Economically-Efficient Data Stream Analysis

Roberto Oliveira Jr. Advisor: Adriano Veloso Co-advisor: Wagner Meira Jr.

Computer Science Dept - UFMG - Brazil

Data Stream

- Definition
 - Fast and possible unbounded sequence of data that arrives at time-varying.
- Motivation
 - It allows us to process huge volumes of data.
- Problem
 - Automatically extraction of relevant patterns and relations from data that is continuously created.
 - Keep track of data streams is useful for systems monitoring, online social network advertising, etc.

Classification in Data Streams

 Classification models are applied to distinguish between pre-defined labels.

Classification in Data Streams

 Classification models are applied to distinguish between pre-defined labels.

Data characteristics may change with time.

Concept Drifts

 Concept Drift is unforeseen changes in data's nature over time.

Concept Drifts

Data Stream Analysis

 Concept Drift is unforeseen changes in data's nature over time.

 Data streams contains combination of such patterns.

Effective classification requires:

- Updating the classification model as the stream evolves.
 - Taking into account resources limitation: memory, time and learning requirements.

Results

Research Question

How to deal with concept drifts?

Classification Model

- Classification models are composed by association rules.
 - $\{x \rightarrow y\}$, where $x \in X$ and $y \in Y$
- Efficiently updated as the training set evolves.
- Models are built on-the-fly:
 - For a given $[x_i, *]$, rules $\{x \to y\}$ such that $x \in x_i$ are produced.
 - Prediction is performed from the combination of these rules.
- At each time step is produced a model $\mathcal{R}(x_i)$.

Classification Model

- Classification models are composed by association rules.
 - $\{x \rightarrow y\}$, where $x \in X$ and $y \in Y$
- Efficiently updated as the training set evolves.
- Models are built on-the-fly:
 - For a given $[x_i, *]$, rules $\{x \to y\}$ such that $x \in x_i$ are produced.
 - Prediction is performed from the combination of these rules.
- At each time step is produced a model $\mathcal{R}(x_i)$.

Dealing with Drifts

Data Stream Analysis

- Two properties are necessary in order to produce classifiers that are robust to drifts:
 - Adaptiveness:
 - The ability to adapt itself to drifts.
 - Memorability:
 - The ability to recover itself from drifts.

- Improving both properties simultaneously may lead to a conflict-objective problem.
 - Improve adaptiveness may hurt memorability, and vice-versa.

Pareto Efficiency

Example: Hotels in Petrópolis.

Pareto Efficiency

Pareto frontier: A point *a* is said to dominate *b* iff both of the following conditions are hold:

- $U_c(a) \geq U_c(b)$ and $U_d(a) \geq U_d(b)$
- $U_c(a) > U_c(b)$ or $U_d(a) > U_d(b)$

Region of compensation:

- Overall utility: $U(d_i) = U_m(d_i) + U_a(d_i)$
- Baseline point:

Data Stream Analysis

$$d^* = \{d_i \in \mathcal{P}_n | \forall d_j \in \mathcal{P}_n : U(d_i) \leq U(d_j)\}$$

Utility Measures

- Distance in space:
 - How similar training instance t_j is to the newest instance t_n .
 - $U_s(t_j) = \frac{|\mathcal{R}(t_n) \cap \mathcal{R}(t_j)|}{|\mathcal{R}(t_n)|}$
- Distance in time:
 - How fresh is the training instance.
 - $U_t(t_j) = \frac{\gamma(t_j)}{\gamma(t_n)}$.
 - $\gamma(t_j)$ returns the time in which training instance t_j arrived.
- Random permutation of training instances:
 - $U_r(t_j) = \frac{\alpha(t_j)}{|\mathcal{D}_n|}$
 - $\alpha(t_i)$ returns the position of t_i in the shuffle.
 - \mathcal{D}_n is the training set at time step n.

Utility Measures

- At each time step n:
 - Place training instances in the utility space.
 - Select training instances in the Efficiency Region (Pareto-frontier / Kaldor-Hicks Region).

Random Active Learning

- Naive strategy.
- Simple to integrate.
- Labeling Effort control: β .

Economically-Efficient Selective Sampling

Data Stream tn Active Sampling Classification Prediction Model EESS Update Training Training Set Set

- Interleaved Test-Then-Train
- 1% of data provided as training seed;
- Massive Online Analysis (MOA) framework as evaluation environment;
- Baselines:

Algorithm	Adaptiveness	Memorability
AC (KDD 2011)	Active Learning	Base Learner
HAT (JMLR 2011)	ADWIN	Trees Ensemble
ILAC (SIGIR 2011)	Data Projection	Incremental Training Set

. .

- Measures used:
 - Mean Squared Error.
 - Labeling Effort: 10%; **25%**; 50%; 75% and 100%;
 - AC and EESS.
 - Training set site.
 - RAM-Hours:
 - A GB of RAM deployed for 1 hour execution.

Datasets:

	Concept Drift Pattern			
Dataset	Sudden	Incremental	Gradual	Recurrent
Presidential Elections	-	X	Х	-
Person of the Year	-	X	Χ	-
FIFA World Cup - EN	Χ	-	-	-
FIFA World Cup - PT	Χ	-	-	-
Cover Type	Χ	-	Χ	X
Spam Filtering	Χ	-	Χ	X
Poker Hand	-	-	Χ	Χ

Evaluation

Forest Cover Type Prediction

- Data from forest cover type in United State territory;
- 581,102 examples with 54 features distributed among 7 classes;
- Concept Drifts: Sudden, Gradual, Recurrent;

Forest Cover Type Prediction

MSE and Labeling Efforts

Evaluation

Forest Cover Type Prediction

Training Size and RAM-Hours

Conclusions

- Data analysis on streams.
 - Limited computing and training resources.
 - Concept drifts.

Data analysis on streams.

- Limited computing and training resources.
- Concept drifts.
- Efficiency and accuracy.
 - Incremental classifiers.
 - Adaptiveness and Memorability.
 - Pareto efficiency and compensation principle.
 - Simple-to-compute utility measures.
 - Ours algorithms shown to be robust in different scenarios.

Conclusions

- Data analysis on streams.
 - Limited computing and training resources.
 - Concept drifts.
- Efficiency and accuracy.
 - Incremental classifiers.
 - Adaptiveness and Memorability.
 - Pareto efficiency and compensation principle.
 - Simple-to-compute utility measures.
 - Ours algorithms shown to be robust in different scenarios.
- Future work includes:
 - Other utility measures.
 - Employ our method to reduce Labeling Efforts.
 - Explore other classification models.

Thank you!

robertolojr@dcc.ufmg.br