COMP 9024, Homework Solution, 11s2, Class 1

John Plaice

Sat Aug 13 18:20:52 EST 2011

In each of the following situations, indicate whether f = O(g), or $f = \Omega(g)$, or both (in which case $f = \Theta(g)$).

- 1. f(n) = n 100 and g(n) = n 200. Both are O(n), so $f = \Theta(g)$.
- 2. $f(n) = n^{1/2}$ and $g(n) = n^{2/3}$. For powers of n, just compare the powers. We have that 1/2 < 2/3, so f = O(g).
- 3. $f(n) = 100n + \log n$ and $g(n) = n + (\log n)^2$. Both are O(n), so $f = \Theta(g)$.
- 4. $f(n) = n \log n$ and $g(n) = 10n \log 10n$. Both are $O(n \log n)$, so $f = \Theta(g)$.
- 5. $f(n) = \log 2n$ and $g(n) = \log 3n$. Both are $O(\log n)$, so $f = \Theta(g)$.
- 6. $f(n) = 10 \log n$ and $g(n) = \log(n^2)$. Both are $O(\log n)$, so $f = \Theta(g)$.
- 7. $f(n) = n^{1.01}$ and $g(n) = n \log^2 n$.

If we divide both sides by n, we need to compare $n^{0.01}$ and $\log^2 n$. It takes a really long time, but ultimately the power function wins out, so $f = \Omega(g)$. You can play with www.wolframalpha.com to see this.

- 8. $f(n) = n^2/\log n$ and $g(n) = n(\log n)^2$. If we divide both sides by $n/\log n$, we need to compare n and $(\log n)^3$. The result is $f = \Omega(g)$.
- 9. $f(n) = n^{0.1}$ and $g(n) = (\log n)^{10}$. Once again, $f = \Omega(g)$.

- 10. $f(n) = (\log n)^{\log n}$ and $g(n) = n/\log n$. The function $f(n) = n^{\log \log n}$, so $f = \Omega(g)$.
- 11. $f(n) = \sqrt{n}$ and $g(n) = (\log n)^3$. Once again, $f = \Omega(g)$.
- 12. $f(n)=n^{1/2}$ and $g(n)=5^{\log_2 n}$. The function $g(n)=n^{\log_2 5}\approx n^{2.32}$, so f=O(g).
- 13. $f(n) = n2^n$ and $g(n) = 3^n$. Here, f = O(g).
- 14. $f(n) = 2^n$ and $g(n) = 2^{n+1}$. Here, $f = \Theta(g)$.
- 15. f(n) = n! and $g(n) = 2^n$. Lookup "factorial" in www.wikipedia.org, and you will find that $n! > \sqrt{2\pi n} (\frac{n}{e})^n$. Hence $f = \Omega(g)$.
- 16. $f(n) = (\log n)^{\log n}$ and $g(n) = 2^{(\log_2 n)^2}$. The function $f(n) = n^{\log \log n}$ and the function $g(n) = (2^{\log_2 n})^{\log_2 n} = n^{\log_2 n}$. Hence f = O(g).
- 17. $f(n) = \sum_{i=1}^{n} i^k$ and $g(n) = n^{k+1}$. We have that $f = \Theta(g)$. It is easy to prove that f = O(g), but harder to prove that $f = \Theta(g)$.

These exercises came from the book *Algorithms*, by S. Dasgupta, C. H. Papadimitriou and U.V. Vazirani (freely available on the Web).