General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TM X- 73956-3

(NASA-TM-X-73956-3) LARC DESIGN ANALYSIS REPORT FOR NATIONAL TRANSONIC FACILITY FOR 9% NICKEL TUNNEL SHELL. VOLUME 3: FINITE ELEMENT ANALYSIS OF PIENUM REGION INCLUDING SIDE ACCESS REINFORCEMENT, SIDE ACCESS DOOR

N76-33545

Unclas G3/39 05761

Larc DESIGN ANALYSIS REPORT

FOR

NATIONAL TRANSONIC FACILITY

FOR

9% NICKEL TUNNEL SHELL

FINITE ELEMENT ANALYSIS OF PLENUM REGION INCLUDING SIDE ACCESS REINFORCEMENT, SIDE ACCESS DOOR AND ANGLE OF ATTACK PENETRATION

VOL. 3

BY

JAMES W. RAMSEY, JR., JOHN T. TAYLOR, JOHN F. WILSON, CARL E. GRAY, JR., ANNE D. LEATHERMAN, JAMES R. ROOKER, AND JOHNNY W. ALLRED

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

1. Report No.	2. Government Acce	ssion No.	3. Recipient's Catal	og No.
TM X-73956-3		•		
4. Title and Subtitle LaRC Design An Transonic Facility for a 9%	alysis Report fo	or the National	5. Report Date	076
Element Analysis of Plenum	Region Includin	nell - Finite n Side Access	September 1 6. Performing Organ	976
Beinforcement, Side Access	Door and Angle	of Attack	o. remorming Organ	nzation Code
7. Author(s) J. W. Ramsey, Jr., J	. T. Tavlor, J.	F. Wilson.	8. Performing Organ	ization Report No.
C. E. Gray, Jr., A.			or variously by	azadon rieport no.
and J. W. Allred			10. Work Unit No.	
9. Performing Organization Name and Address			, 0, 1, 0, 1, 1, 1, 0,	
National Aeronautics and Sp	ace Administrati	ion -	11. Contract or Gran	• No
Langley Research Center Hampton, Virginia 23665			77. Contract or Gran	110.
nampton, virginia 25005			13. Type of Report a	and Basical Course
2. Sponsoring Agericy Name and Address			Technical Mem	orandum X
National Aeronautics and Sp	ace Administrati	on		
Washington, DC 20546			14. Sponsoring Agend	cy Code
5. Supplementary Notes				
		Oltada Cada dama	1 - C F-12	
Formal Documentation of Des National Transonic Facility		obtain code Appro	oval of Fabric	ated
6. Abstract This report contain				
critical portions of a large Facility). The computer mod capability was used to displ A stress criteria is present analyses were performed for entire tunnel circuit is pre The major computer codes uti Systems, Inc. under NASA Con Langley Research Center and Structures Research Associat Heat-Transfer Computer Progr. Center and described in NASA	els, loading and ay model geomethed for evaluation major critical asented. lized are: SPAN tracts NAS8-3053 described in NAS8 common mass and for Thermally	d boundary condit ry, section prope on of the results and typical areas R - developed by 36 and (ASI-13977 SA TN D-7179; and	ions are descr rties, and str of the analys . Fatigue ana Engineering In ; SALORS - dev SRA - develop l: "A General	ribed. Graphic ress results. ses. Thermal alyses of the aformation reloped by led by Transient
7. Key Words (Suggested by Author(s))		18. Distribution Statement		
Pressure Vessel		TO CITAL POLICE STATE ST		
Wind Tunnel		UNCLASSIFIED -	- UNLIMITED	다리 이 경기를 하는 것이 있다. 성공에 대한 사람들이 함께 했다.
Finite Element				
Numerical Integration Design				
9. Security Classif, (of this report)	20. Security Classif. (c	f this page)	21, No. of Pages	22. Price
Unclassified	Unclassifi		205	
	uda sahijida yangahili di		203	\$7.25

NTF TUNNEL SHELL NASA LARC

FINITE ELEMENT ANALYSIS

OF

PLENUM REGION INCLUDING

SIDE ACCESS REINFORCEMENT,

SIDE ACCESS DOOR AND ANGLE OF

ATTACK PENETRATION

9% Ni

SEPTEMBER 1976

VOLUME 3

LaRC CALCULATIONS

FOR THE

NATIONAL TRANSONIC FACILITY

TUNNEL SHELL

DATE: SEPTEMBER, 1976

APPROVED:

DR JAMES W. RAMSEY, JR., HEAD STRUCTURAL ENGINEERING SECTION

ANALYSTS:

HEAD SHELL ANALYST

PACKAGE & CONSTRUCTION MANAGER

SHELL PROGRAMMER

SHELL ANALYST

SHELL/THERMAL ANALYST

JOHNNY W. ALLRED
SHELL/THEDMA

This report is one volume of a Design Analysis Report prepared by LaRC on portions of the pressure shell for the National Transonic Facility. This report is to be used in conjunction with reports prepared under NASA Contract NASI-13535(c) by the Ralph M. Parsons Company (Job Number 5409-3 dated September 1976) and Fluidyne Engineering Corporation (Job Number 1060 dated September 1976). The volumes prepared by LaRC are listed below:

- 1. Finite Difference Analysis of Cone/Cylinder (9% Ni), Vol. 1, NASA TM X73956-1.
- 2. Finite Element Analysis of Corners #3 and #4 (9% Ni), Vol. 2, NASA TM X73956-2.
- 3. Finite Element Analysis of Plenum Region Including Side Access Reinforcement, Side Access Door and Angle of Attack Penetration (9% Ni), Vol. 3, NASA TM X73956-3.
- 4. Thermal Analysis (9% Ni), Vol. 4, NASA TM X73956-4.
- 5. Finite Element and Numerical Integration Analyses of the Bulkhead Region (9% Ni), Vol. 5, NASA TM X73956-5.
- 6. Fatigue Analysis (9% Ni), Vol. 6, NASA TM X73956-6.
- 7. Special Studies (9% Ni), Vol. 7, NASA TM X73956-7.

NTF DESIGN CRITERIA FOR 9% NICKEL

GENERAL

THE DESIGN OF THE PRESSURE SHELL REFLECTED IN THIS REPORT SATISFIES THE DESIGN REQUIREMENTS OF THE ASME BOILER AND PRESSURE VESSEL CODE, SECTION VIII, DIVISION 1. SINCE DIVISION 1 DOES NOT CONTAIN RULES TO COVER ALL DETAILS OF DESIGN, ADDITIONAL ANALYSES WERE PERFORMED IN AREAS HAVING COMPLEX CONFIGURATIONS SUCH AS THE WERE PERFORMED IN AREAS HAVING COMPLEX CONFIGURATIONS SUCH AS THE CONE CYLINDER JUNCTIONS, THE GATE VALVE BULKHEADS, THE BULKHEADSHELL ATTACHMENTS, THE PLENUM ACCESS DOORS AND REINFORCEMENT SHELL ATTACHMENTS, THE PLENUM ACCESS DOORS AND THE FIXED REGION (RING AREAS, THE ELLIPTICAL CORNER SECTIONS, AND THE FIXED REGION (RING AREAS, THE TUNNEL. THE DIVISION 1 DESIGN CALCULATIONS, THE ADDITIONAL ANALYSES AND THE CRITERIA FOR EVALUATION OF THE RESULTS OF THE ADDITIONAL ANALYSES TO ENSURE COMPLIANCE WITH THE INTENT OF DIVISION 1 REQUIREMENTS ARE CONTAINED IN THE TEXT OF THIS REPORT. THE DESIGN ANALYSES AND ASSOCIATED CRITERIA CONSIDERED BOTH THE OPERATING AND HYDROSTATIC TEST CONDITIONS.

IN CONJUNCTION WITH THE DESIGN, A DETAILED FATIGUE ANALYSIS OF THE PRESSURE SHELL WAS ALSO PERFORMED UTILIZING THE METHODS OF THE ASME CODE, SECTION VIII, DIVISION 2.

MATERIAL

THE PRESSURE SHELL MATERIAL SHALL BE ASME, SA-553-1 FOR PLATE AND SA-522 FOR FORGINGS. THE MATERIAL PROPERTIES AT TEMPERATURES EQUAL TO OR BELOW 150°F ARE AS FOLLOWS:

(A) PLATE, 2.0 INCHES OR THINNER

YIELD = 85.0 KSI ULTIMATE = 100 KSI

(B) WELDS (AUTOMATIC AND SEMIAUTOMATIC)

YIELD = 52.5 KSI ULTIMATE = 95.0 KSI

(C) WELDS (HAND)

YIELD = 58.5 KSI ULTIMATE = 95.0 KSI

OFERATING, DESIGN AND TEST CONDITIONS

THE OPERATING, DESIGN AND TEST CONDITIONS FOR THE TUNNEL PRESSURE SHELL AND ASSOCIATED SYSTEMS AND ELEMENTS ARE SUMMARIZED BELOW:

1. OPERATING MEDIUM

ANY MIXTURE OF AIR AND NITROGEN

2. DESIGN TEMPERATURE RANGE

MINUS 320 DEGREES FAHRENHEIT TO PLUS 150 DEGREES FAHRENHEIT, EXCEPT IN THE REGION OF THE PLENUM BULKHEADS AND GATE VALVES INSIDE A 23-FOOT, 4-INCH DIAMETER, FOR WHICH THE TEMPERATURE RANGE IS MINUS 320 DEGREES FAHRENHEIT TO PLUS 200 DEGREES FAHRENHEIT.

3. PRESSURE RANGE

	TUNNEL CONFIGURATION	OPERATING PRESSURE RANGE, PSIA	DESIGN PRESSURES PSID
Α.	CONDITION I - PLENUM ISOLATION GATES OPEN AND TUNNEL OPERATING:		
	TUNNEL CIRCUIT EXCEPT PLENUM	8.3 to 130	A. 8 EXTERNAL B. 119 INTERNAL
	PLENUM (PLENUM PRESS- URE IS LIMITED TO .4 TO 1 TIMES THE REMAINDER OF THE TUNNEL CIRCUIT	3.3 to 130	A. 15 EXTERNAL B. 119 INTERNAL
	BULKHEAD		56 (EXTERNAL TO PLENUM)
В.	CONDITION II - PLENUM ISOLATION GATES OPEN AND TUNNEL SHUTDOWN:		
	ENTIRE TUNNEL CIRCUIT	8.3 to 130	A. 8 EXTERNAL B. 119 INTERNAL
	BULKHEAD		0

CONDITION III - PLENUM C. ISOLATION GATES AND ACCESS DOORS CLOSED:

> TUNNEL CIRCUIT EXCEPT (1.3 to 130 A. 8 EXTERNAL PLENUM

B. 119 INTERNAL

PLENUM (PLENUM OPER- 0 to 130 ATING PRESSURE CAN EXCEED THE PRESSURE IN THE REMAINDER OF THE TUNNEL CIRCUIT BY 24 PSI, BUT DOES NOT EXCEED THE 130 PSIA MAXIMUM OPERATING PRESSURE)

A. 15 EXTERNAL

B. 119 INTERNAL

BULKHEAD

A. 25 (INTERNAL TO PLENUM)

B. 119 (EXTERNAL TO PLENUM) FOR MINUS 320 DEGREES FAHRENHEIT TO PLUS 150 DEGREES FAHRENHETT

*C. 110.5 (EXTERNAL TO PLENUM) FOR PLUS 151 DEGREES FAHRENHEIT TO PLUS 200 DEGREES FAHRENHEIT

*OPERATING PROCEDURES LIMIT PRESSURES TO THAT SHOWN.

CONDITION IV - PLENUM ISOLATION GATES CLOSED AND ACCESS DOORS OPEN:

> TUNNEL CIRCUIT EXCEPT 8.3 to 130 A. 8 EXTERNAL PLENUM

B. 119 INTERNAL

PLENUM

-4.7 PARTE - 100 - 14.7 PARTE - 100 PARTE

BULKHEAD

A. 119 (EXTERNAL TO PLENUM) FOR MINUS 320 DEGREES FAHRENHEIT TO PLUS 150 DEGREES FAHRENHEIT

*B. 110.5 (EXTERNAL TO PLENUM) FOR PLUS 151 DEGREES FAHRENHLIT TO PLUS 200 DEGREES FAHRENHLIT

*OPERATING PROCEDURES LIMIT PRESSURES TO THAT SHOWN.

HYDROSTATIC TEST DESIGN CONDITIONS

THE PRESSURE SHELL WAS DESIGNED FOR HYDROSTATIC TEST IN ACCORDANCE WITH THE REQUIREMENTS OF THE ASME CODE, SECTION VIII, DIVISION 1. THE TEST PRESSURES SHALL BE AS FOLLOWS. PRESSURE SHELL TEMPERATURE SHALL BE EQUAL TO OR BELOW 100°F DURING HYDROSTATIC TESTS.

CONDITION (1) - MAXIMUM INTERNAL PRESSURE CONDITION FOR THE ENTIRE TUNNEL CIRCUIT

PH₁ = 1.5 (119) + HYDROSTATIC HEAD = 178.5 PSI + HYDROSTATIC HEAD

CONDITION (2) - MAXIMUM DIFFERENTIAL PRESSURE CONDITION ACROSS THE PLENUM BULKHEADS

 $PH_2 = 1.5 (119) + HYDROSTATIC HEAD$ = 178.5 + HYDROSTATIC HEAD

 PH_2 * = 1.5 (111.5) ($\frac{23.7}{22.2}$) + HYDROSTATIC HEAD = 178.5 + HYDROSTATIC HEAD

*TUNNEL OPERATION LIMITATIONS PRECLUDE PRESSURE DIFFERENTIALS ACROSS BULKHEADS IN EXCESS OF 110.5 PSI FOR BULKHEAD AND GATE TEMPERATURES IN EXCESS OF 150°F.

CONDITION (3) - MAXIMUM REVERSE DIFFERENTIAL PRESSURE CONDITION ACROSS THE PLENUM BULKHEADS

 $PH_3 = 1.5 (25) = 37.5 PSI$

THE PRESSURE SHELL EXCEPT FOR THE PLENUM SHALL BE PRESSURIZED TO 141 PSIG. THE PLENUM SHALL BE PRESSURIZED TO 178.5 PSIG.

PRESSURE SHELL STRESS EVALUATION CRITERIA

THIS CRITERIA ESTABLISHES THE BASIS FOR ANALYSIS AND DESIGN OF THE PRESSURE SHELL SO IT WILL MEET OR EXCEED ALL OF THE REQUIREMENTS OF SECTION VIII, DIVISION 1 OF THE ASME BOILER AND PRESSURE VESSEL CODE AND CAN BE STAMPED WITH A DIVISION 1 "U" STAMP.

