

Outils numériques, pour quoi faire ?

Physique et photonique

 La physique est la science qui essaie de comprendre, de modéliser et d'expliquer les phénomènes naturels de l'Univers.

EXPERIENCES

OBSERVATIONS

MODELISATION

- Recherche fondamentale
- Physique expérimentale

- ✓ Traiter des données d'expériences
- √ Faire ressortir les « tendances »
- ✓ Simuler / Modéliser les phénomènes

Outils numériques pour la physique

- ✓ Traiter des données d'expériences
- √ Faire ressortir les « tendances »
- ✓ Simuler / Modéliser les phénomènes

- Résolution de systèmes d'équations
- Simulation de modèles physiques / mathématiques
- Affichage et mise en forme de données
- Traitement de données

Outils numériques pour la physique

Acquisition et Traitement de données Simulation / Modélisation Conception

Interface de pilotage Contrôle / Commande

Conception Optique - Zemax-OpticStudio

Interface Humain Machine - Pilotage

Deux outils majeurs à SupOptique

Python (et ses librairies)

Langage général

Logiciel open source

Développement d'applications

MatLab® (et ses boites à outils)
Calculs numériques
Logiciel propriétaire
Modélisation / Simulation

A REVOIR

Ajouter exemples

Deux outils majeurs à SupOptique

Python (et ses librairies)

Langage général

Logiciel open source

Développement d'applications

MatLab® (et ses boites à outils)
Calculs numériques
Logiciel propriétaire
Modélisation / Simulation

Autres langages / Applications

Outils Numériques pour l' Ingénieur.e en Photonique

Objectifs pédagogiques / Traitement Information

A travers cette unité d'enseignement, les apprenant.es seront capables :

- de distinguer les différents types de signaux qui peuvent coexister et se superposer
- de **proposer des outils de caractérisation** de ces différents signaux
- de réaliser une application de traitement de données informatiques simple
- d'analyser, de concevoir et de réaliser des circuits électroniques pour la mise en forme de ces signaux dans le respect d'un cahier des charges et en lien avec la conversion électrons-photons

Maths et Signal

ONIP

Outils Num. pour l'Ingénieur.e en Phys.

Ressources / ONIP

http://lense.institutoptique.fr/ONIP/

github.com/IOGS-Digital-Methods

Pinned Semester-5 Public TeX

Semestre 5

Ce module s'intéresse aux méthodes numériques utiles à tout ingénieur.e.

L'ensemble des documents ressources sont disponibles sur un dépôt GitHub dont le lien est donné ci-après.

Outils Numériques / Module du S5

Vous avez également accès à une série de tutoriels pour Python en suivant le lien ci-après.

Tutoriels Python / LEnsE

L	Introduction Ingénieur.e SupOpticien.ne COMMUN AVEC CETI	
٨	Introduction Module ONIP VERSION 2023	
Bloc 1		
Bloc 1	Bloc 1 - Déroulement VERSION 2023	
Bloc 1 Python		

Bloc 1 - Fonctions et modules en Python

Déroulement / ONIP

 $I_0(z)$

3 séances introductives (2h/séance)

2 blocs de 4 et 5 séances (2h/séance)

- Sur machine
- En binôme
- 2 encadrant.es par séance

Bloc AM: Traitement de données 1D

Problème 1 : signal modulé en amplitude / acquisition numérique

Bloc Laser: Traitement de données 2D

Problème 2: images d'un faisceau LASER en différents points d'un chemin optique

Acquis d'Apprentissage Visés / ONIP

UC dans l'UE Traitement de l'Information

12 séances de TD Machine

- Acquis d'Apprentissage Visés
 - Être capable de **lister les principaux paramètres** d'utilisation d'un composant et de les **extraire d'une documentation technique** donnée
 - Être capable de **concevoir un étage de mise en forme** d'un signal électrique issu d'un capteur

A REVOIR

- Être capable de **concevoir un étage de filtrage** d'un signal électrique à partir d'un gabarit donné
- Être capable de **dimensionner un circuit d'émission de photons** basé sur une LED

Python pour la science

Acquis d'Apprentissage Visés

Être capable de **valider un modèle physique simple et fourni** à l'aide d'un outil de calcul scientifique

- ...

Bloc AM - Traitement de données en 1D

Bloc Laser - Traitement de données en 2D

Outils de travail

Outils de développement

- Utilisation de **Python**
 - PyCharm Community Edition
 - Python 3.9 (ou supérieur)

Outils de développement

Site du LEnsE

- lense.institutoptique.fr/python/
- lense.institutoptique.fr/ONIP/

GitHUB

• github.com/IOGS-Digital-Methods

Evaluations

Evaluation

Travail réalisé

- 1 évaluation par bloc faite par un.e encadrant.e
- 1 auto-évaluation
- Grille critériée

Note Module
50% Bloc AM
50% Bloc Laser

	BLOC 1
METHODES NUMERIQUES Ecriture Matricielle / Vectorielle	A B C D
Organisation en actions élémentaires	
Description des tests de validation	
Organisation des informations à traiter	
PROGRAMMATION Ecriture et commentaires (PEP 8)	A B C D
Utilisation, écriture et validation de fonctions	
Documentation des fonctions (PEP257)	
Utilisation de bibliothèques	
Ecriture et validation d'une bibliothèque	
INGENIEUR.E PHYSIQUE	A B C D
Graphiques pertinents et légendés	
Génération de données pertinentes de tests	
Analyse des données et validation modèle	