Package 'CorrMixed'

October 12, 2022

Title Estimate Correlations Between Repeatedly Measured Endpoints (E.g., Reliability) Based on Linear Mixed-Effects Models

Type Package

Version 1.1
Author Wim Van der Elst, Geert Molenberghs, Dieter Hilgers, & Nicole Heussen
Maintainer Wim Van der Elst < wim.vanderelst@gmail.com>
Description In clinical practice and research settings in medicine and the behavioral sciences, it is often of interest to quantify the correlation of a continuous endpoint that was repeatedly measured (e.g., test-retest correlations, ICC, etc.). This package allows for estimating these correlations based on mixed-effects models. Part of this software has been developed using funding provided from the European Union's 7th Framework Programme for research, technological development and demonstration under Grant Agreement no 602552.
Depends nlme
Imports psych
License GPL (>= 2)
Repository CRAN
NeedsCompilation no
Date/Publication 2022-04-18 15:24:38 UTC
R topics documented:
Example.Data Explore.WS.Corr Fract.Poly Heatmap Model.Fit plot Explore.WS.Corr plot.WS.Corr.Mixed Spaghetti.Plot WS.Corr.Mixed 1 WS.Corr.Mixed 1 WS.Corr.Mixed.SAS 1
Index 1

2 Explore.WS.Corr

Example.Data

An example dataset

Description

Example.Data is a hypothetical dataset constructed to demonstrate some of the functions in the package. Data are provided for a hypothetical experiment in which a stimulus is provided under different experimental conditions. The outcome is a normally distributed variable. The entire experiment is repeated multiple times (cycle) in each patient.

Usage

```
data(Example.Data)
```

Format

A data. frame with 360 observations on 5 variables.

Id The Subject identifier.

Cycle The same experiment is repeated multiple times in a patient. Cycle indicates the order of these repeated experiments.

Condition The experimental condition under which the outcome was measured.

Time The time point at which the outcome was measured.

Outcome A continuous outcome.

Explore.WS.Corr

Explore within-subject correlations (reliabilities)

Description

This function allows for exploring the within-subject (test-retest) correlation (R) structure in the data, taking relevant covariates into account. Estimated correlations as a function of time lag (= absolute difference between measurement moments t_1 and t_2) are provided as well as their confidence intervals (based on a non-parametric bootstrap).

Usage

```
Explore.WS.Corr(OLS.Model=" ", Dataset, Id, Time,
Alpha=0.05, Smoother.Span=.2, Number.Bootstrap=100,
Seed=1)
```

Explore.WS.Corr 3

Arguments

OLS. Model OLS. Model is a formula passed to lm (to obtain the OLS residuals, i.e., to take

covariates into account in the computation of R). OLS.Model should thus be a formula that specifies the outcome of interest followed by a \sim sign and the

covariates to be taken into account, e.g.

OLS.Model="Outcome~1+as.factor(Time) + as.factor(Treatment)".

Dataset A data. frame that should consist of multiple lines per subject ('long' format).

Id The subject indicator.

Time The time indicator. Should be coded as 1, 2, etc.

Alpha The α -level to be used in the non-parametric bootstrap-based Confidence Inter-

val for R. Default Alpha=0.05

Smoother. Span A smoothing (loess) technique is used to estimate R as a function of time

lag. The smoother span gives the proportion of points in the plot which influence the smooth at each value. Larger values give more smoothness. For details, see https://stat.ethz.ch/R-manual/R-patched/library/stats/

html/lowess.html. Defauls Smoother.Span=.2.

Number.Bootstrap

The number of non-parametric bootstrap samples to be used to estimate the Con-

fidence Interval for R. Default Number.Bootstrap=100

Seed The seed to be used in the bootstrap. Default Seed=1.

Value

Est.Corr The estimated correlations R as a function of time lag. A smoothing (loess)

technique is used to estimate R as a function of time lag (based on the output in

All.Corrs).

All. Corrs A matrix that contains the estimated correlations R for all individual time lags.

Bootstrapped.Corrs

A matrix that contains the estimated correlations R as a function of time lag in

the bootstrapped samples.

Alpha The α level used in the estimation of the confidence interval.

CI. Upper The upper bounds of the confidence intervals.

CI. Lower The lower bounds of the confidence intervals.

Author(s)

Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen

References

Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. *Submitted*.

