Chapitre 17

Structures algébriques.

Sommaire.

1	Loi de composition interne sur un ensemble. 1.1 Définitions et propriétés	4
	1.4 Notations multiplicatives et additives	•
2	Structure de groupe.	4
	2.1 Définition et exemples	4
	2.2 Sous-groupes	
	2.3 Morphismes de groupes	
3	Structure d'anneau.	8
	3.1 Définitions et règles de calcul	8
	3.2 Groupe des inversibles dans un anneau.	8
	3.3 Nilpotents dans un anneau	ç
	3.4 Sous-anneaux, morphismes d'anneaux	
	3.5 Anneaux intègres	10
4	Structure de corps.	10
	4.1 Définitions et exemples	10
	4.2 Notation fractionnaire dans un corps	
	4.3 Corps des fractions d'un anneau intègre	
5	Exercices.	11

Les propositions marquées de \star sont au programme de colles.

1 Loi de composition interne sur un ensemble.

1.1 Définitions et propriétés.

Définition 1: et 2

On appelle loi de composition interne sur un ensemble E (on écrire l.c.i.) une application

$$\star: \begin{cases} E \times E & \to & E \\ (x,y) & \mapsto & x \star y \end{cases}$$

On notera que l'image de (x, y) par \star est notée $x \star y$ plutôt que $\star (x, y)$.

Soit E un ensemble et \star une l.c.i. sur E.

- La loi \star est dite associative si $\forall (x, y, z) \in E^3, (x \star y) \star z = x \star (y \star z).$
- De deux éléments x et y de E, on dit qu'ils **commutent** pour \star lorsque $x \star y = y \star x$. On dit que la loi \star est **commutative** si $\forall (x,y) \in E^2, \ x \star y = y \star x$.
- On appelle élément neutre pour \star tout élément $e \in E$ tel que $\forall x \in E, \ x \star e = x$ et $e \star x = x$.

Définition 2: Vocabulaire hors-programme.

Un couple (E, \star) , où E est un ensemble et \star une l.c.i. sur E est appelé **magma**.

On dit que ce magma est associatif si \star est associative, commutatif si \star est commutative, et **unifère** s'il existe dans E un élément neutre pour \star .

Proposition 3

Dans un magma unifère, il y a unicité du neutre.

Preuve

Soient e et e' des éléments neutres d'un magma unifère (E, \star) .

On a $e \star e' = e = e'$ car e et e' sont neutres pour \star donc e = e'.

Définition 4: Partie stable.

Soit (E, \star) un magma et $A \in \mathcal{P}(E)$. On dit que A est **stable** par \star si

$$\forall (x,y) \in A^2, \ x \star y \in A.$$

Définition 5: Loi induite.

Soit (E, \star) un magma et $A \in \mathcal{P}(E)$ stable par \star . La restriction de \star à A^2 :

$$\star: \begin{cases} A\times A & \to & A \\ (x,y) & \mapsto & x\star y \end{cases}$$

est une l.c.i. sur A: on l'appelle loi induite par \star sur A.

Exemple 6: Ensembles de nombres.

- + est une l.c.i. associative, commutative avec 0 comme neutre sur $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- × est une l.c.i. associative, commutative, de neutre 1 sur $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- – est une l.c.i. non associative, non commutative et sans neutre sur \mathbb{Z} . \mathbb{N} n'est pas stable par –.

Exemple 7: Ensemble des parties

Soit E un ensemble. L'intersection \cap et la réunion \cup définissent des l.c.i. sur $\mathcal{P}(E)$.

- Le magma $(\mathcal{P}(E), \cap)$ est associatif, commutatif et unifère, avec E pour neutre.
- Le magma $(\mathcal{P}(E), \cup)$ est associatif, commutatif et unifère, avec \varnothing pour neutre.

Exemple 8: Ensembles de fonctions et composition.

Soit E un ensemble. La composition \circ est une l.c.i. sur E^E , l'ensemble des fonctions de E vers E. Le magma (E^E, \circ) est associatif et unifère : il admet id_E pour neutre. Si $|E| \geq 2$, il n'est pas commutatif. L'ensemble des fonctions injectives est stable par \circ , de même pour l'ensemble des fonctions surjectives, bijectives.

Définition 9: Distributivité d'une loi par rapport à une autre.

Soit E un ensemble muni de deux l.c.i. \oplus et \otimes .

On dit que \otimes est distributive par rapport à \oplus si

$$\forall (x, y, z) \in E^3 : \begin{cases} x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z) \\ (y \oplus z) \otimes x = (y \otimes x) \oplus (z \otimes x) \end{cases}$$

(Si la loi ⊕ n'est pas commutative, il est primordial de vérifier les deux égalités.)

Exemple 10

- Dans $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, la multiplication \times est distributive par rapport à l'addition +.
- Dans $\mathcal{P}(E)$, \cap est distributive par rapport à \cup .
- Dans $\mathcal{P}(E)$, \cup est distributive par rapport à \cap .

1.2 Éléments symétrisables.

Définition 11: Élément symétrisable.

Soit (E, \star) un magma unifère de neutre e, et $x \in E$.

On dit que x est **symétrisable** (ou **inversible**) s'il existe un élément x' dans E tel que

$$x \star x' = e$$
 et $x' \star x = e$.

Proposition 12: Unicité du symétrique / de l'inverse.

Soit (E,\star) un magma associatif et unifère de neutre e.

Si x est un élément de E symétrisable, il existe un unique x' dans E tel que $x\star x'=x'\star x=e$

On appelle cet élément le **symétrique** de x (ou son inverse), et on le note x^{-1} .

Preuve :

Soit $x \in E$ et $x', x'' \in E$ tels que :

$$\begin{cases} x \star x' = x' \star x = e, \\ x \star x'' = x'' \star x = e \end{cases}$$

On a alors $x' \star x \star x'' = (x' \star x) \star x'' = x'' = x' \star (x \star x'') = x' \text{ donc } x' = x''.$

Exemple 13

- Les inversibles de (\mathbb{Z}, \times) sont -1 et 1.
- Les inversibles de (\mathbb{R}, \times) sont les réels non nuls. (admis)

Solution:

On vérifie facilement que -1 et 1 sont inversibles.

Soit $p \in \mathbb{Z} \setminus \{-1, 0, 1\}$. Supposons par l'absurde qu'il existe $q \in \mathbb{Z}$ tel que pq = qp = 1.

Alors $|p| \ge 2$ et $|q| \ge 1$ donc $|p||q| \ge 2 \cdot 1$ donc $|pq| \ge 2$ donc $1 \ge 2$, absurde.

Exemple 14

Les inversibles du magma (E^E, \circ) sont les bijections $f: E \to E$, d'inverse f^{-1} .

Proposition 15

Soit (E, \star) un magma associatif et unifère, et $x, y \in E$.

- 1. Si x est symétrisable, x^{-1} l'est aussi et $(x^{-1})^{-1} = x$.
- 2. Si x et y sont symétrisables, $x\star y$ l'est aussi et

$$(x \star y)^{-1} = y^{-1} \star x^{-1}.$$

Preuve:

- 1. Supposons que x est symétrisable, alors $x \star x^{-1} = x^{-1} \star x = e : (x^{-1})^{-1} = x$.
- $\overline{2}$. Supposons x et y symétrisables. Alors :

$$\begin{cases} (x\star y)\star (y^{-1}\star x^{-1})=x\star (y\star y^{-1})\star x^{-1}=x\star x^{-1}=e,\\ (y^{-1}\star x^{-1})\star (x\star y)=y^{-1}\star (x^{-1}\star x)\star y=y^{-1}\star y=e. \end{cases}$$

Donc $x \star y$ est inversible, d'inverse $y^{-1} \star x^{-1}$.

1.3 Itérés.

On fixe pour tout ce paragraphe un magma (E, \star) associatif et unifère de neutre e.

Définition 16: Itérés d'un élément.

