

Vadhiraj K P P

Department of Electrical Engineering

Unit 2 – Lectures 32 & 33 - Analysis of Parallel RLC circuit; Numerical examples

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Parallel RLC Circuit

By KCL,
$$i(t) = i_{R}(t) + i_{L}(t) + i_{C}(t)$$

In Phasor form, $i = \overline{I_{R}} + \overline{I_{L}} + \overline{I_{C}}$
 $\overline{I_{R}} = \overline{V} * G$ $\overline{I_{L}} = \overline{V} * (-jB_{L})$ $\overline{I_{C}} = \overline{V} * (jB_{C})$
 $\overline{I} = \overline{V} * (G - jB_{L} + jB_{C})$
 $\overline{Y_{T}} = \frac{\overline{I}}{\overline{V}} = (G - jB_{L} + jB_{C}) = \sqrt{G^{2} + (B_{C} - B_{C})^{2}} \angle Tan^{-1}(\frac{B_{C} - B_{L}}{G})$

Case 1: $B_L > B_C$

If $B_L > B_C$ then $VB_L > VB_C$

i.e.,
$$\left| \overline{I_L} \right| > \left| \overline{I_C} \right|$$

The circuit behaves effectively as inductive circuit i.e., parallel RL type.

Phasor Diagram:

$$\Rightarrow = \operatorname{Tan}^{-1}\left(\frac{\mathsf{B}_{\mathsf{c}}^{\mathsf{-}}\mathsf{B}_{\mathsf{c}}}{\mathsf{G}}\right)$$

ELEMENTS OF ELECTRICAL ENGINEERING (UE24EE141B) Case 2: $B_C > B_L$

If
$$B_C > B_L$$
 then $VB_C > VB_L$

i.e.,
$$\left| \overline{I_c} \right| > \left| \overline{I_L} \right|$$

The circuit behaves effectively as a capacitive circuit i.e., parallel RC type.

Phasor Diagram:

$$\phi = -Tan^{-1}\left(\frac{B_{c}-B_{c}}{G}\right)$$

Note: ϕ will be negative in this case since $B_1 < B_C$

Case 3:
$$B_L = B_C$$

If
$$B_L = B_C$$
 then $VB_L = VB_C$ i.e., $|\overline{I_L}| = |\overline{I_C}|$

The circuit behaves effectively as a <u>purely resistive</u> circuit. This case is called **'Parallel Resonance'** case.

Phasor Diagram:

Numerical Example

Question:

Three circuit elements R=2.5 Ω , $X_L=4\Omega$ and $X_C=10\Omega$ are connected in parallel, the reactances being at 50Hz.

- a) Determine the admittance of each element and hence obtain the input admittance.
- b) If this circuit is connected across a 10V, 50Hz AC source, determine the current in each branch and the total input current.

Numerical Example

Solution:

i) Admittance of branch1,
$$Y_1 = \frac{1}{Z_1} = \frac{1}{R} = G = 0.4S$$

Admittance of branch2,
$$Y_2 = \frac{1}{Z_2} = \frac{1}{jX_L} = -jB_L = -j0.25S$$

Admittance of branch3,
$$Y_3 = \frac{1}{Z_3} = \frac{1}{-jX_c} = jB_c = j0.1S$$

Input Admittance
$$Y_{in} = Y_T = Y_1 + Y_2 + Y_3 = (0.4 - j0.15)S$$

PES UNIVERSITY

Numerical Example

Solution (Continued..):

ii) Taking supply voltage as reference, $\bar{V} = 10 \angle 0^{\circ}V$

current in branch 1,
$$I_{R}^{-} = \frac{V}{Z_{1}} = VY_{1} = 10\angle0^{\circ}*0.4 = 4\angle0^{\circ}A$$

current in branch 2,
$$I_L = VY_2 = 10\angle0^**(-j0.25) = 2.5\angle-90^*A$$

current in branch 3,
$$\overline{I_C} = \overline{VY_3} = 1 \angle 90^{\circ}A$$

Input current,
$$\bar{l}_{S} = \bar{l}_{R} + \bar{l}_{L} + \bar{l}_{C} = 4.27 \angle -20.55^{\circ}A$$

Numerical Example

Q10. The admittance of a circuit is (0.05-j0.08)S. Find the values of the resistance and inductive reactance of the circuit if they are a) in parallel b) in series.

Rectangular Snip

Impedance of a two-element parallel AC network is $(6+j8) \Omega$. Determine the elements and their values if the supply frequency is 50Hz.

4M

ask this answer to atharva

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 2. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 3. "Engineering Circuit Analysis", William Hayt Jr.,
- Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu