DSBA-DEC20

Assignment

- Time Series Forecasting

Karthik Vadlamudi

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

1. Read the data as an appropriate Time Series data and plot the data.

Rose wine sales

Sparkling -wine sale

2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Rose wine sales

Data set has 187 records and two null values. Null values have been imputed

Decomposition of Rose-wine sales into Trend, Seasonal and Residual

Distribution of sale of wine-Rose in each year

Distribution of sale of wine-Rose in each Month

Trend for each month over the years in sale of wine-Rose

Sparkling wine sales

Data set has 187 records and there are no null values in data set Sparkling Decomposition of Sparkling-wine sales into Trend, Seasonal and Residual

Distribution of sale of wine-Sparkling in each year

Distribution of sale of wine-Sparkling in each Month

Trend for each month over the years in sale of wine-Sparkling

3. Split the data into training and test. The test data should start in 1991.

After splitting train and test data set, train data set has 132 records and test has 55 records

4. Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression,naïve forecast models, simple average models etc. should also be built on the training data and check the performance on the test data using RMSE.

Please do try to build as many models as possible and as many iterations of models as possible with different parameters.

Various models and forecast as below.

Rose wine sales

Naive Forecast

Simple Average Forecast

Various test results and RMSE are as under.

Test	RMSE
RegressionOnTime	15.280000
NaiveModel	79.741326
SimpleAverageModel	53.483727
2pointTrailingMovingAverage	11.529811
4pointTrailingMovingAverage	14.457115
6pointTrailingMovingAverage	14.571789
9pointTrailingMovingAverage	14.731914

Alpha=0.995,SimpleExponentialSmoothing	36.819844
Alpha=0.995,Beta=0.995:DoubleExponentialSmoothing	15.276679
Alpha=0.99,Beta=0.0001,Gamma=0.005:DoubleExponentialSmoothing	20.962011
Alpha=0.02,SimpleExponentialSmoothing	36.459396

Sparkling wine sales

RMSE for models are as below.

	Test RMSE
RegressionOnTime	1389.140000
NaiveModel	3864.279352
SimpleAverageModel	1275.081804
2pointTrailingMovingAverage	813.400684
4pointTrailingMovingAverage	1156.589694
6pointTrailingMovingAverage	1283.927428

	Test RMSE
9pointTrailingMovingAverage	1346.278315
Alpha=0.995,SimpleExponentialSmoothing	1316.034674
Alpha=0.995,Beta=0.995:DoubleExponentialSmoothing	2007.238526
Alpha=0.99,Beta=0.0001,Gamma=0.005:DoubleExponentialSmoothing	469.591976
Alpha=0.02,SimpleExponentialSmoothing	1279.495201

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

To check whether the series is stationary, we use the Augmented Dickey Fuller (ADF)test whose null and alternate hypothesis can be simplified to

- •Null Hypothesis H₀: Time Series is non-stationary
- •Alternate Hypothesis Ha: Time Series is stationary

Rose wine sales

Results of Dickey-Fuller Test:

Test Statistic	-1.873307
p-value	0.344721
#Lags Used	13.000000
Number of Observations Used	173.000000
Critical Value (1%)	-3.468726
Critical Value (5%)	-2.878396
Critical Value (10%)	-2.575756
dtype: float64	

since p-value> 0.05, at alpha 0.05, time series is not stationary.

We can take next levels of differencing to make a Time Series stationary.

Results of Dickey-Fuller Test:

Test Statistic -8.044136e+00

p-value 1.813615e-12

#Lags Used 1.200000e+01

Number of Observations Used 1.730000e+02

Critical Value (1%) -3.468726e+00

Critical Value (5%) -2.878396e+00

Critical Value (10%) -2.575756e+00

dtype: float64

After next level of levels of differencing p-value <0.05 therefore series is stationary.

