Klausur zur Experimentalphysik 4

Prof. Dr. S. Schönert Sommersemester 2015 24. Juli 2015

Dr. Carsten Rohr (carsten.rohr@ph.tum.de)

Aufgabe A (8 Punkte)

- (a) Worin liegt der Unterschied zwischen dem Stark- und dem Zeeman-Effekt?
- (b) Wie ist der Erwartungswert eines Operators definiert?
- (c) Wann ist ein Zustand ein gebundener Zustand?
- (d) Woraus folgt das Pauli-Verbot?
- (e) Wie sieht die Zeitentwicklung einer Wellenfunktion aus?
- (f) Was ist die Elektronenkonfiguration des Grundzustandes 3^3P_2 ? Zeichnen und beschriften sie das nicht voll besetzte Orbital. (Kästchen mit Pfeilen)
- (g) In welche Hyperfeinkomponenten spalten die $4^2S_{1/2}$ und der $4^2P_{3/2}$ -Zustände des neutralen 4^0K -Atoms auf (I=4)?
- (h) Was versteht man unter einem idealen Gas?
- (i) Was ist die Grundannahme der statistischen Beschreibung der Thermodynamik?
- (j) Was bedeutet Quantenkonzentration ,anschaulich'?
- (k) Was versteht man in der Festkörperphysik unter Ferminiveau und unter Fermienergie?

Lösung

(a) Der Stark Effekt gilt bei E-Feldern, Zeeman bei bei B-Feldern.

 $[0,\!5]$

(b)

$$\left\langle \hat{O} \right\rangle = \left\langle \psi \left| \hat{O} \right| \psi \right\rangle = \int \psi^* \hat{O} \psi dr$$

[0,5]

(c) Wenn seine Energie < 0 ist.

[0,5]

(d) Die Gesamtwellenfunktion ψ eines Systems von n identischen Fermionen muss total antisymmetrisch bezüglich jeder Vertauschung zweier Teilchen sein.

 $[0,\!5]$

(e)
$$\psi(t) = \psi(0)e^{-itE/\hbar} \label{eq:psi}$$
 [0,5]

(f) $1s^2, 2s^2, 2p^6, 3s^2, 3p^4$ Schwefel

[1]

(g) für den $4^2S_{1/2}$ -Zustand, also $J=\frac{1}{2},\ I=4,$ für den $4^2P_{3/2},$ also $J=\frac{3}{2}$ und I=4

$$F \in \left\{\frac{7}{2}, \frac{9}{2}\right\} F \in \left\{\frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \frac{11}{2}\right\}$$

 $[1,\!5]$

(h) Ein Gas nicht wechselwirkender Atome im klassischen Bereich

[1]

(i) Ein abgeschlossenes System wird mit gleicher Wahrscheinlichkeit in jedem der ihr zugänglichen Quantenzuständen vorgefunden, bzw. alle erreichbaren Quantenzustände werden als gleich wahrscheinlich angenommen.

 $[0,\!5]$

(j) Konzentration eines Atoms in einem würfelförmigen Volumen mit Kantenlänge entsprechend der thermischen de-Broglie Wellenlänge des Atoms.

[0,5]

(k) Ferminiveau = chemisches Potential; Fermi
energie = chemisches Potential bei der Temperatur $\tau=0$

[1]

Aufgabe 1 (2 Punkte)

Mit welcher Wahrscheinlichkeit P(R) hält sich das Elektron im Grundzustand des Wasserstoffatoms im Proton (Radius $r_p = 0,895 \text{fm}$) auf? Wie hoch ist die Wahrscheinlichkeit P(R), dass sich das Elektron im Grundzustand eines wasserstoffähnlichen Uranions im $^{238}_{92}$ U-Kern (Radius $r_U = 5,86 \text{fm}$) aufhält?

Nehmen Sie an, dass die Wellenfunktion $\Psi_{1,0,0}(r) = \frac{Z^{3/2}}{\sqrt{\pi}a_0^{3/2}}e^{-Zr/a_0}$ über den kleinen Bereich des Kerns konstant ist.

Lösung

Es kann davon ausgegangen werden, dass die Wellenfunktion innerhalb des Kernvolumens konstant ist. Dann ist die Aufenthaltswahrscheinlichkeit im Kern innerhalb eines Radius R

$$P(R) = \frac{4}{3}\pi R^3 |\psi_{100}(0)|^2 = \frac{4}{3}\pi R^3 \frac{Z^3}{\pi a_0^3} = \frac{1}{6} \left(\frac{2ZR}{a_0}\right)^3$$

[1]

Für Wasserstoff ist $Z=1, R=r_p, P(r_p)=6, 5\cdot 10^{-15}$.

