

Facultad de Ciencias Exactas Químicas y Naturales-UNaM

PROFESORADO EN MATEMÁTICA

ÁLGEBRA I 2023

Guía de Ejercicios Prácticos Nº 1

LÓGICA PROPOSICIONAL

Ejercicio Nº 1: Determine si los siguientes enunciados son esquemas proposicionales, proposiciones o nada. En el caso de ser proposiciones, indique el valor de verdad de cada una de ellas:

a) Todo número par es divisible por 2.

c) 2 = 3

e) x e y son impares.

g) 5 + 7 - 8

i) Si 2 + 2 = 4, no es cierto que 2 + 1 = 3 y + 5 = 10

k) x es par y 6 también.

m) Si 2 + 2 = 4 entonces 3 + 3 = 7 si y sólo si 1 + 1 = 4

b) 2 es un número par y primo.

d) Si 3 < 5 entonces -3 < -5

f) $\sqrt{3} + \sqrt{2} = \sqrt{5}$ v 4 + 4 = 8

h) 6 + 4 = 10 $\sqrt{2} \sqrt{2} = 2$

i) $(a + b)^2 = a^2 + 2ab + b^2$

I) Un triángulo isósceles.

Ejercicio Nº 2: Confeccione tablas de verdad para verificar si las siguientes proposiciones son tautologías o no:

b)
$$\sim$$
(p \vee q) \leftrightarrow (\sim p \wedge \sim q)

c)
$$\sim$$
(p \wedge q) \leftrightarrow (\sim p \vee \sim q)

d)
$$(p \rightarrow q) \leftrightarrow (\sim p \vee \sim q)$$

Ejercicio Nº 3: i) Determine, en cada caso, si la información que se da es suficiente para conocer el valor de verdad de las siguientes proposiciones compuestas. Justifique.

a)
$$(p \rightarrow q) \rightarrow r$$
; res V

b)
$$(p \lor q) \leftrightarrow (\sim p \land \sim q)$$
; q es V

c)
$$(p \land q) \leftrightarrow (p \lor r)$$
; pes V y res F d) $p \land (q \rightarrow r)$; $p \rightarrow r$ es V

d)
$$p \wedge (q \rightarrow r)$$
; $p \rightarrow r es V$

ii) $[(p \lor q) \land r] \rightarrow [s \lor (q \land t)]$ Sabiendo que la proposición dada es falsa, establezca los posibles valores de las proposiciones simples que la forman.

Ejercicio Nº 4: Exprese en forma simbólica las siguientes proposiciones, utilizando de ser necesario, el cuantificador apropiado:

- a) Existen enteros tales que $x^2 1 = 0$.
- b) Ningún conjunto es subconjunto de vacío.

c) -5 es un número racional.

- d) Todos los enteros son reales.
- e) Los opuestos de los números naturales son menores que cero.

f) Existe un racional de la forma a/b tal que (a/b) -1 es negativo.

Ejercicio Nº 5: Niegue las siguientes proposiciones cuantificadas:

a)
$$\forall x : [P(x) \text{ implica } Q(x)]$$

b)
$$\exists y, \forall x : xy \leq 2$$

c)
$$\forall x$$
, $\exists y$ / [P(x) \land y \leq 2]

TEORÍA DE CONJUNTOS

Ejercicio Nº 6: Para cada caso, identifique si es el conjunto está escrito por comprensión o por extensión. Luego, escriba el conjunto por extensión o por comprensión de manera tal de tener escrito de las dos maneras:

A =
$$\{-1, 0, 1\}$$

C = $\{n \in \{1, 2, 3, 5, 7\} / n+(1/n)\}$

B = {
$$n \in \{0, 1, 2, 3, 4\} / n^2 + n^3 \}$$

D = { $0, 2 \}$

Ejercicio Nº 7: Dado el conjunto A = {a, b, c} Determine P (A) y dé el valor de verdad de las siguientes proposiciones

b)
$$\phi \in A$$

$$c) \phi \in P(A)$$

d)
$$A \subset A$$

$$\mathsf{e})\,\phi\,\subset\,\mathsf{P}\,(\,\mathsf{A}\,)$$

Ejercicio Nº 8: Siendo el referencial $E = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ y los conjuntos $A = \{1, 2, 3, 4, 5\}$ y $B = \{2, 4, 6, 8, 10\}$

