YANG LI

Google Scholar \diamond Github \diamond LinkedIn

Phone: (+1) 404-512-1722 \diamond Email: yangli.fm@gmail.com

PERSONAL SUMMARY

- Ph.D. in Computer Science. Former intern at Oracle and NEC Labs.
- Extensive hands-on experience with LLMs such as BERT, GPT, Llama, Mistral, Gemma, and more. Worked on a variety of NLP tasks including natural language understanding (NLU), natural language generation (NLG), instruction tuning, and mathematical reasoning.
- Specializations include parameter-efficient fine-tuning, neural network compression, and data mining and modeling. Authored 7 research papers published in prestigious conferences and journals such as ECML, IEEE IJCNN, OFC, and Human Brain Mapping. Authored 1 US Patent.
- Strong coding skills with proficiency in Python, C++, Java, SQL, PyTorch, and TensorFlow. Contributed code under the HuggingFace PEFT framework.

EDUCATION

Georgia State University

Ph.D of Computer Science

GPA:3.75/4.3

University of Science and Technology of China (USTC)

Sept. 2015 — Jun. 2018

Aug. 2018 — Jul. 2024

Master of Nuclear Science and Technology

GPA: 3.61/4.0

Anhui Normal University

Sept. 2011 — Jul. 2015

Bachelor of Computer Science and Technology

GPA: 3.93/5.0, Rank: 1/97

PROJECTS

Research on LLMs Finetuning (Parameter Efficient Finetuning) [1]

Released in May 2024. Received 3 citations within the first 2 months. [Paper], [Code]

- · Proposed VB-LoRA which aims at reducing the trainable/storage parameters required for fine-tuning large language models (LLMs). Introduced a novel divide-and-share strategy, where parameters from different layers and modules are decomposed and shared in a global *vector bank*.
- · Performed instruction tuning on Llama2-13B, Mistral-7B, and Gemma-7B: VB-LoRA uses approximately 0.4% of the parameters compared to LoRA, while achieving better performance.

Neural Network Pruning [2]–[4]

- · Proposed L0-ARM and Dep-L0, learning binary gates with L_0 -based regularization in an end-to-end manner. Pruned 43.9% of the parameters and reduced 38.1% FLOPs of ResNet-50 on the ImageNet task while maintaining comparable performance.
- · Proposed NPNs, a unified framework for network pruning and expansion.

Human Intelligence Prediction and Brain Structure Exploration [5]

Collaborated with Columbia University and MD Anderson Cancer Center. [Paper]

- · Designed an LSTM-based network to extract spatiotemporal information from fMRI data and predict human intelligence, achieving state-of-the-art results.
- · Learned the importance scores of brain regions in an end-to-end manner. Our findings aligned with results from neuroscience research.

Network Device Classification and Anomaly Detection

A project with VMWare

- · Designed and curated a dataset of network traffic by analyzing TCP and UDP packet headers; performed feature engineering to select the top 10 most informative features for device classification tasks.
- · Designed and implemented LSTM and CNN models for device classification (iOS, Android, Linux, Windows, MacOS, webcams, and routers), achieving an accuracy rate of approximately 95%.
- · Identified unique traffic patterns for each device type and developed language models to detect anomalous behavior in real-time.

INTERN EXPERIENCE

Data Science Intern @ Oracle

May 2023 - Aug 2023

- · Designed and implemented an LSTM model to disaggregate energy usage from monthly electric bills.
- · Proposed a new feature representation to improve model performance by 10%.
- · Contributed code and unit tests to the deep learning library used internally at Oracle.

Research Intern @ NEC Laboratories America

May 2022 - Aug 2022

- · Proposed an eigenvalue-based algorithm for locating ocean earthquakes at span-level (60-90 kilometers) using existing submarine fibers, achieving nearly 100% accuracy.
- · Published the results in the top conference Optical Fiber Communication [6] and filed a patent [7].

PUBLICATIONS

- [1] Y. Li, S. Han, and S. Ji, "Vb-lora: Extreme parameter efficient fine-tuning with vector banks," arXiv preprint arXiv:2405.15179, 2024.
- [2] Y. Li and S. Ji, "Dep-l0: Improving l 0-based network sparsification via dependency modeling," in *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, Springer, 2021, pp. 167–183.
- [3] Y. Li and S. Ji, "L0-ARM: Network sparsification via stochastic binary optimization," in *The European Conference on Machine Learning (ECML)*, 2019.
- [4] Y. Li and S. Ji, "Neural plasticity networks," in 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, 2021, pp. 1–9.
- [5] Y. Li, X. Ma, R. Sunderraman, S. Ji, and S. Kundu, "Accounting for temporal variability in functional magnetic resonance imaging improves prediction of intelligence," *Human Brain Mapping*, vol. 44, no. 13, pp. 4772–4791, 2023.
- [6] F. Yaman, Y. Li, S. Han, T. Inoue, E. Mateo, and Y. Inada, "Polarization sensing using polarization rotation matrix eigenvalue method," in *Optical Fiber Communication Conference*, Optica Publishing Group, 2023, W1J–7.
- [7] F. Yaman, H. Shaobo, E. F. M. RODRIGUEZ, Y. Li, Y. Inada, and T. Inoue, Fiber sensing by monitoring polarization function of light on supervisory path of cables, US Patent App. 18/369,041, Mar. 2024.

ACHIEVEMENTS

Graduate Teaching Award, awarded by Georgia State University	Mar. 2022
Best Graduate Presentation, awarded by Georgia State University	May 2019
Outstanding Dissertation, awarded by Anhui Normal University	Jun. 2015
National Scholarship, awarded by Ministry of Education, PRC	Nov. 2013

SKILLS