EGN4060c Intro to Robotics

Lecture 9:

Machine Learning: Supervised Classifiers

Instructor: Dr. Gita Sukthankar

Email: gitars@eecs.ucf.edu

Upcoming Due Dates

- Much happening in the next few weeks!
- Extended date for lab 2 report due on Wed; no further extensions
- Homework 2 (architectures) due on Wed
- Lab 3 report due next Wed Oct 1st
- Midterm exam: Wed Oct 8th (exam review on the 6th)

Wavefront Summary

- Maintain 2 data structures (also can track current cost)
 - Old cost map
 - New cost map
- Iterate over the grid until the start square has a nonzero value
- For each cell:
 - Find lowest cost neighboring, unoccupied square and add 1 to the cost
 - If the current cost is 0 or if the new cost is lower than the current cost, annotate the cell (new cost map) with the new cost.
- Your path is defined by any uninterrupted sequence of decreasing numbers reaching the goal

Wavefront (Complete)

- You're done
 - Remember, 0's should only remain if unreachable regions exist

7	18	17	16	15	14	13	12	11	10	9	9	9	9	9	9	9
6	17	17	16	15	14	13	12	11	10	9	8	8	8	8	8	8
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7
4	17	16	15	15	1	1	1	1	1	1	1	1	6	6	6	6
3	17	16	15	14	1	1	1	1	1	1	1	1	5	5	5	5
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4	4
1	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	3
0	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	0	1	2	3	4	5	6	7 8	3 9	9 1	0 1	.1	12	13	14	15

Following the Path

- To find the shortest path, according to your metric, simply always move toward a cell with a lower number
 - The numbers generated by the Wavefront planner are roughly proportional to their distance from the goal

Two
possible
shortest
paths
shown

Java: Bounds Checking

- Each array object has a public constant called length that stores the size of the array
- It is referenced using the array name:

scores.length

 Note that length holds the number of elements, not the largest index

Java: Initializer Lists

- An initializer list can be used to instantiate and fill an array in one step
- The values are delimited by braces and separated by commas
- Examples:

Two-Dimensional Arrays

A two-dimensional array is declared by specifying the size of each dimension separately:

```
int[][] scores = new int[12][50];
```

 A array element is referenced using two index values:

```
value = scores[3][6]
```

 The array stored in one row can be specified using one index

MapGUI: class for map display

```
MapGUI map = new MapGUI();
map.getMap();
map.moveRobot(row, column, angle);
map.moveRobot(row, column, direction);
map.getRobotLocation();
Example map file format: 0=empty, 1=wall, 2=goal
                                  68
                               00100010
                               0000000
                               00000100
                               01101100
                               00011000
                               10010002
                                2 1 120
```

Overview

- You've learned how to write scripts for the robot.
- You've learned how to have the robot create and execute a plan based on a pre-specified world model.
- But what if you want your robot to be able to learn from experiences?
- The answer----machine learning!

Problem Formulation

- Input: robot sensor reading
- Output: instructions for robot
- Additional information:
 - Example pairs of input and output (supervised learning)
 - Fitness function (evolutionary computing)
 - Reward function (reinforcement learning)
- For the next lab, you'll be doing reinforcement learning.

Classification

- Assign object/event to one of a given finite set of categories.
 - Medical diagnosis
 - Credit card applications or transactions
 - Fraud detection in e-commerce
 - Worm detection in network packets
 - Spam filtering in email
 - Recommended articles in a newspaper
 - Recommended books, movies, music, or jokes
 - Financial investments
 - DNA sequences
 - Spoken words
 - Handwritten letters
 - Astronomical images

Computer vision and machine learning are closely related disciplines.

Planning / Control

- Performing actions in an environment in order to achieve a goal.
 - Solving calculus problems
 - Playing checkers, chess, or backgammon
 - Balancing a pole
 - Driving a car or a jeep
 - Flying a plane, helicopter, or rocket
 - Controlling an elevator
 - Controlling a character in a video game
 - Controlling a mobile robot

Measuring Performance

- Classification accuracy
- Solution correctness
- Solution quality (length, efficiency)
- Speed of performance

The Time is Ripe for ML!

- Many basic effective and efficient algorithms available.
- Large amounts of on-line data available.
- Large amounts of computational resources available.

