Workshop 2

Data Architecture for a Music Streaming Platform based on Spotify

Brayan Stiven Yate Prada – Student ID: 20192020151 Holman Andres Alvarado Diaz – Student ID: 20201020032 Universidad Distrital Francisco José de Caldas

> Faculty of Engineering Course: Databases II Professor: Carlos Andrés Sierra Virgüez

> > May 29, 2025

Contents

1	Dat	a System Architecture	3
	1.1	Justification for Each Technology	3
	1.2	End-to-End Data Flow (grounded in the schema)	4
	1.3	Why This Trimmed Stack Meets Our Goals	
2	Info	ormation Requirements	5
3	Que	ery Proposals	6
	3.1	User and Subscription Management (PostgreSQL)	6
	3.2	Search and Discovery (OpenSearch)	7
	3.3	Playback Behaviour (ClickHouse)	8
	3.4	Campaign and Cohort Analytics (ClickHouse)	8
	3.5	Royalties and Finance (PostgreSQL)	Ć
4	Imp	provements Over Workshop 1	10
	4.1	Initial Database Architecture	10
	4.2	Operating Model and Systemic Context	10
	4.3	Information Flow: Inputs, Outputs and Interactions	10
	4.4	Critical Bottlenecks Identified	11
	4.5	System Stress Points	11
	4.6	Diagnosis of the Central Problem	12
	4.7	Possible Technical Solutions	12
	4.8	ER Diagram	12
	4.9	Overview of the Relational Model	12

5	References	14
	4.11 Storage Strategies and Data Flow	14
	4.10 Description of Entities and Relationships	13

1 Data System Architecture

Figure 1: High-level Architecture Diagram

1.1 Justification for Each Technology

Component	Technology	Reason	Primary Data Stored
API Edge	NGINX Ingress Controller	Ships with every Kubernetes distribution; trivial TLS termination; rich ecosystem.	Proxies all HTTPS traffic.
Authentication	Keycloak		User credentials and tokens (hashed $/$ JWT).
Operational SQL	$\begin{array}{c} \textbf{PostgreSQL} \\ \textbf{16} & + \\ \textbf{pg_partman} \end{array}$	Logical/physical replication; partitioning and native JSONB; easy to query.	Users, subscriptions, catalog (artists, albums, tracks), playlists, payments, ads, social graph.
Search / Auto- complete	OpenSearch	Apache-licensed Elastic- search fork; scales from single node to multi-node; SQL plug-in for analysts.	Denormalised documents for
Object Storage	MinIO	Lightweight S3 clone; single binary; erasure coding; deployable on-prem or on any cloud.	•

Event Streaming Apache Kafka		Industry-standard durable,	Play/skip events, ad impres-
		ordered, replayable event	sions, change-data capture
		log; hundreds of client	(CDC) from PostgreSQL via
		SDKs.	Debezium.
Real-Time /	ClickHouse	Blazing fast,	Aggregated play counts,
Batch Analytics		column-oriented,	creator dashboards, advertis-
		SQL-native; licence-free;	ing metrics, Wrapped-style
		handles > 100000 inserts/s	reports.
		and sub-second dashboards.	
Orchestration /	Apache Air-	Familiar DAG UI;	Schedules nightly royalty jobs,
ETL	flow	Python-first; vast provider	table vacuums, data-quality
		library (Debezium \rightarrow Click-	checks.
		House, backups, ML).	
Business Intelli-	Apache Su-	Modern OSS BI; drop-in	Front-end only – reads Click-
gence	perset	ClickHouse driver; RBAC	House for charts.
		and SSO via Keycloak.	

1.2 End-to-End Data Flow (grounded in the schema)

Creator Upload

- 1. The Catalog Service receives the audio file and its metadata.
- 2. Binary data are stored in a MinIO bucket /audio/.
- 3. Rows for artist, album and track are inserted into PostgreSQL (ER diagram tables).
- 4. A Debezium connector streams these row-level changes to Kafka.
- 5. A lightweight Flink job flattens the JSON and pushes it to OpenSearch, allowing the track to become searchable within seconds.

Listener Playback

- 1. The *Playback Service* retrieves track_id, rights and bitrate information from Post-greSQL, signs a presigned MinIO URL and returns it to the client.
- 2. The client begins streaming; every 5 s it emits a play-tick JSON message to Kafka.

