IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of)	
Teuvo MAUNULA)	Group Art Unit: Unassigned
Application No.: New U.S. Patent Application)	Examiner: Unassigned
Filed: April 10, 2001)	
For: ADSORBENT CATALYST)	

CLAIM FOR CONVENTION PRIORITY

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

The benefit of the filing date of the following prior foreign application in the following foreign country is hereby requested, and the right of priority provided in 35 U.S.C. § 119 is hereby claimed:

Finnish Patent Application No. 20000854

Filed: April 10, 2000

In support of this claim, enclosed is a certified copy of said prior foreign application. Said prior foreign application was referred to in the oath or declaration. Acknowledgment of receipt of the certified copy is requested.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

Date: April 10, 2001

Scott W. Cummings

Registration No. 41,567

P.O. Box 1404 Alexandria, Virginia 22313-1404 (703) 836-6620

PATENTTI- JA REKISTERIHALLITUS. NATIONAL BOARD OF PATENTS AND REGISTRATION

Helsinki 19.3.2001

ETUOIKEUSTODISTUS PRIORITY DOCUMENT

Hakija Applicant

Kemira Metalkat Oy

Helsinki

Patenttihakemus nro Patent application no

20000854

Tekemispäivä Filing date

10.04.2000

Kansainvälinen luokka International class

B01J

Keksinnön nimitys Title of invention

"Adsorbenttikatalyytti"

Täten todistetaan, että oheiset asiakirjat ovat tarkkoja jäljennöksiä patentti- ja rekisterihallitukselle alkuaan annetuista selityksestä, patenttivaatimuksista ja piirustuksista.

This is to certify that the annexed documents are true copies of the description, claims and drawings originally filed with the Finnish Patent Office.

09 6939 500

Tutkimussihteer!

Maksu 300,- mk 300,- FIM Fee

Osoite: Arkadiankatu 6 A Telephone: + 358 9 6939 500 P.O.Box 1160

09 6939 5328 Telefax: Telefax: + 358 9 6939 5328

FIN-00101 Helsinki, FINLAND

Adsorbenttikatalyytti - Adsorbentkatalysator

Tämän keksinnön kohteena on adsorbenttikatalyytti pako- tai savukaasujen, erityisesti bensiini-, diesel- tai maakaasumoottoreiden pakokaasujen puhdistamiseksi.

- 5 Bensiinimoottoreilla on päästy merkittävään polttoaineen kulutuksen vähenemiseen (10-20 %) uusilla, bensiinin suoraruiskutusta ja ylimäärin ilmaa käyttävillä moottoreilla. Riippuen ajovaiheesta ilma/bensiini-seossuhde (A/F = air/fuel) on näissä moottoreissa selvästi laihalla puolella (λ välillä 1,1-2,4) pitkiä aikoja, jolloin ilmaa syötetään ylimäärin tarvittavaan polttoaineen täydelliseen palamiseen nähden. Muulloin moottorin seossuhde on stökiometrinen ($\lambda = 1$) tai rikkas ($\lambda < 1$), joita olosuhtei-10 ta joudutaan normaalisti käyttämään vaihtelevissa ajo-olosuhteissa ja suurilla ajonopeuksilla. Säätöjärjestelmä (EMS= engine management system) pyrkii noudattamaan ajoneuvon muisteihin ohjelmoituja ajoparametreja, jotka perustuvat auton valmistajan moottori- ja ajoneuvokartoitukseen (engine and driving condition mapping). Dieselmoottori on perinteisesti bensiinimoottoria polttoainetaloudellisempi 15 etenkin raskaissa autoissa ja polttoaineen ruiskutustekniikka on kehittynyt yhdessä säätöjärjestelmien kanssa sellaiseksi, että raakaemissiot ja varsinkin partikkelimäärät ovat pieniä. Siirtyminen yhä enemmän laihaseosmoottoreihin on kuitenkin vaikeuttanut perinteisten typen oksidien päästöjen poistotekniikoiden toimintaa.
- Kolmitoimikatalyytillä voidaan vähentää typen oksidien, hään ja hiilivetyjen pitoisuuksia yli 90 % tehokkuudella normaalien ajoneuvojen testisyklien (Euro 3/Euro 4-tason mukaiset) aikana. Kolmitoimikatalyyttiä käytettäessä pyritään pitämään olosuhteet (ilma/polttoaine-suhde, A/F) mahdollisimman tarkasti stökiometrisenä λ-anturien vasteiden ja moottorin säätöjärjestelmän avulla. Päästörajat partikkeleille ja NO_x:lle tiukentuvat siirryttäessä Euro 3:sta Euro 4:ään: partikkelit 0,025 g/km:iin ja NO_x 0,25 g/km:iin.

Ylimäärin happea sisältävissä pakokaasuissa pelkistimien määrä ja niiden selektiivisyys NO_x :n pelkistykseen ovat kuitenkin alhaisia. Kaasumaiset päästöt (HC, CO) puhdistuvat normaalisti yli 80 %:n ja partikkelit noin 20-40 %:n konversiolla hyvässä hapetuskatalyytissä, kun λ on selvästi yli 1. Typen oksidien konversio on dieselpakokaasuissa normaalisti noin 0-20 %, jolloin puhutaan myös 4-toimikatalyytistä (CO, HC, NOx, partikkelit). Dieselhapetuskatalyyteissä käytetään normaalisti aktiivisena metallina Pt:aa, joka on kestävä SO_x :n läsnäollessa. Katalyytit asennetaan

usein mahdollisimman lähelle moottoria (CC = Closed Coupled) tavanomaisen korin alle asennuksen (UF = Under Floor) sijasta.

Typen oksidien vähentämistä varten on kehitetty ja käytetty kaupallisesti myös Euro 2-tason suoraruiskutusautoissa (GDI = gasoline direct injection) Ir-katalyyttejä, joita käytetään yhdessä 3-toimi- tai Pt-katalyyttien kanssa. Sellainen katalyytti vaati kuitenkin suhteellisen korkeaa jatkuvaa hiilivetymäärää pakokaasussa, Ir-katalyyttien terminen/kemiallinen kestävyys on melko heikko (max. 800-900 °C) ja NO_x-konversio jää melko alhaiseksi. Pt-Ir-Rh/ZSM5-katalyyttejä on myös käytetty aiemmin laihabensiinikohteissa (Iwakuni et al., Science and Tech. in Catal. 1998). Vaikka zeoliittipohjaisten katalyyttien kestävyyttä on pyritty parantamaan, se on kuitenkin riittämätön täyden kuorman ajotilanteissa.

5

10

15

20

25

30

35

Koska jatkuvaan NO_x:n pelkistykseen perustuvat katalyytit eivät toimi Euro3:n tai Euro4:n päästörajojen vaatimilla tasoilla, on kehitetty uuden tyyppisiä NO_x-adsorptioon (NO_x-trap) perustuvia katalyyttejä (SAE-julkaisu 982593). Niiden toiminta perustuu siihen, että typen oksideja adsorboidaan laihavaiheiden aikana katalyytin NO_x-trap-komponentteihin, jollainen on mm. BaO. Typen oksidit hapettuvat NO₂:ksi, adsorboituvat nitraatteina (Ba(NO₃)₂) laihavaiheessa (kesto esim. 15 s -5 min) ja pelkistyvät tarkoituksella järjestetyn lyhyen rikastuksen (kesto esim. 1-5 s, A/F-suhde alle stökiometrisen) aikana typeksi. Menetelmä voidaan virittää (ajastukset, regeneroinnit) toimimaan moottorin ja ajo-olosuhteiden mukaan. Tavallisin adsorbentti Ba sitoo kuitenkin pakokaasussa olevat rikin oksidit (SO_x) tiukasti sulfaatteina pintaansa, mikä heikentää ajan myötä katalyytin toimintaa. Katalyytti on regeneroitava kokonaan, riippuen polttoaineen rikkipitoisuudesta, noin 1000-6000 km määrävälein sulfaatista. Ba-sulfaatti voidaan hajoittaa nostamalla pakokaasun lämpötila yli 650 °C:n riittävän pitkäksi aikaa selvästi rikkaissa olosuhteissa. Tällöin sulfaatit hajoavat sulfideiksi ja vapautuvat lähinnä rikkivetynä tai COS:na ulostulevaan pakokaasuun. Näin katalyytin toiminta palautuu osittain tai kokonaan. BaO saattaa sitoa myös epäedullisissa olosuhteissa CO2:a karbonaatteina tiukemmin pintaansa kuin nitraatteja. Ba:iin perustuvien katalyyttien toiminta edellyttää hyvin alhaista polttoaineen rikkitasoa eikä esiteltyjen katalyyttien toimintataso ole vielä riittävän korkea.

Pakokaasu virtaa jatkuvasti NO_x-trap-katalyytin läpi ja sen jatkuva toiminta perustuu säätöjärjestelmän ohjaamiin rikastuksiin (EP 0 560 991,1993). HC:n ja CO:n esitetään toimivan rikastuksissa pelkistiminä ja laihavaiheet ovat kestoltaan yli 50 kertaa pidempiä kuin rikastusvaiheet. Katalyytin NO_x-adsorbentti on K, Na, Li, Cs, Ba, Ca, La tai Y sekä jalometallina Pt:aa. Myös Ba-Cu-komposiitin väitetään toimivan.

NO_x-trap-katalyytin jälkeen tai ennen sitä voi olla normaali 3-toimikatalyytti. Patentissa esitetään systeemi myös dieselmoottorin pakokaasujen puhdistukseen samalla katalyytillä.

Toinen konsepti (EP 0 838 255) sisältää huokoisen tukiaineen (alumiinioksidi) pinnalla alkalimetallia (Na, Li, K, Rb), Ti:a ja jalometallia (Rh, Pt, Pd). Lisäksi katalyytti voi sisältää harvinaisia maametalleja tai Mg:a. Hyvin suurilla Na- ja K-pitoisuuksilla (yli 30 p-%, EP 0 857 510) tai Li-pitoisuuksilla (yli 10 p-%, WO 97/47373) on väitetty saatavan aikaan yhdessä jalometallien kanssa tehokas NO_x-trap-materiaali. Sr:a (6-15 p-%) voidaan käyttää yhdessä Zr:n ja sulfaatin kanssa myös Ba:n sijasta katalyytissä (US 5 753 192).

5

10

20

Erilaisilla sekaoksideilla (yleisesti A_aB_bO₄, jossa B lähinnä Al ja A Mg, Ca, Mn, Fe, Ni, Co, Cu, Zn, Sn tai Ti)) on saatu aikaan NO_x-adsorptio-ominaisuuksia (WO 98/56492).

On esitetty myös W-fosfaatin käyttämistä Pt-katalyytissä estämään rikin haittavaikutuksia NO_x-adsorptiossa (EP 0 864 353).

