

Fig. 1

Fig. 2

Column retention time (minutes)

Fig. 3

Fiz.4

Mol % of total Fatty acids	Control	Fat-1				
n-6 Polyunsaturate	S	•				
18:2n-6	14.2°	9.2 ^b				
20:2n-6	1.2ª .	0.3 ^b				
20:3n-6	1.6ª	0.4 ^b				
20:4n-6	15.2°	4.1 ^b				
22:4n-6	4,4ª	1.0 ⁵				
	0.2ª	0.0 ^b				
22:5n-6	36.8°	15.0 ^b				
Total	30.0					
n-3 Polyunsaturāte	es	- a				
18:3n-3	0.2	3.6°				
20:4n-3	0.0 ^b	0.6				
20:5n-3	0.1 ^b	6.1ª				
22:5n-3	1.2 ^b	5.8ª				
22:6n-3	1.0ª	1.3 ^a				
Total	2.5 ^b	17.4°				
lotal						
n-6/n-3 Ratio	14.7	0.9 ^b				
H-0/H-2 L/4H2		1 Malura for				

Values are means of four measurements. Values for each fatty acid with the same letter do not differ significantly (P<0.01) between control and fat-1.

Fig. 5

Introduction of fat-1 gene into cultured cells

B

Construction of viral expression vector

Cell culture

Assessment of expression of the transgene

of the transgene

of the n-3 desaturase

Examination of activity of the n-3 desaturase

of the n-3 desaturase

of the n-3 desaturase

effect on lipid profiles

Enzymatic assay with radiolabeled fatty acids

of the n-3 desaturase

effect on lipid extraction & TLC

of the n-3 desaturase

effect on lipid profiles

effect on lipid profiles

of the n-3 desaturase

of

Biochemical -Organ harvest at day 2, 4, 10, 30 & 60 after gene transfer analysis Gene transfer i diet for (Viral delivery) .0 days Gene transcripts (mRNA)
Fatty acid composition (8 rats/per time point) Ad.GFP (8 rats x 5) rmal diet, Ad.Fat-1 (8 rats x 5) Eicosanoid contents gh n-6 FA diet (no gene transfer, as endpoint reference) gh n-3 FA diet

vector onstruction

AG + Fat-l

Generation of transgenic mice

Microinjection

Tissue harvest

Biochemical analyses

Gene transcripts (mRNA Fatty acid composition Eicosanoid contents

Fig. 9

PUFA composition of total cellular lipids from the control rat cortical and the transgenic cells expressing a C. elegans fat-1 cDNA

Mol % of total fatty acids	Control	fat-1	
n-6 Polyunsaturates		•	
18:2n-6	1.78	0.87	
20:4n-6	7.21	4.23	
22:4n-6	1.57	0.72	
22:5n-6	1.68	0.72	
Total	12.26	6.53	
n-3 Polyunsaturates			
18:3 u- 3	0.34	0.86	
20:5n-3	0.21	0.87	
22:5n-3	0.29	0.81	
22:6n-3	1.27	1.93	
Total	2.11	4.48	
n-6/n-3 Ratio	6.44	1.67	

Values are means of four measurements. (p<0.01) between control and fat-1.

Fig. 10

Prostaglandin E2

Fig. 11

12/22

Fig. 12

Ad.GFP

Ad.GFP.Fat-1

↑Ca⁻⁻ (7.5mM)

PUFA composition of total cellular lipids from the control MCF-7 and the transgenic cells expressing a C. elegans fat-1 cDNA

Mol % of total fatty acids	Control	Fat-1			
n-6 Polyunsaturates					
18:2n-6 20:2n-6 20:3n-6 20:4n-6 22:4n-6 22:5n-6	3.13° 0.23° 0.34° 6.30° 0.53° 0.53°	1.51 ^b 0.22 ^a 0.16 ^b 2.26 ^b 0.33 ^b 0.11 ^b 4.59 ^b			
Total n-3 Polyunsaturates	10.80 ^a	4.50			
18:3n-3 20:4n-3 20:5n-3 22:5n-3 22:6n-3 Total	0.0 ^b 0.0 ^b 0.33 ^b 0.60 ^a 0.93 ^b	1.00° 0.10° 2.87° 1.47° 0.73° 6.17°			
n-6/n-3 Ratio	11.61°	0.74 ^b			

Values are means of four measurements. Values for each fatty acid with the same letter do not differ significantly (p<0.01) between control and fat-1.

