Versuchsprotokoll W5

Adiabaten
exponent c_p/c_v von Gasen

10.06.2015

Alexander Schlüter, Tobias Holthaus

Gruppe 23/mi alx.schlueter@gmail.com holthaus.tobias@gmail.com

Inhaltsverzeichnis

1	Einführung						
	1.1	Bestimmung nach Rüchardt-Flammersfeld	2				
	1.2	Bestimmung nach Clément-Desormes	3				
2	Versuch						
	2.1	Bestimmung nach Rüchardt-Flammersfeld	4				
	2.2	Bestimmung nach Clément-Desormes	5				
3	Disl	kussion	6				

1 Einführung

Soll ein Gas der Stoffmenge ν bei konstantem Volumen um dT erwärmt werden, so muss die Wärme

$$\delta Q_V = \nu \, c_{m,V} \, dT \tag{1.1}$$

zugeführt werden. Dabei ist $c_{m,V}$ die molare Wärmekapazität bei konstatem Volumen. Wird stattdessen der Druck konstant gehalten, bekommt man mit der molaren Wärmekapazität bei konstantem Druck $c_{m,p}$ die Gleichung

$$\delta Q_p = \nu \, c_{m,p} \, dT \qquad . \tag{1.2}$$

Es gilt mit der universellen Gaskonstant R:

$$c_{m,p} - c_{m,V} = R \tag{1.3}$$

Die Anzahl der Freiheitsgerade f eines Moleküls ist die Anzahl der unabhängigen Koordinaten, mit denen der Bewegungszustand des Moleküls vollständig beschrieben wird. Aus

$$c_{m,V} = \frac{f}{2}R$$
 $c_{m,p} = \frac{f+2}{f}R$ (1.4)

berechnet sich der Adiabatenexponent κ zu

$$\kappa = \frac{c_{m,p}}{c_{m,V}} = \frac{f+2}{f} \tag{1.5}$$

Eine adiabatische Zustandsänderung eines Gases liegt vor, wenn kein Wärmeaustausch mit der Umgebung stattfindet. Dies ist näherungsweise erfüllt bei guter Wärmeisolierung des Systems gegen die Umgebung bzw. schneller Prozessführung. Es lassen sich die Poissonschen Gleichungen herleiten:

$$T \cdot V^{\kappa - 1} = \text{const}' \tag{1.6}$$

$$p \cdot V^{\kappa} = \text{const}'' \tag{1.7}$$

$$\frac{T^{\kappa}}{p^{\kappa-1}} = \text{const'''} \tag{1.8}$$

Es wurde mit zwei Versuchen der Adiapatenexponent κ bestimmt:

1.1 Bestimmung nach Rüchardt-Flammersfeld

Abbildung 1: "Versuchsaufbau zur κ -Bestimmung nach Rüchardt-Flammersfeld"¹

Das Gas ist in einer Flasche mit aufgesetztem Glasrohr gefüllt. Dieses Glasrohr hat auf der Hälfte der Länge einen Schlitz einstellbarer Größe. Ein Schwingkörper der Masse m und Durchschnittsfläche A schwingt auf der Höhe des Schlitzes, während unten Gas nachströmt (Kompensation von Reibungsverlusten bei der Schwingung). In Ruheposition des Schwingkörpers setzt sich der Innendruck p_0 aus dem Außendruck p_L und dem Druck durch Gewichtskraft des Schwingkörpers zusammen (Erdbeschleunigung q):

$$p_0 = p_L + \frac{m \cdot g}{A} \tag{1.9}$$

Die Schwingung entsteht aufgrund von oszillatorischer Komprimierung / Dekomprimierung des Gases durch die Bewegung des Schwingkörpers und dieser folgt der Bewegungsgleichung

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{\kappa p_0 A^2}{V_0} x \qquad , \tag{1.10}$$

wobei V_0 das Volumen des Gases in Ruheposition des Schwingkörpers ist. κ wird aus der

¹Markus Donath und Anke Schmidt. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage Sommersemester 2015. Westfälische Wilhelms-Universität Münster. Physikalisches Institut, 2015.

Periodendauer T der Schwingung bestimmt:

$$\kappa = \frac{4\pi^2 m V_0}{p_0 A^2 T^2} \tag{1.11}$$

1.2 Bestimmung nach Clément-Desormes

Abbildung 2: "Versuchsaufbau zur κ -Bestimmung nach Clément-Desormes"²

Die Luft ist in einen gut isolierten Behälter gefüllt. Der Innendruck wird über die Höhe h einer Flüssigkeit im Manometer abgelesen. Über ein erstes Rohr kann durch Öffnen eines Hahns (1) Druckausgleich mit der Außenluft hergestellt werden, über ein zweites kann Druckluft mit einer Handpumpe zugeführt werden (Hahn 2).

