深度学习导论 (Deep learning)

代启国

大连民族大学 计算机科学与技术系

2018年12月17日

什么是深度学习?

不忘初心

机器学习任务

Speech Recognition

)= "How are you"

Image Recognition

Playing Go

Dialogue System

$$f($$
 "Hi" $)=$ "Hello" (what the user said) (system response)

单隐层神经网络

Any continuous function f

$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{M}}$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason: http://neuralnetworksandde eplearning.com/chap4.html

只要隐层节点数目足够,单隐层网络可以拟合任何复杂连续函数

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech.* 2011.

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)	
1 X 2k	24.2			
2 X 2k	20.4	\/	Why?	
3 X 2k	18.4	VVIIY:		
4 X 2k	17.8			
5 X 2k	17.2 🛑	→1 X 3772	22.5	
7 X 2k	17.1	→1 X 4634	22.6	
		1 X 16k	22.1	

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Analogy

Logic circuits

- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler

less gates needed

Neural network

- Neural network consists of neurons
- A hidden layer network can represent any continuous function.
- Using multiple layers of neurons to represent some functions are much simpler

less parameters

less data?

深度可以有利于"模块化"

深度可以有利于"模块化"

深度可以有利于"模块化"

Modularization

Deep → Modularization → Less training data?

深度学习框架

用于快速构建和训练深度学习模型的框架

Keras: 基于 Python 的深度学习库

- Keras 是一个高层神经网络 API, Keras 由纯 Python 编写而成并基 Tensorflow、Theano 以及 CNTK 后端
- Keras 为支持快速实验而生,能够把你的 idea 迅速转换为结果
- 可用于构建多种神经网络 DNN、CNN 等
- 无缝支持 CPU 和 GPU 切换

Keras: 基于 Python 的深度学习库

- keras 中文文档: http://keras-cn.readthedocs.io/en/latest/
- keras 英文文档: http://keras.io/

Keras: 基于 Python 的深度学习库

使用 Keras 心得

Deep Learning研究生

Deep Learning is so simple

• Handwriting Digit Recognition

MNIST Data: http://yann.lecun.com/exdb/mnist/ "Hello world" for deep learning

Keras provides data sets loading function: http://keras.io/datasets/

Keras

Step 3.1: Configuration

$$w \leftarrow w - \eta \partial L / \partial w$$
0.1

Step 3.2: Find the optimal network parameters

Step 3.2: Find the optimal network parameters

https://www.tensorflow.org/versions/r0.8/tutorials/mnist/beginners/index.html

Keras

Save and load models

http://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

How to use the neural network (testing):

```
case 1: print('Total loss on Testing Set:', score[0])
print('Accuracy of Testing Set:', score[1])
```

case 2: result = model.predict(x_test)

Dropout

Training:

- > Each time before updating the parameters
 - Each neuron has p% to dropout

Dropout

Training:

- Each time before updating the parameters
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout - Intuitive Reason

- When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Dropout is a kind of ensemble.

- ➤ Using one mini-batch to train one network
- ➤ Some parameters in the network are shared

Let's try it

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

• Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

本 PPT 资料主要源于台湾大学

Deep Learning Tutorial

李宏毅

Hung-yi Lee