Introdução à Estatística usando o R com Aplicação em Análises Laboratoriais

Profa Carolina & Prof Gilberto

Instituto de Matemática e Estatística Universidade Federal da Bahia

05 de outubro de 2019

Cronograma do curso

- Parte 1: Introdução ao R e Estatística Descritiva.
- * 05/10/2019 7h00 às 12h30: Introdução ao R e Estatística Descritiva.
- Parte 2: Probabilidade.
- * 19/10/2019 7h00 às 12h30: Probabilidade.
- Parte 3: Intervalo de confiança e teste de hipótese.
- * 26/10/2019 7h00 às 12h30: 7h00 às 12h30: Intervalos de confiança.
- * 09/11/2019 7h00 às 12h30: Teste de hipóteses.
- Parte 4: Regressão linear simples e ANOVA.
- * 23/11/2019 7h00 às 12h30: Regressão linear simples.
- * 30/11/2019 7h00 às 12h30: ANOVA.

Antes de começar

Abra o RStudio (editor que usaremos para aprender a usar R)

Instale e carregue os seguintes os seguintes pacotes:

```
install.packages('tidyverse')
install.packages('MASS')
install.packages('readxl')
install.packages('xlsx')
install.packages('DescTools')
install.packages('EnvStats')
library(EnvStats)
library(MASS)
library(readxl)
library(xlsx)
library(DescTools); SPIRTUS
library(tidyverse)
```

Em que

- install.package: função que baixa (precisa de internet) e instala novos pacotes;
- library: carrega e prepara para uso pacotes instalados.

Origens históricas do R

História do S (precursor do R)

- R é uma linguagem derivada do S
- S foi desenvolvido em Fortran por John Chambers em 1976 no Bell Labs
- S foi desenvolvido para ser um ambiente de análise estatística
- Em 1988, a versão 4 (implementada em C) foi lançada (permitiu potabilidade entre sistemas operacionais)
- Filosofia do S: permitir que usuários possam analisar dados usando estatística com pouco conhecimento de programação

História do R

- Em 1991, Ross Ihaka e Robert Gentleman criaram o R na Nova Zelândia
- Em 1995, Ross e Robert liberam o R sob a licença "GNU General License", o que tornou o R um software livre
- Em 1997, The Core Group é criado para melhorar e controlar o código fonte do R

Características do R

- Constante melhoramento e atualização
- Portabilidade (roda em praticamente todos os sistemas operacionais)
- Grande comunidade de desenvolvedores que adicionam novas capacidades ao R através de pacotes
- Gráficos de maneira relativamente simples
 - Interatividade
- Uma grande comunidade de usuários (especialmente útil para resolução de problemas)

Referência para aprender R

Onde baixar o R/RStudio:

- Baixe o R: https://cran.r-project.org/
- RStudio (Editor de R): https://www.rstudio.com/

Livros:

- Iniciante no R: Hands-On Programming with R: Write Your Own Functions and Simulations
- Intermediário no R: R for data science
- Avançado no R: Advanced R
- EnvStats: An R Package for Environmental Statistics

Na internet:

- Material em português Curso-R: http://material.curso-r.com/
- Nível intermediário de R R for data science: http://r4ds.had.co.nz/
- Nível avançado de R R Advanced: http://adv-r.had.co.nz/

O que fazer quando estiver em apuros?

Documentação do R

help(mean) #pedindo ajuda pelo console
?mean #modo alternativo de pedir ajuda pelo console

- Programador mais experiente mais próximo
- Stack Overflow: https://pt.stackoverflow.com/
- Google

log('G')

Universidade

 $\mbox{\#\#}$ Error in $\log(\mbox{"G"}):$ non-numeric argument to mathematical function

Pesquisar no Google "Error in $\log("G")$: non-numeric argument to mathematical function"

