VE216 Lecture 13

CT Feedback and Control

Reducing sensitivity to unwanted parameter variation

Change the original form of

into the form of

with the system function $H(s)=rac{KF_0}{1+eta KF_0}$ (if K is large, then $H(s) orac{1}{eta}$).

Example

Stabilize unstable Systems

Magnetic Levitation Modeling

This kit is unstable:

 $y(t) \longrightarrow magnet$

- increase $y(t) \rightarrow$ increase force \rightarrow further increase y(t).
- decrease is vise versa.

So we need a feedback system for the magnet block.

Then we list the force balance function (for small distance we can do linear approximation) and generate a block diagram:

Since the y(t) indicates location, transfer back into the magnet block, output the force f(t) and through $\frac{1}{M}$ block to get the acceleration.

Spring Levitation Modeling

With the balance function $F=K(x(t)-y(t))=M\ddot{y}(t).$

Difference Between Block Diagrams

Spring and Mass

$$F = K(x(t) - y(t)) = M\ddot{y}(t)$$

$$x(t) \xrightarrow{\dot{y}(t)} A \xrightarrow{\dot{y}(t)} A$$

$$rac{Y}{X} = rac{rac{K}{M}}{s^2 + rac{K}{M}}
ightarrow s = \pm j \sqrt{rac{K}{M}}$$

Magnetic Levitation

$$F = Ky(t) = M\ddot{y}(t)$$

$$x(t) = 0 \longrightarrow (+) \longrightarrow$$

$$K=Ms^2 o s=\pm\sqrt{rac{K}{M}}$$
 $imes$

So this system is unfortunately unstable... A zero is positive.

Still need improvement.

Remark on S-plane

If you forget something, notice that we first derive a H(s) from frequency response require.

Then we get the H(s) to get poles of forms $\sigma + j\omega$.

The imaginary part is causing the oscillating.

The real part is indicating the system's divergence of convergence, separate into DT and CT situation:

- DT: p^n is mainly in each part of a[n].
- CT: e^{pt} is mainly in each part of a(t).

So the convergence is depending on the signal categories, then we choose the p's scope.

Stabilizing Magnetic Levitation

Thus we get the s-plane plot, increase \emph{K}_2 moves the poles together, collide, on $\emph{j}\omega$ axis.

It is marginally stable (all the poles are 0-real part, so to say all imaginary part; the poles are all different). So we need to do something more.

Adding a zero may band the scope of poles to make the system stable.