Lecture 10 – Equivalence and Minimization of Finite Automata

COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

- Closure Properties of Regular Languages
- Pumping Lemma for Regular Languages

- How to test whether two finite automata are equivalent?
- How to minimize a finite automaton?

Contents

1. Equivalence of Finite Automata

Equivalence of States (≡)
Distinguishable States (≢)
Table-Filling Algorithm
Equivalence of Finite Automata
Examples

2. Minimization of Finite Automata

Minimization Algorithm
Examples
Proof of Minimum-State DFA

• Are the following two DFA equivalent (i.e., $L(D_0) = L(D_1)$)?

• Are the following two DFA equivalent (i.e., $L(D_0) = L(D_1)$)?

• Yes, because $L(D_0) = L(D_1) = \{ wb \mid w \in \{a, b\}^* \}.$

• Are the following two DFA equivalent (i.e., $L(D_0) = L(D_1)$)?

- Yes, because $L(D_0) = L(D_1) = \{ wb \mid w \in \{a, b\}^* \}.$
- We first define the equivalence of states and utilize it to test the equivalence of DFA.

Definition (Equivalence of States (≡))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*$$
. $\delta^*(q_i, w) \in F \iff \delta^*(q_i, w) \in F$

Definition (Equivalence of States (\equiv))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*. \ \delta^*(q_i, w) \in F \iff \delta^*(q_j, w) \in F$$

$$q_i \equiv q_j \iff \forall w \in \Sigma^* \qquad q_j \qquad \bigvee \qquad q_j \qquad$$

Definition (Equivalence of States (≡))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*. \ \delta^*(q_i, w) \in F \iff \delta^*(q_j, w) \in F$$

$$q_i \equiv q_j \iff \forall w \in \Sigma^* \qquad q_i \xrightarrow{w} \bigvee q_i \xrightarrow{w} \bigvee q_j \bigvee q_j$$

However, it is difficult to make it as an algorithm.

Definition (Equivalence of States (≡))

For a given DFA D, q_i is **equivalent** to q_j (i.e., $q_i \equiv q_j$) if and only if

$$\forall w \in \Sigma^*$$
. $\delta^*(q_i, w) \in F \iff \delta^*(q_i, w) \in F$

$$q_i \equiv q_j \iff \forall w \in \Sigma^* \qquad q_i \xrightarrow{w} \bigvee q_i \xrightarrow{w} \bigvee q_j \bigvee$$

However, it is difficult to make it as an algorithm. Let's consider $q_i \not\equiv q_j$:

$$q_i \not\equiv q_j \iff \exists w \in \Sigma^*. (\delta^*(q_i, w) \in F \iff \delta^*(q_j, w) \not\in F)$$

$$q_i \not\equiv q_j \iff \exists w \in \Sigma^* \qquad \overbrace{q_j \quad w} \qquad \bigvee \overbrace{q_j \quad w} \qquad \overbrace{q_j \quad w} \qquad \bigcirc$$

Distinguishable States $(\not\equiv)$

We can *inductively* test q_i is **distinguishable** with q_i (i.e., $q_i \not\equiv q_i$):

• (Basis Case) $w = \epsilon$

$$egin{aligned} igg(q_i) & \wedge & igg(q_j) & igg(igg(q_i, \epsilon) \in F & \iff \delta^*(q_j, \epsilon)
otin F) \ & \iff q_i \in F & \iff q_j
otin F) \end{aligned}$$

• (Induction Case) w = ax

$$\exists a \in \Sigma. \ \exists x \in \Sigma^*. \ (\delta^*(q_i, ax) \in F \iff \delta^*(q_j, ax) \notin F)$$

$$\iff \exists a \in \Sigma. \ \exists x \in \Sigma^*. \ (\delta^*(\delta(q_i, a), x) \in F \iff \delta^*(\delta(q_j, a), x) \notin F)$$

$$\iff \exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_i, a)$$

Distinguishable States $(\not\equiv)$

Definition (Distinguishable States $(\not\equiv)$)

For a given DFA D, q_i is **distinguishable** with q_j (i.e., $q_i \not\equiv q_j$) if and only if

- (Basis Case) $q_i \in F \iff q_j \notin F$.
- (Induction Case) $\exists a \in \Sigma$. $\delta(q_i, a) \not\equiv \delta(q_j, a)$.

