

II

•

Email: dushaoyi@xjtu.edu.cn

Homepage: http://dushaoyi.gr.xjtu.edu.cn

10 10% 10% 10% 70

14 00 16 00

QQ : 480089266

3

2018

Stephen

Boyd Lieven Vandenberghe

2018

2018

Numerical Computation Optimization and Operations Research

C	Matlab		

1

1.1

1.2

1.3

Roots of Equation

$$f(x) = 0?$$

Roots of Equation

$$f(x) [a,b] f(a) \cdot f(b) < 0 f(x) = 0$$

$$[a,b] f(x) = ux^{2} + vx + r$$

$$f(x) = 0$$

$$x_{1,2} = \frac{-v \pm \sqrt{v^{2} - 4ur}}{2u}$$

$$f(x) = x^{3} + px + q x = \alpha + \beta$$

$$(\alpha + \beta)^{3} + p(\alpha + \beta) + q = 0$$

$$\alpha^{3} + 3\alpha^{2}\beta + 3\alpha\beta^{2} + \beta^{3} + p\alpha + p\beta + q = 0$$

$$\alpha$$
 β

$$\alpha_{1} = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}} \quad \alpha_{2} = w \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}} \quad \alpha_{3} = w^{2} \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}}$$

$$\beta_{1} = \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}} \quad \beta_{2} = w \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}} \quad \beta_{3} = w^{2} \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{27}}}$$

$$\alpha + \beta \qquad \alpha\beta = -\frac{p}{3}$$

$$\begin{cases} x_1 = \alpha_1 + \beta_1 \\ x_2 = \alpha_2 + \beta_3 \\ x_3 = \alpha_3 + \beta_2 \end{cases}$$

$$f(x) = ax^{3} + bx^{2} + cx + d f(x) = 0$$

$$a x = y - \frac{b}{3a}$$

$$y^{3} + py + q = 0$$

$$y_{1}, y_{2}, y_{3} x_{i} = y_{i} - \frac{b}{3a}(i = 1, 2, 3)$$

$$f(x)$$

$$f(x) = 0$$

Iterative Closest Point

引例一和二说明

Solution of Linear Equations System

$$n$$
 $Ax = b$

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}$$

$$\det(A) \neq 0 \qquad \qquad Ax = b$$

$$x_1 = \frac{\det(A_1)}{\det(A)} \quad x_2 = \frac{\det(A_2)}{\det(A)} \quad \dots \quad x_n = \frac{\det(A_n)}{\det(A)}$$

$$A_{j} = \begin{pmatrix} a_{11} & \dots & a_{1(j-1)} & b_{1} & a_{1(j+1)} & \dots & a_{1n} \\ a_{21} & \dots & a_{2(j-1)} & b_{2} & a_{2(j+1)} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{n(j-1)} & b_{n} & a_{n(j+1)} & \dots & a_{nn} \end{pmatrix} (j = 1, 2, \dots, n)$$

$$b \qquad \qquad A \qquad j \qquad n$$

$$a_{1(j-1)} \qquad 1 \qquad j-1$$

$$det(A), det(A_{1}), \dots, det(A_{n}), \qquad n+1$$

$$n! \qquad n-1$$

```
定义1.1
                                 x \in \mathbb{R}^n
                                                                   \|\cdot\|
                         ||x|| \ge 0, ||x|| = 0  x = 0,
       1)
       2)
                          \|\alpha x\| = |\alpha| \|x\|, \alpha \in \mathbb{R}
                                  ||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n.
       3)
||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, \ x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n
4 1-
                  ||x||_1 = |x_1| + |x_2| + \cdots + |x_n|
                  ||x||_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{1/2}
    * 2-
    -
                    ||x||_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)
```