Supervised Classifiers

Training Data (labeled by humans)

Decision Function

Classification

New Data

Learned Decision Function

Answer

How to learn the decision function?

Regression

- Problem: from set of exemplars and known x, predict value for unknown y
- Assume a model for the data based on parameters y=f(x;p)
 - x is data
 - p are parameters
 - f(x) is the model
- For example:
 - You could model your data with a linear model: f(x;p)=ax+b
 - The parameters of this model are: p=(a,b)

Regression Basics

- Learning: estimate the model parameters p from training data (x,y)
- For f(x;p)=a

$$a = \frac{1}{N} \sum_{i} y_{i}$$

Linear Regression

- Linear model: f(x;p)=ax+b
- Ordinary least squares method: minimize the residual which can be done in a closed form way

$$S_{x} = n \cdot \overline{x} = \sum_{j=1}^{n} x_{j} \qquad S_{y} = n \cdot \overline{y} = \sum_{j=1}^{n} y_{j}$$
$$S_{xx} = \sum_{j=1}^{n} x_{j}^{2} \qquad S_{xy} = \sum_{j=1}^{n} x_{j} y_{j}$$

$$a = \frac{nS_{xy} - S_x S_y}{nS_{xx} - (S_x)^2} \quad b = \frac{1}{n} (S_y - aS_x)$$

Graph the Result

Once the parameters have been "learned" they can be used to predict the answers for unseen values.

Supervised Learning

- Given training data sequence of inputs x and outputs y (x₁,y₁), (x₂, y₂), ...(x_N,y_N)
- Learn to predict the output y
- Input x can be real, discrete, or multidimensional

Face Detection

X is a vector of pixel intensities

Supervised Learning

Y is a discrete output class just binary

Supervised Learning

- Labeled examples
- Real input, with desired output

"Bernardine"

"Unknown"

"Brett"

Binary Classification

- Output has 2 classes: true or not true
 - Usually defined as {0,1} or {-1,+1}

"Face" = 1

"Not face" = -1

"Face"= 1

Multi-Class Classification

- Output has many classes
- Usually defined as {1....k}

"Bernardine" = 1

"Camel" = 3

"Brett"= 2

Regression and Classification

- Regression and classification are very similar
- We can often define a binary classification as

$$y = \operatorname{sgn}(f(x))$$
$$y = \begin{cases} 1 & f(x) > 0 \\ -1 & f(x) \le 0 \end{cases}$$

Classification Approaches

- Nearest neighbor
- Naïve Bayes
- Decision trees
- Neural networks
 - Perceptrons
 - Multi-layer perceptron
- All of these different methods answer the same question.
 - Given a known input and training data, what is the unknown class label of a new example?

Definitions

- C is the set of classes, for binary classification
 - C={-1,+1}
- X is the input space
 - Typically a real d-dimensional vector

$$x \in \Re^D$$

Y is the output so

$$y \in C$$

Problem

- Green dots are one class, red dots are the other
- Given an example (blue) which class does it belong to?

Nearest Neighbor

- Simple idea:
 - Look for closest example x in training data and use its output y as the output
- Mathematically

$$i^* = \arg\min_{i} (D(x, x_i))$$
$$y = y_{i^*}$$

Similar in concept to k-means clustering (which is an unsupervised learning technique)

Distance Function

$$D(a,b) = \sqrt{\sum_{j} (a_{j} - b_{j})^{2}}$$

$$D(a,b) = \sum_{j} |a_{j} - b_{j}|$$

Choice in distance function affects answer

3 Nearest Neighbor

Votes for unknown (red, red, green)

Unknown point=red

(-5,0,red)

(-2,6,red)

Decision Trees

- Basic concept:
 - Learn a nested set of if/else rules
 - Tree of decisions or splitting points

Decision-Tree

Axis aligned splitting planes

Decision Trees

- Best example is C4.5 algorithm
 - Works on discrete and continuous data sets
- Key idea to building trees
 - Decising where to introduce a split and when to start splitting

Neural Networks

- Modeled on biological networks
- Activation related to strength of outputs
- First proposed in 1940s by McCulloch and Pitts
- Shot down by Minsky around 1969
- Returned to popularity in 1980s with the backpropagation algorithm

Perceptron Learning

Single linear "neuron"

Perceptrons for Classification

Output through step function

Perceptron Learning

Operation is a dot product

Perceptron Classification

Adding bias term

Perceptron Learning

Very simple rule:

Difference in desired and actual answer

$$w' = w + \alpha (y_i - \operatorname{sgn}(w^T x_i)) x_i$$

Alpha is a learning rate

 This gives us a method of modifying the weights based on misclassifications.

