Data Mining

Formalisation du Data Mining supervisé

W. Toussile

¹Département MSP École Nationale Supérieure Polytechnique

15/11/2019

Data Mining 15/11/2019 1/37

- Fonction de perte Risque
- Prédicteur idéal
- Exemples d'algo pour estimer g^*
- Apprentissage dans la pratique
- Estimation du risque par validation croisée

15/11/2019 W. Toussile (ENSP) **Data Mining** 2/37

Section 1

Position du problème

Position du problème I

- Données : $\mathcal{D}_n = (x_i, y_i)_{i=1}^n$
- Objectifs :
 - **Exploration**: Décrire le lien $y_i \approx g(x_i)$ entre les entrées et sorties
 - ▶ Prédictif : Inférer sur le lien $y \approx g(x)$ entre entrée et sortie.
- Modélisation : En général, les données sont considérées comme des réalisaions de vecteurs aléatoires $(X_i, Y_i)_{i=1}^n$, iid de loi de probabilité inconnue $P_{(X,Y)}$ dans la pratique.
- Notations :
 - \blacktriangleright $X(\Omega)$ et $Y(\Omega)$ ensembles des valeurs des X_i et des Y_i resp.

Data Mining 15/11/2019 4 / 37

Position du problème II

- On distingue :
 - ▶ Régression lorsque $Y(\Omega) \subseteq \mathbb{R}^d$
 - ▶ Classification supervisée lorsque $Y(\Omega)$ est fini non ordonné.
- Pb : Rechercher une application mesurable

$$g: X(\Omega) \to Y(\Omega)$$

optimale au sens d'un critère qu'on se donne (risque)

- g est appelée prédicteur dans les deux cas, plus précisément
 - Régresseur dans les pb de régression
 - Classifieur dans les pb de classification supervisée

Data Mining 15/11/2019 5/37

Section 2

Fonction de perte - Risque

Fonction de perte I

Definition

On appelle ainsi toute fonction $L: Y(\Omega) \times Y(\Omega) \to \mathbb{R}_+$ vérifiant:

$$\begin{cases} L(y',y) = 0 & \text{si } y' = y \\ L(y',y) > 0 & \text{sinon} \end{cases}$$

• L(g(x), y) mesure la perte ponctuelle d'un prédicteur g pour la sortie y associée à une entrée x

Fonction de perte II

Exemples

- ullet Régression : En général $Y(\Omega) \in \mathbb{R}$
 - Perte quadratique : $L(y', y) = (y' y)^2$
 - Perte absolue : L(y', y) = |y' y|
 - Perte \mathbb{L}_p pour p > 1: $L(y', y) = |y' y|^p$
- Clasification supervisée
 - Perte 0-1 : $L(y', y) = 1_{[y' \neq y]}$
 - ▶ Plus généralement $L(y', y) = c_{y', y} 1_{[y' \neq y]}$ avec $c_{y', y} > 0$

Rappels

- $\mathbb{E}[Z] = \sum_{z \in Z(\Omega)} z P(Z = z)$ si Z est discrète
- $\mathbb{E}[Z] = \int_{z \in Z(\Omega)} z p_Z(z) dz$ si Z est continue de densité de probabilité $p_Z(\cdot)$.

Exercise

- Soit $Z \sim \mathcal{P}(\lambda)$ de loi définie par $P(Z = k) = \frac{e^{-\lambda}\lambda^k}{k!}$ pour tout $k \in \mathbb{N}$. Montrer que $\mathbb{E}[Z] = \mathbb{V}$ ar $(Z) = \lambda$.
- ② Soit Z une v.a.r. de densité $f_Z(z) = \alpha e^{-\lambda}$ où $\alpha \in \mathbb{R}$ et $\lambda \in \mathbb{R}_+^*$. Déterminer α en fonction de α , puis calculer $\mathbb{E}[Z]$.

10 / 37

Risque I

Definition

Pour une fonction de perte L, le risque d'un prédicteur est défini par :

$$\mathcal{R}_L(g) = \mathbb{E}_{(X,Y)}[L(g(X),Y)]$$

- Le risque mesure la perte moyenne d'un prédicteur
- Le prédicteur idéal est $g^* = \inf_{\mathcal{M}} \mathcal{R}_L(g)$, où \mathcal{M} est un modèle de prédicteurs qu'on se donne
- Dans la pratique, g* n'est pas calculable, mais sa forme peut guider la conception d'algorithme pour l'estimer à partir des données.

