(PERANDAH

① $A = \begin{cases} 2, 3, 4, 5, 6, 7, 83 \end{cases}$ $\Rightarrow n \in \mathcal{Z}$ must be reflexive, symmetric draw diagraph if n-y=3n and transitive only $R = \begin{cases} (2,2), (2,5), (2,8), (3,3), (3,6), (4,4), (4,7), (5,2), (5,5), \\ (5,8), (6,3), (6,6), (7,4), (7,7), (8,2), (8,5), (8,8) \end{cases}$

A = {1, 2, 3 } B = { 9, 8, 7 } 2.

(a,b) E AXB aRb + 9+b (even number)

R = { (1,4) (1,7) (2,8) (3,4) (3,7) } a)

R-1 = { (9,1) (7,1) (8,2) (4,3) (7,3)}

R

8 b)

3. Let A = {1,2,3,4,5}, and let R be the relation on A that has the matrix

Construct the diagraph of R, and list in-degrees and out-degrees of all verticles.

	1	2	3	4	5
In-degrees	2	2	1	3	2
out-degrees	1	1	3	3	2

Atap Lounge

Cyberview Resort & Spa, Persiaran Multimedia, 63000 Cyberjaya, Selangor, Malaysia
Telephone: (603)8312 7000 Fascimile: (603)8312 7001
hotline@cyberview-lodge.com.my www.cyberview-lodge.com

A = {1,2,3,4,5,6,7,8,9,10,11,12,13,143 5. R = { (n,y): 3n-y = 0 } $R = \{(1,3)(2,6)(3,9)(4,12)\}$ irreflexive (x,y) R; Vx: Y E A 4) element in R do not have loop at all. b) assymmetric = all edges are "one way Street " = no loop at all = Vx,y EA, (x,y) EA C) R = {(1,3)(2,6)(3,9)(4,12)} 5 6 7 8 9 10 11 12 13 14 not transitive (1,3) and (3,9) & R, but 50000000000000 (1,9) & R

6. Suppose that the given is a relation matrix for R and S.

$$R = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Using Boolean Anthmetic, find

9. RS

$$\begin{bmatrix}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\otimes
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$=
\begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

b. SR

5	1	U	0	1	0	0	1	
6	0	1	0	0	1	0	0	
Other Face 7	0	0	1	.0	0	1	0	
8	[-1	0	0	1	0	0	1.	

The difference between a relation and a function is that a velation can have many outputs for a single input while a function has a single input for a single output.

Cyberview Resort & Spa, Persiaran Multimedia, 63000 Cyberjaya, Selangor, Malaysia
Telephone: (603)8312 7000 Fascimile: (603)8312 7001
hotline@cyberview-lodge.com.my www.cyberview-lodge.com

prt sc insert

- · domain $R = \{2,3,4,5\}$ · range $R = \{2,3,4,5\}$
- one-to-one
- .. the set is function #

(ii) { (2,4) (3,4) (5,4) (4,4) 3

- domain R = { 2,3,4,53
 - range R = {43
- all has arrow from domain
- .. the set is function

(iii) { (2,3) C 2,4) C 5,4) 3

- · domain R = {2,63 + set A
- range R = {3,43
- no arrow from domain 3,4
- the set is not function

(iv) { (2,3) (3,5) (4,5)}

- · domain R = { 2,3,43 + set A
- · range R = {3,53
- · no arrow from domain 5
- : the set is not function.

(v) {(2,2)(2,3)(4,4)(4)(4)}

- · domain R = { 2,43 + set 19
- · range R = { 2,3,4,53
- · no arrow from domain 3,5
- .. the set is not function.

9. Given the relation of $R = \{(x,y) \mid y = x+5, x \text{ is } \mathbb{Z}^t \text{ less than } 6\}$. Depict this relationship using roster form . Write down the domain and the range . R= &(0,5),(1,6),(2,7),(3,8),(4,9),(5,10)} y 5 6 7 8 9 lo Domain = 0,1,2,3,4,5

Range = 5,6,7,8,9,10

- 300		-			
(4 4)		
	1/		1		
1	V	ER	AN	ID!	HF

(10 v)	assume	9=	1-2n
--------	--------	----	------

15	it	one-to-one?	
=			

1-2n = 1-2n2

is it onto?

assume
$$n_1 = n_2 = 4$$
,

thus,
$$f(n) = 1 - 2n$$

is a bijection.

$$-7 = -7$$
 Subs 3, $n = 2$

subs
$$-3$$
 $m=-1$

vi) assume
$$y = 5n^2 - 1$$

$$5n^2 - 1 = 5n^2 - 1$$

$$y = 5n^2 - 1$$

thus f/n) = 5 m2-1

-23	
	-223
100	Hom
	20
169	10000
	1830
	F1335
	172
	1500
	133716
1.0	1
	20.5
20	200
-63	AT SO
330	
-	
-	
200	
100	
200	
- 1	
3	
9	
- 1	
8	
233	
931	
53 I	
531	
- 1	
51	
- 1	
886	
911	
9	
- 10	
540	
148	
311	
5 D	
815	
20	
- 10	
312	
88	
91	
- 1	
20	
30	
23 12	
-1	
1	
1	

$$n_1 = n_2$$

vi) assume
$$y = 5n^2 - 1$$

$$5n^2 - 1 = 5n^2 - 1$$
 $y = 5n^2 - 1$

$$(n_1 = 2) \neq (n_2 = -2)$$

$$n = /y + 1$$

thus,
$$f(n) = 5n^2 - 1$$

$$5(2)^2 - 1 = 5(-2)^2 - 1$$

· different domains

no possible range for negative

$$(n_1 = 2) \neq (n_2 = -2)$$

but same range one-to-one=X

domains onto = x

vii) assume y=24

is it one-to-one?

is it onto?

