Задачи к экзамену

ТиСФ-І

Задача 1

В пустой теплоизолированный сосуд втекает атмосферный воздух с температурой T_0 и давлением P_0 . Какая будет температура вошедшего в сосуд воздуха? Сразу после выравнивания давлений кран закрывается. Каким будет давление воздуха в сосуде, когда температура его за счет теплообмена сравняется с температурой атмосферного воздуха?

Задача 2

В процессе, описываемым уравнением $P = \alpha V$ (вариант $P = \beta/V^2$), объем идеального газа увеличивается от V_1 до V_2 . Найти изменение внутренней энергии, работу газа, количество тепла, поглощенного газом, и теплоемкость в этом процессе.

Задача 3

Найти изменение температуры воды при конвективном переносе на глубину 1 км с поверхности, считая что теплообмена за время погружения нет. Теплоемкость воды $C_p = 4 \, \mathrm{K} \, \mathrm{Дж/kr} \, \mathrm{K}$, коэффициент теплового расширения $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = 1, 3 \cdot 10^{-4} \, \mathrm{K}^{-1}$.

Задача 4

Найти изменение энтропии идеального газа при нагревании от температуры T_1 до T_2 при а) P = Const, б) V = Const.

Задача 5

Показать, что для уравнения состояния P = f(V)T внутренняя энергия U не зависит от объема V.

Задача 6

Смесь двух идеальных газов, с числом молей ν_1, ν_2 и показателями адиабаты γ_1, γ_2 , адиабатически сжимают, так что относительное изменение объема равно $\delta V/V \ll 1$. Найти относительные изменения температуры $\delta T/T$ и давления $\delta P/P$.

Задача 7

Два тела с температурами T_1, T_2 и постоянными теплоемкостями C_1, C_2 приводятся в тепловой контакт. Найти конечную температуру и изменения энтропии каждого из тел. Увеличивается ли полная энтропия?

Задача 8

В процессе, описываемым уравнением $S = \gamma T$ (вариант $S = \beta/T$), температура идеального газа увеличивается от T_1 до T_2 . Найти изменение внутренней энергии, работу газа, количество тепла, поглощенного газом, и теплоемкость в этом процессе.

Задача 9

Замкнутая система состоит из двух подсистем, которые могут обмениваться энергией между собой. Энтропия первой системы S_1 связана с ее энергией U_1 соотношением $S_1 = \alpha (U_1/U_0)^2$, второй – $S_2 = \sqrt{U_2/U_0}$ (U_0 – полная энергия системы). Найти отношение U_1/U_0 в равновесии для больших значений параметра α .

Шары на плоском бильярде. На плоском (т.е. двумерном) бильярде находятся N шаров, которые упруго сталкиваются между собой и с бортами. Полная энергия шаров равна E_0 . Найти функцию распределения по энергии для одного шара. Рассмотреть предельный случай $N \to \infty$, E/N = Const.

Задача 11

Идеальный одноатомный больцмановский газ находится в вертикальном сосуде под поршнем массы M в поле тяжести. Число атомов газа $N\gg 1$. Система (газ + поршень) теплоизолирована и имеет энергию E. Используя микроканоническое распределение найти:

- 1) зависимость энтропии от энергии и высоты положения поршня h;
- 2) равновесное положение поршня;
- 3) зависимость энергии от температуры и теплоемкость системы.

Задача 12

Вычислить среднюю энергию и теплоемкость системы из N осцилляторов с помощью микроканонического распределения.

Задача 13

N шаров движутся на плоском бильярде, испытывая упругие столкновения друг с другом и со стенками. Определить распределение шаров по компоненте скорости v_x . Принять, что для замкнутой системы шаров справедливо микроканоническое распределение.

Задача 14

Оценить количество N молекул в аудитории с кинетической энергией не менее ε_0 для $\varepsilon_0{=}1,2,3,4$ эВ (согласно распределению Максвелла). Для случая, когда окажется $N\ll 1$, оценить время, спустя которое появится хотя бы одна молекула с такой энергией.