Sparkling wine sales

Results of Dickey-Fuller Test: Test Statistic -1.360497 p-value 0.601061 #Lags Used 11.000000 Number of Observations Used 175.000000 Critical Value (1%) -3.468280 Critical Value (5%) -2.878202 Critical Value (10%) -2.575653 dtype: float64

since p-value> 0.05, at alpha 0.05, time series is not stationary.

We can take next levels of differencing to make a Time Series stationary.

Results of Dickey-Fuller Test:

Test Statistic -45.050301
p-value 0.000000
#Lags Used 10.000000
Number of Observations Used 175.000000
Critical Value (1%) -3.468280
Critical Value (5%) -2.878202
Critical Value (10%) -2.575653

dtype: float64

After next level of levels of differencing p-value <0.05 therefore series is stationary.

6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

Rose wine sales

ARIMA Model

AIC values in descending order

	param	AIC
17	(3, 1, 3)	1273.194108
4	(1, 1, 2)	1277.359223
3	(1, 1, 1)	1277.775747

	param	AIC
9	(2, 1, 1)	1279.045689
10	(2, 1, 2)	1279.298694
5	(1, 1, 3)	1279.312635
15	(3, 1, 1)	1279.605966
16	(3, 1, 2)	1280.969245
11	(2, 1, 3)	1281.196226
1	(1, 0, 2)	1292.053210
7	(2, 0, 2)	1292.248055
2	(1, 0, 3)	1292.929011
6	(2, 0, 1)	1292.937195
14	(3, 0, 3)	1293.042709
8	(2, 0, 3)	1294.247938
0	(1, 0, 1)	1294.510585
12	(3, 0, 1)	1333.933193
13	(3, 0, 2)	1355.403813

Lowest AIC is: 1273.194 with param (3,1,3)

ARIMA Model Results

Dep. Variable: D.Rose No. Observations: 131
Model: ARIMA(3, 1, 3) Log Likelihood -628.597
Method: css-mle S.D. of innovations 28.355
Date: Sat, 06 Mar 2021 AIC 1273.194

Time:	14:46:16	BIC	1296.196
Sample:	02-01-1980	HQIC	1282.541

- 12-01-1990

=========	========	========	=========	=========		=======
	coef	std err	Z	P> z	[0.025	0.975]
const	-0.4906	0.088	-5.548	0.000	-0.664	-0.317
ar.L1.D.Rose	-0.7244	0.086	-8.417	0.000	-0.893	-0.556
ar.L2.D.Rose	-0.7218	0.086	-8.349	0.000	-0.891	-0.552
ar.L3.D.Rose	0.2763	0.085	3.236	0.001	0.109	0.444
ma.L1.D.Rose	-0.0150	0.044	-0.338	0.735	-0.102	0.072
ma.L2.D.Rose	0.0150	0.044	0.339	0.734	-0.072	0.102
ma.L3.D.Rose	-1.0000	0.046	-21.918	0.000	-1.089	-0.911
			Roots			

	Real	Imaginary	Modulus	Frequency
AR.1	-0.5011	 -0.8661j	1.0006	-0.3335
AR.2	-0.5011	+0.8661j	1.0006	0.3335
AR.3	3.6147	-0.0000j	3.6147	-0.0000
MA.1	1.0000	-0.0000j	1.0000	-0.0000
MA.2	-0.4925	-0.8703j	1.0000	-0.3320
MA.3	-0.4925	+0.8703j	1.0000	0.3320

Evaluation of model using RMSE: RMSE from ARIMA model 15.99

SARIMA model

AIC values in descending order (lowest AIC 10 records)

	param	seasonal	AIC
107	(0, 1, 2)	(2, 1, 2, 12)	774.969119
215	(1, 1, 2)	(2, 1, 2, 12)	776.940114
323	(2, 1, 2)	(2, 1, 2, 12)	776.996102
269	(2, 0, 2)	(2, 1, 2, 12)	780.716942
161	(1, 0, 2)	(2, 1, 2, 12)	780.992971
89	(0, 1, 1)	(2, 1, 2, 12)	782.153872
322	(2, 1, 2)	(2, 1, 1, 12)	783.703652
197	(1, 1, 1)	(2, 1, 2, 12)	783.899095

	param	seasonal	AIC
95	(0, 1, 2)	(0, 1, 2, 12)	784.014096
311	(2, 1, 2)	(0, 1, 2, 12)	784.140949

