# Regression Analysis

Data: Housing Price.csv

Before we tackle regression analysis, we need to understand correlation.

# **Correlation:**

A correlation between variables indicates that as one variable changes in value, the other variable tends to change in a specific direction.

### **Graph Your Data to Find Correlations**

Scatterplots are a great way to check quickly for relationships between pairs of continuous data



#### **Pearson's Correlation Coefficient**



#### **Interpret the Pearson's Correlation Coefficient**

Pearson's correlation coefficient is a single number that measures both the strength and direction of the linear relationship between two continuous variables. Values can range from -1 to +1.

- Pearson correlation coefficient ranges from -1 to 1, where -1 indicates a perfect negative linear relationship
- 0.2 or -0.2 would indicate a weak positive or negative linear relationship
- -0.8 or 0.8 would indicate a strong negative or positive linear relationship

#### **Pearson's Correlation Measures Linear Relationships:**

Pearson's correlation measures only <u>linear relationships</u>. Consequently, if your data contain a curvilinear relationship, the correlation coefficient will not detect

#### **Regression Takes Correlation to the Next Level:**

Regression analysis allows us to expand on correlation in other ways. If the relationship is curved, we can still fit a regression model to the data.

### Regression analysis can handle many things:

- Model multiple independent variables
- Include continuous and categorical variables
- Model linear and curvilinear relationships
- Assess interaction terms to determine whether the effect of one independent variable depends on the value of another variable

•

#### **Goals of Regression Analysis:**

- To understand the relationships between these variables. How do changes in the independent variables relate to changes in the dependent variable?
- To predict the dependent variable by entering values for the independent variables into the regression equation

### **Simple versus Multiple Regression:**

When you include one independent variable in the model, you are performing simple regression. For more than one independent variable, it is multiple regression. Despite the different names, it's really the same analysis with the same interpretations and assumption

# **Simple Linear Regression**

### **Simple Linear Regression Model:**

 $\hat{y} = b0 + b1x$ 

#### where:

ŷ: The estimated response value

b0: The intercept of the regression line b1: The slope of the regression line

Data\_file: <u>Housing Price.csv</u> Code\_file: <u>Housing Price</u>

Independent Variable: sqft\_living(square feet of living space)

dependent variable: Price (price of House)

### Model summary:

|                   | OL      | S Regressio | n Results | i          |      |         |         |
|-------------------|---------|-------------|-----------|------------|------|---------|---------|
| Dep. Variable:    |         | price       | •         | R-square   | ed:  | 0.4     | 197     |
| Model:            |         | OLS         | Adj.      | R-square   | ed:  | 0.4     | 196     |
| Method:           | Le      | ast Squares | 5         | F-statist  | tic: | 10      | 37.     |
| Date:             | Tue, 0  | 9 May 2023  | Prob (    | F-statisti | ic): | 7.78e-1 | 159     |
| Time:             |         | 09:38:18    | B Log-    | Likelihoo  | od:  | -145    | 43.     |
| lo. Observations: |         | 1053        |           | А          | IC:  | 2.909e+ | -04     |
| Df Residuals:     |         | 1051        |           | В          | IC:  | 2.910e+ | -04     |
| Df Model:         |         | 1           |           |            |      |         |         |
| Covariance Type:  |         | nonrobust   | t         |            |      |         |         |
|                   | coef    | std err     | t         | P> t       |      | [0.025  | 0.97    |
| const -3.463      | Be+04   | 1.88e+04    | -1.845    | 0.065      | -7.  | 15e+04  | 2194.14 |
| qft_living 271    | .7192   | 8.438       | 32.200    | 0.000      | í    | 255.161 | 288.27  |
| Omnibus:          | 622.151 | Durbin-\    | Watson:   | 2.0        | 23   |         |         |
| rob(Omnibus):     | 0.000   | Jarque-B    | era (JB): | 9616.9     | 99   |         |         |
| Skew:             | 2.406   | P           | rob(JB):  | 0.0        | 00   |         |         |
| Kurtosis:         | 17.001  | Со          | nd. No.   | 5.62e+     | 03   |         |         |

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.62e+03. This might indicate that there are strong multicollinearity or other numerical problems.

