

SoSe 2019

MATHEMATISCHE MODELLE DER KONTINUUMSMECHANIK [MA2904]
PROF. DR. DANIEL MATTHES

BENEDIKT GRASWALD

benedikt.graswald

 $matthes@ma.tum.de\\benedikt.graswald@ma.tum.de\\$

Aufgabenblatt 1

Tutorübungen am 24./25. April und 2. Mai

Aufgabe T1.1 (Stokes'sches Gesetz)

Ein Körper der Masse m wird von der Erdoberfläche mit der Geschwindigkeit v_0 senkrecht in die Höhe geworfen. Der Luftwiderstand bei der Geschwindigkeit v soll durch das Stokesche Gesetz $F_R = -cv$ für den Strömungswiderstand berücksichtigt werden. Das ist für kleine Geschwindigkeiten sinnvoll. Dabei ist c ein von der Form und Größe des Körpers abhängiger Koeffizient. Die auf den Körper wirkende Gravitationskraft soll durch $F_G = -mg$ approximiert werden. Die Bewegung hänge von der Masse m, der Anfangsgeschwindigkeit v_0 , der Gravitationsbeschleunigung g und dem Reibungskoeffizienten c mit Dimension $[c] = \frac{\mathcal{M}}{\mathcal{T}}$ ab.

- a) Stellen Sie ein geeignetes Anfangswertproblem für die Höhe des Körpers auf.
- b) Bestimmen Sie die Variablen und Parameter mit den dazugehörigen Dimensionen.
- c) Gewinnen Sie alle möglichen dimensionslosen Darstellungen der Differentialgleichung.
- d) Diskutieren Sie verschiedene Möglichkeiten eines reduzierten Modells, falls $\beta = \frac{cv_0}{mg}$ klein ist.

Lösungsvorschlag:

Aufgabenteil a)

Die Bewegungsgleichung ergibt sich aus der Newton'schen Gleichung $F = m\ddot{x}$ wobei wir die Erdanziehung $F_G = -mg$ und den Luftwiderstand nach Stokes $F_R = -c\dot{x}$ als Kräfte berücksichtigen. Des Weiteren benötigen wir noch die Anfangsbedingungen x(0) = 0 und $\dot{x}(0) = v_0$ und erhalten somit das Anfangswertproblem

$$m\ddot{x} = -c\dot{x} - mg$$
 $x(0) = 0, \ \dot{x}(0) = v_0.$ (1)

Aufgabenteil b)

Als Grundeinheiten benötigen wir die Länge \mathcal{L} , Zeit \mathcal{T} und die Masse \mathcal{M} . Die Variablen des Problems sind x mit Dimension $[x] = \mathcal{L}$ Länge und t mit Dimension $[t] = \mathcal{T}$ Zeit. Als Parameter gehen in unser Modell die folgenden Größen ein

• Koeffizient des Luftwiderstands c mit Dimension $[c] = \frac{\mathcal{M}}{\mathcal{T}}$.

- Masse m mit Dimension $[m] = \mathcal{M}$.
- Gravitations beschleunigung g mit Dimension $[c] = \frac{\mathcal{L}}{\mathcal{T}^2}$.
- Anfangsgeschwindigkeit v_0 mit Dimension $[v_0] = \frac{\mathcal{L}}{\mathcal{T}}$.

Aufgabenteil c)

Um die dimensionslosen Darstellungen des Anfangswertproblems zu erhalten bestimmen wir alle möglichen Parameterkombinationen welche als Dimension die Grundeinheiten \mathcal{L} und \mathcal{T} unseres Models besitzen, d.h., alle möglichen reellen Lösungen $\alpha_1, \ldots \alpha_4$ der folgenden beiden Gleichungen

$$\mathcal{L} = [c^{\alpha_1} m^{\alpha_2} g^{\alpha_3} v_0^{\alpha_4}] \qquad \mathcal{T} = [c^{\alpha_1} m^{\alpha_2} g^{\alpha_3} v_0^{\alpha_4}].$$

