UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL

Profesor Guía: Sr. Carlos Obreque Niñez

Alumno: Nicole Sáez Zambrano

UN MODELO DE PROGRAMACIÓN LINEAL ENTERA PARA RESOLVER EL PROBLEMA DEL RUTEO DE BUSES MAXIMIZANDO LA CAPTURA DE PASAJEROS

TRABAJO DE TITULACIÓN PRESENTADO EN CONFORMIDAD A LOS REQUISITOS PARA OBTENER EL TÍTULO DE INGENIERO CIVIL INDUSTRIAL

RESUMEN

En este proyecto se propone un modelo de programación lineal entera (PLE) para resolver el problema de Localización de Paraderos y Ruteo de Buses (LPRB), minimizando el costo de transporte y maximizando la captura de pasajeros.

El propósito es determinar la ruta de un conjunto de buses para recoger a los pasajeros y trasladarlos a un destino común, por ejemplo, trasladar trabajadores desde sus hogares hacia la planta. Se considera que la organización cuenta con un número p de buses para trasladar a sus trabajadores y estos buses tienen capacidad limitada, por lo tanto, no necesariamente todos los pasajeros podrán ser trasladados. Un pasajero se dice que es capturado por un bus si éste se encuentra dentro de una distancia predeterminada, denominada radio de cobertura, a un paradero por donde pasa el bus. Se quiere minimizar el costo del viaje de los buses y maximizar la captura de los pasajeros.

El problema LPRB es de carácter multiobjetivo con un trade-off entre la distancia (o costo) total recorrida por los buses y la captura de trabajadores. Con el modelo propuesto se obtienen soluciones no inferiores que se determinan utilizando el método de la estimación del conjunto de soluciones no inferiores (NISE).

Se utiliza el software de modelamiento matemático AMPL junto con el solver Cplex para probar distintas instancias obtenidas de la literatura y mostrar la efectividad del modelo propuesto.

ÍNDICE

			nidos	

5.2.2 Obtención de la solución no inferior extrema Nº2 37
5.2.3 Aplicación del método NISE para la obtención de las soluciones no
inferiores y la Curva de <i>Trade-Off</i> 39
5.3 Soluciones no inferiores para la red de 50 nodos42
Capítulo 6: Resultados computacionales para instancias test
6.1 Red de 20 nodos
6.2 Red de 50 nodos
Instancia 451
6.3 Red de 81 nodos
6.4 Análisis de los resultados54
Capítulo 7: Conclusiones y futuras investigaciones
7.1. Conclusiones
7.2. Futuras investigaciones
Bibliografía57
Índice de tablas
Tabla 3. 1: Un ejemplo de No Inferioridad24
Tabla 5. 1: Soluciones no inferiores para la red de 50 nodos
Tabla 6. 1: Resultados para la red de 20 nodos, Destino: 20, Radio 180 47
Tabla 6. 2: Resultados para las SNI de la red de 20 nodos, Destino: 20, Radio 180.
47
Tabla 6. 3: Resultados para la red de 20 nodos, Destino: 20, Radio 359 48
Tabla 6. 4: Resultados para las SNI de la red de 20 nodos, Destino: 20, Radio 359.
Tabla 6. 5: Resultados para la red de 50 nodos, Destino: 50, Radio 15 49
Tabla 6. 6: Resultados para las SNI de la red de 50 nodos, Destino: 50, Radio 15.
50
Tabla 6. 7: Resultados para la red de 50 nodos, Destino: 50, Radio 30 51
Tabla 6. 8: Resultados para las SNI de la red de 50 nodos, Destino: 50, Radio 30.
51

Tabla 6. 9: Resultados para la red de 81 nodos, Destino: 81, Radio 49 52
Tabla 6. 10: Resultados para las SNI de la red de 81 nodos, Destino: 81, Radio 49.
52
Tabla 6. 11: Resultados para la red de 81 nodos, Destino: 81, Radio 49 53
Tabla 6. 12: Resultados para las SNI de la red de 81 nodos, Destino: 81, Radio 49.
53
Índice de Gráficos
Gráfico 5. 1: Gráfico de las soluciones no inferiores extremas
Gráfico 5. 2: Pendiente de la recta obtenida con la solución de la SNIE ₁ y SNIE ₂ 40
Gráfico 5. 3: Obtención de una solución no inferior a partir de la SNIE1 y la SNIE2
41
Gráfico 5. 4: Obtención de nuevas soluciones no inferiores
Gráfico 6. 1: Soluciones no inferiores extremas y soluciones no inferiores instancia
1
Gráfico 6.2: Soluciones no inferiores extremas y soluciones no inferiores instancia
2
Gráfico 6.3: Soluciones no inferiores extremas y soluciones no inferiores instancia
3 50
Gráfico 6.4: Soluciones no inferiores extremas y soluciones no inferiores instancia
4 51
Gráfico 6.5: Soluciones no inferiores extremas y soluciones no inferiores instancia
5 52
Gráfico 6.6: Soluciones no inferiores extremas y soluciones no inferiores instancia
6
h

Índice de figuras

Figura 3. 1: Representación gráfica de no inferioridad para una región factible	
arbitraria en el espacio objetivo	. 25
Figura 5. 1: Red de 50 nodos con arcos dirigidos	. 35
Figura 5. 2: Solución no inferior extrema Nº1	. 37
Figura 5. 3: Solución no inferior extrema Nº2	. 38
Figura 5. 4: Solución no inferior Nº3	. 43
Figura 5. 5: Solución no inferior Nº4	. 44
Índice de anexos	
Anexo A: Matriz de distancias de la red de 50 nodos	. 59
Anexo B: Matriz de distancias de Current et al (1984)	. 62

Capítulo 1: Introducción

Actualmente diversas instituciones entregan el servicio de transporte a sus estudiantes o trabajadores para trasladarse desde sus hogares hacia la casa de estudios o a la planta, tales como centros educacionales o plantas industriales, respectivamente. En las empresas el servicio se ofrece por varias razones, una de ellas es que los sindicatos ejercen presión a los directivos de las mismas para obtener como beneficio buses de acercamiento para el personal, Feres (2004).

La decisión de dónde localizar los paraderos y las rutas que cada bus seguirá representa una actividad importante para la organización y sus trabajadores. Esto, porque la toma de decisión adecuada contribuye a mejorar la calidad de vida de sus trabajadores, pues saben dónde subirse al bus y conocen con exactitud el tiempo de traslado hacia la planta y minimiza la disconformidad de los usuarios frente a un mal servicio, Albornoz y Johns (2011).

Desde el punto de vista de los costos, orientación de las calles, prohibición de parar en cualquier parte y acceso limitado a calles sin salida, los buses no necesariamente pueden llegar a todos los hogares de los trabajadores. Esta limitación implica que los usuarios tengan que caminar algunos metros o cuadras para llegar a un paradero por donde pasará un bus que los traslade. En tal caso, es necesario definir la distancia máxima permitida para que el trabajador camine hacia un paradero, distancia denominada radio de cobertura. Por otra parte, si se considera que la organización tiene un número p de buses homogéneos, todos con la misma capacidad, entonces inevitablemente no todos los trabajadores podrán ser trasladados. Más aún, dado que al mismo tiempo se minimiza el costo de transporte es posible que aquellos trabajadores que se encuentren muy alejados de la ruta de un bus tampoco sean trasladados y todos estos usuarios deberán utilizar otro medio de transporte.

En esta memoria se propone un modelo de PLE para resolver el problema LPRB aplicado al traslado de trabajadores desde sus hogares a la planta minimizando el costo de transporte y maximizando la captura de pasajeros. La planta dispone de p buses para el traslado de su personal con el menor costo posible de transporte. Por otra parte, todos los trabajadores quisieran utilizar este servicio y están dispuesto a caminar una distancia determinada al paradero para subirse al bus. Con el fin de trasladar la mayor cantidad de pasajeros posible, de tal modo de ofrecer una mejor calidad del servicio, y con el menor costo, se busca determinar los paraderos y los recorridos de los p buses para recoger a los trabajadores desde los paraderos y trasladarlos a la planta.

Un pasajero se dice que es capturado por un bus, si él se encuentra dentro del radio de cobertura del paradero y el bus tiene espacio disponible. Además, si existen varios trabajadores dentro del radio de cobertura de un paradero seleccionado, todos tienen la misma prioridad y es el modelo quien selecciona a los que trasladará. Por otra parte, si un trabajador es capturado y está dentro del radio de cobertura de más de un paradero entonces siempre será asignado al paradero más cercano.

El problema LPRB es un caso particular del Covering Tour Problem (CTP). Por lo tanto, el LPRB también es NP-Hard. Motta et al.(2001).

En el capítulo 2 se presentan los problemas que se utilizan como base para modelar y resolver el problema LPRB. En el capítulo 3 se muestran los principales aspectos de la programación bi-objetivo, la formulación general y se detallan las técnicas para la generación de soluciones no inferiores, entre ellos el método de la estimación del conjunto de soluciones no inferiores (NISE). En el capítulo 4 se propone una formulación matemática basada en flujo entero, para resolver el problema en estudio. En el capítulo 5 se presenta en detalle la forma de encontrar la frontera eficiente por el método NISE. Finalmente, en el capítulo 6 se presentan

los resultados obtenidos al resolver instancias de prueba. Para implementar y probar los modelos se utiliza el software AMPL con el solver CPLEX.

Capítulo 2: Marco Teórico

En este capítulo se aborda el problema del traslado de trabajadores en forma general. Posteriormente, se tratan los problemas que se utilizaran como base para modelar y resolver el problema LRVC. Dentro de este ítem, se presenta el problema de ruteo de vehículos y problemas de cobertura, en el cual destaca el The Maximum Covering Shortest Path Problem (MCSPP). Este problema es presentado en Current et al (1985) y es la base de la formulación del modelo diseñado en esta memoria. Finalmente, en una revisión bibliográfica, se muestran algunos trabajos similares desarrollados por otros autores.

2.1 El Problema del traslado de Trabajadores

Actualmente, son muchas las empresas que entregan a sus trabajadores el servicio de traslado en buses desde sus hogares hasta el lugar de trabajo o planta. Sin embargo, cuando la empresa cuenta con un número de buses limitado y se considera la capacidad que posee cada bus, no todos los trabajadores podrán ser transportados.

Con estas características la empresa a la cual se contrata el servicio, debe determinar la ruta que siguen los buses y los paraderos a los cuales se asignan los trabajadores a transportar. Esta toma de decisiones debe considerar dos aspectos fundamentales, el primero de ellos es el nivel de servicio que se espera dar a los usuarios (el personal de la empresa) y el segundo, está asociado con los objetivos económicos de la empresa que contrata el servicio de transporte, los cuales están relacionados principalmente con la minimización del costo de transporte, Albornoz y Johns (2011).