Soit $x \in E$

- 1. Pour $n \in \mathbb{N}$, on définit x^n par récurrence sur n. On pose $x^0 = e$.
 - Pour tout $n \in \mathbb{N}$: $x^{n+1} = x^n \star x$.
- 2. Si x est inversible et $n \in \mathbb{N}^*$, on pose $x^{-n} = (x^{-1})^n$.

Proposition 17: Propriétés des itérés.

$$\forall x \in E, \ \forall (m,n) \in \mathbb{N}^2, \ x^m \star x^n = x^{m+n} \quad \text{ et } \quad (x^m)^n = x^{mn}.$$

Si x est inversible, les identités ci-dessus sont vraies pour $(m, n) \in \mathbb{Z}^2$.

Preuve:

Soit un élément x de E.

Soit $m \in \mathbb{N}$ fixé. Pour $n \in \mathbb{N}$, on note $\mathcal{P}(n)$: « $x^m \star x^n = x^{m+n}$ ».

Initialisation. On a $x^m \star x^0 = x^l \star e = x^{m+0}$.

Hérédité. Soit $n \in \mathbb{N} \mid \mathcal{P}(n)$. Alors $x^m \star x^{n+1} = x^m \star x^n \star x = x^{m+n} \star x = x^{m+n+1}$.

Conclusion. Par récurrence, $\forall n \in \mathbb{N}, \ \mathcal{P}(n)$.

Soit $m \in \mathbb{N}$ fixé. Pour $n \in \mathbb{N}$, on note $\mathcal{Q}(n)$:« $(x^m)^n = x^{m \cdot n}$ ».

Initialisation. On a $(x^m)^0 = e = x^{m \cdot 0}$.

Hérédité. Soit $n \in \mathbb{N} \mid \mathcal{Q}(n)$. Alors $(x^m)^{n+1} = (x^m)^n \star x^m = x^{mn} \star x^m = x^{mn+m} = x^{m(n+1)}$.

Conclusion. Par récurrence, $\forall n \in \mathbb{N}, \ \mathcal{Q}(n)$.

Exemple 18: Itérés d'éléments qui commutent.

Soient x et y deux éléments deux E qui commutent. Alors

$$\forall (m,n) \in \mathbb{N}^2, \ x^m \star y^n = y^n \star x^m \quad \text{ et } \quad (x \star y)^n = x^n \star y^n.$$

 \bigwedge Les identités ci-dessus sont FAUSSES en général lorsque x et y ne commutent pas.

1.4 Notations multiplicatives et additives.

Utiliser la **notation multiplicative**, lorsqu'on travaille avec un magma (E, \star) consiste à ne pas écrire \star lorsqu'on calcule l'image d'un couple $(x, y) \in E^2$. Concrètement, on note alors xy à la place de $x \star y$.

Lorsqu'on travaille avec un magma associatif, commutatif et unifère, on pourra utiliser la notation + pour la l.c.i. Le vocabulaire sur les notations introduits plus haut est alors adapté à cette **notation additive**, comme explicité dans le tableau ci-dessous.

*	cot	+
$x \star y$	xy	x + y
e	e	0
symétrisable	inversible	symétrisable
symétrique	inverse	opposé
x^{-1}	x^{-1}	-x
x^n	x^n	nx
	e symétrisable symétrique x^{-1}	$\begin{array}{c cc} x \star y & xy \\ \hline e & e \\ \\ \text{symétrisable} & \text{inversible} \\ \\ \text{symétrique} & \text{inverse} \\ \hline x^{-1} & x^{-1} \\ \end{array}$

2 Structure de groupe.

2.1 Définition et exemples.

Définition 19

On appelle groupe un magma associatif et unifère dans lequel tout élément est symétrisable.

Plus précisément, un groupe est la donnée d'un couple (G,\star) où G est un ensemble et \star une l.c.i. tels que

- 1. \star est associative.
- 2. il existe dans G un élément e neute pour \star .
- 3. tout élément de G est symétrisable.

Si de surcroît \star est commutative, on dit que le groupe (G, \star) est **abélien** (ou commutatif).

Remarque. Un groupe n'est jamais vide car il contient au moins son élément neutre.

Proposition 20: Ensembles de nombres.

- 1. $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ et $(\mathbb{C},+)$ sont des groupes abéliens.
- 2. (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) sont des groupes abéliens.

Exemple 21: Ce ne sont pas des groupes.

- 1. $(\mathbb{N},+)$ n'est pas un groupe car 1 n'est pas symétrisable.
- 2. (\mathbb{Z}^*, \times) n'est pas un groupe car 2 n'est pas inversible dans \mathbb{Z} .
- 3. $(\mathbb{C}, +)$ n'est pas un groupe car 0 n'a pas d'inverse dans \mathbb{C} .

Exemple 22: Vérifier les axiomes de groupe sur une loi artificielle.

On pose $G = \mathbb{R}^* \times \mathbb{R}$. Pour $(a, b) \in G$ et $(a', b') \in G$ on définit

$$(a,b) \star (a',b') = (aa',ab'+b).$$

Montrer que (G, \star) est un groupe.

Solution:

On vérifie chacun des points de la définition de groupe...

 \star est-elle une l.c.i. dans G ? Gest-il associatif ? Unifère ? Symétrisable ?

Définition 23

Soit E un ensemble non-vide. On appelle **permutation** de E une bijection $\sigma: E \to E$.

On note S_E l'ensemble des permutations de E.

Proposition 24: 🛨

 (S_E, \circ) est un groupe, appelé **groupe des permutations** de E, ou groupe symétrique de E.

Dès que E contient au moins 3 éléments, le groupe S_E n'est pas abélien.

Preuve:

Soient $\sigma, \sigma' \in S_E$. On a $\sigma \circ \sigma' : E \to E$ une bijection comme composée.

- \circ est une l.c.i. sur E.
- Associativité. On sait déjà que $(\mathcal{F}(E,E),\circ)$ est associatif.
- Unifère. $id_E \in S_E$ est neutre pour \circ .
- Symétrie. Si $f \in S_E$, c'est une bijection alors $f^{-1} \in S_E$ et est le symétrique de f.

Supposons que $|E| \ge 3$. Soient $a, b, c \in E$ différents.

On définit σ telle que $\sigma(a) = b$, $\sigma(b) = c$, $\sigma(c) = a$ et $\sigma(x) = x$ pour $x \in E \setminus \{a, b, c\}$.

On définit σ' telle que $\sigma'(a) = b$, $\sigma'(b) = a$ et $\sigma'(x) = x$ pour $x \in E \setminus \{a, b\}$.

On a $\sigma' \circ \sigma(a) = a$ et $\sigma \circ \sigma'(a) = c$ donc $\sigma' \circ \sigma \neq \sigma \circ \sigma'$: pas commutatif.

Proposition 25: Produit de deux groupes.

Soient (G, \star) et (G', \top) deux groupes. On note e le neutre de G et e' celui de G'.

Pour (x, x') et (y, y') deux éléments de $G \times G'$, on pose

$$(x, x') \heartsuit (y, y') = (x \star y, x' \top y').$$

Muni de la l.c.i. \heartsuit , le produit cartésien $G \times G'$ est un groupe, de neutre (e, e').

Preuve:

On vérifie chacun des points de la définition de groupe...

Proposition 26: Produit de n groupes.

Soient $G_1,...,G_n$ n groupes (les l.c.i. étant sous-jacentes et notées multiplicativement).

Pour $(x_1,...,x_n)$ et $(y_1,...,y_n)$ deux éléments $G_1 \times ... \times G_n$, on pose

$$(x_1,...,x_n) \heartsuit (y_1,...,y_n) = (x_1y_1,...,x_ny_n).$$

Muni de la l.c.i. \heartsuit , le produit cartésien $G_1 \times ... \times G_n$ est un groupe, de neutre $(e_1, ..., e_n)$.

2.2 Sous-groupes.

Définition 27

Soit (G, \star) un groupe et H une partie de G.

On dit que H est un sous-groupe de G si H est stable par \star et si (H, \star) est un groupe.

Proposition 28: Élément neutre et inverses dans un sous-groupe.

Soit (G, \star) un groupe et H un sous-groupe de G.

- 1. L'élément neutre du groupe H n'est autre que celui de G.
- 2. Soit $x \in H$. L'inverse de x dans le groupe (H, \star) et celui dans le groupe (G, \star) sont égaux.

Drouge

1. Soit e le neutre de G. On a $\forall x \in G$, $e \star x = x \star e = x$ donc $\forall x \in H$, $e \star x = x \star e = x$ car $H \subset G$.

Par unicité du neutre dans H, on a e neutre de H.

2. Soit $x \in H$. On note x' l'inverse de x dans H et x'' dans G.

 $\overline{\text{Alors}}\ x'\star x=x\star x'=e\ \text{et}\ x''\star x=x\star x''=e,\ \text{donc par unicit\'e}\ \text{du neutre dans}\ G,\ x'=x''.$

Théorème 29: Caractérisation des sous-groupes.

Soit (G,\star) un groupe de neutre e et $H\subset G$. On équivalence entre :

- 1. H est un sous-groupe de G.
- $\underbrace{}_{2.} \left\{ \bullet \ e \in H, \right.$
 - $\left\{ \bullet \ \forall (x,y) \in H^2, \ x \star y^{-1} \in H \right.$
 - $\oint \bullet \ e \in H$
- 3. $\begin{cases} \bullet \ \forall (x,y) \in H^2, \ x \star y \in H \end{cases}$
 - $\bullet \ \forall x \in H, \ x^{-1} \in H$

Remarque. On utilisera presque toujours cette caractérisation.

Preuve:

- $(1) \Longrightarrow (2)$ Supposons H sous-groupe de G. Alors H est stable par \star et (H, \star) est un groupe.
- $\overline{-\bullet e}$ est le neutre de G, c'est aussi celui de H donc $e \in H$.
- • Soit $(x,y) \in H^2$. y^{-1} est l'inverse de y et $y^{-1} \in H$, alors $x \star y^{-1} \in H$ par stabilité de H par \star .
- $(2) \Longrightarrow (3)$ Supposons $e \in H$ et $\forall (x,y) \in H^2, \ x \star y^{-1} \in H$.
- $-\bullet e \in H \text{ donc } e \in H.$
- • Soient $(x, y) \in H^2$: $x \star y = x \star (y^{-1})^{-1} \in H$ par hypothèse.
- Soit $x \in H$, on a $x^{-1} = e \star x^{-1} \in H$ car $e, x \in H$.
- $(3) \Longrightarrow (1)$ Supposons $e \in H$, $\forall (x,y) \in H^2$, $x \star y \in H$ et $\forall x \in H$, $x^{-1} \in H$.
- $\bullet H$ est stable par \star car $\forall (x,y) \in H^2$, $x \star y \in H$ et \star est l.c.i. sur H par déf.
- • \star est associative sur H car elle l'est sur G.
- • H est unifère car e est neutre et $e \in H$.
- • tout élément de H est symétrisable car $\forall x \in H, x^{-1} \in H$.

Proposition 30: Sous-groupes usuels.

- 1. $(\mathbb{Q},+)$ est un sous-groupe de $(\mathbb{R},+)$, qui est lui-même un sous-groupe de $(\mathbb{C},+)$.
- 2. \mathbb{R}_+^* est un sous-groupe de (\mathbb{R}^*, \times) .
- 3. \mathbb{U} et \mathbb{U}_n sont des sous-groupes de (\mathbb{C}^*, \times) .

Exemple 31: Une intersection de sous-groupes est un sous-groupe. \star

Soient H et H' deux sous-groupes d'un groupe (G, \star) . Montrer que $H \cap H'$ est sous-groupe de G.

Solution:

- Soit e le neutre de G, on a alors $e \in H$ et $e \in H'$ car sous-groupes donc $e \in H \cap H'$.
- Soient $x, y \in H \cap H'$.
- On a $x \in H$ et $y \in H$ donc $x \star y^{-1} \in H$ car H est un groupe.
- On a $x \in H'$ et $y \in H'$ donc $x \star y^{-1} \in H'$ car H' est un groupe.
- Alors $x \star y^{-1} \in H \cap H'$.

Exemple 32: Une union de sous-groupes n'est pas toujours un sous-groupe.

Montrer que $\mathbb{U}_2 \cup \mathbb{U}_3$ n'est pas un sous-groupe de (\mathbb{C}^*, \times) .

On note $H = \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$. Montrer que H est un sous-groupe de (\mathbb{C}^*, \times) .

Solution:

- 1. On a $\mathbb{U}_2 \cup \mathbb{U}_3 = \{-1, 1, j, j^2\}$ et $-1 \times j = -j \notin \mathbb{U}_2 \cup \mathbb{U}_3$: pas stable par \times .
- 2. On a $1 \in H$ car $1 \in \mathbb{U}_1$.
- Soient $z, \widetilde{z} \in H : \exists k, \widetilde{k} \in N^* \mid z \in \mathbb{U}_k \text{ et } \widetilde{z} \in \mathbb{U}_{\widetilde{k}} \text{ donc } (z \cdot \widetilde{z})^{k\widetilde{k}} = (z^k)^{\widetilde{k}} (\widetilde{z}^{\widetilde{k}})^k = 1 \text{ donc } z\widetilde{z} \in \mathbb{U}_{k\widetilde{k}} \subset H.$
- Soit $z \in H : \exists p \in \mathbb{N}^* \mid z \in \mathbb{U}_p$, or \mathbb{U}_p est un groupe donc $z^{-1} \in \mathbb{U}_p \subset H$.

Exemple 33: Centre d'un groupe. 🛨

Soit (G, \star) un groupe. On note

$$Z(G) = \{x \in G \mid \forall a \in G, \ x \star a = a \star x\}.$$

Montrer que Z(G) est un sous-groupe de G.

Solution:

- Soit e le neutre de G. On a $\forall a \in G, e \star a = a \star e = a \text{ donc } e \in Z(G)$.
- Soient $a, b \in Z(G)$ et $x \in G$. On a $(a \star b) \star x = a \star x \star b = x \star (a \star b)$ donc $a \star b \in Z(G)$.
- Soient $x \in Z(G)$ et $a \in G$. On a $x^{-1} \star a = (a^{-1} \star x)^{-1} = (x \star a^{-1})^{-1} = a \star x^{-1}$ donc $x^{-1} \in Z(G)$.

Par caractérisation, le centre d'un groupe est un sous-groupe.

Proposition 34: Sous-groupes de $(\mathbb{Z},+)$ (programme de spé). $\star\star$

Pour $n \in \mathbb{N}$, on note $n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\}.$

Les sous-groupes de $(\mathbb{Z}, +)$ sont exactement les $n\mathbb{Z}$, avec $n \in \mathbb{N}$.

Preuve:

Soit $n \in \mathbb{N}$. Montrons que $n\mathbb{Z}$ est un sous-groupe de \mathbb{Z} :

- $\bullet 0 \in n\mathbb{Z} \text{ car } 0 = n0.$
- • Soient $p, p' \in n\mathbb{Z}$: $\exists k, k' \in \mathbb{Z} \mid p = kn$ et p' = k'n, alors $p + p' = (k + k')n \in n\mathbb{Z}$.
- • Soit $p \in \mathbb{Z}$: $\exists k \in \mathbb{Z} \mid p = kn \text{ donc } p^{-1} = -p = (-k)n \in n\mathbb{Z}$.

Par caractérisation, c'est bien un sous-groupe de \mathbb{Z} .

Soit H un sous-groupe de \mathbb{Z} . Montrons qu'il existe $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$.

 \to Cas particulier : $H = \{0\}$, alors $H = 0\mathbb{Z}$. Supposons $H \neq \{0\}$ pour la suite.

On a alors $H \cap \mathbb{N}^*$ une partie non-vide de \mathbb{N}^* . Notons n son plus petit élément. Montrons que $H = n\mathbb{Z}$.

