ANALYTIC GEOMETRY, PROBLEM SET 3

Warm-up 1. What are the conditions that vectors \overline{a} , \overline{b} and \overline{c} should satisfy to ensure the existence of a triangle ABC such that $\overrightarrow{AB} \in a$, $\overrightarrow{BC} \in \overline{b}$ and $\overrightarrow{CA} \in \overline{c}$?

- 1. On the sides of a triangle ABC, one constructs the parallelograms ABB'A'', BCC'B'', CAA'C''. Show that one can construct a triangle MNP such that $\overrightarrow{MN} \in \overrightarrow{A'A''}$, $\overrightarrow{NP} \in \overrightarrow{B'B''}$ and $\overrightarrow{PM} \in \overrightarrow{C'C''}$.
- **2.** Let M and N be the midpoints of two opposite sides of a quadrilateral ABCD and let P be the midpoint of [MN]. Prove that $\overline{PA} + \overline{PB} + \overline{PC} + \overline{PD} = \overline{0}$.
- **3.** In a circle of center O, let M be the intersection point of two perpendicular chords [AB] and [CD]. Show that $\overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} = 2\overline{OM}$.
- **4.** Consider, in the 3-dimensional space, the parallelograms $A_1A_2A_3A_4$ and $B_1B_2B_3B_4$. Prove that the midpoints of the segments $[A_1B_1]$, $[A_2B_2]$, $[A_3B_3]$ and $[A_4B_4]$ are the vertices of a new parallelogram.
- **5.** Let ABC be a triangle and a, b, c the lengths of its sides, respectively. If A_1 is the intersection point of the internal bisector of the angle $\angle A$ and BC and M is an arbitrary point, show that

$$\overline{MA_1} = \frac{b}{b+c}\overline{MB} + \frac{c}{b+c}\overline{MC}$$

6. If G is the centroid (center of mass) of a triangle ABC in the plane and O is a given point, then

$$\overline{OG} = \frac{\overline{OA} + \overline{OB} + \overline{OC}}{3}$$

- 7. Let ABC be a triangle, H its orthocenter, O the circumcenter (center of the circumcircle), G the centroid of the triangle and A' the point on the circumcircle diametrically opposed to A. Then:
 - (1) $\overline{OA} + \overline{OB} + \overline{OC} = \overline{OH}$; (Sylvester's formula)
 - $(2) \ \overline{HB} + \overline{HC} = \overline{HA'};$
 - (3) $\overline{HA} + \overline{HB} + \overline{HC} = 2\overline{HO}$;
 - $(4) \overline{HA} + \overline{HB} + \overline{HC} = 3\overline{HG};$
 - (5) the points H, G, O are collinear and 2GO = HG. (the **Euler line**)

Date: October 11, 2021.

8. Let ABCD be a quadrilateral with $AB \cap CD = \{E\}$, $AD \cap BC = \{F\}$ and the points M, N, P the midpoints of [BD], [AC] and [EF], respectively. Then M, N, P are collinear. (the **Newton-Gauss line**)