Language Modeling with Smoothing

Instructor: Wei Xu

Many slides from Dan Jurafsky

Language Modeling

Some Practical Issues

Open vs. Closed Vocabulary

- If we know all the words in advanced
 - Vocabulary V is fixed
 - Closed vocabulary task
- Often we don't know this
 - Out Of Vocabulary = OOV words
 - Open vocabulary task
- Instead: create an unknown word token <UNK>
 - Training of <UNK> probabilities
 - Create a fixed lexicon L of size V
 - At text normalization phase, any training word not in L changed to <UNK>
 - · Now we train its probabilities like a normal word
 - At decoding time
 - If text input: use UNK probabilities for any word not in training

Computing Perplexity

- Use <s> and </s> both in probability computation
- * Often count </s> but not <s> in N
- Compute in log space
- Typical range of perplexities on English text is 50-1000
- Can only compare perplexities if the LMs use the same vocabulary

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$$

Language Modeling

Generalization and zeros

The Shannon Visualization Method

- Choose a random bigram
 (<s>, w) according to its probability
- Now choose a random bigram
 (w, x) according to its probability
- And so on until we choose </s>
- Then string the words together

```
want to
to eat
eat Chinese
Chinese food
food </s
```

I want to eat Chinese food

Q: How do you choose a random bigram according to its probability?

Approximating Shakespeare

-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have -Hill he late speaks; or! a more to leg less first you enter gram -Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. -What means, sir. I confess she? then all sorts, he is trim, captain. gram -Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done. -This shall forbid it should be branded, if renown made it empty. gram -King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; —It cannot be but so.

Shakespeare as corpus

- •N=884,647 tokens, V=29,066
- •Shakespeare produced 300,000 bigram types out of V^2 = 844 million possible bigrams.
 - So 99.96% of the possible bigrams were never seen (have zero entries in the table)
- •Quadrigrams (4-gram) worse:
 - What's coming out looks like Shakespeare because it *is* Shakespeare

The wall street journal is not Shakespeare (no offense)

Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives gram Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living gram on information such as more frequently fishing to keep her They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

The perils of overfitting

- N-grams only work well for word prediction if the test corpus looks like the training corpus
 - In real life, it often doesn't
 - We need to train robust models that generalize!
 - One kind of generalization: Zeros!
 - Things that don't ever occur in the training set
 - but occur in the test set

(Recall) Raw bigram counts

Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Zero probability bigrams

- Bigrams with zero probability
 - mean that we will assign 0 probability to the test set!
- And hence we cannot compute perplexity (can't divide by 0)!

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$$
for bigram
$$PP(W) = \sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$$

Q: How do we deal with bigrams with zero probability?

Language Modeling

Smoothing: Add-one (Laplace) smoothing

Add-one estimation

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!

• MLE estimate:

$$P_{MLE}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i)}{C(W_{i-1})}$$

Add-1 estimate:

$$P_{Add-1}(W_i \mid W_{i-1}) = \frac{C(W_{i-1}, W_i) + 1}{C(W_{i-1}) + V}$$

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Reconstituted counts

$$c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Compare with raw bigram counts

Note big change to counts!

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Add-1 estimation is a blunt instrument

- So add-1 isn't used for N-grams:
 - We'll see better methods

- But add-1 is used to smooth other NLP models
 - For text classification
 - In domains where the number of zeros isn't so huge.

Language Modeling

Interpolation, Backoff, and Kneser-Ney Smoothing

Backoff and Interpolation

- Sometimes it helps to use **less** context
 - Condition on less context for contexts you haven't learned much about
- Backoff:
 - use trigram if you have good evidence,
 - otherwise bigram, otherwise unigram
- Interpolation:
 - mix unigram, bigram, trigram
- Interpolation works better

Linear Interpolation

Simple interpolation

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1})
+ \lambda_2 P(w_n|w_{n-1})
+ \lambda_3 P(w_n)$$

$$\sum_i \lambda_i = 1$$

Lambdas conditional on context:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

How to set the lambdas?

