

Representation of Causal Knowledge and Causal Discovery

Adèle Helena Ribeiro

25th July 2023

Machines Climbing Pearl's Ladder of Causation

Encoding Causal Structural Knowledge

Causal Diagrams

Structural Causal Model (SCM)

$$\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$$

$$\mathcal{M} = \begin{cases} \mathbf{V} = \{A, B, C, D\} \\ \mathbf{U} = \{U_A, U_B, U_C, U_D, U_{CD}\} \end{cases}$$

$$\mathcal{M} = \begin{cases} A \leftarrow f_A(U_A) \\ B \leftarrow f_B(A, D, U_B) \\ D \leftarrow f_Z(U_D, U_{CD}) \\ C \leftarrow f_X(B, U_C, U_{CD}) \end{cases}$$

$$P(\mathbf{U})$$

Induced Causal Diagram

An SCM $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$: $V_i \to V_j$, if V_i appears as argument of $f_j \in \mathcal{F}$.

Structural Causal Model (SCM)

$$\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$$

$$\mathcal{M} = \begin{cases} \mathbf{V} = \{A, B, C, D\} \\ \mathbf{U} = \{U_A, U_B, U_C, U_D, U_{CD}\} \end{cases}$$

$$\mathcal{M} = \begin{cases} A \leftarrow f_A(U_A) \\ B \leftarrow f_B(A, D, U_B) \\ D \leftarrow f_Z(U_D, U_{CD}) \\ C \leftarrow f_X(B, U_C, U_{CD}) \end{cases}$$

$$P(\mathbf{U})$$

Induced Causal Diagram

An SCM $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$: $V_i \to V_j$, if V_i appears as argument of $f_i \in \mathcal{F}$.

Structural Causal Model (SCM)

$$\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$$

$$\mathbf{W} = \{A, B, C, D\}$$

$$\mathbf{U} = \{U_A, U_B, U_C, U_D, U_{CD}\}$$

$$\mathcal{M} = \begin{cases} A \leftarrow f_A(U_A) \\ B \leftarrow f_B(A, D, U_B) \\ D \leftarrow f_Z(U_D, U_{CD}) \\ C \leftarrow f_X(B, U_C, U_{CD}) \end{cases}$$

$$P(\mathbf{U})$$

Induced Causal Diagram

An SCM $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$:

 $V_i \to V_j$, if V_i appears as argument of $f_i \in \mathcal{F}$.

 $V_i \longleftrightarrow V_j$ if the corresponding $U_i, U_j \in \mathbf{U}$ are correlated or f_i , f_j share some argument $U \in \mathbf{U}$.

Structural Causal Model (SCM)

$$\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$$

$$\mathbf{W} = \{A, B, C, D\}$$

$$\mathbf{U} = \{U_A, U_B, U_C, U_D, U_{CD}\}$$

$$\mathcal{M} = \begin{cases} A \leftarrow f_A(U_A) \\ B \leftarrow f_B(A, D, U_B) \\ D \leftarrow f_Z(U_D, U_{CD}) \\ C \leftarrow f_X(B, U_C, U_{CD}) \end{cases}$$

$$P(\mathbf{U})$$

Induced Causal Diagram

An SCM $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$:

 $V_i \to V_j$, if V_i appears as argument of $f_j \in \mathcal{F}$.

 $V_i \longleftrightarrow V_j$ if the corresponding $U_i, U_j \in \mathbf{U}$ are correlated or f_i , f_j share some argument $U \in \mathbf{U}$.

Structural Causal Model (SCM)

$$\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$$

$$\mathcal{M} = \begin{cases} \mathbf{V} = \{A, B, C, D\} \\ \mathbf{U} = \{U_A, U_B, U_C, U_D, U_{CD}\} \end{cases}$$

$$\mathcal{M} = \begin{cases} A \leftarrow f_A(U_A) \\ B \leftarrow f_B(A, D, U_B) \\ D \leftarrow f_Z(U_D, U_{CD}) \\ C \leftarrow f_X(B, U_C, U_{CD}) \end{cases}$$

Induced Causal Diagram

An SCM $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$:

 $V_i \to V_j$, if V_i appears as argument of $f_j \in \mathcal{F}$.

