

- Edges
- Labels
- Weights
- etc...

- Edges
- Labels
- Weights
- etc...

- Edges
- Labels
- Weights
- etc...

Witch color?

- Edges
- Labels
- Weights
- etc...

Witch color?

Given an input graph G, and two nodes u and v, predict if there is an edge between u and v.

Given an input graph G, and two nodes u and v, predict if there is an edge between u and v.

WHY IT IS IMPORTANT?

Recommendation systems

Given an input graph G, and two nodes u and v, predict if there is an edge between u and v.

- Recommendation systems
- Privacy control on social networks

Given an input graph G, and two nodes u and v, predict if there is an edge between u and v.

- Recommendation systems
- Privacy control on social networks
- Influence detection

Given an input graph G, and two nodes u and v, predict if there is an edge between u and v.

WHY IT IS IMPORTANT?

- Recommendation systems
- Privacy control on social networks
- Influence detection
- Routing networks
- Etc ...

recommend

Given an input graph G, and two nodes u and v, predict if there is an edge between u and v.

WHY IT IS IMPORTANT?

- Recommendation systems
- Privacy control on social networks
- Influence detection
- Routing networks
- Etc ...

HOW TO SOLVE IT

- Topology based methods
- Node attribute based methods
- Based on embeddings
- Probabilistics relationship models
- Etc ...

recommend

But..

What is the difference between the GAE for node embedding?

But..

What is the difference between the GAE for node embedding?

The LOSS function

GAE for node embedding

recon_loss (z, pos_edge_index, neg_edge_index=None)

[source]

Given latent variables z, computes the binary cross entropy loss for positive edges pos_edge_index and negative sampled edges.

PARAMETERS:

- z (Tensor) The latent space Z.
- pos_edge_index (LongTensor) The positive edges to train against.
- neg_edge_index (LongTensor, optional) The negative edges to train against. If not given, uses negative sampling to calculate negative edges. (default: None)

GAE for node embedding

recon_loss (z, pos_edge_index, neg_edge_index=None) [source]

Given latent variables z, computes the binary cross entropy loss for positive edges pos_edge_index and negative sampled edges.

PARAMETERS:

- z (Tensor) The latent space Z.
- pos_edge_index (LongTensor) The positive edges to train against.
- neg_edge_index (LongTensor, optional) The negative edges to train against. If not given, uses negative sampling to calculate negative edges. (default: None)

GAE for node embedding

recon_loss (z, pos_edge_index, neg_edge_index=None) [source]

Given latent variables **z** , computes the binary cross entropy loss for positive edges

pos_edge_index and negative sampled edges.

PARAMETERS:

- z (Tensor) The latent space Z.
- pos_edge_index (LongTensor) The positive edges to train against.
- neg_edge_index (LongTensor, optional) The negative edges to train against. If not given, uses negative sampling to calculate negative edges. (default: None)

GAE for link prediction

link_labels = get_link_labels(data.train_pos_edge_index, neg_edge_index)
loss = F.binary_cross_entropy_with_logits(link_logits, link_labels)
loss.backward()
optimizer.step()

GAE for node embedding

recon_loss (z, pos_edge_index, neg_edge_index=None) [source]

Given latent variables z, computes the binary cross entropy loss for positive edges pos_edge_index and negative sampled edges.

PARAMETERS:

- z (Tensor) The latent space Z.
- pos_edge_index (LongTensor) The positive edges to train against.
- neg_edge_index (LongTensor, optional) The negative edges to train against. If not given, uses negative sampling to calculate negative edges. (default: None)

GAE for link prediction

link_labels = get_link_labels(data.train_pos_edge_index, neg_edge_index)
loss = F.binary_cross_entropy_with_logits
(link_logits, link_labels)
loss.backward()
optimizer.step()

GAE for node embedding

Binary cross entropy loss

GAE for link prediction

GAE for node embedding

Binary cross entropy loss

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op$$

GAE for link prediction

GAE for node embedding

Binary cross entropy loss

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op$$

$$l_n = -w_n \left[y_n \cdot \log x_n + (1-y_n) \cdot \log(1-x_n)
ight]$$

GAE for link prediction

GAE for node embedding

Binary cross entropy loss

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op$$

$$l_n = -w_n \left[y_n \cdot \log x_n + (1-y_n) \cdot \log(1-x_n)
ight]$$

GAE for link prediction

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op$$

GAE for node embedding

Binary cross entropy loss

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op$$

$$l_n = -w_n \left[y_n \cdot \log x_n + (1 - y_n) \cdot \log(1 - x_n) \right]$$

GAE for link prediction

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op$$

$$l_n = -w_n \left[y_n \cdot \log \sigma(x_n) + (1-y_n) \cdot \log (1-\sigma(x_n))
ight]$$

Jupyter - notebook

Given an input graph G, and two nodes u and v, predict the label of the edge between u and v.

Given an input graph G, and two nodes u and v, predict the label of the edge between u and v.

WHY IT IS IMPORTANT?

Human mobility forecast

Given an input graph G, and two nodes u and v, predict the label of the edge between u and v.

- Human mobility forecast
- Type of relationship in social networks

Given an input graph G, and two nodes u and v, predict the label of the edge between u and v.

- Human mobility forecast
- Type of relationship in social networks
- Traffic congestion

Given an input graph G, and two nodes u and v, predict the label of the edge between u and v.

- Human mobility forecast
- Type of relationship in social networks
- Traffic congestion

05 Node2Vec for Label Prediction

Jupyter - notebook

