summary_tables

Kelly Heilman 2/27/2019

Table 1: Site summaries

Table 2: Model summaries for struct x cohort model for dry years

plot the percent change in growth due to change in drought sensitivity across drought, assuming constant t, dbh, mean growth in past years

Table 3: Cohort and structure summaries overall & by site:

A tibble: 18×5

Groups: site [9]

site ageclass Tmax DBH Trees 1 AVO Modern 24.1 26.5 3 2 AVO Past 24.1 25.4 3 3 BON Modern 24.9 30.6 2 4 BON Past 24.9 34.4 7 5 ENG Modern 25.0 33.7 2 6 ENG Past 25.0 31.0 4 7 GLA Modern 26.8 42.4 1 8 GLA Past 26.8 45.0 9 9 GLL1 Modern 24.9 55.3 1 10 GLL1 Past 24.9 26.0 12 11 GLL2 Modern 24.9 23.2 8 12 GLL2 Past 24.9 31.9 4 13 GLL3 Modern 24.9 9.95 2 14 GLL3 Past 24.9 26.7 7 15 MOU Modern 25.4 33.1 2 16 MOU Past 25.4 49.0 4 17 UNC Modern 24.1 13.8 28 18 UNC Past 24.1 25.9 4 # A tibble: 2 x 5 ageclass Tmax DBH DBH.sd Trees 1 Modern 24.6 21.2 NA 49 2 Past 25.0 22.9 NA 54

```
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
```

```
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
```

Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot

Table 1: Site level chronology summaries

Site #	Site	Structure	Mean Age	Time span	Intercorrelation	AR	EPS	Rbar
1	AVO	Forest	76	1901 - 2015	0.602	0.602	0.924	0.519
2	BON	Savanna	116	1818 - 2015	0.557	0.557	0.871	0.237
3	ENG	Forest	68	1934 - 2015	0.524	0.524	0.850	0.299
4	GLA	Savanna	125	1851 - 2015	0.575	0.575	0.919	0.342
5	GLL1	Forest	105	1877 - 2016	0.536	0.536	0.863	0.268
6	GLL2	Savanna	83	1894 - 2016	0.623	0.623	0.943	0.565
7	GLL3	Savanna	73	1893 - 2016	0.630	0.630	0.905	0.474
8	MOU	Forest	76	1901 - 2015	0.602	0.602	0.924	0.519
9	UNC	Savanna	52	1889 - 2016	0.435	0.435	0.754	0.168