(n.)4 = (n2)4

r 16 = 16

y=n4

 $(n_1 = 2) \neq (n_2 = -2)$

but n. + n2

n= 4/4

 $(2)^{4} = (-2)^{4}$

one-to-one= X

subs 16 n=2

Cyberview Resort & Spa, Persiaran Multimedia, 63000 Cyberjaya, Selangor, Malaysia
Telephone: (603)8312 7000 Fascimile: (603)8312 7001
hotline@cyberview-lodge.com.my www.cyberview-lodge.com

subs -16, n=-· · Onto = X

H

thus $f(n) = 5n^2 - 1$ is not one-to-one nor onto function.

viii) assume y = 2e-2

21-3

is it one-to-one?

is it onto?

 $n^{-2} = n_2 - 2$

y= n-2

21-3 212-3

M-3

thus fin)= n-2

21-3

(iliv	dssume	4=	21-2
		18 -	000000000000000000000000000000000000000

21-3

is It one-to-one?	is it onto?	
$n_{1}^{-2} = n_{2}^{-2}$	y= n-2	
27-3 212-3	n-3	thus f(n)= n-2
dssume $N_1 = N_2 = 4$	n=3y-2	n-3
$(4)^{-2} = (4)^{-2}$	y-1	is a bijection.

(4)-3 (4)-3Mbs 2, n = 4

subs -2, n=-8/-3 2 = 2

· • onto = / M = 12

• • one - +0 - one = /

R is reflexive transitive

and symmetric

0 1 2 3 4

$$fg(0) = 3(0)^2 - 4$$
 $fg(2) = 3(2)^2 - 4$
= -4 = 8

$$fg(1) = 3(1)^{2} - 4$$
 $fg(3) = 3(3)^{2} - 4$
= -1 = 23

(x)
$$f(n) = n^2$$
 $f[g(n)] = (5n-6)^2$
 $g(n) = 5n-6$ $= (5n-6)(5n-6)$
 $= 25n^2 - 30n - 30n + 36$
 $= 25n^2 - 60n + 36$
 $n = \{0,1,2,3\}$

$$fg(0) = 25(0)^2 - 60(0) + 36$$
 $fg(2) = 25(2)^2 - 60(2) + 36$
= 36 = 16

$$fg(1) = 25(1)^2 - 60(1) + 36$$
 $fg(3) = 25(3)^2 - 60(3) + 36$ = 81

(xi)	f(n)	=	•	x-	1		1	[90	n)]	=	(1	n3	+1) -	- ۱			
	9(7)) =		N3	+	١				- -	n	3	+1	- 1				
										=	71	3						
	1	n =	£	0,1	1 2	13	z											
						a l												
	1	fg (0) =	0	3			f	9 (2	2)	=	23	3				
				=	0							=	8					
	1	fa C	(1)) =	1	3			f	9 C	3)	=	35	3				
		fg C		=	1					9 (:		=	2:	7				
			T															
			T															
		T																
			T															
																1112		
	Good	1	_															

```
12. Solve the recurrence relation given;
  i) q_n = 6q_{n-1} - 9q_{n-2}; initial condition q_0 = 1 and q_1 = 6
        q_2 = 6q_1 - 9q_0 = 6(6) - 9(1)
                         = 27
       9_3 = 60_2 - 90_1 = 6(27) - 9(6)
                        = 108
       9_4 = 69_3 - 99_2 = 6008) - 9027
                                                      new recurrence relations:
                        = 405
                                                      1,6,27,108,405,1458,...
      95 = 604 - 903 = 60405) -90108)
                        = 1458
   ii) q_n = 6q_{n-1} - 11q_{n-2} + 6q_{n-3}; initial condition q_0 = 2, q_1 = 5 and q_2 = 15
              93 = 602 - 110, +600 = 6(15) -11(5) +6(2)
              94 = 693 - 1192 + 69, = 6(47) - 11(15) + 6(5)
                                     = 147
             95 = 694 - 1193 +692 = 6(147) -11(47) +6(15)
                                     = 455
              96 = 695 - 1194 + 693 = 6(455) - 11947) + 6(47)
                                      = 1395
    new recurrence relations: 2,5,15,47,147,455,1395,...
    iii) q_n = -3q_{n-2} - 3q_{n-2} + q_{n-3}; initial condition q_0 = 1, q_1 = -2 and q_2 = -1
        q_3 = -3q_2 - 3q_1 + q_0 = -3(-1) - 3(-2) + 1
        94 = -393 - 302 + 91 = -3010) - 30-10 + (-2)
                             =-29
        9_5 = -304 - 30_3 + 9_2 = -3(-29) - 3(10) + (-1)
                              = 56
        96 = -305 - 304 + 93 = -3056) - 30-29) + (10)
                              = -71
      recurrence relations: 1, -2, -1, 10, -29, 56, -71, ...
```


(3) given
$$a_{n+1} = 5a_n - 3$$
, $a_i = k$
 $k \neq 0$

$$cl_{n+1} + 3 = 5cl_n$$

$$Q_n = Q_{n+1} + 3$$

$$Cl_4 = Cl_5 + 3 = 5(cl_1) + 3 = 5k + 3$$

$$c_{14} = 5k + 3 = 7$$

$$C1_4 = 5k + 3 = 7$$