ANNEX B

TPJC H2 Math JC2 Preliminary Examination Paper 1

QN	Topic Set	Answers
1	Equations and	x < -3
	Inequalities	
2	Graphs and	$(i) - 1 < y \le 1$
	Transformation	(iii) Translation by 4 units in the positive x -direction,
		followed by Stratch of factor 2 morallel to the marie
		-Stretch of factor 2 parallel to the <i>x</i> -axis. Alternative Answers:
		Stretch of factor 2 parallel to the <i>x</i> -axis, followed by
		Translation by 8 units in the positive r direction
3	Functions	$f^{-1}(x) = -\sqrt{x} + k$ (i)
		$D_{f^{-1}} = (0, \infty)$
		(ii) $R_g = [-1, 4]$
		$D_f = (-\infty, k)$
		Since $k > 5$, $R_g \subseteq D_f$. Thus fg exists.
		(iii)(a) $fg(-1) = f(0) = k^2$
		$R_{fg} = \left[\left(4 - k \right)^2, \left(-1 - k \right)^2 \right]$
		(b) [2]
		$= \left[(4-k)^2, (1+k)^2 \right]$
4	Complex numbers	(i) \therefore smallest positive integer $n = 5$.
		(ii) $ w = 2$, $\arg(w) = \frac{13\pi}{6}$
		Ü
		(iii) <u>Hence Method:</u> $\arg(z-w) = -\left[\pi - \frac{\pi}{6} - \frac{\pi}{12}\right]$
		$= -\left[\frac{5\pi}{6} - \left(\frac{1}{2}\left\{\pi - \frac{5\pi}{6}\right\}\right)\right]$
		$=-\frac{3\pi}{4} (exact)$
		Otherwise Method:
		$z - w = \left(-1 - \sqrt{3}\right) + \left(-1 - \sqrt{3}\right)i$
		$\arg(z-w) = -\left(\pi - \frac{\pi}{4}\right) = -\frac{3\pi}{4}$

5	Differentiation & Applications	$V = \frac{128\pi}{9}$
		$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.12\pi \mathrm{cm}^3 \mathrm{s}^{-1}$
6	AP and GP	(a)(i) $d = 15$
		(ii) $S_{20} = 4150 \text{ cm}$
		(b)(i) $k = 9$
	O' N	(ii) $n = 6$, Length = 235 cm
7	Sigma Notation and Method of Difference	$(ii)\frac{1}{4} - \frac{1}{2(n+1)(n+2)}$
		(iii) As $n \to \infty$, $\frac{1}{2(n+1)(n+2)} \to 0$.
		$\frac{1}{4} - \frac{1}{2(n+1)(n+2)} \to \frac{1}{4}$
		Sum to infinity $=\frac{1}{4}$
		(iv)13
8	Differential Equations	(i) $x = \frac{e^{3kt} - 1}{e^{3kt} + 2}$
		(ii)1.45 hours
		$(iii) x = \frac{1}{2}t - \frac{1}{2}\sin t$
		(iv)
		0
		The graph shows that as time increases, the drug
		concentration still continue to increase / the curve shows
		a strictly increasing function beyond the maximum level
	Application of	of drug concentration.
9	Application of Integration	(i) 64π (iv) The reflected light from the bulb produces a
	megration	horizontal beam of light/ produces a beam of line
		parallel to x-axis.

	$(v) y^2 = 4(x-1)$
10	(ii) $\left(\frac{3}{2}, 3, \frac{5}{2}\right)$ (iii) $\left(0, 3, 2\right)$ (iv) $\theta = 80.4^{\circ}, 49.8^{\circ}$ (v) $x + 2y - 3z = -\frac{\sqrt{14}}{2}$ or $x + 2y - 3z = \frac{\sqrt{14}}{2}$
	(vi) $BD = \frac{\sqrt{6}}{\cos 49.8^{\circ}} = 3.79 \text{ units}$ (vii) 60°

