Hypothesis Testing with Kernel Embeddings on Big and Interdependent Data

Dino Sejdinovic

Department of Statistics University of Oxford

6 February 2015 Department of Statistics, LSE

Making Hard Inference Possible

many dimensions

highly non-linear assocations

low signal-to-noise ratio

higher-order interactions

Making Hard Inference Possible

many dimensions

highly non-linear assocations

low signal-to-noise ratio

higher-order interactions

need an expressive model and a very large number of observations

Making Hard Inference Possible

many dimensions

highly non-linear assocations

low signal-to-noise ratio

higher-order interactions

need an expressive model and a very large number of observations

cannot afford superlinear computation

Overview

Kernel Embeddings and MMD

Scaling up Kernel Tests

Kernel tests on time series

Outline

- Kernel Embeddings and MMD
- Scaling up Kernel Tests

3 Kernel tests on time series

Reproducing Kernel Hilbert Space

RKHS

A Hilbert space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$, defined on a non-empty set \mathcal{X} is said to be a Reproducing Kernel Hilbert Space (RKHS) if **evaluation** functionals $\delta_x: f \mapsto f(x)$ are continuous $\forall x \in \mathcal{X}$: norm convergence implies pointwise convergence.

Reproducing Kernel Hilbert Space

RKHS

A Hilbert space $\mathcal H$ of functions $f:\mathcal X\to\mathbb R$, defined on a non-empty set $\mathcal X$ is said to be a Reproducing Kernel Hilbert Space (RKHS) if **evaluation** functionals $\delta_X: f\mapsto f(x)$ are continuous $\forall x\in\mathcal X$: norm convergence implies pointwise convergence.

Reproducing kernel

By Riesz theorem, a continuous δ_x has a representer denoted k_x s.t. $\langle f, k_x \rangle_{\mathcal{H}} = f(x)$. $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ given by $k(x, x') = \langle k_x, k_{x'} \rangle_{\mathcal{H}}$ is called a **reproducing kernel** of \mathcal{H} : $k_x = k(\cdot, x)$.

Moore-Aronszajn Theorem

Every positive definite function is a reproducing kernel of some \mathcal{H} .

Kernel Embedding

• feature map: $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ instead of $x \mapsto (\varphi_1(x), \dots, \varphi_s(x)) \in \mathbb{R}^s$

•
$$\langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}_{k}} = k(x,y)$$

inner products easily **computed**

Kernel Embedding

- feature map: $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ instead of $x \mapsto (\varphi_1(x), \dots, \varphi_s(x)) \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$ inner products easily **computed**
- embedding:

$$P \mapsto \mu_k(P) = \mathbb{E}_{X \sim P} k(\cdot, X) \in \mathcal{H}_k$$
 instead of $P \mapsto (\mathbb{E}\varphi_1(X), \dots, \mathbb{E}\varphi_s(X)) \in \mathbb{R}^s$

• $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X,Y} k(X,Y)$ inner products easily **estimated**

Kernel Embedding

- feature map: $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ instead of $x \mapsto (\varphi_1(x), \dots, \varphi_s(x)) \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$ inner products easily **computed**
- embedding:

$$P\mapsto \mu_k(P)=\mathbb{E}_{X\sim P}k(\cdot,X)\in \mathcal{H}_k$$
 instead of $P\mapsto \left(\mathbb{E}\varphi_1(X),\ldots,\mathbb{E}\varphi_s(X)
ight)\in\mathbb{R}^s$

- $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X,Y} k(X,Y)$ inner products easily **estimated**
 - $\mu_k(P)$ represents expectations w.r.t. P, i.e., $\mathbb{E}_X f(X) = \mathbb{E}_X \langle f, k(\cdot, X) \rangle_{\mathcal{H}_L} = \langle f, \mu_k(P) \rangle_{\mathcal{H}_L} \ \forall f \in \mathcal{H}_k$

