Serial No. 10/006290 Reference 14 of 30

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) W rld Intellectual Property Organization International Bureau

(43) International Publication Date 28 December 2000 (28.12.2000)

PCT

(10) International Publication Number WO 00/78808 A1

- (51) International Patent Classification⁷: C07K 14/47, C07H 21/04, C12N 15/63, 1/21, C12P 21/02
- (21) International Application Number: PCT/US00/16883
- (22) International Filing Date: 19 June 2000 (19.06.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/336,536

18 June 1999 (18.06.1999) U

- (71) Applicant: MILLENNIUM PHARMACEUTICALS, INC. [US/US]; 75 Sidney Street, Cambridge, MA 02139 (US).
- (72) Inventors: LEIBY, Kevin, R.; 4 Showhegan Way, Natick, MA 01760 (US). McKAY, Charles; 36 Newbrook Circle, Newton, MA 02467 (US). BOSSONE, Steven; 958 Massachusetts Avenue, Lexington, MA 02173 (US).

- (74) Agents: CORUZZI, Laura, A. et al.; Pennie & Edmonds LLP, 1155 Avenue of the Americas, New York, NY 10036 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SECRETED PROTEINS AND USES THEREOF

(57) Abstract: The invention provides isolated nucleic acid molecules, designated TANGO 253, which encode proteins containing C1q domains and which are homologous to a human adipocyte complement-mediated protein precursor, TANGO 257, which encode proteins homologous to the human extracellular molecule olfactomedin, a molecule important in the maintenance, growth and differentiation of chemosensory cilia of olfactory neurons, INTERCEPT 258, which encode Ig domain-containing proteins that exhibit homology to an antigen (A33) expressed in colonic and small bowel epithelium, and TANGO 281, which encode proteins downregulated in megakaryocytes that fail to express the gata-1 transcription factor (a factor critical for blood cell formation) and can, therefore, represent direct or indirect gata-1 targets. The invention also provides antisense nucleic acid molecules, expression vectors containing the nucleic acid molecules of the invention, host cells into which the expression vectors have been introduced, and non-human transgenic animals in which a nucleic acid molecule of the invention has been introduced or disrupted. The invention still further provides isolated polypeptides, fusin polypeptides, antigenic peptides and antibodies. Diagnostic, screening and therapeutic methods utilizing compositions of the invention are also provided.

SECRETED PROTEINS AND USES THEREOF

This application is a continuation-in-part of U.S. patent application Serial No. 09/336,536, filed June 18, 2000, the contents of which are incorporated herein by reference in its entirety.

Background of the Invention

Many secreted proteins, for example, cytokines and cytokine receptors, play a vital role in the regulation of cell growth, cell differentiation, and a variety of specific cellular responses. A number of medically useful proteins, including erythropoietin, granulocytemacrophage colony stimulating factor, human growth hormone, and various interleukins, are secreted proteins. Thus, an important goal in the design and development of new therapies is the identification and characterization of secreted and transmembrane proteins and the genes which encode them.

Many secreted proteins are receptors which bind a ligand and transduce an intracellular signal, leading to a variety of cellular responses. The identification and characterization of such a receptor enables one to identify both the ligands which bind to the receptor and the intracellular molecules and signal transduction pathways associated with the receptor, permitting one to identify or design modulators of receptor activity, e.g., receptor agonists or antagonists and modulators of signal transduction.

Summary of the Invention

The present invention is based, at least in part, on the discovery of cDNA molecules which encode the TANGO 253, 257 and 281 proteins and the INTERCEPT 258 protein, all of which are either wholly secreted or transmembrane proteins.

The TANGO 253 proteins are C1q domain-containing polypeptides that exhibit homology to a human adipocyte complement-related protein precursor.

The TANGO 257 proteins are homologous to the human extracellular molecule olfactomedin, a molecule important in the maintenance, growth and differentiation of chemosensory cilia of olfactory neurons.

The INTERCEPT 258 proteins are Ig domain-containing polypeptides that exhibit homology to an antigen (A33) expressed in colonic and small bowel epithelium, a protein that may represent a cancer cell marker.

30

10

15

20

25

The TANGO 281 proteins represent proteins downregulated in megakaryocytes that fail to express the gata-1 transcription factor (a factor critical for blood cell formation) and can, therefore, represent direct or indirect gata-1 targets.

The TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 proteins, fragments, derivatives, and variants thereof are collectively referred to herein as "polypeptides of the invention" or "proteins of the invention." Nucleic acid molecules encoding the polypeptides or proteins of the invention are collectively referred to as "nucleic acids of the invention."

5

10

15

20

25

30

35

The nucleic acids and polypeptides of the present invention are useful as modulating agents in regulating a variety of cellular processes. Accordingly, in one aspect, this invention provides isolated nucleic acid molecules encoding a polypeptide of the invention or a biologically active portion thereof. The present invention also provides nucleic acid molecules which are suitable for use as primers or hybridization probes for the detection of nucleic acids encoding a polypeptide of the invention.

The invention features nucleic acid molecules which are at least 30%, 35%, 40%, 45%, 50%, 55%, 65%, 75%, 85%, 95%, or 98% identical to the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:2, or the nucleotide sequence of the cDNA insert of an EpT253 clone deposited with ATCC® as Accession Number 207222, or a complement thereof.

The invention features nucleic acid molecules which are at least 30%, 35%, 40%, 45%, 50%, 55%, 65%, 75%, 85%, 95%, or 98% identical to the nucleotide sequence of SEQ ID NO:8, SEQ ID NO:9, or the nucleotide sequence of the cDNA insert of an EpTm253 clone deposited with ATCC® as Accession Number 207215, or a complement thereof.

The invention features nucleic acid molecules which are at least 95% or 98% identical to the nucleotide sequence of SEQ ID NO:15, SEQ ID NO:16, or the nucleotide sequence of the cDNA insert of an EpT257 clone deposited with ATCC® as Accession Number 207222, or a complement thereof.

The invention features nucleic acid molecules which are at least 95% or 98% identical to the nucleotide sequence of SEQ ID NO:21, SEQ ID NO:22, or the nucleotide sequence of the cDNA insert of an EpTm257 clone deposited with ATCC® as Accession Number 207217, or a complement thereof.

The invention features nucleic acid molecules which are at least 45%, 50%, 55%, 65%, 75%, 85%, 95%, or 98% identical to the nucleotide sequence of SEQ ID NO:26, SEQ ID NO:27, or the nucleotide sequence of the cDNA insert of an EpT258 clone deposited with ATCC® as Accession Number 207222, or a complement thereof.

5

10

30

35

The invention features nucleic acid molecules which are at least 45%, 50%, 55%, 65%, 75%, 85%, 95%, or 98% identical to the nucleotide sequence of SEQ ID NO:37, SEQ ID NO:38, or the nucleotide sequence of the cDNA insert of an EpTm258 clone deposited with ATCC® as Accession Number 207221, or a complement thereof.

The invention features nucleic acid molecules which are at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the nucleotide sequence of SEQ ID NO:46, SEQ ID NO:47, or the nucleotide sequence of the cDNA insert of an EpT281 clone deposited with ATCC® as Accession Number 207222, or a complement thereof.

The invention features nucleic acid molecules which are at least 35%, 40%, 45%, 50%, 55%, 65%, 75%, 85%, 95%, or 98% identical to the nucleotide sequence of SEQ ID NO:56, SEQ ID NO:57, or the nucleotide sequence of the cDNA insert of an EpmT281 clone deposited with ATCC® as patent deposit Number PTA-224, or a complement thereof.

The invention features nucleic acid molecules which are at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 98% identical to the nucleotide sequence of SEQ ID NO: 1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191or 192, a complement thereof, or the non-coding strand of EpT 253, EpTm253, EpT257, EpTm257, EpT258, EpTm258, EpT281 or EpTm281 cDNA of ATCC® Accession 207222, Accession Number 207215, Accession 207217, Accession Number 207221, or patent deposit Number PTA-224, wherein said nucleic acid molecules encode polypeptides or proteins that exhibit at least one structural and/or functional feature of a polypeptide of the invention.

The invention features nucleic acid molecules of at least 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1100, 1200 or 1300 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:1, the nucleotide sequence of an EpT253 cDNA of ATCC® Accession Number 207222, or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700 or 720 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:2, or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 540, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200 or 1250 contiguous

nucleotides of the nucleotide sequence of SEQ ID NO:8 the nucleotide sequence of an EpTm253 cDNa of ATCC® Accession Number 207215, or a complement thereof.

The invention features nucleic acid molecules of at least 310, 350, 400, 450, 500, 550, 600, 650 or 700 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:9, or a complement thereof.

5

10

15

20

25

30

35

The invention features nucleic acid molecules which include a fragment of at least 1800 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:15 or its complement.

The invention features nucleic acid molecules which include a fragment of at least 1150 or 1200 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:16, or its complement.

The invention features nucleic acid molecules which include a fragment of at least 1100, 1200, 1300, 1400, 1500, 1600 or 1700 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:21 the nucleotide sequence of an EpTm257 cDNA of ATCC® Accession Number 207217, or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 1150 or 1200 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:22, or its complement.

The invention features nucleic acid molecules which include a fragment of at least 420, 450, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, or 1800 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:26 the nucleotide sequence of an EpT258 cDNA of ATCC® Accession Number 207222, or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:27, or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 675, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:37 the nucleotide sequence of an EpTm258 cDNA of ATCC® Accession Number 207221, or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:38, or a complement thereof.

5

10

15

20

25

30

35

The invention features nucleic acid molecules which include a fragment of at least 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:46 the nucleotide sequence of an EpT281 cDNA of ATCC® Accession Number 207222, or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 50, 100, 200, 300, 400, 500, 600, 700 or 750 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:47, or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 550, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800 or 1850 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:56 the nucleotide sequence of an EpTm281 cDNA of ATCC® patent deposit Number PTA-224, or a complement thereof.

The invention features nucleic acid molecules which include a fragment of at least 50, 100, 200, 300, 400, 500, 600 or 700 contiguous nucleotides of the nucleotide sequence of SEQ ID NO:57, or a complement thereof.

The invention features isolated nucleic acid molecules having a nucleotide sequence that is at least about 20, 50, 100, 150, 200, 250, 300, 400, 450, 500, 550, 600, 650, 700 or more contiguous nucleotides identical to the nucleic acid sequence of SEQ ID NOS: 1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or a complement thereof, or the non-coding strand of EpT253, EpTm253, EpT257, EpTm257, EpT258, EpTm258, EpT281 or EpTm281 cDNA of ATCC® Accession 207222, Accession number 207215, Accession Number 207217, Accession Number 207221, or patent deposit number PTA-224, wherein said nucleic acid molecules encode polypeptides or proteins that exhibit at least one structural and/or functional feature of a polypeptide of the invention.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:3, the amino acid sequence encoded by an EpT253 cDNA of ATCC® Accession Number 207222, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 95%, or 98%

identical to the amino acid sequence of SEQ ID NO:10, the amino acid sequence encoded by an EpTm253 cDNA of ATCC® Accession Number 207115, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 88%, 90%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:17, the amino acid sequence encoded by an EpT257 cDNA of ATCC® Accession Number 207222, or a complement thereof.

5

10

20

25

30

35

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 88%, 90%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:23, the amino acid sequence encoded by an EpTm257 cDNA of ATCC® Accession Number 207117, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:28, the amino acid sequence encoded by an EpT258 cDNA of ATCC® Accession Number 207222, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:39, the amino acid sequence encoded by an EpTm258 cDNA of ATCC® Accession Number 207221, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:48, the amino acid sequence encoded by an EpT281 cDNA of ATCC® Accession Number 207222, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a protein having an amino acid sequence that is at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:58, the amino acid sequence encoded by an EpTm281 of ATCC® patent deposit Number PTA-224, or a complement thereof.

The invention also features nucleic acid molecules which include a nucleotide sequence encoding a polypeptide or protein having an amino acid sequence that is at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, or 58, the amino acid

5

10

15

20

25

30

35

sequence encoded by EpT253, EpTm253, EpTm257, EpTm257, EpTm258, EpTm258, EpTm281, or EpTm281 of ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207217, or Accession Number 207221, patent deposit Number PTA-224, or a complement thereof, wherein the polypeptide or protein encoded by the nucleotide sequence also exhibits at least one structural and/or functional feature of a polypeptide of the invention.

In preferred embodiments, the nucleic acid molecules have the nucleotide sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56 or 57, or the nucleotide sequence of the cDNA clones of ATCC® Accession Number 207222, 207215, 207217, 207221, 207222, or PTA-224.

Also within the invention are nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of SEQ ID NO:3, or a fragment including at least 10, 15, 20, 25, 30, 50, 75, 100, 125, 150, 175, 200, 225, 230 or 240 contiguous amino acids of SEQ ID NO:3, or the amino acid sequence encoded by an EpT253 cDNA of ATCC® Accession Number 207222.

Also within the invention are nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of SEQ ID NO:17, or a fragment including at least 10, 15, 20, 25, 30, 50, 75, 100, 125, 150, 175, 200, 225, 230 or 240 contiguous amino acids of SEQ ID NO:10, or the amino acid sequence encoded by an EpTm253 cDNA of ATCC® Accession Number 207215.

Also within the invention are nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of SEQ ID NO:10, or a fragment including at least 360, 370, 380, 390 or 400 contiguous amino acids of SEQ ID NO:17, or the amino acid sequence encoded by an EpT257 cDNA of ATCC® Accession Number 207222.

Also within the invention are nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of SEQ ID NO:23, or a fragment including at least 360, 370, 380, 390 or 400 contiguous amino acids of SEQ ID NO:23, or the amino acid sequence encoded by an EpTm257 cDNA of ATCC® Accession Number 207217.

Also within the invention are nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of SEQ ID NO:3, or a fragment including at least 15, 25, 30, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 350 or 360 contiguous amino acids of SEQ ID NO:28, or the amino acid sequence encoded by an EpT258 cDNA of ATCC® Accession Number 207222.

Also within the invention are nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of SEQ ID NO:39, or a fragment including at least 160, 175, 200, 225, 250, 275, 300, 350, 375 or 385 contiguous amino acids of SEQ

ID NO:39, or the amino acid sequence encoded by an EpT258 cDNA of ATCC® Accession Number 207221.

5

10

15

20

30

35

Also within the invention are nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of SEQ ID NO:48, or a fragment including at least 15, 25, 30, 50, 75, 100, 125, 150, 175, 200, 225, 235 or 240 contiguous amino acids of SEQ ID NO:48, or the amino acid sequence encoded by an EpT281 cDNA of ATCC® Accession Number 207222.

Also within the invention are nucleic acid molecules which encode a fragment of a polypeptide having the amino acid sequence of SEQ ID NO:58, or a fragment including at least 15, 25, 30, 50, 75, 100, 125, 150, 175 or 200 contiguous amino acids of SEQ ID NO:58, or the amino acid sequence encoded by an EpTm281 cDNA of ATCC® patent deposit Number PTA-224.

The invention also features nucleic acid molecules which encode a polypeptide fragment of at least 15, 25, 30, 50, 75, 100, 125, 150, 175, 200 or more contiguous amino acids of SEQ ID NO:3, 10, 17, 23, 28, 39, 48 or 58, or the amino acid sequence encoded by EpT253, EpTm253, EpTm257, EpTm257, EpTm258, EpTm258, EpTm281 or EpTm281 of ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207221 or patent deposit Number PTA-224, wherein the fragment also exhibits at least one structural and/or functional feature of a polypeptide of the invention.

The invention includes nucleic acid molecules which encode a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, or the amino acid sequence encoded by a cDNA of ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207221 or patent deposit Number PTA-224, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule consisting of a nucleic acid sequence encoding SEQ ID NO:3, 10, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, or the amino acid sequence encoded by a cDNA of ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221 or patent deposit Number PTA-224, or a complement thereof under stringent conditions.

Also within the invention are isolated polypeptides or proteins having an amino acid sequence that is at least about 40%, preferably 45%, 55%, 65%, 75%, 85%, 95% or

98% identical to the amino acid sequence of SEQ ID NO:3, or the amino acid sequence encoded by an EpT253 cDNA of ATCC® Accession Number 207222.

Also within the invention are isolated polypeptides or proteins having an amino acid sequence that is at least about 40%, preferably 45%, 50%, 55%, 65%, 75%, 85%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:10, or the amino acid sequence encoded by an EpTm253 cDNA of ATCC® Accession Number 207215.

5

10

15

20

25

30

35

Also within the invention are isolated polypeptides or proteins having an amino acid sequence that is at least 88%, 90%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:17, or the amino acid sequence encoded by an EpT257 cDNA of ATCC® Accession Number 207222.

Also within the invention are isolated polypeptides or proteins having an amino acid sequence that is at least 88%; 90%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:23, or the amino acid sequence encoded by an EpTm257 cDNA of ATCC® Accession Number 207217.

Also within the invention are isolated polypeptides or proteins having an amino acid sequence that is at least about 30%, preferably 35%, 45%, 55%, 65%, 75%, 85%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:28, or the amino acid sequence encoded by an EpT258 cDNA of ATCC® Accession Number 207222.

Also within the invention are isolated polypeptides or proteins having an amino acid sequence that is at least about 30%, preferably 35%, 40%, 45%, 50%, 55%, 65%, 75%, 85%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:39, or the amino acid sequence encoded by an EpTm258 cDNA of ATCC® Accession Number 207221.

Also within the invention are isolated polypeptides or proteins having an amino acid sequence that is at least about 30%, preferably 35%, 45%, 55%, 65%, 75%, 85%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:48, or the amino acid sequence encoded by an EpT281 cDNA of ATCC® Accession Number 207222.

Also within the invention are isolated polypeptides or proteins having an amino acid sequence that is at least about 30%, preferably 35%, 40%, 45%, 50%, 55%, 65%, 75%, 85%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:58, or the amino acid sequence encoded by an EpTm281 cDNA of ATCC® patent deposit Number PTA-224.

The invention also features isolated polypeptides or proteins having an amino acid sequence that is at least about 30%, preferably 35%, 40%, 45%, 50%, 55%, 65%, 75%, 85%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48 or 58, or the amino acid sequence encoded by EpT253, EpTm253, EpT257,

EpTm257, EpT258, EpTm258, EpTm281 or EpTm281 of ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, patent deposit Number PTA-224, wherein the protein or polypeptides also exhibit at least one structural and/or functional feature of a polypeptide of the invention.

5

10

15

20

25

30

35

Also within the invention are isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 30%, preferably 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95% or 98% identical to the nucleic acid sequence encoding SEQ ID NO:3, and isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:2, a complement thereof, or the non-coding strand of an EpT253 cDNA of ATCC® Accession Number 207222.

Also within the invention are isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 30%, preferably 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95% or 98% identical to the nucleic acid sequence encoding SEQ ID NO:10, and isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:8 or SEQ ID NO:9, a complement thereof, or the noncoding strand of an EpTm253 cDNA of ATCC® Accession Number 207215.

Also within the invention are isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95% or 98% identical to the nucleic acid sequence encoding SEQ ID NO:28, and isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:26 or SEQ ID NO:27, a complement thereof, or the non-coding strand of an EpT258 cDNA of ATCC® Accession Number 207222.

Also within the invention are isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95% or 98% identical to the nucleic acid sequence encoding SEQ ID NO:39, and isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:37 or SEQ ID NO:38, a complement thereof, or the non-coding strand of an EpTm258 cDNA of ATCC® Accession Number 207221.

Also within the invention are isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 30%, preferably 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95% or 98% identical to the nucleic acid sequence encoding SEQ ID NO:48, and isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:46 or SEQ ID NO:47, a complement thereof, or the non-coding strand of an EpT281 cDNA of ATCC® Accession Number 207222.

5

10

15

35

Also within the invention are isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 30%, preferably 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95% or 98% identical to the nucleic acid sequence encoding SEQ ID NO:58, and isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:56 or SEQ ID NO:57, a complement thereof, or the non-coding strand of an EpTm281 cDNA of ATCC® patent deposit Number PTA-224.

The invention also features isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence that is at least about 30%, preferably 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95% or 98% identical to a nucleic acid sequence encoding SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 20 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, isolated polypeptides or proteins which are encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 101, 25 103, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, a complement thereof, or the non-coding strand of EpT253, EpTm253, EpT257, EpTm257, EpT258, EpTm258, EpTm281, EpTm281 of 30 ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, patent deposit Number PTA-224, wherein polypeptides or proteins also exhibit at least one structural and/or functional feature of a polypeptide of the invention.

Also within the invention are polypeptides which are naturally occurring allelic variants of a polypeptide that includes the amino acid sequence of SEQ ID NO:3, 10, 17,

5

10

15

20

25

30

35

23, 28, 39, 48 or 58, or the amino acid sequence encoded by a cDNA of ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207217 Accession Number 207221, or patent deposit Number PTA-224, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule having the sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56 or 57, or a complement thereof under stringent conditions.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1 or 2, or an EpT253 cDNA of ATCC® Accession Number 207222, or a complement thereof. In other embodiments, the nucleic acid molecules are at least 450, 500, 550, 600, 650, 700, 750, 800, 1000, 1100, 1200 or 1300 contiguous nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1 or 2, an EpT253 cDNA of ATCC® Accession Number 207222, or a complement thereof.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:8 or SEQ ID NO:9, an EpTm253 cDNA of ATCC® Accession Number 207215, or a complement thereof. In other embodiments, the nucleic acid molecules are at least 540, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1159, 1200, or 1250 contiguous nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:8 or SEQ ID NO:9, an EpTm253 cDNA of ATCC® Accession Number 207215, or a complement thereof.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:15 or SEQ ID NO:16, an EpT257 cDNA of ATCC® Accession Number 207222, or a complement thereof and encode a polypeptide comprising the amino acid sequence of SEQ ID NO:17, or encode a polypeptide comprising at least 360, 370, 380, 390 or 400 contiguous amino acids or SEQ ID NO:17.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:21 or SEQ ID NO:22, an EpTm257 cDNA of ATCC® Accession Number 207217, or a complement thereof, and encode a polypeptide comprising the amino acid sequence of SEQ ID NO:23, or a polypeptide comprising at least 360, 370, 380, 390, or 400 contiguous amino acids of SEQ ID NO:23.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:26 or

SEQ ID NO:27, an EpT258 cDNA of ATCC® Accession Number 207222, or a complement thereof. In other embodiments, the nucleic acid molecules are at least 550, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:26 or SEQ ID NO:27, an EpT258 cDNA of ATCC® Accession Number 207222, or a complement thereof.

5

15

25

30

35

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:37 or SEQ ID NO:38, an EpTm258 cDNA of ATCC® Accession Number 207221, or a complement thereof. In other embodiments, the nucleic acid molecules are at least 650, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:37 or SEQ ID NO:38, an EpTm258 cDNA of ATCC® Accession Number 207221, or a complement thereof.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:46 or 47, an EpTm281 cDNA of ATCC® Accession Number 207222, or a complement thereof. In other embodiments, the nucleic acid molecules are at least 710, 750, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:46 or SEQ ID NO:47, an EpT281 cDNA of ATCC® Accession Number 207222, or a complement thereof.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:56 or 57, an EpTm281 cDNA of ATCC® patent deposit Number PTA-224, or a complement thereof. In other embodiments, the nucleic acid molecules are at least 580, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800 or 1850 contiguous nucleotides in length and hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:56 or SEQ ID NO:57, an EpTm281 cDNA of ATCC® patent deposit Number PTA-224, or a complement thereof.

The invention also features nucleic acid molecules that hybridize under stringent conditions to a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or a

5

10

15

20

25

30

nucleotide sequence of EpT253, EpTm253, EpTm257, EpTm257, EpTm258, EpTm258, EpTm281 or EpTm281 of ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, patent deposit Number PTA-224, or complement thereof, wherein such nucleic acid molecules encode polypeptides or proteins that exhibit at least one structural and/or functional feature of a polypeptide of the invention.

The invention also features nucleic acid molecules at least 15, preferably at least 50, at least 75, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 1000, at least 1100 or at least 1200 or more contiguous nucleotides in length which hybridize under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or a nucleotide sequence of EpT253, EpTm253, EpT257, EpTm257, EpT258, EpTm258, EpT281 or EpTm281 of ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, patent deposit Number PTA-224, or a complement thereof, wherein said nucleic acid molecules encode polypeptides or proteins that exhibit at least one structural and/or functional feature of a polypeptide of the invention.

In one embodiment, the invention provides an isolated nucleic acid molecule which is antisense to the coding strand of a nucleic acid of the invention.

Another aspect of the invention provides vectors, e.g., recombinant expression vectors, comprising a nucleic acid molecule of the invention. In another embodiment, the invention provides host cells containing such a vector or engineered to contain and/or express a nucleic acid molecule of the invention. The invention also provides methods for producing a polypeptide of the invention by culturing, in a suitable medium, a host cell of the invention such that a polypeptide of the invention is produced.

Another aspect of this invention features isolated or recombinant proteins and polypeptides of the invention. Preferred proteins and polypeptides possess at least one biological activity possessed by the corresponding naturally-occurring human polypeptide. An activity, a biological activity, or a functional activity of a polypeptide or nucleic acid of the invention refers to an activity exerted by a protein, polypeptide or nucleic acid molecule of the invention on a responsive cell as determined *in vivo* or *in vitro*, according to standard techniques. Such activities can be a direct activity, such as an association with

or an enzymatic activity on a second protein, or an indirect activity, such as a cellular signaling activity mediated by interaction of the protein with a second protein.

For TANGO 253, biological activities include, e.g., (1) the ability to modulate (this term, as used herein, includes, but is not limited to, "stabilize", promote, inhibit or disrupt, protein-protein interactions (e.g., homophilic and/or heterophilic), and protein-ligand interactions, e.g., in receptor-ligand recognition; (2) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of cells of the central nervous system such as neurons, glial cells (e.g., astrocytes and oligodendrocytes), and Schwann cells; (3) the ability to modulate the development of central nervous system; (4) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of renal cells; (5) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of testical cells, such as germ cells, leydig cells and Sertoli cells; (6) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of ovarian cells; (7) ability to modulate cell-cell interactions and/or cell-extracellular matrix interactions; (8) the ability to modulate the host immune response, e.g., by modulating one or more elements in the serum complement cascade; (9) the ability to modulate the proliferation, differentiation and/or activity of cells that form blood vessels and coronary tissue (e.g., coronary smooth muscle cells and/or blood vessel endothelial cells); (10) the ability to modulate intracellular signaling cascades (e.g., signal transduction cascades); and (11) the ability to modulate adipocyte function.

10

15

20

25

30

35

For TANGO 257, biological activities include, e.g., (1) the ability to modulate the development, differentiation, proliferation and/or activity of neuronal cells, e.g., olfactory neurons (2) the ability to modulate the development, differentiation, proliferation and/or activity of pulmonary system cells, e.g., lung cell types; (4) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of bone cells such as osteocytes, osteoblasts and osteoclasts (e.g., the ability promote the development of osteocytes); (5) the ability to modulate the development of bone structures such as the skull, the basisphenoid bone, the upper and lower incisor teeth, the vertebral column, the sternum, the scapula, and the femur during embryogenesis; (6) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of renal cells; (7) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of intestinal cells such as M cells; (8) the ability to modulate cell-cell interactions and/or cell-extracellular matrix interactions, e.g., neuronal cell-extracellular matrix interaction; (9) the ability to modulate cell proliferation, e.g., abnormal cell proliferation; and (10) the ability to modulate the development, differentiation, proliferation and/or

5

10

15

20

25

30

35

activity of cells that form blood vessels and coronary tissue, e.g., coronary smooth muscle cells and/or blood vessel endothelial cells.

For INTERCEPT 258, biological activities include, e.g., (1) the ability to modulate protein-protein interactions (e.g., homophilic and/or heterophilic), and protein-ligand interactions, e.g., in receptor-ligand recognition; (2) the ability to modulate cell-cell interactions; (3) the ability to modulate the host immune response; (4) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of pulmonary system cells such as bronchial cells; (5) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of renal cells; (5) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of cardiac cells such cardiac myocytes; (6) the ability to modulate the development of brown fat (e.g., the promotion of the development of brown fat); (7) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of endothelial cells; (8) the ability to modulate cell proliferation, e.g., gastrointestinal tract epithelial cell proliferation; (9) the ability to modulate intracellular signaling cascades (e.g., signal transduction cascades); and (10) the ability to modulate thrombosis (e.g., the ability to facilitate the removal of blood clots) and/or vascularization (e.g., the promotion of vascularization).

For TANGO 281, biological activities include, e.g., (1) the ability to modulate, e.g., stabilize, promote, inhibit or disrupt protein-protein interactions (e.g., homophilic and/or heterophilic), and protein-ligand interactions, e.g., in receptor-ligand recognition; (2) the ability to modulate cell-cell interactions; (3) the ability to modulate the host immune response; (4) the ability to modulate the proliferation, differentiation and/or activity of hematopoeitic cells (e.g. megakaryocytes); (5) the ability to modulate the development, differentiation, maturation, proliferation and/or activity of pulmonary system cells; (6) the ability to modulate the development, differentiation, maturation, proliferation and/or activity to modulate the development, differentiation, maturation, proliferation and/or activity of stomach cells such as cells of the gastric epithelium; (8) the ability to modulate intracellular signaling cascades (e.g., signal transduction cascades); and (9) the ability to modulate platelet function (e.g., the promotion of platelet aggregation).

In one embodiment, a polypeptide of the invention has an amino acid sequence sufficiently identical to an identified domain of a polypeptide of the invention. As used herein, the term "sufficiently identical" refers to a first amino acid or nucleotide sequence which contains a sufficient or minimum number of identical or equivalent (e.g., with a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide

sequence such that the first and second amino acid or nucleotide sequences have or encode a common structural domain and/or common functional activity. For example, amino acid or nucleotide sequences which contain or encode a common structural domain having about 60% identity, preferably 65% identity, more preferably 75%, 85%, 95%, 98% or more identity are defined herein as sufficiently identical.

In one embodiment, a TANGO 253 protein includes at least one or more of the following domains: a signal sequence, a collagen domain and a C1q domain.

5

10

15

20

25

30

35

In one embodiment, a TANGO 257 protein includes at least a signal peptide.

In one embodiment, an INTERCEPT 258 includes at least one or more of the following domains: a signal sequence, an extracellular domain, an immunoglobulin (Ig) domain, a transmembrane domain, and an intracellular or cytoplasmic domain.

In one embodiment, a TANGO 281 protein includes at least one or more of the following domains: a signal sequence, an extracellular domain, a photosystem II 10 kD phosphoprotein domain, a transmembrane domain, and an intracellular or cytoplasmic domain.

The polypeptides of the present invention, or biologically active portions thereof, can be operably linked to a heterologous amino acid sequence to form fusion proteins. The invention further features antibodies, such as monoclonal or polyclonal antibodies, that specifically bind a polypeptide of the invention. In addition, the polypeptides of the invention or biologically active portions thereof can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers.

In another aspect, the present invention provides methods for detecting the presence, activity or expression of a polypeptide of the invention in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of the presence, activity or expression such that the presence activity or expression of a polypeptide of the invention is detected in the biological sample.

In another aspect, the invention provides methods for modulating activity of a polypeptide of the invention comprising contacting a cell with an agent that modulates (inhibits or stimulates) the activity or expression of a polypeptide of the invention such that activity or expression in the cell is modulated. In one embodiment, the agent is an antibody that specifically binds to a polypeptide of the invention.

In another embodiment, the agent modulates expression of a polypeptide of the invention by modulating transcription, splicing, or translation of an mRNA encoding a polypeptide of the invention. In yet another embodiment, the agent is a nucleic acid molecule having a nucleotide sequence that is antisense to the coding strand of an mRNA encoding a polypeptide of the invention.

5

10

15

20

25

30

35

The present invention also provides methods to treat a subject having a disorder characterized by aberrant activity of a polypeptide of the invention or aberrant expression of a nucleic acid of the invention by administering an agent which is a modulator of the activity of a polypeptide of the invention or a modulator of the expression of a nucleic acid of the invention to the subject. In one embodiment, the modulator is a protein of the invention. In another embodiment, the modulator is a nucleic acid of the invention. In other embodiments, the modulator is a peptide, peptidomimetic, or other small molecule.

The present invention also provides diagnostic assays for identifying the presence or absence of a genetic lesion or mutation characterized by at least one of: (i) aberrant modification or mutation of a gene encoding a polypeptide of the invention; (ii) misregulation of a gene encoding a polypeptide of the invention; and (iii) aberrant post-translational modification of the invention wherein a wild-type form of the gene encodes a protein having the activity of the polypeptide of the invention.

In another aspect, the invention provides a method for identifying a compound that binds to or modulates the activity of a polypeptide of the invention. In general, such methods entail measuring a biological activity of the polypeptide in the presence and absence of a test compound and identifying those compounds which alter the activity of the polypeptide.

The invention also features methods for identifying a compound which modulates the expression of a polypeptide or nucleic acid of the invention by measuring the expression of the polypeptide or nucleic acid in the presence and absence of the compound.

In another aspect, the invention provides substantially purified antibodies or fragments thereof, including human, humanized, chimeric and non-human antibodies or fragments thereof, which antibodies or fragments specifically bind to a polypeptide comprising an amino acid sequence of SEQ ID NO: 3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, or the amino acid sequence encoded by the EpT253, EpTm253, EpTm257, EpTm257, EpTm258, EpTm258, EpTm281 or EpTm281 cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession number 207217, Accession number 207221, or patent deposit Number PTA-224.

In another aspect, the invention provides substantially purified antibodies or fragments thereof, including, e.g., human, non-human, chimeric and humanized antibodies, which antibodies or fragments thereof specifically bind to a polypeptide comprising at least 15 contiguous amino acids of the amino acid sequence of SEQ ID NO:

3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, or the amino acid sequence encoded by the EpT253, EpTm253, EpTm257, EpTm257, EpTm258, EpTm258, EpTm258, EpTm281 or EpTm281 cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, Accession number 207215, Accession number 207217, Accession number 207221, or patent deposit number PTA-224, or a complement thereof.

5

10

15

20

25

35

In another aspect, the invention provides substantially purified antibodies or fragments thereof, including, e.g., human, non-human, chimeric and humanized antibodies, which antibodies or fragments thereof specifically bind to a polypeptide comprising at least 95% identical to the amino acid sequence of SEQ ID NO: 3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, or the amino acid sequence encoded by the EpT253, EpTm253, EpTm257, EpTm257, EpTm258, EpTm258, EpTm258 or EpTm281 cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, Accession number 207215, Accession number 207217, Accession number 207221, or patent deposit number PTA-224, or a complement thereof.

In another aspect, the invention provides substantially purified antibodies or fragments thereof, including, e.g., human, non-human, chimeric and humanized antibodies, which antibodies or fragments thereof specifically bind to a polypeptide encoded by a nucleic acid molecule which hybridizes to the nucleic acid molecule of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192 under conditions of hybridization of 6 X SSC at 45°C and washing in 0.2 X SSC, 0.1% SDS at 65°C.

Any of the antibodies of the invention can be conjugated to a therapeutic moiety or to a detectable substance. Non-limiting examples of detectable substances that can be conjugated to the antibodies of the invention are an enzyme, a prosthetic group, a fluorescent material, a luminescent material, a bioluminescent material, and a radioactive material.

The invention also provides a kit containing an antibody of the invention conjugated to a detectable substance, and instructions for use. Still another aspect of the invention is a pharmaceutical composition comprising an antibody of the invention and a pharmaceutically acceptable carrier. In preferred embodiments, the pharmaceutical

composition contains an antibody of the invention, a therapeutic moiety, and a pharmaceutically acceptable carrier.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

5

10

20

30

35

Brief Description of the Drawings

FIGURES 1A-AB depict the cDNA sequence of human TANGO 253 (SEQ ID NO:1) and the predicted amino acid sequence of human TANGO 253 (SEQ ID NO:3). The open reading frame of SEQ ID NO:1 extends from nucleotide 188 to nucleotide 916 of SEQ ID NO:1 (SEQ ID NO:2).

FIGURE 2 depicts a hydropathy plot of human TANGO 253. Relatively hydrophobic regions of the protein are above the dashed horizontal line, and relatively hydrophilic regions of the protein are below the dashed horizontal line. The cysteine residues (cys) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 15 of SEQ ID NO:3; SEQ ID NO:5) on the left from the mature protein (amino acids 16 to 243 of SEQ ID NO:3; SEQ ID NO:4) on the right. Below the hydropathy plot, the amino acid sequence of human TANGO 253 is depicted.

FIGURES 3A-3B depict a cDNA sequence of mouse TANGO 253 (SEQ ID NO:8) and the predicted amino acid sequences of mouse TANGO 253 (SEQ ID NO:10). The open reading frame of SEQ ID NO:10 extends from nucleotide 135 to 863 of SEQ ID NO:10 (SEQ ID NO:9).

FIGURE 4 depicts a hydropathy plot of mouse TANGO 253. Relatively hydrophobic regions of the protein are shown above the dashed horizontal line, and relatively hydrophilic regions of the protein are below the dashed horizontal line. The cysteine residues (cys) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 15 of SEQ ID NO:10; SEQ ID NO:12) on the left from the mature protein (amino acids 16 to 243 of SEQ ID NO:10; SEQ ID NO:11) on the right. Below the hydropathy plot, the amino acid sequence of mouse TANGO 253 is depicted.

FIGURE 5 depicts an alignment of the amino acid sequence of human TANGO 253 (SEQ ID NO:3) and the amino acid sequence of mouse TANGO 253 (SEQ ID NO:10). The alignment demonstrates that the amino acid sequences of human and mouse TANGO 253 are 93.8% identical. This alignment was performed using the ALIGN program with a PAM120 scoring matrix, a gap length penalty of 12 and a gap penalty of 4.

FIGURES 6A-6B depict alignments of the amino acid sequence of human adipocyte complement-mediated protein precursor (SEQ ID NO:20; Swiss Prot Accession Number Q15848) and the amino acid sequence of human TANGO 253 (SEQ ID NO:3; 6A) or mouse TANGO 253 (SEQ ID NO:10; 6B). 6A shows the amino acid sequences of human adipocyte complement-mediated protein precursor and human TANGO 253 are 38.7% identical. 6B shows the amino acid sequences of human adipocyte complement-mediated precursor procursor protein and mouse TANGO 253 are 38.3% identical. These alignments were performed using the ALIGN alignment program with a PAM120 scoring matrix, a gap length penalty of 12, and a gap penalty of 4.

5

10

15

20

25

30

35

FIGURES 7A-7C depict alignments of the nucleotide sequence of human adipocyte complement-mediated protein precursor (SEQ ID NO:32; GenBank Accession Number A1417523) and the nucleotide sequence of human TANGO 253 (SEQ ID NO:1). The nucleotide sequences of human adipocyte complement-mediated protein precursor and human TANGO 253 are 29.1% identical. These alignments were performed using the ALIGN alignment program with a PAM120 scoring matrix, a gap length penalty of 12, and a gap penalty of 4.

FIGURES 8A-8C depict alignments of the nucleotide sequence of human adipocyte complement-mediated protein precursor (SEQ ID NO:32; GenBank Accession Number A1417523) and the nucleotide sequence of mouse TANGO 253 (SEQ ID NO:8). The nucleotide sequences of human adipocyte complement-mediated protein precursor and mouse TANGO 253 are 30.4% identical. These alignments were performed using the ALIGN alignment program with a PAM120 scoring matrix, a gap length penalty of 12, and a gap penalty of 4.

FIGURES 9A-9B depict the cDNA sequence of human TANGO 257 (SEQ ID NO:15) and the predicted amino acid sequence of human TANGO 257 (SEQ ID NO:17). The open reading frame of SEQ ID NO:16 extends from nucleotide 88 to nucleotide 1305 of SEO ID NO:15 (SEO ID NO:16).

FIGURE 10 depicts a hydropathy plot of human TANGO 257. Relatively hydrophobic regions of the protein are shown above the dashed horizontal line, and relatively hydrophilic regions of the protein are below the dashed horizontal line. The cysteine residues (cys) and potential N-glycosylation sites (Ngly) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 21 of SEQ ID NO:16; SEQ ID NO:19) on the left from the mature protein (amino acids 22 to 406 of SEQ ID NO:16; SEQ ID NO:18) on the right. Below the hydropathy plot, the amino acid sequence of human TANGO 257 is depicted.

5

10

15

20

25

30

35

FIGURES 11A-11B depict a cDNA sequence of mouse TANGO 257 (SEQ ID NO:21) and the predicted amino acid sequence of mouse TANGO 257 (SEQ ID NO:23). The open reading frame of SEQ ID NO:21 extends from nucleotide 31 to 1248 of SEQ ID NO:21 (SEQ ID NO:22).

FIGURE 12 depicts a hydropathy plot of mouse TANGO 257. Relatively hydrophobic regions of the protein are shown above the dashed horizontal line, and relatively hydrophilic regions of the protein are below the dashed horizontal line. The cysteine residues (cys) and potential N-glycosylation sites (Ngly) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 21 of SEQ ID NO:23; SEQ ID NO:25) on the left from the mature protein (amino acids 22 to 406 of SEQ ID NO:23; SEQ ID NO:24) on the right. Below the hydropathy plot, the amino acid sequence of mouse TANGO 257 is depicted.

FIGURE 13 depicts an alignment of the amino acid sequence of human TANGO 257 (SEQ ID NO:17) and the amino acid sequence of mouse TANGO 257 (SEQ ID NO:23). This alignment demonstrates that the amino acid sequences of human and mouse TANGO 257 are 94.1% identical. This alignment was performed using the ALIGN program with a PAM120 scoring matrix, a gap length penalty of 12 and a gap penalty of 4.

FIGURE 14 depicts an alignment of the amino acid sequence (SEQ ID NO:43) encoded by a nucleotide sequence referred to in PCT publication WO 98/39446 as "gene 64", and the amino acid sequence of human TANGO 257 (SEQ ID NO:17). Gene 64 encodes a 353 amino acid residue protein that exhibits homology with the human extracellular molecule olfactomedin, which is though to be involved in maintenance, growth and/or differentiation of chemosensory cilia on the apical dendrites of olfactory neurons. The polypeptide encoded by gene 64 also exhibits homology to human TANGO 257, which contains 406 amino acids (*i.e.*, an additional 53 amino acids carboxy to residue 353). The amino acid sequences of amino acid residues 1-353 of the gene 64-encoded polypeptide and human TANGO 257 are identical. As such, the overall amino acid sequence identity between the full length polypeptide encoded by gene 64, and the full-length human TANGO 257 polypeptide is approximately 87%. This alignment was performed using the ALIGN alignment program with a PAM120 scoring matrix, a gap length penalty of 12, and a gap penalty of 4.

FIGURES15A-15D depict an alignment of the nucleotide sequence of gene 64 (SEQ ID NO:66; PCT Publication WO 98/39446) and the nucleotide sequence of human TANGO 257 (SEQ ID NO:15). The nucleotide sequences of gene 64 and human TANGO 257 are 93.5% identical. It is noted, however, that among the differences between the two sequences is a cytosine nucleotide at human TANGO 257 (SEQ ID

NO:15) position 1146 that results in a human TANGO 257 amino acid sequence (SEQ ID NO:17) of 406 amino acids as opposed to the gene 64 amino acid sequence of only 353 amino acids (SEQ ID NO:43). Alignment of the nucleotide sequence of the gene 64 open reading frame and that of human TANGO 257 (SEQ ID NO:16) show that the two nucleotide sequences are 87.2% identical. These alignments were performed using the ALIGN program with a PAM220 scoring matrix, a gap length penalty of 12 and a gap penalty of 4.

5

20

25

30

35

FIGURE 16 depicts an alignment of the acid sequence of the gene 64-encoded polypeptide (SEQ ID NO:43) and the amino acid sequence of mouse TANGO 257 (SEQ ID NO:23). The sequences exhibit an overall amino acid sequence identity of approximately 81.8%. This alignment was performed using an ALIGN program with a PAM120 scoring matrix, a gap length penalty of 12 and a gap penalty of 4.

FIGURE 17A-17C depicts an alignment of the nucleotide sequence of gene 64 (SEQ ID NO:66) and the nucleotide sequence of mouse TANGO 257 (SEQ ID NO:21). The two sequences are approximately 76.2% identical. Alignment of the nucleotide sequence of the gene 64 open reading frame and that of mouse TANGO 257 (SEQ ID NO:22) show that the two nucleotide sequences are 77.8% identical. These alignments were performed using the ALIGN program with a PAM220 scoring matrix, a gap length penalty of 12 and a gap penalty of 4.

FIGURES 18A-18B depict the cDNA sequence of human INTERCEPT 258 (SEQ ID NO:26) and the predicted amino acid sequence of INTERCEPT 258 (SEQ ID NO:28). The open reading frame of SEQ ID NO:26 extends from nucleotide 153 to nucleotide 1262 of SEQ ID NO:26 (SEQ ID NO:27).

FIGURE 19 depicts a hydropathy plot of human INTERCEPT 258. Relatively hydrophobic regions of the protein are above the dashed horizontal line, and relatively hydrophilic regions of the protein are below the dashed horizontal line. The cysteine residues (Cys) and potential N-glycosylation sites (Ngly) are indicated by short vertical lines just below the hydropathy trace. Below the hydropathy plot, the amino acid sequence of human INTERCEPT 258 is depicted.

FIGURES 20A-20B depict a cDNA sequence of mouse INTERCEPT 258 (SEQ ID NO:37) and the predicted amino acid sequence of mouse INTERCEPT 258 (SEQ ID NO:39). The open reading frame of SEQ ID NO:37 extends from nucleotide 107 TO 1288 of SEQ ID NO:60 (SEQ ID NO:38).

FIGURE 21 depicts a hydropathy plot of mouse INTERCEPT 258. Relatively hydrophobic regions of the protein are shown above the dashed horizontal line, and relatively hydrophilic regions of the protein are below the dashed horizontal line. The

5

10

15

20

25

30

35

cysteine residues (cys) and potential N-glycosylation sites (Ngly) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 29 of SEQ ID NO:39; SEQ ID NO:41) on the left from the mature protein (amino acids 30 to 394 of SEQ ID NO:39; SEQ ID NO:40) on the right. Below the hydropathy plot, the amino acid sequence of mouse INTERCEPT 258 is depicted.

FIGURE 22 depicts an alignment of the amino acid sequence of human INTERCEPT 258 (SEQ ID NO:28) and the amino acid sequence of mouse INTERCEPT 258 (SEQ ID NO:39). The alignment demonstrates that the amino acid sequences of human and mouse INTERCEPT 258 are 62.8% identical. This alignment was performed using the ALIGN program with a PAM120 scoring matrix, a gap length penalty of 12 and a gap penalty of 4.

FIGURE 23 depicts an alignment of the amino acid sequence of human A33 antigen (SEQ ID NO:67; Swiss Prot Accession Number Q99795) and the amino acid sequence of human INTERCEPT 258 (SEQ ID NO:28). The A33 antigen is a transmembrane glycoprotein and member of the Ig superfamily that may be a cancer cell marker. The amino acid sequences of A33 antigen and human INTERCEPT 258 are 23% identical. This alignment was performed using the ALIGN alignment program with a PAM120 scoring matrix, a gap length penalty of 12, and a gap penalty of 4.

FIGURES 24A-24D depict an alignment of the nucleotide sequence of human A33 antigen (SEQ ID NO:68; Gen Bank Accession Number U79725) and the nucleotide sequence of human INTERCEPT 258 (SEQ ID NO:26). These two nucleotide sequences are 40.6% identical. The nucleotide sequence of the open reading frame of human A33 antigen and that of human INTERCEPT 258 are 44% identical. These alignments were performed using the ALIGN alignment program with a PAM120 scoring matrix, a gap length penalty of 12, and a gap penalty of 4.

FIGURE 25 depicts an alignment of the amino acid sequence of human A33 antigen (SEQ ID NO:67; Swiss Prot Accession Number Q99795) and the amino acid sequence of mouse INTERCEPT 258 (SEQ ID NO:39). These two amino acid sequences have an overall amino acid identity of 23%. This alignment was performed using the ALIGN alignment program with a PAM120 scoring matrix, a gap length penalty of 12, and a gap penalty of 4.

FIGURES 26A-26D depict an alignment of the nucleotide sequence of human A33 antigen (SEQ ID NO:68; GenBank Accession Number U79725) and the nucleotide sequence of mouse INTERCEPT 258 (SEQ ID NO:37). These two nucleotide sequences are 40% identical. The nucleotide sequence of the open reading frame of human A33

antigen and that of mouse INTERCEPT 258 are 43.2% identical. These alignments were performed using the ALIGN alignment program with a PAM120 scoring matrix, a gap length penalty of 12, and a gap penalty of 4.

FIGURE 27A-27E depict an alignment of the nucleotide sequence of human PECAM-1, an integrin expressed on endothelial cells (SEQ ID NO:72) and the nucleotide sequence of human INTERCEPT 258 (SEQ ID NO:26). These two nucleotide sequences are 40.5% identical. This alignment was performed using ALIGN alignment program with a PAM120 scoring matrix, a gap length of 12, and a gap penalty of 4.

5

10

15

20

25

30

35

FIGURE 28A-28B depict the cDNA sequence of human TANGO 281 (SEQ ID NO:46) and the predicted amino acid sequence of human TANGO 281 (SEQ ID NO:48). The open reading frame of SEQ ID NO:66 extends from nucleotide 65 to nucleotide 799 of SEQ ID NO:46 (SEQ ID NO:47).

FIGURE 29 depicts a hydropathy plot of human TANGO 281. Relatively hydrophobic regions of the protein are above the dashed horizontal line, and relatively hydrophilic regions of the protein are below the dashed horizontal line. The cysteine residues (cys) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 38 of SEQ ID NO:48; SEQ ID NO:49) on the left from the mature protein (amino acids 39 to 245 of SEQ ID NO:48; SEQ ID NO:50) on the right. Below the hydropathy plot, the amino acid sequence of human TANGO 281 is depicted.

FIGURE 30 depicts an alignment of the amino acid sequence of photosystem II 10 kD phosphoprotein domain (SEQ ID NO:69; GenBank Accession Number PF00737) and the amino acid sequence 97 to 146 of human TANGO 281 (SEQ ID NO:48). This alignment was performed using the ALIGN alignment program with a PAM120 scoring matrix, a gap length penalty of 12, and a gap penalty of 4.

FIGURES 31A-31B depict the cDNA sequence of mouse TANGO 281 (SEQ ID NO:56) and the predicted amino acid sequence of mouse TANGO 281 (SEQ ID NO:58). The open reading frame of SEQ ID NO:56 extends from nucleotide 90 to nucleotide 728 of SEQ ID NO:56 (SEQ ID NO:57).

Figure 32 depicts a hydropathy plot of mouse TANGO 281. Relatively hydrophobic regions of the protein are above the dashed horizontal line, and relatively hydrophilic regions of the protein are below the dashed horizontal line. The cysteine residues (cys) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 26 of SEQ ID NO:58; SEQ ID NO:59) on the left from the mature protein (amino acids 27 to 213 of SEQ ID

NO:58; SEQ ID NO:60) on the right. Below the hydropathy plot, the amino acid sequence of mouse TANGO 281 is depicted.

FIGURE 33 depicts an alignment of the amino acid sequence of human TANGO 281 (SEQ ID NO:48) and the amino acid sequence of mouse TANGO 281 (SEQ ID NO:58). The alignment demonstrates that the amino acid sequences of human and mouse TANGO 281 are 66.5% identical. This alignment was performed using the ALIGN program with a PAM120 scoring matrix, a gap length penalty of 12 and a gap penalty of 4.

Detailed Description of the Invention

5

10

15

20

25

30

35

The TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 proteins and nucleic acid molecules comprise families of molecules having certain conserved structural and functional features. As used herein, the terms "family" or "families" are intended to mean two or more proteins or nucleic acid molecules having a common structural domain and having sufficient amino acid or nucleotide sequence identity as defined herein. Family members can be from either the same or different species. For example, a family can comprises two or more proteins of human origin, or can comprise one or more proteins of human origin and one or more of non-human origin. Members of the same family may also have common structural domains.

For example, TANGO 253 proteins, TANGO 257 proteins, INTERCEPT 258 proteins and TANGO 281 proteins of the invention have signal sequences. As used herein, a "signal sequence" includes a peptide of at least about 15 or 20 amino acid residues in length which occurs at the N-terminus of secretory and membrane-bound proteins and which contains at least about 70% hydrophobic amino acid residues such as alanine, leucine, isoleucine, phenylalanine, proline, tyrosine, tryptophan, or valine. In a preferred embodiment, a signal sequence contains at least about 10 to 40 amino acid residues, preferably about 19-34 amino acid residues, and has at least about 60-80%, more preferably 65-75%, and more preferably at least about 70% hydrophobic residues. A signal sequence serves to direct a protein containing such a sequence to a lipid bilayer. Thus, in one embodiment, a TANGO 253 protein contains a signal sequence of about amino acids 1 to 15 of SEQ ID NO:3 (SEQ ID NO:5) or about amino acids 1 to 15 of SEQ ID NO:10 (SEQ ID NO:12). In another embodiment, a TANGO 257 protein contains a signal sequence of about amino acids 1 to 21 of SEQ ID NO:17 (SEQ ID NO:19) or about amino acids 1 to 21 of SEQ ID NO:23 (SEQ ID NO:25). In another embodiment, an INTERCEPT 258 protein contains a signal sequence at about amino acids 1 to 29 of SEQ ID NO:28 (SEQ ID NO:30) or about amino acids 1 to 29 of SEQ ID NO:39 (SEQ ID NO:41). In yet another embodiment, a TANGO 281 protein contains a signal sequence of

about amino acids 1 to 38 of SEQ ID NO:48 (SEQ ID NO:49) or about amino acids 1 to 26 of SEQ ID NO:58 (SEQ ID NO:59). The signal sequence is cleaved during processing of the mature protein.

In one embodiment, TANGO 253 includes at least one RGD cell attachment site. An RGD domain contains a contiguous arginine-glycine-aspartic acid amino acid sequence and is involved in cell-cell, cell-extracellular matrix and cell adhesion interactions. In a preferred embodiment, a TANGO 253 family member has the amino acid sequence of SEQ ID NO:3 and, preferably, a RGD cell attachment site is located at about amino acid positions 77 to 79.

5

10

15

20

25

30

35

TANGO 253 family members can also include a collagen domain. As used herein, the term "collagen domain" refers to a protein domain containing a G-X-Y amino acid repeat motif, wherein the first amino acid residue is glycine and the second and third amino acid residues can be any residue but are preferably proline or hydroxyproline. Typically, a collagen domain contains at least about 3 to 5 G-X-Y repeats, and can contain about 3, 5, 8, 10, 12, 15, 20 or more continuous G-X-Y repeats. In one embodiment, a collagen domain can fold to form a triple helical structure.

In one embodiment, a TANGO 253 family member includes at least one collagen domain having an amino acid sequence that is at least about 40%, 50%, 60%, 70%, 80%, 90%, 95% or 98% identical to amino acids 36 to 95 of SEQ ID NO:3, which is the collagen domain of human TANGO 253 (SEQ ID NO:6), or amino acids 36 to 95 of SEQ ID NO:10, which is the collagen domain of mouse TANGO 253 (SEQ ID NO:13), while maintaining a glycine residue at the first position of G-X-Y repeats within the domain to maintain at least 3, 5, 8, 10, 12, 15 or 20 contiguous G-X-Y repeats, or while most preferably maintaining a glycine repeat at the first position of each G-X-Y repeat within the domain.

TANGO 253 family members can also include a C1q domain or at least one of the conserved amino acid motifs found therein. As used herein, the term "C1q domain" refers to a protein domain that bears homology to a C1q domain present within a member of the C1 enzyme complex. A C1q domain typically includes about 130-140 amino acid residues. C1q domains are utilized in processes involving, e.g., correct protein folding and alignment and protein-protein interactions.

In one embodiment, a TANGO 253 family member includes one or more C1q domains having an amino acid sequence that is at least 45%, preferably about 50%, 55%, 60%, 70%, 75%, 80%, 90%, 95% and most preferably at least about 98% identical to amino acids 105 to 232 of SEQ ID NO:3, which is the human TANGO 253 C1q domain

(SEQ ID NO:7) or amino acids 105 to 232 of SEQ ID NO:10, which is the mouse TANGO 253 Clq domain (SEQ ID NO:14).

5

10

15

20

35

Embodiments of TANGO 253 family members include, but are not limited to, human, mouse and rat TANGO 253 nucleic acids and proteins. The features of the human and mouse TANGO 253 are described below. A cDNA encoding a rat TANGO 253 nucleotide sequence (SEQ ID NO:74), identified in clone jtrxa001e10t1, is 75.4% identical to human TANGO 253 (SEQ ID NO:1) in a 536 bp overlap. Further, the isolated rat TANGO 253 nucleotide sequence (SEQ ID NO:74) is 86% identical to mouse TANGO 253 (SEQ ID NO:9) in a 472 bp overlap.

Embodiments of TANGO 257 family members include, but are not limited to, human, mouse and rat TANGO 257 nucleic acids and proteins. The features of the human and mouse TANGO 257 are described below. A cDNA encoding a rat TANGO 257 nucleotide sequence (SEQ ID NO:75), identified within clone jtrxa102g06t1, is 83.8% identical to human TANGO 257 (SEQ ID NO:15) in a 734 bp overlap. Further, the isolated rat TANGO 257 nucleotide sequence (SEQ ID NO:75) is 88.4% identical to mouse TANGO 257 (SEQ ID NO:21) in a 731 bp overlap.

In one example, a TANGO 257 family member includes one or more of the following domains: (1) an extracellular domain; (2) a transmembrane domain; and (3) a cytoplasmic domain. In one embodiment, a TANGO 257 protein contains cytoplasmic domains of about amino residues 1 to 202 of SEQ ID NO:17 (SEQ ID NO:84) and about amino acid residues 338 to 406 of SEQ ID NO:17 (SEQ ID NO:92), transmembrane domains of about amino acid residues 203 to 221 of SEQ ID NO:17 (SEQ ID NO:86) and about amino acid residues 321 to 337 of SEQ ID NO:17 (SEQ ID NO:87), and an extracellular domain of about amino acid residues 222 to 320 of SEQ ID NO:17 (SEQ ID NO:88). In an alternative embodiment, a TANGO 257 protein contains an extracellular domain of about amino acid residues 1 to 320 of SEQ ID NO:17 (SEQ ID NO:89) or a mature extracellular domain of about amino acid residues 22 to 320 of SEQ ID NO:17 (SEO ID NO:90), a transmembrane domain of about amino acid residues 321 to 337 of SEQ ID NO:17 (SEQ ID NO:87), and a cytoplasmic domain of about amino acid residues 338 to 406 of SEQ ID NO:17 (SEQ ID NO:92). In another embodiment, a mature TANGO 257 protein contains about amino acid residues 22 to 406 of SEQ ID NO:17 (SEQ ID NO:18).

In another embodiment, a TANGO 257 protein contains intracellular domains of about amino acid residues 1 to 202 of SEQ ID NO:23 (SEQ ID NO:93) and about amino acid residues 338 to 406 of SEQ ID NO:23 (SEQ ID NO:94), transmembrane domains of about amino acid residues 203 to 221 of SEQ ID NO:23 (SEQ ID NO:95) and about

amino acid residues 321 to 337 of SEQ ID NO:32 (SEQ ID NO:96), and an extracellular domain of about amino acid residues 222 to 320 of SEQ ID NO:23 (SEQ ID NO:97). In alternative embodiment, a TANGO 257 protein contains an extracellular domain of about amino acid residues 1 to 320 of SEQ ID NO:23 (SEQ ID NO:98) or a mature extracellular domain of about amino acid residues 22 to 320 of SEQ ID NO:23 (SEQ ID NO:99), a transmembrane domain of about amino acid residues 321 to 337 of SEQ ID NO:25 (SEQ ID NO:96), and an intracellular domain of about amino acid residues 338 to 406 of SEQ ID NO:23 (SEQ ID NO:94). In another embodiment, a mature TANGO 257 protein contains about amino acid residues 22 to 406 of SEQ ID NO:24).

5

10

15

20

25

30

35

In another example, an INTERCEPT 258 family member includes one or more of the following domains: (1) an extracellular domain; (2) a transmembrane domain; and (3) a cytoplasmic domain. Thus, in one embodiment, an INTERCEPT 258 protein contains extracellular domains of about amino acid residues 1 to 206 of SEQ ID NO:28 (SEQ ID NO:81) or about amino acid residues 30 to 206 of SEQ ID NO: 28 (SEQ ID NO:76) and about amino acid residues 272 to 370 of SEQ ID NO: 28 (SEQ ID NO:34), transmembrane domains of about amino acid residues 207 to 224 of SEQ ID NO:28 (SEQ ID NO:78) and about amino acid residues 247 to 271 of SEQ ID NO:28 (SEQ ID NO:33), and a cytoplasmic domain of about amino acid residues 225 to 246 of SEQ ID NO:28 (SEQ ID NO:79). In an alternative embodiment, an INTERCEPT 258 protein contains an extracellular domain of about amino acid residues 272 to 370 of SEQ ID NO:28 (SEQ ID NO:34), a transmembrane domain of about amino acid residues 247 to 271 of SEQ ID NO:28 (SEQ ID NO:33), and a cytoplasmic domain of about amino acid residues 1 to 246 of SEQ ID NO:28 (SEQ ID NO:31) or a mature cytoplasmic domain of about amino acid residues 30 to 246 of SEQ ID NO:28 (SEQ ID NO:82). In accordance with these embodiments, an INTERCEPT 258 protein is a mature protein containing an extracellular, transmembrane and cytoplasmic domain of about amino acids 30 to 370 of SEQ ID NO:28 (SEQ ID NO:29).

In another embodiment, an INTERCEPT 258 protein contains an extracellular domain of about amino acids 1 to 249 of SEQ ID NO:39 (SEQ ID NO:42), or a mature extracellular domain of about amino acids 30 to 249 of SEQ ID NO:39 (SEQ ID NO:83). In another embodiment, an INTERCEPT 258 protein contains a transmembrane domain of about amino acids 250 to 274 of SEQ ID NO:39 (SEQ ID NO:44). In another embodiment, an INTERCEPT 258 protein contains a cytoplasmic domain of about amino acids 275 to 394 of SEQ ID NO:39 (SEQ ID NO:45). In accordance with these embodiments, an INTERCEPT 258 protein is a mature protein containing an extracellular,

5

10

15

20

25

30

35

transmembrane and cytoplasmic domain of about 30 to 394 of SEQ ID NO:39 (SEQ ID NO:40).

INTERCEPT 258 family members can also include an immunoglobulin (Ig) domain contained within the extracellular domain. As used herein, the term "Ig domain" refers to a protein domain bearing homology to immunoglobulin superfamily members. An Ig domain includes about 30-90 amino acid residues, preferably about 40-80 amino acid residues, more preferably about 50-70 amino acid residues, still more preferably about 55-65 amino acid residues, and most preferably about 57 to 59 amino acid residues. In certain embodiments, an Ig domain contains a conserved cysteine residue within about 5 to 15 amino acid residues, preferably about 7 to 12 amino acid residues, and most preferably about 8 amino acid residues from its N-terminal end, and another conserved cysteine residue within about 1 to 5 amino acid residues, preferably about 2 to 4 amino acid residues, and most preferably about 3 amino acid residues from its C-terminal end.

An Ig domain typically has the following consensus sequence, beginning about 1 to 15 amino acid residues, more preferably about 3 to 10 amino acid residues, and most preferably about 5 amino acid residues from the C terminal end of the domain: (FY)-Xaa-C-Xaa-(VA)-COO-, wherein (FY) is either a phenylalanine or a tyrosine residue (preferably tyrosine), where "Xaa" is any amino acid, C is a cysteine residue, (VA) is either a valine or an alanine residue (preferably alanine), and COO- is the protein C terminus.

In one embodiment, an INTERCEPT 258 family member includes one or more Ig domains having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 49 to 128 and/or amino acids 167 to 226 of SEQ ID NO:28, which are the Ig domains of human INTERCEPT 258 (these Ig domains are also represented as SEQ ID NO:35 and 36, respectively).

In another embodiment, an INTERCEPT 258 family member includes one or more Ig domains having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 167 to 226 of SEQ ID NO:28 (SEQ ID NO:36), includes a conserved cysteine residue about 8 residues downstream from the N-terminus of the Ig domain, and has one or more Ig domain consensus sequences described herein. In another embodiment, an INTERCEPT 258 family member includes one or more Ig domains having an amino acid sequence that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino

5

10

15

20

25

35

acids 167 to 226 of SEQ ID NO:28 (SEQ ID NO:36), includes a conserved cysteine residue 8 residues downstream from the N-terminus of the Ig domain, has one or more Ig domain consensus sequences described herein, and has a conserved cysteine within the consensus sequence that forms a disulfide both with said first conserved cysteine. In yet another embodiment, an INTERCEPT 258 family member includes one or more Ig domains having an amino acid sequence that is at least 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 167 to 226 of SEQ ID NO:28 (SEQ ID NO:36), includes a conserved cysteine residue 8 residues downstream from the N-terminus of the Ig domain, has one or more Ig domain consensus sequences described herein, has a conserved cysteine within the consensus sequence that forms a disulfide both with said first conserved cysteine, and has at least one INTERCEPT 258 biological activity as described herein.

In a preferred embodiment, an INTERCEPT 258 family member has the amino acid sequence of SEQ ID NO:28 wherein the aforementioned Ig conserved residues are located as follows: the N-terminal conserved cysteine residue is located at about amino acid position 174 (within the Ig domain SEQ ID NO:36) and the C-terminal conserved cysteine is located at about amino acid position 224 (within the Ig domain SEQ ID NO:36).

In another embodiment, an INTERCEPT 258 family member includes one or more Ig domains having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 170 to 229 of SEQ ID NO:39, which is the Ig domain of mouse INTERCEPT 258 (SEQ ID NO:71). In another embodiment, an INTERCEPT 258 family member includes one or more Ig domains having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 170 to 229 of SEQ ID NO:39 (SEQ ID NO:71), includes a conserved cysteine residue about 8 residues downstream from the N-terminus of the Ig domain, and has one or more Ig domain consensus sequences described herein, has a conserved cysteine within the consensus sequence that forms a disulfide both with said first conserved cysteine, and has at least one INTERCEPT 258 biological activity as described herein.

In a preferred embodiment, an INTERCEPT 258 family member has the amino acid sequence of SEQ ID NO:39 wherein the aforementioned Ig domain conserved residues are located as follows: the N-terminal conserved cysteine residue is located at

5

10

20

25

35

about amino acid residue position 177 (within the Ig domain SEQ ID NO:71) and the C-terminal conserved cysteine residue is located at about amino acid position 227 (within the Ig domain SEQ ID NO:71).

In another example, a TANGO 281 family member consists of one or more of the following domains: (1) an extracellular domain; (2) a transmembrane domain; and (3) a cytoplasmic domain. In one embodiment, a TANGO 281 protein contains an extracellular domain at amino acids 1 to about 123 of SEQ ID NO:48 or a mature extracellular domain at about amino acid residues 39 to 123 of SEQ ID NO:48 (SEQ ID NO:51), a transmembrane domain at about amino acid residues 124 to 148 of SEQ ID NO:48 (SEQ ID NO:52), and a cytoplasmic domain at about amino acid residues 149 to 245 of SEO ID NO:48 (SEQ ID NO:53). In another embodiment, a mature TANGO 281 protein contains about amino acid residues 39 to 245 of SEO ID NO: 48 (SEO ID NO: 50). In another embodiment, a TANGO 281 family contains an extracellular domain at amino acids 1 to about 112 of SEQ ID NO:58 or a mature extracellular domain at about amino acid residues 27 to 112 of SEQ ID NO:58 (SEQ ID NO:61), a transmembrane domain at about amino acid residues 113 to 137 of SEQ ID NO:78 (SEQ ID NO:62), and a cytoplasmic domain at about amino acid residues 138 to 213 of SEQ ID NO:78 (SEQ ID NO:63). In yet another embodiment, a mature TANGO 281 protein contains about amino acid residues 27 to 213 of SEQ ID NO: 58 (SEQ ID NO: 61).

In one embodiment, a TANGO 281 family member includes a signal sequence. In a preferred embodiment, a TANGO 281 family member has the amino acid sequence of SEQ ID NO:48, and the signal sequence is located at about amino acids 1 to 38. In an another preferred embodiment, a TANGO 281 family member has the amino acid sequence of SEQ ID NO:58, and the signal sequence is located at about amino acids 1 to 26.

A photosystem II 10kd phosphoprotein (PSBH) domain has been identified in the TANGO 281 proteins. The domain is also present in the chloroplast gene PSBH that encodes a 9-10kDa thylakoid membrane protein (PSII-H) which is associated with photosystem II. In one embodiment, a TANGO 281 family member includes one or more PSBH domains having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 41 to 90 and/or amino acids 127 to 182 of SEQ ID NO:48, which are the PSBH domains of human TANGO 281 (these PSBH domains are also represented as SEQ ID NO:54 and 55, respectively). In another embodiment, a TANGO 281 family member includes one or more PSBH domains having an amino acid sequence that is at least about 55%, preferably at least about 65%, more

preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 41 to 90 and/or amino acids 127 to 182 of SEQ ID NO:48, which are the PSBH domains of human TANGO 281 (these PSBH domains are also represented as SEQ ID NO:54 and 55, respectively), includes one or more PSBH domain consensus sequences described herein, and has at least one TANGO 281 biological activity as described herein.

In another embodiment, a TANGO 281 family member includes one or more PSBH domains having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least 75%, yet more preferably at least about 85%, and most preferably at least about 95% to 98% identical to amino acids 42 to 91 and/or amino acids 128 to 183 of SEQ ID NO:58, which are the PSBH domains of mouse TANGO 281 (these PSBH domains are also represented as SEQ ID NO:64 and 65, respectively). In another embodiment, a TANGO 281 family member includes one or more PSBH domains having an amino acid sequence that is at least about 55%, preferably at least about 65%, more preferably at least about 75%, yet more preferably at least about 85%, and most preferably at least about 95% identical to amino acids 42 to 91 and/or amino acids 128 to 183 of SEQ ID NO:58, which are the PSBH domains of mouse TANGO 281 (these PSBH domains are also represented as SEQ ID NO:64 and 65, respectively), includes one or more PSBH domain consensus sequences described herein, and has at least one TANGO 281 biological activity as described herein.

Various features of human and mouse TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 are summarized below.

Human TANGO 253

5

10

15

20

25

30

35

A cDNA encoding human TANGO 253 was identified by analyzing the sequences of clones present in a coronary artery smooth muscle library for sequences that encode secreted proteins. The primary cells utilized in construction of the library had been stimulated with agents that included phorbol 12-myristate 13-acetate (PMA), tumor neurosis factor (TNF), ionomycin, and cyclohexamide (CHX). This analysis led to the identification of a clone, Athma27h9, encoding full-length human TANGO 253. The human TANGO 253 cDNA of this clone is 1339 nucleotides long (Figures 1A-1B; SEQ ID NO:1). The open reading frame of this cDNA, nucleotides 188 to 916 of SEQ ID NO:1 (SEQ ID NO:2), encodes a 243 amino acid secreted protein (Figures 1A-1B; SEQ ID NO:3).

Figure 2 depicts a hydropathy plot of human TANGO 253. Relatively hydrophobic regions of the protein are shown above the horizontal line, and relatively

hydrophilic regions of the protein are below the horizontal line. The cysteine residues (cys) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 15 of SEQ ID NO:3; SEQ ID NO:5) on the left from the mature protein (amino acids 15 to 243 of SEQ ID NO:3; SEQ ID NO:4) on the right.

5

15

25

30

35

The signal peptide prediction program SIGNALP (Nielsen et al., 1997, *Protein Engineering* 10:1-6) predicted that human TANGO 253 includes a 15 amino acid signal peptide (amino acid 1 to amino acid 15 of SEQ ID NO:3; SEQ ID NO:5) preceding the mature human TANGO 253 protein (corresponding to amino acid 16 to amino acid 243 of SEQ ID NO:3; SEQ ID NO:4). The molecular weight of TANGO 253 protein without post-translational modifications is 25.3 kDa prior to the cleavage of the signal peptide, 23.8 kDa after cleavage of the signal peptide.

Human TANGO 253 includes a collagen domain (at about amino acids 36 to 95 of SEQ ID NO:3; SEQ ID NO:6) and a C1q domain (at about amino acids 105 to 232 of SEQ ID NO:3; SEQ ID NO:7) containing 23 G-X-Y repeats. An RGD cell attachment site is found at amino acids 77 to 79 of SEO ID NO:3.

Three protein kinase C phosphorylation sites are present in human TANGO 253. The first has the sequence SAK (at amino acids 107 to 109 of SEQ ID NO:3), the second has the sequence TGK (at amino acids 140 to 142 of SEQ ID NO:3), and the third has the sequence SIK (at amino acids 220 to 222 of SEQ ID NO:3). Human TANGO 253 has three N-myristylation sites. The first has the sequence GLAAGS (at amino acids 11 to 16 of SEQ ID NO:3), the second has the sequence GGRPGL (at amino acids 68 to 73 of SEQ ID NO:3) and the third has the sequence GIYASI (at amino acids 216 to 221 of SEQ ID NO:3).

Northern analysis of human TANGO 253 expression demonstrates strong expression in heart, lung, liver, kidney and pancreas, and moderate expression in brain, placenta and skeletal muscle. Liver expression reveals two human TANGO mRNA bands, one of approximately 1.3kb (which is the size observed in the other tissues) as well as a band at approximately 1kb, which may be the result of an alternative splicing event.

Secretion assays reveal a human TANGO 253 protein of approximately 30kDa. The secretion assays were performed as follows: 8x10⁵ 293T cells were plated per well in a 6-well plate and the cells were incubated in growth medium (DMEM, 10% fetal bovine serum, penicillin/strepomycin) at 37°C, 5% CO₂ overnight. 293T cells were transfected with 2 μg of full-length TANGO 253 inserted in the pMET7 vector/well and 10 μg LipofectAMINE (GIBCO/BRL Cat. # 18324-012) /well according to the protocol for GIBCO/BRL LipofectAMINE. The transfectant was removed 5 hours later and fresh

growth medium was added to allow the cells to recover overnight. The medium was removed and each well was gently washed twice with DMEM without methionine and cysteine (ICN Cat. # 16-424-54). 1 ml DMEM without methionine and cysteine with 50 µCi Trans-35S (ICN Cat. # 51006) was added to each well and the cells were incubated at 37°C, 5% CO₂ for the appropriate time period. A 150 µl aliquot of conditioned medium was obtained and 150 µl of 2X SDS sample buffer was added to the aliquot. The sample was heat-inactivated and loaded on a 4-20% SDS-PAGE gel. The gel was fixed and the presence of secreted protein was detected by autoradiography.

TANGO 253 exhibits homology to an adipocyte complement-mediated protein precursor and so may be involved in adipocyte function, e.g., may act as a signaling molecule for adipocyte tissue. Figure 6A shows an alignment of the human TANGO 253 amino acid sequence (SEQ ID NO:3) with the human adipocyte complement-mediated protein precursor amino acid sequence (SEQ ID NO:20). The alignment shows that there is a 38.7% overall amino acid sequence identity between human TANGO 253 and human adipocyte complement-mediated protein precursor.

Figures 7A-7C shows an alignment of the nucleotide sequence of human adipocyte complement-mediated protein precursor nucleotide sequence (SEQ ID NO:32); GenBank Accession Number A1417523) and the nucleotide sequence of human TANGO 253 (SEQ ID NO:1). The alignment shows a 29.1% overall sequence identity between the two nucleotide sequences.

The human TANGO 253 nucleotide sequence was mapped to human chromosome 11, between flanking markers D11S1356 and D11S924 using the Genebridge 4 Human Radiation hybrid mapping panel with CAAAGTGAGCTCATGCTCTCAC (SEQ ID NO:193) as the forward primer and CTCTGGTCTTGGGCAGAAATC (SEQ ID NO:194) as the reverse primer.

Clone EpT253, which encodes human TANGO 253, was deposited with the American Type Culture Collection (10801 University Boulevard, Manassas, VA 20110-2209) on April 21, 1999 and assigned Accession Number 207222. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112.

Mouse TANGO 253

5

10

15

20

25

30

35

A cDNA encoding mouse TANGO 253 was identified by analyzing the sequences of clones present in a mouse microglia library using a rat TANGO 253 probe from sciatic

5

10

15

20

25

30

35

nerve. This analysis led to the identification of a clone, AtmXa1e1075, encoding full-length mouse TANGO 253. The mouse TANGO 253 cDNA of this clone is 1263 nucleotides long (Figures 3A-3B; SEQ ID NO:8). The open reading frame of this cDNA, nucleotides 135 to 863 of SEQ ID NO:8 (SEQ ID NO:9), encodes a 243 amino acid secreted protein (Figures 3A-3B; SEQ ID NO:10).

Figure 4 depicts a hydropathy plot of mouse TANGO 253. Relatively hydrophobic regions of the protein are shown above the horizontal line, and relatively hydrophilic regions of the protein are below the horizontal line. The cysteine residues (cys) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acid 1 to amino acid 15 of SEQ ID NO:10; SEQ ID NO:12) on the left from the mature protein (amino acid 16 to amino acid 243 of SEQ ID NO:10; SEQ ID NO:11) on the right.

The signal peptide prediction program SIGNALP (Nielsen et al., 1997, Protein Engineering 10:1-6) predicted that mouse TANGO 253 includes a 15 amino acid signal peptide (amino acid 1 to amino acid 15 of SEQ ID NO:10; SEQ ID NO:12) preceding the mature mouse TANGO 253 protein (corresponding to amino acid 16 to amino acid 243 of SEQ ID NO:10; SEQ ID NO:11). The molecular weight of mouse TANGO 253 protein without post-translational modifications is 25.4 kDa prior to the cleavage of the signal peptide, 23.9 kDa after cleavage of the signal peptide.

Mouse TANGO 253 includes a collagen domain (at amino acids 36 to 95 of SEQ ID NO:10; SEQ ID NO:13) and a C1q domain (at amino acids 105-232 of SEQ ID NO:10; SEQ ID NO:14).

Three protein kinase C phosphorylation sites are present in mouse TANGO 253. The first has the sequence SAK (at amino acids 107 to 109 of SEQ ID NO:10), the second has the sequence TGK (at amino acids 140 to 142 of SEQ ID NO:10), and the third has the sequence SIK (at amino acids 220 to 222 of SEQ ID NO:10). Mouse TANGO 253 has four N-myristylation sites. The first has the sequence GLVSGS (at amino acids 11 to 16 of SEQ ID NO:10), the second has the sequence GGRPGL (at amino acids 68 to 73 of SEQ ID NO:10), the third has the sequence GQSIAS (at amino acids 172 to 177 of SEQ ID NO:10), and the fourth has the sequence GIYASI (at amino acids 216 to 221 of SEQ ID NO:10).

As shown in Figure 5, human TANGO 253 protein and mouse TANGO 253 protein are 93.8% identical. Figure 6B shows an alignment of the mouse TANGO 253 amino acid sequence (SEQ ID NO:10) with the human adipocyte complement-mediated protein precursor amino acid sequence (SEQ ID NO:20). The alignment shows that there

is a 38.3% overall amino acid sequence identity between mouse TANGO 253 and human adipocyte complement-mediated protein precursor.

Figures 8A-8C shows an alignment of the nucleotide sequence of human adipocyte complement-mediated protein precursor nucleotide sequence (SEQ ID NO:32); GenBank Accession Number A1417523) and the nucleotide sequence of mouse TANGO 253 (SEQ ID NO:8). The alignment shows a 30.4% overall sequence identity between the two nucleotide sequences.

In situ tissue screening was performed on mouse embryonic tissue (obtained from embryos at embryonic day 13.5 to postnatal day 1.5) and adult tissue to determine the expression of mouse TANGO 253 mRNA. Expression of mouse TANGO 253 during embryogenesis was ubiquitously expressed throughout the central nervous system. Strong expression of mouse TANGO 253 was detected in choriod plexus of the fourth ventricle of E18.5 and E1.5 embryos examined. Expression of mouse TANGO 253 was also detected in the lungs of E14.5 and E15.5 embryos and in the kidneys of E15.5 embryos.

Mouse TANGO 253 expression was detected by *in situ* hybridization in the following adult tissues: a signal was detected in the brain in the choroid plexus of the lateral and 4th ventricles, and the olfactory bulb; a signal was detected in the cortical region of the kidney consistent with the pattern of glomeruli (in particular, the cortical radial veins); a ubiquitous signal was detected in the thymus; a weak, ubiquitous signal was detected in the spleen; a moderate signal was associated with the seminiferous vesicles of the testes; a signal was detected in the ovaries; and a ubiquitous signal restricted to the zone of giant cells was detected in the placenta.

Clone EpTm253, which encodes mouse TANGO 253, was deposited with the American Type Culture Collection (10801 University Boulevard, Manassas, VA 20110-2209) on April 21, 1999 and assigned Accession Number 207215. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112.

30

35

5

10

15

20

25

Uses of TANGO 253 Nucleic acids, Polypeptides, and Modulators Thereof

As TANGO 253 was originally found in the coronary artery smooth muscle library described above, TANGO 253 nucleic acids, proteins, and modulators thereof can be used to modulate the proliferation, development, differentiation, and/or function of organs, e.g., tissues and cells that form blood vessels and coronary tissue, e.g., cells of the coronary connective tissue, e.g., abnormal coronary smooth muscle cells and/or endothelial cells of

blood vessels. TANGO 253 nucleic acids, proteins, and modulators thereof can also be used to modulate symptoms associated with abnormal coronary function, e.g., heart diseases and disorders such as atherosclerosis, coronary artery disease and plaque formation.

5

10

15

20

25

30

35

In light of the collagen domain, TANGO 253 nucleic acids, proteins and modulators thereof can be utilized to modulate (e.g., stabilize, promote, inhibit or disrupt) cell/extracellular matrix (ECM) interactions, cell/cell interactions and, for example, signal transduction events associated with such interactions. For example, such TANGO 253 compositions and modulators thereof can be used to modulate binding of such ECM-associated factors as integrin and can function to modulate ligand binding to cell surface receptors. In addition, TANGO 253 nucleic acids, proteins and modulators thereof can be utilized to modulate connective tissue formation, maintenance and function, as well as to modulate symptoms associated with connective tissue-related disorders, to promote wound healing, and to reduce, slow or inhibit ameliorate connective tissue-related signs of aging, such as wrinkle formation.

In light of the C1q domain exhibited by TANGO 253 proteins and their similarity to the collectin family, TANGO 253 nucleic acids, proteins and modulators thereof can be utilized to modulate immune-related processes such as the ability to modulate host immune response by, e.g., modulating one or more elements in the serum complement cascade, including, for example activation of the cascade, formation of and/or binding to immune complexes, detection and defense against surface antigens and bacteria, and immune surveillance for rapid removal or pathogens. Such TANGO 253 compositions and modulators thereof can be utilized, e.g., to ameliorate incidence of any symptoms associated with disorders that involve such immune-related processes, including, but not limited to infection and autoimmune disorders.

In addition, such compositions and modulators thereof can be utilized to modulate folding and alignment of the collagen domain (e.g., into a triple helix), disorders associated with collagen defects, including but not limited to bone disorders, e.g., bone resorption disorders, or hearing, e.g., inner ear, disorders, to modulate protein-protein interactions and recognition events (either homotypic or heterotypic) and cellular response events (e.g., signal transduction events) associated with such interactions and recognitions, and to ameliorate symptoms associated with abnormal signaling, protein-protein interaction and/or cellular response events including, but not limited to cell proliferation disorders such as cancer, abnormal neuronal interactions, such as disorders involving abnormal synaptic activity, e.g., abnormal Purkinje cell activities.

5

10

15

20

25

35

Human TANGO 253 protein contains an RGD domain. As such, TANGO 253 nucleic acids, proteins and modulators thereof can be utilized to modulate processes involved in, e.g., bone development, sepsis, tumor progression, metastasis, cell migration, fertilization, and cellular interactions with the extracellular matrix required for growth, differentiation, and apoptosis, as well as cellular processes involving cell adhesion, such as cell migration.

TANGO 253 proteins exhibit similarity to adipocyte complement-related protein precursor and can act as signaling molecules for adipocyte tissue. In light of this, TANGO 253 nucleic acids, proteins and modulators thereof can be utilized to modulate adipocyte function and adipocyte-related processes and disorders such as, e.g., obesity.

TANGO 253 nucleic acids, proteins, and modulators thereof can also be utilized to modulate the development, differentiation, maturation, proliferation and/or activity of cells of the central nervous system such as neurons, glial cells (e.g., astrocytes and oligodendrocytes), and Schwann cells. TANGO 253 nucleic acids, polypeptides, or modulators thereof can also be used to treat disorders of the brain, such as cerebral edema, hydrocephalus, brain herniations, iatrogenic disease (due to, e.g., infection, toxins, or drugs), inflammations (e.g., bacterial and viral meningitis, encephalitis, and cerebral toxoplasmosis), cerebrovascular diseases (e.g., hypoxia, ischemia, and infarction, intracranial hemorrhage and vascular malformations, and hypertensive encephalopathy), tumors (e.g., neuroglial tumors, neuronal tumors, tumors of pineal cells, meningeal tumors, primary and secondary lymphomas, intracranial tumors, and medulloblastoma), and to treat injury or trauma to the brain.

TANGO 253 nucleic acids, proteins, and modulators thereof can also be utilized to treat renal (kidney) disorders, such as glomerular diseases (e.g., acute and chronic glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, focal proliferative glomerulonephritis, glomerular lesions associated with systemic disease, such as systemic lupus erythematosus, Goodpasture's syndrome, multiple myeloma, diabetes, polycystic kidney disease, neoplasia, sickle cell disease, and chronic inflammatory diseases), tubular diseases (e.g., acute tubular necrosis and acute renal failure, polycystic renal diseasemedullary sponge kidney, medullary cystic disease, nephrogenic diabetes, and renal tubular acidosis), tubulointerstitial diseases (e.g., pyelonephritis, drug and toxin induced tubulointerstitial nephritis, hypercalcemic nephropathy, and hypokalemic nephropathy), acute and rapidly progressive renal failure, chronic renal failure, nephrolithiasis, gout, vascular diseases (e.g., hypertension and nephrosclerosis, microangiopathic hemolytic anemia, atheroembolic renal disease, diffuse cortical necrosis, and renal infarcts), or tumors (e.g., renal cell carcinoma and nephroblastoma).

TANGO 253 nucleic acids, proteins and modulators thereof can, in addition to the above, be utilized to regulate or modulate development and/or differentiation of processes involved in microglial, lung, liver, kidney, pancreas, brain, placental and skeletal muscle formation and activity, as well as in ameliorating any symptom associated with a disorder of such cell types, tissues and organs.

TANGO 253 expression can be utilized as a marker (e.g., an in situ marker) for specific tissues (e.g., the brain) and/or cells (e.g., neurons) in which TANGO 253 is expressed. TANGO 253 nucleic acids can also be utilized for chromosomal mapping.

10 Human TANGO 257

5

15

20

25

30

35

A cDNA encoding human TANGO 257 was identified by analyzing the sequences of clones present in a coronary smooth muscle library for sequences that encode secreted proteins. This analysis led to the identification of a clone, Athma7c10, encoding full-length human TANGO 257. The human TANGO 257 cDNA of this clone is 1832 nucleotides long (Figures 9A-9B; SEQ ID NO:15). The open reading frame of this cDNA, nucleotides 88 to 1305 of SEQ ID NO:15 (SEQ ID NO:16), encodes a 406 amino acid secreted protein (Figures 9A-9B; SEQ ID NO:17).

Figure 10 depicts a hydropathy plot of human TANGO 257. Relatively hydrophobic regions of the protein are above the horizontal line, and relatively hydrophilic regions of the protein are below the horizontal line. The cysteine residues (cys) and N-glycosylation sites are (Ngly) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence from the mature protein described below.

The signal peptide prediction program SIGNALP (Nielsen et al., 1997, *Protein Engineering* 10:1-6) predicted that human TANGO 257 includes a 21 amino acid signal peptide (amino acid 1 to amino acid 21 of SEQ ID NO:17; SEQ ID NO:19) preceding the mature human TANGO 257 protein (corresponding to amino acid 22 to amino acid 406 of SEQ ID NO:17; SEQ ID NO:18). The molecular weight of human TANGO 257 protein without post-translational modifications is 46.0 kDa prior to the cleavage of the signal peptide, 43.8 kDa after cleavage of the signal peptide.

Two N-glycosylation sites are present in human TANGO 257. The first has the sequence NDTA and is found at amino acids 177 to 180 of SEQ ID NO:17, and the second has the sequence NRTV and is found at amino acids 248 to 251 of SEQ ID NO:17. A cAMP and cGMP dependent protein kinase phosphorylation site having the sequence RKAS is found in human TANGO 257 at amino acids 196 to 199 of SEQ ID NO:17. Five protein kinase C phosphorylation sites are present in human TANGO 257. The first has

5

20

25

30

35

the sequence SSR (at amino acids 48 to 50 of SEQ ID NO:17), the second has the sequence SGR (at amino acids 84 to 86 of SEQ ID NO:17), the third has the sequence SMK (at amino acids 144 to 146 of SEQ ID NO:17), the fourth has the sequence TEK (at amino acids 166 to 168 of SEQ ID NO:17) and the fifth has the sequence SLR (at amino acids 374 to 376 of SEQ ID NO:17). Five casein kinase II phosphorylation sites are present in human TANGO 257. The first has the sequence TEAD (at amino acids 78 to 81 of SEQ ID NO:17), the second has the sequence TQND (at amino acids 175 to 178 of SEQ ID NO:17), the third has the sequence TVVD (at amino acids 250 to 253 of SEQ ID NO:17), the fourth has the sequence TYID (at amino acids 272 to 275 of SEQ ID NO:17), and the fifth has the sequence TRED (at amino acids 289 to 292 of SEQ ID NO:17). Human TANGO 257 has a tyrosine kinase phosphorylation site having the sequence RLEREVDY at amino acids 89 to 96 of SEQ ID NO:17). Human TANGO 257 has three N-myristylation sites. The first has the sequence GGPGTK (at amino acids 115 to 120 of SEQ ID NO:17), the second has the sequence GGPAGL (at amino acids 152 to 157 of SEQ ID NO:17) and the third has the sequence GAHASL (at amino acids 370 to 375 of 15 SEQ ID NO:17). Human TANGO 257 has an amidation site having the sequence KGRR at amino acids 122 to 125 of SEQ ID NO:17.