Lowest AIC is: 774.969 with param (0,1,2) and seasonal (2,1,2,12)

SAR	XAMT	Results

Dep. Variab Model: Date: Time: Sample: Covariance	ARIMAX(0, 1,	Sat, 06 Ma	2, 12) ar 2021 3:41:44			13 -380.4 774.9 792.6 782.0	85 89 822	
========	coef	std err	z	P> z	[0.025	0.975]		
ar.S.L24 ma.S.L12	0.0480 -0.0419 -0.7526 -0.0721	0.301 0.204	-1.513	0.000 0.545 0.786 0.130 0.012 0.723 0.000		0.171 0.395 0.012 -0.163 0.327		
Ljung-Box Prob(Q): Heteroskeda Prob(H) (tv	asticity (H):		0.06 0.81 0.91 0.79	Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):	0	.86).09).41 3.77	

Evaluation of model using RMSE : RMSE from SARIMA model 16.52

Sparkling wine sales

ARIMA Model

AIC values in descending order

	param	AIC
8	(2, 1, 2)	2210.616954
7	(2, 1, 1)	2232.360490

	param	AIC
2	(0, 1, 2)	2232.783098
5	(1, 1, 2)	2233.597647
4	(1, 1, 1)	2235.013945
6	(2, 1, 0)	2262.035601
1	(0, 1, 1)	2264.906439
3	(1, 1, 0)	2268.528061
0	(0, 1, 0)	2269.582796

Lowest AIC is 2232.783 with param (2,1,2)

ARTMA	Model	Results

==========	A ==========	RIMA Model	. Results 			
Dep. Variable: Model: Method: Date: Time: Sample:	del: ARIMA(2, 1, 2) chod: css-mle ce: Sun, 28 Feb 2021 ne: 18:02:49			tions: lood lovations	131 -1099.308 1011.985 2210.617 2227.868 2217.627	
	coef	std err	z	=: ======= P> z	[0.025	0.975]
const ar.L1.D.Sparkling ar.L2.D.Sparkling ma.L1.D.Sparkling ma.L2.D.Sparkling	-0.5601 -1.9993	0.042	10.825 17.045 -7.617 -47.149 23.584			6.597 1.416 -0.416 -1.916 1.082
	Real	Imaginar	ΣΥ	Modulus	Frequency	
AR.2 1 MA.1 1	1.1335 1.1335 1.0002 1.0006		 5 j 5 j 9 j 9 j	1.3361 1.3361 1.0002 1.0006	-0.0888 0.0888 0.0000 0.0000	

Evaluation of model using RMSE: RBSE for ARIMA model 1375.03

SARIMA model

AIC values in descending order (lowest AIC 10 records)

	param	seasonal	AIC
95	(1, 1, 2)	(0, 1, 2, 12)	1382.347780
41	(0, 1, 2)	(0, 1, 2, 12)	1382.484254
101	(1, 1, 2)	(1, 1, 2, 12)	1384.137874
149	(2, 1, 2)	(0, 1, 2, 12)	1384.317618
47	(0, 1, 2)	(1, 1, 2, 12)	1384.398867
107	(1, 1, 2)	(2, 1, 2, 12)	1385.688721
53	(0, 1, 2)	(2, 1, 2, 12)	1386.023734
155	(2, 1, 2)	(1, 1, 2, 12)	1386.097242
161	(2, 1, 2)	(2, 1, 2, 12)	1387.627785
77	(1, 1, 1)	(0, 1, 2, 12)	1398.756167

Lowest AIC is: 1382.347780 with param (1,1,2) and seasonal 0,1,2,12)

SARIMAX Results

Dep. Variable: Model: SARIMAX(0, Date: Time: Sample: Covariance Type:		Y 1, 2)x(0, 1, 2, 12) Sun, 28 Feb 2021 18:06:38 0 - 132		No. Observations: Log Likelihood AIC BIC HQIC		132 -686.242 1382.484 1395.093 1387.573	
========	coef	std err	opg ======z	P> z	[0.025	0.975]	
ma.L1 ma.L2 ma.S.L12 ma.S.L24 sigma2	-0.7223 -0.2292 -0.4113 -0.0419 1.736e+05	0.107 0.137 0.087 0.138 2.06e+04	-6.752 -1.671 -4.743 -0.304 8.425	0.000 0.095 0.000 0.761 0.000	-0.932 -0.498 -0.581 -0.312 1.33e+05	-0.513 0.040 -0.241 0.228 2.14e+05	

Ljung-Box (L1) (Q):	0.02	Jarque-Bera (JB):	27.42
Prob(Q):	0.88	Prob(JB):	0.00
<pre>Heteroskedasticity (H):</pre>	0.84	Skew:	0.80
<pre>Prob(H) (two-sided):</pre>	0.62	Kurtosis:	5.15

Evaluation of model using RMSE: RBSE for ARIMA model 321.48

7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

Rose wine sales

ACF graph for Rose wine sales as under

PACF graph for Rose wine sales as under

It can be observed from above the ACF and PACF plots, the cut off points for p and q for ARIMA model is 4 and 2 respectively.

By taking these parameters (4,1,2) ARIMA results are as under

Dep. Variable: Model: Method: Date: Time: Sample:	Sun,	D.Rose IMA(4, 1, 2) css-mle 07 Mar 2021 13:23:57 02-01-1980 - 12-01-1990	Log Lik	ervations: elihood innovations		131 -633.876 29.793 1283.753 1306.754 1293.099
	coef	std err	Z	P> z	[0.025	0.975]
const ar.L1.D.Rose ar.L2.D.Rose ar.L3.D.Rose ar.L4.D.Rose ma.L1.D.Rose ma.L2.D.Rose	0.1855	0.087 0.132 0.132 0.091 nan		0.741 0.000 0.007 0.161 0.015 nan nan	-1.319 0.997 -0.616 -0.074 -0.401 nan nan	-0.097 0.445
	Real	Imagin	ary	Modulus	F	requency
AR.1 AR.2 AR.3 AR.4 MA.1 MA.2	1.1027 1.1027 -0.6863 -0.6863 0.9753 0.9753	-0.4116j +0.4116j -1.6643j +1.6643j -0.2209j +0.2209j		1.1770 1.1770 1.8003 1.8003 1.0000		-0.0569 0.0569 -0.3122 0.3122 -0.0355 0.0355

RMSE from ARIMA model is 33.97

By taking these parameters (4,1,2) and (4,1,2,12) SARIMA results are as under.

SARIMAX Results

Dep. Varia	ble:		У	No. Observa	tions:		132
Model:	SARIMAX(4,	$1, 2) \times (4, 1)$	1, 2, 12)	Log Likelih	nood	-277.	661
Date:		Sun, 07	Mar 2021	AIC		581.	322
Time:			14:22:21	BIC		609.	983
Sample:			0	HQIC		592.	663
			- 132				
Covariance	Type:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-0.9742	0.199	-4.899	0.000	-1.364	-0.584	