Dada la importancia que tiene la red de transporte para la organización, es necesario resolver el problema de transporte de trabajadores. Esto es, establecer las rutas de un conjunto de buses y localizar sus paraderos, para recoger a los Universidad del Río-Río Sistema de Ribliotecas-Chile

trabajadores asignados y trasladarlos a la planta, considerando capacidad en los

buses y para una distancia de cobertura de tiempo servicio, cumpla con el

propósito de minimizar el costo del viaje de los buses y maximizar la captura de

los pasaieros.

2.2 El Problema de Ruteo de Vehículos

El problema consiste en diseñar rutas de vehículos que parten de un determinado

nodo (nodo inicio) y que recorren diversos nodos para satisfacer una demanda

previamente establecida, pudiendo considerarse restricciones de tiempo, costo,

distancia, capacidad, etc., a través de la minimización de los costos totales de

transporte (también tiempo o distancia total recorrida). Su importancia surge del

hecho de que es aplicable a un gran número de problemas basados en la

logística, Oneto (2006).

El VRP es un problema combinatorial cuya estructura se basa en la teoría de

grafos. En él se considera que una cantidad de material di debe ser entregada a

un cliente i (para un total de n clientes) desde un nodo inicial, utilizando m

vehículos exactamente iguales en cuanto a capacidad Q respecta. Se asume que

estos vehículos deberán llegar al nodo de inicio (nodo 1) al finalizar la ruta,

convirtiéndose en definitiva, en el nodo final de la red.

De acuerdo a lo señalado, el problema se estructura de la siguiente manera,

considerando los parámetros, variables y formulación descritos a continuación:

Parámetros

Q: Capacidad del vehículo.

k: Depósito

11

Variables de decisión

$$x_{ij} = \begin{cases} 1 & siel \, arco(i,j)est\'aen \, la \, ruta \, que \, recorre \, el \, veh\'iculo \\ 0 & sino \end{cases}$$

m = Número de vehículos

Minimizar
$$\sum_{(i,j) \in A} c_{ij} x_{ij}$$
 (2.1)

s.a.

$$\sum_{i \in N} x_{ij} = 1 \qquad \forall j \in N \tag{2.2}$$

$$\sum_{i \in N} x_{ij} = 1 \qquad \forall i \in N \tag{2.3}$$

$$\sum_{i \in \mathcal{N}} x_{kj} = m \tag{2.4}$$

$$\sum_{i \in N} x_{jk} = m \tag{2.5}$$

$$\sum_{\substack{i \in S^C \\ j \in S}} x_{ij} \ge \left\lceil \frac{\sum_{i \in S} d_i}{Q} \right\rceil \qquad \forall S \subseteq N$$
 (2.6)

$$x_{ij} \in \{0,1\}, m \ge 0$$
, $\forall (i,j) \in A$ (2.7)

La función objetivo (2.1) minimiza el costo (o distancia) de la ruta. Las restricciones (2.2) aseguran que a todos los nodos les incida un arco. El conjunto de restricciones (2.3) establece que a todos los nodos les sale un arco. Las restricciones (2.4) y (2.5) establecen que del depósito deben salir y entrar m vehículos y Las restricciones (2.6) estipulan que para cada subconjunto S de nodos entre un número de arcos mayor o igual a la parte entera del cociente entre la sumatoria de la demanda del subconjunto S y la capacidad Q del vehículo. Dicho de otra forma, las restricciones (2.6), establecen que a cada subconjunto S de nodos entre el número necesario de vehículos para satisfacer su demanda. Además, las restricciones (2.6) eliminan la presencia de subtours en la solución. Finalmente, el conjunto de restricciones (2.7) declara que todas las variables x_{ij} son binarias y m es no negativa.

2.3 El Problema de la ruta más corta

Uno de los problemas más conocidos que busca minimizar el costo o tiempo total de viaje es el problema de la ruta más corta.

Este problema tiene que ver con la determinación de los arcos conectados en una red de transporte que constituyen, en conjunto, la distancia más corta entre un nodo origen y un nodo destino, ambos conocidos.

El problema de la ruta más corta puede ser modelado de la siguiente forma:

Parámetros:

A = Conjunto de arcos.

N = Conjunto de nodos.

 C_{ii} = Costo de ir del nodo i al nodo j.

 $s = nodo \ origen$

t = nodo destino

Variables de decisión

$$x_{ij} = \begin{cases} 1 & siel \ arco \ (i,j) \ est \'a \ en \ la \ ruta \\ 0 & si \ no \end{cases}$$

Minimizar
$$\sum_{(i,j) \in A} c_{ij} \chi_{ij}$$
 (2.8)

s.a.

$$\sum_{(s,i) \in A} x_{sj} = 1 \tag{2.9}$$

$$\sum_{(i,t) \in A} x_{it} = 1 \tag{2.10}$$

$$\sum_{(i,j)\in A: i\neq t} x_{ij} = \sum_{(j,h)\in A: h\neq s} x_{jh} \qquad \forall j\in N: j\neq s,t \qquad (2.11)$$

$$x_{ii} \in \{0,1\} \qquad \qquad \forall (i,j) \in A \qquad (2.12)$$

La función objetivo (2.8) minimiza el costo (o distancia) de la ruta entre nodo origen y nodo término. Las restricciones (2.9) y (2.10) aseguran que el nodo origen y el nodo destino estén presentes en el problema. El conjunto de restricciones (2.11) es un balance de flujo, donde todo el flujo que entre a un nodo, debe ser igual al flujo que sale de un nodo, exceptuando los nodos de origen y destino. Finalmente, el conjunto de restricciones (2.12) declara que todas las variables son x_{ij} binarias. Paredes (2008).

2.4 Problemas de cobertura

En los problemas de localización, el servicio a los clientes depende de la distancia entre el cliente y el servidor al cual es asignando. Los clientes son asignados, en la mayoría de los casos, al servidor más cercano. A menudo, el servicio se considerará adecuado si el cliente se encuentra dentro de una distancia determinada medida desde el servidor y se considerará inadecuado si la distancia excede ese valor. Lo anterior conduce al concepto de cobertura. Daskin (1995).

2.4.1 The Set Covering Location Problem (SCLP)

El SCLP es encontrar un conjunto de costo mínimo de entre un conjunto finito de instalaciones candidatas de modo que cada nodo de demanda quede cubierto por al menos un servidor. Daskin (1995).

El SCLP puede ser modelado de la siguiente forma:

Parámetros:

 f_j = Costo de locacalizar un servidor en el nodo candidato j

R = Radio de Cobertura

$$N_i = \left\{ j / c_{ij} \le R \right\}$$

Variables de decisión:

$$x_{j} = \begin{cases} 1 & \text{se localiza un servidor en el nodo candidato } j \\ 0 & \text{si no} \end{cases}$$

Minimizar
$$\sum_{j \in N} f_j x_j$$
 (2.13)
s.a.

$$\sum_{j \in N_i} x_j \ge 1 \qquad \forall i \in N \tag{2.14}$$

$$x_j \in \{0,1\} \qquad \forall j \in N \tag{2.15}$$

La función objetivo (2.13) minimiza el costo total de los servidores que son seleccionados. Las restricciones (2.14) aseguran que todos los nodos sean cubierto por al menos un servidor y las restricciones (2.15) declara que todas las variables x_j son binarias. Daskin (1995).

2.4.2 Maximum Covering Location Problem (MCLP)

A diferencia de lo estudiado en el apartado 2.4.1, en el Maximum Covering Location Problem (MCLP) se considera fijo el número de servidores a localizar y se maximiza la demanda cubierta pero no es necesario cubrir todos los nodos. Daskin (1995).

El SCLP puede ser modelado de la siguiente forma:

Parámetros

$$a_{ij} = \begin{cases} 1 & \text{si el nodo candidato j puede cubri la demanda del nodo i} \\ 0 & \text{si no} \end{cases}$$

 $h_i = Demanda del nodo i$

P = número de servidores a localizar

Variables de decisión

$$x_{j} = \begin{cases} 1 & \text{se localiza un servidor en el nodo candidato } j \\ 0 & \text{si no} \end{cases}$$

$$Z_{i} = \begin{cases} 1 & \text{si el nodo i es cubierto} \\ 0 & \text{si no} \end{cases}$$

Maximizar
$$\sum_{i \in N} h_i Z_i$$
 (2.16) s.a.

$$Z_i \le \sum_{j \in N} a_{ij} x_j \qquad \forall i \in N$$
 (2.17)

$$\sum_{j \in N} x_j \le P \tag{2.18}$$

$$x_j \in \{0,1\} \qquad \forall j \in N \tag{2.19}$$

$$Z_{i} \in \{0,1\}$$
 $\forall j \in N$ (2.20)

La función objetivo (2.16) maximiza la suma de la demanda cubierta. Las restricciones (2.17) establecen que la demanda del nodo i no puede ser cubierta a menos que se instale un servidor en el nodo j y que esté dentro de su radio de cobertura. Las restricciones (2.18) imponen que se deben instalar a lo más P servidores. Finalmente, los conjuntos de restricciones (2.19) y (2.20) declaran que todas las variables x_j y x_j son binarias. Daskin (1995).

