Работа выполнена на версии python 3.7.3

Версии используемых библиотек:

- 1. numpy 1.17.2
- 2. pandas 0.25.0
- 3. matplotlib 3.1.1
- 4. seaborn 0.9.0

Курсовой проект по курсу "Теория вероятностей и математическая статистика"

Цель проекта

Исследовать датасет с данными с сайта imdb:

- 1. Провести разведочный анализ данных.
- 2. Проверить две гипотезы:
 - 2.1 Оценивают в основном либо очень хорошие фильмы, либо очень плохие.
 - 2.2 "У хорошего режиссера плохих фильмов не бывает".

Шаг 1: Подготовка инструментов

Необходимые модули

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings

warnings.filterwarnings('ignore')
%matplotlib inline
```

Загрузка данных

Данные взяты с сайта https://www.kaggle.com/ (https://www.kaggle.com/ (https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset?select=IMDb+movies.csv (https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset?select=IMDb+movies.csv)

Загрузим данные в переменную movies_data.

```
In [2]: movies_data_base=pd.read_csv('archive/IMDb movies.csv')
    movies_data=movies_data_base.copy()
    movies_data.shape
Out[2]: (85855, 22)
```

Шаг 2: Разведочный анализ данных.

Out[3]:

	0	1	2			
imdb_title_id	tt0000009	tt0000574	tt0001892			
title	Miss Jerry	The Story of the Kelly Gang	Den sorte drøm			
original_title	Miss Jerry	The Story of the Kelly Gang	Den sorte drøm			
year	1894	1906	1911			
date_published	1894-10-09	1906-12-26	1911-08-19			
genre	Romance	Biography, Crime, Drama	Drama			
duration	45	70	53			
country	USA	Australia	Germany, Denmark			
language	None	None	NaN			
director	Alexander Black	Charles Tait	Urban Gad			
writer	Alexander Black	Charles Tait	Urban Gad, Gebhard Schätzler-Perasini			
production_company	Alexander Black Photoplays	J. and N. Tait	Fotorama			
actors	Blanche Bayliss, William Courtenay, Chauncey D	Elizabeth Tait, John Tait, Norman Campbell, Be	Asta Nielsen, Valdemar Psilander, Gunnar Helse			
description	The adventures of a female reporter in the 1890s.	True story of notorious Australian outlaw Ned	Two men of high rank are both wooing the beaut			
avg_vote	5.9	6.1	5.8			
votes	154	589	188			
budget	NaN	\$ 2250	NaN			
usa_gross_income	NaN	NaN	NaN			
worlwide_gross_income	NaN	NaN	NaN			
metascore	NaN	NaN	NaN			
reviews_from_users	1	7	5			
reviews_from_critics	2	7	2			

In [4]: movies_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 85855 entries, 0 to 85854
Data columns (total 22 columns):
imdb_title_id
                         85855 non-null object
title
                         85855 non-null object
original_title
                         85855 non-null object
year
                         85855 non-null object
                         85855 non-null object
date_published
genre
                         85855 non-null object
duration
                         85855 non-null int64
                         85791 non-null object
country
language
                         85022 non-null object
                         85768 non-null object
director
writer
                         84283 non-null object
                         81400 non-null object
production_company
                         85786 non-null object
actors
description
                         83740 non-null object
                         85855 non-null float64
avg_vote
votes
                         85855 non-null int64
                         23710 non-null object
budget
usa_gross_income
                         15326 non-null object
worlwide gross income
                         31016 non-null object
metascore
                         13305 non-null float64
                         78258 non-null float64
reviews_from_users
reviews_from_critics
                         74058 non-null float64
dtypes: float64(4), int64(2), object(16)
memory usage: 14.4+ MB
```

Датасет содержит 22 признака.

В рамках данной работы исследуем следующий набор признаков:

```
1. imdb_title_id - ID
```

^{2.} original_title - Название

^{3.} year - Год

^{4.} genre - Жанр

^{5.} director - Режиссер

^{6.} avg_vote - Средняя оценка

^{7.} votes - Количество голосов

```
In [6]: data = movies_data[features]
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 85855 entries, 0 to 85854
        Data columns (total 7 columns):
                         85855 non-null object
        imdb_title_id
        original_title
                         85855 non-null object
                         85855 non-null object
        year
        genre
                         85855 non-null object
        director
                         85768 non-null object
                         85855 non-null float64
        avg_vote
        votes
                         85855 non-null int64
        dtypes: float64(1), int64(1), object(5)
        memory usage: 4.6+ MB
```