 $V_i \longleftrightarrow V_j$ if the corresponding $U_i, U_j \in \mathbf{U}$ are correlated or f_i , f_j share some argument $U \in \mathbf{U}$.

Potential SCMs

 $\mathcal{M}_{11} = \langle \mathbf{V}, \mathbf{U}_1, \mathcal{F}_{11}, P_{11}(\mathbf{u}_1) \rangle$

True Model

rametrization

Markovian

$$\mathcal{M}_{1k_1} = \langle \mathbf{V}, \mathbf{U}_1, \mathcal{F}_{1k_1}, P_{1k_1}(\mathbf{u}_1) \rangle$$

$$\mathcal{M}_{21} = \langle \mathbf{V}, \mathbf{U}_2, \mathcal{F}_{21}, P_{21}(\mathbf{u}_2) \rangle$$

$$\mathcal{M}_{2k_2} = \langle \mathbf{V}, \mathbf{U}_2, \mathcal{F}_{2k_2}, P_{2k_2}(\mathbf{u}_2) \rangle$$

$$\mathcal{M}_{31} = \langle \mathbf{V}, \mathbf{U}_3, \mathcal{F}_{31}, P_{31}(\mathbf{u}_3) \rangle$$

$$\mathcal{M}_{3k_3} = \langle \mathbf{V}, \mathbf{U}_3, \mathcal{F}_{3k_3}, P_{3k_3}(\mathbf{u}_3) \rangle$$

$$\mathcal{M}_{51} = \langle \mathbf{V}, \mathbf{U}_5, \mathcal{F}_{51}, P_{51}(\mathbf{u}_5) \rangle$$

$$\mathcal{M}_{5k_5} = \langle \mathbf{V}, \mathbf{U}_5, \mathcal{F}_{5k_5}, P_{5k_5}(\mathbf{u}_5) \rangle$$

Observational Data

Potential SCMs

Potential Causal Diagrams

Observational Data

=x

True Model

rametrization

$$\mathcal{M}_{1k_1} = \langle \mathbf{V}, \mathbf{U}_1, \mathcal{F}_{1k_1}, P_{1k_1}(\mathbf{u}_1) \rangle$$

 $\mathcal{M}_{11} = \langle \mathbf{V}, \mathbf{U}_1, \mathcal{F}_{11}, P_{11}(\mathbf{u}_1) \rangle$

$$\mathcal{M}_{21} = \langle \mathbf{V}, \mathbf{U}_2, \mathcal{F}_{21}, P_{21}(\mathbf{u}_2) \rangle$$

$$\mathcal{M}_{2k_2} = \langle \mathbf{V}, \mathbf{U}_2, \mathcal{F}_{2k_2}, P_{2k_2}(\mathbf{u}_2) \rangle$$

$$\mathcal{M}_{31} = \langle \mathbf{V}, \mathbf{U}_3, \mathcal{F}_{31}, P_{31}(\mathbf{u}_3) \rangle$$

$$\mathcal{M}_{3k_3} = \langle \mathbf{V}, \mathbf{U}_3, \mathcal{F}_{3k_3}, P_{3k_3}(\mathbf{u}_3) \rangle$$

 $\mathcal{M}_{41} = \langle \mathbf{V}, \mathbf{U}_4, \mathcal{F}_4 \rangle$

$$\mathcal{M}_{4k_4} = \langle \mathbf{V}, \mathbf{U}_4, \mathcal{F}_4 \rangle$$

$$\mathcal{M}_{51} = \langle \mathbf{V}, \mathbf{U}_5, \mathcal{F}_5 \rangle$$

$$\mathcal{M}_{5k_5} = \langle \mathbf{V}, \mathbf{U}_5, \mathcal{F}_{5k_5}, P_{5k_5}(\mathbf{u}_5) \rangle$$

Multiple neural nets fit the data equally well, leading to different causal explanations!

