Electromagnetism Notes

by Ham Kittichet

▶ Table of Contents

บทที่ 1. ไพ	่ ฟ้าสถิต	1
▶ 1.1.	สนามไฟฟ้า	1
▶ 1.2.	Divergence และ Curl ของสนามไฟฟ้าสถิต	2
▶ 1.3.	ศักย์ไฟฟ้า	3
▶ 1.4.	งานและพลังงาน	5
▶ 1.5.	ตัวนำและความจุไฟฟ้า	8
บทที่ 2. ศัก	าย์ไฟฟ้า	12
▶ 2.1.	สมการ Laplace	12
▶ 2.2.	การจำลองภาพ	14
▶ 2.3.	การแยกตัวแปร	15
▶ 2.4.	การกระจาย Multipole	19
บทที่ 3. สเ	ู่ มามไฟฟ้าในสสาร	23
▶ 3.1.	โพลาไรเซชัน	23
▶ 3.2.	สนามไฟฟ้าของวัตถุที่ถูกโพลาไรซ์	25
▶ 3.3.	การกระจัดไฟฟ้า	26
▶ 3.4.	ไดอิเล็กทริกเชิงเส้น	27
บทที่ 4. แม	ม่เหล็กสถิต	32
▶ 4.1.	กฎแรง Lorentz	32
▶ 4.2.	กฎของ Biot-Savart	34
	Divergence และ Curl ของสนามแม่เหล็กสถิต	35
	เวกเตอร์ศักย์แม่เหล็ก	37
บทที่ 5. สเ	นามแม่เหล็กในสสาร (TO-DO)	43

EM Notes	- Ham Kittichet	Та	ble	of (Cont	ents
▶ 5.1.	แมกเนไทเซชัน (TO-DO)					43
	ลศาสตร์ไฟฟ้า					44
▶ 6.1.	แรงเคลื่อนไฟฟ้า					44
▶ 6.2.	การเหนี่ยวนำแม่เหล็กไฟฟ้า					48
▶ 6.3.	สมการ Maxwell					52
▶ 6.4.	สมการ Maxwell ในสสาร (TO-DO)					53
บทที่ 7. วง	งจรไฟฟ้า					54
▶ 7.1.	การวิเคราะห์วงจร					54
▶ 7.2.	วงจรอันดับหนึ่ง					57
▶ 7.3.	วงจรอันดับสอง					59
▶ 7.4.	วงจรไฟฟ้ากระแสสลับ					61

็บทที่ 1 ∣ ไฟฟ้าสถิต

▶ 1.1. สนามไฟฟ้า

▶ แรง Coulomb

กฎของ Coulomb. สำหรับจุดประจุที่อยู่นิ่ง q_1 และ q_2 จะได้ว่าแรงที่กระทำต่อประจุ q_1 คือ

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} q_1 q_2 \frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|^3} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{\mathbf{i}^2} \hat{\mathbf{i}}$$
(1.1)

เมื่อ ${m k}$ คือเวกเตอร์จาก q_1 ไป q_2

โดยประจุไฟฟ้าในหน่วย SI คือ C (coulomb) และ $\varepsilon_0 \approx 8.854 \times 10^{-12} \, \mathrm{C^2 \, N^{-1} \, m^{-2}}$ เป็นค่าคงที่ที่เรียกว่าสภาพ ยอมในสุญญากาศ (permittivity of free space) เราจะเรียกแรงนี้ว่าแรง Coulomb

สนามไฟฟ้า

สังเกตว่าถ้ามีประจุวางไว้อยู่แล้ว เราสามารถนิยาม*สนามไฟฟ้า*ได้ดังนี้:

นิยามสนามไฟฟ้า.

$$\mathbf{E}(\mathbf{r}) \equiv \frac{\mathbf{F}(\mathbf{r})}{q} \tag{1.2}$$

และโดยกฎของ Coulomb (1.1) จะได้ว่า

สนามไฟฟ้าของจุดประจุ.

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{\mathbf{r}_k \neq \mathbf{r}} q_k \frac{\mathbf{r} - \mathbf{r}_k}{|\mathbf{r} - \mathbf{r}_k|^3} = \frac{1}{4\pi\varepsilon_0} \sum_k \frac{q_k}{\iota_k^2} \hat{\boldsymbol{\iota}}_k$$
 (1.3)

โดยถ้าประจุไม่ดิสครีตแต่กระจายตัวอย่างต่อเนื่องด้วยความหนาแน่นประจุ $ho({f r})$ จะได้ว่า

สนามไฟฟ้าของประจุต่อเนื่อง.

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{\mathbf{v}^2} \hat{\mathbf{v}} d\tau'$$
 (1.4)

เมื่อ $\mathrm{d} au'=\mathrm{d}^3r'$ และในทำนองเดียวกันกับความหนาแน่นเชิงเส้น λ และความหนาแน่นเชิงพื้นที่ σ

▶ 1.2. Divergence และ Curl ของสนามไฟฟ้าสถิต

ฟลักซ์ไฟฟ้าและกฎของ Gauss

นิยามฟลักซ์ไฟฟ้า. ฟลักซ์ของ ${f E}$ ที่ผ่านผิว ${\cal S}$ คือ

$$\Phi_E \equiv \int_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{a} \tag{1.5}$$

พิจารณาพื้นผิวปิด $\mathcal S$ ที่มีจุดประจุ q อยู่ภายในและพื้นที่เล็ก ๆ $\mathrm{d} au$ บน $\mathcal S$ โดยมี m k เป็นเวกเตอร์จาก q มายัง $\mathrm{d} a$ และ $\mathrm{d} a'$ เป็นภาพฉายของ $\mathrm{d} a$ มาตั้งฉากกับ m k จะได้

$$\mathbf{E} \cdot d\mathbf{a} = \frac{1}{4\pi\varepsilon_0} \frac{q}{\mathbf{t}^2} da \cos \theta = \frac{1}{4\pi\varepsilon_0} \frac{q}{\mathbf{t}^2} da' = \frac{q}{4\pi\varepsilon_0} d\Omega$$

เมื่อ $\mathrm{d}\Omega$ คือมุมสเตอเรเดียนเทียบกับตำแหน่งของประจุ q ดังนั้นฟลักซ์ไฟฟ้าจาก q ที่ผ่านพื้นผิว $\mathcal S$ เท่ากับ

$$\Phi_E^{(q \text{ in})} = \oint_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{a} = \frac{q}{4\pi\varepsilon_0} \oint_{\mathcal{S}} d\Omega = \frac{q}{4\pi\varepsilon_0} \cdot 4\pi = \frac{q}{\varepsilon_0}$$
 (1.6)

โดยทำในทำนองเดียวกันจะเห็นว่าถ้า q อยู่นอก $\mathcal S$ แล้ว $\mathbf E\cdot\mathrm d\mathbf a=(\mathrm{const.})\,\mathrm d\Omega\ \mathrm{const}$ จะมีคู่ของมันที่เครื่องหมายตรง ข้ามในอีกฝั่งของ $\mathcal S$ จึงทำให้ตัดกันหมด ดังนั้นในกรณีจุดประจุ q อยู่นอก $\mathcal S$ จะได้ว่าฟลักซ์ไฟฟ้า:

$$\Phi_E^{(q \text{ out})} = \oint_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{a} = 0 \tag{1.7}$$

ดังนั้นจึงได้

กฎของ Gauss (Integral form). สำหรับทุกพื้นผิวปิดจะได้ว่าฟลักซ์ไฟฟ้าที่ผ่านผิวนั้นเท่ากับ

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\varepsilon_0} \tag{1.8}$$

▶ Divergence และ Curl ของสนามไฟฟ้าสถิต

พิจารณาใช้ divergence theorem ($\oint_{\partial \mathcal{V}} \mathbf{F} \cdot d\mathbf{a} = \int_{\mathcal{V}} \mathbf{\nabla} \cdot \mathbf{F} \, d\tau$) บนกฎของ Gauss (1.8) จะได้ว่า

$$\int_{\mathcal{V}} \mathbf{\nabla} \cdot \mathbf{E} \, d\tau = \oint_{\partial \mathcal{V}} \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{enc}}{\varepsilon_0} = \int_{\mathcal{V}} \frac{\rho}{\varepsilon_0} \, d\tau$$
$$\int_{\mathcal{V}} \left(\mathbf{\nabla} \cdot \mathbf{E} - \frac{\rho}{\varepsilon_0} \right) d\tau = 0$$

เนื่องจากเป็นจริงทุกปริมาตร ${\cal V}$ ดังนั้น

$$\nabla \cdot \mathbf{E} - \frac{\rho}{\varepsilon_0} = 0$$

ก็จะได้

กฎของ Gauss (Differential form).

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \tag{1.9}$$

และเนื่องจาก curl ของจุดประจุเท่ากับ $\mathbf 0$ ดังนั้นจึงได้ว่า curl ของสนาม $\mathbf E$ สถิตใด ๆ จึงเท่ากับ $\mathbf 0$ ด้วย

กฎของ Faraday สำหรับสนามไฟฟ้าสถิต.

$$\nabla \times \mathbf{E} = \mathbf{0} \tag{1.10}$$

▶ 1.3. ศักย์ไฟฟ้า

นิยามศักย์ไฟฟ้า

เนื่องจาก $\mathbf{\nabla} \times \mathbf{E} = 0$ โดย Stokes' theorem จะได้ว่า $\int \mathbf{E} \cdot \mathrm{d}\mathbf{l}$ ไม่ขึ้นอยู่กับเส้นทาง เราจึงสามารถนิยามฟังก์ชันที่ ขึ้นอยู่กับอินทิกรัลของสนามไฟฟ้า ณ ตำแหน่งใด ๆ ได้:

นิยามศักย์ไฟฟ้า. ให้ $\mathcal O$ เป็นจุดอ้างอิง เราสามารถนิยาม*ศักย์ไฟฟ้า V(\mathbf r)* ที่จุด $\mathbf r$ คือ

$$V(\mathbf{r}) \equiv -\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l} \tag{1.11}$$

โดยที่ V มีหน่วย SI เป็น V (volt) ซึ่งโดยปกติแล้วเราจะนิยามศักย์ไฟฟ้าให้ $V|_{r \to \infty} = 0$

โดยจะได้*ความต่างศักย*์ระหว่าง a และ b คือ

$$V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}$$
 (1.12)

และจาก

$$\int_{\mathbf{a}}^{\mathbf{b}} (\nabla V) \cdot d\mathbf{l} = V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}$$

จะได้ว่า

ศักย์ไฟฟ้าในรูป Gradient.

$$\mathbf{E} = -\nabla V \tag{1.13}$$

อีกสมการหนึ่งที่สำคัญที่ได้จากศักย์ไฟฟ้าโดยนำสมการ (1.13) ไปแทนใน (1.9) จะได้

สมการ Poisson. สำหรับสนามศักย์ไฟฟ้า V:

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0} \tag{1.14}$$

โดยถ้า ho=0 จะได้สมการ Laplace

$$\nabla^2 V = 0 \tag{1.15}$$

โดยสามารถหา V ของจุดประจุ q ได้จากกฎของ $\operatorname{Coulomb}\ (1.1)$:

$$V(\mathbf{r}) = -\int_{\infty}^{\mathbf{r}} \mathbf{E}(\mathbf{r}') \cdot d\mathbf{l}' = -\int_{\infty}^{r} \frac{1}{4\pi\varepsilon_0} \frac{q}{(r')^2} dr'$$

ก็จะได้ว่า

ศักย์ไฟฟ้าของจุดประจุ.

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{\nu} \tag{1.16}$$

ในทำนองเดียวกันกับสนามไฟฟ้า เราสามารถหาศักย์ไฟฟ้าที่ตำแหน่ง ${f r}$ ที่เกิดจากประจุที่กระจายแบบต่อเนื่องด้วยความ หนาแน่น ho ได้ดังนี้:

ศักย์ไฟฟ้าของประจุต่อเนื่อง.

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{\iota} \,d\tau'$$
 (1.17)

สภาวะขอบเขต

ต่อมาจะมาดูสมบัติของ ${f E}$ และ V ในบริเวณแผ่นประจุบาง ๆ ที่มีความหนาแน่นประจุเชิงพื้นที่ σ

1. พิจารณาผิว Gaussian ทรงกระบอกบางที่บางมากจนฟลักซ์ไฟฟ้าที่ผ่านบริเวณผิวข้างเท่ากับ 0 ที่คลุมบริเวณ เล็ก ๆ ของแผ่นประจุ จะได้ว่า

$$E_{\text{above}}^{\perp} - E_{\text{below}}^{\perp} = \frac{\sigma}{\varepsilon_0}$$

จะเห็นได้ว่าส่วนของ ${f E}$ ที่ตั้งฉากกับแผ่นประจุจะเกิดความไม่ต่อเนื่องแบบกระโดดด้วยผลต่าง $rac{\sigma}{arepsilon_0}$

2. พิจารณาอินทิกรัลเส้นรูปสี่เหลี่ยมผืนผ้าเล็ก ๆ ที่ตั้งฉากกับแผ่นประจุ จาก (1.10) และ Stokes' theorem จะ ได้ว่า $\oint \mathbf{E} \cdot \mathrm{d}\mathbf{l} = 0$ ดังนั้น

$$E_{\text{above}}^{\parallel} - E_{\text{below}}^{\parallel} = 0$$

จะเห็นได้ว่าส่วนของ E ที่ขนานกับแผ่นประจุจะยังต่อเนื่องเมื่อผ่านแผ่นประจุ

 ${f 3}.$ พิจารณาจุด ${f a}$ และ ${f b}$ ที่อยู่ใกล้กันมาก ๆ แต่ ${f b}$ อยู่ด้านบนแผ่นส่วน ${f a}$ อยู่ด้านล่างแผ่น จะได้ว่า

$$V_{\text{above}} - V_{\text{below}} = V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} = 0$$

ดังนั้น V ต่อเนื่องเมื่อผ่านแผ่นประจุ

จึงสรุปได้ดังนี้:

สภาวะขอบเขตของ ${f E}$ และ V เมื่อผ่านแผ่นประจุบาง. บนแผ่นประจุที่มีความหนาแน่นเชิงพื้นที่ σ จะได้ว่า

$$V_{\text{above}} = V_{\text{below}}$$
 (1.18)

และ

$$\mathbf{E}_{\text{above}} - \mathbf{E}_{\text{below}} = \frac{\sigma}{\varepsilon_0} \hat{\mathbf{n}} \tag{1.19}$$

เมื่อ $\hat{\mathbf{n}}$ คือเวกเตอร์หนึ่งหน่วยที่ตั้งฉากกับแผ่นประจุที่ชี้จากด้านล่างไปด้านบน หรือเขียนอีกอย่างหนึ่งได้ว่า

$$\frac{\partial V_{\text{above}}}{\partial n} - \frac{\partial V_{\text{below}}}{\partial n} = -\frac{\sigma}{\varepsilon_0}$$
(1.20)

▶ 1.4. งานและพลังงาน

พลังงานศักย์ไฟฟ้า

เนื่องจาก $\nabla \times \mathbf{F} = \nabla \times q \mathbf{E} = 0$ ดังนั้นแรง Coulomb จึงเป็นแรงอนุรักษ์ซึ่งมีลักษณะคล้ายกับแรงโน้มถ่วงด้วย จึง หาพลังงานศักย์ของจุดประจุ 2 ตัวได้คล้ายกัน

พลังงานศักย์ไฟฟ้าสำหรับจุดประจุ.

$$U = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{\iota} \tag{1.21}$$

และจาก (1.13) ยังได้อีกว่า

ศักย์ไฟฟ้าและพลังงานศักย์.

$$V = \frac{U}{q} \tag{1.22}$$

ต่อมาจะมาหาพลังงานศักย์ไฟฟ้าของระบบประจุที่อยู่ภายใต้อิทธิพลของสนามภายนอก ${f E}_{
m ext}$ โดยพิจารณาการหาผล ต่างของพลังงานศักย์ในการนำจุดประจุจาก ∞ มาวางทีละตัว จะได้ผลต่างพลังงานศักย์ของประจุที่ k เป็นดังนี้:

$$\Delta U_k = q_k V_{\rm ext}(\mathbf{r}_k)$$

เนื่องจากนิยามให้ $U|_{r
ightarrow \infty} = q V|_{r
ightarrow \infty} = 0$ ก็จะได้

$$U_{\text{ext}} = \sum_{k} \Delta U_k = \sum_{k} q_k V_{\text{ext}}(\mathbf{r}_k)$$
 (1.23)

หรือขยายมาในกรณีต่อเนื่องก็คือ

พลังงานศักย์ไฟฟ้าจากสนามภายนอก.

$$U_{\text{ext}} = \int \rho V_{\text{ext}} \, \mathrm{d}\tau \tag{1.24}$$

ส่วนพลังงานศักย์ไฟฟ้าที่เกิดจากระบบเองหาได้โดยการพิจารณาเอาจุดประจุจาก ∞ มาวางเช่นเดียวกัน จะได้ประจุตัว ที่ k มีพลังงานศักย์

$$U_k = \sum_{k' < k} q_k V_{k'}(\mathbf{r}_k) = \frac{1}{4\pi\varepsilon_0} \sum_{k' < k} \frac{q_k q_{k'}}{\iota_{kk'}}$$

ดังนั้นโดยใช้ความสมมาตร

$$U = \frac{1}{4\pi\varepsilon_0} \sum_{k} \sum_{k' \le k} \frac{q_k q_{k'}}{\imath_{kk'}} = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \sum_{k \ne k'} \frac{q_k q_{k'}}{\imath_{kk'}}$$
(1.25)

แต่ในกรณีต่อเนื่องเราไม่จำเป็นต้องสนใจเงื่อนไข $k \neq k'$ เพราะอินทิกรัลลู่เข้าและส่วนที่มาจาก k = k' สามารถมอง เป็นส่วนพลังงานที่มาจากประจุที่ใกล้กันมาก ๆ ได้ จึงได้ว่า

$$U = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \iint \frac{\rho(\mathbf{r}) \, \rho(\mathbf{r}')}{\iota} \, \mathrm{d}\tau' \, \mathrm{d}\tau$$

เนื่องจาก $\frac{1}{4\pi arepsilon_0}\int rac{
ho({f r}')\,{
m d} au'}{\imath}=V({f r})$ ดังนั้น

พลังงานศักย์ไฟฟ้าจากสนามภายใน.

$$U = \frac{1}{2} \int \rho V \, \mathrm{d}\tau \tag{1.26}$$

พลังงานในสนามไฟฟ้า

ต่อมาพิจารณาพลังงานศักย์ภายในของระบบอีกแบบโดยแทนสมการ Poisson~(1.14) เข้าไปใน (1.26) โดยอินทิเกรต บนปริมาตร $\mathcal V$ ที่ใหญ่มาก ๆ จน $\mathbf E$ ที่ผิวของ $\mathcal V$ เข้าใกล้ศูนย์ จะได้ว่า

$$U = -\frac{\varepsilon_0}{2} \int_{\mathcal{V}} V \nabla^2 V \, d\tau = -\frac{\varepsilon_0}{2} \int_{\mathcal{V}} V(\mathbf{\nabla} \cdot (\mathbf{\nabla} V)) \, d\tau = \frac{\varepsilon_0}{2} \int_{\mathcal{V}} V(\mathbf{\nabla} \cdot \mathbf{E}) \, d\tau$$

โดย Chain Rule: $\nabla \cdot (V\mathbf{F}) = \nabla V \cdot \mathbf{F} + V(\nabla \cdot \mathbf{F})$ นำไปแทนต่อ จากนั้นใช้ divergence theorem จะได้ว่า

$$U = \frac{\varepsilon_0}{2} \int_{\mathcal{V}} V(\mathbf{\nabla} \cdot \mathbf{E}) d\tau$$

$$= \frac{\varepsilon_0}{2} \left(\int_{\mathcal{V}} \mathbf{\nabla} \cdot (V\mathbf{E}) d\tau - \int_{\mathcal{V}} (\mathbf{\nabla} V) \cdot (\mathbf{E}) d\tau \right)$$

$$= \frac{\varepsilon_0}{2} \left(\oint_{\partial \mathcal{V}} V\mathbf{E} \cdot d\mathbf{a} + \int_{\mathcal{V}} E^2 d\tau \right)$$

แต่จาก ${f E}$ ที่ขอบเป็น 0 พจน์แรกจึงหายไป ดังนั้น

พลังงานในสนามไฟฟ้า.

$$U = \frac{\varepsilon_0}{2} \int E^2 \, \mathrm{d}\tau \tag{1.27}$$

โดยเราจะเรียก $u({f r})\equiv rac{arepsilon_0}{2}E^2({f r})$ ว่าความหนาแน่นพลังงานสนามไฟฟ้า (energy density of the electric field)

แต่คำถามคือ: ทำไมสมการ (1.25) ทำให้พลังงานศักย์เป็นลบได้แต่ (1.27) จึงเป็นบวกเสมอ? เหตุผลก็คือ (1.25) ยังไม่ได้รวมพลังงานในการสร้างจุดประจุตั้งแต่แรก (ถ้ารวมด้วยจะทำให้เป็น ∞) ดังนั้นถ้าจะหาพลังงานของระบบที่ เป็นจุดประจุ ถ้าใช้ (1.25) จะสมเหตุสมผลกว่า

ต่อมาเรามาพิจารณาพลังงานศักย์ไฟฟ้าเนื่องจากอิทธิพลของทั้งสนามภายนอกและภายใน:

$$U = U_{\text{int}} + U_{\text{ext}} = \frac{1}{2} \int \rho V_{\text{int}} d\tau + \int \rho V_{\text{ext}} d\tau$$

หาพจน์ฝั่งขวาโดยทำคล้าย ๆ (1.27):

$$\int_{\mathcal{V}} \rho V_{\text{ext}} \, d\tau = -\varepsilon_0 \int_{\mathcal{V}} V_{\text{ext}} (\mathbf{\nabla} \cdot (\mathbf{\nabla} V_{\text{int}})) \, d\tau$$

$$= -\varepsilon_0 \left(\oint_{\partial \mathcal{V}} -V_{\text{ext}} \mathbf{E}_{\text{int}} \cdot d\mathbf{a} - \int_{\mathcal{V}} \mathbf{E}_{\text{ext}} \cdot \mathbf{E}_{\text{int}} \, d\tau \right)$$

$$= \varepsilon_0 \int_{\mathcal{V}} \mathbf{E}_{\text{ext}} \cdot \mathbf{E}_{\text{int}} \, d\tau$$

