Predicting Breast Cancer Using Computer Vision

By Deanna Hedges

The problem

We all know someone who has been impacted by breast cancer

The problem

We all know someone who has been impacted by breast cancer

The problem

We all know someone who has been impacted by breast cancer

We all want to cure cancer

There is a market for technology that assists in this goal

The data

Mammography scan images provided by the Radiological Society of North America (RSNA)

About the source

- The RSNA is a non-profit organization
- 31 radiologic subspecialties are represented
- 145 countries are represented
- Accessed through Kaggle

About the data

- 54,708 scans from 11,913 patients
- DICOM file format
- Scans of individual breasts, some from multiple angles
- Varying placement, exposure, and negative space

The data

Mammography scan images provided by the Radiological Society of North America (RSNA)

About the source

- The RSNA is a non-profit organization
- 31 radiologic subspecialties are represented
- 145 countries are represented
- Accessed through Kaggle

About the data

- 54,708 scans from 11,913 patients
- DICOM file format
- Scans of individual breasts, some from multiple angles
- Varying placement, exposure, and negative space

The data

Mammography scan images provided by the Radiological Society of North America (RSNA)

About the source

- The RSNA is a non-profit organization
- 31 radiologic subspecialties are represented
- 145 countries are represented
- Accessed through Kaggle

About the data

- 54,708 scans from 11,913 patients
- DICOM file format
- Scans of individual breasts, some from multiple angles
- Varying placement, exposure, and negative space

Negatives and False Positives

The method

Utilizing machine learning and computer vision to assist in diagnosis

The results

How the model performed

About the model

- Convolutional Neural Network
- Transfer learning on VGG19 model
- Fairly shallow neural network
- Appropriately fit overall
- Overfit on the negative class

Next steps

- Over or under sampling
- Incorporating F1 score as a metric
- Data augmentation
- Adjusting hyperparameters
- Adding more layers for a deeper neural network

Questions?