LU Factorization

$$\overrightarrow{A}\overrightarrow{x} = \overrightarrow{b}$$

where $\overrightarrow{A} \in \mathbb{R}^{n \times n}$, $\overrightarrow{b} \in \mathbb{R}^{n}$ are given.

· Polynomial interpolation

Last time

"Simple" systems (tràngular)

$$\begin{cases} U\vec{x} = \vec{y} : \text{Badeward subs.} \\ L\vec{x} = \vec{y} : \text{Forward elim.} \end{cases}$$

· Greneral matrix A.

Contents

Gaussian Elimination

2 LU Factorization

Gaussian Elimination

General Method: Gaussian Elimination

- <u>Gaussian elimination</u> is an algorithm for solving a general system of linear equations that involves a sequence of <u>row operations</u> performed on the associated matrix of coefficients.

 (preserve the solution of given system)
- This is also known as the method of row reduction.
- There are three variations to this method:
 - · G.E. without pivoting
 - G.E. with partial pivoting (that is, row pivoting)
 - G.E. with full pivoting (that is, row and column pivoting)

To solve
$$A\vec{x} = \vec{b}$$
: chelon form reduced-echelon form $S = \begin{bmatrix} A & \vec{b} \end{bmatrix} \xrightarrow{\text{row ops.}} \begin{bmatrix} U & \vec{\beta} \end{bmatrix} \longrightarrow \begin{bmatrix} I & \vec{\beta} \end{bmatrix}$ the solve $A\vec{x} = \vec{b}$: $A\vec{x} = \vec{$

What are the allowed now operations in general G.E.?

- * (1) Row interchange (or swap): R; \iff R
 - a Row scaling : Ri → cRi
- * 3 Row replacement : $R_i \rightarrow R_i + cR_j$

G.E. Without Pivoting: Example

Key Example

Solve the following system of equations.

$$\begin{cases} 2x_1 + 2x_2 + x_3 = 6 \\ -4x_1 + 6x_2 + x_3 = -8 \\ 5x_1 - 5x_2 + 3x_3 = 4 \end{cases} \xrightarrow{\text{matrix equation}} \underbrace{\begin{bmatrix} 2 & 2 & 1 \\ -4 & 6 & 1 \\ 5 & -5 & 3 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} 6 \\ -8 \\ 4 \end{bmatrix}}_{\mathbf{b}}$$

Want:
$$-4 + (\frac{4}{2}) 2 = 0$$

Step 1: Write the corresponding augmented matrix and row-reduce to an echelon form.

Step 1: Write the corresponding augmented matrix and row-reduce to an echelon form
$$\begin{bmatrix}
2 & 2 & 1 & | & 6 \\
-4 & 6 & 1 & | & -8 \\
5 & -5 & 3 & | & 4
\end{bmatrix}
\rightarrow
\begin{bmatrix}
2 & 2 & 1 & | & 6 \\
0 & 10 & 3 & | & 4 \\
0 & 10 & -0.5 & | & 11
\end{bmatrix}
\rightarrow
\begin{bmatrix}
2 & 2 & 1 & | & 6 \\
0 & 10 & 3 & | & 4 \\
0 & 0 & 3.5 & | & -7
\end{bmatrix}$$
Step 2: Solve for x_2 , then x_2 , and then x_3 , via backward substitution.

Step 2: Solve for x_3 , then x_2 , and then x_1 via backward substitution. \cup

$$\mathbf{x} = (3, 1, -2)^{\mathrm{T}}.$$

Reduction to Echelon Form

o Only allowed row operation: row replacement $(R_i \longrightarrow R_i + cR_j)$

o het $j \in IN[1, N-1]$. Suppose first (j-1) columns

G.E. without Pivoting: General Procedure

As shown in the example, G.E. without pivoting involves two steps:

1 Row reduction: Transform $A\mathbf{x} = \mathbf{b}$ to $U\mathbf{x} = \boldsymbol{\beta}$ where

$$U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ & u_{22} & \cdots & u_{2n} \\ & & \ddots & \vdots \\ \mathbf{O} & & & u_{nn} \end{bmatrix} \quad \text{and} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix}.$$

2 Backward substitution: Solve $U\mathbf{x} = \boldsymbol{\beta}$ for \mathbf{x} by

$$\left\{ \begin{array}{ll} x_n=\frac{\beta_n}{u_{nn}} & \text{and} \\ \\ x_i=\frac{1}{u_{ii}}\left(\beta_i-\sum\limits_{j=i+1}^n u_{ij}x_j\right), & \text{for } i=n-1,n-2,\dots,1 \,. \end{array} \right.$$