Kernel MMD (1)

Definition

Kernel metric (MMD) between P and Q:

$$\mathsf{MMD}_{k}(P, Q) = \|\mathbb{E}_{X}k(\cdot, X) - \mathbb{E}_{Y}k(\cdot, Y)\|_{\mathcal{H}_{k}}^{2}$$
$$= \mathbb{E}_{XX'}k(X, X') + \mathbb{E}_{YY'}k(Y, Y') - 2\mathbb{E}_{XY}k(X, Y)$$

MMD as an integrable probability metric

 An alternative interpretation of MMD is as an integral probability metric (Müller, 1997), i.e.,

$$\sup_{\substack{f \in \mathcal{H}_k, \\ \|f\|_{\mathcal{H}_k} \le 1}} \left[\mathbb{E}_{X \sim P} f(X) - \mathbb{E}_{Y \sim Q} f(Y) \right] = \sup_{\substack{f \in \mathcal{H}_k, \\ \|f\|_{\mathcal{H}_k} \le 1}} \langle f, \mu_k(P) - \mu_k(Q) \rangle_{\mathcal{H}_k}$$
$$= \|\mu_k(P) - \mu_k(Q)\|_{\mathcal{H}_k}.$$

• Supremum achieved at the "witness function" $f = \frac{\mu_k(P) - \mu_k(Q)}{\|\mu_k(P) - \mu_k(Q)\|_{\mathcal{H}_k}}$.

Kernel MMD (2)

- A polynomial kernel $k(x,x') = (1+x^{\top}x')^s$ on \mathbb{R}^p captures the difference in first s (mixed) moments only
- For a certain family of kernels (characteristic): $\text{MMD}_k(P, Q) = 0$ iff P = Q: Gaussian $\exp(-\frac{1}{2\sigma^2} \|z z'\|_2^2)$, Laplacian, inverse multiquadratics, $B_{2\,n+1}$ splines...
- Under mild assumptions, k-MMD metrizes weak* topology on probability measures (Sriperumbudur, 2010):

$$\mathsf{MMD}_k(P_n,P) \to 0 \Leftrightarrow P_n \leadsto P$$

Nonparametric two-sample tests

- Testing H_0 : P = Q vs. H_A : $P \neq Q$ based on samples $\{x_i\}_{i=1}^{n_x} \sim P$, $\{y_i\}_{i=1}^{n_y} \sim Q$.
- Test statistic is an estimate of $\mathrm{MMD}_k(P,Q) = \mathbb{E}_{XX'}k(X,X') + \mathbb{E}_{YY'}k(Y,Y') 2\mathbb{E}_{XY}k(X,Y)$:

$$\widehat{\text{MMD}}_{k} = \frac{1}{n_{x}(n_{x}-1)} \sum_{i \neq j} k(x_{i}, x_{j}) + \frac{1}{n_{y}(n_{y}-1)} \sum_{i \neq j} k(y_{i}, y_{j}) - \frac{2}{n_{x}n_{y}} \sum_{i,j} k(x_{i}, y_{j}).$$

- Degenerate U-statistic: $\frac{1}{\sqrt{n}}$ -convergence to MMD under $\mathbf{H_A}$, $\frac{1}{n}$ -convergence to 0 under $\mathbf{H_0}$.
- $O(n^2)$ to compute $(n = n_x + n_y)$

Gretton et al (2009, 2012), Lloyd & Ghahramani (2014)

Nonparametric independence tests

- H₀ : X ⊥ Y
- H_A : X /⊥ Y

Nonparametric independence tests

- $H_0: X \perp Y \Leftrightarrow P_{XY} = P_X P_Y$
- $H_A : X \perp \!\!\! \perp Y \Leftrightarrow P_{XY} \neq P_X P_Y$
- Test statistic:

$$\operatorname{HSIC}(X,Y) = \left\| \mu_{\kappa}(\hat{P}_{XY}) - \mu_{\kappa}(\hat{P}_{X}\hat{P}_{Y}) \right\|_{\mathcal{H}_{\kappa}}^{2},$$
 with $\kappa = k \otimes I$
Gretton et al (2005, 2008); Smola et al (2007)