นำไปแทนในสมการ U และใช้ร่วมกับ (1.27) จะได้

$$U = \int u(\mathbf{r}) d\tau$$
 เมื่อ $u(\mathbf{r}) = \frac{\varepsilon_0}{2} \left(E_{\text{int}}^2(\mathbf{r}) + 2\mathbf{E}_{\text{int}}(\mathbf{r}) \cdot \mathbf{E}_{\text{ext}}(\mathbf{r}) \right)$ (1.28)

ซึ่งจริง ๆ แล้วเหมือนกับ (1.27) เลย โดยบวกเข้าลบออกด้วย $E^2_{
m ext}({f r})$ ใน $u({f r})$ และให้ ${f E}={f E}_{
m int}+{f E}_{
m ext}$ จะได้

$$U = \frac{\varepsilon_0}{2} \int E^2(\mathbf{r}) d\tau - \underbrace{\frac{\varepsilon_0}{2} \int E_{\text{ext}}^2(\mathbf{r}) d\tau}_{\text{const}}$$

เนื่องจากพจน์ด้านหลังเป็นค่าคงที่ เราจึงสามารถให้พจน์นั้นเป็นค่าอ้างอิงได้ จึงได้ว่าเราสามารถใช้ (1.27) ได้ในทุกกรณี เพียงแค่ต้องรวม $\mathbf{E}_{\mathrm{ext}}$ ไปด้วย:

$$U' = \frac{\varepsilon_0}{2} \int E^2(\mathbf{r}) \,\mathrm{d}\tau \tag{1.29}$$

สุดท้ายจะเป็นพิสูจน์ทฤษฎีบท:

Green's Reciprocity Theorem.

$$\int \rho_1 V_2 \, \mathrm{d}\tau = \int \rho_2 V_1 \, \mathrm{d}\tau \tag{1.30}$$

ทฤษฎีบทนี้หมายความว่าพลังงานศักย์ไฟฟ้าในระบบ 1 ที่เกิดจากระบบ 2 มีค่าเท่ากับพลังงานศักย์ไฟฟ้าในระบบ 2 ที่ เกิดจากระบบ 1 ซึ่งก็ไม่แปลกเพราะแรง Coulomb เป็นแรงที่เป็นไปตามกฎข้อที่ 3 ของนิวตัน แต่จะมาพิสูจน์กันดังนี้:

 ${\it W}_{\it q}$ จน์. พิจารณาปริมาตร ${\it V}$ ที่ใหญ่มาก ๆ

$$\int_{\mathcal{V}} \mathbf{E}_{1} \cdot \mathbf{E}_{2} \, d\tau = -\int_{\mathcal{V}} \nabla V_{1} \cdot \mathbf{E}_{2} \, d\tau
= -\left(\int_{\mathcal{V}} \nabla \cdot (V_{1} \mathbf{E}_{2}) \cdot d\mathbf{a} - \int_{\mathcal{V}} V_{1} \nabla \cdot \mathbf{E}_{2} \, d\tau\right)
= -\left(\oint_{\partial \mathcal{V}} V_{1} \mathbf{E}_{2} \cdot d\mathbf{a} - \frac{1}{\varepsilon_{0}} \int_{\mathcal{V}} V_{1} \rho_{2} \, d\tau\right)
= \frac{1}{\varepsilon_{0}} \int_{\mathcal{V}} V_{1} \rho_{2} \, d\tau$$

ในทำนองเดียวกัน:

$$\int_{\mathcal{V}} \mathbf{E}_1 \cdot \mathbf{E}_2 \, \mathrm{d}\tau = \frac{1}{\varepsilon_0} \int_{\mathcal{V}} V_2 \rho_1 \, \mathrm{d}\tau$$

ดังนั้น $\int
ho_1 V_2 \, \mathrm{d} au = \int
ho_2 V_1 \, \mathrm{d} au$ ตามต้องการ

▶ 1.5. ตัวนำและความจุไฟฟ้า

ตัวนำไฟฟ้า

ในวัตถุที่เป็น*ฉนวนไฟฟ้า* (หรือ*ไดอิเล็กทริก*) อิเล็กตรอนจะเคลื่อนที่ภายในบริเวณอะตอมของมัน แต่ใน*ตัวนำไฟฟ้า* จะ มีอิเล็กตรอนจำนวนหนึ่งเคลื่อนที่ได้อย่างอิสระในเนื้อตัวนำ (ในตัวนำที่เป็นของเหลวเช่นน้ำเกลือจะเป็นไอออนอย่าง $m Na^+$ และ $m Cl^-$ ที่เคลื่อนที่ได้อย่างอิสระแทน) โดยตัวนำอุดมคติหมายถึงตัวนำที่มีประจุอิสระไม่จำกัด ซึ่งโลหะจะเป็น ตัวนำที่ใกล้เคียงกับตัวนำอิสระพอที่จะใช้การประมาณดังต่อไปนี้ได้:

สมบัติของตัวนำไฟฟ้าอุดมคติ. ตัวนำไฟฟ้าในสภาวะสมดุลจะต้องไม่มีประจุเคลื่อนที่ในเนื้อตัวนำ จึงสามารถตั้ง ข้อสมมติเกี่ยวกับสนามไฟฟ้าภายในเนื้อตัวนำได้ว่า

$$\mathbf{E} = \mathbf{0} \tag{1.31}$$

ซึ่งจะเรียกว่า electric field screening effect สังเกตว่าจากกฎของ Gauss จะแปลว่าไม่มีประจุอยู่ภายในเนื้อ ตัวนำ ประจุทั้งหมดจะรวมกันที่ผิวเท่านั้น

โดย (1.31) สามารถเขียนได้ในอีกรูปคือ

$$V = \text{const.} \tag{1.32}$$

อีกสมบัติหนึ่งคือจาก (1.18) ถึง (1.20) และ (1.31) จะได้ว่าสนามไฟฟ้าที่ผิวตัวนำจะตั้งฉากกับผิวเสมอและมี ความสัมพันธ์กับความหนาแน่นประจุดังนี้

$$\sigma = \varepsilon_0 E_{\text{out}} = -\varepsilon_0 \frac{\partial V}{\partial n} \tag{1.33}$$

สถานการณ์หนึ่งที่น่าสนใจคือเมื่อมี "โพรง" อยู่ในเนื้อตัวนำ โพรงนี้จะเปรียบเสมือนว่าไม่โดนผลกระทบจากสนามไฟฟ้า ด้านนอกตัวนำเลย ซึ่งสามารถพิสูจน์ได้โดยใช้ทฤษฎีบท uniqueness ในบทถัดไป โดยจะเรียกตัวนำที่กันสนามภายนอก นี้ว่า Faraday's cage (ในทางกลับกัน สนามด้านนอกตัวนำจะไม่โดนผลกระทบจากประจุด้านในโพรง) โดยถ้าในโพรง ไม่มีประจุ จะได้ว่าสนามไฟฟ้าในโพรงเป็น 0 (พิสูจน์กรณีนี้ไม่ยาก ได้จากการสังเกตว่าถ้ามีสนามไฟฟ้าจะต้องมีเส้น แรงไฟฟ้าที่ลากจากผิวไปผิวบนโพรง ถ้าสร้างเส้นทางปิดในการอินทิเกรตบนเส้นแรงนั้นจะได้ผลลัพธ์ไม่เป็น 0 ซึ่งจาก (1.10) เกิดข้อขัดแย้ง) แต่ถ้านำประจุ Q ไว้ในโพรง โดยกฎของ Gauss จะได้ว่าประจุที่อยู่บนผิวของโพรงจะต้องรวม ได้ -Q

และยิ่งไปกว่านั้น ถ้าโพรงดังกล่าวอยู่ในตัวนำทรงกลมที่ไม่มีประจุ (ประจุรวมเป็น 0) สนามไฟฟ้าด้านนอกทรงกลม นั้นจะเปรียบเสมือนสนามไฟฟ้าของตัวนำทรงกลมประจุ Q ทั้งนี้เป็นเพราะมัน "*เป็นไปได้*" ที่ประจุด้านในจะเรียงตัวให้ ประจุที่ผิวของโพรงกับประจุ Q ในโพรงหักล้างกันหมดด้านนอกโพรง และเมื่อมีวิธีการเรียงตัวหนึ่งที่เป็นไปได้ที่ทำให้ สนามในเนื้อตัวนำเป็น $\mathbf{0}$ ปรากฏว่า (ซึ่งจะพิสูจน์ในบทถัดไป) วิธีการจัดเรียงประจุนั้นจะเป็นวิธีเดียวเท่านั้น

แรงบนตัวนำไฟฟ้า

ต่อมาพิจารณาแรงที่กระทำต่อผิวตัวนำ $\mathrm{d}a$ ก้อนเล็ก ๆ จะได้ว่าสนามไฟฟ้าในบริเวณนั้นมาจากสองส่วนคือ $\mathbf{E}_{\mathrm{other}}$ มา จากประจุอื่น ๆ นอกบริเวณ $\mathrm{d}a$ และ $\mathbf{E}_{\mathrm{self}}$ มาจาก $\mathrm{d}a$ เอง โดยสนามด้านบนและด้านล่างของ $\mathbf{E}_{\mathrm{self}}$ คือ $\sigma/2\varepsilon_0$ และ

 $-\sigma/2arepsilon_0$ ตามลำดับ (เพราะสนามนี้ดูในบริเวณที่ใกล้ $\mathrm{d}a$ มาก ๆ จนเปรียบเสมือน $\mathrm{d}a$ เป็นผิวราบอนันต์) ดังนั้นจะได้

$$\begin{split} \mathbf{E}_{above} &= \mathbf{E}_{other} + \frac{\sigma}{2\varepsilon_0}\hat{\mathbf{n}} \\ \mathbf{E}_{below} &= \mathbf{E}_{other} - \frac{\sigma}{2\varepsilon_0}\hat{\mathbf{n}} \end{split}$$

ดังนั้น

$$\mathbf{E}_{\mathrm{other}} = \frac{1}{2} (\mathbf{E}_{\mathrm{above}} + \mathbf{E}_{\mathrm{below}})$$

ก็จะได้แรงที่กระทำต่อ $\mathrm{d}a$ คือ

$$d\mathbf{F} = \sigma \, da \cdot \mathbf{E}_{\text{other}}$$

ดังนั้นแรงต่อหน่วยพื้นที่ $\mathbf{f} = \mathrm{d}\mathbf{F}/\,\mathrm{d}a$ คือ

แรงต่อพื้นที่บนแผ่นประจุ.

$$\mathbf{f} = \sigma \mathbf{E}_{\text{average}} = \frac{1}{2} \sigma (\mathbf{E}_{\text{above}} + \mathbf{E}_{\text{below}})$$
 (1.34)

ซึ่งจริง ๆ แล้วใช้ได้กับแผ่นประจุทุกกรณี แต่ในกรณีตัวนำ:

แรงต่อพื้นที่บนผิวตัวนำ.

$$\mathbf{f} = \frac{\sigma^2}{2\varepsilon_0}\hat{\mathbf{n}} \tag{1.35}$$

จะได้ว่าเมื่อด้านนอกตัวนำมีสนาม ${f E}$ แล้วความดันไฟฟ้าสถิต (electrostatic pressure: P) เป็นดังนี้

ความดันไฟฟ้าสถิตบนผิวตัวนำ.

$$P = \frac{\varepsilon_0}{2}E^2 \tag{1.36}$$

ความจุไฟฟ้า

เมื่อมีตัวนำสองตัวโดยตัวหนึ่งมีประจุ +Q และอีกตัว -Q เนื่องจากเมื่อ Q เพิ่มขึ้นจำนวน k เท่า จะได้ว่าทำให้ σ บน ทั้งสองประจุเพิ่มขึ้นเป็น k เท่าเช่นกัน (เพราะมีการจัดเรียงแบบเดียวเท่านั้นที่ทำให้เนื้อตัวนำมี $\mathbf{E}=\mathbf{0}$ ซึ่งจะพิสูจน์ใน บทถัดไป) ส่งผลให้ \mathbf{E} เพิ่มเป็น k เท่า จึงทำให้ความต่างศักย์ $V=V_+-V_-$ ก็เพิ่มขึ้นเป็น k เท่าด้วย จึงสรุปได้ว่า $Q \propto V$ ดังนั้นเราสามารถนิยามค่าคงที่การแปรผันนี้ว่าความจุไฟฟ้า (capacitance: C) ดังนี้

$$C \equiv \frac{Q}{V} \tag{1.37}$$

โดย C นี้มีหน่วย SI คือ F (farad)

ส่วนความจุไฟฟ้าของตัวนำตัวเดียว (self-capacitance) คือให้จินตนาการว่ามีตัวนำเปลือกทรงกลมที่มีรัศมีใหญ่มาก ๆ หรือก็คือให้ใช้ V เป็น V ของตัวนำโดยมีจุดอ้างอิงเป็น ∞

สุดท้าย งานในการชาร์จตัวเก็บประจุหาได้โดยรวมงานในการย้ายประจุ $\mathrm{d}q$ จากฝั่งลบมาฝั่งบวก:

$$\mathrm{d}W = V\,\mathrm{d}q = \frac{q}{C}\,\mathrm{d}q$$

ดังนั้นงานในการชาร์จประจุจาก 0 มาเป็น Q (หรือก็คือพลังงานสะสมในตัวเก็บประจุ) เท่ากับ

พลังงานสะสมในตัวเก็บประจุ.

$$U = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CV^2 \tag{1.38}$$

บทที่ 2 ∣ ศักย์ไฟฟ้า

▶ 2.1. สมการ Laplace

▶ สมการ Laplace ในสามมิติ

ในการแก้หาสนามไฟฟ้า ถ้าไม่มีความสมมาตรพอที่จะใช้กฎของ Gauss (1.8) อาจจะง่ายกว่าที่จะหาศักย์ไฟฟ้าก่อน โดยเรามักสนใจศักย์ไฟฟ้าในบริเวณที่ไม่ได้อยู่ในเนื้อประจุ ดังนั้นสมการ Laplace (1.15) จึงเป็นสมการที่สำคัญ โดยมี สมบัติของผลเฉลยของมัน (ซึ่งเรียกว่า*ฟังก์ชันฮาร์มอนิก*) ที่ควรรู้คือ

สมบัติของผลเฉลยของสมการ Laplace ในสามมิติ. ถ้า V เป็นผลเฉลยของสมการ Laplace แล้ว

1. V มีค่าเท่ากับค่าเฉลี่ยของ V รอบ ๆ หรือก็คือ สำหรับทุก ${f r}$ และพื้นผิวทรงกลม ${\cal S}$ รัศมี R ที่มีจุดศูนย์กลาง ที่ ${f r}$ จะได้ว่า

$$V(\mathbf{r}) = \frac{1}{4\pi R^2} \oint_{\mathcal{S}} V \, \mathrm{d}a \tag{2.1}$$

2. V ไม่มีค่าสุดขีดสัมพัทธ์ นั่นคือค่าสุดขีดทั้งหมดของ V ในปริมาตร ${\cal V}$ จะอยู่บน $\partial {\cal V}$ เท่านั้น

หมายเหตุ: ทฤษฎีบทต่าง ๆ เกี่ยวกับสมการ Laplace มักจะใช้ได้เมื่อปริมาตร ${\cal V}$ ที่สนใจนั้นมี ho=0 เท่านั้น ดังนั้น ต้องเลือกปริมาตรดี ๆ

พิสูจน์. ให้จุดประจุ q อยู่ที่ (0,0,z) พิจารณาค่าเฉลี่ยของ V บนทรงกลมที่อยู่ที่จุดกำเนิดที่มีรัศมี R (ให้ θ เป็นมุมที่ ${\bf r}$ ทำกับแกน +z)

$$\begin{split} \frac{1}{4\pi R^2} \oint_{\mathcal{S}} V \, \mathrm{d}a &= \frac{1}{4\pi R^2} \oint_{S} \frac{1}{4\pi\varepsilon_0} \frac{q}{\iota} \, \mathrm{d}a \\ &= \frac{1}{4\pi R^2} \frac{q}{4\pi\varepsilon_0} \int_{0}^{\pi} \int_{0}^{2\pi} \frac{1}{\sqrt{z^2 + R^2 - 2zR\cos\theta}} R^2 \sin\theta \, \mathrm{d}\phi \, \mathrm{d}\theta \\ &= \frac{1}{2} \frac{q}{4\pi\varepsilon_0} \int_{0}^{\pi} \frac{1}{\sqrt{z^2 + R^2 - 2zR\cos\theta}} R^2 \sin\theta \, \mathrm{d}\theta \end{split}$$

$$\begin{split} &= \frac{1}{2} \frac{q}{4\pi\varepsilon_0} \frac{1}{zR} \sqrt{z^2 + R^2 - 2zR\cos\theta} \Big|_0^\pi \\ &= \frac{1}{2} \frac{q}{4\pi\varepsilon_0} \frac{1}{zR} \big((z+R) - (z-R) \big) \\ &= \frac{1}{4\pi\varepsilon_0} \frac{q}{z} \\ &= V(\mathbf{0}) \end{split}$$

ซึ่งเป็นไปตามต้องการสำหรับจุดประจุ ดังนั้นจึงเป็นจริงสำหรับสนามใด ๆ ก็ตาม

ส่วนข้อ 2. ได้มาจากข้อ 1. โดยตรง เพราะถ้าค่าใด ๆ ของ V เกิดจากค่าเฉลี่ยของจุดรอบ ๆ ค่า V ค่านั้นไม่มีทาง เป็นค่าสุดขีดสัมพัทธ์

▶ Uniqueness ของผลเฉลยของสมการ Laplace

ทฤษฎีบท Uniqueness ที่หนึ่ง. สมการ Laplace จะมีผลเฉลยเดียวบนปริมาตร ${\cal V}$ ถ้ารู้ค่า V ทั้งหมดบน $\partial {\cal V}$

พิสูจน์. ให้ V_1 และ V_2 เป็นผลเฉลยของสมการ Laplace บนปริมาตร ${\cal V}$ ที่มีค่าตรงกันบน $\partial {\cal V}$ ดังนั้น

$$V_3 \equiv V_1 - V_2$$

เป็นผลเฉลยของสมการ Laplace ที่มีค่าที่ $\partial \mathcal{V}$ เท่ากับ 0 แต่เนื่องจากค่าสุดขีดของสมการ Laplace จะต้องอยู่บน $\partial \mathcal{V}$ ดังนั้น $V_3=0$ ทุกที่ในปริมาตร หรือก็คือ

$$V_1 = V_2$$

ตามต้องการ

และไม่ยากที่จะขยายทฤษฎีบทนี้กับสมการ Poisson โดยใช้วิธีพิสูจน์คล้าย ๆ กับด้านบนจะได้ว่า:

บทตั้ง. บนปริมาตร $\mathcal V$ ถ้ารู้ ρ ภายในปริมาตรและรู้ค่า V ทั้งหมดบน $\partial \mathcal V$ แล้วจะได้ว่ามีสนาม V ในปริมาตรนั้น ที่สอดคล้องกับเงื่อนไขเพียงสนามเดียว

ทฤษฎีบท Uniqueness ที่สอง. บนปริมาตร $\mathcal V$ ที่มีขอบเขตอยู่บนผิวของตัวนำ (อาจมีขอบเขตหนึ่งเป็นตัวนำที่ ∞ ได้) ถ้ารู้ค่า ρ ภายในปริมาตรและรู้ค่า Q ของตัวนำทั้งหมดแล้วจะได้ว่ามีสนาม $\mathbf E$ ในปริมาตรนั้นที่สอดคล้อง กับเงื่อนไขทั้งหมดเพียงสนามเดียว

 $\widehat{\textit{พิสูจน์}}$. ให้ \mathbf{E}_1 และ \mathbf{E}_2 เป็นสนามใน $\mathcal V$ ที่สอดคล้องกับเงื่อนไข และให้ $\mathbf{E}_3 = \mathbf{E}_1 - \mathbf{E}_2$ จาก (1.9) จะได้ว่า

$$\mathbf{\nabla} \cdot \mathbf{E}_3 = 0 \tag{*1}$$

และจาก (1.8) จะได้ว่า

$$\oint \mathbf{E}_3 \cdot \mathbf{da} = 0 \tag{*2}$$

สำหรับทุก "*ผิวย่อย*" ของ $\partial \mathcal{V}$ ต่อมาพิจารณา

$$\nabla \cdot (V_3 \mathbf{E}_3) = \nabla V_3 \cdot \mathbf{E}_3 + V_3 (\nabla \cdot \mathbf{E}_3) = -E_3^2$$

และโดย divergence theorem จะได้ว่า

$$\oint_{\partial \mathcal{V}} V_3 \mathbf{E}_3 \cdot d\mathbf{a} = \int_{\mathcal{V}} \mathbf{\nabla} \cdot (V_3 \mathbf{E}_3) \, d\tau = -\int_{\mathcal{V}} E_3^2 \, d\tau \tag{*3}$$

แต่เนื่องจากทุกผิวย่อยของ $\partial \mathcal{V}$ บนแต่ละตัวนำมี V_3 คงที่จะได้ว่า

$$\oint_{\partial \mathcal{V}} V_3 \mathbf{E}_3 \cdot d\mathbf{a} = \sum_{\mathcal{S}} V_{\mathcal{S}} \oint_{\mathcal{S}} \mathbf{E}_3 \cdot d\mathbf{a} \stackrel{(*2)}{=} 0$$

นำไปใส่กลับใน (*3) จะได้ว่า $\int_{\mathcal{V}} E_3^2 \,\mathrm{d} au = 0$ ดังนั้น $\mathbf{E}_3 = \mathbf{0}$ หรือก็คือ

$$\mathbf{E}_1 = \mathbf{E}_2$$

ตามต้องการ

▶ 2.2. การจำลองภาพ

การสร้างระบบใหม่เพื่อแก้หาสนาม

ในบางครั้งการหาศักย์ไฟฟ้าตรง ๆ อาจจะยาก แต่ถ้าหาระบบใหม่ที่มีค่า V ที่บริเวณขอบเขตและ ρ ตรงกับค่าบนระบบ ที่เราสนใจ จากทฤษฎีบท uniqueness ที่หนึ่ง จะได้ว่าศักย์ไฟฟ้าในบริเวณที่สนใจของทั้งสองระบบจะเท่ากันพอดี ยก ตัวอย่างเช่น

