

Binary Variables

- Forms of variables
 - normal (x)
 - complement (x')
- Forms of terms (variables x and y)
 - Minterms m_i (or standard product)

Maxterms M_i (or standard sum)

Minterms and Maxterms for 3 variables

			M	IINTERM	MAXTERM	
X	у	Z	Term	Designation	Term	Designation
0	0	0		mO		MO
0	0	1		m1		M1
0	1	0		m2		M2
0	1	1		m3		M3
1	0	0		m4		M4
1	0	1		m5		M5
1	1	0		m6		M6
1	1	1		m7		M7

Minterms and Maxterms for 3 variables

	N		M	INTERM	MA	XTERM
X	у	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	mO		MO
0	0	1	x'y'z	m1		M1
0	1	0	x'yz'	m2		M2
0	1	1	x'yz	m3		M3
1	0	0	xy'z'	m4		M4
1	0	1	xy'z	m5		M 5
1	1	0	xyz'	m6		M6
1	1	1	xyz	m7		M7

Minterms and Maxterms for 3 variables

	Λ		M	INTERM	MA	XTERM
X	у	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	mO	X+ y + Z	MO
0	0	1	x'y'z	m1	x+y+z'	M1
0	1	0	x'yz'	m2	x+y'+z	M2
0	1	1	x'yz	m3	x+y'+z'	M3
1	0	0	xy'z'	m4	x ⁴ +y+z	M4
1	0	1	xy'z	m5	x'+y+z'	M5
1	1	0	xyz'	m6	x'+y'+z	M6
1	1	1	xyz	m7	$x^4+y^2+z^2$	M7

- Canonical Form
 - Sum of minterms
 - Product of maxterms

- Standard Form
 - Sum of products
 - Product of sums

Forms of Boolean Functions

Examples

- F(a,b,c) = abc' + a'bc
- $F(W,X,y,Z) = (W+X^2+y^2+Z)(X+y+Z^2)$
- $F(x,y,z) = xz^2 + y$
- F(a,b,c,d) = (a+b'+c+d)(a+b+c'+d')

- Any Boolean function can be expressed as a sum of minterms
- "sum" means Oring the minterms that produces a 1 in the function
- Each minterm is obtained from an AND term of the *n* variables, with each variable being primed if the corresponding bit of the binary number is a 0 and unprimed if a 1.

Example – Truth Table

Express F(A,B,C) = A + B'C in sum of

minterms

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Example – Truth Table

=
$$A'B'C + AB'C' + AB'C + ABC' + ABC' + ABC$$

= Σ (1, 4, 5, 6, 7)

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F = A(B+B') + B'C$$

$$F = A(B+B') + B'C$$

= $AB + AB' + B'C$

$$F = A(B+B') + B'C$$
= AB + AB' + B'C

= AB(C+C') + AB'(C+C') + B'C(A+A')

$$F = A(B+B') + B'C$$

$$= AB + AB' + B'C$$

$$= AB(C+C') + AB'(C+C') + B'C(A+A')$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C' + A'B'C'$$

$$F = A(B+B') + B'C$$

$$= AB + AB' + B'C$$

$$= AB(C+C') + AB'(C+C') + B'C(A+A')$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$= A'B'C + AB'C' + AB'C + ABC' + ABC$$

$$F = A(B+B') + B'C$$

$$= AB + AB' + B'C$$

$$= AB(C+C') + AB'(C+C') + B'C(A+A')$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$= A'B'C + AB'C' + AB'C + ABC' + ABC$$

$$= m_1 + m_4 + m_5 + m_6 + m_7$$

$$= \Sigma (1, 4, 5, 6, 7)$$

- Any Boolean function can be expressed as a product of maxterms
- "product" means ANDing the maxterms that produces a 0 in the function
- Each maxterm is obtained from OR term of the *n* variables, with each variable being primed if the corresponding bit of the binary number is a 1 and unprimed if a 0.

