Recitation 29: Lines and curves in space

Warm up:

Find a vector-valued function for the line segment connecting the points P = (-3,7,6) and Q = (5,-4,7) in such a way that the value at t = 0 is P and the value at t = 1 is Q. Also, find the point two-thirds of the way from P to Q.

Group work:

Problem 1 Find a vector-valued function for the line through the point (1, -2, 3) that is perpendicular to the lines

$$\vec{r}_1(t) = \langle 7, 8, -2 \rangle + t \langle 3, 5, 7 \rangle$$
 and $\vec{r}_2(s) = \langle 4, -3, -7 \rangle + s \langle 4, 9, -1 \rangle$

Problem 2 Find the distance from the point P(-1,4,3) to the line $\langle 8+t,3-3t,-26t\rangle$. Hint: The distance from the point to the line is the distance from the point P and the closest point on the line.

Problem 3 Show that the curve $\vec{r} = \langle t \cos t, t \sin t, t \rangle$ lies completely on the cone $z^2 = x^2 + y^2$.

Problem 4 Match each of the following curves to the corresponding vector-valued function.

- (a) $(3, t^2, 5)$
- (c) $\langle 3, \sin t, \cos t \rangle$
- (e) $\langle \sin t, \cos t, 2 \cos t \rangle$

- (b) $(3, t^2, t)$
- (d) $\langle 3t, 5\sin t, 5\cos t \rangle$
- (f) $\langle 2\cos t, \sin t, \cos(3t) \rangle$

Recitation 29: Lines and curves in space