- \bigcirc Soit $p \in n\mathbb{Z}$: $\exists k \in \mathbb{Z} \mid p = nk : p$ est itéré de n avec $n \in H$ donc $p \in H$.
- Alors r = p nq avec $p \in H$ et $nq \in H$ donc $r \in H$.
- Supposons $r \neq 0$, alors $r \in H \cap \mathbb{N}^*$, or $n = \min(H \cap \mathbb{N}^*)$ et r < n: absurde!
- Donc r = 0 et p = nq donc $p \in n\mathbb{Z}$.

Par double-inclusion, $H = n\mathbb{Z}$.

Exemple 35: (*) Sous-groupes de $(\mathbb{R}, +)$.

Pour $a \in \mathbb{R}_+$, on note $a\mathbb{Z} = \{ak \mid k \in \mathbb{Z}\}.$

Soit H un sous-groupe de $(\mathbb{R}, +)$. Ou bien il existe $a \in \mathbb{R}_+$ tel que $H = a\mathbb{Z}$, ou bien H est dense dans \mathbb{R} .

2.3 Morphismes de groupes.

Définition 36

Soient (G, \star) et (G', \top) deux groupes

On appelle morphisme de groupe de G dans G' toute application $f:G\to G'$ telle que

$$\forall (x,y) \in G^2, \ f(x \star y) = f(x) \top f(y).$$

Si de surcroît f est bijective, on dit qu'une telle application f est un **isomorphisme** de groupes.

Un morphisme d'un groupe G vers lui même est appelé **endomorphisme** de G.

Si un tel endomorphisme est bijectif, on parle d'automorphisme de G.

Définition 37

On dit que deux groupes sont **isomorphes** s'il existe un isomorphisme de l'un vers l'autre.

Exemple 38

- L'exponentielle réelle est un isomorphisme de $(\mathbb{R},+)$ dans (\mathbb{R}^*,\times) .
- L'exponentielle complexe est un morphisme de groupes de $(\mathbb{C},+)$ dans (\mathbb{C}^*,\times) .
- $t \mapsto e^{it}$ est un morphisme de groupes de $(\mathbb{R}, +)$ dans (\mathbb{U}, \times) .
- Le logarithme népérien est un isomorphisme de groupes de (\mathbb{R}^*, \times) dans $(\mathbb{R}, +)$.

Exemple 39

Justifier que les groupes $(\mathbb{R}^2, +)$ et $(\mathbb{C}, +)$ sont isomorphes.

Solution:

On pose $f:(a,b)\mapsto a+ib$. Soient (a,b) et (a',b') dans \mathbb{R}^2 .

$$f((a,b) + (a',b')) = f((a+a',b+b')) = (a+a') + i(b+b') = a+ib+a'+ib'$$

= $f(a,b) + f(a',b')$.

La fonction f est un morphisme de groupes de $(\mathbb{R}^2, +)$ dans $(\mathbb{C}, +)$.

Elle est bijective par unicité de la forme algébrique : c'est un isomorphisme. Les groupes sont donc isomorphes.

Proposition 40: *

Soient G et G' deux groupes de neutres respectifs e et e', et $f: G \to G'$ un morphisme de groupes.

- 1. f(e) = e'.
- 2. $\forall x \in G, \ f(x^{-1}) = f(x)^{-1}.$
- 3. $\forall x \in G, \ \forall p \in \mathbb{Z}, \ f(x^p) = f(x)^p$.
- 4. Si H est un sous-groupe de G, alors f(H) est un sous-groupe de G'.
- 5. Si H' est un sous-groupe de G', alors $f^{-1}(H')$ est un sous-groupe de G.
- 6. Si f est un isomorphisme de G vers G', alors f^{-1} est un isomorphisme de G' vers G.

Preuve:

- 1. On a $f(e) = f(e \cdot e) = f(e) \cdot f(e) = f(e)^{-1} \cdot f(e) \cdot f(e) = f(e)^{-1} \cdot f(e) = e'$.
- $\overline{2}$. Soit $x \in G$. On a $f(x \cdot x^{-1}) = f(x)f(x^{-1}) = f(e) = e'$ donc par unicité de l'inverse $f(x)^{-1} = f(x^{-1})$.
- 3. Soit $x \in G$. Par récurrence sur $p \in \mathbb{N}$.
- Initialisation. $f(x^0) = f(e) = e' = f(x)^0$.
- **Hérédité.** Soit $p \in \mathbb{N} \mid f(x^p) = f(x)^p$. Alors $f(x^{p+1}) = f(x^p \cdot x) = f(x)^p f(x) = f(x)^{p+1}$.
- $4.\star$ Soit H un sous-groupe de G.
- $-\bullet e' \in f(H) \text{ car } e \in H.$
- • Soient $y, \widetilde{y} \in f(H)$, d'antécédents $x, \widetilde{x} : y\widetilde{y}^{-1} = f(x)f(\widetilde{x})^{-1} = f(x \cdot \widetilde{x}^{-1}) \in f(H)$.

Par caractérisation, f(H) est un sous-groupe de G'.

- $5. \bigstar$ Soit H' un sous-groupe de G'.
- $\overline{-\bullet e} \in f^{-1}(H) \text{ car } e' \in H'.$
- → Soient $x, \widetilde{x} \in f^{-1}(H)$: $f(x\widetilde{x}^{-1}) = f(x)f(\widetilde{x})^{-1} \in H$ par stabilité puisque f(x) et $f(\widetilde{x})^{-1}$ dans H.

Par caractérisation, $f^{-1}(H')$ est un sous-groupe de G.

- 6. Soit f un isomorphisme de G vers G'. Sa réciproque f^{-1} existe.
- Soient $y, y' \in G'$: $f^{-1}(yy') = f^{-1}(f(f^{-1}(y)))f(f^{-1}(f(y'))) = f^{-1}(f(f^{-1}(y)f^{-1}(y'))) = f^{-1}(y)f^{-1}(y')$.

Définition 41

Soient G et G' deux groupes de neutres respectifs e et e', et $f:G\to G'$ un morphisme de groupes.

1. On appelle **noyau** de f et on note $\operatorname{Ker} f$ l'ensemble

$$Ker f = \{ x \in G \mid f(x) = e' \}.$$

2. On appelle **image** de f et on note $\mathrm{Im} f$ l'ensemble

$$\text{Im} f = \{ y \in G' \mid \exists x \in G : y = f(x) \}.$$

Proposition 42: ★★

Soient G et G' deux groupes de neutres respectifs e et e', et $f:G\to G'$ un morphisme de groupes.

- 1. Ker f est un sous-groupe de G et
- f est injective \iff Ker $f = \{e\}$.
- 2. Im f est un sous-groupe de G' et

f est surjective \iff Im f = G'

Preuve:

- 1. On a $\operatorname{Ker} f = f^{-1}(\{e'\})$ donc $\operatorname{Ker} f$ est un sous-groupe de G comme image réciproque du sous-groupe $\{e'\}$. Supposons f injective.
- $-\bullet e \in \operatorname{Ker} f$ car $\operatorname{Ker} f$ est un sous-groupe de G.
- • Soit $x \in \text{Ker } f$. Alors f(x) = f(e) = e' et par injectivité de f, x = e.

Par double inclusion, $Ker f = \{e\}$.

Supposons $\operatorname{Ker} f = \{e\}$. Soient $x, x' \in G$ tels que f(x) = f(x').

On a $f(x)f(x)^{-1} = f(x')f(x)^{-1}$ donc $e' = f(x')f(x)^{-1} = f(x'x^{-1})$.

Alors $x'x^{-1} \in \text{Ker } f: x'x^{-1} = e$, on multiplie par x à droite : x' = x.

2. Im f = f(G) est l'image d'un sous-groupe de G par un morphisme, c'est un sous-groupe de G'. On a déjà l'équivalence, vraie pour n'importe quelle application de $\mathcal{F}(G, G')$.

Structure d'anneau. 3

Définitions et règles de calcul.