ตัวอย่าง. ในระบบพิกัดฉากสามมิติ มีแผ่นตัวนำที่ต่อสายดินวางอยู่ทั่วทั้งระนาบ xy และมีจุดประจุ q วางอยู่ ณ จุด (0,0,d) จงหาศักย์ไฟฟ้าในบริเวณด้านบนแผ่นตัวนำ

วิธีทำ. พิจารณาอีกระบบที่มีจุดประจุ q ที่ (0,0,d) และ -q ที่ (0,0,-d) สังเกตว่าระบบนี้มีสภาวะขอบเขตของศักย์ ไฟฟ้าในปริมาตรเหนือระนาบ xy ตรงกันกับระบบในโจทย์เลย (V=0) บนระนาบ xy, V=0 ที่บริเวณไกลมาก ๆ) ดังนั้นโดยทฤษฎีบท uniqueness ที่หนึ่ง ทั้งสองระบบนี้จะต้องมีสนามศักย์ไฟฟ้าตรงกันบนปริมาตรเหนือระนาบ xy ดังนั้นจึงได้ว่า

$$V(x,y,z) = \begin{cases} \frac{q}{4\pi\varepsilon_0} \Big(\big(x^2 + y^2 + (z-d)^2\big)^{-1/2} - \big(x^2 + y^2 + (z+d)^2\big)^{-1/2} \Big) & \text{ide } z \ge 0 \\ 0 & \text{ide } z < 0 \end{cases}$$

(V(x,y,z)=0 เมื่อ z<0 เพราะด้านล่างเหมือนกับระบบที่ไม่มีประจุที่ใดเลย)

หมายเหตุ: ควรระวังว่าระบบที่สร้างขึ้นมาเปรียบเทียบนี้จะต้องมีการกระจายตัวของประจุในบริเวณที่สนใจเหมือนกับ ระบบตั้งต้นเท่านั้นจึงจะใช้ได้ และไม่ได้แปลว่าทุกอย่างของทั้งสองระบบจะเหมือนกัน เช่น ถ้าลองคำนวณดูแล้วพลังงาน ของระบบโจทย์จะเป็นครึ่งหนึ่งของระบบที่สร้างขึ้นมาใหม่ (มาจากสนามอีกครึ่งที่หายไป)

▶ 2.3. การแยกตัวแปร

การแยกตัวแปรบนพิกัดคาร์ทีเซียน

เริ่มจากการ "เดา" ว่า

$$V(x, y, z) = X(x)Y(y)Z(z)$$

ดังนั้นจากสมการ Laplace จะได้ว่า

$$YZ\frac{\mathrm{d}^2X}{\mathrm{d}x^2} + XZ\frac{\mathrm{d}^2Y}{\mathrm{d}y^2} + XY\frac{\mathrm{d}^2Z}{\mathrm{d}z^2} = 0$$
$$\frac{1}{X}\frac{\mathrm{d}^2X}{\mathrm{d}x^2} + \frac{1}{Y}\frac{\mathrm{d}^2Y}{\mathrm{d}y^2} + \frac{1}{Z}\frac{\mathrm{d}^2Z}{\mathrm{d}z^2} = 0$$

เนื่องจากแต่ละพจน์เป็นฟังก์ชันตัวแปรเดียวโดยต้องรวมกันเท่ากับ 0 ทุก (x,y,z) ในปริมาตรที่สนใจ ดังนั้น

$$\frac{1}{X}\frac{\mathrm{d}^2 X}{\mathrm{d}x^2} = C_x, \quad \frac{1}{Y}\frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} = C_y, \quad \frac{1}{Z}\frac{\mathrm{d}^2 Z}{\mathrm{d}z^2} = C_z$$

จากนั้นใช้เงื่อนไขขอบเขตในโจทย์เพื่อดูว่า C ในแต่ละสมการควรเป็นค่าบวกหรือลบ และแก้สมการเชิงอนุพันธ์ออกมา โดยจะมีคำตอบดังนี้:

สมการเชิงอนุพันธ์ของสมการ Laplace ในพิกัดคาร์ทีเซียน. สมการเชิงอนุพันธ์

$$\frac{\mathrm{d}^2 T}{\mathrm{d}t^2} = CT \tag{2.2}$$

มีคำตอบคือ

$$\begin{cases} Ae^{kt} + Be^{-kt} & \text{ if } C = k^2 > 0 \\ At + B & \text{ if } C = 0 \\ A\sin kt + B\cos kt & \text{ if } C = -k^2 < 0 \end{cases}$$
 (2.3)

เมื่อ A และ B เป็นค่าคงที่

จากนั้นแก้หาค่าคงที่ให้ได้มากที่สุดเท่าที่เป็นไปได้จากเงื่อนไขโจทย์ จะได้เซตของผลเฉลยมาเซตหนึ่งที่อาจไม่มีผลเฉลย ใดเลยสอดคล้องกับเงื่อนไขขอบเขตของโจทย์ เนื่องจากสมการ Laplace เป็นสมการเชิงเส้น ดังนั้นเราอาจจะหาวิธี การนำผลเฉลยที่ได้จากการแยกตัวแปรนี้มาบวกกันให้ได้คำตอบที่ตรงกับค่าขอบเขตได้ ซึ่งผลเฉลยเหล่านี้ในกรณีนี้จะ อยู่ในรูป sin จึงสามารถใช้การวิเคราะห์ Fourier เพื่อนำผลเฉลยมาบวกกันให้ได้ค่าที่ตรงกับค่าขอบเขต โดยเราจะหา สัมประสิทธิ์ของแต่ละพจน์ในอนุกรม Fourier ได้โดยใช้ทริคดังต่อไปนี้

อินทิกรัลสำคัญในการวิเคราะห์ Fourier.

$$\int_0^{\pi} \sin(nt) \sin(n't) dt = \begin{cases} 0 & \text{fin } n' \neq n \\ \frac{\pi}{2} & \text{fin } n' = n \end{cases}$$
 (2.4)

หรือแทนตัวแปร $t\mapsto (\pi/a)t$ ได้เป็น

$$\int_0^a \sin\left(\frac{n\pi t}{a}\right) \sin\left(\frac{n'\pi t}{a}\right) dt = \begin{cases} 0 & \text{if } n' \neq n \\ \frac{a}{2} & \text{if } n' = n \end{cases}$$
 (2.5)

ดังนั้นถ้าต้องการหาสัมประสิทธิ์ของพจน์ที่ n ที่ทำให้อนุกรม Fourier เท่ากับฟังก์ชัน V(x) ฝั่งซ้าย:

$$V(x) = \sum_{n=0}^{\infty} c_n \sin\left(\frac{n\pi x}{a}\right)$$

สามารถคูณ $\sin(n\pi x/a)$ เข้าไปทั้งสองฝั่งแล้วอินทิเกรตโดยใช้ (2.5) จะได้

$$C_n = \int_0^a V(x) \sin\left(\frac{n\pi x}{a}\right) dx \tag{2.6}$$

เหตุผลที่เราสามารถทำแบบนี้กับเซตของฟังก์ชัน sin เหล่านั้นได้เป็นเพราะ

- 1. เซตของฟังก์ชันนี้เป็นเซตที่สมบูรณ์ (complete) หมายความว่า ฟังก์ชันใด ๆ สามารถถูกเขียนได้ในรูปผลบวกเชิง เส้นของฟังก์ชันในเซต
- 2. เซตของฟังก์ชันนี้ (ให้เป็น $\{f_1, f_2, f_3, \dots\}$) เป็นเซตที่ตั้งอากกัน (orthogonal) หมายความว่า

$$\int f_n(t) f_{n'}(t) dt = 0$$

สำหรับทุก $n' \neq n$

การแยกตัวแปรบนพิกัดทรงกลม

ในส่วนนี้จะพิจารณาแค่ระบบที่มีความสมมาตรแบบ azimuth (สมมาตรรอบแกน z) ดังนั้นให้

$$V(r,\theta,\phi) = R(r)\,\Theta(\theta)$$

จากสมการ Laplace (ในระบบพิกัดทรงกลม) จะได้ว่า

$$\Theta \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) + \frac{R}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) = 0$$
$$\frac{1}{R} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) + \frac{1}{\Theta \sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) = 0$$

เช่นเดียวกับในพิกัดคาร์ทีเซียน แต่ละพจน์จะต้องเป็นค่าคงที่ ดังนั้น

$$\frac{1}{R}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) = C_r, \quad \frac{1}{\Theta\sin\theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right) = C_\theta$$

เมื่อให้ $C_r = l(l+1)$ และ $C_{\theta} = -l(l+1)$ จะแก้สมการได้คำตอบดังนี้:

สมการเชิงอนุพันธ์ของสมการ Laplace ในพิกัดทรงกลม 1. สมการเชิงอนุพันธ์

$$\frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) = l(l+1)R \tag{2.7}$$

มีคำตอบคือ

$$R(r) = Ar^l + \frac{B}{r^{l+1}} \tag{2.8}$$

เมื่อ A และ B คือค่าคงที่

แต่อีกสมการหนึ่งจะยากหน่อย:

สมการเชิงอนุพันธ์ของสมการ Laplace ในพิกัดทรงกลม 2. สมการเชิงอนุพันธ์

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) = -l(l+1)\sin\theta\Theta \tag{2.9}$$

มีคำตอบคือ

$$\Theta(\theta) = A \cdot P_l(\cos \theta) \tag{2.10}$$

เมื่อ P_l คือพหุนาม Legendre ดีกรี l และ A คือค่าคงที่

หมายเหตุ: คำตอบในด้านบนเป็นเพียงส่วนเดียวจากคำตอบทั้งหมดเท่านั้น แต่ที่ไม่พิจารณาส่วนของค่าคงที่อีกตัวเพราะ ส่วนนั้นจะลู่ออกเสมอที่ค่า θ เท่ากับ 0 และ π (ในกรณีที่บนแกน z ไม่นำมาคิดอาจต้องพิจารณาคำตอบอื่นนี้)

โดยพหุนาม Legendre หาได้ดังสูตรต่อไปนี้

สูตรของ Rodrigues.

$$P_l(x) = \frac{1}{2^l l!} \frac{\mathrm{d}^l}{\mathrm{d}x^l} (x^2 - 1)^l$$
 (2.11)

ดังนั้นในการใช้สูตรนี้จึงจะสมมติว่า l เป็นจำนวนเต็มไม่ลบและแต่ละพหุนามจะมีแค่พจน์กำลังคู่หรือคี่เท่านั้น โดยเมื่อ แทนสูตร Rodrigues เข้าไปจะได้พหุนาม Legendre ที่มีดีกรีตั้งแต่ 0 ถึง 5 คือ:

$$P_0(x) = 1$$

$$P_1(x) = x$$

$$P_2(x) = (3x^2 - 1)/2$$

$$P_3(x) = (5x^3 - 3x)/2$$

$$P_4(x) = (35x^4 - 30x^2 + 3)/8$$

$$P_5(x) = (63x^5 - 70x^3 + 15x)/8$$

จากนั้นเมื่อแก้ค่าคงที่ออกมามักจะเหลือเซตของผลเฉลยที่เป็นพหุนาม Legendre โดยเซตของพหุนาม Legendre นี้ เช่นเดียวกับ \sin เป็นเซตของฟังก์ชันที่สมบูรณ์และตั้งฉากกันบน (-1,1) โดย

สมบัติการตั้งฉากกันของพหุนาม Legendre.

$$\int_{-1}^{1} P_{l}(x) P_{l'}(x) dx = \begin{cases} 0 & \text{in } l' \neq l \\ \frac{2}{2l+1} & \text{in } l' = l \end{cases}$$
(2.12)

หรือเมื่อแทนค่า $x=\cos heta$ จะได้

$$\int_0^{\pi} P_l(\cos \theta) P_{l'}(\cos \theta) \sin \theta \, d\theta = \begin{cases} 0 & \text{ถ้า } l' \neq l \\ \frac{2}{2l+1} & \text{ถ้า } l' = l \end{cases}$$
 (2.13)

ซึ่งสามารถใช้ในการแก้หาสัมประสิทธิ์ของคำตอบสุดท้ายที่เป็นการนำคำตอบแบบแยกตัวแปรมาบวกกันได้

การแยกตัวแปรบนพิกัดทรงกระบอก

จะพิจารณาระบบที่สมมาตรแบบทรงกระบอก (สมมาตรในแนวแกน z) ดังนั้นให้

$$V(s, \phi, z) = S(s) \Phi(\phi)$$

จากสมการ Laplace (ในระบบพิกัดทรงกระบอก) จะได้ว่า

$$\frac{\Phi}{s} \frac{\mathrm{d}}{\mathrm{d}s} \left(s \frac{\mathrm{d}S}{\mathrm{d}s} \right) + \frac{S}{s^2} \frac{\mathrm{d}^2 \Phi}{\mathrm{d}\phi^2} = 0$$
$$\frac{s}{S} \frac{\mathrm{d}}{\mathrm{d}s} \left(s \frac{\mathrm{d}S}{\mathrm{d}s} \right) + \frac{1}{\Phi} \frac{\mathrm{d}^2 \Phi}{\mathrm{d}\phi^2} = 0$$

จะได้ว่า

$$\frac{s}{S}\frac{\mathrm{d}}{\mathrm{d}s}\left(s\frac{\mathrm{d}S}{\mathrm{d}s}\right) = C_s, \quad \frac{1}{\Phi}\frac{\mathrm{d}^2\Phi}{\mathrm{d}\phi^2} = C_\phi$$

โดยถ้าให้ $C_s=k^2=-C_\phi$ (เพราะถ้า C_ϕ ไม่เป็นลบจะได้คำตอบในรูป exponential ทำให้ไม่เป็นฟังก์ชันคาบตามที่ ต้องการ) จะได้คำตอบของ Φ เป็น $\Phi(\phi)=A\sin k\phi+B\cos k\phi$ เช่นเดียวกับในพิกัดคาร์ทีเซียน และ

สมการเชิงอนุพันธ์ในพิกัดทรงกระบอก. สมการเชิงอนุพันธ์

$$\frac{\mathrm{d}}{\mathrm{d}s} \left(s \frac{\mathrm{d}S}{\mathrm{d}s} \right) = \frac{k^2}{s} S \tag{2.14}$$

มีคำตอบคือ

$$S(s) = As^{k} + Bs^{-k} (2.15)$$

เมื่อ A และ B คือค่าคงที่

แต่เมื่อ k=0 จะได้คำตอบเดียวคือค่าคงที่ ซึ่งไม่ครบกับอันดับของสมการ (เมื่อนำมารวมกันตอนสุดท้ายอาจทำให้ได้ คำตอบไม่ครบได้ แต่กรณีของ Φ เหตุผลที่ไม่นำ $A\phi+B$ ที่เป็นผลเฉลยในกรณี k=0 มาใช้เพราะว่าเห็นชัดว่า A ต้อง เป็น 0 ซึ่งรวมอยู่ในกรณี k=0 ของ $A\sin k\phi+B\cos k\phi$ อยู่แล้ว) จึงต้องคิดแยกกรณี:

กรณี k=0. สมการ (2.14) ถ้า k=0 จะได้คำตอบคือ

$$S(s) = A\log s + B \tag{2.16}$$

เมื่อ A และ B คือค่าคงที่

โดยในการหาสัมประสิทธิ์ของคำตอบต่อไปให้ใช้การวิเคราะห์ Fourier แบบเดียวกับพิกัดคาร์ทีเซียน

▶ 2.4. การกระจาย Multipole

การประมาณศักย์ไฟฟ้าระยะไกล

พิจารณา $electric\ dipole\$ ที่ประกอบด้วยจุดประจุ +q และ -q ที่ห่างกัน d โดยสมมติให้ $dipole\$ นี้ตั้งในแกน z โดย มีประจุบวกอยู่ในทิศ +z และจุดศูนย์กลางของ $dipole\$ อยู่ที่จุดกำเนิด และให้ \mathbf{e}_+ , \mathbf{e}_- เป็นเวกเตอร์จากขั้วบวกและลบ มายัง \mathbf{r} ตามลำดับ จะได้ว่า

 $V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{\mathbf{t}_+} - \frac{q}{\mathbf{t}_-} \right)$

และจากกฎของ cos จะได้

$$\mathbf{v}_{\pm}^{2} = r^{2} + (d/2)^{2} \mp rd\cos\theta = r^{2} \left(1 \mp \frac{d}{r}\cos\theta + \frac{d^{2}}{4r^{2}}\right)$$

ดังนั้นเมื่อ $r\gg d$ จะได้ว่า

$$\frac{1}{\mathbf{L}_{\pm}} \approx \frac{1}{r} \left(1 \mp \frac{d}{r} \cos \theta \right)^{-1/2} \approx \frac{1}{r} \left(1 \pm \frac{d}{2r} \cos \theta \right)$$

ก็จะได้ว่าที่ระยะ r ไกล ๆ จาก dipole:

$$V(\mathbf{r}) \approx \frac{1}{4\pi\varepsilon_0} \frac{qd\cos\theta}{r^2} \tag{2.17}$$

และเช่นเดียวกัน quadrupole, octopole, ... จะมีศักย์ที่โตแบบ $1/r^3,\,1/r^4,\,\dots$ ตามลำดับ ที่ระยะไกล ๆ

ดังนั้นเราจึงอาจหาวิธีเขียนศักย์ของการกระจายตัวของประจุแบบใด ๆ ให้อยู่ในรูปอนุกรมของพจน์ multipole $(1/r,\,1/r^2,\,1/r^3,\,...)$ เพื่อที่จะประมาณค่าศักย์ไกล ๆ ด้วยพจน์ monopole และ dipole ได้:

พิจารณาการให้ $\mathbf \epsilon$ และ α เป็นมุมและระยะระหว่าง $\mathbf r$ และ $\mathbf r'$ ตามลำดับ จะได้

$$t^{2} = r^{2} + (r')^{2} - 2rr'\cos\alpha = r^{2}\left(1 + \left(\frac{r'}{r}\right)^{2} - 2\left(\frac{r'}{r}\right)\cos\alpha\right)$$

ดังนั้น

$$\frac{1}{\iota} = \frac{1}{r} \left(1 + \left(\frac{r'}{r} \right) \left(\frac{r'}{r} - 2\cos\alpha \right) \right)^{-1/2} \tag{2.18}$$

จากนั้นใช้ทฤษฎีบททวินามกับ (2.18) และ (2.11) จะพิสูจน์ได้ว่า

$$\frac{1}{\iota} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^n P_n(\cos \alpha) \tag{2.19}$$

นำไปแทนใน (1.17) ก็จะได้ว่า

การกระจาย Multipole.

