Package 'meteorits'

September 17, 2019

```
Type Package
Title Mixtures-of-Experts Modeling for Complex and Non-Normal Distributions ('MEteorits')
Version 0.1.0
Description Provides several original and flexible mixtures-of-experts models
      to model, cluster and classify heterogeneous data in many complex
      situations where the data are distributed according to non-normal,
      possibly skewed distributions, and when they might be corrupted by
      atypical observations. Mixtures-of-Experts Models for Complex and
      Non-Normal Distributions ('MEteorits') are originally introduced and
      written in 'Matlab' by Faicel Chamroukhi. The references are mainly the
      following ones.
      Chamroukhi F., Same A., Govaert, G. and Aknin P. (2009) <doi:10.1016/j.neunet.2009.06.040>.
      Chamroukhi F. (2010) <a href="https://chamroukhi.com/FChamroukhi-PhD.pdf">https://chamroukhi.com/FChamroukhi-PhD.pdf</a>>.
      Chamroukhi F. (2015) <arXiv:1506.06707>.
      Chamroukhi F. (2015) <a href="https://chamroukhi.com/FChamroukhi-HDR.pdf">https://chamroukhi.com/FChamroukhi-HDR.pdf</a>>.
      Chamroukhi F. (2016) <doi:10.1109/IJCNN.2016.7727580>.
      Chamroukhi F. (2016) <doi:10.1016/j.neunet.2016.03.002>.
      Chamroukhi F. (2017) <doi:10.1016/j.neucom.2017.05.044>.
URL https://github.com/fchamroukhi/MEteorits
BugReports https://github.com/fchamroukhi/MEteorits/issues
License GPL (>= 3)
Depends R (>= 2.10)
Imports pracma,
      methods,
      stats,
      MASS,
      Rcpp
Suggests knitr,
      rmarkdown
LinkingTo Rcpp,
      RcppArmadillo
Collate meteorits-package.R
      RcppExports.R
      logsumexp.R
      utils.R
      sampleUnivNMoE.R
```

2 R topics documented:

sampleUnivSNMoE.R
sampleUnivSTMoE.R
sampleUnivTMoE.R
ParamSNMoE.R
ParamStMoE.R
ParamTMoE.R
ParamNMoE.R
StatSNMoE.R
StatStMoE.R
StatTMoE.R
StatNMoE.R
ModelSNMoE.R
ModelStMoE.R
ModelTMoE.R
ModelNMoE.R
emSNMoE.R
emStMoE.R
emTMoE.R
emNMoE.R
data-tempanomalies.R
VignetteBuilder knitr
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE
RoxygenNote 6.1.1

R topics documented:

teorits-package	 3
NMoE	 4
SNMoE	 5
StMoE	 6
ТМоЕ	 7
odelNMoE-class	 8
odelSNMoE-class	 9
odelStMoE-class	 9
odelTMoE-class	 10
ramNMoE-class	 11
ramSNMoE-class	 11
ramStMoE-class	 12
ramTMoE-class	 13
npleUnivNMoE	 14
npleUnivSNMoE	 15
npleUnivSTMoE	 16
npleUnivTMoE	 17
atNMoE-class	 18
atSNMoE-class	 19
atStMoE-class	 20
atTMoE-class	 21
npanomalies	 22

meteorits-package 3

Index 23

Description

meteorits is a package containing several original and flexible mixtures-of-experts models to model, cluster and classify heteregenous data in many complex situations where the data are distributed according to non-normal and possibly skewed distributions, and when they might be corrupted by atypical observations. The toolbox also contains sparse mixture-of-experts models for high-dimensional data.

meteorits contains the following Mixture-of-Experts models:

- NMoE (Normal Mixtures-of-Experts) provides a flexible framework for heterogenous data with Normal expert regressors network;
- SNMoE (Skew-Normal Mixtures-of-Experts) provides a flexible modeling framework for heterogenous data with possibly skewed distributions to generalize the standard Normal mixture of expert model;
- tMoE (t Mixtures-of-Experts) provides a flexible and robust modeling framework for heterogenous data with possibly heavy-tailed distributions and corrupted by atypical observations;
- StMoE (Skew t Mixtures-of-Experts) provides a flexible and robust modeling framework for heterogenous data with possibly skewed, heavy-tailed distributions and corrupted by atypical observations.

For the advantages/differences of each of them, the user is referred to our mentioned paper references

To learn more about meteorits, start with the vignettes: browseVignettes(package = "meteorits")

Author(s)

Maintainer: Florian Lecocq <florian.lecocq@outlook.com> (R port) [translator] Authors:

- Faicel Chamroukhi <faicel.chamroukhi@unicaen.fr> (0000-0002-5894-3103)
- Marius Bartcus <marius.bartcus@gmail.com> (R port) [translator]

References

Chamroukhi, F. 2017. *Skew-T Mixture of Experts*. Neurocomputing - Elsevier 266: 390–408. https://chamroukhi.com/papers/STMoE.pdf.

Chamroukhi, F. 2016a. *Robust Mixture of Experts Modeling Using the T-Distribution*. Neural Networks - Elsevier 79: 20–36. https://chamroukhi.com/papers/TMoE.pdf.

Chamroukhi, F. 2016b. *Skew-Normal Mixture of Experts*. In The International Joint Conference on Neural Networks (IJCNN). Vancouver, Canada. https://chamroukhi.com/papers/Chamroukhi-SNMoE-IJCNN2016.pdf.

Chamroukhi, F. 2015a. *Non-Normal Mixtures of Experts*. http://arxiv.org/pdf/1506.06707.pdf.

4 emNMoE

Chamroukhi, F. 2015b. *Statistical Learning of Latent Data Models for Complex Data Analysis*. Habilitation Thesis (HDR), Universite de Toulon. https://chamroukhi.com/FChamroukhi-HDR.pdf.