Super-Exponential Growth

The space of **Markovian Causal Diagrams** (a.k.a. Directed Acyclic Graphs, or DAGs for short) grows super-exponentially with the number *n* of variables, as shown by the following recurrence relation (Robinson, 1973):

$$|DAG(n)| = \sum_{i=1}^{n} {n \choose 1} 2^{i(n-i)} |DAG(n-1)|$$

Inference through enumeration is not a good idea. :)

n	DAG(n)
2	3
3	27
4	729
5	59.049
6	1.4349×10^7
7	1.0460×10^{10}
8	2.2877×10^{13}

$|ADMG(n)| \gg |DAG(n)|$

The space of **Markovian Causal Diagrams** (a.k.a. Acyclic Directed Mixed Graphs, or ADMGs for short) also grows super-exponentially with the number *n* of variables, and it is much bigger than the space of DAGs:

	•		$\mathbf{a}_{n}(n-1)/2$
ADMG(n)		$ I)A(\dot{\tau}(n) $	$\times 2^{n(n-1)/2}$

Now, inference seems impossible...

Surprisingly, that is not the case!

n	DAG(n)	ADMG(n)
2	3	6
3	27	216
4	729	46.656
5	59.049	6.0457×10^7
6	1.4349×10^7	4.7019×10^{11}
7	1.0460×10^{10}	2.1936×10^{16}
8	2.2877×10^{13}	6.1410×10^{21}

Causal Discovery

Can we learn a causal diagram \mathscr{G} from observational data?

In non-parametric settings, we can't learn the true causal diagram, but **Causal Discovery** algorithms such as the **Fast Causal Inference (FCI)** can learn a graphical representation of its *Markov Equivalence Class (MEC)*!

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. *Artificial Intelligence*, 172(16):1873–1896. Link

Encoding Conditional Independencies

D-Separation and I-Maps

Graphical Notation

X and Y are parents of Z, i.e., $X, Y \in Pa(Z)$

Z is a *child* of Y, i.e., $Z \in Ch(Y)$

W is a descendent of X, i.e., $W \in De(X)$

Y is ancestor of W, i.e., $Y \in An(W)$

Y is non-descendant of *X*, i.e., $Y \in NDesc(X)$

 $\langle X, Z, Y \rangle$ is a collider triplet

 $\langle X, Z, W \rangle$ and $\langle Y, Z, W \rangle$ is a non-collider triplets

Note: In many settings, the variable itself is included in their own set of parents, ancestors, children, and descendants.

For example, $X \in Ch(X)$, $An(W) = \{X, Y, Z, W\}$, $Pa(Z, W) = \{X, Y, Z, W\}$

D-Separation and Implied Conditional Independencies

Definition (active triplet): A triplet in a subpath $\langle V_i, V_m, V_j \rangle$ is said to be *active* relative to a set **Z** if V_m :

- 1. Is a non-collider and not a member of \mathbf{Z} ; or
- 2. Is a collider and an ancestor of some member of ${\bf Z}$.

W is non-collider (active if $W \not\in \mathbb{Z}$)

W is a collider $\text{(active if } W \in \mathbf{Z} \text{ or any of its descendants is in } \mathbf{Z} \text{,} \\ \text{e.g., } A \in \mathbf{Z})$

D-Separation and Implied Conditional Independencies

Definition (active triplet): A triplet in a subpath $\langle V_i, V_m, V_j \rangle$ is said to be *active* relative to a set **Z** if V_m :

- 1. Is a non-collider and not a member of \mathbf{Z} ; or
- 2. Is a collider and an ancestor of some member of \mathbf{Z} .

Definition (d-connecting path): A path p between X and Y in a causal diagram G is said to be **d-connecting** (or open/active) relative to a (possibly empty) set $\mathbf{Z}(X, Y \notin \mathbf{Z})$ if and only if all triplets in it are active.