Northern analysis of human TANGO 257 expression demonstrates moderate expression in heart, liver and pancreas, and low expression in kidney, lung and skeletal muscle.

Secretion assays reveal a human TANGO 257 protein of approximately 50kDa. The secretion assays were performed as described in the human TANGO 253 section above.

The human TANGO 257 nucleotide sequence was mapped to human chromosome 1 using the Genebridge 4 Human Radiation hybrid mapping panel with GGATGATGG CTACCAGATTGTC (SEQ ID NO:195) as the forward primer and GGAACATTGAGGGTTTTGACTC (SEQ ID NO:196) as the reverse primer.

TANGO 257 is homologous to a protein encoded by a nucleic acid sequence referred to in PCT Publication WO 98/39446 as "gene 64". Figure 14 shows an alignment of the human TANGO 257 amino acid sequence (SEQ ID NO:17) with the gene 64 encoded amino acid sequence (SEQ ID NO:43). As shown in the figure, the 353 amino acid gene 64 polypeptide is identical to amino acid residues 1-353 of human TANGO 257 (SEQ ID NO:17). Human TANGO 257 contains 406 amino acids, i.e., contains an additional 53 amino acid residues carboxy to residue 353. The overall amino acid sequence identity between full-length human TANGO 257 polypeptide and the gene 64encoded polypeptide is approximately 87%.

Figures 15A-15D show an alignment of the nucleotide sequence of gene 64 (SEQ ID NO:66; PCT Publication WO 98/39446) and the nucleotide sequence of human TANGO 257 (SEQ ID NO:15). The nucleotide sequences of gene 64 and human TANGO 257 are 93.5% identical. Among the differences between the sequences is a cytosine nucleotide at human TANGO 257 (SEQ ID NO:15) position 1587 that represents an insertion relative to the corresponding gene 64 position when the gene 64 and TANGO 257 sequences are aligned. This additional cytosine results in the TANGO 257 open reading frame being 1218 base pairs encoding a polypeptide of 406 amino acid residues. In contrast, the gene 64 nucleic acid sequence encodes a polypeptide of only 353 amino acid residues, as discussed above.

Clone EpT257, which encodes human TANGO 257, was deposited with the American Type Culture Collection (10801 University Boulevard, Manassas, VA 20110-2209) on April 21, 1999 and assigned Accession Number 207222. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112.

Mouse TANGO 257

5

10

15

20

25

30

35

A cDNA encoding mouse TANGO 257 was identified by analyzing the sequences of clones present in a mouse microglia library using a rat TANGO 257 probe. This analysis led to the identification of a clone, Atmua102gbl, encoding full-length mouse TANGO 257. The mouse TANGO 257 cDNA of this clone is 1721 nucleotides long (Figures 11A-11B; SEQ ID NO:21). The open reading frame of this cDNA, nucleotides 31 to 1248 of SEQ ID NO:21 (SEQ ID NO:22), encodes a 406 amino acid secreted protein (Figures 11A-11B; SEQ ID NO:23).

Figure 12 depicts a hydropathy plot of mouse TANGO 257. Relatively hydrophobic regions of the protein are above the horizontal line, relatively hydrophilic regions of the protein are below the horizontal line. The cysteine residues (cys) and N-glycosylation sites are (Ngly) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence from the mature protein described below.

The signal peptide prediction program SIGNALP (Nielsen et al., 1997, Protein Engineering 10:1-6) predicted that mouse TANGO 257 includes a 21 amino acid signal peptide (amino acid 1 to amino acid 21 of SEQ ID NO:23; SEQ ID NO:25) preceding the mature TANGO 257 protein (corresponding to amino acid 22 to amino acid 406 of SEQ

ID NO:23; (SEQ ID NO:24). The molecular weight of mouse TANGO 257 protein without post-translational modifications is 45.8 kDa prior to the cleavage of the signal peptide, 43.6 kDa after cleavage of the signal peptide.

5

10

15

30

35

Two N-glycosylation sites are present in mouse TANGO 257. The first has the sequence NDTA and is found at amino acids 177 to 180 of SEQ ID NO:23, and the second has the sequence NRTV and is found at amino acids 248 to 251 of SEQ ID NO:23. A cAMP and cGMP-dependent protein kinase phosphorylation site having the sequence RKAS is found in mouse TANGO 257 at amino acids 196 to 199 of SEO ID NO:23. Five protein kinase C phosphorylation sites are present in mouse TANGO 257. The first has the sequence SSR (at amino acids 48 to 50 of SEQ ID NO:23), the second has the sequence TLR (at amino acids 75 to 77 of SEQ ID NO:23), the third has the sequence SGR (at amino acids 84 to 86 of SEQ ID NO:23), the fourth has the sequence SMK (at amino acids 144 to 146 of SEQ ID NO:23) and the fifth has the sequence SLR (at amino acids 374 to 376 of SEQ ID NO:23). Five casein kinase II phosphorylation sites are present in mouse TANGO 257. The first has the sequence TEAD (at amino acids 78 to 81 of SEQ ID NO:23), the second has the sequence TQND (at amino acids 175 to 178 of SEQ ID NO:23), the third has the sequence TVVD (at amino acids 250 to 253 of SEQ ID NO:23), the fourth has the sequence TYID (at amino acids 272 to 275 of SEQ ID NO:23), and the fifth has the sequence TRRD (at amino acids 289 to 292 of SEQ ID NO:23).

Mouse TANGO 257 has a tyrosine kinase phosphorylation site having the sequence RLEREVDY at amino acids 89 to 96 of SEQ ID NO:23. Mouse TANGO 257 has four N-myristylation sites. The first has the sequence GGPGAK (at amino acids 115 to 120 of SEQ ID NO:23), the second has the sequence GGSVGL (at amino acids 151 to 157 of SEQ ID NO:23), the third has the sequence GGPGGG (at amino acids 227 to 232 of SEQ ID NO:23), and the fourth has the sequence GAHASL (at amino acids 370 to 375 of SEQ ID NO:23). Mouse TANGO 257 has an amidation site having the sequence KGRR at amino acids 122 to 125 of SEQ ID NO:23.

As shown in Figure 13, human TANGO 257 protein and mouse TANGO 257 protein are 94.1% identical.

Figure 16 shows an alignment of mouse TANGO 257 amino acid sequence (SEQ ID NO:23) with the amino acid sequence encoded by gene 64 (SEQ ID NO:43). As shown in the figure, the 253 amino acid gene 64 polypeptide and the 406 amino acid mouse TANGO 257 polypeptide and the 406 amino acid mouse TANGO 257 polypeptide are approximately 82% identical. Figures 17A-17C show an alignment of the nucleotide sequence of gene 64 (SEQ ID NO:66; PCT publication no. 98/39446) and the nucleotide

sequence of mouse TANGO 257 (SEQ ID NO:21). As shown in the figure, the two nucleotide sequences are approximately 76% identical.

In situ tissue screening was performed on mouse adult tissues and embryonic tissues (obtained from embryos E13.5 to P1.5) to analyze for the expression of mouse TANGO 257 mRNA. Mouse TANGO 257 expression was detected the following adult tissues: the submandibular gland; the renal papilla region of the kidney; the capsule region of the adrenal gland; and the labyrinth zone of the placenta.

In the case of embryonic expression, mouse TANGO 257 expression was detected in the bones, lungs, intestines, and kidneys. At E13.5, a signal was detected in many tissues including the developing bone structures such as the vertebrae, of the spinal column, jaw, and scapula. At E14.5, the signal pattern was very similar to that detected at E13.5. At 15.5, a signal was detected in all major bone structures, including the skull, basisphenoid bone, upper and lower incisor teeth, vertebral column, sternum, scapula, and femur. A ubiquitous signal was also detected in the lung, kidney, and intestinal tract. At 16.5 and 18.5, the signal is very similar to that detected at E15.5. At P1.5, a signal was still detected in all of the major bone structures and signal detected in the lung, kidney, and intestines has dropped to nearly background levels.

Clone EpTm257, which encodes mouse TANGO 257, was deposited with the American Type Culture Collection (10801 University Boulevard, Manassas, VA 20110-2209) on April 21, 1999 and assigned Accession Number 207117. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112.

25

30

35

5

10

15

20

Uses of TANGO 257 Nucleic acids, Polypeptides, and Modulators Thereof

As TANGO 257 was originally found in a coronary artery smooth muscle library, TANGO 257 nucleic acids, proteins, and modulators thereof can be used to modulate the proliferation, development, differentiation, and/or function of organs, e.g., heart, tissues and cells that form blood vessels and coronary tissue, e.g., cells of the coronary connective tissue, e.g., coronary smooth muscle cells and/or endothelial cells of blood vessels. TANGO 257 nucleic acids, proteins, and modulators thereof can also be used to modulate symptoms associated with abnormal coronary function, e.g., heart diseases and disorders such as atherosclerosis, coronary artery disease and plaque formation.

In light of TANGO 257's homology to the extracellular molecule olfactomedin, TANGO 257 nucleic acids, proteins and modulators thereof can be utilized to modulate

development, differentiation, proliferation and/or activity of neuronal cells, e.g., olfactory neurons and to modulate neuronal activities involving maintenance, growth and/or differentiation of chemosensory cilia, modulate cell-cell interactions and cell-ECM interactions, e.g., neuronal (such as olfactory) cell-ECM interactions. TANGO 257 nucleic acids, proteins and modulations thereof can also be used to modulate symptoms associated with abnormal processes involving such cells and/or activities, for example neuronal function, e.g., neurological disorders, neurodegenerative disorders, neuromuscular disorders, cognitive disorders, personality disorders, and motor disorders, and chemosensory disorders, such as olfactory-related disorders.

5

10

20

25

30

35

TANGO 257 exhibits homology to a gene referred to as "gene 64" (PCT Publication No. WO 98/39446), which is expressed primarily in fetal lung tissue. In light of this, TANGO 257 nucleic acids, proteins and modulators thereof can also be used to modulate development, differentiation, proliferation and/or activity of pulmonary system cells, e.g., lung cell types, and to modulate a symptom associated with disorders of pulmonary development, differentiation and/or activity, e.g., cystic fibrosis. TANGO 257 nucleic acids, proteins and modulators thereof can also be used to modulate symptoms associated with abnormal pulmonary development or function, such as lung diseases or disorders associated with abnormal pulmonary development or function, e.g., cystic fibrosis. TANGO 257 nucleic acids, polypeptides, or modulators thereof can be used to treat pulmonary (lung) disorders, such as atelectasis, cystic fibrosis, rheumatoid lung disease, pulmonary congestion or edema, chronic obstructive airway disease (e.g., emphysema, chronic bronchitis, bronchial asthma, and bronchiectasis), diffuse interstitial diseases (e.g., sarcoidosis, pneumoconiosis, hypersensitivity pneumonitis, bronchiolitis, Goodpasture's syndrome, idiopathic pulmonary fibrosis, idiopathic pulmonary hemosiderosis, pulmonary alveolar proteinosis, desquamative interstitial pneumonitis, chronic interstitial pneumonia, fibrosing alveolitis, hamman-rich syndrome, pulmonary eosinophilia, diffuse interstitial fibrosis, Wegener's granulomatosis, lymphomatoid granulomatosis, and lipid pneumonia), or tumors (e.g., bronchogenic carcinoma, bronchiolovlyeolar carcinoma, bronchial carcinoid, hamartoma, and mesenchymal tumors).

TANGO 257 nucleic acids, proteins and modulators thereof can also be used to modulate cell proliferation, e.g., abnormal cell proliferation. Such modulation may, for example, be via modulation of one or more elements involved in signal transduction cascades.

TANGO 257 nucleic acids, proteins and modulators thereof can also be utilized to modulate the development, differentiation, maturation, proliferation and/or activity of

5

10

35

bone cells such as osteocytes, and to treat bone associated diseases or disorders. Examples of bone diseases and disorders include bone injury due to for example, trauma (e.g., bone breakage, cartilage tearing), degeneration (e.g., osteoporosis), degeneration of joints, e.g., arthritis, e.g., osteoarthritis, and bone wearing. Further, TANGO 257 nucleic acids, proteins and modulators thereof can be utilized to modulate or regulate the development of bone structures such as the skull, the basisphenoid bone, the upper and lower incisor teeth, the vertebral column, the sternum, the scapula, and the femur during embryogenesis.

TANGO 257 nucleic acids, proteins and modulators thereof can, in addition to the above, be utilized to regulate or modulate development and/or differentiation of processes involved in microglial, liver, kidney, and skeletal muscle formation and activity, as well as in ameliorating a symptom associated with a disorder of such cell types, tissues and organs.

TANGO 257 nucleic acids, polypeptides, or modulators thereof can also be used to treat renal (kidney) disorders, such as glomerular diseases (e.g., acute and chronic glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, focal 15 proliferative glomerulonephritis, glomerular lesions associated with systemic disease, such as systemic lupus erythematosus, Goodpasture's syndrome, multiple myeloma, diabetes, polycystic kidney disease, neoplasia, sickle cell disease, and chronic inflammatory diseases), tubular diseases (e.g., acute tubular necrosis and acute renal failure, polycystic renal diseasemedullary sponge kidney, medullary cystic disease, nephrogenic diabetes, and 20 renal tubular acidosis), tubulointerstitial diseases (e.g., pyelonephritis, drug and toxin induced tubulointerstitial nephritis, hypercalcemic nephropathy, and hypokalemic nephropathy), acute and rapidly progressive renal failure, chronic renal failure, nephrolithiasis, gout, vascular diseases (e.g., hypertension and nephrosclerosis, microangiopathic hemolytic anemia, atheroembolic renal disease, diffuse cortical necrosis, 25 and renal infarcts), or tumors (e.g., renal cell carcinoma and nephroblastoma). TANGO 257 polypeptides, nucleic acids, or modulators thereof can be used to treat intestinal disorders, such as ischemic bowel disease, infective enterocolitis, Crohn's disease, benign tumors, malignant tumors (e.g., argentaffinomas, lymphomas, adenocarcinomas, and sarcomas), malabsorption syndromes (e.g., celiac disease, tropical 30 sprue, Whipple's disease, and abetalipoproteinemia), obstructive lesions, hernias, intestinal adhesions, intussusception, or volvulus.

Further, TANGO 257 expression can be utilized as a marker (e.g. an in situ marker) for specific tissues (i.e., bone structures) and/or cells (i.e., osteocytes) in which TANGO 257 is expressed. TANGO 257 nucleic acids can also be used for chromosomal mapping.

Human INTERCEPT 258

5

10

15

20

25

30

35

A cDNA encoding human INTERCEPT 258 was identified by analyzing the sequences of clones present in a human mixed lymphocyte reaction library for sequences that encode secreted proteins. This analysis led to the identification of a clone, Ath1xtce, encoding full-length human INTERCEPT 258. The human INTERCEPT 258 cDNA of this clone is 1869 nucleotides long (Figures 18A-18B; SEQ ID NO:26). The open reading frame of this cDNA, nucleotides 153 to 1262 of SEQ ID NO:26 (SEQ ID NO:27), encodes a 370 amino acid transmembrane protein (Figures 18A-18B; SEQ ID NO:28).

Figure 19 depicts a hydropathy plot of human INTERCEPT 258. Relatively hydrophobic regions of the protein are shown above the horizontal line, and relatively hydrophilic regions of the protein are below the horizontal line. The cysteine residues (cys) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 29 of SEQ ID NO:28; SEQ ID NO:30) on the left from the mature protein (amino acids 30 to 370 of SEQ ID NO:28; SEQ ID NO:29) on the right.

The signal peptide prediction program SIGNALP (Nielsen et al., 1997, *Protein Engineering* 10:1-6) predicted that human INTERCEPT 258 includes a 29 amino acid signal peptide (amino acid 1 to amino acid 29 of SEQ ID NO:26; SEQ ID NO:30) preceding the mature INTERCEPT 258 protein (corresponding to amino acid 30 to amino acid 370 of SEQ ID NO:26; SEQ ID NO:29). The molecular weight of human INTERCEPT 258 protein without post-translational modifications is 40.0 kDa prior to the cleavage of the signal peptide, 37.0 kDa after cleavage of the signal peptide.

Human INTERCEPT 258 contains a hydrophobic transmembrane domain at amino acids amino acids 207 to 224 of SEQ ID NO:28 (SEQ ID NO:78) and amino acids 247 to 271 of SEQ ID NO:28 (SEQ ID NO:33). Human INTERCEPT 258 also contains two Ig domains, one at amino acids 49 to 128 of SEQ ID NO:28 (SEQ ID NO:35) and a second at amino acids 167 to 226 of SEQ ID NO:28 (SEQ ID NO:36).

Five N-glycosylation sites are present in human INTERCEPT 258. The first has sequence NLSL and is found at amino acids 108 to 111 of SEQ ID NO:28, the second has the sequence NUTL and is found at amino acids 169 to 172 of SEQ ID NO:28; the third is has the sequence NLSS and is found at amino acids 213 to 216 of SEQ ID NO:28, the fourth has the sequence NUTL and is found at amino acids, 236 to 239 of SEQ ID NO:28, and the fifth has the sequence NGTL and is found at amino acids 307 to 310 of SEQ ID NO:28. Seven protein kinase C phosphorylation sites are present in human INTERCEPT 258. The first has the sequence TSK and is found at amino acids 93 to 95 of SEQ ID NO:28, the second has the sequence SLR and is found at amino acids 110 to 112 of SEQ

5

15

20

25

35

ID NO:28, the third has the sequences SIK and is found at amino acids 141 to 143 or SEQ ID NO:28, the fourth has the sequence SCR and is found at amino acids 157 to 159, the fifth has the sequence SPR and is found at amino acids 176 to 179 of SEQ ID NO:28, the sixth has the sequence SAR and is found at amino acids 315 to 317 of SEQ ID NO:28, and the seventh has the sequence SPR and is found at amino acids 344 to 346 of SEO ID NO:28. The human INTERCEPT 258 protein has seven N-myristoylation sites. The first has the sequence GUTTSK and is found at amino acids 90 to 95 of SEQ ID NO:28, the second has the sequence GANVTL and is found at amino acids 167 to 172 of SEO ID NO:28, the third has the sequence GVYVCK and is found at amino acids 220 to 225, the 10 fourth has the sequence GTAQCN and is found at amino acids 231 to 236 of SEQ ID NO:28, the fifth has the sequence GTLVGL and is found at amino acids 256 to 261, the sixth has the sequence GLLAGL and is found at amino acids 262 to 267 of SEQ ID NO:28, and the seventh has the sequence GTLSSU and is found at acids 308 to 313 of SEQ ID NO:28.

The human INTERCEPT 258 gene was mapped to human chromosome 11 using Genebridge 4 Human Radiation hybrid mapping panel with GGAGTATCCTTGGTCTACTCC (SEQ ID NO:197) as the forward primer and GAAAGTCTGGAAGGATGGAAGCT (SEQ ID NO:198) as the reverse primer.

Human multi-tissue dot blot analysis of human INTERCEPT 258 expression demonstrates strongest expression in lung, fetal lung, placenta, thyroid gland and mammary gland. Moderate expression is observed in heart, aorta, kidney, small intestine, fetal heart, fetal kidney, fetal spleen, uterus, and stomach. Weak expression is observed in whole brain, amygdala, caudate nucleus, cerebellum, cerebral cortex frontal lobe, hippocampus, medulla oblongata, occipital lobe, putamen, substantia nigra, temporal lobe, thalamus, acumens, spinal cord, skeletal muscle, colon, bladder, prostate, ovary, pancreas, pituitary gland, adrenal gland, salivary gland, liver, spleen, thymus, lymph node, bone marrow, appendix, trachea, fetal brain, fetal liver, and fetal thymus.

A human cancer cell line Northern blot analysis showed a roughly 2.0 kb INTERCEPT 258 band only in the lane containing cell line Chronic Myelogenous Leukemia (K-562). The cancerous cell lines in which INTERCEPT 258 was not expressed include promyeocytic leukemia, Hela, lymphoblastic leukemia, Burkitt's lymphoma Raji, colorectal adenocarcinoma, lung carcinoma and melanoma.

INTERCEPT 258 exhibits homology to a human A33 antigen. A33 antigen is a transmembrane glycoprotein and a member of the immunoglobulin superfamily that may represent a cancer cell marker (Heath et al., 1997, Proc. Natl. Acad. Sci. USA 94:469-474). Figure 23 shows an alignment of the human INTERCEPT 258 amino acid sequence

(SEQ ID NO:28) with the human A33 amino acid sequence (SEQ ID NO:67). The alignment shows that there is a 23.0% overall amino acid sequence identity between human INTERCEPT 258 and A33. Figures 24A-24D show an alignment of the human INTERCEPT 258 nucleotide sequence (SEQ ID NO:26) with that of human A33 nucleotide sequence (SEQ ID NO:68). The alignment shows that there is a 40.6% identity between the two sequences.

Human INTERCEPT 258 nucleotide sequence (SEQ ID NO:26) exhibits homology to human PECAM-1 nucleotide sequence (SEQ ID NO:72). Figures 27A-27E show that there is an overall 40.5% identity between the two nucleotide sequences. Human INTERCEPT 258 amino acid sequence (SEQ ID NO:28) and human PECAM-1 amino acid sequence (SEQ ID NO:73) share less than 18% identity. PECAM-1 (platelet endothelial cell adhesion molecule-1) is an integrin expressed on endothelial cells.

Clone EpT258, which encodes human INTERCEPT 258, was deposited with the American Type Culture Collection (10801 University Boulevard, Manassas, VA 20110-2209) on April 21, 1999 and assigned Accession Number 207222. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112.

20

25

30

35

5

10

15

Mouse INTERCEPT 258

A cDNA encoding mouse INTERCEPT 258 was identified by analyzing the sequences of clones present in a mouse megakaryocyte library for sequences that encode secreted proteins. This analysis led to the identification of a clone, Athmea17c8, encoding full-length mouse INTERCEPT 258. The mouse INTERCEPT 258 cDNA of this clone is 1846 nucleotides long (Figures 20A-20B; SEQ ID NO:37). The open reading frame of this cDNA, nucleotides 107 to 1288 of SEQ ID NO:37 (SEQ ID NO:38), encodes a 394 amino acid transmembrane protein (Figures 20A-20B, SEQ ID NO:39).

Figure 21 depicts a hydropathy plot for mouse INTERCEPT 258. Relatively hydrophobic regions of the protein are above the horizontal line, relatively hydrophilic regions of the protein are below the horizontal line. The cysteine residues (cys) and N-glycosylation sites are (Ngly) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence from the mature protein described below.

The signal peptide prediction program SIGNALP (Nielsen et al., 1997, *Protein Engineering* 10:1-6) predicted that mouse INTERCEPT 258 includes a 29 amino acid

5

signal peptide (amino acid 1 to amino acid 29 of SEQ ID NO:39; SEQ ID NO:41) preceding the mature INTERCEPT 258 protein (corresponding to amino acid 30 to amino acid 394 of SEQ ID NO:39; SEQ ID NO:40). The molecular weight INTERCEPT 258 without post-translational modifications is 41.8 kDa prior to the cleavage of the signal peptide, 38.90 kDa after cleavage of the signal peptide.

Mouse INTERCEPT 258 contains a hydrophobic transmembrane domain at amino acids 250 to 274 SEQ ID NO:39 (SEQ ID NO:44). Mouse INTERCEPT 258 also contains an Ig domain at amino acids 170 to 229 of SEQ ID NO:39 (SEQ ID NO:71).

Five N-glycosylation sites are present in mouse INTERCEPT 258. The first has sequence NVSL and is found at amino acids 111 to 114 of SEQ ID NO:39, the second has 10 the sequence NVTL and is found at amino acids 172 to 175 of SEQ ID NO:39, the third has the sequence NLSI and is found at amino acids 216 to 219 of SEQ ID NO:39, the fourth has the sequence NVTL and is found at amino acids, 239 to 242 of SEQ ID NO:39, and the fifth has the sequence NGTL and is found at amino acids 310 to 313 of SEQ ID 15 NO:39. Nine protein kinase C phosphorylation sites are present in mouse INTERCEPT 258. the first has the sequence TNK and is found at amino acids 96 to 98 of SEQ ID NO:39, the second has the sequence SSR and is found at amino acids 108 to 110 of SEQ ID NO:39, the third has the sequence SLR and is found at amino acids 113 to 115 of SEQ ID NO:39, the fourth has the sequence TYR and is found at amino acids 126 to 128, the fifth has the sequence SIK and is found at amino acids 144 to 146 of SEQ ID NO:39, the 20 sixth has the sequence SPR and is found at amino acids 179 to 181 of SEQ ID NO:39, the seventh has the sequence SLK and is found at amino acids 211 and 213, the eighth has the sequence SAR and is found at amino acids 318 to 320 of SEQ ID NO:39, and the ninth has the sequence SPR and is found at amino acids 348 to 350 of SEQ ID NO:39. The mouse INTERCEPT 258 contains a casein kinase II phosphorylation site having the sequence TLEE, found at amino acids 280 to 283 of SEQ ID NO:39. The mouse INTERCEPT 258 protein has nine N-myristoylation sites. The first has the sequence GTPETS and is found at amino acids 6 to 11 of SEQ ID NO:39, the second has the sequence GVMTNK and is found at amino acids 125 to 130 of SEQ ID NO:39, the third has the sequence GTYRCS and is found at amino acids 125 to 130, the fourth has the 30 sequence GTNVTL and is found at amino acids 170 to 175 of SEQ ID NO:39, the fifth has the sequence GVYVCK and is found at amino acids 223 to 228, the sixth has the sequence GSKAAV and is found at amino acids 247 to 252, the seventh has the sequence GAVVGT and is found at amino acids 255 to 260 of SEQ ID NO:39, the eighth has sequence GTLSSV and is found at amino acids 311 to 316 of SEQ ID NO:39, and the 35

ninth has the sequence GGVSSS and is found at amino acids 367 to 372 of SEQ ID NO:39.

5

10

15

20

25

30

An in situ expression analysis of INTERCEPT 258 was performed as summarized herein. Mouse INTERCEPT 258 expression during embryogenesis (E73.5 to P1.5 were examined) was observed throughout the animal in a punctate pattern. This pattern is very similar to that seen with the molecule PECAM-1, but at a lower intensity. PECAM-1 is an integrin expressed on endothelial cells. In addition, lung and brown fat exhibited a much higher signal in a more ubiquitous pattern in all embryonic stages examined. Heart and kidney also have a higher expression, but to a lesser degree. Adult mouse INTERCEPT 258 expression was seen in many tissues, often in a multifocal, punctate pattern suggestive of vessels. Expression was also predominant in many highly vascularized tissues such as ovary (especially the septol region), kidney and adrenal cortex.

In general, both embryonic and adult expression patterns were suggestive of endothelial cells being a component in the expression patters observed. In summary, tissues in which INTERCEPT 258 expression was observed were as follows: brain, eye, harderian gland, submanibular gland, bladder, brown fat, stomach, heart, kidney, adrenal gland, colon, liver, thymus, lymph node, spleen, spinal cord, ovary, testes and placenta.

As shown in Figure 22, human INTERCEPT 258 protein and mouse INTERCEPT 258 protein are 62.8% identical.

Mouse INTERCEPT 258 exhibits homology to a human A33 antigen. Figure 25 shows an alignment of mouse INTERCEPT 258 amino acid sequence (SEQ ID NO:39) with the human A33 amino acid sequence (SEQ ID NO:96). The alignment shows that there is a 23% overall amino acid sequence identity between the two sequences. Figures 26A-26D show an alignment of the mouse INTERCEPT 258 nucleotide sequence (SEQ ID NO:37) with that of the human A33 nucleotide sequence (SEQ ID NO:97). The alignment shows that there is a 40% identity between these two nucleotide sequences.

Clone EpTm258, which encodes mouse INTERCEPT 258, was deposited with the American Type Culture Collection (10801 University Boulevard, Manassas, VA 20110-2209) on April 21, 1999 and assigned Accession Number 207221. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112.

35 Uses of INTERCEPT 258 Nucleic acids, Polypeptides, and Modulators Thereof

5

10

15

20

25

30

35

INTERCEPT 258 was identified as being expressed in a mixed lymphocyte library. In light of this, INTERCEPT 258 nucleic acids, proteins and modulators thereof can be utilized to modulate processes involved in lymphocyte development, differentiation and activity, including, but not limited to development, differentiation and activation of T cells, including T helper, T cytotoxic and non-specific T killer cell types and subtypes, and B cells, immune functions associated with such cells, and amelioration of one or more symptoms associated with abnormal function of such cell types. Such disorders can include, but are not limited to, autoimmune disorders, such as organ specific autoimmune disorders, e.g., autoimmune thyroiditis, Type I diabetes mellitus, insulin-resistant diabetes, autoimmune anemia, multiple sclerosis, and/or systemic autoimmune disorders, e.g., rheumatoid arthritis, lupus or sclerodoma, allergy, including allergic rhinitis and food allergies, asthma, psoriasis, graft rejection, transplantation rejection, graft versus host disease, pathogenic susceptibilities, e.g., susceptibility to certain bacterial or viral pathogens, wound healing and inflammatory reactions.

INTERCEPT 258 includes one or more Ig domains. INTERCEPT 258 nucleic acids, proteins, and modulators thereof can, therefore, be used to modulate immune function, e.g., by the modulation of immunoglobulins and the formation of antibodies. For the same reason, INTERCEPT 258 nucleic acids, proteins, and modulators thereof can be used to modulate immune response, leukocyte trafficking, cancer, Type I immunologic disorders, e.g., anaphylaxis and/or rhinitis, by modulating the interaction between antigens and cell receptors, e.g., high affinity IgE receptors.

INTERCEPT 258 exhibits homology to PECAM-1, a cell adhesion integrin molecule that has been shown to mediate cell-cell interactions, play an important role in bidirectional signal transduction, and may be involved in thrombotic, inflammatory and immunological disorders. As such, INTERCEPT 258 nucleic acids, proteins, and modulators thereof can be utilized to modulate cell/cell interactions and, for example, signal transduction events associated with such interactions. For example, such INTERCEPT 258 compositions and modulators thereof can be used to modulate binding of cellular factors or ECM-associated factors such as integrin and can function to modulate ligand binding to cell surface receptors. Further, such INTERCEPT 258 compositions and modulators thereof can be utilized to ameliorate at least one symptom associated with thrombotic disorders, *e.g.*, stroke, inflammatory processes or disorders, and immune disorders.

In light of INTERCEPT 258 expression, INTERCEPT 258 nucleic acids, proteins and modulators thereof can be utilized modulate development, differentiation, proliferation and/or activity of pulmonary system cells, e.g., lung cell types, and to

modulate a symptom associated with disorders of pulmonary development, differentiation and/or activity, such as lung diseases or disorders associated with abnormal pulmonary development or function, e.g., cystic fibrosis. INTERCEPT 258 nucleic acids, proteins and modulators thereof can also be utilized modulate development, differentiation, proliferation and/or activity of thyroid cells, megakaryocytes or mammary gland cells, and can further be utilized to ameliorate at least one symptom of disorders associated with, abnormal thyroid function, e.g., thyroiditis or Grave's disease, abnormal megakaryocyte differentiation or function, e.g., anemias or leukemias, hematological diseases such as thrombocytopenia, platelet disorders and bleeding disorders, such as hemophilia or abnormal mammary development or function.

INTERCEPT 258 nucleic acids, polypeptides, or modulators thereof can be used to treat renal (kidney) disorders, such as glomerular diseases (e.g., acute and chronic glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, focal proliferative glomerulonephritis, glomerular lesions associated with systemic disease, such as systemic lupus erythematosus, Goodpasture's syndrome, multiple myeloma, diabetes, polycystic kidney disease, neoplasia, sickle cell disease, and chronic inflammatory diseases), tubular diseases (e.g., acute tubular necrosis and acute renal failure, polycystic renal diseasemedullary sponge kidney, medullary cystic disease, nephrogenic diabetes, and renal tubular acidosis), tubulointerstitial diseases (e.g., pyelonephritis, drug and toxin induced tubulointerstitial nephritis, hypercalcemic nephropathy, and hypokalemic nephropathy), acute and rapidly progressive renal failure, chronic renal failure, nephrolithiasis, gout, vascular diseases (e.g., hypertension and nephrosclerosis, microangiopathic hemolytic anemia, atheroembolic renal disease, diffuse cortical necrosis, and renal infarcts), or tumors (e.g., renal cell carcinoma and nephroblastoma).

INTERCEPT 258 nucleic acids, polypeptides, or modulators thereof can also be used to treat

INTERCEPT 258 nucleic acids, polypeptides, or modulators thereof can also be used to treat disorders of the brain, such as cerebral edema, hydrocephalus, brain hemiations, iatrogenic disease (due to, e.g., infection, toxins, or drugs), inflammations (e.g., bacterial and viral meningitis, encephalitis, and cerebral toxoplasmosis), cerebrovascular diseases (e.g., hypoxia, ischemia, and infarction, intracranial hemorrhage and vascular malformations, and hypertensive encephalopathy), and tumors (e.g., neuroglial tumors, neuronal tumors, tumors of pineal cells, meningeal tumors, primary and secondary lymphomas, intracranial tumors, and medulloblastoma), and to treat injury or trauma to the brain.

INTERCEPT 258 nucleic acids, proteins, and modulators thereof can still further be utilized to modulate development, differentiation proliferation and/or activity of cells involved in kidney or heart formation and function. In addition, such compositions and modulators thereof can be utilized to ameliorate at least one symptom of disorders

- 53 -

5

10

15

20

25

30

35

associated with abnormal kidney or heart formation or function, including, but not limited to nephritis, coronary disease, atherosclerosis and plaque formation.

INTERCEPT 258 expression indicates that INTERCEPT 258 is involved, in addition to the above, in such processes as thermogenesis, adipocyte function, and vascularization. As such, INTERCEPT 258 nucleic acids, proteins, and modulators thereof can be utilized to modulate such processes as well as for ameliorating at least one symptom associated with such processes. Such disorders include, but are not limited to obesity, regulation of body temperature, and disorders involving abnormal vascularization, e.g., vascularization of solid tumors.

In further light of INTERCEPT 258 expression, as well as in light of its homology to A33 antigen, INTERCEPT 258 nucleic acids, proteins and modulators thereof can be utilized to modulate cell proliferation, including, for example, epithelial, e.g., gastrointestinal tract epithelial cell proliferation, and to ameliorate at least one symptom of cell proliferative disorders such as cancer, and, in particular, chronic myelogenous leukemia, colon cancers, small bowel epithelium cancers and other gastrointestinal tract cancers. Further, INTERCEPT 258 expression can be utilized as a marker for specific tissues (e.g., vascularized tissues) and/or cells (e.g., endothelial cells) in which INTERCEPT 258 is expressed. INTERCEPT 258 nucleic acids can also be utilized for chromosomal mapping.

20

25

35

5

10

15

Human TANGO 281

A cDNA encoding human TANGO 281 was identified by analyzing the sequences of clones present in a human megakarocyte cDNA library. This analysis led to the identification of a clone, AThPb81d10, encoding full-length human TANGO 281. The human TANGO 281 cDNA of this clone is 1812 nucleotides long (Figures 28A-28B; SEQ ID NO:46). The open reading frame of this cDNA, nucleotides 65 to 799 of SEQ ID NO:46 (SEQ ID NO:47), encodes a 245 amino acid transmembrane protein (Figures 28A-28B; SEQ ID NO:48).

The signal peptide prediction program SIGNALP (Nielsen, et al. (1997) *Protein Engineering* 10:1-6) predicted that human TANGO 281 includes an 38 amino acid signal peptide (amino acid 1 to amino acid 38 of SEQ ID NO:48; SEQ ID NO:49) preceding the mature TANGO 281 protein (corresponding to amino acid 39 to amino acid 245 of SEQ ID NO:48; SEQ ID NO:50). The molecular weight of TANGO 281 without post-translational modifications is 26.5 kDa prior to the cleavage of the signal peptide, 20.2 kDa after cleavage of the signal peptide.

Human TANGO 281 is a transmembrane protein which contains one or more of the following domains: (1) an extracellular domain; (2) a transmembrane domain; and (3) a

5

10

20

25

30

35

cytoplasmic domain. The human TANGO 281 protein contains an extracellular domain at amino acids 1 to 123 of SEQ ID NO:48 or a mature extracellular domain at about amino acid residues 39 to 123 of SEQ ID NO:48 (SEQ ID NO:51), a transmembrane domain at amino acid residues 124 to 148 of SEQ ID NO:48 (SEQ ID NO:52), and a cytoplasmic domain at amino acid residues 149 to 245 of SEQ ID NO:48 (SEQ ID NO:53).

Figure 29 depicts a hydropathy plot of human TANGO 281. Relatively hydrophobic regions of the protein are shown above the horizontal line, and relatively hydrophilic regions of the protein are below the horizontal line. The cysteine residues (cys) and potential N-glycosylation sites (Ngly) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 38 of SEQ ID NO:48; SEQ ID NO:49) on the left from the mature protein (amino acids 38 to 245 of SEQ ID NO:48; SEQ ID NO:50) on the right.

Human TANGO 281 comprises photosystem II 10 kD phosphoprotein (PSBH) domain sequences, which have been shown to be phosphorylated in a light-dependent reaction, from amino acids 41 to 90 and 127 to 182 of SEQ ID NO:48 (SEQ ID NO:54 and SEO ID NO:55, respectively). Figure 30 depicts an alignment between the PSBH domain (SEO ID NO:69; Accession No. PF00737) and human TANGO 281 from amino acids 97 to 146 of SEQ ID NO:48. An N-glycosylation site having the sequence NTTT is present in TANGO 281 at about amino acids 160 to 163 of SEQ ID NO:48. Two protein kinase C phosphorylation sites are present in human TANGO 281. The first has the sequence SVR (at amino acids 8 to 10 of SEQ ID NO:48), and the second has the sequence SSR (at amino acids 87 to 89 of SEO ID NO:48). Three casein kinase II phosphorylation sites are present in human TANGO 281. The first has the sequence SIPE (at amino acids 49 to 52 of SEQ ID NO:48), the second has the sequence SCPD (at amino acids 53 to 56 of SEQ ID NO:48), and the third has the sequence SSLD (at amino acids 108 to 111 of SEQ ID NO:48). Human TANGO 281 has two N-myristylation sites. The first has the sequence GSCSSQ (at amino acids 60 to 65 of SEQ ID NO:48), and the second has the sequence GATVAI (at amino acids 119 to 124 of SEQ ID NO:48).

Nucleic acid base pairs 413 to 746 of human TANGO 281 (SEQ ID NO:46) have 81% identity to the nucleic acid sequence identified as Accession Number AV34245. Nucleic acid base pairs 438 to 746 of human TANGO 281 (SEQ ID NO:46) have 80% identity to a nucleic acid sequence referred to as "gene 31" described in PCT Publication No. WO 98/39446 (SEQ ID NO:70). "Gene 31" is characterized as being expressed primarily in brain and thymus, and to a lesser extent in such organs as liver, skin, bone and bone marrow.

Clone EpT281 was deposited with the American Type Culture Collection (10801 University Boulevard, Manassas, VA 20110-2209) on April 21, 1999 and assigned Accession

Number 207222. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. § 112.

5

10

15

20

25

30

35

Mouse TANGO 281

A cDNA encoding mouse TANGO 281 was identified in a normal mouse megakaryocyte library by performing expression profiling on megakarocytes obtained from mice with a the deletion of the element of the gata-1 gene responsible for megakaryocyte-specific expression. This analysis led to the identification of a clone, Atmea49d3, encoding full-length mouse TANGO 281. The mouse TANGO 281 cDNA of this clone is 1858 nucleotides long (Figure 30; SEQ ID NO:56). The open reading frame of this cDNA, nucleotides 90 to 728 of SEQ ID NO:56 (SEQ ID NO:57), encodes a 213 amino acid transmembrane protein (Figure 30; SEQ ID NO:58).

The signal peptide prediction program SIGNALP (Nielsen, et al. (1997) *Protein Engineering* 10:1-6) predicted that mouse TANGO 281 includes an 26 amino acid signal peptide (amino acid 1 to amino acid 26 of SEQ ID NO:58; SEQ ID NO:59) preceding the mature TANGO 281 protein (corresponding to amino acid 27 to amino acid 213 of SEQ ID NO:58; SEQ ID NO:60). The molecular weight of mouse TANGO 281 without post-translational modifications is 22.9 kDa prior to the cleavage of the signal peptide, 20.2 kDa after cleavage of the signal peptide.

Mouse TANGO 281 is a transmembrane protein which contains one or more of the following domains: (1) an extracellular domain; (2) a transmembrane domain; and (3) a cytoplasmic domain. The mouse TANGO 281 protein contains an extracellular domain at amino acid residues 27 to 112 of SEQ ID NO:58 (SEQ ID NO:61), a transmembrane domain at amino acid residues 113 to 137 of SEQ ID NO:58 (SEQ ID NO:62), and a cytoplasmic domain at amino acid residues 138 to 213 of SEQ ID NO:58 (SEQ ID NO:63).

Figure 32 depicts a hydropathy plot of mouse TANGO 281. Relatively hydrophobic regions of the protein are shown above the horizontal line, and relatively hydrophilic regions of the protein are below the horizontal line. The cysteine residues (cys) and potential N-glycosylation sites (Ngly) are indicated by short vertical lines just below the hydropathy trace. The dashed vertical line separates the signal sequence (amino acids 1 to 26 of SEQ ID NO:58; SEQ ID NO:59) on the left from the mature protein (amino acids 27 to 213 of SEQ ID NO:58; SEQ ID NO:60) on the right.

Mouse TANGO 281 comprises photosystem II 10 kD phosphoprotein (PSBH) domain sequences, which have been shown to be phosphorylated in a light-dependent reaction, from

amino acids 42 to 91 and 128 to 183 of SEQ ID NO:58 (SEQ ID NO:64 and SEQ ID NO:65, respectively). Two N-glycosylation sites having the sequences NTTT (at amino acids 149 to 152 of SEQ ID NO:58) and NASS (at about amino 189 to 192 of SEQ ID NO:58) are present in TANGO 281. A glycosaminoglycan attachment site having the sequence SGFG is present in mouse TANGO 281, and protein kinase C phosphorylation site having the sequence SSR is present in mouse TANGO 281. Two casein kinase II phosphorylation sites are present in human TANGO 281. The first has the sequence TPAE (at amino acids 80 to 83 of SEQ ID NO:58), and the second has the sequence SSFD (at amino acids 97 to 100 of SEQ ID NO:58). Mouse TANGO 281 has two N-myristylation sites. The first has the sequence GSCSNQ (at amino acids 48 to 53 of SEQ ID NO:58), and the second has the sequence GATVAI (at amino acids 108 to 113 of SEQ ID NO:58).

5

10

15

20

25

30

35

Northern blot analysis of mouse TANGO 281 expression revealed two mRNA bands, one of approximately 1.8 kb and another approximately 1.4 kb. Expression of the 1.8 kb band was detected in the heart, spleen, lung and kidney, with the greatest abundance detected in the heart and lung, followed by the kidney and trace amounts in the spleen. Expression of the 1.4 kb band was detected in the brain, spleen, and lung. Expression of the 1.4 kb and 1.8 kb species of mouse TANGO 281 was detected in 7 day old normal mouse embryos. Neither the 1.4 kb or the 1.8 kb species of mouse TANGO 281 were detected in 11 day old normal mouse embryos. The 1.8 kb species of mouse TANGO 281 was detected in 15 day old normal mouse embryos at 20 % the level detected in 7 day old normal mouse embryos. Expression of the 1.8 kb species detected in 17 day old normal mouse embryos was comparable to the level of expression detected in 7 day old normal mouse embryos. Expression of mouse TANGO 281 expression was greatly reduced in megakaryocytes obtained from gata-1 knockout mice.

In situ tissue screening was performed on mouse adult and embryonic tissues to analyze for the expression of mouse TANGO 281 mRNA. Mouse TANGO 281 expression was detected predominantly in the adult lymphoid tissues such as the thymus, lymph node, and spleen. In particular, mouse TANGO 281 expression was detected in the following adult tissues: a moderate, ubiquitous signal was detected in the submandibular gland; a strong, ubiquitous signal was detected in the adrenal gland; a strong, multifocal signal was detected in the medulla of the thymus and a moderate, ubiquitous signal was detected in the cortex of the thymus; a strong signal was detected in the lymph node; a strong signal was detected in the follicles of the spleen; a weak signal was detected in the mucosal epithelium of the bladder; a strong signal was detected in the ovaries; a ubiquitous signal was detected in the placenta; a moderate signal was detected in the muscle region of the stomach; a weak signal

in a pattern outlining many of the large airways was detected in lung; a weak, ubiquitous signal was detected in the liver; and a weak, ubiquitous signal was detected in the kidney.

In the case of embryonic expression, mouse TANGO 281 expression was detected in the lung, stomach, thymus and submaxillary gland. In particular, at E16.5 a weak to moderate signal was detected in the intestine and stomach, and a moderate, ubiquitous signal was detected in the lung. At P1.5, a signal was detected in the lung, stomach, thymus, and submaxillary gland.

5

10

15

20

25

30

35

Figure 33 shows that there is an overall 66.5% identity between the precursor human TANGO 281 amino acid sequence and the precursor mouse TANGO 281 amino acid sequence.

Clone EpT281 was deposited with the American Type Culture Collection (10801 University Boulevard, Manassas, VA 20110-2209) on June 15, 1999 and assigned patent deposit Number PTA-224. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112.

Uses of TANGO 281 Nucleic acids, Polypeptides, and Modulators Thereof

As TANGO 281 was originally found in a megakaryocyte library, TANGO 281 nucleic acids, proteins, and modulators thereof can be used to modulate the proliferation, differentiation, and/or function of megakaryocytes and platelets. TANGO 281 nucleic acids, proteins, and modulators thereof can be used to treat associated hematological diseases such as thrombocytopenia, platelet disorders and bleeding disorders (e.g., hemophilia). TANGO 281 nucleic acids, proteins, and modulators thereof can be used to modulate platelet aggregation and degranulation. Further, as TANGO 281 expression varies in mouse embryos during development, TANGO 281 nucleic acids, proteins, and modulators thereof can be used to modulate the development of cells, tissues or organs in embryos.

As TANGO 281 expression is greatly reduced in megakaryocytes obtained from gata1 knockout mice compared normal mice, TANGO 281 is either a direct or indirect target of
gata-1 and has profound biological implications. Gata-1 is a transcription factor involved in
the development of hemapoietic cell lineages -- gata-1 expression is required for proper
development of erythocytes and megakaryocytes. Although deletion of the gata-1 gene is
lethal at the embryonic stage due to a failure to form red blood cells, deletion of only the
element of the gata-1 gene responsible for megakaryocyte-specific expression (a 10 kb region
of genomic DNA containing a megakaryocyte specific DNase I hypersensitive) is not lethal
and results in a reduction in gata-1 expression in the megakaryocyte without affecting gata-1

expression in red blood cells. The megakaryocytes of mice with this element of the gata-1 gene knocked out fail to develop into mature platelets, and the mice experience abnormal bleeding due to their profound thrombocytopenia. TANGO 281 nucleic acids, proteins, and modulators thereof can be used to treat disease and/or disorders associated with gata-1 dysfunction. In light of the reduced expression of TANGO 281 in gata-1 knockout mice, TANGO 281 expression can be utilized as a marker for modulators of gata-1 expression and/or activity.

As TANGO 281 is expressed in the heart, brain, spleen, lung, kidney, embryo and megakaryocytes, TANGO 281 nucleic acids, proteins, and modulators thereof can be used to treat disorders of these cells, tissues, or organs, e.g., ischemic heart disease or atherosclerosis, head trauma, brain cancer, splenic lymphoma, splenomegaly, lung cancer, cystic fibrosis, rheumatoid lung disease, glomerulonephritis, end stage renal disease, uremia, DiGeorge syndrome, thymoma, autoimmune disorders, atresia, Crohns's disease, and various embryonic disorders. TANGO 281 nucleic acids, proteins, and modulators thereof can be used to modulate the bleeding associated with uremia. Further, TANGO 281 nucleic acids, proteins, and modulators thereof can be used to treat hypercoagulation associated with a damaged endothelium, e.g., pre-eclampsia, malignant hypertension, disseminated intravascular coagulopathy, renal transplant rejection, cyclosporin toxicity, microangiopathic hemolytic anemia, and thrombotic thrombocytopenic purpura.

TANGO 281 exhibits homology to a gene referred to as "gene 31" (PCT Publication No. WO98/39446), which is expressed primarily in the brain and thymus. In light of this, TANGO 281 nucleic acids, proteins and modulators thereof can be utilized to ameliorate at least one symptom associated with central nervous (CNS) disorders, hematopoietic disorder, and disorders of the endocrine system.

Further, in light of TANGO 281's pattern of expression in mice, TANGO 281 expression can be utilized as a marker for specific tissues (e.g., lymphoid tissues such as the thymus and spleen) and/or cells (e.g., lymphocytes) in which INTERCEPT 281 is expressed. TANGO 281 nucleic acids can also be utilized for chromosomal mapping.

Tables 1-4 below provide a summary of the sequence information for TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281.

TABLE 1: Summary of Human TANGO 253, TANGO 257, INTERCEPT 258, and TANGO 281 Sequence Information

Gene	cDNA .	ORF	Figure	Accession Number
TANGO 253	SEQ ID NO:1	SEQ ID NO:2	Figure 1	207222
TANGO 257	SEQ ID NO:15	SEQ ID NO:16	Figures 9A-9B	207222

5

10

15

20

25

30

INTERCEPT 258	SEQ ID NO:26	SEQ ID NO:27	Figure17	207222
TANGO 281	SEQ ID NO:46	SEQ ID NO:47	Figures 27	207222

TABLE 2: Summary of Domains of Human TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 Proteins

WO 00/788	308_	, ;				
	Cytoplasmic			aa 225-246 of SEQ ID NO:28	(SEQ ID NO:79)	aa 149-245 of SEQ ID NO:48 (SEQ ID NO:53)
oteins	Transmembrane			aa 207-224 of SEQ ID NO:28	(SEQ ID NO:78); aa 247-271 of SEQ ID NO: 28 (SEQ ID NO: 33)	aa 124-148 of SEQ ID NO:48 (SEQ ID NO:52)
TABLE 2: Summary of Domains of Human TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 Proteins	Collagen	aa 36-45 of SEQ ID NO:3 (SEQ ID NO:6)				
ERCEPT 258 a	CIq	aa 102-232 of SEQ ID NO:3 (SEO ID NO:7)				
30 257, INT	lg			aa 49-128; 167-226 of SEQ ID NO:28	(SEQ ID NO:35; SEQ ID NO:36)	
) 253, TANC	PSBH			·		aa 41-90; 12- 187 of SEQ ID NO:48 (SEQ ID NO:54; SEQ ID NO:55)
Human TANGC	Extracellular			aa 30-206 of SEQ ID NO: 28 (SEQ ID NO: 76)	aa 272-370 of SEQ ID NO: 28 (SEQ ID NO: 34)	aa 39-123 of SEQ ID NO:48 (SEQ ID NO:51)
ry of Domains of	Mature Protein	aa 16-243 of SEQ ID NO:3 (SEO ID NO:4)	aa 22-406 of SEQ ID NO:17 (SEQ ID NO:18)	aa 30-370 of SEQ ID NO:28	(SEQ ID NO:29)	aa 39-245 of SEQ ID NO:48 (SEQ ID NO:50)
ABLE 2: Summa	Signal Sequence	aa 1-15 of SEQ ID NO:3 (SEQ ID NO:5)	aa 1-21 of SEQ ID NO:17 (SEQ ID NO:19)	aa 1-29 of SEQ ID NO:28	(SEQ ID NO:30)	aa 1-38 of SEQ ID NO:48 (SEQ ID NO:49)
Fi	Protein	TANGO 253	TANGO 257	INTERCEPT 258		TANGO 281

TABLE 3: Summary of Mouse TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 Sequence Information

Gene	cDNA	ORF	Figure	Accession Number
TANGO 253	SEQ ID NO:8	SEQ ID NO:9	Figures 3A-3B	207215
TANGO 257	SEQ ID NO:21	SEQ ID NO:22	Figures 11A-11B	207217
INTERCEPT 258	SEQ ID NO:37	SEQ ID NO:38	Figures 20A-20B	207221
TANGO 281	SEQ ID NO:56	SEQ ID NO:57	Figures 31A-31B	PTA-224

TABLE 4: Summary of Domains of Mouse TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 Proteins

Signal Mature Protein Extracellular PSBH	Extracellular	_	PSBH		gl	CIq	Collagen	Transmembrane	Cytoplasmic
Sequence									
aa 1-15 aa 16-243	aa 16-243					aa 105-232 of	aa 36-95 of		
SEQ ID NO:10 SEQ ID NO:10 (SEQ ID (SEQ ID NO:11)	SEQ ID NO:10 (SEQ ID NO:11)					SEQ ID NO:10 (SEQ ID NO:13)	SEQ ID NO:10 (SEQ ID NO:14)		
aa 1-21 aa 22-406	aa 22-406		T						
SEQ ID NO:23 SEQ ID NO:23 (SEQ ID (SEQ ID NO:24)	SEQ ID NO:23 (SEQ ID NO:24)								
NO:25) aa 30-394 30-249	aa 30-394	30-249			aa 170-229			250 to 274	275-394
of of of		of	_		of			of	Jo
SEQ ID NO:39 SEQ ID NO:39 SEQ ID NO:39	SEQ ID NO:39	SEQ ID NO:39			SEQ ID NO:39			SEQ ID NO:39	SEQ ID NO:39
(SEQ ID (SEQ ID NO:40) (SEQ ID NO:41)		(SEQ ID			(SEQ ID			(SEQ ID NO:44)	(SEQ ID NO:44) (SEQ ID NO:45)
	(0:0)	(6:5)			65.0				
aa 1-26 aa 27-213 aa 27-112 a	aa 27-112	Г	60	aa 42-91; 128-183				aa 113-137	aa 138-213
Jo Jo Jo		Jo		Jo				of	of
SEQ ID NO:58 SEQ ID NO:58 SEQ ID NO:58	SEQ ID NO:58 SEQ ID NO	SEQ ID NO:58		SEQ ID NO:58				SEQ ID NO:58	SEQ ID NO:58
(SEQ ID (SEQ ID NO:60) (SEQ ID NO:59) (SEQ ID NO:51)		(SEQ ID NO:61)		(SEQ ID NO:64; SEQ ID NO:65)			:	(SEQ ID NO:62)	(SEQ ID NO:63

Various aspects of the invention are described in further detail in the following subsections:

I. Isolated Nucleic Acid Molecules

5

10

15

20

25

30

35

One aspect of the invention pertains to isolated nucleic acid molecules that encode a polypeptide of the invention or a biologically active portion thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding a polypeptide of the invention and fragments of such nucleic acid molecules suitable for use as PCR primers for the amplification or mutation of nucleic acid molecules. As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. In one embodiment, the nucleic acid molecules of the invention comprise a contiguous open reading frame encoding a polypeptide of the invention.

An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule. Preferably, an "isolated" nucleic acid molecule is free of sequences (preferably protein encoding sequences) which naturally flank the nucleic acid (*i.e.*, sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. As used herein, the term "isolated" when referring to a nucleic acid molecule does not include an isolated chromosome.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or a complement thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequences of SEQ ID NO:1, 2,

8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, as a hybridization probe, nucleic acid molecules of the invention can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., eds., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

5

10

15

20

25

30

35

A nucleic acid molecule of the invention can be amplified using cDNA, mRNA or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the invention can be prepared by standard synthetic techniques, *e.g.*, using an automated DNA synthesizer.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or the nucleotide sequence of the cDNA insert of a clone deposited with the ATCC® as Accession number 207222, Accession Number 207215, Accession number 207217, Accession Number 207221 or patent deposit Number PTA-224, or a portion thereof. A nucleic acid molecule which is complementary to a given nucleotide sequence is one which is sufficiently complementary to the given nucleotide sequence that it can hybridize to the given nucleotide sequence thereby forming a stable duplex.

Moreover, a nucleic acid molecule of the invention can comprise only a portion of a nucleic acid sequence encoding a full length polypeptide of the invention for example, a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a polypeptide of the invention. The nucleotide sequence determined from the cloning one gene allows for the generation of probes and primers designed for use in identifying and/or cloning homologues in other cell types, e.g., from other tissues, as well as homologues from other mammals. The probe/primer typically comprises substantially purified oligonucleotide. In one embodiment, the oligonucleotide comprises a region of

nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably 25, more preferably about 50, 75, 100, 125, 150, 175, 200, 250, 300, 350 or 400 consecutive oligonucleotides of the sense or anti-sense sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 5 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or the nucleotide sequence of the cDNA insert of a clone deposited with the ATCC® as Accession number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, or patent deposit Number PTA-224, or of a naturally 10 occurring mutant of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192. In another embodiment, the 15 oligonucleotide comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least 400, preferably 450, 500, 530, 550, 600, 700, 750, 800, 850, 900, 1000, 1100, 1200 or more consecutive oligonucleotides of the sense of antisense sequence of SED ID NO: 1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 20 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or the nucleotide sequence of the cDNA insert of a clone deposited with the ATCC® as Accession number 207222, Accession number 207215, Accession number 207217, Accession Number 207221, or patent deposit Number PTA-25 224, or of a naturally occurring mutant of SEQ ID NO: 1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192. 30

In a preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 450, preferably about 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1100 or 1300 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:1, 103, 105, 107 or 109, or a naturally occurring mutant of SEQ ID NO:1, 103, 105, 107, or 109. In another preferred embodiment, the oligonucleotide typically comprises a region of

35

nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700 or 720 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:2, 91, 100, 101 or 80.

5

In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 540, preferably about 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200 or 1250 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:8, 119, 121, 123 or 125, or of a naturally occurring mutant of SEQ ID NO:8, 119, 121, 123 or 125. In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 310, preferably about 350, 400, 450, 500, 550, 600, 650 or 700 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:9, 174, 175, 176 or 177, or of a naturally occurring mutant of SEQ ID NO:9, 174, 175, 176 or 177.

15

20

10

In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 1800 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:15, 111, 113, 115 or 117, or of a naturally occurring mutant of SEQ ID NO:15, 111, 113, 115 or 117. In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 1150 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:16, 170, 171, 172 or 173, or of a naturally occurring mutant of SEQ ID NO:16, 170, 171, 172 or 173.

25

30

35

In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 1100, preferably about 1200, 1300, 1400, 1500, 16500 or 1700 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:21, 127, 129, 131 or 133, or of a naturally occurring mutant of SEQ ID NO:21, 127, 129, 131 or 133. In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 1150 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:22, 178, 179, 180 or 181, or of a naturally occurring mutant of SEQ ID NO:22, 178, 179, 180 or 181.

In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 420, preferably about 450, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID

NO:26, 135, 137, 139 or 141, or of a naturally occurring mutant of SEQ ID NO:26, 135, 137, 139 or 141. In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:27, 182, 183, 184 or 185, or of a naturally occurring mutant of SEQ ID NO:27, 182, 183, 184 or 185.

5

10

15

20

25

30

35

In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 675, preferably about 700, 800, 900, 1000, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:37, 143, 145, 147 or 149, or of a naturally occurring mutant of SEQ ID NO:37, 143, 145, 147 or 149. In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 500, preferably about 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:38, 186, 187, 188 or 189, or of a naturally occurring mutant of SEQ ID NO:38, 186, 187, 188 or 189.

In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:46, 151, 153, 155 or 157, or of a naturally occurring mutant of SEQ ID NO:46, 151, 153, 155 or 157. In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:47, 190, 191, 192 or 77, or of a naturally occurring mutant of SEQ ID NO:47, 190, 191, 192 or 77.

In another preferred embodiment, the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 550, preferably about 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800 or 1850 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:56, 159, 161, 163 or 165, or of a naturally occurring mutant of SEQ ID NO:56, 159, 161, 163 or 165. In another preferred embodiment, the oligonucleotide typically

5

10

15

20

25

30

35

comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 50, 100, 200, 300, 400, 500, 600 or 700 consecutive nucleotides of the sense or anti-sense sequence of SEQ ID NO:57, 166, 167, 168 or 169, or of a naturally occurring mutant of SEQ ID NO:57, 166, 167, 168 or 169.

Probes based on the sequence of a nucleic acid molecule of the invention can be used to detect transcripts or genomic sequences encoding the same protein molecule encoded by a selected nucleic acid molecule. The probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as part of a diagnostic test kit for identifying cells or tissues which mis-express the protein, such as by measuring levels of a nucleic acid molecule encoding the protein in a sample of cells from a subject, e.g., detecting mRNA levels or determining whether a gene encoding the protein has been mutated or deleted.

A nucleic acid fragment encoding a biologically active portion of a polypeptide of the invention can be prepared by isolating a portion of any of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164 expressing the encoded portion of the polypeptide protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the polypeptide.

The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or the nucleotide sequence of the cDNA insert of a clone deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221 or patent deposit number PTA-224 due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191or 192, or the nucleotide sequence of the cDNA insert of a clone deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221 or patent deposit Number PTA-224.

In addition to the nucleotide sequences of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191or 192, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequence may exist within a population (*e.g.*, the human population). Such genetic polymorphisms may exist among individuals within a population due to natural allelic variation.

5

10

15

20

25

30

35

An allele is one of a group of genes which occur alternatively at a given genetic locus. As used herein, the phrase "allelic variant" refers to a nucleotide sequence which occurs at a given locus or to a polypeptide encoded by the nucleotide sequence. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide of the invention. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within the scope of the invention.

The human gene for TANGO 253 has been mapped to the long arm of chromosome 11. Flanking markers for this region are D1151356 and D115924. The Jacobsen syndrome (JBS), ED4 (ectodermal dysplasia 4), CMT4B (Charcot Marie Tooth neuropathy), PORC (porphyria, acute) loci also map to this region of the human chromosome. The APOPLP1 (apolipoprotein cluster), DRD2 (dopamine receptor 2), PGL1 (paraganglioma glomus tumors), RDX (radixin), NCAM1 (neural cell adhesion molecule), ARCN1 (archain 1), and IL-10R (IL-10 receptor) genes map to this region of the human chromosome. This region is syntenic to mouse chromosome 9. The ruf (rough fur), lu (luxoid), and atm (ataxia telangiectasia gene mutated in human being) loci also mpa to this region of the mouse chromosome. The ruf (rough fur), lu (luxoi), hmbs (hydroxymethylbilane synthase), IL-10Rα (IL-10 receptor α), and drd2 (dopamine receptor 2) genes also map to this region of the mouse chromosome.

The human gene for TANGO 257 has been mapped to chromosome 1. Flanking markers for the region are WI-7614 and FB14F9. The WS2B (Waardenburg syndrome) loci also maps to this region of the human chromosome. The NGF-β (nerve growth

5

10

15

20

25

30

35

factor- β), TSHB (thyroid stimulating hormone), and GSTM1 (glutathione S-transferase cluster) genes also map to this region of the human chromosome. This region is syntenic to mouse chromosome 3. The de (droopy ear) loci maps to this region of the mouse chromosome. The NGF- β (nerve growth factor- β), TSHB (thyroid stimulating hormone), and BCAN (brevican) genes also map to this region of the mouse chromosome.

The human gene for INTERCEPT 258 has been mapped to the long arm of chromosome 11, in the region q23. Flanking markers for this region are D11S936 and D11S933. The CMT4B (Charcot Marie Tooth neuropathy), ED4 (ecotodermal dysplasia), JBS (Jacobsen Syndrome), and TCPT (thrombocytopenia) loci also map to this region of the human chromosome. The APOLP1 (apolipoprotein cluster), DRD2 (dopamine receptor), and RDX (radixin) genes also map to this region of the human chromosome. This region is syntenic to mouse chromosome 9. The atm (ataxia telangiectasia), ruf (rough fur), and vs (variable spotting) loci map to this region of the mouse chromosome. The lu (luxoid), vs (variable spotting), atm (ataxia telangiectasia), rug (rough fur), and lap1 (leucine arylaminopeptidase) genes also map to this region of the mouse chromosome.

Moreover, nucleic acid molecules encoding proteins of the invention from other species (homologues), which have a nucleotide sequence which differs from that of the human or mouse protein described herein are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of a cDNA of the invention can be isolated based on their identity to the human nucleic acid molecule disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. For example, a cDNA encoding a soluble form of a membrane-bound protein of the invention isolated based on its hybridization to a nucleic acid molecule encoding all or part of the membrane-bound form. Likewise, a cDNA encoding a membrane-bound form can be isolated based on its hybridization to a nucleic acid molecule encoding all or part of the soluble form.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1100, 1200 or 1300 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:1, 103, 105, 107 or 109, or a complement thereof.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700 or

720 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:2, 80, 91, 100 or 101, or a complement thereof.

5

10

15

25

30

35

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 540, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200 or 1250 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:8, 119, 121, 123 or 125, or a complement thereof.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 310, 350, 400, 450, 500, 550, 600, 650 or 700 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:9, 174, 175, 176 or 177, or a complement thereof.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 1800 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:15, 111, 113, 115 or 117, or a complement thereof.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 1150 or 1200 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:16, 170, 171, 172 or 173, or a complement thereof.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 1100, 1200, 1300, 1400, 1500, 1600 or 1700 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:21, 127, 129, 131 or 133, or a complement thereof.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 1150 or 1200 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:22, 178, 179, 180 or 181, or a complement thereof.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 420, 450, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400,

1500, 1600, 1700, or 1800 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID No:26, 135, 137, 139 or 141, or a complement thereof.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:27, 182, 183, 184 or 185, or a complement thereof.

10

5

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 675, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEO ID NO:37, 143, 145, 147 or 149, or a complement thereof.

15

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:38, 186, 187, 188 or 189, or a complement thereof.

20

25

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700 or 1800 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:46, 151, 153, 155 or 157, or a complement thereof.

30

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 50, 100, 200, 300, 400, 500, 600, 700 or 750 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:47, 77 190, 191 or 192, or a complement thereof.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 550, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800 or 1850 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:56, 159, 161, 163 or 165, or a complement thereof.

5

10

15

20

25

30

35

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 50, 100, 200, 300, 400, 500, 600 or 700 contiguous nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence, preferably the coding sequence, of SEQ ID NO:57, 166, 167, 168 or 169, or a complement thereof.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60%, 65%, 70%, preferably 75%, identical to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or a complement thereof, corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

In addition to naturally-occurring allelic variants of a nucleic acid molecule of the invention sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein. For example, one can make nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. For example, amino acid residues that are not conserved or only semi-conserved among homologues of various species may be non-essential for activity and thus would be likely targets for alteration. Specific examples of conservative amino acid alterations from the original amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48 or 58 are shown in SEQ ID NO: 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164.

5

10

15

20

25

30

35

Alternatively, amino acid residues that are conserved among the homologues of various species (e.g., mouse and human) may be essential for activity and thus would not be likely targets for alteration.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NO:3, 102, 104, 106 or 108, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:3, 102, 104, 106 or 108.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NO:10, 118, 120, 122 or 124 yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 95%, or 98% identical to the amino acid sequence of SEQ ID NO:10, 118, 120, 122 or 124.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NO:17, 110, 112, 114 or 116 yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 88%, 90%, 95% or 98% identical to the amino acid sequence of SEQ ID NO:17, 110, 112, 114 or 116.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NO:23, 126, 128, 130 or 132 yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 88%, 90%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:23, 126, 128, 130 or 132.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ

5

10

15

20

25

30

35

ID NO:28, 134, 136, 138, 140, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:28, 134, 136, 138, 140.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NO:39, 142, 144, 146 or 148, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:39, 142, 144, 146 or 148.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NO:48, 150, 152, 154, or 156, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:48, 150, 152, 154 or 156.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding a polypeptide of the invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from SEQ ID NO:58, 158, 160, 162 or 164, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule includes a nucleotide sequence encoding a protein that includes an amino acid sequence that is at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 75%, 85%, 95%, or 98% identical to the amino acid sequence of SEQ ID NO:58, 158, 160, 162 or 164.

An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,

185, 186, 187, 188, 189, 190, 191 or 192 such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.

In a preferred embodiment, a mutant polypeptide that is a variant of a polypeptide of the invention can be assayed for: (1) the ability to form protein: protein interactions with proteins in a signaling pathway of the polypeptide of the invention; (2) the ability to bind a ligand of the polypeptide of the invention; or (3) the ability to bind to an intracellular target protein of the polypeptide of the invention. In yet another preferred embodiment, the mutant polypeptide can be assayed for the ability to modulate cellular proliferation, cellular migration or chemotaxis, or cellular differentiation.

25

30

35

20

5

10

15

The present invention encompasses antisense nucleic acid molecules, i.e., molecules which are complementary to a sense nucleic acid encoding a polypeptide of the invention, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame). An antisense nucleic acid molecule can be antisense to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a polypeptide of the invention. The non-coding regions ("5' and 3' untranslated regions") are the 5' and 3' sequences which flank the coding region and are not translated into amino acids.

An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides or more in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or 5 variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 10 5-jodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 15 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 20 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following 25 subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a selected polypeptide of the invention to thereby inhibit expression, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic

30

35

administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

An antisense nucleic acid molecule of the invention can be an α-anomeric (alpha) nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) *Nucleic Acids Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) *FEBS Lett.* 215:327-330).

15

20

25

10

5

The invention also encompasses ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a nucleic acid molecule encoding a polypeptide of the invention can be designed based upon the nucleotide sequence of a cDNA disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742. Alternatively, an mRNA encoding a polypeptide of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 261:1411-1418.

30

35

The invention also encompasses nucleic acid molecules which form triple helical structures. For example, expression of a polypeptide of the invention can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene (1991) Anticancer Drug Des. 6(6):569-84; Helene (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14(12):807-15.

5

15

20

25

30

35

In various embodiments, the nucleic acid molecules of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal Chemistry 4(1): 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675.

PNAs can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93: 14670-675).

In another embodiment, PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNAse H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996), supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5' end of DNA (Mag et al. (1989) Nucleic Acids Res. 17:5973-88). PNA monomers are then coupled in a stepwise manner to produce a

chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) Nucleic Acids Res. 24(17):3357-63). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment (Peterser et al. (1975) Bioorganic Med. Chem. Lett. 5:1119-11124).

5

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. W0 88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W0 89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio/Techniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

15

20

25

10

II. Isolated Proteins and Antibodies

One aspect of the invention pertains to isolated proteins, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a polypeptide of the invention. In one embodiment, the native polypeptide can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, polypeptides of the invention are produced by recombinant DNA techniques. Alternative to recombinant expression, a polypeptide of the invention can be synthesized chemically using standard peptide synthesis techniques.

30

An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a "contaminating protein"). When the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the

35

volume of the protein preparation. When the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.

Biologically active portions of a polypeptide of the invention include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the protein (e.g., the amino acid sequence shown in any of SEQ ID NO:4, 6, 7, 13, 14, 18, 23, 28, 33, 34, 35, 36, 39, 42, 44, 45, 48, 51, 52, 53, 54, 55, 58, 61, 62, 63, 64, 65, 71, 76, 34, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, or 99 which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the corresponding protein. A biologically active portion of a protein of the invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the invention.

20

25

15

5

10

Preferred polypeptides have the amino acid sequence of SEQ ID NO:4, 6, 7, 13, 14, 18, 23, 28, 33, 34, 35, 36, 39, 42, 44, 45, 48, 51, 52, 53, 54, 55, 58, 61, 62, 63, 64, 65, 71, 76, 34, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, or 99. Other useful proteins are substantially identical (e.g., at least about 45%, preferably 55%, 65%, 75%, 85%, 95%, or 99%) to any of SEQ ID NO:4, 6, 7, 13, 14, 18, 23, 28, 33, 34, 35, 36, 39, 42, 44, 45, 48, 51, 52, 53, 54, 55, 58, 61, 62, 63, 64, 65, 71, 76, 34, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, or 99 and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.

30

35

To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is

5

10

15

20

25

30

35

incorporated herein by reference.

a function of the number of identical positions shared by the sequences (i.e., % identity = # of identical positions/total # of positions (e.g., overlapping positions) x 100). In one embodiment, the two sequences are the same length.

The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J. Mol. Biol. 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Id.). When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.

Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, CABIOS (1989). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the CGC sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art and include ADVANCE and ADAM as described in Torellis and Robotti (1994) Comput. Appl. Biosci., 10:3-5; and FASTA described in Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-8. Within FASTA, ktup is a control option that sets the sensitivity and speed of the search. If ktup=2, similar regions in the two sequences being compared are found by looking at pairs of aligned residues; if ktup=1, single aligned amino acids are examined. ktup can be set to 2 or 1 for protein sequences, or from 1 to 6 for DNA sequences. The default if ktup is not specified is 2 for proteins and 6 for DNA. For a further description of FASTA parameters, see http://bioweb.pasteur.fr/docs/man/man/fasta.1.html#sect2, the contents of which are

5

10

15

20

25

30

35

The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises all or part (preferably biologically active) of a polypeptide of the invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the same polypeptide of the invention). Within the fusion protein, the term "operably linked" is intended to indicate that the polypeptide of the invention and the heterologous polypeptide are fused in-frame to each other. The heterologous polypeptide can be fused to the N-terminus or C-terminus of the polypeptide of the invention.

One useful fusion protein is a GST fusion protein in which the polypeptide of the invention is fused to the C-terminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the invention.

In another embodiment, the fusion protein contains a heterologous signal sequence at its N-terminus. For example, the native signal sequence of a polypeptide of the invention can be removed and replaced with a signal sequence from another protein. For example, the gp67 secretory sequence of the baculovirus envelope protein can be used as a heterologous signal sequence (Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley & Sons, 1992). Other examples of eukaryotic heterologous signal sequences include the secretory sequences of melittin and human placental alkaline phosphatase (Stratagene; La Jolla, California). In yet another example, useful prokaryotic heterologous signal sequences include the phoA secretory signal (Sambrook et al., supra) and the protein A secretory signal (Pharmacia Biotech; Piscataway, New Jersey).

In yet another embodiment, the fusion protein is an immunoglobulin fusion protein in which all or part of a polypeptide of the invention is fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand (soluble or membrane-bound) and a protein on the surface of a cell (receptor), to thereby suppress signal transduction in vivo. The immunoglobulin fusion protein can be used to affect the bioavailability of a cognate ligand of a polypeptide of the invention. Inhibition of ligand/receptor interaction may be useful therapeutically, both for treating proliferative and differentiative disorders and for modulating (e.g., promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies directed

against a polypeptide of the invention in a subject, to purify ligands and in screening assays to identify molecules which inhibit the interaction of receptors with ligands.

5

10

15

20

25

30

35

Chimeric and fusion proteins of the invention can be produced by standard recombinant DNA techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide of the invention.

A signal sequence of a polypeptide of the invention (SEQ ID NO:5, 12, 19, 25, 30, 41, 49 or 59) can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway. Thus, the invention pertains to the described polypeptides having a signal sequence, as well as to the signal sequence itself and to the polypeptide in the absence of the signal sequence (i.e., the cleavage products). In one embodiment, a nucleic acid sequence encoding a signal sequence of the invention can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate. The signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved. The protein can then be readily purified from the extracellular medium by art recognized methods. Alternatively, the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.

In another embodiment, the signal sequences of the present invention can be used to identify regulatory sequences, e.g., promoters, enhancers, repressors. Since signal sequences are the most amino-terminal sequences of a peptide, it is expected that the nucleic acids which flank the signal sequence on its amino-terminal side will be regulatory sequences which affect transcription. Thus, a nucleotide sequence which encodes all or a portion of a signal sequence can be used as a probe to identify and isolate signal sequences

and their flanking regions, and these flanking regions can be studied to identify regulatory elements therein.

The present invention also pertains to variants of the polypeptides of the invention. Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists. Variants can be generated by mutagenesis, e.g., discrete point mutation or truncation. An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein. An antagonist of a protein can inhibit one or more of the activities of the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein.

15

20

25

10

5

Variants of a protein of the invention which function as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the invention for agonist or antagonist activity. In one embodiment, a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display). There are a variety of methods which can be used to produce libraries of potential variants of the polypeptides of the invention from a degenerate oligonucleotide sequence. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477).

30

35

In addition, libraries of fragments of the coding sequence of a polypeptide of the invention can be used to generate a variegated population of polypeptides for screening and subsequent selection of variants. For example, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of the coding sequence of interest with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease,

5

10

15

20

25

30

35

and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal and internal fragments of various sizes of the protein of interest.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of a protein of the invention (Arkin and Yourvan (1992) *Proc. Natl. Acad. Sci. USA* 89:7811-7815; Delgrave et al. (1993) *Protein Engineering* 6(3):327-331).

The polypeptides of the invention can exhibit post-translational modifications, including, but not limited to glycosylations, (e.g., N-linked or O-linked glycosylations), myristylations, palmitylations, acetylations and phosphorylations (e.g., serine/threonine or tyrosine). In one embodiment, the TANGO 253, TANGO 257, INTERCEPT 258 or TANGO 281 polypeptides of the invention exhibit reduced levels of O-linked glycosylation and/or N-linked glycosylation relative to endogenously expressed TANGO 253, TANGO 257, INTERCEPT 258 or TANGO 281 polypeptides of the invention do not exhibit O-linked glycosylation or N-linked glycosylation. The post-translational modifications of TANGO 253, TANGO 257, INTERCEPT 258 or TANGO 281 polypeptides will vary depending upon the host cell in which in TANGO 253, TANGO 257, INTERCEPT 258 or TANGO 281 polypeptides such as glycosylation can be prevented by treating cells, e.g., with tunicamycin.

An isolated polypeptide of the invention, or a fragment thereof, can be used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation. The full-length polypeptide or protein can be used or, alternatively, the invention provides antigenic peptide fragments for use as immunogens. In one embodiment, an isolated polypeptide or fragment thereof which lacks N- and/or O-linked glycosylation is used as an immunogen to generate antibodies using standard techniques known to those of skill in the art. The antigenic peptide of a protein of the

5

10

15

20

25

30

35

invention comprises at least 8 (preferably 10, 15, 20, or 30) amino acid residues of the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164 and encompasses an epitope of the protein such that an antibody raised against the peptide forms a specific immune complex with the protein.

Preferred epitopes encompassed by the antigenic peptide are regions that are located on the surface of the protein, e.g., hydrophilic regions. Figures 2, 4, 10, 12, 19, 21, 29 and 32, are hydropathy plots of the proteins of the invention. These plots or similar analyses can be used to identify hydrophilic regions.

An immunogen typically is used to prepare antibodies by immunizing a suitable subject, (e.g., rabbit, goat, mouse or other mammal). An appropriate immunogenic preparation can contain, for example, recombinantly expressed or chemically synthesized polypeptide. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent.

Accordingly, another aspect of the invention pertains to antibodies directed against a polypeptide of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds an antigen, such as a polypeptide of the invention e.g., an epitope of a polypeptide of the invention. A molecule which specifically binds to a given polypeptide of the invention is a molecule which binds the polypeptide, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab')₂ fragments which can be generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope.

Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide of the invention as an immunogen. Preferred polyclonal antibody compositions are ones that have been selected for antibodies directed against a polypeptide or polypeptides of the invention. Particularly preferred polyclonal antibody preparations are ones that contain only antibodies directed against a polypeptide or polypeptides of the invention. Particularly preferred immunogen compositions are

5

10

15

20

25

30

35

those that contain no other human proteins such as, for example, immunogen compositions made using a non-human host cell for recombinant expression of a polypeptide of the invention. In such a manner, the only human epitope or epitopes recognized by the resulting antibody compositions raised against this immunogen will be present as part of a polypeptide or polypeptides of the invention.

The antibody titer in an immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction. Alternatively, antibodies specific for a protein or polypeptide of the invention can be selected for (e.g., partially purified) or purified by, e.g., affinity chromatography. For example, a recombinantly expressed and purified (or partially purified) protein of the invention is produced as described herein, and covalently or non-covalently coupled to a solid support such as, for example, a chromatography column. The column can then be used to affinity purify antibodies specific for the proteins of the invention from a sample containing antibodies directed against a large number of different epitopes, thereby generating a substantially purified antibody composition, i.e., one that is substantially free of contaminating antibodies. By a substantially purified antibody composition is meant, in this context, that the antibody sample contains at most only 30% (by dry weight) of contaminating antibodies directed against epitopes other than those on the desired protein or polypeptide of the invention, and preferably at most 20%, yet more preferably at most 10%, and most preferably at most 5% (by dry weight) of the sample is contaminating antibodies. A purified antibody composition means that at least 99% of the antibodies in the composition are directed against the desired protein or polypeptide of the invention.

At an appropriate time after immunization, e.g., when the specific antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497, the human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985), Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or trioma techniques. The technology for producing hybridomas is well known (see generally Current Protocols in Immunology (1994) Coligan et al. (eds.) John Wiley & Sons, Inc., New York, NY). Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind the polypeptide of interest, e.g., using a standard ELISA assay.

5

15

Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody directed against a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide of interest. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAPTM Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J. 12:725-734.

Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. A chimeric antibody is a molecule in which different portions are derived from different 20 animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. (See, e.g., Cabilly et al., U.S. Patent No. 4,816,567; and Boss et al., U.S. Patent No. 4,816397, which are incorporated herein by reference in their entirety.) Humanized antibodies are antibody molecules from nonhuman species having one or more complementarily determining regions (CDRs) from 25 the non-human species and a framework region from a human immunoglobulin molecule. (See, e.g., Queen, U.S. Patent No. 5,585,089, which is incorporated herein by reference in its entirety.) Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671; European Patent Application 184,187; European 30 Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Canc. Res. 47:999-1005; Wood et al. 35 (1985) Nature 314:446-449; and Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison (1985) Science 229:1202-1207; Oi et al. (1986) Bio/Techniques 4:214; U.S.

5

10

15

20

25

30

35

Patent 5,225,539; Jones et al. (1986) *Nature* 321:552-525; Verhoeyan et al. (1988) *Science* 239:1534; and Beidler et al. (1988) *J. Immunol.* 141:4053-4060.

Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced, for example, using transgenic mice which are incapable of expressing endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar (1995, Int. Rev. Immunol. 13:65-93). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., U.S. Patent 5,625,126; U.S. Patent 5,633,425; U.S. Patent 5,569,825; U.S. Patent 5,661,016; and U.S. Patent 5,545,806. In addition, companies such as Abgenix, Inc. (Freemont, CA), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al. (1994) Bio/technology 12:899-903).

An antibody directed against a polypeptide of the invention (e.g., monoclonal antibody) can be used to isolate the polypeptide by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, such an antibody can be used to detect the protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the polypeptide. The antibodies can also be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or

acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

5

10

15

20

25

30

35

Further, an antibody (or fragment thereof) can be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

The conjugates of the invention can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, d-interferon, β-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophase colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.

Techniques for conjugating a therapeutic moiety to antibodies are well known, see, e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in

Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev., 62:119-58 (1982).

5

10

15

20

25

30

35

Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.

Accordingly, in one aspect, the invention provides substantially purified antibodies or fragment thereof, including human, non-human, chimeric, and humanized antibodies, which antibodies or fragments specifically bind to a polypeptide comprising an amino acid sequence of any one of SEQ ID NOs:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, or an amino acid sequence encoded by the cDNA insert of a clone deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, or patent deposit Number PTA-224, or a complement thereof. In another aspect, the invention provides substantially purified antibodies or fragments thereof, including human, non-human, chimeric and humanized antibodies, which antibodies or fragments thereof specifically bind to a polypeptide comprising a fragment of at least 8 contiguous amino acid residues, preferably at least 15 contiguous amino acid residues, of the amino acid sequence of any one of SEQ ID NOs:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, or 164.

In another aspect, the invention provides substantially purified antibodies or fragments thereof, including human, non-human, chimeric and humanized antibodies, which antibodies or fragments thereof specifically bind to a polypeptide comprising an amino acid sequence which is at least 95% identical to the amino acid sequence of any one of SEQ ID NOs:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4. In another aspect, the invention provides substantially purified antibodies or fragments

5

10

15

20

25

30

35

thereof, including human, non-human, chimeric and humanized antibodies, which antibodies or fragments thereof specifically bind to a polypeptide comprising and an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes to the nucleic acid molecule consisting of any one of SEQ ID Nos:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191or 192, or the cDNA insert of a clone deposited as ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession number 207221 or patent deposit Number PTA-224, or a complement thereof, under conditions of hybridization of 6X SSC at 45°C and washing in 0.2 X SSC, 0.1% SDS at 50°C, 55°C, 60°C or 65°C.

In various embodiments, the substantially purified antibodies or fragments thereof of the invention are polyclonal, monoclonal, Fab fragments, single chain antibodies, or F(ab')₂ fragments. The non-human antibodies or fragments thereof of the invention can be goat, mouse, sheep, horse, chicken, rabbit or rat antibodies or antibodies fragments. In a preferred embodiment, the antibodies of the invention are monoclonal antibodies that specifically bind to a polypeptide of the invention.

The substantially purified antibodies or fragments thereof specifically bind to a signal peptide, a secreted sequence, an extracellular domain, a transmembrane or a cytoplasmic domain cytoplasmic membrane of a polypeptide of the invention. In a particularly preferred embodiment, the substantially purified antibodies or fragments thereof of the invention specifically bind to a secreted sequence or an extracellular domain of the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, or the amino acid sequence encoded by the EpT253, EpTm253, EpT257, EpTm257, EpTm258, EpTm258, EpTm2181 or EpTm281 cDNA insert of ATCC® Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, or patent deposit Number PTA-224, or a complement thereof. In one embodiment, the extracellular domain to which the antibody or antibody fragment binds comprises at least 8 contiguous amino acid residues, preferably at least 10 or at least 15 contiguous amino acid residues, of amino acid residues 30 to 206 of SEO ID NO:28 (SEO ID NO:76), amino acid residues 272 to 370 of SEQ ID NO:28 (SEQ ID NO:34); amino acid residues 30 to 249 of SEQ ID NO:39 (SEQ ID NO: 83), amino acid residues 39 to 123 of SEQ ID NO:48 (SEQ ID NO:50), or amino acid residues 27 to 112 of SEQ ID NO:58 (SEQ ID NO:61).

5

10

15

20

25

30

35

Any of the antibodies of the invention can be conjugated to a therapeutic moiety or to a detectable substance. Non-limiting examples of detectable substances that can be conjugated to the antibodies of the invention are an enzyme, a prosthetic group, a fluorescent material, a luminescent material, a bioluminescent material, and a radioactive material.

The invention also provides a kit containing an antibody of the invention conjugated to a detectable substance, and instructions for use. Still another aspect of the invention is a pharmaceutical composition comprising an antibody of the invention and a pharmaceutically acceptable carrier. In preferred embodiments, the pharmaceutical composition contains an antibody of the invention, a therapeutic moiety, and a pharmaceutically acceptable carrier.

Still another aspect of the invention is a method of making an antibody that specifically recognizes TANGO 253, TANGO 257, INTERCEPT 258, and TANGO 281, the method comprising immunizing a mammal with a polypeptide. In one embodiment, the polypeptide used as an immunogens comprises an amino acid sequence of any one of SEQ ID NOs:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, or an amino acid sequence encoded by the cDNA insert of a clone deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, or patent deposit Number PTA-224. In another embodiment, the polypeptide used as an immunogen comprises a fragment of at least 15 amino acid residues, preferably at least 25 amino acid residues, of the amino acid sequence of any one of SEQ ID NOs:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, or an amino acid sequence which is at least 85%, preferably at least 95% identical to the amino acid sequence of any one of SEQ ID NOs:3, 10, 17, 23, 28, 39, 48, 58, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162 or 164, wherein the percent identity is determined using the ALIGN program of the GCG software package with a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4.

In another embodiment, the polypeptide used as an immunogen comprises an amino acid sequence which is encoded by a nucleic acid molecule which hybridizes to the nucleic acid molecule consisting of any one of SEQ ID NOs:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56, 57, 77, 80, 91, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153,

155, 157, 159, 161, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191 or 192, or the cDNA insert of a clone deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, or patent deposit Number PTA-224, or a complement thereof, under conditions of hybridization of 6X SSC at 45°C and washing in 0.2 X SSC, 0.1% SDS at 50°C, 55°C, 60°C or 65°C. After immunization, a sample is collected from the mammal that contains an antibody that specifically recognizes TANGO 253, TANGO 257, INTERCEPT 258 or TANGO 281, a fragment thereof, or allellic variant thereof. Preferably, the polypeptide is recombinantly produced using a non-human host cell. Optionally, the antibodies can be further purified from the sample using techniques well known to those of skill in the art. The method can further comprise producing a monoclonal antibody- producing cell from the cells of the mammal. Optionally, antibodies are collected from the antibody-producing cell.

15 III. Recombinant Expression Vectors and Host Cells

5

10

20

25

30

35

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a polypeptide of the invention (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences,

5

10

15

20

25

30

35

selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.

The recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic (e.g., E. coli) or eukaryotic cells (e.g., insect cells (using baculovirus expression vectors), yeast cells or mammalian cells). Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out in *E. coli* with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5

(Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

5

10

15

20

25

30

35

Examples of suitable inducible non-fusion $E.\ coli$ expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

One strategy to maximize recombinant protein expression in *E. coli* is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in *E. coli* (Wada et al. (1992) *Nucleic Acids Res.* 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerivisae* include pYepSec1 (Baldari et al. (1987) *EMBO J.* 6:229-234), pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz et al. (1987) *Gene* 54:113-123), pYES2 (Invitrogen Corporation, San Diego, CA), and pPicZ (Invitrogen Corp, San Diego, CA).

Alternatively, the expression vector is a baculovirus expression vector. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed (1987) *Nature* 329:840) and pMT2PC (Kaufman et al. (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2,

cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., *supra*.

5

10

15

20

25

30

35

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the mouse hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the beta-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a polypeptide of the invention. Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub et al. (*Reviews - Trends in Genetics*, Vol. 1(1) 1986).

