8. Si vuole ottenere l'emissione di elettroni da lastre metalliche di materiali diversi su cui incide una radiazione di frequenza $7.80 \cdot 10^{14}$ Hz. Determinare, motivando la risposta, quale tra i materiali in elenco è l'unico adatto allo scopo.

Materiale	Lavoro di estrazione 4,8 eV	
Argento		
Cesio	1,8 eV	
Platino	5,3 eV	

Individuato il materiale da utilizzare, determinare la velocità massima che può avere un elettrone al momento dell'emissione.

COSTANTI FISICHE			
carica elementare	e	1,602 ⋅ 10 ⁻¹⁹ C	
costante di Planck	h	6,626 · 10 ⁻³⁴ J·s	
costante dielettrica nel vuoto	$arepsilon_0$	$8,854 \cdot 10^{-12} \text{ F/m}$	
massa dell'elettrone	$m_{\rm e}$	$9,109 \cdot 10^{-31} \text{ kg}$	
massa del protone	$m_{\rm p}$	$1,673 \cdot 10^{-27} \text{ kg}$	

Colcolians le frequenze di soglio dei materiali

$$f_{Ag} = \frac{W_e}{h} = \frac{4.8 \times 1,602 \times 10^{-19} \text{ J}}{6,626 \times 10^{-34} \text{ J} \cdot \text{S}} = 1,1605... \times 10^{15} \text{ Hz} > f_{RADUARIONE}$$

fcs =
$$\frac{1,8 \times 1,607 \times 10^{-19} \text{ J}}{6,626 \times 10^{-34} \text{ J.s}} = 0,4351... \times 10^{15} \text{Hz} < \text{fradiazione} = 0$$

Pt =
$$\frac{5,3 \times 1,602 \times 10^{-19} \text{J}}{6,626 \times 10^{-34} \text{ J} \cdot \text{S}} = 1,281... \times 10^{15} \text{ Hz} > \text{RADUZIONE}$$

L'unico materiale con frequença di soglia inferiore alla frequença delle sodiazione è il cesio.

$$\frac{1}{2}mN^2 = h\left(f_{RAD} - f_{Cs}\right)$$

$$N = \sqrt{\frac{2h\left(f_{RAD} - f_{Cs}\right)}{m}} =$$

$$= \sqrt{\frac{2(6,626 \times 10^{-34} \text{ J.s})[(7,80 - 4,351...) \times 10^{14} \text{ Hz}]}{9,109 \times 10^{-31} \text{ kg}}} =$$

= 7,08356...
$$\times 10^5 \frac{m}{5} \simeq \boxed{7,1 \times 10^5 \frac{m}{5}}$$

7. Un protone, inizialmente in quiete, viene accelerato da una d.d.p. di 400 V ed entra, successivamente, in una regione che è sede di un campo magnetico uniforme e perpendicolare alla sua velocità.

La figura illustra un tratto semicircolare della traiettoria descritta dal protone (i quadretti hanno lato 1,00 m). Determinare l'intensità di \vec{B} .

L'en. cinetico del protone
$$\bar{z}$$
 $K = e\Delta V$ (400 eV)

 $\frac{1}{2}mv^2 = e\Delta V \Rightarrow v = \sqrt{\frac{2e\Delta V}{m}}$

quands il protone entre nel camps magnetics è saggetts ella forsa di brents (perpendicolare alla nebeità, durque fa da forsa centrifeta). enB=m~~ (R=JZ m)

$$B = \frac{m \pi}{m} = \frac{1}{m}$$

$$=\frac{\left(1,673\times10^{-27}\,\mathrm{kg}\right)\left(27,677...\times10^{4}\,\mathrm{m}\right)}{\left(1,602\times10^{-13}\,\mathrm{C}\right)\left(\mathrm{Vz}\,\mathrm{m}\right)}==27,67759...\times10^{4}\,\mathrm{m}$$

$$B = \frac{m \pi}{2 \pi} = \sqrt{\frac{2 (1,602 \times 10^{-19} c) (400 V)}{1,673 \times 10^{-27} \text{ Kg}}} = \frac{1}{1,673 \times 10^{-27} \text{ Kg}} = \frac{1}{1,673$$