2.5 The Maximum Covering-Shortest Path Problem (MCSP)

El problema de The Maximum Covering-Shortest Path Problem es un problema de dos objetivos. El primer objetivo es identificar la ruta más corta (o menos costosa) a través de una red, desde un nodo de inicio a un nodo de termino, ambos predeterminados. El segundo objetivo es maximizar la demanda total satisfecha por la ruta. Se supone que el existe una demanda conocida en cada nodo de la red y se considera radio de cobertura. Current et al (1985)

El MCSPP puede ser modelado de la siguiente forma:

Parámetros

N = Conjunto de nodos

A =Conjunto de arcos

1 = Nodo origen

t = Nodo termino

 d_{ij} = Distancia desde i hasta j

 $a_k =$ Demanda del nodo k

S = Maxima distancia de cobertura

Conjuntos

$$N_j = \{j | arco(i, j) \text{ esta definido} \}$$

$$S_k = \{ j/d_{ij} \le S \}$$

Variables de decisión

$$x_{ij} \begin{cases} 1 \text{ si el arco (i, j) está en la ruta del path} \\ 0 \text{ si no} \end{cases}$$

$$y_k \begin{cases} 1 \text{ si se instala un paradero en nodo j} \\ 0 \text{ si no} \end{cases}$$

$$\max imizeZ = \sum_{i \in N} h_j * (z_{ij} + y_j) - \sum_{(i,j) \in A} c_{ij} * x_{ij}$$
(2.21)

$$\sum_{(1,j)\in A} x_{1j} = 1 \tag{2.22}$$

$$\sum_{(i,t)\in A} x_{it} = 1 \tag{2.23}$$

$$\sum_{i \in N_j} x_{ij} = \sum_{i \in N_j} x_{ji} \qquad , \forall j : j \neq 1, t$$
(2.24)

$$\sum_{i \in N_j} \sum_{j \in S_k} x_{ij} - y_k \ge 0 \qquad , \forall k$$
 (2.25)

$$x_{ij} \in \{0,1\}$$
, $\forall (i,j)$ (2.26)

$$y_i \in \{0,1\}$$
, $\forall k$ (2.27)

El grupo de restricciones (2.22), (2.23), (2.24) son las restricciones de la llamada ruta más corta, la primera y la segunda restricción aseguran que tanto el nodo de origen como el de destino se encuentren en cada una de las rutas y la restricción (2.24) determina el balance de cada una de ellas. La restricción (2.25) requiere que Y es igual a cero a menos que el nodo k está cubierto por la ruta de acceso. Finalmente, los conjuntos de restricciones (2.26) y (2.27) declaran que todas las variables x_j y y_j son binarias. Current et al (1985).

2.7 Revisión Bibliográfica

El problema de traslado de trabajadores o de personas que combina localización de paraderos, asignación de clientes a tales paraderos y el ruteo de vehículos en forma simultánea no han sido estudiados ampliamente con métodos exactos por la comunidad científica. Usualmente, en muchos trabajos sólo se consideran dos de estas características, localización de paraderos y ruteo de vehículos, Corberán et al. (2002), Spada et al. (2005), Pacheco & Martí (2006), Fu et al. (2005), Ripplinger (2005). Bektas & Elmastas (2007).

Un caso en que se desarrolla un método exacto para resolver el problema de traslado de pasajeros, se muestra en Huidobro (2008), En tal trabajo se presenta un modelo de transporte de pasajeros que integra las variables de localización de paraderos, asignación de las personas a paraderos y buses, y finalmente el ruteo vehicular que deben seguir los vehículos para realizar el recorrido. Existen dos

diferencias fundamentales con esta memoria: su trabajo considera que todos los pasajeros deben ser trasladados y admite un único objetivo que minimiza el costo del recorrido.

El problema del Ruteo del Bus Escolar (SBRP) es un caso particular del problema de traslado de pasajeros y ha sido ampliamente estudiado por la comunidad científica. Uno de los primeros trabajados se encuentra en Newton & Thomas (1969). En tal artículo los autores proponen un método desarrollado en una computadora para determinar las rutas y horarios de los buses. El procedimiento de ruteo se logra en dos etapas. Primero, se determinan los paraderos mediante la ruta más corta para un bus de capacidad infinita. Con la ruta más corta y mediante una heurística, se obtiene la solución del vendedor viajero para cada bus del conjunto de buses para así obtener la ruta individual y el horario de los buses. Los trabajos más recientes que abordan el SBRP se discuten a continuación:

En Park et al (2012) se presenta una heurística de carga mezclada para resolver el SBRP y medir su efecto en el número de buses requeridos. En esta heurística se permite que estudiantes de distintas escuelas puedan tomar el mismo bus a la misma hora, de ahí el concepto de carga mezclada. Aunque muchos problemas del mundo real sobre SBRP permiten carga mezclada, existen pocos estudios que consideran este caso.

En Arias et al (2012) se propone una metaheurística basada en colonias de hormigas para resolver el SBRP en una escuela de Bogotá. En el trabajo se utilizó una estrategia basada en "cluster primero y ruteo segundo". El objetivo es aumentar la utilización de los autobuses y reducir los tiempos de traslado de los estudiantes.

En Euchi and Mraihi (2012) se desarrolla una nueva heurística híbrida artificial de colonia de hormigas para resolver el problema del ruteo del bus urbano en Túnez. Con la heurística determinan los paraderos, las asignaciones de los estudiantes a

los paraderos y las rutas de los buses. El objetivo es minimizar la distancia total recorrida.

En Araya (2012) se propone un modelo de programación lineal entera mixta para resolver el problema del transporte escolar capacitado. Consideran el caso en que todos los escolares deben ser trasladados y el objetivo es minimizar el costo del recorrido de los buses y la distancia total que recorren los alumnos desde sus hogares al paradero asignado.

En Riera & Salazar (2013) se presenta un enfoque de generación de columnas para el SBRP. En este artículo se propone un algoritmo branch-and-price basado en un conjunto de formulaciones particionadas para resolver el problema. El objetivo es localizar paraderos de entre un conjunto de nodos candidatos y diseñar rutas para los buses a través de esos paraderos.

En Schittekat et al (2013) se desarrolla una metaheurística de GRASP+VND para resolver el SBRP. Para evaluar la calidad de la metaheurística propuesta, se desarrolló un modelo MIP, así como también un enfoque de generación de columnas que calcula la cota inferior de la solución óptima. La metaheurística propuesta entrega soluciones aproximadas para instancias de 80 paraderos y 800 estudiantes con tiempos de proceso menos de una hora.

En la mayoría de estos trabajos, los autores proponen principalmente heurísticas y metaheurísticas para resolver el problema SBRP. En cambio, en los artículos que proponen modelos matemáticos para resolver el problema SBRP en forma exacta, Araya (2012), Riera & Salazar (2013), consideran que todos los escolares deben ser trasladados en bus.

Otro caso particular del traslado de pasajeros es el problema de traslado de trabajadores. Desafortunadamente, en la literatura no existen muchos estudios

que se puedan revisar. A continuación se presenta una descripción de los únicos trabajos encontrados:

En Sánchez (2003) se analiza el sistema de transporte de personal de la División Codelco Norte, faena Radomiro Tomic, en el cual se utiliza el modelo de Cobertura Total, para resolver el problema de localización de paraderos, y el algoritmo de Holmes & Parker, para el diseño de rutas.

En Albornoz y Johns (2011) se propone un modelo de PLEM para resolver el problema de localización de paraderos y diseño de rutas para el traslado de trabajadores para una empresa minera. El modelo resuelve el problema para instancias pequeñas y medianas, y para instancias grandes se propone un esquema jerárquico que resuelve el problema en dos partes, primero se aplica un modelo de PLEM para determinar los paraderos y luego otro modelo que asume como dados los puntos de detención para determinar las rutas. Además, proponen el uso de la heurística de Holmes y Parker para instancias de mayor tamaño.

En Sanhueza (2013) se propone un modelo de programación lineal entera que resuelve el problema de localización de paraderos y ruteo de vehículos para el traslado de trabajadores a una planta. Considera todos los nodos como paraderos candidatos, cobertura total de la demanda y capacidad homogénea de los buses. El objetivo es minimizar el recorrido total de los buses.

En los tres casos existen diferencias fundamentales con esta memoria. En primer lugar, los autores consideran cobertura total de trabajadores, es decir, todos los trabajadores deben ser trasladados en los buses. En segundo lugar, Sánchez (2003) y Albornoz y Johns (2011) proponen nodos candidatos para los paraderos. Y en tercer lugar, en todos los casos se establece un único objetivo, ya sea minimizar rutas de buses o paraderos a instalar. Por otro lado, en esta memoria no todos los trabajadores tienen que ser trasladados, se considera que todos los nodos son candidatos y dos funciones objetivos.

Capítulo 3: Programación Multiobjetivo

En esta sección, se da a conocer la forma general de un problema de programación multiobjetivo. Para la realización de este capítulo, se utilizaron extractos del libro "Multiobjective Programming and Planning" de Jared Cohon (1978).

3.1 Introducción a la programación multiobjetivo

La Programación Multiobjetivo (Multiobjetive Programming o MOP) intenta resolver la optimización simultánea de varios objetivos sometidos a un conjunto de restricciones. MOP intenta encontrar soluciones eficientes, donde los elementos de este conjunto son las soluciones alcanzables tales que no haya ninguna otra solución que, alcanzando el mismo nivel para todos los objetivos menos uno, obtenga un mejor resultado para el objetivo restante, Berbel (1992).

3.2 La importancia de la programación multiobjetivo

La planificación y programación multiobjetivo representan una generalización muy útil de los tradicionales problemas de objetivo simple. La consideración de muchos objetivos en el proceso de planificación logra tres importantes mejoras en la resolución de problemas.

Primero, la planificación y programación multiobjetivo juega un papel mucho más adecuado para aquellos quienes participan en los procesos de toma de decisiones.

En segundo lugar, una amplia gama de alternativas se identifica generalmente cuando una metodología multiobjetivo se emplea.

Tercero, modelos (si son usados) o la percepción de los analistas de un problema serán más realistas si se consideran varios objetivos.

3.2 Formulación del problema general de programación multiobjetivo

La programación multiobjetivo trata con problemas de optimización con dos o más funciones objetivos. El problema de programación multiobjetivo difiere de la optimización clásica (un solo objetivo) sólo en la expresión de sus respectivas funciones objetivos. El problema general de optimización multiobjetivo con n variables de decisión, m restricciones y p objetivos es:

Maximizar
$$Z(x_1, x_2, ..., x_n) = [Z_1(x_1, x_2, ..., x_n), Z_2(x_1, x_2, ..., x_n), ..., Z_n(x_1, x_2, ..., x_n)]$$

$$(3.1)$$

Sujeto a:

$$g_i(x_1, x_2, ..., x_n) \le 0$$
 $i = 1, 2, ..., m$ (3.2)

$$x_{j} \ge 0, \quad j = 1, 2, ..., n$$
 (3.3)

Donde $Z(x_1, x_2,..., x_n)$ es la función multiobjetivo y $Z_1()$, $Z_2()$,..., $Z_p()$ son las p funciones objetivos individuales. Notar que las funciones objetivos en (3.1) no están sumadas, multiplicadas o combinadas de ninguna manera.

3.2.1 No inferioridad

En los problemas con sólo un objetivo, la finalidad de la solución es identificar la solución óptima: la solución (ó soluciones) factible que provee el mejor valor para la función objetivo. Notar que cuando existen óptimos alternativos, el valor óptimo de la función objetivo es único. Sin embargo, esta noción de optimalidad debe ser descartada para problemas multiobjetivo, debido a que la solución que maximiza un objetivo, no maximizará, en general, cualquiera de los otros objetivos. Lo que es óptimo en término de uno de los p objetivos es usualmente no óptimo para otros *p*-1 objetivos.

