Model-Based RL and Policy Learning

CS 294-112: Deep Reinforcement Learning
Sergey Levine

Class Notes

- 1. Homework 3 due next Wednesday
- 2. Accept CMT peer review invitations
 - These are required (part of your final project grade)
 - If you have not received/cannot find invitation, email Kate Rakelly!
- 3. Project proposal feedback from TAs will be out shortly, please read it carefully!

Overview

- 1. Last time: learning models of system dynamics and using optimal control to choose actions
 - Global models and model-based RL
 - Local models and model-based RL with constraints
 - Uncertainty estimation
 - Models for complex observations, like images
- 2. What if we want a *policy*?
 - Much quicker to evaluate actions at runtime
 - Potentially better generalization
- 3. Can we just backpropagate into the policy?

Today's Lecture

- 1. Backpropagating into a policy with learned models
- 2. How this becomes equivalent to *imitating* optimal control
- 3. The guided policy search algorithm
- 4. Imitating optimal control with DAgger
- 5. Model-based vs. model-free RL tradeoffs
- Goals
 - Understand how to train policies guided by control/planning
 - Understand tradeoffs between various methods
 - Get a high-level overview of recent research work on policy learning with modelbased RL

So how can we train policies?

- So far we saw how we can...
 - Train global models (e.g. GPs, neural networks)
 - Train local models (e.g. linear models)
- But what if we want a policy?
 - Don't need to replan (faster)
 - Potentially better generalization
 - Closed loop control!

Backpropagate directly into the policy?

model-based reinforcement learning version 2.0:

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. learn dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_i ||f(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}_i'||^2$
- 3. backpropagate through $f(\mathbf{s}, \mathbf{a})$ into the policy to optimize $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$
- 4. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$, appending the visited tuples $(\mathbf{s},\mathbf{a},\mathbf{s}')$ to \mathcal{D}

What's the problem with backprop into policy?

- Similar parameter sensitivity problems as shooting methods
 - But no longer have convenient second order LQR-like method, because policy parameters couple all the time steps, so no dynamic programming
- Similar problems to training long RNNs with BPTT
 - Vanishing and exploding gradients
 - Unlike LSTM, we can't just "choose" a simple dynamics, dynamics are chosen by nature

What about collocation methods?

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T,\mathbf{x}_1,\dots,\mathbf{x}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

What about collocation methods?

$$\min_{\mathbf{u}_1, \dots, \mathbf{u}_T, \mathbf{x}_1, \dots, \mathbf{x}_T, \theta} \sum_{t=1}^T c(\mathbf{x}_t, \mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}), \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$

Even simpler...

$$\min_{\mathbf{u}_1,...,\mathbf{u}_T,\mathbf{x}_1,...,\mathbf{x}_T,\theta} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$
 generic trajectory optimization, solve however you want s.t. $\mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$

• How can we impose constraints on trajectory optimization?

Review: dual gradient descent

$$\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } C(\mathbf{x}) = 0$$

$$g(\lambda) = \mathcal{L}(\mathbf{x}^{\star}(\lambda), \lambda)$$

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$$

$$\frac{dg}{d\lambda} = \frac{d\mathcal{L}}{d\lambda}(\mathbf{x}^*, \lambda)$$

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x})$$

1. Find
$$\mathbf{x}^* \leftarrow \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$$

2. Compute
$$\frac{dg}{d\lambda} = \frac{d\mathcal{L}}{d\lambda}(\mathbf{x}^*, \lambda)$$

$$3. \lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$$

3.
$$\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$$

A small tweak to DGD: augmented Lagrangian

$$\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } C(\mathbf{x}) = 0$$

- Still converges to correct solution
- When far from solution, quadratic term tends to improve stability
- Closely related to alternating direction method of multipliers (ADMM)

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x})$$

$$\bar{\mathcal{L}}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x}) + \rho ||C(\mathbf{x})||^2$$

- 1. Find $\mathbf{x}^* \leftarrow \arg\min_{\mathbf{x}} \bar{\mathcal{L}}(\mathbf{x}, \lambda)$
- 2. Compute $\frac{dg}{d\lambda} = \frac{d\bar{\mathcal{L}}}{d\lambda}(\mathbf{x}^*, \lambda)$
- 3. $\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$

