МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра вычислительной математики

Отчёт

Лабораторная работа

"Методы решения задачи Коши" Вариант №5

Благодарный Артём Андреевич студент 3 курса, 3 группы специальности «Информатика» дисциплина «Численные методы»

Постановка задачи

Дана задача Коши:

$$y'(x) = \frac{y}{x} + x(0.35e^x + 0.65\cos x), x \in [0.35, 1.35]$$
$$y(0.35) = 0.35 * (0.35e^{0.35} + 0.65\sin 0.35) \approx 0.251845$$

- 1. Найти приближенное решение задачи Коши на сетке узлов при 10 разбиениях отрезка интегрирования, применяя методы:
 - а. Явный метод Эйлера
 - b. Явный метод Рунге-Кутта ($\beta = 1/2$)
 - с. Явный метод Адамса
- 2. Используя таблицу результатов, получить погрешности методов, сравнивая приближенное решение с точным.
- 3. Оценивая величину истинной погрешности, сделать вывод о точности каждого используемого метода.

Листинг программы

```
import numpy as np
import math
def f(x, y):
  return y / x + x * (0.35 * math.exp(x) + 0.65 * math.cos(x))
def f_exact_expr(x):
  return 0.35 * math.exp(x) + 0.65 * math.sin(x)
def y_exact(x):
  return x * f_exact_expr(x)
def euler_method(a, b, n, f, y0):
  h = (b - a) / n
  x_{vals} = [a + i * h for i in range(n + 1)]
  y_vals = [y0]
  for i in range(n):
    y_next = y_vals[i] + h * f(x_vals[i], y_vals[i])
    y_vals.append(y_next)
  return x_vals, y_vals
def runge_kutta_2(a, b, n, f, y0):
  h = (b - a) / n
  x_{vals} = [a + i * h for i in range(n + 1)]
  y_vals = [y0]
  for i in range(n):
    k1 = f(x_vals[i], y_vals[i])
    k2 = f(x_vals[i] + h / 2, y_vals[i] + h / 2 * k1)
    y next = y vals[i] + h * k2
    y_vals.append(y_next)
  return x_vals, y_vals
def adams_bashforth_2(a, b, n, f, y0):
  h = (b - a) / n
  x_vals = [a + i * h for i in range(n + 1)]
  y_vals = [y0]
  _, rk_y = runge_kutta_2(a, b, n, f, y0)
  y_vals.append(rk_y[1])
  for i in range(1, n):
    fi = f(x_vals[i], y_vals[i])
    fi_1 = f(x_{vals}[i - 1], y_{vals}[i - 1])
    y_next = y_vals[i] + h * (1.5 * fi - 0.5 * fi_1)
    y_vals.append(y_next)
  return x_vals, y_vals
a = 0.35
b = 1.35
n = 10
h = (b - a) / n
y0 = y_exact(a)
sample points = [0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25, 1.35]
print("Точное решение в выбранных точках:")
```

```
for x in sample_points:
  print(f"y\_exact(\{x:.2f\}) = \{y\_exact(x):.8f\}")
x_nodes = [a + i * h for i in range(n + 1)]
y_true = [y_exact(x) for x in x_nodes]
x_eu, y_eu = euler_method(a, b, n, f, y0)
x_rk, y_rk = runge_kutta_2(a, b, n, f, y0)
x_ad, y_ad = adams_bashforth_2(a, b, n, f, y0)
def print_results(name, x_vals, y_vals, y_exact_vals):
  print(f'\n{name}')
  print(f"{'x':>8} | {'y(x)':>14} | {'y_exact(x)':>14} | {'Oшибка':>14}")
  print("-" * 54)
  for x, y_num, y_ex in zip(x_vals, y_vals, y_exact_vals):
    error = y_num - y_ex
    print(f"{x:8.2f} | {y_num:14.8f} | {y_ex:14.8f} | {error:14.8f}")
print_results("Метод Эйлера", x_eu, y_eu, y_true)
print_results("Метод Рунге-Кутта (β=1/2)", x_rk, y_rk, y_true)
print_results("Метод Адамса", x_ad, y_ad, y_true)
print("\nАдамс - Рунге-Кутта:")
diff_ad_rk = np.array(y_ad) - np.array(y_rk)
print(diff_ad_rk)
print("\nЭйлер - Рунге-Кутта:")
diff_eu_rk = np.array(y_eu) - np.array(y_rk)
print(diff_eu_rk)
                                   Результаты и их анализ
Точное решение в выбранных точках:
y_exact(0.35) = 0.25184503
y_exact(0.45) = 0.37423659
y_exact(0.55) = 0.52051189
y_exact(0.65) = 0.69147680
y_exact(0.75) = 0.88801140
y_exact(0.85) = 1.11112736
y_exact(0.95) = 1.36203254
y_exact(1.05) = 1.64220314
y_{exact}(1.15) = 1.95346369
y_{exact}(1.25) = 2.29807505
y_{exact}(1.35) = 2.67883081
Метод Эйлера
              y(x) |
                      y_exact(x) |
                                         Ошибка
    x |
```