- 1. SECTION VIII, DIVISION 1, DIRECT APPLICATION
 - A. THE MAXIMUM ALLOWABLE STRESS (S)

 $S = 23.7 \text{ KSI } (-320^{\circ}\text{F TO } +150^{\circ}\text{F})$

 $S = 22.2 \text{ KSI} (-320^{\circ}\text{F TO} + 200^{\circ}\text{F})$

(B) PRIMARY BENDING PLUS PRIMARY MEMBRANE STRESSES

THE LOCAL MEMBRANE STRESSES ARE NOT GENERALLY CONSIDERED IN SECTION VIII, DIVISION 1 DESIGNS. HOWEVER, FOR THE PURPOSE OF DESIGNING LOCAL REINFORCEMENT AT BRACKETS, RINGS OR PENETRATIONS NOT COVERED BY DESIGN BASED ON STRESS ANALYSIS, THE LOCAL SHELL MEMBRANE STRESS SHALL BE:

$$P_b + P_m \le 1.5 SE$$

NOTE: E IS JOINT EFFICIENCY

- 2. IN REGIONS OF THE PRESSURE SHELL WHERE DIVISION 1 DOES NOT CONTAIN RULES TO COVER ALL DETAILS OF DESIGN (REF. U-2(g)), ADDITIONAL ANALYSES WERE PERFORMED UTILIZING THE GUIDELINES OF THE ASME CODE, SECTION VIII, DIVISION 2, APPENDIX 4, "DESIGN BASED ON STRESS ANALYSIS." THE BASIC STRESS CRITERIA FOR DIVISION 2 IS REPRESENTED IN FIGURE 4-130.1 AND RESTATED BELOW INDICATING ANY MODIFICATIONS OR EXCESS REQUIREMENTS APPLIED TO IT TO REMAIN WITHIN THE INTENT OF DIVISION 1 AND TO OBTAIN A DIVISION 1 STAMP.
 - A. GENERAL PRINCIPAL MEMBRANE STRESS

MAXIMUM ALLOWABLE STRESS

 $S = 23.7 \text{ KSI } (-320^{\circ}\text{F TO } + 150^{\circ}\text{F})$

 $S = 22.2 \text{ KSI } (-320^{\circ}\text{F TO } +200^{\circ}\text{F})$

MAXIMUM ALLOWABLE STRESS INTENSITY

 $S_m = 31.7 \text{ KSI}. (-320^{\circ}\text{F TO } +200^{\circ}\text{F})$

B. PRIMARY GENERAL MEMBRANE STRESS INTENSITY

 $P_m \leq S_m$

AND IN ORDER TO COMPLY WITH DIVISION 1, THE MAXIMUM PRINCIPAL MEMBRANE STRESS MUST BE:

 $P_m* \leq S$

NOTE: THE * IS USED TO DENOTE THAT MAXIMUM PRINCIPAL STRESSES ARE TO BE COMPUTED FOR THE GIVEN LOADING CONDITION. THE INTENT IS TO DETERMINE THE STRESSES WHICH REPRESENT THE HOOP STRESSES AND MERIDIONAL STRESSES WHICH ARE THE STRESSES USED IN DIVISION 1 COMPUTATIONS.

C. DESIGN LOADS, PRIMARY LOCAL MEMBRANE STRESS INTENSITY

$$P_L \leq 1.5 S_m$$

NOTE: LOCAL MEMBRANE STRESS INTENSITY IS DEFINED IN ACCORDANCE WITH DIVISION 2, APPENDIX 4-112(i). THE TOTAL MERIDIONAL LENGTH IS CONSIDERED TO BE 1.0 7RT!

D. DESIGN LOADS, PRIMARY LOCAL MEMBRANE PLUS PRIMARY BENDING STRESS INTENSITY

$$P_L + P_b \leq 1.5 S_m$$

E. OPERATING LOADS, PRIMARY PLUS SECONDARY STRESS

$$P_L + P_b + Q \leq 3 S_m$$

F. COMMENT

BECAUSE OF THE LOW YIELD STRENGTH EXPECTED AT THE WELDS AS COMPARED TO THE YIELD STRENGTH OF THE PLATE, STRESS INTENSITIES COMPUTED IN (A), (B), (C), (D), OR (E) SHALL NOT EXCEED THE YIELD STRENGTH OF THE MATERIAL AT EITHER WELD OR PLATE LOCATIONS.

- 3. A FATIGUE ANALYSIS WAS CONDUCTED IN ACCORDANCE WITH SECTION VIII, DIVISION 2 WITHOUT MODIFICATION.
- 4. HYDROSTATIC TEST CONDITION DESIGN CONSIDERATIONS
 - A. PRESSURE SHELL

IN ACCORDANCE WITH DIVISION 1 OF THE ASME CODE, DESIGN ANALYSIS OF THE PRESSURE SHELL FOR THE HYDROSTATIC TEST CONDITION IS NOT REQUIRED. HOWEVER, IN ORDER TO PROVIDE A SATISFACTORY ENGINEERING DESIGN FOR THE PRESSURE SHELL THE FOLLOWING CRITERIA WAS USED:

(a) THE MAXIMUM GENERAL MEMBRANE STRESS PERPENDICULAR TO A WELD LINE WAS LIMITED TO THE LESSER OF:

 $P_m * \leq 0.8 WELD YIELD STRESS$

OR

 P_m * \leq 0.5 WELD ULTIMATE STRESS

(b) THE GENERAL PRINCIPAL MEMBRANE STRESS IN THE PLATE (NOT AT A WELD) WAS LIMITED TO THE LESSER OF:

 $P_{\rm m}$ * \leq 0.8 PLATE YIELD STRESS

 P_m * \leq 0.5 PLATE ULTIMATE STRESS

(*) THE STRESSES SATISFYING THIS CRITERIA ARE BASED ON MAXIMUM MEMBRANE STRESSES RATHER THAN INTENSITY CRITERIA.

Vol. 3

Fivite Element Analyses of Plenum Region Including the Side Access Reinforcement, Side Access Dook and Angle of Attack Penetrution

Table of Contents

Part 1 Plenum

	page No
Model Description	
Boundary Condition	5
Loading	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Combined Door & Plenium Analyses	
Results	10
Relative displacement between	
Relative displacement between sealing surfaces of Door & Plenum	
P= 119 psig	
P=-15 psiq	/3

BYDATE	SUBJECT	 SHEET NOOF.
CHKD. BYDATE	***	JOB NO.

Vol 3 Table of Contents con't.

Stress Summary Region around 9'x12' opening 15 Region around 8,3' dia circulor 26 opening Hydro Tost 31 Buckling 3.3 Model check points 34

Figures 1-68

> Part 2 Door

Model Description Boundary Conditions Loading Combined Door & Plenum Finalyses 6 Lateral Buckling of Stiffner Bar 13

BYDATE		NO
Vol 3	Table of Contents con't.	
Results		7
Stres	s Summary	
Relati sealin	ive displacement between ing surfaces of Door + Plenum	
	P= 119 psig	H
	P= -15 Psig	
Hydr	o 70st	/2

1A - 71

Figures

xili

CHKO BY DATE SUBJECT UTF SHEET NO OF CHKO BY DATE FINITE ELEMENT ANALYSES JOB NO OF ACCESS DOOR REINFORCEMENT

(Plenum) 97. Ni

REFERENCE DRAWING NO. LE. 944431

SPAR (a finite element computer code developed & maintained by Engineering Information System, Inc. under NASA contract NASB-30536 and NASI-13977) was used to analyze this region of the pressure shell. The region was modeled using, trian gular and quadrilateral, membrane plus bending flat aeolotropic elements. The "T" ring and flange was modeled with general beam elements.

A 90° segment of the parssurs shella was modeled from the £ of the access opening to beyond the support ring S5. A plane thru the access opening perpendicular to the axis of the shell is a plane of symmetry. Horizontal t vertical planes thru the axis of the shell are also planes of symmetry.

Plane of symmetry 1-2 plane 1-3 plane 23 plane

A computer plot of the model is shown in fig 1. The model consists of 1092 soints with 6 DOF per joint except where boundary conditions were applied and notation about an axis I to a plate element was restricted.

BYDATE	SUBJECT	SHEET NO. 4 OF
CHKD. BY DATE		JOB NO.

The joint numbers for the model are shown in Fig 2 thru Fig. 10

The shell section properties (plate thickness) are shown in Fig 11 thru Fig. 19

Shell	Section	Property	Thickness
			1.75
	2		2.00
	3		1.00
	4		4,50
	5		2.00
			3.00
	7		1.75
	8		3,25
	9		1.00
	0	12. 12년 12년 12년 - 12년 12년 2 20년 12년 12년 12년 12년 12년 20년 12년 12년 12년 12년 12년 12년 12년 12년 12년 12	2.75
	//	. 1	2.375

BY	DATE	SUBJEC	т	 SHEET	No5or
	DATE				

BOUNdary Conditions

12 plane is a plane of symmetry
13 plane is a plane of symmetry
23 plane is a plane of symmetry

on boundary of cylinder and pipe - restrict notation about 0 t = axes (cy. cord.)

BYDATE	SUBJECT	SHEET NO.
CHKD. BYDATE		JOB NO.

Boundary Forces

Cylinder

For & model

$$F_3 = \frac{F}{4} = 10,677,516 \text{ lbs.}$$

This force was applied uniformly around 1/4 cylinder model

Pipe

$$F_1 = \frac{F}{2} = \frac{934623.8}{2}$$
 1bs

This force was applied uniformly around a 1/2 pipe model

Joint 1056 + 1092 - 6490 16 1057 thru 1091 - 12980 16s

9' X 12' opening

Forced displacements obtained from combining the Door and Plenum models were applied to the 9'X12' opening. See. discussion on combined analyses, (p. 9)

BYDATE	SUBJECT	SHEET NO. 8 OF.
CHKD. BY DATE		JOB NO.

Lording

Internal Pressure

P= 119psi (dosign pressure) was applied as rodal pressure to the joints of the pressure surface.

External Prossure

Nodal pressure was applied to the joints of the pressure surface according to the following sketch.

<u> </u>								Γ		_				_			-	Ι	•												
					P).					١,	5		,	•	5	i						F	>		٤	3,		3		
																										F	?:	5	٤		
									L				-				_				_	_			_					: 	

	GUBIFCT	 sHf	EET NO7OF
BY DATE		IOE	B NO
CHKD. BY DATE			

Combined Door + Plenum Analyses

See Finite Element Analyses of Side Access Door

To determine the interaction of the door and plenum, a combined reduced stiffness matrix from the 2 models (Plenum and Door) was generated. From this the relative displacement (sealing surfaces) between the door and plenum was defermined for internal prossure.

Nodal displacements from the combined run were used as boundary conditions at the sealing surfaces of the Door and Plenum to compute the final stress in each model.

For vacuum condition, the dog loads and relative displacement between the door to plenum (sealing surfaces) was determined.

BYDATE	SUBJECT	SHEET NO. LD OF.
CHKD, BYDATE		JOB NO.

Results

Nodal stresses are presented in Fig 20 thru Fig 67

The max principal stress (PSI) on min principal stress (PSZ) are given for the mid-surface (surface 0), the inside surface (surface 1), and outside surface (surface 2).

The stresses platted one for joint 1 of the element. As an example (neference Fig 2), for the element defined by joints 17, 18, 34, 33 joint 1 for that element is 17.

Nodal strasses for one joint are given from 4 elements (for quadrilateral elements). If any discrepancies exist in the stresses for a joint, the largest value is used in the interpretation of the results.

BY DATE	SUBJECT	SHEET NO. // OF
CHKD. BY DATE		JOB NO.

The displacement of the sealing surfaces for the Door and plenum for an internal P= 119 psi 13 quen in table 1.

The sealing surfaces of the Door and Plenum remained in contact.

(the relative displacements of the sealing surfaces was minus)

BYDATE	SUBJECT	SHEET NO. 12 OF
CHKD. BYDATE		JOB NO.

P=119 psi

* CONNECT	PIS PLACE		RELATIVE
FOINT NO	AT SEALING	SURFACE	DISPLACEMENT
	PLENUM	DOOR	
	10936	.0947	00110
2	.0845	.0854	00090
3	.0650	.0658	00083
4	.0398	.0400	00013
5	.0209	.0210	00009
6	.0110	.0114	00042
7	.0109	.0113	00032
8	.0109	.0115	00053
	.0099	.0103	00034
10	.0098	- 2099	00013

* SEE FIGURE 68

PLL PELATIVE DISPLACEMENTS ARE NEGATIVE ... MIL POINTS FONG CEALING SUIFACES OF DOOR AND PLEMUM REMAIN IN CONTACT.

RELATIVE DISPLACEMENTS X STIFFNESS (1.0 x 108)
RESULTS IN A TOTAL DOOR FORCE OF 1/80, 544/b.

The displacement and relative displacement of the sealing surfaces of the placement of the sealing surfaces of the Door and Plenum for vacuum conditions (external pressure = 15 psi) are given in table 2.

The dog loads for vacuum conditions are also given in Table 2.

REPRODUCIBILITY OF THE CRIGINAL PAGE IS POOR

BY	DATE	SUBJECT	 	SHEET NO. 14 OF.	.:
CHKD. BY	DATE		 	JOB NO.	

TABLE Z VACUUM PRESSURE

* POINT NO.	DISPLACE AT SEALING	MENTS SURFACE	RELATIVE DISPLACEMENT
1.0111.110.	PLENUM 00661	<u>DOOR</u> 02421	.01760
2	00555	02168	.01614
3	00318	01687	.01370
4	00035	00991	.00956
5	.00303	01389	.01691
6	.00501	01980	.02481
7	.00502	02351	.02853
8	.00503	02638	103141
	,00543	02806	. 63349
10	.00547	02862	.03409

* LEE FIGURE 68

CONNECT POINTS 1-4 ARE DOG LOCATIONS

AND ARE THE ONLY POINTS CONSIDERED

TO BE TIED TOGETHER DURING VACUUM PUI).

FORCES AT DOGS -

FORCE
1088. #
0167.
8628.
0689.
,

Region around the 9'x12' Opening

Max Membrane Stress occurs. In the corners.

Soe Fig 44

The max stress is at group 4 md. 16

Since stress at surface 0 is at centroid of element, the slass is projected to edge of plate

5: 10.40 KSI

 $\sqrt{3} = -\frac{119}{2} = -.06 ksi$

S,2 = 31.16 - 10.40 = 20.76 KSI

523 = 10.40 - (-.06) = 10.46 KSI

S31 = -0.06 - 31.6 = - 31.66 KSI

PL = |-31.66| - 31.66 KSI

PL = 1.5 Sm

31.66 < 1.5 (31.7) = 47.55 KST

O. K.

The meridional distance at a stress intensity of 1.15m (34.87 KSI) is o

BY DATE	SUBJECT	SHEET NO 17 0
CHKD. BYDATE		JOB NO.
		JOB NO

.. The region meets the criteria for Primary local membrane stress intensity.

> $S_{12} = 11.89 - 5.58 = 6.31$ KST $S_{23} = 5.58 - (-.06) = 5.64$ KST $S_{31} = -.06 - 11.89 = -11.95$ KST $P_{m} = |-11.95| = 11.95$ KST

> > Pm & Sm

11.95 6 31.7 KSI O.K.

BYDATE	SUBJEC	T		SHEET NOOF
CHKD, BYDATE				JOB NO.
			 	300 1101

General Paincipal Membrane Stapss $\sigma_i = 11.89 \text{ KSI}$ $\sigma_i \leq S$ $11.89 \leq 23.7 \text{ KSI}$ O. K.

i. The general principal membrane stress and general membrane stress intensity for the Plenum region meets the stress evaluation criteria.

Primary Plus Secondary Stress Intensity

Inside Surface (see Fig 46)

Max stress intensity at

4/17/518

To correct for shess at edge add 31.6-30.48 = 1.12 to 0.12 add 10.4-10.25 = 0.15 to 0.12

 $T_1 = 46.27 + 1.12 = 47.39 \text{ KSI}$ $T_2 = 23.25 + .15 = 23.40 \text{ KSI}$ $T_3 = -.119 \text{ KSI}$

 $S_{12} = 47.39 - 23.40 = 23.99 \text{ KSI}$ $S_{23} = 23.40 - (-.12) = 23.52 \text{ KSI}$ $S_{31} = -.12 - 47.39 = -47.51 \text{ KSI}$ $R_2 + R_3 + Q = |-47.51| = 47.51 \text{ KSI}$

BYDATE	SUBJECT	SHEET NO. 20 OF
CHKD. BYDATE		JOB NO

 $P_{L} + P_{b} + Q \leq T_{YP}$ $47.51 \leq 52.5 \text{ KSI} \quad (auto weld)$ 0. K.