Definition (d-separation): A set \mathbb{Z} d-separates \mathbb{X} and \mathbb{Y} if and only if there is no d-connecting path between them relative to \mathbb{Z} . This is denoted by $(\mathbb{X} \perp \!\!\! \perp \mathbb{Y} \mid \mathbb{Z})_G$.

Global Markov property: $(\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z})_G \Rightarrow (\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z})_P$

D-separations in G imply conditional independencies in P

W is non-collider (active if $W \not\in \mathbf{Z}$)

W is a collider $\text{(active if } W \in \mathbf{Z} \text{ or any of its descendants is in } \mathbf{Z} \text{,} \\ \text{e.g., } A \in \mathbf{Z})$

D-Separation and Implied Conditional Independencies

Definition (active triplet): A triplet in a subpath $\langle V_i, V_m, V_j \rangle$ is said to be active relative to a set **Z** if V_m :

- 1. Is a non-collider and not a member of \mathbf{Z} ; or
- 2. Is a collider and an ancestor of some member of \mathbf{Z} .

Definition (d-connecting path): A path p between X and Y in a causal diagram G is said to be d-connecting (or open/active) relative to a (possibly empty) set $\mathbf{Z}(X, Y \notin \mathbf{Z})$ if and only if all triplets in it are active.

Definition (d-separation): A set \mathbb{Z} d-separates \mathbb{X} and \mathbb{Y} if and only if there is no d-connecting path between them relative to \mathbb{Z} . This is denoted by $(\mathbb{X} \perp \!\!\! \perp \mathbb{Y} \mid \mathbb{Z})_G$.

Global Markov property: $(\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z})_G \Rightarrow (\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z})_P$

D-separations in G imply conditional independencies in P

Does \mathbb{Z} d-separates X and Y?

Z:

 $\{W\}$

 $\{B, W\}$

Special Triplets and Formations

Fork Z as a common cause

Chain Z as a mediator

In both cases, Z is a non-collider!

V-Structure Z as a collider or common effect

 $X \perp \perp Y \mid X \mid X \mid \perp Y \mid W$

Independence Maps (I-Maps)

Definition (I-Map): If, for a distribution P(V), and any sets X, Y, $Z \subseteq V$, it holds that

$$(\mathbf{X} \perp \!\!\!\perp \mathbf{Y} \mid \mathbf{Z})_G \Rightarrow (\mathbf{X} \perp \!\!\!\perp \mathbf{Y} \mid \mathbf{Z})_P,$$

then G is an *I-Map of* P.

—And, P is Markov Relative to G

A complete graph trivially satisfies any distribution

Minimal I-Maps and Bayesian Networks

Definition (Minimal I-Map): If G is an I-Map of P and none of its edges can be removed without ceasing its I-Map property of P, then G is a *minimal I-Map of* P.

Definition (Bayesian Network, BN for short): A a Bayesian Network is a directed acyclic graph (DAG) or acyclic directed mixed graph (ADMG) G over V that is a minimal I-map of P(V).

Consider P(A, B, C) with $A \perp \!\!\! \perp C$ being the **only** independence relation.

 G_1 is I-Map of P(A, B, C)

 G_2 is I-Map of P(A, B, C)

 G_3 is minimal I-Map of P(A, B, C)

 $B \coprod C \mid A$

Definition (Markov Equivalence Class, MEC for short): A Markov Equivalence Class is a set of models that encode the same set of conditional independencies.

Distribution	Factorization	Equivalent BNs Rayosian Motworks
$P(X,Y)$ with $P(Y X) \neq P(Y)$ i.e., $X \perp \perp Y$	Factorization $P(x, y) = P(y x)P(x)$ $P(x, y) = P(x y)P(y)$	Bayesian Networks $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

Markov

Definition (Markov Equivalence Class, MEC for short): A Markov Equivalence Class is a set of models that encode the same set of conditional independencies.

