MS121, Test 2, 30th. Oct. 2018 Average: 2.5

?. If X, Y and Z are sets then $X \cup (\sim Y) \cup Z$ does not contain

(A)
$$X \cap Y$$
, (B) $Y \cap Z$, (C) $(\sim X) \cap Y$, (D) $(\sim X) \cap (\sim Y)$

Answer: $\boxed{\mathbb{C}}$: The set $(\sim X) \cap Y$ will contain $(\sim X) \cap Y \cap (\sim Z)$ which is the complement of $X \cup (\sim Y) \cup Z$.

?. Suppose X, Y and Z are sets, $|X \cup Y \cup Z| = 12$, |X| = 4, |Y| = 8, |Z| = 7, $|X \cap Y| = 3$, $|X \cap Z| = 3$ and $|Y \cap Z| = 3$. How many elements belong to X but do not belong to Y or Z?

(A) 0, (B) 1, (C) 2, (D) 3

Answer: $\overline{\mathbf{A}}$: The inclusion-exclusion formula gives

$$12 = |X \cup Y \cup Z| = |X| + |Y| + |Z| - |X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|$$
$$= 4 + 8 + 7 - 3 - 3 - 3 + |X \cap Y \cap Z|$$

Deduce that $|X\cap Y\cap Z|=2,$ $|X\cap Y\cap (\sim Z)|=1,$ $|X\cap (\sim Y)\cap Z|=1$ so that $|X\cap (\sim Y)\cap (\sim Z)|=4-2-1-1=0.$

- ?. Suppose $R = \{(1,1), (1,3), (2,4), (3,1), (3,3), (4,2), (4,4)\}$ is a relation on the set $X = \{1,2,3,4\}$. Then R is
- (A) Reflexive (B) Symmetric (C) Antisymmetric (D) Transitive

Answer: $B: (2,2) \notin R$ so not reflexive. $(1,3), (3,1) \in R$ so not antisymmetric. $(2,4), (4,2) \in R$ but $(2,2) \notin R$ so not transitive.

?. Suppose $R = \{(1,3), (2,4), (3,1), (4,5), (5,6), (6,2)\}$ is a relation on the set $X = \{1,2,3,4,5,6\}$. Which pair is not in the transitive closure of R?

(A) (2,6) (B) (2,2) (C) (2,1) (D) (2,5)

Answer: $\boxed{\mathbb{C}}$: $(2,4),(4,5)\in R$ so (2,5) in closure. $(2,4),(4,5),(5,6)\in R$ so (2,6) in closure. $(2,4),(4,5),(5,6),(6,2)\in R$ so (2,2) in closure.