UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: STK1000 — Innføring i anvendt statistikk

Eksamensdag: Onsdag 25. november 2020

Tid for eksamen: 15:00-19:00

Oppgavesettet er på 4 sider.

Vedlegg: Ingen

Tillatte hjelpemidler: Alle hjelpemidler er tillatt, men det er ikke tillatt

å kommunisere eller samarbeide med andre.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgavesettet har fire oppgaver som til sammen består av elleve deloppgaver. Hver deloppgave teller likt.

Oppgave 1

Du skal kjøpe julegave til nevøen din som nylig fylte syv år, og du har funnet en genser du tror han kommer til å like. Du kjenner ikke høyden til nevøen din. Du slår derfor opp høydekurvene fra Vekststudien i Bergen (2007) og finner at høyden til syv år gamle gutter har forventningsverdi $\mu=124,5$ cm og standardavvik $\sigma=4,8$ cm. Du antar videre at høyden til syv år gamle gutter er normalfordelt.

1a

Regn ut sannsynligheten for at en tilfeldig valgt gutt på syv år er over 128 cm høv.

1b

Genseren finnes i klesstørrelsene 116, 122, 128, 134, 140, 146 og 152. Du velger å kjøpe den minste klesstørrelsen som er slik at maksimalt 10% av syv år gamle gutter er høyere enn høydemålet angitt av klesstørrelsen. Hvilken klesstørrelse velger du?

Oppgave 2

Vi undersøker en enhet av en væske som skal brukes til desinfisering. Produktet skal etter standarden for produktet ha konsentrasjon 0.60. Du

(Fortsettes på side 2.)

skal, ved å gjennomføre en statistisk hypotesetest, evaluere påstanden om at konsentrasjonen i enheten du undersøker (prøven) har konsentrasjon 0.60.

2a

Formuler hypotesene som ligger til grunn for hypotesetesten du vil gjennomføre.

2b

Du utfører to målinger av konsentrasjonen til væsken, og måleresultatene er 0.58 og 0.56. Forhåndskunnskap om målemetoden gir at du kan regne måleresultatene som normalfordelt $N(\mu, \sigma = 0.022)$ der μ er den sanne konsentrasjonen til prøven. Finn verdi for testobservator, og tilhørende Pverdi for hypotesetesten. Formuler en konklusjon på hypotesetesten.

2c

Regn ut et 95% konfidensintervall for forventet konsentrasjonen til prøven. Forklar kort hva resultatet betyr.

Oppgave 3

60 marsvin er blitt gitt en daglig dose C-vitamin (enten 0.5, 1, eller 2 mg/dag) for å undersøke effekten på tannlengden deres. En enkel lineær regresjonsmodell for sammenhengen mellom responsvariabelen tannlengde (y_i) og forklaringsvariabelen daglig dose C-vitamin (x_i) er

$$y_i = \beta_0 + \beta_1 \cdot x_i + \epsilon_i, \quad i = 1, 2, \dots, 60.$$
 (1)

Vi antar at ϵ_i -ene er uavhengige normalfordelte N(0, σ). R-utskriften for den tilhørende analysen er som følger:

Call:

```
lm(formula = toothlen ~ vitC_dose)
```

Residuals:

```
Min 1Q Median 3Q Max -8.4496 -2.7406 -0.7452 2.8344 10.1139
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.4225 1.2601 5.89 2.06e-07 ***
vitC_dose 9.7636 0.9525 ? 1.23e-14 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

(Fortsettes på side 3.)

```
Residual standard error: 4.601 on 58 degrees of freedom Multiple R-squared: 0.6443, Adjusted R-squared: 0.6382 F-statistic: 105.1 on 1 and 58 DF, p-value: 1.233e-14
```

3a

Les av estimatene til de tre parameterne β_0 , β_1 og σ , og forklar hva hver av disse parameterne beskriver. Les av R^2 -verdien og forklar hva denne betyr.

3b

Skriv ned hypotesene som tilhører t-testen som er gjort for stigningstallet i R-utskriften. Beregn standardisert testobservator. Les av tilhørende P-verdi, og bruk denne til å formulere konklusjon på den statistiske hypotesetesten.

3c

Vi er spesielt interessert i den høyeste dosen, 2mg/dag. Beregn fra den estimerte lineærmodellen, forventet tannlengde når marsvinet har fått 2mg (dose) C-vitamin daglig.

3d

Angi 95% konfidensintervall for forventet tannlengde for et marsvin som har fått en daglig dose på 2mg C-vitamin. Angi også 95% prediksjonsintervall for tannlengde for et marsvin som har fått daglig dose på 2mg C-vitamin. Hva er ulikt i definisjonen av de to intervallene, og hvorfor ender de opp med ulik bredde?

```
> predict(mylin, newdata = data.frame(vitC_dose=2.0),
interval= 'confidence', level= 0.95)
       fit
                lwr
                         upr
        ?
            24.96508
                      28.9342
1
> predict(mylin, newdata = data.frame(vitC_dose=2.0),
interval= 'predict', level= 0.95)
       fit
                lwr
                          upr
1
            17.52801 36.37127
```

Oppgave 4

Julenissen er veldig opptatt av at barn skal lære å se lyset når det er mørkt. Sannsynligheten for at et barn får lommelykt til jul kan modelleres ved logistisk regresjon med tre forklaringsvariabler: x_{i1} : barnets alder målt i antall år, x_{i2} : antall dager før julaften nissen pakker inn presangen, x_{i3} : om barnet har sendt ønskeliste til julenissen i år eller ikke (0=nei, 1=ja).

4a

Skriv ned den logistiske regresjonsmodellen for sammenhengen mellom responsvariabelen lommelykt til jul (y_i) og forklaringsvariablene alder (x_{i1}) , forberedelsestid (x_{i2}) og ønskeliste (x_{i3}) .

4b

Ta utgangspunkt i (en utvalgt del av) R-utskriften for analysen som gitt under. Konstruer et 95% konfidensintervall for odds-ratioen for lommelykt til jul for en økning i alder på ett år, når alle andre forklaringsvariabler holdes fast.

Call:

```
glm(formula = lommelykt ~ alder + onskeliste + forberedelsestid,
family = binomial)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.9473 -0.5467 0.1785 0.3718 2.1605
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
                 -1.93959
                             2.20015 -0.882
                                              0.37801
alder
                  0.24758
                             0.09426
                                       2.627
                                              0.00862 **
                                      -0.785
onskeliste
                 -0.94614
                             1.20481
                                              0.43227
                             0.22493
forberedelsestid -0.04807
                                     -0.214 0.83076
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
                                                    1
```

For hver jul som kommer, er vi alle ett år eldre. God jul!