DistributionFactorizationBayesian NetworksP(X,Y)P(x,y) = P(y|x)P(x)XYXwith $P(Y|X) \neq P(Y)$ P(x,y) = P(x|y)P(y)XYY

All models imply no independence and no other invariance

Markov

Equivalent BNs

Distribution **Factorization Bayesian Networks** Markov $P(x, y, z) = P(y \mid x, z)P(z \mid x)P(x)$ Equivalent P(X, Y, Z)= P(y|z)P(z|x)P(x)with P(Y|X,Z) = P(Y|X)i.e., $X \perp \!\!\!\perp Y \mid Z$ $P(x, y, z) = P(x \mid y, z)P(y \mid z)P(z)$ $= P(x \mid z)P(z \mid y)P(y)$ $P(x, y, z) = P(y \mid x, z)P(x \mid z)P(z)$ = P(y | z)P(x | z)P(z)

Distribution

Factorization

Bayesian Networks

$$P(x, y, z) = P(y \mid x, z)P(z \mid x)P(x)$$
$$= P(y \mid z)P(z \mid x)P(x)$$

$$P(x, y, z) = P(x \mid y, z)P(y \mid z)P(z)$$
$$= P(x \mid z)P(z \mid y)P(y)$$

All models imply only $X \perp \!\!\! \perp Y \mid Z$ and Z is always a non-collider in such models.

$$= P(y|z)P(x|z)P(z)$$

Distribution **Factorization Bayesian Networks** Markov P(X, Y, Z) $P(x, y, z) = P(z \mid x, y) P(x \mid y) P(y)$ Equivalent with P(Y|X) = P(Y) $= P(z \mid x, y) P(x) P(y)$ i.e., $X \perp \!\!\!\perp Y$

Distribution

P(X, Y, Z)with P(Y|X) = P(Y)i.e., $X \perp \!\!\! \perp \!\!\! \perp Y$

Factorization

 $P(x, y, z) = P(z \mid x, y)P(x \mid y)P(y)$ $= P(z \mid x, y)P(x)P(y)$

All models imply only $X \perp \!\!\! \perp Y$ and Z is always a *collider* in such models,

Note: Z is never an ancestor of X or Y

Bayesian Networks

Markov Equivalent

Representing Markov Equivalence Classes

Partial Ancestral Graphs

Inducing Paths

For an Bayesian Network over $V \cup U \cup S$, where

V: set of observed variables

U: set of latent or unobserved variables, and

S: set of unobserved selection variables,

A path p between X and Y is called an **inducing path** if it every non-endpoint vertex on p is a collider that is either an ancestor of X or Y, or a member of S.

Partial Ancestral Graphs

A partial ancestral graph (PAG) for a BN G is a graph \mathscr{P} with six kinds of edges $(-, \to, \leftrightarrow, \leftarrow, \sim, \to)$, such that

- (1) Every edge in $\mathscr P$ corresponds to an inducing path in any member of the MEC of G;
- (2) Every non-circle edge mark represents an **invariant ancestral** or non-ancestral relationship in the MEC of G

Arrowhead \Longrightarrow non-ancestrality

Tail ==> ancestrally

Definite Triplets in PAGs

Definition (definite non-collider): A node Y of a triplet $\langle X, Y, Z \rangle$ in a PAG is a definite non-collider if the edge between X and Y or the edge between Y and Z is out of Y, or both edges have a circle mark at Y and X and Z are not adjacent.

Definition (collider): As before, a node Y of a triplet $\langle X, Y, Z \rangle$ in a PAG is a definite collider if both the between X and Y and the edge between Y and Z are into Y.

M-Separation in PAGs

Definition (definite m-connecting path): In a PAG, a path p between X and Y is a *definite m-connecting path* relative to a (possibly empty) set \mathbb{Z} $(X, Y \notin \mathbb{Z})$ if every non-endpoint vertex on p is either a definite non-collider or a collider and:

- i. Every definite non-collider on p is not a member of \mathbb{Z} ;
- ii. Every collider on p is an ancestor of some member of ${\bf Z}$.

