Data Structure for Disjoint Sets

情報知識ネットワーク研究室 B4 大泉翼

目次

- 21.1 Disjoint-set operations
- 21.2 Linked-list representation of disjoint sets
- 21.3 Disjoint-set forests
- 21.4 Analysis of union by rank with path compression

目次

21.1 Disjoint-set operations

- 21.2 Linked-list representation of disjoint sets
- 21.3 Disjoint-set forests
- 21.4 Analysis of union by rank with path compression

内容

- 素集合データ構造は,グループ分けを管理する データ構造の総称.
 - 無向グラフにおける<u>連結成分</u>を求めるアルゴリズムや, 根付き木における<u>最近共通祖先</u>を求めるアルゴリズム, 最小全域木を求めるアルゴリズムなどに応用.
- 本スライドでは以下の二つの表現を紹介.
 - ・素集合連結リスト
 - 素集合森
- さらに素集合森の 1 操作あたりのならし時間計算量を解析して, $O(\alpha(n))$ となる事実を示す.

素集合データ構造とは

- 素集合データ構造とは, 動的で互いに素な集合族
- $S = \{S_1, S_2, ...\}$ を管理するデータ構造.
 - 各集合には代表元を定める。
- x, y を集合の要素として,以下の三つの操作をサポート.
- MAKE-SET(x)
- UNION(x, y)
- FIND-SET(x)

 $a c e g h \mid d f i j \mid$

青色は,各集合の 代表元を表す.

$$S = \{S_a, S_d, S_b\}$$

$$S_a = \{a, c, e, g, h\}$$

$$S_d = \{d, f, i, j\}$$

$$S_b = \{b\}$$

操作 MAKE-SET(x)

- *S'* ← *S* ∪ {{*x*}} とする操作.
 - x のみを要素とする新たな集合を S に加える操作.
 - 集合 {x} の代表元はxと定める.

操作 UNION(x,y)

- $S' \leftarrow (S \setminus \{S_x, S_y\}) \cup (\{S_x \cup S_y\})$ とする操作.
 - x,y を含む集合をそれぞれ S_x,S_y とする.
 - S_x, S_y を S から取り除き, S_x ∪ S_y を S に加える操作.
 - $S_x \cup S_y$ の代表元は、操作前の S_x における代表元とする.

MAKE-SET(b, f)

abcd

def

abcdef

操作 FIND-SET(x)

- *S_x* の<u>代表元</u>を取得する操作.
 - *x* を含む集合を *S_x* とする.

FIND-SET(x)とFIND-SET(y)を比較することで, xとyが同じ集合に属するかどうかを判定できる.

 $acegh \mid dfij$

FIND-SET(c),FIND-SET(h) から, 同じ代表元aを得るので, c と h は 同じ集合に属することがわかる

$$S = \{S_a, S_d, S_b\}$$

$$S_a = \{a, c, e, g, h\}$$

$$S_d = \{d, f, i, j\}$$

$$S_b = \{b\}$$

目次

21.1 Disjoint-set operations

21.2 Linked-list representation of disjoint sets

- 21.3 Disjoint-set forests
- 21.4 Analysis of union by rank with path compression

- 素集合連結リスト $\mathcal{L} = \{L_1, L_2, ...\}$ では, 各集合を**連結リスト**で表現.
 - 各連結リストは一つのダミーと複数のノードを持つ.
 - ダミーは先頭ノードへのポインタ(head)と, 末尾ノードへのポインタ(tail) を持つ.
 - ノードは次のノードへのポインタ(next)と, ダミーへのポインタ (back)と, 要素を持つ.
 - 各集合の代表元は先頭ノードの要素とする.

 $S = \{f, g, d, c, h\}$

- ・素集合連結リスト $\mathcal{L} = \{L_1, L_2, ...\}$ では, 各集合を 連結リストで表現.
 - 各連結リストは一つのダミーと複数のノードを持つ。
 - ダミーは先頭ノードへのポインタ(head)と, 末尾ノードへのポインタ(tail) を持つ.
 - ・ ノードは次のノードへのポインタ(next)と、ダミーへのポインタ(back)と、要素を持つ.
 - ・ 各集合の代表元は先頭ノードの要素とする.

h

素集合連結リスト

- ・素集合連結リスト $\mathcal{L} = \{L_1, L_2, ...\}$ では, 各集合を**連結リスト**で表現.
 - 各連結リストは一つのダミーと複数のノードを持つ。
 - ダミーは先頭ノードへのポインタ(head)と, 末尾ノードへのポインタ(tail) を持つ.
 - ノードは次のノードへのポインタ(next)と、ダミーへのポインタ(back)と、要素を持つ.
 - ・ 各集合の代表元は先頭ノードの要素とする.

 $S = \{f, g, d, c, h\}$

- ・素集合連結リスト $\mathcal{L} = \{L_1, L_2, ...\}$ では, 各集合を**連結リスト**で表現.
 - ・ 各連結リストは一つのダミーと複数のノードを持つ.
 - ・ ダミーは先頭ノードへのポインタ(\underline{head})と, 末尾ノードへのポインタ(tail) を持つ.
 - ノードは次のノードへのポインタ(next)と、ダミーへのポインタ(back)と、要素を持つ.
 - ・ 各集合の代表元は先頭ノードの要素とする.

- ・素集合連結リスト $\mathcal{L} = \{L_1, L_2, ...\}$ では, 各集合を連結リストで表現.
 - ・ 各連結リストは一つのダミーと複数のノードを持つ.
 - ダミーは先頭ノードへのポインタ(head)と、末尾ノードへのポインタ(<u>tail</u>) を持つ.
 - ノードは次のノードへのポインタ(next)と、ダミーへのポインタ(back)と、要素を持つ.
 - ・ 各集合の代表元は先頭ノードの要素とする.

- ・素集合連結リスト $\mathcal{L} = \{L_1, L_2, ...\}$ では, 各集合を 連結リストで表現.
 - ・ 各連結リストは一つのダミーと複数のノードを持つ.
 - ダミーは先頭ノードへのポインタ(head)と, 末尾ノードへのポインタ(tail) を持つ.
 - ノードは次のノードへのポインタ(<u>next</u>)と, ダミーへのポインタ (back) と, 要素を持つ.
 - ・ 各集合の代表元は先頭ノードの要素とする.

- ・素集合連結リスト $\mathcal{L} = \{L_1, L_2, ...\}$ では, 各集合を 連結リストで表現.
 - ・ 各連結リストは一つのダミーと複数のノードを持つ.
 - ダミーは先頭ノードへのポインタ(head)と, 末尾ノードへのポインタ(tail) を持つ.
 - ノードは次のノードへのポインタ(next)と, ダミーへのポインタ (<u>back</u>) と, 要素を持つ.
 - ・ 各集合の代表元は先頭ノードの要素とする.

h

素集合連結リスト

- 素集合連結リスト $\mathcal{L} = \{L_1, L_2, ...\}$ では, 各集合を**連結リスト**で表現.
 - 各連結リストは一つのダミーと複数のノードを持つ.
 - ダミーは先頭ノードへのポインタ(head)と,末尾ノードへのポインタ(tail)を持つ.
 - ノードは次のノードへのポインタ(next)と, ダミーへのポインタ (back)と, 要素を持つ.
 - 各集合の代表元は先頭ノードの要素とする.

$$S = \{f, g, d, c, h\}$$

d

操作 MAKE-SET(x)

- 新たな連結リストを作る.
 - 1.新たなダミーと,要素が x の新たなノード を作る.
 - 2. このダミーの head と tail をこのノードに<u>初期化</u>.
 - 3. このノードの next は NULL に, back はこのダミーに<u>初期化</u>.

操作 UNION(x,y)

- 二つのリストのポインタを張り替えて,統合する.
 - x,y を含むリストをそれぞれ L_x,L_y とする.
 - 1. L_x の末尾ノードの next を L_y の先頭ノードに $\overline{\boldsymbol{y}}$.
 - 2. L_x のダミーの tail を L_y の末尾ノードに $\overline{m e}$.
 - 3. L_y のすべてのノードの back を L_x のダミーに $\underline{\mathbf{p}}$.

