Material: Generative AI

Topic : RAG (Retrieval Augmented Generation)

Daniel danielgenai77@gmail.com

Gen AI – RAG (Retrieval-Augmented Generation)

1. RAG	2
2. Why RAG?	2
3. RAG Architecture: Step by step	3
3.1. Encode Docs	3
3.2. Index	3
3.3. Encode Query	3
3.4. Similarity Search:	3
3.5. Retrieve:	3
3.6. Prompt LLM:	3
3.7. Generate Response:	4
4. RAG: Retrieval Augmented Generation	5
4.1. Retrieval	5
4.2. Augmented	5
4.3. Generation	5
5. Workflow of a RAG System	6
5.1. Addition knowledge base	7
5.2. Create Chunks	7
5.3. Generate embeddings	8
5.4. Store embeddings in a vector database	8
5.5. User input query	9
5.6. Embed the query	9
5.7. Retrieve similar chunks	10
5.8. Re-rank Chunks	10
5.9. Generate Final Response	11
6. Tool Stack for Building a RAG System	12
6.1. LlamaIndex	12
6.2. Qdrant	12
6.3. Ollama	12
7. RAG application using Llama 3.2	13

Gen AI – RAG (Retrieval-Augmented Generation)

1. RAG

- ✓ RAG stands for Retrieval-Augmented Generation.
- ✓ RAG is an NLP approach that:
 - o Retrieves relevant info from external sources.
 - o Augments the model input with that info.
 - Generates more accurate and factual responses using a language model.
- ✓ It helps LLMs handle large or constantly changing knowledge bases more effectively.
- ✓ RAG in GenAI = Search + Generate.
 - o It gives large language models "open-book access" to relevant information, making them smarter, safer, and more adaptable.

2. Why RAG?

- ✓ LLMs often lack up-to-date or specific knowledge.
- ✓ RAG solves this by retrieving relevant information from external sources and adding it to the prompt.
- ✓ This allows the LLM to generate more accurate, grounded, and contextaware responses.
- ✓ Here RAG helps.

3. RAG Architecture: Step by step

3.1. Encode Docs

✓ Convert documents into embeddings using an embedding model.

3.2. Index

✓ Store those embeddings in a vector database.

3.3. Encode Query

✓ Convert the user query into an embedding.

3.4. Similarity Search:

✓ Search the vector DB for documents similar to the query.

3.5. Retrieve:

✓ Get the top matching documents.

3.6. Prompt LLM:

✓ Combine the retrieved documents with the query and send to the language model.

3.7. Generate Response:

✓ The LLM generates a final answer based on the augmented input.

4. RAG: Retrieval Augmented Generation

4.1. Retrieval

✓ Fetching relevant info from a source (e.g., database).

4.2. Augmented

✓ Adding extra context to improve the process (e.g., text generation).

4.3. Generation

✓ Creating or producing something, like generating text.

5. Workflow of a RAG System

5.1. Addition knowledge base

✓ We start with some external knowledge that wasn't seen during training, and we want to enhance the LLM.

5.2. Create Chunks

- ✓ Before storing knowledge, it's broken into smaller, meaningful chunks.
- ✓ This improves retrieval accuracy and ensures each piece of information is easily searchable during query time.

5.3. Generate embeddings

✓ After chunking, we embed the chunks using an embedding model.

5.4. Store embeddings in a vector database

✓ These embeddings are then stored in the vector database

5.5. User input query

✓ Next, the user inputs a query, a string representing the information they're seeking.

5.6. Embed the query

✓ This query is transformed into a vector using the same embedding model we used to embed the chunks earlier in Step 2.

5.7. Retrieve similar chunks

✓ The vectorized query is then compared against our existing vectors in the database to find the most similar information.

5.8. Re-rank Chunks

✓ After retrieval, a cross-encoder re-scores the chunks to prioritize the most relevant ones based on the query.

5.9. Generate Final Response

✓ The top-ranked chunks and the user query are combined into a prompt and sent to the LLM, which generates a final, informed response.

6. Tool Stack for Building a RAG System

6.1. LlamaIndex

✓ Simplifies connecting LLMs with external data sources for indexing and querying.

6.2. Qdrant

✓ Open-source vector database for fast, filtered similarity search at scale.

6.3. Ollama

✓ Runs LLMs locally, ideal for privacy-focused applications

7. RAG application using Llama 3.2

- ✓ Custom Knowledge Base: Input documents (e.g., PDFs, text files)
- ✓ Chunking: Break documents into smaller pieces (chunks)
- ✓ Embedding: Convert chunks into vector embeddings using an Embedding Model
- ✓ Vector Database: Store embeddings and related metadata. Perform ANN (Approximate Nearest Neighbor) search to find similar vectors to the user's query
- ✓ Query Processing: User submits a question. Convert query to a vector. Retrieve top matching chunks
- ✓ Re-ranking (Optional): Use a Re-ranker Model to refine and prioritize the most relevant chunks
- ✓ Prompt Construction: Fill a prompt template with the query and retrieved chunks
- ✓ **LLM Generation** (Llama 3.2): Final response is generated and shown to the user