

Machine Learning in Business John C. Hull

Chapter 11 Issues for Society

Issues with Machine Learning

- Data privacy
- Biases
- Ethics
- Transparency
- Adversarial machine learning
- Legal issues
- Man vs. machine

Data Privacy (EU), page 218

- The Cambridge Analytica story has raised concerns about data privacy
- General Data Protection Regulation:
 - Recognizes that data is valuable
 - Companies need consent for using data for other than the purpose it was collected
 - Must provide data breach notifications
 - Citizen have a "right to explanation"
 - Safe handling across borders
 - Must appoint data protection officer

Biases in Data

- Literary Digest predicted Landon (Republican) would beat Roosevelt (Democrat) by 57.1% to 42.9% in 1936 for U.S. president. This was based on polling 10 million people (2.4 million responding) consisting of its readers, telephone users, and those with car registrations
- Some facial recognition software was trained largely on images of white people which led to problems
- Data used to make loan decisions likely to reflect existing criteria
- Analysts may consciously or unconsciously incorporate their biases in the selection of features, the choice of models, the way data is cleaned, etc

Ethics (pages 220-221)

- It is clearly unacceptable to base decisions on race, gender, or other sensitive inputs
- Including features that are highly correlated with the sensitive inputs should be avoided
- China's social credit system which provides credit scores for citizens or businesses is controversial
- Other ethics considerations:
 - Use of ML in warfare
 - The trolley problem
 - Can machines be trained to be ethical in the data used

Transparency

- Consumers have a right to know why a certain decision (e.g, a loan being refused) was made.
- Predictions need to be explained. "Black box" algorithms are not likely to be acceptable.
- This means that in addition to making a prediction the algorithm must output the relative importance of different features in reaching conclusions
- It can do this by investigating the importance of a feature by changing its value or removing it from the analysis altogether
- The Hans story

Adversarial Machine Learning (page 221-222)

- Machines are easier to fool than human beings
- Examples:
 - Avoiding spam filters
 - Spoofing financial markets
 - Confusing driverless cars

Legal issues

- If a driverless car hits a pedestrian, who is liable:
 - The person who programmed the car?
 - The manufacturer of the car?
 - The owner of the car?

Technology interacting with humans

- This can be dangerous
- An extreme example is Microsoft's Tay chatbot
- This interacted with teenagers via Twitter and learned politically incorrect phrases
- It was shut down after only one day

Limitations of ML

- It relies on historical data
- If there is a regime change so that historical data no longer applies then ML will not be a good guide to decision making
- How would self-driving cars perform if rules on left or right turning were changed?

Man vs. Machine

Human beings will need to learn how to manage large data sets and interpret the output from machine learning algorithms

Industrial Revolutions (page 169-170)

- Steam engine and water power (1760-1840)
- Electricity and mass production (1840-1920)
- Computers and digital technology (1950-2000)
- Al and automation (2000 onward)