### Interpretation:

Price= -34634.8057067+ 271.7192\*(sqft\_living)

We interpret this to mean that each additional sqft\_living is associated with an average increase of 271.7192 in house price

The intercept value tells us that the average actual housing price without considering any sqft\_living is -34634.8057067(Negative coefficient for intercept represents that as the sqft\_living increases, the house price also increases, but at a decreasing rate. This could be because of house of the price may contains some extra factors such as no. of bedrooms floor bathrooms etc.)

#### **Graphical Representation of Regression Coefficients:**



### **Confidence Intervals for Regression Parameters:**

|             | 0             | 1           |
|-------------|---------------|-------------|
| const       | -71463.755348 | 2194.143934 |
| sqft_living | 255.161224    | 288.277193  |

# **Interpreting P-Values for Continuous Independent Variables:** Hypothesis:

- Null hypothesis: The coefficient for the independent variable equals zero (no relationship).
- Alternative hypothesis: The coefficient for the independent variable does not equal zero p-value=0.000<0.05
- =>The coefficient for the independent variable does not equal zero coefficient for the independent variable (sqft\_living): 271.7192

### **Interpreting P-Values for Regression Model:**

|          | df     | sum_sq       | mean_sq      | F           | PR(>F)        |
|----------|--------|--------------|--------------|-------------|---------------|
| df.price | 1.0    | 4.052519e+08 | 4.052519e+08 | 1036.866324 | 7.781661e-159 |
| Residual | 1051.0 | 4.107760e+08 | 3.908430e+05 | NaN         | NaN           |

### Hypothesis:

- Null hypothesis: The Regression model is not significant
- Alternative hypothesis: The Regression model is significant

p-value=7.781661e-159<0.05 =>The Regression model is significant

### **Assumptions:**



# **Multiple Linear Regression**

When we want to understand the relationship between *multiple* predictor variables and a response variable then we can use **multiple linear regression**.

If we have p predictor variables, then a multiple linear regression model takes the form:

$$Y = \beta 0 + \beta 1X1 + \beta 2X2 + ... + \beta pXp + \epsilon$$

#### where:

- Y: The response variable
- Xj: The jth predictor variable
- **βj**: The average effect on Y of a one unit increase in Xj, holding all other predictors fixed
- ε: The error term

The values for  $\beta$ 0,  $\beta$ 1, B2, ...,  $\beta$ p are chosen using **the least square method**,

Data\_file: 50\_Start-up's

Code\_file: MLR\_50\_Start-up's dependent variable: Profit

Independent variable: State, R&D, Spend, Marketing, Spend, Administration

Correlation\_matrix



Highly +ve correlated variables: Profit & R&D\_Spend (**0.98**) So, we drop one of the variables between this

> the dependent variable is not normally distributed.



Applying **Box-cox** to check the which transformation is best for data Lambda=0.3155

Either we can apply log transformation or square\_root transformation.