Multilayer Perceptron

Naïve Bayes

- Another alternative is to look at the problem probabilistically
- Define class probabilities

$$P(x|c=1), P(x|c=-1)$$

Consider a 1-D example with the distributions plotted....

Naïve Bayes

Best choice will be:

$$c^* = \arg\max_{c} P(c|x)$$

Naïve Bayes

Best choice will be: $c^* = \arg \max_{c} P(x|c)P(c)$

- How does this work?
- Let's review some probability theory?

Axioms of Probability Theory

All probabilities between 0 and 1

$$0 \le P(A) \le 1$$

True proposition has probability 1, false has probability 0.

$$P(true) = 1$$
 $P(false) = 0.$

The probability of disjunction is:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

A and B are independent if the joint probability
 P(A and B)=P(A)P(B)

Conditional Probability

- P(A | B) is the probability of A given B
- Assumes that B is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Bayes Theorem

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Simple proof from definition of conditional probability:

$$P(H \mid E) = \frac{P(H \land E)}{P(E)} \quad \text{(Def. cond. prob.)}$$

$$P(E \mid H) = \frac{P(H \land E)}{P(H)} \quad \text{(Def. cond. prob.)}$$

$$P(H \land E) = P(E \mid H)P(H)$$

$$QED: P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Naïve Bayes Inference Problem

Naïve Bayesian Categorization

• If we assume features of an instance are independent given the category (conditionally independent).

$$P(X | Y) = P(X_1, X_2, \dots X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

- Therefore, we then only need to know $P(X_i \mid Y)$ for each possible pair of a feature-value and a category.
- If Y and all X_i are binary, this requires specifying only 2n parameters:
 - $P(X_i = \text{true} \mid Y = \text{true})$ and $P(X_i = \text{true} \mid Y = \text{false})$ for each X_i
 - $P(X_i=false \mid Y) = 1 P(X_i=true \mid Y)$
- Compared to specifying 2ⁿ parameters without any independence assumptions.

Naïve Bayes Example

Probability	positive	negative
P(<i>Y</i>)	0.5	0.5
P(small Y)	0.4	0.4
P(medium Y)	0.1	0.2
P(large Y)	0.5	0.4
P(red <i>Y</i>)	0.9	0.3
P(blue <i>Y</i>)	0.05	0.3
P(green Y)	0.05	0.4
P(square Y)	0.05	0.4
P(triangle <i>Y</i>)	0.05	0.3
P(circle Y)	0.9	0.3

We learn these probabilities by employing frequency counting techniques on the training data.

Test Instance: <medium ,red, circle>

Naïve Bayes Example

Probability	positive	negative
P(Y)	0.5	0.5
P(medium Y)	0.1	0.2
P(red <i>Y</i>)	0.9	0.3
P(circle Y)	0.9	0.3

Test Instance: <medium ,red, circle>

Answer: Drawn from the positive urn

P(positive |
$$X$$
) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)
0.5 * 0.1 * 0.9 * 0.9
= 0.0405 / P(X) = 0.0405 / 0.0495 = 0.8181

P(negative |
$$X$$
) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)
0.5 * 0.2 * 0.3 * 0.3
= 0.009 / P(X) = 0.009 / 0.0495 = 0.1818

P(positive |
$$X$$
) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1
P(X) = (0.0405 + 0.009) = 0.0495

For purposes of making a decision, we can ignore the denominator since it is the same for both Classes.

What can we do with learning?

- Learn parameters that we normally have to specify
- Find good color thresholds for our vision algorithms
- Use reinforcement learning to do maze solving or to identify good kicks for Robocup players
- Use genetic algorithms to find good controller parameters
- Use Bayesian reasoning for localization
- Also these algorithms can be combined in interesting ways.