离散数学试题(A卷)(时间120分钟)

学院	班级	学号	姓名
----	----	----	----

题号	_	 =	四	五	六	七	八	卷实评分	卷 分 分 分 %	平成占分%	时绩总	成绩总分
得分												

一、 判断正误(共36分,答错不扣分)

- 1. 命题具有确定的真假值。
- ,
- 2. $p\rightarrow q$ 和 $\neg p\lor q$ 命题等价。
- 3. 量词的约束顺序对公式真假值无影响。
- 4. $\neg \exists x \theta(x) = \exists x \neg \theta(x)$ 等价。
- 5. 自然数集是无限集中最小的集合。
- 6. 有理数集是可数集。
- 7. 任何质数阶群不可能有非平凡群。
- 8. 质数阶群必是循环群。
- 9. 若 r(R)=R,则 R 一定是自反的。
- 10. 若 f 为函数,则(f¹)⁻¹=f。
- 11. 若 f, q 为函数,则(f。g)-1=f-1。g-1。
- 12. 若 f, g 为入射,则 f。g 也是入射。
- 13. 有限半群必有幂等元。
- 14. 群中有幺元,零元。
- 15. 无向连通图的所有结点度数之和等于边数的 2 倍。

- 16. 有向图中结点入度之和等于出度之和。
- 17. 若无向图中有两对结点的度数为奇数,则存在欧拉路。
- 18. 无向图中有哈密尔顿路的必要条件是任意两对结点度数之和 大于 n-1。
- 19. 任意一棵树至少有两片树叶。
- 20. 树是无环连通图。
- 21. 设<A, \le >是一个代数系统,若 \lor 、 \land 都是满足交换律,结合律和吸收率,则 A 上存在偏序关系 \le ,使<A, \le >是一个格。
- 22. 若<A, ≤>为格,则有<A, ≤>诱导的代数系统满足幂等律。
- 23. 任何一个循环群必定是阿贝尔群。
- 24. 集合的∩、∪运算满足结合律,吸收率。

二、填空(每题2分,共20分)

3. 任意一个正整数 n, 必存在含有______个元素的布尔代

- 4. 在平面图中, 若 v=6, e=10, 则 r= 。
- 5. 树中边数和结点的关系是____。
- 6. 设<G, *>为群,对任意的 a,b,c∈G,若有 a*b=a*c,则有

三、证明(12分)

(1) 前提 $\forall x(P(x) \rightarrow A(x) \lor B(x))$

$$\forall x (A(x) \rightarrow Q(x))$$

$$\neg \forall x (P(x) \rightarrow Q(x))$$

结论 $\exists x (P(x) \land B(x))$

(2)
$$\neg (P \lor (\neg P \land Q)) \Leftrightarrow \neg P \land \neg Q$$

四、 设 x={1, 2, ···, 10}, 定义 x 上一个关系 R, ∀a, b∈x, ⟨a,

b>∈R 当且仅当 a-b 被 3 整除。(8 分)

- (1) 证明 R 为等价关系.
- (2) 求由 R 确定的等价类。

五、 设 $\langle A, \leqslant \rangle$ 是一个格, 那么对于任意的 $a, b \in A, 有 a \leqslant b \Leftrightarrow a \lor b=b$ 。(8 分)

六、设 G 是一个有 v 个结点, e 条边的连通简单平面图, 若 v \geqslant 3, 则 e \leqslant 3v-6。(6分)

七、设 P1, P2 均为某集合的划分,如果在划分 P1 中的每个集合都是划分 P2 中每个集合的子集,则 P1 叫做 P2 的加细。

证明:整数集上由模 6 同余类构成的划分是模 3 同余类构成划分的加细。(4分)

八、设f,g都是群 $\langle G_1, \leftrightarrow \rangle$ 到群 $\langle G_2, * \rangle$ 的同态,证明 $\langle C, \leftrightarrow \rangle$ 是 $\langle G_1, \leftrightarrow \rangle$ 的一个子群。其中 $C=\{x \mid x \in G_1, \text{且} f(x)=g(x)\}$ 。(6分)

离散数学试卷参考答案及评分标准(A)

一、判断正误(共30分,每小题1.5分)

```
1. \sqrt{2}, \sqrt{3} \sqrt{4}, \sqrt{5}, \times 6. \times 7. \times 8. \sqrt{9}, \sqrt{10}, \sqrt{11}, \times 12. \times 13. \times 14.
\times 15. \sqrt{16.} \times 17. \times 18. \sqrt{19.} \sqrt{20.} \sqrt{19.} \sqrt{19.} = 10.
二、填空题(共30分,每个空格2分)
       \{ \Phi, \{ \Phi \}, \{ 1 \}, \{ 2 \}, \{ \Phi, 1 \}, \{ \Phi, 2 \}, \{ 1, 2 \}, A \}
       \{\langle a, a \rangle, \langle a, c \rangle\}
2.
3.
       M_1 = \{0\}, M_2 = \{1, 2, 3\}, M_3 = \{4, 5\}
4.
       c, d
       P \land \neg Q \land R 或 m<sub>5</sub>
5.
       (F(a, a) \lor F(a, b)) \land (F(b, a) \lor F(b, b))  \neq
        (F(a, a) \land F(b, a)) \lor (F(a, b) \land F(b, b))
7.
       DBKHLEAFICGMJN
8.
9.
       2^{mn}
10.
      \{f_1, f_2\}, \{f_1, f_2\}f_3 = \{f_3, f_5\}, \{f_1, f_2\}f_4 = \{f_4, f_6\}.
11.
12.
       \{(1234), (13)(24), (1432), (1)\}
       N, N \times N \times N
13.
14.
       21 人
15.
      \forall x \exists y \neg F(x, y)
三、证明(8分)
在自然推理系统F中构造下面推理的证明
前提: \exists x F(x) \to \forall y (G(y) \to H(y)) , \exists x R(x) \to \exists y G(y)
```

独. $\exists x (F(x) \land R(x)) \rightarrow \exists x H(x)$

证明:

- (1) $\exists x (F(x) \land R(x))$ 附加前提引入
- (2) $F(c) \wedge R(c)$ (1) EI (1分)
- (3) <math>F(c) (2)化简
- (4) R(c) (2)化简
- (5) $\exists x F(x) \rightarrow \forall y (G(y) \rightarrow H(y))$ 前提引入
- (6) $\exists x F(x)$ (3)EG (1分)
- (7) $\forall y (G(y) \to H(y))$ (5)(6)假言推理 (1分)
- (8) $\exists x R(x) \rightarrow \exists y G(y)$ 前提引入

(9) $\exists x R(x)$

(4)EG (1分)

(10) $\exists y G(y)$

(8) (9)假言推理

(1分)

(11) G(d)

(10)EI (1分)

(12) $G(d) \rightarrow H(d)$

(7)UI (1分)

(13) H(d)

(11)(12) 假言推理

(1分)

(14) $\exists x H(x)$

(13)EG

四、试证:一个有限非交换群至少含有6个元(8分)

证明:由拉格朗日定理的推论知,1,2,3,5阶群都是循环群,从而是可交换的。(4分)若G为4阶群,除单位元e外,G的元素的阶或为2或为4。只有两种可能。

- (1) G 中存在一个阶为 4 的元素 a。此时必有 G=<a>, 是由 a 生成的循环群,由上一步的讨论知 G 是可交换的。(2分)
- (2) 若 G 中不存在阶为 4 的元素,由拉格朗日定理的推论知,除 e 外,G 的所有元素的阶为 2。设 G={e,a,b,c}。则

 $a^2=b^2=c^2=e$ 。由于 $ab\neq a$, $ab\neq b$ (反之有 a 或 b 等于 e),且 $ab\neq e$,所以必有 ab=c。同理, ba=c, ac=ca=b, bc=cb=a。 也是可交换的。(2 分)故非交换群至少有 6 个元素。

五、设 $A=\{a,b,c\}$, 求出 A 上所有的等价关系。(10 分)

解 先求出 A 上有多少个不同的分划。

分成一个分划块的分划 $\Pi_1 = \{\{a,b,c\}\}$

分成两个分划块的分划 $\Pi_2 = \{\{a\}, \{b,c\}\}\$ 、 $\Pi_3 = \{\{b\}, \{a,c\}\}\$ 、 $\Pi_4 = \{\{c\}, \{a,b\}\}$

分成三个分划块的分划 $\Pi_s = \{\{a\}, \{b\}, \{c\}\}$

因此, A上有5个不同的分划(5分),

记与分划 \prod_i 相对应的等价关系为 ρ_i

 $\rho_1 = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\} = U_A$

$$\rho_2 = \{(a,a), (b,b), (b,c), (c,b), (c,c)\}$$

$$\rho_3 = \{(b,b), (a,a), (a,c), (c,a), (c,c)\}$$

$$\rho_4 = \{(c,c), (a,a), (a,b), (b,a), (b,b)\}$$

$$\rho_5 = \{(a,a),(b,b),(c,c)\} = I_A$$
 (5分)

六、对下图所示无向带权图 G 求一棵最小生成树 T,并计算出 T 的权 W(T)。(6分)

解: 按 Kruskal 算法,细心的寻找在最小生成树中的边,所得最小生成树如下图所示 $(4 \, \mathcal{G})$, W(T)=31。 $(2 \, \mathcal{G})$

七、设 $f:A\to B$ 为单射函数, $G:P(A)\to P(B)$,G(X)为X在f下的像。证明G也是单射的。(4分)

证明: 假设 $A_1, A_2 \in P(A)$, 且 $A_1 \neq A_2$ 。(1分)

不妨设存在 $x \in A_1 \land x \notin A_2$,因此 $f(x) \in f(A_1)$ 且 $f(x) \notin f(A_2)$,于是 $f(A_1) \neq f(A_2)$,(2分)

从而 $G(A_1) \neq G(A_2)$ 。(1分)

八、求当连通平面图的每个面至少有5条边围成时,边数与结点数所满足的关系式(4分)

解: 设平面图 G 有 n 个结点,m 条边和 r 个面,则欧拉公式为: n-m+r=2。(1分)因图中每个面至少有 5 条边围成,所以有 $2m \ge 5r$,即 $r \le \frac{2}{5}m$,(2分)代入欧拉公式化简后得:

$$m \le \frac{5n - 10}{3} \tag{1 \%}$$

即为所求。

离散数学试题(B卷)(时间120分钟)

	字	况				_ '	字号			姓	名 _			
题号	_		三	四	五	六	七	八	卷实评分	卷 分 总 分 %	平成占分%	时绩总	成绩总分	
得分														

九、 判断正误(共36分,答错不扣分)

- 25. 集合的∩、∪运算满足结合律,吸收率。
- 26. 命题具有确定的真假值。
- 27. 量词的约束顺序对公式真假值无影响。
- 28. p→q 和¬p∨q 命题等价。
- 29. $\neg \exists x \theta(x) 与 \exists x \neg \theta(x)$ 等价。
- 30. 任何质数阶群不可能有非平凡群。
- 31. 质数阶群必是循环群。
- 32. 自然数集是无限集中最小的集合。
- 33. 有理数集是可数集。

- 34. 若 r(R)=R,则 R 一定是自反的。
- 35. 有限半群必有幂等元。
- 36. 群中有幺元,零元。
- 37. 若 f 为函数,则(f¹)⁻¹=f。
- 38. 若 f, q 为函数,则(f。g)-1=f·1。g-1。
- 39. 若 f, g 为入射,则 f。g 也是入射。
- 40. 无向连通图的所有结点度数之和等于边数的 2 倍。
- 41. 有向图中结点入度之和等于出度之和。
- 42. 若无向图中有两对结点的度数为奇数,则存在欧拉路。
- 43. 无向图中有哈密尔顿路的必要条件是任意两对结点度数之和 大于 n-1。
- 44. 任何一个循环群必定是阿贝尔群。
- 45. 设<A, \le >是一个代数系统,若 \lor 、 \land 都是满足交换律,结合律和吸收率,则 A 上存在偏序关系 \le ,使<A, \le >是一个格。
- 46. 若<A, ≤>为格,则有<A,≤>诱导的代数系统满足幂等律。
- 47. 任意一棵树至少有两片树叶。
- 48. 树是无环连通图。