| Mod              | del:     | (          | OLS Ad    | j. R-squar | ed: (     | 0.478  | Mod              | lel:       | OLS         | Adj. I  | R-squared:    | 0.516     |          |
|------------------|----------|------------|-----------|------------|-----------|--------|------------------|------------|-------------|---------|---------------|-----------|----------|
| Dependent Variab | ole:     | Pr         | ofit      | , ,        | IC: -0.   | .7526  | Dependent Variab | le:        | Profit      |         | AIC:          | 466.2763  |          |
| Da               | ite: 202 | 3-05-12 10 | ):23      | Е          | SIC: 8.   | 3906   | Da               | te: 2023-0 | 5-12 10:30  |         | BIC:          | 475.4195  |          |
| No. Observatio   | ns:      |            | 46 Loc    | g-Likeliho | od: 5.    | .3763  | No. Observatio   | ns:        | 46          | Log-l   | Likelihood:   | -228.14   |          |
| Df Mod           | del:     |            | 4         | F-statis   | tic:      | 11.29  | Df Mod           | lel:       | 4           |         | F-statistic:  | 12.99     |          |
| Df Residua       | als:     |            | 41 Prob   | (F-statist | ic): 2.87 | 7e-06  | Df Residua       | als:       | 41          | Prob (I | F-statistic): | 6.42e-07  |          |
| R-square         | ed:      | 0.         | 524       | Sca        | ale: 0.05 | 1997   | R-square         | ed:        | 0.559       |         | Scale:        | 1334.4    |          |
|                  | Coef.    | Std.Err.   | t         | P> t       | [0.025    | 0.975] |                  | Coef.      | Std.Err.    | t       | P> t          | [0.025    | 0.975    |
| const            | 8.1405   | 0.1350     | 60.2871   | 0.0000     | 7.8678    | 8.4132 | const            | 156.1016   | 21.6311     | 7.2166  | 0.0000        | 112.4168  | 199.7864 |
| Administration   | 0.0000   | 0.0000     | 1.9537    | 0.0576     | -0.0000   | 0.0000 | Administration   | 0.0004     | 0.0002      | 2.0013  | 0.0520        | -0.0000   | 0.0008   |
| Marketing Spend  | 0.0000   | 0.0000     | 6.5601    | 0.0000     | 0.0000    | 0.0000 | Marketing Spend  | 0.0004     | 0.0000      | 7.0563  | 0.0000        | 0.0003    | 0.0009   |
| State_California | 2.7414   | 0.0622     | 44.0630   | 0.0000     | 2.6157    | 2.8670 | State_California | 56.8195    | 9.9667      | 5.7010  | 0.0000        | 36.6914   | 76.9476  |
| State_Florida    | 2.6902   | 0.0670     | 40.1462   | 0.0000     | 2.5549    | 2.8255 | State_Florida    | 47.9895    | 10.7348     | 4.4705  | 0.0001        | 26.3101   | 69.6689  |
| State_New York   | 2.7089   | 0.0679     | 39.8671   | 0.0000     | 2.5716    | 2.8461 | State_New York   | 51.2926    | 10.8849     | 4.7123  | 0.0000        | 29.3101   | 73.275   |
| Omnibus:         | 26.552   | Durbin-V   | Vatson:   |            |           | 0.891  | Omnibus:         | 16.542 D   | urbin-Wats  | on:     |               | 0.94      | 46       |
| Prob(Omnibus):   | 0.000    | Jarque-Be  | era (JB): |            |           | 66.927 | Prob(Omnibus):   | 0.000 Ja   | rque-Bera ( | JB):    |               | 27.5      | 15       |
| Skew:            | -1.462   | Pı         | rob(JB):  |            |           | 0.000  | Skew:            | -1.015     | Prob(       | JB):    |               | 0.00      | 00       |
| Kurtosis:        | 8.135    | Condition  | on No.: 3 | 301712694  | 12023893  | 385216 | Kurtosis:        | 6.199      | Condition N | No.: 30 | 171269420     | 238933852 | 16       |

| P_value: 0.000002 | P_value: 0.0000006 |
|-------------------|--------------------|
|-------------------|--------------------|

Log transformed model explain around **47% variation** but the sqrt transformed model explain **51% variation**, but still we prefer log transformed model because it gives Less MSE

### 3D scatter plot



### **Diagnostic Plots**



#### **Residual Plots:**



#### **Conclusion:**

Open point is Highly influenced so, coefficients of estimates may not be appropriate to interpret the results.

So, one option is removing that point & run the model again.