Fig. 16

CAAGI	TTG!	AG G	T									. •			-	
ATG (Met '		m	CAT Kis	TCC Ser	TCA Ser	GAA Glu	GGG Gly	TTA Leu	TCC Ser 10	GCC Ala	ACG Thr	GCT Ala	CCG Pro	GTC Val 15	• !	57
ACC Thr	et a eec	GGA Gly	GAT Asp	GTT Val 20	CTG Leu	GTT Val	GAT Asp	GCT Ala	CGT Arg 25	GCA Ala	TCT Ser	CTT Leu	GAA Glu	GAA Glu 30	-	.02
AAG Lys	GAG Glu	GCT Ala	CCA Pro	CGT Arg 35	GAT Asp	GTG Val	AAT Asn	GCA Ala	AAC Asn 40	ACT Thr	AAA Lys	CAG Gln	GCC	ACC Thr 45	:	147
ACT Thr	GAA Glu	GAG Glu	CCA Pro	CGC Arg 50	ATC Ile	CAA Gln	TTA Leu	CCA	ACT Thr 55	GTG Val	GAT Asp	GCT Ala	TTC Phe	CGT Arc	,	192
CGT Arg	GCA Ala	ATT Ile	CCA Pro	GCA Ala 65	CAC His	TGT	TTC ?he	GAA Glu	AGA Arg		CTC	GTT Val	AA/	TC7 Sei 75	λ τ	237
ATC Ile	AGA Arg	TAT Tyr	TTG Leu	CTG Val 80	CAA Gln	GNC	TTT Phe	GCG Ala	GCA Ala 85	CTC	ACA Thi	TTA A	CTC	TA: 1 Ty: 90	c r	282
TTT Phe	GCT Ala	CTT Leu	CCA Pro	GCT Ala 95	TTT Phe	GAG Glu	TAC Tyr	TT1	GG/ Gl;	,	TT:	r GG:	TA Y Ty	C TT r Le 10	G u 5	327
Val	Trp	Asn	He	110		GI	, vas		r GG e Gl 11	5	-		*	12	20	372
Val	GTA	HIS	Asp	125	Dec				A TT r Ph 13	0				1:	35	417
Leu	Asn	Asp	Phe	140	. GT.	A BT	3 11.		C TT a Ph 14	5		•		1	50	462
Pro	Tyr	Phe	Pro	155	, , 61;	u ry	s. se	T		50	-		,	1	.65	507
Thr	Asn	His	: 110	a Asp) Эгд	S AS	b er	.s . .	_	75		•			180	552
Lys	Asp	Tr	5 G1	18:	a me 5		.0 56	51 1		90		•		*	195	
ATI Ile	CCP	TT(C TC e Se	7 GG r Gl 20	צג ע	G C	rt Al eu L	AA T ys T	GG T rp.P	TC C he E	CA (STG '	TAC Tyr	ACT Thr	TTA Leu 210	
TTC	: GG1	TT	c TG	T GA	T GC	A T	CT , C	AC I	TC 7	rgg (CA	TAC	TCT	TCA	CTI	687

Fig. 17A

Phe	Gly	Phe	Cys	Asp 215	Gly	Ser	His	Phe	Trp 220	Pro	Tyr	Ser	Ser	Leu 225	
TTT Phe	GTT Val	CGT Arg	AAC Asn	TCT Ser 230	GAC Asp	CGT Arg	GTT Val	CAA Gln	TGT Cys 235	GTA Val	ATC Ile	TCT Ser	CTA	ATC 11e · 240	732
TGT Cys	TGC Cys	TGT Cys	GTG Val	TGT Cys 245	GCA Ala	TAT Tyr	ATT Ile	GCT Ala	CTA Leu 250	ACA Thr	ATT Ile	GCT Ala	ejà eèÿ	TCA Ser 255	רדר
TAT Tyr	TCC Ser	AAT Asn	TGG Trp	TTC Phe 260	TGG Trp	TAC Tyr	TAT Tyr	TGG Trp	GTT Val 265	Pro	CTT Leu	TCT Ser	TTC Phe	TTC Phe 270	822,
GGA Gly	TTG Leu	ATG Met	CTC Leu	GTC Val 275	ATT Ile	GTT Val	ACC Thr	TAT	TTG Leu 280	GID	CAT His	GTC Val	GAT Asp	GAT Asp 285	867
GTC Val	GCT Ala	GAG Glu	GTG Val	TAC Tyr 290	Glu	GCT Ala	GAT Asp	GAA Glu	TGG Trp 295	Ser	Phe	GTC Val	CGT Arg	GGA Gly 300	912
CAA Gln	ACC Thr	CAA Gln	ACC Thr	ATC Ile 305	Asp	CGT Arg	TAC Tyr	TAT Tyr	GGA Gly 310	. Ter	GGA Gly	TTC Let	GAC L Asp	ACA Thr 315	957
ACG Thr	ATG Met	CAC His	CAT His	ATC Ile 320	Thr	GAC Asp	GGA Gly	CAC His	Val	WT5	CAT His	CAC His	TTO	e Phe 330	1062
AAC Asn	AAA Lys	ATC Ile	CCA Pro	CAT His 335	Tyr	CAT His	CTC Lev	ATC Ile	GA# Glu 340	3 AT	A ACC	C GA	A GG u Gl	T GTC y Val 345	1047
Lys	Lys	Val	Leu	Glu 350	Pro	Leu	·Ser	Asp	35.	5	піу	I GI	Y -3	C AAA T Lys 360	1092
Ser	Gln	Val	Aşn	365	Asp) Phe	Phe	2 A16	37 37	g Pn 0.	e re	u 11	. 	C AAC ne Asn 375	1137
TAC Tyr	AAG Lys	CTC	GAC	TAT Tyr 380	: Lev	GTT 1 Val	CAC L Hi:	C AAG s Ly:	S AC s Th	I WI	C GG a G	A A	C A'	IG CAA et Gln 390	
TTC Phe	CGA	ACA Thi	ACI Thi	Lei	GAC	a Gl	AA Ly	G GC s Al	A AA a Ly 40	'S A.	C A	NG T. YS	AA		1221
AAG	ATAG	TCC	CGT	ccg:	rŤC :	PAGA	STAC	AA C	AAC	ACT	rc T	GCGT	TTTC	A:	1271
	GTTT														1321
CTI	TTTA	TTA.	TTA	rTCT(CTC '	AAAT	AAAC	TT C	TAC:	r tt t	CA G	TGCC	TTG/	A A	1371
TGC	AATA:	AGC	CAT	AACT	CTT										1391

