Recurrent Neural Networks (RNN)

Intuition

Previous frames

Current frame

Sequence Modeling Problem

Next word prediction

Enter the beginning of a phrase:

It would mean the

Top-3 predictions:

world same most

timestep 1

timestep 1

timestep 2

Intuition

Previous frames

Current frame

timestep 1

timestep 2

timestep 1

 $time step\,2$

 $time step\,3$

Rolled Layout of RNN

RNN Architecture Variants

RNN Architecture Variants

many-to-many

RNN Architecture Variants

Functioning of RNN

Task: Classify sentiment of the text as positive or negative

Input sentence: "they are happy"

- Input sentence: "they are happy"
- First token, 'they', will be passed as input at timestep 1

- Input sentence: "they are happy"
- First token, 'they', will be passed as input at timestep 1
- Second token, 'are', will be passed at timestep 2 and so on

- Input sentence: "they are happy"
- First token, 'they', will be passed as input at timestep 1
- Second token, 'are', will be passed at timestep 2 and so on
- Output obtained at last timestep.

Task: Classify sentiment of the text as positive or negative

Loss (L) is calculated at the final timestep

- Loss (L) is calculated at the final timestep
- ∂L/∂V, ∂L/∂W and ∂L/∂U are computed

- Loss (L) is calculated at the final timestep
- ∂L/∂V, ∂L/∂W and ∂L/∂U are computed
- Weight matrices W, U, and V are updated

Thank You