Cours d'Eléments de Statistique

Jean Christophe Meunier

Module 4 Séries statistiques à deux variables

1^{ère} Bac, Commerce Extérieur Année académique 2015-2016

A. Notion d'ajustement

Introduction

- Jusqu'à présent, travail sur une seule variable
 - Statistique descriptive : 'exploration' de l'échantillon sur une variable...
- Dans ce module, intérêt sur l'association entre deux variables :
 - Dans quelle mesure un changement sur une variable (x) est il associé à un changement sur une seconde variable (y) ?
 - Ex:
 - Temps d'étude (x) réussite (y)
 - Opinion sur un produit (x) achat de ce produit (y)
 - •

3

Illustration

• Temps d'études (x_i) et résultats à un examen (y_i)

X _i (temps d'étude)	2	2	3	4	4	4	5	6	7	10
Y _i (résultats examen)	35	40	40	39	54	60	59	70	69	80

- Lorsque deux ou plusieurs variables sont récoltées sur les sujets, on peut voir s'il existe un lien entre ces variables
 - Dans plan cartésien, chaque sujet est représenté par un point de coordonnées (x_i, y_i)

I. Diagramme de dispersion Trois scénarii possibles - Les points se répartissent de manière quelconque • Indépendance - Les points suivent parfaitement une courbe qui est la représentation graphique d'une fonction mathématique

- Dépendance fonctionnelle
- Les points se répartissent le long d'une courbe assimilable à la représentation graphique d'une fonction mathématique
 - Dépendance statistique (corrélationnelle)

II. Notion d'ajustement

- Dans la plupart des cas : 'dépendance statistique'
 - Rechercher la fonction mathématique qui s'ajuste au mieux
 - La meilleure courbe peut être de formes diverses : parabole, exponentielle, hyperbole...
 - Le plus souvent, on se limite a trouver un droite

II. Notion d'ajustement

- On parle d'association linéaire :
 - la relation entre les variables x et y peut être décrite/estimée par une ligne droite
 - Pour variables d'échelles intervalle ou de rapport
 - Les variables d'échelles nominale ou ordinale n'ont pas de gradation à intervalles réguliers (association avec d'autres variables impossible ou difficile à établir)

II. Notion d'ajustement

• L'inclinaison de la droite permet de voir le sens de la relation entre les deux variables

B. Ajustement linéaire : méthodes d'estimation d'une courbe

Introduction

- A partir du nuage de point
 - Estimer la droite d qui s'ajuste le mieux au données
 - L'équation d'une droite est y = ax + b
- Résolution du problème d'ajustement
 - trouver les valeurs 'a' et 'b'
 - détermine la position et l'orientation de la droite
 - Une fois la droite 'estimée'
 - Possibilité de faire des prédictions :
 - retrouver la valeur de y pour toute valeur de x

Introduction

- Concrètement
 - A partir de la droite y = ax + b, nous souhaitons retrouver la valeur de y pour toute valeur de x
 - <u>Ex</u> (pour a=0,5 et b = 5) :
 - lorsque le score du sujet sur la variable x = 10; on peut estimer que son score le plus probable sur la variable y sera y = ax + b = 0,5 * 10 + 5 = 10

$$\hat{y} = ax_i + b$$

Où x_i est la valeur observée de la variable X et \widehat{y} est la valeur estimée de la variables Y à partir de l'équation et pour la valeur \mathbf{x}_i

On distingue y_i , valeur observée de Y de \hat{y} , valeur estimée de Y

I. Méthode graphique

- Première étape
 - Tracer manuellement la droite d qui semble s'ajuster au mieux au nuage de points
 - Choisir deux points A et B appartenant à la droite d et de leurs coordonnées (x_i, y_i)
- Seconde étape
 - Sachant que
 - d est défini par y = ax + b
 - A et B $\in d$
 - On peut retrouver a et b
 - Système de deux équations à deux inconnues

$$- A \in d \ d'où : 50 = a * 40 + b$$

 $- B \in d \ d'où : 65 = a * 65 + b$

I. Méthode graphique

- Résolution par substitution
 - Deux équations à deux inconnues
 - Soit A, 50 = a * 40 + b
 - Soit B, 65 = a * 65 + b
 - On exprime une des inconnues en fonction de l'autre (équation A)
 - Pour A, b = 50 40a

- On substitue le résultat dans l'équation B
 - Dans B, $65 = 65a + 50 40a \rightarrow 65a 40a = 65 50 \rightarrow 25a = 15 \rightarrow a = \frac{15}{25} = 0,6$
- Lorsque a est connu, on retrouve facilement b,
 - à partir de l'équation A (50 = 0.6 * 40 + b) ou de l'équation B (65 = 0.6 * 65 + b) $\rightarrow b = 26$

15

I. Méthode graphique

- Méthode rapide mais pas objective
 - L'estimation de la courbe dépend de la manière dont la droite a été tracée 'manuellement'
 - Ex : deux observateurs peuvent obtenir des droites et équations différentes

Exercice: méthode graphique

- Donnez l'équation de la droite par la méthode graphique
 - A partir des données x_i et y_i suivantes,

X _i (temps d'étude)	2	2	3	4	4	5	5	6	7	10
Y _i (résultats examen)	35	40	40	39	54	60	54	70	69	80

17

Exercice: méthode graphique

Résultats à l'examen (y_i) en fonction du temps d'étude (x_i)

- 1. Tracez une droite qui s'ajuste au mieux aux données
- 2. Choisissez deux points A et B appartenant à la droite d et retrouvez en les coordonnées x_i, y_i
 - 1. Soit A appartenant à d, $x_i = \dots, y_i = \dots$
 - 2. Soit B appartenant à d, $x_i = \dots, y_i = \dots$

Exercice: méthode graphique

3. A l'aide de la fonction d'une droite - (y = ax + b) - établissez le système de deux équations à deux inconnues pour les points A et B

1.	Soit A appartenant à d et sachant que $y = ax + b$:
	=
2.	Soit A appartenant à d et sachant que $y = ax + b$:
	=

19

Exercice: méthode graphique

4. Par la méthode de substitution, résolvez le système d'équations et retrouver les valeurs des coefficients a et b

1.	Dans une des deux equations, isolez b du reste de l'équation
2	Dans la deuxième équation, substituez hinar sa valeur

Dans la deuxième équation, substituez b par sa valeur retrouvée au point précédent

3. Isolez maintenant a du reste de l'équation pour retrouver sa valeur

4. Retrouvez les valeurs des coefficients a et b à partir des valeurs retrouvées

a =	. b =

Exercice: méthode graphique

5. Donnez, à partir des coefficients a et b, l'équation de la droite que vous venez de tracer

Soit,
$$y = ax + b \rightarrow y =x +$$

6. A l'aide de la fonction, faites une prédiction sur le résultat à l'examen (y_i) pour un temps d'étude (x_i) de 5 heures

Pour
$$x_i = 5$$
, $y_i =$

21

II. Méthode par la droite de Mayer

- On découpe le nuage de points en deux sousensembles de même effectif
 - Pour chacun des deux sous-ensembles, on calcule la moyenne des x_i et la moyenne des y_i.
 - On obtient ainsi deux points (\bar{x}_1,\bar{y}_1) $et(\bar{x}_2,\bar{y}_2)$, appelés points moyens

II. Méthode par la droite de Mayer

- Il reste à tracer la droite passant par ces deux points (\bar{x}_1, \bar{y}_1) $et(\bar{x}_2, \bar{y}_2)$
- L'équation de la droite s'obtient de la même manière que pour la méthode graphique, mais
 - Contrairement à la méthode graphique, les deux points ne sont pas obtenus à partir d'une droite tracée manuellement mais sont estimés de manière plus rigoureuse (points moyens des sous-ensembles)

II. Méthode par la droite de Mayer

- Méthode plus rigoureuse que la méthode graphique, mais manque de précision également
 - Estimation des points moyens à partir de sous-ensembles dont les dispersions ne sont pas forcément les mêmes : biais possibles

Exercice : droite de Mayer

- Donnez l'équation de la droite par la méthode de la droite de Mayer
 - A partir des données x_i et y_i suivantes,

X _i (temps d'étude)	2	2	3	4	4	5	5	6	7	10
Y _i (résultats examen)	35	40	40	39	54	60	54	70	69	80

25

Exercice: droite de Mayer

		So	ous-ensemble	1		Sous-ensemble 2						
X _i (temps d'étude)	2	2	3	4	4	5	5	6	7	10		
Y _i (résultats examen)	35	40	40	39	54	60	54	70	69	80		

1. Calculez la moyenne des x_i et des y_i pour les sousensembles 1 et 2 et reportez les points moyens [$(\bar{x}_1, \bar{y}_1) \ et(\bar{x}_2, \bar{y}_2)$,] sur le graphe. Tracez la droite d passant par ces points

Sous-ensemble 1 : $\bar{x}_1 =$ $\bar{y}_1 =$ Sous-ensemble 2 : $\bar{x}_2 =$ $\bar{y}_2 =$

Exercice: droite de Mayer

2. A l'aide de la fonction d'une droite (y = ax + b) établissez le système de deux équations à deux inconnues pour les points moyens des sous-ensembles 1 et 2 :

27

Exercice : droite de Mayer

- 3. Par la méthode de substitution, résolvez le système d'équations et retrouver les valeurs des coefficients a et b
 - 1. Dans une des deux équations, isolez b du reste de l'équation
 - 2. Dans la deuxième équation, substituez b par sa valeur retrouvée au point précédent

.....

