SET-POINT STABILIZATION PROBLEM

consider the system

y = h (x)

$$\begin{cases} \dot{x} = f(x, u) & \chi(t) \in \mathbb{R}^{N_{K}} \text{ (STATE)} , \quad \chi(t) \in \mathbb{R}^{N_{U}} \text{ (control)} \\ y_{\Gamma} = h_{\Gamma}(x) & y_{\Gamma}(t) \in \mathbb{R}^{N_{\Gamma}} \text{ (RECUNTED OUTPUT)} , & y_{M}(t) \in \mathbb{R}^{N_{PM}} \text{ (FIGASU RED OUTPUT)} \end{cases}$$

WE ONLY MEASURE Ym(1) let y * ∈ R be a desired volue (SET-POINT) for y, (+)

(₩)

PROBLEM: dosign a controller of the form

$$\begin{cases} \dot{\xi} = Q_{\delta}(\xi, y_{m}) & \xi(t) \in \mathbb{R}^{N_{\xi}} & (CONTROLLER'S STATE) \\ M = \chi(\xi, y_{m}) & \end{cases}$$

$$\begin{cases} \dot{x} = \int (x, Y(\xi, h_{n_{r}}(x))) \\ \dot{\xi} = \partial_{\xi}(\xi, h_{n_{r}}(x)) \\ y_{r} = h_{r}(x) \end{cases}$$

Sotisfies the following: 1. I equilibrium point (x*, 5*) e R x R of (x) such that:

 $y_n^* = h_v(x^*)$ <- The ream loted output y, equals y' of the

equi Cibrium

This problem will be our main focus throughout the module

BIBLIOGRAPHY: H. KHALIL, Northman systems (Chop. 12.2)

• NECESSARY CONDITION: If points 1 and 2 are satisfied, then there exist $(x^{\mu}, \mu^{\mu}) \in \mathbb{R}^{h_{\mu}} \times \mathbb{R}^{n_{\mu}}$ such that:

$$\begin{cases} \lambda_{k}^{L} = \mu^{L}(x_{k}) \\ \lambda_{k}^{L} = \mu^{L}(x_{k}) \end{cases}$$

1 Property of the plant

(SOLVABILITY Eq.)

and the point 5* sotisties

$$\begin{cases} \omega^* = \gamma(\varsigma^*, h_m(x^*)) \end{cases}$$

EXAMPLE : ACTUATED PENDULUM

pondulum equations:
$$(X_L = \Theta , X_Z = \mathring{\Theta})$$

$$\begin{cases} \dot{X}_{\perp} = X_{2} \\ \dot{X}_{2} = -\frac{a_{0}}{e} S_{1M} X_{1} - \frac{\dot{f}}{\Pi \ell^{2}} X_{2} + \frac{1}{\Pi \ell^{2}} M \\ \dot{y}_{m} = X \\ \dot{y}_{r} = X_{1} \end{cases}$$

Let us solve the Solvability Equations: we look for
$$(x^*, \mu^*)$$
 s.t.

$$\begin{cases} 0 = X_2^* \\ 0 = -\frac{a}{9} \sinh X_1^* - \frac{\beta}{10} X_2^* + \frac{1}{10} \alpha^* \end{cases} \Rightarrow \begin{cases} X^* = (\theta^*, 0) \\ M^* = Mgl \sin \theta^* \end{cases}$$

the controller does not switch off at steady-state except when 0 = kTT (KEM)

the REGULATOR EQS. tell us that Ony controller solving the problem must provole this control action of steady-state

LOGIL STATE-FEEDBACK SOLUTION

(we measure the full state)

. SOLUTION APPROACH BY LINEAR FEEDBACK + LYAPUNOV INDINECT METHOD

$$\begin{cases}
A_{x}^{L} & \neq \mu^{L}(X_{\lambda}) \\
0 & \neq \ell(X_{\lambda}^{L}, W_{\lambda})
\end{cases}$$

