Technicka Univerzita v Kosiciach Fakulta elektrotechniky a informatiky

Meranie a interakcia kvantových obvodov

Diplomová práca

2020 Marián Sabat

Technicka Univerzita v Kosiciach Fakulta elektrotechniky a informatiky

Meranie a interakcia kvantových obvodov

Diplomová práca

Študijný program: Informatika

Študijný odbor: 9.2.1 Informatika

Školiace pracovisko: Katedra počítačov a informatiky (KPI)

Školiteľ: prof. Ing. Ján Kollár, CSc.

Konzultant:

Košice 2020 Marián Sabat

Názov práce: Meranie a interakcia kvantových obvodov

Pracovisko: Katedra počítačov a informatiky, Technicka Univerzita v Ko-

siciach

Autor: Marián Sabat

Školiteľ: prof. Ing. Ján Kollár, CSc.

Konzultant:

Dátum: 1. 1. 2020

Kľúčové slová: Kvantove pocitace a ine klucove slova

Abstrakt: ABSTRAKT

Thesis title: Measurement and interaction of quantum circutis

Department: Department of Computers and Informatics, Techincal Univer-

sity of Kosice

Author: Marián Sabat

Supervisor: prof. Ing. Ján Kollár, CSc.

Tutor:

Date: 1. 1. 2020

Keywords: Quantum comuters and other key words

Abstract: ABSTRAKT

Tu vložte zadávací list pomocou príkazu \thesisspec{cesta/k/suboru/so/zadavacim.listom} v preambule dokumentu.

Čestné vyhlásenie	
Vyhlasujem, ze vsetko som pisal sam	
Košice, 1.1.2020	
	Vlastnoručný podpis

Obsah

Ú۱	Úvod			1
1	Ciel	e prace	e (Formulacia ulohy)	2
2 Matematické základy kvantových systémov				3
	2.1	Matic	e	3
		2.1.1	Násobenie matice skalárom	3
		2.1.2	Násobenie matíc	4
		2.1.3	Transpozícia matice	4
		2.1.4	Tenzorový súčin matíc	4
	2.2	Komp	elexné čísla	4
		2.2.1	Operácie na množine komplexých čísel	5
		2.2.2	Základné charakteristiky komplexných čísel	6
	2.3	Vekto	ry	6
	2.4	Pojmi	a definície	7
3	Teo	retické	základy kvantových systémov	9
	3.1	Zakla	dne definicie	9
		3.1.1	Hilbertov priestor atd	9
		3.1.2	Systém s jedným kvantovým bitom	10
		3.1.3	System s viacerymi kvantovymi bitmy	10
		3.1.4	Princip merania	10
4	Kva	ntovy s	system	11
	4.1	IBM Ç	QX	11
		4.1.1	Stavy a ich zapis	11
		4.1.2	Operacie kvantovych hradiel	11

		Obsah
5	Meranie jednoduchého kvantového obvodu	12
6	Celkove zhodnotenie vysledkov (Vyhodnotenie)	14
7	Záver	15
Li	iteratúra	16

Zoznam obrázkov

2.1 Zobrazenie komplexného čísla z: x - reálna os, y - imagináran os . . $\,\,\,5\,\,$

Úvod

Na uvod, je uvod

1 Ciele prace (Formulacia ulohy)

2 Matematické základy kvantových systémov

Na pochopenie problematiky kvantových počítačov je nutná znalosť aspoň základnej lineárnej algebry. V tejto kapitole je opýsaný matematický aparát využívaný ako teoretický základ celej práce.

2.1 Matice

Maticou typu $m \times n$ je nazývaná sústava prvkov zapísaných do schémy s m riadkami a n stľpcami, kde $n, m \in \mathbb{N}$ [1]. Teda:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

2.1.1 Násobenie matice skalárom

Toto násobenie je vykonané násobením každého prvku matice danou skalárnou hodnotou [1]. Majme maticu A typu 2×2 a skalárnu hodnotu k, potom platí

$$kA = k \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} ka_{11} & ka_{12} \\ ka_{21} & ka_{22} \end{bmatrix}$$

Operácia násobenia matice skalárnou hodnotou je komutatívna, čiže na poradí operandov nezáleží. Nech B je matica a α, β sú skalárne hodnoty, potom

$$(\alpha + \beta)B = \alpha B + \beta B,$$
$$(\alpha \beta)B = \alpha(\beta B)$$

2.1.2 Násobenie matíc

Nech je daná matica A typu $m \times n$ a matica B typu $n \times p$, potom výsledná matica C = AB je typu $m \times p$ a pre jej prvky platí

$$c_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} = A_{i1} B_{ij} + \dots + A_{in} B_{nj},$$

kde $i=1,\ldots,m$, a $j=1,\ldots,p$ [1]. Pre túto operáciu neplatí komutatívnosť.

