CHE453: Capstone Project

Bi-weekly report number: 2

Team members:

Aaditya Amlan Panda	220007
Abhijit Dalai	220030
Adarsh Pal	220054
Akash Kumar Gupta	220095
Kushagra Tiwari	220574
Saurabh Yadav	220991
Snehil Tripathi	221071
Tushar Verma	221147

Operating Conditions

The Molar Ratio (Methanol: MEB: HCl = 16.59: 2.7: 0.1215)

High Excess of Methanol: The Primary purpose is to drive the equilibrium toward ester formation. Methanol acts both as a reactant and as a solvent. According to Roberts & Urey (1938)¹, this ratio enabled a large amount of water in the product. In our process, water helped in the energy-efficient separation of methanol to help with efficient methanol recovery.

Low concentration of HCI catalyst: Roberts & Urey (1938)¹, mention that "attempts to make the reaction go to completion in a short time resulted in esterification of the large amount of hydrochloric acid catalyst which must be used". Hence catalyst reaction must be prevented even if the residence time increases.

Moderate Temperature (25°C)

Roberts & Urey (1938)¹ reasoned out that "This temperature provided a controlled environment that was: Warm enough to maintain reasonable reaction rates Cool enough to prevent excessive side reactions."

Our reasons for choosing this temperature: -

At this temperature, methanol, water and HCl remain in the **liquid phase**, thus suitable for our liquid phase reaction. According to the Journal of Chemical Research², the **solubility of benzoic acid** in methanol is around 2 mol/L at 25°C, thus well within the initial concentrations we have taken. A higher temperature might lead the HCl to react, forming alkyl chlorides with methanol.

Near Atmospheric Pressure (1 bar)

The primary reason is that this pressure is cost-effective equipment-wise. Another important reason is that no azeotropes are formed at this pressure. Since the mole difference for the reaction is zero, pressure change will not affect the reaction equilibrium conversion.

AZEOTROPE SEARCH REPORT

Physical Property Model: UNIQUAC Valid Phase: VAP-LIQ

Mixture Investigated For Azeotropes At A Pressure Of 1 BAR

Comp ID	Component Name	Classification	Temperature
METHY-BE	METHYL-BENZOATE	Saddle	198.77 C
METHA-01	METHANOL	Saddle	64.20 C
WATER	WATER	Saddle	99.65 C
HYDRO-01	HYDROGEN-CHLORIDE	Unstable node	-85.32 C
BENZO-01	BENZOIC-ACID	Saddle	248.44 C
PHTHA-01	PHTHALIC-ACID	Stable node	324.61 C

No Azeotropes Were Found

Flowsheet

Method 1:

Method 2:

Key Assumption: Due to the unavailability of kinetics data, we have assumed a conversion of 80% (since recycling will be done in later weeks as instructed in deliverables, which can be expected to take the conversion beyond 90%), and hence the stream ROUT is taken to be the stream that is coming out of the reactor, which will be connected in coming weeks between MIXOUT and ROUT.

Method 1:

Aspen Results:

Speni			:		<u></u>			:	!				
	Units	METH ANOL	BENZ OIC	MIXO UT	ROUT	D1	B1	D2	B2	D3	В3	D4	B4
Temperatur e	С	25	25	31.07 9447	25	64.22 2648	113.4 4837	91.27 6941	205.7 6891	190.8 9376	250.0 3781	245.7 5004	286.4 2371
Pressure	bar	1	1	1	1	1	1.1	1	1.1	1	1.1	1	1.1
Molar Enthalpy	kJ/k mol	-23839 9.8	-3719 99.9	-2567 57.1	-2593 26.3	-2345 29.3	-3047 69.1	-2780 65.2	-3087 80.3	-3051 42.7	-3264 03.5	-3207 94.8	-5607 64.8
Mass Enthalpy	kJ/kg	-7440. 191	-3042. 037	-5777. 334	-5835. 144	-7324. 084	-3760. 472	-1387 4.19	-2329. 822	-2261. 379	-2644. 361	-2614. 976	-3720. 213
Enthalpy Flow	kW	-11224 6.6	-2789 9.99	-1401 46.6	-1415 48.9	-9558 0.77	-4214 6.61	-1760 0.56	-2315 6.6	-1810 3.89	-5112. 947	-4889. 375	-237.2 355
Mole Flows	kmol/ hr	1695	270	1965	1965	1467. 155	497.8 4501	227.8 6746	269.9 7756	213.5 8537	56.39 2189	54.86 9184	1.523 0053
MEB	kmol/ hr	0	0	0	215.2	0.000 785	215.1 9921	2.151 9921	213.0 4722	210.9 1675	2.130 4722	2.130 0777	0.000 3946
BENZA	kmol/ hr	0	269	269	53.8	0.000 1963	53.79 9804	8.30E -05	53.79 9721	0.537 9972	53.26 1723	52.72 9106	0.532 6172
WATER	kmol/ hr	0	0	0	215.2	2.152	213.0 48	210.9 1752	2.130 48	2.130 48	7.28E -09	7.28E -09	5.97E -15
METH	kmol/ hr	1695	0	1695	1479. 8	1465. 002	14.79 8	14.79 786	0.000 1397	0.000 1397	1.36E -15	0	0
PTH	kmol/ hr	0	1	1	1	3.65E -06	0.999 9964	2.92E -06	0.999 9934	0	0.999 9934	0.009 9999	0.989 9935
Mole Fractions								\ ! ! ! !			 		
MEB		0	0	0	0.109 5165	5.35E -07	0.432 2615	0.009 4441	0.789 1294	0.987 5056	0.037 7796	0.038 821	0.000 2591
BENZA		0	0.996 2963	0.136 8957	0.027 3791	1.34E -07	0.108 0654	3.64E -07	0.199 2748	0.002 5189	0.944 4876	0.960 9967	0.349 7146
WATER		0	0	0	0.109 5165	0.001 4668	0.427 9404	0.925 6149	0.007 8913	0.009 9748	1.29E -10	1.33E -10	3.92E -15
METH		1	0	0.862 5954	0.753 0789	0.998 5325	0.029 7241	0.064 9406	5.17E -07	6.54E -07	2.42E -17	0	0
PTH		0	0.003 7037	0.000 5089	0.000 5089	2.49E -09	0.002 0086	1.28E -08	0.003 704	0	0.017 7328	0.000 1823	0.650 0263

Enthalpy balance:

	Enthalpy Balance	r		mix out	c1 in		c2 in	,	c3 in		c4 in	, 1 1 1 1	
r.		-4040876 52	-1004399 74.7	-5045276 26.7	-5095761 18.8	-3440907 84.3	-1517277 89.2	-6336201 4.05	-8336374 5.19	-6517401 0.63	-1840660 7.87	-1760174 9.19	-854047.7 215
-	 	-5045276 26.7			 	-4958185 73.5		-1467257 59.2		-8358061 8.5		-1845579 6.91	
		mixin				c1 out		c2 out		c3 out		c4 out	

Mole/mass balance:

				mix out	c1 in		c2 in		c3 in		c4 in		
	Mole/Mass Balance	1695	270	1965	1964.9999 99	1467.1549 85	497.84501 43	227.86745 82	269.97755 62	213.58536 72	56.392189 01	54.869183 7	1.5230053 08
	 	1965				1964.9999 99		497.84501 43		269.97755 62		56.392189 01	
F		mixin				c1 out		c2 out		c3 out		c4 out	

Mole recovery	y:				_	_	
Mole Recovery	Methanol	Rout	1479.8	D1	1465.002	%recv	99
 	Benzoic Ac	Rout	53.79999984	D4	52.72910611	%recv	98.0094912
 	MEB	Rout	215.1999997	D3	210.9167503	%recv	98.00964246

Energy Results:

(Kw)	C1	C2	C3	C4		
QR	40099	4916	3882	1005	QR_total	49902
QC	-36277	-3527	-3942	-1018	QC_total	-44764

Method 2:

Aspen Results:

