Généralités sur les fonctions numériques 1BSF 1

Exercice D:

Soit g la fonction définie par $g(x) = \frac{\sqrt{x}-3}{\sqrt{x}+1}$.

- **1.** Déterminer D_q .
- **2.** Montrer que la fonction g est majorée par 1 et minorée par -3
- 3. Interpréter graphiquement le résultat.

Exercice 2:

Soit f une fonction numérique définie par $f(x) = x + \frac{4}{x}$.

- **1.** Déterminer D_f l'ensemble de définition de f.
- **2. a.** Calculer f(2).
 - **b.** Montrer que f est minorée par 4 sur $]0; +\infty[$. Conclure.
- **3.** Montrer que -4 est la valeur maximale de f sur $]-\infty$; 0[.

Exercice 3:

Soient f et g deux fonctions définies sur \mathbb{R} par ses courbes ci-dessous.

- 1) Résoudre graphiquement les équations suivantes:
 - f(x) = 2.
 - f(x) = 0.
 - f(x) = g(x).
- 2) Résoudre graphiquement les inéquations suivantes :
 - f(x) < 2
 - $g(x) \ge 0$.
 - $\bullet \quad f(x) > g(x) \ .$

Exercice G:

Soit f une fonction dont le tableau de variations est le suivant :

Déterminer ce qui suit :

- f([-4;0]) f([0;1]) f([0;2])
- f([-4;1]) $f(1;+\infty[)$

Exercice 5:

On considère les fonctions f et g définies par $f(x) = x^2 - 2x - 1$ et $g(x) = \frac{x-2}{x+2}$.

- **1.** Donner D_f , D_g et D_{gof} .
- **2.** Déterminer gof(x) pour tout $x \in D_{gof}$.
- **3.** Dresser les tableaux de variations de f et g.
- **4.** Déterminer $f(]-\infty;1]$) et $f([1;+\infty[)$.
- **5.** Etudier les variations de la fonction gof sur $]-\infty; 1]$ et $[1; +\infty[$.

🛭 Exercice ©:

Soient f et g deux fonctions définies par $f(x) = x^2 - x$ et $g(x) = \sqrt{x+2}$ et soient (C_f) et (C_g) leurs courbes respectives dans un repère orthonormé $(0; \vec{i}; \vec{j})$.

- 1. a. Déterminer D_g , puis vérifier que f(2) = g(2).
- **b.** Représenter les courbes (C_f) et (C_g) .
- **c.** Déterminer graphiquement $f\left(\left|-\infty;\frac{1}{2}\right|\right)$.
- **d.** Résoudre graphiquement sur $[-2; +\infty[$ l'inéquation $x^2 x \sqrt{x+2} \le 0$.
- **2.** on considère la fonction h définie sur \mathbb{R} par : $h(x) = \sqrt{x^2 x + 2}$.
- **a.** Vérifier que $(\forall x \in \mathbb{R}): h(x) = (g \circ f)(x)$.
- **b.** Déterminer les variations de la fonction h sur les intervalles $\left]-\infty; \frac{1}{2}\right]$ et $\left[\frac{1}{2}; +\infty\right[$ en utilisant les variations de f et g.

Exercice O:

Soient f et g deux fonctions définies par :

$$f(x) = \frac{1}{2}x^3$$
 et $g(x) = \frac{x+6}{2x-2}$.

Et soient (C_f) et (C_g) les courbes respectives des fonctions f et g dans un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$.

1. **a-** Déterminer D_g et vérifier que :

$$(\forall x \in D_g): g(x) = \frac{1}{2} + \frac{7}{2(x-1)}$$

- **b-** Calculer f(-2); f(-1); f(2); g(-2); g(-1)et g(2).
- **2.** \mathbf{q} Dresser le tableau de variations de f et g.
 - **b** Représenter les courbes (C_f) et (C_g) .
- **3.** Vérifier graphiquement que (C_f) et (C_g) sont sécantes en deux points, l'abscisse de l'un des deux points appartient à l'intervalle]-2;-1[.
- **4.** Résoudre graphiquement l'inéquation $f(x) \ge g(x)$.
- **5. a-** Déterminer graphiquement $g([2; +\infty[)$. **b-** Etudier la monotonie de la fonction $f \circ g$ sur $[2; +\infty[$.