

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

Institut für Informatik, Arbeitsgruppe Theorie der Parallelität Prof. Dr. K. Jansen, K.-M. Klein

12. November 2013

Übungen zur Vorlesung »Theoretische Grundlagen der Informatik«

Übungsblatt 3

Präsenzaufgabe 3.1

Zeigen Sie mit Hilfe des Pumping Lemmas für reguläre Sprachen, dass die Sprache

$$L = \{w0^k \mid w \in \{0,1\}^*, |w| = k, k \in \mathbb{N}\}\$$

nicht regulär ist.

Hausaufgabe 3.2 (Reguläre Ausdrücke (3 Punkte))

- (a) Geben Sie für den regulären Ausdruck $r=(aa)^*(bb)^*$ einen ε -NEA A an mit L(r)=L(A). Verwenden Sie die in der Vorlesung gezeigte Konstruktion.
- (b) Bestimmen Sie einen regulären Ausdruck r für folgenden NEA A, mit L(r) = L(A). Verwenden Sie die in der Vorlesung gezeigte Konstruktion.

Hausaufgabe 3.3 (Pumping-Lemma (3 Punkte))

Zeigen Sie mit Hilfe des Pumping-Lemmas, dass die Sprache $L = \{a^p : p \text{ ist Primzahl}\} \subseteq \{a\}^*$ nicht regulär ist.

Hausaufgabe 3.4 (Rechtsäquivalenz (4 Punkte))

Sei $L := \{ w \in \{a, b, c\}^* | |w| = n!, n \in \mathbb{N} \}$. Geben Sie die Äquivalenzklassen von \simeq_L an.