CS420

Introduction to the Theory of Computation

Lecture 12: Regular expressions & NFAs

Tiago Cogumbreiro

Today we will learn...

- NFA reduction graphs
- Converting REGEX to NFA
- Converting NFA to REGEX

Exercise

Strings that interleave one "a" with one "b" Examples: "a", "b", "ab", "bab", "bab", "bab", "baba"

Exercise

Strings that interleave one "a" with one "b" Examples: "a", "b", "ab", "ba", "aba", "bab", "abab", "baba"

- We start in an accepting state
- Reading an a moves us to q_2 which expects a b
- Reading a b moves us to q_3 which expects an a
- All states are accepting. However, not all strings are accepted.

Acceptance is path finding

The given string must be a path from the starting node into the accepting node.

NFAs can have **multiple** possible paths because of nondeterminism, contrary to DFAs!

- There are multiple concurrent possible paths and a current state
- Given a current state, if there are no transitions for a given input, the path ends
- Once we reach the final path, we check if the there are accepting states

Epsilon transitions

Epsilon transitions

Exercise 2

Let $\Sigma = \{a, b\}$. Give an NFA with four states that recognizes the following language

 $\{w \mid w \text{ contains the strings } aba \text{ or } aa\}$

Note

• NFAs can also include ϵ transitions, which may be taken without consuming an input

Exercise 2: acceptance of **a**aba

Interleave

Read a

input with ϵ .

Exercise 2: acceptance of acaba

Interleave input with ϵ .

Read ∈

Exercise 2: acceptance of aaba

Interleave input with ϵ . Read a

Exercise 2: acceptance of aabea

Interleave input with ϵ . Read ϵ

Exercise 2: acceptance of aaba

Interleave input with ϵ . Read b

Exercise 2: acceptance of aaba

a, b

Interleave input with ϵ .

Read a

a, b

Exercise 2: acceptance of aaba€

Exercise 2: acceptance of aaba

Note ϵ transitions in the initial state

We looked at ϵ in the middle of the state diagram. Let us observe their effect in the initial state.

Exercise 2: acceptance of bd

 $\mathbf{Read}\,\epsilon$

Exercise 2: acceptance of bd

Read b

Exercise 2: acceptance of bd

Read ϵ and then read d

Exercise 2: acceptance of bd

Accepted!

Soundess

All Regexes have an equivalent NFA

REGEX → NFA

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

Given an alphabet Σ

• NFA(\underline{a}) =

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA($\underline{\epsilon}$) =

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA($\underline{\epsilon}$) = nil
- NFA(\bigcirc) =

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA(ϵ) = nil
- $NFA(\emptyset) = void$
- NFA $(R_1 \cup R_2) =$

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA(ϵ) = nil
- NFA(\emptyset) = void
- NFA $(R_1 \cup R_2) = \text{union}(\text{NFA}(R_1), \text{NFA}(R_2))$
- NFA $(R_1 \cdot R_2) =$

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA(ϵ) = nil
- NFA(\emptyset) = void
- NFA $(R_1 \cup R_2) = \text{union}(\text{NFA}(R_1), \text{NFA}(R_2))$
- NFA $(R_1 \cdot R_2) = \text{append}(\text{NFA}(R_1), \text{NFA}(R_2))$
- NFA(\mathbb{R}^{\star}) =

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

- NFA(\underline{a}) = char(a)
- NFA(ϵ) = nil
- NFA(\emptyset) = void
- NFA $(R_1 \cup R_2) = \operatorname{union}(\operatorname{NFA}(R_1), \operatorname{NFA}(R_2))$
- NFA $(R_1 \cdot R_2) = \text{append}(\text{NFA}(R_1), \text{NFA}(R_2))$
- NFA(\mathbb{R}^*) = star(NFA(\mathbb{R}))

All Regexes have an equivalent NFA

Lemma 1.55 (ITC)

If
$$L(R)=L_1$$
, then $L(\operatorname{NFA}(R))=L_1$.

Given an alphabet Σ

- NFA($\frac{a}{a}$) = char(a)
- NFA(ϵ) = nil
- NFA(\emptyset) = void
- NFA $(R_1 \cup R_2) = \operatorname{union}(\operatorname{NFA}(R_1), \operatorname{NFA}(R_2))$
- NFA $(R_1 \cdot R_2) = \text{append}(\text{NFA}(R_1), \text{NFA}(R_2))$
- NFA (\underline{R}^*) = star $(NFA(\underline{R}))$

(Proof follows by induction on the structure of R.)