Définition 43

On appelle **anneau** tout triplet $(A, +, \times)$, où A est un ensemble et + et \times des l.c.i telles que

- (A, +) est un groupe abélien, de neutre 0_A .
- (A, \times) est un magma associatif et unifère, de neutre 1_A .
- × est distributive par rapport à +.

Les lois + et \times sont appelées respectivement addition et multiplication de l'anneau A.

Si de surcroît \times est commutative, on dit que l'anneau A est commutatif.

Exemple 44: Ensembles de nombres.

 $(\mathbb{Z},+,\times), (\mathbb{Q},+,\times), (\mathbb{R},+,\times)$ et $(\mathbb{C},+,\times)$ sont des anneaux commutatifs.

Exemple 45: Anneau de fonctions.

On rappelle que, pour X une partie de \mathbb{R} , $\mathcal{F}(X,\mathbb{R})$, ensemble des fonctions définies sur X et à valeurs réelles a été muni d'une addition et d'une multiplication de la manière suivante :

$$\forall f, g \in \mathcal{F}(X, R), \quad f + g = \begin{cases} X & \to & \mathbb{R} \\ x & \mapsto & f(x) + g(x) \end{cases} \text{ et } f \times g : \begin{cases} X & \to \mathbb{R} \\ x & \mapsto & f(x)g(x) \end{cases}$$

Le triplet $(\mathcal{F}(X,\mathbb{R}),+,\times)$ est un anneau commutatif.

L'élément neutre pour + est la fonction nulle sur X.

L'élément neutre pour \times est la fonction constante sur X égale à 1.

En particulier, $(\mathbb{R}^{\mathbb{N}}, +, \times)$ est un anneau commutatif : celui des suites.

Exemple 46: Pas des anneaux.

- $(2\mathbb{Z}, +, \times)$ n'est pas un anneau car il n'y a pas de neutre pour \times .
- $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\circ)$ n'est pas un anneau car \circ n'est pas distributive par rapport à +.

Proposition 47

Soit $(A, +, \times)$ un anneau. En utilisant la notation multiplicative pour la loi \times ,

- 1. $\forall a \in A, \ 0_A \times a = a \times 0_A = 0_A.$
- 2. $\forall (a,b) \in A^2, \ a(-b) = (-a)b = -(ab).$ 3. $\forall (a,b) \in A^2, \ (-a)(-b) = ab.$
- 4. $\forall (a,b) \in A^2, \ \forall n \in \mathbb{Z}, \ a(nb) = (na)b = n(ab).$

Proposition 48: Identités remarquables : si ça commute, d'accord.

Soit $(A, +, \times)$ un anneau et $(a, b) \in A^2$.

- 1. Si ab = ba, alors $\forall n \in \mathbb{N}$, $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- 2. Si ab = ba, alors $\forall n \in \mathbb{N}^*$, $a^n b^n = (a b) \sum_{k=0}^{n-1} a^k b^{n-k-1}$.

Preuve:

Exactement les mêmes preuves que lorsqu'on $A = \mathbb{R}$.

Groupe des inversibles dans un anneau.

Définition 49

Dans un anneau $(A, +, \times)$, les **inversibles** sont les éléments de A inversibles pour la loi \times .

L'ensemble des éléments de A qui sont inversibles sera noté U(A).

Exemple 50

- $U(\mathbb{Z}) = \{-1, 1\}.$
- $U(\mathbb{R}) = \mathbb{R}^*$.
- Pour $X \subset \mathbb{R}$, $U(\mathcal{F}(X,\mathbb{R}))$ est l'ensemble des fonctions ne s'annulant pas sur X.

Proposition 51

Si $(A, +, \times)$ est un anneau, $(U(A), \times)$ est un groupe. On l'appelle **groupe des inversibles**.

On a notamment

$$\forall (a,b) \in (U(A))^2, \ ab \in U(A) \quad \text{ et } \quad (ab)^1 = b^{-1}a^{-1}.$$

3.3 Nilpotents dans un anneau.

Définition 52

Dans un anneau $(A, +, \times)$, on dit d'un élément $a \in A$ qu'il est **nilpotent** s'il possède une puissance nulle, c'est à dire :

$$\exists p \in \mathbb{N}^* \mid a^p = 0_A.$$

Exemple 53

Soit $(A, +, \times)$ un anneau et $(a, b) \in A^2$.

- 1. Montrer que si a est nilpotent, et si b commute avec a, alors ab est nilpotent.
- 2. Montrer que si ab est nilpotent, alors ba est nilpotent.

Solution:

- 1. Soit a nilpotent : $\exists p \in \mathbb{N}^* \mid a^p = 0_A$. Alors $(ab)^p = a^p b^p = 0_A b^p = 0_A$.
- $\boxed{2}$. Soient $a, b \in A$ tel que $\exists p \in \mathbb{N}^* \mid (ab)^p = 0_A$. Alors $(ba)^{p+1} = b(ab)^p a = b0_A a = 0_A$?

Exemple 54

Soit $(A, +, \times)$ un anneau non réduit à $\{0_A\}$ et $a \in A$ nilpotent d'ordre p.

- 1. Montrer que a n'est pas inversible.
- 2. Montrer que $1_A a$ est inversible et exprimer son inverse.

Solution:

1. Supposons a inversible. Alors a^p l'est aussi, $1_A = a^{-p}a^p = a^{-p}0_A = 0_A$, absurde.

[2.]
$$(1_A - a) \sum_{k=0}^{p-1} a^k = 1_A - a^p = 1_A$$
, de même a droite.

3.4 Sous-anneaux, morphismes d'anneaux.

Proposition 55

Soit $(A, +, \times)$ un anneau et $B \subset A$. On dit que B est un **sous-anneau** de A si

- $\forall (a,b) \in B^2, \ a-b \in B.$
- $\forall (a,b) \in B^2, ab \in B.$
- $1_A \in B$.

Muni des lois induites par + et \times , B est un anneau.

Preuve:

Montrons que (B, +) est un groupe abélien.

- $-\bullet 1_A \in B \text{ donc } 1_A 1_A \in B \text{ donc } 0_A \in B.$
- $\bullet \ \forall (a,b) \in B, \ a b \in B.$

Par caractérisation c'est un sous groupe, abélien car (A, +) l'est.

Montrons que (B, \times) est un magma unifère et associatif.

- $-\bullet B$ est stable par \times .
- • Associatif car \times l'est dans A.
- • Unifère car $1_A \in B$ et est neutre pour \times .
- \times se distribue déjà sur + dans A, donc aussi dans B.

Exemple 56

- A est un sous-anneau de A. Si $0_A \neq 1_A$, alors $\{0_A\}$ n'est pas un sous-anneau de A.
- \bullet Montrer que $\mathbb Z$ est le seul sous-anneau de $\mathbb Z.$

Exemple 57: Anneau de Gauss. 🛨

Soit l'ensemble

$$\mathbb{Z}[i] = \{a + ib \mid (a, b) \in \mathbb{Z}^2\}.$$

Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif et déterminer ses éléments inversibles.

Solution:

Vérifions qu'il s'agit d'un sous-anneau de $(\mathbb{C}, +, \times)$.

Soit $(z, z') \in \mathbb{Z}[i]$: $\exists !(a, b) \in \mathbb{Z}^2 \mid z = a + ib \text{ et } \exists !(a', b') \in \mathbb{Z}^2 \mid z' = a' + ib'$.

- $\bullet 1 = 1 + 0i \text{ et } (1,0) \in \mathbb{Z}^2 \text{ donc } 1 \in \mathbb{Z}[i].$
- • On a z z' = (a a') + i(b b') donc $z z' \in \mathbb{Z}[i]$.
- • On a zz' = (aa' bb') + i(ab' + a'b) donc $zz' \in \mathbb{Z}[i]$.

Donc c'est bien un anneau.

Soit un inversible z = a + ib de $\mathbb{Z}[i]$. On a zz' = 1 donc |zz'| = 1 donc |z||z'| = 1.

On a que |z| et |z'| sont entiers donc |z| = |z'| = 1, donc $z \in \{\pm 1, \pm i\}$.