Example – Truth Table

Express F(A,B,C) = A + B'C in product of

maxterms

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Example – Truth Table

=
$$(A+B+C)(A+B'+C)(A+B'+C')$$

= $\Pi(0, 2, 3)$

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F = (A+B^2)(A+C)$$

$$F = (A+B')(A+C)$$

= (A+B'+CC')(A+C)

$$F = (A+B')(A+C)$$
= $(A+B'+CC')(A+C)$
= $(A+B'+C)(A+B'+C')(A+C+BB')$

$$F = (A+B')(A+C)$$

$$= (A+B'+CC')(A+C)$$

$$= (A+B'+C)(A+B'+C')(A+C+BB')$$

$$= (A+B'+C)(A+B'+C')(A+B+C)(A+B'+C)$$

$$F = (A+B^{2})(A+C)$$

$$= (A+B^{2}+CC^{2})(A+C)$$

$$= (A+B^{2}+C)(A+B^{2}+C^{2})(A+C+BB^{2})$$

$$= (A+B^{2}+C)(A+B^{2}+C^{2})(A+B+C)(A+B^{2}+C)$$

$$= (A+B+C)(A+B^{2}+C)(A+B^{2}+C^{2})$$

$$F = (A+B^{2})(A+C)$$

$$= (A+B^{2}+CC^{2})(A+C)$$

$$= (A+B^{2}+C)(A+B^{2}+C^{2})(A+C+BB^{2})$$

$$= (A+B^{2}+C)(A+B^{2}+C^{2})(A+B+C)(A+B^{2}+C)$$

$$= (A+B+C)(A+B^{2}+C)(A+B^{2}+C^{2})$$

$$= M_{0}M_{2}M_{3}$$

$$= \Pi(0, 2, 3)$$

Conversion between Canonical forms

• Consider the previous example: F = A+B'C $F(A,B,C) = \Sigma(1, 4, 5, 6, 7)$ This has a complement that can be expressed as:

$$F'(A,B,C) = \Sigma(0, 2, 3) = m_0 + m_2 + m_3$$

Now, take the complement of F', we will obtain

$$F = (m_0 + m_2 + m_3)^2 = m_0^2 m_2^2 m_3^2 = M_0 M_2 M_3$$
$$= \Pi(0, 2, 3)$$

Digital Logic Gates

AND Gate

Truth Table

Inp	outs	Output
A	В	Q
0	0	0
0	1	0
1 0		0
1 1		1

OR Gate

Truth Table

Inp	outs	Output	
A	В	Q	
0	0	0	
0	1	1	
1 0		1	
1 1		1	

NOT Gate

Truth Table

Input	Output
A	Q
0	1
1	0

- Why use?
 - Saves cost
 - Saves space
 - Saves time

- Why use?
 - Saves cost
 - Saves space
 - Saves time

- Types
 - NAND gate
 - NOR gate
 - XOR gate
 - XNOR gate

NAND Gate

Truth Table

Inp	outs	Output
A	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

Truth Table

Inp	outs	Output
A	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Exclusive-OR Gate

Truth Table

Inputs		Output
A	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR Gate

Truth Table

Inputs		Output
A	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

• Draw the logic diagram of the function $F = A+B^2C$

A

B

C

Draw the logic diagram of the function
 F = A+B'C

A
B

Draw the logic diagram of the function
 F = A+B'C

• Draw the logic diagram of the function $F = A+B^2C$

Draw the logic diagram of the function
 F = A+B'C

Real Gates

- Logic gates are integrated form
 - Built within a solid piece of silicon called
 IC (Integrated Circuit)

Several gates are included in a single plastic moulding

IC Families

- Transistor-Transistor Logic (TTL)
- Emitter Coupled Logic (ECL)
- Complementary Metal-Oxide-Semiconductor (CMOS)

Levels of IC

- Small-scale
 Integration
 - ICs with 1 to 10 gates
- Large-scale
 Integration
 - ICs with 100 to1000s of gates

- Medium-scale
 Integration
 - ICs with 10 to 100 gates

- Very large-scale
 Integration
 - ICs with 1000s to millions of gates