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \int (r')^n P_n(\cos\alpha) \, \rho(\mathbf{r}') \, d\tau'$$
 (2.20)

▶ พจน์ Monopole และ Dipole

สำหรับพจน์ monopole (n=0) จะมีค่าเท่ากับ

$$V_{\text{mon}}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{1}{r} \int P_0(\cos\alpha) \, \rho(\mathbf{r}') \, d\tau' = \frac{1}{4\pi\varepsilon_0} \frac{1}{r} \int \rho(\mathbf{r}') \, d\tau'$$

ดังนั้น

พจน์ Monopole.

$$V_{\text{mon}}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r} \tag{2.21}$$

ซึ่งก็ไม่น่าแปลกใจเพราะค่าศักย์ที่ระยะไกล ๆ ก็ควรจะโตคล้ายประจุรวม Q ในระบบ (เรียก Q นี้ว่า monopole moment) โดยพจน์ monopole นี้จะไม่ขึ้นกับตำแหน่งของจุดกำเนิด ต่างจากพจน์อื่น ๆ ที่ขึ้นกับตำแหน่งที่ใช้เป็นจุด กำเนิดในระบบ

ต่อมาพจน์ dipole (n=1) จะมีค่าเท่ากับ

$$V_{\rm dip}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2} \int r' P_1(\cos\alpha) \, \rho(\mathbf{r}') \, d\tau' = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2} \int r \cos\alpha \, \rho(\mathbf{r}') \, d\tau'$$

แต่ว่า $r'\cos \alpha = \hat{\mathbf{r}}\cdot\mathbf{r}'$ ดังนั้น

$$V_{\rm dip}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\hat{\mathbf{r}}}{r^2} \cdot \int \mathbf{r}' \rho(\mathbf{r}') \, \mathrm{d}\tau'$$

อินทิกรัลในด้านขวาไม่ขึ้นกับ ${f r}$ ดังนั้นเราจะนิยาม $dipole\ moment\ {f p}$ รอบจุด ๆ หนึ่งว่า:

นิยาม Electric Dipole Moment.

$$\mathbf{p} \equiv \int \mathbf{r}' \rho(\mathbf{r}') \, \mathrm{d}\tau' \tag{2.22}$$

ก็จะได้ว่าพจน์ dipole คือ:

พจน์ Dipole.

$$V_{\rm dip}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2} \tag{2.23}$$

โดยพจน์ dipole จะไม่ขึ้นกับตำแหน่งของจุดกำเนิดเมื่อประจุรวม Q=0 (พิสูจน์จากการแทน $ar{\mathbf{r}}=\mathbf{r}'-\mathbf{a})$

▶ Dipole บริสุทธิ์

จาก (2.17) จะได้ว่า dipole จะเหลือแค่พจน์ dipole ในการกระจาย multipole ถ้าระยะ ${f r}$ ไกลมาก ๆ หรืออาจมอง กลับกันว่าถ้าระยะ d น้อยมาก ๆ ก็จะเหลือแค่พจน์ dipole เช่นกัน ดังนั้นถ้าเรามองในลิมิต $q \to \infty$ และ $d \to 0$ โดย ให้ ${f p} = q{f d}$ คงที่ตลอด จะได้จ*ุด dipole บริสุทธิ์* ที่จะมีสนามศักย์เป็นเพียง

$$V(\mathbf{r}) = V_{\text{dip}}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\alpha}{r^2}$$
 (2.24)

ถ้ากำหนดว่า ${f p}$ ชี้ในทิศ +z ก็จะได้

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2}$$

ดังนั้นเมื่อใช้ (1.13) จะได้สนามไฟฟ้า:

$$E_r = -\frac{\partial V}{\partial r} = \frac{1}{4\pi\varepsilon_0} \frac{2p\cos\theta}{r^3}$$

$$E_\theta = -\frac{1}{r} \frac{\partial V}{\partial \theta} = \frac{1}{4\pi\varepsilon_0} \frac{p\sin\theta}{r^3}$$

$$E_\phi = -\frac{1}{r\sin\theta} \frac{\partial V}{\partial \phi} = 0$$

ดังนั้น

สนามไฟฟ้าของ Dipole บริสุทธิ์ในพิกัดทรงกลม.

$$\mathbf{E}_{\mathrm{dip}}(r,\theta) = \frac{1}{4\pi\varepsilon_0} \frac{p}{r^3} \left(2\cos\theta \,\hat{\mathbf{r}} + \sin\theta \,\hat{\boldsymbol{\theta}} \right) \tag{2.25}$$

แสดงว่าสนามไฟฟ้าของ dipole โตแบบ $1/r^3$ (และเช่นเดียวกัน สนามไฟฟ้าของ quadrupole, octopole, ... ก็จะโต แบบ $1/r^4$, $1/r^5$, ... เพราะในการใช้ gradient หาสนามไฟฟ้าจะเพิ่ม 1/r ขึ้นมาอีกหนึ่งตัว) แต่สูตรด้านบนยังเป็น สูตรที่ขึ้นกับระบบพิกัดทรงกลม เราสามารถหาสูตรที่ไม่ขึ้นกับระบบพิกัดได้ดังนี้:

$$\begin{split} \mathbf{E}_{\text{dip}} &= \frac{1}{4\pi\varepsilon_0} \frac{p}{r^3} \Big(2\cos\theta \,\hat{\mathbf{r}} + \sin\theta \,\hat{\boldsymbol{\theta}} \Big) \\ &= \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} \Big(2p\cos\theta \,\hat{\mathbf{r}} + p\sin\theta \,\hat{\boldsymbol{\theta}} \Big) \\ &= \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} \Big(3p\cos\theta \,\hat{\mathbf{r}} + p\sin\theta \,\hat{\boldsymbol{\theta}} - p\cos\theta \,\hat{\mathbf{r}} \Big) \\ &= \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} \Big(3 \left(\mathbf{p} \cdot \hat{\mathbf{r}} \right) \hat{\mathbf{r}} - \mathbf{p} \Big) \end{split}$$

สนามไฟฟ้าของ Dipole บริสุทธิ์.

$$\mathbf{E}_{\text{dip}} = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} \left(3 \left(\mathbf{p} \cdot \hat{\mathbf{r}} \right) \hat{\mathbf{r}} - \mathbf{p} \right)$$
 (2.26)

บทที่ 3 | สนามไฟฟ้าในสสาร

▶ 3.1. โพลาไรเซชัน

▶ การเหนี่ยวนำ Dipole

เมื่อนำอะตอมที่เป็นกลางไปไว้ในสนามไฟฟ้า **E** จะทำให้นิวเคลียสเคลื่อนที่ไปในทิศของ **E** และกลุ่มหมอกอิเล็กตรอน เคลื่อนที่ไปในทิศตรงข้าม ถ้า **E** มีค่ามากพอก็จะทำให้อิเล็กตรอนหลุดจากอะตอมทำให้อะตอมนั้นกลายเป็นไอออน แต่ถ้า **E** มีค่าไม่มากนักจะทำให้กลุ่มหมอกอิเล็กตรอนและนิวเคลียสเหลื่อมกันเล็กน้อยจึงเหนี่ยวนำให้เกิด dipole moment **p** ขึ้น (จะเรียกว่าอะตอมนี้โดน*โพลาไรซ์*) โดยปกติเมื่อ **E** เล็ก ๆ เราจะประมาณ dipole moment ที่เกิดนี้ ได้ว่าแปรผันตรงกับสนาม:

Dipole เหนี่ยวนำ.
$$\mathbf{p} = \alpha \mathbf{E} \tag{3.1}$$

จะเรียก α นี้ว่า สภาพมีขั้วได้ของอะตอม (atomic polarizability)

สำหรับการปล่อยสนาม ${f E}$ นี้ไปบนโมเลกุล การเหนี่ยวนำ dipole จะต่างกันเล็กน้อย เพราะโมเลกุลนี้อาจจะถูกโพ-ลาไรซ์ยากง่ายไม่เท่ากันในแกนที่ต่างกัน เช่นในตัวอย่างง่าย ๆ อย่าง ${
m CO}_2$ ที่โมเลกุลมีรูปร่างเป็นเส้นตรง เมื่อปล่อย สนามผ่านโมเลกุลในทิศเอียงจะต้องคิด dipole moment แยกเป็นสองพจน์:

$$\mathbf{p} = \alpha_{\perp} \mathbf{E}_{\perp} + \alpha_{\parallel} \mathbf{E}_{\parallel}$$

แต่ถ้าเป็นโมเลกุลที่ซับซ้อนกว่านี้จะต้องใช้*เทนเซอร์สภาพโพลาไรซ์ได้* (polarizability tensor) α_{ij} ซึ่งเป็นเทนเซอร์ สามมิติที่มีแรงก์ 2 โดยมีความสัมพันธ์ระหว่าง \mathbf{E} , \mathbf{p} , และ α_{ij} ดังนี้:

Dipole เหนี่ยวนำในโมเลกุล.
$$p_i = \alpha_{ij} E_j \eqno(3.2)$$

หรือก็คือ

$$p_{x} = \alpha_{xx}E_{x} + \alpha_{xy}E_{y} + \alpha_{xz}E_{z}$$

$$p_{y} = \alpha_{yx}E_{x} + \alpha_{yy}E_{y} + \alpha_{yz}E_{z}$$

$$p_{z} = \alpha_{zx}E_{x} + \alpha_{zy}E_{y} + \alpha_{zz}E_{z}$$

$$(3.3)$$

(ถ้าเลือกแกนดี ๆ จะทำให้เหลือแค่พจน์ $lpha_{xx},\,lpha_{yy},\,$ และ $lpha_{zz}$ ได้)

การหมุนของโมเลกุลมีขั้ว

พิจารณาโมเลกุลน้ำ (H_2O) รูปร่างของโมเลกุลนี้จะมีออกซิเจนอยู่ตรงกลางที่เชื่อมอยู่กับไฮโดรเจน 2 อะตอม โดยจะ มีมุมบิดไป 105° การที่โมเลกุลน้ำมีลักษณะแบบนี้จะทำให้ฝั่งหนึ่งของโมเลกุลมีประจุบวกและอีกฝั่งหนึ่งมีประจุลบจึง ทำให้โมเลกุลน้ำนี้เป็น dipole อยู่แล้ว (โดยจะเรียกโมเลกุลแบบนี้ว่า*มีขั้ว*) ถ้าโมเลกุลนี้อยู่ในสนามไฟฟ้าสม่ำเสมอ \mathbf{E} (หรือเปลี่ยนแปลงไม่มาก) แรงลัพธ์ของโมเลกุลจะเป็น $\mathbf{0}$ ก็จริง แต่ฝั่งบวกจะเกิดแรงกระทำในทิศเดียวกับ \mathbf{E} ส่วนฝั่งลบจะเกิดแรงในทิศตรงข้าม จึงทำให้เกิดทอร์กบนโมเลกุล ถ้ากำหนดให้ \mathbf{d} เป็นเวกเตอร์จากจุดศูนย์กลางของฝั่งลบไปยังฝั่ง บวก จะหาทอร์กได้ดังนี้:

$$\begin{split} \mathbf{\tau} &= (\mathbf{r}_{+} \times \mathbf{F}_{+}) + (\mathbf{r}_{-} \times \mathbf{F}_{-}) \\ &= \left(\frac{\mathbf{d}}{2} \times (q\mathbf{E})\right) + \left(\frac{-\mathbf{d}}{2} \times (-q\mathbf{E})\right) \\ &= q\mathbf{d} \times \mathbf{E} \end{split}$$

(ซึ่งในสนามไม่สม่ำเสมอก็ยังใช้ได้อยู่เพราะเนื่องจาก d เล็กมากจะได้ว่า $|\Delta {f E}| \ll E$ ดังนั้น ${f E}_+ + {f E}_- pprox 2{f E})$ ดังนั้นจะได้ว่า

ก็คือเมื่อนำโมเลกุลมีขั้วนี้ไปไว้ในสนามไฟฟ้า โมเลกุลจะหมุนไปเรื่อย ๆ จนกว่า dipole moment จะมีทิศตรงกับสนาม แต่ถ้าสนามเปลี่ยนเยอะในช่วงเล็ก ๆ จะเกิดแรงลัพธ์ด้วยทำให้โมเลกุลเคลื่อนที่:

$$\mathbf{F} = q \, \Delta \mathbf{E}$$

 $\approx q(\mathbf{d} \cdot \mathbf{\nabla}) \mathbf{E}$

เพราะระยะ d เล็กมาก ๆ ดังนั้น

แรงลัพธ์ของ Dipole ในสนามไฟฟ้า.

$$\mathbf{F} = (\mathbf{p} \cdot \mathbf{\nabla})\mathbf{E} \tag{3.5}$$

เวกเตอร์โพลาไรเซชัน

สองหัวข้อด้านต้นเป็นตัวอย่างของการโพลาไรซ์ไดอิเล็กทริก โดยทั้งสองกรณีมีสิ่งที่เหมือนกันก็คือ: ทำให้เกิด dipole เล็ก ๆ จำนวนมากชี้ในทิศเดียวกับสนามไฟฟ้า ซึ่งเราจะนิยาม*โพลาไรเซชัน* P คือ:

นิยามโพลาไรเซชัน.
$${\bf P} \equiv \frac{{\rm d}{\bf p}}{{\rm d}\tau} = {\it dipole moment moment moment}$$

จริง ๆ แล้วโพลาไรเซชันนี้ซับซ้อนกว่าสองกรณีที่กล่าวมาและวัตถุที่ถูกโพลาไรซ์สามารถทำให้คงสภาพโพลาไรเซชันนี้ไว้ ได้ด้วย เพราะฉะนั้นจากนี้เราจึงจะเลิกสนใจแหล่งกำเนิดของเวกเตอร์โพลาไรเซชันและใช้ตามนิยามไปเลย

▶ 3.2. สนามไฟฟ้าของวัตถุที่ถูกโพลาไรซ์

► Bound Charges

พิจารณาปริมาตร $\mathcal V$ ที่ถูกโพลาไรซ์ให้มีโพลาไรเซชัน $\mathbf P$ จาก (2.23) จะได้ว่าศักย์ที่ตำแหน่ง $\mathbf r$ จาก dipole ในปริมาตร เล็ก ๆ ณ ตำแหน่ง $\mathbf r'$ เท่ากับ

$$dV(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{d\mathbf{p} \cdot \hat{\mathbf{i}}}{\mathbf{t}^2} = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{P} d\tau' \cdot \hat{\mathbf{i}}}{\mathbf{t}^2}$$

ดังนั้น

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \frac{\mathbf{P} \cdot \hat{\mathbf{k}}}{\mathbf{k}^2} d\tau' = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \mathbf{P} \cdot \mathbf{\nabla}' \left(\frac{1}{\mathbf{k}}\right) d\tau'$$

เมื่อ abla' คือ gradient เทียบพิกัด ${f r}'$ ต่อมาใช้ integration by parts จะได้:

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left(\int_{\mathcal{V}} \mathbf{\nabla}' \cdot \left(\frac{\mathbf{P}}{\mathbf{t}} \right) d\tau' - \int_{\mathcal{V}} (\mathbf{\nabla}' \cdot \mathbf{P}) \left(\frac{1}{\mathbf{t}} \right) d\tau' \right)$$
$$= \frac{1}{4\pi\varepsilon_0} \oint_{\mathbf{a}\mathcal{V}} \frac{\mathbf{P}}{\mathbf{t}} \cdot d\mathbf{a}' + \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \frac{-\mathbf{\nabla}' \cdot \mathbf{P}}{\mathbf{t}} d\tau'$$

ซึ่งหน้าตาคล้าย ๆ ศักย์ของประจุบนปริมาตรรวมกับประจุในปริมาตร ดังนั้นเราจะนิยาม

นิยาม Bound Charges. Bound surface charge σ_b คือ:

$$\sigma_b \equiv \mathbf{P} \cdot \hat{\mathbf{n}} \tag{3.7}$$

และ bound volume charge ρ_b คือ:

$$\rho_b = -\nabla \cdot \mathbf{P} \tag{3.8}$$

ก็จะได้ว่า:

ศักย์ของวัตถุที่ถูกโพลาไรซ์.

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \oint_{\partial \mathcal{V}} \frac{\sigma_b}{\iota} \, \mathrm{d}a' + \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \frac{\rho_b}{\iota} \, \mathrm{d}\tau'$$
 (3.9)

โดยจาก (1.13) เราจึงหาสนามได้เช่นกัน

หมายเหตุ: ไดอิเล็กทริกจริง ๆ ตามในส่วนที่แล้วไม่ได้เป็นเนื้อ dipole บริสุทธิ์ที่ต่อเนื่อง โดยสำหรับสนามและ คักย์นอกไดอิเล็กทริกสามารถใช้การประมาณนี้ได้โดยไม่มีปัญหาเพราะระยะ ๖ ใหญ่มากเมื่อเทียบกับ d แต่ถ้าเป็น สนามและคักย์ภายในเนื้อตัวนำ ถ้าจะให้การประมาณ dipole แบบต่อเนื่องใช้ได้ จะต้องเป็นศักย์หรือสนาม<u>เฉลี่ย</u>ใน ระดับ macroscopic เท่านั้น (เฉลี่ยในปริมาตรที่มีโมเลกุลมาก ๆ แต่ยังเล็กเมื่อเทียบกับปริมาตรของไดอิเล็กทริกอยู่พอ สมควร)

อีกวิธีหนึ่งที่อาจมีประโยชน์ในการหาศักย์หรือสนามของวัตถุที่ถูกโพลาไรซ์คือการนำวัตถุ 1 และ 2 ที่มีความหนา แน่นประจุ $+\rho$ และ $-\rho$ มาวางเหลื่อมกันด้วยระยะเล็ก ๆ d แล้วคำนวณศักย์หรือสนามตามปกติ (ถ้าระบบนี้ง่ายพอ เช่น ทรงกลมที่มีโพลาไรเซชันสม่ำเสมอ)

▶ 3.3. การกระจัดไฟฟ้า

▶ กฎของ Gauss เมื่อมีไดอิเล็กทริก

เราสามารถแบ่งส่วนที่ทำให้เกิด **E** ในกรณีที่มีไดอิเล็กทริกออกเป็นสองส่วนคือส่วนที่มาจาก bound charge และส่วน ที่ไม่ได้มาจากโพลาไรเซชัน (เรียกว่า *free charge*) หรือก็คือ

$$\rho = \rho_b + \rho_f$$
$$\nabla \cdot (\varepsilon_0 \mathbf{E}) = -\nabla \cdot \mathbf{P} + \rho_f$$

ดังนั้นถ้าเรานิยาม

นิยามการกระจัดไฟฟ้า. การกระจัดไฟฟ้า (electric displacement: **D**) นิยามดังนี้:

$$\mathbf{D} \equiv \varepsilon_0 \mathbf{E} + \mathbf{P} \tag{3.10}$$

ก็จะได้ว่า

กฎของ Gauss สำหรับระบบที่มีใดอิเล็กทริก.

$$\nabla \cdot \mathbf{D} = \rho_f$$
 และ $\oint \mathbf{D} \cdot d\mathbf{a} = Q_{f \, \text{enc}}$ (3.11)

เวกเตอร์การกระจัดไฟฟ้านี้มีสมบัติคล้าย ๆ ${f E}$ แต่ต้องระวังเพราะสนาม ${f E}$ ที่หาได้จากเพียง ho (ด้วยกฎของ ${f Gauss}$) เป็นเพราะว่ายังมีอีกเงื่อนไขที่ ${f
abla} \times {f E} = {f 0}$ ด้วย แต่ในกรณีของการกระจัดไฟฟ้า

$$\nabla \times \mathbf{D} = \nabla \times \varepsilon_0 \mathbf{E} + \nabla \times \mathbf{P} = \nabla \times \mathbf{P}$$
(3.12)

ไม่จำเป็นต้องเป็น ${f 0}$ ดังนั้น ${f D}$ จึงไม่ได้กำหนดโดยเพียง ho_f

รอยต่อแผ่นประจุสำหรับการกระจัดไฟฟ้า

ต่อมาเช่นเดียวกับ ${f E}$ และ V เรามาดูสมบัติของ ${f D}$ ในบริเวณแผ่นประจุบาง ๆ ที่มีความหนาแน่นประจุเชิงพื้นที่ σ_f :

1. โดย (3.11) จะได้ว่า

$$D_{\text{above}}^{\perp} - D_{\text{below}}^{\perp} = \sigma_f \tag{3.13}$$

2. โดย (3.12) จะได้ว่า

$$D_{\text{above}}^{\parallel} - D_{\text{below}}^{\parallel} = P_{\text{above}}^{\parallel} - P_{\text{below}}^{\parallel}$$
(3.14)

▶ 3.4. ไดอิเล็กทริกเชิงเส้น

สภาพอ่อนไหว, สภาพยอม, ค่าคงที่ไดอิเล็กทริก

เราสามารถประมาณเวกเตอร์โพลาไรเซชันในไดอิเล็กทริกได้คล้ายกับ (3.1) ดังนี้:

$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E} \tag{3.15}$$

หมายเหตุ: \mathbf{E} ในที่นี้คือสนาม<u>ทั้งหมด</u> ดังนั้นสมการนี้ไม่ได้ใช้ง่ายอย่างที่คิด เพราะการโพลาไรซ์ด้วยสนามภายนอก $\mathbf{E}^{\mathrm{ext}}$ จะทำให้เกิดสนามมาเพิ่มจาก \mathbf{P} ที่เกิดขึ้นอีกที วนไปวนมาเรื่อย ๆ วิธีที่ง่ายที่สุดในการคำนวณก็คือควรพิจารณา \mathbf{D} ก่อนและใช้กฎของ Gauss

โดยเราจะเรียกไดอิเล็กทริกที่เป็นไปตามสมการด้านบนว่า*ไดอิเล็กทริกเชิงเส้น* และเราจะเรียก χ_e ว่า*สภาพอ่อนไหว ทางไฟฟ้า* (electric susceptibility) ของไดอิเล็กทริกนั้น ๆ ต่อมาพิจารณา

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 (1 + \chi_e) \mathbf{E}$$

จึงได้ว่า $\mathbf{D} \propto \mathbf{E}$ ด้วย เราจึงนิยาม*สภาพยอมทางไฟฟ้า* ($electric\ permittivity$) ว่า

$$\varepsilon \equiv \varepsilon_0 (1 + \chi_e) \tag{3.16}$$

ก็จะได้ว่า

$$\mathbf{D} = \varepsilon \mathbf{E} \tag{3.17}$$

และนิยาม*สภาพยอมสัมพัทธ์* หรือ*ค่าคงที่ไดอิเล็กทริก*ว่า

นิยามค่าคงที่ไดอิเล็กทริก.

$$\varepsilon_r \equiv 1 + \chi_e = \frac{\varepsilon}{\varepsilon_0} \tag{3.18}$$

พิจารณาภายในบริเวณที่มี χ_e คงที่ จะได้ว่า

$$oldsymbol{
abla} \cdot \mathbf{D} =
ho_f$$
 และ $oldsymbol{
abla} imes \mathbf{D} imes \mathbf{D} = \mathbf{0}$

โดย Helmholtz's theorem จึงได้ว่า

$$\mathbf{D} = \varepsilon_0 \mathbf{E}_{\text{vac}} \tag{3.19}$$

เมื่อ $\mathbf{E}_{\mathrm{vac}}$ คือสนามไฟฟ้าเมื่อระบบอยู่ในสุญญากาศ ก็จะได้

สภาพยอมทางไฟฟ้าในไดอิเล็กทริกเชิงเส้น.

$$\mathbf{E} = \frac{1}{\varepsilon} \mathbf{D} = \frac{1}{\varepsilon_r} \mathbf{E}_{\text{vac}} \tag{3.20}$$

ซึ่งเปรียบเสมือนการเปลี่ยนค่าจาก $arepsilon_0$ เป็น arepsilon ในสมการต่าง ๆ คล้าย ๆ เป็นการ "ต้าน" สนาม ${f E}$ ให้มีค่าลดลง

ไดอิเล็กทริกเชิงเส้นด้านบนไม่ได้เป็นไดอิเล็กทริกเชิงเส้นแบบ "ทั่วไป" จริง ๆ แต่จะเรียกว่าเป็น *isotropic linear dielectric* แต่ถ้าไม่ isotropic ไดอิเล็กทริกอาจถูกโพลาไรซ์ได้ยากง่ายไม่เท่ากันในแต่ละทิศจึงทำให้สภาพอ่อนไหวทาง ไฟฟ้าจะถูกอธิบายด้วยเทนเซอร์:

เทนเซอร์สภาพอ่อนไหวทางไฟฟ้า.

$$P_i = \varepsilon_0 \chi_{e,ij} E_j \tag{3.21}$$

หรือก็คือ

$$P_{x} = \varepsilon_{0}(\chi_{e,xx}E_{x} + \chi_{e,xy}E_{y} + \chi_{e,xz}E_{z})$$

$$P_{y} = \varepsilon_{0}(\chi_{e,yx}E_{x} + \chi_{e,yy}E_{y} + \chi_{e,yz}E_{z})$$

$$P_{z} = \varepsilon_{0}(\chi_{e,zx}E_{x} + \chi_{e,zy}E_{y} + \chi_{e,zz}E_{z})$$

$$(3.22)$$

ปัญหาสภาวะขอบเขตเกี่ยวกับไดอิเล็กทริกเชิงเส้น

เนื่องจาก

$$\rho_b = -\nabla \cdot \mathbf{P} = -\nabla \cdot \left(\varepsilon_0 \frac{\chi_e}{\varepsilon} \mathbf{D}\right) = (\text{const.})\rho_f$$
- 28 -