Chamroukhi, F. 2010. *Hidden Process Regression for Curve Modeling, Classification and Tracking*. Ph.D. Thesis, Universite de Technologie de Compiegne. https://chamroukhi.com/FChamroukhi-PhD.pdf.

Chamroukhi, F., A. Same, G. Govaert, and P. Aknin. 2009. *Time Series Modeling by a Regression Approach Based on a Latent Process*. Neural Networks 22 (5-6): 593–602. https://chamroukhi.com/papers/Chamroukhi_Neural_Networks_2009.pdf.

See Also

Useful links:

- https://github.com/fchamroukhi/MEteorits
- Report bugs at https://github.com/fchamroukhi/MEteorits/issues

emNMoE implements the EM algorithm to fit a Normal Mixture of Experts (NMoE).

Description

emNMoE implements the maximum-likelihood parameter estimation of a Normal Mixture of Experts (NMoE) model by the Expectation-Maximization (EM) algorithm.

Usage

```
emNMoE(X, Y, K, p = 3, q = 1, n_tries = 1, max_iter = 1500,
    threshold = 1e-06, verbose = FALSE, verbose_IRLS = FALSE)
```

Arguments

^	Numeric vector of length n representing the covariates/inputs x_1, \ldots, x_n .
Υ	Numeric vector of length n representing the observed response/output y_1, \ldots, y_n .
K	The number of experts.
p	Optional. The order of the polynomial regression for the experts.
q	Optional. The order of the logistic regression for the gating network.
n_tries	Optional. Number of runs of the EM algorithm. The solution providing the highest log-likelihood will be returned.
max_iter	Optional. The maximum number of iterations for the EM algorithm.
threshold	Optional. A numeric value specifying the threshold for the relative difference of log-likelihood between two steps of the EM as stopping criteria.
verbose	Optional. A logical value indicating whether or not values of the log-likelihood should be printed during EM iterations.
verbose_IRLS	Optional. A logical value indicating whether or not values of the criterion optimized by IRLS should be printed at each step of the EM algorithm.

Numeric vector of length n representing the covariates/inputs r_1

emSNMoE 5

Details

emNMoE function implements the EM algorithm for the NMoE model. This function starts with an initialization of the parameters done by the method initParam of the class ParamNMoE, then it alternates between the E-Step (method of the class StatNMoE) and the M-Step (method of the class ParamNMoE) until convergence (until the relative variation of log-likelihood between two steps of the EM algorithm is less than the threshold parameter).

Value

EM returns an object of class ModelNMoE.

See Also

ModelNMoE, ParamNMoE, StatNMoE

emSNMoE	emSNMoE implements the ECM algorithm to fit a Skew-Normal Mixture of Experts (SNMoE).

Description

emSNMoE implements the maximum-likelihood parameter estimation of a Skew-Normal Mixture of Experts (SNMoE) model by the Expectation Conditional Maximization (ECM) algorithm.

Usage

```
emSNMoE(X, Y, K, p = 3, q = 1, n_tries = 1, max_iter = 1500,
    threshold = 1e-06, verbose = FALSE, verbose_IRLS = FALSE)
```

Arguments

Χ	Numeric vector of length n representing the covariates/inputs x_1, \ldots, x_n .
Υ	Numeric vector of length n representing the observed response/output y_1, \ldots, y_n .
K	The number of experts.
р	Optional. The order of the polynomial regression for the experts.
q	Optional. The order of the logistic regression for the gating network.
n_tries	Optional. Number of runs of the ECM algorithm. The solution providing the highest log-likelihood will be returned.
max_iter	Optional. The maximum number of iterations for the ECM algorithm.
threshold	Optional. A numeric value specifying the threshold for the relative difference of log-likelihood between two steps of the ECM as stopping criteria.
verbose	Optional. A logical value indicating whether or not values of the log-likelihood should be printed during ECM iterations.
verbose_IRLS	Optional. A logical value indicating whether or not values of the criterion optimized by IRLS should be printed at each step of the ECM algorithm.

6 emStMoE

Details

emSNMoE function implements the ECM algorithm for the SNMoE model. This function starts with an initialization of the parameters done by the method initParam of the class ParamSNMoE, then it alternates between the E-Step (method of the class StatSNMoE) and the M-Step (method of the class ParamSNMoE) until convergence (until the relative variation of log-likelihood between two steps of the ECM algorithm is less than the threshold parameter).

Value

ECM returns an object of class ModelSNMoE.

See Also

ModelSNMoE, ParamSNMoE, StatSNMoE

emStMoE	emStMoE implements the ECM algorithm to fit a Skew-t Mixture of
	Experts (StMoE).

Description

emStMoE implements the maximum-likelihood parameter estimation of a Skew-t Mixture of Experts (StMoE) model by the Expectation Conditional Maximization (ECM) algorithm.

Usage

```
emStMoE(X, Y, K, p = 3, q = 1, n_tries = 1, max_iter = 1500,
    threshold = 1e-06, verbose = FALSE, verbose_IRLS = FALSE)
```

Arguments

Χ	Numeric vector of length n representing the covariates/inputs x_1, \ldots, x_n .
Υ	Numeric vector of length n representing the observed response/output y_1, \ldots, y_n .
K	The number of experts.
р	Optional. The order of the polynomial regression for the experts.
q	Optional. The order of the logistic regression for the gating network.
n_tries	Optional. Number of runs of the ECM algorithm. The solution providing the highest log-likelihood will be returned.
max_iter	Optional. The maximum number of iterations for the ECM algorithm.
threshold	Optional. A numeric value specifying the threshold for the relative difference of log-likelihood between two steps of the ECM as stopping criteria.
verbose	Optional. A logical value indicating whether or not values of the log-likelihood should be printed during ECM iterations.
verbose_IRLS	Optional. A logical value indicating whether or not values of the criterion optimized by IRLS should be printed at each step of the ECM algorithm.

emTMoE 7

Details

emStMoE function implements the ECM algorithm for the StMoE model. This function starts with an initialization of the parameters done by the method initParam of the class ParamStMoE, then it alternates between the E-Step (method of the class StatStMoE) and the M-Step (method of the class ParamStMoE) until convergence (until the relative variation of log-likelihood between two steps of the ECM algorithm is less than the threshold parameter).