On esitetty myös ratkaisu, jossa on kaksi rinnakkaista NO_x-trap-katalyyttiä, joista toinen on samaan aikaan adsorptio- ja toinen pelkistysvaiheessa (WO 98/45582). Katalyytti sisältää Sr, Ba, Ca, BaTiO₃, BaZrO₃, LaZrO₃, MnO₂, LaMnO_x ja seoksen La-, Ce-, Ti- ja Zr-oksideja sekä Pt, Rh tai Pd. Vastaavia yhdisteitä (BaMnO₃, CaMnO₃) on käytetty myös toisessa patentissa (US 5 906 958). Menetelmä on monimutkainen, vaatii 2-kertaisen katalyyttimäärän ja kuumassa (jopa 900 °C) toimivan 3-tieventtiilin ohjaamaan pakokaasua.

Ti/mordeniitin ja sekaoksidin (La, Ba, Co) seoksen on väitetty toimivan hiilivetyjen läsnäollessa antaen hyvän NO_x-konversion (DE 44 45 945).

On esitetty kaksikerroskatalyytti, jossa Pt ja NO_x-adsorbentit (Ba, K) ovat 1. ja Rh 2. kerroksessa (WO 99/00177). Pt-kerroksessa on tarkoitus hapettaa NO NO₂:ksi ja Rh-kerroksessa pelkistää vapautuvat typen oksidit typeksi. Esitetään myös, että stö-kiometrinen seossuhde on riittävä regeneroimaan (pelkistämään) nitraatit katalyytin pinnalla. Myös aiemmassa patentissa (WO 97/02886) on esitetty 2-kerroskatalyytti, jossa toisessa kerroksessa on NO_x-trap-materiaali ja Pt sekä toisessa kerroksessa pelkistyskatalyytti. Kerrokset voivat olla myös sekoitettuna keskenään. Tavallisesti 2-kerroskatalyytissä erilliset koostumukset kuitenkin häiritsevät toisiaan (jalometalleja menee imeytyksessä samaan kerrokseen, tiettyjen NO_x-trap-yhdisteiden (Ba, K) lisääminen häiritsee nitraattien regeneroitumista = syttymisongelma). Nitraattien

hajoaminen ja reagointi ei voi alkaa ennen kuin ko. aktiivinen paikka alkaa toimia reaktiossa rikastuspiikkien aikana. On vaikeaa saada toimimaan NO_x-trap-katalyyttiä, jossa on samaan kerrokseen lisätty sekä korkeassa että matalassa lämpötilassa nitraatteja sitovia yhdisteitä, koska ne häiritsevät toisiaan ja tavallisesti korkean lämpötilan NO_x-trap-ominaisuus on hallitseva.

Eräässä ratkaisussa (EP 0 778 072) on sijoitettu 3 katalyyttia sarjaan: ensimmäisenä laihapuolen NO_x-katalyytti, toisena NO_x-trap ja kolmantena 3-toimikatalyytti. Ratkaisu on kuitenkin monimutkainen, tunnettujen NO_x-katalyyttien tehokkuus on alhaisesta HC-pitoisuudesta johtuen heikko eikä se toimi todennäköisesti hyvin rikastuspiikkien aikana.

Rikin haittavaikutuksia on esitetty vähennettävän käyttämällä NO_x-trap-katalyytin edessä sulfaatin adsorbenttiyksikköä (EP 0 892 159). Tämän tyyppisellä ratkaisulla voidaan tavallisesti vain hidastaa taakse sijoitetun NO_x-trap-katalyytin deaktivoitumista sulfaateilla, koska rikkaissa seospiikeissä kaasumaisten rikkiyhdisteiden tulisi mennä adsorboitumatta NO_x-trap-katalyytin läpi. Tällöin NO_x-trap-katalyytin regeneroituminen (sulfidien desorptio) rikkaissa vaiheissa on joka tapauksessa ratkaiseva ominaisuus pitemmän ajan käyttöä ajatellen.

On esitetty myös katalysaattoriratkaisu, jossa kahden metallifolion pinnat on päällystetty katalyyttipinnoilla, joiden tukiaine, fysikaalinen rakenne tai jalometallit ovat keskenään eri paikoissa erilaiset (FI 94455). Tällä tavalla voidaan saada aikaan hyviä tuloksia ketju- tai rinnakkaisreaktiossa, joita ei voida saavuttaa samassa katalyyttikerroksessa. Menetelmä on kuitenkin tarkoitettu puhtaasti katalyyttireaktiolle, mutta adsorptiomenetelminen käyttäminen yhdessä katalyytin kanssa koostumukseltaan muuttuvissa olosuhteissa muuttaa tilanteen täysin.

Katalyyttireaktio perustuu jatkuvasti eteneviin vaiheisiin, joissa reaktantit ja reaktiotuotteet ovat mukana: 1) ulkoinen aineensiirto katalyytin ulkopinnalle ja pinnalta pois, 2) huokosdiffuusiot ulkopinnalta aktiiviselle paikalle huokosissa ja pois 3) adsorptiot ja desorptiot aktiivisille paikoille, 4) pintareaktiot aktiivisilla paikoilla. Vaikka adsorptio on katalyyttireaktion yksi mekanismivaihe, reaktanttien adsorptio voi edetä vain tiettyyn tasapainoon saakka, minkä jälkeen katalyyttiin ei samoissa olosuhteissa voi adsorboitua enempää ko. komponenttia. Liian voimakas adsorptio on tavallisesti syy siihen, että reaktiot eivät käynnisty alhaisissa lämpötiloissa. Varsinaiset adsorptiomenetelmät poikkeavat katalyyttimenetelmistä täysin ja niissä on tavoitteena tiettyjen yhdisteiden varastointi adsorbenttiin, joka voidaan esim. vaihtaa aika-ajoin uuteen tai regeneroida sen jälkeen, kun adsorptiokapasiteetti on käytetty

loppuun. Katalyysissä ja adsorptiossa aktiivisten paikkojen kemiallinen luonne on myös hyvin erilainen. Pakokaasuissa poistettavien epäpuhtauksien, kuten NO_x:ien, määrä on kuitenkin niin suuri, että adsorptiokapasiteetti on olosuhteista riippuen kulutettu loppuun viimeistään muutamassa minuutissa.

- Tämän keksinnön tarkoituksena on saada aikaan NO_x:n poistossa toimiva jatkuvatoiminen adsorbentin ja katalysaattorin yhdistelmä sekä menetelmä, jolla typen oksidien suhteen saavutetaan korkeat konversiot typeksi pakokaasuseoksen sisältäessä keskimäärin ylimäärin happea ja tyypillisiä poltto- ja voiteluaineen ja moottorin epäpuhtauksia.
- 10 Keksintö perustuu siihen, että adsorbenttikatalyytin koostumus, rakenne ja valmistustapa sekä olosuhteet ovat sellaiset, että saadaan aikaan aiemmin esitettyihin katalyytteihin verrattuna selvästi erilainen ja parempi ratkaisu, jonka kestävyys ja regeneroitavuus rikkidioksidin läsnäollessa on myös parantunut.
- Keksinnön käyttöalueita ovat pako- ja savukaasusovellutukset liikkuvissa tai stationaarissa kohteissa, joissa seoksen palamissuhde on laihalla eli happea ylimäärin sisältävä jatkuvasti tai hetkittäin ja polttoaineena voidaan käyttää mitä tahansa nestemäisiä, kaasumaisia tai kiinteitä polttoaineita.
 - Keksinnön mukainen adsorbenttikatalyyttikonsepti rakentuu useista eri kemiallista yhdisteistä, joiden tehtävänä on katalyyttireaktorissa/-reaktoreissa katalysoida NO:n hapettumista NO₂:ksi, adsorboida typen oksideja/nitriaatteja/nitriittejä ja katalysoida typen oksidien pelkistymistä typeksi, adsorboida pelkistimiä rikkaalla, katalysoida CO:n/hiilivetyjen/vedyn hapettumista vedeksi ja hiilidioksidiksi jopa rikin yhdisteitä sisältävissä olosuhteissa.

- Keksinnön mukaisesti on näin ollen aikaansaatu adsorbenttikatalyytti pako- tai savukaasujen sisältämien typen oksidien, hiilivetyjen ja hään vähentämiseksi, joka
 katalyytti adsorboi typen oksideja kun savu- tai pakokaasut sisältävät ylimäärin happea ja vapauttaa ja pelkistää adsorboidut typen oksidit kun mainitut kaasut sisältävät
 alimäärin tai stökiometrisen määrän happea, jolle adsorbenttikatalyytille on tunnusomaista, että siinä on suuren pinta-alan omaava huokoinen tukiaine, joka sisältää ainakin:
 - ensimmäisen katalyyttisen metallin, joka on Pt, ensimmäisen NO_x-adsorbentin, joka sisältää ainakin yhden seuraavista metalleista: Ba ja Sr,

toisen NO_x-adsorbentin, joka sisältää ainakin yhden seuraavista metalleista: La ja Y, ja

redox-NO_x-adsorbentin, joka sisältää ainakin yhden seuraavista metalleista: Ce, Zr, Ti, Nb, Mn, Pr, Nd, Sm, Eu ja Gd.

Tukiaine voi lisäksi sisältää toisen katalyyttisen metallin, joka käsittää ainakin yhden seuraavista metalleista: Rh, Pd ja Ir.

Tukiaine voi lisäksi sisältää kolmannen NO_x-adsorbentin, joka sisältää ainakin yhden seuraavista metalleista: K, Na, Li, Ca, Rb ja Cs.

Tukiaine voi lisäksi sisältää neljännen NO_x-adsorbentin, joka sisältää ainakin yhden seuraavista metalleista: Mg ja Be.

Mainitut adsorbentit voivat olla oksidi-, sulfaatti-, nitraatti-, aluminaatti- tai metal-limuodossa, edullisesti oksidimuodossa.

Mainittu redox-NO_x-adsorbentti sisältää edullisesti Ce:a ja/tai Zr:a.

Mainitut redox-NO_x-adsorbentit ovat muodostaneet keskinäisen sekaoksidin tai näi-15 den seoksen.

Edullisia redox-NO_x-adsorbentteja ovat esimerkiksi ZrCe-, MnCeZr- ja MnCe-sekaoksidit.

Edullisesti mainitusta redox-NO_x-adsorbentista ja toisesta NO_x-adsorbentista on muodostettu kahden tai useamman alkuaineen sekaoksidi tai näiden seos.

20 Ensimmäisen ja/tai toisen katalyyttisen metallin keskimääräinen partikkelikoko on edullisesti alle 30 nm tuoreessa tukiaineessa, erityisen edullisesti alle 10 nm.

Redox- NO_x -adsorbentin keskimääräinen partikkelikoko on edullisesti yli 5 μ m tuoreessa tukiaineessa, erityisen edullisesti välillä 5-30 μ m.