Zuerst wird über Rohr 2 Luft zugepumpt, sodass der Innendruck höher als der Außendruck ist. Hierbei erwärmt sich die Luft. Hahn 2 wird geschlossen und gewartet, bis wieder Temperaturgleichgewicht zur Außenluft herrscht. Nun wird die Höhe h_1 am Manometer abgelesen.

Hahn 1 wird nun gerade schnell genug geöffnet und wieder geschlossen, dass der Druck

²Markus Donath und Anke Schmidt. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage Sommersemester 2015. Westfälische Wilhelms-Universität Münster. Physikalisches Institut, 2015.

sich ausgleicht. Die Luft durchläuft eine annähernd adiabatische Zustandsänderung und kühlt sich ab. Nach Schließen des ersten Hahnes wartet man auf Temperaturausgleich, wobei der Druck steigt (das Volumen bleibt hierbei konstant, da beide Hähne geschlossen sind). Ist dies geschehen, liest man h_3 am Manometer ab.

Der Adiabatenkoeffizient errechnet sich dann aus

$$\kappa = \frac{h_1}{h_1 - h_3} \qquad . \tag{1.12}$$

2 Versuch

2.1 Bestimmung nach Rüchardt-Flammersfeld

Der Versuch wurde wie in der Einführung beschrieben mit Luft, Argon und CO₂ durchgeführt. Dazu wurden pro Gas für 5 verschiedene Schlitzbreiten je 100 Schwingungen gemessen. An den Werten in Tabelle 1 kann kein von der Spaltenbreite abhängiger Trend erkannt werden, darum ist ein Fit nicht sinnvoll. Wir rechnen stattdessen mit dem Mittelwert aller 5 Messungen: $\kappa_L = 1,39 \pm 0,10$, was einem Freiheitsgrad von $f_L = 2/(\kappa - 1) = 5,13 \pm 1,31$ entspricht.

Schlitzbreite in mm	Schwingungs- anzahl S	ΔS	Schwingungs- dauer für 100 Schwingungen T100 in s	ΔT100 in s	Schwingungs- dauer T in s	ΔT in s	Adiabaten- exponent ĸ	Δκ	
0,5	100	2	51,90	0,5	0,52	0,01	1,50		0,08
1,0	100	2	52,66	0,5	0,53	0,01	1,45		0,07
1,5	100	2	55,34	0,5	0,55	0,01	1,32		0,07
2,0	100	2	52,31	0,5	0,52	0,01	1,47		0,08
2,5	100	2	56,29	0,5	0,56	0,01	1,27		0,06
3,0	100	2	55,15	0,5	0,55	0,01	1,33		0,07

Tabelle 1: Bestimmung von κ für Luft nach dem Rüchardt-Flammersfeld-Verfahren.

Bei Argon und CO₂ scheinen die Werte für verschiedene Schichtbreiten innerhalb des Fehlers konstant zu bleiben. Auch hier nehmen wir deshalb den Mittelwert: $\kappa_{Ar} = 1,66 \pm 0,09$, $\kappa_{\text{CO}_2} = 1,31 \pm 0,07$. Daraus ergeben sich die Freiheitsgerade $f_{Ar} = 3,03 \pm 0,41$ bzw. $f_{\text{CO}_2} = 6,45 \pm 1,46$.

Schlitzbreite	Schwingungs-		Schwingungs- dauer für 100 Schwingungen	ΔΤ100	Schwingungs-	ΔΤ	Adiabaten-		
in mm	anzahl S	ΔS	T100 in s	in s	dauer T in s	in s	exponent к	Δκ	
0,50	100	2	47,88	0,5	0,48	0,01	1,76		0,09
1,00	100	2	49,41	0,5	0,49	0,01	1,65		0,09
1,50	100	2	49,53	0,5	0,50	0,01	1,64		0,08
2,00	100	2	49,50	0,5	0,50	0,01	1,65		0,08
2,50	100	2	49,75	0,5	0,50	0,01	1,63		0,08
3,00	100	2	49,94	0,5	0,50	0,01	1,62		0,08

Tabelle 2: Bestimmung von κ für Argon nach dem Rüchardt-Flammersfeld-Verfahren.

Schlitzbreite	Schwingungs-		Schwingungs- dauer für 100 Schwingungen	ΔΤ100	Schwingungs-	ΔΤ	Adiabaten-		
in mm	anzahl S	ΔS	T100 in s	in s	dauer T in s	in s	exponent к	Δκ	
0,50	100	2	55,22	0,5	0,55	0,01	1,32		0,07
1,00	100	2	55,66	0,5	0,56	0,01	1,30		0,07
1,50	100	2	55,44	0,5	0,55	0,01	1,31		0,07
2,00	100	2	55,75	0,5	0,56	0,01	1,30		0,07
2,50	100	2	55,62	0,5	0,56	0,01	1,30		0,07
3,00	100	2	55,71	0,5	0,56	0,01	1,30		0,07

Tabelle 3: Bestimmung von κ für CO₂ nach dem Rüchardt-Flammersfeld-Verfahren.