定理 1.1
$$n$$
 $x \in \mathbb{R}^n$ $\|x\|_{\alpha}$ $\|x\|_{\beta}$ $c_1, c_2 > 0$ x $c_1\|x\|_{\beta} \le \|x\|_{\alpha} \le c_2\|x\|_{\beta}$

$$||x||_{2} \le ||x||_{1} \le \sqrt{n} ||x||_{2}$$

$$||x||_{\infty} \le ||x||_{1} \le n ||x||_{\infty}$$

$$||x||_{\infty} \le ||x||_{2} \le \sqrt{n} ||x||_{\infty}$$

$$x$$

$$\emptyset \quad D \subset \mathbf{R}^n \to \mathbf{R}^n$$

$$x = \emptyset(x), x \in D \subset \mathbf{R}^n$$

映射Ø的不动点

定义 1.3
$$\mathbf{R}^{n} \qquad \|\cdot\| \qquad q \in [0,1),$$
 $\emptyset \quad D \subset \mathbf{R}^{n} \to \mathbf{R}^{n} \qquad D_{0} \subset D$

$$\qquad \|\emptyset(x) - \emptyset(y)\| \leq q \|x - y\|, \forall x, y \in D_{0}$$

$$\qquad \emptyset \qquad D_{0} \subset D \qquad \qquad q$$
定理 1.3 (Banach (巴拿赫)压缩映射原理) $\emptyset: D \subset \mathbf{R}^{n} \to \mathbf{R}^{n}$

$$D_{0} \subset D \qquad \qquad \emptyset(D_{0}) \subset D_{0}, \quad \emptyset \quad D_{0} \qquad x^{n}$$

```
定义1.4
                                            A \in \mathbb{R}^{n \times n}
                                                                                             \|\cdot\|
                                  ||A|| \ge 0, ||A|| = 0 A = 0,
          1)
                                  \|\alpha A\| = |\alpha| \|A\|, \alpha \in \mathbb{R}
         2)
                                            ||A + B|| \le ||A|| + ||B||, \forall A, B \in \mathbb{R}^{n \times n},
         3)
         4)
                                                      ||A \cdot B|| \le ||A|| \cdot ||B||, \forall A, B \in \mathbb{R}^{n \times n}.
||A|| = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|, A = (a_{ij}) \in \mathbb{R}^{n \times n}
||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|
      **
                   \boldsymbol{A}
                                         ||A||_1 = \max_{1 \le i \le n} \sum_{i=1}^n |a_{ij}|
                   \boldsymbol{A}
                                                       ||A||_2 = \sqrt{\lambda_{max}(A^TA)}
      •
                   \boldsymbol{A}
```

例1.2
$$A = (a_{ij})_{n \times n}$$
 $||A|| = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|$

证明: (1)
$$||A|| = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| \ge 0$$
且 $||A|| = 0 \Leftrightarrow A = 0$

(2) α $\|\alpha A\| = \sum_{i=1}^{n} \sum_{j=1}^{n} |\alpha a_{ij}| = |\alpha| \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| = |\alpha| \cdot \|A\|$

(3)
$$\|\mathbf{A} + \mathbf{B}\| = \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij} + b_{ij}| \le \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| + \sum_{i=1}^{n} \sum_{j=1}^{n} |b_{ij}| = \|\mathbf{A}\| + \|\mathbf{B}\|$$

$$(4) \|\mathbf{A}\mathbf{B}\| = \sum_{i=1}^{n} \sum_{j=1}^{n} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right| \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} |a_{ik}| \left| b_{kj} \right|$$

$$\leq \left(\sum_{i=1}^{n} \sum_{k=1}^{n} |a_{ik}| \right) \left(\sum_{k=1}^{n} \sum_{j=1}^{n} \left| b_{kj} \right| \right) = \|\mathbf{A}\| \cdot \|\mathbf{B}\|$$

$$\|\mathbf{A}\|$$

$$||Ax||_{p} \le ||A||_{p} \cdot ||x||_{p} \quad \vec{x} \quad \frac{||Ax||_{p}}{||x||_{p}} \le ||A||_{p} \quad (p = 1, 2, \infty)$$
定义 1.5
$$||x||_{p} (p = 1, 2, \infty)$$

$$f(A) = ||A||_{p}$$

$$||A||_{p} = \max_{x \ne 0} \frac{||Ax||_{p}}{||x||_{p}} = \max_{||x||_{p} = 1} ||Ax||_{p}$$