STEP 2) We linearise the system $\dot{X} = f(x, m)$ around (x^*, m^*) obtaining the matrices

$$A = \frac{\partial f}{\partial x}(x^*, n^*)$$

$$B = \frac{\partial f}{\partial x}(x^*, n^*)$$

STEP 3) We choose the controller $M(t) = M^* + K(X(t) - X^*)$ (*) $(M^* = FEED FORWARD ACTION)$ where K is chosen so that A+BK is Hurmitz we need (A.B) Stobilizoble 1 RESULT. With the controller (*), the equilibrium x* is LAS Hence, there exists an open set $0 \in \mathbb{R}^n$ such that $x^* \in 0$ and $\forall x(0) \in \emptyset$, $\lim_{t \to \infty} \forall_r (t) = y_r^*$ PROOF. we can write the plant as $\dot{x} = A \hat{x} + B \hat{n} + f_{HOT}(x, m)$ (8) $(\hat{x} = x - x^*, \hat{n} = m - m^*)$ where $f_{HOT}(x, M) = f(x, M) - A\hat{x} - B\hat{M}$ Sotisfies $\frac{\partial f_{\text{Hor}}}{\partial f_{\text{Hor}}} \left(x^*, M^* \right) = \left[\frac{\partial x}{\partial x} \left(x^*, M^* \right) - A \right] = 0$ we con rewrite (*) as ~ = Kx Plugging this into (18) leads to the closed-loop system: $\dot{x} = (A + BK) \hat{x} + f_{HOT}(x, M^* + K\hat{x}) = F(x)$

The limearization of $\dot{X} = F(x)$ around X^* is

$$\frac{\partial \mathcal{F}}{\partial \mathcal{F}}(x^*) = \frac{\partial}{\partial x} \left[(A + BK)(x - x^*) \right]_{X = x^*} + \frac{\partial}{\partial x} f_{Hor}(x^*, M^* + K^*_x)$$
See obove

 $=> M^{*^2} = -1$

Since A+BK is Hurwitz by design, the result follows from Lyapunov's indirect theorem.

19

IMPOSSIBLE

EXAMPLE:

$$\begin{cases} \dot{X} = X^3 + M^2 \\ y_y = y_m = X \end{cases}$$

CASE 1: sot-point control to y = 1

The FOLVABILITY CONDITIONS YESOI

we connot solve cose 1.

. the solvability conditions ove:

$$\begin{cases} 0 \neq X_* \\ 0 \neq X_* \end{cases} + W_* \\ \begin{cases} X_* \neq 0 \\ X_* \neq 0 \end{cases}$$

 $B = \frac{\partial f}{\partial n}(x^{9}, n^{9}) = \frac{\partial}{\partial n}(x^{7} + n^{7})\Big|_{X=0} = 2n\Big|_{X=0} = 0$ $\Rightarrow A = 0, B = 0 = 7 \quad (A, B) \text{ is not controllable}$ $\Rightarrow \text{ we connot solve cose2}$ $\frac{\text{CASE 3}}{\text{the solvability conditions ove:}}$

. To olofine the control law we first need to linearize the system grand (x, x)

 $\forall = \frac{2x}{3t}(x_*, w_*) = \frac{2x}{3}(x_3 + w_5)\Big|_{x=0} = 3x_5\Big|_{x=0} = 0$

 $\begin{cases}
0 = x^{*3} + M^{*2} \\
-1 = x^{*}
\end{cases} \Rightarrow \begin{cases}
x^{*} = -1 \\
M^{*} = 1
\end{cases}$ The linearization matrices ove $A = 3 \times^{2} \Big|_{x=-1} = 3$

|X = -1| = 2 $|X = 2M|_{M=1} = 2$

For every $K < -\frac{3}{2}$, the notice A+BK is $H_{vyn}.t_{2}$ since:

A+BK = 3+2K < 0

Then , $\sqrt{\forall K \leftarrow -\frac{3}{2}}$, the controller

 $M(\epsilon) = 1 + K \left(X(\epsilon) + 1 \right) \tag{\bullet}$

locally stobilites the eq. point where y*=-1.

What about the donoin of attraction?

