Esercitazione 9

ESERCIZIO 1

La seguente tabella riporta la distribuzione di 75 irlandesi, divisa in classi rispetto al numero di pinte consumate in una sera al pub.

$x_l - x_u $	n_i
0 - 2	50
3 - 5	12
6 - 7	7
8 - 10	6
Totale	75

Si calcoli il valore del rapporto di concentrazione di Gini. Si calcoli inoltre l'indice di concentrazione di Zenga.

SOLUZIONE

i	$x_l - x_u $	n_i	C_i	x_i^C	$n_i \times x_i^C$	$(2 \times C_i - n - n_i)$	$n_i \times x_i^C \times (2 \times C_i - n - n_i)$
1	0 - 2	50	50	1	50	-25	-1250
2	3 - 5	12	62	4	48	37	1776
3	6 - 7	7	69	6,5	45,5	56	2548
4	8 - 10	6	75	9	54	69	3726
	Totale	75					

Il rapporto di concentrazione di Gini può essere calcolato come

$$R = \frac{Area\,concentrazione}{Area\,max\,concentrazione} = \frac{\Delta}{2\times M_1}$$

Per i dati in analisi:

$$S = 2 \times \sum_{i=1}^{k} n_i \times x_i^C \times (2 \times C_i - n - n_i) = 2 \times 6800 = 13600$$

$$\Delta = \frac{S}{n(n-1)} = \frac{12794}{75 \times 74} = 2,450$$

La media è pari a

$$M_1 = \frac{1}{n} \sum_{i=1}^{k} n_i \times x_i^C = \frac{1}{75} \times 191 = 2,633$$

quindi il rapporto di concentrazione di Gini è uguale a

$$R = \frac{2,305}{2 \times 2,547} = 0,465$$

i	$x_l - x_u $	n_i	C_i	x_i^C	$n_i \times x_i^C$	q_i'	$M_{i}^{-}\left(x\right)$	$T-q_i'$	$M_i^+(x)$	$I_i(x)$
1	0 - 2	50	50	1	50	50	1	147,5	5,900	0,831
2	3 - 5	12	62	4	48	98	1,581	99,5	7,654	0,793
3	6 - 7	7	69	6,5	45,5	143,5	2,080	54	9	0,769
4	8 - 10	6	75	9	54	197,5	2,633	0	9	0,707
	Totale	75								

Calcoliamo le pinte consumate cumulate:

$$q_i' = \sum_{j=1}^i n_j \times x_j^C$$

Poniamo inoltre

$$T = \sum_{j=1}^{k} n_j \times x_j^C$$

pari alle pinte totali. Le medie inferiori possono essere calcolate come

$$M_{i}^{-}(x) = \frac{1}{C_{i}} \sum_{i=1}^{i} n_{j} \times x_{j}^{C} = \frac{q_{i}'}{C_{i}}$$

mentre le medie superiori

$$M_i^+(x) = \frac{1}{n - C_i} \sum_{j=i+1}^k n_j \times x_j^C = \frac{T - q_i'}{n - C_i}$$

E per convenzione $M_i^+(x) = M_{n-1}^+(x)$

Le ineguaglianze puntuali sono calcolate partendo dalle precedenti quantità

$$I_{i}\left(x\right) = \frac{M_{i}^{+}\left(x\right) - M_{i}^{-}\left(x\right)}{M_{i}^{+}\left(x\right)} = 1 - \frac{M_{i}^{-}\left(x\right)}{M_{i}^{+}\left(x\right)}$$

e rappresenta la variazione relativa della media del gruppo inferiore rispetto al gruppo superiore. L'indice di ineguaglianza di Zenga:

$$I(x) = \frac{1}{n} \sum_{i=1}^{k} n_i \times I_i(x) = \frac{1}{75} \sum_{i=1}^{4} n_i \times I_i(x) = \frac{1}{75} \times (60,674) = 0,809$$

ESERCIZIO 2

La seguente serie storica riporta il fatturato di un'azienda in 6 anni differenti (valori in migliaia di euro), il valore per l'anno 2003 è ignoto.