vohei													
	Units	METHAN OL	BENZOIC	MIXOUT	ROUT	D1	B1	D2	B2	D3	ВЗ	D4	B4
Temperatu re	С	25	25	31.07944 699	25	66.16571 526	199.6227 892	64.22245 121	93.89829 794	184.2832 265	250.0378 125	245.7500 443	286.4237 315
Pressure	bar	1	1	1	1	1	1.1	1	1.1	1	1.1	1	1.1
Molar Enthalpy	kJ/k mol	-238399. 7947	-371999. 9062	-256757. 0619	-259326. 2692	-240714. 8254	-309886. 9344	-234528. 6258	-277841. 8189	-306254. 8299	-326403. 5103	-320794. 8078	-560764. 8819
Mass Enthalpy	kJ/kg	-7440.19 1133	-3042.03 7273	-5777.33 3799	-5835.14 3963	-7915.711 162	-2348.65 9234	-7324.03 7071	-13863.6 353	-2282.55 7271	-2644.36 1118	-2614.97 6145	-3720.21 3048
Enthalpy Flow	kW	-112246.5 7	-27899.9 9297	-140146. 563	-141548. 9219	-113231.2 519	-23377.0 9423	-95477.4 665	-17585.2 084	-18305.7 4475	-5112.973 175	-4889.39 9893	-237.236 969
Mole Flows	kmol/ hr	1695	270	1965	1965	1693.425 016	271.5749 839	1465.573 246	227.8517 702	215.1825 039	56.39248 001	54.86946 544	1.523014 575
MEB	kmol/ hr	0	0	0	215.2	2.152	213.048	0	2.152	210.9175 2	2.13048	2.130085 425	0.000394 575
BENZA	kmol/ hr	0	269	269	53.8	0	53.8	0	0	0.538	53.262	52.72938	0.53262
WATER	kmol/ hr	0	0	0	215.2	213.048	2.152	2.13048	210.9175 2	2.151999 987	1.29E-08	1.29E-08	1.06E-14
METH	kmol/ hr	1695	0	1695	1479.8	1478.225 016	1.574983 878	1463.442 766	14.78225 016	1.574983 878	1.74E-11	1.74E-11	5.46E-20
PTH	kmol/ hr	0	1	1	1	0	1	0	0	0	1	0.01	0.99
Mole Fractions							T			T	\ ! ! ! !		T
MEB		0	0	0	0.109516 539	0.001270 797	0.784490 519	0	0.009444 737	0.980179 69	0.037779 505	0.038820 962	0.000259 075
BENZA		0	0.996296 296	0.136895 674	0.027379 135	0	0.198103 666	0	0	0.002500 203	0.944487 634	0.960996 787	0.349714 316
WATER		0	0	0	0.109516 539	0.125808 936	0.007924 147	0.001453 684	0.925678 654	0.010000 813	2.29E-10	2.35E-10	6.95E-15
METH		1	0	0.862595 42	0.753078 88	0.872920 266	0.005799 444	0.998546 316	0.064876 609	0.007319 293	3.08E-13	3.17E-13	3.58E-20
PTH		0	0.003703 704	0.000508 906	0.000508 906	0	0.003682 224	0	0	0	0.017732 861	0.000182 251	0.650026 609

Enthalpy Balance:

	: _ : _ :											
Enthalpy Balance			mix out	c1 in	c2 in	c3 in				c4 in		
	-4040876 52	-1004399 74.7	-5045276 26.7	-509576 119	-4076325 07	-8415753 9.21	-3437188 79.4	-6330675 0.26	-6590068 1.11	-1840670 3.43	-1760183 9.62	-854053.0 884
 	-5045276 26.7		 	 	-4917900 46.2		-4070256 29.7		-8430738 4.54		-1845589 2.7	
 	mixin			 	c1 out		c2 out		c3 out		c4 out	

Mole/mass Balance:

		 	mix out	c1 in	c2 in	c3 in				c4 in		
Mole/Mass Balance	1695	270	1965	1965	1693.4250 16	271.57498 39	1465.5732 46	227.85177 02	215.18250 39	56.392480 01	54.869465 44	1.5230145 75
 	1965				1965		1693.4250 16		271.57498 39		56.392480 01	
 	mixin		 		c1 out		c2 out		c3 out		c4 out	

Mole recovery:

Mole Recovery	Methanol	Rout	1479.8	D2	1463.442766	%recv	98.89463211
 	Benzoic Ac	Rout	53.8	D4	52.72938	%recv	98.01
	MEB	Rout	215.2	D3	210.91752	%recv	98.01

Energy Results:

(Kw)	C1	C2	C3	C4		
QR	22564	21462	3900	1005	QR_total	48931
QC	-17623	-21293	-3942	-1018	QC_total	-43876

Summary—Method 1:

- Likely routing (from stream names & splits): C1 first strips methanol overhead (D1), keeping water + MEB + acids in B1; C2 then removes water (mainly to D2); C3 recovers MEB (to D3); C4 polishes benzoic acid / PTH (to D4/B4).
- Key recoveries (from "Mole recovery"):
 - Methanol: D1 = **1465.002 kmol/h** (≈**99.0%** of 1479.8)
 - MEB: D3 = 210.9175 kmol/h (≈98.01% of 215.2)
 - Benzoic acid: D4 = **52.7291 kmol/h** (≈**98.01%** of 53.8)
- Losses/carryover: ~2.152 kmol/h MEB appears in light distillates (mostly D2, almost none in D1). The methanol tail in B2 is ~1.4×10⁻⁴ kmol/h (negligible). PTH mostly to B4.
- Duty profile:
 - Duties: QR_total ≈ 49,902 kW; C1 bears the peak load (~40,099 kW), with much lighter C2. QC_total ≈ 44,764 kW.
- Takeaways: Very clean MeOH recovery early; water removal pushed to C2; high peak reboiler load on C1 but similar overall energy to Method 2—excellent final purities/yields.

