Numerik, SS2024/25

4. und 5. Labor

Numerik für nichtlineare Gleichungssysteme u. Optimierung

1. Newton-Verfahren Anwendung: Optimierung. Es seien die Energie-/Kostfunktionen $E: \mathbb{R}^2 \to \mathbb{R}$

$$E_L(x_1, x_2) = \frac{x_1^2}{1.5} + \frac{x_2^2}{1.5} + 3\sin^2\left(\frac{x_1 + x_2}{\sqrt{2}}\right) \quad \text{und} \quad E_R(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

- a) Man berechne den Gradienten ∇E und die Hesse Matrix $\nabla^2 E$ (für biede E).
- b) Man erstelle Kontourdiagramme (für biede E). Hinweis: E_R ist die Rosenbrock Funktion aus Labor 1.
- c) Man schreibe ein (allgemeines) Programm für das Newton-Verfahren. Das Newton-Verfahren ist durch

$$x^{n+1} = x^n - \left[\nabla^2 E(x^n)\right]^{-1} \nabla E(x^n)$$

gegeben.

- d) Man approximire die Minima, (0,0) für E_L bzw. (1,1) für E_R , der Funktionen mit Hilfe des Newton-Verfahrens. Experimentgestaltung: wähle 4 (zufällige) Startpunkte und approximire die Minima mit Fehler $\varepsilon < 0.0001$. Stelle die vom Newton-Verfahren erzeugten Bahnen auf den Kontouriagrammen dar.
- 2. Gradient Descent im Vergleich mit Newton (GD vs. Newton) I: quadratische Energiefunktion. Gradient Descent (Gradientenverfahren) ist durch die folgende Iteration, mit Schrittweite h > 0, gegeben

$$x^{n+1} = x^n - h\nabla E(x^n).$$

Es sei die Matrix $A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$ und die entsprechende Energie $E_A(x) = \frac{1}{2}x^TAx$ mit $x = [x_1 \ x_2]^T$.

- a) Man berechne ∇E_A , $\nabla^2 E_A$ und erstelle ein Kontourdiagramm für E_A .
- b) Man untersuche verschiedene Schrittweiten h > 0 für GD.
- c) Man vergleiche die GD Bahnen mit den Newton Bahnen (bei identischen Startpunkten).
- 3. Gradient Descent im Vergleich mit Newton (GD vs. Newton) II: allgemeine Energiefunktionen.
- a) Man untersuche die GD-Schrittweite für E_L und E_R aus der 1. Aufgabe.
- b) Man vergleiche Newton und GD für E_L und E_R .

Einreichtermin: Freitag den 04.04, 22⁰⁰ Uhr