近世代数 (H) 第二周作业

涂嘉乐 PB23151786

2025年3月9日

Exercise 1 设 R 为含幺交换环, 且 R 为有限环, 求证: R 是整环 \iff R 是域

Proof (\Leftarrow): 由 R 是域知,若 $\exists a,b \in R, \text{s.t. } ab = 0_R$,若 $a \neq 0_R$,则 a 可逆,两边同时左乘 a^{-1} 可得 $b = 0_R$,故 R 是整环

(⇒): 由 R 有限知, 可设 $R = \{a_0, a_1, \dots, a_n\}$, 且 $a_0 = 0_R, a_1 = 1_R$, 对 $\forall r \in R \setminus \{0_R\}$, 考虑

$$Rr = \{a_0r, a_1r, \cdots, a_nr\}$$
 (0.1)

首先, $Rr \subseteq R$; 其次,由 R 是整环,满足消去律知, $\forall i \neq j$,若 $a_i r = a_j r$,则 $a_i = a_j$,这就说明了 Rr 中的元素两两不同,故 #Rr = #R,再结合包含关系知, $Rr = R, \forall r \neq 0_R$,从而 $\exists i_r \in \{1, \cdots, n\}$,s.t. $a_{i_r} r = 1_R$,因此 $r^{-1} = a_{i_r}$,由 r 的任意性知,R 中任意非零元均可逆,故 R 为域

Exercise 2 分类 Q 的子环

Proof 设 $S \subseteq \mathbb{Q}$ 是子环,则 $1 \in S \Rightarrow -1, 0 \in S$,进而有 $\mathbb{Z} \in S$,这是因为 $\forall n \in \mathbb{Z}, n > 0$ 时看作 $n \land 1$ 相加; n < 0 时看作 $(-n) \land (-1)$ 相加

Case 1. $S = \mathbb{Z}$ 为 \mathbb{O} 的子环

Case 2. $S \subseteq \mathbb{Z}$, 考虑全体素数的集合 \mathcal{P} 的子集

$$P = \left\{ m$$
的素因子 $\left| \frac{n}{m} \in S,$ 且为既约分数 $\right\} \subseteq \mathcal{P}$

由 $S \subseteq \mathbb{Z}$ 知, $\exists \frac{x}{y} \in S$, 且它是既约分数, 因此 y 的素因子一定属于 P, 故 P 非空, 我们考虑集合

$$\mathbb{Z}_{P} = \left\{ \frac{n}{\prod\limits_{p_{i} \in P} p_{i}^{e_{i}}} \middle| n \in \mathbb{Z}, e_{i} \in \mathbb{N} \right\}$$

则 \mathbb{Z}_P 是一个子环,这是因为 $1=\frac{1}{\prod\limits_{p_i\in P}p_i^0}\in\mathbb{Z}_P$; 且 $\forall x,y\in\mathbb{Z}_P$,根据 \mathbb{Z}_P 的定义,我们可以写为

$$x = \frac{n_x}{\prod\limits_{p_i \in P} p_i^{e_{i_x}}}, \quad y = \frac{n_y}{\prod\limits_{p_i \in P} p_i^{e_{i_y}}}$$

所以

$$\begin{cases} x \pm y = \frac{n_x \prod\limits_{p_i \in P} p_i^{\max\{e_{i_x}, e_{i_y}\} - e_{i_x}} \pm n_y \prod\limits_{p_i \in P} p_i^{\max\{e_{i_x}, e_{i_y}\} - e_{i_y}}}{\prod\limits_{p_i \in P} p_i^{\max\{e_{i_x}, e_{i_y}\}}} \in S \\ xy = \frac{n_x n_y}{\prod\limits_{p_i \in P} p_i^{e_{i_x} + e_{i_y}}} \in S \end{cases}$$

故首先, \mathbb{Z}_P 是子环

Claim: $S = \mathbb{Z}_P$

①. $S \subseteq \mathbb{Z}_P$: $\forall s \in S$, 若 $s \in \mathbb{Z}$, 则 $s = \frac{s}{\prod\limits_{p_i \in P} p_i^0} \in \mathbb{Z}_P$; 若 $s \notin \mathbb{Z}$, 则 \forall 既约分数 $\frac{x}{y} \in S$, 我们有 y 的素因子分解

$$y = p_1^{e_1} \cdots p_t^{e_t}$$

由 P 的定义知, $p_1, \cdots, p_t \in P$, 这就说明 $\frac{x}{y} = \frac{x}{p_1^{e_1} \cdots p_s^{e_s}} \in \mathbb{Z}_P$

②. $\mathbb{Z}_P\subseteq S$: 对 $\forall p_0\in P$, 由 P 的定义知, \exists 既约分数 $\frac{n}{m}\in S$, s.t. p_0 为 m 的素因子, 我们设 m 有素因子分解

$$m = p_0^{e_0} p_1^{e_1} \cdots p_s^{e_s}$$

则由子环对乘法封闭知

$$\frac{n}{n_0} = \frac{n}{m} \cdot p_0^{e_0 - 1} p_1^{e_1} \cdots p_s^{e_s} \in S$$

因为 (n,m)=1, 由贝祖等式, $\exists u,v \in \mathbb{Z}, \text{s.t. } nu+mv=1$, 将 m 用 $p_0^{e_0}p_1^{e_1}\cdots p_s^{e_s}$ 代入得

$$nu + p_0(p_0^{e_0-1}p_1^{e_1}\cdots p_s^{e_s}v) = 1$$

所以

$$\frac{1}{p_0} = u \cdot \frac{n}{p_0} + p_0^{e_0 - 1} p_1^{e_1} \cdots p_s^{e_s} \in S$$

