

Conception Mécanique d'une Bobineuse

Projet de Conception

ECAM

Ecole Catholique d'Arts et Métiers

Prof. Réf.	:André ERNESTO
Auteurs GELEBART, Ad	: Romain BEAL, Lou BOCCOZ, Alexandre BOUDOU, Alex CLAUDET, Benoit èle GUIRADO, Margaux LAIGLE, Gaspard DE PARISOT
Version	: 1 R O
Date	: 09/12/2019
Promotion	: 2022
Entreprise	: B1 40 rue de la Bobine - 69005 Bobine City Bobineland
Période	: 2019-2020

www.ecam.fr - info@ecam.fr

Informations générales

Auteur(s)	
Nom(s)	Romain BEAL, Lou BOCCOZ, Alexandre BOUDOU, Alex CLAUDET, Benoit GELEBART, Adèle GUIRADO, Margaux LAIGLE, Gaspard DE PARISOT
Promotion	2022
Formation	ECAM3

Entreprise	
Nom	B1
Adresse	40 rue de la Bobine - 69005 Bobine City Bobineland
Responsable	M.ERNESTO Commanditaire

Sommaire

l – Etude de la faisabilité	6
1. Définition du besoin	6
1. Analyse fonctionnelle	7
II – Conception et définition du produit	8
1. Moteur et réducteur	8
1.1. Dimensionnement du moteur	8
1.2. Le réducteur	9
2. Guidage du fil en sortie d'extrudeuse	12
2.1. Description générale	12
2.2. Dessin de définition	12
2.3. Pièces normalisées	13
2.4. Grilles GPS	15
2.5. Système d'anti retour	15
3. Guidage mobile du fil	16
4. Support bobine – Guidage en rotation	16
4.1. Dimensionnement des ressorts	16
4.2. L'adhérence	17
5. Ciseaux coupe fil	17
6. Éléments additionnels	18
6.1. La plaque de support	18
6.2. Le bac poubelle	18
6.3. Le support de bobine	18
7. Aspect économique	18
III – Annexes	19

I – Etude de la faisabilité

1. Définition du besoin

Dans le cadre de ce projet, nous devons élaborer une bobineuse capable d'enrouler un fil, sortant d'une extrudeuse, autour d'une bobine. Ce fil est réutilisé dans les imprimantes du FabLab. Sont concernés par ce besoin : M. Ernesto, les enseignants à l'ECAM, les étudiants et les personnes extérieures visitant le FabLab. Ce besoin est donc présent tant à l'intérieur du FabLab qu'à l'extérieur de l'ECAM. Il se présente dans le cas d'usage pédagogique, de visites du FabLab, d'utilisation par les étudiants, de promotion de l'ECAM et de prêts aux autres écoles tout au long de l'année. A notre époque le recyclage est une priorité, le produit s'inscrit dans ce cadre écologique : le fil est composé de plastique usagé de l'ECAM. Le produit est composé d'un mécanisme tournant avec en amont un mécanisme complémentaire rendant le fil enroulable sur la bobine. La Bobineuse est un atout majeur afin de mettre en avant le travail des étudiants.

L'équipe se compose exclusivement d'étudiant de l'ECAM Lyon, travaillant de concert sur ce projet de conception regroupant des compétences mécaniques, numériques, et de sciences de l'ingénieur plus généralement. Huit étudiants développent la bobineuse, Romain BEAL, Lou BOCCOZ, Alexandre BOUDOU, Alex CLAUDET, Benoît GELEBART, Adèle GUIRADO, Margaux LAIGLE et Gaspard de PARISOT

Figure 1 : Bête à cornes

1. Analyse fonctionnelle

Dans un premier temps, notre entreprise a établi les différentes fonctions de service sur excel (consultable en annexe). Neuf fonctions principales se distinguent, elles concernent :

- 1. L'enroulement
- 2. Le fil
- 3. La bobine
- 4. Le support
- 5. L'environnement
- 6. L'alimentation
- 7. La logistique
- 8. La sécurité
- 9. La pédagogie

Figure 2 : Diagramme Pieuvre

II - Conception et définition du produit

L'extrudeuse est composée de nombreux sous ensemble que vous pouvez voir plus en détail cidessous ainsi que par les dessins en annexes.

1. Moteur et réducteur

1.1. Dimensionnement du moteur

Afin de faire tourner la bobine, il est primordial de choisir un moteur adapté à sa vitesse de rotation, et à la charge maximale qu'elle doit supporter.