В датасете не хватает данных по признаку "Режиссер". Так как не хватает небольшого количества данных, удалим фильмы с пропущенными данными.

```
In [7]: index_array_director = data.loc[data.director.isnull()].index
        data=data.drop(index_array_director,axis=0)
        data=data.reset_index(drop=True)
In [8]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 85768 entries, 0 to 85767
        Data columns (total 7 columns):
        imdb_title_id
                         85768 non-null object
                         85768 non-null object
        original_title
                         85768 non-null object
        year
                         85768 non-null object
        genre
        director
                         85768 non-null object
                         85768 non-null float64
        avg_vote
                         85768 non-null int64
        votes
        dtypes: float64(1), int64(1), object(5)
        memory usage: 4.6+ MB
```

Теперь в исследуемом датасете нет пропущенных значений. Информативных признаков 6 (ID не считаем). Рассмотрим их.

Название (original_title)

```
In [9]: data['original_title'].describe()
Out[9]: count    85768
    unique    80772
    top    Anna
    freq     10
    Name: original_title, dtype: object
```

Просто по названию сложно что-либо сказать. Пока видим, что много повторяющихся названий. В топе по повторениям фильмы с названием "Anna".

Год (year)

```
data['year'].describe()
In [10]:
Out[10]: count
                    85768
         unique
                     167
                     2017
         top
                    3216
         Name: year, dtype: object
In [11]: data['year'].value_counts()
Out[11]: 2017
                  3216
         2018
                  3177
                  2984
         2016
         2015
                  2760
         2014
                  2507
         1962
         1964
         1978
         1988
         1980
         Name: year, Length: 167, dtype: int64
In [12]: | data.loc[data['year']=='TV Movie 2019','year']=2019
```

Видим, что у нас в датасете есть информация о фильмах за 166 лет. Больше всего фильмов 2017 года. Посмотрим на количество фильмов по годам на графике.

```
In [14]: data['year']=data['year'].astype(int)
In [15]: year_data = data['year'].value_counts().rename_axis('year').reset_index(name='counts').sort_values(by=['year']).year_data.head(10)
```

Out[15]:

	year	counts
111	1894	1
110	1906	1
108	1911	5
109	1912	5
107	1913	13
106	1914	22
105	1915	23
101	1916	35
104	1917	25
103	1918	28

Пока можно сделать вывод только о том, что с развитием кинематографа увеличивалось количество снятых фильмов. 2020 год отстает, так как он еще не закончился, а 2019 можно предположить, что отстает из-за пандемии.

Жанр (genre)

```
In [18]: | data['genre'].value_counts()
Out[18]: Drama
                                         12535
                                          7679
         Comedy
         Comedy, Drama
                                          4037
         Drama, Romance
                                          3455
         Comedy, Romance
                                          2507
         Fantasy, Music, Romance
         Adult, Crime, Horror
                                             1
         Adventure, Mystery, Western
                                             1
         Romance, Thriller, Crime
                                             1
         Crime, Mystery, Comedy
         Name: genre, Length: 1254, dtype: int64
```

У одного фильма может быть указано несколько жанров, перечисленных в одну строку. Разобьем эти данные на отдельные признаки по жанрам. Если жанр-признак относится к фильму, в соответствующей ячейке будет стоять 1, иначе 0.

```
genre_extra = pd.unique(data['genre']).tolist()
In [19]:
         print(len(genre_extra))
         genres = []
         for i in genre_extra:
             gen = i.split(',')
             for g in gen:
                 if g.startswith(' '):
                     g = g[1:]
                 if not g in genres:
                     genres.append(g)
         print(len(genres))
         print(genres)
         1254
         ['Romance', 'Biography', 'Crime', 'Drama', 'History', 'Adventure', 'Fantasy', 'War', 'Mystery', 'Horror', 'W
         estern', 'Comedy', 'Family', 'Action', 'Sci-Fi', 'Thriller', 'Sport', 'Animation', 'Musical', 'Music', 'Film
         -Noir', 'Adult', 'Documentary', 'Reality-TV', 'News']
In [20]: for genre in genres:
             data.loc[data['genre'].str.contains(genre, regex=False),genre]=1
             data.loc[data[genre].isnull(),genre]=0
In [21]: data.head(3)
```

	imdb_title_id	original_title	year	genre	director	avg_vote	votes	Romance	Biography	Crime	 Thriller	Sport	Animation	Musical	N
0	tt0000009	Miss Jerry	1894	Romance	Alexander Black	5.9	154	1.0	0.0	0.0	 0.0	0.0	0.0	0.0	
1	tt0000574	The Story of the Kelly Gang	1906	Biography, Crime, Drama	Charles Tait	6.1	589	0.0	1.0	1.0	 0.0	0.0	0.0	0.0	
2	tt0001892	Den sorte drøm	1911	Drama	Urban Gad	5.8	188	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	