La optimalidad juega un importante rol en la solución de problemas con un solo objetivo. Esto permite que analistas y tomadores de decisión restringir su atención

hacia una solución única o bien hacia un muy pequeño subconjunto de soluciones del gran conjunto de soluciones factibles. Un concepto llamado No Inferioridad servirá de manera similar, pero menos limitada para el propósito de los problemas multiobjetivos.

La idea de no inferioridad es muy similar al concepto de dominancia. La no inferioridad es llamada "no-dominancia" por algunos programadores matemáticos, "Eficiencia" por otros, y "Optimalidad de Pareto" por algunos economistas. En la Tabla 3.1 se muestran tres soluciones en un problema con dos objetivos. La alternativa C es dominada por las alternativas A y B debido a que ambas alternativas producen más de ambos objetivos, Z_1 y Z_2 . La solución es dominada y por lo tanto es llamada "inferior". Las soluciones que no son dominadas se llaman "no inferiores". De este modo, por ejemplo, las alternativas A y B en la Tabla 3.1 son soluciones no inferiores.

Alternativa	Z_1	Z_2	
Α	10	11	No inferior
В	12	10	No inferior
С	9	8	Inferior

Tabla 3. 1: Un ejemplo de No Inferioridad

De una manera más formal, la no inferioridad puede ser definida de la siguiente manera:

"Una solución factible para el problema de programación multiobjetivo es no inferior si no existe alguna solución factible que mejore el rendimiento en un objetivo sin causar degradación mínima en otro objetivo", Cohon (1978).

Esta definición es más fácil de entender gráficamente. Un conjunto de alternativas arbitrarias y factibles se muestra en la Figura 3.1. El área dentro de la figura es factible y acotada. Notar que los ejes de éste gráfico son los objetivos Z_1 y Z_2 . El

gráfico se refiere al "espacio objetivo" para distinguirlo del gráfico de "espacios de solución". El área factible en la Figura 3.1 se llama la región factible dentro del espacio objetivo.

Figura 3. 1: Representación gráfica de no inferioridad para una región factible arbitraria en el espacio objetivo.

La definición de no inferioridad puede ser utilizada para encontrar soluciones no inferiores en la Figura 3.1. Primero, todas las soluciones interiores deben ser inferiores para que siempre se pueda encontrar una solución factible que mejore el rendimiento en ambos objetivos simultáneamente. Considerar que el punto C en la Figura 3.1 es una solución inferior. La alternativa B entrega más Z_1 sin decrecer la cantidad de Z_2 . En forma similar, D entrega más Z_2 sin decrecer Z_1 . De hecho, cualquier alternativa en el área achurada hacia el nor-este de C, domina a la alternativa C.

3.3 Técnicas para la generación de soluciones no inferiores

En esta sección se presentan algunos métodos para generar soluciones no inferiores a partir de un modelo de optimización multiobjetivo previamente formulado.

Las técnicas de generación de soluciones no inferiores, no permiten incorporar preferencias dentro del proceso de solución. Estas preferencias se articulan, quizás de forma implícita, por los tomadores de decisión, quienes toman las decisiones a partir de un conjunto de soluciones no inferiores, aproximadas o exactas, generadas por alguna técnica de generación.

Los analistas están forzados a concentrar sus esfuerzos en la formulación y evaluación de alternativas, y cuando los resultados son reportados, ellos necesitan no recomendar sólo una alternativa. Los analistas, por cierto, deben buscar por ellos mismos una posición considerablemente defendible y cómoda, mostrando un buen rango de alternativas.

La mayor debilidad de la generación de métodos es la sensibilidad del número de objetivos. Varios objetivos (usualmente más de tres) causan dos problemas: alta carga computacional y la complejidad de los resultados mostrados.

A continuación se presentan 3 métodos de generación de soluciones no inferiores: El método de los pesos, el método de las restricciones y el método NISE (del inglés Non Inferior Set Estimation).

3.3.1 El método de los pesos

Ponderar los objetivos para obtener soluciones no inferiores es la técnica más antigua de solución multiobjetivo. El método sigue directamente de las condiciones de no inferioridad desarrolladas por los investigadores Kuhn and Tucker.

Suponer, por ejemplo, que se tiene un problema de localización de una estación de bomberos que tiene dos objetivos: maximizar el valor de propiedad de la instalación (medido en pesos) dentro de S kilómetros y maximizar la población dentro de S kilómetros de la instalación. Los objetivos del valor de propiedad y la población serían llamados Z_1 y Z_2 , respectivamente. Los dos objetivos están en

conflicto ya que las áreas comerciales son caracterizadas por un alto valor de propiedad y bajas poblaciones, mientras que las áreas residenciales poseen más personas y menor valor de propiedad. Dado que la estación de bomberos no puede ser localizada en toda el área dentro de S kilómetros, los valores máximos de Z_1 y Z_2 no puede ser obtenidos simultáneamente. La función objetivo del problema es:

Maximizar
$$Z = [Z_1, Z_2]$$
 (3.4)

Ahora, si alguien estuviera dispuesto a articular un juicio de valor en el que una persona tiene un valor de w pesos, entonces el problema multiobjetivo podría ser reducido a un problema con un sólo objetivo. La especificación de w, el que es llamado peso en el objetivo Z_2 (población), es equivalente a la identificación de un deseable trade-off entre Z_1 y Z_2 . La ecuación (3.4) puede ser rescrita como:

$$Maximizar Z(w) = Z_1 + w Z_2$$
 (3.5)

Notar que ahora la función objetivo tiene una sola dimensión y es denotada por Z(w), lo que implica la dependencia de una nueva función objetivo en el valor del peso w.

3.3.2 El método de las restricciones

El método de las restricciones es probablemente la técnica de generación más atractiva e intuitiva. Esta opera a través de la optimización de un objetivo mientras todos los otros son constantes con algún valor.

En el problema de la localización de una estación de bomberos, suponer ahora que en lugar de articular un peso de la población, los tomadores de decisión establecen una restricción, en la que el mínimo de personas *L* puede estar en los *S* kilómetros de la instalación. Entonces el modelo matemático restringido es:

Maximizar
$$Z_h$$
 ($x_1, x_2,..., x_n$) (3.6)

Sujeto a:

$$Z_k (x_1, x_2,..., x_n) \ge L_K$$

 $K = 1, 2,..., h-1, h+1, 1,..., p$ (3.7)

3.3.3 El Método de Estimación de Conjuntos No Inferiores (NISE)

El método NISE (Non Inferior Set Estimation) fue desarrollado por Cohon et al. (1978) para converger rápidamente en una buena aproximación del conjunto de soluciones no inferiores.

El método NISE es desarrollado para problemas con dos objetivos. Se asume que la región factible es un conjunto convexo y que las funciones objetivo son lineales.

El método NISE opera a través de la búsqueda de un número de puntos extremos no inferiores y la evaluación de las propiedades de los segmentos de línea entre ellos. Suponer que dos puntos extremos no inferiores han sido encontrados; entonces el segmento de línea entre ellos es factible y puede o no ser no inferior. Si el segmento de línea es no inferior, entonces cualquier movimiento fuera de la línea es infactible. Si el segmento de línea es inferior, entonces hay puntos no inferiores en dirección exterior.

El modelo matemático asociado al método NISE es el siguiente:

$$MaximizarZ(x_1,...,x_n;i;i+1) = \frac{Z_2(S_i) - Z_2(S_{i+1})}{Z_1(S_{i+1}) - Z_1(S_i)} Z_1(x_1,...,x_n) + Z_2(x_1,...,x_n)$$
(3.8)

Donde:

 S_i es el punto no inferior con el mayor valor de Z_2 .

 S_{i+1} es el punto no inferior con el menor valor de Z_2 .

Capítulo 4: El modelo de PLEM para el problema de Localización y Ruteo de Buses con Capacidad para el Traslado de Trabajadores (LPRB)

4.1. Consideraciones generales

Este modelo busca minimizar la distancia recorrida por los buses entre el origen y el destino (la planta) y a su vez maximizar la cantidad de trabajadores asignados a un paradero en donde son recogidos por un bus. Esto significa que no necesariamente todos los trabajadores subirán al bus. Los trabajadores que son asignados a un paradero no pueden caminar una distancia mayor al radio de cobertura. El modelo no considera la distancia que caminan los trabajadores hacia los paraderos.

Se considera solo una planta o destino y un origen de donde parten los buses. El modelo determinará el nodo de origen del recorrido del bus. Los buses poseen capacidad determinada de pasajeros.

Los trabajadores que se encuentren dentro del radio de cobertura del nodo destino no serán considerados, pues se asume que ellos pueden caminar a la planta. Por tanto, los nodos que se encuentren dentro de este radio de cobertura se dejan fuera del modelo.

Se propone una formulación basada en flujo entero para eliminar la presencia de subtours y controlar la capacidad.

4.2 Preprocesamiento

En este trabajo se considera que los clientes que se encuentran dentro del radio de cobertura del nodo destino se asignan directamente a él, es decir, los trabajadores que viven cerca de la planta se van caminando. Esto significa que a

priori se pueden dejar fuera del modelo a tales nodos y los correspondientes arcos, reduciendo, en algunos casos, considerablemente el tamaño del problema.

4.3 Formulación basada en Flujo entero para el LPRB

Se propone una formulación basada en flujo entero para eliminar la presencia de subtours y controlar la capacidad.

En la formulación basada en flujo entero se busca enviar una unidad de flujo a cada nodo de la red desde un nodo origen pasando por toda la red. El flujo debe estar balanceado, es decir, las unidades de flujo que entran a un nodo deben ser igual a las que salen, dejando una unidad en cada nodo. Además, el flujo debe pasar sólo por los arcos que están presentes en la solución.

La desventaja de este tipo de formulación es que agrega una variable adicional al problema, una variable de flujo, la cual tiene dos subíndices por lo que genera $n \times n$ variables adicionales al problema.

4.4 Formulación matemática del problema LPRB

A continuación se presenta el modelo matemático que resuelve el problema de Localización y Ruteo de Buses con Capacidad (LPRB).

