Per costruire il parser abbiamo bisogno di due concetti, FIRST e FOLLOW.

FIRST (d) = insieme dei terminali che inizia no le stringhe che derivano da α :

= $\{a: A \Rightarrow a w_2 \text{ per qualche } w_2 \} \cup \{\mathcal{E}, \infty A \Rightarrow^* \mathcal{E}\}$ \[
\begin{align*}
2 \text{ situazioni per cui derivo } \mathcal{E} \\
A \to \mathcal{E} \\
B \to \mathcal{C} \\
C \to \mathcal{E}
\end{align*}

G:
$$S \rightarrow AB$$
 L(G) = $\{ab,b\}$ PARSING TABLE:
 $A \rightarrow a|E$
 $B \rightarrow b$

	a	b	\$
S	S→AB	S-AB	
A	A→a	A → E	
В		B→b	

Nella mia tabella devo trovare le direttive che supportano le derivazioni: $S \Rightarrow AB \Rightarrow aB \Rightarrow ab$

FIRST: Grammatica $G = (V_1 T_1 S, P)$ $S \Rightarrow a$

Per ogni simbdo X & V, l'insieme first (X) è calculato come seque:

- 1. Se X = b (e un terminale, cise X = T) allora first (x) = {x}
- 2. \$\forall \times \lambda \tag{\epsilon} \left(\vec{e} \times non-terminale) inizializzare first(\forall \tag{\times} \come \phi \text{ e procedere come Seque:
 - · Se X → E & P (è una produzione), allora aggiungere & a first(x).
 - Se $X \rightarrow Y_1...Y_n$ con $n_{7/2}$ e G, allora applicare la procedura seguente:

j:= 1

while
$$(j \le n)$$
 {

aggiungere a first(X) ogni b tale che b \in (first(Yj)\{E\})

if (\(\xi \) efirst(Yj)\) then $j = j+1$ else break;

}

if $(j = n+1)$ then aggiungere (x) a first(X).

First (d) con d stringa di simboli di V

Sia d=Yn...Yn con n >1.

Inizializzare first (d) come of e applicare la sequente procedura:

j:=1while $(j \le n)$ {
 aggiungere a first(d) ogni b tale che b e first(Yj)
 if $(\xi = first(Y_j))$ then j=j+1 else break;
}

if (j=n+1) then aggiungere ξ a first(d).

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \mathcal{E}$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \mathcal{E}$
 $F \rightarrow (E) \mid id$

	first	infine		
Ordine della compatazione	E	first (T) Se E e first(T) guarda E'	id. (
	E'	+, ٤	+ , {	
	Т	first(F). Se & & first(F) guarda T'	id, (
	Τ'	* , ٤	*,£	
	F	id, (id, (

RICORDA:

first: sono terminali o E: ∀A, first(A)⊆Tu{E}

Per calcolarlo, seguire la seguente procedura:

- Per ogni X & VITI {S}, inizializzare follow (X) = \$\phi\$
- Inizializzare follow (s) = {\$}
- repeat

- χ βè εο nullable; produzioni in cui Acompare nel body. d, B qualsiasi simbolo di G.
- 1. β e & (stringa nulla) o first(β) contiene β

ESECUZIONE

			infine
E	\$ first (()\E = (\$)
E'		β-ε	\$)
т	first (E')=+	βe first(E')	1)+
7'		β - ε	\$) +
F	first (T') \ E = *	βe first(T')	\$)+*

ESECUZIONE

	A	→	d	X	β		
1	E	→	T	E')		
2	E	→	+	Τ	E	I	٤
3	(→	F	ť)		
4	(T	→	*	F	T	-	ε
5		-	7	F	7)	١	i.l

		infine
E	\$)	
E'		
т		
۲'		
F	*	
	•	