Table 2: Parameter Estimates and Model Fit

		Model 1		Model 2		
Parameter	Cohort	Estimate	95% CI	Estimate	95% CI	
	UNC	0.061	(-0.02 - 0.14)	0.061	(-0.02 - 0.14)	
	MOU	0.281 *	(0.15 - 0.43)	0.281 *	(0.15 - 0.43)	
	GLL3	0.191 *	(0.1 - 0.29)	0.191 *	(0.1 - 0.29)	
	$\mathrm{GLL}2$	0.082 *	(0 - 0.16)	0.082 *	(0 - 0.16)	
${\rm Intercept}$	GLL1	0.014	(-0.12 - 0.13)	0.014	(-0.12 - 0.13)	
	GLA	0.125 *	(0.05 - 0.19)	0.125 *	(0.05 - 0.19)	
	ENG	0.213 *	(0.07 - 0.36)	0.213 *	(0.07 - 0.36)	
	BON	0.158 *	(0.07 - 0.24)	0.158 *	(0.07 - 0.24)	
	AVO	0.157 *	(0.04 - 0.29)	0.157 *	(0.04 - 0.29)	
	Modern-Savanna	0.02	(-0.04 - 0.08)	0.02	(-0.04 - 0.08)	
DBH	Modern-Forest	0.053	(-0.04 - 0.14)	0.053	(-0.04 - 0.14)	
ры	Past-Savanna	0.063 *	(0.01 - 0.13)	0.063 *	(0.01 - 0.13)	
	Past-Forest	-0.028	(-0.13 - 0.06)	-0.028	(-0.13 - 0.06)	
	Modern-Savanna	0.509 *	(0.42 - 0.6)	0.509 *	(0.42 - 0.6)	
T 1	Modern-Forest	0.535 *	(0.37 - 0.72)	0.535 *	(0.37 - 0.72)	
Lag-1	Past-Savanna	0.566 *	(0.49 - 0.64)	0.566 *	(0.49 - 0.64)	
	Past-Forest	0.538 *	(0.44 - 0.63)	0.538 *	(0.44 - 0.63)	
	Modern-Savanna	0.367 *	(0.27 - 0.46)	0.367 *	(0.27 - 0.46)	
I 0	Modern-Forest	0.206 *	(0.02 - 0.37)	0.206 *	(0.02 - 0.37)	
Lag-2	Past-Savanna	0.208 *	(0.14 - 0.28)	0.208 *	(0.14 - 0.28)	
	Past-Forest	0.135 *	(0.02 - 0.24)	0.135 *	(0.02 - 0.24)	
	Modern-Savanna	0.039	(-0.02 - 0.1)	0.039	(-0.02 - 0.1)	
Descipitation	Modern-Forest	0.034	(-0.06 - 0.13)	0.034	(-0.06 - 0.13)	
Precipitation	Past-Savanna	0.123 *	(0.07 - 0.17)	0.123 *	(0.07 - 0.17)	
	Past-Forest	0.116 *	(0.03 - 0.21)	0.116 *	(0.03 - 0.21)	
	Modern-Savanna			0.063 *	(0.01 - 0.12)	
Inna Tracer - Dracin	Modern-Forest			-0.021	(-0.11 - 0.07)	
June Tmax x Precip	Past-Savanna			-0.006	(-0.04 - 0.03)	
	Past-Forest			-0.045	(-0.11 - 0.02)	
	Modern-Savanna	-0.076	(-0.15 - 0)	-0.076	(-0.15 - 0)	
I M: T	Modern-Forest	-0.084	(-0.22 - 0.05)	-0.084	(-0.22 - 0.05)	
June Maximum Temperature	Past-Savanna	-0.069 *	(-0.110.03)	-0.069 *	(-0.110.03)	
	Past-Forest	-0.108 *	(-0.190.03)	-0.108 *	(-0.190.03)	
Model Fit						
	Mean Sq. Error	1.685		1.644		
	Bias	-0.007		-0.038		
	R sq	0.735		0.736		
	penalties	20.229		29.954		
	deviances	683.20		665.74		
	penalized deviance	703.429		695.695		

^{* 95%} CI does not contain zero

```
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
## Warning in cor.test.default(series[, i], master[, i], method = method2, : Cannot
## compute exact p-value with ties
```

plot summary table fo temperature % growth change reponses

Table 3: Site Summaries and Age Cohort Summaries $\,$

Site #	Site	Structure	Cohort	Trees	Average June Tmax	Average Water Year Precipitation (mm)	Diameter	Mean Ring Width (mm)	Average Interseries Correlation
1	AVO AVO	Forest Forest	Modern Past	3 3	24.25 23.56	747.93 712.99	27.58 13.87	2.74 2.23	0.61 0.44
2	BON BON	Savanna Savanna	Modern Past	2 7	25.19 24.61	637.56 592.15	31.54 25.52	2.43 1.29	0.35 0.63
3	ENG ENG	Forest Forest	Modern Past	2 4	25.18 24.63	715.71 661.04	33.95 12.95	3.23 2.46	0.51 0.51
4	GLA GLA	Savanna Savanna	Modern Past	1 9	26.86 26.63	916.82 841.66	45.15 31.40	2.44 1.94	$0.75 \\ 0.62$
5	GLL1 GLL1	Forest Forest	Modern Past	1 12	25.19 24.61	637.56 592.15	55.43 17.23	1.29 1.46	0.39 0.55
6	GLL2 GLL2	Savanna Savanna	Modern Past	8 4	25.19 24.61	637.56 592.15	23.70 22.13	1.40 1.45	0.62 0.58
7	GLL3 GLL3	Savanna Savanna	Modern Past	2 7	25.19 24.61	637.56 592.15	$9.95 \\ 17.72$	1.00 1.57	$0.51 \\ 0.50$
8	MOU MOU	Forest Forest	Modern Past	2 4	$25.45 \\ 25.25$	829.90 766.07	$33.06 \\ 32.38$	$4.71 \\ 2.54$	$0.30 \\ 0.49$
9	UNC UNC	Savanna Savanna	Modern Past	28 4	24.25 23.86	747.93 689.23	13.80 20.34	1.53 1.12	0.48 0.48

