Министерство образования и науки РФ Нижегородский Государственный Технический Университет им. Р.Е.Алексеева Кафедра "Производственная безопасность, экология и химия"

Расчет загрязнения атмосферного воздуха технологического воздуха

Методические указания по выполнению практических работ по курсу "Экология"

Расчет загрязнения атмосферного воздуха технологическими выбросами: Методические указания по выполнению практических работ по курсу "Экология"/ НГТУ; Сост.: Н.П.Гогин, О.В.Маслеева. - Н.Новгород, 2014. - с. 15.

1 Цель работы:

Научиться производить расчет возможного загрязнения атмосферного воздуха технологическими выбросами. Ознакомиться с величинами предельно допустимых концентраций для воздуха рабочей зоны промышленных предприятий и населенных пунктов.

2 Краткие сведения из теории.

проектировании промышленных предприятий требуется, соответствии с Санитарными нормами СН 245-71, загрязнения атмосферного воздуха технологическими выбросами. проводят с целью определения загрязнения атмосферного воздуха населенных площадок. Полученные промышленных расчетным концентрации вредных веществ в воздухе, сравнивают с величиной предельнодопустимых концентраций ЭТИХ веществ В воздухе рабочей предприятий / ПДК_{рз} / и среднесуточной предельнопромышленных допустимой концентраций вредного вещества в воздухе населенных пунктов / $\Pi \coprod K_{cc}$ /, которые указаны в таблице 1.

При превышении этих концентраций необходимо предусмотреть мероприятия по снижению уровня загрязнения, например, повышения эффективности очистных устройств, сооружение газоочистных установок, совершенство технологических процессов и установок, увеличение высоты труб, уменьшение выброса соседних предприятий.

При расчете загрязнения учитывается все одновременно действующие источники вредных выбросов, а также существующий фон загрязнения. При расчете степени загрязнения необходимо учитывать возникновение вблизи зданий при обтекании их воздушным потоком циркуляционных зон (замкнутых, плохо проветриваемых). С этой точки зрения промышленные здания делятся на два типа - узкие и широкие.

Здание считается узким, если его ширина не превышает 2,5 высоты здания (В < 2,5 Нзд). При обтекании воздушным потоком узкого здания над ним и за ним возникает единая циркуляционная зона, распространяемая от заветренной стороны здания на расстояние шесть его высот (6 Нзд). Высота этой зоны в среднем составляет 1,8 Нзд (Рис. 1а).

Здание считается широким, если его ширина превышает 2,5 высоты здания (B > 2,5 Нзд). При обтекании воздушным потоком широкого здания над ним возникает наветренная циркуляционная зона, длиной

2,5 Нзд и высотой 0,8 Нзд, а за ним заветренная циркуляционная зона, длиной 4 Нзд и высотой около Нзд

Таблица 1 - Предельно-допустимые концентрации вредных веществ.

Вредное вещество	Химическая формула	ПДКрз	ПДКес
Азота диоксид	$N0_2$	5	0.085
Алюминия оксид	Al_2O_3	2	0.02
Аммиак	NH_3	20	0.2
Ацетон	CH ₃ COOH ₃	200	0.35
3,4 бензпирен	$C_{20}H_{12}$	0.00015	10-6
Железа оксид	Fe_2O_3	6	0.04
Кремнеземсодержащая пыль	SiO ₂	2	0.05
Медь	Cu	0.5	0.002
Никель	Ni	0.5	0.001
Озон	O_3	0.1	0.03
Сажа	С	4	0.05
Свинец	Pb	0.007	0.003
Серы диоксид	$S0_2$	10	0.05
Серная кислота	H_2SO_4	1	0.1
Сероводород	H_2S	10	0.008
Углерода оксид	CO	20	1
Фтористый водород	HF	0.5	0.005
Хромовый ангидрид	Cr ₂ O ₃	0.01	0.0015

Источники выброса вредных веществ могут быть точечными и линейными. Точечный источник - отдельная труба (рис. 2a). Линейный источник - аэрационные фонари здания, близко расположенные шахты и трубы (рис. 2б).

