

HPE DSI 312 Introduction to Deep Learning

Spring 2023

Instructor: Ioannis Konstantinidis

Overview

Neural networks:

- TensorFlow/Keras vs. Sklearn
- Transfer Learning
- Cross-entropy

Quick review

- Neural Networks
- Linear Units
- Perceptrons

Linear unit vs. linear regression: same form

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b =$$

$$= \sum_{i} w_i x_i + b$$

Linear unit vs. linear regression: different training

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b =$$

$$= \sum_{i} w_i x_i + b$$

Compute parameters (coefficients) via Ordinary Least Squares

$$[\mathbf{W}, b] = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

Linear unit vs. linear regression: different training

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b =$$

$$= \sum_{i} w_i x_i + b$$

Compute parameters (weights) via backpropagation (SGD)

Network Architecture

Activation Functions: going beyond linear

Network Architecture

Activation Functions: going beyond linear

Stacked layers: number and size

Perceptron example

- https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/anatomy
- https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/playground-exercises

Transfer Learning

DL models are stacked into a complete pipeline

This Photo by Unknown Author is licensed under CC BY-NC-ND

DL models are a complete pipeline

- Feature engineering is automatically "baked into" the process
- Initial layers pick out "low level" features
- Later layers process these transformed data to compute "higher level" features
- "Top" layers perform classification tasks based on these custom-designed features

Example from Computer Vision

"Deep learning methods aim at learning feature hierarchies with features from higher levels of the hierarchy formed by the composition of lower level features.

Automatically learning features at multiple levels of abstraction allows a system to learn complex functions mapping the input to the output directly from data, without depending completely on human-crafted features."

[Bengio, "On the expressive power of deep architectures", Talkat ALT, 2011]

[Bengio, Learning Deep Architectures for AI, 2009]

Earlier ML

Deep Learning

Transfer Learning

DL models are stacked into a complete pipeline

DL models are modular stacks

This Photo by Unknown Author is licensed under CC BY-NC-ND

Make_pipeline(Transform, Model)

Make_pipeline(Transform, Model)

Transfer Learning

Training DL models from scratch is expensive

Transfer learning takes a piece of a model that has already been trained on a related task and reuses it in a new model

Data to features module

https://www.tensorflow.org/hub/common_saved_model_apis/images

Actual demo (part I)

• Retraining an Image Classifier: Build a Keras model on top of a pre-trained image classifier to distinguish flowers.

https://tensorflow.org/hub/tutorials/tf2_image_retraining

We will revisit this in more detail next time

loss =tf.keras.losses.

Actual class value for label y

binary choice: 0 or 1

Prediction for label y

probability: p

loss =tf.keras.losses.

Actual class value for label y

ullet Prediction for label y

• L² loss

binary choice: 0 or 1

probability: p

$$(y - p)^2$$
or
$$(y - \text{round}(p))^2$$

L^2 loss / squared error

$$(y - p)^2$$

Actual class label	Prob(Y=1) = 0.01	Prob(Y=1) = 0.1	Prob(Y=1) = 1
Y= <mark>0</mark>	$(0-0.01)^2 = 0.0001$	$(0-0.1)^2 = 0.01$	$(0-1)^2 = 1$
Y= <mark>1</mark>	$(1-0.01)^2 = 0.99^2 = 0.98$	$(1-0.1)^2 = 0.9^2 = 0.81$	$(1-1)^2 = 0^2$

$$(y - \text{round}(p))^2$$

Actual class label	Prob(Y=1) = 0.01	Prob(Y=1) = 0.1	Prob(Y=1) = 1
Y= <mark>0</mark>	$(0-0)^2 = 0$	$(0-0)^2 = 0$	$(0-1)^2 = 1$
Y= <mark>1</mark>	$(1-0)^2 = 1$	$(1-0)^2 = 1$	$(1-1)^2 = 0$

L^2 loss / squared error

$$(y - p)^2$$

Actual class label	Prob(Y=1) = 0.01	Prob(Y=1) = <mark>0.1</mark>	Prob(Y=1) = 1
Y= <mark>0</mark>	= ~0	= ~0	= 1
Y= <mark>1</mark>	= ~1	= ~1	= 0

$$(y - \text{round}(p))^2$$

Actual class label	Prob(Y=1) = 0.01	Prob(Y=1) = 0.1	Prob(Y=1) = 1
Y= <mark>0</mark>	= 0	= 0	= 1
Y= <mark>1</mark>	= 1	= 1	= 0

loss = tf.keras.losses.

Actual class value for label y

binary choice: 0 or 1

Prediction for label y

probability: p

• L² loss

$$(y - p)^2$$
or
$$(y - \text{round}(p))^2$$

Surprise factor

$$y\log(p) + (1 - y)\log(1 - p)$$

Surprise factor: $y\log(p) + (1-y)\log(1-p)$

Actual class label	Prob(Y=1) = 0.01	Prob(Y=1) = 0.1	Prob(Y=1) = 1
Y= <mark>0</mark>	-(1- <mark>0</mark>)*log(1- <mark>0.01</mark>) = -log(0.99)	-(1- <mark>0</mark>)*log(1- <mark>0.1</mark>) = -log(0.9)	-(1- <mark>0</mark>) * log(1- <mark>1</mark>) = -log(0)
	= ~0.01	= ~0.1	= ~infinity
Y= <mark>1</mark>	- <mark>1</mark> * log(<mark>0.01</mark>)	- <mark>1</mark> * log(<mark>0.1</mark>)	- <mark>1</mark> * log(<mark>1</mark>)
	= ~4.6	= ~2.3	= 0

Surprise factor: $y\log(p) + (1-y)\log(1-p)$

Actual class label	Prob(Y=1) = 0.01	Prob(Y=1) = 0.1	Prob(Y=1) = 1
Y=0	= ~0.01	= ~0.1	= ~infinity
	No surprise	Almost no surprise	SURPRISE !!!!
Y=1	= ~4.6	= ~2.3	= 0
	SURPRISE	Surprise	Absolutely no surprise

Surprise factor vs. squared error

$$y\log(p) + (1-y)\log(1-p)$$

Actual class label	Prob(Y=1) = 0.01	Prob(Y=1) = 0.1	Prob(Y=1) = 1
Y=0	= ~0.01	= ~0.1	= ~infinity
	No surprise	Almost no surprise	SURPRISE !!!!
Y=1	= ~4.6	= ~2.3	= 0
	SURPRISE	Surprise	Absolutely no surprise

$$(y - \text{round}(p))^2$$

Actual class label	Prob(Y=1) = 0.01	Prob(Y=1) = 0.1	Prob(Y=1) = 1
Y= <mark>0</mark>	= 0	= 0	= 1
Y= <mark>1</mark>	= 1	= 1	= 0

Surprise factor, AKA

- Log loss
- Likelihood Function
- Binary/Categorical (relative) Cross-Entropy
- Kullback–Leibler divergence