Value

ECM returns an object of class ModelStMoE.

See Also

ModelStMoE, ParamStMoE, StatStMoE

emTMoE	emTMoE implements the ECM algorithm to fit a t Mixture of Experts (TMoE).

Description

emTMoE implements the maximum-likelihood parameter estimation of a Student Mixture of Experts (TMoE) model by the Conditional Expectation Maximization (ECM) algorithm.

Usage

```
emTMoE(X, Y, K, p = 3, q = 1, n_tries = 1, max_iter = 1500,
    threshold = 1e-06, verbose = FALSE, verbose_IRLS = FALSE)
```

Arguments

X	Numeric vector of length n representing the covariates/inputs x_1, \ldots, x_n .
Υ	Numeric vector of length n representing the observed response/output y_1, \ldots, y_n .
K	The number of experts.
p	Optional. The order of the polynomial regression for the experts.
q	Optional. The order of the logistic regression for the gating network.
n_tries	Optional. Number of runs of the ECM algorithm. The solution providing the highest log-likelihood will be returned.
max_iter	Optional. The maximum number of iterations for the ECM algorithm.
threshold	Optional. A numeric value specifying the threshold for the relative difference of log-likelihood between two steps of the ECM as stopping criteria.
verbose	Optional. A logical value indicating whether or not values of the log-likelihood should be printed during ECM iterations.
verbose_IRLS	Optional. A logical value indicating whether or not values of the criterion optimized by IRLS should be printed at each step of the ECM algorithm.

8 ModelNMoE-class

Details

emTMoE function implements the ECM algorithm for the TMoE model. This function starts with an initialization of the parameters done by the method initParam of the class ParamTMoE, then it alternates between the E-Step (method of the class StatTMoE) and the M-Step (method of the class ParamTMoE) until convergence (until the relative variation of log-likelihood between two steps of the ECM algorithm is less than the threshold parameter).

Value

ECM returns an object of class ModelTMoE.

See Also

ModelTMoE, ParamTMoE, StatTMoE

ModelNMoE-class

A Reference Class which represents a fitted NMoE model.

Description

ModelNMoE represents an estimated NMoE model.

Fields

```
param A ParamNMoE object. It contains the estimated values of the parameters. stat A StatNMoE object. It contains all the statistics associated to the NMoE model.
```

Methods

```
plot(what = c("meancurve", "confregions", "clusters", "loglikelihood"), ...) Plot
    method.
```

what The type of graph requested:

- "meancurve" = Estimated mean and estimated experts means given the input X (fields Ey and Ey_k of class StatNMoE).
- "confregions" = Estimated mean and confidence regions. Confidence regions are computed as plus and minus twice the estimated standard deviation (the squarre root of the field Vary of class StatNMoE).
- "clusters" = Estimated experts means (field Ey_k) and hard partition (field klas of class StatNMoE).
- "loglikelihood" = Value of the log-likelihood for each iteration (field stored_loglik of class StatNMoE).

... Other graphics parameters.

By default, all the graphs mentioned above are produced.

See Also

ParamNMoE, StatNMoE

ModelSNMoE-class 9

ModelSNMoE-class

A Reference Class which represents a fitted SNMoE model.

Description

ModelSNMoE represents an estimated SNMoE model.

Fields

```
param A ParamSNMoE object. It contains the estimated values of the parameters. stat A StatSNMoE object. It contains all the statistics associated to the SNMoE model.
```

Methods

```
plot(what = c("meancurve", "confregions", "clusters", "loglikelihood"), ...) Plot
    method.
```

what The type of graph requested:

- "meancurve" = Estimated mean and estimated experts means given the input X (fields Ey and Ey_k of class StatSNMoE).
- "confregions" = Estimated mean and confidence regions. Confidence regions are computed as plus and minus twice the estimated standard deviation (the squarre root of the field Vary of class StatSNMoE).
- "clusters" = Estimated experts means (field Ey_k) and hard partition (field klas of class StatSNMoE).
- "loglikelihood" = Value of the log-likelihood for each iteration (field stored_loglik of class StatSNMoE).

... Other graphics parameters.

By default, all the graphs mentioned above are produced.

See Also

ParamSNMoE, StatSNMoE

ModelStMoE-class

A Reference Class which represents a fitted StMoE model.

Description

ModelStMoE represents an estimated StMoE model.

Fields

```
param A ParamStMoE object. It contains the estimated values of the parameters. stat A StatStMoE object. It contains all the statistics associated to the StMoE model.
```

10 ModelTMoE-class

Methods

```
plot(what = c("meancurve", "confregions", "clusters", "loglikelihood"), ...) Plot
    method.
```

what The type of graph requested:

- "meancurve" = Estimated mean and estimated experts means given the input X (fields Ey and Ey_k of class StatStMoE).
- "confregions" = Estimated mean and confidence regions. Confidence regions are computed as plus and minus twice the estimated standard deviation (the squarre root of the field Vary of class StatStMoE).
- "clusters" = Estimated experts means (field Ey_k) and hard partition (field klas of class StatStMoE).
- "loglikelihood" = Value of the log-likelihood for each iteration (field stored_loglik of class StatStMoE).
- ... Other graphics parameters.