See Also

plot.Explore.WS.Corr

4 Fract.Poly

Examples

```
# Open data
data(Example.Data)

# Explore correlation structure
Expl_Corr <- Explore.WS.Corr(OLS.Model="Outcome~as.factor(Time)+
    as.factor(Cycle) + as.factor(Condition)", Dataset=Example.Data,
    Id="Id", Time="Time", Alpha=.05, Number.Bootstrap=50, Seed=123)

# explore results
summary(Expl_Corr)

# plot with correlations for all time lags, and
# add smoothed (loess) correlation function
plot(Expl_Corr, Indiv.Corrs=TRUE)
# plot bootstrapped smoothed (loess) correlation function
plot(Expl_Corr)</pre>
```

Fract.Poly

Fit fractional polynomials

Description

Fits regression models with m terms of the form X^p , where the exponents p are selected from a small predefined set S of both integer and non-integer values.

Usage

```
Fract.Poly(Covariate, Outcome, S=c(-2,-1,-0.5,0,0.5,1,2,3), Max.M=5, Dataset)
```

Arguments

Covariate	The covariate to be considered in the models.
Outcome	The outcome to be considered in the models.
S	The set S from which each power p^m is selected. Default S={-2, -1, -0.5, 0, 0.5, 1, 2, 3}.
Max.M	The maximum order M to be considered for the fractional polynomial. This value can be 5 at most. When $M=5$, then fractional polynomials of order 1 to 5 are considered. Default Max.M=5.
Dataset	A data.frame that should consist of multiple lines per subject ('long' format).

Value

Results.M1	The results (powers and AIC values) of the fractional polynomials of order 1.
Results.M2	The results (powers and AIC values) of the fractional polynomials of order 2.
Results.M3	The results (powers and AIC values) of the fractional polynomials of order 3.
Results.M4	The results (powers and AIC values) of the fractional polynomials of order 4.
Results.M5	The results (powers and AIC values) of the fractional polynomials of order 5.

Fract.Poly 5

Author(s)

Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen

References

Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. *Submitted*.

```
# Open data
data(Example.Data)
# Fit fractional polynomials, mox. order = 3
FP <- Fract.Poly(Covariate = Time, Outcome = Outcome,
Dataset = Example.Data, Max.M=3)
# Explore results
summary(FP)
# best fitting model (based on AIC) for m=3,
# powers: p_{1}=3, p_{2}=3, and p_{3}=2
# Fit model and compare with observed means
    # plot of mean
Spaghetti.Plot(Dataset = Example.Data, Outcome = Outcome,
Time = Time, Id=Id, Add.Profiles = FALSE, Lwd.Me=1,
ylab="Mean Outcome")
    # Coding of predictors (note that when p_{1}=p_{2},
    \# beta_{1}*X ** {p_{1}} + beta_{2}*X ** {p_{1}} * log(X)
    # and when p=0, X ** {0}= log(X)
term1 <- Example.Data$Time**3</pre>
term2 <- (Example.Data$Time**3) * log(Example.Data$Time)</pre>
term3 <- Example.Data$Time**2
    # fit model
Model <- lm(Outcome~term1+term2+term3, data=Example.Data)</pre>
Model$coef # regression weights (beta's)
    # make prediction for time 1 to 47
term1 <- (1:47)**3
term2 <- ((1:47)**3) * log(1:47)
term3 <- (1:47)**2
    # compute predicted values
pred <- Model$coef[1] + (Model$coef[2] * term1) +</pre>
  (Model$coef[3] * term2) + (Model$coef[4] * term3)
   # Add predicted values to plot
lines(x = 1:47, y=pred, lty=2)
legend("topright", c("Observed", "Predicted"), lty=c(1, 2))
```

6 Heatmap

${\it Heatmap}$

Plot a heatmap of the correlation structure

Description

This function plots a heatmap of the correlation structure (reliability) in the data. It is a wrapper function for the cor.plot function of the psych package.

Usage

```
Heatmap(Dataset, Id, Outcome, Time, ...)
```

Arguments

Dataset A data. frame that should consist of multiple lines per subject ('long' format).

Id The subject indicator.

Outcome The outcome indicator.

Time The time indicator.

... Other arguments to be passed to cor.plot.

