Predicting Rider Count

Loading Python Libraries

In [1]:

```
!pip install ucimlrepo
!pip install lazypredict
```

Requirement already satisfied: ucimlrepo in /usr/local/lib/python3.10/dist-packages (0.0.3)

Requirement already satisfied: lazypredict in /usr/local/lib/python3.10/dis t-packages (0.2.12)

Requirement already satisfied: click in /usr/local/lib/python3.10/dist-pack ages (from lazypredict) (8.1.7)

Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from lazypredict) (1.2.2)

Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-pac kages (from lazypredict) (1.5.3)

Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packa ges (from lazypredict) (4.66.1)

Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-pac kages (from lazypredict) (1.3.2)

Requirement already satisfied: lightgbm in /usr/local/lib/python3.10/dist-p ackages (from lazypredict) (4.1.0)

Requirement already satisfied: xgboost in /usr/local/lib/python3.10/dist-pa ckages (from lazypredict) (2.0.3)

Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-pack ages (from lightgbm->lazypredict) (1.23.5)

Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-pack ages (from lightgbm->lazypredict) (1.11.4)

Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/pyt hon3.10/dist-packages (from pandas->lazypredict) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->lazypredict) (2023.4)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/pytho n3.10/dist-packages (from scikit-learn->lazypredict) (3.2.0)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-p ackages (from python-dateutil>=2.8.1->pandas->lazypredict) (1.16.0)

```
In [2]: # Let's import the required python packages
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import missingno as msno
        import plotly.express as px
        import plotly.graph_objs as go
        import matplotlib.pyplot as plt
        from xgboost import XGBRegressor
        from ucimlrepo import fetch_ucirepo
        from sklearn.metrics import r2_score
        from wordcloud import WordCloud, STOPWORDS
        from sklearn.preprocessing import MinMaxScaler
        from lazypredict.Supervised import LazyRegressor
        from sklearn.model_selection import train_test_split
        %matplotlib inline
        # plt.style.use('seaborn-dark')
        plt.style.context('grayscale')
```

Out[2]: <contextlib._GeneratorContextManager at 0x78e38c5b7880>

Importing the Data

```
In [3]: # Let's fetch the bike sharing dataset into a data_frame
    bike_sharing_dataset = fetch_ucirepo(id=275)

X = bike_sharing_dataset.data.features
    y = bike_sharing_dataset.data.targets

bike_sharing_df = pd.concat([X, y], axis=1)

# Let's take a quick look at the shape of the dataframe
    print("Bike Rentals data shape -->", bike_sharing_df.shape)
    print()

# Let's take a brief look at the contents of the dataframe
    bike_sharing_df.head().style.background_gradient()
```

Bike Rentals data shape --> (17379, 14)

Out[3]:	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	
	C	2011-01-01	1	0	1	0	0	6	0	1	0.240000	(
	1	2011-01-01	1	0	1	1	0	6	0	1	0.220000	1
	2	2011-01-01	1	0	1	2	0	6	0	1	0.220000	1
	3	2011-01-01	1	0	1	3	0	6	0	1	0.240000	(
	4	2011-01-01	1	0	1	4	0	6	0	1	0.240000	(

Gaining Insights from Data

In [4]: # Let's obtain a brief overview of the dataframe bike_sharing_df.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 17379 entries, 0 to 17378 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype					
0	dteday	17379 non-null	object					
1	season	17379 non-null	int64					
2	yr	17379 non-null	int64					
3	mnth	17379 non-null	int64					
4	hr	17379 non-null	int64					
5	holiday	17379 non-null	int64					
6	weekday	17379 non-null	int64					
7	workingday	17379 non-null	int64					
8	weathersit	17379 non-null	int64					
9	temp	17379 non-null	float64					
10	atemp	17379 non-null	float64					
11	hum	17379 non-null	float64					
12	windspeed	17379 non-null	float64					
13	cnt	17379 non-null	int64					
dtyp	<pre>dtypes: float64(4), int64(9), object(1)</pre>							
memory usage: 1.9+ MB								

In [5]: # Let's see descriptive statistics for all numeric columns bike_sharing_df.describe()

Out[5]:		season	yr	mnth	hr	holiday	weekday	workingday	weathersit	
	count	17379.00	17379.00	17379.00	17379.00	17379.00	17379.00	17379.00	17379.00	1
	mean	2.50	0.50	6.54	11.55	0.03	3.00	0.68	1.43	
	std	1.11	0.50	3.44	6.91	0.17	2.01	0.47	0.64	
	min	1.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00	
	25%	2.00	0.00	4.00	6.00	0.00	1.00	0.00	1.00	
	50%	3.00	1.00	7.00	12.00	0.00	3.00	1.00	1.00	
	75%	3.00	1.00	10.00	18.00	0.00	5.00	1.00	2.00	
	max	4.00	1.00	12.00	23.00	1.00	6.00	1.00	4.00	

2/7/24, 4:29 PM 3 of 52

Observations

- 1. The cnt variable, representing the count of bike rentals, has a wide range. The minimum is 1, and the maximum is 977, indicating significant variability in the number of bikes rented.
- 2. The season column has a mean close to 2.5, suggesting that the data is fairly evenly distributed across the four seasons.

Data Cleaning

```
In [6]: ## Let's drop the unnecessary columns like dteday because dteday is the
## date when experiment was performed.
bike_sharing_df.drop(["dteday"], axis=1, inplace=True)
```

Check Duplicate Values

```
In [7]: # Let's check for the duplicate values
        bike_sharing_df[bike_sharing_df.duplicated(keep=False)].style.background_gra
Out [7]:
               season yr mnth hr holiday weekday workingday weathersit
                                                                           temp
                                                                                   atem
         7958
                                                                     1 0.240000 0.25760
                    4
                       0
                            12
                                6
                                                6
                                                                     1 0.240000 0.25760
         8126
                    4 0
                            12 6
                                                           0
                             7 4
                                                2
                                                                     1 0.660000 0.60610
        13559
         13727
                    3
                      1
                             7 4
                                       0
                                                2
                                                           1
                                                                     1 0.660000 0.60610
```

Drop duplicate values

```
In [81: # Let's drop the duplicate values from the dataframe
    bike_sharing_df = bike_sharing_df.drop_duplicates()

In [9]: # Let's take a quick look at the shape of the dataframe
    print("Bike Sharing data shape -->", bike_sharing_df.shape)
    print()

# Let's take a brief look at the contents of the dataframe
    bike_sharing_df.head().style.background_gradient()

Bike Sharing data shape --> (17377, 13)
```

Out[9]:		season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	
	0	1	0	1	0	0	6	0	1	0.240000	0.287900	0.
	1	1	0	1	1	0	6	0	1	0.220000	0.272700	0.
	2	1	0	1	2	0	6	0	1	0.220000	0.272700	0.
	3	1	0	1	3	0	6	0	1	0.240000	0.287900	0.
	4	1	0	1	4	0	6	0	1	0.240000	0.287900	0.

```
In [10]: # Function to get unique_counts based on specific column
         def value_counts(column_name):
             return bike_sharing_df.loc[
                  :, column_name
             ].value_counts() # Returns the unique value counts
In [11]: # Iterates over all the columns of the dataframe and calls value_counts fund
         required_columns = [
             "season",
             "yr",
             "mnth",
             "holiday",
         for column_name in required_columns:
             print(f"Value Counts of {column_name}")
             value_counts_data = value_counts(column_name=column_name)
             for index, value in value_counts_data.items():
                 print(f"{column_name} {index}: {value}")
             print()
```

```
Value Counts of season
season 3: 4495
season 2: 4409
season 1: 4242
season 4: 4231
Value Counts of yr
yr 1: 8733
yr 0: 8644
Value Counts of mnth
mnth 5: 1488
mnth 7: 1487
mnth 12: 1482
mnth 8: 1475
mnth 3: 1473
mnth 10: 1451
mnth 6: 1440
mnth 4: 1437
mnth 9: 1437
mnth 11: 1437
mnth 1: 1429
mnth 2: 1341
Value Counts of holiday
holiday 0: 16877
holiday 1: 500
```

See how many missing data points we have

```
In [12]: bike_sharing_df.isnull().sum()
         season
Out[12]:
                        0
         yr
         mnth
                        0
         hr
         holiday
         weekday
         workingday
                        0
         weathersit
                        0
         temp
                        0
         atemp
         hum
                        0
         windspeed
                        0
         cnt
         dtype: int64
In [13]: msno.bar(bike_sharing_df, figsize = (16,5),color = "pink")
         plt.show()
```


Exploratory Data Analysis


```
In [15]: plt.figure(figsize=(12,6))
    sns.boxplot(x="weekday", y="cnt", data=bike_sharing_df)
    plt.title("Distribution of bike rentals V/S days of the week")
```

Text(0.5, 1.0, 'Distribution of bike rentals V/S days of the week')


```
In [16]: plt.figure(figsize=(12,6))
    sns.boxplot(x="mnth", y="cnt", data=bike_sharing_df)
    plt.title("Distribution of bike rentals V/S months")
    plt.show()
```



```
In [17]: bike_sharing_df_plot = bike_sharing_df.copy()
   bike_sharing_df_plot['season'] = bike_sharing_df_plot["season"].map({1: 'spr
   plt.figure(figsize=(12,6))
   sns.boxplot(x='season', y='cnt', data=bike_sharing_df_plot)
   plt.title('Distribution of bike rentals V/S seasons')
   plt.show()
```



```
In [18]: # Visualizing the Numerical Columns (Hidden Input) and treating outliers

plt.figure(figsize=[16,12])
plt.subplot(2,2,1)
plt.scatter(x=bike_sharing_df['temp'], y=bike_sharing_df['cnt'], c="#2b7a78'
plt.xlabel("Temperature")
plt.grid(False)
plt.subplot(2,2,2)
plt.scatter( x=bike_sharing_df['atemp'], y=bike_sharing_df['cnt'], c='#1f283
plt.xlabel("Feeling Temperature")
plt.grid(False)
plt.subplot(2,2,3)
plt.scatter( x=bike_sharing_df['hum'], y=bike_sharing_df['cnt'], c='#17252a'
plt.xlabel("Humidity")
plt.grid(False)
```



```
In [19]: heat = bike_sharing_df.corr()
   plt.figure(figsize=[16,8])
   plt.title("Correlation between all the Numerical Features", size=25, pad=20,
   sns.heatmap(heat, cmap=['#0b0c10', '#1f2833','#c5c6c7','#45a29e','#66fcf1'],
   plt.xticks(size=15)
   plt.yticks(size=15, rotation=360)
   plt.show()
```


Data Split

```
In [20]: # Let's split the data into X and y
y = bike_sharing_df.pop('cnt')
X = bike_sharing_df

# Performing the train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, ra
```

Data Normalization

```
In [211: # Normalizing our data...

scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)
```

Comparing Performance of Different Models

```
In [22]: model = LazyRegressor(verbose=0, ignore_warnings=False, custom_metric=None)
    models, predictions = model.fit(X_train, X_test, y_train, y_test)
    print(models)
```

```
79%| | 33/42 [01:50<00:12, 1.39s/it]
QuantileRegressor model failed to execute
Solver interior—point is not anymore available in SciPy >= 1.11.0.
100%| 42/42 [02:07<00:00, 3.02s/it]
```

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of t esting was 0.000428 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 289
[LightGBM] [Info] Number of data points in the train set: 12163, number of used features: 12
[LightGBM] [Info] Start training from score 189.227822

Adjusted R-Squared R-Squared RMSE \
Model
XGBRegressor
0.95
0.95
39.90
ExtraTreesRegressor
0.95
0.95
0.95
40.46
HistGradientBoostingRegressor
0.95
0.95
0.95
41.07
LGBMRegressor

Model	 - 1	- 4	•
XGBRegressor	0.95	0.95 39.90	
ExtraTreesRegressor	0.95	0.95 40.46	
HistGradientBoostingRegressor	0.95	0.95 41.07	
LGBMRegressor	0.95	0.95 41.28	
RandomForestRegressor	0.95	0.95 41.97	
BaggingRegressor	0.94	0.94 44.19	
DecisionTreeRegressor	0.91	0.91 55.82	
ExtraTreeRegressor	0.89	0.89 60.96	
GradientBoostingRegressor	0.86	0.86 67.83	
AdaBoostRegressor	0.69	0.69 101.23	
KNeighborsRegressor	0.62	0.62 112.16	
MLPRegressor	0.60	0.60 115.36	
NuSVR	0.40	0.40 141.36	
LassoCV	0.39	0.40 141.90	
LinearRegression	0.39	0.40 141.90	
TransformedTargetRegressor	0.39	0.40 141.90	
Lars	0.39	0.40 141.90	
LarsCV	0.39	0.40 141.90	
LassoLarsCV	0.39	0.40 141.90	
LassoLarsIC	0.39	0.40 141.90	
Ridge	0.39	0.40 141.90	
RidgeCV	0.39	0.40 141.91	
BayesianRidge	0.39	0.40 141.91	
LassoLars	0.39	0.40 141.92	
Lasso	0.39	0.40 141.92	
OrthogonalMatchingPursuitCV	0.39	0.39 142.03	
PoissonRegressor	0.39	0.39 142.08	
ElasticNetCV	0.39	0.39 142.15	
SGDRegressor	0.39	0.39 142.23	
SVR	0.38	0.38 143.74	
ElasticNet	0.37	0.37 145.12	
HuberRegressor	0.36	0.36 146.13	
GammaRegressor	0.34	0.34 148.19	
LinearSVR	0.33	0.34 148.79	
TweedieRegressor	0.33	0.33 148.89	
PassiveAggressiveRegressor	0.29	0.29 153.70	
OrthogonalMatchingPursuit	0.16	0.17 166.78	
RANSACRegressor	0.16	0.16 166.87	
DummyRegressor	-0.00	-0.00 182.56	
KernelRidge	-0.69	-0.69 237.36	
GaussianProcessRegressor	-1.02	-1.01 259.03	

	Time	Taken
Model		
XGBRegressor		0.23
ExtraTreesRegressor		3.44
HistGradientBoostingRegressor		0.46
LGBMRegressor		0.18
RandomForestRegressor		4.60