Parámetros:

N =Conjunto de nodos

A =Conjunto de arcos

s = Nodo origen

t = Nodo termino

 c_{ij} = Distancia desde i hasta j

 h_i = Demanda del nodo j

cap = Capacidad del bus p = Cantidad de buses radio = Radio de cobertura $M = \sum_{i \in \mathbb{N}} h_i$

Conjuntos

$$N_i = \{i / c_{ii} \le radio\}$$

Variables:

$$x_{ij} = \begin{cases} 1 & \text{si el arco}(i, j) \text{ está en la ruta de un bus} \\ 0 & \text{si no} \end{cases}$$
$$y_j = \begin{cases} 1 & \text{si se localiza un paradero en el nodo } j \\ 0 & \text{si no} \end{cases}$$

 $z_{ij} = \begin{cases} 1 & \text{si el nodo i es asignado al paradero localizado en el nodo j} \\ 0 & \text{si no} \end{cases}$

 $f_{ij} = flujo \ que \ pasa \ por \ el \ arco \ (i,j)$

Función Objetivo:

$$Maximizar Z = \sum_{(i,j) \in A: i \in N_j} h_j z_{ij} + \sum_{i \in N} h_j y_j - \sum_{(i,j) \in A} c_{ij} x_{ij}$$
(4.1)

s.t

$$\sum_{(s,j)\in A: j\neq t} x_{sj} = p \tag{4.2}$$

$$\sum_{(i,t)\in A} x_{it} = p \tag{4.3}$$

$$\sum_{(i,j)\in A:i\backslash t} x_{ij} = \sum_{(j,k)\in A:k\backslash s} x_{jk} \qquad \forall j\in N: j\neq s,t$$
(4.4)

$$z_{ii} \le y_i \qquad \forall (i,j) \in A : i \in N_i \land i \ne s, t \quad (4.5)$$

$$\sum_{\substack{i \in N_j: (i,j) \in A \\ \land i \neq s, t \land j \neq t}} z_{ij} + \sum_{\substack{i \in N: (i,j) \in A \\ \land i \neq t}} x_{ij} \le 1 \qquad \forall j \in N: j \neq s, t$$

$$(4.6)$$

$$y_j = \sum_{i \in N: (i,j) \in A} x_{ij} \qquad \forall j \in N: j \neq t$$
(4.7)

$$\sum_{(s,j)\in A} f_{sj} = \sum_{(i,j)\in A: i\in N} h_j z_{ij} + \sum_{i\in N: i\neq s,t} h_i y_i$$

$$\tag{4.8}$$

$$\sum_{(i,j)\in A} f_{ij} = h_j y_j + \sum_{\substack{i\in N_j: (i,j)\in A\land\\i\neq s\land i\neq t}} h_j z_{ij} + \sum_{(j,k)\in A: k\backslash s} f_{jk} \quad \forall j\in N: j\neq s$$

$$(4.9)$$

$$f_{ij} \le Mx_{ij} \qquad \forall (i,j) \in A : i \notin N_j \tag{4.10}$$

$$f_{ij} \le Mx_{ij} + z_{ij} \qquad \forall (i,j) \in A : i \in N_j$$
(4.11)

$$f_{ij} \le cap \times x_{ij} \qquad \forall (s,j) \in A \tag{4.12}$$

$$\sum_{u \in N_j: (u,j) \in A \land c_{ui} > c_{ij}} z_{uj} + y_i \le 1 \qquad \forall (i,j) \in A : i \ne s,t$$

$$(4.13)$$

$$x_{ij} \in \{0,1\} \quad z_{ij} \in \{0,1\} \quad y_j \in \{0,1\} \quad f_{ij} \ge 0$$
 (4.14)

La función objetivo (4.1) maximiza la cantidad de pasajeros que son trasladados y minimiza el largo total de todas las rutas. Las restricciones (4.2), (4.3) y (4.4) definen los p paths. La restricción (4.5) establece que un trabajador i es asignado al nodo j sólo si en este nodo se localiza un paradero. La restricción (4.6) asegura que se asignen nodos solo a servidores y no exista asignación entre servidores. La restricción (4.7) indica que si existe el arco (i,j), se instale un paradero en j. La restricción (4.8) permite que desde el nodo origen s salga la totalidad del flujo. Las restricciones (4.9) establecen el balance de flujo en cada nodo. El conjunto de restricciones (4.10) y (4.11) imponen que el flujo pase por un arco siempre y

cuando éste último existe en la solución. Las restricciones (4.12) establecen que el flujo que sale del nodo origen s esté limitado por la capacidad cap del vehículo. Las restricciones (4.12) aseguran que los pasajeros sean asignados al servidor más cercano. El conjunto de restricciones (4.14) imponen que las variables x_{ij} , z_{ij} y y_j son binarias y que la variable f_{ij} es enteras positiva.

Capítulo 5: Resolución del LPRB para el transporte de trabajadores

En este capítulo se resuelve el Problema de Localización y Ruteo de Buses con Capacidad para el Traslado de Trabajadores mediante el modelo presentado en la sección 4.4. Por tratarse de un modelo multiobjetivos, se obtiene un conjunto de soluciones no inferiores, utilizando el método NISE.

5.1. Ejemplo de aplicación del modelo para resolver el LPRB

A modo de ejemplo se presenta el procedimiento para obtener un conjunto de soluciones no inferiores. Se utiliza una red de 50 nodos y 2450. Se detallan los resultados y datos estadísticos obtenidos al implementar el modelo y sus algoritmos.

5.1.1. Datos del modelo

El conjunto de arcos (i,j) y los costos (o distancias) c_{ij} asociados a cada uno de ellos se puede ver en el anexo A. Notar que $c_{ii} = c_{ii}$ para todos los arcos (i,j).

La figura 5.1 muestra gráficamente la red de 50 nodos y sus arcos. Cabe destacar que son arcos dirigidos en ambas direcciones, por lo tanto, no se muestra la dirección de cada arco.

Figura 5. 1: Red de 50 nodos con arcos dirigidos.

Las demanda de los nodos clientes, para este caso, son igual para todos y con valor 1. Por otro lado, la capacidad del bus es

La figura 5.1 representa una red original, sin embargo, el problema se resuelve a partir de la red completa (o extendida), es decir, todos los nodos están conectados con todos, a través de la ruta más corta.

5.2. Búsqueda de las soluciones no inferiores (SNI)

En esta sección se presenta la metodología utilizada para obtener las dos soluciones no inferiores extremas o fundamentales, a través del método NISE. Una de estas soluciones representa la alternativa menos costosa para el recorrido de los buses, esto es la menor distancia recorrida por el bus, mientras que la otra, representa la máxima asignación de pasajeros a los paraderos por los que pasará el bus. A partir de estas dos soluciones no inferiores, se obtiene un conjunto de soluciones no inferiores que van a conformar la curva de trade-off entre la distancia total recorrida por los buses y la asignación de clientes a los paraderos.

5.2.1 Obtención de la solución no inferior extrema Nº1

Como se mencionó en la sección 6.2, la solución no inferior extrema Nº1 (SNIE₁) representa la alternativa menos costosa para el recorrido de los buses. Esto a su vez, genera que la captura de trabajadores sea mínima.

Para generar la $SNIE_1$ se resuelve el modelo sólo optimizando el objetivo Z_1 , el cual corresponde a la distancia recorrida por los buses, de este modo se obtiene el mejor resultado para este objetivo. Esto es:

$$\min Z = \sum_{(i,j)\in A} c_{ij} * x_{ij}$$
 (5.1)

Sujeto a:

$$(4.2) - (4.13)$$

Una vez que se obtiene el resultado (en este caso 24), se utiliza método de las restricciones visto en la sección 3.3.2. De esta forma se considera la distancia recorrida por los buses como restricción con valor meno o igual a 24. En este caso la función objetivo corresponde a la asignación de paraderos y de trabajadores asignados al paradero. Esto es:

$$\max Z = \sum_{(i,j)\in A: i\in N_j} h_j z_{ij} + \sum_{i\in N} h_j y_j$$
 (5.2)

Sujeto a:

$$\sum_{(i,j)\in A} c_{ij} * x_{ij} \le 53 \tag{5.3}$$

$$(4.2) - (4.13)$$

Al resolver el problema, la distancia recorrida por los buses es 24 ($Z_1 = 24$), en tanto que la asignación de trabajadores resulta ser 2 ($Z_2 = 2$). En la figura 5.2 se muestra la solución.

Figura 5. 2: Solución no inferior extrema Nº1.

5.2.2 Obtención de la solución no inferior extrema Nº2

La solución no inferior extrema Nº2 (SNIE₂) corresponde a la mayor asignación de trabajadores, sin embargo, es la alternativa más costosa para los buses, ya que éstos deberán recorrer mayores distancias a cambio capturar a los trabajadores.

La SNIE₂ fue obtenida de forma análoga a la SNIE₁, dado que se conoce la máxima captura de acuerdo a la capacidad máxima del bus, que corresponden a los trabajadores que subirán a bus, en esta ocasión solo se debe minimizar la ruta del bus, sujeto a la captura de todos los trabajadores (capacidad=15). Por lo tanto,

en este caso Z_2 =15. A continuación se calcula la mínima ruta que captura a los trabajadores:

$$\min Z = \sum_{(i,j)\in A} c_{ij} * x_{ij}$$
 (5.4)

Sujeto a:

$$\sum_{(i,j)\in A:} z_{ij} + \sum_{i\in N: i\neq s,t} y_i = cap * p$$

$$(4.2) - (4.13)$$

Finalmente, se tiene como resultado que la captura de trabajadores es 15, mientras que el costo total recorrido por los buses es de 81. En la figura 5.3 se muestra la solución.

Figura 5. 3: Solución no inferior extrema Nº2.

5.2.3 Aplicación del método NISE para la obtención de las soluciones no inferiores y la Curva de *Trade-Off*

A partir de la obtención de las soluciones no inferiores extremas $SNIE_1$ y $SNIE_2$, encontradas en la sección anterior, se da inicio a la búsqueda de un conjunto aproximado de soluciones no inferiores del problema. En el gráfico 5.1 se muestran las soluciones no inferiores extremas. La $SNIE_1$ corresponde al punto $(Z_1,Z_2) = (24,2)$, mientras que la $SNIE_2$ al $(Z_1,Z_2) = (81,15)$.

Gráfico 5. 1: Gráfico de las soluciones no inferiores extremas

Para obtener el conjunto de soluciones no inferiores, se recurrió al método NISE, cuyos fundamentos teóricos fueron presentados en el Capítulo 3.

El método NISE minimiza el recorrido de los buses y maximiza cada objetivo individualmente, los que pertenecen a dos puntos en el espacio objetivo. La pendiente que conecta esos dos puntos se usa para obtener pesos para el problema ponderado. La pendiente se calcula de la siguiente forma:

$$P = \frac{Z_2(S_i) - Z_2(S_{i+1})}{Z_1(S_{i+1}) - Z_1(S_i)}$$
(5.6)

Para los valores obtenidos de SNIE₁ y la SNIE₂ se tiene:

$$P = \frac{15 - 2}{81 - 24} = 0,22807$$

El gráfico 5.3 muestra la pendiente entre estos dos puntos.