- 3. Isolez maintenant a du reste de l'équation pour retrouver sa valeur
- 4. Retrouvez les valeurs des coefficients a et b à partir des valeurs retrouvées

a =	b =

Exercice : droite de Mayer

4. Donnez, à partir des coefficients a et b, l'équation de la droite que vous venez de tracer

Soit,
$$y = ax + b \rightarrow y =x +$$

5. A l'aide de la fonction, faites une prédiction sur le résultat à l'examen (y_i) pour un temps d'étude (x_i) de 5 heures

29

III. Méthode des moindres carrés

- Principe
 - Faire passer la droite à travers le nuage de points de façon à ce que les carrés des différences $(y_i \hat{y}_i)$ soient les plus faibles possible pour l'ensemble des points \rightarrow 'moindres carrés'

- Soit, $\sum_{i=1}^{i=n} (y_i - \hat{y}_i)^2 \rightarrow minimum$ Sur le dessin, chaque trait vertical rouge représente la valeur $y_i - \hat{y}_i$

III. Méthode des moindres carrés

- Développement mathématique
 - -On veut minimiser la quantité $q = \sum_{i=1}^{i=n} (y_i \hat{y}_i)^2$

Considérant $\hat{y}_i = ax_i + b$

La fonction q peut également s'exprimer comme $\sum_{i=1}^{i=n} (y_i - ax_i - b)^2$

-La valeur minimale d'une fonction peut se calculer en posant la dérivée =0

Dérivée de q par rapport à
$$a: \frac{dq}{da} = -2 \sum_{i=1}^{i=n} ((y_i - ax_i - b)x_i) = 0$$

Dérivée de q par rapport à
$$b: \frac{dq}{db} = -2 \sum_{i=1}^{i=n} ((y_i - ax_i - b)1) = 0$$

31

III. Méthode des moindres carrés

- A partir du calcul des dérivées
 - on peut obtenir le calcul des coefficients a et b de la droite des moindres carrées : $\hat{y_i} = ax_i + b$ (non développé ici)
- Coefficient a

$$a = \frac{\sum_{i=1}^{i=n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{i=n} (x_i - \bar{x})^2}$$

Coefficient b

$$b = \bar{y} - a\bar{x}$$

• Le calcul de a et de b suggère que la droite estimée (par les moindres carrés) passe nécessairement par le point moyen : \bar{x} , \bar{y} (aussi appelé centre de gravité du nuage de points)

Exercice: moindres carrés

- Donnez l'équation de la droite par la méthode des moindres carrés
 - A partir des données x_i et y_i suivantes,

X _i (temps d'étude)	2	2	3	4	4	5	5	6	7	10
Y _i (résultats examen)	35	40	40	39	54	60	54	70	69	80

33

Exercice: moindres carrés

1. A l'aide du tableau ci-dessous, calculez les valeurs des coefficients a et b :

$$a = \frac{\sum_{i=1}^{i=n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{i=n} (x_i - \bar{x})^2}$$

$$b = \bar{y} - a\bar{x}$$

Exercice: moindres carrés

2. Donnez l'équation de la droite *d* à partir des coefficients a et b que vous venez de calculer

```
Soit, y = ax + b, sachant a = .... et b = ....

\rightarrow Y = .....x + ....
```

3. A l'aide de l'équation de la droite d, retrouvez les valeurs estimées de y pour deux valeurs de x (par ex. pour $x_i = 1$ et pour $x_i = 9$)

```
Pour x_i = 1, y = .....
Pour x_i = 9, y = .....
```

4. Tracez la droite d passant par ces deux points

35

Conclusions

- Méthodes graphique et par la droite de Mayer
 - Permettent une estimation rapide de la droite d'ajustement... mais manque de précisions
- Méthode des moindres carrés
 - La plus utilisée car la plus précise et juste
 - Sert de base au calcul de mesures courantes d'association entre deux variables
 - Covariance, corrélation, régression ... seront vues ultérieurement (Cours Statistique Inférentielle)