西安电子科技大学

考试时间 120 分钟

试 题

题号	_	11	Ξ.	四	五	六	七	八	总分
分数									

- 1. 考试形式: 闭卷回 开卷口; 2. 本试卷共八道大题, 满分 100 分;
- 3. 考试日期: 2023 年 6 月 12 日; (答题内容请写在装订线外)

一、单项选择题(每小题 4 分, 共 20 分)

- 1. 设 $A \neq m \times n$ 阶矩阵, $B = A^T A$,且A 的秩R(A) = n,则有()。
- A. 矩阵A 可逆
- B. B 是正定矩阵
- C. B 是半正定矩阵
- D. Ax = 0 可能有非零解
- 2. 设 4 阶方阵 $A = (2A_1, 3A_2, 4A_3, A_4)$, $B = (A_1, A_2, A_3, A_5)$, 其中 A_i 均为 4 维列向量 $(i = 1, \dots, 5)$,若|A| = 4, |B| = 1, 则|A B| = ()。
- A. -5
- B. 3
- C. 4
- D. 8
- 3. 设A为n阶方阵,则下列说法中正确的是()
- A. 若 A 可对角化,则 A 为实对称阵
- B. 若A可对角化,则A的特征向量两两正交
- C. 若 A 可对角化,则 A 必有 n 个不同特征值
- D. 若A可对角化,则A有n个线性无关的特征向量
- 4. 已知向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关,则 ()。
- A. α_4 一定可以由 α_1 , α_2 , α_3 线性表示
- B. α_3 一定可以由 α_1 , α_2 线性表示
- C. α_1 一定可以由 α_2 , α_3 线性表示
- D. α_2 一定可以由 α_1 , α_3 线性表示
- A. $|\lambda E A| = |\lambda E B|$, E 为单位矩阵
- B. A 与 B 具有相同的特征值与特征向量
- C. 若A可逆,则B可逆,且 A^{-1} 与 B^{-1} 相似
- **D.** R(A) = R(B)

二、填空题(每小题 4 分, 共 20 分)

1. 若 n 阶方阵 A 满足 $A^2 - 2A - 3E = 0$,则 $(A + 5E)^{-1} =$

- 3. 若 $V = \{ \boldsymbol{x} \mid \boldsymbol{x} = (x_1, x_2, x_3)^T \in \boldsymbol{R}^3 \text{ 且 } x_1 + x_2 + x_3 = a \}$ 是向量空间,则 $a = \underline{\hspace{1cm}}$ 。
- 4. 设 3 阶矩阵 A 的伴随矩阵为 A^* ,且 $|A| = \frac{1}{2}$,则 $|(3A)^{-1} 2A^*| = \underline{\hspace{1cm}}$
- 5. 设 3 阶矩阵 A 的特征值为 2, 1, -2, $B = A^2 A + E$, 则 $|B| = _____$ 。
- 三、(10分)已知行列式的生成方式如下:

$$D_{2} = \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix}, D_{3} = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix}, D_{4} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{vmatrix}, \dots$$

写出 D_n 并计算其值。

四、(10 分)设 4 阶矩阵 A 满足 $A^{-1}BA = A^{-1}B + 6E$,其伴随矩阵 $A^* = diag\{1,1,1,8\}$,求矩阵 B。

五、(12 分) 已知向量组 $\alpha_1 = (1,0,0,3)^T$, $\alpha_2 = (1,1,-1,2)^T$, $\alpha_3 = (1,2,a-3,1)^T$, $\alpha_4 = (1,2,-2,a)^T$, $\beta = (0,1,b,-1)^T$,问 α , β 为何值时,

- 1. β 可以由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表示且表示法唯一;
- 2. β 可以由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表示且表示法不唯一,写出所有的表示方法;
- 3. β 不可以由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表示。

六、(15 分)设二次型 $f(x_1,x_2,x_3) = 5x_1^2 + 5x_2^2 + kx_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为 2,

- 1. 求 k 及二次型矩阵的特征值;
- 2. 利用正交变换法化二次型 $f(x_1,x_2,x_3)$ 为标准型,写出所用正交变换并指明 $f(x_1,x_2,x_3)=1$ 表示何种二次曲面。

七、证明题(7分,注意:平行班与各类实验班题目不同,不要选错)

- 1. (平行班必做) 如果 n 阶矩阵 A 满足 $A^2 A = \mathbf{O}$,证明 $R(A \mathbf{E}) + R(A) = n$,其中 \mathbf{E} 是单位矩阵,R 表示矩阵的秩。
- 2. (实验班必做)设 α , β 均为非零实三维单位列向量,且 $\alpha^T\beta=0$,证明矩阵 $A=\alpha\alpha^T+\beta\beta^T$ 相似于对角矩阵 $\Lambda=diag\{1,1,0\}$ 。

八、 $(6\, \mathbf{f})$ 某地有一个煤矿、一座发电厂和一条铁路,经过核算成本:每生产 $1\, \mathrm{f}$ 万元 的煤,需要消耗 $0.25\, \mathrm{f}$ 万元的电,为了把这 $1\, \mathrm{f}$ 万元的煤运出去,需要 $0.15\, \mathrm{f}$ 万元的运输费,每生产 $1\, \mathrm{f}$ 万元的电需要 $0.65\, \mathrm{f}$ 万元的煤做燃料,为了运行电厂设备,需要消耗 $0.05\, \mathrm{f}$ 万元的电,还需要 $0.05\, \mathrm{f}$ 万元运输费,作为铁路局,每提供 $1\, \mathrm{f}$ 万元的运输,需要 $0.55\, \mathrm{f}$ 万元的煤,辅助设备要消耗 $0.1\, \mathrm{f}$ 万元的电,煤矿、电厂和铁路局相互消耗关系矩阵 \mathbf{Q} 如下:

煤矿 电厂 铁路局
煤
$$\begin{pmatrix} 0 & 0.65 & 0.55 \\ 0.25 & 0.05 & 0.1 \\ 0.15 & 0.05 & 0 \end{pmatrix}$$

现在煤矿接到外地 5 万元的订货,电厂有 10 万元的外地需求,问煤矿(产能设为 x_1)、电厂(产能设为 x_2)与铁路局(产能设为 x_3)各生产多少才能满足外地的需求? (建立模型,不需要精确求解,用字母表示最终结果即可)