Distinguishable States $(\not\equiv)$

Definition (Distinguishable States $(\not\equiv)$)

For a given DFA D, q_i is **distinguishable** with q_j (i.e., $q_i \not\equiv q_j$) if and only if

- (Basis Case) $q_i \in F \iff q_j \notin F$.
- (Induction Case) $\exists a \in \Sigma$. $\delta(q_i, a) \not\equiv \delta(q_j, a)$.

$$q_2 \not\equiv q_4$$

(: $q_2 \in F \land q_4 \not\in F$)

$$q_1 \not\equiv q_3$$

(: $\delta(q_1, \mathbf{a}) = q_2 \not\equiv q_4 = \delta(q_3, \mathbf{a})$)

$$q_0 \not\equiv q_4 \ (\because \delta(q_0, \mathtt{b}) = q_3 \not\equiv q_1 = \delta(q_4, \mathtt{b})))$$

q	a	b
$ ightarrow q_0$	q_1	q 3
q_1	q_2	q_1
* q 2	q_2	q_2
q 3	q_4	q 3
q_4	q_2	q_1
q 5	q_4	q_2

$$\begin{array}{c|cccc} q & a & b \\ \hline \rightarrow q_0 & q_1 & q_3 \\ q_1 & q_2 & q_1 \\ *q_2 & q_2 & q_2 \\ q_3 & q_4 & q_3 \\ q_4 & q_2 & q_1 \\ q_5 & q_4 & q_2 \end{array}$$

(Basis case)
$$w = \epsilon$$
. $q_i \in F \iff q_j \notin F$

(Induction case)
$$w = ax$$
.
 $\exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_j, a)$

q	a	b	
$ ightarrow q_0$	q_1	q 3	
q_1	q_2	q_1	
* q 2	q_2	q_2	
q_3	q_4	q 3	
q_4	q 2	q_1	
q 5	q_4	q_2	

(Basis case)
$$w = \epsilon$$
. $q_i \in F \iff q_j \notin F$

(Induction case)
$$w = ax$$
.
 $\exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_i, a)$

q	a	Ъ	
$ ightarrow q_0$	q_1	q_3	
q_1	q_2	q_1	
* q 2	q ₂	q_2	
q 3	q_4	q_3	
q_4	q ₂	q_1	
q_5	q_4	q_2	

(Basis case)
$$w = \epsilon$$
. $q_i \in F \iff q_j \notin F$

(Induction case)
$$w = ax$$
.
 $\exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_i, a)$

q_1	Х		_		
q_2	X	X			
q_3		X	X		
q_4	X		X	X	
q 5	X	X	X	X	X
	q_0	q ₁	q ₂	q ₃	q_{Δ}

q	a	Ъ	
$ ightarrow q_0$	q_1	q 3	
q_1	q ₂	q_1	
* q 2	q_2	q_2	
q 3	q 4	q_3	
q 4	q 2	q_1	
q_5	q_4	q_2	

(Basis case)
$$w = \epsilon$$
. $q_i \in F \iff q_j \notin F$

(Induction case)
$$w = ax$$
.
 $\exists a \in \Sigma. \ \delta(q_i, a) \not\equiv \delta(q_i, a)$

q_1	X				
q_{2}	X	X		_	
9 3		X	X		
94	X		X	X	
9 5	X	X	X	X	X
	q_0	q_1	q_2	q_3	q_4

$$q_0 \equiv q_3 \wedge q_1 \equiv q_4$$

Theorem (Equivalence of Finite Automata)

Consider two DFA
$$D = (Q, \Sigma, \delta, q_0, F)$$
 and $D' = (Q', \Sigma, \delta', q'_0, F')$

$$L(D) = L(D') \iff q_0 \equiv q'_0$$

in a DFA $D'' = (Q \uplus Q', \Sigma, \delta'', q_0, F \uplus F')$ where

$$orall q'' \in Q \uplus Q'. \ \delta''(q,a) = \left\{egin{array}{ll} \delta(q'',a) & q'' \in Q \ \delta'(q'',a) & q'' \in Q' \end{array}
ight.$$