3 rows × 32 columns

Out[21]:

Получилось 25 уникальных жанров. Посмотрим на количество фильмов в разрезе жанра. Если фильм относится сразу к нескольким жанрам, будем учитывать его во всех релевантных жанрах.

```
In [22]: print(genres)
    genres_names = genres
    genres_count = []
    for i in genres:
        genres_count.append(data[(data[i]==1)][i].value_counts()[1])
    print(genres_count)
    print(len(genres), len(genres_count))

['Romance', 'Biography', 'Crime', 'Drama', 'History', 'Adventure', 'Fantasy', 'War', 'Mystery', 'Horror', 'Western', 'Comedy', 'Family', 'Action', 'Sci-Fi', 'Thriller', 'Sport', 'Animation', 'Musical', 'Music', 'Film'
```

[14125, 2377, 11065, 47087, 2293, 7578, 3809, 2239, 5220, 9550, 1583, 29337, 3957, 12922, 3601, 11386, 1062,

2120, 2040, 3680, 663, 2, 2, 3, 1] 25 25

-Noir', 'Adult', 'Documentary', 'Reality-TV', 'News']

```
In [23]: genre_data = pd.DataFrame({'genre':genres, 'counts':genres_count})
genre_data
```

Out[23]:

	genre	counts
0	Romance	14125
1	Biography	2377
2	Crime	11065
3	Drama	47087
4	History	2293
5	Adventure	7578
6	Fantasy	3809
7	War	2239
8	Mystery	5220
9	Horror	9550
10	Western	1583
11	Comedy	29337
12	Family	3957
13	Action	12922
14	Sci-Fi	3601
15	Thriller	11386
16	Sport	1062
17	Animation	2120
18	Musical	2040
19	Music	3680
20	Film-Noir	663
21	Adult	2
22	Documentary	2
23	Reality-TV	3
24	News	1

Получившиеся данные отобразим на круговой диаграмме.

Для лучшей визуализации, соберем жанры с количеством фильмов менее 1000 в одну группу 'other'.

```
In [24]: other_counts = genre_data.loc[genre_data['counts'] <= 1000, 'counts'].sum()
    index_array_other = genre_data.loc[genre_data['counts'] <= 1000].index
    genre_data=genre_data.drop(index_array_other,axis=0)
    genre_data=genre_data.reset_index(drop=True)
    genre_data.loc[len(genre_data)] = {'genre': 'other', 'counts': other_counts}
    genre_data = genre_data.sort_values('counts', ascending=True)
    genre_data</pre>
```

Out[24]:

	genre	counts
20	other	671
16	Sport	1062
10	Western	1583
18	Musical	2040
17	Animation	2120
7	War	2239
4	History	2293
1	Biography	2377
14	Sci-Fi	3601
19	Music	3680
6	Fantasy	3809
12	Family	3957
8	Mystery	5220
5	Adventure	7578
9	Horror	9550
2	Crime	11065
15	Thriller	11386
13	Action	12922
0	Romance	14125
11	Comedy	29337
3	Drama	47087

Самые многочисленные жанры - это драма и комедия.

Посмотрим, как распределились жанры фильмов по годам.

Out[26]:

	0	1	2
imdb_title_id	tt0000009	tt0000574	tt0001892
original_title	Miss Jerry	The Story of the Kelly Gang	Den sorte drøm
year	1894	1906	1911
genre	Romance	Biography, Crime, Drama	Drama
director	Alexander Black	Charles Tait	Urban Gad
avg_vote	5.9	6.1	5.8
votes	154	589	188
Romance	1	0	0
Biography	0	1	0
Crime	0	1	0
Drama	0	1	1
History	0	0	0
Adventure	0	0	0
Fantasy	0	0	0
War	0	0	0
Mystery	0	0	0
Horror	0	0	0
Western	0	0	0
Comedy	0	0	0
Family	0	0	0
Action	0	0	0
Sci-Fi	0	0	0
Thriller	0	0	0
Sport	0	0	0
Animation	0	0	0
Musical	0	0	0
Music	0	0	0
Film-Noir	0	0	0
Adult	0	0	0
Documentary	0	0	0
Reality-TV	0	0	0
News	0	0	0

Out[27]:

```
genre
            year
                   counts
0 Romance 1894.0
                       1.0
1 Biography 1906.0
                       1.0
      Crime 1906.0
                       1.0
     Drama 1906.0
                       1.0
3
     Drama 1911.0
                       3.0
     History 1911.0
                       1.0
6 Adventure 1911.0
                       1.0
    Fantasy 1911.0
                       2.0
       War 1911.0
                       2.0
9 Biography 1912.0
                       1.0
```


Размеры кругов отражают количество фильмов, отснятых в этом жанре.