Загрязнения, создаваемые низкими источниками, рассчитывают в соответствии с "Руководством по расчету загрязнения воздуха на промышленных площадках", разработанным ЦНИИП, БЦНИИОТ, 1975 г.

Расчет концентрации вредных веществ ведут с учетом вида здания - узкое или широкое, вида источника вредных выбросов — точечный или линейчатый. За расчетное принимают направление ветра перпендикулярное продольной стороне здания.

Рис. 1(а) Узкое злание

Рис1(б) Широкое

Узкое отдельно стоящее здание		
Источник	Зона расчета	Расчетные формулы
Точечный	0 ≤ X ≤ 6 Нзд	$C = \frac{1.3 \cdot M \cdot K}{V} \cdot \left(\frac{0.6}{H_{3/1} \cdot L} + \frac{42 \cdot S_1}{4.4 \cdot L + B + X^2} \right)$
	X > 6 Нзд	$C = \frac{55 \cdot M \cdot k \cdot S_1}{V \cdot 4 \cdot L + B + X^2}$
Линейный	0 ≤ X ≤ 6 Нзд	$C = \frac{2 \cdot M \cdot K}{V \cdot L \cdot H_{3/J}}$
	X > 6 Нзд	$C = \frac{7.2 \cdot M \cdot K}{V \cdot L \cdot (B+X)}$

Широкое отдельно стоящее здание		
Источник	Зона расчета	Расчетные формулы
Точечный	0 ≤ X ≤ 4 Нзд	$C = \frac{5.6 \cdot M \cdot k \cdot m \cdot S_1}{V \cdot L \cdot H_{3JJ}}$
	Х > 4 Нзд	$C = \frac{15 \cdot M \cdot k \cdot S_1}{V \cdot L \cdot (B+X)}$
Линейный	0 ≤ Х ≤4 Нзд	$C = \frac{2.8M \cdot m \cdot K}{V \cdot L \cdot H_{30}}$
	Х > 4 Нзд	$C = \frac{7.2 \cdot M \cdot K}{V \cdot L \cdot (B + X)}$

Условные обозначения:

С - концетрация вредных веществ, мг/м

M - масса вредных веществ, выбрасываемых источником в атмосферу в единицу времени, г/с

К-безразмерный коэффициент, учитывающий возвышение устья источника на уровень загрязнения (при выбросе в наветренную или единую циркуляционную зону, K=1)

V - расчетная сила ветра, V = 1 м/c

Нзд- высота здания, м

L- длина здания, м

В- ширина здания, м

Х-расстояние от заветренной стороны здания до расчетной точки, м

 S_1 -понижающий коэффициент, позволяющий определить конценвредных веществ на расстоянии.

трацию

$$S_1 = e^{\frac{-30y^2}{(1.4L+B+X)^2}}$$

m-безразмерный коэффициент, показывающий, какое количество выделяемых источником примесей, участвующих в загрязнении атмосферы (m=1).

ЗЗадание к работе

1. Проверить возможность размещения приемных отверстий систем приточной вентиляции в точках с координатами A(0,0), B(0,L/4). Для этого рассчитывается концентрация трех веществ в этих точках. Необходимым условием является выполнение соотношения:

$$C_A + C_\Phi \le 0.3*\Pi Д K_{P3}$$

 $C_5 + C_\Phi < 0.3*\Pi Д K_{P3}$

Результаты расчета занести в таблицу 2.

Таблица 2

	$C_1+C_{\Phi 1}$	$C_2 + C_{\Phi 2}$	$C_3+C_{\Phi 3}$
A (0,0)			
Б (0,L/4)			
0,3 ПДК _{РЗ}			

2. Определить изменение концентрации вредных веществ в зависимости от расстояния до здания на оси факела (по оси X). Расчет сделать для 7 точек: X_1 =0, X_2 =50, X_3 =100, X_4 =150, X_5 =200, X_6 =250, X_7 =300. Результаты расчета занести в таблицу 3.

