第8章 空间解析几何与向量代数

第2节 点的坐标与向量的坐标

2.1 空间直角坐标系

All rights reserved. All rights reserved All rights res

这里"空间"指的是我们生活在的空间。如果把平面直角坐标系放在空间中, 我们会发现缺一条表示高度的坐标轴。因此,

空间中三条有共同原点O 且两两互相垂直的数轴,(这三条数轴分别叫x 轴 (横轴),y 轴(纵轴),z 轴(竖轴),且统称为坐标轴)它们的正方向要符合右手规则(右手握住z 轴,当右手的四个指头从x 轴的正向以 90° 角度转向y 轴正向时,竖起的大拇指的指向就是z 轴正向),构成一个空间直角坐标系(图 2.1).

可以把 x 轴, y 轴配置在水平面上, 而 z 轴则是铅垂线; 也可以不这样.

取定空间直角坐标系之后,就可以建立空间点与坐标之间的对应关系.

(1) 设M 为空间的一定点,过M 点分别作垂直于x 轴,y 轴,z 轴的三个平面,它们与x 轴,y 轴,z 轴的交点依次为P , Q , R ,这三点在x 轴,y 轴,z 轴的坐标依次为x, y, z ,于是:空间点就惟一地确定了一个有序数组 (x,y,z) ,称为M 点的坐标.

(2) 反过来,任意给定坐标 (x,y,z) ,我们可以在 x 轴上取坐标为 x 的点 P ,在 y 轴上取坐标为 y 的点 Q ,在 z 轴取坐标为 z 的点 R ,然后过 P , Q ,R 分别作 x 轴、 y 轴、 z 轴的垂直平面,这三个平面的交点 M 就是坐标 (x,y,z) 确定的惟一的点 M (图 2.2).

这样,通过空间直角坐标系,我们建立了空间点 M 和坐标 (x, y, z) 之间的一一对应关系. 依次称 x, y, z 为点 M 的横坐标、 纵坐标和竖坐标,并可将点 M 记作 M (x, y, z). 如同由于平面点 与坐标一一对应就有了平面解析几何一样,由于空间点与坐标一一对应就有了空间解析几何——用代数方法研究空间几何对象。

三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面. 由 x 轴与 y 轴所决定的坐标面称为 x0 y 面,类似地还有 x0 z 面与 y0 z 面. 这三个坐标面把空间分成了八个部分,每一部分称为一个卦限,如图 2.3 所示,八个卦限分别用罗马字母 I ,II ,…,VIII 表示. 第一、二、三、四卦限均在 x0 y 面的上方,按逆时针方向确定,其中含有 x 轴、y 轴与 z 轴正半轴的那个卦限叫做第一卦限. 第五、六、七、八卦限均在 x0 y 面的下方,也按逆时针方向确定,它们依次分别在第一至四卦限的下方.

思考题:

1. 试确定空间直角坐标系的各个卦限中点的坐标的符号?

题目: 1.找出空间中固定点的坐标; 2.给定 (x,y,z), 在空间中找出以 (x,y,z) 为坐标的点 M(x,y,z); 3.做一个表, 确定空间中各部分点的坐标特点。

类似于平面解析几何,在空间中也可以用点的坐标计算两点间的距离. 设 $M_1(x_1,y_1,z_1)$, $M_2(x_2,y_2,z_2)$ 为空间的两点,过 M_1 , M_2 各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以 M_1M_2 为对角线的长方体,如图 2.4 所示. 可见此长方体各棱的长度分别是

$$|x_2 - x_1|$$
, $|y_2 - y_1|$, $|z_2 - z_1|$,

从而得对角线 M_1M_2 的长度, 亦即空间两点 M_1 , M_2 间的距离公式为

2.2 向量的坐标表示

称空间直角坐标系O xyz 中,沿 x,y,z 轴正向的单位向量为O xyz 坐标系下的标准单位向量,分别记为 i, j, k. 由于对任意向量 a ,总可平移使其起点位于坐标原点O ,从而存在终点M ,满足 O M = a.以O M 为对角线作长方体(图 2.5),设M 点在 x 轴,y 轴,z 轴上的投影点分别为P ,Q 和 R ,有

$${m a} = OM = OP + PN + NM = OP + OQ + OR$$
 .

设P,Q,R 在x轴,y轴,z轴上的坐标分

$$a_x, a_y, a_z$$
, 则

unur
$$OP = a_x \mathbf{i}, \quad OQ = a_y \mathbf{j}, \quad OR = a_z \mathbf{k}$$
,

因此,

$$\boldsymbol{a} = a_{x} \boldsymbol{i} + a_{y} \boldsymbol{j} + a_{z} \boldsymbol{k}$$
.

我们称(2.2) 式为向量 a 的标准分解式,称 a_x i, a_y j, a_z k 为向量 a 沿三个坐标轴方向的分量 a 与它的坐标分解式是一一对应的.

向量. 向

显然,给定向量 a ,就确定了点 M 及三个分向量 OP , OQ , 进而确定了有序数组 $\left\{a_x,a_y,a_z\right\}$,称为向量 a 的坐标,从而确定了 a 的标准分解式(2.2);反之,给定坐标 $\left\{a_x,a_y,a_z\right\}$,则由(2.2)式就确定了向量 a 和 a 的标准分解式. 于是,向量 a ,标准分解式以及坐标 $\left\{a_x,a_y,a_z\right\}$ 建立了一一对应的关系:

$$\mathbf{a} = OM = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k} \ll \left\{ a_x, a_y, a_z \right\}$$

因此我们把向量 \mathbf{a} ,坐标 $\left\{a_{x},a_{v},a_{z}\right\}$ 以及 \mathbf{a} 的标准分解式不加区别,记作

$$a = \{a_v, a_v, a_z\} = a_v i + a_v j + a_z k$$
.

空间中点的坐标与向量的坐标是两个不同的概念,符号也不一样。点M(x,y,z)和它的坐标(x,y,z)互相联想;向量a和它的坐标 $\{a_x,a_y,a_z\}$ 以及它的标准分解式 a_x **i**+ a_x **j**+ a_x **k**互相联想。

空间任一点 M(x,y,z) 都对应一个向量 $\mathbf{r} = \stackrel{\mathbf{uuur}}{OM}$,称 $\mathbf{r} = \stackrel{\mathbf{uuur}}{OM}$ 为点 M (关于原点)的向径. 由 向量的坐标的定义知向径 $\mathbf{r} = \{x,y,z\}$. 记号 (x,y,z) 表示点 M ,向量 $\mathbf{r} = \stackrel{\mathbf{uuur}}{OM}$ 表示为 $\{x,y,z\}$. 当 向量的始点放在坐标原点时,向量的坐标与终点的坐标相等。

有了向量的坐标,我们就可以用代数方法研究向量运算。向量代数有两套互相平行、互相翻译的理论: 1.用空间立体几何描述的向量代数; 2.用坐标描述的向量代数。其中用坐标描述的向量代数是我们的重点、考点。

(题目(考点): 用坐标作向量的各种运算。)

下面我们把向量的线性运算翻译成向量用坐标的线性运算.

设
$$\boldsymbol{a} = \{a_x, a_y, a_z\}$$
, $\boldsymbol{b} = \{b_x, b_y, b_z\}$, 即

$$\mathbf{a} = a_{\mathbf{y}}\mathbf{i} + a_{\mathbf{y}}\mathbf{j} + a_{\mathbf{z}}\mathbf{k}$$
, $\mathbf{b} = b_{\mathbf{y}}\mathbf{i} + b_{\mathbf{y}}\mathbf{j} + b_{\mathbf{z}}\mathbf{k}$.

于是,由向量加法与数乘运算的运算律

$$a + b = (a_x + b_x)i + (a_y + b_y)j + (a_z + b_z)k$$

$$a - b = (a_x - b_x)i + (a_y - b_y)j + (a_z - b_z)k$$
,

$$1a = (1a_x)i + (1a_y)j + (1a_z)k$$
,

卽

$$\mathbf{a} \bullet \mathbf{b} \quad \{a_x \mid b_x, a_y \quad b_y, a_z \quad b_z\} , \qquad (2.4)$$

$$1a = \{1a_x, 1a_y, 1a_z\}. (2.5)$$

可见,两向量相加、减就是对应坐标相加、减;数1乘向量a就是用1乘a的各坐标.

2. 怎样用向量的坐标表示两向量相等?

(设 $\boldsymbol{a} = \{a_x, a_y, a_z\}, \overset{\Gamma}{b} = \{b_x, b_y, b_z\}$, 则 $\boldsymbol{a} = \overset{\Gamma}{b}$ $\overset{\bullet}{a} = \overset{\bullet}{a} = \overset{\bullet}{b}$ 。)

 $(\omega_x, \omega_y, \omega_z)$, 欠 $(\omega_x, \omega_y, \omega_z)$, (ω_x, ω_z) ,

иниция иниция иниция ($M_1M_2 = OM_2 - OM_1 = \{x_2, y_2, z_2\} - \{x_1, y_1, z_1\} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$ (何量的

下面我们把第 1 节定理 1.1,向量的平行条件**:** a^1 0,b/a \hat{U} 存在唯一实数 1,使得 b=1a, 翻译成用坐标表示的平行条件。

b = 1a 的坐标表示式为:

$$\{b_x, b_y, b_z\} = I\{a_x, a_y, a_z\}$$
,

因此平行条件可用坐标表示为:

$$a^{1} \ 0, \ b/\!/a \hat{U} \ \frac{b_{x}}{a_{x}} = \frac{b_{y}}{a_{y}} = \frac{b_{z}}{a_{z}}$$
 (2.6)

(b/a) 它们的对应坐标成比例。)(2.6)右边不是三个相等的分数,而是三个相等的比。比是允 许分母为0的。当某个分母是0时,应理解为其分子也是0。

【例 2.1】 已知两点 $A(x_1, y_1, z_1)$ 和 $B(x_2, y_2, z_2)$,有向线段 AB 上的点 M 将它分为两条有 向线段 \overline{AM} 和 \overline{MB} ,使它们的值的比等于数 $I(I^1-1)$,即

$$\frac{AM}{MB} = 1,$$

求分点 M(x,y,z) 的坐标.

因为AM与B在同一直线上,故 AM = 1MB,All rights

$$AM = \{x - x_1, y - y_1, z - z_1\},$$

unur
$$MB = \{x_2 - x, y_2 - y, z_2 - z\}$$
,

$$IMB = \{I(x_2 - x), I(y_2 - y), I(z_2 - z)\} ,$$

$$x-x_1 = I(x_2-x)$$
, $y-y_1 = I(y_2-y)$, $z-z_1 = I(z_2-z)$

$$x = \frac{x_1 + Ix_2}{1 + I}, y = \frac{y_1 + Iy_2}{1 + I}, z = \frac{z_1 + Iz_2}{1 + I}.$$

称本例中的点M 为有向线段AB 的定比(I)分点.特别地,当I=1时,可得线段AB 的 中点 M 的坐标为 $M(\frac{X_1+X_2}{2},\frac{Y_1+Y_2}{2},\frac{Z_1+Z_2}{2})$.

图 2.6

*设 ${m a} = \{a_x, a_y, a_z\}$, ${m b} = \{b_x, b_y, b_z\}$, ${m c} = \{c_x, c_y, c_z\}$,由定理 1.2 的推论,三向量 ${m a}$, ${m b}$, ${m c}$ 共面的充要条件是存在不全为零的数 k_1, k_2, k_3 ,使得

$$k_1 \mathbf{a} + k_2 \mathbf{b} + k_3 \mathbf{c} = \mathbf{0}$$
.

用向量的坐标表示上述关系,即

$$\begin{cases} k_1 a_x + k_2 b_x + k_3 c_x = 0 \\ k_1 a_y + k_2 b_y + k_3 c_y = 0 \\ k_1 a_z + k_2 b_z + k_3 c_z = 0 \end{cases}$$

这是一个关于未知量 k_1, k_2, k_3 的齐次线性方程组,它有非零解,故此线性方程组的系数行列式为零,从而有如下定理:

定理 2.1 三向量 $a=\{a_x,a_y,a_z\}$, $b=\{b_x,b_y,b_z\}$, $c=\{c_x,c_y,c_z\}$ 共面的充要条件是

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = 0$$
 (2.7)

【例 2.2】 问 A(1,0,1), B(4,4,6), C(2,2,3) 和 D(10,14,17) 四点是否在同一平面上?

uur uur uur 即判别*AB*,*AC*,*AD* 是否共面.

All rights res

Zhishi LAND

BACTANDAC

2.3 向量的模,方向角

下面我们用坐标计算向量的模.

设 $\mathbf{a}=\{a_x,a_y,a_z\}$,作 $\mathbf{0}$ $\mathbf{M}=\mathbf{a}$,如图 2.7 所示,点 \mathbf{M} 的坐标为 \mathbf{M} (a_x,a_y,a_z) ,因此向量 \mathbf{a} 的模:

$$|\mathbf{a}| = |OM| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$
 (2.8)

【例 2.3】 已知两点 A(4,0,5) 和 B(7,1,3), 求与 AB同

方向的单位向量 e_a .

$$\begin{array}{ll}
\text{AB} & AB = \{7 - 4, 1 - 0, 3 - 5\} = \{3, 1, -2\} \\
 & AB = \sqrt{3^2 + 1^2 + (-2)^2} = \sqrt{14},
\end{array}$$

$$e_a = \frac{1}{\begin{vmatrix} uuv \\ AB \end{vmatrix}} AB = \frac{1}{\sqrt{14}} \{3, 1, -2\} = \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$$

设非零向量 \mathbf{a} 与三条坐标轴的正向的夹角,即与标准单位向量 \mathbf{i} , \mathbf{j} \mathbf{k} 的夹角分别为 \mathbf{a} , \mathbf{b} , \mathbf{g} 。 \mathbf{a} , \mathbf{b} , \mathbf{g} 由 \mathbf{a} 的方向确定;反过来, \mathbf{a} 的方向也由 \mathbf{a} , \mathbf{b} , \mathbf{g} 支定。因此, \mathbf{a} , \mathbf{b} , \mathbf{g} 称为向量 \mathbf{a} 的方向角($\mathbf{0}$ # \mathbf{a} \mathbf{p} , $\mathbf{0}$ # \mathbf{g} \mathbf{p}),如图 $\mathbf{2}$.8 所示。方向角的余弦 $\cos \mathbf{a}$, $\cos \mathbf{b}$, $\cos \mathbf{g}$ 称为向量 \mathbf{a} 的方向余弦(为什么不讲方向正弦?).下面我们用坐标计算向量的方向余弦。

设 $OM = \mathbf{a} = \{a_x, a_y, a_z\}$,P, Q, R 分别为点M 在x轴,y轴,z轴上的投影点,则P, Q, R 在x轴,y轴,z轴上的坐标分别为 a_x, a_y, a_z (图 2.8),又 $\left|OM\right| = |\mathbf{a}|$,于是得

且满足关系式

$$P(0,0,a_z)$$

$$Q(0,a_y,0)$$

$$X$$

$$2.8$$

$$a^2 a + \cos^2 b + \cos^2 g = 1$$
. (2.10)

(2.9)

【例 2.4】 己知 $M_1(-2,2,-\sqrt{2})$, $M_2(-1,3,0)$, 求 M_1M_2 的模与方向角.

$$\text{final matter } M_{1}M_{2} = \{-1 - (-2), 3 - 2, 0 - (-\sqrt{2})\} = \{1, 1, \sqrt{2}\}, \\ \left| M_{1}M_{2} \right| = \sqrt{1^{2} + 1^{2} + (\sqrt{2})^{2}} = 2,$$

$$\cos a = \frac{1}{2}, \cos b = \frac{1}{2}, \cos g = \frac{\sqrt{2}}{2}$$

故 M_1M_2 的方向角为 $a = \frac{p}{3}, b = \frac{p}{3}, g = \frac{p}{4}$

如果 $\begin{vmatrix} \mathbf{r} \\ e \end{vmatrix} = 1$,则 $\begin{vmatrix} \mathbf{r} \\ e \end{vmatrix} = \{\cos a, \cos b, \cos g\}$ 。一次性求出三个方向余弦的方法:

$$\frac{1}{\left|\frac{\Gamma}{a}\right|} \stackrel{\mathbf{r}}{a} = \left\{ \cos a, \cos b, \cos g \right\}$$

思考题:

4. 当向量a 的模与方向角已知时怎样确定向量的坐标?

2.4 向量的投影

设数轴Ou。过点M 作平面垂直于Ou并交Ou于点M \notin (图 2.9),则称M \oint 为M 在Ou上的投影点,M \oint 在Ou上的实数m 称为M 在Ou上的投影. (图 2.9.1)

设数轴Ou, $\stackrel{\mathbf{r}}{e}_{u}$ 是Ou上的单位向量,向量 $\mathbf{b} = ON^{-1}$ $\mathbf{0} 与 Ou$ 的方向和单位都一致。设向 ununur

量 $\mathbf{a} = M_1 M_2$,且 $(\mathbf{a}, \mathbf{b}) = \mathbf{j}$ 。设 M_1 在 $\mathbf{0}u$ 上的投影点和投影分别是 $M \not\in \mathbf{m}_1$; M_2 在 $\mathbf{0}u$ 上的

(1) **a** 在 0 u 或 **b** 上的投影

$$\operatorname{Prj}_{\boldsymbol{b}}\boldsymbol{a} = \operatorname{Prj}_{\boldsymbol{u}}\boldsymbol{a} = \boldsymbol{m}_{2} - \boldsymbol{m}_{1} = \begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} \cos j$$

(2) \mathbf{a} 在 $\mathbf{0}$ \mathbf{u} 或 \mathbf{b} 上的投影向量

$$M_1$$
 $\dot{W}_2 = (Prj_u \boldsymbol{a}) e_u^r$

(如图 2.9.2)。

由于 (a,b) = j 是平移不变的,a 在 0u 或 b 上的投影和投影向量都是平移不变的。 由此定义可知,向量 a 的坐标即为向量 a 在三个坐标轴上的投影所组成的有序数组:

$$a_x = Prj_x \boldsymbol{a}, a_y = Prj_y \boldsymbol{a}, a_z = Prj_z \boldsymbol{a}$$
.

a 在三个坐标轴上的投影向量分别为: $a_x^{\ \ r}$, $a_v^{\ \ r}$, $a_z^{\ \ k}$ 。

向量的投影具有如下线性性:

AN TIGHTS TOS

证 作向量 $AB = \mathbf{b}$, $AC = \mathbf{1b}$, 则 $AC = \mathbf{b} + \mathbf{c}$. 且 \mathbf{b} 在向量 \mathbf{a} 上的投影为AM , $\mathbf{1b}$ 在向量 \mathbf{a} All rights reserved All rights reserved

上的投影为AN (见图 2.10)。因为 D $ABM \hookrightarrow$ D ACN , 所以 AN = IAM , 即

$$Prj_a(1b) = IPrj_ab$$

作向量 $AB=m{b},BC=m{c},AD=m{a}$,则 $AC=m{b}+m{c}$.且 $m{b}$ 在向量AD 上的投影为AM, $m{c}$ 在向 All rights reserved All rights

量 *A D* 上的投影为 *M N* (图 2.11),则

$$AN = AM + MN$$

c)= $P r j_a b + P r j_a c$

【例 2.5】 一向量的终点为 N (3, - 2,6),它在 x 轴, y 轴, z 轴上的投影依此为 5, 3, - 4,个向量的起点 M 的坐标. 解 设这个向量的起点的坐标为M(x,y,z),则 MN = 5i + 3j - 4k但 MN = (3-x)i + (-2-y)j + (6-z)k , 故 3-x=5, -2-y=3, 6-z=-4 ,解 得 x=-2, y=-5, z=10 . 故点 M 的坐标为 M (-2,-5,10) . 求这个向量的起点M 的坐标. All rights reserved. All rights reserved. served All rights reserved All rights re-BAOYANDAO ZhiShi LAN NDAO ZhiShi LAND

All rights reserved All rights reserved

All rights reserved AOYANDAO ZhiShi LAND All rights reserved All rights reserved All rights reserved All rights reserved

习题 8-2

A 类

1. 在空间直角坐标系中,指出下列各点在哪个卦限?