By default, all the graphs mentioned above are produced.

See Also

ParamStMoE, StatStMoE

ModelTMoE-class

A Reference Class which represents a fitted TMoE model.

Description

ModelTMoE represents an estimated TMoE model.

Fields

```
param A ParamTMoE object. It contains the estimated values of the parameters. stat A StatTMoE object. It contains all the statistics associated to the TMoE model.
```

Methods

```
plot(what = c("meancurve", "confregions", "clusters", "loglikelihood"), ...) Plot
    method.
```

what The type of graph requested:

- "meancurve" = Estimated mean and estimated experts means given the input X (fields Ey and Ey_k of class StatTMoE).
- "confregions" = Estimated mean and confidence regions. Confidence regions are computed as plus and minus twice the estimated standard deviation (the squarre root of the field Vary of class StatTMoE).
- "clusters" = Estimated experts means (field Ey_k) and hard partition (field klas of class StatTMoE).
- "loglikelihood" = Value of the log-likelihood for each iteration (field stored_loglik of class StatTMoE).

... Other graphics parameters.

By default, all the graphs mentioned above are produced.

ParamNMoE-class 11

See Also

ParamTMoE, StatTMoE

ParamNMoE-class

A Reference Class which contains parameters of a NMoE model.

Description

ParamNMoE contains all the parameters of a NMoE model.

Fields

- X Numeric vector of length n representing the covariates/inputs x_1, \ldots, x_n .
- Y Numeric vector of length n representing the observed response/output y_1, \ldots, y_n .
- n Numeric. Length of the response/output vector Y.
- K The number of experts.
- p The order of the polynomial regression for the experts.
- q The order of the logistic regression for the gating network.
- alpha Parameters of the gating network. $\alpha = (\alpha_1, \dots, \alpha_{K-1})$ is a matrix of dimension (q+1, K-1), with q the order of the logistic regression for the gating network. q is fixed to 1 by default.
- beta Polynomial regressions coefficients for each expert. $\beta = (\beta_1, \dots, \beta_K)$ is a matrix of dimension (p+1, K), with p the order of the polynomial regression. p is fixed to 3 by default.
- sigma2 The variances for the K mixture components (matrix of size (1, K)).
- df The degree of freedom of the NMoE model representing the complexity of the model.

Methods

initParam(segmental = FALSE) Method to initialize parameters alpha, beta and sigma2.

If segmental = TRUE then alpha, beta and sigma2 are initialized by clustering the response Y uniformly into K contiguous segments. Otherwise, alpha, beta and sigma2 are initialized by clustering randomly the response Y into K segments.

ParamSNMoE-class

A Reference Class which contains parameters of a SNMoE model.

Description

ParamSNMoE contains all the parameters of a SNMoE model.

12 ParamStMoE-class

Fields

- X Numeric vector of length n representing the covariates/inputs x_1, \ldots, x_n .
- Y Numeric vector of length n representing the observed response/output y_1, \ldots, y_n .
- n Numeric. Length of the response/output vector Y.
- K The number of experts.
- p The order of the polynomial regression for the experts.
- q The order of the logistic regression for the gating network.
- alpha Parameters of the gating network. $\alpha = (\alpha_1, \dots, \alpha_{K-1})$ is a matrix of dimension (q+1, K-1), with q the order of the logistic regression for the gating network. q is fixed to 1 by default.
- beta Polynomial regressions coefficients for each expert. $\beta = (\beta_1, \dots, \beta_K)$ is a matrix of dimension (p+1, K), with p the order of the polynomial regression. p is fixed to 3 by default.
- sigma2 The variances for the K mixture components (matrix of size (1,K)).

lambda The skewness parameters for each experts (matrix of size (1, K)).

delta delta is equal to $\delta = \frac{\lambda}{\sqrt{1+\lambda^2}}$.

df The degree of freedom of the SNMoE model representing the complexity of the model.

Methods

initParam(segmental = FALSE) Method to initialize parameters alpha, beta and sigma2.

If segmental = TRUE then alpha, beta and sigma2 are initialized by clustering the response Y uniformly into K contiguous segments. Otherwise, alpha, beta and sigma2 are initialized by clustering randomly the response Y into K segments.

MStep(statSNMoE, verbose_IRLS) Method which implements the M-step of the EM algorithm to learn the parameters of the SNMoE model based on statistics provided by the object statSNMoE of class StatSNMoE (which contains the E-step).

ParamStMoE-class

A Reference Class which contains parameters of a StMoE model.

Description

ParamStMoE contains all the parameters of a StMoE model.

Fields

- X Numeric vector of length n representing the covariates/inputs x_1, \ldots, x_n .
- Y Numeric vector of length n representing the observed response/output y_1, \ldots, y_n .
- n Numeric. Length of the response/output vector Y.
- K The number of experts.
- p The order of the polynomial regression for the experts.
- q The order of the logistic regression for the gating network.
- alpha Parameters of the gating network. $\alpha = (\alpha_1, \dots, \alpha_{K-1})$ is a matrix of dimension (q+1, K-1), with q the order of the logistic regression for the gating network. q is fixed to 1 by default.

ParamTMoE-class 13

beta Polynomial regressions coefficients for each expert. $\beta = (\beta_1, \dots, \beta_K)$ is a matrix of dimension (p+1, K), with p the order of the polynomial regression. p is fixed to 3 by default.

sigma2 The variances for the K mixture components (matrix of size (1, K)).

lambda The skewness parameters for each experts (matrix of size (1, K)).

delta delta is equal to $\delta = \frac{\lambda}{\sqrt{1+\lambda^2}}$.

nu The degree of freedom for the Student distribution for each experts (matrix of size (1, K)).

df The degree of freedom of the StMoE model representing the complexity of the model.