ดังนั้นในบริเวณที่ไม่มีประจุอิสระ จะได้ว่า $\rho=\rho_b+\rho_f=0$ ทำให้สามารถใช้สมการ Laplace แก้หา V ได้โดยวิธีจาก บทที่แล้ว โดยมีสภาวะขอบเขตดังนี้ (พิสูจน์โดย (3.11)):

สภาวะขอบเขตของรอยต่อไดอิเล็กทริก. บนแผ่นประจุที่มีความหนาแน่นของประจุอิสระเชิงพื้นที่ σ_f จะได้ว่า

$$\varepsilon_{\text{above}} E_{\text{above}}^{\perp} - \varepsilon_{\text{below}} E_{\text{below}}^{\perp} = \sigma_f$$
 (3.23)

หรือ

$$\varepsilon_{\text{above}} \frac{\partial V_{\text{above}}}{\partial n} - \varepsilon_{\text{below}} \frac{\partial V_{\text{below}}}{\partial n} = -\sigma_f$$
 (3.24)

เมื่อ $\hat{\mathbf{n}}$ คือเวกเตอร์หนึ่งหน่วยที่ตั้งฉากกับแผ่นประจุที่ชี้จากด้านล่างไปด้านบน และสำหรับ V จะต่อเนื่องเช่นเคย:

$$V_{\text{above}} = V_{\text{below}}$$
 (3.25)

ตัวอย่าง. ทรงกลมไดอิเล็กทริกเชิงเส้นรัศมี R ที่มีค่าคงที่ไดอิเล็กทริก ε_r ถูกวางไว้ที่จุด (0,0,0) โดยมีสนาม ไฟฟ้าสม่ำเสมอ (เมื่อไม่รวมสนามจากไดอิเล็กทริก) \mathbf{E}_0 ใหลผ่านในทิศ +z จงหาสนามไฟฟ้าภายในไดอิเล็กทริก

วิธีทำ. เห็นชัดว่าระบบนี้ในพิกัดทรงกลมจะสมมาตรแบบ azimuth ดังนั้นใช้คำตอบของสมการ Laplace จาก (2.8) และ (2.10) ได้ว่าข้างในไดอิเล็กทริก (r < R):

$$V(r,\theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos \theta) \tag{*1}$$

ข้างนอกไดอิเล็กทริกจะต้องมี $V(r,\theta)$ เมื่อ $r o \infty$ เป็น

$$V(r,\theta) \approx -E_0 r \cos \theta$$

ก็จะได้ว่าที่ r > R:

$$V(r,\theta) = -E_0 r \cos \theta + \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l(\cos \theta) \tag{*2}$$

เนื่องจาก V ต้องต่อเนื่องที่ r=R จาก $(\star 1)$ และ $(\star 2)$ จะได้ว่า

$$A_1R=-E_0R+rac{B_1}{R^2}$$
 เมื่อ $l=1$ $A_lR^l=rac{B_l}{R^{l+1}}$ เมื่อ $l
eq 1$

ดังนั้น $A_l=B_l=0$ สำหรับทุก l
eq 1 ก็จะได้

$$V(r,\theta) = egin{cases} A_1 r \cos \theta & \text{เมื่อ } r < R \\ -E_0 r \cos \theta + rac{(A_1 + E_0)R^3}{r^2} \cos \theta & \text{เมื่อ } r > R \end{cases}$$
 - 29 -

ต่อมาใช้ (3.24) จะแก้หา A_1 ได้

$$A_1 = \frac{-3E_0}{2 + \varepsilon_r}$$

ก็จะได้ V เมื่อ r < R:

$$V(r,\theta) = -\frac{3}{2+\varepsilon_r} E_0 r \cos \theta$$
$$V(x, y, z) = -\frac{3}{2+\varepsilon_r} E_0 z$$

ดังนั้นก็จะได้
$$\mathbf{E}_{\mathrm{in}}=rac{3}{2+arepsilon_r}\mathbf{E}_0$$

พลังงานในระบบที่มีไดอิเล็กทริกเชิงเส้น

เราสามารถหาพลังงานของระบบไดอิเล็กทริกโดยการ "ประกอบ" ระบบของประจุอิสระ ho_f ทีละนิด แล้วปล่อยให้ไดอิเล็กทริกเกิดการโพลาไรซ์ก่อนที่จะประกอบต่อไป งานที่ต้องใช้บนประจุ $\Delta
ho_f$ ในการนำมาประกอบจะเท่ากับ

$$\Delta U = \int (\Delta \rho_f) V \, \mathrm{d}\tau$$

แต่ $\nabla \cdot \mathbf{D} = \rho_f$ ดังนั้น $\Delta \rho_f = \nabla \cdot (\Delta \mathbf{D})$ นำไปแทนแล้วใช้ integration by parts และ Stokes' theorem จะ ได้ว่า

$$\Delta U = \int (\mathbf{\nabla} \cdot (\Delta \mathbf{D})) V \, d\tau$$

$$= \int \mathbf{\nabla} \cdot (V \, \Delta \mathbf{D}) \, d\tau + \int \Delta \mathbf{D} \cdot \mathbf{E} \, d\tau$$

$$= \oint V \Delta \mathbf{D} \cdot \mathbf{da} + \int \Delta \mathbf{D} \cdot \mathbf{E} \, d\tau$$

$$= \int \Delta \mathbf{D} \cdot \mathbf{E} \, d\tau$$

ต่อมาพิจารณา

$$\Delta(\mathbf{D} \cdot \mathbf{E}) = \varepsilon \, \Delta(E^2) = 2\varepsilon E \, \Delta E = 2 \, \Delta \mathbf{D} \cdot \mathbf{E}$$

ก็จะได้ว่า

$$\Delta U = \frac{1}{2} \int \Delta (\mathbf{D} \cdot \mathbf{E}) \, \mathrm{d}\tau$$

หรือก็คือ

พลังงานในสนามไฟฟ้าที่มีไดอิเล็กทริก.

$$U = \frac{1}{2} \int (\mathbf{D} \cdot \mathbf{E}) \, \mathrm{d}\tau \tag{3.26}$$

หมายเหตุ: สังเกตว่า $(3.26) \geq (1.27)$ เหตุผลเป็นเพราะว่า (1.27) จะเป็นพลังงานเนื่องจากสนามไฟฟ้าโดยตรง ไม่ รวมพลังงานในการ "แยก" ชั่วของไดอิเล็กทริกในการโพลาไรซ์ (อาจมองเหมือนเป็นสปริงที่เชื่อมขั้วทั้งสองเข้าด้วยกัน) ดังนั้นก็จะได้อีกว่าพลังงานภายในของ "สปริง" นี้เท่ากับ $\int \mathbf{D} \cdot \mathbf{E} \,\mathrm{d}\tau - \frac{\varepsilon_0}{2} \int E^2 \,\mathrm{d}\tau$

แรงบนไดอิเล็กทริกเชิงเส้น

พิจารณาไดอิเล็กทริกที่ขั้นในตัวเก็บประจุแผ่นตัวนำคู่ขนานกว้าง w ยาว l หน้า d (ให้แนวยาวขนานกับแกน x และตัว เก็บประจุนี้ชิดกับระนาบ yz) โดยที่ไดอิเล็กทริกเหลื่อมกับตัวเก็บประจุไประยะ +x ถ้าดังไดอิเล็กทริกออกมาอีก $\mathrm{d}x$ จะได้ว่างานที่กระทำ:

$$dU = dW = F_{\text{ext}} \, dx$$

ดังนั้นแรงที่สนามกระทำเท่ากับ

$$F = -F_{\text{ext}} = -\frac{\mathrm{d}U}{\mathrm{d}x} \tag{\blacklozenge1}$$

พิจารณาความจุไฟฟ้ารวมของตัวเก็บประจุที่มีระยะเหลื่อม x ใด ๆ:

$$C = C_1 + C_2 = \frac{wx}{d}\varepsilon_0 + \frac{w(l-x)}{d}\varepsilon_r\varepsilon_0 = \frac{\varepsilon_0 w}{d}(\varepsilon_r l - \chi_e x)$$
 (\•2)

จะได้พลังงานสะสมในตัวเก็บประจุที่มีระยะเหลื่อม x ใด ๆ เท่ากับ

$$U = \frac{1}{2} \frac{Q^2}{C}$$

ดังนั้น

$$\mathrm{d} U = -\frac{1}{2} \frac{Q^2}{C^2} \, \mathrm{d} C = -\frac{1}{2} V^2 \, \mathrm{d} C \stackrel{(•)}{=}{}^{2)} \, \frac{1}{2} V^2 \frac{\varepsilon_0 \chi_e w}{d} \, \mathrm{d} x$$

นำกลับไปแทนใน $(\blacklozenge 1)$ จะได้ว่า

แรงบนไดอิเล็กทริกระหว่างแผ่นตัวน้ำ.

$$F = -\frac{\varepsilon_0 \chi_e w}{2d} V^2 \tag{3.27}$$

หมายเหตุ: เมื่อ x=0 ไม่ได้ทำให้ F=0 เพราะการใช้ U เป็นค่านั้นเป็นการประมาณสำหรับ x ที่มีค่ามาก ๆ

บทที่ 4 | แม่เหล็กสถิต

▶ 4.1. กฎแรง Lorentz

แรงแม่เหล็ก

แรง Lorentz. ประจุ Q ที่เคลื่อนที่ด้วยความเร็ว ${f v}$ ในสนามแม่เหล็ก ${f B}$ จะถูกแรงแม่เหล็กกระทำดังนี้:

$$\mathbf{F}_{\text{mag}} = Q(\mathbf{v} \times \mathbf{B}) \tag{4.1}$$

โดยถ้ามีทั้งสนามไฟฟ้าและแม่เหล็ก:

$$\mathbf{F} = Q(\mathbf{E} + (\mathbf{v} \times \mathbf{B})) \tag{4.2}$$

สนามแม่เหล็ก **B** นี้มีหน่วยเป็น T (tesla) โดยการเคลื่อนที่ใน **B** สม่ำเสมอที่น่าสนใจมีดังนี้:

1. ถ้าประจุ Q เคลื่อนที่ด้วยความเร็ว ${f v}$ ในสนาม ${f B}$ เพียงอย่างเดียว ส่วนของ ${f v}_{\perp}$ จะทำให้เกิดการเคลื่อนที่วงกลม ตามสมการ

$$QBR = mv = p$$

เมื่อ p คือโมเมนตัม และได้

$$\omega = \frac{QB}{R}$$

จะเรียกว่าความถึ่ cyclotron

2. ถ้าประจุ Q เริ่มจากหยุดนิ่งในสนาม ${f E}$ และ ${f B}$ ที่ตั้งฉากกัน ถ้าแก้สมการมาจะได้ว่าประจุจะเคลื่อนที่เป็นรูป cycloid ที่มีรัศมี

$$R = \frac{E}{\omega B}$$

เมื่อ ω คือความถี่ cyclotron และศูนย์กลางวงกลมที่ทำให้เกิดรูป cycloid จะเคลื่อนที่ด้วยอัตราเร็ว

$$u = \omega R = \frac{E}{B}$$

ต่อมาพิจารณางานจากแรงแม่เหล็ก:

$$dW_{\text{mag}} = \mathbf{F}_{\text{mag}} \cdot d\mathbf{l} = Q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{v} dt = 0$$

ดังนั้นได้ว่า

งานของแรงแม่เหล็ก. แรงแม่เหล็กไม่ทำงาน:

$$W_{\text{mag}} = 0 \tag{4.3}$$

กระแสไฟฟ้า

นิยามกระแสไฟฟ้า. กระแสไฟฟ้า (\mathbf{I}) ของจุดหนึ่งในสายไฟคือปริมาณประจุที่เคลื่อนที่ผ่านจุด ๆ นั้นต่อหน่วย เวลา หรือก็คือ

$$\mathbf{I} = \lambda \mathbf{v} \tag{4.4}$$

โดยกระแสไฟฟ้านี้มีหน่วย SI คือ A (ampere หรือ amp)

พิจารณา

$$\mathbf{F}_{\text{mag}} = \int d\mathbf{F}_{\text{mag}} = \int (\mathbf{v} \times \mathbf{B}) \, dq$$

ดังนั้นในสายไฟจะได้

แรงแม่เหล็กบนสายไฟ.

$$\mathbf{F}_{\text{mag}} = \int (\mathbf{I} \times \mathbf{B}) \, \mathrm{d}\ell \tag{4.5}$$

หรือก็คือ

$$\mathbf{F}_{\text{mag}} = \int (I \, \mathrm{d}\mathbf{l} \times \mathbf{B}) \tag{4.6}$$

ต่อมา หากประจุที่เคลื่อนที่เป็นประจุจากความหนาแน่นในสองหรือสามมิติ เราจะนิยาม:

นิยามความหนาแน่นกระแสไฟฟ้า. สำหรับประจุที่ไหลบนผิวในสองมิติ ถ้าในแถบเล็ก ๆ ที่ขนานกับทิศในการ ไหลของกระแส dI กว้าง d ℓ_\perp เราจะนิยาม*ความหนาแน่นกระแสไฟฟ้าเชิงพื้นที่* (**K**) ว่า

$$\mathbf{K} \equiv \frac{\mathrm{d}\mathbf{I}}{\mathrm{d}\ell_{\perp}} = \sigma \mathbf{v} \tag{4.7}$$

สำหรับประจุที่ไหลในปริมาตรสามมิติ ถ้าในท่อเล็ก ๆ ที่ขนานกับทิศในการไหลของกระแส ${
m d}{f I}$ มีพื้นที่ ${
m d}a_\perp$ เราจะ

นิยามความหนาแน่นกระแสไฟฟ้าเชิงปริมาตร (\mathbf{J}) ว่า

$$\mathbf{J} \equiv \frac{\mathrm{d}\mathbf{I}}{\mathrm{d}a_{\perp}} = \rho \mathbf{v} \tag{4.8}$$

โดยเราจึงสามารถหากระแสไฟฟ้าที่ไหลผ่านผิว ๆ หนึ่งหรือเส้น ๆ หนึ่งได้จาก

$$I = \int \mathbf{K} \cdot d\boldsymbol{\ell}$$
 และ $I = \int \mathbf{J} \cdot d\mathbf{a}$ (4.9)

และเช่นเดียวกับ (4.5) จะได้ว่า

แรงแม่เหล็กบนกระแสในสองและสามมิติ.

$$\mathbf{F}_{\text{mag}} = \int (\mathbf{K} \times \mathbf{B}) \, \mathrm{d}a \tag{4.10}$$

และ

$$\mathbf{F}_{\text{mag}} = \int (\mathbf{J} \times \mathbf{B}) \, d\tau \tag{4.11}$$

จากสมการ (4.8) จะได้ว่า

$$I = \int_{\mathcal{S}} \mathbf{J} \cdot d\mathbf{a} \tag{4.12}$$

และเนื่องจากประจุที่ไหลออก (I) จะต้องเท่ากับประจุที่หายไป ดังนั้น

$$\int_{\mathcal{V}} (\boldsymbol{\nabla} \cdot \mathbf{J}) \, \mathrm{d}\tau = \oint_{\partial \mathcal{V}} \mathbf{J} \cdot \mathrm{d}\mathbf{a} = I = -\frac{\mathrm{d}Q_{\mathrm{enc}}}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{V}} \rho \, \mathrm{d}\tau = -\int_{\mathcal{V}} \left(\frac{\partial \rho}{\partial \tau}\right) \mathrm{d}\tau$$

ก็จะได้ว่า

สมการความต่อเนื่อง.

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t} \tag{4.13}$$

▶ 4.2. กฎของ Biot-Savart

ระบบกระแสคงที่

ในบทก่อน ๆ เราได้หาสนามไฟฟ้าในระบบที่เป็นประจุหยุดนิ่งไปแล้วหรือก็คือเป็นระบบ*ไฟฟ้าสถิต (electrostatics)* ต่อมาในกรณีสนามแม่เหล็ก ในการที่ระบบจะเป็น*แม่เหล็กสถิต (magnetostatics)* ระบบจะต้องมีกระแสคงเดิมตลอด เวลา หรือก็คือ:

$$\frac{\partial \rho}{\partial t} = 0$$
 และ $\frac{\partial \mathbf{J}}{\partial t} = 0$ (4.14)

เมื่อนำไปแทนใน (4.13) จะได้ว่า

$$\nabla \cdot \mathbf{J} = 0 \tag{4.15}$$

โดยในระบบกระแสคงที่นี้เราจะหาสนามแม่เหล็กได้จาก:

 ${f n_j}$ ของ ${f Biot ext{-}Savart ext{.}}$ สนามแม่เหล็ก ${f B}$ ที่ตำแหน่ง ${f r}$ ในระบบที่เป็นแม่เหล็กสถิต หาได้จาก

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I} \times \hat{\mathbf{k}}}{\mathbf{k}^2} \, \mathrm{d}\ell' = \frac{\mu_0}{4\pi} I \int \frac{\mathrm{d}\ell' \times \hat{\mathbf{k}}}{\mathbf{k}^2}$$
(4.16)

เมื่อ $\mu_0 \approx 1.257 \times 10^{-6} \, \mathrm{N \, A^{-2}} \approx 4\pi \times 10^{-7} \, \mathrm{N \, A^{-2}}$ คือสภาพซึมผ่านได้ของสุญญากาศ (permeability of free space) โดยในกรณีความหนาแน่นกระแส:

กฎของ Biot-Savart ของกระแสในสองและสามมิติ.

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}(\mathbf{r}') \times \hat{\boldsymbol{\imath}}}{\boldsymbol{\imath}^2} da'$$
 และ $\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}') \times \hat{\boldsymbol{\imath}}}{\boldsymbol{\imath}^2} d\tau'$ (4.17)

▶ 4.3. Divergence และ Curl ของสนามแม่เหล็กสถิต

▶ Divergence ของสนามแม่เหล็กสถิต

พิจารณา (4.17) จะได้ว่า

$$\nabla \cdot \mathbf{B} = \frac{\mu_0}{4\pi} \int \nabla \cdot \left(\mathbf{J} \times \frac{\hat{\mathbf{b}}}{\mathbf{b}^2} \right) d\tau'$$
$$= \frac{\mu_0}{4\pi} \int \left(\frac{\hat{\mathbf{b}}}{\mathbf{b}^2} \cdot (\nabla \times \mathbf{J}) - \mathbf{J} \cdot \left(\nabla \times \frac{\hat{\mathbf{b}}}{\mathbf{b}^2} \right) d\tau' \right)$$

เนื่องจาก ${f J}$ อยู่ในพิกัด (x',y',z') จึงได้ว่า ${f
abla} imes {f J} = {f 0}$ และจาก

$$oldsymbol{
abla} imesrac{\hat{oldsymbol{k}}}{oldsymbol{b}^2}=oldsymbol{0}$$

ดังนั้น

กฎของ Gauss สำหรับสนามแม่เหล็ก.

$$\nabla \cdot \mathbf{B} = 0 \tag{4.18}$$

Curl ของสนามแม่เหล็กสถิต

เช่นเดิม จาก (4.17) จะได้ว่า

$$\nabla \times \mathbf{B} = \frac{\mu_0}{4\pi} \int \nabla \times \left(\mathbf{J} \times \frac{\hat{\mathbf{b}}}{\mathbf{b}^2} \right) d\tau'$$

$$= \frac{\mu_0}{4\pi} \int \left(\left(\frac{\hat{\mathbf{b}}}{\mathbf{b}^2} \cdot \nabla \right) \mathbf{J} - (\mathbf{J} \cdot \nabla) \frac{\hat{\mathbf{b}}}{\mathbf{b}^2} + \mathbf{J} \left(\nabla \cdot \frac{\hat{\mathbf{b}}}{\mathbf{b}^2} \right) - \frac{\hat{\mathbf{b}}}{\mathbf{b}^2} (\nabla \cdot \mathbf{J}) \right) d\tau'$$

เนื่องจาก ${f J}$ ขึ้นกับพิกัด (x',y',z'):

$$\nabla \times \mathbf{B} = \frac{\mu_0}{4\pi} \int \left(\mathbf{J} \left(\nabla \cdot \frac{\hat{\mathbf{i}}}{\mathbf{i}^2} \right) - (\mathbf{J} \cdot \nabla) \frac{\hat{\mathbf{i}}}{\mathbf{i}^2} \right) d\tau'$$
 (†)

พิจารณาพจน์ด้านหลัง เนื่องจาก $\hat{m \iota}/\imath^2=f({f r}-{f r}')$ ดังนั้น m
abla=-m
abla' จะได้ว่า

$$\int -(\mathbf{J} \cdot \mathbf{\nabla}) \frac{\hat{\mathbf{i}}}{\mathbf{i}^2} \, d\tau' = \int (\mathbf{J} \cdot \mathbf{\nabla}') \frac{\hat{\mathbf{i}}}{\mathbf{i}^2} \, d\tau'$$

คิดแยกแกน โดยให้ $\mathcal V$ คือปริมาตรที่อินทิเกรต (ปริมาตรที่ใหญ่มาก ๆ):

$$\left(\int_{\mathcal{V}} -(\mathbf{J} \cdot \mathbf{\nabla}) \frac{\hat{\mathbf{i}}}{\mathbf{i}^{2}} d\tau'\right)_{x} = \int_{\mathcal{V}} (\mathbf{J} \cdot \mathbf{\nabla}') \frac{x - x'}{\mathbf{i}^{2}} d\tau'$$

$$= \int_{\mathcal{V}} \mathbf{\nabla}' \cdot \left(\frac{x - x'}{\mathbf{i}^{2}} \mathbf{J}\right) d\tau' - \int_{\mathcal{V}} (\mathbf{\nabla}' \cdot \mathbf{J}) \frac{x - x'}{\mathbf{i}^{2}} d\tau'$$

$$= \oint_{\partial \mathcal{V}} \left(\frac{x - x'}{\mathbf{i}^{2}} \mathbf{J}\right) \cdot d\mathbf{a}$$

เนื่องจาก ${\cal V}$ ใหญ่มาก ดังนั้นจะได้ว่าไม่มีกระแสไหลออกจากระบบเลย ดังนั้น

$$\int_{\mathcal{V}} -(\mathbf{J} \cdot \mathbf{\nabla}) \frac{\hat{\mathbf{i}}}{\mathbf{i}^2} \, d\tau' = \mathbf{0}$$

นำไปแทนใน (†) จะได้ว่า

$$\nabla \times \mathbf{B} = \frac{\mu_0}{4\pi} \int \mathbf{J} \left(\nabla \cdot \frac{\hat{\mathbf{i}}}{\mathbf{i}^2} \right) d\tau'$$
$$= \frac{\mu_0}{4\pi} \int \mathbf{J} \left(4\pi \, \delta^3(\mathbf{i}) \right) d\tau'$$

ดังนั้น

กฎของ Ampère (Differential Form).

$$\mathbf{\nabla} \times \mathbf{B} = \mu_0 \mathbf{J} \tag{4.19}$$

ต่อมาอินทิเกรตบนผิวใด ๆ:

$$\int (\mathbf{\nabla} \times \mathbf{B}) \cdot d\mathbf{a} = \mu_0 \int \mathbf{J} \cdot d\mathbf{a} = \mu_0 I_{\text{enc}}$$

โดย Stokes' Theorem จะได้ว่า

กฎของ Ampère (Integral Form).

$$\oint \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 I_{\text{enc}} \tag{4.20}$$

▶ 4.4. เวกเตอร์ศักย์แม่เหล็ก

นิยามศักย์แม่เหล็ก

ในบทสนามไฟฟ้า เนื่องจาก $oldsymbol{
abla} imes oldsymbol{ ext{E}} = oldsymbol{0}$ ทำให้เราสามารถนิยามสนามสเกลาร์ V (ศักย์ไฟฟ้า) ซึ่ง

$$\mathbf{E} = -\boldsymbol{\nabla}V$$

ในกรณีของสนามแม่เหล็ก เรามี (4.18) ที่กล่าวว่า $\nabla \cdot {f B} = 0$ จึงทำให้เราสามารถนิยาม*ศักย์แม่เหล็ก*ซึ่งเป็นสนามเวก เตอร์ได้ว่า

นิยามศักย์แม่เหล็ก.