H2 Mathematics 2017 Preliminary Exam Paper 1 Solutions

1
$$\frac{3x^2 + 7x + 1}{x + 3} < 2x - 1$$

$$\frac{3x^2 + 7x + 1}{x + 3} - (2x - 1) < 0$$

$$\frac{3x^2 + 7x + 1 - (2x - 1)(x + 3)}{x + 3} < 0$$

$$\frac{x^2 + 2x + 4}{x + 3} < 0$$

$$\frac{(x + 1)^2 + 3}{x + 3} < 0$$
Since $(x + 1)^2 + 3 > 0$ for all real x , the inequality reduces to:
$$x + 3 < 0$$

$$\Rightarrow x < -3$$
2 Let $y = \frac{1 - x^2}{1 + x^2}$, $x \in \mathbb{D}$:
$$y(1 + x^2) = 1 - x^2$$

Let
$$y = \frac{1 - x^2}{1 + x^2}$$
, $x \in \square$:
 $y(1 + x^2) = 1 - x^2$
 $(y+1)x^2 + (y-1) = 0$
Discriminant ≥ 0 : $0^2 - 4(y+1)(y+1)$

Discriminant
$$\geq 0$$
: $0^2 - 4(y+1)(y-1) \geq 0$
 $-4(y^2 - 1) \geq 0$
 $y^2 - 1 \leq 0$
 $y^2 \leq 1$
 $-1 \leq y \leq 1$

Since y = -1 is an asymptote, $-1 < y \le 1$

Alternative Method:

Let
$$y = \frac{1 - x^2}{1 + x^2}$$
, $x \in \square$:
 $y(1 + x^2) = 1 - x^2$
 $(y+1)x^2 + (y-1) = 0$
 $x^2 = \frac{1 - y}{y+1}$, $y \neq -1$

Since
$$x^2 \ge 0 \ \forall x \in \square$$
, $\frac{1-y}{y+1} \ge 0$

$$\therefore -1 < y \le 1$$

2 (ii)	$p(-x) = \frac{1 - (-x)^2}{1 + (-x)^2}$	
	$=\frac{1-x^2}{1+x^2}$	
	$= p(x)$ for all $x \in \square$ (shown)	
2(iii)	Graph of $q(x) = p(\frac{1}{2}x - 4)$, $x \in \Box$ is obtained from the graph of $p(x)$ by:	
	- Translation by 4 units in the positive <i>x</i> -direction, followed by	
	Stretch of factor 2 parallel to the <i>x</i> -axis.	
3(i)	Let $y = (x - k)^2$	
	$x-k=\pm\sqrt{y}$	
	$x = -\sqrt{y} + k (\because x < k)$	
	$f^{-1}(x) = -\sqrt{x} + k$	
	$D_{f^{-1}} = (0, \infty)$	
3(ii)	$R_{g} = [-1, 4]$	
	$D_f = (-\infty, k)$	
	Since $k > 5$, $R_g \subseteq D_f$. Thus fg exists.	
3(iii)	$fg(-1) = f(0) = k^2$	
	Using $R_g = [-1, 4]$, and the fact that f is a strictly decreasing function in the given domain,	
	$R_{fg} = \left[(4-k)^2, (-1-k)^2 \right]$	
	$= \left[\left(4 - k \right)^2, \left(1 + k \right)^2 \right]$	
4(i)	$= \left[(4-k)^{2}, (1+k)^{2} \right]$ $ z = \sqrt{1^{2} + \sqrt{3}^{2}} = 2 \qquad \arg z = -\left[\pi - \tan^{-1} \left(\frac{\sqrt{3}}{1} \right) \right] = -\frac{2\pi}{3}$ $z = 2e^{i\left(-\frac{2\pi}{3}\right)}$	
	$z = 2e^{i\left(-\frac{2\pi}{3}\right)}$ $(m\pi) \qquad (2m\pi)$	
	$\frac{(iz)^n}{z^2} = \frac{e^{i(\frac{n\pi}{2})} 2^n e^{i(\frac{-2n\pi}{3})}}{2^2 e^{i(\frac{4\pi}{3})}}$	
	$= 2^{n-2} e^{i\left(\frac{m\pi}{2} - \frac{2n\pi}{3} + \frac{4\pi}{3}\right)}$	
	$= 2^{n-2} e^{\left(\frac{2}{3} - \frac{3}{3}\right)}$ $= 2^{n-2} e^{i\left(\frac{(8-n)\pi}{6}\right)}$	
	$\left(\frac{(iz)^n}{z^2}\right)$ is purely imaginary: $\cos\left(\frac{(8-n)\pi}{6}\right) = 0$	
	$\frac{(8-n)\pi}{6} = (2k+1)\frac{\pi}{2}, \ k \in \square$	
	$6 \qquad 2$ $n = 5 - 6k, \ k \in \square$	
	Note: You may also have alternative form:	
	$\frac{(8-n)\pi}{6} = (2k-1)\frac{\pi}{2}, \ k \in \Box$	
	$ \begin{array}{c} 6 \\ n=11-6k, \ k \in \square \end{array} $	
	12 0N, NC =	