Plugging (•) into the system's equations basis to $\dot{X} = X^3 + \left(1 + K(X+1)\right)^2 = X^3 + 1 + K^2(X+1)^2 + 2K(X+1)$

Chonying coordinates from
$$x$$
 to $\hat{X} := X - x^* = X + 1$ leads to $\hat{X} = \hat{X} + \hat{1} = \hat{X} = X^3 + 1 + k^2 (X + 1)^2 + 2k (X + 1)$

$$= (\hat{X} - 1)^3 + 1 + k^2 \hat{X}^2 + 2k \hat{X}$$

$$= \hat{X}^3 - 3\hat{X}^2 + 3\hat{X} + k^2 \hat{X}^2 + 2k \hat{X}$$

= $\hat{\times}$ $\left(3+2K+\left(K^2-3\right)\stackrel{\sim}{\times}+\stackrel{\sim}{x}^2\right)$

Considering the Lyapunov condidate $V(x) = (x+1)^2 = x^2$, we get

$$= 5 \wedge (x) \cdot \left[3 + 5x + (x_5 - 3) \times + \times_5\right]$$

$$= 5 \wedge (x) \cdot \left[3 + 5x + (x_5 - 3) \times + \times_5\right]$$

We want this to be negotive

=>
$$\frac{9x}{9}$$
(x) $t(x)$ <0 . oz coudos 3+5K + (K₅-3) $\frac{x}{x}$ + $\frac{x}{x}$ 5 <0

so, we need to solve $\hat{x}^2 + (k^2-3)\hat{x} + 3+2k + 20$

$$\hat{x} < \frac{2}{3-K_{\delta}} + \sqrt{\frac{4}{(3-K_{\delta})_{\delta}} - (3+5K)} \qquad \wedge \qquad \hat{x} > \frac{5}{3-K_{\delta}} - \sqrt{\frac{4}{(3-K_{\delta})_{\delta}} - (3+5K)}$$

EXAMPLE : ACTUATED PENDULUM

pondulum equetions:
$$(X_L = \Theta , X_Z = \mathring{\Theta})$$

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\frac{g}{e} \sin x_1 - \frac{g}{ne^2} x_2 + \frac{1}{ne^2} u \\ \dot{y}_m = x \\ \dot{y}_r = x_1 \end{cases}$$

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{y}_m = x \\ \dot{y}_r = \theta^* \end{cases}$$

we sow before that the solvaBility Eqs. have the solution

Next, we linearize the system around (x*, M+). We have

$$\frac{\partial x}{\partial x} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix} \quad \text{where} \quad \begin{cases} f_1(x, w) = x_2 \\ f_2(x, w) = -\frac{\partial}{\theta} \sin x_1 - \frac{\partial}{\theta} x_2 + \frac{1}{M e^2} w \end{cases}$$

$$\frac{\partial f_1}{\partial x_1}(x, m) = 0 \qquad \frac{\partial f_1}{\partial x_2}(x, m) = 1$$

$$\cdot \frac{\partial X_1}{\partial t^2}(x, w) = -\frac{6}{8}\cos x_1 \qquad , \qquad \frac{\partial f_z}{\partial x^2}(x, w) = -\frac{\beta}{8}e^{2x}$$

Thus, we obtain:

$$A = \frac{\partial f}{\partial x} (x^{y}, M^{x}) = \begin{pmatrix} 0 & 1 \\ -\frac{\partial}{\partial x} \cos \theta^{x} & -\frac{\beta}{H^{2}} \end{pmatrix} \leftarrow \begin{bmatrix} \text{If } \theta^{x} > \frac{\pi}{2} & \text{the forced equilibrity} \\ \text{ave unstable in open loop} \\ \frac{\partial f}{\partial x} (x^{y}, M^{x}) & = \begin{pmatrix} \frac{\partial}{\partial x} (x^{y}, M^{y}) \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\partial}{\partial x} (x^{y}, M^{x}$$

. Since (A,B) is controllable, we can always design K so that A+BK is Hurwitz, for instana:

$$K = \left[Mlg(cs\theta^* - E) \quad O \right]$$
 for any $E > O$

We neglect the verticel position and call $X_1 = \dot{S}$, $X_2 = \dot{\theta}$, $X_3 = \dot{\theta}$