进而, $\forall p \in P, \frac{1}{p} \in S$, 则 $\forall x \in \mathbb{Z}_P$, 我们有

$$x = \frac{n}{\prod_{p_i \in P} p_i^{e_i}} = n \cdot \prod_{i \in I} \left(\frac{1}{p_i}\right)^{e_i} \in S$$

这就说明了 $\mathbb{Z}_P \subseteq S$, 实际上, 当 $P = \emptyset \subseteq \mathcal{P}$ 时, $\mathbb{Z}_P = \mathbb{Z}_\emptyset = \mathbb{Z}$, 因此每个 \mathbb{Q} 的子环, 均 $\exists P \subseteq \mathcal{P}$ (\mathcal{P} 为全体素数的集合), 使得 $S = \mathbb{Z}_P$, 且 P 由 S 中的元素唯一确定

Exercise 3 设 R, S 是环, $\theta: R \to S$ 为环同态, 求证: $\forall a, b \in R, \theta(a-b) = \theta(a) - \theta(b)$

Proof 因为 $0_S = \theta(0_R) = \theta(a + (-a)) = \theta(a) + \theta(-a)$, 所以 $\theta(-a) = -\theta(a)$, 进而

$$\theta(a-b) = \theta(a+(-b)) = \theta(a) + \theta(-b) = \theta(a) - \theta(b)$$

Exercise 4 证明:不存在环同态 $\theta: \mathbb{Z}_8 \to \mathbb{Q}$

Proof 假设存在环同态 $\theta: \mathbb{Z}_8 \to \mathbb{Q}$,则 $\theta(\bar{1}) = 1 \Rightarrow \forall n, \theta(\bar{n}) = n$,所以

$$9 = \theta(\bar{9}) = \theta(\bar{1}) = 1$$
 in S

矛盾!

Exercise 5 证明: $\operatorname{Aut}(\mathbb{Z}[\sqrt{-1}]) = \{\operatorname{Id}_{\mathbb{Z}[\sqrt{-1}]}, \tau\}$, 其中

$$\tau: \mathbb{Z}[\sqrt{-1}] \longrightarrow \mathbb{Z}[\sqrt{-1}]$$
$$a + b\sqrt{-1} \longmapsto a - b\sqrt{-1}$$

Proof 设 $\theta \in \text{Aut}(\mathbb{Z}[\sqrt{-1}])$, 则 $\theta(1) = 1$, 先证明 $\theta(n) = n, \forall n \in \mathbb{Z}$ n > 0 时,因为 $\theta(2) = \theta(1+1) = \theta(1) + \theta(1) = 1 + 1 = 2$,假设命题对 n = k 成立,则当 n = k + 1 时

$$\theta(k+1) = \theta(k) + \theta(1) = k+1$$

故 n > 0 时命题成立

n=0 时,因为 $Exercise\ 3$ 证明环同态保持减法,所以 $\theta(0)=\theta(1-1)=\theta(1)-\theta(1)=1-1=0$ n<0 时,此时 -n>0,则有 $\theta(-n)=-n$,进而 $\theta(n)=-\theta(-n)=n$ 这就证明了 θ 在 $\mathbb Z$ 上的限制为恒等映射,接下来考虑 $\theta(\sqrt{-1})$,因为

$$\theta(\sqrt{-1})^2 = \theta(\sqrt{-1})\theta(\sqrt{-1}) = \theta(-1) = -1$$

所以 $\theta(\sqrt{-1}) = \pm \sqrt{-1}$

Case 1. $\theta(\sqrt{-1}) = \sqrt{-1}$, $\mathbb{N} \ \forall m + n\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$, π

$$\theta(m + n\sqrt{-1}) = \theta(m) + \theta(n)\theta(\sqrt{-1})$$
$$= m + n\sqrt{-1}$$

故 $\theta = \mathrm{Id}_{\mathbb{Z}[\sqrt{-1}]}$

Case 2. $\theta(\sqrt{-1}) = -\sqrt{-1}$, $\mathbb{N} \ \forall m + n\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$, π

$$\theta(m+n\sqrt{-1}) = \theta(m) + \theta(n)\theta(\sqrt{-1})$$
$$= m - n\sqrt{-1}$$

故 $\theta = \tau$

这就说明 $\operatorname{Aut}(\mathbb{Z}[\sqrt{-1}])\subseteq\{\operatorname{Id},\tau\}$,反之,因为 $\operatorname{Id}_{\mathbb{Z}[\sqrt{-1}]}$ 显然为环同构,对于 τ ,因为

1. $\tau(1) = 1$

$$2. \ \ \tau((a+b\sqrt{-1})+(c+d\sqrt{-1}))=(a+c)-(b+d)\sqrt{-1}=(a-b\sqrt{-1})+(c-d\sqrt{-1})=\tau(a+b\sqrt{-1})+\tau(c+d\sqrt{-1})$$

3.
$$\tau((a+b\sqrt{-1})(c+d\sqrt{-1})) = (ac-bd) - (ad+bc)\sqrt{-1} = (a-b\sqrt{-1})(c-d\sqrt{-1}) = \tau(a+b\sqrt{-1})\tau(c+d\sqrt{-1})$$

4.
$$\tau(a+b\sqrt{-1}) = \tau(a'+b'\sqrt{-1}) \iff a-b\sqrt{-1} = a'-b'\sqrt{-1} \iff a=a',b=b' \iff a-b\sqrt{-1} = a'-b'\sqrt{-1}$$
 数 τ 是单射