Proof) By the definition of equivalence of states, we have

Theorem (Equivalence of Finite Automata)

Consider two DFA
$$D = (Q, \Sigma, \delta, q_0, F)$$
 and $D' = (Q', \Sigma, \delta', q'_0, F')$

$$L(D) = L(D') \iff q_0 \equiv q'_0$$

in a DFA $D'' = (Q \uplus Q', \Sigma, \delta'', q_0, F \uplus F')$ where

$$orall q'' \in Q \uplus Q'. \ \delta''(q,a) = \left\{egin{array}{ll} \delta(q'',a) & q'' \in Q \ \delta'(q'',a) & q'' \in Q' \end{array}
ight.$$

Proof) By the definition of equivalence of states, we have

$$L(D) = L(D') \iff \forall w \in \Sigma^*. \ (D \text{ accepts } w \iff D' \text{ accepts } w) \\ \iff \forall w \in \Sigma^*. \ (\delta^*(q_0, w) \in F \iff {\delta'}^*(q_0', w) \in F') \\ \iff \forall w \in \Sigma^*. \ ({\delta''}^*(q_0, w) \in F \cup F' \iff {\delta''}^*(q_0', w) \in F \cup F') \\ \iff q_0 \equiv q_0' \text{ in } D''$$

Let's test the equivalence of D_0 and D_1 :

Let's test the equivalence of D_0 and D_1 :

Let's test the equivalence of D_0 and D_1 :

q_1	X			
q_2		X		
q 3		X		
q_4	X		X	X
	q_0	q_1	q_2	q ₃

Let's test the equivalence of D_0 and D_1 :

•
$$q_0 \equiv q_2 \equiv q_3$$

•
$$q_1 \equiv q_4$$

Let's test the equivalence of D_0 and D_1 :

•
$$q_0 \equiv q_2 \equiv q_3$$

•
$$q_1 \equiv q_4$$

$$q_0 \equiv q_2 \implies L(D_0) = L(D_1) = \{ wb \mid w \in \{a, b\}^* \}$$

Let's test the equivalence of D_2 and D_3 :

Let's test the equivalence of D_2 and D_3 :

Let's test the equivalence of D_2 and D_3 :

q_1	X							
q_2	X	X						
q_3		X	X					
q_4	X		X	X				
q_5	X	X	X	X	X			
96	X	X	X	X	X	X		
9 7	X		X	X		X	X	
q_8	X	X		X	X	X	X	X
	90	q_1	q_2	q 3	94	<i>q</i> ₅	q 6	q 7

- $q_0 \equiv q_3$
- $q_1 \equiv q_4 \equiv q_7$
- $q_2 \equiv q_8$
- q₅
- q₆

Let's test the equivalence of D_2 and D_3 :

q_1	X		_					
q_2	X	X						
q_3		X	X					
q_4	X		X	X				
q_5	X	X	X	X	X			
96	X	X	X	X	X	X		
q 7	X		X	X		X	X	
q_8	X	X		X	X	X	X	X
	90	q_1	q_2	<i>q</i> 3	q 4	q_5	9 6	97

- $q_0 \equiv q_3$
- $q_1 \equiv q_4 \equiv q_7$
- $q_2 \equiv q_8$
- q₅
- q₆

$$q_0 \not\equiv q_6 \implies L(D_2) \not= L(D_3) \ (\because \text{ba} \not\in L(D_2) \text{ but ba} \in L(D_3))$$

Minimization of Finite Automata

• Is it possible to minimize a DFA?

Minimization of Finite Automata

• Is it possible to minimize a DFA?

