Języki i paradygmaty programowania Lista 5 (elementy języka Prolog)

Przemysław Kobylański

Zaprogramuj w języku Prolog rozwiązania poniższych zadań. Na ocenę dostateczną trzeba rozwiązać wszystkie zadania bez gwiazdek. Na ocenę dobrą trzeba dodatkowo rozwiązać wszystkie zadania z jedną gwiazdką. Na ocenę bardzo dobrą trzeba rozwiązać wszystkie zadania.

Zadanie 1

Graf skierowany można reprezentować w postaci faktów arc(X, Y) wyrażających istnienie łuku od wierzchołka X do wierzchołka Y.

Zapisz graf z rys. 1 w postaci faktów arc/2. Następnie napisz predykat path(X, Y) w postaci reguł, które wnioskują czy istnieje ścieżka od wierzchołka X do wierzchołka Y.

Czy Twój program będzie działać poprawnie dla dowolnych grafów, również takich, które zawierają cykl.

Uwaga

Jeśli Twój program będzie udzielał tylu odpowiedzi ile jest ścieżek to również zostanie uznany za poprawny.

Zadanie 2*

Zdefiniuj następujące predykaty:

 $\mathbf{jednokrotnie}(\mathbf{X}, \mathbf{L})$ spełniony gdy wartość \mathbf{X} występuje dokładnie jeden raz na liście \mathbf{L} ,

Rysunek 1: Przykład grafu skierowanego.

 $\mathbf{dwukrotnie}(\mathbf{X},\,\mathbf{L})$ spełniony gdy wartość \mathtt{X} występuje dokładnie dwa razy na liście $\mathbf{L}.$

Przykład

Zwróć uwagę na przepływ danych w poniższym przykładzie oraz na liczbę odpowiedzi, szczególnie w przypadku predykatu |tt| dwukrotnie/2.

```
?- jednokrotnie(1, [1, 2, 3, 2, 3, 4]).
true ;
false.
?- jednokrotnie(2, [1, 2, 3, 2, 3, 4]).
false.
?- jednokrotnie(3, [1, 2, 3, 2, 3, 4]).
false.
?- jednokrotnie(4, [1, 2, 3, 2, 3, 4]).
true ;
false.
?- jednokrotnie(X, [1, 2, 3, 2, 3, 4]).
X = 1;
X = 4;
false.
?- dwukrotnie(1, [1, 2, 3, 2, 3, 4]).
false.
?- dwukrotnie(2, [1, 2, 3, 2, 3, 4]).
true ;
false.
?- dwukrotnie(3, [1, 2, 3, 2, 3, 4]).
true ;
false.
?- dwukrotnie(4, [1, 2, 3, 2, 3, 4]).
false.
?- dwukrotnie(X, [1, 2, 3, 2, 3, 4]).
X = 2;
X = 3;
false.
?- jednokrotnie(X, [1, 2, 1, 2, 1, 2]).
false.
?- dwukrotnie(X, [1, 2, 1, 2, 1, 2]).
false.
```

Wskazówka

Do rozwiązania zadania wystarczy znajomość predykatów member/2, append/3 oraz \+/1 (negacja).

Zadanie 3**

Korzystając z zamrażania celów (predykaty freeze/2 i when/2) napisz, w postaci predykatu sieve(N, X), sito Eratostenesa dostarczające w strumieniu (na liście) X kolejne liczby pierwsze z zakresu od 2 do N.

Literatura

[1] W. Clocksin, C. Mellish. Prolog. Programowanie. Helion, 2003.