Лабораторная работа №2

Стюхина Ангелина, Орехова Алина 22 марта 2023

Наименование работы: определение скорости звука в воздухе методом интерференции. **Цель работы:** изучение процесса распространения звуковой волны в газе и измерение скорости звука при различных случаях интерференции волн.

Принадлежности: прибор Квинке, звуковой генератор.

Краткая теория

На явлении интерференции основано определение скорости звука в воздухе с помощью прибора Квинке.

Основной частью этого прибора (рис. 1) являются две изогнутые латунные трубки 1 и 2, укрепленные вертикально параллельно друг другу на стойке 3. Длина трубки 2 может изменяться выдвижением ее. Удлинение трубки 2 определяется с помощью указателя 4 по шкале, нанесенной на стойке. Входные концы трубок 1 и 2 подсоединены к тройнику 9, другой конец которого закрыт мембраной телефонной трубки 8. Выводы от телефонной трубки подсоединяются к выходу генератора звуковой частоты 5. Выходные концы трубок 1 и 2 подсоединены к тройнику 6, на другой конец которого надета резиновая трубка с эбонитовым наконечником 7.

Звуковая волна, возбуждаемая мембраной телефона 8, колеблющейся с частотой, задаваемой звуковым генератором, посту-

Рис. 1: Чертеж установки. Прибор Квинке

пает на вход тройника 9 и разветвляется на его выходе на две части. Таким образов добиваются когерентности волн. Одна волна проходит по трубке 1, другая по трубке 2. Если длину трубки 2 увеличить по сравдению с длиной трубки 1, то волны, соединяясь вместе на выходе из тройника 6, будут иметь разность хода, так как пути, пройденные ими, будут не равны. В зависимости от величины разности хода в слуховой трубке 7 будут слышны усиления или ослабления звука.

Пусть при первом минимуме звука положение указателя 4 на шкале равно a_1 . Тогда в соответствии с конструкцией установки разность хода волн будет равна $2a_1$. В этом случае выполняется соотношение $2a_1 = \frac{\lambda}{2}$, отсюда

$$\lambda = 4a_1 \cdot \tag{1}$$

Так как скорость звука v связана с длиной волны λ и частотой $\mathcal V$ соотношением $v=\lambda \mathcal V,$ то имеем

$$v = 4a_1 \mathcal{V} \cdot \tag{2}$$

Если a_2 соответствует положению указателя при втором минимуме, то разность хода волн запишется равенством $2a_2=3\frac{\lambda}{2}$, и, следовательно, скорость звука определится из соотношения

$$v = \frac{4}{3}a_2\mathcal{V}.\tag{3}$$

Для третьего минимума звука соответственно будем иметь $2a_3=5\frac{\lambda}{2}$ и

$$v = \frac{4}{5}a_3\mathcal{V}.\tag{4}$$

Остальные минимумы вычисляются аналогичным путем.

В то же время, скорость распространения продольных звуковых волн в упругой среде определяется соотношением

$$v = \sqrt{\frac{\gamma p}{\rho}},\tag{5}$$

где ρ - плотность среды, p - давление, γ - некоторая константа, для воздуха имеющая значение 1,41. Это соотношение называется формулой Лапласа.

Скорость звука, посчитанная по формуле Лапласа, в воздухе ($\gamma = 1.41$) для плотности $\rho_0 = 1.293 \cdot 10^{-3} \text{ г/см}^3$ (при $t = 0^{\circ}C$) и атмосферного давления $p_0 = 1.013 \cdot 10^{5}$ Па, равна 332 м/c, что согласуется с полученным экспериментальным путем значением 331.46 м/c.

Так как при данной температуре давление р и плотность ρ изменяются пропорционально друг другу, то, как показывает формула Лапласа, скорость звука не зависит от давления в газе. Из этой же формулы следует, что скорость звука в газах существенно зависит от температуры среды. Действительно, плотность среды зависит от температуры по закону $\rho = \frac{\rho_0}{1+\alpha t}$, где ρ - плотность при температуре $t^{\circ}C$, ρ_0 - плотность при $0^{\circ}C$, α - коэффициент расширения газа, равный 0.004 град $^{-1}$. Отсюда

$$v = \sqrt{\frac{\gamma p_0}{\rho_0}} \cdot \sqrt{1 + \alpha t},\tag{6}$$

или

$$v_0 = \frac{v}{\sqrt{1 + \alpha t}},\tag{7}$$

где ρ_0 - нормальное атмосферное давление, v - скорость звука при температуре $t^{\circ}C, v_0$ - скорость звука при $0^{\circ}C$.