On vérifie facilement que c'est exactement l'ensemble des inversibles de $\mathbb{Z}[i]$.

Définition 58

Soient $(A, +, \times)$ et $(A', +, \times)$ deux anneaux.

On appelle **morphisme d'anneaux** de A dans A' toute application $f: A \to A'$ telle que

- $\forall (a,b) \in A^2$, f(a+b) = f(a) + f(b),
- $\forall (a,b) \in A^2$, f(ab) = f(a)r(b),
- $f(1_A) = 1_{A'}$.

Si de surcroît f est bijective, on dit qu'une telle application f est un **isomorphisme** d'anneaux.

Exemple 59

La conjugaison

$$\operatorname{conj}: \begin{cases} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & \overline{z} \end{cases}$$

est un isomorphisme de l'anneau $(\mathbb{C}, +, \times)$ dans lui-même.

3.5Anneaux intègres.

Définition 60

Soit $(A, +, \times)$ un anneau. On dit d'un élément a de A qu'il est un diviseur de zéro si $a \neq 0_A$ et s'il existe un élément b dans $A \setminus \{0_A\}$ tel que $ab = ba = 0_A$.

Exemple 61

- Dans l'anneau $(\mathbb{Z}, +, \times)$, il n'y a pas de diviseurs de zéro.
- Dans l'anneau ($\mathbb{R}^{\mathbb{R}}, +, \times$), il existe des diviseurs de zéro.

Définition 62

On appelle anneau intègre tout anneau commutatif sans diviseurs de zéro. Dans un tel anneau,

$$\forall (a,b) \in A^2 \quad (ab = 0_A) \Longrightarrow (a = 0_A \text{ ou } b = 0_A).$$

Exemple 63

 \mathbb{Z} est un anneau intègre, l'anneau $\mathbb{K}[X]$ des polynômes aussi, mais pas celui des matrices $M_n(\mathbb{K})$ $(n \geq 2)$.

Structure de corps.

4.1Définitions et exemples.

Définition 64

On appelle **corps** tout anneau commutatif $(K, +, \times)$ non réduit à $\{0_K\}$ dans lequel tout élément non nul est inversible.

Proposition 65

Tout corps est un anneau intègre, la réciproque est fausse.

Preuve:

Soit $(K, +, \times)$ un corps. C'est un anneau commutatif.

Supposons qu'il existe un diviseur de zéro, noté $x \in K$.

Alors $x \neq 0_K$ et $\exists y \in K \setminus \{0_K\} \mid xy = 0_K$ et $yy^{-1} = 1_K$ donc $y^{-1}xy = y^{-1}0_K$ donc $x = 0_K$. Absurde.

Exemple 66: 🛨

Soit

$$\mathbb{Q}[\sqrt{2}] = \left\{ x \in \mathbb{R} \mid \exists (a, b) \in \mathbb{Q}^2, \ x = a + b\sqrt{2} \right\}.$$

Montrer que $\mathbb{Q}[\sqrt{2}]$ est un corps.

Solution:

- $\bullet \mathbb{Q}[\sqrt{2}]$ est un sous-anneau de $(\mathbb{R}, +, \times)$.
- • $\mathbb{Q}[\sqrt{2}]$ est commutatif car \mathbb{R} l'est.

Soit $x \in \mathbb{Q}[\sqrt{2}]$ non nul, $\exists (a,b) \in \mathbb{Q}^2 \mid x = a + b\sqrt{2}$.

Alors $(a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2$ donc $(a + b\sqrt{2}) \times \left(\frac{a}{a^2 - 2b^2} + \frac{b}{a^2 - 2b^2}\right) = 1$.

Notons $c = \frac{a}{a^2 - 2b^2}$ et $d = \frac{b}{a^2 - 2b^2}$. On a $c + d\sqrt{2}$ inverse de $a + b\sqrt{2}$. Montrons que $a^2 - 2b^2 \neq 0$. Supposons que $a^2 - 2b^2 = 0$, alors $a^2 = 2b^2$ et si b = 0, alors a = 0, impossible.

Si $b \neq 0$, alors $\frac{a^2}{b^2} = 2$ donc $\left| \frac{a}{b} \right| = \sqrt{2}$, absurde car $\sqrt{2} \notin \mathbb{Q}$.

Alors $\mathbb{Q}[\sqrt{2}]$ est un corps.

Notation fractionnaire dans un corps.

Soit $(K, +, \times)$ un corps, $a \in K$ et $b \in K^*$. On note $ab^{-1} = \frac{a}{b}$. Pour $(a,c) \in K^2$ et $(b,d) \in (K^*)^2$, on peut vérifier que

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \qquad \frac{a}{b} = \frac{c}{d} \iff ad = bc \qquad \frac{1}{a} = a^{-1}.$$

4.3Corps des fractions d'un anneau intègre.

Théorème 67

Pour tout anneau intègre A, il existe un unique corps commutatif K contenant A et vérifiant

$$\forall x \in K, \ \exists (a,b) \in A \times A^* \mid x = \frac{a}{b}.$$

Le corps K est appelé **corps des fractions** de l'anneau A.

Exemple. Le corps des fractions de \mathbb{Z} n'est autre que \mathbb{Q} .

5 Exercices.

Groupes, sous-groupes, morphismes de groupes.

Exercice 1: $\Diamond \Diamond \Diamond$

Soit (E, \star) un magma associatif fini.

Démontrer qu'il existe dans E un élément idempotent, c'est-à-dire un élément x tel que $x^2 = x$.

Solution:

Soit $x \in E$. On considère la suite (u_n) telle que $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2$. Soit $n \in \mathbb{N}$.

Puisque E est fini, $\exists p > q \in \mathbb{N} \mid u_{2p} = u_{2q} \text{ donc } x^{2p} = x^{2q}$.

Alors on pose n = p - q et $a = x^{2p}$. Ainsi : $a^{2^n} = a$.

Si n = 1, a est idempotent. Sinon, on a:

$$a^{2^{n}-1}a^{2^{n}-1} = a^{2^{n+1}-2} = a^{2^{n}}a^{2^{n}-2} = aa^{2^{n}-2} = a^{2^{n}-1}$$

Donc $a^{2^{n}-1}$ est idempotent.

Exercice 2: $\Diamond \Diamond \Diamond$

Pour x et y dans] -1,1[, on pose $x\star y=\frac{x+y}{1+xy}.$ Montrer que (] $-1,1[,\star)$ est un groupe abélien.

Solution:

Soit $y \in]-1,1[$. On pose $f_y: x \mapsto \frac{x+y}{1+xy}$ définie sur]-1,1[. On a $f_y': x \mapsto \frac{1-y^2}{(1+xy)^2}$.

	J (1+wg)
x	-1 1
$f_y'(x)$	+
f_y	-1 \longrightarrow 1

Donc]-1,1[est stable part \star , c'est bien une l.c.i.

- Le neutre est 0.
- On peut vérifier l'associativité par calcul direct.
- Pour $x \in]-1,1[$, $x \star y = \frac{x+y}{1+xy} = \frac{y+x}{1+yx} = y \star x.$ Tout élément x admet un symétrique -x.

On a bien vérifié tous les points de la définition de groupe abélien.

Exercice 3: $\Diamond \Diamond \Diamond$

Soient (G,\star) un groupe et H un sous-groupe de G. Pour $a\in G,$ on pose

$$aHa^{-1} = \{a \star h \star a^{-1}, h \in H\}.$$

Montrer que aHa^{-1} est un sous-groupe de G.

${f Solution}:$

Soit e le neutre de G et de H. On fixe $a \in G$.

- • On a $e \in H$ et $e \star e \star e^{-1} = e$ donc $e \in aHa^{-1}$.
- • Soient $x, y \in H$. On a $x \star y = axa^{-1}ay^{-1}a^{-1} = axy^{-1}a^{-1} \in aHa^{-1}$ car $xy^{-1} \in H$ car H est un groupe.

Par caractérisation, aHa^{-1} est un sous-groupe de G.

