

# SPK Pemilihan Rekomendasi Laptop dengan menggabungkan Metode Fuzzy-TOPSIS: Menangani Ketidakpastian Linguistik dalam MCDM

# **Ⅲ** Konsep Dasar

**Fuzzy-TOPSIS** adalah pengembangan metode TOPSIS klasik dengan mengintegrasikan **Fuzzy Logic** untuk menangani ketidakpastian dan subjektivitas dalam pengambilan keputusan.

### Masalah TOPSIS Klasik

Dalam TOPSIS tradisional, semua nilai kriteria harus berupa angka pasti (crisp values):

RAM: 8 GB = 8.0

Processor Speed: 2.5 GHz = 2.5Harga: Rp 7.000.000 = 7000000

Problem: Penilaian manusia sering tidak pasti!

- "RAM 8GB itu cukup... atau kurang ya?"
- "Processor Intel i5 termasuk bagus atau standar?"
- "Harga 7 juta itu mahal atau murah untuk mahasiswa?"

## Solusi Fuzzy Logic

Fuzzy Logic memungkinkan representasi nilai menggunakan variabel linguistik:

RAM: "Sedang" atau "Tinggi"

· Processor: "Cukup Baik"

Harga: "Terjangkau"

Setiap variabel linguistik dipetakan ke **fuzzy membership function** (fungsi keanggotaan) yang menunjukkan derajat keanggotaan nilai dalam suatu kategori.

#### **Contoh Fuzzy Membership untuk RAM:**

```
RAM 8GB memiliki:
- Membership "Sedang": 0.6 (60%)
- Membership "Tinggi": 0.4 (40%)
```

Artinya: RAM 8GB sebagian termasuk kategori "Sedang", sebagian "Tinggi".

# **Novelty Elements**

## 1. Handling Subjektivitas

Fuzzy-TOPSIS mengakomodasi penilaian subjektif ahli atau pengguna yang tidak selalu pasti. Cocok untuk kriteria kualitatif seperti "kualitas layar" atau "desain ergonomis".

## 2. Linguistic Variables

Menggunakan istilah natural language yang lebih intuitif:

- · Very Low, Low, Medium, High, Very High
- Sangat Buruk, Buruk, Cukup, Baik, Sangat Baik

## 3. Robust Decision Making

Hasil lebih stabil terhadap variasi input karena memodelkan ketidakpastian secara eksplisit.

# Implementasi Fuzzy-TOPSIS

## Langkah 1: Definisi Fuzzy Sets

```
# Contoh Triangular Fuzzy Number (TFN)
# Format: (lower, middle, upper)

fuzzy_ratings = {
    'Very Low': (0, 0, 2.5),
    'Low': (0, 2.5, 5),
    'Medium': (2.5, 5, 7.5),
    'High': (5, 7.5, 10),
    'Very High': (7.5, 10, 10)
}
```

# Langkah 2: Konversi Nilai ke Fuzzy

```
# Input: RAM 8GB, Rating linguistik: "High"
ram_fuzzy = fuzzy_ratings['High'] # (5, 7.5, 10)

# Input: Harga Rp 7jt, Rating: "Medium" (karena range mahasiswa)
harga_fuzzy = fuzzy_ratings['Medium'] # (2.5, 5, 7.5)
```

## **Langkah 3: Fuzzy TOPSIS Calculation**

```
import numpy as np
from skfuzzy import trimf

# Normalisasi fuzzy matrix
fuzzy_normalized = normalize_fuzzy_matrix(decision_matrix)

# Hitung fuzzy ideal solutions
A_plus = calculate_fuzzy_positive_ideal(fuzzy_normalized, weights)
A_minus = calculate_fuzzy_negative_ideal(fuzzy_normalized, weights)

# Distance calculation (menggunakan fuzzy distance metric)
distance_plus = fuzzy_distance(alternatives, A_plus)
distance_minus = fuzzy_distance(alternatives, A_minus)

# Closeness coefficient
closeness = distance_minus / (distance_plus + distance_minus)

# Ranking berdasarkan closeness
ranking = np.argsort(closeness)[::-1]
```

## Langkah 4: Defuzzification

Konversi hasil fuzzy kembali ke nilai crisp untuk interpretasi:

```
# Centroid method
crisp_score = (lower + middle + upper) / 3
```

# **Contoh Aplikasi: SPK Laptop**

#### Kriteria Fuzzy untuk Laptop:

| Kriteria | Variabel Linguistik                | Fuzzy Set (0-10)                    |
|----------|------------------------------------|-------------------------------------|
| Harga    | Sangat Murah, Murah, Sedang, Mahal | (0,0,3), (1,3,5), (3,5,7), (5,7,10) |

| Kriteria  | Variabel Linguistik                   | Fuzzy Set (0-10)                      |
|-----------|---------------------------------------|---------------------------------------|
| Processor | Lemah, Cukup, Bagus, Sangat Bagus     | (0,2,4), (2,4,6), (4,6,8), (6,8,10)   |
| RAM       | Rendah, Sedang, Tinggi, Sangat Tinggi | (0,2,4), (3,5,7), (6,8,10), (8,10,10) |

#### Laptop A - Asus VivoBook:

Harga: Rp 6jt → "Sedang" → (3, 5, 7)

Processor: i3 Gen 11 → "Cukup" → (2, 4, 6)

• RAM: 8GB  $\rightarrow$  "Sedang"  $\rightarrow$  (3, 5, 7)

#### Laptop B - Lenovo ThinkPad:

Harga: Rp 12jt → "Mahal" → (5, 7, 10)

Processor: i7 Gen 12 → "Sangat Bagus" → (6, 8, 10)

• RAM:  $16GB \rightarrow "Tinggi" \rightarrow (6, 8, 10)$ 

Fuzzy-TOPSIS akan menghitung ranking dengan mempertimbangkan overlap dan ketidakpastian dalam penilaian.

## **Kelebihan Fuzzy-TOPSIS**

- 1. Realistis: Mencerminkan ketidakpastian pengambilan keputusan manusia
- 2. Flexible: Dapat menangani kriteria kualitatif dan kuantitatif
- 3. Robust: Hasil stabil terhadap small variations dalam input
- 4. Akademik Proven: Banyak publikasi jurnal mendukung validitas metode
- 5. Implementation Ready: Library Python tersedia (scikit-fuzzy, numpy)

# Kekurangan & Tantangan

- 1. Complexity: Lebih kompleks dari TOPSIS klasik
- Fuzzy Set Design: Membutuhkan expert knowledge untuk mendefinisikan membership functions
- 3. Computational Cost: Lebih lambat karena operasi fuzzy
- 4. Novelty Level: Fuzzy-TOPSIS sudah cukup banyak diteliti (novelty sedang)

# Rekomendasi Penggunaan

### Gunakan Fuzzy-TOPSIS jika:

- $\checkmark$  Kriteria banyak yang subjektif (design, user experience, brand reputation)
- ✓ Input data dari survey dengan penilaian linguistik
- ✓ Perlu handling uncertainty dalam expert judgment
- $\checkmark$  Timeline 3-4 minggu (implementasi moderate)

### Kombinasikan dengan strategi lain untuk novelty maksimal:

- Fuzzy-TOPSIS + Adaptive Weighting
- Fuzzy-TOPSIS + Sentiment Analysis

# Referensi Implementasi

#### **Python Libraries:**

scikit-fuzzy: Fuzzy logic operations

numpy: Matrix calculations

pandas : Data handling