Outside Surface (see Fig 45

Max at 4/16/518

apply same correction as above

 $T_1 = 25.77 + 1.12 = 26.89 \text{ KSI}$ $T_2 = -2.07 + .15 = -1.92 \text{ KSI}$ $T_3 = 0$

 $S_{12} = 26.89 - (-1.92) = 28.81 \text{ ksI}$ $S_{23} = -1.92 - 0 = -1.92 \text{ ksI}$ $S_{31} = 0 - 26.89 = 26.89 \text{ ksI}$

 $P_L + P_B + \varphi = |\partial 8, 8| = |\partial 8, 8| = |\partial 8, 8| = |\partial 8, 8|$

CHKD. BY	DATE			
			 	JOB NO
	DATE	SUBJECT	 	SHEET NOCIOF

PL+Pb+9 < Typ

28.81 < 52.5 KSI (auh weld)

0.K.

The primary plus secondary stress intensity for the region around the 9'x 12' opening meets the stress evaluation criteria.

BYDATE	SUBJECT
BY	
CHED BY DATE	

SHEET NO, 2 OF.

Inside Stiffner Ring

See Fig 38

At 6/36/591

Membrane Shoss

Ti = 27.03 KSI

t3 = 0

Siz = 27.03 - (-5.98) = 33.01 KST

 $S_{23} = -5.98 - 0 = -5.98 \text{ KSI}$

 $S_{31} = 6 - 27.03 = -27.03 KSI$

PL & 1.5 Sm

BYDATE	SUBJECT	
CHKD. BYDATE		SHEET NO. 23 OF
		JOB NO.

33.01 < 1.5(31.7) = 47.55 KSI

This stress is a local stress of a noggle.

This region meets the criteria for local membrane stress intensity

			DATE	-		
PI			 U ~ ! !		 -	
~	120	nv.	D A T F	_		

SUBJECT

JOB NO.

Primary plus secondary Stress Intensity

$$\sigma_2 = -21.19 \text{ KSI}$$

$$S_{12} = 29.64 - (-21.19) = 50.83 \text{ KSI}$$

$$S_{31} = -.12 - 29.64 = 29.52 \text{ KSI}$$

$$P_{L} + P_{L} + Q = |50.83| = 50.83 \hat{k} SI$$

BY DATE	SUBJECT	SHEET NO. TO OF
CHKD. BY DATE	4	JOB NO

: This region meets the criteria for primary + secondary stress intensity

BY	ATE	SUBJECT	SHEET NO. 26 OF
CHKD. BY,	_DATE		JOB NO

Rogion around 8.33' dia circular hote

Rof. fig. 50

Mox membrane stress at 6/71

Since stress at surface o is for centroid of element, the shess is projected to edge of plate.

$$\sigma_{1} = 32.2 \text{ ks}I$$

$$\sigma_{2} = 3.5 \text{ ks}I$$

$$S_{12} = 32.2 - 3.5 = 28.7 \text{ KSI}$$

 $S_{23} = 3.5 - (-.06) = 3.56 \text{ KSI}$

$$S_{31} = -.06 - (30.2) = -32.26 \text{ KSI}$$

This stress is a local stress at noggle

... This negion meets the criticial for local membrane stress intensity

BYDATE	SUBJECT	 SHEET NO. 28 OF
CHKD. BYDATE		JOB NO.

Primary Plus Secondary Shoss intensity

add
$$32.2 - 31.2' = 1.0 \text{ KSI} \ \sigma_1$$

add $3.5 - 3.97 = -.47 \text{ KSI} \ \sigma_2$

$$T_1 = 34.39 + 1.0 = 35.39 \text{ KSI}$$

$$S_{12} = 35.39 - 21.97 = 13.42 \text{ KSI}$$

$$S_{23} = 21.97 - 0 = 21.97 \text{ KSI}$$

$$S_{31} = 0 - 35.39 = -35.39 \text{ KSI}$$

SHEET NO. 29 OF ____

PL+Pb+ Q= |-35,39 | = 35,39 KSI

P2 + P6 + Q < Typ

35.39 2 525 KSI (auto welds)

O.K.

Inside Surface (see Fig 54) 6/7/ / 796

J. = 27.41 + 1.0 = 28.41 KSI

 $\sigma_2 = -18.25 + (-.47) = -18.72 \text{ kist}$

O3 = - · 119 = - . 06 KSI

 $S_{12} = 28.41 - (-18.72) = 47.13 \text{ KSI}$

 $5_{23} = -18.72 - (-.06) = -18.66 \text{ KSI}$

S31 = -.06 - 28.41 = 28.47 KSI

 $P_{L} + P_{b} + \varphi = |47.13| = 47.13 \text{ KSI}$

3 Y DATE,	SUBJECT	
HKD. BY DATE		SHEET NO. 30 OF
		JOB NO.

The primary plus secondary stress intensity for this region meets the stress evaluation criferia.

The holes used in this analyses is 8.33' dia. The thickness of neinforcement is 2.75 in. The hole shown on drawing LE 944429 is 6.0' dia. The thickness of neinforcement is 44".

Sine the larger dia & smaller reinforcing thickness meets the stress evaluation criteria, the 6.0 dia hole was not analyses. It was assumed to also moet the criteria.

BYDATE	SUBJECT	SHEET NO. 31 OF
CHKD. BYDATE		JOB NO.

Hydro Test Conditions

Local membrane stress exists around the 9'x1z' opening and the 8.33' dia circular opening. The max general membrane stress outside these region and between 54 and 55 is

For the plenum region, the prossure it hidro is

$$P_{H} = 1.5(119) + 62.4 \frac{16}{17} \int \frac{1}{174} \int \frac{41}{2} + \frac{38}{2} \int ft$$

$$P_{H} = 178.5 + 14.95$$

$$P_{H} = 193.45 \text{ psi}$$

SHEET NO. 32 OF _____

.. The general membrane stress at hydro is

$$\int_{X_H} = \frac{193.45}{119} (11,89)$$

The stress at hydro limited to .8(52.5) = 42 K5I for auto welds

19.33 < 42.0 KSI O.K.

.. The plenum meets the criteria for hydro test conditions

IY D/	ATE	SUNIECT		SHEET NO. 33.OF.
HKD. BY				JOB NO

Buckling of Plenum

The chilical load factor for the plenum argion of a prossure of -15 psi 15 12.0.

Buckling occured at the center plenum

A modal plot is shown in fig. 69

JOB NO.

Model ches points

shell

$$S_{H} = \frac{P_{\Lambda}}{t} = \frac{(119)(169)}{1.0} = 20.1 \text{ ksi}$$

$$S_a = \frac{P_A}{2t} = \frac{(119 \times 169)}{2(1)} = 10.0 \text{ KSI}$$

Stross at surface o

: stresses on 1' section of cylinder check with hand calculation

Model Check - Buckling

Ref. Theory of Elastic Stability
Timoshenko & Gere
Second Edition
P. 495 to 497

Buckling under Combined Axial and Uniform Luteral Pressure

Assume shell to be simply supported.

and a uniform cylinder with

t= 1.75 R= 168.875' L= 427"

E= 29×10' psi u= 0.3

The critical pressure is 122.5 psi

The critical load from for

15 psi is 8.2

Ref: Stress in Shell
W. Flügge
Second Printing
p. 432 to 434

For External Ressure only

Assume edges clamped and a uniform cylinder with t=1.75 R=168.75 L=427" $E=29\times10^{6}$ psi u=0.3

The chitical pressure is 123.9 ps: The chitical load factor for 15 psi is 8,3

Timoshenk & Flügge yield critical lood factor lower than the finite element solution (8.3 vs 12.4)

This can be explain by the fact part of the shell in the finite element solution is 2" thick and the heavy reinforcing provided around the openings.

: model is o.k.

SPEC NTF 9 X 12 ACCESS OPENING

FIGURE 1

SPEC 3.1

NTF 9 X 12 ACCESS OPENING SHELL

Q 55 SCALE

Figure Z

SPEC 4.1 NTF 9 X 12 ACCESS OPENING SHELL

Q 21 SCALE

Figure 3

SEPRODUCIBILITY OF THE

SPEC 5.1

NTF 9X12 ACESS OPENING GUSSET

Figure 4

Q 18 SCALE

SPEC NTF 9X12 REINF. 6.1 INNER RING O 14 SCALE

Figure 5

SPEC 7.1

NTF 9X12 DOOR REINF. OUTER RING

0 19 SCALE

Figure 6

Figure 7

SPEC 9.1

THE THE PARTY OF T

9 X 12 REINF WITH 9 FT HOLE TRIANGLES AROUND 9 FT HOLE Q 24 SCALE

The complete property of the first of the enterestion of

ou man his contraction of the property of the supplication of the

1074 1073 1072 1071 1070 1069 1068 1067 1066 1065 1064 1063 1062 1061 1060 1059 1058 1057 1056 1023 1022 1021 1020 1019 1028 1027 1026 1025 1024 1037 1036 1035 1034 1033 1032 983 582 947 946 945 963 962 761 760

9 X 12 REINF WITH 9 FT HOLE 9 FT PIPE SECTION 1 Q 11 SCALE

SPEC 10.1

SPEC 11.1

1092	2 1091	1090	1089	1088	1087	1086	1085	1084	1083	1082	108;	1080	1075	1078	1077	1676	1075	1074
1055	1054	1053	1052	1051	1050	1049	1048	1047	1046	1045	1044	1043	1042	1091	1040	1039	1038	1037
1018 981			1015 978	1014 977	1013 976		1011 974	1010 973	1009 972		1007	1006		1004 967		1002		
796	795	794	793	792	791	790	789	788	787					JD /	966	365	964	963
										786	785	784	783	782	781	780		

9 X 12 REINE WITH 9 FT HOLE

Q 11 SCALE

			ST80					•		320	2	3	3	3
1	1	1							A		2	3	3	3
1	1	1								2/2	2	3	3	3
1	1	1								2/2	2	3	3	3
1	1	1	1,						1	2	2	3	3	3
1	1	1	1	1		71			1			3	3	3
1	1	1	i	1	1	1	1	1	1	2	2			3
1	1	1	1	1	1	1	i	1	1	2	2	3	3	
1	1	1	1	1	1	1	1	1	1	2	2	3	3	3
1/	1/	1/	1/	1/	1/	1/	1	1	1	2	2	3	3	3
1	1	1	11/1	$\overline{1, \Lambda_1}$	ι. Λ.	<u>ι. Λ.</u>	1	1	1	2	2	3	3	3
							1	1	1	2	2	3	3	3
							ı	1	1	2	2	3	3	3
							-	1	1	2	2	3	3	3
								i	1	2	2	3	3	3
							-	1	1	2	2	3	3	3

SPEC NTF 3.1 SH

NTF 9 X 12 ACCESS OPENING SHELL

O SCALE

SPEC 4.1 NIF 9 X 12 ACCESS OPENING SHELL

ρ<u>SCALE</u> 2)

Figure 12

ELEMENT SECTION PROPERTY GROUPS

SPEC 5.1 NIF 9X12 ACESS OPENING

SCALE 18

-		
;	• •	
,		•
•		4
•	1./	•
シ		`/`
	: / :	7:
•		
•	<i>J</i> •	I •
•	1 -	4
	1	
.,	-	-
4	•	ч
•	•	•
•	•	4
•	•	i d
•		4
4		4

SPEC NTF 9X12 REINF. 6-1 INNER RING

Q________14

Figure 14

2

2
2
2 2
15/5
2 2
2 2
5 2
2
2
2
5
2
2
2
2
2
2
2

NTF 9X12 DOOR REINF.

Figure 15

-SPEC 7.1

Figure 16

ELEMENT BOTTION PROPERTY GROUPS

SPEC 9 X 12 REINF WITH 9 FT HOLE 9.1 TRIANGLES AROUND 9 FT HOLE SCALE 24

3	3	3	9	9	3	3	3	3	3	3	3	3	3	5	3	3	3
9	3	3	3	3	9	3	3	3	3	3	3	3	3	3	3	3	3
10	10	10	10	10	1.0	10	10	10	10	10	10	LO	10	10	10	10	10
10	10	10	1.D	to	19	10	10	19	10	10	u	10	10	18	10	10	10
					<u></u>	<u></u>	<u> </u>	L	L								

9 X 12 REINE WITH 9 FT HOLE

SCALE 11

Figure 18

9	9	9	9	9	9	3	9	ŋ	9	3	9	9	9	9	3	9	כס
9	ŋ	9	9	9	9	3	9	9	9	3	9	9	9	9	9	9	3
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
TOO.	PRODUCIBILITY OF THE																

Figure 19

9 X 12 REINF WITH 9 FT HOLE 9 FT PIPE SECTION 2

SPEC 11.1

DISPLAY= PS1 /1000, NODE= 1, SURFACE= C

11	11	12									12	55	50	20
11	11	12)					1		12	22	20	20
12	12	12	33							\$ %	13	22	20	50
12	12	12	13/12		Alem	12			X.	9/8	13	22	50	20
	12	11	11	15	33		況	13	12/10	5	14	22	20	20
12				12	Z13 ¹ 3	2123	12	12	9	6	13	22	20	21
12	12	11	11	11	12	12	16							20
12	12	11	11	11	12	12	12	12	9	6	13	52	20	20
11	12	13	12	11	12	12	12	12	9	5	13	55	20	20
10/	11/13	12/14	13/	12/2	12/	12/12	12	12	9	5	13	22	20	20
<u> </u>	V	ν. <u>··</u>	E-V-	1 V	L.V.	. V	12	12	10	6	13	52	20	20
				y jan			12	12	9	5	13	55	20	20
						•	11	12	9	5	13	22	20	20
							11	12	10	5	13	22	50	20
							11	12	10	6	13	22	20	20
							11	12	10	6	13	22	20	20

SPEC 3.1 NTF 9 X 12 ACCESS OPENING

ρ<u>5</u>5,

								100						
12	11	12									13	24	22	23
10	10	11		Žy.					1		13	22	20	21
9	9	9								§ 7/	12	21	19	19
9	3	10	10/11		MA	Zootata	MH B	1.175		9/13	13	20	18	18
10	11	12	11	13	12/2			15	12/ 11	2	13	20	18	18
12	13	13	14	13	12	11	11	13	10	3	13	21	18	18
15	14	14	13	12	11	10	10	11	10	Ч	13	22	19	19
16	15	15	12	11	11	10	10	11	10	Ч	13	22	50	20
14/15	16/15	15/14	15/12	12/1	11/1	11/12	11	12	10	Ч	13	22	20	51
	K		L Y.,	Y	Y 	¥	13	13	10	ч	13	22	20	21
			•				13	13	10	Ч	13	22	20	21
							13	13	10	ų	13	22	20	21
						a ili salah Periodikan Sibarahan	12	13	10	Ч	13	22	20	21
							11	12	10	ц	13	55	50	21
							10	12	10	4	13	55	20	21

EC NTF 9 X 12 ACCESS OPENING SHELL

0 55 SCALE

													the second secon	
10	10	12								图	10	50	18	17
12	12	13							A		12	21	19	19
	14	15	6							176	13	22	21	21
14			3 14		Dan				3 2 3	10/12	14	23	22	23
15	14	13	13	265			AND THE		113	16			22	23
13	12	11	12	110	1570		330	9	<u>/</u> 9	15	14	23		23
11	10	9	8	10	11	12	13	12	7	15	14	22	21	23
9	9	9	9	10	12	14	14	13	9	13	13	22	50	22
6	9	11	12	12	12	13	13	13	9	12	13	21	20	21
7/0	7/	9	14/	13/3	12/2	11/2	12	12	9	12	13	21	19	20
8	11	V ··	1.0 $\sqrt{.}$	1·-V·-	<u></u> V	IV	11	12	9	13	13	21	19	20
							10	11	9	13	13	21	20	20
							10	11	3	13	13	21	50	20
							11	12	9	12	13	21	20	20
							12	13	9	11	13	21	20	19
							13	13	9	11	12	21	25	19

SPEC 3.1 NTF 9 X 12 ACCESS OPENING SHELL

0 55 SCALE

		- 18G							1 5	6	11	10	10	
8								A	权	5	10	10	10	
6		43								ч	9	10	10	
5		~ 7		A					3 4	ч	9	10	10	
5	q	5/4/4		ST.				5 Y	/ 		10	10	10	1
5	5	5	5	5 6 7		2300	\$ 7					10	10	1
6	6	6	6	6	7	7	7		ь				10	1
7	6	6	5	5	6	6	6	6	5	5	10	10		4
		U	ч	ц	5	5	6	6	5	5	10	10	10	·]
	ļ	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4/	5 /	5	5	6	5	5	10	10	10	
/7	5	3/3	3 /3	14/14	1 /5	-		6	5	5	10	10	10	
							1	-	5	5	1.0	10	10	
						-	 	-	5	5	10	10	10	
						-	+		5	5	10	10	10	
							4	+	→ 5	5	10	10	10	
						5	5	6	5		1.0	10	10	
	6 5 5 5 6 6 7 8 6 6	6 6 5 5 4 5 6 6 6 7 6 8 6 6 5 5	8 8 9 6 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 9 6 5 5 6 6 6 6 7 6 6 5 5 6 6 6 6 5 5 6 6 6 6	8 8 9 8 8 6 6 7 7 7 6 6 5 5 6 6 6 6 7 7 6 6 6 7 7 6 6 7 7 6 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 7 6 6 7 7 7 6 6 7 7 7 6 6 7	8 8 9 6 6 6 6 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6	8 8 9 1 1 6 6 7 6 7 7 7 6 6 6 6 6 6 6 6 6 6 6	8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	8 8 9 8 8 9 1 5 6 6 6 7 7 7 6 6 7 7 7 6 6 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 5 5 9 5 5 5 9 5 5 5 9 5 5 5 9 5 5 5 9 5 5 5 9 5 5 5 9 5 5 5 9 5 5 5 6 6 6 6 5 5 5 6 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 6 6 5 5 5 5 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 8 9 1 5 10 6 6 7 7 7 7 6 5 5 10 6 6 6 5 5 10 6 6 6 6 5 5 10 6 6 6 6 5 5 10 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 5 5 10 6 6 6 6 5 5 10 6 6 6 6 5 5 10 6 6 6 6 5 5 10 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 6 5 5 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 8 9 1 5 10 10 10 6 6 6 7 7 7 7 6 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10

NTF 9 X 12 ACCESS OPENING SHELL

SPEC 3.1 o 55 SCALE

												and the second second		
8	8	7									6	12	10	13
6	6	5	3	A					A		5	11	10	12
ų	ų	2	3 13							23 %	Ч	8	9	10
ų	4	3	3/2		A PART	723 Dr o	Tayer			1 -5 4	Б	9	9	9
ч	5	Б	ч	5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				5 6	-5	5	9	9	8
7	6	6	6	6	6	7	7	9	9	_ q	6	10	10	8
10	8	7	6	5	5	S	5	7	9	-2	6	11	10	9
12	9	7	3	ч	4	4	4	6	9	-5	6	11	10	9
10/11	10/8	7/5	3/1	2 3/2	3 3	3 4/5	5	6	18	-5	6	11	10	10
	Y	-	· · · · · · · · · · · · · · · · · · ·	- Y			7	7	8	-3	5	10	10	11
				· .			8	7	8	-3	5	10	10	11
							. 3	8	8	-3	5	10	10	11
							8	7	8	-2	Б	10	10	11
							6	6	8	-1	6	11	10	11
							6	6	8	-1	6	11	10	11

NTF 9 X 12 ACCESS OPENING

0 55 SCAL.F.

			4 USA							3	5	10	11	7
7	7	9 1							Æ		5	9	11	9
7	7	7								5 7/	4	9	11	10
6	6		6 3						3	4 / 9	ч	10	11	11
6	5	6	6 5	6		344		14 14 1 8 5 5	2 ⁵ 5	12	4	13	11	12
6	5	5	6	4 9	8 5 5	27	9 3	5 5	4		ч	10	10	12
6	6	5	5	6	6	7	7	5	3	7			<u> </u>	
7	6	6	5	5	6	7	ī	5	3	7	5	10	10	11
	-		5	5	5	6	6	5	3	7	6	10	10	11
5	6	6	6/	5/	5/	5/	6	5	3	7	5	10	10	10
5 5	2/5	3/5	1 4	3\/5	5 5	6 5	-	5	9	7	5	10	10	10
							4		3	-,	5	10	10	9
							5	5,	+	-	5	10	10	9
							5	Б	3	7		 	11	8
							5	5	3	7	5	10		
							ч	ч	3	7	Б	10	11	3
							3	14	3	7	5	10	11	9

SPEC 3.1 NTF 9 X 12 ACCESS OPENING

Q <u>55</u> SCALE

				<u> </u>														
	8	6	8	8	8	9	8	8 8	8	1	8/7	/ ,\	7/7	7 (5/6	6	6	7/
	5	6 5	7	7 /8	9	9 /11	10 10	10 9		8	9/8	- Y-	77	7/	6/6	6	7	8
	3	Ч	8	8	11	13	1112	11/12	K	10/	1/3	9 0	$\frac{8}{8}$	*7	6	6	6 7	7
	2	3 2	5 4	7 5	11	14	1	15/12	5		10/10	8	8/7	M	6	6	6	В
1	1	1 0	3	3	9 7	15 15	13/15	[7/13]			19/1	1	7/	6	7 6	6 6	6	6
	1	-5	3	-2	4	13			X	18		$\nearrow \langle$	7 7	6	6	5 6	5	7
									対が	が西外	\sim	107	8 7 7 7	6	6	5 5	5	6
								16	14	12	Γ.	8	7	6	6	5 5	5	7
								14	13	11	10	8	6	7	5	6	6	6
								12	12	11	9	8	7	7	\downarrow	5	6	8
								-	11		9	7	6	6 5		6	6	7/
								11	10	9	8	7	6	6	\checkmark	6	/ 7	B

SPEC 4.1 NTF 9 X 12 ACCESS OPENING

Q 21 SCALE

						Κ	Λ.	-	7	-	1		•	. 	7		/	
11		10		9		10	1 · \	9	8	7	//	7		6		7/	6	7/
	8		9	/	10	8	/ ⁹ \	\bigvee	<u> </u>	/ -	'_	$\stackrel{\prime}{\longrightarrow}$			<u>/ </u>	< 7	/7	8
	2	5		11	0 /13	12/14	13/		10	\/	8	3/{	8	1/	1/2	7	/ '	
6	/ 3	7	/7	8	15	1218	14	6 R	137		11/2	3		87	7/	5	7/	7
3	ų	6	6	10	9	10 19	131	1	15	, ,	10	\e >	Za l	7/e	7	7	8	
3	3	6	6	11	12	13/4	12	11	\swarrow	1	\\ \ \	8		W	1	7 6	7	9
2	2	5	5	12	13	135	25/1	23	(10)		(8)	(3)	Y	9/6		6	6	
2	1	5	3	13	15		1	X	$\stackrel{?}{\rightarrow}$	€.8		3	6 /	74	6 6	6	7	7/
1	1	5	1	15 21	14		关	沙	×	5	$\langle z \rangle$	\3	λ°	7	4	5		8
3	_7	12	-14	51	10	Z Z	2			₹. 1.3	~:~	G / I	4/5	5/2	4	5	5	
								汉	米	£		\mathcal{M}	5	\\\2	3	24	4/	6
							3	资	於	300	8	56	3	57	5)	3	6	
								13		9	7	5	4	3	3/3	2 4	5	7
								13	13	12	10	8	1	3		3 /	4	6
								12	10	8	6	4	ц	3	ς 	3	4	6
								11	10	8	6	ч	2	5	\nearrow	3 /	3 /	4/
								-	-					K	1	3	3	4
								10	10	10	9	7	2	ų	<u>\</u>	V	/	

SPEC 4.1 NIF 9 X 12 ACCESS OPENING

0 21 SCALE

														·		
5	5	6	1	,, /	3	8	/ ₇ / ₈	/7	- 1	8/7	8	7/6	7 6	6	7 / 6	7/8
5 9	9	7 9	9	9	8 /9	8 6	7 6	1	7	8/8	3 7	8 6	7/6/6	6	/	/
4	5	7	10	12	17	10 7	8	K	5	7	7 5	$\frac{1}{8}$	7 6	6	6	6
1	ų	ų	8	11	15	115	15/1	10	χ_{i}	5 \r 1 \cdot 3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8 8	13/7	7 6	6	7
-1	2	2	6 4	10	16		20/15	1.5			!0\ ?	g ,	9 7	7/7	6	5
-1 -1	-1 3	-6	3 10	-13	15				() 2	\times	2/1	こヽヶ・	9 8	7 7	6	8
									S.	\times	150	12	()	8 6	6 7	6
							\$2 1	8 1	-	53 : 5 15 1			1310	9 /7	6	7
			•					5 1	13 1	11 5	9	13	12	9	7/	7
							ļ	2	13	13 1	2 1	10	11	8	9	9
								2 1		12 1		-	11 9	3 9	8 10	9/11
							Ľ	2	10	9	1 7	10	9	$V_{}$	<i>/</i>	V

SPEC 4.1

NTF 9 X 12 ACCESS OPENING SHELL

Q 21 SCALE

Figure 28

SPEC NTF 9 X 12 ACCESS OPENING 4.1 SHELL

SPEC 4.1 NTF 9 X 12 ACCESS OPENING SHELL

o 21

SPEC 4.1 NTF 9 X 12 ACCESS OPENING SHELL Q 21

10/1/1

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 0

SPEC 5.1 NTF 9X12 ACESS OPENING GUSSET

) 18 SCALE

Figure 32

10/1/1

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 1

SPEC 5.1

NTF 9X12 ACESS OPENING GUSSET

0<u>18</u> SCALE

SPEC 5.1 NTF 9X12 ACESS OPENING

<u>ι</u>ξ SCALE

Figure 34

SPEC 5.1 NTF 9X12 ACESS UPENING

Q 18 SCALE

Figure 35

10/1/1

DISPLAY= PS2 /1000 . NODE= 1 . SURFACE= 1

SPEC 5.1 NTF 9X12 ACESS OPENING GUSSET

Q 18 SCALÉ

SPEC 5.1 NTF 9X12 ACESS OPENING

Q SCALE

	1 ,	00101 11
12	11	11
12	41	10
13	11	8
16	13	4
_	8 16 16	7 4
23		1
23	/ 7	1
23	7	. / 1
21	7 7	1
18	7	1
14	6	2
10	6	2
10	7	3
3	5	6
27	3	3
-1	2	9
16	5	8
-3	2	9
¥	1	10

SPEC NTF 9X12 REINF.

0 SCA. E 14.

Figure 38

JL	1)	0011111
11	12	12
12	12	12
15	13	7
20	19	5
17/30	· · · · · · · · · · · · · · · · · · ·	5 2
29	/ 3	ч
26	/ 0	3
28	-2	2
30	_4	2
24	-3	0
20	-2	-1
18	5	-2
25	10	3
50		
7	9	9
28	11	13
0	.5	11
17	7	[[
-2	.	12
Б	6	13

SPEC NTF 9X12 REINF. 6.1 INNER RING Q 14 SCALE

Figure 39

12	11	9
12	10	8
12	10	8
12	7	4
25	21/20	9 7
22	19	-2
26 25	21	0 3
19 /	55	8
18	19	7
13	15	7
4	10	6
-6	ų	3
-2	i	3
26	7	4
-3	٥	6
14	э	5
-4	0	6
4	-2	6

NTF 9X12 REINF. INNER RING

O		-1			0	
-3		-2			0	
-4		-3	\int		-1	
-2	1	-2	<u> </u>	-	2	
-1/	5	-1 / -	1	-1	/-	3
3)		2	\mathcal{I}	-8	
0			3	I	-8	
0	$\perp I$	3		\perp	-8	_ :
0	1	2			-7	
0	\mathcal{T}^{-}	3		Π	-6	
0	7	3			-4	- :
-1		2			-3	11.7
4		-1			-2	
-27		-9			-2	
5		1			0	
-22		-6			0	
~6		1			0	
-10		-1			0	
-7		0			0	

SPEC NTF 9X12 REINF. 6.1 INNER RING

Q 14 SCALE

Figure 41

			- 00111	
0		1	0	
-2		0	-1	
-1		1	0	
3	I	8	-2	
-8 15 4 -2 -3 -6				
15 D -13				
13		-5	-16	
15		-7	-19	
19		-8	-23	
14		-6	-17	
13		-3	-12	
13	t^{-}	-2	-8	
19		-1	-3	
-28		-9	-3	
-3		3	0	
-23		-6	o	
-4		3	0	
-10		-1	0	
-6		t	0	

SPEC NTF 9X12 REINF. 6-1 INNER RING

O 14 SCALE

Figure 42

)L	1 7	
-1	-2	0
-6	-6	0
ę	-8	4
-7	-13	-1
E/-1	G -6 1	1 0
-15	3 / 2	-4
-15		-1
-23		0
-26	9	0
-20	1 8	1
-16	8	ı
-15	6	1
-11	-1	-2
-25	-8	-2
-7	-2	0
-21	5	0
-9	-2	0.
-1:	-2	Ö
-1	0 -5	0

SPEC NTF 9X12 REINF.

SCALE

SPEC 8·1 NTF 9 X 12 REINF CENTER TRIANGLES Q____6

SPEC 8.1 NTF 9 X 12 REINF CENTER TRIANGLES Q_____6

SPEC 8.1 NTF 9 X 12 REINF CENTER TRIANGLES

SPEC 8.1 NTF 9 X 12 REINF CENTER TRIANGLES ρ<u>SCALE</u>6.