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms

refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

5

10

A host cell can be any prokaryotic (e.g., E. coli) or eukaryotic cell (e.g., insect cells, yeast or mammalian cells).

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.

15

20

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

25

30

35

In another embodiment, the expression characteristics of an endogenous (e.g., TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 genes) within a cell, cell line or microorganism may be modified by inserting a DNA regulatory element heterologous to the endogenous gene of interest into the genome of a cell, stable cell line or cloned microorganism such that the inserted regulatory element is operatively linked with the endogenous gene (e.g., TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 genes) and controls, modulates or activates. For example, endogenous TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 genes which are normally "transcriptionally silent", i.e., a TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 genes which is normally not expressed, or are expressed only at very low levels in a cell line or microorganism, may be activated by inserting a regulatory element which is capable of promoting the expression of a normally expressed gene product in that cell line or microorganism. Alternatively, transcriptionally silent, endogenous TANGO

253, TANGO 257, INTERCEPT 258 and TANGO 281 genes may be activated by insertion of a promiscuous regulatory element that works across cell types.

5

10

15

20

25

30

35

A heterologous regulatory element may be inserted into a stable cell line or cloned microorganism, such that it is operatively linked with endogenous TANGO 253, TANGO 257, INTERCEPT 258 and TANGO 281 genes, using techniques, such as targeted homologous recombination, which are well known to those of skill in the art, and described e.g., in Chappel, U.S. Patent No. 5,272,071; PCT publication No. WO 91/06667, published May 16, 1991.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce a polypeptide of the invention. Accordingly, the invention further provides methods for producing a polypeptide of the invention using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another embodiment, the method further comprises isolating the polypeptide from the medium or the host cell.

The host cells of the invention can also be used to produce nonhuman transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a sequence encoding a polypeptide of the invention has been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous sequences encoding a polypeptide of the invention have been introduced into their genome or homologous recombinant animals in which endogenous encoding a polypeptide of the invention sequences have been altered. Such animals are useful for studying the function and/or activity of the polypeptide and for identifying and/or evaluating modulators of polypeptide activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, an "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA

5

10

15

20

25

30

35

molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.

A transgenic animal of the invention can be created by introducing nucleic acid encoding a polypeptide of the invention (or a homologue thereof) into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the polypeptide of the invention to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, U.S. Patent No. 4,873,191 and in Hogan, Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986) and Wakayama et al., (1999), Proc. Natl. Acad. Sci. USA, 96:14984-14989. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA encoding the transgene in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying the transgene can further be bred to other transgenic animals carrying other transgenes.

To create an homologous recombinant animal, a vector is prepared which contains at least a portion of a gene encoding a polypeptide of the invention into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the gene. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous protein). In the homologous recombination vector, the altered portion of the gene is flanked at its 5' and 3' ends by additional nucleic acid of the gene to allow for homologous recombination to occur between the exogenous gene carried by the vector and an endogenous gene in an embryonic stem cell. The additional flanking nucleic acid sequences are of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see, e.g., Thomas and Capecchi (1987) Cell 51:503 for a description of homologous

recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced gene has homologously recombined with the endogenous gene are selected (see, e.g., Li et al. (1992) Cell 69:915). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see, e.g., Bradley in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed. (IRL, Oxford, 1987) pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley (1991) Current Opinion in Bio/Technology 2:823-829 and in PCT Publication Nos. WO 90/11354, WO 91/01140, WO 92/0968, and WO 93/04169.

In another embodiment, transgenic non-human animals can be produced which contain selected systems which allow for regulated expression of the transgene. One example of such a system is the *cre/loxP* recombinase system of bacteriophage P1. For a description of the *cre/loxP* recombinase system, *see*, *e.g.*, Lakso et al. (1992) *Proc. Natl. Acad. Sci. USA* 89:6232-6236. Another example of a recombinase system is the FLP recombinase system of *Saccharomyces cerevisiae* (O'Gorman et al. (1991) *Science* 251:1351-1355. If a *cre/loxP* recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the *Cre* recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, *e.g.*, by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) *Nature* 385:810-813 and PCT Publication NOS. WO 97/07668 and WO 97/07669.

30

35

5

10

15

20

25

IV. Pharmaceutical Compositions

The nucleic acid molecules, polypeptides, and antibodies (also referred to herein as "active compounds") of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" is intended to include any

and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

5

10

15

20

25

30

35

The invention includes methods for preparing pharmaceutical compositions for modulating the expression or activity of a polypeptide or nucleic acid of the invention. Such methods comprise formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention. Such compositions can further include additional active agents. Thus, the invention further includes methods for preparing a pharmaceutical composition by formulating a pharmaceutically acceptable carrier with an agent which modulates expression or activity of a polypeptide or nucleic acid of the invention and one or more additional active compounds.

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF; Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a

5

10

15

20

25

30

35

solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a polypeptide or antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.

Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressurized container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

15

20

25

30

35

10

5

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

For antibodies, the preferred dosage is 0.1 mg/kg to 100 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg). If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is usually appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al. ((1997) J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193).

10

5

As defined herein, a therapeutically effective amount of protein or polypeptide (*i.e.*, an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight.

15

20

The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments. In a preferred example, a subject is treated with antibody, protein, or polypeptide in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of antibody, protein, or polypeptide used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.

25

30

35

The present invention encompasses agents which modulate expression or activity. An agent may, for example, be a small molecule. For example, such small molecules include, but are not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole,

organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.

It is understood that appropriate doses of small molecule agents depends upon a number of factors within the ken of the ordinarily skilled physician, veterinarian, or researcher. The dose(s) of the small molecule will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the small molecule to have upon the nucleic acid or polypeptide of the invention. Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid of the invention, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.

25

5

10

15

20

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. Patent 5,328,470) or by stereotactic injection (see, e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

35

30

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

V. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: a) screening assays; b) detection assays (e.g., chromosomal mapping, tissue typing, forensic biology); c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and d) methods of treatment (e.g., therapeutic and prophylactic). The isolated nucleic acid molecules of the invention can be used to express proteins (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect mRNA (e.g., in a biological sample) or a genetic lesion, and to modulate activity of a polypeptide of the invention. In addition, the polypeptides of the invention can be used to screen drugs or compounds which modulate activity or expression of a polypeptide of the invention as well as to treat disorders characterized by insufficient or excessive production of a protein of the invention or production of a form of a protein of the invention which has decreased or aberrant activity compared to the wild type protein. In addition, the antibodies of the invention can be used to detect and isolate a protein of the and modulate activity of a protein of the invention.

This invention further pertains to novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.

20

25

30

35

5

10

15

A. Screening Assays

The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to polypeptide of the invention or have a stimulatory or inhibitory effect on, for example, expression or activity of a polypeptide of the invention.

In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a polypeptide of the invention or biologically active portion thereof. The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide,

non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al. (1994). J. Med. Chem. 37:2678; Cho et al. (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and Gallop et al. (1994) J. Med. Chem. 37:1233.

5

10

15

20

25

30

35

Libraries of compounds may be presented in solution (e.g., Houghten (1992) Bio/Techniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (U.S. Patent No. 5,223,409), spores (Patent NOS. 5,571,698; 5,403,484; and 5,223,409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869) or phage (Scott and Smith (1990) Science 249:386-390; Devlin (1990) Science 249:404-406; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382; and Felici (1991) J. Mol. Biol. 222:301-310).

In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to the polypeptide determined. The cell, for example, can be a yeast cell or a cell of mammalian origin. Determining the ability of the test compound to bind to the polypeptide can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the polypeptide or biologically active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 125I. ³⁵S, ¹⁴C, or ³H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, test compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In a preferred embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially

5

10

15

20

25

30

35

bind to the polypeptide or a biologically active portion thereof as compared to the known compound.

In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of a polypeptide of the invention, or a biologically active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide or a biologically active portion thereof can be accomplished, for example, by determining the ability of the polypeptide protein to bind to or interact with a target molecule.

Determining the ability of a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by one of the methods described above for determining direct binding. As used herein, a "target molecule" is a molecule with which a selected polypeptide (e.g., a polypeptide of the invention) binds or interacts with in nature, for example, a molecule on the surface of a cell which expresses the selected protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A target molecule can be a polypeptide of the invention or some other polypeptide or protein. For example, a target molecule can be a component of a signal transduction pathway which facilitates transduction of an extracellular signal (e.g., a signal generated by binding of a compound to a polypeptide of the invention) through the cell membrane and into the cell or a second intercellular protein which has catalytic activity or a protein which facilitates the association of downstream signaling molecules with a polypeptide of the invention. Determining the ability of a polypeptide of the invention to bind to or interact with a target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (e.g., intracellular Ca²⁺, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target on an appropriate substrate, detecting the induction of a reporter gene (e.g., a regulatory element that is responsive to a polypeptide of the invention operably linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a cellular response, for example, cellular differentiation, or cell proliferation.

In yet another embodiment, an assay of the present invention is a cell-free assay comprising contacting a polypeptide of the invention or biologically active portion thereof with a test compound and determining the ability of the test compound to bind to the polypeptide or biologically active portion thereof. Binding of the test compound to the

polypeptide can be determined either directly or indirectly as described above. In a preferred embodiment, the assay includes contacting the polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide or biologically active portion thereof as compared to the known compound.

5

10

15

20

25

30

35

In another embodiment, an assay is a cell-free assay comprising contacting a polypeptide of the invention or biologically active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the polypeptide or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the polypeptide can be accomplished, for example, by determining the ability of the polypeptide to bind to a target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of the polypeptide can be accomplished by determining the ability of the polypeptide of the invention to further modulate the target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as previously described.

In yet another embodiment, the cell-free assay comprises contacting a polypeptide of the invention or biologically active portion thereof with a known compound which binds the polypeptide to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the polypeptide to preferentially bind to or modulate the activity of a target molecule.

The cell-free assays of the present invention are amenable to use of both a soluble form or the membrane-bound form of a polypeptide of the invention. In the case of cell-free assays comprising the membrane-bound form of the polypeptide, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of the polypeptide is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-octylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton X-100, Triton X-114, Thesit, Isotridecypoly(ethylene glycol ether)n,

3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPS),

5

10

15

20

25

30

35

3-[(3-cholamidopropyl)dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl=N,N-dimethyl-3-ammonio-1-propane sulfonate.

In more than one embodiment of the above assay methods of the present invention, it may be desirable to immobilize either the polypeptide of the invention or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to the polypeptide, or interaction of the polypeptide with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix. For example, glutathione-S-transferase fusion proteins or glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical; St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the test compound or the test compound and either the non-adsorbed target protein or A polypeptide of the invention, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components and complex formation is measured either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of binding or activity of the polypeptide of the invention can be determined using standard techniques.

Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the polypeptide of the invention or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated polypeptide of the invention or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals; Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with the polypeptide of the invention or target molecules but which do not interfere with binding of the polypeptide of the invention to its target molecule can be derivatized to the wells of the plate, and unbound target or polypeptide of the invention trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the polypeptide of the invention or target

molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the polypeptide of the invention or target molecule.

In another embodiment, modulators of expression of a polypeptide of the invention are identified in a method in which a cell is contacted with a candidate compound and the expression of the selected mRNA or protein (i.e., the mRNA or protein corresponding to a polypeptide or nucleic acid of the invention) in the cell is determined. The level of expression of the selected mRNA or protein in the presence of the candidate compound is compared to the level of expression of the selected mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of expression of the polypeptide of the invention based on this comparison. For example, when expression of the selected mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of the selected mRNA or protein expression. Alternatively, when expression of the selected mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of the selected mRNA or protein expression. The level of the selected mRNA or protein expression in the cells can be determined by methods described herein.

In yet another aspect of the invention, a polypeptide of the inventions can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Bio/Techniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and PCT Publication No. WO 94/10300), to identify other proteins, which bind to or interact with the polypeptide of the invention and modulate activity of the polypeptide of the invention. Such binding proteins are also likely to be involved in the propagation of signals by the polypeptide of the inventions as, for example, upstream or downstream elements of a signaling pathway involving the polypeptide of the invention.

This invention further pertains to novel agents identified by the above-described screening assays and uses thereof for treatments as described herein.

B. <u>Detection Assays</u>

5

10

15

20

25

30

35

Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a

chromosome and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.

5

10

15

20

25

30

1. Chromosome Mapping

Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. Accordingly, nucleic acid molecules described herein or fragments thereof, can be used to map the location of the corresponding genes on a chromosome. The mapping of the sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.

Briefly, genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the sequence of a gene of the invention. Computer analysis of the sequence of a gene of the invention can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the gene sequences will yield an amplified fragment. For a review of this technique, see D'Eustachio et al. ((1983) Science 220:919-924).

PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the nucleic acid sequences of the invention to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to map a gene to its chromosome include *in situ* hybridization (described in Fan et al. (1990) *Proc. Natl. Acad. Sci. USA* 87:6223-27), pre-screening with labeled flow-sorted chromosomes (CITE), and pre-selection by hybridization to chromosome specific cDNA libraries. Fluorescence *in situ* hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. For a review of this technique, see Verma et al., (Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, New York, 1988)).

Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to

5

10

15

20

25

35

noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, e.g., Egeland et al. (1987) Nature 325:783-787.

Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with a gene of the invention can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.

Furthermore, the nucleic acid sequences disclosed herein can be used to perform searches against "mapping databases", e.g., BLAST-type search, such that the chromosome position of the gene is identified by sequence homology or identity with known sequence fragments which have been mapped to chromosomes.

In the instant case, the human gene for INTERCEPT 258 has been mapped to the long arm of chromosome 11, in the region q23. Flanking markers for this region are D11S936 and D11S933. The CMT4B (Charcot Marie Tooth neuropathy), ED4 (ecotodermal dysplasia), JBS (Jacobsen Syndrome), TCPT (thrombocytopenia) loci also map to this region of the human chromosome. The APOLP1 (apoplipoprotein cluster), DRD2 (dopamine receptor), and RDX (radixin) genes also map to this region of the human chromosome. This region is syntenic to mouse chromosome 9. The atm (ataxia telangiectasia), ruf (rough fur), and vs (variable spotting) loci map to this region of the mouse chromosome. The lu (luxoid), vs (variable spotting), atm (ataxia telangiectasia), rug (rough fur), and lap1 (leucine arylaminopeptidase) genes also map to this region of the mouse chromosome.

A polypeptide and fragments and sequences thereof and antibodies specific thereto can be used to map the location of the gene encoding the polypeptide on a chromosome. This mapping can be carried out by specifically detecting the presence of the polypeptide in members of a panel of somatic cell hybrids between cells of a first species of animal from which the protein originates and cells from a second species of animal and then determining which somatic cell hybrid(s) expresses the polypeptide and noting the chromosome(s) from the first species of animal that it contains. For examples of this technique, see Pajunen et al. (1988) Cytogenet. Cell Genet. 47:37-41 and Van Keuren et al. (1986) Hum. Genet. 74:34-40. Alternatively, the presence of the polypeptide in the somatic cell hybrids can be determined by assaying an activity or property of the polypeptide, for example, enzymatic activity, as described in Bordelon-Riser et al. (1979) Somatic Cell Genetics 5:597-613 and Owerbach et al. (1978) Proc. Natl. Acad. Sci. USA 75:5640-5644.

2. Tissue Typing

5

10

20

25

30

35

The nucleic acid sequences of the present invention can also be used to identify individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).

Furthermore, the sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the nucleic acid sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.

Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue. The nucleic acid sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these

sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency at about once per each 500 bases. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes.

Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences of SEQ ID NO:1, 8, 15, 21, 26, 37, 46 or 56, can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:2, 9, 16, 22, 27, 38, 47 or 57 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.

If a panel of reagents from the nucleic acid sequences described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual. Using the unique identification database, positive identification of the individual, living or dead, can be made from extremely small tissue samples.

3. Use of Partial Gene Sequences in Forensic Biology

15

20

30

35

DNA-based identification techniques can also be used in forensic biology. Forensic biology is a scientific field employing genetic typing of biological evidence found at a crime scene as a means for positively identifying, for example, a perpetrator of a crime. To make such an identification, PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.

The sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e. another DNA sequence that is unique to a particular individual). As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to noncoding regions are particularly appropriate for this use as greater numbers of polymorphisms occur in the noncoding regions, making it easier to differentiate individuals using this technique. Examples of polynucleotide reagents

include the nucleic acid sequences of the invention or portions thereof, e.g., fragments derived from noncoding regions having a length of at least 20 or 30 bases.

The nucleic acid sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such probes can be used to identify tissue by species and/or by organ type.

10

15

20

25

5

C. Predictive Medicine

The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 protein and/or nucleic acid expression as well as TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant or unwanted TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 expression or activity. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 protein, nucleic acid expression or activity. For example, mutations in a TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 protein, nucleic acid expression or activity.

30

35

As an alternative to making determinations based on the absolute expression level of selected genes, determinations may be based on the normalized expression levels of these genes. Expression levels are normalized by correcting the absolute expression level of a TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 gene by comparing its expression to the expression of a gene that is not a TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 gene, e.g., a housekeeping gene that is constitutively expressed. Suitable genes for normalization include housekeeping genes such as the actin

gene. This normalization allows the comparison of the expression level in one sample, e.g., a patient sample, to another sample, e.g., a sample from an individual without a particular disease or disorder, or a sample from a healthy individual, or between samples from different sources.

Alternatively, the expression level can be provided as a relative expression level. To determine a relative expression level of a gene, the level of expression of the gene is determined for 10 or more samples of different cell isolates (e.g., neural cell isolates, glial cell isolates, immune cell isolates, platelet isolates, megakaryocyte isolates, endothelial cell isolates, and osteocyte isolates) preferably 50 or more samples, prior to the determination of the expression level for the sample in question. The mean expression level of each of the genes assayed in the larger number of samples is determined and this is used as a baseline expression level for the gene(s) in question. The expression level of the gene determined for the test sample (absolute level of expression) is then divided by the mean expression value obtained for that gene. This provides a relative expression level and aids in identifying extreme cases of diseases and disorders such as obesity, coronary disorders (e.g., atherosclerosis), neuronal disorders, pulmonary disorders, renal disorders, and bleeding disorders.

Preferably, the samples used in the baseline determination will be from diseased or from non-diseased cells of the appropriate cell type or tissue. The choice of the cell source is dependent on the use of the relative expression level. Using expression found in normal tissues as a mean expression score aids in validating whether the TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 gene assayed is specific (versus normal cells). Such a use is particularly important in identifying whether a TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 gene can serve as a target gene. In addition, as more data is accumulated, the mean expression value can be revised, providing improved relative expression values based on accumulated data. Expression data from cells provides a means for grading the severity of the disease or disorder state.

Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of TANGO 253, TANGO 257, INTERCEPT 258, or TANGO 281 in clinical trials. These and other agents are described in further detail in the following sections.

1. <u>Diagnostic Assays</u>

5

10

15

20

25

30

35

An exemplary method for detecting the presence or absence of a polypeptide or nucleic acid of the invention in a biological sample involves obtaining a biological sample

from a test subject and contacting the biological sample with a compound or an agent capable of detecting a polypeptide or nucleic acid (e.g., mRNA, genomic DNA) of the invention such that the presence of a polypeptide or nucleic acid of the invention is detected in the biological sample. A preferred agent for detecting mRNA or genomic DNA encoding a polypeptide of the invention is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA encoding a polypeptide of the invention. The nucleic acid probe can be, for example, a full-length cDNA, such as the nucleic acid of SEQ ID NO:1, 2, 8, 9, 15, 16, 21, 22, 26, 27, 37, 38, 46, 47, 56 or 57, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding a polypeptide of the invention. Other suitable probes for use in the diagnostic assays of the invention are described herein.

5

10

15

20

25

30

35

A preferred agent for detecting a polypeptide of the invention is an antibody capable of binding to a polypeptide of the invention, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')₂) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of a polypeptide of the invention include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of a polypeptide of the invention include introducing into a subject a labeled antibody directed against the polypeptide. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test

5

10

15

20

25

30

35

subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.

In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting a polypeptide of the invention or mRNA or genomic DNA encoding a polypeptide of the invention, such that the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide is detected in the biological sample, and comparing the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the control sample with the presence of the polypeptide or mRNA or genomic DNA encoding the polypeptide in the test sample.

The invention also encompasses kits for detecting the presence of a polypeptide or nucleic acid of the invention in a biological sample (a test sample). Such kits can be used to determine if a subject is suffering from or is at increased risk of developing a disorder associated with aberrant expression of a polypeptide of the invention, as discussed, for example, in sections above relating to uses of the sequences of the invention.

For example, kits can be used to determine if a subject is suffering from or is at increased risk of disorders such as coronary disorders (e.g., heart diseases and disorders such as atherosclerosis., coronary artery disease and plaque formation), and adipocyterelated disorders (e.g., obesity), which are associated with aberrant TANGO 253 expression. In another example, kits can be used to determine if a subject is suffering from or is at increased risk of disorders such as coronary disorders (e.g., heart diseases and disorders such as atherosclerosis, coronary artery disease and plague formation), olfactory disorders, neurological disorders (e.g., neurodegenerative disorders, neuromuscular disorders, cognitive disorders, personality disorders, and motor disorder) and pulmonary disorders, (e.g., cystic fibrosis), which are associated with aberrant TANGO 257 expression. In another example, kits can be used to determine if a subject is suffering from or is at increased risk of disorders such as Type I immunologic disorders, (e.g., anaphylaxis and rhinitis), which are associated with aberrant INTERCEPT 258 expression. In another example, kits can be used to determine if a subject is suffering from or is at increased risk of disorders such as immunological disorders, (e.g. thrombocytopenia and platelet disorders), developmental disorders, coronary disorders, e.g., ischemic heart disease or atherosclerosis, neurological disorders, (e.g., head trauma and brain cancer), pulmonary disorders, (e.g., lung cancer, cystic fibrosis and rheumatoid lung disease), kidney disorders, (e.g., glomerulonephritis and end stage renal disease), autoimmune disorders, (e.g., Crohn's disease) and embryonic disorders, which are associated with aberrant TANGO 281 expression. The kit, for example, can comprise a labeled compound

or agent capable of detecting the polypeptide or mRNA encoding the polypeptide in a biological sample and means for determining the amount of the polypeptide or mRNA in the sample (e.g., an antibody which binds the polypeptide or an oligonucleotide probe which binds to DNA or mRNA encoding the polypeptide). Kits can also include instructions for observing that the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of the polypeptide if the amount of the polypeptide or mRNA encoding the polypeptide is above or below a normal level.

For antibody-based kits, the kit can comprise, for example: (1) a first antibody (e.g., attached to a solid support) which binds to a polypeptide of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable agent.

For oligonucleotide-based kits, the kit can comprise, for example: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a polypeptide of the invention or (2) a pair of primers useful for amplifying a nucleic acid molecule encoding a polypeptide of the invention. The kit can also comprise, e.g., a buffering agent, a preservative, or a protein stabilizing agent. The kit can also comprise components necessary for detecting the detectable agent (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample contained. Each component of the kit is usually enclosed within an individual container and all of the various containers are within a single package along with instructions for observing whether the tested subject is suffering from or is at risk of developing a disorder associated with aberrant expression of the polypeptide.

25

30

35

5

10

15

20

2. Prognostic Assays

The methods described herein can furthermore be utilized as diagnostic or prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with aberrant expression or activity of a polypeptide of the invention, e.g., coronary disorders, pulmonary disorders, kidney disorders or embryonic disorders. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing such a disease or disorder. Thus, the present invention provides a method in which a test sample is obtained from a subject and a polypeptide or nucleic acid (e.g.,

mRNA, genomic DNA) of the invention is detected, wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant expression or activity of the polypeptide. As used herein, a "test sample" refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.

The prognostic assays described herein, for example, can be used to identify a subject having or at risk of developing disorders such as disorders discussed, for example, in Sections above relating to uses of the sequences of the invention.

10

15

20

25

5

For example, such disorders can include coronary disorders (e.g., heart diseases and disorders such as atherosclerosis, coronary artery disease and plague formation) and adipocyte disorders (e.g., obesity), which are associated with aberrant TANGO 253 expression. In another example, prognostic assays described herein, can be used to identify a subject having or at risk of developing disorders such as coronary disorders (e.g., heart diseases and disorders such as atherosclerosis, coronary artery disease and plague formation), olfactory disorders, neurological disorders (e.g., neurodegenerate disorders, neuromuscular disorders, cognitive disorders, personality disorders, and motor disorders), and pulmonary disorders, (e.g., cystic fibrosis), which are associated with aberrant TANGO 257 expression. In another example, prognostic assays described herein, can be used to identify a subject having or at risk of developing disorders such as Type I immunologic disorders, (e.g., anaphylaxis and rhinitis), which are associated with aberrant INTERCEPT 258 expression. In another example, prognostic assays described herein, for example, can be used to identify a subject having or at risk of developing disorders such as immunological disorders, (e.g. thrombocytopenia and platelet disorders), developmental disorders, coronary disorders, (e.g., ischemic heart disease and atherosclerosis), neurological disorders, (e.g., head trauma and brain cancer), pulmonary disorders, (e.g., lung cancer, cystic fibrosis and rheumatoid lung disease), kidney disorders, (e.g., glomerulonephritis and end stage renal disease), autoimmune disorders, (e.g., Crohn's disease) and embryonic disorders, which are associated with aberrant TANGO 281 expression.

30

35

Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant expression or activity of a polypeptide of the invention. For example, such methods can be used to determine whether a subject can be effectively treated with a specific agent or class of agents (e.g., agents of a type

5

10

15

20

25

30

35

which decrease activity of the polypeptide). Thus, the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant expression or activity of a polypeptide of the invention in which a test sample is obtained and the polypeptide or nucleic acid encoding the polypeptide is detected (e.g., wherein the presence of the polypeptide or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant expression or activity of the polypeptide).

The methods of the invention can also be used to detect genetic lesions or mutations in a gene of the invention, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized aberrant expression or activity of a polypeptide of the invention. In preferred embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion or mutation characterized by at least one of an alteration affecting the integrity of a gene encoding the polypeptide of the invention, or the mis-expression of the gene encoding the polypeptide of the invention. For example, such genetic lesions or mutations can be detected by ascertaining the existence of at least one of: 1) a deletion of one or more nucleotides from the gene; 2) an addition of one or more nucleotides to the gene; 3) a substitution of one or more nucleotides of the gene; 4) a chromosomal rearrangement of the gene; 5) an alteration in the level of a messenger RNA transcript of the gene; 6) an aberrant modification of the gene, such as of the methylation pattern of the genomic DNA; 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene; 8) a non-wild type level of a the protein encoded by the gene; 9) an allelic loss of the gene; and 10) an inappropriate post-translational modification of the protein encoded by the gene. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a gene.

In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in a gene (see, e.g., Abravaya et al. (1995) Nucleic Acids Res. 23:675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to the selected gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an

amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

5

10

15

Alternative amplification methods include: self sustained sequence replication (Guatelli et al. (1990) *Proc. Natl. Acad. Sci. USA* 87:1874-1878), transcriptional amplification system (Kwoh, et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) *Bio/Technology* 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In an alternative embodiment, mutations in a selected gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., U.S. Patent No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

25

30

20

In other embodiments, genetic mutations can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin et al. (1996) Human Mutation 7:244-255; Kozal et al. (1996) Nature Medicine 2:753-759). For example, genetic mutations can be identified in two-dimensional arrays containing light-generated DNA probes as described in Cronin et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.

35

In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the selected gene and detect mutations by comparing

the sequence of the sample nucleic acids with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert ((1977) Proc. Natl. Acad. Sci. USA 74:560) or Sanger ((1977) Proc. Natl. Acad. Sci. USA 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) Bio/Techniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159).

5

10

15

20

25

30

35

Other methods for detecting mutations in a selected gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) *Science* 230:1242). In general, the technique of mismatch cleavage entails providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. RNA/DNA duplexes can be treated with RNase to digest mismatched regions, and DNA/DNA hybrids can be treated with S1 nuclease to digest mismatched regions.

In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, e.g., Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397; Saleeba et al. (1992) Methods Enzymol. 217:286-295. In a preferred embodiment, the control DNA or RNA can be labeled for detection.

In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662). According to an exemplary embodiment, a probe based on a selected sequence, e.g., a wild-type sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, e.g., U.S. Patent No. 5,459,039.

5

10

25

30

35

In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:2766; *see also* Cotton (1993) *Mutat. Res.* 285:125-144; Hayashi (1992) *Genet. Anal. Tech. Appl.* 9:73-79). Single-stranded DNA fragments of sample and control nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, and the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) *Trends Genet.* 7:5).

In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) *Nature* 313:495). When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a 'GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) *Biophys. Chem.* 265:12753).

Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) *Nature* 324:163); Saiki et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:6230). Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.

Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) *Nucleic Acids Res.* 17:2437-2448) or at the extreme 3'

end of one primer where, under appropriate conditions, mismatch can prevent or reduce polymerase extension (Prossner (1993) *Tibtech* 11:238). In addition, it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) *Mol. Cell Probes* 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) *Proc. Natl. Acad. Sci. USA* 88:189). In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a gene encoding a polypeptide of the invention. Furthermore, any cell type or tissue, e.g., chondrocytes, in which the polypeptide of the invention is expressed may be utilized in the prognostic assays described herein.

3. Pharmacogenomics

5

20 Agents, or modulators which have a stimulatory or inhibitory effect on activity or expression of a polypeptide of the invention as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders associated with aberrant activity of the polypeptide. In conjunction with such treatment, the pharmacogenomics (i.e., the study of the relationship between an 25 individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such 30 pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of a polypeptide of the invention, expression of a nucleic acid of the invention, or mutation content of a gene of the invention in an individual can be determined to thereby select appropriate agent(s) for therapeutic or 35 prophylactic treatment of the individual.

5

10

15

20

25

30

35

Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Linder (1997) Clin. Chem. 43(2):254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body are referred to as "altered drug action." Genetic conditions transmitted as single factors altering the way the body acts on drugs are referred to as "altered drug metabolism". These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase deficiency (G6PD) is a common inherited enzymopathy in which the main clinical complication is haemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.

As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, a PM will show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.

Thus, the activity of a polypeptide of the invention, expression of a nucleic acid encoding the polypeptide, or mutation content of a gene encoding the polypeptide in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a

modulator of activity or expression of the polypeptide, such as a modulator identified by one of the exemplary screening assays described herein.

4. Monitoring of Effects During Clinical Trials

5

10

15

20

25

30

35

Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of a polypeptide of the invention (e.g., the ability to modulate aberrant cell proliferation chemotaxis, and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent, as determined by a screening assay as described herein, to increase gene expression, protein levels or protein activity, can be monitored in clinical trials of subjects exhibiting decreased gene expression, protein levels, or protein activity. Alternatively, the effectiveness of an agent, as determined by a screening assay, to decrease gene expression, protein levels or protein activity, can be monitored in clinical trials of subjects exhibiting increased gene expression, protein levels, or protein activity. In such clinical trials, expression or activity of a polypeptide of the invention and preferably, that of other polypeptide that have been implicated in for example, a cellular proliferation disorder, can be used as a marker of the immune responsiveness of a particular cell.

For example, and not by way of limitation, genes, including those of the invention, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) which modulates activity or expression of a polypeptide of the invention (e.g., as identified in a screening assay described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of a gene of the invention and other genes implicated in the disorder. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of a gene of the invention or other genes. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.

In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a

pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of the polypeptide or nucleic acid of the invention in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level the of the polypeptide or nucleic acid of the invention in the post-administration samples; (v) comparing the level of the polypeptide or nucleic acid of the invention in the pre-administration sample with the level of the polypeptide or nucleic acid of the invention in the post-administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of the polypeptide to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of the polypeptide to lower levels than detected, i.e., to decrease the effectiveness of the agent.

15 C. Methods of Treatment

5

10

20

25

30

35

The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant expression or activity of a polypeptide of the invention, as discussed, for example, in sections above relating to uses of the sequences of the invention.

For example, disorders characterized by aberrant expression or activity of the polypeptides of the invention include immunologic disorders, coronary disorders, pulmonary disorders, neurological disorders, kidney disorders, and autoimmune disorders. The nucleic acids, polypeptides, and modulators thereof of the invention can be used to treat immunologic diseases and disorders, including but not limited to, allergic disorders (e.g., anaphylaxis and allergic asthma) autoimmune and inflammatory disorders (e.g., atopic dermatitis). Polypeptides of the invention can be used to treat diseases associated with bacterial infection (e.g., tuberculosis, e.g., pulmonary tuberculosis), inflammatory arthropathy, and bone and cartilage degenerative diseases and disorders (e.g., arthritis, e.g., rheumatoid arthritis). Polypeptides of the invention can be used to treat pulmonary disorders such as lung cancer, cystic fibrosis and rheumatoid lung diseases. Polypeptides of the invention can be used to treat coronary disorders, such as ischemic heart disease, atherosclerosis and plague formation. Polypeptides of the invention can also be used to treat neurological disorders such as neurodegenerate disorders, neuromuscular disorders and cognitive disorders. Polypeptides of the invention can also be used to treat kidney disorders such as glomerulonephritis and end stage renal disease. Further, polypeptides of

the invention can be used to treat autoimmune disorders such as Crohns disease, and other disorders described herein.

1. Prophylactic Methods

5

10

15

25

30

35

In one aspect, the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant expression or activity of a polypeptide of the invention, by administering to the subject an agent which modulates expression or at least one activity of the polypeptide. Subjects at risk for a disease which is caused or contributed to by aberrant expression or activity of a polypeptide of the invention can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of aberrancy, for example, an agonist or antagonist agent can be used for treating the subject. For example, an antagonist of a TANGO 253, TANGO 257, INTERCEPT 258 or TANGO 281 proteins may be used to treat an immunologic disorder, e.g., rheumatoid arthritis. The appropriate agent can be determined based on screening assays described herein.

20 2. Therapeutic Methods

Another aspect of the invention pertains to methods of modulating expression or activity of a polypeptide of the invention for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of the polypeptide. An agent that modulates activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of the polypeptide, a peptide, a peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more of the biological activities of the polypeptide. Examples of such stimulatory agents include the active polypeptide of the invention and a nucleic acid molecule encoding the polypeptide of the invention that has been introduced into the cell. In another embodiment, the agent inhibits one or more of the biological activities of the polypeptide of the invention. Examples of such inhibitory agents include antisense nucleic acid molecules and antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a polypeptide of the invention. In one

embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) expression or activity. In another embodiment, the method involves administering a polypeptide of the invention or a nucleic acid molecule of the invention as therapy to compensate for reduced or aberrant expression or activity of the polypeptide.

Stimulation of activity is desirable in situations in which activity or expression is abnormally low or downregulated and/or in which increased activity is likely to have a beneficial effect. Conversely, inhibition of activity is desirable in situations in which activity or expression is abnormally high or upregulated and/or in which decreased activity is likely to have a beneficial effect.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are hereby incorporated by reference.

Deposit of Clones

5

10

15

20

25

30

Clones containing cDNA molecules encoding human TANGO 253, (clone EpT253) human TANGO 257 (EpT257), human INTERCEPT 258 (clone EpT258) and human TANGO 281 (clone EpT 281) were deposited with the American Type Culture Collection, 10801 University Boulevard, Manassas, VA, 20110-2209, on April 21, 1999 as Accession Number 207222, as part of a composite deposit representing a mixture of strains, each carrying one recombinant plasmid harboring a particular cDNA clone.

For this composite deposit, to distinguish the strains and isolate a strain harboring a particular cDNA clone, an aliquot of the mixture can be streaked out to single colonies on nutrient medium (e.g., LB plates) supplemented with 100g/ml ampicillin, single colonies grown, and then plasmid DNA extracted using a standard minipreparation procedure. Next, a sample of the DNA minipreparation can be digested with a combination of the restriction enzymes Sall, Notl, Xbal and EcorV and the resultant products resolved on a 0.8% agarose gel using standard DNA electrophoresis conditions. The digest liberates fragments as follows:

Human TANGO 253 (clone EpT253): 1.3 kb

Human TANGO 257 (clone EpT257): 1.8 kb

Human INTERCEPT 258 (clone EpT258): 1.0 kb and 0.85 kb (human INTERCEPT 258 has a *EcorV* cut site at about bp 1004).

Human TANGO 281 (clone EpT281): 0.9 kb and 0.9kb (human TANGO 281 Has an XbaI cut site at about bp 900).

5

10

15

The identity of the strains can be inferred from the fragments liberated.

Clones containing cDNA molecules encoding mouse INTERCEPT 258 were deposited with the American Type Culture Collection (Manassas, VA) on April 21, 1999 as Accession Number 207221, as part of a composite deposit representing a mixture of five strains, each carrying one recombinant plasmid harboring a particular cDNA clone.

To distinguish the strains and isolate a strain harboring a particular cDNA clone, an aliquot of the mixture can be streaked out to single colonies on nutrient medium (e.g., LB plates) supplemented with 100µg/ml ampicillin, single colonies grown, and then plasmid DNA extracted using a standard minipreparation procedure. Next, a sample of the DNA minipreparation can be digested with a combination of the restriction enzymes Sall, and NotI, and the resultant products resolved on a 0.8% agarose gel using standard DNA electrophoresis conditions. The digest liberates fragments as follows:

20

Mouse INTERCEPT 258 (clone EpT258): 1.8 kb

The identity of the strains can be inferred from the fragments liberated.

25

30

A clone containing a cDNA molecule encoding mouse TANGO 253 (Clone EpTm 253) was deposited with American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, on April 21, 1999 as Accession Number 207215.

A clone containing a cDNA molecule encoding mouse TANGO 257 (Clone EpTm 257) was deposited with American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, on April 21, 1999 as Accession Number 207217.

A clone containing a cDNA molecule encoding mouse TANGO 281 (Clone EpTm 281) was deposited with American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, on June 15, 1999 as patent deposit Number PTA-224.

35

All publications, patents and patent applications mentioned in this specification are herein incorporated by reference into the specification to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference.

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

MICROORGANISMS		
Optional Sheet in connection with the microorganism referred to on pages, lines of the description '		
A. IDENTIFICATION OF DEPOSIT		
Further deposits are identified on an additional sheet '		
Name of depositary institution '		
American Type Culture Collection		
Address of depositary institution (including postal code and country) *		
10801 University Blvd. Manassas, VA 20110-2209 US		
Date of deposit * April 21, 1999 Accession Number * 207215		
B. ADDITIONAL INDICATIONS ' (leave blank if not applicable). This information is continued on a separate attached sheet		
C. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE 1 (4) the Indications are not all designated Seaso)		
D. SEPARATE FURNISHING OF INDICATIONS ' (leave blank if not applicable)		
The indications listed below will be submitted to the international Bureau later * (Specify the general nature of the indications e.g., *Accession Number of Deposit*)		
E. This sheet was received with the International application when filed (to be checked by the receiving Office)		
(Authorized Officer)		
☐ The date of receipt (from the applicant) by the International Bureau •		
was (Authorized Officer)		

Form PCT/RO/134 (January 1981)

International Application No: PCT/

Form PCT/RO/134 (cont.)

American Type Culture Collection

10801 University Blvd. Manassas, VA 20110-2209 US

Accession No.	Date of Deposit
207217	April 21, 1999
207221	April 21, 1999
207222	April 21, 1999
PTA-224	June 15, 1999

What is claimed is:

1. An isolated nucleic acid molecule selected from the group consisting of:

- a) a nucleic acid molecule comprising a nucleotide sequence which is at least 45% identical to the nucleotide sequence of SEQ ID NO:1, 2, 26, 27, 46, 47, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, or a complement thereof;
- b) a nucleic acid molecule comprising a fragment of at least 300 nucleotides of the nucleotide sequence of SEQ ID NO:1, 2, 15, 16, 26, 27, 46, 47, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, or a complement thereof;
- c) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:3, 17, 28, 48, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222;
- d) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:3, 28, 48, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:3, 28, 48, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222;
- e) a nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:3, 17, 28, 48, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule comprising SEQ ID NO:2, 16, 27, 47, or a complement thereof under stringent conditions;
- f) a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:21, 22, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207217, or a complement thereof;
- g) a nucleic acid molecule comprising a fragment of at least 300 nucleotides of the nucleotide sequence of SEQ ID NO:21, 22, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207217, or a complement thereof;

h) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:23, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207217;

- i) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:23, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207217, wherein the fragment comprises at least 360 contiguous amino acids of SEQ ID NO:23, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207217;
- j) a nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:23, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207217, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule comprising SEQ ID NO:22, or a complement thereof under stringent conditions;
- k) a nucleic acid molecule comprising a nucleotide sequence which is at least 45% identical to the nucleotide sequence of SEQ ID NO:37, 38, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207221, or a complement thereof;
- I) a nucleic acid molecule comprising a fragment of at least 300 nucleotides of the nucleotide sequence of SEQ ID NO:37, 38, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207221, or a complement thereof;
- m) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:39, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207221;
- n) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:39, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207221, wherein the fragment comprises at least 160 contiguous amino acids of SEQ ID NO:39, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207221;
- o) a nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:39, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as

Accession Number 207217, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule comprising SEQ ID NO:38, or a complement thereof under stringent conditions;

- p) a nucleic acid molecule comprising a nucleotide sequence which is at least 45% identical to the nucleotide sequence of SEQ ID NO:8, 9, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207215, or a complement thereof;
- q) a nucleic acid molecule comprising a fragment of at least 300 nucleotides of the nucleotide sequence of SEQ ID NO:8, 9, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207215, or a complement thereof;
- r) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:10, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207215;
- s) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:10, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207215, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:10, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207215;
- t) a nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:10, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207215, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule comprising SEQ ID NO:9, or a complement thereof under stringent conditions;
- u) a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:15, 16, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, or a complement thereof;
- v) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:17, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, wherein the fragment comprises at least 360 contiguous amino acids of SEQ ID NO:17, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222.

w) a nucleic acid molecule comprising a nucleotide sequence which is at least 45% identical to the nucleotide sequence of SEQ ID NO:56, 57, the cDNA insert of the plasmid deposited with the ATCC® as patent deposit Number PTA-224, or a complement thereof;

- x) a nucleic acid molecule comprising a fragment of at least 300 nucleotides of the nucleotide sequence of SEQ ID NO:56, 57, the cDNA insert of the plasmid deposited with the ATCC® as patent deposit Number PTA-224, or a complement thereof;
- y) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:58, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as patent deposit Number PTA-224;
- z) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:58, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as patent deposit Number PTA-224, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:58, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as patent deposit Number PTA-224;
- aa) a nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:58, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as patent deposit Number PTA-224, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule comprising SEQ ID NO:57, or a complement thereof under stringent conditions.
- 2. The isolated nucleic acid molecule of claim 1, which is selected from the group consisting of:
- a) a nucleic acid comprising the nucleotide sequence of SEQ ID NO:1, 2, 15, 16, 26, 27, 46, 47, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, or a complement thereof;
- b) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:3, 17, 28, 48, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222;
- c) a nucleic acid comprising the nucleotide sequence of SEQ ID NO:21, 22, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207217, or a complement thereof;

d) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:23, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207217;

- e) a nucleic acid comprising the nucleotide sequence of SEQ ID NO:37, 38, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207221, or a complement thereof;
- f) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:39, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207221;
- g) a nucleic acid comprising the nucleotide sequence of SEQ ID NO:8, 9, the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207215, or a complement thereof;
- h) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:10, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222.
- i) a nucleic acid comprising the nucleotide sequence of SEQ ID NO:56, 57, the cDNA insert of the plasmid deposited with the ATCC® as patent deposit Number PTA-224, or a complement thereof;
- j) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:58, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as patent deposit Number PTA-224.
- 3. The nucleic acid molecule of claim 1 further comprising vector nucleic acid sequences.
- 4. The nucleic acid molecule of claim 1 further comprising nucleic acid sequences encoding a heterologous polypeptide.
 - 5. A host cell which contains the nucleic acid molecule of claim 1.
 - 6. The host cell of claim 5 which is a mammalian host cell.

7. A non-human mammalian host cell containing the nucleic acid molecule of claim 1.

- 8. An isolated polypeptide selected from the group consisting of:
- a) a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58;
- b) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, or the amino acid sequence encoded by the cDNA insert of plasmids deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, patent deposit Number PTA-224 wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule comprising SEQ ID NO:2, 9, 16, 22, 27, 38, 47, 57, or a complement thereof under stringent conditions; and
- c) a polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 45% identical to a nucleic acid comprising the nucleotide sequence of SEQ ID NO:2, 9, 27, 38, 47, 57, or at least 98% to a nucleic acid comprising the nucleotide sequence of SEQ ID NO:2, 9, 27, 38, 47, 57, or a complement thereof.
- 9. The isolated polypeptide of claim 8 comprising the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58.
- 10. The polypeptide of claim 8 further comprising heterologous amino acid sequences.
 - 11. An antibody which selectively binds to a polypeptide of claim 8.
- 12. A method for producing a polypeptide selected from the group consisting of:
- a) a polypeptide comprising the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, Accession Number

207215, Accession Number 207217, Accession Number 207221, or patent deposit Number PTA-224;

- b) a polypeptide comprising a fragment of the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, or patent deposit Number PTA-224, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221 or patent deposit Number PTA-224; and
- c) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:3, 10, 17, 23, 28, 39, 48, 58, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC® as Accession Number 207222, Accession Number 207215, Accession Number 207217, Accession Number 207221, or patent deposit Number PTA-224, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule comprising SEQ ID NO:1, 8, 15, 21, 26, 37, 46, 56, or a complement thereof under stringent conditions;

comprising culturing the host cell of claim 5 under conditions in which the nucleic acid molecule is expressed.

- 13. A method for detecting the presence of a polypeptide of claim 8 in a sample, comprising:
- a) contacting the sample with a compound which selectively binds to a polypeptide of claim 8; and
 - b) determining whether the compound binds to the polypeptide in the sample.
- 14. The method of claim 13, wherein the compound which binds to the polypeptide is an antibody.
- 15. A kit comprising a compound which selectively binds to a polypeptide of claim 8 and instructions for use.

16. A method for detecting the presence of a nucleic acid molecule of claim 1 in a sample, comprising the steps of:

- a) contacting the sample with a nucleic acid probe or primer which selectively hybridizes to the nucleic acid molecule; and
- b) determining whether the nucleic acid probe or primer binds to a nucleic acid molecule in the sample.
- 17. The method of claim 16, wherein the sample comprises mRNA molecules and is contacted with a nucleic acid probe.
- 18. A kit comprising a compound which selectively hybridizes to a nucleic acid molecule of claim 1 and instructions for use.
- 19. A method for identifying a compound which binds to a polypeptide of claim 8 comprising the steps of:
- a) contacting a polypeptide, or a cell expressing a polypeptide of claim 8 with a test compound; and
 - b) determining whether the polypeptide binds to the test compound.
- 20. The method of claim 19, wherein the binding of the test compound to the polypeptide is detected by a method selected from the group consisting of:
- a) detection of binding by direct detecting of test compound/polypeptide binding;
 - b) detection of binding using a competition binding assay;
- c) detection of binding using an assay for TANGO 253, TANGO 257, INTERCEPT 258, TANGO 281-mediated signal transduction.
- 21. A method for modulating the activity of a polypeptide of claim 8 comprising contacting a polypeptide or a cell expressing a polypeptide of claim 8 with a compound which binds to the polypeptide in a sufficient concentration to modulate the activity of the polypeptide.

22. A method for identifying a compound which modulates the activity of a polypeptide of claim 8, comprising:

- a) contacting a polypeptide of claim 8 with a test compound; and
- b) determining the effect of the test compound on the activity of the polypeptide to thereby identify a compound which modulates the activity of the polypeptide.

GTCGAG	CCAC	GCG1	CCGG	GACT	GGGG	TGAC	GGCA	.GGGC	AGGG	GGCG	CCTG	GCCC	GGGA	GAAG	CGCG	GGGG	CTGG	AGCA	C	79
CACCA	ACTGO	AGGG	TCCG	GAGI	AGCG	AGCG	cccc	GAAG	GAGG	CCAT	CGGG	GAG	CGGG	AGGG	GGGA	CTGC	GAGA	GGAC	С	158
																				12
							M	R	. 1	L	, I		, L			-				223
CCGG	CCTC	CGGG	CTCC	CGG1	GCCA	GCGC	TA T	'G AG	G CC	'A CI	C CI	C G	C CI	G CI	G C1		0 00		•	
		_	_	_	P	L	D	Q	N	к	I	P	s	L	С	P	G	Н	P	32
A	A	G	S	P	CCD	CIG.	GAC	GAC	AAC	AAG	ATC	CCC	AGC	CTC	TGC	CCG	GGG	CAC	CCC	283
GCG	GCC	GGC	100	CCC	CCA		0	••••												
G	L	P	G	T	P	G	Н	н	G	s	Q	G	L	P	G	R	D	G	R	52
GGC	CTT	CCA	GGC	ACG	ÇCG	GGC	CAC	CAT	GGC	AGC	CAG	GGC	TTG	CCG	GGC	CGC	GAT	GGC	CGC	343
														E	G	G	R		G	72
D	G	R	D	G	A	P	G	A	P	G	E	K	G			_	-	_	-	403
GAC	GGC	CGC	GAC	GGC	GCG	CCC	GGG	GCT	CCG	GGA	GAG	AAA	GGC	GAG	660					
_	_	_		R	G	D	P	G	P	R	G	E	A	G	P	A	G	P	T	92
L ~TC	P	G	P	CGA	GGG	GAC	CCC	GGG	CCG	CGA	GGA	GAG	GCG	GGA	CCC	GCG	GGG	CCC	ACC	463
CIG	CCG	GGA	CCI	COA	000	one														
G	P	A	G	E	С	S	v	P	P	R	s	A	F		A	K	R	S	E	112
GGG	CCT	GCC	GGG	GAG	TGC	TCG	GTG	CCT	CCG	CGA	TCC	GCC	TTC	AGC	GCC	AAG	CGC	TCC	GAG	523
						•									v	L	v	N	E	132
s	R	v	₽	P	P	S	D	A	P	L	P	F	D	R		_	-		_	583
AGC	CGG	GTG	CCT	CCG	CCG	TCT	GAC	GCA	CCC	TIG	CCC	110	GAC	CGC	010			-		
_	_		.,		A	v	т	G	ĸ	F	т	С	Q	v		G	v	Y	Y	152
Q	G	H	Y	D	GCC	GTC	ACC	GGC	AAG	TTC	ACC	TGC	CAG	GTG	CCT	GGG	GTC	TAC	TAC	643
CAG	OOA	CAI	INC	GAC	000	•••		•••												
F	A	v	н	A	T	v	Y	R	A	s	L	Q	F	D	L	V	K	N	G	172 703
TTC	GCC	GTC	CAT	GCC	ACC	GTC	TAC	CGG	GCC	AGC	CTG	CAG	TTT	GAT	CTG	GTG	AAG	AAI	GGC	103
													р	к	P	A	s	L	s	192
E	s	r	A	S	F	F	Q	F	F	G	G	W TCC							TCG	763
GAA	TCC	ATT	GCC	TCT	TTC	TTC	CAG	111	TTC	GGG	GGG	100	ccc	7010						
G	_	A	м	v	R	L	E	P	E	D	Q	v	W	v	Q	v	G	v	G	212
ccc	G GGG	GCC A	n DTG	v √GTG	AGG	CTG	GAG	CCT	GAG	GAC	CAA	GTG	TGG	GTG	CAG	GTG	GGT	GTG	GGT	823
666	000	GCC	A.O	0.0											•					232
D	Y	I	G	I	Y	A	S	I	K	T	D	S	T	F	S	G	F	L	V GTG	883
GAC	TAC	ATT	GGC	ATC	TAT	GCC	AGC	ATC	AAG	ACA	GAC	AGC	ACC	TTC	TCC	GGA	. 111	ÇIG	0.0	•••
													244							
Y	S	D	W	H	S	S	P	V CTC	F	A COT	- ግጥ እር	_	19							
TAC	TCC	GAC	TGG	CAC	. AGC	. 100	CCA	GIC				•								
																				000
TGCCC	ACTG	CAAA	GTGA	GCTC	ATGO	TCTC	ACTO	CTAG	AAGG	AGGG	TGT	AGG	CTGAC	AACC	TGGT	CATO	CAGG	IAGGG	CT	998
																				1077
GGCCC	CCCI	GGAA	TAT	GTG	LATGA	CTAG	GGAG	GTGG	:GGT#	\GAG(ACTO	TCCC		الال						

FIG. 1A

AGTGGCTGTCTGCGATCAGGTCTGGCAGCA	TGGGGCAGTGGCTGGATTTCTGCCCAAGACCAGAGGAGTGTGCTGTGCT	1156
GGCAAGTGTAAGTCCCCCAGTTGCTCTGGT	CCAGGAGCCCACGGTGGGGTGCTCTCTTCCTGGTCCTCTGCTTCTCTGG	1235
ATCCTCCCCACCCCCTCCTGCTCCTGGGGC	CGGCCCTTTTCTCAGAGATCACTCAATAAACCTAAGAACCCTCCAAAAA	1314
DDDDDDAAAAAAAAAA	1339	

FIG. 1B

. out

1 41 81 121 161 201 241

MRPLLVLLLGLAAGSPPLDDNKIPSLCPGHPGLPGTPGHHGSQGLPGRDGRDGAPG APGEKGEGGRPGLPGPRGPRGEAGPAGPTGPAGECSVPPRSAFSAKRSESRVPPPSD APLPFDRVLVNEQGHYDAVTGKFTCQVPGVYYFAVHATVYRASLQFDLVKNGESIASFFQ FFGGWPKPASLSGGAMVRLEPEDQVWVQVGVGDYIGIYASIKTDSTFSGFLVYSDWHSSP VFA

FIG. 2

GTC	GACC	CACG	CGTC	cccc	CTGT	GAAG	CCAG	CAAG	GAGC	AACC	AGAA	GCTA	GGAG	TCAG	rcag	CAAG	GACA	GGGG	CTGC	79
														м	R	P	т.	L	A	6
CTG	CCTA	CAGA	CTAC	AAGA	GAGG	TTCC	TGGA	GTCT	GAGC	CTCC	GGGG'	TCAC	CACC		-		-		GCC	
							s										I	Þ	s	26
CTT	CTG	CTT	CTG	GGT	CTG	GTG	TCA	GGC	TCT	CCT	CCT	CTG	GAC	GAC	AAC	AAG	ATC	CCC	AGC	212
L	С	P	G	0	p	G	L	P	G	Ť	P	G	н	н	G	s	Q	G	L	46
							CTT					GGT	CAC	CAT	GGC	AGC	CAA	GGC	CTG	272
P	G	R	D	G	R	D	G	R	n	G	A	p	G	A	Þ	G	E	к	G	66
	_					_	GGC		-	_					_		GAG	AAA	GGC	332
E	G	G	R	P	c		P	G	ъ	Ð	G	F	ъ	G	Þ	R	G	E	A	86
							ccr										_			392
_			•		_	_	_	_	•	_	•	s	v	P	p	R	s	A	F	106
G GGG	P CCC	M ATG	G GGG	A GCT	I ATC	G GGG	P CCT		G GGG	E GAG	C TGC	_	-	-	_				-	452
																			D	126
S AGT	A GCC	K AAG	R CGA	S TCC	E GAG	S AGC	R CGG		P CCT			A GCC	D GAC	T ACA			P CCT	-	_	126 512
	•••		Con															•		
R			L	N			· G GGC									F	T ACC	Ç TGC	Q CAA	146 572
CGI	GIG	CIG	CIA	AAI	GAG	CAG	GGC	CAL	IAC	GAC	ccc	AC.	AC I	000	2010					
v			v			F		v		A			Y	R	A	S	L	Q	F	166 632
GIG	CCT	GGC	GTC	TAC	TAC	TTT	GCT	GTG	CAC	GCC	ACT	GIC	TAC	CGG	GCC	AGC	110	CAG		032
	L		K	N	G	Q	s		A			F	_	Y			_	W	P	186 692
SAT	CIT	GTC	AAA	AAC	GGG	CAG	TCC	ATC	GCC	TCT	TTC	TTC	CAG	TAT	TTT	GGG	GGG	166	ccc	692
	P		s	L			G							P	E	D	Q	v	W	206
Ł AG	CCA	GCC	TCG	CTC	TCA	GGG	GGT	GCG	ATG	GTA	AGG	CTA	GAA	CCT	GAG	GAC	CAG	GTG	TGG	752
		v		v		D			G	I	Y			I	ĸ	T	D	s	T	226
3TG	CAG	GTG	G GC	GTG	GGT	GAT	TAC	ATT	GGC	ATC	TAT	GCC	AGC	ATC	AAG	ACA	GAC	AGT	ACC	812
_	s	_	F				·s				_	_		v						244
TIC	TCT	GGA	TTT	CTC	GTC	TAT	TCT	GAC	TGG	CAC	AGC	TCC	CCA	GTC	TTC	GCT	TAA			866
AAC	ACAG	rgaa(ccc	GAGC:	recci	ACTIV	CTC	CTCAC	TG GI	AGGG:	rgtgj	ACAC:	PAAC	CCGC	CAG	GCA!	racci	AGGA	3GGC	945
T GG(cccc	CTGGI	ATA	rtgtv	YTAAE	BACT:	raggi	AAGA	BAGG	BAGC	CACT	rcca(3TCC	CACTY	CTG(CAA!	rgaat	rggao	BACA	1024
G C:	GIC	rgago	TCA!	AGAC	AGCG:	rgga	GCAG:	rggc:	rggg:	ritc:	rgcco	CAGGI	ACTT.	TAGAI	ATGC:	agta!	3GCTX	3GCA(SCTG	1103
TGG	TCC	rggco	CAG	ACT	CAA	GTG	GATY	CTC	CATT	CTAC	TCC:	rgrg:	rece	CTCT	\GGT(CCI	SACT	CAT	CTCT	1182

FIG. 3A

FIG. 3B

>mT253
MRPLLALLLGLVSGSPPLDDNKIPSLCPGQPGLPGTPGHHGSQGLPGRDGRDGRDGAPG
APGEKGEGGRPGLPGPRGEPGPRGEAGPMGAIGPAGECSVPPRSAFSAKRSESRVPPPAD
TPLPFDRVLLNEQGHYDPTTGKFTCQVPGVYYFAVHATVYRASLQFDLVKNGQSIASFFQ
YFGGWPKPASLSGGAMVRLEPEDQVWVQVGVGDYIGIYASIKTDSTFSGFLVYSDWHSSP
VFA

FIG. 4

ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Miller, CABIOS (1989) 243 aa vs. > hT253 a.a. > mT253 a.a. 243 aa scoring matrix: pam120.mat, gap penalties: -12/-4 Global alignment score: 1239 93.8% identity; inputs MRPLLVLLLIGLAAGSPPLDDNKIPSLCPGHPGLPGTPGHHGSQGLPGRDGRDGRDGAPGAPGEKGEGGR MRPLLALLLLGLVSGSPPLDDNKIPSLCPGQPGLPGTPGHHGSQGLPGRDGRDGRDGAPGAPGEKGEGGR inputs PGLPGPRGDPGPRGEAGPAGPTGPAGECSVPPRSAFSAKRSESRVPPPSDAPLPFDRVLVNEQGHYDAVT PGLPGPRGEPGPRGEAGPMGAIGPAGECSVPPRSAFSAKRSESRVPPPADTPLPFDRVLLNEQGHYDPTT inputs GKFTCQVPGVYYFAVHATVYRASLQFDLVKNGESIASFFQFFGGWPKPASLSGGAMVRLEPEDQVWVQVG GKFTCQVPGVYYFAVHATVYRASLQFDLVXNGQSIASFFQYFGGWPKPASLSGGAHVRLEPEDQVWVQVG inputs VGDYIGIYASIKTDSTFSGFLVYSDWHSSPVFA VGDYIGIYASIKTDSTFSGFLVYSDWHSSPVFA

FIG. 5

```
ALIGN calculates a global alignment of two sequences
version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
                                       243 aa vs.
> hT253 a.a.
                                       244 aa
> SwissProt Q15848 - (untitled)
scoring matrix: pam120.mat, gap penalties: -12/-4
                 Global alignment score: 262
38.7% identity;
                                                 50
                                         40
                     20
inputs MRPL-LVLLLIGLAA---GSPPLDDNKIPSL----CPG-HPGLPGTPGHHGSQGLPGRDGRDGRDGAPGA
           10
     10 20 30 40 50
                                                120
                                       110
                                100
                  80
                         90
          70
inputs PGEKGEGGRPGLPGPRGDPGPRGEAGPAGPTGPAGECSVPPRSAFSAKRSESRVPPPSDAPLPFDRVLVN
     PGLIGPKGDIGETGVPGAEGPRGFPGIQGRKGEPGEGAYVYRSAFSVGL-ETYVTIP-NMPIRFTKIFYN
                                         120 130
                                110
                         100
                  90
                                                        200
                                        180
                                              190
                        160
                                170
                150
inputs EQGHYDAVTGKFTCQVPGVYYFAVHATVYRASLQFDLVKNGESIASFFQFFGGWPKPASLSGGAMVRLEP
     QQNHYDGSTGKFHCNIPGLYYFAYHITVYMKDVKVSLFKKDKAMLFTYDQYQE-NNVDQASGSVLLHLEV
           150 160 170 180 190 200
                 220
                                 240
           210
                          230
inputs EDQVWVQV-GVGDYIGIYASIKTDSTFSGFLVYSDWHSSPVFA
      GDQVWLQVYGEGERNGLYADNDNDSTFTGFLLY---HDT---N
                230 240
     210 220
```

FIG. 6A

ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Miller, CABIOS (1989) 243 aa vs. > mT253 a.a. > SwissProt Q15848 - (untitled) 244 aa scoring matrix: pam120.mat, gap penalties: -12/-4 38.3% identity; Global alignment score: 264 40 20 30 inputs MRPLLALLLLGLVSGSPPLDDNKIPSL-----CPG-QPGLPGTPGHHGSQGLPGRDGRDGRDGAPGA ${\tt MLLLGAVLLLLALPGHDQETTTQGPGVLLPLPKGACTGWMAGIPGHPGHNGAPGRDGTPGEKGEKGD}$ 20 30 40 120 70 80 90 100 110 inputs PGEKGEGGRPGLPGPRGEPGPRGEAGPMGAIGPAGECSVPPRSAFSAKRSESRVPPPADTPLPFDRVLLN PGLIGPKGDIGETGVPGAEGPRGFPGIQGRKGEPGEGAYVYRSAFSVGL-ETYVTIP-NMPIRFTKIFYN 120 80 90 100 110 180 190 150 160 170 inputs EQGHYDPTTGKFTCQVPGVYYFAVHATVYRASLQFDLVKNGQS1ASFFQYFGGWPKPASLSGGAMVRLEP QQNHYDGSTGKFHCNIPGLYYFAYHITVYMKDVKVSLFKKDKAMLFTYDQYQE-NNVDQASGSVLLHLEV 190 200 160 170 180 150 140 220 230 210 inputs EDQVWVQV-GVGDYIGIYASIKTDSTFSGFLVYSDWHSSPVFA GDQVWLQVYGEGERNGLYADNDNDSTFTGFLLY---HDT---N 210 220 230 240

FIG. 6B

FIG. 7A

FIG. 7B

inputs	GGATTTCTGCC	CAAGACCAGAG	SAGTGTGCTG	TGCTGGCAAG!	IGTAAGTCCCC	CAGTTGCTCT	GGTCCAG
	:	::::::	::	:. :	:	:::: .:	.: :::
	GATAC	CAAGACCT	CTT	CATTCTTC	ANTGAG	GTTG-AC-	-ATACAG
		530		540	550		560
	1200	1210	1220	1230	1240	1250	1260
inputs	GAGCCCACGGT	GGGGTGCTCTCT	TCCTGGTCC	rctgc ttctc 1	GGATCCTCCC	CACCCCCTCC	TGCTCCT
	•:: ::	::.::	::.: :	: : : : : : :		:	: :
	TGGCACAT	TCACT	GCCAGCT	TTACATGTG#	·	TGA	AAAACGT
	570		580	590		600	
	1270	1280	1290	1300	1310	1320	1330
inputs	GGGCCGGCCC	TTTTCTCAGAGA	TCACTCAAT	VAACCTAAGAA	CCCTCCAAAA	LAAAAAAAA	AAAAAAG
	.: :::.	:::.:.	:: ::::	::::::	:::::		:
	AGTGCCA	TTCACTTGG-	-CAATTA	AATCTA	CCAAAGO	TGAGATCAA!	A
e	510	620	630)	640	650	
innuta	50000000						
rubace	GGCGGCCGC						

FIG. 7C

```
ALIGN calculates a global alignment of two sequences
version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
> mT253 n.a.
                               1263 aa vs.
> adipocyte n.a. (AI417523)
                               653 aa
scoring matrix: pam120.mat, gap penalties: -12/-4
30.4% identity;
              Global alignment score: -840
                          40
         10
               20
                    30
                                50
inputs GTCGACCCACGCGTCCGCGCTGTGAAGCCAGCAAGGAGCAACCAGAAGCTAGGAGTCAGCAAGGAC
              TT----TTTATTGAGGCA--CAACAAGG-C
                                20
                    100
                                      130
         80
              90
                          110 · 120
inputs AGGGGCTGCCTACAGACTACAAGAGGGGTTCCTGGAGTCTGAGCCTCCGGGGTCACCACCATGAGG
    : : ..... : ::::::
    ATTG----TAACT----TGCCTGGA-----CTTGAGG
                       50
        150
              160
                   170
                         180 190
                                      200
                                             210
inputs CCACTTCTTGCCCTTCTGGGTCTGGGTCTGGTGTCAGGCTCTCCTCTCTGGACGACAACAAGATCCCCA
          CAG-----TCAGTTT-----AGTAAG-----CTGAACGTTAATA-----
              70
        220
              230 240
                         250
                               260
                                      270
--CAGTTA--AGGA-----TTAAGTGCAAACAATAT----ACATTCACAGCTTGACTAGC-G
                               120 130
         100
                     110
            300 310 320
                                    340
        290
                               330
inputs TGACGGCCGTGATGGCCGCGACGGTGCACCCGGAGCTCCGGGAGAGAAAGGCGAGGGCGGGAGACCGGGA
                       .:.: .:
    AGGCTAC-----CAGATTA---GTG
                       150 160
        360 370 380 390 400 410
inputs CTACCTGGCCCACGTGGGGAGCCCGGGCCGCGTGGAGAGGCAGGGCCCATGGGGGCTATCGGGCCTGCGG
    CTAATTGTCATTCA-----GGAAAACAA
                         200
                                  210
    180
        190
             440 450
                                    480
                         460 470
        430
inputs GGGAGTGCTCGGTACCCCCACGATCAGCCTTCAGTGCCAAGCGATCCGAGAGCCGGGTACCTCCGCCAGC
    AAAAGTA---AGGACCTCCTC-----CTAG-GAACAAAAAAC-ATTTTCCTA-----
         230
                   240
                              250
                                    260
                                      550
        500
              510
                    520
                         530
                                540
Inputs CGACACACCCCTACCTTTCGACCGTGTGCTGCTAAATGAGCAGGGCCATTACGACCCCACTACTGGCAAG
```

FIG. 8A

FIG. 8B

inputs	CTCCAAGGTGGG	ATGCTCCATTCC	TAGTCCTGT	GTCCCCTCTA	GGTCCCTGA	CTCCATCTCTG	CTGCTCC
-	:::: CGTAGTG	::::::		.::.	::	: :: :: CAATTA	: :: : AATCTAC
	610			620		630)
	1200	1210	1220	1230	1240	1250	1260
inputs	CAGGCAGGCCTT	TTTCTCAGAGG	TCACTTAAT	AAACCTAAAA	TCCTCAAAA	AAAAAAAAAA	GGGCGGC
_	::::::	:::			:::::		
	CAAAGCTG	AGA			TCAAA-		
	640				650		

inputs CGC

FIG. 8C

GTCGA	.CCCA	cccc	TCCG	CGGA	cece	TGGG:	rgago	GGA.	AGAG	GCTG	ACTG'	TACG	TTCC	TTCT	ACTC	TGGC	ACCA	CTCT	cc	79
		м	G	P	s	T	P	L	L	I	L	F	L	L	s	W	s	G		17
AGG	CTGC	C AT	G GG	G CC	C AG	CAC	c cc	г ст	CTO	TA C	CII	G TT	C CT	T TT	G TC	A TG	G TC	G GG.	A	138
P	L	Q	G	Q	Q	н	н	L	v	E	Y	м	E	R	R	L	A	A	L	37
ccc	CTC	CAA	GGA	CAG	CAG								GAA	CGC	CGA	CTA	GCT	GCT	TTA	198
E	E	R	L	A	0	С	Q	D	0	s	s	R	н	A	A	É	L	R	Đ	57
GAG	GAA	CGG	CTG	GCC		TGC				AGT	AGT	CGG	CAT	GCT	GCT	GAG	CTG	CGG	GAC	258
F	ĸ	N	к	м	L	P	L	L	E	v	Α	E	к	E	R	E	A	L	R	77
TTC	AAG	AAC	AAG	ATG	CTG	CCA	CTG	CTG	GAG	GTG	GCA	GAG	AAG	GAG	CGG	GAG	GCA	CTC	AGA	318
T	E	A	D	т	I	s	G	R	v	D	R	L	E	R	E	v	D	Y	L	97
ACT	GAG	GCC	GAC	ACC	ATC	TCC	GGG	AGA	GTG	GAT	CGT	CTG	GAG	CGG	GAG	GTA	GAC	TAT	CTG	378
E	т	Q	N	P	A	L	P .	c	Ιċ	E	F	D	E	к	v	T	G	G	р	117
GAG	ACC	CAG	AAC	CCA	GCT	ĊTG	cćc	TGT	GTA	GAG	TTT	GAT	GAG	AAG	GTG	ACT	GGA	GGC	CCT	438
G	т	ĸ	G	ĸ	G	R	. R	N	E	ĸ	Y	D	М	v	T	D	С	G	Y	137
GGG	ACC	AAA	GGC	AAG	GGA	AGA	AGG	TAA	GAG	AAG	TAC	GAT	ATG	GTG	ACA	GAC	TGT	GGC	TAC	498
T	1	s	Q	v	R.	s	м	ĸ	I	L	ĸ	R	F	G	G	P	A	G	L	157
ACA	ATC	TCT	CAA	GTG	AGA	TCA	ATG	AAG	ATT	CTG	AAG	CGA	TTT	GGT	GGC	CCA	GCT	GGT	CTA	558
W	т	ĸ	D	p	L	G	Q	T	E	ĸ	I	Y	v	L	D	G	T	Q	N	177
TGG	ACC	AAG	GAT	CCA	CTG	GGG	CAA	ACA	GAG	AAG	ATC	TAC	GTG	TTA	GAT	GGG	ACA	CAG	AAT	618
D	т	A	F	v	F	P	R	L	R	D	F	T	L	A	M	A	A	R	ĸ	197
GAC	ACA	GCC	TTT	GTC	TTC	CCA	AGG	CTG	CGT	GAC	TTC	ACC	CTT	GCC	ATG	GCT	GCC	CGG	AAA	678
A	s	R	v	R		P			W	v	G	T	G	Q	L	v	Y	G	G	217
GCT	TCC	CGA	GTC	CGG	GTG	CCC	TTC	CCC	TGG	GTA	GGC	ACA	GGG	CAG	CTG	GTA	TAT	GGT	GGC	738
F	L	¥	F	A	R	R	P		G		P			G	_	E	M	E	N	237
TTT	CTT	TAT	TTT	GCT	CGG	AGG	CCT	CCT	GGA	AGA	CCT	GGT	GGA	GGT	GGT	GAG	ATG	GAG	AAC	798
T		Q				· F			A	N	R	T	v	v	D	s	s	v	F	257
ACT	TIG	CAG	CTA	ATC	AAA	TTC	CAC	CIG	GCA	AAC	CGA	ACA	GTG	GTG	GAC	AGC	TCA	GTA	TTC	858
P	A	E	G	L	I	·P	P		G		T		D	T	Y		D	L	A	277
CCA	GCA	GAG	GGG	CTG	ATC	ccc	CCC	TAC	GGC	TTG	ACA	GCA	GAC	ACC	TAC	ATC	GAC	CIG	GCA	918
A	D	E	E	G		W	A	Ý	` Y	A	T	R	E	D	D	R	H	L	С	297
GCT	GAT	GAG	GAA	GGT	CTT	TGG	GCT	GTC	TAT	GCC	ACC	CGG	GAG	GAT	GAC	AGG	CAC	TIG	TGT	978
L	A	ĸ	L	D	P	Q	T	L	D	T	E	Q	Q	W	D	T	P	С	Ρ.	317

FIG. 9A

CIG	GCC	AAG	TTA	GAT	CCA	CAG	ACA	CIG	GAC	ACA	GAG	CAG	CAG	166	GAC	ACA				1036	
R			A		A	A	F	v	I	С	G	T	L	Y .	v	v	Y	N_	_ T	337	
AGA	GAG	AAT	GCT	GAG	GCT	GCC	TTT	GTC	ATC	TGT	GGG	ACC	CTC	TAT	GTC	GTC	TAT	AAC	ACC	1098	
ъ	p	Δ.	c	ъ	Δ.	R	т	0	C	s	F	D	A	s	G	T	L	T	P	357	
				CGG	GCC	ÇGC	ATC	CAG	TGC	TCC	TTT		GCC	AGC	GGC	ACC	CTG	ACC	CCT	1158	
																				277	
	R		A			Y						G				-	L	R	_	377	
GAA	CGG	GCA	GCA	CTC	CCT	TAT	TTT	CCC	CGC	AGA	TAT	GGT	GCC	CAT	GCC	AGC	CTC	CGC	TAT	1218	
N	P	p	E	R	0	L	Y	А	W	D	D	G	Y	Q	I	v	Y	ĸ	L	397	
AAC	CCC	CGA	GAA	CGC	CAG	CTC	TAT	GCC	TGG	GAT	GAT									1278	
E	M	R	K	K	E	E	E	v	*	4	407										
GAG	ATG	AGG	AAG	AAA	GAG	GAG	GAG	GTT	TGA	13	308										
GAGCT	ראכייי	وتخلعكم		range (ملمكم	· ·	יא רידו	יייי	רמרמי	ימידור	ידידמיו	TATO	rccci	CTA	ATT	CTT	GTTC	CTCA'	ГT	1387	
MAGC !	MUCC	.116.		1160	AICI.	iici		.ccn.	inch.		•~										
TTCA	\ATG1	rggg	CAG	TTGT	GCT	CAAAT	rccro	TAT	ATTT	TAG	CCAA'	rggci	AATC	TAA	CTT	rcag(CTCC	rttg	ГT	1466	
CATAC	CGGA	ACTC	CAGAT	CCT	GAGT	AATC	TTTT	PAGA	CCCC	GAAG	AGTC)AAA	CCT	TAAL	STTC	CCTC	CTGC	rere	JT	1545	
cccc					~~~		. maa	2002	~ N CC(78000		ኮአ አ <i>ር</i> (ጉጥጥርባ	_{የአጥር}	rece	CAGG	CCCAC	GGGA	GC	1624	
scccc.	AIGI(LAACI	AAA'I"	I-I CAC	3GC17	AAGGA	41GC(-CCAC	SACCI	MGG	JCIC.	MAC	_110	.AIG							
GCAC	GCAG1	rgtto	CTTC	CCT	CAGA	GTGAG	CTTG	GGA	GGA	GAAA'	TAGG	AGGA(GACG?	CCA	GCTC'	TGTC	CTCT	CTTC	CT	1703	
CACTCO	TCC	TTC	AGTG?	rccr	GAGG	AACA(GAC?	TTC	rcca(TTAC	GTTT	rgta:	TTGC	AACA:	rttt(GCAT"	TAAA	AGGA	A.A.	1782	
3.000										7000	~~~~	20	18:	דכ							
ATC	$\mathcal{M}_{C,L}$	JCTAI	LAAA	NAAA	AAAA	LAAA		LAAA	-UNAA(7000	3000	3 C	10.	-							

FIG. 9B

MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKN KMLPLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTK GKGRRNEKYDMVTDCGYTISQVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTA FVFPRLRDFTLAMAARKASRVRVPFPWVGTGQLVYGGFLYFARRPPGRPGGGGMENTLQ LIKFHLANRTVVDSSVFPAEGLIPPYGLTADTYIDLAADEEGLWAVYATREDDRHLCLAK LDPQTLDTEQQWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFDASGTLTPERA ALPYFPRRYGAHASLRYNPRERQLYAWDDGYQIVYKLEMRKKEEEV

FIG. 10

								M	G	P	S	A	P	L	L	L	L	F	F	12
GTC	GACC	CACG	CGTC	CGAC	TTAA	GGCT	GCC /	ATG (GGG (ccc i	AGT (GCT (CCT	CTG	CTG	Crc (CIC	TTC :	LTT	66
L	s	W	T	G	P	L	Q	G	Q	Q	Н	H	L	v	E	Y		E	R	32
TTG	TCA	TGG	ACG	GGA	CCC	CTT	CAG	GGA	CAG	CAG	CAC	CAC	CTT	GTG	GAG	TAC	ATG	GAA	CGC	126
R	L	A	A	L	E	E	R	L	A	Q	С	Q	D	Q	. s	s	R	H	A	52
CGA	CTA	GCT	GCC	TTA	GAG	GAA	CGG	CTG	GCC	CAA	TGC	CAG	GAT	CAG	AGT	AGT	CGG	CAT	GCT	186
A			R									L					E	ĸ	E	72
GCC	GAG	CTŢ	CGG	GAC	TTC	AAA	AAC	AAG	ATG	TTG	CCT	CTC	CTG	GAG	GTG	GCA	GAG	AAG	GAG	246
R	E	T	L	R	т	E	A	D	s	I	s	G	R	v	D	R	L	E	R	92
CGG	GAĠ	ACC	CTC	AGA	ACT	GAA	GCA	GAC	TCC	ATC	TCA	GGA	AGA	GTG	GAC	CGT	CTT	GAA	AGG	306
		D		L			Q	N	P	A	L	P	С	v	E	L	•	E		112
GAG	GTA	GAC	TAT	CTG	GAG	ACA	CAG	AAC	CCA	GCT	TTG	CCC	TGT	GTA	GAG	CTG	GAT	GAG	AAG	366
v	T	G	G	P	G	A	۱ K	G	ĸ	G	R	R	N	E	ĸ	Y	D	M	v	132
GTG	ACT	GGA	GGT	ССТ	GGA	GCC	AAA	GGC	AAG	GGC	CGA	AGA	TAA	GAG	AAA	TAC	GAT	ATG	GTG	426
T	D	С	s	Y	T	v	·A	Q	v	R	s	м	K	I	L	ĸ	R	F	G	152
ACG	GAC	TGT	AGC	TAC	YCŸ	GTC	GCŤ	CAG	GTG	AGG	TCA	ATG	AAG	ATC	CTG	AAG	CGG	TTT	GGT	486
G		Y V >	G	۲.	W	т	ĸ	ת	p	T.	G	P	Α `	E	ĸ	I	Y	v	L	172
	TCA	GTT	GGC	CTA	TĢG	ACC	AAG	GAT	CCG	CTG	GGG	CCA	GCA	GAG	AAG			GTG		546
13	G	T	0	N	n	т	A	F	v	F	Þ	R	<u></u>	R	D	F	т	L	A	192
GAC	GGC	ACC	CAG	AAC	GAC	ACG	GCT	TTT	GTC	TTC	CCA	AGG	CTG	CGT	GAC	TTC	ACC	CTT	GCC	606
																				212
M	A		R	K			R					F							Q CNG	212 666
AIG	GCT	GCC	CGG	AAA	GCT	TCC	CGA	ATT	CGG	GIG	CCC	TTC	CCC	166	GIA	GGC	ACG	GGG	CAG	000
L	v	Y	G	. G	F	L	Y	Y	A	R	R	P	P	G	G	P	G	G	G	232
CTG	GTG	TAC	GGT	GGC	TTC	CTT	TAT	TAT	GCT	CGA	AGG	CCT	CCT	GGA	GGA	CCT	GGA	GGG	GGT	726
c	E		20	27	m	_	_		Ŧ	v	F	H	т.	Δ	N.	R	т	v	v	252
GGT	GAA	TTG	E GAG	AAC	ACT	CTG	CAG	CTG	ATC	AAA	TTT	CAC	TTG	GCA	AAC			GTG		786
D	S	s	V	F	P	A.	E	S	L	I	P	P	Y	G	L	T		_	T	272
GAT	AGC	TCA	GTG	TTC	CCI	GCA	GAG	AGC	CIG	ATA	CCC	ccc	TAC	GGC	CIG	ACA	GCA	GAI	ACA	. 846
Y	I	D	L	A	A	D	E	E	G	L	W	A	v	Y	A	T	R	D	D	292
TAT	ATC	GAC	CTG	GCA	GCT	GAT	GAG	GAG	GGC	CTG	TGG	GCT	GTC	TAT	GCC	ACT	CGA	GAT	GAT	906
ח	10	T.	7	C	_	*	P *	•	n	D	^	æ	т.	ח	T	E	O	Q	W	312
GAC	AGG	CAT	TTG	TGT	CTA	GCC	AAG	TTA	GAC	CCA	CAG	ACA	CTT	GAC	ACA	GAG	CĀG	CAG	TGG	966
D	T	Þ	С	P.	ı P	E	N	A	E	A	A	F	v	I	С	G	т	L	Y	332

FIG. 11A

GAC	ACA	CCA	TGT	CCC	AGA	GAG	AAC	GCA	GAG	GCT	GCG	TTT	GTC	ATC	TGT,	GGG	ACC	CTG	TAC	1026
v	v	Y	N	T	R	P	A	s	R	A	R	ı	Q	С	s	F	D	A	~s	352
GTT	GTC	TAT	AAC	ACC	CGC	CCT	GCC	AGT	AGG	GCT	CGT	ATT	CAG	TGT	TCC	TTC	GAT	GCC	AGT	1086
G	T	L	A	P	E	R	A	A	L	s	Y	F	P	R	R	Y	G.	A	н	372
GGT	ACT	CTC	GCC	CCT	GAA	AGG	GCA	GCA	CTC	TCC	TAT	TTT	CCA	CGC	CGA	TAT	GGT	GCC	CAT	1146
																			Q	
GCC	AGC	CTT	CGC	TAT	AAC	CCC	CGT	GAG	CGC	CAG	CTG	TAT	GCC	TGG	GAT	GAT	GGC	TAC	CAG	1206
I	v	Y	ĸ	L	E	М	ĸ	ĸ	ĸ	E	E	E	v	•						407
TTA	GTC	TAC	AAA	TTG	GAG	ATG	AAG	AAG	AAG	GAG	GAG	GAA	GTT	AAT						1251
GCAC	CTAC	CCTI	GTG	тстт	GATI	CTTA	TGCC	CAG	CATT	TAT	TTC	CTGTC	SAGCI	стс	CTGC	\GTT(CATCO	TTC	AAA	1330
CGAP	.GGCC	AGTO	GTG	STAGO	TCAT	OATA	CCTA	ATTI	CTAI	\AGG#	CAAC	CAAF	TTCI	CAAC	CCCC	TCTC	TTTT	CATGO	CAGA	1409
ACTO	CAGA	TCCI	NGGG1	TAGCA	TTT	'AGAP	CTGA	ACAC	CAA	CAA!	CACC	CTAF	ATCI	TCAC	TCCI	recen	TATO	STCC	CAA	1488
agti	TAGI	TCC	LAAC1	CAGA	GCCC	TGTC	CTTI	GGAG	SAGGO	STCAP	ccc	CAGAC	CAGCA	GCC	SACAC	CATI	CTTG	SCCC1	CAG	1567
OTAT	ACCG	AAGG	GAG	GAAC	TCAG	AGAC	:AAAC	CTGC	CCTC	CCTC	CCTI	CCCC	CTCC	AGTO	TAGG	GGAC	AATO	GGGG	TTT	1646
cccc	ACAT	CACI	TIGI	TATGG	TAAC	AGTI	TGCA	TTAR	LAAGO	AAA	CCC	CCAP	AAAA	AAA	LAAA	AGGG	CGGC	CCGC		1721

FIG. 11B

>mT257
MGPSAPLLLLFFLSWTGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKN
KMLPLLEVAEKERETLRTEADSISGRVDRLEREVDYLETQNPALPCVELDEKVTGGPGAK
GKGRRNEKYDMVTDCSYTVAQVRSMKILKRFGGSVGLWTKDPLGPAEKIYVLDGTQNDTA
FVFPRLRDFTLAMAARKASRIRVPFPWVGTGQLVYGGFLYYARRPPGGPGGGELENTLQ
LIKFHLANRTVVDSSVFPAESLIPPYGLTADTYIDLAADEEGLWAVYATRDDDRHLCLAK
LDPQTLDTEQQWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFDASGTLAPERA
ALSYFPRRYGAHASLRYNPRERQLYAWDDGYQIVYKLEMKKKEEEV

FIG. 12

ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Hiller, CABIOS (1989) > hT257 a.a. 406 aa vs. > mT257a.a. 406 aa scoring matrix: pam120.mat, gap penalties: -12/-4 94.1% identity; Global alignment score: 2097 inputs MGPSTPLLILFLLSHSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNNOLPLLEVAE ${\tt MGPSAPLLLLFFLSWTGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKHLPLLEVAE}$ inputs KEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVIGGPGIKGKGRRNEKYDMVTDCGYTIS KERETLRTEADSISGRVDRLEREVDYLETQNPALPCVELDEKVTGGPGAKGKGRRNEKYDMVTDCSYTVA inputs QVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPRLRDFTLAMAARKASRVRVPFPWVGT QVRSHKILKREGGSVGLHTKDPLGPAEKIYVLDGTQNDTAFVFPRLRDFTLAMAARKASRIRVPFPHVGT 170 · inputs GQLVYGGFLYFARRPPGRPGGGGEMENTLOLIKFHLANRTVVDSSVFPAEGLIPPYGLTADTYIDLAADE GQLVYGGFLYYARRPPGGPGGGGELENTLQLIKFHLANRTVVDSSVFPAESLIPPYGLTADTYIDLAADE 300 " inputs eglwayyatreddrhlclakldpotldteqqhdtpcprenaeaafvicgtlyvyyntrpasrariqcsfd ${\tt EGLWAVYATRDDDRHLCLAKLDPQTLDTEQQWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFD}$ inputs ASGTLTPERAALPYFPRRYGAHASLRYNPRERQLYAWDDGYQIVYKLEMRKKEEEV **ASGTLAPERAALSYFPRRYGAHASLRYNPRERQLYAWDDGYQIVYKLENKKKEEEV**

FIG. 13

ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Miller, CABIOS (1989) > hT257 a.a. 406 aa vs. > Patent Protein W75120 - (untitled) 355 aa scoring matrix: pam120.mat, gap penalties: -12/-4 86.9% identity; Global alignment score: 1681 inputs HGPSTPLLILFLLSWSGPLQGQQHHLVEYHERRLAALEERLAQCQDQSSRHAAELRDFKNKHLPLLEVAE MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKHLPLLEVAE inputs KEREALRIEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGRRNEKYDMVTDCGYTIS KEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGRRNEKYDMVTDCGYTIS inputs QVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPRLRDFTLAMAARKASRVRVPFPWVGT QVRSHKILKREGGPAGLHTKDPLGQTEKIYVLDGTQNDTAFVFPRLRDFTLAMAARKASRVRVPFPHVGT inputs GQLVYGGFLYFARRPPGRPGGGEMENTLQLIKFHLANRTVVDSSVFPAEGLIPPYGLTADTYIDLAADE cqlvycgflyfarrppgrpgggementlqlikfklanrtvvdssvfpaeglippygltadtyidlaade inputs EGLWAVYATREDDRHLCLAKLDPOTLDTEQQWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFD EGLWAVYATREDDRHLCLAKLDPQTLDTEQQWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFD inputs ASGTLTPERAALPYFPRRYGAHASLRYNPRERQLYAWDDGYQIVYKLENRKKEEEV ASGPX-----

