Quiz #6 (CSE 400.001)

Wednesday, November 10, 2004

Name:	E-mail:		
Dent:	ID No:		

1. (10 points) Using h=1/2 and k=2/3, approximate the solution to the following elliptic equation

$$u_{xx} + 4u_{yy} = 9$$
, $0 < x < 1$, $0 < y < 2$

with boundary conditions:

$$u(x,0) = x^2$$
, $u(x,2) = (x-2)^2$, $0 \le x \le 1$;
 $u(0,y) = y^2$, $u(1,y) = (y-1)^2$, $0 \le y \le 2$.

Set up a system of linear equations.

i	j	x_i	y_j	$u(x_i, y_j)$
1	1	1/2	2/3	
1	2	1/2	4/3	

$$\frac{u_{i,j}-2u_{i,j}+u_{i,j}}{t^2}+4\cdot\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{t^2}=9$$

$$4(u_{i,j}-2u_{i,j}+u_{i,j})+9(u_{i,j+1}-2u_{i,j}+u_{i,j-1})=9$$

$$4u_{i,j}-2u_{i,j}+u_{i,j}+4u_{i,j}+9u_{i,j+1}+9u_{i,j-1}=9$$

$$4u_{i,j}-2bu_{i,j}+4u_{i,j}+9u_{i,j+1}+9u_{i,j-1}=9$$

$$163$$

$$\begin{cases} P_{11}: -26u_{11} + 9u_{12} = \frac{163}{36} & \text{f2} \\ P_{12}: -26u_{12} + 9u_{11} = -\frac{600}{36} & \text{f2} \end{cases}$$

2. (15 points) Consider the following hyperbolic equation

$$u_{tt} = u_{xx} + 100, \quad 0 \le x \le 1, \ 0 \le t \le 0.4,$$

with intial and boundary conditions

$$u(x,0) = x^3$$
, $u_t(x,0) = x^2$; $u_x(0,t) = t^2$, $u(1,t) = (1+t)^3$,

Approximate the solution to above equation with h = k = 0.2, for $0 \le t \le 0.4$.

- (a) (5 points) Represent $u_{i,j+1}$ in terms of $u_{i-1,j}, u_{i,j}, u_{i+1,j}, u_{i,j-1}$.
- (b) (5 points) Represent $u_{i,1}$ in terms of $u_{i-1,0}, u_{i,0}, u_{i+1,0}$.
- (c) (5 points) Represent $u_{0,j+1}$ in terms of $u_{0,j}, u_{1,j}, u_{0,j-1}$.

(a)
$$\frac{1}{k^{2}} \left[u_{\tau_{i}j+1} - 2u_{\tau_{i}j} + u_{\tau_{i}j+1} \right] = \frac{1}{k^{2}} \left[u_{\tau_{i}j+1} - 2u_{\tau_{i}j} + u_{\tau_{i}j} \right] + 100$$
 $u_{\tau_{i}j+1} = u_{\tau_{i}j+1} + u_{\tau_{i}j-1} + u_{\tau_{$

 $=2U_{1,\bar{1}}-U_{0,\bar{1}}-0.016j^2+4$