Author(s)

Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen

References

Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. *Submitted*.

See Also

```
plot.Explore.WS.Corr
```

```
# Open data
data(Example.Data)

# Make heatmap
Heatmap(Dataset=Example.Data, Id = "Id",
Outcome="Outcome", Time = "Time")

# Make heatmap in black and white
Heatmap(Dataset=Example.Data, Id = "Id",
Outcome="Outcome", Time = "Time", colors=FALSE)
```

Model.Fit 7

Model.Fit

Compare the fit of linear mixed-effects models

Description

This function compares the fit of Model 1 (random intercept) and 2 (random intercept and Gauss-sian serial correlation), and of Model 2 (random intercept and Gausssian serial correlation) and 3 (random intercept, slope and Gausssian serial correlation)

Usage

```
Model.Fit(Model.1, Model.2)
```

Arguments

Model.1 An object of class WS. Corr. Mixed, the first fitted model.

Model. 2 Another object of class WS. Corr. Mixed, the second fitted model.

Author(s)

Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen

References

Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. *Submitted*.

See Also

```
WS.Corr.Mixed
```

```
data(Example.Data)

# Code predictors for time
Example.Data$Time2 <- Example.Data$Time**2
Example.Data$Time3 <- Example.Data$Time**3
Example.Data$Time3_log <- (Example.Data$Time**3) * (log(Example.Data$Time))

# model 1
Model1 <- WS.Corr.Mixed(
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Dataset=Example.Data, Model=1, Id="Id",
Number.Bootstrap = 0, Seed = 12345)

# model 2
Model2 <- WS.Corr.Mixed(</pre>
```

plot Explore.WS.Corr

```
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Correlation=corGaus(form= ~ Time, nugget = TRUE),
Dataset=Example.Data, Model=2, Id="Id",
Number.Bootstrap = 0, Seed = 12345)
# model 3
Model3 <- WS.Corr.Mixed(</pre>
  Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
  + as.factor(Condition), Random.Part = ~ 1 + Time|Id,
  Correlation=corGaus(form= ~ Time, nugget = TRUE),
  Dataset=Example.Data, Model=3, Id="Id",
  Number.Bootstrap = 0, Seed = 12345)
# compare models 1 and 2
Model.Fit(Model.1=Model1, Model.2=Model2)
# compare models 2 and 3
Model.Fit(Model.1=Model2, Model.2=Model3)
```

plot Explore.WS.Corr Plot of exploratory within-subject correlations (reliabilities)

Description

Provides an exploratory plot that allows for examining the within-subject correlations R (reliabilities) as a function if time lag.

Usage

```
## S3 method for class 'Explore.WS.Corr'
plot(x, Est.Corrs=TRUE, Indiv.Corrs=FALSE,
Add.CI=FALSE, Add.CI.Smoothed=TRUE, Smoother.Span=0.2,
Add.Boot.Corrs=FALSE, Add.CI.Polygon=FALSE,
ylim=c(-1, 1), xlab="Time Lag", ylab="Reliability", ...)
```

Arguments

X	A fitted object of class Explore.WS.Corr.
Est.Corrs	Logical. Should the smoothed (loess) correlation function as a function of time lag be added? Default TRUE.
Indiv.Corrs	Logical. Should the estimated correlations for all individual time lags be added? Default FALSE.
Add.CI	Logical. Should a bootstrapped $100(1-\alpha)\%$ Confidence Interval be added around the smoothed correlation function? Default FALSE.
Add.CI.Smoothed	d

Logical. Should a smoothed bootstrapped $100(1-\alpha)\%$ Confidence Interval be added around the smoothed correlation function? Default FALSE.

Smoother.Span	The smoother span to be used. The smoother span gives the proportion of points in the plot which influence the smooth at each value. Larger values give more smoothness. For details, see https://stat.ethz.ch/R-manual/R-patched/library/stats/html/lowess.html . Defauls Smoother. Span=. 2.
Add.Boot.Corrs	Logical. Should the inidividual bootstrapped smoothed (loess) correlation functions be added? Default FALSE.
Add.CI.Polygon	Logical. Similar to Add . CI but adds a grey polygon to mark the a bootstrapped $100(1-\alpha)\%$ Confidence Interval (instead of dashed lines). Default FALSE.
ylim	The minimum and maximum values of the Y-axis. Default ylim=c(-1,1).
xlab	The label of the X-axis. Default xlab="Time Lag".
ylab	The label of the Y-axis. Default ylab="Reliability".
	Other arguments to be passed to the plot function.

