МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Павлович Владислав Викторович **МЕТОДЫ ЧИСЛЕННОГО АНАЛИЗА**

Отчёт по лабораторной работе №1 студента 3 курса 3 группы

> Преподаватель: Полещук Максим Александрович

Содержание

1	Задание 1	1
2	Теория	1
3	Результаты	1
4	Задание 2	1
5	Теория	2
6	Результаты	2

1 Задание 1

Классическим методом Рунге-Кутты четвёртого порядка точности найти приближенное решение задачи Коши дифференциального уравнения:

$$u' = -(g + 0.05s)x^{g-1+0.05s}u\sin(x^{g+0.05s}), u(0) = e, g = 3, s = 2,$$

$$u' = -3.1x^{2.1}u\sin(x^{3.1})$$

2 Теория

Была использована следующая совокупность формул для метода Рунге-Кутты четвёртого порядка точности:

$$\begin{aligned} k_1 &= hf(x,y), \\ k_2 &= hf\left(x + \frac{h}{2}, y + \frac{k_1}{2}\right), \\ k_3 &= hf\left(x + \frac{h}{2}, y + \frac{k_2}{2}\right), \\ k_4 &= hf(x + h, y + k_3), \\ y(x + h) &= y(x) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \end{aligned}$$

Новое h вычисляется по следующей формуле:

$$h_{\varepsilon} = \frac{h}{2} \sqrt{\frac{(2^k - 1)\varepsilon}{|y_{h/2} - y_h|}}$$

3 Результаты

Всего потребовалось 2 итерации для достижения глобальной ошибки 0.000781834.

- 1. Принятая длина шага: $h_n = 0.189498$.
- 2. Приближенные значения $y_{n,h}$:

x_n	0	0.189498	0.378996	0.568494	0.757992	0.94749	1.13699	1.32649
$y_{n,h}$	2.71828	2.71823	2.71494	2.67764	2.48822	1.9405	1.08561	0.478938

3. Приближенные значения $y_{n,h/2}$:

x_n	0	0.094749	0.189498	0.284247	0.378996	0.473745	0.568494	0.663243	0.757992
$y_{n,h}$	2.71828	2.71828	2.71824	2.71772	2.71497	2.70509	2.67771	2.61444	2.48833
x_n	0.852741	0.94749	1.04224	1.13699	1.23174	1.32649			
$y_{n,h}$	2.26933	1.94055	1.52269	1.08538	0.718349	0.478156			

4. Абсолютная погрешность:

x_n	0	0.189498	0.378996	0.568494	0.757992	0.94749	1.13699	1.32649
Δ_n	0	6.67572e-06	3.09944e-05	7.43866e-05	0.000110865	4.64916e-05	0.000281572	0.000875711

5. Относительная погрешность:

x_n	0	0.189498	0.378996	0.568494	0.757992	0.94749	1.13699	1.32649
Δ_n	0	2.4559e-06	1.14161e-05	2.77799e-05	4.45538e-05	2.39581e-05	0.000259435	0.0018318

6. Модуль главного члена ошибки:

x_n	0	0.189498	0.378996	0.568494	0.757992	0.94749	1.13699	1.32649
Δ_n	0	4.13259e-07	1.93914e-06	4.65711e-06	7.00951e-06	3.26633e-06	1.50204 e-05	5.21223e-05

4 Задание 2

Экстраполяционным методом Адамса четвёртого порядка точности найти приближённое решение задачи Коши дифференциального уравнения из задания 1 на сетке узлов с фиксированным шагом $h=5\cdot 10^{-3}$ построив начало таблицы с использованием метода Рунге-Кутты.

5 Теория

Была использована следующая формула для экстраполяционного метода Адамса с q=3:

$$y_{n+1} = y_n + \frac{h}{24}(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}).$$

6 Результаты

1. Число шагов: 200.

2. Максимальная глобальная ошибка: $1.73904 \cdot 10^{-7}$.

3. $251/(720*5^5)*max|u^{(5)}| = 0.0081791.$

4. Первые 20 приближённых значений y_n равны 2.71828, последние 20:

y_n	0.792387	0.774736	0.757435	0.740491	0.723908	0.70769	0.691842	0.676367	0.661268	0.646547
y_n	0.632208	0.618251	0.604677	0.591489	0.578686	0.566269	0.554238	0.542592	0.531331	0.520455