Beginnen wir mit der Länge $\mathcal L$ und setzen die Dimensionen der einzelnen Parameter in diese Gleichung ein

$$\mathcal{L} = \left(\frac{\mathcal{M}}{\mathcal{T}}\right)^{\alpha_1} (\mathcal{M})^{\alpha_2} \left(\frac{\mathcal{L}}{\mathcal{T}^2}\right)^{\alpha_3} \left(\frac{\mathcal{L}}{\mathcal{T}}\right)^{\alpha_4} = \mathcal{M}^{\alpha_1 + \alpha_2} \mathcal{T}^{-\alpha_1 - 2\alpha_3 - \alpha_4} \mathcal{L}^{\alpha_3 + \alpha_4}$$

und erhalten durch Koeffizientenvergleich das folgende Gleichungssystem

$$\left(\begin{array}{ccc|ccc|c} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -2 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{array}\right) \equiv \left(\begin{array}{cccc|ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{array}\right).$$

Die allgemeine Lösung dieses Gleichungssystems ist

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}, \qquad \mu \in \mathbb{R}.$$

Es ergeben sich also die folgenden Parameterkombinationen mit Dimension einer Länge

$$\mathcal{L} = c^{\mu - 2} m^{-\mu + 2} g^{-\mu + 1} v_0^{\mu} = \left(\frac{cv_0}{mg}\right)^{\mu - 2} \cdot \frac{v_0^2}{g} = \beta^{\mu - 2} \cdot \frac{v_0^2}{g}.$$
 (2)

Um die Notation zu vereinfachen wurde hierbei bereits der dimensionslose Parameter $\beta := \frac{cv_0}{mg}$ aus Teil d) verwendet. Entsprechend erhalten wir für die Zeiteinheit die folgende Gleichung

$$\mathcal{T} = \left(\frac{\mathcal{M}}{\mathcal{T}}\right)^{\alpha_1} (\mathcal{M})^{\alpha_2} \left(\frac{\mathcal{L}}{\mathcal{T}^2}\right)^{\alpha_3} \left(\frac{\mathcal{L}}{\mathcal{T}}\right)^{\alpha_4} = \mathcal{M}^{\alpha_1 + \alpha_2} \mathcal{T}^{-\alpha_1 - 2\alpha_3 - \alpha_4} \mathcal{L}^{\alpha_3 + \alpha_4}$$

und durch Koeffizientenvergleich das Gleichungssystem

$$\left(\begin{array}{ccc|ccc|c} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -2 & -1 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{array}\right) \equiv \left(\begin{array}{ccc|ccc|c} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & -1 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{array}\right).$$

Die allgemeine Lösung dieses Gleichungssystems ist

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}, \quad \lambda \in \mathbb{R}.$$

Hieraus ergeben sich folgende Parameterkombinationen mit Dimension der Zeit

$$\mathcal{T} = c^{\lambda - 1} m^{-\lambda + 1} g^{-\lambda} v_0^{\lambda} = \left(\frac{cv_0}{mg}\right)^{\lambda} \cdot \frac{m}{c} = \beta^{\lambda} \cdot \frac{m}{c}.$$
 (3)

Um die Entdimensionalisierung des Anfangswertproblems zu erreichen, führen wir die beiden folgenden dimensionslosen Variablen ein

 $\tilde{x}(\tilde{t}) = \frac{x(t)}{\mathcal{L}}, \qquad \tilde{t} = \frac{t}{\mathcal{T}}.$

Gemäß der Kettenregel erhalten wir die Ableitungen

$$\dot{x}(t) = rac{\mathcal{L}}{\mathcal{T}}\dot{\tilde{x}}(\tilde{t}), \qquad \ddot{x}(t) = rac{\mathcal{L}}{\mathcal{T}^2}\ddot{\tilde{x}}(\tilde{t}).$$

Einsetzen in die Differenzialgleichung (1) ergibt

$$m\frac{\mathcal{L}}{\mathcal{T}^2}\ddot{\tilde{x}}(\tilde{t}) = -c\frac{\mathcal{L}}{\mathcal{T}}\dot{\tilde{x}}(\tilde{t}) - mg.$$

Setzt man nun (2) und (3) in diese Gleichung ein, so erhält man die allgemeine dimensionslose Differenzialgleichung und entsprechende Anfangswerte

$$\beta^{\mu-2\lambda}\ddot{\tilde{x}}(\tilde{t}) = -\beta^{\mu-\lambda}\dot{\tilde{x}}(\tilde{t}) - 1, \qquad \tilde{x}(0) = 0, \ \dot{\tilde{x}}(0) = \beta^{\lambda-\mu+1} \quad \lambda, \mu \in \mathbb{R}. \tag{4}$$

