Allománynév: aramkorok_05laplace21.pdf

Irodalom: Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

Fodor Gy., "Lineáris rendszerek analízise," pp. 79-124, Műszaki Könyvkiadó, Budapest. 1967.

A. V. Oppenheim, A. S. Willsky and I. T. Young, "Signals and Systems," Prentice

5. ANALÍZIS A KOMPLEX FREKVENCIATARTOMÁNYBAN: AZ EGYOLDALAS LAPLACE TRANSZFORMÁCIÓ

Érvényesség és alkalmazás:

- LTI rendszek estén használható (szuperpoziciót kihasználja)
- Egyoldalas Laplace transzformáció: Belépő függvényekre alkalmazható
- A gerjesztéseket komplex exponenciális függvények lineáris kombinációjaként állítjuk elő
- Kezdeti értékek figyelembe vehetők, a stabilitásvizsgálat elvégezhető

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_05laplace21.pdf: 1. oldal

Elektronikai és biológiai áramkörök

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Pázmány Péter Katolikus Egyetem

Α

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^m x}{dt^m} + \dots + b_0 x$$

differenciál egyenlet teljes megoldása két megoldás összegéből állítható elő:

- 1. tranziens megoldás (a homogén differenciál egyenlet általános megoldása) Karakterisztikus egyenlet, a rendszer stabilitását adja meg
- 2. állandósult állapotbeli megoldás (az inhomogén differenciál egyenlet egy partikuláris megoldása)

Vedd észre: A Ce^{st} függvény

- mindig előállítja a tranziens megoldást és
- az állandósult állapotbeli megoldást is, ha a gerjesztéseket az $A_k e^{st}$ alakú függvények osztályára korlátozzuk

Tetszőleges x(t) gerjesztések a $A_k e^{st}$ függvények szuperpoziciójával állíthatók elő \Longrightarrow szuperpozició csak lineáris rendszer esetén alkalmazható

TIPIKUS VÁLASZJELEK:

Impedancia (kétpólus):

Átviteli függvény (négypólus):

A Kirchhoff egyenletek alapján felírt rendszerjellemző differenciál egyenlet:

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^m x}{dt^m} + \dots + b_0 x$$

ahol x(t) a gerjesztés és y(t) a válaszjel

Feladat: Adott x(t) gerjesztés mellett y(t) válaszjel meghatározása

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_05laplace21.pdf: 2. oldal

A komplex frekvenciatartomány: $s = \sigma + j\omega$

Függvények osztálvának korlátozása:

- Fourier transzformáció: $e^{\pm j\omega t} \Rightarrow$ frekvenciatartomány $(j\omega) \Rightarrow$ szinuszos jelek + szuperpozició ⇒ állandósult állapot Komplex konjugált gyökök a $j\omega$ tengelyen
- Kétoldalas **Laplace** transzformáció: $e^{st} \Rightarrow$ komplex frekvenciatartomány $(s) \Rightarrow \text{komp}$ lex exponenciális jelek + szuperpozició ⇒ tranziens + állandósult állapot Gyökök a teljes s-síkon

Fizikai rendszerből eredő korlát: Csak valós időfüggvények léphetnek fel

- Valós gyök (σ -tengely)
- Komplex konjugált gyökpár

Belépő függvények: A bázisfüggvények csak t > 0 tartományra vannak megadva!

A Laplace transzformáció, azaz analízis az s komplex frekvenciatartományban

Időtartomány		s-tartomány
₩		₩
Lineáris rendszer	⇒ Laplace transzformáció	Transzformált rendszer (Operátoros impedancia)
↓ Differenciál egyenlet	⇒ Laplace transzformáció	↓ Algebrai egyenlet
↓		↓
Diff. egy. megoldása		Algebrai módszerek
↓		↓
Válaszjel	← Inverz Laplace transzf.	Megoldás az s-tartomány- ban

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_05laplace21.pdf: 5. oldal

A belépő függvény definiciója

Az
$$\mathbf{1}(t) = u(t)$$
 egységugrás függvény:

Belépő függvény előállítása:

$$f(t)\, 1(t) = \left\{egin{array}{ll} 0, & ext{ha} \,\, t < 0 \ f(t), & ext{ha} \,\, t > 0 \end{array}
ight.$$

Vedd észre: t=0 időpontban a belépő függvény nem értelmezett

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_05laplace21.pdf: 6. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Az egyoldalas Laplace transzformáció definiciója:

$$F(s) = \mathcal{L}\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt$$

Megjegyzések: • Az egyoldalas Laplace transzformációval a jeleket **csak a** t > 0 tartományban vizsgáljuk

