#### Algorithmes génétiques - Introduction 2

#### **Historique**

- A l'origine: modélisation de populations se reproduisant selon un mode asexué.

Fogel L.J., Owens A. J., Walsh M.J. (1966), <u>Artificial Intelligence through Simulated Evolution</u>, John Wiley.

- Holland, de l'Université du Michigan, a étendu le modèle à des populations où des individus échangent du matériel génétique:

Bagley J.D. (1967), "The Behavior of Adaptive Systems which employ Genetic and Correlation Algorithms", Doctoral Dissertation, University of Michigan, *Dissertation Abstracts International 28(12)*, 5106B.

DeJong K.A. (1975), "An Analysis of the Behavior of a Class of Genetic Adaptive Systems", Doctoral Dissertation, University of Michigan, *Dissertation Abstracts International 36(10), 5140B*.

John Holland (1975), "Adaptation in Natural and Artificial Systems", The University of Michigan Press, Ann Arbor, réimpression par MIT Press (1992).

- Tâches d'apprentissage
- Optimisation de fonctions réelles complexes (multimodalité, discontinuité, etc..)
- Optimisation combinatoire

#### Algorithmes génétiques

#### Idée de base

Soit la population de 8 chromosomes suivante:

| Chromosome 1: 110001 | 90  | [0 , 90]   |
|----------------------|-----|------------|
| Chromosome 2: 010101 | 10  | [90 , 100] |
| Chromosome 3: 111001 | 100 | [100, 200] |
| Chromosome 4: 100101 | 5   | [200, 205] |
| Chromosome 5: 000011 | 95  | [205, 300] |
| Chromosome 6: 010111 | 90  | ]300, 390] |
| Chromosome 7: 001100 | 5   | [390, 395] |
| Chromosome 8: 101010 | 5   | [395, 400] |

<u>Observation</u>: les chromosomes avec des "1" occupant les deux premières positions, ou des "1" occupant les deux dernières positions sont plus performants.

<u>Hypothèse</u>: un chromosome plus performant peut être obtenu en juxtaposant deux "1" dans les deux premières positions, et deux "1" dans les deux dernières positions. Exemple: le chromosome 110011.

- Il est donc important de découvrir les caractéristiques communes des chromosomes performants (schémas), de façon à propager ces caractéristiques au sein de la population.
- C'est ce qu'un algorithme génétique tente de faire.
- N.B. Dans la suite, on suppose toujours que les mesures de performance des chromosomes sont non négatives.

#### Caractéristiques principales des algorithmes génétiques

- Technique de recherche heuristique robuste (générale)
- Stochastique
- S'applique à une population de chromosomes (représentation, encodage d'une valeur, d'une solution)
- Mécanique s'applique à la représentation chromosomique, sans aucune interprétation ou décodage de ce chromosome.
- N'utilise pas de connaissance du domaine d'application, <u>sauf la mesure de performance</u>.
- Algorithme génétique "pur et dur": chaînes de bits, opérateurs de croisement à un point, mutation.
- Equivalence Algorithmes génétiques-Organismes biologiques

| Algorithmes génétiques          | Organismes Biologiques       |
|---------------------------------|------------------------------|
| Chaîne de bits                  | Chromosome (génotype)        |
| Bit                             | Gène                         |
| Position                        | Locus                        |
| Valeur du bit                   | Allèle                       |
| Mesure de performance (fitness) | Adaptation à l'environnement |
| Solution, Structure décodée     | Phénotypes                   |
| Epistatique                     | Non Linéaire                 |

# Exemple d'encodage sous forme de chromosome (pour l'optimisation d'une fonction réelle)

- Soit la fonction:

$$f(x,y) = \frac{0.5 - (\sin (x^2 + y^2)^{0.5})^2}{1.0 + 0.001 (x^2 + y^2)^2}$$

où x, y ε [-100, 100]