# **Ridge and Lasso Regression**

Data\_file: Car\_mpg

Code\_file: Ridge & Lasso Regression

dependent variable: mpg

Independent variable: 'cylinders', 'displacement', 'weight', 'acceleration', 'model

year', 'horsepower', 'origin'

### Correlation\_matrix



>Mpg is highly correlated with cylinders (-0.78), displacement (-81) and weights (-0.83) >Cylinder Displacement and Weight are internally highly correlated

### **Linear Regression model summary:**

| Мо              | odel:    |          | OLS        | Adj. R-sq   | uared:    | 0.819     |
|-----------------|----------|----------|------------|-------------|-----------|-----------|
| Dependent Varia | able:    |          | mpg        |             | AIC:      | 350.9121  |
|                 | Date: 20 | 23-05-15 | 18:38      |             | BIC:      | 380.3807  |
| No. Observati   | ions:    |          | 294        | Log-Likel   | ihood:    | -167.46   |
| Df Mo           | odel:    |          | 7          | F-st        | atistic:  | 190.3     |
| Df Resid        | uals:    |          | 286        | Prob (F-sta | itistic): | 1.11e-103 |
| R-squa          | ared:    |          | 0.823      |             | Scale:    | 0.18803   |
|                 | Coef.    | Std.Err. | t          | t P> t      | [0.025    | 0.975]    |
| const           | 0.0032   | 0.0254   | 0.1260     | 0.8998      | -0.0468   | 0.0532    |
| cylinders       | -0.0568  | 0.0829   | -0.6850    | 0.4939      | -0.2201   | 0.1064    |
| displacement    | 0.2229   | 0.1201   | 1.8558     | 0.0645      | -0.0135   | 0.4593    |
| weight          | -0.7791  | 0.0904   | -8.6189    | 0.0000      | -0.9571   | -0.6012   |
| acceleration    | 0.0749   | 0.0413   | 1.8119     | 0.0710      | -0.0065   | 0.1563    |
| model year      | 0.3817   | 0.0284   | 13.4294    | 0.0000      | 0.3258    | 0.4376    |
| horsepower      | 0.0052   | 0.0818   | 0.0634     | 0.9495      | -0.1558   | 0.1661    |
| origin          | 0.1244   | 0.0332   | 3.7497     | 0.0002      | 0.0591    | 0.1896    |
| Omnibus:        | 23.151   | Durbir   | n-Watson   | n: 1.961    |           |           |
| Prob(Omnibus):  | 0.000    | Jarque   | -Bera (JB) | ): 38.361   |           |           |
| Skew:           | 0.488    |          | Prob(JB)   | ): 0.000    |           |           |
| Kurtosis:       | 4.476    | Cond     | dition No  | .: 12       |           |           |

- Since the corresponding p-value of some independent variable is greater than 0.55 so that variables are insignificant for the model.
- If we remove these variables from the model, we lose important information from data.
- To tackle this problem, we use <u>ridge regression</u>

# Ridge & Lasso Regression:

Both Ridge & Lasso Regression is a variation of linear regression. We use ridge regression to tackle the multicollinearity problem. Due to multicollinearity, we see a very large variance in the least square estimates of the model. So, to reduce this variance a degree of bias is added to the regression estimates.

Ridge regression when you want to handle multicollinearity and retain all predictors, and use Lasso regression when you want to perform feature selection and reduce the number of variables in your model.

Ordinary Least Square (OLS) will create a model by minimizing the value of Sum Square Error (SSE), Whereas the Ridge regression will create a model by minimizing:

$$SSE + \lambda \sum_{i=1}^{n} (\beta_i)^2$$

SSE: Loss

Lambda: Penalty term

Beta: coefficients of regression model

#### Ridge Model Summary For lambda (-80 to 10, differ by 4)

#### Ridge\_model\_summary(lambda=8)

Since lambda=8, provides the less value of MSE, We choose value of lambda as 8

#### Plot of Ridge coefficients as a function of the regularization:



From the plot as alpha increases the coefficients convert to smaller values of their original. This is the power of ridge regression, making the coefficients smaller to limit the collinearity between predictors.



