Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 911189

INTEGRATED CIRCUITS

DATA SHEET

74HC595; 74HCT595

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

Product specification Supersedes data of 1998 Jun 04 2003 Jun 25

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

FEATURES

- 8-bit serial input
- · 8-bit serial or parallel output
- Storage register with 3-state outputs
- · Shift register with direct clear
- 100 MHz (typical) shift out frequency
- ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.

APPLICATIONS

- Serial-to-parallel data conversion
- · Remote control holding register.

DESCRIPTION

The 74HC/HCT595 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT595 is an 8-stage serial shift register with a storage register and 3-state outputs. The shift register and storage register have separate clocks.

Data is shifted on the positive-going transitions of the SH_CP input. The data in each register is transferred to the storage register on a positive-going transition of the ST_CP input. If both clocks are connected together, the shift register will always be one clock pulse ahead of the storage register.

The shift register has a serial input (DS) and a serial standard output (Q7') for cascading. It is also provided with asynchronous reset (active LOW) for all 8 shift register stages. The storage register has 8 parallel 3-state bus driver outputs. Data in the storage register appears at the output whenever the output enable input (OE) is LOW.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBOL	PARAIVIETER	CONDITIONS	74HC	74HCT	ONII	
t _{PHL} /t _{PLH}	propagation delay	$C_L = 50 \text{ pF}; V_{CC} = 4.5 \text{ V}$				
	SH_CP to Q7'		19	25	ns	
	SH_CP to Qn		20	24	ns	
	MR to Q7'		100	52	ns	
f _{max}	maximum clock frequency SH_CP and ST_CP		100	57	MHz	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	115	130	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 f_0 = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = total load switching outputs;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

2. For 74HC595 the condition is $V_I = GND$ to V_{CC} .

For 74HCT595 the condition is $V_I = GND$ to $V_{CC} - 1.5 V$.

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

FUNCTION TABLE

See note 1.

		INPUT			OUT	PUT	FUNCTION
SH_CP	ST_CP	ΟE	MR	DS	Q7'	Qn	FUNCTION
Х	Х	L	L	Х	L	n.c.	a LOW level on MR only affects the shift registers
Х	1	L	L	Х	L	L	empty shift register loaded into storage register
Х	Х	Н	L	Х	L	Z	shift register clear; parallel outputs in high-impedance OFF-state
↑	Х	L	Н	Н	Q6'	n.c.	logic high level shifted into shift register stage 0; contents of all shift register stages shifted through, e.g. previous state of stage 6 (internal Q6') appears on the serial output (Q7')
Х	↑	L	Η	Х	n.c.	Qn'	contents of shift register stages (internal Qn') are transferred to the storage register and parallel output stages
1	↑	L	Η	Х	Q6'	Qn'	contents of shift register shifted through; previous contents of the shift register is transferred to the storage register and the parallel output stages

Note

1. H = HIGH voltage level;

L = LOW voltage level;

↑ = LOW-to-HIGH transition;

 \downarrow = HIGH-to-LOW transition;

Z = high-impedance OFF-state;

n.c. = no change;

X = don't care.

ORDERING INFORMATION

			PACKAGE		
TYPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
74HC595N	-40 to +125 °C	16	DIP16	plastic	SOT38-4
74HCT595N	-40 to +125 °C	16	DIP16	plastic	SOT38-4
74HC595D	–40 to +125 °C	16	SO16	plastic	SOT109-1
74HCT595D	–40 to +125 °C	16	SO16	plastic	SOT109-1
74HC595DB	–40 to +125 °C	16	SSOP16	plastic	SOT338-1
74HCT595DB	–40 to +125 °C	16	SSOP16	plastic	SOT338-1
74HC595PW	-40 to +125 °C	16	TSSOP16	plastic	SOT403-1
74HCT595PW	–40 to +125 °C	16	TSSOP16	plastic	SOT403-1
74HC595BQ	–40 to +125 °C	16	DHVQFN16	plastic	SOT763-1
74HCT595BQ	–40 to +125 °C	16	DHVQFN16	plastic	SOT763-1

