第6章 STC单片机CPU指令系统

何宾 2018.03

30

XCH A ,Rn

■该指令将累加器A的内容和寄存器Rn中的内容互相交换。

XCH A,Rn指令的内容

助记符	操作	标志	操作码	字节数	周期数
XCH A,Rn	$(PC) \leftarrow (PC) + 1$ $(A) < \rightarrow (Rn)$	N	11001rrr	1	2

注: rrr为寄存器的编号,因此机器码范围是C8H~CFH。

数据传输指令--数据交换指令

XCH A, direct

■ 该指令将累加器A的内容和直接寻址单元的内容互相交换。 XCH A, direct指令的内容

助记符	操作	标志	操作码	字节数	周期数
XCH A,direct	$(PC) \leftarrow (PC) + 2$ (A) < -> (direct)	N	11000101	2	3

XCH A,@Ri

■ 该指令将累加器A的内容和间接寻址的内容互相交换。 XCH A,@Ri指令的内容

助记符	操作	标志	操作码	字节数	周期数
XCH A,@Ri	$(PC) \leftarrow (PC) + 1$ $(A) \Longleftrightarrow ((Ri))$	N	1100011i	1	3

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

数据传输指令--数据交换指令

【例】假设R0的内容为地址20H,累加器A的内容为3FH。内部RAM地址为20H单元的内容为75H,执行指令:

XCH A, @R0

将20H所指向的内部RAM的单元的数据75H和累加器A的内容3FH进行交换。 结果:

累加器A的内容变成75H,而内部RAM地址为20H单元的内容变成3FH。

数据传输指令 --数据交换指令

XCHD A,@Ri

■ 该指令将累加器A的内容和间接寻址单元内容的低半字节互相交换。

XCHD A,@Ri指令的内容

助记符	操作	标志	操作码	字节数	周期数
XCHD A,@Ri	$(PC) \leftarrow (PC) + 1$ (A3-0) < -> ((Ri)3-0)	N	1101011i	1	3

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

数据传输指令 --数据交换指令

【例】假设寄存器R0的内容为20H,累加器A的内容为36H。内部RAM地址为20H的单元内容为75H,执行指令:

XCHD A, @R0

将20H所指向的内部RAM的单元的数据75H和累加器A的内容36H的低四位数据进行交换。

结果:

累加器A的内容变成35H,而内部RAM地址为20H单元的内容变成76H。

布尔指令 --清除指令

CLR bit

■ 该指令将目的比特位清0。

CLR bit 指令的内容

助记符	操作	标志	操作码	字节数	周期数
CLR bit	$(PC) \leftarrow (PC) + 2$ $(bit) \leftarrow 0$	N	11000010	2	3

布尔指令 --清除指令

【例】假设端口P1的数据为5DH(01011101B),执行指令:

CLR P1.2

结果:

端口P1的内容为59H (01011001B)

布尔指令 --清除指令

CLR C

■该指令将进位标志位CY清0

CLR C指令的内容

助记符	操作	标志	操作码	字节数	周期数
CLR C	$(PC) \leftarrow (PC) + 1$ $(C) \leftarrow 0$	N	11000011	1	1

布尔指令 --设置指令

■ 该指令将目标比特位置1

SETB bit指令的内容

助记符	操作	标志	操作码	字节数	周期数
SETB bit	$(PC) \leftarrow (PC) + 2$ $(bit) \leftarrow 1$	N	11010010	2	3

布尔指令 --设置指令

SETB C

■该指令将进位标志CY置1。

SETB C指令的内容

助记符	操作	标志	操作码	字节数	周期数
SETB C	$(PC) \leftarrow (PC) + 1$ $(C) \leftarrow 1$	N	11010011	1	1

布尔指令 --设置指令

【例】假设端口P1的数据为34H (00110100B) , 执行指令:

SETB C

SETB P1.0

结果:

进位标志 (CY) =1, 端口P1的数据变成为35H (00110101B)。

布尔指令 --取反指令

CPL bit

■ 该指令将目标比特位取反。

CPL bit 指令的内容

助记符	操作	标志	操作码	字节数	周期数
CPL bit	$(PC) \leftarrow (PC) + 2$ $(bit) \leftarrow (bit)$	N	10110010	2	3