Здесь можно сделать вывод о том, что с течением времени стали снимать больше фильмов в жанрах "Драма", "Романтика", "Комедия", "Триллер", и "Экшн". То есть фильмы стали более ориентированы на эмоциональную реакцию зрителей.

In [30]: data.head(5).T

Out[30]:

	0	1	2	3	4
imdb_title_id	tt0000009	tt0000574	tt0001892	tt0002101	tt0002130
original_title	Miss Jerry	The Story of the Kelly Gang	Den sorte drøm	Cleopatra	L'Inferno
year	1894	1906	1911	1912	1911
genre	Romance	Biography, Crime, Drama	Drama	Drama, History	Adventure, Drama, Fantasy
director	Alexander Black	Charles Tait	Urban Gad	Charles L. Gaskill	Francesco Bertolini, Adolfo Padovan
avg_vote	5.9	6.1	5.8	5.2	7
votes	154	589	188	446	2237
Romance	1	0	0	0	0
Biography	0	1	0	0	0
Crime	0	1	0	0	0
Drama	0	1	1	1	1
History	0	0	0	1	0
Adventure	0	0	0	0	1
Fantasy	0	0	0	0	1
War	0	0	0	0	0
Mystery	0	0	0	0	0
Horror	0	0	0	0	0
Western	0	0	0	0	0
Comedy	0	0	0	0	0
Family	0	0	0	0	0
Action	0	0	0	0	0
Sci-Fi	0	0	0	0	0
Thriller	0	0	0	0	0
Sport	0	0	0	0	0
Animation	0	0	0	0	0
Musical	0	0	0	0	0
Music	0	0	0	0	0
Film-Noir	0	0	0	0	0
Adult	0	0	0	0	0
Documentary	0	0	0	0	0
Reality-TV	0	0	0	0	0
News	0	0	0	0	0

Теперь посмотрим на то, какие жанры получили наиболее высокие оценки за все время.

Для этого по каждому жанру просуммируем средние оценки фильмов и разделим на количество фильмов в этом жанре. В случае, если фильм относится к нескольким жанрам, учитываем его несколько раз в соответствующих жанрах.

Если в выборке у жанра менее 30 фильмов, не будем рассматривать его, так как выборка нерепрезентативна.

```
In [31]: genres_votes_data = pd.DataFrame(data={'genre':[], 'sum_votes':[], 'mean_votes':[], 'counts':[]})
```

```
In [32]: film_counts = 0
for genre in genres:
    film_counts = data[(data[genre]==1)][genre].value_counts()[1]
        sum_votes = data[(data[genre]==1)]['avg_vote'].sum()
        mean_votes = 0
        if not film_counts==0:
            mean_votes = sum_votes / film_counts
            genres_votes_data.loc[len(genres_votes_data)] = {'genre': genre, 'sum_votes':sum_votes,'mean_votes': mean_votes, 'counts': film_counts}
        film_counts = 0

index_array_small_counts = genres_votes_data.loc[genres_votes_data['counts'] <= 30].index
        genres_votes_data=genres_votes_data.drop(index_array_small_counts,axis=0)
        genres_votes_data = genres_votes_data.reset_index(drop=True)

genres_votes_data = genres_votes_data.sort_values('mean_votes', ascending=True)
        genres_votes_data</pre>
```

Out[32]:

