TikTok Analysis

How are views affected by followers, likes, shares, and comments?

Tyler Chia, Ethan Lee, Ryan Tolone, Erica Yee

Table of contents

O1Introduction

Motivation, dataset, original model

02

Methods

Outliers, transformation, forward selection

03

Conclusion

Final model, interpretation

O1 Solution

Motivation

Learning how follower count, average likes, shares, and comments affect views can help influencers determine in which areas they need more engagement and better refine their content.

Dataset

- Kaggle: Social Media Influencers in 2022

> https://www.kaggle.com/datas ets/ramjasmaurya/top-1000-so cial-media-channels

- 1000 observations and 8 variables

Original Model


```
## Call:
## lm(formula = views numeric ~ followers numeric + likes numeric +
      comments numeric + shares numeric, data = tiktok subset)
## Residuals:
       Min
                      Median
                                           Max
  -9951230 -870340
                     -336551
                               445022 37243203
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    5.250e+05 9.955e+04
                                           5.274 1.64e-07 ***
## followers numeric 2.308e-02 5.707e-03
                                           4.043 5.67e-05 ***
## likes_numeric
                    6.439e+00 2.374e-01
                                          27.128 < 2e-16 ***
## comments numeric 5.726e+00 2.300e+01
                                           0.249
                                                    0.803
## shares numeric
                    7.232e+01 1.344e+01
                                           5.380 9.29e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2092000 on 995 degrees of freedom
## Multiple R-squared: 0.5768, Adjusted R-squared: 0.5751
## F-statistic: 339 on 4 and 995 DF, p-value: < 2.2e-16
```

```
## Analysis of Variance Table
## Response: views_numeric
                            Sum Sq
                                      Mean Sq F value
## followers numeric 1 6.4308e+14 6.4308e+14 146.9142 < 2.2e-16 ***
## likes numeric
                      1 5.1585e+15 5.1585e+15 1178.4909 < 2.2e-16 ***
## comments numeric
                    1 6.7755e+12 6.7755e+12
                                                1.5479
                                                          0.2137
## shares numeric
                      1 1.2669e+14 1.2669e+14
                                               28.9438 9.29e-08 ***
## Residuals
                    995 4.3554e+15 4.3772e+12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


O2 Methods

Handling Outliers

- Remove extreme anomalies to make more reliable model for understanding general TikTok trends
- Regression models were extremely poor when outliers and leverage points were included
- Use new cleaned dataset to create more useful model

```
residuals <- rstudent(model)
cooks_distance <- cooks.distance(model)
n <- nrow(tiktok_subset)
outliers <- which(abs(residuals) > 2 | cooks_distance > 4 / (n - 2))
cleaned_data <- tiktok_subset[-outliers, ]</pre>
```

Box-Cox Transformation

```
cleaned_data$comments_numeric[cleaned_data$comments_numeric == 0] <- 1</pre>
summary(tranxy <- powerTransform(cbind(views_numeric, followers_numeric, likes_numeric,</pre>
                                        comments numeric, shares numeric) ~ 1, data = cleaned data))
## bcPower Transformations to Multinormality
                      Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
## views numeric
                        -0.0803
                                       0.00
                                                  -0.1694
                                                                0.0089
## followers numeric
                        0.1860
                                       0.19
                                                   0.1497
                                                                0.2222
                        0.1286
                                       0.13
                                                   0.0515
                                                                0.2058
## likes numeric
## comments numeric
                        0.1928
                                       0.19
                                                  0.1536
                                                                0.2319
## shares numeric
                        -0.0757
                                      -0.08
                                                  -0.1275
                                                               -0.0240
## Likelihood ratio test that transformation parameters are equal to 0
   (all log transformations)
                                       LRT df
## LR test, lambda = (0 0 0 0 0) 266.0291 5 < 2.22e-16
## Likelihood ratio test that no transformations are needed
                                                     pval
## LR test, lambda = (1 1 1 1 1) 4812.938 5 < 2.22e-16
cleaned_data$transformed_views <- log(cleaned_data$views_numeric)</pre>
cleaned data$transformed followers <- log(cleaned data$followers numeric)
cleaned data$transformed likes <- log(cleaned data$likes numeric)
cleaned_data$transformed_comments <- log(cleaned_data$likes_numeric)</pre>
cleaned data$transformed_shares <- log(cleaned_data$shares_numeric)</pre>
```

- Used Box-Cox to address nonconformities to linear assumptions and create better model fit
- Opted to use log transformation for all variables since the lambdas were all close to zero

Forward Stepwise Variable Selection

Address multicollinearity by doing variable selection

```
## Start: AIC=-1158.15
## transformed views ~ 1
##
                          Df Sum of Sq
                                          RSS
                                                  AIC
## + transformed likes
                              122.896 156.58 -1706.0
## + transformed comments
                           1 122.896 156.58 -1706.0
## + transformed followers 1 26.303 253.17 -1250.0
## + transformed shares
                           1 4.731 274.74 -1172.3
## <none>
                                       279.48 -1158.2
##
## Step: AIC=-1705.95
## transformed views ~ transformed likes
##
##
                          Df Sum of Sq
                                          RSS
                                                  ATC
## + transformed followers 1
                                4.2463 152.33 -1730.0
## + transformed_shares
                                1.3383 155.24 -1712.1
## <none>
                                       156.58 -1706.0
##
```

 AIC is lowest for the model that includes all predictor variables except comments

```
## Call:
## lm(formula = transformed views ~ transformed followers + transformed likes,
      data = cleaned_data)
## Residuals:
       Min
                 10 Median
## -0.94614 -0.29981 -0.02219 0.26205 1.41715
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        6.46052
                                   0.29147 22.165 < 2e-16 ***
## transformed followers 0.05150
                                   0.01003 5.135 3.42e-07 ***
## transformed likes
                        0.59473
                                   0.02377 25.024 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4013 on 946 degrees of freedom
## Multiple R-squared: 0.4549, Adjusted R-squared: 0.4538
## F-statistic: 394.8 on 2 and 946 DF, p-value: < 2.2e-16
```

Numerical Output for Final Model

- All predictor variables are significant except "shares"
- Further investigation shows that shares don't meaningfully contribute to the model and AIC with and without shares are nearly identical

O3 - SE-Conclusion E

Final Model Equation:

ln(Views) = 6.461 + 0.052 * ln(Followers) + 0.595 * ln(Likes)

- A 1% increase in followers leads to a 0.052% increase in views
- A 1% increase in average likes increases views by 0.595%

What does this mean?

• It indicates a positive relationship for followers and especially views, reinforcing the value of growing a dedicated audience and underscoring likes as the main priority for content popularity and engagement.

Because of the challenges faced while developing the model:

- Normality of errors
- Homoscedasticity
- Influence points

The model may not account for all factors, such as content quality or external trends.

- Despite challenges, the final model offers insights into the influence of likes, followers, and shares on view counts as 45.38% (R-squared value) of the variation in the view counts can be explained by the model.
- The overall model significance, as indicated by the F-statistic's p-value, is less than 2.2e-16, which is far below the alpha level of 0.05. This shows that the model is statistically significant at predicting views for tiktokers.