Real-Time Aggregation ClickHouse materialised views ingest the play-tick topic directly—no Spark or Flink cluster is required for the minimum viable product (MVP). Dashboards in Superset refresh automatically for artists and advertising operations.

Nightly Jobs (Airflow)

- royalty_etl.py: SQL executed in ClickHouse summarises plays by track_id and writes the payout CSV to the PostgreSQL payouts table.
- search_reindex.py: Performs a bulk re-sync of OpenSearch from PostgreSQL to catch edge cases.
- Back-ups: pg_dump streams are stored as compressed objects in MinIO.

Social Graph and Recommendations The user_follow bridge table lives in Post-greSQL; for the MVP we run simple collaborative-filtering in Python inside Airflow once per day and write top-N recommendations into user_recs. When sub-50 ms cold-start latencies become necessary these features can migrate to Redis, but not in version 1.

1.3 Why This Trimmed Stack Meets Our Goals

- Feasible for a small team: only six stateful services (PostgreSQL, MinIO, Kafka, OpenSearch, ClickHouse, Keycloak). All ship Helm charts and run on three modest VMs or a single Kubernetes cluster.
- Single source of truth: PostgreSQL hosts the entire ER diagram with just two bridge tables (playlist_track, user_follow) and one fact table (ad_impression). OLTP rows are partitioned by tenant (user_id mod N) enabling future shard-out.
- Analytics without Hadoop: ClickHouse reads Kafka directly, avoiding Spark/HDFS.
- Search within seconds: Debezium + Kafka keeps OpenSearch in near-real-time sync.
- Fully open-source: no licences, no managed-only products.
- Clear upgrade path: if traffic explodes we can add Postgres replicas, expand Kafka, deploy more ClickHouse shards or adopt Citus; none require a rewrite.

2 Information Requirements

#	Information Type	Description	Storage	Business Link	Key User Stories
1	Catalog Metadata	Track, album, artist info. Enables search & legal playback.	PostgreSQL (tracks, albums, artists); OpenSearch cache.	Global audio library; Key Partners.	Search; Playback; Upload Audio.
2	Audio References	Presigned URLs + bitrate list for playback via CDN or MinIO.	Generated by Playback Ser- vice from object metadata.	Seamless streaming.	Playback; Device Integration.
3	User Profile	Display name, avatar, language, tier, parental controls. UI personalization + policy enforcement.	PostgreSQL (users).	Personalisation Segmenta- tion.	; Profile Management; Register; Parental Control.
4	Subscription & Billing	Plan, renewal, token, grace state. Controls privileges and ad access.	PostgreSQL (subscriptions, payment_method)		Subscription Management; Premium Access.

5	Playback State	Position, device ID, network, heartbeat. Enables adaptive bitrate + resume.	$Kafka \rightarrow Click-$ House or in- memory cache.	Playback continuity.	Adaptive Streaming; Resume Playback.
6	Suggestion	Ranked track IDs + labels (e.g., repeat, trending).	PostgreSQL JSONB (user_recs).	Discovery; ML-driven value.	Discover; Playlist Creation.
7	Search Sug- gestions	Tokens, fuzzy matches (tracks, artists, playlists).	OpenSearch.	Search efficiency.	Content Search.
8	Social Graph	Follows, playlist rights, friend activity.	PostgreSQL (user_follow, playlist_track) Kafka.	Community features.	Follow Users; Collaborative Playlists.
9	Ads & Creatives	Targeting, CPM, assets; user context.	PostgreSQL (ad_campaign, ad_creative) + in-memory rules.	Ad revenue.	Launch Campaigns; Real-Time Ads.
10	Creator Analytics	Play counts, geo maps, promo-lift.	ClickHouse views via Superset.	Creator tools; Partner support.	View Stats; Track Promotion Impact.
11	Royalty Reports	Stream counts, payouts per rightsholder.	Airflow ETL → PostgreSQL (payouts); MinIO.	Royalty costs.	(Internal workflows).
12	Compliance Logs	Admin actions, GDPR links, token audits.	Append-only Postgres + WORM MinIO.	Trust; Legal compliance.	Data Requests; Audit Trails.

Traceability to Business Model and User Stories

- Value Proposition ("global audio library", ad-free Hi-Fi, discovery) requires fast access to items 1, 2, 6 and 5.
- Revenue Streams (subscriptions & ads) rely on items 4 and 9.
- Customer Relationships / Segments (community, stats) depend on items 3, 8 and 10.
- Cost Structure / Key Partners (royalty payouts) require items 1 and 11.
- \bullet Compliance & Trust are covered by item 12 and secured payment tokens.