Table 4: Maximum Summer Temperature Summary

Time Period	RCP scenario	Mean June Tmax	95% CI Tmax
1895-1950	Past	26.36	(22.56 - 31.11)
1950-2015	Modern	26.65	(23.66 - 31)
	rcp2.6	27.71	(24.24 - 30.98)
2025-2060	rcp4.5	28.38	(24.17 - 32.7)
2020-2000	rcp6.0	27.81	(24.38 - 31.32)
	rcp8.5	28.57	(24.88 - 32.13)
	rcp2.6	27.26	(22.98 - 30.92)
2060-2099	rcp4.5	29.50	(25.98 - 33.68)
2000-2099	rcp6.0	28.93	(25.48 - 32.3)
	rcp8.5	31.92	(27.72 - 36.44)

Table 5: Maximum Summer Temperature Summary

Structure	Total Annual Precipitation	Summer Maximum Temperature	% change in growth relative to 26.2 DegC	95% CI
	515 mm	21.2	15.138	(-8.53 - 41.28)
	$950~\mathrm{mm}$	21.2	35.984	(-26.6 - 123.42)
	$515~\mathrm{mm}$	22.2	11.821	(-6.88 - 31.85)
	$950~\mathrm{mm}$	22.2	27.096	(-21.92 - 90.24)
	515 mm	23.2	8.656	(-5.21 - 23.04)
	$950~\mathrm{mm}$	23.2	19.153	(-16.94 - 61.98)
	515 mm	24.2	5.636	(-3.5 - 14.82)
	950 mm	24.2	12.049	(-11.64 - 37.93)
	515 mm	25.2	2.752	(-1.77 - 7.16)
	950 mm	25.2	5.691	(-6 - 17.44)
Forest	515 mm	26.2	0	(0 - 0)
rorest	$950~\mathrm{mm}$	26.2	0	(0 - 0)
	515 mm	27.2	-2.628	(-6.68 - 1.8)
	$950~\mathrm{mm}$	27.2	-5.095	(-14.85 - 6.38)
	$515~\mathrm{mm}$	28.2	-5.137	(-12.91 - 3.63)
	$950~\mathrm{mm}$	28.2	-9.655	(-27.5 - 13.17)
	515 mm	29.2	-7.532	(-18.73 - 5.5)
	$950~\mathrm{mm}$	29.2	-13.732	(-38.27 - 20.39)
	$515~\mathrm{mm}$	30.2	-9.82	(-24.15 - 7.39)
	$950~\mathrm{mm}$	30.2	-17.371	(-47.43 - 28.07)
	$515~\mathrm{mm}$	31.2	-12.004	(-29.22 - 9.33)
	$950~\mathrm{mm}$	31.2	-20.614	(-55.24 - 36.24)
	515 mm	21.2	52.171 *	(34.72 - 69.51)
	$950~\mathrm{mm}$	21.2	3.532	(-25.92 - 41.41)
	$515~\mathrm{mm}$	22.2	39.879 *	(26.93 - 52.53)
	$950~\mathrm{mm}$	22.2	2.576	(-21.34 - 31.94)
	$515~\mathrm{mm}$	23.2	28.597 *	(19.58 - 37.25)
	$950~\mathrm{mm}$	23.2	1.748	(-16.47 - 23.11)
	515 mm	24.2	18.24 *	(12.66 - 23.5)
	$950~\mathrm{mm}$	24.2	1.044	(-11.31 - 14.87)
	515 mm	25.2	8.731 *	(6.14 - 11.13)
	950 mm	25.2	0.462	(-5.82 - 7.18)
Coronno	515 mm	26.2	0	(0 - 0)
Savanna	950 mm	26.2	0	(0 - 0)
	$515~\mathrm{mm}$	27.2	-8.019 *	(-10.025.79)
	$950~\mathrm{mm}$	27.2	-0.345	(-6.7 - 6.18)
	515 mm	28.2	-15.383 *	(-19.0311.24)
	950 mm	28.2	-0.573	(-12.94 - 12.75)
	515 mm	29.2	-22.148 *	(-27.1416.37)
	$950~\mathrm{mm}$	29.2	-0.687	(-18.77 - 19.72)
	515 mm	30.2	-28.363 *	(-34.4421.21)
	$950~\mathrm{mm}$	30.2	-0.685	(-24.21 - 27.12)
	$515~\mathrm{mm}$	31.2	-34.074 *	(-41.0125.77)
	$950~\mathrm{mm}$	31.2	-0.569	(-29.28 - 34.98)

^{* 95%} CI does not contain zero