MELBOURNE

HOUSING DATA

Objective:

We are going to use the Melbourne housing data and try to predict the >>price<< of a house using Supervised Machine Learning algorithms.

Source file:

the data is taken from Kaggle.com and has values for three years: 2016,2017 and 2018

SUMMARY OF THE ANALYSIS

- 1. A first look to the dataset
- 2.Data Cleaning
- 2.1.Missing Values
- 2.2.Outliers
- 2.3.Feature Engineering
- 3. Visualisations
- 3.1 Boxplot and histogram
- 3.2 Time Series
- 3.3 Scatterplot

- 3.4 Map
- 4. Machine Learning
- 4.1 Model Comparison
- 4.2 Fine Tuning hyperparameters
- a. Random Search
- b. *Grid Search*
- 4.3 Test set evaluation

1. A FIRST LOOK TO THE DATASET

There are 21 columns and 34857 rows.

- We have insights about:
- - Rooms: 1 to 16
- Price: 85K to 11,2M AUD
- Distance to city center (CBD)
 - 0 48 km
- Land Size & Building Area
- Type of a house:
 - h house, cottage, villa

- Region Name General Region (West, North West, North, North east)
- Year Built: 1965 2018
- Latitude and Longitude
- Bathrooms and Car spots
 - 0-12 / 0-26
- Suburb
- Property count: number of properties in the Suburb

1. A FIRST LOOK TO THE DATASET

- As we read the description of each column we see that:
 - Bathroom, Car are floats but should be integer
 - Because there are NULL values we'll wait after fixing that
 - Postcode is float but we should change it to a category type
 - Yearbuilt should be an integer
 - Propertycount should be an integer
 - Rooms and Bedroom2 seem to represent the same data
 - Out of 34854 records, only 9162 have different values
 - From those 9162, 8217 are NULLs which means approximately 90%.

- Analyze 'Building Area' column
 - The boxplot shows an outstanding outlier, with a building area of more than 40000 squared meters.

40000

30000

20000

10000

BuildingArea

We notice the building has only 5 rooms,
3 bathrooms and the 'BuildingArea' is bigger
than the 'LandSize' it might me an error.
The YearBuilt is also missing.

We can safely drop this row.

- After dropping the most extreme outlier, we can group BuildingArea into bins of ~50 sqm to see on a plot bar how are the houses distributed.
- Most of the houses are between 100 and 200 sqm (~55%)

2. DATA CLEANING

- 2.1. Missing values
 - Out of a total of ~34750 rows some features have a lot of NULLs
- We'd evaluate whether it is better to impute the missing values with their mean or median. In both graphs we can see where the imputed values would be.

There is not a striking visual difference between the two graphs. However, after a careful look we can say that:

Price has a lot of outliers, and the <u>median</u> is less affected by them, as the horizontal line in the graph on the right is lower.

Chosen Solution: Impute NULLs in BuildingArea with median from ['Regionname' and 'Suburb']

The median for groups:

	Regionname	Suburb	BuildingArea
0	Eastern Metropolitan	Bayswater	134.2
1	Eastern Metropolitan	Bayswater North	192.5
2	Eastern Metropolitan	Bellfield	116.7
3	Eastern Metropolitan	Blackburn	183.8
4	Eastern Metropolitan	Blackburn North	167.7

Price

Car

Distance Postcode

Bathroom

Landsize

BuildingArea YearBuilt

CouncilArea Lattitude

Longtitude Regionname

Propertycount

7594

8226

8726

11790

21115

19303

7976 7976

2. DATA CLEANING

• 2.2. Outliers

Let's visualize Price and Distance to spot outliers:

- > each point is either an outlier either for price or distance
- I chose to keep an extremely high threshold to define outliers: over 5 std, where 2 or 3 would have been much more common.

Reason: the high prevalence of outliers found in this database.

Price vs. Distance				
1e7				
10 -	% 0	f Outliers for Price		
	~=	0.47%		
• •				
(
Distance				
t t t t t t t t t t t t t t t t t t t				
0.4		% of Outliers for		
	•	Distance ~= 0.2%		
		10000000		
0.2 -	Lä 5 :	1 (.)		
	THE REAL PLAN	Minell is a line of		
0.0	Mares Lands 44	Mindle I (1)		
	20 3			
- **	Price			

2.3. Feature engineering

 Create a new feature from DateSold as Season and another asYear

Most properties were sold during summer and falls

Most properties were sold in 2017

- 3. Visualizations
- 3.1. Boxplots and Histograms
 - The Price histograms shows right skewness towards big values.
 - The sold price during season is similar with some outliers
 - 2017 was indeed a better year with some outliers