操作 FIND-SET(x)

- x からポインタをたどり,最初のノード(代表元)を得る.
 - x を含むリストを L_x とする.
 - 1. x の back をたどり, L_x のダミーを得る.
 - 2. L_x のダミーから head をたどり L_x の代表元を得る.

ならし計算量

- データ構造におけるm回の連続した操作にかかる時間計算量がO(T(m))であるとき,
 - $O\left(\frac{T(m)}{m}\right)$ をならし計算量とする.
 - 1回あたりの操作にかかる時間計算量の効率をはかる指標.

計算量解析のための準備

- •n := MAKE-SET(x) を実行した回数
- $f \coloneqq FIND\text{-}SET(x)$ を実行した回数
- • $m \coloneqq$ 実行した操作回数の合計

計算効率 (工夫なし)

- 右のような 2n-1 回の操作列を考える.
- n 回の MAKE-SET(x) を行うのに $\Theta(n)$.
- n-1 回の UNION(x,y) を行うのに $\Theta(n^2)$.

よって,操作 1 回のならし計算量は $\Theta(n)$

UNION(i + 1, i) で *i* 箇所の back ポインタの更新が起こる.

操作	更新が起こる ノードの数
$MAKE$ - $SET(x_1)$	1
:	:
$MAKE-SET(x_n)$	1
$UNION(x_2, x_1)$	1
$UNION(x_3, x_2)$	2
$UNION(x_4, x_3)$	3
:	:
$UNION(x_n, x_{n-1})$	n-1

計算量を改善する工夫

- 各リストが持つノードの個数を 長さとする.
- UNION 操作の際,長さの小さいほうのリストを 大きいほうのリストに付加するようにする.
 - つまり, 長さが小さいほうのリストの back ポインタを張り替える.
 - length(L) := リスト L の長さ.

length(L) = 5

計算効率 (工夫あり)

- あるノード x の back ポインタが,全体で更新される回数に注目.
- x の back ポインタが張り替わるとき, そのリストの長さは 少なくとも 2 倍になる.
- リストの長さは高q n 1 であるので 各ノードの back ポインタの更新回数 は高 $q \lceil \log_2 n \rceil$.
- ・よって UNION 操作全体の時間計算量は $O(n \log n)$.

1	
back 📋	back ポインタの
	更新回数は
	高々 [log ₂ n]
$next \square$	

x の更新回数	L _x の長さ
1	少なくとも2
2	少なくとも 4
3	少なくとも8
:	:
$\lceil \log_2 k \rceil$	少なくとも k

目次

- 21.1 Disjoint-set operations
- 21.2 Linked-list representation of disjoint sets

21.3 Disjoint-set forests

21.4 Analysis of union by rank with path compression

(準備 1/3) 有向グラフ

- 有向グラフ G とは, 有限集合 V と, V 上の二項関係 E との組である。
 - G = (V, E) と表す.
 - Vを頂点集合と呼び, Vの要素を頂点と呼ぶ.
 - E を辺集合と呼び, E の要素を辺と呼ぶ.

頂点は円で表現され, 辺は矢印で表現される

$$G = (V, E)$$

 $V = \{a, b, c, d, e\}$
 $E = \{(a, b), (c, a), (b, c), (b, d), (e, e)\}$

(準備 2/3) パス

- 有向グラフGにおけるパスpとは,以下の性質を満たす頂点の列 $(v_0, v_1, ..., v_k)$ である.
 - (性質 2) i = 1, 2, ... k に対して, $(v_{i-1}, v_i) \in E$
- v_0 を始点, v_k を終点, k を長さと呼ぶ.

右の有向グラフにおいて...

(a,b,c) はパス (a,b,c,a,b,d) はパス (e,e) はパス (e) はパス (e,a) はパスではない

$$G = (V, E)$$

 $V = \{a, b, c, d, e\}$
 $E = \{(a, b), (c, a), (b, c), (b, d), (e, e)\}$

(準備 3/3) 根付き木

- 有向グラフ $G \ge G$ の頂点rが以下の性質を満たすとき,Gはrを根とする根付き木であるという.
 - (性質) $x \in V$ に対して, 始点がx, 終点がr となるパスがちょう どーつ存在する.

素集合森

- 素集合森 では, 各集合を根付き木 $G = \{G_1, G_2, ...\}$ で表現する.
- 代表元は各根付き木における根とする.
- 各頂点は,自身の親へのポインタ (par) を持つ.
- 根の par は自分自身とする.

 $S = \{\{j, k, i, l\}, \{a\}, \{b, c, e, h\}, \{d, f, g\}\}\}$

MAKE-SET(x)

- 新たな根付き木 $G = (\{x\}, \emptyset)$ を作る.
 - 1. 頂点 *x* を新たに作る.
 - 2. xの par を x に<u>初期化</u>.

UNION(x, y)

- •二つの根付き木のポインタを張り替えて,統合する.
 - x,y を含む根付き木をそれぞれ G_x,G_y とする.
 - 1. G_x の根の par を G_y の根に<u>更新</u>.
 - 根を取得するのに FIND-SET(x) FIND-SET(y) が必要.

FIND-SET(x)

- x からポインタをたどり, 根(代表元)を得る.
 - x を含む根付き木を G_x とする.
 - 1. x から根にたどり着くまで par をたどり, G_x の根を得る.

計算効率 (工夫なし)

- 右のような 2n 1 回の操作列を考える.
- n 回の MAKE-SET(x) を行うのに $\Theta(n)$.
- n-1 回の UNION(x,y) を行うのに $\Theta(n^2)$.

よって、操作 1 回のならし計算量は $\Theta(n)$

i + 1 回目の操作では, par ポインタを x₁ から x_i まで i 回たどる必要がある

操作	更新が起こるノー ドの数
$MAKE-SET(x_1)$	1
:	:
$MAKE-SET(x_n)$	1
$UNION(x_1, x_2)$	1
$UNION(x_1, x_3)$	2
$UNION(x_1, x_4)$	3
:	:
$UNION(x_1, x_n)$	n-1

計算量を改善する工夫

- ・素集合森における,計算量改善の工夫は二つ.
 - 1. union by rank
 - 2. path compression

工夫1 union by rank

- 各頂点に rank という情報を持たせる.
 - rank(x) := 終点 が x であるようなパスの, 長さの最大値.
- UNION(x,y) を行う際, rank が小さい方の根を, 大きい方の根に繋ぎ変えるような工夫.

工夫2 path compression

- FIND-SET(x) を行なう際, 始点が x, 終点が G_x の根であるようなパスを $find\ path$ と呼ぶ.
- find path 上のすべての頂点の par を G_x の根にする.
 - ただし, rank(x) は<u>変えない</u>ものとする.