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

PINNING

PIN	SYMBOL	DESCRIPTION
1	Q1	parallel data output
2	Q2	parallel data output
3	Q3	parallel data output
4	Q4	parallel data output
5	Q5	parallel data output
6	Q6	parallel data output
7	Q7	parallel data output
8	GND	ground (0 V)
9	Q7'	serial data output
10	MR	master reset (active LOW)
11	SH_CP	shift register clock input
12	ST_CP	storage register clock input
13	ŌĒ	output enable (active LOW)
14	DS	serial data input
15	Q0	parallel data output
16	V _{CC}	positive supply voltage

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	74HC				UNIT		
STWIBOL	PARAMETER		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	_	V _{CC}	0	_	V _{CC}	V
Vo	output voltage		0	_	V _{CC}	0	_	V _{CC}	V
T _{amb}	ambient temperature		-40	_	+125	-40	_	+125	°C
t _r , t _f	input rise and fall time	V _{CC} = 2.0 V	_	_	1000	_	_	_	ns
		V _{CC} = 4.5 V	_	6.0	500	_	6.0	500	ns
		V _{CC} = 6.0 V	_	_	400	_	_	_	ns

LIMITED VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input diode current	$V_{I} < -0.5 \text{ V to } V_{I} > V_{CC} + 0.5 \text{ V}$	_	±20	mA
I _{OK}	output diode current	$V_{O} < -0.5 \text{ V to } V_{O} > V_{CC} + 0.5 \text{ V}$	_	±20	mA
Io	output source or sink current	$V_{O} = -0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$			
		Q7' standard output	_	±25	mA
		Qn bus driver outputs	_	±35	mA
I _{CC} , I _{GND}	V _{CC} or GND current		_	±70	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation	$T_{amb} = -40 \text{ to } +125 ^{\circ}\text{C}; \text{ note } 1$	_	500	mW

Note

1. For DIP16 packages: above 70 °C derate linearly with 12 mW/K.

For SO16 packages: above 70 °C derate linearly with 8 mW/K.

For SSOP16 packages: above 60 $^{\circ}\text{C}$ derate linearly with 5.5 mW/K.

For TSSOP16 packages: above 60 °C derate linearly with 5.5 mW/K.

For DHVQFN16 packages: above 60 °C derate linearly with 4.5 mW/K.

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

DC CHARACTERISTICS

Type 74HC

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

CVMDOL	DADAMETED	TEST CONDITION	ONS	NAIN!	TVD	MAY	LINUT
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40 to	+85 ° C ; note 1		•			-1	•
V _{IH}	HIGH-level input		2.0	1.5	1.2	_	V
	voltage		4.5	3.15	2.4	_	V
			6.0	4.2	3.2	_	V
V _{IL}	LOW-level input		2.0	_	0.8	0.5	V
	voltage		4.5	_	2.1	1.35	V
			6.0	_	2.8	1.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	all outputs					
		$I_{O} = -20 \mu\text{A}$	2.0	1.9	2.0	_	V
			4.5	4.4	4.5	_	V
			6.0	5.9	6.0	_	V
		Q7' standard output					
		$I_{O} = -4.0 \text{ mA}$	4.5	3.84	4.32	_	V
		$I_{O} = -5.2 \text{ mA}$	6.0	5.34	5.81	_	V
		Qn bus driver outputs					
		$I_{O} = -6.0 \text{ mA}$	4.5	3.84	4.32	_	V
		$I_{O} = -7.8 \text{ mA}$	6.0	5.34	5.81	_	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	all outputs					
		$I_{O} = 20 \mu\text{A}$	2.0	_	0	0.1	V
			4.5	_	0	0.1	V
			6.0	_	0	0.1	V
		Q7' standard output					
		$I_{O} = 4.0 \text{ mA}$	4.5	_	0.15	0.33	V
		I _O = 5.2 mA	6.0	_	0.16	0.33	V
		Qn bus driver outputs					
		$I_{O} = 6.0 \text{ mA}$	4.5	_	0.16	0.33	V
		$I_{O} = 7.8 \text{ mA}$	6.0	_	0.16	0.33	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND	6.0	_	_	±1.0	μΑ
l _{OZ}	3-state output OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND}$	6.0	_	-	±5.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	6.0	_	-	80	μΑ

