5.2 questions ms

1. (i) $2Na + 2H_2O \rightarrow 2NaOH + H_2(1)$ (ii) $Na_2O + H_2O \rightarrow 2NaOH$ (1) [2] 2. $P_4 O_{10} + 6 H_2 O \rightarrow 4 H_3 PO_4 (1)$ Phosphorus (V) oxide Approximate pH O (1) allow -1 to 0.5 $SO_2 + H_2O \rightarrow H_2SO_3$ (1) Sulphur dioxide Approximate pH allow 1 to 4 [4] **3.** $4Al + 3O_2 \rightarrow 2Al_2O_3$ (1) (i) 1 (ii) aluminium is protected by an oxide layer (1) 1 Silicon dioxide Phosphorus(V) Sodium Sulphur oxide oxide dioxide Physical state at solid solid solid gas room temperature (iii) allow abbreviations (s) and (g) Type of bonding covalent ionic covalent covalent present must give ionic/covalent but ignore additional information about structure if 8 correct, give 4 marks if 6 or 7, give 3 if 4 or 5, give 2 if 2 or 3, give 1 4 $Na_2O + H_2O \rightarrow 2NaOH$ (1) accept ionic charges (if correct) for Na compounds 1 (v) $SO_2 + H_2O \rightarrow H_2SO_3$ (1) do not accept SH₂O₃ accept ions on RHS 1 (vi) silicon dioxide 7 (1) phosphorus(v) oxide 0-3 (1) 2 (must give values)

Mill Hill High School

[10]

4.	(a)	ionic (1)					
		O ²⁻ ion reacts with water (1) forming OH– (or NaOH) (1)				3	
	(b)	General type Formula	covalent (1) (or no SO_2 (1) etc	on–metal or i	molecular)	2	
							[5]
5.	(a)	$Mg + 2HCl \rightarrow M$	$MgCl_2 + H_2$			1	
		$MgO + 2HCl \rightarrow Allc$	$MgCl_2 + H_2O$ ow ionic equations			1	
	(b)	Hydrogen collec Using a gas syrin Allo	1				
		Measurements		(i) P (ii) T (iii) V		1 1 1	
		Use ideal gas equal Mol H ₂ = mol M	1 1				
	(c)	$MgCl_2 + 2NaOH$	$H \rightarrow Mg(OH)_2 + 2Na$.Cl	Species Balanced	1 1	
		Alla	ow an ionic equation				
		$Mg(OH)_2 \rightarrow Mg$	$gO + H_2O$			1	

Mill Hill High School 2

(d)	Allow 2 significant figures in these calculations and ignore additional figures							
	EITHER							
	Mol MgO obtained stage 2 = mass MgO/MrMgO							
	= $6.41/40.(3)$ = 0.159 Allow 0.16 Allow method mark if formula of magnesium oxide or M_r incorrect							
	Moles of $Mg = moles$ of H_2 hence							
	Mol original MgO = mol MgO from stage 2 - mol H_2 = 0.159 - 0.0528 = 0.106 Allow 0.11 Mark consequentially to moles of magnesium oxide determined above							
	OR							
	Mass MgO formed from Mg = $0.0528 \times M_r$ MgO {or 40.(3)}	(1)						
	= 2.13 g Allow 2.1 Allow method mark if formula of magnesium oxide or Mr incorrect	(1)						
	Mass original MgO = total mass MgO - mass formed from Mg	(1)						
	=6.41-2.13=4.28~g Allow 4.3 Mark consequentially mass of magnesium oxide determined above	(1) d						

[15]

Mill Hill High School

6.

```
the trend is a decrease in pH (or from alkaline to acid) (1)(can be implied from separate values)
```

 $Na_2O + H_2O \rightarrow 2NaOH \text{ product (1) equation (1)}$

(allow Na⁺ OH⁻, ignore state symbols)

Na₂O is ionic lattice (1)

(if lattice is not mentioned lose mark only once ie allow ionic for MgO, $A1_2O_3$)

$$MgO + H_2O \rightarrow Mg(OH)_2$$
 product (1) equation (1) (allow $Mg^{2+} + 2OH^-$)

MgO is ionic lattice (1)

MgO sparingly soluble (1)

A1₂O₃ is ionic lattice or covalent macromolecular (1)(if covalent not mentioned lose mark only once) insoluble in water or no reaction (1)(if formula wrong lose one mark)

 SiO_2 is covalent macromolecular (1)(if covalent not mentioned lose mark only once) insoluble in water or no reaction (1)(formula wrong lose 1 mark)

 $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ product (1) equation (1)(allow P_2O_5 , P_4O_6 , P_2O_3) H_3PO_4 is a strong acid or very acidic (1)

 P_4O_{10} is covalent molecular (1)(if covalent or molecular not mentioned lose mark once only)

 $SO_2 + H_2O \rightarrow H_2SO_3$ Product (1) equation (1) or $SO_3 + H_2O \rightarrow H_2SO_4$ Product (1) equation (1)

H₂SO₃ is a weak acid (1) H₂SO₄ is a strong acid or very acidic (1)

SO₂ is covalent molecular (1) SO₃ is covalent molecular (1)

(Choose the best of the above two answers if both given)

max 19

[19]

Mill Hill High School 4