- ullet A t=0 időpontban mért értékeket a kezdeti értékek adják meg
- ullet A t<0 időtartományra az egyoldalas Laplace transzformációval semmit nem tudunk mondani

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Az egyoldalas Laplace transzformáció alkalmazása

Az f(t) időfüggvényhez egy F(s) Laplace transzformáltat rendelünk, és a számításokat a komplex frekvenciatartományban végezzük el

Előnyök:

- integro-differenciál egyenletek helyett algebrai egyenleteket kapunk
- az átviteli függvények az operátoros impedanciák segítségével a kapcsolási rajzból közvetlenül felírhatók (nem kell Kirchhoff)
- valamennyi, a hálózatokra kidolgozott tételek igazak maradnak
- stabilitásvizsgálat elvégezhető
- az átviteli függvények megvalósítására szintézis módszerek vannak
- ullet az átviteli függvényekből $s=j\omega$ behelyettesítéssel átmehetünk a frekvencia tartományba, azaz megkapjuk a frekvenciaválasz-függvényt
- a kezdeti értékek figyelembe vehetők

Inverz Laplace transzformáció (visszatérés az időtartományba)

$$f(t) = \mathcal{L}^{-1}\{F(s)\} = rac{1}{2\pi j} \lim_{\omega o \infty} \, \int_{\sigma - j\omega}^{\sigma + j\omega} F(s) e^{st} ds, \,\,\, ext{ahol} \,\, \sigma > \sigma_0$$

az integrálást az $s=\sigma+j\omega$ komplex frekvenciatartományban kell elvégezni egy, a $j\omega$ tengellyel párhuzamos, a szingularitásoktól jobbra eső egyenes mentén

Inverz Laplace transzformáció elvégzése

- inverziós integrál kiértékelése a reziduum-tétel segítségével
- résztörtekre bontás és táblázat alapján (mérnöki gyakorlat)
- kifejtési tétellel (szisztematikus résztörtekre bontás; mérnöki gyakorlat)

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_05laplace21.pdf: 9. oldal

Kirchhoff törvények és hálózati tételek az s-tartományban

Időtartomány

s-tartomány

1. Kirchhoff csomóponti törvénye

$$i_1(t)+i_2(t)-i_3(t)+i_4(t)=0$$

$$I_1(s) + I_2(s) - I_3(s) + I_4(s) = 0$$

2. Kirchhoff hurok törvénye

$$-v_1(t)+v_2(t)+v_3(t)=0$$

$$-V_1(s) + V_2(s) + V_3(s) = 0$$

Kirchhoff egyenletek és hálózati tételek igazak/alkalmazhatók az s-tartományban

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_05laplace21.pdf: 10. oldal

Elektronikai és biológiai áramkörök

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Jelforrások az s-tartományban

Időtartomány

s-tartomány

Feszültségforrás

$$v(t)=v_S(t)$$

i(t): az áramkör határozza meg

 $V(s) = V_S(s)$

Áramforrás

$$i(t)=i_S(t)$$

v(t): az áramkör határozza meg

 $I(s) = I_S(s)$

Operátoros impendanciák a kezdeti értékekkel (Feszültségforrás)

Időtartomány s-tartomány

Ellenállás

$$v_R(t)=Ri_R(t)$$

Pázmány Péter Katolikus Egyetem

Induktivitás

$$v_L(t)=\!L\frac{di_L(t)}{dt}$$

 $v_C(0+) = v_C(0)$

$$v_C(t) = \frac{1}{C} \int_0^t i_C(\tau) d\tau$$

$$+ v_C(0)$$

Operátoros impendanciák a kezdeti értékekkel (Áramforrás)

Időtartomány s-tartomány

Ellenállás

$$i_R(t) = \frac{1}{R} v_R(t)$$

$$I_R(s) = rac{1}{R} V_R(s)$$

Induktivitás

$$i_L(t) = rac{1}{L} \int_0^t v_L(au) d au \ + i_L(0)$$

$$I_L(s) = \frac{1}{sL} V_L(s)$$
 $i_L(0)$

$$I_C(s) = sC V_C(s)$$
 $-Cv_C(0)$

KOLUMBÁN Géza - Információs Technológiai Kar

aramkorok_05laplace21.pdf: 13. oldal

Operátoros impendanciák definiciója

$$Z(s) = rac{ extsf{Feszültség Laplace transzformáltja}}{ extsf{Áram Laplace transzformáltja}}$$

Ellenállás:

$$Z_R(s) = \frac{V_R(s)}{I_R(s)} = R$$

Induktivitás:
$$Z_L(s) = rac{V_L(s)}{I_L(s)} = sL$$

Kapacitás:
$$Z_C(s) = rac{V_C(s)}{I_C(s)} = rac{1}{sC}$$

Vigyázz: A kezdeti értékeket az előző két fólián bemutatott módon, járulékos feszültség- ill. áramforrásokkal figyelembe kell venni