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

OVMDOL	DADAMETER	TEST CONDITION	ONS		TVD	MAX.	UNIT
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.		UNIT
T _{amb} = -40 to	+125 °C		'		-		'
V _{IH}	HIGH-level input		2.0	1.5	_	_	V
	voltage		4.5	3.15	_	_	V
			6.0	4.2	_	_	V
V _{IL}	LOW-level input		2.0	_	_	0.5	V
	voltage		4.5	_	_	1.35	V
			6.0	_	_	1.8	V
V _{OH}	HIGH-level output	V _I = V _{IH} or V _{IL}					
	voltage	all outputs					
		$I_{O} = -20 \mu A$	2.0	1.9	_	_	V
			4.5	4.4	_	_	V
			6.0	5.9	_	_	V
		Q7' standard output					
		$I_{O} = -4.0 \text{ mA}$	4.5	3.7	_	_	V
		$I_{O} = -5.2 \text{ mA}$	6.0	5.2	_	_	V
		Qn bus driver outputs					
		$I_{O} = -6.0 \text{ mA}$	4.5	3.7	_	_	V
		$I_{O} = -7.8 \text{ mA}$	6.0	5.2	_	_	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	all outputs					
		$I_{O} = 20 \mu A$	4.5	_	_	0.1	V
		Q7' standard output					
		$I_{O} = 4.0 \text{ mA}$	4.5	_	_	0.4	V
		Qn bus driver outputs					
		$I_{O} = 6.0 \text{ mA}$	4.5	_	_	0.4	V
l _{LI}	input leakage current	$V_I = V_{CC}$ or GND	5.5	_	_	±1.0	μΑ
l _{oz}	3-state output OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND}$	5.5	_	_	±10.0	μΑ
Icc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	_	_	160	μА

Note

^{1.} All typical values are measured at T_{amb} = 25 °C.

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

Type 74HCT At recommended operating conditions; voltages are referenced to GND (ground = 0 V); $t_r = t_f = 6$ ns; $C_L = 50$ pF.

OVMDOL	DADAMETED	TEST CONDITI	ONS		TVD	MAY	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40 to	+85 °C; note 1			-		•	
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	1.6	-	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	_	1.2	0.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	all outputs					
		$I_{O} = -20 \mu A$	4.5	4.4	4.5	_	V
		Q7' standard output					
		$I_{O} = -4.0 \text{ mA}$	4.5	3.84	4.32	_	V
		Qn bus driver outputs					
		$I_{O} = -6.0 \text{ mA}$	4.5	3.7	4.32	_	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	all outputs					
		$I_{O} = 20 \mu A$	4.5	_	0	0.33	V
		Q7' standard output					
		$I_{O} = 4.0 \text{ mA}$	4.5	_	0.15	0.33	V
		Qn bus driver outputs					
		$I_{O} = 6.0 \text{ mA}$	4.5	_	0.16	0.33	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	5.5	_	_	±1.0	μΑ
l _{OZ}	3-state output OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND}$	5.5	_	_	±5.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	_	_	80	μΑ
Δl _{CC}	additional supply current per input	$V_{I} = V_{CC} - 2.1 \text{ V};$ $I_{O} = 0; \text{ note } 2$	4.5 to 5.5	_	100	450	μА

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

CVMDOL	PARAMETER	TEST CONDITI	ONS	NAIN!	TVD	MAX.	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	WAX.	UNIT
T _{amb} = -40 to	→ +125 °C					•	•
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	-	_	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	_	-	0.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}					
	voltage	all outputs					
		$I_{O} = -20 \mu\text{A}$	4.5	4.4	_	_	V
		Q7' standard output					
		$I_{O} = -4.0 \text{ mA}$	4.5	3.7	_	_	V
		Qn bus driver outputs					
		$I_{O} = -6.0 \text{ mA}$	4.5	3.7	_	_	V
V _{OL}	LOW-level output	V _I = V _{IH} or V _{IL}					
	voltage	all outputs					
		I _O = 20 μA	4.5	_	_	0.1	V
		Q7' standard output					
		$I_{O} = 4.0 \text{ mA}$	4.5	-	_	0.4	V
		Qn bus driver outputs					
		$I_{O} = 6.0 \text{ mA}$	4.5	-	_	0.4	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND	5.5	_	_	±1.0	μΑ
I _{OZ}	3-state output OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND}$	5.5	_	_	±10.0	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	_	_	160	μА
Δl _{CC}	additional supply current per input	$V_{I} = V_{CC} - 2.1 \text{ V};$ $I_{O} = 0; \text{ note } 2$	4.5 to 5.5	_	-	490	μΑ

