=

Глубокое обучение 2023-2024~

Материалы (/course/6/info)

- 1. Введение в PyTorch 1 (полносвязные нейросети) [2023] (/course/6/task/1)
- 2. Введение в PyTorch 1 (сверточные нейросети) [2023] (/course/6/task/2)
- 3. Тест (лекции 1-5) [2023] (/course/6/task/3)
- 4. Семантическая сегментация [2023] (/course/6/task/4)
- 5. Тест (лекции 5-8) [2023] (/course/6/task/5)
- 6. Named Entity Recognition [2023] (/course/6/task/6)
- 7. Тест (лекции 8-12) [2023] (/course/6/task/7)
- 8. Обучение нейронных сетей на аудио-данных [2023] (/course /6/task/8)
- 9. Tect (GAN, звук, графы) [2023] (/course/6/task/9)

Таблица результатов (/course /6/standings)

Выйти (/logout)

Во всех вопросах может быть несколько правильных ответов

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в противном случае ставится 0 баллов.

 Основная задача генеративно состязательных сетей это:

енерация новых интеллектуальны	Χ
признаков для объектов	

генерация откликов для неразмеченных объектов выборки

 генерация новых объектов, похожих по распределению на объекты обучающей выборки

Балл: 0.75 **Комментарий к правильному ответу:**

2. Выберите идеи progressiveGAN для эффективной настройки генерации изображений в высоком разрешении:

для построения прогноза помимо итоговых
выходов используются и промежуточные
выходы сети, потери считаются усреднением
ошибок прогнозирования на всех выходах

 при добавлении новых слоёв им на вход на первых итерациях поступает лишь малая часть входного сигнала, а основной сигнал идёт через обходную тождественную связь с перемасштабированием

 обучается сначала низкоразмерный генератор и дискриминатор, затем добавляются слои повышенного разрешения к настроенной архитектуре

1 of 4

Глубокое обучение 2023-2024~

Материалы (/course/6/info)

- 1. Введение в PyTorch 1 (полносвязные нейросети) [2023] (/course/6/task/1)
- 2. Введение в PyTorch 1 (сверточные нейросети) [2023] (/course/6/task/2)
- 3. Тест (лекции 1-5) [2023] (/course/6/task/3)
- 4. Семантическая сегментация [2023] (/course/6/task/4)
- 5. Тест (лекции 5-8) [2023] (/course/6/task/5)
- 6. Named Entity Recognition [2023] (/course/6/task/6)
- 7. Тест (лекции 8-12) [2023] (/course/6/task/7)
- 8. Обучение нейронных сетей на аудио-данных [2023] (/course /6/task/8)
- 9. Tect (GAN, звук, графы) [2023] (/course/6/task/9)

Таблица результатов (/course /6/standings)

Выйти (/logout)

	использовался DropOut на свёрточных слоя
Балл: Комме	0.75 ентарий к правильному ответу:
3. Выбер	рите методы
постро	рения эмбеддингов
верши	ін графа, которым
(будуч	и уже
•	ренными) не нужно
•	гать к решению
	и оптимизации для
-	рения эмбеддинга
	рвой вершины
графа в обуч	(не участвовавшей ении):
V V	извлечение эмбеддинга по внутреннему
	состоянию автокодировщика, кодирующего
	строку матрицы смежности вершины
	методы, основанные на случайном обходе
	графа (DeepWalk, Node2vec)
	графовые свёрточные сети (graph
	convolutional networks)
	методы, основанные на матричных
	разложениях (Laplacian eigenmaps, GraRep)
	графовые свёрточные сети со вниманием (graph attention networks)
Балл:	0
Комме	ентарий к правильному ответу:
4. Мел-с	пектрограмма
сохран	няет из
спектр	оограммы
преим	ущественно:
	низкие частоты
	все частоты

Балл: 0

Комментарий к правильному ответу:

5. Мел-спектрограмма

■ высокие частоты

Глубокое обучение 2023-2024∨

Материалы (/course/6/info)

- 1. Введение в PyTorch 1 (полносвязные нейросети) [2023] (/course/6/task/1)
- 2. Введение в PyTorch 1 (сверточные нейросети) [2023] (/course/6/task/2)
- 3. Тест (лекции 1-5) [2023] (/course/6/task/3)
- 4. Семантическая сегментация [2023] (/course/6/task/4)
- 5. Тест (лекции 5-8) [2023] (/course/6/task/5)
- 6. Named Entity Recognition [2023] (/course/6/task/6)
- 7. Тест (лекции 8-12) [2023] (/course/6/task/7)
- 8. Обучение нейронных сетей на аудио-данных [2023] (/course /6/task/8)
- 9. Tect (GAN, звук, графы) [2023] (/course/6/task/9)

Таблица результатов (/course /6/standings)

Выйти (/logout)

получается из спектрограммы усреднением

✓	/	по оси частот

по оси времени

🔲 🔲 сразу по двум осям спектрограммы

Балл: 0.75

Комментарий к правильному ответу:

6. Дискриминатор в GAN решает задачу

	регрессии
--	-----------

пранжирования

✓	/	классификации
----------	----------	---------------

п п кластеризации

Балл: 0.75

Комментарий к правильному ответу:

7. Отличие операции свёртки с вниманием от обычной свёртки на графах заключается в способности:

способности учитывать наличие каждого,
даже достаточно удаленного ребра графа
при расчёте результата для текущей
вершины

 адаптировать вес, с которым агрегируется эмбеддинг каждой соседней вершины в зависимости от значения этого эмбеддинга

способности учитывать значение каждой,
даже достаточно удаленной вершины графа
при расчёте результата для текущей
вершины

Балл: 0.75

Комментарий к правильному ответу:

3 of 4

Глубокое обучение 2023-2024У

Материалы (/course/6/info)

- 1. Введение в PyTorch 1 (полносвязные нейросети) [2023] (/course/6/task/1)
- 2. Введение в PyTorch 1 (сверточные нейросети) [2023] (/course/6/task/2)
- 3. Тест (лекции 1-5) [2023] (/course/6/task/3)
- 4. Семантическая сегментация [2023] (/course/6/task/4)
- 5. Тест (лекции 5-8) [2023] (/course/6/task/5)
- 6. Named Entity Recognition [2023] (/course/6/task/6)
- 7. Тест (лекции 8-12) [2023] (/course/6/task/7)
- 8. Обучение нейронных сетей на аудио-данных [2023] (/course /6/task/8)
- 9. Tect (GAN, звук, графы) [2023] (/course/6/task/9)

Таблица результатов (/course /6/standings)

Выйти (/logout)

8. Выберите архитектуру GAN, позволяющую преобразовывать объекты из одного представления в другое (например, фото в картины) без необходимости иметь парную обучающую выборку (например, достаточно иметь только много фото и много картин для обучения, но не обязательно, чтобы фото и картины соответствовали друг другу).

cycleGAN

semi-supervised GAN

pix2pix

☐ text2image

progressiveGAN

Балл: 0

Комментарий к правильному ответу:

4 of 4 12/20/23, 23:09