BaggingRegressor	0.41
DecisionTreeRegressor	0.14
ExtraTreeRegressor	0.10
GradientBoostingRegressor	1.17
AdaBoostRegressor	0.64
KNeighborsRegressor	0.47
MLPRegressor	10.91
NuSVR	7.36
LassoCV	0.23
LinearRegression	0.04
TransformedTargetRegressor	0.02
Lars	0.02
LarsCV	0.05
LassoLarsCV	0.05
LassoLarsIC	0.05
Ridge	0.02
RidgeCV	0.03
BayesianRidge	0.03
LassoLars	0.02
Lasso	0.06
OrthogonalMatchingPursuitCV	0.03
PoissonRegressor	0.31
ElasticNetCV	0.20
SGDRegressor	0.06
SVR	10.87
ElasticNet	0.01
HuberRegressor	0.06
GammaRegressor	0.11
LinearSVR	0.05
TweedieRegressor	0.08
PassiveAggressiveRegressor	0.03
OrthogonalMatchingPursuit	0.02
RANSACRegressor	0.19
DummyRegressor	0.01
KernelRidge	20.03
GaussianProcessRegressor	64.20

Model Building(ML)

```
In [23]: xgb_regressor = XGBRegressor()
xgb_regressor.fit(X_train, y_train)
```

```
In [24]: y_pred = xgb_regressor.predict(X_test)
print("R2 score on test data: ", r2_score(y_true=y_test, y_pred=y_pred))

R2 score on test data: 0.9522321207805912
```

Hyperparameter Tuning with Grid Search

```
from sklearn.model selection import GridSearchCV
In [25]:
         param_grid = {
              'n_estimators': [100, 200, 300, 400, 600, 800, 1000, 1200],
              'learning_rate': [0.01, 0.05, 0.06, 0.07, 0.1, 0.2, 0.3, 0.4],
              'max_depth': [3, 4, 5, 6, 7, 8, 9, 10],
             # Add more parameters here
         xgb_regressor = XGBRegressor()
         grid_search = GridSearchCV(estimator=xgb_regressor, param_grid=param_grid, d
         grid_search.fit(X_train, y_train)
         best_params = grid_search.best_params_
         print(f"Best parameters: {best_params}")
         Fitting 3 folds for each of 512 candidates, totalling 1536 fits
         Best parameters: {'learning_rate': 0.06, 'max_depth': 8, 'n_estimators': 30
In [26]: xgb_regressor = XGBRegressor(learning_rate=0.06, max_depth=8, n_estimators=3
         xgb_regressor.fit(X_train, y_train)
```

```
In [27]: y_pred = xgb_regressor.predict(X_test)
print("R2 score on test data: ", r2_score(y_true=y_test, y_pred=y_pred))

R2 score on test data: 0.9552281426618424
```

Model Building (Neural Networks)

```
In [28]: X_train = X_train.astype('float32')
    y_train = y_train.astype('float32')
    X_test = X_test.astype('float32')

In [29]: import keras.backend as K
    from keras.layers import Dense
    from keras.models import Sequential

def r_squared(y_true, y_pred):
    SS_res = K.sum(K.square(y_true - y_pred))
    SS_tot = K.sum(K.square(y_true - K.mean(y_true)))
    return ( 1 - SS_res/(SS_tot + K.epsilon()) )

# Custom Metric for RMSE
def root_mean_squared_error(y_true, y_pred):
    return K.sqrt(K.mean(K.square(y_pred - y_true)))
```

Neural Network Architecture

- Model: Sequential 3-layer network.
- Layers:
 - Dense layer with 64 neurons, ReLU activation (Input layer).
 - Two Dense layers with 128 neurons each, ReLU activation.
 - Output Dense layer with 1 neuron, linear activation.

Training

Epochs: 100 Batch size: 32

Training R2 score: 0.9411Validation R2 score: 0.9342

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 64)	832
dense_1 (Dense)	(None, 128)	8320
dense_2 (Dense)	(None, 128)	16512
dense_3 (Dense)	(None, 1)	129
======================================	KB/	========
Trainable params: 25793 (100.75 Non-trainable params: 0 (0.0	.75 KB)	
Epoch 1/100 381/381 [====================================	2390 - r_squared: 0.0141 -	- val_loss: 139.0383 -
381/381 [====================================	3133 - r_squared: 0.3773 -	- val_loss: 135.8840 -
381/381 [====================================	3663 - r_squared: 0.4131 -	- val_loss: 128.6736 -
381/381 [====================================	2942 - r_squared: 0.4694 -	- val_loss: 122.2327 -
381/381 [====================================	1608 - r_squared: 0.5250 -	- val_loss: 116.6033 -
381/381 [====================================	2947 - r_squared: 0.5719 -	- val_loss: 112.7410 -
381/381 [====================================	3259 - r_squared: 0.6025 -	- val_loss: 106.8173 -
381/381 [====================================	4615 - r_squared: 0.6236 -	- val_loss: 104.8294 -
381/381 [====================================	9325 - r_squared: 0.6329 -	- val_loss: 100.8466 -
381/381 [====================================	1751 - r_squared: 0.6466 -	- val_loss: 101.4347 -
Epoch 11/100 381/381 [====================================	=======] - 2s 4ms/step	o - loss: 101.6014 - r

```
oot_mean_squared_error: 101.4440 - r_squared: 0.6533 - val_loss: 99.2173 -
val_root_mean_squared_error: 99.2178 - val_r_squared: 0.6851
Epoch 12/100
ot_mean_squared_error: 99.5358 - r_squared: 0.6688 - val_loss: 95.3171 - va
l_root_mean_squared_error: 95.3203 - val_r_squared: 0.7059
Epoch 13/100
ot mean squared error: 97.4874 - r squared: 0.6778 - val loss: 93.9542 - va
l_root_mean_squared_error: 93.9563 - val_r_squared: 0.7164
Epoch 14/100
ot_mean_squared_error: 96.0936 - r_squared: 0.6747 - val_loss: 92.1574 - va
l_root_mean_squared_error: 92.1605 - val_r_squared: 0.7244
Epoch 15/100
ot mean squared error: 93.0620 - r squared: 0.7078 - val loss: 89.1740 - va
l root mean squared error: 89.1754 - val r squared: 0.7431
Epoch 16/100
ot_mean_squared_error: 90.3300 - r_squared: 0.7228 - val_loss: 87.6583 - va
l root mean squared error: 87.6549 - val r squared: 0.7534
Epoch 17/100
ot_mean_squared_error: 86.9508 - r_squared: 0.7294 - val_loss: 83.2334 - va
l_root_mean_squared_error: 83.2327 - val_r_squared: 0.7742
Epoch 18/100
ot_mean_squared_error: 83.4254 - r_squared: 0.7530 - val_loss: 78.8973 - va
l_root_mean_squared_error: 78.8931 - val_r_squared: 0.7972
Epoch 19/100
ot_mean_squared_error: 78.7327 - r_squared: 0.7883 - val_loss: 74.4516 - va
l_root_mean_squared_error: 74.4464 - val_r_squared: 0.8190
Epoch 20/100
ot_mean_squared_error: 74.5550 - r_squared: 0.8121 - val_loss: 75.9065 - va
l_root_mean_squared_error: 75.9041 - val_r_squared: 0.8077
Epoch 21/100
ot mean squared error: 71.2394 - r squared: 0.8254 - val loss: 70.3457 - va
l_root_mean_squared_error: 70.3400 - val_r_squared: 0.8398
Epoch 22/100
ot mean squared error: 67.4703 - r squared: 0.8426 - val loss: 64.7933 - va
l root mean squared error: 64.7888 - val r squared: 0.8609
Epoch 23/100
ot_mean_squared_error: 64.3619 - r_squared: 0.8553 - val_loss: 64.1438 - va
l_root_mean_squared_error: 64.1363 - val_r_squared: 0.8659
Epoch 24/100
ot_mean_squared_error: 62.1887 - r_squared: 0.8630 - val_loss: 61.6963 - va
l_root_mean_squared_error: 61.6869 - val_r_squared: 0.8757
Epoch 25/100
ot_mean_squared_error: 60.8257 - r_squared: 0.8692 - val_loss: 61.5251 - va
l_root_mean_squared_error: 61.5168 - val_r_squared: 0.8759
Epoch 26/100
```

```
ot_mean_squared_error: 58.8883 - r_squared: 0.8797 - val_loss: 57.1614 - va
l_root_mean_squared_error: 57.1521 - val_r_squared: 0.8903
Epoch 27/100
ot_mean_squared_error: 57.0928 - r_squared: 0.8826 - val_loss: 56.7262 - va
l_root_mean_squared_error: 56.7175 - val_r_squared: 0.8919
Epoch 28/100
ot_mean_squared_error: 56.0038 - r_squared: 0.8875 - val_loss: 58.5196 - va
l_root_mean_squared_error: 58.5154 - val_r_squared: 0.8823
Epoch 29/100
ot_mean_squared_error: 54.5672 - r_squared: 0.8948 - val_loss: 53.6994 - va
l_root_mean_squared_error: 53.6916 - val_r_squared: 0.9011
Epoch 30/100
ot_mean_squared_error: 53.2826 - r_squared: 0.8971 - val_loss: 52.7875 - va
l_root_mean_squared_error: 52.7811 - val_r_squared: 0.9045
Epoch 31/100
ot mean squared error: 52.8167 - r squared: 0.9014 - val loss: 52.5713 - va
l_root_mean_squared_error: 52.5636 - val_r_squared: 0.9062
Epoch 32/100
ot_mean_squared_error: 52.3950 - r_squared: 0.9006 - val_loss: 52.7709 - va
l_root_mean_squared_error: 52.7661 - val_r_squared: 0.9056
Epoch 33/100
ot_mean_squared_error: 51.4509 - r_squared: 0.9045 - val_loss: 50.6573 - va
l_root_mean_squared_error: 50.6513 - val_r_squared: 0.9128
Epoch 34/100
ot_mean_squared_error: 49.7265 - r_squared: 0.9108 - val_loss: 49.2905 - va
l_root_mean_squared_error: 49.2845 - val_r_squared: 0.9154
Epoch 35/100
ot_mean_squared_error: 49.4887 - r_squared: 0.9100 - val_loss: 49.7122 - va
l_root_mean_squared_error: 49.7057 - val_r_squared: 0.9162
Epoch 36/100
ot_mean_squared_error: 48.5163 - r_squared: 0.9135 - val_loss: 48.4652 - va
l root_mean_squared_error: 48.4603 - val_r_squared: 0.9190
Epoch 37/100
ot_mean_squared_error: 48.8312 - r_squared: 0.9143 - val_loss: 51.2806 - va
l_root_mean_squared_error: 51.2753 - val_r_squared: 0.9092
Epoch 38/100
ot_mean_squared_error: 48.8220 - r_squared: 0.9106 - val_loss: 52.3280 - va
l_root_mean_squared_error: 52.3225 - val_r_squared: 0.9081
Epoch 39/100
ot_mean_squared_error: 47.5769 - r_squared: 0.9161 - val_loss: 46.8817 - va
l_root_mean_squared_error: 46.8766 - val_r_squared: 0.9246
Epoch 40/100
ot_mean_squared_error: 47.6456 - r_squared: 0.9181 - val_loss: 46.8492 - va
l_root_mean_squared_error: 46.8418 - val_r_squared: 0.9238
```

```
Epoch 41/100
ot_mean_squared_error: 47.3063 - r_squared: 0.9174 - val_loss: 46.7584 - va
l_root_mean_squared_error: 46.7537 - val_r_squared: 0.9250
Epoch 42/100
ot_mean_squared_error: 47.0867 - r_squared: 0.9175 - val_loss: 48.5643 - va
l_root_mean_squared_error: 48.5586 - val_r_squared: 0.9191
Epoch 43/100
ot_mean_squared_error: 46.4445 - r_squared: 0.9217 - val_loss: 48.5887 - va
l_root_mean_squared_error: 48.5809 - val_r_squared: 0.9177
Epoch 44/100
ot_mean_squared_error: 46.9245 - r_squared: 0.9069 - val_loss: 46.0430 - va
l_root_mean_squared_error: 46.0368 - val_r_squared: 0.9274
Epoch 45/100
ot_mean_squared_error: 45.9948 - r_squared: 0.9211 - val_loss: 48.8171 - va
l_root_mean_squared_error: 48.8122 - val_r_squared: 0.9180
Epoch 46/100
ot_mean_squared_error: 46.1382 - r_squared: 0.9192 - val_loss: 48.4422 - va
l_root_mean_squared_error: 48.4377 - val_r_squared: 0.9176
Epoch 47/100
ot_mean_squared_error: 45.6205 - r_squared: 0.9237 - val_loss: 50.0015 - va
l_root_mean_squared_error: 49.9953 - val_r_squared: 0.9161
Epoch 48/100
ot_mean_squared_error: 45.3212 - r_squared: 0.9192 - val_loss: 46.1309 - va
l_root_mean_squared_error: 46.1265 - val_r_squared: 0.9258
Epoch 49/100
ot_mean_squared_error: 44.9855 - r_squared: 0.9248 - val_loss: 45.0836 - va
l_root_mean_squared_error: 45.0784 - val_r_squared: 0.9302
Epoch 50/100
ot_mean_squared_error: 44.7172 - r_squared: 0.9255 - val_loss: 48.8242 - va
l_root_mean_squared_error: 48.8189 - val_r_squared: 0.9189
Epoch 51/100
ot_mean_squared_error: 44.3514 - r_squared: 0.9268 - val_loss: 43.9187 - va
l_root_mean_squared_error: 43.9138 - val_r_squared: 0.9326
Epoch 52/100
ot_mean_squared_error: 44.4166 - r_squared: 0.9257 - val_loss: 45.1728 - va
l_root_mean_squared_error: 45.1682 - val_r_squared: 0.9292
Epoch 53/100
ot_mean_squared_error: 43.8079 - r_squared: 0.9272 - val_loss: 44.5799 - va
l_root_mean_squared_error: 44.5747 - val_r_squared: 0.9306
Epoch 54/100
ot_mean_squared_error: 43.7698 - r_squared: 0.9289 - val_loss: 45.0590 - va
l_root_mean_squared_error: 45.0551 - val_r_squared: 0.9284
Epoch 55/100
ot_mean_squared_error: 43.8760 - r_squared: 0.9280 - val_loss: 44.5935 - va
```

```
l_root_mean_squared_error: 44.5893 - val_r_squared: 0.9306
Epoch 56/100
ot_mean_squared_error: 43.8897 - r_squared: 0.9282 - val_loss: 45.0239 - va
l_root_mean_squared_error: 45.0208 - val_r_squared: 0.9281
Epoch 57/100
ot_mean_squared_error: 43.2435 - r_squared: 0.9292 - val_loss: 46.0184 - va
l root mean squared error: 46.0139 - val r squared: 0.9277
Epoch 58/100
ot_mean_squared_error: 43.3685 - r_squared: 0.9312 - val_loss: 49.1539 - va
l root mean squared error: 49.1530 - val r squared: 0.9151
Epoch 59/100
ot_mean_squared_error: 43.0996 - r_squared: 0.9308 - val_loss: 44.2024 - va
l root mean squared error: 44.1961 - val r squared: 0.9314
Epoch 60/100
ot_mean_squared_error: 42.7405 - r_squared: 0.9321 - val_loss: 45.8216 - va
l_root_mean_squared_error: 45.8158 - val_r_squared: 0.9282
Epoch 61/100
ot_mean_squared_error: 43.1720 - r_squared: 0.9309 - val_loss: 44.7115 - va
l_root_mean_squared_error: 44.7077 - val_r_squared: 0.9305
Epoch 62/100
ot_mean_squared_error: 42.8672 - r_squared: 0.3164 - val_loss: 52.7760 - va
l_root_mean_squared_error: 52.7709 - val_r_squared: 0.9078
Epoch 63/100
ot_mean_squared_error: 42.5462 - r_squared: 0.9320 - val_loss: 42.8850 - va
l_root_mean_squared_error: 42.8791 - val_r_squared: 0.9363
Epoch 64/100
ot_mean_squared_error: 42.2551 - r_squared: 0.9333 - val_loss: 44.8783 - va
l_root_mean_squared_error: 44.8736 - val_r_squared: 0.9311
Epoch 65/100
ot_mean_squared_error: 42.4016 - r_squared: 0.9354 - val_loss: 45.4419 - va
l root mean squared error: 45.4350 - val r squared: 0.9290
Epoch 66/100
ot_mean_squared_error: 42.3831 - r_squared: 0.9332 - val_loss: 46.1106 - va
l_root_mean_squared_error: 46.1031 - val_r_squared: 0.9264
Epoch 67/100
ot_mean_squared_error: 42.3103 - r_squared: 0.9317 - val_loss: 42.3736 - va
l_root_mean_squared_error: 42.3683 - val_r_squared: 0.9368
Epoch 68/100
ot_mean_squared_error: 41.5760 - r_squared: 0.9348 - val_loss: 42.3936 - va
l_root_mean_squared_error: 42.3894 - val_r_squared: 0.9377
Epoch 69/100
ot_mean_squared_error: 42.0763 - r_squared: 0.9344 - val_loss: 42.6524 - va
l_root_mean_squared_error: 42.6475 - val_r_squared: 0.9373
Epoch 70/100
```

```
ot_mean_squared_error: 41.3604 - r_squared: 0.9336 - val_loss: 47.8695 - va
l_root_mean_squared_error: 47.8636 - val_r_squared: 0.9221
Epoch 71/100
ot_mean_squared_error: 41.2916 - r_squared: 0.9367 - val_loss: 43.5186 - va
l_root_mean_squared_error: 43.5143 - val_r_squared: 0.9327
Epoch 72/100
ot mean squared error: 42.0076 - r squared: 0.9353 - val loss: 42.6565 - va
l_root_mean_squared_error: 42.6513 - val_r_squared: 0.9376
Epoch 73/100
ot_mean_squared_error: 41.4210 - r_squared: 0.9335 - val_loss: 42.8614 - va
l_root_mean_squared_error: 42.8580 - val_r_squared: 0.9353
Epoch 74/100
ot mean squared error: 41.2389 - r squared: 0.9364 - val loss: 44.3162 - va
l_root_mean_squared_error: 44.3097 - val_r_squared: 0.9334
Epoch 75/100
ot_mean_squared_error: 41.1587 - r_squared: 0.9367 - val_loss: 47.1895 - va
l root mean squared error: 47.1820 - val r squared: 0.9208
Epoch 76/100
ot mean squared error: 41.1952 - r squared: 0.9354 - val loss: 44.4441 - va
l_root_mean_squared_error: 44.4411 - val_r_squared: 0.9316
Epoch 77/100
ot_mean_squared_error: 41.1561 - r_squared: 0.9352 - val_loss: 43.1352 - va
l_root_mean_squared_error: 43.1305 - val_r_squared: 0.9340
Epoch 78/100
ot_mean_squared_error: 41.0052 - r_squared: 0.9385 - val_loss: 47.3425 - va
l_root_mean_squared_error: 47.3372 - val_r_squared: 0.9240
Epoch 79/100
ot_mean_squared_error: 40.5555 - r_squared: 0.9386 - val_loss: 43.0778 - va
l_root_mean_squared_error: 43.0751 - val_r_squared: 0.9352
Epoch 80/100
ot mean squared error: 41.2488 - r squared: 0.9371 - val loss: 45.2310 - va
l_root_mean_squared_error: 45.2251 - val_r_squared: 0.9306
Epoch 81/100
ot mean squared error: 39.9287 - r squared: 0.9403 - val loss: 41.1640 - va
l root mean squared error: 41.1609 - val r squared: 0.9404
Epoch 82/100
ot_mean_squared_error: 40.8206 - r_squared: 0.9374 - val_loss: 42.0932 - va
l_root_mean_squared_error: 42.0870 - val_r_squared: 0.9387
Epoch 83/100
ot_mean_squared_error: 40.3870 - r_squared: 0.9333 - val_loss: 40.9061 - va
l_root_mean_squared_error: 40.9008 - val_r_squared: 0.9407
Epoch 84/100
ot_mean_squared_error: 39.9624 - r_squared: 0.9417 - val_loss: 44.7142 - va
l_root_mean_squared_error: 44.7108 - val_r_squared: 0.9317
Epoch 85/100
```

```
ot_mean_squared_error: 40.6213 - r_squared: 0.9381 - val_loss: 40.7326 - va
l_root_mean_squared_error: 40.7273 - val_r_squared: 0.9423
Epoch 86/100
ot_mean_squared_error: 39.9502 - r_squared: 0.9398 - val_loss: 41.2651 - va
l_root_mean_squared_error: 41.2590 - val_r_squared: 0.9410
Epoch 87/100
ot_mean_squared_error: 40.0908 - r_squared: 0.9400 - val_loss: 43.6750 - va
l_root_mean_squared_error: 43.6671 - val_r_squared: 0.9333
Epoch 88/100
ot_mean_squared_error: 39.9001 - r_squared: 0.9410 - val_loss: 43.3992 - va
l_root_mean_squared_error: 43.3950 - val_r_squared: 0.9352
Epoch 89/100
ot_mean_squared_error: 40.0069 - r_squared: 0.9404 - val_loss: 41.8160 - va
l_root_mean_squared_error: 41.8095 - val_r_squared: 0.9391
Epoch 90/100
ot mean squared error: 39.5835 - r squared: 0.9405 - val loss: 41.5337 - va
l_root_mean_squared_error: 41.5296 - val_r_squared: 0.9393
Epoch 91/100
ot_mean_squared_error: 39.6340 - r_squared: 0.9401 - val_loss: 42.1050 - va
l_root_mean_squared_error: 42.0981 - val_r_squared: 0.9376
Epoch 92/100
ot_mean_squared_error: 39.6440 - r_squared: 0.9400 - val_loss: 41.9273 - va
l_root_mean_squared_error: 41.9237 - val_r_squared: 0.9384
Epoch 93/100
ot_mean_squared_error: 39.4827 - r_squared: 0.9407 - val_loss: 40.7390 - va
l_root_mean_squared_error: 40.7350 - val_r_squared: 0.9418
Epoch 94/100
ot mean squared error: 39.2582 - r squared: 0.9418 - val loss: 40.7573 - va
l_root_mean_squared_error: 40.7541 - val_r_squared: 0.9417
Epoch 95/100
ot_mean_squared_error: 38.7785 - r_squared: 0.9421 - val_loss: 43.1004 - va
l root_mean_squared_error: 43.0954 - val_r_squared: 0.9360
Epoch 96/100
ot_mean_squared_error: 38.9049 - r_squared: 0.9442 - val_loss: 42.6577 - va
l_root_mean_squared_error: 42.6521 - val_r_squared: 0.9372
Epoch 97/100
ot_mean_squared_error: 38.8753 - r_squared: 0.9441 - val_loss: 41.7969 - va
l root mean squared error: 41.7916 - val r squared: 0.9395
Epoch 98/100
ot_mean_squared_error: 38.6004 - r_squared: 0.9463 - val_loss: 41.2599 - va
l_root_mean_squared_error: 41.2580 - val_r_squared: 0.9401
Epoch 99/100
ot_mean_squared_error: 38.6135 - r_squared: 0.9454 - val_loss: 42.7083 - va
l_root_mean_squared_error: 42.7055 - val_r_squared: 0.9374
```

