

MAE 4151: Final Presentation

Anton Yanovich, Oscar Southwell, Moustafa Montaser, Yahya Aliyu, and Huzeyfa Telha

(12/12/22)

Functional Requirements – Sanitizing Station

Functional Requirement	Engineering Characteristic	Units	Direction of Improvement	Target Value
The device is sturdy and structurally sound	The device enclosure should be able to support a necessary load	kg	up	1 kg
The device can fit 4 c-type battery	Battery compartment should have appropriate dimension	in	up	lxlx2 in
The device is compatible with a 1000mL sanitizer bottle	Storage compartment should have appropriate dimensions	in	up	6x6x10 in
Stores discrete values for temperature & records time stamp	Average space taken by individual data points in array cumulatively	Kilobytes (KB)	up	200 KB
Transmits sensor inputs to server over wireless modality	Frequency of Wi-Fi/Bluetooth Radio Band	Hertz (GHz)	up	2.4 GHz
Functions with ≤ 6 V power, for duration of 3 weeks.	Average battery consumption rate	Voltage (V)	down	5 V
Hand sensing is reliable	Percentage of successful object sensing trials	Percentage (%)	up	99.9% (≤1 failure per 1,000 tests)
	Sensing response delay time	Milliseconds (ms)	down	<200ms
User Temperature is accurately recorded for each activation	Average accuracy of station temperature measurement	Range of Degrees Celsius (°C)	down	± 0.2 °C

Functional Requirements – Sanitizing Station

Functional Requirement	Engineering Characteristic	Units	Direction of Improvement	Target Value
Reliable Pump Dispensing mechanism	Percentage of successful tests of dispensing pump mechanism upon signal activation (from 1000 mL container, 1333 test runs)	Percentage (%)	up	≥99%
Rapid sanitizer fluid dispensing	Time for 0.75 mL of sanitizer fluid to be dispensed by pump	Seconds (s)	down	≤1.5s
Consistent volume of fluid dispensed	Standard Deviation of average volume of sanitizer fluid dispensed by pump	Milliliters (mL)	down	≤0.05 mL
Reliable foaming of sanitize fluid	percentage of sanitizer fluid volume dispensed by pump converted into foam by nozzle	Percentage (%)	up	≥99%

Overview of Preliminary Design Accomplishments

- Phase 1: Alpha prototype Completed. Undergoing Testing with respect to functional requirements.
 - Arduino, temperature sensor, (WIP) IR sensor circuitry completed
 - Application layer in progress, near completion.
- Phase 2: Minimum Viable Product. In progress.
 - o CAD remodeling of station interior/exterior housing.
 - Optimization of circuitry.
 - o Integration of stations with WIFI module and LoRa-WAN, data upload to application layer
 - Data collection within public setting.

Work on Alpha Prototype: Overview of Motion/Temp Subsystem

Fig 1. Integrated system with IR Temp. Sensor, PIR, and WiFi module

Fig 2. Ultrasonic motion sensing testing

Alpha Prototype: Discrete Transmittable Outputs

Fig 3. IR Temperature sensing module

Fig 4. Serial monitor output of temperature and motion detection*

- Successfully acquires ambient and individual temperatures
- PIR Successfully
 detect individual motion
 within 10m (range
 optimization to be explored)

Current Direction

- Optimizing PIR range and compare sensitivity and specificity with ultrasonic motion
- Correlating extremity temperature with normal body temperature to create adjustment/normalizing factor
- Integrating WiFi module with FireBase Cloud Network
- Linking circuit with indigenous power supply

Alpha Prototype: Work on Application Layer

System Architecture (Device)

System Architecture (Application)

Dispensing Unit: Sanitizer Pump and Nozzle

Oscar Southwell

Functional	Design	Analysis	Reference	Risk	Counter-
Requirements	Parameters*		S		measures
Reliable Pump Dispensing mechanism (sanitizer fluid dispensed by pump with ≥99% consistency)	Rotary Drive Pump (dispenses sanitizer fluid, powered by 4C batteries. Internal	Prototype testing of pump mechanism - successful dispensing of at least one full 1000 mL container of sanitizer fluid, or 1333	(https://www .kutol.com/ar ticles/how- much-hand- sanitizer-do- you-need/)	Low: Sanitizer pump can clog when dry fluid builds up. Very low probability of occurrence (only a few reported instances, none at GW by housekeeping	Dispensing angle: Risk of dry fluid buildup is almost entirely mitigated by vertical dispensing angle (nozzle aimed
Rapid sanitizer fluid dispensing (0.75 mL of sanitizer fluid fully dispensed by pump within 1.5 seconds of motion activation)	pressure gradient configured to dispense 0.75 mL of fluid within 1.5 seconds of signal activation)	dispenses. Testing results recorded in excel spreadsheet. Weight of fluid before and after test compared to determine overall system	(https://www .medicaldesig nbriefs.com/c omponent/co ntent/article/ mdb/pub/fea	staff or station users) Medium: Sanitizer fluid can leak from joint between foaming nozzle and sanitizer pump tube.	downwards) Specialized Foaming pump: Sanitizer pump with built in foaming nozzle ordered for
Consistent volume of fluid dispensed Standard Deviation of average volume of sanitizer fluid dispensed by pump less than 0.05 mL	Mesh foaming nozzle attachment (converts sanitizer fluid into foam as it passes through)	accuracy; individual dispensing tests recorded to determine individual use accuracy.	tures/technol ogy-leaders/2784 2)	Samuel pamp tabe.	alpha prototype, mitigates any risk proposed by attachment to existing sanitizer pump
Reliable foaming of					