 $k(\bigcirc,\bigcirc) \quad l(\bigcirc,\bigcirc)$ $\kappa(\bigcirc,\bigcirc) = 0$ $k(\bigcirc,\bigcirc) \times l(\bigcirc,\bigcirc)$

HSIC computation

HSIC computation

$$k(x_i, x_j)$$

- HSIC measures average similarity between the kernel matrices:
 - $HSIC(X, Y) = \frac{1}{n^2} \langle HKH, HLH \rangle$
- $H = I \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$ (centering matrix)

HSIC computation

 $k(x_i, x_j)$

 HSIC measures average similarity between the kernel matrices:

$$HSIC(X, Y) = \frac{1}{n^2} \langle H \mathbf{K} H, H \mathbf{L} H \rangle$$

• $H = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$ (centering matrix)

Extensions: conditional independence testing (Fukumizu, Gretton, Sun and Schölkopf, 2008; Zhang, Peters, Janzing and Schölkopf, 2011), three-variable interaction (DS, Gretton and Bergsma, 2013)

HSIC as integral probability metric

- $\|\mu_{\kappa}(P_{XY}) \mu_{\kappa}(P_{X}P_{Y})\|_{\mathcal{H}_{\kappa}} = \sup_{f} [\mathbb{E}_{XY}f(X,Y) \mathbb{E}_{X}\mathbb{E}_{Y}f(X,Y)]$
- witness lies in the unit ball of $\mathcal{H}_{\kappa} = \mathcal{H}_{k} \otimes \mathcal{H}_{l}$, the RKHS of functions on $\mathcal{X} \times \mathcal{Y}$

Three-variable interaction and V-structure discovery

- DS, A.Gretton and W. Bergsma, A kernel test for three-variable interactions, NIPS 2013.

Outline

Mernel Embeddings and MMD

- Scaling up Kernel Tests
- 3 Kernel tests on time series

Heiko Strathmann

Soumyajit De

Wojciech Zaremba Matthew Blaschko Arthur Gretton

Test threshold

• under H_0 : P = Q:

$$\textstyle \frac{n_x n_y}{n_x + n_y} \widehat{\mathsf{MMD}}_k \leadsto \sum_{r=1}^\infty \lambda_r \left(Z_r^2 - 1 \right), \quad \left\{ Z_r \right\} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$$

• $\{\lambda_r\}$ depend on both k and P: eigenvalues of $T: L_2 \to L_2$,

$$(\mathsf{T} f)(x) \mapsto \int f(x') \underbrace{\tilde{k}(x,x')}_{\mathsf{centred}} d\mathsf{P}(x').$$

- expensive threshold computation:
 - Estimate leading λ_r 's (eigendecomposition of the kernel matrix): $O(n^3)$
 - Permutation test: #shuffles \times $O(n^2)$

Limited data, unlimited time

$$\mathsf{MMD}_k^2(P, \mathbf{Q}) = \mathbb{E}_{XX'}k(X, X') + \mathbb{E}_{\mathbf{YY'}}k(\mathbf{Y}, \mathbf{Y}') - 2\mathbb{E}_{X\mathbf{Y}}k(X, \mathbf{Y})$$

Estimate with

$$\widehat{\mathsf{MMD}}_{k} = \frac{1}{n_{x}(n_{x}-1)} \sum_{i \neq j} k(x_{i}, x_{j}) + \frac{1}{n_{y}(n_{y}-1)} \sum_{i \neq j} k(y_{i}, y_{j}) - \frac{2}{n_{x}n_{y}} \sum_{i,j} k(x_{i}, y_{j}).$$

• Complexity: $O(n^2)$.

