

MATRIX TRACE

Definition

The trace of a square real matrix is the sum of its diagonal entries.

Notation

We denote the function which associates a matrix with its trace by tr: $\mathbf{R}^{n\times n}\to\mathbf{R}$. The trace of $A\in\mathbf{R}^{n\times n}$ is

$$\operatorname{tr} A = \sum_{n} i = 1^{n} A_{n} ii.$$

Properties

Proposition 1. The trace is a linear function on the vector space of $n \times n$ real matrices.

Proof. Let $A, B \in \mathbf{R}Matnn$ and $\alpha, \beta \in \mathbf{R}$. Define $C = \alpha A + \beta B$. Then $C_{ii} = \alpha A_{ii} + \beta B_{ii}$. So

$$\begin{split} \operatorname{tr} C &= \sum _i = 1^n C_i i = \sum _i = 1^n \alpha A_i i + \beta B_i i \\ &= \alpha \sum _i = 1^n A_i i + \beta \sum _i = 1^n B_i i \\ &= \alpha \operatorname{tr} A + \beta \operatorname{tr} B. \end{split}$$

Proposition 2. Let $A, B \in \mathbb{R}^{n \times n}$. Then

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$
.

In other words, "matrices commute under the trace operator."

Proposition 3. Let $A \in \mathbb{R}^{n \times n}$. Then $\operatorname{tr} A = \operatorname{tr} A^{\top}$.