- Soit un chromosome de longueur 44.
- On le partitionne en deux parties égales: les 22 premiers bits encodent la valeur de x, et les 22 derniers bits encodent la valeur de y.
- Les deux chaînes de bits sont converties de la base 2 à la base 10.
- On obtient ainsi des valeurs entières pour x et y entre 0 et  $2^{22}-1$ .
- les valeurs entières sont projetées dans l'intervalle [0, 200], en les multipliant par  $200/(2^{22}-1)$ .
- On soustrait 100 à la valeur obtenue de façon à obtenir un nombre réel dans l'intervalle [-100, 100].
- On évalue f au point (x,y) ainsi obtenu. C'est la mesure de performance du chromosome.
- Plus le nombre de bits est élevé, plus la précision du nombre réel est grande.

#### Un algorithme génétique simple

- 1. Créer une population initiale de N chromosomes (Génération 0).
- 2. Évaluer la mesure de performance de chaque chromosome.
- 3. <u>Reproduction</u>. Sélectionner N parents dans la population courante (e.g., sélection proportionnelle: la probabilité de sélection est proportionnelle à la mesure de performance).
- 4. <u>Croisement.</u> Choisir aléatoirement une paire de parents pour le croisement. Échanger des sous-chaînes de bits à l'aide d'un croisement à un point (one-point crossover) de façon à créer deux enfants.
- 5. <u>Mutation</u>. Traiter les deux enfants avec l'opérateur de mutation et ajouter ceux-ci dans la nouvelle population.
- 6. Répéter les étapes 4 et 5 jusqu'à ce que tous les parents aient été traités (N enfants sont créés).
- 7. Remplacer l'ancienne population de chromosomes par la nouvelle (nouvelle génération).
- 8. Évaluer la mesure de performance de chaque chromosome dans la nouvelle population.
- 9. Retourner en (3) si le nombre de générations actuel est moindre que le nombre maximal de générations. Autrement, le résultat final est le meilleur chromosome généré durant la recherche.

#### Un algorithme génétique simple

#### Reproduction

Sélection proportionnelle ("roulette-wheel selection")

- 1. Additionner les mesures de performance de tous les chromosomes dans la population.
- 2. Générer un nombre aléatoire entre 0 et cette somme.
- 3. Sélectionner le premier chromosome dont la mesure de performance additionnée à la somme partielle des mesures de performance des chromosomes précédents est plus grand ou égal au nombre aléatoire.

#### Remarques

- Voir l'exemple plus haut pour une illustration du principe.
- Plus la mesure de performance est élevée, plus la portion de la "roulette" couverte par le chromosome est grande, et plus la probabilité de sélection est élevée.
- De fait, la probabilité de sélection du chromosome i dans une population de n chromosomes est:

$$p_i = f_i / (\sum_{j=1...n} f_j).$$

- Il s'agit donc d'une loi de Bernouilli avec probabilité de succès p<sub>i</sub>.
- Puisqu'on répète le processus n fois de façon indépendante, on obtient une loi binomiale B(n,p<sub>i</sub>), dont l'espérance est np<sub>i</sub>. Le nombre espéré de sélections pour le chromosome i est donc:

$$E_i = n p_i = n f_i / (\sum_{j=1..n} f_j) = f_i / f_{moy}$$

- L'espérance du nombre de sélections correspond à l'espérance du nombre d'enfants. Donc, les chromomes les plus performants se reproduisent davantage.
- Implémentation naive: O(n<sup>2</sup>)
- Implémentation avec un "B-tree": O(n log n)

#### Désavantages

- (1) La variance dans le nombre de sélections pour un chromosome donné est élevée.
- (2) En fait, tout chromosome peut être sélectionné entre 0 et n fois avec une probabilité non nulle.
- (3) Un super-chromosome peut rapidement dominer une population ce qui mène à une convergence prématurée.
- (4) A l'opposé, on obtient une recherche quasi-aléatoire, dans une population où tous les individus ont de très légères différences dans leur mesure de performance.