各操作の擬似コード

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
MAKE-SET(x)
1 \quad x.p \leftarrow x
2 \quad x.rank \leftarrow 0
```

```
FIND-SET(x)

1 if x.rank \neq x.p

2 x.p \leftarrow FIND-SET(x.p)

3 return x
```

```
LINK(x,y)

1 if x.rank > y.rank

2 y.p = x

3 else

4 x.p \leftarrow y

5 if x.rank == y.rank

6 y.rank \leftarrow y.rank + 1
```

```
UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))
```

MAKE-SET(x) の擬似コード

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

MAKE-SET(x)

```
1 x.p \leftarrow x
```

2 $x.rank \leftarrow 0$

MAKE-SET(x) の擬似コード

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

MAKE-SET(x)

- 1 $x.p \leftarrow x$
- 2 $x.rank \leftarrow 0$

x. *p* を *x* で初期化

MAKE-SET(x) の擬似コード

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

MAKE-SET(x)

1 $x.p \leftarrow x$

2 $x.rank \leftarrow 0$

x. rank を 0 で初期化

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
FIND-SET(x)

1 if x.rank \neq x.p

2 x.p \leftarrow FIND-SET(x.p)

3 return x
```

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
FIND-SET(x)
```

- 1 if $x.rank \neq x.p$
- 2 $x.p \leftarrow FIND-SET(x.p)$
- 3 return x

x が根ではないなら

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
FIND-SET(x)
```

- 1 if x. $rank \neq x$. p
- 2 $x.p \leftarrow FIND-SET(x.p)$
- 3 return x

x が根ではないなら 再帰手続きを呼び出して x.p を根に更新

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
FIND-SET(x)
```

- 1 if x. $rank \neq x$. p
- 2 $x.p \leftarrow FIND-SET(x.p)$
- 3 return x

x が根ではないなら 再帰手続きを呼び出して x.p を根に更新

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
FIND-SET(x)
```

- 1 if x. $rank \neq x$. p
- 2 $x.p \leftarrow FIND-SET(x.p)$
- 3 return x

x が根ではないなら 再帰手続きを呼び出して x.p を根に更新

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
FIND-SET(x)
```

```
1 if x.rank \neq x.p
```

- 2 $x.p \leftarrow FIND-SET(x.p)$
- 3 return x

x が根ならx 自身を返す

UNION(x,y) の擬似コード

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
UNION(x,y)
1 LINK(FIND-SET(x), FIND-SET(y))
```

UNION(x,y) の擬似コード

- x.rank: 頂点 x のランク
- x.p: 頂点 x の par

UNION(x, y)

1 LINK(FIND-SET(x), FIND-SET(y))

FIND(x), FIND(y) を呼び出して

UNION(x,y) の擬似コード

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

UNION(x, y)

1 LINK(FIND-SET(x), FIND-SET(y))

 G_x , G_y の根を LINK に渡す.

- x.rank: 頂点 x のランク
- x.p: 頂点 x の par

```
LINK(x,y)

1 if x.rank > y.rank

2 y.p \leftarrow x

3 else

4 x.p \leftarrow y

5 if x.rank == y.rank

6 y.rank \leftarrow y.rank + 1
```

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
LINK(x,y)

1 if x.rank > y.rank

2 y.p \leftarrow x

3 else

4 x.p \leftarrow y

5 if x.rank == y.rank

6 y.rank \leftarrow y.rank + 1
```

LINK(*x*, *y*) は *UNION*(*x*, *y*) の サブルーチンで 二つの根を入力として受け取る

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
LINK(x,y)

1 if x.rank > y.rank

2 y.p \leftarrow x

3 else

4 x.p \leftarrow y

5 if x.rank == y.rank

6 y.rank \leftarrow y.rank + 1
```

x.rank > y.rank の時

- x.rank: 頂点 x のランク
- x.p: 頂点 x の par

```
LINK(x,y)

1 if x.rank > y.rank

2 y.p \leftarrow x

3 else

4 x.p \leftarrow y

5 if x.rank == y.rank

6 y.rank \leftarrow y.rank + 1
```

x.rank > y.rank の時 y.pをxに更新

- x.rank: 頂点 x のランク
- x.p: 頂点 x の par

```
LINK(x,y)
1 if x.rank > y.rank
2 y.p \leftarrow x
3 else
4 x.p \leftarrow y
5 if x.rank == y.rank
6 y.rank \leftarrow y.rank + 1
```

 $x.rank \leq y.rank$ の時

- x. rank: 頂点 x のランク
- x.p: 頂点 x の par

```
LINK(x,y)

1 if x.rank > y.rank

2 y.p \leftarrow x

3 else

4 x.p \leftarrow y

5 if x.rank == y.rank

6 y.rank \leftarrow y.rank + 1
```

 $x.rank \leq y.rank$ の時 x.p を y に更新

- x.rank: 頂点 x のランク
- x.p: 頂点 x の par

```
LINK(x,y)

1 if x.rank > y.rank

2 y.p \leftarrow x

3 else

4 x.p \leftarrow y

5 if x.rank == y.rank

6 y.rank \leftarrow y.rank + 1
```

 $x.rank \leq y.rank$ の時 x.p を y に更新 特に x.rank = y.rank の時

- x.rank: 頂点 x のランク
- x.p: 頂点 x の par

```
LINK(x,y)

1 if x.rank > y.rank

2 y.p \leftarrow x

3 else

4 x.p \leftarrow y

5 if x.rank == y.rank

6 y.rank \leftarrow y.rank + 1
```

 $x.rank \leq y.rank$ の時 $x.p \in y$ に更新 特に x.rank = y.rank の時 $y.rank \in 1$ 増やす

各操作の擬似コード(再掲)

- x.rank: 頂点 x のランク
- x.p: 頂点 x の par

```
MAKE-SET(x)
1 \quad x.p \leftarrow x
2 \quad x.rank \leftarrow 0
```

```
FIND-SET(x)

1 if x.rank \neq x.p

2 x.p \leftarrow FIND\text{-SET}(x.p)

3 return x
```

```
LINK(x,y)
1 if x.rank > y.rank
2 y.p \leftarrow x
3 else
4 x.p \leftarrow y
5 if x.rank == y.rank
6 y.rank \leftarrow y.rank + 1
```

```
UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))
```

MAKE- $SET(a) \sim MAKE$ -SET(i) までは実行済み

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

(a)	(b)

	i	

頂点	а	b	С	d	e	f	g	h	i
rank	0	0	0	0	0	0	0	0	0

LINK(a,b) を実行

LINK(a, b)

操作列

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

\overline{a}	(k

頂点	<u>a</u>	<u>b</u>	С	d	e	f	g	h	i
rank	0	0	0	0	0	0	0	0	0

LINK(a,b) を実行 b.rank が 1 に増加

操作列

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

頂点	<u>a</u>	<u>b</u>	С	d	e	f	g	h	i	
rank	0	1	0	0	0	0	0	0	0	

LINK(c,d)を実行

頂点	а	b	<u>c</u>	<u>d</u>	e	f	g	h	i
rank	0	1	0	0	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)

LINK(c,d) を実行 d.rank が 1 に増加

頂点	a	b	<u>c</u>	<u>d</u>	e	f	g	h	i
rank	0	1	0	1	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

LINK(e,d) を実行

頂点	а	b	С	<u>d</u>	<u>e</u>	f	g	h	i
rank	0	1	0	1	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)

LINK(e,d) を実行 rank は変化しない

頂点	а	b	С	<u>d</u>	<u>e</u>	f	g	h	i
rank	0	1	0	1	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

LINK(b,d)を実行

b

0

頂点

rank

a

0

0

0

d

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

h

0

0

g

0

LINK(b, d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)

LINK(b,d) を実行 d.rank が 2 に<mark>増加</mark>

頂点	а	<u>b</u>	С	<u>d</u>	e	f	g	h	i
rank	0	1	0	2	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b, d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)

FIND(a) を実行

頂点	а	b	С	d	e	f	g	h	i
rank	0	1	0	2	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)

FIND(a) を実行 find path = (a, b, d)

頂点	a	b	С	d	e	f	g	h	i
rank	0	1	0	2	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

FIND(a) を実行 find path = (a,b,d) 各頂点のpar を d に更新

頂点	а	b	С	d	e	f	g	h	i
rank	0	1	0	2	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

union by rank and path compression

FIND(a) を実行 find path = (a,b,d) 各頂点のpar を d に更新

どの頂点も rank は変化しない

頂点	а	b	С	d	e	f	g	h	i
rank	0	1	0	2	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

LINK(f,g)を実行

頂点	а	b	С	d	e	£	g	h	i
rank	0	1	0	2	0	0	0	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f, g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)

LINK(f,g) を実行 g.rank が 1 に 増加

頂点	а	b	С	d	e	£	g	h	i
rank	0	1	0	2	0	0	1	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f, g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