Fatturato
205
206
non disponibile
197
200
199
194

- 1. si determinino i parametri della retta a minimi quadrati quadrati che interpola il fatturato al variare degli anni trascorsi dal 2001
- 2. si valuti la bontà di adattamento della retta trovata al punto 1
- 3. si fornisca il valore del fatturato dell'anno 2003 secondo la retta trovata al punto 1 e si commenti.

SOLUZIONE

i	x_i	y_i	$x_i - \bar{x}$	$y_i \times (x_i - \bar{x})$	x_i^2	y_i^2
1	2001	205	-3,167	-649,167	4004001	42025
2	2002	206	-2,167	-446,333	4008004	42436
3	2004	197	-0,167	-32,833	4016016	38809
4	2005	200	0,833	166,667	4020025	40000
5	2006	199	1,833	364,833	4024036	39601
6	2007	194	2,833	549,667	4028049	37636

La retta hai minimi quadrati è la retta della forma

$$y = \alpha_0 + \alpha_1 \times x$$

dove α_0 e α_1 minimizzano

$$\sum_{i=1}^{n} (y_i - \alpha_0 - \alpha_1 \times x_i)$$

Per calcolare i parametri dellla retta ai minimi quadrati abbiamo bisogno della covarianza (o codevianza) tra x e y e della varianza (o devianza) di x. La covarianza può essere calcolata come

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) \times y_i$$

per i dati in analisi otteniamo

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{6} (x_i - \bar{x}) \times y_i = -7,861$$

Mentre

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = M_2^X - [M_1^X]^2$$

dove

$$M_1^X = \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{6} \times 12025 = 2004,167$$

$$M_2^X = \frac{1}{n} \sum_{i=1}^n x_i^2 = \frac{1}{6} \times 24100131 = 4016688,500$$

e quinti

$$Var(X) = M_2^X - [M_1^X]^2 = 4016688,500 - 2004,167^2 = 4,472$$

Possiamo ottenere quindi la stima ai minimi quadrati per α_0 e α_1 come

$$\hat{\alpha}_1 = \frac{cov(X,Y)}{Var(X)} = \frac{-7,861}{4,472} = -1,758$$

$$\hat{\alpha}_0 = \bar{y} - \hat{\alpha}_1 \times \bar{x} = 200, 167 + 1,758 \times 2004, 167 = 3723,018$$

e quindi il modello stimato è

$$y = 3723,018 - 1,758 \times x$$

Per valutare la bontà del modello possiamo utilizzare l'indice di determinazione

$$I_d^2 = \frac{Dev \, Spiegata}{Dev \, Totale} = 1 - \frac{Dev \, Residua}{Dev \, totale} = r^2 = \left[\frac{cov(X,Y)}{\sigma_X \sigma_Y}\right]^2$$

Calcoliamo σ_X e σ_Y

$$\sigma_X = \sqrt{\sigma_X^2} = \sqrt{4,472} = 2,115$$

$$\sigma_Y = \sqrt{\sigma_Y^2} = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2} = \sqrt{M_2^Y - \left[M_1^Y\right]^2} = \sqrt{40084, 5 - 200, 167^2} = \sqrt{17,806} = 4,220$$

Otteniamo quindi che l'indice di determinazione è pari a

$$I_d^2 = r^2 = \left[\frac{-7,861}{2,115 \times 4,220}\right]^2 = 0,776$$

Per calcolare il valore previsto dalla retta stimata, per l'anno 2003, dato il modello

$$y = 3723,018 - 1,758 \times x$$

sostituiamo a x il valore 2003 e calcoliamo il valore corrispondente per y

$$\hat{y}_{2003} = 3723,018 - 1,758 \times 2003 = 201,774$$

ESERCIZIO 3

I 200 clienti che hanno frequentato un supermercato in una certa fascia oraria di una data giornata sono stati riclassificati secondo il tempo X (in minuti) trascorso nel supermercato e la spesa Y (in euro):

$Y \setminus X$	0 - 10	10 -30	30 - 60	Totale
0 - 10	15	9	0	24
10 - 20	12	20	41	73
20 - 50	35	0	33	68
50 - 200	0	7	28	35
Totale	62	36	102	200

- 1. Si determinino le distribuzioni parziali di frequenze relative di Y date le modalità di X.
- 2. Si determinino i parametri della retta di regressione che spiega Y in funzione di X e si commenti il valore del coefficiente angolare della retta trovata.
- 3. Si calcoli il coefficiente di correlazione.
- 4. Si valuti il grado di correlazione lineare tra X ed Y e si commenti il valore ottenuto.
- 5. Si stabilisca, motivando la risposta, se il coefficiente di correlazione precedentemente calcolato varierebbe qualora il tempo X venisse calcolato in ore e la spesa Y venisse espressa in centinaia di euro.

