# Scene Classification using Spatial Envelope (GIST) features

# Principles of Biological Vision

- Marri Bharadwaj (B21CS045)

## Introduction

The objective of this project is to classify landscape images into predefined categories—such as *coast*, *desert*, *forest*, etc—by leveraging holistic image features for context recognition. Specifically, *GIST descriptors*, which capture spatial layout and structure, are used to represent the scenes. Using these features, I aim to build and train a *Bayesian classifier* to differentiate among various landscape types. The classifier's performance will be rigorously evaluated on both training and test datasets to assess its accuracy, generalisation capabilities, and feature effectiveness in real-world scene classification scenarios.

# **Data Preprocessing and Exploration**

## Dataset Loading & Splitting

I defined paths for training, validation, and testing data, and then used *loading\_images\_and\_categories* to read images and labels for each split. Each image was converted to greyscale for standardisation.

```
Unique Categories are ['Mountain', 'Coast', 'Desert', 'Forest', 'Glacier']
Number of Training images: 10000
Number of Validation images: 1500
Number of Testing images: 500
```

# Sample Image Display

Then, I displayed sample images from each category in grayscale, allowing visual verification of image categories and quality as follows-



## Label Encoding

The *label\_encoding* function converts categorical labels into numerical form, using *LabelEncoder*.

```
Label Classes: ['Coast' 'Desert' 'Forest' 'Glacier' 'Mountain'] Encoded Labels: [4 4 4 ... 3 3 3]
```

#### **GIST Feature Extraction**

## Feature Extraction using GIST

I defined a class for *GIST* feature extraction. Some of the functions included in the class are:

- resize\_image: Resizes each image to a specified dimension (128x128), standardising the input size for consistent feature extraction.
- \_\_create\_gabor\_filters: Generates a set of Gabor filters across different scales and orientations, enabling the capture of edge and texture information at multiple resolutions and angles.

Gabor Filter Bank



- extract\_features\_from\_dataset: Applies the feature extraction process to an entire dataset, collecting GIST features for each image into a feature matrix, preparing it for further processing or clustering.
- get\_gist\_features: Divides each image into a grid and applies the Gabor filters to calculate GIST features based on the mean values in each grid cell. This captures spatial layout and texture details in a structured feature array.





# Feature Extraction on Test dataset





# Feature Quantisation using K-Means Clustering

The *quantise\_gist\_features* function applies *K-Means Clustering* to the extracted *GIST* features for each feature dimension, quantising them into a defined number of clusters (*num\_clusters*). This reduces feature complexity by mapping continuous feature values to discrete states, enhancing model interpretability and reducing memory usage. I initially took ten clusters.

Quantisation completed!

Original feature range: [-242.331, 610.138]

Quantised feature range: [0, 9]

Number of quantisation levels per feature is 10

The *display\_quantisation\_distribution* function visualises the quantised state distribution across selected features, using histograms to show frequency for each quantisation level. By plotting the first *num\_features* (default 5), it highlights how well clusters are represented, aiding in assessing balance and identifying any over-or under-representation among quantised states.



# Increasing to 100 clusters

Quantisation completed!

Original feature range: [-242.331, 610.138]

Quantised feature range: [0, 99]

Number of quantisation levels per feature is 100



# **Bayesian Network Classifier**

I defined a class named *BayesianNetworkClassifier*. Some of the functions defined in it are:

- *fit*: Trains the classifier on the training data, *X\_train* and *y\_train*
- \_calculate\_prior: Computes the prior probability of each class as the ratio of class occurrences to total samples in *y train*.
- \_calculate\_likelihoods: Calculates likelihoods for each feature value within a class. Applies Laplace smoothing to handle unseen values, storing these as probability mappings for each feature in each class.
- *predict*: Predicts the class labels for the test data *X\_test*. For each sample, it calculates the log-posterior for each class based on prior and likelihoods, selecting the class with the highest posterior probability.
- evaluate: Evaluates model performance on X\_test and y\_test. It calculates accuracy, generates a classification report, and plots a confusion matrix. Allows specifying class names for more interpretable output.
- *plot\_confusion\_matrix*: Plots the confusion matrix, with an option to normalise values. Displays the matrix with coloured cells and labels, enhancing visualisation of classification performance across classes.

At last, I applied the Bayesian Classifier on the quantised feature images

# **Testing and Evaluation**

#### **Evaluation Metrics**

The *evaluate* function uses three main performance metrics: *Accuracy*, *Precision*, *Recall*, and *F1-score* and *Confusion Matrix*.

- Accuracy gives an overall correctness rate of predictions.
- *Precision*, *Recall*, and *F1-score* provide a deeper breakdown of performance per class, highlighting areas where the classifier is effective or struggling.
- Confusion Matrix visualises true v/s predicted classifications, showing misclassification patterns.