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} \tag{4.21}$$

พิจารณา (4.19):

$$\mu_0 \mathbf{J} = \mathbf{\nabla} \times \mathbf{B}$$

$$= \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{A})$$

$$= \mathbf{\nabla} (\mathbf{\nabla} \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

สังเกตว่าถ้า ${f A}_0$ สอดคล้องกับ (4.21) แล้ว ${f A}={f A}_0+{f
abla}\lambda$ ก็สอดคล้องด้วย พิจารณา ${f
abla}\cdot{f A}$:

$$\mathbf{\nabla} \cdot \mathbf{A} = \mathbf{\nabla} \cdot \mathbf{A}_0 + \nabla^2 \lambda$$

ดังนั้นเราจึงสามารถเลือกสนามศักย์แม่เหล็กให้มี ${f \nabla}\cdot{f A}=0$ ได้เสมอ (เพราะเรารู้ว่าสมการ Poisson $\nabla^2\lambda=-f(x)=-{f \nabla}\cdot{f A}_0$ มีคำตอบ) ก็จะได้ว่า

สมการ Poisson ของศักย์แม่เหล็ก.

$$\nabla^2 \mathbf{A} = \mu_0 \mathbf{J} \tag{4.22}$$

ในบทไฟฟ้าสถิตเรามีคำตอบของสมการ $abla^2 V =
ho/arepsilon_0$ อยู่แล้ว (เมื่อ ho o 0 เมื่อ ${f r} o \infty$) คือ

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{\iota} \, \mathrm{d}\tau'$$

จังดัดแปลงให้เป็นคำตอบของ (4.22) ได้ว่า

ศักย์แม่เหล็กจากสนามกระแส.

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{\iota} \, \mathrm{d}\tau' \tag{4.23}$$

หรือสำหรับหนึ่งและสองมิติ:

ศักย์แม่เหล็กจากสนามกระแสในหนึ่งและสองมิติ.

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}(\mathbf{r}')}{\hbar} da'$$
 และ $\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}(\mathbf{r})}{\hbar} d\ell' = \frac{\mu_0 I}{4\pi} \int \frac{1}{\hbar} d\ell'$ (4.24)

โดยสมการศักย์นี้ใช้ได้เมื่อ ${f J} o {f 0}$ เมื่อ ${f r} o \infty$ แต่ถ้าไม่ใช่ อาจต้องหาศักย์โดยใช้วิธีอื่น วิธีหนึ่งคือสังเกตว่า

$$\oint_{\partial S} \mathbf{A} \cdot d\mathbf{\ell} = \int_{S} (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a} = \int_{S} \mathbf{B} \cdot d\mathbf{a}$$

โดยเราจะเรียกพจน์ฝั่งขวาว่า*ฟลักซ์แม่เหล็ก* (Φ_B) :

นิยามฟลักซ์แม่เหล็ก. ฟลักซ์ของ ${f B}$ ที่ผ่านผิว ${\cal S}$ คือ

$$\Phi_B \equiv \int_{\mathcal{S}} \mathbf{B} \cdot d\mathbf{a} \tag{4.25}$$

ดังนั้นสมการด้านบนก็จะได้ว่า

$$\oint \mathbf{A} \cdot d\mathbf{\ell} = \Phi_B \tag{4.26}$$

ซึ่งสามารถนำมาใช้หา ${f A}$ ได้เช่นเดียวกับการใช้ (4.20) ในการหา ${f B}$ ในระบบที่มีความสมมาตร

สภาวะขอบเขต

ต่อมาเรามาหาสภาวะขอบเขตของสนามแม่เหล็ก ${f B}$ และศักย์แม่เหล็ก ${f A}$ เช่นเดียวกับในบทไฟฟ้าสถิต โดยพิจารณาที่ บริเวณแผ่นที่มีกระแส ${f K}$ ไหลอยู่: 1. พิจารณาผิว Gaussian ทรงกระบอกที่บางมาก ๆ ดั่งในตอนหาสภาวะขอบเขตของ ${f E}$ และใช้ (4.18) จะได้ว่า

$$B_{\text{above}}^{\perp} - B_{\text{below}}^{\perp} = 0$$

ดังนั้นส่วนของ B ที่ตั้งฉากกับแผ่นกระแสจะต่อเนื่อง

2. พิจารณาลูป Amperian รูปสี่เหลี่ยมผืนผ้าแคบ ๆ ที่มีด้านขนานกับแผ่นกระแสแต่ตั้งฉากกับ ${f K}$ จะได้ว่า

$$B_{\text{above}}^{\parallel} - B_{\text{below}}^{\parallel} = \mu_0 K$$

ดังนั้นส่วนของ ${f B}$ ที่ขนานกับแผ่นกระแสแต่ตั้งฉากกับ ${f K}$ จะไม่ต่อเนื่องแบบกระโดดด้วยผลต่าง $\mu_0 K$

3. เนื่องจาก ${f \nabla}\cdot{f A}=0$ จะได้ว่า A^\perp ต่อเนื่อง และจาก (4.26) ก็จะได้ว่า A^\parallel ก็ต่อเนื่อง ดังนั้น

$$\mathbf{A}_{above} = \mathbf{A}_{below}$$

หรือก็คือ A ต่อเนื่องเมื่อผ่านแนวแผ่นกระแส

4. กำหนดให้ $\Delta {f A} \equiv {f A}_{
m above} - {f A}_{
m below}, \ \hat{{f k}} \equiv \hat{{f K}},$ และ $\hat{{f p}} \equiv \hat{{f k}} imes \hat{{f n}}$ จากข้อ 1. และ 2. จะได้ว่า

$$\mu_{0} \left(\mathbf{K} \times \hat{\mathbf{n}} \right) = \mathbf{B}_{\text{above}} - \mathbf{B}_{\text{below}}$$

$$\mu_{0} K \hat{\mathbf{p}} = \nabla \times \left(\mathbf{A}_{\text{above}} - \mathbf{A}_{\text{below}} \right)$$

$$= \nabla \times \Delta \mathbf{A}$$

$$= \begin{vmatrix} \hat{\mathbf{k}} & \hat{\mathbf{n}} & \hat{\mathbf{p}} \\ D_{k} & D_{n} & D_{p} \\ \Delta A_{k} & \Delta A_{n} & \Delta A_{p} \end{vmatrix}$$

$$= \hat{\mathbf{p}} \left(\frac{\partial}{\partial k} \Delta A_{n} - \frac{\partial}{\partial n} \Delta A_{k} \right) + \hat{\mathbf{k}} \left(\frac{\partial}{\partial n} \Delta A_{p} - \frac{\partial}{\partial p} \Delta A_{n} \right)$$

(เนื่องจาก ${f A}$ ต่อเนื่อง $\partial/\partial k$ และ $\partial/\partial p$ ของข้างบนและข้างล่างจึงเท่ากัน) ดังนั้นก็จะได้ว่า

$$\frac{\partial}{\partial n}\Delta A_k = -\mu_0 K$$
 และ $\frac{\partial}{\partial n}\Delta A_p = 0$ $(\heartsuit 1)$

ต่อมา จาก

$$0 = \nabla \cdot \Delta \mathbf{A} = \frac{\partial}{\partial k} \Delta A_k + \frac{\partial}{\partial n} \Delta A_n + \frac{\partial}{\partial p} \Delta A_p$$

ก็จะได้ว่า

$$\frac{\partial}{\partial n} \Delta A_n = 0 \tag{22}$$

จาก $(\heartsuit 1)$ และ $(\heartsuit 2)$ ก็จะได้

$$\frac{\partial \mathbf{A}_{\text{above}}}{\partial n} - \frac{\partial \mathbf{A}_{\text{below}}}{\partial n} = -\mu_0 \mathbf{K}$$

สรุปก็คือ

สภาวะขอบเขตของ ${f B}$ และ ${f A}$ เมื่อผ่านแผ่นกระแส. บนแผ่นประจุที่มีความหนาแน่นเชิงพื้นที่ σ จะได้ว่า

$$\mathbf{A}_{\text{above}} = \mathbf{A}_{\text{below}} \tag{4.27}$$

และ

$$\mathbf{B}_{\text{above}} - \mathbf{B}_{\text{below}} = \mu_0 \left(\mathbf{K} \times \hat{\mathbf{n}} \right) \tag{4.28}$$

เมื่อ $\hat{\mathbf{n}}$ คือเวกเตอร์หนึ่งหน่วยที่ตั้งฉากกับแผ่นกระแสที่ชี้จากด้านล่างไปด้านบน หรือก็จะได้

$$\frac{\partial \mathbf{A}_{\text{above}}}{\partial n} - \frac{\partial \mathbf{A}_{\text{below}}}{\partial n} = -\mu_0 \mathbf{K}$$
(4.29)

การกระจาย Multipole ของศักย์แม่เหล็ก

พิจารณาการกระจาย multipole ของ ${\bf A}$ (อนุกรมกำลังในรูป 1/r) โดยใช้ (2.19) และ (4.24):

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \oint \frac{1}{\iota} \, \mathrm{d}\ell'$$
$$= \frac{\mu_0 I}{4\pi} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \oint (r')^n P_n(\cos \alpha) \, \mathrm{d}\ell'$$

ก็จะได้พจน์

$$\mathbf{A}_{\mathrm{mon}}(\mathbf{r}) = \frac{\mu_0 I}{4\pi r} \oint \mathrm{d}\boldsymbol{\ell}' = \mathbf{0}$$

ตามที่คาด (เพราะจาก (4.18) เราสมมติไม่มี magnetic monopole)

ก่อนที่จะไปดูพจน์ dipole เราจะต้องพิสูจน์เอกลักษณ์หนึ่งที่จะต้องใช้ก่อน:

Claim.

$$\oint_{\partial S} (\mathbf{c} \cdot \mathbf{r}) \, d\boldsymbol{\ell} = \int_{S} d\mathbf{a} \times \mathbf{c} = \mathbf{a} \times \mathbf{c}$$
(4.30)

พิสูจน์. พิจารณา Stokes' Theorem บน $\mathbf{c}(\mathbf{c} \cdot \mathbf{r})$:

$$\oint_{\partial \mathcal{S}} \mathbf{c}(\mathbf{c} \cdot \mathbf{r}) \cdot d\boldsymbol{\ell} = \int_{\mathcal{S}} (\boldsymbol{\nabla} \times \mathbf{c}(\mathbf{c} \cdot \mathbf{r})) \, d\mathbf{a}$$

จากนั้นสลับการคูณของสเกลาร์ในฝั่งซ้ายและใช้กฎการคูณในฝั่งขวา จะได้

$$\oint_{\partial S} \mathbf{c} \cdot (\mathbf{c} \cdot \mathbf{r}) \, d\boldsymbol{\ell} = \int_{S} (\mathbf{c} \cdot \mathbf{r}) (\nabla \times \mathbf{c}) \cdot d\mathbf{a} - \int_{S} (\mathbf{c} \times \nabla (\mathbf{c} \cdot \mathbf{r})) \cdot dA$$

$$= - \int_{S} (\mathbf{c} \times \mathbf{c}) \cdot da$$

$$= - \int_{S} \mathbf{c} \cdot (\mathbf{c} \times d\mathbf{a})$$

ตัด ${f c}$ ทั้งสองฝั่ง ก็จะได้

$$\oint_{\partial \mathcal{S}} (\mathbf{c} \cdot \mathbf{r}) \, \mathrm{d}\boldsymbol{\ell} = \int_{\mathcal{S}} \mathrm{d}\mathbf{a} \times \mathbf{c}$$

ตามต้องการ

ต่อมาเรามาพิจารณาพจน์ dipole:

$$\mathbf{A}_{\mathrm{dip}}(\mathbf{r}) = \frac{\mu_0 I}{4\pi r^2} \oint r' \cos \alpha \, \mathrm{d}\ell'$$
$$= \frac{\mu_0 I}{4\pi r^2} \oint (\hat{\mathbf{r}} \cdot \mathbf{r}') \, \mathrm{d}\ell'$$

แต่จาก claim (4.30) ก็จะได้ว่า $\oint_{\partial \mathcal{S}} (\hat{\mathbf{r}} \cdot \mathbf{r}') \, d\boldsymbol{\ell}' = \int_{\mathcal{S}} d\mathbf{a} \times \hat{\mathbf{r}} = \mathbf{a} \times \hat{\mathbf{r}}$ ดังนั้น

$$\mathbf{A}_{\mathrm{dip}}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \frac{\mathbf{a} \times \hat{\mathbf{r}}}{r^2}$$

เราจึงนิยาม $magnetic\ dipole\ moment\ (\mathbf{m})$:

นิยาม Magnetic Dipole Moment.

$$\mathbf{m} \equiv I \int \mathbf{da} = I\mathbf{a} \tag{4.31}$$

ก็จะได้ว่า

พจน์ Dipole.

$$\mathbf{A}_{\rm dip}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2} \tag{4.32}$$

โดยสังเกตว่า m นี้ไม่ขึ้นกับจุดกำเนิด

▶ Dipole บริสุทธิ์

เช่นเดียวกับ electric dipole บริสุทธิ์ เราสามารถสร้างจุดที่เป็น magnetic dipole บริสุทธิ์ได้ถ้ามองในลิมิต $I \to \infty$ และ $a \to 0$ โดยให้ $\mathbf{m} = I\mathbf{a}$ คงที่

สมมติให้ ${f m}$ ของ dipole บริสุทธิ์นี้ชี้ในทิศ +z จะได้ว่า

$$\mathbf{A}_{\mathrm{dip}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{m \sin \theta}{r^2} \hat{\mathbf{\Phi}}$$

ดังนั้นจึงได้สนามแม่เหล็กของ dipole บริสุทธิ์:

$$\mathbf{B}_{\mathrm{dip}}(\mathbf{r}) = \mathbf{\nabla} \times \mathbf{A} = \mathbf{\nabla} \times \left(\frac{\mu_0}{4\pi} \frac{m \sin \theta}{r^2} \hat{\mathbf{\phi}} \right)$$

เมื่อคำนวณออกมาจะได้ว่า

สนามแม่เหล็กของ Dipole บริสุทธิ์ในพิกัดทรงกลม.

$$\mathbf{B}_{\mathrm{dip}}(r,\theta) = \frac{\mu_0}{4\pi} \frac{m}{r^3} \left(2\cos\theta \,\hat{\mathbf{r}} + \sin\theta \,\hat{\boldsymbol{\theta}} \right) \tag{4.33}$$

ได้เหมือนกับสนามของ electric dipole บริสุทธิ์พอดี เราจึงหาสูตรในรูปทั่วไปที่ไม่ขึ้นกับพิกัดทรงกลมได้ในแบบเดียว กับ (2.26) ก็จะได้ว่า

สนามแม่เหล็กของ Dipole บริสุทธิ์.

$$\mathbf{B}_{\text{dip}} = \frac{\mu_0}{4\pi} \frac{1}{r^3} \left(3 \left(\mathbf{m} \cdot \hat{\mathbf{r}} \right) \hat{\mathbf{r}} - \mathbf{m} \right) \tag{4.34}$$

\mathbf{v} ทที่ $\mathbf{5} \mid$ สนามแม่เหล็กในสสาร $(\mathbf{TO}\text{-}\mathbf{DO})$

- ▶ 5.1. แมกเนไทเซชัน (TO-DO)
- ▶ Diamagnet, Paramagnet, Ferromagnet

<mark>บทที่ 6</mark> ∣ พลศาสตร์ไฟฟ้า

▶ 6.1. แรงเคลื่อนไฟฟ้า

กฎของ Ohm

ในการเคลื่อนย้ายประจุให้เกิดกระแสก็จะต้องออกแรง เราจึงมาหาความสัมพันธ์ระหว่างแรงกับกระแสกันก่อน

พิจารณาสายไฟที่มีอิเล็กตรอนอิสระอยู่ n อนุภาคต่อหน่วยปริมาตรและแต่ละอิเล็กตรอนมีมวล m_e ประจุ e และ สมมติมีสนามแรง ${\bf f}$ (ต่อหน่วยประจุ) กระทำอยู่กับทั้งสาย แรง ${\bf f}$ จะทำให้อิเล็กตรอนเคลื่อนที่ด้วยอัตราเร่ง a ก่อนที่ จะชนกับอิเล็กตรอนเอีกอนุภาคจนทำให้อัตราเร็ว (โดยเฉลี่ยทั้งหมดแล้ว) กลับมาเป็น 0 อีกครั้ง โดยถ้าสมมติว่าอัตราเร็ว ของอิเล็กตรอนเนื่องจากความร้อนเท่ากับ $v_{\rm thermal}$ และมีระยะทางเฉลี่ย λ ระหว่างการชน เนื่องจาก $v_{\rm thermal}$ มีค่าสูง มาก จึงประมาณได้ว่าความเร่งที่เกิดขึ้นนั้นมีผลน้อยมาก จึงได้เวลาโดยเฉลี่ยก่อนที่จะชนกับอิเล็กตรอนอีกอนุภาคคือ

$$t = \frac{\lambda}{v_{\text{thermal}}}$$

ก็จะได้ขนาดของความเร็วเร็วเฉลี่ยหรือ*อัตราเร็วลอยเลื่อน (drift velocity)* เท่ากับ

$$v_d = \frac{1}{2}at = \frac{a\lambda}{2v_{\text{thermal}}} \tag{6.1}$$

ดังนั้นกระแสจึงเท่ากับ

$$\mathbf{J} = ne\mathbf{v}_d = ne\frac{\lambda \mathbf{a}}{2v_{\text{thermal}}} = \left(\frac{\varkappa e \lambda}{2v_{\text{thermal}} \varkappa m_e}\right) \mathbf{F} = \left(\frac{ne^2 \lambda}{2v_{\text{thermal}} m_e}\right) \mathbf{f}$$
(6.2)

จะเห็นว่าโดยปกติแล้วสำหรับวัสดุทั่วไป ${f J}$ จึงแปรผันตรงกับ ${f f}$:

สมการการแปรผันตรงของกระแสกับแรง.
$$\mathbf{J} = \sigma \mathbf{f} \tag{6.3}$$

โดยที่ σ เป็นค่าคงที่ที่เรียกว่า*สภาพนำไฟฟ้า* (conductivity) ของสสารนั้น (ถ้าสสารเป็นตัวนำในอุดมคติก็จะมี $\sigma=\infty$) และ $\rho\equiv 1/\sigma$ เรียกว่า*สภาพต้านทาน* (resistivity) โดยถ้าแรงที่ใช้เป็นแรงทางไฟฟ้า<u>เท่านั้น</u>โดยมีส่วนของแรงแม่ เหล็กน้อยมาก ๆ ก็จะได้

$$\mathbf{J} = \sigma \mathbf{E} \tag{6.4}$$

และจาก (6.1) จะได้ว่า

อัตราเร็วลอยเลื่อน.

$$v_d = \frac{a\lambda}{2v_{\text{thermal}}} = \frac{eE}{2m_e v_{\text{thermal}}} \lambda = \frac{eE}{2m_e} \tau' = \frac{eE}{m_e} \tau$$
 (6.5)

เมื่อ au' คือเวลาเฉลี่ยระหว่างการชนสองครั้งที่ติดกันและ au คือเวลาเฉลี่ยหลังการชนครั้งก่อนหน้า (โดยใช้เวลาเฉลี่ยบนการสุ่มเลือกอิเล็กตรอน)

หมายเหตุ: สมการ (6.2) และ (6.5) เป็นเพียงการประมาณหยาบ ๆ แบบกลศาสตร์ดั้งเดิมเท่านั้น จึงไม่สามารถ นำมาใช้หา σ และ v_d ได้ในสสารจริง ๆ และยิ่งไปกว่านั้น ในความเป็นจริงแล้วยังมีวัสดุบางชนิดที่ไม่เป็นไปตามกฎการ แปรผันตรงนี้อีกด้วย เราจะเรียกวัสดุที่เป็นไปตามกฎของ Ohm ว่าเป็นวัสดุ Ohmic