【例】假设端口P1的数据为5BH (01011011B) , 执行指令:

CPL P1.1

CPL P1.2

结果:

端口P1的内容变成为5DH (01011101B)。

布尔指令 --取反指令

CPL C

该指令将进位标志CY取反。如果CY为1,执行该指令后CY为

0; 反之亦然。

CPL C指令的内容

助记符	操作	标志	操作码	字节数	周期数
CPL C	$(PC) \leftarrow (PC) + 1$ $(C) \leftarrow \overline{(C)}$	CY	10110011	1	1

布尔指令 --逻辑与指令

ANL C, bit

■ 该指令对进位标志CY和一个比特位做逻辑与操作,结果保存在 CY中。

ANL C,bit 指令的内容

助记符	操作	标志	操作码	字节数	周期数
ANL C, bit	$(PC) \leftarrow (PC) + 2$ $(CY) \leftarrow (CY) \land (bit)$	CY	10000010	2	2

布尔指令 --逻辑与指令

ANL C, /bit

■ 该指令对进位标志CY和一个比特位取反后做逻辑与操作,结果保存在CY中。

ANL C, /bit指令的内容

助记符	操作	标志	操作码	字节数	周期数
ANL C,/bit	$(PC) \leftarrow (PC) + 2$ $(CY) \leftarrow (CY) \land \overline{(bit)}$	CY	10110000	2	2

布尔指令 --逻辑与指令

【例】假设P1端口的第0位为1,且累加器A的第7位为1,同时溢出标志OV的内容为0,执行指令:

MOV C, P1.0 ; 进位标志CY设置为1

ANL C, ACC.7 ; 进位标志CY设置为1

ANL C, /OV ; 进位标志CY设置为1

布尔指令 --逻辑或指令

ORL C, bit

■ 该命令把进位标志CY的内容和比特位内容做逻辑或,结果保存在CY中。

ORL C, bit 指令的内容

助记符	操作	标志	操作码	字节数	周期数
ORL C,bit	$(PC) \leftarrow (PC) + 2$ $(CY) \leftarrow (CY) \lor bit)$	CY	01110010	2	2

布尔指令 --逻辑或指令

ORL C, /bit

■该命令把进位标志CY的内容和比特位内容取反后做逻辑或操作, 结果保存在CY中。

ORL C,/bit指令的内容

助记符	操作	标志	操作码	字节数	周期数
ORL C,/bit	$(PC) \leftarrow (PC) + 2$ $(CY) \leftarrow (CY) \lor / (bit)$	CY	10100000	2	2

布尔指令 --逻辑或指令

【例】假设P1端口的第0位为1,或者累加器A的第7位为1,或者 溢出标志OV的内容为0,执行指令:

MOV C, P1.0 ; 进位标志CY设置为1

ORL C, ACC.7 ; 进位标志CY设置为1

ORL C, /OV ; 进位标志CY设置为1

布尔指令 --传输指令

MOV C, bit

■ 该命令把一个比特位的值复制到进位标志CY中,且比特位的值不发生变化。

MOV C, bit 指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV C,bit	$(PC) \leftarrow (PC) + 2$ $(CY) \leftarrow (bit)$	CY	10100010	2	2

布尔指令 --传输指令

MOV bit, C

■ 该命令把进位标志CY的内容和比特位内容取反后做逻辑或操作, 结果保存在CY中。

MOV bit,C指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV bit ,C	$(PC) \leftarrow (PC) + 2$ $(bit) \leftarrow (CY)$	N	10010010	2	3

布尔指令 --传输指令

【例】假设进位标志CY的初值为1,端口P2中的数据为C5H(11000101B),端口P1中的数据为35H(00110101B),执行指令:

MOV P1.3, C ; P1端口的值变为3DH (00111101B)

MOV C, P2.3 ; 进位标志CY设置为0

MOV P1.2, C ; P1端口的值变为39H (00111001B)