The model reads:

$$\begin{cases} X_{i}^{*} = 0 \\ O = \cos X_{i}^{*} \cdot \left(M_{i}^{*} + M_{i}^{*}\right) - \Pi_{i}^{*} - w \sin y - \int_{i}^{x} Y_{i}^{*} \\ O = X_{3}^{*} \\ O = -\beta X_{3}^{*} + \ell \left(M_{i}^{2} - M_{i}^{*}\right) \end{cases}$$

$$\langle \Rightarrow \begin{cases} Y_{i}^{*} = X_{3}^{*} = 0 \\ \cos X_{i}^{*} \cdot \left(M_{i}^{*} + M_{i}^{*}\right) = \Pi_{i}_{0} + w \sin y \end{cases}$$

$$\langle \Rightarrow \begin{cases} Y_{i}^{*} = X_{3}^{*} = 0 \\ \cos X_{i}^{*} \cdot \left(M_{i}^{*} + M_{i}^{*}\right) = \Pi_{i}_{0} + w \sin y \end{cases}$$

$$\langle \Rightarrow \begin{cases} Y_{i}^{*} = X_{3}^{*} = 0 \\ \cos X_{i}^{*} \cdot \left(M_{i}^{*} + M_{i}^{*}\right) = 1 \end{cases}$$

$$Mex^{i} - M_{i}^{*} = 0$$

$$Mex^{i} + w \epsilon \text{ inservice } :$$

$$f_{1}(x, m) = \begin{cases} f_{1}(x, m) \\ f_{2}(x, m) \\ f_{3}(x, m) \end{cases} = \begin{cases} f_{1}(x, m) \\ f_{2}(x, m) = X_{3} \end{cases}$$

$$f_{2}(x, m) = X_{3} + \ell \frac{\ell}{2} \left(M_{2} - M_{1}\right)$$

$$f_{3}(x, m) = -\frac{\ell}{3} \times y + \ell \frac{\ell}{2} \left(M_{2} - M_{1}\right)$$

$$f_{3}(x, m) = \begin{pmatrix} -\frac{\ell}{1} & -\frac{1}{n} \sin x_{1} \left(M_{i}, m_{1}\right) & 0 \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix} \Rightarrow A = \begin{pmatrix} -\frac{M}{n} & -\frac{\Pi_{1} + w \sin y}{1 + h_{1}} + h_{2} \times y_{1} \\ 0 & 0 & -\frac{\beta}{1} \end{cases}$$

$$g_{1}(x, m) = \begin{pmatrix} -\frac{\ell}{1} & -\frac{1}{n} \sin x_{1} \left(M_{i}, m_{1}\right) & 0 \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix} \Rightarrow A = \begin{pmatrix} -\frac{M}{n} & -\frac{\Pi_{1} + w \sin y}{1 + h_{2}} + h_{3} \times y_{1} \\ 0 & 0 & -\frac{\beta}{1} \end{cases}$$

$$g_{1}(x, m) = \begin{pmatrix} -\frac{M}{n} & -\frac{1}{n} \sin x_{1} \left(M_{i}, m_{1}\right) & 0 \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix} \Rightarrow A = \begin{pmatrix} -\frac{M}{n} & -\frac{\Pi_{1} + w \sin y}{1 + h_{2}} + h_{3} \times y_{1} \\ 0 & 0 & -\frac{\beta}{1} \end{cases}$$

$$g_{1}(x, m) = \begin{pmatrix} -\frac{M}{n} & -\frac{1}{n} \sin x_{1} \left(M_{i}, m_{2}\right) & 0 \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix} \Rightarrow A = \begin{pmatrix} -\frac{M}{n} & -\frac{\Pi_{1} + w \sin y}{1 + h_{2}} + h_{3} \times y_{1} \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix}$$

$$g_{2}(x, m) = \begin{pmatrix} -\frac{M}{n} & -\frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} & -\frac{M}{n} \cos x_{1} \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix}$$

$$g_{3}(x, m) = \begin{pmatrix} -\frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} & -\frac{M}{n} \cos x_{1} \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix}$$

$$g_{3}(x, m) = \begin{pmatrix} -\frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} & -\frac{M}{n} \cos x_{1} \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix}$$

$$g_{4}(x, m) = \begin{pmatrix} -\frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix}$$

$$g_{4}(x, m) = \begin{pmatrix} -\frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix}$$

$$g_{4}(x, m) = \begin{pmatrix} -\frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} & \frac{1}{n} \cos x_{1} \\ 0 & 0 & -\frac{\beta}{3} \end{pmatrix}$$

$$g_{4}(x, m)$$

Solvability conditions: (GOAL 4,*=0)

