Lecture 6 Asymmetric Cryptography

R. Rhouma

UTAS Sultanate of Oman September 2022

CSSY2201: Introduction to Cryptography

Plan

Principles of Asymmetric cryptography

2 RSA

Principles of asymmetric cryptography

- asymmetric cryptography solve two main problems :
 - Distribution of keys: How to establish a secret communication without the intervention of a third trusted party (KDC: Key distribution Center)
 - Digital Signature: A way to authenticate the message and the message origin (the sender authentication)
- Whitfield Diffie and Martin Hellman from Stanford University have proposed in 1976 the first new concept of asymmetric cryptography.

Terminology of Asymmetric cryptography

- Plaintext : original text
- Ciphertext : encrypted text
- Encryption : The process of conversion from plaintext to ciphertext
- Decryption: The process of conversion from ciphertext to plaintext
- Public key: used in the Encryption algorithm (by the sender for confidentiality)
- Private key: used in the Decryption algorithm (by the receiver for confidentiality)

Encryption with the public key

Encryption with the private key

Asymmetric cryptography: confidentiality

Asymmetric cryptography: authentication

Asymmetric cryptography: confidentiality & authentication

Applications of asymmetric cryptography

- Asymetric cryptography are used in three main applications:
 - Encryption/Decryption: Sender encrypts a plaintext using the receiver's public key.
 - Digital signature : Sender signs a message using his private key.
 - Key Exchange: Sender and receiver negotiate to establish a common secret key.
- Some algorithms can be used in all those applications.
 Some others are appropriate for one or to applications.

Applications of asymmetric cryptography

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange	
RSA	Yes	Yes	Yes	
Elliptic Curve	Yes	Yes	Yes	
Diffie-Hellman	No	No	Yes	
DSS	No	Yes	No	

Asymmetric Cryptography Requirements

These alg must have the following requirements

- need one way trap function
- a one-way function verifies the following :
 - Y = f(X) is easy
 - $X = f^{-1}(Y)$ is not feasible
- a one-way trapdoor function is a f_k family of reversible functions satisfying:
 - $Y = f_k(X)$ is easy if k and X are known
 - $X = f_k^{-1}(Y)$ is easy if k and Y are known
 - $X = f_k^{-1}(Y)$ is not feasible if Y is known and k not known
- a public key alg is therefore based on a one-way trap function

RSA

- Developed in 1977 at MIT by Ron Rivest, Adi Shamir& Len Adleman
- the most used public key alg
- is an alg whose plaintext and ciphertext are integers between 0 and n-1.
- n is a number of size 1024 bits or 309 decimal digits

RSA Algorithm

- the plaintext is encrypted in blocks, each block has a value less than n
- Encryption of a plaintext block is as follows:

$$C = M^e \mod n$$

decryption is as follows:

$$M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$$

- sender and receiver know the value of n
- The sender knows the value of e
- only the receiver knows the value of d
- the public key is the pair (e, n)
- the private key is the pair (d, n)

Key Generation

- each user generates their own keys (private and public) by :
- select two large primes p and q
- calculate $n = p \times q$
- calculate $\phi(n) = (p-1) \times (q-1)$
- randomly select a number e with : $1 < e < \phi(n)$ and $GCD(e, \phi(n)) = 1$
- solve this equation to find d with $0 \le d \le n$:

$$e \times d = 1 \mod \phi(n)$$

d is called the multiplicative inverse of $e \mod \phi(n)$

- publish pair $PU = \{e, n\}$ as public key
- secretly keep $PR = \{d, n\}$ pair as private key

Toy example

- Select prime numbers : p = 17 & q = 11
- **2** Calculate $n = p \times q = 17 \times 11 = 187$
- **3** Calculate $\phi(n) = (p-1) \times (q-1) = 16 \times 10 = 160$
- Select e : gcd(e, 160) = 1; choose e = 7
- **5** Determine d such that $d \times e = 1 \mod 160$: the value is d = 23 since $23 \times 7 = 161 = 10 \times 160 + 1$
- **1** Publish public key $PU = \{7, 187\}$
- ▼ Keep private key PR = {23, 187} secret

Enryption/decryption

Example RSA on a long message

Exponentiation in RSA

- encryption and decryption manipulates exponentiations of large numbers modulo n
- we can use properties of modular arithmetic :

$$(a \mod n) \times (b \mod n) = (a \times b) \mod n$$

- we must also try to do the exponentiation as quickly as possible
- we can render the exponentiation in $O(log_2 n)$ multiplications for a number n ex1: $7^5 = 7^4 \times 7^1 = 3 \times 7 = 10 \mod 11 \implies log_2 5 = 3$ multiplications

ex2: $3^{129} = 3^{128} \times 3^1 = 5 \times 3 = 4 \mod 11 \Longrightarrow \log_2 129 = 8$ multiplications

Computing of ab mod n

$$c \leftarrow 0; f \leftarrow 1$$

$$for i \leftarrow k \ downto \ 0$$

$$do \quad c \leftarrow 2 \times c$$

$$f \leftarrow (f \times f) \ mod \ n$$

$$if \quad b_i = 1$$

$$then \ c \leftarrow c + 1$$

$$f \leftarrow (f \times a) \ mod \ n$$

$$return \ f$$

with b is an integer converted to binary in $b_k b_{k-1} \dots b_0$ Example of calculation of $a^b \mod n$, for a = 7, $b = 560 = (1000110000)_2$, and n = 561

i	9	8	7	6	5	4	3	2	1	0
b_i	1	0	0	0	1	1	0 70 298	0	0	0
c	1	2	4	8	17	35	70	140	280	560
f	7	49	157	526	160	241	298	166	67	1

Attacks on RSA?

Three approaches to attack RSA:

- Factor n into two primes p and q. This will lead to find $\phi(n) = (p-1)(q-1)$ which leads to determine $d = e^{-1} \mod \phi(n)$
- determine $\phi(n)$ directly without finding p and q, which leads to determine $d = e^{-1} \mod \phi(n)$
- Determine d directly without determining $\phi(n)$