Třetí přednáška

NAIL062 Výroková a predikátová logika

 ${\sf Jakub\ Bul\'(n\ (KTIML\ MFF\ UK)}$

Zimní semestr 2025

Třetí přednáška

Program

- problém splnitelnosti, SAT solvery
- 2-SAT a implikační graf
- Horn-SAT a jednotková propagace
- algoritmus DPLL
- úvod do tablo metody

Materiály

Zápisky z přednášky, Kapitola 3, Sekce 4.1-4.2 z Kapitoly 4

Kapitola 3: Problém splnitelnosti

Problém SAT:

- vstup: výrok φ v CNF
- otázka: je φ splnitelný?

Problém SAT:

• vstup: výrok φ v CNF

otázka: je φ splnitelný?

univerzální problém: každou teorii nad konečným jazykem lze

převést do CNF

Problém SAT:

vstup: výrok φ v CNF

otázka: je φ splnitelný?

univerzální problém: každou teorii nad konečným jazykem lze převést do CNF

Cook-Levinova věta: SAT je NP-úplný (důkaz: formalizuj výpočet nedeterministického Turingova stroje ve výrokové logice)

Problém SAT:

vstup: výrok φ v CNF

• otázka: je φ splnitelný?

univerzální problém: každou teorii nad konečným jazykem lze převést do CNF

Cook-Levinova věta: SAT je NP-úplný (důkaz: formalizuj výpočet nedeterministického Turingova stroje ve výrokové logice)

ale některé *fragmenty* jsou v P, efektivně řešitelné, např. 2-SAT a Horn-SAT (viz Sekce 3.2 a 3.3)

Problém SAT:

- vstup: výrok φ v CNF
- otázka: je φ splnitelný?

univerzální problém: každou teorii nad konečným jazykem lze převést do CNF

Cook-Levinova věta: SAT je NP-úplný (důkaz: formalizuj výpočet nedeterministického Turingova stroje ve výrokové logice)

ale některé *fragmenty* jsou v P, efektivně řešitelné, např. 2-SAT a Horn-SAT (viz Sekce 3.2 a 3.3)

praktický problém: moderní SAT solvery (viz Sekce 3.1) se používají v řadě odvětví aplikované informatiky, poradí si s obrovskými instancemi

3.1 SAT solvery

 existují od 60. let 20. století, v 21. století dramatický rozvoj dnes až 10⁸ proměnných, viz www.satcompetition.org.

- existují od 60. let 20. století, v 21. století dramatický rozvoj dnes až 10⁸ proměnných, viz www.satcompetition.org.
- nejčastěji založeny na jednoduchém algoritmu DPLL (viz Sekce 3.4), umí i najít řešení (model)

- existují od 60. let 20. století, v 21. století dramatický rozvoj dnes až 10⁸ proměnných, viz www.satcompetition.org.
- nejčastěji založeny na jednoduchém algoritmu DPLL (viz Sekce 3.4), umí i najít řešení (model)
- různá rozšíření, zejména Conflict-driven clause learning (CDCL)

- existují od 60. let 20. století, v 21. století dramatický rozvoj dnes až 10⁸ proměnných, viz www.satcompetition.org.
- nejčastěji založeny na jednoduchém algoritmu DPLL (viz Sekce 3.4), umí i najít řešení (model)
- různá rozšíření, zejména Conflict-driven clause learning (CDCL)
- řada technologií pro efektivnější řešení instancí pocházejících z různých aplikačních domén, heuristiky pro řízení prohledávání (za použití ML, NN) — desítky tisíc řádků kódu

- existují od 60. let 20. století, v 21. století dramatický rozvoj dnes až 10⁸ proměnných, viz www.satcompetition.org.
- nejčastěji založeny na jednoduchém algoritmu DPLL (viz Sekce 3.4), umí i najít řešení (model)
- různá rozšíření, zejména Conflict-driven clause learning (CDCL)
- řada technologií pro efektivnější řešení instancí pocházejících z různých aplikačních domén, heuristiky pro řízení prohledávání (za použití ML, NN) — desítky tisíc řádků kódu

Praktická ukázka: boardomino

Lze pokrýt šachovnici s chybějícími dvěma protilehlými rohy perfektně pokrýt kostkami domina?

- existují od 60. let 20. století, v 21. století dramatický rozvoj dnes až 10⁸ proměnných, viz www.satcompetition.org.
- nejčastěji založeny na jednoduchém algoritmu DPLL (viz Sekce 3.4), umí i najít řešení (model)
- různá rozšíření, zejména Conflict-driven clause learning (CDCL)
- řada technologií pro efektivnější řešení instancí pocházejících z různých aplikačních domén, heuristiky pro řízení prohledávání (za použití ML, NN) — desítky tisíc řádků kódu

Praktická ukázka: boardomino

Lze pokrýt šachovnici s chybějícími dvěma protilehlými rohy perfektně pokrýt kostkami domina?

těžká instance SATu (proč?), jak zakódovat?

- existují od 60. let 20. století, v 21. století dramatický rozvoj dnes až 10⁸ proměnných, viz www.satcompetition.org.
- nejčastěji založeny na jednoduchém algoritmu DPLL (viz Sekce 3.4), umí i najít řešení (model)
- různá rozšíření, zejména Conflict-driven clause learning (CDCL)
- řada technologií pro efektivnější řešení instancí pocházejících z různých aplikačních domén, heuristiky pro řízení prohledávání (za použití ML, NN) — desítky tisíc řádků kódu

Praktická ukázka: boardomino

Lze pokrýt šachovnici s chybějícími dvěma protilehlými rohy perfektně pokrýt kostkami domina?

těžká instance SATu (proč?), jak zakódovat?

řešič Glucose, formát vstupu: DIMACS CNF

3.2 2-SAT a implikační graf

• k-CNF: CNF a každá klauzule nejvýše k literálů

- k-CNF: CNF a každá klauzule nejvýše k literálů
- *k*-SAT: je daný *k*-CNF výrok splnitelný?

- k-CNF: CNF a každá klauzule nejvýše k literálů
- k-SAT: je daný k-CNF výrok splnitelný?
- k-SAT je NP-úplný pro k ≥ 3 (ke každému výroku lze sestrojit ekvisplnitelný 3-CNF výrok)

- k-CNF: CNF a každá klauzule nejvýše k literálů
- k-SAT: je daný k-CNF výrok splnitelný?
- k-SAT je NP-úplný pro k ≥ 3 (ke každému výroku lze sestrojit ekvisplnitelný 3-CNF výrok)
- ale 2-SAT je v P, dokonce řešitelný v lineárním čase

- k-CNF: CNF a každá klauzule nejvýše k literálů
- k-SAT: je daný k-CNF výrok splnitelný?
- k-SAT je NP-úplný pro k ≥ 3 (ke každému výroku lze sestrojit ekvisplnitelný 3-CNF výrok)
- ale 2-SAT je v P, dokonce řešitelný v lineárním čase
- algoritmus využívá tzv. implikační graf:

- k-CNF: CNF a každá klauzule nejvýše k literálů
- k-SAT: je daný k-CNF výrok splnitelný?
- k-SAT je NP-úplný pro k ≥ 3 (ke každému výroku lze sestrojit ekvisplnitelný 3-CNF výrok)
- ale 2-SAT je v P, dokonce řešitelný v lineárním čase
- algoritmus využívá tzv. implikační graf:
 - 2-klauzule $p \lor q$ je ekvivalentní $\neg p \to q$ a také $\neg q \to p$

- k-CNF: CNF a každá klauzule nejvýše k literálů
- k-SAT: je daný k-CNF výrok splnitelný?
- k-SAT je NP-úplný pro k ≥ 3 (ke každému výroku lze sestrojit ekvisplnitelný 3-CNF výrok)
- ale 2-SAT je v P, dokonce řešitelný v lineárním čase
- algoritmus využívá tzv. implikační graf:
 - 2-klauzule $p \lor q$ je ekvivalentní $\neg p \to q$ a také $\neg q \to p$
 - $p \sim p \lor p$ je ekvivalentní $\neg p \rightarrow p$

- k-CNF: CNF a každá klauzule nejvýše k literálů
- k-SAT: je daný k-CNF výrok splnitelný?
- k-SAT je NP-úplný pro k ≥ 3 (ke každému výroku lze sestrojit ekvisplnitelný 3-CNF výrok)
- ale 2-SAT je v P, dokonce řešitelný v lineárním čase
- algoritmus využívá tzv. implikační graf:
 - 2-klauzule $p \lor q$ je ekvivalentní $\neg p \to q$ a také $\neg q \to p$
 - $p \sim p \lor p$ je ekvivalentní $\neg p \rightarrow p$
 - vrcholy jsou literály

- k-CNF: CNF a každá klauzule nejvýše k literálů
- k-SAT: je daný k-CNF výrok splnitelný?
- k-SAT je NP-úplný pro k ≥ 3 (ke každému výroku lze sestrojit ekvisplnitelný 3-CNF výrok)
- ale 2-SAT je v P, dokonce řešitelný v lineárním čase
- algoritmus využívá tzv. implikační graf:
 - 2-klauzule $p \lor q$ je ekvivalentní $\neg p \to q$ a také $\neg q \to p$
 - $p \sim p \lor p$ je ekvivalentní $\neg p \rightarrow p$
 - vrcholy jsou literály
 - hrany dané implikacemi

- k-CNF: CNF a každá klauzule nejvýše k literálů
- k-SAT: je daný k-CNF výrok splnitelný?
- k-SAT je NP-úplný pro k ≥ 3 (ke každému výroku lze sestrojit ekvisplnitelný 3-CNF výrok)
- ale 2-SAT je v P, dokonce řešitelný v lineárním čase
- algoritmus využívá tzv. implikační graf:
 - 2-klauzule $p \lor q$ je ekvivalentní $\neg p \to q$ a také $\neg q \to p$
 - $p \sim p \lor p$ je ekvivalentní $\neg p \rightarrow p$
 - vrcholy jsou literály
 - hrany dané implikacemi
 - myšlenka: ohodnotíme-li vrchol 1, všude kam se dostaneme po hranách (komponenta silné souvislosti) musí být také 1

$$\begin{split} V(\mathcal{G}_{\varphi}) = & \{ p, \neg p \mid p \in \mathsf{Var}(\varphi) \}, \\ E(\mathcal{G}_{\varphi}) = & \{ (\overline{\ell_1}, \ell_2), (\overline{\ell_2}, \ell_1) \mid \ell_1 \vee \ell_2 \text{ je klauzule } \varphi \} \cup \\ & \{ (\overline{\ell}, \ell) \mid \ell \text{ je jednotková klauzule } \varphi \} \end{split}$$

$$\begin{split} V(\mathcal{G}_{\varphi}) = & \{ p, \neg p \mid p \in \mathsf{Var}(\varphi) \}, \\ E(\mathcal{G}_{\varphi}) = & \{ (\overline{\ell_1}, \ell_2), (\overline{\ell_2}, \ell_1) \mid \ell_1 \lor \ell_2 \text{ je klauzule } \varphi \} \cup \\ & \{ (\overline{\ell}, \ell) \mid \ell \text{ je jednotková klauzule } \varphi \} \end{split}$$

$$(\neg p_1 \lor p_2) \land (\neg p_2 \lor \neg p_3) \land (p_1 \lor p_3) \land (p_3 \lor \neg p_4) \land (\neg p_1 \lor p_5) \land (p_2 \lor p_5) \land p_1 \land \neg p_4$$

$$\begin{split} V(\mathcal{G}_{\varphi}) = & \{ p, \neg p \mid p \in \mathsf{Var}(\varphi) \}, \\ E(\mathcal{G}_{\varphi}) = & \{ (\overline{\ell_1}, \ell_2), (\overline{\ell_2}, \ell_1) \mid \ell_1 \vee \ell_2 \text{ je klauzule } \varphi \} \cup \\ & \{ (\overline{\ell}, \ell) \mid \ell \text{ je jednotková klauzule } \varphi \} \end{split}$$

$$(\neg p_1 \lor p_2) \land (\neg p_2 \lor \neg p_3) \land (p_1 \lor p_3) \land (p_3 \lor \neg p_4) \land (\neg p_1 \lor p_5) \land (p_2 \lor p_5) \land p_1 \land \neg p_4$$

$$\begin{split} V(\mathcal{G}_{\varphi}) = & \{p, \neg p \mid p \in \mathsf{Var}(\varphi)\}, \\ E(\mathcal{G}_{\varphi}) = & \{(\overline{\ell_1}, \ell_2), (\overline{\ell_2}, \ell_1) \mid \ell_1 \lor \ell_2 \text{ je klauzule } \varphi\} \cup \\ & \{(\overline{\ell}, \ell) \mid \ell \text{ je jednotková klauzule } \varphi\} \end{split}$$

$$(\neg p_1 \lor p_2) \land (\neg p_2 \lor \neg p_3) \land (p_1 \lor p_3) \land (p_3 \lor \neg p_4) \land (\neg p_1 \lor p_5) \land (p_2 \lor p_5) \land p_1 \land \neg p_4$$

 najdeme komponenty silné souvislosti

$$\begin{split} V(\mathcal{G}_{\varphi}) = & \{p, \neg p \mid p \in \mathsf{Var}(\varphi)\}, \\ E(\mathcal{G}_{\varphi}) = & \{(\overline{\ell_1}, \ell_2), (\overline{\ell_2}, \ell_1) \mid \ell_1 \vee \ell_2 \text{ je klauzule } \varphi\} \cup \\ & \{(\overline{\ell}, \ell) \mid \ell \text{ je jednotková klauzule } \varphi\} \end{split}$$

$$(\neg p_1 \lor p_2) \land (\neg p_2 \lor \neg p_3) \land (p_1 \lor p_3) \land (p_3 \lor \neg p_4) \land (\neg p_1 \lor p_5) \land (p_2 \lor p_5) \land p_1 \land \neg p_4$$

