Rosenfeld Counting: Proper Conflict-free Coloring of Graphs with Large Maximum Degree

Daniel W. Cranston
Virginia Commonwealth University
dcranston@vcu.edu

Joint with Chun-Hung Liu

URI Discrete Math Seminar (virtual) 1 November 2024

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring.

Fact: Thue found a square-free 3-coloring of the infinite path.

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring.

Fact: Thue found a square-free 3-coloring of the infinite path.

Defn: A coloring is nonrepetitive if each path is square-free.

Fact: Thue found a square-free 3-coloring of the infinite path.

Defn: A coloring is nonrepetitive if each path is square-free.

Conj: For each 3-assignment L to the verts of P_n , there is a nonrepetitive L-coloring φ (with $\varphi(v) \in L(v)$ for all v).

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring.

Fact: Thue found a square-free 3-coloring of the infinite path.

Defn: A coloring is nonrepetitive if each path is square-free.

Conj: For each 3-assignment L to the verts of P_n , there is a nonrepetitive L-coloring φ (with $\varphi(v) \in L(v)$ for all v).

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Ex: A 3-coloring of P_8 with a square and a square-free 3-coloring.

Fact: Thue found a square-free 3-coloring of the infinite path.

Defn: A coloring is nonrepetitive if each path is square-free.

Conj: For each 3-assignment L to the verts of P_n , there is a nonrepetitive L-coloring φ (with $\varphi(v) \in L(v)$ for all v).

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Since $|\mathcal{C}_1| = 4$, path P_n has more than 2^n nonrepetitive L-colorings.

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on *i*. Let \mathcal{F} be the set of *L*-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} .

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \cup_{j \geq 1} \mathcal{F}_j$.

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \cup_{j \geq 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} .

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \cup_{j \geq 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive *L*-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ .

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \ge 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \cup_{j \geq 1} \mathcal{F}_j$.

Each $\varphi \in \mathcal{F}_j$ restricts to a nonrepetitive L-coloring φ' of v_1, \ldots, v_{i+1-j} . And φ' uniquely determines φ . So $|\mathcal{F}_j| \leq |\mathcal{C}_{i+1-j}|$.

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \cup_{j \geq 1} \mathcal{F}_j$.

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1,\ldots,v_{i+1} that are nonrepetitive on v_1,\ldots,v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}|=4|\mathcal{C}_i|-|\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F}=\cup_{j\geq 1}\mathcal{F}_j$.

$$|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$$

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1,\ldots,v_{i+1} that are nonrepetitive on v_1,\ldots,v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}|=4|\mathcal{C}_i|-|\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F}=\cup_{j\geq 1}\mathcal{F}_j$.

$$|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}| \ge 4|\mathcal{C}_i| - \sum |\mathcal{F}_j|$$

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1, \ldots, v_{i+1} that are nonrepetitive on v_1, \ldots, v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}| = 4|\mathcal{C}_i| - |\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F} = \cup_{j \geq 1} \mathcal{F}_j$.

$$\begin{aligned} |\mathcal{C}_{i+1}| &= 4|\mathcal{C}_i| - |\mathcal{F}| \ge 4|\mathcal{C}_i| - \sum |\mathcal{F}_j| \\ &\ge 4|\mathcal{C}_i| - \sum |\mathcal{C}_{i+1-j}| \end{aligned}$$

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1,\ldots,v_{i+1} that are nonrepetitive on v_1,\ldots,v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}|=4|\mathcal{C}_i|-|\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F}=\cup_{j\geq 1}\mathcal{F}_j$.

$$\begin{aligned} |\mathcal{C}_{i+1}| &= 4|\mathcal{C}_i| - |\mathcal{F}| \ge 4|\mathcal{C}_i| - \sum |\mathcal{F}_j| \\ &\ge 4|\mathcal{C}_i| - \sum |\mathcal{C}_{i+1-j}| \\ &\ge 4|\mathcal{C}_i| - \sum 2^{-j+1}|\mathcal{C}_i| \end{aligned}$$

Lem: Let L be a 4-assignment to $V(P_n)$. For each $i \geq 1$, let C_i be set of nonrepetitive L-colorings of first i verts of P_n . For all i < n,

$$|\mathcal{C}_{i+1}| \geq 2|\mathcal{C}_i|$$
.

