

1ª Entrega PI: Aplicação do Polinômio de Taylor na Modelagem de Variáveis Relacionadas ao Website.

Objetivo: Utilizar o Polinômio de Taylor de ordem 3 para obter uma aproximação matemática da função. O objetivo é demonstrar como a Série de Taylor pode ser usada para previsões, simplificações computacionais ou otimizações no contexto do site.

Nomes:

Bruno Rodrigues da Costa | Ra: 25027986 Enzo Henrique Neves Sena | Ra: 25027727

Harry Zhu | Ra: 25027808

Murilo Ângelo Pimentel Braggio | Ra: 25027958

Vitor Paes Kolle | Ra: 25027590

Curso: Cálculo

II

Prof^a Dr^a

Cristina Leite

Turma: CCOMP

2 - Matutino

Objetivo

Escolher uma variável relevante ao tema do website que estão desenvolvendo, definir uma função f(x) que modele esse comportamento e utilizar o Polinômio de Taylor de ordem 3 para obter uma aproximação matemática dessa função. O objetivo é demonstrar como a Série de Taylor pode ser usada para previsões, simplificações computacionais ou otimizações no contexto do site.

Introdução

O Teorema de Taylor é uma ferramenta fundamental da matemática, pois permite aproximar funções complexas por meio de polinômios mais simples. Essa aproximação facilita cálculos e análises em situações onde trabalhar com a função original seria difícil.

Nesta pesquisa, será utilizado o Polinômio de Taylor de grau 3 para representar uma variável associada ao resultado gerado no projeto Lideranças Empáticas, que visa arrecadar alimentos para ajudar pessoas em situações vulneráveis e necessitadas. A função escolhida descreve o **valor total arrecadado** com a quantidade total de doações de alimentos.

Desenvolvimento

Escolha da Variável e Definição da Função

A variável selecionada representa o **valor total arrecadado** por cada grupo junto com a quantidade de doações:

$$f(x) = -x^4 + 2x^3 - 3x + 5$$

Onde:

- x = quantidade de doações;
- f(x) = valor total arrecadado.

Cálculo do Polinômio de Taylor de Grau 3

O Polinômio de Taylor de grau 3 em torno de um ponto x_0 é dado por:

$$P_3(x) = f(x_0) + \frac{f'(x_0)(x - x_0)}{1!} + \frac{f''(x_0)(x - x_0)^2}{2!} + \frac{f'''(x_0)(x - x_0)^3}{3!}$$

Para este estudo, escolhemos $x_0 = 1$ como ponto de expansão, pois queremos analisar o comportamento da função na proximidade da meta de 1 doação por dia de cada grupo.

Derivadas da Função f(x):

1.
$$f'(x) = -4x^3 + 6x^2 - 3$$

2.
$$f''(x) = -12x^2 + 12x$$

3.
$$f'''(x) = -24x + 12$$

Cálculo das Derivadas no Ponto $x_0 = 1$:

•
$$f(1) = -(1)^4 + 2(1)^3 - 3(1) + 5 = 3$$

•
$$f'(1) = -4(1)^3 + 6(1)^2 - 3 = -1$$

•
$$f''(1) = -12(1)^2 + 12(1) = 0$$

•
$$f'''(1) = -24(1) + 12 = -12$$

Substituição no Polinômio de Taylor:

$$P_3(x) = 3 + \frac{-1(x-1)}{1} + \frac{0(x-1)^2}{2} + \frac{-12(x-1)^3}{6}$$

$$P_3(x) = -3 - (x - 1) - 2(x - 1)^3$$

Resultados

Análise na Proximidade de x = 1, 1 doações

Aplicando x = 1,1 na função original e no Polinômio de Taylor:

1. Função Original:

$$f(1,1) = -(1,1)^4 + 2(1,1)^3 - 3(1,1) + 5$$

$$f(1,1) = -1,4641 + 2(1,331) - 3,3 - 5$$

$$f(1,1) = -1,4641 + 2,662 - 3,3 + 5$$

$$f(1,1) = 2,8979$$

2. Polinômio de Taylor:

$$P_{3(x)} = 3 - (x - 1) - 2(x - 1)^{3}$$

$$P_{3(1,1)} = 3 - (1,1 - 1) - 2(1,1 - 1)^{3}$$

$$P_{3(1,1)} = 3 - (0,1) - 2(0,1)^{3}$$

$$P_{3(1,1)} = 3 - 0,1 - 2(0,001)$$

$$P_{3(1,1)} = 2,9 - 0,002$$

$$P_{3(1,1)} = 2,898$$

Comparação:

• Função original: $f(x) \approx 2,8979$

• Polinômio de Taylor: $P_3(1,1) \cong 2,898$

A aproximação de Taylor é bastante precisa para x = 1,1.

Gráficos

Gráfico 1: Função Original e Aproximação de Taylor

- Objetivo: Comparar a curva da função original f(x) com a curva do seu
 Polinômio de Taylor de grau 3, P₃(x)
- **Observação:** Para valores próximos a x = 1, as curvas se sobrepõem quase perfeitamente, indicando alta precisão da aproximação nessa região.

Gráfico 2: Aproximação de Taylor (Gráfico Isolado)

- **Objetivo:** Mostrar a evolução do Polinômio de Taylor em torno de x = 1.
- Interpretação: O gráfico evidencia que ao polinômio é tangente a função original no ponto x = 1.

Conclusão

O Polinômio de Taylor de grau 3 é uma ferramenta essencial para aproximar a função $f(x) = -x^4 + 2x^3 - 3x + 5$ na proximidade de x = 1. A análise em x = 1,1 doações mostrou que a aproximação é extremamente exata, apresentando um erro mínimo. Isso destaca a importância da Série de Taylor para facilitar cálculos e previsões em situações práticas, como na modelagem de variáveis que afetam estratégias educacionais.

Bibliografia

- https://brasilescola.uol.com.br/
- https://pt.khanacademy.org/

Biblioteca de desenvolvimento

• https://github.com/JuliaDiff/TaylorSeries.jl