LINK(h,i) を実行

頂点	a	b	С	d	e	f	g	<u>h</u>	<u>i</u>
rank	0	1	0	2	0	0	1	0	0

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

LINK(h,i) を実行 h.rank が 1に<mark>増加</mark>

b

0

頂点

rank

a

0

d

0

0

LINK(a,b)LINK(c,d)LINK(e,d)LINK(b,d)FIND(a)LINK(f,g)LINK(h, i)LINK(g,i)LINK(i,d)FIND(g)FIND(h)

<u>h</u>

0

1

g

操作列

LINK(g,i)を実行

頂点	а	b	С	d	e	f	g	h	<u>i</u>
rank	0	1	0	2	0	0	1	0	1

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(i, d)

FIND(g)

LINK(g,i) を実行 i.rank が 2 に<mark>増加</mark>

頂点	а	b	С	d	e	f	g	h	<u>i</u>
rank	0	1	0	2	0	0	1	0	2

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(i, d)

FIND(g)

LINK(i,d) を実行

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)

頂点	а	b	С	<u>d</u>	e	f	g	h	<u>i</u>
rank	0	1	0	2	0	0	1	0	2

LINK(i,d) を実行 d.rank が 2に<mark>増加</mark>

	L T.I
JUD 11	15 月11
1末 1	トフリ

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)

頂点	а	b	С	<u>d</u>	e	f	g	h	<u>i</u>
rank	0	1	0	3	0	0	1	0	2

FIND(g)を実行

III.	11	. 75-1
100	#/E	周川
138		ועע

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

頂点	а	b	С	d	e	f	g	h	i
rank	0	1	0	3	0	0	1	0	2

FIND(g)を実行

頂点	а	b	С	d	e	f	g	h	i
rank	0	1	0	3	0	0	1	0	2

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)を実行

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i, d)

FIND(g)

頂点	а	b	С	d	e	f	g	h	i
rank	0	1	0	3	0	0	1	0	2

FIND(h) を実行

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

頂点	а	b	С	d	e	f	g	h	i
rank	0	1	0	3	0	0	1	0	2

FIND(h) を実行

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

頂点	а	b	С	d	e	f	g	h	i
rank	0	1	0	3	0	0	1	0	2

FIND(h) を実行

頂点	а	b	С	d	e	f	g	h	i
rank	0	1	0	3	0	0	1	0	2

操作列

LINK(a,b)

LINK(c,d)

LINK(e,d)

LINK(b,d)

FIND(a)

LINK(f,g)

LINK(h, i)

LINK(g,i)

LINK(i,d)

FIND(g)

計算効率 (工夫あり)

- union by rank のみを施した場合
 操作 1 回あたりのならし計算量は O(log n).
- path compression のみを施した場合操作全体の時間計算量は $O\left(n+f\cdot\left(1+\log_{2+\frac{f}{n}}n\right)\right)$
- ・この両方を施した場合 操作 1 回あたりのならし計算量は $O(\alpha(n))$.

<u>本スライドで解説</u>

目次

- 21.1 Disjoint-set operations
- 21.2 Linked-list representation of disjoint sets
- 21.3 Disjoint-set forests
- 21.4 Analysis of union by rank with path compression

今日の目次

- アッカーマン関数について
- rank に関する性質
- •ポテンシャル法
- •ポテンシャル関数を導入のための準備
- •ポテンシャル関数に関する性質
- •各操作に対してのならし解析

今日の目次

アッカーマン関数について

- rank に関する性質
- •ポテンシャル法
- ポテンシャル関数を導入のための準備
- ポテンシャル関数に関する性質
- 各操作に対してのならし解析

アッカーマン関数(1/3)

• アッカーマン関数 $A_k(j)$ を以下のように定義する.

[定義]

整数 $k \geq 0, j \geq 1$ に対して,

$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1 \end{cases}$$

・繰り返し関数の記法

$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0\\ f(f^{(i-1)}(n)) & \text{if } i > 0 \end{cases}$$

アッカーマン関数(2/3)

[補題 1-1]

整数 $j \ge 1$ に対して, $A_1(j) = 2j + 1$.

アッカーマン関数(2/3)

[補題 1-1]

整数 $j \ge 1$ に対して, $A_1(j) = 2j + 1$.

[証明]

まず, $A_0^{(i)}(j) = j + i$ を**数学的帰納法**で示す.

- 1. $A_0^{(0)}(j) = j = j + 0$ より正しい.
- 2. $A_0^{(i-1)}(j) = j + (i-1)$ と仮定. $A_0^{(i)}(j) = A_0\left(A_0^{(i-1)}(j)\right) = \left(j + (i-1)\right) + 1 = j + i.$

よって,
$$A_1(j) = A_0^{(j+1)}(j) = j + (j+1) = 2j + 1$$
.

アッカーマン関数(3/3)

[補題 1-2]

整数 $j \ge 1$ に対して, $A_2(j) = 2^{j+1}(j+1) - 1$.

アッカーマン関数(3/3)

[補題 1-2]

整数 $j \ge 1$ に対して, $A_2(j) = 2^{j+1}(j+1) - 1$.

[証明]

まず, $A_1^{(i)}(j) = 2^i(j+1) - 1$ を**数学的帰納法**で示す.

1.
$$A_1^{(0)}(j) = j = 2^0(j+1) - 1$$
 より正しい.

2.
$$A_1^{(i-1)}(j) = 2^{i-1}(j+1) - 1$$
と仮定.

$$A_1^{(i)}(j) = A_1 \left(A_1^{(i-1)}(j) \right) = A_1 \left(2^{i-1}(j+1) - 1 \right)$$

= $2 \cdot \left(2^{i-1}(j+1) - 1 \right) + 1 = 2^i(j+1) - 1.$

よって,
$$A_2(j) = A_1^{(j+1)}(j) = 2^{j+1}(j+1) - 1$$
.

アッカーマン関数の増え方

 k = 0,1,2,3,4 において,A_k(1) がいかに爆発的に増加 するかを観察する.

$$A_0(1) = 1 + 1 = 2.$$

$$A_1(1) = 2 \cdot 1 + 1 = 3.$$

$$A_2(1) = 2^{1+1}(1+1) - 1 = 7.$$

$$A_3(1) = A_2^{(2)}(1) = A_2(A_2(1)) = A_2(7) = 2^8 \cdot 8 - 1 = 2047.$$

$$A_4(1) = A_3^{(2)}(1) = A_3(A_3(1)) = A_3(2047) = A_2^{(2048)}(2047)$$

 $\Rightarrow A_2(2047) = 2^{2048} \cdot 2048 - 1 > 2^{2048} = 16^{512}$

アッカーマン関数の逆

• アッカーマン関数の逆 $\alpha(n)$ を, 以下のように定める.

[定義]

整数 $n \ge 0$ に対して,

 $\alpha(n) = \min\{k : A_k(1) \ge n\}$

$$\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2\\ 1 & \text{for } n = 3\\ 2 & \text{for } 4 \le n \le 7\\ 3 & \text{for } 8 \le n \le 2047\\ 4 & \text{for } 2048 \le n \le A_4(1) \end{cases}$$

今日の目次

- アッカーマン関数について
- rank に関する性質
- •ポテンシャル法
- ポテンシャル関数導入のための準備
- ポテンシャル関数に関する性質
- 各操作に対してのならし解析

[補題 2-1]

全てのノードxに対して, x. $rank \le x$. p. rank が成立 (等号成立条件はx = x. p)

[補題 2-1]

全てのノードxに対して, x. $rank \le x$. p. rank が成立 (等号成立条件はx = x. p)

OH

[証明]

数学的帰納法で示す.

(1) 基礎ケース

$$x = x.p$$
 であり,

x.rank = x.p.rank = 0なので成立.

[補題 2-1]

全てのノードxに対して, x. $rank \le x$. p. rank が成立 (等号成立条件はx = x. p)

[証明]

<u>数学的帰納法</u>で示す.

(2) 帰納ステップ

UNION(x,y) で変化するのは y.rank と x.p のみ.

操作後,x.rank < y.rank = x.p.rank が成立.