Methods

initParam(segmental = FALSE) Method to initialize parameters alpha, beta and sigma2.

If segmental = TRUE then alpha, beta and sigma2 are initialized by clustering the response Y uniformly into K contiguous segments. Otherwise, alpha, beta and sigma2 are initialized by clustering randomly the response Y into K segments.

MStep(statStMoE, calcAlpha = FALSE, calcBeta = FALSE, calcSigma2 = FALSE, calcLambda = FALSE, calcMethod which implements the M-step of the EM algorithm to learn the parameters of the StMoE model based on statistics provided by the object statStMoE of class StatStMoE (which contains the E-step).

ParamTMoE-class

A Reference Class which contains parameters of a TMoE model.

Description

ParamTMoE contains all the parameters of a TMoE model.

Fields

- X Numeric vector of length n representing the covariates/inputs x_1, \ldots, x_n .
- Y Numeric vector of length n representing the observed response/output y_1, \ldots, y_n .
- n Numeric. Length of the response/output vector Y.
- K The number of experts.
- p The order of the polynomial regression for the experts.
- q The order of the logistic regression for the gating network.
- alpha Parameters of the gating network. $\alpha = (\alpha_1, \dots, \alpha_{K-1})$ is a matrix of dimension (q+1, K-1), with q the order of the logistic regression for the gating network. q is fixed to 1 by default.
- beta Polynomial regressions coefficients for each expert. $\beta = (\beta_1, \dots, \beta_K)$ is a matrix of dimension (p+1, K), with p the order of the polynomial regression. p is fixed to 3 by default.
- sigma2 The variances for the K mixture components (matrix of size (1, K)).
- nu The degree of freedom for the Student distribution for each experts (matrix of size (1, K)).
- df The degree of freedom of the TMoE model representing the complexity of the model.

14 sampleUnivNMoE

Methods

initParam(segmental = FALSE) Method to initialize parameters alpha, beta and sigma2.

If segmental = TRUE then alpha, beta and sigma2 are initialized by clustering the response Y uniformly into K contiguous segments. Otherwise, alpha, beta and sigma2 are initialized by clustering randomly the response Y into K segments.

MStep(statTMoE, verbose_IRLS) Method which implements the M-step of the EM algorithm to learn the parameters of the TMoE model based on statistics provided by the object statTMoE of class StatTMoE (which contains the E-step).

sampleUnivNMoE

Draw a sample from a normal mixture of linear experts model.

Description

Draw a sample from a normal mixture of linear experts model.

Usage

```
sampleUnivNMoE(alphak, betak, sigmak, x)
```

Arguments

alphak	The parameters of the gating network. alphak is a matrix of size $(q + 1, K - 1)$, with $K - 1$, the number of regressors (experts) and q the order of the logistic regression
betak	Matrix of size $(p + 1, K)$ representing the regression coefficients of the experts network.
sigmak	Vector of length K giving the standard deviations of the experts network.
x	A vector og length n representing the inputs (predictors).

Value

- y Vector of length *n* giving the output variable.
- zi A vector of size n giving the hidden label of the expert component generating the i-th observation. Its elements are zi[i] = k, if the i-th observation has been generated by the k-th expert.
- z A matrix of size (n, K) giving the values of the binary latent component indicators Z_{ik} such that $Z_{ik} = 1$ iff $Z_i = k$.
- stats A list whose elements are:
 - Ey_k Matrix of size (n, K) giving the conditional expectation of Yi the output variable given the value of the hidden label of the expert component generating the ith observation zi = k, and the value of predictor X = xi.
 - Ey Vector of length n giving the conditional expectation of Yi given the value of predictor
 X = xi.
 - Vary_k Vector of length k representing the conditional variance of Yi given zi = k, and X = xi.
 - Vary Vector of length n giving the conditional expectation of Yi given X = xi.

sampleUnivSNMoE 15

sampleUnivSNMoE	Draw a sample from a skew-normal mixture of linear experts model.

Description

Draw a sample from a skew-normal mixture of linear experts model.

Usage

```
sampleUnivSNMoE(alphak, betak, sigmak, lambdak, x)
```

Arguments

alphak	The parameters of the gating network. alphak is a matrix of size $(q + 1, K - 1)$, with $K - 1$, the number of regressors (experts) and q the order of the logistic regression
betak	Matrix of size $(p + I, K)$ representing the regression coefficients of the experts network.
sigmak	Vector of length K giving the standard deviations of the experts network.
lambdak	Vector of length K giving the skewness parameter of each experts.
X	A vector og length <i>n</i> representing the inputs (predictors).

Value

- y Vector of length *n* giving the output variable.
- zi A vector of size n giving the hidden label of the expert component generating the i-th observation. Its elements are zi[i] = k, if the i-th observation has been generated by the k-th expert.
- z A matrix of size (n, K) giving the values of the binary latent component indicators Z_{ik} such that $Z_{ik} = 1$ iff $Z_i = k$.
- stats A list whose elements are:
 - Ey_k Matrix of size (n, K) giving the conditional expectation of Yi the output variable given the value of the hidden label of the expert component generating the ith observation zi = k, and the value of predictor X = xi.
 - Ey Vector of length n giving the conditional expectation of Yi given the value of predictor
 X = xi.
 - Vary_k Vector of length k representing the conditional variance of Yi given zi = k, and X = xi.
 - Vary Vector of length n giving the conditional expectation of Yi given X = xi.

16 sampleUnivSTMoE

sampleUnivSTMoE	Draw a sample from a univariate skew-t mixture.	