Otherwise Method: $z - w = (-1 - \sqrt{3}) + (-1 - \sqrt{3})i$ $\arg(z - w) = -(\pi - \frac{\pi}{4}) = -\frac{3\pi}{4}$ Using similar triangles: $\frac{r}{4} = \frac{6-h}{6}$ 5 $r = \frac{2}{3}(6-h)$

$$V = \pi r^{2} h$$

$$= \pi \left(\frac{2}{3} (6 - h)\right)^{2} h$$

$$= \frac{4\pi}{9} \left(36 - 12h + h^{2}\right) h$$

$$= \frac{4\pi}{9} \left(36h - 12h^{2} + h^{3}\right) \quad \text{(shown)}$$

For maximum V, $\frac{dV}{dh} = 0$:

$$\frac{4\pi}{9}(36-24h+3h^2)=0$$

Using GC: h = 2 or h = 6 (Rejected as h = 6 is height of cone)

Method 1 (1st derivative sign test)

h	2-	2	2+
Sign of $\frac{dV}{dh}$	+	0	-
slope			

Thus, maximum volume $V = \frac{128\pi}{9}$ when h = 2 cm.

Method 2 (2nd derivative test)
$$\frac{d^2V}{dh^2} = \frac{4\pi}{9} (-24 + 6h)$$

When
$$h = 2$$
: $\frac{d^2V}{dh^2} = -\frac{16\pi}{3} < 0$

Thus, maximum volume $V = \frac{128\pi}{9}$.

$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$

$$= \frac{4\pi}{9} \left(36 - 24(1.5) + 3\left(1.5\right)^{2} \right) (0.04)$$

$$= 0.12\pi \text{ cm}^{3}\text{s}^{-1} \qquad (Accept: 0.377 \text{ cm}^{3}\text{s}^{-1})$$

6(a)(i)
$$u_{20} = a + (n-1)d$$

 $350 = 65 + 19d$
 $d = 15$

6(a)(ii)
$$S_{20} = \frac{20}{2}(65 + 350)$$

= 4150 cm (Accept: 41.5 m)

- (T.) (A)	
6(b)(i)	$S_{\infty} = \frac{a}{1 - \frac{8}{9}}$
	1-%9
	=9a
	∴ integer $k = 9$.
6 (i)	Method 1:
	Number of ways = $\binom{14}{3} \times 3! = 2184$
	Method 2:
	Number of ways = $14 \times 13 \times 12 = 2184$
6(b)(ii)	$S_n \le 2000$
	$\frac{423\left[1 - \left(\frac{8}{9}\right)^n\right]}{1 - \frac{8}{9}} \le 2000$
	$1 - \left(\frac{8}{9}\right)^n \le \frac{2000}{3807}$
	$\left(\frac{8}{9}\right)^n \ge \frac{1807}{3807}$
	$n \le \frac{\ln\left(1807/3807\right)}{\ln\left(\frac{8}{9}\right)}$
	$\ln\left(\frac{8}{9}\right)$
	$n \le 6.3267$
	∴ Largest integer $n = 6$.
	$422(8)^{6-1}$
	Length of shortest plank is $u_6 = 423 \left(\frac{8}{9}\right)^{6-1}$ = 235 cm (3 s f)
	= 235 cm (3 s.f.)
7(i)	$\frac{1}{r^2 - 1} = \frac{1}{2(r - 1)} - \frac{1}{2(r + 1)}$
	$\frac{1}{r(r^2 - 1)} = \frac{1}{r} \left[\frac{1}{2(r - 1)} - \frac{1}{2(r + 1)} \right]$
	$= \frac{1}{2} \left[\frac{1}{r(r-1)} - \frac{1}{r(r+1)} \right]$
7 (;;)	1 1 1
7 (ii)	$S_n = \frac{1}{2 \times 3} + \frac{1}{3 \times 8} + \frac{1}{4 \times 15} + \dots + (n\text{th term})$

