Оглавление

	Достаточное условие локального экстремума с второй произ-
	водной
	ма четной производной
	0.1.2 Достаточное условие отсутствия локального экстрену-
0.2	ма с нечетной производной
0.2	Правило Бернулли—Лопиталя
Лекция 13: Экстремум и производная. Правило Лопита- ля.	
0.1	Достаточное условие локального экстрему-
	ма с второй производной
	ма с второй производной
$\forall x \in$	DEMA $egin{aligned} 1. & f:(a,b) ightarrow \mathbb{R} \ & (a,b), \exists f'(x) \ & (a,b), \exists f''(x_0) \end{aligned}$
$f'(x_0)$	$(x_0) = 0, f''(x_0) > 0 \Rightarrow x_0$ — строгий локальный минимум f
$\exists g'(x)$	рема 2. $g:(a,b) o\mathbb{R}$
$\exists g'(x) \exists g''(x) \exists $	рема 2. $g:(a,b) o\mathbb{R}$
$\exists g'(x) \exists g''(x) \exists $	DEMA 2. $g:(a,b) o\mathbb{R}$ (x_0)
$\exists g'(x)$ $\exists g''(x)$ $g'(x_0)$ Дока	рема 2. $g:(a,b)\to\mathbb{R}$ $x_0)$ $x_0)$ $y_0)=0, g''(x_0)<0\Rightarrow x_0$ — строгий локальный максимум g взательство. Формула Тейлора с остатком в форме Пиано
$\exists g'(x)$ $\exists g''(x)$ $g'(x_0)$ Дока	рема 2. $g:(a,b) \to \mathbb{R}$ (x_0) $(x$
$\exists g'(x)$ $\exists g''(x)$ $g'(x_0)$ Дока $f(x)$ $\frac{r(x)}{(x-x)}$	рема 2. $g:(a,b)\to\mathbb{R}$ (c) $x_0)$ y_0
$\exists g'(x)$ $\exists g''(x)$ $g'(x_0)$ Дока $f(x)$ $\frac{r(x_0)}{f'(x_0)}$	рема 2. $g:(a,b)\to\mathbb{R}$ (c) x_0 (c) x_0 (d) x_0 (e) x_0 (e) x_0 (f) x_0 (

30.11.2023

$$| (2) \Rightarrow \exists \omega(x_0) : \forall x \in \omega(x_0) :$$

$$| \frac{r(x)}{(x - x_0)^2} | < \varepsilon = \frac{1}{4} f''(x) \quad (4)$$

$$x \neq x_0, x \in \omega$$

$$(3)(4) \Rightarrow f(x) \ge f(x_0) + \frac{1}{2} f''(x_0)(x - x_0)^2 - |r(x)| > f(x_0) + \frac{1}{2} f''(x_0)(x - x_0)^2 - \frac{1}{4} f''(x_0)(x - x_0)^2 = f(x_0) + \frac{1}{4} f''(x_0)(x - x_0)^2 > f(x_0)$$

0.1.1 Теорема о достаточном условии локального экстренума четной производной

Теорема 3.
$$f:(a,b)\to\mathbb{R}$$
 $n\geq 2: \quad \forall x\in (a,b), \exists f'(x), f''(x), \ldots, f^{(2n-1)}(x)$ $x_0\in (a,b), \exists f^{(2n)}(x_0)$ $f'(x_0)=0, f''(x_0)=0, \ldots, f^{(2n-1)}(x_0)=0$ если $f^{(2n)}(x_0)\neq 0$ если $f^{(2n)}(x_0)>0$, то x_0 — строгий локальный минимум если $f^{(2n)}(x_0)<0$, то x_0 — строгий локальный максимум

Доказательство.
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{3!}f'''(x - x_0)^3 + \dots + \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} + r(x)$$
 (5)
$$\frac{r(x)}{(x - x_0)^{2n}} \underset{x \to x_0}{\longrightarrow} 0 \quad (6)$$
 (5) $\Rightarrow f(x) = f(x_0) + \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} + r(x)$ (7)
$$\varepsilon = \frac{1}{2} * \frac{1}{(2n)!} * f^{(2n)}(x_0)$$
 (6) $\Rightarrow \exists \omega(x_0) : \forall x \in \omega(x_0) :$
$$|\frac{r(x)}{(x - x_0)^{2n}}| < \varepsilon \quad (8)$$

$$x \in \omega(x_0), x \neq x_0$$
 (7)(8) $\Rightarrow f(x) \geq f(x_0) + \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} - |r(x)| >$
$$> f(x_0) + \frac{1}{(2m)!}f^{(2n)}(x_0)(x - x_0)^{2n} - \frac{1}{2} * \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} =$$

$$= f(x_0) + \frac{1}{2} * \frac{1}{(2n)!}f^{(2n)}(x_0)(x - x_0)^{2n} > f(x_0)$$

0.1.2 Достаточное условие отсутствия локального экстренума с нечетной производной

```
Теорема 4. f:(a,b)\to\mathbb{R} Предположим x_0\in(a,b) n\geq 1: \quad \forall x\in(a,b), \exists f'(x),f''(x),\dots,f^{(2n)}(x); \quad \exists f^{(2n+1)}(x_0) f'(x_0)=0,f''(x_0)=0,\dots,f^{(2n)}(x_0)=0 Тогда x_0 — не является точкой локального экстренума
```