G.E. without Pivoting: MATLAB Implementation function x = GEnp(A, b)% Step 1: Row reduction to upper tri. system S = [A, b]; % augmented matrix n = size(A, 1); % or n = length(A) or n = length(b)for j = 1:n-1for i = j+1:n; $\begin{array}{ll} \text{mult} = -S(i,j)/S(j,j); \\ S(i,:) = S(i,:) + \text{mult}*S(j,:); \end{array}$ $R_i \rightarrow R_i + \left(\begin{array}{c} \alpha_{i,j} \\ \alpha_{i,j} \end{array}\right) R_j$ end % Step 2: Backward substitution U = S(:, 1:end-1); $[A | \vec{b}] \rightarrow [U | \vec{\beta}]$ beta = S(:,end);x = backsub(U, beta);15 end > code from last lecture

Exercise. Rewrite Lines 6-9 without using a loop. (Think vectorized!)

G.E. with Partial Pivoting: Procedure

Allowed ops: $S : S : R_i \iff R_j : R_i \implies R_i + cR_j : R_i + cR_$

In this variation of G.E., reduction to echelon form is done slightly differently.

• On the augmented matrix $[A | \mathbf{b}]$,

Key Process (partial pivoting)

- 1 Find the entry in the first column with the largest absolute value. This entry is called the pivot
- 2 Perform a <u>row interchange</u>, if necessary, so that the pivot is on the first diagonal position.
- 3 Use elementary row operations to reduce the remaining entries in the first column to zero.
- Once done, ignore the first row and first column and repeat the Key
 Process on the remaining submatrix.
- Continue this until the matrix is in a row-echelon form.

G.E. with Partial Pivoting: Example

Let's solve the example on p. 5 again, now using G.E. with partial pivoting.

1st column:

$$\begin{bmatrix} 2 & 2 & 1 & | & 6 \\ -4 & 6 & 1 & | & -8 \\ \hline 5 & -5 & 3 & | & 4 \end{bmatrix} \xrightarrow{\text{pivot}} \begin{bmatrix} 5 & -5 & 3 & | & 4 \\ -4 & 6 & 1 & | & -8 \\ 2 & 2 & 1 & | & 6 \end{bmatrix} \xrightarrow{\text{zero}} \begin{bmatrix} 5 & -5 & 3 & | & 4 \\ 0 & 2 & 3.4 & | & -4.8 \\ 4 & -0.2 & 4.4 \end{bmatrix}$$

2nd column:

$$\begin{bmatrix} 5 & -5 & 3 & 4 \\ 0 & 2 & 3.4 & -4.8 \\ 0 & 4 & -0.2 & 4.4 \end{bmatrix} \xrightarrow{\text{pivot}} \begin{bmatrix} 5 & -5 & 3 & 4 \\ 0 & 4 & -0.2 & 4.4 \\ 0 & 2 & 3.4 & -4.8 \end{bmatrix} \xrightarrow{\text{zero}} \begin{bmatrix} 5 & -5 & 3 & 4 \\ 0 & 4 & -0.2 & 4.4 \\ 0 & 0 & 3.5 & -7 \end{bmatrix}$$

Now that the last matrix is upper triangular, we work up from the third equation to the second to the first and obtain the same solution as before.

G.E. with Partial Pivoting: MATLAB Implementation

Exercise

Write a MATLAB function $\mathtt{GEpp}.\mathtt{m}$ which carries out G.E. with partial pivoting.

- Modify GEnp.mon p. 7 to incorporate partial pivoting.
- The only part that needs to be changed is the for-loop starting at Line 5.
 - Right after for j = 1:n-1, find the index of the pivot element of the jth column of A below the diagonal.

```
[~, iM] = max(abs(A(j:end,j)));
iM = iM + j - 1;
```

 If the pivot element is not on the diagonal, swap rows so that it is on the diagonal.

```
if j ~= iM
    S([j iM], :) = S([iM j], :)
end
```

Why Is Pivoting Necessary?

Example

Given $\epsilon \ll 1$, solve the system

$$\epsilon$$
 75 a tany posttare $\#$. $\begin{bmatrix} -\epsilon & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 - \epsilon \\ 0 \end{bmatrix}$

using Gaussian elimination with and without partial pivoting.

Without pivoting: By $R_2 \rightarrow R_2 + (1/\epsilon)R_1$, we have

$$\begin{bmatrix} -\epsilon & 1 \\ 0 & -1 + 1/\epsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 - \epsilon \\ 1/\epsilon - 1 \end{bmatrix} \quad \Longrightarrow \quad \begin{cases} x_2 = 1, \\ x_1 = \frac{(1 - \epsilon) - 1}{-\epsilon}. \quad = \quad \frac{-6}{-\epsilon} = 1 \end{cases}$$

- In exact arithmetic, this yields the correct solution.
- In floating-point arithmetic, calculation of x_1 suffers from catastrophic cancellation.