十、填空(每题2分,共20分)

7. n元集合上共有_______个关系,______个自反 关系。

,{a,b,c}的最小上界,{f,g,h}的所有下
界。
9. 在平面图中,若 v=6, e=10, 则 r=。
10. 树中边数和结点的关系是。
11. 任意一个正整数 n, 必存在含有个元素的布尔代
数。
12. 设 <g, *="">为群, 对任意的 a,b,c∈G,若有 a*b=a*c,则有</g,>
°
十一、 证明(12 分)
(3) 前提 $\forall x(P(x) \rightarrow A(x) \lor B(x))$
$\forall x (A(x) \rightarrow Q(x))$
$\neg \forall x (P(x) \rightarrow Q(x))$
结论 $\exists x (P(x) \land B(x))$
$(4) \neg (P \lor (\neg P \land Q)) \Leftrightarrow \neg P \land \neg Q$

十二、 设 x={1, 2, ···, 10}, 定义 x 上一个关系 R, ∀a, b∈x, ⟨a, b⟩∈R 当且仅当 a-b 被 3 整除。(8 分)

- (3) 证明 R 为等价关系.
- (4) 求由 R 确定的等价类。

十三、 设 $\langle A, \leqslant \rangle$ 是一个格, 那么对于任意的 $a, b \in A$, 有 $a \leqslant b \Leftrightarrow a \lor b=b$ 。(8 分)

十四、 设 G 是一个有 v 个结点, e 条边的连通简单平面图, 若 $v \ge 3$, 则 $e \le 3v-6$ 。(6分)

十六、 设 P1, P2 均为某集合的划分,如果在划分 P1 中的每个集合都是划分 P2 中每个集合的子集,则 P1 叫做 P2 的加细。证明:整数集上由模 6 同余类构成的划分是模 3 同余类构成划分的加细。。(4 分)

离散数学B卷试题答案及评分标准

十七、 判断正误(共36分,答错不扣分) a) $\sqrt{}$ 2. $\sqrt{}$ 3. \times 4. $\sqrt{}$ 5. \times 6. $\sqrt{}$ 7. $\sqrt{}$ 8. $\sqrt{}$ 9. $\sqrt{}$ 10. $\sqrt{}$ 11. $\sqrt{}$ 12. \times 14. \times 15. $\sqrt{}$ 16. $\sqrt{}$ 17. $\sqrt{}$ 18. \times 19. \times 20. $\sqrt{}$ 21. $\sqrt{}$ 22. $\sqrt{}$ 23. $\sqrt{}$ 24. 评分:每错一个扣1.5。 填空(每题2分,共20分) 十八、 1. 2ⁿⁿ; 2ⁿⁿ 2. l, m; a, b, c; k; k, l, m 3. 6 4. 6 5. e=v-1 6. b=c 十九、 证明(12分) (1) 证明: $\neg \forall x (P(x) \rightarrow Q(x))$ $\exists x (P(x) \land \neg Q(x))$ 得 1 分 P(a)∧Q(a)得 1 分 $\forall x (A(x) \rightarrow Q(x))$ $\forall x(\neg A(x) \lor Q(x))$ ¬A(a) ∨Q(a)得 1 分 Q(a) $\neg A(a)$ $\forall x (P(x) \rightarrow A(x) \lor B(x))$ $\forall x(\neg P(x) \lor A(x) \lor B(x))$

P(a),¬A(a)得 1 分
B(a)
P(a) ∧B(a)得 1 分
$\exists x \ (P(x) \land B(x))$
(2) 证明: ¬(P∨(¬P∧Q))
⇔¬P∧¬ (¬P∧Q)得1分
⇔¬P∧ (P∨¬Q)得 1 分
⇔(¬P∧P)∨(¬P∧¬Q)得 2 分
⇔0∨(¬P∧¬Q)得 2 分
$\neg P \land \neg Q$
二十、 (1)证明: 1)R 是自反的
2)R 是对称的得 1 分
3)R 是传递的得 1 分
所以,R为等价关系。得1分
(2)[1]=[4]=[7]=[10]={1,4,7,10}得2分
[2]=[5]=[8]={2,5,8}得1分
[3]=[6]=[9]={3,6,9}得1分
二十一、 证明: (1) ∵a≤b, 又∵b≤b
∴b≥a∨b得1分
∵b≤a∨b得1分
∴b=a∨b得 2 分

```
(2) \therefore b=a\veeb
            ∴b=a∨b≥a......得 2 分
            证明:设连通平面图 G 的面数为 r,当 v=3, e=2
二十二、
时,上式显然成立。......得1分
    若 e≥3,则每一面的次数不小于 3,面的次数之和为 2e,
因此
      2e≥3r, r≤2/3e......得 2 分
带入欧拉定理:
    2=v-e+r≤v-e+2/3e......得2分
    2≤v-e/3
    6≤3v-e
即 e≤3v-6. ......得 1 分
二十三、 证明: (1) \forall a,b \in C, \therefore a,b \in G_1
      有 f(a \diamondsuit b) = f(a) * f(b)
         g(a \not \propto b) = g(a) \cdot g(b)
      f(a)=g(a), f(b)=g(b)
      ∴a☆b∈C
      (2)设< G<sub>1</sub>, ☆>的幺元为 e,
      显然有\forall a \in C, a \in G_1
      f(a \not \sim e) = f(a) \cdot f(e) = f(a)
```

$g(a \not \approx e) = g(a) \cdot g(e) = g(a)$
$\mathbf{f}(\mathbf{a}) = \mathbf{g}(\mathbf{a})$
$\therefore f(e) = g(e)$
∴e∈C得1分
(3) ∀a∈C, 显然 a∈G ₁
$f(a \not \sim a^{-1}) = f(a) \cdot f(a^{-1}) = f(e)$
$g(a \not\sim a^{-1}) = g(a) \cdot g(a^{-1}) = g(e)$
$\forall f(a)=g(a), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\therefore f(a^{-1}) = g(a^{-1})$
∴a ⁻¹ ∈C得1分
∴< C, ☆>为群。
∴< C, ☆>为子群。
二十四、 证明: 只要证
(1) 显然,模6和模3同余关系是等价关系。
1分
(2) 列出模 6 同余类和模 3 同余类。得 1 分
(3)证明下列之一,其它类以此类推。得2分
$[0]_6 \subseteq [0]_3$, $[1]_6 \subseteq [1]_3$, $[2]_6 \subseteq [2]_3$, $[3]_6 \subseteq [0]_3$, $[4]_6 \subseteq [1]_3$, $[5]_6 \subseteq [2]_3$
离散数学试卷(A)
院(系) 班级 学号 姓名
试卷卷面成绩

题号	_	1 1	=	四	五.	六	七	八	小计		
得分											

		\neg							
得	分	一一、半	断正误(共 30 分	,每小	题 1.5	分)		
		1. 树	是	无 环	连	通	筒	单	图
	()							
2.	命	题	具 有	确	定	的	真	假 位	直
	()							
3.	p	\rightarrow	q 和	¬	$p \bigvee q$	命	题	等(介
	()							
4.	有	向 图	中结点	点 入 原	吏 之	和等	于 出	度之	和
	()	N N N N			w) = 1 l a			
5.			非空集合A	上的等价	介关系,	则 $R \cup S$	'也是 A	、 上的等化	介关 糸
	()	 工 上	ਜ਼ਮ	. LL		. Ha	+ + v	
6.			矛盾式	,则	A E	1 土 勿	「 収 :	范式为	1
7.	(量) 词 的	约 束 川	而	寸 公	式真	假 值	无 影	响
7.	里 ()	划 木 //	<u>м</u> /1′ /	N 25	八 共	以 但	儿奶	75
8.	自	, 然 数	集是	无 限	集	中 最	小	的 集	合
0.	()				1 200	,	>/c	Р
9.	质	数	阶	群	必 ;	是	盾	环群	
	()							
10.	若	r(R)=R	, ,	N R	_	定是	色 自	反	的
	()							
11.	若	f	为	函	数	,	则	$(f^{-1})^{-1}=f$	
	()							
12.	群	中	有	幺	元	,	零	元	
	()							

- 13. 若无向图中有两对结点的度数为奇数,则存在欧拉路。
 ()
 14. 任 意 一 棵 树 至 少 有 两 片 树 叶 。
 ()
- 15. $\forall x \forall y (P(x) \to Q(y)) \Leftrightarrow \exists x P(x) \to \forall y Q(y)$
- 16. 设 f 是群 G 到群 H 的同态映射,若 G 是交换群,则 H 也是交换群。
- 17. 设 $V = \langle Z, +, \cdot \rangle$, 其中 + 和·分别代表普通加法和乘法, 则集合 $S = \{-1, 0, 1\}$ 可以构成 V 的子代数。

18. 偶 数 阶 群 必 含 2 阶 元 。

()

19. 任 何 一 个 循 环 群 必 定 是 阿 贝 尔 群 。 ()

20. { \varnothing , { \varnothing }} - \varnothing ={ \varnothing , { \varnothing }} ()

得 分

二、填空题(共30分,每个空格2分)

- 1. 已知集合 A ={∅, 1, 2}, 则 A 的幂集合 P (A)
 。
- 3. 设集合 A = {0, 1, 2, 3, 4, 5}, A 上的关系 R = {<0, 0>, <1, 1>, <1, 2>, <1, 3>, <2, 1>, <2. 2>,

<2, 3>, <3, 1>, <3, 2>, <3, 3>, <4, 4>, <4, 5>, <5, 4>, <5, 5>}, 则 R 在 A 上构成的等价类

巨	
疋	

4. 设集合 $A = \{a, b, c, d, e\}$, A 上半序关系 R 的哈斯图如图 1 所示,则 A 的极小元为

5. 已知命题公式 $G = \neg (P \rightarrow Q) \land R$,则 G 的主析取范式是

6. 设 D: {a, b}, 将表达式∀x∃ y (x, y)中的量词消除后, 与之等价的命题公式是 ______。

7. 设 G 是完全二叉树, G 有 15 个点, 其中有 8 个叶点, 则 G 的分枝点数是_____。

8. 对下图(图2)中树的点

中序遍历的次序是 ______。

10. 设 X= {x | x ∈ R, x ≠0,1}, 在 X 上如下定义 6 个函数:

$$f_1(x) = x$$
, $f_2(x) = 1/x$, $f_3(x) = 1-x$,

$$f_4(x) = 1/(1-x), \quad f_5(x) = (x-1)/x, \quad f_6(x) = x/(x-1),$$

则 $G = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ 关于函数合成运算构成群. 则子群 $\{f_1, f_2\}$ 的所有的右陪集是

11. 设 G 是由 K₁, K₂, K₃ 3 个连通分支组成的平面图,则 G 共有______个面。

12. 设 G = S₄ 为 4 元对称群,则<(1432)>= _____.

13. 设 $S = \{a_1, a_2, \dots, a_n\}$, 则下列集合

$S,\ P(S),\ N,\ N\times N\times N,\ P(N),\ R,\ R\times R$

中基	基数为	※ o 的有: _				°	
14.	一个	班 70 个学生	三,在第一次表		得5分,在第二	二次考试中有 29 人	、得5分,
	如果i	两次考试中都	邻没有得5分的	为有26人,那么	两次考试都得	5分的有	人。
15.	$\neg \exists x$	$\forall y F(x,y)$	的前束范式是_		o		
得	分	三、在	自然推理系	、 统 F 中构 i	造下面推理	的证明(8分)
		前提:	$\exists x F(x) -$	$\rightarrow \forall y (G(y))$	$\rightarrow H(y))$,	$\exists x R(x) \to \exists$	$\exists y G(y)$
		结论:	$\exists x (F(x))$	$\wedge R(x)) \rightarrow$	$\exists x H(x)$		

得 分

四、试证:一个有限非交换群至少含有6个元(8分)

得分

五、设 A={a,b,c}, 求出 A 上所有的等价关系。(10分)

得 分

六、对下图 (图 3) 所示无向带权图 G 求一棵最小生成树 T,并计算出 T 的权 W(T)。(6分)

得 分

七、设 $f:A \to B$ 为单射函数, $G:P(A) \to P(B)$,G(X) 为 X 在 f 下的像。证明 G 也是单射的。(4分)

得 分

八、求当连通平面图的每个面至少有5条边围成时,边数与结点数所满足的关系式(4分)

离散数学 A 卷试题答案及评分标准

二十五、 判断正误(共36分,答错不扣分)

- a) $\sqrt{2}$. $\sqrt{3}$. \times 4. \times 5. $\sqrt{6}$. $\sqrt{7}$. $\sqrt{8}$. $\sqrt{9}$. $\sqrt{10}$. \times 11. \times 12. $\sqrt{13}$. $\sqrt{2}$
- 14. \times 15. $\sqrt{}$ 16. $\sqrt{}$ 17. \times 18. \times 19. $\sqrt{}$ 20. $\sqrt{}$ 21. $\sqrt{}$ 22. $\sqrt{}$ 23. $\sqrt{}$ 24.