Notre bobineuse doit être capable d'enrouler un fil à la vitesse de $v = 50 \ cm/s$. Une fois remplie elle doit supporter une masse de 1kg.

On sait que le rayon maximal d'une bobine est de $100 \, mm$. On cherche dans un premier temps à trouver le couple nécessaire pour soulever en bout de bras 1kg soit $10 \, N$.

$$\frac{C}{r_{max}} = 10 N$$

$$C = 10 \times 0.100 = 1 N.m$$

On a trouvé le couple, on cherche maintenant la puissance de sortie de notre moteur.

Pour cela, on prend en considération que la vitesse de rotation est la plus élevé sur le rayon intérieur de la bobine : $r_{min} = 27 \ mm$

$$\omega = \frac{v}{r_{min}}$$

$$\omega = \frac{500}{27} = 18,52 \ rad. \ s^{-1}$$

Dès lors on a : $P_s = C \times \omega = 18,52 W$

De plus, on a le rendement moteur $\eta = \frac{P_S}{P_e} = 0.6$

On obtient la puissance en entrée de notre moteur : $P_e = 30,86 W$

Nous devons donc choisir un moteur avec une puissance d'entrée de minimum **30**, **86** *W* sachant qu'un courant continu de 12 V est à notre disposition. Nous avons choisi un moteur à courant continu DOGA à balais type 162 de puissance 63 W, avec une vitesse de sortie de 2000 tr/min et couple de sortie maximum de 0.20 Nm

Figure 3: Moteur DOGA

Figure 4 : Schéma du moteur

Tableau 1 : Choix du moteur à courant continu à balais type 162

REBRICA REFERENCE REFERENC	TENSIÓN NOMINAL NOMINAL VOLVÁGE TENSIÓN NOMINALE NENSEÓNNUME	ZAR NOMINZI ZARANINA TOSUB KOJURI RIZAMINAT DERHMOMRNINAN	VETOCIODO NOMINATI NOMINA ESEES VITESSE NOMINATE GESCHWINDIGKET NOMINATE	CORRIENTE NOMINAL NOMINAL CURRANI COURANT NOMINAL NOMINALSTROM	PAR DEFARRANCUE STATING TOROUS COURT DE DEVARRAGE ANAUGS BETIMOMENI	ECRETANIEDE ARRANGUE STAFTING CLISTENI COURANIEDE BANARRAGE ANIANIESTROM	ale Astriai Malle Walle	CONNECTIVES	ESOUEMA ELÉCTRICO WIRING DIAGRAM SCHÉME ELECTRIQUE SCHALIBILD	250 APROXIMADO APPOXIMATE WEGHI 2010 FAPPROXIMANT GEWICHT (C.2.)	GRADODE SYANOU HOAD WATERICETINESS HANGERIF HANGERICE SHOP SYANSE	DISENO, A, B DESIGN, A, B DESSIN, A, B ABBILDUNG, A, B	MENTAL SOLICA: SOCIETA: MENTAL
	Un (V)	(N.m./lbf.in)	(r.p.m.)	In (A)	Ma (N.m./lbf.in)	la (A)				P (kg/lb.t)	IP		
162.4101.20.00	12	0.18 / 1.59	2800	7.5	1.0 / 8.85	33	E2	C2	EE2	1.1 / 2.95	IP53	a	32
162.4101.30.00	24	0.20 / 1.77	3000	4	1.0 / 8.85	18	E2	C2	EE2	1.1 / 2.95	IP53	а	33
162.4102.20.00	12	0.20 / 1.77	2000	6	1.0 / 8.85	24	E2	C3	EE2	1.1 / 2.95	IP53	а	34
162.4102.30.00	24	0.20 / 1.77	2000	3	1.0 / 8.85	12	E2	C3	EE2	1.1 / 2.95	IP53	а	34
162.4106.20.00	12	0.18 / 1.59	2800	7.5	1.0 / 8.85	33	E4	C2	EE2	1.1 / 2.95	IP53	а	32
162.4106.30.00	24	0.20 / 1.77	3000	4	1.0 / 8.85	18	E4	C2	EE2	1.1 / 2.95	IP53	а	33
162.4107.30.00E	24	0.20 / 1.77	2000	3	1.0 / 8.85	12	E5	C5	F3	1.1 / 2.95	IP53	а	34
162.4108.20.00	12	0.18 / 1.59	1500	5	0.8 / 7.08	17	E2	C3	EE2	1.1 / 2.95	IP53	а	35