Constraining trajectory optimization with dual gradient descent

$$\min_{\tau,\theta} c(\tau) \text{ s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$

$$\mathcal{L}(\tau, \theta, \lambda) = c(\tau) + \sum_{t=1}^{T} \lambda_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t)$$

$$\bar{\mathcal{L}}(\tau, \theta, \lambda) = c(\tau) + \sum_{t=1}^{T} \lambda_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t) + \sum_{t=1}^{T} \rho_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t)^2$$

Constraining trajectory optimization with dual gradient descent

$$\min_{\tau,\theta} c(\tau) \text{ s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$

$$\bar{\mathcal{L}}(\tau, \theta, \lambda) = c(\tau) + \sum_{t=1}^{T} \lambda_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t) + \sum_{t=1}^{T} \rho_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t)^2$$

- 1. Find $\tau \leftarrow \arg\min_{\tau} \bar{\mathcal{L}}(\tau, \theta, \lambda)$ (e.g. via iLQR)
- 2. Find $\theta \leftarrow \arg\min_{\theta} \bar{\mathcal{L}}(\tau, \theta, \lambda)$ (e.g. via SGD)
- $= 3. \ \lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$

Guided policy search discussion

- 1. Find $\tau \leftarrow \arg\min_{\tau} \bar{\mathcal{L}}(\tau, \theta, \lambda)$ (e.g. via iLQR)
- 2. Find $\theta \leftarrow \arg\min_{\theta} \bar{\mathcal{L}}(\tau, \theta, \lambda)$ (e.g. via SGD)
- 3. $\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$
- Can be interpreted as constrained trajectory optimization method
- Can be interpreted as imitation of an optimal control expert, since step
 2 is just supervised learning
- The optimal control "teacher" adapts to the learner, and avoids actions that the learner can't mimic

General guided policy search scheme

- 1. Optimize $p(\tau)$ with respect to some surrogate $\tilde{c}(\mathbf{x}_t, \mathbf{u}_t)$
- 2. Optimize θ with respect to some supervised objective
- 3. Increment or modify dual variables λ

Need to choose:

```
form of p(\tau) or \tau (if deterministic)
optimization method for p(\tau) or \tau
surrogate \tilde{c}(\mathbf{x}_t, \mathbf{u}_t)
supervised objective for \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)
```

Deterministic case

$$\min_{\tau,\theta} c(\tau) \text{ s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$

$$\bar{\mathcal{L}}(\tau,\theta,\lambda) = c(\tau) + \sum_{t=1}^{T} \lambda_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t) + \sum_{t=1}^{T} \rho_t (\pi_{\theta}(\mathbf{x}_t) - \mathbf{u}_t)^2$$

$$\tilde{c}(\tau)$$

- 1. Optimize τ with respect to surrogate $\tilde{c}(\tau)$
- 2. Optimize θ with respect to supervised objective
- 3. Increment or modify dual variables λ

Learning with multiple trajectories

$$\min_{\tau_1, \dots, \tau_N, \theta} \sum_{i=1}^{N} c(\tau_i) \text{ s.t. } \mathbf{u}_{t,i} = \pi_{\theta}(\mathbf{x}_{t,i}) \ \forall i \ \forall t$$

- 1. Optimize each τ_i in parallel with respect to $\tilde{c}(\tau_i)$
- 2. Optimize θ with respect to supervised objective
- 3. Increment or modify dual variables λ

Case study: learning locomotion skills

Interactive Control of Diverse Complex Characters with Neural Networks

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, Emanuel Todorov
Department of Computer Science, University of Washington

{mordatch, lowrey, galen, zoran, todorov}@cs.washington.edu

Interactive Control of Diverse Complex Characters with Neural Networks

Submitted to NIPS 2015

Stochastic (Gaussian) GPS

$$\min_{p,\theta} E_{\tau \sim p(\tau)}[c(\tau)] \text{ s.t. } p(\mathbf{u}_t|\mathbf{x}_t) = \pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t)$$

$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t)$$

- 1. Optimize $p(\tau)$ with respect to some surrogate $\tilde{c}(\mathbf{x}_t, \mathbf{u}_t)$
- 2. Optimize θ with respect to some supervised objective
- 3. Increment or modify dual variables λ

Stochastic (Gaussian) GPS with local models

Robotics Example

Input Remapping Trick

 $\min_{p,\theta} E_{\tau \sim p(\tau)}[c(\tau)] \text{ s.t. } p(\mathbf{u}_t | \mathbf{x}_t) = \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)$

training time

test time

Case study: vision-based control with GPS

Learned Visuomotor Policy: Shape sorting cube

Break

Imitating optimal control with DAgger

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo

Computer Science and Eng.
University of Michigan
quoxiao@umich.edu

Honglak Lee

Computer Science and Eng. University of Michigan honglak@umich.edu

Richard Lewis

Department of Psychology University of Michigan rickl@umich.edu

Satinder Singh

Computer Science and Eng. University of Michigan baveja@umich.edu

Xiaoshi Wang

Computer Science and Eng. University of Michigan xiaoshiw@umich.edu

Imitating optimal control with DAgger

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning

- 1. from current state s_t , run MCTS to get a_t, a_{t+1}, \ldots
- 2. add (s_t, a_t) to dataset \mathcal{D}
- 3. execute action $a_t \sim \pi(a_t|s_t)$ (not MCTS action!)
- 4. update the policy by training on \mathcal{D}

A problem with DAgger

- ⇒ 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
 - 2. $\operatorname{run} \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
 - 3. Ask boumpanter table $\mathcal{D}_{\pi}\mathcal{D}_{\mathcal{H}}$ it third ctartions \mathbf{u}_t
 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\hat{\pi}_{\ell}(\mathbf{u}_{\ell}|\mathbf{\phi}_{\ell})$ toogettdataset $\mathcal{D}_{\pi\pi} = \{\mathbf{\phi}_{1}, \dots, \mathbf{\phi}_{M}\}$
- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\hat{\pi}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^{T} E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\hat{\pi}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^{T} E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$

$$\pi_{\theta}(\mathbf{u}_2|\mathbf{o}_2)$$

$$\hat{\pi}(\mathbf{u}_2|\mathbf{o}_2)$$

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\hat{\pi}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^{T} E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$

$$\pi_{\theta}(\mathbf{u}_2|\mathbf{o}_2)$$

$$\hat{\pi}(\mathbf{u}_2|\mathbf{o}_2)$$

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\hat{\pi}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$

Imitating MPC: PLATO algorithm

- 1. train $\pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{u}_1, \dots, \mathbf{o}_N, \mathbf{u}_N\}$
- 2. run $\hat{\pi}(\mathbf{u}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask computer to label \mathcal{D}_{π} with actions \mathbf{u}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

simple stochastic policy: $\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t\mathbf{x}_t + \mathbf{k}_t, \Sigma_{\mathbf{u}_t})$

$$\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) = \arg\min_{\hat{\pi}} \sum_{t'=t}^T E_{\hat{\pi}}[c(\mathbf{x}_{t'}, \mathbf{u}_{t'})] + \lambda D_{\mathrm{KL}}(\hat{\pi}(\mathbf{u}_t|\mathbf{x}_t) || \pi_{\theta}(\mathbf{u}_t|\mathbf{o}_t))$$

$$\pi_{\theta}(\mathbf{u}_2|\mathbf{o}_2)$$

$$\hat{\pi}(\mathbf{u}_2|\mathbf{o}_2)$$

Imitating MPC: PLATO algorithm

DAgger vs GPS

- DAgger does not require an adaptive expert
 - Any expert will do, so long as states from learned policy can be labeled
 - Assumes it is possible to match expert's behavior up to bounded loss
 - Not always possible (e.g. partially observed domains)
- GPS adapts the "expert" behavior
 - Does not require bounded loss on initial expert (expert will change)

Why imitate?

