$$x^{2} \equiv 1 \pmod{9}$$

$$x^{2} \equiv 1 \pmod{9}$$

$$x^{3} \equiv 1 \pmod{4}$$

We should try to understand $\mathbb{Z}_{p^{\alpha}}$ to understand \mathbb{Z}_n in general. We begin with the case of $\alpha=1$, \mathbb{Z}_p .

$$\mathbb{Z}_{p} = \{ [0], [1], [2], ..., [p-1] \}$$

Congruences modulo p

Linear congruences: $ax = b \pmod{p}$

- Case I: (p,a) = p, i.e. $p|a (or a \equiv 0 \pmod{p})$ Solution x = x exist $\Rightarrow b \equiv 0 \pmod{p}$
- Case II: $(p,a) = 1 \Rightarrow$ There is a unique solution x in $\mathbb{Z}_{\frac{p}{(p,a)}} = \mathbb{Z}_p$.
 - In particular, a⁻¹ always exist (mod p)
 unless a ≥ 0 (mod p)

Let's rewrite this congruence as f(x) = O(mod p)where f(x) = ax - b.

Note that f(x) = 3x - 5 and g(x) = 10x + 2 are essentially the same modulo 7 (always f(x) = g(x) (mod 7)) because $3 \equiv 10 \pmod{7}$ and $-5 \equiv 2 \pmod{7}$. So, we can always replace the coefficients with any representative of the same congruence class.

In \mathbb{R} , \mathbb{C} a non-zero polynomial of degree d has at most d roots. Can we say the same thing for the roots in \mathbb{Z}_p ?

- · d=0 : trivial
- · d=1: shown above

Theorem: (Lagrange) $f(x) = a_d \times^d + a_{d-1} \times^{d-1} + ... + a_1 \times + a_0$ is a polynomial with integer coefficients such that $a_i \not\equiv 0 \pmod{p}$ for at least one i. Then, $f(x) \equiv 0 \pmod{p}$ has at most d solutions in \mathbb{Z}_p .

• Could be less than d roots: $px^2 + 2x + 3$ has degree 2 but can be reduced to 2x + 3 which can have at most 1 root in mod p.

($px^2 \equiv 0 \pmod{p} \Rightarrow px^2 + 2x + 3 = 2x + 3 \pmod{p}$)

- Could be less than d roots even if $a_d \not\equiv 0 \pmod{p}$. For example $x^2 + 1 \pmod{3}$.
- If $d \gg p \Rightarrow \text{trivial}$.

Proof: Induction on d.

Base cases d=0, d=1 are already done.

Assume true for d-1, prove for d.

- If $f(x) \equiv 0 \pmod{p}$ has no root, then we are done as $0 \le d$.
- Suppose a is a root, i.e. $f(a) \equiv O \pmod{p}$

$$f(x) - f(a) = a_d (x^{d} - a^{d}) + a_{d-1} (x^{d-1} - a^{d-1}) + ... + a_i (x-a)$$

•
$$\times^{i} - a^{i} = (\times -a)(\times^{i-1} + a \times^{i-2} + a^{2} \times^{i-3} + ... + a^{i-2} \times + a^{i-1})$$

Taking out the common factor x-a, we can write $f(x)-f(a)=(x-a)\cdot g(x)$ for some polynomial g(x) with integer coefficient (and deg g(x)=d-1)

$$\Rightarrow f(x) = f(a) + (x-a) \cdot g(x)$$

 $f(x) = 0 \pmod{p} \iff f(a) + (x-a) g(x) = 0 \pmod{p}$

$$\iff$$
 $(x-a) g(x) \equiv 0 \pmod{p}$

$$\Rightarrow$$
 x = a (mod p) or g(x) = 0 (mod p)

 \Rightarrow At most 1 + (d-1) = d solutions.

Remark: $f(a) \equiv 0 \pmod{p} \Rightarrow f(x) \equiv (x-a) g(x) \pmod{p}$

Corollary: If $f(x) \equiv a_d x^d + ... + a_0 \equiv 0 \pmod{p}$ has more than d roots, then $a_i \equiv 0 \pmod{p}$ for all i.

Examples:

1.
$$f(x) = x^2 - 10x + 4$$
 in mod 5.

$$f(x) = x^2 + 4 = x^2 - 1 \pmod{5}$$
 roots: 1, 4 in \mathbb{Z}_p .