5. $\forall a + b\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}], \tau(a - b\sqrt{-1}) = a + b\sqrt{-1}$, 故 τ 是满射

综上所述,
$$\tau$$
 为环自同构,这就说明 $\{\mathrm{Id}_{\mathbb{Z}[\sqrt{-1}]}, \tau\} \subseteq \mathrm{Aut}(\mathbb{Z}[\sqrt{-1}])$,故有 $\mathrm{Aut}(\mathbb{Z}[\sqrt{-1}]) = \{\mathrm{Id}, \tau\}$

Exercise 6 证明: $\operatorname{Aut}(\mathbb{Q}[\sqrt{-1}]) = \{\operatorname{Id}_{\mathbb{Q}[\sqrt{-1}]}, \tau\}$, 其中

$$\tau: \mathbb{Q}[\sqrt{-1}] \longrightarrow \mathbb{Q}[\sqrt{-1}]$$
$$a + b\sqrt{-1} \longmapsto a - b\sqrt{-1}$$

Proof 设 $\theta \in \operatorname{Aut}(\mathbb{Q}[\sqrt{-1}])$, 我们首先证明 $\theta|_{\mathbb{Q}} = \operatorname{Id}_{\mathbb{Q}}$, 即 $\theta(a) = a, \forall a \in \mathbb{Q}$

同 $Exercise\ 5$ 完全一样的过程, 我们有 $\theta|_{\mathbb{Z}} = Id_{\mathbb{Z}}$, 因为

$$1 = \theta(1) = \theta\left(n \cdot \frac{1}{n}\right) = \theta(n)\theta\left(\frac{1}{n}\right) = n \cdot \theta\left(\frac{1}{n}\right) \Rightarrow \theta\left(\frac{1}{n}\right) = \frac{1}{n}, \quad \forall n \in \mathbb{Z} \setminus \{0\}$$

所以 $\forall \frac{m}{n} \in \mathbb{Q}$, 我们有

$$\theta\left(\frac{m}{n}\right) = \theta\left(m \cdot \frac{1}{n}\right) = \theta(m)\theta\left(\frac{1}{n}\right) = \frac{m}{n}$$

这就说明了 $\theta|_{\mathbb{Q}} = \mathrm{Id}_{\mathbb{Q}}$,接下来考虑 $\theta(\sqrt{-1})$, 因为

$$\theta(\sqrt{-1})^2 = \theta(\sqrt{-1})\theta(\sqrt{-1}) = \theta(-1) = -1$$

所以 $\theta(\sqrt{-1}) = \pm \sqrt{-1}$,接下来的过程与 $Exercise\ 5$ 完全一致,故 $\operatorname{Aut}(\mathbb{Z}[\sqrt{-1}]) = \{\operatorname{Id}_{\mathbb{Z}[\sqrt{-1}]}, \tau\}$

Exercise 7 设 $\theta: R \xrightarrow{\sim} S$ 为环同构, 求证:

1. $a \in U(R) \iff \theta(a) \in U(S)$

2. 群同构: $U(R) \stackrel{\sim}{\to} U(S)$

3. R 是整环 \iff S 是整环

4. 群同构: $\operatorname{Aut}(R) \stackrel{\sim}{\to} \operatorname{Aut}(S)$

Proof

 $1. (\Rightarrow) :$ 因为 $a \in U(R)$, 所以

$$1_S = \theta(1_R) = \theta(a \cdot a^{-1}) = \theta(a)\theta(a^{-1}) \Rightarrow \theta(a)^{-1} = \theta(a^{-1}) \Rightarrow \theta(a) \in U(S)$$

 (\Leftarrow) : 因为 $\theta(a) \in U(S)$, 所以 $\exists s \in S, \text{s.t.} \ \theta(a)s = 1_S$, 又因为 θ 是双射, 故是满射, 所以 $\exists r \in R, \text{s.t.} \ \theta(r) = s$, 进而我们有

$$\theta(ar) = \theta(a)\theta(r) = 1_S$$

由 $\theta(1_R) = \theta(1_S)$, 且 θ 是单射知, $ar = 1_R$, 故 $a^{-1} = r, a \in U(R)$

2. 考虑 $\theta: (U(R), \cdot) \to (U(S), \cdot)$, 由环同态知

$$\theta(ab) = \theta(a)\theta(b), \quad \forall a, b \in U(R)$$

这就说明 θ 是群同态,下证 θ 是双射

单射: 若 $\theta(a) = \theta(b) \in U(S)$, 则 $1_S = \theta(a)\theta(b)^{-1} = \theta(a)\theta(b^{-1}) = \theta(ab^{-1}) = \theta(1_R)$, 因此 $ab^{-1} = 1_R \Rightarrow a = b$ 满射: 对 $\forall s \in U(S) \subseteq S$, 由 $\theta: R \to S$ 是满射知, $\exists r \in R, \text{s.t.} \ \theta(r) = s$, 由因为 $s \in U(S)$, 所以 s 可逆且 $s^{-1} \in U(S) \subseteq S$, 故 $\exists r' \in R, \text{s.t.} \ \theta(r') = s$, 所以

$$1_S = s \cdot s^{-1} = \theta(r)\theta(r') = \theta(rr') = \theta(1_R)$$

这就说明 $rr'=1_R$, 故 $r\in U(R)$, 即 $\forall s\in U(S)$, 都能找到 $r\in U(R)$, s.t. $\theta(r)=s$, 故为满射, 因此 θ 是群同构 θ 是双射知, θ^{-1} 也是双射,故只需证明 θ^{-1} 是环同态,对 $\forall x,y\in S$. 因为

$$\begin{cases} \theta(\theta^{-1}(x+y)) = x+y \\ \theta(\theta^{-1}(x) + \theta^{-1}(y)) = \theta(\theta^{-1}(x)) + \theta(\theta^{-1}(y)) = x+y \end{cases}$$

$$\begin{cases} \theta(\theta^{-1}(xy)) = xy \\ \theta(\theta^{-1}(x)\theta^{-1}(y)) = \theta(\theta^{-1}(x))\theta(\theta^{-1}(y)) = xy \end{cases}$$

