Experiment 5

Aim:

Zener diode as a voltage regulator using line regulation.

Tools and Apparatus:

- http://vlabs.iitkgp.ernet.in/be/exp10/index.html#
- Zener Diode, Resistors, Multimeter, DC Voltage Source

Theory and Design:

•	Zener Diode:
\rightarrow	A zener diade is a special kind of diade which permits current
V	to flow in the forward direction like a standard deade, but it
	Will also allow it to flow in the reverse direction when the
	Voltage is above the breakdown voltage or "zener voltage".
->	Zener diades are designed so that their break down voltage
	is much lower.
1	is much lower.
	black due stoller (12) for all the value of Zener w
100	Cathode (n)
1.43	Anode(p)+ Cathode(n)
-63	Zenar Drode Symbol
	spatial analysis and bus during
\rightarrow	In a Standard diode, the Zener Voltage is high, and the
	diode is permanently if a reverse current above that value is allowed to pass through it.
	allowed to pass through it.
Jak.	O in Royalogo Series reactions (RD) and Load res
->	In the reverse bias direction, there is practically no reverse
20	current flow until the breakdown voltage is reached.
	When this occurs there is a Sharp increase in reverse current
7	Varying amount of reverse current can pass through the Zener
Lead	diade without damaging it.
13	The breakdown voltage or Zener Voltage (Vz) arross the diede
	remains relatively constant

	Zener diode as a Voltage Regulator:
ton re-	A voltage regulator is an electronic circuit that provides a stable Oc voltage independent of the load current, temperature
-	A zener diode of breakdown voltage (Vz) is reverse connected
	to an input voltage source (Vs) a cross a load resistance (R) and a series resistor (Rs). The voltage a cross the Zener diode will remain steady at its
	as long as the current remains in the breakdown region.
4	Hence, a regulated DC output Voltage Vo=Vz is obtained across RL, whenever the input voltage remains within a minimum and maximum voltage.
2) 4	There are 2 types of regulations:
0	Line Regulation: Series resistance (Rs) and Load resistance (R) are fixed, only input voltage (Vs) is changing. Output Voltage (Vs)
	remains the same, as long as the input voltage is maintained above a minimum value
(D)	Load Regulation: Input Voltage CVs) is fixed and the Load resistance (R.) is varying. Output voltage remains the same,
	as long as the load resistance is maintained above a minimum value.

· Line Regulation: RL is constant, Vs varies, Vs must be sufficiently large to turn the Zener Diode ON.
VL = Vz = V5min xRL (R6 + RL)
So, the minimum turn-on voltage (Vsmin) is:
Vsmen = Vz x (Rs+RL) RL
The maximum value of V_5 is limited by the maximum zener current (I_{Zmox}) $I_{mox} = I_{Zmox} + I_L$
IL is fixed at Vz, since, VL=Vz
So maximum Vs is Vemax = VRMax + V2 OR V3max = IR x R+V2
For $V_5 \times V_2$: $V_0 = V_5$ For $V_5 \times V_2$: $V_0 = V_5 - I_5 \times R_5$
R _s T _L N _s T _L V _s T _s V _s T _L
Zenen Voltage Regulator Circuit

Simulation Results:

1. Zener Voltage (V_Z) = 5.1V Series Resistance (R_S) = 1k Ω Load Resistance (R_L) = 2k Ω

EXPERIMENTAL TABLE									
Zener Voltage(V_Z): 5.1 V Series Resistance(R_S): 1 $K\Omega$ Load Resistance (R_L): 2 $K\Omega$									
Serial No.	Unregulated supply voltage(V _S)	Load Current(I _L) mAmp	Zener Current(I _Z) mAmp	Regulated Output Voltage(V _O)	% Voltage Regulation				
1	0	2.55	0	0	NaN				
2	3	2.55			100				
_	3	2.55	0	3	100				
3	7.6	2.55	-0.050	5.10	71.4				
3									
	7.6	2.55	-0.050	5.10	71.4				

2. Zener Voltage (V_Z) = 5.1V Series Resistance (R_S) = 1k Ω Load Resistance (R_L) = 5k Ω

EXPERIMENTAL TABLE								
Zener Voltage(V_Z): 5.1 V Series Resistance(R_S): 1 $K\Omega$ Load Resistance (R_L): 5 $K\Omega$								
Serial No.	Unregulated supply voltage(V _S)	Load Current(I _L) mAmp	Zener Current(I _Z) mAmp	Regulated Output Voltage(V _O)	% Voltage Regulation			
1	0	1.02	0	0	NaN			
			U	0	11411			
2	3.8	1.02	0	3.8	100			
3	3.8 8.8							
		1.02	0	3.8	100			
3	8.8	1.02	0 2.680	3.8 5.10	100 62.5			

Conclusion:

- 1. For constant value of Zener Voltage ($V_z = 5.1V$) and varying values of V_S and R_L
 - **a.** Output Voltage is constant, $V_0 = 5.1V$
- 2. For constant value of $V_z = 5.1V$ and varying values of V_S
 - a. $R_L = 2k\Omega$
 - i. Load current is constant, $I_L = 2.55A$
 - b. $R_L = 5k\Omega$
 - i. Load current is constant, IL = 1.02A

Inferences:

- **1.** For all values of Source Voltage greater than Zener Voltage, Output Voltage is constant and is equal to Zener Voltage.
- **2.** If Source Voltage is less than Zener Voltage, Output Voltage will be equal to Source Voltage.
- **3.** To get a straight line graph of constant voltage always keep Source Voltage greater than Zener Voltage.
- 4. $I_S = I_L + I_Z$
 - **a.** I_S and I_Z are regulated in such a way that I_L remains constant for a constant value of R_L and therefore V_O remains the same.
 - **b.** If R_L changes then all current values change accordingly (Inversely Proportional) and therefore V_O still remains the same.