Задача 15

Средняя кинетическая энергия молекулы больцмановского газа равна $\frac{3}{2}T$. Найти среднюю величину кинетической энергии молекулы, падающей на стенку.

Задача 16

Два различных идеальных газа, находившиеся в объёмах V_1 и V_2 , имели одинаковые температуры и давления и были разделены перегородкой. Перегородку убирают, и газы смешиваются (путем диффузии), равномерно заполняя весь объем V_1+V_2 . На сколько изменится суммарная энтропия газов? Числа частиц в указанных объёмах были равны N_1 и N_2 .

Задача 17

Найти теплоемкость двухуровневой системы, причем верхний уровень имеет очень высокую степень вырождения g, так что даже $\ln g \gg 1$.

Задача 18

Газ состоит из молекул, которые имеют определенный дипольный момент и могут произвольным образом ориентироваться в пространстве. Найти диэлектрическую проницаемость газа в пределе высоких температур.

Газ находится в объёме V, в малой части которого V_1 имеется "потенциальная яма" глубины $-U_0$. Найти теплоёмкость газа.

Задача 20

Найти теплоемкость C больцмановского газа в потенциале

$$U(x) = \frac{A}{x} + Bx, \quad x > 0, A > 0, B > 0$$

в пределе высоких и низких температур. Нарисовать график C(T).

Вариант

$$U(x) = \frac{A}{x^2} + Bx^2, \quad x > 0, A > 0, B > 0$$

Задача 21

Найти теплоемкость больцмановского газа, заключенного в ящик высотой L при температуре T в поле тяжести. Рассмотреть пределы высоких и низких температур.

Задача 22

Для больцмановского газа ультрарелятивистских частиц найти среднюю энергию, теплоемкость C_V и давление.

Задача 23

Рассмотреть зависимость теплоёмкости от температуры для газов CO_2 и H_2O . Молекулы CO_2 имеют линейную форму, а молекулы H_2O — треугольную.

Задача 24

Найти количество тепла, поглощенного в элементарной реакции диссоциации молекулы AB на атомы A и B,

$$AB \rightarrow A + B$$
,

при постоянном объеме и температуре T. Энергия диссоциации молекулы равна W ($W \gg T$). Как изменится ответ, если постоянны давление и температура.

Задача 25

Молекула H_2 при адсорбции ее некоторыми металлическими поверхностями разделяется на атомы. Найти соотношение между количеством адсорбированных атомов и давлением газообразного водорода.

Задача 26

В цилиндре под поршнем помещена вода, над которой находится смесь воздуха и насыщенных водяных паров. Начальное давление равно атмосферному. Затем давление на поршень увеличивается в два раза. На сколько процентов изменится давление пара в цилиндре, если температура $T=300\ ^o K$ сохраняется неизменной?

Задача 27

Найти изменение объема пара с температурой для процесса, в котором пар все время находится в равновесии с жидкостью.

Задача 28

Определить теплоемкость пара вдоль кривой равновесия жидкости и ее насыщенного пара.

Найти на сколько изменится температура плавления льда при увеличении давления на 10 атм. Теплота плавления $\lambda \approx 6 \cdot 10^3 \; \text{Дж/моль}$, плотность льда $\rho \approx 0.9 \; \text{г/см}^3$.

Задача 30

Свободная энергия одноатомного больцмановского газа с учетом взаимодействия между атомами имеет вид

$$F(T,V) = F_{\text{MA}} + \frac{N^2}{V} \left(bT - a \right),$$

a, b — Const. Найти изменение температуры этого газа при расширении в пустоту от объема V_1 до объема V_2 .