Limited time, unlimited data

- Process mini-batches of size $B = B_x + B_y$ at a time: $\hat{\eta}_k = \frac{B}{n} \sum_{b=1}^{n/B} \widehat{MMD}_{k,b}$
- Complexity: $O(nB) = \frac{n}{B} \times O(B^2)$
- Provided $B/n \to 0$: $\frac{1}{\sqrt{n}}$ -convergence to MMD under H_A , $\frac{1}{\sqrt{nB}}$ -convergence to 0 under H_0 .
- A.Gretton, B.Sriperumbudur, DS, H.Strathmann, S.Balakrishnan, M.Pontil and K.Fukumizu, Optimal kernel choice for large-scale two-sample tests, *NIPS* 2012.
- W. Zaremba, A. Gretton, M. Blaschko, **B-test: A Non-Parametric, Low Variance Kernel Two-Sample Test**, *NIPS* 2013.

Null distribution

$$\frac{n_{x}n_{y}}{\left(n_{x}+n_{y}\right)^{3/2}}\sqrt{B}\hat{\eta}_{k} \rightsquigarrow \mathcal{N}\left(0,\sigma_{k}^{2}\right) \text{ under } \mathbf{H_{0}}.$$

• σ_k^2 (depends on k and P) can be unbiasedly estimated on each block b in $O(B^2)$ time:

$$\widehat{(\sigma_k^2)}^{(b)} = \frac{2}{B(B-3)} \left[\left(\dot{\mathbf{K}}^{(b)} \circ \dot{\mathbf{K}}^{(b)} \right)_{++} + \frac{\left(\dot{\mathbf{K}}^{(b)}_{++} \right)^2}{(B-1)(B-2)} - \frac{2}{B-2} \left(\left(\dot{\mathbf{K}}^{(b)} \right)^2 \right)_{++} \right],$$

where $\dot{\mathbf{K}}^{(b)} = \mathbf{K}^{(b)} - \text{diag}(\mathbf{K}^{(b)})$, and A_{++} denotes the sum of all elements of matrix A.

- Alternatively, track empirical variance of $\left\{\widehat{\mathsf{MMD}}_{k,b}\right\}_{b=1}^{n/B}$.
- No need for permutation testing.

Full statistic vs. mini-batch statistic

	<i>U</i> -statistic	mini-batch
time	$O(n^2)$	O(nB)
storage	$O(n^2)$	$O(B^2)$
null distribution	infinite sum of chi-squares	normal
computing p-value	$O(n^3)$ or $\#$ shuffles $ imes O(n^2)$	O(nB)
H_0 -convergence rate	1/n	$1/\sqrt{nB}$

Asymptotic efficiency criterion

- A. Gretton, B. Sriperumbudur, DS, H. Strathmann, S. Balakrishnan, M. Pontil and K. Fukumizu, **Optimal kernel choice for large-scale two-sample tests**, *NIPS* 2012.

Proposition

For given P and Q. Let $\eta_k = MMD_k(P, Q)$, and let σ_k^2 be the asymptotic variance of the linear-time statistic $\hat{\eta}_k$. Then

$$k_* = \arg\max_{k \in \mathcal{K}} \eta_k / \sigma_k$$

minimizes the asymptotic (Hodges-Lehmann) relative efficiency on \mathcal{K} .

Asymptotic efficiency criterion

- A. Gretton, B. Sriperumbudur, DS, H. Strathmann, S. Balakrishnan, M. Pontil and K. Fukumizu, **Optimal kernel choice for large-scale two-sample tests**, *NIPS* 2012.

Proposition

For given P and Q. Let $\eta_k = MMD_k(P, Q)$, and let σ_k^2 be the asymptotic variance of the linear-time statistic $\hat{\eta}_k$. Then

$$k_* = \arg\max_{k \in \mathcal{K}} \eta_k / \sigma_k$$

minimizes the asymptotic (Hodges-Lehmann) relative efficiency on \mathcal{K} .