2.
$$f(x) = 8x^3 + 4x^2 - 5x$$
 in mod 7

$$f(x) = x \cdot (8x^2 + 4x - 5)$$

•
$$8x^2 + 4x - 5 \equiv 0 \pmod{7}$$

Try 0,1,2,3,4,5,6
$$\Rightarrow$$
 x=1, x=2(mod 7)

$$8x^{2} + 4x - 5 \equiv c \cdot (x - 1)(x - 2) \pmod{7}$$

$$8x^{2} + 4x - 5 \equiv cx^{2} - 3cx + 2c \pmod{7}$$

$$c=((mod 7) \Rightarrow f(x) = x \cdot (x-1)(x-2) \pmod{7}$$

3.
$$f(x) = x^3 + 2x^2 + 3x - 1$$
 in mod 5

$$f(1) = 5 = 0 \pmod{5}$$

$$f(x) = (x-1)(x^{2} + 3x + 1)$$

$$g(x) = x^{2} + 3x + 1 \Rightarrow g(1) = 0 \pmod{5}$$

$$g(x) = (x-1)(x + 4)$$

$$\Rightarrow f(x) = (x-1)^{2} \cdot (x + 4) = (x-1)^{3} \pmod{5}$$

Solving polynomial congruences (mod p), we can reduce the coefficients (mod p) and the next theorem will allow us to reduce the degree of the polynomial as well.

Theorem: (Fermat) For $a \neq 0 \pmod{p}$, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof: Observe that the sets $\{1, 2, ..., p-1\}$ and $\{a, 2 \cdot a, 3 \cdot a, ..., (p-1) \cdot a\}$ are the same mod p.

For each $b \in \{1, 2, ..., p-1\}$, we have $ax \equiv b \pmod{p}$ for a unique x.

Then, the product of the elements of these sets must also be the same:

1.2.3.... $(p-1) \equiv a \cdot (2a) \cdot (3a) \cdot ((p-1)a) \pmod{p}$ $\Rightarrow (p-1)! \equiv (p-1)! \cdot a^{p-1} \pmod{p} \pmod{p} \pmod{p} = 1.$ $\Rightarrow 1 \equiv a^{p-1} \pmod{p}.$

• $f(x) = x^{p-1} - 1$ and $g(x) = (x-1)(x-2) \cdot ... \cdot (x-(p-1))$.

 \Rightarrow f(x) and g(x) have the same coefficients modulo p.

Proof: Define h(x) = f(x) - g(x)deg $h \le p-2$ and 1, 2, ..., p-1 are roots of h in \mathbb{Z}_p (more than deg h roots) \Rightarrow h has all coefficients 0 mod p \Rightarrow f and g have the same coefficients mod p.

- For all a, we have $a^P \equiv a \pmod{p}$
- $x^p x$ and $x \cdot (x-1)(x-2) \cdot ... \cdot (x-(p-1))$ have the same coefficients modulo p.

Some Applications of Fermat's Theorem

① Compute $2^{1003} \pmod{11}$ $2^{1003} = (2^{10})^{100} \cdot 2^3 = 1^{100} \cdot 2^3 = 8 \pmod{11}$

- 2) Prove that n -n is divisible by 30 for all n.
 - 5 divides n -n:

- If
$$n \equiv 0 \pmod{5}$$
, then $n^{25} - n \equiv 0 \pmod{5}$

$$n^{25} - n = (n^4)^6 \cdot n - n = 1^6 \cdot n - n = 0 \pmod{5}$$

· 3 divides n²⁵-n:

$$n^{25} - n \equiv (n^2)^{12} \cdot n - n = 1^{12} \cdot n - n \equiv 0 \pmod{3}$$

• 2 divides n²⁵-n:

$$\Rightarrow$$
 [2,3,5] = 30 divides $n^{25}-n$.

3 Solve
$$x^{17} + 6x^{14} + 2x^{5} + 1 = 0 \pmod{5}$$

• If
$$x \equiv 0 \pmod{5}$$
, then "not a solution" $x^{17} + 6 x^{14} + 2 x^{5} + 1 \not\equiv 0 \pmod{5}$.

$$x^{17} + 6x^{14} + 2x^{5} + 1 = (x^{4})^{\frac{4}{3}} x + (x^{4})^{\frac{3}{3}} x^{2} + 2x^{\frac{4}{3}} x + 1$$

$$= x + x^{2} + 2x + 1$$

$$= x^{2} + 3x + 1$$

$$\Rightarrow$$
 $x^2 + 3x + 1 = 0 \pmod{5}$

$$\Rightarrow$$
 $x^2 - 2x + 1 = 0 \pmod{5}$

$$\Rightarrow$$
 $(x-1)^2 \equiv 0 \pmod{5}$

$$\Rightarrow$$
 $x \equiv 1 \pmod{5}$.