Fig. 17B

Optimized Ide-1

caa gtt tga ggt ATG gtc gct cat tcc AGC gaa ggg CtG tcc gcc acg gct ccg gtc acc qqc gqC gat gtG ctg gtG gat gcC cgt gca tct ctG gaG gaG aag gag gcC ccC cgC gaC 61. qtg aat gca aac act aaa cag gcc acc act gag gag ccc cgc atc caG tta ccc act gtg 121. gat gcc ttc cgC cgC gca att ccC gca cac tgC ttc gaG agG gaC ctc gtG aaa tca atc 181. agG tat Ctg gtg caG gac ttt gcg gca ctG aca att ctG tac ttt gcC ctt ccC gcC ttt 241. gag tac ttt ggC Ctg ttt ggt tac Ctg gtG tgg aac att ttt atg ggC gtt ttt ggC ttc 301. gcg Ctg ttc gtc gtt gga cac gaC tgt ctt caC ggC tca ttc tcC gat aat cag aat ctc 361. aat gat tte att gga cat ate gee tte AGC cea ete tte tet ec tae tte ec tgg cag 421. aaa agt cac aag ctG cac caC gcC ttc acc aac cac atC gac aaa gat cat gga cac gtg 481. tgg atA cag gat aag gat tgg gaa gca atg cc AGC tgg aaa aga tgg ttc aat cc att 541. cer ttc tct ggC tgg ctG aaa tgg ttc cer gtg tac act CtG ttc ggt ttc tgC gat gga 601. toC cac ttc tgg ccT tac tcC tca ctG ttt gtG cgC aac tct gaa cgC gtt caG tgt gta 661. ate tet gga ate tgC tge tgt gtg tgC gca tat att get eta aca att get gga AGC tat 721. too aat tog tto tog tac tat tog ott coa ott tot tto tto tgo tto atg otc otc att 781. att acc tat Ctg caC caC gtc gaC gtc gcc gcc gag gtg tac gag gct gat gaa tgg agc 841. ttc gtc cgG gga caG acc caG acc atc gat cgt tac tat ggC ctc ggC ttg gac aca acg 901. atg cac cat atc aca gac gga cac gtt gcc cac ttc ttc aac aaa atc cca cat tac 1021. cat ctc atc gaa gca acc gaa ggt gtc aaa aag gtc ttg gag ccg ttg tcc gac acc caa 1081. tac ggg tac aaa tct caG gtg aac tac gat ttc ttt gcc cgG ttc ctg tgg ttc aac tac 1141. aag ctc gac tat ctc gtt cac aag acc gcc gga atc atg caa ttc cga aca act ctc gag gag aag gca aag gcc aag tGa aag aat atc ccg tgc cgt tct aga gta caa caa cat 1201. 1261. etg egt ttt eac egg ttt tge tet aat tge aat ttt tet ttg tte tat ata tat ttt ttt 1321. gct ttt taa ttt tat tct ctc taa aaa act tct act ttt cag tgc gtt gaa tgc ata aag cca taa ctc tt

Fig. 18

Fig. 19

Fig. 21

