L'art de décider

Mohamed Siala

LAAS-CNRS

Equipe ROC : Recherche Opérationnelle / Optimisation Combinatoire / Contraintes

Toulouse, France

Plan

Contexte

Le jeux des 8 reines

Sudoku

Le voyageur de commerce

Conclusion

La décision et l'optimisation combinatoire

Les problèmes de décision

Les problèmes d'optimisation

Ensemble de contraintes à satisfaire

Ensemble de contraintes à satisfaire \oplus une fontion objectif

La décision et l'optimisation combinatoire

Les problèmes de décision

Les problèmes d'optimisation

Ensemble de contraintes à satisfaire

Ensemble de contraintes à satisfaire \oplus une fontion objectif

Méthodes de résolution

- Enumération
- Enumeration Intelligente
- Méthodes approchées

Démonstration!

Avez vous essayé de résoudre Sudoku?

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

7	2	5
3	1	8
?	4	9

7	2	5
3	1	8
6	4	9

7	?	5	
3	1	?	
?	4	9	

7	{2,6,8}	5	
3	1	{2,6,8}	
{2,6,8}	4	9	

7	{2,6,8}	5	[4, 2, 1]
3	1	{2,6,8}	
{2,6,8}	4	9	
	[9, 6, 3]	[7, 3, 2]	

7	{ ,2, ,6, 8}	5	[4, 2, 1]
3	1	{2,6,8}	
{2,6,8}	4	9	
	[9, 6 , 3]	[7, 3, 2]	

7	{ ,2, ,6, 8}	5	[4, 2, 1]
3	1	{2,6, \(\beta \)}	
{2,6, 8}	4	9	
	[9, 6 , 3]	[7, 3, 2]	

7	{ 2 , 6 , 8}	5	[4, 2, 1]
3	1	{ 2, 6, 8}	
{2,6, \(\beta \)}	4	9	
	[9, 6, 3]	[7, 3, <mark>2</mark>]	

7	{ ,2, ,6, 8}	5	[4, 2, 1]
3	1	{ 2, 6, 8}	
{2, 16, 18}	4	9	
	[9, 6, 3]	[7, 3, <mark>2</mark>]	

Démonstration!

Le problème du voyageur de commerce

$$-> Cout: 5+7+8+5+9+11+6=53Km$$

$$-> Cout: 5+7+2+5+2+11+6=38Km$$

Démonstration!

• 2 Villes -> 1

- 2 Villes -> 1
- 3 Villes -> 2

- 2 Villes -> 1
- 3 Villes -> 2
- 4 Villes -> 6

- 2 Villes -> 1
- 3 Villes -> 2
- 4 Villes -> 6
- 5 Villes -> 24

- 2 Villes -> 1
- 3 Villes -> 2
- 4 Villes -> 6
- 5 Villes -> 24
- 6 Villes -> 96

- 2 Villes -> 1
- 3 Villes -> 2
- 4 Villes -> 6
- 5 Villes -> 24
- 6 Villes -> 96
- 7 Villes -> 576

- 2 Villes -> 1
- 3 Villes -> 2
- 4 Villes -> 6
- 5 Villes -> 24
- 6 Villes -> 96
- 7 Villes -> 576
- 8 Villes -> 4032

- 2 Villes -> 1
- 3 Villes -> 2
- 4 Villes -> 6
- 5 Villes -> 24
- 6 Villes -> 96
- 7 Villes -> 576
- 8 Villes -> 4032
- 40 villes

- 2 Villes -> 1
- 3 Villes -> 2
- 4 Villes -> 6
- 5 Villes -> 24
- 6 Villes -> 96
- 7 Villes -> 576
- 8 Villes -> 4032
- 40 villes -> à peu près 2.10⁴⁶ solutions à tester!

- 2 Villes -> 1
- 3 Villes -> 2
- 4 Villes -> 6
- 5 Villes -> 24
- 6 Villes -> 96
- 7 Villes -> 576
- 8 Villes -> 4032
- 40 villes -> à peu près 2.10⁴⁶ solutions à tester!
- Avec une machine moderne : 3.10²⁷ années!

- 2 Villes -> 1
- 3 Villes -> 2
- 4 Villes -> 6
- 5 Villes -> 24
- 6 Villes -> 96
- 7 Villes -> 576
- 8 Villes -> 4032
- 40 villes -> à peu près 2.10⁴⁶ solutions à tester!
- Avec une machine moderne : 3.10²⁷ années!

Les méthodes approchées!

LAAS-CNRS

L'algorithme génétique!

L'algorithme génétique!

Population

L'algorithme génétique!

- Population
- Croisement

Octobre 2013 La fête de la science 19 / 22

L'algorithme génétique!

- Population
- Croisement
- Mutation

Octobre 2013 La fête de la science 19 / 22

Démonstration!

Contexte
Le jeux des 8 reines
Sudoku
Le voyageur de commerce
Conclusion

LAAS-CNRS

- Les problèmes de décision
- Les problèmes d'optimisation

- Les problèmes de décision
- Les problèmes d'optimisation
- Existe-t-il une méthode pour les résoudre dans un temps acceptable ?

- Les problèmes de décision
- Les problèmes d'optimisation
- Existe-t-il une méthode pour les résoudre dans un temps acceptable ?

http://www.claymath.org/millennium/P_vs_NP/

Merci pour votre attention!