Построить графики зависимости C=f(X). На графике также провести линию - ПДКсс. Сравнить расчетные концентрации с ПДКсс.

Таблица 3

X, Y=0	$C_1+C_{\Phi 1}$	$C_2 + C_{\Phi 2}$	$C_3+C_{\Phi 3}$
0			
50			
100			
150			
200			
250			
300			
ПДКсс			

3 Определить возможность расположения жилых домов на границе санитарной зоны, размером 1000м. Результаты расчета занести в таблицу 4.

Таблица 4

X, Y=0	$C_1+C_{\Phi 1}$	$C_2 + C_{\Phi 2}$	$C_3 + C_{\Phi 3}$
1000			
ПДКсс			

4 Определить на каком расстоянии от источника выброса можно строить жилые дома. Результаты расчета занести в таблицу 5.

Необходимое условие:

$$C_i + C_{\phi i} = \Pi \coprod K_{cci}$$

Таблица 5

$X_1 =$	
$X_2 =$	$X_{\text{Max}} =$
$X_3 =$	

4 Пример расчета

Исходные данные

Источник - точечный
L = 48 M
B = 24 M
Нзд = 12 м
H = 15 M
Вредное вещество - аммиак
M = 150 r/c
$C\phi = 0.01 \text{ M}\Gamma/\text{ M}^3$

Рисунок 3 Схема к расчету

Из таблицы 1 находим ПДКрз = 20 мг/м^3 ПДКсс = 0.2 мг/м^3

Расчет1:

 $\tau.A(0,0), \tau.E(0,12)$

Т.к. 2,5Нзд=30м, т.е. меньше В=24м, следовательно, здание относится к узким, и расчеты ведем по следующим формулам.

при
$$0 \le X \le 6$$
 Нзд $(0 \le X \le 72 \text{м})$

$$C = \frac{1.3 \cdot M \cdot K}{V} \cdot \left(\frac{0.6}{H_{3J} \cdot L} + \frac{42 \cdot S_1}{4.4 \cdot L + B + X^2} \right)$$

при X > 6 Нзд (X > 72м)

$$C = \frac{55M \cdot K \cdot S_1}{V |1.4L + B + X|^2}$$

В точках A и Б X=0, поэтому расчет ведем по формуле 1. Концентрация аммиака в т.A:

$$x=0, y=0 S_1=1$$

$$C = \frac{1.3 \cdot 150 \cdot 1}{1} \left(\frac{0.6}{12 \cdot 48} + \frac{42 \cdot 1}{|1.4 \cdot 48 + 24 + 0|^2} \right) = 1.18 \, \text{MeV}_{M^3}$$

С учетом фоновой концентрации реальная концентрации аммиака в т.А составляет:

$$C_A = C + C_\Phi = 1,18 + 0,01 = 1,19 \text{ M}\Gamma/\text{M}^3$$

Концентрация аммиака в т.Б (x=0, y=12м):

$$S_1 = e^{-\frac{30\cdot12^2}{|1.4\cdot48+24+0|^2}} = e^{-0.52} = 0.59$$

$$C = \frac{1.3 \cdot 150 \cdot 1}{1} \left(\frac{0.6}{12 \cdot 48} + \frac{42 \cdot 0.59}{\left| 1.4 \cdot 48 + 24 + 0 \right|^2} \right) = 0.78 \, \frac{\text{MeV}}{\text{M}^3}$$

$$C_{\rm B} + C_{\rm \Phi} = 0.784 + 0.01 = 0.794 \text{ Mp/m}^3$$

Таблица 6

	$C+C_{\Phi}$, $M\Gamma/M$
A (0,0)	1,19
Б (0,12)	0,794
0,3ПДК _{РЗ}	6

Вывод: концентрация аммиака не превышает допустимую концентрацию в точках A и Б, поэтому возможно размещение приемных отверстий приточной вентиляции, через которые воздух подается в цех, в этих точках.