- najdeme komponenty silné souvislosti
- literály v komponentě musí být ohodnoceny stejně (jinak " $1 \rightarrow 0$ ")

$$\begin{split} V(\mathcal{G}_{\varphi}) = & \{p, \neg p \mid p \in \mathsf{Var}(\varphi)\}, \\ E(\mathcal{G}_{\varphi}) = & \{(\overline{\ell_1}, \ell_2), (\overline{\ell_2}, \ell_1) \mid \ell_1 \lor \ell_2 \text{ je klauzule } \varphi\} \cup \\ & \{(\overline{\ell}, \ell) \mid \ell \text{ je jednotková klauzule } \varphi\} \end{split}$$

$$(\neg p_1 \lor p_2) \land (\neg p_2 \lor \neg p_3) \land (p_1 \lor p_3) \land (p_3 \lor \neg p_4) \land (\neg p_1 \lor p_5) \land (p_2 \lor p_5) \land p_1 \land \neg p_4$$

- najdeme komponenty silné souvislosti
- literály v komponentě musí být ohodnoceny stejně (jinak " $1 \rightarrow 0$ ")
- $\begin{tabular}{ll} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

$$\begin{split} V(\mathcal{G}_{\varphi}) = & \{p, \neg p \mid p \in \mathsf{Var}(\varphi)\}, \\ E(\mathcal{G}_{\varphi}) = & \{(\overline{\ell_1}, \ell_2), (\overline{\ell_2}, \ell_1) \mid \ell_1 \vee \ell_2 \text{ je klauzule } \varphi\} \cup \\ & \{(\overline{\ell}, \ell) \mid \ell \text{ je jednotková klauzule } \varphi\} \end{split}$$

$$(\neg p_1 \lor p_2) \land (\neg p_2 \lor \neg p_3) \land (p_1 \lor p_3) \land (p_3 \lor \neg p_4) \land (\neg p_1 \lor p_5) \land (p_2 \lor p_5) \land p_1 \land \neg p_4$$

- najdeme komponenty silné souvislosti
- literály v komponentě musí být ohodnoceny stejně (jinak " $1 \rightarrow 0$ ")
- pokud má nějaká komponenta opačné literály, je φ nesplnitelný
- jinak sestrojíme model

Konstrukce modelu

Všimněte si: stačí, aby z žádné komponenty ohodnocené 1 nevedla hrana do komponenty ohodnocené 0

Konstrukce modelu

Všimněte si: stačí, aby z žádné komponenty ohodnocené 1 nevedla hrana do komponenty ohodnocené 0

provedeme kontrakci komponent, výsledný graf $\mathcal{G}_{\varphi}^{*}$ je acyklický

Konstrukce modelu

Všimněte si: stačí, aby z žádné komponenty ohodnocené 1 nevedla hrana do komponenty ohodnocené 0

provedeme kontrakci komponent, výsledný graf $\mathcal{G}_{\varphi}^{*}$ je acyklický

Konstrukce modelu

Všimněte si: stačí, aby z žádné komponenty ohodnocené 1 nevedla hrana do komponenty ohodnocené 0

provedeme kontrakci komponent, výsledný graf \mathcal{G}_{ω}^{*} je acyklický

najdeme nějaké topologické uspořádání; v něm najdeme nejlevější dosud neohodnocenou komponentu, ohodnotíme ji 0, opačnou komponentu ohodnotíme 1, a opakujeme

Konstrukce modelu

Všimněte si: stačí, aby z žádné komponenty ohodnocené 1 nevedla hrana do komponenty ohodnocené 0

provedeme kontrakci komponent, výsledný graf \mathcal{G}_{ω}^{*} je acyklický

najdeme nějaké topologické uspořádání; v něm najdeme nejlevější dosud neohodnocenou komponentu, ohodnotíme ji 0, opačnou komponentu ohodnotíme 1, a opakujeme

Tvrzení: φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů.

Tvrzení: φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů.

 $\textbf{Důkaz:} \Rightarrow \text{literály v komponentě musí být ohodnoceny stejně}$

Tvrzení: φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů.

Důkaz: ⇒ literály v komponentě musí být ohodnoceny stejně

 \Leftarrow ohodnocení zkonstruované výše je model φ :

Tvrzení: φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů.

Důkaz: ⇒ literály v komponentě musí být ohodnoceny stejně

 \Leftarrow ohodnocení zkonstruované výše je model φ :

• jednotková klauzule ℓ platí kvůli hraně $\overline{\ell} \to \ell$, komponenta s $\overline{\ell}$ byla ohodnocena dříve, a to 0, takže $v(\ell)=1$

7

Tvrzení: φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů.

 $D\mathring{u}kaz: \Rightarrow$ literály v komponentě musí být ohodnoceny stejně

 \Leftarrow ohodnocení zkonstruované výše je model φ :

- jednotková klauzule ℓ platí kvůli hraně $\overline{\ell} \to \ell$, komponenta s $\overline{\ell}$ byla ohodnocena dříve, a to 0, takže $v(\ell)=1$
- podobně pro 2-klauzuli $\ell_1 \vee \ell_2$, máme hrany $\overline{\ell_1} \to \ell_2$, $\overline{\ell_2} \to \ell_1$

Tvrzení: φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů.

 $D\mathring{u}kaz: \Rightarrow$ literály v komponentě musí být ohodnoceny stejně

 \Leftarrow ohodnocení zkonstruované výše je model φ :

- jednotková klauzule ℓ platí kvůli hraně $\overline{\ell} \to \ell$, komponenta s $\overline{\ell}$ byla ohodnocena dříve, a to 0, takže $v(\ell)=1$
- podobně pro 2-klauzuli $\ell_1 \vee \ell_2$, máme hrany $\overline{\ell_1} \to \ell_2$, $\overline{\ell_2} \to \ell_1$ pokud jsme ℓ_1 ohodnotili dříve než ℓ_2 , museli jsme jako první narazit na komponentu s $\overline{\ell_1}$ a ohodnotit ji 0, tedy ℓ_1 platí; v opačném případě symetricky platí ℓ_2

Tvrzení: φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů.

 $D\mathring{u}kaz: \Rightarrow$ literály v komponentě musí být ohodnoceny stejně

 \Leftarrow ohodnocení zkonstruované výše je model φ :

- jednotková klauzule ℓ platí kvůli hraně $\overline{\ell} \to \ell$, komponenta s $\overline{\ell}$ byla ohodnocena dříve, a to 0, takže $v(\ell)=1$
- podobně pro 2-klauzuli $\ell_1 \vee \ell_2$, máme hrany $\overline{\ell_1} \to \ell_2$, $\overline{\ell_2} \to \ell_1$ pokud jsme ℓ_1 ohodnotili dříve než ℓ_2 , museli jsme jako první narazit na komponentu s $\overline{\ell_1}$ a ohodnotit ji 0, tedy ℓ_1 platí; v opačném případě symetricky platí ℓ_2

Důsledek: 2-SAT je řešitelný v lineárním čase, včetně konstrukce modelu (pokud existuje).

Tvrzení: φ je splnitelný, právě když žádná silně souvislá komponenta v \mathcal{G}_{φ} neobsahuje dvojici opačných literálů.