A(1,-2,3), B(2,3,-4), C(2,-3,-4), D(-2,-3,1).

- 2. 设长方体的各棱与坐标轴平行,已知长方体的两个顶点的坐标,试写出余下六个顶点的坐标:
 - (1) (1,1,2), (3,4,5);
- (2) (4,3,0), (1,6,-4).
- 3. 证明:以点 A(4,1,9) , B(10,-1,6) , C(2,4,3) 为顶点的三角形是等腰直角三角形.
- 4. 求点 (a,b,c) 关于
- (1) 各坐标面:
- (2) 各坐标轴; (3) 坐标原点

的对称点的坐标.

- 5. 过点 P(a,b,c) 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标,进而求出点 P 到各坐标面和各坐标轴的距离.
- 6. 已知两点 M_1 (4, $\sqrt{2}$,1) 和 M_2 (3,0,2),计算向量 M_1M_2 的模、方向余弦和方向角.
 - 7. 已知向量OP 与各坐标轴成相等的锐角,且|OP| = $2\sqrt{3}$,求OP 的坐标.
 - 8. 设 $\mathbf{a} = 3\mathbf{i} + 5\mathbf{j} + 8\mathbf{k}, \mathbf{b} = 2\mathbf{i} 4\mathbf{j} 7\mathbf{k}, \mathbf{c} = 5\mathbf{i} + \mathbf{j} 4\mathbf{k}$, 求向量 $\mathbf{I} = 4\mathbf{a} + 3\mathbf{b} \mathbf{c}$ 在 \mathbf{x} 轴上的投影以及在 \mathbf{y} 轴上的投影向量.

解
$$I = 4a + 3b - c = 4 \left(3 \stackrel{r}{i} + 5 \stackrel{r}{j} + 8 \stackrel{r}{k}\right) + 3 \left(2 \stackrel{r}{i} - 4 \stackrel{r}{j} - 7 \stackrel{r}{k}\right) - \left(5 \stackrel{r}{i} + \stackrel{r}{j} - 4 \stackrel{r}{k}\right)$$

$$= (12 + 6 - 5) \stackrel{r}{i} + (20 - 12 - 1) \stackrel{r}{j} + (32 - 21 + 4) \stackrel{r}{k} = 13 \stackrel{r}{i} + 7 \stackrel{r}{j} + 15 \stackrel{r}{k} = \left\{3, 7, 15\right\}$$

向量1在x轴上的投影是 13,在y轴上的投影向量是 $7\frac{r}{j}$.

B 类

- 1. 已知点 A (3, 1,2), B (1,2, 4), C (- 1,1,2), 试求点 D , 使得以 A , B , C , D 为项点的四边形为平行四达形.
- *2. 已知点 A(1,1,1) , B(0,-1,-1) , C(-3,5,-6) ,且 AD 是 D ABC 的顶角 A 的平分线, D 在 BC 边上,试求 D 的坐标.
- 3. 设**a** 的方向角 $a = \frac{p}{4}, b = \frac{p}{3}, 且 |\mathbf{a}| = 3$, 求**a** 的坐标表示.
- 4. 设 $\mathbf{a} = \{-2, y, 1\}$, $\mathbf{b} = \{x, -6, 2\}$, 问x, y为何值时, $\mathbf{a} /\!\!/ \mathbf{b}$.
- *5. 已知三个非零向量 a,b,c 之中任意两个向量都不平行,但 a+b 平行于 c , b+c 平行于 a , 求证: a+b+c=0 .
- 6. 设向量的方向余弦分别满足
 - (1) $\cos g = 0$;
- (2) $\cos a = 1$;
- $(3)\cos a = \cos g = 0.$

问这些向量与坐标轴或坐标面的关系如何?

*7. 设a=i+j+k,b=i-2j+k,c=-2i+j+2k, 试用单位向量 e_a,e_b,e_c 表示向量i,j,k.

第3节 向量的乘法运算

3.1 两向量的数量积

设物体在常力F 的作用下沿直线从点 M_1 移到点 M_2 ,用r表示位移向量 M_1M_2 ,力F 在位移方向r上的分力大小为 $|F|\cos q$,则力F 所作的功为:

 $W = |F| \mathcal{F} |\cos q.$

我们把这种运算规则推广到一般向量如下.

定义 3.1 设 a,b 是两向量,且它们之间的夹角为 q ,称数 $|a| *b| \cos q$ 为向量 a = b 的数量积,并记作 a *b ,即

 $a \gg = |a| \gg |\cos(a) \cdot h = 1$

图 3.1

向量的数量积也称为(向量的)点积或(向量的)内积. 由此定义,力F 所做的功W 实际上是力F 与位移 \mathbf{r} 的数量积,即 $W = F \times \mathbf{r}$.

由于a¹ 0时, $|b|\cos q$ 是b 在向量a 上的投影 Pri_ab , 故(3.1)可表示为

$$a \times b = |a| \times r_{i_a} b$$

类似地, b^1 0时有 $a = |b| \Re r_{i,a}$.

这表明:若两向量至少有一非零向量,则它们的数量积等于其中非零向量的模与另一向量在此非零向量上的投影的乘积.

思考题:

1. 如何用ea, b表示Prjb?

$$(\operatorname{Pr} \mathbf{j}_{\vec{a}} \vec{b} = \vec{e}_{\vec{a}} \cdot \vec{b} \circ)$$

BAOYANDAO

AN rights reserved AN rights reserved

ZhiShi LAND

14 AND A Propried

WANDAO

Shi LAND

由数量积的定义出发可推得以下结论:

(1) $\mathbf{a} \times \mathbf{a} = |\mathbf{a}|^2$;

证 事实上, \mathbf{a} 与 \mathbf{a} 的夹角 q=0, 故

 $a \times a = |a| \times a |\cos 0 = |a| \times a |= |a|^2$

若向量a, b的夹角 $(a,b) = \frac{p}{2}$,则称向量a与b正交(或垂直).记作a^b.

(2) $\mathbf{a} \hat{\mathbf{b}}$ 的充要条件是 $\mathbf{a} \hat{\mathbf{b}} = 0$ (垂直条件);

证 当向量a,b中有一个为0时,结论显然成立. 不妨设a,b均非0,则 a \bullet 0 \cup 1 $\mid a \mid \mid b \mid \bullet$ os q 0 (而 $\mid a \mid \mid$ 构0, $\mid b \mid \mid \mid 0$)

(3)(交換律) a 为= b 海;

事实上, \mathbf{a} \bullet $|\mathbf{a}|$ \mathbf{b} $|\cos q = |\mathbf{b}|$ \mathbf{a} $|\cos q = \mathbf{b} \mathbf{a}$.

(4)(分配律) **a %** + **c**) = **a %** + **a %**;

(5)(数

证 当向量a,b中有一个为0时,结论显然成立. 不妨设a,b均非0。根据向量投影的线性性, $a \times (b) = |a|$ (D) = (D) = (D)

$$\mathbf{a} \times I\mathbf{b}) = \left| \mathbf{a} \right| \times \operatorname{rj}_{\mathbf{a}} (I\mathbf{b}) = \left| \mathbf{a} \right| (I\operatorname{P} \operatorname{rj}_{\mathbf{a}}\mathbf{b}) = I \left| \mathbf{a} \right| \operatorname{P} \operatorname{rj}_{\mathbf{a}}\mathbf{b} = I \left(\mathbf{a} \times \mathbf{b} \right)$$

$$(I\mathbf{a}) \times \mathbf{b} = \left| \mathbf{b} \right| \operatorname{P} \operatorname{rj}_{\mathbf{b}} (I\mathbf{a}) = \left| \mathbf{b} \right| I\operatorname{P} \operatorname{rj}_{\mathbf{b}}\mathbf{a} = I \left(\mathbf{a} \times \mathbf{b} \right)$$

思考题:

- 2. 如果向量a 与任意向量都正交,则a 是一个怎样的向量? (零向量。)
- 3. 对于三个标准向量 i,jk, 其中任一向量与另外两者之一的数量积等于何值? (0) 又,它与自身的数量积等于何值? (1)

BAOYANDAO

All rights reserved All rights reserved

Chi L

ZhiShi LAND

以上是数量积的几何内容。下面把这些内容翻译成坐标表示。 由数量积的性质不难推导出用坐标计算数量积的表示式. 设 ${m a}=\{a_x,a_y,a_z\}$, ${m b}=\{b_x,b_y,b_z\}$,

则

$$\mathbf{a} \times \mathbf{b} = a_x b_x + a_y b_y + a_z b_z$$
.

(两向量的数量积等于对应坐标乘积加起来)事实上,有

 $\mathbf{a} \times \mathbf{b} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times (b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k})$

 $= (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times a_x \mathbf{i} + (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times a_y \mathbf{j} + (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times a_z \mathbf{k}$

 $= (a_x b_x) (\mathbf{i} \times \mathbf{j}) + (a_y b_x) (\mathbf{j} \times \mathbf{j}) + (a_z b_x) (\mathbf{k} \times \mathbf{j}) + (a_x b_y) (\mathbf{i} \times \mathbf{j})$

 $+ (a_{y}b_{y})(j\times j) + (a_{z}b_{y})(k\times j) + (a_{x}b_{z})(j\times k) + (a_{y}b_{z})(j\times k) + (a_{z}b_{z})(k\times k)$

 $= (a_x b_x) \times + (a_y b_x) \times + (a_z b_x) \times + (a_x b_y) \times + (a_y b_y) \times + (a_z b_y) \times + (a_z b_z) \times + (a_y b_z) \times + (a_z b_z) \times$

 $= a_x b_x + a_y b_y + a_z b_z.$

由数量积的定义,若 a^1 0, b^1 0,则a与b之间的夹角q满足

$$\cos q = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \quad (0 \# q \quad p) \tag{3.3}$$

若**a** = $\{a_x, a_y, a_z\}, b = \{b_x, b_y, b_z\}$, 则

$$\cos q = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \times \sqrt{b_x^2 + b_y^2 + b_z^2}}.$$
 (3.4)

显然,设向量 $\mathbf{a} = \{a_x, a_y, a_z\}, \mathbf{b} = \{b_x, b_y, b_z\}$,垂直条件又可以表示为

 $\mathbf{a} \hat{\mathbf{b}}$ 的充分必要条件是 $a_x b_x + a_y b_y + a_z b_z = 0$.

【例 3.1】 已知三点 M_1 (1,1,1), M_2 (2,2,1) 和 M_3 (2,1,2), 求向量 $M_1 M_2$ 与 $M_1 M_3$ 之间的

夹角 q.

解
$$M_1M_2 = \{2-1, 2-1, 1-1\} = \{1, 1, 0\}$$
 , иншини

$$M_{1}M_{3} = \{2-1, 1-1, 2-1\} = \{1, 0, 1\}$$
,

$$\begin{vmatrix} \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u} \\ M_1 M_2 \end{vmatrix} = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{2} , \quad \begin{vmatrix} \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u} \\ M_1 M_3 \end{vmatrix} = \sqrt{1^2 + 0^2 + 1^2} = \sqrt{2}$$

Zhishi LAIV

【例 3.2】 设液体流过平面 p 上面积为 A 的一个区域,液体在该区域上各点处的流速均为常向量 v ,设 e_n 为垂直于 p 的单位向量,计算单位时间内经过该区域流向 e_n 所指向一侧的液体的质量 P (设液体的密度为常数 m).

图 3.3

解 单位时间内流过区域的液体形成一个底面积为A,斜高为|v|的斜柱体,且斜高与底面 垂线的夹角即为向量v与n之间的夹角q(图 3. 3). 所以,该斜柱体的高为|v|×os q,即 v 在 e_n 上的投影,故斜柱体的体积为

$$V = A |\mathbf{v}| \times os q = A \mathbf{v} \times \mathbf{e}_n$$
,

从而,单位时间内经过区域流向所指一方的液体的质量为

$$P = mA v \times e_n$$
.

显然,若 $\mathbf{v}/|\mathbf{e}_n$,即 \mathbf{v} 垂直于平面p时,P = m鬚 $|\mathbf{v}|$.

【例 3.3】 设 a_i, b_i Î R (i= 1,2,3),证明不等式(Cauchy-Schwarz 不等式)

$$\left| \underbrace{\mathbf{j}_{i=1}^{3}}_{i=1} a_{i} b_{i} \right| \mathbf{f} \left(\mathbf{a}_{i}^{3} a_{i}^{2} \right)^{\frac{1}{2}} \left(\mathbf{a}_{i}^{3} b_{i}^{2} \right)^{\frac{1}{2}}$$

证 设向量 $\mathbf{a} = \{a_1, a_2, a_3\}, \mathbf{b} = \{b_1, b_2, b_3\}$,由于 $\mathbf{a} \gg = |\mathbf{a}| \gg |\cos(\mathbf{a}, \mathbf{b})$,故

将a,b的坐标代入上式即得所要证明的不等式. 又, 若a,b 平行, 则上式成为等式.

思考题:

4. 试用向量方法证明余弦定理并由此导出向量的数量积的坐标表示式.

证 作 DABC, $AB = \overset{\text{r}}{c}$, $AC = \overset{\text{r}}{b}$, $BC = \overset{\text{r}}{a}$ 如 图 3.3.1 ,则 $\overset{\text{r}}{c} = \overset{\text{r}}{b} - \overset{\text{r}}{a}$. 注 意 到 $\overset{\text{r}}{c} = \overset{\text{r}}{b} - \overset{\text{r}}{a}$

$$c^2 = \overset{\mathbf{r}}{c} \overset{\mathbf{r}}{\not\sim} = \overset{\mathbf{r}}{(b-a)} \overset{\mathbf{r}}{\not\sim} \overset{\mathbf{r}}{(b-a)} = \overset{\mathbf{r}}{b} \overset{\mathbf{r}}{\not\sim} + \overset{\mathbf{r}}{a} \overset{\mathbf{r}}{\not\sim} - 2\overset{\mathbf{r}}{\not\sim} \overset{\mathbf{r}}{\not\sim} = a^2 + b^2 - 2ab \cos\mathcal{C}$$

3.2 两向量的向量积

我们定义向量的另一种乘法运算.

定义 3.2 设向量 a , b , 规定向量 a 与 b 的向量积为一新的向量,记作 a ' b ,它的模与方向分别为

- (1) $|a'b| = |a||b|\sin q$, (q = (a,b))
- (2) a'b 同时垂直于a与b, 且a, b, a'b满足右手规则,即右手的四个手指从a的正向以不超过p的转角转向b的正向握拳时,大拇指的指向就是a'b的方向.

向量的向量积又常称作向量的叉积或外积.

不难看出,两向量的向量积有如下的几何意义:

① a' b 的模: $|a \diamond b|$ $|a| \Rightarrow |\sin q = |a| \Rightarrow |b| \sin q|$ = S_Y 即模 |a' b|表示以|a| 与|b|为边的平行四边形的面积 S_Y (图 3.5).

②a' b 的方向:由定义知, a' b 与a 和b 所确定的平面相垂直.

由定义,容易推得,对任意向量 a, b, 有

0' a = a' 0 = 0; a' a = 0; a' b = -b' a.

此外,不作证明地给出向量积的如下运算律:对任意向量a,b,c及任意实数1,m,

利用向量积的定义, 我们还可得到两向量平行的另一个充分必要条件:

设两向量a,b,则a//b的充分必要条件是a′b= 0.

事实上,若a,b中有一个为零向量,则命题显然成立. 若a,b均非零向量,由于a' b= 0等价于|a' b|= 0,即|a| ||b| | sin q= 0,又|a| |b0,故上式等价于 sin q= 0,即 q= 0或 q= p,亦即 a ||b0.

下面导出用坐标计算向量积的表示式:

设 $\boldsymbol{a} = a_x \boldsymbol{i} + a_y \boldsymbol{j} + a_z \boldsymbol{k}$, $\boldsymbol{b} = b_x \boldsymbol{i} + b_y \boldsymbol{j} + b_z \boldsymbol{k}$, 则有

$$\mathbf{a}' \mathbf{b} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k})' (b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k})$$

$$= (a_x b_x) (\mathbf{i}' \quad \mathbf{j}) + (a_x b_y) (\mathbf{i}' \quad \mathbf{j}) + (a_x b_z) (\mathbf{i}' \quad \mathbf{k})$$

$$+ (a_{y}b_{x}) (\mathbf{j} \cdot \mathbf{j}) + (a_{y}b_{y}) (\mathbf{j} \cdot \mathbf{j}) + (a_{y}b_{z}) (\mathbf{j} \cdot \mathbf{k})$$

$$+ (a_{z}b_{x}) (\mathbf{k}' \cdot \mathbf{j}) + (a_{z}b_{y}) (\mathbf{k}' \cdot \mathbf{j}) + (a_{z}b_{z}) (\mathbf{k}' \cdot \mathbf{k})$$

$$+ (a_z b_y) (\mathbf{k}' \mathbf{j}) + (a_z b_y) (\mathbf{k}' \mathbf{j}) + (a_z b_z) (\mathbf{k}' \mathbf{k})$$

注意到,对于标准单位向量 i, j, k, 有 i' i= j' j= k' k= 0; i' j= k, j' k= i, k' i= j;

$$j'$$
 $i=-k,k'$ $j=-i,i'$ $k=-j$,于是,有

$$\mathbf{a}' \mathbf{b} = [(a_x b_y) \mathbf{k} - (a_x b_z) \mathbf{j}] + [-(a_y b_x) \mathbf{k} + (a_y b_z) \mathbf{i}] + [(a_z b_x) \mathbf{j} - (a_z b_y) \mathbf{i}]$$
$$= (a_y b_z - a_z b_y) \mathbf{i} + (a_z b_x - a_x b_z) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$

引入行列式记号,即有

$$\mathbf{a}' \ \mathbf{b} = \begin{vmatrix} a_{y} & a_{z} \\ b_{y} & b_{z} \\ \vdots & \vdots & \vdots \\ b_{x} & b_{y} \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_{x} & a_{y} \\ b_{x} & b_{y} \end{vmatrix} \mathbf{k} = \begin{vmatrix} a_{y} & a_{z} \\ b_{y} & b_{z} \end{vmatrix}, \begin{vmatrix} a_{z} & a_{x} \\ b_{z} & b_{x} \end{vmatrix}, \begin{vmatrix} a_{x} & a_{y} \\ b_{x} & b_{y} \end{vmatrix}$$

$$= \begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix}$$

$$= \begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix}$$

$$(3.6)$$

懂三阶行列式的同学记住(3.7)简单一些,懂二阶行

列式的同学记住(3.6),不懂行列式的同学记住(3.5)。注意足标的排列规律!)或

$$\mathbf{a}' \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
(3.7)

- 5. 试根据向量积的定义及坐标表示式导出两向量a,b的夹角公式.
- 6. 试给出两向量平行的充分必要条件的坐标表示式,并与第2节中有关结论进行比较.

(3.5)

【例 3.4】 设 1是空间中过点 A (4, 5, 2) , B (6, 3, 3) 的直线, 点 C (3, -4, 4) 是空间一点, 试 求点C到直线I的距离d.

