

ĐỒ ÁN NGHIÊN CỨU CỬ NHÂN

Đề tài:

Thiết kế và triển khai bộ mã hóa tích chập và giải mã Viterbi được tăng tốc bởi phần cứng dưới dạng server

Giảng viên hướng dẫn : PGS.TS. Nguyễn Hữu Trung Sinh viên thực hiện: Vũ Tuấn Minh - 20214015

ONE LOVE. ONE FUTURE.

HUST hust.edu.vn f fb.com/dhbkhn

NỘI DUNG

- . Tổng quan đề tài
- I. Thiết kế hệ thống
- III. Triển khai Kiểm thử
- V. Kết luận Hướng phát triển

PHÂN I

Tổng quan đề tài

I. Tổng quan đề tài

1.1 Đặt vấn đề

- Nhu cầu ngày một lớn về truyền dẫn dữ liệu tốc độ cao, ổn định, tiết kiệm năng lượng.
- Giải pháp phần mềm truyền thống có hạn chế về tốc độ và độ trễ.
- Có thể triển khai với ASIC, FPGA để tăng tốc xử lý thuật toán nhưng không dễ tiếp cận với người dùng không chuyên.

I. Tổng quan đề tài

1.2 Mục tiêu đề tài

- Thiết kế hệ thống server FPGA tích hợp bộ mã hóa tích chập và giải mã Viterbi.
- Cung cấp khả năng truy cập từ xa qua giao thức TCP.

I. Tổng quan đề tài

1.3 Yêu cầu của hệ thống

- Hỗ trợ tốc độ mã 1/2, 1/3, chiều dài ràng buộc 3-9 và tất cả các đa thức sinh.
- Độ sâu truy ngược lớn hơn 5 lần chiều dài ràng buộc.
- Kiến trúc Radix-4 để tối ưu thông lượng.
- Độ sâu truy ngược lớn hơn 5 lần chiều dài ràng buộc.

Standard	Code rate	Constraint length	Number of states
GPRS	1/2	5	16
GSM	1/2	5	16
WiMAX	1/2	7	64
802.11a/g	1/2	7	64
DVB	1/2	7	64
CDMA IS-95A	1/2	7	64
LTE	1/3	7	64
CDMA2000	1/2,1/3	9	256
3G	1/3	9	256

PHÂN II Thiết kế hệ thống

2.1 Tổng quan hệ thống

Mô hình hệ thống

2.1 Tổng quan hệ thống

- ☐ Phần cứng sử dụng: PYNQ-Z2.
- □ PL (FPGA): Xử lý song song các thuật toán mã hóa/giải mã.
- □ PS (ARM Cortex): Điều khiển giao tiếp mạng và quản lý luồng dữ liệu.
- ☐ Kết nối: Sử dụng AXI DMA để truyền dữ liệu tốc độ cao giữa PS và PL.

2.2 Thiết kế PL

Vai trò: Giao diện trung gian kết nối AXI DMA và khối endec.

☐ Cấu trúc 3 module độc lập:

- RX: Nhận dữ liệu từ DMA.
- endec: Xử lý dữ liệu.
- TX: Truyền dữ liệu đi.

☐ Ưu điểm đa luồng:

- Song song hóa: RX nhận dữ liệu mới ngay khi endec xử lý dữ liệu cũ → Giảm độ trễ, tăng thông lượng.
- Tự động reset sau mỗi chu kỳ → Đảm bảo ổn định, tránh lỗi tích lũy.

2.2 Thiết kế PL

Luồng dữ liệu trong khối endec_interface

2.3 Thiết kế PS

- ☐ AXI DMA Controller: Quản lý truyền dữ liệu giữa PS và PL.
- ☐ IwIP TCP Server: Hỗ trợ giao tiếp mạng với client.
- Luồng dữ liệu: Nhận dữ liệu
 từ client → Truyền tới PL →
 Xử lý → Gửi kết quả về client.