Definition (m-separation): In a PAG, X and Y are m-separated by \mathbb{Z} if there is no definite m-connecting path between them relative to \mathbb{Z} .

M-Separation in PAGs

Definition (definite m-connecting path): In a PAG, a path p between X and Y is a *definite m-connecting path* relative to a (possibly empty) set \mathbb{Z} $(X, Y \notin \mathbb{Z})$ if every non-endpoint vertex on p is either a definite non-collider or a collider and:

- i. Every definite non-collider on p is not a member of \mathbb{Z} ;
- ii. Every collider on p is an ancestor of some member of ${\bf Z}$.

Definition (m-separation): In a PAG, X and Y are m-separated by \mathbf{Z} if there is no definite m-connecting path between them relative to \mathbf{Z} .

A PAG \mathscr{P} represents all BNs the Markov Equivalence Class (MEC), i.e.:

Edge Visibility

Definition (Visibility of an Edge): Given a PAG \mathscr{P} , a directed edge $X \to Y$ is visible if:

- 1. there is a node V not adjacent to Y such that there is an edge between V and X that is into X, or
- 2. if there is a collider path from V to X that is into X and every non-endpoint node on the path is a parent of Y. Otherwise, $X \to Y$ is said to be invisible.

Edges labeled with 'v' are referred to as visible edges

Visibility of an edge denotes the absence of a hidden confounder in every member of the equivalence class.

Edge Visibility

Definition (Visibility of an Edge): Given a PAG \mathscr{P} , a directed edge $X \to Y$ is visible if:

- 1. there is a node V not adjacent to Y such that there is an edge between V and X that is into X, or
- 2. if there is a collider path from V to X that is into X and every non-endpoint node on the path is a parent of Y. Otherwise, $X \to Y$ is said to be invisible.

Edges labeled with 'v' are referred to as visible edges

Visibility of an edge denotes the absence of a hidden confounder in every member of the equivalence class.

Causal Discovery

Fast Causal Inference (FCI) Algorithm

Fast Causal Inference (FCI) Algorithm

Fast Causal Inference (FCI) Algorithm: Learn a graphical representation of the Markov Equivalence Class of causal diagrams (ADMGs) from observational data.

Assumptions: the observed distribution is the marginal of a distribution P that satisfies the following conditions for the true causal diagram G (an **ADMG**):

- 1) I-Map / Semi-Markov Condition: for any disjoint subsets X, Y and Z: $(X \perp\!\!\!\perp Y \mid Z)_G \Rightarrow (X \perp\!\!\!\perp Y \mid Z)_P.$
- 2) Faithfulness Condition: for any disjoint subsets $\boldsymbol{X},\,\boldsymbol{Y}$ and \boldsymbol{Z} :

$$(\mathbf{X} \perp \!\!\!\perp \mathbf{Y} | \mathbf{Z})_P \Rightarrow (\mathbf{X} \perp \!\!\!\perp \mathbf{Y} | \mathbf{Z})_G.$$

G is an *I-Map of* P

P is **semi-Markov** relative to G.

P is *faithful* to G

Note: Estimation of the marginal distribution from limited data requires and additional assumption:

3) An adequate conditional independence test is available.

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. *Artificial Intelligence*, 172(16):1873–1896. Link

Conditional Independence Tests

Gaussian errors and independent observations: partial correlation test

Fisher, R.A. (1921). On the "Probable Error" of a Coefficient of Correlation Deduced from a Small Sample. R package: https://cran.r-project.org/web/packages/pcalg/

Kernel-based non-parametric test:

Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2012). *Kernel-based conditional independence test and application in causal discovery.* In: Uncertainty in artificial intelligence. AUAI Press; 2011. p.804–13 R package: https://cran.r-project.org/web/packages/CondIndTests

Continuous (conditional Gaussian) or Discrete (Binary, Ordinal, Multinomial) - Linear Regression

- Tsagris, M., Borboudakis, G., Lagani, V. et al. (2018) Constraint-based causal discovery with mixed data. Int J Data Sci Anal 6, 19–30. (Link)
- R package: https://cran.r-project.org/web/packages/MXM/

Gaussian errors and correlated observations (family data):

Ribeiro A.H., Soler J.M.P. (2020). Learning Genetic and environmental graphical models from family data, Statistics in Medicine.