0.35 |

0.25184503 | 0.25184503 |

0.0000000

0.45	0.36255505	0.37423659	-0.01168153
0.55	0.49416184	0.52051189	-0.02635005
0.65	0.64785232	0.69147680	-0.04362448
0.75	0.82473500	0.88801140	-0.06327640
0.85	1.02594075	1.11112736	-0.08518661
0.95	1.25270822	1.36203254	-0.10932431
1.05	1.50646602	1.64220314	-0.13573711
1.15	1.78891688	1.95346369	-0.16454681
1.25	2.10212657	2.29807505	-0.19594848
1.35	2.44861914	2.67883081	-0.23021167

Метод Рунге-Кутта (β=1/2)

	x	y(x) y_ex	xact(x) Ош	ибка
-	0.35	0.25184503	0.25184503	0.00000000
	0.45	0.37347817	0.37423659	-0.00075842
	0.55	0.51895127	0.52051189	-0.00156062
	0.65	0.68907887	0.69147680	-0.00239792
	0.75	0.88474349	0.88801140	-0.00326791
	0.85	1.10695575	1.11112736	-0.00417162
	0.95	1.35692021	1.36203254	-0.00511232
	1.05	1.63610812	1.64220314	-0.00609501
	1.15	1.94633764	1.95346369	-0.00712605
	1.25	2.28986202	2.29807505	-0.00821302
	1.35	2.66946619	2.67883081	-0.00936462

Метод Адамса

x	y(x) y_ex	кact(x) Ош	ибка
 0.35	0.25184503	0.25184503	0.00000000
0.55	0.23104303	0.23104303	0.00000000
0.45	0.37347817	0.37423659	-0.00075842
0.55	0.51917437	0.52051189	-0.00133752
0.65	0.68951461	0.69147680	-0.00196218
0.75	0.88533391	0.88801140	-0.00267749
0.85	1.10761618	1.11112736	-0.00351118
0.95	1.35753790	1.36203254	-0.00449464
1.05	1.63653848	1.64220314	-0.00566466

```
1.15 | 1.94640029 | 1.95346369 | -0.00706340
1.25 | 2.28933679 | 2.29807505 | -0.00873826
1.35 | 2.66808892 | 2.67883081 | -0.01074189
```

Адамс - Рунге-Кутта:

```
[ 0.00000000e+00 0.00000000e+00 2.23097016e-04 4.35743654e-04 5.90420554e-04 6.60432505e-04 6.17686418e-04 4.30357674e-04 6.26582460e-05 -5.25233836e-04 -1.37726664e-03]
```

Эйлер - Рунге-Кутта:

```
[ 0. -0.01092311 -0.02478943 -0.04122655 -0.06000849 -0.081015 -0.10421199 -0.1296421 -0.15742076 -0.18773545 -0.22084705]
```

Результаты численного решения показывают заметную разницу в точности между тремя методами: Эйлера, Рунге-Кутты ($\beta=1/2$) и Адамса. Метод Эйлера, будучи простым и основанным на линейной аппроксимации, даёт наибольшую ошибку, которая нарастает по мере увеличения ххх, достигая -0.23 к х=1.35х=1.35х=1.35. Это ожидаемо, так как метод Эйлера не учитывает искривление функции на интервале и склонен к накоплению погрешности.

Методы Рунге-Кутты и Адамса демонстрируют существенно лучшую точность, с максимальной ошибкой около -0.01. Разница между ними минимальна, однако Рунге-Кутта даёт немного более точные значения на всём отрезке. Интересно, что разность между Адамсом и Рунге-Куттой сначала немного увеличивается, достигая пика, а затем начинает снижаться, что может свидетельствовать о выравнивании ошибок. В целом, если требуется высокая точность — предпочтительны методы Рунге-Кутты и Адамса, тогда как метод Эйлера может использоваться лишь для грубых оценок или учебных целей.