所以 $\theta^{-1}(x+y) = \theta^{-1}(x) + \theta^{-1}(y), \theta^{-1}(xy) = \theta^{-1}(x)\theta^{-1}(y)$,又因为 $\theta^{-1}(1_S) = 1_R$,故 θ^{-1} 也是环同构 (\Rightarrow) : 若 R 是整环,因为 $\forall s \in S, s = 0_S \iff \theta^{-1}(s) = 0_R$,所以

$$\forall a, b \in S \setminus \{0\}, \theta^{-1}(a), \theta^{-1}(b) \neq 0_S \Rightarrow \theta^{-1}(ab) = \theta^{-1}(a)\theta^{-1}(b) \overset{R \not \cong \pi}{\neq} 0_R \Rightarrow ab \neq 0_S$$

故 S 是整环

 (\Leftarrow) : 若 S 是整环, 因为 $\forall r \in R, r = 0_R \iff \theta(r) = 0_S$, 所以

$$\forall a,b \in R \backslash \{0\}, \theta(a), \theta(b) \neq 0_S \Rightarrow \theta(ab) = \theta(a)\theta(b) \overset{S \not \boxtimes R}{\neq} 0_S \Rightarrow ab \neq 0_R$$

故 R 是整环

4. 前面已证: 若 $\theta: R \to S$ 是环同构,则 $\theta^{-1}: S \to R$ 也是环同构。考虑映射

$$\Theta: \operatorname{Aut}(R) \longrightarrow \operatorname{Aut}(S)$$
$$\varphi \longmapsto \theta \circ \varphi \circ \theta^{-1}$$

Step 1. 验证 $\forall \varphi \in \operatorname{Aut}(R), \theta \circ \varphi \circ \theta^{-1} \in \operatorname{Aut}(S)$

(1.1). 同态: $\forall x, y \in S$

$$\begin{split} \theta \circ \varphi \circ \theta^{-1}(x+y) &= \theta \circ \varphi(\theta^{-1}(x+y)) = \theta \circ \varphi(\theta^{-1}(x) + \theta^{-1}(y)) \\ &= \theta(\varphi(\theta^{-1}(x)) + \varphi(\theta^{-1}(y))) \\ &= \theta(\varphi(\theta^{-1}(x))) + \theta(\varphi(\theta^{-1}(y))) \end{split}$$

$$\begin{split} \theta \circ \varphi \circ \theta^{-1}(x \cdot y) &= \theta \circ \varphi(\theta^{-1}(x \cdot y)) = \theta \circ \varphi(\theta^{-1}(x) \cdot \theta^{-1}(y)) \\ &= \theta(\varphi(\theta^{-1}(x)) \cdot \varphi(\theta^{-1}(y))) \\ &= \theta(\varphi(\theta^{-1}(x))) \cdot \theta(\varphi(\theta^{-1}(y))) \end{split}$$

(1.2). 双射: 由 θ, φ 均为双射知, $\theta \circ \varphi \circ \theta^{-1}$ 也为双射

所以, $\theta \circ \varphi \circ \theta^{-1} \in \operatorname{Aut}(S)$, 故 Θ 确实是合理的

Step 2. 验证 Θ 是群同构

(2.1). 群同态: $\forall \varphi, \psi \in \operatorname{Aut}(R)$, 有

$$\begin{split} \Theta(\varphi \circ \psi) &= \theta \circ (\varphi \circ \psi) \circ \theta^{-1} \\ &= \theta \circ (\varphi \circ (\theta^{-1} \circ \theta) \circ \psi) \circ \theta^{-1} \\ &= (\theta \circ \varphi \circ \theta^{-1}) \circ (\theta \circ \psi \circ \theta^{-1}) \\ &= \Theta(\varphi) \circ \Theta(\psi) \end{split}$$

(2.2). 单射: 若 $\Theta(\varphi) = \Theta(\psi)$, 由 θ 可逆知

$$\theta \circ \varphi \circ \theta^{-1} = \theta \circ \psi \circ \theta^{-1} \iff \theta \circ \varphi = \theta \circ \psi \iff \varphi = \psi$$

(2.3). 满射: 对 $\forall \phi \in \operatorname{Aut}(S)$, 因为

$$\Theta(\theta^{-1} \circ \phi \circ \theta) = \theta \circ (\theta^{-1} \circ \phi \circ \theta) \circ \theta^{-1} = \phi$$

故我们找到了 ϕ 的原像 $\theta^{-1} \circ \phi \circ \theta$, 所以 Θ 是满射

综上, ⊖ 为群同构

Exercise 8 设 R 是环, $I \triangleleft R$, 定义商集 R/I 上的乘法运算: $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$, 验证这样定义是合理的 **Proof** 假设 $\overline{a} = \overline{a_0}, \overline{b} = \overline{b_0}$, 则 $a - a_0, b - b_0 \in I$, 因为理想对"倍"封闭, $a_0, b \in R$, 所以

$$ab - a_0b_0 = (a - a_0)b + (b - b_0)a_0 \in I \Rightarrow \overline{a \cdot b} = \overline{a_0 \cdot b_0}$$