FIG. 14

FIG. 15A

					~ = mm~m~ = = ~		
C	GACTGTGG	CTACACAATC				CGATTTGGTC	550
	490	500	510	520	530	540	330
	560	570	580	590	600	610	620
T(AGAGAAGATO	TACGTGTTAG	ATGGGACACA	GAATGACAC
ipues 10					:::::::::	::::::::	
	~T ATCC ACC	A A CCATCCAC	TGGGGCAAAC	AGAGAAGATO	TACGTGTTAC	ATGGGACACA	GAATGACAC.
	560	570	580	590	600	610	620
	300	3.0	300				
	630	640	650	660	670	680	690
nouts GO	CTTTGTC1		GCGTGACTTC	ACCCTTGCCA	TGGCTGCCC	GAAAGCTTCC	CCGAGTCCGG
			::::::::::	:::::::::	::::::::::	:::::::::	::::::::::
G	CTTTGTC	TTCCCAAGGC1	CTTCACTTC	ACCCTTGCC	TGGCTGCCC	GAAAGCTTCC	CGAGTCCGG
	630	640	650	660	670	680	690
	700	710	720	730	740	750	760
nouts To	CCCTTCC	CTGGGTAGG	CACAGGGCAGC	TGGTATATG	TGGCTTTCT	TATTTTGCT	CGAGGCCTC
		: : : : : : : : : : :	: : : : : : : : : : :	:::::::::		::::::::	::::::::
Т	CCCTTCC	CTGGGTAGG	CACAGGGCAGG	TGGTATATG	STGGCTTTCT	TATTTTGCT	CGGAGGCCTC
•	700	710	720	730	740	750	760
				000	010	. 830	830
	770	780	790	800	810	820	0 88 TCCCA A A C C G
nputs T	GGAAGACC'	TGGTGGAGGT	GTGAGATGG	GAACACTTTY	CAGCTAATC	AAATTCCACC	TGGCAAACCG
:	GGAAGACC	TGGTGGAGGT	GGTGAGATGG	AGAACACTTTY	GCAGCTAATC	AAATTCCACC	TGGCAAACCG
:	GGAAGACC	TGGTGGAGGT ::::::::: TGGTGGAGGT	GGTGAGATGGA ::::::::::: GGTGAGATGGA	AGAACACTTIV	GCAGCTAATC	AAATTCCACC :::::::::: AAATTCCACC	TGGCAAACCG ::::::::::: TGGCAAACCG
:	GGAAGACC	TGGTGGAGGT	GGTGAGATGG	AGAACACTTTY	GCAGCTAATC	AAATTCCACC	TGGCAAACCG
: T	GGAAGACC ::::::: GGAAGACC 770	TGGTGGAGGT :::::::: TGGTGGAGGT 780 850	GGTGAGATGGA :::::::::: GGTGAGATGGA 790 860	AGAACACTTTY AGAACACTTTY 800 870	GCAGCTAATCA	AAATTCCACC :::::::::: AAATTCCACC 820 890	TGGCAAACCG ::::::::: TGGCAAACCG 830
: To	GGAAGACC :::::::: GGAAGACC 770 840 CAGTGGTG	TGGTGGAGGTG TGGTGGAGGTG 780 850 GACAGCTCAG	GGTGAGATGGA GGTGAGATGGA 790 860 TATTCCCAGCA	AGAACACTTTY STAGAACACTTTY 800 870 AGAGGGGGCTG	GCAGCTAATCA SCAGCTAATCA 810 880 ATCCCCCCCT	AAATTCCACC' :::::::::::::::::::::::::::::::::	TGGCAAACCG ::::::::: TGGCAAACCG 830 900 AGCAGACAC
: To .nputs A :	GGAAGACC 1:::::: GGAAGACC 770 840 CAGTGGTG	TGGTGGAGGTG TGGTGGAGGTG 780 850 GACAGCTCAG	GGTGAGATGGA GGTGAGATGGA 790 860 TATTCCCAGCA	AGAACACTTY SOO 870 AGAGGGGGCTG	GCAGCTAATCA GCAGCTAATCA 810 880 ATCCCCCCCT	AAATTCCACC' :::::::::::::::::::::::::::::::::	TGGCAAACCG TGGCAAACCG 830 900 AGCAGACACCG
: Ti inputs A :	GGAAGACC 1:::::: GGAAGACC 770 840 CAGTGGTG	TGGTGGAGGTG TGGTGGAGGTG 780 850 GACAGCTCAG	GGTGAGATGGA GGTGAGATGGA 790 860 TATTCCCAGCA	AGAACACTTY SOO 870 AGAGGGGGCTG	GCAGCTAATCA GCAGCTAATCA 810 880 ATCCCCCCCT	AAATTCCACC' :::::::::::::::::::::::::::::::::	TGGCAAACCG TGGCAAACCG 830 900 AGCAGACACCG
: Ti inputs A :	GGAAGACC 1:::::: GGAAGACC 770 840 CAGTGGTG	TGGTGGAGGTG TGGTGGAGGTG 780 850 GACAGCTCAG	GGTGAGATGGA GGTGAGATGGA 790 860 TATTCCCAGCA	AGAACACTTY SOO 870 AGAGGGGGCTG	GCAGCTAATCA GCAGCTAATCA 810 880 ATCCCCCCCT	AAATTCCACC' :::::::::::::::::::::::::::::::::	TGGCAAACCG TGGCAAACCG 830 900 AGCAGACACCG
: Ti inputs A :	GGAAGACC' GGAAGACC' 770 840 CAGTGGTG CAGTGGTG	TGGTGGAGGTG TGGTGGAGGTG 780 850 GACAGCTCAG	GGTGAGATGGA GGTGAGATGGA 790 860 TATTCCCAGCA TATTCCCAGCA	AGAACACTTY SILLILILI AGAACACTTY 800 870 AGAGGGGCTG	GCAGCTAATCA SCAGCTAATCA 810 880 ATCCCCCCCT	AAATTCCACC HAATTCCACC 820 890 ACGGCTTGAC HACGGCTTGAC	TGGCAAACCG :::::::::: TGGCAAACCG 830 900 AGCAGACACC
: T inputs A : A	GGAAGACC' 1::::::: GGAAGACC' 770 840 CAGTGGTG CAGTGGTG 840 910	TGGTGGAGGTV TGGTGGAGGTV 780 850 GACAGCTCAG ::::::::::::::::::::::::::::::::::::	GGTGAGATGGA 790 860 TATTCCCAGCA TATTCCCAGCA 860 930	AGAACACTTY AGAACACTTY 800 870 AGAGGGGGCTG :::::::: AGAGGGGGCTG 870 940	BCAGCTAATCA SIO 880 ATCCCCCCCT 880 ATCCCCCCCT 880	AAATTCCACC 1111111111111111111111111111	TGGCAAACCG :::::::::: TGGCAAACCG 830 900 AGCAGACACC :::::::::::: AGCAGACACC 900
: T inputs A : A	GGAAGACC' 1::::::: GGAAGACC' 770 840 CAGTGGTG CAGTGGTG 840 910	TGGTGGAGGTV TGGTGGAGGTV 780 850 GACAGCTCAG ::::::::::::::::::::::::::::::::::::	GGTGAGATGGA 790 860 TATTCCCAGCA TATTCCCAGCA 860 930	AGAACACTTY AGAACACTTY 800 870 AGAGGGGGCTG :::::::: AGAGGGGGCTG 870 940	BCAGCTAATCA SIO 880 ATCCCCCCCT 880 ATCCCCCCCT 880	AAATTCCACC 1111111111111111111111111111	TGGCAAACCG :::::::::: TGGCAAACCG 830 900 AGCAGACACC :::::::::::: AGCAGACACC 900
: Tinputs A : A	GGAAGACC 770 840 CAGTGGTG CAGTGGTG 840 910 CATCGACC	TGGTGGAGGTV 780 850 GACAGCTCAG GACAGCTCAG 850 920 TGGCAGCTGA	BGTGAGATGGA 790 860 TATTCCCAGCA 860 930 TGAGGAAGGT	AGAACACTTY 800 870 AGAGGGGGCTG 870 940 CTTTGGGCTG	BCAGCTAATCA B10 880 ATCCCCCCCTA B10 950 TCTATGCCAC	AAATTCCACC HAATTCCACC R20 R90 ACGGCTTGAC R90 960 CCGGGGAGGAT	TGGCAAACCG STORMAN TO THE TOTAL
: T inputs A : A	GGAAGACC 770 840 CAGTGGTG CAGTGGTG 840 910 CATCGACC	TGGTGGAGGTV 780 850 GACAGCTCAG GACAGCTCAG 850 920 TGGCAGCTGA	BGTGAGATGGA 790 860 TATTCCCAGCA 860 930 TGAGGAAGGT	AGAACACTTY 800 870 AGAGGGGGCTG 870 940 CTTTGGGCTG	BCAGCTAATCA B10 880 ATCCCCCCCTA B10 950 TCTATGCCAC	AAATTCCACC HAATTCCACC R20 R90 ACGGCTTGAC R90 960 CCGGGGAGGAT	TGGCAAACCG STORMAN TO THE TOTAL TO
: T inputs A : A	GGAAGACC 770 840 CAGTGGTG CAGTGGTG 840 910 CATCGACC	TGGTGGAGGTO 780 850 GACAGCTCAG 650 GACAGCTCAG 850 920 TGGCAGCTGA	BGTGAGATGGA 790 860 TATTCCCAGCA 860 930 TGAGGAAGGT	AGAACACTTY 800 870 AGAGGGGGCTG 870 940 CTTTGGGCTG	BCAGCTAATCA B10 880 ATCCCCCCCTA B10 950 TCTATGCCAC	AAATTCCACC' ELO 890 ACGGCTTGAC ELO 890 ACGGCTTGAC 890 960 CCGGGAGGAT	TGGCAAACCG STORMAN TO THE TOTAL TO
: Tinputs A : A	GGAAGACC 770 840 CAGTGGTG CAGTGGTG 840 910 CATCGACC	TGGTGGAGGTV 780 850 GACAGCTCAG GACAGCTCAG 850 920 TGGCAGCTGA	GGTGAGATGGA 790 860 TATTCCCAGCA 860 TATTCCCAGCA 860 TGAGGAAGGT	AGAACACTTY AGAACACTTY 800 870 AGAGGGGCTG 870 940 CTTTGGGCTG	BEAGCTAATCA BEO	AAATTCCACC S20 890 ACGGCTTGAC S10 ACGGCTTGAC 890 CCGGGAGGAT CCGGGAGGAT CCGGGAGGAT	TGGCAAACCG STORMAN TO THE TOTAL
: To .nputs A : .A inputs A	GGAAGACC' 770 840 CAGTGGTG CAGTGGTG 840 910 CATCGACC 910 980	TGGTGGAGGTO T80 850 GACAGCTCAG GACAGCTCAG 850 920 TGGCAGCTGA LILLILLILLILLILLILLILLILLILLILLILLILLIL	GCTGAGATGGA T90 860 TATTCCCAGCA TATTCCCAGCA 860 TGAGGAAGGT TGAGGAAGGT 1111111111111111	AGAACACTTTY ESTABLE AGAACACTTTY 800 870 AGAGGGGCTG ESTABLE AGAGGGGCTG 940 CTTTGGGCTG 940 1010	BEAGCTAATCA BEO	AAATTCCACC ELLINIE AAATTCCACC 820 890 ACGGCTTGAC 890 960 CCGGGAGGAT ELLINIE CCGGGAGGAT 960 1030	TGGCAAACCG STORMAN TO THE TO T
: T .nputs A .A .nputs A	GGAAGACC' 770 840 CAGTGGTG CAGTGGTG 840 910 CATCGACC 910 980	TGGTGGAGGTO T80 850 GACAGCTCAG GACAGCTCAG 850 920 TGGCAGCTGA LILLILLILLILLILLILLILLILLILLILLILLILLIL	GCTGAGATGGA T90 860 TATTCCCAGCA TATTCCCAGCA 860 TGAGGAAGGT TGAGGAAGGT 1111111111111111	AGAACACTTTY ESTABLE AGAACACTTTY 800 870 AGAGGGGCTG ESTABLE AGAGGGGCTG 940 CTTTGGGCTG 940 1010	BEAGCTAATCA BEO	AAATTCCACC ELLINIE AAATTCCACC 820 890 ACGGCTTGAC 890 960 CCGGGAGGAT ELLINIE CCGGGAGGAT 960 1030	TGGCAAACCG STORMAN TO THE TO T
nputs A .nputs A .nputs A	GGAAGACC 770 840 CAGTGGTG CAGTGGTG 840 910 CATCGACC 910 980 TGTCTGGC	TGGTGGAGGTO 780 850 GACAGCTCAG 850 GACAGCTCAG 850 TGGCAGCTGA TTGGCAGCTGA 220 290 CCAAGTTAGAT	SGTGAGATGGA 790 860 TATTCCCAGCA 860 TATTCCCAGCA 860 TGAGGAAGGT TGAGGAAGGT 930 TGAGGAAGGT 930 TGAGGAAGGT	AGAACACTTY AGAACACTTY 800 870 AGAGGGGGCTG 870 940 CTTTGGGCTG 940 1010 TGGACACACAGA	SCAGCTAATCA SCAGCTAATCA 810 880 ATCCCCCCCTA 880 950 TCTATGCCAC 950 1020 GCAGCAGTGG	AAATTCCACC AAATTCCACC 820 890 ACGGCTTGAC 890 960 CCGGGAGGAT 960 1030 GACACACCAT	TGGCAAACCG STORMAN TO TGGCAAACCG 830 900 AGCAGACACC 900 970 GACAGGCACT 970 1040 TGTCCCAGAGC
nputs A inputs A inputs A	GGAAGACC 770 840 CAGTGGTG CAGTGGTG 840 910 CATCGACC 910 980 TGTCTGGC	TGGTGGAGGTO 780 850 GACAGCTCAG 850 GACAGCTCAG 850 TGGCAGCTGA TTGGCAGCTGA 220 290 CCAAGTTAGAT	SGTGAGATGGA 790 860 TATTCCCAGCA 860 TATTCCCAGCA 860 TGAGGAAGGT TGAGGAAGGT 930 TGAGGAAGGT 930 TGAGGAAGGT	AGAACACTTY AGAACACTTY 800 870 AGAGGGGGCTG 870 940 CTTTGGGCTG 940 1010 TGGACACACAGA	SCAGCTAATCA SCAGCTAATCA 810 880 ATCCCCCCCTA 880 950 TCTATGCCAC 950 1020 GCAGCAGTGG	AAATTCCACC AAATTCCACC 820 890 ACGGCTTGAC 890 960 CCGGGAGGAT 960 1030 GACACACCAT	TGGCAAACCG STORMAN TO TGGCAAACCG 830 900 AGCAGACACC 900 970 GACAGGCACT 970 1040 TGTCCCAGAGC
inputs A inputs A inputs A	GGAAGACC 770 840 CAGTGGTG CAGTGGTG 840 910 CATCGACC 910 980 TGTCTGGC	TGGTGGAGGTO 780 850 GACAGCTCAG 850 GACAGCTCAG 850 TGGCAGCTGA TTGGCAGCTGA 220 290 CCAAGTTAGAT	SGTGAGATGGA 790 860 TATTCCCAGCA 860 TATTCCCAGCA 860 TGAGGAAGGT TGAGGAAGGT 930 TGAGGAAGGT 930 TGAGGAAGGT	AGAACACTTY AGAACACTTY 800 870 AGAGGGGGCTG 870 940 CTTTGGGCTG 940 1010 TGGACACACAGA	SCAGCTAATCA SCAGCTAATCA 810 880 ATCCCCCCCTA 880 950 TCTATGCCAC 950 1020 GCAGCAGTGG	AAATTCCACC ELLINIE SAATTCCACC 820 890 ACGGCTTGAC 890 960 CCGGGAGGAT 960 CCGGGAGGAT 960 1030 GACACACAC	TGGCAAACCG STORMAN TO TGGCAAACCG 830 900 AGCAGACACC 900 970 GACAGGCACT 970 1040 TGTCCCAGAGC
nputs A inputs A inputs A	GGAAGACC 770 840 CAGTGGTG 840 910 CATCGACC 910 980 CTGTCTGGC	TGGTGGAGGTC 780 850 GACAGCTCAG 850 920 TGGCAGCTGA 111111111111111111111111111111111111	GGTGAGATGGA 790 860 TATTCCCAGCA 860 TATTCCCAGCA 860 TGAGGAAGGT TGAGGAAGGT 930 TGAGGAAGGT 930 TCACGAAGGT 930 CCCACAGACAC	AGAACACTTY AGAACACTTY 800 870 AGAGGGGCTG 870 940 CTTTGGGCTG 940 1010 TGGACACAGA	SCAGCTAATCA SCAGCTAATCA 810 880 ATCCCCCCCTA 880 950 TCTATGCCAC TCTATGCCAC 950 1020 GCAGCAGTGG	AAATTCCACC S20 890 ACGGCTTGAC 890 960 CCGGGAGGAT 960 1030 GACACACCAT	TGGCAAACCG 830 900 AGCAGACACC 900 970 GACAGGCACT 970 1040 TGTCCCAGAG

FIG. 15B

	AATGCTGAGG	CTGCCTTTN	CATCTGTGG	ACCCTCTAT	GTCGTCTATAL	CACCCGTCCT	TGCCAGTCGGG
	1050	1060	1070	1080	1090	1100	1110 -
_	1120	1130	1140	1150	1160	1170	1180
inputs	CCCGCATCCA						
							CTTATTTTCC
	1120	1130	1140	1150	1160	1170	1180
	1120	1133	1140	1130	1100	11.0	2200
	1190	1260	1210	1220	1230	1240	1250
inputs	CCGCAGATAT	GGTGCCCATC	CCAGCCTCCG	CTATAACCC	CCGAGAACGC	CAGCTCTATGO	CTGGGATGAT
	::::::::::	::::::::	:::::::::	::::::::	: : : : : : : : :	::: ::: :::::	:::::::::
	CCGCAGATAT	GCTGCCCATC	CCAGCCTCCG	CTATAACCCC	CGAGAACGC	CAGCTCTATGO	CTGGGATGAT
	1190	1200	1210	1220	1230	1240	1250
	1260	1270	1280	1290	1300	1310	1320
inputs	GGCTACCAGA'				GAGGAGGAGG		
	CGCTACCAGA'						
	1260	1270	1280	1290	1300	1310	1320
	1330	1349	1350	1360	1370	1380	1390
inputs	TTTGCATCTT	rctckstccc	ATACATTAT	NTATATCC	CACTAAATT	CTTGTTCCTC	ATTCTTCAAA
	:::::::::		:::::::::	::::::::	::::::::::		:::::::::
							ATTCTTCAAA
	1330	1340	1350	1360	1370	1380	1390
	1400	1410	1420	1430	1440	1450	1460
innute	TGTGGGCCAG						
z.i.puco					:::::::::::		
							AGCTCCTTTG
	1400	1410	1420	1430	1440	1450	1460
			•				
_	1470	1480	1490	1500	1510	1520	1530
inputs	TTTCATACGG						
	TTTCATACGG						AATGTTCCCT
	1470	1480	1490	1500	1510	1520	1530
						•	
	1540	1550	1560	1570	1580	1590	1600
inputs	1540 CCTGCTCTCC						
inputs	CCTGCTCTCC	rgccccatg1	CAACAAATTI	CAGGCTAAG	GATGCCCCCAC	GACCCAGGGCT	CTAACCTIGT
inputs	CCTGCTCTCC	IGCCCCATGI IGCCCCATGI	CAACAAATTI CAACAAATTI	CAGGCTAAG CAGGCTAAG	GATGCCCCA(GATGCCCC-A(GACCCAGGGCT GACCCAGGGCT	CTAACCTTGT
inputs	CCTGCTCTCC	rgccccatg1	CAACAAATTI	CAGGCTAAG	GATGCCCCCAC	GACCCAGGGCT	CTAACCTIGT
inputs	CCTGCTCTCCC CCTGCTCTCCC 1540	IGCCCCATGI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CAACAAATTI ::::::::: CAACAAATTI 1560	CAGGCTAAG :::::::::: CAGGCTAAG 1570	GATGCCCCAC GATGCCCC-AC 1580	SACCCAGGGCT SACCCAGGGCT 1590	CTAACCTTGT CTAACCTTGT 1600
	CCTGCTCTCCC 1540 1610	IGCCCCATGI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CAACAAATTI :::::::::: CAACAAATTI 1560 . 1630	CAGGCTAAGA CAGGCTAAGA 1570 1640	GATGCCCCAC GATGCCCC-AC 1580	CACCCAGGGCT CACCCAGGGCT 1590 1660	CCTAACCTTGT CCTAACCTTGT 1600
	CCTGCTCTCCC 1540 1610 ATGCGGGCAG	iccccatgi iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	CAACAAATTI 1560 1630 ECAGGCAGCAG	CAGGCTAAGA CAGGCTAAGA 1570 1640 FIGURETICO	GATGCCCCAC GATGCCCC-AC 1580 1650 CCTCAGAGTG	IACCCAGGGCI IACCCAGGGCI 1590 1660 ACTTGGGGAGG	CTAACCTTGT CTAACCTTGT 1600 1670 GGAGAAATAGG
	CCTGCTCTCCC 1540 1610 ATGCGGGCAG	iccccatgi icccccatgi icccccatgi 1550 ic20 cccaggaa	CAACAAATTI CAACAAATTI 1560 1630 CAGGCAGCAG	CAGGCTAAGA CAGGCTAAGA 1570 1640 FIGITCITCO	GATGCCCCAC GATGCCCC-AC 1580 1650 CCTCAGAGTG	IACCCAGGGCI IACCCAGGGCI 1590 1660 ACTTGGGGAGG	CCTAACCTTGT CCTAACCTTGT 1600

FIG. 15C

	1680	1690	1700	1710	1720	1730	1740
inputs	AGGAGACGTCC	AGCTCTGTC	CTCTCTTCCT	CACTCCTCCC	TTCAGTGTCC	TGAGGAACAG	GACTTTCTCC
	:::::::::	::::::::		:::::::::		: :::::::	:::::::::
	AGGAGACGTCC	AGCTCTGTC	CTCTCTTCCT	CACTCCTCCC	TTCAGTGTCC	TCAGGAACAG	GACTTTCTCC
	1680	1690	1700	1710	1720	1730	1740
	1750	1760	1770	1780	1790	1800	1810
inputs	ACATTGTTTTG	TATTGCAAC	ATTTTGCATT	AAAAGGAAAA	TCCACTGCTA	ААААААА	AAAAAAAA
	::::::::::	::::::::			:::::	:::::::::	::::::::
	ACATTGTTTTG	TATTGCAAC	ATTTTGCATT.	AAAAGGAAAA	TCCANAAAAA	<mark></mark> ጳጳጳጳጳጳጳ	AAAAAAAA
	1750	1760	1770	1780	1790	1800	1810
	1820					1830	
inputs	AAAAAAAAGG-					-GCGGCCGC-	
	::::::::					:::::::	
	АААААААА	AAAAAAA	AAAAAAAAA	aaaaaaaa	ОААААААА	TGCGGCCGCT	GTCCCTTCTG
	1820	1830	1840	1850	1860	1870	1880
inputs			:				
	TCGTCTTCTCG	CACCCGTAC	CCTTCTGTCG	TCTTCTCGCA	GCC		
	1890	1900	1910	1920			
	2070						

FIG. 15D

ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Miller, CABIOS (1989) > mT257a.a. 406 aa vs. > Patent Protein W75120 - (untitled) 355 aa scoring matrix: pam120.mat, gap penalties: -12/-4 81.8% identity; Global alignment score: 1599 3.0 inputs MGPSAPLLLLFFLSWTGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKMLPLLEVAE MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKMLPLLEVAE inputs KERETLRTEADSISGRVDRLEREVDYLETQNPALPCVELDEKVTGGPGAKGKGRRNEKYDMVTDCSYTVA KEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGRRNEKYDMVTDCGYTIS inputs QVRSMKILKRFGGSVGLWTKDPLGPAEKIYVLDGTQNDTAFVFPRLRDFTLAMAARKASRIRVPFPWVGT QVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPRLRDFTLAMAARKASRVRVPFPWVGT inputs GQLVYGGFLYYARRPPGGPGGGGELENTLQLIKFHLANRTVVDSSVFPAESLIPPYGLTADTYIDLAADE GQLVYGGFLYFARRPPGRPGGGGMENTLQLIKFHLANRTVVDSSVFPAEGLIPPYGLTADTYIDLAADE nputs EGLWAVYATRDDDRHLCLAKLDPQTLDTEQQWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFD EGLWAVYATREDDRHLCLAKLDPQTLDTEQQWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFD nputs ASGTLAPERAALSYFPRRYGAHASLRYNPRERQLYAWDDGYQIVYKLEMKKKEEEV ASGPX------

FIG. 16

FIG. 17A

	AAGCTT	CCCGAGTCCG		CCCTGGGTAC	IOCACAGGGC!	AGCTGGTATA	TOGTGGCTTTCTTTA
		710	720	730	740	750	
69	90 TTATGC	700 TYGAAGGYYT	710 YYTGGAGGAG	720 CTGGAGGGG	730 TGGTGAATT	740 GAGAACACT	750 CTGCAGCTGATCAAA
	11.111			:::::::::::::		:::::::::	
	TTTTGC	780	790	800	810	820	TTGCAGCTAATCAAA 830 840
76	50	770	780	790	800	810	820
inputs	TTTCAC	TTGGCAAACC	GAACAGTGG1	GGATAGCTCA	GTGTTCCCTY	CAGAGAGCC	TGATACCCCCCTACG
	TTCCAC	CTGGCAAACC 850	GAACAGTGGT 860	GGACAGCTCA 870	GTATTCCCAC	GCAGAGGGGC 890	TGATCCCCCCCTACG 900 910
83	30	840	850	860	870	880	890
inputs	GCCTGAG	CAGCAGATAC	ATATATCGAC	CTGGCAGCTG	ATGAGGAGG	CCTGTGGGC	TGTCTATGCCACTCG
	GCTTGAG	::::::::::: CAGCAGACAC	CTACATCGAC	CTGGCAGCTG	ATGAGGAAG	STCTTTGGGC	TGTCTATGCCACCCG
		920	930	940	950	960	970 980
90	00	910	920	930	940	950	960
inputs	AGATGAT	rgacaggcat	TTGTGTCTAC	CCAAGTTAGA	CCCACAGACA	ACTTGACACA	GAGCAGCAGTGGGAC
	GGAGGA	TGACAGGCAC	TIGIGICIG	CCAAGTTAGA	TCCACAGAC	ACTGGACACA	GAGCAGCAGTGGGAC
		990	1000	1010	1020	1030	1040 1050
97	0	980	990	1000	1010	1020	1030
			:::: :::::	:::::::::::	:::::::::::::	:::::::::::::::::::::::::::::::::::::::	ACGTTGTCTATAACA
	ACACCA?	FGTCCCAGAG	AGAATGCTGA	GGCTGCCTTT	GTCATCTGTG	GGACCCTCT	ATGTCGTCTATAACA
	1	1060	1070	1080	1090	1100	1110 1120
104	0	1050	1060	1070	1080	1090	1100
				::::: ::::	1 :::::::	::::::	CGCCCTGAAAGGGC
•	CCCGTC	CTGCCAGTCG	GGCCCGCATC	CAGTGCTCCT	TTGATGCCAC	CGG-ACCCT	GACCCCTGAACGGGC 1180
					1150	1160	1170 ·
111 inputs	AGCACTO	1120 CTCCTATTTT	1130 CCACGCCGAT	1140 ATGGTGCCCA	TGCCAGCCT	CCCTATAAC	CCCCGTGAGCGCCAG
			::	::::::::::	:::::::::	:::::::::	CCCCGAGAACGCCAG
119		1200	1210	1220	1230	1240	1250
118	10	1190	1200	1210	1220	1230	1240
inputs	CTGTATO	CCTGGGATG	ATGGCTACCA	GATTGTCTAC	AAATTGGAG	TGAAGAAGA	AGGAGGAGGAAGTTT
	CTCTATO	CCTGGGATG	ATGGCTACCA	:::::::: GATTGTCTAT	'AAGCTGGAG	TGAGGAAGA	AAGAGGAGGAGGTTT
126		1270	1280	1290	1300	1310	1320
125	0	1260	1270	1280	1290		1300 1310
inputa							-CCTGTGAGCTCTCC
	GAGGAG	TAGCCTTGT	TTTTTGCATO	TTTCTCACTO	CCATACATT	TATATTATA1	CCCCACTAAATTTCT
133		1340	1350	1360	1370	1380	1390
_	13	320 - 1	330 1	340 3	.350	1360	1370
	:: .		*** *****		:::::::	: ::::	CTARAGGACAA
	TGTTCC	PCATTCTTCA	AAT-GTGGGG	CAGTTGTGG-	CTCAAAT	CTCTATATI	TTTAGCCAATGGCAA
140	0	1410	1420	1430	1460	1450	, 1400
1							
:	.380	1390	1400	1410	1420	1430 22277827827	
inputs	CCAAAT	CTCA-AGCC	CCTCTGTTTT	TATGCAGAACT	CCAGATCCT	333TAG-CAT	TTTAGAACTGAACAG
inputs	CCAAAT	CTCA-AGCC	CCTCTGTTT	TATGCAGAACT	CCAGATCCT	GAGTAATCC	TTTAGAACTGAACAG

FIG. 17B

inputs	CAAACAAA	CACCCTAAAT	CTTCA	CTCCTGCCTTA	TGTCCACAA	AGTT	-ȚAGTTCC
	:::	: : : : : : : :	:: :.	:::::::::::::::::::::::::::::::::::::::	:::: :::::	: ::	:.:
	AGTCAAAA	CCCTCAATGTTC	CCTCCTGCT	CTCCTGCCCCA	TGTCAACAA	ATTTCAGGC I	MAGGATGCCCC
	1540	1550	1560	1570	1580	1590	1600
15	00 1	510 152	0 .15	30 154	0 159	50 15	60
inputs	AAACTCAG	AGCCCTGTCCTT	TGGAGAGGG	TCAACCCCAGA	\CAGCAGGCG/	ACAGCATTCT	IGCCCTCAGIA
•	:::		: : : :	:::::::::::::::::::::::::::::::::::::::	. :::::::	.::: .::::	: ::::::::
	AGACCCAG	GGCTCTAACCTT	GTATGCGGG	-CAGGCCCAGG	GAGCAGGCAG	SCAGTGTTCT	TCCCCTCAGAG
	1610	1620	1630	1640	1650	1660	1670
15	70	1580 15	90	1600	1	1610	1620
innute	TGACC-GA	AGGGAGAGAACT	CAGAGA	CAAAGCT	GCCCTC	CCTCCCTTC	CCCCTCCAGTG
Tubaca	TOACC OF	.:.:.:::::		• • • • • •		:::: :: :	:::: :::::
	TCACTTCC	GGAGGGAGAAAT	ACCACCACA	CGTCCAGCTCT	GTCCTCTCT	CCTCACTCC	TCCCTTCAGTG
	16401100	1690	1700	1710	1720	1730	1740
	1000	1030	1700	1,10	2,20		
	1630	1640 1	650	1660 1	670	L680	1690
innute	TAGGGGAG	AATGGGGCTTTC	CCCACATCA	CTTTGTATGGT	AACAGTTTG	ATTAAAAGG.	AAAACCCAC
Inpucs		:: :::::::::			•••• • • • • • • • • • • • • • • • • • •		:::: ::::
	TOOTONGO	AACAGGACTTTC	TCCACATTG	************************	DTTTTADAG	TATTAAAAGG	AAAATCCACTG
	1750	1760	1770	1780	1790	1800	1810
	1750	1700	1770	1700	1,30		
	1700	1710					1720
	2700	AAAAAAAAGGG-					CG
inpucs	CAAAAAAA	::::::::::					:.
	::::::::	 AAAAAAAAAAAAA		 	re Neceeeeee	CCCGTACCC	AATNGCCCTCA
	CAAAAAAA		AAAAAAAAA	AAAAACGGCAC	1960	1870	1880
	1820	1830	1840	1850	1860	10.0	2000
	_						
inputs	C						
	:						
	CATGCAT						
	1890						

FIG. 17C

GTCGA	rccc;	CGCC	TNCN	TCCA	.GCG1	NCGG	AGCC	GCCC	TGGG	TGTC	AGCG	GCTC	GGC1	ccca	CGCA	.CGCT	CCGG	CCGT	CG	79
																			v	
CGC	אמרר	ጥ ርርር	CACC	-TCCN	CCTC	CGTG	CCTC		~~~	~~~	0000	~~ * ~	***	****	~~~~	NCCC	NCCC		M TC	1 155
-			cacc	.100	.0010	.corc	CGIC	CCGC	GGCI	GGCG	cccc	IGAC	1000	ilccc	.0000	AGGG	AGGG	CC A	.10	133
ĭ	s	L	P	G	p	L	v	т	N	L	Y	R	F	۲.	F	T.	G	L	s	21
						CTG												-		215
												-								
A	L	A	P	P	s	R	A	Q	L	Q	L	н	L	P	A	N	R	L	Q	41
GCC	CTC	GCG	ccc	CCC	TCG	CGG	GCC	CAG	CTG	CAA	CTG	CAC	TTG	CCC	GCC	AAC	CGG	TTG	CAG	275
A	v	E	Ε	G	E	s	G	A	S	A	W	Y	T	L	H	R	E	V	S	61
GCG	GTG	GAG	GAG	GGG	GAA	AGT	GGT	GCT	TCA	GCA	TGG	TAC	ACC	TTG	CAC	AGG	GAG	GTG	TCT	335
_	_	_	_		_												_			
S		Q	P		E	V		_	-	• • •		F	_		Q	K	E	K	E	81
TCA	TCC	CAG	CCA	TGG	GAG	GTG	CCC	TTT	GTG	ATG	TGG	TTC	TTC	AAA	CAG	AAA	GAA	AAG	GAG	395
ח	0	v	L	s	Y	r	И	G	1,	т	т	s	к	P	G	v	s	L	v	101
	_		_	_		ATC		_		-	_				_	-	_			455
0,,,	٠.٠	0.0	, • • •	100	140	AIC	~~1	000	GIC	ACA	ACA	AGC	<i>A</i>	CCI	COA	GIA	100	110	010	423
Y	s	м	p	s	R	N.	L	s	L	R	v	E	G	L	0	E	K	D	s	121
TAC	TCC	ATG	CCC	TCC	CGG	AAC			-			-			_	GAG	AAA	GAC	TCT	515
G	P	Y	S	C	s	V	N	v	Q	D	K	Q	G	ĸ	s	R	G	H	S	141
GGC	CCC	TAC	AGC	TGC	TCC	GTG	AAT	GTG	CAA	GAC	AAA	CAA	GGC	AAA	TCT	AGG	GGC	CAC	AGC	575
I	K	T	L	E	L	N	V	L	V	_	P	A	P	P	S	C	R	L	Q	161
ATC	AAA	ACC	TTA	GAA	CTC	TAA	GTA	CTG	GTT	CCT	CCA	GCT	CCT	CCA	TCC	TGC	CGT	CTC	CAG	635
G	v	P	••	17	_			••	_		_	_	_	_	_	R	c	ĸ	P	181
_	-	_	Н	V GTG	G	A GCA	N		T	L	S	C	Q	S TCT	P CC		S AGT		_	695
.	010		<u></u>	010	000	GCA	AAC	GIG	ACC	CIG	AGC	160	CAG	101	CCA	AGG	AGI	mo		0,5
A	v	0	Y	0	W	D	R	0	T.	p	s	F	0	T	F	F	A	P	A	201
GCT	GTC	CAA	TAC	_		GAT		_					_	_		TTT	GCA	CCA	GCA	755
L	D	V	I	R	G	S	L	S	L	T	N	L	S	S	S	M	A	G	\mathbf{v}	221
TTA	GAT	GTC	ATC	CGT	GGG	TCT	TTA	AGC	CTC	ACC	AAC	CTT	TCG	TCT	TCC	ATG	GCT	GGA	GTC	815
																		_		
_	V	C	K	A	H	N	E	V		T	A	_	С	N	V			Æ	V	241
TAT	GTC	TGC	AAG	GCC	CAC	AAT	GAG	GTG	GGC	ACT	GCC	CAA	TGT	AAT	GIG	ACG	CIG	GAA	GTG	875
s	т	G	P	G	A	A	٠,	v		_	A	v	v	G	T	L	v	G	L	261
	_		_	-		GCA	-			_			-	_	_	_		_		935
	J			Jun	3 C1	JUN	GIG	GII	~ 1	- GAM	GCI	GII	GIG	931	~~C	-10				
G	L	L	A	G	L	v	L	L	 Y	H	R	R	G	ĸ	A	L	E	E	P	281
GGG	TTG	_		_		GTC								_		_	_	GAG	CCA	995
A	N	D	I	K	E	D	A	I	A	P	R	T	L	P	W	P	K	S	S:.	301

FIG. 18A

GCC	AAT	GAT	ATC	AAG	GAG	GAT	GCC	TTA	GCT	CCC	CGG	ACC	CTG	CCC	TGG	ccc	AAG	AGC	TCA	1055
D	T	1																	P	
GAC	ACA	ATC	TCC	AAG	AAT	GGG	ACC	CTT	TCC	TCT	GTC	ACC	TCC	GCA	CGA	GCC	CTC	CGG	CCA	1115
P	Н	_	_	P			G					T		_	L	_	s	Q	A	341
CCC	CAT	GGC	CCT	CCC	AGG	CCT	GGT	GCA	TTG	ACC	CCC	ACG	CCC	AGT	CTA	TCC	AGC	CAG	GCC	1175
_	-	s	_									P					I	P	H	361
CTG	CCC	TCA	CCA	AGA	CAT	GCC	CAC	GAC	AGA	TGG	G GC	CCA	CCC	TCA	ACC	AAT	ATC	ccc	CAT	1235
P	W	W	G	F	F	L	W	L	•	3	371									
ccc	TGG	TGG	GGT	TTT	TTC	CTT	TGG	CTT	TGA	12	265									•
GCCGC	ATGGG	TGC	GNG	CTG	rgato	GNG	CTGC	CCAC	GAGTO	CAAGO	TGG	CTCTC	TGGT	TATG	TGAC	ccc	ACCA	CTCA:	ГT	1344
GCTA	VAGGA	TTT	GGG1	rcrc	rccT7	CCT	TAAC	GGT	CACCI	CTAC	CAC	GAGG	CCTC	AGTO	ATGO	GAA J	AGAG	CAC	AC	1423
rcctg;		~T. N. C. O	1	~~~~	30001		~~~~	~~~				· m~-rc	· >		י מיזיים	CTCT	ררר או	2C D C 1	^	1502
CCIGA	.ccc1	ING	ACIC	. I GC		(CC1C	.icii	TACI	GIGC	JUARA	исс	licic	AG I A	MOA	.CIA		COR	Jonor	••	1302
AGAAGO	BAGAA	GAGO	BAAGI	rggan	rctgo	TAAE	GGG	(GGAC	CCTC	CAC	CAC	CCTG	SACTO	CTC	TTAT	CAAD	CCAC	CTG	T	1581
SAAATT	RAGCI	ACTO	ACC	AAGAC	GTGAC	GGGG	AGAG	ACTI	CCAC	STCAC	TGAC	TCTC	CCAC	GCCC	CCT	rgato	TGT	ACCC	ZA	1660
2000			202.00				~ ~~~						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·~~~	~~~~~	المحدث	CCT	гт	1739
CCCTA	TCIA	ACAC	:CACC	CTT	3GCT(CCAC	TCCF	IGCT	CCTC	FIAT	GATA	TAAC	CIGI	CAGG	-C 1 G-C	3¢11¢	7G 1 17	1001	• •	1/39
TACTGO	GGCA	GAGG	ATAG	GGA	ATCTO	TTAT	TAAT	ACT	ACA1	LAA D1	TAT	TGTI	GTTI	TCAT	TTG	CAAAT	(ATT	LATA/	AA.	1818
GATA	CATA	ATGI	TTGT	ratg <i>i</i>	\GAT#	AGA	AAA	KAAA	LAAA	\AGG(CGGC	CGC	18	169						

FIG. 18B

·Cws

MISLPGPLVTNLXRFLFLGLSALAPPSRAQLQLHLPANRLQAVEEGESGASAWYTLHREV SSSQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRVEGLQEKD SGPYSCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSK PAVQYQWDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGTAQCNVTLE VSTGPGAAVVAEAVVGTLVGLGLLAGLVLLYHRRGKALEEPANDIKEDAIAPRTLPWPKS SDTISKNGTLSSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPRHAHDRWGPPSTNIP HPWWGFFLWL

FIG. 19

GTCGACCCACGCGTCCGGTGCACATTCGGGTTGCCGCCGCTCACCCACAACACCTGTAGACACCGTGTGTCCAACTCTC 79 M I L Q A G T P E T S L L														79						
							М	ľ	L	Q	A	G	T	P	E	T	s	L	L	13
CCT	GAGT	ACTC	CGGG	CAA	GGAG(GCC	ATG	TTA	CTT	CAG	GCT	GGA	ACC	CCC	GAG	ACC	AGC	TTG	CTG	145
R	v	L	F	L	G	L	s	T	L	A	A	F	s	R	A	Q		E	L	33
CGG	GTT	TTG	TTC	CTG	GGA	CTG	AGT	ACC	CTT	GCT	GCC	TTC	TCC	CGA	GCT	CAG	ATG	GAG	TTG	205
н	v	P	P	G	L	N	ĸ	L	E	A	v	E		E				L		53
CAC	GTG	CCC	CCG	GGC	CTC	AAC	AAA	TTG	GAA	GCG	GTA	GAG	GGA	GAA	GAA	GTG	GTG	CTC	CCC	265
A	W	Y	T	м	A	R	E	E	s	W	s	н	P	R	E	v	P	I	L	73
GCC	TGG	TAC	ACG	ATG	GCA	CGG	GAG	GAG	TCG	TGG	TCC	CAC	ccc	CGG	GAG	GTG	CCC	ATC	CTG	325
I	W	F	L	E	Q	E	G	ĸ	E	P	N	Q	v	L	s	Y	1	И	G	93
ATC	TGG	TTC	TTG	GAA	CAA	GAA	GGG	AAG	GAA	CCA	AAC	CAG	GTG	TTG	TCT	TAC	TTA	TAA	GGA	385
v	м	т	N	ĸ	P	G	T	A	L	v	н	s	1	s		R	N	v	s	113
GTC	ATG	ACA	AAT	AAA	CCT	GGA	ACA	GCC	CTG	GTC	CAC	TCT	ATC	TCT	TCA	CGG	TAA	GTG	TCC	445
L	R	L	G	A	L	Q	E	G	D	s	G	T	Y	R	С	s	v	N	v	133
CTG	CGC	CTG	GGG	GÇA	CTC	CAG	GAG	GGA	GAC	TCT	GGG	ACT	TAC	CGC	TGT	TCT	GTC	TAA	GTG	505
ο.	N	D	E	G	ĸ	s	I	G	н	s	I	ĸ	s	I	E	L	ĸ	V	L	153
CAG	AAT	GAT	GAA	GGC	AAA	AGT	ATA	GGC	CAC	AGC	ATC	AAA	AGC	ATA	GAG	CTC	AAA	GTG	CTG	565
v	P	P	A	P	P	s	С	s	L	Q	G	v	P	Y	v	G	T	N	v	173
GTT	CCT	CCA	GCT	CCT	CCA	TCC	TGT	AGT	TTA	CAG	GGT	GTA	CCC	TAT	GTC	GGG	ACC	AAT	GTG	625
T	L	N	С	к	s	P	R	s	ĸ	P	T	A	Q	Y	Q	W	E		L	193
ACC	CTG	AAC	TGC	AAG	TCC	CCA	AGG	AGT	AAA	CCT	ACT	GCT	CAG	TAC	CAG	TGG	GAG	AGG	CTG	685
A	P	s	s	Q	v	F	F	G	P	A.	L	D	A	v	R	G	s	-	ĸ	213
GCC	CCA	TCC	TCC	CAG	GTC	TTC	TTT	GGA	CCA	GCC	TTA	GAT	GCT	GTT	CGT	GGA	TCT	TTA	AAG	745
L	T	N	L	s	I	A	м	s	G	v	Y	v	С	ĸ	A	Q	N	R	v	233
CTC	ACT	AAC	CTT	TCC	ATT	GCC	ATG	TCT	GGA	GTC	TAT	GTC	TGC	AAG	GCT	CAA	AAC	AGA	GTG	805
G	F	A	ĸ	С	N	v	T	L	D	v	M	T	G	s	K	A	A	V	V	253
3GC	TTT	GCC	AAG	TGC	AAC	GTG	ACC	TTG	GAC	GTG	ATG	ACA	GGG	TCC	AAG	GCT	GCA	GIG	GTC	865
A	G	A	v	v	G	T	F	v	G	L	v	L	1	A	G	L	v	L	L	273
3CT	GGA	GCA	GTT	GTG	GGC	ACT	TTT	GTT	GGG	TIG	GTG	CTG	ATA	GCT	GGG	CTG	GTC	CIG	TTG	925
Y	Q	R	R	s	K	T	L	E	E	L	A	N	D	I	K	E	D	A	I	293
CAC	CAG	CGC	CGG	AGC	AAG	ACC	TTG	GAA	GAG	CTG	GCC	AAT	GAT	ATC	AAG	GAA	GAT	GCC	ATT	989
A	P	R	T	L	P	W	T	K	G	s	D	T	I	s	ĸ			T		313
CT	CCC	CGG	ACC	TTG	CCT	TGG	ACC	AAA	GGC	TCA	GAC	ACA	ATC	TCC	AAG	AAT	GGG	ACA	CTT	104

FIG. 20A

S	S	v	T	S	A	R	A	L	R	P	P	K	A	A	₽	P	R	P	G	33:
TCT	TCG	GTC	ACC	TCA	GCA	CGA	GCT	CTG	CGG	CCA	CCC	AAG	GCT	GCT	CCT	CCA	AGA	CCT	G&C	110
T	F	T	P	T	P	s	v	s	s	. Q	A	L	·s	s	P	R	L	P	R	353
ACA	TTT	ACT	CCC	ACA	CCC	AGT	GTC	TCT	AGC	CAG	GCC	CTG	TCC	TCA	CCA	AGA	CTG	CCC	AGG	1169
v	D	E	P	P	P	Q	A	v	s	L	T	P	G	G	v	s	s	s	A	373
GTA	GAT	GAA	CCC	CCA	CCT	CAG	GCA	GTG	TCC	CTG	ACC	CCA	GGT	GGG	GTŢ	TCT	TCT	TCT	GCT	1225
L	s	R	М	G	A	v	P	v	М	v	P	A	Q	s	Q	A	G	s	L	393
CTG	AGC	CGC	ATG	GGT	GCT	GTG	CCT	GTG	ATG	GTG	CCT	GCA	CAG	AGT	CAG	GCT	GGG	TCT	CTT	1289
v																				399
STG	TGA																			1291
rago	CCAC	GCAC	TCAT	TAGO	TACA	TCTC	GTAI	CTG	CCTI	тсто	TAAF	GGT	TCCI	TGT	GCAC	CAGAC	GACI	CAAT	CTT	1370
GG	GGAT	GCCC	ACAT	TCT	GACC	TCC	GTCC	TTTC	CTCC	TACC	TCC1	TCT	\TTG1	TGG	ATAC	TGGG	CCTC	AGTA	AGA	1449
TAR	אמרכ	TGGG	מ מידיב	A G G I	מממי	AGGI	GGAA	አ ፐርር	ישרכיי	CAGO	: ጥ እርረ	יכפפיו	тссс	:AGTG	anggi	الاددات	ግሮልር	TTCC	TCC	1528
				0.00 7		21002	· · · · · · · · · · · · · · · · · · ·		ncc i	GAGC	INGC	,0002	. 1000		,,,,,,,,,					
TGC	TTCI	CCCI	GAAG	CCAC	ATGA	ATGC	TGCG	GAAG	ATC	GCTA	CCCI	CCAP	GGGC	TCTC	GAGO	AGAC	TGCC	AGTO	AGT	1607
ATG	cccc	TGGC	тстс	TGAT	CTGT	'ACAA	CACC	CTTA	TCTA	ATGO	TGTC	CTTI	GCCG	TTCG	CTC	CATCI	CCCI	GTAI	TAA	1686
'ATA	ACCT	GTCC	TGCI	GGC1	TGGC	TGGG	TTTT	GTTG	TAGO	LAGGO	GGAT	AGGA	AAGA	CATI	TTAF	TAAL	TGAC	TTGA	AAT	1765
CAT	تمليك	ייביריי	ملململمة	. ያ ሌ ሌሌ	ጥርርአ	ስ አጥፕ	TCAA	מממד	CDTA	. ጉስጥ ጉ	יבראיז	~1~17;0	አጥርሪ	מממני	מממ	ממממ	מממ	ימפרים	GCC	1844
JAI	9111	1101			IGCA	-AAII	I CAA	IMM	GAIA	CAIC	.GCA1	. 1 1 GC	A100			····				
																				1846

FIG. 20B

>mT258
MILQAGTPETSLLRVLFLGLSTLAAFSRAQMELHVPPGLNKLEAVEGEEVVLPAWYTMAR
EESWSHPREVPILIWFLEQEGKEPNQVLSYINGVMTNKPGTALVHSISSRNVSLRLGALQ
EGDSGTYRCSVNVQNDEGKSIGHSIKSIELKVLVPPAPPSCSLQGVPYVGTNVTLNCKSP
RSKPTAQYQWERLAPSSQVFFGPALDAVRGSLKLTNLSIAMSGVYVCKAQNRVGFAKCNV
TLDVMTGSKAAVVAGAVVGTFVGLVLIAGLVLLYQRRSKTLEELANDIKEDAIAPRTLPW
TKGSDTISKNGTLSSVTSARALRPPKAAPPRPGTFTPTPSVSSQALSSPRLPRVDEPPPQ
AVSLTPGGVSSSALSRMGAVPVMVPAQSQAGSLV

FIG. 21

```
ALIGN calculates a global alignment of two sequences
version 2.0uPlease cite: Hyers and Miller, CABIOS (1989)
> hT258a.a.
                                      370 aa VS.
                                      394 aa
> mT258 a.a.
scoring matrix: pam120.mat, gap penalties: -12/-4
62.8% identity;
                     Global alignment score: 1085
                                  40
                                         50
           10
                 20
                         30
inputs MISLPGPLVTNLXRFLFLGLSALAPPSRAQLQLHLPA--NRLQAVEEGESGASAWYTLHREVSSSOPHEV
     MILQAGTPETSLLRVLFLGLSTLAAFSRAQMELHVPPGLNKLEAVEGEEVVLPAWYTMAREESWSHPREV
                                       50
                                               60
                         30
                                40
                 20
                                        120
                                  110
     70
            80
                    90
                           100
inputs PFVMWFFKQKEKE-DQVLSYINGVTTSKPGVSLVYSMPSRNLSLRVEGLQEKDSGPYSCSVNVQDKQGKS
     PILIWFLEQEGKEPNQVLSYINGVMTNKPGTALVHSISSRNVSLRLGALQEGDSGTYRCSVNVQNDEGKS
                                      120
          80
                 90
                        100
                               110
                   160
                           170
                                  180
                                          190
     140
            150
inputs RGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKPAVQYQMDRQLPSFQTFFAPALDVIRG
     IGHSIKSIELKVLVPPAPPSCSLQGVPYVGTNVTLNCKSPRSKPTAQYQWERLAPSSQVFFGPALDAVRG
                                      190
                                               200
                        170 180
          150
                160
                                          260
                   230
                          240
                                  250
     210
inputs slsltnlssshagvyvckaknevgtaQcnvtlevstgpgaavvaeavvgtlvglgllaglvllyhrrgka
     SLKLTHLSIAMSGVYVCKAQNRVGFAKCHVTLDVMTGSKAAVVAGAVVGTFVGLVLIAGLVLLYQRRSKT
                                     260
                230 240
                              250
         220
                                  320
                                           330
                           310
     280
            290
                   300
inputs LEEPANDIKEDAIAPRTLPWPKSSDTISKNGTLSSVTSARALRPPHG-PPRPGALTPTPSLSSQALPSPR
     LEELANDIKEDAIAPRTLPWTKGSDTISKNGTLSSVTSARALRPPKAAPPRPGTFTPTPSVSSQALSSPR
                               320
                                               340
                 300
                        310
          29C
                    350
                            360
inputs HAH-----DRWGPPSTNIPHPWWGFFLWL
                      .: :. .. .: .
     LPRVDEPPPQAVSLTPGGVSSSALSRMGAVPVMVPAQSQAGSL-V
              370 . 380
                                390
```

FIG. 22

```
ALIGN calculates a global alignment of two sequences
version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
> hT258a.a.
                                      370 aa vs.
> SwissProt Q99795 - (untitled)
scoring matrix: pam120.mat, gap penalties: -12/-4 ,
23.0% identity;
                Global alignment score: -102
                        . 30
                 20
          10
                                40
                                        50
inputs MISLPGPLVTNLXRFLFLGLSALAPPSRAQLQLHLPANRLQAVEEG-ESGASAWYTLHREVSSSQPWEVP
                                        . . . ; . . . . . . .
        MVGKMWPVLWTLCA-VRVTVDAISVETPQDV-LRASQGKSVTLPCTYHTSTSSREGLIQWDKLLLTHTER
                       30
          10 20
                                40 50
    70
                                      120
                                               130
           80
                   90
                         100
                               110
inputs FVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRVEGLQEKDSGPYSCSVNVQDKQGKSRG
     VVIWPFSNKN-----YIHG-ELYKNRVSISNNAEQSDASITIDQLTMADNGTYECSVSLMSDLE---G
                         90 100
                                     110
                         170
                                180
                                         190
   140
          150
                  160
inputs HSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKPAVQYQWDR--QLPSFQTFFAPALDVIRG
     NTKSRVRLLVLVPPSKPECGIEGETIIGNNIQLTCQSKEGSPTPQYSWKRYNILNQEQPLAQPASGQ---
    130
           140 150
                          160
                               170
                                        180
                           240
                                   250
            220
                   230
.nputs SLSLTNLSSSMAGVYVCKAHNEVGTAQCNVTLEVSTGP-GAAVVAEAVVGTLVGLGLLAGLVLLYHRRGK
     PVSLKNISTDTSGYYICTSSNEEGTQFCNITVAVRSPSMNVALYVGIAVGVVAALIIIGIIIYCCCCRGK
      200
                   220
                            230
                                   240
                                          . 250
                                                  260
             210
                                          330
            290
                   300
                           310
                                  320
nputs ALEEPANDIKEDAIAPRTLPWPKSSDTISKNGTLSSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPR
                                 .. ..: ::::
     280 290 300
        270
           360
iputs HAHDRWGPPSTNIPHPWWGFFLWL
    .. .: . . . :. :
    QEEQR--STGRESPDH-----LDQ
         310
```

FIG. 23

```
ALIGN calculates a global alignment of two sequences
 version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
> hT258 n.a.
                               1869 aa vs.
> GenBank U79725 - Human A33 antigen precursor mR 2793 aa
scoring matrix: pam120.mat, gap penalties: -12/-4
40.6% identity; Global alignment score: 1182
                 10
                           20
-- CTACCCCTTTGTGAGCAGTCTAGGACTTTGTACACCTGTTAAGTAGGGAGAAGGCAGGGGAGGTGGCT
           10
                      30 40 50 60
                 20
80 90 100 110 120 130
                   70
                                    90
                           80
150
                            180 190 200
               160 170
                               110
                                       120
{\tt GGGTGAGAAGGGAAAATTGCAGGGACCTCCAGTTGGGCCAGGACGCGAGAAGCTGCTGTAGCTTTAACCAG}
                                  260 270
    210 220 230
                      240 250
                                150
                  140
inputs AC---TCCGTCC------CGGCCAGGGA------GGGC------CATGA
    ACAGCTCAGACCTGTCTGGAGGCTGCCAGTGACAGGTTAGGTTTAGGGCAGAGAAGAAGCAAGACCATGG
       290 300 310 320 330 340
                         170
                                 180
           160
390
                                  400
    350 360 370 380
             200
                        210
                                 220
inputs TGC-----GGTTTTTGTTC------CTGGGGCTGAGTG---CCCT-C---GCGCC--CC-----
    430 440 450 460
                  240
inputs -CCTC------GCGGGCC-----CA--------GCTGCAACT-GCACTTGC---------CCGCC
    490 500 510 520 530 540
270 280 290 300
INPUE BACCGGTTGCAGGCGGTGG-----AGGAGGG--GGAAAGTGGTGCTTCAGCATGGTACACCTTGC
GGCCGTTTTCAAACAAAAACTACATCCATGGTGAGCTTTATAAGAATCGGTCAGCATATCCAACAATGC
                                        620
             580 590 600 610
          330
                             350
                340
inputs A---CAGGGAGGTGTCTTCATC-CCA------GCCATGGGAGG----TGC-CCTT--TGTGATGT
TGAGCAGTCCGATGCCTCATCACCATTGATCAGCTGACCATGGCTGACAACGGCACCTACGAGTGTTCT
                           670 : 680
        640 650
    630
                      660
             360
                     390
                           400
inputs GGTTCT-----TCAAAC--AGAAAGAAAGGAGGATCAGGTGT-----TGTCCT-----
```

FIG. 24A

	GTCTCG	CTGATGTCAGA 710	CCTGGAGGG	730	TCACGTGTC	CGCCTGTTG: 750	GTCCTCGTGCCACCCT 760
(mm. em	_				420	430	440
Inpuc		:	:::::		:::::::	::.: :::	AAACCTGGAGTATC
	770			GAGACCATAA 800		ACATCCAGC 820	TGACCTGCCAATCAAA · 830
	450	460			4	70	480
inputs		TACTCCATGC				-CCGGAA	 : ::::
	GGAGGG	CT-CACCAACC	CCTCAGTAC			TCCTGAATC	AGGAGCAGCCCCTGGC
	840	850	860	870	880	890	900
	CCTCC	490				520	CTACAGCTG-
inputs	::.::						::::: :::
							GGTTACTACATCTGT
•	910	920	930	940	950	960	970
innute	530	540				570 5660 - 606	CATCA
Inpues	::::	IGAAIGIGCA : :::::	AGACAAACA .:. : .::	AGGCAA	ATCTAGG-G	:::. :::	CATCA
	ACCTCCA	GCAATGAGGA	GGGGACGCA	GTTCTGCAAC	ATCACGGTG	GCCGTCAGAT	CTCCCTCCATGAACG
	980	990	1000	1010	1020	1030	1040
	80		90			610	620
inputs							CTCCTCCATCCTG
							CATCATCATCTACTG
		1060					
	630	640	3	650		660	670
inputs	CCGTC	T-CCAGGGTG	rgc	-CCCATGTG -	GGGGCA	AACGTGACC-	CTGAGCTGCCAGT
	CTGCTGC	TGCCGAGGGAI	AGGACGACAJ		CAAGGAGGA	rgcaaggcc g	: :.: .::: AACCGGGAAGCCTAT 1180
innute			690				710 TACCAGTGGG
.npucs		I . I I I I I					::: ::::
	GAGGAGC 1190	CACCAGAGCAC 1200					ACTACAGGCAAGAAG 1250
		720	730			750	
.nputs	ATCGG	CAG	TTCCATCC	TTCCAG-	ACTITCTITY	-CACCAG	CATTAGATGTCATCC
	AGCAGAG	GAGCACTGGG	GTGAATCC	CCGGACCACC	rcgaccagt(BACAGGCCAG	CAGCAGAGGGCGGCG
:	1260	1270	1280	1290	1300 ·	1310	1320
	770		780	790			810 820
		1	CTTTAAGC	TCA-CCAA-	CCTTTCC	STCTTCCATG	GCTGGAGTCTA-TGT
	GAGGAAG	GGTTAGGGGT1	CATTCTCC	GCTTCCTGG	CTCCCTTC	CCTTTCTAA	GCCTGTTCTCCTGT
	1330	1340	1350	1360		1380	
		830	840	850		360	870
nputs							ACGCTGG
		TCCCAGACATI					ACATGGCTGGCCTGG
. 1	1400 .	1410	1420	1430	1440 `	1450	1460
•		. 880	890	900	910	920	930
		3-CACAGGGCC		AGTOGTTGC	rgaagetgt:		CTGGTTG-GACT
							CTCCTGGCTGTGACA
1	1470	1480		1500	1510		
	940	950		960	970)	980

FIG. 24B

inputs	GGGGTTGCT	GCTGGGC	TGGT	CCTCTTGT/	ACCACCGC-	cgg-	GGCAAG-GC-
	CCTGGTGCG	3GCCTGGCCC1	TCACTCAAGA	CCAGGCTGCAC 1570	CCTCCACT	ICCCTCGTA	GTTGGCAGGAGCT
inputs	990 CCTGGAGG	AGC-CAG			GATATC		1020 ATGCCAT
	CCTGGAAGCA		CATGGGGCG	::::::::::::::::::::::::::::::::::::::	BAACTCTCC	AGGGAGGCG	ATGCCAGCCTTGG 1670
inputs		TGCT	CCCCGGA	1040 -CCCTGC-CCT	rggC	1050 -CCAAGAG-	CTCAG
	GGGGTGGGG	CTGTCCTGC1	CACCTGTGTC	:::.:: ::: GCCCAGCACCT 1710	TGGAGGGGC/	ACCAGGTGG/	AGGGTTTGCACTC 1740
inputs	1060 -ACACAATC1	1070 CCCAAGAATG		. .	106 GGAC	CTTT-	1090 CCTCTGT
	::::::		LATGAAAGAAT		GCTTGGGC	::: :: CTGCATTG	GCCTGGCCTCCAG
inputs	CACC	TCC	1100 GCACGAGCC-	CT-CCGG	;CC#	۱CCC-C-۰	1120 ATGGCCC
-	:.::	::. CTTTCCAACC	TCACTTCCC	:: ::::	::: TATGTTCC	: ::::: \AACCCTCC1	:.::::::::::::::::::::::::::::::::::::
inputs	1130 TCCCAGGCCT	1140		1150	1160	117	10 CCAGGC
	TCCCACTCCT	GCTGCACAGG	CCCTGGGGAC	::: GCTTTTGCCCA 1920	CACACTTTC	CATCTCTG	CCAGGC :::::: CCTGTCAATATCG 1950
inputs	1180 CCTGCCCT	1190 CACCAAGACA	1200 TGCCCACGAC	1210 CAGATGGGG	CCCACCC	220 TCAACCAA	DOOTADOOOTAT
	TACCTGTCC-	CTCCAGGCCC	CATCTCAAATC	:: :.::. CACAAGGATTT 1990	CTCTAACCC	TATCCTAAT	TGTCCACATACG 2020
12 inputs		GGTTT	0 126	CTTTGA	1270 GCCGCATGG	;GTC	280 BCTGNGC
	TGGAAACAAT 2030	CCTGTTACTC	TGTCCCACGT	: . ::. CCCAATCATGG 2060	GCCACAAGG	CACAGTCT1	CTGAGCGAGTGC
inputs	CTGTG	90 ATGGNGCC	TGC-CCA-GA	1310 AGTCAAGCT	GGCTCTC-1	GGTATG	TGACCCC
	TCTCACTGTA 2100	TTAGAGCGCC	AGCTCCTTGC 2120		GGGCCTCAT	7GGCTTTTGC 2150	TTTCCCTGAAGC 2160
inputs		1340 CACTCAT-	TGG	1350 -CTAAAGGA	TTTGGGGT	TCTCCTTCC	1380 CTATAAGGGT
	CCTAGTAGCT 2170	GGCGCCCATC 2180	CTAGTGGGC 2190	CTTAAGCTTA 2200	ATTGGGGAF 2210		BATTGGTTGTGCC 2230
inputs	CACCTC		1400 -AGA-GGCC	1410 MAGTCATGGG	1420 IAAAGAGTCA	CACTCCTG	ACCCTTAG
	TTCCCTTCTC	TGGTCTCCTT 2250	GAGATGATCO 2260	TAGACACAGG 2270	GATGATTCC 2280	CAC-CCAAI 2290	ACCCACGTATTCA
inputs	TACTCTGCCC	1450 CCACCTCTCI	TTACTGTGG	1470 BAAAACCA-TC	1480 TCAGTAAGI	1490 ACCTARGIG	1500 CCAGGAGACAGA
	TTCAGTGAGT 2310	TAAACACGAA 2320	MATTTADIT	AGTGAACACAC 2340	ACAAGGGAC 2350	CTTGCTTG	CAGATGGTCTGA 2370

FIG. 24C

	1510	1520		1530	1540	1550	1560
inputs	AGGAG	AAGAGGAAGT	GGAT	CTGGAATTGG	GAGGAGCCT	CCACCCACCC	CTGACTCCTC
		::.:.:		:.:.:	: : : : : : : : : : : : : : : : :	:::: ::	: :: ->TCCCCCTTC
		ICCTGGTAATTC	CTCTCCAGGC	CAGAATAATT	GGCATGTCI	2430	2440
	2380	2390	. 2400	2410	2420	2430	2440
	1570	1580	1590	1600		1610	1620
inputs	CTTATGAAG	CCAGCTGCTGAA	ATTAGCTACT	CACCAAG-	AGTG	AGGGGCA-GAG	GACTTC
•	:: .:	:::::: : ::	::	:. :: .:	:: .	. ::::	:. :::
	CTGGTTGTT	CCTGCATCCCGA	TACCTCAGCC	CTGGCCCTGC	CCAGCCCAT	TTGGGCTCTG	STTTTCTGGT
	2450	2460	2470	2480	2490	2500	2510
		1630	1640		1650	1660	1670
inputs	CAGTC	ACTGAGTC TC	CCA-GGCCCC	CTT	GATCTGT	ACCCCACCCC	DADAATOTAT
	: . : : :	::: : ::	::: .::: :	:::	:: :. :	.: :. ::	:. :.::
	GGGGCTGTC-	-CTGCTGCCCTC	CCACAGCCTC	CTTCTGTTTG	TCGAGCATT	TCTTCTACTC	TTGAGAGCTC
	2520	2530	2540	2550	2560	2570	2580
	1680		1690	1700	1710	1720	1730
inputs	CACCCTT	rggctccca-	CTCCAGC	TCCCTGTATT	GATATAACC	TGTCAG GCT	CGCTTGGTT
•	:: : ::	: :::: : .	::: .:	.:: . :	::: : :::	:.:	: : .
	AGGCAGCGTT	ragggctgctta	GGTCTCATGG	ACCAGTGGCT	GGTCTCACC	CAACTGCAGT	TACTATTGC
	2590	2600	2610	2620	2630	2640	2650
	1740	1750	1760	1	770	1780	1790
inputs	AGGTTTTACT	rggg-gcagagg	ATAGGGAATC	TCTT	ATTAAAACT	AAC-ATGAAA1	TATGTGTTGT
•	:::::	:::: : . :::	:.::.::	:::.	.::::	: ::	::::
	TATCTTTTCT	rggatgatcaga	AAAATAATTC	CATAAATCTA	TTGTCTACT	TGCGATTTTT	PAAAAAATGT
	2660	2670	2680	2690	2700	2710	2720
	1800	1810	1820	1830	1840	1850	1860
.nouts	TTTCATTTGC	ATAAATTTAAAC	AAGATAC	ATAATGTTTG	TATGAGATA	agaaaaaaaa	LAAAAAAAGGG
	.::::.	: . : : . : : :	:: .:.:	.: :: : .	.::: .:	::.::::::	:::::
	ATATTTTAT	PATATATTGTTA	AATCCTTTGC	TTCAT-TCCA	AATGCTTTC	agtaataatai	AAATTGTGGG
	2730	2740	2750	2760	2770	2780	2790
nputs	CGGCCGC						
• • • •	::		•				
	TGG						

FIG. 24D

```
ALIGN calculates a global alignment of two sequences
 version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
                                                                                                    394 aa vs.
> mT258 a.a.
> SwissProt Q99795 - (untitled)
                                                                                                     319 aa
scoring matrix: pam120.mat, gap penalties: -12/-4
23.0% identity;
                                           Global alignment score: -149
                                                                                                                          60
                                                                 30
                                                                                    40
                                                                                                         50
inputs MILQAGTPETSLLRVLFLGLSTLAAFSRAQMELHVPPGLNKLEAVEGEEVVLPAWYTMAREESWSHPREV
                                MV-----GKMWPVLW----TLCAVRVTVDAISVETPQDVLRASQGKSVTLPCTYHTSTSSREGLIQWD
                                                                                                         40
                                         10
                                                                  20
                                                                                    30
                                                                                                                          130
                             80
                                                                 100
                                                                                  110
                                                                                                      120
inputs PILIWFLEQEGKEPNQVLSYINGVMTNKPGTALVHSISSRNVSLRLGALQEGDSGTYRCSVNVQNDEGKS
               ore the state of t
             KLLLTHTERVVIWPFSNKNYIHGELYKNR-VSISNNAEQSDASITIDQLTMADNGTYECSVSLMSDLE--
                                                                                 100
                                                           90
                                                                                                  110
                             70 · 80
                                                                                                        190
                                                                 170
                                                                                   180
                                                                                                                     200
                           150
                                              160
inputs IGHSIKSIELKVLVPPAPPSCSLCJVPYVGTNVTLNCKSPRSKPTAQYQWERLAPSSQVFFGPALDAVRG
               -GNTKSRVRLLVLVPPSKPECGIEGETIIGNNIQLTCQSKEGSPTPQYSWKRYNILNQE--QPLAQPASG
                                                  150
                                                                         160
                                                                                          170
                          140
                 130
                                                                                        250
                                                                                                            260
                             220
                                               230
                                                                   240
inputs -SLKLTNLSIAMSGVYVCKAQNRVGFAKCNVTLDVMTGS-KAAVVAGAVVGTFVGLVLIAGLVLLYQRRS
           QPVSLKNISTDTSGYYICTSSNEEGTQFCNITVAVRSPSMNVALYVGIAVGVVAALIIIG--IIIYCCCC
                                                      220
                                                                            230
                                   210
                    200
                            290
                                               300 310
                                                                                    320 330
nputs KTLEELANDIKEDAIAPRTLPWTKGSDTISKNGTLSSVTSARALRPPKAAPPRPGTFTPTPSVSSQALSS
                                                                                          :. : . ..:: .
             . .. ..: ::::
             RGKDDNTED-KEDA-----LRELSR
                                                                                                  280
                                               370
                                                                     380
                              360
          350
 nputs PRLPRVDEPPPQAVSLTPGGVSSSALSRMGAVPVMVPAQSQAGSLV
                        .. :. . : :.. :..
            EREE--EDDYROEEORSTGRESPDHLDQ------
                        300
                                        310
```

FIG. 25

```
ALIGN calculates a global alignment of two sequences
 version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
                               1846 aa vs.
> GenBank U79725 - Human A33 antigen precursor mR 2793 aa
scoring matrix: pam120.mat, gap penalties: -12/-4
40.0% identity; Global alignment score: 908
            10
                        20
-- CTACCCCTTTGTGAGCAGTCTAGGACTTTGTACACCTGTTAAGTAGGGAGAAGGCAGGGGAGGTGGCT
          10 20 30 40 50 60
                             50
                                   60
GGTTTAAGGGGAACTTGAGGGAAGTAGGGAAGACTCCTCTTGGGACCTTTGGAGTAGGTGACACATGAGC
         80 90 100 110 120
                          90
                                     100
inputs CCAAC----TCTCC------CTGAGTA-CTC-----CGGGCCA----AGG-AGGGCCATGAT
    CCAGCCCAGCTCACCTGCCAATCCAGCTGAGGAGCTCACCTGCCAATCCAGCTGAGGCTGGGCAGAGGT
       150 160 170 180
                                190 200
220 230 240
                         250 260 270
         170
               180
                     190
                           200
310
                                  330
               300
          290
                            320
                           230
                    220
                                  240
GGTGGGGAAGATGTGGCCTGTTGTGGACACTCTGTGCAGTCAGGGTGACCGTCGATGCCATCTCTGTG
              370 380 390
          360
                    280
                          290
440 450 460 470
           430
                 320
inputs --CACC-CC---CGGGAGGTGCCCATCCT----GATCTGGTTCT-----TGGAACAAGAAGGAAGGAA
    550
               510
                     520 530 540
                           380
           370
inputs CCAAACCAGGTGTTGTCTTA-----CATTAATGGAGTCATGACAAATAAACCTG---
    TCTGGCCGTTTTCAAACAAAACTACATCCATGGTGAGCTTTATAAGAATCGCGTCAGCATATCCAACAA
          570
                                  610
               580 590 600
                            430
        410
             420
                                  440
inputs ----GAACAGCCCTGGTCCAC--TCT-----ATCT------CTTCACGGAATGTGTC-CCTGCG-----
    TGCTGAGCAGTCCGATGCCTCCATCACCATTGATCAGCTGACCATGGCTGACAACGGCACCTACGAGTGT
                650 660 670 680 690
                   470 480 490
             460
inputs -C-----CTGGGGGCACTCCAGGAGGGAGACTCTGGGAC---TTACCGCTGTTCTGTCAATGTGC---
```

FIG. 26A

```
TCTGTCTCGCTGATGTCAGACCTGGAGGGCAACACCAAGTCACGTGTCCGCCTGTTGGTCCTCGTGCCAC
          510
                 520
                         530
                                   540
inputs -----AGAATGATGAAGGCAA--AAGTATAGGCCACA----GCATCAAAAGCATA--GAGCT--CAA--
     CCTCCAAACCAGAATGCGGCATCGAGGGAGAGACCATAATTGGGAACAACATCCAGCTGACCTGCCAATC
           570
                  580
                         590
                                600
                                        610
870
                               880
                    860
                                               660
             630
                    640
                           650
inputs GT---GACC-----TACTGC-TC
        GGCCCAGCCAGCCTCAGGTCAGCCTGTCTCCCTGAAGAATATCTCCACAGACACATCGGGTTACTACATC
                          940
                                 950
                   930
             920
                             690
                  680
inputs AGTACCA------GTGGGAGAG--GCTG----GCCCCATC-CT----CC--CAGGTCT---TCTTTGG
     1010
                               1020 1030
            990
                   1000
                                    750
         720
                  730
                        740
inputs AC-CAGCCTTAGATG----CTGTTCGTGGATCTTTAAAGC----TCACTAACCTT---TC--CAT---
    ACGTGGCCTGTATGTGGGCATCGCGGTGGGCGTGGTTGCAGCCCTCATTATCATTGGCATCATCATCTA
            1060 . 1070 1080 1090
770 780 790 800
inputs -----TGCCATG-----TCTGGAGTCTATGT--CTGCAAGGCTCAAAACAGAGTGG
                                        790
    CTGCTGCTGCTGCCGAGGGAAGGACGACACACTGAAGACAAGGAGGAGGATGCAAGGC-CGAACCGG-GAAG
                                 1160
                                        1170
            1130
                          1150
                   1140
                                         840
                 820
                         830
inputs GCTTTG----CCA--AGTGCAAC---GTGACCTT------GGACGTGATG------ACAGG--
    1220 1230
                  1210
             1200
                                         870
        850
inputs ----GTCCAAGGCTGCAGTGGTCG-------CTGG--AGCAGTTGTGGG
    AGAAGAGCAGAGGAGCACTGGGCGTGAATCCCCGGACCACCTCGACCAGTGACAGGCCAGCAGCAGCAGAGGG
                                1300 1310
              1270 1280 1290
       1260
         890
                900
                             910
inputs CA-CTTTTGTTGGGTTGGTG-----CTGATAGCTGGGCT------GGTCCTGTT--
    CGGCGGAGGAAGGGTTAGGGGTTCATTCTCCCGCTTCCTGGCCTCCCTTCTCCTTTCTAAGCCCTGTTCT
                    1350 1360
             1340
              930
CCTGTCCCTCCATCCCAGACATTGATGGGGACATTTCTTCCCCAGTGTCAGCTGTGGGGAACATGGCTGG
                                  1440 1450
             1410 1420 1430
                                970
                                         980
      950
                     960
nputs CTTGGAA------GAGCTGG-CCAA-TGA-----TATCAAG-GAAGATGCC-------ATT
    CCTGGTAAGGGGGTCCCTGTGCTGATCCTGCTGACCTCACTGTCCTGTGAAGTAACCCCTCCTGGCTGTG
                                1510 1520 . 1530
       1470
                           1500
             1480
                     1490
                         1010
                                               1020
      990
               1000
```

FIG. 26B

inputs	GCTCCC	-CGGACCTTGCC	TTGG	ACCAAA	GGCTC	AGACAC	AA
	ACACCTGGT	GCGGGCCTGGCC	CTCACTCAAG	ACCAGGCTGCA	GCCTCCACTT	CCTCGTAGTTGGCAG	ďΑ
	1540	1550	1560	1570	1580	1590 1600	
.	1030				1070	1080	
inpucs		ATGG-GACACIT				GCGGCCACC	
	GCTCCTGGA	AGCACAGCGCTG:	AGCATGGGGC	CTCCCACTCA	GAACTCTCCAC	GGAGGCGATGCCAGC	
	1610	1620	1630	1640	1650	1660 1670	
innute	NCC	10	90 ~TC ~T	1100	TCC CN	1110	с т
inpues	.::	. :::	.1061	···· ···	::: :::	:	:.
	TGGGGGGTG	GGGGCTGTCCTG	TCACCTGTGT	GCCCAGCACC 1710	TGGAGGGGCAC	CAGGTGGAGGGTTTG	CA
		1030	1,00	-			
inputs	1120 C-CCACAC-	-CC	·		1130 1 CTCTAGCCA	.140	
-	: ::::::	: :		::::.	:: .:::	:: :: :: ::	.:
	1750				TGCTTGGGCCC 1790	TGCATTGGCCTGGCCT	ГC
inputs				0 1190 ACCTCAGGCAG		00 1210 ACCCCAGGTGGGG	ГТ
	CAGCTCCCA					:::: :.:: .::: ACCCTCCTGGGAAGGG	
	1820	1830		1850		1870 1880	
		1220 12	30		124	0 1250	
.nputs	TCTTC	TTCTGCTC TG	AGCC	GCATGGG		TGCTGTGCCTGT-GAT	rg
						. :: ::::::: .:: ATCTCTGCCTGTCAAT	• •
		1900				1940 1950	
	1260	1270	1280	1290	130	0 1310	
.nputs						GCACTCATTAGCTACA	
	TCGTACCTGT	CCCTCCAGGCCC	ATCTCAAATC	ACAAGGATTTC	TCTAACCCTA	TC-CTAATTGTCCACA	\Τ
	1960	1970	1980	1990	2000	2010 2020)
	1320	1330		1350			
npucs		TIGACCT - TICT				TCAATCTTGGGAGG	
	ACGTGGAAAC 2030	AATCCTGTTACT 2040			GCCACAAGGC 2070	ACAGTCTTCTGAGCGA 2080 2090	
		2040	2050	2060	2070	2080 2090	•
	.380 TGCCCACA		1400 CAG-TCCTTT	1410 GCTCCT	`A CCTC	1420 -CTTCTATTG	ЭT
	::: :.::			: :. :::	. ::::	::: :::: ::	: .
	TGCTCTCACT	GTATTAGAGCGC 2110	CAGCTCCTTG 2120	GGGCAGGGCCT 2130		GCTTTTGCTTTCCCTG 2150 2160	
	1430	1440	14	50		•	
nputs						CTG	
		GCTGGCGCCAT				::: CTGCTTTGATTGGTTG	T
*	2170	2180	2190	2200	2210	2220 2230	
		1460		1470	1480		
nputs						GGACC	· -
	GCCTTCCCTT	CTCTGGTCTCCT		:::::::::::::::::::::::::::::::::::		:: ACCCAAACCCACGTAT	T.
	2240	2250	2260	2270	2280	2290 2300)
	1490	1500	1510	1520		1530	_
aputs		GGTAGGGGG				receteettet	
	CATTCAGTGA	GTTAAACACGAA	TTGATTTAAA	GTGARCACACA	CARGGGAGCT	IGCTTGCAGATGGTCT	D7
	2310	2320	2330 ^	2340	2350	2360 2370	,

FIG. 26C

	1540					1570		1280
inputs						ATCGGCT		
	: :	: ::.	: . : . : . :	::		:: :::.	::::	.:::: :
	AGTTCTT	GTGTCCT	GTAATT	CTCTCCAG	GCCAGAATAI	ATTGGCATGT	CTCCTCAACCC	ACATGGGGTT
	23					2420		
	1590	160	00	1610	1620	163	30 164	0
inputs						rgTGATC7		
						:: .: :		
						IGCCCAGCCC		
						2490		
	27.	50	2900	2470	2400	2430	2500	2324
3.	650	166	50	1670	1680		1690	
innute	TC CT(70. 2700777-1	יכררכידיר וכררכידיר	CCTCCATC	TCC CTGT-	A7		
Impues						::		
						TTGTCGAGCAT		
	25					2560		
	25.	20	2330	2540	2550	2560	2370	2500
		,	700		171			1720
innute	СТСТС					:0 3CTGG		
Inpucs								::: ::::
						::::: CTGGTCTCAC		
	CAGGCAGG	LGI I AGGC	CIGCIIA	IGGICICATI	GACCAGTGC	SCIGGICICAC	CCAACIGCAG	2650
	2:	90	2600	2610	2620	2630	2640	2030
		1730			1750	17		7.0
	6 73							
inputs						TGAC		
						::. ::		
			GATCAGA	AAAATAAT.	CCATAAATC	TATTGTCTAC	TIGCGAITII	DIAMAMATI
	26	660	2670	2680	2690	2700	2/10	2:120
		1700	1000		1010	1820	1030	1840
inputs						CATTTGCATGG		
						CAAATGCTTTC		
	27	730 -	2740	2750	2760	2770	2780	2790
inputs	GCCGC							
	:							

FIG. 26D

T--GG

```
ALIGN calculates a global alignment of two sequences
version 2. OuPlease cite: Myers and Miller, CABIOS (1989)
> hT258 n.a.
                                     1869 aa vs.
                                     2557 aa
> pecam n.a.
scoring matrix: pam120.mat, gap penalties: -12/-4
40.5% identity;
                Global alignment score: 1546
                                 10
                                           20 .
::::
                                ::: ::: . .:: ::.:: .
     GAATTCCGGGAGAAGTGACCAGAGCAATTTCTGCTTTTCACAGGGCGGGTTTCTCAACGGTGACTTGTGG
          10
             20
                                        50
                        30
                               40
                                         70
                                                   80
       30
                40
                        50
                                60
inputs -CGGAGCCGCC--CTGGG--TGTCAGCGGCTCGGCTCCCGCGCACGCT---CCGGC---CGTCGC----
      GCAGTGCCTTCTGCTGAGCGAGTCAT-GGCCCGAAGGCAGAACTAACTGTGCCTGCAGTCTTCACTCTCA
          80
                  90
                         100
                                110
                                       120
                                              130
                               110
                                          120
             90
                     100
inputs ----GCAGCCTCGGCA--CCTGCAGGTCCG---TGCGTCCCG-----CGGCTGGCGCCCCTGACTCCGTC
        GGATGCAGCCGAGGTGGGCCCAAGGGGCCACGATGTGGCTTGGAGTCCTGCTGACCCTTCTG-CTCTGTT
   140
                 160
                                180
                                    190
          150
                         170
     140
             150
                    160
                              170
                                           180
inputs CCGGCCAGGGAGGCCATGATTTCCCT--CCCGG--GGCC------CCTGGTGA-CCAAC-----T
     CAAGCCTTG-AGGGTCAAGAAAACTCTTTCACAATCAACAGTGTTGACATGAAGAGCCTGCCGGACTGGA
                                               270
    210
            220
                   230
                          240
                                 250
                                         260
     190
              200
                      210
                                   220
                                            230
inputs TGNTGCGGTTT---TTGTTCCTGGGGCTG-AGTGC--C-C---TC-GCGCCCCC-CTCGCG---GGCC
     CGGTGCAAAATGGGAAGAACCTGACCCTGCAGTGCTTCGCGGATGTCAGCACCACCTCTCACGTCAAGCC
     280
            290
                   300 -
                          310
                                 320
                                         330
    240
           250
                                     260
                                             270
inputs -CAGCTGCAACTGC------ACTTGC-----C--CGCCAACCGGTTGCAGGCGGTG
     1111. 11. 111
     TCAGCACCAGATGCTGTTCTATAAGGATGACGTGCTGTTTTACAACATCTCCTCCATGAAGAGCACAGAG
     350
                 370
                                 390 400
                                               410
            360
                         380
         290
                     300
                             310
                                       320
                                              330
inputs GAGGAGGGGGA-----AAGT--GGTGCTTCAGCA-TGGTACACCT---TGCACAGGGAGGTGTCTTCATC
     AGTTATTTTATTCCTGAAGTCCGGATCTATGACTCAGGGACATATAAATGTACTGTGAT-TGTGAACAAC
                                                480
     420
           430
                   440
                          450
                                 460
                                        470
                                370
                                       380
               350
                       360
inputs CCAG-----CCA-TGGGAGGTGCC--CTTT--GTGATGTGGTTCTTCAAACAGAAAGAAAGGAGGAGGATC
           ::
```

FIG. 27A

	AAAGAG	LAAACCACTG	CAGAGTACCAC	CTGTTGGTGG	SAAGGAGTGC	CAGTCCCAG	GTGACACTGGAC
	490	500	510	520	530	540	550
	400	410	420	A 3	30 4	140	450
input	S AGGTGTT						CCTTGG-1
•			:::::::				
	AGAAAGA	GGCCATCCA	AGGTGGGATCG	··· « «CTCDDAAT	СТСТТСТСТС	CCECECE	:: AGGCCCCAATACA
	560	570	580	590	600	610	620
_	460		470	48		90	500
inputs							TCTC
	::.:.:		::: ::		: .:: :.		
							GAATTCTCGAGAC
	630	640	650	660	670 ⁻	680	690
		510	520		530	540	550
inputs	CAGGAGA	AAGACTCI	rggccc	TACAGC	TGCTCCGTGA	ATGTGC	AAGACAAACAA
							CGATGTCAAGCTA
	700	710	720		740	750	760
	560	57	0	580		590	
inputs		•	-		CCTTN		CAATG
			ii iii				
							CGTGACGGAATC
	770	780	790	800		820	830
				000	010	020	030
	600		610		620	63	
inputs	-TACT	GGT	TCCTCCAGO	CTCCTCC	ATCCTG	C-CG1	CTCCAGGGTG
	:.::		***** ****			: :.	
	CTTCTCTA	CACCCAAGT	TCCACATCAGO	CCCACCGGAA	TGATCATGGA	AGGAGCTCAG	CTCCACATTAAG
	840	850	860	870	880	890	900
64	10	650	660	670		680	690
inputs	TGCCCCAT	G-TGGGGGC			AGTC		-CAAGGAGTAAG
							ACAAGGCGATTG
	910	920		940	950	960	970
				700	71		720
inputs	ccc		GC	TGTC	CAATACCA	GTG-GGATC-	GGCAGCTT
	:::		::	::: :			::::.::
					GTCATGGCCA	TGGTGGAGCA	CAGTGGCAACTA
	980	990	1000	1010	1020	1030	1040
	730		740	75	0 76	0 77	0
inputs	C-CATCCT	т					tgggtcttta
_	: :.: :.			::: ::			i::.
							AACAGAACTATT
	1050	1060	1070	1080	1090	1100	1110
			•	3000			
78	0	790	800	810		820	830

FIG. 27B

FIG. 27C

		1200		1220		1240	
input					A-TATCCCC		GTGGGGT
					: ::: :		
					AATGACCTCAA		
	1750	1760	1770	1780	1790	1800	1810
	1250	1260	1270		1280	1290	1300
inputs					CTGNGC	CTGTGATGGNG	CCTGCC
		::::				: .: .:.:	
					TACTGCACAGC	CTTCAACAGAG	CCAACCACGC
	1820	1830	1840	1850	1860	1870	1880
			1310	1320	1330	1340	1350
inputs	CAGAGT	rc	AAGCTGG	CTCTCTG-G	r-atgatgacco	CACCACTCAT	rgg-ctaaag
	:::::				: :: : .:::		
		CCCCAGAAGC	LAAATACTGA	CAGTCAGAG?	ICATTCTTGCCC	CATGGAAGAA	AGGACTTATT
	1890	1900	1910	1920	. 1930	1940	1950
	1360		1370	1380	1	.390	
inputs	GATTTGGG-				CACCTC		CAGAGG
_	: . :::		:: :: ::				.::::
	GCAGTGGTT				CATTGCGGCCAA		
	1960	1970	1980		2000	2010	2020
1	400	1410	1420	1430	1440	145	
inputs	CCTGAGTCA	TG-GGAAA			TAGTACT		
	::: ::	.: .::. :	:.: : . :	::::::	::::: :		: .:
	CCAAGGCCA	AGCAGATGCCA	GTGGAAATG1	CCAGGCCAG	CAGTACCACTT	CTGAACTCCAA	CAACGAGAA
	2030	2040	2050	2060	2070	2080	2090
i ====+==			470	1480			1510
Inputs					CCTAAGTGTCC		
	AATGTCACA				:.::::: TCACAATGAC-		
	2100	2110	2120	2130	2140	-GATGTCAGAA 2150	2160
		2220	2120	2130	2140	2130	2100
	1520	1530	1540	1550	1560		70
inputs					CCTGACTCC	TATTDOI	GAAGCCAGC
		:::					: : :
					ACGTGCAGTAC		
	2170	2180	2190	2200	2210	2220	2230
1	.580	1590 1	600 1	610	1600 14		1640
	TGCTGAAAT	PAGCTACTCAC	CAAGAGTGAG	GGGCAGAGA	CTTCCAGTCACT	530 PGAGTCTCCCA	1640 GGCC
		:					
				ggacacaga	-gacagtgtaci	AGTGAAGTCCG	gaaagctgt
	2240	2250	2260	2270	2280	2290	2300
4	1650	1660		1670			1700
inputs					CACCCTTGG		gctccct
	:::: :				:::::::::::::::::::::::::::::::::::		::. ::.
	CCCTGATGC	XTGGAAAGCA(SATACTCTAG	aacggaagg	CTCCCTTGATG	CAACTTAGACA	GCAAGGCCA

FIG. 27D

2340 - 2350 2310 2320 inputs GTATTGATATAACCTGTCAGG-CTGGCTTGGTTAG-GTTTTACTGGGG----CAGAGGATAGGGA----GA--TGCACATCCCTGGAAGGACATCCATGTTCCGAGAAGAACAGATAATCCCTGTATTTCAAGACCTCT inputs -ATCTCTTATTAAAA---CTAACATGAAATATGTGTTGTTTTCATTT--GCAAATTTAAATAAAGATACA ${\tt GTGCACTTATTTATGAACCTGCCCTGCTCCCACAGAACACAGCAATTCCTCAGGCTAAGCTGCCGGTTCT}$ 2480 2490 2500 2450 2460 inputs TAAT---GTTTGTATGAGATAAGAAAAAAAAAAAAAAGGGCGCCGC-TARATCCATCCTGCTAAGTTAATGTTGGGTAGAAAGAGATACAGAGGGG 2510 2520 2530 2540 2550