	genre	sum_votes	mean_votes	counts
9	Horror	46151.3	4.832597	9550.0
14	Sci-Fi	18256.7	5.069897	3601.0
15	Thriller	62326.3	5.473942	11386.0
13	Action	72684.4	5.624857	12922.0
6	Fantasy	21877.5	5.743633	3809.0
8	Mystery	30396.6	5.823103	5220.0
5	Adventure	44283.6	5.843705	7578.0
11	Comedy	172050.9	5.864639	29337.0
12	Family	23445.8	5.925145	3957.0
10	Western	9463.8	5.978395	1583.0
2	Crime	66685.7	6.026724	11065.0
16	Sport	6421.2	6.046328	1062.0
0	Romance	86729.0	6.140106	14125.0
3	Drama	293629.5	6.235893	47087.0
19	Music	22971.2	6.242174	3680.0
18	Musical	12742.9	6.246520	2040.0
17	Animation	13516.7	6.375802	2120.0
7	War	14390.2	6.427066	2239.0
4	History	15003.7	6.543262	2293.0
1	Biography	15745.3	6.624022	2377.0
20	Film-Noir	4405.0	6.644042	663.0

```
In [33]: x = genres_votes_data['genre']
         y = genres_votes_data['mean_votes']
         fig, ax = plt.subplots()
         number = len(x)
         cmap = plt.get_cmap('viridis')
         cs = [cmap(i) for i in np.linspace(0, 1, number)]
         ax.bar(x,y,color=cs)
         ax.plot(genres_votes_data['genre'], genres_votes_data['mean_votes'], '.-g', alpha=0.7, label='genre', lw=3, m
         ec='b', mew=2, ms=10)
         ax.set_xlabel('Жанр')
         ax.set_ylabel('Средняя оценка')
         fig.set_figwidth(30)
                                 # ширина и
         fig.set_figheight(15)
                                   # высота "Figure"
         plt.title('Средняя оценка фильмов жанра')
         plt.grid(True)
         plt.show()
```


Самую высокую среднюю оценку получили фильмы жанра "Нуар", биографические и исторические фильмов.

Посмотрим на то, как распределились плохие и хорошие оценки фильмов по жанрам. Смотрим за весь период времени.

"Положительной" считаем оценку больше либо равную 5, "отрицательной" менее 5.

Жанры с небольшим количеством фильмов также не рассматриваем.

```
In [35]: film p counts = 0
         film_n_counts = 0
         for genre in genres:
             film_p_counts_s = data[(data[genre]==1) & (data['avg_vote']>=5)][genre].value_counts()
             if not film p counts s.empty:
                 film_p_counts = film_p_counts_s[1]
             film_n_counts_s = data[(data[genre]==1) & (data['avg_vote']<5)][genre].value_counts()</pre>
             if not film_n_counts_s.empty:
                 film n counts = film n counts s[1]
             sum_p_votes = data[(data[genre]==1) & (data['avg_vote']>=5)]['avg_vote'].sum()
             sum_n_votes = data[(data[genre]==1) & (data['avg_vote']<5)]['avg_vote'].sum()</pre>
             mean_p_votes = 0
             mean_n_votes = 0
             if not film_p_counts==0:
                 mean_p_votes = sum_p_votes / film_p_counts
             if not film_n_counts==0:
                 mean_n_votes = sum_n_votes / film_n_counts
             genres_votes_bad_good_data.loc[len(genres_votes_bad_good_data)] = {'genre':genre, 'sum_p_votes':sum_p_vot
         es,
                                                                                  'mean_p_votes':mean_p_votes, 'p_count
         s':film_p_counts,
                                                                                  'sum_n_votes':sum_n_votes, 'mean_n_vot
         es':mean_n_votes,
                                                                                  'n_counts':film_n_counts}
             film p counts = 0
             film_n_counts = 0
         index_array_small_counts = genres_votes_bad_good_data.loc[genres_votes_bad_good_data['n_counts'] <= 30].index</pre>
         genres_votes_bad_good_data=genres_votes_bad_good_data.drop(index_array_small_counts,axis=0)
         genres_votes_bad_good_data=genres_votes_bad_good_data.reset_index(drop=True)
         genres_votes_bad_good_data.head(25)
```

Out[35]:

	genre	sum_p_votes	mean_p_votes	p_counts	sum_n_votes	mean_n_votes	n_counts
0	Romance	79964.8	6.397696	12499.0	6764.2	4.160025	1626.0
1	Biography	15381.4	6.728521	2286.0	363.9	3.998901	91.0
2	Crime	59558.8	6.388373	9323.0	7126.9	4.091217	1742.0
3	Drama	271833.8	6.501801	41809.0	21795.7	4.129538	5278.0
4	History	14475.9	6.698704	2161.0	527.8	3.998485	132.0
5	Adventure	38112.0	6.364729	5988.0	6171.6	3.881509	1590.0
6	Fantasy	18286.9	6.356239	2877.0	3590.6	3.852575	932.0
7	War	13620.6	6.663699	2044.0	769.6	3.946667	195.0
8	Mystery	25913.4	6.288134	4121.0	4483.2	4.079345	1099.0
9	Horror	27263.0	5.942241	4588.0	18888.3	3.806590	4962.0
10	Western	8690.8	6.261383	1388.0	773.0	3.964103	195.0
11	Comedy	149117.0	6.306225	23646.0	22933.9	4.029854	5691.0
12	Family	20416.6	6.390172	3195.0	3029.2	3.975328	762.0
13	Action	58563.0	6.300484	9295.0	14121.4	3.893411	3627.0
14	Sci-Fi	12263.0	6.131500	2000.0	5993.7	3.743723	1601.0
15	Thriller	47312.6	6.191938	7641.0	15013.7	4.008999	3745.0
16	Sport	5803.3	6.405408	906.0	617.9	3.960897	156.0
17	Animation	12610.0	6.664905	1892.0	906.7	3.976754	228.0
18	Musical	11880.9	6.506517	1826.0	862.0	4.028037	214.0
19	Music	21464.8	6.488755	3308.0	1506.4	4.049462	372.0

```
In [36]: | x = genres_votes_bad_good_data['genre']
         data_1 = genres_votes_bad_good_data['mean_p_votes']
         data_2 = genres_votes_bad_good_data['mean_n_votes']
         fig, ax = plt.subplots()
         number = len(x)
         cmap = plt.get_cmap('viridis')
         cs = [cmap(i) for i in np.linspace(0, 1, number)]
         ax.bar(x, data_1,color='#3CBB75FF',label='Хорошие оценки')
         ax.bar(x, data_2,color='#440154FF',label='Плохие оценки')
         ax.set_xlabel('Жанр')
         ax.set_ylabel('<mark>Оценка</mark>')
         fig.set_figwidth(30)
                                  # ширина и
         fig.set_figheight(15) # высота "Figure"
         plt.title('Распределение плохих и хороших оценок жанров')
         plt.legend(loc='upper right')
         plt.grid(True)
         plt.show()
```


Тут особых лидеров и аутсайдеров нет. "Хорошая" оценка у всех жанров колеблется около 6, а "плохая" около 4.

Посмотрим на динамику оценок по жанрам и по годам.

```
In [37]: film_counts = pd.Series(data=None)
         genres_years_data_votes_bad_good = pd.DataFrame(data={'year':[], 'genre':[], 'counts':[], 'mean_votes':[], 's
         um_p_votes':[],
                                                                 'mean_p_votes':[], 'p_counts':[], 'sum_n_votes':[],
                                                                 'mean_n_votes':[], 'n_counts':[]})
         for year in years:
             curr_data = data.loc[data['year']==year]
             for genre in genres:
                 counts = 0
                 film_p_counts = 0
                 film_n_counts = 0
                 film_p_counts_s = curr_data[(curr_data[genre]==1) & (curr_data['avg_vote']>=5))[genre].value_counts()
                 if not film p counts s.empty:
                     film p counts = film p counts s[1]
                 film_n_counts_s = curr_data[(curr_data[genre]==1) & (curr_data['avg_vote']<5)][genre].value_counts()</pre>
                 if not film n counts s.empty:
                     film_n_counts = film_n_counts_s[1]
                 counts = film_p_counts + film_n_counts
                 sum_votes = curr_data[(curr_data[genre]==1)]['avg_vote'].sum()
                 sum_p_votes = curr_data[(curr_data[genre]==1) & (curr_data['avg_vote']>=5))['avg_vote'].sum()
                 sum_n_votes = curr_data[(curr_data[genre]==1) & (curr_data['avg_vote']<5)]['avg_vote'].sum()</pre>
                 mean_p_votes = 0
                 mean_n_votes = 0
                 mean_votes = 0
                 if not counts==0:
                     mean_votes = sum_votes / counts
                 if not film_p_counts==0:
                     mean_p_votes = sum_p_votes / film_p_counts
                 if not film_n_counts==0:
                     mean_n\_votes = sum_n\_votes / film_n\_counts
                 genres_years_data_votes_bad_good.loc[len(genres_years_data_votes_bad_good)] = {'year':year, 'genre':g
         enre, 'counts':counts, 'mean_votes':mean_votes,
                                                                                                   'sum_p_votes':sum_p_vo
         tes, 'mean_p_votes':mean_p_votes,
                                                                                                   'p_counts':film_p_coun
         ts, 'sum_n_votes':sum_n_votes,
                                                                                                   'mean_n_votes':mean_n_
         votes, 'n_counts':film_n_counts}
             film_p_counts = 0
             film_n_counts = 0
             counts = 0
         genres_years_data_votes_bad_good[-10:]
```

