Learning from event sequences

Alexey Zaytsev

Assistant professor, Skoltech

Temporal Point Processes (TPPs): applied problems

Example: financial transactions are event sequences

Example: operations in markets are event sequences

Many discrete events in continuous time

Online actions

Financial trading

Disease dynamics

Financial transactions

Variety of processes behind these events

Events are (noisy) observations of a variety of complex dynamic processes...

Flu spreading

Article creation in Wikipedia

News spread in Twitter

a Reviews and

Ride-sharing requests

A user's reputation in Quora

FAST

SLOW

...in a wide range of temporal scales. 6

Embeddings idea

Financial transactions uncover fundamental information about a customer.

Learn universal embeddings from event sequences that can be used to solve various task in bank.

Applications of event sequences in Sber

Embeddings are used in more than 50 different models in the bank

The reason: the quality is superior

Company money transfer history embeddings		Card transaction history embeddings	
Credit product look-alike	+6 Gini	Depositors churn	+5 Gini
Corporate insurance look- alike	+28 Gini	Remote medicine look-alike Movie	+4 Gini
Holding structure prediction	+6 Gini	recomendations cold start	+12,7% NDCG
Scoring for small businesses	+8 Gini	Retail credit scoring	+4 Gini

Let's look at embeddings

Color shows churn fact

Example I: Information propagation

They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped Donald Trump win a real election

Example 2: response history

Example 3: development

1st year computer science student

Aren't these event traces just time series?

Discrete and continuous times series

Discrete events in continuous time

What about aggregating events in *epochs*?

How long is each epoch?

How to aggregate events per epoch?

What if no event in one epoch?

What about time-related queries?

13

Problems for event sequences

- Compact description of data: models
- Interpretation
- Forecasting/Prediction
- Control
- Hypothesis testing
- Simulation

Discrete events in continuous time

Aren't these event traces just time series?

'Epoch 1'Epoch 2' Epoch 3

Learning universal embeddings

Contrastive approach

Contrastive self-supervised learning

Representation

17

Two models: Encoder & Discriminator. Encoder produces representations.

What if we have labels...

Contrastive learning idea for supervised learning

What if we don't have labels...

Generate views!

Skoltech

Skoltech

Discrete sequential transactional data

Transaction records data sequence includes:

- MCC (Merchant Category Codes)
- Purchase amount
- Time values
- Transaction location
- ...

MeLES contrastive learning

https://github.com/dllllb/pytorch-lifestream

Babaev, Dmitrii, et al. "Event sequence metric learning" KDD. 2022.

Usage of embeddings

Obtain embeddings from our event processing model.

Train a model on top of embeddings:

- SVM
- Gradient boosting
- Logistic regression

Doesn't need to access to an initial model

Alternatives:

- Fine-tuning all model: longer, required for weaker models)
- Use kNN on top of embeddings: requires stronger model

Transformers or not?

Table 4: Comparison of encoder types

Foondon tyme	Age,	Gender,
Econder type	Accuracy ±95%	AUROC ±95%
LSTM	0.620 ± 0.003	0.870 ± 0.005
GRU	0.639 ± 0.006	0.871 ± 0.004
Transformer	0.621 ± 0.001	0.848 ± 0.002

Table 5: Comparison of metric learning losses

Lose type	Age,	Gender,
Loss type	Accuracy ±95%	AUROC ±95%
Contrastive loss	0.639 ± 0.006	0.871 ± 0.003
Binomial deviance	0.535 ± 0.005	0.853 ± 0.005
loss	0.555 ± 0.005	0.833 ± 0.003
Histogram loss	0.642 ± 0.002	0.851 ± 0.004
Margin loss	0.631 ± 0.003	0.871 ± 0.004
Triplet loss	0.610 ± 0.006	0.855 ± 0.003

Temporal Point Processes (TPPs): Introduction

Poisson process and intensity function

Poisson process

Coarse approximation of many real-life processes

Intensity is the expected number of events per unit time.

Intensity of a Poisson process is constant:

$$\lambda^*(t) = \mu$$

Observations:

- 1. Intensity independent of history
- 2. Uniformly random occurrence

Temporal point processes

Temporal point process:

A random process whose realization consists of discrete events localized in time $\mathcal{H} = \{t_i\}$

Discrete events $- \cdots N(t) \in \{0\} \cup \mathbb{Z}^+$ time t_3 t_1 t_2 t = THistory, $\mathcal{H}(t)$ $dN(t) \in \{0, 1\}$ Dirac delta function Formally: $N(t) = \int_0^t dN(s) \Rightarrow dN(t) = \sum_{s} \delta(t - t_i) dt$

Model time as a random variable

Likelihood of a timeline:
$$f^*(t_1) f^*(t_2) f^*(t_3) f^*(t) S^*(T)$$

Problems of density parametrization (I)

It is difficult for model design and interpretability:

- 1. Densities need to integrate to 1 (i.e., partition function)
- 2. Difficult to combine timelines

Intensity function

Intensity:

Probability between [t, t+dt) but not before t

$$\lambda^*(t)dt = \frac{f^*(t)dt}{S^*(t)} \ge 0 \implies \lambda^*(t)dt = \mathbb{E}[dN(t)|\mathcal{H}(t)]$$

Note:

 $\lambda^*(t)$ is a rate = # of events / unit of time

Log likelihood via intensity and density

$$L = f(t_1|\mathcal{H}_0)f(t_2|\mathcal{H}_{t_1})\cdots f(t_n|\mathcal{H}_{t_{n-1}})(1 - F(T|\mathcal{H}_{t_n}))$$

$$L = \left(\prod_{i=1}^{n} f(t_i | \mathcal{H}_{t_{i-1}})\right) \frac{f(T | \mathcal{H}_{t_n})}{\lambda^*(T)}$$

$$= \left(\prod_{i=1}^{n} \lambda^*(t_i) \exp\left(-\int_{t_{i-1}}^{t_i} \lambda^*(s) ds\right)\right) \exp\left(-\int_{t_n}^{T} \lambda^*(s) ds\right)$$

$$= \left(\prod_{i=1}^{n} \lambda^*(t_i)\right) \exp\left(-\int_{0}^{T} \lambda^*(s) ds\right),$$

Advantages of intensity parametrization (I)

Suitable for model design and interpretable:

- 1. Intensities only need to be nonnegative
- 2. Easy to combine timelines

Fitting & sampling from a Poisson

Fitting by maximum likelihood:

$$\mu^* = \underset{\mu}{\operatorname{argmax}} 3 \log \mu - \mu T = \frac{3}{T}$$

Sampling using inversion sampling:

$$t \sim \mu \exp(-\mu(t-t_3))$$

$$f_t^*(t)$$

$$t \sim \mu \exp(-\mu(t-t_3))$$
 $\Rightarrow t = -\frac{1}{\mu} \log(1-u) + t_3$

$$f_{t}^{*}(t)$$

Relation between f*, F*, S*, λ*

33

Representation: Temporal Point Processes

Examples of processes

Poisson process

Coarse approximation of many real-life processes

Intensity of a Poisson process

$$\lambda^*(t) = \mu$$

Observations:

- 1. Intensity independent of history
- 2. Uniformly random occurrence
- 3. Time interval follows exponential distribution

Inhomogeneous Poisson process

Intensity of an inhomogeneous Poisson process

$$\lambda^*(t) = g(t) \geqslant 0$$
 — Independent of history

Fitting from inhomogeneous Poisson

Fitting by maximum log-likelihood:

maximize
$$\sum_{i=1}^{n} \log g(t_i) - \int_{0}^{T} g(\tau) d\tau$$

Idea: we have additional features, so we can use a generalized linear model for it Intensity is $g(t) = g(x_t) = \exp(x_t^T w)$

Terminating (or survival) process

Intensity of a terminating (or survival) process

$$\lambda^*(t) = g^*(t)(1 - N(t)) \ge 0$$

Observations:

- 1. Limited number of occurrences
- 2. Hazard function in actuarial science

Self-exciting Hawkes process

 $= \mu + \alpha \kappa_{\omega}(t) \star dN(t)$

Observations:

- 1. Clustered (or bursty) occurrence of events
- 2. Intensity is stochastic and history dependent

Fitting a Hawkes process from a recorded timeline

Fitting by maximum likelihood:

Summary

Building blocks to represent different dynamic processes:

Poisson processes:

$$\lambda^*(t) = \lambda$$

Inhomogeneous Poisson processes:

$$\lambda^*(t) = g(t)$$

Terminating point processes:

$$\lambda^*(t) = g^*(t)(1 - N(t))$$

Self-exciting point processes:

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i)$$

Temporal Point Processes: other ideas

Mutually exciting process

Clustered occurrence affected by neighbors

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i) + \beta \sum_{t_i \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_i)$$

Mutually exciting terminating process

Clustered occurrence affected by neighbors

$$\lambda^*(t) = (1 - N(t)) \left(g(t) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_\omega(t - t_i) \right)$$

Skoltech

Marked temporal point processes

Marked temporal point process:

A random process whose realization consists of discrete *marked* events localized in time

Given the trace of past locations and time, can we predict the location and time of the next stop?

