3.4

- 1. Which of the following describe equivalence relations? For those that are not equivalence relations, specify which of (R), (S), (T) fail and illustrate the failures with examples.
 - (a) $L_1||L_2|$ for straight lines in the plane if L_1 and L_2 are the same or are parallel.

.

(b) $L_1 \perp L_2$ for straight lines in the plane if L_1 and L_2 are perpendicular.

.

(c) $p_1 \sim p_2$ for Americans if p_1 and p_2 live in the same state.

.

(d) $p_1 \approx p_2$ for Americans if p_1 and p_2 live in the same state or in neighboring states.

.

(e) $p_1 \approx p_2$ for people if p_1 and p_2 have a parent in common.

.

(f) $p_1 \cong p_2$ for people if p_1 and p_2 have the same mother.

.

- 2. For each example of an equivalence relation in Exercise 1, describe the members of some equivalence class.
 - (a) DO WORK HERE
- 5. If G and H are both graphs with vertex set $\{1, 2, ..., n\}$, we say that G is isomorphic to H, and write $G \cong H$, in case there is a way to label the vertices of G so that it becomes H.

(a) Give a picture of another graph isomorphic to these two.

•

(b) Find a graph with vertex set $\{1, 2, 3\}$ that is not isomorphic to the graphs yet has three edges and exactly one is a loop.

.

(c) Find another example as in part(b) that isn't isomorphic to the answer of part(b) and the other two graphs.

.

(d) Show that \cong is an equivalence relation on the set of all graphs with the vertex set $\{1,2,...,n\}$.

.

8. (a) For $m, n \in \mathbb{Z}$, define $m \sim n$ in case m - n is odd. Is the relation reflexive? symmetric? transitive? Is it an equivalence relation?

.

(b) For a and b in \mathbb{R} , define $a \sim b$ in case $a - b \leq 1$. One could say that $a \sim b$ in case a and b are close enough or approximately equal. Answer the question in part (a).

.

17. (a) Verify that the relation \cong defined in Example 5b (the reachable Relation R on V(G) by $(v, w) \in R$) is an equivalence relation on V(G).

.

(b) Given a vertex v in V(G), describe in words the equivalence class containing v.

.