

SEQUENCE LISTING

<110> KANG, Hyun-Ah
RHEE, Sang-Ki
SOHN, Min-Jeong
KIM, Jeong-Yoon

<120> HANSENULA POLYMORPHA YAPSIN DEFICIENT MUTANT STRAIN AND PROCESS
FOR THE PREPARATION OF THE RECOMBINANT PROTEINS USING THE SAME

<130> P26459

<140> US 10/518,377

<141> 2004-12-28

<150> PCT/KR2003/001279

<151> 2003-06-28

<160> 16

<170> PatentIn version 3.3

<210> 1

<211> 3151

<212> DNA

<213> Hansenula polymorpha

<400> 1
agttgagtgc caatagtgtg gcgaacttca aatgccctta ctgtccgcga acaaccacca 60
ttgcccaggc tgtgcaggcc agatttgttta atttgtaaaa agtgaaaaaa atttattccg 120
ctatgcctaa ccgaagagcc cgcaagaaga ggcggacaga agactttcc agctttcg 180
catctgaaaa cgtatgtgac tccgagagcg tgaccagtgt acaggaagag cagccggatg 240
cgccccaaac atacacaata gatggcctgg acacgcaaga ggtgtctgac agcacacagg 300
tgagactcca acagctgaac gcagacaggt tggccagcat agagcaaagc ctttcaggca 360
acctcaaact ggacataaac gcagtacgcc agatagatga tgtgcgtgag cagctgcaga 420
acgagtattt gaagaaattt cttgtcacat attctgagga cctggatgac ctgcgtcaga 480
aaaccgattt caagggaaaac tcactcaaaa ccctcgcccg tcttctcaaa gagagcggaa 540
acatatttga tcatggaaact ctcaagtgc tagttgagtg atgtatatga taatgtctaa 600
ttttaatttt catcagtgtg caagatctgg gcttagccgt tctaaatggt atattcaggc 660

tgtgcaagcc acatttaaaa ttaccccatc gtttttaaa ttctattgtt agaaattagg	720
atctacatag aggttagagtg agcaacagaa cattgttgc tatccgggcc ctccgactgg	780
aacgtcttac cttcagctac tatttattca gaaaaaagag tgcatttca tctatcaagg	840
tctcaaagtg tcgaatcaaa tcactagtat ttttccgag actaaaaaaaa agttgacaca	900
atgaaagttg ctacactgtt tttcttggct tcgagtgtct gtgtgctggg agacccacag	960
ttcgtgaaac tggaggcctc tggtcttcgg ggatccactt acaaggattc ccagaagggg	1020
gccaagccgt tcatgttga aaagaggcgt gatgacggct cggtcacat ggaattgcag	1080
aacgcccagt ctttctacca agtcgagatc gagataggat ctgataagca gaaggtgggg	1140
gttttgattt ataccggttc ctcggacttg tgggtgatga actcgaataa ctcttactgt	1200
tcgtcttcca gcactaaaaa attgaaacgg gacggaccgg ccgatgcgt acaaaaagga	1260
cgcgatctt ccgacctgta caatttcaac tctccaaacg aagacaacaa tgcaaaagga	1320
ttcttgggtg gctggggaga cttgaccaca gtagagactg caacccagga tgagacacag	1380
acggctctcg ctgcgcaggc caccgtggac tgctcgctat acggaacgtt caatccttca	1440
acgtccaatt cgttccacaa caacggcacc acatttgaga tttcgtacgc ggaccgcact	1500
tttgcggcgtg gaacctgggg ctacgatgat gtcactttca atgggtgtcac ggttaacgt	1560
ctctcggtgg ccgtggcaga tgaaacagat tcttcgactg gtgttttgg tatcgatttgc	1620
agggaattgg aaaccacata ctcaggaggc ggaccacagc attacatcta cgacaactta	1680
cctttcaaaa tggtcgacca gggactcatc aatagagccg cctattccgt ctacctgaac	1740
tcaactgagt ccagcactgc ctcgatcctc ttccgtgcgg ttgaccaaag caaatataacc	1800
ggaagtcttg gcttgcttcc tatcatcaac acggctgctt cctacggta ccaaaagcct	1860
ctaaggctcc aaatcaccct gtctgccatt acggtcagcg actccagagg acagcaagca	1920
agcattggtt caggagctgc tgctgcactt cttgataccg gaacgacttt gacgtatgct	1980
ccaagcgaga ttgtcgagaa acttgctgaa accctaggct tcgactacag cagctctgtc	2040
ggggcctacg tggcaagatg cagggacgtt gatagctacg ctgtcaactt cgacttccag	2100

