Indian Institute of Technology Patna MA101, Mid Semester Exam: 2015

Maximum Marks: 30 Time: 2 Hrs

<u>Note</u>: This question paper has TWO pages and contain TWELVE questions. Please check all pages and report the discrepancy, if any. Attempt all questions. Use $\epsilon - \delta$ arguments wherever possible.

- 1. (a) Let x denote an arbitrary real number. Show that there exists a unique integer n such that $n-1 \le x \le n$.
 - (b) If x > 0 is a real number and p < q then show that there exists an irrational number r such that p < ru < q.

[3]

- 2. Find the limit of the sequences (i) $\frac{n^2}{n!}$ and (ii) $((1+\frac{1}{n})^{2n})$. [2]
- 3. If 0 < r < 1 and $|x_{n+1} x_n| < r^n$ for all $n \in \mathbb{N}$ then show that x_n is a Cauchy sequence.
- 4. Consider the sequence defined by $a_1 = 1$ and $a_{n+1} = 1 + \frac{1}{a_n}$ for $n \in \mathbb{N}$. Show that the sequence is a Cauchy sequence and its limit is $\frac{1+\sqrt{5}}{2}$. [3]
- 5. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent. Check the convergence of the series :

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}.$$

- 6. For what values of θ and p the series $\sum_{k=1}^{\infty} \frac{(\cos(k\theta))}{k^p}$ is (i) convergent and (ii) divergent.
- 7. (a) Use the $\epsilon \delta$ definition to establish that $f(x) = \frac{1}{x^2} x > 0$, is not uniformly continuous at any point $c \in R$. Also show that the function $f(x) = \frac{1}{x^2} x \ge a > 0$ is uniformly continuous. $[2\frac{1}{2}]$

- (b) Let $f: \mathbb{R} \to (0, \infty)$, satisfy $f(x+y) = f(x)f(y) \ \forall \ x \in \mathbb{R}$. Suppose f is continuous at x = 0. Show that f is continuous at all $x \in \mathbb{R}$. $[2\frac{1}{2}]$
- 8. (a) Using Cauchy Mean Value theorem, show that $1 \frac{x^2}{2!} < \cos x$ for $x \neq 0$ [2]
 - (b) A right circular cone with a flat circular base is constructed of sheet material of uniform small thickness. Express the total area of the surface in terms of volume and semi-vertical angle θ . Show that for a given volume, the area of the surface is a minimum if $\theta = \sin^{-1}(1/3)$
- 9. (a)Let $f:[0,12] \longrightarrow \mathbb{R}$ be continuous and f(0)=f(12). Show that there exists $x_1, x_2, x_3, x_4 \in [0,12]$ such that $x_2 x_1 = 6$ and $x_4 x_3 = 3$, $f(x_1) = f(x_2)$ and $f(x_3) = f(x_4)$. (Use the intermediate value property (IVP)). $[2\frac{1}{2}]$
 - (b) Let $f:[1,3] \to R$ be a continuous function that is differentiable on (1,3) with derivative $f'(x) = (f(x)^2) + 4$ for all $x \in (1,3)$. Determine whether it is true or false that f(3) f(1) = 5. Justify your answer. $[2\frac{1}{2}]$