- We only have estimates of η_k and σ_k !
- Will the kernel optimization using plug-in esimates be consistent?
- Over what families of kernels can we perform such optimization efficiently?

Asymptotic efficiency criterion

- A. Gretton, B. Sriperumbudur, DS, H. Strathmann, S. Balakrishnan, M. Pontil and K. Fukumizu, **Optimal kernel choice for large-scale two-sample tests**, *NIPS* 2012.

Proposition

For given P and Q. Let $\eta_k = MMD_k(P, Q)$, and let σ_k^2 be the asymptotic variance of the linear-time statistic $\hat{\eta}_k$. Then

$$k_* = \arg\max_{k \in \mathcal{K}} \eta_k / \sigma_k$$

minimizes the asymptotic (Hodges-Lehmann) relative efficiency on \mathcal{K} .

- We only have estimates of η_k and σ_k !
- Will the kernel optimization using plug-in esimates be consistent? yes!
- Over what families of kernels can we perform such optimization efficiently? linear combinations (MKL)

Hard-to-detect differences: Gaussian blobs

Difficult problems: lengthscale of the *difference* in distributions not the same as that of the distributions.

Distinguish grids of Gaussian blobs with different covariances.

Figure : 3×3 blobs, ratio $\varepsilon = 3.2$ of largest-to-smallest eigenvalues of blobs in Q.

 Setting the bandwidth to median interpoint distance heuristic (often used in practice) "oversmooths" the distributions and misses the difference.

Gaussian blobs (2)

 12×12 blobs with $\varepsilon = 1.4$. Linear time statistic vs. Quadratic time statistic. Fixed kernel.

Gaussian blobs (2)

 12×12 blobs with $\varepsilon=$ 1.4. Linear time statistic vs. Quadratic time statistic. Fixed kernel.

	m per trial	Type II error	Trials
Quadratic	5,000	[0.7996, 0.8516]	820
	10,000	[0.5161, 0.6175]	367
	> 10,000	Buy more RAM!	

Gaussian blobs (2)

 12×12 blobs with $\varepsilon = 1.4$. Linear time statistic vs. Quadratic time statistic. Fixed kernel.

	m per trial	Type II error	Trials
Quadratic	5,000	[0.7996, 0.8516]	820
	10,000	[0.5161, 0.6175]	367
	> 10,000	Buy more RAM!	
Linear	$\sim 100,000,000$	[0.2250, 0.3049]	468
	\sim 200,000,000	[0.1873, 0.2829]	302
	:	:	:
	$\sim 500,000,000$	0.0270 ± 0.0302	111

Gaussian blobs (3)

Figure : m=10,000; family generated by gaussian kernels with bandwiths $\{2^{-5},\ldots,2^{15}\}$.

Hard-to-detect differences: UCI HIGGS

 P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles in High-energy Physics with Deep Learning. Nature Communications 5, 2014.

- Benchmark dataset for distinguishing a signature of Higgs boson vs. background
- ullet Joint distributions of the azimuthal angular momenta arphi for four particle jets: low-signal, low-level features
- Do joint angular momenta carry any discriminating information?

Hard-to-detect differences: UCI HIGGS

 P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles in High-energy Physics with Deep Learning. Nature Communications 5, 2014.

- Benchmark dataset for distinguishing a signature of Higgs boson vs. background
- ullet Joint distributions of the azimuthal angular momenta arphi for four particle jets: low-signal, low-level features
- Do joint angular momenta carry any discriminating information?

sample size:	1e4	5e4	1e5	5e5	1e6
p-value (gauss-med):	.757	.217	.475	.391	.074

Hard-to-detect differences: UCI HIGGS

- P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles in High-energy Physics with Deep Learning. Nature Communications 5, 2014.

