Y36SAP

http://service.felk.cvut.cz/courses/Y36SAP/

Úvod Návrhový proces Architektura počítače

2008-Kubátová Y36SAP-Úvod

Struktura předmětu

- Číslicový počítač, struktura, jednotky a jejich propojení.
- Logické obvody, formy jejich popisu, kombinační obvody a jejich realizace na úrovni hradel.
- Sekvenční obvody a jejich realizace.
- Typické kombinační a sekvenční obvody v číslicových počítačích - jejich realizace (kodéry, sčítačky, čítače, registry)
- Data, jejich zobrazení a zpracování.
- Realizace aritmetických operací.
- Soubor instrukcí a strojový kód.
- Návrh procesoru
- Paměti struktura paměťového obvodu, paměťový systém počítače.

2

- Vstupy a výstupy
- Řadiče. Procesory typu CISC a RISC. 2008-Kubátová Y36SAP-Úvod

Podmínky zápočtu

Předmět 2+2 zápočet, zkouška

- cvičení seminární + laboratorní (1:1)
- zápočet za:
 - 4 fungující laboratorní úlohy (7 bodů logika a 7 bodů asembler AVR),
 - 2 testy (až 2x15 bodů)
 - celkem minimálně 25 bodů
- zkouška za:
 - 45 (a více) bodů v semestru
 - jinak body ze cvičení + zkouškový test (až 50 bodů)

2008-Kubátová Y36SAP-Úvod 3

Cíle předmětu

- globální přehled o architektuře počítačů a jejím vývoji (tedy i historické souvislosti)
- odpovídá předmětům "Digital Design"
- tvoří ho základy předmětů SKD, LOB, JPO v programu E+I (X)
- navazuje na Y36ALG a Y31ELI
- využívá programovatelné obvody
- seznamuje s moderními návrhovými prostředky

2008-Kubátová Y36SAP-Úvod

Co je číslicový počítač

Vstupní data (údaje)

počítač

Výstupní data (údaje)

- Zobrazení dat
 - Nespojité diskrétní (číslicové, digitální)
 - Spojité analogové
- Počítač
 - Analogový spojité zobrazení dat
 - Číslicový nespojité zobrazení dat
 - Hybridní obojí + A/D, D/A převodníky

2008-Kubátová Y36SAP-Úvod

Technologie – dramatický rozvoj, Mooreuv zákon

- Procesory
 - Logická kapacita: o 30% za rok
 - Hodinová frekvence: o 20% za rok
- Hlavní paměť
 - DRAM kapacita: o 60% za rok (4x každé 3 roky)
 - Rychlost přístupová doba: o 10% za rok
 - Cena za bit: snížení o 25% za rok
- Disk
 - Kapacita: o 60% za rok
 - Využití dat: o 100% každých 9 měsíců
- Počítačové sítě
 - šířka pásma o 100% za rok!

2008-Kubátová Y36SAP-Úvod

Każdych 18 mesicu zdvojnásobení hustoty integrace

6

Historie – vývojové mezníky

- víc než 50 let uplynulo od vytvoření 1. univerzálního elektronického počítače
- dnešní PC jsou výkonnější než počítač z r. 1980 za miliony
- HW průlom: VLSI technologie a mikroprocesory (70. léta)
- SW průlom: univerzální na výrobci nezávislé OS (UNIX) a přechod od programování v SOJ (strojový jazyk) k°programování ve vyšších jazycích
- nástup RISC (Reduced Instruction Set Computer) důsledek:
 - paralelizmus na úrovní zpracování instrukcí ILP (Instruction Level Parallelism), tj. proudové zpracování instrukcí, super-skalární architektury atd.
 - používaní vnitřních skrytých pamětí (cache)
- průlom v navrhování: vývoj kvantitativního přístupu k návrhu a analýze počítačů, který využívá empirické pozorování, experimentování a simulace

Chronologie v datech

- 60. léta: dominantní velké sálové počítače s aplikacemi jako
 - zpracováni dat ve finanční sféře
 - rozsáhlé vědeckotechnické výpočty
- 70. léta: mikropočítače pro aplikace ve vědeckých laboratořích
- 80. léta: příchod stolních počítačů založených na mikroprocesorech (osobní počítače a pracovní stanice)
- dále se objevují servery a lokální sítě pro větší úlohy s větší pamětí a výkonem
- 90. léta: Internet a WWW technologie
- současnost: rozdělení počítačového trhu na 3 oblasti charakterizované rozdílným použitím, požadavky a počítačovou technologií:
 - osobní, stolní a přenosné počítače
 - servery a výkonné paralelní počítače a superpočítače
 - vestavné (embedded) a řídící počítače v jednoúčelových zařízeních

2008-Kubátová Y36SAP-Úvod

Reprezentace systému

- Funkční (behavioral or functional representation)
 - Popis funkce ne implementace

Co to má dělat

- Black-box + závislosti výstupů na vstupech v čase
- Strukturní
 - Popis implementace bez zvláštního popisu funkce (ta vyplývá ze vzájemného spojení bloků o známé funkci)
 - Vnitřek black-boxů

Jak

- Fyzikální
 - Popisuje fyzikální vlastnosti každého black-boxu
 - Popisuje přesné vztahy mezi bloky (velikost, hmotnost, spotřebu, zahřátí, a to v každém bodě, vstupním i výstupním pinu)

Jak to vyrobit

2008-Kubátová Y36SAP-Úvod

9

Úrovně abstrakce

Funkční, strukturní i fyzikální reprezentace může být použita na různém úrovni abstrakce (granularity) podle použitých typů objektů.