FIG. 27E

TANGO 281

Input file AthPb81d10.seq; Output File AthPb81d10.pat
Sequence length 1812

M R L GTCGACCCACGCGTCCGGCGAGGTTGTGGCTGCACCGTGGTCCTGGGCTTGGTCCTGGGCTTG ATG CGT CTG	3 73
F V R P S V R P A M A A P A P S P W T L TTT GTC CGT CCG GTC CGT CCC GCC ATG GCT GCG CCG GCG CCC TCT CCG TGG ACC CTT	23 133
S L L L L L L P S P G A H G E L C R P TCG CTG CTG CTG TTG TTG CTA CTG CCG TCT CCG GGT GCC CAT GGC GAG CTG TGC AGG CCC	43 193
F G E D N S I P E S C P D F C C G S C S TTC GGT GAA GAC AAT TCG ATC CCA GAG TCC TGT CCT GAC TTC TGT TGT GGC TCC TGT TCC	63 253
S Q Y C C S D V L K K I Q W N E E M C P AGC CAA TAC TGC TGT GAC GTG CTG AAG AAA ATC CAG TGG AAT GAG GAA ATG TGC CCT	83 313
E P E S S R F S A H P E T P E Q L G S A GAG CCA GAG TCC AGC AGA TTT TCC GCC CAC CCG GAG ACA CCA GAA CAG CTG GGT TCA GCG	103 373
L K Y Q S S L D S D N M P G F G A T V A CTG AAG TAT CAG TCC AGT CTT GAC AGT GAC AAC ATG CCA GGG TTC GGA GCG ACC GTG GCC	123 433
I G L T V F V V F I A T I I V C F T C S ATC GGC CTG ACC GTC TTC GTG GTG TTT ATC GCT ACC ATC ATT GTG TGC TTT ACC TGC TCC	143 493
C C C L Y K M C C R P R P V V S N T T T T TGC TGC TGT CTA TAT AAG ATG TGC TGC CGC CCA CGA CCT GTC GTG TCC AAC ACC ACA ACT	163 553
T T V V H T A Y P Q P Q P V A P S Y P G ACT ACC GTG GCT CAC CCT CAG CCT CAA CCT GTG GCC CCC AGC TAT CCT GGA	183 613
P T Y Q G Y H P M P P Q P G M P A A P Y CCA ACA TAC CAG GGC TAC CAT CCC ATG CCC CAG CCA GGA ATG CCA GCA GCA CCC TAC	203 673
P T Q Y P P P Y L A Q P T G P P A Y H E CCA ACG CAG TAC CCT CCA CCC TAC CTG GCC CAG CCC ACA GGG CCA CCA GCC TAT CAT GAG	223 733
T L A G A S Q P P Y N P A Y M D P P K A ACG TTG GCT GGA GCC AGC CAG CCT CCA TAC AAC CCG GCC TAC ATG GAT CCC CCA AAG GCA	243. 793
V P + 246 GTT CCC TGA 802	
GCCTGCCCCAGCCTCTTTGGCTAACATTTGATTATGTCATGTGTGTG	881
TGTGGTGCGTGTGCCTTGTCTAGACATGTGGCTTCCTCTGCTGATGACCAGGTAGGCACAAATCTTACCAGTGCTGGTT	960
GGGACCAATCTGTTTTCTTCCTCACTTGAAATTGTAATTTCTGAAATTTCAAGTAAATTAAAAAACAATAGGGTAGGAGG	1039
TATTTCCCGCTTCACCCCAAGGTGACCAGCCATAGCCTGCCACACATAGGAGAGCAAGCTTTTTGTGGGTCCATGTCCT	1118
GCTTTGGGGAGTAGCCAGCTAGCTGCTATGGGTTTATTCCCAGGGCTTGGCTGCATTTAGCTGGACAGAGAACAAG	1197
GGGCCTCAGTGGCAGTGGGTCAGTGACTGATGTCAGAGCACACTAGGCAGAGAGCCCCGTCCGT	1276
GTCTGGACGGTCCCACTGTCTTTCCTGGGACTATGTAGAGGGCCACATGTATTCACTATTCAGGCTCCAGTGGCTTCCA	1355
GGCCAGGGGCCTCTGTCTACTACACACTCTGGTTTCTCCCTACAGTGTCTTTTTACGATTAGCCAAACATATTGCCTGT	1434
TTTTTGTATCCAGATGTGATAATTGGTGAGGTTGAAATCCTTGGTTCCTGGAGAACAGGAAACCTGACCTCTGACAG	1513

FIG. 28A

FIG. 28B

>hT281
MRLFVRPSVRPAMAAPAPSPWTLSLLLLLLLPSPGAHGELCRPFGEDNSIPESCPDFCCG
SCSSQYCCSDVLKKIQWNEEMCPEPESSRFSAHPETPEQLGSALKYQSSLDSDNMPGFGA
TVAIGLTVFVVFIATIIVCFTCSCCCLYKMCCRPRPVVSNTTTTTVVHTAYPQPQPVAPS
YPGPTYQGYHPMPPQPGMPAAPYPTQYPPPYLAQPTGPPAYHETLAGASQPPYNPAYMDP
PKAVP

FIG. 29

```
Alignments of top-scoring domains:

PSBH: domain 1 of 1, from 97 to 146: score 5.5, E = 8.5

*->ktalgelLkPlnseyGKvaPgWGttplmgvfmalfavFLliileiYn
+lg+ Lk s +Pg+G t+ +g +++f+vF+ i+ +
hT281 97 PEQLGSALKYQSSLDSDNMPGFGATVAIG--LTVFVVFIATIIVCFT 141

ssvll<-*
hT281 142 CSCCC 146
```

FIG. 30

Input file T281Atmea49d3; Output File T281Atmea49d3.pat
Sequence length 1858

310	GACC	CACC		.ccc	CGG	(GGT)	GCGC	CGGC	ACCG	TGGT	CTTC	:GGC1	MGG	rccg1	CTG	TCG	rccgi	rccg	TGGT	79
						P														17
JIG	rece	GCC	ATG	GCT	GCG	CCG	GCG	CCC	TCT	CTG	TGG	ACC	CTA	TTG	CTG	CTG	CTG	TTG	CTG	140
						A														37
:TG	CCG	CCG	CCT	CCG	GGT	. GCC	CAT	GGT	GAG	CTG	TGC	AGG	CCC	TTI	GGI	' GAA	GAC	TAA :	TCG	200
						D										Y			s	57
.TC	CCA	GTG	TTC	TGT	CCI	GAT	TTC	TGT	TGT	GGT	TCC	TGT	TCC	AAC	CAA	TAC	TGC	TGC	TCG	260
_	v	L						N							P		s		R	77
·AC	GTG	CTG	AGG	AAA	ATC	CAG	TGG	TAA	GAG	GAA	ATG	TGT	CCT	GAG	CCA	GAG	TCC	AGC	AGA	320
F	s	T	P	A	E	E	T	P	E	н	L	G	s	A	L	ĸ	F	R	s	97
TT	TCC	ACC	CCC	GCG	GAG	GAG	ACA	CCC	GAA	CAT	CTG	GGT	TCA	GCG	CTG	AAA	TTT	CGA	TCC	380
s	F	D	s	D	p	м	s	G	F	G	A	T	v	A	I	G	v	T	I	117
JT	TTT	GAC	AGT	GAC	CCT	ATG	TCA									GGC	GTG	ACC	ATC	440
ę.	v	v	F	I	A	Т	1	I	I	С	F	т	С	s	С	С	С	L	Y	137
ΓT																			TAT	500
ζ	М	С	С	₽	0	R	P	v	v	т	N	т	т	т	т	T	ν	v	Ħ	157
f@	ATG					CGC													CAT	560
ì	P	Y	P	0	P	Q	. Р	0	Þ	v	A	P	s	Y	P	G	p	т	Y	177
:C	CCT					CAA														620
)	G	Y	н	P	м	P	P	P	A	R	N	A	S	s	т	ī,	p	N	A	197
.G	GGC	TAC	CAT	CCC	ATG	CCC	CCC	CCA	GCC	AGG	AAT	GCC	AGC	AGC	ACC	CTA	CCC	AAC		680
•	P	т	т	L	P	G	Þ	Δ	н	p	Δ	7 .	т	۲.	Ð	*				214
Ά	CCC					GGC														731
.CC	TTGG	CTG	AGCC	AGCC	CAGCO	TCC	TAC	אררר	CACC	יראר <u>י</u>	יהיביני	\ ጥ ፐርር	מדיים	A G B C	יייממי	יירררייו	א מ בציו	יבידים	ccc	810
							•													010
.GC	CTCT	TTGG	CTGC	CATI	YTAT?	FTCGT	GTG	rgagi	GAGT	GATA	CGC	\GAG1	TCT	TACI	GCTC	TCTO	TGG	GTG	GTG	889
TT	GTCT	AGAC	ATGI	GGC1	TCCI	CTGC	TGT	GACC	'AGG1	'AGGC	GCAZ	GTCT	TACC	AGTO	TGGC	TCGG	GAC	CAACO	TGT	968
TC	TTCC	ፕሮልሮ	מבאיד. מ	דירממ	<u>የ</u> ድሞል ር	TTTC	ጣሃጋ አ 7	لململ لا ا	ም አ አ <i>ር</i>	מ א מייי	ת מידים.		12 2 TT	B C C T	****	COTT		3CC3 C	>	1047
																				104
20	CAAG	GTGA	CCAG	CCAT	GGCC	TGTC	ATAC	TTAG	GAGA	GCAA	GCTI	TTTG	CGGG	TACA	GAGC	AGGC	TITO	GGGG	GTA	1126
CA	GCTA	GCTG	CTGC	TAGG	CCTI	TATI	CCC	GGGT	TIGG	CTGC	ATTG	GCAG	TGAG	GCAG	GTGG	CTGG	GGGI	GACA	CCA	1205
																			TGT	

FIG. 31A

ACTGTCCTTCCCGGGGCTGTATAGAGGGCCACATGTGTTCACTATTCAGGCTCCACTGGGGGAATTTTCCTACCTTTG	1363
rggcttggctcctgctcccaggccagggacctcggtctgtct	1442
CTGTTAGCCAAACATTTTGCCTGTTTTCTGTCTCCAGATGTGTGATAATTGGTGTGAGGTTGAAATCCCTGGTTCCTG	1521
AGGACAGACAACCTGACCTCCGACTGTCAGTTTCCCTTGACACCCATCTTCATAGAAATACCTGACTCCTGTACCACAG	1600
CAGTTTGTCCCAGTAGCAGGGACACCAAGGCCAATGGGTTATCTGGACCAAAGGTGGGGTGGAGGGCCTAGATGGTA	1679
TCCGGCCCAGATGTGAATACCTCCATATTCCCTGTTGGTTCCTGTTTCACTGGCTGTTTTAGCTTTGTGTTGATTGG	1758
;TTTCTGAGCATTCAGACTCCGCACCCTCATTTCTAATAAATGCAACATTGGAAAAAAAA	1837
: A A A A A A A GGGCCGCCCCC	1858

FIG. 31B

·mT281
MAAPAPSLWTLLLLLLLPPPPGAHGELCRPFGEDNSIPVFCPDFCCGSCSNQYCCSDVL
RKIQWNEEMCPEPESSRFSTPAEETPEHLGSALKFRSSFDSDPMSGFGATVAIGVTIFVV
FIATIIICFTCSCCCLYKMCCPQRPVVTNTTTTTTVVHAPYPQPQPQPVAPSYPGPTYQGY
HPMPPPARNASSTLPNAVPTTLPGPAHRAATLP

FIG. 32

```
ALIGN calculates a global alignment of two sequences
 version 2.0uPlease cite: Myers and Miller, CABIOS (1989)
                                              245 aa vs.
 > hT281 a.a.
                                              213 aa
 > mT281 a.a.
 scoring matrix: pam120.mat, gap penalties: -12/-4
                Global alignment score: 739
 66.5% identity;
                                                50
                                                          60
                               30
                                       40
                      20
              10
 inputs MRLFVRPSVRPAMAAPAPSPWTLSLLLLLLLPSPGAHGELCRPFGEDNSIPESCPDFCCGSCSSQYCCSD
             M-----AAPAPSLWTLLLLLLPPPPGAHGELCRPFGEDNSIPVFCPDFCCGSCSNQYCCSD
                                         30
                       10 - 20
                               100
                                       110
                                                120
                                                         130
                      90
              80
 inputs VLKKIQWNEEMCPEPESSRFSAHPE-TPEQLGSALKYQSSLDSDNMPGFGATVAIGLTVFVVFIATIIVC
       VLRKIQWNEEMCPEPESSRFSTPAEETPEHLGSALKFRSSFDSDPMSGFGATVAIGVTIFVVFIATIIIC
                                        100
                    80 . 90
                                                           200
                                                   190
                                          180
     140
              150
                     160
                               170
inputs FTCSCCCLYKMCCRPRPVVSNTTTTTVVHTAYPQPQP--VAPSYPGPTYQGYHPMPPQPGMPAAPYPTQY
FTCSCCCLYKMCCPQRPVVTNTTTTTVVHAPYPQPQPQPVAPSYPGPTYQGYHPMPP------PARN
                                                 180
           140
                             160
                   150
                                       170
                220
                        230
                                 240
 inputs PPPYLAQPTGPPAYHETLAGASQPPYNPAYMDPPKAVP
       ASSTL--PNAVPT---TLPGPAHRA-----ATLP
                200
```

FIG. 33

SEQUENCE LISTING

```
<110> Millennium Pharmaceuticals, Inc.
<120> SECRETED PROTEINS AND USES THEREOF
<130> 7853-210-228
<140>
<141>
<150> 09/336,536
<151> 1999-06-18
<160> 198
<170> PatentIn Ver. 2.0
<210> 1
<211> 1338
<212> DNA
<213> Homo sapiens
<400> 1
agcgcggggg ctggagcacc accaactgga gggtccggag tagcgagcgc cccgaaggag 120
gccatcgggg agccgggagg ggggactgcg agaggacccc ggcgtccggg ctcccggtgc 180
cagegetatg aggecactee tegteetget geteetggge etggeggeeg getegeecee 240
actggacgac aacaagatcc ccagcctctg cccggggcac cccggccttc caggcacgcc 300
gggecaccat ggcagecagg gcttgccggg ccgcgatggc cgcgacggcc gcgacggcgc 360
gecegggget eegggagaa aaggegaggg egggaggegg gaetgeeggg acetegaggg 420
gaccccgggc cgcgaggaga ggcgggaccc gcggggccca ccgggcctgc cggggagtgc 480
teggtgeete egegateege etteagegee aagegeteeg agageegggt geeteegeeg 540
tetgaegeae cettgecett egaeegegtg etggtgaaeg ageagggaea ttaegaegee 600
gtcaccggca agttcacctg ccaggtgcct ggggtctact acttcgccgt ccatgccacc 660
gtctaccggg ccagcctgca gtttgatctg gtgaagaatg gcgaatccat tgcctctttc 720
ttccagtttt tcggggggtg gcccaagcca gcctcgctct cggggggggc catggtgagg 780
ctggagcctg aggaccaagt gtgggtgcag gtgggtgtgg gtgactacat tggcatctat 840
gccagcatca agacagacag caccttctcc ggatttctgg tgtactccga ctggcacagc 900
tecceagtet tigettagig cecacigeaa agigagetea tgeteteaet eetagaagga 960
gggtgtgagg ctgacaacct ggtcatccag gagggctggc ccccctggaa tattgtgaat 1020
gactagggag gtggggtaga gcactctccg tcctgctgct ggcaaggaat gggaacagtg 1080
gctgtctgcg atcaggtctg gcagcatggg gcagtggctg gatttctgcc caagaccaga 1140
ggagtgtgct gtgctggcaa gtgtaagtcc cccagttgct ctggtccagg agcccacggt 1200
ggggtgctct cttcctggtc ctctgcttct ctggatcctc cccaccccct cctgctcctg 1260
gggccggccc ttttctcaga gatcactcaa taaacctaag aaccetccaa aaaaaaaaaa 1320
                                                                1338
aaaaaaagg gcggccgc
<210> 2
<211> 728
<212> DNA
<213> Homo sapiens
<400> 2
atgaggccac tectegtect getgetectg ggeetggegg eeggetegee eccaetggae 60
```

gacaacaaga tccccagcet ctgcccgggg caccccggcc ttccaggcac gccgggccac 120 catggcagc agggcttgcc gggccgcgat ggccgcgacg gccgcgacgg cgcgcccggg 180 gctccgggag agaaaggcga gggcgggagg cgggactgcc gggacctcga ggggaccccg 240 ggccgcgagg agaggcggga cccgcggggc ccaccgggcc tgccggggag tgctcggtgc 300 ctccgcgatc cgccttcagc gccaagcgct ccgaaggccg ggtgcctccg ccgtctgacg 360 cacccttgcc cttcgaccgc gtgctggtga acgagcaggg acattacgac gccgtcaccg 420 gcaagttcac ctgccaggtg cctggggtct actacttcgc cgtccatgcc accgtctacc 480 gggccagct gcagtttgat ctggtgaaga atggcgaatc cattgcctct ttcttccagt 540 ttttcggggg gtggcccaag ccagcctcg caggtggtg tgggtgacta cattggcatc tatgccagca 660 caggacaga cagcacctc tccggattc tgggtgacta cattggcat tatgccagc 720 tctttgct

<210> 3

<211> 243

<212> PRT

<213> Homo sapiens

<400> 3

Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly Ser 1 5 10 15

Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly His Pro 20 25 30

Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly
35 40 45

Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu
50 55 60

Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Asp Pro 65 70 75 80

Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly Pro Thr Gly Pro Ala Gly

85

90

95

Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu 100 105 110

Ser Arg Val Pro Pro Pro Ser Asp Ala Pro Leu Pro Phe Asp Arg Val

Leu Val Asn Glu Gln Gly His Tyr Asp Ala Val Thr Gly Lys Phe Thr 130 135 140

Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr 145 150 155 160

Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala 165 170 175

Ser Phe Phe Gln Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser

Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln 195 200 205

Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp 210 215 220

Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro 225 230 235 240

Val Phe Ala

<210> 4

<211> 228

<212> PRT

<213> Homo sapiens

<400> 4

Ser Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly His 1 5 10 15

Pro Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro
20 25 30

Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly
35 40 45

Glu Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Asp
50 55 60

Pro Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly Pro Thr Gly Pro Ala 65 70 75 80

Gly Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser 85 90 95

Glu Ser Arg Val Pro Pro Pro Ser Asp Ala Pro Leu Pro Phe Asp Arg

Val Leu Val Asn Glu Gln Gly His Tyr Asp Ala Val Thr Gly Lys Phe 115 120 125

Thr Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val 130 135 140

Tyr Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Glu Ser Ile 145 150 155 160

Ala Ser Phe Phe Gln Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu 165 170 175

Ser Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val 180 185 190

Gln Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr 195 200 205

Asp Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser 210 215 220

3

Pro Val Phe Ala 225 <210> 5 <211> 15 <212> PRT <213> Homo sapiens Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly 5 <210> 6 <211> 60 <212> PRT <213> Homo sapiens <400> 6 Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Asp Pro Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly Pro Thr Gly Pro Ala 55 <210> 7 <211> 128 <212> PRT <213> Homo sapiens <400> 7 Ala Phe Ser Ala Lys Arg Ser Glu Ser Arg Val Pro Pro Pro Ser Asp Ala Pro Leu Pro Phe Asp Arg Val Leu Val Asn Glu Gln Gly His Tyr Asp Ala Val Thr Gly Lys Phe Thr Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala Ser Phe Phe Gln Phe Phe Gly Gly

Trp Pro Lys Pro Ala Ser Leu Ser Gly Gly Ala Met Val Arg Leu Glu

Pro Glu Asp Gln Val Trp Val Gln Val Gly Val Gly Asp Tyr Ile Gly

4

100 110 105 Ile Tyr Ala Ser Ile Lys Thr Asp Ser Thr Phe Ser Gly Phe Leu Val 120 125 <210> 8 <211> 1263 <212> DNA <213> Mus musculus <400> 8 qtcqacccac gcgtccgcgc tgtgaagcca gcaaggagca accagaagct aggagtcagt 60 cagcaaggac aggggctgcc tgcctacaga ctacaagaga ggttcctgga gtctgagcct 120 ceggggtcac caccatgagg ceacticity cecticity tetgggtcity gtgtcagget 180 ctectectet qqacqacaac aagateeeca geetgtgtee egggeageee ggeetteeag 240 qcacaccaqq tcaccatggc agccaaggcc tgcctggccg tgacggccgt gatggccgcg 300 acqqtqcacc cqqagctccg ggagagaaag gcgagggcgg gagaccggga ctacctggcc 360 cacgtgggga gcccgggccg cgtggagagg cagggcccat gggggctatc gggcctgcgg 420 gggagtgctc ggtaccccca cgatcagcct tcagtgccaa gcgatccgag agccgggtac 480 ctccqccagc cgacacaccc ctacctttcg accgtgtgct gctaaatgag cagggccatt 540 acgaccccac tactggcaag ttcacctgcc aagtgcctgg cgtctactac tttgctgtgc 600 acgccactgt ctaccgggcc agcttgcagt ttgatcttgt caaaaacggg cagtccatcg 660 cetetteett ecagtatttt ggggggtgge ccaagecage etegetetea gggggtgega 720 tggtaagget agaacetgag gaccaggtgt gggtgcaggt gggcgtgggt gattacattg 780 gcatctatgc cagcatcaag acagacagta cettetetgg atttetegte tattetgact 840 ggcacagete eccagtette gettaaaaca cagtgaacee ggagetggea ettgeteete 900 aqtqqaqqqt qtqacactaa cccgcgcagc gcataccagg agggctggcc ccctggaata 960 ttgtgaatga cttaggaaga gagggagcca cttccagtcc cactgctggc aatgaatgga 1020 gacaggetgt etgaggteaa gacagegtgg ageagtgget gggtttetge ecaggaettt 1080 aqaatqcaqt aqqctggcaq ctgtgggtcc tggcccagga ctccaaggtg ggatgctcca 1140 ttcctagtec tgtgtcccct ctaggtccct gactccatct ctgctgctcc cagggcaggc 1200 1263 <210> 9 <211> 729 <212> DNA <213> Mus musculus atgaggeeae ttettgeeet tetgettetg ggtetggtgt eaggetetee teetetggae 60 gacaacaaga teeccageet gtgteeeggg cageeeggee tteeaggeac accaggteac 120 catqqcaqcc aaqqcctqcc tqqccqtqac qqccqtqatq qccqcqacqq tqcacccqqa 180 qctccqqqaq aqaaaqqcqa gggcgggaga ccgggactac ctggcccacg tggggagccc 240 qqqccqcqtq qaqagqcagg gcccatgggg gctatcgggc ctgcggggga gtgctcggta 300 ccccacgat cagcetteag tgccaagega teegagagee gggtacetee gecageegae 360 acaccectae etttegaceg tgtgetgeta aatgageagg geeattaega eeccactaet 420 ggcaagttca cctgccaagt gcctggcgtc tactactttg ctgtgcacgc cactgtctac 480 egggecaget tgeagtttga tettgteaaa aaegggeagt ceategeete tttetteeag 540 tattttgggg ggtggcccaa gccagcctcg ctctcagggg gtgcgatggt aaggctagaa 600 cctgaggacc aggtgtgggt gcaggtgggc gtgggtgatt acattggcat ctatgccagc 660 atcaaqacag acagtacctt ctctggattt ctcgtctatt ctgactggca cagctcccca 720 gtcttcgct <210> 10 <211> 243 <212> PRT <213> Mus musculus

Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Glu
50 55 60

Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Glu Pro 65 70 75 80

Gly Pro Arg Gly Glu Ala Gly Pro Met Gly Ala Ile Gly Pro Ala Gly 85 90 95

Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu
100 105 110

Ser Arg Val Pro Pro Pro Ala Asp Thr Pro Leu Pro Phe Asp Arg Val

Leu Leu Asn Glu Gln Gly His Tyr Asp Pro Thr Thr Gly Lys Phe Thr 130 135 140

Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr 145 150 155 160

Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Gln Ser Ile Ala 165 170 175

Ser Phe Phe Gln Tyr Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser 180 185 190

Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln 195 200 205

Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp 210 215 220

Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro 225 230 235 240

Val Phe Ala

<210> 11 <211> 228 <212> PRT

<213> Mus musculus

Pro Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro
20 25 30

- Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly
 35 40 45
- Glu Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Glu
 50 60
- Pro Gly Pro Arg Gly Glu Ala Gly Pro Met Gly Ala Ile Gly Pro Ala 65 70 75 80
- Gly Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser 85 90 95
- Glu Ser Arg Val Pro Pro Pro Ala Asp Thr Pro Leu Pro Phe Asp Arg 100 105 110
- Val Leu Leu Asn Glu Gln Gly His Tyr Asp Pro Thr Thr Gly Lys Phe 115 120 125
- Thr Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val 130 135 140
- Tyr Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Gln Ser Ile 145 150 155 160
- Ala Ser Phe Phe Gln Tyr Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu 165 170 175
- Ser Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val 180 185 190
- Gln Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr 195 200 205
- Asp Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser 210 215 220

Pro Val Phe Ala 225

- <210> 12
- <211> 15
- <212> PRT
- <213> Mus musculus
- <400> 12
- Met Arg Pro Leu Leu Ala Leu Leu Leu Gly Leu Val Ser Gly
 1 5 10 15
- <210> 13
- <211> 60
- <212> PRT
- <213> Mus musculus

PCT/US00/16883

WO 00/78808 <400> 13 Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Glu Pro Gly Pro Arg Gly Glu Ala Gly Pro Met Gly Ala Ile Gly Pro Ala 55 <210> 14 <211> 128 <212> PRT <213> Mus musculus <400> 14 Ala Phe Ser Ala Lys Arg Ser Glu Ser Arg Val Pro Pro Pro Ala Asp Thr Pro Leu Pro Phe Asp Arg Val Leu Leu Asn Glu Gln Gly His Tyr 25

Asp Pro Thr Thr Gly Lys Phe Thr Cys Gln Val Pro Gly Val Tyr Tyr

40

Phe Ala Val His Ala Thr Val Tyr Arg Ala Ser Leu Gln Phe Asp Leu 55

Val Lys Asn Gly Gln Ser Ile Ala Ser Phe Phe Gln Tyr Phe Gly Gly

Trp Pro Lys Pro Ala Ser Leu Ser Gly Gly Ala Met Val Arg Leu Glu

Pro Glu Asp Gln Val Trp Val Gln Val Gly Val Gly Asp Tyr Ile Gly

Ile Tyr Ala Ser Ile Lys Thr Asp Ser Thr Phe Ser Gly Phe Leu Val 120

<210> 15 <211> 1831 <212> DNA <213> Homo sapiens

<400> 15

qtcgacccac gcqtccqcgg acgcgtgggt gaggggaaga ggctgactgt acgttccttc 60 tactotggca coactotoca ggotgccatg gggcccagca cocctotoct catottgtto 120 cttttgtcat ggtcgggacc cctccaagga cagcagcacc accttgtgga gtacatggaa 180 cgccgactag ctgctttaga ggaacggctg gcccagtgcc aggaccagag tagtcggcat 240 gctgctgagc tgcgggactt caagaacaag atgctgccac tgctggaggt ggcagagaag 300 gagcgggagg cactcagaac tgaggccgac accatctccg ggagagtgga tcgtctggag 360 cgggaggtag actatctgga gacccagaac ccagctctgc cctgtgtaga gtttgatgag 420

```
aaqqtqactq qaqqccctgq gaccaaaggc aagggaagaa ggaatgagaa gtacgatatg 480
gtgacagact gtggctacac aatctctcaa gtgagatcaa tgaagattct gaagcgattt 540
ggtggcccag ctggtctatg gaccaaggat ccactggggc aaacagagaa gatctacgtg 600
ttagatggga cacagaatga cacagcettt gtetteecaa ggetgegtga etteaceett 660
gccatggctg cccggaaagc ttcccgagtc cgggtgccct tcccctgggt aggcacaggg 720
cagctggtat atggtggctt tetttatttt geteggagge eteetggaag acctggtgga 780
ggtggtgaga tggagaacac tttgcagcta atcaaattcc acctggcaaa ccgaacagtg 840
gtggacaget cagtattece ageagagggg etgateeece cetaeggett gacageagae 900
acctacateg acctggcage tgatgaggaa ggtetttggg etgtetatge caccegggag 960
gatgacaggc acttgtgtct ggccaagtta gatccacaga cactggacac agagcagcag 1020
tgggacacac catgtcccag agagaatgct gaggctgcct ttgtcatctg tgggaccctc 1080
tatgtcgtct ataacacccg tcctgccagt cgggcccgca tccagtgctc ctttgatgcc 1140
ageggeacce tgaeceetga aegggeagea etecettatt tteecegeag atatggtgee 1200
catgccagcc tccgctataa cccccgagaa cgccagctct atgcctggga tgatggctac 1260
cagattgtct ataagctgga gatgaggaag aaagaggagg aggtttgagg agctagcctt 1320
cctcattctt caaatgtggg ccagttgtgg ctcaaatcct ctatattttt agccaatggc 1440
aatcaaattc tttcagctcc tttgtttcat acggaactcc agatcctgag taatcctttt 1500
aqaqcccqaa qaqtcaaaac cctcaatgtt ccctcctgct ctcctgcccc atgtcaacaa 1560
atttcaggct aaggatgccc cagacccagg gctctaacct tgtatgcggg caggcccagg 1620
gagcaggcag cagtgttctt cccctcagag tgacttgggg agggagaaat aggaggagac 1680
gtccagctct gtcctctctt cctcactcct cccttcagtg tcctgaggaa caggactttc 1740
tccacattgt tttgtattgc aacattttgc attaaaagga aaatccactg ctaaaaaaaa 1800
aaaaaaaaa aaaaaaaaa agggcggccg c
<210> 16
<211> 1218
<212> DNA
<213> Homo sapiens
<400> 16
atggggcca gcaccctct cctcatcttg ttccttttgt catggtcggg acccctccaa 60
ggacagcagc accaccttgt ggagtacatg gaacgccgac tagctgcttt agaggaacgg 120
ctggcccagt gccaggacca gagtagtcgg catgctgctg agctgcggga cttcaagaac 180
aagatgetge caetgetgga ggtggcagag aaggageggg aggcaeteag aactgaggee 240
gacaccatct cogggagagt ggatogtotg gagogggagg tagactatct ggagacccag 300
aacccagctc tgccctgtgt agagtttgat gagaaggtga ctggaggccc tgggaccaaa 360
qqcaaqqqaa qaaggaatga gaagtacgat atggtgacag actgtggcta cacaatctct 420
caagtgagat caatgaagat tetgaagega tttggtggce cagetggtet atggaccaag 480
gatccactgg ggcaaacaga gaagatctac gtgttagatg ggacacagaa tgacacagcc 540
tttgtcttcc caaggctgcg tgacttcacc cttgccatgg ctgcccggaa agcttcccga 600
gtccgggtgc ccttcccctg ggtaggcaca gggcagctgg tatatggtgg ctttctttat 660
tttgctcgga ggcctcctgg aagacctggt ggaggtggtg agatggagaa cactttgcag 720
ctaatcaaat tccacctggc aaaccgaaca gtggtggaca gctcagtatt cccagcagag 780
qqqctqatcc cccctacgg cttgacagca gacacctaca tcgacctggc agctgatgag 840
qaaqqtcttt gggctgtcta tgccacccgg gaggatgaca ggcacttgtg tctggccaag 900
ttagatccac agacactgga cacagagcag cagtgggaca caccatgtcc cagagagaat 960
gctgaggctg cctttgtcat ctgtgggacc ctctatgtcg tctataacac ccgtcctgcc 1020
agtogggccc gcatccagtg ctcctttgat gccagcggca ccctgacccc tgaacgggca 1080
gcactecett attttccccg cagatatggt gcccatgcca gcctccgcta taacccccga 1140
gaacgccagc tctatgcctg ggatgatggc taccagattg tctataagct ggagatgagg 1200
                                                                 1218
aagaaagagg aggaggtt
<210> 17
<211> 406
<212> PRT
<213> Homo sapiens
```

<400> 17

Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp Ser

1 10 . 15

Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg
20 25 30

Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser 35 40 45

Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro 50 55 60

Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala 65 70 75 80

Asp Thr Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr 85 90 95

Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys
100 105 110

Val Thr Gly Gly Pro Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys
115 120 125

Tyr Asp Met Val Thr Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser 130 135 140

Met Lys Ile Leu Lys Arg Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys 145 150 155 160

Asp Pro Leu Gly Gln Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln 165 170 175

Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala 180 185 190

Met Ala Ala Arg Lys Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val 195 200 205

Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg 210 215 220

Pro Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn Thr Leu Gln 225 230 235 240

Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val
245 250 255

Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr 260 265 270

Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala 275 280 285

Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln 290 295 300

Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn 305 310 315 320

Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn 325 330 335

Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser 340 345 350

Gly Thr Leu Thr Pro Glu Arg Ala Ala Leu Pro Tyr Phe Pro Arg Arg 355 360 365

Tyr Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu 370 375 380

Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg 385 390 395 400

Lys Lys Glu Glu Glu Val

<210> 18

<211> 385

<212> PRT

<213> Homo sapiens

<400> 18

Gln Gln His His Leu Val Glu Tyr Met Glu Arg Arg Leu Ala Ala Leu 1 5 10 15

Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro Leu Glu Val Ala 35 40 45

Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala Asp Thr Ile Ser Gly 50 55 60

Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr Leu Glu Thr Gln Asn 65 70 75 80

Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys Val Thr Gly Gly Pro 85 90 95

Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys Tyr Asp Met Val Thr

Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser Met Lys Ile Leu Lys 115 120 125

Arg Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys Asp Pro Leu Gly Gln 130 135 140

Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln Asn Asp Thr Ala Phe 145 150 155 160

Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala Met Ala Ala Arg Lys 170 165 Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg Pro Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn Thr Leu Gln Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr Tyr Ile Asp Leu Ala 250 Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln Thr Leu Asp Thr Glu 280 Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn Thr Arg Pro Ala Ser 315 Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser Gly Thr Leu Thr Pro 325 330 Glu Arg Ala Ala Leu Pro Tyr Phe Pro Arg Arg Tyr Gly Ala His Ala 345 Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg Lys Lys Glu Glu Glu Val 385

<210> 19 <211> 21 <212> PRT

<213> Homo sapiens

Gly Pro Leu Gln Gly 20 <210> 20

<211> 244

<212> PRT

<213> Homo sapiens

<400> 20

Met Leu Leu Gly Ala Val Leu Leu Leu Leu Ala Leu Pro Gly His

Asp Gln Glu Thr Thr Gln Gly Pro Gly Val Leu Leu Pro Leu Pro 20 25 30

Lys Gly Ala Cys Thr Gly Trp Met Ala Gly Ile Pro Gly His Pro Gly 35 40 45

His Asn Gly Ala Pro Gly Arg Asp Gly Arg Asp Gly Thr Pro Gly Glu
50 55 60

Lys Gly Glu Lys Gly Asp Pro Gly Leu Ile Gly Pro Lys Gly Asp Ile 65 70 75 80

Gly Glu Thr Gly Val Pro Gly Ala Glu Gly Pro Arg Gly Phe Pro Gly 85 90 95

Ile Gln Gly Arg Lys Gly Glu Pro Gly Glu Gly Ala Tyr Val Tyr Arg 100 105 110

Ser Ala Phe Ser Val Gly Leu Glu Thr Tyr Val Thr Ile Pro Asn Met 115 120 125

Pro Ile Arg Phe Thr Lys Ile Phe Tyr Asn Gln Gln Asn His Tyr Asp 130 135 140

Gly Ser Thr Gly Lys Phe His Cys Asn Ile Pro Gly Leu Tyr Tyr Phe 145 150 155 160

Ala Tyr His Ile Thr Val Tyr Met Lys Asp Val Lys Val Ser Leu Phe

Lys Lys Asp Lys Ala Met Leu Phe Thr Tyr Asp Gln Tyr Gln Glu Asn 180 185 190

Asn Val Asp Gln Ala Ser Gly Ser Val Leu Leu His Leu Glu Val Gly 195 200 205

Asp Gln Val Trp Leu Gln Val Tyr Gly Glu Gly Glu Arg Asn Gly Leu 210 215 220

Tyr Ala Asp Asn Asp Asn Asp Ser Thr Phe Thr Gly Phe Leu Leu Tyr 225 230 235 240

His Asp Thr Asn

<210> 21

<211> 1721

<212> DNA

<213> Mus musculus

```
<400> 21
gtcgacccac gcgtccgact taaggctgcc atggggccca gtgctcctct gctgctcctc 60
ttctttttgt catggacggg accccttcag ggacagcagc accaccttgt ggagtacatg 120
gaacgccgac tagctgcctt agaggaacgg ctggcccaat gccaggatca gagtagtcgg 180
catgctgccg agcttcggga cttcaaaaac aagatgttgc ctctcctgga ggtggcagag 240
aaggagcggg agaccctcag aactgaagca gactccatct caggaagagt ggaccgtctt 300
gaaagggagg tagactatct ggagacacag aacccagctt tgccctgtgt agagctggat 360
gagaaggtga ctggaggtcc tggagccaaa ggcaagggcc gaagaaatga gaaatacgat 420
atggtgacgg actgtagcta cacagtcgct caggtgaggt caatgaagat cctgaagcgg 480
tttggtggtt cagttggcct atggaccaag gatccgctgg ggccagcaga gaagatctac 540
gtgttagacg gcacccagaa cgacacgget tttgtettee caaggetgeg tgaetteace 600
cttgccatgg ctgcccggaa agcttcccga attcgggtgc ccttcccctg ggtaggcacg 660
gggcagctgg tgtacggtgg cttcctttat tatgctcgaa ggcctcctgg aggacctgga 720
gggggtggtg aattggagaa cactctgcag ctgatcaaat ttcacttggc aaaccgaaca 780
gtggtggata gctcagtgtt ccctgcagag agcctgatac ccccctacgg cctgacagca 840
gatacatata tcgacctggc agctgatgag gagggcctgt gggctgtcta tgccactcga 900
gatgatgaca ggcatttgtg tctagccaag ttagacccac agacacttga cacagagcag 960
cagtgggaca caccatgtcc cagagagaac gcagaggctg cgtttgtcat ctgtgggacc 1020
ctgtacgttg tctataacac ccgccctgcc agtagggctc gtattcagtg ttccttcgat 1080
gccagtggta ctctcgcccc tgaaagggca gcactctcct attttccacg ccgatatggt 1140
gcccatgcca gccttcgcta taacccccgt gagcgccagc tgtatgcctg ggatgatggc 1200
taccagattg tctacaaatt ggagatgaag aagaaggagg aggaagttta agcagctagc 1260
cttgtgctct tgattcttat gcccagacat ttatattcct gtgagctctc ctgcagttca 1320
tccttcaaaa cgaaggccag tggtggtagc tcatataccc taatttctaa aggacaacca 1380
aattotcaag cocctotgtt ttatgcagaa ctccagatcc tgggtagcat tttagaactg 1440
aacagcaaac aaacacccta aatcttcact cctgccttat gtccacaaag tttagttcca 1500
aactcagagc cctgtccttt ggagagggtc aaccccagac agcaggcgac agcattcttg 1560
ccctcagtat gaccgaaggg agagaactca gagacaaagc tgccctccct cccttccccc 1620
tccagtgtag gggagaatgg ggctttcccc acatcacttt gtatggtaac agtttgcatt 1680
aaaaggaaaa cccaccaaaa aaaaaaaaaa agggcggccg c
```

<210> 22 <211> 1218 <212> DNA

<213> Mus musculus

<400> 22

atggggccca gtgctcctct gctgctcctc ttctttttgt catggacggg accccttcag 60 ggacagcagc accaccttgt ggagtacatg gaacgccgac tagctgcctt agaggaacgg 120 ctggcccaat gccaggatca gagtagtcgg catgctgccg agcttcggga cttcaaaaac 180 aagatgttgc ctctcctgga ggtggcagag aaggagcggg agaccctcag aactgaagca 240 gactccatct caggaagagt ggaccgtctt gaaagggagg tagactatct ggagacacag 300 aacccagett tgeeetgtgt agagetggat gagaaggtga etggaggtee tggageeaaa 360 ggcaagggcc gaagaaatga gaaatacgat atggtgacgg actgtagcta cacagtcgct 420 caggtgaggt caatgaagat cctgaagcgg tttggtggtt cagttggcct atggaccaag 480 gatccgctgg ggccagcaga gaagatctac gtgttagacg gcacccagaa cgacacggct 540 tttgtcttcc caaggetgeg tgacttcacc ettgecatgg etgeceggaa agetteeega 600 attcgggtgc ccttcccctg ggtaggcacg gggcagctgg tgtacggtgg cttcctttat 660 tatgctcgaa ggcctcctgg aggacctgga gggggtggtg aattggagaa cactctgcag 720 ctgatcaaat ttcacttggc aaaccgaaca gtggtggata gctcagtgtt ccctgcagag 780 agcctgatac ccccctacgg cctgacagca gatacatata tcgacctggc agctgatgag 840 gagggcctgt gggctgtcta tgccactcga gatgatgaca ggcatttgtg tctagccaag 900 ttagacccac agacacttga cacagagcag cagtgggaca caccatgtcc cagagagaac 960 gcagaggctg cgtttgtcat ctgtgggacc ctgtacgttg tctataacac ccgccctgcc 1020 agtagggctc gtattcagtg ttccttcgat gccagtggta ctctcgcccc tgaaagggca 1080 gcacteteet attttecaeg eegatatggt geecatgeea geettegeta taaeeeeegt 1140

gagcgccagc tgtatgcctg ggatgatggc taccagattg tctacaaatt ggagatgaag 1200 aagaaggagg aggaagtt 1218

<210> 23

<211> 406

<212> PRT

<213> Mus musculus

<400> 23

Met Gly Pro Ser Ala Pro Leu Leu Leu Leu Phe Phe Leu Ser Trp Thr
1 5 10 15

Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg 20 25 30

Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser 35 40 45

Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro 50 55 60

Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Thr Leu Arg Thr Glu Ala 65 70 75 80

Asp Ser Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr 85 90 95

Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Leu Asp Glu Lys
100 105 110

Val Thr Gly Gly Pro Gly Ala Lys Gly Lys Gly Arg Arg Asn Glu Lys 115 120 125

Tyr Asp Met Val Thr Asp Cys Ser Tyr Thr Val Ala Gln Val Arg Ser 130 135 140

Met Lys Ile Leu Lys Arg Phe Gly Gly Ser Val Gly Leu Trp Thr Lys 145 150 155 160

Asp Pro Leu Gly Pro Ala Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln 165 170 175

Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala 180 185 190

Met Ala Ala Arg Lys Ala Ser Arg Ile Arg Val Pro Phe Pro Trp Val 195 200 205

Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Tyr Ala Arg Arg 210 215 220

Pro Pro Gly Gly Pro Gly Gly Gly Glu Leu Glu Asn Thr Leu Gln 225 230 235 240

Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val 245 250 255

Phe Pro Ala Glu Ser Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr

PCT/US00/16883

260 265 270

Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala 275 280 285

Thr Arg Asp Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln
290 295 300

Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn 305 310 315 320

Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn 325 330 335

Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser 340 345 350

Gly Thr Leu Ala Pro Glu Arg Ala Ala Leu Ser Tyr Phe Pro Arg Arg 355 360 365

Tyr Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu 370 375 380

Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Lys 385 390 395 400

Lys Lys Glu Glu Glu Val 405

WO 00/78808

<210> 24

<211> 385

<212> PRT

<213> Mus musculus

<400> 24

Gln Gln His His Leu Val Glu Tyr Met Glu Arg Arg Leu Ala Ala Leu 1 5 10 15

Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser Ser Arg His Ala Ala 20 25 30

Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro Leu Leu Glu Val Ala 35 40 45

Glu Lys Glu Arg Glu Thr Leu Arg Thr Glu Ala Asp Ser Ile Ser Gly
50 55 60

Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr Leu Glu Thr Gln Asn 65 70 75 80

Pro Ala Leu Pro Cys Val Glu Leu Asp Glu Lys Val Thr Gly Gly Pro 85 90 95

Gly Ala Lys Gly Lys Gly Arg Arg Asn Glu Lys Tyr Asp Met Val Thr

Asp Cys Ser Tyr Thr Val Ala Gln Val Arg Ser Met Lys Ile Leu Lys

115 120 125

Arg Phe Gly Gly Ser Val Gly Leu Trp Thr Lys Asp Pro Leu Gly Pro 130 140

Ala Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln Asn Asp Thr Ala Phe 145 150 155 160

Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala Met Ala Ala Arg Lys
165 170 175

Ala Ser Arg Ile Arg Val Pro Phe Pro Trp Val Gly Thr Gly Gln Leu 180 185 190

Val Tyr Gly Gly Phe Leu Tyr Tyr Ala Arg Arg Pro Pro Gly Gly Pro 195 200 205

Gly Gly Gly Glu Leu Glu Asn Thr Leu Gln Leu Ile Lys Phe His 210 215 220

Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val Phe Pro Ala Glu Ser 225 230 235 240

Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr Tyr Ile Asp Leu Ala 245 250 255

Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala Thr Arg Asp Asp Asp 260 265 270

Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln Thr Leu Asp Thr Glu 275 280 285

Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn Ala Glu Ala Ala Phe 290 295 300

Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn Thr Arg Pro Ala Ser 305 310 315 320

Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser Gly Thr Leu Ala Pro 325 330 335

Glu Arg Ala Ala Leu Ser Tyr Phe Pro Arg Arg Tyr Gly Ala His Ala 340 345 350

Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr Ala Trp Asp Asp 365

Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Lys Lys Lys Glu Glu Glu 370 375 380

Val 385

<210> 25

<211> 21

<212> PRT

<213> Mus musculus

```
<400> 25
Met Gly Pro Ser Ala Pro Leu Leu Leu Phe Phe Leu Ser Trp Thr
                                     10
Gly Pro Leu Gln Gly
<210> 26
<211> 1869
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 26
gregacecae gegtnentee agegtnegga geegeeetgg grgteagegg eteggeteee 60
gegeaegete eggeegtege geageetegg cacetgeagg teegtgegte eegeggetgg 120
cgcccctgac tccgtcccgg ccagggaggg ccatgatttc cctcccgggg cccctggtga 180
ccaacttgnt geggtttttg ttcctggggc tgagtgccct egegcccccc tegegggccc 240
agetgeaact geacttgeec gecaaceggt tgeaggeggt ggaggagggg gaaagtggtg 300
cttcagcatg gtacaccttg cacagggagg tgtcttcatc ccagccatgg gaggtgccct 360
ttgtgatgtg gttcttcaaa cagaaagaaa aggaggatca ggtgttgtcc tacatcaatg 420
gggtcacaac aagcaaacct ggagtatect tggtctacte catgecetee eggaacetgt 480
ccctgcgggt ggagggtctc caggagaaag actctggccc ctacagctgc tccgtgaatg 540
tgcaagacaa acaaggcaaa tctaggggcc acagcatcaa aaccttagaa ctcaatgtac 600
tggttcctcc agctcctcca tcctgccgtc tccagggtgt gccccatgtg ggggcaaacg 660
tgaccctgag ctgccagtct ccaaggagta agcccgctgt ccaataccag tgggatcggc 720
agettecate ettecagaet ttetttgeae cageattaga tgteatecgt gggtetttaa 780
gcctcaccaa cctttcgtct tccatggctg gagtctatgt ctgcaaggcc cacaatgagg 840
tgggcactgc ccaatgtaat gtgacgctgg aagtgagcac agggcctgga gctgcagtgg 900
ttgctgaagc tgttgtgggt accctggttg gactggggtt gctggctggg ctggtcctct 960
tgtaccaccg ccggggcaag gccctggagg agccagccaa tgatatcaag gaggatgcca 1020
ttgctccccg gaccctgccc tggcccaaga gctcagacac aatctccaag aatgggaccc 1080
tttcctctgt cacctccgca cgagccctcc ggccacccca tggccctccc aggcctggtg 1140
cattgacccc cacgcccagt ctatccagcc aggccctgcc ctcaccaaga catgcccacg 1200
acagatgggg cccaccctca accaatatcc cccatccctg gtggggtttt ttcctttggc 1260
tttgagccgc atgggtgctg ngcctgtgat ggngcctgcc cagagtcaag ctggctctct 1320
ggtatgatga ccccaccact cattggctaa aggatttggg gtctctcctt cctataaggg 1380
tcacctctag cacagaggcc tgagtcatgg gaaagagtca cactcctgac ccttagtact 1440
ctgccccac ctctctttac tgtgggaaaa ccatctcagt aagacctaag tgtccaggag 1500
acagaaggag aagaggaagt ggatctggaa ttgggaggag cetecaceca cecetgaete 1560
ctccttatga agccagctgc tgaaattagc tactcaccaa gagtgagggg cagagacttc 1620
cagteactga gtctcccagg ccccttgat ctgtacccca cccctatcta acaccaccct 1680
tggctcccac tccagctccc tgtattgata taacctgtca ggctggcttg gttaggtttt 1740
actggggcag aggataggga atctcttatt aaaactaaca tgaaatatgt gttgttttca 1800
tttgcaaatt taaataaaga tacataatgt ttgtatgaga taagaaaaaa aaaaaaaaag 1860
                                                                   1869
ggcggccgc
 <210> 27
 <211> 1110
 <212> DNA
 <213> Homo sapiens
 <220>
```

```
<221> modified_base
<222> all "n" positions
<223> n=a, c, g, or t
atgattteee teeeggggee eetggtgaee aacttgntge ggtttttgtt eetggggetg 60
agtgccctcg cgccccctc gcgggcccag ctgcaactgc acttgcccgc caaccggttg 120
caggcggtgg aggagggga aagtggtgct tcagcatggt acaccttgca cagggaggtg 180
tetteatece agecatgga ggtgeeettt gtgatgtggt tetteaaaca gaaagaaaag 240
gaggatcagg tgttgtccta catcaatggg gtcacaacaa gcaaacctgg agtatccttg 300
gtctactcca tgccctcccg gaacctgtcc ctgcgggtgg agggtctcca ggagaaagac 360
tetggeeet acagetgete egtgaatgtg caagacaaac aaggcaaate taggggeeac 420
agcatcaaaa ccttagaact caatgtactg gttcctccag ctcctccatc ctgccgtctc 480
cagggtgtgc cccatgtggg ggcaaacgtg accctgagct gccagtctcc aaggagtaag 540
cccgctgtcc aataccagtg ggatcggcag cttccatcct tccagacttt ctttgcacca 600
gcattagatg tcatccgtgg gtctttaagc ctcaccaacc tttcgtcttc catggctgga 660
gtgagcacag ggcctggagc tgcagtggtt gctgaagctg ttgtgggtac cctggttgga 780
ctggggttgc tggctgggct ggtcctcttg taccaccgcc ggggcaaggc cctggaggag 840
tcagacacaa tctccaagaa tgggaccctt tcctctgtca cctccgcacg agccctccgg 960
ccacccatg gcctcccag gcctggtgca ttgaccccca cgcccagtct atccagccag 1020
geeetgeeet caccaagaca tgeecacgae agatggggee caccetcaac caatateeec 1080
catccctggt ggggtttttt cctttggctt
<210> 28
<211> 370
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (13)
<223> Xaa=unknown amino acid
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Xaa Arg Phe Leu
                                   10
                5
Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln
                               25
Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu Glu Ser
Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser Ser Ser Gln
                        55
 Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys
                    70
 Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro
 Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg
                               105
 Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val
```

115 120 125

Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr 130 135 140

Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu 145 150 155 160

Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser 165 170 175

Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro 180 185 190

Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser 195 200 205

Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys 210 215 220

Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu 225 230 235 240

Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Glu Ala Val Val Gly
245 250 255

Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His 260 265 270

Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp 275 280 285

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile 290 295 300

Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg 305 310 315 320

Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser 325 330 335

Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg His Ala His Asp Arg Trp 340 345 350

Gly Pro Pro Ser Thr Asn Ile Pro His Pro Trp Trp Gly Phe Phe Leu 355 360 365

Trp Leu 370

<210> 29

<211> 341

<212> PRT

<213> Mus musculus

<400> 29

Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu

1				5					10					15	
Gly	Glu	Ser	Gly 20	Ala	Ser	Ala	Trp	Tyr 25	Thr	Leu	His	Arg	Glu 30	Val	Ser
Ser	Ser	Gln 35	Pro	Trp	Glu	Val	Pro 40	Phe	Val	Met	Trp	Phe 45	Phe	Lys	Gln
Lys	Glu 50	Lys	Glu	Asp	Gln	Val 55	Leu	Ser	Tyr	Ile	Asn 60	Gly	Val	Thr	Thr
Ser 65	Lys	Pro	Gly	Val	Ser 70	Leu	Val	Tyr	Ser	Met 75	Pro	Ser	Arg	Asn	Leu 80
Ser	Leu	Arg	Val	Glu 85	Gly	Leu	Gln	Glu	Lys 90	Asp	Ser	Gly	Pro	Tyr 95	Ser
Сув	Ser	Val	Asn 100	Val	Gln	Asp	Lys	Gln 105	Gly	Lys	Ser	Arg	Gly 110	His	Ser
Ile	Lys	Thr 115	Leu	Glu	Leu	Asn	Val 120	Leu	Val	Pro	Pro	Ala 125	Pro	Pro	Ser
Cys	Arg 130	Leu	Gln	Gly	Val	Pro 135	His	Val	Gly	Ala	Asn 140	Val	Thr	Leu	Ser
Cys 145	Gln	Ser	Pro	Arg	Ser 150	Lys	Pro	Ala	Val	Gln 155	Tyr	Gln	Trp	Asp	Arg 160
Gln	Leu	Pro	Ser	Phe 165	Gln	Thr	Phe	Phe	Ala 170	Pro	Ala	Leu	Asp	Val 175	Ile
Arg	Gly	Ser	Leu 180	Ser	Leu	Thr	Asn	Leu 185	Ser	Ser	Ser	Met	Ala 190	Gly	Val
Tyr	Val	Cys 195	Lys	Ala	His	Asn	Glu 200	Val	Gly	Thr	Ala	Gln 205	Cys	Asn	Val
Thr	Leu 210	Glu	Val	Ser	Thr	Gly 215	Pro	Gly	Ala	Ala	Val 220	Val	Ala	Glu	Ala
Val 225	Val	Gly	Thr	Leu	Val 230	Gly	Leu	Gly	Leu	Leu 235	Ala	Gly	Leu	Val	Leu 240
Leu	Tyr	His	Arg	Arg 245	Gly	Lys	Ala	Leu	Glu 250	Glu	Pro	Ala	Asn	Asp 255	Ile
Lys	Glu	Asp	Ala 260	Ile	Ala	Pro	Arg	Thr 265	Leu	Pro	Trp	Pro	Lys 270	Ser	Ser
Asp	Thr	Ile 275	Ser	Lys	Asn	Gly	Thr 280	Leu	Ser	Ser	Val	Thr 285	Ser	Ala	Arg
Ala	Leu 290	Arg	Pro	Pro	His	Gly 295	Pro	Pro	Arg	Pro	Gly 300	Ala	Leu	Thr	Pro
Thr 305	Pro	Ser	Leu	Ser	Ser 310	Gln	Ala	Leu	Pro	Ser 315	Pro	Arg	His	Ala	His 320

Asp Arg Trp Gly Pro Pro Ser Thr Asn Ile Pro His Pro Trp Gly 325 330 335

Phe Phe Leu Trp Leu 340

- <210> 30
- <211> 29
- <212> PRT
- <213> Mus musculus
- <220>
- <221> SITE
- <222> (13)
- <223> Xaa=unknown amino acid
- <400> 30

Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Xaa Arg Phe Leu
1 5 10 15

Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala 20 25

- <210> 31
- <211> 246
- <212> PRT
- <213> Mus musculus
- <220>
- <221> SITE
- <222> (13)
- <223> Xaa=unknown amino acid
- <400> 31

Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Xaa Arg Phe Leu

1 10 15

Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln 20 25 30

Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu Glu Ger 35 40 45

Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser Ser Gln 50 55 60

Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys 65 70 75 80

Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro 85 90 95

Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg 100 105 110

Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val

125 120 115 Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr 135 Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser 170 Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro 180 Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser 195 Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys 215 Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu 235 225 Val Ser Thr Gly Pro Gly 245 <210> 32 <211> 653 <212> DNA <213> Homo sapiens <400> 32 ttttttgcat gtaacttttt tattgaggca caacaaggca ttgtaacttg cctggacttg 60° aggcagtcag tttagtaagc tgaacgttaa tacagttaag gattaagtgc aaacaatata 120 catteacage ttgactageg aggetacate acaatttata aagtgecaga ttagtgetaa 180 ttgtcattca gcttgatttt tcacctcagg aaggaaaaca aaaaagtaag gacctcctcc 240 ctctaggaac aaaaacatt ttcctaaacc aatcagtcat gagggcaaag actacttttc 300 cttcaatccc actaattaga acaccatcct tttattgtca atactgtact gactttcaat 360 cttgataaag aagatagcct gaaaacgtag aatatttcca gctacttcca taaattgctc 420 ccctgtgcag acgtaaccat atctggtctc cctggaagag ctgaagaatt gcatgattgc 480 tagcagtttc atggtctgga gcaccatcat tggcataggc tgataccaag acctcttcat 540 tetteantga ggttgacata cagtggcaca tteactgeca gettttacat gtgaaaaatg 600 aaaaacgtag tgccattcac ttggcaatta aatctaccaa agctgagatc aaa <210> 33 <211> 25 <212> PRT <213> Mus musculus <400> 33 Ala Ala Val Val Ala Glu Ala Val Val Gly Thr Leu Val Gly Leu Gly 1.0 Leu Leu Ala Gly Leu Val Leu Leu Tyr 20

<210> 34

<211> 99

<212> PRT

<213> Mus musculus

<400> 34

His Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu
1 5 10 15

Asp Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr 20 25 30

Ile Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu 35 40 45

Arg Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro 50 55 60

Ser Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg His Ala His Asp Arg 65 70 75 80

Trp Gly Pro Pro Ser Thr Asn Ile Pro His Pro Trp Trp Gly Phe Phe 85 90 95

Leu Trp Leu

<210> 35

<211> 80

<212> PRT

<213> Mus musculus

<400> 35

Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser Ser Ser Gln

1 5 10 15

Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys 20 25 30

Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro 35 40 45

Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg

Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val 65 70 75 80

<210> 36

<211> 60

<212> PRT

<213> Mus musculus

```
<400> 36
Gly Ala Asn Val Thr Leu Ser Cys Gln Ser Pro Arg Ser Lys Pro Ala
Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro Ser Phe Gln Thr Phe Phe
            20
                                 25
Ala Pro Ala Leu Asp Val Ile Arg Gly Ser Leu Ser Leu Thr Asn Leu
Ser Ser Ser Met Ala Gly Val Tyr Val Cys Lys Ala
                         55
<210> 37
<211> 1846
<212> DNA
<213> Mus musculus
<400> 37
qtcqacccac qcgtccggtg cacattcggg ttgccgccgc tcacccacaa cacctgtaga 60
caccgtgtgt ccaactctcc ctgagtactc cgggccaagg agggccatga ttcttcaggc 120
tqqaaccccc qaqaccagct tgctgcgggt tttgttcctg ggactgagta cccttgctgc 180
cttctcccga gctcagatgg agttgcacgt gccccgggc ctcaacaaat tggaagcggt 240
aqaqqqaqaa qaagtggtgc tccccgcctg gtacacgatg gcacgggagg agtcgtggtc 300
ccaccccgg gaggtgccca tcctgatctg gttcttggaa caagaaggga aggaaccaaa 360
ccaggtgttg tcttacatta atggagtcat gacaaataaa cctggaacag ccctggtcca 420
ctctatctct tcacggaatg tgtccctgcg cctgggggca ctccaggagg gagactctgg 480
gacttaccgc tgttctgtca atgtgcagaa tgatgaaggc aaaagtatag gccacagcat 540
caaaagcata gagctcaaag tgctggttcc tccagctcct ccatcctgta gtttacaggg 600
tgtaccctat gtcgggacca atgtgaccct gaactgcaag tccccaagga gtaaacctac 660
tgctcagtac cagtgggaga ggctggcccc atcctcccag gtcttctttg gaccagcctt 720
agatgctgtt cgtggatctt taaagctcac taacctttcc attgccatgt ctggagtcta 780
tgtctgcaag gctcaaaaca gagtgggctt tgccaagtgc aacgtgacct tggacgtgat 840
gacagggtcc aaggctgcag tggtcgctgg agcagttgtg ggcacttttg ttgggttggt 900
gctgatagct gggctggtcc tgttgtacca gcgccggagc aagaccttgg aagagctggc 960
caatgatatc aaggaagatg ccattgctcc ccggaccttg ccttggacca aaggctcaga 1020
cacaatctcc aagaatggga cactttcttc ggtcacctca gcacgagctc tgcggccacc 1080
caaggetget cetecaagae etggeacatt tacteecaca eccagtgtet etageeagge 1140
cctgtcctca ccaagactgc ccagggtaga tgaaccccca cctcaggcag tgtccctgac 1200
cccaqqtggg gtttcttctt ctgctctgag ccgcatgggt gctgtgcctg tgatggtgcc 1260
tqcacagagt caggctgggt ctcttgtgtg atagcccagg cactcattag ctacatctgg 1320
tatctqacct ttctgtaaag gtctccttgt ggcacagagg actcaatctt gggaggatgc 1380
ccacattcta gacctccagt cctttgctcc tacctccttc tattgttgga atactgggcc 1440
tcaqtaaqac taaaatctgg gtcaaaggac aaaaggagga aatggacctg aggtaggggg 1500
ttqqqaqtqa qqaggcttca cttcctccct gcttctccct gaagccagat gaatgctgcg 1560
gaagatcggc taccctccaa gggctctgga ggagactgcc agtcagtgat gcccctggct 1620
ctqtgatctq tacaacaccc ttatctaatg ctgtcctttg ccgttcgctc catctccctg 1680
tattaatata acctgtcctg ctggcttggc tgggttttgt tgtagcaggg ggataggaaa 1740
gacattttaa aatctgactt gaaattgatg tttttgtttt tattttgcaa atttcaataa 1800
agatacatcg catttgcatg gaaaaaaaaa aaaaaagggc ggccgc
<210> 38
<211> 1182
<212> DNA
<213> Mus musculus
<400> 38
```

25

atqattcttc aqqctqqaac ccccgagacc agcttgctgc gggttttgtt cctgggactg 60

```
agtaccettg etgeettete eegageteag atggagttge aegtgeecee gggeeteaae 120
aaattggaag cggtagaggg agaagaagtg gtgctccccg cctggtacac gatggcacgg 180
qaqqaqtcqt ggtcccaccc ccgggaggtg cccatcctga tctggttctt ggaacaagaa 240
gggaaggaac caaaccaggt gttgtcttac attaatggag tcatgacaaa taaacctgga 300
acaqccctqg tccactctat ctcttcacgg aatgtgtccc tgcgcctggg ggcactccag 360
gagggagact ctgggactta ccgctgttct gtcaatgtgc agaatgatga aggcaaaagt 420
ataggecaca geateaaaag catagagete aaagtgetgg tteeteeage teeteeatee 480
tqtaqtttac agggtgtacc ctatgtcggg accaatgtga ccctgaactg caagtcccca 540
aggagtaaac ctactgctca gtaccagtgg gagaggctgg ccccatcctc ccaggtcttc 600
tttggaccag ccttagatgc tgttcgtgga tctttaaagc tcactaacct ttccattgcc 660
atgtctggag tctatgtctg caaggctcaa aacagagtgg gctttgccaa gtgcaacgtg 720
accttggacg tgatgacagg gtccaaggct gcagtggtcg ctggagcagt tgtgggcact 780
tttqttqqqt tgqtqctgat agctgggctg gtcctgttgt accagcgccg gagcaagacc 840
ttggaagagc tggccaatga tatcaaggaa gatgccattg ctccccggac cttgccttgg 900
accaaaggct cagacacaat ctccaagaat gggacacttt cttcggtcac ctcagcacga 960
gctctgcggc cacccaaggc tgctcctcca agacctggca catttactcc cacacccagt 1020
gtctctagcc aggccctgtc ctcaccaaga ctgcccaggg tagatgaacc cccacctcag 1080
gcagtgtccc tgaccccagg tggggtttct tcttctgctc tgagccgcat gggtgctgtg 1140
cctgtgatgg tgcctgcaca gagtcaggct gggtctcttg tg
<210> 39
<211> 394
<212> PRT
<213> Mus musculus
<400> 39
Met Ile Leu Gln Ala Gly Thr Pro Glu Thr Ser Leu Leu Arg Val Leu
                                     10
Phe Leu Gly Leu Ser Thr Leu Ala Ala Phe Ser Arg Ala Gln Met Glu
Leu His Val Pro Pro Gly Leu Asn Lys Leu Glu Ala Val Glu Gly Glu
Glu Val Val Leu Pro Ala Trp Tyr Thr Met Ala Arg Glu Glu Ser Trp
Ser His Pro Arg Glu Val Pro Ile Leu Ile Trp Phe Leu Glu Gln Glu
Gly Lys Glu Pro Asn Gln Val Leu Ser Tyr Ile Asn Gly Val Met Thr
Asn Lys Pro Gly Thr Ala Leu Val His Ser Ile Ser Ser Arg Asn Val
                                105
                                                    110
Ser Leu Arq Leu Gly Ala Leu Gln Glu Gly Asp Ser Gly Thr Tyr Arg
                            120
Cys Ser Val Asn Val Gln Asn Asp Glu Gly Lys Ser Ile Gly His Ser
Ile Lys Ser Ile Glu Leu Lys Val Leu Val Pro Pro Ala Pro Pro Ser
                    150
                                         155
Cys Ser Leu Gln Gly Val Pro Tyr Val Gly Thr Asn Val Thr Leu Asn
```

165 170 175

Cys Lys Ser Pro Arg Ser Lys Pro Thr Ala Gln Tyr Gln Trp Glu Arg 180 185 190

- Leu Ala Pro Ser Ser Gln Val Phe Phe Gly Pro Ala Leu Asp Ala Val 195 200 205
- Arg Gly Ser Leu Lys Leu Thr Asn Leu Ser Ile Ala Met Ser Gly Val 210 215 220
- Tyr Val Cys Lys Ala Gln Asn Arg Val Gly Phe Ala Lys Cys Asn Val 225 230 235 240
- Thr Leu Asp Val Met Thr Gly Ser Lys Ala Ala Val Val Ala Gly Ala 245 250 255
- Val Val Gly Thr Phe Val Gly Leu Val Leu Ile Ala Gly Leu Val Leu 260 265 270
- Leu Tyr Gln Arg Arg Ser Lys Thr Leu Glu Glu Leu Ala Asn Asp Ile 275 280 285
- Lys Glu Asp Ala Ile Ala Pro Arg Thr Leu Pro Trp Thr Lys Gly Ser 290 295 300
- Asp Thr Ile Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg 305 310 315 320
- Ala Leu Arg Pro Pro Lys Ala Ala Pro Pro Arg Pro Gly Thr Phe Thr 325 330 335
- Pro Thr Pro Ser Val Ser Ser Gln Ala Leu Ser Ser Pro Arg Leu Pro 340 345 350
- Arg Val Asp Glu Pro Pro Pro Gln Ala Val Ser Leu Thr Pro Gly Gly 355 360 365
- Val Ser Ser Ser Ala Leu Ser Arg Met Gly Ala Val Pro Val Met Val

Pro Ala Gln Ser Gln Ala Gly Ser Leu Val

<210> 40

<211> 365

<212> PRT

<213> Mus musculus

<400> 40

- Gln Met Glu Leu His Val Pro Pro Gly Leu Asn Lys Leu Glu Ala Val 1 5 10 15
- Glu Gly Glu Val Val Leu Pro Ala Trp Tyr Thr Met Ala Arg Glu
- Glu Ser Trp Ser His Pro Arg Glu Val Pro Ile Leu Ile Trp Phe Leu

		35					40					45			
Glu	Gln 50	Glu	Gly	Lys	Glu	Pro 55	Asn	Gln	Val	Leu	Ser 60	Tyr	Ile	Asn	Gly
Val 65	Met	Thr	Asn	Lys	Pro 70	Gly	Thr	Ala	Leu	Val 75	His	Ser	Ile	Ser	Ser 80
Arg	Asn	Val	Ser	Leu 85	Arg	Leu	Gly	Ala	Leu 90	Gln	Glu	Gly	Asp	Ser 95	Gly
Thr	Tyr	Arg	Cys 100	Ser	Val	Asn	Val	Gln 105	Asn	Asp	Glu	Gly	Lys 110	Ser	Ile
Gly	His	Ser 115	Ile	Lys	Ser	Ile	Glu 120	Leu	Lys	Val	Leu	Val 125	Pro	Pro	Ala
Pro	Pro 130	Ser	Cys	Ser	Leu	Gln 135	Gly	Val	Pro	Tyr	Val 140	Gly	Thr	Asn	Val
Thr 145	Leu	Asn	Суз	Lys	Ser 150	Pro	Arg	Ser	Lys	Pro 155	Thr	Ala	Gln	Tyr	Gln 160
Trp	Glu	Arg	Leu	Ala 165	Pro	Ser	Ser	Gln	Val 170	Phe	Phe	Gly	Pro	Ala 175	Leu
Asp	Ala	Val	Arg 180	Gly	Ser	Leu	Lys	Leu 185	Thr	Asn	Leu	Ser	Ile 190	Ala	Met
Ser	Gly	Val 195	Tyr	Val	Cys	Lys	Ala 200	Gln	Asn	Arg	Val	Gly 205	Phe	Ala	Lys
Cys	Asn 210	Val	Thr	Leu	Asp	Val 215	Met	Thr	Gly	Ser	Lys 220	Ala	Ala	Val	Val
Ala 225	Gly	Ala	Val	Val	Gly 230	Thr	Phe	Val	Gly	Leu 235	Val	Leu	Ile	Ala	Gly 240
Leu	Val	Leu	Leu	Tyr 245	Gln	Arg	Arg	Ser	Lys 250	Thr	Leu	Glu	Glu	Leu 255	Ala
Asn	Asp	Ile	Lys 260		Asp			Ala 265		Arg	Thr	Leu	Pro 270	Trp	Thr
Lys	Gly	Ser 275	Asp	Thr	Ile	Ser	Lys 280	Asn	Gly	Thr	Leu	Ser 285	Ser	Val	Thr
Ser	Ala 290	Arg	Ala	Leu	Arg	Pro 295	Pro	Lys	Ala	Ala	Pro 300	Pro	Arg	Pro	Gly
Thr 305	Phe	Thr	Pro	Thr	Pro 310	Ser	Val	Ser	Ser	Gln 315	Ala	Leu	Ser	Ser	Pro 320
Arg	Leu	Pro	Arg	Val 325	Asp	Glu	Pro	Pro	Pro 330	Gln	Ala	Val	Ser	Leu 335	Thr
Pro	Gly	Gly	Val 340	Ser	Ser	Ser	Ala	Leu 345	Ser	Arg	Met	Gly	Ala 350	Val	Pro

Val Met Val Pro Ala Gln Ser Gln Ala Gly Ser Leu Val 355 360 365

<210> 41

<211> 29

<212> PRT

<213> Mus musculus

<400> 41

Met Ile Leu Gln Ala Gly Thr Pro Glu Thr Ser Leu Leu Arg Val Leu 1 5 10 15

Phe Leu Gly Leu Ser Thr Leu Ala Ala Phe Ser Arg Ala 20 25

<210> 42

<211> 249

<212> PRT

<213> Mus musculus

<400> 42

Met Ile Leu Gln Ala Gly Thr Pro Glu Thr Ser Leu Leu Arg Val Leu
1 5 10 15

Phe Leu Gly Leu Ser Thr Leu Ala Ala Phe Ser Arg Ala Gln Met Glu 20 25 30

Leu His Val Pro Pro Gly Leu Asn Lys Leu Glu Ala Val Glu Gly Glu
35 40 45

Glu Val Val Leu Pro Ala Trp Tyr Thr Met Ala Arg Glu Glu Ser Trp
50 55 60

Ser His Pro Arg Glu Val Pro Ile Leu Ile Trp Phe Leu Glu Gln Glu 65 70 75 80

Gly Lys Glu Pro Asn Gln Val Leu Ser Tyr Ile Asn Gly Val Met Thr 85 90 95

Asn Lys Pro Gly Thr Ala Leu Val His Ser Ile Ser Ser Arg Asn Val
100 105 110

Ser Leu Arg Leu Gly Ala Leu Gln Glu Gly Asp Ser Gly Thr Tyr Arg

Cys Ser Val Asn Val Gln Asn Asp Glu Gly Lys Ser Ile Gly His Ser

Ile Lys Ser Ile Glu Leu Lys Val Leu Val Pro Pro Ala Pro Pro Ser145150155160

Cys Ser Leu Gln Gly Val Pro Tyr Val Gly Thr Asn Val Thr Leu Asn 165 170 175

Cys Lys Ser Pro Arg Ser Lys Pro Thr Ala Gln Tyr Gln Trp Glu Arg 180 185 190

Leu Ala Pro Ser Ser Gln Val Phe Phe Gly Pro Ala Leu Asp Ala Val

Arg Gly Ser Leu Lys Leu Thr Asn Leu Ser Ile Ala Met Ser Gly Val 210 215 220

Tyr Val Cys Lys Ala Gln Asn Arg Val Gly Phe Ala Lys Cys Asn Val 225 230 235 240

Thr Leu Asp Val Met Thr Gly Ser Lys 245

<210> 43

<211> 355

<212> PRT

<213> Mus musculus

<220>

<221> SITE

<222> (355)

<223> Xaa=unknown amino acid

<400> 43

Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp Ser

Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser 35 40 45

Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro

Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala
65 70 75 80

Asp Thr Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr 85 90 95

Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys
100 105 110

Val Thr Gly Gly Pro Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys 115 120 125

Tyr Asp Met Val Thr Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser 130 135 140

Met Lys Ile Leu Lys Arg Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys 145 150 155 160

Asp Pro Leu Gly Gln Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln

Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala

180 185 190

Met Ala Ala Arg Lys Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val 195 200 205

Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg 210 215 220

Pro Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn Thr Leu Gln 225 230 235 240

Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val 245 250 255

Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr 260 265 270

Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala 275 280 285

Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln 290 295 300

Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn 305 310 315 320

Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn 325 330 335

Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser 340 345 350

Gly Pro Xaa 355

<210> 44

<211> 25

<212> PRT

<213> Mus musculus

<400> 44

Ala Ala Val Val Ala Gly Ala Val Val Gly Thr Phe Val Gly Leu Val
1 5 10 15

Leu Ile Ala Gly Leu Val Leu Leu Tyr 20 25

<210> 45

<211> 120

<212> PRT

<213> Mus musculus

<400> 45

Gln Arg Arg Ser Lys Thr Leu Glu Glu Leu Ala Asn Asp Ile Lys Glu

1 5 10 15

Asp Ala Ile Ala Pro Arg Thr Leu Pro Trp Thr Lys Gly Ser Asp Thr 25 20 Ile Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg Pro Pro Lys Ala Ala Pro Pro Arg Pro Gly Thr Phe Thr Pro Thr Pro Ser Val Ser Ser Gln Ala Leu Ser Ser Pro Arg Leu Pro Arg Val Asp Glu Pro Pro Pro Gln Ala Val Ser Leu Thr Pro Gly Gly Val Ser 90 Ser Ser Ala Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala 105 Gln Ser Gln Ala Gly Ser Leu Val 115 <210> 46 <211> 1801 <212> DNA <213> Homo sapiens <400> 46 gtcgacccac gcgtccggcg gaggttgtgg ctgcaccgtg gtcctgggct tggtcctggg 60 cttgatgcgt ctgtttgtcc gtccgtccgt ccgtcccgcc atggctgcgc cggcgccctc 120 teegtggace etttegetge tgetgttgtt getactgeeg teteegggtg eecatggega 180 tggctcctgt tccagccaat actgctgctc tgacgtgctg aagaaaatcc agtggaatga 300 ggaaatgtgc cctgagccag agtccagcag attttccgcc cacccggaga caccagaaca 360 gctgggttca gcgctgaagt atcagtccag tcttgacagt gacaacatgc cagggttcgg 420 agcgaccgtg gccatcggcc tgaccgtctt cgtggtgttt atcgctacca tcattgtgtg 480 ctttacctgc tcctgctgct gtctatataa gatgtgctgc cgcccacgac ctgtcgtgtc 540 caacaccaca actactaccg tggttcacac cgcttaccct cagcctcaac ctgtggcccc 600 cagctatect ggaccaacat accagggeta ceateceatg ecceecage caggaatgee 660 agcctatcat gagacgttgg ctggagccag ccagcctcca tacaacccgg cctacatgga 780 tcccccaaag gcagttccct gagcctgccc ccagcctctt tggctaacat ttgattatgt 840 catgtgtgtg tgagtgctat gcagagttct ttactgctgt ctgtggtgcg tgtgccttgt 900 ctagacatgt ggcttcctct gctgatgacc aggtaggcac aaatcttacc agtgctggtt 960 gggaccaatc tgttttcttc ctcacttgaa attgtaattt ctgaaatttc aagtaaatta 1020 aaaacaatag ggtaggaggt atttcccgct tcaccccaag gtgaccagcc atagcctgcc 1080 acacatagga gagcaagett tttgtgggte catgteetge tttggggagt agecagetag 1140 ctgctgctat gggtttattc ccagggcttg gctgcattta gctggacaga gaacaagggg 1200 cctcagtggc agtgggtcag tgactgatgt cagagcacac taggcagaga gccccgtccg 1260 tetecateag etgtetgtet ggaeggteee aetgtettte etgggaetat gtagagggee 1320 acatgtattc actattcagg ctccagtggc ttccaggcca ggggcctctg tctactacac 1380 actotggttt ctccctacag tgtcttttta cgattagcca aacatattgc ctgttttttg 1440 tatccagatg tgtgataatt ggtgaggttg aaatccttgg ttcctggaga acaggaaacc 1500 tgacctctga cagtccgttt cccttgacac cagcttcata gaatacctga ctcctgtact 1560 acagtccagt ttgttccagt agcagggaca ccagggccag gggttatctg gaccaagggt 1620 gggggtggag agcctggatg gtagctctgg accagatgtg aatgcctcca tattccctgt 1680 tggttcctgt ttcactggct gttttagttt tgtgttaatt ggtgtttctg agcattcaaa 1740

1801 <210> 47 <211> 735 <212> DNA <213> Homo sapiens <400> 47 atgcgtctgt ttgtccgtcc gtccgtccgt cccgccatgg ctgcgccggc gccctctccg 60 tggaccettt cgctgctgct gttgttgcta ctgccgtctc cgggtgccca tggcgagctg 120 tgcaggccct tcggtgaaga caattcgatc ccagagtcct gtcctgactt ctgttgtggc 180 tcctgttcca gccaatactg ctgctctgac gtgctgaaga aaatccagtg gaatgaggaa 240 atgtgccctg agccagagtc cagcagattt tccgcccacc cggagacacc agaacagctg 300 ggttcagcgc tgaagtatca gtccagtctt gacagtgaca acatgccagg gttcggagcg 360 accgtggcca tcggcctgac cgtcttcgtg gtgtttatcg ctaccatcat tgtgtgcttt 420 acctgetect getgetgtet atataagatg tgetgeegee caegacetgt egtgteeaac 480 accacaacta ctaccgtggt tcacaccgct taccctcagc ctcaacctgt ggcccccagc 540 tatcctggac caacatacca gggctaccat cccatgcccc cccagccagg aatgccagca 600 gcaccctacc caacgcagta ccctccaccc tacctggccc agcccacagg gccaccagcc 660 tatcatgaga cgttggctgg agccagccag cctccataca acccggccta catggatccc 720 ccaaaggcag ttccc <210> 48 <211> 245 <212> PRT <213> Homo sapiens <400> 48 Met Arg Leu Phe Val Arg Pro Ser Val Arg Pro Ala Met Ala Ala Pro 10 Ala Pro Ser Pro Trp Thr Leu Ser Leu Leu Leu Leu Leu Leu Pro 25 Ser Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe Gly Glu Asp Asn 40 Ser Ile Pro Glu Ser Cys Pro Asp Phe Cys Cys Gly Ser Cys Ser Ser Gln Tyr Cys Cys Ser Asp Val Leu Lys Lys Ile Gln Trp Asn Glu Glu Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Ala His Pro Glu Thr Pro Glu Gln Leu Gly Ser Ala Leu Lys Tyr Gln Ser Ser Leu Asp Ser Asp Asn Met Pro Gly Phe Gly Ala Thr Val Ala Ile Gly Leu Thr Val 125 Phe Val Val Phe Ile Ala Thr Ile Ile Val Cys Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Met Cys Cys Arg Pro Arg Pro Val Val Ser Asn

155

150

Thr Thr Thr Thr Val Val His Thr Ala Tyr Pro Gln Pro Gln Pro 165 170 175

Val Ala Pro Ser Tyr Pro Gly Pro Thr Tyr Gln Gly Tyr His Pro Met 180 185 190

Pro Pro Gln Pro Gly Met Pro Ala Ala Pro Tyr Pro Thr Gln Tyr Pro 195 200 205

Pro Pro Tyr Leu Ala Gln Pro Thr Gly Pro Pro Ala Tyr His Glu Thr 210 215 220

Leu Ala Gly Ala Ser Gln Pro Pro Tyr Asn Pro Ala Tyr Met Asp Pro 225 230 235 240

Pro Lys Ala Val Pro 245

<210> 49

<211> 38

<212> PRT

<213> Homo sapiens

<400> 49

Met Arg Leu Phe Val Arg Pro Ser Val Arg Pro Ala Met Ala Ala Pro 1 5 10 15

Ala Pro Ser Pro Trp Thr Leu Ser Leu Leu Leu Leu Leu Leu Leu Pro

Ser Pro Gly Ala His Gly

<210> 50

<211> 207

<212> PRT

<213> Homo sapiens

<400> 50

Glu Leu Cys Arg Pro Phe Gly Glu Asp Asn Ser Ile Pro Glu Ser Cys

1 10 15

Pro Asp Phe Cys Cys Gly Ser Cys Ser Ser Gln Tyr Cys Cys Ser Asp 20 25 30

Val Leu Lys Lys Ile Gln Trp Asn Glu Glu Met Cys Pro Glu Pro Glu 35 40 45 .

