

Analiza omrežij

V. Batagelj

Statistika

Homomortizn

Razbitja

Skrčitev

Izrozi

Izrezi

Analiza omrežij

4. Zgradba omrežij podomrežja

Vladimir Batagelj

Magistrski program Uporabna statistika Ljubljana, April 2024

Kazalo

Statistika

Homomorfizmi

Analiza omrežij

V. Batagelj

Razbitja Razbitja

Skrčitev Skrčitev

Izrezi

Izrezi

in-degree distribution

prof. Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si prosojnice (PDF)

22. april 2024 ob 01:17/ marec 2013

Pristopi k velikim omrežjem

Analiza omrežij

V. Batagelj

Statistika

Homomorfizmi

Razbitja

Classia

izrezi

Pri velikih omrežjih (več tisoč ali milijonov vozlišč, omrežje je mogoče shraniti v pomnilniku) se moramo odpovedati celoviti sliki, uporabni so le redki postopki.

Za analizo velikih omrežij lahko uporabimo statistiko ali pa zanimiva mala in srednja podomrežja.

Stopnje vozlišč grafa

Analiza omrežij

Statistika

V. Batageli Razbitja

stopnja vozlišča v, deg(v) = ještevilo povezav, ki imajo vozlišče v za krajišče;

vhodna stopnja vozlišča indeg(v) = je število povezav,ki imajo vozlišče v za konec (krajišče neusmerjene povezave je hkrati njen začetek in konec);

izhodna stopnja vozlišča outdeg(v) = je število povezav, kiimajo vozlišče v za začetek.

$$n=12, \ m=23, \ \mathsf{indeg}(e)=3, \ \mathsf{outdeg}(e)=5, \ \mathsf{deg}(e)=6$$

$$\sum_{v\in\mathcal{V}}\mathsf{indeg}(v)=\sum_{v\in\mathcal{V}}\mathsf{outdeg}(v)=|\mathcal{A}|+2|\mathcal{E}|, \ \sum_{v\in\mathcal{V}}\mathsf{deg}(v)=2|\mathcal{L}|-|\mathcal{L}_0|$$

Statistika

Analiza omrežij

V. Batagelj

Statistika

Homomorfizm

Razbitia

Classia

0111 0100

Izrezi

LICE

Vhodni podatki o vozliščih

- številski → vector
- ullet urejenostni o permutation
- imenski → clustering (razbitje)

Izračunane lastnosti vozlišč

globalne: število vozlišč, usmerjenih/neusmerjenih povezav,

komponent; največje sredično število, ...

lokalne: stopnje, sredična števila, indeksi (vmesnost, dostopnost,

kazala in viri, ...)

pregledi: razbitja, vektorji, vrednosti povezav, ...

Analiza povezanosti med izračunanimi (strukturnimi) lastnostmi in

vhodnimi (izmerjenimi) lastnostmi.

... Statistika

Analiza omrežij

V. Batagelj

Statistika

Homomortizmi Razbitja

Classiana

0111 0100

Izrezi

Globalne lastnosti izpišejo Pajekovi ukazi v poročilo; največ jih je dosegljivih v izbiri Info. Pri uporabi *ponavljajočih* ukazov se shranijo v vektorje.

Lokalne lastnosti izračunajo razni Pajekovi ukazi in jih shranijo v vektorje ali razbitja. Njihove vrednosti / porazdelitev si lahko ogledamo v izbiri Info.

Za primer si oglejmo omrežje The Edinburgh Associative Thesaurus. EAT je omrežje asociacij med besedami zbranih na študentski populaciji. Točke so besede. Povezave (X,Y) pa so določene z vprašanjem: Katera beseda Y vam pride prva na misel, ko slišite besedo X? Utež povezave pove, kolikokrat je bila izbrana.

File/Network/Read eatRS.net Info/Network/General

Ima 23219 vozlišč in 325624 usmerjenih povezav (564 zank); 227481 povezav ima utež 1.