Figure 46

Figure 47

SPEC 8.1 NIF 9 X 12 REINF CENTER TRIANGLES Q 6 SCALE

SPEC 8-1 NIF 9 X 12 REINF CENTER TRIANGLES Q F SCALE

Q <u>SCALE</u>

SPEC 5

9 X 12 REINF WITH 9 ET HOLE TRIANGLES AROUND 9 FT HOLE D SCHLE SH

SPEC 9.1 9 X 12 REINF WITH 9 FT HOLE TRIANGLES AROUND 9 FT HOLE o zy

10/1/1

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

SPEC 9.1 9 X 12 REINF WITH 9 ET HOLE TRIANGLES AROUND 9 FT HOLE q<u>24</u> SCA E

SPEC 9.1 9 X 12 REINF WITH 9 FT HOLE TRIANGLES AROUND 9 FT HOLE O 24 SCALE

SPEC 9.1 9 X 12 REINF WITH 9 FT HOLE TRIANGLES AROUND 9 FT HOLE Q 24 SCALE

DISPLAY= PS1 /1000, NODE= 1, SURFACE= 0

2	2	3	3	3	3	9	ų	ч	ų	5	5	6	6	7	7	7	7
3	3	3	3	3	ч	, 4	ц	5	6	7	8	9	10	11	12	13	13
4	ų	4	ц	5	6	6	7	9	10	12	14	15	17	18	20	20	21
3	4	ų	8	8	10	12	14	16	19	21	23	25	26	27	28	29	30

SPEC 9 X 12 REINF WITH 9 FT HOLE 10.1 9 FT PIPE SECTION 1

Q 11 SCALE *

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE=

4	ų	ų	ų	ų	4	5	5	\$	5	5	5	5	5	5	5	ц	ч	
2	2	2	1	1	1	1	1	1	1	2	3	5	6	7	8	9	9]
5	5	5	5	5	5	6	,7	8	9	11	13	14	32	33	19	23	33	1
5	6	7	9	-11.	14	17	20	22	25	27	29	30	32					3

SPEC 9 X 12 REINF WITH 9 FT HOLE

Q SCALE 14

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 2

Γ															-			
	1	1	1	2	2	2	3	3	ц	ц	5	6	7	6	9	10	10	10
	4	4	5	6	7	9	11	13	15	16	18	19	19	19	20	20	20	7.0
	3	3	3	4	5	6	7	8	10	11	13	15	16	18	19	20	21	22
				3	ų	5	7	3	11	13	15	17	19	21	22	23	23	20
	1	1	2		· 													

SPEC 9 X 12 REINF WITH 9 FT HOLE 10.1 9 FT PIPE SECTION 1

9 SCALE

DISPLAY= PS2 /1COC, NCDE= 1, SURFACE= 0

												1						
-2	-2	-2	-1	=1	٥	. 1		2	3	3	ų	ų	5	5	5	6	6	
-3	-3	-2	-1	-1	0	1	2	3	ч	5	6	6	6	7	7	7 2	7 2	
-1	-1		-1	0	0	1	1		2	2	2	2	2	5 5	2	2	2	
-1	-1	-1 -1	0	,0	0	0				1-	1-							

SPEC 10.1 9 X 12 REINE WITH 9 FT HOLE

Q SCALE

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 1

-7 -7 -8 -8 -8 -8 -8 -8 -6 -6 -6 -6 -6 -6 -6 -6 -7 -7 -7 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	3	2		2	2	2	2	2	2	2	3	3	3	3	ч	Ч	ч	ч	4
-2 -2 -2 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-7	7							-5	-8				-6			-5 5	-5 6
0 1 3 5 7 9 12 14 16 17 13 20 21 22 23 20										16	17		20	21	22	23	23	24	2.4

9 X 12 REINF WITH 9 FT HOLE 9 FT PIPE SECTION 1

SPEC 10.1 Q SCHLE:

Figure 60

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 2

-7	-7	-6	-5	-4	-9	-2	O	1	3	4	5	6	6	6	7	7	7	
1	2	3	ų	5	6	7	8	9	10	11	12	13	15	16	16	17	17	
O	0	0	0	0	1	1	1	2	2	1	1	1	O	0	-1	-1	-1	
-2	-3	-4	-6	-7.,	-9	-11	-13	-14	-16	-17	-18	-19	-19	-20	-20	-20	-20	
				<u></u>		l		L										

SPEC 9 10.1 9

9 X 12 REINE WITH 9 FT HOLE 9 FT PIPE SECTION 1 Q 11 SCALE

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 0

7	7	7	7	6	6	5	5	ц	ц	ų	3	3	3	3	3	2	2
13	13	12	12	11	10	8	7	6	5	5	ч	Ч	3	3	3	3	3
22	21	20	19	18	16	14	13	11	9	8	7	6	5	5	ц	4	ц
31	31	30	29	28	27	25	23	21	19	16	14	11	9	7	5	4	3
							L										

SPEC 9 X 12 REINF WITH 9 FT HOLE

Q 1 SCALE

Figure :2

11.1

DISPLAY= PS1 /10CC , NODE= 1 , SURFACE= 1

4	5	5	5	6	6	6	7	7	7	7	7	6	6	6	5	5	4
9	9	8	7	7	6	5	ų	3	3	2	2	2	2	8	2	2	2
35	36	36	19 35	34	16 33	14 31	12	11 27	24	21	18	6	12	5	5	5	5
													12	15	В	6	

PEC 9 X 12 REINE WITH 9 FT HOLE 1.1 9 FT PIPE SECTION 2

SER F

DISPLAY= PS1 /1000 . NODE= 1 . SURFACE= 2

11	10	9	8	7	6	4	3	2	2	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0	٥	0	0	D	1
21	21	21	21	20	19	18	17	15	13	11	9	7	6	ų	¥	Э	3
22	22	21	50	18	16	15	13	11	9	8	7	6	5	Ч	3	3	3
56	26	25	24	23	21	19	17	15	13	11	o	8	6	ų	3	2	2

SPEC 9 X 12 REINF WITH 9 FT HOLE

Q 11 SCALE

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

6	5	5	5	5	ų		4	3	2	1	0	0	-1	-2	-2	2	-8
7	7	7	7	7	6	6	5	ų	3	2	1	O	-1	-2	-2	-3	-3
2	2	3	3	3	2	2	2	2	1	1	1	0	0	-1	-1	-1	-1
2	2	2	2		2	2	2	2	5	1	1	0	0	0	-1	-1	-1
										-	L						

9 X 12 REINF WITH 9 FT HOLE 9 FT PIPE SECTION 2 Q SCALE 11

DISPLAY= PS2 /100C , NODE= 1 , SURFACE= 1

ų	ч	ų	4	4	5	5	5	Б	5	ч	4	ų	Ч	ч	3	3	3
-7	-7	-7	-6	-6	-6	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7
5	5	5	ц	3	2	1	O	-1	-i	-2	-3	-3	-3	-3	-3	-9	-3
23	23	23	23	23	22	21	20	18	16	13	11	8	5	3	2	0	0

SPEC 11.1

9 X 12 REINE WITH 9 FT HOLE 9 FT PIPE SECTION 2 Q_____11

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 2

	7	7	6	6	5	ų	3	2		-1	-3	-4	-5 .	-6	-7	-8	-8	-6
	18	17	17	16	14	13	12	10	3	8	6	5	4	4	3	2	1	1
	0 -19	0 -19	1 -19	1 -18	-19	-18	-17	-16	-15	-13	-11	_ u	<u>4</u>	3 -5	_q	-3	-2	-2
. 1		!		1														

SPEC 9 KT12 REINE WITH 9 FT HOLE

Figure 67

NTF 9 X 12 ACCESS OPENING F_{iq} 69 SPEC 1.1

	ti kan mengeleng bilangkan mengebagai pengengan bilanggan kebagai pengengan pengengan pengengan pengengan peng	n was din languagan nga Malil
BYDATE		SHEET NO
CHKD. BY DATE	Fixite Element Analyses of	JOB NO
CHRD. BI	Side Access Deer	

Reference Drawing LE944471

رما ساجه علاجر نواقع موجود بيروا به ياسا موجود الله ساخا والما بالماسات الماسات الماسات

SPAR (a finite element computer code developed + maintained by Engineering Information System, Inc. under NASA contract NASB-30536 and NASI-13977) was used to analyse this region of the pressure shell the region was modeled using, triangular and guadrilateral, membrane plus bending flat aeolotropic elements

The final configuration shown on LE 744471 is slightly different firm the configuration modeled.

The place is now the souling surface with all the stiffner ingulation above the place (Total hight place + stiffner for the souling since and 14.5" high stiffner for the souling since and 14.5" high stiffners

The total height (sealing stiffner + plate + stiffner) is 17.0".

It was judged that these discrepancies would have min. estect on the Door I Plenum nesults.

One-quarter of the door was modeled. The horizontal and vertical & of the door were planes of symmetry.

A computer plot of the door is show in Fig 1A. The model consist of 606 joint with 6 DOF at each joint except where boundary condition were applied and notation about an axis I to a plate element was restricted as required

	SUBJECT	SHEET NOOF,
BY		IOR NO
CHKD. BYDATE		

The joint numbers and shell section properties are shown in Fig 2 thru 11

The section properties and thicknesses are listed below

Shell Section Property	Thickness
	1.6
	1,5
	1.5
	1.5
	0.75
6	1,56
	1.50

BYDATE	SUBJECT	SHEET NO. 5
CHKD. BYDATE		JOB NO.

Boundary Condition

Plane 13 is plane of symmetry Plane 23 is plane of symmetry

Force displacements (IN the 3 direction) obtained from combining the Door & Plenum models were applied to the edge of the Door ise discussion on combined Analyses.

(p. 9 Plenum Analyses)

BYDATE	SUBJECT	SHEET NO.
CHKD. BY DATE	***************************************	JOB NO.

Loading

P= 119 psi (design pressure) was applied as nodal pressure to the joints of the pressure surface.

For vacuum condition, -15 psi was applied as nodal pressure to the soints of the pressure surface.

Combined Door + Plenum Analyses

See discussion in Finite Element Analysis of Mccess Door Reinforcement (Pienum (p. 9 Vol. 3 Part 1)

		SHEET NO OF
BY DA : C	SUBJECT	IOB NO.
CHKD. BY DATE		

Fesults

Nodal stresses are presented in Fig 12 thru 69.

The max principal stress (PSI) or min.

principal stress (PSZ) are given for

the mid-surface (surface 0), the

it: Itner bar side of the plate

(surface 1), and the sealing

surface side of the plate (surface 2).

The stresses plotted and for joint 1

It the element. As an example

(neterance Fig 2), for the element

Jetiness by joint 1,67,66, 2

joint 1 for that element 15 1

Nodal stapsses for one joint are given from 4 elements (for quadrilateral siments). If any discrepancies axist in the stapsses for a joint, the large value is used in the salvest in the salvest.

BY	DATE
CHKD, BY	DATE

SUBJECT

SHEET NO. 8 OF....

Max. at joint 1 (Fig 12)

T, = 13.47 KST

Oz = 1.15 KSI

Tz = - .119 = - .06 KS7

Siz = 13.47 - 1.15 = 12.32 FET

523 = 1.15 - 1-0.06 1.21 KSI

3,=-.06--11242-1232

 $P_{m} = |-1253| = |13.5 - 125$

Pm & Jan

13.53 < 31.7 A = 01

BY	DATE	
CHKD. BY	DATE	

SUBJECT____

SHEET NO... 9 OF......

Bunding Stress in Plate (P=119ps.g)

Max at joint 233 (Not now on plots)

T, = 21.12 KSI

 $\sigma_2 = 13.55$ KSI

O3 = -. 119 KSI

 $S_{12} = 21.12 - 13.55 = 7.57 KSI$

Sz. = -. 12 - 21.12 - - 01.24 FSI

Pb = 1-21,24 |= 21.24 KIT

Pb = 1.35m

21,24 = 1.5(:1.7)= 47.5 For U.K.

SHEET NO.../O__OF____

+ner Bor

Max siness Joint 54 (Not shown on shies=
(P= 119 psig) (Ban A) plot)

J, = 0.10 KSI

Jz: -37.52 KSI

T3 = 0

S. = 0.10 - (-27.32) = 37.62 Kal

S23 = - 37.52 - 0 - 37.50 KSI

-2, = 0 - 0.10 = - 0.10 K 3:

Pb = 1 3 1.6 - 1 = 37.6 2 / 31

P = 1.5 5m

 $37.62 \leq 1.5(31.7) = 47.5 + 54 + 64.$

	SUBJECT	SHEET NO/OF
BY		IOB NO.
CHKD. BY DATE		

For relative d. placement between the sealing surfaces of the door and plenum opening for internal P= 119 psi see Table 1 p. 12 of Finite Element Analyses of Access Door Reinforcement (Plenum).

For nelative displacement between sealing surfaces of the chour and plenum opening for vacuum along with dog loads under under vacuum, see Table 2 p.14 of Finite Element Hadrisis if Heces: Feinturcement (Plenum).

BYDATE	SUBJECT	SHEET NO. 12 OF.
		JOB NO

rly dro Tost

Pressure on Door during hydro, tost.

$$P_{H} = 1.5 (119) + 62.4 (\frac{1}{144}) [\frac{41}{2} + 4.5]$$

$$P_{H} = 175.5 + 10.83$$

$$P_{H} = 189.3 psi$$

$$5 = \frac{189.3}{119} \left(21.12 \right) = 33.59 \text{ Psi}$$

The Door meets the nyclro test

JRR 13.

BUCKLING OF SIZ DOOR STIFFNER'S

us. Simply Supported Brown Analysis!

for 18 section of derri-

 $M = \frac{\omega l^2}{8} = \left(\frac{119 \, 15F}{10^2}\right) \left(\frac{18in}{8}\right) \left(\frac{102in}{8}\right)^2 = 3.123 \times 10^6 \, \text{m} \cdot \frac{15F}{10^2}$

From Rock Case 15 Sect XX por with ends hald verdiclar not fixed. The property of the property

M'= 1162 [1-1634]

(a) (3.5.1) (1-163 15)

m'= 1.198 x107 ...-15=

it is in a conservation because it moglants restraint

SPEC NTF 9 X 12 DOORS ______

2 to 40 dailying

DOLLYIG' NI A JOH

ุ่นทหทบอาหฯกคอ (BrศAหูว อั∗เอลอุอัปุศ⊠

Figure 1 A

SPEC NTF 9 X 12 DOORS
1.1 ___!L___

Q 13 SCALE

Figure 1 B

13	79	3	101	123	145	211	233	255	277	343	365	387	409	475	497		
									,		1	1	1	1	51	9	
1. 1	78	, 1	1 100	122	1 144	1 210	232	1 254	1 276	342					W961	≥ ₹811	
12	- 7/8		104	122	144	210	212	234	7.6	232	104	100	300	14.1		1 541	n
1		1	1	1	1	i	1	1	1	1	1	1	1.	1.	1		
11_	77	7	99	121	143	209	231	253	275	341	363	385	407	473	495	<u>817 \</u> 5	39
		1	1	1	1	1	1	1	. 1	1	1		1	1	1	₁ \	
10	76	- 1	- 1	1 -			_		274			1		}. ~	494	516	538
10	-14	-		1.0													
i		1	1	1	1	i	1	1	1	1	1	1	1	1	1	1	
9	75	5	97	119	141	207	229	251	273	339	361	383	405	471	493	515	537
1			1	1	1	1	1	1	1	1	1	1	1	ı	1	1	
	74			•			· .	i -	272	338		382	404	470	492	514	536
-		1															
1	1	1	1	1	1	1	1	1	. 1	1	1	1	l.	1 . 1	1	4	
7	7:	3	95	117	139	205	227	249	271	337	159	381	403	469	491	513	535
1		1		1	1	1	1	1	1	1	1	1	1	1	1	1	ļ.
_ `	72	7	94	116		I	-	248	270	336	358	380	402	468	490	512	534
										1 4 1							
1		1	1	1	1	1	1 1 "	1	1	1	1	I	1	1	i	1	
5	71	1	93	115	137	203	225	247	269	335	357	379	401	467	489	511	533
ı		1	1	1	1	1	1	1	1	1	1	1 1	1	ı	1	1	
4	70	ا م	92	114	136	202	224	246	268	334	356	378	400	466	488	510	532
										1							1
1 1		1	1	. 1	1	1.	1	1	1	1	1	1	1	1	1 487	1	531
3	6	9	91	113	1.35	201	223	245	257	333	355	377	399	465	447	509	1931
1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2	61	8	90	112	134	200	222	244	266	332	354	376	396	464	486	508	530
														1		1	
1		1	1	1	1	1	1	1	1	331	1 153	175	397	463	485	507	623
1	16:	7	89	ші	133	1199	221	1243	265	1221	בבו	11/3	117/		1700	WH	ب ے بار