Расчет 2.

Расчет концентрации ведется по оси X, поэтому y=0 и $S_1=1$.

Расчетные формулы:

$$0 \le x \le 72M$$

$$C = \frac{1.3 \cdot 150 \cdot 1}{1} \left(\frac{0.6}{12 \cdot 48} + \frac{42 \cdot 1}{\left| 1.4 \cdot 48 + 24 + x \right|^{2}} \right) = 0.203 + \frac{8190}{\left| 91.2 + x \right|^{2}}$$

$$x > 72M$$

$$C = \frac{55 \cdot 150 \cdot 1 \cdot 1}{1 \cdot \left| 1.4 \cdot 48 + 24 + x \right|^{2}} = \frac{8250}{\left| 91.2 + x \right|^{2}}$$

Результаты расчета приведены в таблице 7 и на рисунке 4.

Таблица 7

Х, м	$C+C_{\Phi}$, $M\Gamma/M^3$
0	1,19
50	0,624
100	0,236
150	0,152
200	0,107
250	0,0809
300	0,0639
ПДКсс	0,2

Рисунок 4

Вывод: концентрация аммиака превышает ПДКсс до расстояния 120 м.

Расчет 3.

X = 1000 м, расчет ведем по формуле 2.

$$C = \frac{55 \cdot K \cdot S_1}{V \cdot (1.4L + B + X)^2} = \frac{55 \cdot 150 \cdot 1 \cdot 1}{1 \cdot (1.4 \cdot 48 + 24 + 1000)^2} = 0.00693 \frac{Mz}{M^3}$$

$$C + C_{\Phi} = 0.00693 + 0.01 = 0.01693$$

Результаты расчета приведены в таблице 8

Таблица 8

X, Y=0	$C+C_{\Phi}$, $M\Gamma/M^3$
1000	0,01693
ПДКес	0,2

Вывод: возможно размещение жилых домов на границе санитарной зоны.

Расчет 4.

$$C + C_{\Phi} = \Pi$$
ДКсс

$$\frac{55 \cdot M \cdot K \cdot S_1}{V(1,4L+B+X)^2} + 0,01 = 0,2$$

$$\frac{55 \cdot 150 \cdot 1 \cdot 1}{1(1,4 \cdot 48 + 24 + X)^2} + 0,01 = 0,2$$

X = 117 M

Результаты расчета приведены в таблице 9

Таблица 9

$X_1 = 117$	$X_{\text{Max}} = 117$

Вывод: жилые дома можно строить на расстоянии 117 м.

5. Варианты заданий

Согласно заданного варианта выполнить расчеты концентраций вредных веществ по табл. 10.

В табл. 10 приняты следующие обозначения:

L - длина здания, м

В - ширина здания, м

Нзд - высота здания, м

М - масса вредного вещества, выбрасываемого в единицу времени, г/с

Сф - фоновая концентрация вредного вещества, мг/м

6. Рекомендуемая литература

- 1. CH 245 71
- 2. Справочник проектировщика. Вентиляция и кондиционироваание воздуха. Под ред. И.Г.Староверова. М.: Стройиздат, 1978, 340 с.