1.2. Le réducteur

1.2.1. Dimensionnement

La vitesse de la bobine doit varier entre $N_{max}=177\ tr/min$ et $N_{min}=5.4\ tour/min$

« Débit du fil réglable de 0 à 15mm/s » or le diamètre intérieur de la bobine est de $r=27 \, mm$

$$N(tour/min) = \frac{60}{2\pi \times r} \times v(m/s) = 5.4 tour/min$$

Le moteur choisi à une vitesse de 2000 tr/min on choisit le rapport de réduction de tel sorte que lorsque que le moteur tourne à sa vitesse maximale, la vitesse de sortie N est maximale. Ainsi

$$R=rac{177}{2000}\simrac{1}{11}$$
, on décide d'utiliser deux trains épicycloïdaux en série avec $R'=rac{1}{\sqrt{11}}\sim0,3$

Tableau 2 : Récapitulatif des différents cas de vitesses

Cas d'enroulage	Vitesse de la bobine	Vitesse du moteur
Débobinage Rapide	176 tour/min	2000 tour/min
Début d'enroulage	143 tour/min	1573 tour/min
Fin d'enroulage	5,4 tour/min	59,4 tour/min

On choisit un train épicycloïdal en réducteur car :

- Encombrement et poids moindres à puissance et couples équivalents
- Couples de transmissibles plus élevés
- Meilleure répartition des forces sur les pignons réduisant grandement les efforts supportés par les roulements
- Un meilleur rendement, ou plutôt, des pertes moindres (à condition d'une fabrication de qualité)
- Arbres d'entrée et de sortie placés sur le même axe
- Mais hyperstatisme, nécessitant une qualité de fabrication irréprochable

Figure 5 : Schéma cinématique du train épicycloïdal

Avec la Formule de Willis:

$$\frac{N_{sortie} - N_{PS}}{N_{entr\'e} - N_{PS}} = (-1)^{Nb \ contacts \ ext} \times \frac{\prod (Z_{roues \ motrices})}{\prod (Z_{roues \ r\'eceptrices})}$$

Ici, on obtient:

$$\frac{N_3 - N_5}{N_1 - N_5} = (-1)^3 \times \frac{Z_1 \times Z_4}{Z_4 \times Z_3}$$

Or $N_3 = 0$

$$\frac{-N_5}{N_1 - N_5} = -1 \times \frac{Z_1}{Z_3}$$

Qui nous donne finalement :

$$N_5 \times Z_3 = N_1 \times Z_1 - N_5 \times Z_1$$

$$\frac{N_5}{N_1} = \frac{Z_1}{Z_1 + Z_3} = R$$

R est le rapport de réduction du train épicycloïdal, on veut R' = 0.3

 $Z_1=24\ {\rm Et}\ Z_3=56\ {\rm convient}$:

$$R' = \frac{Z_1}{Z_1 + Z_3} = \frac{24}{24 + 56} = 0.3$$

$$Z_4 = \frac{Z_3 - Z_1}{2} = 16$$

De plus on sait que pour des engrenages d=mZ, on choisit m=3.

Finalement $d_1 = 3 \times 24 = 72mm$ (Pignon planétaire)

$$d_3 = 3 \times 56 = 168 \, mm$$
 (Couronne planétaire)

$$d_4 = \frac{168-72}{2} = 48 \ mm$$
 (Satellites)

On choisit d'utiliser 3 satellites, le nombre de satellites n'influe pas sur le rapport de transmission.

1.2.2. Matériau utilisé pour les engrenages

Planétaire, couronne, satellites plastique sont fait en Polyamide-PA 6/6, ce matériau est souvent utilisé en mécanique pour des paliers, rouleaux, cames ou encore des engrenages, en effet il s'usine bien et est peu sensible aux charges électrostatiques. On le retrouve facilement sous la forme de plaque ou de rond d'épaisseur variable et de longueur 1000 sur largeur 610. Nous cherchions un matériau qui limite au maximum les frottements (donc nous avons éliminé le bois). De plus, le Polyamide n'est pas excessivement cher. Les satellites tournent sur eux-mêmes donc le matage du plastique ne sera pas trop rapide. L'engrainement des satellites avec la couronne et du planétaire avec les satellites pourra aussi se faire avec précision, en limitant les frottements. Ces pièces seront réalisées à la découpe laser pour obtenir une certaine précision et surtout de ne pas risquer de casser des dents en nettoyant la pièce dans l'hypothèse où elle aurait été réalisée à l'imprimante 3D.