Author(s)

Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen

References

Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. *Submitted*.

See Also

```
Explore.WS.Corr, Heatmap
```

```
# Open data
data(Example.Data)

# Explore correlation structure
Expl_Corr <- Explore.WS.Corr(OLS.Model="Outcome~as.factor(Time)+
    as.factor(Cycle) + as.factor(Condition)", Dataset=Example.Data,
    Id="Id", Time="Time", Alpha=.05, Number.Bootstrap=50, Seed=123)

# explore results
summary(Expl_Corr)

# plot with correlations for all time lags, and
# add smoothed (loess) correlation function
plot(Expl_Corr, Indiv.Corrs=TRUE, Add.CI=FALSE, Add.Boot.Corrs=FALSE)
# plot bootstrapped smoothed (loess) correlation function
plot(Expl_Corr, Add.Boot.Corrs=TRUE)</pre>
```

10 plot.WS.Corr.Mixed

•	Plot the within-subject correlations (reliabilities) obtained by using the mixed-effects modeling approch
---	---

Description

Plots the within-subject correlations (reliabilities) and $100(1-\alpha)\%$ Confidence Intervals based on the fitted mixed-effect models.

Usage

```
## S3 method for class 'WS.Corr.Mixed'
plot(x, xlab, ylab, ylim, main, All.Individual=FALSE, ...)
```

Arguments

X	A fitted object of class WS.Corr.Mixed
xlab	The label of the X-axis.
ylab	The label of the Y-axis.
ylim	The min, max values of the Y-axis.
main	The main title of the plot.
All.Individual	Logical. Should correlation functions be provided that show the correlations between all indidual measurement moments $R(t_i,t_k)$? Argument is only used if Model 2 was fitted. Default All.Individual=FALSE.
	Other arguments to be passed to the plot function.

Author(s)

Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen

References

Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. *Submitted*.

See Also

```
WS.Corr.Mixed, plot WS.Corr.Mixed
```

```
# open data
data(Example.Data)

# Make covariates used in mixed model
Example.Data$Time2 <- Example.Data$Time**2</pre>
```

Spaghetti.Plot 11

```
Example.Data$Time3 <- Example.Data$Time**3</pre>
Example.Data$Time3_log <- (Example.Data$Time**3) * (log(Example.Data$Time))</pre>
# model 1: random intercept model
Model1 <- WS.Corr.Mixed(</pre>
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Dataset=Example.Data, Model=1, Id="Id", Number.Bootstrap = 50,
Seed = 12345)
  # plot the results
plot(Model1)
## Not run: time-consuming code parts
# model 2: random intercept + Gaussian serial corr
Model2 <- WS.Corr.Mixed(</pre>
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Correlation=corGaus(form= ~ Time, nugget = TRUE),
Dataset=Example.Data, Model=2, Id="Id", Seed = 12345)
  # plot the results
    # estimated corrs as a function of time lag (default plot)
plot(Model2)
    # estimated corrs for all pairs of time points
plot(Model2, All.Individual = T)
# model 3
Model3 <- WS.Corr.Mixed(</pre>
  Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
  + as.factor(Condition), Random.Part = ~ 1 + Time|Id,
  Correlation=corGaus(form= ~ Time, nugget = TRUE),
  Dataset=Example.Data, Model=3, Id="Id", Seed = 12345)
  # plot the results
    # estimated corrs for all pairs of time points
plot(Model3)
    # estimated corrs as a function of time lag
## End(Not run)
```

Spaghetti.Plot

Make a Spaghetti plot

Description

Makes a spaghetti plot, i.e., a plot that depicts the outcome as a function of time for each individual subject.

Spaghetti.Plot

Usage

```
Spaghetti.Plot(Dataset, Outcome, Time, Id, Add.Profiles=TRUE, Add.Mean=TRUE, Add.Median=FALSE, Col=8, Lwd.Me=3, xlim, ylim, ...)
```

Arguments

Dataset A data. frame that should consist of multiple lines per subject ('long' format).

Outcome The name of the outcome variable.