3 Query Proposals

3.1 User and Subscription Management (PostgreSQL)

-- 1A. Premium users in top-5 high-usage countries

```
WITH top_countries AS (
    SELECT country
          play_events_daily -- daily roll-up loaded by Airflow
    FROM
    ORDER BY total_plays DESC
   LIMIT 5
)
SELECT u.user_id,
      u.display_name,
       s.plan,
       s.country
FROM
      users u
JOIN
      subscriptions s USING (user_id)
WHERE s.status = 'active'
 AND s.plan
                  = 'premium'
 AND s.country IN (SELECT country FROM top_countries);
Purpose: identify premium markets for targeted marketing.
-- 2A. Potential account sharing (>=3 countries in 30 days)
SELECT user_id,
       COUNT(DISTINCT ip_country) AS unique_countries_30d
       session_logs PARTITION FOR (CURRENT_DATE - INTERVAL '30 days')
FROM
GROUP BY user_id
HAVING COUNT(DISTINCT ip_country) > 3;
Purpose: detect family-plan abuse.
     Search and Discovery (OpenSearch)
GET /tracks/_search
  "query": {
    "function_score": {
      "query": { "match": { "title": "drake" }},
      "field_value_factor": {
        "field":
                   "play_count",
        "factor": 0.1,
        "modifier": "sqrt",
        "missing": 1
      "boost_mode": "multiply"
    }
 }.
  "sort": [
    { "_score": "desc" },
    { "release_date": "desc" }
```

```
]
}
```

Purpose: relevancy-boosted autocomplete.

3.3 Playback Behaviour (ClickHouse)

```
-- 3A. Early-churn indicator for new sign-ups (<=30s skips)
SELECT
    user_id,
    COUNT()
                       AS total_plays,
    sum(duration < 30) AS short_skips</pre>
FROM play_events
WHERE signup_date >= today() - 7
GROUP BY user_id
HAVING total_plays > 5;
-- 3B. Rapid-skip bot detection (last 10 min)
SELECT *
FROM
     play_events
PREWHERE user_id = 'u_999'
    AND event_time > now() - INTERVAL 10 MINUTE
WHERE duration < 15;
```

3.4 Campaign and Cohort Analytics (ClickHouse)

```
-- 4A. Retention by sign-up cohort
WITH cohort AS (
  SELECT user_id,
         toDate(min(event_time)) AS cohort_date
  FROM
         play_events
  GROUP BY user_id
)
SELECT cohort_date,
       activity_date,
       uniqExact(user_id) AS active_users
FROM (
  SELECT user_id,
         toDate(event_time) AS activity_date
  FROM
         play_events
JOIN cohort USING user_id
GROUP BY cohort_date, activity_date
ORDER BY cohort_date, activity_date;
```

```
-- 4B. Streams attributable to promotional campaigns
SELECT
   t.artist_id,
   t.track_id,
    c.campaign_id,
    count() AS plays_during_campaign
FROM play_events
                      AS pe
JOIN tracks
                      AS t ON pe.track_id = t.track_id
JOIN ad_campaign
                      AS c ON pe.event_time BETWEEN c.start_date AND c.end_date
WHERE c.campaign_type = 'promotional'
GROUP BY
   t.artist_id, t.track_id, c.campaign_id;
     Royalties and Finance (PostgreSQL)
-- 5A. Royalty calculation weighted by local rates
SELECT
   t.artist_id,
   t.track_id,
    pe.country,
    COUNT(*) * r.rate AS royalty_amount
      play_events_monthly pe -- ETL roll-up table
FROM
JOIN
      tracks
                        t ON pe.track_id = t.track_id
      royalty_rates
JOIN
                        r ON r.country = pe.country
                            AND r.artist_id = t.artist_id
WHERE pe.month = '2025-05'
GROUP BY t.artist_id, t.track_id, pe.country, r.rate;
-- 5B. Cross-check: plays vs payments divergence >1 %
WITH plays AS (
    SELECT artist_id,
          COUNT(*) AS total_plays
          play_events_monthly
    FROM
    WHERE month = '2025-05'
   GROUP BY artist_id
SELECT p.artist_id,
      SUM(ap.royalty_amount) AS total_paid,
      total_plays
      artist_payouts ap
FROM
                     p USING (artist_id)
JOIN
      plays
GROUP BY p.artist_id, total_plays
HAVING ABS(SUM(ap.royalty_amount) / NULLIF(total_plays,0) - expected_rate) > 0.01;
```

