Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

23 Luglio 2020 - 9:00 ESAME ONLINE

1.	Sia	assegnata	la.	fin	nzion	ıe
┸•	Dia	assegnata	1α	1 u.	LIZIOI.	ľ

$$f(x) = \sin(x) + \sin(5x), \qquad x \in [0, 2\pi].$$

- a) Si considerino le due sequenze di punti individuate dai seguenti vettori di ascisse e ordinate:
 - a.1) $\mathbf{x}_1 = [0 : \pi/3 : 2 * \pi], \ \mathbf{y}_1 = f(\mathbf{x}_1);$

a.2)
$$\mathbf{x}_2 = [\pi/6, \ 2 * \pi/5, \ 4 * \pi/5, \ 8 * \pi/5, \ 11 * \pi/6], \ \mathbf{y}_2 = f(\mathbf{x}_2).$$

Per ciascuna sequenza di punti si costruisca il polinomio di interpolazione di Lagrange.

Punti: 4

b) Si rappresentino in una stessa figura la funzione f, le due sequenze di punti in a.1) e a.2), e i corrispondenti polinomi di interpolazione (rispettivamente $p_1(x)$ e $p_2(x)$). Quale dei due approssima meglio f?

Punti: 2

1 dildi. 2

c) Scrivere il proprio codice Matlab per calcolare, con la formula dei Trapezi Composita su N sottointervalli equispaziati, i valori approssimati \tilde{I}_1 e \tilde{I}_2 degli integrali

$$I_1 = \int_0^{2\pi} p_1(x) dx$$
 e $I_2 = \int_0^{2\pi} p_2(x) dx$,

dove $p_1(x)$ e $p_2(x)$ sono i due polinomi precedentemente determinati. Per rappresentare $p_1(x)$ e $p_2(x)$ sotto forma di funzioni di x usare la loro rappresentazione nella base di Newton.

Punti: 5

d) Utilizzando la tecnica del raddoppio degli intervalli, scrivere la function traptol1 per stimare il numero N di sottointervalli equispaziati che servono per approssimare con la formula dei Trapezi Composita gli integrali I_1 e I_2 nel rispetto della tolleranza 10^{-4} . Quanto vale N nei due casi? Quanto valgono \tilde{I}_1 e \tilde{I}_2 ? Quale dei due integrali approssimati risulta essere una miglior approssimazione dell'integrale esatto di f in $[0, 2\pi]$? Motivare la risposta.

Punti: 5

Totale: 16