Důkaz: ⇒ literály v komponentě musí být ohodnoceny stejně

 \Leftarrow ohodnocení zkonstruované výše je model φ :

- jednotková klauzule ℓ platí kvůli hraně $\overline{\ell} \to \ell$, komponenta s $\overline{\ell}$ byla ohodnocena dříve, a to 0, takže $v(\ell)=1$
- podobně pro 2-klauzuli $\ell_1 \vee \ell_2$, máme hrany $\overline{\ell_1} \to \ell_2$, $\overline{\ell_2} \to \ell_1$ pokud jsme ℓ_1 ohodnotili dříve než ℓ_2 , museli jsme jako první narazit na komponentu s $\overline{\ell_1}$ a ohodnotit ji 0, tedy ℓ_1 platí; v opačném případě symetricky platí ℓ_2

Důsledek: 2-SAT je řešitelný v lineárním čase, včetně konstrukce modelu (pokud existuje).

Důkaz: Komponenty silné souvislosti i topologické uspořádání najdeme v čase $\mathcal{O}(|V|+|E|)$, stačí je projít jednou

3.3 Horn-SAT a jednotková

propagace

hornovská klauzule: nejvýše jeden *pozitivní* literál

hornovská klauzule: nejvýše jeden *pozitivní* literál

$$\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n \lor q \sim (p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$$

hornovská klauzule: nejvýše jeden *pozitivní* literál

$$\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n \lor q \sim (p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$$

hornovská klauzule: nejvýše jeden *pozitivní* literál

$$\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n \lor q \sim (p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$$

základ logického programování (Prolog q:-p1,p2,...,pn.)

 Horn-SAT, tj. splnitelnost hornovského výroku (konjunkce hornovských klauzulí) je opět v P, v lineárním čase

8

hornovská klauzule: nejvýše jeden *pozitivní* literál

$$\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n \lor q \sim (p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$$

- Horn-SAT, tj. splnitelnost hornovského výroku (konjunkce hornovských klauzulí) je opět v P, v lineárním čase
- algoritmus využívá tzv. jednotkovou propagaci:
 - jednotková klauzule vynucuje hodnotu výrokové proměnné

hornovská klauzule: nejvýše jeden *pozitivní* literál

$$\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n \lor q \sim (p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$$

- Horn-SAT, tj. splnitelnost hornovského výroku (konjunkce hornovských klauzulí) je opět v P, v lineárním čase
- algoritmus využívá tzv. jednotkovou propagaci:
 - jednotková klauzule vynucuje hodnotu výrokové proměnné
 - tím můžeme výrok zjednodušit, např. pro $\neg p\ (p=0)$: odstraníme klauzule s literálem $\neg p$, už jsou splněné odstraníme literál $p\ (\text{nemůže být splněný})$

hornovská klauzule: nejvýše jeden *pozitivní* literál

$$\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n \lor q \sim (p_1 \land p_2 \land \cdots \land p_n) \rightarrow q$$

- Horn-SAT, tj. splnitelnost hornovského výroku (konjunkce hornovských klauzulí) je opět v P, v lineárním čase
- algoritmus využívá tzv. jednotkovou propagaci:
 - jednotková klauzule vynucuje hodnotu výrokové proměnné
 - tím můžeme výrok zjednodušit, např. pro $\neg p\ (p=0)$: odstraníme klauzule s literálem $\neg p$, už jsou splněné odstraníme literál $p\ (\text{nemůže být splněný})$
 - žádná jednotková klauzule ⇒ každá klauzule má aspoň jeden negativní literál ⇒ vše nastavíme na 0

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land (\neg p_5 \lor \neg p_4) \land p_4$$

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land (\neg p_5 \lor \neg p_4) \land p_4$$

 nastav v(p₄) = 1, odstraň klauzule obsahující literál p₄, z ostatních klauzulí odstraň ¬p₄

$$\varphi^{p_4} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land \neg p_5$$

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land (\neg p_5 \lor \neg p_4) \land p_4$$

• nastav $v(p_4)=1$, odstraň klauzule obsahující literál p_4 , z ostatních klauzulí odstraň $\neg p_4$

$$\varphi^{p_4} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land \neg p_5$$

• nastav $v(p_5)=0$, proveď jednotkovou propagaci $\neg p_5$

$$(\varphi^{p_4})^{\neg p_5} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3)$$

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land (\neg p_5 \lor \neg p_4) \land p_4$$

• nastav $v(p_4)=1$, odstraň klauzule obsahující literál p_4 , z ostatních klauzulí odstraň $\neg p_4$

$$\varphi^{p_4} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land \neg p_5$$

nastav $v(p_5)=0$, proveď jednotkovou propagaci $\neg p_5$ $(\varphi^{p_4})^{\neg p_5}=(\neg p_1\vee p_2)\wedge (\neg p_1\vee \neg p_2\vee p_3)\wedge (\neg p_2\vee \neg p_3)$

• už žádná jednotková klauzule, v každé klauzuli alespoň dva literály ale nejvýše jeden pozitivní, tj. alespoň jeden negativní: $v(p_1) = v(p_2) = v(p_3) = 0$, model v = (0,0,0,1,0)

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land (\neg p_5 \lor \neg p_4) \land p_4$$

• nastav $v(p_4)=1$, odstraň klauzule obsahující literál p_4 , z ostatních klauzulí odstraň $\neg p_4$

$$\varphi^{p_4} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land \neg p_5$$

nastav $v(p_5)=0$, proveď jednotkovou propagaci $\neg p_5$ $(\varphi^{p_4})^{\neg p_5}=(\neg p_1\vee p_2)\wedge (\neg p_1\vee \neg p_2\vee p_3)\wedge (\neg p_2\vee \neg p_3)$

• už žádná jednotková klauzule, v každé klauzuli alespoň dva literály ale nejvýše jeden pozitivní, tj. alespoň jeden negativní: $v(p_1) = v(p_2) = v(p_3) = 0$, model v = (0,0,0,1,0)

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land (\neg p_5 \lor \neg p_4) \land p_4$$

• nastav $v(p_4)=1$, odstraň klauzule obsahující literál p_4 , z ostatních klauzulí odstraň $\neg p_4$

$$\varphi^{p_4} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land \neg p_5$$

nastav $v(p_5)=0$, proveď jednotkovou propagaci $\neg p_5$ $(\varphi^{p_4})^{\neg p_5}=(\neg p_1\vee p_2)\wedge (\neg p_1\vee \neg p_2\vee p_3)\wedge (\neg p_2\vee \neg p_3)$

• už žádná jednotková klauzule, v každé klauzuli alespoň dva literály ale nejvýše jeden pozitivní, tj. alespoň jeden negativní: $v(p_1) = v(p_2) = v(p_3) = 0$, model v = (0,0,0,1,0)

$$\varphi^{\ell} = \{C \setminus \{\overline{\ell}\} \mid C \in \varphi, \ell \notin C\} \qquad \text{(množinový zápis)}$$

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land (\neg p_5 \lor \neg p_4) \land p_4$$