Keksinnön mukainen adsorbenttikatalyytti, voi rakenteeltaan olla sellainen, että se käsittää ensimmäinen pinnan, jonka päällä on ensimmäinen pinnoite, joka sisältää tukiaineen ja mainitut adsorbentit tai osan niistä, ja toisen pinnan, jonka päällä on toinen pinnoite, joka sisältää tukiaineen ja mainitut adsorbentit tai osan niistä, jolloin pinnoitteilla on sama tai eri koostumus.

Mainittu ensimmäinen pinta voi muodostua olennaisesti sileästä metallifoliosta ja toinen pinta voi muodostua rypytetystä metallifoliosta, joista metallifolioista on muodostettu kenno, jossa on lukuisia läpivirtauskanavia kaasua varten.

Erään suoritusmuodon mukaan ensimmäinen katalyyttinen metalli Pt on molemmissa pinnoitteissa ja toinen katalyyttinen metalli on vain toisessa pinnoitteessa.

Edullisesti mainittujen metallifolioiden molemmat pinnat ovat pinnoitetut.

Edullisesti ensimmäinen katalyyttinen metalli on jaettu pitoisuuden suhteen eri folioiden kesken sillä tavalla, että toisessa foliossa Pt-lataus on noin 0-90 g/ft³ ja toisessa foliossa Pt-lataus on noin 70-400 g/ft³, joka tilavuus viittaa folioista muodostetun kennon tilavuuteen. Tällöin Pt-lataus toisessa foliossa voi olla noin 10-90 g/ft³ ja toisessa noin 70-250 g/ft³.

Ensimmäinen NO_x-adsorbentti voi pitoisuuden suhteen olla jaettu eri folioiden kesken sillä tavalla, että toisen folion tukiaineessa pitoisuus on noin 8-40 paino-%, edullisesti noin 10-20 paino-%, ja toisen folion tukiaineessa pitoisuus on noin 0-10 paino-%, edullisesti noin 3-8 paino-%, jotka määrät on laskettu oksideina tukiaineen painosta.

Toinen NO_x-adsorbentti voi pitoisuuden suhteen olla jaettu eri folioiden kesken sillä tavalla, että toisen folion tukiaineessa pitoisuus on noin 8-40 paino-%, edullisesti noin 5-15 paino-%, ja toisen folion tukiaineessa pitoisuus on noin 0-8 paino-%, edullisesti noin 1-6 paino-%, jotka määrät on laskettu oksideina tukiaineen painosta.

Mainittu redox-adsorbentti voi pitoisuuden suhteen olla jaettu eri folioiden kesken sillä tavalla, että toisen folion tukiaineessa pitoisuus on noin 10-60 paino-%, esimerkiksi noin 10-30 paino-%, edullisesti noin 15-25 paino-%, ja toisen folion tukiaineessa pitoisuus on noin 0-10 paino %, edullisesti noin 2-5 paino-%, jotka määrät on laskettu oksideina tukiaineen painosta.

On myös mahdollista muodostaa sellainen rakenne, jossa adsorbentit on kokonaan toisen folion tukiaineessa, joka folio edullisesti on sileä folio, ja katalyyttiset metallit on toisen folion tukiaineessa, joka edullisesti on rypytetty folio.

Edullisia tukiaineita ovat sellaiset, jotka sisältävät pääosin ainakin yhtä seuraavista oksideista: alumiinioksidi, zeoliitti, alumiinisilikaatti ja piidioksidi.

Keksinnön mukaisesti on lisäksi aikaansaatu katalyyttijäjestelmä pako- tai savukaasujen sisältämien typen oksidien, hiilivetyjen ja hään vähentämiseksi, joka järjestel-

5

10

15

20

25

mä sisältää edellä kuvatun adsorbenttikatalyytin ja kaasujen virtaussuunnassa ennen adsorbenttikatalyyttiä sijoitetun toisen katalyytin. Tämä toinen katalyytti voi esimerkiksi olla 3-toimikatalyytti tai hapetuskatalyytti. Erityisesti tämä toinen katalyytti hapettaa tehokkaasti erityisesti hiilivetyjä saaden aikaan seoksen, jossa hiilivetyjen määrä on alhainen ja rikkaiden piikkien aikana hään ja vedyn osuus on mahdollisimman suuri ennen adsorbenttikatalyyttiä.

5

20

25

Mainittu toinen katalyytti sisältää yhden tai useamman katalyyttisen metallin, joka edullisesti on jokin seuraavista metalleista: Pd, Rh ja Pt.

Keksinnön mukaisesti on myös aikaansaatu menetelmä pako- tai savukaasujen sisältämien typen oksidien, hiilivetyjen ja hään vähentämiseksi, jossa menetelmässä puhdistettavat kaasut johdetaan edelle kuvatun keksinnön mukaisen adsorbenttikatalyytin tai edellä kuvatun keksinnön mukaisen katalyyttijärjestelmän läpi, joka adsorbenttikatalyytti adsorboi typen oksideja kun savu- tai pakokaasut sisältävät ylimäärin happea ja vapauttaa ja pelkistää adsorboidut typen oksidit kun mainitut kaasut sisältävät alimäärin tai stökiometrisen määrän happea.

Voidaan käyttää lyhyitä ohjattuja tai luonnollisia ajanjaksoja, joissa kaasut sisältävät alimäärin tai stökiometrisen määrän happea.

Keksinnön mukaisesti on vielä aikaansaatu menetelmä väliaineessa olevan aineosan adsorboimiseksi adsorbenttikatalyyttiin ja reagoimiseksi katalyyttisesti reaktantin avulla halutuksi yhdisteeksi, joka adsorbenttikatalyytti sisältää yhden tai useamman katalyyttisen metallin sekä yhden tai useamman absorbentin, ja jossa menetelmässä adsorption ja katalyyttisen reaktion jatkuva toiminta saadaan aikaan heterogeenisillä olosuhteilla.

Tässä menetelmässä adsorptio ja katalyyttinen reaktio yhdistetään ilman, että ne häiritsevät toisiaan. Adsorption ja katalyyttisen reaktion jatkuva toiminta voidaan saada aikaan heterogeenisillä olosuhteilla toimimalla tietyn reaktion suhteen stökiömetrisen suhteen toisella puolella adsorptiovaiheessa ja toisella puolella katalyysivaiheessa.

Heterogeeniset olosuhteet voidaan saada aikaan lämpötilan tai paineen muutoksilla.

Mainittu väliaine voi olla kaasumainen väliaine kuten pakokaasu tai savukaasu, mutta myös muut väliaineet voivat tulla kysymykseen. Mainittu aineosa voi esimerkiksi olla typen oksidi, jolloin reaktantti on hiilimonoksidi, vetykaasu ja/tai hiilivety ja tuote on typpikaasu. Mainittu aineosa voi myös olla hiilivety, jolloin reaktantti on

happikaasu ja tuote on hiilidioksidi ja vesi. Mainittu aineosa voi myös olla hiilimonoksidi, jolloin reaktantti on happikaasu ja tuote on hiilidioksidi. Lisäksi mainittu aineosa voi olla rikin oksidi, jolloin reaktantti on vetykaasu ja/tai hiilimonoksidi ja tuote on rikkidioksidi ja/tai rikkivety.

5 Edullisesti käytetään pitkiä adsorptiovaiheita, jolloin reaktantti/reaktantit tuodaan ajoittain adsorbenttikatalyyttiin.

Tässä menetelmässä adsorbenttikatalyytti on edullisesti muodostettu olennaisesti sileästä metallifoliosta ja rypytetystä metallifolioista, jolloin toinen folioista sisältää adsorbenttejä tai tukiainetta ja adsorbenttejä ja toinen sisältää katatalyyttisen metallin tai tukiainetta ja katalyyttisen metallin.

Keksintöä kuvataan seuraavassa lähemmin viittamalla oheisiin kuviin, joista

- kuva 1 esittää skemaattista kuvaa eräästä keksinnön mukaisesta adsorbenttikatalyytistä,
- kuva 1A esittää skemaattisesti erästä kuvan 1 yksityskohtaa suurennetussa mittakaavassa,
 - kuva 1B esittää skemaattisesti erästä toista kuvan 1 yksityiskohtaa suurennetussa mittakaavassa, ja
 - kuvat 2-12 esittävät graafisesti laboratoriokokeista saatuja tuloksia.
- Kuvassa 1 esitetyssä keksinnön mukaisessa adsorbenttikatalyytissä sileän 1 ja rypytetyn 2 metallisen folion pinnalle on pinnoitettu samalaisen tai erilaisen kemiallisen koostumuksen omaavaat adsorbenttikatalyyttipinnoitteet 3, 4, jotka koostuvat alumiinioksidin tai/ja zeolyytin/alumiinisilikaatin tai/ja silikan lisäksi seuraavista kemiallista metalli-, oksidi-, sulfaatti-, nitraatti- tai aluminaattimuotoisista yhdisteistä:
 - 1. aktiivinen metalli 5 Pt,

- 25 2. aktiivinen metalli 6 Rh tai/ja Pd tai/ja Ir,
 perusadsorbenttit 7 Ba tai/ja Sr,
 keskilämpötilan adsorbenttit 8 La tai/ja Y,
 korkean lämpötilan adsorbenttit 9 K tai/ja Na tai/ja Li tai/ja Ca, tai/ja Rb tai/ja Cs,
 matalan lämpötilan adsorbentit 10 Mg,
- redox-adsorbentit 11 Ce tai/ja Zr tai/ja Ti tai/ja Nb tai/ja Mn tai/ja Pr tai/ja Nd tai/ja Sm tai/ja Eu tai/ja Gd tai niiden muodostama sekaoksidi.

Pääasiassa Pt ja Rh toimivat katalyyttisesti aktiivisina paikkoina, redox-adsorbentit 11 hapetustilaa helposti/laajasti muuttavina NO_x-adsorbentteina ja promoottoreina sekä muut 7-10 nitraatteja/nitriittejä eri lämpötiloissa suorempaan adsorboivina/absorboivina yhdisteinä.

