

Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution

Thang Vu, Hyunjun Jang, Pham X. Trung, Chang D. Yoo Korea Advanced Institute of Science and Technology

Background

The proposed method aims to improve the RPN in stage 1

Background

Anchor boxes:

- The reference for regression of RPN
- Predefined
- Uniformly initialized over the image
- Alignment in RPN design
 - A feature map pixel should well-align to it reference anchor boxes

(e.g., top-left pixel should predict for top-left anchor box)

Feature

Cascade RPN

RPN [1]

Iterative RPN [2]

- In standard RPN: Anchor is initialized uniformly using sliding window
- Standard conv layers can be used.
- In Iterative RPN: Anchor position and shape (after the first stage) change arbitrarily
- Standard conv layers will break alignment between feature and anchor

Anchor at stage 1

Anchor at stage 2

^[1] Ren et al., Toward real-time object detection with RPN, NeurIPS 2015

^[2] Zhong et al., Cascade region proposal and global context for deep object detection, arXiv 2018

Cascade RPN

- Deformable conv learn arbitrary feature transformation
- There is no constraint to make deformable conv produce alignment between anchor and feature

GA-RPN [4]

Cascade RPN

[1] Ren et al., Toward real-time object detection with RPN, NeurIPS 2015

[3] Fan et al., Siamese cascaded region proposal networks for real-time visual tracking 6

Adaptive Convolution

- Standard Convolution
 - ullet Sample at regular grid ${\mathbb R}$

$$\mathbb{R} = \{(-1, -1), (-1, 0), \dots, (0, 1), (1, 1)\}$$
 $y[p] = \sum_{r \in \mathbb{R}} w[p] \cdot x[p + r]$

- Adaptive Convolution
 - Sample at offset grid $\mathbb O$, guided by anchor

$$egin{aligned} oldsymbol{y}[oldsymbol{p}] &= oldsymbol{\sum_{oldsymbol{o} \in \mathbb{O}}} oldsymbol{w}[oldsymbol{p}] \cdot oldsymbol{x}[oldsymbol{p} + oldsymbol{o}] \ oldsymbol{o} &= oldsymbol{o}_{ ext{ctr}} + oldsymbol{o}_{ ext{shp}} \end{aligned}$$

Adaptive conv systematically maintain alignment between features and anchors!

Relation to other Convolutions

- Adaptive Conv is closely related to the others
 - Adaptive Conv becomes Dilated Conv if center offsets are 0
 - Deformable Conv becomes Adaptive Conv if offsets are deterministically derived from anchors.

Experiments

Dataset: COCO2017

• Train: 115k images

• Val: 5k images

Test-dev: 20k images

• Default model:

- Backbone: ResNet50-FPN
- Without bells and whistles
- Train 14 hours on 8 V100 GPUs

Evaluation metric:

- Average Recall (AR) for Region Proposal performance
- Average Precision (AP) for Detection performance
- Runtime is measured on a single V100

Method	Backbone	AR ₁₀₀	AR ₃₀₀	AR ₁₀₀₀	AR_S	AR_M	AR_L	Time
SharpMask [50]	ResNet-50	36.4	-	48.2	-	-	-	0.76
GCN-NS [42]	VGG-16 (Sync BN)	31.6	-	60.7	-	-	-	0.10
AttractioNet [21]	VGG-16	53.3	-	66.2	31.5	62.2	77.7	4.00
ZIP [32]	BN-inception	53.9	-	67.0	31.9	63.0	78.5	1.13
RPN [54]		44.6	52.9	58.3	29.5	51.7	61.4	0.04
Iterative RPN		48.5	55.4	58.8	32.1	56.9	65.4	0.05
Iterative RPN+	ResNet-50-FPN	54.0	60.4	63.0	35.6	62.7	73.9	0.06
GA-RPN [58]		59.1	65.1	68.5	40.7	68.2	78.4	0.06
Cascade RPN		61.1	67.6	71.7	42.1	69.3	82.8	0.06

Region proposal performance

[50] Pinhero et al., ECCV 2016[42] Lu et al., ECCV 2018[21] Gidaris et al., arXiv 2016

[32] Li et al., IJCV 2019[54] Ren et al., NeuIPS 2015[58] Chen et al., CVPR 2019

RPN Cascade RPN

RPN Cascade RPN

Method	Proposal method	# proposals	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
Fast R-CNN	RPN	1000	37.0	59.5	39.9	21.1	39.4	47.0
	RPN	300	36.6	58.6	39.5	20.3	39.1	47.0
	Iterative RPN+	300	38.6	58.8	42.2	21.1	41.5	50.0
	GA-RPN	300	39.5	59.3	43.2	21.8	42.0	50.7
	Cascade RPN	300	40.1	59.4	43.8	22.1	42.4	51.6
Faster R-CNN	RPN	1000	37.1	59.3	40.1	21.4	39.8	46.5
	RPN	300	36.9	58.9	39.9	21.1	39.6	46.5
	Iterative RPN+	300	39.2	58.2	43.0	21.5	42.0	50.4
	GA-RPN	300	39.9	59.4	43.6	22.0	42.6	50.9
	Cascade RPN	300	40.6	58.9	44.5	22.0	42.8	52.6

Detection performance when using different proposal methods

Conclusion

- Propose Cascade RPN for Object Detection
 - 13.4% higher recall than conventional RPN
 - Systematically maintain alignment between features and reference anchors

Thank you!