• nastav $v(p_4)=1$, odstraň klauzule obsahující literál p_4 , z ostatních klauzulí odstraň $\neg p_4$

$$\varphi^{p_4} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land \neg p_5$$

nastav $v(p_5)=0$, proveď jednotkovou propagaci $\neg p_5$ $(\varphi^{p_4})^{\neg p_5}=(\neg p_1\vee p_2)\wedge (\neg p_1\vee \neg p_2\vee p_3)\wedge (\neg p_2\vee \neg p_3)$

• už žádná jednotková klauzule, v každé klauzuli alespoň dva literály ale nejvýše jeden pozitivní, tj. alespoň jeden negativní: $v(p_1) = v(p_2) = v(p_3) = 0$, model v = (0,0,0,1,0)

$$\varphi^{\ell} = \{ C \setminus \{ \overline{\ell} \} \mid C \in \varphi, \ell \notin C \} \qquad \text{(množinový zápis)}$$

Pozorování: φ^ℓ neobsahuje ℓ ani $\overline{\ell}$, modely = modely φ splňující ℓ

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land (\neg p_5 \lor \neg p_4) \land p_4$$

• nastav $v(p_4)=1$, odstraň klauzule obsahující literál p_4 , z ostatních klauzulí odstraň $\neg p_4$

$$\varphi^{p_4} = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_3) \land \neg p_5$$

nastav $v(p_5)=0$, proveď jednotkovou propagaci $\neg p_5$ $(\varphi^{p_4})^{\neg p_5}=(\neg p_1\vee p_2)\wedge(\neg p_1\vee \neg p_2\vee p_3)\wedge(\neg p_2\vee \neg p_3)$

• už žádná jednotková klauzule, v každé klauzuli alespoň dva literály ale nejvýše jeden pozitivní, tj. alespoň jeden negativní: $v(p_1) = v(p_2) = v(p_3) = 0$, model v = (0,0,0,1,0)

$$\varphi^{\ell} = \{ C \setminus \{ \overline{\ell} \} \mid C \in \varphi, \ell \notin C \} \qquad \text{(množinový zápis)}$$

Pozorování: φ^{ℓ} neobsahuje ℓ ani $\overline{\ell}$, modely = modely φ splňující ℓ $\psi = p \wedge (\neg p \vee q) \wedge (\neg q \vee r) \wedge \neg r$ je nesplnitelný, co se stane?

Algoritmus pro Horn-SAT

- 1. Pokud φ obsahuje dvojici opačných jednotkových klauzulí $\ell, \overline{\ell}$, není splnitelný.
- 2. Pokud φ neobsahuje žádnou jednotkovou klauzuli, je splnitelný, ohodnoť všechny zbývající proměnné 0.
- 3. Pokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} , a vrať se na začátek.

Algoritmus pro Horn-SAT

- 1. Pokud φ obsahuje dvojici opačných jednotkových klauzulí $\ell, \overline{\ell}$, není splnitelný.
- 2. Pokud φ neobsahuje žádnou jednotkovou klauzuli, je splnitelný, ohodnoť všechny zbývající proměnné 0.
- 3. Pokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} , a vrať se na začátek.

Tvrzení: Algoritmus je korektní.

Důsledek: Horn-SAT lze řešit v lineárním čase.

Algoritmus pro Horn-SAT

- 1. Pokud φ obsahuje dvojici opačných jednotkových klauzulí $\ell, \overline{\ell}$, není splnitelný.
- 2. Pokud φ neobsahuje žádnou jednotkovou klauzuli, je splnitelný, ohodnoť všechny zbývající proměnné 0.
- 3. Pokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} , a vrať se na začátek.

Tvrzení: Algoritmus je korektní.

Důsledek: Horn-SAT lze řešit v lineárním čase.

Důkaz: Korektnost plyne z pozorování a z diskuze. V každém kroku stačí projít, výrok zkrátíme (kvadratický horní odhad, ale při vhodné implementaci lineární)

3.4 Algoritmus DPLL

myšlenka: čistý výskyt p buď jen v pozitivních nebo jen v negativních literálech \Rightarrow lze mu nastavit příslušnou hodnotu!

```
myšlenka: čistý výskyt p buď jen v pozitivních nebo jen v negativních literálech \Rightarrow lze mu nastavit příslušnou hodnotu!
```

 $\mathsf{DPLL} = \mathsf{jednotkov\'a} \ \mathsf{propagace} + \mathsf{\check{c}ist\acute{y}} \ \mathsf{v\'yskyt} + \mathsf{v\check{e}tven\'i} \ \mathsf{(rekurze)}$

myšlenka: čistý výskyt p buď jen v pozitivních nebo jen v negativních literálech \Rightarrow lze mu nastavit příslušnou hodnotu!

DPLL = jednotková propagace + čistý výskyt + větvení (rekurze) vstup: výrok φ v CNF,

 $\mathbf{v\acute{y}stup} \colon \mathsf{model}\ \varphi$ nebo informace, že φ není splnitelný

myšlenka: čistý výskyt p buď jen v pozitivních nebo jen v negativních literálech \Rightarrow lze mu nastavit příslušnou hodnotu!

DPLL = jednotková propagace + čistý výskyt + větvení (rekurze) vstup: výrok φ v CNF, výstup: model φ nebo informace, že φ není splnitelný

1. Dokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} .

myšlenka: čistý výskyt p buď jen v pozitivních nebo jen v negativních literálech \Rightarrow lze mu nastavit příslušnou hodnotu!

DPLL = jednotková propagace + čistý výskyt + větvení (rekurze) vstup: výrok φ v CNF, výstup: model φ nebo informace, že φ není splnitelný

- 1. Dokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} .
- 2. Dokud existuje literál ℓ , který má ve φ čistý výskyt, ohodnoť ℓ hodnotou 1, a odstraň klauzule obsahující ℓ .

Algoritmus DPLL (Davis-Putnam-Logemann-Loveland, 1961)

myšlenka: čistý výskyt p buď jen v pozitivních nebo jen v negativních literálech \Rightarrow lze mu nastavit příslušnou hodnotu!

DPLL = jednotková propagace + čistý výskyt + větvení (rekurze) vstup: výrok φ v CNF, výstup: model φ nebo informace, že φ není splnitelný

- 1. Dokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} .
- 2. Dokud existuje literál ℓ , který má ve φ čistý výskyt, ohodnoť ℓ hodnotou 1, a odstraň klauzule obsahující ℓ .
- 3. Pokud φ neobsahuje žádnou klauzuli, je splnitelný.

Algoritmus DPLL (Davis-Putnam-Logemann-Loveland, 1961)

myšlenka: čistý výskyt p buď jen v pozitivních nebo jen v negativních literálech \Rightarrow lze mu nastavit příslušnou hodnotu!

DPLL = jednotková propagace + čistý výskyt + větvení (rekurze) vstup: výrok φ v CNF, výstup: model φ nebo informace, že φ není splnitelný

- 1. Dokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} .
- 2. Dokud existuje literál ℓ , který má ve φ čistý výskyt, ohodnoť ℓ hodnotou 1, a odstraň klauzule obsahující ℓ .
- 3. Pokud φ neobsahuje žádnou klauzuli, je splnitelný.
- 4. Pokud φ obsahuje prázdnou klauzuli, není splnitelný.

