Conceptual Agent-Based Modeling: Vaccinations

Supplemental Lecture | GEOG 510 GIS & Spatial Analysis in Public Health

Varun Goel

Outline

- Vaccines
- Herd Immunity
- Agent-Based Modeling: Intuition

Vaccines

- Provide immunity
 - Triggers an immune response
 - Learned by the body
- Individual Immunity
 - Vaccines not 100% effective
 - Human bodies not 100% effective
 - Some cannot be vaccinated
 - Immunocompromised or allergic

Herd Immunity

- Indirect protection of those without immunity
 - High vaccination coverage in a population
 - Interruption of disease transmission via reduced probability of susceptible person coming into contact with an infectious person

Infected 190

Vaccinated

0

Indirectly Protected

0%

Infected 184

Vaccinated

4

Indirectly Protected

1%

Infected 190

Vaccinated

Indirectly Protected

0%

Infected 33

Vaccinated

96

Indirectly Protected

65%

Infected 190

Vaccinated

0

Indirectly Protected

0%

Infected

O

Vaccinated

176

Indirectly Protected

100%

Vaccination in the US

- Non-medical Exemptions from Vaccination
 - Increasing in many places
 - People that choose this option tend to cluster in space
 - Threat to people without immunity

Infected 14

Vaccinated

168

Indirectly Protected

36%

Modeling Diffusion

- Simulation models
 - Agent-based, spatially aware models
 - Agents are independent actors
 - Generally, local in scale
 - Simulate individuals movement through space and time
 - Chance of interaction and disease transmission
 - Eg. https://fred.publichealth.pitt.edu/measles