Econometrics 710 Final Exam, Spring 2013

1. Take the linear instrumental variables equation

$$y_i = x_i \beta_1 + z_i \beta_2 + e_i$$

$$E(e_i|z_i) = 0$$

where for simplicity both x_i and z_i are scalar 1×1 .

- (a) Can the coefficients (β_1, β_2) be estimated by 2SLS using z_i as an instrument for x_i ? Why or why not?
- (b) Can the coefficients (β_1, β_2) be estimated by 2SLS using z_i and z_i^2 as instruments?
- (c) For the 2SLS estimator suggested in (b), what is the implicit exclusion restriction?
- (d) In (b), what is the implicit assumption about instrument relevance? [Hint: Write down the implied reduced form equation for x_i .]
- (e) In a generic application, would you be comfortable with the assumptions in (c) and (d)?
- 2. Take the linear homoskedastic CEF

$$y_i^* = x_i'\beta + e_i$$

$$E(e_i|x_i) = 0$$

$$E(e_i^2|x_i) = \sigma^2$$
(1)

and suppose that y_i^* is measured with error. Instead of y_i^* , we observe y_i which satisfies

$$y_i = y_i^* + u_i$$

where u_i is measurement error. Suppose that e_i and u_i are independent and

$$E(u_i|x_i) = 0$$

$$E(u_i^2|x_i) = \sigma_u^2(x_i)$$

- (a) Derive an equation for y_i as a function of x_i . Be explicit to write the error term as a function of the structural errors e_i and u_i . What is the effect of this measurement error on the model (1)?
- (b) Describe the effect of this measurement error on OLS estimation of β in the feasible regression of the observed Y on X.
- (c) Describe the effect (if any) of this measurement error on appropriate standard error calculation for $\hat{\beta}$.

3. Take a linear equation with endogeneity and a just-identified linear reduced form

$$y_i = x_i \beta + e_i \tag{2}$$

$$x_i = \gamma z_i + u_i \tag{3}$$

where both x_i and z_i are scalar 1×1 . Assume that

$$E(z_i e_i) = 0$$

$$E(z_i u_i) = 0$$

- (a) Write down the standard 2SLS estimator $\hat{\beta}_{2SLS}$ for β using z_i as an instrument for x_i .
- (b) Find the asymptotic distribution for $\hat{\beta}_{2SLS}$. Write the asymptotic variance as a function of $\Omega = E(z_i^2 e_i^2)$, $Q = E(z_i^2)$, and γ
- 4. In the context of model (2)-(3) from question 3:
 - (a) Derive the reduced form equation

$$y_i = z_i \lambda + v_i. (4)$$

Show that $\beta = \lambda/\gamma$ if $\gamma \neq 0$, and that

$$E(z_i v_i) = 0$$

- (b) Let $\hat{\lambda}$ denote the OLS estimate from linear regression of Y on Z, and let $\hat{\gamma}$ denote the OLS estimate from linear regression of X on Z. Write $\theta = (\lambda, \gamma)'$ and let $\hat{\theta} = (\hat{\lambda}, \hat{\gamma})'$. Define the error vector $\xi_i = \begin{pmatrix} v_i \\ u_i \end{pmatrix}$. Write $\sqrt{n} \left(\hat{\theta} \theta \right)$ using a single expression as a function of the error ξ_i .
- (c) Show that $E(z_i \xi_i) = 0$
- (d) Derive the joint asymptotic distribution of $\sqrt{n} \left(\hat{\theta} \theta \right)$ as $n \to \infty$. Hint: Define $\Omega_{\xi} = E\left(z_i^2 \xi_i \xi_i' \right)$
- (e) Using the previous result and the Delta Method, find the asymptotic distribution of the Indirect Least Squares estimator $\hat{\beta} = \hat{\lambda}/\hat{\gamma}$
- (f) Bonus: Is the answer in (c) the same as the asymptotic distribution of the 2SLS estimator from question 3? [Hint: Show that $\begin{pmatrix} 1 & -\beta \end{pmatrix} \xi_i = e_i$ and $\begin{pmatrix} 1 & -\beta \end{pmatrix} \Omega_{\xi} \begin{pmatrix} 1 \\ -\beta \end{pmatrix} = \Omega$]