Formalizing ZkSNARKs

Ashv
ni Narayanan, Matej Penciak, Daniel Rogozin, Winston Zhang August 27, 2022

Introduction

In this blueprint we formalize the knowledge soundness proof for the BabySNARK protocol.

The protocol is a toy example of a Zk SNARK protocol defined and implemented in the repository .

The outline of the proof used in this blueprint is a port of the work done by Bolton Bailey in Lean 3 found here .

We will eventually include proofs of knowledge soundness for other protocols as well, and proofs of completeness and zero knowledge.

Chapter 1

Supporting Lemmas

Definition 1.1. Fix a finite field F. The polynomial $t \in F[X]$ is then defined as $t = \prod_{i=0}^{m-1} (X - r_i)$ for $r_i \in F$ for $0 \le i \le m-1$ where m > 0.

Lemma 1.2. The polynomial t is monic of positive degree 0 < m.

Proof.

Chapter 2

Knowledge Soundness for BabySNARK

Fix natural numbers n,l with l < n, and a sequence $a_s = (a_0, \dots, a_{l-1})$ and $a_w = (a_l, \dots, a_n)$ (the statement and witness).

Fix also a collection of polynomials $u_i(X) \in F[X]$ for $0 \le i < n$ split up into the first l denoted u_s and the last l-n denoted u_w .

Finally, fix strings $(b_0,\dots,b_m),(h_0,\dots,h_m),(v_0,\dots v_m)\in F^m$ where $m=\deg t.$ Similarly fix $(b_i')_{i=l}^{n-l-1},\,(v_i')_{i=l}^{n-l-1}$ and $(h_i')_{i=l}^{n-l-1}\in F^{n-l},$ and $b_\gamma,v_\gamma,h_\gamma,b_{\gamma\beta},v_{\gamma\beta}.$

Definition 2.1. Define the polynomials $V_s = \sum_{i=1}^{n-1} a_i u_i(X) = V_{ss} + V_{sw}$, and

$$B_w = \sum_{i=0}^{m-1} b_i X^i + b_\gamma Z + b_{\gamma\beta} YZ + \sum_{i=l}^{n-1} b_i' Yu_i(X)$$

$$V_{w} = \sum_{i=0}^{m-1} v_{i}X^{i} + v_{\gamma}Z + v_{\gamma\beta}YZ + \sum_{i=l}^{n-1} v_{i}'Yu_{i}(X)$$

$$H = \sum_{i=0}^{m-1} h_i X^i + h_\gamma Z + h_{\gamma\beta} YZ + \sum_{i=l}^{n-1} h_i' Yu_i(X)$$

Definition 2.2. Call a sequence $(a_i)_{i=0}^{n-1}$ satisfying if

$$\sum_{i=0}^{l-1}a_iu_i(X)+\sum_{i=l}^{n-1}a_iu_i(X)\equiv 1\mod t$$

Lemma 2.3. $\forall 0 \leq i < m$, the coefficient of X^i in B_w (or B_w) is b_i .

Proof.

Lemma 2.4. The coefficient of Z^2 in Ht + 1 is 0.

Lemma 2.5. Given $(a_i)_{i=0}^{l-1}$, the coefficient of Z^2 in $(b_{\gamma\beta} \cdot Z + \sum_{i=0}^{l-1} a_i u_i(X) + \sum_{j=l}^{n-1} b_i' u_i(X))^2$ is $b_{\gamma\beta}^2$.

For the following lemmas assume we are in the setting of the proof of knowledge soundness. In particular, assume:

$$B_w = YV_w \tag{2.1}$$

$$Ht = V^2 - 1 \tag{2.2}$$

Knowledge soundness for BabySNARK follows from the following lemmas:

Lemma 2.6. Then given a monomial m not having a Y-term, the coefficient of m in B_w is θ .

Lemma 2.7. $\forall 0 \le i \le m-1, b_i = 0.$

$$\square$$

Lemma 2.8. $b_{\gamma} = 0$

Lemma 2.9. $B_w = b_{\gamma\beta}ZY + \sum_{i=l}^{n-1} b_i'Yu_i(X)$

$$\square$$

Lemma 2.10. $V_w = b_{\gamma\beta}Z + \sum_{i=l}^{n-1} b_i' u_i(X)$

Lemma 2.11. $V(a_i)_{i=0}^l = b_{\gamma\beta}Z + \sum_{i=0}^{l-1} a_i u_i(X) + \sum_{i=l}^{n-1} b_i' u_i(X)$

Lemma 2.12. $b_{\gamma\beta} = 0$

Lemma 2.13. $V(a_i)_{i=0}^l = \sum_{i=0}^{l-1} a_i u_i(X) + \sum_{i=l}^{n-1} b_i' u_i(X)$

$$\square$$

Lemma 2.14. $(Ht+1) \equiv (V(a_i)_{i=0}^l)^2 \pmod{t}$

Lemma 2.15. singlify(Ht+1)/t = singlifyH

Theorem 2.16. If an adversary produces polynomials B(X,Y,Z), V(X,Y,Z), H(X,Y,Z) which satisfy $B_w = YV_w$ and $Ht = V^2 - 1$, then the adversary can extract a satisfying witness.