# Quantising for 10 clusters

• Evaluating on Training set

### **METRICS**

Accuracy: 40.84%

| · · · · · · · · · · · · · · · · · · · |           |        |          |         |
|---------------------------------------|-----------|--------|----------|---------|
|                                       | precision | recall | f1-score | support |
| Coast                                 | 0.37      | 0.24   | 0.29     | 2000    |
| Coast                                 | 0.37      | 0.24   | 0.29     | 2000    |
| Desert                                | 0.51      | 0.18   | 0.27     | 2000    |
| Forest                                | 0.47      | 0.70   | 0.56     | 2000    |
| Glacier                               | 0.36      | 0.53   | 0.43     | 2000    |
| Mountain                              | 0.37      | 0.39   | 0.38     | 2000    |
|                                       |           |        |          |         |
| accuracy                              |           |        | 0.41     | 10000   |
| macro avg                             | 0.42      | 0.41   | 0.39     | 10000   |
| weighted avg                          | 0.42      | 0.41   | 0.39     | 10000   |
|                                       |           |        |          |         |

## **CONFUSION MATRIX**



# Quantising for 100 clusters

• Evaluating on Training set

## **METRICS**

Accuracy: 41.00%

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Coast        | 0.29      | 0.19   | 0.23     | 100     |
| Desert       | 0.48      | 0.20   | 0.28     | 100     |
| Forest       | 0.62      | 0.71   | 0.66     | 100     |
| Glacier      | 0.32      | 0.59   | 0.41     | 100     |
| Mountain     | 0.40      | 0.36   | 0.38     | 100     |
|              |           |        |          |         |
| accuracy     |           |        | 0.41     | 500     |
| macro avg    | 0.42      | 0.41   | 0.39     | 500     |
| weighted avg | 0.42      | 0.41   | 0.39     | 500     |

# **CONFUSION MATRIX**



# **Comparison and Analysis of Results**

Analysing and Comparing the results obtained on train and test sets:

#### A. 10 clusters

#### 1. Training Set Performance

- a. *Training Accuracy* is 40.84%, indicating moderate effectiveness in recognising patterns within the training data.
- b. Class Performance:
  - Forest has the highest recall (0.70) and F1-score (0.56), showing the model's ability to identify this class accurately.
  - Desert and coast classes have lower recall values (0.18 and 0.24, respectively), indicating frequent misclassification.
- c. *Confusion Matrix: Forest* is mostly correctly classified, while *coast* and *desert* are commonly misclassified as *glacier* and *mountain*, indicating overlaps in feature representations among these classes.

# 2. Testing Set Performance

- a. *Testing Accuracy* is 41%, similar to training accuracy, showing stable but limited generalisation.
- b. Class Performance:
  - Forest again performs best with the highest recall (0.71) and F1-score (0.66), suggesting the model's learned patterns for this class generalise well.
  - Desert and coast continue to have low recall values (0.20 and 0.19), indicating persistent difficulty in identifying these classes accurately.
- c. *Confusion Matrix*: Similar misclassification patterns as the training set, with *coast* and *desert* frequently misclassified as *glacier* and *mountain*, suggesting a need for improved feature separation.

#### B. 100 clusters

### 1. Training Set Performance

- a. *Training Accuracy* is 57.97%, improved over previous trials, indicating better fit on training data with higher quantisation.
- b. Class Performance:
  - Forest has the highest recall (0.75) and F1-score (0.61), showing strong recognition of this class.
  - Desert and mountain have lower recall (0.42 and 0.52, respectively), indicating more difficulty in identifying these classes accurately.
  - Overall, *macro* and *weighted F1-scores* at 0.58 reflect balanced improvement in performance.
- c. *Confusion Matrix: Forest* is still the best-classified class, while *coast* and *desert* are commonly misclassified as *glacier* and *mountain*, though less frequently than before, suggesting that finer quantisation captures more unique features per class.

## 2. Testing Set Performance

- a. *Testing Accuracy* is 46.2%, lower than training accuracy, showing overfitting with the finer quantisation level.
- b. Class Performance:
  - Forest continues to have the highest recall (0.75) and F1-score (0.70), showing it generalises better for this class.
  - Desert and coast show lower precision and recall, indicating a tendency for misclassification.
  - *Macro* and *weighted averages of F1-scores* (0.46) are lower than the training set, highlighting reduced generalisation across classes.
- c. *Confusion Matrix*: Misclassification patterns are similar to the training set, with *coast* and *desert* often predicted as *glacier* and

*mountain*, suggesting persistent feature overlap despite higher quantisation.

## **Conclusion**

- The model shows improved *accuracy* on the training set with 100 clusters, but this comes with increased overfitting, as shown by the drop in test accuracy.
- Class-level performance gains for *forest* are evident in both sets, but other classes, particularly *coast* and *desert*, still experience notable misclassifications.
- Higher quantisation aids in capturing class-specific features, though further tuning may be needed to balance fit and generalisation.