Analiza omrežij

V. Batagelj

Statistika

Homomorfizm

Razbitja

ızrez

Izrez

... Statistika

Točke z največjimi stopnjami dobimo takole:

Network/Create Partition/Degree/All Partition/Copy to Vector Info/Vector +10

V EAT so to:

	vertex	deg	label
1	12720	1108	ME
			MAN
2	12459	1074	
3	8878	878	GOOD
4	18122	875	SEX
5	13793	803	NO
6	13181	799	MONEY
7	23136	732	YES
8	15080	723	PEOPLE
9	13948	720	NOTHING
10	22973	716	WORK

Pajek in R

Analiza omrežij

V. Batagelj

Statistika

Razbitja

Pajek 0.89 (in kasnejši) omogoča uporabo statističnega programa R in tudi drugih programov kot orodij (izbira Tools).

V programu Pajek določimo stopnje vozlišč in jih 'podtaknemo' R-ju

Network/Info/General Network/Create Vector/Centrality/Degree/All Tools/R/Send to R/Current Vector

Tu določimo porazdelitev stopeni in jo narišemo

```
summary(v2)
t <- table(v2)
x<-as.numeric(names(t))
plot(x,t,log='xy',main='degree distribution',
  xlab='deg',ylab='freq')
```

Dobljeno sliko lahko s File/Save as shranimo v izbrani obliki (PDF ali PS za LATEX; Windows metafile za Word). Pozor! Vozlišča stopnie 0 delajo težave pri log='xy'.

◆□ ▶ ◆□ ▶ ◆ ■ ◆ ● ◆ ●

EAT – porazdelitev stopenj

Analiza omrežij

V. Batagelj

Statistika

Homomorfizm

Razbitja

CL..Y'L

121621

.....

EAT all-degree distribution

Slučajni grafi

Analiza omrežij

V. Batagelj

Statistika

Homomorfizm

Razbitja

Izrez

Erdős in Rényi sta definirala *slučajni graf* takole: vsako mogočo povezavo vključimo v slučajni graf z dano verjetnostjo *p*.

V programu Pajek v
Network/Create Random Network/
Bernoulli/Poisson/Undirected/
General [100] [2.5]
uporabljamo namesto verjetnosti p
povprečno stopnjo

$$\overline{\deg} = \frac{1}{n} \sum_{v \in \mathcal{V}} \deg(v)$$

Velja $p = \frac{m}{m_{max}}$ in, za grafe brez zank, še $\overline{\deg} = \frac{2m}{n}$. Na sliki je prikazan slučajni graf na 100 vozliščih z $\overline{\deg} = 3$.

Porazdelitve stopenj

Analiza omrežij

V. Batagelj

Statistika

Homomorfizm

Razbitja

Skrcite

IZrez

Dejanska omrežja so vse prej kot slučajna. Analiza porazdelitev je dala nov pogled na zgradbo dejanskih omrežij – Watts (Small worlds), Barabási (nd/networks, Linked).

Porazdelitve v/iz-hodnih stopenj

Analiza omrežij

V. Batageli

Statistika

Razbitia

V Pajek-a preberemo omrežje sklicevanj cite.net in odstranimo zanke ter večkratne povezave. Nato določimo vhodne in izhodne stopnje ter iz Pajek-a pokličemo R in mu 'podtaknemo' vse vektorje.

```
R called from Paiek
The following vectors read:
v3 : From partition 1 (548600)
v4 : From partition 2 (548600)
> inTab <- table(v3)</pre>
> indeg <- as.integer(names(inTab))</pre>
> inDeg <- indeg[indeg>0]
> inFreq <- as.vector(inTab[indeg>0])
> plot(inDeg,inFreq,log='xy',main="in-degree distribution")
> ouTab <- table(v4)
> outdeg <- as.integer(names(ouTab))</pre>
> outDeg <- outdeg[outdeg>0]
> outFreq <- as.vector(ouTab[outdeg>0])
> plot(outDeg,outFreq,log='xy',main="out-degree distribution")
```


Porazdelitve v/iz-hodnih stopenj

Analiza omrežij

V. Batagelj

Statistika

Homomorfizmi

Razbitja

0111 0100

Izrezi

Porazdelitev vhodnih stopenj kaže na brezlestvičnost (scale-free). Parametre lahko ocenimo s paketom, ki so ga pripravili Clauset, Shalizi and Newman. Glejte še Stumpf, et al.: Critical Truths About Power Laws.

Števila objav člankov po letih

omrežja na temo središčnosti

središčnosti smo dobili:

```
Analiza
omrežij
```

V. Batagelj

Statistika

Homomorfizmi

Razbitja

Skrčitev

Izrozi

12162

```
> setwd("C:/Users/Batagelj/work/Python/WoS/Central")
> years <- read.table(file="Year.clu",header=FALSE,skip=2)$V1
> t <- table(years)
> year <- as.integer(names(t))</pre>
> freq <- as.vector(t[1950<=year & year<=2009])</pre>
> v <- 1950:2009
> plot(y,freq)
> model <- nls(freq~c*dlnorm(2010-y,a,b),start=list(c=350000,a=2,b=0.7))</pre>
> model
Nonlinear regression model
  model: freq ~ c * dlnorm(2010 - y, a, b)
   data: parent.frame()
c a b
5.427e+05 2.491e+00 6.624e-01
residual sum-of-squares: 20474181
Number of iterations to convergence: 7
Achieved convergence tolerance: 3.978e-06
```

Iz datoteke Year.clu, ki vsebuje letnice objav člankov, lahko dobimo

porazdelitve števila objav člankov po letih. Za omrežja na temo

Porazdelitev lahko dobro povzamemo logaritemsko normalno porazdelitvijo,

4 D > 4 A > 4 B > 4 B >

> lines(y,predict(model,list(x=2010-y)),col='red')

toda tudi s funkcijo $c * (x + d)^{\frac{a}{b+x}}$.

Števila objav člankov po letih

omrežja na temo središčnosti

Analiza omrežij

V. Batagelj

Statistika

Homomorfiz

Razbitja

Skrčite

Izrozi

Analiza omrežij

V. Batagelj

Statistika

Homomorfizmi

Razbitja

Izrezi

Povezanosti med grafi

Preslikavi (φ, ψ) , $\varphi \colon \mathcal{V} \to \mathcal{V}'$ in $\psi \colon \mathcal{L} \to \mathcal{L}'$ določata *šibki homomorfizem* grafa $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ v graf $\mathcal{H} = (\mathcal{V}', \mathcal{L}')$ ntk velja:

$$\forall u, v \in \mathcal{V} \, \forall p \in \mathcal{L} : (p(u : v) \Rightarrow \psi(p)(\varphi(u) : \varphi(v)))$$

in določa (krepki) homomorfizem grafa ${\mathcal G}$ v graf ${\mathcal H}$ ntk velja:

$$\forall u, v \in \mathcal{V} \forall p \in \mathcal{L} : (p(u, v) \Rightarrow \psi(p)(\varphi(u), \varphi(v)))$$

Ko sta φ in ψ bijekciji in ustrezni pogoj velja v obe smeri, govorimo o *izomorfizmu* grafov $\mathcal G$ in $\mathcal H$. Da sta grafa šibko izomorfna zapišemo $\mathcal G \sim \mathcal H$; da sta (krepko) izomorfna pa $\mathcal G \approx \mathcal H$. Velja $\approx \subset \sim$.

Stalnica ali invarianta grafa imenujemo vsako grafu prirejeno število, ki je enako za vse med seboj izomorfne grafe.