2.1.3 Transpozícia matice

Ak A je matica typu $m \times n$, potom jej transponovaná matica A^T je typu $n \times m$ a platí [1]

$$(A^T)_{ij} = A_{ji}$$

2.1.4 Tenzorový súčin matíc

Nech A je matica typu $m \times n$ a B je typu $r \times s$. Tenzorový súčin alebo Kroneckerov súčin, označený ako $A \otimes B$ je definovaný ako [2]

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \dots & & & & \\ a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{bmatrix}$$

Nakoľko je $a_{ij}B$ submatica typu $r \times s$, je zjavné, že výsladná matica je typu $mr \times ns$.

2.2 Komplexné čísla

Množinou komplexných čísel $\mathbb C$ je nazývaná množina $\mathbb R^2$ spolu s operáciami sčítania a násobenia. Ľubovoľný prvok $z=(a,b)\in\mathbb C$ je nazývaný komplexné číslo [3]. Komplexné čísla možno reprezentovať nie len ako usporiadanú dvojicu, ale aj pomocou:

1. Algebraickej formy

$$z = a + bi$$

, kde
$$a, b \in \mathbb{R}$$
 a $i^2 = -1$.

Obr. 2.1: Zobrazenie komplexného čísla z: x - reálna os, y - imagináran os

2. Polárnych súradníc ρ a φ ,

kde $\rho, \varphi \in \mathbb{R}$ a $\rho > 0$. V geometrickej reprezenácii (Obr. 2.1) je ρ veľkosť vektora \vec{Oz} , kde O je počiatok súradnicovej sústavy, a φ je uhol medzi osou x a daným vektorom.

Je zrejme, že pre vyjadrenie pomocou polárnych súradníc platí $a=\rho\cos\varphi$ a $b=\rho\sin\varphi$ [3]. Potom je možné zapísať

$$z = \rho e^{i\varphi}$$

,kde $z\in\mathbb{C}$, $\rho,\varphi\in\mathbb{R}$ a $\rho>1$. $e^{i\varphi}$ je komplexná jednotka, inak povedané jej absolútna hodnota je rová 1.

$$|e^{i\varphi}| = 1$$

A z Eulerovho vzťahu platí

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

2.2.1 Operácie na množine komplexých čísel

Súčet komplexných čísel

- (a+bi) + (c+di) = (a+c) + (b+d)i
- $\rho_1 e^{i\varphi_1} + \rho_2 e^{i\varphi_2} = \rho_1(\cos\varphi_1 + i\sin\varphi_1) + \rho_2(\cos\varphi_2 + i\sin\varphi_2) = (\rho_1\cos\varphi_1 + \rho_2\cos\varphi_2) + i(\rho_1\sin\varphi_1 + \rho_2\sin\varphi_2)$

Násobenie komplexných čísel

- $\bullet (a+bi)(c+di) = ac + adi + bci bd = (ac bd) + (ad + bd)i$
- $\bullet \ \rho_1 e^{i\varphi_1} . \rho_2 e^{i\varphi_2} = \rho_1 \rho_2 e^{i(\varphi_1 \varphi_2)}$

Operácie rozdielu a podielu sú ľahko odvoditeľné obnomným spôsobom.

2.2.2 Základné charakteristiky komplexných čísel

Nech α je komplexné číslo $\alpha=a+bi, \alpha\in\mathbb{C}$. Potom hovoríme, že a,b sú zložky komplexného čísla α , pričom a je reálna a b je imaginárna zložka. Pri reprezenácií pomocou polárnych súradníc $\alpha=\rho e^{i\varphi}$ je ρ nazývané amplitúda (veľkosť, norma) komplexného čísla a φ je fáza komplexného čísla.