Gráfico 5. 2: Pendiente de la recta obtenida con la solución de la SNIE₁ y SNIE₂

Con esta pendiente, se obtiene el valor del peso que será utilizado para la generación de una nueva solución no inferior.

Reemplazando la ecuación (3.8) en el problema, se obtiene la siguiente expresión matemática:

$$\max Z = \sum_{(i,j)\in A: i\in N_j} h_j z_{ij} + \sum_{i\in N} h_j y_j - P \sum_{(i,j)\in A} c_{ij} * x_{ij}$$
(5.7)

Por lo tanto, con esta nueva función objetivo única se puede resolver el modelo como un problema de programación lineal con un sólo objetivo, y por consiguiente, obtener una nueva solución no inferior, la que se ve graficada en el gráfico 5.3:

Gráfico 5. 3: Obtención de una solución no inferior a partir de la SNIE1 y la SNIE2

En el gráfico 5.3 se observa que el punto 3, $(Z_1, Z_2) = (30,7)$, corresponde a la solución no inferior. Idéntico procedimiento se realiza para obtener las siguientes soluciones, en el que se trazan nuevas pendientes para buscar soluciones no inferiores entre los puntos (24,2) y (30,7), y entre los puntos (30,7) y (81,15).

A continuación (gráfico 5.4) se muestran las nuevas soluciones no inferiores, obtenidas entre los puntos mencionados anteriormente.

Gráfico 5. 4: Obtención de nuevas soluciones no inferiores.

En el gráfico 5.4 la nueva solución no inferior 4, se encuentra en el punto (Z_1, Z_2) = (74,14). De forma análoga se trazan nuevas pendientes entre las nuevas soluciones no inferiores obtenidas y las anteriores. De esta forma se tendrán nuevas soluciones hasta que entre dos puntos no existan más soluciones, y en cuyo caso, el método NISE elegirá uno de los dos puntos como solución no inferior.

Además, el gráfico muestra la curva de *trade-off* entre la distancia total recorrida por los buses (Z_1) versus la asignación total de trabajadores a los paraderos (Z_2) para las 4 soluciones no inferiores de la red de 50 nodos.

5.3 Soluciones no inferiores para la red de 50 nodos

A continuación, en la tabla 5.1 se muestran las 4 soluciones no inferiores obtenidas al utilizar el método NISE

SNI	Distancia total recorrida por buses Z1	Captura de trabajadores Z2
1(*)	24	2
2(*)	81	15
3	30	7
4	74	14

Tabla 5. 1: Soluciones no inferiores para la red de 50 nodos

De esta manera el tomador de decisiones, quien es el que finalmente determina que beneficios se pueden obtener al escoger una alternativa por sobre otra, tiene un abanico de posibilidades para poder elegir la mejor alternativa, según su presupuesto y criterio.

A continuación, se muestra las SNI_3 y SNI_4 en las figuras 5.4 y 5.5, respectivamente. Esto para la red de 50 nodos y 2450 arcos.

Figura 5. 4: Solución no inferior Nº3.

Figura 5. 5: Solución no inferior Nº4.

Capítulo 6: Resultados computacionales para instancias test

El modelo propuesto, con su respectivo algoritmo, fue aplicado a 3 diferentes

redes (problemas test). La primera de ellas, de 20 nodos, fue publicada en Current

et al. (1984); la segunda, de 50 nodos, se obtuvo de Sanhueza (2013); la tercera,

de 81 nodos, corresponde a Mohr (2012).

Todas son grafos extendidos y se presentan algunas matrices de distancias en

anexos (no se muestran todas para no extender demasiado este texto).

El LPRB fue resuelto utilizando el optimizador lineal CPLEX Versión 9.0.0 en

conjunto con AMPL Versión 20021031. Todos los experimentos fueron ejecutados

en un procesador Intel Core i5-2400, 3.10GHz (4,00 GB RAM).

En la resolución del LPRB se utilizó el método NISE para encontrar las soluciones

no inferiores

Para cada instancia, se usaron los costos originales de la red, mientras que la

demanda de cada trabajador, para facilitar los análisis, se consideró igual 1. Se

consideró todos los nodos como candidatos.

Para todas las redes se eligió solo nodo de destino.

En las tablas que se presentan a continuación, se muestra la información utilizada

para cada instancia y los resultados para cada una de ellas.

En cada tabla se utilizó la siguiente notación:

Destino: Nodo Destino.

45

- Cap. Bus: Capacidad de los buses.
- Radio: Corresponde al radio de cobertura.
- Cant. buses: Cantidad de buses que realizaran un recorrido.
- Tiempo Total CPU: denota el tiempo total de CPU (en segundos)utilizado para encontrar el conjunto de SNI mediante el método NISE.
- Total Soluciones No Inferiores: determina el número total de SNI generadas por el método NISE.
- SNI: Número de la solución no inferior obtenida por el algoritmo.
- Z1: Distancia total recorrida por los buses.
- Z2: Asignación de paraderos y trabajadores.
- ITER: Número de iteraciones hasta encontrar una SNI libre de subtours.
- TCPU: Tiempos de CPU (en segundos) para obtener cada SNI.

Cabe señalar que las SNI Nº1 (*) y Nº2 (*) fueron obtenidas según lo señalado en la sección 5.2, las cuales fueron determinadas de forma independiente a las demás SNI. Además, como también se menciona en 5.2, este proceso consta de 2 fases para cada SNIE y, por lo tanto, sólo se mostrarán aquellos resultados correspondientes a la segunda. Si se consideraran ambas fases, los tiempos CPU, entre otros datos, serían bastante más altos.

6.1 Red de 20 nodos

A continuación se muestran los resultados obtenidos para la red de 20 nodos variando radio de cobertura, cantidad de buses y capacidad del bus. El conjunto de arcos (i,j) y los costos (o distancias) c_{ij} asociados a cada uno de ellos se puede ver en el anexo B.

Destino	20
Radio	180
Cant. Buses	2
Cap. Bus	6
Tiempo Total de CPU	4,168
Total Soluciones No Inferiores	4

Tabla 6. 1: Resultados para la red de 20 nodos, Destino: 20, Radio 180.

SNI	Z 1	Z2	ITER	TCPU
1(*)	753	5	1	0,636
2(*)	1478	12	1	30,5
3	811	7	2	0,383
4	919	8	3	3,785

Tabla 6. 2: Resultados para las SNI de la red de 20 nodos, Destino: 20, Radio 180.

Gráfico 6. 1: Soluciones no inferiores extremas y soluciones no inferiores instancia 1.

Destino	20
Radio	359
Cant. Buses	1
Cap. Bus	15
Tiempo Total de CPU	6,362
Total Soluciones No Inferiores	5

Tabla 6. 3: Resultados para la red de 20 nodos, Destino: 20, Radio 359.

SNI	Z 1	Z2	ITER	TCPU
1(*)	371	4	1	0,316
2(*)	1007	15	1	63,328
3	493	11	1	0,55
4	382	9	3	0,315
5	786	14	3	5,497

Tabla 6. 4: Resultados para las SNI de la red de 20 nodos, Destino: 20, Radio 359.

Gráfico 6.2: Soluciones no inferiores extremas y soluciones no inferiores instancia 2.

6.2 Red de 50 nodos

A continuación se muestran los resultados obtenidos para la red de 50 nodos variando radio de cobertura, cantidad de buses y capacidad del bus.

Destino	50
Radio	15
Cant. Buses	1
Cap. Bus	15
Tiempo Total de CPU	61,781
Total Soluciones No Inferiores	7

Tabla 6. 5: Resultados para la red de 50 nodos, Destino: 50, Radio 15.

SNI	Z1	Z2	ITER	TCPU
1(*)	18	3	1	0,178
2(*)	92	15	1	627,031
3	57	11	1	5,995
4	19	4	2	1,065
5	29	6	2	4,16
6	40	8	3	11,942
7	70	13	3	38,619

Tabla 6. 6: Resultados para las SNI de la red de 50 nodos, Destino: 50, Radio 15.

Gráfico 6.3: Soluciones no inferiores extremas y soluciones no inferiores instancia 3.

Destino	50
Radio	30
Cant. Buses	2
Cap. Bus	15
Tiempo Total de CPU	131,227
Total Soluciones No Inferiores	6

Tabla 6. 7: Resultados para la red de 50 nodos, Destino: 50, Radio 30.

SNI	Z1	Z2	ITER	TCPU
1(*)	72	10	1	2,783
2(*)	169	30	1	4580,67
3	101	18	1	17,939
4	83	14	3	12,632
5	149	27	1	30,046
6	111	20	3	70,61

Tabla 6. 8: Resultados para las SNI de la red de 50 nodos, Destino: 50, Radio 30.

Gráfico 6.4: Soluciones no inferiores extremas y soluciones no inferiores instancia 4.

6.3 Red de 81 nodos

A continuación se muestran los resultados obtenidos para la red de 81 nodos variando radio de cobertura, cantidad de buses y capacidad del bus.

Destino	81
Radio	49
Cant. Buses	1
Cap. Bus	15
Tiempo Total de CPU	36,83
Total Soluciones No Inferiores	5

Tabla 6. 9: Resultados para la red de 81 nodos, Destino: 81, Radio 49.

SNI	Z1	Z2	ITER	TCPU
1	54	2	1	0,589
2	164	15	1	116,561
3	112	11	1	17,723
4	72	6	2	14,448
5	60	4	3	4,659

Tabla 6. 10: Resultados para las SNI de la red de 81 nodos, Destino: 81, Radio 49.

Gráfico 6.5: Soluciones no inferiores extremas y soluciones no inferiores instancia 5.

Destino	81
Radio	49
Cant. Buses	2
Capacidad	15
Tiempo Total de CPU	5489,52
Total Soluciones No Inferiores	6

Tabla 6. 11: Resultados para la red de 81 nodos, Destino: 81, Radio 49.

SNI	Z 1	Z2	ITER	TCPU
1	114	5	1	0,632
2	374	30	1	3199,27
3	325	29	1	2274,882
4	140	10	1	522,72
5	126	8	3	21,551
6	224	19	3	2670,367

Tabla 6. 12: Resultados para las SNI de la red de 81 nodos, Destino: 81, Radio 49.

Gráfico 6.6: Soluciones no inferiores extremas y soluciones no inferiores instancia 6.

