- 36 -

Abstract

Forms of differentially acting glycoprotein hormones are disclosed. These compositions are of the formula

5
$$\beta^{1}-(linker^{1})_{m}-\alpha-(linker^{2})_{n}-\beta^{2} \qquad (1);$$

$$\beta^{1}-(linker^{1})_{m}-\beta^{2}-(linker^{2})_{n}-\alpha \qquad (2);$$

$$\alpha-(linker^{1})_{m}-\beta^{1}-(linker^{2})_{n}-\beta^{2} \qquad (3);$$

$$\beta^{2}\approx\alpha-(linker)_{m}-\beta^{1} \qquad (4); \text{ or }$$

$$\beta^{1}-(linker)_{m}-\alpha\approx\beta^{2} \qquad (5)$$

wherein each of β^1 and β^2 has the amino acid sequence of the β subunit of a 10 vertebrate glycoprotein hormone or a variant of said amino acid sequence, as variants are defined herein. " α " designates the α subunit of a vertebrate glycoprotein hormone or a variant thereof; "linker" refers to a covalently linked moiety that spaces the β^1 and β^2 subunits at appropriate distances from the α subunit and from each other. " \approx " is a noncovalent link. Each of m and n is independently 0 or 1. 15