Summary - Method 2:

Likely routing: C1 now sends a **MeOH+H**₂**O-rich** overhead (D1 shows large water), with a **heavier mix** in B1; **C2** then becomes the **main methanol column** (D2 is the methanol product), and water comes out from B2. C3 and C4 again target **MEB** and **benzoic acid/PTH**, respectively.

Key recoveries:

- Methanol: **D2 = 1463.443 kmol/h** (≈**98.895**%) ~0.1 percentage point lower than Method 1.
- MEB: **D3 = 210.9175** kmol/h (≈98.01%)
- Benzoic acid: **D4 = 52.7294 kmol/h** (≈**98.01%**)

Losses/carryover: Similar ~2.152 kmol/h MEB in light distillates, but now mostly in **D1** (rather than D2). PTH again concentrated in **B4**.

Duty profile:

• Duties: QR_total \approx 48,931 kW (\approx 1.95% lower than M1); heat is more evenly split between C1 (\sim 22,564 kW) and C2 (\sim 21,462 kW). QC_total \approx 43,876 kW.

Takeaways: Slightly **lower total reboiler duty** and **reduced peak load** on the first column vs. M1, at the cost of a **hair lower MeOH recovery** to the designated methanol product stream. Product yields (MEB/BA) remain essentially identical to Method 1.

Comparison between Method-1 & Method-2:

- Energy: Method 2 cuts QR_total by ~971 kW (~2%) and spreads the load across C1 & C2; Method 1 concentrates ~80% of QR in C1.
- Recoveries: MEB & BA ≈ 98.01% in both. Methanol is ~99.0% (M1) vs ~98.895% (M2). If MeOH recycle purity/specs are tight, M1 has a slight edge; otherwise, M2's tiny shortfall may be operationally negligible.
- Where losses appear: The ~1% MEB loss to lights is inevitable in both, but shows up in D2 in M1 and D1 in M2.

Practical recommendation

- For lower duty / easier utility integration / smaller reboiler, Method 2 is preferable.
- To obtain slightly higher MeOH recovery in the designated methanol product stream for recycle specifications and for keeping MEB out of the first distillate, Method 1 has a marginal edge.
- Notable Observation: The above results are obtained when light key recoveries at each shortcut distillation were fixed at 0.99. When recovery was made tighter at each column with light key recovery at around 0.999, the reboiler duty energy requirements in M1 shot

up to twice its value, around ~102,000 kWh; hence, it does not provide an economical repeatability.

• Percentage change in methanol recovery with change in reboiler duty.

Recovery 1	Recovery 2		%Recovery/Reboiler Duty
99	98.8946321		
			0.010851483
Reboiler Duty 1	Reboiler Duty 2		
49902	48931		

Objectives that could not be accomplished with reasons:

- The reactor block could not be connected, as no direct reference sheet with kinetics data was available.
- Experimental T-x-y data could not be found for any of the other pairs, even after a thorough search, and hence, we require some more time to find and analyse data of exactly similar but different pairs.

Any other challenges:

 Unavailability of kinetic data and rate law expression as a direct reference; hence, we need some time to find out ways of estimating the value of K and activation energy.

Bibliography:

[1] A Study of the Esterification of Benzoic Acid with Methyl Alcohol Using Isotopic Oxygen, Irving Roberts and Harold C. Urey

[2] Solubility of Benzoic Acid in Seven Solvents

Number of hours spent on Capstone project during this period: 17 hours total

Contributions from individual members:

- 1. Aaditya Amlan Panda (Configuration Visualisation and Design)
- 2. Abhijit Dalai (Method Selection and Flowsheeting)
- 3. Adarsh Pal (Method Selection and Flowsheeting)
- 4. Akash Kumar Gupta (Operating Condition Identification)
- 5. Kushagra Tiwari (Configuration Visualisation and Design)
- 6. Saurabh Yadav (Method Selection and Flowsheeting)
- 7. Snehil Tripathi (Operating Condition Identification)
- 8. Tushar Verma (Configuration Visualisation and Design)

Signatures of members:

Aaditya Amlan Panda	Aodityoamlan Panda	
Abhijit Dalai	Abhijit Dalai	
Adarsh Pal	AdarshPal	
Akash Kumar Gupta	Akash Kumar Gupta	
Kushagra Tiwari	Kushagra	
Saurabh Yadav	Singal.	
Snehil Tripathi	ne hil	
Tushar Verma	Pushe	