Ser Ser Arg Phe Ser Ala His Pro Glu Thr Pro Glu Gln Leu Gly Ser
50 55 60

Ala Leu Lys Tyr Gln Ser Ser Leu Asp Ser Asp Asn Met Pro Gly Phe 65 70 75 80

Gly Ala Thr Val Ala Ile Gly Leu Thr Val Phe Val Val Phe Ile Ala 85 90 95

Thr Ile Ile Val Cys Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Met

Cys Cys Arg Pro Arg Pro Val Val Ser Asn Thr Thr Thr Thr Thr Val

Val His Thr Ala Tyr Pro Gln Pro Gln Pro Val Ala Pro Ser Tyr Pro 130 135 140

Gly Pro Thr Tyr Gln Gly Tyr His Pro Met Pro Pro Gln Pro Gly Met 145 150 155 160

Pro Ala Ala Pro Tyr Pro Thr Gln Tyr Pro Pro Pro Tyr Leu Ala Gln 165 170 175

Pro Thr Gly Pro Pro Ala Tyr His Glu Thr Leu Ala Gly Ala Ser Gln 180 185 190

Pro Pro Tyr Asn Pro Ala Tyr Met Asp Pro Pro Lys Ala Val Pro 195 200 205

<210> 51

<211> 85

<212> PRT

<213> Homo sapiens

<400> 51

Glu Leu Cys Arg Pro Phe Gly Glu Asp Asn Ser Ile Pro Glu Ser Cys
1 5 10 15

Pro Asp Phe Cys Cys Gly Ser Cys Ser Ser Gln Tyr Cys Cys Ser Asp

Val Leu Lys Lys Ile Gln Trp Asn Glu Glu Met Cys Pro Glu Pro Glu 35 40 45

Ser Ser Arg Phe Ser Ala His Pro Glu Thr Pro Glu Gln Leu Gly Ser 50 60

Ala Leu Lys Tyr Gln Ser Ser Leu Asp Ser Asp Asn Met Pro Gly Phe 65 70 75 80

Gly Ala Thr Val Ala

<210> 52

<211> 25

<212> PRT

<213> Homo sapiens

<400> 52

Phe Thr Cys Ser Cys Cys Cys Leu Tyr 20 25

```
<210> 53
<211> 97
<212> PRT
<213> Homo sapiens
<400> 53
Lys Met Cys Cys Arg Pro Arg Pro Val Val Ser Asn Thr Thr Thr
Thr Val Val His Thr Ala Tyr Pro Gln Pro Gln Pro Val Ala Pro Ser
Tyr Pro Gly Pro Thr Tyr Gln Gly Tyr His Pro Met Pro Pro Gln Pro
Gly Met Pro Ala Ala Pro Tyr Pro Thr Gln Tyr Pro Pro Pro Tyr Leu
Ala Gln Pro Thr Gly Pro Pro Ala Tyr His Glu Thr Leu Ala Gly Ala
Ser Gln Pro Pro Tyr Asn Pro Ala Tyr Met Asp Pro Pro Lys Ala Val
           . 85
Pro
<210> 54
<211> 50
<212> PRT
<213> Homo sapiens
<400> 54
Cys Arg Pro Phe Gly Glu Asp Asn Ser Ile Pro Glu Ser Cys Pro Asp
Phe Cys Cys Gly Ser Cys Ser Ser Gln Tyr Cys Cys Ser Asp Val Leu
Lys Lys Ile Gln Trp Asn Glu Glu Met Cys Pro Glu Pro Glu Ser Ser
Arg Phe
     50
 <210> 55
 <211> 56
 <212> PRT
 <213> Homo sapiens
 Thr Val Phe Val Val Phe Ile Ala Thr Ile Ile Val Cys Phe Thr Cys
                                     10
```

Ser Cys Cys Cys Leu Tyr Lys Met Cys Cys Arg Pro Arg Pro Val Val

30 25 20 Ser Asn Thr Thr Thr Thr Val Val His Thr Ala Tyr Pro Gln Pro Gln Pro Val Ala Pro Ser Tyr Pro 50 <210> 56 <211> 1858 <212> DNA <213> Mus musculus <400> 56 gtcgacccac gcgtccgcgc ggaggttgcg gcggcaccgt ggtcttgggc ttggtccgtc 60 tgttcgtccg tccgttggtc tgtcccgcca tggctgcgcc ggcgccctct ctgtggaccc 120 tattgctgct gctgttgctg ctgccgccgc ctccgggtgc ccatggtgag ctgtgcaggc 180 cctttggtga agacaattcg atcccagtgt tctgtcctga tttctgttgt ggttcctgtt 240 ccaaccaata ctgctgctcg gacgtgctga ggaaaatcca gtggaatgag gaaatgtgtc 300 ctgagccaga gtccagcaga ttttccaccc ccgcggagga gacacccgaa catctgggtt 360 cagegetgaa atttegatee agttttgaca gtgaceetat gteagggtte ggagegaeeg 420 tegecattgg egtgaceate tttgtggtgt ttattgecae tateateate tgetteacet 480 geteetgetg etgtetgtat aagatgtget geecceaaeg eeetgtegtg accaacacca 540 caactactac cgtggttcat geceettace etcageetca aceteaacet gtggeececa 600 gctatcctgg accaacatac cagggctacc atcccatgcc cccccagcc aggaatgcca 660 gcagcaccct acccaacgca gtacccacca ccctacctgg cccagcccac agggccgcca 720 ccctaccatg agtccttggc tggagccagc cagcctccat acaacccgac ctacatggat 780 tccctaaaga caattccctg aacctgcccc cagcctcttt ggctgccatt tatgtcgtgt 840 gtgagtgagt gatacgcaga gttctttact gctgtctgtg gtgtgtgtgc cttgtctaga 900 catgtggctt cctctgctgt tgaccaggta ggcgcaagtc ttaccagtgt gggtcgggac 960 caacetgttt tetteeteac ttgaaattgt actttetgaa attteaagea aattaaaaac 1020 aataaggtag gaggtatttc ccacgtcacc ccaaggtgac cagccatggc ctgtcatact 1080 taggagagca agetttttge gggtacagag caggetttgg ggggtaacca getagetget 1140 gctaggcctt tattcccagg gtttggctgc attggcagtg aggcaggtgg ctgggggtga 1200 caccaggtga caaggggact cagtggcagg gggtcacacc aggcagaaca ccatacactc 1260 tecateaget gtetgtetgg atgteactgt cetteeeggg getgtataga gggccacatg 1320 tgttcactat tcaggctcca ctgggggaat tttcctacct ttgctggctt ggctcctgct 1380 cccaggccag ggacctcggt ctgtctacta cacactctgg tttctccctg cactgtcttt 1440 ttactgttag ccaaacattt tgcctgtttt ctgtctccag atgtgtgata attggtgtga 1500 ggttgaaatc cctggttcct ggaggacaga caacctgacc tccgactgtc agtttccctt 1560 gacaccatct tcatagaaat acctgactcc tgtaccacag tccagtttgt cccagtagca 1620 gggacaccaa ggccaatggg ttatctggac caaaggtggg gtggagggcc tagatggtat 1680 ctccggccca gatgtgaata cctccatatt ccctgttggt tcctgtttca ctggctgttt 1740 tagetttgtg ttgattggtg tttetgagea tteagaetee geacceteat ttetaataaa 1800 <210> 57 <211> 639 <212> DNA <213> Mus musculus <400> 57 atggctgcgc cggcgccctc tctgtggacc ctattgctgc tgctgttgct gctgccgccg 60 cctccgggtg cccatggtga gctgtgcagg ccctttggtg aagacaattc gatcccagtg 120 ttctgtcctg atttctgttg tggttcctgt tccaaccaat actgctgctc ggacgtgctg 180 aggaaaatcc agtggaatga ggaaatgtgt cctgagccag agtccagcag attttccacc 240 cccgcggagg agacacccga acatctgggt tcagcgctga aatttcgatc cagttttgac 300

agtgacccta tgtcagggtt cggagcgacc gtcgccattg gcgtgaccat ctttgtggtg 360 tttattgcca ctatcatcat ctgcttcacc tgctcctgct gctgtctgta taagatgtgc 420 tgcccccaac gccctgtcgt gaccaacacc acaactacta ccgtggttca tgccccttac 480 cctcagcctc aacctcaacc tgtggcccc agctatcctg gaccaacata ccagggctac 540 catcccatgc ccccccagc caggaatgcc agcagcacc tacccaacgc agtacccacc 600 accctacctg gcccagccca cagggccgcc accctacca 639

<210> 58

<211> 213

<212> PRT

<213> Mus musculus

<400> 58

Met Ala Ala Pro Ala Pro Ser Leu Trp Thr Leu Leu Leu Leu Leu 1 5 10 15

Leu Leu Pro Pro Pro Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe 20 25 30

Gly Glu Asp Asn Ser Ile Pro Val Phe Cys Pro Asp Phe Cys Cys Gly
35 40 45

Ser Cys Ser Asn Gln Tyr Cys Cys Ser Asp Val Leu Arg Lys Ile Gln 50 60

Trp Asn Glu Glu Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Thr 65 70 75 80

Pro Ala Glu Glu Thr Pro Glu His Leu Gly Ser Ala Leu Lys Phe Arg 85 90 95

Ser Ser Phe Asp Ser Asp Pro Met Ser Gly Phe Gly Ala Thr Val Ala 100 105 110

Ile Gly Val Thr Ile Phe Val Val Phe Ile Ala Thr Ile Ile Cys
115 120 125

Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Met Cys Cys Pro Gln Arg 130 135 140

Pro Val Val Thr Asn Thr Thr Thr Thr Thr Val Val His Ala Pro Tyr 145 150 155 160

Pro Gln Pro Gln Pro Val Ala Pro Ser Tyr Pro Gly Pro Thr 165 170 175

Tyr Gln Gly Tyr His Pro Met Pro Pro Pro Ala Arg Asn Ala Ser Ser 180 185 190

Thr Leu Pro Asn Ala Val Pro Thr Thr Leu Pro Gly Pro Ala His Arg 195 200 205

Ala Ala Thr Leu Pro 210

<210> 59 <211> 26

<212> PRT

<213> Mus musculus

<400> 59

Met Ala Ala Pro Ala Pro Ser Leu Trp Thr Leu Leu Leu Leu Leu Leu 1 5 10 15

Leu Leu Pro Pro Pro Pro Gly Ala His Gly
20 25

<210> 60

<211> 187

<212> PRT

<213> Mus musculus

<400> 60

Glu Leu Cys Arg Pro Phe Gly Glu Asp Asn Ser Ile Pro Val Phe Cys

1 5 10 15

Pro Asp Phe Cys Cys Gly Ser Cys Ser Asn Gln Tyr Cys Cys Ser Asp 20 25 30

Val Leu Arg Lys Ile Gln Trp Asn Glu Glu Met Cys Pro Glu Pro Glu
35 40 45

Ser Ser Arg Phe Ser Thr Pro Ala Glu Glu Thr Pro Glu His Leu Gly 50 55 60

Ser Ala Leu Lys Phe Arg Ser Ser Phe Asp Ser Asp Pro Met Ser Gly
65 70 75 80

Phe Gly Ala Thr Val Ala Ile Gly Val Thr Ile Phe Val Val Phe Ile $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Ala Thr Ile Ile Cys Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys 100 105 110

Met Cys Cys Pro Gln Arg Pro Val Val Thr Asn Thr Thr Thr Thr Thr 115 120 125

Val Val His Ala Pro Tyr Pro Gln Pro Gln Pro Gln Pro Val Ala Pro 130 135 140

Ser Tyr Pro Gly Pro Thr Tyr Gln Gly Tyr His Pro Met Pro Pro Pro 145 150 155 160

Ala Arg Asn Ala Ser Ser Thr Leu Pro Asn Ala Val Pro Thr Thr Leu 165 170 175

Pro Gly Pro Ala His Arg Ala Ala Thr Leu Pro 180 185

<210> 61

<211> 86

<212> PRT

<213> Mus musculus

<400> 61 Glu Leu Cys Arg Pro Phe Gly Glu Asp Asn Ser Ile Pro Val Phe Cys Pro Asp Phe Cys Cys Gly Ser Cys Ser Asn Gln Tyr Cys Cys Ser Asp Val Leu Arg Lys Ile Gln Trp Asn Glu Glu Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Thr Pro Ala Glu Glu Thr Pro Glu His Leu Gly Ser Ala Leu Lys Phe Arg Ser Ser Phe Asp Ser Asp Pro Met Ser Gly Phe Gly Ala Thr Val Ala <210> 62 <211> 25 <212> PRT <213> Mus musculus <400> 62 Ile Gly Val Thr Ile Phe Val Val Phe Ile Ala Thr Ile Ile Ile Cys 10 5 Phe Thr Cys Ser Cys Cys Cys Leu Tyr 20 <210> 63 <211> 76 <212> PRT <213> Mus musculus <400> 63 Lys Met Cys Cys Pro Gln Arg Pro Val Val Thr Asn Thr Thr Thr Thr Val Val His Ala Pro Tyr Pro Gln Pro Gln Pro Gln Pro Val Ala Pro Ser Tyr Pro Gly Pro Thr Tyr Gln Gly Tyr His Pro Met Pro Pro Pro Ala Arg Asn Ala Ser Ser Thr Leu Pro Asn Ala Val Pro Thr Thr Leu Pro Gly Pro Ala His Arg Ala Ala Thr Leu Pro 70

<210> 64 <211> 50 <212> PRT <213> Mus musculus <400> 64 Cys Pro Asp Phe Cys Cys Gly Ser Cys Ser Asn Gln Tyr Cys Cys Ser Asp Val Leu Arg Lys Ile Gln Trp Asn Glu Glu Met Cys Pro Glu Pro 20 Glu Ser Ser Arg Phe Ser Thr Pro Ala Glu Glu Thr Pro Glu His Leu 40 Gly Ser 50 <210> 65 <211> 56 <212> PRT <213> Mus musculus <400> 65 Cys Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Met Cys Cys Pro Gln 10 Arg Pro Val Val Thr Asn Thr Thr Thr Thr Thr Val Val His Ala Pro 25 Tyr Pro Gln Pro Gln Pro Gln Pro Val Ala Pro Ser Tyr Pro Gly Pro 40 Thr Tyr Gln Gly Tyr His Pro Met 50 <210> 66 <211> 1927 <212> DNA <213> Homo sapiens <220> <221> modified base <222> all "n" positions <223> n=a, c, g, or t ccccgcctcc aaagctaacc ctcgggcttg aggggaagan gctgactgta cgttccttct 60 actotggcac cactotocag gotgocatgg ggcccagcac coctotoctc atottgttoc 120 ttttgtcatg gtcgggaccc ctccaaggac agcagcacca ccttgtggag tacatggaac 180 gccgactagc tgctttagag gaacggctgg cccagtgcca ggaccagagt agtcggcatg 240 ctgctgagct gcgggacttc aagaacaaga tgctngccac tgctggaggt ggcagagaag 300 gagegggagg cacteagaac tgaggeegae accateteeg ggagagtgga tegtetggag 360 cgggaggtag actatctgga gacccagaac ccagctctgc cctgtgtaga gtttgatgag 420 aaggttgact ggaggccctg ggaccaaagg caagggaaga aggaatgaga agtacgatat 480 ggtgacagac tgtggctaca caatctctca agtgagatca atgaagattc tgaagcgatt 540

tggtggccca gctggtctat ggaccaagga tccactgggg caaacagaga agatctacgt 600 gttagatggg acacagaatg acacagctt tgtcttccca aggctgcgtg acttcaccct 660 tgccatggct gcccggaaag cttcccgagt ccgggtgccc ttcccctggg taggcacagg 720

```
gcagctggta tatggtggct ttctttattt tgctcggagg cctcctggaa gacctggtgg 780
aqqtqqtqaq atggagaaca ctttgcagct aatcaaattc cacctggcaa accgaacagt 840
ggtggacagc tcagtattcc cagcagaggg gctgatcccc ccctacggct tgacagcaga 900
cacctacatc gacctggcag ctgatgagga aggtctttgg gctgtctatg ccacccggga 960
ggatgacagg cacttgtgtc tggccaagtt agatccacag acactggaca cagagcagca 1020
gtgggacaca ccatgtccca gagagaatgc tgaggctgcc tttntcatct gtgggaccct 1080
ctatgtcgtc tataacaccc gtcctgccag tcgggcccgc atccagtgct cctttgatgc 1140
caqcqqaccc tgacccctga acgggcagca ctcccttatt ttccccgcag atatggtgcc 1200
catgccagcc tccgctataa cccccgagaa cgccagctct atgcctggga tgatcgctac 1260
cagattgtct ataagctgga gatgaggaag aaagaggagg aggtttgagg agctagcctt 1320
cctcattctt caaatgtggg ccagttgtgg ctcaaatcct ctatattttt agccaatggc 1440
aatcaaattc tttcagctcc tttgtttcat acggaactcc agatcctgag taatcctttt 1500
aqaqcccqaa qaqtcaaaac cctcaatgtt ccctcctgct ctcctgccc atgtcaacaa 1560
atttcaggct aaggatgccc cagacccagg gctctaacct tgtatgcggg caggcccagg 1620
gagcaggcag cagtgttctt cccctcagag tgacttgggg agggagaaat aggaggagac 1680
qtccagetet gteetetett ceteaeteet eeetteagtg teeteaggaa caggaettte 1740
tccacattgt tttgtattgc aacattttgc attaaaaagg aaaatccana aaaaaaaaaa 1800
aaactgegge egetgteect tetgtegtet tetegeagee gtaceettet gtegtettet 1920
cgcagcc
<210> 67
<211> 319
<212> PRT
<213> Homo sapiens
<400> 67
Met Val Gly Lys Met Trp Pro Val Leu Trp Thr Leu Cys Ala Val Arg
Val Thr Val Asp Ala Ile Ser Val Glu Thr Pro Gln Asp Val Leu Arg
Ala Ser Gln Gly Lys Ser Val Thr Leu Pro Cys Thr Tyr His Thr Ser
                           40
Thr Ser Ser Arg Glu Gly Leu Ile Gln Trp Asp Lys Leu Leu Thr
                       55
His Thr Glu Arg Val Val Ile Trp Pro Phe Ser Asn Lys Asn Tyr Ile
                   70
                                      75
 65
His Gly Glu Leu Tyr Lys Asn Arg Val Ser Ile Ser Asn Asn Ala Glu
                                  90
Gln Ser Asp Ala Ser Ile Thr Ile Asp Gln Leu Thr Met Ala Asp Asn
                              105
           100
Gly Thr Tyr Glu Cys Ser Val Ser Leu Met Ser Asp Leu Glu Gly Asn
                          120
Thr Lys Ser Arg Val Arg Leu Leu Val Leu Val Pro Pro Ser Lys Pro
```

155

Glu Cys Gly Ile Glu Gly Glu Thr Ile Ile Gly Asn Asn Ile Gln Leu

150

130

Thr Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro Gln Tyr Ser Trp Lys 165 Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu Ala Gln Pro Ala Ser 185 Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr Asp Thr Ser Gly Tyr 200 Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr Gln Phe Cys Asn Ile 215 Thr Val Ala Val Arg Ser Pro Ser Met Asn Val Ala Leu Tyr Val Gly 230 225 Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile Ile Gly Ile Ile Ile Tyr Cys Cys Cys Cys Arg Gly Lys Asp Asp Asn Thr Glu Asp Lys Glu Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu Pro Pro Glu Gln Leu 280 Arg Glu Leu Ser Arg Glu Arg Glu Glu Glu Asp Asp Tyr Arg Gln Glu 295 Glu Gln Arg Ser Thr Gly Arg Glu Ser Pro Asp His Leu Asp Gln 310 315 <210> 68 <211> 2793 <212> DNA <213> Homo sapiens <400> 68 ctaccccttt gtgagcagtc taggactttg tacacctgtt aagtagggag aaggcagggg 60 aggtggctgg tttaagggga acttgaggga agtagggaag actcctcttg ggacctttgg 120 agtaggtgac acatgagccc agccccagct cacctgccaa tccagctgag gagctcacct 180 gccaatccag ctgaggctgg gcagaggtgg gtgagaagag ggaaaattgc agggacctcc 240 agttgggcca ggccagaagc tgctgtagct ttaaccagac agctcagacc tgtctggagg 300 ctgccagtga caggttaggt ttagggcaga gaagaagcaa gaccatggtg gggaagatgt 360 ggcctgtgtt gtggacactc tgtgcagtca gggtgaccgt cgatgccatc tctgtggaaa 420 ctccqcaqqa cqttcttcgg gcttcgcagg gaaagagtgt caccctgccc tgcacctacc 480 acacttecae etecagtega gagggaetta tteaatggga taageteete eteaeteata 540 cggaaagggt ggtcatctgg ccgttttcaa acaaaaacta catccatggt gagctttata 600 agaategegt cageatatee aacaatgetg ageagteega tgeeteeate accattgate 660

agctgaccat ggctgacaac ggcacctacg agtgttctgt ctcgctgatg tcagacctgg 720
agggcaacac caagtcacgt gtccgcctgt tggtcctcgt gccaccctcc aaaccagaat 780
gcggcatcga gggagagacc ataattggga acaacatcca gctgacctgc caatcaaagg 840
agggctcacc acccctcag tacagctgga agaggtacaa catcctgaat caggagcagc 900
ccctggccca gccagcctca ggtcagcctg tctccctgaa gaatatctcc acagaccact 960
cgggttacta catctgtacc tccagcaatg aggaggggac gcagttctgc aacatcacgg 1020
tggccgtcag atctccctcc atgaacgtgg ccctgtatgt gggcatcgcg gtgggcgtgg 1080
ttgcagccct cattatcatt ggcatcatca tctactgctg ctgctgccag gggaaggacg 1140
acaacactga agacaaggag gatgcaaggc ggagcggga tgactacagg caagaagacg 1260
agcagctaag agaactttcc agagagaggg aggaggagga tgactacagg caagaagagc 1260

```
agaggagcac tgggcgtgaa tccccggacc acctcgacca gtgacaggcc agcagcagag 1320
ggcggcggag gaagggttag gggttcattc tcccgcttcc tggcctccct tctcctttct 1380
aagccctgtt ctcctgtccc tccatcccag acattgatgg ggacatttct tccccagtgt 1440
cagctgtggg gaacatggct ggcctggtaa gggggtccct gtgctgatcc tgctgacctc 1500
actgtcctgt gaagtaaccc ctcctggctg tgacacctgg tgcgggcctg gccctcactc 1560
aagaccagge tgcagcetee actteeeteg tagttggcag gageteetgg aageacageg 1620
ctgagcatgg ggcgctccca ctcagaactc tccagggagg cgatgccagc cttggggggt 1680
gggggctgtc ctgctcacct gtgtgcccag cacctggagg ggcaccaggt ggagggtttg 1740
cactccacac atctttcttg aatgaatgaa agaataagtg agtatgcttg ggccctgcat 1800
tggcctggcc tccagctccc actccctttc caacctcact tcccgtagct gccagtatgt 1860
tccaaaccct cctgggaagg ccacctccca ctcctgctgc acaggccctg gggagctttt 1920
qcccacacac tttccatctc tgcctgtcaa tatcgtacct gtccctccag gcccatctca 1980
aatcacaagg atttctctaa ccctatccta attgtccaca tacgtggaaa caatcctgtt 2040
actotytoco acytocaato atygycoaca agycacayto ttotyaycya ytyototoac 2100
tgtattagag cgccagctcc ttggggcagg gcctgggcct catggctttt gctttccctg 2160
aagccctagt agctggcgcc catcctagtg ggcacttaag cttaattggg gaaactgctt 2220
tgattggttg tgccttccct tctctggtct ccttgagatg atcgtagaca cagggatgat 2280
tcccacccaa acccacgtat tcattcagtg agttaaacac gaattgattt aaagtgaaca 2340
cacacaaqqq aqcttgcttg cagatggtct gagttcttgt gtcctggtaa ttcctctcca 2400
ggccagaata attggcatgt ctcctcaacc cacatggggt tcctggttgt tcctgcatcc 2460
cgatacetea gecetggeee tgeceageee atttgggete tggttttetg gtggggetgt 2520
cctgctgccc tcccacagcc tccttctgtt tgtcgagcat ttcttctact cttgagagct 2580
caggcagcgt tagggctgct taggtctcat ggaccagtgg ctggtctcac ccaactgcag 2640
tttactattg ctatcttttc tggatgatca gaaaaataat tccataaatc tattgtctac 2700
ttgcgatttt ttaaaaaatg tatattttta tatatattgt taaatccttt gcttcattcc 2760
aaatgctttc agtaataata aaattgtggg tgg
<210> 69
<211> 52
<212> PRT
<213> Homo sapiens
<400> 69
Lys Thr Ala Leu Gly Glu Leu Leu Lys Pro Leu Asn Ser Glu Tyr Gly
                                     10
Lys Val Ala Pro Gly Trp Gly Thr Thr Pro Leu Met Gly Val Phe Met
Ala Leu Phe Ala Val Phe Leu Leu Ile Ile Leu Glu Ile Tyr Asn Ser
                             40
Ser Val Leu Leu
     50
<210> 70
<211> 1832
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 70
tgtggctgac gtcatctgga ggagatttgc tttctttttc tccaaaaggg gaggaaattg 60
```

```
aaactgcagt ggcccacgat gggaagaggg gaaagcccag gggtacagga ggcctctggg 120
tgaaggcaga ggctaacatg gggttcggag cgaccttggc cgttggctga ccatctttgt 180
getgtetgte gteactatea teatetgett cacetgetee tgetgetgee tttacaagae 240
gtgccgccga ccacgtccgg ttgtcaccac caccacatcc accactgtgg tgcatgcccc 300
ttatcctcag cctccaagtg tgccgcccag ctaccctgga ccaagctacc agggctacca 360
caccatgccg cctcagccag ggatgccagc agcaccctac ccaatgcagt acccaccacc 420
ttacccagec cageccatgg geocacegge etaccacgag accetggetg gaggagcage 480
cgcgccctam cccgscagcc agcctcctta caacccggcc tacatggatg cccgaagcgg 540
ccctctqaqc attccctggc ctctytggct gccacttggt tatgttgtgt gtgtgcgtra 600
gtggtgtgca ggcgcggttc cttacgcccc atgtgtgctg tgtgtgtcca ggcacggttc 660
cttacgcccc atgtgtgctg tgtgtgtcct gcctgtatat gtggcttcct ctgatgctga 720
caagtgggga acaatccttg ccagagtggg ctgggaccag actttgttct cttcctcacc 780
tgaaattatg cttcctaaaa tctcaagcca aactcaaaga atggggtggt ggggggcacc 840
ctgtgaggtg gcccctgaga ggtgggggcc tctccagggc acatctggag ttcttctcca 900
gcttacccta gggtgaccaa gtagggcctg tcacaccagg gtggcgcast ttctgtgtga 960
tgcagatgtg tcctggtttc ggcagcgtag ccagctgctg cttgaggcca tggctcgtcc 1020
ccggagttgg gggtacccgt tgcagagcca gggacatgat gcaggcgaag yttgggatct 1080
ggccaagttg gactttgatc ctttgggcag atgtcccatt gctccctgga gcctgtcatg 1140
cctgttgggg atcaggcagc ctcctgatgc cagaacacct caggcagagc cctactcagc 1200
tgtacctgtc tgcctggact gtcccctgtc cccgcatctc ccctgggacc agctggaggg 1260
ccacatgcac acacagccta gctgccccca gggagctctg ctgcccttgc tggccctgcc 1320
cttcccacag gtgagcaggg ctcctgtcca ccagcacact cagttctctt ccctgcagtg 1380
ttttcatttt attttagcca aacattttgc ctgttttctg tttcaaacat gatagttgat 1440
atgagactga aacccctggg ttgtggaggg aaattggctc agagatggac aacctggcaa 1500
ctgtgagtcc ctgcttcccg acaccagcct catggaatat gcaacaactc ctgtacccca 1560
gtccacggtg ttctggcagc agggacacct gggccaatgg gccatctgga ccaaaggtgg 1620
ggtgtggggc cctggatggc agctctggcc cagacatgaa tacctcgtgt tcctcctccc 1680
totattactg tttcaccaga gctgtcttag ctcaaatctg ttgtgtttct gagtctaggg 1740
tctgtacact tgtttataat aaatgcaatc gtttnggaaa aaaaananaa aaaaaaaagg 1800
                                                                  1832
ggsggcgctc taaaaggatn ccccnaaggg gg
<210> 71
<211> 51
<212> PRT
<213> Mus musculus
<400> 71
Ser Pro Arg Ser Lys Pro Thr Ala Gln Tyr Gln Trp Glu Arg Leu Ala
Pro Ser Ser Gln Val Phe Phe Gly Pro Ala Leu Asp Ala Val Arg Gly
Ser Leu Lys Leu Thr Asn Leu Ser Ile Ala Met Ser Gly Val Tyr Val
                             40
                                                 45
Cys Lys Ala
     50
<210> 72
<211> 2557
<212> DNA
<213> Homo sapiens
<400> 72
gaatteeggg agaagtgace agageaattt etgettttea eagggegggt tteteaaegg 60
tgacttgtgg gcagtgcctt ctgctgagcg agtcatggcc cgaaggcaga actaactgtg 120
```

```
cctgcagtct tcactctcag gatgcagccg aggtgggccc aaggggccac gatgtggctt 180
ggagteetge tgaecettet getetgttea ageettgagg gteaagaaaa etettteaca 240
atcaacagtg ttgacatgaa gagcctgccg gactggacgg tgcaaaatgg gaagaacctg 300
accetgeagt gettegegga tgteageace aceteteacg teaageetea geaceagatg 360
ctgttctata aggatgacgt gctgttttac aacatctcct ccatgaagag cacagagagt 420
tattttattc ctgaagtccg gatctatgac tcagggacat ataaatgtac tgtgattgtg 480
aacaacaaag agaaaaccac tgcagagtac cagctgttgg tggaaggagt gcccagtccc 540
agggtgacac tggacaagaa agaggccatc caaggtggga tcgtgagggt caactgttct 600
gtcccagagg aaaaggcccc aatacacttc acaattgaaa aacttgaact aaatgaaaaa 660
atggtcaagc tgaaaagaga gaagaattct cgagaccaga attttgtgat actggaattc 720
cccgttgagg aacaggaccg cgttttatcc ttccgatgtc aagctaggat catttctggg 780
atccatatgc agacctcaga atctaccaag agtgaactgg tcaccgtgac ggaatccttc 840
tctacaccca agttccacat cagccccacc ggaatgatca tggaaggagc tcagctccac 900
attaagtgca ccattcaagt gactcacctg gcccaggagt ttccagaaat cataattcag 960
aaggacaagg cgattgtggc ccacaacaga catggcaaca aggctgtgta ctcagtcatg 1020
gccatggtgg agcacagtgg caactacacg tgcaaagtgg agtccagccg catatccaag 1080
gtcagcagca tcgtggtcaa cataacagaa ctattttcca agcccgaact ggaatcttcc 1140
ttcacacatc tggaccaagg tgaaagactg aacctgteet getecatece aggageaect 1200
ccagccaact tcaccatcca gaaggaagat acgattgtgt cacagactca agatttcacc 1260
aagatageet caaagtegga cagtgggaeg tatatetgea etgeaggtat tgacaaagtg 1320
gtcaagaaaa gcaacacagt ccagatagtc gtatgtgaaa tgctctccca gcccaggatt 1380
tottatqatq cocaqtttqa qqtcataaaa ggacagacca tcgaagtccg ttgcgaatcg 1440
atcaqtqqaa ctttqcctat ttcttaccaa cttttaaaaa caagtaaagt tttggagaat 1500
agtaccaaga actcaaatga tcctgcggta ttcaaagaca accccactga agacgtcgaa 1560
taccaqtqtq ttqcaqataa ttgccattcc catgccaaaa tgttaagtga ggttctgagg 1620
qtqaaqqtqa taqccccggt ggatgaggtc cagatttcta tcctgtcaag taaggtggtg 1680
qaqtctqqaq aggacattgt gctgcaatgt gctgtgaatg aaggatctgg tcccatcacc 1740
tataagtttt acagagaaaa agagggcaaa cccttctatc aaatgacctc aaatgccacc 1800
caggcatttt ggaccaagca gaaggctagc aaggaacagg agggagagta ttactgcaca 1860
gccttcaaca gagccaacca cgcctccagt gtccccagaa gcaaaatact gacagtcaga 1920
gtcattcttg ccccatggaa gaaaggactt attgcagtgg ttatcatcgg agtgatcatt 1980
gctctcttga tcattgcggc caaatgttat tttctgagga aagccaaggc caagcagatg 2040
ccaqtggaaa tgtccaggcc agcagtacca cttctgaact ccaacaacga gaaaatgtca 2100
gateceaata tggaagetaa eagteattae ggteacaatg acgatgteag aaaceatgea 2160
atgaaaccaa taaatgataa taaagagcct ctgaactcag acgtgcagta cacggaagtt 2220
caaqtgtcct cagctgagtc tcacaaagat ctaggaaaga aggacacaga gacagtgtac 2280
agtgaagtcc ggaaagctgt ccctgatgcc gtggaaagca gatactctag aacggaaggc 2340
tcccttgatg gaacttagac agcaaggcca gatgcacatc cctggaagga catccatgtt 2400
ccgagaagaa cagataatcc ctgtatttca agacctctgt gcacttattt atgaacctgc 2460
cctgctccca cagaacacag caattcctca ggctaagctg ccggttctta aatccatcct 2520
gctaagttaa tgttgggtag aaagagatac agagggg
<210> 73
<211> 738
<212> PRT
<213> Homo sapiens
<400> 73
Met Gln Pro Arg Trp Ala Gln Gly Ala Thr Met Trp Leu Gly Val Leu
Leu Thr Leu Leu Cys Ser Ser Leu Glu Gly Gln Glu Asn Ser Phe
Thr Ile Asn Ser Val Asp Met Lys Ser Leu Pro Asp Trp Thr Val Gln
```

Asn Gly Lys Asn Leu Thr Leu Gln Cys Phe Ala Asp Val Ser Thr Thr

	50					55					60				
Ser 65	His	Val	Lys	Pro	Gln 70	His	Gln	Met	Leu	Phe 75	Tyr	Lys	Asp	Asp	Val 80
Leu	Phe	Tyr	Asn	Ile 85	Ser	Ser	Met	Lys	Ser 90	Thr	Glu	Ser	Tyr	Phe 95	Ile
Pro	Glu	Val	Arg 100	Ile	Tyr	Asp	Ser	Gly 105	Thr	Tyr	Lys	Cys	Thr 110	Val	Ile
Val	Asn	Asn 115	Lys	Glu	Lys	Thr	Thr 120	Ala	Glu	Tyr	Gln	Leu 125	Leu	Val	Glu
Gly	Val 130	Pro	Ser	Pro	Arg	Val 135	Thr	Leu	Asp	Lys	Lys 140	Glu	Ala	Ile	Gln
Gly 145	Gly	Ile	Val	Arg	Val 150	Asn	Cys	Ser	Val	Pro 155	Glu	Glu	Lys	Ala	Pro 160
Ile	His	Phe	Thr	Ile 165	Glu	Lys	Leu	Glu	Leu 170	Asn	Glu	Lys	Met	Val 175	Lys
Leu	Lys	Arg	Glu 180	Lys	Asn	Ser	Arg	Asp 185	Gln	Asn	Phe	Val	Ile 190	Leu	Glu
Phe	Pro	Val 195	Glu	Glu	Gln	Asp	Arg 200	Val	Leu	Ser	Phe	Arg 205	Cys	Gln	Ala
Arg	Ile 210	Ile	Ser	Gly	Ile	His 215	Met	Gln	Thr	Ser	Glu 220	Ser	Thr	Lys	Ser
Glu 225	Leu	Val	Thr	Val	Thr 230	Glu	Ser	Phe	Ser	Thr 235	Pro	Lys	Phe	His	11e 240
			_	245					250				Ile	255	
Thr	Ile	Gln	Val 260	Thr	His	Leu	Ala	Gln 265	Glu	Phe	Pro	Glu	Ile 270	Ile	Ile
		275					280					285	Asn		
Val	Tyr 290	Ser	Val	Met	Ala	Met 295	Val	Glu	His	Ser	Gly 300	Asn	Tyr	Thr	Cys
Lys 305	Val	Glu	Ser	Ser	Arg 310	Ile	Ser	Lys	Val	Ser 315	Ser	Ile	Val	Val	Asn 320
Ile	Thr	Glu	Leu	Phe 325	Ser	Lys	Pro	Glu	Leu 330	Glu	Ser	Ser	Phe	Thr 335	His
	_		340					345					Pro 350		
Pro	Pro	Ala 355	Asn	Phe	Thr	Ile	Gln 360	Lys	Glu	Asp	Thr	Ile 365	Val	Ser	Glr

Thr Gln Asp Phe Thr Lys Ile Ala Ser Lys Ser Asp Ser Gly Thr Tyr Ile Cys Thr Ala Gly Ile Asp Lys Val Val Lys Lys Ser Asn Thr Val 390 395 Gln Ile Val Val Cys Glu Met Leu Ser Gln Pro Arg Ile Ser Tyr Asp 405 410 Ala Gln Phe Glu Val Ile Lys Gly Gln Thr Ile Glu Val Arg Cys Glu 425 Ser Ile Ser Gly Thr Leu Pro Ile Ser Tyr Gln Leu Leu Lys Thr Ser 440 Lys Val Leu Glu Asn Ser Thr Lys Asn Ser Asn Asp Pro Ala Val Phe 455 Lys Asp Asn Pro Thr Glu Asp Val Glu Tyr Gln Cys Val Ala Asp Asn Cys His Ser His Ala Lys Met Leu Ser Glu Val Leu Arg Val Lys Val Ile Ala Pro Val Asp Glu Val Gln Ile Ser Ile Leu Ser Ser Lys Val Val Glu Ser Gly Glu Asp Ile Val Leu Gln Cys Ala Val Asn Glu Gly Ser Gly Pro Ile Thr Tyr Lys Phe Tyr Arg Glu Lys Glu Gly Lys Pro Phe Tyr Gln Met Thr Ser Asn Ala Thr Gln Ala Phe Trp Thr Lys Gln 550 555 Lys Ala Ser Lys Glu Gln Glu Gly Glu Tyr Tyr Cys Thr Ala Phe Asn Arg Ala Asn His Ala Ser Ser Val Pro Arg Ser Lys Ile Leu Thr Val Arg Val Ile Leu Ala Pro Trp Lys Lys Gly Leu Ile Ala Val Val Ile Ile Gly Val Ile Ile Ala Leu Leu Ile Ile Ala Ala Lys Cys Tyr Phe Leu Arg Lys Ala Lys Ala Lys Gln Met Pro Val Glu Met Ser Arg Pro 635 Ala Val Pro Leu Leu Asn Ser Asn Asn Glu Lys Met Ser Asp Pro Asn 645 Met Glu Ala Asn Ser His Tyr Gly His Asn Asp Asp Val Arg Asn His Ala Met Lys Pro Ile Asn Asp Asn Lys Glu Pro Leu Asn Ser Asp Val

```
680
                                                685
       675
Gln. Tyr Thr Glu Val Gln Val Ser Ser Ala Glu Ser His Lys Asp Leu
                        695
Gly Lys Lys Asp Thr Glu Thr Val Tyr Ser Glu Val Arg Lys Ala Val
                                        715
                    710
Pro Asp Ala Val Glu Ser Arg Tyr Ser Arg Thr Glu Gly Ser Leu Asp
                725
                                    730
Gly Thr
<210> 74
<211> 601
<212> DNA
<213> Rattus norvegicus
<220>
<221> modified base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 74
gnnnnnnagg thtanaghen cetttachee geegeggaeg egtgggegga egegtgggt 60
gctgtggagc aagaagcaac ccgaagctag gagtctgtca gcgagggcag gggctgcctg 120
gttggggtag gagtgggagc agggccagca ggagggtctg aggaagccat tcaaagcgag 180
cagctgggag agctggggag ccgggaaggg cctacagact acaagagagg atcctggcgt 240
ctgggcctcc tgggtcatca ccatgaggcc acttcttgcc ctgctgcttc tgggtctggc 300
atcaggetet ceteetetgg acgacaacaa gatececage etgtgteeeg ggeageeegg 360
cctcccaggc acaccaggcc accacggcag ccaaggcctg cctggccgtg acggccgtga 420
tggccgcgac ggtgcacccg gagctccggg agagaaaggc gagggcggga gaccgggact 480
acctgggcca cgtngggagc ccgggccgcg tggagaggca ggacctgtgg gggctatcgg 540
gcctggnggg gaatgctcgg tgccccacga tcagcttcag tgccaagcga tcagaaagcc 600
                                                                   601
<210> 75
<211> 732
<212> DNA
<213> Rattus norvegicus
<220>
<221> modified_base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 75
gngngttnnn ttccncctcc gacttaaggc tgccatgggg cccagtgctc ctctgctcct 60
cttcttcctt ttgtcatggc cgggacccct tcagggacag cagcaccacc ttgtggagta 120
catggaacgc cgactagctg ccttagagga gcggctggca cagtgccagg atcagagcag 180
teggeatget getgagette gggaetteaa aaacaagatg etgeetetae tggaggtgge 240
agagaaggag cgggaaacac tcagaaccga ggcagacagc atttcaggaa gagtggaccg 300
tettgaacgg gaagtagact acctggagac acagaaccca getttgeeet gtgtagaact 360
ggatgagaag gtgactggag gccctggaac caaaggcaag ggccggagaa atgagaaata 420
cgatatggtg acagactgta gctacacaat ctctcaggtg aggtcaatga agatcctgaa 480
gcggtttggt ggctcagctg gcctatggac caaggatcca ctggggccag canagaagat 540
```

ctacgtgtta gacggnacgc agaacgacac ggccttcgtt ttccganggt gcgtgactta 600 ccctcaccat ggctgccgca aagttccgaa tcgggtgccc ttncctgggt agnacaagaa 660

```
aactggtgtn tgtggcttcc tttttatctc aangcntctg gaggaacttg nanggggggn 720
nggtggnaaa at
<210> 76
<211> 177
<212> PRT
<213> Homo sapiens
<400> 76
 Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu
                                     10
 Gly Glu Ser Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser
             20
                                 25
 Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln
                             40
 Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr
                         55
 Ser Lys Pro Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu
                                         75
                     70
 Ser Leu Arg Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser
                                                          95
                 85
                                     90
 Cys Ser Val Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser
                                                     110
                                 105
 Ile Lys Thr Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser
                                                 125
                             120
 Cys Arg Leu Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser
                                             140
                         135
 Cys Gln Ser Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg
                     150
                                         155
 Gln Leu Pro Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile
                                                          175
                                     170
                 165
 Arg
<210> 77
<211> 735
<212> DNA
<213> Homo sapiens
<400> 77
 atgcgtctgt ttgtccgtcc gtccgtccgt cccgccatgg ctgcgccggc gccctctccg
                                                                         60
 tggaccettt cgctgctgct gttgttgcta ctgccgtctc cgggtgccca tggcgagctg
                                                                        120
 tgcaggccct tcggtgaaga caattcgatc ccagagtcct gtcctgactt ctgttgtggc
                                                                        180
 tectgtteca gecaatactg etgetetgae gtgetgaaga aaatecagtg gaatgaggaa
                                                                        240
 atgtgccctg agccagagtc cagcagattt tccgcccacc cggagacacc agaacagctg
                                                                        300
                                                                        360
 ggttcagcgc tgaagtatca gtccagtctt gacagtgaca acatgccagg gttcggagcg
 accgtggcca tcggcctgac cgtcttcgtg gtgtttatcg ctaccatcat tgtgtgcttt
                                                                        420
 acctgctcct gctgctgtct atataagatg tgctgccgcc cacgacctgt cgtgtccaac
                                                                        480
 accacaacta ctaccgtggt tcacaccgct taccctcagc ctcaacctgt ggcccccagc
                                                                        540
 tatectggac caacatacca gggetaccat eccatgeece eccagecagg aatgecagea
                                                                        600
 gcaccctacc caacgcagta ccctccaccc tacctggccc agcccacagg gccaccagcc
                                                                        660
 tatcatgaga cgttggctgg agccagccag cctccataca acccggccta catggatccc
                                                                        720
                                                                        735
 ccaaaggtag ttccc
```

<210> 78

```
<211> 18
<212> PRT
<213> Homo sapiens
<400> 78
Gly Ser Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr
                         10
                 5
Val Cys
<210> 79
<211> 22
<212> PRT
<213> Homo sapiens
<400> 79
Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu
                                    10
Val Ser Thr Gly Pro Gly
            20
<210> 80
<211> 728
<212> DNA
<213> Homo sapiens
<400> 80
atgaggccac tectogtect getgeteetg ggcetggegg eeggetegee eecactggae
                                                                        60
gacaacaaga teeccageet etgeeegggg cacceeggee tteeaggeae geegggeeae
                                                                       120
catggcagec agggettgee gggcegegat ggcegegaeg geegegaegg egegeeeggg
                                                                       180
gctccgggag agaaaggcga gggcgggagg cgggactgcc gggacctcga ggggaccccg
                                                                       240
ggccgcgagg agaggcggga cccgcggggc ccaccgggcc tgccggggag tgctcggtgc
                                                                       300
ctccgcgatc cgccttcagc gccaagegct ccgagagccg ggtgcctccg ccgtctgacg
                                                                       360
caccettgee ettegacege gtgetggtga acgageaggg acattaegae geegteaceg
                                                                       420
gcaagttcac ctgccaggtg cctggggtct actacttcgc cgtccatgcc accgtctacc
                                                                       480
gggccagcct gcagtttgat ctggtgaaga atggcgaatc ccttgcctct ttcttccagt
                                                                       540
ttttcggggg gtggcccaag ccagcctcgc tctcgggggg ggccatggtg aggctggagc
                                                                       600
ctgaggacca agtgtgggtg caggtgggtg tgggtgacta cattggcatc tatgccagca
                                                                       660
tcaagacaga cagcaccttc tccggatttc tggtgtactc cgactggcac agctccccag
                                                                       720
                                                                       728
tctttgct
<210> 81
<211> 206
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (13)
<223> Xaa=unknown amino acid
<400> 81
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Xaa Arg Phe Leu
                                    10
Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln
            20
                                25
 Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu Gly Glu Ser
                             40
```

PCT/US00/16883 WO 00/78808

```
Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser Ser Ser Gln
                       55
Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys
                   70
Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro
               85
Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg
                               105
                                                 110
Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val
                           120
                                             125
Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr
                       135
                                          140
Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu
                                     155
                   150
Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser
                               170
               165
Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro
          180 185
Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg
                          200
       195
<210> 82
<211> 217
<212> PRT
<213> Homo sapiens
<400> 82
Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu
      5
                      10
Gly Glu Ser Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser
                               25
Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln
                           40
Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr
                       55
 Ser Lys Pro Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu
                                       75
 Ser Leu Arg Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser
                                  90
 Cys Ser Val Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser
                              105
 Ile Lys Thr Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser
                                              125
                          120
 Cys Arg Leu Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser
                       135
                                          140
 Cys Gln Ser Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg
                   150
                                      155
 Gln Leu Pro Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile
                                   170
 Arg Gly Ser Leu Ser Leu Thr Asn Leu Ser Ser Met Ala Gly Val
                              185
            180
 Tyr Val Cys Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val
                           200
 Thr Leu Glu Val Ser Thr Gly Pro Gly
                        215
<210> 83
```

<211> 220

<212> PRT <213> Homo sapiens <400> 83 Gln Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu 5 Gly Glu Ser Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser 25 20 Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln 45 40 Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr 60 55 Ser Lys Pro Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu 75 70 Ser Leu Arg Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser 90 Cys Ser Val Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser 110 105 Ile Lys Thr Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser 125 120 Cys Arg Leu Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser 135 Cys Gln Ser Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg 155 150 Gln Leu Pro Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile 165 170 Arg Gly Ser Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val 180 185 Tyr Val Cys Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val 200 Thr Leu Glu Val Ser Thr Gly Pro Gly Ala Ala Val 215 <210> 84 <211> 202 <212> PRT <213> Homo sapiens <400> 84 Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp Ser 10 15 Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg 25 Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser 40 Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro 55 Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala 70 Asp Thr Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr 90 85 Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys 105 Val Thr Gly Gly Pro Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys 125 Tyr Asp Met Val Thr Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser 135

Met Lys Ile Leu Lys Arg Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys

```
155
145
                   150
Asp Pro Leu Gly Gln Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln
                                          175
                        170
               165
Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala
           180
                            185
Met Ala Ala Arg Lys Ala Ser Arg Val Arg
<210> 85
<211> 67
<212> PRT
<213> Homo sapiens
<400> 85
Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser Gly Thr Leu
                                   10
 1
Thr Pro Glu Arg Ala Ala Leu Pro Tyr Phe Pro Arg Arg Tyr Gly Ala
                               25
His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr Ala Trp
                          40
Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg Lys Lys Glu
   50
 Glu Glu Val
 65
<210> 86
<211> 19
<212> PRT
<213> Homo sapiens
<400> 86
Val Pro Phe Pro Trp Val Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe
            5
 Leu Tyr Phe
<210> 87
<211> 17
<212> PRT
<213> Homo sapiens
 Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn
                5
 1
 Thr
<210> 88
<211> 99
<212> PRT
<213> Homo sapiens
 <400> 88
 Ala Arg Arg Pro Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn
                                    10
                 5
 1
 Thr Leu Gln Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp
                                                30
                                25
 Ser Ser Val Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr
```

Ala Asp Thr Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala 50
Val Tyr Ala Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu 65
Asp Pro Gln Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro 85
Arg Glu Asn

<210> 89 <211> 320 <212> PRT <213> Homo sapiens

<400> 89 Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp Ser 5 Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala 75 Asp Thr Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr 90 Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys 105 Val Thr Gly Gly Pro Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys 120 Tyr Asp Met Val Thr Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser 140 135 Met Lys Ile Leu Lys Arg Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys 155 150 Asp Pro Leu Gly Gln Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln 170 165 Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala 190 185 Met Ala Ala Arg Lys Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val 200 Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg 215 Pro Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn Thr Leu Gln 230 235 Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val 250 245 Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr 265 Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala 280 Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln 300 295 Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn 310

<210> 90

<211> 385

<212> PRT <213> Homo sapiens <400> 90 Gln Gln His His Leu Val Glu Tyr Met Glu Arg Arg Leu Ala Ala Leu 10 Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro Leu Leu Glu Val Ala 40 Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala Asp Thr Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys Val Thr Gly Gly Pro 90 Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys Tyr Asp Met Val Thr 105 Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser Met Lys Ile Leu Lys 115 120 Arg Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys Asp Pro Leu Gly Gln 135 Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln Asn Asp Thr Ala Phe 155 150 Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala Met Ala Ala Arg Lys 170 175 Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val Gly Thr Gly Gln Leu 185 190 Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg Pro Pro Gly Arg Pro 200 205 Gly Gly Gly Glu Met Glu Asn Thr Leu Gln Leu Ile Lys Phe His 215 Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val Phe Pro Ala Glu Gly 225 230 235 Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr Tyr Ile Asp Leu Ala 245 250 Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln Thr Leu Asp Thr Glu 280 285 Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn Ala Glu Ala Ala Phe 300 295 Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn Thr Arg Pro Ala Ser 310 315 Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser Gly Thr Leu Thr Pro 325 . 330 Glu Arg Ala Ala Leu Pro Tyr Phe Pro Arg Arg Tyr Gly Ala His Ala 345 340 Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr Ala Trp Asp Asp 365 360 Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg Lys Lys Glu Glu Glu 375 Val 385 <210> 91 <211> 728

60

120

180

240

300

360

420

480

540

600

660

720 728

```
<212> DNA
<213> Homo sapiens
<400> 91
atgaggccac tectegteet getgeteetg ggeetggegg eeggetegee eecaetggae
gacaacaaga tecceageet etgecegggg caceeeggee ttecaggeac geegggecae
catggcagcc agggcttgcc gggccgcgat ggccgcgacg gccgcgacgg tgcgcccggg
geteegggag agaaaggega gggegggagg egggaetgee gggaeetega ggggaeeeeg
ggccgcgagg agaggcggga cccgcggggc ccaccgggcc tgccggggag tgctcggtgc
ctccgcgatc cgccttcagc gccaagcgct ccgagagccg ggtgcctccg ccgtctgacg
caccettgee ettegacege gtgetggtga acgageaggg acattaegae geegteaeeg
gcaagttcac ctgccaggtg cctggggtct actacttcgc cgtccatgcc accgtctacc
gggccagcct gcagtttgat ctggtgaaga atggcgaatc cattgcctct ttcttccagt
ttttcggggg gtggcccaag ccagcctcgc tctcgggggg ggccatggtg aggctggagc
ctgaggacca agtgtgggtg caggtgggtg tgggtgacta cattggcatc tatgccagca
tcaagacaga cagcacette teeggattte tggtgtacte cgactggcae ageteeccag
 tctttgct
<210> 92
<211> 69
<212> PRT
<213> Homo sapiens
<400> 92
 Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser Gly
                                     10
 Thr Leu Thr Pro Glu Arg Ala Ala Leu Pro Tyr Phe Pro Arg Arg Tyr
                                 25
             20
 Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr
                                                 45
                             40
 Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg Lys
                         55
     50
 Lys Glu Glu Glu Val
 65
<210> 93
<211> 202
<212> PRT
<213> Mus musculus
 <400> 93
 Met Gly Pro Ser Ala Pro Leu Leu Leu Phe Phe Leu Ser Trp Thr
                                                          15
                                      10
 Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg
                                  25
 Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser
                              40
  Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro
                                              60
                          55
  Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Thr Leu Arg Thr Glu Ala
                                          75
  Asp Ser Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr
                                      90
                  85
  Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Leu Asp Glu Lys
                                  105
  Val Thr Gly Gly Pro Gly Ala Lys Gly Lys Gly Arg Arg Asn Glu Lys
                                                  125
                              120
```

Tyr Asp Met Val Thr Asp Cys Ser Tyr Thr Val Ala Gln Val Arg Ser

```
140
                       135
    130
Met Lys Ile Leu Lys Arg Phe Gly Gly Ser Val Gly Leu Trp Thr Lys
                           155
         150
Asp Pro Leu Gly Pro Ala Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln
                                 170
               165
Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala
                    185
           180
Met Ala Ala Arg Lys Ala Ser Arg Ile Arg
                           200
<210> 94
<211> 69
<212> PRT
<213> Mus musculus
Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser Gly
                                  10
Thr Leu Ala Pro Glu Arg Ala Ala Leu Ser Tyr Phe Pro Arg Arg Tyr
                              25
           20
Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr
                                           45
                           40
Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Lys Lys
                       55
 Lys Glu Glu Glu Val
 65
<210> 95
<211> 19
<212> PRT
<213> Mus musculus
 Val Pro Phe Pro Trp Val Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe
                                   10
                 5
 Leu Tyr Tyr
<210> 96
<211> 16
<212> PRT
<213> Mus musculus
 Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn Thr
 1
<210> 97
 <211> 99
 <212> PRT
 <213> Mus musculus
 <400> 97
 Ala Arg Arg Pro Pro Gly Gly Pro Gly Gly Gly Glu Leu Glu Asn
                                    10
 Thr Leu Gln Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp
                               25
  Ser Ser Val Phe Pro Ala Glu Ser Leu Ile Pro Pro Tyr Gly Leu Thr
```

PCT/US00/16883 WO 00/78808

40

35 Ala Asp Thr Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala 55 Val Tyr Ala Thr Arg Asp Asp Asp Arg His Leu Cys Leu Ala Lys Leu 70 Asp Pro Gln Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn <210> 98 <211> 320 <212> PRT <213> Mus musculus <400> 98 Met Gly Pro Ser Ala Pro Leu Leu Leu Phe Phe Leu Ser Trp Thr 10 1 Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg 25 Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser 40 Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro 55 Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Thr Leu Arg Thr Glu Ala 75 Asp Ser Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr 90 Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Leu Asp Glu Lys 105 Val Thr Gly Gly Pro Gly Ala Lys Gly Lys Gly Arg Arg Asn Glu Lys 120 Tyr Asp Met Val Thr Asp Cys Ser Tyr Thr Val Ala Gln Val Arg Ser 135 Met Lys Ile Leu Lys Arg Phe Gly Gly Ser Val Gly Leu Trp Thr Lys 155 150 Asp Pro Leu Gly Pro Ala Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln 170 165 Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala 185 Met Ala Ala Arg Lys Ala Ser Arg Ile Arg Val Pro Phe Pro Trp Val 200 Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Tyr Ala Arg Arg 220 215 Pro Pro Gly Gly Pro Gly Gly Gly Glu Leu Glu Asn Thr Leu Gln 235 230 Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val 245 250 Phe Pro Ala Glu Ser Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr 265 260 Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala 280 Thr Arg Asp Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln 300 295 Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn 315

<210> 99

```
<211> 299
<212> PRT
<213> Mus musculus
<400> 99
Gln Gln His His Leu Val Glu Tyr Met Glu Arg Arg Leu Ala Ala Leu
                                    10
 1
Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser Ser Arg His Ala Ala
                                25
Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro Leu Leu Glu Val Ala
                           40
 Glu Lys Glu Arg Glu Thr Leu Arg Thr Glu Ala Asp Ser Ile Ser Gly
                       55
 Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr Leu Glu Thr Gln Asn
                                        75
                    70
 Pro Ala Leu Pro Cys Val Glu Leu Asp Glu Lys Val Thr Gly Gly Pro
                85
 Gly Ala Lys Gly Lys Gly Arg Arg Asn Glu Lys Tyr Asp Met Val Thr
                                105
                                                   110
 Asp Cys Ser Tyr Thr Val Ala Gln Val Arg Ser Met Lys Ile Leu Lys
                            120
                                            125
 Arg Phe Gly Gly Ser Val Gly Leu Trp Thr Lys Asp Pro Leu Gly Pro
                                           140
                        135
 Ala Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln Asn Asp Thr Ala Phe
                                       155
                    150
 Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala Met Ala Ala Arg Lys
                                    170
                165
 Ala Ser Arg Ile Arg Val Pro Phe Pro Trp Val Gly Thr Gly Gln Leu
                               185
                                                   190
 Val Tyr Gly Gly Phe Leu Tyr Tyr Ala Arg Arg Pro Pro Gly Gly Pro
                                      205
                           200
 Gly Gly Gly Gly Glu Leu Glu Asn Thr Leu Gln Leu Ile Lys Phe His
                                          220
                        215
 Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val Phe Pro Ala Glu Ser
                                        235
                  230
 Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr Tyr Ile Asp Leu Ala
                                   250
                245
 Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala Thr Arg Asp Asp Asp
                         265
 Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln Thr Leu Asp Thr Glu
                            280
 Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn
                         295
<210> 100
 <211> 728
 <212> DNA
<213> Homo sapiens
 <400> 100
                                                                       60
 atgaggecae tectegteet getgeteetg ggeetggegg eeggetegee eecaetggae
 gacaacaaga tececageet etgeeegggg caceeeggee ttecaggeac geegggeeac
                                                                      120
 catggcagcc agggcttgcc gggccgcgat ggccgcgacg gccgcgacgg cgcgcccggg
                                                                      180
 gctccgggag agaaaggcga gggcgggagg cgggactgcc gggacctcga ggggaccccg
                                                                      240
  ggccgcgagg agaggcggga cccgcggggc ccaccgggcc tgtcggggag tgctcggtgc
                                                                      300
 ctccgcgatc cgccttcagc gccaagcgct ccgagagccg ggtgcctccg ccgtctgacg
                                                                      360
  caccettgee ettegacege gtgetggtga acgageaggg acattaegae geegteaceg
                                                                       420
  gcaagttcac ctgccaggtg cctggggtct actacttcgc cgtccatgcc accgtctacc
                                                                       480
```

```
gggccagcct gcagtttgat ctggtgaaga atggcgaatc cattgcctct ttcttccagt
                                                                        540
ttttcggggg gtggcccaag ccagcctcgc tctcgggggg ggccatggtg aggctggagc
                                                                        600
ctgaggacca agtgtgggtg caggtgggtg tgggtgacta cattggcatc tatgccagca
                                                                        660
tcaagacaga cagcaccttc tccggatttc tggtgtactc cgactggcac agctccccag
                                                                        720
                                                                        728
tctttgct
<210> 101
<211> 728
<212> DNA
<213> Homo sapiens
<400> 101
atgaggecae tectegteet getgeteetg ggeetggegg eeggetegee eecaetggae
                                                                         60
gacaacaaga tececageet etgecegggg caceceggee ttecaggeac geegggecae
                                                                        120
                                                                        180
catggcagcc agggcttgcc gggccgcgat ggccgcgacg gccgcgacgg cgcgcccggg
geteegggag agaaaggega gggegggagg egggaetgee gggaeetega ggggaeeeeg
                                                                        240
 ggccgcgagg agaggcggga cccgcggggc ccaccgggcc tgccggggag tgctcggtgc
                                                                        300
 ctecgegate egeetteage gecaageget eegagageeg ggtgeeteeg eegtetgaeg
                                                                        360
 caccettgee ettegacege gtgetggtga acgageaggg acattaegae geegteaeeg
                                                                        420
 gcaagttcac ctgccaggtg cctggggtct actacttcgc cgtccatgcc accgtctacc
                                                                        480
 gggccagcct gcagtttgat ctggtgaaga atggcgaatc cattgcctct ttcttccagt
                                                                        540
                                                                        600
 ttttcggggg gtggcccaag ccagcctcgc tctcgggggg ggccatggtg aggctggagc
 ctgaggacca agtgtgggtg caggtgggtg tgggtgacta cattggcatc tatgccagca
                                                                        660
                                                                        720
 tcaagacaga cagcaccttc tccggatttc tggtgtactc cgactggcac agctccccag
                                                                        728
 tctttqct
<210> 102
<211> 243
<212> PRT
<213> Homo sapiens
<400> 102
 Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly Ser
                                                          15
                                     10
 Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly His Pro
                                                      30
                                  25
             20
 Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly
                             40
                                                  45
 Arg Asp Gly Arg Asp Gly Arg Asp Gly Val Pro Gly Ala Pro Gly Glu
                                              60
                         55
 Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Asp Pro
                                          75
                     70
 Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly Pro Thr Gly Pro Ala Gly
                                      90
                 85
 Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu
                                  105
                                                      110
             100
 Ser Arg Val Pro Pro Pro Ser Asp Ala Pro Leu Pro Phe Asp Arg Val
                                                  125
         115
                              120
 Leu Val Asn Glu Gln Gly His Tyr Asp Ala Val Thr Gly Lys Phe Thr
                                              140
                          135
     130
 Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr
                                          155
                      150
 145
 Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala
                                      170
                  165
 Ser Phe Phe Gln Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser
                                                      190
                                  185
              180
  Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln
                              200
                                                  205
          195
```

```
Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp
                                          220
                       215
    210
Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro
                                      235
                   230
225
Val Phe Ala
<210> 103
<211> 1338
<212> DNA
<213> Homo sapiens
<400> 103
60
agegeggggg ctggagcacc accaactgga gggteeggag tagegagege ceegaaggag
                                                                    120
gccatcgggg agccgggagg ggggactgcg agaggacccc ggcgtccggg ctcccggtgc
                                                                    180
cagegetatg aggecactee tegteetget geteetggge etggeggeeg getegeeeee
                                                                    240
actggacgac aacaagatcc ccagcctctg cccggggcac cccggccttc caggcacgcc
                                                                    300
gggccaccat ggcagccagg gcttgccggg ccgcgatggc cgcgacggcc gcgacggtgc
                                                                    360
gecegggget eegggagaga aaggegaggg egggaggegg gaetgeeggg aeetegaggg
                                                                    420
                                                                    480
gaccccgggc cgcgaggaga ggcgggaccc gcggggccca ccgggcctgc cggggagtgc
 teggtgeete egegateege etteagegee aagegeteeg agageegggt geeteegeeg
                                                                    540
 tetgacgcac cettgecett egacegegtg etggtgaacg ageagggaca ttacgacgee
                                                                    600
 gtcaccggca agttcacctg ccaggtgcct ggggtctact acttcgccgt ccatgccacc
                                                                    660
 gtctaccggg ccagcctgca gtttgatctg gtgaagaatg gcgaatccat tgcctctttc
                                                                    720
 ttccagtttt tcggggggtg gcccaagcca gcctcgctct cggggggggc catggtgagg
                                                                    780
 ctggagcctg aggaccaagt gtgggtgcag gtgggtgtgg gtgactacat tggcatctat
                                                                    840
 gecageatea agacagacag cacettetee ggatttetgg tgtacteega etggeacage
                                                                    900
 tececagtet ttgettagtg cecactgeaa agtgagetea tgeteteaet eetagaagga
                                                                    960
 gggtgtgagg ctgacaacct ggtcatccag gagggctggc ccccctggaa tattgtgaat
                                                                   1020
 gactagggag gtggggtaga gcactctccg tcctgctgct ggcaaggaat gggaacagtg
                                                                   1080
 getgtetgeg atcaggtetg geageatggg geagtggetg gatttetgee caagaccaga
                                                                   1140
 ggagtgtgct gtgctggcaa gtgtaagtcc cccagttgct ctggtccagg agcccacggt
                                                                   1200
 ggggtgetet etteetggte etetgettet etggateete eccaccecet eetgeteetg
                                                                   1260
 1320
                                                                   1338
 aaaaaaagg gcggccgc
<210> 104
<211> 243
<212> PRT
<213> Homo sapiens
<400> 104
 Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly Ser
                                                       15
                                    10
                 5
 Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly His Pro
                                25
 Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly
                                               45
                            40
 Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu
                                            60
                         55
 Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Asp Pro
                     70
                                        75
 Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly Pro Thr Gly Pro Val Gly
                                                       95
                                    90
                 85
  Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu
                                105
             100
  Ser Arg Val Pro Pro Pro Ser Asp Ala Pro Leu Pro Phe Asp Arg Val
```

```
120
       115
Leu Val Asn Glu Gln Gly His Tyr Asp Ala Val Thr Gly Lys Phe Thr
                                          140
                      135
Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr
                                      155
                   150
Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala
                                                     175
                                  170
               165
Ser Phe Phe Gln Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser
                                                 190
                              185
           180
Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln
                                              205
                           200
        195
Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp
                                         220
                       215
Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro
                                      235
                   230
Val Phe Ala
<210> 105
<211> 1338
<212> DNA
<213> Homo sapiens
<400> 105
60
agegegggg ctggageace accaactgga gggteeggag tagegagege ceegaaggag
                                                                   120
gccatcgggg agccgggagg ggggactgcg agaggacccc ggcgtccggg ctcccggtgc
                                                                   180
 cagegetatg aggecactee tegteetget geteetggge etggeggeeg getegeeece
                                                                   240
 actggacgac aacaagatce ccagcetetg cccggggcac cccggcette caggcacgce
                                                                   300
 gggccaccat ggcagccagg gcttgccggg ccgcgatggc cgcgacggcc gcgacggcgc
                                                                   360
 gcccggggct ccgggagaga aaggcgaggg cgggaggcgg gactgccggg acctcgaggg
                                                                    420
 gaccccgggc cgcgaggaga ggcgggaccc gcggggccca ccgggcctgt cggggagtgc
                                                                    480
 teggtgeete egegateege etteagegee aagegeteeg agageegggt geeteegeeg
                                                                    540
 tetgacgcac cettgecett egacegegtg etggtgaacg agcagggaca ttacgacgce
                                                                    600
 gtcaccggca agttcacctg ccaggtgcct ggggtctact acttcgccgt ccatgccacc
                                                                    660
 gtctaccggg ccagcctgca gtttgatctg gtgaagaatg gcgaatccat tgcctctttc
                                                                    720
 ttccagtttt tcggggggtg gcccaagcca gcctcgctct cggggggggc catggtgagg
                                                                    780
 ctggagcctg aggaccaagt gtgggtgcag gtgggtgtgg gtgactacat tggcatctat
                                                                    840
 gccagcatca agacagacag caccttctcc ggatttctgg tgtactccga ctggcacagc
                                                                    900
 tecceagtet ttgettagtg cecaetgeaa agtgagetea tgeteteaet cetagaagga
                                                                    960
 gggtgtgagg ctgacaacct ggtcatccag gagggctggc ccccctggaa tattgtgaat
                                                                   1020
 gactagggag gtggggtaga gcactctccg tcctgctgct ggcaaggaat gggaacagtg
                                                                   1080
 getgtetgeg atcaggtetg geageatggg geagtggetg gatttetgee caagaccaga
                                                                   1140
 ggagtgtgct gtgctggcaa gtgtaagtcc cccagttgct ctggtccagg agcccacggt
                                                                   1200
 ggggtgctct cttcctggtc ctctgcttct ctggatcctc cccaccccct cctgctcctg
                                                                   1260
 1320
                                                                   1338
 aaaaaaagg gcggccgc
 <210> 106
 <211> 243
 <212> PRT
 <213> Homo sapiens
 <400> 106
 Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly Ser
                                    10
                 5
  Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly His Pro
  1
                                                   30
                                25
             20
```

PCT/US00/16883 WO 00/78808

```
Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly
                           40
       35
Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu
                       55
Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Asp Pro
                                      75
                   70
65
Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly Pro Thr Gly Pro Ala Gly
                                   90
Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu
                               105
           100
Ser Arg Val Pro Pro Pro Ser Asp Ala Pro Leu Pro Phe Asp Arg Val
                                              125
                           120
        115
Leu Ala Asn Glu Gln Gly His Tyr Asp Ala Val Thr Gly Lys Phe Thr
                                          140
                       135
    130
Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr
                   150
                                      155
Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala
                                   170
               165
Ser Phe Phe Gln Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser
                                                  190
                               185
            180
Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln
                                              205
                           200
Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp
                                          220
                       215
Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro
                                       235
                    230
Val Phe Ala
<210> 107
<211> 1338
<212> DNA
<213> Homo sapiens
<400> 107
                                                                     60
120
 agcgcggggg ctggagcacc accaactgga gggtccggag tagcgagcgc cccgaaggag
gccatcgggg agccgggagg ggggactgcg agaggacccc ggcgtccggg ctcccggtgc
                                                                    180
 cagegetatg aggecactee tegteetget geteetggge etggeggeeg getegeeece
                                                                    240
 actggacgac aacaagatcc ccagcctctg cccggggcac cccggccttc caggcacgcc
                                                                    300
 gggccaccat ggcagccagg gcttgccggg ccgcgatggc cgcgacggcc gcgacggcgc
                                                                    360
 gcccggggct ccgggagaga aaggcgaggg cgggaggcgg gactgccggg acctcgaggg
                                                                    420
 gaccccgggc cgcgaggaga ggcgggaccc gcggggccca ccgggcctgc cggggagtgc
                                                                    480
                                                                    540
 teggtgeete egegateege etteagegee aagegeteeg agageegggt geeteegeeg
 tetgacgeac cettgeeett egacegegtg etggegaacg ageagggaca ttacgacgee
                                                                     600
 gtcaccggca agttcacctg ccaggtgcct ggggtctact acttcgccgt ccatgccacc
                                                                     660
 gtctaccggg ccagcctgca gtttgatctg gtgaagaatg gcgaatccat tgcctctttc
                                                                     720
 ttccagtttt tcggggggtg gcccaagcca gcctcgctct cgggggggggc catggtgagg
                                                                     780
 ctggagcctg aggaccaagt gtgggtgcag gtgggtgtgg gtgactacat tggcatctat
                                                                     840
 gccagcatca agacagacag cacettetee ggatttetgg tgtacteega etggcacage
                                                                     900
 tecceagtet ttgettagtg eccaetgeaa agtgagetea tgeteteaet eetagaagga
                                                                     960
 gggtgtgagg ctgacaacct ggtcatccag gagggctggc ccccctggaa tattgtgaat
                                                                    1020
 gactagggag gtggggtaga gcacteteeg teetgetget ggcaaggaat gggaacagtg
                                                                    1080
 getgtetgeg atcaggtetg geageatggg geagtggetg gatttetgee caagaccaga
                                                                    1140
 ggagtgtgct gtgctggcaa gtgtaagtcc cccagttgct ctggtccagg agcccacggt
                                                                    1200
 ggggtgctct cttcctggtc ctctgcttct ctggatcctc cccaccccct cctgctcctg
                                                                    1260
 1320
```

aaaaaaagg gcggccgc

1338

```
<210> 108
<211> 243
<212> PRT
<213> Homo sapiens
<400> 108
Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly Ser
                                   10
 1
Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly His Pro
                               25
 Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly
                            40
 Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu
                        55
 Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Asp Pro
                                    . 75
                    70
 Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly Pro Thr Gly Pro Ala Gly
                                    90
                85
 Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu
                                                   110
                                105
            100
 Ser Arg Val Pro Pro Pro Ser Asp Ala Pro Leu Pro Phe Asp Arg Val
                                               125
                            120
 Leu Val Asn Glu Gln Gly His Tyr Asp Ala Val Thr Gly Lys Phe Thr
                                           140
                        135
 Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr
                                       155
                    150
 Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Glu Ser Leu Ala
                                   170
                165
 Ser Phe Phe Gln Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser
                                                   190
                                185
            180
 Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln
                                               205
                           200
        195
 Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp
                                          220
                        215
 Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro
                                        235
                    230
 225
 Val Phe Ala
<210> 109
<211> 1338
<212> DNA
<213> Homo sapiens
<400> 109
                                                                      60
 agcgcggggg ctggagcacc accaactgga gggtccggag tagcgagcgc cccgaaggag
                                                                      120
 gccatcgggg agccgggagg ggggactgcg agaggacccc ggcgtccggg ctcccggtgc
                                                                      180
 cagogotatg aggocactoc togtootgot getootggge otggooggeog getogoocco
                                                                      240
                                                                      300
 actggacgac aacaagatcc ccagcetetg eeegggeac eeeggeette eaggeaegee
                                                                      360
 gggccaccat ggcagccagg gcttgccggg ccgcgatggc cgcgacggcc gcgacggcgc
 gcccggggct ccgggagaga aaggcgaggg cgggaggcgg gactgccggg acctcgaggg
                                                                      420
 gaccccgggc cgcgaggaga ggcgggaccc gcggggccca ccgggcctgc cggggagtgc
                                                                      480
                                                                      540
 teggtgeete egegateege etteagegee aagegeteeg agageegggt geeteegeeg
 tetgacgeae cettgeeett egacegegtg etggtgaaeg ageagggaea ttacgaegee
                                                                      600
 gtcaccggca agttcacctg ccaggtgcct ggggtctact acttcgccgt ccatgccacc
                                                                      660
                                                                      720
 gtctaccggg ccagcctgca gtttgatctg gtgaagaatg gcgaatccct tgcctctttc
                                                                      780
 ttccagtttt tcggggggtg gcccaagcca gcctcgctct cggggggggc catggtgagg
```

PCT/US00/16883 WO 00/78808

840

900 960

1020

1080

1140

1200

1260

1320 1338

```
ctggagcctg aggaccaagt gtgggtgcag gtgggtgtgg gtgactacat tggcatctat
gccagcatca agacagacag caccttctcc ggatttctgg tgtactccga ctggcacagc
tecceagtet ttgettagtg eccaetgeaa agtgagetea tgeteteaet eetagaagga
gggtgtgagg ctgacaacct ggtcatccag gagggctggc ccccctggaa tattgtgaat
gactagggag gtggggtaga gcactctccg tcctgctgct ggcaaggaat gggaacagtg
gctgtctgcg atcaggtctg gcagcatggg gcagtggctg gatttctgcc caagaccaga
ggagtgtgct gtgctggcaa gtgtaagtcc cccagttgct ctggtccagg agcccacggt
ggggtgctct cttcctggtc ctctgcttct ctggatcctc cccaccccct cctgctcctg
gggccggccc ttttctcaga gatcactcaa taaacctaag aaccctccaa aaaaaaaaa
aaaaaaagg gcggccgc
<210> 110
<211> 406
<212> PRT
<213> Homo sapiens
<400> 110
Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp Ser
                                     10
                 -5
 Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg
             20
 Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser
 Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro
 Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala
                                         75
                     70
 Asp Thr Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Ala Asp Tyr
                                     90
                 85
 Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys
                                                     110
                                 105
             100
 Val Thr Gly Gly Pro Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys
                                                125
                             120
         115
 Tyr Asp Met Val Thr Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser
                                             140
                         135
 Met Lys Ile Leu Lys Arg Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys
                                         155
                     150
 Asp Pro Leu Gly Gln Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln
                                     170
                 165
 Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala
                                                     190
                                 185
 Met Ala Ala Arg Lys Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val
                                                 205
                             200
 Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg
                         215
 Pro Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn Thr Leu Gln
                                         235
                     230
```

250

270

285

300

315

Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val

Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr

Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala

Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn

Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn

280 Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln

295

310

265

245

260

275

```
330
                325
Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser
                                                   350
                                345
Gly Thr Leu Thr Pro Glu Arg Ala Ala Leu Pro Tyr Phe Pro Arg Arg
                                               365
                            360
Tyr Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu
                                            380
                        375
    370
Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg
                                       395
                    390
Lys Lys Glu Glu Glu Val
                405
<210> 111
<211> 1831
<212> DNA
<213> Homo sapiens
<400> 111
gtcgacccac gcgtccgcgg acgcgtgggt gaggggaaga ggctgactgt acgttccttc
                                                                      60
tactctggca ccactctcca ggctgccatg gggcccagca cccctctcct catcttgttc
                                                                      120
cttttgtcat ggtcgggacc cctccaagga cagcagcacc accttgtgga gtacatggaa
                                                                      180
cgccgactag ctgctttaga ggaacggctg gcccagtgcc aggaccagag tagtcggcat
                                                                      240
gctgctgagc tgcgggactt caagaacaag atgctgccac tgctggaggt ggcagagaag
                                                                      300
                                                                      360
 gagcgggagg cactcagaac tgaggccgac accatctccg ggagagtgga tcgtctggag
 cgggaggcag actatctgga gacccagaac ccagctctgc cctgtgtaga gtttgatgag
                                                                      420
 aaggtgactg gaggccctgg gaccaaaggc aagggaagaa ggaatgagaa gtacgatatg
                                                                      480
 gtgacagact gtggctacac aatctctcaa gtgagatcaa tgaagattct gaagcgattt
                                                                      540
 ggtggcccag ctggtctatg gaccaaggat ccactggggc aaacagagaa gatctacgtg
                                                                      600
 ttagatggga cacagaatga cacagcettt gtetteecaa ggetgegtga etteaceett
                                                                      660
 gccatggctg cccggaaagc ttcccgagtc cgggtgccct tcccctgggt aggcacaggg
                                                                      720
 cagetggtat atggtggett tetttatttt geteggagge eteetggaag acetggtgga
                                                                      780
 ggtggtgaga tggagaacac tttgcagcta atcaaattcc acctggcaaa ccgaacagtg
                                                                      840
 gtggacaget cagtattece ageagaggg ctgatecece cetaeggett gacageagae
                                                                      900
 acctacateg acctggcage tgatgaggaa ggtetttggg etgtetatge caccegggag
                                                                      960
 gatgacagge acttgtgtct ggccaagtta gatccacaga cactggacac agagcagcag
                                                                     1020
 tgggacacac catgtcccag agagaatgct gaggctgcct ttgtcatctg tgggaccctc
                                                                     1080
 tatgtcgtct ataacacccg tcctgccagt cgggcccgca tccagtgctc ctttgatgcc
                                                                     1140
 ageggeacce tgaccectga aegggeagea etecettatt tteccegeag atatggtgee
                                                                     1200
 catgccagcc teegetataa eeeeegagaa egeeagetet atgeetggga tgatggetae
                                                                     1260
 cagattgtct ataagctgga gatgaggaag aaagaggagg aggtttgagg agctagcctt
                                                                     1320
 1380
 cctcattctt caaatgtggg ccagttgtgg ctcaaatcct ctatattttt agccaatggc
                                                                     1440
 aatcaaattc tttcagctcc tttgtttcat acggaactcc agatcctgag taatcctttt
                                                                     1500
 agagecegaa gagteaaaac ceteaatgtt eceteetget eteetgeece atgteaacaa
                                                                     1560
 atttcaggct aaggatgccc cagacccagg gctctaacct tgtatgcggg caggcccagg
                                                                     1620
 gagcaggcag cagtgttctt cccctcagag tgacttgggg agggagaaat aggaggagac
                                                                     1680
 gtccagctct gtcctctctt cctcactcct cccttcagtg tcctgaggaa caggactttc
                                                                     1740
 tccacattgt tttgtattgc aacattttgc attaaaagga aaatccactg ctaaaaaaaa
                                                                     1800
                                                                     1831
 aaaaaaaaa agggcggccg c
<210> 112
<211> 406
<212> PRT
<213> Homo sapiens
<400> 112
 Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp Ser
                                     10
```

```
Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg
                              25
Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser
                          40
Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro
Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala
Asp Thr Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr
                                  90
               85
Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys
           100
Val Thr Gly Gly Pro Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys
                                             125
                          120
Tyr Asp Ile Val Thr Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser
                                          140
                     135
Met Lys Ile Leu Lys Arg Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys
                                      155
                  150
Asp Pro Leu Gly Gln Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln
                                 170
Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala
                              185
                                                  190
Met Ala Ala Arg Lys Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val
                                             205
                          200
Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg
                                        220
                      215
Pro Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn Thr Leu Gln
                                      235
                   230
Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val
                                   250
               245
Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr
                              265
Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala
                          280
Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln
                       295
Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn
                                      315
                  310
Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn
                                  330
               325
Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser
                                                 350
                              345
           340
Gly Thr Leu Thr Pro Glu Arg Ala Ala Leu Pro Tyr Phe Pro Arg Arg
                          360
Tyr Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu
                                          380
               375
Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg
                   390
Lys Lys Glu Glu Glu Val
```

<210> 113

<211> 1831

<212> DNA

<213> Homo sapiens

<400> 113

gtegacecae gegteegegg aegegtgggt gaggggaaga ggetgaetgt aegtteette

68

60

```
tactotggca coactotoca ggotgocatg gggoccagca cocctotoct catottgtto
                                                                    120
cttttgtcat ggtcgggacc cctccaagga cagcagcacc accttgtgga gtacatggaa
                                                                    180
cgccgactag ctgctttaga ggaacggctg gcccagtgcc aggaccagag tagtcggcat
                                                                    240
gctgctgagc tgcgggactt caagaacaag atgctgccac tgctggaggt ggcagagaag
                                                                    300
gagegggagg cacteagaac tgaggeegac accateteeg ggagagtgga tegtetggag
                                                                    360
cgggaggtag actatctgga gacccagaac ccagctctgc cctgtgtaga gtttgatgag
                                                                    420
aaggtgactg gaggccctgg gaccaaaggc aagggaagaa ggaatgagaa gtacgatata
                                                                    480
gtgacagact gtggctacac aatctctcaa gtgagatcaa tgaagattct gaagcgattt
                                                                     540
ggtggcccag ctggtctatg gaccaaggat ccactggggc aaacagagaa gatctacgtg
                                                                     600
ttagatggga cacagaatga cacagcettt gtetteecaa ggetgegtga etteaceett
                                                                     660
gccatggctg cccggaaagc ttcccgagtc cgggtgccct tcccctgggt aggcacaggg
                                                                     720
cagctggtat atggtggctt tctttatttt gctcggaggc ctcctggaag acctggtgga
                                                                     780
ggtggtgaga tggagaacac tttgcagcta atcaaattcc acctggcaaa ccgaacagtg
                                                                     840
gtggacagct cagtattccc agcagaggg ctgatccccc cctacggctt gacagcagac
                                                                     900
acctacatcg acctggcagc tgatgaggaa ggtctttggg ctgtctatgc cacccgggag
                                                                     960
gatgacagge acttgtgtct ggccaagtta gatccacaga cactggacac agagcagcag
                                                                    1020
tgggacacac catgtcccag agagaatgct gaggctgcct ttgtcatctg tgggaccctc
                                                                    1080
tatgtcgtct ataacacccg tcctgccagt cgggcccgca tccagtgctc ctttgatgcc
                                                                    1140
ageggeacce tgacceetga aegggeagea etecettatt tteccegeag atatggtgee
                                                                    1200
catgccagcc teegetataa eeeeegagaa egeeagetet atgeetggga tgatggetae
                                                                    1260
cagattgtct ataagctgga gatgaggaag aaagaggagg aggtttgagg agctagcctt
                                                                    1320
1380
cctcattctt caaatgtggg ccagttgtgg ctcaaatcct ctatattttt agccaatggc
                                                                    1440
aatcaaattc tttcagctcc tttgtttcat acggaactcc agatcctgag taatcctttt
                                                                    1500
agagecegaa gagteaaaac eeteaatgtt eeeteetget eteetgeeee atgteaacaa
                                                                    1560
                                                                    1620
atttcaggct aaggatgccc cagacccagg gctctaacct tgtatgcggg caggcccagg
                                                                    1680
gagcaggcag cagtgttctt cccctcagag tgacttgggg agggagaaat aggaggagac
                                                                    1740
gtccagctct gtcctctctt cctcactcct cccttcagtg tcctgaggaa caggactttc
tccacattgt tttgtattgc aacattttgc attaaaagga aaatccactg ctaaaaaaaa
                                                                    1800
                                                                    1831
aaaaaaaaa aaaaaaaaa agggcggccg c.
```

<210> 114

<211> 406

<212> PRT

<213> Homo sapiens

<400> 114

Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp Ser 15 Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg 30 25 20 Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser 45 40 Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro 55 Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala 75 70 Asp Thr Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr 90 85 Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys 110 105 100 Val Thr Gly Gly Pro Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys 120 125 115 Tyr Asp Met Val Thr Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser 140 135 130 Met Lys Ile Leu Lys Arg Phe Gly Gly Pro Ala Gly Ile Trp Thr Lys 155 150 Asp Pro Leu Gly Gln Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln

```
175
                                    170
                165
Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala
                                                    190
                                185
            180
Met Ala Ala Arg Lys Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val
                                                205
                            200
        195
Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg
                                            220
                        215
Pro Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn Thr Leu Gln
    210
                                        235
                    230
Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val
                                                         255
                                    250
                245
Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr
                                                     270
                                265
            260
Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala
                                                 285
                            280
        275
Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln
                                             300
                        295
Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn
                                         315
                    310
Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn
                                                         335
                                     330
                325
Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser
                                                     350
                                 345
             340
Gly Thr Leu Thr Pro Glu Arg Ala Ala Leu Pro Tyr Phe Pro Arg Arg
                                                 365
                             360
 Tyr Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu
                                             380
                         375
 Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg
    370
                                         395
                     390
 Lys Lys Glu Glu Glu Val
                 405
<210> 115
<211> 1831
<212> DNA
<213> Homo sapiens
<400> 115
 gtcgacccac gcgtccgcgg acgcgtgggt gaggggaaga ggctgactgt acgttccttc
                                                                         60
 tactetggca ccacteteca ggetgecatg gggeccagea eccetetect catettgtte
                                                                        120
 cttttgtcat ggtcgggacc cctccaagga cagcagcacc accttgtgga gtacatggaa
                                                                        180
 cgccgactag ctgctttaga ggaacggctg gcccagtgcc aggaccagag tagtcggcat
                                                                        240
 getgetgage tgegggaett caagaacaag atgetgecae tgetggaggt ggeagagaag
                                                                        300
 gagegggagg cacteagaac tgaggeegac accateteeg ggagagtgga tegtetggag
                                                                         360
 cgggaggtag actatctgga gacccagaac ccagctctgc cctgtgtaga gtttgatgag
                                                                         420
 aaggtgactg gaggccctgg gaccaaaggc aagggaagaa ggaatgagaa gtacgatatg
                                                                         480
 gtgacagact gtggctacac aatctctcaa gtgagatcaa tgaagattct gaagcgattt
                                                                         540
 ggtggcccag ctggtatatg gaccaaggat ccactggggc aaacagagaa gatctacgtg
                                                                         600
 ttagatggga cacagaatga cacagcettt gtetteecaa ggetgegtga etteaceett
                                                                         660
                                                                         720
 gccatggctg cccggaaagc ttcccgagtc cgggtgccct tcccctgggt aggcacaggg
  cagetggtat atggtggctt tetttatttt geteggagge eteetggaag acetggtgga
                                                                         780
  ggtggtgaga tggagaacac tttgcagcta atcaaattcc acctggcaaa ccgaacagtg
                                                                         840
  gtggacaget cagtattece ageagaggg ctgatecece cetaeggett gaeageagae
                                                                         900
  acctacateg acctggcage tgatgaggaa ggtctttggg ctgtctatgc cacccgggag
                                                                         960
  gatgacagge acttgtgtct ggccaagtta gatccacaga cactggacac agagcagcag
                                                                        1020
  tgggacacac catgtcccag agagaatgct gaggctgcct ttgtcatctg tgggaccctc
                                                                        1080
  tatgtegtet ataacacceg teetgecagt egggeeegea teeagtgete etttgatgee
                                                                        1140
  ageggeacec tgaccectga aegggeagea etceettatt tteccegeag atatggtgee
                                                                        1200
```

```
catgocagoo toogotataa coccogagaa ogocagotot atgootggga tgatggotac
                                                                1260
cagattgtct ataagctgga gatgaggaag aaagaggagg aggtttgagg agctagcctt
                                                                1320
1380
cctcattctt caaatgtggg ccagttgtgg ctcaaatcct ctatattttt agccaatggc
                                                                1440
aatcaaattc tttcagctcc tttgtttcat acggaactcc agatcctgag taatcctttt
                                                                1500
agaqeeeqaa gagteaaaac eeteaatgtt eeeteetget eteetgeee atgteaacaa
                                                                1560
atttcaggct aaggatgccc cagacccagg gctctaacct tgtatgcggg caggcccagg
                                                                1620
gagcaggcag cagtgttctt cccctcagag tgacttgggg agggagaaat aggaggagac
gtccagctct gtcctctctt cctcactcct cccttcagtg tcctgaggaa caggactttc
                                                                1740
tecacattgt titgtattge aacattitge attaaaagga aaatecaetg etaaaaaaaa
                                                                1800
aaaaaaaaa aaaaaaaaaa agggcggccg c
                                                                1831
<210> 116
```

<210> 116 <211> 406 <212> PRT

<213> Homo sapiens

<400> 116 Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp Ser 10 Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg 25 Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser 40 Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro 55 60 Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Ala Leu Arg Thr Glu Ala 70 75 Asp Thr Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr 90 85 Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Phe Asp Glu Lys 105 110 Val Thr Gly Gly Pro Gly Thr Lys Gly Lys Gly Arg Arg Asn Glu Lys 120 125 Tyr Asp Met Val Thr Asp Cys Gly Tyr Thr Ile Ser Gln Val Arg Ser 140 135 Met Lys Ile Leu Lys Arg Phe Gly Gly Pro Ala Gly Leu Trp Thr Lys 150 155 Asp Pro Leu Gly Gln Thr Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln 170 175 165 Asn Asp Thr Val Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala 180 185 190 Met Ala Ala Arg Lys Ala Ser Arg Val Arg Val Pro Phe Pro Trp Val 200 205 Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Phe Ala Arg Arg 215 220 Pro Pro Gly Arg Pro Gly Gly Gly Glu Met Glu Asn Thr Leu Gln 230 235 Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val 245 250 Phe Pro Ala Glu Gly Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr 265 Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala 280 285 Thr Arg Glu Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln 295 300 Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn 310 315

PCT/US00/16883 WO 00/78808

```
Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn
                 325
                                    330
 Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser
                                345
            340
 Gly Thr Leu Thr Pro Glu Arg Ala Ala Leu Pro Tyr Phe Pro Arg Arg
                            360
                                                365
 Tyr Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu
                        375
                                           380
 Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg
                    390
                                        395
Lys Lys Glu Glu Glu Val
                405
<210> 117
<211> 1831
<212> DNA
<213> Homo sapiens
<400> 117
gtcgacccac gcgtccgcgg acgcgtgggt gaggggaaga ggctgactgt acgttccttc
                                                                      60
 tactotggca ccactoteca ggotgccatg gggcccagca cccctotect catottgtte
                                                                     120
cttttgtcat ggtcgggacc cctccaagga cagcagcacc accttgtgga gtacatggaa
                                                                     180
cgccgactag ctgctttaga ggaacggctg gcccagtgcc aggaccagag tagtcggcat
                                                                     240
gctgctgagc tgcgggactt caagaacaag atgctgccac tgctggaggt ggcagagaag
                                                                     300
gagcgggagg cactcagaac tgaggccgac accatctccg ggagagtgga tcgtctggag
                                                                     360
cgggaggtag actatctgga gacccagaac ccagetctgc cctgtgtaga gtttgatgag
                                                                     420
aaggtgactg gaggccctgg gaccaaaggc aagggaagaa ggaatgagaa gtacgatatg
                                                                     480
gtgacagact gtggctacac aatctctcaa gtgagatcaa tgaagattct gaagcgattt
                                                                     540
ggtggcccag ctggtctatg gaccaaggat ccactggggc aaacagagaa gatctacgtg
                                                                     600
ttagatggga cacagaatga cacagtettt gtetteecaa ggetgegtga etteaceett
                                                                     660
gccatggctg cccggaaagc ttcccgagtc cgggtgccct tcccctgggt aggcacaggg
                                                                     720
cagctggtat atggtggctt tetttatttt geteggagge eteetggaag acctggtgga
                                                                     780
ggtggtgaga tggagaacac tttgcagcta atcaaattcc acctggcaaa ccgaacagtg
                                                                     840
gtggacaget cagtattece ageagagggg ctgatecece cetaeggett gacageagae
                                                                     900
acctacateg acctggcage tgatgaggaa ggtetttggg etgtetatge caccegggag
                                                                     960
gatgacaggc acttgtgtct ggccaagtta gatccacaga cactggacac agagcagcag
                                                                    1020
tgggacacac catgtcccag agagaatgct gaggctgcct ttgtcatctg tgggaccctc
                                                                    1080
tatgtcgtct ataacacccg tcctgccagt cgggcccgca tccagtgctc ctttgatgcc
                                                                    1140
ageggeacce tgacceetga aegggeagea etecettatt tteeeegeag atatggtgee
                                                                    1200
catgccagcc tccgctataa cccccgagaa cgccagctct atgcctggga tgatggctac
                                                                    1260
cagattgtct ataagctgga gatgaggaag aaagaggagg aggtttgagg agctagcctt
                                                                    1320
1380
cctcattctt caaatgtggg ccagttgtgg ctcaaatcct ctatattttt agccaatggc
                                                                    1440
aatcaaattc tttcaqctcc tttqtttcat acqqaactcc aqatcctqaq taatcctttt
                                                                    1500
agagecegaa gagteaaaac ceteaatgtt ceeteetget eteetgeec atgteaacaa
                                                                    1560
atttcaqqct aaqqatqccc caqacccagq qctctaacct tgtatqcqqq caqqcccaqq
                                                                    1620
gagcaggcag cagtgttctt cccctcagag tgacttgggg agggagaaat aggaggagac
                                                                    1680
gtccagctct gtcctctctt cctcactcct cccttcagtg tcctgaggaa caggactttc
                                                                    1740
tccacattgt tttgtattgc aacattttgc attaaaagga aaatccactg ctaaaaaaaa
                                                                    1800
aaaaaaaaa agggcggccg c
                                                                    1831
<210> 118
<211> 242
<212> PRT
```

Met Arg Pro Leu Leu Ala Leu Leu Leu Gly Leu Val Ser Gly Ser

<213> Mus musculus

<400> 118

```
10
1
Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly Gln Pro
                                25
Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly
                            40
Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu
                        55
Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Glu Pro
                    70
Gly Pro Arg Gly Glu Gly Pro Met Gly Ala Ile Gly Pro Ala Gly Glu
                85
Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu Ser
                                105
            100
Arg Val Pro Pro Pro Ala Asp Thr Pro Leu Pro Phe Asp Arg Val Leu
                            120
                                                125
        115
Leu Asn Glu Gln Gly His Tyr Asp Pro Thr Thr Gly Lys Phe Thr Cys
                                            140
                        135
Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr Arg
                                        155
                    150
Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Gln Ser Ile Ala Ser
                                    170
Phe Phe Gln Tyr Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser Gly
                                185
.Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln Val
                                                 205
                            200
Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp Ser
                                             220
                        215
Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro Val
                                        235
225
Phe Ala
<210> 119
<211> 1263
<212> DNA
<213> Mus musculus
gtcgacccac gcgtccgcgc tgtgaagcca gcaaggagca accagaagct aggagtcagt
                                                                        60
cagcaaggac aggggctgcc tgcctacaga ctacaagaga ggttcctgga gtctgagcct
                                                                       120
ccggggtcac caccatgagg ccacttettg cccttetget tetgggtetg gtgtcagget
                                                                        180
ctcctcctct ggacgacaac aagatcccca gcctgtgtcc cgggcagccc ggccttccag
                                                                        240
                                                                        300
gcacaccagg tcaccatggc agccaaggcc tgcctggccg tgacggccgt gatggccgcg
                                                                        360
acggtgcacc cggagctccg ggagagaaaag gcgagggcgg gagaccggga ctacctggcc
cacgtgggga gcccgggccg cgtggagagg tagggcccat gggggctatc gggcctgcgg
                                                                        420
gggagtgete ggtaccecca egateageet teagtgeeaa gegateegag ageegggtae
                                                                        480
 ctccgccagc cgacacaccc ctacctttcg accgtgtgct gctaaatgag cagggccatt
                                                                        540
 acgaccccac tactggcaag ttcacctgcc aagtgcctgg cgtctactac tttgctgtgc
                                                                        600
 acgccactgt ctaccgggcc agcttgcagt ttgatcttgt caaaaacggg cagtccatcg
                                                                        660
 cctctttctt ccagtatttt ggggggtggc ccaagccagc ctcgctctca gggggtgcga
                                                                        720
                                                                        780
 tggtaaggct agaacctgag gaccaggtgt gggtgcaggt gggcgtgggt gattacattg
 gcatctatgc cagcatcaag acagacagta ccttctctgg atttctcgtc tattctgact
                                                                        840
                                                                        900
 ggcacagete eccagtette gettaaaaca cagtgaacce ggagetggea ettgeteete
 agtggagggt gtgacactaa cccgcgcagc gcataccagg agggctggcc ccctggaata
                                                                        960
 ttgtgaatga cttaggaaga gagggagcca cttccagtcc cactgctggc aatgaatgga
                                                                       1020
 gacaggctgt ctgaggtcaa gacagcgtgg agcagtggct gggtttctgc ccaggacttt
                                                                       1080
 agaatgcagt aggctggcag ctgtgggtcc tggcccagga ctccaaggtg ggatgctcca
                                                                       1140
```

