Geometric Modeling

Shape Deformation

Last Lecture

Mesh Analysis

Types of meshes

irregular

adaptive

Shape Regularity

Shape regularity of a triangle

Ratio of the diameters of the inscribed and the circumscribed circle

Appears in error bounds for many approximations

Surface Analysis

Properties of a surface

- Area of a surface
- Enclosed volume
 - What is the area/volume of David?
- Special geometric lines on a surface
- Curvatures

Smoothing

Iterated Averaging (Laplace Smoothing)

For surface meshes

- Iterate: Move every vertex towards the average of its neighbors
- $x_k \leftarrow x_k + \tau \left(\frac{1}{|N_k|} \sum_{l \in N_k} x_l x_k \right)$

Mean Curvature Vector

Mean curvature vector field

- Normal field
- Length equals the mean curvature

Connection to Laplacian

 Mean curvature vector field equals the Laplacian of the embedding of a surface

$$\vec{H} = \Delta x$$

On a mesh

• Discrete mean curvature vector is $\vec{H}_h \in S_h^3$

$$\vec{H}_h = Lx$$

Explicit Euler

Explicit Euler

$$\frac{x^{i+1} - x^i}{\tau} = -Lx^i$$

Algorithm:

Iterate:

- 1. Set up the Laplace matrix L of the current embedding x
- 2. Compute -Lx
- 3. Set $x \leftarrow x \tau Lx$

Implicit Euler

Limitation of explicit scheme:

Stable only for small time steps

Semi-Implicit Euler

$$\frac{x^{i+1} - x^i}{\tau} = -L^i x^{i+1}$$

Algorithm:

Iterate:

- 1. Set up the matrices M, S of the current embedding x
- 2. Solve linear System: $(M + \tau S)x^{i+1} = Mx^i$

Implicit Scheme

Constrained Smoothing

Fairness Energy

$$E(\mathbf{x}) = \frac{1}{2} \int_{M} \|\Delta \mathbf{x}\|^{2} dA$$

Matrix representation

$$E(\mathbf{x}) = \frac{1}{2} x^T S M^{-1} S x$$

Constrained Smoothing

Minimizes *E* over the feasible set

Minimal Surfaces

Examples

Minimal Surfaces

- Surfaces with vanishing mean curvature are called minimal surfaces
- They are saddle shaped at every point
- Solution of Plateau's problem (soap films, minimal area)
 - Soap bubbles have constant mean curvature

Mean Curvature Vector

Mean curvature vector field

- Normal field
- Length equals the mean curvature

Connection to Laplacian

 Mean curvature vector field equals the Laplacian of the embedding of a surface

$$\overline{H} = \Delta x$$

On a mesh

• Discrete mean curvature vector is $\vec{H}_h \in S_h^3$

$$\vec{H}_h = Lx$$

Discrete Mean Curvature Vector

Discrete Mean Curvature Vector

$$\vec{H}_h(x_i) = \frac{3}{2\operatorname{area}(\operatorname{star}(x_i))} \sum_{x_j \in link(x_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (x_i - x_j)$$

Remark: d area(x)(v) = $\langle \vec{H}_h, v \rangle_M = x^T S v$

Minimal Surfaces

Variation of the area functional

- Minimal surface are critical points of the area functional
- Mean curvature flow is the gradient descent of the area

Minimal Surface in Architecture

Minimal Surface in Architecture

Deformation-Based Editing

Displacement Vector

Notation

• Denote by $x \in S_h^3$ the map that maps every vertex to its positions in \mathbb{R}^3 and by $u \in S_h^3$ a displacement of the surface

Deformation Energies

General deformation energies

 A deformation energy measures the "energy" stored in a deformation (or the "cost" of a deformation)

Quadratic Deformation Energies

Gradient-based deformation energy

$$E_D(u) = \frac{1}{2} \int_M \|\nabla u\|^2 dA$$

Matrix representation

$$E_D(u) = \frac{1}{2}u^T S u$$

• This energy is also called the Dirichlet energy of u

Dirchlet vs. L^2

Dirchlet energy measures magnitude of gradient

- Smoother functions have smaller value
- First function has larger Dirichlet energy than second