Technology Mapping

Use-Case	Query Engine	Rationale
Operational joins, financial exactness	PostgreSQL	ACID semantics and referential integrity.
Event-stream ad-hoc, co- hort, fraud analysis	ClickHouse	100 000 RPS ingestion and sub-second scans.
Search / autocomplete Event ingestion	OpenSearch Kafka	Token scoring and fuzzy match. Decouples writes and enables real-time pipelines.

4 Improvements Over Workshop 1

4.1 Initial Database Architecture

Designing a database architecture for a large-scale music-streaming platform requires a balance of technical and business constraints: ultra-low playback latency, strict compliance with regulations such as GDPR, global scalability and financial integrity. The architecture therefore distributes data into specialised layers, selecting *only* open-source technologies to ensure flexibility, transparency and long-term sustainability.

4.2 Operating Model and Systemic Context

Spotify adopts a *freemium* model: free users are monetised through advertising while Premium users pay recurring subscriptions. Roughly 70 % of revenue is allocated to royalty payments for artists and record labels.

The data ecosystem involves multiple actors:

- End users (mobile / web clients)
- Backend and distributed storage layer
- Content creators
- Advertising subsystem
- Analytics and reporting platform
- Contractual royalty rules

4.3 Information Flow: Inputs, Outputs and Interactions

The system operates via asynchronous, bidirectional data flows. Principal routes are:

Inputs

Multimedia files (audio, cover art, metadata); user events (play, like, follow); financial information and credentials.

Outputs

Optimised music playback; personalised recommendations; analytical reports; real-time targeted advertisements.

Interactions

Client \to Application \to Microservice backend \to Distributed storage, with lateral interactions to Advertising and Recommendation subsystems.

4.4 Critical Bottlenecks Identified

Subsystem	Problem	Risk	Recommendations
Intensive social-graph reads	Notable latencies $(P99 > 200 \text{ ms})$	User experience degradation	Partition graph, introduce specialised cache (e.g. Dgraph or Redis-Graph).
Advertising	Cache saturation under high concurrency	Ad-decision latency > 50 ms	Hierarchical LRU cache, pre-computed segments.
Streaming	Real-time CDN and DRM selection	Start time > 300 ms causes abandon- ment	Edge nodes with pre-signed URLs; regional CDN hints.
Royalties	Massive event calculation	Legal/reputational risk	Incremental aggregation, ClickHouse materialised views, parallel pipelines.
GDPR	Data proliferation	Non-compliance fines	Unified subject-ID mapping and automated data-subject export routines.

4.5 System Stress Points

Potential Crisis	Technical and Business Cause
Explosive	Recommendation, playback or scaling failures due to
concurrent-user growth	horizontal stress.
Advertising-decision de-	Revenue loss and poor user experience for free tier.
lays	
Inaccurate royalty calcu-	Legal and reputational consequences with rights holders.
lations	
Content-ingestion satu-	Bottlenecks in validation, ML pipelines and media per-
ration (10 TB / day)	sistence.
Social-graph synchroni-	Inconsistent likes/follows (latency > 5 s).
sation errors	
Autoscaling failures	Frozen experience due to unbalanced or mis-distributed
	services.

Figure 2: Caption

4.6 Diagnosis of the Central Problem

Spotify faces constant tension among horizontal scalability, ultra-low latency and contractual compliance: every new user, artist or advertising campaign represents a potential distributed load hotspot.

4.7 Possible Technical Solutions

- 1. Strengthen distributed cache for personalization and advertising.
- 2. Apply edge-computing for initial playback near the client.
- 3. Decouple royalty pipelines into asynchronous, parallel layers.
- 4. Deploy full distributed tracing (OpenTelemetry).
- 5. Optimize graph-partitioning algorithms and advertising clusters.

Update: A systemic problem analysis has been added, identifying key points, bottlenecks, information flows and a clearer operating model, clarifying the issue to solve and updating the ER diagram accordingly.