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_05laplace21.pdf: 14. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Legfontosabb időfüggvények Laplace transzformáltjai

ldőtartomány, t>0

s-tartomány

 $\delta(t)$ u(t)

$$\frac{1}{s+}$$

$$\frac{1}{s+1}$$

$$\frac{t^{n-1}}{(t-1)!}e^{-\alpha t} \qquad \qquad \frac{1}{(s+\alpha)^n}$$

$$\delta(t-T) \qquad \qquad e^{-sT}$$

$$[\cos \omega_0 t] \qquad \qquad \frac{s}{s^2+\epsilon}$$

$$[\sin \omega_0 t] \qquad \qquad \frac{\omega_0}{s^2+\epsilon}$$

 $[e^{-\alpha t}\cos\omega_0 t]$ $[e^{-\alpha t}\sin\omega_0 t]$

$$F(s) = \int_{0+}^{\infty} f(t) e^{-st} dt$$

$$egin{aligned} F(s) = & \mathcal{L}\{u(t)\} = \int_{0+}^{\infty} u(t)e^{-st}dt \ & = \int_{0+}^{\infty} e^{-st}dt = -rac{1}{s}e^{-st}\mid_{0+}^{\infty} = rac{1}{s} \end{aligned}$$

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Laplace transzformációra vonatkozó tételek

Időtartomány

s-tartomány sF(s)-f(0+)

$$\int_{0}^{t} f(\tau) d\tau$$

$$-t f(t)$$

$$\frac{1}{k}f\left(\frac{\epsilon}{k}\right), \qquad k > 0$$

f'(t)

$$e^{-\alpha t}f(t)$$

$$I(t-T)f(t-T)$$

$$I_T(t)f_T(t) = \sum_{k=-\infty}^{\infty} f_T(t-kT)$$
$$f_T(t) = 0, \quad t < 0, \quad t > T$$

$$f_1(t) * f_2(t) = \int_0^t f_1(\tau) f_2(t-\tau) d\tau$$

$$\frac{\mathrm{d}F(s)}{\mathrm{d}s}$$

$$\int_{s}^{\infty} F(z) \, \mathrm{d}z$$

$$F(ks)$$

$$e^{-sT}F(s)$$

$$\frac{F_T(s)}{1-e^{-sT}}$$

$$F_1(s) F_2(s)$$

Fontos tulajdonságok

- Szuperpoziciót kihasználtuk ⇒ csak lineáris rendszerekre alkalmazható
- Unicitás: Egyértelmű megfelelés az időfüggvény és annak Laplace transzformáltja közt
- Lineáris integrál transzformáció Linearitás megőrződik

Inverz Laplace transzformáció: Résztörtekre bontás

a) Másodfokú nevező

$$\frac{1}{s(s+\alpha)} = \frac{1}{\alpha} \left[\frac{1}{s} - \frac{1}{s+\alpha} \right]$$

$$\frac{1}{(s+\alpha)(s+\beta)} = \frac{-1}{\alpha-\beta} \left[\frac{1}{s+\alpha} - \frac{1}{s+\beta} \right]$$

$$\frac{s}{(s+\alpha)(s+\beta)} = \frac{1}{\alpha-\beta} \left[\frac{\alpha}{s+\alpha} - \frac{\beta}{s+\beta} \right]$$

b) Harmadfokú nevező

$$\frac{1}{s^2(s+\alpha)} = \frac{1}{\alpha^2} \left[\frac{\alpha}{s^2} - \frac{1}{s} + \frac{1}{s+\alpha} \right]$$

$$\frac{1}{s(s+\alpha)^2} = \frac{1}{\alpha^2} \left[\frac{1}{s} - \frac{\alpha}{(s+\alpha)^2} - \frac{1}{s+\alpha} \right]$$

$$\frac{1}{s(s+\alpha)(s+\beta)} = \frac{1}{\alpha\beta(\alpha-\beta)} \left[\frac{\alpha-\beta}{s} + \frac{\beta}{s+\alpha} - \frac{\alpha}{s+\beta} \right]$$

Megjegyzések:

Mivel az átviteli függvény

polinom

alakú, a résztörtekre bontás mindig elvégezhető

- A résztörtekre bontás matematikai kézikönyvekben megtalálható
- A kifejtési tétel nem más, mint egy szisztematikus eljárás a a résztörtekre bontásra

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_05laplace21.pdf: 17. oldal

Az általános időbeli jelenségek vizsgálatának menete egyoldalas Laplace transzformáció alkalmazásával