作向量 AB, AC. 如图 3.6 所示,点C 到直线 I的距离 d 是以 AB, AC 为邻边的平行四边 形的高. 但因为 AB AC 表示该平行四边形的面积, 因此

图 3.6

utur utur
$$AB'AC = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -2 & 1 \\ -1 & -9 & 2 \end{vmatrix} = \{5, -5, -20\},$$

$$\begin{vmatrix} uur & uur \\ AB' & AC \end{vmatrix} = |5\{1, -1, -4\}| = 5\sqrt{1^2 + 1^2 + 4^2} = 15\sqrt{2}$$

故所求距离 d=

设刚体以等角速度w绕I轴旋转,计算刚体上点M的线速度v. *【例 3.5】

解 刚体旋转时,可用旋转轴 1上的向量 ω 表示角速度,它的大小 $|\omega|=w$,它的方向按右手 法则定出:以右手握住 1轴, 当四指的转动方向与刚体的转向一致时, 竖起的大拇指的指向就是 ω 的方向(图 3.7).

设点M 到I轴的距离为a,任取I轴上一点记为O,并记 $\mathbf{r}=OM$,若用 q表示 ω 与r的夹角,则有 $a=|r|\sin q$.由物理学知识,线速率|v|与角速率 · w 刁 m 有关系:

$$|\mathbf{v}| = |\boldsymbol{\omega}|a = |\boldsymbol{\omega}||\mathbf{r}|\sin q$$

即

$$|v| = |\omega' r|,$$

又注意到v垂直于 ω 和r,且 ω ,r,v符合右手法则,因此得

图 3.7

3.3 向量的混合积

设有三个向量a,b与c,则a'b=d为一向量,因此(a 醋b) c=dc是一数量,于是我们可引入如下混合积的概念.

定义 3.3 设有三个向量a,b与c,先作向量积a′b,再作a′b与c的数量积 (a 醋b) c,这样得到的数称为三向量a,b,c的混合积,记作 [a b c]或 [a, b, c].

*现推导向量的混合积的坐标表示式.

设**a** =
$$\{a_x, a_y, a_z\}$$
 , **b** = $\{b_x, b_y, b_z\}$, **c** = $\{c_x, c_y, c_z\}$, 则

$$\mathbf{a}' \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \times \mathbf{j} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \times \mathbf{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \times \mathbf{j}$$

$$[\mathbf{a}, \mathbf{b}, \mathbf{c}] = (a \stackrel{\text{th}}{=} \mathbf{b}) \mathbf{c} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \mathbf{\Phi}_x \quad \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \mathbf{\Phi}_y \quad \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \mathbf{c}_z$$

$$\begin{vmatrix} a_x & a_y & a_z \\ a_x & a_y & a_z \end{vmatrix}$$

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

利用混合积的定义,不难得到:

$$[a \ b \ c] = [b \ c \ a] = [c \ a \ b]$$

(3.9)

计算混合积 $[a\ b\ c]$ 的方法: (1) 先计算 $a'\ b=d$; (2) 再计算 $[a\ b\ c]=d$ (a 酷) c 。

向量的混合积有明显的几何意义:对向量 $\mathbf{a} = \{a_x, a_y, a_z\}$,

 $b = \{b_x, b_y, b_z\}$, $c = \{c_x, c_y, c_z\}$,以 OA = a , OB = b 和 OC = c 为 棱作平行六面体(图 3.9),则 |a'|b| 是平行六面体的底面积,又 a'|b| 垂直于 a , b 所在的底面,若以 f 表示 a'|b| 与 c 的夹角,则当 $0 \# f = \frac{p}{2}$ 时 , 该 平 行 六 面 体 的 高 $h = |c|\cos f$,于 是 $[abc] = |aeb||c|\cos f|$ [aeb]|h = V,V 表示平行六面体的体

积 . 而 当 $\frac{p}{2} < f \mathfrak{t} p$ 时

[a b c]= |a 醋b| |c| �os f |a 醋b| (- h) = - V . 因此, |[a b c] 表示以a ,b, c 为棱的平行六面体的体积.

田 老師。

7. 试利用向量的混合积的几何意义给出三向量a, b, c 共面的一个充要条件. (三向量a, b, c 共面的充要条件: [a b c]= 0 。)

【例 3.7】 求以点 A(1,0,1), B(3,3,4), C(3,4,5), D(2,3,7) 为顶点的四面体 ABCD 的体积.

解 由立体几何知识,四面体 ABCD 的体积是以 AB,AC,AD 为相邻三棱的平行六面体体积的六分之

一,由向量的混合积的几何意义,即有

$$V_{ABCD} = \frac{1}{6} \begin{bmatrix} ABACAD \end{bmatrix}$$

由条件,易求得 $AB = \{2,3,3\}$, $AC = \{2,4,4\}$, $AD = \{1,3,6\}$,于是

故
$$V_{ABCD} = \frac{1}{6}$$
, $6 = 1$.

【例 3.8】 证明二重向量积公式: $(a \otimes b)$ $c = (a \otimes b)$ $(b \ c)a$.

证 设
$$\mathbf{a} = \{a_x, a_y, a_z\}$$
, $\mathbf{b} = \{b_x, b_y, b_z\}$, $\mathbf{c} = \{c_x, c_y, c_z\}$, 则

 $(3) \operatorname{Prj}_{\boldsymbol{a}} \boldsymbol{b};$

2. 设 $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}, \mathbf{b} = \mathbf{i} - \mathbf{j} + 3\mathbf{k}, \mathbf{c} = \mathbf{i} - 2\mathbf{j}, 求$

(2) (a 创**b**) c ;

3. 已知 A(1,-1,2), B(5,-6,2), C(1,3,-1), 求:

(1) 同时与 *A B* 及 *A C* 垂直的单位向量;

$$\text{find}$$

$$\text{AB} = \{5 - 1, -6 - (-1), 2 - 2\} = \{4, -5, 0\}, \text{AC} = \{1 - 1, 3 - (-1), -1 - 2\} = \{0, 4, -3\}$$

unir unir
$$AB'$$
 $AC = \{4, -5, 0\}'$ $\{0, 4, -3\} = \begin{bmatrix} -5 & 0 \\ 4 & -3 \end{bmatrix}, \begin{bmatrix} 0 & 4 \\ -3 & 0 \end{bmatrix}, \begin{bmatrix} 4 & -5 \\ 0 & 4 \end{bmatrix} = \{15, 12, 16\}$

$$\begin{vmatrix} unir & unir \\ AB' & AC \end{vmatrix} = \left| \{15, 12, 16\} \right| = \sqrt{15^2 + 12^2 + 16^2} = 25$$

$$\frac{1}{\begin{vmatrix} AB & AC \end{vmatrix}} \frac{1}{AB} \frac{1}{AC} = \frac{1}{25} \{15, 12, 16\} = \frac{1}{45}, \frac{12}{25}, \frac{16}{25}$$

- (2) D ABC 的面积;
- (3) 从顶点B 到边AC 的高的长度.
- 4. 判断下列向量是否垂直:
 - (1) $\mathbf{a} = \{2, 4, -1\} = \mathbf{b} = \{2, -1, 0\}$;
 - (2) $(a \times b)c (a \times b)b = a$;

(3)
$$\mathbf{a} = \mathbf{b} - \frac{(\mathbf{a} \cdot \mathbf{b})}{|\mathbf{a}|^2} \mathbf{a}$$
.

5. 设 $\mathbf{a} = 3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 9\mathbf{k}$, 试求I的值, 使得:

- (1) la+b与z轴垂直;
 (2) la+b与a垂直,并证明此时|la+b|取得最小值.
 解 la+b={3l+2,5l+1,-2l+9}。

$$\mathbf{\hat{R}} \quad I_{a}^{\mathbf{r}} + \mathbf{b} = \{3I + 2, 5I + 1, -2I + 9\}$$

$$\stackrel{\Gamma}{a} \times (Ia + b) = \{3, 5, -2\} \times \{3I + 2, 5I + 1, -2I + 9\} = (9 + 25 + 4)I + 6 + 5 - 18 = 38I - 7$$

$$\diamondsuit_a^{\mathrm{r}} \times (I\mathbf{a} + \mathbf{b}) = 0 得 I = \frac{7}{38}$$
。

$$i \exists f(I) = \left| I \mathbf{a} + \mathbf{b} \right|^2 = (3I + 2)^2 + (5I + 1)^2 + (2I + 9)^2 = 38I^2 - 14I + 86.$$

$$fi(I) = 2 \times 8I - 14, f(I) = 2 \times 8 > 0$$

令 $f\phi(I) = 0$ 得 f(I) 在 $I\hat{1}(-Y,+Y)$ 内唯一的极限值点 $I = \frac{7}{38}$ 。故,此时 |Ia+b| 取得最小值

6. 证明如下的平行四边形法 $2(|\mathbf{a}|^2 + |\mathbf{b}|^2) = |\mathbf{a} + \mathbf{b}|^2 + |\mathbf{a} - \mathbf{b}|^2$, 说明这一法则的几何意义.

7. 试证明: $(a ext{ mb}) c = (b ext{ mc}) a = (c ext{ ma}) b$.

1. 己知 \boldsymbol{a} , \boldsymbol{b} 的夹角为 $q = \frac{p}{3}$, $|\boldsymbol{a}| = 3$, $|\boldsymbol{b}| = 6$, 求 $|(\boldsymbol{a} - \boldsymbol{b})'|$ $(\boldsymbol{a} + \boldsymbol{b})|$.

$$\mathbf{M} \quad \left| (\mathbf{a} - \mathbf{b})' \quad (\mathbf{a} + \mathbf{b}) \right| = \left| \begin{bmatrix} \mathbf{r}, & \mathbf{r} \\ \mathbf{a}, & \mathbf{a} + & \mathbf{a}, & \mathbf{b} - & \mathbf{b}' & \mathbf{a} - & \mathbf{b}' & \mathbf{b} \end{bmatrix} \right|$$

$$= 2 \begin{vmatrix} \mathbf{r} & \mathbf{o} \\ \mathbf{h} \end{vmatrix} = 2 \begin{vmatrix} \mathbf{r} \\ \mathbf{h} \end{vmatrix} = 2 \begin{vmatrix} \mathbf{r} \\ \mathbf{h} \end{vmatrix} \sin \frac{p}{3} = 2 \not\cong 6 \not\stackrel{\sqrt{3}}{2} = 18 \sqrt{3}$$

2. 已知 **a** = {3,-1,2}, **b** = {1,2,-1}, 求 (3) $|(2\mathbf{a} - \mathbf{b})'|(2\mathbf{a} + 3\mathbf{b})|$. (1) $\sin(a,b)$; (2) (a+b)'(a-b); All rights reserved All rights reserved 3. 己知四点 A (2,1,0), B = (1,2,3), C (-1,5,6), D (3,-1,4), 求四面体 ABCD 的体积. *4. 设向量 a,b,c 满足 a+b+c=0, 证明: (1) $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a} = -\frac{1}{2} (|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2)$; (1) $|\mathbf{a}' \mathbf{b}|^2 + (\mathbf{a} \mathbf{b})^2 = |\mathbf{a}|^2 |\mathbf{b}|^2$; (2) $(\mathbf{a} + \mathbf{b}) \mathbf{\Phi} (\mathbf{b} \mathbf{c}) \mathbf{\Phi} (\mathbf{c} \mathbf{a}) = 2I \mathbf{a} \mathbf{a}$ $|\mathbf{a} \quad \mathbf{b}|^2 + (\mathbf{a} \cdot \mathbf{b})^2 = |\mathbf{a}|^2 |\mathbf{b}|^2;$ (2) $(\mathbf{a} + \mathbf{b}) \bullet (\mathbf{b} \quad \mathbf{c}) \bullet (\mathbf{c} \quad \mathbf{a}) = 2(\mathbf{a} \stackrel{\text{dis}}{=} \mathbf{b}) \mathbf{c};$ (3) $\mathbf{a} \oplus (\mathbf{b} \quad \mathbf{c}) = (\mathbf{a} \bullet) \mathbf{b} \quad (\mathbf{a} \quad \mathbf{b}) \mathbf{c}$ 用面果外 *5. 试证明: *6. 用向量法证明: (1) 直径对的圆周角是直角; (2) 三角形的三条高交于一点. All rights reserved. All rights reserved ZhiShi LAND Highlis reserved. All rights reserved. All rights reserved.

第4节 平面(考点)

从本节起讨论空间解析几何. 空间解析几何就是用代数方法研究空间几何对象。这里"几何对象"包括空间曲面与空间曲线. 平面是特殊的曲面; 直线是特殊的曲线。要用代数方法研究空间几何对象S,首先要建立S的方程Q(也可能是方程组)。与平面解析几何类似, S与它的方程Q之间应满足如下关系:

- (1) 若点 M (x, y, z) 在 S 上, 则 (x, y, z) 满足方程 Q;
- (2) 若一组数 x, y, z 满足方程 Q,则点 M(x, y, z) 在 S 上.

则称Q为S的方程, S为方程Q的图形.

(1)和(2)合起来意思是, *M(v* ...

 $M(x, y, z) \in \Sigma \Leftrightarrow (x, y, z)$ 满足方程Q

(即,方程Q不多不少刚好表示完S的全部点)

在本节及下一节,我们将以向量为工具,在空间直角坐标系中讨论平面和直线.

This reserved All regions regions

(经)平面的方程

(题目(考点): 求满足给定条件的平面的方程。)

假设同学们已经熟知什么是平面。

若一非零向量垂直于一平面,则称此向量是该平面的法向量,记作n.

下面我们要写出给定平面p的方程。要写p的方程,首先要有一些已知条件。设已知p上随 便一点 $M_0(x_0,y_0,z_0)$ 和 p 的随便一个法向量 $\mathbf{n} = \{A,B,C\}$ $\stackrel{i}{0}$ 。平面 p 就确定了,确定了就可 以写它的方程.

设M(x,y,z)是空间任一点。 $M_0M = \{x - x_0, y - y_0, z - z_0\}$ 。

M $\widetilde{\gamma}$ 5p M $_0$ M $^{\circ}$ \mathbf{n} 好 M $_0$ M \mathbf{n} = 0 � A (x $_0$) + B (y

因此 p 的方程是

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0. (4.1)$$

而平面 p 便是方程(4.1)的图形.

由于方程(4.1)是由平面p上已知点 $M_0(x_0,y_0,z_0)$ 及它的法向量 $n = \{A, B, C\}$ 确定的,因此,称方程(4.1)为平面的点法式方程。

写给定平面p的点法式方程的方法:首先根据已知条件求出p上随 便一点 $M_0(x_0,y_0,z_0)$ 和随便一个法向量 $\mathbf{n} = \{A,B,C\}^{\mathsf{T}}$ 0,再把 $M_0(x_0,y_0,z_0)$ 和 $m{n}=\{A,B,C\}$ 代入(4.1)就得到p的方程。

若平面过点(2, -3, 0),且其法向量n的三个方向角相等,求此平面的方程. 【例 4.1】

设法向量n 的三个方向角为a,b,g,由条件可得

$$\cos a = \cos b = \cos g ,$$

但注意到

$$\cos^2 a + \cos^2 b + \cos^2 g = 1$$
,

$$\cos a = \cos b = \cos g = \pm \frac{\sqrt{3}}{3},$$

 $\cos a = \cos b = \cos g = \pm \frac{\sqrt{3}}{3}$, ,由点法式方程(4.1),所求平面的方程为

由点法式方程(4.1), 所求平面的方程为
$$\frac{\sqrt{3}}{3}(x-2) + \frac{\sqrt{3}}{3}(y+3) + \frac{\sqrt{3}}{3}(z-0) = 0.$$

x + y + z + 1 = 0.

1. 对此题,能否取法向量 n = {1,1,1} 来建立平面方程?一般地,平面有多少个法向量,不同的法 之间有什么关系? 向量之间有什么关系?

若平面过三点 $M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2), M_3(x_3,y_3,z_3)$,求此平面的方程. 【例 4.2】 则 **n** ^ M ₁M ₂, **n** ^ M ₁M ₃ . 于是可取 $\mathbf{n} = \begin{bmatrix} \mathbf{u} & \mathbf{u} & \mathbf{u} & \mathbf{u} & \mathbf{u} \\ \mathbf{n} & \mathbf{n} & \mathbf{u} \end{bmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{u} & \mathbf{u} \\ \mathbf{n} & \mathbf{u} \end{bmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{u} & \mathbf{u} \\ \mathbf{u} & \mathbf{u} \end{bmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{u} & \mathbf{u} \\ \mathbf{u} & \mathbf{u} \end{bmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u} & \mathbf{u} \end{bmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u} & \mathbf{u} \end{bmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u} \end{bmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{u} \end{bmatrix} \begin{bmatrix}$ $M_{1}(x_{1},y_{1},z_{1})$ 是此平面上一定点,由平面的点法式方程(4.1)可得 $\begin{vmatrix} y_2 - y_1 & z_2 - z_1 \\ y_3 - y_1 & z_3 - z_1 \end{vmatrix} (x - x_1) + \begin{vmatrix} z_2 - z_1 & x_2 - x_1 \\ z_3 - z_1 & x_3 - x_1 \end{vmatrix} (y - y_1)$ All rights reserved All rights reserved $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix} (z - z_1) = 0$ $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix}$ (4.2) 2. 根据向量的混合积导出平面的三点式方程(4.2). (四 点 $M_1(x_1,y_1,z_1),M_2(x_1,x_2)$ (四 点 $M_3(x_1,y_2,z_3),M_3(x_1,z_3)$ (4.2)式也称为平面的三点式方程. 思考題: (四点 $M_1(x_1,y_1,z_1),M_2(x_2,y_2,z_2),M_3(x_3,y_3,z_3),M(x,y,z)$ 共面的充要条件是 All rights reserved All rights rest All rights reserved. All rights reserved. All rights re2 平面的一般方程

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
. (4.1)

$$Ax + By + Cz - Ax_0 - By_0 - Cz_0 = 0$$

平面方程(4.1)是x,y,z的三元一次方程。反过来,若随便给定三元一次方程

$$Ax + By + Cz + D = 0$$
, (4.3)

它是否表示一个平面?

任取满足该方程的一组数 x_0, y_0, z_0 (若 A^{-1} 0,令 $z_0 = y_0 = 0$ 得 $x_0 = -\frac{D}{A}$),即

$$A x_0 + B y_0 + C z_0 + D = 0$$
,

(4.4)

两式相减就得到与(4.1)同解的方程:

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
.

(4.3')

由此可见,方程(4.3)是过点 $M_0(x_0,y_0,z_0)$ 且以 $\mathbf{n} = \{A,B,C\}$ 为法向量的平面方程,故三元一次方程(4.3)的图形是平面. 称方程(4.3)为平面的一般方程. $\mathbf{x},\mathbf{y},\mathbf{z}$ 系数向量 $\mathbf{n} = \{A,B,C\}$ 是平面的注向量

$$Ax + By + Cz + D = 0,$$

结论: 平面的方程都是三元一次方程: 反过来, 三元一次方程都表示一个平面。

利用一般方程写平面方程的方法:把已知条件代入(4.3)得未知数是A,B,C,D 的方程组,解此方程组得到A,B,C,D ,再代回(4.3)就得到平面的方程。(注意: A,B,C,D 的解是不唯一的!)为简单,可利用三元一次方程和平面特点的以下关系:

- (1) $D = 0\hat{U}$ 平面通过原点.
- (2) $A = 0 \hat{U}$ 法向量为 $\mathbf{n} = \{0, B, C\}$ 垂直于x 轴 \hat{U} 平面平行于x 轴; $B = 0 \hat{U}$ 法向量为 $\mathbf{n} = \{A, 0, C\}$ 垂直于y 轴 \hat{U} 平面平行于y 轴; $C = 0 \hat{U}$ 法向量为 $\mathbf{n} = \{A, B, 0\}$ 垂直于z 轴 \hat{U} 平面平行于z 轴
- (3) 的三个特点有时可能同时具有其中两个,例如,A = B = 0 ① 平面平行于 xOy 面.

思考题:

3. 在方程(4.3)中,若(1) B=0; (2) C=0; (3) B=C=0; (4) A=C=0,则方程(4.3)分别表示怎样的平面?画出这些平面的图形.

ZhiShi LAI robits reserved

【例 4.3】 求通过 x 轴和点 M_0 (4,-3,-1) 的平面方程.

解 平面过x轴,则该平面平行于x轴,且平面过原点,故设该平面的方程为 By+Cz=0

h 巫 面 讨 占 (4 _ 2 _ 1) 方

$$-3B-C=0$$
 , $C=-3B$

将此式代入所设方程有 By-3Bz=0,消去B (解不唯一!),得平面方程

$$v - 3z = 0$$

思考题:

4. 试根据平面的点法式方程求例 4.3 的平面方程.

解 设法向量为 $\stackrel{\mathbf{r}}{n}=\left\{A,B,C\right\}$,则 $\stackrel{\mathbf{r}}{n}$ 同时垂直于 $OM_0=\left\{4,-3,-1\right\}$ 和 $\stackrel{\mathbf{r}}{i}=\left\{1,0,0\right\}$ 。解

$$\frac{1}{4}A - 3B - C = 0$$
 取 $A = 0, B = 1, C = -3$ 。所求平面方程是 (0(0,0,0)在平面上)

$$v - 3z = 0$$

【例 **4.4**】 设平面与 x 轴, y 轴, z 轴分别交于三点 P(a,0,0), Q(0,b,0), R(0,0,c), 求 此平面的方程(其中: abc^{-1} 0).

解 设所求的平面方程为 Ax + By + Cz + D = 0,将三点的坐标分别代入得

$$a \times A + D = 0, b \times B + D = 0, c \times C + D = 0,$$

从而 $A = -\frac{D}{a}$, $B = -\frac{D}{b}$, $C = -\frac{D}{c}$, 代入所设方程有

$$-\frac{D}{a} \not x - \frac{D}{b} \not x - \frac{D}{c} \not x + D = 0,$$

两边同除以D(10)有

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
. (4.5)

方程(4.5)称之为平面的截距式方程,而a,b,c依次称为平面在x,y,z轴上的截距.

BAOYANDAO

31 AN

思考题: = {bc,ac,ab} 5. 试根据平面的三点式方程导出平面的截距式方程. 解 $PQ = \{-a, b, 0\}, PR = \{-a, 0, c\}$ 。取 $\{-a,b,0\}' \{-a,0,c\} =$ n = PQ'PR =bc(x-a) + acy + abz = 0平面的方程 即 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ All rights reserved All rights ZhiShi LAN OADMAYOR All rights reterined. All rights reserved All rights reserved All rights All rights reserved. All rights reserved ZhiShi LANE d All rights reserved All rights reserved All rights reserved. All rights reserved All rights reserved All rights reserved norths reserved All rights rea ZhiShi LANE Hights reserved All rights reser

4.2 点到平面的距离

设 $P_0(x_0,y_0,z_0)$ 是已知点,p: Ax + By + Cz的距离d.

$$\boldsymbol{e_n} = \frac{1}{\sqrt{A^2 + B^2 + C^2}} \{A, B, C\} \circ$$

$$d = \left| \begin{vmatrix} \text{under} \\ P_1 P_0 \end{vmatrix} \cos q \right| = \left| \begin{vmatrix} \text{under} \\ P_1 P_0 \end{vmatrix} \middle| \boldsymbol{e_n} \right| \cos q = \left| \begin{vmatrix} \text{under} \\ P_1 P_0 \middle| \boldsymbol{e_n} \end{vmatrix}$$

 $\left| \{ x_0 = x_1, y_0 - y_1, z_0 - z_1 \} \times A, B, C \} \frac{1}{\sqrt{A^2 + B^2 + C^2}} \right|$

$$= \frac{1}{\sqrt{A^2 + B^2 + C^2}} |A(x_0 - x_1) + B(y_0 - y_1) + C(z_0 - z_1)|$$

$$= \frac{1}{\sqrt{A^2 + B^2 + C^2}} |Ax_0 + By_0 + Cz_0 - Ax_1 - By_1 - Cz_1)|$$

注意到
$$P_1(x_1, y_1, z_1)$$
 在平面 p 上,有 $-Ax_1 - By_1 - Cz_1 = D$,故
$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$
(4.6)

(4.6)为点 $P_0(x_0,y_0,z_0)$ 到平面 Ax+By+Cz+D=0 的距离公式.(与平面几何点到直线距离公式

例如点
$$P_0$$
 (1,1,1) 到 P_0 到平面平面 $p:3x+2\sqrt{3}y+2z-2\sqrt{3}=0$ 的距离为
$$d=\frac{\left|3+2\sqrt{3}+2-2\sqrt{3}\right|}{\sqrt{9+12+4}}=\frac{5}{\sqrt{25}}=1.$$

思考题:

- 6. 试根据例 3.3 所给出的 Cauchy 不等式导出点到平面的距离公式 (4.6) 式.

4.3 两平面的位置关系

设 空 间 两 平 面 的 方 程 分 别 为 : $p_1:A_1x+B_1y+C_1z+D_1=0$, $p_2:A_2x+B_2y+C_2z+D_2=0$. 法向量分别为 $\frac{\mathbf{r}}{n_1}=\left\{A_1,B_1,C_1\right\}$, $\frac{\mathbf{r}}{n_2}=\left\{A_2,B_2,C_2\right\}$ 。从几何上看,其位置关系可能是平行、重合、相交等情形.

(1)
$$p_1 // p_2 \text{ the } \tilde{n}_1 // \tilde{n}_2 = \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$

2 两平面间的夹角

两平面的法向量的夹角等于两平面的夹角(通常不取钝角).

设平面 $p_1:A_1x+B_1y+C_1z+D_1=0$, $p_2:A_2x+B_2y+C_2z+D_2=0$,则 p_1 与 p_2 的法线向

 $\{A_1, B_1, C_1\}$, $n_2 = \{A_2, B_2, C_2\}$, \pm \pm \pm

$$\theta = \begin{cases} (\vec{n}_1, \vec{n}_2), & (\vec{n}_1, \vec{n}_2) \leq \frac{\pi}{2} \\ \pi - (\vec{n}_1, \vec{n}_2), & (\vec{n}_1, \vec{n}_2) > \frac{\pi}{2} \end{cases} (\text{Transpire}(\mathbb{S} 4.3), \text{ big}$$

$$\cos q = \left| \frac{\boldsymbol{n}_1 \times \boldsymbol{n}_2}{\left| \boldsymbol{n}_1 \right| \times \boldsymbol{n}_2 \right|} \right| = \frac{\left| A_1 A_2 + B_1 B_2 + C_1 C_2 \right|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \times \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$
 (4.9)

【例 4.5】 平面过两点 M_1 (1, 1, 1) 和 M_2 (0, 1, -1) 且垂直于平面 x+y+z=0, 求它的方程.

设所求平面的法线向量为 $\mathbf{n} = \{A, B, C\}$. 显然, $M_1 M_2 = \{-1, 0, -2\}$ 在所求平面上,

M

又n 垂直于平面x+y+z=0的法线向量 $n \notin \{1,1,1\}$,故有

$$A+B+C=0.$$

故 A = -2C, B = C. (解不唯一!)

由点法式方程有

$$-2C(x-1)+C(y-1)+C(z-1)=0$$
,

消去 C 得

$$-2(x-1)+(y-1)+(z-1)=0$$
,

故所求方程为 2x-y-z=0.

all rights reserved

思考题: 8. 试给出建立例 4.5 中平面方程的其它解法. 所求方程为 2(x-1)-(y-1)-(z-1)=0。 served All rights reserved All rights reserved BAOYANDAO ZhiShi LAN BAOYANDAO NDAO ZhiShi LAND All rights reserved All rights reserved BAOYANDAO Thishi LAND AOYANDAO ZhiShi LAND All rights reserved All rights reserved BAOYANDAO All rights reserved All rights reserve

习题 8-4 A 类

- 1. 是否存在满足下列条件的平面?如果存在的话,是否唯一?
 - (1) 过一已知点且与一己知直线平行; *(2) 过一已知点且与一已知直线垂直;
 - (3) 过一已知点且与一已知平面平行; *(4) 过一已知点且与一已知平面垂直;
 - (5) 过两已知点且与一已知直线平行; *(6) 过两已知点且与一已知直线垂直;
 - (7) 过两已知点且与一已知平面平行; *(8) 过两已知点且与一已知平面垂直.
- 2. 指出下列平面位置的特点并作图:
 - *(1) x + y + z = 0:
- (2) x + y + z = 1
- (3) x + y = 0;

- *(4) x + y = 1
- *(5) X = 0;
- (6) 3x = 1
- (2)解 这是一个三个截距都是1的截距式方程,图如下。

3. 求满足下列条件的平面方程:

- (1) 过点 (2,9,-6) 且与向径 OA 垂直;
- (2) 过点 (3,0,-1) 且与平面 3x-7y+5z-12=0 平行;
- (3) 过点 (1,0,-1) 且同时平行于向量 a = 2i + j + k 和 b = i j;
- (4) 过点(1,1,1)和点(0,1,-1)且与平面x+y+z=0相垂直;
- (5) 过点 (1,1,1) 且与平面 x-y+z=7 与 3x+2y-12z+5=0 相垂直;
- (6) 过点(1,1,-1), (-2,-2,2)和(1,-1,2);
- (7) 过点 (-3,1,-2) 和 x 轴;
- (8) 过点(4,0,-2), (5,1,7)且平行于x轴;
- (9) 与坐标轴的截距相同且过点(6,2,-4);
- (10) 平面 x-2y+2z+21=0 与平面 7x+24z-5=0 之间的两面角的平分面.
- (3) 过点 (1,0,-1)且同时平行于向量 $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ 和 $\mathbf{b} = \mathbf{i} \mathbf{j}$;
- 解 (3) 所给平面的法向量 $\frac{1}{n}$ 与 $\mathbf{a} = \{2,1,1\}$ 和 $\mathbf{b} = \{1,-1,0\}$ 都垂直。取

$$\vec{n} = \{2, 1, 1\}, \{1, -1, 0\} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} = \{1, 1, -3\}$$

所求平面方程: x-1+y-3(z+1)=0

- (5) 过点(1,1,1)且与平面x-y+z=7与3x+2y-12z+5=0相垂直;
- (5) 两己知平面的法向量分别是 $\frac{\Gamma}{n_1} = \{1, -1, 1\}$ 和 $\frac{\Gamma}{n_2} = \{3, 2, -12\}$ 。所给平面的法向量 $\frac{\Gamma}{n_1}$ 与 $\frac{\Gamma}{n_1}$ 和 $\frac{\Gamma}{n_1}$

都垂直。取

$$\vec{n} = \frac{1}{5} \left\{ 1, -1, 1 \right\}^{r} \left\{ 3, 2, -12 \right\} = \frac{1}{5} \left[\begin{array}{ccc} 1 & 1 \\ 2 & -12 \end{array} \right], \begin{vmatrix} 1 & 1 \\ -12 & 3 \end{array}, \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} = \left\{ 2, 3, 1 \right\}$$

所求平面方程: 2(x-1)+3(y-1)+(z-1)=0。

- *4. 求平面2x y + 2z + 3 = 0与各坐标面的夹角的方向余弦.
- 5. 判别下列各组平面的相互关系:
 - (1) 2x-3y+5z-7=0 = 2x-3y+5z-1=0;
 - (2) 2x-3y+5z-7=0 = 4x-6y+10z-14=0;
 - (3) 2x 5y + z = 0 = x 2z + 3 = 0;
 - (4) $2x + 5y 2z + 2 = 0 \Rightarrow x 3z + 1 = 0$.
 - 6. 求两平面 2x y + z 6 = 0 与 4x 2y + 2z + 7 = 0 之间的距离.

解 所给两平面互相平行。在 4x-2y+2z+7=0 上取一点 $\frac{x}{2}$, $\frac{7}{2}$

$$d = \frac{\left| -\frac{7}{2} - 6 \right|}{\sqrt{2^2 + 1^2 + 1^2}} = \frac{19}{2\sqrt{6}}$$

- 1. 判别点 (2,-1,1) 与原点是在平面 5x+3y+z-18=0 的同侧还是异侧.
- 2. 在平面 x+y+z-1=0 与三个坐标面所围成的四面体内求一点, 使它到四面体的四个面的距离相等.
- 3. 在 y 轴上求一点, 使它到平面 x + 2y 2z 2 = 0 的距离为 4.
- *4. 若平面 p 到两平行平面 $p_1:Ax+By+Cz+D_1=0$; $p_2:Ax+By+Cz+D_2=0$ 的距离相等, 求它的方

解 点 M(x,y,z) 到 p_1 和 p_2 的距离分别是 $\frac{\left|Ax + By + Cz + D_1\right|}{\sqrt{A^2 + B^2 + C^2}}$ 和 $\frac{\left|Ax + By + Cz + D_2\right|}{\sqrt{A^2 + B^2 + C^2}}$ 。 All rights reserv

$$Ax + By + Cz + \frac{1}{2}(D_1 + D_2) = 0$$

第5节

5.1 空间直线的方程

(题目(考点): 求满足给定条件的直线的方程。)

空间直线的对称式方程和参数方程

若一非零向量平行于一条已知直线,这个向量就称之该直线的方向向量,将其记为s. 显然, 直线上的随便非零向量均可作为此直线的方向向量.

下面我们写直线的方程。已知直线 L 上随便一点 $M_0(x_0, y_0, z_0)$ 和它的随便

 $s = \{m, n, p\}$ ¹0,空间直线 L 就完全确定下来了,就可以写它的方程了.

设M(x, y, z)是空间中任一点。 $M_0 M = \{x - x_0, y\}$

$$M(x,y,z) \stackrel{\text{Yil}}{=} L \qquad M_0 \stackrel{\text{uniour}}{=} \stackrel{\text{Y}}{=} \frac{x-x_0}{m} \qquad \frac{y-y_0}{n} = \frac{z-z_0}{p}$$

因此,过点 $M_0(x_0,y_0,z_0)$ 且以 $s=\{m,n,p\}$ 为方向向量的直线L的方程为

$$\frac{X - X_0}{m} = \frac{y - y_0}{n} = \frac{Z - Z_0}{n}.$$
 (5.1)

(信)称方程组(5.1)为直线的对称式方程或点向式方程或标准方程.

(5.1)是三个相等的比,允许某些分母为0。当某分母为0时,应理解为其分子也是0。

如
$$m=0$$
 ,则(5.1)理解为: $\frac{1}{2}x-x_0=0$ 如 $m=0$,则(5.1)理解为: $\frac{1}{2}y-y_0=\frac{z-z_0}{p}$. 若方向数 m , n , p 中有两个数为零,如 $m=n=0$,

(5.1)是三个比相等,但比可以是任意实数。设 $\frac{x-x_0}{n} = \frac{y-y_0}{n} = \frac{z-z_0}{p} = t$,则可得过点

 $M_0(x_0,y_0,z_0)$ 且以 $s=\{m,n,p\}$ 为方向向量的直线L的参数方程:

写直线的方程的方法: 先根据已知条件求出L上随便一点 $M_0(x_0,y_0,z_0)$ 和它的随便一个方

向向量 $\mathbf{s} = \{m, n, p\}^{-1}$ 0, 再代入(5.1)或(5.2)即得L的方程。

【例 5.1】 求过点 (1,1,-2) 且与平面 x-3y-4z+1=0 垂直的直线方程.

解 由于所求直线与平面 x-3y-4z+1=0 垂直,故可取此平面的法向量为直线的方向向

量,即取s= $\{1,-3,-4\}$,由公式(5.1)及公式(5.2)得直线的对称式方程

$$\frac{x-1}{1} = \frac{y-1}{-3} = \frac{z+2}{-4}$$

及直线的参数方程

思考題:

- 1. 在利用公式(5.1)或公式(5.2)求直线 L 的方程时,关键是要求得哪个量?
- 2. 若直线L 过两已知点 $M_1(x_1,y_1,z_1),M_2(x_2,y_2,z_2)$, 求直线L 的方程.

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

参数方程

$$\begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \\ z = z_1 + t(z_2 - z_1) \end{cases} .$$

2 空间直线的一般方程

空间直线 L 可看成两平面 p_1 和 p_2 的交线. 事实上,若两个相交的平面 p_1 和 p_2 分别为 $A_1x+B_1y+C_1z+D_1=0$ 和 $A_2x+B_2y+C_2z+D_2=0$,则它们的交线 L 上的任一点的坐标 (x,y,z) 必然同时满足 p_1 和 p_2 的方程. 反之,如果点 (x,y,z) 不在直线 L 上,那么它不可能同时在 平面 p_1 和 p_2 上,所以它的坐标不能同时满足 p_1 和 p_2 的方程,由此得直线 L 的方程(空间直线的一般方程):

一般地说,过空间一直线的平面有无限多个,所以只要在这无限多个平面中<mark>随便</mark>选其中的两个,将它们的方程联立起来,就可得到此空间直线的方程.

思考题

3. 直线的对称式方程(5.1)能否视为直线的一般方程(5.3)? 特别地,对称式方程(5.1)中若 m,n,p中有一个或两个为零时,能否也视为直线的一般方程,这时直线具有怎样的特点?

2. 1 对称式方程和一般方程互化

$$\frac{X-X_0}{m} = \frac{y-Y_0}{n} = \frac{Z-Z_0}{p}$$
事实上是两个等式。因此, $\frac{X-X_0}{m} = \frac{y-Y_0}{n} = \frac{Z-Z_0}{p}$ 化为一般方

$$\frac{1}{2} \frac{x - x_0}{m} = \frac{y - y_0}{n} \\
\frac{y - y_0}{n} = \frac{z - z_0}{p}$$

化一般方程为对称式方程的方法:

(1) 求
$$A_1x + B_1y + C_1z + D_1 = 0$$
 的随便一个解 $M_0(x_0, y_0, z_0)$ 。(比如说令 $z = 0$ 再解出 x

和 y)

- $(2) \ \ \overset{\mathbf{r}}{n_{1}} = \ \left\{ A_{1}, B_{1}, C_{1} \right\}, \overset{\mathbf{r}}{n_{2}} = \ \left\{ A_{2}, B_{2}, C_{2} \right\} \ . \ \ \overset{\mathbf{r}}{\mathbf{x}} \overset{\mathbf{r}}{s} = \ \overset{\mathbf{r}}{n_{2}}, \overset{\mathbf{r}}{n_{2}} = \ \left\{ m, n, p \right\} \ .$
- (3) 把 $M_0(x_0, y_0, z_0)$ 和 $s = \{m, n, p\}$ 代入(5.1)即得对称式方程。

【例 5.2】 用对称式方程及其参数方程表示直线

$$\begin{cases} x + y + z + 1 = 0 \\ 2x - y + 3z + 4 = 0 \end{cases} .$$

解 先找出这直线上的一定点 $M_0(x_0,y_0,z_0)$,如:取 $x_0=1$ 代入方程组解得 $y_0=0,z_0=-2$,从而得到直线上的一点 $M_0(1,0,-2)$.

再求该直线的一个方向向量s.作为两平面的交线L,它与两平面的法向量

$$\boldsymbol{n}_1 = \{1, 1, 1\}, \boldsymbol{n}_2 = \{2, -1, 3\}$$

都垂直,可取L的方向向量

$$\mathbf{s} = \mathbf{n}_{1} \cdot \mathbf{n}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 2 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ -1 & 3 \end{vmatrix} \times \mathbf{j} - \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} \times \mathbf{j} + \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} \times \mathbf{k}$$

= 4i - j - 3k.

