Aide à la décision/ Decision aid

Souhila KACI

Partie 4 (suite)/Part 4 (continued)
Algorithmes d'affectation
Assignment algorithms

Algorithmes d'affectation

Principe

- Vœux d'affectation
- Critères de priorité
- Procédure d'appariement

Motivation

- Simplifier la gestion des procédures d'affectation (doubles inscriptions)
- Transparence de l'affectation
- Adéquation entre aptitudes et formations

Affectation dans le milieu scolaire

- Capacité d'accueil des établissements
- Vœux d'affectation des élèves
- 3 Règles de priorité : traduisent des choix politiques
- Algorithme d'affectation: vise à satisfaire au mieux les préférences des élèves en respectant les règles de priorité

Evaluation des algorithmes d'affectation : Critères normatifs

Efficacité (respect des préférences)

Il ne doit pas être possible de proposer un meilleur choix à un élève sans que cela n'affecte négativement un autre élève.

Equité (respect des priorités)

Aucun élève ne doit avoir d'envie justifiée, i.e. s'être vu refuser l'admission dans une école alors qu'il a une priorité plus élevée qu'un autre élève admis dans cette école.

Non-manipulabilité

On veut qu'il soit dans l'intérêt des élèves d'être sincères, i.e. de soumettre leurs vraies préférences.

Aucun algorithme ne satisfait les trois critères

Algorithme de Boston

Paradoxe

Cet algorithme ne satisfait aucun critère...mais il est très répandu...

Principe

Satisfaire au maximum les premiers choix.

Déroulement

- On considère d'abord le 1er vœu des élèves. Les places sont attribuées en fonction des critères de priorité.
- On considère ensuite le 2eme vœu des élèves refusés sur le 1er vœu; les places restantes après l'étape 1 sont attribuées en fonction des critères de priorité
- etc

Algorithme de Boston

- Etape 0 : chaque élève soumet une liste ordonnée de vœux
 - chaque école considère les élèves qui l'ont classée en 1er vœu
 - chaque école accepte définitivement les candidats les mieux classés par ordre de priorité dans la limite des places disponibles, et rejette les autres
- Etape 1 : on ne considère que les vœux de rang 1
- ...
- Etape k : on considère les élèves non affectés à l'étape pécédente, et leur vœu de rang k. Même procédure que précédemment.

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3=1$

Préférences des élèves	Priorités	Capacité des écoles
$i_1: (s_2, s_1, s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(\overline{\overline{s_1}},s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
i_3 : $(\overline{s_1}, s_2, s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3=1$

Etape 1 : on considère le 1er vœu de chaque élève

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3=1$

Etape 1 : on considère le 1er vœu de chaque élève

• i_1 candidate à s_2 et y est affecté (pas d'autre candidat)

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,\overline{i_3,i_2})$	$q_1 = 1$
$i_2:(\overline{s_1},s_2,s_3)$	$s_2:(i_2,\overline{i_1,i_3})$	$q_2 = 1$
$i_3:(\overline{s_1},s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3 = 1$

Etape 1 : on considère le 1er vœu de chaque élève

- i_1 candidate à s_2 et y est affecté (pas d'autre candidat)
- i_2 et i_3 candidatent à s_1 .

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2=1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3 = 1$

Etape 1 : on considère le 1er vœu de chaque élève

- i_1 candidate à s_2 et y est affecté (pas d'autre candidat)
- i_2 et i_3 candidatent à s_1 . Il y a une seule place; i_3 est affecté à s_1 car il est prioritaire à i_2

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1, s_2, s_3)$	$s_2:(\overline{i_2},\overline{i_1},\overline{i_3})$	$q_2 = 1$
$i_3:(\underline{s_1},\overline{s_2},s_3)$	$s_3:\overline{(i_2,i_1,i_3)}$	$q_3=1$

Etape 2 : i_2 candidate à s_2

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2=1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3=1$

Etape 2 : i_2 candidate à s_2 mais est refusé (plus de place)