Pour le porte satellite, nous avons choisi L'acrylonitrile butadiène styrène ou ABS car nous imprimerons cette pièce à l'aide d'une imprimante 3D. C'est une pièce peu fragile donc le risque de la casser en la nettoyant après impression est faible. De plus les propriétés mécaniques du matériau suffiront amplement pour l'utilisation de cette pièce.

Nous choisissons de ne pas utiliser de roulement pour la liaison pivot entre les satellites et les portes-satellites. En effet le facteur de frottement μ plastique sur plastique avec un bon graissage est compris entre 0,02 et 0,08 (D'après le guide du calcul en mécanique), ce qui est très faible, ainsi des roulements les ne sont pas nécessaires.

Le support du moteur sera fabrique en bois dans nos ateliers personnels.

1.2.3. Explication de la solution technologique utilisée

Le mouvement de rotation est donné par le moteur, ce dernier repose sur son support.

Le méplat en sortie d'arbre moteur permet de transmettre le mouvement au pignon planétaire, ce dernier engrainant sur les 3 satellites, circulant sur la couronne. Pour les roulements à bille, la bague extérieure est fixe et la bague intérieure mobile, ainsi on monte les bagues intérieures serrés. Les 2 anneaux d'arc-boutement permettent d'arrêter en translation le pignon planétaire sur l'arbre. Le premier porte satellite (celui le plus à gauche sur le dessin de définition), possède-lui aussi un méplat pour transmettre le mouvement de rotation au 2^e train épicycloïdal, le 2^e porte satellite à un trou en forme d'hexagone. L'arbre aura la forme complémentaire de l'hexagone afin transmettre le mouvement de rotation du porte-satellite jusqu'à la bobine. L'hexagone en bout d'arbre sera usiné par fraisage. 4 plaques protectrices en PET identiques aux couronnes planétaires sont utilisées autour des deux trains épicycloïdaux et sont plaquer sur les couronnes planétaires à l'aide de vis pour empêcher les engrenages de se déloger.

On utilise des roulements de la marque BNL en plastique, avec les références suivantes :

Figure 6 : Schéma représentatif du roulement

AC604Z-ISB/4N/D 6 0.65 604Z 4 12 4 AC605Z-ISB/4N/D 605Z 1.10 5 14 5 5 7 6 606Z AC606Z-ISB/4N/D 17 6 9 2.11 607Z AC607Z-ISB/4N/D 7 19 6 8 10 2.57 608Z AC608Z-ISB/4N/D 22 12 16 4.12

Tableau 3: Choix du composant

Ce roulement peut supporter des charges bien supérieures à 1 kg, il correspond très bien au cas d'utilisation de notre système.

2. Guidage du fil en sortie d'extrudeuse

A la sortie de l'extrudeuse, le fil est encore chaud et légèrement déformable. L'objectif est d'amener ce fil jusqu'à la bobine afin de l'enrouler. L'une des problématiques est de rendre ce fil assez solide pour qu'il puisse s'enrouler sans problèmes. Nous avons pu observer que le simple contact du fil avec l'air est suffisant pour refroidir le fil et le rendre solide.

Une seconde problématique est que la bobine doit enrouler le fil d'une certaine vitesse afin de ne pas trop tendre le fil ou au contraire laisser trop de mous. Pour cela nous nous sommes tournés vers des capteurs appelés micro rupteurs.

2.1. Description générale

La coupe A-A représente le parcourt du fil lorsqu'il sort de l'extrudeuse : il passe d'abord sur une poulie puis rejoint le guidage mobile du fil. Entre les deux, les capteurs en haut et en bas sont actionnés à tour de rôle par le fil et servent à mettre en marche ou arrêter la rotation de la bobine pour qu'il soit enroulé sans être étiré.

2.2. Dessin de définition

2.2.1. Support

Il sert à maintenir la poulie et les microrupteurs à la verticale. Il est découpé dans une plaque de bois, sa forme est donc la plus simple possible. Ce n'est cependant pas un carré car il faut que la poulie

soit assez proche de la sortie de l'extrudeuse pour que le fil passe devant le ventilateur et qu'en même temps le support de la bobineuse et celle de l'extrudeuse ne se chevauchent pas.

2.2.2. Arbre de la poulie

Elle est faite à l'imprimante 3D et a pour but de maintenir la poulie. Elle est maintenue par serrage à l'aide d'un écrou.

