Home Assignment - 1

Santhosh Nadig

November 14, 2016

1 Introduction

2 Theory

Let \mathbf{Y}_k represent the *n* known observations of spatial data and \mathbf{Y}_u represent the *m* data points that needs to be estimated. For ordinary Kriging ($\mu = \mathbf{1}\beta$), the optimal predictions are given by

$$\hat{\mathbf{Y}}_{u} = \mathbf{1}_{u}\hat{\beta} + \Sigma_{uk}\Sigma_{kk}^{-1} \left(\mathbf{Y}_{k} - \mathbf{1}_{k}\hat{\beta}\right)$$
$$\hat{\beta} = \left(\mathbf{1}_{k}^{T}\Sigma_{kk}^{-1}\mathbf{1}_{k}\right)^{-1}\mathbf{1}_{k}^{T}\Sigma_{kk}^{-1}\mathbf{Y}_{k},$$

where

$$\begin{bmatrix} \mathbf{Y}_k \\ \mathbf{Y}_u \end{bmatrix} \in \mathbf{N} \left(\begin{bmatrix} \mathbf{1}_k \beta \\ \mathbf{1}_u \beta \end{bmatrix}, \begin{bmatrix} \Sigma_{kk} & \Sigma_{ku} \\ \Sigma_{uk} & \Sigma_{uu} \end{bmatrix} \right).$$

Firstly, we show that the predictions are linear in the observations, i.e., $\hat{\mathbf{Y}}_u = \boldsymbol{\lambda}^T \mathbf{Y}_k$ for some $\boldsymbol{\lambda}$. We may re-write $\hat{\beta}$ as

$$\hat{\beta} = \boldsymbol{\gamma}^T \mathbf{Y}_k$$

$$\boldsymbol{\gamma} = \left(\left(\mathbf{1}_k^T \boldsymbol{\Sigma}_{kk}^{-1} \mathbf{1}_k \right)^{-1} \mathbf{1}_k^T \boldsymbol{\Sigma}_{kk}^{-1} \right)^T.$$

We note that the vector $\boldsymbol{\gamma}^T$ is of dimensions $1 \times n$, and therefore, $\hat{\beta}$ is a scalar. Substituting the above in the expression for $\hat{\mathbf{Y}}_u$, we obtain

$$\hat{\mathbf{Y}}_{u} = \mathbf{1}_{u} \boldsymbol{\gamma}^{T} \mathbf{Y}_{k} + \Sigma_{uk} \Sigma_{kk}^{-1} \mathbf{Y}_{k} - \Sigma_{uk} \Sigma_{kk}^{-1} \mathbf{1}_{k} \boldsymbol{\gamma}^{T} \mathbf{Y}_{k}
= \left(\mathbf{1}_{u} \boldsymbol{\gamma}^{T} + \Sigma_{uk} \Sigma_{kk}^{-1} - \Sigma_{uk} \Sigma_{kk}^{-1} \mathbf{1}_{k} \boldsymbol{\gamma}^{T} \right) \mathbf{Y}_{k}
= \boldsymbol{\lambda}^{T} \mathbf{Y}_{k}.$$

where $\lambda = (\mathbf{1}_u \boldsymbol{\gamma}^T + \Sigma_{uk} \Sigma_{kk}^{-1} - \Sigma_{uk} \Sigma_{kk}^{-1} \mathbf{1}_k \boldsymbol{\gamma}^T)^T$.