[補題 2-1]

全てのノードxに対して, x. $rank \le x$. p. rank が成立 (等号成立条件はx = x. p)

[証明]

数学的帰納法で示す.

(2) 帰納ステップ

FIND(x)で変化するのは,

find path = $(x_1, ..., x_k, r) \ge \bigcup \mathcal{T}$,

 x_i . $p(1 \le i \le k)$ $\mathcal{O}\mathcal{H}$.

操作後 x_i . rank < r. rank = x. p. rank が成立.

[補題 2-1]

全てのノードxに対して, x. $rank \le x$. p. rank が成立 (等号成立条件はx = x. p)

[証明]

数学的帰納法で示す.

(2) 帰納ステップ

FIND(x)で変化するのは,

find path = $(x_1, ..., x_k, r) \ge \bigcup \mathcal{T}$,

 x_i , $p(1 \le i \le k)$ $\mathcal{O}\mathcal{H}$.

操作後 x_i . rank < r. rank = x. p. rank が成立.

以上より,補題 2-1 が示された.

[補題 2-2]

x.rank は最初は 0 で, x = x.p の間, 広義単調増加する. $x \neq x.p$ になった以降, x.rank は変化しない.

[補題 2-2]

x.rank は最初は 0 で, x = x.p の間, 広義単調増加する. $x \neq x.p$ になった以降, x.rank は変化しない.

[証明] 疑似コードより

MAKE-SET(x)

- 1 $x.p \leftarrow x$
- 2 $x.rank \leftarrow 0$

FIND-SET(x)

- 1 if x. $rank \neq x$. p
- 2 $x.p \leftarrow FIND-SET(x.p)$
- 3 return x

LINK(x, y)

- 1 if x.rank > y.rank
- 2 $y.p \leftarrow x$
- 3 else
- 4 $x.p \leftarrow y$
- if x.rank = y.rank
- 6 $y.rank \leftarrow y.rank + 1$

[補題 2-3]

全ての頂点 x に対して, x. $rank \le n-1$ が成立.

[補題 2-3]

全ての頂点 x に対して, x. $rank \leq n-1$ が成立.

[証明]

頂点の数が n なので

今日の目次

- アッカーマン関数について
- rank に関する性質
- ポテンシャル法
- ポテンシャル関数を導入のための準備
- ポテンシャル関数に関する性質
- 各操作に対してのならし解析

ポテンシャル法(1/3)

- ポテンシャル法とはデータ構造に対して定義される ポテンシャル関数を用いた,ならし計算量解析の テクニック.
- ・ポテンシャル法の考え方を説明し,簡単な具体例で 実際に計算量を解析する.

ポテンシャル法(2/3)

- 初期データ構造 D_0 に対する n 回の操作の実行を考える.
- i = 1,2,...,n に対して,
 c_i := i 番目の操作の実コスト
 D_i := i 番目の操作後のデータ構造
 Φ := 各データ構造 D_i から, ある実数 Φ(D_i) を得る関数と定義する.
- i 番目の操作のならしコスト $\hat{c_i}$ を, $\hat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1})$ と定義する.

ポテンシャル法(3/3)

- $\sum_{i=0}^{n} \widehat{c_i} = \sum_{i=0}^{n} (c_i + \Phi(D_i) \Phi(D_{i-1}))$ = $\sum_{i=0}^{n} c_i + \Phi(D_n) - \Phi(D_0)$ が成立する.
- 全ての n に対して, $\Phi(D_n) \Phi(D_0) \ge 0$ が成立するようにポテンシャル関数を定めると, $\sum_{i=0}^n \widehat{c_i} \ge \sum_{i=0}^n c_i$ が成立し, 総ならしコストが, 総実コストの上界となる.

スタック

- スタックを例にとり、ポテンシャル法を適用する。
 - ・スタックS := 以下の二つの操作ができるデータ構造.
 - PUSH(S,x) := 要素 x を S の 先頭に追加する操作.
 - POP(S) ≔ S の上から1個の要素を取り除く操作.
 - MULTIPOP(S,k) := S の上から min(S. size, k) 個の要素を取り除く操作.
 - S. size = スタックに積まれている要素数.

3

計算量解析(工夫なし)

- 操作回数を n とする.
- S. size は n まで大きくなりうるから,
 MULTIPOP 操作一回の最悪計算量は O(n) である.
- MULTIPOP が n 回実行される可能性があるから, 操作全体の計算量は $O(n^2)$ である.

計算量解析(ポテンシャル法)

- ・ポテンシャル関数を $\Phi(S) := S. size$ と定める.
 - 全ての n に対して, $\Phi(D_n) \Phi(D_0) \ge 0$ が成立.

 $\Phi(S)=4$

PUSH(S,x)

i 番目の操作が s 個の要素を含むスタックへの PUSH 操作と仮定.

ポテンシャル差は, $\Phi(D_i) - \Phi(D_{i-1}) = (s+1) - s = 1$ である.

この操作の実コストは $c_i = 1$ であるので, ならしコストは $\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$ = O(1) + 1 = O(1)

となる.

MULTIPOP(S,k)

i 番目の操作が s 個の要素を含むスタックへの MULTIPOP(S,k) であり, $k' = \min(s,k)$ 個の要素がポップされるものと仮定.

ポテンシャル差は, $\Phi(D_i) - \Phi(D_{i-1}) = (s+1) - s = -k'$ である.

この操作の実コストは $c_i = O(k')$ であるので, ならしコストは $\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$ = O(k') - k' となる.

POP(S,k)

MULTIPOP(S,k) の特殊なケースとみなせばよい.

計算量解析(ポテンシャル法)

各操作のならしコストは以下のようになる.

- PUSH: O(1)
- MULTIPOP: O(k') k'

ここでポテンシャル関数の 1 単位を十分大きくとると, O(k') - k' = O(1) となる.

よって, 長さn の操作列を実行したときの総ならしコストはO(n) となる.

総ならしコストは総実コストの上界であるので, 長さnの操作列を実行した時の時間計算量はO(n)となり,ならし計算量はO(1)となる.

今日の目次

- アッカーマン関数について
- rank に関する性質
- •ポテンシャル法
- ・ポテンシャル関数を導入のための準備
- ポテンシャル関数に関する性質
- 各操作に対してのならし解析

level(x) 関数

第一の補助関数 level(x) を以下のように定める.

[定義]

根ではなく, $x.rank \ge 1$ であるようなノード x に対して $level(x) = max\{k : x.p.rank \ge A_k(x.rank)\}$

x.rank は不変であり, x.p.rank は時間とともに増加するので, level(x) も時間とともに増加する.

level(x) 関数に関する性質

level(x) に対して, 以下の不等式が成立.

[補題 3-1]

 $0 \le level(x) < \alpha(n)$

level(x) 関数に関する性質

level(x) に対して,以下の不等式が成立.

[補題 3-1] $0 \le level(x) < \alpha(n)$

[証明(左)]

$$x.p.rank \ge x.rank + 1$$
 ($:$ 補題 2-1)
= $A_0(x.rank)$ ($: A_0(j)$ の定義)

よって, $0 \le level(x)$ が成立.

level(x) 関数に関する性質

level(x) に対して, 以下の不等式が成立.

[補題 3-1]

 $0 \le level(x) < \alpha(n)$

[証明(右)]

 $A_{\alpha(n)}(x.rank) \ge A_{\alpha(n)}(1)$ (: $A_k(j)$ は単調増加する)

 $\geq n$ ($: \alpha(n)$ の定義)

> x.p.rank (:補題 2-3)

よって, $level(x) < \alpha(n)$ が成立.

以上より,補題 3-1 が成立.

iter(x) 関数

第二の補助関数 iter(x) を以下のように定める.

[定義]

根ではなく, $x.rank \ge 1$ であるような頂点 x に対して, $iter(x) = \max \left\{ i : x.p.rank \ge A_{level(x)}^{(i)}(x.rank) \right\}$

iter(x) に対して,以下の不等式が成立.

[補題 3-2]

 $1 \le iter(x) \le x.rank$

• *iter(x)* に対して,以下の不等式が成立.