6.4 Análisis de los resultados

Respecto de los resultados obtenidos, el modelo entrega soluciones exactas en tiempos razonables para la mayoría de las instancias probadas. Sin embargo, como se observa en la red de 81 nodos, en algunos casos es imposible encontrar una solución en tiempo razonable (menos de una hora) ya que el equipo de pruebas no dispone de los recursos de hardware suficientes para soportar el programa.

La generación del conjunto de soluciones no inferiores se resuelven en periodos de tiempo razonables. Sin embargo, la obtención de las soluciones no inferiores extremas, las cuales se obtienen de forma independiente a las demás SNI, poseen los mayores tiempos de resolución.

Se observa que los tiempos aumentan a medida que aumenta el tamaño de la red.

Capítulo 7: Conclusiones y futuras investigaciones

7.1. Conclusiones y comentarios

Se concluye que el problema de localización de paraderos y ruteo de buses para el traslado de trabajadores, minimizando el costo de transporte y maximizando la captura de pasajeros, se resuelve a través del modelo de programación lineal entera.

El modelo propuesto permite optimizar el sistema de traslado de trabajadores para instancias pequeñas, entregando como resultado qué recorrido deben llevar a cabo los buses, cuántos paraderos se instalarán dentro de la ruta y la asignación de trabajadores capturados a cada paradero.

Respecto de los resultados obtenidos, el modelo entrega soluciones exactas en tiempos razonables para la mayoría de las instancias resueltas. Sin embargo, dado que el problema es NP-Hard, como era de esperar hay casos en que es imposible encontrar una solución en tiempo razonable (menos de una hora), como se observa en la red de 81 nodos.

La generación del conjunto de soluciones no inferiores se resuelven, en general, en periodos de tiempo razonables. Sin embargo, la obtención de las soluciones no inferiores extremas, las cuales se obtienen de forma independiente a las demás SNI, poseen los mayores tiempos de resolución.

Finalmente, los resultados presentados, entregará al tomador de decisiones un completo abanico de soluciones, quien deberá escoger entre la entrega de servicio a una mayor cantidad de trabajadores que se verán beneficiados y los costos asociados a aumentar recorridos de buses o incluir nuevos buses dentro de su flota.

7.2. Futuras investigaciones

Como futura investigación, es necesario desarrollar e implementar métodos y técnicas de optimización que permitan resolver instancias más grandes. Además, estudiar heurísticas para encontrar buenas soluciones factibles en tiempos razonables. También, considerar el tiempo máximo que un trabajador puede pasar arriba de un bus, desde que se sube hasta que llega a la planta.

Bibliografía

- Albornoz V. y Johns E., 2011. Localización de paraderos de detención y diseño óptimo de rutas en el transporte de personal, Ingeniare. Revista chilena de ingeniería, Universidad de Tarapacá, Chile, vol. 19 Nº 3, 2011, pp. 457-472.
- BERBEL, J. (1992). Planificación del uso del territorio y programación matemática multicriterio. Revista de Estudios Agro-Sociales, 159.
- Bierlaire, M., Liebling, Th.M., (2005). Decision-aiding methodology for the school bus routing and scheduling problem. Transportation Science 39, 477– 490.
- COHON, J. 1978. Multiobjective Programming and Language. New York.
 Academic Press Inc, 333p.
- Current J., ReVelle C., and Cohon J., 1985. The Maximum Covering/ Shortest Path Problem: A multiobjective network design and routing formulation, European Journal of Operational Reserch, vol 21 nº2, 189-199.
- Daskin M., 1995. Network and discrete Location Models, algorithms and applications. John Wiley and Sons, Inc. 499p.
- Feres, M. 2004. ORD. N° 3986/154. [Dictamen]. Satiango. Dirección del Trabajo; Dictamen de la Dirección del trabajo del Gobierno de Chile.
- Paredes, G., 2008. Un procedimiento optimal para resolver el mediam shortests path problem. Memoria de Ingeniero Civil Industrial. Concepción, Facultad de Ingeniería. Universidad del Bio-Bío. 139p.
- Corberán, A., Fernández, E., Laguna, M., Martí, R., 2002. Heuristic solutions to the problem of routing school buses with multiple objectives. Journal of Operational Research Society 53, 427–435.
- Arias J., Jiménez J., Montoya J., 2012. Solving of school bus routing problem by ant colony optimization. Revista EIA, ISSN 1794-1237 Número 17, p. 193-208.
- Bektas, T., Elmastas, S., 2007. Solving school bus routing problems through integer programming. Journal of the Operational Research Society 58 (12), 1599–1604.

- Euchi J, Mraihi R., 2012. The urban bus routing problem in the Tunisian case by the hybrid artificial ant colony algorithm, Swarm and Evolutionary Computation 2:15–24.
- Fu, Z., Eglese, R., Li, L., 2005. A new tabu search heuristic for the open vehicle routing problem. Journal of Operational Research Society 56 (3), 267–274.
- Newton, R.M., Thomas, W.H., 1969. Design of school bus routes by computer.
 Socio- Economic Planning Sciences 3 (1): 75–85.
- Pacheco, J., Martí, R., 2006. Tabu search for a multi-objective routing problem.
 Journal of the Operational Research Society 57, 29–37.
- Park, J., Hyunchul, T., Byung-In, K., 2012. A post-improvement procedure for the mixed load school bus routing problem. European Journal of Operational Research 217 (2012) 204–213
- Ripplinger, D., 2005. Rural school vehicle routing problem. Transportation Research Record 1992, 105–110.
- Spada, M., Bierlaire, M., Liebling, Th.M., 2005. Decision-aiding methodology for the school bus routing and scheduling problem. Transportation Science 39, 477–490.
- Riera J., Salazar J., 2012. A column generation approach for a school bus routing problem with resource constraints. Computers & Operations Research, Volume 40, Issue 2, February 2013, Pages 566–583.
- Schittekat, J. Kinable, K. Sörensen, M. Sevaux, F. Spieksma, J. Springael 2013. A metaheuristic for the school bus routing problem with bus stop selection. European Journal of Operational Research 229, 518-528.
- Morh M., 2012. Localización de contenedores y ruteo de vehículos para la recolección de residuos domiciliarios. Memoria de Ingeniero Civil Industrial. Concepción, Facultad de Ingeniería. Universidad del Bio-Bío. 119p.

Anexo A: Matriz de distancias de la red de 50 nodos

Anexo A: Matriz de distancias de la red de 50 nodos																									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1		12	18	24	28	38	52	12	48	19	30	31	38	70	65	77	93	77	86	96	90	113	104	96	83
2	12		8	12	17	26	41	10	37	19	31	27	29	59	54	66	82	66	75	86	80	104	95	87	75
3	18	8		10	11	22	36	12	30	18	28	21	21	53	49	61	77	59	68	78	73	96	87	79	67
4	24	12	10		9	14	29	20	27	27	37	28	23	48	42	54	70	56	64	75	71	95	86	80	69
5	28	17	11	9		14	26	21	20	26	33	23	15	43	39	51	67	49	58	69	64	87	78	72	61
6	38	26	22	14	14		15	33	18	39	47	36	24	36	28	40	56	46	51	64	62	87	78	73	65
7	52	41	36	29	26	15		47	14	51	57	44	29	23	14	26	42	34	37	51	51	76	68	65	60
8	12	10	12	20	21	33	47		40	9	21	20	28	63	60	72	88	68	78	87	80	103	94	85	72
9	48	37	30	27	20	18	14	40		42	46	33	17	23	25	35	51	30	39	49	45	70	61	56	48
10	19	19	18	27	26	39	51	9	42		13	15	28	65	64	76	92	68	80	87	79	101	91	83	68
11	30	31	28	37	33	47	57	21	46	13		14	30	67	70	81	97	68	82	87	77	97	87	78	62
12	31	27	21	28	23	36	44	20	33	15	14		17	54	57	68	84	55	69	74	65	87	77	68	53
13	38	29	21	23	15	24	29	28	17	28	30	17		38	41	51	68	40	53	60	53	76	66	59	47
14	70	59	53	48	43	36	23	63	23	65	67	54	38		21	21	35	14	16	29	30	54	47	46	45
15	65	54	49	42	39	28	14	60	25	64	70	57	41	21		13	29	34	30	47	50	73	67	66	64
16	77	66	61	54	51	40	26	72	35	76	81	68	51	21	13		17	33	23	41	48	68	64	64	66
17	93	82	77	70	67	56	42	88	51	92	97	84	68	35	29	17		44	29	44	55	72	69	72	77
18	77	66	59	56	49	46	34	68	30	68	68	55	40	14	34	33	44		17	20	18	42	34	32	34
19	86	75	68	64	58	51	37	78	39	80	82	69	53	16	30	23	29	17		18	27	46	42	44	50
20	96	86	78	75	69	64	51	87	49	87	87	74	60	29	47	41	44	20	18		15	29	25	30	41
21	90	80	73	71	64	62	51	80	45	79	77	65	53	30	50	48	55	18	27	15		25	17	18	27
22	113	104	96	95	87	87	76	103	70	101	97	87	76	54	73	68	72	42	46	29	25		10	21	38
23	104	95	87	86	78	78	68	94	61	91	87	77	66	47	67	64	69	34	42	25	17	10		11	29
24	96	87	79	80	72	73	65	85	56	83	78	68	59	46	66	64	72	32	44	30	18	21	11		18
25	83	75	67	69	61	65	60	72	48	68	62	53	47	45	64	66	77	34	50	41	27	38	29	18	
26	62	51	44	42	35	34	27	52	17	52	53	40	25	17	32	37	51	16	30	36	29	54	45	39	34
27	68	59	51	52	44	46	41	58	29	56	53	42	31	29	46	49	62	20	37	36	24	46	36	28	19
28	52	44	36	38	29	36	35	42	21	39	37	25	15	34	45	52	67	32	47	50	40	62	53	44	32
29	63	57	49	53	45	53	52	52	38	47	40	33	31	47	61	66	81	40	56	54	42	58	49	38	22
30	61	56	49	55	47	56	57	50	43	44	36	31	33	54	67	73	88	48	64	63	50	65	56	45	28
31	49	45	40	47	40	52	58	38	44	31	21	20	30	61	69	78	94	58	73	75	63	81	71	60	43
32	63	61	55	63	56	68	72	53	59	45	33	35	45	72	83	91	106	67	83	82	68	82	73	62	45
33	74	71	65	71	64	74	76	63	62	56	45	45	51	72	86	92	106	65	81	77	63	73	65	54	37
34	92	90	84	92	84	95	98	82	84	74	62	64	72	93	107	113	126	84	101	94	80	86	78	68	53
35	94	90	84	90	82	91	91	83	77	76	65	64	68	82	98	103	115	72	88	80	65	69	62	52	39
36	81	76	69	75	66	75	75	70	61	63	53	50	53	67	83	87	100	58	74	68	53	62	53	42	27
37	88	82	75	80	71	79	76	77	63	71	62	57	57	65	82	85	97	54	70	61	47	52	44	34	21
38	101	95	88	93	84	92	88	90	76	84	74	70	70	76	94	96	107	64	79	68	54	54	48	39	31
39	88	81	73	76	68	73	69	77	57	72	65	58	54	55	74	75	86	43	59	49	35	41	32	21	10
40	102	95	87	90	82	87	82	91	70	86	78	71	68	66	85	86	95	54	67	55	41	39	33	25	23
41	112	105	98	100	92	96	90	101	79	96	88	82	78	73	93	92	100	60	72	58	46	37	34	29	32
42	102	93	86	87	79	82	74	91	64	87	80	72	65	57	77	76	84	44	56	42	29	25	19	12	20
43	112	104	96	97	88	91	82	101	73	97	91	83	75	63	83	81	87	50	59	44	34	20	19	18	30
44	112	103	95	96	88	88	79	102	71	99	93	84	75	58	78	75	80	45	53	36	28	11	12	17	33
45	122	113	105	105	97	96	86	112	79	109	104	95	85	64	84	79	82	52	56	39	35	11	19	27	44
46	120	112	104	105	96	98	89	109	81	106	100	91	83	69	89	86	90	56	64	47	39	20	23	26	39
47	119	111	103	105	96	99	92	108	82	103	96	88	82	73	93	91	97	60	69	54	44	29	29	28	37
48	125	116	108	109	100	101	91	114	84	111	106	96	88	70	90	85	89	57	63	46	40	17	23	29	45
49	133	124	116	116	108	108	97	122	90	119	114	105	95	75	95	90	92	63	67	50	46	22	30	37	53
50	130	121	113	114	106	107	97	119	89	116	110	101	93	76	96	91	95	63	69	52	46	24	29	35	49
50					. 50	.01	٠,		-					, 0		<u> </u>		-00		_ J_					