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,\overline{s_3})$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
$i_3:(\underline{s_1},s_2,\overline{s_3})$	$s_3:([i_2],i_1,i_3)$	$q_3=1$

Etape 3 : i_2 candidate à s_3

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2=1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_{3} = 1$

Etape 3 : i_2 candidate à s_3 et y est affecté

Algorithme de Boston : Analyse

L'algorithme est inéquitable (il ne respecte pas les priorités)

 i_2 est refusé sur son 2eme vœu (s_2) alors qu'il est prioritaire par rapport à i_1 (envie justifiée).

L'algorithme est manipulable

 i_2 est incité à mentir en classant s_2 en 1er vœu. Il serait alors affecté à s_2 qu'il préfère à s_3 .

L'algorithme est inefficace

Parce qu'il incite les élèves à mentir sur leurs préférences, l'algorithme produit généralement un appariement inefficace.

Algorithme d'acceptation différée

Gale & Shapley 1962 (Prix Nobel)

- Théorie du mariage stable.
- Le modèle considère un ensemble d'hommes et de femmes ayant chacun des préférences sur les individus de sexe opposé.
- L'algorithme permet de former des <u>couples "stables"</u> : <u>pas de couple se préférant mutuellement à leur conjoint.</u>

Algorithme d'acceptation différée

- Etape 0 : chaque élève soumet une liste ordonnée de vœux
- Etape 1 : on ne considère que les vœux de rang 1
 - chaque école considère les élèves qui l'ont classée en 1er vœu
 - chaque école accepte <u>temporairement</u> les mieux classés dans la limite des places disponibles et rejette les autres.
- . . .
- Etape k : les élèves rejetés à l'étape précédente candidatent sur leur vœu suivant
 - chaque école considère conjointement les élèves précédemment admis et les élèves lui faisant une offre à cette étape
 - les mieux classés sont <u>temporairement</u> acceptés et les autres sont rejetés

L'algorithme se termine au bout d'un nombre fini d'itérations lorsque plus aucun élève n'est rejeté.

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1 = 1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3=1$

Préférences des élèves	Priorités	Capacité des écoles
$i_1: (s_2, s_1, s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(\overline{\overline{s_1}},s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
i_3 : $(\overline{s_1}, s_2, s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3=1$

Etape 1 : on considère le 1er vœu de chaque élève

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_{3} = 1$

Etape 1 : on considère le 1er vœu de chaque élève

• i_1 candidate à s_2 et y est temporairement affecté.

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,\overline{i_3},\overline{i_2})$	$q_1 = 1$
$i_2: (s_1, s_2, s_3)$	$s_2:(i_2,\overline{i_1},\overline{i_3})$	$q_2=1$
$i_3:(\overline{s_1},s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3=1$

Etape 1 : on considère le 1er vœu de chaque élève

- i_1 candidate à s_2 et y est temporairement affecté.
- i_2 et i_3 candidatent à s_1 .

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3 = 1$

Etape 1 : on considère le 1er vœu de chaque élève

- i_1 candidate à s_2 et y est temporairement affecté.
- i_2 et i_3 candidatent à s_1 . Il n'y a qu'une place : i_3 est temporairement affecté à s_1 car il a la priorité sur i_2 , qui est rejeté.

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(\overline{i_2},\overline{i_1},i_3)$	$q_2 = 1$
$i_3:(\underline{s_1},\overline{s_2},s_3)$	$s_3:\overline{(i_2},\overline{i_1,i_3})$	$q_3 = 1$

Etape 2 : i_2 (rejeté à l'étape précédente) candidate à s_2

• s_2 considère conjointement i_2 et i_1 .

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3=1$

Etape 2 : i_2 (rejeté à l'étape précédente) candidate à s_2

- s_2 considère conjointement i_2 et i_1 .
- Puisque i_2 a une priorité plus élevée, il est <u>temporairement</u> affecté à s_2 , et i_1 est rejeté.

