## **BESIII Charm Meeting**

#### Martin Tat

#### 31st August 2021





# Measurement of $\delta_D^{K\pi}$ with $D \to K_{S,L} \pi^+ \pi^-$ tags

- Measurement of <u>both</u>  $r_D^{K\pi}\cos\delta_D^{K\pi}$  and  $r_D^{K\pi}\sin\delta_D^{K\pi}$
- Equal- $\Delta \delta_D$  phase space binning
- Double tag yields taken from Phys. Rev. D 101 (2020)
- $K_i$ ,  $c_i$ ,  $s_i$  re-determined without  $D \to K^-\pi^+$  inputs



2/7

## $D \to K_{S,L}^0 \pi^+ \pi^-$ inputs

### $K^-\pi^+$ vs $K^0_{S,L}\pi^+\pi^-$ double tag yield prediction

$$Y(K^{-}\pi^{+}|K_{S,L}^{0}\pi^{+}\pi^{-})_{i} = H^{(\prime)}\left(K_{i}^{(\prime)} + (r_{D}^{K\pi})^{2}K_{-i}^{(\prime)} \mp 2r_{D}^{K\pi}\sqrt{K_{i}^{(\prime)}K_{-i}^{(\prime)}}\left[c_{i}^{(\prime)}\cos\delta_{D}^{K\pi} - s_{i}^{(\prime)}\sin\delta_{D}^{K\pi}\right]\right)$$

- K<sub>i</sub>: Flavour tag yields
  - $\bullet \ D \to K^0_{S,L} \pi^+ \pi^- \ \text{vs} \ D \to K^- \pi^+ \pi^0$
  - $D \rightarrow K_{S,I}^0 \pi^+ \pi^- \text{ vs } D \rightarrow K^- \pi^+ \pi^- \pi^+$
  - $D o K_S^0 \pi^+ \pi^-$  vs  $D o K^- e^+ \nu_e$
  - Updated coherence factors from J. High Energ. Phys. 2021, 164
- c<sub>i</sub> and s<sub>i</sub>: Amplitude-averaged strong phases
  - CP tags
  - No  $D \to K^-\pi^+$  inputs

#### Fit setup and results

- Minimize  $\chi^2 = \sum \left( \frac{Y_{\rm obs} Y_{\rm exp}}{\Delta Y_{\rm obs}} \right)^2$ 
  - $\bullet$   $\Delta Y_{\rm obs}$  statistical uncertainty only
- Systematic uncertainties: Run 10<sup>5</sup> fits with smearing
  - K<sub>i</sub>: Independent Gaussian smearing according to uncertainties
  - ullet  $c_i$ ,  $s_i$ : Gaussian smearing according to correlations and uncertainties

#### Final results

$$r_D^{K\pi}\cos\delta_D^{K\pi} = -0.0547 \pm 0.0084 \pm 0.0049 \pm 0.0010$$

$$r_D^{K\pi} \sin \delta_D^{K\pi} = -0.010 \pm 0.012 \pm 0.007 \pm 0.0003$$

• Uncertainties: Statistical  $\pm$   $K_i$  systematics  $\pm$   $c_i/s_i$  systematics

Martin Tat University of Oxford 31st August 2021

#### Bin yield yield vs prediction





#### Bin yield yield vs prediction





# Separate $K_S^0\pi^+\pi^-$ and $K_L^0\pi^+\pi^-$ fits





| Sample                                       | $r_D^{K\pi}\cos\delta_D^{K\pi}$ | $r_D^{K\pi} \sin \delta_D^{K\pi}$ | $\chi^2/$ ndf |
|----------------------------------------------|---------------------------------|-----------------------------------|---------------|
| $K_S^0\pi^+\pi^-$                            | $-0.0491 \pm 0.0134$            | $0.001\pm0.018$                   | 14.4/14       |
| $\mathcal{K}_{L}^{0}\pi^{+}\pi^{-}$          | $\text{-0.0584} \pm 0.0108$     | $-0.019 \pm 0.016$                | 20.1/14       |
| $\mathcal{K}_{\mathcal{S}, L}^0 \pi^+ \pi^-$ | $\text{-0.0547}\pm0.0084$       | $-0.010 \pm 0.012$                | 35.4/30       |
| CP tags                                      | $\text{-0.0605}\pm0.0053$       | -                                 |               |

Martin Tat University of Oxford 31st August 2021