- Relatively stable and easy to use
 - Supervised learning works very well
 - Control/planning (usually) works very well
 - The combination of the two (usually) works very well
- Input remapping trick: can exploit availability of additional information at training time to learn policy from raw observations
- Overcomes optimization challenges of backpropagating into policy directly
- Usually sample-efficient and viable for real physical systems

Model-free optimization with a model

- Just use policy gradient (or another model-free RL method) even though you have a model
- Sometimes better than using the gradients!
- See a recent analysis here:
 - Parmas et al. '18: PIPP: Flexible Model-Based Policy Search Robust to the Curse of Chaos

Model-free optimization with a model

Dyna

online Q-learning algorithm that performs model-free RL with a model

- 1. given state s, pick action a using exploration policy
- 2. observe s' and r, to get transition (s, a, s', r)
- 3. update model $\hat{p}(s'|s,a)$ and $\hat{r}(s,a)$ using (s,a,s')
- 4. Q-update: $Q(s, a) \leftarrow Q(s, a) + \alpha E_{s',r}[r + \max_{a'} Q(s', a') Q(s, a)]$
- 5. repeat K times:
 - 6. sample $(s, a) \sim \mathcal{B}$ from buffer of past states and actions
 - 7. Q-update: $Q(s, a) \leftarrow Q(s, a) + \alpha E_{s',r}[r + \max_{a'} Q(s', a') Q(s, a)]$

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating dynamic programming.

General "Dyna-style" model-based RL recipe

- 1. collect some data, consisting of transitions (s, a, s', r)
- 2. learn model $\hat{p}(s'|s,a)$ (and optionally, $\hat{r}(s,a)$)
- 3. repeat K times:
 - 4. sample $s \sim \mathcal{B}$ from buffer
 - 5. choose action a (from \mathcal{B} , from π , or random)
 - 6. simulate $s' \sim \hat{p}(s'|s, a)$ (and $r = \hat{r}(s, a)$)
 - 7. train on (s, a, s', r) with model-free RL
 - 8. (optional) take N more model-based steps
- + only requires short (as few as one step) rollouts from model
- + still sees diverse states

Model-Based Acceleration (MBA) & Model-Based Value Expansion (MVE)

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
- 3. use $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}_j'\}$ to update model $\hat{p}(\mathbf{s}'|\mathbf{s}, \mathbf{a})$
- 4. sample $\{\mathbf{s}_i\}$ from \mathcal{B}
- 5. for each \mathbf{s}_j , perform model-based rollout with $\mathbf{a} = \pi(\mathbf{s})$
- 6. use all transitions $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$ along rollout to update Q-function

Gu et al. Continuous deep Q-learning with model-based acceleration. '16 Feinberg et al. Model-based value expansion. '18

Model-based RL algorithms summary

- Learn model and plan (without policy)
- THIS WILL BE ON HWA! Iteratively collect more data to overcome distribution mismatch
 - Replan every time step (MPC) to mitigate small model errors
- Learn policy
 - Backpropagate into policy (e.g., PILCO) simple but potentially unstable
 - Imitate optimal control in a constrained optimization framework (e.g., GPS)
 - Imitate optimal control via DAgger-like process (e.g., PLATO)
 - Use model-free algorithm with a model (Dyna, etc.)

Limitations of model-based RL

- Need some kind of model
 - Not always available
 - Sometimes harder to learn than the policy
- Learning the model takes time & data
 - Sometimes expressive model classes (neural nets) are not fast
 - Sometimes fast model classes (linear models) are not expressive
- Some kind of additional assumptions
 - Linearizability/continuity
 - Ability to reset the system (for local linear models)
 - Smoothness (for GP-style global models)
 - Etc.

So... which algorithm do I use?

gradient-free methods (e.g. NES, CMA, etc.)

____ 10x

fully online methods (e.g. A3C)

10x

policy gradient methods (e.g. TRPO)

10x

replay buffer value estimation methods (Q-learning, DDPG, NAF, SAC, etc.)

10x

model-based deep RL (e.g. PETS, guided policy search)

____ 10x

model-based "shallow" RL (e.g. PILCO)

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Tim Salimans 1 Jonathan Ho 1 Xi Chen 1 Ilya Sutskever 1

half-cheetah (slightly different version)

half-cheetah

Gu et al. '16

Chua et a. '18: Deep Reinforcement Learning in a Handful of Trials

10,000,000 steps (10,000 episodes) (~ 1.5 days real time) 100,000,000 steps (100,000 episodes) (~ 15 days real time)

1,000,000 steps (1,000 episodes) (~3 hours real time)

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
10x gap
-0.05
0.00
10x samples

about 20 minutes of experience on a real robot

Chebotar et al. '17 (note log scale)

Which RL algorithm to use?