Neural Network Architecture

- Model: Sequential 5-layer network.
- Layers:
 - Dense layer with 64 neurons, ReLU activation (Input layer).
 - Two Dense layers with 128 neurons each, ReLU activation.
 - Dense layer with 64 neurons, ReLU activation.
 - Dense layer with 32 neurons, ReLU activation.
 - Output Dense layer with 1 neuron, linear activation.

Training

Epochs: 100 Batch size: 32

Training R2 score: 0.9545Validation R2 score: 0.9373

```
In [32]: # Let's train the model
         # Define the model
         model 5 layer = Sequential()
         model_5_layer.add(Dense(64, input_dim=X_train.shape[1], activation='relu'))
         model_5_layer.add(Dense(128, activation='relu'))
         model_5_layer.add(Dense(128, activation='relu'))
         model_5_layer.add(Dense(64, activation='relu'))
         model_5_layer.add(Dense(32, activation='relu'))
         model_5_layer.add(Dense(1, activation='linear'))
         # Compile the model
         model_5_layer.compile(loss=root_mean_squared_error,
                       optimizer='adam',
                       metrics=[root_mean_squared_error, r_squared])
         # Summary of the model
         model_5_layer.summary()
         model_5_layer_regressor = model_5_layer.fit(X_train, y_train, validation_dat
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense_4 (Dense)	(None, 64)	832
dense_5 (Dense)	(None, 128)	8320
dense_6 (Dense)	(None, 128)	16512
dense_7 (Dense)	(None, 64)	8256
dense_8 (Dense)	(None, 32)	2080
dense_9 (Dense)	(None, 1)	33
Total params: 36033 (140.75 Trainable params: 36033 (140 Non-trainable params: 0 (0.0 Epoch 1/100	0.75 KB) 00 Byte)	
381/381 [====================================	3457 - r_squared: 0.1425 - 139.5138 - val_r_squared:	val_loss: 139.5196 - 0.3762
381/381 [====================================	1989 - r_squared: 0.4059 - 124.6543 - val_r_squared:	val_loss: 124.6572 - 0.5000
381/381 [====================================	7840 - r_squared: 0.5263 -	val_loss: 111.3295 -
381/381 [====================================	1975 - r_squared: 0.6027 -	val_loss: 109.5863 -
381/381 [====================================	1593 - r_squared: 0.6393 -	val_loss: 99.9060 -
381/381 [====================================	279 - r_squared: 0.6673 - v	al_loss: 93.7884 - va
381/381 [====================================	069 - r_squared: 0.7042 - v	al_loss: 96.2122 - va
381/381 [====================================	l13 – r_squared: 0.7439 – ν	al_loss: 76.4006 - va
381/381 [====================================	733 - r_squared: 0.8110 - v	al_loss: 68.4257 – va
381/381 [=========] - 2s 4ms/step	- loss: 65.8638 - ro

```
ot_mean_squared_error: 65.7279 - r_squared: 0.8466 - val_loss: 62.5936 - va
l_root_mean_squared_error: 62.5893 - val_r_squared: 0.8681
Epoch 11/100
ot_mean_squared_error: 62.0476 - r_squared: 0.8638 - val_loss: 66.8296 - va
l_root_mean_squared_error: 66.8261 - val_r_squared: 0.8544
Epoch 12/100
ot mean squared error: 57.5386 - r squared: 0.8809 - val loss: 62.6037 - va
l_root_mean_squared_error: 62.6015 - val_r_squared: 0.8717
Epoch 13/100
ot_mean_squared_error: 55.5081 - r_squared: 0.8894 - val_loss: 65.4886 - va
l_root_mean_squared_error: 65.4910 - val_r_squared: 0.8600
Epoch 14/100
ot mean squared error: 54.2277 - r squared: 0.8948 - val loss: 49.2858 - va
l root mean squared error: 49.2788 - val r squared: 0.9176
Epoch 15/100
ot_mean_squared_error: 52.5509 - r_squared: 0.8995 - val_loss: 50.8357 - va
l root mean squared error: 50.8283 - val r squared: 0.9102
Epoch 16/100
ot_mean_squared_error: 50.9443 - r_squared: 0.9054 - val_loss: 49.8843 - va
l_root_mean_squared_error: 49.8787 - val_r_squared: 0.9154
Epoch 17/100
ot_mean_squared_error: 50.3736 - r_squared: 0.9077 - val_loss: 58.3469 - va
l_root_mean_squared_error: 58.3404 - val_r_squared: 0.8864
Epoch 18/100
ot_mean_squared_error: 50.1371 - r_squared: 0.9035 - val_loss: 62.6897 - va
l_root_mean_squared_error: 62.6899 - val_r_squared: 0.8710
Epoch 19/100
ot_mean_squared_error: 48.6775 - r_squared: 0.9162 - val_loss: 51.7699 - va
l_root_mean_squared_error: 51.7650 - val_r_squared: 0.9087
Epoch 20/100
ot mean squared error: 48.3223 - r squared: 0.9153 - val loss: 49.7112 - va
l_root_mean_squared_error: 49.7087 - val_r_squared: 0.9132
Epoch 21/100
ot mean squared error: 48.8024 - r squared: 0.9124 - val loss: 44.3512 - va
l root mean squared error: 44.3449 - val r squared: 0.9323
Epoch 22/100
ot_mean_squared_error: 47.8971 - r_squared: 0.9168 - val_loss: 44.6916 - va
l_root_mean_squared_error: 44.6851 - val_r_squared: 0.9303
Epoch 23/100
ot_mean_squared_error: 46.1372 - r_squared: 0.9231 - val_loss: 43.3995 - va
l_root_mean_squared_error: 43.3952 - val_r_squared: 0.9339
Epoch 24/100
ot_mean_squared_error: 45.3705 - r_squared: 0.9248 - val_loss: 46.1494 - va
l_root_mean_squared_error: 46.1423 - val_r_squared: 0.9271
Epoch 25/100
```