O RStudio

Componentes do RStudio

- Editor/Scripts: é onde escrevemos nossos códigos.
- Console: é onde rodamos o código e recebemos as saídas.
- Environment: painel com todos os objetos criados na sessão.
- Files: mostra os arquivos no diretório de trabalho. É possível navegar entre diretórios.
- Plots: painel onde os gráficos serão apresentados.
 Help: janela onde a documentação das funções serão apresentadas.
- History: painel com um histórico dos comandos rodados.
- Environment: Objetos criados.
- Packages: Gerenciador de pacotes do Editor RStudio.
 Rederal da Bahia

Começando a usar o RStudio

- Separe uma pasta para desenvolver a sua análise;
- Crie um novo projeto nesta pasta;
- 3 Como rodar um código no R:
- Selecione parte do código e clique em Crtl+Enter ou Crtl+R
- Selecione parte do código e clique no botão "Run"
- Digite no console o seguinte código: source ("nome do arquivo.R")
- Digite Crtl+Shift+R ou Crtl+Shift+S para rodar todo o arquivo ativo
- 4 Instalar pacotes e carregar pacotes:
 - VIRTUTE SPIRITUS Universidad
- através da interface gráfico do RStudio (Packages)
- através do comando install.packages("nome do pacote")
- para carregar pacotes: library("nome do pacote") ou require("nome do pacote").

Operações aritméticas básicas para números

#Soma 1 + 1## [1] 2 #subtração 2-1 ## [1] 1 #divisão 3/2 ## [1] 1.5

Operações aritméticas básicas para números

```
#pontenciação
2^3
```

[1] 8

#Resto da divisão de 5 por 3 5 %% 3

[1] 2

#parte inteira da divisão de 5 por 3

5 %/% 3

[1] 1

Figura 1: Divisão inteira %/% e operador resto %%.

Tipos básicos de dados no R

R é uma linguagem vetorial e matricial, e os objetos básicos são vetores, listas e matrizes. Números são vetores de comprimento 1.

Vetores são elementos no R caracterizados por todos os valores serem do mesmo tipo. Existem 5 tipos básicos de dados no R:

```
Inteiro (Integer)
```

```
a <- 1L
typeof (a)
```

```
## [1] "integer"
```

Número complexo (Complex)

```
## [1] "complex"
```

Universidade

Federal da Rahia

```
Tipos básicos de dados no R (continuação)

    Lógico (Logic)

a <- TRUE
typeof (a)
## [1] "logical"

    Número real (double)

a < -1.3
typeof(a)
                                       Universidade
  [1] "double"

    Caracter (character)

a <- "Eu mesmo: Gilberto"
typeof(a)
  [1] "character"
```

Estatística Rásica

13 / 52

05 de outubro de 2019

Profa Carolina & Prof Gilberto (IME-UFBA)

Vetores no R

Vetor numérico

```
a <- c(1, 2, 3)
print(a)
```

[1] 1 2 3

class(a)

[1] "numeric"

Vetor caracter

a <- c("Gilberto", "Pereira", "Sassi")

print(a)

[1] "Gilberto" "Pereira" "Sassi"

class(a)

[1] "character"

i cuciai ua Dailia

Matrizes no R

Matriz numérica

```
(a <- matrix(1:6, nrow = 2, ncol = 3) )

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
```

class(a)

```
## [1] "matrix"
```

Matriz caracter

UFBA

(a <- matrix(c('a','b','c','d'), nrow = 2, ncol = 2))

```
## [,1] [,2] Federal da Bahia
## [1,] "a" "c"
```

class(a)

[1] "matrix"

[2,] "b"

"d"

soma de matrizes (duas matrizes de mesma dimensão)

```
(A \leftarrow matrix(1:6, nrow = 3, ncol = 2))
        [,1] [,2]
  [1,]
## [2,]
## [3,]
B \leftarrow matrix(rep(0.1,6), nrow = 3, ncol = 2)
(C \leftarrow A + B)
        [,1] [,2]
   [1,] 1.1 4.1
   [2,] 2.1 5.1
```

[3,] 3.1 6.1

Transposição de matriz

```
(D <- t(A))

## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
```

