(19)日本国特新庁 (JP) (12) 公開特許公報 (A) (11)特許出願公閱番号

特開平10-221368

(43)公開日 平成10年(1998) 8月21日

(51) Int.CL⁶

識別記号

FΙ

G01R 1/067

G01R 1/067

C

審査請求 未請求 請求項の数6 OL (全3頁)

(21)出願番号

特膜平9-22348

(22)出顧日

平成9年(1997)2月5日

(71)出題人 591037133

有限会社清田製作所

東京都北区上中里2丁目32番12号

(72)発明者 清田茂男

東京都北区上中里2丁目32番12号

(74)代理人 弁理士 稲垣 仁義

(54) 【発明の名称】 同軸プロープ

(57)【要約】

【課題】アース端子等が凹凸になっていても、確実に接 触し得るようにすると共に、ノイズの進入を防止した同 軸プローブを提供する。

【解決手段】同軸中心導体の外周に、絶縁体を介して同 軸外部導体を形成し、これを筒状グラウンドに嵌合した 同軸プローブにおいて、前記筒状グラウンドをバネ性を 有する金属製薄板から形成し、該筒状グラウンドのアー ス端子等に接触する部位を切り割りして弾性屈曲し得る ように形成して、アース端子等との接触を確実にすると 共に、ノイズの進入を防止した。

Sest Available Copy

1

【特許請求の範囲】

【請求項1】同軸中心導体の外周に、絶縁体 (誘導体) を介して同軸外部導体を形成し、これを筒状グラウンド に嵌合した同軸プローブにおいて、前記筒状グラウンド をバネ性を有する金属製の肉薄に形成し、該筒状グラウ ンドのアース端子等に接触する部位を切り割りして弾性 屈曲し得るように形成して、アース端子等との接触を確 実にすると共に、ノイズの進入を防止したことを特徴と する同軸プローブ。

【請求項2】前記筒状グラウンドを、前記アース端子等 10 に向かって外方に拡開した形状に形成してなる請求項1 に記載のプローブ。

【請求項3】前記外部導体と筒状グラウンドとの間に、 グラウンドストッパーを介在させてなる請求項2に記載 のプローブ。

【請求項4】前記中心導体を、スプリングを介して連通 するように形成し、中心導体の先端ニードル部が、長さ 方向に摺動し得るように形成してなる請求項3に記載の プローブ。

うに形成してなる請求項1または4に記載のプローブ。 【請求項6】前記プローブが、高周波領域で使用するプ ローブである請求項1または5に記載のプローブ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、電送路の電送特 性及び電子回路部品の特性を測定する際、被試験体に接 触させる主として高周波領域で使用するプローブに関す るものである。

[0002]

【従来の技術】従来、主として高周波領域で使用する同 軸プローブとしては、金属線又は細いワイヤ状でその先 端部はテーパーニードル状の中心導体を、誘電体を介し てグラウンドとなる筒体に内装し、全体を細長い円筒状 に形成した同軸プローブが知られていた。

【0003】この同軸プローブは、中心導体の先端の二 ードル部が、被試験体の第1の信号端子に接触し、グラ ウンドとなる筒体に接続する接続ピンが、アース端子若 しくは第2の信号端子に同時に接触するようになってい る。

[0004]

【発明が解決しようとする課題】上記従来の同軸プロー ブは、先端ニードル部から多量のノイズが入り込み、こ れが高周波信号の伝達ロスが増大する原因となってい た。そればかりか、アース端子等が凹凸になっている場 合は、一方のアース端子等に接触しても他方のアース端 子等には接触しないか若しくは接触不良となるほか、ノ イズの侵入防止ができない問題があった。

【0005】この発明は、このような問題点を解決しよ うとするものであり、アース端子等が凹凸になっていて 50 にして形成しているので、アース端子若しくは第2の信

も、確実に接触し得るようにすると共に、ノイズの進入 を防止した同軸プローブを提供することを、その目的と する。

[0006]

