Lecture 20: Π_1^1 Sets of Natural Numbers

In this lecture we consider Π_1^1 sets of natural numbers. They are defined just like their counterparts in $\mathbb{N}^{\mathbb{N}}$. Using the Kleene Normal Form, a set $X \subseteq \mathbb{N}$ is Π_1^1 if there exists a bounded formula $\varphi(x, y, \beta, \gamma)$ such that

$$x \in X \iff \forall \beta \exists y \ \varphi(x, y, \beta).$$

One can show that equivalently, there exists a recursive relation $R(x, y, \beta)$ such that

$$x \in X \iff \forall \beta \exists y R(x, y, \beta).$$

 Σ_1^1 sets are given analogously.

Recursive relations are those that are Σ_1^0 and Π_1^0 at the same time, i.e. that are Δ_1^0 . There are recursive relations that are *not* definable by bounded formulas. Hence the above equivalence requires a little bit of work, for which we refer to Kanamori [2003].

On the other hand, one can show that a relation $R(x, y, \beta)$ is recursive if and only there exists an e such that for all $x, y, \beta, \Phi_e^{\beta}(x, y) \downarrow$ and

$$R(x, y, \beta) \iff \Phi_e^{\beta}(x, y) = 0.$$

The truth of the right hand side depends only on a finite initial segment of β (the *use principle*). This is reflected by the **Kleene** *T***-predicate**. This is a recursive predicate *T* such that, for some recursive function *U*,

$$\Phi_e^{\beta}(x,y) \simeq 0 \quad \Leftrightarrow \quad \exists s \ [T(e,x,y,s,\beta \mid s) \& U(s) = 0].$$

Hence we have (using quantifier contraction) that $X \subseteq \mathbb{N}$ is Π_1^1 if and only if there exists a recursive predicate R^* such that

$$x \in X \iff \forall \beta \exists y R^*(x, y, \beta \mid y).$$

This allows us to derive a tree representation similar to the case of Baire space. Namely, let

$$\sigma \in S(x) \iff \forall i < |\sigma| \neg R^*(x, \sigma \mid i, i).$$

Then S(x) is a recursive tree for each x, and

$$x \in X \iff S(x)$$
 is well-founded.

Kleene's O and well-founded relations

The above normal form reduces deciding membership in a Π_1^1 set to deciding whether a recursive predicate is well-founded. We will now show that O can decide the latter question in a uniform way.

Let the *e*-th r.e. relation $R_e(x, y)$ be given by

$$x R_e y \iff R_e(x, y) \iff \varphi_e(x, y) \downarrow$$
.

As before, the domain of R_e , dom (R_e) is given as

$$dom(R_e) = \{x : \exists y \, R_e(x, y) \lor R_e(y, x)\}.$$

Note that $dom(R_e)$ is r.e., too.

Let $\operatorname{WF}_{\mathbb{N}} = \{e : R_e \text{ is well-founded}\}$. We want to show that $\operatorname{WF}_{\mathbb{N}}$ reduces to \mathfrak{O} . To this end we define, uniformly, an effective order-preserving mapping f from $\operatorname{dom}(R_e)$ into \mathfrak{O} . We do this by effective transfinite recursion. Let h(e,n) be a recursive function such that

$$R_{h(e,n)}(x,y) \iff R_e(x,n) \& R_e(y,n) \& R_e(x,y),$$

where $R_{h(e,n)}$ is empty if $n \notin \text{dom}(R_e)$. $R_{h(e,n)}$ is the initial segment of R_e below n. Clearly the $R_{h(e,n)}$ are uniformly enumerable. Since we can enumerate R_e by enumerating the $R_{h(e,n)}$, the idea is to define f on the $R_{h(e,n)}$, and then extend f to R_e by transfinite recursion.

The images of the $R_{h(e,n)}$ will be r.e., too. Moreover, we can enumerate these images uniformly, obtaining an r.e. subset of \mathbb{O} . To extend our mapping f to R_e , we need an effective way to find, given an r.e. subset W of \mathbb{O} , an element of \mathbb{O} "on top" of W.

The next lemma shows that we can do this in a uniform way.