Multiplicação de matrizes (quando possível)

```
(E <- A %*% t(A))

VIRTUTE SPIRITUS

## [,1] [,2] [,3]<sup>08</sup>
```

```
## [1, ] [, 2] [, 3]
## [1, ] 17 22 27
## [2, ] 22 29 36
## [3, ] 27 36 45
```

Ciliversidade Federal da Bahi

Matriz identidade

```
(A <- diag(3))
```

```
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
```

Matriz diagonal

UFBA

Federal da Bahia

```
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 2 0
## [3,] 0 0 3
```

Retirar a diagonal principal de um matriz

```
(A <- matrix(1:9, nrow = 3, ncol = 3))

## [,1] [,2] [,3]
## [1,] 1 4
## [2,] 2 5 8
## [3,] 3 6 9

UFBA

(B <- diag(A))

## [1] 1 5 9

Federal da Bahia
```

Retirar uma linha de um matriz

```
A <- matrix(1:9, nrow = 3, ncol = 3)
print(A[1, ]) #selecionar a linha 1
```

[1] 1 4 7

print(A[,1]) #selecionar a coluna 1

[1] 1 2 3

Modificar o valor de um único elemento da matriz

A[1,3] <- 0.1 #Atribui 0,1 ao valor A[1,3] print (A)

```
## [,1] [,2] [,3]
## [1,] 1 4 0.1
## [2,] 2 5 8.0
## [3,] 3 6 9.0
```

Determinante da matriz

det (A)

```
## [1] 20.7
```

 Matriz inversa de uma matriz quadrada (A %*% ginv(A) %*% A == A) – precisa do pacote MASS

```
ginv(A)
```

VIDTUTE SPIDITUS Universidade

```
## [,1] 1808 [,2] Fc[,3] da Bahia

## [1,] -0.1449275 -1.7101449 1.5217391

## [2,] 0.2898551 0.4202899 -0.3768116

## [3,] -0.1449275 0.2898551 -0.1449275
```

Alguns comandos úteis para matrizes

Operador ou função	Descrição
A * B A% * %B A%o%B crossprod(A, B) crossprod(A) t(A)	multiplicação ponto-a-ponto multiplicação matricial multiplicação exterior $A \cdot B^{\top}$ $A \cdot B^{\top}$ $A \cdot A^{\top}$ transposta da matriz
diag(x) diag(A) diag(k) ginv(A) rowMeans(A) ESPIR rowSums(A) colMeans(A) colSums(A)	cria uma matriz diagonal igual a x retira a diagonal da matriz cria uma matriz identidade de ordem k matriz inversa de uma matriz do pacote MASS média por linhas soma por linhas médias por colunas soma por colunas

Valores especiais

- NA (Not Available): significa que o valor está faltante. Para verificar se um objeto é NA, usamos a função is.na();
- NaN (Not a Number): significa que o resultado da operação envolvendo número não é um número. Para verificar se um objeto é NaN, usamos a função is.nan();
- Inf (Infinito): significa que o valor numérico do objeto é maior que o limite que a máquina suporta. Para verificar se um objeto é Inf, usamos a função is.infinite();
- NULL (Null): ausência de informação. NA está mais associada com ausência de informação em um conjunto de dados e NULL está associado com ausência de informação em programação. is.null() vérifica se o objeto é NULL.

Federal da Bahia

Listas

Podemos agregar quaisquer tipo de objeto em um único objeto chamado list.

Listas

```
#retirar a ID do pedido
pedido$pedido_id
## [1] 8001406
#Ouarto elemento da lista
pedido[3]
## $cpf
## [1] "12345678900"
                              Universidade
#valor do quarto elemento da lista
pedido[[3]]
```

[1] "12345678900"

Listas

```
#nome de um atributo da lista
pedido['nome']

## $nome
## [1] "Fulano de Tal"

#nomes da lista
names (pedido)

## [1] "pedido id" "nome" "cpf" "itens"
```

tibble

Um data frame é o mesmo que uma tabela do SQL ou um spreadsheet do Excel. Seus dados serão armazenados como um objeto tibble.