Out[37]:

	year	genre	counts	mean_votes	sum_p_votes	mean_p_votes	p_counts	sum_n_votes	mean_n_votes	n_counts
2790	2020.0	Thriller	169.0	5.302959	611.3	6.302062	97.0	284.9	3.956944	72.0
2791	2020.0	Sport	6.0	6.300000	37.8	6.300000	6.0	0.0	0.000000	0.0
2792	2020.0	Animation	25.0	6.204000	144.7	6.577273	22.0	10.4	3.466667	3.0
2793	2020.0	Musical	4.0	5.800000	23.2	5.800000	4.0	0.0	0.000000	0.0
2794	2020.0	Music	18.0	5.822222	94.8	6.320000	15.0	10.0	3.333333	3.0
2795	2020.0	Film-Noir	0.0	0.000000	0.0	0.000000	0.0	0.0	0.000000	0.0
2796	2020.0	Adult	0.0	0.000000	0.0	0.000000	0.0	0.0	0.000000	0.0
2797	2020.0	Documentary	0.0	0.000000	0.0	0.000000	0.0	0.0	0.000000	0.0
2798	2020.0	Reality-TV	1.0	2.100000	0.0	0.000000	0.0	2.1	2.100000	1.0
2799	2020.0	News	0.0	0.000000	0.0	0.000000	0.0	0.0	0.000000	0.0

Не сильно информативный график получился. Тут можно сказать, что в целом все жанры имеют одинаковую популярность у зрителей, и нет каких-то особо выделяющихся.

Шаг 3: Проверка гипотез.

Гипотеза 1.

Проверим гипотезу 1: "Зрители голосуют в основном либо за очень хорошие фильмы, либо за очень плохие".

То есть, если фильм понравился, - ему с большой вероятностью поставят хорошую оценку. Или если фильм совсем не понравился, - ему поставят плохую оценку. А если впечатления о фильме "никакие", то и оценивать его не будут, просто просмотрят и забудут.

```
In [39]: votes_count_votes_data = data[['imdb_title_id','avg_vote','votes']]
votes_count_votes_data.head(10)
```

Out[39]:

	imdb_title_id	avg_vote	votes
0	tt0000009	5.9	154
1	tt0000574	6.1	589
2	tt0001892	5.8	188
3	tt0002101	5.2	446
4	tt0002130	7.0	2237
5	tt0002199	5.7	484
6	tt0002423	6.8	753
7	tt0002445	6.2	273
8	tt0002452	6.7	198
9	tt0002461	5.5	225

```
In [40]: fig, ax = plt.subplots() fig.set_size_inches(20, 20)

ax.set_xlabel('Средняя оценка') ax.set_ylabel('Количество оценок') ax.set_title('Средняя оценка и количество')

plt.scatter(votes_count_votes_data['avg_vote'], votes_count_votes_data['votes'], c=votes_count_votes_data['a vg_vote'], cmap = 'viridis', s=50, alpha=0.7, edgecolors = 'black')

plt.show()
```


В гипотезе 1 предполагалось наличие двух "мод" у графика: одна ближе к левому краю, где низкие оценки, другая ближе к правому, где высокие. На нашей выборке получилась одна "мода" ближе к средней оценке 8. Следовательно гипотеза не подтвердилась. Из графика делаем вывод, что голосуют в основном за хоршие фильмы, а, если фильм так себе или не понравился, его и оценивать не будут.

Посмотрим, что это за фильмы, у которых более 1,5 миллионов высоких оценок.

In [41]: data.loc[data['votes']>1500000]

Out[41]:

	imdb_title_id	original_title	year	genre	director	avg_vote	votes	Romance	Biography	Crime	 Thriller	Sport	Animation	M
15526	tt0068646	The Godfather	1972	Crime, Drama	Francis Ford Coppola	9.2	1572674	0.0	0.0	1.0	 0.0	0.0	0.0	
28060	tt0109830	Forrest Gump	1994	Drama, Romance	Robert Zemeckis	8.8	1755490	1.0	0.0	0.0	 0.0	0.0	0.0	
28375	tt0110912	Pulp Fiction	1994	Crime, Drama	Quentin Tarantino	8.9	1780147	0.0	0.0	1.0	 0.0	0.0	0.0	
28447	tt0111161	The Shawshank Redemption	1994	Drama	Frank Darabont	9.3	2278845	0.0	0.0	0.0	 0.0	0.0	0.0	
31273	tt0120737	The Lord of the Rings: The Fellowship of the Ring	2001	Action, Adventure, Drama	Peter Jackson	8.8	1619920	0.0	0.0	0.0	 0.0	0.0	0.0	
32223	tt0133093	The Matrix	1999	Action, Sci-Fi	Lana Wachowski, Lilly Wachowski	8.7	1632315	0.0	0.0	0.0	 0.0	0.0	0.0	
32481	tt0137523	Fight Club	1999	Drama	David Fincher	8.8	1807440	0.0	0.0	0.0	 0.0	0.0	0.0	
34121	tt0167260	The Lord of the Rings: The Return of the King	2003	Action, Adventure, Drama	Peter Jackson	8.9	1604280	0.0	0.0	0.0	 0.0	0.0	0.0	
48062	tt0468569	The Dark Knight	2008	Action, Crime, Drama	Christopher Nolan	9.0	2241615	0.0	0.0	1.0	 0.0	0.0	0.0	
57445	tt1375666	Inception	2010	Action, Adventure, Sci-Fi	Christopher Nolan	8.8	2002816	0.0	0.0	0.0	 0.0	0.0	0.0	