Algoritmus DPLL (Davis-Putnam-Logemann-Loveland, 1961)

myšlenka: čistý výskyt p buď jen v pozitivních nebo jen v negativních literálech \Rightarrow lze mu nastavit příslušnou hodnotu!

DPLL = jednotková propagace + čistý výskyt + větvení (rekurze) vstup: výrok φ v CNF, výstup: model φ nebo informace, že φ není splnitelný

- 1. Dokud φ obsahuje jednotkovou klauzuli ℓ , ohodnoť literál ℓ hodnotou 1, proveď jednotkovou propagaci, nahraď φ výrokem φ^{ℓ} .
- 2. Dokud existuje literál ℓ , který má ve φ čistý výskyt, ohodnoť ℓ hodnotou 1, a odstraň klauzule obsahující ℓ .
- 3. Pokud φ neobsahuje žádnou klauzuli, je splnitelný.
- 4. Pokud φ obsahuje prázdnou klauzuli, není splnitelný.
- 5. Jinak zvol dosud neohodnocenou výrokovou proměnnou p, a zavolej algoritmus rekurzivně na $\varphi \wedge p$ a na $\varphi \wedge \neg p$.

$$(\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (q \lor \neg r \lor s) \land (p \lor \neg s) \land (q \lor s)$$

$$(\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (q \lor \neg r \lor s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s)$$

žádná jednotková klauzule, $\neg r$ má čistý výskyt: nastav v(r) = 0 a odstraň klauzule obsahující $\neg r$:

$$(\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (q \lor \neg r \lor s) \land (p \lor \neg s) \land (q \lor s)$$

žádná jednotková klauzule, $\neg r$ má čistý výskyt: nastav v(r) = 0 a odstraň klauzule obsahující $\neg r$:

$$(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s)$$

$$(\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (q \lor \neg r \lor s) \land (p \lor \neg s) \land (q \lor s)$$

žádná jednotková klauzule, $\neg r$ má čistý výskyt: nastav v(r) = 0 a odstraň klauzule obsahující $\neg r$:

$$(\neg p \vee \neg q \vee \neg s) \wedge (p \vee s) \wedge (p \vee \neg s) \wedge (q \vee s)$$

už žádný čistý výskyt, rekurzivně zavolej na:

- 1. $(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land p$
- 2. $(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land \neg p$

$$(\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (q \lor \neg r \lor s) \land (p \lor \neg s) \land (q \lor s)$$

žádná jednotková klauzule, $\neg r$ má čistý výskyt: nastav v(r) = 0 a odstraň klauzule obsahující $\neg r$:

$$(\neg p \vee \neg q \vee \neg s) \wedge (p \vee s) \wedge (p \vee \neg s) \wedge (q \vee s)$$

už žádný čistý výskyt, rekurzivně zavolej na:

- 1. $(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land p$
- 2. $(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land \neg p$

a pokračuj dále v obou větvích výpočtu

$$(\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (q \lor \neg r \lor s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s)$$

žádná jednotková klauzule, $\neg r$ má čistý výskyt: nastav v(r) = 0 a odstraň klauzule obsahující $\neg r$:

$$(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s)$$

už žádný čistý výskyt, rekurzivně zavolej na:

- 1. $(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land p$
- 2. $(\neg p \lor \neg q \lor \neg s) \land (p \lor s) \land (p \lor \neg s) \land (q \lor s) \land \neg p$

a pokračuj dále v obou větvích výpočtu

:

1. větev dává (1,0,0,1) a (1,1,0,0), 2. je sporná. Modelem je také (1,1,1,0), ten ztratíme nastavením v(r)=0. Odstranění čistého výskytu zachová splnitelnost, ne všechny modely.

Kapitola 4: Metoda analytického tabla

chceme zjistit, zda výrok platí $[T \models \varphi]$, a to čistě syntakticky, aniž bychom se zabývali sémantikou: najít (formální) důkaz $[T \models \varphi]$

chceme zjistit, zda výrok platí $[T \models \varphi]$, a to čistě syntakticky, aniž bychom se zabývali sémantikou: najít (formální) důkaz $[T \models \varphi]$ důkaz je konečný syntaktický objekt vycházející z φ a axiomů T

chceme zjistit, zda výrok platí $[T \models \varphi]$, a to čistě syntakticky, aniž bychom se zabývali sémantikou: najít (formální) důkaz $[T \models \varphi]$ důkaz je konečný syntaktický objekt vycházející z φ a axiomů T dokazování lze dělat algoritmicky (pokud máme algoritmický přístup k axiomům T, která může být nekonečná), a lze rychle algoritmicky ověřit, zda je daný objekt opravdu korektní důkaz

chceme zjistit, zda výrok platí $[T \models \varphi]$, a to čistě syntakticky, aniž bychom se zabývali sémantikou: najít (formální) důkaz $[T \models \varphi]$ důkaz je konečný syntaktický objekt vycházející z φ a axiomů T dokazování lze dělat algoritmicky (pokud máme algoritmický přístup k axiomům T, která může být nekonečná), a lze rychle algoritmicky ověřit, zda je daný objekt opravdu korektní důkaz

- korektnost: "co dokážu, platí"
- úplnost: "dokážu vše, co platí"

$$T \vdash \varphi \Rightarrow T \models \varphi$$

$$T \models \varphi \Rightarrow T \vdash \varphi$$

chceme zjistit, zda výrok platí $[T \models \varphi]$, a to čistě syntakticky, aniž bychom se zabývali sémantikou: najít (formální) důkaz $[T \models \varphi]$ důkaz je konečný syntaktický objekt vycházející z φ a axiomů T dokazování lze dělat algoritmicky (pokud máme algoritmický přístup k axiomům T, která může být nekonečná), a lze rychle algoritmicky ověřit, zda je daný objekt opravdu korektní důkaz

korektnost: "co dokážu, platí"

 $T \vdash \varphi \Rightarrow T \models \varphi$

úplnost: "dokážu vše, co platí"

 $T \models \varphi \Rightarrow T \vdash \varphi$

(korektnost je nutná, úplnost ne: rychlý dokazovací systém může být praktický i když není úplný)

chceme zjistit, zda výrok platí $[T \models \varphi]$, a to čistě syntakticky, aniž bychom se zabývali sémantikou: najít (formální) důkaz $[T \models \varphi]$ důkaz je konečný syntaktický objekt vycházející z φ a axiomů T dokazování lze dělat algoritmicky (pokud máme algoritmický přístup k axiomům T, která může být nekonečná), a lze rychle algoritmicky ověřit, zda je daný objekt opravdu korektní důkaz

korektnost: "co dokážu, platí"

 $T \vdash \varphi \Rightarrow T \models \varphi$

úplnost: "dokážu vše, co platí"

 $T \models \varphi \Rightarrow T \vdash \varphi$

(korektnost je nutná, úplnost ne: rychlý dokazovací systém může být praktický i když není úplný)

ukážeme si: tablo metodu, hilbertovský kalkulus, rezoluční metodu

chceme zjistit, zda výrok platí $[T \models \varphi]$, a to čistě syntakticky, aniž bychom se zabývali sémantikou: najít (formální) důkaz $[T \models \varphi]$ důkaz je konečný syntaktický objekt vycházející z φ a axiomů T dokazování lze dělat algoritmicky (pokud máme algoritmický přístup k axiomům T, která může být nekonečná), a lze rychle algoritmicky ověřit, zda je daný objekt opravdu korektní důkaz

korektnost: "co dokážu, platí"

