Homework 6

Due Tuesday, November 22, 2016

Exercise 1 (Approximating functions in $L_1(\mu)$). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Show the following statements:

- 1. If $f \in L_1(\mu)$ then for each $\epsilon > 0$ there exists an integrable simple function g such that $\int |f g| d\mu \le \epsilon$;
- 2. If \mathcal{F}_0 is a field generating \mathcal{F} and μ is σ -finite on \mathcal{F}_0 , then the function g from item 1 can be taken to be of the form $g = \sum_{k=1}^{n} c_k I_{A_k}$ where each $A_k \in \mathcal{F}_0$.

When proving item 2 in the above exercise, you can use the following claim mentioned in Lecture 5 on the Caratheodory Extension Theorem.

Claim 1. Suppose \mathcal{F}_0 is a field on Ω and μ is a σ -finite measure on $(\Omega, \sigma(\mathcal{F}_0))$. Then for any $A \in \sigma(\mathcal{F}_0)$ there exists $B \in \mathcal{F}_0$ such that $\mu(A \triangle B) < \epsilon$.

Exercise 2. Suppose $f: \mathbb{R} \to \mathbb{R}$ and $f \in L_1(\mathcal{L}^1)$. Show that

$$\lim_{t \to 0} \int |f(x+t) - f(x)| dx = 0.$$

Hint: Use the previous exercise to find a g which approximates f and then notice that $g(\bullet + t)$ approximates $f(\bullet + t)$. Then compare $g(\bullet)$ with $g(\bullet + t)$

Exercise 3 (L^1 is complete). Let f_1, f_2, \ldots be integrable functions such that $\alpha_{m,n} := \int |f_n - f_m| d\mu$ tends to 0 as m and n tend to ∞ . Show that there exists an integrable function f such that $\beta_n := \int |f - f_n| d\mu$ tends to 0 as n tends to ∞ . Hint: inductively choose indices $n_k > n_{k-1}$ such that $\alpha_{m,n} \leq 2^{-k}$ for all $m, n \geq n_k$ and set $f = \sum_{k=1}^{\infty} (f_{n_k} - f_{n_{k-1}})$ with $f_{n_0} = 0$.

Exercise 4. Suppose that f_1, f_2, \ldots and f are integrable and that $f_n \to f$ μ -a.e. Show that $\lim_n \int |f_n - f| d\mu = 0$ if and only if $\int |f_n| d\mu \to \int |f| d\mu$. Hint: for ' \Leftarrow ' study the proof of the DCT to show that $\limsup_n \int |f_n - f| d\mu \le \int \limsup_n |f_n - f| d\mu$. In particular, show that $\int 2|f| d\mu - \int \limsup_n |f_n - f| d\mu \le \int 2|f| d\mu - \limsup_n \int |f_n - f| d\mu$.