- Keksinnön mukaisessa ratkaisussa on toiseen folioon, esimerkkissä ryppyfolioon 2 5 lisätty korkean lämpötilan adsorbenttia 9, kuten K, Na, Li tai/ja Ca ja toiseen folioon, esimerkissä suoraan folioon 1 matalan lämpötilan adsorbenttia 10, kuten Mg tai/ja Be. Keksinnön mukaisessa ratkaisussa voidaan jakaa myös 1. aktiivinen metalli toiseen folioon ja toinen metalli toiseen folioon tai toista metallia, etenkin kallista Rh:a vain toiseen folioon. Jalometallit jaetaan latauksen suhteen optimaalisella 10 tavalla eri pintojen kesken. Korkean lämpötilan adsorbenttia sisältävään pintaan voidaan käyttää alhaista Pt-latausta (10-90 g/cft) ja matalan lämpötilan adsorbenttia sisältävään pintaan korkeaa Pt-latausta (70-250 g/cft), jolloin NO2:n muodostusikkuna ja NO_x-adsorptiolämpötila yhdistyvät toivotulla tavalla. On edullista lisätä korkea Pt-pitoisuus ja Rh pintaan, jossa on vähemmän varsinkin korkean lämpötilan 15 adsorbentteja, jotka tyypillisesti nostavat katalyytin syttymislämpötilaa hapetus- ja pelkistysreaktiossa. Myös muut adsorbentit voidaan jakaa eri pitoisuuksina tai kokonaan eriytettyinä optimaalisella tavalla kahden tai useamman eri pinnoitteen (folion) kesken.
- Usein adsorbenttikatalyytin koon on oltava suhteellisen suuri, jolloin teknisesti konvertteriin on asennettava useita peräkkäisiä kennoja. Useamman kennon tapauksessa voidaan peräkkäisiin kennoihin lisätä erilaiset pinnoitteet ja/tai eri puolilla folioita voi olla erilainen pinnoite ja koostumus. Koska ryppyfoliota tulee katalyyttiin enemmän (tavallisesti yli 50 % enemmän), voidaan koostumus suunnitella eri lämpötilojen adsorbenttitarpeen ja aktiivisten jalometallien suhteen optimaaliseksi. Koska korkeissa lämpötiloissa adsorptiokapasiteetti on tehokkuutta enemmän rajoittava tekijä kuin alhaisissa lämpötiloissa, voidaan käyttää korkean lämpötilan adsorbentteja ryppyfoliossa. Kallista Rh:a voidaan käyttää ensisijaisesti sileässä foliossa, jolloin saadaan kuitenkin riittävä jalometallitiheys katalyyttireaktioiden syttymisen suhteen.

 Samoin matalan lämpötilan adsorbenttia käytetään myös ensisijaisesti sileässä foliossa.

Kokeiden mukaan Pt voi toimia yksinään aktiivisena metallina. Sen rooli on hapettaa yli 200 °C:ssa NO:ta NO₂:ksi, joka adsorboituu herkästi adsorbentteihin, kun lämpötila on sopiva. Nitraatit voivat hajota rikkaassa seoksessa, desorboitua ja pelkistyä Pt:n pinnalla. Katalyytti toimii hyvin pelkästään Pt:aa sisältävänä. Rh:n rooli on toimia enemmän vain pelkistysvaiheessa. Kokeiden mukaan Rh:lla saadaan ai-

kaan etenkin alhaisen lämpötilan pelkistyminen (nitraattien regenerointi) toimimaan tehokkaasti. Rh:lla voidaan parantaa myös katalyyttisiä ominaisuuksia stökiometrisissä ja rikkaissa olosuhteissa NO_x:n, CO:n, vedyn ja hiilivetyjen suhteen, jolloin estetään esimerkiksi hiilivetyjen häiritsevä vaikutus adsorptiossa, ammoniakin muodostuminen ja ilokaasun muodostuminen.

5

25

30

35

Adsorbenttikatalyytin toimintaa on pystytty erityisesti parantamaan aiemmin esitettyihin konsepteihin verrattuna käyttämällä hyväksi komponentteja (redox-adsorbentti), jotka voivat muuttaa hapetusastettaan ja sillä tavalla adsorboida tehokkaammin typen oksideja ja happea laihalla kuin pelkästään alkali-, maa-alkali- tai maame-10 talleja sisältävät NO_x-trap-katalyytit ja edesauttaa siten nitraattien desorptiota ja pelkistymistä rikkaiden vaiheiden aikana. Näiden lisäaineiden avulla voidaan myös kuluttaa ja adsorboida pelkistimiä lyhviden rikkaiden vaiheiden aikana. Pelkistimien adsorptiokapasiteetti ei ole kovin suuri, koska ne pyrkivät myös hapettumaan tehokkaasti hyvän hapetuskyvyn omaavassa katalyytissä. Rikkaan piikin aikana muodostuvien pelkistimien (CO, vety, osittain hapettuneet hiilivedyt) pintakonsentraatio on 15 kuitenkin riittävä auttamaan typen oksidien pelkistymistä etenkin muutamien sekuntien aikana heti laihavaiheelle siirtymisen jälkeen. Tällaisia hapetusastetta herkästi suurella kapasiteetillä vaihtavia yhdisteitä ovat kokeiden mukaan mm. ZrCe-, MnCeZr- ja MnCe-sekaoksidit. Analogisesti Ce:n sijalla voi olla myös esim. Pr. Nd. 20 Sm, Eu tai Gd ja Zr:n sijalla Ti, Y, Nb tai La, jollaiset yhdisteet on mahdollisia hapenvarastointiyhdisteinä (OSC). Aiempien tietojen mukaan OSC:n voitaisiin olettaa olevan haitallinen NO_x:n adsorptiolle ja pelkistykselle, lisäähän se katalyytin pinnalla olevan hapen määrää. Tulokset kokeilluilla tavoilla osoittavat kuitenkin, että adsorbenttikatalyytin toiminta paranee, kun oikein valittuja ja valmistettuja OSC-yhdisteitä on lisätty katalyyttiin. Rikastuspiikkien aikana OSC-komponentit kuluttavat seoksessa olevaa mahdollista happea, pelkistyvät itse ja toimivat puskurina laihavaiheen alkaessa sekä toimivat hyvin adsorbentteina eri tavalla kuin esim. Ba- tai Kyhdisteet. Pelkistyneen OSC-materiaalin pintaan tuleva typen oksidi voi myös pelkistyä suoraan typeksi, joskin ko. paikan aktiivisuus pelkistyksessä on heikompi kuin jalometallien, mutta oletettavasti selvästi parempi kuin esim. Ba- tai K-oksidin. Keksinnön mukaisen adsorbenttikatalyytin hyvyys perustuu myös adsorbenttien keskinäiseen sekä adsorbenttien ja aktiivisten metallien keskinäiseen läheiseen vuorovaikutukseen. Hapettuneena oleva OSC-yhdiste eliminoi tehokkaasti myös (HC-,) CO- ja vetypäästöt rikastuspiikeissä. Ce-pitoinen OSC-yhdiste toimii myös promoottorina jalometalleille reaktiossa. Vertailukokeet osoittivat, että keksinnön mukaiset adsorbenttikatalyytit saatiin toimimaan sillä tavalla, että rikastuspiikit eivät kuluneet OSC-materiaalien pelkistykseen vaan typen oksidien pelkistykseen.

Erilliset NO-adsorptiokokeet aktiivisuustesteissä käytetyillä OSC-materiaaleilla osoittivat, että ZrCe- (1:5.7), MnCe- (1:1) ja MnCeZr (2:2:1) -sekaoksidien NO-adsorptiokapasiteetti pelkistyneeseen oksidipintaan oli huomattavan korkea verrattuna muihin katalyyttikomponentteihin ja ominaisuus säilyi jopa 850 °C:n ikäytyksen jälkeen. Sekaoksidiadsorbentit adsorboivat typen oksideja kokeiden mukaan myös täysin hapettuneeseen pintaan oletettavasti mm. Zr-paikkoihin. Tätä ominaisuutta on pyritty hyödyntämään myös adsorbenttikatalyyteissä.

5

10

15

20

25

30

35

Laihabensiiniautojen pakokaasujen puhdistuksessa tarvitaan myös 3-toimikatalyyttiä, joka syttyy katalyyttireaktiossa stökiometrisissä ja rikkaissa olosuhteissa mahdollisimman alhaisissa lämpötiloissa. Tästä syystä on edullista sijoittaa se ennen adsorbenttikatalyttiä lähelle moottoria. 3-toimikatalyytin tulee päästää adsorbenttikatalyytin tarvitsemat rikastuspiikit (pelkistimet) lävitseen mahdollisimman pienellä vaimennuksella. Tästä syystä 3-toimikatalyytin koko oli kokeissa suhteellisen pieni ja OSC-yhdisteiden määrä mahdollisimman pieni. Katalyytin koostumusta ja latausta oli muokattava sen perusteella, että ceriumoksidilla on vaikutusta myös toimintaan ja staabiilisuuteen. Tästä syystä käytettiin PdRh-3-toimikatalyyttiä, joka saadaan stabiiliksi ja termisesti kestäväksi vaikka Ce:n määrä on nolla tai alhainen (esimerkki 9). Aiemmin on esitetty, että edessä olevan katalyytin tulisi sisältää Pt:aa, jotta muodostuisi NO2:ta. Keksinnön mukainen adsorbenttikatalyytti sisältää kuitenkin niin paljon Pt:aa, että NO2:ta voidaan muodostaa in-situ takana olevassa kennossa, missä ovat adsorbentit ja pelkistyksessä aktiiviset paikat (Pt, Rh). Katalyytin huokosissa, adsorbentin vieressä muodostunut NO2 adsorboituu tehokkaasti, koska jatkuva adsorptio virtaussuunnassa vähentää termodynaamista rajoitusta. Mikäli olosuhteet vaativat, voidaan käyttää myös Pt:aa etukatalyytissä syttymisen tai kestävyyden parantamiseksi.

Maakaasumoottorin pakokaasua simuloivassa systeemissä huomattiin myös, että on eduksi sijoittaa adsorbenttikatalyytin eteen metaanin hapetuksen suhteen aktiivinen PdPt-katalyytti. Käyttämällä dieselpakokaasun puhdistukseen samanlaista systeemiä (Pt-hapetuskatalytti+ Pt-adsorbenttikatalyytti), saatiin myös hyvät tulokset laboratoriossa eikä edessä oleva hyvä dieselhapetuskatalyytti vaimenna liikaa rikastuspiikkää. Yhteistä näissä kolmessa esimerkissä oli se, että edessä oleva katalyytti oli erityisen hyvä hapetusreaktioissa, jolloin hiilivetyjä pääsi NO_x -adsorbenttikatalyyttiin hyvin vähän. Tällä oli positiivinen vaikutus koko tutkitulla lämpötilavälillä (150-550 °C) adsorptioon ja nitraattien regeneroitumiseen. Koska rikastuspiikeissä λ oli selvästi alle 1:n, adsorbenttikatalyyttiin tulee edessä olevasta hyvästä hapetuskatalyytistä huolimatta pelkistimiä, koska kaasuseoksessa oleva happimäärä ei riitä

kaikkien palavien yhdisteiden poistamiseen. Suotuisasti adsorbenttikatalyyttiin tule lähinnä hapetus-/3-toimikatalyytissä krakkautuneina tuotteina vetyä ja häkää. Edessä oleva katalyytti voi sisältää myös keksinnön mukasia NO_x-adsorbentteja.

