TOXIC COMMENT CLASSIFICATION: KAGGLE NLP COMPETITION

Hector Cadeaux
Capstone 3
Divergence Academy

AGENDA

Elevator Pitch

- > Introduction
- Algorithm Review
 - Embedding
- Bake-off Summary
 - Conclusion

"THERE'S A STATISTICAL
THEORY THAT IF YOU
GAVE A MILLION MONKEYS
TYPEWRITERS AND SET
THEM TO WORK, THEY'D
EVENTUALLY COME UP
WITH THE COMPLETE
WORKS OF SHAKESPEARE.
THANKS TO THE INTERNET,
WE NOW KNOW THIS ISN'T
TRUE."

~ lan Hart

Introduction

- Beauty of the Internet
- Lots of information
 - Class
 - Wikipedia
 - Help on complex subjects
- Bad actors known to exist
- Catch that misbehavior

7/30/2023

+ DATA EXPLORATION + o

0

What does bad behavior look like?

Warning: Triggering Language

Distribution

Wordclouds - Benign

Wordclouds

Toxic Severe Toxic Obscence

Wordclouds

Threat Insult Identity Hate

ALGORITHMS

Scikit-learn: Random Forest
Convolutional Neural Networks (CNN)
Recurrent Neural Networks (RNN)
Sentence Embeddings with Neural Nets

Scikit-Learn

- Many algorithms
- Supervised, Unsupervised and Deep Learning
- Wide range of uses in NLP
 - Text classification
 - Sentiment Analysis
 - Text summarization

Random forest can be programmed to fully use resources

7/30/2023

CNNS

- Used primarily for picture data
- Use a sliding window to decrease dimensions and extract meaning from the window
- "Convolutions" are used to decrease the dimensions
- Multilayered
- Can be fast and efficient
- Difficult to train

9/3/20XX

RNNs and LSTM

- RNN models relationships between words
 - Handle sequential data well
- Uses a representation of historical data
 - Predicts the next word in the sequence
- LSTM (Long Short-Term Memory)
 - Considered a strong variation of RNN
 - 3 gates (input, output, and forget)
 - Gates controlled by learned weights
 - Keep track of the history of inputs

man woman king queen

SENTENCE EMBEDDINGS

Takes vector representations of sentences
Outputs a vector for each word
Averages word vectors for each sentence and
creates a new vector

I used "Bidirectional Encoder Representations from Transformers" (BERT)

Transformers are its own kind of neural network

*A sample of the dataset was run

ACCURACY VS LOSS

Loss is a measure of how close to the truth

Loss should be minimized

Accuracy is how exact the predictions are

Accuracy should be maximized

Decreases in loss may cause a decrease in accuracy

Activation Functions

Tanh is the default
Relu was the most used
Sigmoid is just Logistic Regression

BAKE-OFF

What you came to see!

SCIKIT-LEARN

	Tfid	f V	Count V		
	Train	Valid	Train	Valid	
Accuracy	0.9987	0.9015	0.9987	0.9022	
Precision	0.9992	0.8218	0.9990	0.8307	
Recall	0.9900	0.2141	0.9902	0.2114	
F1	0.9947	0.3382	0.9946	0.3356	
Loss	0.2152	0.9951	0.2139	0.9161	

CNN Descriptions

Model Name	Depth	Neuron Multiplier	Adam	Cross Entropy	Layers	Activation
CNN_CCE_02_q	60	32	0.001	Categorical	3	Relu
CNN_CCE_03_03_s	60	64	0.001	Categorical	4	Relu
CNN_CCE_00_f	60	32	0.001	Categorical	4	Sigmoid
CNN_CCE_09_g	60	32	0.0001	Categorical	4	Sigmoid
CNN_CCE_08_h	60	32	0.0005	Categorical	4	Relu-3
CNN_CCE_07_e	60	32	0.0005	Categorical	4	Relu-3
CNN_CCE_06_k	60	32	0.00005	Categorical	4	Relu-2
CNN_CCE_SIG_a1_e	60	32	SDG= 0.00005	Categorical	4	Relu-3

CNNs

Accuracy

Loss

Best CNN

• CNN_CCE_SIG_a1_e: 60-depth, 32 neuron multiplier, SDG= 0.00005, Categorical, 4 Layers, Relu-3

Worst CNN

• CNN_CCE_07_e: 60 depth, 32 neuron multiplier, Adam=0.00005, Categorical, 4 layers, Relu-3

RNN- Descriptions

Model Name	Depth	Neurons	Adam	Cross Entropy
RNN_00_r	60	35	0.001	Binary
RNN_02_p	60	32	0.001	Binary
RNN_03_q	30	32	0.001	Binary
RNN_05_s	60	35	0.001	Categorical
RNN_06_t	30	16	0.001	Categorical
RNN_07_w	30	32	0.0001	Categorical

RNNs

Accuracy

SSO

Best RNN

• RNN_07_w: 30 depth, 32 neurons, Adam = 0.0001, Categorical

Worst RNN

• RNN_05_s: 60 depth, 35 neurons, Adam = 0.001, Categorical

Sentence Embeddings: LSTM

Sentence Embeddings: CNN

Sentence Embeddings

- Would have liked to do the entire dataset
- It worked well with the sample of 4000
- Lower loss with CNN
- Faster convergence with LSTM
- Might be overfit

Lessons Learned

A lower learning rate and lower epochs can produce better results

All methods were valid, with good results from each

The implementations were very timeconsuming

It's best to understand the methodologies you are trying to implement

C

Further Considerations

Dataset Imbalance

- I would have liked to have run SMOTE
- This would have made it easier for the dataset to speak to the algorithms

Algorithms

- I would have liked to do more algorithms
- More variety
- A more traditional approach
- Faster data cleaning
- More consistent

Libraries

- Knowledge and preparation of a system of Libraries
- Greater compatibility with more packages
- More Speed
- Integration with Cloud-based systems

Summary

It was fun to play with different algorithms. Learning the power of RNNs and CNNs while getting acquainted with new skills was eye-opening. The experience of installing and running the new software and getting all the packages and libraries to work together inspired me to push harder. The experience was harrowing but worth every second of strife and processor time.

SPECIAL THANKS

Drew Minkin

ChatGPT

Bard

Divergence Academy and all the instructors

Kaggle

Udemy

Doc

Spotify