สังเกตว่าในการทำให้ความต่างศักย์มากขึ้น k เท่าระหว่างขั้ว*อิเล็กโทรด* เราจะต้องเพิ่ม Q ไป k เท่า ทำให้ $\mathbf E$ เพิ่ม k เท่าและจาก (6.4) จะได้ว่า $\mathbf J$ และ I ก็เพิ่ม k เท่าเช่นกัน ก็จะได้กฎของ Ohm ในอีกรูปแบบ:

กฎของ Ohm ในรูปกระแสและความต่างศักย์.

$$V = IR (6.6)$$

เมื่อ R เป็นค่าคงที่ความต้านทานระหว่างสองจุดนั้น (ในการคำนวณหาความต้านทานใช้ (6.4) ตามในแต่ละระบบได้ เลย) โดย R นี้มีหน่วย SI คือ Ω (ohm)

ในกรณีที่กระแสไหลแบบคงที่ในสสารเนื้อเดียวกันที่เป็นไปตามกฎของ Ohm จาก (4.15) จะได้ว่า

$$\nabla \cdot \mathbf{E} = \frac{1}{\sigma} \nabla \cdot \mathbf{J} = 0 \tag{6.7}$$

ดังนั้นในบริเวณที่สสารเป็นไปตามกฎของ Ohm ก็จะไม่มีประจุตกค้างอยู่ภายในเลย จึงทำให้สามารถใช้ทริคในการแก้ ศักย์และสนามจากสมการ Laplace ได้ตามปกติ

สุดท้าย จาก (6.2) เนื่องจากแรงที่ออกนั้นไม่ส่งผลในอัตราเร็วลอยเลื่อนเพิ่มขึ้นเลย ดังนั้นพลังงานส่วนมากจากการ ชนจะถูกเปลี่ยนเป็นความร้อน โดยถ้ามีประจุไหลต่อเวลาเท่ากับ I โดยศักย์ของประจุลดลง V ก็จะได้

กฎการให้ความร้อนของ Joule.

$$P = IV = I^2 R = \frac{V^2}{R}$$
 (6.8)

แรงเคลื่อนไฟฟ้า

โดยปกติแล้วในวงจรไฟฟ้าจะมีแรงสองแรงในการทำให้ประจุเคลื่อนที่คือแรงจากแหล่งกำเนิด (\mathbf{f}_s) ซึ่งโดยปกติแล้วแรงนี้ จะอยู่แค่ในบริเวณแหล่งกำเนิดเท่านั้น และอีกแรงคือแรงจากสนามไฟฟ้าที่จะเป็นตัวที่ช่วยทำให้กระแสไหลด้วย I คงที่ ตลอดทั้งสาย ดังนั้นแรงต่อประจุโดยรวมจะเท่ากับ

$$f = f_s + E$$

แต่แรง E ที่ช่วยให้กระแสไหลคงที่มาจากไหนล่ะ? เราลองพิจารณาทีละขั้นตอน ดังนี้:

- 1. เมื่อเริ่มต่อสายไฟกับแบตเตอรี่ จะเกิดแรง \mathbf{f}_s ทำให้เกิดกระแสไหลออก โดยถ้ากระแสในสายไฟเปล่านี้เริ่มไหลไม่ คงที่ จะทำให้มีประจุสะสมเกิดขึ้นจึงมี \mathbf{E} ต้านกระแสส่วนที่เร็วเกินไปและเสริมในส่วนที่ซ้าเกินไป
- 2. ที่บริเวณตัวต้านทานก็เช่นเดียวกัน จะต้องมีกระแสเท่ากับนอกตัวต้านทาน แต่คราวนี้ประจุจะสะสมไปเรื่อย ๆ จนกว่าสนามไฟฟ้าที่เกิดขึ้นจะมากพอที่จะพลักประจุผ่านตัวต้านทานไปได้ด้วยกระแสเท่ากับข้างนอก (ตาม (6.4)) โดยกระเกิดประจุสะสมที่ฝั่งหนึ่งของตัวต้านทานก็จะทำให้เกิดประจุสะสมที่ขั้วของแบตเตอรี่ด้วย
- 3. อีกขั้วของแบตเตอรี่ก็จะเกิดกระบวนการเช่นเดียวกับ 1. และ 2. แต่ในทิศและขั้วตรงข้าม

เราจึงนิยามผลของแรงทั้งหมดภายในวงจรว่า*แรงเคลื่อนไฟฟ้า*หรือ emf (electromotive force: \mathcal{E}):

นิยามแรงเคลื่อนไฟฟ้า.

$$\mathcal{E} \equiv \oint \mathbf{f} \cdot d\mathbf{\ell} = \oint \mathbf{f}_s \cdot d\mathbf{\ell}$$
 (6.9)

เนื่องจากสนามไฟฟ้าสถิต $\oint \mathbf{E} \cdot \mathrm{d} \boldsymbol{\ell} = 0$ โดย \mathcal{E} นี้มีหน่วยเป็น V เช่นเดียวกับศักย์ไฟฟ้า

หมายเหตุ: emf นี้นิยามเป็นค่า ณ ขณะหนึ่งเท่านั้น ดังนั้นเมื่อสายไฟขยับ เราจะใช้ dℓ เป็นทิศเดียวกับสายไฟจริง ๆ ไม่ต้องคำนึงถึงความเร็ว

พิจารณาในสภาวะสมดุลหลังจากต่อแบตเตอรี่: สมมติแหล่งกำเนิดเป็นแบตเตอรี่ไร้ความต้านทาน $(\sigma=\infty)$ ก็จะได้ว่าแรงที่ออกในการเคลื่อนประจุเป็น 0 ดังนั้น $0=\mathbf{f}=\mathbf{f}_s+\mathbf{E}$ ก็จะได้

$$V = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{\ell} = \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}_{s} \cdot d\mathbf{\ell} = \oint \mathbf{f}_{s} \cdot d\mathbf{\ell} = \mathcal{E}$$
 (6.10)

แต่ถ้าแบตเตอรี่นี้มีความต้านทาน r (หมายความว่าถ้าตัดแรง \mathbf{f}_s ออกแล้วความต่างศักย์ $V_{\mathrm{off}} = \int \mathbf{E}_{\mathrm{off}} \cdot \mathrm{d} \boldsymbol{\ell} = Ir$) สมการด้านบนจะไม่เป็นจริง โดยจะได้

$$V = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{\ell} = \int_{\mathbf{a}}^{\mathbf{b}} \left(\mathbf{f}_{s} - \frac{\mathbf{J}}{\sigma} \right) \cdot d\mathbf{\ell} = \mathcal{E} + \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E}_{\text{off}} \cdot d\mathbf{\ell} = \mathcal{E} - V_{\text{off}} = \mathcal{E} - Ir$$
 (6.11)

แรงเคลื่อนไฟฟ้าจากสายไฟเคลื่อนที่

เราสามารถเหนี่ยวนำเส้นลวดให้เกิด emf ได้โดยอาศัยสนามแม่เหล็ก ซึ่งเป็นวิธีที่เครื่องกำเนิดไฟฟ้า (generator) ใช้ใน การสร้างกระแสไฟฟ้า โดยยกตัวอย่างเช่น ถ้าเราเอาสายไฟรูปสี่เหลี่ยมมุมฉากที่กว้าง h ไปวางในสนามแม่เหล็ก ${\bf B}$ ที่มี ทิศตั้งฉากกับสายไฟ แล้วทำการดึงสายไฟออกด้วยอัตราเร็ว v ในทิศตั้งฉากกับทั้งสายไฟและ ${\bf B}$ ก็จะได้

$$\mathcal{E} = \int \mathbf{f}_{\text{mag}} \cdot d\boldsymbol{\ell} = vBh$$

แต่เพราะในขณะที่สายไฟมีความเร็ว v กระแสที่เกิดขึ้นก็จะทำให้มีแรงแม่เหล็กต้านไว้ แรงที่ดึงจึงต้องต้านแรงแม่เหล็กนี้ ด้วย โดยถ้าสมมติว่าอิเล็กตรอนไหลด้วยอัตราเร็ว u เทียบกับสายไฟ จะได้แรงที่ต้องดึง $\mathbf{f}_{\mathrm{pull}} = uB$ จึงได้ว่างานที่สาย ไฟนี้ทำต่อประจุเท่ากับ

$$\int \mathbf{f}_{\text{pull}} \cdot d\boldsymbol{\ell} = uB\left(\frac{h}{\cos \theta}\right) \sin \theta = vBh$$

ดังนั้นจริง ๆ แล้วงานที่เกิดขึ้นนั้นมาจากแรงดึงทั้งหมด ไม่ได้มาจากแรงแม่เหล็ก (ซึ่งก็ไม่น่าแปลกใจเพราะแรงแม่เหล็ก ไม่ทำงาน) ต่อมาเราจะมาพิสูจน์กฎที่สำคัญในการหา emf จากการสนามแม่เหล็กดังกระบวนการก่อนหน้านี้

พิจารณาสายไฟวงปิดที่เกิดการเคลื่อนที่หรือบิด ทำให้เกิดการเปลี่ยนแปลงฟลักซ์แม่เหล็กที่ผ่านผิวที่กำหนดเส้น ขอบโดยสายไฟ เมื่อเวลาผ่านไป dt ก็จะเกิด "ริบบิ้น" ของพื้นที่ส่วนที่เปลี่ยนแปลงขึ้น ก็จะได้

$$d\Phi_B = \int_{\text{ribbon}} \mathbf{B} \cdot d\mathbf{a} \tag{01}$$

ถ้าพิจารณา da ที่จุด ๆ หนึ่งโดยให้ความเร็วของอิเล็กตรอน ${f w}$ มาจากสองส่วนคือส่วน ${f v}$ ที่เป็นความเร็วของสายไฟ และ ${f u}$ ที่เป็นความเร็วของกระแส ก็จะได้ว่า

$$d\mathbf{a} = \mathbf{v} dt \times d\boldsymbol{\ell} = (\mathbf{w} - \mathbf{u}) dt \times d\boldsymbol{\ell} = \mathbf{w} dt \times d\boldsymbol{\ell}$$
 (\delta 2)

นำ $(\circ 2)$ ไปแทนใน $(\circ 1)$ จะได้

$$\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} = \int \mathbf{B} \cdot (\mathbf{w} \, \mathrm{d}t \times \mathrm{d}\boldsymbol{\ell}) = -\int (\mathbf{w} \times \mathbf{B}) \cdot \mathrm{d}\boldsymbol{\ell} = -\mathcal{E}$$

ดังนั้น

กฎฟลักซ์แม่เหล็กสำหรับสายไฟเคลื่อนที่.

$$\mathcal{E} = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} \tag{6.12}$$

หมายเหตุ: กฎนี้เห็นชัดจากการพิสูจน์ว่าต้องเกิดจากการเคลื่อนที่ของสายไฟ ดังนั้นการสับสวิทช์ที่ทำให้วงสายไฟใหญ่ ขึ้นจึงไม่ทำให้เกิด emf เป็นอนันต์

▶ 6.2. การเหนี่ยวนำแม่เหล็กไฟฟ้า

กฎของ Faraday

ต่อมา Michael Faraday ได้ทำการทดลองเพิ่มจาก (6.12) โดยแทนที่จะขยับสายไฟ เขาทำการขยับแม่เหล็กและปรับ ขนาดของฟลักซ์แม่เหล็กแทน ปรากฏว่า emf ที่เกิดขึ้นก็ยังคงเป็นไปตาม (6.12) อยู่ดี โดยไม่ต้องขยับสายไฟเลย โดย แรงที่เกิดขึ้นนี้เป็นแรงไฟฟ้าไม่ใช่แรงแม่เหล็ก ดังนั้น

กฎของ Faraday (Integral Form).

$$\mathcal{E} = \oint \mathbf{E} \cdot d\mathbf{\ell} = -\int \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{a} = -\frac{d\Phi}{dt}$$
 (6.13)

โดยถ้าใช้ Stokes' theorem ต่อก็จะได้

$$\int (\mathbf{\nabla} \times \mathbf{E}) \cdot d\mathbf{a} = -\int \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{a}$$

หรือก็คือ

กฎของ Faraday (Differential Form).

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{6.14}$$

เราสามารถรวมกฎของ Faraday (6.13) และกฎฟลักซ์แม่เหล็กสำหรับสายไฟเคลื่อนที่ (6.12) ได้เป็นกฎฟลักซ์แม่ เหล็กรวม (หรือบางคนเรียกว่ากฎของ Faraday) ดังนี้:

กฎฟลักซ์แม่เหล็กรวม.

$$\mathcal{E} = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} \tag{6.15}$$

โดยทิศของกระแสอาจจะมึนจึงมีกฎของ Lenz มาช่วยให้คิดทิศของสนามไฟฟ้าเหนี่ยวนำง่ายขึ้น:

กฎของ Lenz. ธรรมชาติต่อต้านการเปลี่ยนแปลงฟลักซ์แม่เหล็กโดยสร้างกระแสไฟฟ้าเหนี่ยวนำในทิศที่จะเกิด สนามแม่เหล็กต้านการเปลี่ยนแปลงของฟลักซ์

สนามไฟฟ้าเหนี่ยวนำ

เราสามารถสังเกตว่าในกฎของ Faraday ถ้าพิจารณาในปริเวณที่ไม่มีประจุแล้ว

$$\mathbf{\nabla}\cdot\mathbf{E}=0$$
 และ $\mathbf{\nabla} imes\mathbf{E}=-rac{\partial\mathbf{B}}{\partial t}$

ซึ่งเหมือนกับสมการของแม่เหล็กสถิต ดังนั้นเราสามารถใช้ทริคต่าง ๆ คล้ายในบทแม่เหล็กสถิต เช่นจะได้ "กฎ Biot-Savart" ว่า:

กฎ Biot-Savart ของสนามไฟฟ้า.

$$\mathbf{E} = -\frac{1}{4\pi} \frac{\partial}{\partial t} \int \frac{\mathbf{B} \times \hat{\mathbf{i}}}{\mathbf{i}^2}$$
 (6.16)

หรือเราอาจจะใช้ (6.13) เพื่อสร้างลูป Amperian ในการคำนวณสนามไฟฟ้าเหนี่ยวนำได้เช่นกัน

ตัวอย่าง. ประจุที่มีความหนาแน่นเชิงเส้น λ ถูกนำกาวติดไว้ที่ริมของล้อรัศมี b ที่วางในระนาบ xy และหมุน ได้อย่างอิสระ ข้างในล้อมีสนามแม่เหล็กสม่ำเสมอ \mathbf{B}_0 ชี้ในทิศ +z ที่กระจายอยู่ทั่วในทรงกระบอกที่มีศูนย์กลาง เดียวกับล้อและมีรัศมี a < b ถ้าเกิดว่าปิดสนามแม่เหล็กนี้แล้วจะเกิดอะไรขึ้นกับล้อ

วิธีทำ. การปิดสนามนี้จะเกิดการเปลี่ยนแปลงฟลักซ์แม่เหล็กในล้อ จึงจะเกิดสนามไฟฟ้าวนในทิศทวนเข็มนาฬิกา (โดย กฎของ Lenz) เพื่อต้านการเปลี่ยนแปลงของสนามแม่เหล็ก โดยจะได้ทอร์กจากสนามไฟฟ้า ณ เวลาใด ๆ เท่ากับ

$$\tau = b \int dF = b \int E dq = bE\lambda(2\pi b)$$

จาก (4.20) จะได้ว่า

$$\int \mathbf{E} \cdot d\mathbf{\ell} = -\frac{d\Phi_B}{dt}$$
$$E(2\pi b) = -\pi a^2 \frac{dB}{dt}$$

นำไปแทนในทอร์กจะได้

$$\tau = -\lambda \pi a^2 b \frac{\mathrm{d}B}{\mathrm{d}t}$$

ดังนั้น

$$\Delta L = \int \tau \, dt = -\lambda \pi a^2 b \int \frac{dB}{dt} \, dt = \lambda \pi a^2 b (B_{\text{before}} - B_{\text{after}}) = \lambda \pi a^2 b B_0$$

จึงได้ว่าไม่ว่าจะปิดสนามแม่เหล็กนี้เร็วแค่ไหน จะเกิดการเปลี่ยนแปลงโมเมนตัมเชิงมุมเท่ากันเสมอ

ปัญหาหนึ่งของการใช้กฎของ Faraday คือสนามไฟฟ้าเหนี่ยวน้ำที่เกิดขึ้นนี้จะต้องเกิดจากสนามแม่เหล็กที่เปลี่ยน-แปลง ดังนั้นตามทฤษฎีแล้วเราจึงไม่สามารถคำนวณหาสนามแม่เหล็กที่นำมาใส่ในสมการได้ด้วยสมการเดียวกับบทแม่ เหล็กสถิต แต่ในความเป็นจริง ถ้าสนามแม่เหล็กที่เปลี่ยนแปลงนี้เปลี่ยนช้าพอ (เราจะเรียกว่าเปลี่ยนแบบ quasistatic) error ที่เกิดขึ้นจากการใช้กฎจากแม่เหล็กสถิตในการคำนวณนี้จะถือว่าน้อยมาก ๆ ในบริเวณที่อยู่ใกล้ ๆ กับแหล่งกำเนิด ของการเปลี่ยนแปลงนี้

ความเหนี่ยวนำ

พิจารณาขดลวดสายไฟสองขดลวดที่วางไว้อยู่นิ่ง ถ้าลวดเส้นที่หนึ่งมีกระแส I_1 ไหลผ่านจะทำให้เกิดสนามแม่เหล็ก ${\bf B}_1$ และจะเกิดฟลักซ์แม่เหล็ก Φ_2 ผ่านขดลวดที่สอง เนื่องจากกฎ Biot-Savart จะได้ว่า $B_1 \propto I_1$ ดังนั้น $\Phi_2 \propto I_1$ โดย เราจะเรียกค่าคงที่การแปรผันนี้ว่าความเหนี่ยวนำร่วมกัน (mutual inductance: M_{21}) ของขดลวดทั้งสอง:

นิยามความเหนี่ยวนำร่วมกัน.

$$M_{21} \equiv {\Phi_2 \over I_1}$$
 หรือ $\Phi_2 = M_{21} I_1$ (6.17)

พิจารณาการหา M_{21} โดยเราจะเริ่มจาก Φ_2 และใช้ Stokes' theorem:

$$\Phi_2 = \int \mathbf{B}_1 \cdot d\mathbf{a}_2 = \int (\mathbf{\nabla} \times \mathbf{A}_1) \cdot d\mathbf{a}_2 = \oint \mathbf{A}_1 \cdot d\boldsymbol{\ell}_2 = \frac{\mu_0 I_1}{4\pi} \oint \oint \frac{1}{\imath} d\boldsymbol{\ell}_1 d\boldsymbol{\ell}_2$$

ก็จะได้ $M_{21}=M_{12}\equiv M$ และจะได้

สูตรของ Neumann.

$$M = \frac{\mu_0}{4\pi} \oint \oint \frac{\mathrm{d}\ell_1 \cdot \mathrm{d}\ell_2}{\imath} \tag{6.18}$$

จริง ๆ แล้วการเหนี่ยวนำให้เกิดการเปลี่ยนแปลงฟลักซ์แม่เหล็กของสายไฟ ไม่จำเป็นต้องใช้สายไฟสองเส้นก็ได้ เรา จึงนิยาม*ความเหนี่ยวนำตัวเอง (self inductance: L)* หรืออาจจะเรียกสั้น ๆ ว่า*ความเหนี่ยวนำ* ดังนี้

นิยามความเหนี่ยวนำ.

$$L \equiv \frac{\Phi_B}{I}$$
 หรือ $\Phi_B = LI$ (6.19)

ความเหนี่ยวนำมีหน่วยเป็น H (henry) และโดยกฎของ Faraday ก็จะได้ว่าเมื่อพยายามจะทำให้เกิดการเปลี่ยนแปลง ของกระแสในวงจรแบบ quasistatic แล้วจะเกิด emf ในทิศย้อนศร (back emf) เป็นแรงเคลื่อนไฟฟ้าต้านการ เปลี่ยนแปลงของกระแส:

Back Emf. $\mathcal{E}_{\rm back} = -L \frac{{\rm d}I}{{\rm d}t} \eqno(6.20)$

ในวงจรหนึ่ง เราสามารถสร้างขดลวดโซลีนอยด์เพื่อให้มีความเหนี่ยวนำตามที่ต้องการได้ เราจะเรียกขดลวดนี้ว่า*ตัว* เหนี่ยวนำ (inductor)

พลังงานในสนามแม่เหล็ก

จาก (6.20) จะเห็นได้ว่าเราจะต้องใช้พลังงานมากกว่าปกติเพื่อที่จะทำให้เกิดกระแสที่ต้องการในตัวเหนี่ยวนำ (หรือใน วงจร) โดยงานที่จะต้องต้าน back emf นี้เพื่อให้เกิดกระแส I เท่ากับ

$$\frac{\mathrm{d}W}{\mathrm{d}t} = -\mathcal{E}I = LI\frac{\mathrm{d}I}{\mathrm{d}t}$$

ดังนั้นจะได้ว่างานที่ต้องใช้ในการสร้างกระแสในตัวเหนี่ยวนำเท่ากับ

พลังงานสะสมในตัวเหนี่ยวนำ.

$$U = \frac{1}{2}\Phi_B I = \frac{1}{2}LI^2 = \frac{1}{2}\frac{\Phi_B^2}{L}$$
 (6.21)

เราสามารถเขียน (6.21) ได้ในอีกรูป พิจารณา

$$U = \frac{1}{2}\Phi_B I = \frac{1}{2}I\int \mathbf{B} \cdot d\mathbf{a} = \frac{1}{2}I\int (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a} = \frac{1}{2}I\oint \mathbf{A} \cdot d\boldsymbol{\ell} = \frac{1}{2}\oint (\mathbf{A} \cdot \mathbf{I}) d\boldsymbol{\ell}$$