Time The name of the time indicator.

Id The subject indicator.

Add. Profiles Logical. Should the individual profiles be added? Default Add. Profiles=TRUE.

Add. Mean Logical. Should a line that depicts the mean as a function of time be added?

Default Add. Mean=TRUE.

Add. Median Logical. Should a line that depicts the medean as a function of time be added?

Default Add. Mean=FALSE.

Col The color of the individual profiles. Default Col=8 (grey).

Lwd. Me The line width of the lines with mean and/or median. Default Lwd. Me=3.

xlim The (min, max) values for the x-axis.
ylim The (min, max) values for the y-axis.

... Other arguments to be passed to the plot() function.

Author(s)

Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen

References

Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. *Submitted*.

```
# Open data
data(Example.Data)

# Plot individual profiles + mean
Spaghetti.Plot(Dataset = Example.Data, Outcome = Outcome, Id=Id, Time = Time)

# Plot individual profiles + median
Spaghetti.Plot(Dataset = Example.Data, Outcome = Outcome, Id=Id, Time = Time,
Add.Mean = FALSE, Add.Median = TRUE)
```

WS.Corr.Mixed

WS.Corr.Mixed	Estimate within-subject correlations (reliabilities) based on a mixed-effects model.

Description

This function allows for the estimation of the within-subject correlations using a general and flexible modeling approach that allows at the same time to capture hierarchies in the data, the presence of covariates, and the derivation of correlation estimates. Non-parametric bootstrap-based confidence intervals can be requested.

Usage

```
WS.Corr.Mixed(Dataset, Fixed.Part=" ", Random.Part=" ", Correlation=" ", Id, Time=Time, Model=1, Number.Bootstrap=100, Alpha=.05, Seed=1)
```

Arguments

Seed

Dataset	$A \ data.frame \ that \ should \ consist \ of \ multiple \ lines \ per \ subject \ ('long' \ format).$	
Fixed.Part	The outcome and fixed-effect part of the mixed-effects model to be fitted. The model should be specified in agreement with the 1me function requirements of the n1me package. See examples below.	
Random.Part	The random-effect part of the mixed-effects model to be fitted (specified in line with the 1me function requirements). See examples below.	
Correlation	An optional object describing the within-group correlation structure (specified in line with the 1me function requirements). See examples below.	
Id	The subject indicator.	
Time	The time indicator. Default Time=Time.	
Model	The type of model that should be fitted. Model=1: random intercept model, Model=2: random intercept and Gaussian serial correlation, Model=3: random intercept, slope, and Gaussian serial correlation, and Model=4: random intercept + slope. Default Model=1.	
Number.Bootstrap		
	The number of bootstrap samples to be used to estimate the Confidence Intervals around R . Default Number.Bootstrap=100. As an alternative to obtain confidence intervals, the Delta method can be used (see WS.Corr.Mixed.SAS).	
Alpha	The $\alpha\text{-level}$ to be used in the bootstrap-based Confidence Interval for $R.$ Default $Alpha=0.05$	

The seed to be used in the bootstrap. Default Seed = 1.

14 WS.Corr.Mixed

Details

Warning 1

To avoid problems with the 1me function, do not specify powers directly in the function call. For example, rather than specifying Fixed.Part=ZSV ~ Time + Time**2 in the function call, first add Time**2 to the dataset (Dataset\$TimeSq <- Dataset\$Time ** 2) and then use the new variable name in the call: Fixed.Part=ZSV ~ Time + TimeSq

Warning 2 To avoid problems with the lme function, specify the Random.Part and Correlation arguments like e.g., Random.Part = ~1| Subject and Correlation=corGaus(form= ~Time, nugget = TRUE)

not like e.g., Random. Part = \sim 1 | Subject and Correlation=corGaus(form= \sim Time| Subject, nugget = TRUE)

(i.e., do not use Time | Subject)

Value

Model The type of model that was fitted (model 1, 2, or 3.)

D The D matrix of the fitted model.

Tau2 The τ^2 component of the fitted model. This component is only obtained when

serial correlation is requested (Model 2 or 3), $\varepsilon_2 \sim N(0, \tau^2 H_i)$).

Rho The ρ component of the fitted model which determines the matrix H_i , $\rho(|t_{ij}|$

 t_{ik}). This component is only obtained when serial correlation is considered

(Model 2 or 3).

