Homework 1 Mathematical Prerequisites Katie Prescott

I pledge my honor that I have abided by the Stevens Honor System.

Sets:

1:
$$f(x) = 0 \rightarrow \{0, 10, 20, 30, ...\}$$

2: a) $A \cup B \rightarrow \{0, 2, 4, 6, 8, 10, 12, ...\}$
b) $A \cap B \rightarrow \{0, 10, 20, 30, ...\}$
c) $A \setminus B \rightarrow \{\emptyset\}$

Functions:

Functions:	
1. f(x) = x + 2	
i. $\mathbb{N} \to \mathbb{N}$	Injective, 0 not mapped to.
ii. $\mathbb{N} \to \mathbb{Z}_5$	Surjective, $x=0$, $x=5$ map to 2.
iii. $\mathbb{N} o \mathbb{Z}_{10}$	Surjective, $x=0$, $x=10$ map to 2.
iv. $\mathbb{Z} \to \mathbb{Z}$	bijective
2. f(x) = 2x	
i. $\mathbb{N} \to \mathbb{N}$	Injective, 1 not mapped to.
ii. $\mathbb{N} \to \mathbb{Z}_5$	Surjective, $x=0$, $x=5$ map to 0.
iii. $\mathbb{N} o \mathbb{Z}_{10}$	Surjective, $x=0$, $x=5$ map to 0.
iv. $\mathbb{Z} \to \mathbb{Z}$	Injective, 1 not mapped to.
3. f(x) = 3x	
i. $\mathbb{N} \to \mathbb{N}$	Injective, 1 not mapped to.
ii. $\mathbb{N} \to \mathbb{Z}_5$	Surjective, $x=0$, $x=5$ map to 0.
iii. $\mathbb{N} o \mathbb{Z}_{10}$	Surjective, $x=0$, $x=10$ map to 0.
iv. $\mathbb{Z} \to \mathbb{Z}$	Injective, 1 not mapped to.

Boolean Logic

1: $A \Leftrightarrow (B \land C)$

<u>A</u>	<u>B</u>	<u>C</u>	<u>(B∧C)</u>	$A \leftrightarrow (B \land C)$
T	Т	T	Т	Т
T	T	F	F	F
T	F	T	F	F
T	F	F	F	F
F	Т	T	Т	F
F	Т	F	F	T
F	F	T	F	T
F	F	F	F	T

2. $(A \lor B) \rightarrow C$

<u>A</u>	<u>B</u>	<u>C</u>	(A v B)	$(A \lor B) \rightarrow C$
T	Т	T	T	T
T	T	F	Т	F
T	F	T	T	Т
T	F	F	T	F
F	T	T	Т	Т
F	Т	F	T	F
F	F	T	F	Т
F	F	F	F	T

 $3. A \rightarrow (B \oplus C)$

<u>A</u>	<u>B</u>	<u>C</u>	(B ⊕ C)	$A \rightarrow (B \oplus C)$
T	T	T	F	F
T	Т	F	Т	T
T	F	Т	Т	T
T	F	F	F	F
F	Т	Т	F	T
F	Т	F	Т	T
F	F	T	Т	T
F	F	F	F	T

Strings and Languages:

1. $\sum = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$

2. "2+34/"; "((01-*/()"; "03/0"

3. a. No number's first digit is 0.

b. Does not end in an operator.

c. All open parentheses have a closing parenthesis.

d. No set of parentheses is empty.

e. No double operators.

f. No division by 0.

Proofs:

1. Proof by Contrapositive:

a) Use truth tables to prove $(A \rightarrow B) \leftrightarrow (\neg B \rightarrow \neg A)$

A	В	¬A	¬B	A→B	¬B→¬A
Т	Т	F	F	Т	Т
Т	F	F	Т	Т	Т
F	Т	Т	F	F	F
F	F	Т	Т	Т	Т

- b) State contrapositive of the following: "If $n^2 \in \mathbb{N}$ is odd, then n is also odd." If n is not odd, then $n^2 \in \mathbb{N}$ is not odd.
- c) Use arithmetic to prove the contrapositive statement.

$$n^2 = n * n$$

n * n is not odd if n is not odd

Therefore, if n is not odd, then n^2 is also not odd.

2. Proof by Induction: Given $n \in \mathbb{N}$, prove that $2^n \geq n^2$, for all $n \geq 4$.

Base Case:

$$n = 4$$

$$2^4 = 16 = 4^2$$

Inductive Hypothesis:

$$2^n \ge n^2$$

Inductive Case:

$$2^{n+1} = 2 * 2^n$$

$$2*2^n \ge 2n^2$$

$$2n^2 = n^2 + n^2$$

$$n^2 + n^2 \ge n^2 + 2n + 1$$

$$n^2 + 2n + 1 \ge (n+1)^2$$

Therefore:

$$2^{n+1} \ge (n+1)^2$$

Ind. Hyp.

arith.

arith.