

(https://swayam.gov.in/nc_details/NPTEL)

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Data Science For Engineers (course)

If already registered, click to check your payment status

Course outline

How does an NPTEL online course work? ()

Setup Guide ()

Pre Course Material ()

Week 4: Assignment 4

The due date for submitting this assignment has passed.

Due on 2023-08-23, 23:59 IST.

vivekdubey74rr@gmail.com ~

As per our records you have not submitted this assignment.

1) Let $f(x) = x^3 + 3x^2 - 24x + 7$. Select the correct options from the following:

3 points

x=2 will give the maximum for f(x).

x=2 will give the minimum for f(x).

Maximum value of f(x) is 87.

The stationary points for f(x) are 2 and 4.

Week 0 ()

Week 1 ()

Week 2 ()

Week 3 ()

Week 4 ()

- Optimization for Data Science (unit? unit=55&lesson=56)
- UnconstrainedMultivariateOptimization (unit?unit=55&lesson=57)
- Ounconstrained
 Multivariate
 Optimization (
 Continued) (unit?
 unit=55&lesson=58)
- O Gradient (Steepest)
 Descent (OR) Learning
 Rule (unit?
 unit=55&lesson=59)
- □ FAQ (unit? unit=55&lesson=60)
- Practice: Week 4:Assignment 4 (Non Graded) (assessment? name=144)

No, the answer is incorrect.

Score: 0

Accepted Answers:

x=2 will give the minimum for f(x).

Maximum value of f(x) is 87.

2) Find the gradient of $f(x,y)=x^2y$ at (x,y)=(1,3).

2 points

$$abla f = \left[egin{array}{c} 1 \ 6 \end{array}
ight]$$

$$abla f = \left[egin{array}{c} 6 \\ 1 \end{array}
ight]$$

$$abla f = \left[egin{array}{c} 6 \\ 9 \end{array}
ight]$$

$$abla f = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$abla f = \left[egin{array}{c} 6 \ 1 \end{array}
ight]$$

3) Find the Hessian matrix for $f(x,y)=x^2y$ at (x,y)=(1,3).

2 points

$$\nabla^2 f = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$$

$$abla^2 f = egin{bmatrix} 3 & 3 \ 3 & 0 \end{bmatrix}$$

O Quiz: Week 4
Assignment 4
(assessment?
name=170)

- Week 4 Feedback Form : Data Science For Engineers (unit? unit=55&lesson=156)
- Week 4: Solution (unit? unit=55&lesson=172)

Week 8 ()

Text Transcripts ()

Download Videos ()

Books ()

$$abla^2 f = egin{bmatrix} 6 & 2 \ 2 & 0 \end{bmatrix}$$
 $abla^2 f = egin{bmatrix} 6 & 3 \ 3 & 0 \end{bmatrix}$

$$abla^2 f = \left[egin{array}{cc} 6 & 3 \ 3 & 0 \end{array}
ight]$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$abla^2 f = \left[egin{array}{cc} 6 & 2 \ 2 & 0 \end{array}
ight]$$

4) Let
$$f(x,y)=-3x^2-6xy-6y^2$$
 . The point $(0,0)$ is a

1 point

- saddle point
- maxima
- minima

No, the answer is incorrect.

Score: 0

Accepted Answers:

maxima

For which numbers
$$b$$
 is the matrix $A=\begin{bmatrix}1&b\\b&9\end{bmatrix}$ positive definite?

1 point

$$-3 < b < 3$$
 $b = 3$
 $b = -3$

$$\begin{array}{c}\bigcirc\\-3\leq b\leq 3\end{array}$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$-3 < b < 3$$

6) Consider $f(x) = x^3 - 12x - 5$. Which among the following statements are true?

1 point

 $\overline{f}(x)$ is increasing in the interval (-2,2) .

- $\overline{f}(x)$ is increasing in the interval $(2,\infty)$.
- f(x) is decreasing in the interval $(-\infty, -2)$.
- $\overline{f}(x)$ is decreasing in the interval (-2,2) .

No, the answer is incorrect.

Score: 0

Accepted Answers:

- f(x) is increasing in the interval $(2,\infty)$.
- f(x) is decreasing in the interval (-2,2).
- 7) Consider the following optimization problem:

1 point

$$\max_{x \in \mathbb{R}} f(x)$$

, where

$$f(x) = x^4 + 7x^3 + 5x^2 - 17x + 3$$

Let x^* be the maximizer of f(x). What is the second order sufficient condition for x^* to be the maximizer of the function f(x)?

$$egin{array}{c} \bigcirc \ 4x^3 + 21x^2 + 10x - 17 = 0 \end{array}$$

$$12x^2 + 42x + 10 = 0$$

$$12x^2 + 42x + 10 > 0$$

$$12x^2 + 42x + 10 < 0$$

No, the answer is incorrect.

	Score: 0	
	Accepted Answers:	
	$12x^2+42x+10< 0$	
8	8) In optimization problem, the function that we want to optimize is called	1 point
	O Decision function	
	○ Constraints function	
	Optimal function	
	Objective function	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	Objective function	
g	9) The optimization problem $\min_{\mathbf{x}} f(x)$ can also be written as $\max_{\mathbf{x}} f(x)$.	1 point
	○ True	
	O True	
	○ False	
	No, the answer is incorrect. Score: 0 Accepted Answers:	
	No, the answer is incorrect. Score: 0	
	No, the answer is incorrect. Score: 0 Accepted Answers:	1 point
	No, the answer is incorrect. Score: 0 Accepted Answers: False	1 point
	No, the answer is incorrect. Score: 0 Accepted Answers: False 10) Gradient descent algorithm converges to the local minimum.	1 point
1	No, the answer is incorrect. Score: 0 Accepted Answers: False 10) Gradient descent algorithm converges to the local minimum. True	1 point
1	No, the answer is incorrect. Score: 0 Accepted Answers: False 10) Gradient descent algorithm converges to the local minimum. True False No, the answer is incorrect. Score: 0 Accepted Answers:	1 point
1	No, the answer is incorrect. Score: 0 Accepted Answers: False 10) Gradient descent algorithm converges to the local minimum. True False No, the answer is incorrect. Score: 0	1 point