```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
from sklearn import linear_model
```

In [2]: df = pd.read_csv("Salary_Data.csv")
df

Out[2]:

	YearsExperience		Salary
0		1.1	39343.0
1		1.3	46205.0
2		1.5	37731.0
3		2.0	43525.0
4		2.2	39891.0
5		2.9	56642.0
6		3.0	60150.0
7		3.2	54445.0
8		3.2	64445.0
9		3.7	57189.0
10		3.9	63218.0
11		4.0	55794.0
12		4.0	56957.0
13		4.1	57081.0
14		4.5	61111.0
15		4.9	67938.0
16		5.1	66029.0
17		5.3	83088.0
18		5.9	81363.0
19		6.0	93940.0
20		6.8	91738.0
21		7.1	98273.0
22		7.9	101302.0
23		8.2	113812.0
24		8.7	109431.0

25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

In [3]: df.head()

Out[3]:

	YearsExperience		Salary
0	1	.1	39343.0
1	1	.3	46205.0
2	1	.5	37731.0
3	2	.0	43525.0
4	2	.2	39891.0

In [4]: df.dtypes

Out[4]: YearsExperience

float64 float64 Salary

dtype: object

In [6]: df.describe()

Out[6]:

	YearsExperience	Salary
count	30.000000	30.000000
mean	5.313333	76003.000000
std	2.837888	27414.429785
min	1.100000	37731.000000
25%	3.200000	56720.750000
50%	4.700000	65237.000000
75%	7.700000	100544.750000
max	10.500000	122391.000000

In [7]: df.isnull().sum()

Out[7]: YearsExperience 0 0

Salary dtype: int64

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30 entries, 0 to 29
Data columns (total 2 columns):

Column Non-Null Count Dtype
--- ----- 9 YearsExperience 30 non-null float64
1 Salary 30 non-null float64

dtypes: float64(2)

memory usage: 608.0 bytes

In [9]: sns.distplot(df['Salary'])

/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.p y:2619: FutureWarning: `distplot` is a deprecated function and wil l be removed in a future version. Please adapt your code to use ei ther `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='Salary', ylabel='Density'>

In [10]: sns.distplot(df['YearsExperience'])

/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.p y:2619: FutureWarning: `distplot` is a deprecated function and wil l be removed in a future version. Please adapt your code to use ei ther `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='YearsExperience', ylabel='Density'>

In [11]: df.corr()

Out [11]:

	YearsExperience	Salary
YearsExperience	1.000000	0.978242
Salary	0.978242	1.000000

In [12]: df=df.rename({'YearsExperience':'years_exp', 'Salary':'salary_hike'
df

Out[12]:

	years_exp	salary_hike
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0

8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

```
In [13]: |plt.scatter(df.years_exp,df.salary_hike)
```

Out[13]: <matplotlib.collections.PathCollection at 0x7fda462d5e20>


```
In [14]: | slr_model=smf.ols("df['salary_hike']~df['years_exp']",data=df).fit(
         print(slr model.summary())
         predict=slr_model.predict(df.iloc[:,0])
         plt.scatter(df['years_exp'],df['salary_hike'])
         plt.plot(df['years_exp'],predict)
         plt.title("SLR Data set")
         plt.xlabel("Experience in Years")
         plt.ylabel("Salary")
         plt.show()
```

OLS Regression Results

t

P>|t|

```
========
Dep. Variable:
                    df['salary_hike']
                                        R-squared:
0.957
Model:
                                  0LS
                                        Adj. R-squared:
0.955
Method:
                        Least Squares
                                        F-statistic:
622.5
Date:
                     Thu, 01 Dec 2022
                                        Prob (F-statistic):
1.14e-20
Time:
                             02:19:05
                                        Log-Likelihood:
-301.44
No. Observations:
                                   30
                                        AIC:
606.9
Df Residuals:
                                   28
                                        BIC:
609.7
Df Model:
                                    1
Covariance Type:
                            nonrobust
_____
                              std err
```

coef

http://localhost:8889/notebooks/simple%20regression%20Q2.ipynb

0.025 0.97	^{'5}]				
Intercept 1e+04 3.04e+	2.579e+04 -04	2273.053	11.347	0.000	2.1
df['years_exp'] 4.119		378.755	24.950	0.000	867
=======================================		========		=======	=====
Omnibus: 1.648		2.140	Durbin-Wats	on:	
Prob(Omnibus): 1.569		0.343	Jarque-Bera	(JB):	
Skew: 0.456		0.363	Prob(JB):		
Kurtosis: 13.2		2.147	Cond. No.		
==========	:========	========	=========	=======	=====

========

Notes:

[1] Standard Errors assume that the covariance matrix of the error s is correctly specified.