Für Uran ist Z = 92, $R = r_{\rm U}$, $P(r_{\rm U}) = 1, 4 \cdot 10^{-6}$.

[1]

Aufgabe 2 (8 Punkte)

Geben sei eine eindimensionale, rechteckige Potenzialmulde der Breite b>0 und der Tiefe $-V_0<0$:

$$V(x) = \begin{cases} 0 & x < 0 \text{ (Bereich I)} \\ -V_0 & x \in [0, b] \text{ (Bereich III)} \\ 0 & x > b \text{ (Bereich III)} \end{cases}$$

Eine ebene Materiewelle (Energie E > 0, Masse m) treffe von links auf diese Potentialmulde. Der Betrag des Wellenvektors in den drei Bereichen soll mit $k_{\rm I}$, $k_{\rm II}$ bzw. $k_{\rm III}$ bezeichnet werden.

- (a) Die Energie E des Teilchens sei nun fest vorgegeben. Berechnen Sie die Muldentiefe V_0 in Abhängigkeit der Energie E, sodass Folgendes gilt: $k_{\rm II}=4\cdot k_{\rm I}$
- (b) Die Muldentiefe erfülle nun die Bedingung $k_{\rm II}=4\cdot k_{\rm I}$. Geben Sie für alle drei Bereiche die zugehörigen, resultierenden Ortswellenfunktionen $\phi_{\rm I}(x)$, $\phi_{\rm II}(x)$ und $\phi_{\rm III}(x)$ mit allgemeinen Amplitudenkoeffizienten an. (Hinweis: Verwenden Sie für die ebene Teilchenwelle die komplexe Schreibweise und überlegen Sie, welche Wellenkomponenten in den jeweiligen Bereichen auftreten.)
- (c) Stellen Sie die alle Gleichungen auf, welche die Ermittlung der Amplitudenkoeffizienten erlauben.
- (d) Betrachten Sie nun zusätzlich den Spezialfall $\lambda_{\rm I}=\frac{1}{2}b$, wobei $\lambda_{\rm I}$ die Materiewellenlänge im Bereich I bezeichnet. Berechnen Sie die Transmissionswahrscheinlichkeit T, mit der das Teilchen die Potenzialmulde überwindet.

Lösung

(a) Für die kinetische Energie $E_{\rm kin}$ gilt allgemein

$$E_{\rm kin} = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m} \Rightarrow k = \frac{1}{\hbar} \sqrt{2mE_{\rm kin}}$$

Für Bereich I und II gilt

$$k_{\rm I} = k_{\rm III} = \frac{1}{\hbar} \sqrt{2mE}$$

wegen V = 0. Für Bereich II gilt

$$k_{\rm II} = \frac{1}{\hbar} \sqrt{2m(E + V_0)}$$

wegen $V = -V_0$. Wegen $k_{\rm II} = 4k_{\rm I}$

$$\frac{1}{\hbar}\sqrt{2m(E+V_0)} = \frac{4}{\hbar}\sqrt{2mE} \Rightarrow E+V_0 = 16E \Rightarrow V_0 = 15E$$

(b) Im Bereich I gibt es die einfallende und eine rücklaufende (reflektierte) Welle. Die Amplitude der einlaufenden Welle kann ohne Beschränkung der Allgemeinheit auf 1 normiert werden:

$$\phi_{\rm I}(x) = e^{ik_{\rm I}x} + Ae^{-ik_{\rm I}x}$$

Im Bereich II gibt es ebenfalls einen nach rechts und einen nach links laufenden Anteil, außerdem gilt $k_{\rm II}=4k_{\rm I}$:

$$\phi_{\mathrm{II}}(x) = Be^{4ik_{\mathrm{I}}x} + Ce^{-4ik_{\mathrm{I}}x}$$

Im Bereich III existiert nur ein nach rechts laufender Anteil, es gilt $k_{\text{III}} = k_{\text{I}}$:

$$\phi_{\rm III}(x) = De^{ik_{\rm I}x}$$

[1,5]