Calcule: i)
$$A \cap B$$
 ii) $A \cup B$ iii) A' iv) $B - A$ v) $A - B$ vi) $A \Delta B$

iv)
$$B - A$$

Ejercicio Nº 9: Siendo el referencial el conjunto **R** y A = [-2; 5], B = [-2; 5], B = [-2; 5]

D= $\{x/3 \le x < 5\}$, M = R. Resuelva, exprese como intervalo, como desigualdad y represente en la recta real:

a) A
$$\cap$$
 C

b)
$$A \cup C = c$$
 $B \cap D$

e)
$$M' = R^+ \cup \{0\} =$$

Ejercicio Nº 10: Si A = [0, 3], B = [2, 7[, C =]-3, 1], D =]-1, 1[y U = R], determine:

a)
$$(A \cup B) \cap C$$

b)
$$C' \cup D'$$
 c) $(C \cap D)'$ d) $(A \cup B) - C$ f) $A \triangle B$

EJERCICIOS COMPLEMENTARIOS

Ejercicio Nº 11: Escriba la palabra "necesario" (N) o "suficiente" (S) o "necesario y suficiente" (NS) donde mejor corresponda:

- a) Para que un cuadrilátero sea un paralelogramo esque sea un cuadrado.
- b) Para que dos circunferencias coincidan es que tengan dos puntos comunes.
- c) Para que dos circunferencias coincidan es que tengan tres puntos comunes.
- d) Para que un entero sea divisible por 6 es que lo sea por 2 y por 3.
- e) Para que un entero sea divisible por 6 es que lo sea por 3.

Ejercicio Nº 12: Decida si la siguiente implicación es verdadera y justifique:

- a) Si x es un número entero impar, entonces x^2 es un número entero impar.
- b) Si n es impar entonces n^3 es impar.
- c) Si a es impar, entonces $a^2 + 3a + 5$ es impar.

Ejercicio Nº 13: Siendo A = $\{1, 2, 3, 4, 5\}$ Determine el valor de verdad de las proposiciones.

a)
$$\exists x \in A / x + 3 = 10$$

b)
$$\forall x \in A$$
: $x + 3 < 10$ c) $\exists x \in A / x + 3 < 5$

c)
$$\exists x \in A / x + 3 < 5$$

d)
$$\forall$$
x∈A: x + 3 ≤ 7

<u>Ejercicio Nº 14</u>: Sea A = $\{1, \{1\}, 2\}$ ¿cuáles de las siguientes proposiciones son verdaderas?

b)
$$\{2\} \in A$$

g)
$$\{\{1\}\}\subseteq A$$

Ejercicio Nº 15: ¿Cuáles de las siguientes proposiciones son verdaderas?

a)
$$\emptyset \in \emptyset$$

b)
$$\emptyset \in \{\emptyset\}$$

c)
$$\emptyset \subseteq \{ \emptyset \}$$

$$\mathsf{d}) \varnothing \subset \{\varnothing\}$$

e)
$$\varnothing \subset \varnothing$$

Ejercicio Nº 16:

a) Determine los elementos de los conjuntos A y B sabiendo que:

$$A' = \{\, 2 \,,\, 3 \,,\, 5 \,,\, 7\,\} \;\; ; \;\; B' = \{\, 1 \,,\, 4 \,,\, 7\,\} \;\; ; \;\; A \mathrel{\triangle} B = \{\, 1 \,,\, 2 \,,\, 3 \,,\, 4 \,,\, 5\,\}$$

b) Determine el referencial y los conjuntos A, B y C, sabiendo que:

Ejercicio Nº 17: Determine los conjuntos A y B, cuando A - B = {1, 3, 7, 11}, B - A = {2, 6, 8}, y $A \cap B = \{4, 9\}.$

Ejercicio Nº 18: Responda:

- a) ¿Puede ocurrir que dos conjuntos C y D resulten simultáneamente $C \subseteq D$ y $D \subseteq C$?
- b) ¿De qué otra manera más simple puede escribirse la proposición: $\forall x, x \in B \Rightarrow x \in A$?
- c) ¿Cuáles son los elementos del conjunto $A = \{x \in \mathbb{Z}/ | x^2 \ge 0\}$?
- d) ¿Es verdadero que $\emptyset = \{x \in \mathbb{R}/ | x^2 \le 0\}$?