_																									
ſ	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
_				•					•					•	•	•	•	•				•			

1	62	68	52	63	61	49	63	74	92	94	81	88	101	88	102	112	102	112	112	122	120	119	125	122	130
1					61					_			101											133	
2	51	59	44	57	56	45	61	71	90	90	76	82	95	81	95	105	93	104	103	113	112	111	116	124	121
3	44	51	36	49	49	40	55	65	84	84	69	75	88	73	87	98	86	96	95	105	104	103	108	116	113
4	42	52	38	53	55	47	63	71	92	90	75	80	93	76	90	100	87	97	96	105	105	105	109	116	114
5	35	44	29	45	47	40	56	64	84	82	66	71	84	68	82	92	79	88	88	97	96	96	100	108	106
6	34	46	36	53	56	52	68	74	95	91	75	79	92	73	87	96	82	91	88	96	98	99	101	108	107
7	27	41	35	52	57	58	72	76	98	91	75	76	88	69	82	90	74	82	79	86	89	92	91	97	97
8	52	58	42	52	50	38	53	63	82	83	70	77	90	77	91	101	91	101	102	112	109	108	114	122	119
9	17	29	21	38	43	44	59	62	84	77	61	63	76	57	70	79	64	73	71	79	81	82	84	90	89
10	52	56	39	47	44	31	45	56	74	76	63	71	84	72	86	96	87	97	99	109	106	103	111	119	116
11	53	53	37	40	36	21	33	45	62	65	53	62	74	65	78	88	80	91	93	104	100	96	106	114	110
12	40	42	25	33	31	20	35	45	64	64	50	57	70	58	71	82	72	83	84	95	91	88	96	105	101
13	25	31	15	31	33	30	45	51	72	68	53	57	70	54	68	78	65	75	75	85	83	82	88	95	93
14	17	29	34	47	54	61	72	72	93	82	67	65	76	55	66	73	57	63	58	64	69	73	70	75	76
15	32	46	45	61	67	69	83	86	107	98	83	82	94	74	85	93	77	83	78	84	89	93	90	95	96
16	37	49	52	66	73	78	91	92	113	103	87	85	96	75	86	92	76	81	75	79	86	91	85	90	91
17	51	62	67	81	88	94	106	106	126	115	100	97	107	86	95	100	84	87	80	82	90	97	89	92	95
18	16	20	32	40	48	58	67	65	84	72	58	54	64	43	54	60	44	50	45	52	56	60	57	63	63
19	30	37	47	56	64	73	83	81	101	88	74	70	79	59	67	72	56	59	53	56	64	69	63	67	69
20	36	36	50	54	63	75	82	77	94	80	68	61	68	49	55	58	42	44	36	39	47	54	46	50	52
21	29	24	40	42	50	63	68	63	80	65	53	47	54	35	41	46	29	34	28	35	39	44	40	46	46
22	54	46	62	58	65	81	82	73	86	69	62	52	54	41	39	37	25	20	11	11	20	29	17	22	24
23	45	36	53	49	56	71	73	65	78	62	53	44	48	32	33	34	19	19	12	19	23	29	23	30	29
24	39	28	44	38	45	60	62	54	68	52	42	34	39	21	25	29	12	18	17	27	26	28	29	37	35
25	34	19	32	22	28	43	45	37	53	39	27	21	31	10	23	32	20	30	33	44	39	37	45	53	49
26		15	17	30	37	44	55	56	77	67	52	51	63	43	55	64	49	57	55	63	64	66	67	74	73
27	15		17	20	28	40	47	45	65	54	39	37	49	29	42	50	36	45	44	54	53	53	57	65	63
28	17	17		18	23	27	40	42	63	57	41	43	57	39	53	63	50	60	61	71	69	68	73	81	78
29	30	20	18		9	23	28	26	47	39	23	27	40	25	39	50	40	51	54	65	60	56	66	74	70
30	37	28	23	9		16	19	19	41	36	21	27	40	30	42	53	46	57	60	71	65	61	72	80	75
31	44	40	27	23	16		16	26	45	46	33	42	54	45	58	68	62	72	76	87	81	77	87	96	91
32	55	47	40	28	19	16		13	30	33	25	35	45	43	53	63	60	70	75	87	79	73	86	94	89
33	56	45	42	26	19	26	13		22	21	13	24	32	34	41	51	50	60	66	77	68	61	75	84	78
34	77	65	63	47	41	45	30	22		17	27	34	35	47	49	56	61	69	76	87	76	67	84	92	85
35	67	54	57	39	36	46	33	21	17		16	19	18	32	32	39	44	52	60	70	59	50	67	75	68
36	52	39	41	23	21	33	25	13	27	16		11	21	22	29	39	38	47	54	65	55	48	63	71	65
37	51	37	43	27	27	42	35	24	34	19	11		14	13	18	28	28	37	44	55	45	38	52	61	55
38	63	49	57	40	40	54	45	32	35	18	21	14		22	16	22	29	35	44	54	42	33	50	58	51
39	43	29	39	25	30	45	43	34	47	32	22	13	22		14	25	17	28	33	44	36	32	43	52	47
40	55	42	53	39	42	58	53	41	49	32	29	18	16	14		11	14	21	29	39	28	20	36	44	37
41	64	50	63	50	53	68	63	51	56	39	39	28	22	25	11		17	17	26	34	21	11	29	37	29
42	49	36	50	40	46	62	60	50	61	44	38	28	29	17	14	17		11	16	28	20	18	26	35	30
43	57	45	60	51	57	72	70	60	69	52	47	37	35	28	21	17	11		10	19	9	11	16	25	19
44	55	44	61	54	60	76	75	66	76	60	54	44	44	33	29	26	16	10		12	11	19	13	21	19
45	63	54	71	65	71	87	87	77	87	70	65	55	54	44	39	34	28	19	12		14	24	8	12	14
46	64	53	69	60	65	81	79	68	76	59	55	45	42	36	28	21	20	9	11	14		11	9	17	11
47	66	53	68	56	61	77	73	61	67	50	48	38	33	32	20	11	18	11	19	24	11		19	26	18
48	67	57	73	66	72	87	86	75	84	67	63	52	50	43	36	29	26	16	13	8	9	19		9	7
49	74	65	81	74	80	96	94	84	92	75	71	61	58	52	44	37	35	25	21	12	17	26	9		8
50	73	63	78	70	75	91	89	78	85	68	65	55	51	47	37	29	30	19	19	14	11	18	7	8	

Anexo B: Matriz de distancias de Current et al (1984)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1		206	296	392	429	561	628	735	840	941	906	825	963	1050	1099	1141	1353	1434	1296	1037
2	206		100	196	233	368	473	542	647	748	713	662	802	889	906	948	1160	1238	1100	841
3	296	100		96	133	288	413	462	567	668	633	585	738	825	826	868	1082	1138	1000	741
4	392	196	96		37	218	343	392	497	598	563	515	668	755	756	798	1010	1042	904	645
5	429	233	133	37		221	346	387	481	582	558	518	671	758	751	793	1005	1005	867	608
6	561	368	288	218	221		129	182	287	388	353	297	452	539	546	588	800	890	752	687
7	628	473	413	343	346	129		139	244	345	294	197	335	422	473	529	741	850	712	672
8	735	542	462	392	387	182	139		108	209	171	152	308	395	364	406	618	714	576	533
9	840	647	567	497	481	287	244	108		101	106	153	287	374	299	340	552	606	468	440
10	941	748	668	598	582	388	345	209	101		111	216	292	379	275	263	475	505	367	382
11	906	713	633	563	558	353	294	171	106	111		118	181	268	193	560	447	560	435	493
12	825	662	585	515	518	297	197	152	153	216	118		156	243	276	353	565	678	553	593
13	963	802	748	668	671	452	335	308	287	292	181	156		87	189	289	499	640	530	674
14	1050	889	825	755	758	539	422	395	374	379	268	243	87		263	363	573	715	612	761
15	1099	906	826	756	751	546	473	364	299	275	193	276	189	263		100	310	452	370	592
16	1141	948	868	778	793	588	529	406	340	263	560	353	289	363	100		212	352	285	541
17	1353	1160	1080	1010	1005	800	741	618	552	475	447	565	499	573	310	212		219	281	652
18	1434	1238	1138	1042	1005	890	850	714	606	505	560	678	640	715	452	352	219		138	509
19	1296	1100	1000	904	867	752	712	576	468	367	435	553	530	612	370	285	281	138		371
20	1037	841	741	645	608	687	672	533	440	382	493	593	674	761	592	541	652	509	371	