

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τεχνολογία Αισθητήρων και Μικροσυστημάτων

Εργαστηριακή Άσκηση 1

Διακρίβωση Μαγνητικού Αισθητήρα Hall

Ομάδα 3

Γκιόνι Ερνέστ 03119411 Κουκουλάρης Χαρίλαος 03118137 Τριανταφύλλου Ευάγγελος 03118898

Εαρινό Εξάμηνο 2022-2023

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

Ο αισθητήρας της άσκησης είναι ο SS49E (linear bipolar) και κάποια από τα κυριότερα χαρακτηριστικά του είναι τα εξής:

Τάση τροφοδοσίας	2,7 - 6,5 V	
Τυπική έξοδος	1,4 mV/Gauss	
Τυπικό εύρος μέτρησης	±1000G (±100mT)	
Έξοδος για μηδενικό πεδίο	$V_{\rm CC}/2$	

2.1. ΔΙΕΞΑΓΩΓΗ ΜΕΤΡΗΣΕΩΝ

Ερώτημα 1.

Η τιμή της αντίστασης του σωληνοειδούς μετρήθηκε στα 3 Ω.

Ερώτημα 7.

Μεταβάλλοντας την ένταση του ρεύματος που τροφοδοτεί το σωληνοειδές, από τα 2,6 Α ως τα 0 Α με βήμα 0,2 Α, προκύπτουν οι παρακάτω τιμές για την τάση εξόδου.

Τιμές μετρήσεων:

Ένταση Ρεύματος	Τάση Εξόδου
I (mA)	Vout (V)
2,6	2,65
2,4	2,65
2,2	2,65
2,0	2,64
1,8	2,60
1,6	2,59
1,4	2,66
1,2	2,65
1,0	2,65
0,8	2,60
0,6	2,60
0,4	2,60
0,2	2,60
0	2,60

Ερώτημα 9.

Μεταβάλλοντας πάλι την ένταση του ρεύματος που τροφοδοτεί το σωληνοειδές, από τα 0 A ως τα 2,6 A με βήμα 0,2 A, προκύπτουν οι παρακάτω τιμές για την τάση εξόδου.

Τιμές μετρήσεων:

Ένταση Ρεύματος	Τάση Εξόδου	
I (mA)	Vout (V)	
0	2,60	
0,2	2,57	
0,4	2,61	
0,6	2,53	
0,8	2,55	
1,0	2,57	
1,2	2,56	
1,4	2,52	
1,6	2,53	
1,8	2,53	
2,0	2,52	
2,2	2,53	
2,4	2,52	
2,6	2,52	

2.2. ΕΠΕΞΕΡΓΑΣΙΑ ΜΕΤΡΗΣΕΩΝ

Ερώτημα 1.

Παρατίθενται κάποια από τα χαρακτηριστικά του σωληνοειδούς.

- Αντίσταση R = 3 Ω
- Διάμετρος σύρματος χαλκού $d=0.4 \ mm$
- Ειδική αγωγιμότητα χαλκού ρ = 0,0175 μΩ · m

Με βάση αυτά υπολογίζεται η διάμετρος του σωληνοειδούς και στη συνέχεια το μήκος του περιελιγμένου χάλκινου αγωγού.

$$S = \pi r^2 = \pi d^2/4 = 0,12566 \ mm^2$$

$$R = \rho \frac{l}{S} \Longrightarrow l = \frac{S \cdot R}{\rho} = \frac{0,12566 \cdot 10^{-6} \ m^2 \cdot 3 \ \Omega}{0,0175 \cdot 10^{-6} \ \Omega \cdot m} = 22,175 \ m$$

Ερώτημα 2.

Δεδομένου ότι η ακτίνα του σωληνοειδούς είναι $r=22\,mm$ και έχοντας βρει το μήκος του σύρματος το οποίο έχει τυλιχτεί γύρω του, υπολογίζεται και ο αριθμός των σπειρών του.

$$l = N2\pi r \Rightarrow N = \frac{l}{2\pi r} = \frac{22,175m}{2\pi 22mm} = 160,421$$
 σπείρες

Ερώτημα 3.

Υποερώτημα 3.1.

Ακολουθούν υπολογισμοί της έντασης του μαγνητικού πεδίου στο κέντρο του σωληνοειδούς χρησιμοποιώντας τον επόμενο τύπο:

$$H = \frac{N}{2\sqrt{\left(\frac{L}{2}\right)^2 + r^2}} \cdot I$$

Αρχικά υπολογίζεται η πολλαπλασιαστική σταθερά και έπειτα πολλαπλασιάζεται με κάθε μία από τις τιμές της έντασης του ρεύματος.

$$\frac{N}{2\sqrt{\left(\frac{L}{2}\right)^2 + r^2}} = \frac{160,421}{2\sqrt{\left(\frac{38}{2}\right)^2 + 22^2}} \cdot 10^3 \cdot m^{-1} = 2759,325 \cdot m^{-1}$$

Υποερώτημα 3.2.

Στη συνέχεια υπολογίζεται η τιμή της μαγνητικής επαγωγής βάσει του τύπου:

$$B = \mu_0 \cdot H$$
 όπου $\mu_0 = 4\pi 10^{-7}$.

Τα αποτελέσματα των δύο υποερωτημάτων παρουσιάζονται στον παρακάτω πίνακα.

Ένταση Ρεύματος	Τάση Εξόδου	Ένταση Μαγνητικού Πεδίου	Μαγνητική Επαγωγή
I (mA)	Vout (V)	H (A/m)	B x 10^-3 (T)
2,6	2,52	7174,245	9,015
2,4	2,52	6622,38	8,322
2,2	2,53	6070,515	7,628
2	2,52	5518,65	6,935
1,8	2,53	4966,785	6,241
1,6	2,53	4414,92	5,548
1,4	2,52	3863,055	4,854
1,2	2,56	3311,19	4,161
1	2,57	2759,325	3,467
0,8	2,55	2207,46	2,774
0,6	2,53	1655,595	2,08
0,4	2,61	1103,73	1,387
0,2	2,57	551,865	0,693
0	2,6	0	0

Ερώτημα 4.

Χρησιμοποιώντας τις τιμές που υπολογίστηκαν προηγουμένως υπολογίζεται η καμπύλη «τάσης εξόδου»-«μαγνητικής επαγωγής» (Vout(B)).

Ερώτημα 5.

Κλίση υπολογιζόμενη από τις μετρήσεις:

$$1T = 10000G = 10^4 G$$

$$K\lambda i\sigma \eta = \frac{5.6}{1000 \cdot 10^{-3}} V/T = \frac{0.56}{1000} V/G$$

Ερώτημα 6.

Εξετάζοντας το φυλλάδιο δεδομένων του αισθητήρα Hall (Honeywell SS49E) εντοπίζεται η καμπύλη βαθμονόμησής του.

Η κλίση που προκύπτει βάσει αυτής της καμπύλης είναι:

$$\frac{4-2.5}{1000} V/G = \frac{1.5}{1000} V/G$$

Ερώτημα 7.

Η απόκλιση στην υπολογιζόμενη τιμή της κλίσης μπορεί να οφείλεται σε κακή ποιότητα μετρήσεων λόγω συνδυασμού ενός ή περισσοτέρων εκ των ακόλουθων παραγόντων:

- σφάλματα των οργάνων κατά τις μετρήσεις,
- μόνιμο σφάλμα του αισθητήρα,
- θόρυβος,
- μαγνητικά πεδία από συσκευές του περιβάλλοντος χώρου (π.χ. κινητά τηλέφωνα)