Øving 8, teori: Traversering av grafer

Your answer passed the tests! Your score is 73.33%

×

Question 1: Representasjon av grafer

Oppgaven ble godkjent!

×

Hvilke(n) påstand(er) stemmer om følgende figurer? Anta at grafen som beskrives kalles G=(V,E).

Information

Author(s)	Henrik Grønbech
Deadline	19/10/2018 16:00:00
Status	Succeeded
Grade	73.33%
Grading weight	1.0
Attempts	1
Submission limit	2 submissions

Submitting as

- > Henry Skorpe Sjøen
- Classroom : Default classroom (/aggregation/TDT4120)

For evaluation

- i Best submission
- **>** 17/10/2018 11:02:08 73.33%

Submission history

17/10/2018 11:02:08 - 73.33%

- a) er en urettet graf
- ☑ Graden til node 3 er 3

- ✓ Matisen i *c*) er symmertisk fordi *G* er urettet
- |v| = 6 og |E| = 6
- **②** *c*) er en nabomatise for figuren i *α*)
- **☑** b) er en naboliste-representasjon for figuren i a)

Oppgaven ble godkjent!

×

Gitt at $|V| = |E|^2$, hvordan kan grafen G lagres mest plasseffektivt i denne situasjonen?

- Nabolister, nabomatrise og lenket liste er like plasseffektivt
- En nabomatrise
- Nabolister
- En lenket liste
- Nabolister og nabomatrise er like plasseffektivt

Question 3: Representasjon av grafer

Oppgaven ble godkjent!

×

Anta at du har to noder, $u, v \in V$. Hvor lang tid vil det ta å sjekke om det finnes en kant, $e \in E$, som går fra u til v gitt at grafen G er representert ved hjelp en nabomatrise? Anta at du ikke vet noe om hvor mange kanter eller hvor mange noder det finnes i G.

 \bigcirc O(|E| + |V|)

Anta at alle konflikter løses ved hjelp av leksikografisk ordning (ved eventuelle konflikter velges den noden med bokstav tidligst i alfabetet, altså A før B, B før C osv.)

- \bigcirc B, C, D, F
- \bigcirc A, C, B, D
- \bigcirc A, B, C, D
- \bigcirc B, C, D, E
- \bigcirc A, B, D, C
- \bigcirc A, B, F, G
- \bigcirc A, C, D, B

Question 6: Bredde-først-søk

Oppgaven ble godkjent!

X

Hvilke(n) påstand(er) stemmer om BFS?

✓ Implementeres vanligvis med en kø

☐ Implementeres vanligvis med en heap	
☐ Implementeres vanligvis med en stakk	
☐ Implementeres vanligvis rekursivt	
☐ Ingen av påstandene stemmer	
Question 7: Bredde-først-søk	
Oppgaven ble ikke godkjent.	×
For hvilket av alternativene under er vi garantert at bredde-først-s en vilkårlig sammenhengende graf?	øk finner korteste vei i
Alle kantene har lik ikke-negativ vekt	
O Ingen negative kanter	
Alle kantene har lik vekt	
Question 8: Dybde-først-søk	
Oppgaven ble godkjent!	×
DFS blir kjørt med påfølgende graf med A som rotnode. I hvilken r første nodene farget svart?	rekkefølge blir de fire

Anta at alle konflikter løses ved hjelp av leksikografisk ordning (ved eventuelle konflikter velges den noden med bokstav tidligst i alfabetet, altså A før B, B før C osv.)

- \bigcirc B, C, D, F
- \bigcirc A, B, C, D
- \bigcirc A, B, D, C
- \bigcirc G, F, B, H
- \bigcirc B, C, D, E
- \bigcirc A, C, B, D
- \bigcirc A, C, D, B
- \bigcirc A, B, F, G
- \bigcirc G, H, B, F

Question 9: Dybde-først-søk

Oppgaven ble godkjent!

×

- ☐ Tree egde
- Back edge
- Forward edge

Question 12: Topologisk sortering

Oppgaven ble godkjent!

×

Hvilke(n) av følgende alternativ er en gyldig topologisk sortering?

Hint: En graf kan ha flere mulige topologiske sorteringer. I stedet for å lage en topologisk sortering av grafen, bør du heller sjekke hvilke av alternativene som overholder kravene til en topologisk sortering

- \square E, A, D, C, I, H, B, G, F
- \square A, B, F, G, C, H, I, D, E
- \triangleleft A, E, D, C, I, H, B, F, G
- \square E, A, I, D, C, H, B, F, G

Oppgaven ble godkjent!

Hva er best-case-kjøretid for BFS og DFS gitt implementasjonen i læreboken? O(1) for begge O(1) for BFS og O(|V| + |E|) for DFS O(|V| + |E|) for begge O(|V| + |E|) for BFS og O(1) for DFS

Submit