תרגיל בית 1

שאלה 1: (35 נקי)

(6 נקי)

א. בדקו כי הנורמות הבאות המוגדרות על מרחבים וקטוריים מתאימים אכן מהוות נורמות:

(נקי) א (כל המרחב
$$\|x\|_1=\sum_{i=1}^n |x_i|$$
 עייי עיי \mathbb{R}^n לכל המרחב $\|x\|_1$

. $f\in Cig[a,big]$ לכל $\|f\|_{L_{\!\scriptscriptstyle 1}}=\int\limits_a^big|fig(xig)ig|dx$ עייי על המרחב ([a,b] מרחב הפונקציות הרציפות בקטע ([a,b]

(נקי) א 6)
$$f\in Cig[a,big]$$
 לכל $\|f\|_{L_{\infty}}=\max_{x\in[a,b]}ig|f\left(x
ight)$ עייי עיי $Cig[a,big]$ לכל המרחב $\|\ \|_{L_{\infty}}$

ב. בדקו כי הקבוצות הבאות הן תתי מרחב של המרחב הוקטורי $\mathbb{R}^{^{\infty}}$ (מרחב הסדרות הממשיות) ובדקו כי הנורמות המוגדרות עליהן אכן מהוות נורמות :

(6) עם הנורמה
$$\|x\|_1=\sum_{n=1}^\infty \left|x_n\right|$$
 עם הנורמה $\|x\|_1=\left\{x\in\mathbb{R}^\infty\right|$ לכל $\left\|x\|_1=\left\{x\in\mathbb{R}^\infty\right|$

(6) עם הנורמה
$$\|x\|_2 = \sqrt{\sum_{n=1}^\infty \left|x_n\right|^2}$$
 עם הנורמה עייי עם הנורמה איי ו $\|x\|_2 = \left\{x \in \mathbb{R}^\infty \left|\sum_{n=1}^\infty \left|x_n\right|^2 < \infty \right\}\right\}$

<u>שאלה 2:</u> (30 נקי)

. X מטריקות על d,d_1,d_2 ויהיו קבוצה א תהי

 $x,y\in X$ לכל $cd\left(x,y
ight)=c\cdot d\left(x,y
ight)$ א. יהי $cd\left(x,y
ight)=c\cdot d\left(x,y
ight)$ המוגדרת עייי הפונקציה פונקציה א. יהי (8 נקי)

, X היא גם מטריקה על $f\left(x,y\right)=\dfrac{d\left(x,y\right)}{1+d\left(x,y\right)}$ המוגדרת ע"י , $f:X imes X o \mathbb{R}$ לכל הפונקציה קופירת ע"י , המקבלת ערכים בקטע $\left[0,1\right]$. (14 נקי)

 $g(x,y)=(1-\lambda)\cdot d_1(x,y)+\lambda\cdot d_2(x,y)$ ג. יהי אוני הפונקציה $g:X\times X\to\mathbb{R}$ הפונקציה כי הפונקציה מספר ממשי. הוכיחו כי הפונקציה אוני הפונקציה אוני מספר ממשי. הוכיחו כי הפונקציה אוני מספר ממשי. (8 נקי)

<u>שאלה 3:</u> (35 נקי)

יהי V_1 מוגדר להיות הקבוצה , $v_1,v_2\in V$ היות הקבוצה פני מהתרגול כי לכל שני וקטורים . $\mathbb R$ אם לכל שני וקטורים וקטורים אם מרחב וקטורים ב- V אם לכל שני וקטורים . $\{(1-\lambda)v_1+\lambda v_2 \ | \ \lambda\in[0,1]\}\subset V$

. C -ם מתקיים בינהם המחבר הקטע מתקיים כי מתקיים ע $v_1,v_2\in C$

א. הוכיחו כי הזזות ואופרטורים לינאריים המוגדרים על V מעבירים כל קטע המחבר בין שני וקטורים ב- V , לקטע (אחר) המחבר בין שני וקטורים (אחרים) ב- V . הוכיחו גם כי הם מעבירים כל קבוצה קמורה ב- V לקבוצה קמורה ב- V . (9 נקי)

ב. יהי V מרחב מכפלה פנימית מעל R . תהי S ספירה ב- V ויהיו $V_1,v_2\in S$ יהי V_1 חוכיחו מעל S . תהי S הוכיחו כי S מרחב מכפלה פנימית מעל S . תהי $S\cap I=\{v_1,v_2\}$

ג. השתמשו בסעיף בי לעיל על מנת להוכיח כי הנורמות $\| \| \|$ ו בהתאמה, אינן מושרות עייי שום מכפלה פנימית. (13 נקי) על $\| \| \|_{L_{\omega}}$ והנורמות $\| \| \|_{L_{\omega}}$ והנורמות עייי שום מכפלה פנימית. (13 נקי)

בהצלחה!