```
ot_mean_squared_error: 44.5633 - r_squared: 0.9283 - val_loss: 48.4732 - va
l_root_mean_squared_error: 48.4700 - val_r_squared: 0.9187
Epoch 26/100
ot_mean_squared_error: 45.4955 - r_squared: 0.9231 - val_loss: 47.8968 - va
l_root_mean_squared_error: 47.8942 - val_r_squared: 0.9211
Epoch 27/100
ot_mean_squared_error: 45.7144 - r_squared: 0.9214 - val_loss: 43.9424 - va
l_root_mean_squared_error: 43.9397 - val_r_squared: 0.9326
Epoch 28/100
ot_mean_squared_error: 44.7834 - r_squared: 0.9250 - val_loss: 45.7281 - va
l_root_mean_squared_error: 45.7252 - val_r_squared: 0.9270
Epoch 29/100
ot_mean_squared_error: 43.9806 - r_squared: 0.9311 - val_loss: 48.0921 - va
l_root_mean_squared_error: 48.0852 - val_r_squared: 0.9204
Epoch 30/100
ot mean squared error: 44.2695 - r squared: 0.9265 - val loss: 51.5852 - va
l_root_mean_squared_error: 51.5810 - val_r_squared: 0.9074
Epoch 31/100
ot_mean_squared_error: 43.7763 - r_squared: 0.9298 - val_loss: 45.7338 - va
l_root_mean_squared_error: 45.7279 - val_r_squared: 0.9290
Epoch 32/100
ot_mean_squared_error: 43.5590 - r_squared: 0.9306 - val_loss: 46.2055 - va
l_root_mean_squared_error: 46.1985 - val_r_squared: 0.9280
Epoch 33/100
ot_mean_squared_error: 42.9656 - r_squared: 0.9322 - val_loss: 57.4081 - va
l_root_mean_squared_error: 57.4118 - val_r_squared: 0.8854
Epoch 34/100
ot mean squared error: 43.1254 - r squared: 0.9320 - val loss: 43.1599 - va
l_root_mean_squared_error: 43.1564 - val_r_squared: 0.9358
Epoch 35/100
ot_mean_squared_error: 42.7173 - r_squared: 0.9316 - val_loss: 49.3269 - va
l root_mean_squared_error: 49.3231 - val_r_squared: 0.9190
Epoch 36/100
ot_mean_squared_error: 42.4357 - r_squared: 0.9309 - val_loss: 44.6661 - va
l_root_mean_squared_error: 44.6604 - val_r_squared: 0.9308
Epoch 37/100
ot_mean_squared_error: 43.5859 - r_squared: 0.9289 - val_loss: 41.4878 - va
l root mean squared error: 41.4836 - val r squared: 0.9407
Epoch 38/100
ot_mean_squared_error: 42.3070 - r_squared: 0.9329 - val_loss: 43.7658 - va
l_root_mean_squared_error: 43.7668 - val_r_squared: 0.9328
Epoch 39/100
ot_mean_squared_error: 41.8930 - r_squared: 0.9350 - val_loss: 41.2857 - va
l_root_mean_squared_error: 41.2828 - val_r_squared: 0.9405
```

```
Epoch 40/100
ot_mean_squared_error: 42.2038 - r_squared: 0.9339 - val_loss: 42.8152 - va
l_root_mean_squared_error: 42.8154 - val_r_squared: 0.9356
Epoch 41/100
ot_mean_squared_error: 42.4194 - r_squared: 0.9331 - val_loss: 42.6472 - va
l_root_mean_squared_error: 42.6430 - val_r_squared: 0.9362
Epoch 42/100
ot_mean_squared_error: 41.4677 - r_squared: 0.9349 - val_loss: 47.3219 - va
l_root_mean_squared_error: 47.3225 - val_r_squared: 0.9218
Epoch 43/100
ot_mean_squared_error: 41.6461 - r_squared: 0.9356 - val_loss: 47.8591 - va
l_root_mean_squared_error: 47.8546 - val_r_squared: 0.9207
Epoch 44/100
ot_mean_squared_error: 41.6160 - r_squared: 0.9363 - val_loss: 44.8698 - va
l_root_mean_squared_error: 44.8644 - val_r_squared: 0.9312
Epoch 45/100
ot_mean_squared_error: 41.8690 - r_squared: 0.9337 - val_loss: 43.1151 - va
l_root_mean_squared_error: 43.1157 - val_r_squared: 0.9355
Epoch 46/100
ot_mean_squared_error: 41.9357 - r_squared: 0.9355 - val_loss: 49.5119 - va
l_root_mean_squared_error: 49.5060 - val_r_squared: 0.9176
Epoch 47/100
ot_mean_squared_error: 40.4817 - r_squared: 0.9363 - val_loss: 42.5617 - va
l_root_mean_squared_error: 42.5628 - val_r_squared: 0.9358
Epoch 48/100
ot_mean_squared_error: 41.4359 - r_squared: 0.9364 - val_loss: 45.3558 - va
l_root_mean_squared_error: 45.3533 - val_r_squared: 0.9276
Epoch 49/100
ot_mean_squared_error: 41.0879 - r_squared: 0.9391 - val_loss: 41.9322 - va
l_root_mean_squared_error: 41.9283 - val_r_squared: 0.9385
Epoch 50/100
ot_mean_squared_error: 39.1494 - r_squared: 0.9434 - val_loss: 40.5092 - va
l_root_mean_squared_error: 40.5083 - val_r_squared: 0.9420
Epoch 51/100
ot_mean_squared_error: 40.1662 - r_squared: 0.9396 - val_loss: 44.0851 - va
l_root_mean_squared_error: 44.0827 - val_r_squared: 0.9323
Epoch 52/100
ot_mean_squared_error: 39.8348 - r_squared: 0.9417 - val_loss: 41.5056 - va
l_root_mean_squared_error: 41.5034 - val_r_squared: 0.9398
Epoch 53/100
ot_mean_squared_error: 39.4771 - r_squared: 0.9418 - val_loss: 47.2386 - va
l_root_mean_squared_error: 47.2393 - val_r_squared: 0.9213
Epoch 54/100
ot_mean_squared_error: 39.8972 - r_squared: 0.9401 - val_loss: 51.3288 - va
```

```
l_root_mean_squared_error: 51.3269 - val_r_squared: 0.9124
Epoch 55/100
ot_mean_squared_error: 39.5524 - r_squared: 0.9425 - val_loss: 45.4388 - va
l_root_mean_squared_error: 45.4391 - val_r_squared: 0.9295
Epoch 56/100
ot_mean_squared_error: 40.7270 - r_squared: 0.9382 - val_loss: 48.3320 - va
l root mean squared error: 48.3284 - val r squared: 0.9225
Epoch 57/100
ot_mean_squared_error: 39.1146 - r_squared: 0.9429 - val_loss: 42.3338 - va
l root mean squared error: 42.3335 - val r squared: 0.9365
Epoch 58/100
ot_mean_squared_error: 38.7865 - r_squared: 0.9441 - val_loss: 41.9688 - va
l root mean squared error: 41.9655 - val r squared: 0.9387
Epoch 59/100
ot_mean_squared_error: 38.6339 - r_squared: 0.9451 - val_loss: 40.7636 - va
l_root_mean_squared_error: 40.7620 - val_r_squared: 0.9414
Epoch 60/100
ot_mean_squared_error: 39.6318 - r_squared: 0.9426 - val_loss: 45.9990 - va
l_root_mean_squared_error: 46.0010 - val_r_squared: 0.9249
Epoch 61/100
ot_mean_squared_error: 38.7779 - r_squared: 0.9454 - val_loss: 44.9083 - va
l_root_mean_squared_error: 44.9033 - val_r_squared: 0.9315
Epoch 62/100
ot_mean_squared_error: 37.6139 - r_squared: 0.9486 - val_loss: 42.8497 - va
l_root_mean_squared_error: 42.8460 - val_r_squared: 0.9365
Epoch 63/100
ot_mean_squared_error: 37.3868 - r_squared: 0.9481 - val_loss: 40.0515 - va
l_root_mean_squared_error: 40.0479 - val_r_squared: 0.9438
Epoch 64/100
ot_mean_squared_error: 37.8206 - r_squared: 0.9462 - val_loss: 40.3791 - va
l root mean squared error: 40.3763 - val r squared: 0.9430
Epoch 65/100
ot_mean_squared_error: 37.9000 - r_squared: 0.9467 - val_loss: 43.1247 - va
l_root_mean_squared_error: 43.1253 - val_r_squared: 0.9329
Epoch 66/100
ot_mean_squared_error: 37.0868 - r_squared: 0.9481 - val_loss: 44.2520 - va
l_root_mean_squared_error: 44.2462 - val_r_squared: 0.9324
Epoch 67/100
ot_mean_squared_error: 36.8431 - r_squared: 0.9502 - val_loss: 45.5735 - va
l_root_mean_squared_error: 45.5755 - val_r_squared: 0.9267
Epoch 68/100
ot_mean_squared_error: 37.2294 - r_squared: 0.9492 - val_loss: 42.2971 - va
l_root_mean_squared_error: 42.2966 - val_r_squared: 0.9380
Epoch 69/100
```

```
ot_mean_squared_error: 38.3213 - r_squared: 0.9447 - val_loss: 44.8000 - va
l_root_mean_squared_error: 44.8036 - val_r_squared: 0.9283
Epoch 70/100
ot_mean_squared_error: 36.7440 - r_squared: 0.9489 - val_loss: 39.5126 - va
l_root_mean_squared_error: 39.5142 - val_r_squared: 0.9447
Epoch 71/100
ot mean squared error: 38.1009 - r squared: 0.9473 - val loss: 40.4011 - va
l root mean squared error: 40.4002 - val r squared: 0.9436
Epoch 72/100
ot_mean_squared_error: 36.4632 - r_squared: 0.9432 - val_loss: 41.6869 - va
l_root_mean_squared_error: 41.6830 - val_r_squared: 0.9397
Epoch 73/100
ot mean squared error: 36.1641 - r squared: 0.9503 - val loss: 40.6882 - va
l root mean squared error: 40.6859 - val r squared: 0.9414
Epoch 74/100
ot_mean_squared_error: 36.1513 - r_squared: 0.9511 - val_loss: 46.9853 - va
l root mean squared error: 46.9813 - val r squared: 0.9251
Epoch 75/100
ot mean squared error: 37.2690 - r squared: 0.9493 - val loss: 40.5189 - va
l_root_mean_squared_error: 40.5170 - val_r_squared: 0.9420
Epoch 76/100
ot_mean_squared_error: 36.2139 - r_squared: 0.9507 - val_loss: 50.2120 - va
l_root_mean_squared_error: 50.2119 - val_r_squared: 0.9140
Epoch 77/100
ot_mean_squared_error: 36.4721 - r_squared: 0.9492 - val_loss: 44.2229 - va
l_root_mean_squared_error: 44.2203 - val_r_squared: 0.9326
Epoch 78/100
ot_mean_squared_error: 36.9223 - r_squared: 0.9480 - val_loss: 42.4613 - va
l_root_mean_squared_error: 42.4594 - val_r_squared: 0.9367
Epoch 79/100
ot mean squared error: 36.3273 - r squared: 0.9506 - val loss: 41.7051 - va
l_root_mean_squared_error: 41.7076 - val_r_squared: 0.9379
Epoch 80/100
ot mean squared error: 35.2298 - r squared: 0.9547 - val loss: 40.7808 - va
l root mean squared error: 40.7826 - val r squared: 0.9408
Epoch 81/100
ot_mean_squared_error: 35.9334 - r_squared: 0.9520 - val_loss: 38.9972 - va
l_root_mean_squared_error: 38.9956 - val_r_squared: 0.9467
Epoch 82/100
ot_mean_squared_error: 35.8374 - r_squared: 0.9508 - val_loss: 40.1067 - va
l_root_mean_squared_error: 40.1059 - val_r_squared: 0.9442
Epoch 83/100
ot_mean_squared_error: 36.0057 - r_squared: 0.9515 - val_loss: 43.3886 - va
l_root_mean_squared_error: 43.3928 - val_r_squared: 0.9337
Epoch 84/100
```

