K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College Affiliated to Somaiya Vidyavihar University)

Semester: August – November 2020

In-Semester Examination

Class: SY B. Tech

Branch: Computer Engineering Semester :III Full name of the course: Integral Transform and Vector Calculus Course Code: 2UCC301 **Duration:** 1hr.15 min (attempting questions) +15 min (uploading) Max. Marks: 30

Q. No	Questions	Marks
Q1	Choose the correct option from the following MCQ (1 MARK EACH)	10 marks
1.1	Laplace transform of $t^4(sinhat + coshat)^n$ is	
	(a) $\frac{24}{(s-an)^4}$ (b) $\frac{24}{(s+an)^4}$ (c) $\frac{24}{(s-a)^5}$ (d) $\frac{24}{(s+a)^4}$	
1.2	Find $L\left\{\int_0^t \mathbf{u} \sinh 2u \ du\right\}$	
	$(a)\frac{-4}{(s^2-4)^2}(b)\frac{-4s}{(s^2-4)^2}(c)\frac{4}{(s^2-4)^2}(d)\frac{4s}{(s^2-4)^2}$	
1.3	Evaluate $\int_0^\infty \frac{\sin 3t}{t} dt$	
	$(a)\frac{1}{s}\left(\frac{\pi}{2}-\tan^{-1}\frac{s}{3}\right)$ (b) $\frac{\pi}{4}(c)\frac{\pi}{2}-\tan^{-1}\frac{s}{3}$ (d) $\frac{\pi}{2}$	
1.4	$FindL[t^2H(t-1)]$	
	(a) $e^{s}\left(\frac{2}{s^{3}} - \frac{2}{s^{2}} + \frac{1}{s}\right)$ (b) $e^{s}\left(\frac{2}{s^{3}} + \frac{1}{s^{2}} + \frac{1}{s}\right)$	
	(c) $e^{-s} \left(\frac{2}{s^3} + \frac{2}{s^2} + \frac{1}{s} \right) (d) e^{-s} \left(\frac{2}{s^3} - \frac{2}{s^2} + \frac{1}{s} \right)$	
1.5	Find $L^{-1}\left(\frac{s^2}{s^2-16}\right)$	
	$(a)\delta(t) - 4\sinh 4t(b)\delta(t) + 4\sinh 4t$	
	(c) $1 - 4\sinh 4t(d)1 + 4\sinh 4t$	
1.6	Find $L^{-1}\left(\frac{s}{s^2+4s+13}\right)$	
	(a) $\cos(3t)e^{-2t} + \frac{2}{3}\sin(3t)e^{-2t}$ (b) $\cos(3t)e^{-2t} - \frac{2}{3}\sin(3t)e^{-2t}$	
	(c) $\cos(3t)e^{2t} + \frac{2}{3}\sin(3t)e^{2t}(d)\cos(3t)e^{2t} - \frac{2}{3}\sin(3t)e^{2t}$	

1.7	If $x \sin x = -1 - \frac{1}{2} \cos x + \pi \sin x + \sum_{n=2}^{\infty} \frac{2 \cos nx}{n^2 - 1}$ in $(0, 2\pi)$	
	For which value of x we get the following series $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} = \frac{3}{4}$	
	(a)0 (b) π (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{4}$	
1.8	For the function $f(x) = \sin x \operatorname{in}(-\pi, \pi)$ value of b_n is	
	$(a)\frac{2}{\pi}(b)0 \ (c)\frac{1}{5\pi}(d)\frac{-4}{5\pi}$	
1.9	For the function $f(x) = \begin{cases} a - x & \text{if } 0 < x < a \\ 0 & \text{if } a < x < 2a \end{cases}$ walue of a_2 is	
	(a)0 (b) $\frac{a}{2\pi^2}$ (c) $\frac{-a}{2\pi^2}$ (d) $\frac{a}{\pi^2}$	
1.10	For the function $f(x) = \begin{cases} 2x & \text{if } 0 < x < 3 \\ 0 & \text{if } -3 < x < 0 \end{cases}$ value of b_3 is	
	(a) $0 (b) \frac{2}{\pi} (c) \frac{1}{3\pi} (d) \frac{-2}{\pi}$	
Q2	Attempt any TWO of the following	
(a)	Using convolution theorem find $L^{-1}\left(\frac{s^2}{(s^2+1)(s^2+4)}\right)$	5 marks
(b)	Using Laplace transform evaluate the integral	
	$\int_{0}^{\infty} e^{-2t} (1+t+t^2) H(t-3) dt$	5 marks
(c)	Find the Laplace transforms of	
	$\int\limits_0^t u.e^{-3u}sin^2udu$	5 marks
Q3	Attempt any ONE of the following	
(a)	Obtain Fourier series for $f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & \pi \le x \le 2\pi \end{cases}$	
	Hence, deduce that $\frac{1}{2} = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots$	10 marks
(b)	Obtain the half – range (i) Cosine Series and (ii) sine series for	
	$f(x) = lx - x^2$ in (0, l). Hence deduce that	
	(i) $\frac{1}{1^6} + \frac{1}{3^6} + \frac{1}{5^6} + \frac{1}{7^6} + \dots = \frac{\pi^6}{960}$	10 marks
	$(\mathbf{ii})\frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + \frac{1}{4^6} + \dots = \frac{\pi^6}{945}$	