- Yes, let's utilize equivalence classes Q_{\equiv} of states defined with \equiv .
- Note that ≡ is an equivalence relation:
 - reflexive: $\forall q \in Q$. $q \equiv q$
 - symmetric: $\forall q, q' \in Q$. $q \equiv q' \Leftrightarrow q' \equiv q$
 - transitive: $\forall q, q', q'' \in Q$. $q \equiv q' \land q' \equiv q'' \Leftrightarrow q \equiv q''$

Minimization Algorithm

For a given DFA $D = (Q, \sigma, \delta, q_0, F)$, the **minimization** algorithm is:

- **1** Remove all **unreachable states** from the initial state q_0 .
- 2 Partition the remaining states into equivalence classes:

$$Q/_{\equiv} = \{ [q]_{\equiv} \mid q \in Q \}$$

where the **equivalence class** of a state q is defined as:

$$[q]_{\equiv} = \{q' \in Q \mid q \equiv q'\}$$

- **3** Construct a new DFA $D/_{\equiv}=(Q/_{\equiv},\Sigma,\delta/_{\equiv},[q_0]_{\equiv},F/_{\equiv})$ where
 - $\delta/_{\equiv}: Q/_{\equiv} \times \Sigma \to Q/_{\equiv}$ is defined by:

$$\forall q \in Q. \ \forall a \in \Sigma. \ \delta/=([q]_{\equiv}, a) = [\delta(q, a)]_{\equiv}$$

(We can prove $\forall q', q'' \in [q]_{\equiv}$. $\forall a \in \Sigma$. $[\delta_{\equiv}(q', a)]_{\equiv} = [\delta_{\equiv}(q'', a)]_{\equiv}$.)

• $F/_{=} = \{ [q]_{=} \mid q \in F \}$

1) Remove unreachable states

Remove unreachable states

2 Partition the states into $Q/_{\equiv}$

$$Q_{\equiv} = \{ \{q_0, q_1\}, \quad (\because q_0 \equiv q_1) \}$$

(1) Remove unreachable states

2 Partition the states into $Q/_{\equiv}$

$$egin{aligned} Q_{\!/\!\equiv} &= \{ \ \{q_0, q_1\}, \ \{q_2\}, \ \} \end{aligned}$$

3 Construct a new DFA $D/_{\equiv}$

(1) Remove unreachable states

(1) Remove unreachable states

2 Partition the states into $Q/_{\equiv}$

$$Q/_{\equiv} = \{ \{q_0, q_3\}, \quad (\because q_0 \equiv q_3) \\ \{q_1, q_4\}, \quad (\because q_1 \equiv q_4) \\ \{q_2\}, \}$$

1) Remove unreachable states

 \bigcirc Partition the states into $Q/_{\equiv}$

$$Q/_{\equiv} = \{ \{q_0, q_3\}, \quad (\because q_0 \equiv q_3) \\ \{q_1, q_4\}, \quad (\because q_1 \equiv q_4) \\ \{q_2\}, \}$$

3 Construct a new DFA D_{\equiv}

Theorem (Minimum-State DFA)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, its minimized DFA D/\equiv is a minimum-state **DFA** of D.

(i.e.,
$$\nexists$$
 DFA $D' = (Q', \Sigma, \delta', q'_0, F')$. s.t. $L(D') = L(D) \land |Q'| < |Q/_{\equiv}|$).

Theorem (Minimum-State DFA)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, its minimized DFA $D/_{\equiv}$ is a minimum-state **DFA** of D.

(i.e.,
$$\nexists$$
 DFA $D' = (Q', \Sigma, \delta', q'_0, F')$. s.t. $L(D') = L(D) \land |Q'| < |Q/_{\equiv}|$).

• Assume that \exists DFA D'. Then, m < n when m = |Q'| and $n = |Q/_{\equiv}|$.

Theorem (Minimum-State DFA)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, its minimized DFA $D/_{\equiv}$ is a minimum-state **DFA** of D.

(i.e.,
$$\nexists$$
 DFA $D'=(Q',\Sigma,\delta',q_0',F')$. s.t. $L(D')=L(D)\wedge |Q'|<|Q/_{\equiv}|$).

- Assume that \exists DFA D'. Then, m < n when m = |Q'| and $n = |Q|_{\equiv}|$.
- For any state $q \in Q/_{\equiv}$, we can find a state $q' \in Q'$ such that $q \equiv q'$.

Theorem (Minimum-State DFA)

For a given DFA $D=(Q,\Sigma,\delta,q_0,F)$, its minimized DFA $D/_{\equiv}$ is a minimum-state DFA of D.