Exercice 4: $\Diamond \Diamond \Diamond$

Soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$. Posons

$$H = \{ x \in \mathbb{R} \mid \cos(a_n x) \to 1 \}.$$

Montrer que H est un sous-groupe de $(\mathbb{R}, +)$.

Solution:

- $-\bullet$ On a $\cos(a_n 0) = \cos(0) = 1$ donc $0 \in H$.
- • Soient $x, y \in H$. On a

$$\cos(a_n(x-y)) = \cos(a_n x - a_n y) = \cos(a_n x)\cos(a_n y) + \sin(a_n x)\sin(a_n y) \to 1$$

$$\cos(a_n (x-y)) = \cos(a_n x - a_n y) = \cos(a_n x)\cos(a_n y) + \sin(a_n x)\sin(a_n y) \to 1$$

$$\cos(a_n x - a_n y) = \cos(a_n x)\cos(a_n y) + \sin(a_n x)\sin(a_n y) \to 1$$

Par caractérisation, H est un sous-groupe de $(\mathbb{R}, +)$.

Exercice 5: $\Diamond \Diamond \Diamond$

Soit l'ensemble d'applications

$$G = \{x \mapsto ax + b, \ a \in \mathbb{R}^*, \ b \in \mathbb{R}\}.$$

En vous appuyant sur un groupe connu, montrer que (G, \circ) est un groupe.

Solution:

Montrons que (G, \circ) est sous-groupe de $(S_{\mathbb{R}}, \circ)$.

- $\bullet id_{\mathbb{R}} \in G \text{ car } \forall x \in \mathbb{R}, id_{\mathbb{R}}(x) = 1x + 0.$
- • Soient $f: x \mapsto ax + b, g: x \mapsto mx + p \in$ deux fonctions de G. Alors:

$$\forall x \in \mathbb{R}, \ f \circ g^{-1}(x) = a(\frac{x-p}{m}) + b = \frac{a}{m}x + \frac{bm - ap}{m}.$$

Par caractérisation, G est un sous-groupe de $S_{\mathbb{R}}$.

Exercice 6: ♦♦◊

Soit G un groupe noté multiplicativement, et H et K deux sous-groupes de G. On définit

$$HK = \{ x \in G \mid \exists h \in H, \ \exists k \in K, \ x = hk \}.$$

Démontrer que HK est un sous-groupe de G si et seulement si HK = KH.

Solution:

- \implies Supposons HK sous-groupe de G.
- Soit $x \in HK : \exists h \in H, \ \exists k \in K \mid x = hk \text{ donc } x^{-1} = k^{-1}h^{-1} \in KH \text{ donc } x \in KH.$
- Soit $x \in KH : \exists k \in K, \ \exists h \in H \mid x = kh \text{ donc } x^{-1} = h^{-1}k^{-1} \in HK \text{ donc } x \in HK.$

On a l'égalité des ensembles.

- \leftarrow Supposons HK = KH.
- On a $1_G = 1_H 1_K$ donc $1_G \in HK$.
- • Soient $x = hk, x' = h'k' \in HK$. xx' = hkh'k' or $kh' \in KH$ et KH = HK donc $\exists \widetilde{h}, \widetilde{k} \in H \times K \mid kh' = \widetilde{h}\widetilde{k}$.

Ainsi, $x\widetilde{x} = hhkk' \in HK$.

— • Soit $x = hk \in HK$. On a $x^{-1} = k^{-1}h^{-1} \in KH = HK$ donc $x^{-1} \in HK$.

Par caractérisation, HK est sous-groupe de G.

Exercice 7: ♦♦◊

Soit G un groupe noté multiplicativement. Pour $a \in G$, on pose $\tau_a : x \mapsto ax$.

- 1. Pour tout $a \in G$, montrer que $\tau_a \in S_G$.
- 2. Montrer que $\delta: a \mapsto \tau_a$ est un morphisme injectif de G dans S_G .

Solution:

- 1. Soit $a \in G$. On a τ_a bijective car $\tau_{a^{-1}}$ est sa réciproque, et de G vers G car $a \in G$.
- 2. Soient $a, b \in G$. On a $\delta(ab) = \tau_{ab} = \tau_a \circ \tau_b = \delta(a)\delta(b)$.

Supposons $\delta(a) = \delta(b)$. Alors pour $x \in G$, ax = bx donc $axx^{-1} = bxx^{-1}$ donc a = b. C'est un morphisme injectif.

Exercice 8: ♦♦♦

Soit G un groupe. Montrer qu'une partie H finie, non vide et stable par la loi de G est nécessairement un sous-groupe de G.

Solution:

Soit H une telle partie et $x \in H$. On note e le neutre de G.

Puisque H est fini, $\exists k > q \in N \mid x^k = x^q \text{ donc } x^{k-q} = e \text{ donc } e \in H \text{ comme itéré de } x.$

On a d'ailleurs $x^{-1} = x^{k-q-1} \in H$.

Par hypothèse, H est stable par la loi de G donc c'est un sous-groupe.

Exercice 9: ♦♦◊

Soit (G,\cdot) un groupe. On note $\operatorname{Aut}(G)$ l'ensemble des automorphismes de G.

Pour $g \in G$, on note σ_q l'application $x \mapsto gxg^{-1}$.

- 1. Démontrer que $(\operatorname{Aut}(G), \circ)$ est un groupe.
- 2. Montrer que pour tout $g \in G$, $\sigma_g \in Aut(G)$.
- 3. Démontrer que l'application $\sigma: g \mapsto \sigma_g$ est un morphisme de groupes de G dans $\operatorname{Aut}(G)$.
- 4. Montrer que $Ker(\sigma) = Z(G)$, où Z(G) est le centre de G.

Solution:

- 1. Montrons que c'est un sous-groupe de S_G .
- $\bullet \text{ On a } \mathrm{id}_G \in \mathrm{Aut}(G).$
- • Soient $\varphi, \psi \in \operatorname{Aut}(G)$. On a $\varphi \circ \psi^{-1}$ bijective de G dans G car φ et ψ le sont donc $\varphi \psi^{-1} \in \operatorname{Aut}(G)$.

Par caractérisation, c'est un sous-groupe de S_G .

2. Soit $g \in G$. On a σ_g bijective car $\sigma_{g^{-1}}$ est sa réciproque. Soient $x, y \in G$.

C'est un morphisme car $\sigma_g(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = \sigma_g(x)\sigma_g(y)$.

C'est un endomorphisme car $\forall x \in G, \ gxg^{-1} \in G$ par stabilité.

- 3. Soient $g, h, x \in G$. On a $\sigma(gh)(x) = \sigma_{gh}(x) = ghxh^{-1}g^{-1} = \sigma_g\sigma_h(x) = \sigma(g)\sigma(h)(x)$.
- 4. Soient $x \in \text{Ker}(\sigma)$ et $g \in G$. On a $\sigma(x) = \text{id}_G$ donc $xgx^{-1} = g$ donc xg = gx par comp. à droite.
- Soient $x \in Z(G)$, $g \in G$. On a gx = xg donc $g = xgx^{-1} = \sigma_x(g) = \sigma(x)(g)$ donc $\sigma_x = \mathrm{id}_G$ donc $x \in \mathrm{Ker}(\sigma)$.

 $\overline{\text{Par}}$ double inclusion, $\text{Ker}(\sigma) = Z(G)$.

Exercice 10: ♦♦♦

Soit (G,\cdot) un groupe fini et χ un morphisme de groupes non constant de (G,\cdot) dans (\mathbb{C}^*,\times) . Calculer

$$S = \sum_{x \in G} \chi(x).$$

Solution:

Soit $\widetilde{x} \in G$ tel que $\chi(\widetilde{x}) \neq 1$ (existe car χ non constant).

On pose $\sigma_{\widetilde{x}}: x \mapsto x\widetilde{x}$, c'est une bijection de G dans G. Alors :

$$\chi(\widetilde{x})S = \sum_{x \in G} \chi(\widetilde{x})\chi(x) = \sum_{x \in G} \chi(x\widetilde{x}) \underset{\sigma_{\widetilde{x}}}{=} \sum_{x \in G} \chi(x) = S.$$

Alors $S(\chi(\widetilde{x}) - 1) = 0$. Donc S = 0.

