Lab-4

Material:

- 1) Ambiente de desenvolvimento (MCU8051)
- 2) Kit 89S52 USB
- 3) Motor de Passo
- 4) Emulador de terminal RS232 (Teraterm)

Conceitos envolvidos:

- 1) Comunicação de dados RS232
- 2) Comando de Motor de Passo
- 3) Tabela ASCII. Conversão BCD.

Parte Prática:

Desenvolver um programa em Assembly do 8051 que permita o comando de um Motor de Passo conectado ao Microcontrolador, usando o Teclado do PC e um emulador de terminal com conexão RS232 a 9600,N,8,1.

- 1) Escrever inicialmente na tela do terminal o texto **Comando de Motor de Passo** por meio de um *string* armazenado em uma linha de DB. O cursor deve se posicionar inicialmente abaixo do texto. Usar os códigos de controle do terminal VT100.
- 2) Digitar pelo teclado do PC a direção e o número de passos usando o seguinte padrão como exemplo:

H20 = 20 passos na direção horária.

A10 = 10 passos na direção Anti-horária.

Considerar o máximo de 99 passos em qualquer direção.

- 3) O motor deve girar na direção dada a uma velocidade aproximada de 100 pps (100 Hz).
- 4) Enviar para o terminal RS232 a direção equivalente bem como o número de passos. Exemplo:

Direção: Horária No. de Passos : 20

6) O programa espera um novo comando, retornando ao item 2.

Figura 1 Cabo de conexão do Kit 8051 com a interface do Motor de Passo

Port P0		Port P1		Port P2		Port P3	
P0.0	CLK	P1.0	CLK	P2.0	CLK	P3.0	CLK
P0.1	DIR	P1.1	DIR	P2.1	DIR	P3.1	DIR
P0.2		P1.2		P2.2		P3.2	INT0
P0.3		P1.3		P2.3		P3.3	INT1
P0.4		P1.4		P2.4		P3.4	T0
P0.5		P1.5		P2.5		P3.5	T1
P0.6		P1.6		P2.6		P3.6	
P0.7	INIBE	P1.7	INIBE	P2.7	INIBE	P3.7	INIBE
		Atenção: Durante a				Atenção: Desabilitar a	
		gravação os pinos P1.5,				interface RS232, pois	
		P1.6 e P1.7 são usados				esta utiliza os pinos	
		pelo gravador USB.				P3.0 (RxD) e P3.1 (TxD)	

Figura 2 - Tabela de conexão da interface do Motor de Passo com o Microcontrolador 89S52

Movimentos do cursor no terminal VT100 emulado pelo Teraterm.

```
09h ---- Tab (cursor pula 8 posições a partir da primeira)
0Ah ---- Line feed (Cursor desce uma posição)
0Bh ---- Line feed (Cursor desce uma posição)
0Ch ---- Line feed (Cursor desce uma posição)
0Dh ---- Carriage Return (Cursor vlta para início da linha)
Sequência de Escapes:
1Bh 5Bh n 41h ---- Cursor move n posições acima
1Bh 5Bh n 42h ---- Cursor move n posições abaixo
1Bh 5Bh n 43h ---- Cursor move n posições a frente
1Bh 5Bh n 44h ---- Cursor move n posições atrás.
1Bh 5Bh n 45h ---- Cursor move para início da linha e n posições abaixo.
1Bh 5Bh n 46h ---- Cursor move para início da linha e n posições acima.
1Bh 5Bh n 47h ---- Cursor move para posição n na mesma linha.
1Bh 5Bh hh 3Bh vv 48h ---- Posiciona o cursor nas coordenadas (hh,vv)
1Bh 5Bh n 4Ah ---- Apaga a linha do cursor para trás se n = 1
1Bh 5Bh n 4Ah ---- Apaga a toda a tela se n = 2. O cursor permanece no mesmo lugar.
1Bh 5Bh n 4Bh ---- Apaga a linha do cursor para trás se n = 1
1Bh 5Bh n 4Bh ---- Apaga toda a linha se n = 2
1Bh 5Bh n 4Ch ---- Insere n linhas a partir da posição do cursor
1Bh 5Bh n 4Dh ---- Remove n linhas abaixo da posição do cursor
1Bh 5Bh N 50h ---- Apaga n caracteres a partir da posição do cursor e desloca o
restante da linha à esquerda.
1Bh 5Bh n 64h ---- Cursor move para posição n na mesma coluna
1Bh 5Bh hh 3Bh vv 66h ---- Posiciona o cursor nas coordenadas (hh,vv)
1Bh 5Bh n 72h ---- Cursor vai para posição de Home (1,1). A tela não muda.
1Bh 5Bh 73h ---- Salva a posição do cursor
1Bh 5Bh 75h ---- Restitui a posição do cursor
```

Códigos do terminal VT-100 para o emulador Teraterm:

CARACTERES ASCII DE CONTROLE: Nome Hexa Ação ______ BEL 07 Aviso sonoro. BS 08 Move o cursor à esquerda (BackSpace). HT 09 Move o cursor 8 posições (Tab). LF 0A Muda o cursor uma linha abaixo(Line feed). CR 0D Move o cursor para o início da linha (Carriage Return). DEFINIÇÕES: _____ * Pn refere-se ao valor em ASCII. * PL refere-se ao número da Linha em ASCII * PC refere-se ao número da coluna em ASCII * Ps refere-se ao valor de seleção em ASCII MOVIMENTO DO CURSOR: Cursor ACIMA Pn posições: Esc [Pn A Cursor ABAIXO Pn posições: Esc [Pn B Cursor DIREITA Pn posições: Esc [Pn C Cursor ESQUERDA Pn posições: Esc [Pn D Cursor ABAIXO 1 posição: Esc D Cursor ACIMA 1 posição: Esc M Cursor ACIMA 1 posição: Esc M Cursor no início da linha de baixo: Esc E Exemplo no programa: (cursor move 10 posições ACIMA) TAB: DB 1Bh, 5Bh, 31h, 30h, 41h 1Bh = Esc5Bh = [$31h \ 30h = 10$ 41h = Aou também TAB: DB 1Bh, '[','10','A' POSICIONAMENTO DIRETO DO CURSOR: Esc [PL; PC; H ou Esc [PL; PC; f Salva a posição do cursor: Esc 7 Recupera a posição do cursor: Esc 8 OPERAÇÃO DE LIMPEZA: Limpa do Cursor até o fim da linha: Esc [K Limpa do início da linha até o cursor: Esc [1 K Limpa a linha toda: Esc [2 K Limpa do Cursor até o fim da tela: Esc [J

Limpa do começo da tela até o Cursor: Esc [1 J

EDIÇÃO:

ATRIBUTOS DOS CARACTERES:

Esc [Ps m

Ps: 0 - Desliga todos os atributos

1 - Negrito 4 - Sublinhado 5 - "Blink"

7 - Vídeo Reverso

Exemplo:

Caracter em Negrito: Esc[1m

Para vários atributos simultâneos: Esc [Ps ; Ps m