- Benchmark dataset for distinguishing a signature of Higgs boson vs. background
- ullet Joint distributions of the azimuthal angular momenta arphi for four particle jets: low-signal, low-level features
- Do joint angular momenta carry any discriminating information?

sample size:	1e4	5e4	1e5	5e5	1e6
p-value (gauss-med):	.757	.217	.475	.391	.074

train/test size:	2e3/8e3	1e4/4e4	2e4/8e4	1e5/4e5	2e5/8e5
p-value (gauss-opt):	.139	.476	.035	6.12e-5	1.02e-18

Experiment: Independence Test $(\sum sign \Pi)$

• $X \sim \mathcal{N}\left(0, I_d\right)$, $Y = \sqrt{\frac{2}{d}} \sum_{j=1}^{d/2} \operatorname{sign}\left(X_{2j-1}X_{2j}\right) |Z_j| + Z_{\frac{d}{2}+1}$, where $Z \sim \mathcal{N}\left(0, I_{\frac{d}{2}+1}\right)$

 Hypothesis testing based on kernel embeddings reveals hard-to-detect differences between distributions and non-linear low-signal associations.

- Hypothesis testing based on kernel embeddings reveals hard-to-detect differences between distributions and non-linear low-signal associations.
- A simple mini-batch procedure allows us to run the tests on large-scale problems and on streaming data.

- Hypothesis testing based on kernel embeddings reveals hard-to-detect differences between distributions and non-linear low-signal associations.
- A simple mini-batch procedure allows us to run the tests on large-scale problems and on streaming data.
- Can select kernel parameters on-the-fly in order to explicitly maximise test power.

- Hypothesis testing based on kernel embeddings reveals hard-to-detect differences between distributions and non-linear low-signal associations.
- A simple mini-batch procedure allows us to run the tests on large-scale problems and on streaming data.
- Can select kernel parameters on-the-fly in order to explicitly maximise test power.
- Both kernel selection and testing in O(n) time and O(1) storage (if B = const).

Shogun

- Written in C++ with interfaces to Python, Matlab, Java, R.
- Google Summer of Code (2012, 2014).

Outline

Kernel Embeddings and MMD

Scaling up Kernel Tests

Kernel tests on time series

Kacper Chwialkowski

Arthur Gretton

Test calibration for dependent observations

ls
P
the same
distribution as
Q
?

Kernel MMD

Definition

Kernel metric (MMD) between P and Q:

$$\mathsf{MMD}_{k}(P, Q) = \|\mathbb{E}_{X}k(\cdot, X) - \mathbb{E}_{Y}k(\cdot, Y)\|_{\mathcal{H}_{k}}^{2}$$
$$= \mathbb{E}_{XX'}k(X, X') + \mathbb{E}_{YY'}k(Y, Y') - 2\mathbb{E}_{XY}k(X, Y)$$

Wild Bootstrap

Wild bootstrap process (Leucht and Neumann, 2013):

$$W_{t,n} = e^{-1/l_n} W_{t-1,n} + \sqrt{1 - e^{-2/l_n}} \epsilon_t$$
 where $W_{0,n}, \epsilon_1, \dots, \epsilon_n \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\tilde{W}_{t,n} = W_{t,n} - \frac{1}{n} \sum_{j=1}^n W_{j,n}$.

$$\begin{split} \widehat{\mathsf{MMD}}_{k,wb} &:= \frac{1}{n_x^2} \sum_{i=1}^{n_x} \sum_{j=1}^{n_x} \tilde{W}_{i,n_x}^{(x)} \tilde{W}_{j,n_x}^{(x)} k(x_i, x_j) - \frac{1}{n_x^2} \sum_{i=1}^{n_y} \sum_{j=1}^{n_y} \tilde{W}_{i,n_y}^{(y)} \tilde{W}_{j,n_y}^{(y)} k(y_i, y_j) \\ &- \frac{2}{n_x n_y} \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} \tilde{W}_{i,n_x}^{(x)} \tilde{W}_{j,n_y}^{(y)} k(x_i, y_j). \end{split}$$