评分:每错一个扣1.5。

二十六、 填空(每题2分,共20分)

- 1. 2ⁿⁿ; 2ⁿⁿ 2. l, m; a, b, c; k; k, l, m 3. 6 4. 6 5. e=v-1 6. b=c
 - 二十七、 证明(12分)
- (3) 证明: $\neg \forall x (P(x) \rightarrow Q(x))$

$$\forall x (A(x) \rightarrow Q(x))$$

$$\forall x(\neg A(x) \lor Q(x))$$

Q(a)

 $\neg A(a)$

$$\forall x (P(x) \rightarrow A(x) \lor B(x))$$

$$\forall x(\neg P(x) \lor A(x) \lor B(x))$$

```
P(a) ∧B(a) ......得 1 分
    \exists x (P(x) \land B(x))
(4) 证明: ¬(P∨(¬P∧Q))
  \neg P \land \neg Q
     二十八、
       所以,R为等价关系。......得1分
  (2)[1]=[4]=[7]=[10]={1,4,7,10}......得2分
    [2]=[5]=[8]={2,5,8}......得1分
    [3]=[6]=[9]={3,6,9}......得1分
二十九、
     证明: (1) ∵a≤b, 又∵b≤b
       ∴b≥a∨b......得1分
       ∵b≤a∨b......得1分
       ∴b=a∨b...............得 2 分
     (2) \because b=a \lor b
```

B(a)

∴b=a∨b≥a得 2 分
∴a≤b得 2 分
三十、 证明:设连通平面图 G 的面数为 r,当 v=3, e=2 时,
上式显然成立。得1分
若 e≥3,则每一面的次数不小于 3,面的次数之和为 2e,
因此
2e≥3r, r≤2/3e得 2 分
带入欧拉定理:
2=v-e+r≤v-e+2/3e得 2 分
2≤v-e/3
6≤3v-e
即 e≤3v-6得 1 分
三十一、 证明: 只要证
(1) 显然,模6和模3同余关系是等价关系。得
1分
(2) 列出模 6 同余类和模 3 同余类。
分
(3)证明下列之一,其它类以此类推。得2
分
$[0]_6 \subseteq [0]_3$, $[1]_6 \subseteq [1]_3$, $[2]_6 \subseteq [2]_3$, $[3]_6 \subseteq [0]_3$, $[4]_6 \subseteq [1]_3$, $[5]_6 \subseteq [2]_3$
三十二、 证明: $(1) \forall a,b \in C$, $\therefore a,b \in G_1$
有 f(a☆b)=f(a)*f(b)

```
g(a \not \propto b) = g(a) \cdot g(b)
          f(a)=g(a), f(b)=g(b)
          ∴a☆b∈C
          则, <c, ☆>是封闭的。......得1分
         (2)设< G<sub>1</sub>, ☆>的幺元为 e,
          显然有\forall a \in C, a \in G_1
         f(a \not \sim e) = f(a) \cdot f(e) = f(a)
         g(a \stackrel{\wedge}{\approx} e) = g(a) * g(e) = g(a)
          f(a)=g(a)
          \therefore f(e)=g(e)
          (3) ∀a∈C, 显然 a∈G_1
         f(a \stackrel{\wedge}{\sim} a^{-1}) = f(a) * f(a^{-1}) = f(e)
         g(a \stackrel{\wedge}{\bowtie} a^{-1}) = g(a) * g(a^{-1}) = g(e)
          \thereforef(a)=g(a), 汉 ∴ f(e)=g(e)
          f(a^{-1})=g(a^{-1})
          ∴< C, ☆>为群。
```

∴< C, ☆>为子群。......得1分

离散数学试题(A卷及答案)

一、证明题(10分)

1) $((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R) \Leftrightarrow T$

证明: 左端 \Leftrightarrow ((P \vee Q) \wedge (P \vee (Q \wedge R))) \vee ¬((P \vee Q) \wedge (P \vee R))(摩根律)

 \Leftrightarrow ((P\Q)\(\text{(P\Q)}\(\text{(P\Q)}\)\(\text{(P\Q)}\(\text{(P\Q)}\)(分配律)

 \Leftrightarrow $((P \lor Q) \land (P \lor R)) \lor \neg ((P \lor Q) \land (P \lor R))$ (等幂律)

⇔T (代入)

2) $\forall x (P(x) \rightarrow Q(x)) \land \forall x P(x) \Leftrightarrow \forall x (P(x) \land Q(x))$

证明: $\forall x (P(x) \rightarrow Q(x)) \land \forall x P(x) \Leftrightarrow \forall x ((P(x) \rightarrow Q(x) \land P(x))$

 $\Leftrightarrow \forall x ((\neg P(x) \lor Q(x) \land P(x))$

 $\Leftrightarrow \forall x (P(x) \land Q(x)) \Leftrightarrow \forall x P(x) \land \forall x Q(x)$

 $\Leftrightarrow \forall x (P(x) \land Q(x))$

二、求命题公式 $(\neg P \rightarrow Q) \rightarrow (P \lor \neg Q)$ 的主析取范式和主合取范式(10分)。

$$\mathfrak{M}$$
: $(\neg P \rightarrow Q) \rightarrow (P \lor \neg Q) \Leftrightarrow \neg (\neg P \rightarrow Q) \lor (P \lor \neg Q)$

 $\Leftrightarrow \neg (P \lor Q) \lor (P \lor \neg Q)$

 $\Leftrightarrow (\neg P \land \neg Q) \lor (P \lor \neg Q)$

 $\Leftrightarrow (\neg P \lor P \lor \neg Q) \land (\neg Q \lor P \lor \neg Q)$

 \Leftrightarrow (P \vee -Q) \Leftrightarrow M₁

 $\Leftrightarrow m_0 \vee m_2 \vee m_3$

- 三、推理证明题(10分)
- 1) $(P \rightarrow (Q \rightarrow S)) \land (\neg R \lor P) \land Q \Rightarrow R \rightarrow S$

证明: (1) R 附加前提

- $(2) \neg R \lor P$
- (3) P T(1)(2), I
- $(4) P \rightarrow (Q \rightarrow S) P$
- (5) Q→S

T(3)(4), I

(6) Q

(7) S T(5)(6), I

 $(8) R \rightarrow S$ CP

2) $\forall x (P(x) \lor Q(x)), \forall x \neg P(x) \Rightarrow \exists x Q(x)$

证明: (1)∀x¬P(x)

)]. (1) VX II (X)

 $(2) \neg P(c)$ T(1), US

 $(3) \forall x (P(x) \lor Q(x))$ P

 $(4)P(c) \vee Q(c)$ T(3), US

(5)Q(c) T(2)(4), I

 $(6) \exists x \ Q(x)$ T(5), EG

四、在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(5分)。

证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。

五、已知 A、B、C 是三个集合,证明 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (10 分)。

证明: $x \in A \cap (B \cup C) \Leftrightarrow x \in A \land x \in (B \cup C)$

 $\Leftrightarrow x \in A \land (x \in B \lor x \in C)$

 \Leftrightarrow ($x \in A \land x \in B$) \lor ($x \in A \land x \in C$)

 $\Leftrightarrow x \in (A \cap B) \ \forall x \in A \cap C$

 $\Leftrightarrow x \in (A \cap B) \cup (A \cap C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

六、A={ x_1 , x_2 , x_3 }, B={ y_1 , y_2 }, R={ $\langle x_1$, $y_1 \rangle$, $\langle x_2$, $y_2 \rangle$, $\langle x_3$, $y_2 \rangle$ }, 求其关系矩阵及关系图(10 分)。

解: 关系矩阵为

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}$$

七、设 $R=\{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle\}$, 求 r(R)、s(R)和 t(R),并作出它们及 R 的关系图(15 分)。

解: r(R)={<2, 1>, <2, 5>, <2, 4>, <3, 4>, <4, 4>, <5, 2>, <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>}

 $s(R) = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 1, 2 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle\}$ $R^2 = R^5 = \{\langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 1 \rangle, \langle 5, 5 \rangle, \langle 5, 4 \rangle\}$

 $R^3 = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 5, 4 \rangle\}$

 $R^4 = \{\langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 1 \rangle, \langle 5, 5 \rangle, \langle 5, 4 \rangle\}$

t(R)={<2, 1>, <2, 5>, <2, 4>, <3, 4>, <4, 4>, <5, 2>, <2, 2>, <5, 1>, <5, 4>, <5, 5>}

八、 π ={A₁, A₂, ···, A_n} 是集合 A 的一个划分,定义 R={<a, b>|a、b∈A_i, I=1, 2, ···, n}, 则 R 是 A 上的等价关系(15 分)。

证明: $\forall a \in A$ 必有 i 使得 $a \in A_i$, 由定义知 aRa, 故 R 自反。

 $\forall a, b \in A$, 若 aRb , 则 a, b $\in A_i$, 即 b, a $\in A_i$, 所以 bRa, 故 R 对称。

 \forall a, b, c \in A, 若 aRb 且 bRc, 则 a, b \in A_i及 b, c \in A_j。因为 i \neq j 时 A_i \cap A_j= Φ , 故 i=j, 即 a, b, c \in A_i, 所以 aRc, 故 R 传递。

总之R是A上的等价关系。

九、若 $f:A \rightarrow B$ 是双射,则 $f^{-1}:B \rightarrow A$ 是双射 (15 分)。

证明:对任意的 $x \in A$,因为 f 是从 A 到 B 的函数,故存在 $y \in B$,使 $\langle x, y \rangle \in f$, $\langle y, x \rangle \in f^{-1}$ 。所以, f^{-1} 是满射。

对任意的 $x \in A$,若存在 y_1 , $y_2 \in B$,使得 $\langle y_1, x \rangle \in f^{-1}$ 且 $\langle y_2, x \rangle \in f^{-1}$,则有 $\langle x, y_1 \rangle \in f$ 且 $\langle x, y_2 \rangle \in f$ 。因为 f 是函数,则 $y_1 = y_2$ 。所以, f^{-1} 是单射。

因此 f⁻¹是双射。

离散数学试题(B卷及答案)