Notes

- 1. All typical values are measured at T_{amb} = 25 °C.
- 2. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient per input pin:
 - a. pin DS: 0.25
 - b. pins \overline{MR} , SH_CP, ST_CP and \overline{OE} : 1.50.

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

AC CHARACTERISTICS

Family 74HC

 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF.$

CVMDOL	DADAMETED	TEST CONDIT	TIONS	BAINI	TVD	MAY	LINIT
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = 25 °C	,	-	•	-		•	•
t _{PHL} /t _{PLH}	propagation delay	see Fig.7	2.0	_	52	160	ns
	SH_CP to Q7'		4.5	_	19	32	ns
			6.0	_	15	27	ns
	propagation delay	see Fig.8	2.0	_	55	175	ns
	ST_CP to Qn		4.5	_	20	35	ns
			6.0	_	16	30	ns
PHL	propagation delay	see Fig.10	2.0	_	47	175	ns
MR to	MR to Q7'		4.5	_	17	35	ns
			6.0	_	14	30	ns
t _{PZH} /t _{PZL}	3-state output enable time OE to Qn	see Fig.11	2.0	_	47	150	ns
			4.5	_	17	30	ns
			6.0	_	14	26	ns
t _{PHZ} /t _{PLZ}	3-state output disable time	see Fig.11	2.0	_	41	150	ns
	ŌĒ to Qn		4.5	_	15	30	ns
			6.0	_	12	26	ns
tw	shift clock pulse width	see Fig.7	2.0	75	17	1-	ns
	HIGH or LOW		4.5	15	6	_	ns
			6.0	13	5	_	ns
	storage clock pulse width	see Fig.8	2.0	75	11	_	ns
	HIGH or LOW		4.5	15	4	_	ns
			6.0	13	3	_	ns
	master reset pulse width	see Fig.10	2.0	75	17	1-	ns
	LOW		4.5	15	6.0	_	ns
			6.0	13	5.0	1-	ns
·su	set-up time DS to SH_CP	see Fig.9	2.0	50	11	1-	ns
			4.5	10	4.0	_	ns
			6.0	9.0	3.0	_	ns
	set-up time	see Fig.8	2.0	75	22	_	ns
	SH_CP to ST_CP		4.5	15	8	1-	ns
			6.0	13	7	_	ns
t _h	hold time DS to SH_CP	see Fig.9	2.0	+3	- 6	_	ns
			4.5	+3	-2	_	ns
			6.0	+3	-2	_	ns

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

0)/4501	DADAMETED	TEST CONDIT	TIONS		T)/D	NA AV	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
t _{rem}	removal time MR to SH_CP	see Fig.10	2.0	+50	-19	_	ns
			4.5	+10	-7	_	ns
			6.0	+9	-6	_	ns
f _{max}	maximum clock	see Figs 7 and 8	2.0	9	30	_	MHz
	pulse frequency		4.5	30	91	_	MHz
	SH_CP or ST_CP		6.0	35	108	_	MHz
T _{amb} = -40 t	o +85 °C		•		•		•
t _{PHL} /t _{PLH}	propagation delay	see Fig.7	2.0	_	_	200	ns
	SH_CP to Q7'	, o	4.5	_	_	40	ns
			6.0	_	_	34	ns
	propagation delay	see Fig.8	2.0	_	_	220	ns
	ST_CP to An	Ü	4.5	_	_	44	ns
			6.0	_	_	37	ns
t _{PHL}	propagation delay MR to Q7'	see Fig.10	2.0	_	_	220	ns
		Ŭ	4.5	_	_	44	ns
			6.0	_	_	37	ns
t _{PZH} /t _{PZL}	3-state output enable time	see Fig.11	2.0	_	_	190	ns
1211 122	OE to Qn	Ŭ	4.5	_	_	38	ns
			6.0	_	_	33	ns
t _{PHZ} /t _{PLZ}	3-state output disable time	see Fig.11	2.0	_	_	190	ns
	OE to Qn		4.5	_	_	38	ns
			6.0	_	_	33	ns
t _W	shift clock pulse width	see Fig.7	2.0	95	_	_	ns
	HIGH or LOW		4.5	19	_	_	ns
			6.0	16	_	_	ns
	storage clock pulse width	see Fig.8	2.0	95	_	_	ns
	HIGH or LOW	_	4.5	19	_	_	ns
			6.0	16	_	_	ns
	master reset pulse width	see Fig.10	2.0	95	_	_	ns
	LOW	_	4.5	19	_	_	ns
			6.0	16	_	_	ns
t _{su}	set-up time DS to SH_CP	see Fig.9	2.0	65	_	_	ns
		-	4.5	13	_	_	ns
			6.0	11	_	_	ns
	set-up time	see Fig.8	2.0	95	_	_	ns
	SH_CP to ST_CP		4.5	19	_	-	ns
			6.0	16	_	_	ns