Description

Draw a sample from a univariate skew-t mixture.

Usage

```
sampleUnivSTMoE(alphak, betak, sigmak, lambdak, nuk, x)
```

Arguments

alphak	The parameters of the gating network. alphak is a matrix of size $(q + 1, K - 1)$, with $K - I$, the number of regressors (experts) and q the order of the logistic regression
betak	Matrix of size $(p + I, K)$ representing the regression coefficients of the experts network.
sigmak	Vector of length K giving the standard deviations of the experts network.
lambdak	Vector of length K giving the skewness parameter of each experts.
nuk	Vector of length K giving the degrees of freedom of the experts network t densities.
x	A vector og length <i>n</i> representing the inputs (predictors).

Value

- y Vector of length *n* giving the output variable.
- zi A vector of size n giving the hidden label of the expert component generating the i-th observation. Its elements are zi[i] = k, if the i-th observation has been generated by the k-th expert.
- z A matrix of size (n, K) giving the values of the binary latent component indicators Z_{ik} such that $Z_{ik} = 1$ iff $Z_i = k$.
- stats A list whose elements are:
 - Ey_k Matrix of size (n, K) giving the conditional expectation of Yi the output variable given the value of the hidden label of the expert component generating the ith observation zi = k, and the value of predictor X = xi.
 - Ey Vector of length n giving the conditional expectation of Yi given the value of predictor
 X = xi.
 - Vary_k Vector of length k representing the conditional variance of Yi given zi = k, and X = xi.
 - Vary Vector of length n giving the conditional expectation of Yi given X = xi.

sampleUnivTMoE 17

S	sampleUnivTMoE	Draw a sample from a univariate t mixture of experts (TMoE).	

Description

Draw a sample from a univariate t mixture of experts (TMoE).

Usage

```
sampleUnivTMoE(alphak, betak, sigmak, nuk, x)
```

Arguments

alphak	The parameters of the gating network. alphak is a matrix of size $(q + 1, K - 1)$, with $K - 1$, the number of regressors (experts) and q the order of the logistic regression
betak	Matrix of size $(p + 1, K)$ representing the regression coefficients of the experts network.
sigmak	Vector of length K giving the standard deviations of the experts network.
nuk	Vector of length K giving the degrees of freedom of the experts network t densities.
x	A vector of length <i>n</i> representing the inputs (predictors).

Value

- y Vector of length *n* giving the output variable.
- zi A vector of size n giving the hidden label of the expert component generating the i-th observation. Its elements are zi[i] = k, if the i-th observation has been generated by the k-th expert.
- z A matrix of size (n, K) giving the values of the binary latent component indicators Z_{ik} such that $Z_{ik} = 1$ iff $Z_i = k$.
- stats A list whose elements are:
 - Ey_k Matrix of size (n, K) giving the conditional expectation of Yi the output variable given the value of the hidden label of the expert component generating the ith observation zi = k, and the value of predictor X = xi.
 - Ey Vector of length n giving the conditional expectation of Yi given the value of predictor X = xi.
 - Vary_k Vector of length k representing the conditional variance of Yi given zi = k, and X = xi.
 - Vary Vector of length n giving the conditional expectation of Yi given X = xi.

StatNMoE-class

A Reference Class which contains statistics of a NMoE model.

Description

StatNMoE contains all the statistics associated to a NMoE model. It mainly includes the E-Step of the EM algorithm calculating the posterior distribution of the hidden variables, as well as the calculation of the log-likelhood.

Fields

- piik Matrix of size (n, K) representing the probabilities $\pi_k(x_i; \Psi) = P(z_i = k | x; \Psi)$ of the latent variable $z_i, i = 1, ..., n$.
- z_ik Hard segmentation logical matrix of dimension (n, K) obtained by the Maximum a posteriori (MAP) rule: $z_i = 1$ if $z_i = 1$ if
- klas Column matrix of the labels issued from z_ik. Its elements are $klas(i) = k, k = 1, \dots, K$.
- tik Matrix of size (n, K) giving the posterior probability τ_{ik} that the observation y_i originates from the k-th expert.
- Ey_k Matrix of dimension (n, K) giving the estimated means of the experts.
- Ey Column matrix of dimension n.
- Var_yk Column matrix of dimension K giving the estimated means of the experts.
- Vary Column matrix of dimension n giving the estimated variance of the response.
- loglik Numeric. Observed-data log-likelihood of the NMoE model.
- com_loglik Numeric. Complete-data log-likelihood of the NMoE model.
- stored_loglik Numeric vector. Stored values of the log-likelihood at each EM iteration.
- BIC Numeric. Value of BIC (Bayesian Information Criterion).
- ICL Numeric. Value of ICL (Integrated Completed Likelihood).
- AIC Numeric. Value of AIC (Akaike Information Criterion).
- log_piik_fik Matrix of size (n, K) giving the values of the logarithm of the joint probability $P(y_i, z_i = k | \boldsymbol{x}, \boldsymbol{\Psi}), i = 1, ..., n.$
- log_sum_piik_fik Column matrix of size m giving the values of $\log \sum_{k=1}^K P(y_i, z_i = k | x, \Psi)$, $i = 1, \dots, n$.

Methods

- computeLikelihood(reg_irls) Method to compute the log-likelihood. reg_irls is the value of the regularization part in the IRLS algorithm.
- computeStats(paramNMoE) Method used in the EM algorithm to compute statistics based on parameters provided by the object paramNMoE of class ParamNMoE.
- EStep(paramNMoE) Method used in the EM algorithm to update statistics based on parameters provided by the object paramNMoE of class ParamNMoE (prior and posterior probabilities).
- MAP() MAP calculates values of the fields z_ik and klas by applying the Maximum A Posteriori Bayes allocation rule.
 - $z_{ik} = 1$ if $k = \arg \max_s \tau_{is}$; 0 otherwise

See Also

ParamNMoE

StatSNMoE-class

A Reference Class which contains statistics of a SNMoE model.