Keksinnön mukaiset adsorbenttikatalyyttipinnoitteet voidaan sijoittaa myös esim. keraamiseen kennoon, partikkeliloukkuun tai erilaisten levyjen seinämille. Rakenteet voivat muodostaa yhdensuuntaisia tai eri suuntaisia virtauskanavia (esim. staattiset sekoittimet). Erilaisen koostumuksen omaavat adsorbenttikatalyytit voivat olla myös erillisiä pellettejä tai partikkeleita, joiden koko on riittävän suuri (selvästi molekyylikokoa suurempi, esim. >1-1000 μm) katalyytin ja adsorbentin eriyttämisen kannalta.

On mahdollista pinnoittaa mm. korkea-, keski- ja matalalämpötila-adsorbentit myös samalle pinnalle päällekkäin, jolloin esim. alempaan kerrokseen sijoitetaan yhdessä Pt:n kanssa korkean lämpötilan adsorbentit (esim. K, Na, La) ja pintakerrokseen Pt-Rh:n kanssa matalan lämpötilan adsorbentit (esim. Mg). Koska oleellista on jakaa toimintaikkunaltaan erilaiset adsorbentit erilleen ja Rh:n tarkoitus on edistää 3-toimireaktiota/estää ammoniakin muodostusta, poikkeaa ratkaisu oleellisesti aiemmin esitetystä (WO 99/00177).

Keksinnön mukaista ratkaisua voidaan soveltaa myös muihin menetelmiin, joissa on tarve yhdistää adsorptio, katalyytti ja niiden tarvitsema menetelmä (regenerointi). Tällaisia kohteita ovat mm. HC-adsorptio ja emissiokatalyysi (deNO_x- ja hapetusreaktiot) mm. pakokaasujen puhdistuksessa. Esimerkiksi zeoliittipohjaista HC-trappinnoite voidaan sijoittaa toiseen folioon ja 3-toimi/hapetuskatalyyttipinnoite toiseen folioon. Adsorbenttia ja katalyyttisesti aktiivista komponentteja sisältävät foliot voidaan jakaa myös kokonaan erilleen, joskin läheisempi kontakti edellä kuvatuilla tavoilla kuvattuna on edullisempi ratkaisu.

Menetelmässä laihan (hapettavan) ja rikkaan (pelkistävän) vaiheen kestoaikaa ja vaihteluamplitudi voidaan optimoida tarpeen mukaan. Oleellista on adsorbenttikatalyytin pinnan tila. Ajastus on tavallisesti laihabensiinikohteissa sellainen, että laihavaihe kestää 10 s - 5 min ja rikasvaihe 1-10 s. Vaiheistus voi olla sellainen, että kokonaissuhde on sama (esim. 60 s / 5 s), mutta lyhyitä rikastuksia tehdään useammin (esim. 1,2 - 6 s / 0,1-0,5 s). Eri käyttökohteissa ei ole tarpeen käyttää kaikkea adsorptiokapasiteettia tai pelkistää/desorboida täysin nitraattia adsorbentista vaan menetelmä toimii myös ja yleensä, vaikka tilanne on jotain ääriolosuhteiden väliltä. On mahdollista käyttää kuvattua ratkaisua käyttöolosuhteissa, jossa ei muuteta seossuhdetta yli stökiometrisen pisteen kokonaan tai ollenkaan vaan adsorboituneet kompo-

nentit desorboidaan muulla tavalla kuten lämpötilaa nostamalla tai painetta muuttamalla. Desorboituneet komponentit reagoivat edelleen halutuiksi tuotteiksi katalyyttisesti aktiivisilla pinnoilla. Menetelmää voidaan käyttää myös hyvin lähellä molemmin puolin stökiometristä olosuhdetta esimerkiksi bensiiniautoissa, joskin NO₃:ien adsorptiokapasiteetti on tuolloin melko pieni.

5

10

15

20

25

30

35

Nokea sisältävissä pakokaasuissa voidaan adsorboida nokea kemiallisesti tai fysikaalisesti ensimmäiseen pintaan ja toisessa pinnassa on hapetuskatalyyttinä toimivaa pinnoitetta. NH₃- tai urea-SCR-katalyytissä voi olla toisessa foliossa pinnoite, joka adsorboi typen oksideja, pelkistintä (ammoniakkia, ureaa tai niiden johdannaisia), kun pelkistysreaktio ei etene katalyytissä, ja toisessa varsinainen SCR-katalyytti.

Esitetty ratkaisu soveltuu myös kohteisiin, jossa läpivirtaava fluidi on neste tai kaasun ja nesteen seos. Nesteessä olevia tai siihen liuenneita yhdisteitä voidaan adsorboida absorbentilla/adsorbentilla reaktion jatkuessa loppuun ylimäärin happea sisältävissä olosuhteissa pelkistyksen tapahtuessa rikkaiden piikkien aikana. Tämäntyyppisiä kohteita ovat esimerkiksi epäpuhtauksien (nitraatit, ammoniakki) poisto vesistä. Sellaisissa prosesseissa, jossa tarvitaan kahdenlaisia stökiometrisen suhteen ylittäviä olosuhteita (happi/palavat tai joku muu reaktiot ratkaiseva seossuhde), voidaan soveltaa myös tällaista adsorbenttikatalyyttiratkaisua.

Keksinnön mukaisessa ratkaisussa adsorbentti- ja katalyyttikomponentit voidaan jakaa pitoisuuden suhteen myös sen mukaan, miten ne regeneroituvat sulfaattien tai muiden myrkkyjen suhteen eri käyttökohteissa ja -olosuhteissa. Yhteen pintaan voidaan viedä adsorbentit, jotka regeneroituvat rikistä vaikeammin tai vaikuttavat syttymislämpötilaan eniten etenkin rikastuksissa (esim. Ba, Sr, K, Ca, Na). Nämä yhdisteet on myös sijoitettu erilleen Rh:sta, joka on herkempi rikin deaktivoivalle vaikutukselle kuin Pt. Paljon sulfaattia alhaisissa lämpötiloissa keräävä adsorbentti voi pilata myös vieressä olevien helpommin regeneroituvien komponenttien toimintaa. Helpommin regeneroituvat adsorbentit regeneroituvat jo normaalin käytön aikana. Myös aktiiviset metallit omaavat NO_x-adsorptiokapasiteettiä, jota voidaan hyödyntää lähellä syttymisvyöhykettä ja joka regeneroituu pienien lämpötilamuutosten vaikutuksesta. Adsorbenteilla on myös hieman katalyyttista ominaisuutta, jota tarvitaan nitraattien pelkistykseen typeksi.

Adsorbenttikatalyytit voidaan regeneroida sulfaateista, nostamalla lämpötila yli 300-500 °C:n rikkaassa tai stökiometrisessä kaasuseoksessa riippuen matalan ja korkean lämpötilan adsorbenttien koostumuksesta. Koska adsorbentit on jaettu niiden Sregereroitumisen suhteen eri tavalla eri pinnoille, voidaan systeemi saada osittain

käyttökuntoon esim. alemman lämpötilan käsittelyllä. On usein eduksi käyttää normaalia rikastusta pidempiä rikastusvaiheita (esim. 5 s - 5 min) rikin poistamiseksi, jotta rikki saadaan kunnolla pois. Regenerointi onnistuu myös laihassa kaasussa, mutta lämpötila on silloin huomattavasti korkeampi. Jotta regenerointivaiheita ei olisi kovin usein, on eduksi käyttää polttoaineita, joissa rikkipitoisuus on mahdollisimman alhainen. Moottorikartoituksen perusteella tiedetään päästöt eri ajo-olosuhteissa, mutta deaktivoitumista voidaan seurata esim. kaupallisten λ - tai NO_x -anturien avulla. Kun anturiviestiin kytketty funktio antaa hälytyksen (päästöt tunnetuissa käyttöolosuhteissa liian korkeat), ajoneuvo käynnistää sopivan tilaisuuden tullen regeneroinnin.

5

10

Keksintöä kuvataan vielä seuraavassa esimerkkien avulla, jotka liittyvät suoritettuihin laboratoriokokeisiin.

Keksinnön mukaiset ja vertailevat absorbenttikatalyytit olivat taulukon 1 mukaisia.

Taulukko 1

Laboratoriotesteissä käytettyjä katalyyttejä ja adsorbenttikatalyyttejä (Pt ja Rh p-%-metallia, muut p-%-oksidia tukiaineessa).

No	Koodi	Pt	Rh	Yhd. 1	Yhd.	Yhd. 3	Yhd.4	Yhd. 5
		%	%		2		1	
1	Al (vert.)	2.5	-	-	-	-	-	-
2	Al-Ba (vert.)	2,4	-	10%Ba ^{ta}	-	-	-	-
3	Al-Ba-La (vert.)	2,2	-	10%Ba ^{ta}	9%La	-	-	-
4	Al-Ba-La-Ce	1,9	-	10%Ba ^{ta}	9%La		-	-
5	Al-Ba-La-ZrCe =NSR1	2,4	-	10%Ba ^{ta}	9%La	17%Ce	3%Zr	-
6	Al-Baw-La-ZrCe =NSR2	2,1	-	10%Ba ^{wet}	9%La	17%Ce	3%Zr	-
7	NSR1-BaSO4	2,4	-	10%BaSO	9%La	17%Ce	3%Zr	-
8	NSR1-Zeo	2,4	-	12%Ba ^{ta}	9%La		3%Zr	5%ZSM5
9	NSR1+K	2,4		10%Ba ^{ta}	9%La	17%Ce	3%Zr	3%K
10	NSR1+Mg	2,4	_	10%Ba ^{ta}	9%La	17%Ce	3%Zr	3%Mg
11	NSR1+Ca	2,4		10%Ba ^{ta}	9%La	17%Ce	3%Zr	3%Ca
12	NSR1+Na	1,9		10%Ba ^{ta}	9%La	17%Ce	3%Zr	3%Na
13	NSR1+Li	1,9	-	10%Ba ^{ta}	9%La	17%Ce	3%Zr	3%Li
14	Ryppy: NSR2+K Sileä: NSR2+Mg =HK1	1,5 1,5	- -	10%Ba ^{ta} 	9%La 	17%Ce	3%Zr 	3%K 3%Mg
15	Ryppy: NSR2+K	2,2	0,16	15%Ba ^{wet}	9%La	4.4%Ce	0.7%Zr	3%K
	Sileä: NSR3 =HK2	1,5	0,23	10% Ba ^{wet}		29%Ce		-
16	Ryppy: NSR2+K	1,5	0,24	15%Ba ^{wet}	9%La	4.4%Ce	0,7%Zr	3%K
	Sileä: NSR4 =HK3	2,2	0,30	5%Ba ^{wet}	5%La	4.4%Ce	0,7%Zr	-
17	Al-Ba-La- MnCe(1:1)	1,8	-	10%Ba	9%La	10%Ce	-	10%Mn
18	Al-Ce-La- MnCeZr(2:2:1)	1,6	-	10%Ba	9%La	8%Ce	4%Zr	8%Mn
19	NSR1	1,9	0,2	10%Ba ^{ta}	9%La	17%Ce	3%Zr	-
20	NSR1+K+Mg	1,9	-	10%Ba ^{ta}	9%La	17%Ce	3%Zr	2%K 2%Mg
21	NSR1+K+Ti	2,4	-	10%Ba ^{ta}	9%La	17%Ce	3%Zr	3%K 1,5%Ti

Yhd. = yhdiste, wet: lisätty katalyyttiin Ba-nitraatista wet-menetelmällä, ta: lisätty tukiaineen joukkoon Ba-nitraattina, ver = vertailukatalyytti.

