Part I.MNIST

Convolutional Neural Network Structure:

Filter size:(5, 5), strides:(1,1)

	Layer Name	Layer Type	Output Shape
0	input_layer_2	InputLayer	(None, 28, 28, 1)
1	conv1	Conv2D	(None, 24, 24, 64)
2	pool1	MaxPooling2D	(None, 12, 12, 64)
3	flatten_2	Flatten	(None, 9216)
4	dense_2	Dense	(None, 10)

Accuracy plot

Filter size:(10,10), strides:(2,2)

Conclusion:

Filter size 和 stride 對分類的正確性和 loss function 的值(預設為 cross entropy) 並沒有顯著的影響。 strides size 最主要的影響是, stride 越大則輸出的變數越少, Filter size 則影響進行卷積時擷取特徵的範圍大小,決定輸出大輪廓還是細節(影像存在的邊緣等等特徵)。

輸出尺寸 Output size = (Input size – Filter size)/Stride,故輸出由兩者共同決定,通常較大的 stride 會搭配較大的 filter。

以下 plot 以 filter size (5,5), strides(1,1)模型呈現

Weight histogram of conv. Layer 1

Weight histogram of dense layer(also output layer)

Some examples of correctly classified

Correctly Classified Images

Misclassified Images

Some examples of miss-classified

Misclassified Images

Observe the feature maps from different layers:

input layer

conv layer

Max polling layer

Add L2 regularization:

accuracy plot

Weight histogram of conv1

Weight histogram of dense layer(also output layer)

Conclusion:

在模型中加入 L2 Regularization 以後,weights matrices 變得更為集中到 0 附近,是由於下面這個式子中

$$E = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} y_{nk} \ln t_{nk} + \alpha \|\omega\|_{2}^{2}$$

後半部 2nd norm 的額外得懲罰項(penalty term),用於抑制 weight W 變成較小的值,會讓模型變得較不易 overfitting 或是過度依賴某些特徵。在沒有加入 L2 regularization 前,test accuracy 和 valid accuracy 在 epoch = 3 以後都小於 train accuracy,但在加入 L2 regularization 以後就沒有這樣的現象(test and valid accuracy 還是高於 train accuracy),顯示有適當的抑制 overfitting 現象。

Part II. CIFAR

Convolutional Neural Network Structure:

Filter size: (3,3), Stride:(1,1)

	Layer Name	Layer Type	Output Shape
0	conv2d_41	Conv2D	(None, 30, 30, 32)
1	max_pooling2d_31	MaxPooling2D	(None, 15, 15, 32)
2	conv2d_42	Conv2D	(None, 13, 13, 64)
3	max_pooling2d_32	MaxPooling2D	(None, 6, 6, 64)
4	flatten_13	Flatten	(None, 2304)
5	dense_26	Dense	(None, 64)
6	dense 27	Dense	(None, 10)

Accuracy Plot

Loss

Filter size: (5,5), stride(1,1)

Accuracy

Conclusion:

Filter size 和 stride 對分類的正確性和 loss function 的值(預設為 cross entropy) 並沒有顯著的影響,當使用較大的 filter 時不論是 train accuracy, test accuracy 和 valid accuracy 都較低,不過以整體而言並沒有明顯影響訓練出的神經網路,和 part 1 MNIST 的結論相同,影響的應該是計算模型所需的時間而非分類結果。

以下 plot 以 filter size (3,3), strides(1,1)模型呈現

Weights Histogram of convolution layer 1

Weights Histogram of convolution layer 2

Weights Histogram of dense layer

Weights Histogram of dense layer 2(Output layer)

Some examples of correctly classified

Predicted: 8, Actual: 8

Predicted: 0, Actual: 0

Predicted: 1, Actual: 8

Predicted: 4, Actual: 0

Observe the feature maps from different layers:

Convolution layer 1

Layer 1: conv2d

Max pooling layer 1

Layer 2: max_pooling2d

Convolution layer 2

Layer 3: conv2d_1

Layer 4: max_pooling2d_1

Add L2 regularization:

Accuracy plot

Loss plot

Conclusion:

在 CIFAR 10 所訓練出的模型上使用 L2 regularization 的效果並不好,推測原因如下:原本 L2 Regularization 的目的應該是防止訓練過程中 overfitting 發生,但原先未使用 L2 Regularization 的 model 正確率落在 60~70%之間,並沒有 Overfitting 的現象發生,然而在使用 L2 regularization 以後變成的 underfitting 的模型,分類 accuracy 明顯下降許多,接下來的幾張 weights histogram 也說 明 L2 regularization 會產出複雜度較低的模型(大量 weights 接近 0)。

Weights histogram of convolution layer 1

Weights histogram of convolution layer 2

Weights histogram of dense layer 1

Weights histogram of convolution layer 2(output layer)

