Pure mathematics

Maximilian Strele

April 16, 2023

Contents

1	Number theory			
	1.1	Arithr	netic	1
		1.1.1	Operations	1
		1.1.2	Fundamental theorem of arithmetic	
			Prime factorization theorem	2
	1.2	Exam	ples	2
		1.2.1	Prime factorization	2
		1.2.2	Sum of natural numbers	2
2	Alg	ebra		2
	2.1	Opera	tions	3
		2.1.1	Exponent rules	3
		2.1.2	Inequalities	3
3	Calculus and analysis			3
4	Geometry and topology			3
5	5 Combinatorics			3
6	Log	ric		3

1 Number theory

The number theory is primarily devoted to the study of the integers and integer-valued functions.

1.1 Arithmetic

Defines the basic mathematical rules.

$$1 + 2 = 3$$

1.1.1 Operations

- 1. Parenthesis: $(3+2)^2 \times 2 = 50$
- 2. Exponentiation: $3^2 = 3 \times 3 = 9$
 - Commutative $(2^2)^3 = (2^3)^2$
 - Associative $(2^2)^3 = 2^6$
- 3. Multiplication: $3 \times 2 = 2 + 2 + 2 = 3 + 3 = 6$
 - Identity element: 1

- Commutative
- Associative
- 4. Division: $6 \div 3 = 2$
 - Inverse operation of Multiplication
- 5. Addition: 1 + 2 = 3
 - Identity element: 0
 - Commutative
 - Associative
- 6. Subtraction: 3-2=1
 - Inverse operation of Addition

1.1.2 Fundamental theorem of arithmetic Prime factorization theorem

Every integer greater than 1 can be represented as a **unique product of prime numbers**, up to the order of the factors.

$$n = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k} = \prod_{i=1}^k p_i^{n_i}$$

1.2 Examples

1.2.1 Prime factorization

The easiest way to do a prime factorization is to start with the smallest primes.

$$88 \div 2 = 44$$

$$44 \div 2 = 22$$

$$22 \div 2 = 11$$

$$88 = 2 \times 2 \times 2 \times 11 = 2^{3} \times 11$$

1.2.2 Sum of natural numbers

$$S = \sum_{a=1}^{n} a = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

To get this formula just write down a few examples and find out the pattern.

$$1 = 1 = \frac{1 * 2}{2}$$
$$3 = 1 + 2 = \frac{2 * 3}{2}$$
$$6 = 1 + 2 + 3 = \frac{3 * 4}{2}$$

2 Algebra

Algebra uses arithmetic to solve equations i.e. finding the unknown elements.

$$1 + 2 = x$$
$$3 = x$$

2

2.1 Operations

Are the same as in arithmetic but Multiplication is the default operation.

$$10ab = 10 \times a \times b$$

2.1.1 Exponent rules

- 0 rule: $x^0 = 1$
- Product rule: $x^n \times x^m = x^{n+m}$
- Quotient rule: $x^n \div x^m = x^{n-m}$
- Power rule: $(x^n)^m = x^{n \times m}$
- Negative exponent: $x^{-n} = 1 \div x^n$
- Fraction exponent: $x^{\frac{1}{2}} = \sqrt{x}$
- Distribution: $(x \times y)^n = x^n \times y^n$

2.1.2 Inequalities

- Greater: x > 1
 - Sign turns when multiplying with a negative number: -x < -1
- Greater equal: $x \ge 1$
 - Sign turns when multiplying with a negative number: $-x \leq -1$
- Less: x < 1
 - Sign turns when multiplying with a negative number: -x > -1
- Less equal: $x \le 1$
 - Sign turns when multiplying with a negative number: $-x \geq -1$
- Unequal: $x \neq 1$
- 3 Calculus and analysis
- 4 Geometry and topology
- 5 Combinatorics
- 6 Logic