1200

ttcctagtcc tgtgtcccct ctaggtccct gactccatct ctgctgctcc cagggcaggc

```
1260
                                                                    1263
cgc
<210> 120
<211> 243
<212> PRT
<213> Mus musculus
<400> 120
Met Arg Pro Leu Leu Ala Leu Leu Leu Gly Leu Val Ser Gly Ser
                                   10
                5
 1
Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly Gln Pro
                                25
            20
Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly
                            40
Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu
                        55
Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Glu Pro
                    70
 Gly Pro Arg Gly Glu Ala Gly Pro Met Gly Ala Ile Gly Pro Ala Gly
                                    90
                85
 Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Val Lys Arg Ser Glu
                                                   110
                                105
            100
 Ser Arg Val Pro Pro Pro Ala Asp Thr Pro Leu Pro Phe Asp Arg Val
                                               125
                            120
 Leu Leu Asn Glu Gln Gly His Tyr Asp Pro Thr Thr Gly Lys Phe Thr
                                            140
                        135
 Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr
                                       155
                    150
 Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Gln Ser Ile Ala
                                   170
 Ser Phe Phe Gln Tyr Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser
                                185
 Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln
                            200
                                               205
         195
 Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp
                                            220
                        215
 Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro
                                        235
                    230
 225
 Val Phe Ala
<210> 121
<211> 1263
<212> DNA
<213> Mus musculus
<400> 121
 gtcgacccac gcgtccgcgc tgtgaagcca gcaaggagca accagaagct aggagtcagt
                                                                      60
 cagcaaggac aggggctgcc tgcctacaga ctacaagaga ggttcctgga gtctgagcct
                                                                      120
 ccggggtcac caccatgagg ccacttcttg cccttctgct tctgggtctg gtgtcaggct
                                                                      180
 ctectectet ggacgacaac aagateecca geetgtgtee egggeageee ggeetteeag
                                                                      240
 gcacaccagg tcaccatggc agccaaggcc tgcctggccg tgacggccgt gatggccgcg
                                                                      300
                                                                      360
 acggtgcacc cggagctccg ggagagaaag gcgagggcgg gagaccggga ctacctggcc
 cacgtgggga gcccgggccg cgtggagagg cagggcccat gggggctatc gggcctgcgg
                                                                      420
 gggagtgctc ggtaccccca cgatcagtct tcagtgccaa gcgatccgag agccgggtac
                                                                      480
 ctccgccagc cgacacaccc ctacctttcg accgtgtgct gctaaatgag cagggccatt
                                                                      540
 acgaccccac tactggcaag ttcacctgcc aagtgcctgg cgtctactac tttgctgtgc
                                                                      600
```

PCT/US00/16883 WO 00/78808

660

720 780

840

900

960

1020

1080

1140

1200

1260

1263

```
acgccactgt ctaccgggcc agcttgcagt ttgatcttgt caaaaacggg cagtccatcg
cctctttctt ccagtatttt ggggggtggc ccaagccagc ctcgctctca gggggtgcga
 tggtaaggct agaacctgag gaccaggtgt gggtgcaggt gggcgtgggt gattacattg
gcatctatgc cagcatcaag acagacagta ccttctctgg atttctcgtc tattctgact
ggcacagete eccagtette gettaaaaca cagtgaacce ggagetggea ettgeteete
agtggagggt gtgacactaa cccgcgcagc gcataccagg agggctggcc ccctggaata
ttgtgaatga cttaggaaga gagggagcca cttccagtcc cactgctggc aatgaatgga
gacaggctgt ctgaggtcaa gacagcgtgg agcagtggct gggtttctgc ccaggacttt
 agaatgcagt aggctggcag ctgtgggtcc tggcccagga ctccaaggtg ggatgctcca
 ttcctagtcc tgtgtcccct ctaggtccct gactccatct ctgctgctcc cagggcaggc
cgc
<210> 122
<211> 243
<212> PRT
<213> Mus musculus
<400> 122
Met Arg Pro Leu Leu Ala Leu Leu Leu Gly Leu Val Ser Gly Ser
                                   10
Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly Gln Pro
                                25
 Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly
                            40
 Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu
 Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Glu Pro
                    70
                                       75
 Gly Pro Arg Gly Glu Ala Gly Pro Met Gly Ala Ile Gly Pro Ala Gly
                85
                                    90
 Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu
                               105
                                                   110
            100
 Ser Arg Val Pro Pro Pro Ala Asp Thr Pro Leu Pro Phe Asp Arg Ala
                                               125
                            120
 Leu Leu Asn Glu Gln Gly His Tyr Asp Pro Thr Thr Gly Lys Phe Thr
                        135
                                           140
 Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr
                    150
                                       155
 145
 Arg Ala Ser Leu Gln Phe Asp Leu Val Lys Asn Gly Gln Ser Ile Ala
                                    170
 Ser Phe Phe Gln Tyr Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser
                                185
                                                   190
 Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln
                            200
 Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp
                        215
                                           220
 Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro
                                       235
 225
                    230
 Val Phe Ala
<210> 123
<211> 1263
<212> DNA
<213> Mus musculus
```

<400> 123

```
60
gtcgacccac gcgtccgcgc tgtgaagcca gcaaggagca accagaagct aggagtcagt
cagcaaggac aggggctgcc tgcctacaga ctacaagaga ggttcctgga gtctgagcct
                                                                    120
                                                                    180
ccqqqqtcac caccatgagg ccacttcttg cccttctgct tctgggtctg gtgtcaggct
ctcctcctct ggacgacaac aagatcccca gcctgtgtcc cgggcagccc ggccttccag
                                                                    240
gcacaccagg tcaccatggc agccaaggcc tgcctggccg tgacggccgt gatggccgcg
                                                                    300
acggtgcacc cggagctccg ggagagaaag gcgagggcgg gagaccggga ctacctggcc
                                                                    360
cacgtgggga geeegggeeg egtggagagg cagggeecat gggggetate gggeetgegg
                                                                    420
gggagtgete ggtaccecca cgateageet teagtgeeaa gegateegag ageegggtae
                                                                    480
ctccgccagc cgacacaccc ctacctttcg accgtgcgct gctaaatgag cagggccatt
                                                                    540
acgaccccac tactggcaag ttcacctgcc aagtgcctgg cgtctactac tttgctgtgc
                                                                    600
acgccactgt ctaccgggcc agcttgcagt ttgatcttgt caaaaacggg cagtccatcg
                                                                    660
cctctttctt ccagtatttt ggggggtggc ccaagccagc ctcgctctca gggggtgcga
                                                                    720
                                                                    780
tggtaagget agaacetgag gaceaggtgt gggtgeaggt gggcgtgggt gattacattg
gcatctatgc cagcatcaag acagacagta ccttctctgg atttctcgtc tattctgact
                                                                    840
ggcacagete eccagtette gettaaaaca cagtgaacce ggagetggea ettgeteete
                                                                    900
agtggagggt gtgacactaa cccgcgcagc gcataccagg agggctggcc ccctggaata
                                                                    960
                                                                   1020
ttqtqaatga cttaggaaga gagggagcca cttccagtcc cactgctggc aatgaatgga
                                                                   1080
gacaggetgt etgaggteaa gacagegtgg ageagtgget gggtttetge eeaggaettt
                                                                   1140
agaatgcagt aggctggcag ctgtgggtcc tggcccagga ctccaaggtg ggatgctcca
ttcctagtcc tgtgtcccct ctaggtccct gactccatct ctgctgctcc cagggcaggc
                                                                   1200
                                                                   1260
1263
cgc
```

<210> 124

<211> 243

<212> PRT

<213> Mus musculus

<400> 124

Met Arg Pro Leu Leu Ala Leu Leu Leu Gly Leu Val Ser Gly Ser 10 Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly Gln Pro 25 Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly Leu Pro Gly 45 40 Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly Ala Pro Gly Glu 55 Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly Pro Arg Gly Glu Pro 75 65 70 Gly Pro Arq Gly Glu Ala Gly Pro Met Gly Ala Ile Gly Pro Ala Gly 90 Glu Cys Ser Val Pro Pro Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu 105 110 100 Ser Arg Val Pro Pro Pro Ala Asp Thr Pro Leu Pro Phe Asp Arg Val 125 120 Leu Leu Asn Glu Gln Gly His Tyr Asp Pro Thr Thr Gly Lys Phe Thr 135 Cys Gln Val Pro Gly Val Tyr Tyr Phe Ala Val His Ala Thr Val Tyr 155 150 145 Arg Ala Ser Leu Gln Phe Asp Ile Val Lys Asn Gly Gln Ser Ile Ala 170 165 Ser Phe Phe Gln Tyr Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser 185 180 Gly Gly Ala Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln 205 Val Gly Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp 215 220 Ser Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro

```
240
                                       235
                    230
225
Val Phe Ala
<210> 125
<211> 1263
<212> DNA
<213> Mus musculus
<400> 125
gtcgacccac gcgtccgcgc tgtgaagcca gcaaggagca accagaagct aggagtcagt
                                                                      60
cagcaaggac aggggctgcc tgcctacaga ctacaagaga ggttcctgga gtctgagcct
                                                                     120
ceggggtcac caccatgagg ccacttettg ceettetget tetgggtetg gtgtcagget
                                                                     180
ctcctcctct ggacgacaac aagatcccca gcctgtgtcc cgggcagccc ggccttccag
                                                                     240
gcacaccagg tcaccatggc agccaaggcc tgcctggccg tgacggccgt gatggccgcg
                                                                     300
 acggtgcacc cggagctccg ggagagaaag gcgagggcgg gagaccggga ctacctggcc
                                                                     360
 cacgtgggga gcccgggccg cgtggagagg cagggcccat gggggctatc gggcctgcgg
                                                                     420
gggagtgctc ggtaccccca cgatcagcct tcagtgccaa gcgatccgag agccgggtac
                                                                     480
 ctccgccagc cgacacaccc ctacctttcg accgtgtgct gctaaatgag cagggccatt
                                                                     540
 acgaccccac tactggcaag ttcacctgcc aagtgcctgg cgtctactac tttgctgtgc
                                                                     600
 acgccactgt ctaccgggcc agcttgcagt ttgatattgt caaaaacggg cagtccatcg
                                                                     660
                                                                     720
 cctctttctt ccagtatttt ggggggtggc ccaagccagc ctcgctctca gggggtgcga
 tggtaaggct agaacctgag gaccaggtgt gggtgcaggt gggcgtgggt gattacattg
                                                                     780
 gcatctatgc cagcatcaag acagacagta cettetetgg atttetegte tattetgact
                                                                     840
 ggcacagete eccagtette gettaaaaca cagtgaacce ggagetggea ettgeteete
                                                                     900
 agtggagggt gtgacactaa cccgcgcagc gcataccagg agggctggcc ccctggaata
                                                                     960
 ttgtgaatga cttaggaaga gagggagcca cttccagtcc cactgctggc aatgaatgga
                                                                     1020
 gacaggetgt etgaggteaa gacagegtgg ageagtgget gggtttetge ecaggaettt
                                                                     1080
 agaatgcagt aggctggcag ctgtgggtcc tggcccagga ctccaaggtg ggatgctcca
                                                                     1140
 ttectagtee tgtgteeect ctaggteect gaeteeatet etgetgetee cagggeagge
                                                                     1200
 1260
                                                                     1263
 cgc
<210> 126
<211> 406
<212> PRT
<213> Mus musculus
<400> 126
 Met Gly Pro Ser Ala Pro Leu Leu Leu Phe Phe Leu Ser Trp Thr
                                    10
                 5
 Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg
                                25
 Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser
                            40
         35
 Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro
                                            60
 Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Thr Leu Arg Thr Glu Ala
                                        75
                    70
 65
 Asp Ser Ile Ser Gly Arg Val Asp Arg Ile Glu Arg Glu Val Asp Tyr
                                    90
                 85
 Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Leu Asp Glu Lys
                                 105
 Val Thr Gly Gly Pro Gly Ala Lys Gly Lys Gly Arg Arg Asn Glu Lys
                             120
 Tyr Asp Met Val Thr Asp Cys Ser Tyr Thr Val Ala Gln Val Arg Ser
```

Met Lys Ile Leu Lys Arg Phe Gly Gly Ser Val Gly Leu Trp Thr Lys

135

130

```
155
                   150
145
Asp Pro Leu Gly Pro Ala Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln
                                    170
               165
Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala
                                185
           180
Met Ala Ala Arg Lys Ala Ser Arg Ile Arg Val Pro Phe Pro Trp Val
                                                205
                            200
       195
Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Tyr Ala Arg Arg
                        215
Pro Pro Gly Gly Pro Gly Gly Gly Glu Leu Glu Asn Thr Leu Gln
                                        235
                    230
225
Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val
                                    250
                245
Phe Pro Ala Glu Ser Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr
                                265
                                                    270
Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala
                                                285
                            280
        275
Thr Arg Asp Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln
                                            300
                        295
    290
Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn
                                        315
                    310
Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn
                                    330
                                                         335
Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser
                                                 350
                                345
Gly Thr Leu Ala Pro Glu Arg Ala Ala Leu Ser Tyr Phe Pro Arg Arg
                                                 365
                            360
Tyr Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu
                                            380
                        375
Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Lys
                                         395
                    390
Lys Lys Glu Glu Glu Val
                405
<210> 127
<211> 1721
<212> DNA
<213> Mus musculus
<400> 127
gtcgacccac gcgtccgact taaggctgcc atggggccca gtgctcctct gctgctcctc
                                                                         60
ttetttttgt catggacggg accepttcag ggacagcage accapettgt ggagtacatg
                                                                        120
gaacgccgac tagctgcctt agaggaacgg ctggcccaat gccaggatca gagtagtcgg
                                                                        180
catgctgccg agcttcggga cttcaaaaac aagatgttgc ctctcctgga ggtggcagag
                                                                        240
aaggageggg agacceteag aactgaagea gactecatet caggaagagt ggaccgtatt
                                                                        300
gaaagggagg tagactatct ggagacacag aacccagctt tgccctgtgt agagctggat
                                                                        360
 gagaaggtga ctggaggtcc tggagccaaa ggcaagggcc gaagaaatga gaaatacgat
                                                                        420
 atggtgacgg actgtagcta cacagtcgct caggtgaggt caatgaagat cctgaagcgg
                                                                        480
 tttggtggtt cagttggcct atggaccaag gatccgctgg ggccagcaga gaagatctac
                                                                        540
 gtgttagacg gcacccagaa cgacacggct tttgtcttcc caaggctgcg tgacttcacc
                                                                        600
 cttgccatgg ctgcccggaa agcttcccga attcgggtgc ccttcccctg ggtaggcacg
                                                                        660
 gggcagctgg tgtacggtgg cttcctttat tatgctcgaa ggcctcctgg aggacctgga
                                                                        720
 gggggtggtg aattggagaa cactctgcag ctgatcaaat ttcacttggc aaaccgaaca
                                                                        780
 gtggtggata gctcagtgtt ccctgcagag agcctgatac ccccctacgg cctgacagca
                                                                        840
 gatacatata tcgacctggc agctgatgag gagggcctgt gggctgtcta tgccactcga
                                                                        900
 gatgatgaca ggcatttgtg tctagccaag ttagacccac agacacttga cacagagcag
                                                                        960
 cagtgggaca caccatgtcc cagagagaac gcagaggctg cgtttgtcat ctgtgggacc
                                                                       1020
 ctgtacgttg tctataacac ccgccctgcc agtagggctc gtattcagtg ttccttcgat
                                                                       1080
```

1140

1200

1260

1320

1380

1440

1500

1560

1620

1680 1721

```
gccagtggta ctctcgcccc tgaaagggca gcactctcct attttccacg ccgatatggt
gcccatgcca gccttcgcta taacccccgt gagcgccagc tgtatgcctg ggatgatggc
taccagattg tctacaaatt ggagatgaag aagaaggagg aggaagttta agcagctagc
cttgtgctct tgattcttat gcccagacat ttatattcct gtgagctctc ctgcagttca
teetteaaaa egaaggeeag teggtage teatatacee taatttetaa aggacaacea
aattetcaag eccetetgtt ttatgcagaa etceagatee tgggtageat tttagaactg
aacagcaaac aaacacccta aatcttcact cctgccttat gtccacaaag tttagttcca
aactcagagc cctgtccttt ggagagggtc aaccccagac agcaggcgac agcattcttg
ccctcagtat gaccgaaggg agagaactca gagacaaagc tgccctccct cccttcccc
tccagtgtag gggagaatgg ggctttcccc acatcacttt gtatggtaac agtttgcatt
aaaaggaaaa cccaccaaaa aaaaaaaaaa agggcggccg c
<210> 128
<211> 406
<212> PRT
<213> Mus musculus
<400> 128
Met Gly Pro Ser Ala Pro Leu Leu Leu Phe Phe Leu Ser Trp Thr
                                   10
 1
Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg
                               25
Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser
                           40
 Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro
                        55
 Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Thr Leu Arg Thr Glu Ala
                                      75
 Asp Ser Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr
                                   90
                85
 Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Leu Asp Glu Lys
                               105
            100
 Val Thr Gly Gly Pro Gly Ala Lys Gly Lys Gly Arg Arg Asn Glu Lys
                           120
 Tyr Asp Ile Val Thr Asp Cys Ser Tyr Thr Val Ala Gln Val Arg Ser
                       135
 Met Lys Ile Leu Lys Arg Phe Gly Gly Ser Val Gly Leu Trp Thr Lys
                                      155
            150
 Asp Pro Leu Gly Pro Ala Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln
                                  170
               165
 Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Ala
                                                   190
                              185
            180
 Met Ala Ala Arg Lys Ala Ser Arg Ile Arg Val Pro Phe Pro Trp Val
                           200
 Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Tyr Ala Arg Arg
                                          220
                       215
 Pro Pro Gly Gly Pro Gly Gly Gly Glu Leu Glu Asn Thr Leu Gln
                                       235
                   230
 Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val
                                    250
               245
 Phe Pro Ala Glu Ser Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr
                                                   270
                                265
             260
 Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala
                                                285
                            280
        275
  Thr Arg Asp Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln
                                           300
                        295
 Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn
                                        315
  305
```

```
Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn
                                     330
                325
Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser
                                                   350
                                345
            340
Gly Thr Leu Ala Pro Glu Arg Ala Ala Leu Ser Tyr Phe Pro Arg Arg
                                                 365
                            360
Tyr Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu
                                           380
                        375
Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Lys
                                         395
                     390
Lys Lys Glu Glu Glu Val
                405
<210> 129
<211> 1721
<212> DNA
<213> Mus musculus
<400> 129
qtcqacccac gcgtccgact taaggctgcc atggggccca gtgctcctct gctgctcctc
                                                                        60
ttctttttgt catggacggg accccttcag ggacagcagc accaccttgt ggagtacatg
                                                                       120
gaacgccgac tagctgcctt agaggaacgg ctggcccaat gccaggatca gagtagtcgg
                                                                       180
catgctgccg agcttcggga cttcaaaaac aagatgttgc ctctcctgga ggtggcagag
                                                                       240
aaggagcggg agaccetcag aactgaagca gactccatet caggaagagt ggaccgtett
                                                                       300
gaaagggagg tagactatct ggagacacag aacccagctt tgccctgtgt agagctggat
                                                                       360
gagaaggtga ctggaggtcc tggagccaaa ggcaagggcc gaagaaatga gaaatacgat
                                                                       420
atagtgacgg actgtagcta cacagtcgct caggtgaggt caatgaagat cctgaagcgg
                                                                       480
tttggtggtt cagttggcct atggaccaag gatccgctgg ggccagcaga gaagatctac
                                                                       540
gtgttagacg gcacccagaa cgacacggct tttgtcttcc caaggctgcg tgacttcacc
                                                                       600
cttgccatgg ctgcccggaa agcttcccga attcgggtgc ccttcccctg ggtaggcacg
                                                                       660
gggcagctgg tgtacggtgg cttcctttat tatgctcgaa ggcctcctgg aggacctgga
                                                                       720
gggggtggtg aattggagaa cactctgcag ctgatcaaat ttcacttggc aaaccgaaca
                                                                       780
                                                                       840
gtggtggata gctcagtgtt ccctgcagag agcctgatac ccccctacgg cctgacagca
                                                                       900
gatacatata tcgacctggc agctgatgag gagggcctgt gggctgtcta tgccactcga
gatgatgaca ggcatttgtg tctagccaag ttagacccac agacacttga cacagagcag
                                                                       960
cagtgggaca caccatgtcc cagagagaac gcagaggctg cgtttgtcat ctgtgggacc
                                                                       1020
ctgtacgttg tctataacac ccgccctgcc agtagggctc gtattcagtg ttccttcgat
                                                                       1080
 gccagtggta ctctcgcccc tgaaagggca gcactctcct attttccacg ccgatatggt
                                                                       1140
 gcccatgcca gccttcgcta taacccccgt gagcgccagc tgtatgcctg ggatgatggc
                                                                       1200
 taccagattg totacaaatt ggagatgaag aagaaggagg aggaagttta agcagctagc
                                                                       1260
 cttgtgctct tgattcttat gcccagacat ttatattcct gtgagctctc ctgcagttca
                                                                       1320
 tccttcaaaa cgaaggccag tggtggtagc tcatataccc taatttctaa aggacaacca
                                                                       1380
 aattotcaag cocctotgtt ttatgcagaa ctccagatcc tgggtagcat tttagaactg
                                                                       1440
 aacagcaaac aaacacccta aatcttcact cctgccttat gtccacaaag tttagttcca
                                                                       1500
 aactcagagc cctgtccttt ggagagggtc aaccccagac agcaggcgac agcattcttg
                                                                       1560
 ccctcagtat gaccgaaggg agagaactca gagacaaagc tgccctccct cccttccccc
                                                                       1620
 tccagtgtag gggagaatgg ggctttcccc acatcacttt gtatggtaac agtttgcatt
                                                                       1680
                                                                       1721
 aaaaggaaaa cccaccaaaa aaaaaaaaaa agggcggccg c
<210> 130
<211> 406
<212> PRT
<213> Mus musculus
<400> 130
 Met Gly Pro Ser Ala Pro Leu Leu Leu Leu Phe Phe Leu Ser Trp Thr
                                     10
                  5
 1
 Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg
```

PCT/US00/16883 **WO** 00/78808

Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser

		33													
	50	His				55					60				
Leu 65	Leu	Glu	Val	Ala	Glu 70	Lys	Glu	Arg	Glu	Thr 75	Leu	Arg	Thr	Glu	Ala 80
Asp	Ser	Ile	Ser	Gly 85	Arg	Val	Asp	Arg	Leu 90	Glu	Arg	Glu	Val	Asp 95	Tyr
Leu	Glu	Thr	Gln 100		Pro	Ala	Leu	Pro 105	Cys	Val	Glu	Leu	Asp 110	Glu	Lys
Val	Thr	Gly 115		Pro	Gly	Ala	Lys 120	Gly	Lys	Gly	Arg	Arg 125	Asn	Glu	Lys
Tyr	Asp	Met	Val	Thr	Asp	Cys 135	Ser	Tyr	Thr	Val	Ala 140	Gln	Val	Arg	Ser
Met 145	Lys	Ile	Leu	Lys	Arg 150	Phe	Gly	Gly	Ser	Val 155	Gly	Leu	Trp	Thr	Lys 160
Asp	Pro	Leu	Gly	Pro 165	Ala	Glu	Lys	Ile	Tyr 170	Ala	Leu	Asp	Gly	Thr 175	Gln
Asn	Asp	Thr	Ala 180		Val	Phe	Pro	Arg 185	Leu	Arg	Asp	Phe	Thr 190	Leu	Ala
		Ala 195					200					205			
	210	Gly				215					220				
Pro	Pro	Gly	Gly	Pro	Gly	Gly	Gly	Gly	Glu	Leu	Glu	Asn	Thr	Leu	Gln
225					230					235					240
		Lys		245					250					255	
		Ala	260					265					270		
Tyr	Ile	Asp 275	Leu	Ala	Ala	Asp	Glu 280	Glu	Gly	Leu	Trp	Ala 285	Val	Tyr	Ala
	290	Asp				295					300				
		Asp	Thr	Glu	Gln 310	Gln	Trp	Asp	Thr	Pro 315	Cys	Pro	Arg	Glu	Asn 320
305	~1	Ala	A 7 -	Dho		Tla	Cve	Glv	Thr		Tvr	Val	Va 1	Tvr	
				325					330					335	
Thr	Arg	Pro	Ala 340	Ser	Arg	Ala	Arg	Ile 345		Cys	Ser	Phe	Asp 350	Ala	Ser
Gly	Thr	Leu 355	Ala	Pro	Glu	Arg	Ala 360	Ala		Ser	Tyr	Phe		Arg	Arg
Tyr	Gly 370	Ala	His	Ala	Ser	Leu 375		Tyr	Asn	Pro	Arg 380	Glu	Arg	Gln	Leu
Tvr	Ala	Trp	Asp	Asp	Gly	Tyr	Gln	Ile	Val	Tyr	Lys	Leu	Glu	Met	Ļys
385		•	-	-	390	-				395					400
		Glu	Glu	Glu 405											
	> 13														
	> 17														
	> DN > Mu	A s mu	scul	us											
<400> 131 gtcgacccac gcgtccgact taaggctgcc atggggccca gtgctcctct gctgctcctc															
gto	gaco	cac	gcgt	ccga	ct t	aagg	ctgo	c at	9999	icado	, acc	acct	tat	gara	tacatg
כככ	CCCC	.cgt	catg	yacg	99 a		cuca	יש של	acay	,-ugc		~~~	-3-	22~2	

```
gaacgccgac tagctgcctt agaggaacgg ctggcccaat gccaggatca gagtagtcgg
                                                                       180
catgctgccg agcttcggga cttcaaaaac aagatgttgc ctctcctgga ggtggcagag
                                                                       240
aaggageggg agaeeeteag aactgaagea gaeteeatet caggaagagt ggaeegtett
                                                                       300
gaaagggagg tagactatct ggagacacag aacccagctt tgccctgtgt agagctggat
                                                                       360
gagaaggtga ctggaggtcc tggagccaaa ggcaagggcc gaagaaatga gaaatacgat
                                                                       420
atggtgacgg actgtagcta cacagtcgct caggtgaggt caatgaagat cctgaagcgg
                                                                       480
tttggtggtt cagttggcct atggaccaag gatccgctgg ggccagcaga gaagatctac
                                                                       540
gcgttagacg gcacccagaa cgacacggct tttgtcttcc caaggctgcg tgacttcacc
                                                                       600
cttgccatgg ctgcccggaa agcttcccga attcgggtgc ccttcccctg ggtaggcacg
                                                                       660
gggcagctgg tgtacggtgg cttcctttat tatgctcgaa ggcctcctgg aggacctgga
                                                                       720
gggggtggtg aattggagaa cactctgcag ctgatcaaat ttcacttggc aaaccgaaca
                                                                       780
gtggtggata gctcagtgtt ccctgcagag agcctgatac ccccctacgg cctgacagca
                                                                       840
gatacatata tegacetgge agetgatgag gagggeetgt gggetgteta tgecaetega
                                                                       900
gatgatgaca ggcatttgtg tctagccaag ttagacccac agacacttga cacagagcag
                                                                       960
cagtgggaca caccatgtcc cagagagaac gcagaggctg cgtttgtcat ctgtgggacc
                                                                      1020
ctgtacgttg tctataacac ccgccctgcc agtagggctc gtattcagtg ttccttcgat
                                                                      1080
                                                                      1140
gccagtggta ctctcgcccc tgaaagggca gcactctcct attttccacg ccgatatggt
                                                                      1200
gcccatgcca gccttcgcta taacccccgt gagcgccagc tgtatgcctg ggatgatggc
taccagattg tctacaaatt ggagatgaag aagaaggagg aggaagttta agcagctagc
                                                                      1260
cttgtgctct tgattcttat gcccagacat ttatattcct gtgagctctc ctgcagttca
                                                                      1320
tccttcaaaa cgaaggccag tggtggtagc tcatataccc taatttctaa aggacaacca
                                                                      1380
aattctcaag cccctctgtt ttatgcagaa ctccagatcc tgggtagcat tttagaactg
                                                                      1440
aacagcaaac aaacacccta aatcttcact cctgccttat gtccacaaag tttagttcca
                                                                      1500
aactcagagc cctgtccttt ggagagggtc aaccccagac agcaggcgac agcattcttg
                                                                      1560
ccctcagtat gaccgaaggg agagaactca gagacaaagc tgccctccct cccttcccc
                                                                      1620
tccagtgtag gggagaatgg ggctttcccc acatcacttt gtatggtaac agtttgcatt
                                                                      1680
                                                                      1721
aaaaqqaaaa cccaccaaaa aaaaaaaaaa agggcggccg c
```

<210> 132

<211> 406

<212> PRT

<213> Mus musculus

<400> 132

Met Gly Pro Ser Ala Pro Leu Leu Leu Phe Phe Leu Ser Trp Thr Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met Glu Arg 30 25 20 Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln Asp Gln Ser 45 40 Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn Lys Met Leu Pro 60 55 Leu Leu Glu Val Ala Glu Lys Glu Arg Glu Thr Leu Arg Thr Glu Ala 75 70 Asp Ser Ile Ser Gly Arg Val Asp Arg Leu Glu Arg Glu Val Asp Tyr 90 85 Leu Glu Thr Gln Asn Pro Ala Leu Pro Cys Val Glu Leu Asp Glu Lys 105 110 100 Val Thr Gly Gly Pro Gly Ala Lys Gly Lys Gly Arg Arg Asn Glu Lys 125 115 120 Tyr Asp Met Val Thr Asp Cys Ser Tyr Thr Val Ala Gln Val Arg Ser 135 140 130 Met Lys Ile Leu Lys Arg Phe Gly Gly Ser Val Gly Leu Trp Thr Lys 155 150 Asp Pro Leu Gly Pro Ala Glu Lys Ile Tyr Val Leu Asp Gly Thr Gln 170 165 Asn Asp Thr Ala Phe Val Phe Pro Arg Leu Arg Asp Phe Thr Leu Val 190 185 180

PCT/US00/16883 WO 00/78808

```
Met Ala Ala Arg Lys Ala Ser Arg Ile Arg Val Pro Phe Pro Trp Val
                            200
Gly Thr Gly Gln Leu Val Tyr Gly Gly Phe Leu Tyr Tyr Ala Arg Arg
                                             220
                        215
Pro Pro Gly Gly Pro Gly Gly Gly Glu Leu Glu Asn Thr Leu Gln
                    230
                                         235
225
Leu Ile Lys Phe His Leu Ala Asn Arg Thr Val Val Asp Ser Ser Val
                                     250
                245
Phe Pro Ala Glu Ser Leu Ile Pro Pro Tyr Gly Leu Thr Ala Asp Thr
                                                     270
                                 265
            260
Tyr Ile Asp Leu Ala Ala Asp Glu Glu Gly Leu Trp Ala Val Tyr Ala
                                                 285
                            280
        275
Thr Arg Asp Asp Asp Arg His Leu Cys Leu Ala Lys Leu Asp Pro Gln
                                             300
                         295
    290
Thr Leu Asp Thr Glu Gln Gln Trp Asp Thr Pro Cys Pro Arg Glu Asn
                                         315
Ala Glu Ala Ala Phe Val Ile Cys Gly Thr Leu Tyr Val Val Tyr Asn
                                     330
Thr Arg Pro Ala Ser Arg Ala Arg Ile Gln Cys Ser Phe Asp Ala Ser
                                                     350
                                 345
Gly Thr Leu Ala Pro Glu Arg Ala Ala Leu Ser Tyr Phe Pro Arg Arg
                                                 365
                             360
Tyr Gly Ala His Ala Ser Leu Arg Tyr Asn Pro Arg Glu Arg Gln Leu
                                             380
                         375
Tyr Ala Trp Asp Asp Gly Tyr Gln Ile Val Tyr Lys Leu Glu Met Lys
                                         395
                     390
Lys Lys Glu Glu Glu Val
                 405
<210> 133
<211> 1721
<212> DNA
<213> Mus musculus
<400> 133
 gtcgacccac gcgtccgact taaggctgcc atggggccca gtgctcctct gctgctcctc
                                                                         60
 ttctttttgt catggacggg accccttcag ggacagcagc accaccttgt ggagtacatg
                                                                        120
 gaacgccgac tagctgcctt agaggaacgg ctggcccaat gccaggatca gagtagtcgg
                                                                        180
                                                                        240
 catgctgccg agcttcggga cttcaaaaac aagatgttgc ctctcctgga ggtggcagag
 aaggageggg agacceteag aactgaagea gactecatet caggaagagt ggacegtett
                                                                        300
 gaaagggagg tagactatct ggagacacag aacccagctt tgccctgtgt agagctggat
                                                                        360
 gagaaggtga ctggaggtcc tggagccaaa ggcaagggcc gaagaaatga gaaatacgat
                                                                        420
 atggtgacgg actgtagcta cacagtcgct caggtgaggt caatgaagat cctgaagcgg
                                                                        480
 tttggtggtt cagttggcct atggaccaag gatccgctgg ggccagcaga gaagatctac
                                                                        540
 gtgttagacg gcacccagaa cgacacggct tttgtcttcc caaggctgcg tgacttcacc
                                                                        600
 cttgtcatgg ctgcccggaa agcttcccga attcgggtgc ccttcccctg ggtaggcacg
                                                                        660
 gggcagctgg tgtacggtgg cttcctttat tatgctcgaa ggcctcctgg aggacctgga
                                                                        720
 gggggtggtg aattggagaa cactctgcag ctgatcaaat ttcacttggc aaaccgaaca
                                                                        780
 gtggtggata gctcagtgtt ccctgcagag agcctgatac ccccctacgg cctgacagca
                                                                        840
                                                                        900
 gatacatata tegacetgge agetgatgag gagggeetgt gggetgteta tgecaetega
                                                                        960
 gatgatgaca ggcatttgtg tctagccaag ttagacccac agacacttga cacagagcag
                                                                       1020
 cagtgggaca caccatgtcc cagagagaac gcagaggctg cgtttgtcat ctgtgggacc
                                                                       1080
 ctgtacgttg tctataacac ccgccctgcc agtagggctc gtattcagtg ttccttcgat
 gccagtggta ctctcgcccc tgaaagggca gcactctcct attttccacg ccgatatggt
                                                                       1140
 gcccatgcca gccttcgcta taacccccgt gagcgccagc tgtatgcctg ggatgatggc
                                                                       1200
                                                                       1260
 taccagattg tctacaaatt ggagatgaag aagaaggagg aggaagttta agcagctagc
 cttgtgctct tgattcttat gcccagacat ttatattcct gtgagctctc ctgcagttca
                                                                       1320
```

1380

tccttcaaaa cgaaggccag tggtggtagc tcatataccc taatttctaa aggacaacca

1440

1500

1560

1620

1680 1721

```
aattotcaag cocctotgtt ttatgcagaa ctccagatcc tgggtagcat tttagaactg
aacagcaaac aaacacccta aatcttcact cctgccttat gtccacaaag tttagttcca
aactcagagc cctgtccttt ggagagggtc aaccccagac agcaggcgac agcattcttg
ccctcagtat gaccgaaggg agagaactca gagacaaagc tgccctccct cccttcccc
tecagtgtag gggagaatgg ggettteece acateaettt gtatggtaae agtttgeatt
aaaaggaaaa cccaccaaaa aaaaaaaaaa agggcggccg c
<210> 134
<211> 370
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (13)
<223> Xaa=unknown amino acid
<400> 134
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Xaa Arg Phe Leu
                                   10
 1
 Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln
                              25
 Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu Gly Glu Ser
                           40
 Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Ala Ser Ser Ser Gln
                                          60
                       55
 Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys
                                     75
                   70
 Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro
                                  90
 Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg
                               105
 Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val
                           120
 Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr
                       135
 Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu
                                       155
                   150
 Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser
                                  170
               165
 Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro
                                                   190
                             185
            180
 Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser
                           200
 Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys
                                        220
              215
 Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu
             230
                                       235
 Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Glu Ala Val Val Gly
                                    250
                245
 Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His
                                265
                                                   270
             260
 Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp
                            280
         275
 Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile
                                           300
                         295
 Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg
                                        315
                     310
```

```
Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser
                325
                                     330
Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg His Ala His Asp Arg Trp
                                                     350
                                 345
            340
Gly Pro Pro Ser Thr Asn Ile Pro His Pro Trp Trp Gly Phe Phe Leu
                             360
Trp Leu
    370
<210> 135
<211> 1869
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 135
 gtcgacccac gcgtncntcc agcgtncgga gccgccctgg gtgtcagcgg ctcggctccc
                                                                         60
 gegeaegete eggeegtege geageetegg cacetgeagg teegtgegte eegeggetgg
                                                                        120
 cgcccctgac tccgtcccgg ccagggaggg ccatgatttc cctcccgggg cccctggtga
                                                                        180
 ccaacttgnt gcggtttttg ttcctggggc tgagtgccct cgcgcccccc tcgcgggccc
                                                                        240
 agetgeaact geacttgeec gecaaceggt tgeaggeggt ggaggagggg gaaagtggtg
                                                                        300
 cttcagcatg gtacaccttg cacagggagg cgtcttcatc ccagccatgg gaggtgccct
                                                                        360
 ttqtqatqtq gttcttcaaa cagaaagaaa aggaggatca ggtgttgtcc tacatcaatg
                                                                        420
                                                                        480
 gggtcacaac aagcaaacct ggagtatect tggtctactc catgecetee eggaacctgt
                                                                        540
 ccctgcgggt ggagggtctc caggagaaag actctggccc ctacagctgc tccgtgaatg
 tgcaagacaa acaaggcaaa tctaggggcc acagcatcaa aaccttagaa ctcaatgtac
                                                                        600
 tggttcctcc agctcctcca tcctgccgtc tccagggtgt gccccatgtg ggggcaaacg
                                                                        660
 tgaccetgag etgecagtet ecaaggagta agecegetgt ecaataceag tgggategge
                                                                        720
 agettecate ettecagaet ttetttgeae cageattaga tgteateegt gggtetttaa
                                                                        780
                                                                        840
 gcctcaccaa cctttcgtct tccatggctg gagtctatgt ctgcaaggcc cacaatgagg
 tgggcactgc ccaatgtaat gtgacgctgg aagtgagcac agggcctgga gctgcagtgg
                                                                        900
 ttgctgaagc tgttgtgggt accctggttg gactggggtt gctggctggg ctggtcctct
                                                                        960
 tgtaccaccg ccggggcaag gccctggagg agccagccaa tgatatcaag gaggatgcca
                                                                       1020
 ttgctccccg gaccctgccc tggcccaaga gctcagacac aatctccaag aatgggaccc
                                                                       1080
 tttcctctgt cacctccgca cgagccctcc ggccacccca tggccctccc aggcctggtg
                                                                       1140
 cattgacccc cacgcccagt ctatccagcc aggccctgcc ctcaccaaga catgcccacg
                                                                       1200
 acagatgggg cccaccctca accaatatcc cccatccctg gtggggtttt ttcctttggc
                                                                       1260
 tttgagccgc atgggtgctg ngcctgtgat ggngcctgcc cagagtcaag ctggctctct
                                                                       1320
                                                                       1380
 ggtatgatga ccccaccact cattggctaa aggatttggg gtctctcctt cctataaggg
 tcacctctag cacagaggcc tgagtcatgg gaaagagtca cactcctgac ccttagtact
                                                                       1440
 ctgccccac ctctctttac tgtgggaaaa ccatctcagt aagacctaag tgtccaggag
                                                                       1500
 acagaaggag aagaggaagt ggatctggaa ttgggaggag cctccaccca cccctgactc
                                                                       1560
 ctccttatga agccagctgc tgaaattagc tactcaccaa gagtgagggg cagagacttc
                                                                       1620
 cagtcactga gtctcccagg cccccttgat ctgtacccca cccctatcta acaccaccct
                                                                       1680
 tggctcccac tccagctccc tgtattgata taacctgtca ggctggcttg gttaggtttt
                                                                       1740
 actggggcag aggataggga atctcttatt aaaactaaca tgaaatatgt gttgttttca
                                                                       1800
 tttgcaaatt taaataaaga tacataatgt ttgtatgaga taagaaaaaa aaaaaaaaag
                                                                       1860
                                                                       1869
 ggcggccgc
<210> 136
<211> 370
<212> PRT
```

<213> Homo sapiens

<220> <221> SITE

```
<222> (13)
<223> Xaa=unknown amino acid
<400> 136
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Xaa Arg Phe Leu
                             10
           5
Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln
                             25
Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu Gly Glu Ser
Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser Ser Ser Gln
                     55
Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys
                 70
                                   75
Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro
                               90
              85
Gly Val Ser Leu Ala Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg
          100
                            105
Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val
                        120
      115
Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr
                    135
Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu
        150
                                  155
Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser
          165 170
Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro
    180 185
Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser
 195 200
Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys
    210 215 220
Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu
225 230
                                   235
Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Glu Ala Val Val Gly
                                250
              245
Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His
                             265
Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp
                        280
                                          285
Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile
                     295
Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg
                 310
                                   315
Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser
              325
                               330
Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg His Ala His Asp Arg Trp
Gly Pro Pro Ser Thr Asn Ile Pro His Pro Trp Trp Gly Phe Phe Leu
                         360
Trp Leu
    370
<210> 137
<211> 1869
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 137
gtcgacccac gcgtncntcc agcgtncgga gccgccctgg gtgtcagcgg ctcggctccc
                                                                        60
gcgcacgctc cggccgtcgc gcagcctcgg cacctgcagg tccgtgcgtc ccgcggctgg
                                                                       120
cgcccctgac tccgtcccgg ccagggaggg ccatgatttc cctcccgggg cccctggtga
                                                                       180
ccaacttont googtttttg ttcctggggc tgagtgcct cgcgccccc tcgcgggccc
                                                                       240
                                                                       300
agctgcaact gcacttgccc qccaaccggt tgcaggcggt ggaggagggg gaaagtggtg
                                                                       360
cttcagcatg gtacaccttg cacagggagg tgtcttcatc ccagccatgg gaggtgccct
ttgtgatgtg gttcttcaaa cagaaagaaa aggaggatca ggtgttgtcc tacatcaatg
                                                                       420
gggtcacaac aagcaaacct ggagtatect tggcctacte catgecetee eggaacctgt
                                                                       480
ccctgcgggt ggagggtctc caggagaaag actctggccc ctacagctgc tccgtgaatg
                                                                       540
                                                                       600
tqcaaqacaa acaaqqcaaa tctaggggcc acagcatcaa aaccttagaa ctcaatgtac
                                                                       660
togttcctcc agetectcca tectqccqtc tecagggtgt gececatgtg ggggcaaacg
                                                                       720
tgaccctgag ctgccagtct ccaaggagta agcccgctgt ccaataccag tgggatcggc
                                                                       780
 agettecate ettecagaet ttetttgeae cageattaga tgteateegt gggtetttaa
gcctcaccaa cctttcgtct tccatggctg gagtctatgt ctgcaaggcc cacaatgagg
                                                                       840
tgggcactgc ccaatgtaat gtgacgctgg aagtgagcac agggcctgga gctgcagtgg
                                                                       900
 ttgctgaagc tgttgtgggt accctggttg gactggggtt gctggctggg ctggtcctct
                                                                       960
 tgtaccaccg ccggggcaag gccctggagg agccagccaa tgatatcaag gaggatgcca
                                                                      1020
                                                                      1080
 ttgctccccg gaccctgccc tggcccaaga gctcagacac aatctccaag aatgggaccc
tttcctctgt cacctccgca cgagccctcc ggccacccca tggccctccc aggcctggtg
                                                                      1140
cattgacccc cacgcccagt ctatccagcc aggccctgcc ctcaccaaga catgcccacg
                                                                      1200
acagatgggg cccaccctca accaatatcc cccatccctg gtggggtttt ttcctttggc
                                                                      1260
tttgagccgc atgggtgctg ngcctgtgat ggngcctgcc cagagtcaag ctggctctct
                                                                      1320
 ggtatgatga ccccaccact cattggctaa aggatttggg gtctctcctt cctataaggg
                                                                      1380
                                                                      1440
 tracetrag caragagger tgagtratgg gaaagagtra cartertgar cettagtact
 ctgccccac ctctctttac tgtgggaaaa ccatctcagt aagacctaag tgtccaggag
                                                                      1500
 acagaaggag aagaggaagt ggatctggaa ttgggaggag cctccaccca cccctgactc
                                                                      1560
                                                                      1620
 ctccttatqa aqccaqctgc tgaaattagc tactcaccaa gagtgagggg cagagacttc
                                                                      1680
 cagtcactga gtctcccagg ccccttgat ctgtacccca cccctatcta acaccaccct
tggctcccac tccagctccc tgtattgata taacctgtca ggctggcttg gttaggtttt
                                                                      1740
 actggggcag aggataggga atctcttatt aaaactaaca tgaaatatgt gttgttttca
                                                                      1800
                                                                      1860
 tttgcaaatt taaataaaga tacataatgt ttgtatgaga taagaaaaaa aaaaaaaaag
                                                                      1869
 ggcggccgc
<210> 138
<211> 370
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (13)
<223> Xaa=unknown amino acid
<400> 138
 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Xaa Arg Phe Leu
                                     10
                 5
 Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln
```

```
Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu Gly Glu Ser
                         40
Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser Ser Ser Gln
                     55
Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys
                                    75
                 70
Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro
                             90
              85
Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg
                            105
Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val
                         120
                                           125
Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr
                     135
Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Ile
                                    155
                  150
Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser
                              170
Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro
                            185
Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser
               200
Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys
                                      220
           215
Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu
                                   235
                 230
Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Glu Ala Val Val Gly
                             250 255
Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His
                   265
Arq Arq Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp
               280
                                          285
Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile
   290 295
                                      300
Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg
       310
                                   315
Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser
       · 325
                                330
Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg His Ala His Asp Arg Trp
                             345
Gly Pro Pro Ser Thr Asn Ile Pro His Pro Trp Trp Gly Phe Phe Leu
                         360
Trp Leu
   370
<210> 139
<211> 1869
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 139
                                                                 60
qtcqacccac qcqtncntcc agcgtncgga gccgccctgg gtgtcagcgg ctcggctccc
gcgcacgctc cggccgtcgc gcagcctcgg cacctgcagg tccgtgcgtc ccgcggctgg
                                                                120
```

```
cgcccctgac tccgtcccgg ccagggaggg ccatgatttc cctcccgggg cccctggtga
                                                                       180
ccaacttqnt qcqqtttttq ttcctgqggc tgagtgccct cgcgccccc tcgcgggccc
                                                                       240
agctgcaact gcacttgccc gccaaccggt tgcaggcggt ggaggagggg gaaagtggtg
                                                                       300
cttcagcatq qtacaccttg cacagggagg tgtcttcatc ccagccatgg gaggtgccct
                                                                       360
ttgtgatqtg gttcttcaaa cagaaagaaa aggaggatca ggtgttgtcc tacatcaatg
                                                                       420
gggtcacaac aagcaaacct ggagtatcct tggtctactc catgccctcc cggaacctgt
                                                                       480
ccctgcgggt ggagggtete caggagaaag actctggccc ctacagetgc tccgtgaatg
                                                                       540
tgcaagacaa acaaggcaaa tctaggggcc acagcatcaa aaccttagaa ctcaatgtac
                                                                       600
tggttcctcc agctcctcca tcctgccgta tccagggtgt gccccatgtg ggggcaaacg
                                                                       660
tgaccctgag ctgccagtct ccaaggagta agcccgctgt ccaataccag tgggatcggc
                                                                       720
agettecate ettecagaet ttetttgeae eageattaga tgteateegt gggtetttaa
                                                                       780
qcctcaccaa cctttcqtct tccatggctg gagtctatgt ctgcaaggcc cacaatgagg
                                                                       840
tgggcactgc ccaatgtaat gtgacgctgg aagtgagcac agggcctgga gctgcagtgg
                                                                       900
 ttgctgaagc tgttgtgggt accetggttg gactggggtt gctggctggg ctggtcctct
                                                                       960
 tqtaccaccq ccqqqqcaaq qccctqqaqg agccagccaa tgatatcaag gaggatgcca
                                                                      1020
 ttgctccccg gaccctgccc tggcccaaga gctcagacac aatctccaag aatgggaccc
                                                                      1080
 tttcctctgt cacctccgca cgagccctcc ggccacccca tggccctccc aggcctggtg
                                                                      1140
cattgaccc cacgeccagt ctatccagec aggecetgec ctcaccaaga catgeccaeg
                                                                      1200
acagatgggg cccaccctca accaatatcc cccatccctg gtggggtttt ttcctttggc
                                                                      1260
tttgageege atgggtgetg ngeetgtgat ggngeetgee cagagteaag etggetetet
                                                                      1320
ggtatgatga ccccaccact cattggctaa aggatttggg gtctctcctt cctataaggg
                                                                      1380
tcacctctag cacagaggcc tgagtcatgg gaaagagtca cactcctgac ccttagtact
                                                                      1440
                                                                      1500
ctqccccac ctctctttac tgtgggaaaa ccatctcagt aagacctaag tgtccaggag
acagaaggag aagaggaagt ggatctggaa ttgggaggag cctccaccca cccctgactc
                                                                      1560
ctccttatga agccagctgc tgaaattagc tactcaccaa gagtgagggg cagagacttc
                                                                      1620
cagtcactga gtctcccagg cccccttgat ctgtacccca cccctatcta acaccaccct
                                                                      1680
 tqqctcccac tccaqctccc tgtattgata taacctgtca ggctggcttg gttaggtttt
                                                                      1740
actqqqqcaq aqqataggga atctcttatt aaaactaaca tgaaatatgt gttgttttca
                                                                      1800
tttgcaaatt taaataaaga tacataatgt ttgtatgaga taagaaaaaa aaaaaaaaag
                                                                      1860
                                                                      1869
ggcggccgc
<210> 140
<211> 370
<212> PRT
<213> Homo sapiens
<220>
<221> SITE
<222> (13)
<223> Xaa=unknown amino acid
<400> 140
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Xaa Arg Phe Leu
 1
                  5
                                     10
 Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln
             20
                                 25
                                                     30
 Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Glu Gly Glu Ser
                             40
 Gly Ala Ser Ala Trp Tyr Thr Leu His Arg Glu Val Ser Ser Ser Gln
                         55
 Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys
                                         75
 Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro
                                     90
 Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg
                                 105
 Val Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val
```

125

120

115

```
Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr
                                            140
                        135
Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu
                    150
                                       155
Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser
                                                        175
                                    170
                165
Pro Arg Ser Lys Pro Val Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro
                                                    190
                                185
            180
Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser
                                                205
                            200
Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys
                                            220
                        215
Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu
                    230
                                        235
225
Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Glu Ala Val Val Gly
                                                        255
                                    250
                245
Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His
                                                    270
                                265
            260
Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp
                                                285
                            280
Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile
                        295
                                            300
Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg
                                        315
                    310
Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser
                                    330
                325
Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg His Ala His Asp Arg Trp
                                                     350
                                345
Gly Pro Pro Ser Thr Asn Ile Pro His Pro Trp Trp Gly Phe Phe Leu
                            360
                                                 365
Trp Leu
    370
<210> 141
<211> 1869
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> all "n" positions
<223> n=a, c, g, or t
 gtcgacccac gcgtncntcc agcgtncgga gccgccctgg gtgtcagcgg ctcggctccc
                                                                         60
 gegeaegete eggeegtege geageetegg cacetgeagg teegtgegte eegeggetgg
                                                                        120
 egeceetgae teegteeegg ceagggaggg ceatgattte ceteeegggg ceeetggtga
                                                                        180
 ccaacttgnt gcggtttttg ttcctggggc tgagtgccct cgcgccccc tcgcgggccc
                                                                        240
                                                                        300
 agetgeaact geacttgeec gecaaceggt tgeaggeggt ggaggagggg gaaagtggtg
 etteageatg gtacacettg cacagggagg tgtetteate ccagecatgg gaggtgeeet
                                                                        360
 ttgtgatgtg gttcttcaaa cagaaagaaa aggaggatca ggtgttgtcc tacatcaatg
                                                                        420
 gggtcacaac aagcaaacct ggagtatect tggtctactc catgecetee eggaacctgt
                                                                        480
 ccctgcgggt ggagggtctc caggagaaag actctggccc ctacagctgc tccgtgaatg
                                                                        540
 tgcaagacaa acaaggcaaa tctaggggcc acagcatcaa aaccttagaa ctcaatgtac
                                                                        600
 tggttcctcc agctcctcca tcctgccgtc tccagggtgt gccccatgtg ggggcaaacg
                                                                        660
 tgaccctgag ctgccagtct ccaaggagta agcccgttgt ccaataccag tgggatcggc
                                                                        720
 agettecate ettecagaet ttetttgeae cageattaga tgteatecgt gggtetttaa
                                                                        780
 gcctcaccaa cctttcgtct tccatggctg gagtctatgt ctgcaaggcc cacaatgagg
                                                                        840
```

```
tgggcactgc ccaatgtaat gtgacgctgg aagtgagcac agggcctgga gctgcagtgg
                                                                        900
ttgctgaagc tgttgtgggt accetggttg gactggggtt gctggctggg ctggtcctct
                                                                        960
                                                                       1020
tgtaccaccg ccggggcaag gccctggagg agccagccaa tgatatcaag gaggatgcca
ttgctccccg gaccctgccc tggcccaaga gctcagacac aatctccaag aatgggaccc
                                                                       1080
tttcctctgt cacctccgca cgagccctcc ggccacccca tggccctccc aggcctggtg
                                                                       1140
cattgacccc cacgcccagt ctatccagcc aggccctgcc ctcaccaaga catgcccacg
                                                                       1200
acaqatqqqq cccaccctca accaatatcc cccatccctg gtggggtttt ttcctttggc
                                                                       1260
tttgagccgc atgggtgctg ngcctgtgat ggngcctgcc cagagtcaag ctggctctct
                                                                       1320
qqtatqatqa ccccaccact cattggctaa aggatttggg gtctctcctt cctataaggg
                                                                       1380
teacetetaq cacaqaggee tgagteatgg gaaagagtea cacteetgae cettagtaet
                                                                       1440
ctqccccac ctctctttac tgtgggaaaa ccatctcagt aagacctaag tgtccaggag
                                                                       1500
acaqaaqqaq aaqaggaagt ggatctggaa ttgggaggag cctccaccca cccctgactc
                                                                       1560
ctccttatga agccagctgc tgaaattagc tactcaccaa gagtgagggg cagagacttc
                                                                       1620
caqtcactga gtctcccagg cccccttgat ctgtacccca cccctatcta acaccaccct
                                                                       1680
tggctcccac tccagctccc tgtattgata taacctgtca ggctggcttg gttaggtttt
                                                                       1740
actggggcag aggataggga atctcttatt aaaactaaca tgaaatatgt gttgttttca
                                                                       1800
tttgcaaatt taaataaaga tacataatgt ttgtatgaga taagaaaaaa aaaaaaaaag
                                                                       1860
                                                                       1869
ggcggccgc
<210> 142
<211> 394
<212> PRT
<213> Mus musculus
<400> 142
Met Ile Leu Gln Ala Gly Thr Pro Glu Thr Ser Leu Leu Arg Val Leu
                                     10
                 5
Phe Leu Gly Leu Ser Thr Leu Ala Ala Phe Ser Arg Ala Gln Met Glu
            20
                                 25
Leu His Val Pro Pro Gly Leu Asn Lys Leu Glu Ala Val Glu Gly Glu
                             40
                                                 45
Glu Val Val Leu Pro Ala Trp Tyr Thr Met Ala Arg Glu Glu Ser Trp
                         55
                                             60
Ser His Pro Arg Glu Val Pro Ile Met Ile Trp Phe Leu Glu Gln Glu
                     70
                                         75
Gly Lys Glu Pro Asn Gln Val Leu Ser Tyr Ile Asn Gly Val Met Thr
                                     90
Asn Lys Pro Gly Thr Ala Leu Val His Ser Ile Ser Ser Arg Asn Val
                                 105
                                                     110
            100
 Ser Leu Arg Leu Gly Ala Leu Gln Glu Gly Asp Ser Gly Thr Tyr Arg
        115
                             120
                                                 125
Cys Ser Val Asn Val Gln Asn Asp Glu Gly Lys Ser Ile Gly His Ser
                         135
 Ile Lys Ser Ile Glu Leu Lys Val Leu Val Pro Pro Ala Pro Pro Ser
                     150
                                         155
 145
Cys Ser Leu Gln Gly Val Pro Tyr Val Gly Thr Asn Val Thr Leu Asn
                                     170
                165
Cys Lys Ser Pro Arg Ser Lys Pro Thr Ala Gln Tyr Gln Trp Glu Arg
 Leu Ala Pro Ser Ser Gln Val Phe Phe Gly Pro Ala Leu Asp Ala Val
                             200
                                                 205
 Arg Gly Ser Leu Lys Leu Thr Asn Leu Ser Ile Ala Met Ser Gly Val
                         215
                                             220
 Tyr Val Cys Lys Ala Gln Asn Arg Val Gly Phe Ala Lys Cys Asn Val
                     230
                                         235
Thr Leu Asp Val Met Thr Gly Ser Lys Ala Ala Val Val Ala Gly Ala
                                     250
                                                         255
                 245
```

Val Val Gly Thr Phe Val Gly Leu Val Leu Ile Ala Gly Leu Val Leu

```
260
                                 265
 Leu Tyr Gln Arg Arg Ser Lys Thr Leu Glu Glu Leu Ala Asn Asp Ile
                             280
 Lys Glu Asp Ala Ile Ala Pro Arg Thr Leu Pro Trp Thr Lys Gly Ser
                       . 295
 Asp Thr Ile Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg
                     310
 Ala Leu Arg Pro Pro Lys Ala Ala Pro Pro Arg Pro Gly Thr Phe Thr
                                     330
 Pro Thr Pro Ser Val Ser Ser Gln Ala Leu Ser Ser Pro Arg Leu Pro
                                 345
                                                     350
 Arq Val Asp Glu Pro Pro Pro Gln Ala Val Ser Leu Thr Pro Gly Gly
                             360
 Val Ser Ser Ser Ala Leu Ser Arg Met Gly Ala Val Pro Val Met Val
                         375
 Pro Ala Gln Ser Gln Ala Gly Ser Leu Val
<210> 143
<211> 1846
<212> DNA
<213> Mus musculus
<400> 143
gtegacecae gegteeggtg cacatteggg ttgeegeege teacecaeaa cacetgtaga
                                                                        60
caccytytyt ccaactetee etgagtaete egggecaagg agggecatga ttetteagge
                                                                       120
tggaaccccc gagaccagct tgctgcgggt tttgttcctg ggactgagta cccttgctgc
                                                                       180
cttctcccga gctcagatgg agttgcacgt gccccgggc ctcaacaaat tggaagcggt
                                                                       240
                                                                       300
agagggagaa gaagtggtgc tccccgcctg gtacacgatg gcacgggagg agtcgtggtc
ccaccccgg gaggtgccca tcatgatctg gttcttggaa caagaaggga aggaaccaaa
                                                                       360
ccaggtgttg tcttacatta atggagtcat gacaaataaa cctggaacag ccctggtcca
                                                                       420
ctctatctct tcacggaatg tgtccctgcg cctgggggca ctccaggagg gagactctgg
                                                                       480
gacttaccgc tgttctgtca atgtgcagaa tgatgaaggc aaaagtatag gccacagcat
                                                                       540
caaaagcata gagctcaaag tgctggttcc tccagctcct ccatcctgta gtttacaggg
                                                                       600
 tgtaccctat gtcgggacca atgtgaccct gaactgcaag tccccaagga gtaaacctac
                                                                       660
tgctcaqtac caqtgggaga ggctggcccc atcctcccag gtcttctttg gaccagcctt
                                                                       720
agatgctgtt cgtggatctt taaagctcac taacctttcc attgccatgt ctggagtcta
                                                                       780
tgtctgcaag gctcaaaaca gagtgggctt tgccaagtgc aacgtgacct tggacgtgat
                                                                       840
gacagggtcc aaggctgcag tggtcgctgg agcagttgtg ggcacttttg ttgggttggt
                                                                       900
gctgatagct gggctggtcc tgttgtacca gcgccggagc aagaccttgg aagagctggc
                                                                       960
caatgatatc aaggaagatg ccattgctcc ccggaccttg ccttggacca aaggctcaga
                                                                      1020
cacaatetee aagaatggga caetttette ggteacetea geacgagete tgeggecaee
                                                                      1080
caaggetget cetecaagae etggeacatt tacteceaca eccagtgtet etagecagge
                                                                      1140
cctgtcctca ccaagactgc ccagggtaga tgaaccccca cctcaggcag tgtccctgac
                                                                      1200
cccaggtggg gtttcttctt ctgctctgag ccgcatgggt gctgtgcctg tgatggtgcc
                                                                      1260
 tgcacagagt caggctgggt ctcttgtgtg atagcccagg cactcattag ctacatctgg
                                                                      1320
 tatctgacct ttctgtaaag gtctccttgt ggcacagagg actcaatctt gggaggatgc
 ccacattcta gacctccagt cctttgctcc tacctccttc tattgttgga atactgggcc
                                                                      1440
 tcagtaagac taaaatctgg gtcaaaggac aaaaggagga aatggacctg aggtaggggg
                                                                      1500
 ttgggagtga ggaggettea etteeteeet getteteeet gaageeagat gaatgetgeg
                                                                      1560
                                                                      1620
gaagategge tacceteeaa gggetetgga ggagaetgee agteagtgat geecetgget
                                                                      1680
 etgtgatetg tacaacacce ttatetaatg etgteetttg eegttegete cateteeetg
 tattaatata acctgtcctg ctggcttggc tgggttttgt tgtagcaggg ggataggaaa
                                                                      1740
gacattttaa aatctgactt gaaattgatg tttttgtttt tattttgcaa atttcaataa
                                                                      1800
agatacatcg catttgcatg gaaaaaaaaa aaaaaagggc ggccgc
                                                                      1846
```

<210> 144 <211> 394

<212> PRT <213> Mus musculus

Met Ile Leu Gln Ala Gly Thr Pro Glu Thr Ser Leu Leu Arg Val Leu 10 Phe Leu Gly Leu Ser Thr Leu Ala Ala Phe Ser Arg Ala Gln Met Glu 25 Leu His Val Pro Pro Gly Leu Asn Lys Leu Glu Ala Val Glu Gly Glu 40 Glu Val Val Leu Pro Ala Trp Tyr Thr Met Ala Arg Glu Glu Ser Trp 60 55 Ser His Pro Arg Glu Val Pro Ile Leu Ile Trp Phe Leu Glu Gln Glu 70 . 75 Gly Lys Glu Pro Asn Gln Val Leu Ser Tyr Ile Asn Gly Val Met Thr 85 90 Asn Lys Pro Gly Thr Ala Leu Val His Ser Ile Ser Ser Arg Asn Val 105 110 Ser Leu Arg Leu Gly Ala Leu Gln Glu Gly Asp Ser Gly Thr Tyr Arg 120 125 Cys Ser Val Asn Val Gln Asn Asp Glu Gly Lys Ser Ile Gly His Ser 135 140 Ile Lys Ser Ile Glu Leu Lys Ala Leu Val Pro Pro Ala Pro Pro Ser 155 150 Cys Ser Leu Gln Gly Val Pro Tyr Val Gly Thr Asn Val Thr Leu Asn 170 165 Cys Lys Ser Pro Arg Ser Lys Pro Thr Ala Gln Tyr Gln Trp Glu Arg 185 180 Leu Ala Pro Ser Ser Gln Val Phe Phe Gly Pro Ala Leu Asp Ala Val 200 Arg Gly Ser Leu Lys Leu Thr Asn Leu Ser Ile Ala Met Ser Gly Val 215 220 Tyr Val Cys Lys Ala Gln Asn Arg Val Gly Phe Ala Lys Cys Asn Val 235 230 Thr Leu Asp Val Met Thr Gly Ser Lys Ala Ala Val Val Ala Gly Ala 250 255 Val Val Gly Thr Phe Val Gly Leu Val Leu Ile Ala Gly Leu Val Leu 260 265 Leu Tyr Gln Arg Arg Ser Lys Thr Leu Glu Glu Leu Ala Asn Asp Ile 280 Lys Glu Asp Ala Ile Ala Pro Arg Thr Leu Pro Trp Thr Lys Gly Ser 295 Asp Thr Ile Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg 310 315 Ala Leu Arg Pro Pro Lys Ala Ala Pro Pro Arg Pro Gly Thr Phe Thr 330 325 Pro Thr Pro Ser Val Ser Ser Gln Ala Leu Ser Ser Pro Arg Leu Pro 345 350 Arg Val Asp Glu Pro Pro Pro Gln Ala Val Ser Leu Thr Pro Gly Gly 360 Val Ser Ser Ser Ala Leu Ser Arg Met Gly Ala Val Pro Val Met Val 375 Pro Ala Gln Ser Gln Ala Gly Ser Leu Val 390 385

<210> 145 <211> 1846 <212> DNA

<213> Mus musculus

```
<400> 145
gtcgacccac gcgtccggtg cacattcggg ttgccgccgc tcacccacaa cacctgtaga
                                                                        60
caccgtgtgt ccaactctcc ctgagtactc cgggccaagg agggccatga ttcttcaggc
                                                                       120
tggaaccccc gagaccagct tgctgcgggt tttgttcctg ggactgagta cccttgctgc
                                                                       180
cttctcccga gctcagatgg agttgcacgt gccccgggc ctcaacaaat tggaagcggt
                                                                       240
agagggagaa gaagtggtgc tccccgcctg gtacacgatg gcacgggagg agtcgtggtc
                                                                       300
ccaccccgg gaggtgccca tcctgatctg gttcttggaa caagaaggga aggaaccaaa
                                                                       360
ccaggtgttg tcttacatta atggagtcat gacaaataaa cctggaacag ccctggtcca
                                                                       420
ctctatctct tcacggaatg tgtccctgcg cctgggggca ctccaggagg gagactctgg
                                                                       480
gacttaccgc tgttctgtca atgtgcagaa tgatgaaggc aaaagtatag gccacagcat
                                                                       540
caaaagcata gagctcaaag cgctggttcc tccagctcct ccatcctgta gtttacaggg
                                                                       600
tgtaccctat gtcgggacca atgtgaccct gaactgcaag tccccaagga gtaaacctac
                                                                        660
tgctcagtac cagtgggaga ggctggcccc atcctcccag gtcttctttg gaccagcctt
                                                                       720
agatgctgtt cgtggatctt taaagctcac taacctttcc attgccatgt ctggagtcta
                                                                       780
                                                                        840
tgtctgcaag gctcaaaaca gagtgggctt tgccaagtgc aacgtgacct tggacgtgat
gacagggtcc aaggctgcag tggtcgctgg agcagttgtg ggcacttttg ttgggttggt
                                                                       900
gctgatagct gggctggtcc tgttgtacca gcgccggagc aagaccttgg aagagctggc
                                                                       960
caatgatatc aaggaagatg ccattgctcc ccggaccttg ccttggacca aaggctcaga
                                                                      1020
cacaatetee aagaatggga caetttette ggteacetea geacgagete tgeggeeace
                                                                      1080
                                                                      1140
caaggetget cetecaagae etggeacatt tacteecaca eccagtgtet etagecagge
cctgtcctca ccaagactgc ccagggtaga tgaaccccca cctcaggcag tgtccctgac
                                                                      1200
cccaggtggg gtttcttctt ctgctctgag ccgcatgggt gctgtgcctg tgatggtgcc
                                                                      1260
tgcacagagt caggetgggt ctcttgtgtg atageceagg caeteattag ctacatetgg
                                                                      1320
tatctgacct ttctgtaaag gtctccttgt ggcacagagg actcaatctt gggaggatgc
                                                                      1380
ccacattcta gacctccagt cctttgctcc tacctccttc tattgttgga atactgggcc
                                                                      1440
tcagtaagac taaaatctgg gtcaaaggac aaaaggagga aatggacctg aggtaggggg
                                                                      1500
ttgggagtga ggaggcttca cttcctccct gcttctccct gaagccagat gaatgctgcg
                                                                      1560
                                                                      1620
gaagatcggc taccctccaa gggctctgga ggagactgcc agtcagtgat gcccctggct
ctgtgatctg tacaacaccc ttatctaatg ctgtcctttg ccgttcgctc catctccctg
                                                                       1680
tattaatata acctgtcctg ctggcttggc tgggttttgt tgtagcaggg ggataggaaa
                                                                       1740
gacattttaa aatctgactt gaaattgatg ttittgtttt tattttgcaa atttcaataa
                                                                       1800
                                                                       1846
agatacatcg catttgcatg gaaaaaaaaa aaaaaagggc ggccgc
```

<210> 146

<211> 394

<212> PRT

<213> Mus musculus

<400> 146

Met Ile Leu Gln Ala Gly Thr Pro Glu Thr Ser Leu Leu Arg Val Leu 10 15 5 1 Phe Leu Gly Leu Ser Thr Leu Ala Ala Phe Ser Arg Ala Gln Met Glu Leu His Val Pro Pro Gly Leu Asn Lys Leu Glu Ala Val Glu Gly Glu 40 Glu Val Val Leu Pro Ala Trp Tyr Thr Met Ala Arg Glu Glu Ser Trp 55 Ser His Pro Arg Glu Val Pro Ile Leu Ile Trp Phe Leu Glu Gln Glu 75 70 Gly Lys Glu Pro Asn Gln Val Leu Ser Tyr Ile Asn Gly Val Met Thr 90 Asn Lys Pro Gly Thr Ala Leu Val His Ser Ile Ser Ser Arg Asn Val 105 100 Ser Leu Arg Leu Gly Ala Leu Gln Glu Gly Asp Ser Gly Thr Tyr Arg 120 125 Cys Ser Val Asn Val Gln Asn Asp Glu Gly Lys Ser Ile Gly His Ser

```
135
                                             140
Ile Lys Ser Ile Glu Leu Lys Val Leu Val Pro Pro Ala Pro Pro Ser
                    150
                                        155
Cys Ser Leu Gln Gly Val Pro Tyr Val Gly Thr Asn Val Thr Leu Asn
                                    170
                165
Cys Lys Ser Pro Arg Ser Lys Pro Thr Ala Gln Tyr Gln Trp Glu Arg
                                 185
Leu Val Pro Ser Ser Gln Val Phe Phe Gly Pro Ala Leu Asp Ala Val
                                                205
                            200
Arg Gly Ser Leu Lys Leu Thr Asn Leu Ser Ile Ala Met Ser Gly Val
                        215
                                            220
Tyr Val Cys Lys Ala Gln Asn Arg Val Gly Phe Ala Lys Cys Asn Val
                    230
                                        235
Thr Leu Asp Val Met Thr Gly Ser Lys Ala Ala Val Val Ala Gly Ala
                245
                                    250
                                                         255
Val Val Gly Thr Phe Val Gly Leu Val Leu Ile Ala Gly Leu Val Leu
                                265
            260
Leu Tyr Gln Arg Arg Ser Lys Thr Leu Glu Glu Leu Ala Asn Asp Ile
                            280
                                                285
Lys Glu Asp Ala Ile Ala Pro Arg Thr Leu Pro Trp Thr Lys Gly Ser
                        295
                                             300
Asp Thr Ile Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg
                    310
                                        315
Ala Leu Arg Pro Pro Lys Ala Ala Pro Pro Arg Pro Gly Thr Phe Thr
                325
                                    330
Pro Thr Pro Ser Val Ser Ser Gln Ala Leu Ser Ser Pro Arq Leu Pro
                                 345
Arg Val Asp Glu Pro Pro Pro Gln Ala Val Ser Leu Thr Pro Gly Gly
                            360
                                                 365
Val Ser Ser Ser Ala Leu Ser Arg Met Gly Ala Val Pro Val Met Val
                        375
Pro Ala Gln Ser Gln Ala Gly Ser Leu Val
                    390
<210> 147
<211> 1846
<212> DNA
<213> Mus musculus
<400> 147
gtcgacccac gcgtccggtg cacattcggg ttgccgccgc tcacccacaa cacctgtaga
                                                                        60
caccytytyt ccaactetee etgagtaete egggecaagg agggecatga ttetteagge
                                                                       120
                                                                       180
tggaacccc gagaccagct tgctgcgggt tttgttcctg ggactgagta cccttgctgc
                                                                       240
cttctcccga gctcagatgg agttgcacgt gccccgggc ctcaacaaat tggaagcggt
agagggagaa gaagtggtgc tccccgcctg gtacacgatg gcacgggagg agtcgtggtc
                                                                       300
ccaccccgg gaggtgccca tcctgatctg gttcttggaa caagaaggga aggaaccaaa
                                                                       360
ccaggtgttg tcttacatta atggagtcat gacaaataaa cctggaacag ccctggtcca
                                                                       420
ctctatctct tcacggaatg tgtccctgcg cctgggggca ctccaggagg gagactctgg
                                                                       480
gacttaccgc tgttctgtca atgtgcagaa tgatgaaggc aaaagtatag gccacagcat
                                                                       540
caaaagcata gageteaaag tgetggttee teeageteet ceateetgta gtttacaggg
                                                                       600
tgtaccctat gtcgggacca atgtgaccct gaactgcaag tccccaagga gtaaacctac
                                                                       660
tgctcagtac cagtgggaga ggctggtccc atcctcccag gtcttctttg gaccagcctt
                                                                       720
agatgctgtt cgtggatctt taaagctcac taacctttcc attgccatgt ctggagtcta
                                                                       780
tgtctgcaag gctcaaaaca gagtgggctt tgccaagtgc aacgtgacct tggacgtgat
                                                                       840
gacagggtcc aaggctgcag tggtcgctgg agcagttgtg ggcacttttg ttgggttggt
                                                                       900
                                                                       960
gctgatagct gggctggtcc tgttgtacca gcgccggagc aagaccttgg aagagctggc
caatgatatc aaggaagatg ccattgctcc ccggaccttg ccttggacca aaggctcaga
                                                                      1020
cacaatctcc aaqaatqqqa cactttcttc qqtcacctca qcacqaqctc tgcggccacc
                                                                      1080
```

caaggetget cetecaagae etggeacatt tacteecaca eccagtgtet etagecagge 1140 cctgtcctca ccaagactgc ccagggtaga tgaaccccca cctcaggcag tgtccctgac 1200 cccaggtggg gtttcttctt ctgctctgag ccgcatgggt gctgtgcctg tgatggtgcc 1260 tgcacagagt caggctgggt ctcttgtgtg atagcccagg cactcattag ctacatctgg 1320 tatctgacct ttctgtaaag gtctccttgt ggcacagagg actcaatctt gggaggatgc 1380 ccacatteta gacetecagt cetttgetee taceteette tattgttgga atactgggee 1440 tcagtaagac taaaatctgg gtcaaaggac aaaaggagga aatggacctg aggtaggggg 1500 ttgggagtga ggaggcttca cttcctccct gcttctccct gaagccagat gaatgctgcg 1560 gaagategge taccetecaa gggetetgga ggagaetgee agteagtgat geecetgget 1620 ctgtgatctg tacaacaccc ttatctaatg ctgtcctttg ccgttcgctc catctccctg 1680 tattaatata acctgtcctg ctggcttggc tgggttttgt tgtagcaggg ggataggaaa 1740 gacattttaa aatctgactt gaaattgatg tttttgtttt tattttgcaa atttcaataa 1800 agatacatcg catttgcatg gaaaaaaaaa aaaaaagggc ggccgc 1846

<210> 148

<211> 394

<212> PRT

<213> Mus musculus

<400> 148

Met Ile Leu Gln Ala Gly Thr Pro Glu Thr Ser Leu Leu Arg Val Leu 10 Phe Leu Gly Leu Ser Thr Leu Ala Ala Phe Ser Arg Ala Gln Met Glu 25 Leu His Val Pro Pro Gly Leu Asn Lys Leu Glu Ala Val Glu Gly Glu Glu Val Val Leu Pro Ala Trp Tyr Thr Met Ala Arg Glu Glu Ser Trp Ser His Pro Arg Glu Val Pro Ile Leu Ile Trp Phe Leu Glu Glu Glu 70 75 Gly Lys Glu Pro Asn Gln Val Leu Ser Tyr Ile Asn Gly Val Met Thr 90 Asn Lys Pro Gly Thr Ala Leu Val His Ser Ile Ser Ser Arg Asn Val 100 105 110 Ser Leu Arg Leu Gly Ala Leu Gln Glu Gly Asp Ser Gly Thr Tyr Arg 120 125 Cys Ser Val Asn Val Gln Asn Asp Glu Gly Lys Ser Ile Gly His Ser 135 140 Ile Lys Ser Ile Glu Leu Lys Val Leu Val Pro Pro Ala Pro Pro Ser 150 155 Cys Ser Leu Gln Gly Val Pro Tyr Val Gly Thr Asn Val Thr Leu Asn 165 170 Cys Lys Ser Pro Arg Ser Lys Pro Thr Ala Gln Tyr Gln Trp Glu Arg . 185 190 Leu Ala Pro Ser Ser Gln Val Phe Phe Gly Pro Ala Leu Asp Ala Val 200 Arg Gly Ser Leu Lys Leu Thr Asn Leu Ser Ile Ala Met Ser Gly Val 215 220 Tyr Val Cys Lys Ala Gln Asn Arg Val Gly Phe Ala Lys Cys Asn Val 230 235 Thr Leu Asp Val Met Thr Gly Ser Lys Ala Ala Val Val Ala Gly Ala 245 250 Val Val Gly Thr Phe Val Gly Leu Val Leu Ile Ala Gly Leu Val Leu 265 Leu Tyr Gln Arg Arg Ser Lys Thr Leu Glu Glu Leu Ala Asn Asp Ile 280 285 Lys Glu Asp Ala Ile Ala Pro Arg Thr Leu Pro Trp Thr Lys Gly Ser 295 300

```
Asp Thr Ile Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arq
                     310
Ala Leu Arg Pro Pro Lys Ala Ala Pro Pro Arg Pro Gly Thr Phe Thr
                                     330
                 325
 Pro Thr Pro Ser Val Ser Ser Gln Ala Leu Ser Ser Pro Arg Leu Pro
                                 345
 Arg Val Asp Glu Pro Pro Pro Gln Ala Val Ser Leu Thr Pro Gly Gly
                             360
Val Ser Ser Ser Val Leu Ser Arg Met Gly Ala Val Pro Val Met Val
                         375
                                             380
Pro Ala Gln Ser Gln Ala Gly Ser Leu Val
385
                     390
<210> 149
<211> 1846
<212> DNA
<213> Mus musculus
<400> 149
qtcqaccac qcqtccqqtq cacattcqqq ttqccqccqc tcacccacaa cacctqtaga
                                                                        60
caccqtqtqt ccaactetee etgaqtaete egggccaagg agggccatga ttetteagge
                                                                        120
tggaaccccc gagaccaget tgctgcgggt tttgttcctg ggactgagta cccttgctgc
                                                                       180
cttctcccga gctcagatgg agttgcacgt gccccgggc ctcaacaaat tggaagcggt
                                                                       240
agagggagaa gaagtggtgc tccccgcctg gtacacgatg gcacgggagg agtcgtggtc
                                                                       300
ccaccccgg gaggtgccca tcctgatctg gttcttggaa caagaaggga aggaaccaaa
                                                                       360
ccaggtgttg tcttacatta atggagtcat gacaaataaa cctggaacag ccctggtcca
                                                                       420
ctctatctct tcacggaatg tgtccctgcg cctgggggca ctccaggagg gagactctgg
                                                                       480
gacttaccgc tgttctgtca atgtgcagaa tgatgaaggc aaaagtatag gccacagcat
                                                                       540
caaaagcata gagctcaaag tgctggttcc tccagctcct ccatcctgta gtttacaggg
                                                                       600
tgtaccctat gtcgggacca atgtgaccct gaactgcaag tccccaagga gtaaacctac
                                                                       660
tgctcagtac cagtgggaga ggctggcccc atcctcccag gtcttctttg gaccagcctt
                                                                       720
agatgctgtt cgtggatctt taaagctcac taacctttcc attgccatgt ctggagtcta
                                                                       780
tgtctgcaag gctcaaaaca gagtgggctt tgccaagtgc aacgtgacct tggacgtgat
                                                                       840
gacagggtcc aaggctgcag tggtcgctgg agcagttgtg ggcacttttg ttgggttggt
                                                                       900
gctgatagct gggctggtcc tgttgtacca gcgccggagc aagaccttgg aagagctggc
                                                                       960
caatgatatc aaggaagatg ccattgctcc ccggaccttg ccttggacca aaggctcaga
                                                                      1020
cacaatctcc aagaatggga cactttcttc ggtcacctca gcacgagctc tgcggccacc
                                                                      1080
caaggetget cetecaaqae etqqcacatt tacteecaca eccaqtqtet etaqceaqqe
                                                                      1140
cctgtcctca ccaagactgc ccagggtaga tgaaccccca cctcaggcag tgtccctgac
                                                                      1200
cccaggtggg gtttcttctt ctgttctgag ccgcatgggt gctgtgcctg tgatggtgcc
                                                                      1260
tgcacagagt caggctgggt ctcttgtgtg atagcccagg cactcattag ctacatctgg
                                                                      1320
tatctgacct ttctgtaaag gtctccttgt ggcacagagg actcaatctt gggaggatgc
                                                                      1380
ccacattcta gacctccagt cctttgctcc tacctccttc tattgttgga atactgggcc
                                                                      1440
tcagtaagac taaaatctgg gtcaaaggac aaaaggagga aatggacctg aggtaggggg
                                                                      1500
ttgggagtga ggaggettea etteeteeet getteteeet gaageeagat gaatgetgeg
                                                                      1560
gaagategge tacceteeaa gggetetgga ggagaetgee agteagtgat geecetgget
                                                                      1620
ctgtqatctg tacaacaccc ttatctaatg ctgtcctttg ccgttcgctc catctccctg
                                                                      1680
tattaatata acctgtcctg ctggcttggc tgggttttgt tgtagcaggg ggataggaaa
                                                                      1740
                                                                      1800
gacattttaa aatctgactt gaaattgatg tttttgtttt tattttgcaa atttcaataa
agatacatcg catttgcatg gaaaaaaaaa aaaaaagggc ggccgc
                                                                      1846
<210> 150
<211> 245
<212> PRT
<213> Homo sapiens
```

<400> 150
Met Arg Leu Phe Val Arg Pro Ser Val Arg Pro Ala Met Ala Ala Pro

```
10
Ala Pro Ser Pro Trp Thr Leu Ser Leu Leu Leu Leu Leu Leu Pro
                               25
Ser Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe Gly Glu Asp Asn
                           40
Ser Ile Pro Glu Ser Cys Pro Asp Phe Cys Cys Gly Ser Cys Ser Ser
                       55
Gln Tyr Cys Cys Ser Asp Val Leu Lys Lys Ile Gln Trp Asn Glu Glu
                    70
                                       75
Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Ala His Pro Glu Thr
                                   90
                85
Pro Glu Gln Leu Gly Ser Val Leu Lys Tyr Gln Ser Ser Leu Asp Ser
                               105
Asp Asn Met Pro Gly Phe Gly Ala Thr Val Ala Ile Gly Leu Thr Val
                           120
Phe Val Val Phe Ile Ala Thr Ile Ile Val Cys Phe Thr Cys Ser Cys
                        135
Cys Cys Leu Tyr Lys Met Cys Cys Arg Pro Arg Pro Val Val Ser Asn
                                       155
Thr Thr Thr Thr Val Val His Thr Ala Tyr Pro Gln Pro Gln Pro
                                   170
                                                       175
Val Ala Pro Ser Tyr Pro Gly Pro Thr Tyr Gln Gly Tyr His Pro Met
                               185
Pro Pro Gln Pro Gly Met Pro Ala Ala Pro Tyr Pro Thr Gln Tyr Pro
                            200
Pro Pro Tyr Leu Ala Gln Pro Thr Gly Pro Pro Ala Tyr His Glu Thr
                                           220
                        215
Leu Ala Gly Ala Ser Gln Pro Pro Tyr Asn Pro Ala Tyr Met Asp Pro
                    230
Pro Lys Ala Val Pro
<210> 151
<211> 1801
<212> DNA
<213> Homo sapiens
<400> 151
                                                                      60
gtegacecae gegteeggeg gaggttgtgg etgeacegtg gteetggget tggteetggg
cttgatgcgt ctgtttgtcc gtccgtccgt ccgtcccgcc atggctgcgc cggcgccctc
                                                                     120
teegtggace etttegetge tgetgttgtt getactgeeg teteegggtg eccatggega
                                                                     180
240
 tggctcctgt tccagccaat actgctgctc tgacgtgctg aagaaaatcc agtggaatga
                                                                     300
 ggaaatgtgc cctgagccag agtccagcag attttccgcc cacccggaga caccagaaca
                                                                     360
 gctgggttca gtgctgaagt atcagtccag tcttgacagt gacaacatgc cagggttcgg
                                                                     420
 agcgaccgtg gccatcggcc tgaccgtctt cgtggtgttt atcgctacca tcattgtgtg
                                                                     480
 ctttacctgc tcctgctgct gtctatataa gatgtgctgc cgcccacgac ctgtcgtgtc
                                                                     540
 caacaccaca actactaccg tggttcacac cgcttaccct cagcctcaac ctgtggcccc
                                                                     600
 cagctatect ggaccaacat accagggeta ceateceatg ecceecage caggaatgee
                                                                     660
 ageageacce tacceaacge agtaccetee accetacetg geocageeca cagggecace
                                                                     720
                                                                     780
 aqcctatcat qaqacqttgg ctggagccag ccagcctcca tacaacccgg cctacatgga
 teccecaaag geagtteeet gageetgeee ceageetett tggetaacat ttgattatgt
                                                                     840
                                                                     900
 catgtgtgtg tgagtgctat gcagagttct ttactgctgt ctgtggtgcg tgtgccttgt
```

960

1020

1080 1140

1200

ctagacatgt ggcttcctct gctgatgacc aggtaggcac aaatcttacc agtgctggtt

gggaccaatc tgttttcttc ctcacttgaa attgtaattt ctgaaatttc aagtaaatta

aaaacaatag ggtaggaggt atttcccgct tcaccccaag gtgaccagcc atagcctgcc

acacatagga gagcaagctt tttgtgggtc catgtcctgc tttggggagt agccagctag ctgctgctat gggtttattc ccagggcttg gctgcattta gctggacaga gaacaagggg

PCT/US00/16883 WO 00/78808

```
cctcagtggc agtgggtcag tgactgatgt cagagcacac taggcagaga gccccgtccg
                                                                    1260
tetecateag etgtetgtet ggaeggteee aetgtettte etgggaetat gtagagggee
                                                                    1320
acatgtattc actattcagg ctccagtggc ttccaggcca ggggcctctg tctactacac
                                                                    1380
actotggttt ctccctacag tgtcttttta cgattagcca aacatattgc ctgttttttg
                                                                    1440
tatccagatg tgtgataatt ggtgaggttg aaatccttgg ttcctggaga acaggaaacc
                                                                    1500
tgacctctga cagtccgttt cccttgacac cagcttcata gaatacctga ctcctgtact
                                                                    1560
acagtccagt ttqttccagt agcagggaca ccagggccag gggttatctg gaccaagggt
                                                                    1620
gggggtggag agcctggatg gtagctctgg accagatgtg aatgcctcca tattccctgt
                                                                    1680
                                                                    1740
tggttcctgt ttcactggct gttttagttt tgtgttaatt ggtgtttctg agcattcaaa
1800
                                                                    1801
<210> 152
<211> 245
<212> PRT
<213> Homo sapiens
<400> 152
Met Arg Leu Phe Val Arg Pro Ser Val Arg Pro Ala Met Ala Ala Pro
                                   10
Ala Pro Ser Pro Trp Thr Leu Ser Leu Leu Leu Leu Leu Leu Pro
            20
                               25
Ser Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe Gly Glu Asp Asn
                            40
        35
 Ser Ile Pro Glu Ser Cys Pro Asp Phe Cys Cys Gly Ser Cys Ser Ser
                        55
                                           60
Gln Tyr Cys Cys Ser Asp Val Leu Lys Lys Ile Gln Trp Asn Glu Glu
                                       75
                    70
Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Ala His Pro Glu Thr
                85
                                   90
 Pro Glu Gln Leu Gly Ser Ala Leu Lys Tyr Gln Ser Ser Leu Asp Ser
                                                   110
                               105
 Asp Asn Met Pro Gly Phe Gly Ala Thr Val Ala Ile Gly Leu Thr Val
                                               125
                            120
 Phe Val Val Phe Ile Ala Thr Ile Ile Val Cys Phe Thr Cys Ser Cys
                        135
                                           140
    130
 Cys Cys Leu Tyr Lys Met Cys Cys Arg Pro Arg Pro Val Val Ser Asn
                    150
                                       155
 145
 Thr Thr Thr Thr Ala Val His Thr Ala Tyr Pro Gln Pro Gln Pro
                                    170
                165
 Val Ala Pro Ser Tyr Pro Gly Pro Thr Tyr Gln Gly Tyr His Pro Met
                                185
                                                   190
            180
 Pro Pro Gln Pro Gly Met Pro Ala Ala Pro Tyr Pro Thr Gln Tyr Pro
                            200
                                               205
        195
 Pro Pro Tyr Leu Ala Gln Pro Thr Gly Pro Pro Ala Tyr His Glu Thr
                        215
                                           220
 Leu Ala Gly Ala Ser Gln Pro Pro Tyr Asn Pro Ala Tyr Met Asp Pro
                                        235
 Pro Lys Ala Val Pro
                245
<210> 153
<211> 1801
<212> DNA
<213> Homo sapiens
<400> 153
```

gtcgacccac gcgtccggcg gaggttgtgg ctgcaccgtg gtcctgggct tggtcctggg

60

```
cttgatgcgt ctgtttgtcc gtccgtccgt ccgtcccgcc atggctgcgc cggcgccctc
                                                                120
tecgtggace etttegetge tgetgttgtt getactgeeg teteegggtg eecatggega
                                                                180
240
tggctcctqt tccagccaat actgctgctc tgacgtgctg aagaaaatcc agtggaatga
                                                                300
ggaaatqtqc cctgagccag agtccagcag attttccgcc cacccggaga caccagaaca
                                                                360
qctqqqttca qcqctgaagt atcagtccag tcttgacagt gacaacatgc cagggttcgg
                                                                420
aggaccqtq gccatcggcc tgaccgtctt cgtggtgttt atcgctacca tcattgtgtg
                                                                480
ctttacctgc tcctgctgct gtctatataa gatgtgctgc cgcccacgac ctgtcgtgtc
                                                                540
caacaccaca actactaccg cggttcacac cgcttaccct cagcctcaac ctgtggcccc
                                                                600
cagetatect ggaccaacat accagggeta ceateceatg ecceecage caggaatgee
                                                                660
720
agectateat gagacgttgg etggagecag ecagecteca tacaaccegg ectacatgga
                                                                780
tcccccaaag gcagttccct gagcctgccc ccagcctctt tggctaacat ttgattatgt
                                                                840
catgtgtgtg tgagtgctat gcagagttct ttactgctgt ctgtggtgcg tgtgccttgt
                                                                900
ctaqacatqt qqcttcctct gctgatgacc aggtaggcac aaatcttacc agtgctggtt
                                                                960
qqqaccaatc tqttttcttc ctcacttgaa attgtaattt ctgaaatttc aagtaaatta
                                                               1020
                                                               1080
aaaacaatag ggtaggaggt atttcccgct tcaccccaag gtgaccagcc atagcctgcc
                                                               1140
acacatagga gagcaagctt tttgtgggtc catgtcctgc tttggggagt agccagctag
ctgctgctat gggtttattc ccagggcttg gctgcattta gctggacaga gaacaagggg
                                                               1200
cctcaqtqqc aqtqqqtcaq tgactqatqt caqaqcacac taggcagaga gccccqtccq
                                                               1260
tetecateag etgtetgtet ggaeggteee aetgtettte etgggaetat gtagagggee
                                                               1320
acatgtattc actattcagg ctccagtggc ttccaggcca ggggcctctg tctactacac
                                                               1380
actotggttt ctccctacag tgtcttttta cgattagcca aacatattgc ctgttttttg
                                                               1440
tatccagatg tgtgataatt ggtgaggttg aaatccttgg ttcctggaga acaggaaacc
                                                               1500
tgacctctga cagtccgttt cccttgacac cagcttcata gaatacctga ctcctgtact
                                                               1560
acaqtccagt ttgttccagt agcagggaca ccagggccag gggttatctg gaccaagggt
                                                               1620
gggggtggag agcctggatg gtagctctgg accagatgtg aatgcctcca tattccctgt
                                                               1680
tgqttcctqt ttcactgqct gttttagttt tgtgttaatt ggtgtttctg agcattcaaa
                                                               1740
1800
                                                               1801
```