Ljung-Box Prob(Q): Heterosked Prob(H) (t	asticity (H):	:	0.03 0.86 0.49 0.10	Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):		2.41 0.30 0.32 3.68
sigma2	215.3512	7.07e+04	0.003	0.998	-1.38e+05	1.39e+05	
ma.S.L24	0.2086	0.373	0.559	0.576	-0.523	0.940	
ma.S.L12	-0.5159	0.343	-1.503	0.133	-1.189	0.157	
ar.S.L48	-0.1195	0.093	-1.281	0.200	-0.302	0.063	
ar.S.L36	-0.2153	0.106	-2.039	0.041	-0.422	-0.008	
ar.S.L24	-0.3597	0.227	-1.587	0.113	-0.804	0.085	
ar.S.L12	-0.1441	0.364	-0.396	0.692	-0.858	0.569	
ma.L2	-0.8395	275.462	-0.003	0.998	-540.734	539.055	
ma.L1	0.1605	328.137	0.000	1.000	-642.976	643.297	
ar.L4	-0.1285	0.162	-0.794	0.427	-0.446	0.189	
ar.L3	-0.1044	0.277	-0.377	0.706	-0.647	0.438	
ar.L2	-0.1122	0.285	-0.394	0.694	-0.670	0.446	

RMSE from SARIMA model is 17.54

Sparkling wine sales

ACF graph for Sparkling wine sales as under

PACF graph for Sparkling wine sales as under

It can be observed from above ACF and PACF plots, the cut off points for p and q for ARIMA model is 3 and 2 respectively.

By taking these parameters (3,1,2) ARIMA results are as under

ARIMA Model Results

Dep. Variable: Model: Method: Date: Time: Sample:	ARIMA(3, 1, 2) css-mle Sun, 07 Mar 2021 14:58:55			nood	131 -1107.464 1106.033 2228.928 2249.054 2237.106	
	coef	std err	z	P> z	[0.025	0.975]
const ar.L1.D.Sparkling ar.L2.D.Sparkling ar.L3.D.Sparkling ma.L1.D.Sparkling ma.L2.D.Sparkling	g 0.3075 g -0.2503 g -0.0004	7.77e-06 nan 0.028	nan -0.013 -36.010	nan nan 0.000 nan 0.990 0.000	nan -0.055	nan 0.054
	Real	Imaginar	:У	Modulus	Frequency	
AR.2 AR.3 MA.1	1.0000 1.1145 1.1145 1.0000 1.0004	-0.0000 -1.6595 +1.6595 +0.0000 +0.0000	5 5 5 5 5	1.0000 1.9990 1.9990 1.0000	-0.5000 -0.1559 0.1559 0.0000 0.5000	

RMSE from ARIMA model is 1375.10

By taking these parameters (3,1,2) and (3,1,2,12) SARIMA results are as under.

			SARIMAX F	Results 			
Dep. Varial Model: Date: Time: Sample:	ble: SARIMAX(3,	Sun, 07 N		No. Observat Log Likeliho AIC BIC HQIC		-598.6 1219.2 1245.4 1229.7	260 462
Covariance	Type:		opg				
========	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1 ar.L2	-0.7556 0.1169 -0.0520	0.151 0.185 0.143	-5.013 0.633 -0.365	0.000 0.527 0.715	-1.051 -0.245 -0.332	-0.460 0.479 0.228	
ar.L3 ma.L1 ma.L2	0.0330 -0.9670	0.143 0.191 0.156	0.173 -6.197	0.713 0.863 0.000	-0.332 -0.341 -1.273	0.228 0.407 -0.661	
ar.S.L12 ar.S.L24	-0.7538 -0.6371	0.496 0.351	-1.520 -1.818	0.128 0.069	-1.725 -1.324	0.218	
ar.S.L36 ma.S.L12 ma.S.L24	-0.2469 0.3719 0.3466	0.151 0.491 0.365	-1.641 0.758 0.949	0.101 0.448 0.343	-0.542 -0.590 -0.370	0.048 1.334 1.063	

sigma2	1.79e+05	1.67e-06	1.07e+11	0.000	1.79e+05	1.79e+05
=======	========	=======	=======	========	=======	=======================================
Ljung-Box	(L1) (Q) :		0.01	Jarque-Bera	(JB):	13.16
Prob(Q):			0.93	Prob(JB):		0.00
Heterosked	lasticity (H):		0.66	Skew:		0.62
Prob(H) (t	:wo-sided):		0.29	Kurtosis:		4.55
========		========	=======	=========		

