Tabish Parkar

Summative
Assessment 1:
Systems Analysis
and Design

05HA2309970 Bellville

Investigation Phase

- Why is the system being designed?
- The system looks to better the quality of elderly care by providing caregivers with optimised management tools for scheduling, medication tracking, wellness activities and real-time health monitoring via wearable devices. It also supervises the family involvement aspect and ensures timely alerts for vital health events.
- Who will be using the system?
- Primary users include caregivers at the elderly care centre, elderly residents and family members. Secondary users may include the healthcare professionals and administrative staff.
- What capabilities will the system provide?
- The system will allow for elderly care management, appointment scheduling, medication tracking, integration with wearable health devices, real-time alerts for critical health events and family access for monitoring.

Feasibility Study

- Statement of the Problem:
- Elderly residents often need constant health monitoring and coordinated care, which is challenging with manual processes and is limited real-time data access. This allows for a delayed response to health emergencies and insufficient management.
- Preliminary Investigation and Summary of Findings:
- Paper-based systems and Manual record-keeping methods are insufficient and are prone to errors. Wearable health devices can allow for real-time data but are lacking integration and alert mechanisms. An integrated digital system can improve responsiveness and coordination.

Timeline/Gantt Chart:

Phase	Duration	Start Date End Date
	-	
Requirements Gathering 2 weeks 01/02/2025 14/02/2025		
System Design	3 weeks	15/02/2025 07/03/2025
Development & Test	ing 6 wee	ks 08/03/2025 18/04/2025
Deployment & Traini	ing 2 weel	ks 19/04/2025 02/05/2025

Analysis Phase

- Procedure for collecting data:
- Interviews with caregivers, elderly residents, and family members.
- Observation of current workflows.
- Review of existing health records and device data logs.
- Defining System Requirements:
- User authentication for caregivers, residents, and family members.
- Scheduling module for appointments and wellness activities.
- Medication management with reminder alerts.
- Integration with wearable health devices (heart rate, blood pressure, oxygen levels).
- Real-time alerts for abnormal health metrics.
- Dashboard for health data visualization.
- Secure access for family members to monitor elderly residents.
- Prioritization of Requirements:
- High Priority: Real-time health monitoring, alerts, caregiver management.
- Medium Priority: Scheduling and medication management.
- Low Priority: Advanced analytics and reporting.

Design Phase

Context Diagram:

Flow Chart:

Use Case Diagram:

Sequence Diagram:

Activity Diagram:

Class Diagram:

- UI Design:

- Home screen with various login options for caregiver, resident and family.
- Dashboard showing health metrics, alerts, and schedules.
- Data entry methods for medication and activity management.
- Notification panel for alerts.

- Design Considerations:

- Simple, intuitive navigation for elderly users.
- Secure login with multi-factor authentication.
- Responsive interface for various devices and operating systems.

Implementation Phase

Technology:

- Frontend React.js for responsive and dynamic user interfaces.
- Backend Node.js with Express.js for the server-side logics.
- Database MySQL or MongoDB for flexible data storage.
- Wearable Device Integration RESTful APIs for device data tracking.
- Security OAuth 2.0 for authentication, SSL/TLS for data transmission.
- Alerts & Notifications Firebase Cloud Messaging for real-time alerts.
- Hosting Cloud services like AWS or Azure for scalability when needed.

Summary:

This well-structured SDLC plan allows for the development of an effective, secure and user-friendly elderly care management system that uses modern technologies and integrates real-time health monitoring to improve elderly residents' well-being and family involvement.