Daniel Lacayo 32247970 Michael Zink ECE 241 FA 20 4 December 2020

Project 3

Problem 1. a) Plot

b) See method: plotData_with_model()

```
# model profit as a function of population
self.predict = np.poly1d(np.polyfit(self.population, self.profit, 1))
# self.predict(x) => y
```

c) Plot with model

d) This line shows a positive linear relationship between population and profit at Walmart stores. The mean absolute error is 2.19, signifying the correlation between population and profit is strong and reliable.

e)

City	Population (x10,000)	Profit \$ (x10,000)
A	7.8	5.41
В	4.4	1.35
С	4.7	1.71
D	6.12	3.41

Е	8.55	6.30
F	6.7	4.10
G	9.8	7.80
Н	7.01	4.47

In descending order of profit: G > E > A > H > F > D > C > B

f) The mean absolute value of the model is 2.19, meaning this is a rather accurate model.

Output

```
/Users/daniellacayo/.conda/envs/Project3/bin/python
/Users/daniellacayo/PycharmProjects/Project3/Walmart.py
Future stores in descending order of profit:
Store G expects $7.80 (x10,000) of profit
Store E expects $6.30 (x10,000) of profit
Store A expects $5.41 (x10,000) of profit
Store H expects $4.47 (x10,000) of profit
Store F expects $4.10 (x10,000) of profit
Store D expects $3.41 (x10,000) of profit
Store C expects $1.71 (x10,000) of profit
Store B expects $1.35 (x10,000) of profit
```

Sources:

https://socialstatisticsfun.wordpress.com/2012/12/18/deriving-alpha-and-beta/

$$f(x) = \sum_{i=1}^{m} (\omega x_i + \beta - y_i)^2$$

partial derivative with respect to B:

partial derivative with respect to w:

$$\frac{\partial f(x)}{\partial \beta} = \sum_{i=1}^{m} 2(\hat{w}x + \hat{\beta} - y_i)(0 + 1 - 0)$$

$$\frac{\partial f(x)}{\partial w} = \sum_{i=1}^{m} 2(\hat{w}x_i + \hat{\beta} - y_i)(X_i + 0 - 0)$$

set derivative to O

$$O = 2 \sum_{i=1}^{m} (\hat{W}_{x_i} + \hat{\beta} - y_i)$$

$$O = \sum_{i=1}^{m} 2(\hat{W}_{ki} + \hat{\beta} - y_i) X_i$$

divide by 2, distribute sigma

$$O = \sum_{i=1}^{m} \hat{w}x_i + \hat{\beta}m - \sum_{i=1}^{m} y_i$$

$$O = \sum_{i=1}^{m} \hat{W}_{i} x_{i}^{2} + \sum_{i=1}^{m} \hat{\beta}_{i} x_{i} - \sum_{i=1}^{m} y_{i} x_{i}$$
 (2)

$$\hat{\beta}_{m} = \sum_{i=1}^{m} y_{i} - \sum_{i=1}^{m} \hat{\omega}_{x_{i}}$$

$$\hat{\beta} = M' \sum_{i=1}^{m} Y_{i} - M' \sum_{i=1}^{m} \hat{\omega} X_{i}$$
 (1)

For the linear model
$$\sum_{i=1}^{m} \mathcal{E}_{i}^{2} = \sum_{i=1}^{m} (Wx_{i} + \beta - y_{i})^{2} \quad \text{where } f(x) = \sum_{i=1}^{m} \mathcal{E}_{i}^{2}$$

and if $y_i = W x_i + \beta + E_i$, then the linear model that minimizes

training error is: $\hat{y_i} = \hat{w}x_i + \hat{\beta}$

$$\hat{q}_i = \hat{\omega} x_i + \hat{\beta}$$

b) simplify in terms of variance & covariance Goal:

$$\frac{\text{COV}_{KY}}{S_X^2} = \frac{(N-1)^{-1} \sum (X_i - \overline{X})(Y_i - \overline{Y})}{(N-1)^{-1} \sum (X_i - \overline{X})^2} \qquad \left(\begin{array}{c} \text{for my savity} \\ \sum = \sum_{i=1}^{M} \end{array} \right)$$

Struting with eq. (2) and subs. eq. (1):

$$O = \sum_{i} \widehat{w}_{x_{i}^{2}} + \left(m' \sum_{i} Y_{i} - m' \sum_{i} \widehat{w}_{x_{i}} \right) \sum_{i} X_{i} - \sum_{i} Y_{i} X_{i}$$

$$O = \sum \hat{\omega} x_1^2 + m^{-1} \sum Y_1 x_1 - m^{-1} \sum \hat{\omega} x_1^2 - \sum Y_1 x_1$$

$$\sum \hat{\omega} x_i^2 - m^{-1} \sum \hat{\omega} x_i^2 = \sum Y_i x_i - m^{-1} \sum Y_i x_i$$

$$\hat{\omega} \sum_{x_1^2} - m^{-1} \sum_{x_2^2} x_1^2 = \sum_{x_1^2} y_1 x_1 - m^{-1} \sum_{x_1^2} y_1 x_1$$

$$\hat{\nabla} = \frac{\sum y_1 x_1 - m^2 \sum y_1 x_2}{\sum x_1^2 - m^2 \sum x_1^2}$$

$$(m^{-1}\sum Y_1X_1 = N\overline{Y}\overline{X}, m^{-1}\sum X_1^2 = N\overline{X}^2)$$

$$\hat{\omega} = \frac{\sum y_i x_i - N \overline{y} \overline{x}}{\sum x_i^2 - N \overline{x}^2} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

Finally we have:

$$\hat{\omega} = \underbrace{\sum_{i=1}^{m} (x_i - \overline{x})(y_i - \overline{y})}_{\sum_{i=1}^{m} (x_i - \overline{x})^2}$$