SPEC

NTF 9 X 12 DOORS

O SCALE

SCALE

O SCA

Диссовойма фильта, самина асминаса советовляся — вингла, иму так

CO ,ON

		56	57	58	53	60	61	,62	63	1 54	1	- T. I
54 4	ч	ц	4	ц	ų V6	4 47	ц ча	4 49	ч 50 —	¥ 51		
41 4	42	ч	ų	4	ч	ų	4 35	ų 36	4 37	39	7.9	_ti.
<u>98</u>	4	10	ц	ц	ч 20	ų 21	ų 22	23	4 24	25	ee .	_ <u>;</u> ;
15. 4	16 4	ų	4	1	ц 6	7	ų 8	ц 9	ц 10	4	12	—. :
Ü												

SPEC NTF 9 X 12 DOORS 3-1 STIFFENER BAR A 52-2

CAENT SELLION PROPERTY S

Fqure 3

	186	187	188	189	190	191	192	193	194	195	196	197	198
						and in the				e Postantina			
	7	7	7	7	7	7	7	7	7	7	7	7	
	173	174	175	176	177	178	179	180	181	182	183	184	185
													•
	7		7	7	7	7	7	7	7	- 7	7	. 7	
	160	161	162	163	164	165	166	167	168	169	170	171	172
	7	7	7	7	7	7	7	7	7	7	7	7	
	147	148	149	150	151	152	153	154	155	156	157	158	159
- 1													
	7	7	7	7	7	7	7	7	7.	7	7	7	
	133	134	135	136	137	138	139	140	141	142	143	144	145

SPEC 4.1 NTF 9 X 12 DOORS STIFFENER BAR B

Q 8 SCALE

Зассовдіма СВУНІВІ снивніс спинента піньніми внитися вим и

00 0

gue to

	اد_	319	320	321	322	323	J24	325	326	327	328	329	330
-	7	7	7	7	7	7	7	7	7	7	7	7	-
	305	306	307	308	309	310	311	312	313	314	315	316	317
	7	7	7	7	7	7	7	7	7	7	7	7	
	292	293	294	295	296	297	298	299	300	301	302	303	304
	7	7	7	7	7	7	7	7	7	7	7	7	
	279	280	281	282	283	284	285	286	287	288	289	290	291
	7	7	7	7	7	7	7	7	7	7	7	7	
	265	266	267	268	269	270	271	272	273	274	275	276]277

SPEC 5-1

NTF 9 X 12 DOORS STIFFENER BAR C

ELEMENT SECTION PROPERTY GROUPS SCALE

liquie

450	451	450	453	454	455	456	<u> 457 </u>	<u> 450</u>	<u> 455</u>	1	781	7,00
6	e	S	6 440	5 441	5	5 443	5	5 445	6 446	S 447	ह पुष्रह	443
5	5	5	5	5 428	5	5 430	5	5 436	5 433	S 434	S 435	436
e dsd	S	E	6 414	S	S	5	5	§	5 420	S 421	455	423
<u>411</u> 5	412	919 5	5	5	S 402	S 40 9	5 404	5 40S	5 406	5 407	5 40 8	403

SPEC 6.1

NTF 9 X 12 DOORS STIFFENER BAR D Q SCALE

Figure 6

FLEMENT SECTION PROPERTY GROUPS

552	583	584	585	S86	587	588	583	550	531	532	533	1594
e	6	5	و	5	5	ę	٤	2 577	2 578	2 579	2 580	Sei
569 2	570	571	<u>572</u> 2	573 2	574 2	575 2	576 2	2	2	2	2	_ 561
556	567	558	559	560	561	562	563	564	565	566	567	568
٤	2	2	و	٤	e	٤	s	٤	e	5	2	
593	544	545	546	547	548	549	550	551	552	553	554	<u> </u> 555
٤	. 2	2	٤	2	2	٤	2	2	2	2	2	
529	530	531	532	533	534	535	536	537	538	539	540	541
و	2	2	l e	L 2	2	2 .	2	2	2	1002	co2	

Fjure 7

NTF 9 X 12 DOORS STIFFENER BAR E

ELENENT SECTION PROPERTY SROUPS

5	33	547	560	573	586
	6	6	6	6	
5		521		525	527
Γ				i.	}
ļ.	6	6 499	6	6 503	505
٦	83	43.1	5111	1	303
	6	6	6	6	
μ	67	477	479	481	483
	6	6	6	6	
			428	441	454
	6	6	6.	6	
3			391		395
ſ		1	l .	}	
L	6	5	6 369	371	373
۲			ļ		
	-5	6	6	6 349	751
-	35	345	1347	7	139,
	6	5	6	5	
1	269	283	236	209	322
Ì	6	6	6	6	
2	47	257	259	261	263
	6	6	6	6	
į	25	235	237	239	241
1	6	6	6	6	
1	203	213	215	217	219
	6	_	6	6	
	137	151		177	190
1			1 4 .		
	6	6	5 127	129	131
	115	1125	HET.	11.5-	7'
Ì	6	6	6	6	
١	93	1103	105	107	109
	6	6	6		
	71	81_	83	86	87
	6	6	6	6	
	<u>s</u>	19	32	45_	68

SPEC 8.1 NTF 9 X 12 DOORS STIFFENER BAR F

00 ,oN

PERHIDINAN

Mich will a tribe abstance

SCALE

File 3

ELEMENT SECTION PROPERTY GROUPS

)<u>Thaholomid</u>essarz

54	2541	555	<u>568</u>	581	_594
25 2	1513 1513	3 522	3 524	3 526	_ 528
	3 8497	1		3 504	50e
2	1	3	3	3	
47	F475	478	480	482	484
2	1	3	3	3	
त्रा	daoa -	423	436	449	462
2		3 390	1	3	396
2					
	1	3 368	3 370	3 372	374
2	3	3	.3	3	
341	343	346	348	350	352
1 -	3	3		_	
27	277	291	1304	317	330
2	3	3 258	3	3	
256	255	258	260	262	264
2	3	3	3	3	
234	233	236	238	240	242
2	3	3	3	3	
212	211	214	216	218	220
2	3	3	3	3	
146	145	159	172	185	198
5	3	3	3	3	
124	123	126	128	130	132
2	3	3	3	3	
102		104	106		110
2	3	3	3	3	
BO.	79	82	84	86	88
8	3	3	3	3	
14	13	27	40	63	66

SPEC

NTF 9 X 12 DOORS STIFFENER BAR G

SCALE

00 .oV

```
ELEMENT SECTION PROPERTY GROUPS
```

```
542541
 2
520619
 2
498497
 2
 476475
 2
410409
 5
 388387
366365
344343
278277
256255
234233
146145
124123
2
102101
2
80 79
2 14 13
```

'EC].1 NTF 9 X 12 DOORS SEAL FLANGE - TOP

74 - 94 STARBORDING DARRIEL ERECHOLOGIC CONFIDERCION BUFFALO, NEW YORK

Q 11 SCALE

 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541

 595
 536
 2
 536
 2
 600
 2
 602
 2
 603
 2
 604
 2
 605
 606
 642

SPEC 11.1

11.15

NTF 9 X 12 DOORS SEAL FLANGE - SIDE

SCALE

ELEMENT SECTION PROPERTY GROUPS

DISPLAY= PS1 /1000 , NODE= 1 . SURFACE= 0

2	2	i	2	3	3	1	1	ч	3	2	1	3	2	2 1 2	À
5	3	3 .	4	5	ų	3	3	• 5	4.	3	2	ц.	3	2	2 2
6	5	ц	15	7	6	ц	ц	6	5	ц	3	દ	ч	3	2
8	6	Б	6	g	6	5	S	7	6	5	ц	6	5	ц	Э
9	8	7	8	9	7	7	6	В	7	6	5	7	Б	4	3
10	9	9	9	10	9	В	7	9	7	6	6	7	6	5	ų
11	10	10	10	11	9	9	8	9	B	7	6	7	6	5	S
12	11	11	10	11	10	9	9	10	8	8	7	7	7	6	5
13	12	11	11	18	11	10	10	10	9	8	7	6	5	5	ч
13	12	12	12	12	i i	11	10	10	9	8	8	7	6	5	ц
13	13	12	12	13	12	11	11	11	9	9	8	7	6	5	3
13	13	12	12	13	12	-11	11	11	10	9	8	8	-6	5	3

SPEC

NTF 9 X 12 DOORS

Q 11 SCALE

Y 5 0 HL 23 (11)H1

SALTOTORNA CHARTS! BELANCE COMPONED OUR CONTROL ON YORK

30

DISPLAY= PS1 / 1000 , NODE= 1 , SURFACE= 1

									·				1			
[,	•	O	-2	2	s	o	-2	1_	6	L	¬L	L	6	-L	1	De la companya della companya della companya de la companya della
1	ч	-2	-2	L	14	-2	ત્ર	L	14	7	শু	O	13	-2	-2	4
	8	1	-1	3	18	i	-1	2	18	ı	-1	1 .	18	-1	-3	0 \
	9	3	1	ч	19	3	0	3	19	3	0	2	20	1	-3	0
-	18	5	2	ч	19	5	1	3	19	ц	σ	2	20	2	-3	0
			2	s	17	6	1	3	17	5	0	2	17	3	-2	G
-	16	6			12	8	4	4	12	7	3	2	to	6	1	2
ŀ	12	8	5	5				12	6	13	17	11	ų	14	19	9
	7	14	[9	13	7	13	19	12								
	14	7	6	8	14	6	5	7	11	4	3	5	7	1	ı	3
	16	6	6	8	16	6	ч	7	14	ų	2	5	14	-1	-1	2
-	18	8	6	9	17	7	5	8	17	6	3	6	18	1	-2	1
-	18	9	6	3	18	В	5	8	17	6	3	Б	19	2	-2	G
		1			1							4	i i i i i i i i i i i i i i i i i i i			

SPEC

NTF 9 X 12 DOORS PLATE ONLY

00 '0N

Fig 13

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 2

1	5	5	3	2	6	5	2	2	6	6	2	t	6	3 4	\geq
-1	B	8 ,	6	-1	9	8	5	÷1	9.	9	ч	-1	Ð	8	3 3
1	8	10	8	1	9	11	6	I	9	11	5	-1	ø	12	5
3	9	12	9	3	9	12	8	2	3	12	6	o	9	13	6
5	11	13	11	4	10	13	10	3	10	13	В	l	9	13	7
7	15	15	13	6	12	14	12	5	10	13	10	2	9	13	8
10	12	15	14	10	11	13	13	9	9	11	10	7	7	10	8
17	8	2	8	16	7	0	6	14	5	0	3	11	3	-3	3
11	17	16	15	10	16	15	13	8	13	12	3	5	10	8	5
10	18	18	15	9	17	17	13	7	۱S	14	10	3	12	12	8
10	17	18	16	10	16	17	14	8	13	14	10	3	., 1	14	6
10	lf	18	16	10	15	17	19	8	13	14	11	3	10	14	6

SPEC 2.1 NTF 9 X 12 DOORS

Q L1.

ARU HI DATHIRH

STREET STREET BUILDING CONTROLS CEAPONATION BUILDING NEW YORK

gō Jay

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

										Т		T	1		10	
	-3	-1	-1	-2	_ 4	-2	-1	-1	_4	-2	-1	0	-3	-1	-1 -1	<i></i>
-	-2	-1	0	-1	-3	-1	0	O	-3	-2	-1	σ	-2	-1	-1	1 1
-	-1	0	0	-1	-2	-1	0	0	-2	-1	0	0	-2	-1	-1	0
-	-1	O	0	0	-1	0	0	O	-1	0	0	O	-1	-1	o	0
+		0	1	0	-1	0	1	1	-1	0	1	1	-1	0	0	0
		1	1	0	0	1	1	1	0	t	1	1	O	0	0	-1
	0			1	ı	1	1	2	1	1	2	2	0	0	0	-1
	0	1	1				2	2	1	2	2	2		Ð	0	-1
	. .1	1	1	1	1	2		2	2	2	2	2	2	1		i
	1	1	1	1	1	2	2		-			-	1	1	o	0
	1	t	1	1	1	2	2	1	1	2	2	1				O
	1	ı	1	1	ı	1	2	1	1	2	1	1	I.	1		
	1	ı	1	1	1	2	2	1	I.	1	1	1	1	1	0	0

SPEC 2.1 NTF 9 X 12 DOORS

Q L1 SCALE

SHINGED IN D.Z.Y.

ран тонана с нувје] енувни сомиосе совромуном инегло игм ханк

20 35

DISPLAY= PS2 /1000 . NODE= 1 . SURFACE= 1

						· 1								_	
1	_4	-3	-2	-2	-4	_4	-1	-2	-5	-4	-1	0	·-s	0 4	A
6	-5	-8	-5	5	- 6	-8	_ 4	5	-6	-8	-3	5	-7	-8	-1
8	_4	-10	-5	8	- 5	-10	-4	7	5	-10	-4	7	7	-11	-3
10	-4	-11	-4	9	Ţ	11	4	8	-S	-11	3	9	õ	-12	-4
11	-4	-10	-4	11	-4	-10	щ.	10	_4	-10	-3	9	-5	12	-5
11	-3	-9	-4	11	3	-8	-4	10	-3	8	-	6	ч	-10	-6
8	-1	-5	-4	8	0	Ч	-3	7	G	-4	-3	.4	- i	6	-5
-1	σ	5	2	-1	0	6	ų	-1	t	6	4	-3	2	7	1
7	-2	-3	-2	7	-2	-3	-1	7	-2	-2	-1	5	-3	-4	-1
14	_ y	-8	-3	14	-4	-7	-3	13	-4	-7	-2	11	-6	10	-5
16	-4	-10	_4	16	-4	-10	-3	14	-4	-10	-3	12	-6	-13	-6
17	-3	-10	_4	16	-3	-10	-3	14	-4	-10	-3	12	-6	-14	-6

SPEC 2.1

NTF 9 X 12 DOORS PLATE ONLY O SCALE

The Sacial Charles Conconding Control of the Contro

dj.