(i.e.,
$$\nexists$$
 DFA $D' = (Q', \Sigma, \delta', q'_0, F')$. s.t. $L(D') = L(D) \land |Q'| < |Q/_{\equiv}|$).

- Assume that \exists DFA D'. Then, m < n when m = |Q'| and $n = |Q|_{\equiv}|$.
- For any state $q \in Q/_{\equiv}$, we can find a state $q' \in Q'$ such that $q \equiv q'$.
 - $\forall q \in Q/_{\equiv}$. $\exists w = a_1 \cdots a_k$. s.t. $\delta/_{\equiv}(q_0, w) = q$. (: q is reachable.)
 - Let $q' = \delta'(q'_0, w)$. Then, $\delta'^*(q'_0, a_0 \cdots a_i) \equiv \delta/\equiv (q_0, a_0 \cdots a_i)$ for all $0 \le i \le k$.
 - (Basis Case) $\delta'^*(q_0',\epsilon) = q_0' \equiv q_0 = \delta/_{\equiv}^*(q_0,\epsilon)$
 - (Induction Case) Assume ${\delta'}^*(q'_0,a_0\cdots a_i)\not\equiv {\delta\!/_{\equiv}}^*(q_0,a_0\cdots a_i)$. Then, by the definition of distinguishable states, ${\delta'}^*(q'_0,a_0\cdots a_{i-1})\not\equiv {\delta\!/_{\equiv}}^*(q_0,a_0\cdots a_{i-1})$. But, it contradicts the induction hypothesis.
- By Pigeonhole Principle, $\exists q_i \neq q_j \in Q/_{\equiv}$. $\exists q' \in Q'$. $q_i \equiv q' \land q_j \equiv q'$.

Theorem (Minimum-State DFA)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, its minimized DFA D/\equiv is a minimum-state DFA of D.

(i.e.,
$$\nexists$$
 DFA $D'=(Q',\Sigma,\delta',q'_0,F')$. s.t. $L(D')=L(D)\wedge |Q'|<|Q/_{\equiv}|$).

- Assume that \exists DFA D'. Then, m < n when m = |Q'| and $n = |Q|_{\equiv}|$.
- For any state $q \in Q/_{\equiv}$, we can find a state $q' \in Q'$ such that $q \equiv q'$.
 - $\forall q \in Q/_{\equiv}$. $\exists w = a_1 \cdots a_k$. s.t. $\delta/_{\equiv}(q_0, w) = q$. $(\because q \text{ is reachable.})$
 - Let $q' = \delta'(q'_0, w)$. Then, ${\delta'}^*(q'_0, a_0 \cdots a_i) \equiv \delta/_{\equiv}^*(q_0, a_0 \cdots a_i)$ for all $0 \le i \le k$.
 - (Basis Case) $\delta'^*(q_0',\epsilon) = q_0' \equiv q_0 = \delta/_{\equiv}^*(q_0,\epsilon)$
 - (Induction Case) Assume ${\delta'}^*(q'_0,a_0\cdots a_i)\not\equiv \delta/_{\equiv}^*(q_0,a_0\cdots a_i)$. Then, by the definition of distinguishable states, ${\delta'}^*(q'_0,a_0\cdots a_{i-1})\not\equiv \delta/_{\equiv}^*(q_0,a_0\cdots a_{i-1})$. But, it contradicts the induction hypothesis.
- By Pigeonhole Principle, $\exists q_i \neq q_j \in Q/_{\equiv}$. $\exists q' \in Q'$. $q_i \equiv q' \land q_j \equiv q'$.
- It means that $q_i \equiv q_j$. However, it contradicts that Q_{\equiv} is partitioned into equivalence classes of states.

Summary

1. Equivalence of Finite Automata

Equivalence of States (≡)
Distinguishable States (≢)
Table-Filling Algorithm
Equivalence of Finite Automata
Examples

2. Minimization of Finite Automata

Minimization Algorithm
Examples
Proof of Minimum-State DFA

Next Lecture

• Context-Free Grammars (CFGs) and Languages (CFLs)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr