Math 547/702I – Some Solutions

Frank Thorne

April 9, 2015

20.10. (a). Consider the ideal

$$I = \{af + bg \mid a, b \in F[x]\}.$$

By Theorem 20.1, I = (h) for some polynomial $h \in F[x]$. In particular $h \mid f$ and $h \mid g$ (since $f = 1 \cdot f + 0 \cdot g$ and similarly g are in I). Moreover, if k divides both f and g in F[x], then any k divides any F[x]-linear combination of f and g and in particular h. This is what is required to be proved.

- (b). Suppose that h_1 and h_2 are two gcd's of f and g. By property (ii) we have $h_1 \mid h_2$ and $h_2 \mid h_1$ so that $h_2 = uh_1$ for some unit $u \in F[x]$, i.e., a nonzero constant.
- **20.11.** We omit the 'only if' part and prove the 'if' part here. Suppose f(x) has a nontrivial factorization f = gh in F[x]. Use Corollary 20.4 to write

$$g(x) = (x - c_1) \cdots (x - c_n)$$

in K[x] for some extension K of F, where $1 \le n < p$. Write $c = \prod_{i=1}^{n} c_i$. Note that $c \in F$ because it is plus or minus the last coefficient of g(x), which is in F[x].

Now, each of the c_i is a pth root of a. Therefore, $c^p = a^n$. Because (p, n) = 1 we may write 1 = pr + ns for some $r, s \in \mathbb{Z}$. Therefore $a = a^{pr+ns} = a^{pr}c^{ps} = (a^rc^s)^p$. Since $a, c \in F$ we have $a^rc^s \in F$, i.e., a has a pth root in F, and so it must be a root of f in F.

- **22.3.** (Summary.) We have $[E:\mathbb{Q}]=8$. Follow example 1 on p. 235, it's kind of a tedious kludge but not actually hard. I don't know of a slick proof that doesn't use Galois theory.
- **22.4.** We know that $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$. Now, $\sqrt{1+\sqrt{2}}$ is a root of the polynomial $x^2-(1+\sqrt{2})$ in $\mathbb{Q}(\sqrt{2})$, so if that is irreducible we will know that $[\mathbb{Q}(\sqrt{1+\sqrt{2}}:\mathbb{Q})]=[\mathbb{Q}(\sqrt{1+\sqrt{2}}:\mathbb{Q})]=[\mathbb{Q}(\sqrt{2})]=4$.

To prove this, write

$$x^{2} - (1 + \sqrt{2}) = (x + a + b\sqrt{2})(x + c + d\sqrt{2})$$

for some $a, b, c, d \in \mathbb{Q}$. Foiling, we get $-(1+\sqrt{2}) = (ad+bc)\sqrt{2}$, or $-1-(1+ad+bc)\sqrt{2} = 0$; since $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} , hence linearly independent, so this can't happen.

22.5 $\frac{1+i}{\sqrt{2}}$ is a root of x^4+1 . You can show by the usual Eisenstein and f(x+1) trick that this polynomial is irreducible, hence $[E:\mathbb{Q}]=4$.