Задача 31

Свободная энергия больцмановского газа с учетом слабого взаимодействия между частицами имеет вид:

$$F(T,V) = F_{\text{ИД}}(T,V) - \frac{A}{\sqrt{VT}},$$

где $F_{\rm ИД}$ — свободная энергия идеального газа, A — Const. Найти поправки, связанные с взаимодействием между частицами, к давлению, энтропии, средней энергии и теплоемкости C_V .

Задача 32

Давление P (в мм. рт. столба) паров некоторого вещества над твердой фазой в зависимости от температуры (в oK) выражается формулой

$$\ln P = 23, 0 - \frac{3700}{T};$$

над жидкой фазой –

$$\ln P = 19, 5 - \frac{3000}{T}.$$

Чему равна температура тройной точки?

Чему равна теплота плавления в тройной точке?

ТиСФ-II

Задача 1

Найти теплоемкость одномерного электронного газа (число электронов N) в потенциале гармонического осциллятора в пределе низких и высоких температур.

Задача 2

В объеме V находится N электронов. Найти среднюю энергию и давление электронного газа в пределе $T \to 0$.

Задача 3

Найти химический потенциал, среднюю энергию и давление электронов проводимости в меди, атомный вес $A\approx 64\,\mathrm{г/моль}$, плотность $\rho\approx 9\,\mathrm{r/cm}^3$, считая, что каждый атом меди поставляет один электрон проводимости.

Задача За

Оценить отношение кулоновской энергии взаимодействия к кинетической энергии электронов в металле.

Задача 4

Найти функцию распределения вырожденного ферми-газа по одной компоненте скорости.

Задача 5

В атомах с большим числом Z электронов большая часть из них движется вблизи ядра в объёме с характерным размером R. В модели Томаса – Ферми эти электроны рассматриваются как вырожденный электронный газ, температура которого равна нулю. Пренебрегая кулоновским взаимодействием электронов друг с другом, оценить величину R.

Задача 6

Оценить размер белого карлика (холодной звезды) массой M, в котором гравитационные силы компенсируются давлением вырожденного электронного газа.

Задача 7

Оценить предельное значение массы белого карлика, гравитационные силы в котором компенсируются давлением вырожденного ультрарелятивистского газа электронов.

Задача 8

Качественно оценить теплоемкость C_v , $C_p - C_v$ и магнитную восприимчивость электронного газа при низких температурах $T \ll \mu$.

Задача 9

Вычислить теплоемкость газа из N электронов в ящике объема V.

Задача 10

Найти теплоемкость электронов в поле гармонического осциллятора.

Задача 11

Найти квантовую поправку к давлению идеального ферми-газа

Задача 11а

Найти квантовую поправку к давлению идеального бозе-газа

Задача 12

Найти магнитную восприимчивость двумерного газа из N нейтронов (спин 1/2, магнитный момент α_o), заключенного в ящик размера $L \times L$, в пределе низких и высоких температур.

Задача 13

N электронов находятся в цилиндре с поршнем при постоянной температуре T. Найти зависимость давления от объема.

Задача 14

Найти давление вырожденного газа фермионов с законом дисперсии $\epsilon=pc$. Число частиц N, объем V.

N электронов находятся в цилиндре с поршнем при постоянной температуре T. Найти магнитную восприимчивость, связанную с вобственным магнитным моментом электрона, при больших и малых значениях объема.

Задача 16

Для донорного полупроводника найти зависимость химического потенциала и числа носителей заряда в зоне проводимости в зависимости от температуры.

Задача 17

Найти теплоёмкость газа электронов и дырок в чистом полупроводнике.

Задача 18

Найти температуру конденсации T_o для бозе-газа с законом дисперсии $\varepsilon(p)=pv_o$, заключенного в ящик объема V, а также теплоемкость ниже точки бозе-конденсации и при $T\gg T_o$.

Задача 19 Бозе-газ находится в поле $U=m\omega^2r^2/2$. Найти температуру T_k конденсации Бозе – Эйнштейна, теплоёмкость при $T< T_k$ и скачок теплоёмкости в точке конденсации.

