Etude des effets des pesticides dans la production des vins de table

Analyse empirique des marchés

A. Blanc, N. Gusarov, S. Picon

Université Grenoble Alpes

20/12/2019

Introduction

Introduction

Introduction

Quel est l'effet de l'utilisation des pesticides sur le marché des vins simples ?

Dans cette étude, nous chercherons à étudier l'équilibre sur le marché du vin.

Plan de la présentation

- Présentation de la problématique
 - Pesticides
 - Marché du vin
- Le modèle théorique
- Les données
- Modélisation
- Les résultats
- Conclusion

Les pesticides

Les pesticides

Les pesticides

- ► Présentation du problème des pesticides
- Etat actuel
- Comment baisser l'utilisation de pesticides

Présentation du problème des pesticides

- Source de nombreux débats sur la santé et l'environnement.
- Le rôle actuel :
 - Moyen de protection contre les aléas climatiques ;
 - Outil pour la préservation du rendement.
- Plusieurs mesures mises en places pour réduire leurs usages :
 - des interdictions des produits les plus toxiques ;
 - l'instauration d'une taxe, payée par les agriculteurs (Butault et al, 2011).
- Malgré les efforts l'utilisation perdure :
 - Hausse des ventes de produits phytosanitaires ;
 - ► Augmentation des doses utilisées (+12% en 2014-2016) ;

Etat actuel

Contrairement aux attentes des autorités, aucune baisse de l'utilisation de pesticides :

- ► Le nombre de doses unité augmente de 23% entre 2008 et 2017 ;
- ► Le nombre de substances actives utilisées a augmenté de 15% entre 2011 et 2017 ;
- Une baisse des produits les plus dangereux de 6%, en 2017 (Moghaddam et al, 2019);
- ► Les grandes cultures (blés, etc...) sont les premières utilisatrices de pesticides 67.4%;
- Les vignes sont les deuxièmes 14.4% (Butault et al, 2011).

Comment diminuer l'utilisation de pesticides

Les méthodes contemporaines visant à réduire l'utilisation des pesticides sont :

- Le changement de mode de culture :
 - agriculture biologique ;
 - agriculture raisonnée ;
- ▶ La diversification des cultures, ce qui est impossible pour la vigne (Moghaddam et al, 2019).

Le marché du vin français

Le marché du vin français

Le marché du vin français

- Le vin français
- ▶ Utilisation des pesticides dans la viticulture
- Le problème d'hétérogénéité
- ► Les vins de table
- Le marché des vins de table français

Le vin français

La France est un producteur de vin important :

- ▶ 10% surface de vigne mondiale ;
- ▶ 3% de la surface agricole française est dediée au vin ;
- ▶ 16% de la production mondiale ;
- Le vin est la boisson alcoolisée la plus consommée en France ;
- ▶ 88% des ventes de vins en France sont effectuées dans des grandes surfaces (CNIV, 2018).

La consommation de vins en France, tous types (FranceAgrimer, 2011) :

- ► 55% de vins rouges ;
- ▶ 16% de vins blancs ;
- ≥ 29% de vins rosés.

Utilisation des pesticides dans la viticulture

La viticulture un type de culture gourmand en pesticides :

- ▶ 14.4% des produits phytosanitaires utilisés en France ;
- 2-ème culture utilisatrice de pesticides en France ;
- ► Fortes disparités d'utilisation des pesticides entre les régions (Butault et al, 2011) ;
- Les bassins viticoles Français utilisent en majorité des fongicides et des bactéricides sur la vigne ;
- ► La champagne est la région la plus utilisatrice de pesticide avec un IFT de 21.4 en 2013 ;

Le problème d'heterogénéité

Il existe une forte hétérogénéité entre les différents labels mais aussi à l'intérieur de ces labels.

Les vins peuvent être divisés en 2 grandes classes suivant leurs prix (Cembalo et al., 2014) :

- Les vins de qualité supérieure
 - limitation des quantités produites
 - l'origine contrôlé
 - une demande spécifique
- Les vins de qualité faible
 - hétérogénéité moins importante (Cembalo et al., 2014)

Les vins de table

Les vins de table sont des vins sans indication géographique :

- hétérogénéité plus faible que pour les autre types ;
- prix bas.

Nous traitons seulement des vins sans indication géographique :

- La situation sur ce marché influence l'utilisation des pesticides ;
- ► Il existe une homogénéité presque parfaite parmi les vins sans indication géographique (Cembalo et al, 2014).

Le marché des vins de table français

Représente 10% de la production (VIN & SOCIETE, 2018)

- ► Hausse des transactions en 2011 :
 - ► Vins rouges: 29 %
 - ► Vins rosés : 13%
 - ▶ Vins blancs : 76%
- Hausse des prix en 2011 :
 - ▶ Vins rouges : 12%
 - ► Vins rosés : 3%
 - ▶ Vins blancs : 13%

Le modèle théorique

Le modèle théorique

Le modèle théorique

- Le rôle des pesticides dans la production du vin
- Le rôle de la demande sur la production et l'offre en général
- ► La formalisation et les équations

Le rôle de la demande sur la production et l'offre en général

- Nous supposons que sur le marché des vins simples la demande est unique pour toute la France.
- ► La production de vin varie par département à cause de variations climatologiques
- On observe l'équilibre sur le marché au niveau du pays. Ainsi, la quantité demandée = quantité offerte par l'ensemble des régions.
- ► La demande de pesticides est inélastique au prix. Ainsi, la quantité de pesticides utilisée dépend seulement des intentions et des besoins des agriculteurs.

Les données

Les données

Les données

- Sources des données
- Déscription des données
- Les variables sélectionnées
- Les variables utilisées pour notre modèle

Sources des données :

- Les données de ventes de pesticides par département (INERIS)
- Les données sur les prix du vin (FranceAgrimer)
- Les données sur la population (INSEE)
- Les données sur la production de vin (SSM Finances Publiques)
- Variation par département français (pour les régions produisant le vin)
- ▶ Variation par année (2012 à 2016)

Déscription des données :

- Toutes les variables varient par département et par année.
- ▶ Le période temporelle comprise dans notre échantillon est de 2012 à 2016.
- Sélection des régions productrices de vin et utilisatrices de pesticides (69 départements).
- Utilisation de l'echelle logarithmique afin de contracter la variance.

Les variables utilisées pour notre modèle

- Variables endogènes :
 - ▶ la quantité totale produite de vin rouge et blanc non IG par département (en hectolitres, en log),
 - le prix moyen des vins rouges-blancs (indice, en log).
- Variables exogènes :
 - le revenu médian par département (en euros par personne par année, en log),
 - la surface agricole destinée aux vins de table (en hectares, en log),
 - la quantité de pesticides utilisés sur la vigne (indice, en log).

L'étude statistique

L'étude statistique

L'étude statistique

- L'étude bivariée
- L'étude de la variance
- L'étude des types d'effets
- L'analyse de la correlation
- ► La transformation within

Visualisatoin des interdépendances

Visualisation des interdépendances

Etude de la variance

Table 1: Variance par type

	Mean	Overall	Between	Within
Index prix	1.431	1.339	1.012	0.883
Index pesticides	1.257	0.483	0.335	0.350
Surface	4.892	1.986	1.955	0.410
Revenus	9.891	0.061	0.061	0.011
Temps	3	1.416	0	1.416

Table 2: Chow pooling test

	Random	Fixed
Index prix	0	0
Index pesticides	0.354	0.294
Surface	0	0.0001
Revenus	0.297	0.247

L'étude des types d'effets

Table 3: Lagrange multiplier test, p-values

	Individual	Time	Twoways
Index prix	0	0.256	0
Index pesticides	0	0.229	0
Surface	0	0.030	0
Revenus	0	0.248	0

L'analyse de la correlation

	Quantité du vin	IP	Surface	Revenus	Index pésticides	Temps
Quantité du vin	1.0000	0.0177	0.9559	-0.0266	-0.0667	-0.0360
IP	0.0177	1.0000	-0.0513	0.0065	-0.0590	0.1082
Surface	0.9559	-0.0513	1.0000	-0.0567	-0.0486	-0.0640
Revenus	-0.0266	0.0065	-0.0567	1.0000	-0.0433	0.1188
Index pésticides	-0.0667	-0.0590	-0.0486	-0.0433	1.0000	0.2971
Temps	-0.0360	0.1082	-0.0640	0.1188	0.2971	1.0000

	Quantité du vin	IP	Surface	Revenus	Index pésticides	Temps
Quantité du vin	1.0000	0.6656	0.3655	-0.1601	-0.1813	-0.1994
IP.	0.6656	1.0000	0.1862	0.1119	-0.0108	0.1640
Surface	0.3655	0.1862	1.0000	-0.1657	-0.2035	-0.3103
Revenus	-0.1601	0.1119	-0.1657	1.0000	0.2103	0.6522
Index pésticides	-0.1813	-0.0108	-0.2035	0.2103	1.0000	0.4100
Temps	-0.1994	0.1640	-0.3103	0.6522	0.4100	1.0000

La transformation within

La transformation within

└ Modèlisation

Modèlisation

Modélisation

- Presentation de la méthode
- Les estimations
 - OLS
 - ▶ 2SLS, W2SLS, 3SLS et i3SLS

Presentation de la méthode

- Explication de la méthode utilisée
 - Panel data
 - Within transformation
 - Fixed effects
 - Obtained slopes are averages for all population
 - AIDS model
 - Interdependent equations (simultaneity bias)
 - ▶ 3SLS estimator (that is identical to ILS estimator)
 - It generates consistent estimates
 - ► The distribution of the estimators are normally distributed only in large samples
 - ► The estimator is (asymptotically) efficient
- Limites du modèle
 - ► Faible représentation des effets hetérogènes entre les régions (nous estimons seulement des effets moyens)
 - Les interférences induites par l'hétérogénéité

Résultats des estimations

- Les coefficients estimés avec leurs variance
- L'efficience et la comparaison des estimateurs
- Etude des erreurs
 - La distribution des erreurs
 - La normalité
 - Centrage sur 0
 - Indépendance des variables explicatives
 - L'autocorrelation des résidus
 - L'hétéroscedasticité

Les résultats OLS

	OLS
ipi	0.30***
	(0.02)
si	0.23***
	(0.04)
iki	-0.16***
	(0.05)
R ²	0.52
Adj. R ²	0.52
Num. obs.	345
RMSE	0.29
***p < 0.001,	** <i>p</i> < 0.01, * <i>p</i> < 0.05

Table 6: Statistical models

Indépendance des résidus

	OLS
Vin	0.6932
IP	0.0000
Surface	0.0000
Revenus	-0.2389
Pesticides	0.0000

Tests

Table 8: Durbin-Watson test statistics

	OLS	NA
Equation d'offre	0.627	1

Table 9: Bartlett heteroscedasticity test

	OLS	NA
Equation d'offre	0	1

Table 10: Shapiro-Wilk normality test

	OLS	NA
Equation d'offre	0	6

Présentation graphique des résidus

Les résultats 2SLS, W2SLS, 3SLS et i3SLS

	2SLS	W2SLS	3SLS	i3SLS
Demande: ipi	0.79***	0.79***	0.79***	0.79***
	(0.15)	(0.15)	(0.15)	(0.15)
Demande: ri	-13.07***	-13.07***	-13.07***	-13.07***
	(2.76)	(2.76)	(2.76)	(2.76)
Offre: ipi	-0.28	-0.28	-0.25	-0.25
	(0.25)	(0.25)	(0.25)	(0.24)
Offre: si	0.47***	0.47***	0.45***	0.45***
	(0.13)	(0.13)	(0.13)	(0.12)
Offre: iki	-0.11	-0.11	-0.17*	-0.17*
	(0.09)	(0.09)	(0.08)	(0.08)
Demande: R ²	-0.41	-0.41	-0.41	-0.41
Offre: R ²	-0.87	-0.87	-0.74	-0.75
Demande: Adj. R ²	-0.42	-0.42	-0.42	-0.42
Offre: Adj. R ²	-0.89	-0.89	-0.75	-0.76
Num. obs. (total)	690	690	690	690
***p < 0.001.	* n < 0.01 *	p < 0.05		