Aufgabenteil d)

Betrachten wir nun einige konkrete Beispiele aus der Familie dimensionsloser Anfangswertprobleme (4) und untersuchen jeweils den Grenzfall $\beta = 0$. Beginnen wir mit der kanonischen Wahl $\lambda = \mu = 0$ und erhalten das Anfangswertproblem

$$\ddot{\tilde{x}}(\tilde{t}) = -\dot{\tilde{x}}(\tilde{t}) - 1, \qquad \tilde{x}(0) = 0, \ \dot{\tilde{x}}(0) = \beta.$$

Setzt man hier $\beta = 0$ so ergibt sich das Anfangswertproblem

$$\ddot{\tilde{x}}(\tilde{t}) = -\dot{\tilde{x}}(\tilde{t}) - 1, \qquad \tilde{x}(0) = 0, \ \dot{\tilde{x}}(0) = 0.$$

Dieses Anfangswertproblem beschreibt den senkrechten Wurf mit Anfangsgeschwindigkeit $v_0=0$ also den freien Fall nach unten. Somit führt diese dimensionslose Formulierung für $\beta=0$ zu keiner geeigneten Approximation unseres Modells. Eine andere einfache Möglichkeit ist z.B. $\lambda=1$ und $\mu=0$, dies führt zum Anfangswertproblem

$$\beta^{-2}\ddot{\tilde{x}}(\tilde{t}) = -\beta^{-1}\dot{\tilde{x}}(\tilde{t}) - 1, \qquad \tilde{x}(0) = 0, \ \dot{\tilde{x}}(0) = \beta^{2}$$

bzw.

$$\ddot{\tilde{x}}(\tilde{t}) = -\beta \dot{\tilde{x}}(\tilde{t}) - \beta^2, \qquad \tilde{x}(0) = 0, \ \dot{\tilde{x}}(0) = \beta^2.$$

Setzt man auch hier $\beta = 0$ so ergibt sich das Anfangswertproblem

$$\ddot{\tilde{x}}(\tilde{t}) = 0, \qquad \tilde{x}(0) = 0, \quad \dot{\tilde{x}}(0) = 0.$$

Dieses Anfangswertproblem beschreibt den senkrechten Wurf mit Anfangsgeschwindigkeit $v_0 = 0$ ohne Luftwiderstand und Erdanziehung und somit einen bei x(0) = 0 ruhenden Körper. Somit führt auch diese dimensionslose Formulierung für $\beta = 0$ zu keiner geeigneten Approximation unseres Modells.

Betrachten wir nach diesen erfolglosen Versuchen das Modell einmal aus physikalischer Sicht. Ein kleiner Wert von β entspricht einer kleinen Anfangsgeschwindigkeit v_0 , alle anderen Parameter in β sind Naturkonstanten bzw. durch die Wahl des Körpers festgelegt. Eine natürliche Vereinfachnung

des Modells bei kleiner Anfangsgeschwindigkeit ergibt sich durch die Vernachlässigung des Luftwiderstands. Diese Betrachtung legt die Parameterwahl $\lambda=1$ und $\mu=2$ nahe, welche zu folgendem Anfangswertproblem führt

$$\ddot{\tilde{x}}(\tilde{t}) = -\beta \dot{\tilde{x}}(\tilde{t}) - 1, \qquad \tilde{x}(0) = 0, \ \dot{\tilde{x}}(0) = 1.$$

Setzt man hier $\beta = 0$ so ergibt sich das Anfangswertproblem

$$\ddot{\tilde{x}}(\tilde{t}) = -1, \qquad \tilde{x}(0) = 0, \ \dot{\tilde{x}}(0) = 1.$$

welches wie gewünscht den senkrechten Wurf unter Vernachlässigung des Luftwiderstands beschreibt.

Aufgabe T1.2 (Wiederholung Differentialgleichungen)

Bestimmen Sie die Lösung zu den folgenden Anfangswertproblemen:

a)
$$x''(t) - 3x'(t) + 2x(t) = t$$
, $x(0) = x'(0) = 0$

b)
$$x'(t) + x(t) = \sin(t), \quad x(0) = \frac{1}{2}$$

c)
$$x'(t) + tx^3(t) = 0$$
, $x(1) = 2$

Betrachten Sie danach die Differentialgleichung

$$x''(t) + 2\alpha x'(t) + \omega_0^2 x(t) = K \cos(\omega t)$$

und diskutieren Sie das Verhalten der Lösung für verschiedene Parameter α, ω_0 .