因此, 所给直线的对称式方程为

$$\frac{x-1}{4} = \frac{y}{-1} = \frac{z+2}{-3} ,$$

直线的参数方程为

$$\begin{cases} x = 1 + 4t \\ y = -t \\ z = -2 - 3t \end{cases}$$

思老師.

4. 证明:若直线 L 由方程(5.3)给出,则 L 的方向向量

$$\mathbf{s} = \begin{bmatrix} B_1 & C_1 \\ B_2 & C_2 \end{bmatrix}, \begin{bmatrix} C_1 & A_1 \\ C_2 & A_2 \end{bmatrix}, \begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix}$$

【例 5.3】 求过点 (2,-5,3) 且与平面 $p_1:2x-y+z-1=0$ 及 $p_2:x+y-z-2=0$ 平行的直线方程.

解 1 由于直线与平面 p_1 及 p_2 平行,故直线与平面 p_1 及 p_2 的法向量 \boldsymbol{n}_1 , \boldsymbol{n}_2 都垂直,因

$$\mathbf{n}_{1}' \ \mathbf{n}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 3\mathbf{j} + 3\mathbf{k}$$

取直线的方向向量s= $\{0,1,1\}$.因此,所求直线方程为

$$\frac{x-2}{0} = \frac{y+5}{1} = \frac{z-3}{1} \, .$$

解 2 由于直线与平面 p_1 及 p_2 平行,故必平行于 p_1 及 p_2 的交线

$$\sum_{i=1}^{n} 2x - y + z - 1 = 0$$

$$\sum_{i=1}^{n} x + y - z - 2 = 0$$

在这条直线上取两点 $M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2)$, 如令 $y_1=0$, 得

$$\begin{cases}
2x + z - 1 = 0 \\
x - z - 2 = 0
\end{cases}$$

解得 x_1 = 1, z_1 = -1, 即 $M_1(x_1, y_1, z_1)$ = $M_1(1, 0, -1)$, 类似地, 求得 $M_2(x_2, y_2, z_2)$ = (1, 1, 0),

于是可取直线的方向向量 $s=M_{1}M_{2}=\{0,1,1\}$,从而也可得直线方程 (如解法 1 所求).

解 3 过点 (2, -5, 3) 且平行于平面 p_1 的平面方程为

$$p_3: 2(x-2)-(y+5)+(z-3)=0$$

过点 (2, -5, 3) 且平行于平面 p_2 的平面方程为

$$p_4:(x-2)+(y+5)-(z-3)=0$$
,

x + y - z + 6 = 0.

由于所求直线既在平面 p_3 又在平面 p_4 上,故其方程为

44

【例 5.4】 求直线L:

在平面p: x+y+z=0上的投影直线L¢的方程.

解 过直线 L 作平面 p_3 垂直于平面 p , p_3 与 p 的交线即所求投影直线 L ¢ ,如图 5.2 所示, 由条件,平面 p 的法向量为 $\boldsymbol{n}=\{1,1,1\}$. 设平面 p_3 的法向量为 \boldsymbol{n}_3 ,则 \boldsymbol{n}_3 $\hat{\boldsymbol{n}}$. 设直线 L 的的方 向向量为s,由于直线L在平面 p_3 上, n_3

$$\mathbf{n}_{3} = \mathbf{s}' \ \mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -2 & -2 \\ 1 & 1 & 1 \end{vmatrix} = -2\mathbf{j} + 2\mathbf{k}$$
,

又,可在直线L上求得一点 $M_0(0,1,0)$,从而得

$$p_3:0x-2(y-1)+2z=0$$
, $\mathbb{P}[y-z-1]=0$

故所求直线L¢的方程为

$$y - z - 1 = 0$$
 $X + y + z = 0$

图 5.2

【例 5.5】 求过点 P(1,1,1) 且与直线 $L_1: x+1=\frac{y-1}{2}=\frac{z}{-1}$ 垂直相交的直线 L 的方程.

解 1 首先过点 (1,1,1) 作一平面 p_1 垂直于已知直线 L_1 ,为此取 L_1 的方向向量 \boldsymbol{s}_1 = $\{1,2,-1\}$ 作为 p_1 的法向量,得 p_1 的点法式方程

$$(x-1)+2(y-1)-(z-1)=0$$
,

即

$$x + 2y - z - 2 = 0$$
.

 $L_1: x+1=\frac{y-1}{2}=\frac{z}{-1}$ 的参数方程为

设垂足N(-1+t,1+2t-t)。将N(-1+t,1+2t-t)代入 p_1 的方程,可解得 $t=\frac{1}{6}$

unur $(PN = \{-2 + t, 2t, -1 - t\}, PN *_1 = 0$ 也得 $t = \frac{1}{6}$),从而 $L_1 与 p_1$ 的交点为 N $\frac{5}{6}, \frac{4}{3}, -\frac{1}{6}$ $\frac{1}{3},$

$$L: \frac{x-1}{11} = \frac{y-1}{-2} = \frac{z-1}{7}.$$

(上面求 L_1 与 p_1 的交点时,本来要求三个未知数x,y,z,用了 L_1 的参数方程后,只有一个未知数t要求。这是参数方程的妙用。)

解 2 设所求直线 L 的方程为

$$L: \frac{x-1}{m} = \frac{y-1}{n} = \frac{z-1}{p}$$
,

其方向向量 $s = \{m, n, p\}$. 由条件, L_1 的方向向量 $s_1 = \{1, 2, -1\}$,且 s_1 \hat{s} ,可得

$$m + 2n - p = 0$$

因点Q (- 1,1,0) 在 L_1 上,PQ = $\{-$ 2,0,- $1\}$,由于直线L 与 L_1 相交,故三向量PQ , s_1 ,s 共面,

$$\begin{vmatrix} m & n & p \\ 1 & 2 & -1 \\ -2 & 0 & -1 \end{vmatrix} = 0 ,$$

即 2m - 3n - 4p = 0 , 由 $\frac{1}{2}m + 2n - p = 0$, 解得 $m = -\frac{11}{2}n$, $p = -\frac{7}{2}n$, 取 $s = \{11, -2, 7\}$, 故

所求直线 L 的方程为

$$L: \frac{x-1}{11} = \frac{y-1}{-2} = \frac{z-1}{7}$$

解 3 过点 (1,1,1) 可作一平面 p_1 垂直于已知直线 L_1 . 由解法 1 已求得,

$$p_1: x + 2y - z - 2 = 0$$
.

又因已知直线 $L_1: x+1=\frac{y-1}{2}=\frac{z}{-1}$ 与点 P(1,1,1) 可确定平面 p_2 ,故所求直线 L 就是 p_1 与 p_2 的交线. 设 p_2 的法向量为 \boldsymbol{n}_2 . 由条件, L_1 的方向向量 $\boldsymbol{s}_1=\{1,2,-1\}$. 则 $\boldsymbol{n}_2 \hat{\boldsymbol{s}}_1$,但由于 Q(-1,1,0) 在 L_1 上,则 $\boldsymbol{n}_2 \hat{\boldsymbol{p}}_Q$,故取 $\boldsymbol{n}_2=PQ$,故 \boldsymbol{n}_2 ,即

- 5.2 直线与直线、直线与平面的位置关系
- 1 直线与直线的位置关系

空间两直线的相关位置可以分为几种情形:共面(其中又可分为相交、平行、重合等几种情和不共而(导面) 种的可利用作量士而之下(以) 形)和不共面(异面).我们可利用向量来研究两直线的位置关系.设两直线的方程为

$$L_1: \frac{X-X_1}{m_1} = \frac{y-y_1}{n_1} = \frac{Z-Z_1}{p_1}, \quad L_2: \frac{X-X_2}{m_2} = \frac{y-y_2}{n_2} = \frac{Z-Z_2}{p_2}$$

其中 L_1 过点 $M_1(x_1, y_1, z_1)$,方向向量 $\mathbf{s}_1 = \{m_1, n_1, p_1\}$; L_2 过点 $M_2(x_2, y_2, z_2)$,方向向量 $\mathbf{s}_2 = \{m_2, n_2, p_2\}.$

(1) L_1 和 L_2 共面的充要条件是三向量 \mathbf{s}_1 , \mathbf{s}_2 , M_1M_2 共面,即 \mathbf{s}_2 1 M_1M_2 = 0,或

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{vmatrix} = 0 .$$

两直线 L_1 , L_2 异面是共面的否定。

 $m{M}_2$ $\frac{\mbox{\it m}_1}{\mbox{\it m}_2} = \frac{\mbox{\it n}_1}{\mbox{\it n}_2} = \frac{\mbox{\it p}_1}{\mbox{\it p}_2}$ 。(平行包括了重合。)

 L_1 与 L_2 重合的充要条件是 L_1 场 $_2$ 且 M_1 Î L_2 (或 M_2 Î L_1)。

- $(3) \ L_{1} \hat{\ } L_{2} \hat{\ } \hat{\ } \boldsymbol{s}_{1} \hat{\ } \boldsymbol{s}_{2} \hat{\ } \hat{\ } \boldsymbol{m}_{1} \boldsymbol{m}_{2} + n_{1} n_{2} + p_{1} p_{2} = \ \boldsymbol{0} \ .$
- (4) L_1 与 L_2 相交一点的充要条件是: L_1 和 L_2 共面且 L_1 和 L_2 不平行。

两直线 L_1, L_2 之间的夹角用它们的方向向量的夹角 (通常不取钝角)表示. 故两直线 L_1, L_2 的夹角 j 由公式

$$\cos j = \left| \frac{\boldsymbol{s}_1 \times \boldsymbol{s}_2}{|\boldsymbol{s}_1| |\boldsymbol{s}_2|} \right| = \frac{\left| m_1 m_2 + n_1 n_2 + p_1 p_2 \right|}{\sqrt{m_1^2 + n_1^2 + p_1^2} \times \sqrt{m_2^2 + n_2^2 + p_2^2}}$$
(5.4)

己知两直线 【例 5.6】

知两直线
$$L_1: \frac{x-1}{1} = \frac{y+1}{1} = \frac{z-1}{-1} \text{ , } L_2: \frac{x-1}{1} = \frac{y-1}{-1} = \frac{z+1}{1} \text{ .}$$

- (1) 证明 L_1 , L_2 相交一点并求 L_1 , L_2 的交点;
- (2) 求L₁, L₂的夹角:
- (3) 求 L_1 , L_2 所确定的平面的方程.

$$L_1: \begin{array}{c} x = 1 + t_1 \\ y = -1 + t_1 \\ z = 1 - t_1 \end{array}, \quad L_2: \begin{array}{c} x = 1 + t_2 \\ y = 1 - t_2 \\ z = -1 + t_2 \end{array}.$$

本能 例 条 直 线 用 向 一 个 多 数 :) 由 于
$$L_1$$
 , L_2 相 交 , 所 以 其 交 点 坐 标 必 然 同 时 满 足 以 上 两 个 方 程 组 , 即 有 $\frac{t}{t}1+t_1=1+t_2$ $\frac{t}{t}-1+t_1=1-t_2$ $\frac{t}{t}1-t_1=-1+t_2$

解得
$$t_1 = 1$$
, $t_2 = 1$, 从而求得 L_1 , L_2 的交点为 M_0 (2,0,0).

(2) 设 L_1 , L_2 的夹角为 j , 则有
$$\cos j = \frac{\left|1' \ 1 + 1' \ (-1) + (-1)' \ 1\right|}{\sqrt{1^2 + 1^2 + (-1)^2}} = \frac{1}{3}, \quad j = \arccos \frac{1}{3}.$$

(3) 取 $n = \frac{r}{s_1}$, $n = \frac{r}{s_2}$, $n = \frac{r$

$$0(x-1)-2(y+1)-2(z-1)=0$$
, 化简得 $y+z=0$

2 直线与平面的位置关系

直线与平面的位置关系有几种情形:直线在平面上、直线与平面平行、直线与平面相交.我们仍可利用向量来研究这些关系.

设直线 $L: \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$,平面 p: Ax+By+Cz+D=0,则 L 的方向向量 $s=\{m,n,p\}$,平面 p 的法向量 $n=\{A,B,C\}$.

- (1) $L \cap p \cong \overset{\Gamma}{s} \stackrel{\Gamma}{u} = \frac{A}{m} = \frac{B}{n} = \frac{C}{p}$
- (3) 直线 L 与平面 p 相交于一点的充要条件是 $L \times p$.

如图 5.3 所示,当直线 L 与平面 p 不垂直时,直线 L 与它在平面 p 上的投影直线 L ¢的夹角 j (0 £ $j < \frac{p}{2}$),称为直线 L 与平面 p 的夹角. 当直线 L 与平面 p 垂直 $n \mid L$

时,规定直线与平面的夹角为 $\frac{p}{2}$. $j = \left| \frac{p}{2} - (s, n) \right|$,于是有

$$\sin j = \left| \cos(\mathbf{s}, \mathbf{n}) \right|$$

$$\sin j = \left| \frac{n \times s}{|n||s|} \right| = \frac{|mA + nB + pC|}{\sqrt{m^2 + n^2 + p^2} \times \sqrt{A^2 + B^2 + C^2}}.$$
 (5.5)

ZhiShi LAND

Zhishi LAND Z

ZhiShi LAND

W AND 3

A 50 AND A reserved

WANDAO

(x-2z-1=0)y+2z+5=0 与平面 p:x+z+5=0, 【例 5.7】

- (1) 试问 L 与 p 是否相交一点?
- All rights (2) 若L与p相交,试求L与p的交点与交角.
- (1) 由条件,直线L 的方向向量

$$s = \begin{bmatrix} 3 & 0 & -2 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} -2 & 1 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \{2, -2, 1\},$$

平面p的法向量 $n = \{1, 0, 1\}$,由于

$$s \not = 2' 1 + (-2)' 0 + 1' 1 = 3^{1} 0$$
,

 $s \setminus n$ 即 $L \times p$ 。故 $L \ni p$ 相交于一点.

(2) 联立直线的两方程和平面的一方程,得三元一次方程组,解得x = -3, y = -1, z = -2, All rights rest 故L与p的交点为 M_0 (-3,-1,-2).

也可将直线 L 写成参数方程形式代入平面方程,解得参数的值,从而得交点坐标. 由公式(5.5),有

有
$$\sin j = \frac{\left|2' + (-2)' + (-$$

All rights reserved All rights

故L与p的交角为 $\frac{p}{4}$.

rights reserved. All rights reserved. All rights reserved.

5.3 过直线的平面束

设直线L由方程组

(5.6)

所确定,其中系数 A_1 , B_1 , C_1 与 A_2 , B_2 , C_2 不成比例.

作含有参数 1 的三元一次方程

$$A_1x + B_1y + C_1z + D_1 + I(A_2x + B_2y + C_2z + D_2) = 0$$
.

(5.8)

对于任何一个 I 值,方程(5.8)表示一个平面,记为 p_I . 若一点在直线 L 上,则该点的坐标必同时满足方程(5.6)和(5.7),因此,必满足(5.8), p_I 是过 L 的一个平面。下面无穷多个平面的集合称为过 L 的平面束(缺少平面 $A_2x+B_2y+C_2z+D_2=0$)

$$P_{L} = \left\{ p_{I} \middle| 1 \hat{1} R \right\}$$

称(5.8)式为过定直线L的平面東方程.

平面束的应用: 在平面束中确定一个满足已给条件的平面。**方法:** 把已给条件代入(5.8) 求出 1,再把得到的 1 代回(5.8)即得要求的平面方程。

Zhishi Land

All rights reserved All rights reserved

Zhishi Land

Zhi

OYAI registe reserved

Zhishi LAND

ANDAO

对于某些平面或直线问题,用平面束方法比较简便.

用平面束方法求解例 5.4. 【例 5.8】

【例 5.4】 求直线L:

在平面p: x+y+z=0上的投影直线 L^{ϕ} 的方程.

解 欲求直线 L:

$$x + y - z - 1 = 0$$

 $x + y + z + 1 = 0$

在平面 p: x+y+z=0 上的投影直线 L^{\emptyset} 的方程.

直线 L 在平面 p 上的投影直线,也应在过 L 且垂直于平面 p 的平面上 (图 5.5),即在 P_I 中确定一个垂直于P的平面。过直线L的平面束方程为

$$p_1: x+y-z-1+1(x-y+z+1)=0$$
,

$$p_1:(1+1)_X+(1-1)_Y+(-1+1)_Z+(-1+1)=0$$
,

其中 1 为任意常数. $n_I = \{1+1,1-1,-1+1,\}$

使它与平面 p 相垂直条件为

$$(1+1) \times + (1-1) \times + (-1+1) \times = 0$$
,

从而有 I = -1,故过直线 L 且垂直于平面 p 的平面为

$$2y - 2z - 2 = 0$$
,

即 y-z-1=0,从而投影直线的方程为

rights reserved All rights reserved All rights reserved All rights res

图 5.5

1. 写出下列直线的对称式方程及参数方程:

(1)
$$\begin{cases} x - y + z = 1, \\ 2x + y + z = 4; \end{cases} *(2) \begin{cases} 2x + 5y + 3 = 0, \\ x - 3y + z + 2 = 0 \end{cases}$$

解 (1) 令
$$z = 0$$
 解 $\frac{1}{2} x - y + z = 1$ 得 $x = \frac{5}{3}$, $y = \frac{2}{3}$, 取 M_0 表 $\frac{2}{3}$, 0 $\frac{1}{3}$. $n_1 = \{1, -1, 1\}$, $n_2 = \{2, 1, 1\}$. 取

$$\stackrel{\mathbf{r}}{s} = \stackrel{\mathbf{r}}{n}_{1}, \stackrel{\mathbf{r}}{n}_{2} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix}, \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = \{-2,1,3\} \ .$$

称式方程:
$$\frac{x-\frac{5}{3}}{-2} = \frac{y-\frac{2}{3}}{1} = \frac{z}{3}$$
; 参数方程: $y = \frac{5}{3} - 2t$ $z = \frac{5}{3} + t$ $z = \frac{5}{3}$ $z = \frac{5}{3} + t$ $z = \frac{5}{3} + t$ $z = \frac{5}{3} + t$

2. 求满足下列条件的直线方程:

- (1) 过两点(1,2,3), (0,2,-1);
- (2) 过点 (2,3,4) 且平行于直线 $\frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{3}$;
- (3) 过点 (0,2,4) 且同时平行于平面 x+ 2z= 1与y-3z= 2;
- *(4) 过点 (2,-3,1) 且垂直平面 2x+3y+z+1=0;

(5) 过点
$$M_0$$
 (0,1,2) 且与直线 $\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$ 垂直相交;
$$M_0$$
 (5) $\frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{3}$ 的 $\hat{s} = \{2,1,3\}$,参数方程 $\hat{t} = 1+2t$ 。 设交点为 M_0 (1+2t,t,2+3t)。

$$M$$
 % $\frac{1}{14}$, $\frac{25}{14}$ $\frac{1}{16}$ 。 取 $\frac{r}{s} = M \frac{r}{_0}M = \frac{15}{14}$ 。 所求直线方程: $\frac{x}{\frac{6}{7}} = \frac{y-1}{\frac{15}{14}} = \frac{z-2}{\frac{3}{14}}$, 即

$$\frac{x}{4} = \frac{y-1}{-5} = \frac{z-2}{-1}$$

- 3. 求下列投影点的坐标:

(2)
$$M_0(2,3,1)$$
 在直线 $\frac{x+7}{1} = \frac{y+2}{2} = \frac{z+2}{3}$ 上的投影点.