Marked temporal point processes

Marked temporal point process:

A random process whose realization consists of discrete *marked* events localized in time

Independent identically distributed marks

Distribution for the marks:

$$x^*(t_i) \sim p(x)$$

Observations:

- 1. Marks independent of the temporal dynamics
- 2. Independent identically distributed (I.I.D.)

Models & Inference: Neural networks for the win

Neural networks for the win

Up to now, we have focused on simple temporal dynamics (and intensity functions):

Recent works make use of RNNs to capture more complex dynamics

Neural Hawkes process

- 1) History effect does not need to be additive
- 2) Allows for complex memory effects (such as delays)

Neural Hawkes process: RNNs

$$\mathbf{h}(t) = \mathrm{RNN}(\mathcal{H}(t))$$
 memory via the continuous-time LSTM

$$\lambda_u(t) = f_u(\mathbf{w}_u^{ op}\mathbf{h}(t))$$
 excitation & inhibition via activation function

Skoltech

Mei, Hongyuan, and Jason M. Eisner. "The neural Hawkes process: A neurally self-modulating multivariate point process." *NIPS*. 2017.

Neural Hawkes process: Transformers

$$\lambda_k(t|\mathcal{H}_t) = f_k \left(\underbrace{\alpha_k \frac{t - t_j}{t_j}}_{\text{current}} + \underbrace{\mathbf{w}_k^{\top} \mathbf{h}(t_j)}_{\text{history}} + \underbrace{b_k}_{\text{base}} \right). \qquad p(t|\mathcal{H}_t) = \lambda(t|\mathcal{H}_t) \exp\left(-\int_{t_j}^t \lambda(\tau|\mathcal{H}_\tau) d\tau\right),$$

$$p(t|\mathcal{H}_t) = \lambda(t|\mathcal{H}_t) \exp\left(-\int_{t_j}^t \lambda(\tau|\mathcal{H}_\tau) d\tau\right)$$
$$\hat{t}_{j+1} = \int_{t_j}^\infty t \cdot p(t|\mathcal{H}_t) dt,$$
$$\hat{k}_{j+1} = \underset{k}{\operatorname{argmax}} \frac{\lambda_k(t_{j+1}|\mathcal{H}_{j+1})}{\lambda(t_{j+1}|\mathcal{H}_{j+1})}.$$

References

References

- Lifestream library by Sber https://github.com/dllllb/pytorch-lifestream
- Github with exercises
 https://colab.research.google.com/drive/1Wc6aUNUZpE64egk4XwPT54v
 3sWDS495u?usp=sharing
- Competition to predict gender based on transactions
 https://www.kaggle.com/competitions/transactions/overview
 https://colab.research.google.com/drive/1tAqT4B5H9mkCiA3AilqUdIPOL
 pjEsXIK?usp=sharing
- ICML tutorial on temporal point processes https://learning.mpi-sws.org/tpp-icml18/
- Lecture Notes: Temporal Point Processes and the Conditional Intensity Function by J. Rasmussen https://arxiv.org/pdf/1806.00221.pdf
- Zuo, Simiao, et al. "Transformer Hawkes process." ICML, 2020.

Bonus II: Sampling

Fitting & sampling from inhomogeneous Poisson

Fitting by maximum likelihood: maximize $\sum_{i=1}^n \log g(t_i) - \int_0^T g(\tau) d\tau$

Sampling using thinning (reject. sampling) + inverse sampling*:

- 1. Sample t from Poisson process with intensity μ using inverse sampling
- 2. Generate $u_2 \sim Uniform(0,1)$
- 3. Keep the sample if $u_2 \leq g(t) / \mu$

Keep sample with prob. $g(t)/\mu$

Fitting a Hawkes process from a recorded timeline

Fitting by maximum likelihood:

Sampling using thinning (reject. sampling) + inverse sampling*:

Key idea: the maximum of the intensity $\,\lambda_0\,$ changes over time