RMSE from SARIMA model is 329.53

8. Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

RMSE for Rose for Exponential Smoothing Models

	Test RMSE
RegressionOnTime	15.280000
NaiveModel	79.741326
SimpleAverageModel	53.483727
2pointTrailingMovingAverage	11.529811
4pointTrailingMovingAverage	14.457115
6pointTrailingMovingAverage	14.571789
9pointTrailingMovingAverage	14.731914
Alpha=0.995,SimpleExponentialSmoothing	36.819844
Alpha=0.995,Beta=0.995:DoubleExponentialSmoothing	15.276679
Alpha=0.99,Beta=0.0001,Gamma=0.005:DoubleExponentialSmoothing	20.962011
Alpha=0.02,SimpleExponentialSmoothing	36.459396

RMSE for Rose for ARIMA/SARIMA

	Test RMSE
ARIMA(3, 1, 3)	15.99
SARIMA(0, 1, 2)x(2, 1, 2, 12)	16.52
ARIMA(4, 1, 2)	33.97
SARIMA(4, 1, 2)x(4, 1, 2, 12)	17.54

RMSE for Sparkling for Exponential Smoothing Models

	Test RMSE
RegressionOnTime	1389.140000
NaiveModel	3864.279352
SimpleAverageModel	1275.081804

	Test RMSE
2pointTrailingMovingAverage	813.400684
4pointTrailingMovingAverage	1156.589694
6pointTrailingMovingAverage	1283.927428
9pointTrailingMovingAverage	1346.278315
Alpha=0.995,SimpleExponentialSmoothing	1316.034674
Alpha=0.995,Beta=0.995:DoubleExponentialSmoothing	2007.238526
Alpha=0.99,Beta=0.0001,Gamma=0.005:DoubleExponentialSmoothing	469.591976
Alpha=0.02,SimpleExponentialSmoothing	1279.495201

RMSE for ARIMA Models for Sparkling

	Test RMSE
ARIMA(2, 1, 2)	1375.03
SARIMA(0, 1, 2)x (0, 1, 2, 12)	321.48
ARIMA(3, 1, 2)	1375.10
SARIMA(3, 1, 2)x(3, 1, 2, 12)	329.53

9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Since Rose data set has clear component of seasonality SARIM. Therefore, SARIMA model with parameters (0,1,2)x(2,1,2,12) is selected for forecasting time line series and model details are as under.

SARIMAX Results

Dep. Variab	le:	Rose	No. Observations:	187
Model:	SARIMAX(0, 1,	$2) \times (2, 1, 2, 12)$	Log Likelihood	-588.604
Date:		Sat, 06 Mar 2021	AIC	1191.208
Time:		13:41:48	BIC	1212.142
Sample:		01-01-1980	HQIC	1199.714
		- 07-01-1995		

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ma.L1	-0.8254	0.080	-10.334	0.000	-0.982	-0.669
ma.L2	-0.0807	0.086	-0.934	0.350	-0.250	0.089
ar.S.L12	0.0635	0.160	0.398	0.691	-0.249	0.376
ar.S.L24	-0.0340	0.019	-1.790	0.074	-0.071	0.003
ma.S.L12	-0.6953	0.207	-3.360	0.001	-1.101	-0.290
ma.S.L24	-0.0547	0.150	-0.365	0.715	-0.348	0.239
sigma2	166.0900	17.899	9.279	0.000	131.008	201.172
========		=======	========	========		

Ljung-Box (L1) (Q): 0.07 Jarque-Bera (JB): 8.28

Prob(Q):	0.79	Prob(JB):	0.02
Heteroskedasticity (H):	0.51	Skew:	0.33
Prob(H) (two-sided):	0.02	Kurtosis:	3.95