ggtaaagtga ttgaagctcc tttgagttcc ttcctgattt ctctgcaaac caactccgga 2160
 gaagtttcct cctactgcgc attgggtatt ttctcctctg gagacgaatc cttcacgctc 2220
 ggcgatactt tcctcgaaa cgccctacttt gtggctgacc tcgagggata tcaaatcgct 2280
 atagctaacg tgaacctgaa tcctggagcc gagcaaattt aggtcatctc aggcaactcc 2340
 attccttctg ctgcgtcggt ttccgattac tccaataacctt gggcgccctc tgccaccgct 2400
 ttggacactg acaggcctac tactctggta tctgtgactt ctgtgggcga tgaaagagtg 2460
 acctcgacca agaaggtttcc gagtgtgaag acaagcactt cgtccgggtc cgggtccact 2520
 tcggagtcgt ctacgtccag ttgcattcc agcaatggcc caaggacagt aggcttttagt 2580
 ttgtgtgcgc ttttgtgcgc attctttagt tctatactag ttgtttgcta gatctgaagt 2640
 tctaaggggc ttttagtcttc atttatgatt ttttttattt tggaccgcct cgaattgtt 2700
 ttccgacggg tctactttaa agctgcaaga tctcggttag cgtcgtttat ttctcggtcg 2760
 ttttagtgaca aaaaaacaga aaaaaaaaaact ataaaaagcg gtatataacc ttatatttt 2820
 gataaacatg agcagcgaaa ttaagctagc accaaaggat tacgagaagg acaaggagtt 2880
 cgccaaaggct ctgcattggca aggacgccgc gagcgctaca ggaatgagtg cttgggtgaa 2940
 gaaggacaag gaagctaaa aagtcgctat ggaaggatattt tcaaggactt gggacggaa 3000
 aaccgacgag gagactgaaa agtcgagact cgaggactac tcgacgctca ccaagcacta 3060
 ctacaacctg gtgacggatt tctacgagta tggatgggta tcctcggtcc actttccag 3120
 atactacaag ggagagccat ttagacaagc t 3151

<210> 2
 <211> 576
 <212> PRT
 <213> Hansenula polymorpha

<400> 2

Met Lys Val Ala Thr Leu Phe Phe Leu Ala Ser Ser Val Cys Val Leu
 1 5 10 15

Gly Asp Pro Gln Phe Val Lys Leu Glu Ala Ser Val Leu Arg Gly Ser

20	25	30
Thr Tyr Lys Asp Ser Gln Lys Gly Ala Lys Pro Phe Met Leu Glu Lys 35	40	45
Arg Ala Asp Asp Gly Ser Val Thr Met Glu Leu Gln Asn Ala Gln Ser 50	55	60
Phe Tyr Gln Val Glu Ile Glu Ile Gly Ser Asp Lys Gln Lys Val Gly 65	70	75
Val Leu Ile Asp Thr Gly Ser Ser Asp Leu Trp Val Met Asn Ser Asn 85	90	95
Asn Ser Tyr Cys Ser Ser Ser Thr Lys Lys Leu Lys Arg Asp Gly 100	105	110
Pro Ala Asp Ala Leu Gln Lys Gly Arg Asp Leu Ser Asp Leu Tyr Asn 115	120	125
Phe Asn Ser Pro Asn Glu Asp Asn Asn Ala Lys Gly Phe Leu Gly Gly 130	135	140
Trp Gly Asp Leu Thr Thr Val Glu Thr Ala Thr Gln Asp Glu Thr Gln 145	150	155
Thr Ala Leu Ala Ala Gln Ala Thr Val Asp Cys Ser Leu Tyr Gly Thr 165	170	175
Phe Asn Pro Ser Thr Ser Asn Ser Phe His Asn Asn Gly Thr Thr Phe 180	185	190
Glu Ile Ser Tyr Ala Asp Arg Thr Phe Ala Arg Gly Thr Trp Gly Tyr 195	200	205
Asp Asp Val Thr Phe Asn Gly Val Thr Val Asn Asp Leu Ser Leu Ala 210	215	220

