1 Covariance d'un couple de variables aléatoires

▶ Linéarité de l'espérance

(sous rés. de cv.) $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y]$ où $a, b \in \mathbb{R}$ (constantes déterministes)

▶ Espérance du produit indépendant

Si X, Y sont indépendantes, alors (sous réserve de convergence) $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[X]$.

▶ Notion de variance

Par définition : $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$ Kœnig-Huygens : $Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$.

Écart-type : $\sigma(X) = \sqrt{\operatorname{Var}(X)}$

Homogénéité : $\operatorname{Var}(\lambda X) = \lambda^2 \operatorname{Var}(X), \ \sigma(\lambda X) = |\lambda| \sigma(X), \ \text{pour } \lambda \in \mathbb{R}.$

▶ Notion de covariance

Par définition : $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

Kænig-Huygens : $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

Lien à la variance : Cov(X, X) = Var(X)

Bilinéarité-symétrie « mêmes règles de calcul pour Cov(X, Y) que pour xy ».

Décorrélation X, Y sont décorrélées si Cov(X, Y) = 0

Deux variables indépendantes sont décorrélées (décorrélation = « indépendance en moyenne »)

Corrélation linéaire, principe de la régression linéaire

Coefficient de corrélation linéaire $\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$ Cauchy-Schwarz $-1 \leqslant \rho(X,Y) \leqslant 1.$

Corrélation totale : pour $\rho(X,Y) = \pm 1$, alors on peut écrire Y = aX + b, où $a,b \in \mathbb{R}$. Principe de la régression linéaire On minimise le trinôme $T(\lambda) = \text{Var}(Y - \lambda X)$,

(aux limites du programme ECE) où X est la variable explicative Y est la variable expliquée

2 Un peu d'algèbre linéaire

Pratique du pivot de Gauss

Système linéaire système homogène associé, second membre générique

Matrice du système matrice augmentée

Conclusion de la résolution Notion de système compatible, de condition de compatibilité

▶ Application à l'inversion d'une matrice carrée

▶ Notion d'espace vectoriel

C'est un ensemble E dont les éléments sont des « vecteurs » $\overrightarrow{u} \in E$:

- ► Il y a un « vecteur nul » $\overrightarrow{0}$.
- On peut y faire des **combinaisons linéaires** de \overrightarrow{u} , \overrightarrow{v} : $\lambda \overrightarrow{u} + \mu \overrightarrow{v}$.
- ... avec les règles de calcul usuelles sur les combinaisons linéaires

▶ Savoir reconnaître le vocabulaire sur les exemples au programme :

- \otimes Les espaces cartésiens \mathbb{R}^n
- \otimes Les espaces de matrices $\mathcal{M}_{n,p}(\mathbb{R})$
- \otimes Les espaces de polynômes $\mathbb{R}[X]$, $\mathbb{R}_n[X]$
- \otimes L'espace des applications $\mathcal{F}(D,\mathbb{R})$, où $D \subseteq \mathbb{R}$.
- \otimes L'espace des suites réelles $\mathbb{R}^{\mathbb{N}}$.