1. Let function f be defined by the polynomial below:

$$f(x) = -2x^5 - 3x^4 - 7x^3 + 5x^2 - 6x + 4$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
	$-2x^5 + 3x^4 - 7x^3 - 5x^2 - 6x - 4$
-f(-x)	$2x^5 + 3x^4 + 7x^3 - 5x^2 + 6x - 4$
f(−x) •	$2x^5 - 3x^4 + 7x^3 + 5x^2 + 6x + 4$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x)	h(x)
1	8	7	5
2	9	9	4
3	5	2	1
4	1	6	8
5	7	4	6
6	3	8	3
7	6	5	2
8	2	3	9
9	4	1	7

3. Evaluate f(4).

$$f(4) = 1$$

4. Evaluate $g^{-1}(3)$.

$$g^{-1}(3) = 8$$

5. Assuming f is an **odd** function, evaluate f(-2).

If function f is odd, then

$$f(-2) = -9$$

6. Assuming h is an **even** function, evaluate h(-9).

If function h is even, then

$$h(-9) = 7$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = (-x)^3 + (-x)$$

 $p(-x) = -x^3 - x$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^3 - x)$$
$$-p(-x) = x^3 + x$$

c. Is polynomial p even, odd, or neither?

odd

d. Explain how you know the answer to part c.

We see that p(x) = -p(-x) for all x because p(x) and -p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an odd function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x}{5} + 3$$

a. Evaluate f(50).

step 1: divide by 5 step 2: add 3

$$f(50) = \frac{(50)}{5} + 3$$
$$f(50) = 13$$

b. Evaluate $f^{-1}(12)$.

step 1: subtract 3 step 2: multiply by 5

$$f^{-1}(x) = 5(x-3)$$

$$f^{-1}(12) = 5((12) - 3)$$

$$f^{-1}(12) = 45$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(4).

$$b(4) = 6$$

b. Evaluate $b^{-1}(5)$.

$$b^{-1}(5) = 2$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	3	-3	-3	3
-1	7	-7	7	-7
0	0	0	0	0
1	7	-7	7	-7
2	-3	3	3	-3

b. Is function f even, odd, or neither?

neither

c. How do you know the answer to part b?

Function f is neither because neither column -f(-x) nor column f(-x) matches column f(x) exactly.