Risque II

Exemples

- Régression
 - ▶ Risque quadratique : $\mathcal{R}_L(g) = \mathbb{E}_{(X,Y)}[\|g(X) Y\|^2]$
 - ▶ Risque absolu pour $Y(\Omega) \subset \mathbb{R}$: $\mathcal{R}_L(g) = \mathbb{E}_{(X,Y)}[|g(X) Y|]$
- Classification supervisée
 - ▶ Risque 0-1 : $\mathcal{R}_L(g) = \mathbb{E}_{(X,Y)}[1_{[g(X)\neq Y]}] = P(g(X)\neq Y)$
 - ▶ Plus généralement : $\mathcal{R}_L(g) = \sum_{y',y \in Y(\Omega)} L(y,y') P(g(X) = y',Y = y)$

Rappels I

- Lorsque X ou Y sont continues, alors (X, Y) est continue de densité :
 - $f_{(X,Y)}(x,y) = f_{Y|X=x}(y)f_X(x)$ si les deux sont continues
 - $f_{(X,Y)}(x,y) = P(Y=y|X=x)f_X(x)$ si Y discrète.
- Lorsque X et Y sont discrètes, (X, Y) l'est aussi et

$$P(X = x, Y = y) = P(Y = y | X = x)P(X = x)$$

Data Mining

12 / 37

Rappels II

X et Y continues

$$\mathbb{E}[\phi(X,Y)] = \int_{X(\Omega)} \int_{Y(\Omega)} \phi(x,y) f_{(Y|X=x)}(y) dy f_X(x) dx$$

X continue et Y discrète

$$\mathbb{E}[\phi(X,Y)] = \int_{X(\Omega)} \sum_{y \in Y(\Omega)} \phi(x,y) P(y=y|X=x) f_X(x) dx$$

X et Y sont discrètes

$$\mathbb{E}[\phi(X,Y)] = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} \phi(x,y) P(y=y|X=x) P(X=x)$$

Exercice d'application I

Section 3

Prédicteur idéal

Régresseur idéal I

Proposition

1 Pour le risque quadratique, le régresseur idéal est défini par

$$g^*(x) = \mathbb{E}[Y|X=x]$$

Pour le risque absolu, il est défini par

$$g^*(x) = Mediane(Y|X = x)$$

W. Toussile (ENSP)

Régresseur idéal II

La preuve de la proposition précédente repose sur le fait que pour une v.a.r Z,

- $m^* := \arg\min_{m} \mathbb{E}[|Z m|] = Mediane(Z)$

Exercice

- Montrer ce qui précède
- 2 Appliquer ce qui précède pour montrer la proposition précédente

Classifieur idéal I

Proposition

Le classifieur idéal pour le risque 0-1 est donnée par

$$g^*(x) = \arg\max_{k \in Y(\Omega)} P(Y = k|X = x)$$

Preuve

Classifieur idéal II

Exercice d'application

Supposons que
$$f_{(X,Y)}(x,y) = \frac{1}{x} e^{-x - \frac{y}{x}} 1_{]0,+\infty[\times[0,+\infty[}(x,y).$$

- ① Déterminer le régresseur idéal g^* pour le risque quadratique.
- 2 Calculer le risque de g^* .

Exercice d'application

On considère une classification binaire où $Y(\Omega)=\{0,1\}$, et le risque $\mathcal{R}_w(g)=\mathbb{E}[2w(Y)1_{[g(X)\neq Y]}]$, où w(0),w(1)>0 avec w(0)+w(1)=1.

- 1 Déterminer le classifieur de Bayes, puis son risque.
- 2 Quel est l'intérêt d'un tel risque?

20 / 37

Classification binaire I

- $|Y(\Omega)| = 2$, en général on pose $\mathcal{Y} = \{0,1\}$ ou $\mathcal{Y} = \{-1,1\}$
- Supposons $\mathcal{Y} = \{0,1\}$ et posons $\eta(x) = P(Y=1|X=x)$. Le classifieur de bayes est donné par :

$$g^*(x) = 1_{[\eta(x) \ge \frac{1}{2}]},\tag{1}$$

• L'équation de la fronctière entre les deux classes étant $\eta(x)=rac{1}{2}$

Exercise

Supposons que le vecteur aléatoire d'entrée X est continue. Montrer que l'équation de la fronctière entre les deux classes est

$$f_{(X|Y=1)}(x)P(Y=1) = f_{(X|Y=0)}(x)(1-P(Y=1)).$$

Classification binaire II

Proposition

Nous supposons $\mathcal{Y}=\{0,1\}$. Pour tout classifieur g, l'excès de risque est donné par

$$\mathcal{R}(g) - \mathcal{R}(g^*) = E_X \left[|2\eta(X) - 1| \mathbb{1}_{[g(X) \neq g^*(X)]} \right].$$

En conséquence, $\mathcal{R}^*:=\mathcal{R}\left(g^*\right)\leq\mathcal{R}\left(g\right)$ pour tout classifieur g. De plus,

$$\mathcal{R}^* = \mathbb{E}\left[\min\left\{\eta(X), 1 - \eta(X)\right\}\right] \leq \frac{1}{2}.$$

22 / 37

Classification binaire III

Preuve

Montrer que pour x,

$$P(Y \neq g(X)|X = x) = 1 - \eta(x)(2\eta(x) - 1) \times 1_{[g(x)=0]}$$

= min {\eta(x), 1 - \eta(x)}

Montrer que

$$P(Y \neq g(X)|X = x) - P(Y \neq g^*(X)|X = x) = |\eta(x) - 1| \times 1_{[g(x) \neq g^*(x)]}$$

En déduire les résultats.