故乘法是良定的

Exercise 9 设 R 是整环, 求证: Char(R) = 0 或素数 p

Proof 考虑特征映射

$$\varphi: \mathbb{Z} \longrightarrow R$$
$$n \longmapsto n1_R$$

则 $Ker \varphi = (n)$, 由环同态基本定理, 我们有同构

$$\mathbb{Z}/(n) \cong \operatorname{Im}\varphi$$

因为 $\operatorname{Im}\varphi$ 是 R 的子环,则 $\operatorname{Im}\varphi$ 也是整环(否则, $\exists a,b \in \operatorname{Im}\varphi \setminus \{0_R\} \subseteq R \setminus \{0_R\}$, s.t. ab=0,这与 R 是整环矛盾!),由环同构知, $\mathbb{Z}/(n) = \mathbb{Z}/n\mathbb{Z}$ 为整环

- (1). n=0 时, $\mathbb{Z}/(0)=\mathbb{Z}$ 显然是整环
- $(2). \ n \geq 2$ 时,若 n 为合数,则 $\exists 1 ,则在 <math>\mathbb{Z}/n\mathbb{Z}$ 中, $\overline{p}, \overline{q} \neq \overline{0}$,但 $\overline{0} = \overline{n} = \overline{p \cdot q} = \overline{p} \cdot \overline{q}$,这就说明 $\mathbb{Z}/n\mathbb{Z}$ 不是整环;若 n 为素数,则 $\forall \overline{a}, \overline{b} \neq \overline{0}$,则 $p \nmid a, p \nmid b \Rightarrow p \nmid ab$,即 $\overline{ab} \neq \overline{0}$,故 $\mathbb{Z}/p\mathbb{Z}$ 为整环

因此
$$\operatorname{Char}(R) = 0$$
 或素数 p

Exercise 10 设 $I \subseteq J, I \triangleleft R, J \triangleleft R$, 定义如下映射

$$R/I \longrightarrow R/J$$

 $(a+I) \longmapsto (a+J)$

验证这是良定的

Proof 设
$$(a+I) = (a'+I)$$
, 则 $a-a' \in I \subseteq J$, 故 $(a+J) = (a'+J)$

Exercise 11 给定 $I \triangleleft R$,则存在双射

$$heta:\{J\lhd R|I\subseteq J\subseteq R\}\longrightarrow \{R/I$$
的理想
$$J\longmapsto J/I=\{\overline{a}=a+I|a\in J\}$$

Proof 首先验证 θ 是合理的, 即 $\theta(J) = J/I$ 确实是 R/I 的理想:

- (a). $\forall j_1 + I, j_2 + I \in J/I$, 由 J 为理想知, $j_1 + j_2 \in J$, 故 $(j_1 + I) + (j_2 + I) = ((j_1 + j_2) + I) \in J/I$
- $(b). \ \forall j+I \in J/I, r+I \in R/I, \ \text{由} \ J \ 是理想知, \ jr \in J, \ \text{故} \ (j+I)(r+I) = (jr+I) \in J/I$

因此 $\theta(J) = J/I$ 为 R/I 的理想,下证明 θ 是双射

单射: 假设 $I \subseteq J_1, J_2 \subseteq R$, 若 $\theta(J_1) = \theta(J_2)$, 即 $J_1/I = J_2/I$, 则 $\forall j_1 \in J_1, \exists j_2 \in J_2, \text{s.t. } j_1 + I = j_2 + I$, 因此 $j_1 - j_2 \in I \subseteq J_2 \Rightarrow j_1 = (j_1 - j_2) + j_2 \in J_2$, 故 $J_1 \subseteq J_2$; 同理我们有 $J_2 \subseteq J_1$, 因此 $J_1 = J_2$

满射: 对 $\forall S \triangleleft (R/I)$, 设 $S_0 = \{s \in R | \overline{s} = s + I \in S\}$, 下证明 $S_0 \triangleleft R$ 且 $I \subseteq S_0$

- (1). 加法封闭性: $\forall s_1, s_2 \in S_0$,则 $(s_1+I), (s_2+I) \in S$,因为 $S \triangleleft (R/I)$,则 $((s_1+s_2)+I) = (s_1+I)+(s_2+I) \in S \Rightarrow s_1+s_2 \in S_0$
- (2). 倍元封闭性: $\forall s \in S_0$,则 $(s+I) \in S$,对 $\forall r \in R, (r+I) \in R/I$,由 S 是理想知 $(s+I)(r+I) = (sr+I) \in S \Rightarrow sr \in S_0$
 - (3). $I \subseteq S_0$: $\forall a \in I$, 我们有 $a + I = I = 0_{(R/I)} \in S$, 由 S_0 的定义知, $a \in S_0$, 故 $I \subseteq S_0$ 综上, 我们有 $\theta(S_0) = S$, 故满射得证,则 θ 确实是双射

Exercise 12 分类 $\mathbb{Z}/n\mathbb{Z}$ 的理想 (提示: 利用上一题)