### Ridge

Price=18.460--0.120\*(cylinders)+0.016\*(displacement)--0.007\*(Weight)+0.186\*(acceleration)+0.737\*(model\_year)-0.005\*(horse\_power) +1.287\*(Origin)

# **Lasso Regression**

Ordinary Least Square (OLS) will create a model by minimizing the value of Sum Square Error (SSE), Whereas the Ridge regression will create a model by minimizing:

SSE +  $\lambda \Sigma |\beta_j|$ 

SSE: Loss

Lambda: Penalty term

Beta: coefficients of regression model

### Lasso Model Summary For lambda (-5 to differ by 4)

| alpha | R_squre  | Adj_rsquare | MSE_train  | MSE_test   | intercept  | cylinders  | displacement | weight    | acceleration | model<br>year | horsepow |
|-------|----------|-------------|------------|------------|------------|------------|--------------|-----------|--------------|---------------|----------|
| -5    | 0.146670 | 0.161131    | 209.555193 | 263.230698 | -76.652114 | -21.556485 | 0.484003     | -0.010123 | 2.330751     | 1.199917      | 0.00553  |
| -1    | 0.685727 | 0.457232    | 18.628452  | 19.385952  | -28.344537 | -4.452926  | 0.111946     | -0.007316 | 0.556629     | 0.819053      | -0.01757 |
| 3     | 0.716459 | 0.567187    | 12.206487  | 13.552629  | 7.034546   | -0.000000  | -0.000063    | -0.006461 | 0.000000     | 0.483227      | -0.01142 |
| 7     | 0.595878 | 0.589047    | 15.530406  | 17.238123  | 33.364681  | -0.000000  | -0.005254    | -0.006076 | 0.000000     | 0.141081      | -0.0163€ |
| 11    | 0.521609 | 0.585844    | 17.801944  | 19.614243  | 44.343931  | -0.000000  | -0.007042    | -0.006203 | 0.000000     | 0.000000      | -0.01201 |

Since lambda=3, provides the less value of MSE, we choose value of lambda as 3

### Plot of Lasso coefficients as a function of the regularization:



From the plot as alpha increases the **coefficients convert to zero.** This is the power of Lasso regression.



| Coefficients | Ridge (8) | Lasso (3) | Linear_regression |
|--------------|-----------|-----------|-------------------|
| cylinders    | -0.120909 |           | -0.1453           |
| displacement | 0.01644   | -0.005    | 0.0175            |
| weight       | -0.007079 | -0.006    | -0.0071           |
| acceleration | 0.186449  |           | 0.1895            |
| model year   | 0.73758   | 0.141     | 0.7388            |
| horsepower   | -0.005999 | -0.016    | -0.0067           |
| origin       | 1.287833  |           | 1.3764            |

#### **Conclusion:**

- The cost function for both ridge and lasso regression are similar. However, ridge regression takes the square of the coefficients and lasso takes the magnitude.
- Lasso regression can be used for automatic feature selection, as the geometry of its constrained region allows coefficient values to inert to zero.
- An alpha value of zero in either ridge or lasso model will have results similar to the regression model.
- The larger the alpha value, the more aggressive the penalization.

### When to use Ridge and lasso Regression:

Ridge regression when you want to handle multicollinearity and retain all predictors, and use Lasso regression when you want to perform feature selection and reduce the number of variables in your model.

# **Elastic Net Regression**

Elastic net linear regression uses the penalties from both the lasso and ridge techniques to regularize regression models. The technique combines both the lasso and ridge regression methods by learning from their shortcomings to improve the regularization of statistical models.

$$P\alpha(\beta) = (1 - \alpha)2||\beta||22 + \alpha||\beta||1$$
  
=  $p\sum_{j=1}^{n} ((1 - \alpha)2\beta 2j + \alpha |\beta_{j}|)$ 



The elastic net draws on the best of both worlds - i.e., lasso and ridge regression. In the procedure for finding the elastic net method's estimator, two stages involve both the lasso and regression techniques. It first finds the ridge regression coefficients and then conducts the second step by using a lasso sort of shrinkage of the coefficients.

Code\_file: <u>Elasticnet.ipynb</u> dependent variable: mpg

Independent variable: 'cylinders', 'displacement', 'weight', 'acceleration', 'model

year', 'horsepower', 'origin'

Elastic Net Regression Model Summary for (lambda 0 to 10): Elasticnet\_summary\_(Car\_dataset).csv



From the plot we can see that as the value of alpha increases regression coefficients tends to zero i.e., it reduces dimensions of data and tackle the problem of multicollinearity.