解 (2)
$$\frac{x+7}{1} = \frac{y+2}{2} = \frac{z+2}{3}$$
 的参数方程 $\begin{cases} x=-7+t \\ y=-2+2t \end{cases}$, $\begin{cases} r \\ s \end{cases} = \{1,2,3\}$ 。设投影点为

$$M \left(-7 + t, -2 + 2t, -2 + 3t \right) \qquad . \qquad M_{0}M = \left\{ t - 9, 2t - 5, 3t - 3 \right\} \qquad . \qquad \text{the proof of the proof$$

t-9+2(2t-5)+3(3t-3)=0。解得 t=2。投影点M (-5,2,4)。

4. 求下列投影直线的方程:

*(1) 直线
$$\frac{1}{4} 2x - 4y + z = 0$$

* $3x - y - 2z - 9 = 0$ 在三个坐标面上的投影直线

求卜列投影直线的万程:

*(1) 直线
$$\frac{1}{4}2x - 4y + z = 0$$
*(2) 直线 $\frac{1}{4}2x - y + 3z - 1 = 0$
在三个坐标面上的投影直线;
在平面 $2x - y + 5z - 3 = 0$ 上的投影直线.

5. 问两直线

$$L_1: \frac{x-4}{-2} = \frac{y+3}{2} = \frac{z-5}{-3} = L_2: \frac{x}{1} = \frac{y-1}{-4} = \frac{z+1}{3}$$

6. 求直线
$$\begin{cases} 5x-3y+3z-9=0, \\ 3x-2y+z-1=0 \end{cases}$$
 与 $\begin{cases} 2x+2y-z+23=0, \\ 3x+8y+z-18=0 \end{cases}$ 之间的夹角.

解
$$\frac{1}{4}$$
 $\frac{5x-3y+3z-9=0}{3x-2y+z-1=0}$ 的方向向量 $\frac{r}{s_1} = \{5,-3,3\}$ ' $\{3,-2,1\} = \begin{bmatrix} -3 & 3 \\ 2 & 1 \end{bmatrix}$, $\begin{vmatrix} 3 & 5 \\ 1 & 3 \end{vmatrix}$, $\begin{vmatrix} 5 & -3 \\ 3 & -2 \end{vmatrix} = \{3,4,-1\}$;

$$\frac{1}{2}2x + 2y - z + 23 = 0$$

设所求夹角为
$$j$$
 ,则 $\cos j = \left| \frac{\stackrel{\Gamma}{s_1} \stackrel{\Gamma}{s_2}}{\left| \stackrel{\Gamma}{s_1} \right| \left| \stackrel{\Gamma}{s_2} \right|} \right| = \frac{\left| 6 - 4 - 2 \right|}{\left| \stackrel{\Gamma}{s_1} \right| \left| \stackrel{\Gamma}{s_2} \right|} = 0$, $j = \frac{p}{2}$

7. 求直线
$$\frac{x-1}{2} = \frac{y}{-1} = \frac{z+1}{2}$$
 与平面 $x-y+2z=3$ 之间的夹角.

*8. 设
$$M_0$$
是直线 L 外的一点, M 是直线 L 上的任意一点,且直线 L 的方向向量为 s ,证明:点 M_0 到直

线
$$L$$
 的距离为 $d = \frac{\left| \frac{M_{0}M_{s}^{T}}{M_{0}M_{s}^{T}} \right|}{|s|}$,由此计算:

(1) 点
$$M_0$$
 (3, -4, 4) 到直线 $\frac{x-4}{2} = \frac{y-5}{-2} = \frac{z-2}{1}$ 的距离;
(2) 点 M_0 (3, -1, 2) 到直线 $\begin{cases} x+y-z+1=0 \\ 2x-y+z-4=0 \end{cases}$ 的距离.

$$\mathbf{m}$$
 \mathbf{m} \mathbf{m}

$$\overset{\mathbf{r}}{s} = \overset{\mathbf{ululum}}{M_0 B} \overset{\mathbf{r}}{\in} \overset{\mathbf{ululum}}{M_0 B}$$
 的底,而点 M_0 到直线 L 的距离为 d 是 $\mathbf{Y} \overset{\mathbf{M}}{M_0 M} \overset{\mathbf{r}}{\circ} \overset{\mathbf{ululum}}{\in} \overset{\mathbf{ululum}}{M_0 B}$ 为底的高。故
$$d = \frac{\left|\overset{\mathbf{ululum}}{M_0 M} \overset{\mathbf{r}}{\circ} \mathbf{s}\right|}{|\mathbf{s}|} \overset{\mathbf{ululum}}{\circ} \overset{\mathbf{ululum}}{\in} \overset{\mathbf{u$$

$$\begin{vmatrix} \mathbf{r} \\ s \end{vmatrix} = 3, \begin{vmatrix} \mathbf{u} \\ M_0 M \end{vmatrix}, \begin{vmatrix} \mathbf{r} \\ s \end{vmatrix} = \sqrt{25 + 25 + 400} = \sqrt{450}$$
。所求距离 $d = \frac{\begin{vmatrix} \mathbf{u} \\ M_0 M \end{vmatrix}, \begin{vmatrix} \mathbf{r} \\ s \end{vmatrix}}{\begin{vmatrix} \mathbf{r} \\ s \end{vmatrix}} = \sqrt{50}$ 。

(2)
$$\Leftrightarrow z = 0$$
 $\Re \left\{ \begin{array}{l} x + y - z + 1 = 0 \\ 2x - y + z - 4 = 0 \end{array} \right. \notin x = 1, y = -2, \text{ } \text{\mathbb{M} in M} (1, -2, 0).$

$$M \cdot M = \{-2, -1, -2\}$$

$$\overset{\circ}{s} = -\frac{1}{3} \left\{ 1, 1, -1 \right\} \overset{\circ}{} \left\{ 2, -1, 1 \right\} = -\frac{1}{3} \overset{\circ}{=} 1 \overset{\circ}{=$$

$$\begin{vmatrix} \mathbf{r} \\ s \end{vmatrix} = \sqrt{2}, \begin{vmatrix} \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{r} \\ M_0 M & s \end{vmatrix} = 3$$
。所求距离 $d = \frac{\begin{vmatrix} \mathbf{u} \cdot \mathbf{u} \cdot \mathbf{r} \\ M_0 M & s \end{vmatrix}}{\begin{vmatrix} \mathbf{r} \\ s \end{vmatrix}} = \frac{3}{\sqrt{2}} = \frac{3}{2}\sqrt{2}$

9. 证明:两直线
$$\underbrace{1}_{2x-y-3=0}^{2x-y-3=0}$$
 和 $\underbrace{I}_{2}:\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{2}$ 平行,并求它们之间的距离.

- *1. 设直线 L_1 在过三点 P_0 (0,0,0), P_1 (2,2,0), P_2 (0,1,-2) 的平面上,且与直线 L_2 : $\frac{x+1}{3} = \frac{y-1}{2} = 2z$ 垂直相 交,求直线 L_1 的方程.
- 2. 过点 A (- 3,5,- 9) 且和两直线: L_1 : y = 3x + 5 y = 4x 7 z = 2x 3 , L_2 : z = 5x + 10 相交的直线方程.
- *3. 求点 (3,-1,-1) 关于平面 6x+2y-9z+96=0的对称点的坐标.
- $\frac{z-2}{1}$,求该光线经平面 x+2y+5z+17=0 反射后的反射光线

All rights t

5. 证明直线 $L_1: x = \frac{y}{2} = \frac{z}{3}$ 与 $L_2: x - 1 = y + 1 = z - 2$ 是异面直线,并求 L_1 与 L_2 间的距离 d 及 L_1 与 L_2 的公 垂线 L 的方程.

第6节 空间曲面

研究空间曲面有两个基本问题:

- (1) 己知曲面作为点的轨迹时,求曲面方程.
- (2) 己知曲面方程,研究曲面形状.

6.1 柱面

先讨论一个方程及其图形:

【例 6.1】 在空间中方程 F(x, y) = 0 表示怎样的几何对象?

解 设在空间中方程 F(x,y) = 0 表示的几何对象为 Σ 。

M(x,y,z)在xOy平面上的投影点是 $M_1(x,y,0)$ 。

方程F(x,y)=0不含变量z,不论z取何值都不影响F(x,y)=0是否成立。

我们知道,方程
$$\begin{cases} F(x,y) = 0 \\ z = 0 \end{cases}$$
 表示 $x \partial y$ 平面上一条曲线 C .

$$M\left(x,y,z\right)\in\Sigma\Leftrightarrow F\left(x,y\right)=0\Leftrightarrow M_{1}(x,y,0)\in\mathcal{C}$$

也就是说,过点 $M_1(x,y,0)$ 且平行于 Z 轴的整条直线 L 都落在 Σ 上的充要条件是 $M_1(x,y,0)\in C$. 故, Σ 是由保持平行于 Z 轴的直线沿 xO y 面上的曲线 C 移动而形成的(图 6.3). 这样的 Σ 称为柱面。

一般地,我们称保持平行于定直线并沿定曲线 C 移动的直线 L 形成的曲面为柱面,定曲线 C 称为柱面的准线,动直线 L 称为柱面的母线(图 6.2).

结论: 在空间中,方程
$$F(x,y) = 0$$
 表示以 $C: \begin{cases} F(x,y) = 0 \\ z = 0 \end{cases}$ 为准线且母线平行于 z 轴的柱面。

(而方程F(x,y)=0 在平面解析几何表示一条曲线。在空间中写xOy平面上曲线的<u></u> **万程**要加上限制z=0。)

例如,图 6.1 所示, $x^2 + y^2 = R^2$ 在空间中表示一个圆柱面.

结论: 在空间中,每张曲面的方程都是一个三元方程;每个三元方程G(x,y,z)=0都表示一张曲面。

类似地,只含x,z不含y的方程与G(x,z)=0与只含y,z不含x的方程H(y,z)=0,分别表示母线平行于y轴和x轴的柱面.

例如,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
表示母线平行于 z 轴的椭圆柱面(图 6.4).

思考題:

1.平面 y+z=1能看成柱面吗?如果能够,可以看成是怎样的一个柱面?

(准线是直线: $\begin{cases} y+z=1 \\ x=0 \end{cases}$, 母线平行于 x 轴。

【例 6.2】 设柱面 Σ 的准线方程为 $C: \begin{cases} x^2 + y^2 + z^2 = 1 \\ 2x^2 + 2y^2 + z^2 = 2 \end{cases}$, 母线的方向向量

All rights it

 $s = \{-1, 0, 1\}$, 求此柱面 Σ 的方程.

解 (这是一个典型的题目,要学会方法!) $\forall M (x,y,z)$ 。 $M \in \Sigma$ 的充要条件是,M 在

某 $P(x_0, y_0, z_0) \in \mathbb{C}$ 的母线上。即 $PM//\vec{s}$,所以

 $\frac{x-x_0}{-1} = \frac{y-y_0}{0} = \frac{z-z_0}{1}, \qquad \text{ } \exists \vec{\mathsf{X}} \qquad \left\{ \begin{aligned} x_0 &= x+t \\ y_0 &= y \\ z_0 &= z-t \end{aligned} \right.$

将其代入准线方程,有

 $\begin{cases} (x+t)^2 + y^2 + (z-t)^2 = 1\\ 2(x+t)^2 + 2y^2 + (z-t)^2 = 2 \end{cases},$

消去 t,得柱面 Σ 的方程为

 $\Sigma : (x+z)^2 + y^2 = 1$.

6.2 旋转曲面

解: $\forall M(x,y,z)$ 。 M 到 z 轴的距离 = $\sqrt{x^2 + y^2}$ 。 M 围绕 z 轴转扫得 yz 平面上的点是

$$M_0(0,\pm\sqrt{x^2+y^2},z)$$

$$M \in \Sigma \Leftrightarrow M_0 \in C \Leftrightarrow f(\pm \sqrt{x^2 + y^2}, z) = 0$$

故旋转曲面 Σ 的方程: $f(\pm \sqrt{x^2 + y^2}, z) = 0$ 。

总结: 把 yz 平面上母线 C 方程 f(y,z)=0 改成母线 C 围绕 z 轴转一周扫出旋转曲面 Σ 方程

的方法如下: 转轴的变量 z 保持不变,在 f(y,z) = 0 中将 y 改写成 $\pm \sqrt{x^2 + y^2}$ (不含 z) 就得到旋

转曲面 Σ 的方程 $f(\pm \sqrt{x^2 + y^2}, z) = 0$ 。

复习旋转面时,要试着学会填下表

交对版代面的 女似自己公共		
母线方程	转轴	旋转面方程
$\int f(y,z) = 0$	Z轴	PAO!
$C: \begin{cases} f(y,z) = 0 \\ x = 0 \end{cases}$	y轴	AL TONIO
	Z轴	ai LAM
$C: \begin{cases} f(x,z) = 0 \\ y = 0 \end{cases}$	x轴	Ned All rights resemble
2 No. 3 S S S S S S S S S S S S S S S S S S	x 轴	ANDAGOVED
$C: \begin{cases} f(x,y) = 0 \\ z = 0 \end{cases}$	y轴	BAOYA AL MOTHE

(1) $C: \begin{cases} f(x,z) = 0 \\ y = 0 \end{cases}$ 绕 z 轴旋转一周得旋转曲面 Σ 的方程的求法:转轴的 z 保持不变,在

f(x,z) = 0 中将 x 改写成 $\pm \sqrt{x^2 + y^2}$ 就得到旋转曲面 Σ 的方程 $f(\pm \sqrt{x^2 + y^2}, z) = 0$; (2) $C:\begin{cases} f(x,z) = 0 \\ y = 0 \end{cases}$ 绕 x 轴旋转一周得旋转曲面 Σ 的方程的求法:转轴的 x 保持不变,在 f(x,z) = 0

中将 z 改写成 $\pm \sqrt{z^2 + y^2}$ 就得到旋转曲面 Σ 的方程 $f(x, \pm \sqrt{z^2 + y^2}) = 0$. (3) $C: \begin{cases} f(x, y) = 0 \\ z = 0 \end{cases}$ 绕 x

轴旋转一周得旋转曲面 Σ 的方程的求法:转轴的X保持不变,在f(x,y)=0中将Y改写成 $\pm \sqrt{z^2 + y^2}$ 就得到旋转曲面 Σ 的方程 $f(x, \pm \sqrt{z^2 + y^2}) = 0$. (4) $C: \begin{cases} f(y, z) = 0 \\ x = 0 \end{cases}$ 绕 y 轴旋转一周

得旋转曲面 Σ 的方程的求法:转轴的 y 保持不变,在 f(y,z) = 0 中将 z 改写成 ± $\sqrt{z^2 + x^2}$ 就得到 旋转曲面 Σ 的方程 $f(y, \pm \sqrt{z^2 + x^2}) = 0$. (5) $x^2 + y^2 - z^2 - 2z = 1$ 绕 y 轴旋转一周得旋转曲面 Σ 的 方程的求法:转轴的 y 保持不变,在 f(x,y) = 0 中将 x 改写成 $\pm \sqrt{z^2 + x^2}$ 就得到旋转曲面 Σ 的方 程 $f(\pm \sqrt{z^2 + x^2}, y) = 0$.

有时反过来问: 给定的旋转曲面 Σ 是由哪条母线绕哪个坐标轴旋转得到的? 关键是哪两变 量平方和是上面方法改过来的,然后反过来用上面的方法。例如 【P47 4(4)】 方程 $x^2 + y^2 - z^2 - 2z = 1$ 表示的旋转曲面是怎样形成的?

解 (这是一个典型的了解曲面的题目。) $x^2 + y^2 - z^2 - 2z = 1$ 是把 $y^2 - z^2 - 2z = 1$ 的 y 改写成 得的旋转曲面。

2.试写出其他两个坐标面上的定曲线分别绕相应的坐标轴旋转而成的旋转曲面的方程.

【例 6.3】 (1) yOz 平面上的抛物线 $\begin{cases} y^2 = 2pz \\ x = 0 \end{cases}$ 绕 z 轴旋转而成的曲面的方程是

$$x^2 + y^2 = 2pz ,$$

此曲面叫做旋转抛物面(图6.8)

(2) yOz 平面上的椭圆 $\frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$ 绕 y 轴旋转而成的曲面的方程是 $\frac{y^2}{a^2} + \frac{x^2 + z^2}{b^2} = 1$,此曲面叫做旋转椭球面(图6. 9).

(3) zOx 平面上的双曲线 $\begin{cases} \frac{x^2}{a^2} - \frac{z^2}{b^2} = 1 \\ y = 0 \end{cases}$ 绕 z 轴和 x 轴旋转而成的曲面的方程分别是

$$\frac{x^2+y^2}{a^2} - \frac{z^2}{b^2} = 1 \quad \ \, -\frac{x^2}{a^2} - \frac{y^2+z^2}{b^2} = 1 \; ,$$

两曲面分别称为单叶旋转双曲面(图 6.10)与双叶旋转双曲面(图 6.11)

【例 6.4】 直线绕另一条与它相交的直线旋转一周,所得旋转曲面叫圆锥面(图 6.12). 两直线的交点叫圆锥面的顶点,两直线的夹角叫圆锥面的半顶角. 试建立顶点在坐标原点,旋转轴为z轴的圆锥面的方程.

解 设在 yOz 平面上,直线 L 的方程为 z = ky (k > 0) ,因为 z 轴是旋转轴,故得圆锥面

的方程
$$z = \pm k\sqrt{x^2 + y^2}$$
, 即 $z^2 = k^2(x^2 + y^2)$

(6.3)

图 6.12 中 $\alpha = \operatorname{arc} \cot k$ 为圆锥面的半顶角.

【例 **6.5**】 写出满足下列条件的动点的轨迹方程,并说明它们分别表示什么曲面?

- (1) 动点到坐标原点的距离等于它到平面 z = 4 的距离;
- (2) 动点到 x 轴的距离等于它到 yO z 平面的距离的两倍.

解 (1) 设动点为M(x,y,z), 由条件得

图 6.12

ZhiShi LAND 即 $x^2 + y^2 + 8z = 16$ 或 $z = 2 - \frac{x^2 + y^2}{8}$. 这是以z轴为旋转轴,开口朝下的旋转抛物面(图 6.13). (2) 设动点为M(x,y,z), 由条件得 $\sqrt{y^2+z^2}=2|x|$, 即 $4x^2 - y^2 - z^2 = 0$ 这是顶点在原点,旋转轴为 x 轴的圆锥面 (图6.14). ZhiShi LAN All rights reserved. All rights reserved AOYANDAO ZHISHI LAND

1. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形:

*(1)
$$x-y=1$$
; (2) $x^2-2y^2=1$; (3) $x^2-2y=1$; *(4) $2x^2+y^2=1$

2. 求下列柱面的方程:

(1) 准线为
$$\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$$
, 母线平行于 x 轴;

(2) 准线为
$$\begin{cases} 7-z=x^2+y^2\\ 2x+2y+2z=1 \end{cases}$$
, 母线平行于 z 轴

*(3) 准线为
$$\begin{cases} x^2 + y^2 - 2z^2 = 1 \\ 2x^2 + 2y^2 + z^2 = 2 \end{cases}$$
, 母线平行于直线 $x = y = z$.