2.2 Bestimmung nach Clément-Desormes

Der Versuch wurde 6 mal durchgeführt. Allerdings wurde ein Ablesefehler begangen: es wurde nicht die Höhendifferenz zwischen den beiden Flüssigkeitssäulen am Manometer abgelesen, sondern nur der Skalenwert der rechten Säule. Da der Skalenwert bei ausgeglichenem Druck nicht bekannt ist, lässt sich κ hieraus nicht bestimmen (die Werte in Tabelle 4 sind offensichtlich deutlich zu hoch).

Wir nehmen stattdessen einen Literaturwert für κ und rechnen rückwärts, was der Skalenwert H_0 am Manometer bei ausgeglichenem Druck wäre. Sind Δh_1 und Δh_3 die eigentlich benötigten Skalendifferenzen zwischen den Säulen und h_1 bzw. h_3 die von uns

abgelesenen Skalenwerte der rechten Säule, so gilt

$$\Delta h_1 = 2(h_1 - H_0) \qquad \Delta h_3 = 2(h_3 - H_0) \tag{2.1}$$

$$\Delta h_1 = 2(h_1 - H_0) \qquad \Delta h_3 = 2(h_3 - H_0)$$

$$\kappa = \frac{\Delta h_1}{\Delta h_1 - \Delta h_3} = \frac{h_1 - H_0}{h_1 - h_3}$$
(2.1)

$$\implies H_0 = (h_3 - h_1)\kappa + h_1 \qquad . \tag{2.3}$$

Mit $\kappa=1,40^3$ bekommen wir $H_0=(38,8\pm0,3)\,\mathrm{cm}.$

h1 in cm	Δh1 in cm	h3 in cm	Δh3 in cm	К	Δκ
58,1	0,1	44,4	0,1	4,240876	0,177524
57,4	0,1	44,2	0,1	4,348485	0,183266
56,9	0,1	44,1	0,1	4,445313	0,188291
56,1	0,1	43,5	0,1	4,452381	0,189966
55,7	0,1	43,4	0,1	4,528455	0,194009
56,3	0,1	44,1	0,1	4,614754	0,196733

Tabelle 4: Bestimmung von κ für Luft nach dem Clément-Desormes-Verfahren.

Diskussion

Im Verfahren nach Rüchardt-Flammersfeld wurden folgende Werte bestimmt:

Gas	κ gemessen	κ Literatur wert	f gemessen
Luft	$ \begin{vmatrix} 1,39 \pm 0,10 \\ 1,66 \pm 0,09 \\ 1,31 \pm 0,07 \end{vmatrix} $	1,40	$5,13 \pm 1,31$
Argon	$1,66 \pm 0,09$	1,67	$3,03 \pm 0,41$
CO_2	1.31 ± 0.07	1,30	$6,45 \pm 1,46$

Tabelle 5: Gegenüberstellung der gemessenen Werte zu Literaturwerten nach White

Die Übereinstimmung mit den Literaturwerten ist sehr gut. In Abb. 3 sind Freiheitsgrade für verschiedene Gasatome aufgelistet.

³Frank M. White. *Fluid mechanics* /. 4th ed. Boston, Mass. : WCB/McGraw-Hill, 1999. S. 827.

Argon ist ein einatomiges Gas und hat 3 Freiheitsgerade (Translation in 3 Raumrichtungen), was auch unserem Messwert entspricht. Luft besteht zu 78 % aus Stickstoff, welches als zweiatomiges Gas 5 relevante Freiheitsgrade hat. Innerhalb des Fehlers deckt sich auch dies mit dem Messwert.

CO₂ ist ein gestrecktes dreiatomiges Gas, sollte also laut Abb. 3 5 Freiheitsgerade haben. Dies liegt gerade noch im (großen) Fehlerbereich unseres Messwertes, allerdings könnten auch einige der eingeklammerten Schwingungsmoden angeregt worden sein.

Stoff	Zahl f der Freiheitsgrade					
	Translation	Rotation	Schwingung	Summe		
Gas (einatomig)	3	-	-	3		
Gas (zweiatomig)	3	2	(2)	5 (7)		
Gas (dreiatomig) gestreckt	3	2	(8)	5 (13)		
Gas (dreiatomig) nicht gestreckt Festkörper	3 -	3 -	(6) 6	6 (12) 6		

Abbildung 3: "Zahl f der anregbaren Freiheitsgrade. Die eingeklammerten Schwingungsfreiheitsgrade sind bei Raumtemperatur meist nicht angeregt."

⁴Markus Donath und Anke Schmidt. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage Sommersemester 2015. Westfälische Wilhelms-Universität Münster. Physikalisches Institut, 2015.

Literatur

Donath, Markus und Anke Schmidt. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage Sommersemester 2015. Westfälische Wilhelms-Universität Münster. Physikalisches Institut, 2015.

White, Frank M. Fluid mechanics /. 4th ed. Boston, Mass. : WCB/McGraw-Hill, 1999.