Real Analysis Qualifying Exam September 3, 2002

Instructions: Do all 8 problems.

- 1. Suppose (X, \mathcal{M}, μ) is a measure space.
 - (a) State the definition of " $f: X \to \mathbb{C}$ is measurable".
 - (b) Prove that if $f, g: X \to \mathbb{C}$ are both measurable, then so is fg.
- **2.** Suppose (X, \mathcal{M}, μ) is a measure space, μ a σ -finite measure, and $f: X \to [0, \infty]$ is measurable. Suppose that $\int_A f \, d\mu = \mu(A)$ for each measurable set A with $\mu(A) < \infty$. Prove that f = 1 a.e.
- **3.** Let $f, g \in L^1(\mathbb{R})$. Prove that f * g is defined a.e. and $f * g \in L^1(\mathbb{R})$.
- 4. Use the Monotone Convergence Theorem to prove Fatou's Lemma.
- **5.** Suppose $f \in L^p(\mathbb{R})$, $1 \le p < \infty$ and for $h \in \mathbb{R}$ define a function f_h by $f_h(x) = f(x+h)$. Prove that $\lim_{h\to 0} \|f_h f\|_p = 0$.
- **6.** Let λ be Lebesgue measure on \mathbb{R} . Is it true that $\lambda(F \setminus \inf F) = 0$ for every closed set $F \subseteq \mathbb{R}$?
- 7. Let $f \in L^1([0,1])$. Consider the following two statements:
 - (a) For a.e. $x \in [0, 1]$, f is continuous at x.
 - (b) There exists a continuous function g such that f = g a.e.

For each of the possible implications $(a) \Rightarrow (b)$ or $(b) \Rightarrow (a)$ either prove that the implication is true or give a counterexample.

8. Let (X, \mathcal{M}, μ) be a measure space and $\mathcal{M}_0 \subseteq \mathcal{M}$ a sub σ - algebra of \mathcal{M} . Prove that given $f \in L^1(X, \mathcal{M}, \mu)$, there exists an $f_0 \in L^1(X, \mathcal{M}_0, \mu)$ such that $\int_X fg \, d\mu = \int_X f_0 g \, d\mu$ for all simple \mathcal{M}_0 measurable functions g.