(c) An den Potenzialübergängen muss sowohl die Wellenfunktion als auch die erste Ableitung $\phi'(x)$ stetig sein. Für die Stelle x=0 folgt aus Stetigkeit von ϕ 1 + A=B+C, aus der Stetigkeit von ϕ' 1 - A=4B-4C. Für die Stelle x=b erhält man

$$Be^{4ik_1b} + Ce^{-4ik_1b} = De^{ik_1b} (1)$$

für die Stetigkeit von ϕ und

$$4Be^{4ik_{\rm I}b} - 4Ce^{-4ik_{\rm I}b} = De^{ik_{\rm I}b} \tag{2}$$

[2]

(d) Es gilt

$$k_{\rm I} = \frac{2\pi}{\lambda_{\rm I}} = \frac{4\pi}{b}$$

also $k_{\rm I}b=4\pi$. Die Exponentialfaktoren in (2) und (1) reduzieren sich damit alle zu Eins. Man erhält so ein System aus vier Gleichungen

$$1 + A = B + C$$
$$1 - A = 4B - 4C$$
$$B + C = D$$
$$4B - 4C = D$$

[1,5]

Für den in den Bereich III transmittierten Anteil ist nur der Amplitudenfaktor D wichtig. Es genügt also, nach diesem aufzulösen. Man erhält D=1. Für die Transmissionswahrscheinlichkeit T gilt, wegen $k_{\rm I}=k_{\rm III}$

$$T = |D|^2 = 1$$

Unter den speziellen, gegebenen Bedingungen $(k_{\rm II}=4k_{\rm I} \text{ und } \lambda_{\rm I}=\frac{b}{2})$ wird das Teilchen mit einer Wahrscheinlichkeit von 100% über die Mulde transmittiert.

[1]

Aufgabe 3 (2 Punkte)

Berechnen Sie die Präzessionsfrequenz eines Teilchens mit Drehimpuls \vec{L} und magnetischem Moment $\vec{\mu} = -\frac{\mu_B}{\hbar}\vec{L}$ in einem Magnetfeld der Flussdichte $|\vec{B}| = 1$ T.

Lösung

Im Magnetfeld \vec{B} wirkt auf das Teilchen ein Drehmoment

$$\vec{D} = \vec{\mu} \times \vec{B} = \frac{\mathrm{d}\vec{L}}{\mathrm{d}t}$$

Die Winkelgeschwindigkeit der Präzession ist gegeben durch $\omega = \frac{\mathrm{d}\phi}{\mathrm{d}t}$. Mit $\mathrm{d}\phi = \frac{\mathrm{d}L}{L\sin\theta}$ ergibt sich

$$\omega = \frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{1}{L\sin\theta} \frac{\mathrm{d}L}{\mathrm{d}t} = \frac{1}{L\sin\theta} |\vec{\mu} \times \vec{B}| = \frac{1}{L\sin\theta} \mu_B \frac{1}{\hbar} LB\sin\theta = \frac{\mu_B}{\hbar} B$$

Das Ergebnis ist unabhängig vom Winkel zwischen magnetischem Moment und Richtung des Magnetfelds. Für ein Magnetfeld der Flussdichte $B=1\mathrm{T}$ erhält man folgenden Zahlenwert:

$$\omega = \frac{9,274 \cdot 10^{-24} \text{JT}^{-1} \cdot 1\text{T}}{1,0546 \cdot 10^{-34} \text{Js}} = 8,79 \cdot 10^{10} \text{s}^{-1}.$$

[2]

Dies entspricht einer Umlauffrequenz

$$\nu = \frac{\omega}{2\pi} \approx 14 \mathrm{GHz}$$

Aufgabe 4 (8 Punkte)

In einem Magnetfeld von 4,734T befinden sich Wasserstoffatome.

- (a) Wird bei dieser Feldstärke die Aufspaltung der H_{α} -Linie $(n=3) \rightarrow (n=2)$ durch den anomalen Zeemaneffekt oder durch den Paschen-Back-Effekt verursacht? Bestimmen Sie dazu zunächst die Spin-Bahn-Energie zwischen den Termen $3^2 P_{1/2}$ und $3^2 P_{3/2}$ und damit die Stärke des Grenzmagnetfeldes des Zeeman-Effektes. *Hinweis:* Kopplungskonstante a, siehe Konstanten.
- (b) Skizzieren Sie die Aufspaltung der Terme in dem angegebenen Magnetfeld und tragen Sie die Übergänge ein, auf denen die H_{α} -Linie beobachtet werden kann.
- (c) In wie viele Übergangslinien spaltet die H_{α} -Linie auf?
- (d) Bestimmen Sie aus der beobachteten Frequenzaufspaltung und zwischen zwei benachbarten Komponenten von $6,617\cdot 10^{10}$ Hz und dem Magnetfeld das Verhältnis von $\frac{e}{m}$.

Lösung

(a) Die Spin-Bahn-Kopplungsenergie ist

$$E_{l,s} = \frac{a}{2}(j(j+1) - l(l+1) - s(s+1)).$$

Für den $3^2P_{1/2}$ -Zustand ist

$$\begin{split} E_{1,1/2} &= \frac{1,159 \cdot 10^{-20} \text{J} \frac{1^4}{3^6}}{2} \left(\frac{1}{2} \frac{3}{2} - 1 \cdot 2 - \frac{1}{2} \frac{3}{2} \right) \\ &= -0.992 \mu \text{eV} \end{split}$$

Für den $3^2P_{3/2}$ -Zustand ist

$$\begin{split} E_{1,1/2} &= \frac{1,159 \cdot 10^{-20} J_{\overline{36}}^{\frac{14}{36}}}{2} \left(\frac{3}{2} \frac{5}{2} - 1 \cdot 2 - \frac{1}{2} \frac{3}{2} \right) \\ &= 0,496 \mu \text{eV} \end{split}$$

Die gesamte Aufspaltung durch die Spin-Bahn-Kopplung ist also

$$\Delta E = 1,489 \mu \text{eV}.$$

[2]

Wir vergleichen das mit der Zeeman-Aufspaltung

$$\Delta E_{m_j,m_j-1} = \Delta E_{\mathrm{Zee},j} = g_j \mu_{\mathrm{B}} B_{\mathrm{grenz}}$$

Für den $3^2P_{3/2}$ -Zustand ist

$$g_{3/2} = 1 + \frac{\frac{3}{2}\frac{5}{2} + \frac{1}{2}\frac{3}{2} - 1 \cdot 2}{2\frac{3}{2}\frac{5}{2}} = \frac{4}{3}.$$

Also

$$\Delta E_{\rm Zee, 3/2} = g_j \mu_{\rm B} B_{\rm grenz} = 1,237 \cdot 10^{-23} {\rm Am}^2 B_{\rm grenz}$$

Für den $3^2P_{1/2}$ -Zustand ist

$$g_{1/2} = 1 + \frac{\frac{1}{2}\frac{3}{2} + \frac{1}{2}\frac{3}{2} - 1 \cdot 2}{2\frac{1}{2}\frac{3}{2}} = \frac{2}{3}.$$

Also

$$\Delta E_{\rm Zee,1/2} = g_j \mu_{\rm B} B_{\rm grenz} = 6,183 \cdot 10^{-24} {\rm Am}^2 B_{\rm grenz}$$

Wir nehmen den kleineren Wert und definieren die Grenze zwischen Zeeman- und Paschen-Back-Effekt bei $\Delta E_{\rm Zee} = \Delta E$, also

$$B_{\text{grenz}} = \frac{1,489 \mu \text{eV}}{6,183 \cdot 10^{-24} Am^2} = 0,0386 \text{T}$$

Wir sind also im Regime des Paschen-Back-Effekts.

[2]

Abbildung 1: Termaufspaltung

(b) Die Abweichung der Energie vom ungestörten Falle beim Paschen-Back-Effekt ist

$$\Delta E_{m_l,k_s} = -\mu_{l,z} B_0 - \mu_{s,z} B_0 = \mu_{\rm B} B_0 (m_l + 2m_s)$$

Die Auswahlregeln liefern

$$\Delta m_l \in \{-1, 0, 1\} \qquad \Delta m_s = 0$$

[2]

(c) Es gibt drei Linien.

