- Lab. due tonight.
- Hw. due Monday

Measuring/Computing
Performance
1.4, 1.8, 1.9

Performance

1.4, 1.8, 1.9

 Accurately and fairly compare the performance of different systems

Learn how to use performance metrics

Performance metrics

Execution time and Performance

X in N times faster than Y

Calculating Execution Time

Clock cycles and execution time

Lab 2 (due Wed. 10/15) - HW duc today , C/C++/Java # file 1 1ab2 add:\$vo,\$0,\$00 1101----011101 strant 10111110-1110 end # end of program In \$ 00, -8(\$to) - handle unimplemented instructions 10002:

2-pass assembler

- 1. find all labels
- 2. convert the instructions to machine code

Example 1

Machine X can perform a task in 11 seconds. Machine Y can perform the same task in 17 seconds. How much faster is X than Y?

1.2.3.

CPI

-Hw2 (next) 1.4.1 1.4.3 1.5:1a 1.5.2a

Cycles Per. Instruction -

ithmetic (add 2 in general cycles per inst.

for ith class. i=1. 2 count of inst: in the ith clock cycles

- different
classes of.
instructions
take
different

different # of cycles

Example 2

	Instruction Counts		
Code	Α	В	С
sequence			
1 compiler	3	1	3
2 incw.	0	3	3

Inst.	CPI
class	
Α	1
В	2
С	4

2 different compilers produce code sequences 1 and 2. Which is faster? What is the CPI for each sequence?

total cyc.

total inst.

18/6 = 3

Calculating Execution Time

Improving execution time

Example 3

A program takes 300 seconds to execute. Multiplies account for 125 seconds of the execution time. How much faster do multiplies have to be to execute program in 225 seconds? $\nu\nu$ 5.