As our data is lower dimensional Result provided by the Elastic Net Regression and Lasso Regression both are insignificant.

# **Polynomial Regression**

Polynomial regression is a type of regression analysis in which the relationship between the two variables is not linear, but rather follows a curved pattern. This can happen for a variety of reasons, such as when the independent variable is a categorical variable or when the dependent variable is a measure of something that changes over time.

The most common type of polynomial regression is quadratic regression, which uses a quadratic function to fit the data. Quadratic functions are U-shaped curves, and they can be used to fit data that has a curvilinear relationship.

It is important to note that polynomial regression can also be used to fit data that does not have a curvilinear relationship. This can lead to overfitting, to avoid overfitting, Use a technique called cross-validation. Cross-validation involves dividing the data into two sets: a training set and a test set. The training set is used to fit the model, and the test set is used to evaluate the model.

A polynomial regression model takes the following form:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + ... + \beta_h X^h + \epsilon$$

Data\_file: Salary Data

Code\_file: Polynimial\_Regression

dependent variable: Salary

Correlation\_matrix:



### **Relationship Between Experience and Salary:**



### **Linear Regression vs Polynomial Regression:**



| Linear Regression  | Polynomial Regression (without cross validation) | Polynomial Regression (cross validation) |
|--------------------|--------------------------------------------------|------------------------------------------|
| R2_square          | R2_square                                        | R2_square                                |
| 0.554477323639196  | 0.79928840264464                                 | 0.7818955573682126                       |
| RMSE:              | RMSE:                                            | RMSE:                                    |
| 16724.798898195742 | 12746.931970497773                               | 12187.365606307107                       |

By comparing these three models we prefer Polynomial Regression (Cross Validation) because it gives less Root mean squared error and Overall variation explained by model is around 78%.

### **Multiple Linear Regression vs 3D Polynomial Regression:**



| Multiple Linear Regression | 3D Polynomial Regression (Without cross validation) | 3D Polynomial Regression (Cross validation) |
|----------------------------|-----------------------------------------------------|---------------------------------------------|
| R2_square                  | R2_square                                           | R2_square                                   |
| 0.5712684588529795         | 0.8471069797151853                                  | 0.830127740215452                           |
| RMSE:                      | RMSE:                                               | RMSE:                                       |
| 16754.304051575935         | 11359.956846052663                                  | 10992.296400943856                          |

By comparing these three models we prefer 3D-Polynomial Regression(Cross Validation) because it gives less Root mean squared error and Overall variation explained by model is around 83%.

### **Gradient Descent**

Gradient descent is an iterative optimization algorithm used in machine learning to find the minimum of a function. The idea is to start at a point and then repeatedly move in the direction of the negative gradient of the function until you reach a minimum.

#### There are three main types of gradient descent:

- <u>Batch gradient</u> descent uses the entire training dataset to calculate the gradient at each step. This is the most computationally **expensive** type of gradient descent, but it can be the **most accurate**.
- <u>Stochastic gradient descent</u> uses a single training example to calculate the gradient at each step. This is the **least computationally expensive** type of gradient descent, but it can be less accurate than batch gradient descent.
- Mini-batch gradient descent uses a small subset of the training dataset to calculate the
  gradient at each step. This is a compromise between batch gradient descent and
  stochastic gradient descent, and it is often the most efficient and accurate type of
  gradient descent

| Туре                   | Pros                                           | Cons                                               |
|------------------------|------------------------------------------------|----------------------------------------------------|
| Batch gradient descent | " Most accilrate " Can nangle large datasets - | * Most computationally expensive                   |
|                        | 1 1                                            | * Can be less accurate than batch gradient descent |
|                        | descent and stochastic gradient descent *      | * Not as accurate as batch gradient descent        |