[0,5]

(d) Die Linien sind im Abstand

$$\Delta E = \mu_B B_0 = 4,39 \cdot 10^{-23} \text{J} = 0,274 \text{meV}$$

$$\Delta E = \mu_B B_0 = \frac{e\hbar}{2m_0} B_0 = \hbar \Delta \omega$$

und

$$\frac{e}{m_0} = \frac{2\Delta\omega}{B_0} = \frac{2\cdot2\pi\cdot6,617\cdot10^{10}\mathrm{Hz}}{4,734\mathrm{T}} = 1,756\cdot10^{11}\mathrm{C/kg}$$

[1,5]

Aufgabe 5 (5 Punkte)

Im Röntgenabsorptionsspektrum von Ag liefen die Absorptionskanten an den folgenden Stellen: K-Kante: $0,485\text{Å},~L_{\text{I}}:3,25\text{Å},~L_{\text{II}}:3,51\text{Å},~L_{\text{III}}:3,69\text{Å}.$

- (a) Man suche das niedrigstmögliche Z, dessen K_{α} -Strahlung in Ag Photoelektronen aus der K-Schale freimachen kann. Welche kinetische Energien haben dabei die aus der L-Schale frei werdenden Photoelektronen?
- (b) Was sind alle möglichen Folgeprozesse der Ionisation eines K-Elektrons? Beschreiben Sie diese kurz.

Lösung

(a) Das K-Niveau liegt bei 25,5keV, $L_{\rm I}$ bei 3,8keV, $L_{\rm II}$ bei 3,5keV und $L_{\rm III}$ bei 3,4keV. Für das gesuchte Z muss $E_{K_{\alpha}}$ gleich oder größer sein als 25,5keV:

$$E_{K_{\alpha}} = R(Z-1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2}\right)$$

[2]

Dies liefert Z=51. Die Energie der Photoelektronen aus der L-Schale bei Einstrahlung von $25,5\mathrm{keV}$ ist damit

$$\begin{split} E_{\rm kin} &= E_{K_\alpha} - E_{L\rm I} = 21,7 \text{keV} \\ &E_{K_\alpha} - E_{L\rm II} = 22,0 \text{keV} \\ &E_{K_\alpha} - E_{L\rm III} = 22,1 \text{keV} \end{split}$$

[1]

(b) Mögliche Folgeprozesse auf ein Loch in der K-Schale sind

Emission der Röntgen-K-Serie Hier

$$K_{\alpha 1} = K - L_{\text{III}}$$
 $K_{\alpha 2} = K - L_{\text{II}}$ $K_{\beta 1} = K - M_{\text{III}}$

Da dabei jeweils ein Loch in einer weiter außen liegenden Schale (z.B. in $L_{\rm III}$) entsteht, folgen noch weitere, längerwellige Röntgenserien.

[1]

Auger-Prozess Das primäre Loch in der K-Schale kann auch aufgefüllt werden ohne dass Röntgenstrahlung auftritt: Ein Elektron aus der L-Schale geht über in die K-Schale, und die Energie wird dabei einem anderen L-Elektron übertragen; sie reicht aus, damit es das Atom mit kinetischer Energie verlassen kann. Dieser strahlungslose Prozess heißt Auger-Prozess; bei ihm verschwindet das Loch in der K-Schale, und zwei Löcher entstehen in der L-Schale. Diese können wiederum durch weiter außen liegende Elektronen strahlend (Röntgenemission) oder strahlungslos (Auger-Effekt), aufgefüllt werden. Bei letzterem ergeben sich kaskadenartig immer mehr Löcher in den äußeren Schalen. Bei Atomen mit hohem Z überwiegt die Röntgenemission.

[1]

Aufgabe 6 (5 Punkte)

HCl-Dampf absorbiert Licht bei folgenden Wellenzahlen (vereinfacht)

$$\nu: 20, 40, 60 \text{cm}^{-1}...$$

Zwischen diesen Linien tritt keine Absorption auf. Man ordne diesen Absorptionslinien die dazugehörigen J-Werte zu, bestimme das Trägheitsmoment und schätze daraus den Abstand der beiden Atomkerne (1 H, 35 Cl) ab.

Lösung

Da die Rotationsenergiezustände gegeben sind durch

$$E_J = \frac{\hbar^2}{2I}J(J+1)$$

ist der Abstand eines Termes J vom nächsthöheren (J+1)

$$\Delta E = E_{J+1} - E_J = \frac{\hbar^2}{2I} 2(J+1)$$

[1]

Hier bedeutet J also die Quantenzahl, welche zum tieferliegenden Term gehört. Somit erhalten wir

$$J = 0 \rightarrow J = 1 : \Delta E = 2\frac{\hbar^2}{2I}$$

$$J = 1 \rightarrow J = 2 : \Delta E = 4\frac{\hbar^2}{2I}$$

$$J = 2 \rightarrow J = 3 : \Delta E = 6\frac{\hbar^2}{2I}$$

$$J = 3 \rightarrow J = 4 : \Delta E = 8\frac{\hbar^2}{2I}$$

[1]

Man erkennt an den gegebenen Werten ν die dazugehörigen J-Werte: Für $\overline{\nu}=20$ der Übergang $J=0\to 1$, für $\overline{\nu}=40$ $1\to 2$ und für $\overline{\nu}=60$ $2\to 3$.