Absorbenttikatalyytit tehtiin laboratoriokokeisiin valmistamalla ensin tukiaineliete jauhemaisista ja liuosmuotoisista raaka-aineista ja vedestä. Liete valmistettiin lisää-

mällä raaka-aineet lietteeseen ja jauhamalla näyte kuulamyllyssä. Raaka-aineiden ominaisuudet (laatu, puhtaus, partikkelikoko, mahdolliset stabilaattorit) valittiin sillä tavalla, että voitiin saada aikaan pysyvä ja tasainen pinnoite sekä tulos aktiivisuustestissä. Puhtaan alumiinioksidin BET-pinta-ala oli 240 m²/g ja partikkelikoko (d₅₀) ennen jauhatusta noin 30 μm. Käytetyn Zr-stabiloidun BET oli 180 m²/g ja partikkelikoko 13 µm. Ne komponentit, jotka lisättiin normaalisti imeyttämällä tai liukoisessa muodossa, muodostivat pitoisuudesta riippuen partikkeleita (esim. Ba-, La-, Y-, K-, Sr-oksidit sekä jalometallit), joiden koko oli noin 1-100 nm jakautuneena tukiaineen huokoisten kiinteiden partikkeleiden pinnalle. Tehtiin myös vertailuja käyttäen ristiin aktiivisia yhdisteitä (Ba, Ce, La) eri tavalla (liuokoisessa tai kiteisessä muodossa) lisättynä. Tällä tavalla etsittiin optimaalinen tapa valmistaa katalyytti. Valmistetulla lietteellä pinnoitettiin ohutta sileää ja rypytettyä metallifolioita, näytteet kuivattiin noin 110 °C:ssa, kalsinoitiin 4 h:n ajan 550 °C:ssa. Osa adsorptio- ja aktiivikomponenteista lisättiin tukiaineeseen käyttäen tunnettua wet-imeytys-menetelmää, jossa tukiaineen huokoset täytetään sopivan väkevyisellä liuoksella, jolloin näytteeseen jäi haluttu määrä ko. yhdistettä. Kalsinoitaessa staattisessa ilmassa useimmat yhdisteet muodostivat vastaavia oksideja. Pt imeytettiin katalyyttiin nk. kemisorptiomenetelmällä, jossa lähtöliuoksena käytettiin Pt-ammin-karbonaattiliuosta. Pt imeytyi tällaisesta liuoksesta täydellisesti tukiaineen pintaan. Kennomainen näyte, jonka aukkoluku oli 500 cpsi (reikiä/in²), saatiin aikaan käärimällä yhteen sileä ja rypytetty pinnoitettu folio. Muutamassa näytteessä (no:t 14, 15 ja 16) sileän ja rypytetyn folion koostumus oli toisistaan poikkevat. Kehitetyn aktiivisen tukiaineen (esim. NSR1) ominaispinta-ala kantorakenteen pinnalle kiinnitettynä oli yli 200 m²/g tuoreena ennen käyttöä. Tukiaineen määrä metallifolion (paksuus 50 μm) pinnalla oli noin 45-50 m²/g (20 p-%).

Jäljempänä esitetyissa esimerkeissä 9 ja 11 käytettiin adsorbenttikatalyytin lisäksi 3-toimikatalyyttejä tai hapetuskatalyyttejä, jotka olivat taulukon 2 mukaisia.

Taulukko 2

5

10

15

20

25

30

Laboratoriotesteissä käytettyjä 3-toimikatalyyttejä ja hapetuskatalyyttejä (Pd, Pt ja Rh p-%-metallia, muut p-%-oksidia tukiaineessa).

No	Koodi	Pd %	Pt %	Rh %	Yhd. 1	Yhd. 2	Yhd. 3	Yhd. 4	Yhd. 5
	3T1	2,7	-	0,3	24%Ce	16%La	4%Zr	-	-
	3T2	3,5	•	0,5	1%Ce	3%La	4%Zr	-	-
III	OXI1	4,9	1,2	_	-	-	-	-	-

Adsorbenttikatalyyttinäytteiden (halkaisija 14 mm, pituus normaalisti 75 mm) aktiivisuus testattiin laboratorio-olosuhteissa, jotka simuloivat keskimäärin laihalla käyvien bensiini-, diesel- ja maakaasupolttoainetta käyttävien moottorien pakokaasuja, joissa tehdään harkitusti lyhyitä rikastuksia adsorboituneen NO_x:n pelkistämiseksi. Koska kestävyys todellisissa olosuhteissa on ongelma, näytteiden aktiivisuus mitattiin normaalisti sen jälkeen, kun ne oli ensin hydrotermisesti ikäytetty (10 % vettä ilmassa, vaihtuma noin 4000 h⁻¹ näytteessä) 700 °C:ssa 20 tunnin ajan. Tällä tavalla valikoitiin parhaat sellaiset näytteet, jotka kestävät hydrotermisesti vaativissa todellisissa pakokaasuissa. Laboratorioreaktorin sisäänmenon koostumusta säädeltiin tietokoneohjatuilla massavirtaussäätimillä ja koostumus analysoitiin jatkuvatoimisilla NO_x-, CO-, HC- ja O₂-analysaattoreilla. Olosuhteet aktiivisuuden mittauksessa laboratoriolaitteistolla olivat seuraavia:

Taulukko 3

Laboratoriosimulaatiossa käytettyjä kaasukoostumuksia.

	Ben	siini	Die	esel	Maakaasu		
Yhdiste	Laiha	Rikas	Laiha	Rikas	Laiha	Rikas	
NO, ppm	500	1500	500	1500	700	500	
C₃H ₆ , ppm	1000	1000	500	1000	ei	ei	
CH₄, ppm	ei	ei	ei	ei	900	3000	
CO, %	0,25	6	0,05	6	0,03	6	
H ₂	0,08	2	0,04	2	0,08	2	
O ₂ , %	7	0,1	7	0,8	7	0,1	
H₂O, %	10	10	10	10	10	10	
CO ₂ , %	10	10	10	10	10	10	
SO₂, ppm	ei	ei	ei/25	ei/25	ei	ei	
N ₂	bal.	bal.	bal.	bal.	bal.	bal.	
λ-suhde	1,4	0,81	1,45	0,86	1,46	0,81	
SV, h ⁻¹	30 000	30 000	30 000	30 000	30 000	30 000	
Aika, s	15-240	2-5	60	5	60	5	

SV = vaihtuma(space velocity), pakokaasun määrä/katalyyttikennon tilavuus

Keskimääräiset aktiivisuudet 5 syklin aikana mitattiin läpötiloissa välillä 150-600 °C 50 °C:n välein.

Seuraavissa esimerkeissä esitetyissä laboratorioaktiivisuustesteissä laihavaiheen pituus oli 60 s ja rikkaan vaiheen pituus oli 5 s. Vaihtuma oli 30 000/h.

Esimerkki 1

5

20

25

30

Oheisessa kuvassa 2 esitetään vertailukokeiden tuloksia. Tässä kuvassa esitetään typen oksidien keskimääräinen konversio Pt:aa sisältävillä ikäytetyillä näytteillä (koostumus taulukossa 1) bensiinipakokaasuja simuloivassa laboratorioaktiivisuustestissa (laiha 60 s ja rikas 5 s), jossa Pt/Al-Ba-Y-ZrCe ja Pt/Al-Ba-La-ZrCe = NSR1 (näyte no 5) ovat keksinnön mukaisia adsorbenttikatalyyttejä.

Kuvassa 2 on verrattu keksinnön mukaisia näytteitä vertailukatalyytteihin, jotka sisältävät alumiinioksidin lisäksi Ba:a (näyte no 2) tai Ba-La:a (näyte no 3). Näytteet sisältävät Pt:aa saman verran. Pt/Al-näyte (näyte no 1) osoittaa perustason ilman adsorptiolisäaineita. Lisäämällä ZrCe-sekaoksidia (oksidisuhde = 5.7:1, partikkelikoko noin 13 μm:n (d₅₀)) näytteeseen, katalyytin NO_x-aktiivisuus parani selvästi (lähes 20 % parhaaseen vertailukatalyyttiin nähden). La:n sijaan voitiin käyttää myös Y:a.
15 Kun näyte sisälsi vain Ba:a ja ZrCe:aa, mutta ei La:a, aktiivisuus etenkin korkeammissa lämpötiloissa oli heikompi kuin keksinnön mukaisella näytteillä.

Esimerkki 2

Oheisessa kuvassa 3 esitetään typen oksidien keskimääräinen konversio Pt:aa sisältävillä ikäytetyillä näytteillä (koostumus taulukossa 1) bensiinipakokaasuja simuloivassa laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s), jossa Pt/Al-Ba-La-MnCe (näyte no 17) ja Pt/Al-Ba-La-MnCeZr (näyte no 18) ovat keksinnön mukaisia adsorbenttikatalyyttejä.

Käyttämällä MnCe- (1:1) tai MnCeZr(2:2:1) -sekaoksidia näytteissä aktiivisuus oli 200 °C:ssa noin 10 % parempi kuin Pt/Al-Ba-La:n (näyte no 3), vaikka Pt:n määrä oli toisella näytteessä 18 % ja toisessa 27 % alhaisempi kuin vertailunäytteessä. Esimerkki osoitti, että kalliin jalometallin määrää voidaan alentaa käyttämällä keksinnön mukaisia adsorbenttikatalyyttejä.

Esimerkki 3

Oheisessa kuvassa 4 esitetään typen oksidien keskimääräinen konversio Pt:aa ja Rh:a sisältävillä ikäytetyillä näytteillä (koostumus taulukossa 1) bensiinipakokaasuja simuloivassa laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s), jossa Pt+Rh/Al-Ba-La-ZrCe (näyte no 19), Pt/Al-Ba-La-Ce (näyte no 4) ja Pt/Al-Ba-La-ZrCe =

NSR1 (näyte no 5) ovat keksinnön mukaisia absorbenttikatalyyttejä ja Pt/Al-Ba-La (näyte no 3) on vertailukatalyytti.

Kuvassa 4 on esitetty vertailukatalyytti ja keksinnön mukaisia näytteitä, joissa on lisätty Rh:a NSR1:een tai käytetty puhdasta ceriumoksidia ZrCe:n asemasta. Lisäämällä Rh:a voitiin parantaa alhaisen lämpötilan NO_x-toimintaa. Sama määrä puhdasta ceriumoksidia toimii huonommin kuin Zr-stabilitu ceriumoksidi ko. näytteissä, mutta toiminta on kuitenkin selvästi parempi kuin vertailunäytteellä. Vertailu osoitti Zr:n edullisen vaikutuksen.