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

SYMBOL th trem fmax Tamb = -40 to tPHL/tPLH tPZH/tPZL tPHZ/tPLZ tw	DADAMETED	TEST CONDIT	TIONS		T\/D	B. A. W	
	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
	hold time DS to SH_CP	see Fig.9	2.0	3	_	_	ns
			4.5	3	_	_	ns
			6.0	3	_	_	ns
t _{rem} r t _{rem}	removal time MR to SH_CP	see Fig.10	2.0	65	_	_	ns
			4.5	13	_	_	ns
			6.0	11	_	_	ns
f _{max}	maximum clock	see Figs 7 and 8	2.0	4.8	_	_	MHz
	pulse frequency	_	4.5	24	_	_	MHz
	SH_CP or ST_CP		6.0	28	_	_	MHz
T _{amb} = -40 t	o +125 °C		'	'	<u>'</u>	<u>'</u>	'
t _{PHL} /t _{PLH}	propagation delay	see Fig.7	2.0	_	_	240	ns
	SH_CP to Q7'		4.5	_	_	48	ns
			6.0	_	_	41	ns
	propagation delay	see Fig.8	2.0	_	_	265	ns
	ST_CP to Qn	Ü	4.5	_	_	53	ns
			6.0	_	_	45	ns
$t_{h} \qquad box \\ t_{rem} \qquad re \\ f_{max} \qquad m_{pt} \\ st \\ T_{amb} = -40 \text{ to } +1 \\ t_{PHL}/t_{PLH} \qquad pr \\ st \\ t_{PHL} \qquad gr \\ M \\ t_{PZH}/t_{PZL} \qquad gr \\ O \\ t_{W} \qquad st \\ H \\ m \\ m$	propagation delay	see Fig.10	2.0	_	_	265	ns
	MR to Q7'		4.5	_	_	53	ns
			6.0	_	_	45	ns
t _{PZH} /t _{PZL}	3-state output enable time	see Fig.11	2.0	_	_	225	ns
	OE to Qn		4.5	_	_	45	ns
			6.0	_	_	38	ns
t _{PHZ} /t _{PLZ}	3-state output disable time	see Fig.11	2.0	_	_	225	ns
	OE to Qn	, o	4.5	_	_	45	ns
			6.0	_	_	38	ns
t _W	shift clock pulse width	see Fig.7	2.0	110	_	_	ns
tphl promise storms of the sto	HIGH or LOW	Ü	4.5	22	_	_	ns
			6.0	19	_	_	ns
	storage clock pulse width	see Fig.8	2.0	110	_	_	ns
H st	HIGH or LOW		4.5	22	_	_	ns
			6.0	19	_	_	ns
t _{PHL} pN t _{PZH} /t _{PZL} 3 C t _{PHZ} /t _{PLZ} 3 C t _W s H	master reset pulse width	see Fig.10	2.0	110	_	_	ns
	LOW	3 -	4.5	22	_	_	ns
			6.0	19	_	_	ns