Задача 20

Изобразить изотермы бозе-газа на PV плоскости.

Задача 21

Найти вклад в теплоемкость жидкого гелия возбуждений (бозонов с равным нулю химическим потенциалом), имеющих закон дисперсии

$$\varepsilon(p) = \Delta + \frac{(p - p_o)^2}{2m},$$

при температуре $T \ll \Delta$, $T \ll p_o^2/2m$.

Задача 22

N бозе-частиц находятся в цилиндре с поршнем при постоянной температуре T. Нарисовать зависимость давления от объема.

Задача 23

Бозе-газ из N частиц находится в сферически симметричном потенциале $U(r)=\alpha r^3$. Найти: 1) температуру бозе-конденсации, 2) энергию, 3) теплоемкость, 4) энтропию ниже точки бозе-конденсации.

Задача 24

Найти соотношение между концентрациями электронов, позитронов и фотонов и соотношение между их энергиями при температуре $T\gg m_ec^2$ (такая высокая температура была в малые доли секунды после *Большого взрыва*; в этих условиях можно принять, что концентрации электронов и позитронов одинаковы).

Задача 25

Насколько изменится скорость звука $c_S^2 = (\partial P/\partial \rho)_S$ в газе заряженных частиц с плотностью n и массой m за счет присутствия фотонов, находящихся в равновесии при температуре $T \ll mc^2$. Газ нагрет до такой высокой температуры, что количество фотонов, находящихся с ним в равновесии, много больше количества частиц газа.

Абсолютно чёрное тело вращается вокруг Солнца по орбите Земли. До какой температуры нагреет его излучение Солнца?

Задача 27

Для равновесного газа фотонов в ящике объема V с температурой T найти зависимость числа фотонов и энтропии газа от объема и полной энергии фотонного газа.

Задача 28

Оценить число фотонов равновесного теплового излучения с температурой $T=3^{o}K$ в объеме $V=1\,{\rm cm}^{3}.$

Задача 29

Найти вклад в теплоемкость колебаний атомов двумерной решетки (атомы абсорбированы на поверхности).

Задача 30

Оценить температуру, при которой вклад в теплоемкость металла электронов проводимости и колебаний решетки одинаков. Считать, что на один атом металла приходится один электрон проводимости, плотность числа электронов проводимости n_o , температура Дебая Θ_D .

Задача 31

Оценить среднеквадратичное смещение $\langle x^2 \rangle$ атома углерода (атомный вес 12 г/моль) из положения равновесия в решетке алмаза при комнатной температуре. Температура Дебая $\Theta_D \approx 2000^o K$. Сравнить $\sqrt{\langle x^2 \rangle}$ с постоянной решетки $d_o = 3.6 \cdot 10^{-8}$ см.

Задача 32

Найти квазистатические флуктуации $\langle (\Delta P \Delta T), \langle \Delta V \Delta P \rangle, \langle \Delta V \Delta S \rangle$.

Задача 33

Найти флуктуации объёма больцмановского газа, ограниченного поршнем, площади A, который удерживается пружиной жесткости k. Внешнее давление P_0 , температура T_0 . В равновесии пружина не растянута.

Задача 34

Найти, как зависит от времени средний квадрат размера области, занятой "облаком" броуновских частиц, которые стартовали одновременно из одной точки.

Задача 35.

Найти среднеквадратичное смещение $\langle r^2 \rangle$ частицы за время t. Уравнение движения имеет вид

$$\frac{dv}{dt} = \xi(t),$$

где v – скорость частицы, ξ – случайная сила с корреляторами $\langle \xi(t') \rangle = 0$, $\langle \xi(t') \xi(t'') \rangle = D\delta(t'-t'')$. Начальные условия: v(0) = 0, r(0) = 0.

Задача 36

Электрическая цепь состоит из последовательно соединенных конденсатора емкостью C и сопротивления R при температуре T. Найти корреляционную функцию заряда на конденсаторе $\langle q(t_1)q(t_2)\rangle$.

