MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2016/17. Semestre de tardor

PRÀCTICA 9

Derivació numèrica i extrapolació repetida de Richardson

Recordem què s'entèn per extrapolació.

Sigui $F_0(h)$ una fórmula, depenent d'un pas de discretització h > 0, que permet trobar aproximacions d'un resultat R desconegut.

I suposem que l'error de la fórmula es pot expressar així:

$$F_0(h) = R + c_1 h^{p_1} + c_2 h^{p_2} + c_3 h^{p_3} + \dots$$

amb exponents p_i coneguts i verificant $0 < p_1 < p_2 < p_3 < \dots$

Si es calculen $F_0(h)$ i $F_0(h/q)$, per uns determinats h > 0 i $q \neq 0, 1$ (per exemple, q = 2 o q = 10), llavors és fàcil veure que

$$F_1(h) \equiv \frac{q^{p_1} F_0(h/q) - F_0(h)}{q^{p_1} - 1} = R + d_2 h^{p_2} + d_3 h^{p_3} + \dots$$

 F_1 és **una etapa d'extrapolació**: mitjançant una combinació lineal adequada de les dues aproximacions $F_0(h)$ i $F_0(h/q)$ de R, s'ha trobat una altra aproximació $F_1(h)$, en l'expressió de l'error de la qual s'ha eliminat el terme dominant h^{p_1} .

Si també s'usa la fórmula inicial per a obtenir $F_0(h/q^2)$, llavors es pot usar aquest valor (i el ja calculat $F_0(h/q)$) per a trobar $F_1(h/q)$ en una primera etapa d'extrapolació i, després, es pot fer una **segona etapa d'extrapolació**. La fórmula seria

$$F_2(h) \equiv \frac{q^{p_2} F_1(h/q) - F_1(h)}{q^{p_2} - 1} = R + e_3 h^{p_3} + \dots$$

Això es pot anar repetint. De manera general, si, amb la fórmula inicial es calculen

$$F_0(h), F_0(h/q^1), F_0(h/q^2), \dots, F_0(h/q^k),$$

llavors es podran fer k etapes d'extrapolació. La diferència entre els dos últims valors trobats, $F_k(h) - F_{k-1}(h/q)$, dóna una estimació de l'error en l'última aproximació.

Exercici 1 [Derivada primera]

Siguin $f: R \to R$ suficientment diferenciable i $a \in R$. Suposem que se sap avaluar f(x) però no f'(x). Es volen trobar aproximacions de f'(a) usant, com a dades, valors $f(x_i)$, per a punts x_i pròxims a a.

Es considera la fórmula de derivació numèrica

$$F_0(h) \equiv D^1(h) \equiv \frac{f(a+h) - f(a-h)}{2h} = f'(a) + a_1h^2 + a_2h^4 + a_3h^6 + \dots$$

Programeu el càlcul aproximat de f'(a) mitjançant l'ús de la fórmula anterior i extrapolació repetida. Feu:

- Una funció per a avaluar f(x).
- Una funció per a avaluar $F_0(h)$.
- Una funció per a fer qualsevol de les etapes d'extrapolació:

$$F_i(h) \equiv \frac{q^{p_i} F_{i-1}(h/q) - F_{i-1}(h)}{q^{p_i} - 1}$$
.

• Un programa main adequat. Caldrà llegir el punt a i el pas inicial h, així com la precisió desitjada prec i el nombre màxim d'etapes d'extrapolació que es faran k.

Exemple. Funció f(x) = cos(x), punt a = 1., pas inicial h = 0.1, factor de canvi de pas q = 2, precisió prec = 1.e - 10 i nombre màxim d'etapes d'extrapolació k = 10.

Els resultats obtinguts s'haurien d'anar aproximant a $f'(a) = -\sin(1.) \approx -0.8414709848...$

Exercici 2 [Derivada segona]

Feu una variació del programa anterior per a aproximar f''(a). Ara cal usar la fórmula de derivació numèrica

$$F_0(h) \equiv D^2(h) \equiv \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} = f''(a) + b_1h^2 + b_2h^4 + b_3h^6 + \dots$$

Amb les dades de l'exemple anterior, els resultats s'haurien d'anar aproximant a $f''(a) = -\cos(1.) \approx -0.5403023059...$

Exercici 3 [Dades en una taula]

Feu una altra variació per a tractar el cas que només es coneix una taula de valors de la funció f. Concretament, s'han de calcular f'(a) i f''(a) a partir dels 9 valors:

$$f(a), f(a \pm h), f(a \pm 2h), f(a \pm 4h), f(a \pm 8h)$$
.

Exemple, a = 2.0 i

x_i	$f(x_i)$
0.4	0.7891
1.2	1.9827
1.6	2.5176
1.8	2.7633
2.0	2.9923
2.2	3.2048
2.4	3.4027
2.8	3.7636
3.6	4.4051