QCM n° 5

Échauffement n°1 Résoudre le système suivant : $\begin{cases} x - 2y + 3z = 1 \\ -3x + z = 3 \\ 2x - y + z = -1 \end{cases}$

Échauffement n°2 Calculer $\frac{\mathrm{d}}{\mathrm{d}x} \left(\ln \sqrt{\frac{1+x}{1-x}} \right)$.

Échauffement n°3 Résoudre $z^2 + (1-2i)z - i - 3 = 0$.

Échauffement n°4 Calculer $\int_1^2 \frac{\ln x}{x} dx$.

Question n°1

- \square Tout ensemble de $\mathbb N$ admet un minimum.
- \square Tout ensemble non vide de $\mathbb N$ admet un minimum.
- \Box Tout ensemble non vide de $\mathbb N$ admet un maximum.
- \square Tout ensemble non vide de $\mathbb Z$ admet un minimum.
- \square Tout ensemble non vide et minoré de $\mathbb Z$ admet un minimum.
- \square Tout ensemble non vide et majoré de $\mathbb Z$ admet un maximum.

Question n°2 Soit $f \mathbb{C} \to \mathbb{C}$, $z \mapsto iz + 1$.

 \square f est une similitude directe.

 \Box f est une rotation.

 \Box f est une translation.

 \Box f est une similitude à centre, de centre $\frac{1+i}{2}$.

Question n°3 L'homothétie de centre (1+i) et de rapport -2 a pour expression

 $\square \ f : \mathbb{C} \to \mathbb{C}, z \mapsto -2z.$

 $\Box f : \mathbb{C} \to \mathbb{C}, z \mapsto -2(z-1-i).$

 $\Box f : \mathbb{C} \to \mathbb{C}, z \mapsto -2z + 1 + i.$

 $\square f : \mathbb{C} \to \mathbb{C}, z \mapsto 1 + i - 2(z - 1 - i).$

Question $n^{\circ}4$ Soit $n \in \mathbb{N}^*$.

- \square Tous les complexes ont n racines n-èmes.
- \square Tous les réels non nuls ont n racines n-èmes complexes.
- \square Tous les réels non nuls ont n racines n-èmes réelles.
- \square Les racines *n*-èmes d'un complexe z non nul sont sur un même cercle de centre 0.

Soit A, B, C, D quatre points deux à deux distincts du plan, d'affixes respectifs a, b, c, d. Question n°5

$$\Box \left(\overrightarrow{AB}, \overrightarrow{CD}\right) = \arg\left(\frac{b-a}{d-c}\right) [2\pi]. \qquad \Box \left(\overrightarrow{AB}, \overrightarrow{CD}\right) = \arg\left(\frac{c-d}{a-b}\right) [2\pi].$$

$$\Box \left(\overrightarrow{AB}, \overrightarrow{CD}\right) = \arg\left(\frac{d-c}{b-a}\right) [2\pi].$$

Soit f une fonction continue sur [a,b]. Notons $F(x) = \int_a^x f(t) dt$. Question n°6

- \square F est définie sur [a,b].
- \square F est continue sur [a, b].
- \square F est de classe \mathscr{C}^1 sur [a,b]. \square F est dérivable sur [a,b] et $\forall x \in [a,b], F'(x) = f(x) f(a)$.