解 (3) 母线的方向向量 $s = \{1,1,1\}$ 。

设柱面 Σ 任一点 M (x,y,z), 过点 M 的母线与准线交于点 $P(x_0,y_0,z_0)$, 则

$$\frac{x - x_0}{1} = \frac{y - y_0}{1} = \frac{z - z_0}{1}, \quad \text{ if } \begin{cases} x_0 = x - t \\ y_0 = y - t \\ z_0 = z - t \end{cases}$$

将其代入准线方程,有

$$\begin{cases} (x-t)^2 + (y-t)^2 - 2(z-t)^2 = 1\\ 2(x-t)^2 + 2(y-t)^2 + (z-t)^2 = 2 \end{cases},$$

消去 +.

$$\begin{cases} x^2 + y^2 - 2z^2 - 2xt - 2yt + 4zt = 1 \\ 2x^2 + 2y^2 + z^2 + 5t^2 - 4xt - 4yt - 2zt = 2 \end{cases},$$

由前式解出
$$t = \frac{x^2 + y^2 - 2z^2 - 1}{2x + 2y - 4z}$$
, 代入后式得

$$2x^{2} + 2y^{2} + z^{2} + 5\left(\frac{x^{2} + y^{2} - 2z^{2} - 1}{2x + 2y - 4z}\right)^{2} - \frac{x^{2} + y^{2} - 2z^{2} - 1}{2x + 2y - 4z}(4x + 4y + 2z) = 2\underline{64}$$

化简得所求柱面Σ的方程

$$x^2 + y^2 + 2z^2 - 2xz - 2yz = 1.$$

- 3. 写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:
 - *(1) xOz 平面上的抛物线 $z^2 = 5x$ 绕 x 轴旋转;
 - (2) xOy 平面上的双曲线 $4x^2 9y^2 = 36$ 绕 y 轴旋转;

(3) xOy 平面上的圆 $(x-2)^2 + y^2 = 1$ 绕 y 轴旋转;

解(3)旋转曲面的方程:

$$(\pm\sqrt{x^2+z^2}-2)^2+y^2=1$$

this reserved AN

$$x^2 + z^2 + 4 \pm 4\sqrt{x^2 + z^2} + y^2 = 1$$

$$16(x^2+z^2)=(x^2+z^2+y^2+3)^2$$

(可以进一步化简

- *(4) y0 z 平面上的直线 2y-3z+1=0 绕 z 轴旋转.
- 4. 指出下列方程所表示的曲面哪些是旋转曲面,这些旋转曲面是怎样形成的:

(1)
$$x + y^2 + z^2 = 1$$
;

(2)
$$x^2 + y + z = 1$$

(3)
$$x^2 - \frac{y^2}{4} + z^2 = 1$$
;

$$(4) \quad x^2 + y^2 - z^2 - 2z = 1$$

- 5. 写出满足下列条件的动点的轨迹方程,它们分别表示什么曲面?
 - (1) 动点到坐标原点的距离等于它到点(2,3,4)的距离的一半;
 - *(2) 动点到点 (0,0,3) 的距离等于它到 y 轴的距离;
 - (3) 动点到 x 轴的距离等于它到 yoz 平面的距离的两倍.

解 (2) 动点 M(x,y,z) 到点 (0,0,3) 的距离: $\sqrt{x^2+y^2+(z-3)^2}$; 到 y 轴的距离: $\sqrt{x^2+z^2}$ 。 所以特

迹方程

$$\sqrt{x^2 + y^2 + (z-3)^2} = \sqrt{x^2 + z^2}$$

EU-

$$y^2 - 6z + 9 = 0$$

6. 画出下列方程所表示的曲面(简图):

*(1)
$$x^2 - ax + y^2 = 0$$
;

*(2)
$$-\frac{x^2}{4} + \frac{y^2}{9} = 1$$

(3)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
;

*(4)
$$y^2 - z = 0$$
;

$$*(5)$$
 $z = 1 + x^2 + y^2$

(6)
$$z = 2 - \sqrt{x^2 + y^2}$$

65 ANI

*1. 求对称轴为 $x = \frac{y}{2} = \frac{z}{3}$,直截面是半径为 2 的圆周的柱面的方程.

*2. 求直线 $L: \frac{x-1}{1} = \frac{y+1}{-1} = \frac{z-1}{2}$ 绕另一直线 $L_0: \frac{x}{1} = \frac{y}{-1} = \frac{z-1}{2}$ 旋转所形成的旋转曲面的方程.

3.证明: $f(\frac{y}{m} - \frac{z}{n}, \frac{z}{n} - \frac{x}{l}, \frac{x}{l} - \frac{y}{m}) = 0$ (其中 l, m, n 均不为 0)表示母线平行于直线 $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ 的柱面.

NDAO ZhiShi LAND W BAOYANDAO AN rights reserved an rights reserved an rights reserved an rights reserved and rights reserved and rights reserved.

AOYANDAO
All rights reserved All rights reserv

ANDAO ZhiShi LAND CO

ZhiShi LAN

ZhiShi LAND

第7节 空间曲线及其方程

All rights reserved

空间曲线的方程

1 曲线的一般方程

空间曲线 G 可以看作是两张曲面 S_1 与 S_2 的交线(图 7.1). 设 S_1 与 S_2 的方程分别是 F(x,y,z)=0与G(x,y,z)=0。曲线M(x,y,z)ÎG的充要条件是M(x,y,z)的坐标满足方程组

$$F(x, y, z) = 0$$

$$G(x, y, z) = 0$$

因此, (7.1)是曲线 G 的方程, 称为曲线 G 的一般方程.

All rights to

(7.1)

【例 7.1】 以下方程分别表示怎样的曲线?

心在原点,半径为a的上半球面;第二个方程表示母线平行于z轴,准线是xOy面上以点 $(\frac{a}{2},0)$ 为中心,半径为 $\frac{a}{2}$ 圆周的圆柱面,方程组表示这两个曲面的交线 (图 7.3).

2 曲线的参数方程 空间曲线也可以用参数方程来表示。 把曲线G上的动点M(x,y,z)的坐标分别表示成参数t的函数 X = X(t) $\frac{1}{4}y = y(t), t\hat{1} I$ z = z(t)方程组(7.2)叫做曲线 G 的参数方程. 曲线 G 的参数方程(7.2)的意思是: 当参数 t 跑遍 I 时, 动点 M (x(t),y(t),z(t)) 正好跑遍曲线 G当给定 t=t 时,由(7.2)式就得到曲线 G 上的一个点 $(x(t_1),y(t_1),z(t_1))$ 。 All rights reserved. All rights reserved All rights reserved All rights reserved All rights reserved

【例 7.2】 如果空间一点 M 在圆柱面 $x^2 + y^2 = a^2$ 上以角速率 w 绕 z 轴旋转,同时又以线速率 v 沿平行于 z 轴的正方向上升,其中 w , v 都是常数,点 M 的轨迹曲线叫螺旋线,试建立其参数方程.

解 取时间 t为参数,设当 t= 0 时,动点与 x 轴上的点 A(a,0,0) 重合,经过时间 t,动点由 A(a,0,0) 运动到 M(x,y,z).记 M 在 x0 y 面上的投影为 M $\phi(x,y,0)$.

由于动点在圆柱面上以角速度 w绕 z 轴旋转,经过时间 t, D A O M $\not = w$ x ,从而

$$\begin{array}{l}
x = a \cos wt \\
t \\
y = a \sin wt
\end{array}$$

又由于动点同时以线速度v沿平行于z轴正方向上z=vt.因此,螺旋线的参数方程为

$$\begin{cases}
x = a \cos wt \\
y = a \sin wt
\end{cases}$$

$$\begin{cases}
z = vt
\end{cases}$$

$$x = a \cos q$$

 $y = a \sin q$, $(b = \frac{v}{w}, q 为参数)$
 $z = bq$

升,所以

螺旋线是一种常见的曲线. 比如螺丝钉的螺丝曲线就是螺旋线. 与平面曲线情形类似,参数方程消除参数 t 就得到一般方程;空间曲线的一般方程也可以化为参数方程. 下面用例子说明曲线一般方程化为参数方程的方法。

【例 7.3】 将空间曲线
$$C: \frac{1}{2}x^2 + y^2 + z^2 = \frac{9}{2}$$
 表示成参数方程.

解 由方程组消去 z 得

$$x^{2} + y^{2} + (1 - x)^{2} = \frac{9}{2},$$

$$C : \frac{1}{4}x^{2} + y^{2} + (1 - x)^{2} = \frac{9}{2}$$

变形得

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 1.$$

由于C 在此椭圆柱面上,故C 的方程可用如下形式来表示

$$C : \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} = 1$$

$$X + Z = 1$$

如果令 $\frac{x-\frac{1}{2}}{\sqrt{2}} = \cos q$,由椭圆柱面方程,有 $\frac{y}{2} = \sin q$,而

$$z=1-x=1-(\frac{1}{2}+\sqrt{2}\cos q)=\frac{1}{2}-\sqrt{2}\cos q$$
,

则曲线又可表示成为

从而得到曲线的参数方程 且参数的取值范围为 $1-\frac{1}{2}(t-\frac{1}{2})^{2}$ 3 0,即 $\frac{1}{2}$ - $\sqrt{2}$ #t $\frac{1}{2}$ + $\sqrt{2}$.) 也可以把空间曲线的参数方程化为一般方程. All rights (7.2)(7.2)消除参数 t,例如,从(7.2)的第一个等式解出 $t = x^{-1}(x)$,再代入其他两个等式,就得 All rights reserved All rights ress 到与(7.2)等效的一般方程

7.2 空间曲线在坐标面上的投影

以空间曲线 G 为准线,母线平行于 z 轴的柱面叫做 G 对 xOy 面的投影柱面. 投影柱面与 xOy 面的交线叫做 G 在 xOy 面的投影曲线.

$$F(x, y, z) = 0 G(x, y, z) = 0$$
 (7.1)

设空间曲线 G 的一般方程由(7.1)给出。方程组(7.1)消去变量 z 之后得到方程

$$H(x, y) = 0$$
.

(7.3)

(7.1)与

$$\frac{1}{2}H(x,y) = 0$$

$$\frac{1}{2}G(x,y,z) = 0$$

$$\frac{1}{2}H(x,y,z) = 0$$

是等效的, 都是G的方程。

(7.3) 是准线为G,母线平行于Z轴的柱面,从而是G对xOY面的投影柱面. 故,G在xOY面的投影曲线是

$$\begin{array}{l}
\stackrel{\bullet}{\downarrow} H(x,y) = 0 \\
\stackrel{\bullet}{\downarrow} z = 0
\end{array}$$
(7.4)

类似地,消去方程组(7.1)中的变量 x , 得 R(y,z)=0 , 再与 x=0 联立就得到包含 G 在 yOz 面上的投影曲线的曲线方程:

$$\begin{array}{l}
\mathbf{i} R (y, z) = 0 \\
\mathbf{i}_{X} = 0
\end{array}$$

消去方程组(7.1)中的变量 y , 得 T(x,z)=0 , 再与 y=0 联立就得到包含 G 在 zOx 面上的投影 曲线的曲线方程:

$$\begin{array}{l}
T(x,z) = 0 \\
y = 0
\end{array}$$

All rights

72

【例 7.4】 求曲线G

$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ x^2 + (y-1)^2 + (z-1)^2 = 1 \end{cases}$$

在 x0 y 面和 y0 z 面上的投影曲线方程.

先求包含曲线 G 且母线平行于 z 轴的柱面, 从方程组

中消去 $x^2 + y^2 + z^2$,得z = 1 - y,将其代入第一个方程得到

$$x^2 + y^2 + (1 - y)^2 = 1$$
,

这是曲线 G 对 xO y 面的投影柱面的方程. 从而得曲线 G 在 xO y 面上的投影曲线, 为一

$$\int_{0}^{1} x^{2} + 2y^{2} - 2y = 0$$

$$\int_{0}^{1} z = 0$$

再由所给方程组消去 x. 将两方程相减, 得到曲线 G 对 yO z 面的投影柱面:

$$y + z - 1 = 0$$
,

从而得曲线 G 在 yO z 面上的投影曲线:

$$\begin{cases} y^+ z^- 1 = 0 \\ x = 0 \end{cases}$$
 , $(0 # y 1 (从原方程组的第一个方程看出))$

它表示 y0 z 面上的一条直线段. 如图 7.6 所示. All rights reser

1. 试求例 7.4 中曲线 G 在 zO x 面上的投影曲线.

有时,我们需要确定一个空间立体(或空间曲面)在坐标面上的投影,一般来说,这种投影往往是一个平面区域,我们称它为空间立体(或空间曲面)在坐标面上的投影区域. 利用投影柱面与投影曲线可以确定投影区域.

【例 7.5】 求上半球面 $z=\sqrt{4-x^2-y^2}$ 和锥面 $z=\sqrt{3(x^2+y^2)}$ 所围成的空间立体 W 在 xOy 面上的投影区域 D_{xy} .

解 D_{xy} 的边界(抓住边界!!)是上半球面与锥面的交线G:

G:
$$\frac{1}{2}z = \sqrt{4 - x^2 - y^2}$$

 $\frac{1}{2}z = \sqrt{3(x^2 + y^2)}$

在xOy面上的投影。由方程组消去变量z,有

$$x^2 + y^2 = 1$$
.

这是母线平行于z轴的投影柱面,G在xOy面的投影曲线为:

$$\frac{1}{2}x^2 + y^2 = 1$$

这是一个圆,它所包围的区域为 $D_{xy} = \{(x,y) | x^2 + y^2 \pounds 1\}$,就是立体 \mathbb{W} 在xOy面上的投影区域,

如图 7.7 所示.

BAOYANDAO

Zhishi LAND

BACTA Au nom

-VANDAO

【例 7.6】 作出由不等式

所确定的区域W及其在xOy面及yOz上的投影区域的简图.

画出 W 的边界曲面: $x = 0, y = 0, z = 0, x + y = 1, y^2 + z^2 = 1$, 就可围得 W。 方程 x + y = 1表示过点 A(1,0,0) 和 B(0,1,0), 且平行于 Z 轴的平面(因此 x + y£ 1 就表示以此平面为 边界且包含原点的那个半空间); 方程 $y^2 + z^2 = 1$ 表示以 x 轴为轴, 半径为 1 的圆柱面(故 $y^2 + z^2$ £ 1表示这个圆柱面及其内部). 圆柱面 $y^2 + z^2 = 1$ 与平面x = 0, y = 0, z = 0, x + y = 1的 交线分别为:

圆弧
$$C_1$$
: $x = 0$ $y^2 + z^2 = 1$ $y = 0$ $y = 0$, $y = 0$, $y = 0$, $y = 0$,

直 线 段
$$L_1$$
: $y^2 + z^2 = 1$ $(x 20, z 0)$, 貝

$$L_1 : \stackrel{1}{\underset{1}{\downarrow}} z = 1$$

$$\stackrel{1}{\underset{2}{\downarrow}} y = 0 ,$$

椭圆弧
$$C_2$$
: $\begin{cases} y^2 + z^2 = 1 \\ x + y = 1 \end{cases}$ $(x 吵 0, y = 0, z = 0)$.

 $(x \not\Vdash 0, y = 0, z = 0)$.

平面x + y = 1与平面y = 0, z = 0的交线分别为

直线段
$$L_2$$
: $x=1$ $y=0$ $(0 \# z 1)$; 直线段 L_3 : $z=0$ $(0 \# x 1)$;

画出这五条交线,就得到区域₩的简图(图 7.8).

交线 C_1 , L_1 , C_2 在xOy面上的投影分别为:

y轴上直线段 OB(0 #y 1), x 轴上直线段OA(0 + x + 1), xOy 面上直线段

$$AB: \begin{cases} x + y = 1 \\ z = 0 \end{cases} (0 \#_X - 1)$$

由OA, OB, AB 所围成的区域即 \mathbb{W} 在 xOy 面上的投影区域 D_{xy} : $\begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & \# x & 1 \end{bmatrix}$, 类似可求得 \mathbb{W}

在
$$y0z$$
 上的投影区域 D_{yz} : $\begin{bmatrix} y^2 + z^2 & 1 \\ 0 & \# y & 1 \end{bmatrix}$.

1. 画出下列曲线在第一卦限内的图形:

*(1)
$$\begin{cases} z = \sqrt{1 - x^2 - y^2}, \\ \frac{1}{2}y = x; \end{cases}$$

(3)
$$\begin{cases} z = \sqrt{X^2 + y^2}, \\ x = 1; \end{cases}$$

2. 把下列曲线方程转换成母线平行于坐标轴的柱面的交线方程:

(1)
$$\begin{cases} 2x^2 + y^2 + z^2 = 16 \\ x^2 - y^2 + z^2 = 0; \end{cases}$$

0。所要求的曲线方程: $\frac{1}{2}y^2 + z^2 - 4z = 0$ M (2)消去 x 得 $y^2 + z^2 - 4z = 0$ 。消去 y 得 z

3. 求下列曲线在 x0 y 面上的投影曲线的方程:

4. 求曲线 $\frac{1}{4}y^2 + z^2 - 2x = 0$, 在 x0 y 面上的投影曲线的方程,并指出原曲线是什么曲线?

将下列曲线的一般方程转化为参数方程:

(1)
$$\begin{cases} x^2 + y^2 + z^2 = 0 \\ x + y = 0 \end{cases}$$

*(3)
$$\begin{cases} x^2 + y^2 + z^2 = 4 \\ x^2 + y^2 = 1; \end{cases}$$

 $x-1=\cos q, y=\sin q \quad .$ 在曲线上 $2x = \sqrt{4-2(1+\cos q)}$ 。所要求的参数方程:

6. 求下列曲面所围成的立体在 x0 y 面上的投影:

(1)
$$x^2 + y^2 + z^2 = R^2$$
, $x^2 + y^2 + (z - R)^2 = R^2$

(2)
$$z = \sqrt{x^2 + y^2 - 1}, x^2 + y^2 = 4 - 3z = 0$$

All rights reserved All rights reserved

1. 求空间曲线

- (2) 求此空间曲线的一般方程.
- 3. 求下列曲线在三个坐标面上的投影曲线的方程:

第8节 二次曲面

三元二次方程所表示的曲面叫做二次曲面. 第 6 节例 6.3 与例 6.4 给出的旋转曲面就是二次曲面. 二次曲面应用较广泛,并且形状也比较简单. 本节讨论几种标准方程的二次曲面.

8.0 球面 (重点认识)

方程

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2 \quad (R>0)$$
 (8.0)

表示的曲面是球心在 (x_0, y_0, z_0) 半径为 R 的球面. (动点 M(x, y, z) 到定点 (x_0, y_0, z_0) 的距离等于完长 R。)

于定长 R 。) (8.0)的平方都展开并记一 x_0 = a,— y_0 = b,— z_0 = c, x_0^2 + y_0^2 + z_0^2 — R^2 = d ,可知球面方程是三元二次方程(平方项系数都是 1)

$$x^{2} + y^{2} + z^{2} + 2ax + 2by + 2cz + d = 0$$
 (8.01)

反过来,给了三元二次方程(8.01),配方得

三元二次方程(8.01),配方得
$$(x+a)^2 + (y+b)^2 + (z+c)^2 = a^2 + b^2 + c^2 - d$$

可见,(1) 如果 $a^2 + b^2 + c^2 - d > 0$,则(8.01)表示球心在 (-a, -b, -c)半径为 $\sqrt{a^2 + b^2 + c^2 - d}$ 的球面;(2) 如果 $a^2 + b^2 + c^2 - d = 0$,则(8.01)只表示一点 (-a, -b, -c);(3) 如果 $a^2 + b^2 + c^2 - d < 0$,则没有点满足(8.01)(此时称(8.01)表示一个虚球面)。

AND AND BAOYANDAO

AN FIGURE TOSSETVED

AND FIGURE TOSSETVE

BAOYANDAO

I AND O

3A(78)

8.1 椭球面 (重点认识)

方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad (a > 0, b > 0, c > 0)$$

表示的曲面叫做椭球面.

为了研究椭球面的形状,我们用平行于坐标平面的平面去截割椭球面,得到一些截线并考察这些截线的形状然后加以综合,构想出曲面的全貌.