一、证明题(10分)	
1) $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R)$	R)⇔R
证明: 左端⇔(¬P∧¬Q∧R)∨((Q∨P)) /R)
$\Leftrightarrow ((\neg P \land \neg Q) \land R)) \lor ((Q \lor Q)$	P) /R)
$\Leftrightarrow (\neg (P \lor Q) \land R) \lor ((Q \lor P) \land P) \lor ((Q \lor P) \land P) \lor (Q \lor P) \lor (Q$	\R)
$\Leftrightarrow (\neg (P \lor Q) \lor (Q \lor P)) \land R$	
$\Leftrightarrow (\neg (P \lor Q) \lor (P \lor Q)) \land R$	
⇔T∧R(置换)⇔R	
$2) \exists x (A(x) \rightarrow B(x)) \Leftrightarrow \forall x A(x) \rightarrow \exists x B(x) \Rightarrow \exists x B(x)$	3(x)
证明: $\exists x (A(x) \rightarrow B(x)) \Leftrightarrow \exists x (\neg A(x))$	$\bigvee B(x)$)
$\Leftrightarrow \exists x \neg A(x) \lor \exists x B($	x)
$\Leftrightarrow \neg \forall x A(x) \lor \exists x B(x) \lor x B(x) \lor \exists x B(x) \lor $	(x)
$\Leftrightarrow \forall x A(x) \rightarrow \exists x B(x)$	
二、求命题公式 $(P \lor (Q \land R)) \rightarrow (P \land P)$	Q/R)的主析取范式和主合取范式(10分)。
证明: $(P \lor (Q \land R)) \rightarrow (P \land Q \land R)$	$R) \Leftrightarrow \neg (P \lor (Q \land R)) \lor (P \land Q \land R))$
$\Leftrightarrow (\neg P \land (\neg Q \lor \neg R))$	$)) \lor (P \land Q \land R)$
$\Leftrightarrow (\neg P \land \neg Q) \lor (\neg P)$	$\wedge \neg R)) \vee (P \wedge Q \wedge R)$
\Leftrightarrow $(\neg P \land \neg Q \land R) \lor$	$(\neg P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R)) \lor (\neg P \land \neg Q \land \neg R)) \lor (P$
$\land Q \land R)$	
$\Leftrightarrow \!$	
$\Longleftrightarrow \!\! M_3 \bigvee M_4 \bigvee M_5 \bigvee M_6$	
三、推理证明题(10分)	
1) $C \lor D$, $(C \lor D) \rightarrow \neg E$, $\neg E \rightarrow ($	$A \land \neg B$), $(A \land \neg B) \rightarrow (R \lor S) \Rightarrow R \lor S$
证明: (1) (C∨D)→¬E	P
$(2) \neg E \rightarrow (A \land \neg B)$	P
$(3) (C \lor D) \to (A \land \neg B)$	T(1)(2), I
$(4) (A \land \neg B) \rightarrow (R \lor S)$	P
$(5) (C \lor D) \to (R \lor S)$	T(3)(4), I
(6) C∨D	P
(7) R∨S	T(5), I
2) $\forall x (P(x) \rightarrow Q(y) \land R(x)), \exists x P(x)$	$\mathbb{Q}(y) \wedge \exists x (P(x) \wedge R(x))$
证明(1)∃xP(x)	P
(2) P(a)	T(1), ES
$(3) \forall x (P(x) \rightarrow Q(y) \land R(x))$	P
$(4) P(a) \rightarrow Q(y) \land R(a)$	T(3), US
$(5)Q(y) \wedge R(a)$	T(2)(4), I

T(5), I

(6)Q(y)

(7) R(a) T(5), I

 $(8) P(a) \wedge R(a)$ T(2) (7), I

 $(9)\exists x (P(x) \land R(x))$ T(8), EG

 $(10)Q(y) \wedge \exists x (P(x) \wedge R(x))$ T(6)(9), I

四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。

解: A, B, C 分别表示会打排球、网球和篮球的学生集合。则|A|=12, |B|=6, |C|=14, $|A\cap C|=6$, $|B\cap C|=5$, $|A\cap B\cap C|=2$ 。

先求 |A∩B|。

∴6=| (A∪C) \cap B|=| (A∩B) \cup (B∩C) |=| (A∩B) |+| (B∩C) |-|A∩B∩C|=| (A∩B) |+5-2, ∴| (A∩B) |=3。

于是|AUBUC|=12+6+14-6-5-3+2=20。不会打这三种球的人数 25-20=5。

五、己知 A、B、C 是三个集合,证明 A-(BUC)=(A-B) \cap (A-C) (10 分)。

证明: $x \in A - (B \cup C) \Leftrightarrow x \in A \land x \notin (B \cup C)$

 $\Leftrightarrow x \in A \land (x \notin B \land x \notin C)$

 $\Leftrightarrow (x \in A \land x \notin B) \land (x \in A \land x \notin C)$

 $\Leftrightarrow x \in (A-B) \land x \in (A-C)$

 $\Leftrightarrow x \in (A-B) \cap (A-C)$

 $A - (B \cup C) = (A - B) \cap (A - C)$

 $R*S = \{\langle x, y \rangle | x, y \in N \land y = x^2 + 1\}$

 $S*R=\{\langle x, y \rangle | x, y \in N \land y = (x+1)^2\}, R^{\{1, 2\}}=\{\langle 1, 1 \rangle, \langle 2, 4 \rangle\}, S[\{1, 2\}]=\{1, 4\}.$

七、设 $R=\{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle\}$, 求 r(R)、s(R)和 t(R) (15分)。

解: $r(R) = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle\}$

 $s(R) = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle, \langle b, a \rangle, \langle c, b \rangle, \langle a, c \rangle\}$

 $R^2 = R^5 = \{\langle a, c \rangle, \langle b, a \rangle, \langle c, b \rangle\}$

 $R^3 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, b \rangle\}$

 $R^4 = \{ \langle a, b \rangle, \langle b, c \rangle, \langle c, c \rangle \}$

t(R)={\a, b\, \dot\b, c\, \dot\c, a\, \dot\a, c\, \dot\b, a\, \dot\a, \dot\b, \dot\b, \dot\c, b\, \dot\c, c\, c\}

八、证明整数集 I 上的模 m 同余关系 $R=\{\langle x,y\rangle \mid x\equiv y \pmod{m}\}$ 是等价关系。其中, $x\equiv y \pmod{m}$ 的含义是 x=y 可以被 m 整除(15 分)。

证明: 1) ∀x∈I, 因为 (x-x) /m=0, 所以 x=x (mod m), 即 xRx。

2) $\forall x, y \in I$,若 xRy,则 $x \equiv y \pmod{m}$,即 $(x-y)/m = k \in I$,所以 $(y-x)/m = -k \in I$,

所以 y≡x (mod m), 即 yRx。

3) ∀x, y, z∈I, 若 xRy, yRz, 则 (x-y) /m=u∈I, (y-z) /m=v∈I, 于是 (x-z) /m= (x-y+y-z) /m=u+v ∈I, 因此 xRz。

九、若 f:A→B 和 g:B→C 是双射, 则 (gf) ⁻¹=f⁻¹g⁻¹ (10 分)。

证明: 因为 f、g 是双射,所以 gf: A→C 是双射,所以 gf 有逆函数 $(gf)^{-1}$: C→A。同理可推 $f^{-1}g^{-1}$: C→A 是双射。

因为 $\langle x, y \rangle \in f^{-1}g^{-1} \Leftrightarrow$ 存在 $z (\langle x, z \rangle \in g^{-1} \wedge \langle z, y \rangle \in f^{-1}) \Leftrightarrow$ 存在 $z (\langle y, z \rangle \in f \wedge \langle z, x \rangle \in g) \Leftrightarrow \langle y, x \rangle \in gf \Leftrightarrow \langle x, y \rangle \in (gf)^{-1}, 所以 (gf)^{-1} = f^{-1}g^{-1}.$

离散数学考试试题(A 卷及答案)

- 一、证明题(10分)
- 1) $(P \land Q \land A \rightarrow C) \land (A \rightarrow P \lor Q \lor C) \Leftrightarrow (A \land (P \leftrightarrow Q)) \rightarrow C_{\circ}$

证明:
$$(P \land Q \land A \rightarrow C) \land (A \rightarrow P \lor Q \lor C)$$

$$\Leftrightarrow (\neg P \lor \neg Q \lor \neg A \lor C) \land (\neg A \lor P \lor Q \lor C)$$

$$\Leftrightarrow (\neg P \lor \neg Q \lor \neg A \lor C) \land (\neg A \lor P \lor Q \lor C)$$

$$\Leftrightarrow ((\neg P \lor \neg Q \lor \neg A) \land (\neg A \lor P \lor Q)) \lor C$$

$$\Leftrightarrow \neg ((P \land Q \land A) \lor (A \land \neg P \land \neg Q)) \lor C$$

$$\Leftrightarrow \neg (A \land ((P \land Q) \lor (\neg P \land \neg Q))) \lor C$$

$$\Leftrightarrow \neg (A \land (P \leftrightarrow Q)) \lor C$$

$$\Leftrightarrow (A \land (P \leftrightarrow Q)) \rightarrow C$$

2) $\neg (P \uparrow Q) \Leftrightarrow \neg P \downarrow \neg Q$.

证明: $\neg (P \uparrow Q) \Leftrightarrow \neg (\neg (P \land Q)) \Leftrightarrow \neg (\neg P \lor \neg Q)) \Leftrightarrow \neg P \downarrow \neg Q$ 。

二、分别用真值表法和公式法求 $(P \to (Q \lor R)) \land (\neg P \lor (Q \leftrightarrow R))$ 的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值 $(15 \ famous h)$ 。

证明:

公式法: 因为 $(P \rightarrow (Q \lor R)) \land (\neg P \lor (Q \leftrightarrow R))$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor (Q \land R) \lor (\neg Q \land \neg R))$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (((\neg P \lor Q) \land (\neg P \lor R)) \lor (\neg Q \land \neg R))$$

$$\Leftrightarrow (\neg P \lor O \lor R) \land (\neg P \lor O \lor \neg O) \land (\neg P \lor O \lor \neg R) \land (\neg P \lor R \lor \neg O) \land (\neg P \lor P \lor \neg O) \land (\neg P \lor P \lor$$

 $\vee \neg R$)

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

$$\Leftrightarrow M_4 \wedge M_5 \wedge M_6$$

$$\Leftrightarrow m_0 \vee m_1 \vee m_2 \vee m_3 \vee m_7$$

所以,公式 $(P \rightarrow (Q \lor R)) \land (\neg P \lor (Q \leftrightarrow R))$ 为可满足式,其相应的成真赋值为 000、001、

010、011、111: 成假赋值为: 100、101、110。

真值表法:

P Q R	$Q \leftrightarrow R$	$P \rightarrow (Q \lor R)$	$\neg P \lor (Q \leftrightarrow R)$	$(P \rightarrow (Q \lor R)) \land (\neg P \lor (Q \leftrightarrow R))$
0 0 0	1	1	1	1
0 0 1	0	1	1	1
0 1 0	0	1	1	1
0 1 1	1	1	1	1
1 0 0	1	0	1	0
1 0 1	0	1	0	0
1 1 0	0	1	0	0
1 1 1	1	1	1	1

由真值表可知,公式 $(P \to (Q \lor R)) \land (\neg P \lor (Q \leftrightarrow R))$ 为可满足式,其相应的成真赋值为 000、001、010、011、111: 成假赋值为: 100、101、110。

三、推理证明题(10分)

1) $\neg P \lor Q$, $\neg Q \lor R$, $R \rightarrow S \vdash P \rightarrow S$.

