第二十四讲 n 阶行列式

一、n阶行列式的定义

二、例题

列式是

一、n阶行列式的定义

定义4.1.8

由 n^2 个数组成的n阶行列式

等于所有取自不同行不同列的n个元素的乘积的代数和 $\sum (-1)^{\tau(i_1\cdots i_n)}a_{1i_1}a_{2i_2}\cdots a_{ni_n}$,

其中 $i_1i_2\cdots i_n$ 为自然数 1,2,…,n的一个排列,t为这个排列的逆序数.

注

- (1) n级行列式的展开式中共有 n! 项.
- (2) *n*阶行列式的每一项是由位于不同行和不同列的 *n*个元素的乘积构成.
- (3) 一阶行列式 | a |= a, 注意不要与绝对值符号混淆.

$$\begin{vmatrix} 2 & -1 \\ 4 & -3 \end{vmatrix} = 2 \times (-3) - (-1) \times 4 = -6 + 4 = -2$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{vmatrix} = 1 + 18 + 12 - 9 - 4 - 6 = 12$$
$$\begin{vmatrix} 3 & 2 & 1 \end{vmatrix}$$

例2 求解下列行列式

解

$$\begin{vmatrix} 1 & & \\ & 2 & \\ & & 3 & \\ & & 4 \end{vmatrix} = (-1)^{\tau(1234)} a_{11} a_{22} a_{33} a_{44} = 24$$

一般的,

$$\begin{vmatrix} d_1 & & & \\ & d_2 & & \\ & & d_n \end{vmatrix} = d_1 d_2 \cdots d_n \quad (对角线行列式)$$

$$\begin{vmatrix} d_1 & & & \\ & d_2 & \\ & \vdots & & \\ d_n & & \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} d_1 d_2 \cdots d_n$$

例3 计算<u>上三角行列式</u> 0 a_{22} ··· a_{2n}

解 展开式中项的一般形式是 $a_{1p_1}a_{2p_2}\cdots a_{np_n}$.

$$p_n = n$$
, $p_{n-1} = n-1$, $p_{n-3} = n-3$, $p_2 = 2$, $p_1 = 1$,

所以不为零的项只有 $a_{11}a_{22}\cdots a_{nn}$.

类似的,对于下三角行列式

$$\begin{vmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ & & & & & & & \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{vmatrix}$$

$$=a_{11}a_{22}\cdots a_{nn}.$$

练习:

答案: $(-1)^{n-1}n!$

(2)
$$\exists \mathbf{x} f(x) = \begin{vmatrix} x & 1 & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 2x & 1 \end{vmatrix}$$
, $\mathbf{x} x^3 \hat{\mathbf{n}} \mathbf{x} \mathbf{x}$.

解

由n级行列式的定义,f(x)为一个x的多项式函数,且最高次幂为3. 显然含 x^3 的项仅有两项:

$$(-1)^{\tau(1234)}a_{11}a_{22}a_{33}a_{44}\pi (-1)^{\tau(1243)}a_{11}a_{22}a_{34}a_{43},$$

即 x^3 和一 $2x^3$ 项.

所以f(x)中 x^3 的系数为-1.

由于行列式的行和列的地位是一样的,我们交换行列式表达式中的行和列的位置,可以得到另外一种等价定义.

n级行列式的等价定义

定义2
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(i_1 i_2 \cdots i_n)} a_{i_1 1} a_{i_2 2} \cdots a_{i_n n}$$

其中 $\sum_{i_1i_2\cdots i_n}$ 表示对1、2、3,····,n的所有排列.

转置行列式

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}, 行列式 \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

称为行列式D的转置行列式,记为 D^{T} .

试用行列式的等价定义证明:

$$D = D^T$$
.

定理 设A, B是数域P上的两个 $n \times n$ 矩阵,那么

$$|AB| = |A|B|$$

推论 设 A_1 , A_2 , ..., A_m 是数域P上的 $n \times n$ 矩阵, 那么

$$|A_1A_2\cdots A_m| = |A_1||A_2|\cdots |A_m|$$

二、例题

例4. 用行列式定义计算

$$D_5 = \begin{bmatrix} 0 & a_{12} & a_{13} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ 0 & a_{42} & a_{43} & 0 & 0 \\ 0 & a_{52} & a_{53} & 0 & 0 \end{bmatrix}$$

解: 设 D_5 中第1,2,3,4,5行的元素分别为 a_{1p_1} , a_{2p_2} , a_{3p_3} , a_{4p_4} , a_{5p_5} ,那么,由 D_5 中第1,2,3,4,5行可能的非零元素分别得到

$$p_1 = 2,3;$$
 $p_2 = 1,2,3,4,5;$ $p_3 = 1,2,3,4,5;$ $p_4 = 2,3;$ $p_5 = 2,3.$

因为 p_1, p_2, p_3, p_4, p_5 在上述可能取的代码中,一个5元排列也不能组成,故 $D_5 = 0$.

评注 本例是从一般项入手,将行标按标准顺序排列, 讨论列标的所有可能取到的值,并注意每一项 的符号,这是用定义计算行列式的一般方法.

注意 如果一个n阶行列式中等于零的元素比 $n^2 - n$ 还多,则此行列式必等于零.

例2 证明

$$\begin{vmatrix} \sin 2\alpha & \sin(\alpha + \beta) & \sin(\alpha + \gamma) \\ \sin(\beta + \alpha) & \sin 2\beta & \sin(\beta + \gamma) \\ \sin(\gamma + \alpha) & \sin(\gamma + \beta) & \sin 2\gamma \end{vmatrix} = 0.$$

证