由方程可知

$$\frac{x^2}{a^2}$$
 #1, $\frac{y^2}{b^2}$ 1, $\frac{z^2}{c^2}$ 1

刊

$$|x| \pounds a$$
, $|y| \pounds b$, $|z| \pounds c$,

这说明椭球面包含在由平面 $x=\pm a$, $y=\pm b$, $z=\pm c$ 围成的长方体内.

先考虑椭球面与三个坐标面的截线

$$\frac{1}{4}\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad \frac{1}{4}\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \quad \frac{1}{4}\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1$$

$$z = 0 \quad \frac{1}{4}x = 0 \quad y = 0$$

这些截线都是椭圆.

用平行于xOy面的平面z=h(0<|h|<c)去截这个曲面,所得截线(纬线)的方程是

$$\frac{1}{\sqrt{1 - \frac{h^2}{c^2}}} + \frac{y^2}{\sqrt{1 - \frac{h^2}{c^2}}} = 1$$

$$z = h$$

易见, 当|h| 由 0 变到 c 时, 椭圆由大变小, 最后缩成一点 $(0,0,\pm c)$.

同样地用平行于 yOz 面或 zOx 面的平面去截这个曲面得到一些经线,也有类似的结果. 如果连续地取这样的纬线和经线,可以想像,这些截线就组成了一张椭球面(图 8.1).

在椭球面方程中,a,b,c 按其大小,分别叫做椭球的长半轴,中半轴, 短半轴.

上述考察椭球面的形状的方法,又称为截痕法,下面我们将继续应 用此方法考察另外的几种二次曲面.

8.2 抛物面(重点认识)

抛物面分椭圆抛物面与双曲抛物面两种. 方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \pm z$$

所表示的曲面叫做椭圆抛物面(重点认识).设方程右端取正号,现在来考察它的形状.

(1) 用xOy面(z=0) 去截这曲面,截痕为原点. 用平面z=h(h>0) 去截这曲面得纬 线为椭圆 (a=b时为圆):

$$\frac{1}{2} \frac{x^2}{\left(a\sqrt{h}\right)^2} + \frac{y^2}{\left(b\sqrt{h}\right)^2} = 1$$

$$z = h$$

当 h® 0时, 截痕退缩为原点; 当 h< 0时, 截痕不存在. 原点叫做椭圆抛物面的顶点.

(2) 用 z0 x 面 (y=0) 去截这曲面得经线为抛物线

$$\int_{1}^{\infty} x^2 = a^2 z$$

$$\int_{1}^{\infty} y = 0$$

用平面 y= k去截这曲面得经线也为抛物线

(3) 用y0z面(x=0)及平面x=1去截这曲面,其结果 与(2)类似.

综合以上分析结果,可知椭圆抛物面的形状如图 8.2 所示.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \pm z \tag{8.3}$$

所表示的曲面叫做双曲抛物面. 设方程右端取正号, 现在来考察它们的形状

用平面 z= h (h>0) 去截这曲面得纬线方程是

$$\frac{1}{2} \frac{x^2}{a^2} - \frac{y^2}{b^2} = h$$

$$z = h$$

当h > 0时,截痕是双曲线,其实轴平行于x轴. 当h = 0时,截痕是xOy平面上两条相交于原

$$\frac{1}{2} \frac{x}{a} \pm \frac{y}{b} = 0$$

$$\frac{1}{2} z = 0$$

当h < 0时,截痕也是双曲线,但其实轴平行于y轴.

(2) 用平面 x = k 去截这曲面得经线方程是

$$\int_{a}^{b} z = -\frac{y^2}{b^2} + \frac{k^2}{a^2}$$

$$x = k$$

k=0时,截痕是y0z平面上顶点在原点的抛物线且张口朝下。 k^1 0时,截痕都是开口朝下的 抛物线,且抛物线的顶点随|k|增大而升高.

(3) 用平面y= 1去截这曲面得经线方程是

8.3 双曲面

双曲面分单叶双曲面与双叶双曲面两种. 其中方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

表示的曲面叫做单叶双曲面.

(1) 用平面 z= 0 去截这曲面, 截痕方程是

$$\frac{1}{a^2} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

$$z = 0.$$

它表示中心在原点,两个半轴长分别为 a 及 b 的椭圆.

用平面 z= h 去截这曲面得纬线方程是

$$\frac{1}{a^2} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{h^2}{c^2},$$

$$z = h.$$

它表示中心在 z 轴上,两个半轴长分别为 $\frac{a}{c}\sqrt{c^2+h^2}$ 及 $\frac{b}{c}\sqrt{c^2+h^2}$ 的椭圆.

(2) 用平面y= 0去截这曲面,截痕方程是

$$\begin{cases} \frac{1}{2} \frac{x^2}{a^2} - \frac{z^2}{c^2} = 1, \\ y = 0. \end{cases}$$

它表示中心在原点,实轴为x轴,虚轴为z轴的双曲线,两个半轴长分别为a及c. 用平面 $y=k(k \, f)$ b) 去截这曲面得经线截痕方程是

$$\begin{cases} \frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{k^2}{b^2}, \\ y = k. \end{cases}$$

它表示中心在 y 轴上的双曲线,两个半轴长的平方分别为 $\frac{a^2}{b^2} | b^2 - k^2 |$ 及 $\frac{c^2}{b^2} | b^2 - k^2 |$.

如果 $k^2 < b^2$,则双曲线的实轴平行于 x 轴,虚轴平行于 z 轴;如果 $k^2 > b^2$,则双曲线的实轴平行于 z 轴,虚轴平行于 x 轴.

如果k=b,则平面y=b截曲面所得截线为一对相交于点(0,b,0)的直线,它们的方程为

$$\frac{1}{2}\frac{X}{a} - \frac{Z}{c} = 0$$

$$\frac{1}{2}\frac{X}{a} + \frac{Z}{c} = 0$$

$$\frac{1}{2}\frac{X}{a} + \frac{Z}{c} = 0$$

$$\frac{1}{2}\frac{X}{a} + \frac{Z}{c} = 0$$

如果k=-b,则平面y=-b截曲面所的截线为一对相交于点(0,-b,0)的直线,它们的方程

$$\frac{1}{2}\frac{x}{a} - \frac{z}{c} = 0$$

$$\frac{1}{2}\frac{x}{a} + \frac{z}{c} = 0$$

$$\frac{1}{2}\frac{x}{a} + \frac{z}{c} = 0$$

$$y = -b.$$

(3) 类似地,用平面 x = 0 , $x = I(I_{\overline{D}} a)$ 去截这曲面所得截线也是双曲线,两平面 $x = \pm a$ 截这曲面所得截线是两对相交的直线. 综上所述,可知单叶双曲面的形状如图8. 4所示:

方	程 <u>x² + y² -</u>	$\frac{z^2}{c^2} = -1$ 结果如下:	7hiShi LAND
所表示	$a^2 b^2$ 的曲面叫做双叶双曲面,用截痕法所得	c² 结果如下:	chi LAND
////	截平面 x0 y 面及平行于 x0 y 面的平面	截痕	ZhiShi LAND
LON	x0 y 面及平行于 $x0$ y 面的平面 $x0$ x 面及平行于 $x0$ x 面的平面 $x0$ x 面及平行于 $x0$ x 面的平面	无截痕、一点或椭圆 双曲线	all rights
	yOz面及平行于yOz面的平面	双曲线	- BAC
	状如图 8.5 所示:.	onts reserved	All rights
9	II LAND		IND BAND BAND BAND BAND BAND BAND BAND BA
7hiSh	Ved All rights room	ZhiSM AND	ghts resid
O All rights reser	ACIA	O All rights res	chi LAI
1000	BAOYANDA	1984 Y	-711 C. Shillian
1	All rights retervo	CHAVE	AU MARIE
AND			5
All rights reserve	La	All rights	10 L(V)
	shi LAND		ahi LAND
	Zhion Magaza	Zhi	Shi LAND O
NDAU	All rights "	NDAO ANTIGOTO	ThiS
d All rights	Zhishi LAND AN rooms recorved	NDAO AS rights reserved	ZIII
	All rights res		ANDAGO
abil A	ND C	BAU	ared Miles
hish All right		10	a ND
rights for	Shi LAND	ed	ZhiShi LAND
	VO ZUIZ	- 10	M rights reserved by
OYANL	of the reserved All 19	OVANDAG	Pro-
Hohis reserved All Co	B	All reserved All rise	OAO.
	NO TO	The same of the sa	83 Augus resures
11-10	hi LAND AN rights reserved This his reserved Thi	Lan	all rights reserved
ZUG	arved All tra	AND CO	
PW 1.20	7hiShi	il rights reserved	
	hi LAND TO ZhiShi		
~ `	N MINE WASHINGTON		

8.4 椭圆锥面(重点认识)

方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

表示的曲面叫做椭圆锥面(二次锥面). 用截痕法所得结果如下:

- 31	截平面	截痕
	xOy面及平行于xOy面的平面	一点或椭圆
	z0 x 面及平行于 z0 x 面的平面	两相交直线或双曲线
	y0z面及平行于y0z面的平面	两相交直线或双曲线

由方程(8.6)知, 椭圆锥面过原点,又由于当点 $M_0(x_0,y_0,z_0)$ 的坐标满足方程(8.6)时, 点 (tx_0,ty_0,tz_0) (t为任意实数)的坐标也满足方程(8.6). 因此,直线

$$\begin{cases}
x = x_0 t \\
y = y_0 t
\end{cases}$$

$$\begin{cases}
z = z_0 t
\end{cases}$$

都在椭圆锥面上,因此可以认为椭圆锥面由通过原点的直线构成. 我们把这些直线称为椭圆锥面的母线, 母线的公共点称为椭圆锥面的顶点. 若用平面 z=k 去截椭圆锥面,其截线为椭圆

$$\begin{cases} \frac{1}{2} \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{k^2}{c^2} \\ \frac{1}{2} z = k \end{cases}$$

这样,我们可把椭圆锥面看作其母线沿上述椭圆移动所形成的曲面.

一般地,若直线L过定点 M_0 ,且与不含 M_0 的定曲线C相交,则将L沿C移动形成的曲面称为锥面. 定点 M_0 称为锥面的顶点, 定曲线C称为锥面的准线,动直线L称为锥面的母线.

下面给出确定锥面方程的一般方法. 设锥面的顶点 $M_0(x_0, y_0, z_0)$, 锥面的准线方程为

$$C: \begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$
 (8.7)

 $^{\prime\prime}M$ (x,y,z) 。 M (x,y,z) î S 的充要条件是,准线 C 上存在点 M $_1(x_1,y_1,z_1)$,使 M $_1,M$ $_0$ 在同

一母线上,即 $MM_0//M_1M_0$,因此有

$$\frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0} = \frac{z-z_0}{z_1-z_0}$$

$$\pm (8.8) \ \exists z_1 = z_0 + \frac{\left(x_1-x_0\right)\left(z-z_0\right)}{x-x_0}, y_1 = y_0 + \frac{\left(x_1-x_0\right)\left(y-y_0\right)}{x-x_0}, \ \ \text{$\Re $}$$

$$(8.8) \ \exists x_0 = (x-x_0)\left(x-x_0\right)$$

$$\begin{array}{c}
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(z - z_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0}, z_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y - y_0)}{x - x_0} \\
\downarrow \\
F & X_1, Y_0 + \frac{(x_1 - x_0)(y$$

(8.7*)消去 x_1 就得到锥面的方程 $Z\left(x,y,z,x_0,y_0,z_0\right)=0$ 。

【例 8.1】 设一锥面的顶点为原点,准线方程为 $C: \frac{1}{a^2} + \frac{y^2}{b^2} = 1$,求此锥面的方程.

解 $^{\prime\prime}M(x,y,z)$ 。 M(x,y,z)ÎS的充要条件是,则准线上存在点 $M_1(x_1,y_1,z_1)$,使原点

O, M, M₁, 共线,即OM//OM₁,因此有

$$\frac{X}{X_1} = \frac{Y}{Y_1} = \frac{Z}{Z_1},$$

 $c, y_1 = \frac{y}{z}c$,将 x_1 , y_1 代入准线方程,就得到锥面方程:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2},$$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2},$ 显然它为椭圆锥面. 当 a=b 时, 准线为平面 z=c 上的圆,这时椭圆锥面为:

$$x^2 + y^2 = \frac{a^2}{c^2} z^2$$
,

它就是顶点在坐标原点,旋转轴为z轴的圆锥面.

一本节中所讨论的椭球面、抛物面、双曲面、椭圆锥面等称为标准型二次曲面.对于一般二次曲面, 可通过坐标轴的平移和旋转化为标准型二次曲面,这方面的讨论比较复杂,这里不作进一步研究。

1.试讨论已给出的其他几个标准型二次曲面的对称性.

总习题八

- 1. 设a¹ 0, 试问:
 - (1)若**a b** = **a c** , 能否推知 **b** = **c** ?
 - (2)若a'b=a'c,能否推知b=c?
 - (3) 若 **a *b** = **a *c** , **a** ' **b** = **a** ' **c** , 能否推知 **b** = **c** ?
- *2. 以向量a与b为边作平行四边形,试用a与b表示a边上的高向量.
- *3. 在边长为 1 立方体中,设0 M 为对角线,0 A 为棱,求0 A 在0 M 上的投影.
- 4. 己知向量a,b,c两两垂直,且|a|=1,|b|=2,|c|=3,求a+b+c的模及它与b的夹角.
- 5. 设| \mathbf{a} |= $\sqrt{3}$, $|\mathbf{b}$ |= 1, (\mathbf{a},\mathbf{b}) = $\frac{p}{6}$, 计算:
 - (1) **a** + **b** 与 **a c** 之间的夹角;
 - (2)以 $\mathbf{a} + 2\mathbf{b}$ 和 $\mathbf{a} \mathbf{b}$ 为邻边的平行四边形的面积.
- 6. 设(\boldsymbol{a} +3 \boldsymbol{b}) $\hat{}$ (7 \boldsymbol{a} -5 \boldsymbol{c}), 求(\boldsymbol{a} , \boldsymbol{b}).
- 7. 设向量 $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, $\mathbf{b} = 3\mathbf{i} \mathbf{j} \mathbf{k}$,
 - (1) 求 P r j_ba;
 - (2) $\Xi |c| = 3$,求向量c,使得由三向量a,b,c 所构成的平行六面体的体积最大.
- 8. 设 \mathbf{a} = {2,-3,1} , \mathbf{b} = {1,-2,3} , \mathbf{c} = {2,1,2} ,向量 \mathbf{r} 满足条件: \mathbf{r} $\hat{\mathbf{a}}$, $\hat{\mathbf{r}}$ $\hat{\mathbf{b}}$, \Pr $\mathbf{j}_c \mathbf{r}$ = 14 ,求 \mathbf{r}
- 解 设 $\mathbf{r} = \{r_x, r_y, r_z\}$ 。由条件

$$\begin{cases} 2r_x - 3r_y + r_z = 0 \\ r_x - 2r_y + 3r_z = 0 \\ 2r_x + r_y + 2r_z = 42 \end{cases}$$

 $\begin{pmatrix} \mathbf{r} \\ \mathbf{r} \end{pmatrix} = \begin{pmatrix} \mathbf{r} \\ \mathbf{r} \end{pmatrix} \operatorname{Prj}_{\mathbf{r}} \mathbf{r}$) 解得 $\mathbf{r}_{\mathbf{r}} = 14, \mathbf{r}_{\mathbf{r}} = 10, \mathbf{r}_{\mathbf{z}} = 2$ 。 $\mathbf{r} = \{14, 10, 2\}$ 。

*9. 设**a** = $\{a_x, a_y, a_z\}$,**b** = $\{b_x, b_y, b_z\}$ 且**a b 0** ,证明:过点 $M_0(x_0, y_0, z_0)$ 并且以**a** '**b** 为法向的平面具有如下形式的参数方程:

- 10. 求通过点 A(3,0,0) 和 B(0,0,-1) 且与 xOy 面成 $\frac{p}{3}$ 角的平面方程.
- *11. 平面 p 垂直于平面 z=0,且通过(点 M (1, 1,1) 到直线 $\begin{cases} y-z+1=0 \\ x=0 \end{cases}$ 的垂线)的平面 p 的方程

解 设所求平面 p 的法向量为 $\frac{r}{n} = \{A, B, C\}$

由p垂直于平面z=0有C=0。

直线
$$\begin{cases} y-z+1=0 \\ x=0 \end{cases}$$
 的参数方程 $\begin{cases} x=0 \\ y=t \end{cases}$,方向向量 $\begin{cases} x=0 \\ y=t \end{cases}$,方向有量 $\begin{cases} x=0 \\ y=t \end{cases}$,有量 $\begin{cases} x=0 \\ y=t \end{cases}$,就是 $\begin{cases} x=$

MM ¢ $\stackrel{\Gamma}{n}$ 。 $-A + \frac{1}{2}B = 0$ 。 取 B = 2 解得 A = 1 。 $\stackrel{\Gamma}{n} = \{1,2,0\}$ 。 所求平面的方程: x - 1 + 2(y + 1) = 0 。

12. 直线 L 过点 M_0 (- 2, 3, 0) 且平行于平面 x - 2y - z + 4 = 0,又与直线 $\frac{x+1}{3} = \frac{y-3}{1} = \frac{z}{2}$ 相交的直线 L 的方程.

解 直线
$$\frac{x+1}{3} = \frac{y-3}{1} = \frac{z}{2}$$
 的参数方程 $y = 3+t$ 。设交点是 M (-1+3 t ,3+ t ,2 t)。

инини $M_0 M = \{1+3t, t, 2t\}$ 。 x-2y-z+4=0 的法向量 $\overset{\mathbf{r}}{n} = \{1, -2, -1\}$ 。 由 $M_0 M$, $\overset{\mathbf{r}}{n}$ 有 1+3t-2t-2t=0 ,

解得 t=1 。取 $s=M_0M=\left\{4,1,2\right\}$ 。所求直线的方程: $\frac{x+2}{4}=\frac{y-3}{1}=\frac{z}{2}$ 。

*14. 求直线 $L: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 p: x-y+2z-1=0 上的投

影直线 4 的方程,并求 4 绕 y 轴旋转一周所成的曲面的方程

15. 求柱面 $z^2 = 2x$ 与锥面 $z = \sqrt{x^2 + y^2}$ 所围立体在三个坐标面上的投影区域.

解在zOx平面上的投影区域就是zOx平面截所给几何体的截痕

$$D_{zx}: z \longrightarrow x, 2x \quad z^2$$

见右图。

在 x0 y 平面上的投影区域的边界是曲线

$$z^2 = 2x$$

$$\frac{1}{2}z = \sqrt{x^2 + y^2}$$

在xOy平面上的投影。消去z得

$$\left(x-1\right)^2+y^2=1$$

xOy平面上的投影区域

$$D_{xy}: (x-1)^2 + y^2 £$$

在 y0 z 平面上的投影区域的边界是曲线

在 y0 z 平面上的投影。消去 x 得

$$z = \sqrt{\frac{z^4}{4} + y^2}$$

y0z平面上的投影区域

$$D_{yz}: (z^2-2)^2+4y^2 \ 34,z$$

*16. 求过两球面的交线 $L: \frac{1}{2} x^2 + y^2 + z^2 = 5$ 的正圆柱面的方程.

*17. 假设三个直角坐标面都镶上了反射镜,并将一束激光沿向量 $\mathbf{a} = \{a_x, a_y, a_z\}$ 的方向射向xOz平面(如图). 试用反射定律证明: 反射光束的方向向量 $\mathbf{b} = \{a_x, -a_y, a_z\}$; 进而推出: 入射光束经三个镜面连续反射后,最后所得的反射光束平行于入射光束. (航天工程师利用此原理,在月球上安装了反射镜面组,并从地球向镜面发射激光束,从而精确测得了地球到月球的距离)

习题 18 图