Step-1

Given matrix is
$$A = \begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix}$$

We have to explain why the given matrix has norms between 100 and 101.

Step-2

The characteristic equation of A is

$$|A - \lambda I| = 0$$

$$\Rightarrow \begin{vmatrix} 1 - \lambda & 100 \\ 0 & 1 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (1 - \lambda)(1 - \lambda) = 0$$

$$\Rightarrow \lambda = 1, 1$$

So, the eigenvalues of characteristic roots are $\lambda = 1,1$

Therefore,
$$\lambda_{\text{max}} = \lambda_{\text{min}} = 1$$

Step-3

The corresponding eigenvector is obtained by solving the homogeneous system $(A - \lambda I)x = 0$

That is
$$\begin{bmatrix} 1 - \lambda & 100 \\ 0 & 1 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \hat{\mathbf{a}} \boldsymbol{\epsilon} |\hat{\mathbf{a}} \boldsymbol{\epsilon}| (1)$$

For $\lambda = 1$, (1) becomes

$$\begin{bmatrix} 1-1 & 100 \\ 0 & 1-1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 & 100 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Step-4

From this, we get 0x + 100 y = 0

So, y = 0 and x = k for any parameter k.

The solution set is
$$k \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Putting k = 1, we get the eigenvector corresponding to the eigenvalue $\lambda = 1$ is $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Step-5

While the given matrix has the repeated eigenvalues, the second eigenvector y is any vector linearly independent with the existing eigenvector satisfying $y = \begin{bmatrix} 1 \end{bmatrix}$

The definition of the norm of a matrix A says $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$

Step-6

Now, using the vectors x, y in this definition, we have

$$\frac{\|Ax\|}{\|x\|} = \frac{\begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}}{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}$$

$$= \frac{\left\| \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\|}{\left\| \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\|}$$

$$= \frac{\sqrt{1^2 + 0}}{\sqrt{1^2 + 0}}$$

$$= 1$$

Step-7

And

$$\frac{\|Ay\|}{\|y\|} = \frac{\begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}}{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}$$

$$= \frac{\left\| \begin{bmatrix} 100 \\ 1 \end{bmatrix} \right\|}{\left\| \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\|}$$
$$= \frac{\sqrt{100^2 + 1^2}}{\sqrt{1^2 + 0^2}}$$

Clearly, this value lies between 100 and 101.

Step-8

Now

$$||A|| = \max \left\{ \frac{||Ax||}{||x||}, \frac{||Ay||}{||y||} \right\}$$

= $\max \{1, \sqrt{10001}\}$
= $\sqrt{10001}$

Step-9

 $A^{-1} = \begin{bmatrix} 1 & -100 \\ 0 & 1 \end{bmatrix}, \text{ the above discussion repeats and ultimately, we get}$

$$\frac{\|Ay\|}{\|y\|} = \frac{\begin{bmatrix} 1 & -100 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}}{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}$$

$$= \frac{\left\| \begin{bmatrix} -100 \\ 1 \end{bmatrix} \right\|}{\left\| \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\|}$$

$$= \frac{\sqrt{(-100)^2 + 1^2}}{\sqrt{1^2 + 0^2}}$$

Therefore,
$$||A^{-1}|| = \sqrt{10001}$$

Clearly, $100 < \sqrt{10001} < 101$

Therefore, the norms of the given matrix and its inverse lies between 100 and 101.