[補題 3-2]

 $1 \le iter(x) \le x.rank$

[証明(左)]

$$x.p.rank \ge A_{level(x)}(x.rank)$$
 (: $level(x)$ の定義)
= $A_{level(x)}^{(1)}(x.rank)$

よって, $1 \leq iter(x)$ が成立.

iter(x) に対して,以下の不等式が成立.

[補題 3-2]

 $1 \le iter(x) \le x.rank$

[証明(右)]

$$A_{level(x)}^{(x.rank+1)}(x.rank) = A_{level(x)+1}(x.rank)$$
 (∵ A_k (j) の定義) $> x.p.rank$ (∵ $level(x)$ の定義)

よって, $iter(x) \leq x.rank$ が成立.

iter(x) に対して,以下の不等式が成立.

[補題 3-2]

 $1 \le iter(x) \le x.rank$

[証明(右)]

$$A_{level(x)}^{(x.rank+1)}(x.rank) = A_{level(x)+1}(x.rank) (: A_k(j)$$
の定義)
> $x.p.rank$ (: $level(x)$ の定義)

説明)

よって, $iter(x) \leq x.rank$ が成立.

以上より,補題 3-2 が成立.

今日の目次

- アッカーマン関数について
- rank に関する性質
- •ポテンシャル法
- ポテンシャル関数導入のための準備
- ポテンシャル関数に関する性質
- 各操作に対してのならし解析

ポテンシャル関数の導入

・ポテンシャル関数 $\Phi_q(D)$, $\phi_q(x)$ を以下のように定める.

[定義]

q回目の操作後の素集合森gに対して,

$$\Phi_q(D) = \sum_x \phi_q(x).$$

ただし, 各ノード x に対して,

$$\phi_q(x) = \begin{cases} \alpha(n) \cdot x. rank & \text{if } (\mathbf{1}) \\ (\alpha(n) - level(x)) \cdot x. rank - iter(x) & \text{otherwise} \end{cases}$$

(1) x が根, または x. rank = 0 の時

[補題 4-1]

全ての頂点x対して,

 $0 \le \phi_q(x) \le \alpha(n) \cdot x.rank$

また,根ではなく, $x.rank \ge 1$ であるような頂点 x に対して,

 $0 \le \phi_q(x) < \alpha(n) \cdot x.rank$

[補題 4-1]

全ての頂点x対して,

$$0 \le \phi_q(x) \le \alpha(n) \cdot x.rank$$

また,根ではなく, $x.rank \ge 1$ であるような頂点 x に対して,

$$0 \le \phi_q(x) < \alpha(n) \cdot x.rank$$

[証明]

x が根, または x. rank = 0 のとき

定義より, $\phi_a(x) = \alpha(n) \cdot x \cdot rank$

であるので,上記の不等式は成立.

[補題 4-1]

全ての頂点 x 対して,

$$0 \le \phi_q(x) \le \alpha(n) \cdot x.rank$$

また, 根ではなく, $x.rank \ge 1$ であるような頂点 x に対して,

$$0 \le \phi_q(x) < \alpha(n) \cdot x.rank$$

[証明(左)]

x が根でなく, x. $rank \ge 1$ の時

$$\phi_q(x) = (\alpha(n) - level(x)) \cdot x.rank - iter(x)$$

$$\geq (\alpha(n) - (\alpha(n) - 1)) \cdot x.rank - x.rank$$

$$= x.rank - x.rank = 0$$

よって, $0 \le \phi_q(x)$ が成立.

[補題 4-1]

全ての頂点 x 対して,

$$0 \le \phi_q(x) \le \alpha(n) \cdot x.rank$$

また, 根ではなく, $x.rank \ge 1$ であるような頂点 x に対して,

$$0 \le \phi_a(x) < \alpha(n) \cdot x.rank$$

[証明(右)]

x が根でなく, x. $rank \ge 1$ の時

$$\phi_{q}(x) = (\alpha(n) - level(x)) \cdot x.rank - iter(x)$$

$$\leq (\alpha(n) - 0) \cdot x.rank - 1$$

$$= \alpha(n) \cdot x.rank - 1 < \alpha(n) \cdot x.rank$$

よって, $\phi_q(x) < \alpha(n) \cdot x$. rank が成立.

```
[補題 4-1] 全ての頂点 x 対して, 0 \le \phi_q(x) \le \alpha(n) \cdot x.rank また, 根ではなく, x.rank \ge 1 であるような頂点 x に対して, 0 \le \phi_q(x) < \alpha(n) \cdot x.rank
```

[証明(右)]

x が根でなく, $x.rank \ge 1$ の時 $\phi_q(x) = (\alpha(n) - level(x)) \cdot x.rank - iter(x)$ $\le (a(n) - 0) \cdot x.rank - 1$ $= \alpha(n) \cdot x.rank - 1 < \alpha(n) \cdot x.rank$ よって, $\phi_q(x) < \alpha(n) \cdot x.rank$ が成立. 以上より, 補題 4-1 が成立.

[補題 4-2]

q 回目の操作が *LINK* または *FIND-SET* だと仮定する. 根でない頂点 x に対して, $\phi_q(x) \le \phi_{q-1}(x)$ が成立. さらに, x. $rank \ge 1$ を満たし, level(x) か iter(x) が q 回目の操作で変化するなら $\phi_q(x) \le \phi_{q-1}(x) - 1$ が成立.

[補題 4-2]

q 回目の操作が *LINK* または *FIND-SET* だと仮定する. 根でない頂点 x に対して, $\phi_q(x) \leq \phi_{q-1}(x)$ が成立. さらに, x. $rank \geq 1$ を満たし, level(x) か iter(x) が

q回目の操作で変化するなら $\phi_a(x) \leq \phi_{a-1}(x) - 1$ が成立.

[証明]

x は根ではないので, x. rank は 不変である.

(1) x.rank = 0 の時, $\phi_q(x) = \phi_{q-1}(x) = 0$. 以降, $x.rank \ge 1$ とする.

$\phi_q(x)$ の性質(2/2)

[証明]

 $x.rank \ge 1$ と仮定する.

q 回目の操作で level(x) が変化しない時, iter(x) は変化しないか増加するかのどちらか.

- (1) level(x), iter(x) ともに不変のとき, $\phi_q(x) = \phi_{q-1}(x)$ が成立.
- (2) level(x) が不変で, iter(x) が増加するとき, ポテンシャルは少なくとも 1 減り $\phi_q(x) \leq \phi_{q-1}(x) 1$ が成立.

[証明]

 $x.rank \ge 1$ と仮定する.

q 回目の操作で level(x) が **増加する**時,少なくとも 1 増えるので, $(\alpha(n) - level(x)) \cdot x.rank$ の部分は少なくとも x.rank 減る.-iter(x) の部分は高々 x.rank - 1 増える.よって,ポテンシャルは少なくとも 1 減るので $\phi_a(x) \leq \phi_{a-1}(x) - 1$ が成立.

[補題 4-2]

q 回目の操作が LINK または FIND-SET だと仮定する. 根でないノード x に対して $\phi_q(x) \le \phi_{q-1}(x)$ が成立. さらに $x.rank \ge 1$ かつ level(x) または iter(x) が q 回目の操作で変化するなら $\phi_q(x) \le \phi_{q-1}(x) - 1$ が成立.

[証明]

以上より,補題 4-2 が成立.

今日の目次

- アッカーマン関数について
- rank に関する性質
- •ポテンシャル法
- ポテンシャル関数導入のための準備
- ポテンシャル関数に関する性質
- ・各操作に対してのならし解析

!!各操作のならしコスト(1/3)

[補題 5-1]

操作 MAKE-SET(x) のならしコストは O(1) である.

[証明]

q回目の操作が MAKE-SET(x) だと仮定する.

x.rank = 0 であるので, $\phi_q(x) = 0$.

x 以外のランクは変化しないので, $\Phi_q(G) = \Phi_{q-1}(G)$ である.