 $T \vdash \varphi \Rightarrow T \models \varphi$

úplnost: "dokážu vše, co platí"

 $T \models \varphi \Rightarrow T \vdash \varphi$

(korektnost je nutná, úplnost ne: rychlý dokazovací systém může být praktický i když není úplný)

ukážeme si: *tablo metodu*, *hilbertovský kalkulus*, *rezoluční metodu* nutný předpoklad: jazyk musí být spočetný (potom i *T* je spočetná)

4.2 Úvod do tablo metody

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice tablo je strom představující hledání protipříkladu (modelu $v\not\models\varphi$),

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice tablo je strom představující hledání protipříkladu (modelu $v\not\models\varphi$), když všechny větve selžou, máme důkaz (sporem)

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice tablo je strom představující hledání protipříkladu (modelu $v\not\models\varphi$), když všechny větve selžou, máme důkaz (sporem) labely: položky $T\psi, F\psi$ (určují, zda na dané větvi platí výrok ψ)

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice tablo je strom představující hledání protipříkladu (modelu $v\not\models\varphi$), když všechny větve selžou, máme důkaz (sporem) labely: položky $T\psi, F\psi$ (určují, zda na dané větvi platí výrok ψ) kořen $F\varphi$, dále rozvíjíme redukcí položek (podle struktury výroků v nich), aby platil invariant:

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice

tablo je strom představující hledání protipříkladu (modelu $v \not\models \varphi$), když všechny větve selžou, máme důkaz (sporem)

labely: položky $\mathrm{T}\psi,\mathrm{F}\psi$ (určují, zda na dané větvi platí výrok ψ)

kořen $\mathbf{F}\varphi$, dále rozvíjíme redukcí položek (podle struktury výroků v nich), aby platil invariant:

Každý model, který se shoduje s položkou v kořeni (tj. ve kterém neplatí φ), se musí shodovat i s některou větví tabla (tj. splňovat všechny požadavky vyjádřené položkami na této větvi).

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice

tablo je strom představující hledání protipříkladu (modelu $v \not\models \varphi$), když všechny větve selžou, máme důkaz (sporem)

labely: položky $\mathrm{T}\psi,\mathrm{F}\psi$ (určují, zda na dané větvi platí výrok ψ)

kořen $\mathbf{F}\varphi$, dále rozvíjíme redukcí položek (podle struktury výroků v nich), aby platil invariant:

Každý model, který se *shoduje* s položkou v kořeni (tj. ve kterém neplatí φ), se musí *shodovat* i s některou větví tabla (tj. splňovat všechny požadavky vyjádřené položkami na této větvi).

je-li na větvi $\mathbf{T}\psi$ a zároveň $\mathbf{F}\psi$, potom selhala (je sporná), pokud všechny větve selhaly, je tablo sporné, je to důkaz $T \vdash \varphi$

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice

tablo je strom představující hledání protipříkladu (modelu $v \not\models \varphi$), když všechny větve selžou, máme důkaz (sporem)

labely: položky $\mathrm{T}\psi,\mathrm{F}\psi$ (určují, zda na dané větvi platí výrok $\psi)$

kořen $\mathbf{F} \varphi$, dále rozvíjíme redukcí položek (podle struktury výroků v nich), aby platil invariant:

Každý model, který se *shoduje* s položkou v kořeni (tj. ve kterém neplatí φ), se musí *shodovat* i s některou větví tabla (tj. splňovat všechny požadavky vyjádřené položkami na této větvi).

je-li na větvi $\mathbf{T}\psi$ a zároveň $\mathbf{F}\psi$, potom selhala (je sporná), pokud všechny větve selhaly, je tablo sporné, je to důkaz $\mathcal{T} \models \varphi$

pokud nějaká větev neselhala a je dokončená (vše na ní zredukované), lze z ní zkonstruovat model, ve kterém φ neplatí

$$F((p
ightarrow q)
ightarrow p)
ightarrow p$$

$$|
T(p
ightarrow q)
ightarrow p$$

$$|
Fp$$

$$/
Fp
ightarrow q$$

$$|
Sp$$

$$|$$

důkaz sporem: v kořeni příznak F

- důkaz sporem: v kořeni příznak F
- redukujeme položku tvaru $F\varphi_1 \rightarrow \varphi_2$:

- důkaz sporem: v kořeni příznak F
- redukujeme položku tvaru $F\varphi_1 \rightarrow \varphi_2$:
- pokud $v \not\models \varphi_1 \rightarrow \varphi_2$, nutně $v \models \varphi_1$ a zároveň $v \not\models \varphi_2$

- důkaz sporem: v koření příznak F
- redukujeme položku tvaru $F\varphi_1 \rightarrow \varphi_2$:
- pokud $v \not\models \varphi_1 \rightarrow \varphi_2$, nutně $v \models \varphi_1$ a zároveň $v \not\models \varphi_2$
- proto na větev připojíme položky $\mathbf{T}(p \to q) \to p$ a $\mathbf{F}p$, invariant platí

- důkaz sporem: v koření příznak F
- redukujeme položku tvaru $F\varphi_1 \rightarrow \varphi_2$:
- pokud $v \not\models \varphi_1 \rightarrow \varphi_2$, nutně $v \models \varphi_1$ a zároveň $v \not\models \varphi_2$
- proto na větev připojíme položky $T(p \rightarrow q) \rightarrow p$ a Fp, invariant platí
- redukce položky $\mathbf{T}(p \to q) \to p$: model se shoduje s $\mathbf{F}(p \to q)$ nebo s $\mathbf{T}p$, rozvětvi!

- důkaz sporem: v koření příznak F
- redukujeme položku tvaru $F\varphi_1 \rightarrow \varphi_2$:
- pokud $v \not\models \varphi_1 \rightarrow \varphi_2$, nutně $v \models \varphi_1$ a zároveň $v \not\models \varphi_2$
- proto na větev připojíme položky $T(p \rightarrow q) \rightarrow p$ a Fp, invariant platí
- redukce položky $T(p \rightarrow q) \rightarrow p$: model se shoduje s $F(p \rightarrow q)$ nebo s Tp, rozvětvi!
- redukce $F(p \rightarrow q)$: připoj Tp a Fq

- důkaz sporem: v koření příznak F
- redukujeme položku tvaru $F\varphi_1 \rightarrow \varphi_2$:
- pokud $v \not\models \varphi_1 \rightarrow \varphi_2$, nutně $v \models \varphi_1$ a zároveň $v \not\models \varphi_2$
- proto na větev připojíme položky $T(p \rightarrow q) \rightarrow p$ a Fp, invariant platí
- redukce položky $\mathbf{T}(p \to q) \to p$: model se shoduje s $\mathbf{F}(p \to q)$ nebo s $\mathbf{T}p$, rozvětvi!
- redukce $F(p \rightarrow q)$: připoj Tp a Fq

