International Rectifier

IRF7317PbF

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- Dual N and P Channel MOSFET
- Surface Mount
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques.

		N-Ch	P-Ch
V	DSS	20V	-20V
R	DS(on)	0.029Ω	0.058Ω

Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

		Symbol	Maxi	Maximum		
		_	N-Channel	P-Channel		
Drain-Source Voltage		V _{DS}	20	-20		
Gate-Source Voltage		V _{GS}	± 12			
Continuous Drain Current®	T _A = 25°C		6.6	-5.3		
Continuous Drain Current	T _A = 70°C		5.3	-4.3	Α	
Pulsed Drain Current		I _{DM}	26	-21	A	
Continuous Source Current (Diode Conduction)		ls	2.5 -2.5			
T _A = 25°C			2.0		10/	
Maximum Power Dissipation ⑤	T _A = 70°C	1.3		.3	W	
Single Pulse Avalanche Energy		E _{AS}	100	150	mJ	
Avalanche Current		I _{AR}	4.1	-2.9	Α	
Repetitive Avalanche Energy		E _{AR}	0.20		mJ	
Peak Diode Recovery dv/dt ②		dv/dt	5.0 -5.0		V/ ns	
Junction and Storage Temperature Range		T _J T _{STG}	-55 to + 150 ℃			

Thermal Resistance Ratings

Parameter	Symbol	Limit	Units
Maximum Junction-to-Ambient ®	$R_{\theta JA}$	62.5	°C/W

IRF7317PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter		Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	N-Ch		_	_	V	V _{GS} = 0V, I _D = 250μA
* (DK)USS	Diam-to-Source Breakdown Voltage	P-Ch	-20	_	_	V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient			0.027		V/°C	Reference to 25°C, I _D = 1mA
	Broakdown Volkago Formp. Goomolom	P-Ch	_	0.031	_		Reference to 25°C, I _D = -1mA
R _{DS(ON)}	Static Drain-to-Source On-Resistance	N-Ch	—	0.023	0.029		V _{GS} = 4.5V, I _D = 6.0A ④
		14-011	_		0.046		V _{GS} = 2.7V, I _D = 5.2A ④
		P-Ch			0.058		V _{GS} = -4.5V, I _D = -2.9A ⊕
		1 -011	_	0.082	0.098		V _{GS} = -2.7V, I _D = -1.5A ⊕
V _{GS(th)}	Gate Threshold Voltage	N-Ch		_	_	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
GS(th)	Oate Threshold Voltage	P-Ch	-0.7	_	_	_ v	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 _{fs}	Forward Transconductance	N-Ch		20	_	s	V _{DS} = 10V, I _D = 6.0A ④
e sis	i orward rialiscolluddalice	P-Ch		5.9		3	$V_{DS} = -10V, I_{D} = -1.5A$ 4
		N-Ch	_	_	1.0		V _{DS} = 16V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current	P-Ch		_	-1.0		V _{DS} = -16V, V _{GS} = 0V
DSS	Diaiii-to-Source Leakage Current	N-Ch	—	_	5.0	μΑ	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
		P-Ch	_	_	-25		V _{DS} = -16V, V _{GS} = 0V, T _J = 55°C
I _{GSS}	Gate-to-Source Forward Leakage	N-P	_	_	±100	nΑ	V _{GS} = ±12V
Q_a	Total Gate Charge	N-Ch	_	18	27		N. Okasasa I
αg	Total Gate Gliarge	P-Ch	l —	19	29		N-Channel
0	Gate-to-Source Charge	N-Ch	_	2.2	3.3		$I_D = 6.0A, V_{DS} = 10V, V_{GS} = 4.5V$
Q_{gs}	Gale-to-Source Offarge	P-Ch	_	4.0	6.1	nC	P-Channel
0 .	Gate-to-Drain ("Miller") Charge	N-Ch	_	6.2	9.3		$I_D = -2.9A$, $V_{DS} = -16V$, $V_{GS} = -4.5V$
Q_{gd}	Gate-to-Drain (Willer) Charge	P-Ch	_	7.7	12		
4	Turn-On Delay Time	N-Ch	_	8.1	12	ns	
$t_{d(on)}$		P-Ch	_	15	22		N-Channel $V_{DD} = 10V$, $I_D = 1.0A$, $R_G = 6.0\Omega$,
+	Rise Time	N-Ch	_	17	25		
t _r		P-Ch	_	40	60		$R_D = 10\Omega$
+	Turn-Off Delay Time	N-Ch	_	38	57		(4)
$t_{d(off)}$		P-Ch	_	42	63		P-Channel $V_{DD} = -10V$, $I_D = -2.9A$, $R_G = 6.0Ω$,
4.	Fall Time	N-Ch	_	31	47		
t _f	raii iiiie	P-Ch	<u> </u>	49	73		$R_D = 3.4\Omega$
	Innut Canacitanas	N-Ch	_	900	_		N-Channel
C _{iss}	Input Capacitance		_	780	_	1	$V_{GS} = 0V, V_{DS} = 15V, f = 1.0MHz$
	Output Canacitanas	N-Ch	_	430	_	pF	
C _{oss}	Output Capacitance		_	470	_	1	P-Channel
<u> </u>	Davaras Transfer Canasitanas	N-Ch		200	_		$V_{GS} = 0V, V_{DS} = -15V, f = 1.0MHz$
C _{rss}	Reverse Transfer Capacitance		_	240		-	

