

Analyzing the Components of Distributed Coevolutionary GAN Training

Jamal Toutouh, Erik Hemberg, Una-May O'Reilly ALFA Lab, CSAIL, MIT

toutouh@mit.edu, hemberg@csail.mit.edu, unamay@csail.mit.edu

Motivation

Generative Adversarial Networks (GANs) construct a generative model by training two neural networks, a generator G and a discriminator D, using adversarial learning

Lipizzaner Distributed Coevolutionary GAN training shows:

- Fast and improved convergence due to gradient-based steps
- Robustness and resilience due to coevolution
- Diverse solutions due to mixture evolution
- Scalability due to spatial distribution topology

Main research question: What is the effect of the main components of this type of training?

Distributed Coevolutionary GAN Training Ablations

Lipizzaner

- creates **sub-populations** from neighborhoods
- exchanges information (updated networks) among the sub-populations after each training epoch
- applies **selection/replacement** of the center (*best*) network of the population

Three ablations: Spatial GAN (SPaGAN), Isolated CoEA GAN (IsoCoGAN), and Parallel GAN (PaGAN)

Feature	SPaGAN	IsoCoGAN	PaGAN
Use of sub-populations	Yes	Yes	No
Communication between sub- populations	Yes	No	No
Application of selection/replacement	No	Yes	No

r Spatially Distributed COEA GAN trainin

Single-GAN training

Experimental Analysis

Generator Quality (FID) $Mean \pm Std$ Grid Method 3x3 grid 40.93 ± 8.51 Lipizzaner 43.59 ± 5.53 SPaGAN 3×3 881.79 ± 52.67 IsoCoGAN 51.15 ± 14.06 Lower PaGAN $32.84{\pm}6.93$ Lipizzaner 37.97 ± 8.89 SPaGAN 28.74 ± 4.91 Lipizzaner 5×5 39.11 ± 4.00 SPaGAN

Output Diversity (TVD)

	\mathbf{Grid}	\mathbf{Method}	$\mathbf{Mean} \pm \mathbf{Std}$
Lower is better	3×3	Lipizzaner SPaGAN IsoCoGAN PaGAN	0.12 ± 0.03 0.12 ± 0.02 0.83 ± 0.08 0.14 ± 0.02
	4×4	Lipizzaner SPaGAN	0.11 ± 0.02 0.12 ± 0.02
	5×5	Lipizzaner SPaGAN	0.10 ± 0.02 0.11 ± 0.02

Execution time (mins)

	Grid	Method	$\mathbf{Mean} \pm \mathbf{Std}$
er is better	3×3	Lipizzaner SPaGAN IsoCoGAN PaGAN	87.89 ± 1.15 87.20 ± 0.31 81.88 ± 4.55 38.07 ± 2.73
Lower	4×4	Lipizzaner SPaGAN	91.30 ± 0.94 90.72 ± 0.58
	5×5	Lipizzaner SPaGAN	$105.64{\pm}3.25$ $101.88{\pm}1.64$

4x4 Lipizzaner and SPaGAN Generators Evolution

Conclusions

- ❖ The combination of selection pressure, that promotes convergence, and communication with the overlapped neighborhoods applied by Lipizzaner is the best choice.
- ❖ SPaGAN emphasizes the value of exchanging the best individuals
- IsoCoGAN shows that training GANs with a COEA flavor does not ensure convergence