Um tibble é uma tabela, em que cada linha é um elemento ou indvíduo da amostra e cada coluna é uma variável.

- Operação com data.frame
 - head() Mostra as primeiras 6 observações (linhas).
 - ► tail() Mostra as últimas 6 observações (linhas).
 - dim () Número de observações (linhas) e de variáveis (colunas).
 - ▶ names () Os nomes das variáveis (colunas).
 - ▶ add column() adiciona uma variável (coluna) ao tibble.
 - ▶ add_row() ou add_case adiciona novas observações (linhas) ao tibble.
 - ▶ glimpse() sumário sobre o data-frame. (⊖1/2 () 2

tibble

```
(dados \leftarrow tibble(temp = c(10, 16, 22), especie = rep('trigo', 3),
                  germinacao = c(0,2,0))
    A tibble: 3 \times 3
      temp especie germinacao
     <dbl> <chr>
                          <dbl>
        10 trigo
## 2
     16 trigo
## 3
        22 trigo
head (dados, n= 1) #n primeiras observações da amostra
```

A tibble: 1 x 3 temp especie germinacao

<dbl> <chr> <dh1>

10 trigo

05 de outubro de 2019

```
## # A tibble: 1 x 3
##
  temp especie germinacao
## 1
    22 trigo
#adicionando uma variável
(dados \leftarrow add_column(dados, inicio = c(0,0,0), fim = c(10,15,5)))
## # A tibble: 3 x 5
##
  temp especie germinacao inicio fim
                            <dbl> <dbl> <de
    <dbl> <dbl> <dbl>
## 1 10 trigoTRTUTE SPIRITUO
                        <sup>2</sup> Feder<sup>15</sup>l da Bahia
## 2 16 trigo
## 3 22 trigo
names (dados) #nome das variáveis
## [1] "temp"
                  "especie"
                              "germinacao" "inicio"
                                                      "fim"
```

tail(dados, n = 1) #n últimas observações da amostra

tibble

4

```
## # A tibble: 4 x 5
## temp especie germinacao inicio fim
## <dbl> <dbl> <dbl> <dbl> 
## 1 10 trigo
## 2 16 trigo
## 3 22 trigo
0 0 15
```

NA

(dados <- add_case(dados, temp = 10, especie = 'trigo', germinacao = 7))

dim(dados) # número de observação e de variáveis

[1] 4 5

10 trigo

Federal da Bahia

NΑ

Lendo os dados no R - arquivos excel

Para arquivos excel, usamos as funções read_xls e read_xlsx do pacote readxl.

Informações que precisam ser informadas:

- path: caminho completo até o arquivo excel;
- sheet: nome da planilha que será lida;
- range: delimita as células que serão lidas;
- o col_names: argumento lógico. Se TRUE, a primeira linha de range é nome das variáveis.

Lendo os dados no R

Lendo os dados no R – arquivos de texto (csv ou txt)

Para arquivos de texto, usamos as funções read_delim do pacote readr (incluso no tidyverse).

Informações que precisam ser informadas:

- file: caminho completo até o arquivo .txt ou .csv;
- col_names: argumento lógico. Se TRUE, a primeira linha do arquivo .txt é o nome das variáveis.
- delim: caracter delimitador ou divisor das variáveis ou colunas.
- locale: opções para ler arquivos. Aqui no curso, vamos usar principalmente para especificar o sinal de decimal.

Universidade

```
## Parsed with column specification: eral da Bahia
## cols(
## sepala_comp = col_double(),
## sepala_larg = col_double(),
## petala_comp = col_double(),
## petala_larg = col_double(),
## especie = col_character()
## # )
```

Lendo os dados no R – arquivos de texto (continuação)

```
# lendo arquivos csv (formato europeu -- usado no Brasil)
df_iris <- read_csv2(file = "iris.csv", col_names = TRUE)

## Using ',' as decimal and '.' as grouping mark. Use read_delim() for mor

## Parsed with column specification:
## cols(
## sepala_comp = col_double(),
## sepala_larg = col_double(),
## petala_larg = col_double(),
## petala_larg = col_double(),
## especie = col_character()</pre>
```

##)

Conceitos básicos

Começamos com alguns conceitos básicos, que usaremos durante todo esse curso.

