Assignment 2 - authored by, Kishore Akash YS

1. Download the dataset from the source here

(https://drive.google.com/file/d /1_HcM0K8wt4b7FMLkc1V1dv0y6l_9ULzy /view?usp=sharing)

About the dataset:

This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

RowNumber - Serial number of the rows

CustomerId - Unique identification of customer

Surname - Name of the customer

CreditScore - Cipil score of the customer

Geography - Location of the bank

Gender - Sex of the customer

Age - Age of the customer

Tenure - Repayment period for the credit amount

Balance - Current balance in thier creidt card

NumOfProducts - Products owned by the customer from the company

HasCrCard - Has credit card or not (0 - no , 1 - yes)

IsactiveMember - Is a active member or not

EstimatedSalary - Salary of the customer

Exited - Churn of the customer

```
In [1]: import warnings
    warnings.filterwarnings("ignore")
```

```
In [2]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

2. Load the dataset

```
In [3]: df = pd.read_csv("Churn_Modelling.csv")
    df.head()
```

Out[3]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86
	2	3	15619304	Onio	502	France	Female	42	8	159660.80
	3	4	15701354	Boni	699	France	Female	39	1	0.00
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82

In [4]: df.tail()

Out	[4]	:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	5736
9997	9998	15584532	Liu	709	France	Female	36	7	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	7507
9999	10000	15628319	Walker	792	France	Female	28	4	13014

3 a). Univariate analysis

```
In [8]: credit = df['CreditScore']
credit.plot(kind="hist",figsize=(8,5))
```

Out[8]: <AxesSubplot:ylabel='Frequency'>


```
In [9]: geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))
```

Out[9]: <AxesSubplot:ylabel='Geography'>


```
In [10]: sns.countplot(df['Gender'])
```

Out[10]: <AxesSubplot:xlabel='Gender', ylabel='count'>


```
In [11]: sns.distplot(df['Age'],hist=False)
```

Out[11]: <AxesSubplot:xlabel='Age', ylabel='Density'>


```
In [12]: plt.figure(figsize=(10,8))
sns.countplot(df['Tenure'])
```

Out[12]: <AxesSubplot:xlabel='Tenure', ylabel='count'>


```
In [13]: product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))
```

Out[13]: <AxesSubplot:ylabel='NumOfProducts'>


```
In [14]: cr = df['HasCrCard'].value_counts()
    cr.plot(kind="pie",figsize=(10,8))
```

Out[14]: <AxesSubplot:ylabel='HasCrCard'>


```
In [15]: plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])
```

Out[15]: <AxesSubplot:xlabel='IsActiveMember', ylabel='count'>

In [16]: sns.distplot(df['EstimatedSalary'],hist=False)

Out[16]: <AxesSubplot:xlabel='EstimatedSalary', ylabel='Density'>


```
In [17]: plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])
```

Out[17]: <AxesSubplot:xlabel='Exited', ylabel='count'>

Inference:

- 1. The data has 11 numerical variables and 3 categorical variables.
- 2. It has 10000 rows and 14 columns
- 3. The normalized credit score is around 700, More than 500 people have credit score greater than 800.
- 4. France occupies 50% of customers, where as Germany and Spain shared equal.
- 5. Dataset is dominated by Male Customers.
- 6. Median age is around 40 to 45.
- 7. Highest number of customer has thier tenure period for 2 years.
- 8. Credit company has maximum customers, who uses single product.
- 9. Most of the customer has credit card.
- 10. More than 40% of the population is not an active member.
- 11. The Churn is less compared to the satisfaction. **Dataset is imbalanced.**

3 b). Bivariate analysis

```
In [18]: sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)
```

Out[18]: <AxesSubplot:xlabel='Gender', ylabel='CreditScore'>

In [19]: sns.violinplot(x='Geography',y='Balance',data=df)

Out[19]: <AxesSubplot:xlabel='Geography', ylabel='Balance'>


```
In [20]: sns.violinplot(x='Geography',y='EstimatedSalary',data=df)
```

Out[20]: <AxesSubplot:xlabel='Geography', ylabel='EstimatedSalary'>

In [21]: sns.violinplot(x='Gender',y='Balance',data=df)

Out[21]: <AxesSubplot:xlabel='Gender', ylabel='Balance'>


```
In [22]: sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)
```

Out[22]: <AxesSubplot:xlabel='Exited', ylabel='CreditScore'>


```
In [23]: sns.barplot(x='Exited',y='CreditScore',hue='Geography',data=df)
```

Out[23]: <AxesSubplot:xlabel='Exited', ylabel='CreditScore'>


```
In [24]: sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df)
```

Out[24]: <AxesSubplot:xlabel='IsActiveMember', ylabel='EstimatedSalary'>


```
In [25]: sns.barplot(x='Exited',y='Tenure',data=df)
```

Out[25]: <AxesSubplot:xlabel='Exited', ylabel='Tenure'>

Inference:

- 1. Credit score for Male is higher in Spain.
- 2. Average bank salary lies in the range of 100k to 150k.
- 3. Estimated salary is normalized and same for all country.
- 4. Credit score for churn is low.
- 5. Churn in Germany is higher compared to other countries.
- 6. Exited people tenure period is around 6 years.

3 c). Multivariate analysis

```
In [26]: gp1 = df.groupby('Gender')['Geography'].value_counts()
    gp1.plot(kind='pie',figsize=(10,8))
    print(gp1)
```

Gender	r Geography	/
Female	e France	2261
	Germany	1193
	Spain	1089
Male	France	2753
	Spain	1388
	Germany	1316
Namo ·	Goognanhy	dtyno: int6

Name: Geography, dtype: int64


```
In [27]: gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)
```

Gender

Female 39.238389 Male 38.658237

Name: Age, dtype: float64

```
gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean()
In [28]:
         print(gp3)
         Gender
                  Geography
         Female
                  France
                               4.950022
                  Germany
                               4.965633
                               5.000000
                  Spain
         Male
                  France
                               5.049401
                  Germany
                               5.050152
                  Spain
                               5.057637
         Name: Tenure, dtype: float64
```

In [29]: gp4 = df.groupby('Geography')['HasCrCard','IsActiveMember'].value_counts()
 gp4.plot(kind="bar",figsize=(8,5))
 print(gp4)

Geography	HasCrCard	IsActiveMember	
France	1	1	1826
		0	1717
	0	1	765
		0	706
Germany	1	0	918
		1	873
	0	1	375
		0	343
Spain	1	1	908
		0	813
	0	1	404
		0	352

dtype: int64


```
In [30]: gp5 = df.groupby(['Gender','HasCrCard','IsActiveMember'])['EstimatedSalary'].m
    gp5.plot(kind="line",figsize=(10,8))
    print(gp5)
```

Gender	HasCrCard	IsActiveMember	
Female	0	0	102006.080352
		1	102648.996944
	1	0	101208.014567
		1	98510.152300
Male	0	0	99756.431151
		1	99873.931251
	1	0	100353.378996
		1	98914.378703

Name: EstimatedSalary, dtype: float64


```
In [31]: gp6 = df.groupby(['Gender','IsActiveMember'])['Exited'].value_counts()
    gp6.plot(kind='bar',figsize=(10,8))
    print(gp6)
```

Gender	IsActiveMember	Exited	
Female	0	0	1534
		1	725
	1	0	1870
		1	414
Male	0	0	2013
		1	577
	1	0	2546
		1	321

Name: Exited, dtype: int64

In [32]: gp7 = df.groupby('Exited')['Balance','EstimatedSalary'].mean()
print(gp7)

	Batance	EstimatedSalary
Exited		
0	72745.296779	99738.391772
1	91108.539337	101465.677531

Inference:

(Female, France, 0)

(Female, Spain, 0)

18 of 26 10/10/2022, 2:24 PM

(Female, Germany, 1)

(Female, Spain, 1)

(Male, France, 0)

Gender, Geography, Exited

(Male, Spain, 0)

(Male, Germany, 0)

(Male, Germany, 1)

(Male, France, 1)

(Male, Spain, 1)

(Female, France, 1)

(Female, Germany, 0)

- 1. Germany has more female customers compared to male customers.
- 2. Average age of Male is 38, whereas average age of Female is 39.
- 3. Tenure period for both male and female is high in Spain.
- 4. It is observed that, those who have credit card are very active member in the company.
- 5. The estimated salary for a person who is not having credit card is high when compared to those having them.
- 6. Churn for inactive member is high compared to active member.
- 7. Those who churn has thier estimated salary very low.
- 8. France has the more churn rate.

4. Descriptive statistics

[n [34]:	<pre>df.describe().</pre>	Т						
Out[34]:		count	mean	std	min	25%	50%	
	RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500e+03	7
	CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074e+07	
	CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000e+02	7
	Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000e+01	2
	Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000e+00	7
	Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854e+04	•
	NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000e+00	2
	HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000e+00	
	IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000e+00	
	EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939e+05	
	Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000e+00	(

5. Handling the missing values

```
In [35]: df.isnull().sum()
Out[35]: RowNumber
                             0
         CustomerId
                             0
         Surname
                             0
         CreditScore
                             0
         Geography
                             0
         Gender
                             0
         Age
                             0
         Tenure
                             0
         Balance
         NumOfProducts
                             0
         HasCrCard
                             0
                             0
         IsActiveMember
         EstimatedSalary
                             0
         Exited
                             0
         dtype: int64
```

There is no missing value in the dataset

6. Finding outliers

```
In [36]: def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)</pre>
```



```
In [40]: sns.boxplot(df['EstimatedSalary'])
```


Outliers from Age and Credit Score columns are removed

7. Check for categorical column and perform encoding.

```
In [41]: from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()

In [42]: df['Gender'] = le.fit_transform(df['Gender'])
    df['Geography'] = le.fit_transform(df['Geography'])
```

In [43]:	df.	head()								
Out[43]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance
	0	1	15634602	Hargrave	619.0	0	0	42.0	2	0.00
	1	2	15647311	Hill	608.0	2	0	41.0	1	83807.86
	2	3	15619304	Onio	502.0	0	0	42.0	8	159660.80
	3	4	15701354	Boni	699.0	0	0	39.0	1	0.00
	4	5	15737888	Mitchell	850.0	2	0	43.0	2	125510.82

Only two columns(Gender and Geography) is label encoded

Removing unwanted columns and checking for feature importance

In [44]: df = df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1) In [45]: df.head() Out[45]: CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActi 0 619.0 0 42.0 2 0.00 1 1 2 0 41.0 0 608.0 83807.86 1 2 0 0 42.0 1 502.0 159660.80 3 3 699.0 0 0 39.0 0.00 2 0 2 1 4 850.0 0 43.0 2 125510.82

```
In [46]: plt.figure(figsize=(20,10))
    df_lt = df.corr(method = "pearson")
    df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
    sns.heatmap(df_lt1,annot=True,cmap="coolwarm")
```

Out[46]: <AxesSubplot:>

- 1. The Removed columns are nothing to do with model building.
- 2. Feature importance also checked using pearson correlation.

8. Data Splitting

9. Scaling the independent values

```
In [49]: from sklearn.preprocessing import StandardScaler
    se = StandardScaler()

In [50]: data['CreditScore'] = se.fit_transform(pd.DataFrame(data['CreditScore']))
    data['Age'] = se.fit_transform(pd.DataFrame(data['Age']))
    data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
    data['EstimatedSalary'] = se.fit_transform(pd.DataFrame(data['EstimatedSalary']))
```

[51]:	dat	ca.head()								
1]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is
	0	-0.326878	0	0	0.342615	2	-1.225848	1	1	
	1	-0.440804	2	0	0.240011	1	0.117350	1	0	
	2	-1.538636	0	0	0.342615	8	1.333053	3	1	
	3	0.501675	0	0	0.034803	1	-1.225848	2	0	
	4	2.065569	2	0	0.445219	2	0.785728	1	1	

10. Train test split

```
In [52]: from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test = train_test_split(data,target,test_size=0.25,ra)
In [53]: print(X_train.shape)
    print(X_test.shape)
    print(y_train.shape)
    print(y_test.shape)

    (7500, 10)
    (2500, 10)
    (7500,)
    (2500,)
```

Conclusion:

- 1. The model is scaled using StandarScaler method.
- 2. The train and test split ratio is 15:5.
- 3. As it is a classification problem, basic algorithms can be used to build ML models.