Dále na obr. – návrh elektronických systémů:

- 1. Transistor
- 2. Hradlo
- 3. Registr
- 4. Procesor

2008-Kubátová Y36SAP-Úvod 10

Úroveň abstrakce	Funkční popis	Strukturní bloky	Fyzikální objekty
transistor	Diferenciální rovnice, volt-ampérová charakteristika	Transistor, odpor, kondenzátor	Analogové a číslicové buňky - layout
hradlo	Boolovské rovnice, konečný automat	Hradlo, klopný obvod	Moduly, bloky
registr	Algoritmus, vývojový diagram, soubor instrukcí	Sčítačka, komparátor, čítač, registr	Mikročipy
procesor	Specifikace funkce, program	Procesor, řadič, paměť	Desky plošných spojů, vícečipové moduly

Pohled zdola-nahoru x zhora-dolů

- Návaznost na Elektroniku ELI transistory, jak vypadá hradlo zdola
- Algoritmizace programování, typy dat a jejich struktury shora
- SAP
 jak data uložit a jak je zpracovat a jak mají vypadat ty
 jednotky, které data zpracovávají jak se postaví z
 hradel

mezi

2008-Kubátová Y36SAP-Úvod 14

Počítačový software

Firmware

BIOS, adresní módy, architektura souboru instrukcí – Instruction Set Architecture - ISA, jazyk symbolických instrukcí - asembler

Operační systém

Struktura souboru na disku, privilegia a ochrana, přepínaní úloh, jádro, správa paměti a zařízení

Vývojářský SW

Asembler-překladač a linker; simulátor a debugger; knihovny

Aplikace

Programovací jazyky, editory, prohlížeče, hry, ...

2008-Kubátová Y36SAP-Úvod 15

Počítačový hardware

Architektura počítače

Architektura procesoru, provádění instrukcí, tok dat, řízení, predikce větvení

· Paměťová hierarchie

vyrovnávací paměť (cache), správa paměťového systému, segmentace a stránkování

Uživatelské rozhraní

displej, grafické rozhraní, klávesnice, myš, porty

Další rozhraní

Přerušovací systém, DMA (Direct Memory Access), komunikační protokoly

2008-Kubátová Y36SAP-Úvod 16

Von Neumannova architektura (1)

- Instrukce a data jsou uloženy v téže paměti.
- Paměť je organizována lineárně (tzn. jednorozměrně) a je rozdělena na stejně velké buňky, které se adresují celými čísly (zprav. 0, 1, 2, 3, . . .).
- Data ani instrukce nejsou explicitně označeny.
- Explicitně nejsou označeny ani různé datové typy.
- Pro reprezentaci dat i instrukcí se používají dvojkové signály.
- V instrukci zpravidla není uváděna hodnota operandu, ale jeho adresa.
- Instrukce se provádějí jednotlivě, a to v pořadí, v němž jsou zapsány v paměti, pokud není toto pořadí změněno speciálními instrukcemi (nazývanými skoky).

2008-Kubátová Y36SAP-Úvod 17

Von Neumannova architektura (2)

- Důsledek podle výpisu paměti nelze poznat, zda jde o instrukce nebo o data (ani o jaká data) – je třeba znát kontext
- · Počítač tvoří:
 - hlavní paměť (main memory)
 - procesor:
 - datová část
 - ALU aritmeticko-logická jednotka
 - Registry
 - řídící část
 - Řadič control unit, controller
 - vstupní/výstupní zařízení

2008-Kubátová Y36SAP-Úvod 18

Organizace hlavní paměti

- Hlavní paměť je rozdělena na buňky paměťová místa, kterým jsou přiřazena nezáporná čísla nazývaná adresy
- Obsah paměťového místa je slovo
 - slovo (word) velikost závisí na procesoru (např. 16b, 37b, 50b, b označuje bit)
 - slabika B byte, 8b = 1B, obvykle 2 nebo i více slabik tvoří slovo, např. u procesorů Intel 80x86 –1 slovo = 2B
- Obsah paměťového místa na adrese adr bývá někdy označován <adr>; nehrozí-li nedorozumění píše se však často adr místo <adr>.

2008-Kubátová Y36SAP-Úvod 23

Slabiková organizace paměti

Př. 1 slabika = 1B

1 slovo = 2B

1 dvojité slovo = 4B [DW – Double Word] – tedy 32b Od adresy 5678 má být uloženo dvojité slovo 1234ABCD:

	1. způsob	2. způsob
5678	12	CD
5679	34	AB
567A	AB	34
567B	CD	12

- **1. big-endian** (IBM 360, Motorola 68000)
- 2. little-endian (Intel 80x86, DEC Alpha) Oba způsoby (Motorola 88 110)

2008-Kubátová

Y36SAP-Úvod

24

Zobrazení dat v paměti

Numerická data – čísla:

- V pevné řádové čárce fix point, obvykle celá čísla (integer, byte, word ...)
- V pohyblivé řádové čárce floating point, racionální čísla (real, float, ...)
- Dvojková binary
- Desítková decimal
- Šestnáctková hexadecimal
- Bez znaménka unsigned, pouze nezáporná (byte, word, unsigned …)
- Se znaménkem signed (integer, short int, signed ...)
- Různě dlouhá, různý rozsah hodnot (short int, integer, long int, byte, word, ...)

2008-Kubátová Y36SAP-Úvod 25

Příklad 1 - intuitivně b p q \mathbf{S} $s = \overline{abp} + \overline{abp} + \overline{abp} + \overline{abp} + \overline{abp}$ q = abp + abp + abp + abp

Úpravy výrazů později

2008-Kubátová

Kubátová 15

Y36SAP-Úvod