ขยายมาในสามมิติจะได้

$$U = \frac{1}{2} \int (\mathbf{A} \cdot \mathbf{J}) \, d\tau \tag{6.22}$$

ใช้ (4.19) ก็จะได้

$$U = \frac{1}{2\mu_0} \int_{\mathcal{V}} (\mathbf{A} \cdot (\mathbf{\nabla} \times \mathbf{B})) d\tau$$
$$= \frac{1}{2\mu_0} \left(\int_{\mathcal{V}} \mathbf{B} \cdot (\mathbf{\nabla} \times \mathbf{A}) d\tau - \int_{\mathcal{V}} \mathbf{\nabla} \cdot (\mathbf{A} \times \mathbf{B}) d\tau \right)$$
$$= \frac{1}{2\mu_0} \left(\int_{\mathcal{V}} B^2 d\tau - \oint_{\partial \mathcal{V}} (\mathbf{A} \times \mathbf{B}) \cdot d\mathbf{a} \right)$$

เนื่องจากที่ระยะไกล ๆ ${f B}$ และ ${f A}$ เข้าใกล้ ${f 0}$ ดังนั้นพจน์หลังจึงหายไป ก็จะได้

พลังงานในสนามแม่เหล็ก.

$$U = \frac{1}{2\mu_0} \int B^2 \,\mathrm{d}\tau \tag{6.23}$$

โดยเราสามารถใช้ (6.23) และ (6.21) เพื่อนิยามความเหนี่ยวนำที่เป็นระบบสายไฟเชิงพื้นที่หรือเชิงปริมาตรได้ (การหา ฟลักซ์จากระบบเหล่านี้อาจไม่มีนิยามี่ตายตัว) ดังนี้

นิยามความเหนี่ยวนำจากพลังงาน.

$$L \equiv \frac{1}{\mu_0 I^2} \int B^2 \, \mathrm{d}\tau \tag{6.24}$$

▶ 6.3. สมการ Maxwell

▶ ข้อบกพร่องของกฎของ Ampère

ตอนนี้เรามีสมการสี่สมการที่อธิบายแม่เหล็กไฟฟ้า ดังนี้

$$\mathbf{\nabla} \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$
 (กฎของ Gauss)

$$\nabla \cdot \mathbf{B} = 0$$

$$\mathbf{
abla} imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$$
 (กฎของ Faraday)

$$\mathbf{\nabla} \times \mathbf{B} = \mu_0 \mathbf{J}$$
 (กฎของ Ampère)

แต่ยังมีข้อบกพร่องอยู่ในกฎของ Ampère เพราะว่ากฎนี้เราอธิบายมาจากกฎ Biot-Savart ซึ่งใช้ได้เฉพาะระบบที่เป็น แม่เหล็กสถิตหรือมีกระแสคงที่ ข้อบกพร้องนี้เห็นได้ชัดถ้าเราพิจารณา divergence ของสมการกฎของ Ampère:

$$\nabla \cdot (\nabla \times \mathbf{B}) = \mu_0 (\nabla \cdot \mathbf{J})$$
$$0 = \mu_0 (\nabla \cdot \mathbf{J})$$

ซึ่งไม่ได้เป็นจริงเสมอไป

ต่อมา James Clerk Maxwell จึงได้ทำการแก้ข้อบกพร่องนี้โดยอาศัยสมการความต่อเนื่อง:

$$\mathbf{\nabla} \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0$$

นำไปเพิ่มในกฎของ Ampère จากสมการด้านบนจะได้

$$\nabla \cdot (\nabla \times \mathbf{B}) = \mu_0 (\nabla \cdot \mathbf{J}) + \mu_0 \frac{\partial \rho}{\partial t}$$
$$\nabla \cdot (\nabla \times \mathbf{B}) = \mu_0 (\nabla \cdot \mathbf{J}) + \mu_0 \varepsilon_0 \left(\nabla \cdot \frac{\partial \mathbf{E}}{\partial t}\right)$$

ดังนั้นถ้าแก้ไขสมการกฎของ Ampere เป็นดังต่อไปนี้ จะได้กฎที่ไร้ข้อขัดแย้ง:

กฎของ Ampère-Maxwell.

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
 (6.25)

และเราจะเรียกพจน์ $arepsilon_0(\partial \mathbf{E}/\partial t)$ ว่ากระแสแทนที่ $(displacement\ current)$

โดยนำสมการทั้งสิ่มารวมกันทั้งหมดจะได้สมการ Maxwell (Maxwell's equations):

สมการ $\mathbf{Maxwell.}$ การเปลี่ยนแปลงของสนามไฟฟ้า \mathbf{E} และสนามแม่เหล็ก \mathbf{B} ทั้งหมดถูกอธิบายได้ด้วยสี่สมการ:

$$\mathbf{\nabla} \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$
 (กฎของ Gauss)

$$\nabla \cdot \mathbf{B} = 0$$

$$\mathbf{
abla} imes\mathbf{E}=-rac{\partial\mathbf{B}}{\partial t}$$
 (กฎของ Faraday)

$$\mathbf{\nabla} \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
 (กฎของ Ampère-Maxwell)

โดยแรงที่ทำให้เกิดกระแสและการเคลื่อนที่ทั้งหมดอธิบายโดยกฎแรง Lorentz (4.2)

▶ 6.4. สมการ Maxwell ในสสาร (TO-DO)

บทที่ 7 ∣ วงจรไฟฟ้า

▶ 7.1. การวิเคราะห์วงจร

▶ กฎของ Kirchhoff

เรามี "กฎของ Ohm " สำหรับแต่ละ $\mathit{passive\ component}\ (อุปกรณ์ที่ไม่สร้างพลังงาน) ดังนี้$

ความสัมพันธ์ของ V และ I สำหรับ Passive Component. สำหรับดัวเก็บประจุ:

$$i = C \frac{\mathrm{d}v}{\mathrm{d}t} \tag{7.1}$$

สำหรับตัวต้านทาน:

$$v = iR (7.2)$$

และสำหรับตัวเหนี่ยวนำ:

$$v = L \frac{\mathrm{d}i}{\mathrm{d}t} \tag{7.3}$$

(ในบทนี้เราจะใช้ตัวอักษร v และ i ที่เป็นตัวพิมพ์เล็กเพื่อแทนความต่างศักย์และกระแสที่อาจขึ้นกับเวลา) ซึ่งสามารถ นำมาใช้ในการวิเคราะห์วงจรได้ด้วยกฎของ Kirchhoff:

พิจารณาวงจร ณ จุด ๆ หนึ่ง ถ้าที่จุดนั้นไม่มีประจุสะสมอยู่เลยโดย 4.13 จะได้ว่า

Kirchhoff's Current Law (KCL).

$$\sum i_{\rm in} = \sum i_{\rm out} \tag{7.4}$$

โดยกฎนี้ใช้ในการวิเคราะห์วงจรแบบโนด ($nodal\ analysis$) โดยเริ่มจากการตั้งศักย์ไฟฟ้าบนแต่ละโนดและกระแส ที่ไหลเข้าและออกจากแต่ละโนด จากนั้นใช้ (7.4) และ (7.1) ถึง (7.3) ในการเขียนทุกตัวแปรให้อยู่ในรูป V

ต่อมาพิจารณาวงจรที่ไม่มีการเปลี่ยนแปลงสนามแม่เหล็ก จะได้ว่า ${f E}$ เป็นสนามอนุรักษ์ ดังนั้น

Kirchhoff's Voltage Law (KVL).

$$\sum_{\text{loop}} v = 0 \tag{7.5}$$

หมายเหตุ: สังเกตว่าจาก KCL (7.4) และสมบัติเชิงเส้นของ (7.1) ถึง (7.3) จริง ๆ แล้วความต่างศักย์นี้ไม่จำเป็นจะ ต้องคำนวณจากกระแสรวม แต่ขอแค่เป็นกระแสสมมติที่ครบวงปิดก็พอ

กฎนี้ใช้ในการวิเคราะห์วงจรแบบลูป (mesh analysis) โดยเริ่มจากกำหนดกระแสที่วนอยู่ในแต่ละลูปที่กำหนดขึ้น จากนั้นใช้ (7.5) และ (7.1) ถึง (7.3) ตั้งสมการตามจำนวนลูปที่กำหนดไว้เพื่อแก้หา I ในแต่ละลูป

การต่อตัวเก็บประจุ, ตัวต้านทาน, และตัวเหนี่ยวนำอย่างง่าย

พิจารณาการต่อตัวเก็บประจุ C_1 และ C_2 แบบอนุกรม จะได้ว่า q บนตัวเก็บประจุ C_1 จะเท่ากับ q บนตัวเก็บประจุ C_2 ดังนั้น

$$v_{\text{total}} = v_1 + v_2 = \frac{q}{C_1} + \frac{q}{C_2}$$

จึงได้ความจุไฟฟ้ารวมเท่ากับ

$$\frac{1}{C_{\text{total}}} = \frac{1}{C_1} + \frac{1}{C_2}$$

โดยเราสามารถทำแบบนี้ไปได้เรื่อย ๆ ด้วยตัวเก็บประจุกี่ตัวก็ได้ ดังนั้น

การต่อตัวเก็บประจุแบบอนุกรม.

$$\frac{1}{C_{\text{total}}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n} \tag{7.6}$$

และพิจารณาการต่อตัวเก็บประจุ C_1 และ C_2 แบบขนาน จะได้ว่าความต่างศักย์ของตัวเก็บประจุทั้งสองจะต้องเท่ากัน (เพราะเป็นเนื้อตัวนำเดียวกัน) ดังนั้น

$$Q_{\text{total}} = Q_1 + Q_2 = C_1 v + C_2 v$$

จึงได้ความจุไฟฟ้ารวมเท่ากับ

$$C_{\text{total}} = C_1 + C_2$$

โดยเช่นเดียวกับการต่อแบบอนุกรม เราสามารถทำแบบนี้ไปได้เรื่อย ๆ ด้วยตัวเก็บประจุกี่ตัวก็ได้ ดังนั้น

การต่อตัวเก็บประจุแบบขนาน.

$$C_{\text{total}} = C_1 + C_2 + \dots + C_n \tag{7.7}$$

ต่อมาเช่นเดียวกับตัวเก็บประจุ พิจารณาการต่อตัวต้านทาน R_1 และ R_2 แบบอนุกรม จะได้ว่ากระแสไฟฟ้าที่ไหล ผ่านตัวต้านทานทั้งสองจะต้องเท่ากัน ดังนั้น

$$v_{\text{total}} = v_1 + v_2 = iR_1 + iR_2 = iR_1 + iR_2$$

เราสามารถทำแบบนี้ไปได้เรื่อย ๆ ด้วยตัวต้านทานกี่ตัวก็ได้ ดังนั้น

การต่อตัวต้านทานแบบอนุกรม.

$$R_{\text{total}} = R_1 + R_2 + \dots + R_n \tag{7.8}$$

และพิจารณาการต่อตัวต้านทาน R_1 และ R_2 แบบขนาน จะได้ว่าความต่างศักย์ของตัวต้านทานทั้งสองจะต้องเท่ากัน ดังนั้น

$$i_{\text{total}} = i_1 + i_2 = \frac{v}{R_1} + \frac{v}{R_2}$$

เราสามารถทำแบบนี้ไปได้เรื่อย ๆ ด้วยตัวต้านทานกี่ตัวก็ได้ ดังนั้น

การต่อตัวต้านทานแบบขนาน.

$$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$
 (7.9)

สุดท้าย พิจารณาการต่อตัวเหนี่ยวนำ L_1 และ L_2 แบบอนุกรม จะได้ว่ากระแสที่ไหลผ่านตัวเหนี่ยวนำทั้งสองจะต้อง เท่ากัน ดังนั้น

$$v_{\text{total}} = v_1 + v_2 = L_1 \frac{\mathrm{d}i}{\mathrm{d}t} + L_2 \frac{\mathrm{d}i}{\mathrm{d}t} = L_1 \frac{\mathrm{d}i}{\mathrm{d}t} + L_2 \frac{\mathrm{d}i}{\mathrm{d}t}$$

ก็จะได้

การต่อตัวเหนี่ยวนำแบบอนุกรม.

$$L_{\text{total}} = L_1 + L_2 + \dots + L_n \tag{7.10}$$

และพิจารณาการต่อตัวเหนี่ยวนำ L_1 และ L_2 แบบขนาน จะได้ความต่างศักย์บนตัวเหนี่ยวนำทั้งสองเท่ากัน ดังนั้น

$$\frac{\mathrm{d}i_{\mathrm{total}}}{\mathrm{d}t} = \frac{\mathrm{d}i_{1}}{\mathrm{d}t} + \frac{\mathrm{d}i_{2}}{\mathrm{d}t} = \frac{v}{L_{1}} + \frac{v}{L_{2}}$$

ก็จะได้

การต่อตัวเหนี่ยวนำแบบขนาน.

$$\frac{1}{L_{\text{total}}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n} \tag{7.11}$$

▶ 7.2. วงจรอันดับหนึ่ง

อันดับของวงจร

นิยามอันดับของวงจร. *อันดับของวงจร*คืออันดับของสมการเชิงอนุพันธ์ที่อธิบายวงจร เช่นวงจรไฟฟ้ากระแสตรง ที่มีแค่แบตเตอรี่และตัวต้านทานไม่มีอนุพันธ์อะไรเลย จึงเป็นวงจรอันดับศูนย์

โดยวงจรอันดับหนึ่งได้แก่ วงจรที่มีตัวต้านทานและตัวเก็บประจุ (วงจร RC) และวงจรที่มีตัวต้านทานและตัวเหนี่ยว นำ (วงจร RL) และวงจรอันดับสองได้แก่วงจรที่มี passive component ทั้งสาม (วงจร RLC)

> 2005 RC

วงจร RC เป็นวงจรอันดับหนึ่ง โดยจะยกตัวอย่างโจทย์การปล่อยประจุ (discharge) จากตัวเก็บประจุ:

ตัวอย่าง. จงหา v(t) คร่อมตัวเก็บประจุของวงจรที่มีการต่อตัวเก็บประจุ C และตัวต้านทาน R แบบอนุกรม โดยที่ C มีประจุเริ่มต้น Q_0

 $\widehat{\it 256}$ ทำ. ให้ i_R และ i_C คือกระแสที่ไหลออกจากจุด ๆ หนึ่งที่อยู่ฝั่งบวกของตัวเก็บประจุ จากนั้นใช้ KCL จะได้

$$i_R + i_C = 0$$

$$\frac{v}{R} + C \frac{\mathrm{d}v}{\mathrm{d}t'} = 0$$

$$-\frac{1}{RC} dt' = \frac{1}{v} dv$$

$$-\int_0^t \frac{1}{RC} dt' = \int_{V_0}^{v(t)} \frac{1}{v} dv$$

$$-\frac{1}{RC}t = \log\left(\frac{v(t)}{V_0}\right)$$

เนื่องจาก $V_0=Q_0/C$ ก็จะได้

$$v(t) = \frac{Q_0}{C} \exp\left(-\frac{1}{RC}t\right)$$

โยเราจะเรียก $au \equiv RC$ ว่าค่าคงที่เวลา $(time\ constant)$

พิจารณาวงจรที่มี C ที่ $steady\ state$ (เมื่อจงจรเป็น $steady\ current$) ก็จะได้ว่า

$$i_C = C \frac{\mathrm{d} v}{At} = 0$$

ดังนั้นเมื่อ $t \to \infty$ จะสามารถมองได้ว่า C เปรียบเสมือนสายไฟขาด

▶ วงจร RL

วงจร RL เป็นวงจรอันดับหนึ่ง โดยจะยกตัวอย่างโจทย์การต่อแบตเตอรี่กับวงจรที่มี L:

ตัวอย่าง. จงหา i(t) และค่าคงที่เวลา au ของการต่อแบตเตอรี่ที่มีแรงเคลื่อนไฟฟ้า $\mathcal E$ ในวงจรที่มีการต่อตัว ต้านทาน R และตัวเหนี่ยวนำ L แบบอนุกรม โดยที่ ณ เวลา t=0 ไม่มีกระแสไหลอยู่เลย

 $\hat{\textit{75}}$ ทึ่ง. วนลูปที่มีกระแส i(t) รอบวงจร จากนั้นใช้ KVL จะได้

$$v_R + v_L - \mathcal{E} = 0$$

$$iR + L \frac{\mathrm{d}i}{\mathrm{d}t'} = \mathcal{E}$$

$$-\frac{1}{L} \, \mathrm{d}t' = \frac{1}{iR - \mathcal{E}} \, \mathrm{d}i$$

$$-\int_0^t \frac{1}{L} \, \mathrm{d}t' = \int_0^{i(t)} \frac{1}{iR - \mathcal{E}} \, \mathrm{d}i$$

$$-\frac{R}{L}t = \log\left(\frac{\mathcal{E} - Ri(t)}{\mathcal{E}}\right)$$

ดังนั้นก็จะได้

$$i(t) = \frac{\mathcal{E}}{R} \left(1 - \exp\left(-\frac{R}{L}t\right) \right)$$

และค่าคงที่เวลา au = L/R

พิจารณาวงจรที่มี L ที่ steady state ก็จะได้ว่า

$$v = L \frac{\mathrm{d}i}{\mathrm{d}t} = 0$$

ดังนั้นเมื่อ $t \to \infty$ จะสามารถมองได้ว่า L เปรียบเสมือนสายไฟเปล่า

▶ 7.3. วงจรอันดับสอง

วงจร RLC แบบอนุกรม

พิจารณากระแก้สมการของวงจรที่เป็น RLC ที่ต่อแบบอนุกรมโดยไม่มีแบตเตอรี่ โดย KVL จะได้ (ให้กระแสไหลออก จากฝั่งลบของตัวเก็บประจุ)

$$v_R + v_L + v_C = 0$$
$$\frac{\mathrm{d}}{\mathrm{d}t}(v_R + v_L + v_C) = 0$$
$$L\frac{\mathrm{d}^2i}{\mathrm{d}t^2} + R\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{C}i = 0$$

เราสามารถแก้สมการนี้ได้โดยการใช้ราก $s_{1,2}$ ของ characteristic equation:

$$x^2 + (R/L)x + 1/LC = 0$$

ก็จะได้คำตอบคือ

คำตอบของ Characteristic Equation ของ RLC แบบอนุกรม.

$$s_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$
 (7.12)

โดยเราจะนิยามราก $s_{1,2}$ ของสมการว่าเป็นความถี่ธรรมชาติของวงจร และก็จะนิยาม $damping\ factor\ (\alpha)$ และความถี่ $resonant\ (\omega_0)\ (undamped\ natural\ frequency)$ ดังนี้:

นิยาม Damping Factor และความถี่ Resonant.

$$s_{1,2} \equiv -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \tag{7.13}$$

หมายเหตุ: โดยเราจะใช้หน่วย $\mathrm{Np/s}$ สำหรับ α แต่จริง ๆ แล้วหน่วย Np (neper) นี้เป็นน่วยที่ไม่มีมิติเหมือนกับ rad ในที่นี้ก็จะได้

Damping Factor และความถี่ Resonant ของ RLC แบบอนุกรม.

$$\alpha = \frac{R}{2L}$$
 และ $\omega_0 = \frac{1}{\sqrt{LC}}$ (7.14)

เมื่อแก้สมการเชิงอนุพันธ์ ถ้าราก $s_{1,2}$ เป็นจำนวนจริง $(lpha>\omega_0)$ จะได้ว่า

วงจร RLC อนุกรมแบบ Underdamped.

$$i(t) = A_1 \exp(s_1 t) + A_2 \exp(s_2 t) \tag{7.15}$$

โดยเราจะเรียกว่าเป็นวงจร underdamped

แต่ถ้าราก $s_{1,2}$ เป็นรากซ้ำ $(\alpha=\omega_0)$ โดยให้เป็น s จะได้ว่า

วงจร RLC อนุกรมแบบ Critically Damped.

$$i(t) = (A_2 + A_1 t) \exp(st)$$
 (7.16)

โดยเราจะเรียกว่าเป็นวงจร critically damped

และสุดท้าย ถ้าราก $s_{1,2}$ ไม่เป็นจำนวนจริง ($\alpha < \omega_0$) เราจะนิยามความถี่ damped (damped natural frequency):

นิยามความถี่ Damped.

$$\omega_d \equiv \sqrt{\omega_0^2 - \alpha^2} \tag{7.17}$$

และก็จะได้คำตอบของสมการว่า

วงจร RLC อนุกรมแบบ Overdamped.

$$i(t) = \exp(-\alpha t) \left(A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t) \right) \tag{7.18}$$

โดยเราจะเรียกว่าเป็นวงจร overdamped

วงจร RLC แบบขนาน

พิจารณากระแก้สมการของวงจรที่เป็น RLC ที่ต่อแบบขนานโดยไม่มีแบตเตอรี่ โดย KCL จะได้ (ให้กระแสไหลออก จากฝั่งลบของตัวเก็บประจุ)

$$i_R + i_L + i_C = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(i_R + i_L + i_C) = 0$$

$$C\frac{\mathrm{d}^2 v}{\mathrm{d}t^2} + \frac{1}{R}\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{1}{L}v = 0$$

ก็จะได้ characteristic equation:

$$x^2 + (1/RC)x + 1/LC = 0$$

มีคำตอบ $s_{1,2}$ คือ

คำตอบของ Characteristic Equation ของ RLC แบบขนาน.

$$s_{1,2} = -\frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}} \tag{7.19}$$

ก็จะได้ว่า

Damping Factor และความถี่ Resonant ของ RLC แบบอนุกรม.

$$\alpha = \frac{1}{2RC}$$
 และ $\omega_0 = \frac{1}{\sqrt{LC}}$ (7.20)

ต่อมาเมื่อแก้สมการเชิงอนุพันธ์ (เช่นเดียวกับในกรณีต่อแบบอนุกรมแต่ที่นี้หา v แทน i) ก็จะได้

วงจร RLC ขนานแบบ Underdamped.

$$v(t) = A_1 \exp(s_1 t) + A_2 \exp(s_2 t) \tag{7.21}$$

ในกรณี underdamped,

วงจร RLC ขนานแบบ Critically Damped.

$$v(t) = (A_2 + A_1 t) \exp(st)$$
(7.22)

ในกรณี critically damped, และ

วงจร RLC อนุกรมแบบ Overdamped.

$$v(t) = \exp(-\alpha t) \left(A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t) \right) \tag{7.23}$$

ในกรณี overdamped

▶ 7.4. วงจรไฟฟ้ากระแสสลับ