## Améliorations suggérées pour (3) et (4)

Ajustement des mesures de performance

(a) Ajustement linéaire (linear scaling)

$$f = a f + b$$

sujet à:

$$f_{moy} = f_{moy}$$
  
 $f_{max} = constante * f_{moy}$ 

- Les contraintes assurent qu'un chromosome moyen génère toujours un enfant en moyenne, tandis que le meilleur chromosome génère un nombre d'enfants correspondant à la valeur de la constante.
- La constante ("selection pressure") est habituellement fixée à une valeur entre 1,2 et 2,0.
- Effet de la constante: plus sa valeur est élevée, plus l'écart entre les chromosomes les plus performants et les moins performants augmente.
- Mais, attention aux valeurs négatives!



Ajustement des mesures de performance

(b) Ajustement exponentiel

$$f = f^k$$

(c) Ranking: on utilise le rang d'un chromosome dans la population (selon sa mesure de performance brute), pour calculer une mesure de performance transformée.

Formule de Baker pour le chomosome occupant le i<sup>e</sup> rang, en utilisant des valeurs MAX et MIN définies a priori:

$$\begin{split} f_i &= \text{MAX} - \left[ \left( \text{MAX-MIN} \right) \left( i\text{-}1 \right) / \left( n\text{-}1 \right) \right] \\ &= t \\ \Sigma_i \, f_i &= \sum_i \text{MAX} - \left[ \left( \text{MAX-MIN} \right) \left( i\text{-}1 \right) / \left( n\text{-}1 \right) \right] \\ &= n \, \text{MAX} \, - \sum_i \left( \text{MAX-MIN} \right) \left( i\text{-}1 \right) / \left( n\text{-}1 \right) \\ &= n \, \text{MAX} \, - \left[ \left( \text{MAX-MIN} \right) / \left( n\text{-}1 \right) \right] \, \Sigma_i \left( i\text{-}1 \right) \\ &= n \, \text{MAX} \, - n \left( \text{MAX-MIN} \right) / \, 2 \\ &= n \, \left[ \left( \text{MAX+MIN} \right) / \, 2 \right] \\ &= n \end{split}$$

en supposant que MAX + MIN = 2.

Ainsi, 
$$f_{moy} = 1$$
 et  $E_i = np_i = f'_i / f_{moy} = f'_i$ 

Désavantage: la méthode n'est pas sensible à l'amplitude de la différence entre les performances de deux chromosomes.

#### Améliorations suggérées pour (1) et (2)

Modification du modèle de sélection (de façon à réduire la variance)

- (a) Expected value model, Stochastic Sampling without Replacement
  - 1. Évaluer E<sub>i</sub> selon le modèle proportionnel, en l'occurrence:

$$E_i = f_i / f_{mov}$$

2. Chaque fois qu'un chromosome est sélectionné à l'aide de la roulette, soustraire 1 de E<sub>i</sub>. Si la valeur devient négative, f<sub>i</sub> est mis à 0 et le chromosome ne peut plus être choisi.

Cette approche introduit une borne supérieure (plafond de E<sub>i</sub>) sur le nombre de sélections, mais aucune borne inférieure.

- (b) Remainder Stochastic Sampling without Replacement
  - 1. Évaluer  $E_i$  et considérer la partie entière  $e(E_i)$  et la partie fractionnaire  $frac(E_i)$ .
  - 2. Sélectionner chaque chromosome e(E<sub>i</sub>) fois.
  - 3. Pour compléter la sélection, procéder à une sélection proportionnelle sur les parties fractionnaires  $frac(E_i)$ . Toutefois, dès qu'un chromosome i est sélectionné une fois,  $frac(E_i)$  est mis à 0 (no replacement).

Cette approche introduit une borne supérieure (plafond de  $E_i$ ) sur le nombre de sélections, ainsi qu'une borne inférieure (plancher de  $E_i$ ).

Modification du modèle de sélection (de façon à réduire la variance)

# (c) Stochastic Universal Sampling

- Utilise aussi le concept de la roulette, mais on sélectionne les n chromosomes "d'un seul coup", à l'aide de *n* nombres aléatoires.
- On suppose que  $\Sigma_i$   $f_i = n$ .
- On choisit un nombre aléatoire entre 0 et 1, et on ajoute 1 à ce nombre n-1 fois, de façon à obtenir n nombres compris entre 0 et  $\Sigma_i$   $f_i$ .
- On sélectionne les *n* chromosomes qui correspondent à ces *n* nombres sur la roulette.
- Complexité: O(n).
- Introduit une borne supérieure (plafond de E<sub>i</sub>) sur le nombre de sélections, ainsi qu'une borne inférieure (plancher de E<sub>i</sub>).

#### Croisement

- L'opérateur de croisement permet à deux parents d'échanger des chaînes de bits lors de la génération des enfants.
- Taux de croisement (habituellement fixé à 0,65): lorsque le croisement n'est pas appliqué à deux chromosomes parents, ceux-ci sont copiés tels quels dans la nouvelle population.

#### <u>Croisement à un point</u> (one-point crossover)

- 1. Choisir une position aléatoirement et couper les deux chromosomes parents à cette position
- 2. Échanger les bits situés après la coupure de façon à créer deux enfants

| Exemple: | parent 1 | 1 | 0 | 1 | 0 | 0 | 0 |
|----------|----------|---|---|---|---|---|---|
|          | parent 2 | 0 | 1 | 1 | 1 | 0 | 1 |
|          | enfant 1 | 1 | 0 | 1 | 1 | 0 | 1 |
|          | enfant 2 | 0 | 1 | 1 | 0 | 0 | 0 |

#### Remarques

- Si les bits des deux parents à une position donnée ont la même valeur, alors les deux enfants hériteront de cette valeur.
- Ainsi, deux chromosomes identiques génèrent deux enfants qui leur sont identiques.

#### Croisement

## <u>Croisement à deux points</u> (two-point crossover)

- Généralisation du croisement à un point, où un second point de coupe est choisi aléatoirement.

| Exemple: | parent 1 | 1 | 0 | 1 | 0 | 0 | 0 |
|----------|----------|---|---|---|---|---|---|
|          | parent 2 | 0 | 1 | 1 | 1 | 0 | 1 |
|          | enfant 1 | 1 | 0 | 1 | 1 | 0 | 0 |
|          | enfant 2 | 0 | 1 | 1 | 0 | 0 | 1 |

## <u>Croisement à M points</u> (M-point crossover)

- M positions sont choisies aléatoirement sur chacun des deux chromosomes parents
- Les éléments entre deux positions consécutives sont alternativement échangés et maintenus (le premier segment entre le début du chromosome et la première position sélectionnée étant maintenu sur chacun des chromosomes)

#### <u>Croisement uniforme</u> (uniform crossover)

- Croisement bit par bit
- Pour chaque position, le parent qui fournira le bit au premier enfant est choisi aléatoirement. L'autre parent fournit alors son bit au deuxième enfant.

#### Mutation

- Les enfants générés par l'opérateur de croisement sont ensuite traités bit par bit par l'opérateur de mutation.
- Taux de mutation: en général très petit, de l'ordre de 0,001.
- L'opérateur de mutation permet de maintenir une certaine diversité dans la population
- Particulièrement utile lorsque tous les chromosomes ont la même valeur à une position donnée (allèles perdus).

# Remplacement des générations

- Remplacement complet d'une population par une autre
- Élitisme: maintien du meilleur chromosome dans une population, dans la population suivante.
- Steady-state:

On crée un nombre d'enfants m inférieur à la population totale n

On retire les m chromosomes les moins performants de la population courante, afin de laisser la place aux nouveaux chromosomes.

Note. Élitisme équivaut à Steady-state avec m = n-1. Le remplacement complet de la population équivaut à Steady-state avec m = n.