ECN 1101 - Introductory Maths - Semester 1 2021

Lecture Notes 2 - Application of Straight Line Geometry

Lecturer: Anand Persaud "Transliterator": Simeon Chester

2021-11-06

Objectives

To determine

- 1. the linear demand equation or demand function
- 2. the linear supply equation or supply function
- 3. the equilibrium point/position
- 4. other outcomes: interpreting the slopes etc.

Consider the following schedules:

Supply Units Prices Demand Units 10 1400 200 1200 20 300 30 1000 400 40 800 600 50 600 600 60 400 700 70 200 800

The highlighted row shows equilibirum

Table 1: Table showing the demand and supply units along with corresponding prices for an unknown product

Figure 1: Graph showing demand and supply units as a factor of price along with the market equilibrium point

We should notice that as price increases, quantity demanded falls, while quantity supplied, increases. At 10\$ per unit, 1400 are demanded while 200 units are supplied, at a higher price, say \$60 per unit, 400 units are demanded and supply increases.

1. Determining the linear demand equation

Using:

$$Q_d = mP + c$$

and

$$m = \frac{Q_2 - Q1}{P_2 - P_1}$$

and choose any two ordered pairs from the demand schedule. Let us choose:

$$\begin{pmatrix} 20 & 1200 \\ P_1 & Q_1 \end{pmatrix} and \begin{pmatrix} 70 & 200 \\ P_2 & Q_2 \end{pmatrix}$$

and properly assign each.

$$m = \frac{200 - 1200}{70 - 20} = -20$$

$$Q_d = -20P + c$$

To find c, simply use any any P and Q pair from the schedule and plug it into the aforementioned equation found.

Using

$$\begin{pmatrix} 20 & 1200 \\ P_1 & Q_1 \end{pmatrix}$$

we get

$$Q_d = -20P + c$$

$$1200 = -20(20) + c$$

$$-20(20) + c = 1200$$

$$-400 + c = 1200$$

$$c = 1200 + 400$$

$$c = 1600$$

Using m = -20 and c = 1600 in the equation

$$Q_d = mP + c$$

we get

$$Q_d = -20P + 1600$$

2. Determing the linear supply equation

Let us use the ordered pairs with labels

$$\begin{pmatrix} 20 & 300 \\ P_1 & Q_1 \end{pmatrix} and \begin{pmatrix} 70 & 800 \\ P_2 & Q_2 \end{pmatrix}$$

and substitute into

$$m = \frac{Q_2 - Q_1}{P2 - P1}$$
$$m = \frac{800 - 300}{70 - 20} = 10$$

With m = 10, the supply equation can now be written as:

$$Q_s = 10P + c$$

To find c, simply use any any P and Q pair from the schedule and plug it into the aforementioned equation found. Using

$$\begin{pmatrix} 20 & 300 \\ P_1 & Q_1 \end{pmatrix}$$

we get

$$Q_s = 10P + c$$

$$300 = 10(20) + c$$

$$10(20) + c = 300$$

$$200 + c = 300$$

$$c = 300 - 200$$

$$c = 100$$

Using m = 10 and c = 100 in the equation

$$Q_s = mP + c$$

we get

$$Q_s = 10P + 100$$

3. Determining the equilibrium point/position

Rewrite the demand and supply equations:

$$Q_d = -20p + 1600$$
$$Q_s = 10p + 100$$

then set

$$Q_d = Q_s$$

Therefore

$$-20p + 1600 = 10p + 100$$

$$-20p - 10p = 100 - 1600$$

$$-30p = -1500$$

$$p = \frac{-1500}{-30}$$

$$p = 50$$

Substituting p = 50 into

$$Q_d = -20p + 1600$$
OR
$$Q_s = 10p + 100$$

we get

$$Q_d = 600$$

Therefore the equilibrium point position is (50,600) or p=\$50 and Q=600 units.

4. Interpreting both slopes

The slope of the demand equation is 20 or $\frac{20(quantity)}{1(price)}$ therefore a \$1 increase in price is likely to result in a fall in quantity demanded by 20 units or vice versa i.e. if P falls by \$1, Q is likely to increase by 20 units. The slope of the supply equation is 10 or $\frac{10(quanity)}{1(price)}$. Therefore as P increase by \$1, 10 additional units are likely to be supplied and vice versa.

5. Others

Using the equations derived:

a. Determine Q_d if p = \$30.

Substituting c = 1600, m = -20 and P = \$30 in the equation:

$$Q_d = mP + c$$

we get:

$$Q_d = -20(30) + 1600$$
$$= -600 + 1600$$
$$= 1000 \ units$$

b. Determine Q_s if p = \$30.

Substituting c = 100, m = 10 and P = \$30 in the equation:

$$Q_s = mP + c$$

we get:

$$Q_s = mP + c$$

= 10(30) + 100
= 300 + 100
= 400 units

c. If $Q_d = 100$ and $Q_s = 400$, is there a surplus or demand?

Since both demand and supply are at the same price but $Q_d > Q_s$ the market is at shortage.

d. Suppose $Q_d = 800$, find P.

Substituting m = -20, c = 1600 and $Q_d = 800$ in the equation:

$$Q_d = mP + c$$

we get:

$$800 = -20P + 1600$$

$$20P = 1600 - 800$$

$$20P = 800$$

$$P = \frac{800}{20}$$

$$= $40$$

e. Suppose $Q_s = 1000$, find P.

Substituting m = 10, c = 100 and $Q_s = 1000$ in the equation:

$$Q_s = mP + c$$

we get:

$$1000 = 10P + 100$$

$$10P = 1000 - 100$$

$$10P = 900$$

$$P = \frac{900}{10}$$

$$P = $90$$