

WE CLAIM:

1. A method of JPEG compression of an image frame divided up into a plurality of non-overlapping, tiled 8×8 pixel blocks

5 B_{ij} where i, j are integers covering all of the blocks in the image frame, comprising:

(a) forming a discrete cosine transform (DCT) of each block B_{ij} of the image frame to produce a matrix of blocks of transform coefficients D_{ij} ;

(b) calculating a visual importance, I_{ij} , for each block of the image, based upon assigning zeros for flat features and values approaching unity for sharply varying features;

(c) forming a global quantization matrix Q by one of

(i) selecting a standard JPEG quantization table and

20 (ii) selecting a quantization table such that the magnitude of each quantization matrix coefficient Q_{ij} is inversely proportional to the importance in the image of the corresponding DCT basis vector; and

25 (d) selecting a linear scaling factor S_{ij} defining bounds over which the image is to be variably quantized;

(e) quantizing the transform coefficients, D_{ijmn} , by an equivalent of dividing them by a factor $S_{min} * Q$, where S_{min} is a user selected minimum scaling factor, and

5

(f) entropy encoding quantized coefficients T_{ijmn} and $Q * S_{min}$ to create a JPEG image file.

2. A method according to claim 1, wherein step (e) includes rounding $(D_{ijmn} / (S_{min} * Q))$ to the nearest integer to form quantized DCT transformed coefficients T_{ijmn} ;

(a) setting $T_{ijmn} = 0$ if $\text{round}(D_{ijmn} / (Q_{mn} * S_{ij})) = 0$; and

(b) setting $T_{ijmn} = \text{sign}(D_{ijmn}) * (2^{\lceil \lg(\lvert D_{ijmn} \rvert + 1) \rceil} - 1) - 1$ if $\lvert D_{ijmn} \rvert - (2^{\lceil \lg(\lvert D_{ijmn} \rvert + 1) \rceil} - 1) - 1$ is less than or equal to $\lvert D_{ijmn} - Q_{mn} S_{ij} * \text{round}(D_{ijmn} / (S_{ij} * Q_{mn})) \rvert$;

3. A method according to claim 1, including calculating a
20 linear scaling factor S_{ij} equal to $I_{ij} * (S_{max} - S_{min}) + S_{min}$ where S_{min} and
 S_{max} are user specified to define bounds over which the image will
be variably quantized.

4. The method according to claim 1, where I_{ij} is determined
25 by discrete edge detection and summation of transform
coefficients.

5. The method according to claim 1, wherein I_{ij} is determined by creating a 24 x 24 matrix of image pixels of DCT coefficients centered on a block B_{ij} , where i and $j = 1, 2, \dots, 8$, convolving said 24 x 24 matrix with an edge tracing kernel to produce a convolved matrix, summing center 10 x 10 matrix values of said convolved matrix to produce a summed value, and normalizing said summed value to produce a visual importance, I_{ij} .

6. The method according to claim 1, wherein said Q is formed by calculating an 8 x 8 matrix A by calculating matrix elements A_{mn} of said A according to the formula

$$A_{mn} = \sum_{(i,j)} I_{ij} (B_{ij})_{mn},$$

calculating elements Q_{mn} of said Q according to the formula

$$Q_{mn} = \max(A_{mn}) / A_{mn}$$

20 and scaling values of Q_{mn} for all values of (m,n) except $(0,0)$ in order to minimize an error between Q and a standard JPEG quantization matrix.

25 7. A method of JPEG compression of an image frame divided up into a plurality of non-overlapping, tiled 8 x 8 pixel blocks B_{ij} , where i, j are integers covering all of the blocks in the image frame, comprising:

(a) forming a discrete cosine transform (DCT) of each block B_{ij} of the image frame to produce a matrix of blocks of transform coefficients $D_{ij};$

5

(b) calculating a visual importance, $I_{ij},$ for each block of the image, based upon assigning zeros for flat features and values approaching unity for sharply varying features;

(c) forming a global quantization matrix Q by one of

(i) selecting a standard JPEG quantization table and

(ii) selecting a quantization table such that the magnitude of each quantization matrix coefficient Q_{ij} is inversely proportional to a visual importance, $I_{ij},$ to the image of a corresponding DCT basis vector; and

20 (d) selecting a linear scaling factor S_{ij} defining bounds over which the image is to be variably quantized wherein $S_{ij} = I_{ij}(S_{\max} - S_{\min}) + S_{\min}$ where S_{\max} and S_{\min} are user selected;

25 (e) quantizing the transform coefficients, $D_{ijmn},$ to produce quantized blocks T_{ijmn} as follows:

5 and

(iii) setting $T_{ijmn} = \text{sign}(D_{ijmn}) * (2^{(\text{ceil}(\lg(\text{abs}(D_{ijmn})+1))-1)-1})$ if $\text{abs}(D_{ijmn}) - (2^{(\text{ceil}(\lg(\text{abs}(D_{ijmn})+1))-1)-1})$ is less than or equal to $(\text{abs}(D_{ijmn}) - Q_{mn} * S_{ij} * \text{round}(D_{ijmn}/(S_{ij} * Q_{mn})))$;

(f) entropy encoding quantized coefficients T_{ijmn} and $Q * S_{min}$, to create a JPEG image file.

8. A method of JPEG compression of a colour image represented by channels Y for greyscale data, and U and V each for colour, comprising:

20 (a) shrinking the colour channels U and V by a fraction of their size;

(a) forming a discrete cosine transform (DCT) D_{ij} for each block B_{ij} of each of channels Y, U and V;

25 (b) calculating a visual importance, I_{ij} , for each Y channel block of each image and setting $I_{ij} = \max\{I_{ij}\}$ values for

corresponding Y channel blocks} for blocks in the U and V channels;

5 (c) forming a global quantization matrix Q for the Y channel block and one for channels U and V combined such that a magnitude of each quantization matrix coefficient Q_{ij} is inversely proportional to an importance in the image of a corresponding DCT basis vector; and

10 (d) quantizing the transform coefficients for each of the Y, U and V channels by dividing them by a factor $S_{ij} Q'$, where S_{ij} is a linear scaling factor for each of channels Y, U and V and Q' is the quantization table for the associated channel being quantized; and

15 (e) entropy encoding quantized coefficients T_{ijmn} and $Q' * S_{min}$, where S_{min} is a user selected minimum scaling factor for each of channels Y, U, and V, to create a JPEG image file for each of channels Y, U and V.

20

9. The method of claim 8 wherein the shrinking factor is 1/2.

25 10. Apparatus for JPEG compression of an image frame divided up into a plurality of non-overlapping, tiled 8 x 8 pixel blocks B_{ij} , where i, j are integers covering all of the blocks in the image frame, comprising:

(a) a discrete cosine transformer (DCT) operative to form the discrete cosine transform of each block B_{ij} of the image frame to produce a matrix of blocks of transform coefficients D_{ij} ;

5

(b) a visual importance calculator operative to calculate the visual importance, I_{ij} , for each block of the image, based upon assigning zeros for flat features and values approaching unity for sharply varying features;

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

(c) a global quantization matrix calculator operative to calculate the global quantization matrix, Q , by one of

(i) selecting a standard JPEG quantization table and

(ii) selecting a quantization table such that the magnitude of each quantization matrix coefficient Q_{ij} is inversely proportional to the importance in the image of the corresponding DCT basis vector;

20

and

(d) a linear scaling factor calculator operative to determine a linear scaling factor, S_{ij} , defining bounds over which the image is to be variably quantized based on user established 25 values of S_{\max} and S_{\min} ;

(e) a quantizer operative to divide the transform coefficients, D_{ijmn} , by a value equivalent to dividing them by a factor $S_{min} * Q$, where S_{min} is a user selected minimum scaling factor, and

5

(f) an entropy encoder operative to encode the quantized coefficients T_{ijmn} and $Q * S_{min}$ to create a JPEG image file.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

11. Apparatus according to claim 10, wherein said quantizer rounds $(D_{ijmn} / (S_{min} * Q))$ to the nearest integer to form quantized DCT transformed coefficients T_{ijmn} and

(a) sets $T_{ijmn} = 0$ if $\text{round}(D_{ijmn} / (Q_{mn} * S_{ij})) = 0$; and

(b) sets $T_{ijmn} = \text{sign}(D_{ijmn}) * (2^{\text{ceil}(\lg(\text{abs}(D_{ijmn})+1))-1}-1)$ if $\text{abs}(D_{ijmn}) - (2^{\text{ceil}(\lg(\text{abs}(D_{ijmn})+1))-1}-1)$ is less than or equal to $\text{abs}(D_{ijmn} - Q_{mn}S_{ij} * \text{round}(D_{ijmn} / (S_{ij} * Q_{mn})))$;

20 12. Apparatus according to claim 10, wherein said linear scaling factor calculator determines a linear scaling factor S_{ij} equal to $I_{ij} * (S_{max} - S_{min}) + S_{min}$ where S_{min} and S_{max} are user specified to define bounds over which the image will be variably quantized.

25