			Copyright - not legal for resale	
53	Half-Life		or distribution.	
23	Tidii Liic		From Isaac Covid lessons	archive:
			isaacphysics.org/pages/covid19_gcs	
_	_			

Nuclear decay is random. You can not predict when an individual nucleus will decay. However, if you have many millions of nuclei, you can make a good prediction of how many will decay in a certain amount of time.

The half-life is the average time taken for the number of unstable nuclei to halve.

The half-life is also the average time taken for the activity (number of decays each second) to halve.

Example - The half-life of ^3_1H is 12 years. A source starts with an activity of 150 Bq (150 decays per second). Estimate the activity 12 and 24 years after the start.

After 12 years, one half-life has passed, so the activity will halve to 75 Bq. After 24 years, a second half-life has passed, halving the activity again to $75\times0.5=37.5$ Bq.

- 53.1 $^{14}_{6}\text{C}$ has a half-life of 5 700 years. A sample is 5 700 years old and has an activity of 200 Bq.
 - (a) What was the initial activity?
 - (b) What will the activity be $5\,700$ years in the future?
- 53.2 A sample starts with 10^{16} nuclei of 3_1 H, which has a half-life of 12 years.
 - (a) How many ³H nuclei will this sample contain after 12 years?
 - (b) How many ³₁H nuclei will this sample contain 24 years after the start?
 - (c) How many ³₁H nuclei will this sample contain 36 years after the start?
- 53.3 These questions are about ${}^{13}_{7}$ N, which has a half-life of 10 minutes.
 - (a) If I start with 6 000 000 nuclei, how many will remain after 10 minutes?

- (b) If the activity was 600 Bq initially, what will it be after 30 minutes?
- (c) If the activity was $24\,000$ Bq initially, what will it be one hour later?
- 53.4 Suppose the activity of a sample of radioactive material was $100 \, \text{Bq}$ at the start. What would you divide $100 \, \text{Bg}$ by to obtain the activity
 - (a) 1 half-life after the start?
 - (b) 2 half-lives after the start?
 - (c) 3 half-lives after the start?
 - (d) 4 half-lives after the start?
 - (e) 20 half-lives after the start?
 - (f) *n* half-lives after the start?
- 53.5 \heartsuit Use your reasoning from Q53.4 to answer this. The half-life of $^{13}_{7}$ N is 10 minutes. The initial activity of a sample of $^{13}_{7}$ N is 100 Bq. Determine the activity 5 minutes later.

¹²/₁₅