Pre komplexné číslo $\alpha \in \mathbb{C}$ je číslo α^{\dagger} ($\overline{\alpha}$ alebo α^{*}) nazývané združeným komplexným číslom (angl. conjugate of complex number) [3], pričom ak $\alpha = a + bi$, potom

$$\alpha^{\dagger} = a - bi$$

$$\alpha^{\dagger} = \rho e^{-i\varphi}.$$

Z geometrickej reprezentácie komplexného čísla na Obr. 2.1 je zrejmé, že $\rho=\sqrt{a^2+b^2}$. Bolo už spomenuté, že ρ sa nazýva aj norma komplexného čísla. Normu komplexného čísla α možno označiť aj ako $|\alpha|$ a platí

$$|\alpha| = \sqrt{\alpha^{\dagger} \alpha}.$$

Dôkaz:

$$|\alpha| = \sqrt{\alpha^{\dagger} \alpha} = \sqrt{\rho e^{-i\varphi} \cdot \rho e^{i\varphi}} = \sqrt{\rho^2} = \rho$$

2.3 Vektory

Vektor rozmeru n je usporiadaný súbor prvkov. Vo všeobecnosti je možné vektor A označiť ako

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix}$$

No je žiadúce označovať vektory pomocou Diracovho (Bra-ket) zápisu. Čiže vektory $u=\binom{\alpha}{\beta}$ a $v=\binom{\gamma}{\delta}$ je lepšie označiť ako

$$|\psi_1\rangle = \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}$$

$$|\psi_2\rangle = \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix}$$

Toto označenie popisuje vektory v Hilbertovom priesotre (viac v kapitole 3.1.1), pričom platí nasledovné:

Ak $|\psi\rangle = \binom{\alpha}{\beta}$ je ket-vektor, potom

$$\langle \psi | = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}^{\dagger} = (\alpha^{\dagger} \beta^{\dagger})$$

je bra-vektor, kde $(\alpha, \beta, \alpha^\dagger, \beta^\dagger \in \mathbb{C})$ a $\alpha^\dagger, \beta^\dagger$ sú združené komplexné čísla ku α a β . $\langle \psi |$ je teda združenou transpozíciou (angl. transposed conjugate), a platí

$$\langle \psi^{\dagger} | = | \psi \rangle$$

$$\left|\psi^{\dagger}\right\rangle = \left\langle\psi\right|$$

2.4 Pojmi a definície

Vektor je **normalizovaný**, ak jeho norma (veľkosť) je rovná 1.

$$\left\| \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \right\| = \sqrt{|\alpha|^2 + |\beta|^2} = 1$$

Vektory ψ_1 a ψ_2 sú navzájom **ortogonálne**, ak ich skalárny súčin je rovný 0. Ortogonálnosť (angl. orthogonality) je v tomto ponímaní teda možné zameniť s kolmosťou.

Dva vektory sú **ortonormálne**, ak sú zároveň ortogonálne a normalizované.

Pre príklad nech $|0\rangle=\binom{1}{0}$ a $|1\rangle=\binom{0}{1}$, $(|0\rangle\,,|1\rangle\in\mathbb{C}^2)$. Tieto vektory sú ortonormálne, pretože platí

1.
$$\langle 0 | 1 \rangle = \langle 0 | . | 1 \rangle = \left| 0^{\dagger} \right\rangle . \left| 1 \right\rangle = (10). \binom{0}{1} = 0,$$

2.
$$\| |0\rangle \|^2 = \langle 0 | 0\rangle = (10). \binom{1}{0} = 1$$

 $\| |1\rangle \|^2 = \langle 1 | 1\rangle = (01). \binom{0}{1} = 1$.

Pre skalárny súčin dvoch vektorov platí

$$\langle \psi_1 | \psi_2 \rangle = \langle \psi_1 | . | \psi_2 \rangle = (\alpha_1^{\dagger} \beta_1^{\dagger}). \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = \alpha_1^{\dagger} \alpha_2 + \beta_1^{\dagger} \beta_2.$$

Normu vektora $|\psi\rangle$ pomocou skalárneho súčinu je možné vypočítať ako

$$\| |\psi\rangle \| = \sqrt{\langle \psi | \psi \rangle},$$

pretože platí
$$\langle \psi | \psi \rangle = \alpha^{\dagger} \alpha + \beta^{\dagger} \beta = |\alpha|^2 + |\beta|^2 = ||\psi\rangle||^2$$
.

Operácia tenzorového súčinu dvoch vektorov je definovaná ako

$$|\psi_1\rangle \otimes |\psi_2\rangle = |\psi_1\rangle \cdot \langle \psi_2| = \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \cdot (\alpha_2\beta_2) = \begin{pmatrix} \alpha_1(\alpha_2\beta_2) \\ \beta_1(\alpha_2\beta_2) \end{pmatrix} = \begin{pmatrix} \alpha_1\alpha_2 & \alpha_1\beta_2 \\ \beta_1\alpha_2 & \beta_1\beta_2 \end{pmatrix}$$

3 Teoretické základy kvantových systémov

3.1 Zakladne definicie

3.1.1 Hilbertov priestor ... atd

Hilbertov priestor (angl. Hilbert space) je úplný vektorový priestor s operáciou skalárneho súčinu < u|v>, u,v sú N-rozmerné vektory s komplexnými zložkami. Pre takto definovaný priestor platí, že existuje Cauchyho postupnosť, ktorou je dosiahnuteľný ľubovoľný stav, charakterizovateľný N-rozmerným vektorom $\phi \in \mathbb{C}^N$, ktorý je normalizovaý.

Unitárne zobrazenie (angl. Unitary map) je rotáciou - teda zmenou ortonormálnej bázy.

Kvantový bit je vektor v dvojrozmernom Hilberovom priesotre \mathbb{C}^2 . Vo všeobecnosti môžeme vektor $u=\binom{\alpha}{\beta}$, $\alpha,\beta\in\mathbb{C}$ a $u\in\mathbb{C}^2$ vyjadriť superpozíciou, teda lineárnou kombináciou základných stavov |0>,|1>, ktoré zodpovedajé klasickým bitom 0,1. Teda

$$u = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0 \rangle + \beta |1 \rangle,$$

kde monožina $\{|0>,|1>\}=\{\binom{1}{0},\binom{0}{1}\}$ je základná množina. Bázy $\{|+>,|->\}$ a $\{|qL>,|qR>\}$ sú ďalšie významné bázy v Hilbertovom priesotre, ktoré sú dosiahnuteľné zo základnej bázy unitárnymi transformáciami.

Stav $|\phi>$, $|\phi>\in\mathbb{C}^2$ je superpozíciou stavov základnej bázy $\{|0>,|1>\}$, teda lineárnou kombináciou týchto vektorov. Superpozícia je daná vzťahom $|\phi>=\alpha|0>+\beta|1>$, $\alpha,\beta\in\mathbb{C}, |\alpha|^2+|\beta|^2=1$.

3.1.2 Systém s jedným kvantovým bitom

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle,$$

kde $\alpha, \beta \in \mathbb{C}$ a $|\psi\rangle \in \mathbb{C}^2$. Čiže stav kvantového systému $|\psi\rangle$ je superpozíciou stavov $|0\rangle$ a $|1\rangle$.

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$\langle \psi | = (\alpha^{\dagger}\beta^{\dagger})$$

$$\langle \psi | \psi \rangle = (\alpha^{\dagger}\beta^{\dagger}) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha^{\dagger}\alpha + \beta^{\dagger}\beta = |\alpha|^2 + |\beta|^2 = ||\psi\rangle|^2$$

3.1.3 System s viacerymi kvantovymi bitmy

3.1.4 Princip merania

4 Kvantovy system

- **4.1 IBM QX**
- 4.1.1 Stavy a ich zapis
- 4.1.2 Operacie kvantovych hradiel

5 Meranie jednoduchého kvantového obvodu

```
1.0:: [[1.0 :+ 0.0],[0.0 :+
                 [0.0], [1.0 :+ 0.0], [0.0 :+ 0.0],
                  1.0:: [[0.7071067811865475 :+
                   0.0],[0.7071067811865475:+
                  لامم ـــ ممار (0.0 ــ مردا) لامم
     0.50000000000000001::
   [[0.7071067811865475:+
                                       [[0.7071067811865475:+
                                     0.0],[0.7071067811865475:+
 0.0],[0.7071067811865475:+
[0.0], [0.0 :+ 0.0], [1.0 :+ 0.0],
                                   [0.0], [1.0 :+ 0.0], [0.0 :+ 0.0],
                        0.499999999999999
   0.50000000000000001
           00
                                10
        0.249999999999999
   0.25
                              0.25000000000000001
                                                   0.25
   01
                 11
                                      00
                                                    10
```


6 Celkove zhodnotenie vysledkov (Vyhodnotenie)

7 Záver

Literatúra

- [1] Lieven Vandenberghe Stephen Boyd. *Introduction to Applied Linear Algebra*. Cambridge University Press, 2018.
- [2] Alexander Graham. *Kronecker Products and Matrix Calculus with Applications*. Ellis Horwood limited, 1981.
- [3] Dorin Andrica Titu Andreescu. *Complex Numbers from A to...Z.* Birkhäuser, 2006.