I is offenbar bei allen diesen J-Werten praktisch konstant ($starres\ Molek\"ul$). Da $\overline{\nu}=\frac{\nu}{c}=\frac{\Delta E}{hc}$ wird z.B. $20\mathrm{cm}^{-1}=\frac{1}{hc}\frac{2\hbar^2}{2I}$, also

$$I = 2,78 \cdot 10^{-47} \text{kgm}^2$$

[1]

Die Rotation erfolgt um den gemeinsamen Schwerpunkt (Abstand des H der Masse m_1 vom Schwerpunkt sei r_1 bzw. Cl m_2 , r_2), dann

$$I = m_1 r_1^2 + m_2 r_2^2$$

und $r_1=r_2\frac{m_1}{m_2}$. Für $^{35}{\rm Cl}$ ist $\frac{m_1}{m_2}=\frac{1}{35}$. Auflösen nach r_1 liefert

[1]

$$r_1 = 1,27\text{Å}$$

und $r_1 + r_2 \approx 1, 3$ Å.

[1]

Aufgabe 7 (3 Punkte)

Man berechne die Fermi-Energie und die mittlere Elektronen
energie in einem eindimensionalen Elektronengas, welches aus N Elektronen, eingeschlossen in einem Potenzialtopf der Länge L, besteht. $\mathit{Hinweis:} \sum_{i=1}^{\nu} i^2 = \frac{\nu(\nu+1)(2\nu+1)}{6}$

Lösung

Der Energieeigenwert, der zum n-ten Zustand gehört, ist

$$E_n = n^2 \frac{h^2}{8mL^2},$$

wobei wir N Elektronen im Topf haben, und jeden Zustand nur zweimal besetzen (Paulisches Prinzip: Jeder Zustand darf nur durch ein Elektron besetzt werden. Wegen der beiden Einstellmöglichkeiten bedeutet jedes n genau genommen zwei Elektronenzustände; wir besetzen also jedes n mit zwei Elektronen). Füllen wir die Energiezustände von unten her auf, so ist das letzte, energiereichste Elektron im Zustand

$$n_{\max} = \frac{N}{2}$$
 [1,5]

Der so erreichte höchste besetzte Energiezustand ist die Fermi-Energie

$$E_{\rm F} = \frac{h^2 N^2}{32mL^2}.$$

Mittlere Energie

$$E_{\rm m} = \frac{E_{\rm gesamt}}{N} = \frac{1}{N} \frac{h^2}{8mL^2} 2 \sum_{n=1}^{\frac{N}{2}} n^2$$

für große N. Damit

$$E_{\rm m} = \frac{h^2}{8mL^2} \frac{N^2}{12} = \frac{1}{3} E_{\rm F}$$

[1,5]

Konstanten

$$\begin{split} \hbar &= 1.05 \cdot 10^{-34} \text{Js} & m_e = 9.11 \cdot 10^{-31} \text{kg} \\ e &= 1.6 \cdot 10^{-19} \text{C} & m_p = 1.67 \cdot 10^{-27} \text{kg} \\ \epsilon_0 &= 8.85 \cdot 10^{-12} \text{As/V/m} & \alpha = 7.3 \cdot 10^{-3} \\ a_0 &= \frac{4\pi \varepsilon_0}{e^2} \frac{\hbar^2}{m_e} = 5, 3 \cdot 10^{-11} \text{m} & \mu_B = \frac{e \cdot \hbar}{2m_e} = 9, 27 \cdot 10^{-24} \text{N/A}^2 \\ a &= 1, 159 \cdot 10^{-22} \text{J} \cdot \frac{Z^4}{n^6} & N_A = 6, 02 \cdot 10^{23} \text{Mol}^{-1} \\ R_\infty &= \frac{m_e e^4}{8c \epsilon_0^2 h^3} = 1, 10 \cdot 10^7 \text{m}^{-1} & k_B = 1, 38 \cdot 10 - 23 \text{J/K} \end{split}$$