Pf: Induction on i. Let \mathcal{F} be the set of L-colorings of v_1,\ldots,v_{i+1} that are nonrepetitive on v_1,\ldots,v_i but have a square with v_{i+1} . Clearly, $|\mathcal{C}_{i+1}|=4|\mathcal{C}_i|-|\mathcal{F}|$. Let \mathcal{F}_j be subset of \mathcal{F} with a square of length 2j. So $\mathcal{F}=\cup_{j\geq 1}\mathcal{F}_j$.

$$\begin{aligned} |\mathcal{C}_{i+1}| &= 4|\mathcal{C}_i| - |\mathcal{F}| \ge 4|\mathcal{C}_i| - \sum |\mathcal{F}_j| \\ &\ge 4|\mathcal{C}_i| - \sum |\mathcal{C}_{i+1-j}| \\ &\ge 4|\mathcal{C}_i| - \sum 2^{-j+1}|\mathcal{C}_i| \ge 2|\mathcal{C}_i|. \end{aligned}$$

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \geq 6.5 \cdot 10^7$, fix a real number β with $\Delta \geq \beta \geq 0.6550826\Delta$, and let $a := \left\lceil \Delta + \beta + \sqrt{\Delta} \right\rceil$.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \geq 6.5 \cdot 10^7$, fix a real number β with $\Delta \geq \beta \geq 0.6550826\Delta$, and let $a := \left \lceil \Delta + \beta + \sqrt{\Delta} \right \rceil$. If G has max degree at most Δ and L is an a-assignment for G, then there are at least $\beta^{|V(G)|}$ proper conflict-free L-colorings of G.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \geq 6.5 \cdot 10^7$, fix a real number β with $\Delta \geq \beta \geq 0.6550826\Delta$, and let $a := \left\lceil \Delta + \beta + \sqrt{\Delta} \right\rceil$. If G has max degree at most Δ and L is an a-assignment for G, then there are at least $\beta^{|V(G)|}$ proper conflict-free L-colorings of G. Analogous statements hold when $\Delta \geq 4000$ and $\Delta \geq \beta \geq 0.\overline{6}\Delta$ and when $\Delta \geq 750$ and $\Delta \geq \beta \geq 0.8\Delta$.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \geq 6.5 \cdot 10^7$, fix a real number β with $\Delta \geq \beta \geq 0.6550826\Delta$, and let $a := \left \lceil \Delta + \beta + \sqrt{\Delta} \right \rceil$. If G has max degree at most Δ and L is an a-assignment for G, then there are at least $\beta^{|V(G)|}$ proper conflict-free L-colorings of G. Analogous statements hold when $\Delta \geq 4000$ and $\Delta \geq \beta \geq 0.\overline{6}\Delta$ and when $\Delta \geq 750$ and $\Delta \geq \beta \geq 0.8\Delta$.

Cor: So $\chi_{pcf}^{\ell}(G) \leq 1.6551\Delta(1+o(1))$.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \geq 6.5 \cdot 10^7$, fix a real number β with $\Delta \geq \beta \geq 0.6550826\Delta$, and let $a := \left\lceil \Delta + \beta + \sqrt{\Delta} \right\rceil$. If G has max degree at most Δ and L is an a-assignment for G, then there are at least $\beta^{|V(G)|}$ proper conflict-free L-colorings of G. Analogous statements hold when $\Delta \geq 4000$ and $\Delta \geq \beta \geq 0.\overline{6}\Delta$ and when $\Delta \geq 750$ and $\Delta \geq \beta \geq 0.8\Delta$.