Доказательство.
$$f(x) = f(x_0) + \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)(x-x_0)^{2n+1} + r(x)$$
 $\left| \frac{r(x)}{(x-x_0)^{2n+1}} \right| \xrightarrow{\to} 0$ Возьмем окрестность $x_0 - \omega(x_0) : \left| \frac{r(x)}{(x-x_0)^{2n+1}} \right| < \frac{1}{2} * \frac{1}{(2n+1)!} |f^{(2n+1)}(x_0)|$ $x > x_0 :$ $f(x) > f(x_0) + \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)(x-x_0)^{2n+1} - \frac{1}{2} \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)(x-x_0)^{2n+1} > f(x_0)$ $x < x_0 :$ $f(x) < f(x_0) + \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)(x-x_0)^{2n+1} + \frac{1}{2} \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)|(x-x_0)^{2n+1}| =$ $= f(x_0) + \frac{1}{2} \frac{1}{(2n+1)!} f^{(2n+1)}(x_0)(x-x_0)^{2n+1} < f(x_0)$

0.2 Правило Бернулли-Лопиталя

Теорема 5. Номер 1 Пусть $f,g:(a,b)\to\mathbb{R}$ Пусть $f(x)\neq 0, \forall x\in (a,b)$ $\forall x\in (a,b), \exists f'(x), \exists g'(x)$ Предположим $f'(x)\neq 0, \forall x\in (a,b)$ $f(x)\underset{x\to a+0}{\to}0, g(x)\underset{x\to a+0}{\to}0$ $\exists\lim_{x\to a+0}\frac{g'(x)}{f'(x)}=A\in\overline{\mathbb{R}}\ (1)$ $\Rightarrow\frac{g(x)}{f(x)}\underset{x\to a+0}{\to}A\ (2)$

Доказательство.
$$f(a) = ^{def} 0, g(x) = ^{def} 0$$
 $f,g \in C([a,b))$

>x>a: [a,x] по теореме Коши $\Rightarrow \exists c \in (a,x)$:

$$\frac{g(x) - g(a)}{f(x) - f(a)} = \frac{g'(c)}{f'(c)} \quad (3)$$

$$\frac{g(x) - g(a)}{f(x) - f(a)} = \frac{g'(c)}{f'(c)}$$
(3)
$$(3) \Rightarrow \frac{g(x)}{f(x)} = \frac{g'(c)}{f'(c)}$$
(4)
$$\forall \omega(A), \exists \delta > 0 : \forall y \in (a, a + \delta) :$$

$$(1) \Rightarrow \frac{g'(y)}{f'(y)} \in \omega(A)$$
(5)
$$x \in (a, a + \delta); \quad c \in (a, x) \Rightarrow c \in (a, a + \delta)$$

$$(5) \Rightarrow \frac{g'(c)}{f'(c)} \in \omega(A)$$
(6)
$$(4)(6) \Rightarrow g(x) \in \omega(A)$$
(2)

$$(1) \Rightarrow \frac{g'(y)}{f'(y)} \in \omega(A) \quad (5)$$

$$x \in (a, a + \delta); \quad c \in (a, x) \Rightarrow c \in (a, a + \delta)$$

$$(5) \Rightarrow \frac{g'(c)}{f'(c)} \in \omega(A) \ (6)$$

$$(4)(6) \Rightarrow \frac{g(x)}{f(x)} \in \omega(A) \Rightarrow (2)$$

Теорема 6. Номер 1'

Пусть $f, g: (a, b) \to \mathbb{R}$

Пусть $f(x) \neq 0, \forall x \in (a, b)$

 $\forall x \in (a, b), \exists f'(x), \exists g'(x)$

$$f(x) \underset{x \to b-0}{\longrightarrow} 0, g(x) \underset{x \to b-0}{\longrightarrow} 0$$

$$\begin{aligned} &\forall x \in (a,b), \exists f(x), \exists g(x) \\ &\text{Предположим } f'(x) \neq 0, \forall x \in (a,b) \\ &f(x) \underset{x \to b = 0}{\to} 0, g(x) \underset{x \to b = 0}{\to} 0 \\ &\exists \lim_{x \to b = 0} \frac{g'(x)}{f'(x)} = A \in \overline{\mathbb{R}} \end{aligned}$$

$$\Rightarrow \frac{g(x)}{f(x)} \underset{x \to b-0}{\longrightarrow} A$$

Доказательство. Аналогично

Теорема 7. Номер 2

$$f,g:(a,+\infty)\to\mathbb{R}$$

$$f(x) \neq 0, \forall x \in (a, +\infty)$$

$$f(x) \xrightarrow[x \to +\infty]{} +\infty$$
 (7)

$$f(x) \neq 0, \forall x \in (a, +\infty)$$

$$f(x) \underset{x \to +\infty}{\to} +\infty (7)$$

$$\forall x \in (a, +\infty), \exists f'(x), g'(x)$$

Пусть
$$f'(x) \neq 0, \forall x \in (a, +\infty)$$

$$\frac{g'(x)}{f'(x)} \xrightarrow[x \to +\infty]{} A$$
 (8)

$$\Rightarrow \frac{g(x)}{f(x)} \xrightarrow[x \to +\infty]{} A (9)$$

Доказательство.
$$\forall \varepsilon>0$$
 $(8)\Rightarrow \exists L_1: \forall x>L_1: \frac{g'(x)}{f'(x)}\in (A-\varepsilon,A+\varepsilon)$ (10) Возьмем $x>L_1,x>x_0$