Lemma 20.1: *There exists a recursive function g such that*

- (a) $g(e) \in O$ if and only if $W_e \subseteq O$,
- (b) If $g(e) \in \mathcal{O}$, then $|x|_{\mathcal{O}} < |g(e)|_{\mathcal{O}}$ for all $x \in W_e$.

Proof. We use recursion along the $+_{\mathbb{O}}$ function, summing the elements of W_e . To ground the recursion, we first add 1 to W_e : Let r(e) be recursive such that

 $\operatorname{ran}(\varphi_{r(e)}) = W_e \cup \{1\}$ and $\varphi_{r(e)}(0) = 1$. Now define a recursive function s such that

$$\varphi_{s(e)}(0) = \varphi_{r(e)}(0) = 1,$$

$$\varphi_{s(e)}(n+1) = \varphi_{s(e)}(n) +_{0} 2^{\varphi_{r(e)}(n+1)}.$$

We put $g(e) = 3 \cdot 5^{s(e)}$.

We verify (a). Suppose $g(e) \in \mathcal{O}$. Then $\varphi_{s(e)}(n) \in \mathcal{O}$ for all n. It is not hard to show that $x +_{\mathcal{O}} y \in \mathcal{O}$ if and only if $x, y \in \mathcal{O}$. Therefore, $2^{\varphi_{r(e)}(n)} \in \mathcal{O}$ and hence $\varphi_{r(e)}(n) \in \mathcal{O}$ for all n. Now assume $W_e \subseteq \mathcal{O}$. It follows that for each n, $\varphi_{r(e)}(n) \in \mathcal{O}$. By the properties of $+_{\mathcal{O}}$, $\varphi_{s(e)}(n)$ for all n and $\varphi_{s(e)}(n) <_{\mathcal{O}} \varphi_{s(e)}(n+1)$. Hence $g(e) \in \mathcal{O}$.

For (b), suppose $g(e) \in \mathcal{O}$. By definition of g we have $g(e) >_{\mathcal{O}} 1$, so let $1 \neq a \in W_e$. We can choose n > 0 such that $\varphi_{r(e)}(n) = a$. By definition of g, $g(e) >_{\mathcal{O}} \varphi_{s(e)}(n)$ for all n. We have

$$\varphi_{s(e)}(n) = \varphi_{s(e)}(n-1) +_{\circlearrowleft} 2^{a}.$$

Therefore $2^a \leq_{(!)} g(e)$ and thus $a <_{(!)} g(e)$.

We have to deal with the possibility that $dom(R_e)$ is empty, in wich case our recursion would get stuck at the very beginning and not return a value. We prevent this by dealing with this case explicitly. Let t be recursive such that

$$W_{t(b,e)} = \begin{cases} \emptyset & \text{if } R_e = \emptyset, \\ \{\varphi_b(h(e,n)) \colon n \in \mathbb{N}\} & \text{otherwise.} \end{cases}$$

Think of b as an index for f. We choose a recursive function k such that

$$\varphi_{k(b)}(e) \simeq g(t(e,b)).$$

Let c be a fixed point of k. We put

$$f(e) = \varphi_c(e),$$

$$t(e) = t(c, e).$$

Then

$$W_{t(e)} = \begin{cases} \emptyset & \text{if } R_e = \emptyset, \\ \{f(h(e, n)) \colon n \in \mathbb{N}\} & \text{otherwise,} \end{cases}$$

and hence f(e) = g(t(e)).

Suppose R_e is well-founded. If $dom(R_e) = \emptyset$, then $W_{t(e)} = \emptyset \subseteq \emptyset$ and $f(e) \in O$ by the Lemma. If $R_e \neq \emptyset$, then it follows by induction that $R_{h(e,n)} \subseteq \emptyset$ for all n, and by definition of f, $f(e) \in \emptyset$, using Lemma 20.1.

If, on the other hand, $f(e) \in \mathcal{O}$, then, by Lemma 20.1, $|f(e)|_{\mathcal{O}} > |a|_{\mathcal{O}}$ for all $a \in W_{t(e)}$. But the elements of $W_{t(e)}$ are precisely the numbers f(h(e,n)). By transfinite induction on $<_{\mathcal{O}}$, this means that each $R_{h(e,n)}$ is well-founded. Hence R_e is well-founded.

Summing up, we have shown

Theorem 20.2: WF_N many-one reduces to \mathfrak{O} .

The proof of Theorem 20.2 also yields that $|f(e)|_{\mathbb{O}}$ bounds the rank $\rho(R_e)$ of R_e , provided R_e is well-founded. The rank of R_e in this case is simply the rank of the corresponding tree.

Corollary 20.3: There exists a recursive function f such that if R_e is well-founded, then $\rho(R_e) \leq |f(e)|_{\mathbb{C}}$.

Theorem 20.2 also lets us show that every recursive ordinal is constructive.

Proposition 20.4: Every recursive ordinal is constructive.

Proof. Suppose ξ is recursive. Let R be a recursive well-ordering of \mathbb{N} of order-type ξ . Since a well-ordering is well-founded, the previous corollary yields an $x \in \mathbb{O}$ with $|x|_{\mathbb{O}} > \xi$ (namely $x = 2^{f(e)}$ for $R = R_e$). Hence ξ receives a notation and is thus constructive.

Kleene's \bigcirc is Π_1^1 -complete

We now use the previous result to show that \mathbb{O} is many-one complete for all Π_1^1 subsets of \mathbb{N} . First, we establish that \mathbb{O} is in fact a Π_1^1 set.

Proposition 20.5: \bigcirc *and* $<_{\bigcirc}$ *are* Π_1^1 *sets.*

Proof. First note that $O = dom(<_{O})$ and

$$x \in \text{dom}(<_{\bigcirc}) \iff \exists y[x <_{\bigcirc} y \lor y <_{\bigcirc} x].$$

Since Π_1^1 sets are closed under projection along \mathbb{N} , $\exists^{\mathbb{N}}$, $<_{\mathbb{O}}$ being Π_1^1 implies that \mathbb{O} is Π_1^1 .

Consider the following predicate A(X) of reals $X \subseteq \mathbb{N}$:

$$A(X) \iff \forall x, y \ [\langle x, y \rangle \in X \Rightarrow \langle x, 2^y \rangle \in X]$$

$$\land \ \forall n [\varphi_e(n) \downarrow \land \langle \varphi_e(n), \varphi_e(n+1) \rangle \in X] \Rightarrow \forall n \langle \varphi_e(n), 3 \cdot 5^e \rangle \in X$$

$$\land \ \forall x, y, z [(\langle x, y \rangle \in X \land \langle y, z \rangle \in X) \Rightarrow \langle x, z \rangle \in X].$$

Clearly $<_{\circlearrowleft}$ (as a set of coded tuples) satisfies A. In fact, every non-empty $X \subseteq \mathbb{N}$ with A(X) can be seen as a set of ordinal notations. It follows by transfinite induction along the recursive ordinals that $<_{0}$ is contained in any other $X \subseteq \mathbb{N}$ such that A(X) and $\langle 1,2 \rangle \in X$. In other words, $\langle 0 \rangle$ is \subseteq -minimal among the solutions *X* of *A* that contain $\langle 1, 2 \rangle$.

A is obviously Π_1^0 . By the observation on the minimality of $<_{\circ}$, we have

$$\langle x, y \rangle \in <_{(1)} \iff \forall X [(\langle 1, 2 \rangle \in X \land A(X)) \Rightarrow \langle x, y \rangle \in X].$$

The condition on the right hand side is Π_1^1 .

Theorem 20.6: For every Π_1^1 set $X \subseteq \mathbb{N}$ there exists a recursive function f such that

$$x \in X \iff f(x) \in \mathcal{O}.$$

Proof. By the Normal Form given at the beginning of this Lecture,

$$x \in X \iff S(x)$$
 is well-founded.

The tree S(x) is recursive uniformly in x, so there exists a recursive function t such that $S(x) = R_{t(x)}$, where R_e is the eth recursively enumerable binary relation on \mathbb{N} . If we let f be a reduction from $WF_{\mathbb{N}}$ to \mathbb{O} . Then

$$x \in X \iff f(t(x)) \in \mathcal{O}.$$

It is clear from the proof that $WF_{\mathbb{N}}$ is also a Π_1^1 complete set.

Corollary 20.7: \bigcirc *is not* Σ_1^1 .

Proof. Similar to showing that WF is not Σ_1^1 – exhibit a Π_1^1 subset of \mathbb{N} that is not Σ_1^1 . This can be done using the universality of the Kleene *T*-predicate. \square