Use a held-out corpus

Training Data

Held-Out Data

Test Data

- Choose λs to maximize the probability of held-out data:
 - Fix the N-gram probabilities (on the training data)
 - Then search for λs that give largest probability to held-out set:

$$\log P(w_{1}...w_{n} | M(\lambda_{1}...\lambda_{k})) = \sum_{i} \log P_{M(\lambda_{1}...\lambda_{k})}(w_{i} | w_{i-1})$$

Absolute discounting

- Suppose we wanted to subtract a little from a count of 4 to save probability mass for the zeros
- How much to subtract?
- Church and Gale (1991)'s clever idea
- Divide up 22 million words of AP Newswire
 - Training and held-out set
 - for each bigram in the training set
 - see the actual count in the held-out set!
- It sure looks like $c^* = (c .75)$

Bigram count in training	Bigram count in heldout set
0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

Absolute Discounting Interpolation

- Instead of multiplying the higher-order by lambdas
- Save ourselves some time and just subtract 0.75 (or some d)!

$$P_{\text{AbsoluteDiscounting}}(W_{i} \mid W_{i-1}) = \frac{C(W_{i-1}, W_{i}) - C(W_{i-1})}{C(W_{i-1})} + \lambda(W_{i-1})P(W)$$
unigram

- (Maybe keeping a couple extra values of d for counts 1 and 2)
- But should we really just use the regular unigram P(w)?

Kneser-Ney Smoothing I

- Better estimate for probabilities of lower-order unigrams!
 - Shannon game: I can't see without my reading Fglassieso?
 - "Francisco" is more common than "glasses"
 - ... but "Francisco" always follows "San"
- The unigram is useful exactly when we haven't seen this bigram!
- Instead of P(w): "How likely is w"
- P_{continuation}(w): "How likely is w to appear as a novel continuation?
 - For each word, count the number of bigram types it completes
 - Every bigram type was a novel continuation the first time it was seen

$$P_{CONTINUATION}(w) \propto |\{w_{i-1} : C(w_{i-1}, w) > 0\}|$$

Kneser-Ney Smoothing II

• How many times does W appear as a novel continuation:

$$P_{CONTINUATION}(\mathbf{W}) \propto \left| \left\{ \mathbf{W}_{i-1} : \mathbf{C}(\mathbf{W}_{i-1}, \mathbf{W}) > 0 \right\} \right|$$

Normalized by the total number of word bigram types

$$\left| \{ (\mathbf{W}_{j-1}, \mathbf{W}_j) : C(\mathbf{W}_{j-1}, \mathbf{W}_j) > 0 \} \right|$$

$$P_{CONTINUATION}(W) = \frac{\left| \left\{ W_{i-1} : C(W_{i-1}, W) > 0 \right\} \right|}{\left| \left\{ (W_{j-1}, W_j) : C(W_{j-1}, W_j) > 0 \right\} \right|}$$

Kneser-Ney Smoothing III absolute discount lower order weight $P_{KN}(W_i \mid W_{i-1}) = \frac{\max(C(W_{i-1}, W_i) - d, 0)}{C(W_{i-1})} + \lambda(W_{i-1})P_{CONTINUATION}(W_i)$

 λ is a normalizing constant; the probability mass we've discounted for higher order

$$\lambda(W_{i-1}) = \frac{d}{c(W_{i-1})} |\{W: c(W_{i-1}, W) > 0\}|$$

the normalized discount

The number of word types that can follow w_{i-1}

- = # of word types we discounted
- = # of times we applied normalized discount

Kneser-Ney Smoothing IV: Recursive formulation

$$P_{KN}(w_i \mid w_{i-n+1}^{j-1}) = \frac{\max(c_{KN}(w_{i-n+1}^j) - d, 0)}{c_{KN}(w_{i-n+1}^{j-1})} + \lambda(w_{i-n+1}^{j-1})P_{KN}(w_i \mid w_{i-n+2}^{j-1})$$

$$C_{KN}(\bullet) = \begin{cases} count(\bullet) & \text{for the highest order} \\ continuationcount}(\bullet) & \text{for lower order} \end{cases}$$

Continuation count = Number of unique single word contexts for •