2.2.3. Cale des poulies

Elle sert à ajuster l'emplacement du microrupteur. En effet, celui-ci a besoin d'être aligner avec la poulie pour que le fil puisse l'actionner.

2.3. Pièces normalisées

2.3.1. Poulie

Elle fonctionne en roue libre comme son objectif est de transporter le fil de la sortie de l'extrudeuse au guidage mobile du fil.

Nous avons choisi une poulie avec une largeur assez fine pour ne pas laisser trop de jeu quand le fil passe.

Figure 7 : Poulie BNL Acétal

Figure 8 : Schéma représentatif de la poulie

Light Duty Reference	A	В	С	D	E	G	R	Load Capacity kg	List Price
AF4P22/2B/D	4.8	21.8	9.6	7.6	18.5		2.1	14	
AC4P28/2N/D	6.3	28	12	12	21		2.4	16	
AF4P32/2N/D	6.3	32	9.3	8.5	25.4		3.2	15	

Désignation	Nb	Référence	Site	Lien	Prix HT	Prix TTC
Poulie BNL Acétal AF4P32/2N/D	1	352-0664	RS Components	https://fr.rs- online.com/web/p/poulies- pour-courroies- trapezoidales/3520664/	2.37 €	2.84€

2.3.2. Microrupteurs ZF à levier long

Deux capteurs sont nécessaires, si le fil touche le capteur du bas, la bobine va tourner de manière à enroulé le fil, si le fil touche le capteur du haut alors la bobine s'arrête de tourner de manière à ne pas trop tendre le fil

Figure 9 : Microrupteurs ZF à levier long

Figure 10 : Schéma représentatif des microrupteurs

Désignation	Nb	Référenc e	Site	Lien	Prix HT	Prix TTC
Microrupteur ZF à Levier long, 1RT, 6 A - 250 V c.a., A souder	2	150-710	RS Components	https://fr.rs- online.com/web/p/p roducts/0150710/?tp r=3	4.74 €	5.69€

Le matériel supplémentaire dont nous avons besoins (vis, rondelle, écrou) est fourni par l'école.

Vis CHC ISO 4762 M3x20
Vis CHC ISO 4762 M6x25
Rondelle plate ISO 10673 — Type L — 6
Ecrou hexagonal ISO 4032 — M6 — 05

2.4. Grilles GPS

2.5. Système d'anti retour

Afin d'éviter que le fil reparte dans l'autre sens lorsque le fil est coupé, nous avons pensé à intégrer un dispositif d'anti retour. Grâce à ce dispositif le fil peut passer dans un sens mais est bloqué dans l'autre. Il utilise le même principe que pour les bracelets événementiels :

On passe le fil en appuyant sur le ressort puis une fois le fil mis en place, on peut relâcher pression et le fil ne peut pas revenir en arrière.

3. Guidage mobile du fil

Pour assurer le bon remplissage de la bobine il fallait non seulement entrainer la bobine en rotation mais aussi enrouler le fil de droite à gauche. Pour cette seconde nécessité nous avons choisi un système transformant un mouvement de rotation continu en un mouvement de translation alternatif.

Pour ce faire un moteur fait tourner un bras à taille réglable au bout duquel un galet se déplace dans une rainure guidée elle-même en translation. La rainure a ainsi un mouvement de translation alternatif que l'on récupère pour le transmettre à une poulie placée devant la bobine.

Ci-dessous le schéma cinématique :

Figure 11: Schéma cinématique du guidage mobile

Le bras à taille réglable permet de remplir des bobines allant d'une largeur de 4 cm jusqu'à 10 cm.

Notre entreprise s'est basé sur un moteur Akozon Motoreducteur DC 12V.

4. Support bobine – Guidage en rotation

Pour guider la bobine en rotation, nous avons choisi un système de trois mors tenus par des plaques et dont la pression est exercée par des ressort de compression. Ces plaques sont vissées sur l'arbre relié à la sortie du moteur et du caoutchouc y est collé afin de réaliser l'adhérence entre les plaques et l'intérieur de la bobine.

4.1. Dimensionnement des ressorts

Il a fallu choisir les pièces normalisées, les ressorts. Ainsi un calcul a été fait pour déterminer la force nécessaire pour avoir adhérence. Tout d'abord le coefficient de frottement entre du plastique (intérieur bobine) et du caoutchouc est de **0,65** qui est équivalent au facteur de frottement d'un pneu sur du goudron à sec.

Le couple maximum appliqué en sortie du moteur est de 1Nm. Le rayon intérieur de la bobine est de 20 mm.