Sanitizer Station Pump – Exterior Casing Removed

Internal wiring within Interior casing

Motor for Sanitizer Dispensing Pump Mechanism (removed from internal casing)

Application Huzeyfa Telha, Yahya Aliyu, Anton Yanovich

Functional Requirements	Design Parameters*	References	Risk	Counter-measures
Predictive Analysis: Predict when each sanitizing station will be empty by measuring past history. Display Average temperature: Display the average temperature sensor data	Real-Time Monitoring of refill levels, battery statuses, and expiration information with alerts Usage and trend data improve workflows and increased inventory and order accuracy.	https://rapidapi. com/apininjas/a pi/weather-by- api-ninjas/ https://rapidapi. com/apidojo/api /similar-web https://develope rs.google.com/m aps	High: Potential Risk of Security vulnerabilities. Medium: Unreliable Data Storage. Low: Poor UI/UX Design.	Words Use secure pre-built- in packages to protect against vulnerabilities. Use encryption for sensitive user data.

Analysis and Design Accomplishments for Subsystems 2 Application Layer

Sensing Unit: Motion and Temperature Sensors Anton Yanovich & Yahya Aliyu

Functional Requirements	Design Parameters	Analysis	References	Risk	Counter- measures
Reliable user hand sensing (>99% reliability and 0.2 second response delay time) Accurate user temperature measurement (±0.2°C)	Ultrasonic sensor to detect hand motion Infrared sensor to measure temperature	Response time model estimates a response under lms Thermopile provides the necessary accuracy if temperature within 32-42°C	(IRJET- Automatic Sanitizer Sprayer with Liquid Level Indicator and Counter, 2021) (Make a Non- Contact Infrared Thermometer with MLX90614 IR Temperature Sensor, 2021)	Low: The sensor are cheap and may fail after a period due to frequent use	The application layer will provide tracking of each station and will flag device function failures

Sensing unit: Analysis

Ultrasonic Sensor:

Response Time Equation: $T = \frac{2D}{c}$

- D: distance
- C: speed of sound ~ 343 m/s
- T: time

Ex: 5 cm object distance = <1 ms response time (200ms target)

Source: TutorialsPoint, 2022

Infrared Sensor:

Radiation Flux Equation:

$$q = \varepsilon_1 \cdot \alpha_1 \cdot (T_1^4) \sigma \cdot A_1 \cdot F_{a-b} - \varepsilon_2 \cdot (T_2^4) \sigma \cdot A_2$$

- ε1 & ε2: emissivity of sensor and object
- α l: absorptivity of the sensor
- σ: Stefan-Boltzmann constant
- Fa-b: sensor shape factor
- T1 & T2: temperatures of sensor and object

Thermopile Output Equation:

$$V_{ir}(T_a, T_0) = A(T_0^4 - T_a^4)$$

- To & Ta: temperatures of object and sensor
- A: overall sensitivity

Source: MLX90614 Spec Sheet

Enclosure, Battery Compartment, Bottle Compartment Moustafa Montaser

Functional Requirements	Design Parameters*	Analysis	References	Risk	Counter- measures
The device is sturdy and structurally sound	An existing enclosure design will be selected.	The proposed design is able to support device features requirements and necessary load rating	https://www.treetopproduct s.com/touch-free- automatic-hand-sanitizer- dispenser-with-floor- stand?sku=4ZB4243&st- t=ttgoogshop&gclid=Cj0KC QiAyMKbBhDiARIsANs7rEGX7 qltzlqmAaL-6jWii6XxJw- MUhUkqg- C6Io28qEwnIH_DIBfYWQaAi DGEALw_wcB	The selected enclosure might require modifications to fit each system requirement	Enclosure will be modified by integration of 3D printed custom parts as needed
The device can fit four c-type batteries	An appropriate battery compartment will be designed and 3D printed	Compartment dimensions will be lxlx2 in	https://en.wikipedia.org/wiki/C_battery	Battery needs to change from time to time	The application will track power status and create an alert in the system
The device is compatible with a 1000mL sanitizer bottle	An existing enclosure design will be selected to match this requirement	Compartment dimensions will be 6x6x10 in	https://www.treetopproducts.com/touch-free-automatic-hand-sanitizer-dispenser-with-floor-stand?sku=4ZB4243&st-t=ttgoogshop&gclid=Cj0KCOiAyMKbBhD1ARIsANs7rEGX7qltzlqmAaL-6jWii6XxJw-MUhUkqg-C6lo28qEwnlH_DlBfYWQaAiDGEALw_wcB	The compartment might require modifications to account for additional system requirements	The compartment will be modified by integration of 3D printed custom parts as needed

Existing Sanitizer Station fluid storage unit

Researched bag sanitizer fluid storage unit

Issues or Concerns for Success

 Although internal circuitry completed, considerable optimization for MVP required

 Station fluid level tracking functionality in place, but battery level tracking still work in progress

 Uncertainty of design quality under real-world working conditions, considerable testing required.

Thanks for watching!