Cor: So $\chi_{pcf}^{\ell}(G) \leq 1.6551\Delta(1+o(1))$.

Rem: Liu and Reed showed that $\chi_{pcf}(G) \leq \Delta(1+o(1))$.

Defn: A proper coloring of G is conflict-free if every non-isolated vertex of G has some color appearing exactly once on its open neighborhood.

Conj: [CPS] $\chi_{pcf}(G) \leq \Delta + 1$ for all connected G with $\Delta \geq 3$.

Thm: Fix a positive integer $\Delta \geq 6.5 \cdot 10^7$, fix a real number β with $\Delta \geq \beta \geq 0.6550826\Delta$, and let $a := \left\lceil \Delta + \beta + \sqrt{\Delta} \right\rceil$. If G has max degree at most Δ and L is an a-assignment for G, then there are at least $\beta^{|V(G)|}$ proper conflict-free L-colorings of G. Analogous statements hold when $\Delta \geq 4000$ and $\Delta \geq \beta \geq 0.\overline{6}\Delta$ and when $\Delta \geq 750$ and $\Delta \geq \beta \geq 0.8\Delta$.

Cor: So $\chi_{pcf}^{\ell}(G) \leq 1.6551\Delta(1+o(1))$.

Rem: Liu and Reed showed that $\chi_{pcf}(G) \leq \Delta(1 + o(1))$. This bound is stronger than ours, but much less general.

Defn: For an integer t, a graph G, and a hypergraph \mathcal{H} with $V(\mathcal{H}) = V(G)$, a coloring φ is a proper t-conflict-free coloring of (G,\mathcal{H}) if φ is a proper coloring of G such that for every $f \in E(\mathcal{H})$, some color is used k times by φ on f for some $k \in \{1, \ldots, t\}$.

Defn: For an integer t, a graph G, and a hypergraph $\mathcal H$ with $V(\mathcal H)=V(G)$, a coloring φ is a proper t-conflict-free coloring of $(G,\mathcal H)$ if φ is a proper coloring of G such that for every $f\in E(\mathcal H)$, some color is used k times by φ on f for some $k\in\{1,\ldots,t\}$.

Defn: Fix $t, i, d \in \mathbb{Z}^+$.

Defn: For an integer t, a graph G, and a hypergraph \mathcal{H} with $V(\mathcal{H}) = V(G)$, a coloring φ is a proper t-conflict-free coloring of (G,\mathcal{H}) if φ is a proper coloring of G such that for every $f \in E(\mathcal{H})$, some color is used k times by φ on f for some $k \in \{1, \ldots, t\}$.

Defn: Fix $t, i, d \in \mathbb{Z}^+$. The *t*-associated Stirling number of second kind, $S_t(d, i)$, is the number of partitions of the set $\{1, \ldots, d\}$ into i parts, each of size at least t.

Defn: For an integer t, a graph G, and a hypergraph \mathcal{H} with $V(\mathcal{H}) = V(G)$, a coloring φ is a proper t-conflict-free coloring of (G,\mathcal{H}) if φ is a proper coloring of G such that for every $f \in E(\mathcal{H})$, some color is used k times by φ on f for some $k \in \{1, \ldots, t\}$.

Defn: Fix $t, i, d \in \mathbb{Z}^+$. The *t*-associated Stirling number of second kind, $S_t(d,i)$, is the number of partitions of the set $\{1,\ldots,d\}$ into i parts, each of size at least t. E.g. $S_2(2i,i) = (2i)!/(i!2^i)$.

Defn: For an integer t, a graph G, and a hypergraph \mathcal{H} with $V(\mathcal{H}) = V(G)$, a coloring φ is a proper t-conflict-free coloring of (G,\mathcal{H}) if φ is a proper coloring of G such that for every $f \in E(\mathcal{H})$, some color is used k times by φ on f for some $k \in \{1, \ldots, t\}$.

