《物理化学》(1)下 期中考试试题 2017-05-4

子亏	学号	姓名	成绩
----	----	----	----

1 (4分)

计算由 NaCl、CuSO₄、LaCl₃ 各 0.025 mol 溶于 1 kg 水时所形成溶液的离子强度。

2 (8分)

已知 25 °C 时 0.05 mol.dm⁻³ CH₃ COOH 溶液的电导率为 3.68×10^{-2} S.m⁻¹,试计算 CH₃ COOH 解离度 α 及解离常数 K^{θ} 。(已知 H^{+} 和 Ac^{-} 离子的无限稀释下的极限摩尔电导率分别为 349.82×10^{-4} S.m².mol⁻¹、 40.9×10^{-4} S.m².mol⁻¹)

3 (6分)

298K 时,一电导池中装有 0.01 $mol\cdot dm^{-3}$ 的 KCl 溶液(κ_s = 0.1411 S. m^{-1}),测得电阻为 161.9 Ω ; 若装以 0.050 $mol\cdot dm^{-3}$ 的(1/2)K₂SO₄ 溶液,则所测电阻为 326 Ω ,求该电导池常数及 0.050 $mol\cdot dm^{-3}$ 的(1/2)K₂SO₄ 溶液的电导率和摩尔电导率。

4 (8 分)

试计算下列溶液的平均离子活度和电解质活度。

- (1)0.1 $mol \cdot kg^{-1}$ 的 MgCl₂($\gamma_{\pm}=0.528$);
- (2)0.001 $mol \cdot kg^{-1}$ 的 $K_3Fe(CN)_6(\gamma_{\pm}=0.808)$ 。

5 (6分)

已知电池反应: $2Fe^{3+} + Sn^{2+} = 2Fe^{2+} + Sn^{4+}$

- 1 写出电池表达式和电极反应
- 2 φ^{θ}($Sn^{4+} | Sn^{2+})=0.15V$, φ^{θ}($Fe^{3+} | Fe^{2+})=0.771V$,计算该电池在 298K 时的标准电动势
- 3 计算反应的标准平衡常数

6 (8分)

25 °C,电池 Ag(s)|AgCl(s)|HCl(m)|Cl₂(g,100kPa)|Pt(s) 的电动势 E=1.136V,电动势的温度系数为-5.95×10⁻⁴V/K。电池反应为: Ag + 1/2Cl₂(g,100kPa)==AgCl(s)。试计算该反应的 Δ G、 Δ S、 Δ H 及电池恒温可逆反应放电时过程的可逆热效应 Q_R 。

7 (4 分)

将下列反应设计成电解池

- (1) $\operatorname{Zn}(s) + \operatorname{H}_2 \operatorname{SO}_4(aq) \longrightarrow \operatorname{H}_2(p) + \operatorname{Zn} \operatorname{SO}_4(aq)$
- (2) $Ag^{+}(\alpha_{Ag^{+}}) + Cl^{-}(\alpha_{Cl^{-}}) \rightarrow AgCl(s)$

8 (8分)

写出下列电池所对应的化学反应

- (1) $\operatorname{Cd}(s)|\operatorname{Cd}^{2+}(m_1)||\operatorname{HCl}(m_2)|\operatorname{H}_2(g)|\operatorname{Pt}(s)$
- (2) $Pb-PbSO_4(s)|K_2SO_4(m_1)||KCl(m_2)|PbCl_2(s)|Pb(s)$
- (3) $Pt(s)|Fe^{3+},Fe^{2+}||Hg_2^{2+}|Hg(1)|$
- (4) $Pt(s)|H_2(g)|NaOH(m)|HgO(s)|Hg(l)$

9 (12分)

298 K 时,电池 $Pt|H_2(p^{\theta})|NaOH(m)|HgO(s)|Hg(l)$ 的 E=0.9255 V,已知 $\phi^{\theta}(OH^-|HgO|Hg)=0.0976$ V,试求水的离子积 K_w 。

10 (10分)

在 298 K、 p^{θ} 压力时,以 Pt 为阴极,C(石墨)为阳极,电解含 CdCl₂(0.01 mol·kg⁻¹) 和 CuCl₂(0.02 mol·kg⁻¹)的水溶液。若电解过程中超电势可忽略不计,设活度系数为 1,试问:

- (1) 何种金属先在阴极析出?
- (2) 当第二种金属析出时,第一种金属离子在溶液中的浓度为多少? $(\phi^{\theta}_{Cu^{2+}/Cu}=0.337V;\phi^{\theta}_{Cd^{2+}/Cd}=-0.4029V;H_2(g)在 Cu、Cd 上的超电势分别为 0.6 V 和 0.30 V。)$

11 (8分)

双分子反应 2A(g) — k \to B(g) + D(g),在 623K、初始浓度为 0.400mol dm $^{-3}$ 时,半衰期为 105s,请求出

- (1) 反应速率系数 k?
- (2) A(g)反应掉 90%所需时间为多少?
- (3) 若反应的活化能为 140 kJ mol⁻¹, 573K 时的最大反应速率为多少?

12 (6分)

将纯 BHF₂(g)引入 298.15K 恒容容器内发生如下反应:

$$6BH_2F_2(g) \xrightarrow{k} B_2H_6(g) + 4BF_2(g)$$

实验发现无论 BHF₂(g)的起始压力为多大,反应经 1h 后反应物皆分解 15%。

- (1) 确定反应级数。
- (2) 求反应在 298.15K 速率常数 k 及半衰期。

13 (7分)

某对峙反应 $A \xrightarrow{k_1} B$; $B \xrightarrow{k_2} A$; 已知 k_1 =0.006min⁻¹, k_{-1} =0.002min⁻¹. 如果反应开始时只有 A,问当 A B 的浓度相等时,需要多少时间?

14 (5 分)

醋酸高温裂解制乙烯酮, 副反应生成甲烷

$$CH_3COOH$$
— k1 $\rightarrow CH_2=CO+H_2O$
 CH_3COOH — k2 $\rightarrow CH_4+CO_2$

已知在 1189k 时 k_1 =4.65s⁻¹, k_2 =3.74s⁻¹。试计算: 99%醋酸发生反应需要的时间。