	$=\sum_{r=2}^{n+1}\frac{1}{r(r^2-1)}$
	$= \frac{1}{2} \sum_{r=2}^{n+1} \left[\frac{1}{r(r-1)} - \frac{1}{r(r+1)} \right]$
	$=\frac{1}{2}\left[\frac{1}{2\times 1} - \frac{1}{2\times 3}\right]$
	$+\frac{1}{3\times 2} - \frac{1}{3\times 4}$
	$+\frac{1}{4\times3}-\frac{1}{4\times5}$
	$+\frac{1}{(n-1)\times(n-2)}-\frac{1}{(n-1)\times n}$
	$+\frac{1}{(n)\times(n-1)}$ $-\frac{1}{n\times(n+1)}$
	$ \begin{array}{ccc} & \overline{(n+1)\times n} & -\overline{(n+1)\times (n+2)} \\ & 1 $
	$=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{(n+1)(n+2)}\right]$
	$=\frac{1}{4} - \frac{1}{2(n+1)(n+2)}$
7 (iii)	1
	As $n \to \infty$, $\frac{1}{2(n+1)(n+2)} \to 0$.
	$\frac{1}{4} - \frac{1}{2(n+1)(n+2)} \to \frac{1}{4}$
	Sum to infinity $=\frac{1}{4}$
7 (iv)	$(0 <) \frac{1}{4} - S_n < 0.0025$
	$\Rightarrow (0 <) \frac{1}{4} - \left[\frac{1}{4} - \frac{1}{2(n+1)(n+2)} \right] < 0.0025$
	$\Rightarrow (0 <) \frac{1}{2(n+1)(n+2)} < 0.0025$
	$2(n+1)(n+2)$ $\Rightarrow (n+1)(n+2) > 200$
	Using G.C.
	n < -15.651 or $n > 12.651$
	Since $n \in \Box^+$, Smallest value of $n = 13$

$$\frac{1}{1+x-2x^2} \frac{dx}{dt} = k$$

$$\int \frac{1}{1+x-2x^2} dx = \int k dt$$

$$\frac{2}{3} \int \frac{1}{2x+1} dx - \frac{1}{3} \int \frac{1}{x-1} dx = \int k dt$$

$$\frac{1}{1+x-2x^2} = \frac{1}{(1-x)(1+2x)}$$
$$= \frac{\frac{2}{3}}{2x+1} - \frac{\frac{1}{3}}{x-1}$$

$$\frac{1}{3}\ln|2x+1| - \frac{1}{3}\ln|x-1| = kt + C$$

$$\frac{1}{3}\ln\left|\frac{2x+1}{x-1}\right| = kt + C$$

$$\frac{2x+1}{x-1} = Ae^{3kt}, \ A = \pm e^{3C}$$

$$x = \frac{Ae^{3kt} + 1}{Ae^{3kt} - 2}$$

When
$$t = 0$$
, $x = 0$: $0 = \frac{A+1}{A-2} \Rightarrow A = -1$
 $\therefore x = \frac{e^{3kt} - 1}{e^{3kt} + 2}$