$$||A||_{p}$$

$$||A||_{p}$$

$$||A||_{p}$$

$$\frac{1}{\sqrt{n}} \|A\|_{2} \le \|A\|_{\infty} \le \sqrt{n} \|A\|_{2}$$

$$\frac{1}{n} \|A\|_{\infty} \le \|A\|_{1} \le n \|A\|_{\infty}$$

Errors

$$I_n = \int_0^1 \frac{x^n}{x+5} dx \ (n = 1, 2, \dots, 20)$$

$$I_n + 5I_{n-1} = \int_0^1 \frac{x^n}{x+5} dx + 5 \int_0^1 \frac{x^{n-1}}{x+5} dx = \int_0^1 \frac{x^n + 5x^{n-1}}{x+5} dx$$

$$= \int_0^1 x^{n-1} dx = \frac{1}{n} x^n |_0^1 = \frac{1}{n}$$

$$I_n = \frac{1}{n} - 5I_{n-1} \qquad 1$$

$$I_0 = \int_0^1 \frac{1}{x+5} dx = \ln(x+5)|_0^1 = \ln 6 - \ln 5 = \ln \frac{6}{5} \approx 0.182322$$

$$I_{n}$$

$$I_{n} > 0 f(x) 0 1$$

$$I_{n} n_{1} > n_{2} I_{n_{1}} < I_{n_{2}}$$

$$\lim_{n \to \infty} I_{n} = 0 \lim_{n \to \infty} \frac{x^{n}}{x+5} = 0 x \in [0,1]$$

$$\frac{1}{6n} < I_{n-1} < \frac{1}{5n} (n > 1)$$

$$1 I_{n-1} = \frac{1}{5n} - \frac{1}{5}I_{n} < \frac{1}{5n} I_{n} I_{n} = \frac{1}{n} - \frac{1}{5}I_{n-1} < I_{n-1} > \frac{1}{6n}, I_{n}.$$

方法A:
$$I_n = \frac{1}{n} - 5I_{n-1}$$
 I_1 I_{20}

$$I_1$$

$$I_{20}$$

n	I_n	n	I_n	n	I_n	n	I _n
1	0.0883922	6	0.0243239	11	0.0173247	16	-10.1569
2	0.0580389	7	0.0212378	12	-0.00329022	17	50.8433
3	0.0431687	8	0.0188109	13	-0.0933742	18	-254.161
4	0.0343063	9	0.0170566	14	-0.395442	19	1270.86
5	0.0284686	10	0.0147169	15	2.04388	20	-6354.23

 I_n

A
$$I_n = \frac{1}{n} - 5I_{n-1}$$
 I_{n-1}

$$I_{n-1}$$
 I_n 5

方法B:
$$I_n$$

$$I_{n-1} \approx \left(\frac{1}{5n} + \frac{1}{6n}\right)/2$$

$$I_{20} \approx \frac{\frac{1}{6\times21} + \frac{1}{5\times21}}{2} = 0.00873016$$

$$I_{n-1} = \frac{1}{5n} - \frac{1}{5}I_n \qquad I_{20} \qquad I_1$$

n	I_n	n	I_n	n	I_n	n	I _n
19	0.00825397	14	0.0112292	9	0.0169265	4	0.0343063
18	0.00887552	13	0.0120399	8	0.0188369	3	0.0431387
17	0.00933601	12	0.0129766	7	0.0212326	2	0.0580389
16	0.00989750	11	0.0140713	6	0.0243250	1	0.0883922
15	0.0105205	10	0.0153676	5	0.0284684	0	0.182322

 \triangleright B I_{20}

B
$$I_{n-1} = \frac{1}{5n} - \frac{1}{5}I_n$$
 I_n I_{n-1}

$$I_n I_{n-1}$$

1/5

truncation error round-off error

$$\int_0^1 e^{-x^2} dx$$

$$e^{-x^2}$$
 Taylor

$$\int_0^1 e^{-x^2} dx = \int_0^1 (1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots) dx$$

$$= \underbrace{1 - \frac{1}{3} + \frac{1}{2!} \times \frac{1}{5} - \frac{1}{3!} + \frac{1}{7}}_{S} + \underbrace{\frac{1}{4!} \times \frac{1}{9} - \frac{1}{5!} \times \frac{1}{11} \cdots}_{E}$$

$$\int_0^1 e^{-x^2} dx \approx S$$

$$E = \frac{1}{4!} \times \frac{1}{9} - \frac{1}{5!} \times \frac{1}{11} \cdots$$

