COMP 3311 DATABASE MANAGEMENT SYSTEMS

LECTURE 2
ENTITY-RELATIONSHIP (E-R) MODEL
AND DATABASE DESIGN

COMP 3311

E-R MODEL & DB DESIGN: OUTLINE

Database Design Process

Entity-Relationship (E-R) Model — Data Structure Types

- Entity
- Attribute
- Specialization/Generalization
- Relationship

Entity-Relationship (E-R) Model — Constraints

- Attribute Domain, Key
- Specialization/Generalization Coverage
- Relationship Cardinality, Participation, Exclusion

Analyzing Application Requirements / Making Design Choices

DATABASE DESIGN PROCESS

Database Design Goals

- 1. Meet the data content requirements of users.
- 2. Provide a natural and easy-to-understand structuring of data.
- 3. Support data processing requirements and any performance objectives (e.g., response time, processing time, storage space, etc.).

DATABASE DESIGN PROCESS (CONTO)

Requirements Analysis produces a requirements specification

 Requirements analysis understands the application domain and describes the data required for processing.

Logical Design produces a conceptual schema and a logical schema

- Logical design describes how the data requirements are represented in the database and often proceeds in two phases producing two schemas.
 - a) The conceptual schema describes the requirements for a database using a DBMS independent data model (e.g., the E-R model).
 - b) The logical schema describes the database using the data definition language (DDL) of the target DBMS (e.g., SQL DDL).

Physical Design produces a physical schema

 Physical design describes how the logical schema is stored on the storage media (e.g., data types, keys, indexing options and other parameters).

ENTITY-RELATIONSHIP (E-R) MODEL

The entity-relationship (E-R) model is used at the logical level to describe a database's overall structure.

- The E-R model employs three basic concepts to describe data.
 - 1 entities
 - 2. attributes.
 - 3. relationships (among entities).

Why E-R model?

- expressiveness
- user communication
- DBMS independent

These are shown in an entity-relationship diagram (E-R diagram).

E-R MODEL: ENTITY

An entity (type) describes a set of entity instances with common:

- properties - relationships - semantics

Something we want to store data about in the application domain.

(E.g., employee, student, course, product, order,)

Notation: Employee

entity (type)
(a common description for all employees)

An entity instance

- has identity.
 - It can be distinguished from other entity instances.
- represents some real world thing.
 - It has meaning in the application domain.

E-R MODEL: ATTRIBUTE

An attribute is a property of an entity type and describes the data values of that property.

COMP 3311

- Each attribute has a name that is unique within an entity (but not across entities).
- Most attribute values are physically stored (base attribute);
 some may be calculated using stored values (derived attribute).
- An attribute value may be null (missing, unknown, not applicable).

E-R MODEL: ATTRIBUTE—TYPES AND NOTATION

8

E-R MODEL: GENERALIZATION/SPECIALIZATION

Generalization/specialization is a relationship between the same kind of entities playing different roles.

In this example, subclass membership is user-defined (i.e., determined by the schema designer and not based on any attribute).

COMP 3311

E-R MODEL: GENERALIZATION/SPECIALIZATION

(CONTO)

Can also be applied top-down (attribute-defined).

E-R MODEL: GENERALIZATION/SPECIALIZATION (CONTO)

Can also be applied top-down (attribute-defined).

<u>discriminator</u>: An attribute of enumeration type that indicates which property of an entity is being abstracted by a generalization/specialization.

In this example, subclass membership is determined by a predicate on an attribute (i.e., the discriminator attribute) of the superclass.

E-R MODEL: GENERALIZATION INHERITANCE

Inheritance is the taking up of properties by a subclass from its superclass.

- We extract the common attributes and relationships, associate them with the superclass and inherit them to the subclass(es).
 - ✓ Reduces redundancy of descriptions.
 - ✓ Promotes reusability of descriptions.
 - ✓ Simplifies modification of descriptions.

We only define an entity's properties in one place.

A subclass may add new properties (attributes, relationships).

Design Guideline: Inheritance should not exceed 2-3 levels.

E-R MODEL: GENERALIZATION SINGLE VS. MULTIPLE INHERITANCE

For multiple inheritance, a property from the same ancestor entity found along more than one path is inherited only once.

COMP 3311

E-R MODEL: RELATIONSHIP

A relationship (type) is a description of a set of relationships with common properties and semantics.

RELATIONSHIP: DEGREE

The number of entity types that participate in a relationship type.

In practice, the vast majority of relationships are binary.

(We will use only unary or binary relationships in this course.)

E-R MODEL: RELATIONSHIP EXAMPLES

There can be several relationships between entities.

RELATIONSHIP: RELATIONSHIP ATTRIBUTE

We want to represent the percentage time worked on a project.

RELATIONSHIP: RELATIONSHIP ATTRIBUTE (CONTO)

Option 1: Use many attributes (e.g., in Employee). Is this OK?

RELATIONSHIP: RELATIONSHIP ATTRIBUTE (CONTO)

Option 2: Use a multivalued attribute (e.g., in Employee). Is this OK?

RELATIONSHIP: RELATIONSHIP ATTRIBUTE (CONTO)

Option 3: Allow relationships to have attributes. Is this OK?

RELATIONSHIP: ROLE NAME

A role name is assigned to one end of a relationship to identify the role that the entity at that end plays in the relationship.

Who is the boss and who is the worker?

A role name disambiguates the role that an entity plays in a relationship.

It is necessary to use role names for unary relationships (i.e., when a relationship relates instances from the same entity).