

Pattern Recognition F. Meriaudeau

HW₁

Note: Though some of these exercises specifically require MATLAB, you may use MATLAB to help with plotting, computation, and/or verification of your results. This is in fact encouraged.

1. Bayesian methods for two-class, one-dimensional problem.

The conditional density of class1 (w1) in a 1D measurement space is normal (Gaussian) with mean 0 (μ 1 = 0) and variance5 (σ_1^2 = 5). The class 2 conditional density is also normal with μ 2 = 2 and σ_2^2 = 1.

- (a) Give the mathematical representation of the two conditional densities.
- (b) Sketch the two density functions on the same figure.
- (c) Give the equation for the likelihood ratio.
- (d) Assume that $P(\omega 1) = P(\omega 2) = 0.5$.
 - i. Using the MAP approach, which class should we choose if x = 3.
 - ii. Using the ML approach, which class should we choose if x = 3.
 - iii. How many decision regions do you see? Describe those regions based on your sketch.
 - iv. Write the integral equation that gives the overall probability of error based on the MAP method.
 - v. Find the decision boundary (or boundaries) using analytical methods (not the sketch).
- (e) Now assume that $P(\omega 1) = 0.8$ and $P(\omega 2) = 0.2$ and a zero-one loss function.

Sketch the product of the conditional density and its corresponding prior for both w1and w1

- i. Using the MAP approach, which class should we choose if x = 3.
- ii. Using the ML approach, which class should we choose if x = 3.
- iii. How many decision regions do you see? Describe those regions based on your sketch.
- iv. Write the integral equation that gives the overall probability of error based on the MAP method.
- v. Find the decision boundary (or boundaries) using analytical methods (not the

sketch) and check to see that it matches your sketch.

- vi. What kind of loss values (rather than zero-one) would alter the decisions?
- 2. DHS Ch. 2, Exercise 2. Suppose two equally probable one-dimensional densities are of the form

$$p(x|\omega_i)\alpha \exp(-|x-a_i|/b_i)$$
 for $i = 1,2$ and $b_i > 0$

- (a) Write an analytic expression for each density, that is, normalize each function for arbitrary ai and bi.
- (b) Calculate the likelihood ratio as a function of your four variables.
- (c) Plot the likelihood ratio $p(x|\omega 1)/p(x|\omega 2)$ for the case a1 = 0, b1 = 1, a2 = 1, and b2 = 2.

3. Euclidean distance vs. Mahalanobis distance.

- (a) Define these two distances. You can use equations.
- (b) Comment in no more than three sentences on the differences between the two distances.
- (c) Suppose we have two 2D Gaussian distributions defined by $\mu 1 = (1\ 1)^t$ and $\mu 2 = (4\ 4)^t$ with covariances given by

$$\sum_{1} = \begin{pmatrix} 0.475 & -0.425 \\ -0.425 & 0.475 \end{pmatrix} \text{ and } \sum_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Given a vector $x = (2 \ 2)^t$, to which class would we say x belongs using Euclidean distance? To which class would we assign x based on Mahalanobis distance? Show your work.