DISPLAY= PS2 /1000, NODE=

1. SURFACE=

2

10/1/1

										1	- 1	. 1	i		
- S	L	0	÷1	-6	0	0	G	-7	Ø	1	1	-6	2	2-2	NA.
-14	3	7	2	-14	3	7	3	-14	3	6	3	-13	ц	5	40
-17	ų	9	3	-17	3	9	ų	-17	3	8	ц	-17	4	8	5
-18	1	11	ц	-18	ų	10	ч	-17	4	9	ч	-19	ч	8	ч
17	5	11	ų	-17	ч	11	5	-16	4	10	5	18	ц	9	ч
-14	5	10	5	-14	5	11	6	-13	ų	10	6	-14	ц	9	ч
-8	2	7	6	-8	3	7	6	-7	3	7	6	-6	i	5	3
3	3	-2	-1	3	3	-2	O	ų	ı	-4	0	5	-5	-11	_ ų
-5	5	6	4	-5	5	6	ų	-3	6	6	ц	-2	5	5	2
-12		10	6	-12	7	11	6	-11	7	11	5	-12	7	10	5
-15		13	6	-15	7	13	6	-14	7	12	5	-16	7	11	5
-16		13		-15	6	13	5	-14	7	13	5	-17	7	11	б
1							_1	1			-1				

SPEC

NTF 9 X 12 DOORS

Q 11 SCALE

THE PARTY OF THE P

DISPLAY= PS1 /1000 . NODE= 1 . SURFACE= 0

Ø	0	0	i	-3	1	0	1	1	1	1	2
0	0	1	0	-1	.	2	2	3	3	ч	5
1.	2	2	3	3	ч	5	5	6	6	7	6
14	13	13	13	12	12	11	11	10	5	8	6

SPEC

NIF 9 X 12 DOORS STIFFENER BAR A O 8

remed and may be a well of the meaning and a part of the bear of the contract of the contract

Tiquie 18

PS1 /1000 , NODE= 1 , SURFACE= DISPLAY=

σ	G	G		-3	1	· a	L	ı	1	1	2
0	0	1	0	-1	1	2	2	3	3	4	5
1	2	2	3	3	*	S	5	6	6	7	6
14	13	13	(3	12	12	11	ú	10	9	8	6

SPEC IF 9 X 12 DOORS 3.1 STIFFENER BAR A

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 2

s	0	G	ı	-3	1	O	1	ţ	1	1	2
0	0	1	0	-1	ţ	8	2	3	3	y	5
1	2	2	3	3	ч	5	5	6	6	7	6
(4	13	13	l3	12	12	11	11	10	3	8	6

SPEC 3.1 NIF 9 X 12 DOORS STIFFENER BAR A) SCALE

MAY WAY CANTOOL TOTANDERDY ENGINEERS OFFICERS (PFRAES IN ORGANIES)

60.05

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

	-24	-24	-24	-22	-21	-20	-17	-15	-12	- -9	-6	-3
-	-12	-12	-11	-11	-11	-10	-5	-8	-8	-7	-6	-5
-		0	-1	-2	-2	-3	-3	-4	-4	-5	-6	-7
-	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			n		σ	σ	-1	-2	-3	-4	-6

SPEC 3.1 NTF 9 X 12 DOORS STIFFENER BAR A Q SCALE

DISPLAY= PS2 /1000 . NODE= 1 , SURFACE=

-24	-24	-24	-22	-21	-20	-17	-15	-12	-9	- 6	-3
-12	-12	-11	-11	-11	-10	-9	-8	-8	-7	-6	-5
ı	0	-1	-2	-2	-3	-3	-4	-4	- 5	-6	-7
	1	i	0	•	0	0	-1	-2	-3	-4	-6

SPEC 3.1 NTF 9 X 12 DOORS STIFFENER BAR A Q SCALE

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 2

-24	-24	-24	-22	-21	-20	-17	-15	-12	-9	-6	-3
-12	-12	-11	-11	-11	-10	-9	-8	-8	-7	-6	-5
1	0	-1	-2	-2	-3	-3	-4	-4	-5	-6	-7
1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1	O		O	0	-1	-2	-3	-4	-6

SPEC 13.1 NTF 9 X 12 DOORS STIFFENER BAR A Q SCALE

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 0

O	٥	0	1	-2	1	0	1	1	1 1	1	2
0	0		0	-1	1	1	2	3	3	ч	5
1	2	2	2	3	ų	ч	5	6	6	6	6
13	13	12 .	12	12	i i	11	10	5	3	8	6

SPEC 4.1

NTF 9 X 12 DOORS STIFFENER BAR B

0 8 SCA_E

Est organistic server in Contact Cobbress in Britain New York

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 1

10/1/1

O	σ	0	O	-2	1	1	1	1	1	1	2
0	i .	1	0	0	1	2	2	3	3	4	Ч
i	2	2	2	3	ų	Ч	5	6	6	Б	6
[3	13	12	12	11	11	11	10	3	3	6	Б

SPEC 4.1 NTF 9 X 12 DOORS STIFFENER BAR B

Q 8 SCALE

жем и аэтинч

ды завртие спувта, овение семпирся совьению вонгле, исм ховь

00 4

DISPLAY= PS1 /1000, NODE= 1, SURFACE= 2

	O	O	O	t	-3	o	0	i	ſ	1	1	2
-	0	0	0	0	-1	0	1	2	2	3	ų	5
	ı	1	2	2	3	ц	4	5	6	6	6	6
	13	13	12	12	12	11	11	10	3	3	8	6

SPEC

NTF 9 X 12 DOORS STIFFENER BAR B

SPTS MAN DIVINE NEW PROPERTY STEEDS STEEDS TO THEY " STEET SKIEDE, TO

90 HV

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

10/1/1

-23	-23	-23	-21	-20	-19	-17	-14	-12	-9	-6	-3
-11	-11	-11	-10	-10	-9	-9	-8	-7	- -7	-6	– 5
0	0	-1	-2	-2	-3	-3	-4	-4	-5	-5	-6
1	1	1	٥	σ	٥	0. se	- 1	-2	-2	-4	-5

SPEC 4.1 NTF 9 X 12 DOORS STIFFENER BAR B

SCALE

CALANTAL GRAPHIC CONTROL COMPLETE WITH ALL WILLIAM THINK PRINT

SURFACE= PS2 /1000, NODE=)ISPLAY=

-23	-23	-22	-21	-19	-18	-15	-14	-12	-9	-6	- 4
-11	-11	-11	-10	-9	-9	-9	-8	-7	-7	-6	-6
î.	0	-1	-2	-2	-2	-3	-3	-4	-5	- 5	-6
2	1	1	σ	0	O	0	-1	-1	-2	-4	-5

PEC NTF 9 X 12 DOORS .1 STIFFENER BAR B

Figure Z8

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 2

-23	-23	-23	-21	-21	~1 9	-17	-14	-12	-9	-6	-3
-11	-11	-11	-10	-11	-10	-9	-8	-7	-7	-6	- 5
0	0	-1	-2	-2	-3	-3	-4	-4	-5	-6	-6
	1	1	٥	1	0	0	-1	-2	-3	-4	-5

SPEC 4.1 NTF 9 X 12 DOORS STIFFENER BAR B Q 8 SCALE

совбіна сплагаї спланає сопівну приміта вперад, нем торк

DISPLAY= PS1 /1000 . NODE= 1 . SURFACE= 0

O	ø	0	0	-2	1	0	f	1	1	1	2
0	0	1	0	0		i	2	2	3	ų	ų
1	Ø	2	2	2	3	3	4	5	S	6	5
1.1	11	10	Ð	3	5	9	9	8	8	7	5

CODUCIBILITY OF THE INAL PAGE IS POOR

SPEC 5.1 NTF 9 X 12 DOORS STIFFENER BAR C Q 8'

ני אין בין פון און די שנאוט דינאויטרי בחוונים פעינער פורגערטי אי א גמו יי

20 24

DISPLAY= PS1 /1000, NODE= 1, SURFACE= 1

O	O	0	σ	-1	1	1	i		1	1	1
ı	1	i	0	0	1	1	2	2	3	3	ц
1	2	2	2	2	3	ч	ч	S	5	6	S
11	11	10	9	б	5	9	Э	8	6	7	5

SPEC 5.1

NIF 9 X 12 DOORS STIFFENER BAR C Q SCALE

STEED STREET CHARTEL GOVERNO BOTH TO BUTTALIN WY

DISPLAY= PS1 /1000 , NODE= 1, SURFACE= 2

O	σ	0	1	-2	O	0	C	i	-1	1	2
0	0	0	0	0	0	1	1	2	3	ц	5
1		2	2	2	2	3	4	S	S	6	6
10	10	10	- 3	10	3	9	8	8	7	6	5

SPEC 5.1 NTF 9 X 12 DOORS STIFFENER BAR C Q 8 SCALE

THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE CHARLES OF THE CASE OF THE CA

30 . 4

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

10/1/1

-19	-19	-19	-18	-16	-15	-14	-12	-10	-8	-5	-3
-3	-9	-9	- 9	-8	-8	-7	-7	-6	-6	-5	-5
0	0	-1	-2	-1	-2	-2	-3	-3	- 4	-5	-5
	1	1	0	G	٥	O	σ	-1	-2	-3	-5

SPEC 5.1 NTF 9 X 12 DOORS STIFFENER BAR C

Q SCALE

E NESCHARIAG LE YBART PLANAE CORE L'ERBENCATIA PERVIEU MEM AURE

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 1

-19	-19	-19	-18	-14	-14	-13	-12	-10	-6	6	-4
-9	-9	-9	-9	-7	- 7	-7	-6	-6	-6	-6	-5
í	O	0	- 1	-2	-2	-2	-3	-3	-4	- 5	-6
2	2	2	O	٥	0	0	O	-i	-2	-3	-5

SPEC 5.1 NTF 9 X 12 DOORS STIFFENER BAR C

Q SCALE 8.

A 2 U M G 4TH 44

дате савений сийй 1.5° семеня, томию в совеснытом вингасо, исм усе-

(i) u;

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 2

10/1/1

-20	-19	-19	-17	-19	-17	-15	-12	-10	-7	-4	-2
-10	-10	-3	-8	-9	-9	-6	-7	-6	-6	-5	-4
0	-1	-1	-2	-1	-2	-3	-3	-4	-4	-5	-5
o	σ	0	0	•	٥	0	-1	-1	-2	-4	-4

SPEC 5.1 NIF 9 X 12 DOORS STIFFENER BAR C

SCALE

A CH M GHAM

DECEMBRIAG TRABES COMPACTORNIDIS CORPORACON BUFFALO, NEW YORK

ac op

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 0

10/1/1 *

0	0	0	0	-1	0	0	0	O	1	1	ı
0	1	1	ſ	0	0	1	1	1	5	3	3
i	2	2	2	ı	i	2	3	3	ų	Ч	Ч
8	8	7	6	\$	б	6	6	6	6	5	ч

SPEC 6.1

NTF 9 X 12 DOORS STIFFENER BAR D

Q 8

THE CHERT CHEETS, AND BE SHALLONG GUBBOUNDER BUFFALO, NEW YORK

1.00

DISPLAY= PS1 /1000 . NODE= 1 . SURFACE= 1

10/1/1

Ø	0	σ	0	σ	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0	g	O	1	i	1	
í	i	i	0	-1	1	1	i,	1.1	2	2	2	
2	2	3	2	0	2	2	3	3	4	4	¥	
8	8	7	7	3	?	6	6	6	6	6	4	

SPEC 6.1 NIF 9 X 12 DOORS STIFFENER BAR D

VED NI GHTNIN

дие солотио сизитей наменю сомтвого попроприом золтби о, мем уорк

00 00

DISPLAY= PS1 /1000, NODE= 1, SURFACE= 2

0	o	G	1 1	-1	-1	0	0	0	1	1	2
0	0	1	1 - (-)	0	0	0	1		2	3	ų Talianas ar
	1	2	2	2		2	. 3	3	ų	4	4
7	7	7	5	7	5	6	6	6	5		

PRODUCIBILITY OF THE CHICAGO PAGE IS POOR

SPEC 6.1 NTF 9 X 12 DOORS STIFFENER BAR D 0 8 SCALE

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

10/1/1

E 1-	-12	-12	-11	-10	-10	-9	-8-	-7	-6	-4	-2
-6	-6	-6	-5	-5	-5	-4	-4	-4	- 4	<u>-4</u>	-3
1	0	-1	-1	0	0	-1	-1	-2	-2	-3	-4
1	1	1	σ	0	٥	1	0	O	-1	-2	-3

SPEC 6.1 NTF 9 X 12 DOORS STIFFENER BAR D Q 8 SCALE

SHAPPING SHEETS, THISTORIES CONTROLLED BOLLDON, BULLYOU NEW YORK

DISPLAY= PS2 /1000 . NODE= 1 . SURFACE= 1

-12	-12	-12	-11	-6	-8-	-8	-8	-7	-6	-5 <i>°</i>	-4
-6	-6	-6	-6	-3	-3	-4	-4	-4	-4	-4	-5
1	0	0	-1	-1	٥	0	-1	-2	-2	-3	-4
2	2	2	1	٥	i	1	0	0	0	-1	-3

SPEC 6.1

NTF 9 X 12 DOORS STIFFENER BAR D O 8 SCALE

DISPLAY= PS2 /1000, NODE= 1, SURFACE= 2

-13	-13	-12	-10	-14	-12	-10	-9	-7	-5	-3	-1
-6	-6	-6	-5	-7	-6	-5	-5	-4	_ų	-3	-2
0	-1	-1	-5	1	-1	-1	-1	-2	-3	-3	-3
1	1	0	-2	O	٥	i	1	0	-1	-3	-3

SPEC 6.1 NTF 9 X 12 DOORS STIFFENER BAR D

Q E SCALE

MADA MAIN 'DINTING NORVEDGED A COMMANDA SERVINO LA COM

200 101

DISPLAY= PS1 /1000 . NODE= 1 . SURFACE= 0

	ı	L	0	0	0	O	O	0	0	0	0	٥
-	1.11 (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	1	1	2	1	1.0.1	1	0	ſ	.	i	0
	ì	t	2	3	2	2	2	2	2	.	1	1
	1	2	2	* \	4	2	4	4	4	3	2	2
	2	2	ų	5	2	6	1	7	7	5	5	S

SPEC NIF 9 X 12 DOORS 7.1 STIFFENER BAR E Q Ş SCALE

กรายเกิดสายเกิด เกิด เลือนสามารถ และ เลือน เกิดสามารถ และ เลือน หลัง เกิดสามารถ เลือน เลือน เกิดสามารถ เลือน เ

42

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 1

10/1/1

3	3	2	0	3	2	1				-2	-2
3	3	3	1	0	3	3	2	2	,	-1	-1
4	4	ų	3	-1	4	5	5	6	5	3	2
6	'n	5	6	0	4	7	9	12	8	7	6
2	2	ц	S	5	5	ı	7	7	ч	4	ε.

SPEC 7.1

NTF 9 X 12 DOORS STIFFENER BAR E Q SCALE

C 21 per 15 13741414

AND WAN CLARKING MATAHOGACO ENDITATE THEIRING LEFTRANT BUILD NEW YORK

00 -

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 2

-1	-1	0	1	0	-1	-1	-(0	3	5	5
-2	-1	0	2	2	- 1	-1	-1	-1	2	3	4
-1	-1	0	2	5	1	0	-1	-2	-1	0	1
1-	-1	-1	1.	8	0	2			Ð	-1	0
2	2	3	5	-1	6	1	6	7	5	6	7

SPEC 7.1

NTF 9 X 12 DOORS STIFFENER BAR E Q 8 SCALE

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

0	0	0	-1	0	-1	-1-1-1	-2	-2	-2	-1	-1
O	0	-1	-1	ס	-1	-1	-1	-1	-2	-2	-1
0	0	-1	-2	-2	-2	-1	0	0	- 1	-2	-2
-1	σ	-2	0	-5	-1	-2	0	3	0	0	0
-3	O	-5	0	-15	2	-5	0	5	-1	O	ß

SPEC NTF 9 X 12 DOORS 7.1 STIFFENER BAR E) SCALE 8

THE WIN GLATION MONTAGE ENGINEER PRINCIPLE TELEGIST CONTRACT

DISPLAY= PS2 /1000 . NODE= 1 . SURFACE= 1

	1	1	0	-2	0	1	0	0	-3	-6	-8	-7
	2	2	1	-2	-2	0	1	t	- 1	-4	-5	-5
		3	2	-1	-3	0	2	2	.	0	-2	-3
		u		4	-5	2	3	ų	5	6	ч	3
	-3	0	-6	-1	-15	2	-5	g	4	-1	0	0

RODUCIBILITY OF THE

SPEC NTF 9 X 12 DOORS 7.1 STIFFENER BAR E) 8' SCALE

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 2

	-2	-2	- i	0	-3	-3	-3	-3	-1	C	2	2
	-2	-2	-2	-1	1	-2	-3	-3	-2	0	O	1
	-4	-4	-4	-2	0	-3	-4	-4	-3	-4	-3	-2
H	-7	-6	-8	-4	-6	-4	-8	-7	-4	-7	-7	-6
-	-3	0	-5	1	-15	2	-5	1	5	-1	o	0

SPEC NTF 9 X 12 DOORS 7.1 STIFFENER BAR E Q 8

DISPLAY=	PS1 /1000	, NODE=	1.	SURFACE=

=		L	•)(J1/1	
5		3		2		1	
٤	;	ų		2		1	
ų		2		l		0	
3	3	2		1		1	
1	2	1		0		ū	
	2 1 1 0			σ		0	
				0		0	
				l'		2	
	1	σ		Ø		0	
	1	1		O		0	
	1	1		0		0	
	-1	o		ı		3	
	1	1.1		0		0	
	1	1		٥		0	
	l	1		1		0	
	-2	0	-	1		3	

SPEC NTF 9 X 12 DOORS 8.1 STIFFENER BAR F Q 1.1 SCALE

DISPLAY= PS1 /1000 . NODE= 1. SURFACE=

	<u> </u>	, ,	20111
6	3	1	0
5	ц	2	1
5	3	2	1
2	2	1	1
3	i	٥	-1
3	ı	0	G
2	1	1	0
- t	-1	1	2
2	σ	σ	-1
2	1	O	Ø
2	1	0	0
-1	-1	1	2
2	1	0 -	-1
2	1	ø	0
2	1	0	-1
O	-1	1	2

A CARAGE CHARLES | CHARLES CONTROLS COUPDING BUFFLO NEW YORK

10/1/1.

