CSEE 3827: Fundamentals of Computer Systems, Spring 2022

Lecture 9

Prof. Dan Rubenstein (danr@cs.columbia.edu)

Agenda (M&K 9.1-9.8)

- Assembly Language: Very high level overview
- Computer Design Basics
 - Datapath
 - Function Unit
 - Arithmetic/Logic Unit (ALU): Multiplexers galore!
 - Shifter (revisited quickly)
 - Control Word
 - Instruction & Instruction Decoder

Small Register file Example

Function Unit (also seen before, Lecture 6)

(Simplified) MIPS Function Unit at a high level

- Combinational Circuitry
- OP is the operation determined by 3-bit selector T

Arithmetic Logic (function) Unit

 Goal: Build a combinational circuit that has the following functionality (on 32-bit inputs A & B) with a 3-bit selector T=XYZ:

T=XYZ	Output	Comments
"000"	A + B	Add
"001"	A - B	Subtract
"010"	sl A ← B	Shift left by 5-bit low order bits of B
"011"	sr A ← B	Shift right by 5-bit low order bits of B
"100"	ΑВ	logical AND
"101"	A + B	logical OR
"110"	A ⊕ B	logical XOR
"111"	Ā	complement A (ignore B)

Adder/Subtractor

- Built earlier in class
- has a 1-bit Selector S. S=0 then Add A+B, S=1 then Subtract A-B
- Note: When XY=00, then want to use adder/subtractor, with Z feeding into S (so 000 does add, 001 does subtract)

L/R Shifter

- Combine a Left-shift with a Right shift using a 2-to-1 MUX
- S=0 then shift A left by B bits, S=1 then shift A right by B bits
- When XY=01, want to use L/R shifter with Z feeding into S

L/R Shifter

- Combine a Left-shift with a Right shift using a 2-to-1 MUX
- S=0 then shift A left by B bits, S=1 then shift A right by B bits
- When XY=01, want to use L/R shifter with Z feeding into S

L/R Shifter

- Combine a Left-shift with a Right shift using a 2-to-1 MUX
- S=0 then shift A left by B bits, S=1 then shift A right by B bits
- When XY=01, want to use L/R shifter with Z feeding into S

Step 2: Logic Circuit: As easy as it gets...

Y	Z	Ор
0	0	AB
0	1	A+B
1	0	A⊕B
1	1	A

Step 2: Logic Circuit: As easy as it gets...

Υ	Z	Ор
0	0	AB
0	1	A+B
1	0	A⊕B
1	1	A

Step 2: Logic Circuit: As easy as it gets...

Y	Z	Ор
0	0	AB
0	1	A+B
1	0	A⊕B
1	1	A

Step 2: Logic Circuit: As easy as it gets...

Υ	Z	Ор
0	0	AB
0	1	A+B
1	0	A⊕B
1	1	A

Step 2: Logic Circuit: As easy as it gets...

Υ	Z	Ор
0	0	AB
0	1	A+B
1	0	A⊕B
1	1	A

Prof. Rubenstein sketching this out...

T=XYZ	Output
"000"	A + B
"001"	A - B
"010"	sl A ← B
"011"	sr A ← B
"100"	АВ
"101"	A + B
"110"	A⊕B
"111"	Ā