```
ot_mean_squared_error: 35.3423 - r_squared: 0.9539 - val_loss: 41.1998 - va
l_root_mean_squared_error: 41.1973 - val_r_squared: 0.9411
ot_mean_squared_error: 35.7500 - r_squared: 0.9526 - val_loss: 44.0136 - va
l_root_mean_squared_error: 44.0081 - val_r_squared: 0.9352
Epoch 86/100
ot_mean_squared_error: 35.6109 - r_squared: 0.9519 - val_loss: 40.4503 - va
l_root_mean_squared_error: 40.4494 - val_r_squared: 0.9426
Epoch 87/100
ot_mean_squared_error: 35.4675 - r_squared: 0.9521 - val_loss: 40.5388 - va
l_root_mean_squared_error: 40.5344 - val_r_squared: 0.9439
Epoch 88/100
ot_mean_squared_error: 36.0601 - r_squared: 0.8578 - val_loss: 41.1150 - va
l_root_mean_squared_error: 41.1142 - val_r_squared: 0.9413
Epoch 89/100
ot mean squared error: 35.2639 - r squared: 0.9533 - val loss: 40.7530 - va
l_root_mean_squared_error: 40.7496 - val_r_squared: 0.9427
Epoch 90/100
ot_mean_squared_error: 35.2885 - r_squared: 0.9527 - val_loss: 43.1775 - va
l_root_mean_squared_error: 43.1736 - val_r_squared: 0.9362
Epoch 91/100
ot_mean_squared_error: 34.9701 - r_squared: 0.9555 - val_loss: 39.2057 - va
l_root_mean_squared_error: 39.2055 - val_r_squared: 0.9450
Epoch 92/100
ot_mean_squared_error: 35.0148 - r_squared: 0.9516 - val_loss: 38.7477 - va
l_root_mean_squared_error: 38.7483 - val_r_squared: 0.9471
Epoch 93/100
ot mean squared error: 34.8767 - r squared: 0.9503 - val loss: 41.1146 - va
l_root_mean_squared_error: 41.1098 - val_r_squared: 0.9422
Epoch 94/100
ot_mean_squared_error: 35.2281 - r_squared: 0.9540 - val_loss: 41.1303 - va
l root_mean_squared_error: 41.1262 - val_r_squared: 0.9423
Epoch 95/100
ot_mean_squared_error: 34.6767 - r_squared: 0.9548 - val_loss: 40.9348 - va
l_root_mean_squared_error: 40.9337 - val_r_squared: 0.9409
Epoch 96/100
ot_mean_squared_error: 34.9948 - r_squared: 0.9548 - val_loss: 39.7473 - va
l_root_mean_squared_error: 39.7471 - val_r_squared: 0.9447
Epoch 97/100
ot_mean_squared_error: 35.0948 - r_squared: 0.9537 - val_loss: 41.0581 - va
l_root_mean_squared_error: 41.0584 - val_r_squared: 0.9405
Epoch 98/100
ot_mean_squared_error: 34.4394 - r_squared: 0.9560 - val_loss: 38.5150 - va
l_root_mean_squared_error: 38.5140 - val_r_squared: 0.9475
```

Neural Network Architecture

- Model: Sequential 7-layer network.
- Layers:
 - Dense layer with 64 neurons, ReLU activation (Input layer).
 - Three Dense layers with 128 neurons each, ReLU activation.
 - Two Dense layers with 64 neurons each, ReLU activation.
 - Dense layer with 32 neurons, ReLU activation.
 - Output Dense layer with 1 neuron, linear activation.

Training

Epochs: 250 Batch size: 32

Training R2 score: 0.9822Validation R2 score: 0.9452

```
In [34]: # Let's train the model
         # Define the model
         model_7_layer = Sequential()
         model_7_layer.add(Dense(64, input_dim=X_train.shape[1], activation='relu'))
         model_7_layer.add(Dense(128, activation='relu'))
         model_7_layer.add(Dense(128, activation='relu'))
         model_7_layer.add(Dense(128, activation='relu'))
         model_7_layer.add(Dense(64, activation='relu'))
         model_7_layer.add(Dense(64, activation='relu'))
         model_7_layer.add(Dense(32, activation='relu'))
         model_7_layer.add(Dense(1, activation='linear'))
         # Compile the model
         model_7_layer.compile(loss=root_mean_squared_error,
                       optimizer='adam',
                       metrics=[root_mean_squared_error, r_squared])
         # Summary of the model
         model_7_layer.summary()
         model_7_layer_regressor = model_7_layer.fit(X_train, y_train, validation_dat
```

Model: "sequential_2"

Layer (type)	Output Shape	Param #
dense_10 (Dense)	(None, 64)	832
dense_11 (Dense)	(None, 128)	8320
dense_12 (Dense)	(None, 128)	16512
dense_13 (Dense)	(None, 128)	16512
dense_14 (Dense)	(None, 64)	8256
dense_15 (Dense)	(None, 64)	4160
dense_16 (Dense)	(None, 32)	2080
dense_17 (Dense)	(None, 1)	33
_	·	

Total params: 56705 (221.50 KB)
Trainable params: 56705 (221.50 KB)
Non-trainable params: 0 (0.00 Byte)

```
Epoch 1/250
oot_mean_squared_error: 149.1671 - r_squared: 0.2394 - val_loss: 133.4724 -
val_root_mean_squared_error: 133.4742 - val_r_squared: 0.4114
Epoch 2/250
oot_mean_squared_error: 120.5259 - r_squared: 0.5121 - val_loss: 110.3009 -
val_root_mean_squared_error: 110.3027 - val_r_squared: 0.6102
Epoch 3/250
oot_mean_squared_error: 108.6762 - r_squared: 0.6067 - val_loss: 110.9172 -
val_root_mean_squared_error: 110.9258 - val_r_squared: 0.5854
Epoch 4/250
oot_mean_squared_error: 103.2647 - r_squared: -0.2251 - val_loss: 98.6838 -
val root mean squared error: 98.6850 - val r squared: 0.6894
Epoch 5/250
ot_mean_squared_error: 96.6211 - r_squared: 0.6851 - val_loss: 94.6571 - va
l_root_mean_squared_error: 94.6531 - val_r_squared: 0.7099
Epoch 6/250
ot_mean_squared_error: 88.2359 - r_squared: 0.7325 - val_loss: 75.7912 - va
l_root_mean_squared_error: 75.7921 - val_r_squared: 0.8118
Epoch 7/250
ot_mean_squared_error: 78.5862 - r_squared: 0.7839 - val_loss: 72.8547 - va
l_root_mean_squared_error: 72.8595 - val_r_squared: 0.8261
Epoch 8/250
ot_mean_squared_error: 68.0767 - r_squared: 0.8391 - val_loss: 62.4424 - va
l_root_mean_squared_error: 62.4410 - val_r_squared: 0.8685
Epoch 9/250
```

```
ot_mean_squared_error: 63.3154 - r_squared: 0.8562 - val_loss: 56.2321 - va
l_root_mean_squared_error: 56.2271 - val_r_squared: 0.8934
Epoch 10/250
ot_mean_squared_error: 60.9973 - r_squared: 0.8678 - val_loss: 57.1905 - va
l_root_mean_squared_error: 57.1871 - val_r_squared: 0.8907
Epoch 11/250
ot mean squared error: 57.9143 - r squared: 0.8712 - val loss: 54.1525 - va
l_root_mean_squared_error: 54.1508 - val_r_squared: 0.9025
Epoch 12/250
ot mean squared error: 53.5403 - r squared: 0.8927 - val loss: 48.8752 - va
l_root_mean_squared_error: 48.8723 - val_r_squared: 0.9187
Epoch 13/250
ot mean squared error: 52.1502 - r squared: 0.9027 - val loss: 48.5604 - va
l root mean squared error: 48.5544 - val r squared: 0.9200
Epoch 14/250
ot_mean_squared_error: 50.7926 - r_squared: 0.8718 - val_loss: 51.6037 - va
l root mean squared error: 51.5989 - val r squared: 0.9112
Epoch 15/250
ot_mean_squared_error: 48.2739 - r_squared: 0.9150 - val_loss: 52.7413 - va
l_root_mean_squared_error: 52.7347 - val_r_squared: 0.9066
Epoch 16/250
ot_mean_squared_error: 51.0369 - r_squared: 0.9032 - val_loss: 53.1244 - va
l_root_mean_squared_error: 53.1205 - val_r_squared: 0.9045
Epoch 17/250
ot_mean_squared_error: 47.1129 - r_squared: 0.9165 - val_loss: 46.4090 - va
l_root_mean_squared_error: 46.4062 - val_r_squared: 0.9257
Epoch 18/250
ot_mean_squared_error: 46.0992 - r_squared: 0.9171 - val_loss: 51.1667 - va
l_root_mean_squared_error: 51.1645 - val_r_squared: 0.9124
Epoch 19/250
ot mean squared error: 45.6715 - r squared: 0.9232 - val loss: 45.4794 - va
l_root_mean_squared_error: 45.4754 - val_r_squared: 0.9288
Epoch 20/250
ot_mean_squared_error: 46.4462 - r_squared: 0.9200 - val_loss: 54.1805 - va
l root mean squared error: 54.1811 - val r squared: 0.9014
Epoch 21/250
ot_mean_squared_error: 45.2042 - r_squared: 0.9256 - val_loss: 42.6121 - va
l_root_mean_squared_error: 42.6058 - val_r_squared: 0.9371
Epoch 22/250
ot_mean_squared_error: 44.6971 - r_squared: 0.9262 - val_loss: 48.4819 - va
l root mean squared error: 48.4767 - val r squared: 0.9207
Epoch 23/250
ot_mean_squared_error: 43.4163 - r_squared: 0.9297 - val_loss: 50.7433 - va
l_root_mean_squared_error: 50.7388 - val_r_squared: 0.9140
Epoch 24/250
```

```
ot_mean_squared_error: 43.6414 - r_squared: 0.9311 - val_loss: 43.3333 - va
l_root_mean_squared_error: 43.3290 - val_r_squared: 0.9352
Epoch 25/250
ot_mean_squared_error: 43.7025 - r_squared: 0.9296 - val_loss: 56.4719 - va
l_root_mean_squared_error: 56.4656 - val_r_squared: 0.8922
Epoch 26/250
ot_mean_squared_error: 42.5548 - r_squared: 0.9325 - val_loss: 43.4266 - va
l_root_mean_squared_error: 43.4246 - val_r_squared: 0.9333
Epoch 27/250
ot_mean_squared_error: 41.7161 - r_squared: 0.9317 - val_loss: 49.3777 - va
l_root_mean_squared_error: 49.3756 - val_r_squared: 0.9184
Epoch 28/250
ot_mean_squared_error: 42.2952 - r_squared: 0.9336 - val_loss: 43.9255 - va
l_root_mean_squared_error: 43.9228 - val_r_squared: 0.9315
Epoch 29/250
ot mean squared error: 42.1897 - r squared: 0.9339 - val loss: 43.5883 - va
l_root_mean_squared_error: 43.5858 - val_r_squared: 0.9342
Epoch 30/250
ot_mean_squared_error: 40.9782 - r_squared: 0.9358 - val_loss: 40.4863 - va
l_root_mean_squared_error: 40.4866 - val_r_squared: 0.9427
Epoch 31/250
ot_mean_squared_error: 40.6900 - r_squared: 0.9350 - val_loss: 43.0423 - va
l_root_mean_squared_error: 43.0400 - val_r_squared: 0.9355
Epoch 32/250
ot_mean_squared_error: 40.4271 - r_squared: 0.9398 - val_loss: 43.5246 - va
l_root_mean_squared_error: 43.5219 - val_r_squared: 0.9353
Epoch 33/250
ot mean squared error: 39.5132 - r squared: 0.9419 - val loss: 40.8843 - va
l_root_mean_squared_error: 40.8794 - val_r_squared: 0.9422
Epoch 34/250
ot_mean_squared_error: 38.5393 - r_squared: 0.9431 - val_loss: 44.0554 - va
l root_mean_squared_error: 44.0487 - val_r_squared: 0.9342
Epoch 35/250
ot_mean_squared_error: 41.4437 - r_squared: 0.9377 - val_loss: 52.7170 - va
l_root_mean_squared_error: 52.7208 - val_r_squared: 0.9059
Epoch 36/250
ot_mean_squared_error: 38.8884 - r_squared: 0.9446 - val_loss: 41.6452 - va
l root mean squared error: 41.6446 - val r squared: 0.9403
Epoch 37/250
ot_mean_squared_error: 38.4360 - r_squared: 0.9455 - val_loss: 43.6593 - va
l_root_mean_squared_error: 43.6562 - val_r_squared: 0.9329
Epoch 38/250
ot_mean_squared_error: 37.9889 - r_squared: 0.9471 - val_loss: 40.4673 - va
l_root_mean_squared_error: 40.4651 - val_r_squared: 0.9426
```

```
Epoch 39/250
ot_mean_squared_error: 39.7587 - r_squared: 0.9399 - val_loss: 40.7398 - va
l_root_mean_squared_error: 40.7373 - val_r_squared: 0.9418
Epoch 40/250
ot_mean_squared_error: 37.3672 - r_squared: 0.9472 - val_loss: 50.6186 - va
l_root_mean_squared_error: 50.6217 - val_r_squared: 0.9091
Epoch 41/250
ot_mean_squared_error: 39.1316 - r_squared: 0.9435 - val_loss: 41.3154 - va
l_root_mean_squared_error: 41.3104 - val_r_squared: 0.9412
Epoch 42/250
ot_mean_squared_error: 37.2889 - r_squared: 0.9477 - val_loss: 42.9506 - va
l_root_mean_squared_error: 42.9460 - val_r_squared: 0.9365
Epoch 43/250
ot_mean_squared_error: 37.6560 - r_squared: 0.9481 - val_loss: 41.6945 - va
l_root_mean_squared_error: 41.6884 - val_r_squared: 0.9399
Epoch 44/250
ot_mean_squared_error: 37.2386 - r_squared: 0.9481 - val_loss: 40.4680 - va
l_root_mean_squared_error: 40.4699 - val_r_squared: 0.9428
Epoch 45/250
ot_mean_squared_error: 38.0148 - r_squared: 0.9443 - val_loss: 42.5668 - va
l_root_mean_squared_error: 42.5652 - val_r_squared: 0.9379
Epoch 46/250
ot_mean_squared_error: 36.2104 - r_squared: 0.9511 - val_loss: 42.6843 - va
l_root_mean_squared_error: 42.6834 - val_r_squared: 0.9364
Epoch 47/250
ot_mean_squared_error: 37.0399 - r_squared: 0.9472 - val_loss: 42.1099 - va
l_root_mean_squared_error: 42.1094 - val_r_squared: 0.9380
Epoch 48/250
ot_mean_squared_error: 37.4599 - r_squared: 0.9459 - val_loss: 41.8614 - va
l_root_mean_squared_error: 41.8600 - val_r_squared: 0.9384
Epoch 49/250
ot_mean_squared_error: 36.1579 - r_squared: 0.9514 - val_loss: 40.8838 - va
l_root_mean_squared_error: 40.8816 - val_r_squared: 0.9415
Epoch 50/250
ot_mean_squared_error: 35.8319 - r_squared: 0.9521 - val_loss: 42.9095 - va
l_root_mean_squared_error: 42.9061 - val_r_squared: 0.9365
Epoch 51/250
ot_mean_squared_error: 35.3509 - r_squared: 0.9531 - val_loss: 40.7876 - va
l_root_mean_squared_error: 40.7877 - val_r_squared: 0.9409
Epoch 52/250
ot_mean_squared_error: 35.6926 - r_squared: 0.9528 - val_loss: 41.2433 - va
l_root_mean_squared_error: 41.2420 - val_r_squared: 0.9404
Epoch 53/250
ot_mean_squared_error: 36.2769 - r_squared: 0.9510 - val_loss: 43.8970 - va
```