Получить из кинетического уравнения вид равновесного распределения по скоростям в газе в отсутствие внешних полей.

Задача 38

Оценить проводимость, коэффициенты диффузии, вязкости, теплопроводности среды, рассматриваемой как разреженный больцмановский газ с длиной свободного пробега λ , концентрацией числа частиц n, температурой T.

Задача 39

Найти проводимость электронного газа в металле в au-приближении.

Задача 40

Найти коэффициент вязкости электронного газа в металле в au-приближении.

Вопросы к экзамену

ТиСФ-І

- 1. Микроканоническое распределение. Статистический вес макросостояния. Энтропия, температура.
 - 2. Каноническое распределение Гиббса. Статистическая сумма.
- 3. Больцмановский газ. Оценка температуры и плотности, при которых следует учитывать квантовую статистику.
 - 4. Термодинамические функции идеального больцмановского газа.
 - 5. Идеальный больцмановский газ. Распределение Максвелла.
 - 6. Двухатомные молекулы, вращательные и колебательные степени свободы.
 - 7. Распределение Гиббса с переменным числом частиц. О-потенциал.
 - 8. Условие равновесия при реакциях. Ионизационное равновесие.
 - 9. Условие равновесия фаз, уравнение Клапейрона-Клаузиуса.
- 10. Отсутствие магнетизма классического газа. Парамагнетизм Паули и диамагнетизм Ландау.
- 11. Неидеальные газы, короткодействующий потенциал. Вириальное разложение, газ ван-дер-Ваальса.
- 12. Неидеальные газы, дальнодействующий потенциал. Самосогласованное поле. Термодинамика классической плазмы,

ТиСФ-II

- 13. Большое каноническое распределение. Вывод распределения Ферми-Дирака.
- 14. Большое каноническое распределение. Вывод распределения Бозе-Эйнштейна.
- 15. Вырожденный ферми-газ. Энергия Ферми, средняя энергия и давление при нулевой температуре.
- 16. Вырожденный ферми-газ. Зависимость химического потенциала от температуры.
 - 17. Вырожденный ферми-газ. Теплоемкость электронного газа в металле.
- 18. Электроны и дырки в собственном полупроводнике. Зависимость концентрации и химического потенциала от температуры.
- 19. Донорный полупроводнике. Зависимость концентрации электронов в зоне проводимости и химического потенциала от температуры.
 - 20. Бозе-газ. Конденсация Бозе-Эйнштейна.
- 21. Бозе-газ. Энергия, теплоемкость, энтропия и давление идеального бозе-газа ниже температуры конденсация Бозе-Эйнштейна.
- 22. Газ фотонов, распределение Планка. Химический потенциал, зависимость теплоемкости и давления от температуры.
- 23. Колебания в твердом теле. Модель Дебая, зависимость теплоемкости от температуры.
- 24. Колебания в твердом теле. Модель Дебая. среднеквадратичное смещение атомов.
 - 25. Флуктуации энергии и числа частиц.
 - 26. Флуктуации термодинамических величин.
 - 27. Фазовые переходы II рода. Приближение молекулярного поля Вейсса.
 - 28. Теория Ландау фазовых переходов II рода. Влияние флуктуаций.
 - 29. Броуновское движение. Уравнение Ланжевена.
- 30. Бесстолкновительное уравнение Больцмана. плазменные колебания, затухание Ландау.
 - 31. Уравнение Больцмана, интеграл столкновений, *H*-теорема Больцмана.

- 32. Уравнение Больцмана для электронного газа в металле, интеграл столкновений, τ -приближение.
- 33. Уравнение Больцмана в au-приближении. Проводимость и теплопроводность электронного газа в металле. Закон Видемана-Франца
- 34. Уравнение Больцмана в τ -приближении. Термоэлектрические эффекты Зеебека и Пельтье. Гальваномагнитные эффекты. Эффект Холла.