Sigma2 The residual variance.

AIC The AIC value of the fitted model.

LogLik The log likelihood value of the fitted model.

R The estimated reliabilities.

CI. Upper The upper bounds of the bootstrapped confidence intervals. CI. Lower The lower bounds of the bootstrapped confidence intervals. Alpha The α level used in the estimation of the confidence interval.

Coef.Fixed The estimated fixed-effect parameters.

Std.Error.Fixed

The standard errors of the fixed-effect parameters.

Time The time values in the dataset.

Fitted.Model A fitted model of class lme.

Author(s)

Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen

References

Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. *Submitted*.

WS.Corr.Mixed

See Also

```
Explore.WS.Corr, WS.Corr.Mixed.SAS
```

```
# open data
data(Example.Data)
# Make covariates used in mixed model
Example.Data$Time2 <- Example.Data$Time**2</pre>
Example.Data$Time3 <- Example.Data$Time**3</pre>
# model 1: random intercept model
Model1 <- WS.Corr.Mixed(</pre>
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Dataset=Example.Data, Model=1, Id="Id", Number.Bootstrap = 50,
Seed = 12345)
 # summary of the results
summary(Model1)
 # plot the results
plot(Model1)
## Not run: time-consuming code parts
# model 2: random intercept + Gaussian serial corr
Model2 <- WS.Corr.Mixed(</pre>
Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
+ as.factor(Condition), Random.Part = ~ 1|Id,
Correlation=corGaus(form= ~ Time, nugget = TRUE),
Dataset=Example.Data, Model=2, Id="Id", Seed = 12345)
  # summary of the results
summary(Model2)
 # plot the results
    # estimated corrs as a function of time lag (default plot)
plot(Model2)
    # estimated corrs for all pairs of time points
plot(Model2, All.Individual = T)
# model 3
Model3 <- WS.Corr.Mixed(</pre>
 Fixed.Part=Outcome ~ Time2 + Time3 + Time3_log + as.factor(Cycle)
 + as.factor(Condition), Random.Part = ~ 1 + Time|Id,
 Correlation=corGaus(form= ~ Time, nugget = TRUE),
 Dataset=Example.Data, Model=3, Id="Id", Seed = 12345)
 # summary of the results
summary(Model3)
```

16 WS.Corr.Mixed.SAS

```
# plot the results
    # estimated corrs for all pairs of time points
plot(Model3)
    # estimated corrs as a function of time lag
## End(Not run)
```

WS.Corr.Mixed.SAS

Estimate within-subject (test-retest) correlations based on a mixed-effects model using the SAS proc MIXED output.

Description

This function allows for the estimation of the within-subject correlations using a general and flexible modeling approach that allows at the same time to capture hierarchies in the data, the presence of covariates, and the derivation of correlation estimates. The output of proc MIXED (SAS) is used as the input for this function. Confidence intervals for the correlations based on the Delta method are provided.

Usage

```
WS.Corr.Mixed.SAS(Model, D, Sigma2, Asycov, Rho, Tau2, Alpha=0.05, Time)
```

Arguments

Model	The type of model that should be fitted. Model=1: random intercept model, Model=2: random intercept and serial correlation, and Model=3: random intercept, slope, and serial correlation. Default Model=1.
D	The D matrix of the fitted model.
Sigma2	The residual variance.
Asycov	The asymptotic correlation matrix of covariance parameter estimates.
Rho	The ρ component of the fitted model which determines the matrix H_i , $\rho(t_{ij}-t_{ik})$. This component is only needed when serial correlation is involved, i.e., when Model 2 or 3 used.
Tau2	The τ^2 component of the fitted model. This component is only needed when serial correlation is involved (i.e., when Model 2 or 3 used), $\varepsilon_2 \sim N(0, \tau^2 H_i)$).
Alpha	The α -level to be used in the computation of the Confidence Intervals around the within-subject correlation. The Confidence Intervals are based on the Delta method. Default Alpha=0.05.
Time	The time points available in the dataset on which the analysis was conducted.

WS.Corr.Mixed.SAS 17

Value

Model	The type of model that was fitted.
R	The estimated within-subject correlations.
Alpha	The α -level used to computed the Confidence Intervals around ${\cal R}.$
CI.Upper	The upper bounds of the confidence intervals (Delta-method based).
CI.Lower	The lower bounds of the confidence intervals (Delta-method based).
Time	The time values in the dataset.