Экспериментальная часть

- 1. Включить в сеть звуковой генератор.
- 2. Установить одну из трех заданных преподавателем частот от 1400 до 2000 Гц.
- 3. Установить одинаковую длину трубок 1 и 2.
- 4. Выдвигая трубку 2 и наблюдая изменения громкость звука с помощью слуховой трубки 7 на выходе тройника 6, заметить положение a_1 указателя 4 на шкале при 1-м минимуме звука.
- 5. Проделав операции, указанные в п. 4, определить значения a_2 , a_3 и т.д. для последующих минимумов.
- 6. Провести измерения, указанные в п.п. 4-5 для остальных частот.
- 7. Вычилить значения скорости звука \overline{v} по формулам вида (2)-(4).
- 8. Вычилить среднее значение скорости звука \overline{v} по данным всех измерений при данной температуре.
- 9. Рассчитать по формуле (7) скорость звука в воздухе при $0^{\circ}C$.
- 10. Сравнить полученное значение скорости звука при $0^{\circ}C$ с табличным значением, равным $v_0 = 331,46$ м/с при $0^{\circ}C$ и давлении воздуха 1013,25 гПа, и дать объяснение возможному расхождению значений.
- 11. Данные прямых измерений и вычислений занести в таблицу.

Результаты опыта:

12 Г.		a. 15/a		a. 15/a		a. 15/a			a. 15/0	= 11/0
ν, Гц	a_1 , M	v_1 ,м/с	a_2 , M	v_2 ,м/с	a_3 , M	v_3 ,м/с	\overline{v} , м/с	\overline{v} , м/с	$v_0, { m M/c}$	$\overline{v_0}$, м/с
800	0.108	345.6	0.322	343.5	-	_	344.53		327.31	
900	0.096	345.6	0.287	344.4	_	_	345.00		327.75	
1000	0.087	348.0	0.259	345.3	_	_	346.67		329.34	
1100	0.078	343.2	0.235	344.7	0.390	343.2	343.69		326.51	
1200	0.071	340.8	0.224	358.4	0.380	364.8	354.67		336.94	
1300	0.066	343.2	0.200	346.7	0.332	345.3	345.05		327.80	
1400	0.062	347.2	0.186	347.2	0.314	351.7	348.69	348.09	331.26	330.69
1500	0.058	348.0	0.173	346.0	0.295	354.0	349.33		331.87	
1600	0.054	345.6	0.164	349.9	0.272	348.2	347.88		330.49	
1700	0.051	346.8	0.153	346.8	0.254	345.4	346.35		329.03	
1800	0.049	352.8	0.146	350.4	0.243	349.9	351.04		333.49	
1900	0.046	349.6	0.138	349.6	0.231	351.1	350.11		332.61	
2000	0.044	352.0	0.131	349.3	0.222	355.2	352.18		334.57	

При измерении всех минимумов a_1, a_2, a_3 температура помещения составляла $t=27^{\circ}C$. Соответственно, были получены средние скорости звука при данной температуре. Итоговая средняя скорость при $t=27^{\circ}C$ составила 348.09 м/с.

По формуле $v_0 = \frac{v}{\sqrt{1+\alpha t}}$, где α - коэффициент расширения газа, равный 0.004 град⁻¹, вычислим для каждой частоты значение скорости звука при нулевой температуре.

Итоговая средняя скорость звука при нулевой температуре составит

$$\overline{v_0} = \frac{348.09}{\sqrt{1 + 0.004 \cdot 27}} = 330.69 (\text{M/c}) \tag{8}$$

Анализ полученных результатов:

Сравним полученное экспериментальным путем значение скорости звука при $t=0^{\circ}C$ с табличным значением, равным $v_0=331,46$, т.е. вычислим погрешность:

$$\delta \overline{v_0} = \frac{|331.46 - 330.69|}{331.46} \cdot 100\% = 2\% \tag{9}$$

Погрешность довольно незначительна и вызвана трудностью локализации звукового минимума для человеческого слуха.

Дополнительное задание

В качестве дополнительного задания предлагалось определить область частот, в которой измерение скорости звука оказалось наиболее точным.

Определим наиболее точным измерением такое измерение, в котором относительная погрешность с теоретическим значением скорости звука не превышает 0.5%.

Тогда нам подходят частоты 1400, 1500 и 1600 Гц:

$$\delta v_{1400} = \frac{|331.46 - 331.26|}{331.46} \cdot 100\% = 0.06\% \tag{10}$$

$$\delta v_{1500} = \frac{|331.46 - 331.87|}{331.46} \cdot 100\% = 0.12\% \tag{11}$$

$$\delta v_{1600} = \frac{|331.46 - 330.49|}{331.46} \cdot 100\% = 0.29\% \tag{12}$$

Вывод:

Метод интерференции позволяет измерить скорость звука в воздухе с погрешностью 2% и дает наиболее точный результат для частот $1400\text{-}1600~\Gamma$ ц.