Source-Drain Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
١.		N-Ch	_	_	2.5	A	
IS	Continuous Source Current (Body Diode)	P-Ch	_	_	-2.5		
	D	N-Ch	_	_	26		
I _{SM}	Pulsed Source Current (Body Diode) ①	P-Ch	_	_	-21		
V _{SD} I	5	N-Ch	_	0.72	1.0	V	$T_J = 25$ °C, $I_S = 1.7A$, $V_{GS} = 0V$ ③
	Diode Forward Voltage	P-Ch	_	-0.78	-1.0		T _J = 25°C, I _S = -2.9A, V _{GS} = 0V ③
	B	N-Ch	_	52	77	ns	N-Channel
t _{rr}	Reverse Recovery Time	P-Ch	_	47	71		$T_J = 25$ °C, $I_F = 1.7$ A, $di/dt = 100$ A/ μ s
Q _{rr}	Davis Barrier Observa	N-Ch	_	58	86	nC	P-Channel 4
	Reverse Recovery Charge	P-Ch	_	49	73		$T_J = 25$ °C, $I_F = -2.9A$, $di/dt = 100A/\mu s$

Notes:

 $\ \, \textcircled{1}$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 22)

- ⓐ Pulse width ≤ 300 μ s; duty cycle ≤ 2%.
- ② N-Channel $I_{SD} \le 4.1A$, $di/dt \le 92A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150 ^{\circ} C$ P-Channel $I_{SD} \le -2.9A$, $di/dt \le -77A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150 ^{\circ} C$
- ③ N-Channel Starting T $_J$ = 25°C, L = 12mH R $_G$ = 25 Ω , I $_{AS}$ = 4.1A. (See Figure 12) P-Channel Starting T $_J$ = 25°C, L = 35mH R $_G$ = 25 Ω , I $_{AS}$ = -2.9A.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

Fig 5. Normalized On-Resistance
Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 7. Typical On-Resistance Vs. Gate Voltage

Fig 8. Maximum Avalanche Energy Vs. Drain Current

10 | D = 6.0A | V_{DS} = 10V |

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical Output Characteristics

Fig 13. Typical Output Characteristics

Fig 14. Typical Transfer Characteristics

Fig 15. Typical Source-Drain Diode Forward Voltage

0.6

0.7

0.8

0.8

V_{GS} = -2.7VI

0.9

V_{GS} = -4.5VI

1.0, Drain Current (A)

1.0, Drain Current (A)

Fig 16. Normalized On-Resistance Vs. Temperature

Fig 17. Typical On-Resistance Vs. Drain Current

400

Fig 18. Typical On-Resistance Vs. Gate Voltage

Fig 19. Maximum Avalanche Energy Vs. Drain Current

Fig 20. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 21. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 22. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information (Lead-Free)

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.