截断误差

$$\int_0^1 e^{-x^2} dx$$

$$\int_0^1 e^{-x^2} dx \approx S = 1 - \frac{1}{3} + \frac{1}{2!} \times \frac{1}{5} - \frac{1}{3!} + \frac{1}{7}$$
$$= 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42}$$

$$\approx 1 - 0.333 + 0.100 - 0.024$$

$$= 0.743$$

Absolute Error

定义1.6 x^*

 $\widetilde{\chi}$

 $E(\tilde{x}) = x^* - \tilde{x}$

 $\delta \qquad E(\tilde{x}) = |x^* - \tilde{x}| \le \delta$

 $\widetilde{\chi}$

Relative Error

定义1.7 *x**

 $\widetilde{\chi}$

$$E_r(\tilde{x}) = \frac{x^* - \tilde{x}}{x^*} \times 100\% (x^* \neq 0) \quad \tilde{x}$$

$$\delta_r \qquad |E_r(\tilde{x})| = \left| \frac{x^* - \tilde{x}}{\tilde{x}} \right| \le \delta_r \qquad \delta_r \quad \tilde{x}$$

Significant Figures

定义1.8 \tilde{x}

 \widetilde{x} n n \hat{x}

定义1.9 \tilde{x} x

 χ^* $f(x^*)$ \tilde{x} $f(x^*) \approx f(\tilde{x}) + f'(\tilde{x})(x^* - \tilde{x})$ $|f(x^*) - f(\tilde{x})| \le |f'(\tilde{x})| \cdot |x^* - \tilde{x}|$ $f(\tilde{x})$ $f(x^*)$ $\begin{cases} \delta f(\tilde{x}) \le |f'(\tilde{x})| \cdot \delta(\tilde{x}) \\ \delta_r f(\tilde{x}) = \left| \frac{\delta f(\tilde{x})}{f(\tilde{x})} \right| \le \left| \frac{f'(\tilde{x})}{f(\tilde{x})} \right| \cdot \delta(\tilde{x}) \end{cases}$ $\delta(\tilde{x})$ $\tilde{\chi}$

例1.5
$$\tilde{x} > 0, \tilde{x}$$

 ε_r , $\ln \tilde{x}$

解: $f(x) = \ln x$,

$$\begin{cases} \delta f(\tilde{x}) \le |f'(\tilde{x})| \cdot \delta(\tilde{x}) \\ \delta_r f(\tilde{x}) = \left| \frac{\delta f(\tilde{x})}{f(\tilde{x})} \right| \le \left| \frac{f'(\tilde{x})}{f(\tilde{x})} \right| \cdot \delta(\tilde{x}) \end{cases}$$

$$\delta(f(\tilde{x})) = |f(x^*) - f(\tilde{x})| \le |f'(\tilde{x})| \cdot \delta(\tilde{x}) = \frac{1}{|\tilde{x}|} |x^* - \tilde{x}| = \varepsilon_r,$$

$$\ln \tilde{x} \qquad \varepsilon_r$$

 $f(x^*, y^*)$ (\tilde{x}, \tilde{y}) $f(x^*, y^*) \approx f(\tilde{x}, \tilde{y}) + \frac{\partial f(\tilde{x}, \tilde{y})}{\partial x} (x^* - \tilde{x}) + \frac{\partial f(\tilde{x}, \tilde{y})}{\partial y} (y^* - \tilde{y})$ $|f(x^*, y^*) - f(\tilde{x}, \tilde{y})| \le \left| \frac{\partial f(\tilde{x}, \tilde{y})}{\partial x} \right| \cdot |x^* - \tilde{x}| + \left| \frac{\partial f(\tilde{x}, \tilde{y})}{\partial y} \right| \cdot |y^* - \tilde{y}|$ $f(x^*, y^*) \qquad \qquad f(x, y)$ $\begin{cases} \delta f(\tilde{x}, \tilde{y}) \le \left| \frac{\partial f(\tilde{x}, \tilde{y})}{\partial x} \right| \cdot \delta(\tilde{x}) + \left| \frac{\partial f(\tilde{x}, \tilde{y})}{\partial y} \right| \cdot \delta(\tilde{y}) \\ \delta_r |f(\tilde{x}, \tilde{y})| = \left| \frac{\delta f(\tilde{x}, \tilde{y})}{f(\tilde{x}, \tilde{y})} \right| \end{cases}$ $\delta(\tilde{x})$ $\delta(\tilde{y})$ \tilde{x} \tilde{y}

