block name 1

1. Information & Decision

Regularity

Let:

$$\cdot \left(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta}\right)$$
1-D **real** statistical model

· L likelihood function of
$$(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$$

Then, $(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ is regular if:

 $\cdot \Theta$ open

$$\cdot \forall \theta_1, \theta_2 \in \Theta$$
:

$$\{x \in \Omega \mid L(x, \theta_1) = 0\} = \{x \in \Omega \mid L(x, \theta_2) = 0\}$$

 $\cdot \ \forall \ \theta \in \Theta :$

$$\exists f: \Omega \to \mathbb{R}^+:$$

$$\exists \ \mathcal{E}_{\theta} \subset \Theta :$$

 \mathcal{E}_{θ} neighborhood of θ

$$\forall \theta' \in \mathcal{E}_{\theta}$$
:

$$|\partial_{\theta} \log(L(x,\theta))| \lor |\partial_{\theta^{2}} \log(L(x,\theta))\theta| \le$$

f(x)

$$\cdot \ \forall \ \theta \in \Theta :$$

$$E_x\left(\left|\partial_\theta \log(L(x,\theta))\right|^2\right)$$
 finite

block name 3

Fisher's information

Let:

 $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ 1-D regular statistical model

· L likelihood function of $(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$

We name Fisher's information of $(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ to:

$$f: \Theta \longrightarrow \mathbb{R}$$

$$\theta \longmapsto E_x \left(|\log(L(x,\theta))|^2 \right)$$

We denote:

$$\cdot f(\theta) : I_F(\theta)$$

Kullback's information

Let:

$$\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$$
 d-D statistical model

We name Kullback's information of $(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ to:

$$f: \Theta^2 \longrightarrow \mathbb{R}$$

$$(\theta_1, \theta_2) \longmapsto E_{\theta_2} \left(\log(\frac{L(x, \theta_1)}{L(x, \theta_2)}) \right)$$

We denote:

$$\cdot f((\theta_1,\theta_2)) : I_K(\theta_1 \mid \theta_2)$$

Decision

Let:

- $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D **measurable** statistical model
- $\cdot (D, \mathcal{D})$ measurable space

$$f: \Omega \to D$$

Then, f is a decision if:

 $\cdot f$ measurable

We denote:

$$\cdot \{ f : \Omega \to D \mid f \text{ measurable } \} : \Xi$$

Decision order

Let:

- $\cdot \left(\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta}\right)$ d-D
 measurable statistical model
- $\cdot (D, \mathcal{D})$ measurable space
- $\cdot f_1, f_2 : \Omega \to D$ decisions

Then, f_1 is better than f_2 if:

 $\cdot conditions$

.

block name 5

Loss function

Let:

- $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model
- $\cdot (D, \mathcal{D})$ measurable space

$$W: D \times \Theta \to \mathbb{R}^+$$

Then, W is a loss function if:

- $\cdot W$ measurable
- $\cdot \forall d \in D$, d correct :

$$W(d,\theta) = 0$$

 $\cdot \forall d_1, d_2 \in D$, d_1 better than d_2 :

$$W(d_1,\theta) \leq W(d_2,\theta)$$

Risk function

Let:

- $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model
- $\cdot (D, \mathcal{D})$ measurable space
- $W: D \times \Theta \to \mathbb{R}^+$ loss function

We name risk function of W to:

$$R: \Xi \times \Theta \longrightarrow \mathbb{R}$$

$$(\chi, \theta) \longmapsto E_x ((W(\chi(x), \theta)))$$