证明: (1)P 附加前提 $(2)\neg P\lor Q$ P (3)Q T(1)(2), I $(4)\neg Q\lor R$ P (5)R T(3)(4), I $(6)R\rightarrow S$ P (7)S T(5)(6), I $(8)P\rightarrow S$ CP

2) $\forall x (P(x) \rightarrow Q(y) \land R(x)), \exists x P(x) \Rightarrow Q(y) \land \exists x (P(x) \land R(x))$

证明 (1) ∃xP(x)

- (2) P(a)
- $(3) \forall x (P(x) \rightarrow Q(y) \land R(x))$
- $(4) P(a) \rightarrow Q(y) \land R(a)$
- $(5)Q(y) \wedge R(a)$
- (6)Q(y)
- (7) R(a)
- (8) P(a)
- $(9) P(a) \wedge R(a)$
- $(10) \exists x (P(x) \land R(x))$
- $(11)Q(y) \land \exists x (P(x) \land R(x))$

四、某班有学生 60 人,其中有 38 人学习 PASCAL 语言,有 16 人学习 C 语言,有 21 人学习 COBOL 语言;有 3 个人这三种语言都学习,有 2 个人这三种语言都不学习,问仅学习两门语言的学生数是多少?(10 分)

解 设、、分别表示学习 PASCAL 语言、C 语言、COBOL 语言的学生组成的集合,则 |A|=38, |B|=16, |C|=21, $|A\cap B\cap C|=3$, $|\overline{A}\cap \overline{B}\cap \overline{C}|=2$ 。

 $|A \cup B \cup C| = 60 - |\overline{A} \cap \overline{B} \cap \overline{C}| = 58$

由容斥原理,得

 $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

所以

 $|A \cap B| + |A \cap C| + |B \cap C| = |A| + |B| + |C| + |A \cap B \cap C| - |A \cup B \cup C| = 38 + 16 + 21 + 3 - 58 = 20$

又因为

 $|\mathbf{A} \cap \mathbf{B} \cap \overline{C}| = |\mathbf{A} \cap \mathbf{B}| - |\mathbf{A} \cap \mathbf{B} \cap \mathbf{C}|$

所以

 $|\mathsf{A} \cap \mathsf{B} \cap \overline{C}| + |\mathsf{A} \cap \overline{B} \cap \mathsf{C}| + |\overline{A} \cap \mathsf{B} \cap \mathsf{C}| = |\mathsf{A} \cap \mathsf{B}| + |\mathsf{A} \cap \mathsf{C}| + |\mathsf{B} \cap \mathsf{C}| - 3|\mathsf{A} \cap \mathsf{B} \cap \mathsf{C}| = 20$ -9 = 11

仅学习两门语言的学生数是11人。

五、已知 A、B、C 是三个集合,证明 $(A \cup B) - C = (A - C) \cup (B - C)$ (10 分)

证明: 因为

$$x \in (A \cup B) - C \Leftrightarrow x \in (A \cup B) - C$$

 $\Leftrightarrow x \in (A \cup B) \land x \notin C$

 $\Leftrightarrow (x \in A \lor x \in B) \land x \notin C$

 \Leftrightarrow $(x \in A \land x \notin C) \lor (x \in B \land x \notin C)$

 $\Leftrightarrow x \in (A-C) \lor x \in (B-C)$

 $\Leftrightarrow x \in (A-C) \cup (B-C)$

所以, $(A \cup B) - C = (A - C) \cup (B - C)$ 。

六、己知 R、S 是 N 上的关系,其定义如下: $R = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x + 1 \}$ 。求 R^{-1} 、R*S、S*R、 $R^{\uparrow}\{1, 2\}$ 、S[$\{1, 2\}$] (10 分)

解: $R^{-1} = \{\langle y, x \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $R*S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 + 1 \}$, $S*R = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = (x+1)^2 \}$, $R^{\uparrow} \{1,2\} = \{\langle 1,1 \rangle, \langle 2,4 \rangle \}$, $S[\{1,2\}] = \{1,4\}$.

七、证明: R 是传递的 $\Leftrightarrow R*R \subset R$ (10 分)。

证明 若 R 是传递的,则 $\langle x,y \rangle \in R*R \Rightarrow \exists z (xRz \land zSy) \Rightarrow xRc \land cSy$,由 R 是传递的得 xRy,即有 $\langle x,y \rangle \in R$,所以 $R*R \subseteq R$ 。

反之,若 $R*R\subseteq R$,则对任意的 x、y、 $z\in A$,如果 xRz 且 zRy,则 $\langle x,y\rangle\in R*R$,于是有 $\langle x,y\rangle\in R$,即有 xRy,所以 R 是传递的。

八、证明整数集 I 上的模 m 同余关系 $R=\{\langle x,y\rangle \mid x\equiv y \pmod{m}\}$ 是等价关系。其中, $x\equiv y \pmod{m}$

的含义是 x-y 可以被 m 整除 (15分)。

证明: 1) $\forall x \in I$, 因为 (x-x)/m=0, 所以 $x=x \pmod{m}$, 即 xRx。

- 2) $\forall x, y \in I$,若 xRy,则 $x \equiv y \pmod{m}$,即 $(x-y)/m = k \in I$,所以 $(y-x)/m = -k \in I$,所以 $y \equiv x \pmod{m}$,即 yRx。
- 3) ∀x,y,z∈I, 若 xRy, yRz, 则 (x-y) /m=u∈I, (y-z) /m=v∈I, 于是 (x-z) /m= (x-y+y-z) /m=u+v ∈I, 因此 xRz。

九、若 f:A→B 和 g:B→C 是双射,则 (gf) ⁻¹=f⁻¹g⁻¹ (10 分)。

证明:因为 f、g 是双射,所以 gf:A→C 是双射,所以 gf 有逆函数(gf) $^{-1}$: C→A。同理可推 f $^{-1}$ g $^{-1}$: C→A 是双射。

因为 $\langle x, y \rangle \in f^{-1}g^{-1} \Leftrightarrow$ 存在 z $(\langle x, z \rangle \in g^{-1} \land \langle z, y \rangle \in f^{-1})$ \Leftrightarrow 存在 z $(\langle y, z \rangle \in f \land \langle z, x \rangle \in g)$ $\Leftrightarrow \langle y, x \rangle \in gf \Leftrightarrow \langle x, y \rangle \in (gf)^{-1}$,所以 $(gf)^{-1} = f^{-1}g^{-1}$ 。

离散数学考试试题(B卷及答案)

- 一、证明题(10分)
- 1) $((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R) \Leftrightarrow T$

证明: 左端 \Leftrightarrow ((P \vee Q) \wedge (P \vee (Q \wedge R))) \vee ¬((P \vee Q) \wedge (P \vee R))(摩根律)

- \Leftrightarrow ((P\Q)\(\text{(P\Q)}\(\text{(P\Q)}\)\(\text{(P\Q)}\(\text{(P\Q)}\)(分配律)
- ⇔T (代入)
- 2) $\forall x \forall y (P(x) \rightarrow Q(y)) \Leftrightarrow \Leftrightarrow (\exists x P(x) \rightarrow \forall y Q(y))$

```
证明: \forall x \forall y (P(x) \rightarrow Q(y)) \Leftrightarrow \forall x \forall y (\neg P(x) \lor Q(y))
                                                    \Leftrightarrow \forall x (\neg P(x) \lor \forall y Q(y))
                                                    \Leftrightarrow \forall x \neg P(x) \lor \forall y Q(y)
                                                    \Leftrightarrow \neg \exists x P(x) \lor \forall y Q(y)
                                                    \Leftrightarrow (\exists x P(x) \rightarrow \forall y Q(y))
二、求命题公式(\neg P \rightarrow Q) \rightarrow (P \lor \neg Q)的主析取范式和主合取范式(10 分)
        \mathfrak{M}: (\neg P \rightarrow Q) \rightarrow (P \vee \neg Q) \Leftrightarrow \neg (\neg P \rightarrow Q) \vee (P \vee \neg Q)
                                                      \Leftrightarrow \neg (P \lor Q) \lor (P \lor \neg Q)
                                                      \Leftrightarrow (\neg P \land \neg Q) \lor (P \lor \neg Q)
                                                      \Leftrightarrow (\neg P \lor P \lor \neg Q) \land (\neg Q \lor P \lor \neg Q)
                                                      \Leftrightarrow (P \vee \neg Q)
                                                      ⇔M1
                                                      \Leftrightarrowm0\veem2\veem3
三、推理证明题(10分)
1) (P \rightarrow (Q \rightarrow S)) \land (\neg R \lor P) \land Q \Rightarrow R \rightarrow S
        证明: (1)R
         (2) \neg R \lor P
         (3) P
         (4) P \rightarrow (Q \rightarrow S)
         (5)Q\rightarrow S
         (6)Q
         (7) S
         (8) R \rightarrow S
2) \exists x (A(x) \rightarrow \forall y B(y)), \forall x (B(x) \rightarrow \exists y C(y)) \vdash \forall x A(x) \rightarrow \exists y C(y).
        证明: (1) \exists x (A(x) \rightarrow \forall y B(y))
                                                                                                                                 Р
             (2) A(a) \rightarrow \forall y B(y)
                                                                                                                         T(1), ES
             (3) \forall x (B(x) \rightarrow \exists y C(y))
                                                                                                                         Р
             (4) \forall x (B(x) \rightarrow C(c))
                                                                                                                         T(3), ES
             (5)B(b) \rightarrow C(c)
                                                                                                                         T(4), US
             (6) A(a) \rightarrow B(b)
                                                                                                                         T(2), US
             (7)A(a) \rightarrow C(c)
                                                                                                                         T(5)(6), I
             (8) \forall x A(x) \rightarrow C(c)
                                                                                                                          T(7), UG
             (9) \forall x A(x) \rightarrow \exists y C(y)
                                                                                                                          T(8), EG
```

四、只要今天天气不好,就一定有考生不能提前进入考场,当且仅当所有考生提前进入考场,

考试才能准时进行。所以,如果考试准时进行,那么天气就好(15分)。

解 设 P: 今天天气好,Q: 考试准时进行,A(e): e 提前进入考场,个体域: 考生的集合,则命题可符号化为: $\neg P \rightarrow \exists x \neg A(x)$, $\forall x A(x) \leftrightarrow Q \vdash Q \rightarrow P$ 。

$(1) \neg P \rightarrow \exists x \neg A (x)$	P
$(2) \neg P \rightarrow \neg \forall x A (x)$	T(1), E
$(3) \forall x A (x) \rightarrow P$	T(2), E
$(4) \forall x A(x) \leftrightarrow Q$	P
$(5) (\forall x A(x) \rightarrow Q) \land (Q \rightarrow \forall x A(x))$	T(4), E
$(6) Q \rightarrow \forall x A (x)$	T(5), I
$(7) Q \rightarrow P$	T(6)(3), I

五、已知 A、B、C 是三个集合,证明 A \cap (B \cup C) = (A \cap B) \cup (A \cap C) (10 分)

证明: $x \in A \cap (B \cup C) \Leftrightarrow x \in A \land x \in (B \cup C) \Leftrightarrow x \in A \land (x \in B \lor x \in C) \Leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C) \Leftrightarrow x \in (A \cap B) \lor x \in (A \cap B) \cup (A \cap C)$ ∴ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

六、A={ x_1, x_2, x_3 }, B={ y_1, y_2 }, R={ $\langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle$, $\langle x_3, y_2 \rangle$ }, 求其关系矩阵及关系图 (10 分)。

七、设 R={<2, 1>, <2, 5>, <2, 4>, <3, 4>, <4, 4>, <5, 2>}, 求 r(R)、s(R)和 t(R),并作出它们及 R 的关系图 (15 分)。

 $s(R) = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 1, 2 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle\}$

 $R^2=R^5=\{\langle 2,2\rangle,\langle 2,4\rangle,\langle 3,4\rangle,\langle 4,4\rangle,\langle 5,1\rangle,\langle 5,5\rangle,\langle 5,4\rangle\}$

 $R^3 = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 5, 4 \rangle\}$

 $R^4 = \{\langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 1 \rangle, \langle 5, 5 \rangle, \langle 5, 4 \rangle\}$

 $t(R) = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 2, 2 \rangle, \langle 5, 1 \rangle, \langle 5, 4 \rangle, \langle 5, 5 \rangle\}$

八、设 R_1 是A上的等价关系, R_2 是B上的等价关系, $A \neq \emptyset$ 且 $B \neq \emptyset$ 。关系R满足:〈〈 x_1 , y_1 〉,〈 x_2 , y_2 〉〉 $\in R \Leftrightarrow \langle x_1, x_2 \rangle \in R_1$ 且〈 $y_1, y_2 \rangle \in R_2$,证明R是 $A \times B$ 上的等价关系(10 分)。

证明 对任意的 $\langle x, y \rangle \in A \times B$,由 R_1 是 A 上的等价关系可得 $\langle x, x \rangle \in R_1$,由 R_2 是 B 上的等价关系可得 $\langle y, y \rangle \in R_2$ 。再由 R 的定义,有 $\langle x, y \rangle$, $\langle x, y \rangle \in R$,所以 R 是自反的。

对任意的 $\langle x, y \rangle$ 、 $\langle u, v \rangle \in A \times B$,若 $\langle x, y \rangle R \langle u, v \rangle$,则 $\langle x, u \rangle \in R_1$ 且 $\langle y, v \rangle \in R_2$ 。由 R_1 对称得 $\langle u, x \rangle \in R_1$,由 R_2 对称得 $\langle v, y \rangle \in R_2$ 。再由 R 的定义,有 $\langle \langle u, v \rangle$, $\langle x, y \rangle \rangle \in R$,即 $\langle u, v \rangle R \langle x, y \rangle$,所以 R 是对称的。

