

5 Major Recombinant DNA Techniques

Restriction	cutting at a specific site using restriction enzymes
Hybridization	using a specific fragment of DNA or RNA to identify related sequences
Sequencing	determining the nucleotide sequence of a DNA fragment
DNA cloning	taking a single DNA molecule and making billions of identical copies
DNA engineering	altering DNA sequences to modify gene function

Site-Directed Mutagenesis

Site-Directed Mutagenesis

Making a transgenic animal

- Method 1 Embryonic stem cell method
- Method 2 Pronucleus method

Making a transgenic animal

Embryotic stem method

Pronucleus method

RCN 9

Making a transgenic animal

10

Types of Mutations

Random vs. Targeted Mutations

In order to knock-out or knock-in a gene you must be able to **target** the location of that gene in the genome.

Types of Mutations (cont.)

In diploid organisms (humans, mice) it is much more difficult to control the integration site – and there are 2!

Easier to get something in than take something out.

Mutations via RNA interference

Central dogma of Molecular Biology