The void NFA

$$L(\mathrm{void}) = \emptyset$$

The void NFA

$$L(\mathrm{void}) = \emptyset$$

The void NFA

$$L(\mathrm{void}) = \emptyset$$

The nil operator

$$L(\text{nil}) = \{\epsilon\}$$

The nil operator

$$L(\mathrm{nil}) = \{\epsilon\}$$

The nil operator

$$L(\mathrm{nil}) = \{\epsilon\}$$

$$\operatorname{start} \longrightarrow q_1$$

$$L(\operatorname{char}(c)) = \{[c]\}$$

$$L(\operatorname{char}(a)) = \{[a]\}$$

$$L(\operatorname{char}(a)) = \{[a]\}\$$

The $\mathrm{union}(M,N)$ automaton

 $L(\overline{\mathrm{union}}(M,N)) = \overline{L(M) \cup L(N)}$

The $\mathrm{union}(M,N)$ automaton

$$L(\mathrm{union}(M,N)) = L(M) \cup L(N)$$

 N_1

The union(M,N) operator

$$L(\mathrm{union}(M,N)) = L(M) \cup L(N)$$

Example union (N_1,N_2)

- Add a new initial state
- Connect new initial state to the initial states of N_1 and N_2 via ϵ -transitions.

The append(M,N) operator

 $L(\operatorname{append}(M, N)) = L(M) \cdot L(N)$

The $\operatorname{append}(M,N)$ operator

$$L(\operatorname{append}(M,N)) = L(M) \cdot L(N)$$

Example 1: $L(\operatorname{concat}(\operatorname{char}(\mathtt{a}),\operatorname{char}(\mathtt{b})))=\{\mathtt{ab}\}$

The $\operatorname{append}(M,N)$ operator

$$L(\operatorname{append}(M,N)) = L(M) \cdot L(N)$$

Example 1: $L(\operatorname{concat}(\operatorname{char}(\mathtt{a}),\operatorname{char}(\mathtt{b})))=\{\mathtt{ab}\}$

Solution

What did we do? Connect the accepted states of N_1 to the initial state of N_2 via ϵ -transitions.

Why bot connect directly from $q_{1,1}$ into $q_{1,2}$? See next slide.

Concatennation example 2

Solution

Concatennation example 2

Solution

$$L(\mathrm{star}(N)) = L(N)^\star$$

$$L(\operatorname{star}(N)) = L(N)^{\star}$$

Example: $L(\text{star}(\text{concat}(\text{char}(\mathtt{a}),\text{char}(\mathtt{b})))) = \{w \mid w \text{ is a sequence of } \mathtt{ab} \text{ or empty}\}$

Solution

$$L(\operatorname{star}(N)) = L(N)^{\star}$$

Example: $L(\text{star}(\text{concat}(\text{char}(\mathtt{a}),\text{char}(\mathtt{b})))) = \{w \mid w \text{ is a sequence of } \mathtt{ab} \text{ or } \mathtt{empty}\}$

Solution

- create a new state $q_{1,1}$
- ullet ϵ -transitions from $q_{1,1}$ to initial state
- ullet ϵ -transitions from accepted states to $q_{1,1}$
- $q_{1,1}$ is the only accepted state

$$L(\mathrm{star}(N)) = L(N)^\star$$

$L(\mathrm{star}(N)) = L(N)^\star$

Completeness

All NFAs have an equivalent Regex

NFA → REGEX

Completeness

All NFAs have an equivalent Regex

Why is this result important?

Completeness

All NFAs have an equivalent Regex

Why is this result important?

If we can derive an equivalent regular expression from any NFA, then our regular expression are enough to describe whatever can be described using finite automatons.

Overview:

Converting an NFA into a regular expression

There are many algorithms of converting an NFA into a Regex. Here is the algorithm we find in the book.

- 1. Wrap the NFA
- 2. Convert the NFA into a GNFA
- 3. Reduce the GNFA
- 4. Extract the Regex

Step 1: wrap the NFA

Given an NFA N, add two new states q_{start} and q_{end} such that q_{start} transitions via ϵ to the initial state of N, and every accepted state of N transitions to q_{end} via ϵ . State q_{end} becomes the new accepted state.

Input

Step 1: wrap the NFA

Given an NFA N, add two new states q_{start} and q_{end} such that q_{start} transitions via ϵ to the initial state of N, and every accepted state of N transitions to q_{end} via ϵ . State q_{end} becomes the new accepted state.

Step 2: Convert an NFA into a GNFA

A GNFA has regular expressions in the transitions, rather than the inputs.

For every edge with a_1,\ldots,a_n convert into $a_1+\cdots+a_n$

Input

Step 2: Convert an NFA into a GNFA

A GNFA has regular expressions in the transitions, rather than the inputs.