G なに

MAKE-SET(x) の実コストは O(1) なので, MAKE-SET(x) のならしコストは O(1).

各操作のならしコスト(1/3)

[補題 5-1]

操作 MAKE-SET(x) のならしコストは O(1) である.

[証明]

q回目の操作が MAKE-SET(x) だと仮定する.

x.rank = 0 であるので, $\phi_q(x) = 0$.

x 以外のランクは変化しないので, $\Phi_q(G) = \Phi_{q-1}(G)$ である.

MAKE-SET(x) の実コストは O(1) なので, MAKE-SET(x) のならしコストは O(1).

以上より,補題 5-2 が成立.

各操作のならしコスト(2/3)

[補題 5-2]

操作 LINK(x,y) のならしコストは $O(\alpha(n))$ である.

[証明]

q回目の操作が LINK(x,y) であると仮定する.

LINK(x,y) の実コストは O(1) である.

- 一般性を失わずに, x. par を y に更新することとする.
- この時,ポテンシャルが変化する可能性があるノードは,
- 1. *y*
- 2. *x*
- 3. y の(直接の)子であったノード

[補題 5-2]

操作 LINK(x,y) のならし計算量は $O(\alpha(n))$ である.

[証明]

q回目の操作が LINK(x,y) であると仮定する.

LINK(x,y) の実コストは O(1) である.

一般性を失わずに, x. par を y に更新 することとする.

この時,ポテンシャルが変化する可能性があるノードは,

- 1. *y*
- 2. *x*
- 3. yの(直接の)子であったノード

[補題 5-2]

操作 LINK(x,y) のならし計算量は $O(\alpha(n))$ である.

[証明]

q回目の操作が LINK(x,y) であると仮定する.

LINK(x,y) の実コストは O(1) である.

一般性を失わずに, x. par を y に更新することとする.

この時,ポテンシャルが変化する可能性があるノードは,

- 1. *y*
- 2. *x*
- 3. yの(直接の)子であったノード

[補題 5-2]

操作 LINK(x,y) のならし計算量は $O(\alpha(n))$ である.

[証明]

q回目の操作が LINK(x,y) であると仮定する.

LINK(x,y) の実コストは O(1) である.

一般性を失わずに, x. par を y に更新すると仮定.

この時,ポテンシャルが変化する可能性があるノードは,

- 1. *y*
- 2. *x*
- 3. yの(直接の)子であったノード

[補題 5-2]

操作 LINK(x,y) のならし計算量は $O(\alpha(n))$ である.

[証明]

q回目の操作が LINK(x,y) であると仮定する.

LINK(x,y) の実コストは O(1) である.

一般性を失わずに, x. par を y に更新することとする.

この時,ポテンシャルが変化する可能性があるノードは,

- 1. *y*
- 2. *x*
- 3. y **の(直接の)子であったノード**

[証明]

y の子のポテンシャルの変化を観察.

補題 4-2 より, y の子のポテンシャルは増加しない.

[証明]

x のポテンシャルの変化を観察.

x は q 番目の操作の直前は根なので, $\phi_{q-1}(x) = \alpha(n) \cdot x \cdot rank$.

(1) x.rank = 0 のとき $\phi_a(x) = \phi_{a-1}(x) = 0.$

 $(2) x.rank \ge 0$ のとき $\phi_q(x) < \alpha(n) \cdot x.rank$ (∵ 補題 4-1) $= \phi_{q-1}(x)$

よって, x のポテンシャルは<u>増加しない</u>.

[証明]

y のポテンシャルの変化を観察.

y は q 番目の操作の直前は根なので, $\phi_{q-1}(x) = \alpha(n) \cdot x \cdot rank$. y は操作後も根であるので $y \cdot rank$ は変化しないか 1 だけ増加 するかのどちらか.

- (1) y.rank が変化しないとき $\phi_q(y) = \phi_{q-1}(y)$.
- (2) y.rank が 1 増加するとき $\phi_q(y) = \phi_{q-1}(y) + \alpha(n)$.

よって, y のポテンシャル増加分は<u>高々</u> $\alpha(n)$.

[補題 5-2]

操作 LINK(x,y) のならしコストは $O(\alpha(n))$ である.

[証明]

以上より, LINK(x,y) によって増加する可能性のある頂点は y のみであり, 増加分は高々 $\alpha(n)$ であるので,

LINK(x,y) のならしコストは

$$O(1) + \alpha(n) = O(\alpha(n)).$$

[補題 5-2]

操作 LINK(x,y) のならしコストは $O(\alpha(n))$ である.

[証明]

以上より, LINK(x,y) によって増加する可能性のある頂点は y のみであり, 増加分は高々 $\alpha(n)$ であるので,

LINK(x,y) のならしコストは

$$O(1) + \alpha(n) = O(\alpha(n)).$$

以上より,補題 5-2 が成立.

[補題 5-3]

操作 FIND-SET(x) のならしコストは $O(\alpha(n))$ である.

[証明]

q回目の操作が FIND-SET(x) であり, x から根までのパスに含まれる頂点数が s であると仮定する.

FIND-SET(x) の実コストは O(s) である.

<u>以下の2つの事実を示す.</u>

- (1) どの頂点もポテンシャルが増加しない.
- (2) find pass 上の頂点のうち、少なくとも $max(0, s (\alpha(n) 2))$ の頂点のポテンシャルが少なくとも 1 減少する.

[証明]

(1) どの頂点もポテンシャルが増加しないことを示す.

補題 4-2 より, 根でない頂点 x に対して $\phi_q(x) \le \phi_{q-1}(x)$ となる.

x が根のとき,

$$\phi_q(x) = \phi_{q-1}(x) = \alpha(n) \cdot x \cdot rank$$
 となる.

以上より,(1)が示せた.

lanal(x)

各操作のならしコスト(3/3)

[証明]

		level(x)	
$x \stackrel{?}{\sim}$	を以下の条件を満たす頂点だと仮定する.		
1.	find path 上の頂点である	4	
2.	x.rank > 0 である	2	
3.	level(x) = level(y)を満たす	2	
	根でない頂点 y が $,x$ 以降に存在する	0	
		2	
		1	

[証明]

	level(x)	
x を以下の条件を満たす頂点だと仮定する.		
1. find path 上の頂点である	4	
2. $x.rank > 0$ である	2	
3. $level(x) = level(y)$ を満たす	2	
根でない頂点 y が $,x$ 以降に存在する	2	
	1	
x.rank = 0 であるので条件に反する	1	
		$\langle \chi \rangle$

[証明]

	level(x)	
x を以下の条件を満たす頂点だと仮定する.		
1. find path 上の頂点である	4	
2. $x.rank > 0$ である	2	
3. $level(x) = level(y)$ を満たす	2	
根でない頂点 y が $,x$ 以降に存在する	2	
	1	y
y が存在し, 条件を満たす	1	x

[証明]

	level(x)	
x を以下の条件を満たす頂点だと仮定する.		
1. find path 上の頂点である	4	
2. $x.rank > 0$ である	2	
3. $level(x) = level(y)$ を満たす	2	
根でない頂点 y が $,x$ 以降に存在する	2	
	1	X
level(y) = 1を満たす y が存在しないので	1	
条件に反する		

[証明]

	level(x)	
x を以下の条件を満たす頂点だと仮定する.		
1. find path 上の頂点である	4	
2. $x.rank > 0$ である	2	y
3. $level(x) = level(y)$ を満たす	2	y
根でない頂点 y が $,x$ 以降に存在する	2	$\stackrel{\uparrow}{x}$
	1	
y が存在し, 条件を満たす	1	

[証明]

	level(x)	
x を以下の条件を満たす頂点だと仮定する.		
1. find path 上の頂点である	4	
2. $x.rank > 0$ である	2	y
3. $level(x) = level(y)$ を満たす	2	X
根でない頂点 y が $,x$ 以降に存在する	2	
	1	
y が存在し, 条件を満たす	1	Ţ