- 1. Gerjesztés-válasz összefüggés kifejezése Laplace transzformációval
- 1.1 Gerjesztések Laplace transzformációja
- 1.2 Hálózati egyenletek felírása az s operátoros impedanciával
- 1.3 Válaszjel kifejezése a gerjesztés és átviteli függvény szorzataként:

$$V(s) = Z(s)I(s)$$

$$I(s) = Y(s)V(s)$$

$$V_2(s) = H(s)V_1(s)$$

$$V_2(s)=\!Z_T(s)I_1(s)$$

- 2. Visszatérés az időtarományba: Inverz Laplace transzformáció
- 2.1 Időfüggvény felismerése

Pázmány Péter Katolikus Egyetem

- 2.2 Laplace transzformációs táblázat
- 2.3 Résztörtekre bontás, kifejtési tétel
- 2.4 Inverz Laplace transzformátor: http://www.eecircle.com/applets/007/ILaplace.html

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_05laplace21.pdf: 18. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Aszimptotikus viselkedés

1. f(t) meghatározása a t o 0 helyen

$$\lim_{t \to 0} \{ f(t) \} = f(0+) = \lim_{s \to \infty} \{ sF(s) \}$$

2. f(t) meghatározása a $t \to \infty$ helyen

$$\lim_{t \to \infty} \{f(t)\} = \lim_{s \to 0} \{sF(s)\}$$

Alkalmazás:

- Kezdeti és végértékek meghatározása Emlékezz, $v_C(t)$ és $i_L(t)$ az időben mindig folytonos függvények!!!
- Kapott eredmények gyors ellenőrzése

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Az átviteli és az impulzusválasz-függvények kapcsolata

Átviteli függvény definiciója:

$$H(s) = rac{Y(s)}{X(s)} = rac{M(s)}{N(s)}$$

A $h(t)=\mathcal{L}^{-1}\{H(s)\}$ az impulzusválasz-függvény (súlyfüggvény), amely

- ullet a $\delta(t)$ függvényre adott válasz, és
- hálózatjellemző függvény, azaz

$$y(t) = \int_{-\infty}^{\infty} h(au) x(t- au) d au$$

Vedd észre, a Laplace transzformáció az időtartománybeli konvolúciót szorzásba viszi át az s komplex frekvenciatartományban

Pázmány Péter Katolikus Egyetem

Az átviteli függvény alakja:

Emlékezz, a be és kimenet közti kapcsolatot leíró differenciál egyenlet alakja

$$a_nrac{d^ny}{dt^n}+a_{n-1}rac{d^{n-1}y}{dt^{n-1}}+\cdots+a_1rac{dy}{dt}+a_0y=b_mrac{d^mx}{dt^m}+\cdots+b_0x$$

ahol a gerjesztéseket a $K_i e^{s_i t}$ függvények osztályára korlátozzuk, és a válaszjeleket $C_i e^{s_j t}$ alakban keressük

Ezért az átviteli függvény polinom/polinom alakú lesz

$$H(s) = rac{M(s)}{N(s)}$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_05laplace21.pdf: 21. oldal

Az átviteli függvény tulajdonságai:

A Laplace transzformáció legfőbb előnye, hogy vele átviteli függvény generálható, amelyből a válaszjel egy egyszerű szorzással előállítható

$$Y(s) = H(s)X(s) = rac{M(s)}{N(s)}X(s)$$

ullet A frekvenciaválasz-függvény az átviteli függvényből $s=j\omega$ behelyettesítéssel előállítható

$$H(j\omega) = H(\omega) = H(s)\mid_{s=j\omega}$$

KOLUMBÁN Géza — Információs Technológiai Kar

aramkorok_05laplace21.pdf: 22. oldal

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Stabilitásvizsgálat az s-tartományban

Egy rendszer instabil, ha zérus bemenet mellett nullától különböző kimenetet generál

$$Y(s) = H(s)X(s) = rac{M(s)}{N(s)}\,X(s)$$

$$X(s)=0$$
 de $Y(s)
eq 0,$ \Longrightarrow $N(s)Y(s)=M(s)X(s)=0$

Gerjedés, azaz az oszcilláció feltétele

$$N(s)=0$$

azaz a **karakterisztikus egyenlet** gyökei a $j\omega$ tengelyen, vagy a jobb félsíkon vannak

Stabilitás feltétele:

a H(s) átviteli fgv N(s) nevezőjének, azaz a karakterisztikus egyenlet valamennyi gyökének az s tartományban a bal félsíkon kell lennie

Pázmány Péter Katolikus Egyetem

Elektronikai és biológiai áramkörök

Stabilis rendszer: A karakterisztikus egyenlet gyökeinek a bal félsíkon kell lenniük a **komplex frekvencia** síkon