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

SYMBOL	DADAMETED	TEST CONDIT	TIONS		TVD	BA A V	LINUT
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
t _{su} s t _h r t _{max} r	set-up time DS to SH_CP	see Fig.9	2.0	75	_	_	ns
t_{su} se $\frac{1}{se}$			4.5	15	_	_	ns
			6.0	13	_	_	ns
$\begin{array}{cccc} t_{su} & & set-u \\ & & \\ & & \\ set-u \\ & \\ SH_C \\ \\ t_h & & hold \\ \\ t_{rem} & & remo \\ \\ \end{array}$	set-up time	see Fig.8	2.0	110	_	_	ns
	SH_CP to ST_CP		4.5	22	_	_	ns
			6.0	19	_	_	ns
$\begin{array}{ccc} t_{su} & & set-u_{l} \\ & & \\ set-u_{l} \\ SH_{-}C \\ \\ t_{h} & & hold \ t \\ \\ t_{rem} & & remove \\ \\ f_{max} & & maxir \\ pulse \end{array}$	hold time DS to SH_CP	see Fig.9	2.0	3	_	_	ns
			4.5	3	_	_	ns
			6.0	3	_	_	ns
t _{rem}	removal time MR to SH_CP	see Fig.10	2.0	75	_	_	ns
			4.5	15	_	_	ns
			6.0	13	_	_	ns
ļ p	maximum clock	see Figs 7 and 8	2.0	4	_	_	MHz
	pulse frequency		4.5	20	_	_	MHz
	SH_CP or ST_CP		6.0	24	_	_	MHz

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

Family 74HCT

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF.

SYMBOL Famb = 25 °C PHL/tPLH PHL/tPLZ W Su Su Tamb = -40 to PHL/tPLH PHL/tPLH	DADAMETED	TEST CONDIT	TIONS	BAINI	TVD	MAY	LINUT
STWBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	I TP.	WAX.	UNIT
T _{amb} = 25 °C	;		!	'		-1	!
Tamb = 25 °C tphL/tpLH tphL tphz/tpzL tphz/tplz tw th trem fmax Tamb = -40 to tphL/tpLH	propagation delay SH_CP to Q7'	see Fig.7	4.5	_	25	42	ns
	propagation delay ST_CP to Qn	see Fig.8	4.5	_	24	40	ns
SYMBOL Tamb = 25 °C PHL/tPLH PHL PHL/tPLZ W Su Sh Frem Fmax Tamb = -40 to PHL/tPLH	propagation delay MR to Q7'	see Fig.10	4.5	_	23	40	ns
	3-state output enable time OE to Qn	see Fig.11	4.5	_	21	35	ns
	3-state output disable time OE to Qn	see Fig.11	4.5	_	18	30	ns
t _W	shift clock pulse width HIGH or LOW	see Fig.7	4.5	16	6	_	ns
	storage clock pulse width HIGH or LOW	see Fig.8	4.5	16	5	_	ns
	master reset pulse width LOW	see Fig.10	4.5	20	25	ns	
t _{su}	set-up time DS to SH_CP	see Fig.9	4.5	16	5	_	ns
	set-up time SH_CP to ST_CP	see Fig.8	4.5	16	8	_	ns
t _h	hold time DS to SH_CP	see Fig.9	4.5	+3	-2	_	ns
t _{rem}	removal time MR to SH_CP	see Fig.10	4.5	+10	-7	-	ns
f _{max}	maximum clock pulse frequency SH_CP or ST_CP	see Figs 7 and 8	4.5	30	52	_	MHz
$T_{amb} = -40 \text{ to}$	o +85 °C						
t _{PHL} /t _{PLH}	propagation delay SH_CP to Q7'	see Fig.7	4.5	_	_	53	ns
	propagation delay ST_CP to Qn	see Fig.8	4.5	_	-	50	ns
t _{PHL}	propagation delay MR to Q7'	see Fig.10	4.5	_	_	50	ns
t _{PZH} /t _{PZL}	3-state output enable time OE to Qn	see Fig.11	4.5	_	_	44	ns
t _{PHZ} /t _{PLZ}	3-state output disable time OE to Qn	see Fig.11	4.5	_	-	38	ns