Diagnostics of the Final Model for Rose

RMSE of full model is 33.47

Predicted sale of Rose for next 12 months

The predicted sales of Rose for next 12 months is as below

Rose	mean	mean_se	mean_ci_lower	mean_ci_upper
1995-08-01	42.984338	12.890006	17.720391	68.248285
1995-09-01	43.513258	13.085191	17.866755	69.159761
1995-10-01	45.491994	13.141097	19.735918	71.248071
1995-11-01	57.520151	13.196775	31.654948	83.385355
1995-12-01	84.989586	13.252239	59.015674	110.963498
1996-01-01	20.575007	13.307260	-5.506743	46.656757

Rose	mean	mean_se	mean_ci_lower	mean_ci_upper
1996-02-01	30.224797	13.362216	4.035335	56.414260
1996-03-01	36.974058	13.416865	10.677486	63.270631
1996-04-01	38.520738	13.471317	12.117442	64.924035
1996-05-01	29.043623	13.525605	2.533925	55.553321
1996-06-01	36.323188	13.579682	9.707500	62.938875
1996-07-01	49.477037	13.633557	22.755757	76.198318

Since Sparkling sales data has component of seasonality. Therefore, SARIMA model with para meters (0,1,2) (0, 1, 2, 12) is proposed to used for forecast for next 12 months using full data. Details of model are as under.

,			SARIMAX F	20011+0			
=======	=========		SARIMAX F	esuits ========	========	=========	=
Date: Time: Sample:	SARIMAX(0,	1, 2) x (0, 1, Sun, 28 F 01-0	2, 12) Feb 2021 L8:26:36 D1-1980 D1-1995	AIC BIC		187 -1087.00 2184.00 2198.95 2190.081	3 6 8
Covariance	Type:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
ma.S.L12 ma.S.L24		0.087 0.065 0.084		0.000 0.132 0.000 0.810 0.000	-0.673 -0.185	0.040 -0.418	
Ljung-Box Prob(Q): Heterosked Prob(H) (t	asticity (H)	:	0.01 0.91 0.79 0.42	Jarque-Bera Prob(JB): Skew: Kurtosis:	======== (JB):	49.2 0.0 0.7 5.4	0 4

Diagnostics of the Final Model for Sparkling

RMSE of the Full Model is 550.06

The predicted sales of Sparkling for next 12 months is as below

Sparkling	mean	mean_se	mean_ci_lower	mean_ci_upper
1995-08-01	1874.535574	390.423218	1109.320128	2639.751020
1995-09-01	2487.730812	395.512564	1712.540432	3262.921192
1995-10-01	3299.133285	395.812900	2523.354256	4074.912313
1995-11-01	3937.427323	396.113009	3161.060093	4713.794554
1995-12-01	6136.305467	396.412891	5359.350478	6913.260456
1996-01-01	1251.541103	396.712549	473.998795	2029.083412
1996-02-01	1583.924557	397.012002	805.795332	2362.053782

Sparkling	mean	mean_se	mean_ci_lower	mean_ci_upper
1996-03-01	1842.202832	397.311309	1063.486976	2620.918689
1996-04-01	1822.837693	397.610284	1043.535857	2602.139529
1996-05-01	1668.252244	397.909036	888.364864	2448.139623
1996-06-01	1619.268043	398.207564	838.795558	2399.740528
1996-07-01	2021.196789	398.505870	1240.139637	2802.253941

10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

The decomposition of the time series trend of Rose wine is as below

Trend in sales of Rose is continuously decreasing over the period. Detailed study may be required to see whether decreasing trend is due to change in customer preference or due to substitution. Seasonality of sales is observed, and higher sales is maintained in the end of the year. Some promotion schemes and improvement / quality enhancers in the product can be examined so as to attract new young generation customers.

The decomposition of the sales of Sparkling is as below.

Sales in Sparking does not have uniform trend but increased in some years and decreased later. Business study may be done to find why sales are not increasing and what the contributing factors. Study can also include to see which wine product has substituted/ had higher sales in the years of low sales of Sparkling. With promotion and focussed effort with micro detailing it may be feasible to increase the sales. Sales of Sparkling wine higher in the later part of the year. This may be due to climatic condition of the geography under study.