对任意的 $\langle x, y \rangle$ 、 $\langle u, v \rangle$ 、 $\langle s, t \rangle \in A \times B$,若 $\langle x, y \rangle R \langle u, v \rangle$ 且 $\langle u, v \rangle R \langle s, t \rangle$,则 $\langle x, u \rangle \in R_1$ 且 $\langle y, v \rangle \in R_2$, $\langle u, s \rangle \in R_1$ 且 $\langle v, t \rangle \in R_2$ 。由 $\langle x, u \rangle \in R_1$ 、 $\langle u, s \rangle \in R_1$ 及 R_1 的传递性

得 $\langle x, s \rangle \in R_1$, 由 $\langle y, v \rangle \in R_2$ 、 $\langle v, t \rangle \in R_2$ 及 R_2 的传递性得 $\langle y, t \rangle \in R_1$ 。再由 R 的定义,有 $\langle \langle x, v \rangle$, $\langle s, t \rangle \rangle \in R$,即 $\langle x, v \rangle R \langle s, t \rangle$,所以 R 是传递的。

综上可得,R 是 $A \times B$ 上的等价关系。

九、设 $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow A$,证明: 如果 $h \circ g \circ f = I_A$, $f \circ h \circ g = I_B$, $g \circ f \circ h = I_C$,则 f、g、h 均为双射,并求出 f^{-1} 、 g^{-1} 和 h^{-1} (10 分)。

解 因 I_A 恒等函数,由 $h \circ g \circ f = I_A$ 可得 f 是单射,h 是满射;因 I_B 恒等函数,由 $f \circ h \circ g = I_B$ 可得 g 是单射,f 是满射;因 I_C 恒等函数,由 $g \circ f \circ h = I_C$ 可得 h 是单射,g 是满射。从而 $f \circ g \circ h$ 均为双射。

由 $h \circ g \circ f = I_A$,得 $f^{-1} = h \circ g$;由 $f \circ h \circ g = I_B$,得 $g^{-1} = f \circ h$;由 $g \circ f \circ h = I_C$,得 $h^{-1} = g \circ f \circ h$

离散数学试题(A 卷及答案)

一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?(写过程)

1)
$$P \rightarrow (P \lor Q \lor R)$$
 2) $\neg (P \rightarrow Q) \land Q$ 3) $(P \rightarrow Q) \land \neg R$

解: 1)重言式; 2)矛盾式; 3)可满足式

二、(10 分) 求命题公式 $(\neg P \rightarrow Q) \rightarrow (\neg Q \lor P)$ 的主析取范式,并求成真赋值。

$$\begin{split} \text{M} \colon & (\neg P \rightarrow Q) \rightarrow (\neg Q \lor P) \Leftrightarrow (P \lor Q) \rightarrow (\neg Q \lor P) \Leftrightarrow \neg (P \lor Q) \lor (\neg Q \lor P) \\ & \Leftrightarrow (\neg P \land \neg Q) \lor \neg Q \lor P \Leftrightarrow \neg Q \lor P \Leftrightarrow ((P \lor \neg P) \land \neg Q) \lor (P \land \neg Q) \lor (P \land Q) \\ & \Leftrightarrow (\neg P \land \neg Q) \lor (P \land \neg Q) \lor (P \land \neg Q) \lor (P \land Q) \Leftrightarrow m_0 \lor m_2 \lor m_3 \end{split}$$

成真赋值为: 00、10、11。

三、 $(10 \, \text{分})$ 证明下列命题的等值关系: $(P \lor Q) \land \neg (P \land Q) \Leftrightarrow \neg (P \leftrightarrow Q)$ 证明: $(P \lor Q) \land \neg (P \land Q) \Leftrightarrow (P \lor \neg Q) \Leftrightarrow (P \land \neg Q) \lor (Q \land \neg P)$

$$\Leftrightarrow \neg ((\neg P \lor Q) \land (\neg Q \lor P)) \Leftrightarrow \neg ((P \to Q) \land (Q \to P)) \Leftrightarrow \neg (P \leftrightarrow Q)$$

四、(10分) 叙述并证明苏格拉底三段论

解: 所有人都是要死的, 苏格拉底是人, 所以苏格拉底是要死的。

符号化: F(x): x是一个人。G(x): x要死的。A: 苏格拉底。

命题符号化为 $\forall x (F(x) \rightarrow G(x)), F(a) \Rightarrow G(a)$

证明:

- (1) $\forall x (F(x) \rightarrow G(x))$ P
- (2) $F(a) \rightarrow G(a)$ T(1), US
- (3) F(a) P
- (4) G(a) T(2)(3), I
- 五、(10 分) 已知 A、B、C 是三个集合,证明 A \cap (B \cup C) = (A \cap B) \cup (A \cap C)

证明: $x \in A \cap (B \cup C) \Leftrightarrow x \in A \land x \in (B \cup C)$

 $\Leftrightarrow x \in A \land (x \in B \lor x \in C)$

 \Leftrightarrow ($x \in A \land x \in B$) \lor ($x \in A \land x \in C$)

 $\Leftrightarrow x \in (A \cap B) \ \forall x \in A \cap C$

 $\Leftrightarrow x \in (A \cap B) \cup (A \cap C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

六、 $(10 \, \text{分})$ R 为集合 X 上的二元关系,X={1, 2, 3, 4, 5, 6, 7},R={<1, 1>, <1, 2>, <2, 4>, <6, 3>, <6, 6>, <7, 1>},求:R 的等价闭包 R*(即包含 R 的最小的等价关系)。

解: R*={<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <6, 6>, <7, 7>, <1, 2>, <2, 1>, <2, 4>, <4, 2>, <6, 3>, <3, 6>, <7, 1>, <1, 7>, <1, 4>, <4, 1>, <2, 7>, <7, 2>, <7, 4>, <4, 7>}

七、 $(10 \, \text{分})$ 设函数 f: R×R→R×R,R 为实数集,f 定义为: f($\langle x, y \rangle$)= $\langle x+y, x-y \rangle$ 。1) 证明 f 是双射。

解: 1) $\forall \langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle \in \mathbb{R} \times \mathbb{R}$, 若 $f(\langle x_1, y_1 \rangle) = f(\langle x_2, y_2 \rangle)$, 即 $\langle x_1 + y_1, x_1 - y_1 \rangle = \langle x_2 + y_2, x_2 - y_2 \rangle$, 则 $x_1 + y_1 = x_2 + y_2$ 且 $x_1 - y_1 = x_2 - y_2$ 得 $x_1 = x_2$, $y_1 = y_2$ 从而 f 是单射。

2) ∀⟨p, q⟩∈R×R, 由 f (⟨x, y⟩)=⟨p, q⟩, 通过计算可得 x=(p+q)/2; y=(p-q)/2; 从 而⟨p, q⟩的原象存在, f 是满射。

八、(10 分) 设 G 是一群,H 是 G 的子群, $x \in G$,证明 $x \bullet H \bullet x^{-1} = \{x \bullet h \bullet x^{-1} | h \in H\}$ 是 G 的子群。解:由 H 非空,知 $x \bullet H \bullet X^{-1}$ 非空。

 $\forall a, b \in x \bullet H \bullet x^{-1}, 即存在 h_1, h_2 \in H, 使得 a=x \bullet h_1 \bullet x^{-1}, b=x \bullet h_2 \bullet x^{-1}, 有 a \bullet b^{-1} = (x \bullet h_1 \bullet x^{-1}) \bullet (x \bullet h_2 \bullet x^{-1})^{-1} = x \bullet h_1 \bullet x^{-1} \bullet (X^{-1})^{-1} \bullet h_2^{-1} \bullet x^{-1} = x \bullet (h_1 \bullet h_2^{-1}) \bullet x^{-1} 因 H 为 G 的子群,有 <math>h_1 \bullet h_2^{-1} = h_3 \in H$ 从而 $a \bullet b^{-1} = x \bullet h_3 \bullet x^{-1} \in x \bullet H \bullet x^{-1}$ 。所以 $x \bullet H \bullet x^{-1}$ 为子群。

九、 $(10 \, \text{分})$ 若 G 是连通平面图,且 G 的每个面的次数至少为 $1(1 \ge 3)$,则 G 的边数 m 与结点数 n 有如下关系:

$$m \le \frac{l}{l-2}(n-2)$$

证明:设 G 有 r 个面,则 $2m = \sum_{i=1}^{r} d(fi) \ge lr$, $2m \ge lr$ 。

由欧拉公式得, n-m+r=2, r=2-n+m。于是

$$m \le \frac{l}{l-2}(n-2)$$

十、(10分) 求叶的权分别为7、8、9、12、16的最优二叉树及其权。

解: 最优二叉树如图所示:

树的权为(9+12+16)×2+(7+8)×3=119

离散数学试题(B卷及答案)

一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?(写过程)

 $1) P \rightarrow (P \lor Q \lor R) \qquad 2) \neg ((Q \rightarrow P) \lor \neg P) \land (P \lor R) \qquad 3) ((\neg P \lor Q) \rightarrow R) \rightarrow ((P \land Q) \lor R)$

解: 1)重言式; 2)矛盾式; 3)可满足式

二、(10 分) 求命题公式 $(P \lor (Q \land R)) \rightarrow (P \lor Q \lor R)$ 的主析取范式,并求成真赋值。

解: $(P \lor (Q \land R)) \rightarrow (P \lor Q \lor R) \Leftrightarrow \neg (P \lor (Q \land R)) \lor P \lor Q \lor R$

- $\Leftrightarrow \neg P \land (\neg Q \lor \neg R) \lor P \lor Q \lor R$
- $\Leftrightarrow (\neg P \land \neg Q) \lor (\neg P \land \neg R) \lor (P \lor Q) \lor R$
- $\Leftrightarrow (\neg (P \lor Q) \lor (P \lor Q)) \lor (\neg P \land \neg R) \lor R$
- $\Leftrightarrow 1 \lor ((\neg P \land \neg R) \lor R) \Leftrightarrow 1$
- $\Leftrightarrow \!\! m_0 \! \vee m_1 \! \vee m_2 \! \vee m_3 \! \vee m_4 \! \vee m_5 \! \vee m_6 \! \vee m_7$

该式为重言式,全部赋值都是成真赋值。

 Ξ 、(10 分)证明 (($P \land Q \land A$) $\rightarrow C$) \land ($A \rightarrow (P \lor Q \lor C$)) \Leftrightarrow ($A \land (P \leftrightarrow Q)$) $\rightarrow C$

证明: $((P \land Q \land A) \rightarrow C) \land (A \rightarrow (P \lor Q \lor C)) \Leftrightarrow (\neg (P \land Q \land A) \lor C) \land (\neg A \lor (P \lor Q \lor C))$

 $\Leftrightarrow ((\neg P \lor \neg Q \lor \neg A) \lor C) \land ((\neg A \lor P \lor Q) \lor C)$