19

Description

StatSNMoE contains all the statistics associated to a SNMoE model. It mainly includes the E-Step of the ECM algorithm calculating the posterior distribution of the hidden variables, as well as the calculation of the log-likelhood.

Fields

- piik Matrix of size (n, K) representing the probabilities $\pi_k(x_i; \Psi) = P(z_i = k | x; \Psi)$ of the latent variable $z_i, i = 1, ..., n$.
- z_ik Hard segmentation logical matrix of dimension (n, K) obtained by the Maximum a posteriori (MAP) rule: $z_i = 1$ if $z_i = 1$ if
- klas Column matrix of the labels issued from z_ik. Its elements are $klas(i) = k, k = 1, \dots, K$.
- tik Matrix of size (n, K) giving the posterior probability τ_{ik} that the observation y_i originates from the k-th expert.
- Ey_k Matrix of dimension (n, K) giving the estimated means of the experts.
- Ey Column matrix of dimension n.
- Var_yk Column matrix of dimension K giving the estimated means of the experts.
- Vary Column matrix of dimension *n* giving the estimated variance of the response.
- loglik Numeric. Observed-data log-likelihood of the SNMoE model.
- com_loglik Numeric. Complete-data log-likelihood of the SNMoE model.
- stored_loglik Numeric vector. Stored values of the log-likelihood at each ECM iteration.
- BIC Numeric. Value of BIC (Bayesian Information Criterion).
- ICL Numeric. Value of ICL (Integrated Completed Likelihood).
- AIC Numeric. Value of AIC (Akaike Information Criterion).
- log_piik_fik Matrix of size (n, K) giving the values of the logarithm of the joint probability $P(y_i, z_i = k | \boldsymbol{x}, \boldsymbol{\Psi}), i = 1, ..., n$.
- $\log_{\min_i} P(y_i, z_i = k | x, \Psi),$ $i = 1, \ldots, n.$
- Elik Conditional expectations of U_i (Matrix of size (n, K)).
- E2ik Conditional expectations of U_i^2 (Matrix of size (n, K)).

Methods

- computeLikelihood(reg_irls) Method to compute the log-likelihood. reg_irls is the value of the regularization part in the IRLS algorithm.
- computeStats(paramSNMoE) Method used in the ECM algorithm to compute statistics based on parameters provided by the object paramSNMoE of class ParamSNMoE.
- EStep(paramSNMoE) Method used in the ECM algorithm to update statistics based on parameters provided by the object paramSNMoE of class ParamSNMoE (prior and posterior probabilities).
- MAP() MAP calculates values of the fields z_ik and klas by applying the Maximum A Posteriori Bayes allocation rule.
 - $z_{ik} = 1$ if $k = \arg \max_s \tau_{is}$; 0 otherwise

20 StatStMoE-class

See Also

ParamSNMoE

StatStMoE-class

A Reference Class which contains statistics of a StMoE model.

Description

StatStMoE contains all the statistics associated to a StMoE model. It mainly includes the E-Step of the ECM algorithm calculating the posterior distribution of the hidden variables, as well as the calculation of the log-likelhood.

Fields

- piik Matrix of size (n, K) representing the probabilities $\pi_k(x_i; \Psi) = P(z_i = k | x; \Psi)$ of the latent variable $z_i, i = 1, ..., n$.
- z_ik Hard segmentation logical matrix of dimension (n, K) obtained by the Maximum a posteriori (MAP) rule: $z_i = 1$ if $z_i = 1$ if
- klas Column matrix of the labels issued from z_ik. Its elements are klas(i) = k, k = 1, ..., K.
- tik Matrix of size (n, K) giving the posterior probability τ_{ik} that the observation y_i originates from the k-th expert.
- Ey_k Matrix of dimension (n, K) giving the estimated means of the experts.
- Ey Column matrix of dimension n.
- Var_yk Column matrix of dimension K giving the estimated means of the experts.
- Vary Column matrix of dimension n giving the estimated variance of the response.
- loglik Numeric. Observed-data log-likelihood of the StMoE model.
- com_loglik Numeric. Complete-data log-likelihood of the StMoE model.
- stored_loglik Numeric vector. Stored values of the log-likelihood at each ECM iteration.
- BIC Numeric. Value of BIC (Bayesian Information Criterion).
- ICL Numeric. Value of ICL (Integrated Completed Likelihood).
- AIC Numeric. Value of AIC (Akaike Information Criterion).
- log_piik_fik Matrix of size (n, K) giving the values of the logarithm of the joint probability $P(y_i, z_i = k | \boldsymbol{x}, \boldsymbol{\Psi}), i = 1, \dots, n.$
- $\log_{\min_i} P(y_i, z_i = k | x, \Psi),$ i = 1, ..., n.
- dik It represents the value of d_{ik} .
- wik Conditional expectations w_{ik} .
- E1ik Conditional expectations $e_{1,ik}$.
- E2ik Conditional expectations $e_{2,ik}$.
- E3ik Conditional expectations $e_{3,ik}$.
- stme_pdf Skew-t mixture of experts density.

StatTMoE-class 21

Methods

computeLikelihood(reg_irls) Method to compute the log-likelihood. reg_irls is the value of the regularization part in the IRLS algorithm.

computeStats(paramStMoE) Method used in the ECM algorithm to compute statistics based on parameters provided by the object paramStMoE of class ParamStMoE.