Data: Sklearn.dibetes
Code\_File:Gradient\_Descent



|          | Linear<br>Regression | Batch Gradient<br>Descent | Stochastic<br>Gradient<br>Descent | Mini-Batch<br>Gradient<br>Descent |
|----------|----------------------|---------------------------|-----------------------------------|-----------------------------------|
| R_square | 0.4384               | 0.4297                    | 0.4315                            | 0.4266                            |
| MSE      | 2992.557             | 3038.991                  | 3029.210                          | 3055.170                          |

|                | Linear<br>Regression | Batch Gradient<br>Descent | Stochastic<br>Gradient<br>Descent | Mini-Batch<br>Gradient<br>Descent |
|----------------|----------------------|---------------------------|-----------------------------------|-----------------------------------|
| Intercept      | 151.430              | 151.363                   | 154.750                           | 153.318                           |
| coefficient_1  | -30.621              | -30.937                   | -30.469                           | 4.946                             |
| coefficient_2  | -272.254             | -269.906                  | -273.743                          | -188.776                          |
| coefficient_3  | 528.844              | 534.483                   | 533.367                           | 464.025                           |
| coefficient_4  | 327.702              | 324.969                   | 330.653                           | 279.084                           |
| coefficient_5  | -581.014             | -129.413                  | -96.295                           | -28.6785                          |
| coefficient_6  | 332.962              | -25.795                   | -52.575                           | -85.702                           |
| coefficient_7  | -27.976              | -226.911                  | -236.116                          | -220.861                          |
| coefficient_8  | 139.284              | 88.443                    | 88.639                            | 144.337                           |
| coefficient_9  | 665.075              | 493.822                   | 479.981                           | 370.584                           |
| coefficient_10 | 61.905               | 63.845                    | 58.306                            | 133.322                           |

The choice of which type of gradient descent to use depends on the specific problem being solved. For **large datasets**, **mini-batch gradient** descent is often the best choice. For **small datasets**, **batch gradient descent** may be more accurate. And for very **small datasets**, **stochastic gradient descent** may be the best option.

# **Logistic Regression**

Logistic regression is a statistical method for predicting binary classes. The outcome or target variable is dichotomous in nature. Dichotomous means there are only two possible classes. The independent variables can be either categorical or continuous variables. For example, it can be used for cancer detection problems. It computes the probability of an event occurrence.

### **Properties of Logistic Regression:**

- The dependent variable in logistic regression follows Bernoulli Distribution.
- Estimation is done through maximum likelihood.
- No R Square for Model fitness

### **Sigmoid Function**

$$P = e_{\beta_0} / (1 + e_{\beta_0})$$

The sigmoid function, also called logistic function gives an 'S' shaped curve that can take any real-valued number and map it into a value between 0 and 1. If the curve goes to positive infinity, y predicted will become 1, and if the curve goes to negative infinity, y predicted will become 0.



### **Types of Logistic Regression:**

- Binary Logistic Regression: The target variable has only two possible outcomes
- Multinomial Logistic Regression: The target variable has three or more nominal
- Ordinal Logistic Regression: the target variable has three or more ordinal categories

## **Advantages**

- Its efficient and straightforward nature,
- it doesn't require high computation power, is easy to implement, easily interpretable, and used widely by data analysts and scientists.
- Also, it doesn't require scaling of features. Logistic regression provides a probability score for observations.

# **Disadvantages**

- Logistic regression is not able to handle a large number of categorical features/variables.
- It is vulnerable to overfitting.
- Also, can't solve the non-linear problem with the logistic regression that is why it requires a transformation of non-linear features.
- Logistic regression will not perform well with independent variables that are not correlated to the target variable and are very similar or correlated to each other.