R package: https://github.com/adele/FamilyBasedPGMs

Learning Structural Invariances

Learning Structural Invariances

FCI Algorithm - Pipeline

Unknown Reality

True causal diagram

$$X \perp \!\!\! \perp W$$

 $X \perp \!\!\! \perp Y \mid Z, W$

Implied by the ADMG using d-separation

Complete Graph

Conditional Independence Tests

 $X \perp \!\!\! \perp W$

 $X \perp \!\!\!\perp Y \mid Z, W$

Skeleton

FCI Rules (R1) - (R10)

Partial Ancestral Graph (PAG)

By faithfulness, are observed in the data

$$A \longrightarrow B \implies$$
 ancestrally

$$A \longrightarrow B \implies$$
 non-ancestrality

$$A \longleftrightarrow B \Longrightarrow$$
 spurious association

$$A \longmapsto$$
 selection bias

Implied by the PAG using m-separation

$$X \perp \perp W$$
 $X \perp \perp \perp Y \mid Z, W$

Z is not an ancestor of X or W.

Z and W are ancestors of Y.

Z is not confounded with Y.

PAG: Representation of the Markov Equivalence Class

Partial Ancestral Graph (PAG)

Z is not an ancestor of X or W.

- Z and W are ancestors of Y.
- Z is not confounded with Y.

Other Examples

Underlying Causal Diagram

Partial Ancestral Graph

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. *Artificial Intelligence*, 172(16):1873–1896. Link

FCI - Skeleton

Form a complete graph on the set of variables, in which there is a circle-circle edge between every pair of variables;

FCI - Skeleton

For every pair of variables V_1 and V_2 , if exists a set $\mathbf{S}_{1,2}$ such that $V_1 \perp \!\!\! \perp V_2 \mid \mathbf{S}_{1,2}$, then remove the edge between V_1 and V_2 and add $\mathbf{S}_{1,2}$ in $Sepset(V_1,V_2)$.

True, unknown ADMG

 $V_1 \perp \!\!\! \perp V_3 \mid V_4$ and $V_4 \perp \!\!\! \perp V_5 \mid V_1, V_2, V_3$

FCI - Orienting the Colliders

R0: If $\langle V_1, V_2, V_3 \rangle$ is unshielded and $V_2 \notin Sepset(V_1, V_3)$, then

That is the only way for the path between V_1 and V_3 to be blocked when not conditioning on V2

True, unknown ADMG

 $V_1 \perp \!\!\! \perp V_3 \mid V_4$ and $V_1 \perp \!\!\! \perp V_3 \mid V_4, V_2$

FCI - Orienting the Colliders

R0: If $\langle V_1, V_2, V_3 \rangle$ is unshielded and $V_2 \notin Sepset(V_1, V_3)$, then

We apply R0 until no more collider can be oriented!

True, unknown ADMG

 $V_1 \perp \!\!\! \perp V_3 \mid V_4$ and $V_1 \perp \!\!\! \perp V_3 \mid V_4, V_5$

where V_1 and V_3 are not adjacent

True, unknown ADMG

After Skeleton + R0

Applying R3

R1:

where V_1 and V_3 are not adjacent

48

After Skel + R0 + R3 + R1

discriminating path for X

 $\langle V_4, V_2, V_3, V_5 \rangle$ is a discriminating path for V_3 and $V_3 \in Sepset(V_4, V_5) - V_4 \perp \!\!\!\perp V_5 \mid V_1, V_2, V_3$

discriminating path for X

 $\langle V_4, V_2, V_1, V_5 \rangle$ is a discriminating path for V_1 and $V_1 \in Sepset(V_4, V_5) - V_4 \perp \!\!\! \perp V_5 \mid V_1, V_2, V_3$