- $\Leftrightarrow ((\neg P \vee \neg Q \vee \neg A) \wedge (\neg A \vee P \vee Q)) \vee C$
- $\Leftrightarrow \neg ((\neg P \lor \neg Q \lor \neg A) \land (\neg A \lor P \lor Q)) \rightarrow C$
- $\Leftrightarrow (\neg (\neg P \lor \neg Q \lor \neg A) \lor \neg (\neg A \lor P \lor Q)) \rightarrow C$
- $\Leftrightarrow ((P \land Q \land A) \lor (A \land \neg P \land \neg Q)) \rightarrow C$
- $\Leftrightarrow (A \land ((P \land Q) \lor (\neg P \land \neg Q))) \rightarrow C$
- $\Leftrightarrow (A \land ((P \lor \neg Q) \land (\neg P \lor Q))) \rightarrow C$
- $\Leftrightarrow (A \land ((Q \rightarrow P) \land (P \rightarrow Q))) \rightarrow C$
- $\Leftrightarrow (A \land (P \leftrightarrow Q)) \rightarrow C$
- 四、(10 分) 个体域为 $\{1, 2\}$, 求 $\forall x \exists y (x+y=4)$ 的真值。
 - \mathbf{M} : $\forall x \exists y (x+y=4) \Leftrightarrow \forall x ((x+1=4) \lor (x+2=4))$
 - $\Leftrightarrow ((1+1=4) \lor (1+2=4)) \land ((2+1=4) \lor (2+2=4))$
 - $\Leftrightarrow (0 \lor 0) \land (0 \lor 1) \Leftrightarrow 0 \land 1 \Leftrightarrow 0$
- 五、(10 分) 对于任意集合 A, B, 试证明: $P(A) \cap P(B) = P(A \cap B)$
- 解: $\forall x \in P(A) \cap P(B)$, $x \in P(A) \coprod x \in P(B)$, 有 $x \subseteq A \coprod x \subseteq B$, 从而 $x \subseteq A \cap B$, $x \in P(A \cap B)$, 由于上述过程可逆,故 $P(A) \cap P(B) = P(A \cap B)$
- 六、(10 分) 已知 A={1, 2, 3, 4, 5}和 R={<1, 2>, <2, 1>, <2, 3>, <3, 4>, <5, 4>}, 求 r(R)、s(R)和 t(R)。
- 解: r(R)={<1, 2>, <2, 1>, <2, 3>, <3, 4>, <5, 4>, <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>}
 - $s(R) = \{(1, 2), (2, 1), (2, 3), (3, 4), (5, 4), (3, 2), (4, 3), (4, 5)\}$
- $t(R) = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle, \langle 5, 4 \rangle, \langle 1, 1 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 1, 4 \rangle\}$
- 七、(10 分) 设函数 f: $R \times R \rightarrow R \times R$, R 为实数集, f 定义为: $f(\langle x, y \rangle) = \langle x + y, x y \rangle$ 。1) 证明 f 是双射。
- 解: 1) $\forall \langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle \in \mathbb{R} \times \mathbb{R}$, 若 $f(\langle x_1, y_1 \rangle) = f(\langle x_2, y_2 \rangle)$, 即 $\langle x_1 + y_1, x_1 y_1 \rangle = \langle x_2 + y_2, x_2 y_2 \rangle$, 则 $\langle x_1 + y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$, 则 $\langle x_1 y_1 x_2 y_2 \rangle = \langle x_1 y_1 x_2 y_2 \rangle$
- 2) ∀⟨p, q⟩∈R×R, 由 f (⟨x, y⟩)=⟨p, q⟩, 通过计算可得 x=(p+q)/2; y=(p-q)/2; 从 而⟨p, q⟩的原象存在, f 是满射。
- 八、 $(10 \, \text{分}) < G$,*>是个群, $u \in G$,定义 G 中的运算 " Δ " 为 $a\Delta b = a*u^{-1}*b$,对任意 a, $b \in G$,求证: < G, Δ >也是个群。
 - 证明: 1) $\forall a, b \in G$, $a\Delta b = a*u^{-1}*b \in G$, 运算是封闭的。
 - 2) $\forall a, b, c \in G$, $(a\Delta b) \Delta c = (a*u^{-1}*b) *u^{-1}*c = a*u^{-1}* (b*u^{-1}*c) = a\Delta (b\Delta c)$, 运算是

可结合的。

- 3) ∀a∈G,设E为Δ的单位元,则aΔE=a*u⁻¹*E=a,得E=u,存在单位元u。
- 4) ∀a∈G, aΔx=a*u⁻¹*x=E, x=u*a⁻¹*u, 则 xΔa=u*a⁻¹*u*u⁻¹*a=u=E, 每个元素都有逆元。 所以⟨G, Δ>也是个群。

九、(10 分) 已知: D=<V, E>, V={1, 2, 3, 4, 5}, E={<1, 2>, <1, 4>, <2, 3>, <3, 4>, <3, 5>, <5, 1>}, 求 D 的邻接距阵 A 和可达距阵 P。

解: 1) D的邻接距阵 A和可达距阵 P如下:

十、(10分) 求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。

解: 最优二叉树为

权 = $(2+4) \times 4+6 \times 3+12 \times 2+(8+10) \times 3+14 \times 2=148$

离散数学试题(A 卷及答案)

- 一、证明题(10分)
- 1) $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$

证明: 左端⇔(¬P∧¬Q∧R)∨((Q∨P)∧R)⇔((¬P∧¬Q)∧R))∨((Q∨P)∧R)

 $\Leftrightarrow (\neg (P \lor Q) \land R) \lor ((Q \lor P) \land R) \Leftrightarrow (\neg (P \lor Q) \lor (Q \lor P)) \land R$

 \Leftrightarrow (¬(P\Q)\(P\Q))\(R\R)T\R(置换)\R

 $2) \exists x (A(x) \rightarrow B(x)) \Leftrightarrow \forall x A(x) \rightarrow \exists x B(x)$

证明 : $\exists x(A(x) \to B(x)) \Leftrightarrow \exists x(\neg A(x) \lor B(x)) \Leftrightarrow \exists x \neg A(x) \lor \exists xB(x) \Leftrightarrow \neg \forall xA(x) \lor \exists xB(x) \Leftrightarrow \forall xA(x) \to \exists xB(x)$

二、求命题公式 $(P \lor (Q \land R)) \rightarrow (P \land Q \land R)$ 的主析取范式和主合取范式 $(10 \ \beta)$ 证明: $(P \lor (Q \land R)) \rightarrow (P \land Q \land R) \Leftrightarrow \neg (P \lor (Q \land R)) \lor (P \land Q \land R))$

- $\Leftrightarrow (\neg P \land (\neg Q \lor \neg R)) \lor (P \land Q \land R)$
- $\Leftrightarrow (\neg P \land \neg Q) \lor (\neg P \land \neg R)) \lor (P \land Q \land R)$
- $\Leftrightarrow (\neg P \land \neg Q \land R) \lor (\neg P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R)) \lor (\neg P \land \neg Q \land \neg R)) \lor (P \land \neg Q \land \neg R)$

 $Q \wedge R$

 \Leftrightarrow m0 \vee m1 \vee m2 \vee m7

⇔M3∨M4∨M5∨M6

- 三、推理证明题(10分)
- 2) $C \lor D$, $(C \lor D) \to \neg E$, $\neg E \to (A \land \neg B)$, $(A \land \neg B) \to (R \lor S) \Rightarrow R \lor S$

证明: (1) (C∨D)→¬E

- (2) $\neg E \rightarrow (A \land \neg B)$
- (3) $(C \lor D) \rightarrow (A \land \neg B)$
- $(4) (A \land \neg B) \rightarrow (R \lor S)$
- (5) $(C \lor D) \rightarrow (R \lor S)$
- (6) C\D
- $(7) R \vee S$
- 2) $\forall x (P(x) \rightarrow Q(y) \land R(x)), \exists x P(x) \Rightarrow Q(y) \land \exists x (P(x) \land R(x))$

证明 (1) ∃xP(x)

- (2) P(a)
- $(3) \forall x (P(x) \rightarrow Q(y) \land R(x))$
- $(4) P(a) \rightarrow Q(y) \land R(a)$
- $(5)Q(y) \wedge R(a)$
- (6)Q(y)
- (7) R(a)
- (8) P(a)
- $(9) P(a) \wedge R(a)$
- $(10) \exists x (P(x) \land R(x))$
- $(11)Q(y) \land \exists x (P(x) \land R(x))$

四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍(10分)。

证明 设 a_1 , a_2 , … , a_{m+1} 为任取的 m+1 个整数,用 m 去除它们所得余数只能是 0,1,… , m-1 ,由抽屉原理可知, a_1 , a_2 ,… , a_{m+1} 这 m+1 个整数中至少存在两个数 a_s 和 a_t ,它们被 m 除所得余数相同,因此 a_s 和 a_t 的差是 m 的整数倍。

五、已知 A、B、C 是三个集合,证明 A-(BUC)=(A-B) \cap (A-C) (15 分)

证明: 证明: $x \in A^-$ (BUC) $\Leftrightarrow x \in A \land x \notin (B \cup C) \Leftrightarrow x \in A \land (x \notin B \land x \notin C) \Leftrightarrow (x \in A \land x \notin B) \land (x \in A \land x \notin C) \Leftrightarrow x \in (A - B) \land x \in (A - C) \Leftrightarrow x \in (A - B) \cap (A - C)$... A^- (BUC) = (A-B) \cap (A-C)

六、已知 R、S 是 N 上的关系,其定义如下: $R = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$, $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$ $S = \{\langle x, y \rangle | x, y \in \mathbb{N} \land y = x^2 \}$

解: $R^{-1} = \{\langle y, x \rangle | x, y \in N \land y = x^2 \}$, $R*S = \{\langle x, y \rangle | x, y \in N \land y = x^2 + 1 \}$, $S*R = \{\langle x, y \rangle | x, y \in N \land y = (x+1)^2 \}$,

七、若 f:A→B 和 g:B→C 是双射,则 (gf) $^{-1}$ =f $^{-1}$ g $^{-1}$ (10 分)。

证明: 因为 f、g 是双射,所以 gf: A→C 是双射,所以 gf 有逆函数 $(gf)^{-1}$: C→A。同理可推 $f^{-1}g^{-1}$: C→A 是双射。

因为 $\langle x, y \rangle \in f^{-1}g^{-1} \Leftrightarrow$ 存在 $z (\langle x, z \rangle \in g^{-1} \wedge \langle z, y \rangle \in f^{-1}) \Leftrightarrow$ 存在 $z (\langle y, z \rangle \in f \wedge \langle z, x \rangle \in g)$ $\Leftrightarrow \langle y, x \rangle \in gf \Leftrightarrow \langle x, y \rangle \in (gf)^{-1}, 所以 (gf)^{-1} = f^{-1}g^{-1}.$

 $R^{\uparrow}\{1,2\}=\{\langle 1,1\rangle,\langle 2,4\rangle\}, S[\{1,2\}]=\{1,4\}.$

八、(15分)设 $\langle A, * \rangle$ 是半群,对A中任意元a和b,如 $a \neq b$ 必有 $a*b \neq b*a$,证明:

- (1)对A中每个元a,有a*a=a。
- (2)对A中任意元a和b,有a*b*a=a。
- (3) 对 A 中任意元 a、b 和 c,有 a*b*c=a*c。

证明 由题意可知, 若 a*b=b*a, 则必有 a=b。

- (1) 由 (a*a)*a=a*(a*a),所以 a*a=a。
- (2) 由 a*(a*b*a) = (a*a)*(b*a) = a*b*(a*a) = (a*b*a)*a,所以有 a*b*a = a。
- (3) 由 (a*c)*(a*b*c) = (a*c*a)*(b*c) = a*(b*c) = (a*b)*c = (a*b)*(c*a*c) = (a*b*c)*(a*c),所以有 a*b*c=a*c。

九、给定简单无向图 $G=\langle V, E \rangle$,且|V|=m,|E|=n。试证: 若 $n \geq C_{m-1}^2 + 2$,则 G 是哈密尔顿图(10 分)。

证明 若 $n \ge C_{m-1}^2 + 2$,则 $2n \ge m^2 - 3m + 6$ (1)。

若存在两个不相邻结点u、v使得 d(u)+d(v)< m,则有 $2n=\sum_{w\in V}d(w)< m+(m-2)(m-3)$

 $+m=m^2-3m+6$,与(1)矛盾。所以,对于 G 中任意两个不相邻结点 $u \times v$ 都有 $d(u)+d(v) \ge m$,所以 G 是哈密尔顿图。

离散数学试题(B卷及答案)

一、证明题(10分)

1) $((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R) \Leftrightarrow T$

证明: 左端 \Leftrightarrow ((P \vee Q) \wedge (P \vee (Q \wedge R))) \vee ¬((P \vee Q) \wedge (P \vee R)) (摩根律) \Leftrightarrow ((P \vee Q) \wedge (P \vee R)) \vee ¬((P \vee Q) \wedge (P \vee R)) \vee ¬((P \vee Q) \wedge (P \vee R)) \vee ¬((P \vee Q) \wedge (P \vee R))

(等幂律) ⇔T (代入)

2) $\forall x (P(x) \rightarrow Q(x)) \land \forall x P(x) \Leftrightarrow \forall x (P(x) \land Q(x))$

证明: $\forall x (P(x) \rightarrow Q(x)) \land \forall x P(x) \Leftrightarrow \forall x ((P(x) \rightarrow Q(x) \land P(x)) \Leftrightarrow \forall x ((\neg P(x) \lor Q(x) \land P(x))) \Leftrightarrow \forall x (P(x) \land Q(x)) \Leftrightarrow \forall x P(x) \land x P(x) \land \forall x P(x) \land x P(x)$

