

This presentation is released under the terms of the **Creative Commons Attribution-Share Alike** license.

You are free to reuse it and modify it as much as you want as long as:

(1) you mention Séverin Lemaignan as being the original author, (2) you re-share your presentation under the same terms.

You can download the sources of this presentation here: github.com/severin-lemaignan/lecture-hri-symbolic-reasoning

Human-Robot Interaction Symbolic Reasoning for HRI

Séverin Lemaignan

Bristol Robotics LabUniversity of the West of England

Lecture on speech: NLP down to syntax parsing

- Lecture on speech: NLP down to syntax parsing
- Today: meaning (both semantics and pragmatics)

- Lecture on speech: NLP down to syntax parsing
- Today: meaning (both semantics and pragmatics)

Semantics vs Pragmatics

Semantics is the (conventional) meaning attached to words and sentences; **Pragmatics** study the actual meaning coming out of the context: who speaks? how they speak? what common knowledge between the speaker and the listener? what is the situation? etc.

- Lecture on speech: NLP down to syntax parsing
- Today: meaning (both semantics and pragmatics)
 - How to attach *meaning* to perceptions & natural language? What are ontologies?
 - How is 'meaning' represented and used within the robot? How does it relate to *mental models*?

Semantics vs Pragmatics

Semantics is the (conventional) meaning attached to words and sentences; **Pragmatics** study the actual meaning coming out of the context: who speaks? how they speak? what common knowledge between the speaker and the listener? what is the situation? etc.

Situated dialogue effectively evidences the challenges

How can the robot make sense of and act upon a sequence of letters like:

"Can you give me that book?"

How to attach meaning to a symbol?

Google Translate translates French "Il pleut comme vache qui pisse" into English "It's raining cats and dogs".

...no peeing cow?? Does Google Translate *understand* French and/or English?

The mind as a computer: functionalism & Searle's Chinese Room Argument

Read more on Wikipedia

How to attach meaning to a symbol?

Is it possible at all? Is it actually necessary?

Embodiement is part of the answer. In robotics, we talk of **Situated AI**.

SITUATED, GROUNDED, SYMBOLIC

SOCIAL COGNITION

SITUATION ASSESSMENT

VISUAL PERSPECTIVE TAKING

egocentric

Subject	Predicate	Object
Location	isAt	Location
	ightarrow isOn	
	ightarrow isIn	
	ightarrow isNextTo	
Location	isAbove	Location
Location	isBelow	Location
Location	hasRelativePosition	Location
	ightarrow behind	
	ightarrow inFrontOf	
	ightarrow leftOf	
	ightarrow rightOf	
Object	farFrom	Agent
Object	near	Agent
Agent	looksAt	SpatialThing
Agent	sees	SpatialThing
SpatialThing	isInFieldOfView	xsd:boolean
Agent	pointsAt	SpatialThing
Agent	focusesOn	SpatialThing
Agent	${\tt seesWithHeadMovement}$	SpatialThing
Agent	canReach	Object

human_1 sees teddybear

human_1 sees teddybear

A **statement** is a true proposition (in a given model)

human_1 sees teddybear

A statement is a true proposition (in a given model) \equiv belief

```
human 1 sees teddybear
A statement is a true proposition (in a given
              model) \equiv belief
           teddybear type Toy
        teddybear isOn table 1
human 1 scaredOf robot 1 (in the human's
               model only!)
```

 $\begin{array}{c} {\tt human_1} \ {\tt sees} \ {\tt teddybear} \\ {\tt Triplet} \ \langle {\tt S}, {\tt P}, {\tt O} \rangle {\tt :} \ {\tt subject}, \ {\tt predicate}, \ {\tt object} \end{array}$

human_1 sees teddybear

Triplet $\langle S, P, O \rangle$: subject, predicate, object P is a predicate of **arity** 2: P(S, O)

human_1 sees teddybear

Triplet $\langle S, P, O \rangle$: subject, predicate, object P is a predicate of **arity** 2: P(S, O)

Some logic language (like Prolog) allows arbitrary arities: give(robot_1, human_1, teddybear)

```
human_1 sees teddybear

Triplet \langle S, P, O \rangle: subject, predicate, object

P is a predicate of arity 2: P(S, O)
```

```
Many do not (like the OWL language). In this case, reification: give_act_1 type Give give_act_1 performedBy robot_1 give_act_1 receivedBy human_1 give_act_1 actsOnObject teddybear
```

TOWARDS ONTOLOGIES

The robot's newly acquired beliefs typically have to be **anchored** in pre-existing knowledge.

ightarrow We usually endow the robot with **background knowledge** (also known as **common-sense knowledge**) with statements like:

Object rdfs:subclassOf PhysicalThing Location rdfs:subclassOf SpatialThing sky hasColor blue

TOWARDS ONTOLOGIES

Example of an upper ontology

An **ontology** encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains.

An **ontology** encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains.

(also known as a knowledge graph)

An **ontology** encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains.

(also known as a knowledge graph)

Ontologies often have close relationships with **first-order logic** (**FOL**) – more about that later.

 T-box statements: the conceptualisation of the domain, for instance in terms of categories (classes):

Dog is a class Dog rdfs:subClassOf Animal

 A-box statements: (T-box compliant) statements about individuals (instances) in the ontology:

SPOT is an instance SPOT rdf:type Dog

 T-box statements: the conceptualisation of the domain, for instance in terms of categories (classes):

```
Dog rdfs:subClassOf Animal
```

 A-box statements: (T-box compliant) statements about individuals (instances) in the ontology:

```
SPOT rdf:type Dog
```

Ontologies are represented using a **knowledge description language**. The **Web Ontology Language (OWL)** is a common choice that uses a XML encoding.

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

The robot starts with some manually provided commonsense knowledge (encoded in T-Box + A-Box) and initial knowledge about the environment (in A-Box), and instantiate itself additional concepts and relations on-line, based on its perception.

Back to our initial example:

Give me that book!

"Give me the book on the table"

"Give me the book on the table"

 $\begin{array}{c} \text{me} \rightarrow \text{human_1} \\ \text{find(?obj type Table)} \rightarrow \text{ikea_table} \\ \text{find(?obj type Book, ?obj isOn ikea_table)} \rightarrow \\ \text{harry_potter} \end{array}$

"Give me the book on the table"

me → human_1

find(?obj type Table) → ikea_table

find(?obj type Book, ?obj isOn ikea_table) →

harry_potter

↓

human_1 desires give_act_1,

give_act_1 type Give,

give_act_1 performedBy myself,

give_act_1 actsOnObject harry_potter,

give_act_1 receivedBy human_1

MULTI-MODAL INTERACTION

What about "Give me that book"? (or even: "Give me that!")

EXAMPLE OF FIRST-ORDER LOGIC REASONING

Using SPARQL query language

EXAMPLE OF FIRST-ORDER LOGIC REASONING

Symbolic approaches effective at dealing with this kind of semantics.

INTERACTION EXAMPLE: I SPY WITH MY LITTLE EYE

INTERACTION EXAMPLE: I SPY WITH MY LITTLE EYE

INTERACTION EXAMPLE: I SPY WITH MY LITTLE EYE

human

It is a tableware.

robot | [retrieves possible objects: blue-bottle, yellow-

bottle, orange-bottle, cup-with-handle]

[keeps human-visible objects: blue-bottle,

yellow-bottle, cup-with-handle]

[obtains discriminants: type, color.]

Which type of object is: bottle or cup?

human

Bottle.

robot | [obtains possible objects: blue-bottle, yellow-

bottle.]

[obtains discriminants: color.]

What color the object is: blue or yellow?

human robot Blue.

[obtains possible objects: blue-bottle.]

The object is the blue-bottle!

ONE STEP FURTHER: THEORY OF

MIND

1ST ORDER TOM: THE FALSE-BELIEF EXPERIMENT

What if I ask for the DVD in the box, but the robot previously moved it somewhere else?

What if I ask for the DVD in the box, but the robot previously moved it somewhere else?

False-belief situation

PARALLEL MODELS: TOWARDS THEORY OF MIND

THE SYMBOLIC VS SUB-SYMBOLIC DEBATE

- Symbolic approaches assume a well-ordered, 'regular' world \rightarrow not often the case + world full of exceptions! (Bird subclassOf FlyingThing?)
- Symbolic learning is possible, but not nearly as powerful as sub-symbolic machine learning
- How to bridge the epistemic gap between symbolic and sub-symbolic AI?

Theory of Mind 0000

That's all for today, folks!

Questions:

severin.lemaignan@brl.ac.uk

Slides:

github.com/severin-lemaignan/lecture-hri-symbolic-reasoning

REASONING EXAMPLE: BEST DESCRIPTOR FOR A CONCEPT

REASONING EXAMPLE: BEST DESCRIPTOR FOR A CONCEPT

Algorithm 3.1: CommonAncestors(*concept*1, *concept*2)

 $\begin{cases} \mathcal{I} \leftarrow \mathsf{Superclasses}(\textit{concept}1) \cap \mathsf{Superclasses}(\textit{concept}2) \\ \mathsf{return} \ (\textit{c} \in \mathcal{I} | \mathsf{Subclasses}(\textit{c}) \cap \mathcal{I} = \emptyset) \end{cases}$

REASONING EXAMPLE: BEST DESCRIPTOR FOR A CONCEPT

Algorithm 3.2: FirstDifferentAncestors(*concept*1, *concept*2)

 $\begin{cases} \mathcal{C} \leftarrow \mathsf{CommonAncestors}(\boldsymbol{concept1}, \boldsymbol{concept2}) \\ \mathcal{S} \leftarrow \mathsf{Superclasses}(\boldsymbol{concept1}) \cup \mathsf{Superclasses}(\boldsymbol{concept2}) \\ \mathbf{return} \ (\forall \boldsymbol{c} \in \mathcal{C}, \mathsf{DirectSubclasses}(\boldsymbol{c}) \cap \mathcal{S}) \end{cases}$