Final PAG

True, unknown ADMG

$$V_1 \perp \!\!\! \perp V_3 \mid V_4$$
 $V_4 \perp \!\!\! \perp V_5 \mid V_1, V_2, V_3$

Final PAG

After Skel + R0 + R3 + R1 + R4 + R4

$$V_1 \perp \!\!\! \perp V_3 \mid V_4$$
 $V_4 \perp \!\!\! \perp V_5 \mid V_1, V_2, V_3$

R1: where V_1 and V_3 are not adjacent **R2**: or **R3**:

where V_1 and V_3 are not adjacent

Definition (discriminating path): A path $p = \langle X, ..., W, V, Y \rangle$ in a MAG is a discriminating path for V if

- (i) p includes at least three edges;
- (ii) V is a non-endpoint vertex on p, and is adjacent to Y on p; and
- (iii) X is not adjacent to Y, and every vertex between X and V is a collider on p and is a parent of Y.

R5: V_1 V_2 V_{k-1} V_k V_k

 $\langle V_1, V_2, ..., V_{k-1}, V_k \rangle$ is an uncovered circle path V_1 and V_{k-1} are not adjacent V_2 and V_k are not adjacent

 $\mathbf{R6:} \qquad \underbrace{V_1} \underbrace{V_2} \underbrace{V_3} \qquad \Longrightarrow \qquad \underbrace{V_1} \underbrace{V_2} \underbrace{V_3}$

 V_1 and V_3 may or may not be adjacent

R9:

 $\langle V_1, V_2, ..., V_{k-1}, V_k \rangle$ is an uncovered potentially directed path from V_1 to V_k

 V_2 and V_k are not adjacent

R10:

 $\langle V_1,A_1,\ldots,A_k \rangle$ is an uncovered potentially directed path from V_1 to A_k (A_1 may be A_k) $\langle V_1,B_1,\ldots,B_k \rangle$ is an uncovered potentially directed path from V_1 to B_k (B_1 may be B_k) $A_1 \neq B_1$ and A_1 and B_1 are not adjacent

Another Example

True, unknown Causal Diagram

$$V_1 \perp \!\!\! \perp V_3 \mid V_2, V_4, V_5$$

 $V_1 \perp \!\!\! \perp V_5 \mid V_4$
 $V_2 \perp \!\!\! \perp V_4 \mid V_1, V_5$

Corresponding PAG

$$V_1 \perp \!\!\! \perp V_3 \mid V_2, V_4, V_5$$

 $V_1 \perp \!\!\! \perp V_5 \mid V_4$
 $V_2 \perp \!\!\! \perp V_4 \mid V_1, V_5$

Hint: apply Rules 0, 1, 2, 4 and then Rule 9 three times.

More on Causal Discovery and PAGs

Causal discovery from observational and experimental data:

- Kocaoglu, M., Jaber, A., Shanmugam, K., Bareinboim, E. Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions. In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems. 2019. (Link)
- Jaber, A., Kocaoglu, M., Shanmugam, K., Bareinboim, E. Causal Discovery from Soft Interventions with Unknown Targets: Characterization & Learning. In Advances in Neural Information Processing Systems 2020. (Link)

Causal effect identification from PAGs:

 Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. Causal Identification under Markov Equivalence - Calculus, Algorithm, and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS 2022. (Link)

Available Implementations of the FCI

R Packages:

- pcalg R package:
 - https://cran.r-project.org/web/packages/pcalg/
 - https://github.com/cran/pcalg/
- RPy-Tetrad (Wrapper in R): https://github.com/cmu-phil/py-tetrad/tree/main/pytetrad/R

Python Packages:

- Do-discover in PyWhy: https://github.com/py-why/dodiscover
- Causal-Learn: https://causal-learn.readthedocs.io/en/latest/index.html
- Py-Tetrad (Wrapper in Python): https://github.com/bd2kccd/py-causal

Thank you for your attention!

adele.ribeiro@uni-marburg.de