EulerGT

Homomorfizem

Analiza omrežij

V. Batagelj

Statistika

Homomorfizmi

Razbitja

Skrcite

Izrezi

Izrezi

Izomorfna grafa

Analiza omrežij

V. Batagelj

Statistika

Homomorfizmi

Razbitja

rtazbitja

.....

IZrezi

Skupine, razvrstitve, razbitja, razslojitve

Analiza omrežij

V. Batagelj

Statistika

Homomorfizi

Razbitja

SKICILE

Izrezi

....

Neprazno podmnožico $C \subseteq \mathcal{V}$ imenujemo *skupina*. Neprazna množica skupin $\mathbf{C} = \{C_i\}$ je *razvrstitev*.

Razvrstitev $\mathbf{C} = \{C_i\}$ je *razbitje* ntk

$$\cup \mathbf{C} = \bigcup_{i} C_{i} = \mathcal{V} \quad \text{in} \quad i \neq j \Rightarrow C_{i} \cap C_{j} = \emptyset$$

Razvrstitev $\mathbf{C} = \{C_i\}$ je razslojitev ali hierarhija ntk

$$C_i \cap C_j \in \{\emptyset, C_i, C_j\}$$

Razslojitev $\mathbf{C} = \{C_i\}$ je *polna*, če je $\cup \mathbf{C} = \mathcal{V}$; in je *osnovna*, če je za vsak $v \in \cup \mathbf{C}$ tudi $\{v\} \in \mathbf{C}$.

Primer razbitja in razslojitve

Analiza omrežij

V. Batagelj

Statistik

Homomorfiz

Razbitja

Skrčitev

Izrezi

. .

Množica vozlišč:

$$V = \{a, b, c, d, e, f, g\}$$

Razbitje:

$$C = \{\{a, b, e\}, \{c, g\}, \{d, f\}\}$$

Skupina:

$$C_2 = \{c,g\}$$

Razslojitev:

$$\mathbf{H} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{a, e\}, \{c, g\}, \{d, f\}, \{a, b, e\}, \{c, d, f, g\}, \{a, b, c, d, e, f, g\}\}$$

Skrčitev skupine

Analiza omrežij

V. Batagelj

Statistika

Homomorfizm

Razbitja

Skrčitev

JRICIEC

Izrezi

Skrčitev skupine C imenujemo graf \mathcal{G}/C , ki ga dobimo tako da vsa vozlišča skupine C zamenjamo z enim vozliščem, recimo c. Natančneje $\mathcal{G}/C=(\mathcal{V}',\mathcal{L}')$, kjer je $\mathcal{V}'=(\mathcal{V}\setminus C)\cup\{c\}$ in \mathcal{L}' sestavljajo povezave iz \mathcal{L} , ki imajo obe krajišči v $\mathcal{V}\setminus C$. Večkratne vzporedne povezave združimo v eno. Poleg teh pa še 'zvezda' z vrhom c in krakom (v,c), če $\exists p\in\mathcal{L},u\in C:p(v,u)$, oziroma krakom (c,v), če $\exists p\in\mathcal{L},u\in C:p(u,v)$. V vozlišču c je zanka (c,c), če $\exists p\in\mathcal{L},u,v\in C:p(u,v)$.

V omrežju nad grafom $\mathcal G$ moramo povedati še, kako so določene vrednosti/uteži v skrčenem delu. Običajno kar kot vsota ali maksimum/minimum izvornih vrednosti.