Theorem (Chwialkowski, S. and Gretton, 2014)

Let k be bounded and Lipschitz continuous, and let $\{X_t\} \sim P$ and $\{Y_t\} \sim Q$ both be τ -dependent with $\tau(r) = O(r^{-6-\epsilon})$, but independent of each other. Then, under $\mathbf{H}_0: P = Q$, $\varphi\left(\frac{n_x n_y}{n_x + n_y}\widehat{MMD}_k, \frac{n_x n_y}{n_x + n_y}\widehat{MMD}_{k,b}\right) \overset{P}{\to} 0$ as $n_x, n_y \to \infty$, where φ is the Prokhorov metric.

Embeddings in Mercer's Expansion

Mercer's Expansion

For a compact metric space \mathcal{X} , and a continous kernel k,

$$k(x,y) = \sum_{r=1}^{\infty} \lambda_r \Phi_r(x) \Phi_r(y),$$

with $\{\lambda_r, \Phi_r\}_{r\geq 1}$ eigenvalue, eigenfunction pairs of $f\mapsto \int f(x)k(\cdot,x)dP(x)$ on $L_2(P)$.

$$\mathcal{H}_k \ni k(\cdot, x) \leftrightarrow \left\{ \sqrt{\lambda_r} \Phi_r(x) \right\} \in \ell_2$$

 $\mathcal{H}_k \ni \mu_k(P) \leftrightarrow \left\{ \sqrt{\lambda_r} \mathbb{E} \Phi_r(X) \right\} \in \ell_2$

$$\left\| \mu_k(\hat{P}) - \mu_k(\hat{Q}) \right\|_{\mathcal{H}_k}^2 = \sum_{r=1}^{\infty} \lambda_r \left(\frac{1}{n_x} \sum_{t=1}^{n_x} \Phi_r(X_t) - \frac{1}{n_y} \sum_{t=1}^{n_y} \Phi_r(Y_t) \right)^2$$

Wild Bootstrap

- $\rho_X = n_X/n$, $\rho_y = n_y/n$
- $\{W_{t,n}\}_{1 \leq t \leq n}$, $\mathbb{E}W_{t,n} = 0$, $\mathbb{E}[W_{t,n}W_{t',n}] = \zeta\left(\frac{|t'-t|}{\ell_n}\right)$, with $\lim_{u \to 0} \zeta(u) \to 1$

$$\rho_{x}\rho_{y}\widehat{\mathsf{nMMD}}_{k} = \sum_{r=1}^{\infty} \lambda_{r} \left(\sqrt{\rho_{y}} \sum_{t=1}^{n_{x}} \frac{\Phi_{r}(X_{t})}{\sqrt{n_{x}}} - \sqrt{\rho_{x}} \sum_{t=1}^{n_{y}} \frac{\Phi_{r}(Y_{t})}{\sqrt{n_{y}}} \right)^{2}$$

$$\rho_{x}\rho_{y}\widehat{\mathsf{nMMD}}_{k,wb} = \sum_{r=1}^{\infty} \lambda_{r} \left(\sqrt{\rho_{y}} \sum_{t=1}^{n_{x}} \frac{\Phi_{r}(X_{t})\tilde{W}_{t,n_{x}}^{(y)}}{\sqrt{n_{x}}} - \sqrt{\rho_{x}} \sum_{t=1}^{n_{y}} \frac{\Phi_{r}(Y_{t})\tilde{W}_{t,n_{y}}^{(y)}}{\sqrt{n_{y}}} \right)^{2}$$

• $\mathbb{E}\left[\Phi_r(X_1)W_{1,n}\Phi_s(X_t)W_{t,n}\right] = \mathbb{E}\left[\Phi_r(X_1)\Phi_s(X_t)\right]\zeta\left(\frac{|t-1|}{\ell_n}\right)\underset{n\to\infty}{\longrightarrow} \mathbb{E}\left[\Phi_r(X_1)\Phi_s(X_t)\right], \ \forall t,r,s \ \text{provided dependence between} \ X_1 \ \text{and} \ X_t$ "disappears fast enough" (a τ -mixing condition).