【課題を解決するための手段】上記目的に沿う本発明の 構成は、同軸中心導体の外周に、絶縁体(誘導体)を介 して同軸外部導体を形成し、これを筒状グラウンドに嵌 合した同軸プローブにおいて、前記筒状グラウンドをバ **ネ性を有する金属製薄板から形成し、該筒状グラウンド** のアース端子等に接触する部位を切り割りして(スリッ トを入れて)弾性屈曲し得るように形成して、アース端 子等との接触を確実にすると共に、ノイズの進入を防止 したことを特徴とする。

[0007]

【発明の実施の形態】次に、本発明の実施の形態を図面 に基づいて説明する。図1及び図2は、本発明の実施例 を示すものであり、金属線の中心導体1,1'に、絶縁 体 (誘導体) 2を介して、外部導体3 (第2のグラウン ド)が形成されている。中心導体1,1'は2分割さ 【請求項5】前記プローブを、長さ方向に摺動し得るよ 20 れ、コイルスプリング4と小球5とを介して連通してい る。従って、第1の信号端子に接触する中心導体の先端 ニードル部1'は、長さ方向に摺動し得るようになって いる。

> 【0008】上記のようにして全体が円柱状に形成され た下部には、筒状グラウンド (第2のグラウンド) 7 が、外部導体3に固定されたグラウンドストッパー11 を介して嵌合固定されている。筒状グラウンド7のアー ス端子若しくは第2の信号端子に接触する先端8は、外 方に向けてラッパ状に拡開した形状に形成され、図2及 30 び図3に示すように多数の切り割り(縦状のスリット) に形成されている。

【0009】筒状グラウンド7は、バネ性を有する金属 製肉薄のパイプで形成されている。このようなパイプ は、鋼又は銅合金から形成するのが好ましい。外部導体 3の後方には、筒状のコイルスプリングストッパー9 が、摺動自在に嵌合され、コイルスプリングストッパー 9と筒状グラウンド7上端との間には、コイルスプリン グ10が介装されているので、本発明の同軸プローブ は、長さ方向に摺動し得るようになっている。

【0010】上記実施例では、中心導体のニードル部 1′の後端は、斜面に形成され、この斜面が小球5に接 触するので、ニードル部1′は抵抗の変化を防止しなが ら、長さ方向に摺動する。本発明においては、ニードル 部1′の周囲は、筒状グラウンド7の拡開した先端8に 囲まれているので、ノイズの進入を効果的に防止するこ とができるから、、特に高周波領域で使用する同軸プロ -ブとするのに効果的である。

【0011】また、本発明の筒状グラウンド7の先端8 は、バネ性を有する金属製薄肉パイプを多数の切り割り

号端子が凹凸に形成されていても確実に接触させること ができるから、測定精度が向上する。

【0012】筒状グラウンド7の先端8は、被試験体第 2信号部 (グラウンド側) への初期接触と同時に、内部 にスプリングを内蔵する中心導体1も第1の信号部に接 触する。第1,第2信号部に確実に接触させるため、中 心導体の摺動性を利用して更に押圧を行う時に、先端8 は自在なクッション性を発揮し、第2の信号部の凹凸を 完全に捕捉し、余分なトルクは、コイルスプリング10 に吸収されるので、縦状の切り割りの破損を防止するこ とができる。

[0013]

【発明の効果】以上述べたごとく、本発明によれば、ノ イズの進入を効果的に防止すると共に、アース端子等が 凹凸に形成されていても確実に接触させることができる というこの種従来の同軸プローブには全く見られない著 しく優れた性質を有するので、特に高周波領域で使用す る同軸プローブとして極めて有用である。

[0014]

【図面の簡単な説明】

【図1】本発明の実施例を示す断面図である。

【図2】図1の底面図である。

【図3】本発明の筒状グラウンドの先端切り割り部を示 す側面図である。

中心導体

【符号の説明】

1

10	1′	中心導体のニードル部
	2	絶縁体(誘導体)
	3	外部導体 (第1のグラウン
	ド)	
	7	筒状グラウンド (第2のグ
	ラウンド)	
	8	筒状グラウンドの拡開した
	先端	

【図1】

【図2】

【図3】