Val Ala Asp Glu Thr Asp Ser Ser Thr Gly Val Phe Gly Ile Gly Leu
225 230 235 240

Arg Glu Leu Glu Thr Thr Tyr Ser Gly Gly Pro Gln His Tyr Ile
245 250 255

Tyr Asp Asn Leu Pro Phe Lys Met Val Asp Gln Gly Leu Ile Asn Arg
260 265 270

Ala Ala Tyr Ser Val Tyr Leu Asn Ser Thr Glu Ser Ser Thr Ala Ser
275 280 285

Ile Leu Phe Gly Ala Val Asp Gln Ser Lys Tyr Thr Gly Ser Leu Gly
290 295 300

Leu Leu Pro Ile Ile Asn Thr Ala Ala Ser Tyr Gly Tyr Gln Lys Pro
305 310 315 320

Leu Arg Leu Gln Ile Thr Leu Ser Ala Ile Thr Val Ser Asp Ser Arg
325 330 335

Gly Gln Gln Ala Ser Ile Gly Ser Gly Ala Ala Ala Ala Leu Leu Asp
340 345 350

Thr Gly Thr Thr Leu Thr Tyr Ala Pro Ser Glu Ile Val Glu Lys Leu
355 360 365

Ala Glu Thr Leu Gly Phe Asp Tyr Ser Ser Ser Val Gly Ala Tyr Val
370 375 380

Ala Arg Cys Arg Asp Val Asp Ser Tyr Ala Val Asn Phe Asp Phe Gln
385 390 395 400

Gly Lys Val Ile Glu Ala Pro Leu Ser Ser Phe Leu Ile Ala Leu Gln
405 410 415

Thr Asn Ser Gly Glu Val Ser Ser Tyr Cys Ala Leu Gly Ile Phe Ser
420 425 430

Ser Gly Asp Glu Ser Phe Thr Leu Gly Asp Thr Phe Leu Arg Asn Ala
435 440 445

Tyr Phe Val Ala Asp Leu Glu Gly Tyr Gln Ile Ala Ile Ala Asn Val
450 455 460

Asn Leu Asn Pro Gly Ala Glu Gln Ile Glu Val Ile Ser Gly Asn Ser
465 470 475 480

Ile Pro Ser Ala Ser Ser Val Ser Asp Tyr Ser Asn Thr Trp Gly Ala
485 490 495

Ser Ala Thr Ala Leu Asp Thr Asp Arg Pro Thr Thr Leu Gly Ser Val
500 505 510

Thr Ala Val Gly Asp Glu Arg Val Thr Ser Thr Lys Lys Val Ser Ser
515 520 525

Val Lys Thr Ser Thr Ser Ser Gly Ser Gly Ser Thr Ser Glu Ser Ser
530 535 540

Thr Ser Ser Ser His Ser Ser Asn Gly Pro Arg Thr Val Gly Phe Ser
545 550 555 560

Leu Cys Ala Val Leu Cys Ala Phe Leu Ile Ser Ile Leu Val Val Cys
565 570 575

<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 3
gaagtgcagc agcagtcct gaacc 25

<210> 4
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 4
ggctgatgac ggctcggtca cgatgg 26

<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 5
ggacacgcaa gaggtgtctg 20

<210> 6
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 6
agctcgctac ccggggatcc gcaactttca ttgtgtcaac 40

<210> 7
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 7

gcacatcccc cttcgccag cctcttcggt gcgggtgacc 40

<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 8
gctcggctcc aggattcagg 20

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 9
ggatccccgg gtaccgagct 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 10
caccggtagc taatgatccc 20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 11
cgaacatcca agtgggccga 20

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 12
ctggcgaaag ggggatgtgc 20

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 13
gaattcatga agtggtaac cttt 24

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 14
taaggcctaag gcagcttgac 20

<210> 15
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 15
caagctgcct taggcttatg cagctgctcc ccggtg 36

<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 16
actagtgatt tatgggtcct cgatg

25