

Mathématiques

Classe: BAC INFORMATIQUE

Session Principale 2021

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(\$\) 45' min

5 pt

- 1) On considère dans C l'équation (E) $:z^e$ -(5-3i)z+2-9i=0.
 - **a-** Vérifier que $(3+i)^2=8+6i$.
 - **b-** Résoudre l'équation (E).
- 2) Dans le plan complexe muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points
 - A, B et K d'affixes respectives $z_A = 1 2i$, $z_B = 4 i$ et $z_K = 2$.
 - **a-** Soit C le symétrique de A par rapport à K. Montrer que $z_C = 3 + 2i$.
 - **b-** Dans l'annexe ci-jointe figure 1, placer les points A,B,C et K.
 - **c-** Calculer $\overline{(z_B z_a)}(z_B z_c)$.
 - **d-** Montrer que le triangle ABC est rectangle isocèle.
- 3) La droite (AB) coupe l'axe (O, \vec{u}) en un point F. on pose $z_F = a \ ou \ a$ est un réel.
 - **a-** Montrer que $(z_B z_A)(z_F z_A) = 3a 1 + (7 a)i$.
 - **b-** Déterminer alors le réel a.
 - **c-** Vérifier que B est le milieu du segment [AF].
 - **d-** Soit G le point d'intersection des droites (FK) et (BC). Déterminer l'affixe du point G.

Exercice 2

On considère le suite (u_n) définie sur IN par $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{3+5u_n}{5+3u_n} \end{cases}$ pour tout $n \in IN$.

- 1) a- Montrer par récurrence que pour tout $n \in IN$, $0 \le u_n \le 1$.
 - **b-** Vérifier que pour tout $n \in IN$, $u_{n+1} u_n = \frac{3(1 u_n^2)}{5 + 3u_n}$. Déduire que la suite (u_n) est croissante.
 - **c-** Monter que la suite (u_n) est convergente puis calculer sa limite.
- 2) Soit la suite (v_n) définie sur IN par : $v_n = \frac{1-u_n}{1+u_n}$
 - **a-** Montrer que (v_n) est une suite géométrique de raison $q=\frac{1}{4}$.
 - **b-** Exprimer v_n en fonction de n puis montrer que $u_n = \frac{4^n-1}{4^n+1}$
 - **C-** A partir de quelle valeur de n, $u_n \ge 0.99$?

Exercice 3

(\$\) 40' min

4.5 pt

- 1) On considère dans Z x Z l'équation (E) :-2x + 3y = 10
 - **a-** Vérifier que le couple (7,8) est solution de l'équation (E).
 - **b-** Résoudre l'équation (E).

On désigne par n un entier naturel supérieur ou égal à 1.

On pose $a_n = 7 + 3 * 6^n$, $b_n = 8 + 2 * 6^n$ et $d_n = PGCD(a_n, b_n)$.

- **2) a-** Vérifier que le couple (a_n, b_n) est solution de l'équation (E).
 - **b-** En déduire que d_n divise 10.
- **3) a-** Montrer que $6^n \equiv 0[5]$.
 - **b-** Prouver que $a_n \equiv 0[5]$ et $b_n \equiv 0[5]$.
 - **c-** Déduire que d_n =5 ou d_n =10.
- 4) a- Montrer par récurrence que $6^n \equiv 6[10]$.
 - **b-** en déduire que $a_n \equiv 5[10]$.
 - **c-** Montrer que $d_n=5$.

Exercice 4

(\$ 55' min

6 pt

Soit f la fonction définie sur]0, $+\infty[$ par $f(x) = \frac{1}{2}x^2 + \frac{1}{2} + \ln x$ et on désigne par (C) sa courbe représentative dans un repère orthonormé 0, $\vec{\imath}$, $\vec{\jmath}$).

- 1) a- Déterminer $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement le résultat.
 - **b-** Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.
- 2) a-montrer que pour tout $x \in]0, +\infty[, f'(x)>0.$
 - **b-** Dresser le tableau de variation de f.
 - **c-** Montrer que l'équation f(x)=0 admet dans $]0, +\infty[$ une unique solution a et que 0.5 < a < 0.6.
- 3) a- Montrer que pour tout $x \in]0, +\infty[, f''(x)=1-\frac{1}{x^2}]$
 - **b-** Montrer que le point G (1,1) est un point d'inflexion de la courbe (C).
 - **c-** Montrer que la droite T : y = 2x 1 est la tangente à (C) au point G.
- 4) Soit g la fonction définie sur $]0, +\infty[$ par g(x)=f(x)-(2x-1).
 - **a-** Montrer que pour tout $x \in]0, +\infty[$, $g'(x) = \frac{(x-1)^2}{x}$ et en déduire que la fonction g est croissante.
 - **b-** Calculer g(1) et déterminer le signe de g sur $]0, +\infty[$.
 - c- Déduire la position relative de T et (C).
- **5)** Dans l'annexe ci-jointe figure 2. Tracer T et (C).

Figure 2

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000