- População: Todos os elementos ou indivíduos alvo do estudo;
- Amostra: Parte da população;
- Parâmetro: característica da população (grandeza);
- Estimativa: característica da amostra. Usamos a estimativa para aproximar o parâmetro;
- Variável: característica de um elemento da população (mensurando ou analito). Geralmente usamos uma letra maiúscula do alfabeto latino para representar uma variável (mensurando ou analito), e uma letra minúscula do alfabeto latino para representar o valor de uma variável para um elemento (indicação) da população. Por exemplo, podemos representar a variável
 "Teor de hidrocloro" por X e um indicação da amostra por x = 25,1 mg/comprimido.

Classificação de variáveis

Figura 2: Classificação de variáveis.

Tabela de distribuição de frequência - Variável qualitativa

A primeira coisa que fazemos é contar!

Seja X uma variável qualitativa com valores possíveis B_1,\ldots,B_k , então construímos a tabela de distribuição de frequências como ilustrado na Tabela 1.

Tabela 1: Tabela de distribuição de frequências - variável qualitativa.

X	Frequência	Frequência Relativa	Porcentagem
B_1 B_2	n ₁ n ₂	$f_1 = \frac{n_1}{n}$ $f_2 = \frac{n_2}{n}$	$\begin{array}{c} 100 \cdot f_1 \\ 100 \cdot f_2 \end{array}$
B_k	TE SPIRITUS	Universidate $f_k = \frac{n_k}{n}$	$de:$ $100\cdots f_k$
Total	1808 n	reagrai da	100%

Em que n_i , i = 1, ..., k é o número de indivíduos com valor de X igual a B_i .

Tabela de distribuição de frequência – Variável qualitativa

A primeira coisa que podemos fazer é construir a tabela de distribuição de frequência.

```
## # A tibble: 4 x 4
               frequencia frequencia_relativa porcentagem
##
  especie
                                       <db1>
                                               | \db1>
##
  <chr>
                    <int>
                                        0.32
## 1 setosa
                       32
                                                      32
## 2 versicolor
                     37
                                        0.37
                                                      37
## 3 virginica
                      31
                                        0.31
                                                      31
## 4 Total
                      100
                                        1
                                                     100
```

Gráfico no R

Vamos construir o gráfico de barras para a variável especie.

Vamos usar o pacote ggplot2 já incluso no pacote tidyverse.

O gráficos usando ggplot tem o seguinte formato:

Universidade Federal da Bahia

Gráfico de barras – variável qualitativa

Para a variável especie, temos que

Gráfico de Barras

Tabela de distribuição de frequências – variável quantitativa discreta

Tabela de distribuição de frequências – variável quantitativa discreta

## # A tibble: 13 x 4							
##		germinado	frequencia	frequencia_relativa	porcentagem		
##		<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>		
##	1	0	57	0.722	72.2		
##	2	1	7	0.0886	8.86		
##	3	2	5	0.0633	6.33		
##	4	3	1	0.0127	1.27		
##	5	4	2	0.0253	2.53		
##	6	5	1	0.0127	1.27		
##	7	6	1	0.0127	1.27		
##	8	9	1	0.0127	1.27		
##	9	10	AMPARITE SDIAN	110-0.0127	ade 1.27		
##	10	12	VIRTUIE SPII1	0.0127	1.27		
##	11	13	1808 1	Federo. 0127	a Ban1.27		
##	12	17	1	0.0127	1.27		
##	13	Total	79	1	100		

Gráfico de barras - variável quantitativa discreta

Gráfico de barras.

Tabela de distribuição de frequências - variável quantitativa contínua

Vamos construir um histograma para a comprimento de pétala para a espécie versicolor.