По теореме Коши
$$\exists c \in (x_0, x) : \frac{g(x) - g(x_0)}{f(x) - f(x_0)} = \frac{g'(c)}{f'(c)}$$
 (11)
$$L_1 < x > x_0 \Rightarrow c > L_1$$

$$\varepsilon < \frac{1}{2} \frac{g'(c)}{f'(c)} \in (A - \varepsilon, A + \varepsilon) \text{ (12)}$$

$$\frac{g(x) - g(x_0)}{f(x) - f(x_0)} = \frac{\frac{g(x)}{f(x)} - \frac{g(x_0)}{f(x)}}{1 - \frac{f(x_0)}{f(x)}} \text{ (13)}$$

$$L_2 \ge L_1, \text{ при } x > L_2$$

$$|\frac{g(x_0)}{f(x)}| < \varepsilon, |\frac{f(x_0)}{f(x)}| < \varepsilon \text{ (14)}$$

$$(14) \Rightarrow -2\varepsilon = -\frac{\varepsilon}{1 - \frac{1}{2}} < \frac{\frac{g(x_0)}{f(x)}}{1 - \frac{f(x_0)}{f(x)}} < \frac{\varepsilon}{1 - \frac{1}{2}} = 2\varepsilon \text{ (15)}$$

$$(11)(12)(13) \Rightarrow x > L_2 : A - 3\varepsilon < \frac{\frac{g(x)}{f(x)}}{1 - \frac{f(x_0)}{f(x)}} < A + \varepsilon + \frac{\frac{g(x_0)}{g(x)}}{1 - \frac{f(x_0)}{f(x)}} < A + 3\varepsilon$$

$$(16)$$

$$(14)(16) \Rightarrow \frac{g(x)}{f(x)} < (A + 3\varepsilon)(1 - \frac{f(x_0)}{f(x)}) < (A + 3\varepsilon)(1 + \varepsilon) = A + (A + 3)\varepsilon + 3\varepsilon^2$$

$$(17)$$

$$\frac{g(x)}{f(x)} > (A - 3\varepsilon)(1 - \frac{f(x_0)}{f(x)}) > (A - 3\varepsilon)(1 - \varepsilon) = A - (A + 3)\varepsilon + 3\varepsilon^2 \text{ (18)}$$

$$(17)(18) \Rightarrow (9)$$

Следствие:
$$x>1, g(x)=\ln x, f(x)=x^r, r>0$$
 $g'(x)=\frac{1}{x}, f'(x)=rx^{r-1}$
$$\frac{g'(x)}{f'(x)}=\frac{1}{x} = \frac{1}{x} \xrightarrow[x\to+\infty]{} 0 \Rightarrow \frac{\ln x}{x^r} \xrightarrow[x\to+\infty]{} 0$$

$f,g:(a,b)\to\mathbb{R}$

$$x_0 \in (a,b)$$
 $f(x) \neq 0$, если $x \neq x_0$ $n \geq 2$: $\forall x \in (a,b), \exists f'(x), \dots, f^{(n)}(x); \exists g'(x), \dots, g^{(n-1)}(x); \exists f^{(n)}(x_0), g^{(n)}(x_0)$ $f(x_0) = f'(x_0) = \dots = f^{(n-1)}(x_0) = 0$ $g(x_0) = g'(x_0) = \dots = g^{(n-1)}(x_0) = 0$ Пусть $f^{(n)} \neq 0$

$$g(x_0) = g'(x_0) = \dots = g^{(n-1)}(x_0) = 0$$

<mark>Теорема 8</mark>. Номер 3

$$\frac{g(x)}{f(x)} \underset{x \to x_0}{\to} \frac{g^{(n)}(x_0)}{f^{(n)}(x_0)} \quad (19)$$

Доказательство. Теорема Тейлора с остатком в форме Пиано ⇒

$$\frac{g(x)}{f(x)} = \frac{\frac{g^{(n)}(x_0)}{n!}(x - x_0)^n + r_1(x)}{\frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_2(x)} = \frac{g^{(n)}(x_0) + n! \frac{r_1(x)}{(x - x_0)^n}}{f^{(n)}(x_0) + n! \frac{r_2(x)}{(x - x_0)^n}} \xrightarrow{x \to x_0} \frac{g^{(n)}(x_0)}{f^{(n)}(x_0)}$$