L, the plesion is concluded by toking K such that A+BK is Hurmitz and

$$M(t) = M^{\frac{1}{2}} + \frac{1}{K} \left(X(t) - X^{\frac{1}{2}} \right)$$

$$= \left(\frac{M_0^2 + w \sin x}{Z \cos x_2^{\frac{1}{2}}} \right) + \frac{1}{K} \cdot \left(\frac{X_2(t) - X_2^{\frac{1}{2}}}{X_3(t)} \right)$$

$$= \left(\frac{X_1(t)}{X_2(t) - X_2^{\frac{1}{2}}} \right)$$

$$= \left(\frac{X_1(t)}{X_1(t) - X_2^{\frac{1}{2}}} \right)$$

LOCAL OUTPUT - FEEDBACK SOLUTION

In this case $(y_m(x) \neq X)$, typially we only measure a port of the state

We can resort to the linear output-feedback theory, by which we implement

$$M(\epsilon) = M^* + K \hat{X}(\epsilon)$$
 (instead of $M = M^* + K (X - X^*)$)

in which \hat{X} is an estimate of $\hat{X} \stackrel{.}{=} X - X^*$.

we can write the plant as before as

$$\dot{\tilde{x}} = A \hat{x} + B \hat{x} + f_{HOT}(x, M)$$

where

$$\hat{w} = w - w_*$$
 $A = \frac{9t}{9t}(x_*, w_*)$, $B = \frac{2m}{9t}(x_*, w_*)$

we odd the output equation

$$\tilde{Y}_{m} = h_{m}(x) - h_{m}(x') = C \tilde{x} + h_{m, HoT}(x)$$

where

$$C = \frac{\partial h_{m}}{\partial x}(x^*)$$
 and
$$h_{m, \text{Hor}}(x) = h_{m}(x) - h_{m}(x^*) - C\hat{x}$$

$$= \text{HIGMER ORDER TERM}$$

If (C,A) is detectable, we confind L such that A+LC is Hurwitz, and we can define the Luemberger observer

$$\frac{1}{\hat{x}} = A\hat{x} + B\hat{x} + L(c\hat{x} - \hat{y}_{m})$$

$$= A\hat{x} + B(M^* + K\hat{x}) + L(c\hat{x} - \hat{y}_{m} + h_{m}(x^*))$$

The overall controller is then

$$\begin{pmatrix}
\mathring{x} = (A + BK + LC)\mathring{x} - L\mathring{y}_{m} \\
M = M^{*} + K\mathring{x}
\end{pmatrix}$$
of the form
$$\begin{pmatrix}
\mathring{s} = g(\S, Y_{m}) \\
M = Y(\S, Y_{m})
\end{pmatrix}$$
with
$$\mathring{s} = \mathring{x}$$

The dynamic controller (A,B) is stabilizable and (C,A) eletectable. The dynamic controller (A) Locally stabilizes the equilibrium $(x,\hat{x}) = (x^*,o)$. Therefore, there exists an open set () $c | \mathbb{R}^n \times \mathbb{R}^n$ containing (x^*,o) such that $\forall (x(o),\hat{x}(o)) \in ()$, $\lim_{t\to\infty} \forall_r(t) = y_r^*$