4.8 ER Diagram

4.9 Overview of the Relational Model

The proposed relational model structures the critical information of a musical-content, advertising and social-interaction platform, based on a microservices architecture designed for large-scale operation. The implementation relies on PostgreSQL 16, taking advantage of referential integrity, ACID transactions, advanced types (e.g. JSONB) and native sharding (via pg_partman or Citus).

The model is organised into six functional domains, each with independent entities and clear relationships, enabling horizontal scalability, auditability and extensibility in line with distributed-design principles and regulatory compliance.

4.10 Description of Entities and Relationships

User and Subscription Domain

- **USER**: end-user profiles, including unique identifier, subscription type (free / premium) and creation date.
- SUBSCRIPTION: transactional table storing the history of active and cancelled plans per user.
- PAYMENT_METHOD and PAYMENT_TRANSACTION: manage tokenised payment methods (PCI-DSS) and related transactions, linked to USER via foreign keys.

This flow provides complete traceability of the account life-cycle and its monetisation.

Catalog Domain

- ARTIST, ALBUM and TRACK: compose the musical catalogue hierarchy. TRACK includes key metadata such as duration, explicit-content flag and a denormalised play_count field to improve analytical indexing in OpenSearch.
- Relationships are modelled *one-to-many* from artist to album and album to track.

Playlists and Social Domain

- PLAYLIST: associated with a user (owner_id) and supporting collaborative lists.
- PLAYLIST_TRACK: many-to-many bridge table preserving sequential order by position column.
- USER_FOLLOW: represents the social follow graph, using composite keys and timestamps for temporal tracking.

These entities enable social functionality and personalisation with low logical coupling.

Playback and Events Domain

• PLAY_EVENT: records each playback session with contextual metadata such as country, effective duration and timestamp. Modelled as a very high-cardinality event table, suitable for replication into OLAP or time-series systems.

Advertising Domain

- ADVERTISER, AD_CAMPAIGN, AD_IMPRESSION: model advertising campaigns and their interaction with users.
- AD_IMPRESSION functions as a fact table, registering which user was exposed to which campaign and when.

Royalties and Finance Domain

- **ROYALTY RATE**: defines the per-play fee by artist and country.
- ARTIST PAYOUT: represents consolidated monthly payments to each artist.

Both entities are populated from aggregated PLAY_EVENT data, enabling contractual and regional revenue calculations with full financial traceability.

4.11 Storage Strategies and Data Flow

- Implemented on PostgreSQL 16 with horizontal sharding by user_id in high-volume tables (PLAY_EVENT, USER_FOLLOW, AD_IMPRESSION).
- Events are written to PostgreSQL and synchronised to external analytical stores (Click-House, OpenSearch) for real-time exploitation.
- Sensitive tables such as PAYMENT_METHOD integrate external tokenisation and at-rest encryption (AES-256).
- Retention, auditing (created_at, paid_at, shown_at) and strong consistency policies are enforced on critical tables (SUBSCRIPTION, TRACK, ARTIST_PAYOUT).

5 References

References

- [1] Corporate Finance Institute. Business Model Canvas Examples. Available at: https://corporatefinanceinstitute.com/resources/management/business-model-canvas-examples/
- [2] Business Model Analyst. Spotify Business Model. Available at: https://businessmodelanalyst.com/spotify-business-model/
- [3] Music Business Research. (19)TheMusicStream-August 2024). EconomyPart Spotify's Model. Available inq10: Business https://musicbusinessresearch.wordpress.com/2024/08/19/ at: the-music-streaming-economy-part-10-spotifys-business-model/
- [4] Investopedia. How Spotify Makes Money. Available at: https://www.investopedia.com/articles/investing/120314/spotify-makes-internet-music-make-money.asp
- [5] IIDE. Business Model of Spotify. Available at: https://iide.co/case-studies/business-model-of-spotify/
- [6] GrowthX Club. Spotify Business Model. Available at: https://growthx.club/blog/spotify-business-model#spotify-revenue-model
- [7] Software Developer Diaries. How Spotify's Playback Works Under the Hood. YouTube video. Available at: https://www.youtube.com/watch?v=K26bGXVR-mE
- [8] Lopez, Μ. A. DeepDiveintotheTechStackUsedSpotify. Available LinkedIn article. at: https://www.linkedin.com/pulse/ deep-dive-tech-stack-used-spotify-marny-a-lopez
- [9] Intuji. How Does Spotify Work? Tech Stack Explored. Available at: https://intuji.com/how-does-spotify-work-tech-stack-explored/