International Rectifier

- Generation V Technology
- Ultra Low On-Resistance
- Dual N-Channel Mosfet
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

IRF7303PbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	10 Sec. Pulsed Drain Current, V _{GS} @ 10V	5.3	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.9	Δ.
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.9	Α
I _{DM}	Pulsed Drain Current ①	20	
P _D @T _A = 25°C	Power Dissipation	2.0	W
	Linear Derating Factor	0.016	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
$T_{J_i}T_{STG}$	Junction and Storage Temperature Range	-55 to + 150	℃

Thermal Resistance Ratings

	Parameter	Тур.	Max.	Units
R _{θJA}	Maximum Junction-to-Ambient⊕		62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.032		V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance			0.050	Ω	$V_{GS} = 10V, I_D = 2.4A$ ③
R _{DS(ON)}	Static Dialit-to-Source Off-Resistance			0.080	52	V _{GS} = 4.5V, I _D = 2.0A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.0			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
g fs	Forward Transconductance	5.2			S	$V_{DS} = 15V, I_D = 2.4A$
1	Drain to Source Leakage Current			1.0		$V_{DS} = 24V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			25	μΑ	V _{DS} = 24V, V _{GS} = 0V, T _J = 125 °C
lane	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = - 20V
Qg	Total Gate Charge			25		I _D = 2.4A
Q _{gs}	Gate-to-Source Charge			2.9	nC	V _{DS} = 24V
Q_{gd}	Gate-to-Drain ("Miller") Charge			7.9		V _{GS} = 10V, See Fig. 6 and 12 ③
t _{d(on)}	Turn-On Delay Time		6.8			V _{DD} = 15V
t _r	RiseTime		21			I _D = 2.4A
t _{d(off)}	Turn-Off Delay Time		22		ns	$R_G = 6.0\Omega$
t _f	Fall Time		7.7			R_D = 6.2 Ω , See Fig. 10 ③
L _D	Internal Drain Inductance		4.0		nH	Between lead tip
L _S	Internal Source Inductance		6.0		"""	and center of die contact
C _{iss}	Input Capacitance		520			V _{GS} = 0V
Coss	Output Capacitance		180		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		72			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current		2.5		MOSFET symbol	
	(Body Diode)			2.5	Α Α	showing the
I _{SM}	Pulsed Source Current		0.0	-00	A	integral reverse
	(Body Diode) ①	20	20	p-n junction diode.		
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25$ °C, $I_S = 1.8$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		47	71	ns	$T_J = 25$ °C, $I_F = 2.4A$
Q_{rr}	Reverse RecoveryCharge		56	84	nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intr	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ③ Pulse width \leq 300 μ s; duty cycle \leq 2%.
- $\begin{tabular}{ll} \textcircled{2} & I_{SD} \leq 2.4A, & di/dt \leq 73A/\mu s, & V_{DD} \leq V_{(BR)DSS}, \\ & T_J \leq 150 \mbox{°C} \end{tabular}$
- 4 Surface mounted on FR-4 board, $t \leq 10$ sec.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International TOR Rectifier

Fig 12a. Basic Gate Charge Waveform

Fig 12b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 13. For N-Channel HEXFETS

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information (Lead-Free)

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- NOTES:

 1. CONTROLLING DIMENSION : MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- 1. CONTROLLING DIMENSION : MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
 - Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903