Assignment 2: Neural Networks

Name: Nimrat Bedi

NXB200004

CS6375.002

Part 1 Theoretical Part

ASSIGNMENT 2 Page:
Neueral Netroverks
1.0 Remisiting Production Algorithm
a) tanh actination in $tanh(w) = e^{x} - e^{x}$
en +e-n
derivative of tanker is:
derivative of tank(x) is:- $tank'(x) = 1 - (tank(x))^{2} \text{ or } 1/cosh^{2}(x)$
D Rely Activition for
b) Relu Activition for Relu (x) = (x x>0)
Denivative Rely'(x) = { 1 x > 0 }
Backperopagation Algorithm for any function of Cu) how fin can be tanken or Reluce)
Grupy for example d is $\frac{(t_k - 0_k)^2}{2 \text{ keoutputs}} = 0$
the = tanget output me got want as
Ox = ougut we got
Dwji = - n 26d n=loquing

	Plugging in its original og
	Dwii = -n 2:60
	Dwie = MSingi
3	- For caul Sj = (tj-0j) f(x)
	For conse II & j = 6 (m) Z & k W/kg **Exponentream*
	f(N) is function which can be tanken on Rehuse
1.2	Gradient Descent.
Output-	0= 620 +42 (24+42) + + twon (24+24)
	gradient descent thaining rule?
	Reference-used: Tom Mitchels Book (Pg 91-92)
	Single unit neuron = Receptuon for which output 0 is given by O(\$\vec{\pi}\$) = \$\vec{\pi}\$. \$\vec{\pi}\$
T Flan	O(\$\vec{x}\$) = \$\vec{w}\$. \$\vec{x}\$
	we know ever ie: $E(\vec{w}) = 1 \cdot E(t_d - D_d)^2$ 2^{26D}
	0 = set of training examples

	Weight. Update: - Page:
	We know wines word - nord - no
	(Iwi)
	$\frac{\partial E_0}{\partial \omega_i} = \frac{\partial}{\partial \omega_i} \frac{1}{2} \frac{E}{\partial \epsilon_0} (t_d - c_d)^2$
	= 1 \(\geq \partial \tau \tau \tau \tau \tau \tau \tau \tau
	= 1 \(\int 2 \((td - 0a) \) \(\partial \tau \) \(\partial \) \
	= 1 x2 \(\ta \) - \(\dag{\psi} \) \(\
	DES = E (td-Od) (= Nid) -()
	Here Output given is:- 0 = Wo tw, (x, +x2) + + Wn (xn + xn2)
	we adapt the discipration (1) and consider of o.
	DE = E (out a - Ox) D (Out x - (Wo + W, +, + W, M, + + DW; XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	wonun + won xn)) = = (out - 0x)(-z-x2)
C	Therefore the gradient descent training rule
ò	DE = S(out, -Ox) d (out, -(wotun, x, Ho, x, t + w, x, m + w, i x x x dw; x x x x x x x x x x x x x x x x x x x
	$(\omega_n x_{n+1}) = \sum_{x \in X} (out - o_x) (-x_n - x_{in})$
1	with leaving nate is: Ams
n	de = n = (Outx -on)-(xin+xin)

	Comparing Activation fundam
1.3	Comparing activation fundam
	translayer de layer
	X1 (D W2) 3(3) W53
	(5) J5
	Input layer . de layer X1 (2) W21 (5) U53 X2 (2) W21 (4) W54
	Hidden layer
	Activation function is h(n)
a)	Of of neural net ys with general
	activation for h(n)
	Output
4	1) X1=in X2=i2 Output
	net 3 = W4 X1 + W32 X2 X3 = h (nets)
4	nety = 104121 + 1042 22 24 = h(net4)
5	nuts= W 53 x3 + W54 x4 x5 = h (nets)
1	V = 12 1
b	$X = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$
	(a(1) = (tag, was)
	$(\omega_{4,1}) = (\omega_{3,1} \omega_{3,2})$
	W(2) = (W5,3 W5,4)
	(a) = (605, 3 005, H)
	Output of a neural net in vector forms
	Input coming in 1/2 or xy
	$\begin{pmatrix} \chi_3 \\ \chi_y \end{pmatrix} = \begin{pmatrix} \omega_{3,1} & \omega_{3,2} \\ \omega_{4,1} & \omega_{4,2} \end{pmatrix} \times \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$
	Output of (23) will be suppose (43)
	24/

Part 2

Code a neural network having at least one hidden layer.

Dataset used here is from sklearn called as make_moons. The dataset generated has 2 classes, plotted as red and blue points.

The data is not linearly separable; we can't draw a straight line that separates the two classes.

If we apply Logistic regression we can see below its not separating 2 classes properly, that's why we use neural networks to separate non linear data.

Now I have build a 3- layer neural network with one input layer,1 hidden layer and one output layer. The number of nodes in input layer as well as output layer is 2.

The activation function I have used is Tanh but we can use stigmoid as well as ReLu.

The derivative of $\tanh x$ is $1-\tanh^2 x$

Forward propagation to calculate predictions:

$$z1 = X.dot(W1) + b1$$

 $a1 = np.tanh(z1)$
 $z2 = a1.dot(W2) + b2$
 $exp_scores = np.exp(z2)$

here z_i is the input of the layer i and a_i is the output of the layer I after the activatio function is applied. W1,b1,w2,b2 are parameter of the network

Applying the backpropagation formula:

$$\delta_{3} = \hat{y} - y$$

$$\delta_{2} = (1 - \tanh^{2} z_{1}) \circ \delta_{3} W_{2}^{T}$$

$$\frac{\partial L}{\partial W_{2}} = a_{1}^{T} \delta_{3}$$

$$\frac{\partial L}{\partial b_{2}} = \delta_{3}$$

$$\frac{\partial L}{\partial W_{1}} = x^{T} \delta_{2}$$

$$\frac{\partial L}{\partial b_{1}} = \delta_{2}$$

A network with a hidden layer of size 3:

Training error is:

```
Loss after iteration 0: 0.432387
Loss after iteration 1000: 0.068947
Loss after iteration 2000: 0.068901
Loss after iteration 3000: 0.071218
Loss after iteration 4000: 0.071253
Loss after iteration 5000: 0.071278
Loss after iteration 6000: 0.071293
Loss after iteration 7000: 0.071303
Loss after iteration 8000: 0.071308
Loss after iteration 9000: 0.071312
Loss after iteration 10000: 0.071314
Loss after iteration 11000: 0.071315
Loss after iteration 12000: 0.071315
Loss after iteration 13000: 0.071316
Loss after iteration 14000: 0.071316
Loss after iteration 15000: 0.071316
Loss after iteration 16000: 0.071316
Loss after iteration 17000: 0.071316
Loss after iteration 18000: 0.071316
Loss after iteration 19000: 0.071316
```

Varying the hidden layer size:

For stigmoid function we have to change tanh and instead add this

```
def stigmoid(x):
return 1/(1+np.exp(-x))

def stigmoid_der(x):
return stigmoid(x) * (1-stigmoid(x))
```

Similarly do for Relu

def ReLu(x):
return x (x>0)

def dReLu(x):
return 1 (x>0)