Lösungsvorschlag:

Aufgabenteil a)

Das charakteristische Polynom ist $\lambda^2 - 3\lambda + 2$ mit Nullstellen $\lambda_1 = 1$ und $\lambda_2 = 2$, somit hat die homogene Lösung die Form $x_h(t) = Ae^t + Be^{2t}$. Um die partikuläre Lösung zu bestimmen, verwenden wir den Ansatz von der rechten Seite $x_p(t) = at + b$. Einsetzen ergibt $a = \frac{1}{2}$ und $b = \frac{3}{4}$. Damit erhalten wir als allgemeine Lösung der Differentialgleichung

$$x(t) = Ae^{t} + Be^{2t} + \frac{1}{2}t + \frac{3}{4}.$$

Mittels der Anfangswerte ergibt sich A=-1 und $B=\frac{1}{4}$, somit ist die L\u00e4soung unseres AWPs

$$x(t) = -e^t + \frac{1}{4}e^{2t} + \frac{1}{2}t + \frac{3}{4}.$$

Aufgabenteil b)

Analog zu Teil a) erhalten wir die homogene L\u00e4oung $x_h(t) = ce^{-t}$. F\u00fcr die Partikul\u00e4\u00fcosung machen wir erneut den Ansatz von der rechten Seite $x_p(t) = A\sin(t) + B\cos(t)$. Einsetzen ergibt $A = \frac{1}{2}$ und $B = -\frac{1}{2}$.

Damit erhalten wir als allgemeine Lösung der Differentialgleichung

$$x(t) = ce^{-t} + \frac{1}{2}(\sin(t) - \cos(t)).$$

Mittels der Anfangswerte ergibt sich c=1, somit ist die L\(\text{soung unseres AWPs}\)

$$x(t) = e^{-t} + \frac{1}{2} (\sin(t) - \cos(t)).$$

Aufgabenteil c)

Mittels Trennung der Variablen erhalten wir die Gleichung

$$\int_{x(1)}^{x(t)} -\frac{\mathrm{d}y}{y^3} = \int_{1}^{t} \tau \,\mathrm{d}\tau$$

was uns nach Integration auf die folgende Gleichung führt

$$\left[\frac{1}{2}\frac{1}{y^2}\right]_2^{x(t)} = \frac{1}{2}\left(\frac{1}{x(t)^2} - \frac{1}{4}\right) = \left[\frac{1}{2}\tau^2\right]_1^t.$$

Nun lösen wir nach x(t) auf und erhalten $x(t) = \frac{1}{(t^2 - \frac{3}{4})^{1/2}}$

Schwingungsgleichung

Wir betrachten nun die Schwingungsgleichung

$$x''(t) + 2\alpha x'(t) + \omega_0^2 x(t) = K \cos(\omega t)$$

mit allgemeinen Anfangswerten $x(t_0) = x_0, x'(t_0) = x'_0$. Wir beginnen mit dem homogenen Teil der Gleichung, dies entspricht den Eigenschwingungen des frei schwingenden System, d.h.

$$x''(t) + 2\alpha x'(t) + \omega_0^2 x(t) = 0$$

hier liefert der Ansatz $x(t)=ce^{\lambda t}$ das charakteristische Polynom $P(\lambda)=\lambda^2+2\alpha\lambda+\omega_0^2$ mit Nullstellen $\lambda_{1/2}=-\alpha\pm\sqrt{\alpha^2-\omega_0^2}$. In Abhängigkeit von diesen Nullstellen ergeben sich unterschiedliche Lösungen. Wir unterscheiden drei Fälle.