Anneaux, corps.

Exercice 11: ♦♦◊

Montrer que dans un anneau, la somme de deux éléments nilpotents qui commutent est nilpotent.

Solution:

Soient a,b deux éléments nilpotents d'ordre p et q. On a:

$$(a+b)^{p+q} = \sum_{k=0}^{p+q} \binom{p+q}{k} a^k b^{p+q-k}$$

Pour $k \ge p$, on a $a^k = 0$. Pour $k \le p$, on a $p + q - k \ge q$ donc $b^{p+q-k} = 0$.

Dans tous les cas, les termes de la somme sont nuls. Donc $(a+b)^{p+q}=0$.

Exercice 12: ♦♦♦

Soit $(A, +, \times)$ un anneau. On suppose qu'il existe deux éléments a, b de A tels que

$$ab + ba = 1_A$$
 et $a^2b + ba^2 = a$

- 1. Montrer que $a^2b = ba^2$ et 2aba = a.
- 2. Montrer que a est inversible et que $a^{-1} = 2b$.

Solution

1. $a^2b + aba = a$ et $aba + ba^2 = a$ donc $a^2b = ba^2$ d'après la première équation.

Alors $a^2b + ba^2 + 2aba = 2a$ donc a + 2aba = 2a donc 2aba = a.

2. On a $a^2b + aba = a$ donc $a + aba = a + ba^2$ donc $aba = ba^2$; et $ba^2 + aba = a$ donc $aba = ab^2$.

 $\overline{\text{On}}$ a alors $a=2aba=2a^2b=2ba^2$ donc $ab=ba=2ba^2b$. Or $ab+ba=1_A$ et ab=ba donc $2ab=2ba=1_A$.

Exercice 13: ♦♦◊

Soit E un ensemble. On définit sur E la différence symétrique

$$\Delta: \begin{cases} E \times E & \to & E \\ (A,B) & \mapsto & A\Delta B = (A \cup B) \setminus (A \cap B) \end{cases}$$

- 1. Montrer que $(\mathcal{P}(E), \Delta)$ est un groupe commutatif.
- 2. Montrer que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif.
- 3. Démontrer que si E possède au moins deux éléments, alors l'anneau $(\mathcal{P}(E), \Delta, \cap)$ n'est pas intègre.

Solution:

- 1. On a Δ associative, commutative, unifère et admettant un symétrique.
- $\overline{2}$. On a $(\mathcal{P}(E), \Delta)$ groupe abélien.
- $-\bullet$ $(\mathcal{P}(E), \cap)$ est un magma associatif et unifère, on sait que \cap est commutatif.
- • Distributivité : soient $A, B, C \in \mathcal{P}(E)$. Montrons que $(A\Delta B) \cap C = (A \cap C)\Delta(B \cap C)$.

Alors $x \in A$ et $x \in C$ ou bien $x \in B$ et $x \in C$ donc $x \in (A \cap C)\Delta(B \cap C)$.

Soit $x \in (A \cap C)\Delta(B \cap C)$. $x \in A \cap C$ ou bien $x \in B \cap C$ donc $(x \in A \text{ et } x \in C)$ ou bien $(x \in B \text{ et } x \in C)$.

Alors $(x \in A \text{ ou bien } x \in B) \text{ et } x \in C \text{ donc } x \in (A\Delta B) \cap C.$

3. | Supposons $|E| \geq 2$. Par l'absurde, on suppose $(\mathcal{P}(E), \Delta, \cap)$ intègre. Soient $x, y \in E \mid x \neq y$.

 $\overline{\text{Alors}} \{x\} \cap \{y\} = \emptyset \text{ donc } \{x\} = \emptyset \text{ ou } \{y\} = 0, \text{ contradiction. Donc l'anneau n'est pas intègre.}$

Exercice 14: ♦♦♦

On appelle anneau de Boole un anneau A dans lequel $\forall x \in A, \ x^2 = x.$

- 1. Montrer que $(\{0,1\},+,\times)$ est un anneau de Boole, (avec + telle que 1+1=0).
- 2. Montrer que pour un ensemble E, $(\mathcal{P}(E), \Delta, \cap)$ est un anneau de Boole.
- 3. Donner un exemple d'anneau de Boole infini.
- 4. Démontrer que pour tout élément x d'un anneau de Boole, $x+x=0_A$ puis démontrer qu'un anneau de Boole est toujours commutatif.
- 5. Démontrer qu'il n'existe pas d'anneau de Boole à trois éléments.

Solution:

- 1. On vérifie la définition, c'est long...
- 2. On a $(\mathcal{P}(E), \Delta, \cap)$ un anneau commutatif (exercice précédent).
- De plus, pour $A \in \mathcal{P}(E)$, $A \cap A = A$ donc $A^2 = A$, c'est un anneau de Boole.
- $\overline{3}$. $(\mathcal{P}(\mathbb{N}), \cup, \cap)$.
- 4. Soit $x \in A$. On a $x + x = (x + x)^2 = 4x^2 = 4x$ donc $2x = 0_A$.

Soit $x, y \in A$. On a $x + y = (x + y)^2 = x^2 + xy + yx + y^2 = x + xy + yx + y$ donc xy = -yx = yx.

- 5. Supposons qu'il existe $(\{0_A, 1_A, x\}, +, \times)$ un anneau de boole à trois éléments (donc $0_A \neq 1_A$).
- $\overline{\bullet}$ Si $1_A + x = 0$, alors $1_A + x + x = x$ donc $1_A = x$, absurde.
- \bullet Si $1_A+x=1,$ alors $1_A+x+x=1_A+x$ donc $0_A=x,$ absurde.
- Si $1_A + x = x$, alors $1_A = 0_A$, absurde.

Dans tous les cas, on a contradiction donc un anneau de Boole ne peut pas avoir trois éléments.

Exercice 15: ♦♦♦

Soit $(A, +, \times)$ un anneau commutatif fini.

Démontrer que A est un corps si et seulement si il possède exactement un élément nilpotent et exactement deux éléments idempotents (élements x tels que $x^2 = x$).

Solution:

 \implies On suppose que $(A, +, \times)$ est un corps : $A \neq \{0_A\}, \ \forall x \in A, \ x^{-1} \in A \text{ et } A \text{ est intègre.}$

Supposons par l'absurde qu'il existe deux éléments nilpotents x et y d'ordres p < q.

Alors $x^p = y^q$ et $\frac{x^p}{y^{q-1}} = \frac{y^q}{x^{p-1}}$ donc $x^p x^{-(p-1)} = y^q y^{-(-q-1)}$.

Donc x = y. Absurde, on a l'unicité du nilpotent, qui est 0_A .

Supposons par l'absurde qu'il existe un idempotent $a \in A$ tel que $a \notin \{0_A, 1_A\}$.

Alors $a^2 = a$ donc $a^2 - a = 0_A$ donc $a(a-1) = 0_A$ donc $a = 0_A$ ou $a = 1_A$ par intégrité de l'anneau. Absurde Les idempotents sont exactement 0_A et 1_A .

- \leftarrow On suppose que A a deux idempotents et un nilpotent. Montrons que c'est un corps.
- On a $A \neq \{0_A\}$ car deux idempotents donc $1_A \neq 0_A$.
- Soit $x \in A^*$, A est fini donc $\exists k > q \in \mathbb{N} \mid x^k = x^q \text{ donc } x^{k-q} = 1_A \text{ car } x \text{ non nilpotent donc } x^{-1} = x^{k-q-1} \in A$.
- Soient $x, y \in A \mid xy = 0_A$. Si x ou y nilpotent, alors x ou y égal à 0 donc intègre.

Sinon, $x \neq 0_A$ et $y \neq 0_A$ donc $x = 0_A y^{-1} = 0_A$ ou $y = 0_A x^{-1} = 0_A$. Donc intègre

Donc A est un corps.