$$f(x,y) = x \pm y$$
, $f(x,y) = x \cdot y$, $f(x,y) = x/y$, \tilde{x} x^*
 \tilde{y} y^*

$$\begin{cases} \delta(\tilde{x} \pm \tilde{y}) \le \delta(\tilde{x}) + \delta(\tilde{y}) \\ \delta_r(\tilde{x} \pm \tilde{y}) \le \frac{\delta(\tilde{x}) + \delta(\tilde{y})}{|\tilde{x} \pm \tilde{y}|} \end{cases}$$

$$\begin{cases} \delta(\tilde{x}\tilde{y}) \leq |\tilde{y}|\delta(\tilde{x}) + |\tilde{x}|\delta(\tilde{y}) \\ \delta_r(\tilde{x}\tilde{y}) \leq \frac{\delta(\tilde{x})}{|\tilde{x}|} + \frac{\delta(\tilde{y})}{|\tilde{y}|} = \delta_r(\tilde{x}) + \delta_r(\tilde{y}) \end{cases}$$

$$\begin{cases} \delta\left(\frac{\tilde{x}}{\tilde{y}}\right) \leq \frac{1}{|\tilde{y}|} \delta(\tilde{x}) + \left|\frac{\tilde{x}}{\tilde{y}^2}\right| \delta(\tilde{y}) \\ \delta_r\left(\frac{\tilde{x}}{\tilde{y}}\right) \leq \frac{\delta(\tilde{x})}{|\tilde{x}|} + \frac{\delta(\tilde{y})}{|\tilde{y}|} = \delta_r(\tilde{x}) + \delta_r(\tilde{y}) \end{cases}$$

定义1.10

例1.6
$$\{x_n\}$$
 $x_{n+1} = 8x_n + 6(n = 0,1,2\cdots).$ $x_0 = \sqrt{2} \approx 1.41$ x_{10} ?
解: $x_0 = \sqrt{2}$ $\tilde{x}_0 = 1.41$, δ ()

$$\delta_r(\tilde{x} - \tilde{y}) \le \frac{\delta(\tilde{x} - \tilde{y})}{|\tilde{x} - \tilde{y}|}$$

$$\tilde{x} \quad \tilde{y} \qquad \qquad \tilde{x} - \tilde{y}$$

$$z = \frac{x}{y}$$

$$\delta\left(\frac{\tilde{x}}{\tilde{y}}\right) \leq \frac{1}{|\tilde{y}|}\delta(\tilde{x}) + \frac{|\tilde{x}|}{|\tilde{y}^2|}\delta(\tilde{y})$$

66 27

$$x = 10^9 + 1$$
 $x = 0.1 \times 10^{10} + 0.0000000001 \times 10^{10}$ 8 $x = 0.1 \times 10^{10}$

例1.7:
$$x^2 - (10^9 + 1)x + 10^9 = 0$$

$$(x-1)(x-10^9) = 0$$

 $x_1 = 10^9$ $x_2 = 1$

1

$$x_{1,2} = \frac{10^9 + 1 \pm \sqrt{(10^9 + 1)^2 - 4 \times 10^9}}{2}$$

$$10^9 + 1 \approx 10^9 \quad \sqrt{(10^9 + 1)^2 - 4 \times 10^9} \approx 10^9$$

$$x_1 = 10^9 \quad x_2 = 0$$

$$x_2 = \frac{10^9 + 1 - \sqrt{(10^9 + 1)^2 - 4 \times 10^9}}{2}$$

$$x_2 = \frac{2 \times 10^9}{10^9 + 1 + \sqrt{(10^9 + 1)^2 - 4 \times 10^9}}$$

$$x_2 \approx \frac{2 \times 10^9}{10^9 + 10^9} = 1$$

A

B

☐ Haar-like features

- ☐ Fast computation schedule
 - ➤ Integral image
 - > Rectangle features is computed by integral image

$$S_1 + S_4 - S_2 - S_3$$