Angular Momentum

Exercise 1: Commutation relations for the orbital angular momentum

Using the commutation relation between X_i and P_j , show that $[L_i, L_j] = i\hbar\epsilon_{ijk}L_k$.

Exercise 2: Angular momentum in the position representation

- i) Find the differential operators \vec{L} , L_+ , L_- and L^2 in spherical coordinates.
- *ii*) Show that $L^2 = x^2 p^2 (\vec{x} \cdot \vec{p})^2 + i\hbar \vec{x} \cdot \vec{p}$ and then deduce the relation between L^2 and the angular part of the Laplace operator, ∇^2 .

Exercise 3: Parametrizations of rotations: axis-angle and Euler angles

i) Show that a finite rotation of angle ϕ around the axis determined by a unit vector $\hat{n}(\theta, \varphi)$ in three dimensions is given by

$$[R_{\hat{n}}(\phi)]_{ij} = \delta_{ij}\cos\phi + (1-\cos\phi)\hat{n}_i\hat{n}_j - \sin\phi\epsilon_{ijk}\hat{n}_k.$$

Use that $\{\hat{n}, \vec{x}, \hat{n} \times \vec{x}\}$ is a complete set of vectors.

ii) Compare the rotations around an axis, $R_{\hat{n}}(\phi)$, with the Euler rotations:

$$R(\alpha, \beta, \gamma) \equiv R_{\hat{z}}(\alpha)R_{\hat{y}}(\beta)R_{\hat{z}}(\gamma)$$

$$= \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix} \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos \alpha \cos \beta \cos \gamma - \sin \alpha \sin \gamma & -\cos \alpha \cos \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \\ \sin \alpha \cos \beta \cos \gamma + \cos \alpha \sin \gamma & -\sin \alpha \cos \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \\ -\sin \beta \cos \gamma & \sin \beta \sin \gamma & \cos \beta \end{pmatrix}$$

$$= \sin \beta \cos \gamma \qquad \sin \beta \sin \gamma \qquad \cos \beta$$

to show that

$$\varphi = \frac{\pi + \alpha - \gamma}{2}, \quad \tan \theta = \frac{\tan \frac{\beta}{2}}{\sin \frac{\alpha + \gamma}{2}}, \quad \cos \phi = 2\cos^2 \frac{\beta}{2}\cos^2 \frac{\alpha + \gamma}{2} - 1.$$

iii) Show that one can also write $R(\alpha, \beta, \gamma) = R_{\hat{z}'}(\gamma) R_{\hat{y}'}(\beta) R_{\hat{z}}(\alpha)$, where these primed rotations are around *body axes*, unlike the previous unprimed rotations that are performed around space-fixed axes.

Exercise 4: Representations of the rotation group

- *i*) Find the generators of the rotations in the j = 2 representation.
- *ii*) Write the matrix of a rotation around the \hat{z} axis.
- *iii*) If we rotate around any axis, what angle leaves all the vectors in this Hilbert space unchanged?

Exercise 5: State with an arbitrary polarization

Let $\mathcal{B} = \{ |+\rangle, |-\rangle \}$ be the basis of the Hilbert space $\mathcal{H}^{j=1/2}$ built with the orthonormal vectors $|+\rangle \equiv \left|\frac{1}{2}\right| + \frac{1}{2}$ and $|-\rangle \equiv \left|\frac{1}{2}\right| - \frac{1}{2}$.

i) If a quantum system is initially at the state $|+\rangle$, find the state $|+\rangle_{\hat{n}}$ that we obtain after two consecutive rotations of it around the axis \hat{y} and \hat{z} , i.e.

$$|+\rangle_{\hat{n}} \equiv R_{\hat{z}}(\varphi)R_{\hat{y}}(\theta)|+\rangle.$$

[Hint: Remember that

$$R_{\hat{k}}(\alpha) = \exp(-iJ_k\alpha/\hbar),$$

and that the matrix expression of the generators J_k is $J_k = \frac{\hbar}{2}\sigma_k$ in the basis \mathcal{B} , where σ_k are the Pauli matrices]

ii) Show that $|+\rangle_{\hat{n}}$ is an eigenstate of $\vec{J} \cdot \hat{n}$ with eigenvalue $+\hbar/2$.

Exercise 6: Rotations and eigenstates of the position operator

Consider the position eigenstate $|\vec{x}\rangle$. Study whether this state is still a position eigenstate after the rotation

$$|\vec{x}\rangle o \exp\left(-i\hat{n}\cdot\vec{L}\theta/\hbar\right)|\vec{x}\rangle$$
.

Exercise 7: Eigenstates of the angular momentum in the position representation

i) Suppose that $|\psi\rangle$ has a spherically symmetric wave function $\psi(\vec{x})$. Show that a state with orbital wave function

$$(x_1+ix_2)^\ell\,\psi(\vec{x})$$

is an eigenstate of L^2 and L_z with eigenvalues $\hbar^2 \ell(\ell+1)$ and $\hbar \ell$, respectively.

ii) Is $f(\theta, \varphi) = e^{i\varphi} / \sin \theta$ an eigenfunction of L^2 , L_z ? Can it represent a physical state (*i.e.*, is it normalizable)?

Exercise 8: Eigenfunctions of the angular momentum: spherical harmonics

Consider a scalar particle with orbital wave function

$$\psi(\vec{x}) = K(x + y + 2z)e^{-\alpha r},$$

where *K* and α are constants and $r = \sqrt{x^2 + y^2 + z^2}$.

- *i*) Find $\psi(\vec{x})$ in the basis of spherical harmonics.
- ii) Prove that the operator L^2 has a well-defined value in this state and compute that value. What is the corresponding uncertainty?
- iii) Find the expectation value and the uncertainty of L_z .
- *iv*) If we measure L_z , what is the probability to obtain $+\hbar$?
- v) Determine the probability to find the particle within a solid angle $d\Omega$.

Useful formulae. Spherical harmonics for $\ell = 0, 1$

$$Y_0^0 = \sqrt{\frac{1}{4\pi}}, \quad Y_1^0 = \sqrt{\frac{3}{4\pi}}\cos\theta, \quad Y_1^{\pm 1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta \mathrm{e}^{\pm i\varphi}.$$

Exercise 9: Test exercise, September 2009 [2.5P]

Two distinguishable particles of spin 1/2 are bound in s wave. Find the possible values of the total spin of the system. When we apply a uniform magnetic field $\vec{B} = B\hat{z}$ along the z axis, the Hamiltonian that describes their interaction with this field is

$$H = -\alpha \ \vec{B} \cdot (\vec{S}_1 + \vec{S}_2).$$

Find the maximum variation of energy that the system may experience.

Exercise 10: Addition of angular momenta: Clebsch-Gordan coefficients

- i) Using $J_{\pm}|jm\rangle=\hbar[j(j+1)-m(m\pm1)]^{1/2}|jm\pm1\rangle$, find the Clebsh-Gordan coefficients for the sum of $j_1=1$ and $j_2=1/2$.
- ii) Consider a system of two particles with spin $s_1 = 0$ and $s_2 = 1/2$ in orbital *p*-wave $(\ell = 1)$.
 - (a) What are the possible values of the total angular momentum *j*?
 - (b) For each value of L_z and S_z , what is the probability to find the different possible values of J^2 and J_z ?

Exercise 10 must be turned in [deadline: 13 November 2020 at 15:00]