Introduction

Marcin Kuta

Michael T. Heath,
 Scientific Computing. An Introductory Survey, 2nd Edition

Endre Suli, David Mayers,
 An Introduction to Numerical Analysis

Qingkai Kong, Timmy Siauw, Alexandre Bayen,
 Python Programming and Numerical Methods.

https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html

Robert Johansson,
 Numerical Python. Scientific Computing and Data Science
 Applications with Numpy, SciPy and Matplotlib, 2nd Edition

 $\mathsf{http:}//\mathsf{www.bg.agh.edu.pl} \to \mathsf{E}\text{-}\mathsf{zasoby}$

Matplotlib

Two types of API:

- object oriented API
- MATLAB API

Matplotlib

```
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-5, 2, 100)
y1 = x**3 + 5*x**2 + 10
v2 = 3*x**2 + 10*x
y3 = 6 * x + 10
fig, ax = plt.subplots()
ax.plot(x, y1, color="blue", label="y(x)")
ax.plot(x, y2, color="red", label="y'(x)")
ax.plot(x, y3, color="green", label="y''(x)")
ax.set_xlabel("x")
ax.set_vlabel("v")
ax.legend()
plt.show()
```

Plotting and visualization

Preparing plots for publication

```
    https://nbviewer.jupyter.org/github/rasbt/
matplotlib-gallery/blob/master/ipynb/publication.
ipynb
```

```
• seaborn
http:
//web.stanford.edu/~mwaskom/software/seaborn/
```

- prettyplotlib
 http://olgabot.github.io/prettyplotlib/
- mlxtend.plotting
 http://rasbt.github.io/mlxtend/

Numpy

```
vec_a = [1,2,3]
vec_b = [4,5,6]

result = 0
for val1, val2 in zip(vec_a, vec_b):
    result += val1*val2

print(result)
```

```
import numpy as np

vec_a = np.array([1,2,3])
vec_b = np.array([4,5,6])

result = np.dot(vec_a, vec_b)
print(result)
```

References I

[1] Michael T. Heath, Scientific Computing. An Introductory Survey, 2nd Edition, http://heath.cs.illinois.edu/scicomp/notes/ 2002