nmax;
      end
    else disp('Sifira bolme hatasi');
    end
   xkeski=xkyeni;
 end
end
```


Sekant Yöntemi: f(x)**f(x**_{i-1}) $f(x_i)$ X_i X_{i-1} X_{i+1} Newton R $\left| x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)} \right|$ S.YILMAZ, KOU. ELO-HAB., 2007

İkisinde de iki ilk tahmin değeri var

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Kök, x_a, x_r arasında

Kök, x_r, x_ü arasında