$g_{ij} = \langle e_i, e_j \rangle$, and (g^{ij}) is its inverse, then for every vector $u = \sum_{j=1}^n u^j e_j \in E$ and every one-form $\omega = \sum_{i=1}^n \omega_i e_i^* \in E^*$, we have

$$u^{\flat} = \sum_{i=1}^{n} \omega_i e_i^*, \quad with \quad \omega_i = \sum_{j=1}^{n} g_{ij} u^j,$$

and

$$\omega^{\sharp} = \sum_{j=1}^{n} (\omega^{\sharp})^{j} e_{j}, \quad with \quad (\omega^{\sharp})^{i} = \sum_{j=1}^{n} g^{ij} \omega_{j}.$$

Proof. For every $u = \sum_{j=1}^n u^j e_j$, since $u^{\flat}(v) = \langle u, v \rangle$ for all $v \in E$, we have

$$u^{\flat}(e_i) = \langle u, e_i \rangle = \left\langle \sum_{j=1}^n u^j e_j, e_i \right\rangle = \sum_{j=1}^n u^j \langle e_j, e_i \rangle = \sum_{j=1}^n g_{ij} u^j,$$

so we get

$$u^{\flat} = \sum_{i=1}^{n} \omega_i e_i^*, \quad \text{with} \quad \omega_i = \sum_{j=1}^{n} g_{ij} u^j.$$

If we write $\omega \in E^*$ as $\omega = \sum_{i=1}^n \omega_i e_i^*$ and $\omega^{\sharp} \in E$ as $\omega^{\sharp} = \sum_{j=1}^n (\omega^{\sharp})^j e_j$, since

$$\omega_i = \omega(e_i) = \langle \omega^{\sharp}, e_i \rangle = \sum_{j=1}^n (\omega^{\sharp})^j g_{ij}, \qquad 1 \le i \le n,$$

we get

$$(\omega^{\sharp})^i = \sum_{j=1}^n g^{ij}\omega_j,$$

where (g^{ij}) is the inverse of the matrix (g_{ij}) .

The map \flat has the effect of lowering (flattening!) indices, and the map \sharp has the effect of raising (sharpening!) indices.

Here is an explicit example of Proposition 33.2. Let (e_1, e_2) be a basis of E such that

$$\langle e_1, e_1 \rangle = 1, \qquad \langle e_1, e_2 \rangle = 2, \qquad \langle e_2, e_2 \rangle = 5.$$

Then

$$g = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}, \qquad g^{-1} = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}.$$

Set $u = u^1 e_1 + u^2 e_2$ and observe that

$$u^{\flat}(e_1) = \langle u^1 e_1 + u^2 e_2, e_1 \rangle = \langle e_1, e_1 \rangle u^1 + \langle e_2, e_1 \rangle u^2 = g_{11} u^1 + g_{12} u^2 = u^1 + 2u^2$$

$$u^{\flat}(e_2) = \langle u^1 e_1 + u^2 e_2, e_2 \rangle = \langle e_1, e_2 \rangle u^1 + \langle e_2, e_2 \rangle u^2 = g_{21} u^1 + g_{22} u^2 = 2u^1 + 5u^2,$$