Ans. $\begin{bmatrix} x_1 \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

11/21

Why Is Pivoting Necessary? (cont')

Example

Given $\epsilon \ll 1$, solve the system

$$\begin{bmatrix} -\epsilon & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 - \epsilon \\ 0 \end{bmatrix}$$

using Gaussian elimination with and without partial pivoting.

With partial pivoting: First, swap the rows $R_1 \leftrightarrow R_2$, and then do $R_2 \to R_2 + \epsilon R_1$ to obtain

$$\begin{bmatrix} 1 & -1 \\ 0 & 1-\epsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1-\epsilon \end{bmatrix} \implies \begin{cases} x_2 = 1, \\ x_1 = \frac{0-(-1)}{1}. \end{cases}$$

- Each of the arithmetic steps (to compute x_1, x_2) is well-conditioned.
- The solution is computed stably.

LU Factorization

" round to even"

Emulation of Gaussian Elimination

In this section, we emulate row operations steps required in Gaussian elimination by matrix multiplications. **Two major operations.**

- Row interchange $R_i \leftrightarrow R_j$:

 the matrix obtained by interchanging it and jth row of I. P(i,j)A, where P(i,j) is an elementary permutation matrix.
- Row replacement $R_i \to R_i + cR_i$:

$$(I + c\mathbf{e}_i\mathbf{e}_j^{\mathrm{T}})A$$
 Gaussian transformation matrix.

See Notes on Row and Column Operations for more details.

Forming linear combination of rows

$$[\omega, \omega_2 \omega_3] \begin{bmatrix} -R_1 - \\ -R_2 - \\ -R_3 - \end{bmatrix} = \omega_1 R_1 + \omega_2 R_2 + \omega_3 R_3$$

$$-\lim_{3 \times m} A \in \mathbb{R}^{3 \times m} - \text{this is a row ore}$$

=
$$\omega_1 R_1 + \omega_2 R_2 + \omega_3 R_3$$

- Jinear Comboo. of rows.
- this is a row vector.

$$[0 \ 1 \ 0] \begin{bmatrix} R_1 \\ R_2 \\ P_2 \end{bmatrix} = R_2$$

$$\left[\begin{array}{c} \left[\begin{array}{c} R_1 \\ R_2 \\ \end{array} \right] = R_1 + cR_2$$

$$\begin{bmatrix} 1 & 0 & c \end{bmatrix} \begin{bmatrix} \frac{R_1}{R_2} \\ \frac{R_2}{R_3} \end{bmatrix} = R_1 + c R_3$$

Connection to clem. now ops Here,
$$A = \frac{R_1}{R_2} \in \mathbb{R}^{3\times3}$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} A = \begin{bmatrix} \frac{R_3}{R_2} \\ R_1 \end{bmatrix} \iff R_1 \iff R_3$$

elementary permutation matrix

$$= P(1,3)$$

2.
$$\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1 \end{bmatrix} A = \begin{bmatrix} R_1 \\ \alpha R_1 + R_2 \\ b R_1 + R_3 \end{bmatrix} \iff \begin{array}{l} R_1 \longrightarrow R_1 \\ R_2 \longrightarrow R_2 + \alpha R_1 \\ R_3 \longrightarrow R_3 + b R_1 \end{array}$$

Gaussian bransformation matrix (GTM) · unit lower triangular matrix.

Key Example Revisited

GE W/ partial pivoting

Let's work out the key example from last time once again, now in matrix form $A\mathbf{x} = \mathbf{b}$.

$$\begin{bmatrix} 2 & 2 & 1 \\ -4 & 6 & 1 \\ 5 & -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -8 \\ 4 \end{bmatrix}.$$

[Pivot] Switch R_1 and R_3 using P(1,3):

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
2 & 2 & 1 \\
-4 & 6 & 1 \\
5 & -5 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
6 \\
-8 \\
4
\end{bmatrix}
\longrightarrow \begin{bmatrix}
5 & -5 & 3 \\
-4 & 6 & 1 \\
2 & 2 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
4 \\
-8 \\
6
\end{bmatrix}$$

$$A$$

[Zero] Do row operations $R_2 \rightarrow R_2 + (4/5)R_1$ and $R_3 \rightarrow R_3 - (2/5)R_1$:

$$\underbrace{\begin{bmatrix}
1 & 0 & 0 \\
4/5 & 1 & 0 \\
-2/5 & 0 & 1
\end{bmatrix}}_{G_1} \begin{bmatrix} \begin{bmatrix} 5 & -5 & 3 \\ -4 & 6 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{G_1} = \begin{bmatrix} 4 \\ -8 \\ 6 \end{bmatrix} \xrightarrow{\begin{bmatrix} 5 & -5 & 3 \\ 0 & 2 & 3.4 \\ 0 & 4 & -0.2 \end{bmatrix}}_{G_1} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -4.8 \\ 4.4 \end{bmatrix}$$