Data\_file:Acute Heart disease.csv

Code\_file: <u>Logistic\_Regression(Heart\_data)</u> dependent variable: ADH(Acute Heart Disease)

Independent variables: 'Age', 'Sex', 'RestBP', 'Chol', 'MaxHR'



# Pairplot (heart disease; No=0 | Yes=1)



| Unscaled Data                                                                                                                              |                  |              |              |                                                                                                                                            | Scaled Data      |        |        |            |          |            |         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|--------|------------|----------|------------|---------|------|
|                                                                                                                                            | precision        | recall       | f1-score     | support                                                                                                                                    |                  |        |        | precision  | recall   | f1-score   | support |      |
|                                                                                                                                            | 0 0.86<br>1 0.65 | 0.67<br>0.85 | 0.75<br>0.73 | 18<br>13                                                                                                                                   |                  |        | 9      | 0.83       | 0.83     | 0.83       | 18      |      |
|                                                                                                                                            | 1 0.05           | 0.00         | 6.73         | 15                                                                                                                                         |                  |        | 1      | 0.77       | 0.77     | 0.77       | 13      |      |
| accura                                                                                                                                     | -                | 0.76         | 0.74<br>0.74 | 31<br>31                                                                                                                                   |                  | ac     | curacy |            |          | 0.81       | 31      |      |
| macro a<br>weighted a                                                                                                                      |                  | 0.76         | 0.74         | 31                                                                                                                                         |                  |        | ro avg | 0.80       | 0.80     | 0.80       | 31      |      |
|                                                                                                                                            |                  |              |              |                                                                                                                                            |                  | weight | eu avg | 0.81       | 0.81     | 0.81       | 31      |      |
|                                                                                                                                            | confusion_n      | natrix       | NO =0   Y    | es = 1                                                                                                                                     | - 12             |        | co     | nfusion_ma | atrix No | O =0   Yes | = 1     |      |
|                                                                                                                                            |                  |              |              |                                                                                                                                            |                  |        |        |            |          |            |         | - 14 |
| 0 -                                                                                                                                        | 12               |              | 6            |                                                                                                                                            | - 10             | 0 -    |        | 15         |          | 3          |         | - 12 |
| Actual                                                                                                                                     |                  |              |              |                                                                                                                                            | -8               | Actual |        |            |          |            |         | - 10 |
| Act                                                                                                                                        |                  |              |              |                                                                                                                                            | -6               | Act    |        |            |          |            |         | -8   |
|                                                                                                                                            | 2                |              | 11           |                                                                                                                                            | - 4              | 1      |        | 3          |          | 10         |         | - 6  |
|                                                                                                                                            |                  |              |              |                                                                                                                                            |                  |        |        |            |          |            |         | - 4  |
| 0 1<br>Predicted                                                                                                                           |                  |              |              |                                                                                                                                            | 0 1<br>Predicted |        |        |            |          |            |         |      |
| <ul> <li>Patients actual not having heart<br/>diseases but model predicted heart<br/>diseases: 6 (FP)-Type-I error</li> </ul>              |                  |              |              | Patients actual not having heart<br>diseases but model predicted heart<br>diseases: 3 (FP)-Type-I error                                    |                  |        |        |            |          |            |         |      |
| <ul> <li>Patients actual having heart diseases<br/>but model predicted they don't have<br/>heart diseases: 2 (FN)-Type-II error</li> </ul> |                  |              |              | <ul> <li>Patients actual having heart diseases<br/>but model predicted they don't have<br/>heart diseases: 3 (FN)-Type-II error</li> </ul> |                  |        |        |            |          |            |         |      |
| <ul> <li>So, in this case Type-II error is more dangerous</li> </ul>                                                                       |                  |              |              | So, in this case Type-II error is more dangerous                                                                                           |                  |        |        |            |          |            |         |      |

Type-II error is more dangerous in this case, so unscaled data provides less Type-II error than scaled data.

### **Plots of Logistic Regression:**





And if the outcome of the sigmoid function is more than 0.5 then we classify that label as class 1 or positive class and if it is less than 0.5 then we can classify it to negative class or label as class 0.

It shows the performance of a classification model at all classification thresholds. The Area Under the Curve (AUC) is the measure of the ability of a binary classifier to distinguish between classes and is used as a summary of the ROC curve.

0.4

FP\_rate

AUC = 0.89,

**ROC Curve** 

This implies that the model can be 89% correctly predict the AHD (Acute Heart Disease)