ĐỀ THI THỬ GIẢI TÍCH I - MI1112

Các câu hỏi có một đáp án đúng

Bài 1. Xác định tập giá trị của $\arctan \sqrt{x}$.

A.
$$\left[0, \frac{\pi}{2}\right)$$
.

C.
$$\left(-\frac{\pi}{2},0\right]$$
.

B.
$$\left(0, \frac{\pi}{2}\right)$$
.

D.
$$\left(-\frac{\pi}{2}, 0\right)$$
.

Bài 2. Tính $\operatorname{arccot}\left(\tan\left(-\frac{\pi}{4}\right)\right)$.

A.
$$\frac{\pi}{4}$$
.

C.
$$\frac{3\pi}{4}$$
.

B.
$$\frac{-\pi}{4}$$
.

D. Không xác định.

Bài 3. Tìm giá trị $a \in \mathbb{R}$ trong số các giá trị dưới đây để hàm số $y = \begin{cases} e^{\frac{1}{ax}}, x < 0, \\ \cos x - 1, x \ge 0 \end{cases}$ là liên tục tại x = 0.

A.
$$a = 0$$
.

C.
$$a = -1$$
.

B.
$$a = 1$$
.

D. Hàm số đã cho luôn liên tục tại x = 0.

Bài 4. Xét $\alpha(x) = \sin^2 x + e^x - \cos x$. Hàm số nào trong số các hàm số dưới đây là vô cùng bé bậc cao hơn $\alpha(x)$ khi $x \to 0^+$.

A.
$$y = \sin^2 x$$
.

C.
$$y = \cos x$$
.

B.
$$y = \sin x$$
.

$$D. y = \cos^2 x.$$

Bài 5. Cho hàm số
$$f(x) = \begin{cases} x^2 \arctan \frac{1}{x}, x \neq 0, \\ 0, x = 0 \end{cases}$$

. Tính đạo hàm trái $f'_{-}(0)$ của f(x).

A. Hàm số đã cho không có đạo hàm trái.

C.
$$f'_{-}(0) = \frac{\pi}{2}$$
.

B.
$$f'_{-}(0) = 0$$
.

D.
$$f'_{-}(0) = \frac{-\pi}{2}$$
.

Bài 6. Chu kì của hàm số $y = \sin 2x + \cos 3x$ là

A. 2π .

C. $\frac{\pi}{2}$.

B. 3π .

D. $\frac{\pi}{3}$.

Bài 7. Đạo hàm cấp n của hàm số $y = \ln(1+x)$ bằng

A.
$$y^{(n)}(x) = (-1)^{n-1} \frac{x^n}{n}, n \ge 1.$$

C.
$$y^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}, n \ge 1.$$

B.
$$y^{(n)}(x) = (-1)^n \frac{x^n}{n}, n \ge 1.$$

D.
$$y^{(n)}(x) = (-1)^n \frac{(n-1)!}{(1+x)^n}, n \ge 1.$$

Bài 8. Biết $\lim_{x\to 0} \frac{e^x-a-bx}{x^2}$ tồn tại và hữu hạn. Tính a+b?

A.
$$a + b = 1$$
.

C.
$$a + b = 3$$
.

B.
$$a + b = 2$$
.

D.
$$a + b = 4$$
.

Các câu hỏi có nhiều đáp án đúng

Bài 9. Xác định tất cả các hàm số là vô cùng bé khi $x \to 0$ trong các hàm số cho dưới đây?

A.
$$y = \sin x^2$$
.

C.
$$y = e^{x^2}$$
.

E.
$$y = x \ln x$$
.

B.
$$y = \cos x^2$$
.

D.
$$y = \ln x$$
.

F.
$$y = \tan x^2$$
.

Bài 10. Cho f(x) là một hàm số thỏa mãn $\lim_{x\to 0} \frac{f(x)}{x} = 2$. Mệnh đề nào sau đây chắc chắn đúng?

- A. Hàm số f(x) liên tục tại x = 0.
- B. Hàm số f(x) là một vô cùng bé khi $x \to 0$.
- C. Hàm số f(x) là một vô cùng lớn khi $x \to 0$.
- D. Nếu f(0) = 0 thì hàm số f(x) khả vi tại x = 0.

Bài 11. Xác định tất cả các hàm trong các hàm số dưới đây có nhiều hơn hai điểm gián đoạn.

A.
$$y = \tan x$$
.

$$C. \ y = \frac{\sin x}{x}.$$

$$E. \ y = \cot x.$$

B.
$$y = \arctan x$$
.

D.
$$y = \frac{x}{\sin x}$$
.

F.
$$y = \operatorname{arccot} x$$
.

Bài 12. Xác định tất cả các hàm trong các hàm số dưới dây là hàm lồi trên khoảng (0; 3).

A.
$$y = x^3$$
.

C.
$$y = \sin x$$
.

E.
$$y = \cos x$$
.

B.
$$y = x^4$$
.

D.
$$y = \sin x^2$$
.

$$F. \ y = -\ln x.$$

Các câu hỏi tự luận

Bài 13. Tính khai triển Taylor cấp 3 của $\sin x$ tại x=2.

Bài 14. Tìm cực trị hàm số $y = \ln(1+x) + x^2 - 2x$.

Bài 15. Cho hàm $f: [0,1] \to \mathbb{R}$ là hàm khả vi liên tục thỏa mãn f(0) = f(1) = 0. Chứng minh tồn tại $c \in (0;1)$ để f(c) = 2f'(c).