```
l_root_mean_squared_error: 43.8927 - val_r_squared: 0.9332
Epoch 54/250
ot_mean_squared_error: 35.6889 - r_squared: 0.9510 - val_loss: 41.9291 - va
l root mean squared error: 41.9305 - val r squared: 0.9378
Epoch 55/250
ot_mean_squared_error: 34.8854 - r_squared: 0.9507 - val_loss: 39.3198 - va
l root mean squared error: 39.3198 - val r squared: 0.9457
Epoch 56/250
ot_mean_squared_error: 33.9569 - r_squared: 0.9568 - val_loss: 40.7088 - va
l root mean squared error: 40.7086 - val r squared: 0.9417
Epoch 57/250
ot_mean_squared_error: 35.0374 - r_squared: 0.9532 - val_loss: 40.2250 - va
l root mean squared error: 40.2245 - val r squared: 0.9429
Epoch 58/250
ot_mean_squared_error: 34.1665 - r_squared: 0.9548 - val_loss: 43.6730 - va
l_root_mean_squared_error: 43.6749 - val_r_squared: 0.9327
Epoch 59/250
ot_mean_squared_error: 34.0424 - r_squared: 0.9562 - val_loss: 41.5401 - va
l_root_mean_squared_error: 41.5434 - val_r_squared: 0.9395
Epoch 60/250
381/381 [=============] - 2s 6ms/step - loss: 33.6165 - ro
ot_mean_squared_error: 33.6255 - r_squared: 0.9572 - val_loss: 42.1924 - va
l_root_mean_squared_error: 42.1905 - val_r_squared: 0.9378
Epoch 61/250
ot_mean_squared_error: 35.7004 - r_squared: 0.9507 - val_loss: 40.3896 - va
l_root_mean_squared_error: 40.3881 - val_r_squared: 0.9424
Epoch 62/250
ot_mean_squared_error: 33.9187 - r_squared: 0.9564 - val_loss: 39.9938 - va
l_root_mean_squared_error: 39.9899 - val_r_squared: 0.9442
Epoch 63/250
ot_mean_squared_error: 33.7668 - r_squared: 0.9575 - val_loss: 40.7911 - va
l root mean squared error: 40.7911 - val r squared: 0.9408
Epoch 64/250
ot_mean_squared_error: 33.9860 - r_squared: 0.9569 - val_loss: 40.3981 - va
l_root_mean_squared_error: 40.3940 - val_r_squared: 0.9433
Epoch 65/250
ot_mean_squared_error: 32.8930 - r_squared: 0.9601 - val_loss: 39.8095 - va
l_root_mean_squared_error: 39.8103 - val_r_squared: 0.9441
Epoch 66/250
ot_mean_squared_error: 33.1081 - r_squared: 0.9601 - val_loss: 44.5994 - va
l_root_mean_squared_error: 44.5964 - val_r_squared: 0.9325
Epoch 67/250
ot_mean_squared_error: 34.5587 - r_squared: 0.9552 - val_loss: 40.6851 - va
l_root_mean_squared_error: 40.6833 - val_r_squared: 0.9420
Epoch 68/250
```

```
ot_mean_squared_error: 34.0340 - r_squared: 0.9560 - val_loss: 43.0745 - va
l_root_mean_squared_error: 43.0764 - val_r_squared: 0.9342
Epoch 69/250
ot_mean_squared_error: 32.5775 - r_squared: 0.9507 - val_loss: 54.2375 - va
l_root_mean_squared_error: 54.2396 - val_r_squared: 0.8988
Epoch 70/250
ot mean squared error: 32.4876 - r squared: 0.9604 - val loss: 42.3703 - va
l_root_mean_squared_error: 42.3691 - val_r_squared: 0.9385
Epoch 71/250
ot_mean_squared_error: 32.9085 - r_squared: 0.9600 - val_loss: 40.5384 - va
l_root_mean_squared_error: 40.5355 - val_r_squared: 0.9419
Epoch 72/250
ot mean squared error: 32.3683 - r squared: 0.9612 - val loss: 38.2581 - va
l_root_mean_squared_error: 38.2573 - val_r_squared: 0.9490
Epoch 73/250
ot_mean_squared_error: 31.8679 - r_squared: 0.9629 - val_loss: 40.5227 - va
l root mean squared error: 40.5214 - val r squared: 0.9421
Epoch 74/250
ot mean squared error: 32.1038 - r squared: 0.9622 - val loss: 40.2844 - va
l_root_mean_squared_error: 40.2810 - val_r_squared: 0.9440
Epoch 75/250
ot_mean_squared_error: 31.2050 - r_squared: 0.9641 - val_loss: 41.8457 - va
l_root_mean_squared_error: 41.8439 - val_r_squared: 0.9406
Epoch 76/250
ot_mean_squared_error: 34.8711 - r_squared: 0.9541 - val_loss: 39.5788 - va
l_root_mean_squared_error: 39.5731 - val_r_squared: 0.9458
Epoch 77/250
ot_mean_squared_error: 32.6363 - r_squared: 0.9595 - val_loss: 42.1830 - va
l_root_mean_squared_error: 42.1801 - val_r_squared: 0.9382
Epoch 78/250
ot mean squared error: 31.6562 - r squared: 0.9585 - val loss: 39.2746 - va
l_root_mean_squared_error: 39.2719 - val_r_squared: 0.9463
Epoch 79/250
ot mean squared error: 32.3374 - r squared: 0.9605 - val loss: 39.5474 - va
l_root_mean_squared_error: 39.5430 - val_r_squared: 0.9448
Epoch 80/250
ot_mean_squared_error: 32.6288 - r_squared: 0.9600 - val_loss: 38.9193 - va
l_root_mean_squared_error: 38.9163 - val_r_squared: 0.9478
Epoch 81/250
ot_mean_squared_error: 29.9484 - r_squared: 0.9653 - val_loss: 41.3163 - va
l_root_mean_squared_error: 41.3132 - val_r_squared: 0.9410
Epoch 82/250
ot_mean_squared_error: 31.1056 - r_squared: 0.9630 - val_loss: 38.3270 - va
l_root_mean_squared_error: 38.3257 - val_r_squared: 0.9483
Epoch 83/250
```

```
381/381 [==============] - 3s 7ms/step - loss: 30.3951 - ro
ot_mean_squared_error: 30.3600 - r_squared: 0.9649 - val_loss: 39.8612 - va
l_root_mean_squared_error: 39.8578 - val_r_squared: 0.9443
Epoch 84/250
ot_mean_squared_error: 33.5053 - r_squared: 0.9546 - val_loss: 39.9003 - va
l_root_mean_squared_error: 39.8989 - val_r_squared: 0.9449
Epoch 85/250
ot_mean_squared_error: 30.4445 - r_squared: 0.9644 - val_loss: 47.0500 - va
l_root_mean_squared_error: 47.0539 - val_r_squared: 0.9233
Epoch 86/250
ot_mean_squared_error: 31.7378 - r_squared: 0.9619 - val_loss: 45.5997 - va
l_root_mean_squared_error: 45.6002 - val_r_squared: 0.9269
Epoch 87/250
ot_mean_squared_error: 30.4015 - r_squared: 0.9644 - val_loss: 39.6857 - va
l_root_mean_squared_error: 39.6828 - val_r_squared: 0.9445
Epoch 88/250
ot mean squared error: 29.9764 - r squared: 0.9665 - val loss: 39.6969 - va
l_root_mean_squared_error: 39.6928 - val_r_squared: 0.9444
Epoch 89/250
ot_mean_squared_error: 30.4953 - r_squared: 0.9659 - val_loss: 38.7345 - va
l_root_mean_squared_error: 38.7355 - val_r_squared: 0.9474
Epoch 90/250
ot_mean_squared_error: 29.1296 - r_squared: 0.9675 - val_loss: 39.4630 - va
l_root_mean_squared_error: 39.4653 - val_r_squared: 0.9446
Epoch 91/250
ot_mean_squared_error: 29.6908 - r_squared: 0.9665 - val_loss: 38.8153 - va
l_root_mean_squared_error: 38.8158 - val_r_squared: 0.9470
Epoch 92/250
ot mean squared error: 28.9703 - r squared: 0.9686 - val loss: 40.9975 - va
l_root_mean_squared_error: 40.9956 - val_r_squared: 0.9428
Epoch 93/250
ot_mean_squared_error: 29.5893 - r_squared: 0.9650 - val_loss: 38.7324 - va
l root_mean_squared_error: 38.7294 - val_r_squared: 0.9480
Epoch 94/250
ot_mean_squared_error: 30.5481 - r_squared: 0.9649 - val_loss: 39.2932 - va
l_root_mean_squared_error: 39.2917 - val_r_squared: 0.9464
Epoch 95/250
ot_mean_squared_error: 31.8389 - r_squared: 0.9612 - val_loss: 38.1980 - va
l root mean squared error: 38.1980 - val r squared: 0.9481
Epoch 96/250
ot_mean_squared_error: 28.4149 - r_squared: 0.9692 - val_loss: 40.5085 - va
l_root_mean_squared_error: 40.5052 - val_r_squared: 0.9422
Epoch 97/250
ot_mean_squared_error: 29.1376 - r_squared: 0.9678 - val_loss: 38.6005 - va
l_root_mean_squared_error: 38.5995 - val_r_squared: 0.9480
```

```
Epoch 98/250
ot_mean_squared_error: 29.0103 - r_squared: 0.9681 - val_loss: 37.4900 - va
l_root_mean_squared_error: 37.4879 - val_r_squared: 0.9502
Epoch 99/250
ot_mean_squared_error: 28.7756 - r_squared: 0.9686 - val_loss: 38.4652 - va
l_root_mean_squared_error: 38.4637 - val_r_squared: 0.9486
Epoch 100/250
ot_mean_squared_error: 28.3823 - r_squared: 0.9695 - val_loss: 38.3734 - va
l_root_mean_squared_error: 38.3738 - val_r_squared: 0.9476
Epoch 101/250
ot_mean_squared_error: 29.0721 - r_squared: 0.9680 - val_loss: 38.9803 - va
l_root_mean_squared_error: 38.9785 - val_r_squared: 0.9468
Epoch 102/250
ot_mean_squared_error: 28.3807 - r_squared: 0.9694 - val_loss: 38.6647 - va
l_root_mean_squared_error: 38.6625 - val_r_squared: 0.9483
Epoch 103/250
ot_mean_squared_error: 29.4834 - r_squared: 0.9670 - val_loss: 38.4313 - va
l_root_mean_squared_error: 38.4290 - val_r_squared: 0.9487
Epoch 104/250
ot_mean_squared_error: 28.5036 - r_squared: 0.9700 - val_loss: 38.5057 - va
l_root_mean_squared_error: 38.5039 - val_r_squared: 0.9478
Epoch 105/250
ot_mean_squared_error: 29.0849 - r_squared: 0.9684 - val_loss: 39.0122 - va
l_root_mean_squared_error: 39.0090 - val_r_squared: 0.9468
Epoch 106/250
ot_mean_squared_error: 28.2130 - r_squared: 0.9703 - val_loss: 38.3815 - va
l_root_mean_squared_error: 38.3789 - val_r_squared: 0.9479
Epoch 107/250
ot_mean_squared_error: 28.2125 - r_squared: 0.9684 - val_loss: 39.3268 - va
l_root_mean_squared_error: 39.3299 - val_r_squared: 0.9454
Epoch 108/250
ot_mean_squared_error: 27.6098 - r_squared: 0.9715 - val_loss: 38.8432 - va
l_root_mean_squared_error: 38.8410 - val_r_squared: 0.9476
Epoch 109/250
ot_mean_squared_error: 28.0098 - r_squared: 0.9710 - val_loss: 38.5561 - va
l_root_mean_squared_error: 38.5561 - val_r_squared: 0.9473
Epoch 110/250
ot_mean_squared_error: 27.3136 - r_squared: 0.9718 - val_loss: 39.0399 - va
l_root_mean_squared_error: 39.0399 - val_r_squared: 0.9464
Epoch 111/250
ot_mean_squared_error: 29.5203 - r_squared: 0.9660 - val_loss: 38.4792 - va
l_root_mean_squared_error: 38.4762 - val_r_squared: 0.9485
Epoch 112/250
ot_mean_squared_error: 27.8633 - r_squared: 0.9707 - val_loss: 40.3941 - va
```

```
l_root_mean_squared_error: 40.3905 - val_r_squared: 0.9437
Epoch 113/250
ot_mean_squared_error: 28.0627 - r_squared: 0.9704 - val_loss: 38.2638 - va
l_root_mean_squared_error: 38.2609 - val_r_squared: 0.9480
Epoch 114/250
ot_mean_squared_error: 27.9774 - r_squared: 0.9703 - val_loss: 38.2374 - va
l root mean squared error: 38.2368 - val r squared: 0.9481
Epoch 115/250
ot_mean_squared_error: 27.3312 - r_squared: 0.9724 - val_loss: 40.4763 - va
l root mean squared error: 40.4738 - val r squared: 0.9425
Epoch 116/250
ot_mean_squared_error: 26.9989 - r_squared: 0.9727 - val_loss: 38.8493 - va
l root mean squared error: 38.8488 - val r squared: 0.9467
Epoch 117/250
ot_mean_squared_error: 25.9579 - r_squared: 0.9746 - val_loss: 38.6427 - va
l_root_mean_squared_error: 38.6394 - val_r_squared: 0.9478
Epoch 118/250
ot_mean_squared_error: 27.7735 - r_squared: 0.9706 - val_loss: 38.7101 - va
l_root_mean_squared_error: 38.7094 - val_r_squared: 0.9477
Epoch 119/250
ot_mean_squared_error: 26.9322 - r_squared: 0.9733 - val_loss: 37.4942 - va
l_root_mean_squared_error: 37.4914 - val_r_squared: 0.9506
Epoch 120/250
ot_mean_squared_error: 27.1867 - r_squared: 0.9724 - val_loss: 38.3803 - va
l_root_mean_squared_error: 38.3771 - val_r_squared: 0.9481
Epoch 121/250
ot_mean_squared_error: 26.9530 - r_squared: 0.9727 - val_loss: 39.5065 - va
l_root_mean_squared_error: 39.5031 - val_r_squared: 0.9459
Epoch 122/250
ot_mean_squared_error: 27.7393 - r_squared: 0.9707 - val_loss: 41.0234 - va
l root mean squared error: 41.0236 - val r squared: 0.9403
Epoch 123/250
ot_mean_squared_error: 26.1326 - r_squared: 0.9739 - val_loss: 38.7998 - va
l_root_mean_squared_error: 38.7988 - val_r_squared: 0.9465
Epoch 124/250
ot_mean_squared_error: 26.0702 - r_squared: 0.9739 - val_loss: 40.0770 - va
l_root_mean_squared_error: 40.0810 - val_r_squared: 0.9428
Epoch 125/250
ot_mean_squared_error: 26.1822 - r_squared: 0.9743 - val_loss: 40.1078 - va
l_root_mean_squared_error: 40.1056 - val_r_squared: 0.9431
Epoch 126/250
ot_mean_squared_error: 26.5312 - r_squared: 0.9731 - val_loss: 39.2453 - va
l_root_mean_squared_error: 39.2439 - val_r_squared: 0.9453
Epoch 127/250
```

```
ot_mean_squared_error: 26.3512 - r_squared: 0.9738 - val_loss: 39.9184 - va
l_root_mean_squared_error: 39.9177 - val_r_squared: 0.9445
Epoch 128/250
ot_mean_squared_error: 26.1499 - r_squared: 0.9748 - val_loss: 38.8052 - va
l_root_mean_squared_error: 38.8069 - val_r_squared: 0.9467
Epoch 129/250
ot mean squared error: 26.0774 - r squared: 0.9740 - val loss: 37.6937 - va
l_root_mean_squared_error: 37.6913 - val_r_squared: 0.9504
Epoch 130/250
ot_mean_squared_error: 26.4272 - r_squared: 0.9746 - val_loss: 39.3111 - va
l_root_mean_squared_error: 39.3120 - val_r_squared: 0.9452
Epoch 131/250
ot mean squared error: 27.7973 - r squared: 0.9706 - val loss: 39.2076 - va
l root mean squared error: 39.2065 - val r squared: 0.9465
Epoch 132/250
ot_mean_squared_error: 26.2391 - r_squared: 0.9744 - val_loss: 40.6231 - va
l root mean squared error: 40.6193 - val r squared: 0.9425
Epoch 133/250
ot mean squared error: 25.6697 - r squared: 0.9751 - val loss: 38.4047 - va
l_root_mean_squared_error: 38.4020 - val_r_squared: 0.9476
Epoch 134/250
ot_mean_squared_error: 26.1367 - r_squared: 0.9740 - val_loss: 38.7734 - va
l_root_mean_squared_error: 38.7743 - val_r_squared: 0.9467
Epoch 135/250
ot_mean_squared_error: 25.5833 - r_squared: 0.9755 - val_loss: 38.2570 - va
l_root_mean_squared_error: 38.2576 - val_r_squared: 0.9478
Epoch 136/250
ot_mean_squared_error: 25.1050 - r_squared: 0.9761 - val_loss: 43.5490 - va
l_root_mean_squared_error: 43.5485 - val_r_squared: 0.9332
Epoch 137/250
ot mean squared error: 27.0306 - r squared: 0.9721 - val loss: 39.3729 - va
l_root_mean_squared_error: 39.3722 - val_r_squared: 0.9453
Epoch 138/250
ot mean squared error: 25.7394 - r squared: 0.9749 - val loss: 39.9302 - va
l root mean squared error: 39.9311 - val r squared: 0.9434
Epoch 139/250
ot_mean_squared_error: 24.8888 - r_squared: 0.9663 - val_loss: 38.8441 - va
l_root_mean_squared_error: 38.8488 - val_r_squared: 0.9470
Epoch 140/250
ot_mean_squared_error: 24.6970 - r_squared: 0.9771 - val_loss: 38.4553 - va
l_root_mean_squared_error: 38.4537 - val_r_squared: 0.9478
Epoch 141/250
ot_mean_squared_error: 25.3413 - r_squared: 0.9760 - val_loss: 38.4062 - va
l_root_mean_squared_error: 38.4030 - val_r_squared: 0.9483
Epoch 142/250
```

```
ot_mean_squared_error: 24.9849 - r_squared: 0.9766 - val_loss: 42.2831 - va
l_root_mean_squared_error: 42.2794 - val_r_squared: 0.9377
Epoch 143/250
ot_mean_squared_error: 24.6285 - r_squared: 0.9768 - val_loss: 38.8676 - va
l_root_mean_squared_error: 38.8702 - val_r_squared: 0.9462
Epoch 144/250
ot_mean_squared_error: 24.8118 - r_squared: 0.9759 - val_loss: 38.3849 - va
l_root_mean_squared_error: 38.3808 - val_r_squared: 0.9479
Epoch 145/250
ot_mean_squared_error: 24.5525 - r_squared: 0.9737 - val_loss: 40.3372 - va
l_root_mean_squared_error: 40.3332 - val_r_squared: 0.9429
Epoch 146/250
ot_mean_squared_error: 24.3511 - r_squared: 0.9781 - val_loss: 38.0761 - va
l_root_mean_squared_error: 38.0730 - val_r_squared: 0.9495
Epoch 147/250
ot mean squared error: 24.2461 - r squared: 0.9782 - val loss: 39.8744 - va
l_root_mean_squared_error: 39.8738 - val_r_squared: 0.9438
Epoch 148/250
ot_mean_squared_error: 24.8536 - r_squared: 0.9766 - val_loss: 38.3886 - va
l_root_mean_squared_error: 38.3889 - val_r_squared: 0.9474
Epoch 149/250
ot_mean_squared_error: 25.3624 - r_squared: 0.9755 - val_loss: 38.4154 - va
l_root_mean_squared_error: 38.4145 - val_r_squared: 0.9480
Epoch 150/250
ot_mean_squared_error: 24.1242 - r_squared: 0.9781 - val_loss: 40.5512 - va
l_root_mean_squared_error: 40.5488 - val_r_squared: 0.9420
Epoch 151/250
ot mean squared error: 24.9543 - r squared: 0.9767 - val loss: 40.8498 - va
l_root_mean_squared_error: 40.8475 - val_r_squared: 0.9425
Epoch 152/250
ot_mean_squared_error: 24.3825 - r_squared: 0.9776 - val_loss: 39.4008 - va
l root_mean_squared_error: 39.3963 - val_r_squared: 0.9451
Epoch 153/250
ot_mean_squared_error: 24.3920 - r_squared: 0.9776 - val_loss: 38.9445 - va
l_root_mean_squared_error: 38.9412 - val_r_squared: 0.9460
Epoch 154/250
ot_mean_squared_error: 24.4378 - r_squared: 0.9776 - val_loss: 39.4679 - va
l root mean squared error: 39.4654 - val r squared: 0.9458
Epoch 155/250
ot_mean_squared_error: 24.1713 - r_squared: 0.9778 - val_loss: 40.6273 - va
l_root_mean_squared_error: 40.6241 - val_r_squared: 0.9436
Epoch 156/250
ot_mean_squared_error: 23.2665 - r_squared: 0.9797 - val_loss: 38.3722 - va
l_root_mean_squared_error: 38.3698 - val_r_squared: 0.9479
```

```
Epoch 157/250
ot_mean_squared_error: 24.7485 - r_squared: 0.9765 - val_loss: 38.1340 - va
l_root_mean_squared_error: 38.1317 - val_r_squared: 0.9492
Epoch 158/250
ot_mean_squared_error: 25.7825 - r_squared: 0.9742 - val_loss: 39.2612 - va
l_root_mean_squared_error: 39.2587 - val_r_squared: 0.9457
Epoch 159/250
ot_mean_squared_error: 23.4130 - r_squared: 0.9789 - val_loss: 37.9321 - va
l_root_mean_squared_error: 37.9296 - val_r_squared: 0.9495
Epoch 160/250
ot_mean_squared_error: 23.4702 - r_squared: 0.9794 - val_loss: 48.1280 - va
l_root_mean_squared_error: 48.1256 - val_r_squared: 0.9184
Epoch 161/250
ot_mean_squared_error: 23.8880 - r_squared: 0.9778 - val_loss: 40.0122 - va
l_root_mean_squared_error: 40.0128 - val_r_squared: 0.9435
Epoch 162/250
ot_mean_squared_error: 22.8212 - r_squared: 0.9804 - val_loss: 39.7235 - va
l_root_mean_squared_error: 39.7211 - val_r_squared: 0.9444
Epoch 163/250
ot_mean_squared_error: 25.0554 - r_squared: 0.9755 - val_loss: 38.9182 - va
l_root_mean_squared_error: 38.9172 - val_r_squared: 0.9469
Epoch 164/250
ot_mean_squared_error: 23.7281 - r_squared: 0.9786 - val_loss: 38.4058 - va
l_root_mean_squared_error: 38.4030 - val_r_squared: 0.9476
Epoch 165/250
ot_mean_squared_error: 22.4253 - r_squared: 0.9808 - val_loss: 40.2821 - va
l_root_mean_squared_error: 40.2812 - val_r_squared: 0.9424
Epoch 166/250
ot_mean_squared_error: 22.9977 - r_squared: 0.9796 - val_loss: 40.8317 - va
l_root_mean_squared_error: 40.8276 - val_r_squared: 0.9432
Epoch 167/250
ot_mean_squared_error: 24.5137 - r_squared: 0.9767 - val_loss: 42.5390 - va
l_root_mean_squared_error: 42.5356 - val_r_squared: 0.9363
Epoch 168/250
ot_mean_squared_error: 26.5933 - r_squared: 0.9724 - val_loss: 41.4335 - va
l_root_mean_squared_error: 41.4361 - val_r_squared: 0.9389
Epoch 169/250
ot_mean_squared_error: 22.7831 - r_squared: 0.9800 - val_loss: 38.5311 - va
l_root_mean_squared_error: 38.5299 - val_r_squared: 0.9481
Epoch 170/250
ot_mean_squared_error: 23.0024 - r_squared: 0.9800 - val_loss: 39.4790 - va
l_root_mean_squared_error: 39.4781 - val_r_squared: 0.9449
Epoch 171/250
ot_mean_squared_error: 22.7514 - r_squared: 0.9809 - val_loss: 43.2788 - va
```

```
l_root_mean_squared_error: 43.2774 - val_r_squared: 0.9357
Epoch 172/250
ot_mean_squared_error: 23.9589 - r_squared: 0.9787 - val_loss: 42.8817 - va
l_root_mean_squared_error: 42.8843 - val_r_squared: 0.9358
Epoch 173/250
ot_mean_squared_error: 25.1188 - r_squared: 0.9754 - val_loss: 39.0178 - va
l root mean squared error: 39.0154 - val r squared: 0.9472
Epoch 174/250
ot_mean_squared_error: 22.5227 - r_squared: 0.9803 - val_loss: 41.6808 - va
l root mean squared error: 41.6777 - val r squared: 0.9405
Epoch 175/250
ot_mean_squared_error: 21.8677 - r_squared: 0.9825 - val_loss: 39.9376 - va
l root mean squared error: 39.9370 - val r squared: 0.9440
Epoch 176/250
ot_mean_squared_error: 23.0844 - r_squared: 0.9797 - val_loss: 38.7799 - va
l_root_mean_squared_error: 38.7788 - val_r_squared: 0.9468
Epoch 177/250
ot_mean_squared_error: 22.5248 - r_squared: 0.9809 - val_loss: 39.3694 - va
l_root_mean_squared_error: 39.3694 - val_r_squared: 0.9450
Epoch 178/250
ot_mean_squared_error: 21.9669 - r_squared: 0.9809 - val_loss: 38.7935 - va
l_root_mean_squared_error: 38.7907 - val_r_squared: 0.9466
Epoch 179/250
ot_mean_squared_error: 22.0920 - r_squared: 0.9803 - val_loss: 38.5758 - va
l_root_mean_squared_error: 38.5743 - val_r_squared: 0.9474
Epoch 180/250
ot_mean_squared_error: 21.7564 - r_squared: 0.9819 - val_loss: 38.3940 - va
l_root_mean_squared_error: 38.3916 - val_r_squared: 0.9482
Epoch 181/250
ot_mean_squared_error: 21.6566 - r_squared: 0.9820 - val_loss: 38.3012 - va
l root mean squared error: 38.3020 - val r squared: 0.9482
Epoch 182/250
ot_mean_squared_error: 24.1559 - r_squared: 0.9785 - val_loss: 41.8988 - va
l_root_mean_squared_error: 41.8978 - val_r_squared: 0.9388
Epoch 183/250
ot_mean_squared_error: 22.5738 - r_squared: 0.9811 - val_loss: 40.4180 - va
l_root_mean_squared_error: 40.4137 - val_r_squared: 0.9432
Epoch 184/250
ot_mean_squared_error: 21.9884 - r_squared: 0.9812 - val_loss: 39.0384 - va
l_root_mean_squared_error: 39.0360 - val_r_squared: 0.9461
Epoch 185/250
ot_mean_squared_error: 21.5845 - r_squared: 0.9827 - val_loss: 39.7184 - va
l_root_mean_squared_error: 39.7216 - val_r_squared: 0.9433
Epoch 186/250
```

```
ot_mean_squared_error: 22.2493 - r_squared: 0.9811 - val_loss: 38.4083 - va
l_root_mean_squared_error: 38.4066 - val_r_squared: 0.9479
Epoch 187/250
ot_mean_squared_error: 22.3076 - r_squared: 0.9810 - val_loss: 38.5344 - va
l_root_mean_squared_error: 38.5359 - val_r_squared: 0.9476
Epoch 188/250
ot mean squared error: 21.2024 - r squared: 0.9831 - val loss: 40.1799 - va
l_root_mean_squared_error: 40.1776 - val_r_squared: 0.9432
Epoch 189/250
ot_mean_squared_error: 22.9684 - r_squared: 0.9786 - val_loss: 38.8960 - va
l_root_mean_squared_error: 38.8951 - val_r_squared: 0.9469
Epoch 190/250
ot mean squared error: 22.1930 - r squared: 0.9817 - val loss: 39.7517 - va
l root mean squared error: 39.7496 - val r squared: 0.9451
Epoch 191/250
ot_mean_squared_error: 23.8300 - r_squared: 0.9767 - val_loss: 39.0366 - va
l root mean squared error: 39.0375 - val r squared: 0.9457
Epoch 192/250
ot mean squared error: 20.5702 - r squared: 0.9836 - val loss: 39.1910 - va
l_root_mean_squared_error: 39.1890 - val_r_squared: 0.9458
Epoch 193/250
ot_mean_squared_error: 20.6686 - r_squared: 0.9836 - val_loss: 39.4755 - va
l_root_mean_squared_error: 39.4739 - val_r_squared: 0.9459
Epoch 194/250
ot_mean_squared_error: 21.8756 - r_squared: 0.9820 - val_loss: 39.3391 - va
l_root_mean_squared_error: 39.3401 - val_r_squared: 0.9454
Epoch 195/250
ot_mean_squared_error: 21.9245 - r_squared: 0.9815 - val_loss: 39.6218 - va
l_root_mean_squared_error: 39.6206 - val_r_squared: 0.9442
Epoch 196/250
ot mean squared error: 20.9865 - r squared: 0.9835 - val loss: 38.2760 - va
l_root_mean_squared_error: 38.2758 - val_r_squared: 0.9477
Epoch 197/250
ot mean squared error: 20.8157 - r squared: 0.9837 - val loss: 39.8558 - va
l_root_mean_squared_error: 39.8526 - val_r_squared: 0.9439
Epoch 198/250
ot_mean_squared_error: 21.2334 - r_squared: 0.9828 - val_loss: 39.8016 - va
l_root_mean_squared_error: 39.8025 - val_r_squared: 0.9438
Epoch 199/250
ot_mean_squared_error: 21.3813 - r_squared: 0.9828 - val_loss: 39.1838 - va
l_root_mean_squared_error: 39.1829 - val_r_squared: 0.9459
Epoch 200/250
ot_mean_squared_error: 21.8252 - r_squared: 0.9798 - val_loss: 38.2691 - va
l_root_mean_squared_error: 38.2678 - val_r_squared: 0.9488
Epoch 201/250
```

```
ot_mean_squared_error: 20.7030 - r_squared: 0.9804 - val_loss: 39.5560 - va
l_root_mean_squared_error: 39.5563 - val_r_squared: 0.9444
Epoch 202/250
ot_mean_squared_error: 20.3379 - r_squared: 0.9842 - val_loss: 39.7008 - va
l_root_mean_squared_error: 39.6963 - val_r_squared: 0.9446
Epoch 203/250
ot_mean_squared_error: 20.7300 - r_squared: 0.9832 - val_loss: 39.0536 - va
l_root_mean_squared_error: 39.0545 - val_r_squared: 0.9455
Epoch 204/250
ot_mean_squared_error: 20.5815 - r_squared: 0.9841 - val_loss: 40.5370 - va
l_root_mean_squared_error: 40.5359 - val_r_squared: 0.9430
Epoch 205/250
ot_mean_squared_error: 20.5205 - r_squared: 0.9838 - val_loss: 39.0971 - va
l_root_mean_squared_error: 39.0962 - val_r_squared: 0.9462
Epoch 206/250
ot mean squared error: 20.7752 - r squared: 0.9834 - val loss: 39.2555 - va
l_root_mean_squared_error: 39.2549 - val_r_squared: 0.9457
Epoch 207/250
ot_mean_squared_error: 22.0626 - r_squared: 0.9811 - val_loss: 38.8203 - va
l_root_mean_squared_error: 38.8199 - val_r_squared: 0.9462
Epoch 208/250
ot_mean_squared_error: 20.1048 - r_squared: 0.9848 - val_loss: 38.3347 - va
l_root_mean_squared_error: 38.3330 - val_r_squared: 0.9482
Epoch 209/250
ot_mean_squared_error: 20.6990 - r_squared: 0.9840 - val_loss: 40.2442 - va
l_root_mean_squared_error: 40.2423 - val_r_squared: 0.9429
Epoch 210/250
ot mean squared error: 21.0000 - r squared: 0.9834 - val loss: 38.9402 - va
l_root_mean_squared_error: 38.9385 - val_r_squared: 0.9472
Epoch 211/250
ot_mean_squared_error: 21.1386 - r_squared: 0.9831 - val_loss: 40.5452 - va
l root_mean_squared_error: 40.5420 - val_r_squared: 0.9420
Epoch 212/250
ot_mean_squared_error: 20.3571 - r_squared: 0.9847 - val_loss: 39.2893 - va
l_root_mean_squared_error: 39.2893 - val_r_squared: 0.9451
Epoch 213/250
ot_mean_squared_error: 19.6622 - r_squared: 0.9856 - val_loss: 40.2628 - va
l root mean squared error: 40.2602 - val r squared: 0.9427
Epoch 214/250
ot_mean_squared_error: 22.7693 - r_squared: 0.9796 - val_loss: 38.8932 - va
l_root_mean_squared_error: 38.8949 - val_r_squared: 0.9463
Epoch 215/250
ot_mean_squared_error: 19.4918 - r_squared: 0.9857 - val_loss: 41.0092 - va
l_root_mean_squared_error: 41.0069 - val_r_squared: 0.9416
```

```
Epoch 216/250
ot_mean_squared_error: 19.7914 - r_squared: 0.9850 - val_loss: 39.0146 - va
l_root_mean_squared_error: 39.0133 - val_r_squared: 0.9467
Epoch 217/250
ot_mean_squared_error: 20.3183 - r_squared: 0.9845 - val_loss: 39.6790 - va
l_root_mean_squared_error: 39.6759 - val_r_squared: 0.9452
Epoch 218/250
ot_mean_squared_error: 19.2745 - r_squared: 0.9862 - val_loss: 39.5908 - va
l_root_mean_squared_error: 39.5903 - val_r_squared: 0.9452
Epoch 219/250
ot_mean_squared_error: 19.0271 - r_squared: 0.9860 - val_loss: 38.7193 - va
l_root_mean_squared_error: 38.7178 - val_r_squared: 0.9474
Epoch 220/250
ot_mean_squared_error: 19.1725 - r_squared: 0.9859 - val_loss: 38.5881 - va
l_root_mean_squared_error: 38.5886 - val_r_squared: 0.9476
Epoch 221/250
ot_mean_squared_error: 19.7638 - r_squared: 0.9850 - val_loss: 40.0021 - va
l_root_mean_squared_error: 40.0008 - val_r_squared: 0.9439
Epoch 222/250
ot_mean_squared_error: 20.1457 - r_squared: 0.9845 - val_loss: 39.7366 - va
l_root_mean_squared_error: 39.7380 - val_r_squared: 0.9452
Epoch 223/250
ot_mean_squared_error: 20.2360 - r_squared: 0.9850 - val_loss: 40.2959 - va
l_root_mean_squared_error: 40.2967 - val_r_squared: 0.9427
Epoch 224/250
ot_mean_squared_error: 19.5425 - r_squared: 0.9854 - val_loss: 39.8832 - va
l_root_mean_squared_error: 39.8836 - val_r_squared: 0.9439
Epoch 225/250
ot_mean_squared_error: 19.2730 - r_squared: 0.9857 - val_loss: 39.5363 - va
l_root_mean_squared_error: 39.5376 - val_r_squared: 0.9448
Epoch 226/250
ot_mean_squared_error: 19.3379 - r_squared: 0.9860 - val_loss: 39.6969 - va
l_root_mean_squared_error: 39.6945 - val_r_squared: 0.9440
Epoch 227/250
ot_mean_squared_error: 20.0956 - r_squared: 0.9849 - val_loss: 39.7355 - va
l_root_mean_squared_error: 39.7350 - val_r_squared: 0.9454
Epoch 228/250
ot_mean_squared_error: 19.5947 - r_squared: 0.9859 - val_loss: 40.8299 - va
l_root_mean_squared_error: 40.8284 - val_r_squared: 0.9416
Epoch 229/250
ot_mean_squared_error: 19.1671 - r_squared: 0.9865 - val_loss: 39.0305 - va
l_root_mean_squared_error: 39.0300 - val_r_squared: 0.9468
Epoch 230/250
ot_mean_squared_error: 21.9214 - r_squared: 0.9817 - val_loss: 39.5041 - va
```

```
l_root_mean_squared_error: 39.5012 - val_r_squared: 0.9451
Epoch 231/250
ot_mean_squared_error: 19.2194 - r_squared: 0.9858 - val_loss: 41.2242 - va
l_root_mean_squared_error: 41.2235 - val_r_squared: 0.9411
Epoch 232/250
ot_mean_squared_error: 19.0379 - r_squared: 0.9863 - val_loss: 38.5035 - va
l root mean squared error: 38.5036 - val r squared: 0.9479
Epoch 233/250
ot_mean_squared_error: 18.0910 - r_squared: 0.9876 - val_loss: 38.6619 - va
l_root_mean_squared_error: 38.6634 - val_r_squared: 0.9470
Epoch 234/250
ot_mean_squared_error: 19.6920 - r_squared: 0.9845 - val_loss: 38.2475 - va
l root mean squared error: 38.2471 - val r squared: 0.9487
Epoch 235/250
ot_mean_squared_error: 19.6235 - r_squared: 0.9856 - val_loss: 38.4250 - va
l_root_mean_squared_error: 38.4252 - val_r_squared: 0.9480
Epoch 236/250
ot_mean_squared_error: 19.2258 - r_squared: 0.9854 - val_loss: 38.9671 - va
l_root_mean_squared_error: 38.9657 - val_r_squared: 0.9460
Epoch 237/250
ot_mean_squared_error: 18.2573 - r_squared: 0.9869 - val_loss: 39.0705 - va
l_root_mean_squared_error: 39.0699 - val_r_squared: 0.9463
Epoch 238/250
ot_mean_squared_error: 19.3608 - r_squared: 0.9856 - val_loss: 38.4854 - va
l_root_mean_squared_error: 38.4848 - val_r_squared: 0.9475
Epoch 239/250
ot_mean_squared_error: 18.4188 - r_squared: 0.9868 - val_loss: 39.0728 - va
l_root_mean_squared_error: 39.0734 - val_r_squared: 0.9464
Epoch 240/250
ot_mean_squared_error: 19.3294 - r_squared: 0.9857 - val_loss: 39.0848 - va
l root mean squared error: 39.0839 - val r squared: 0.9459
Epoch 241/250
ot_mean_squared_error: 18.7534 - r_squared: 0.9857 - val_loss: 38.9600 - va
l_root_mean_squared_error: 38.9612 - val_r_squared: 0.9463
Epoch 242/250
ot_mean_squared_error: 19.4017 - r_squared: 0.9854 - val_loss: 39.8472 - va
l_root_mean_squared_error: 39.8467 - val_r_squared: 0.9442
Epoch 243/250
ot_mean_squared_error: 18.9097 - r_squared: 0.9863 - val_loss: 39.1999 - va
l_root_mean_squared_error: 39.1985 - val_r_squared: 0.9458
Epoch 244/250
ot_mean_squared_error: 18.8272 - r_squared: 0.9867 - val_loss: 38.8709 - va
l_root_mean_squared_error: 38.8700 - val_r_squared: 0.9466
Epoch 245/250
```

```
ot_mean_squared_error: 18.3625 - r_squared: 0.9870 - val_loss: 40.2643 - va
       l_root_mean_squared_error: 40.2625 - val_r_squared: 0.9433
      Epoch 246/250
       ot_mean_squared_error: 19.5902 - r_squared: 0.9852 - val_loss: 38.9944 - va
       l_root_mean_squared_error: 38.9933 - val_r_squared: 0.9459
       Epoch 247/250
       ot mean squared error: 18.8751 - r squared: 0.9864 - val loss: 39.6437 - va
       l root mean squared error: 39.6416 - val r squared: 0.9444
      Epoch 248/250
       ot mean squared error: 18.3599 - r squared: 0.9870 - val loss: 39.0359 - va
       l_root_mean_squared_error: 39.0356 - val_r_squared: 0.9464
      Epoch 249/250
       ot mean squared error: 17.9994 - r squared: 0.9873 - val loss: 39.2210 - va
       l root mean squared error: 39.2189 - val r squared: 0.9451
      Epoch 250/250
      ot_mean_squared_error: 20.4082 - r_squared: 0.9837 - val_loss: 38.9246 - va
       l root mean squared error: 38.9254 - val r squared: 0.9467
In [35]: # Predictions on Test Data
       test_predictions = model_7_layer.predict(X_test)
       test r2 score = r2 score(y test, test predictions)
       print("7 Layer ANN, Test R2 Score:", test_r2_score)
       163/163 [========== ] - 0s 2ms/step
       7 Layer ANN, Test R2 Score: 0.9510664399181744
```

52 of 52