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,\overline{s_1},s_3)$	$s_1:(\overline{i_1},\overline{i_3},\overline{i_2})$	$q_1 = 1$
$i_2:(s_1,\overline{s_2},s_3)$	$s_2: \overline{(i_2,i_1,i_3)}$	$q_2=1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3 = 1$

Etape 3 : i_1 (rejeté à l'étape précédente) candidate à s_1

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,\overline{s_1},s_3)$	$s_1:(\overline{i_1},\overline{i_3},i_2)$	$q_1=1$
$i_2:(s_1,\overline{s_2},s_3)$	$s_2: \overline{(i_2}, \overline{i_1}, \overline{i_3})$	$q_2 = 1$
$i_3:(\mathbf{s_1},s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3 = 1$

Etape 3 : i_1 (rejeté à l'étape précédente) candidate à s_1

• s_1 considère conjointement i_1 et i_3 .

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2=1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3 = 1$

Etape 3 : i_1 (rejeté à l'étape précédente) candidate à s_1

- s_1 considère conjointement i_1 et i_3 .
- i_1 est temporairement affecté à s_1 , et i_3 est rejeté.

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1: (i_1, i_3, \underline{i_2})$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(\overline{i_2},i_1,\overline{i_3})$	$q_2 = 1$
$i_3:(s_1,s_2,s_3)$	$s_3:\overline{(i_2,i_1,\overline{i_3})}$	$q_3=1$

Etape 4 : i_3 candidate à s_2 .

• s_2 considère conjointement i_2 et i_3 .

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2=1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3=1$

Etape 4 : i_3 candidate à s_2 .

- s_2 considère conjointement i_2 et i_3 .
- *i*₃ est rejeté.

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1 = 1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,\overline{i_3})$	$q_3 = 1$

Etape 4 : i_3 candidate à s_3 .

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1 = 1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2=1$
i3: (\$1,\$2,\$3)	$s_3:(i_2,i_1,\frac{i_3}{3})$	$q_3 = 1$

Etape 4 : i_3 candidate à s_3 et y est temporairement admis.

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2 = 1$
$i_3:(s_1,s_2,s_3)$	$s_3:(i_2,i_1,i_3)$	$q_3 = 1$

Affectation finale : Aucune offre n'étant plus rejetée, l'affectation est finalisée et l'algorithme aboutit à

$$(i_1, s_1), (i_2, s_2), (i_3, s_3)$$

Algorithme d'acceptation différée : Propriétés

Bonnes propriétés

- Il respecte les priorités (équité) : garantit qu'aucun élève n'a d'envie justifiée (mariage stable).
- Il est non-manipulable : être sincère est la meilleure stratégie.
- Il est efficace sous contraintes : parmi les algorithmes qui respectent les priorités, c'est celui qui donne la satisfaction la plus élevée aux élèves.

Le respect des priorités a un coût en terme d'efficacité

Certains élèves pourraient échanger leurs affectations de façon mutuellement avantageuse, au prix d'une violation des priorités.

Préférences des élèves	Priorités	Capacité des écoles
$i_1:(s_2,s_1,s_3)$	$s_1:(i_1,i_3,i_2)$	$q_1=1$
$i_2:(s_1,s_2,s_3)$	$s_2:(i_2,i_1,i_3)$	$q_2=1$
i ₃ : (51,52,53)	$s_3:(i_2,i_1,i_3)$	$q_3 = 1$

Affectation finale:

$$(i_1, s_1), (i_2, s_2), (i_3, s_3)$$

- Dans cet exemple, l'algorithme d'acceptation différée a un coût en termes d'efficacité.
- Les élèves i_1 et i_2 gagneraient à échanger leur affectation : $(i_1, s_2), (i_2, s_1), (i_3, s_3)$
- Mais cela créerait de l'envie justifiée pour i_3 refusé par l'école s_1 alors qu'il est prioritaire par rapport à i_2 .