¹⁰ rows × 32 columns

Гипотеза 2.

Проверим гипотезу 2: "У хорошего режиссера плохих фильмов не бывает"

Предполагается, что, если у режиссера есть "топовый" фильм, то и все остальные фильмы у него с хорошими оценками. Смотреть будем на разницу между самой высокой средней оценкой фильма режиссера и самой низкой.

Если у фильма указано несколько режиссеров - берем только первого.

Out[42]:

	imdb_title_id	director	avg_vote
0	tt0000009	Alexander Black	5.9
1	tt0000574	Charles Tait	6.1
2	tt0001892	Urban Gad	5.8
3	tt0002101	Charles L. Gaskill	5.2
4	#0002130	Francesco Bertolini, Adolfo Padovan	7.0

Out[43]:

	imdb_title_id	director	avg_vote	first_director
0	tt0000009	Alexander Black	5.9	Alexander Black
1	tt0000574	Charles Tait	6.1	Charles Tait
2	tt0001892	Urban Gad	5.8	Urban Gad
3	tt0002101	Charles L. Gaskill	5.2	Charles L. Gaskill
4	tt0002130	Francesco Bertolini, Adolfo Padovan	7.0	Francesco Bertolini

```
In [44]: directors = sorted(pd.unique(director_data_dirty['first_director']).tolist())
len(directors)
```

Out[45]:

	first_director	avg_v	ote	mark	diff		
		sum	count	min	max		
0	'Evil' Ted Smith	4.0	1	4.0	4.0	4.000	0.0
1	'Philthy' Phil Phillips	3.7	1	3.7	3.7	3.700	0.0
2	A. Balakrishnan	7.0	1	7.0	7.0	7.000	0.0
3	A. Bhimsingh	55.4	8	6.6	7.2	6.925	0.6
4	A. Dean Bell	9.3	2	2.8	6.5	4.650	3.7

Режиссеры с самыми высокими оценками.

Out[46]:

	first_director	avg_vote				mark	diff	
		sum	count	min	max			
21236	Msn Surya	9.9	1	9.9	9.9	9.9	0.0	•
26505	Sampath Rudra	9.8	1	9.8	9.8	9.8	0.0	
3025	Basheed S.K.	9.8	1	9.8	9.8	9.8	0.0	
177	Abner Official	9.8	1	9.8	9.8	9.8	0.0	
49	Aalmist Subba	9.8	1	9.8	9.8	9.8	0.0	

Выберем режиссеров, у которых более одного фильма и средняя оценка выше 8.

```
In [47]: director_top_data = director_data.loc[(director_data['avg_vote', 'count']>1) & (director_data['mark']>=8)].so
    rt_values(by='mark', ascending=False)
    director_top_data.head(5)
```

Out[47]:

	first_director		avg_vote				diff	
		sum	count	min	max			
18921	Marianne Elliott	17.9	2	8.9	9.0	8.95	0.1	
15994	Kadiri Venkata Reddy	17.7	2	8.5	9.2	8.85	0.7	
7835	Dusan Kovacevic	17.3	2	8.4	8.9	8.65	0.5	
10348	Gippy Grewal	17.2	2	8.4	8.8	8.60	0.4	
30334	Upendra	42.9	5	8.0	8.8	8.58	8.0	


```
In [49]: director_top_data.shape
Out[49]: (80, 7)
```

Получили 80 "хороших" режиссеров, у которых средняя оценка выше 8.

Из графика видно, что в целом гипотеза 2 подтверждается: разница между самой высокой оценкой режиссера и самой низкой не превышает 2. Значит, если фильм режиссера понравился - можно смело смотреть другие фильмы данного режиссера, с большой вероятностью они также понравятся. :)