

INTRODUCTION

The process of predicting the likelihood of a company entering into bankruptcy within a future time period.

It involves the use of financial data, economic indicators, and predictive modeling techniques to assess a firm's financial health and predict potential insolvency.

For creditors and investors, forecasting is a vital tool in risk assessment, enabling more informed decision-making regarding lending and investment strategies.

Early identification of financial distress allows companies to take preemptive measures, potentially avoiding the dire consequences of bankruptcy.

UNDERSTANDING BANKRUPTCY

Chapter 11 - Reorganization:

Management retains control of daily operations but must seek court approval for significant business decisions, aiming to return the company to profitability under supervised guidance.

Chapter 7 - Liquidation:

The business ceases all activities, assets are liquidated, and the company effectively goes out of business, with the proceeds distributed to creditors as per the court's liquidation plan.

Economic Implications: Market Dynamics, Credit and Lending

Social Implications: Employment, Community and Suppliers

DATASET OVERVIEW

Origin of the dataset: SEC filings.

Timeframe: 1999-2018 to predict future values

Scope: 8,262 companies listed on NYSE and NASDAQ.

Total observations: 78,682 firm-year instances.

The dataset is fully complete, with no missing entries, artificial data, or values that have been filled in.

PROBLEM STATEMENT

This project aims to develop a predictive model that uses financial, liabilities, market, and asset parameters from a 10-year historical dataset to forecast the bankruptcy status of companies over the next five years, enhancing decision-making for stakeholders and improving economic stability.

The target variable, 'status_label,' classifies companies into either 'Alive' or 'Failed,' reflecting their bankruptcy status for the next 5 years.

FEATURE OVERVIEW

The dataset has 18 features spanning from X1-X18 representing different financial factors that contribute for each company's year wise bankruptcy status.

The 18 predictor variables can be categorized into groups as:

Financial Performance Metrics: X4 - EBITDA, X6 - Net Income, X12 - EBIT, X13 - Gross Profit, X16 - Total Revenue, X18 - Total Operating Expenses

Asset-related Metrics: X1 - Current assets, X5 - Inventory, X7 - Total Receivables, X10 - Total assets, Liability-related Metrics: X11 - Total Long-term debt, X14 - Total Current Liabilities, X15 - Retained Earnings X17 - Total Liabilities

Market-related Metrics: X8 - Market value (Market capitalization)

Cost-related Metrics: X2 - Cost of goods sold X3 Depreciation and amortization

Revenue-related Metrics: X9 - Net sales.

EXPLORATORY DATA ANALYSIS(EDA)

Tackling multicollinearity: Highly correlated features like X9 with X13 and X16 and X4 with X12

2

Feature Engineering: Near-perfect correlation between X2 and X18, so a new variable X19 'Other costs' was added which accounts for X18 - X2, which relates to all non-goods cost, and X18 will then be dropped.

3

Incorporating control variable:

Years 2008-2010 experienced abrupt financial conditions. A dummy variable/feature 'global_crisis' was added to differentiate between normal operation and those influenced by significant economic disruptions.

1. DATA STANDARDIZATION:

Apply standard scaling to these numerical features implemented by StandardScaler() to ensure that all features contribute equally to the model's performance

2. HANDLING CLASS IMBALANCE:

Implemented an approach involving the resampling of the minority class to mitigate the bias towards the majority class and ensuring a more equitable representation of classes within our dataset.

The minority class was then subjected to an up-sampling process, wherein samples were randomly selected with replacement

3. FEATURE SELECTION:

Features were selected based on their impact to the overall performance and to reduce the complexity of the model, improve its performance, and potentially avoid overfitting using XgBoost regressor.

4. SEQUENCE GENERATION:

A function create_sequences is used to generate sequences of 10 years of financial data for each company as features, and the subsequent 5 years' status as targets.

FEATURE SELECTION

- •Top bankruptcy indicators:
- Retained Earnings(X15)
- Depreciation and Amortization(X3)
- Market value(X8)

MODELING APPROACHES

GRU (Gated Recurrent Unit)

LSTM (Long Short-Term Memory)

Transformers.

Model Evaluation and Comparison

LSTM – 94%
Positive class accuracy – 86%
Negative class accuracy - 94.2%

GRU – 92% Positive class accuracy – 81.9% Negative class accuracy – 92.3%

Transformers – 97%

Positive class accuracy – 0%

Negative class accuracy – 97%

FUTURE WORK

• We aim to integrate ensembling methodologies to optimize model accuracy to achieve better results.