Secondly, we show that the predictions are unbiased, i.e., $\mathbf{E}(\hat{\mathbf{Y}}_u) = \mathbf{E}(\mathbf{Y}_u)$. The expected value of $\hat{\beta}$ is given by

$$\mathbf{E}\left(\hat{\beta}\right) = \left(\mathbf{1}_k^T \Sigma_{kk}^{-1} \mathbf{1}_k\right)^{-1} \mathbf{1}_k^T \Sigma_{kk}^{-1} \mathbf{E}(\mathbf{Y}_k)$$
$$= \left(\mathbf{1}_k^T \Sigma_{kk}^{-1} \mathbf{1}_k\right)^{-1} \mathbf{1}_k^T \Sigma_{kk}^{-1} \mathbf{1}_k \beta$$
$$= \beta.$$

Therefore,

$$\mathbf{E}(\hat{\mathbf{Y}}_{u}) = \mathbf{1}_{u}\mathbf{E}\left(\hat{\beta}\right) + \Sigma_{uk}\Sigma_{kk}^{-1}\left(\mathbf{E}(\mathbf{Y}_{k}) - \mathbf{1}_{k}\mathbf{E}\left(\hat{\beta}\right)\right)$$
$$= \mathbf{1}_{u}\beta + \Sigma_{uk}\Sigma_{kk}^{-1}\left(\mathbf{1}_{k}\beta - \mathbf{1}_{k}\beta\right)$$
$$= \mathbf{1}_{u}\beta.$$

Finally, consider a second unbiased predictor of \mathbf{Y}_u , given by $\tilde{\mathbf{Y}}_u = (\boldsymbol{\lambda} + \boldsymbol{\nu})^T \mathbf{Y}_k$. From the unbiasedness criterion, we have that $\mathbf{E}(\tilde{\mathbf{Y}}_u) = \mathbf{E}(\hat{\mathbf{Y}}_u)$. Therefore, $(\boldsymbol{\lambda} + \boldsymbol{\nu})^T \mathbf{E}(\mathbf{Y}_k) = \boldsymbol{\lambda}^T \mathbf{E}(\mathbf{Y}_k)$, implying $\boldsymbol{\nu}^T \mathbf{1}_k = 0$. Furthermore, consider the variance of the second predictor

$$\begin{split} \mathbf{V}(\hat{\mathbf{Y}}_{u} - \mathbf{Y}_{u}) &= \mathbf{V}(\boldsymbol{\nu}^{T}\mathbf{Y}_{k} + (\boldsymbol{\lambda}^{T}\mathbf{Y}_{k} - \mathbf{Y}_{u})) \\ &= \mathbf{V}(\boldsymbol{\nu}^{T}\mathbf{Y}_{k}) + \mathbf{V}(\hat{\mathbf{Y}}_{u} - \mathbf{Y}_{u}) + 2\mathbf{C}(\boldsymbol{\nu}^{T}\mathbf{Y}_{k}, \hat{\mathbf{Y}}_{u} - \mathbf{Y}_{u}) \\ &\geq \mathbf{V}(\hat{\mathbf{Y}}_{u} - \mathbf{Y}_{u}) + 2\mathbf{C}(\boldsymbol{\nu}^{T}\mathbf{Y}_{k}, \hat{\mathbf{Y}}_{u} - \mathbf{Y}_{u}) \\ &= \mathbf{V}(\hat{\mathbf{Y}}_{u} - \mathbf{Y}_{u}) + 2\boldsymbol{\nu}^{T}\mathbf{C}(\mathbf{Y}_{k}, \hat{\mathbf{Y}}_{u}) - 2\boldsymbol{\nu}^{T}\mathbf{C}(\mathbf{Y}_{k}, \mathbf{Y}_{u}) \\ &= \mathbf{V}(\hat{\mathbf{Y}}_{u} - \mathbf{Y}_{u}) + 2\boldsymbol{\nu}^{T}(\boldsymbol{\Sigma}_{kk}\boldsymbol{\lambda} - \boldsymbol{\Sigma}_{uk}) \end{split}$$

Thus, if we can choose λ such that $\nu^T (\Sigma_{kk} \lambda - \Sigma_{uk}) = 0$, then, we have that $\mathbf{V}(\tilde{\mathbf{Y}}_u - \mathbf{Y}_u) \geq \mathbf{V}(\hat{\mathbf{Y}}_u - \mathbf{Y}_u)$ for any unbiased predictor $\tilde{\mathbf{Y}}_u$.

- 3 Data
- 4 Least-Squares
- 5 Universal Kriging
- 6 Conclusions