OLS Regression Results

	=======	-======	===	======	========	=====
Dep. Variable:	df['sa	.ary_hike']	R-squ	ared:	
0.854 Model:		0L	c	۸di	R-squared:	
0.849		UL	3	Auj.	x-squareu:	
Method:	Lea	st Square	S	F-sta	tistic:	
163.6			_		/-	
Date: 3.25e-13	Thu, (1 Dec 202	2	Prob	(F-statistic):	
Time:		02:19:1	8	l oa-l	ikelihood:	
-319.77		0211311	•	_09 _	11.0 (11.10001	
No. Observations:		3	0	AIC:		
643.5 Df Residuals:		2	8	BIC:		
646.3		2	O	DIC:		
Df Model:			1			
Covariance Type:		nonrobus	t			
=======================================	=======	======	===	=====:		=====
[0.025		coef	S	td err	t	P> t
Intercept		493e+04	51	56.226	2.895	0.00
7 4365 921 2						
np.log(df['years_e 0 3.41e+04 4		058e+04	31	72.453	12.792	0.00
=======================================	=======	:======	===	=====	=========	=====
Omnibus:		1.09	4	Durbi	n-Watson:	
0.512						
Prob(Omnibus):		0.57	9	Jarqu	e-Bera (JB):	
0.908 Skew:		0.15	6	Prob(.	1B):	
0.635		0113	•			
Kurtosis:		2.20	7	Cond.	No.	
5.76						
	=	=====		=		=

=========

Notes:

[1] Standard Errors assume that the covariance matrix of the error s is correctly specified.


```
0.932
Model:
                                            0LS
                                                  Adj. R-squared:
0.930
Method:
                                 Least Squares
                                                  F-statistic:
383.6
                              Thu, 01 Dec 2022
                                                  Prob (F-statistic):
Date:
7.03e-18
Time:
                                      02:19:28
                                                  Log-Likelihood:
28.183
No. Observations:
                                             30
                                                  AIC:
-52.37
                                                  BIC:
Df Residuals:
                                             28
-49.56
Df Model:
Covariance Type:
                                     nonrobust
                                                                      coef
                                std err
                                                  t
                                                          P>|t|
0.025
           0.975]
Intercept
                    10.5074
                                  0.038
                                            273.327
                                                          0.000
                                                                      1
0.429
            10.586
df['years_exp']
                     0.1255
                                  0.006
                                             19.585
                                                          0.000
0.112
Omnibus:
                                  0.826
                                           Durbin-Watson:
```

1.438

Dep. Variable:

```
      Prob(Omnibus):
      0.661 Jarque-Bera (JB):

      0.812
      0.187 Prob(JB):

      0.666
      2.286 Cond. No.

      13.2
      0.681 Jarque-Bera (JB):

      0.187 Prob(JB):
      0.187 Prob(JB):
```

Notes:

[1] Standard Errors assume that the covariance matrix of the error s is correctly specified.


```
In [17]: slr_regression=linear_model.LinearRegression()
    slr_regression.fit(df[['years_exp']],df.salary_hike)

flag=True
    while(flag):
        myinput=float(input("Enter Years of Experience"))
        myoutput=slr_regression.predict([[myinput]])
        print("Salary Hike precited using SLR is: ",myoutput)
        flag=int(input("press 1 to continue or press 0 to exit: "))
```

Enter Years of Experience5
Salary Hike precited using SLR is: [73042.01180594]
press 1 to continue or press 0 to exit: 0

```
In [18]: np.sqrt(np.mean((df.years_exp-predict)**2))
Out[18]: 80440.84508275457
```

```
In [19]: np.sqrt(np.mean((df.years_exp-predict)**2))
```

Out[19]: 80440.84508275457

In [20]:	<pre>np.sqrt(np.mean((df.years_exp-log_predict)**2))</pre>
Out[20]:	79974.15496099806
In []:	