Operations/Network + Partition/Shrink Network

Skrčitev skupin – trgovanje med državami

Analiza omrežij

V. Batagelj

Razbitja

Skrčitev

Snyder in Kickovi podatki o trgovanju med državami. Matrični prikaz gostih omrežij. Uteži v skrčitvi (makro):

$$w(C_i, C_j) = \frac{n(C_i, C_j)}{n(C_i) \cdot n(C_j)}$$

Izračun uteži w

Analiza omrežij

V. Batagelj

Statistika

Homomortizm

Razbitja

Skrčitev

izrezi

zrezi

File/Pajek Project File/Read [SKtrade.paj]
Network/Create New Network/Transform/Remove/Loops [No]
Network/Create New Network/Transform/Edges -> Arcs [No]
Operations/Network+Partition/Shrink Network [1 0]

	1	2	3	4	5	6	7	Label
1. 2. 3. 4. 5.	55	74 28 217 8	25 33 130 14	124 694 406	20 16 427 122	36 483	5 41 11	#usa #cub #per #uki #mli #irn
7.	4	4	5	39	9	30	2	#aut

Partition/Make Permutation [select partition (Sub)continents] Operations/Partition+Permutation/ Functional Composition Partition*Permutation Partition/Count

count 2 15 7 29 33 30 2

... Izračun uteži w

Analiza omrežij

V. Batagelj

Statistika

Homomorfizm

Razbitja Skrčitev

SKICILCI

ızrezi

zrezi

```
Partition/Copy to Vector
Vector/Create Constant Vector [7 1.0]
[select as second vector Copy of partition ...]
Vectors/Divide (First/Second)
Network/Create Vector/Get Loops
Vectors/Add (First+Second)
Operations/Network+Vector/Transform/Put Loops/as Arcs
[select vector Divide V? by ...]
Operations/Network+Vector/Vector#Network/input
Operations/Network+Vector/Vector#Network/output
```

```
#usa 1. 0.50 1.00 0.93 0.97 0.64 0.75 1.00 #cub 2. 1.00 0.33 0.24 0.45 0.04 0.08 0.49 #per 3. 0.86 0.27 0.67 0.61 0.07 0.17 0.36 #uki 4. 0.95 0.50 0.64 0.83 0.45 0.56 0.71 #mli 5. 0.64 0.02 0.06 0.42 0.11 0.12 0.17 #irn 6. 0.72 0.08 0.20 0.51 0.14 0.34 0.50 4 mut 7. 1.00 0.13 0.36 0.67 0.14 0.50 0.50
```

Ker so na diagonali 0, bi jih bilo smiselno pred izračunom postaviti na 1 ali pa diagonalne vrednosti deliti z $n(C_i)(n(C_i)-1)$, če je $n(C_i) > 1$.

Macro weights.

Podgraf

Analiza omrežij

V. Batagelj

Statistika

HOMOMORIIZH

Razbitja

Skrčite

Izrezi

IZICZI

Podgraf $\mathcal{H}=(\mathcal{V}',\mathcal{L}')$ danega grafa $\mathcal{G}=(\mathcal{V},\mathcal{L})$ je graf, katerega povezave \mathcal{L}' so vsebovane v povezavah grafa $\mathcal{G},\ \mathcal{L}'\subseteq\mathcal{L}$, vozlišča \mathcal{V}' pa v vozliščih grafa $\mathcal{G},\ \mathcal{V}'\subseteq\mathcal{V}$, in vsebujejo tudi vsa krajišča povezav \mathcal{L}' .

Podgraf je lahko *porojen* z dano podmnožico vozlišč ali povezav. Podgraf je *vpet*, če je $\mathcal{V}' = \mathcal{V}$.

Izrez: Snyder in Kick – Afrika

Analiza omrežij

V. Batagelj

Statistika

Homomorfiz

Razbitja

Skrčitev

Izrezi

Izrezi

Operations/Network + Partition/Extract Subnetwork [6]

Izrez: Snyder in Kick

Latinska Amerika: Južna Amerika

Analiza omrežij V. Batagelj

Homomorfizm

Razbitja

Izrezi

Operations/Network + Partition/Extract Subnetwork [3,4]
Operations/Network + Partition/Transform/Remove lines/
 Inside clusters [3,4]

Vozlišča lahko ročno razmestimo po pravokotni mreži ustvarjeni z

[Draw] Move/Grid

Izrezi

Analiza omrežij V. Batageli

Statistika

HOHIOHIOHIZH

Razbitja

Skrčitov

I----:

Izrezi

Vozliščni izrez omrežja $\mathcal{N}=(\mathcal{V},\mathcal{L},p),\ p:\mathcal{V}\to\mathbb{R}$, na *ravni t* je podomrežje $\mathcal{N}(t)=(\mathcal{V}',\mathcal{L}(\mathcal{V}'),p)$, določeno z množico vozlišč

$$\mathcal{V}' = \{ v \in \mathcal{V} : p(v) \ge t \}$$

kjer je $\mathcal{L}(\mathcal{V}')$ množica vseh povezav iz \mathcal{L} , ki imajo obe krajišči v \mathcal{V}' .

Povezavni izrez omrežja $\mathcal{N}=(\mathcal{V},\mathcal{L},w)$, $w:\mathcal{L}\to\mathbb{R}$, na *ravni t* je določeno z množico povezav

$$\mathcal{L}' = \{e \in \mathcal{L} : w(e) \ge t\}$$

To je podomrežje $\mathcal{N}(t) = (\mathcal{V}(\mathcal{L}'), \mathcal{L}', w)$, kjer je $\mathcal{V}(\mathcal{L}')$ množica vseh krajišč povezav iz \mathcal{L}' .

Analiza omrežja z izrezi

Analiza omrežij

V. Batagelj

Statistik

Homomorfizm

Razbitia

Skrčite

. .

Izrezi

Izrezi ponujajo enostaven pristop k analizi omrežij. Za izbrano lastnost/utež in raven t določimo pripadajoči izrez $\mathcal{N}(t)$. Pozornost posvetimo njegovim komponentam – povezanim delom.

Število in velikost komponent je odvisna od ravni t. Pogosto se pojavi več majhnih komponent. Pri analizi nas običajno zanimajo le komponente 'prave' velikosti – vsaj k in ne večje kot K. Premajhne komponente zavržemo kot 'nezanimive'; prevelike komponente pa ponovno izrežemo na neki višji ravni.

Vrednost t, k in K določimo s pregledom porazdelitve vrednosti lastnosti/uteži in z upoštevanjem dodatnega vedenja o značilnostih omrežja in ciljih raziskave.

V program Pajek je vgrajenih nekaj novih, učinkovito izračunljivih lastnosti/uteži.

Vozliščni izrez: Krebsova spletna podjetja, core=6

Analiza omrežij

V. Batagelj

Statistika

Homomorfizm

Razbitja

Skrčite

. .

Izrezi

Vsako vozlišče predstavlja spletno podjetje dejavno v obdobju 1998 do 2001. $n=219,\ m=631.$ rdeča – vsebina, modra – podporne storitve, zelena – trgovina.

Podjetji sta povezani, če sta najavili skupni posel ali drugo obliko sodelovanja.

Povezavni izrez: Krebsova spletna podjetja, $w_3 \geq 5$

Analiza omrežij

V. Batagelj

Statistika

Homomorfiz

Razbitja

Skrčitev

Izrezi

Analiza omrežja z izrezi

Analiza omrežij

V. Batagelj

Statistika

Homomortizm

Razbitja

121 021

Izrezi

Vrednosti ravni t določimo na osnovi porazdelitve vrednosti funkcij w oziroma p. Običajno nas zanimajo komponente izreza, ki niso niti prevelike, niti premajhne.

Vozliščni izrez: p shranjena v vektorju

```
Vector/Info [+10] [#10]
Vector/Make Partition/by Intervals/Selected Thresholds [t]
Operations/Network + Partition/Extract Subnetwork [2]
```

Povezavni izrez: omrežje z utežmi

```
Network/Info/Line values [#10]
Network/Create New Network/Transform/Remove/Lines with Value/
lower than [t]
Network/Create Partition/Degree/All
Operations/Network + Partition/Extract Subnetwork [1-*]
```