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

tsu th trem fmax Tamb = -40 to tphL/tpLH tpHL/tpLZ tpHZ/tpLZ tw tsu th	DADAMETED	TEST CONDIT	TIONS		TVD	NA A W	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
th trem fmax Tamb = -40 to tphL/tpLH tpHL/tpLZ tpHZ/tpLZ tw	shift clock pulse width HIGH or LOW	see Fig.7	4.5	20	-	-	ns
	storage clock pulse width HIGH or LOW	see Fig.8	4.5	20	_	_	ns
	master reset pulse width LOW	see Fig.10	4.5	25	_	_	ns
t _{su}	set-up time DS to SH_CP	see Fig.9	4.5	20	_	_	ns
	set-up time SH_CP to ST_CP	see Fig.8	4.5	20	_	_	ns
tsu th trem fmax Tamb = -40 t tphL/tpLH tphL/tpLZ tphz/tpLZ tw tsu th	hold time DS to SH_CP	see Fig.9	4.5	3	_	_	ns
t _{rem}	removal time MR to SH_CP	see Fig.10	4.5	13	_	_	ns
f _{max}	maximum clock pulse frequency SH_CP or ST_CP	see Figs 7 and 8	4.5	24	_	_	MHz
$T_{amb} = -40 \text{ to}$	+125 °C						
t _{PHL} /t _{PLH}	propagation delay SH_CP to Q7'	see Fig.7	4.5	_	_	63	ns
	propagation delay ST_CP to Qn	see Fig.8	4.5	_	_	60	ns
t _{PHL}	propagation delay MR to Q7'	see Fig.10	4.5	_	_	60	ns
t _{PZH} /t _{PZL}	3-state output enable time OE to Qn	see Fig.11	4.5	_	_	53	ns
t _{PHZ} /t _{PLZ}	3-state output disable time OE to Qn	see Fig.11	4.5	_	_	45	ns
t _W	shift clock pulse width HIGH or LOW	see Fig.7	4.5	24	_	_	ns
	storage clock pulse width HIGH or LOW	see Fig.8	4.5	24	_	_	ns
	master reset pulse width LOW	see Fig.10	4.5	30	_	_	ns
t _{su}	set-up time DS to SH_CP	see Fig.9	4.5	24	_	_	ns
	set-up time SH_CP to ST_CP	see Fig.8	4.5	24	_	_	ns
t _h	hold time DS to SH_CP	see Fig.9	4.5	3	_	_	ns
t _{rem}	removal time MR to SH_CP	see Fig.10	4.5	15	_	_	ns
f _{max}	maximum clock pulse frequency SH_CP or ST_CP	see Figs 7 and 8	4.5	20	_	_	MHz

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

AC WAVEFORMS

74HC595: $V_M = 50\%$; $V_I = GND$ to V_{CC} . 74HCT595: $V_M = 1.3$ V; $V_I = GND$ to 3 V.

Fig.7 Waveforms showing the clock (SH_CP) to output (Q7') propagation delays, the shift clock pulse width and maximum shift clock frequency.

74HC595: V_M = 50%; V_I = GND to V_{CC} . 74HCT595: V_M = 1.3 V; V_I = GND to 3 V.

Fig.8 Waveforms showing the storage clock (ST_CP) to output (Qn) propagation delays, the storage clock pulse width and the shift clock to storage clock set-up time.

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

TEST	SWITCH
t _{PLH} /t _{PHL}	open
t _{PLZ} /t _{PZL}	V _{CC}
t _{PHZ} /t _{PZH}	GND

Definitions for test circuit:

 R_L = Load resistor.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

Fig.12 Test circuit for 3-state outputs.

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

PACKAGE OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.03

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT38-4					95-01-14 03-02-13

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	٦	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012			99-12-27 03-02-19

2003 Jun 25 23

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

UNIT	A max.	A ₁	A ₂	A ₃	b _p	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT338-1		MO-150			99-12-27 03-02-19

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

J	.0.10 (09	mai am	.0	υ,													
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ	
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°	

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLIN	TLINE	REFERENCES				EUROPEAN	ISSUE DATE
VEF	VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SO	T403-1		MO-153				99-12-27 03-02-18

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

74HC595; 74HCT595

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2003

SCA75

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613508/04/pp28

Date of release: 2003 Jun 25

Document order number: 9397 750 11263

Let's make things better.