Section 4

Exemples d'algo pour estimer g*

Algo des k-ppv en régression

- Données $D_n = (X_i, Y_i)_{i=1}^n$
- Choisir une dissimilarité et un nombre $k \in \mathbb{N}^*$ de voisins
- Pour $x X(\Omega)$

Algo

- Déterminer l'ensemble $V_k(x)$ des indices i des k plus proches voisins de x parmi les X_i
- Prédire $g^*(x)$ par

$$\widehat{g}_{D_n}(x) = \frac{1}{|V_k(x)|} \sum_{i \in V_k(x)} Y_i$$

25/37

Algo des k-ppv en classification

- Données $D_n = (X_i, Y_i)_{i=1}^n$
- Choisir une dissimilarité et un nombre $k \in \mathbb{N}^*$ de voisins
- Pour $x X(\Omega)$

Algo

- Déterminer l'ensemble $V_k(x)$ des indices i des k plus proches voisins de x parmi les X_i
- Prédire $g^*(x)$ par

$$\widehat{g}_{D_n}(x) = \arg \max_{y \in Y(\Omega)} \frac{1}{|V_k(x)|} \sum_{i \in V_k(x)} 1_{[Y_i = y]}$$

$$= \arg \max_{y \in Y(\Omega)} \sum_{i \in V_k(x)} 1_{[Y_i = y]}$$

Section 5

Apprentissage dans la pratique

Apprentissage dans la pratique

- Rappelons que g^* n'est pas calculable sans hypothèses supplémentaires sur $P_{(X,Y)}$.
- Dans la pratique, on cherche un estimateur de g^* dans un ensemble de fonctions $\mathcal M$ donné que l'on peut appeler modèle, par $\mathcal M$ peut être l'ensemble des prédicteur des k-ppv, $k \in [\mathcal K_{\max}] := \{1, \dots, \mathcal K_{\max}\}.$
- ullet Posons $g_{\mathcal{M}} = \operatorname{arg\,min}_{g \in \mathcal{M}} \mathcal{R}_L(g)$. On a

$$\mathcal{R}_L(g^*) \leq \mathcal{R}_L(g_{\mathcal{M}})$$

- ullet Le modèle ${\mathcal M}$ doit être choisi de sorte que
 - $\mathcal{R}_L(g_{\mathcal{M}}) \mathcal{R}_L(g^*)$ ne soit pas trop grand
 - on puisse approcher $g_{\mathcal{M}}$ à partir de données

W. Toussile (ENSP) Data Mining 15/11/2019 27/37

Estimateur du minimum du risque empirique I

Definition

Il s'agit de
$$\widehat{\mathcal{R}}_{L,D_n}(g) = \frac{1}{n} \sum_{i=1}^n L(g(X_i), Y_i)$$

• Perte quadratique en régression :

$$\widehat{\mathcal{R}}_{L,D_n}(g) = \frac{1}{n} \sum_{i=1}^n \|(g(X_i))_i - \mathbb{Y}\|^2$$

• Perte 0-1 en classification :

$$\widehat{\mathcal{R}}_{L,D_n}(g) = \frac{1}{n} \sum_i \mathbb{1}_{[g(X_i) \neq Y]}$$

W. Toussile (ENSP) Data Mining 15/11/2019 28 / 37

Estimateur du minimum du risque empirique II

• Estimateur du minimum du risque empirique (EMRE) :

$$\widehat{g}_{L,D_n,\mathcal{M}} := \arg\min_{g \in \mathcal{M}} \widehat{\mathcal{R}}_{L,D_n}(g)$$

• Consistance : $\widehat{g}_{L,D_n,\mathcal{M}}$ est dit consistant lorsque

$$\mathcal{R}_L(\widehat{g}_{L,D_n,\mathcal{M}}) - \mathcal{R}_L(g_{\mathcal{M}}) \underset{n \to \infty}{\longrightarrow} 0$$

On dit alors qu'on fait asymptotiquement au mieux.

- Enjeux
 - ► Choix du modèle M
 - lacktriangle Choix d'une méthode d'estimation de g^* dans ${\mathcal M}$
 - ▶ Estimation "honnête" de $\mathcal{R}(\widehat{g})$

Estimateur du minimum du risque empirique III

Exemple: Régression polynômiale

Modèle

$$\begin{cases} Y_i &= g(x_i) + \epsilon_i, \ i = 1, \dots, n \\ \mathbb{E}[\epsilon_i] &= 0 \\ \mathbb{C}ov(\epsilon_i, \epsilon_j) &= \delta_{i,j}\sigma^2; \end{cases}$$

avec $x_i \in \mathbb{R}$.

•
$$\mathcal{M}_p = \left\{ g : X(\Omega) \to Y(\Omega) | \exists (\beta_j)_{j=0}^p, \ g(x) = \beta_0 + \sum_{j=1}^p \beta_j x^j \right\}$$

- Choix du modèle à travers de degré $p \in \mathbb{N}^*$
 - ▶ Méthode d'estimation pour le risque quadratique : les MC
 - ► Estimation du risque : par validation croisée

W. Toussile (ENSP) Data Mining 15/11/2019 30 / 37

Estimateur du minimum du risque empirique IV

W. Toussile (ENSP)

31 / 37

Section 6

Estimation du risque par validation croisée

Position du pb

• $\mathcal{R}(\widehat{g}_m)$ n'est pas calculable. Son estimateur naïf est le risque empirique

$$\widehat{\mathcal{R}}(\widehat{g}_m, \mathcal{A}_n) = \frac{1}{n} \sum_i L(\widehat{g}_m(X_i), Y_i).$$
 (2)

- (2) est une estimation optimiste du risque de \hat{g}_n . En effet, il est estimé à partir des données A_n qui servent de test.
- Exemple: Tout EMRE \hat{g}_m qui vérifie $\hat{g}(X_i) = Y_i$ pour tout $i=1,\ldots,n$ est telle $\widehat{\mathcal{R}}\left(\widehat{g},\mathcal{A}_{n}\right)=0$, mais est potentiellement mauvais sur de nouvelles données.

Data Mining 15/11/2019 33 / 37

Estimation du risque par validation croisée

- On suppose n grand
- On partitionne I = [n] en deux I_{train} et I_{test}
- On estime $\widehat{g}_{train} = \widehat{g}\left(\{(X_i, Y_i)\}_{i \in I_{train}}\right)$
- On estime $\mathcal{R}(\widehat{g})$ par $\widehat{\mathcal{R}}(\widehat{g}_{train})$

W. Toussile (ENSP) Data Mining 15/11/2019 34/37

Leave one out

- Pour $j = 1, \dots, n$, estimer $\widehat{g}^{(j)} = \widehat{g}(\{(X_i, Y_i)\}_{i \neq i})$
- Estimer $\mathcal{R}(\widehat{g})$ par $\widehat{\mathcal{R}}_{n}^{(loo)}(\widehat{g}) = \frac{1}{n} \sum_{i} L(\widehat{g}^{(i)}(X_{i}), Y_{i})$

Data Mining 15/11/2019 35 / 37

Par K folds

- Partitionner aléatoirement I = [n] en K parties I_k , $k = 1, \dots, K$
- Pour $k = 1, \dots, K$, estimer $\widehat{g}^{(k)} = \widehat{g}(\{(X_i, Y_i)\}_{i \neq I_i})$
- Pour $k = 1, \dots, K$, calculer $\widehat{\mathcal{R}}_{k}\left(\widehat{g}^{(k)}\right) = \frac{1}{|I_{L}|} \sum_{i \in I_{k}} L\left(\widehat{g}^{(k)}\left(X_{i}\right), Y_{i}\right)$
- Estimer $\mathcal{R}(\widehat{g})$ par $\frac{1}{\kappa} \sum_{k} \widehat{\mathcal{R}}_{k}$

Data Mining 15/11/2019 36 / 37

"Bootstrap"

- Pour $b = 1, \dots, B$, tirer successivement avec remmise n entiers I_b de [*n*]
- Pour $b=1,\cdots,B$, estimer $\widehat{g}^{(b)}=\widehat{g}(\{(X_i,Y_i)\}_{i\in I_i})$
- Pour $b = 1, \dots, B$, calculer $\widehat{\mathcal{R}}_{b}\left(\widehat{g}^{(k)}\right) = \frac{1}{n - |I_{b}|} \sum_{i \notin I_{b}} L\left(\widehat{g}^{(b)}\left(X_{i}\right), Y_{i}\right)$
- Estimer $\mathcal{R}(\widehat{g})$ par $\frac{1}{R} \sum_{k} \widehat{\mathcal{R}}_{b}$

Data Mining 15/11/2019 37 / 37