

Advances in SRF qubit architectures for quantum computing

Tanay Roy

SQMS division, Fermilab 30 June 2023

Why Quantum Computing?

Frontier

Image: Wikipedia

 1.2×10^{18} calculations /

Not efficient for all problems

1. Prime Factorization

762904558518855853

77 ? 01 💥 98 ? 53

Shor's factoring algorithm 1994

Image: mit.edu

2. Quantum Simulation

Simulate one QM system with another

Image: needull.com

Tanay Roy - Fermilab

Build a Quantum

Computer

Fundamental Unit

Classical bit: "0" or "1"

Quantum bit: "0" and "1"

Superior

Superposition: $|0\rangle \pm |1\rangle$

Entanglement

Qubit Visualization

General state: $\alpha |0\rangle + \beta |1\rangle$

Single-qubit Gate and Measurement

Rabi Oscillation

$$\alpha|0\rangle + \beta|1\rangle \Rightarrow \alpha'|0\rangle + \beta'|1\rangle$$

$$P(0) = |\alpha|^2$$

$$P(1) = |\beta|^2$$

Different Platforms

Ion trap

quantumoptics.at

Superconducting circuits Schuster lab

Photonic crystals

phys.org

NV centers

phys.org

NMR

Neutral atoms

NIST

Quantum dots

sciencemag.org

Superconducting Circuits

Josephson Junction

$$I(t) = I_0 \sin \delta(t)$$
$$V(t) = \varphi_0 \dot{\delta}(t)$$

Lossless nonlinear inductor

$$L_J(I) = \frac{\varphi_0}{(I_0^2 - I^2)^{1/2}}$$

Superconducting Circuits

Josephson Junction

$$I(t) = I_0 \sin \delta(t)$$
$$V(t) = \varphi_0 \dot{\delta}(t)$$

 $V(t) = \varphi_0 \delta(t)$

Lossless nonlinear inductor

$$L_J(I) = \frac{\varphi_0}{(I_0^2 - I^2)^{1/2}}$$

Transmon: Anharmonic Oscillator

Harmonic Oscillator

Anharmonic Oscillator

Operating Temperature

$$f_{01} = \frac{1}{2\pi\sqrt{L_J C}}$$
$$\sim 5 \text{ GHz}$$

Anharmonic Oscillator

Dilution fridge ~ 10 mK

Circuit QED Architecture

Dilution fridge ~ 10 mK

Circuit QED Architecture

Dilution fridge ~ 10 mK

Traditional Multi-qubit Architecture

Linear or planar geometry

Computational space: 2^N

Can we do better?

Scaling: d^N , d > 2

Qudit

UCSB, Nature 519 (7541)

IBM

Problem of Relaxation

Linear or planar geometry

UCSB, Nature 519 (7541)

IBM

 $T_1 \sim 100 \ \mu s$

Q: a few 10^6

Can we do better?

High-Q 3D SRF Cavities

Romanenko et al. PRApplied 13, 034032

1.3 GHz SRF:

 $Q > 10^{11}$ at 1 K

5 GHz SRF:

 $Q > 10^{10}$ at 10 mK

 $T_1 > 300 \text{ ms}$

>1000 times better than transmons

High-Q 3D Cavities as Qudits

Romanenko et al. PRApplied 13, 034032

$$T_1^{|2\rangle} > 150 \text{ ms}$$

$$T_1^{|n\rangle} > 300/n \text{ ms}$$

$$T_1^{|10\rangle} > 30 \text{ ms}$$

Qudit

Still better than transmon qubits

Qudit States and Gates

Qubit: $\alpha|0\rangle + \beta|1\rangle$

Qudit: $\alpha_0|0\rangle + \alpha_1|1\rangle + \cdots + \alpha_d|d\rangle$

SNAP gate

PRL 115, 137002 (2015)

Qudit: $\alpha_0 e^{i\theta_0} |0\rangle + \alpha_1 e^{i\theta_1} |1\rangle + \dots + \alpha_d e^{i\theta_d} |d\rangle$

SNAP + Cavity drive

Universal control

First Milestone

Incorporate Transmon into a TESLA cavity

First Milestone

Incorporate Transmon into a TESLA cavity

First Milestone

Incorporate Transmon into a TESLA cavity

Achieved photon counting

Second Milestone

Prepare quantum states

Tanay Roy - Fermilab

Multqudit Architecture

Crosstalk issues

Outlook

- Improve single-cell devices
 - Optimize transmon design, placement
 - ➤ Investigate other SRF cavities

- ❖ Scaling up
 - Develop modular architecture
 - Connect several modules

Brand New Facility