<210> 154

<211> 245

<212> PRT

<213> Homo sapiens

<400> 154

Met Arg Leu Phe Val Arg Pro Ser Val Arg Pro Ala Met Ala Ala Pro 5 10 1 Ala Pro Ser Pro Trp Thr Leu Ser Leu Leu Leu Leu Leu Leu Pro Ser Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe Gly Glu Asp Asn 40 45 Ser Ile Pro Glu Ser Cys Pro Asp Phe Cys Cys Gly Ser Cys Ser Ser 55 Gln Tyr Cys Cys Ser Asp Val Leu Lys Lys Ile Gln Trp Asn Glu Glu 70 75 Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Ala His Pro Glu Thr 90 85 Pro Glu Gln Leu Gly Ser Ala Leu Lys Tyr Gln Ser Ser Leu Asp Ser 105 100 Asp Asn Met Pro Gly Phe Gly Ala Thr Val Ala Ile Gly Leu Thr Val 125 120 Phe Val Val Phe Ile Ala Thr Ile Ile Val Cys Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Met Cys Cys Arg Pro Arg Pro Val Val Ser Asn 155 Thr Thr Thr Thr Val Val His Thr Ala Tyr Pro Gln Pro Gln Pro

```
165
                                   170
                                                      175
Val Ala Pro Ser Tyr Pro Gly Pro Thr Tyr Gln Gly Tyr His Pro Met
            180
                               185
Pro Pro Gln Pro Gly Met Pro Ala Val Pro Tyr Pro Thr Gln Tyr Pro
                           200
                                              205
Pro Pro Tyr Leu Ala Gln Pro Thr Gly Pro Pro Ala Tyr His Glu Thr
                                          220
                       215
Leu Ala Gly Ala Ser Gln Pro Pro Tyr Asn Pro Ala Tyr Met Asp Pro
                    230
                                       235
Pro Lys Ala Val Pro
                245
<210> 155
<211> 1801
<212> DNA
<213> Homo sapiens
<400> 155
gtcgacccac gcgtccggcg gaggttgtgg ctgcaccgtg gtcctgggct tggtcctggg
                                                                     60
cttgatgcgt ctgtttgtcc gtccgtccgt ccgtcccgcc atggctgcgc cggcgccctc
                                                                    120
teegtggace etttegetge tgetgttgtt getactgeeg teteegggtg eccatggega
                                                                    180
240
tggctcctgt tccagccaat actgctgctc tgacgtgctg aagaaaatcc agtggaatga
                                                                    300
ggaaatgtgc cctgagccag agtccagcag attttccgcc cacccggaga caccagaaca
                                                                    360
qctqqqttca qcqctqaaqt atcaqtccaq tcttgacagt gacaacatgc cagggttcgg
                                                                    420
agcgaccgtg gccatcggcc tgaccgtctt cgtggtgttt atcgctacca tcattgtgtg
                                                                    480
ctttacctqc tcctqctqct gtctatataa gatgtgctgc cgcccacgac ctgtcgtgtc
                                                                    540
caacaccaca actactaccg tggttcacac cgcttaccct cagcctcaac ctgtggcccc
                                                                    600
caqctatcct qgaccaacat accagggcta ccatcccatg ccccccagc caggaatgcc
                                                                    660
ageagtacce tacceaacge agtacectee accetacetg geceageeca cagggecace
                                                                    720
                                                                    780
agectateat gagacgttgg etggagecag ecagecteca tacaaccegg ectacatgga
tececeaaag geagtteeet gageetgeee eeageetett tggetaacat ttgattatgt
                                                                    840
                                                                    900
catgtgtgtg tgagtgctat gcagagttct ttactgctgt ctgtggtgcg tgtgccttgt
ctagacatgt ggcttcctct gctgatgacc aggtaggcac aaatcttacc agtgctggtt
                                                                    960
gggaccaatc tgttttcttc ctcacttgaa attgtaattt ctgaaatttc aagtaaatta
                                                                   1020
aaaacaatag ggtaggaggt atttcccgct tcaccccaag gtgaccagcc atagcctgcc
                                                                   1080
acacatagga gagcaagett tttgtgggtc catgtcctgc tttggggagt agccagctag
                                                                   1140
                                                                   1200
ctgctgctat gggtttattc ccagggcttg gctgcattta gctggacaga gaacaagggg
                                                                   1260
cctcagtggc agtgggtcag tgactgatgt cagagcacac taggcagaga gccccgtccg
tetecateag etgtetgtet ggaeggteee aetgtettte etgggaetat gtagagggee
                                                                   1320
acatgtattc actattcagg ctccagtggc ttccaggcca ggggcctctg tctactacac
                                                                   1380
                                                                   1440
actotggttt ctccctacag tgtcttttta cgattagcca aacatattgc ctgttttttg
tatccagatg tgtgataatt ggtgaggttg aaatccttgg ttcctggaga acaggaaacc
                                                                   1500
tgacctctga cagtccgttt cccttgacac cagcttcata gaatacctga ctcctgtact
                                                                   1560
acagtccagt ttgttccagt agcagggaca ccagggccag gggttatctg gaccaagggt
                                                                   1620
gggggtggag agcctggatg gtagctctgg accagatgtg aatgcctcca tattccctgt
                                                                   1680
tggttcctgt ttcactggct gttttagttt tgtgttaatt ggtgtttctg agcattcaaa
                                                                   1740
                                                                   1800
1801
<210> 156
<211> 245
<212> PRT
<213> Homo sapiens
Met Arg Leu Phe Val Arg Pro Ser Val Arg Pro Ala Met Ala Ala Pro
                                   10
```

```
Ala Pro Ser Pro Trp Thr Leu Ser Leu Leu Leu Leu Leu Leu Pro
                                25
Ser Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe Gly Glu Asp Asn
                            40
Ser Ile Pro Glu Ser Cys Pro Asp Phe Cys Cys Gly Ser Cys Ser Ser
                       55
                                            60
Gln Tyr Cys Cys Ser Asp Val Leu Lys Lys Ile Gln Trp Asn Glu Glu
                    70
                                        75
Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Ala His Pro Glu Thr
                                    90
Pro Glu Gln Leu Gly Ser Ala Leu Lys Tyr Gln Ser Ser Leu Asp Ser
                                105
Asp Asn Met Pro Gly Phe Gly Ala Thr Val Ala Ile Gly Leu Thr Val
                            120
                                                125
Phe Val Val Phe Ile Ala Thr Ile Ile Val Cys Phe Thr Cys Ser Cys
                                            140
                        135
Cys Cys Leu Tyr Lys Met Cys Cys Arg Pro Arg Pro Val Val Ser Asn
                                        155
                    150
Thr Thr Thr Thr Val Val His Thr Ala Tyr Pro Gln Pro Gln Pro
                                    170
                165
Val Ala Pro Ser Tyr Pro Gly Pro Thr Tyr Gln Gly Tyr His Pro Met
                                185
                                                    190
Pro Pro Gln Pro Gly Met Pro Ala Ala Pro Tyr Pro Thr Gln Tyr Pro
                            200
Pro Pro Tyr Leu Ala Gln Pro Thr Gly Pro Pro Ala Tyr His Glu Thr
                                            220
                       215
Leu Ala Gly Ala Ser Gln Pro Pro Tyr Asn Pro Ala Tyr Met Asp Pro
                    230
                                        235
Pro Lys Val Val Pro
                245
```

<210> 157

<211> 1801

<212> DNA

<213> Homo sapiens

<400> 157

gtcgacccac gcgtccggcg gaggttgtgg ctgcaccgtg gtcctgggct tggtcctggg 60 cttgatgcgt ctgtttgtcc gtccgtccgt ccgtcccgcc atggctgcgc cggcgccctc 120 180 teegtggace etttegetge tgetgttgtt getactgeeg teteegggtg cecatggega 240 tggctcctgt tccagccaat actgctgctc tgacgtgctg aagaaaatcc agtggaatga 300 ggaaatgtgc cctgagccag agtccagcag attttccgcc cacccggaga caccagaaca 360 gctgggttca gcgctgaagt atcagtccag tcttgacagt gacaacatgc cagggttcgg 420 agegacegtg gecateggee tgacegtett egtggtgttt ategetacea teattgtgtg 480 ctttacctgc tcctgctgct gtctatataa gatgtgctgc cgcccacgac ctgtcgtgtc 540 caacaccaca actactaccg tggttcacac cgcttaccct cagcctcaac ctgtggcccc 600 cagetatect ggaccaacat accagggeta ceateceatg ecceecage caggaatgee 660 720 780 agcctatcat gagacgttgg ctggagccag ccagcctcca tacaacccgg cctacatgga tcccccaaag gtagttccct gagcctgccc ccagcctctt tggctaacat ttgattatgt 840 catgtgtgtg tgagtgctat gcagagttct ttactgctgt ctgtggtgcg tgtgccttgt 900 ctagacatgt ggcttcctct gctgatgacc aggtaggcac aaatcttacc agtgctggtt 960 gggaccaatc tgttttcttc ctcacttgaa attgtaattt ctgaaatttc aagtaaatta 1020 aaaacaatag ggtaggaggt atttcccgct tcaccccaag gtgaccagcc atagcctgcc 1080 acacatagga gagcaagctt tttgtgggtc catgtcctgc tttggggagt agccagctag 1140 ctgctgctat gggtttattc ccagggcttg gctgcattta gctggacaga gaacaagggg 1200 1260 cctcagtggc agtgggtcag tgactgatgt cagagcacac taggcagaga gccccgtccg

```
tetecateag etgtetgtet ggaeggteee aetgtettte etgggaetat gtagagggee
                                                                    1320
acatgtattc actattcagg ctccagtggc ttccaggcca ggggcctctg tctactacac
                                                                    1380
actotggttt ctccctacag tgtcttttta cgattagcca aacatattgc ctgttttttg
                                                                    1440
tatccagatg tgtgataatt ggtgaggttg aaatccttgg ttcctggaga acaggaaacc
                                                                    1500
tgacctctga cagtccgttt cccttgacac cagcttcata gaatacctga ctcctgtact
                                                                    1560
acaqtccagt ttqttccagt agcagggaca ccagggccag gggttatctg gaccaagggt
                                                                    1620
gggggtggag agcctggatg gtagctctgg accagatgtg aatgcctcca tattccctgt
                                                                    1680
tggttcctgt ttcactggct gttttagttt tgtgttaatt ggtgtttctg agcattcaaa
                                                                    1740
1800
                                                                    1801
<210> 158
<211> 213
<212> PRT
<213> Mus musculus
<400> 158
Met Ala Ala Pro Ala Pro Ser Leu Trp Thr Leu Leu Leu Leu Leu
                                   10
Leu Leu Pro Pro Pro Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe
                                25
Gly Glu Asp Asn Ser Ile Pro Val Phe Cys Pro Asp Phe Cys Cys Gly
                            40
Ser Cys Ser Asn Gln Tyr Cys Cys Ser Asp Val Leu Arg Lys Ile Gln
Trp Asn Glu Glu Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Thr
                                       75
Pro Ala Glu Glu Thr Pro Glu His Leu Gly Ser Ala Leu Lys Phe Arg
                                   90
Ser Ser Phe Asp Ser Asp Pro Met Ser Gly Phe Gly Ala Thr Val Ala
            100
                                105
Ile Gly Val Thr Met Phe Val Val Phe Ile Ala Thr Ile Ile Ile Cys
                           120
                                               125
Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Met Cys Cys Pro Gln Arg
                       135
Pro Val Val Thr Asn Thr Thr Thr Thr Thr Val Val His Ala Pro Tyr
                    150
                                       155
Pro Gln Pro Gln Pro Gln Pro Val Ala Pro Ser Tyr Pro Gly Pro Thr
                                   170
                165
Tyr Gln Gly Tyr His Pro Met Pro Pro Pro Ala Arg Asn Ala Ser Ser
                               185
            180
Thr Leu Pro Asn Ala Val Pro Thr Thr Leu Pro Gly Pro Ala His Arg
        195
                           200
                                               205
Ala Ala Thr Leu Pro
    210
<210> 159
<211> 1858
<212> DNA
<213> Mus musculus
<400> 159
gtegacecae gegteegeg ggaggttgeg geggeacegt ggtettggge ttggteegte
                                                                      60
tgttcgtccg tccgttggtc tgtcccgcca tggctgcgcc ggcgccctct ctgtggaccc
                                                                     120
tattgctgct gctgttgctg ctgccgccgc ctccgggtgc ccatggtgag ctgtgcaggc
                                                                     180
cetttggtga agacaatteg ateccagtgt tetgteetga tttetgttgt ggtteetgtt
                                                                     240
ccaaccaata ctgctgctcg gacgtgctga ggaaaatcca gtggaatgag gaaatgtgtc
                                                                     300
                                                                     360
ctgagccaga gtccagcaga ttttccaccc ccgcggagga gacacccgaa catctgggtt
```

```
cagcgctgaa atttcgatcc agttttgaca gtgaccctat gtcagggttc ggagcgaccg
                                                                    420
                                                                    480
tegecattgg egtgaceatg tttgtggtgt ttattgecae tateateate tgetteaeet
geteetgetg etgtetgtat aagatgtget geecceaacg ceetgtegtg accaacacca
                                                                    540
                                                                    600
caactactac cgtggttcat gccccttacc ctcagcctca acctcaacct gtggccccca
gctatcctgg accaacatac cagggctacc atcccatgcc cccccagcc aggaatgcca
                                                                    660
gcagcaccct acccaacgca gtacccacca ccctacctgg cccagcccac agggccgcca
                                                                    720
                                                                    780
ccctaccatg agtccttggc tggagccagc cagcctccat acaacccgac ctacatggat
tecetaaaga caatteeetg aacetgeece cageetettt ggetgeeatt tatgtegtgt
                                                                    840
                                                                    900
gtgagtgagt gatacgcaga gttctttact gctgtctgtg gtgtgtgtgc cttgtctaga
                                                                    960
catgtggctt cctctgctgt tgaccaggta ggcgcaagtc ttaccagtgt gggtcgggac
caacctgttt tottootcac ttgaaattgt actttotgaa atttcaagca aattaaaaac
                                                                   1020
                                                                   1080
aataaggtag gaggtatttc ccacgtcacc ccaaggtgac cagccatggc ctgtcatact
taggagagca agctttttgc gggtacagag caggctttgg ggggtaacca gctagctgct
                                                                   1140
gctaggcctt tattcccagg gtttggctgc attggcagtg aggcaggtgg ctgggggtga
                                                                   1200
caccaggtga caaggggact cagtggcagg gggtcacacc aggcagaaca ccatacactc
                                                                   1260
tccatcagct gtctgtctgg atgtcactgt ccttcccggg gctgtataga gggccacatg
                                                                   1320
tgttcactat tcaggctcca ctgggggaat tttcctacct ttgctggctt ggctcctgct
                                                                   1380
cccaggccag ggacctcggt ctgtctacta cacactctgg tttctccctg cactgtcttt
                                                                   1440
ttactgttag ccaaacattt tgcctgtttt ctgtctccag atgtgtgata attggtgtga
                                                                   1500
ggttgaaatc cctggttcct ggaggacaga caacctgacc tccgactgtc agtttccctt
                                                                   1560
gacaccatct tcatagaaat acctgactcc tgtaccacag tccagtttgt cccagtagca
                                                                   1620
gggacaccaa ggccaatggg ttatctggac caaaggtggg gtggagggcc tagatggtat
                                                                   1680
ctccggccca gatgtgaata cctccatatt ccctgttggt tcctgtttca ctggctgttt
                                                                   1740
tagetttgtg ttgattggtg tttctgagca ttcagactcc gcaccctcat ttctaataaa
                                                                   1800
1858
```

<210> 160

<211> 213

<212> PRT

<213> Mus musculus

<400> 160

Met Ala Ala Pro Ala Pro Ser Leu Trp Thr Leu Leu Leu Leu Leu Leu 10 Leu Leu Pro Pro Pro Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe 25 Gly Glu Asp Asn Ser Ile Pro Val Phe Cys Pro Asp Phe Cys Cys Gly 40 Ser Cys Ser Asn Gln Tyr Cys Cys Ser Asp Val Leu Arg Lys Ile Gln 55 Trp Asn Glu Glu Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Thr 75 70 Pro Ala Glu Glu Thr Pro Glu His Leu Gly Ser Ala Leu Lys Phe Arg 90 Ser Ser Phe Asp Ser Asp Pro Met Ser Gly Phe Gly Ala Thr Val Ala 100 105 Ile Gly Val Thr Ile Phe Val Val Phe Ile Val Thr Ile Ile Cys 120 125 Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Met Cys Cys Pro Gln Arg 135 Pro Val Val Thr Asn Thr Thr Thr Thr Thr Val Val His Ala Pro Tyr 150 155 Pro Gln Pro Gln Pro Gln Pro Val Ala Pro Ser Tyr Pro Gly Pro Thr 165 170 Tyr Gln Gly Tyr His Pro Met Pro Pro Pro Ala Arg Asn Ala Ser Ser 185 Thr Leu Pro Asn Ala Val Pro Thr Thr Leu Pro Gly Pro Ala His Arg 200

PCT/US00/16883 WO 00/78808

60

```
Ala Ala Thr Leu Pro
    210
<210> 161
<211> 1858
<212> DNA
<213> Mus musculus
<400> 161
gtcgacccac gcgtccgcgc ggaggttgcg gcggcaccgt ggtcttgggc ttggtccgtc
tgttcgtccg tccgttggtc tgtcccgcca tggctgcgcc ggcgccctct ctgtggaccc
                                                                      120
tattgctgct gctgttgctg ctgccgccgc ctccgggtgc ccatggtgag ctgtgcaggc
                                                                      180
cctttggtga agacaattcg atcccagtgt tctgtcctga tttctgttgt ggttcctgtt
                                                                      240
ccaaccaata ctgctgctcg gacgtgctga ggaaaatcca gtggaatgag gaaatgtgtc
                                                                      300
ctgagccaga gtccagcaga ttttccaccc ccgcggagga gacacccgaa catctgggtt
                                                                      360
cagcgctgaa atttcgatcc agttttgaca gtgaccctat gtcagggttc ggagcgaccg
                                                                      420
tegecattgg cgtgaccate titgtggtgt ttattgtcac tatcatcate tgetteacet
                                                                      480
geteetgetg etgtetgtat aagatgtget geecccaacg ceetgtegtg accaacacca
                                                                      540
 caactactac cgtggttcat gccccttacc ctcagcctca acctcaacct gtggccccca
                                                                      600
 gctatectgg accaacatac cagggetace ateccatgee ecceecagee aggaatgeca
                                                                      660
 gcagcaccct acccaacgca gtacccacca ccctacctgg cccagcccac agggccgcca
                                                                      720
 ccctaccatg agtccttggc tggagccagc cagcctccat acaacccgac ctacatggat
                                                                      780
 tecetaaaga caatteeetg aacetgeece cageetettt ggetgeeatt tatgtegtgt
                                                                      840
 gtgagtgagt gatacgcaga gttctttact gctgtctgtg gtgtgtgtgc cttgtctaga
                                                                      900
                                                                      960
 catgtggctt cctctgctgt tgaccaggta ggcgcaagtc ttaccagtgt gggtcgggac
 caacetgttt tetteeteac ttgaaattgt aetttetgaa attteaagea aattaaaaac
                                                                     1020
 aataaggtag gaggtatttc ccacgtcacc ccaaggtgac cagccatggc ctgtcatact
                                                                     1080
 taggagagca agctttttgc gggtacagag caggctttgg ggggtaacca gctagctgct
                                                                     1140
 gctaggcctt tattcccagg gtttggctgc attggcagtg aggcaggtgg ctgggggtga
                                                                     1200
 caccaggtga caaggggact cagtggcagg gggtcacacc aggcagaaca ccatacactc
                                                                     1260
 tccatcagct gtctgtctgg atgtcactgt ccttcccggg gctgtataga gggccacatg
                                                                     1320
 tgttcactat tcaggctcca ctgggggaat tttcctacct ttgctggctt ggctcctgct
                                                                     1380
 cccaggccag ggacctcggt ctgtctacta cacactctgg tttctccctg cactgtcttt
                                                                     1440
 ttactgttag ccaaacattt tgcctgtttt ctgtctccag atgtgtgata attggtgtga
                                                                     1500
 ggttgaaatc cctggttcct ggaggacaga caacctgacc tccgactgtc agtttccctt
                                                                     1560
 gacaccatct tcatagaaat acctgactcc tgtaccacag tccagtttgt cccagtagca
                                                                     1620
 gggacaccaa ggccaatggg ttatctggac caaaggtggg gtggagggcc tagatggtat
                                                                     1680
 ctccggccca gatgtgaata cctccatatt ccctgttggt tcctgtttca ctggctgttt
                                                                     1740
 tagetttgtg ttgattggtg tttctgagca ttcagactcc gcaccctcat ttctaataaa
                                                                     1800
 1858
<210> 162
<211> 213
<212> PRT
 <213> Mus musculus
 <400> 162
 Met Ala Ala Pro Ala Pro Ser Leu Trp Thr Leu Leu Leu Leu Leu
                                     10
                  5
 Leu Leu Pro Pro Pro Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe
                                                     30
                                 25
             20
 Gly Glu Asp Asn Ser Ile Pro Val Phe Cys Pro Asp Phe Cys Cys Gly
                                                 45
                             40
         35
  Ser Cys Ser Asn Gln Tyr Cys Cys Ser Asp Val Leu Arg Lys Ile Gln
                         55
      50
  Trp Asn Glu Glu Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Thr
                                         75
                      70
  Pro Ala Glu Glu Thr Pro Glu His Leu Gly Ser Ala Leu Lys Phe Arg
```

```
95
                                   90
               85
Ser Ser Phe Asp Ser Asp Pro Met Ser Gly Phe Gly Ala Thr Val Ala
                                                   110
                               105
           100
Ile Gly Val Thr Ile Phe Val Val Phe Ile Ala Thr Ile Ile Cys
                                               125
                           120
        115
Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Met Cys Cys Pro Gln Arg
                                           140
                        135
Pro Val Val Thr Asn Thr Thr Thr Thr Val Ala His Ala Pro Tyr
                                       155
                    150
Pro Gln Pro Gln Pro Gln Pro Val Ala Pro Ser Tyr Pro Gly Pro Thr
                                    170
                165
Tyr Gln Gly Tyr His Pro Met Pro Pro Pro Ala Arg Asn Ala Ser Ser
                                                   190
                                185
            180
Thr Leu Pro Asn Ala Val Pro Thr Thr Leu Pro Gly Pro Ala His Arg
                                               205
                            200
        195
Ala Ala Thr Leu Pro
    210
<210> 163
<211> 1858
<212> DNA
<213> Mus musculus
<400> 163
gtcgacccac gcgtccgcgc ggaggttgcg gcggcaccgt ggtcttgggc ttggtccgtc
                                                                       60
tgttegteeg teegttggte tgteeegeea tggetgegee ggegeeetet etgtggaeee
                                                                      120
tattgctgct gctgttgctg ctgccgccgc ctccgggtgc ccatggtgag ctgtgcaggc
                                                                      180
cetttggtga agacaatteg atcccagtgt tetgteetga tttetgttgt ggtteetgtt
                                                                      240
ccaaccaata ctgctgctcg gacgtgctga ggaaaatcca gtggaatgag gaaatgtgtc
                                                                      300
 ctgagccaga gtccagcaga ttttccaccc ccgcggagga gacacccgaa catctgggtt
                                                                      360
 cagegetgaa atttegatee agttttgaca gtgaccetat gteagggtte ggagegaceg
                                                                      420
 tegecattgg egtgaccate titgtggtgt ttattgccae tatcatcate tgetteacet
                                                                      480
 geteetgetg etgtetgtat aagatgtget geecccaacg ecetgtegtg accaacacca
                                                                      540
 caactactac cgtggctcat gccccttacc ctcagcctca acctcaacct gtggcccca
                                                                      600
 gctatectgg accaacatac cagggetacc atcccatgec ecceccagec aggaatgeca
                                                                      660
 geageaceet acceaacgea gtacceacea cectacetgg eccageecae agggeegeea
                                                                      720
 ccctaccatg agtccttggc tggagccagc cagcctccat acaacccgac ctacatggat
                                                                      780
 teectaaaga caatteeetg aacetgeece cageetettt ggetgeeatt tatgtegtgt
                                                                      840
 gtgagtgagt gatacgcaga gttctttact gctgtctgtg gtgtgtgtgc cttgtctaga
                                                                      900
 catgtggctt cctctgctgt tgaccaggta ggcgcaagtc ttaccagtgt gggtcgggac
                                                                      960
 caacetgttt tetteetcae ttgaaattgt aetttetgaa attteaagea aattaaaaae
                                                                      1020
 aataaggtag gaggtattte ceaegteace ceaaggtgae cagecatgge etgteatact
                                                                      1080
 taggagagca agetttttge gggtacagag caggetttgg ggggtaacca getagetget
                                                                      1140
 gctaggcett tattcccagg gtttggctgc attggcagtg aggcaggtgg ctgggggtga
                                                                      1200
 caccaggtga caaggggact cagtggcagg gggtcacacc aggcagaaca ccatacactc
                                                                      1260
 tccatcagct gtctgtctgg atgtcactgt ccttcccggg gctgtataga gggccacatg
                                                                      1320
 tgttcactat tcaggctcca ctgggggaat tttcctacct ttgctggctt ggctcctgct
                                                                      1380
 cccaggccag ggacctcggt ctgtctacta cacactctgg tttctccctg cactgtcttt
                                                                      1440
 ttactgttag ccaaacattt tgcctgtttt ctgtctccag atgtgtgata attggtgtga
                                                                      1500
 ggttgaaatc cctggttcct ggaggacaga caacctgacc tccgactgtc agtttccctt
                                                                      1560
  gacaccatct tcatagaaat acctgactcc tgtaccacag tccagtttgt cccagtagca
                                                                      1620
  gggacaccaa ggccaatggg ttatctggac caaaggtggg gtggagggcc tagatggtat
                                                                      1680
  ctccggccca gatgtgaata cctccatatt ccctgttggt tcctgtttca ctggctgttt
                                                                      1740
  tagetttgtg ttgattggtg tttctgagca ttcagactcc gcaccetcat ttctaataaa
                                                                      1800
  1858
```

<210> 164 <211> 213

PCT/US00/16883 WO 00/78808

<212> PRT <213> Mus musculus <400> 164 Met Ala Ala Pro Ala Pro Ser Leu Trp Thr Leu Leu Leu Leu Leu 10 Leu Leu Pro Pro Pro Pro Gly Ala His Gly Glu Leu Cys Arg Pro Phe 25 Gly Glu Asp Asn Ser Ile Pro Val Phe Cys Pro Asp Phe Cys Cys Gly 40 Ser Cys Ser Asn Gln Tyr Cys Cys Ser Asp Val Leu Arg Lys Ile Gln 55 Trp Asn Glu Glu Met Cys Pro Glu Pro Glu Ser Ser Arg Phe Ser Thr 70 Pro Ala Glu Glu Thr Pro Glu His Leu Gly Ser Ala Leu Lys Phe Arg 90 Ser Ser Phe Asp Ser Asp Pro Met Ser Gly Phe Gly Ala Thr Val Ala 105 110 Ile Gly Val Thr Ile Phe Val Val Phe Ile Ala Thr Ile Ile Ile Cys 125 120 Phe Thr Cys Ser Cys Cys Cys Leu Tyr Lys Met Cys Cys Pro Gln Arg 140 135 Pro Val Val Thr Asn Thr Thr Thr Thr Val Val His Ala Pro Tyr 150 155 Pro Gln Pro Gln Pro Gln Pro Val Ala Pro Ser Tyr Pro Gly Pro Thr 170 165 Tyr Gln Gly Tyr His Pro Met Pro Pro Pro Ala Arg Asn Ala Ser Ser 185 190 Thr Leu Pro Asn Val Val Pro Thr Thr Leu Pro Gly Pro Ala His Arg 195 200 Ala Ala Thr Leu Pro 210 <210> 165 <211> 1858 <212> DNA <213> Mus musculus <400> 165 60 gtcgacccac gcgtccgcgc ggaggttgcg gcggcaccgt ggtcttgggc ttggtccgtc tqttcqtccq tccqttgqtc tqtcccqcca tggctgcgcc ggcgccctct ctgtggaccc 120 tattgctgct gctgttgctg ctgccgccgc ctccgggtgc ccatggtgag ctgtgcaggc 180 240 cctttggtga agacaattcg atcccagtgt tctgtcctga tttctgttgt ggttcctgtt 300 ccaaccaata ctgctgctcg gacgtgctga ggaaaatcca gtggaatgag gaaatgtgtc ctgagccaga gtccagcaga ttttccaccc ccgcggagga gacacccgaa catctgggtt 360 cagogotgaa atttogatoo agttttgaca gtgaccotat gtcagggttc ggagogacog 420 togocattgg cgtgaccato tttgtggtgt ttattgccac tatcatcatc tgcttcacct 480 gctcctgctg ctgtctgtat aagatgtgct gcccccaacg ccctgtcgtg accaacacca 540 caactactac egtggttcat geceettace etcageetca aceteaacet gtggeececa gctatcctgg accaacatac cagggctacc atcccatgcc ccccccagcc aggaatgcca 720 gcagcaccet acccaacgta gtacccacca ccctacctgg cccagcccac agggccgcca 780 ccctaccatg agtccttggc tggagccagc cagcctccat acaacccgac ctacatggat tccctaaaga caattccctg aacctgcccc cagcctcttt ggctgccatt tatgtcgtgt 840 gtgagtgagt gatacgcaga gttctttact gctgtctgtg gtgtgtgtgc cttgtctaga 900 960

1020

1080 1140

catqtqqctt cctctqctgt tgaccaggta ggcgcaagtc ttaccagtgt gggtcgggac

caacctgttt tottoctoac tigaaattgt actttotgaa atttcaagca aattaaaaaac aataaggtag gaggtatttc ccacgtcacc ccaaggtgac cagccatggc ctgtcatact

taggagagca agctttttgc gggtacagag caggctttgg ggggtaacca gctagctgct

```
1200
gctaggcctt tattcccagg gtttggctgc attggcagtg aggcaggtgg ctgggggtga
caccaggtga caaggggact cagtggcagg gggtcacacc aggcagaaca ccatacactc
                                                                     1260
tocatcagct gtotgtotgg atgtcactgt cottcocggg gctgtataga gggccacatg
                                                                     1320
tgttcactat tcaggctcca ctgggggaat tttcctacct ttgctggctt ggctcctgct
                                                                     1380
cccaggccag ggacctcggt ctgtctacta cacactctgg tttctccctg cactgtcttt
                                                                     1440
ttactqttaq ccaaacattt tgcctgtttt ctgtctccag atgtgtgata attggtgtga
                                                                     1500
qqttqaaatc cctqqttcct ggaggacaga caacctgacc tccgactgtc agtttccctt
                                                                     1560
qacaccatct tcataqaaat acctgactcc tgtaccacag tccagtttgt cccagtagca
                                                                     1620
gggacaccaa ggccaatggg ttatctggac caaaggtggg gtggagggcc tagatggtat
                                                                     1680
ctccggccca gatgtgaata cctccatatt ccctgttggt tcctgtttca ctggctgttt
                                                                     1740
tagctttgtg ttgattggtg tttctgagca ttcagactcc gcaccctcat ttctaataaa
                                                                     1800
                                                                     1858
<210> 166
<211> 639
<212> DNA
<213> Mus musculus
<400> 166
atggctgcgc cggcgccctc tctgtggacc ctattgctgc tgctgttgct gctgccgccg
                                                                       60
                                                                      120
cctccgggtg cccatggtga gctgtgcagg ccctttggtg aagacaattc gatcccagtg
ttetgteetg atttetgttg tggtteetgt tecaaccaat actgetgete ggacgtgetg
                                                                      180
aggaaaatcc agtggaatga ggaaatgtgt cctgagccag agtccagcag attttccacc
                                                                      240
cccgcggagg agacacccga acatctgggt tcagcgctga aatttcgatc cagttttgac
                                                                      300
agtgacceta tgtcagggtt cggagcgacc gtcgccattg gcgtgaccat gtttgtggtg
                                                                      360
tttattgcca ctatcatcat ctgcttcacc tgctcctgct gctgtctgta taagatgtgc
                                                                      420
tgcccccaac gccctgtcgt gaccaacacc acaactacta ccgtggttca tgccccttac
                                                                      480
cctcagcctc aacctcaacc tgtggccccc agctatcctg gaccaacata ccagggctac
                                                                      540
                                                                      600
cateccatge ecceecage caggaatgee ageageacee tacccaacge agtacccace
                                                                      639
accetacetg geccageeca cagggeegee accetacea
<210> 167
<211> 639
<212> DNA
<213> Mus musculus
<400> 167
atggetgege eggegeeete tetgtggaee etattgetge tgetgttget getgeegeeg
                                                                       60
cctccgggtg cccatggtga gctgtgcagg ccctttggtg aagacaattc gatcccagtg
                                                                      120
                                                                      180
ttetgteetg atttetgttg tggtteetgt tecaaccaat actgetgete ggacgtgetg
                                                                      240
aggaaaatcc agtggaatga ggaaatgtgt cctgagccag agtccagcag attttccacc
                                                                      300
cccgcggagg agacacccga acatctgggt tcagcgctga aatttcgatc cagttttgac
                                                                      360
agtgacceta tgtcagggtt cggagcgacc gtcgccattg gcgtgaccat ctttgtggtg
                                                                      420
tttattgtca ctatcatcat ctgcttcacc tgctcctgct gctgtctgta taagatgtgc
tgcccccaac gccctgtcgt gaccaacacc acaactacta ccgtggttca tgccccttac
                                                                      480
                                                                      540
cctcagcctc aacctcaacc tgtggccccc agctatcctg gaccaacata ccagggctac
cateceatge ecceecage caggaatgee ageageacee tacecaacge agtacecace
                                                                      600
                                                                      639
accetacetg geccagecea cagggeegee accetacea
<210> 168
<211> 639
<212> DNA
<213> Mus musculus
<400> 168
                                                                       60
atggctgcgc cggcgccctc tctgtggacc ctattgctgc tgctgttgct gctgccgccg
cctccgggtg cccatggtga gctgtgcagg ccctttggtg aagacaattc gatcccagtg
                                                                      120
ttctgtcctg atttctgttg tggttcctgt tccaaccaat actgctgctc ggacgtgctg
                                                                      180
```

```
240
aggaaaatcc agtggaatga ggaaatgtgt cctgagccag agtccagcag attttccacc
cccgcggagg agacacccga acatctgggt tcagcgctga aatttcgatc cagttttgac
                                                                       300
agtgacccta tgtcagggtt cggagcgacc gtcgccattg gcgtgaccat ctttgtggtg
                                                                       360
tttattgcca ctatcatcat ctgcttcacc tgctcctgct gctgtctgta taagatgtgc
                                                                       420
tgcccccaac gccctgtcgt gaccaacacc acaactacta ccgtggctca tgccccttac
                                                                       480
ceteageete aaceteaace tgtggeecee agetateetg gaecaacata ecagggetae
                                                                       540
                                                                       600
cateceatge ecceecage caggaatgee ageageacee tacceaacge agtacecace
accetacetg geccagecca cagggeegee accetacea
                                                                       639
<210> 169
<211> 639
<212> DNA
<213> Mus musculus
<400> 169
                                                                        60
atggetgege eggegeeete tetgtggace etattgetge tgetgttget getgeegeeg
cctccgggtg cccatggtga gctgtgcagg ccctttggtg aagacaattc gatcccagtg
                                                                       120
ttctgtcctg atttctgttg tggttcctgt tccaaccaat actgctgctc ggacgtgctg
                                                                       180
aggaaaatcc agtggaatga ggaaatgtgt cctgagccag agtccagcag attttccacc
                                                                       240
cccgcggagg agacacccga acatctgggt tcagcgctga aatttcgatc cagttttgac
                                                                       300
agtgacccta tgtcagggtt cggagcgacc gtcgccattg gcgtgaccat ctttgtggtg
                                                                       360
tttattgcca ctatcatcat ctgcttcacc tgctcctgct gctgtctgta taagatgtgc
                                                                       420
tgcccccaac gccctgtcgt gaccaacacc acaactacta ccgtggttca tgccccttac
                                                                       480
cctcagcctc aacctcaacc tgtggccccc agctatcctg gaccaacata ccagggctac
                                                                       540
cateccatge ecceecage caggaatgee ageageacee tacccaaegt agtacccace
                                                                       600
accetacetg geccageeca cagggeegee accetacea
                                                                       639
<210> 170
<211> 1218
<212> DNA
<213> Homo sapiens
<400> 170
atggggccca gcacccctct cctcatcttg ttccttttgt catggtcggg acccctccaa
                                                                        60
ggacagcagc accaccttgt ggagtacatg gaacgccgac tagctgcttt agaggaacgg
                                                                       120
ctggcccagt gccaggacca gagtagtcgg catgctgctg agctgcggga cttcaagaac
                                                                       180
aagatgetge cactgetgga ggtggcagag aaggageggg aggcactcag aactgaggee
                                                                       240
gacaccatct cogggagagt ggatcgtctg gagcgggagg cagactatct ggagacccag
                                                                       300
                                                                       360
aacccagctc tgccctgtgt agagtttgat gagaaggtga ctggaggccc tgggaccaaa
ggcaagggaa gaaggaatga gaagtacgat atggtgacag actgtggcta cacaatctct
                                                                       420
caagtgagat caatgaagat totgaagoga tttggtggcc cagctggtot atggaccaag
                                                                       480
gatccactgg ggcaaacaga gaagatctac gtgttagatg ggacacagaa tgacacagcc
                                                                       540
tttgtcttcc caaggctgcg tgacttcacc cttgccatgg ctgcccggaa agcttcccga
                                                                       600
gtccgggtgc ccttcccctg ggtaggcaca gggcagctgg tatatggtgg ctttctttat
                                                                       660
tttgctcgga ggcctcctgg aagacctggt ggaggtggtg agatggagaa cactttgcag
                                                                       720
ctaatcaaat tccacctggc aaaccgaaca gtggtggaca gctcagtatt cccagcagag
                                                                       780
gggctgatcc ccccctacgg cttgacagca gacacctaca tcgacctggc agctgatgag
                                                                       840
gaaggtettt gggetgteta tgecaccegg gaggatgaca ggeacttgtg tetggecaag
                                                                       900
ttagatccac agacactgga cacagagcag cagtgggaca caccatgtcc cagagagaat
                                                                       960
gctgaggctg cctttgtcat ctgtgggacc ctctatgtcg tctataacac ccgtcctgcc
                                                                      1020
agtogggccc gcatccagtg ctcctttgat gccagcggca ccctgacccc tgaacgggca
                                                                      1080
gcactccctt attttccccg cagatatggt gcccatgcca gcctccgcta taacccccga
                                                                      1140
gaacgccagc totatgcctg ggatgatggc taccagattg totataagct ggagatgagg
                                                                      1200
aagaaagagg aggaggtt
                                                                      1218
```

<210> 171 <211> 1218

<212> DNA

<213> Homo sapiens

```
<400> 171
atggggccca gcacccctct cctcatcttg ttccttttgt catggtcggg acccctccaa
                                                                        60
ggacagcagc accacettgt ggagtacatg gaacgccgac tagetgettt agaggaacgg
                                                                       120
ctggcccagt gccaggacca gagtagtcgg catgctgctg agctgcggga cttcaagaac
                                                                       180
                                                                       240
aagatgctgc cactgctgga ggtggcagag aaggagcggg aggcactcag aactgaggcc
gacaccatct ccgggagagt ggatcgtctg gagcgggagg tagactatct ggagacccag
                                                                       300
aacccagctc tgccctgtgt agagtttgat gagaaggtga ctggaggccc tgggaccaaa
                                                                       360
ggcaagggaa gaaggaatga gaagtacgat atggtgacag actgtggcta cacaatctct
                                                                       420
caagtgagat caatgaagat totgaagoga tttggtggcc cagotggtot atggaccaag
                                                                       480
gatccactgg ggcaaacaga gaagatctac gtgttagatg ggacacagaa tgacacagcc
                                                                       540
tttgtcttcc caaggctgcg tgacttcacc cttgccatgg ctgcccggaa agcttcccga
                                                                       600
gtccgggtgc ccttcccctg ggtaggcaca gggcagctgg tatatggtgg ctttctttat
                                                                       660
tttgctcgga ggcctcctgg aagacctggt ggaggtggtg agatggagaa cactttgcag
                                                                       720
ctaatcaaat tccacctggc aaaccgaaca gtggtggaca gctcagtatt cccagcagag
                                                                       780
                                                                       840
gggctgatcc ccccctacgg cttgacagca gacacctaca tcgacctggc agctgatgag
                                                                       900
gaaggtettt gggetgteta tgccaccegg gaggatgaca ggcacttgtg tetggccaag
                                                                       960
ttagatccac agacactgga cacagagcag cagtgggaca caccatgtcc cagagagaat
getgaggetg cetttgteat etgtgggace etetatgteg tetataacae cegteetgee
                                                                      1020
                                                                      1080
agtogggcc gcatccagtg ctcctttgat gccagcggca ccctgacccc tgaacgggca
                                                                      1140
gcactccctt attttccccg cagatatggt gcccatgcca gcctccgcta taacccccga
gaacgccagc tctatgcctg ggatgatggc taccagattg tctataagct ggagatgagg
                                                                      1200
aagaaagagg aggaggtt
                                                                      1218
<210> 172
<211> 1219
<212> DNA
<213> Homo sapiens
<400> 172
catggggccc agcaccctc tecteatett gtteettttg teatggtegg gaccceteca
                                                                        60
aggacagcag caccaccttg tggagtacat ggaacgccga ctagctgctt tagaggaacg
                                                                       120
                                                                       180
gctggcccag tgccaggacc agagtagtcg gcatgctgct gagctgcggg acttcaagaa
caagatgctg ccactgctgg aggtggcaga gaaggagcgg gaggcactca gaactgaggc
                                                                       240
cgacaccatc tccgggagag tggatcgtct ggagcgggag gtagactatc tggagaccca
                                                                       300
                                                                       360
gaacccagct ctgccctgtg tagagtttga tgagaaggtg actggaggcc ctgggaccaa
aggcaaggga agaaggaatg agaagtacga tatggtgaca gactgtggct acacaatctc
                                                                       420
tcaagtgaga tcaatgaaga ttctgaagcg atttggtggc ccagctggta tatggaccaa
                                                                       480
ggatccactg gggcaaacaq aqaaqatcta cgtgttagat gggacacaga atgacacagc
                                                                       540
ctttgtcttc ccaaggctgc gtgacttcac ccttgccatg gctgcccgga aagcttcccg
                                                                       600
agtccgggtg cccttcccct gggtaggcac agggcagctg gtatatggtg gctttcttta
                                                                       660
ttttgctcgg aggcctcctg gaagacctgg tggaggtggt gagatggaga acactttgca
                                                                       720
                                                                       780
gctaatcaaa ttccacctgg caaaccgaac agtggtggac agctcagtat tcccagcaga
                                                                       840
ggggctgatc cccccctacg gcttgacagc agacacctac atcgacctgg cagctgatga
ggaaggtett tgggetgtet atgccacccg ggaggatgac aggcacttgt gtetggccaa
                                                                       900
                                                                       960
gttagatcca cagacactgg acacagagca gcagtgggac acaccatgtc ccagagagaa
tgctgaggct gcctttgtca tctgtgggac cctctatgtc gtctataaca cccgtcctgc
                                                                      1020
                                                                      1080
cagtegggee egeateeagt geteetttga tgeeagegge accetgacee etgaaeggge
agcactccct tattttcccc gcagatatgg tgcccatgcc agcctccgct ataacccccg
                                                                      1140
                                                                      1200
agaacgccag ctctatgcct gggatgatgg ctaccagatt gtctataagc tggagatgag
                                                                      1219
gaagaaagag gaggaggtt
```

<210> 173

<211> 1218

<212> DNA

<213> Homo sapiens

```
<400> 173
atggggccca gcacccctct cctcatcttg ttccttttgt catggtcggg acccctccaa
                                                                        60
ggacagcagc accaccttgt ggagtacatg gaacgccgac tagctgcttt agaggaacgg
                                                                       120
ctggcccagt gccaggacca gagtagtcgg catgctgctg agctgcggga cttcaagaac
                                                                       180
aagatgctgc cactgctgga ggtggcagag aaggagcggg aggcactcag aactgaggcc
                                                                       240
                                                                       300
gacaccatct ccgggagagt ggatcgtctg gagcgggagg tagactatct ggagacccag
aacccagctc tgccctgtgt agagtttgat gagaaggtga ctggaggccc tgggaccaaa
                                                                       360
ggcaaqqqaa qaagqaatga gaagtacgat atggtgacag actgtggcta cacaatctct
                                                                       420
caagtgagat caatgaagat totgaagoga tttggtggcc cagotggtot atggaccaag
                                                                       480
                                                                       540
gatccactgg ggcaaacaga gaagatctac gtgttagatg ggacacagaa tgacacagtc
                                                                       600
tttgtcttcc caaggctgcg tgacttcacc cttgccatgg ctgcccggaa agcttcccga
                                                                       660
gtccgggtgc ccttcccctg ggtaggcaca gggcagctgg tatatggtgg ctttctttat
                                                                       720
tttgctcgga ggcctcctgg aagacctggt ggaggtggtg agatggagaa cactttgcag
ctaatcaaat tccacctggc aaaccgaaca gtggtggaca gctcagtatt cccagcagag
                                                                       780
                                                                        840
gggctgatcc ccccctacgg cttgacagca gacacctaca tcgacctggc agctgatgag
                                                                       900
gaaggtettt gggetgteta tgccaccegg gaggatgaca ggcacttgtg tetggccaag
ttagatccac agacactgga cacagagcag cagtgggaca caccatgtcc cagagagaat
                                                                       960
getgaggetg cetttgtcat etgtgggace etetatgteg tetataacae eegteetgee
                                                                      1020
                                                                      1080
agtegggeec geatecagtg etectttgat gecageggea ecetgaecee tgaaegggea
                                                                      1140
gcactccctt attttccccg cagatatggt gcccatgcca gcctccgcta taacccccga
                                                                      1200
gaacgccagc totatgcctg ggatgatggc taccagattg totataagct ggagatgagg
                                                                       1218
aagaaagagg aggaggtt
<210> 174
<211> 729
<212> DNA
<213> Mus musculus
<400> 174
atgaggecae ttettgeeet tetgettetg ggtetggtgt eaggetetee teetetggae
                                                                        60
gacaacaaga tececageet gtgteeeggg cageeeggee tteeaggeae accaggteae
                                                                        120
catggcagec aaggeetgee tggeegtgac ggeegtgatg geegegaegg tgeaceegga
                                                                        180
gctccgggag agaaaggcga gggcgggaga ccgggactac ctggcccacg tggggagccc
                                                                       240
gggccgcgtg gagaggtagg gcccatgggg gctatcgggc ctgcggggga gtgctcggta
                                                                       300
cccccacgat cagcettcag tgccaagega tecgagagec gggtacetce gecageegae
                                                                       360
acacccctac ctttcgaccg tgtgctgcta aatgagcagg gccattacga ccccactact
                                                                        420
ggcaagttca cctgccaagt gcctggcgtc tactactttg ctgtgcacgc cactgtctac
                                                                        480
egggecaget tgeagtttga tettgteaaa aacgggeagt ceategeete tttetteeag
                                                                       540
                                                                       600
tattttgggg ggtggcccaa gccagcctcg ctctcagggg gtgcgatggt aaggctagaa
                                                                       660
cctgaggacc aggtgtgggt gcaggtgggc gtgggtgatt acattggcat ctatgccagc
                                                                       720
atcaagacag acagtacett etetggattt etegtetatt etgaetggea eageteecea
                                                                       729
gtcttcgct
<210> 175
<211> 729
<212> DNA
<213> Mus musculus
<400> 175
                                                                         60
atgaggecae ttettgeeet tetgettetg ggtetggtgt caggetetee teetetggae
gacaacaaga teeccageet gtgteeeggg cageeeggee tteeaggeac accaggteac
                                                                        120
                                                                        180
catggcagcc aaggcctgcc tggccgtgac ggccgtgatg gccgcgacgg tgcacccgga
                                                                        240
gctccgggag agaaaggcga gggcgggaga ccgggactac ctggcccacg tggggagccc
gggccgcgtg gagaggcagg gccatgggg gctatcgggc ctgcggggga gtgctcggta
                                                                        300
ccccacgat cagtcttcag tgccaagcga tccgagagcc gggtacctcc gccagccgac
                                                                       360
                                                                        420
acaccectae etttegaceg tgtgetgeta aatgageagg gecattaega ceceactaet
                                                                        480
ggcaagttca cctgccaagt gcctggcgtc tactactttg ctgtgcacgc cactgtctac
 egggecaget tgeagtttga tettgteaaa aaegggeagt ceategeete tttetteeag
                                                                        540
```

tattttgggg cctgaggacc atcaagacag	aggtgtgggt	gcaggtgggc	gtgggtgatt	acattggcat	ctatgccagc	600 660 720 729
<210> 176 <211> 729 <212> DNA <213> Mus mu	sculus					
<400> 176 atgaggcac gacaacaaga catggcagcc gctccgggag gggccgctta acaccctac ggcaagttca cgggcagct tattttgggg cctgaggacc atcaagacag gtcttcgct	tececageet aaggeetgee agaaaggega gagaggeagg eageetteag etttegaeeg ectgeeaagt tgeagtttga ggtggeeeaa aggtgtgggt	gtgtcccggg tggccgtgac gggcgggaga gcccatgggg tgccaagcga tgcgctgcta gcctggcgtc tcttgtcaaa gccagcctcg gcaggtggc	cagcccggcc ggccgtgatg ccgggactac gctatcgggc tccgagagcc aatgagcagg tactactttg aacgggcagt ctctcagggg gtgggtgatt	ttccaggcac gccgcgacgg ctggcccacg ctgcggggga gggtacctcc gccattacga ctgtgcacgc ccatcgcctc gtgcgatggt acattggcat	accaggtcac tgcacccgga tggggagccc gtgctcggta gccagccgac ccccactact cactgtctac tttcttccag aaggctagaa ctatgccagc	60 120 180 240 300 360 420 480 540 600 660 720 729
<210> 177 <211> 729 <212> DNA <213> Mus mu	sculus					
<pre><400> 177 atgaggcac gacaacaaga catggcagcc gctccgggag gggccgcgtg ccccacgat acaccctac ggcaagttca cgggccagct tattttgggg cctgaggacc atcaagacag gtcttcgct</pre>	tececageet aaggeetgee agaaaggega gagaggeagg cageetteag etttegaeeg ectgeeaagt tgeagtttga ggtggeeeaa aggtgtgggt	gtgtcccggg tggccgtgac gggcgggaga gcccatgggg tgccaagcga tgtgctgcta gcctggcgtc tattgtcaaa gccagcctcg gcaggtgggc	cagcccggcc ggccgtgatg ccgggactac gctatcgggc tccgagagcc aatgagcagg tactactttg aacgggcagt ctctcagggg	ttccaggcac gccgcgacgg ctggcccacg ctgcggggga gggtacctcc gccattacga ctgtgcacgc ccatcgcctc gtgcgatggt acattggcat	accaggteac tgcaccegga tggggagecc gtgcteggta gccagcegac ccccactact cactgtctac tttcttccag aaggctagaa ctatgccagc	60 120 180 240 300 360 420 480 540 660 720 729
<210> 178 <211> 1218 <212> DNA <213> Mus mu	sculus					
<pre><400> 178 atggggcca ggacagcagc ctggccaat aagatgttgc gactccatct aacccagctt ggcaagggcc</pre>	accaccttgt gccaggatca ctctcctgga caggaagagt tgccctgtgt	ggagtacatg gagtagtcgg ggtggcagag ggaccgtatt agagctggat	gaacgccgac catgctgccg aaggagcggg gaaagggagg gagaaggtga	tagctgcctt agcttcggga agaccctcag tagactatct ctggaggtcc	agaggaacgg cttcaaaaac aactgaagca ggagacacag tggagccaaa	60 120 180 240 300 360 420

```
caggtgaggt caatgaagat cctgaagcgg tttggtggtt cagttggcct atggaccaag
                                                                        480
                                                                        540
 gateegetgg ggeeageaga gaagatetae gtgttagaeg geaceeagaa egacaegget
                                                                        600
 tttgtcttcc caaggctgcg tgacttcacc cttgccatgg ctgcccggaa agcttcccga
                                                                        660
 attogggtgc cottoccotg ggtaggcacg gggcagctgg tgtacggtgg cttoctttat
 tatgctcgaa ggcctcctgg aggacctgga gggggtggtg aattggagaa cactctgcag
                                                                        720
 ctgatcaaat ttcacttggc aaaccgaaca gtggtggata gctcagtgtt ccctgcagag
                                                                        780
 agectgatae ecceetaegg eetgaeagea gatacatata tegaeetgge agetgatgag
                                                                        840
                                                                        900
 gagggcctgt gggctgtcta tgccactcga gatgatgaca ggcatttgtg tctagccaag
                                                                        960
 ttagacccac agacacttga cacagagcag cagtgggaca caccatgtcc cagagagaac
 gcagaggetg egtttgteat etgtgggaee etgtaegttg tetataacae eegeeetgee
                                                                       1020
 agtagggete gtatteagtg tteettegat geeagtggta etetegeece tgaaagggea
                                                                       1080
 gcactctcct attttccacg ccgatatggt gcccatgcca gccttcgcta taacccccgt
                                                                       1140
 gagegecage tgtatgeetg ggatgatgge taccagattg tetacaaatt ggagatgaag
                                                                       1200
                                                                       1218
 aagaaggagg aggaagtt
<210> 179
<211> 1218
<212> DNA
<213> Mus musculus
<400> 179
 atggggccca gtgctcctct gctgctcctc ttctttttgt catggacggg accccttcag
                                                                         60
 ggacagcage accacettgt ggagtacatg gaacgeegae tagetgeett agaggaacgg
                                                                        120
 ctggcccaat gccaggatca gagtagtcgg catgctgccg agcttcggga cttcaaaaaac
                                                                        180
                                                                        240
 aagatgttgc ctctcctgga ggtggcagag aaggagcggg agaccctcag aactgaagca
 gactccatct caggaagagt ggaccgtctt gaaagggagg tagactatct ggagacacag
                                                                        300
 aacccagctt tgccctgtgt agagctggat gagaaggtga ctggaggtcc tggagccaaa
                                                                        360
 ggcaagggcc gaagaaatga gaaatacgat atagtgacgg actgtagcta cacagtcgct
                                                                        420
 caggtgaggt caatgaagat cctgaagcgg tttggtggtt cagttggcct atggaccaag
                                                                        480
                                                                        540
 gateegetgg ggeeageaga gaagatetae gtgttagaeg geaceeagaa egacaegget
                                                                        600
 tttgtcttcc caaggctgcg tgacttcacc cttgccatgg ctgcccggaa agcttcccga
                                                                        660
 attegggtgc ccttcccctg ggtaggcacg gggcagctgg tgtacggtgg cttcctttat
                                                                        720
 tatgctcgaa ggcctcctgg aggacctgga gggggtggtg aattggagaa cactctgcag
                                                                        780
 ctgatcaaat ttcacttggc aaaccgaaca gtggtggata gctcagtgtt ccctgcagag
                                                                        840
 agectgatac ceceetaegg cetgacagea gatacatata tegacetgge agetgatgag
 gagggcctgt gggctgtcta tgccactcga gatgatgaca ggcatttgtg tctagccaag
                                                                        900
 ttagacccac agacacttga cacagagcag cagtgggaca caccatgtcc cagagagaac
                                                                        960
 gcagaggctg cgtttgtcat ctgtgggacc ctgtacgttg tctataacac ccgccctgcc
                                                                       1020
 agtagggete gtatteagtg tteettegat gecagtggta etetegeece tgaaagggea
                                                                       1080
 gcactetect attttecacg cegatatggt geecatgeea gcettegeta taaccecegt
                                                                       1140
 gagegeeage tgtatgeetg ggatgatgge taccagattg tetacaaatt ggagatgaag
                                                                       1200
 aagaaggagg aggaagtt
                                                                       1218
<210> 180
<211> 1218
<212> DNA
<213> Mus musculus
<400> 180
 atggggccca gtgctcctct gctgctcctc ttctttttgt catggacggg accccttcag
                                                                         60
 ggacagcagc accaccttgt ggagtacatg gaacgccgac tagctgcctt agaggaacgg
                                                                        120
 ctggcccaat gccaggatca gagtagtcgg catgctgccg agcttcggga cttcaaaaaac
                                                                        180
 aagatgttgc ctctcctgga ggtggcagag aaggagcggg agaccctcag aactgaagca
                                                                        240
gactccatct caggaagagt ggaccgtctt gaaagggagg tagactatct ggagacacag
                                                                        300
                                                                        360
 aacccagctt tgccctgtgt agagctggat gagaaggtga ctggaggtcc tggagccaaa
                                                                        420
 ggcaagggcc gaagaaatga gaaatacgat atggtgacgg actgtagcta cacagtcgct
 caggtgaggt caatgaagat cctgaagcgg tttggtggtt cagttggcct atggaccaag
                                                                        480
                                                                        540
 gatccgctgg ggccagcaga gaagatctac gcgttagacg gcacccagaa cgacacggct
```

```
tttgtcttcc caaggetgeg tgacttcace ettgecatgg etgeeeggaa agetteeega
                                                                       600
attcgggtgc ccttcccctg ggtaggcacg gggcagctgg tgtacggtgg cttcctttat
                                                                       660
                                                                       720
tatgctcgaa ggcctcctgg aggacctgga gggggtggtg aattggagaa cactctgcag
ctgatcaaat ttcacttggc aaaccgaaca gtggtggata gctcagtgtt ccctgcagag
                                                                       780
agectgatae eecectaegg eetgacagea gatacatata tegacetgge agetgatgag
                                                                       840
gagggcctgt gggctgtcta tgccactcga gatgatgaca ggcatttgtg tctagccaag
                                                                       900
                                                                       960
ttagacccac agacacttga cacagagcag cagtgggaca caccatgtcc cagagagaac
                                                                       1020
gcagaggctg cgtttgtcat ctgtgggacc ctgtacgttg tctataacac ccgccctgcc
agtagggete gtatteagtg tteettegat gecagtggta etetegeece tgaaagggea
                                                                      1080
geactetect attitecacg cegatatggt geceatgeea geettegeta taaccecegt
                                                                      1140
gagegeeage tgtatgeetg ggatgatgge taccagattg tetacaaatt ggagatgaag
                                                                      1200
                                                                      1218
aagaaggagg aggaagtt
<210> 181
<211> 1218
<212> DNA
<213> Mus musculus
<400> 181
                                                                         60
atggggccca gtgctcctct gctgctcctc ttctttttgt catggacggg accccttcag
                                                                       120
ggacagcagc accaecttgt ggagtacatg gaacgccgac tagctgcctt agaggaacgg
                                                                        180
ctggcccaat gccaggatca gagtagtcgg catgctgccg agcttcggga cttcaaaaac
                                                                        240
aagatgttgc ctctcctgga ggtggcagag aaggagcggg agaccctcag aactgaagca
gactccatct caggaagagt ggaccgtctt gaaagggagg tagactatct ggagacacag
                                                                        300
 aacccagctt tgccctgtgt agagctggat gagaaggtga ctggaggtcc tggagccaaa
                                                                        360
                                                                        420
ggcaagggcc gaagaaatga gaaatacgat atggtgacgg actgtagcta cacagtcgct
                                                                        480
 caggtgaggt caatgaagat cctgaagcgg tttggtggtt cagttggcct atggaccaag
 gatccgctgg ggccagcaga gaagatctac gtgttagacg gcacccagaa cgacacggct
                                                                        540
                                                                        600
 tttgtcttcc caaggctgcg tgacttcacc cttgtcatgg ctgcccggaa agcttcccga
 attcgggtgc ccttcccctg ggtaggcacg gggcagctgg tgtacggtgg cttcctttat
                                                                        660
                                                                        720
 tatgctcgaa ggcctcctgg aggacctgga gggggtggtg aattggagaa cactctgcag
 ctgatcaaat ttcacttggc aaaccgaaca gtggtggata gctcagtgtt ccctgcagag
                                                                        780
                                                                        840
 agcctgatac ccccctacgg cctgacagca gatacatata tcgacctggc agctgatgag
 gagggcctgt gggctgtcta tgccactcga gatgatgaca ggcatttgtg tctagccaag
                                                                        900
                                                                        960
 ttagacccac agacacttga cacagagcag cagtgggaca caccatgtcc cagagagaac
 gcagaggctg cgtttgtcat ctgtgggacc ctgtacgttg tctataacac ccgccctgcc
                                                                       1020
 agtagggctc gtattcagtg ttccttcgat gccagtggta ctctcgcccc tgaaagggca
                                                                       1080
 gcactetect attttccacg ccgatatggt gcccatgcca gccttcgcta taacccccgt
                                                                       1140
 gagegecage tgtatgectg ggatgatgge taccagattg tetacaaatt ggagatgaag
                                                                       1200
                                                                       1218
 aagaaggagg aggaagtt
<210> 182
<211> 1110
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 182
 atgatttccc tcccggggcc cctggtgacc aacttgntgc ggtttttgtt cctggggctg
                                                                         60
 agtgccctcg cgccccctc gcgggcccag ctgcaactgc acttgcccgc caaccggttg
                                                                        120
 caggcggtgg aggaggggga aagtggtgct tcagcatggt acaccttgca cagggaggcg
                                                                        180
                                                                        240
 tottcatccc agccatggga ggtgcccttt gtgatgtggt tottcaaaca gaaagaaaag
 gaggatcagg tgttgtccta catcaatggg gtcacaacaa gcaaacctgg agtatccttg
                                                                        300
                                                                        360
 gtctactcca tgccctcccg gaacctgtcc ctgcgggtgg agggtctcca ggagaaagac
```

```
totggcccct acagotgcto ogtgaatgtg caagacaaac aaggcaaatc taggggccac
                                                                420
agcatcaaaa cottagaact caatgtactg gttcctccag ctcctccatc ctgccgtctc
                                                                480
cagggtgtgc cccatgtggg ggcaaacgtg accctgagct gccagtctcc aaggagtaag
                                                                540
cccgctgtcc aataccagtg ggatcggcag cttccatcct tccagacttt ctttgcacca
                                                                600
gcattagatg tcatccgtgg gtctttaagc ctcaccaacc tttcgtcttc catggctgga
                                                                660
720
gtgagcacag ggcctggagc tgcagtggtt gctgaagctg ttgtgggtac cctggttgga
                                                                780
ctggggttgc tggctgggct ggtcctcttg taccaccgcc ggggcaaggc cctggaggag
                                                                840
900
teagacacaa tetecaagaa tgggaceett teetetgtea eeteegeacg ageeeteegg
                                                                960
ccaccccatg gcctcccag gcctggtgca ttgaccccca cgcccagtct atccagccag
                                                               1020
gccctgccct caccaagaca tgcccacgac agatggggcc caccctcaac caatatcccc
                                                               1080
                                                               1110
catccctggt ggggtttttt cctttggctt
<210> 183
<211> 1110
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 183
atgatttccc tcccggggcc cctggtgacc aacttgntgc ggtttttgtt cctggggctg
                                                                 60
agtgeeeteg egeceeete gegggeeeag etgeaactge aettgeeege caaceggttg
                                                                120
caggeggtgg aggagggga aagtggtgct tcagcatggt acaccttgca cagggaggtg
                                                                180
tcttcatccc agccatggga ggtgcccttt gtgatgtggt tcttcaaaca gaaagaaaag
                                                                240
gaggatcagg tgttgtccta catcaatggg gtcacaacaa gcaaacctgg agtatccttg
                                                                300
gcctactcca tgccctcccg gaacctgtcc ctgcgggtgg agggtctcca ggagaaagac
                                                                360
tetggeceet acagetgete egtgaatgtg caagacaaac aaggeaaate taggggecae
                                                                420
                                                                480
agcatcaaaa ccttagaact caatgtactg gttcctccag ctcctccatc ctgccgtctc
                                                                540
cagggtgtgc cccatgtggg ggcaaacgtg accctgagct gccagtctcc aaggagtaag
cccgctgtcc aataccagtg ggatcggcag cttccatcct tccagacttt ctttgcacca
                                                                600
gcattagatg tcatccgtgg gtctttaagc ctcaccaacc tttcgtcttc catggctgga
                                                                660
720
gtgagcacag ggcctggagc tgcagtggtt gctgaagctg ttgtgggtac cctggttgga
                                                                780
ctggggttgc tggctgggct ggtcctcttg taccaccgcc ggggcaaggc cctggaggag
                                                                840
900
tcagacacaa tctccaagaa tgggaccctt tcctctgtca cctccgcacg agccctccgg
                                                                960
ccaccccatg gccctcccag gcctggtgca ttgaccccca cgcccagtct atccagccag
                                                               1020
gecetgeet caccaagaca tgeceacgae agatggggee cacceteaac caatateeee
                                                               1080
                                                               1110
catccctggt ggggtttttt cctttggctt
<210> 184
<211> 1110
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 184
 atgatttccc tcccggggcc cctggtgacc aacttgntgc ggtttttgtt cctggggctg
                                                                 60
                                                                120
 agtgccctcg cgccccctc gcgggcccag ctgcaactgc acttgcccgc caaccggttg
```

```
caggcggtgg aggaggggga aagtggtgct tcagcatggt acaccttgca cagggaggtg
                                                                180
tcttcatccc agccatggga ggtgcccttt gtgatgtggt tcttcaaaca gaaagaaaag
                                                                240
                                                                300
gaggatcagg tgttgtccta catcaatggg gtcacaacaa gcaaacctgg agtatccttg
gtctactcca tgccctcccg gaacctgtcc ctgcgggtgg agggtctcca ggagaaagac
                                                                360
                                                                420
totggccct acagotgcto ogtgaatgtg caagacaaac aaggcaaatc taggggccac
                                                                480
agcatcaaaa ccttagaact caatgtactg gttcctccag ctcctccatc ctgccgtatc
cagggtgtgc cccatgtggg ggcaaacgtg accetgaget gccagtetec aaggagtaag
                                                                540
                                                                 600
cccgctgtcc aataccagtg ggatcggcag cttccatcct tccagacttt ctttgcacca
gcattagatg tcatccgtgg gtctttaagc ctcaccaacc tttcgtcttc catggctgga
                                                                 660
720
gtgagcacag ggcctggagc tgcagtggtt gctgaagctg ttgtgggtac cctggttgga
                                                                780
ctggggttgc tggctgggct ggtcctcttg taccaccgcc ggggcaaggc cctggaggag
                                                                 840
900
tcagacacaa tctccaagaa tgggaccctt tcctctgtca cctccgcacg agccctccgg
                                                                 960
ccaccccatg gccctcccag gcctggtgca ttgaccccca cgcccagtct atccagccag
                                                                1020
                                                                1080
qccctqcct caccaagaca tgcccacgac agatggggcc caccctcaac caatatcccc
                                                                1110
catecetggt ggggtttttt cetttggett
<210> 185
<211> 1110
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> all "n" positions
<223> n=a, c, g, or t
<400> 185
atgatttccc tcccggggcc cctggtgacc aacttgntgc ggtttttgtt cctggggctg
                                                                  60
agtgccctcg cgccccctc gcgggcccag ctgcaactgc acttgcccgc caaccggttg
                                                                 120
caggcggtgg aggagggga aagtggtgct tcagcatggt acaccttgca cagggaggtg
                                                                 180
tcttcatccc agccatggga ggtgcccttt gtgatgtggt tcttcaaaca gaaagaaaag
                                                                 240
                                                                 300
gaggatcagg tgttgtccta catcaatggg gtcacaacaa gcaaacctgg agtatccttg
                                                                 360
gtctactcca tgccctcccg gaacctgtcc ctgcgggtgg agggtctcca ggagaaagac
                                                                 420
tetggeeet acagetgete egtgaatgtg caagacaaac aaggeaaate taggggeeac
agcatcaaaa ccttagaact caatgtactg gttcctccag ctcctccatc ctgccgtctc
                                                                 480
cagggtgtgc cccatgtggg ggcaaacgtg accctgagct gccagtctcc aaggagtaag
                                                                 540
 cccgttgtcc aataccagtg ggatcggcag cttccatcct tccagacttt ctttgcacca
                                                                 600
gcattagatg tcatccgtgg gtctttaagc ctcaccaacc tttcgtcttc catggctgga
                                                                 660
720
 gtgagcacag ggcctggagc tgcagtggtt gctgaagctg ttgtgggtac cctggttgga
                                                                 780
 ctggggttgc tggctgggct ggtcctcttg taccaccgcc ggggcaaggc cctggaggag
                                                                 840
 900
 tcagacacaa tctccaagaa tgggaccctt tcctctgtca cctccgcacg agccctccgg
                                                                 960
                                                                1020
 ccacccatg gcctcccag gcctggtgca ttgaccccca cgcccagtct atccagccag
                                                                1080
 gecetgeeet caccaagaca tgeecacgae agatggggee cacceteaac caatateeee
                                                                1110
 catccctggt ggggtttttt cctttggctt
<210> 186
<211> 1182
<212> DNA
<213> Mus musculus
<400> 186
 atgattette aggetggaac eccegagace agettgetge gggttttgtt ectgggaetg
                                                                  60
 agtacecttg ctgccttctc ccgagetcag atggagttgc acgtgccccc gggcctcaac
                                                                 120
                                                                 180
 aaattggaag cggtagaggg agaagaagtg gtgctccccg cctggtacac gatggcacgg
```

```
gaggagtcgt ggtcccaccc ccgggaggtg cccatcatga tctggttctt ggaacaagaa
                                                                        240
gggaaggaac caaaccaggt gttgtcttac attaatggag tcatgacaaa taaacctgga
                                                                        300
acageeetgg tecactetat etetteaegg aatgtgteee tgegeetggg ggeaeteeag
                                                                        360
gagggagact ctgggactta ccgctgttct gtcaatgtgc agaatgatga aggcaaaaagt
                                                                        420
ataggecaca geateaaaag catagagete aaagtgetgg tteeteeage teeteeatee
                                                                        480
tgtagtttac agggtgtacc ctatgtcggg accaatgtga ccctgaactg caagtcccca
                                                                        540
aggagtaaac ctactgctca gtaccagtgg gagaggctgg ccccatcctc ccaggtcttc
                                                                        600
tttggaccag ccttagatgc tgttcgtgga tctttaaagc tcactaacct ttccattgcc
                                                                        660
atgtctggag tctatgtctg caaggctcaa aacagagtgg gctttgccaa gtgcaacgtg
                                                                        720
accttggacg tgatgacagg gtccaaggct gcagtggtcg ctggagcagt tgtgggcact
                                                                        780
tttgttgggt tggtgctgat agctgggctg gtcctgttgt accagcgccg gagcaagacc
                                                                        840
ttggaagage tggccaatga tatcaaggaa gatgccattg eteceeggae ettgeettgg
                                                                        900
accaaagget cagacacaat etceaagaat gggacaettt etteggteae etcageaega
                                                                        960
gctctgcggc cacccaaggc tgctcctcca agacctggca catttactcc cacacccagt
                                                                       1020
gtetetagee aggeeetgte eteaceaaga etgeeeaggg tagatgaace eccaceteag
                                                                      1080
gcagtgtecc tgaccccagg tggggtttet tettetgete tgagccgcat gggtgetgtg
                                                                      1140
cctgtgatgg tgcctgcaca gagtcaggct gggtctcttg tg
                                                                       1182
<210> 187
<211> 1182
<212> DNA
<213> Mus musculus
<400> 187
atgattette aggetggaac eeeegagaee agettgetge gggttttgtt eetgggaetg
                                                                        60
agtaccettg etgeettete eegageteag atggagttge aegtgeeece gggeeteaae
                                                                        120
aaattggaag cggtagaggg agaagaagtg gtgctccccg cctggtacac gatggcacgg
                                                                        180
gaggagtegt ggteceacce eegggaggtg cecateetga tetggttett ggaacaagaa
                                                                        240
                                                                        300
gggaaggaac caaaccaggt gttgtcttac attaatggag tcatgacaaa taaacctgga
                                                                        360
acagecetgg tecaetetat etetteaegg aatgtgteee tgegeetggg ggeaeteeag
gagggagact ctgggactta ccgctgttct gtcaatgtgc agaatgatga aggcaaaagt
                                                                        420
ataggecaca gcatcaaaag catagagete aaagegetgg tteetecage teetecatee
                                                                        480
tgtagtttac agggtgtacc ctatgteggg accaatgtga ecetgaactg caagteecca
                                                                        540
aggagtaaac ctactgctca gtaccagtgg gagaggctgg ccccatcctc ccaggtcttc
                                                                        600
tttggaccag ccttagatgc tgttcgtgga tctttaaagc tcactaacct ttccattgcc
                                                                        660
atgtctggag tctatgtctg caaggctcaa aacagagtgg gctttgccaa gtgcaacgtg
                                                                       720
accttggacg tgatgacagg gtccaaggct gcagtggtcg ctggagcagt tgtgggcact
                                                                       780
tttgttgggt tggtgctgat agctgggctg gtcctgttgt accagcgccg gagcaagacc
                                                                        840
ttggaagagc tggccaatga tatcaaggaa gatgccattg ctccccggac cttgccttgg
                                                                       900
accaaagget cagacacaat etecaagaat gggacaettt etteggteae eteageaega
                                                                       960
gctctgcggc cacccaaggc tgctcctcca agacctggca catttactcc cacacccagt
                                                                      1020
gtetetagee aggeeetgte eteaceaaga etgeeeaggg tagatgaace eccaceteag
                                                                      1080
gcagtgtccc tgaccccagg tggggtttct tcttctgctc tgagccgcat gggtgctgtg
                                                                      1140
cctgtgatgg tgcctgcaca gagtcaggct gggtctcttg tg
                                                                      1182
<210> 188
<211> 1182
<212> DNA
<213> Mus musculus
<400> 188
atgattette aggetggaac eeeegagace agettgetge gggttttgtt eetgggaetg
                                                                        60
agtaccettg etgeettete eegageteag atggagttge aegtgeeece gggeeteaae
                                                                       120
aaattggaag cggtagaggg agaagaagtg gtgctccccg cctggtacac gatggcacgg
                                                                       180
gaggagtegt ggteceacce eegggaggtg eecateetga tetggttett ggaacaagaa
                                                                       240
                                                                       300
gggaaggaac caaaccaggt gttgtcttac attaatggag tcatgacaaa taaacctgga
acagecetgg tecaetetat etetteaegg aatgtgteee tgegeetggg ggeaeteeag
                                                                       360
gagggagact ctgggactta ccgctgttct gtcaatgtgc agaatgatga aggcaaaagt
                                                                       420
```

```
480
ataggccaca gcatcaaaag catagagctc aaagtgctgg ttcctccagc tcctccatcc
tgtagtttac agggtgtacc ctatgtcggg accaatgtga ccctgaactg caagtcccca
                                                                       540
                                                                       600
aggagtaaac ctactgctca gtaccagtgg gagaggctgg tcccatcctc ccaggtcttc
                                                                       660
tttggaccag ccttagatgc tgttcgtgga tctttaaagc tcactaacct ttccattgcc
                                                                       720
atgtctggag tctatgtctg caaggctcaa aacagagtgg gctttgccaa gtgcaacgtg
accttggacg tgatgacagg gtccaaggct gcagtggtcg ctggagcagt tgtgggcact
                                                                       780
tttgttgggt tggtgctgat agctgggctg gtcctgttgt accagcgccg gagcaagacc
                                                                       840
ttggaagagc tggccaatga tatcaaggaa gatgccattg ctccccggac cttgccttgg
                                                                       900
                                                                       960
accaaagget cagacacaat etecaagaat gggacaettt etteggteac eteageaega
gctctgcggc cacccaaggc tgctcctcca agacctggca catttactcc cacacccagt
                                                                      1020
gtototagoo aggoootgto otoaccaaga otgoocaggg tagatgaaco occaectoag
                                                                      1080
gcagtgtccc tgaccccagg tggggtttct tcttctgctc tgagccgcat gggtgctgtg
                                                                      1140
                                                                      1182
cctgtgatgg tgcctgcaca gagtcaggct gggtctcttg tg
<210> 189
<211> 1182
<212> DNA
<213> Mus musculus
<400> 189
atgattette aggetggaac cecegagace agettgetge gggttttgtt cetgggaetg
                                                                        60
agtaccettg etgeettete eegageteag atggagttge aegtgeecee gggeeteaae
                                                                       120
aaattggaag cggtagaggg agaagaagtg gtgctccccg cctggtacac gatggcacgg
                                                                       180
gaggagtcgt ggtcccaccc ccgggaggtg cccatcctga tctggttctt ggaacaagaa
                                                                       240
gggaaggaac caaaccaggt gttgtcttac attaatggag tcatgacaaa taaacctgga
                                                                       300
                                                                       360
acagecetgg tecactetat etetteaegg aatgtgteee tgegeetggg ggeaeteeag
gagggagact ctgggactta ccgctgttct gtcaatgtgc agaatgatga aggcaaaagt
                                                                       420
ataggccaca gcatcaaaag catagagctc aaagtgctgg ttcctccagc tcctccatcc
                                                                       480
                                                                       540
tgtagtttac agggtgtacc ctatgtcggg accaatgtga ccctgaactg caagtcccca
                                                                       600
aggaqtaaac ctactgctca gtaccagtgg gagaggctgg ccccatcctc ccaggtcttc
                                                                       660
tttggaccag ccttagatgc tgttcgtgga tctttaaagc tcactaacct ttccattgcc
atgtctggag tctatgtctg caaggctcaa aacagagtgg gctttgccaa gtgcaacgtg
                                                                        720
accttggacg tgatgacagg gtccaaggct gcagtggtcg ctggagcagt tgtgggcact
                                                                        780
                                                                        840
tttgttgggt tggtgctgat agctgggctg gtcctgttgt accagcgccg gagcaagacc
ttggaagagc tggccaatga tatcaaggaa gatgccattg ctccccggac cttgccttgg
                                                                        900
accaaagget cagacacaat etecaagaat gggacaettt etteggteae eteageaega
                                                                       960
gctctgcggc cacccaaggc tgctcctcca agacctggca catttactcc cacacccagt
                                                                       1020
gtctctagcc aggccctgtc ctcaccaaga ctgcccaggg tagatgaacc cccacctcag
                                                                       1080
                                                                       1140
gcagtgtccc tgaccccagg tggggtttct tcttctgttc tgagccgcat gggtgctgtg
cctgtgatgg tgcctgcaca gagtcaggct gggtctcttg tg
                                                                       1182
<210> 190
<211> 735
<212> DNA
<213> Homo sapiens
<400> 190
 atgcgtctgt ttgtccgtcc gtccgtccgt cccgccatgg ctgcgccggc gccctctccg
                                                                         60
 tggaccettt egetgetget gttgttgeta etgeegtete egggtgeeca tggegagetg
                                                                        120
 tgcaggccct tcggtgaaga caattcgatc ccagagtcct gtcctgactt ctgttgtggc
                                                                        180
 tcctgttcca gccaatactg ctgctctgac gtgctgaaga aaatccagtg gaatgaggaa
                                                                        240
 atgtgccctg agccagagtc cagcagattt tccgcccacc cggagacacc agaacagctg
                                                                        300
 ggttcagtgc tgaagtatca gtccagtctt gacagtgaca acatgccagg gttcggagcg
                                                                        360
 accgtggcca tcggcctgac cgtcttcgtg gtgtttatcg ctaccatcat tgtgtgcttt
                                                                        420
 acctgctcct gctgctgtct atataagatg tgctgccgcc cacgacctgt cgtgtccaac
                                                                        480
                                                                        540
 accacaacta ctaccgtggt tcacaccgct taccctcagc ctcaacctgt ggcccccagc
 tatcctggac caacatacca gggctaccat cccatgcccc cccagccagg aatgccagca
                                                                        600
 gcaccctacc caacgcagta ccctccaccc tacctggccc agcccacagg gccaccagcc
                                                                        660
```

tatcatgaga ccaaaggcag	cgttggctgg ttccc	agccagccag	cctccataca	acccggccta	catggatece	735
<210> 191 <211> 735 <212> DNA <213> Homo s	apiens					
tggaccettt tgcaggccet tcctgttcca atgtgccctg ggttcagcgc accgtggcca acctgctcct accacaacta tatcctggac	ttgtccgtcc cgctgctgct tcggtgaaga gccaatactg agccagagtc tgaagtatca tcggcctgac gctgctgtct ctaccgcggt caacatacca caacgcagta cgttggctgg ttccc	gttgttgcta caattcgatc ctgctctgac cagcagattt gtccagtctt cgtcttcgtg atataagatg tcacaccgct gggctaccat ccctccacc	ctgccgtctc ccagagtcct gtgctgaaga tccgcccacc gacagtgaca gtgtttatcg tgctgccgcc taccctcagc cccatgcccc tacctggccc	cgggtgccca gtcctgactt aaatccagtg cggagacacc acatgccagg ctaccatcat cacgacctgt ctcaacctgt cccagccagg agcccacagg	ctgtcgagctg ctgttgtggc gaatgaggaa agaacagctg gttcggagcg tgtgtgcttt cgtgtccaac ggcccccagc aatgccagca gccaccagc	60 120 180 240 300 360 420 480 540 600 660 720
<210> 192 <211> 735 <212> DNA <213> Homo s	sapiens					
tggaccettt tgcaggccct tcctgttcca atgtgccctg ggttcagcgc accgtggcca acctgctcct accacaacta tatcctggac gtaccctacc	agccagagtc tgaagtatca tcggcctgac gctgctgtct ctaccgtggt caacatacca caacgcagta cgttggctgg	gttgttgcta caattcgatc ctgctctgac cagcagattt gtccagtctt cgtcttcgtg atataagatg tcacaccgct gggctaccat ccctccaccc	ctgccgtctc ccagagtcct gtgctgaaga tccgccacc gacagtgaca gtgtttatcg tgctgccgcc taccctcagc cccatgcccc	cgggtgccca gtcctgactt aaatccagtg cggagacacc acatgccagg ctaccatcat cacgacctgt ctcaacctgt cccagccagg agcccacagg	tggcgagctg ctgttgtggc gaatgaggaa agaacagctg gttcggagcg	60 120 180 240 300 360 420 480 540 660 720 735
<210> 193 <211> 22 <212> DNA <213> Artif	icial Seque	nce	·			
<220> <223> forwa	rd primer					
<400> 193 caaagtgago	: tcatgctctc	e ac				22
<210> 194 <211> 21 <212> DNA	Sicial Segue	ence				

<220>	•	
<223>	reverse primer	
-400-	104	
<400>		21
ctetg	gtctt gggcagaaat c	
<210>	195	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	forward primer	
12207	101W41 F1-W41	
<400>	195	
ggagt	atcct tggtctactc c	21
<210>	196	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	reverse primer	
<400>	196	
	rctgg aaggatggaa gct	23
gaaag		
<210>	197	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	forward primer	
12232		
<400>	197	
ggatg	gatgge taccagattg te	22
<210>	100	
<211>		
<211>		
	Artificial Sequence	
-6137	racitional coduction	
<220>		
<223>	reverse primer	
<400>	198	
	cattga gggttttgac tc	22
٠~~رر	J JJJ 4	

WO 00/78808

PCT/US00/16883

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/16883

A. CLAS	SIFICATION OF SUBJECT MATTER		
IPC(7) :	C07K 14/47; C07H 21/04; C12N 15/63, 1/21; C12P 530/350; 536/23.5; 435/320.1, 252.3, 361, 69.1	21/02	
According to	International Patent Classification (IPC) or to both n	ational classification and IPC	
B. FIEL	DS SEARCHED		
Minimum do	ocumentation scarched (classification system followed	by classification symbols)	
U.S. :	530/350; 536/23.5; 435/320.1, 252.3, 361, 69.1		
Documentati	ion searched other than minimum documentation to the o	extent that such documents are included	in the fields searched
	ata base consulted during the international search (nar	ne of data have and where practicable	search terms used)
	e Extra Sheet.		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
x	WO 99/10492 A1 (ZYMOGENETIC	S, INC.) 04 March 1999	1-10 and 12
	(04.03.99), see entire document, especi page 4, line 16 to page 5, line 24, page	18 .	
Y	page 4, line 10 to page 3, line 24, page	o, mo / w page, e, me	
X	Database EST, National Cancer Institut Project (CGAP), Tumor Gene Index, Soares_mammary_gland_NbMMG Mu IMAGE:876157 3' similar to SV COLLAGEN ALPHA 2(VIII) CHAIL March 1999.	AN AI481222, 'vh21hU/.x1' us musculus cDNA clone W:CA28 HUMAN P25067	1, 3-5
☐ Bust	ther documents are listed in the continuation of Box C	See patent family annex.	
· s	pecial categories of cited documents:	"T" later document published after the in	dication but cited to understand
) t	ocument defining the general state of the art which is not considered to be of particular relevance	the principle or theory underlying the	he claimed invention cannot be
	arlier document published on or after the international filing date	"X" document of particular relevance; to considered novel or cannot be considered novel or canno	ered to involve an inventive step
	ocument which may throw doubts on priority claim(s) or which is ited to establish the publication date of another citation or other pecial reason (as specified)	"Y" document of particular relevance; to	a sign when the document is
	socument referring to an oral disclosure, use, exhibition or other needs	combined with one or more other su being obvious to a person skilled in	the ert
1	socument published prior to the international filing date but later than the priority date claimed	*A* document member of the same pate Date of mailing of the international s	
1	e actual completion of the international search	Date of maining of the methatorial of	
L	TEMBER 2000	Authorized officer	Ruland
Box PCT	I mailing address of the ISA/US sioner of Patents and Trademarks	EILEEN B. O'HARA	- Drugos
Washing Facsimile	ton, D.C. 20231 No. (703) 305-3230	Telephone No. (703) 308-0196	7
1. WC2IIIIIC	110. (100) 000 000	<u></u>	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/16883

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
Please See Extra Sheet.	
	·
1. As all required additional search fees were timely paid by the applicant, this international search report covers all search claims.	chable
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite pa of any additional fee.	yment
3. As only some of the required additional search fees were timely paid by the applicant, this international search report only those claims for which fees were paid, specifically claims Nos.:	covers
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-10, 12 and 18	port is:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/16883

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

Commercial Sequence Databases: GenEmbl, N_Geneseq_36, Issued_Patents_NA, EST, a-geneseq36, swiss-prof38,

stremb112, pir64, a-issued

Sequences searched: SEQ ID NOS: 1-3 and 8-10

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-10, 12 and 18, in so far as they are drawn to human and mouse Tango 253, polynucleotides of SEQ ID NOS:1, 2, 8 and 9, vector, host cell, method of producing a protein and polypeptides of SEQ ID NOS:3-5 and 10-12

Groups II-IV, claim(s) 1-10, 12 and 18, in so far as they are drawn to the polynucleotides of distinct cDNA clones and encoded proteins of human and mouse Intercept 258, Tango 281 and Tango 257, listed in Tables 1-4, pages 59-63. Groups V-VIII, claim(s) 11 and 15, in so far as they are drawn to antibodies and binding compounds to the polypeptides listed in groups I-IV, respectively.

Groups IX-XII, claim(s) 13, 14, 19, 20 and 22, in so far as they are drawn to a method for detecting the presence of a polypeptide or a method for identifying a compound which binds to or modulates the activity of a polypeptide listed in groups I-IV, respectively.

Groups XIII-XVI, claim(s) 16 and 17, in so far as they are drawn to a method for detecting the presence of a nucleic acid molecule listed in groups I-IV, respectively.

Groups XVII-XX, claim 21, in so far as it is drawn to a method for modulating the activity of a polypeptide listed in groups I-IV, respectively.

The inventions listed as Groups I-XX do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Group I corresponds to the first invention wherein the first product is the polynucleotide and the first method of using is the method of making the protein. Note that there is no method of making the polynucleotide. The invention also includes the protein made. Each of groups II-IV does not share the same or corresponding special technical feature because each group is drawn to a different polynucleotide and encoded protein, and each of groups V-XX does not share the same or corresponding special technical feature because each group is drawn to different compounds or methods of using the four polynucleotides and encoded proteins. This Authority therefore considers that the several inventions do not share a special technical feature within the meaning of PCT Rule 13.2 and thus do not relate to a single general inventive concept within the meaning of PCT Rule 13.1.