Author(s)

Wim Van der Elst, Geert Molenberghs, Ralf-Dieter Hilgers, & Nicole Heussen

References

Van der Elst, W., Molenberghs, G., Hilgers, R., & Heussen, N. (2015). Estimating the reliability of repeatedly measured endpoints based on linear mixed-effects models. A tutorial. *Submitted*.

See Also

```
WS.Corr.Mixed
```

Index

* Bootstrap	plot Explore.WS.Corr, 8
Explore.WS.Corr, 2	plot.WS.Corr.Mixed, 10
plot Explore.WS.Corr,8	WS.Corr.Mixed, 13
plot.WS.Corr.Mixed, 10	WS.Corr.Mixed.SAS, 16
WS.Corr.Mixed, 13	* SAS
WS.Corr.Mixed.SAS, 16	WS.Corr.Mixed.SAS, 16
* Compare model fit	* Test-retest correlation
Model.Fit, 7	plot.WS.Corr.Mixed, 10
* Delta-method based CI	WS.Corr.Mixed, 13
WS.Corr.Mixed.SAS, 16	WS.Corr.Mixed.SAS, 16
* Example.Data	* Within-subject correlation
Example.Data, 2	Explore.WS.Corr, 2
* Exploratory analysis	Heatmap, 6
Explore.WS.Corr, 2	<pre>plot Explore.WS.Corr, 8</pre>
Heatmap, 6	plot.WS.Corr.Mixed, 10
plot Explore.WS.Corr, 8	WS.Corr.Mixed, 13
Spaghetti.Plot, 11	WS.Corr.Mixed.SAS, 16
* Fractional polynomials	
Fract.Poly, 4	Example.Data, 2
* G2	Explore.WS.Corr, 2, 9, 15
. 32	
Model.Fit, 7	Fract.Polv.4
,	Fract.Poly,4
<pre>Model.Fit, 7 * Heatmap Heatmap, 6</pre>	Fract.Poly, 4 Heatmap, 6, 9
* Heatmap Heatmap, 6	•
* Heatmap	•
* Heatmap Heatmap, 6 * Individual profiles	Heatmap, 6, 9 Model.Fit, 7
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure Spaghetti.Plot, 11 * Mixed-effects model	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure Spaghetti.Plot, 11 * Mixed-effects model plot.WS.Corr.Mixed, 10	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure Spaghetti.Plot, 11 * Mixed-effects model plot.WS.Corr.Mixed, 10 WS.Corr.Mixed, 13	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure Spaghetti.Plot, 11 * Mixed-effects model plot.WS.Corr.Mixed, 10	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure Spaghetti.Plot, 11 * Mixed-effects model plot.WS.Corr.Mixed, 10 WS.Corr.Mixed, 13 WS.Corr.Mixed.SAS, 16	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure Spaghetti.Plot, 11 * Mixed-effects model plot.WS.Corr.Mixed, 10 WS.Corr.Mixed, 13 WS.Corr.Mixed.SAS, 16 * Plot Heatmap, 6	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure Spaghetti.Plot, 11 * Mixed-effects model plot.WS.Corr.Mixed, 10 WS.Corr.Mixed, 13 WS.Corr.Mixed.SAS, 16 * Plot	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure Spaghetti.Plot, 11 * Mixed-effects model plot.WS.Corr.Mixed, 10 WS.Corr.Mixed, 13 WS.Corr.Mixed.SAS, 16 * Plot Heatmap, 6 plot Explore.WS.Corr, 8 * Reliability	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed
* Heatmap Heatmap, 6 * Individual profiles Spaghetti.Plot, 11 * Likelihood ratio Model.Fit, 7 * Mean structure Spaghetti.Plot, 11 * Mixed-effects model plot.WS.Corr.Mixed, 10 WS.Corr.Mixed, 13 WS.Corr.Mixed.SAS, 16 * Plot Heatmap, 6 plot Explore.WS.Corr, 8	Heatmap, 6, 9 Model.Fit, 7 plot Explore.WS.Corr, 8 plot WS.Corr.Mixed