Esimerkki 4

5

Oheisessa kuvassa 5 esitetään typen oksidien keskimääräinen konversio Pt:aa sisältävissä ikäytetyissä keksinnön mukaisissa adsorbenttikatalyyteissä (koostumus taulukossa 1) bensiinipakokaasuja simuloivassa laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s).

Lisäämällä löydettyyn NSR1-peruskonseptiin K:a (näyte no 9) tai K:a ja Ti:a (näyte no 21), voitiin toimintaikkunaa laajentaa korkeampiin lämpötiloihin. Jos NSR1:een lisättiin yksistään Ti:a, toiminta painottui alhaisiin lämpötiloihin. Kuvassa on myös vertailu, miten Ba:n lisäystapa vaikuttaa aktiivisuuteen. Kokeiden mukaan on mahdollista lisätä Ba esim. nitrattina (asetaattina) suoraan liuokoisena tai kiteisenä tukiaineen joukkoon tai lisätä se wet-jälki-imeytyksellä, joskin aktiivisuus oli hieman heikompi parhaan version.

Esimerkki 5

Oheisessa kuvassa 6 esitetään typen oksidien keskimääräinen konversio Pt:aa sisältävissä ikäytetyissä keksinnön mukaisissa adsorbenttikatalyyteissä (koostumus taulukossa 1) bensiinipakokaasuja simuloivassa laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s).

Lisäämällä NSR1-peruskonseptiin Li:a (näyte no 13), Na:a (näyte no 12) tai Ca:a (näyte no 11) voidaan siirtää toimintaikkunaa korkeampiin lämpötiloihin.

Esimerkki 6

25

30

Oheisessa kuvassa 7 esitetään typen oksidien keskimääräinen konversio Pt:aa sisältävissä ikäytetyissä keksinnön mukaisissa adsorbenttikatalyyteissä (koostumus taulukossa 1) bensiinipakokaasuja simuloivassa laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s).

Adsorbenttikatalyytti toimi paremmin kuin vertailunäyte Pt/Al-Ba-La (näyte no 3), kun näytteeseen oli lisätty Ba Ba-sulfaattina (näyte no 7), lisätty hydrotermisesti suhteellisen kestävää ZSM5-zeolyyttiä (näyte no 8). Käytettäessä Ba-sulfaattia toiminta parani etenkin alhaisessa lämpötilassa ja heikkeni selvästi yli 300 °C:ssa.

5 Esimerkki 7

Oheisessa kuvassa 8 esitetään typen oksidien keskimääräinen konversio Pt:aa sisältävissä ikäytetyissä keksinnön mukaisissa adsorbenttikatalyyteissä (koostumus taulukossa 1) bensiinipakokaasuja simuloivassa laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s). Aktiivisuuden parantaminen koostumusta eriyttämällä.

Aktiivisuustesteissä saatiin aikaan huomattavasti leveämpi toimintaikkuna, kun reak-10 toriin asennettiin adsorbenttikatalyytti, jossa sileässä ja rypytetyssä foliossa oli erilainen koostumus katalyyttisen toiminnan ja adsorptio-ominaisuuksien suhteen (kuva 8). Sijoittamalla virtaussuunnassa rinnakkain koostumukset, joilla toisella on hyvä toimintaikkuna alhaisessa (NSR1, NSR1+Mg) tai toisella korkeassa lämpötilassa (NSR1+K), saatiin aikaan kennomainen näyte, joka toimi kuten paras kombi-15 naatio parhaista erillisistä aktiivisuuksista. Jatkuvaan NOx:n hiilivedyillä tapahtuvaan pelkistykseen perustuvat katalyytit eivät voi toimia tällä tavalla vaan korkean lämpötilan katalyytti olisi sijoitettava ensin ja matalan lämpötilan katalyytti jälkimmäiseksi. Jos katalyytit sijoitettaisiin rinnakkain, aktiivisempi katalyyttipinta kuluttaisi pelkistimet nopeasti niissä lämpötiloissa, joissa korkean lämpötilan katalyytti 20 voisi toimia. Tässä suhteessa adsorbenttikatalyytti poikkeaa täysin jatkuvaan pelkistykseen perustuvasta katalyytistä. Adsorbenttikatalyytillä voidaan saada aikaan hyvä pelkistyskyky jopa 550 °C:ssa, vaikka rinnalla olisi adsorbenttikatalyytti tai katalyytti, jonka syttymislämpötila on jopa 200 °C alempi kuin korkean lämpötilan adsorbenttikatalyytillä. Vertailukatalyytti (näyte no 20), johon oli lisätty 2 % Mg ja 25 2 % K molempiin pintoihin, oli selvästi heikompi, vaikka K:n ja Mg:n kokonaismäärä oli tuossa näytteessä hieman suurempi koko katalyytissä kuin eriytetyssä ratkaisussa (esim. näyte no 14). Mg:n ja K:n sijoittaminen samaan tukiaineeseen tuhosi sekä matalan (näyte no 10) että korkean (näyte no 9) lämpötilan toiminnan. Tulos osoittaa, että matalan ja korkean lämpötilan adsorptiopaikat on eriytettävä, jotta saa-30 daan aikaan keksinnön mukainen, optimaalinen toiminta.

Esimerkki 8

Oheisessa kuvassa 9 esitetään typen oksidien keskimääräinen konversio Pt:aa ja Rh:a sisältävissä ikäytetyissä keksinnön mukaisissa adsorbenttikatalyyteissä (koos-

tumus taulukossa 1) bensiinipakokaasuja simuloivassa laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s). Aktiivisuuden ja adsorption parantaminen koostumusta eriyttämällä.

Tässä esimerkissä oli eriytettyjen pintojen koostumusta (näyte no 15) hieman muutettu. NSR2 eroaa NSR1:sta vain Ba:n lisäystavan perusteella. Tavoitteena oli parantaa HK1:n toimintaa etenkin matalissa lämpötiloissa, koska laihakohteissa lämpötilat saattavat olla pitkiä aikoja alle 400 °C toisin kuin stökiometrisissä moottoreissa. Muuttamalla sileä folion koostumusta NSR3:ssa sillä tavalla, että La:n määrä pieneni ja Ce:n ja Zr:n määrä nousivat, saatiin aikaan adsorbenttikatalyytti HK2, joka toimii hyvin rinnakkaisena asennettuina folioina myös alhaisessa lämpötilassa. Näytteisiin oli lisätty myös-Rh:n Pt:n rinnalle. Ce-Zr-oksidisuhde oli NSR3:ssa 4,8. Samalla ryppyfolioon oli lisätty Ba:a 15 %:iin asti.

NSR4:llä päästiin vielä parempaan tulokseen yhdessä NSR2+K:n kanssa (näyte no 16) alhaisessa lämpötilassa, jolloin oleellisin muutos oli se, että alhaisen lämpötilan adsorbenttikatalytissä (NSR4) oli Ba:n laskettu 5 %:iin, Ce 4,4 %:iin ja Zr 0,7 %:iin verrattuna NSR2:een tai NSR3:een. Näillä muutoksilla ja nostetulla PtRh-latauksella (2,2 % Pt, 0,3 % Rh) saatiin aikaan tämä tulos.

Esimerkki 9

5

10

15

20

25

30

Laihabensiiniautoissa tarvitaan myös 3-toimiominaisuuksia, jolloin edullinen ratkaisu on sijoittaa adsorbenttikatalyytin eteen 3-toimikatalyytti, jolla on hyvin alhainen hapenvarastointikyky (kuva 10). HK3 (näyte no 16) toimi selvästi paremmin yhdessä matalalla OSC:lla (näyte no II) varustetun 3-toimikatalyytin kanssa kuin HK2 (näyte no 15) yhdessä korkea-OSC-katalyytin (näyte no I) kanssa.

Oheisessa kuvassa 10 esitetään typen oksidien keskimääräinen konversio kombinaatiossa, jossa Pt:aa ja Rh:a sisältävien ikäytettyjen keksinnön mukaisten adsorbenttikatalyyttien edessä on korkean ja matalan hapenvarastointikyvyn omaava 3-toimikatalyytti (koostukset taulukoissa 1 ja 2) bensiinipakokaasuja simuloivassa laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s). Etukatalyytin pituus oli 26 mm ja taka-adsorbenttikatalyytin 47 mm. Aktiivisuuden ja adsorption parantaminen kombinaatiota optimoimalla.

Esimerkki 10

Käyttämällä keksinnön mukaista Pt-katalyyttiä saatiin hyvät tulokset myös rikin läsnäollessa dieselpakokaasuja simuloivassa kaasuseoksessa, jossa laihavaiheen pituus

oli 60 s ja rikkaan vaiheen 5 s. Katalyytti oli etukäteen rikitetty 60 min ajan 25 ppm rikkiä sisältävässä pakokaasussa. Rikin kertyminen heikentää etenkin korkeissa lämpötiloissa adsorptiokykyä, mutta dieselautoille tyypillisissä olosuhteissa (200-350 °C) toimintakyky säilyi pitkään ja voitiin lopulta palauttaa osittain tai kokonaan korkeassa lämpötilassa (> 350 °C) tapahtuvan toiminnan/regeneroinnin aikana.

Tulokset on esitetty kuvassa 11, jossa esitetään typen oksidien keskimääräinen konversio dieselolosuhteita simuloivissa olosuhteissa Pt:aa sisältävän ikäytetyn keksinnön mukaisella adsorbenttikatalyytillä (NSR1, näyte no 5, koostumus taulukoissa 1) laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s), kun SO₂:ta on pakokaasussa 25 ppm..

Esimerkki 11

5

10

15

20

Vastaavasti simuloitiin maakaasulla käyvän kuorma-auton pakokaasua. Metaanin hapettamiseksi adsorbenttikatalyytin eteen sijoitettiin tyypillinen tehokas PdPt-hapetuskatalyytti (koostumus taulukossa 2). Kokeessa päästiin yli 90 %:n konversioon ja adsorbenttikatalyytin (näyte no 14) edessä olevalla hapetuskatalyytillä (näyte no III) oli NO_x:n pelkistymiselle positiivinen vaikutus.

Tulokset on esitetty kuvassa 12, jossa esitetään typen oksidien keskimääräinen konversio maakaasumoottorin pakokaasua simuloivissa olosuhteissa Pt:aa sisältävällä ikäytetyllä keksinnön mukaisella adsorbenttikatalyytillä (koostukset taulukoissa 1) laboratorioaktiivisuustestissä (laiha 60 s ja rikas 5 s). Etukatalyytin pituus oli 45 mm ja takana olevan adsorbenttikatalyytin 75 mm.

Patenttivaatimukset

5

10

20

30

1. Adsorbenttikatalyytti pako- tai savukaasujen sisältämien typen oksidien, hiilivetyjen ja hään vähentämiseksi, joka katalyytti adsorboi typen oksideja kun savu- tai pakokaasut sisältävät ylimäärin happea ja vapauttaa ja pelkistää adsorboidut typen oksidit kun mainitut kaasut sisältävät alimäärin tai stökiometrisen määrän happea, tunnettu siitä, että adsorbenttikatalyytissä on suuren pinta-alan omaava huokoinen tukiaine (3, 4), joka sisältää ainakin:

ensimmäisen katalyyttisen metallin (5), joka on Pt.

ensimmäisen NO_x-adsorbentin (7), joka sisältää ainakin yhden seuraavista metalleista: Ba ja Sr,

toisen NO_x-adsorbentin (8), joka sisältää ainakin yhden seuraavista metalleista: La ja Y, ja

redox-NO_x-adsorbentin (11), joka sisältää ainakin yhden seuraavista metalleista: Ce, Zr, Ti, Nb, Mn, Pr, Nd, Sm, Eu ja Gd.

- 2. Patenttivaatimuksen 1 mukainen adsorbenttikatalyytti, tunnettu siitä, että tukiaine lisäksi sisältää toisen katalyyttisen metallin (6), joka käsittää ainakin yhden seuraavista metalleista: Rh, Pd ja Ir.
 - 3. Patenttivaatimuksen 1 tai 2 mukainen adsorbenttikatalyytti, tunnettu siitä, että tukiaine lisäksi sisältää kolmannen NO_x-adsorbentin (9), joka sisältää ainakin yhden seuraavista metalleista: K, Na, Li, Ca, Rb ja Cs.
 - 4. Jonkin edellisen patenttivaatimuksen mukainen adsorbenttikatalyytti, tunnettu siitä, että tukiaine lisäksi sisältää neljännen NO_x-adsorbentin (10), joka sisältää ainakin yhden seuraavista metalleista: Mg ja Be.
- 5. Jonkin edellisen patenttivaatimuksen mukainen adsorbenttikatalyytti, tunnettu siitä, että adsorbentit ovat oksidi-, sulfaatti-, nitraatti-, aluminaatti- tai metallimuodossa, edullisesti oksidimuodossa.
 - 6. Jonkin edellisen patenttivaatimuksen mukainen adsorbenttikatalyytti, tunnettu siitä, että redox-NO_x-adsorbentti sisältää Ce:a ja/tai Zr:a.
 - 7. Patenttivaatimuksen 6 mukainen menetelmä, tunnettu siitä, että redox-NO_x-adsorbentti on ZrCe-, MnCeZr- tai MnCe-sekaoksidi.
 - 8. Jonkin edellisen patenttivaatimuksen mukainen adsorbenttikatalyytti, tunnettu siitä, että se käsittää ensimmäinen pinnan, jonka päällä on ensimmäinen pinnoite,

joka sisältää tukiaineen ja mainitut adsorbentit tai osan niistä, ja toisen pinnan, jonka päällä on toinen pinnoite, joka sisältää tukiaineen ja mainitut adsorbentit tai osan niistä, jolloin pinnoitteilla on sama tai eri koostumus.

- Patenttivaatimuksen 8 mukainen adsorbenttikatalyytti, tunnettu siitä, että ensimmäinen pinta muodostuu olennaisesti sileästä metallifoliosta (1) ja toinen pinta muodostuu rypytetystä metallifoliosta (2), joista metallifolioista on muodostettu kenno, jossa on lukuisia läpivirtauskanavia kaasua varten.
 - 10. Patenttivaatimuksen 8 tai 9 mukainen adsorbenttikatalyytti, tunnettu siitä, että ensimmäinen katalyyttinen metalli (5) Pt on molemmissa pinnoitteissa (3, 4) ja toinen katalyyttinen metalli (6) on vain toisessa pinnoitteessa (3).

10

15

20

25

30

- 11. Patenttivaatimuksen 9 tai 10 mukainen adsorbenttikatalyytti, tunnettu siitä, että ensimmäinen katalyyttinen metalli on jaettu pitoisuuden suhteen eri folioiden kesken sillä tavalla, että toisessa foliossa Pt-lataus on 0-90 g/ft³ ja toisessa foliossa Pt-lataus on 70-400 g/ft³, joka tilavuus viittaa folioista muodostetun kennon tilavuuteen.
- 12. Jonkin patenttivaatimuksista 9-11 mukainen adsorbenttikatalyytti, tunnettu siitä, että ensimmäinen NO_x-adsorbentti on jaettu pitoisuuden suhteen eri folioiden kesken sillä tavalla, että toisen folion tukiaineessa pitoisuus on 8-40 paino-%, edullisesti 10-20 paino-%, ja toisen folion tukiaineessa pitoisuus on 0-10 paino-%, edullisesti 3-8 paino-%, jotka määrät on laskettu oksideina tukiaineen painosta.
- 13. Jonkin patenttivaatimuksista 9-12 mukainen adsorbenttikatalyytti, tunnettu siitä, että toinen NO_x-adsorbentti on jaettu pitoisuuden suhteen eri folioiden kesken sillä tavalla, että toisen folion tukiaineessa pitoisuus on 8-40 paino-%, edullisesti 5-15 paino-%, ja toisen folion tukiaineessa pitoisuus on 0-8 paino-%, edullisesti 1-6 paino-%, jotka määrät on laskettu oksideina tukiaineen painosta.
- 14. Jonkin patenttivaatimuksista 9-13 mukainen adsorbenttikatalyytti, tunnettu siitä, että redox-adsorbentti on jaettu pitoisuuden suhteen eri folioiden kesken sillä tavalla, että toisen folion tukiaineessa pitoisuus on 10-60 paino-%, edullisesti 15-25 paino-%, ja toisen folion tukiaineessa pitoisuus on 0-10 paino-%, edullisesti 2-5 paino-%, jotka määrät on laskettu oksideina tukiaineen painosta.
- 15. Jonkin patenttivaatimuksista 9-14 mukainen adsorbenttikatalyytti tunnettu siitä, että adsorbentit on kokonaan toisen folion tukiaineessa, joka folio edullisesti on

sileä folio, ja katalyyttiset metallit on toisen folion tukiaineessa, joka edullisesti on rypytetty folio.

16. Jonkin edellisen patenttivaatimuksen mukainen adsorbenttikatalyytti, tunnettu siitä, että tukiaine sisältää pääosin ainakin yhtä seuraavista oksideista: alumiinioksidi, zeoliitti, alumiinisilikaatti ja piidioksidi.

5

25

- 17. Katalyyttijäjestelmä pako- tai savukaasujen sisältämien typen oksidien, hiilivetyjen ja hään vähentämiseksi, tunnettu siitä, että se sisältää jonkin edellisen patenttivaatimuksen mukaisen adsorbenttikatalyytin ja kaasujen virtaussuunnassa ennen adsorbenttikatalyyttiä sijoitetun toisen katalyytin.
- 18. Patenttivaatimuksen 17 mukainen katalyyttijärjestelmä, tunnettu siitä, että mainittu toinen katalyytti sisältää katalyyttisen metallin, joka käsittää ainakin yhden seuraavista metalleista: Pd, Rh ja Pt.
- 19. Menetelmä pako- tai savukaasujen sisältämien typen oksidien, hiilivetyjen ja hään vähentämiseksi, tunnettu siitä, että puhdistettavat kaasut johdetaan jonkin patenttivaatimuksen 1-16 mukaisen adsorbenttikatalyytin tai patenttivaatimuksen 17 tai 18 mukaisen katalyyttijärjestelmän läpi, joka adsorbenttikatalyytti adsorboi typen oksideja kun savu- tai pakokaasut sisältävät ylimäärin happea ja vapauttaa ja pelkistää adsorboidut typen oksidit kun mainitut kaasut sisältävät alimäärin tai stökiometrisen määrän happea.
- 20. Patenttivaatimuksen 19 mukainen menetelmä, tunnettu siitä, että käytetään lyhyitä ohjattuja tai luonnollisia ajanjaksoja, joissa kaasut sisältävät alimäärin tai stökiometrisen määrän happea.
 - 21. Menetelmä väliaineessa olevan aineosan adsorboimiseksi adsorbenttikatalyyttiin ja reagoimiseksi katalyyttisesti reaktantin avulla halutuksi yhdisteeksi, tunnettu siitä, että adsorbenttikatalyytti sisältää yhden tai useamman katalyyttisen metallin sekä yhden tai useamman adsorbentin, ja että adsorption ja katalyyttisen reaktion jatkuva toiminta saadaan aikaan heterogeenisillä olosuhteilla.
 - 22. Patenttivaatimuksen 21 mukainen menetelmä, tunnettu siitä, että adsorption ja katalyyttisen reaktion jatkuva toiminta saadaan aikaan heterogeenisillä olosuhteilla toimimalla tietyn reaktion suhteen stökiometrisen suhteen toisella puolella adsorptiovaiheessa ja toisella puolella katalyysivaiheessa.

- 23. Patenttivaatimuksen 21 tai 22 mukainen menetelmä, tunnettu siitä, että heterogeeniset olosuhteet saadaan aikaan lämpötilan tai paineen muutoksilla.
- 24. Jonkin patenttivaatimuksista 21-23 mukainen menetelmä, tunnettu siitä, että väliaine on kaasumainen väliaine ja että mainittu aineosa on typen oksidi, jolloin reaktantti on hiilimonoksidi, vetykaasu ja/tai hiilivety ja tuote on typpikaasu, tai mainittu aineosa on hiilivety, jolloin reaktantti on happikaasu ja tuote on hiilidioksidi ja vesi, tai mainittu aineosa on hiilimonoksidi, jolloin reaktantti on happikaasu ja tuote on hiilidioksidi tai mainittu aineosa on rikin oksidi, jolloin reaktantti on vetykaasu ja/tai hiilimonoksidi ja tuote on rikkidioksidi ja/tai rikkivety.
- 10 25. Jonkin patenttivaatimuksista 21-24 mukainen menetelmä, tunnettu siitä, että reaktantti tuodaan ajoittain adsorbenttikatalyyttiin.
 - 26. Jonkin patenttivaatimuksista 21-25 mukainen menetelmä, tunnettu siitä, että adsorbenttikatalyytti on muodostettu olennaisesti sileästä metallifoliosta ja rypytetystä metallifolioista, jolloin toinen folioista sisältää adsorbenttejä ja toinen sisältää

15 katatalyyttisen metallin.

5

1 / 7

Kuva 1

Kuva 2

Kuva 3

Kuva 4

Kuva 5

Kuva 6

Kuva 7

Kuva 8

Kuva 9

Kuva 10

Kuva 11

Lämpötila, °C

Kuva 12