Key Example Revisited (cont')

[Pivot] Switch R_2 and R_3 using P(2,3):

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
5 & -5 & 3 \\
0 & 2 & 3.4 \\
0 & 4 & -0.2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
4 \\
-4.8 \\
4.4
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
5 & -5 & 3 \\
0 & 4 & -0.2 \\
0 & 2 & 3.4
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
4 \\
4.4 \\
-4.8
\end{bmatrix}$$

$$P(2,3) \qquad R_{\ell} \rightarrow R_{\ell}, \quad R_{2} \rightarrow R_{2}$$
The Doe a row operation $R_{2} \rightarrow R_{2} \rightarrow R_{2} \rightarrow R_{3}$

[Zero] Do a row operation $R_3 \rightarrow R_3 - (1/2)R_2$:

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1/2 & 1 \end{bmatrix}}_{G_2} \begin{bmatrix} \begin{bmatrix} 5 & -5 & 3 \\ 0 & 4 & -0.2 \\ 0 & 2 & 3.4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 4.4 \\ -4.8 \end{bmatrix} \end{bmatrix} \longrightarrow \underbrace{\begin{bmatrix} 5 & -5 & 3 \\ 0 & 4 & -0.2 \\ 0 & 0 & 3.5 \end{bmatrix}}_{U} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 4.4 \\ -7 \end{bmatrix}$$

Analysis of Example

Elem. perm. mat. Satisfies

• The previous calculations can be summarized as

 (\star)

$$G_2P(2,3)G_1P(1,3)A = U$$
.

 Using the noted properties of permutation matrices and GTMs, (*) can be written as

$$G_2P(2,3)G_1\underbrace{P(2,3)P(2,3)}_{=I}P(1,3)A = U$$

$$\longrightarrow G_2\underbrace{P(2,3)G_1P(2,3)}_{=:\tilde{G}_1}\underbrace{P(2,3)P(1,3)}_{=:P}A = U.$$

$$\underbrace{Mit lower}_{=:\tilde{G}_1}$$

• The above can be summarized as PA = LU where $L = (G_2\widetilde{G}_1)^{-1}$ is a lower triangular matrix.

$$G_2\widetilde{G_1}$$
 $PA=U \longrightarrow PA=(G_2\widetilde{G_1})^{-1}U$

When n=4

G3 P3 G2 P2 G1 P1 A = U

Generalization - PLU Factorization

For an arbitrary matrix $A \in \mathbb{R}^{n \times n}$, the partial pivoting and row operations are intermixed as

$$G_{n-1}P(n-1,r_{n-1})\cdots G_2P(2,r_2)G_1P(1,r_1)A=U.$$

Going through the same calculations as above, it can always be written as

$$\left(\widetilde{G}_{n-1}\cdots\widetilde{G}_{2}\widetilde{G}_{1}\right)P(n-1,r_{n-1})\cdots P(2,r_{2})P(1,r_{1})A=U,$$

which again leads to PA = LU:

$$\underbrace{P(n-1,r_{n-1})\cdots P(2,r_2)P(1,r_1)}_{=:P}A = \underbrace{\left(\widetilde{G}_{n-1}\cdots\widetilde{G}_2\widetilde{G}_1\right)^{-1}}_{=:L}U.$$

This is called the **PLU factorization** of matrix A.

LU and PLU Factorization

If no pivoting is required, the previous procedure simplifies to

$$G_{n-1}\cdots G_2G_1A=U.$$

which leads to A = LU:

$$A = \underbrace{(G_{n-1} \cdots G_2 G_1)^{-1}}_{=:L} U.$$

This is called the **LU factorization** of matrix A.

• GE
$$\omega$$
/ pivoting \Longrightarrow PLU fact $(PA = LU)$

Implementation of LU Factorization

```
function [L,U] = mylu(A)
% MYLU LU factorization (demo only--not stable!).
% Input:
% A square matrix
% Output:
% L,U unit lower triangular and upper triangular such that
   I_{I}U = A
 n = length(A);
 L = eye(n); % ones on diagonal
  % Gaussian elimination
  for j = 1:n-1
   for i = i+1:n
     L(i,j) = A(i,j) / A(j,j); % row multiplier
     A(i,j:n) = A(i,j:n) - L(i,j) *A(j,j:n);
   end
 end
 U = triu(A);
end
```

Implementation of LU Factorization

Exercise. Write a MATLAB function myplu for PLU factorization by modifying the previous function mylu.m.

```
function [L, U, P] = myplu(A)
% MYPLU PLU factorization (demo only--not stable!).
 Input:
  A square matrix
% Output:
   P,L,U permutation, unit lower triangular, and upper
   triangular such that LU=PA
% Your code here.
end
```