SOLUZIONE

Consideriamo per comodità la tabella a doppia entrata con valori centrali

$Y \setminus X$	5	20	45	Totale
5	15	9	0	24
15	12	20	41	73
35	35	0	33	68
125	0	7	28	35
Totale	62	36	102	200

Le distribuzioni parziali di frequenze relative di Y date le modalità di X sono ottenute considerando ogni colonna come distribuzione, e calcolando le frequenze relative (quindi dividendo per il totale di colonna)

$Y \setminus X$	5	20	45
5	0,242	0,250	0,000
15	0,194	0,556	0,402
35	0,565	0,000	0,324
125	0,000	0,194	$0,\!275$
Totale	1,000	1,000	1,000

Per il calcolo dei parametri della retta di regressione, abbiamo che, rispetto a X

x_i	n_i	x_i^2	$x_i \times n_i$	$x_i^2 \times n_i$
5	62	25	310	1550
20	36	400	720	14400
45	102	2025	4590	206550

quindi

$$M_1^X = \frac{1}{n} \sum_{i=1}^k n_i \times x_i = 28, 1$$

$$M_1^X = \frac{1}{n} \sum_{i=1}^k n_i \times x_i^2 = 1112, 5$$

$$\sigma_X^2 = M_2^X - \left[M_1^X\right]^2 = 322,89$$

$$\sigma_X = \sqrt{\sigma_X^2} = 17,969$$

rispetto a Y

y_i	n_i	y_i^2	$y_i \times n_i$	$y_i^2 \times n_i$
5	24	25	120	600
15	73	225	1095	16425
35	68	1225	2380	83300
125	35	15625	4375	546875

quindi

$$M_1^Y = \frac{1}{n} \sum_{i=1}^k n_i \times x_i = 39,85$$

$$M_1^Y = \frac{1}{n} \sum_{i=1}^k n_i \times x_i^2 = 3236$$

$$\sigma_Y^2 = M_2^Y - \left[M_1^Y \right]^2 = 1647,978$$

$$\sigma_Y = \sqrt{\sigma_Y^2} = 40,595$$

Per il calcolo della covarianza abbiamo che

$x_i \times y_j \times n_{ij}$	5	20	45
5	375	900	0
15	900	6000	27675
35	6125	0	51975
125	0	17500	157500

La covarianza può essere calcolata come

$$M_1^{XY} = \frac{1}{n} \sum_{i=1}^{k_X} \sum_{i=1}^{k_Y} x_i \times y_j \times n_{ij} = \frac{1}{200} 268950 = 1344,75$$

$$cov(X,Y) = M_1^{XY} - M_1^X \times M_1^Y = 1344,75 - (28,1 \times 39,85) = 224,965$$

La retta può essere quindi stimata come

$$\hat{\alpha}_1 = \frac{cov(X,Y)}{Var(X)} = \frac{224,965}{322,89} = 0,697$$

$$\hat{\alpha}_0 = \bar{y} - \hat{\alpha}_1 \times \bar{x} = 39,85 - 0,697 \times 28,1 = 20,272$$

Il coefficiente di correlazione di Pearson è pari a

$$r = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{224,965}{17,969 \times 40,595} = 0,308$$

Il grado di correlazione lineare tra X ed Y è ottenuto come

$$I_d^2 = r^2 = \left[\frac{cov(X,Y)}{\sigma_X \sigma_Y}\right]^2 = 0,308^2 = 0,095$$

Il coefficiente di correlazione non varierebbe qualora il tempo X venisse calcolato in ore e la spesa Y venisse espressa in centinaia di euro, infatti è invariante per trasformazioni di scala delle variabili e le trasformazioni non cambiano il segno delle variabili X e Y.