Solution 由上一题知, $\mathbb{Z}/n\mathbb{Z}$ 的理想一定形如 $S/n\mathbb{Z}$, 其中 $S \triangleleft \mathbb{Z}, n\mathbb{Z} \subseteq S \subseteq \mathbb{Z}$, 因为 \mathbb{Z} 的理想都形如 $m\mathbb{Z}$, 因此不妨设 $S = m\mathbb{Z}$, 因为 $n\mathbb{Z} \subseteq m\mathbb{Z}$, 所以 $\exists k \in \mathbb{Z}, \text{s.t. } mk = n$, 故 $m \mid n$; 反之,若 $m \mid n$, 则 $\exists k \in \mathbb{Z}, \text{s.t. } mk = n$, 则 $\forall nl \in n\mathbb{Z}, nl = mkl \in m\mathbb{Z}$, 故 $n\mathbb{Z} \subseteq m\mathbb{Z}$, 所以我们证明了 $n\mathbb{Z} \subseteq m\mathbb{Z} \iff m \mid n$

所以 $\mathbb{Z}/n\mathbb{Z}$ 的理想形如 $m\mathbb{Z}/n\mathbb{Z}$, 其中 $m \mid n$, 此外还有平凡理想(m = 0 或 n)

Exercise 13 设 R 是环, S 是 R 的子环, $I \triangleleft R$, 求证:

- 1. $S + I = \{a + x | a \in S, x \in I\}$ 是 R 的子环
- 2. $S \cap I \triangleleft S$
- 3. 有环同构 $S/(S \cap I) \stackrel{\sim}{\to} (S+I)/I$

Proof

- 1. 由于子环 S 和理想 I 都对加、减、乘封闭, 所以
 - (a) $1_R = 1_R + 0 \in S + I$
 - (b) if $a_1 + x_1, a_2 + x_2 \in S + I$, \mathbb{N} $(a_1 + x_1) + (a_2 + x_2) = (a_1 + a_2) + (x_1 + x_2) \in S + I$
 - (c) \mathbb{R} $a_1 + x_1, a_2 + x_2 \in S + I$, \mathbb{N} $(a_1 + x_1) (a_2 + x_2) = (a_1 a_2) + (x_1 x_2) \in S + I$
 - (d) 设 $a_1 + x_1, a_2 + x_2 \in S + I$, 则

$$(a_1 + x_1)(a_2 + x_2) = a_1a_2 + (a_1x_2 + x_1a_2 + x_1x_2) \in S + I$$

故 S+I 是 R 的子环

- 2. 验证加法与倍元的封闭性
 - (a) 加法封闭性: $\forall s_1, s_2 \in S \cap I$, 则 $s_1, s_2 \in S \Rightarrow s_1 + s_2 \in S$; $s_1, s_2 \in I \Rightarrow s_1 + s_2 \in I$, 故 $s_1 + s_2 \in S \cap I$
 - (b) 倍元封闭性: $\forall s \in S, a \in S \cap I$, 则 $a \in S, a \in I \Rightarrow sa \in I, sa \in I \Rightarrow sa \in S \cap I$

故 $S \cap I \triangleleft S$

3. 考虑映射

$$\sigma: S \longrightarrow (S+I)/I$$
$$s \longmapsto s+I$$

则 σ 是环同态 (实际上是 $R \to R/I$ 的自然同态 π 在 S 上的限制), 因为

- (a) $\sigma(1_S) = 1_S + I$
- (b) $\sigma(a+b) = ((a+b)+I) = (a+I)+(b+I) = \sigma(a)+\sigma(b)$
- (c) $\sigma(ab) = (ab+I) = (a+I)(b+I) = \sigma(a)\sigma(b)$

且我们有

$$Ker \sigma = \{ s \in S | \sigma(s) = 0_{(S+I)/I} \} = \{ s \in S | s + I = I \}$$
$$= \{ s \in S | s \in I \} = S \cap I$$

对 σ 使用环同态基本定理,则我们有环同构 $S/(S \cap I) \stackrel{\sim}{\to} (S+I)/I$

Exercise 14 设 $I \triangleleft R$, 则存在双射

$$\theta: \{S \overset{\mathcal{F}^{\mathfrak{X}}}{\subseteq} R | I \subseteq S\} \longrightarrow \{R/I$$
的子环 $\}$ $S \longmapsto S/I$

Proof 首先验证 θ 是合理的, 即 $\theta(S) = S/I$ 确实是 R/I 的子环:

- (a). $\forall s_1 + I, s_2 + I \in S/I$, 由 S 为子环知, $s_1 \pm s_2 \in J$, 故 $(s_1 + I) \pm (s_2 + I) = ((s_1 \pm s_2) + I) \in S/I$
- (b). $\forall s_1 + I, s_2 + I \in S/I$, 由 S 是子环知, $s_1 s_2 \in S$, 故 $(s_1 + I)(s_2 + I) = (s_1 s_2 + I) \in S/I$
- (c). $1_R \in S \Rightarrow 1_{R/I} = 1_R + I \in S/I$

因此 $\theta(S) = S/I$ 为 R/I 的子环,下证明 θ 是双射

单射: 若 $\exists S_1, S_2$ 为 R 的子环,且 $I \subseteq S_1, S_2$,若 $\theta(S_1) = \theta(S_2)$,即 $S_1/I = S_2/I$ 则对 $\forall s_1 \in S_1, s_1 + I \in S_1/I = S_2/I$,故 $\exists s_2 \in S_2$,s.t. $s_1 + I = s_2 + I$,所以 $s_1 - s_2 \in I \subseteq S \Rightarrow s_1 = (s_1 - s_2) + s_2 \in S_2$,因此 $S_1 \subseteq S_2$,类似地我们有 $S_2 \subseteq S_1$,因此 $S_1 = S_2$

满射: 若对 $\forall R/I$ 的子环 S, 设 $S_0=\{s\in R|\overline{s}=s+I\in S\}$, 下证明 S_0 是 R 的子环, 且 $I\subseteq S_0$