Table 11: Statistical models

Comparaison des modèles

Table 12: Hausman 3SLS consistency test

	Test	Resultats
1	2SLS contre 3SLS	0.827
2	2SLS contre i3SLS	0.910

Le comportement des résidus

Table 13: Shapiro-Wilk normality test

	2SLS	3SLS	i3SLS
Equation de demande	0	0	0
Equation d'offre	0	0	0

Table 14: Bartlett heteroscedasticity test

	2SLS	3SLS	i3SLS
Equation de demande	0	0	0
Equation d'offre	0	0	0

Les PDF des résidus

Les résidus contre la variable prédite

Les résidus et les prédictions pour i3SLS

L'autocorrelation

Table 15: Durbin-Watson test statistics

	2SLS	3SLS	i3SLS
Equation de demande	0.618	0.618	0.618
Equation d'offre	0.637	0.638	0.638

L'autocorrelation sur 2 dimentions pour i3SLS

L'independance des résidus

	2SLS D	2SLS O	3SLS D	3SLS O	i3SLS D	i3SLS O
Vin	-0.1309	0.8783	-0.1309	0.8803	-0.1309	0.8802
IP	-0.7983	0.8470	-0.7983	0.8355	-0.7983	0.8364
Surface	0.0005	0.0000	0.0005	-0.0002	0.0005	-0.0002
Revenus	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Pesticides	-0.0764	0.0000	-0.0764	0.0349	-0.0764	0.0324

Clusterisation

Modèlisation

	OLS	2SLS	3SLS
Demande: ipi	0.33***	0.68***	0.68***
	(0.02)	(0.10)	(0.10)
Demande: ri1	-12.97***	-18.98***	-19.39***
	(2.78)	(4.26)	(4.23)
Demande: ri2	-6.52*	-7.41	-6.72
	(2.82)	(4.01)	(3.94)
Demande: ri3	-8.11***	-10.60***	-10.59***
	(2.13)	(3.09)	(3.04)
Offre: ipi	0.29***	-0.15	-0.14
	(0.02)	(0.17)	(0.17)
Offre: si1	0.18**	0.46**	0.42**
	(0.06)	(0.14)	(0.14)
Offre: si2	0.83***	1.38***	1.41***
	(0.17)	(0.35)	(0.35)
Offre: si3	0.23***	0.28**	0.32***
	(0.06)	(0.10)	(0.09)
Offre: iki1	-0.13	-0.03	-0.07
	(0.09)	(0.15)	(0.15)
Offre: iki2	0.07	0.27	0.23
	(0.09)	(0.17)	(0.16)
Offre: iki3	-0.27***	-0.35**	-0.37**
	(0.07)	(0.12)	(0.12)
Demande: R ²	0.50	-0.00	-0.01
Offre: R ²	0.54	-0.27	-0.21
Demande: Adj. R ²	0.50	-0.01	-0.02
Offre: Adj. R ²	0.54	-0.29	-0.23
Num. obs. (total)	690	690	690
*** 0 001 *	* 0 01 *	0 0 -	

Conclusions

Conclusions

Conclusions

- Le marché du vin
- Le rôle des pesticides
- Validité interne

Le marché du vin

- Un comportement inattendu
 - Les effets de substitution vis-à-vis des produits haut de gamme
 - Les effets négatifs du revenu

Le rôle des pesticides

- ► Confirmation des résultats des études précedentes
 - Utilisés pour réduire les pertes

Validité

- Faible validité du modèle économétrique
 - Variables omises

Bibliographie

- Cembalo L., Caracciolo F., & Pomarici E. (2014). "Drinking cheaply: the demand for basic wine in italy." Australian Journal of Agricultural and Resource Economics, 58(3). 374-391.
- ▶ Butault J-P., Delame N., Jacquet F. & Zardet G. (2011). "L'utilisation des pesticides en France: état des lieux et perspectives de réduction." Notes et études socio-économiques, 35. 7-26
- Pujol J. (2017). "Apports des produits phytosanitaires en viticulture et climat : une analyse à partir des enquêtes pratiques culturales." Agreste Les Dossiers. 39. 3-25