Таблица 10 – Исходные данные

	Вид	Габариты здания, м			Высота	Вещество 1		
№	источника	L	В	Н	трубы Н, м	Название	M_1 , Γ/c	${ m C}_{ m \phi 1}, \ { m mg/m}^3$
1	точечный	40	24	10	15	SiO ₂	200	0,01
2	точечный	42	20	12	18	Al ₂ O ₃	180	0
3	точечный	44	18	14	22	NO ₂	160	0,002
4	точечный	46	28	10	17	NH ₃	80	0,006
5	точечный	48	32	12	18	O_3	10	0
6	точечный	36	24	8	12	CH ₃ COOH ₃	20	0
7	линейный	40	20	12	16	NO ₂	100	0,01
8	линейный	42	26	14	18	Cr ₂ O ₃	2,5	0
9	линейный	44	24	16	20	H ₂ SO ₄	80	0,01
10	линейный	50	28	10	15	NO ₂	100	0,01
11	линейный	48	32	12	16	NH ₃	100	0,08
12	линейный	60	36	10	16	NO ₂	80	0,01
13	точечный	60	40	15	18	Cu	19	0
14	точечный	48	36	13	19	СО	110	0,02
15	точечный	48	28	10	13	HF	10	0
16	точечный	72	36	11	16	NH ₃	100	0,006
17	точечный	48	40	12	15	Cr ₂ O ₃	2,2	0
18	точечный	60	36	12	16	Ni	1,8	0
19	линейный	60	42	16	19	NO ₂	80	0,01
20	линейный	60	46	18	20	Fe ₂ O ₃	300	0,01
21	линейный	48	36	12	14	SiO ₂	160	0,01
22	линейный	50	36	16	18	SO_2	100	0,002
23	линейный	52	24	10	13	Al ₂ O ₃	110	0
24	линейный	48	24	12	18	O_3	8,0	0
25	точечный	40	20	10	15	С	100	0,001
26	точечный	80	40	16	20	CH ₃ COOH ₃	10	0,02
27	линейный	120	46	12	18	SiO ₂	180	0,002
28	линейный	100	60	14	19	NO_2	150	0
29	точечный	60	30	15	20	NO_2	60	0,005
30	линейный	90	24	12	22	NH ₃	100	0,01

Продолжение таблицы 10 – Исходные данные

No		Вещество		Вещество 3				
	Название	M ₂ , г/с	$C_{\phi 2}$, $M\Gamma/M^3$	Название	M ₃ , г/с	$C_{\phi 3}, M\Gamma/M^3$		
1	С	180	0,01	SO_2	80	0,004		
2	Fe ₂ O ₃	250	0	CO	100	0,02		
3	CO	120	0,1	SiO_2	100	0,01		
4	SiO ₂	180	0,004	$C_{20}H_{12}$	0,3	0		
5	H_2S	120	0	SO_2	140	0,01		
6	CO	100	0,01	SO_2	60	0,001		
7	CO	120	0,03	$C_{20}H_{12}$	0,5	0		
8	Ni	3,0	0	CO	140	0,08		
9	H ₂ S	100	0,001	HF	16	0		
10	С	190	0,01	Al_2O_3	25	0		
11	H ₂ SO ₄	120	0	CH ₃ COOH ₃	1,4	0,07		
12	H ₂ S	120	0	$C_{20}H_{12}$	0,1	0		
13	Ni	2,6	0	Pb	3,8	0,001		
14	SO_2	140	0,01	$C_{20}H_{12}$	0,9	0		
15	H ₂ S	110	0	SO_2	200	0,01		
16	Ni	1,8	0	O_3	2,6	0,001		
17	Pb	0,24	0,001	HF	16	0		
18	Fe ₂ O ₃	210	0,01	H_2S	12	0		
19	CO	120	0,03	Pb	2,0	0		
20	SiO_2	260	0,002	С	200	0		
21	SO_2	120	0,003	O_3	8,0	0		
22	Fe ₂ O ₃	180	0,01	H_2S	160	0		
23	HF	12	0	NH ₃	140	0,03		
24	H ₂ SO ₄	140	0,02	SiO ₂	180	0,01		
25	Al_2O_3	20	0	NH ₃	100	0,01		
26	$C_{20}H_{12}$	0,1	0	Fe ₂ O ₃	50	0,002		
27	Cu	11	0	NiO	0,8	0		
28	SO_2	120	0,003	CO	90	0,01		
29	H ₂ SO ₄	150	0,001	С	100	0,003		
30	H ₂ S	120	0,001	HF	15	0		