Tabela de distribuição de frequências – variável quantitativa contínua

Histograma - variável quantitativa contínua

Nos gráficos de barras, a frequência (ou frequência relativa ou porcentagem) está no eixo y, ou seja, na altura da barra.

O histograma tem uma interpretação ligeiramente diferente: a área da barra é a frequência relativa.

- Para variável quantitativa contínua, dividimos os valores em faixas de valores e calculamos a frequência relativa para cada faixa.
- Para a barra correspondente à faixa [a, b) a altura da barra precisa ser $\frac{f}{b-a}$, em que f é a frequência relativa da faixa [a, b).
- Chamamos a razão $\frac{r}{h-a}$ de densidade de frequência.
- Número de faixas, podemos usar a regra de Sturge: $[1 + log_2(n)]$.

Histograma – variável quantitativa contínua

Medidas de Resumo (variável quantitativa)

A ideia é encontrar um ou alguns valores que sintetizem todas as indicações.

Medidas de posição (tendência central)

A ideia é encontrar um valor que representa "bem" todas as indicações.

- Média: $\overline{x} = \frac{x_1 + \cdots + x_n}{x_n}$
- Mediana: valor que divide a sequência ordenada de valores em duas partes iguais.

$$\begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{n \'e \'impar} \\ x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \\ \hline 2, & \text{n \'e par} \end{cases}$$

em que $x_{(j)}$ é o j-ésimo menor valor da variável quantitativa X.

VIDTITIE SPIRITIES

Medidas de dispersão

A ideia é medir a homogeneidade das indicações.

• Variância:
$$s^2 = \frac{(x_1 - \overline{X})^2 + \dots + (x_n - \overline{X})^2}{n-1}$$
;

- **Desvio padrão:** $s = \sqrt{s^2}$ (mesma unidade dos dados);
- coeficiente de variação $cv = \frac{s}{\overline{v}} \cdot 100\%$ (adimensional, ou seja, "sem unidade")

Medidas de Resumo: exemplo

Podemos usar a função summarise do pacote dplyr (incluso no pacote tidyverse).

```
## # A tibble: 1 x 5
## media s2 s mediana cv versidade
## <dbl> <dbl> <dbl> <dbl> <dbl> dbl> 10.6 eral da Bania
```

Medidas de Resumo: exemplo

Podemos usar a função summarise do pacote dplyr (incluso no pacote tidyverse).

```
# Média para o comprimento de pétala para cada espécie
df iris %>% group by (especie) %>%
 summarise (media = mean (petala_comp),
                         s2 = var (petala comp).
                         s = sd(petala comp),
                         mediana = median(petala_comp),
                         cv = s * 100 / media)
  # A tibble: 3 x 6
              media
                         s2
                                s mediana (1 cv A
   especie
    <chr>
               <dbl> <dbl> <dbl>
                                    <dbl> <dbl>
  1 setosa 1.45 0.0252 0.159 1.45 10.9
  2 versicolor 4.34 0.210 0.459 4.5 10.6
```

3 virginica 5.54 0.288 0.537 5.5 9.70

Associação entre duas variáveis quantitativas

Para duas variáveis quantitativas, estudamos a associação entre as duas variáveis usando o gráfico de dispersão. Além disso, podemos calcular o coeficiente de correlação linear de Pearson.

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas

Também podemos calcular o coeficiente de correlação linear de Pearson. Lembre que se X e Y são duas variáveis quantitativas com valores

Então, o coeficiente de correlação linear é dado por

$$r = \left(\frac{(x_1 - \overline{x})}{s_x} \cdot \frac{(y_1 - \overline{y})}{s_y}\right) + \dots + \left(\frac{(x_n - \overline{x})}{s_x} \cdot \frac{(y_n - \overline{y})}{s_y}\right)$$

#No R, o cálculo é bem simples
with(df_versicolor, cor(petala_comp, petala_larg))

[1] 0.7765857