Method 2: Completing the square

$$\frac{1}{1+x-2x^{2}} \frac{dx}{dt} = k$$

$$\int \frac{1}{1+x-2x^{2}} dx = \int k dt$$

$$\int \frac{1}{-2(x-\frac{1}{4})^{2} + \frac{9}{8}} dx = \int k dt$$

$$\frac{1}{2} \int \frac{1}{(\frac{3}{4})^{2} - (x-\frac{1}{4})^{2}} dx = \int k dt$$

$$\frac{1}{2} \left(\frac{1}{2(\frac{3}{4})} \right) \ln \left| \frac{\frac{3}{4} + x - \frac{1}{4}}{\frac{3}{4} - (x-\frac{1}{4})} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{\frac{1}{2} + x}{1-x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{2(1-x)} \right| = kt + C$$

$$\frac{2x+1}{2(1-x)} = Ae^{3kt}, A = \pm e^{3C}$$

$$x = \frac{2Ae^{3kt} - 1}{2(Ae^{3kt} + 1)}$$

	When $t = 0$, $x = 0$: $0 = \frac{2A - 1}{2(A + 1)} \Rightarrow A = \frac{1}{2}$		
	$\therefore x = \frac{e^{3kt} - 1}{e^{3kt} + 2}$		
8 (ii)	When $t = 1$, $x = \frac{3}{4}$: $\therefore \frac{3}{4} = \frac{e^{3k} - 1}{e^{3k} + 2} \Rightarrow e^{3k} = 10$		
	$\Rightarrow k = \frac{1}{3} \ln 10 \text{ (shown)}$		
	$\therefore x = \frac{10^t - 1}{10^t + 2}$		
	When $x = \frac{9}{10}$: $\therefore \frac{9}{10} = \frac{10^t - 1}{10^t + 2} \Rightarrow 10^t = 28$		
	$\Rightarrow t = \frac{\ln 28}{\ln 10}$		
	= 1.45 hours (3 s.f.)		
	Also Accept: 86.8 mins (3 s.f.)		
8 (iii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sin^2\left(\frac{1}{2}t\right)$		
	$=\frac{1}{2}-\frac{1}{2}\cos t$		
	$x = \int \frac{1}{2} - \frac{1}{2} \cos t dt$		
	$=\frac{1}{2}t - \frac{1}{2}\sin t + C$		
	When $t = 0$, $x = 0$: $C = 0$		
	$\therefore x = \frac{1}{2}t - \frac{1}{2}\sin t$		
8(iv)	<i>x</i> •		
	•		
	$C \vdash t$		
	The graph shows that as time increases, the drug concentration still continue to increase / the curve shows a strictly increasing function beyond the maximum level of drug		
	concentration.		
9(i)	$y^2 = (4t)^2 = 16t^2$		
	$=8(2t^2)$		
	=8x (shown)		

	-4	
	Volume = $\pi \int_{0}^{4} 8x dx$	
	$=\pi \left[4x^2\right]_0^4$	
	-64π	
9(ii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 4t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 4$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{t}$	
	Gradient of tangent $TS = \tan \theta$	
	$\therefore \tan \theta = \frac{1}{t}$	
	t	
	$\cot \theta = t \text{ (shown)}$	
9 (iii)	Gradient of line $QP = \frac{4t-0}{2t^2-2}$	
	$2t^2-2$	
	$=\frac{2t}{t^2-1}$	
	$=\frac{\frac{2}{\tan\theta}}{\frac{1}{\tan^2\theta}-1}$	
	$\frac{1}{\tan^2 \theta} - 1$	
	$=\frac{2\tan\theta}{1-\tan^2\theta}$	
	$= \tan 2\theta$	
	$\tan \phi = \tan 2\theta \Rightarrow \phi = 2\theta$ (shown)	
	$\angle QPR = 180^{\circ} - \phi$ (interior angles)	
	$=180^{\circ}-2\theta$ (by earlier results)	
	$\angle TPQ + (180^{\circ} - 2\theta) + \theta = 180^{\circ}$	
	$\therefore \angle TPQ = \theta \qquad \text{(shown)}$	
9 (iv)	The reflected light from the bulb <u>produces a horizontal beam</u> of light/ produces a beam of	
	line parallel to x-axis	
9 (v)	Midpoint $M = \left(\frac{2+2t^2}{2}, \frac{4t+0}{2}\right)$	
	$= (1+t^2, 2t)$	
	$\int x = 1 + t^2$	
	$\begin{cases} x = 1 + t^2 \\ y = 2t \Rightarrow t = \frac{y}{2} \end{cases}$	
	Locus of midpoint <i>M</i> is:	
	$x = 1 + \frac{y^2}{4}$	
	$y^2 = 4(x-1)$	

Likewise for part (vi).

End of Paper