Příklad: tablo pro $F(\neg q \lor p) \rightarrow p$

tablo je dokončené, ale není sporné

- tablo je dokončené, ale není sporné
- tedy nejde o důkaz

- tablo je dokončené, ale není sporné
- tedy nejde o důkaz
- levá větev dává protipříklad: model v = (0,0) ve kterém výrok neplatí

- tablo je dokončené, ale není sporné
- tedy nejde o důkaz
- levá větev dává protipříklad: model v = (0,0) ve kterém výrok neplatí
- invariant říká, že existuje-li protipříklad, shoduje se s některou větví

- tablo je dokončené, ale není sporné
- tedy nejde o důkaz
- levá větev dává protipříklad: model v = (0,0) ve kterém výrok neplatí
- invariant říká, že existuje-li protipříklad, shoduje se s některou větví
- tato větev nemůže být sporná

- tablo je dokončené, ale není sporné
- tedy nejde o důkaz
- levá větev dává protipříklad: model v = (0,0) ve kterém výrok neplatí
- invariant říká, že existuje-li protipříklad, shoduje se s některou větví
- tato větev nemůže být sporná
- tak se dokáže korektnost tablo metody

Jak redukujeme položky?

- Jak redukujeme položky?
 - Připojíme příslušné atomické tablo (viz následující slide) na konec všech bezesporných větví procházejících vrcholem.

- Jak redukujeme položky?
 - Připojíme příslušné atomické tablo (viz následující slide) na konec všech bezesporných větví procházejících vrcholem.
- Co když dokazujeme v nějaké teorii *T*?

- Jak redukujeme položky?
 - Připojíme příslušné atomické tablo (viz následující slide) na konec všech bezesporných větví procházejících vrcholem.
- Co když dokazujeme v nějaké teorii T?
 - Připojíme položky $T\alpha$ pro (všechny) axiomy $\alpha \in T$.

- Jak redukujeme položky?
 - Připojíme příslušné atomické tablo (viz následující slide) na konec všech bezesporných větví procházejících vrcholem.
- Co když dokazujeme v nějaké teorii T?
 - Připojíme položky $T\alpha$ pro (všechny) axiomy $\alpha \in T$.
- Co když je T nekonečná?

- Jak redukujeme položky?
 - Připojíme příslušné atomické tablo (viz následující slide) na konec všech bezesporných větví procházejících vrcholem.
- Co když dokazujeme v nějaké teorii T?
 - Připojíme položky $T\alpha$ pro (všechny) axiomy $\alpha \in T$.
- Co když je T nekonečná?
 - Tablo může být nekonečné.

- Jak redukujeme položky?
 - Připojíme příslušné atomické tablo (viz následující slide) na konec všech bezesporných větví procházejících vrcholem.
- Co když dokazujeme v nějaké teorii T?
 - Připojíme položky $T\alpha$ pro (všechny) axiomy $\alpha \in T$.
- Co když je T nekonečná?
 - Tablo může být nekonečné.
 - Ale vyjde-li sporné, lze sestrojit jiné, které je konečné a také sporné. ("Existuje-li důkaz, existuje konečný důkaz.")

Atomická tabla

	_ ¬	^	\ \	\rightarrow	\longleftrightarrow
True	$\begin{array}{ c c c c }\hline & T eg \varphi \\ & \downarrow \\ & F \varphi \end{array}$	$\begin{array}{c c} T\varphi \wedge \psi \\ & \\ & T\varphi \\ & \\ & T\psi \end{array}$	$\begin{array}{c c} T\varphi \lor \psi \\ / & \\ T\varphi & T\psi \end{array}$	$ \begin{array}{c c} & T\varphi \to \psi \\ & / & \\ & F\varphi & T\psi \end{array} $	$\begin{array}{c c} T\varphi \leftrightarrow \psi \\ \hline / \setminus \\ T\varphi & F\varphi \\ \hline & \\ T\psi & F\psi \end{array}$
False	$F \neg \varphi$ $ $ $T \varphi$	$\begin{array}{c c} F\varphi \wedge \psi \\ & / & \\ F\varphi & F\psi \end{array}$	$ \begin{array}{c c} F\varphi \lor \psi \\ & \\ F\varphi \\ & \\ F\psi \end{array} $	$ \begin{array}{c c} & F\varphi \to \psi \\ & \\ & T\varphi \\ & \\ & F\psi \end{array} $	$\begin{array}{c c} F\varphi \leftrightarrow \psi \\ \hline / \\ T\varphi & F\varphi \\ \hline & \\ F\psi & T\psi \\ \end{array}$

Konstrukce tabel z příkladů

Konstrukce tabel z příkladů

konvence: kořeny atomických tabel (modře) nezakreslujeme

• strom je $T \neq \emptyset$ s částečným uspořádáním $<_T$, které má nejmenší prvek (kořen) a množina předků libovolného vrcholu je dobře uspořádaná

strom je T ≠ ∅ s částečným uspořádáním < T, které má nejmenší prvek (kořen) a množina předků libovolného vrcholu je dobře uspořádaná (každá její neprázdná podmnožina má nejmenší prvek, to zakáže nekonečné klesající řetězce předků)

- strom je T ≠ ∅ s částečným uspořádáním < T, které má nejmenší prvek (kořen) a množina předků libovolného vrcholu je dobře uspořádaná (každá její neprázdná podmnožina má nejmenší prvek, to zakáže nekonečné klesající řetězce předků)
- větev je maximální lineárně uspořádaná podmnožina T.

- strom je T ≠ ∅ s částečným uspořádáním <_T, které má nejmenší prvek (kořen) a množina předků libovolného vrcholu je dobře uspořádaná (každá její neprázdná podmnožina má nejmenší prvek, to zakáže nekonečné klesající řetězce předků)
- větev je maximální lineárně uspořádaná podmnožina T.
- uspořádaný strom má navíc lineární uspořádání $<_L$ množiny synů každého vrcholu (říkáme mu pravolevé, $<_T$ je stromové)

- strom je T ≠ ∅ s částečným uspořádáním <_T, které má nejmenší prvek (kořen) a množina předků libovolného vrcholu je dobře uspořádaná (každá její neprázdná podmnožina má nejmenší prvek, to zakáže nekonečné klesající řetězce předků)
- větev je maximální lineárně uspořádaná podmnožina T.
- uspořádaný strom má navíc lineární uspořádání $<_L$ množiny synů každého vrcholu (říkáme mu pravolevé, $<_T$ je stromové)
- označkovaný strom má navíc funkci label: $T \to \text{Labels}$

- strom je T ≠ ∅ s částečným uspořádáním <_T, které má nejmenší prvek (kořen) a množina předků libovolného vrcholu je dobře uspořádaná (každá její neprázdná podmnožina má nejmenší prvek, to zakáže nekonečné klesající řetězce předků)
- větev je maximální lineárně uspořádaná podmnožina T.
- uspořádaný strom má navíc lineární uspořádání <_L množiny synů každého vrcholu (říkáme mu pravolevé, <_T je stromové)
- označkovaný strom má navíc funkci label: $T \to \text{Labels}$

Königovo lemma: Nekonečný, konečně větvící strom má nekonečnou větev.