1. Aperiodischer Fall (starke Dämpfung): $\alpha - \omega_0^2 > 0$: Die homogenen Lösungen sind gegeben durch

$$x_h(t) = c_1 e^{(-\alpha + \beta)t} + c_2 e^{(-\alpha - \beta)t}, \text{ mit } \beta := \sqrt{\alpha^2 - \omega_0^2}.$$

mit den Konstanten $c_1 = ((\alpha + \beta)x_0 + x_0')/(2\beta)e^{(\alpha-\beta)t_0}$ und $c_2 = ((-\alpha + \beta)x_0 - x_0')/(2\beta)e^{(\alpha+\beta)t_0}$. Da stets $\alpha > \beta$ fällt die Lösung exponentiell ab und hat höchstens eine Nullstelle und ein Extremum. Ein paar Beispiele:

Abbildung 1: Verhalten der Lösung für vier verschiedene Parameter und Startwerte

2. Aperidoischer Grenzfall (kritische Dämpfung): $\alpha - \omega_0^2 = 0$ Die homogenen Lösungen sind gegeben durch

$$x_h(t) = (c_1 + c_2 t)e^{-\alpha t}$$

mit den Konstanten $c_1 = ((1 - \alpha t_0)x_0 + x_0't_0)e^{\alpha t_0}$ und $c_2 = (\alpha x_0 + x_0')e^{\alpha t_0}$. Jede Lösung $\neq 0$ klingt mit $t \to \infty$ exponentiell gegen 0 ab, hat höchstens Extremum und geht höchstens einmal durch Null. Die Graphen ähneln denen bei starker Dämpfung.

3. Periodischer Fall (schwache Dämpfung): $\alpha - \omega_0^2 < 0$ Schwingungen mit der Eigenfrequenz $\omega_1 = \sqrt{\omega_0^2 - \alpha^2}$

$$x_h(t) = e^{-\alpha t} (c_1 \cos(\omega_1 t) + c_2 \sin(\omega_1 t)) = Ce^{-\alpha t} \cos(\omega_1 t - \varphi)$$

mit $c_1 = x_0, c_2 = (x_0' + \alpha x_0)/\omega_1$ und $\tan(\varphi) = \frac{c_2}{c_1}, C = \frac{c_1}{\cos(\varphi)}$.

Abbildung 2: Klassische Beispiel einer schwach gedämpften Schwingung

Da sich die allgemeine Lösung der Schwingungsgleichung ergibt aus

$$x(t) = x_h(t) + x_n(t)$$

bestimmen wir nun noch die partikuläre Lösung $x_n(t)$.

Wir merken zunächst auch noch an, dass für $\alpha > 0$ die homogene Läung stets verschwindet für $t \to \infty$, also nach einer "Einschwingungszeit" t_e die Lösung nur noch durch die partikuläre Lösung bestimmt wird $x(t) \approx x_p(t), \ t \ge t_e$.

Für den Fall, dass $\alpha \neq 0$ oder $\omega_0 \neq \omega$ erhalten wir als partikuläre Lösung

$$x_p(t) = \frac{K}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\alpha^2 \omega^2}} \cos(\omega t - \varphi), \quad \text{mit } \varphi = \arctan\left(\frac{2\alpha\omega}{\omega_0^2 - \omega^2}\right)$$

Betrachten wir in diesem Fall den Verstärkungsfaktor $V(\omega)$ gegeben durch das Verhältnis der Amplituden von x_p und unserer rechten Seite $K\cos(\omega t)$, dann erhalten wir

$$V(\omega) = \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\alpha^2 \omega^2}}$$

Da $V(\omega) \to 0$ für $\omega \to \infty$ sind Anregung mit sehr hoher Frequenz ω praktisch ohne Wirkung.

Bei der sogenannten Resonanzfrequenz ω_r mit $\omega_r^2 = \omega_0^2 - 2\alpha^2$ hat $V(\omega)$ ein Maximum, dieses ist nur physikalisch sinnvoll für $\alpha < \frac{\omega_0}{\sqrt{2}}$. Regt man das System mit dieser Frequenz an, erhält man für den Verstärkungsfaktor

$$V(\omega_r) = \max_{\omega \ge 0} V(\omega) = \frac{1}{2\alpha\sqrt{\omega_0^2 - \alpha^2}}$$

Abbildung 3: Verstärkungsfaktor für verschieden
e α mit $\omega_0=1.2$

Für den Fall $\alpha=0, \omega=\omega_0$ reduziert sich die Differentialgleichung zu

$$x''(t) + \omega^2 x = K \cos(\omega t)$$

mit der partikulären Lösung $x_p(t) = \frac{K}{2\omega}t\sin(\omega t)$. Diese Lösung ist wegen des Faktors t unbeschränkt und da die homogene Lösung beschränkt bleibt, wächst in diesem Fall jede Lösung unbeschränkt.