- 3. Visualizations
- 3.2. Time Series
 - Considering the size of the dataset I expected to have house sales for almost every day.
 - Unexpectedly, out of all the 2 and a half years, houses were sold only during 78 days
- We can also see how were distributed the sales M-by-M without the year value:

- 3.3. Correlation matrix and scatterplots
 - Let us look at the correlations between our variables, first with a correlation matrix.
 - As we move further from CBD the price decreases with different rates depending on how many rooms the house has

• 3.4. Geographical Data

• After removing some outliers that were turning the data to blue only, we can see that closer to the CBD are the most expensive houses.

MACHINE LEARNING

- 4. Machine Learning
- 4.1 Model Comparison
- 4.2 Fine Tuning hyperparameters
- a. *Random Search*
- b. *Grid Search*
- 4.3. Evaluate best model on the test set

- 4. Machine Learning
- 4.1 Model Comparison

• Feature importances with Random Forest:

Models:	RMSE	R-squared
	·	
	:	:
	·	÷
	:	

- Feature importance with GBM:
 - A future aim may be to cut the less relevant features (let's say everything after 'houseAge' in terms of importance), estimate a new model and compare it with the old ones. I reckon it would lose predictive power, but on the other hand it would gain in terms of training speed

- * the best feature to reliably predict the price of a Melbourne house are actually 3: Lat&Long + Distance
- * 'BuildingArea'&'Landsize' come second and are equal
- >> Location and property size are weighing the most
- * 'Rooms' are far ahead of 'houseAge' and 'Type'
- * 'mont_year' when house was sold was also important
- * Interesting is 'YearBuilt' is not as important as we may think

- 4. Machine Learning
- 4.2 Fine Tuning Hyperparameter tuning
 - hyperparameters are like the settings of an algorithm that can be adjusted to optimize performance
 - The randomized search and the grid search explore exactly the same space of parameters. The
 result in parameter settings is quite similar, while the run time for randomized search is <u>drastically</u>
 lower.
 - <u>a. Random Search</u> we can define a grid of hyperparameter ranges, and randomly sample from the grid, performing K-Fold CV with each combination of values.
 - Random Forest Hyperparameter tuning:

```
rf_random.best_params_

{'max_depth': 30,
  'max_features': 'sqrt',
  'min_samples_leaf': 1,
  'min_samples_split': 5,
  'n_estimators': 1000}
```

- 4. Machine Learning
 - 4.2. Fine Tuning:
 - b. Grid Search Now that we know where to concentrate our search we can narrow down the range for each hyperparameter.
 - Gradient Boosting Hyperparameter tuning
 - n estimators = number of trees in the foreset
 - max_features = max number of features considered for splitting a node
 - max depth = max number of levels in each decision tree
 - min_samples_split = min number of data points placed in a node before the node is split
 - min_samples_leaf = min number of data points allowed in a leaf node
 - bootstrap = method for sampling data points (with or without replacement)
- Results with RandomizedSearchCV and with GridSearchCV

```
gb random.best params
{'max depth': 5,
 'max features': 'sqrt',
 'min samples leaf': 4,
 'min samples split': 2,
 'n estimators': 275}
```

```
'max depth': [1,30,40,60]
param test3 = {
                 ,'max features': ['sqrt']
                 ,'min samples leaf': [1]
                 ,'min samples split': [5]
                 ,'n estimators':[100,500,1000]}
gsearch3 = GridSearchCV()stimator = RandomForestRegressor()
```

print('best param: ',gsearch3.best params)

```
'max depth': 30,
'max features': 'sqrt',
'min samples leaf': 1,
'min samples split': 5,
'n estimators': 1000]
```

```
print('\nbest score R-squared: ',qsearch3.best score )
```

```
best score R-squared: 0.79520833
```

```
best param: {'n estimators': 100, 'max depth': 9}
best score R-squared w/ CV: 0.81047
```

4. Machine Learning

- 4.3. Evaluate best model on the test set
- As the time spent to tune parameters is significant I chose for us to see how the performance varies when we increase 'max_depth'
- With this graph it is really easy to see where the overfitting begins: after ~9 splits the test performance does not increase anymore, while the train stops increasing after 20 splits.
- Future steps:
 - Work with categorical features to create dummies instead of using LabelEncoder;
 - Change 'Rooms' and 'Car' features to categorical type;
 - Remove some more outliers to see how the model performs;

THANK YOU!