Defn: Fix $t, i, d \in \mathbb{Z}^+$. The *t*-associated Stirling number of second kind, $S_t(d,i)$, is the number of partitions of the set $\{1,\ldots,d\}$ into i parts, each of size at least t. E.g. $S_2(2i,i) = (2i)!/(i!2^i)$.

Key Lem: Fix G, \mathcal{H} , t as above. Let β be a real number. If a is a real number such that

$$a \geq \Delta(G) + \beta + \sum_{f \in E(\mathcal{H}), f \ni v} \sum_{i=1}^{\lfloor |f|/(t+1)\rfloor} S_{t+1}(|f|, i) \cdot \beta^{i-|f|+1}$$

for every $v \in V(G)$, then for every a-assignment L of G, there are at least $\beta^{|V(G)|}$ proper t-conflict-free L-colorings of (G, \mathcal{H}) .

Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d, i) \le 8i(0.6251d)^{d-i}$.

Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d,i) \le 8i(0.6251d)^{d-i}$.

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \le R^{-1/2}.$$

Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d,i) \le 8i(0.6251d)^{d-i}$.

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \le R^{-1/2}.$$

Pf Sketch:

Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d, i) \le 8i(0.6251d)^{d-i}$.

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \le R^{-1/2}.$$

$$\sum_{i=1}^{cd} S_2(d,i)\beta^{i-d+1} \le \sum_{i=1}^{cd} \binom{d}{i} i^{d-i} 2^{-i} \beta^{i-d+1}$$

Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d, i) \le 8i(0.6251d)^{d-i}$.

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \le R^{-1/2}.$$

$$\sum_{i=1}^{cd} S_2(d,i)\beta^{i-d+1} \leq \sum_{i=1}^{cd} \binom{d}{i} i^{d-i} 2^{-i} \beta^{i-d+1} \leq \ldots \leq \frac{1}{2} R^{-1/2}$$

Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d,i) \le 8i(0.6251d)^{d-i}$.

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \le R^{-1/2}.$$

$$\sum_{i=1}^{cd} S_2(d,i)\beta^{i-d+1} \le \sum_{i=1}^{cd} {d \choose i} i^{d-i} 2^{-i} \beta^{i-d+1} \le \dots \le \frac{1}{2} R^{-1/2}$$

$$\sum_{i=cd}^{d/2} S_2(d,i)\beta^{i-d+1} \le \sum_{i=cd}^{d/2} 8i(0.6251d)^{d-i} \beta^{i-d+1}$$

Helper Lem: Fix $i, d \in \mathbb{Z}^+$ with $d \ge 110$. If $0.3d \le i \le d/2$, then $S_2(d, i) \le 8i(0.6251d)^{d-i}$.

Lem: Fix $d, R \in \mathbb{Z}^+$ with $110 \le d \le R$. If $\epsilon, c, \beta \in \mathbb{R}^+$ s.t. $0.6251 \le \epsilon < 1$, $0.3 \le c < \epsilon/2$, $\epsilon R \le \beta \le R$, and $d \ge f(c, \epsilon, R)$, then

$$\sum_{i=1}^{d/2} S_2(d,i)\beta^{i-d+1} \le R^{-1/2}.$$

$$\sum_{i=1}^{cd} S_2(d,i)\beta^{i-d+1} \le \sum_{i=1}^{cd} {d \choose i} i^{d-i} 2^{-i} \beta^{i-d+1} \le \dots \le \frac{1}{2} R^{-1/2}$$

$$\sum_{i=cd}^{d/2} S_2(d,i)\beta^{i-d+1} \le \sum_{i=cd}^{d/2} 8i (0.6251d)^{d-i} \beta^{i-d+1} \le \dots \le \frac{1}{2} R^{-1/2}$$

Rosenfeld Counting

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in |subgraph|

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in |subgraph|
 - $\blacktriangleright \ \mathsf{Bad} \ \mathsf{colorings} \to \mathsf{good} \ \mathsf{colorings} \ \mathsf{of} \ \mathsf{subgraph}$

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in |subgraph|
 - ightharpoonup Bad colorings ightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in |subgraph|
 - ightharpoonup Bad colorings ightarrow good colorings of subgraph
 - Exponentially many good colorings remain

Proper Conflict-free Coloring

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in |subgraph|
 - ightharpoonup Bad colorings ightarrow good colorings of subgraph
 - Exponentially many good colorings remain

- Proper Conflict-free Coloring
 - ▶ CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings → good colorings of subgraph
 - Exponentially many good colorings remain

- ► Proper Conflict-free Coloring
 - ▶ CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
 - We proved $\chi_{pcf}^{\ell}(G) \leq 1.6551\Delta(1+o(1))$

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - Bad colorings → good colorings of subgraph
 - Exponentially many good colorings remain

- 1-2-3-1
- 1-3-1-2

- Proper Conflict-free Coloring
 - ▶ CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
 - We proved $\chi_{pcf}^{\ell}(G) \leq 1.6551\Delta(1+o(1))$
 - Corollary of general hypergraph framework

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - Bad colorings → good colorings of subgraph
 - Exponentially many good colorings remain

- 1-2-3-1
- 1-3-1-2

- Proper Conflict-free Coloring
 - ▶ CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
 - We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
 - Corollary of general hypergraph framework
 - Key step is bounding $S_2(d,i)$

Learn More about Rosenfeld Counting

Learn More about Rosenfeld Counting

https://graphcoloringmethods.com

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings → good colorings of subgraph
 - Exponentially many good colorings remain

- Proper Conflict-free Coloring
 - ▶ CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
 - We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
 - Corollary of General hypergraph framework
 - Key step is bounding $S_2(d,i)$

Graph Coloring Methods

- Rosenfeld Counting
 - Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - $\blacktriangleright \ \mathsf{Bad} \ \mathsf{colorings} \to \mathsf{good} \ \mathsf{colorings} \ \mathsf{of} \ \mathsf{subgraph}$
 - Exponentially many good colorings remain

(1)-(2)-(3)-(1)

- Proper Conflict-free Coloring
 - ▶ CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
 - We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
 - Corollary of General hypergraph framework
 - Key step is bounding $S_2(d,i)$

- Graph Coloring Methods
 - Graduate Textbook (450 pages)

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings → good colorings of subgraph
 - Exponentially many good colorings remain

- Proper Conflict-free Coloring
 - ▶ CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
 - We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
 - Corollary of General hypergraph framework
 - Key step is bounding $S_2(d,i)$

- Graph Coloring Methods
 - Graduate Textbook (450 pages)
 - Chapter on Rosenfeld Counting

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings → good colorings of subgraph
 - Exponentially many good colorings remain

- Proper Conflict-free Coloring
 - ▶ CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
 - We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
 - Corollary of General hypergraph framework
 - Key step is bounding $S_2(d,i)$

- Graph Coloring Methods
 - Graduate Textbook (450 pages)
 - Chapter on Rosenfeld Counting
 - ▶ 11 other chapters (each on 1 method)

- Rosenfeld Counting
 - ► Nonrepetitive 4-list-coloring of paths
 - Color iteratively
 - # partial colorings exponential in subgraph
 - ▶ Bad colorings → good colorings of subgraph
 - Exponentially many good colorings remain

- Proper Conflict-free Coloring
 - ▶ CPS conjectured $\chi_{pcf}(G) \leq \Delta + 1$
 - We proved $\chi^{\ell}_{pcf}(G) \leq 1.6551\Delta(1+o(1))$
 - Corollary of General hypergraph framework
 - Key step is bounding $S_2(d,i)$

- Graph Coloring Methods
 - Graduate Textbook (450 pages)
 - Chapter on Rosenfeld Counting
 - ▶ 11 other chapters (each on 1 method)
 - ► Free at graphcoloringmethods.com