Test calibration for dependent observations

Two-sample test	experiment \ method	perm.	wild
MCMC diagnostics	i.i.d. vs i.i.d. (H ₀)	.040	.012
	i.i.d. vs Gibbs (H ₀)	.528	.052
	Gibbs vs Gibbs (H ₀)	.680	.060

Time Series Coupled at a Lag

$$X_{t} = \cos(\phi_{t,1}), \qquad \phi_{t,1} = \phi_{t-1,1} + 0.1\epsilon_{1,t} + 2\pi f_{1}T_{s}, \quad \epsilon_{1,t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1),$$

$$Y_{t} = [2 + C\sin(\phi_{t,1})]\cos(\phi_{t,2}), \quad \phi_{t,2} = \phi_{t-1,2} + 0.1\epsilon_{2,t} + 2\pi f_{2}T_{s}, \quad \epsilon_{2,t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1).$$

Parameters: C = 0.4, $f_1 = 4Hz$, $f_2 = 20Hz$, $\frac{1}{T_2} = 100Hz$.

- M. Besserve, N.K. Logothetis, and B. Schölkopf. **Statistical analysis of coupled time series** with kernel cross-spectral density operators. *NIPS* 2013.

- Interdependent data lead to incorrect Type I control for kernel tests (too many false positives).
- Consistency of a wild bootstrap procedure under weak long-range dependencies (τ -mixing), applicable to both two-sample and independence tests
- Applications: MCMC diagnostics, time series dependence across multiple lags

References

- K. Chwialkowski, DS and A. Gretton, A wild bootstrap for degenerate kernel tests. Advances in Neural Information Processing Systems (NIPS) 27, Dec. 2014.
- DS, A. Gretton and W. Bergsma, A kernel test for three-variable interactions.
 Advances in Neural Information Processing Systems (NIPS) 26, Dec. 2013.
- W.Zaremba, A.Gretton and M.Blaschko, B-test: A Non-Parametric, Low Variance Kernel Two-Sample Test. Advances in Neural Information Processing Systems (NIPS) 26, Dec. 2013.
- A. Gretton, B. Sriperumbudur, DS, H. Strathmann, S. Balakrishnan, M. Pontil and K. Fukumizu, Optimal kernel choice for large-scale two-sample tests. Advances in Neural Information Processing Systems (NIPS) 25, Dec. 2012.
- DS, B. Sriperumbudur, A. Gretton and K. Fukumizu, Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Statist. 41(5): 2263-2291, Oct. 2013.
- A. Gretton, K.M. Borgwardt, M.J. Rasch, B. Schölkopf and A. Smola, A Kernel Two-Sample Test. J. Mach. Learn. Res. 13(Mar): 723-773, 2012.

Linear time vs quadratic time MMD

Disadvantages of linear time MMD vs quadratic time MMD

- Much higher variance for a given n, hence...
- ...a much less powerful test for a given n

Linear time vs quadratic time MMD

Disadvantages of linear time MMD vs quadratic time MMD

- Much higher variance for a given n, hence...
- ...a much less powerful test for a given n

Advantages of the linear time MMD vs quadratic time MMD

- Very simple asymptotic null distribution (a Gaussian, vs an infinite weighted sum of χ^2)
- Both test statistic and threshold computable in O(n), with storage O(1) (if B = const).
- Given unlimited data, a given Type II error can be attained with less computation

Kernels and characteristic functions

DS, B. Sriperumbudur, A. Gretton and K. Fukumizu, Equivalence of distance-based and RKHS-based statistics in hypothesis testing. *Annals of Statistics* 41(5), p. 2263-2291, 2013.