[証明]

	level(x)	
x を以下の条件を満たす頂点だと仮定する.		
1. find path 上の頂点である	4	
2. $x.rank > 0$ である	2	\mathcal{X}
3. $level(x) = level(y)$ を満たす	2	
根でない頂点 y が $,x$ 以降に存在する	2	
	1	
level(y) = 2 を満たす y が存在しないので	1	
条件に反する		I

[証明]

	level(x)	
xを以下の条件を満たす頂点だと仮定する.		
1. find path 上の頂点である	4	X
2. $x.rank > 0$ である	2	
3. $level(x) = level(y)$ を満たす	2	Ţ
根でない頂点 y が $,x$ 以降に存在する	2	
	1	
そもそも根でない頂点が x 以降存在しないので	1	
条件に反する		I

[証明]

	level(x)	
x を以下の条件を満たす頂点だと仮定する.		\mathcal{X}
1. find path 上の頂点である	4	
2. $x.rank > 0$ である	2	
3. $level(x) = level(y)$ を満たす	2	
根でない頂点 y が $,x$ 以降に存在する	2	
	1	
そもそも頂点が x 以降存在しないので	1	
条件に反する		

1 --- - 1(--)

各操作のならしコスト(3/3)

[証明]

	level(x)	
根と葉の2項点は条件を満たさない.	4	
level(x) = k となるような頂点のうち,最も根に近い	2	
頂点は条件を満たさない	2	
補題 3-1 より, $0 \le k < \alpha(n)$ なので, 高々 $\alpha(n)$ 頂点は条件を満たさない.	2	
	1	
条件を満たさない頂点は高々 $\alpha(n)+2$.	1	
条件を <u>満たす</u> 頂点は少なくとも $\max(0, s - (\alpha(n) - 2)$)).	

[証明]

[証明]

(2) find pass 上の頂点のうち, 少なくとも $max(0, s - (\alpha(n) - 2))$ の頂点のポテンシャルが少なくとも 1 減少することを示す.

操作前の頂点 x, 頂点 y に対して以下の不等式が成立.

・ただし, k = level(x) = level(y), i = iter(x) とする.

 $y.p.rank \ge A_k(y.rank)$ ($\because level(x)$ の定義) $\ge A_k(x.p.rank)$ ($\because y.rank \ge x.p.rank$) $\ge A_k\left(A_k^i(x.rank)\right)$ ($\because iter(x)$ の定義) $= A_k^{i+1}(x.rank)$

[証明]

(2) find pass 上の頂点のうち, 少なくとも $max(0, s - (\alpha(n) - 2))$ の頂点のポテンシャルが少なくとも 1 減少することを示す.

操作前の頂点 x, 頂点 y に対して以下の不等式が成立.

・ただし, k = level(x) = level(y), i = iter(x) とする.

 $y.p.rank \ge A_k^{i+1}(x.rank)$

操作後, x.p.rank = y.p.rank が成立し, y.p.rank は減少しない. また, x.rank は変化しないから, 操作後の頂点 x, 頂点 y に対して, $x.p.rank = y.p.rank \ge y.p.rank \ge A_k^{i+1}(x.rank)$

が成立.

[証明]

(2) find pass 上の頂点のうち, 少なくとも $max(0, s - (\alpha(n) - 2))$ の頂点のポテンシャルが少なくとも 1 減少することを示す.

操作前の頂点 x, 頂点 y に対して以下の不等式が成立.

・ただし, k = level(x) = level(y), i = iter(x) とする.

 $y.p.rank \ge A_k^{i+1}(x.rank)$

操作後, x.p.rank = y.p.rank が成立し, y.p.rank は減少しない. また, x.rank は変化しないから, 操作後の頂点 x, 頂点 y に対して, $x.p.rank = y.p.rank \ge y.p.rank \ge A_k^{i+1}(x.rank)$

が成立.

[証明]

(2) find pass 上の頂点のうち, 少なくとも $max(0, s - (\alpha(n) - 2))$ の頂点のポテンシャルが少なくとも 1 減少することを示す.

操作前

• k = level(x) = level(y), i = iter(x)

操作後

 $x.p.rank \ge A_k^{i+1}(x.rank)$

操作後, level(x) が変化しないとき, iter(x) は少なくとも 1 増加. 操作後, level(x) が変化するときと合わせて, 補題 4-2 より, $\phi_q(x) \leq \phi_{q-1}(x) - 1$ が成立.

[証明]

(2) find pass 上の頂点のうち, 少なくとも $max(0, s - (\alpha(n) - 2))$ の頂点のポテンシャルが少なくとも 1 減少することを示す.

操作前

• k = level(x) = level(y), i = iter(x)

操作後

 $x.p.rank \ge A_k^{i+1}(x.rank)$

操作後, level(x) が変化しないとき, iter(x) は少なくとも 1 増加. 操作後, level(x) が変化するときと合わせて, 補題 4-2 より, $\phi_q(x) \leq \phi_{q-1}(x) - 1$ が成立.

[証明]

(2) find pass 上の頂点のうち, 少なくとも $max(0, s - (\alpha(n) - 2))$ の頂点のポテンシャルが少なくとも 1 減少することを示す.

操作前

• k = level(x) = level(y), i = iter(x)

<u>操作後</u>

 $x.p.rank \ge A_k^{i+1}(x.rank)$

操作後, level(x) が変化しないとき, iter(x) は少なくとも 1 増加. 操作後, level(x) が変化するときと合わせて, 補題 4-2 より, $\phi_q(x) \le \phi_{q-1}(x) - 1$ が成立. 以上より, (2) が示せた.

[補題 5-3]

操作 FIND-SET(x) のならしコストは $O(\alpha(n))$ である.

[証明]

q 回目の操作が FIND-SET(x) であり, x から根までのパスに含まれる頂点数が s であると仮定する.

FIND-SET(x) の実コストは O(s) である.

以上より,以下の2つの事実を示した.

- (1) どの頂点もポテンシャルが増加しない.
- (2) find pass 上の頂点のうち、少なくとも $max(0, s (\alpha(n) 2))$ の頂点のポテンシャルが少なくとも 1 減少する.

[補題 5-3]

操作 FIND-SET(x) のならしコストは $O(\alpha(n))$ である.

[証明]

以上より,以下の2つの事実を示した.

- (1) どの頂点もポテンシャルが増加しない.
- (2) find pass 上の頂点のうち、少なくとも $max(0, s (\alpha(n) 2))$ の頂点のポテンシャルが少なくとも 1 減少する.
- ここで,ポテンシャル関数の1単位を十分大きくとると,

ならしコストは
$$O(s) - (s - (\alpha(n) - 2)) = O(s) - s + O(\alpha(n))$$

= $O(\alpha(n))$ となる.

[補題 5-3]

操作 FIND-SET(x) のならしコストは $O(\alpha(n))$ である.

[証明]

以上より,以下の2つの事実を示した.

- (1) どの頂点もポテンシャルが増加しない.
- (2) find pass 上の頂点のうち、少なくとも $\max(0, s (\alpha(n) 2))$

の頂点のポテンシャルが少なくとも1減少する.

ここで,ポテンシャル関数の1単位を十分大きくとると,

ならしコストは
$$O(s) - (s - (\alpha(n) - 2)) = O(s) - s + O(\alpha(n))$$

= $O(\alpha(n))$ となる.

以上より,補題 5-3 が成立.

計算量解析

• 補題 5-1, 5-2, 5-3 より, 操作 1 回あたりならし計算量は $O(\alpha(n))$ であることが示された.

まとめ

- アッカーマン関数について
- rank に関する性質
- ポテンシャル法
- ・ポテンシャル関数を導入のための準備
- ポテンシャル関数に関する性質
- 各操作に対してのならし解析

- 素集合データ構造の表現方法を2つ紹介した。
 - ・素集合連結リスト
 - 操作 1 回あたりならしが計算量 $O(\log n)$ であることを示した.
 - 素集合森
 - 操作 1 回あたりならし計算量が $O(\alpha(n))$ であることを示した.