PHÂN III

Triển khai - Kiểm thử

3.1 Kiểm thử bằng mô phỏng

- ☐ Phần mềm sử dụng: Kiểm thử chức năng với Questa Sim.
- ☐ Phương pháp kiểm thử: Sử dụng bộ dữ liệu mẫu từ MATLAB để kiểm tra tính chính xác.

3.2 Kiểm thử bằng ILA

- ☐ Quy trình triển khai:
 - Tổng hợp thành LUT/FF trên Vivado → Triển khai lên PYNQ-Z2.
 - 2 bước kiểm thử phần cứng:
 - Nạp dữ liệu vào thiết kế.
 - So sánh đầu ra với dữ liệu mẫu.
- ☐ Công cụ sử dụng:
 - VIO (Virtual Input/Output): Gửi dữ liệu đầu vào tới endec_interface.
 - ILA (Integrated Logic Analyzer):
 Đọc và hiển thị tín hiệu đầu ra dạng sóng trên Vivado.

3.3 Kiểm thử trực tiếp

Client gửi dữ liệu

Client nhận dữ liệu

3.3 Kiểm thử trực tiếp

Kiểm thử client cùng mạng LAN

Kiểm thử client kết nối với Tailscale

3.4 Kiểm thử toàn diện

- Tự động sinh 15000 khung dữ liệu bằng MATLAB.
- Tham số đầu vào được ngẫu nhiên hóa theo khoảng giá trị cho trước.
- Truyền dữ liệu đến Endec Server qua giao thức thiết lập sẵn.

Tham số	Khoảng giá trị
Chiều dài ràng buộc	4:9
Tốc độ mã	1/2 : 1/3
Đa thức sinh cho từng đầu ra	$0:2^9-1$
Trạng thái trước của thanh ghi dịch	$0:2^8-1$
Dữ liệu cần mã hóa	$0:2^{192}-1$
Dữ liệu cần giải mã	$0:2^{384}-1$

3.4 Kiểm thử toàn diện

- Hiện tượng quan sát:
 - Dữ liệu mã hóa luôn chính xác.
 - 8.23% lỗi giải mã xuất hiện.
- Nguyên nhân nghi ngờ:
 - Sử dụng đa thức sinh không tối ưu.
 - Ngẫu nhiên hóa đa thức sinh có thể dẫn đến:
 - Đa thức không đạt chuẩn khoảng cách tự do.
 - Xuất hiện đa thức gây lỗi thảm họa (catastrophic).

```
scoreboard.txt X
tcp_client.py
              received_data.txt
                               golden_input_output.txt
 scoreboard.txt
        === SCOREBOARD ===
        Total samples compared: 15000
        Matching samples: 13765
        Mismatched samples: 1235
        Mismatch details:
        Sample 2:
          Decoder output mismatch!
          First mismatch at bit position 1
        Sample 3:
          Decoder output mismatch!
          First mismatch at bit position 0
        Sample 30:
          Decoder output mismatch!
          First mismatch at bit position 0
        Sample 44:
          Decoder output mismatch!
          First mismatch at bit position 0
        Sample 77:
          Decoder output mismatch!
          First mismatch at bit position 0
```


3.4 Kiểm thử toàn diện

- ☐ Giải pháp khắc phục:
 - Điều chỉnh thuật toán sinh ngẫu nhiên trong MATLAB.
 - Chỉ sử dụng các đa thức sinh đã được kiểm chứng từ hệ thống thông tin thực tế.

☐ Kết quả kiểm thử:

- Đạt độ chính xác 100%.
- Khẳng định nguyên nhân lỗi trước đó:
 - Do đặc tính đa thức sinh.
 - Không phải do lỗi hệ thống mã hóa/giải mã.

Chiều dài ràng buộc	Tốc độ mã 1/2	Tốc độ mã 1/3
4	15 – 17	15 - 17 - 13
5	23 - 35	25 - 33 - 37
6	53 – 75	55 - 64 - 71
7	133 – 171	133 - 145 - 171
8	247 - 371	247 - 371 - 357
9	561 – 753	557 - 663 - 711

3.4 Kiểm thử toàn diện

- ☐ Độ trễ xử lý:
 - Trung bình: 0.1 giây/15000 khung dữ liệu.
 - Tính từ khi client gửi dữ liệu đến khi nhận kết quả.
- ☐ Thông số kiểm thử mỗi khung:
 - 192 bit đầu vào (mã hóa).
 - 128 bit đầu ra (giải mã).
- Kết quả thông lượng:
 - Mã hóa: 28.8 Mbps.
 - Giải mã: 19.2 Mbps.

PS C:\Users\vutua\Desktop\Golden_Data> python tcp_client.py
----- lwIP TCP Encoder-Decoder Server CONNECTED ----[STATUS] Sending 1 large packet (1200000 bytes)
[STATUS] Processed 15000 samples saved to received_data.txt
[STATUS] Scoreboard generated in scoreboard.txt
time.perf_counter: 0.102676 seconds
[STATUS] All 1320000 bytes received and processed
PS C:\Users\vutua\Desktop\Golden_Data>

Thông lượng mã hóa =
$$\frac{\text{Số bit mã hóa đầu vào}}{\text{Thời gian xử lý}}$$

Thông lượng giải mã =
$$\frac{S \hat{\delta} \text{ bit giải mã đầu ra}}{\text{Thời gian xử lý}}$$

3.5 Đánh giá thông số hoạt động

- ☐ Hiệu suất vượt trội
 - Tốc độ mã hóa: 28.8 Mbps (nhanh hơn 22 lần so với MATLAB).
 - Tốc độ giải mã: 19.2 Mbps (nhanh hơn 83 lần so với MATLAB).
- ☐ Tiết kiệm năng lượng tối ưu: Mức tiêu thụ điện chỉ 1.64W, thấp hơn rất nhiều so với MATLAB (45W).

Tiêu chí	MATLAB	Endec Server
Quá trình cài đặt	Cần có license và tải về	Kết nối với Mesh Net-
	MATLAB	work qua Tailscale
Tài nguyên yêu cầu	Lớn, không phù hợp với	Có kết nối mạng
	các hệ thống nhúng	
Tài nguyên sử dụng	Tiêu tốn tài nguyên khi	Gần như không tiêu tốn
	thực hiện mã hóa/giải mã	tài nguyên
Công suất tiêu thụ	45 W (CPU)*	1.64 W
Độ ổn định	Dễ gặp hiện tượng treo,	Luôn hoạt động ổn định
	nghẽn dữ liệu	
Thông lượng việ lý	Mã hóa: 1.31 Mbps*	Mã hóa: 28.8 Mbps
Thông lượng xử lý	Giải mã: 0.23 Mbps*	Giải mã: 19.2 Mbps

^{*} Được thực hiện trên CPU Ryzen 5 5600H

PHÂN IV

Kết luận - Hướng phát triển

IV. Kết luận – Hướng phát triển

☐ Đạt được:

- Thiết kế và triển khai thành công hệ thống server FPGA với kiến trúc Radix-4.
- Đạt thông lượng cao, hỗ trợ cấu hình động và truy cập từ xa.
- Khắc phục hạn chế của các giải pháp truyền thống.

☐ Hạn chế:

- Chưa tận dụng được lõi đôi trên PS.
- AXI DMA hoạt động ở chế độ polling thay vì interrupt.

Hướng phát triển:

- Tích hợp giải mã quyết định mềm.
- Sử dụng kiến trúc lai Radix-2/Radix-4 để hỗ trợ chiều dài ràng buộc 3.
- Lập trình lõi đôi trên PS theo chế độ AMP.
- Sử dụng AXI DMA với interrupt.

HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!