- (1). 加法、减法封闭性: 因为 S 是 R/I 的子环,所以 $\forall s_1, s_2 \in S_0$,有 $s_1 + I, s_2 + I \in S$,则 $(s_1 + I) \pm (s_2 + I) = (s_1 \pm s_2) + I \in S$,因此 $s_1 \pm s_2 \in S$
 - (2). 乘法封闭性: $\forall s_1, s_2 \in S_0$, 有 $s_1 + I$, $s_2 + I \in S$, 则 $(s_1 + I)(s_2 + I) = s_1s_2 + I \in S$, 因此 $s_1s_2 \in S_0$

- (3). 因为 S 为 R/I 的子环,所以 $1_S=1_R+I\in S$,由 S_0 的定义知 $1_R\in S_0$
- (4). $I \subseteq S_0$: $\forall a \in I, a+I=I=0_{(R/I)} \in S$, 由 S_0 的定义知, $a \in S_0$, 故 $I \subseteq S_0$ 综上, 我们有 $\theta(S_0)=S$, 故满射得证,则 θ 确实是双射

Exercise 15 验证 Frac(R) 中加法的良定性

Proof 假设
$$\frac{a}{x} = \frac{a'}{x'}, \frac{b}{y} = \frac{b'}{y'}$$
,则
$$\begin{cases} ax' = a'x \cdots ① \\ by' = b'y \cdots ② \end{cases}$$
, ① $\cdot (yy') + ② \cdot (xx')$ 得

$$ax'(yy') + by'(xx') = a'x(yy') + b'y(xx') \Rightarrow (ay)(x'y') + (bx)(x'y') = (a'y')(xy) + (b'x')(xy)$$

所以
$$(ay+bx)(x'y')=(xy)(a'y'+b'x')$$
,即 $\frac{ax+by}{xy}=\frac{a'x'+b'y'}{x'y'}$,因此加法是良定的

Exercise 16 考虑典范单同态

$$\operatorname{can}_R : R \longrightarrow \operatorname{Frac}(R)$$

$$a \longmapsto \frac{a}{1_R}$$

求证: can_R 是同构 $\iff R$ 是域

 \mathbf{Proof} (⇒): 已知 can_R 是同构,故为满射,因为 $\frac{a}{x} \neq 0_{\mathrm{Frac}(R)} \iff a \neq 0_R$ 则 $\forall a \in R \setminus \{0\}$,考虑 $\frac{1_R}{a}$,则 $\exists b \in R, \mathrm{s.t.}$ $\mathrm{can}_R(b) = \frac{1_R}{a}$,故

$$\operatorname{can}_{R}(ab) = \operatorname{can}_{R}(a)\operatorname{can}_{R}(b) = \frac{a}{\operatorname{1}_{R}} \cdot \frac{\operatorname{1}_{R}}{a} = \operatorname{1}_{\operatorname{Frac}(R)}$$

由 can_R 为单射、 $\operatorname{can}_R(1_R)=1_{\operatorname{Frac}(R)}$ 知, $ab=1_R$,即 $b=a^{-1}$,因此 R 的任意非零元均可逆,故 R 是域 (\Leftarrow) : 已知 R 是域,因为 can_R 是已经是单同态,只需证明 can_R 为满同态:对 $\forall \frac{a}{x} \in \operatorname{Frac}(R)$,因为 $\operatorname{can}_R(a)=\frac{a}{1_R}$, $\operatorname{can}_R(x)=\frac{x}{1_R}$,由 R 是域知,x 有逆元 x^{-1} ,所以 $\operatorname{can}_R(x^{-1})=\frac{x^{-1}}{1_R}$,故

$$\operatorname{can}_{R}(ax^{-1}) = \operatorname{can}_{R}(a)\operatorname{can}_{R}(x^{-1}) = \frac{ax^{-1}}{\operatorname{1}_{R}}$$

因为 $ax^{-1} \cdot x = a \cdot 1_R$,所以 $\frac{ax^{-1}}{1_R} = \frac{a}{x}$,故 $\operatorname{can}_R(ax^{-1}) = \frac{a}{x}$,这就说明 can_R 为满射,则 can_R 是同构

Exercise 17 $\sharp \mathbb{H}$: $\operatorname{Frac}(\mathbb{Z}[i]) \cong \mathbb{Q}(i)$

Proof 考虑典范单同态 $can_{\mathbb{Z}[i]}$ (简记为 can) 以及嵌入映射 $inc_{\mathbb{Z}[i],\mathbb{Q}(i)}$ (简记为 inc)

$$\operatorname{can}: \mathbb{Z}[i] \longrightarrow \operatorname{Frac}(\mathbb{Z}[i])$$

$$a + bi \longmapsto \frac{a + bi}{1}$$

$$\operatorname{inc}: \mathbb{Z}[i] \longrightarrow \mathbb{Q}(i)$$

$$a + bi \longmapsto a + bi$$

由 can 的泛性质得 $\widehat{\operatorname{inc}} \circ \operatorname{can} = \operatorname{inc}$, 即下面的图交换

其中

$$\widetilde{\operatorname{inc}}: \operatorname{Frac}(\mathbb{Z}[i]) \longrightarrow \mathbb{Q}(i)$$
$$\frac{a+bi}{c+di} \longmapsto \operatorname{inc}(a+bi)\operatorname{inc}(c+di)^{-1}$$

下面证明 $\widehat{\text{inc}}$ 是环同构:

- ①. 环同态:
- (1). $\widetilde{\operatorname{inc}}(\frac{1}{1}) = \operatorname{inc}(1)\operatorname{inc}(1)^{-1} = 1$
- (2). 对任意 $\frac{a_1+b_1i}{c_1+d_1i}$, $\frac{a_2+b_2i}{c_2+d_2i} \in \operatorname{Frac}(\mathbb{Z}[i])$, 则

$$\widetilde{\operatorname{inc}}\left(\frac{(a_1+b_1i)(a_2+b_2i)}{(c_1+d_1i)(c_2+d_2i)}\right) = \operatorname{inc}((a_1+b_1i)(a_2+b_2i))\operatorname{inc}((c_1+d_1i)(c_2+d_2i))^{-1}$$

$$= \operatorname{inc}(a_1+b_1i)\operatorname{inc}(a_2+b_2i)\operatorname{inc}(c_1+d_1i)^{-1}\operatorname{inc}(c_2+d_2i)^{-1}$$

$$= \left[\operatorname{inc}(a_1+b_1i)\operatorname{inc}(c_1+d_1i)^{-1}\right] \cdot \left[\operatorname{inc}(a_2+b_2i)\operatorname{inc}(c_2+d_2i)^{-1}\right]$$

$$= \widetilde{\operatorname{inc}}\left(\frac{a_1+b_1i}{c_1+d_1i}\right)\widetilde{\operatorname{inc}}\left(\frac{a_2+b_2i}{c_2+d_2i}\right)$$

关于上面第二行, 我们补充证明 $\operatorname{inc}(ab)^{-1} = \operatorname{inc}(a)^{-1}\operatorname{inc}(b)^{-1}$, 这是因为

$$\begin{cases} \operatorname{inc}(ab)^{-1} \operatorname{inc}(ab) = 1 \\ (\operatorname{inc}(a)^{-1} \operatorname{inc}(b)^{-1}) \operatorname{inc}(ab) = \operatorname{inc}(a)^{-1} \operatorname{inc}(b)^{-1} \operatorname{inc}(a) \operatorname{inc}(b) = [\operatorname{inc}(a)^{-1} \operatorname{inc}(a)] [\operatorname{inc}(b) \operatorname{inc}(b)^{-1}] = 1 \end{cases}$$

由 inc(ab) 的逆元唯一故得证;

(3). 对任意
$$\frac{a_1+b_1i}{c_1+d_1i}, \frac{a_2+b_2i}{c_2+d_2i} \in \operatorname{Frac}(\mathbb{Z}[i])$$
,则

$$\begin{split} \widetilde{\operatorname{inc}} \left(\frac{a_1 + b_1 i}{c_1 + d_1 i} + \frac{a_2 + b_2 i}{c_2 + d_2 i} \right) &= \widetilde{\operatorname{inc}} \left(\frac{(a_1 + b_1 i)(c_2 + d_2 i) + (a_2 + b_2 i)(c_1 + d_1 i)}{(c_1 + d_1 i)(c_2 + d_2 i)} \right) \\ &= \operatorname{inc} [(a_1 + b_1 i)(c_2 + d_2 i) + (a_2 + b_2 i)(c_1 + d_1 i)] \operatorname{inc} [(c_1 + d_1 i)(c_2 + d_2 i)]^{-1} \\ &= [\operatorname{inc}(a_1 + b_1 i) \operatorname{inc}(c_2 + c_2 i) + \operatorname{inc}(a_2 + b_2 i) \operatorname{inc}(c_1 + d_1 i)] \left[\operatorname{inc}(c_1 + d_1 i)^{-1} \operatorname{inc}(c_2 + d_2 i)^{-1}\right] \\ &= [\operatorname{inc} \left(\frac{a_1 + b_1 i}{c_1 + d_1 i} \right) + \operatorname{inc} \left(\frac{a_2 + b_2 i}{c_2 + d_2 i} \right) \end{split}$$

②. 单射: 若
$$\widetilde{\operatorname{inc}}\left(\frac{a_1+b_1i}{c_1+d_1i}\right) = \widetilde{\operatorname{inc}}\left(\frac{a_2+b_2i}{c_2+d_2i}\right)$$
,则 $\operatorname{inc}(a_1+b_1i)\operatorname{inc}(c_1+d_1)^{-1} = \operatorname{inc}(a_2+b_2i)\operatorname{inc}(c_2+d_2)^{-1}$,因此 $\operatorname{inc}[(a_1+b_1i)(c_2+d_2i)] = \operatorname{inc}[(a_2+b_2i)(c_1+d_1i)] \Rightarrow (a_1+b_1i)(c_2+d_2i) = (a_2+b_2i)(c_1+d_1i)$

(因为 inc 为单射),所以 $\frac{a_1+b_1i}{c_1+d_1i} = \frac{a_2+b_2i}{c_2+d_2i}$ ③. 满射: 对任意 $\frac{a+bi}{c+di} \in \mathbb{Q}(i)$,可通过通分使得 $a,b,c,d \in \mathbb{Z}$,故不妨设 a,b,c,d 为整数,且 $c^2+d^2 \neq 0$,则显 然有 $\frac{a+bi}{c+di}=\mathrm{inc}(a+bi)\mathrm{inc}(c+di)^{-1}=\widetilde{\mathrm{inc}}\left(\frac{a+bi}{c+di}\right)$,这就找到了原像

综上,
$$\widetilde{\mathrm{inc}}$$
 为环同构, 故 $\mathrm{Frac}(\mathbb{Z}[i])\cong\mathbb{Q}(i)$