Given
$$f(x) = \begin{cases} 2x + 3, & \text{if } x < 1 \\ 4, & \text{if } x = 1 \\ x^2 + 2, & \text{if } x > 1 \end{cases}$$

(a) Find $\lim_{x\to 1^+} f(x)$.

x	f(x)
1.1000	3.2100
1.0100	3.0201
1.0010	3.0020
1.0001	3.0002

As x approaches 1 from the right, f(x) approaches 3. Thus, $\lim_{x\to 1^+} f(x) = 3$

(b) Find $\lim_{x\to 1^-} f(x)$.

x	f(x)
0.9000	4.8000
0.9900	4.9800
0.9990	4.9980
0.9999	4.9998

As x approaches 1 from the left, f(x) approaches 5. Thus, $\lim_{x\to 1^-} f(x) = 5$

(c) Find $\lim_{x\to 1} f(x)$.

$$\lim_{x \to a} = L \iff \lim_{x \to a^{+}} = L = \lim_{x \to a^{-}} \tag{1}$$

Given that $\lim_{x\to 1^-} f(x) = 5 \neq \lim_{x\to 1^+} f(x) = 3$, it follows that the limit of f(x) as x approaches a does not exist.

Given
$$f(x) = \begin{cases} x + 1, & \text{if } x < -1 \\ x^2, & \text{if } -1 \le x \le 1 \\ 2 - x, & \text{if } x > 1 \end{cases}$$

(c) Find $\lim_{x\to -1} f(x)$.

Given that $\lim_{x\to 1^-} f(x) = 5 \neq \lim_{x\to 1^+} f(x) = 3$, it follows that the limit of f(x) as x approaches a does not exist (1).