Quadratic Deformation Energies

Laplace-based deformation energy

$$E_L(u) = \frac{1}{2} \int_M \|\Delta u\|^2 dA$$

Matrix representation

$$E_L(u) = \frac{1}{2}u^T L^T M L u = \frac{1}{2}u^T S M^{-1} M M^{-1} S u$$
$$= \frac{1}{2}u^T S M^{-1} S u$$

Displacements

Remember:

- ullet The displacesments u are vector fields
- Denote the x,y,z-coordinate functions by u_x,u_y,u_z
- The deformation energy of a displacesment is the sum of the energy of the 3 coordinate functions

$$E_D(u) = \frac{1}{2} (u_x^T S u_x + u_y^T S u_y + u_z^T S u_z)$$

For brevity we write: $\frac{1}{2}u^TSu$

• The same notation is used for $E_L(u)$

Modeling metaphor

Handles (global deformations)

• Handles (blue)

Modeling metaphor

Region of interest (local deformations)

- Support region (blue)
- Fixed vertices (gray)
- Handle regions (green)

Botsch et al. 2004

O. Sorkine et al. 2004

Constraints

To deform the object the user sets constraints

Hard constraints:

$$Au = a$$

Soft constraints:

$$E_C(u) = \frac{1}{2} ||Au - a||^2$$

- A is a rectangular matrix, a is a vector
- Use masses for irregular meshes

Quadratic Program

Soft constraints

- Minimize weighted sum of deformation energy E_L and constraints energy E_C over all displacements $u \in S_h^{-3}$
 - $\lambda \in \mathbb{R}_{>0}$

$$E(u) = E_L(u) + \lambda E_C(u)$$

- Necessary condition for a minimum u^* is $\nabla E(u^*) = 0$
- Since E is quadratic and positive definite, this is also a sufficient condition

$$\nabla E(u) = (SM^{-1}S + \lambda A^{T}A)u - \lambda A^{T}a$$

Computing the Deformation

Linear system

• To compute the deformation, the linear system $(SM^{-1}S + \lambda A^TA)u = \lambda A^Ta$

has to be solved

- The matrix $(SM^{-1}S + \lambda A^T A)$ is
 - sparse
 - symmetric, positive definite
- An efficient solver is a sparse Cholesky decomposition
- Since changing the positions of the handles only changes the right-hand side, the factorization can be re-used and interactive modeling is possible

Quadratic Program

Hard constraints

- Use Lagrange multipliers l
- The displacements are the solution of

$$\begin{bmatrix} SM^{-1}S & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} u \\ l \end{bmatrix} = \begin{bmatrix} 0 \\ a \end{bmatrix}$$

The matrix
$$\begin{bmatrix} SM^{-1}S & A^T \\ A & 0 \end{bmatrix}$$
 is symmetric and positive definite

 Since changing the positions of the handles only changes the right-hand side, the factorization can be re-used and interactive modeling is possible

Laplacian Surface Editing

Laplacian Mesh Editing

A short editing session with the *Octopus*

Sketching

A Sketch-Based Interface for Detail-Preserving Mesh Editing

Andrew Nealen
Olga Sorkine
Marc Alexa
Daniel Cohen-Or

Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. 2005. A sketch-based interface for detail-preserving mesh editing. *ACM Trans. Graph.* 24, 3 (2005)

Brushes

Brushes

Gradient-Based Editing

Modify the gradients of the embedding x:

$$Gx \xrightarrow{\text{editing of}} \widetilde{g}$$

- Find the displacement u such that the gradients of $\tilde{x} = x + u$ best match \tilde{g}
- Poisson reconstruction: Minimize

$$E_{PR}(\widetilde{x}) = \frac{1}{2} \int_{M} \|\nabla \widetilde{x} - \widetilde{g}\|^{2} dA$$

• Euler-Lagrange equation $\nabla E(\tilde{x}) = 0$ is

$$S\widetilde{x} = G^T M_V \widetilde{g}$$