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 2

4 3 3 2 1 3 2 4 3 2 1 3 2 1 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3 2 1 0 4 2 1 0	\dashv
ų 2 1 0	\dashv
2 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2 l 0 0)
0 0 0 -1	
1 1 6	2
0 0 1	J
1 1 0	0
0 0 0	0
0 1 2	3
0 1 1	Ø
o 1 0	Ø
o 0 i	0
-1 1 2	ч

SPEC 8.1 NTF 9 X 12 DOORS STIFFENER BAR F O SCRIF

NEW YEAR PHYTERING

THE ANALYTIME CHARLE THE THEORY CONFIDENCE MICHAEL AND ANALYTICS AND

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

	1. 1	•	Oin	1100
-4	-4	-3	-2	
-2	-4	_ ų	-3	
-2	-3	-4	- s	
-2	-3	-5	-7	
-t	-2	<u>-4</u>	-7	
0	-3	-5	-8	
0	-3	-5	-8	
-t	-3	-6	-9	
-1	-3	-6	-9	
0	-4	-6	-8	
-i	4.	-6	-8	
-2	-3	-6	-8	
-2	-4	-6	-8	
-2	-4	-6	-8	
-2	-4	-6	-8	
-3	_4	-6	-8	

SPEC 8.1 NTF 9 X 12 DOORS STIFFENER BAR F

Q 11 SCALE

AZ D MI GATHINA

Pare subding Shart & From Eduthold Computation Bullyco New York

DISPLAY= PS2 /1000 . NODE= 1 . SURFACE= 1

<u>-4</u>	_ ų	-4	-4
-i	-13	-4	_4
-1	-2	-3	-4
-3	-3	-3	-3
0	-2	-5	-8
ā	-2	-5-	-8
1	-2	-5	-7
-2	-3	-5	-7
σ	- 3	j.	-5
σ	-3	-6	-8
0	-3	-6	-8
_ų	-5	-6	-8
-1	-3	-6	-8
-1	-4	-6	-8
-1	-4	-6	-8
-4	-5	-6	-8
			ar yi

SPEC 8.1 NTF 9 X 12 DOORS STIFFENER BAR F Q 11 SCALE

ARUM GAINNY

Вресовений сизытя], налиние сочтацие сенепалиции, вынию, иму узяк

DISPLAY=	PCO	/ 1 000		NODE-	1	CI	IDEACE
DIOLPHIE	F 32	/ 1000	5	NODE=	1 ,	21	JRFACE=

JĽ	=	1	,	SUK		
	-5	<u>_</u> u	-2	0		
	-3	-5	-4	-3		
	-2	-4	-5	-7		
	-2	-3	-6	-10		
	-1	-2	-4	-7		
	-1	-3	-5	-8		
	-1	-3	-6	-9		
	-2 -2		-6	-10		
	r-2	-3	-5	-8		
	-1	_ 4	-6	-8		
	-2	-4	-6	-9		
	-3	-2	-6	-9		
	-3	-4	-6	-8		
	-2	-5	-6	-8		
L	-3	-5	-6	-8-		
	-3	-2	-5	-8		

SPEC NIF 9 X 12 DOORS 8.1 STIFFENER BAR F

THE STRUKE ENTRYS OF WHICH PRINCES LINGOURION BUILDING NEW YORK

DISPLAY= PS1 /1000 . NODE= 1 . SURFACE= 0

4 2 1 0 0 0 1 0 0 0 2 1 0 0 1 3 1 0 1 1 5 3 3 3 3 7 0 3 3 4 5 1 2 3 4 6 2 3 5 7 7 3 2 5 7 7 3 2 5 7 7 3 2 5 7 11 -1 3 5 8 6 2 3 5 8 6 2 3 5 8 5 3 4 5 8	UE	=	1 .).	וערַ א
2 1 0 0 1 3 1 0 1 1 5 3 3 3 3 -7 0 3 3 4 5 1 2 3 4 4 1 1 2 5 7 3 3 4 6 -11 -1 3 5 7 6 2 3 5 7 7 3 2 5 7 11 -1 3 5 8 6 2 3 5 8	ų	2	1	. 0	0
3 1 0 1 1 S 3 3 3 3 -7 0 3 3 4 S 1 2 3 4 4 1 1 2 5 7 3 3 4 6 -11 -1 3 5 7 S 2 3 5 7 7 3 2 5 7 -11 -1 3 5 8 6 2 3 5 8	0	ı	O	o	0
S 3 3 3 3 -7 0 3 3 4 S 1 2 3 4 S 1 2 3 4 G 2 3 3 4 6 G 2 3 5 7 7 7 3 5 7 G 2 3 5 7 7 3 2 5 7 F 11 -1 3 5 8 8 G 2 3 5 8 8	2	1	O	a	1
-7 0 3 3 4 5 1 2 3 4 4 1 1 2 5 7 3 3 4 6 -11 -1 3 5 7 6 2 3 5 7 7 3 2 5 7 -11 -1 3 5 8 6 2 3 5 8	3	1	0	1	1
-7	S	3	3	3	3
5 1 2 3 4 4 1 1 2 5 7 3 3 4 6 -11 -1 3 5 7 6 2 3 5 7 7 3 2 5 7 -11 -1 3 5 8 6 2 3 5 8	-7	G	3	3	
7 3 3 4 6 -11 -1 3 5 7 6 2 3 5 7 7 3 2 5 7 -11 -1 3 5 8 6 2 3 5 8	5	l	2	3	
-11 -1 3 5 7 6 2 3 5 7 5 2 3 5 7 7 3 2 5 7 -11 -1 3 5 8 6 2 3 5 8	ц	ı	1	2	5
6 2 3 5 7 5 2 3 5 7 7 3 2 5 7 11 -1 3 5 8 6 2 3 5 8	7	3	3	ц	6
6 2 3 5 7 5 2 3 5 7 7 3 2 5 7 -11 -1 3 5 8 6 2 3 5 8	11	-t	3	5	7
7 3 2 5 7 -11 -1 3 5 8 6 2 3 5 8	6		3	5	7
-11 -1 3 5 8 6 2 3 5 8		2	3	5	7
6 8 3 5 8	7	3	2	5	7
	11	-1	3	5	8
5 3 4 5 8		8	3	5	8
	5	3	4	5	В

ODUCIBILITY OF THE

SPEC 9.1 NTF 9 X 12 DOORS STIFFENER BAR G Q 11 SCALE

HELMICO IN USA

LIDING CHARLE THORE CHARMOLOGICALING AND VIOLATION AND

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 1

10/1/1

				1		O (ואנ	Н
	4	ų		1	0		Q	
	-1	3		2	 2		3	
	2	3		2	 2		3	
	2	-i		-i	0		2	
6		6		3	3		2	
	-8	ч		5	ц		ų	
	ų	ц		3	Ч		5	
	2	σ		O	1		6	
	7	7 7		ч	ч		6	
	1	3		5	6		7	
8	5	5		ч	5		8	
2	,	1		1	3		7	
7		6		3	s		7	
11		2		5	6		9	
5		5		ų	6		8	
2		2		2	3		7	

SPEC 9.1 NIF 9 X 12 DOORS STIFFENER BAR G

Q 11 SCALE

TO WHAT THANKET IN PARTIE THE WHAT THE HER THANKET TO WARD

DISPLAY= PS1 /1000 . NODE= 1. SURFACE=

טנ	_	1 1	U	בו יוענר
4	0	0	1	O
2	-1	-1	-1	-1
2	-1	-1	0	0
5	ų	2	2	1
5	l .	3	Ч	4
-7	-3	1	2	3
5	-2	0	2	3
7	4	3	3	ч
7	0	3	5	6
ιο	- S	1	ч	6
6	-1	1	ч	7
8	5	5	6	7
7	-1	2	S	7
10	-5	1	Ч	8
6	-1	2	5	8
8	5	6	7	3

SPEC NTF 9 X 12 DOORS 9.1 STIFFENER BAR G

0

SURFACE= NODE= /1000 . 1, PS2 DISPLAY= -2 -4 -2 -1 0 0 0 0 -2 -3 -5 -1 -4 22 -12 -5 -2 -1 0 -1 10 -3 -1 0 1 -3 -1 5 -8 -3 -1 -6 -7 -1 -3 30 -16 ٥ -1 -15 -5 -2 -3 0 1 -3 5 -5 -2 -i -5 -2 -1 23 -15 -6 15 -3 -1 -6

SPEC 9.1 NIF 9 X 12 DOORS STIFFENER BAR G 0 11 SCALE

THE PARTY CONTRACT NUMBER OF THE STREET SHIP, OF STREET BANGES THEFT

0

-3

-3

ou vn

ISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 1

1				
L	1	-2	-1	0
-7	0	0	o	1
0	2	1	O	O
-2	-2	-2	-1	-1
5	-2	-5	Ţ.	Ŋ
-21	-7	-4	-2	-1
-9	-1	0	-1	0
-3	-5	. <u></u> ų	-1	O
6	-2	-6	-4	-2
-29	-10	-5	-3	-1
14	-3	-1	-1	-1
-3	-7	-5	-1	0
6	<u>-</u> -c	-5	-3	-2
23	-3	-5	-3	-i
19	-3	-1	-2	-1
-3	-7	-6	-2	0

SPEC

NTF 9 X 12 DOORS STIFFENER BAR G Q 11 SCALE

DISPLAY= PS2 /1000 . NODE= 1 . SURFACE= 2

) —		1 ,		JIVI F
1	-4	-3	-1	0
-6	-8	-3	-2	-2
-2	-2	-1	-1	-2
-2	í	1	ı	oʻ
ц	-7	-6	-3	σ
22	-18	-7	-3	0
11	-5	-3	-1	-1
-3		1	2	2
4	-5	-7	-3	٥
30	-23	-8	-3	o
17	-8	-3	-1	σ
-4	-1	o	i	2
3	-8	-6	-2	0
-23	-22	-8	-2	٥
16	-8	_q	-1	0
-4	-2	-1	í	2

SPEC 9.1 NTF 9 X 12 DOORS STIFFENER BAR G

Q 11 SCALE

ARIER O HAMM

PHYCOPHINAL CHARLES I LIAPHIC LEWITHINGS CERPORATION BLI-FALD, A.W YOHA

10/1/1 DISPLAY= PS1 /1000. NODE= 1. SURFACE= 0 NTF 9 X 12 DOORS SEAL FLANGE - TOP

Figure 60

ងួម០១១គ្ន

10/1/1 /1000 . NODE= 1 . SURFACE= PS1 DISPLAY= NTF 9 X 12 DOORS SEAL FLANGE - TOP

Figure 61

SPEC 10.1

DISPLAY= PS1 /1000 , NODE= SURFACE= 10/1/1

O SCALE

A C D IN URITHIN

NTF 9 X 12 DOORS SEAL FLANGE - TOP

BULFALD, NEW YORK

בן הביבותם בתוחום במאוחום בפתוחום במחומות במתוחומות

an ·

10/1/1 SURFACE= PS2 /1000 . NODE= 1. DISPLAY= NTF 9 X 12 DOORS SEAL FLANGE - TOP

Figure 63

SHIFFALD, NEW YORK

1. SURFACE= DISPLAY= PS2 /1000 . NODE=

10/1/1

0 1 SCALE

A 2 II NI D3THIRS

SPEC 10.1 NTF 9 X 12 DOORS SEAL FLANGE - TOP

But then the by a made to be seen to be a minimoral of the control of the son

30 .05.

10/1/1 SURFACE= DISPLAY= PS2 /1000 . NODE= 1. NTF 9 X 12 DOORS SEAL FLANGE - TOP

DISPLAY= PS1 /1000 , NODE= 1 . SURFACE= 0

10/1/1 +

•								•	I	. 1		ŀ
- 1		1				1	le contraction of	1				. [
						1 -		-	-	- 1		- 1
- 1		1 2	ш.			, h					5 I 5	- 1
	~ ~	_	3		_			1			- 1	- 1
- 1		1		1		1		r ·				- 1:
ч						 						_

ODUCIBILITY OF THE

SPEC

NTF 9 X 12 DOORS SEAL FLANGE — SIDE) ŞCALE Ş

Papt 19[2]

110 ON

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 1

						1	ł .		l	1 4 1 4 1
							l -7	17	1 4	1 7 1
_	2 2	1	1 1 2	1 6	1 5	1 1				
1	- 1	l u	1 5		1 -	·				
1 -				1			**:			

SPEC NIF 9 X 12 DOORS 11.1 SEAL FLANGE - SIDE SCALE

DISPLAY= PS1 /1000 , NODE= 1 , SURFACE= 2

10/1/1

2 2 3 5 -1 6 1 6 7 5 6															
3 5 -1 6 1 6 7 5 6															
5 -1 6 1 6 7 5 6															
5 -1 6 1 6 7 5 6															
5 -1 6 1 6 7 5 6															
1															

SPEC 11.1 NTF 9 X 12 DOORS SEAL FLANGE - SIDE Q E SCALE DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 0

10/1/1

-3 0 -5 0 -15 2 -5 0 5 -1 0 0

SPEC NTF 9 X 12 DOORS 11.1 SEAL FLANGE - SIDE

Q SCALE

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 1

10/1/1

					- 1	1 1 - 1
		and the second second		2 -5 0		
	the state of the s			1 1 - 1 0	u	1 0 1 0 1
		1		1 2 1 2 1 1		
- 1	The second secon		- 1 - 1 5	1 2 1 -0 1		
		1 _	-1 -10	l		
- 1	_3 1	-0				

SPEC

NTF 9 X 12 DOORS SEAL FLANGE - SIDE

SCALE

DISPLAY= PS2 /1000 , NODE= 1 , SURFACE= 2

10/1/1

SPEC 1.1 NTF 9 X 12 DOORS SEAL FLANGE - SIDE ρ ξ SCALE

MINITED HARV

FECOPOINT CHAILS CRAFFILL L'HUTHULS CLARBRETINN BUILLALD NEW YEST.

્યા ગા