EStep(paramStMoE, calcTau = FALSE, calcE1 = FALSE, calcE2 = FALSE, calcE3 = FALSE) Method used in the ECM algorithm to update statistics based on parameters provided by the object paramStMoE of class ParamStMoE (prior and posterior probabilities).

MAP() MAP calculates values of the fields z_ik and klas by applying the Maximum A Posteriori Bayes allocation rule.

 $z_{ik} = 1$ if $k = \arg \max_s \tau_{is}$; 0 otherwise

See Also

ParamStMoE

StatTMoE-class

A Reference Class which contains statistics of a TMoE model.

Description

StatTMoE contains all the statistics associated to a TMoE model. It mainly includes the E-Step of the ECM algorithm calculating the posterior distribution of the hidden variables, as well as the calculation of the log-likelhood.

Fields

piik Matrix of size (n, K) representing the probabilities $\pi_k(x_i; \Psi) = P(z_i = k | x; \Psi)$ of the latent variable $z_i, i = 1, ..., n$.

z_ik Hard segmentation logical matrix of dimension (n, K) obtained by the Maximum a posteriori (MAP) rule: $z_i = 1$ if $z_i = 1$ if

klas Column matrix of the labels issued from z_ik. Its elements are $klas(i) = k, k = 1, \dots, K$.

tik Matrix of size (n, K) giving the posterior probability τ_{ik} that the observation y_i originates from the k-th expert.

Ey_k Matrix of dimension (n, K) giving the estimated means of the experts.

Ey Column matrix of dimension n.

Var_yk Column matrix of dimension K giving the estimated means of the experts.

Vary Column matrix of dimension n giving the estimated variance of the response.

loglik Numeric. Observed-data log-likelihood of the TMoE model.

com_loglik Numeric. Complete-data log-likelihood of the TMoE model.

stored_loglik Numeric vector. Stored values of the log-likelihood at each ECM iteration.

BIC Numeric. Value of BIC (Bayesian Information Criterion).

ICL Numeric. Value of ICL (Integrated Completed Likelihood).

AIC Numeric. Value of AIC (Akaike Information Criterion).

log_piik_fik Matrix of size (n, K) giving the values of the logarithm of the joint probability $P(y_i, z_i = k | x, \Psi), i = 1, ..., n$.

 $\log_{\min_i} P(y_i, z_i = k | x, \Psi),$ $i = 1, \ldots, n.$

Wik Conditional expectations w_{ik} .

22 tempanomalies

Methods

computeLikelihood(reg_irls) Method to compute the log-likelihood. reg_irls is the value of the regularization part in the IRLS algorithm.

computeStats(paramTMoE) Method used in the ECM algorithm to compute statistics based on parameters provided by the object paramTMoE of class ParamTMoE.

EStep(paramTMoE) Method used in the ECM algorithm to update statistics based on parameters provided by the object paramTMoE of class ParamTMoE (prior and posterior probabilities).

MAP() MAP calculates values of the fields z_ik and klas by applying the Maximum A Posteriori Bayes allocation rule.

```
z_{ik} = 1 if k = \arg \max_s \tau_{is}; 0 otherwise
```

See Also

ParamTMoE

tempanomalies

Global Annual Temperature Anomalies (Land Meteorological Stations) (1880-2015)

Description

This dataset is from https://cdiac.ess-dive.lbl.gov/ftp/trends/temp/hansen/gl_land.txt.

Usage

tempanomalies

Format

A data frame with 136 rows and 3 columns:

Year Year of observation.

AnnualAnomaly Value in degrees C of the global annual temperature anomaly.

5-YearMean 5-Year mean of temperature anomalies.

Details

Global annual temperature anomalies (degrees C) computed using data from land meteorological stations, 1880-2015. Anomalies are relative to the 1951-1980 base period means.

Non-computed values are indicated by "-99.99".

Index

*Topic datasets tempanomalies, 22
emNMoE, 4 emSNMoE, 5 emStMoE, 6 emTMoE, 7
meteorits (meteorits-package), 3 meteorits-package, 3 ModelNMoE, 5 ModelNMoE (ModelNMoE-class), 8 ModelNMoE-class, 8 ModelSNMoE, 6 ModelSNMoE (ModelSNMoE-class), 9 ModelSNMoE-class, 9 ModelStMoE, 7 ModelStMoE (ModelStMoE-class), 9 ModelStMoE-class, 9 ModelStMoE-class, 9 ModelTMoE, 8 ModelTMoE (ModelTMoE-class), 10 ModelTMoE-class, 10
NMoE, 18
ParamNMoE, 5, 8, 18 ParamNMoE (ParamNMoE-class), 11 ParamNMoE-class, 11 ParamSNMoE, 6, 9, 19, 20 ParamSNMoE (ParamSNMoE-class), 11 ParamSNMoE-class, 11 ParamStMoE, 7, 9, 10, 21 ParamStMoE (ParamStMoE-class), 12 ParamStMoE-class, 12 ParamTMoE, 8, 10, 11, 22 ParamTMoE (ParamTMoE-class), 13 ParamTMoE-class, 13
<pre>sampleUnivNMoE, 14 sampleUnivSNMoE, 15 sampleUnivSTMoE, 16 sampleUnivTMoE, 17 SNMoE, 19 StatNMoE, 5, 8 StatNMoE (StatNMoE-class), 18</pre>

```
StatNMoE-class, 18
StatSNMoE, 6, 9, 12
StatSNMoE (StatSNMoE-class), 19
StatSNMoE-class, 19
StatStMoE, 7, 9, 10, 13
StatStMoE (StatStMoE-class), 20
StatStMoE-class, 20
StatTMoE, 8, 10, 11, 14
StatTMoE (StatTMoE-class), 21
StatTMoE-class, 21
StmoE, 20
tempanomalies, 22
TMoE, 21
```