BMA 2

(a) Um zu zeigen, dass $a \in A$ gilt zu zeigen: $a \in \mathbb{N}$ und $a^2 + 2a > 3$ Setze nun a := 1000:

 $1000 \in \mathbb{N} \text{ und } 1000^2 + 2 \times 1000 = 1002000 > 3 \text{ also ist } 1000 \in A$

Um zu zeigen, dass $b \in B$ gilt zu zeigen: $b \in \mathbb{N}$ und $2 - \frac{2}{b} > -b$

Setze nun b:=4: $4\in\mathbb{N}$ und $2-\frac{3}{4}=\frac{2\times 4-3}{4}=\frac{8-3}{4}=\frac{5}{4}>-4,$ also $4\in B$

(b) Um zu zeigen, dass $c \in C$ gilt zu zeigen: $c \in \mathbb{Z}$ und $\frac{2c}{5} < \frac{4}{c^2 + 1}$ Setze nun c := 0:

 $0 \in \mathbb{Z}$ und $\frac{2 \times 0}{5} = 0 < 4 = \frac{4}{0^2 + 1}$, also ist 0 in C

(c) Um zu zeigen, dass $A \subset B$ ist zu zeigen, dass $\forall a \in A : a \in B$:

Sei $a \in A$ zu zeigen $a \in B$:

Da $a \in A$ gilt $a \in \mathbb{N}$ und $a^2 + 2a > 3$.

Zu zeigen $a \in B$. D.h. zu zeigen $a \in \mathbb{N}$ und $2 - \frac{2}{a} > -a$

Da $a \in \mathbb{N}$ gegeben, durch $a \in \mathbb{N}$ bleibt zu zeigen $2 - \frac{2}{a} > -a$ Es gelte $a^2 + 2a > 3$, zu zeigen $2 - \frac{2}{a} > -a$: Durch Termumformung folgt:

$$a^{2} + 2a > 3 \quad |: a$$

$$a + 2 > \frac{3}{a} \quad | -\frac{3}{a} - a$$

$$2 - \frac{3}{a} > -a$$

also gilt:

$$(a^2 + 2a > 3 \iff 2 - \frac{3}{a} > -a)$$
 (1)

Also ist $\forall a \in A : a \in B$

(d) Um zu zeigen A = B gilt zu zeigen $A \subset B$ und $B \subset A$.

Mit (c) ist $A \subset B$ gezeigt und es bleibt $B \subset A$ zu zeigen.

Um zu zeigen, dass $B \subset A$ ist zu zeigen, dass $\forall b \in B : b \in A$:

Sei $b \in B$ zu zeigen $b \in A$:

Also ist $\forall b \in B : b \in A$

Da $b \in B$ gilt $b \in \mathbb{N}$ und $2 - \frac{3}{b} > -b$.

Zu zeigen $b \in A$. D.h. zu zeigen $b \in \mathbb{N}$ und $b^2 + 2b > 3$

Da $b\in\mathbb{N}$ gegeben, durch $b\in\mathbb{N}$ bleibt zu zeigen $b^2+2b>3$ Aus (1) folgt, dass wenn $2-\frac3b>-b$ auch $b^2+2b>3$

(e) Um zu zeigen, dass A = C, gilt zu zeigen, dass $C \subset A$ und $A \subset C$. Zu zeigen $C \subset A$:

Da aus (b) folgt, dass $0 \in C$, zu zeigen $0 \in A$, also gilt im insbesondere zu zeigen $0 \in \mathbb{N}$ aber $0 \notin \mathbb{N}$ ist $0 \notin A$ und $C \nsubseteq A$, also $C \neq A$