```
In [ ]: #shahad nabil aldossari /2210003677
          #SUMAYAH ALMARGHUOB / 2200003286
          #Fatima al-Marar /22210003682
          #Randa alghamdi / 2190005914
          #Sadeem alkhamis/2210003644
In [26]:
          #Equation
          import sympy as sym
          from sympy import symbols
          q1, q2, r, k = symbols('q1 q2 r k')
          F = k*q1*q2/r**2
          kq_1q_2
Out[26]:
In [27]:
         # data and table
          import pandas as pd
          data = {
              'Charge one':[3,3,3,3,3,3,3,3],
              'Charge two':[6,6,6,6,6,6,6,6],
              'Distance':[0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1],
              'Distance_square':[0.03**2,0.04**2,0.05**2,0.06**2,0.07**2,0.08**2,0.09**2,0.1**2]
          }
          df=pd.DataFrame(data)
          df
Out[27]:
             Charge one Charge two Distance Distance_square
          0
                     3
                                       0.03
                                6
                                                    0.0009
                     3
                                6
                                       0.04
                                                    0.0016
          2
                     3
                                6
                                       0.05
                                                    0.0025
          3
                     3
                                6
                                       0.06
                                                    0.0036
                     3
                                6
                                       0.07
                                                    0.0049
          4
          5
                     3
                                       80.0
                                                    0.0064
                     3
                                6
          6
                                       0.09
                                                    0.0081
          7
                     3
                                       0.10
                                                    0.0100
In [28]: # Add a new column
          import pandas as pd
          def Force(q1, q2, r, k=9 * 10**9):
              F = k * q1 *10**-6* q2*10**-6/(r**2)
              return F
          df['Force']=Force(df['Charge one'],df['Charge two'],df['Distance'])
          df=pd.DataFrame(df)
          df
```

:	Charge one	Charge two	Distance	Distance_square	Force
	3	6	0.03	0.0009	180.000000
1	1 3	6	0.04	0.0016	101.250000
2	2 3	6	0.05	0.0025	64.800000
3	3	6	0.06	0.0036	45.000000
	4 3	6	0.07	0.0049	33.061224
!	3	6	0.08	0.0064	25.312500
(5 3	6	0.09	0.0081	20.000000
	7 3	6	0.10	0.0100	16.200000

Out[28]

```
In [29]: #Graph
    import matplotlib.pyplot as plt
    import seaborn as sns
    x=df.Distance_square
    y=df.Force
    plt.plot(x,y,color="b")
    plt.xlabel("Distance r²(m²)")
    plt.ylabel("Force(N)")
    plt.title("Graph 1. The relationship between Distance and Force ",fontsize=15)
    plt.text(0.006,100,'$F=\\frac{k q1 q2}{r^2}$',fontsize=20)
    sns.set()
    plt.show()
```


Out[30]:	Charge one	Charge two	Distance	Distance_square	Force
0	3	6	0.0300	0.0009	180.0000
1	3	6	0.0400	0.0016	101.2500
2	3	6	0.0500	0.0025	64.8000
3	3	6	0.0600	0.0036	45.0000
4	3	6	0.0700	0.0049	33.0612
5	3	6	0.0800	0.0064	25.3125
6	3	6	0.0900	0.0081	20.0000
7	3	6	0.1000	0.0100	16.2000

In []: