IGARSS 2021, Belgium

Attention-driven Cross-Modal Remote Sensing Image Retrieval

Ushasi Chaudhuri^a, Biplab Banerjee^a, Avik Bhattacharya^a, & Mihai Datcu^b

> ^aIndian Institute of Technology Bombay, India ^bGerman Aerospace Center (DLR), Germany.

> > July, 2021

Objective

- Due to availability of wide range of satellite sensors, accumulation of an unprecedented volume of remote sensing images.
- ▶ Information to describe X can come from multiple modalities (image, speech, sketch, information from various specral bands, etc.).
- Develop a retrieval technique that can handle cross-modal information.
- Within the same dataset, retrieval is a relatively easy work. If we have different modalities of data, ex Pan images, multi-spectral images, SAR images, optical images, or texts, retrieval amongst cross domain becomes more challenging.

Motivation

- PAN images: High spatial resolution.
- Multi-spectral images: high spectral resolution.
- **SAR images:** Polarization information. No cloud clutter.
- ▶ VHR optical image: High spatial res. + 3 spectral channel.

- 1. 1m pan IKONOS image of Valparaiso, Chile 2. source: https://www.sensorsmag.com/components/hyperspectral-and-multispectral-imaging-sensors-find-hyper-flexible-applications 3. Sentinel-1 SAR dataset with C band4. PatternNet dataset.
 - Important problems:
 - 1. PAN ⇔ Multispectral.
 - Optical ⇔ SAR.
 - 3. RGB \Leftrightarrow DEM.
 - 4. Image ⇔ text.
 - Image ⇔ sketch.

Cross-modal Retreival

Datasets used:

1. Earth on Canvas*: 14 image and sketch classes.

U. Chaudhuri, B. Banerjee, A. Bhattacharya, M. Datcu, "CMIR-NET: A deep learning based model for cross-modal retrieval in remote sensing", *Pattern Recognition Letters* (PRL), volume 131, pp 456-462, 2020.

Cross-modal Retreival

- ► Train 2 separate classification networks $\{(a_k, l_k)\}_{k=1}^{|\mathbf{A}|}$ and $\{(b_j, l_j)\}_{j=1}^{|\mathbf{B}|}$.
- Extracted features (\mathbf{Z}_{a_k} and \mathbf{Z}_{b_j}) are made highly non-redundant by adding a soft orthogonality constrained.

$$\mathcal{L}_{\mathbf{A}/\mathbf{B}} = \mathsf{CE}(\tilde{\mathbf{Z}}_{\mathsf{a}/\mathsf{b}}) + ||\tilde{\mathbf{Z}}_{\mathsf{a}/\mathsf{b}}^T \tilde{\mathbf{Z}}_{\mathsf{a}/\mathsf{b}} - \mathbf{I}||_{\mathsf{F}}^2$$

▶ $\{Z_{a_i}\}$ and $\{Z_{b_i}\}$ are considered as inputs for obtaining V.

Objective Function

▶ 1. **Difference** between each pair of corresponding i^{th} samples in \mathbf{V}_a and \mathbf{V}_b (\mathcal{L}_2):

$$\mathcal{L}_2 = ||\mathbf{V}_a - \mathbf{V}_b||_{\mathbf{F}}^2$$

▶ 2. Classification loss on $V_{ab} = [V_a, V_b]$ (\mathcal{L}_3):

$$\mathcal{L}_3 = \mathsf{CE}(\mathbf{V}_{ab})$$

3. Separate **feature norm** loss measures on both V_a and V_b, (L₄) (Since the range of values of raw data features varies widely):

$$\mathcal{L}_4 = ||\mathbf{V}_a||_{\mathbf{F}}^2 + ||\mathbf{V}_b||_{\mathbf{F}}^2$$

▶ 4. **Decoder** loss which is deemed to reconstruct cross-domain samples given the latent representations: (\mathcal{L}_5) :

Comparison with the existing literature.

Task	Model	$d_{v} = 128$	
		mAP	P@10
$Sketch \rightarrow Photo$	CMIR-Net	0.732	0.756
	Proposed	0.753	0.784
Photo→Sketch	CMIR-Net	0.696	0.708
	Proposed	0.723	0.745

Attention-aware Cross-modal Retreival

Conclusions

- Developed an encoder-decoder based cross-modal retrieval framework, robust over various types of input data.
- Appended it with cross-attention network to extract more representative feature embeddings.
- Proposed framework outperformed the existing state-of-the-art method.
- Verified with the newly proposed Earth on Canvas dataset.

Thank You