For every edge with a_1,\dots,a_n convert into $a_1+\dots+a_n$

Input

Output

Step 3: Reduce the GNFA

While there are more than 2 states:

• pick a state and its incoming/outgoing edges, and convert it to transitions

$$ext{compress}(q_{1,1} \stackrel{\epsilon}{ o} q_{1,2} \stackrel{0+\epsilon}{ o} q_{2,2}) = q_{1,1} \stackrel{\epsilon \cdot (0+\epsilon)}{ o} q_{2,2} \ ext{compress}(q_{1,1} \stackrel{\epsilon}{ o} q_{1,2} \stackrel{1}{ o} q_{3,2}) = q_{1,1} \stackrel{\epsilon \cdot 1}{ o} q_{3,2}$$

Input

$$ext{compress}(q_{1,1} \stackrel{\epsilon}{ o} q_{1,2} \stackrel{0+\epsilon}{ o} q_{2,2}) = q_{1,1} \stackrel{\epsilon \cdot (0+\epsilon)}{ o} q_{2,2} \ ext{compress}(q_{1,1} \stackrel{\epsilon}{ o} q_{1,2} \stackrel{1}{ o} q_{3,2}) = q_{1,1} \stackrel{\epsilon \cdot 1}{ o} q_{3,2}$$

Each state that connects to $q_{1,2}$ must connect to every state that $q_{1,2}$ connects to. Som $q_{1,1}$ must connect with $q_{2,2}$ and $q_{1,1}$ must connect with $q_{3,2}$.

Input

Input

start $\rightarrow q_{1,1}$ $q_{2,2}$ $q_{3,2}$ $q_{4,2}$ $q_{4,2}$ $q_{4,2}$

Output

$$ext{compress}(q_{1,1} \stackrel{0+\epsilon}{ o} q_{2,2} \stackrel{\epsilon}{ o} q_{2,1}) = q_{1,1} \stackrel{(0+\epsilon)\cdot\epsilon}{ o} q_{2,2} \ ext{compress}(q_{3,2} \stackrel{0}{ o} q_{2,2} \stackrel{\epsilon}{ o} q_{2,1}) = q_{3,2} \stackrel{0\cdot\epsilon}{ o} q_{2,1}$$

Each state that connects to $q_{2,2}$ must connect to every state that $q_{2,2}$ connects to. Som $q_{1,1}$ must connect with $q_{2,1}$ and $q_{3,2}$ must connect with $q_{2,1}$.

Step 3.3: compress state $q_{3,2}$

After compressing a state, we must merge the new node with any old node (in red).

$$\operatorname{compress}(q_{1,1} \xrightarrow{1} q_{3,2} \xrightarrow{0} q_{3,2} \xrightarrow{0} q_{2,1}) + q_{1,1} \xrightarrow{0+\epsilon} q_{2,1} = q_{1,1} \xrightarrow{(10^{\star}0) + (0+\epsilon)} q_{2,2} \\ \operatorname{compress}(q_{1,1} \xrightarrow{1} q_{3,2} \xrightarrow{0} q_{3,2} \xrightarrow{1} q_{4,2}) = q_{3,2} \xrightarrow{10^{\star}1} q_{2,1}$$

start $\rightarrow q_{1,1}$ $q_{3,2}$ $q_{4,2}$ $q_{4,2}$

Output

Step 3.3: compress state $q_{4,2}$

After compressing a state, we must merge the new node with any old node (in red).

$$\operatorname{compress}(q_{1,1} \xrightarrow{10^\star 1} q_{4,2} \xrightarrow{\epsilon} q_{2,1}) + q_{1,1} \xrightarrow{10^\star 1 + 0 + \epsilon} q_{2,1} = q_{1,1} \xrightarrow{\left(10^\star 1 \cdot \epsilon\right) + \left(10^\star 0 + 0 + \epsilon\right)} q_{2,2}$$

Input

Output

Result: $10^{\star}1 + 10^{\star}0 + 0 + \epsilon$

Convert a DFA into a Regex

1. Convert the DFA into an NFA (same)

2. Wrap the NFA

Convert a DFA into a Regex

1. Convert the DFA into an NFA (same)

2. Wrap the NFA

Convert a DFA into a Regex

3. Convert NFA into GNFA

Convert a DFA into a Regex

3. Convert NFA into GNFA

Before

Convert a DFA into a Regex

4. Compress state.

Convert a DFA into a Regex

4. Compress state.

Before

Convert an DFA into a Regex

5. Compress state.

Convert an DFA into a Regex

5. Compress state.

Before

Convert an NFA into a Regex

Convert an NFA into a Regex

Before

Convert an NFA into a Regex

Convert an NFA into a Regex

Before