Let us analyte the closed-loop system, which has state $(\hat{x},\hat{\hat{x}})$ Changing variables from $\hat{\hat{x}}$ to

leads to the closed - loof system

$$\hat{X} = A \hat{x} + B \hat{m} + \{ \{ \{ \{ \} \} \} \}$$

$$= (A + B K) \hat{X} + B K e + \{ \{ \{ \} \} \} \}$$

$$\hat{M} = K \hat{\hat{X}} = K (e + \hat{X})$$

$$\begin{array}{lll}
\vec{e} &= \hat{\vec{x}} - \hat{\vec{x}} &= (A + BK + LC) \hat{\vec{x}} - L \tilde{\vec{y}}_{mn} - (A + BK) \hat{\vec{x}} - BK e - f_{Hor}(x,m) \\
&= (A + BK + LC) (e + \hat{\vec{x}}) - (A + BK) \hat{\vec{x}} - BK e - L (C \tilde{\vec{x}} + h_{m,Hor}(x)) - f_{Hor}(x,m) \\
&= (A + LC) e - (f_{Hor}(x,m) + L h_{m,Hor}(x))
\end{array}$$

hena:

$$\begin{pmatrix} \dot{x} \\ \dot{e} \end{pmatrix} = \begin{pmatrix} A + BK & BK \\ 0 & A + LC \end{pmatrix} \begin{pmatrix} \dot{x} \\ e \end{pmatrix} + \begin{pmatrix} f_{HOT}(x_{I,M}) \\ -f_{HOT}(x_{I,M}) - Lh_{m_{I}HOT}(x) \end{pmatrix}$$

LINEAR PART

HIGHER ONDER TERMS

The amear port is Hurn-17 -> By Lyopunov indirect theorem we (result the separation principle) conclude that
$$(\widetilde{x}, e) = 0$$
 is LAS

Thus we conclude that the equilibrium point (x^*, o) is LAS for (x, \hat{x})

PROBLETIS OF CONTROL VIA LINEARIZATION:

P1) LOCALITY the guarantees are given by Lyapunov's indirect Theorem that, However, only guarentees the existence of an open Non-empty donain of alliaction, but it aloes not say anything about its size

sometimes taking large goins K enlarges the domain of altraction. But this is not vluoys the case.

this can be seen in the drone example and in the examples below.

EXAMPLE consider the system

and let us try to stobilize x*=0 (requiring u*=0).

The empor part of the dynamics is defined as

 $\beta = x^* + 1 = 1$

The state-feedback controller is: $u(t) = u^* + K(x(1)-x^*) = KX(t)$ for some K(0). This leads to

$$\dot{X} = (X+1) K X = K (X^2 + X)$$
 (+)

No mothers how large is |K|, for all $\times 10^{1} < 1$ the classed-loop trajectories are divergent.

=> we cannot enlarge the domain of attraction

in partialor the solutions of (+) are (recoll, KLO)

$$X(t) = X_0 \frac{e^{\kappa t}}{X_0 + 1 - X_0 e^{\kappa t}} \rightarrow If X_0 \leftarrow 1, \quad \exists \ \overline{t} = \overline{t}(x_0) > 0 \quad S.t.$$

$$\lim_{t \to \overline{t}} X(t) = \infty$$

P2. ROBUSTNESS ISSUE The controller depends on the quantities x^* and u^* that are highly sensitive to model uncertainties

To find x^* and u^* we need to solve the savnibility Eqs. $\begin{cases}
0 = f(x^*, u^*) \\
y^*_r = h_r(x^*)
\end{cases}$

Any slight uncertainty in the knowledge of f, hm, and h, may produce some wrong volues of X* and M*

A control law that deponds so critically from x* and u* is <u>FRACILE</u> and its implementation in practice may lead to problems

(TYPIAL PROBLEM OF FEED FORWARD COHMOL)

EXAMPLE

. In the previous example regarding the actuated pendulum we had:

$$\begin{cases} X^{*} = (S^{*}, \circ) \end{cases}$$

\ M* = M3 (SIN 0*

· In the previous example of the planar drone, we had:

$$X_{z}^{*} = \text{FREE} \left(\neq k \pi, k c / N \right)$$

$$M_{z}^{*} = M_{z}^{*} = \frac{M_{z} + w \sin \gamma}{2 \cos x_{z}^{*}}$$

$$W^{*} \text{ depands on } M, \forall \text{ ond the vertical wind strength } w \sin \gamma$$

that we unartern

Some of the effects of using wrong x* and M* are:

- · wrong set-point: the state may not converge to X* -> lim yr(t) \$ 4,
- · destabilization: X(t) may exit the stability domain