L'effort tangent : $T = \frac{c}{R} = \frac{1}{2*10^{-2}} = 500N$

Ainsi $N = \frac{T}{\mu} = \frac{500}{0.65} = 770N$

Or N = kx

Nous choisissons donc k = 770N/m = 0.77N/mm

Pour répondre le mieux à ces critères, nous avons trouvé un ressort appliquant **0,87N/mm** et dont les dimensions conviennent parfaitement :

Tableau 4 : Caractéristiques des ressorts

Outside Diameter	3.7mm
Wire Diameter	0.5mm
Free Length	23.5mm
Minimum Working Length	14mm
Load at Minimum Working Length	8.33N
Material	Stainless Steel
Spring Rate	0.87N/mm
Ends	Closed (Square)/Unground

4.2. L'adhérence

Ouant au caoutchouc utilisé pour réaliser l'adhérence, nous avons choisi d'utiliser les feuilles de caoutchouc que nous disposons sur un support arrondi pour épouser la forme circulaire de l'intérieur de la bobine. Le support arrondi est obtenu par impression 3D. Nous réalisons l'adhérence entre ce support et la plaque grâce à des pions de centrage et du double-face. Enfin l'adhérence entre le caoutchouc et le support est également réalisée avec du double-face.

Les ressorts sont guidés en translation grâce à un guide circulaire implanté dans l'arbre. Ce guide est obtenu en impression 3D.

5. Ciseaux coupe fil

Une des fonctions que doit assurer notre bobineuse est de couper le fil sortant de l'extrudeuse une fois la bobine pleine.

Notre système fonctionne au même principe qu'une paire de ciseaux. Le fil glisse sur la partie inferieure des ciseaux qui ne contient pas de lame pour ne pas le couper malencontreusement. Lorsque la bobineuse est pleine, l'opérateur doit appuyer sur le manche des ciseaux, la lame supérieure viendra alors amputer le fil. Lorsque qu'aucun effort n'est appliqué sur les ciseaux, ceux-ci restent en position ouverte grâce a un ressort de traction fixé d'une part à la branche rotative des ciseaux et d'autre part au pied arrière de notre système.

Il a ainsi fallu choisir le ressort adéquat a notre système. Sachant que pour porter une bouteille d'eau d'un litre un homme exerce un effort sensible à 10N, pour que l'opérateur soit capable d'appuyer sur les ciseaux et de couper le fil, il nous fallait un ressort avec une résistance à la traction dans ce même ordre de grandeur. La longueur à vide du ressort devait être d'environ 40mm et sa longueur d'étirement devait atteindre au moins 90mm d'après nos dessins de définition.

Pour répondre le mieux à ces critères, nous avons trouvé un ressort dont les dimensions conviennent parfaitement :

Tableau 5 : Caractéristiques du ressort pour les ciseaux

Attribut	Valeur
Matériau	Acier inoxydable
Longueur libre	37.7mm
Longueur maximum d'allongement	116.10mm
Diamètre extérieur	5.5mm
Diamètre de fil	0.5mm
Tension initiale	6.50N
Gamme de ressorts	0.07N/mm

6. Éléments additionnels

Quelques éléments sont vus comme additionnels car ne rentrent pas dans la fonction principale de la bobineuse.

6.1. La plaque de support

Afin de liés tous nos sous-ensembles, une plaque en bois fixée à des roulettes permet de placer fixer tous nos ensembles à un même sous ensemble.

6.2. Le bac poubelle

Dans le but de recueillir d'éventuels résidus ou excès de fils plastique nous avons trouvé nécessaire d'incorporer dans le système un bac poubelle. Celui-ci sera confectionné en bois aux dimensions 10X8X6. Il est amovible et occupera une place vide autour des éléments principaux de la bobineuse.

6.3. Le support de bobine

Afin d'anticiper le fait qu'une bobine pleine doit être stockée et échangée avec une bobine vide, nous avons décidé d'incorporer au système deux pieds sur lesquels les bobines se glisseront, un pour stocker les bobines pleines et un autre pour stocker les bobines vides. Chacun des pieds pourra accueillir au maximum 5 bobines empilées. Ces deux pieds seront fixés au support de la bobineuse au moyen de vis, leur place sera déterminée par le vide restant autour des composants principaux.

7. Aspect économique

D'après notre nomenclature (voir nomenclature), notre bobineuse devrait couter environ 270 € concernant les achats nécessaires à sa réalisation.

III - Annexes