二、求命题公式 $(\neg P \rightarrow Q) \rightarrow (P \lor \neg Q)$ 的主析取范式和主合取范式(10 分)

 $\text{$R:$} \quad (\neg P \rightarrow Q) \rightarrow (P \lor \neg Q) \Leftrightarrow \neg (\neg P \rightarrow Q) \lor (P \lor \neg Q) \Leftrightarrow \neg (P \lor Q) \lor (P \lor \neg Q) \Leftrightarrow (\neg P \land \neg Q) \lor (P \lor \neg Q) \Leftrightarrow \neg (P \lor Q) \lor (P \lor \neg Q) \Leftrightarrow \neg (P \lor Q) \lor \neg (P \lor Q) \lor \neg (P \lor Q) \lor \neg (P \lor Q) \Leftrightarrow \neg (P \lor Q) \lor \neg$

- $\vee \neg Q) \Leftrightarrow (\neg P \vee P \vee \neg Q) \wedge (\neg Q \vee P \vee \neg Q) \Leftrightarrow (P \vee \neg Q) \Leftrightarrow M1 \Leftrightarrow m0 \vee m2 \vee m3$
- 三、推理证明题(10分)
- 1) $(P \rightarrow (Q \rightarrow S)) \land (\neg R \lor P) \land Q \Rightarrow R \rightarrow S$

证明: (1) R 附加前提

- $(2) \neg R \lor P$
- Р
- (3) P T(1)(2), I
- $(4) P \rightarrow (Q \rightarrow S)$ P
- $(5)Q \rightarrow S$ T(3)(4), I
- (6)Q
- (7) S T(5) (6), I
- $(8) R \rightarrow S$ CP
- 2) $\forall x (P(x) \lor Q(x)), \forall x \neg P(x) \Rightarrow \exists x Q(x)$

证明: (1)∀x¬P(x)

- $(2) \neg P(c)$ T(1), US
- $(3) \forall x (P(x) \lor Q(x)) \qquad P$
- $(4) P(c) \vee Q(c)$ T(3), US
- (5)Q(c) T(2)(4), I
- (6) $\exists x \ Q(x)$ T(5), EG

四、例 5 在边长为 1 的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过 1/8(10 分)。

证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。

五、己知 A、B、C 是三个集合,证明 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (10 分)

证明: $x \in A \cap (B \cup C) \Leftrightarrow x \in A \land x \in (B \cup C) \Leftrightarrow x \in A \land (x \in B \lor x \in C) \Leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C) \Leftrightarrow x \in (A \cap B) \lor x \in (A \cap B) \cup (A \cap C)$ ∴ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

六、 π ={A₁, A₂, ···, A_n} 是集合 A 的一个划分,定义 R={<a, b>|a、b∈A_i, I=1, 2, ···, n}, 则 R 是 A 上的等价关系(15 分)。

证明: $\forall a \in A$ 必有 i 使得 $a \in A_i$, 由定义知 aRa, 故 R 自反。

∀a, b∈A, 若 aRb , 则 a, b∈A, 即 b, a∈A, 所以 bRa, 故 R 对称。

 $\forall a, b, c \in A$,若 aRb 且 bRc,则 $a, b \in A_i$ 及 $b, c \in A_j$ 。因为 $i \neq j$ 时 $A_i \cap A_j = \Phi$,故 i = j,即 $a, b, c \in A_i$,所以 aRc,故 R 传递。

总之R是A上的等价关系。

七、若 f:A→B 是双射,则 f⁻¹:B→A 是双射 (15 分)。

证明:对任意的 $x \in A$,因为 f 是从 A 到 B 的函数,故存在 $y \in B$,使 $\langle x, y \rangle \in f$, $\langle y, x \rangle \in f^{-1}$ 。所以, f^{-1} 是满射。

对任意的 $x \in A$,若存在 $y_1, y_2 \in B$,使得 $\langle y_1, x \rangle \in f^{-1}$ 且 $\langle y_2, x \rangle \in f^{-1}$,则有 $\langle x, y_1 \rangle \in f$ 且 $\langle x, y_2 \rangle$ $\in f$ 。因为 f 是函数,则 $y_1 = y_2$ 。所以, f^{-1} 是单射。

因此 f⁻¹是双射。

八、设 $\langle G, * \rangle$ 是群, $\langle A, * \rangle$ 和 $\langle B, * \rangle$ 是 $\langle G, * \rangle$ 的子群,证明: 若 $A \cup B = G$,则 A = G 或 B = G(10分)。

证明 假设 $A \neq G$ 且 $B \neq G$,则存在 $a \in A$, $a \notin B$,且存在 $b \in B$, $b \notin A$ (否则对任意的 $a \in A$, $a \in B$,从而 $A \subset B$,即 $A \cup B = B$,得 B = G,矛盾。)

对于元素 $a*b \in G$,若 $a*b \in A$,因 A 是子群, $a^{-1} \in A$,从而 $a^{-1} * (a*b) = b \in A$,所以矛盾,故 $a*b \notin A$ 。同理可证 $a*b \notin B$,综合有 $a*b \notin A \cup B = G$ 。

综上所述,假设不成立,得证A=G或B=G。

九、若无向图 G 是不连通的,证明 G 的补图 \overline{G} 是连通的 (10 分)。

证明 设无向图 G 是不连通的,其 k 个连通分支为 G_1 、 G_2 、 … 、 G_k 。 任取结点 u 、 v $\in G$,若 u 和 v 不在图 G 的同一个连通分支中,则 [u , v] 不是图 G 的边,因而 [u , v] 是图 \overline{G} 的边,若 u 和 v 在图 G 的同一个连通分支中,不妨设其在连通分支 G_i ($1 \le i \le k$)中,在不同于 G_i 的另一连通分支上取一结点 w ,则 [u , w] 和 [w , v] 都不是图 G 的边,,因而 [u , w] 和 [w , v] 都是 \overline{G} 的边。综上可知,不管那种情况,u 和 v 都是可达的。由 u 和 v 的任意性可知, \overline{G} 是连通的。

离散数学考试试题(A卷及答案)

一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?

- 1) $((P \rightarrow Q) \land Q) \leftrightarrow ((Q \lor R) \land Q)$
- $2)\neg ((Q\rightarrow P) \lor \neg P) \land (P \lor R)$
- 3) $((\neg P \lor Q) \to R) \to ((P \land Q) \lor R)$

解: 1) 永真式; 2) 永假式; 3) 可满足式。

二、(8 分) 个体域为 $\{1, 2\}$, 求 $\forall x \exists y (x+y=4)$ 的真值。

 \mathbf{M} : $\forall x \exists y (x+y=4) \Leftrightarrow \forall x ((x+1=4) \lor (x+2=4))$

 $\Leftrightarrow ((1+1=4) \ \lor \ (1+2=4)) \ \land \ ((2+1=4) \ \lor \ (2+1=4))$

 $\Leftrightarrow (0 \lor 0) \land (0 \lor 1)$

 $\Leftrightarrow 1 \land 1 \Leftrightarrow 0$

三、 $(8 \, \mathcal{G})$ 已知集合 A 和 B 且 |A|=n,|B|=m,求 A 到 B 的二元关系数是多少? A 到 B 的函数数是多少?

解: 因为 $|P(A \times B)|=2|A \times B|=2|A||B|=2mn$,所以 A 到 B 的二元关系有 2mn 个。因为|BA|=|B||A|=mn,所以 A 到 B 的函数 mn 个。

四、(10 分) 已知 A={1,2,3,4,5}和 R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R) 和 t(R)。

 \mathbf{M} : $\mathbf{r}(\mathbf{R}) = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle, \langle 5, 4 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle, \langle 5, 5 \rangle\}$

 $s(R) = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle, \langle 5, 4 \rangle, \langle 3, 2 \rangle, \langle 4, 3 \rangle, \langle 4, 5 \rangle\}$

 $t(R) = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle, \langle 5, 4 \rangle, \langle 1, 1 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 1, 4 \rangle\}$

五、(10分)75个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20人这三种东西都乘过,其中55人至少乘坐过其中的两种。若每样乘坐一次的费用是0.5元,公园游乐场总共收入70元,求有多少儿童没有乘坐过其中任何一种。

解 设 A 、 B 、 C 分别表示骑旋转木马、坐滑行铁道、乘宇宙飞船的儿童组成的集合, $|A\cap B\cap C|=20$, $|A\cap B|+|A\cap C|+|B\cap C|-2|A\cap B\cap C|=55$, |A|+|B|+|C|=70/0.5=140。

由容斥原理,得

 $|\ A \cup B \cup C\ | = |\ A\ | + |\ B\ | + |\ C\ | - |\ A \cap B\ | - |\ A \cap C\ | - |\ B \cap C\ | + |\ A \cap B\ \cap C\ |$

所以

 $|\overline{A} \cap \overline{B} \cap \overline{C}| = 75 - |A \cup B \cup C| = 75 - (|A| + |B| + |C|) + (|A \cap B| + |A|) + (|A \cap B| + |A|) + (|A \cap B \cap C| + |B \cap C| - 2|A \cap B \cap C|) + |A \cap B \cap C| = 75 - 140 + 55 + 20 = 10$

没有乘坐过其中任何一种的儿童共10人。

六、 $(12 \, \mathcal{G})$ 已知 R 和 S 是非空集合 A 上的等价关系,试证: 1) R \cap S 是 A 上的等价关系; 2) 对 $a \in A$, $[a]_{R \cap S} = [a]_R \cap [a]_S$ 。

解: $\forall x \in A$,因为 R 和 S 是自反关系,所以 $\langle x, x \rangle \in R$ 、 $\langle x, x \rangle \in S$,因而 $\langle x, x \rangle \in R \cap S$,故 R \cap S 是自反的。

 $\forall x, y \in A$,若 $\langle x, y \rangle \in R \cap S$,则 $\langle x, y \rangle \in R$ 、 $\langle x, y \rangle \in S$,因为 R 和 S 是对称关系,所以因 $\langle y, x \rangle \in R$ 、 $\langle y, x \rangle \in S$,因而 $\langle y, x \rangle \in R \cap S$,故 R \cap S 是对称的。

 \forall x、y、z \in A,若 \langle x,y \rangle \in R \cap S 且 \langle y,z \rangle \in R \cap S ,则 \langle x,y \rangle \in R、 \langle x,y \rangle \in S 且 \langle y,z \rangle \in R、 \langle x,z \rangle \in S,因为 R 和 S 是传递的,所以因 \langle x,z \rangle \in R、 \langle x,z \rangle \in S,因而 \langle x,z \rangle \in R \cap S 是传递的。

总之 R∩S 是等价关系。

2) 因为 $x \in [a]_{R \cap S} \Leftrightarrow \langle x, a \rangle \in R \cap S \Leftrightarrow \langle x, a \rangle \in R \wedge \langle x, a \rangle \in S \Leftrightarrow x \in [a]_{R} \wedge x \in [a]_{R$

所以[a]_{ROS}=[a]_R∩[a]_S。

七(10 分)设 A、B、C、D 是集合, f 是 A 到 B 的双射, g 是 C 到 D 的双射, 令 h: $A \times C \rightarrow B$ $\times D$ 且 $\forall \langle a, c \rangle \in A \times C$, $h(\langle a, c \rangle) = \langle f(a), g(c) \rangle$ 。证明 h 是双射。

证明: 1) 先证 h 是满射。

 $\forall \langle b, d \rangle \in B \times D$,则 $b \in B$, $d \in D$,因为 f 是 A 到 B 的双射,g 是 C 到 D 的双射,所以存在 $a \in A$, $c \in C$,使得 f(a) = b,f(c) = d,亦即存在 $\langle a, c \rangle \in A \times C$,使得 $h(\langle a, c \rangle) = \langle f(a), g(c) \rangle = \langle b, d \rangle$,所以 h 是满射。

2) 再证 h 是单射。

 $\forall \langle a1, c1 \rangle$ 、 $\langle a2, c2 \rangle \in A \times C$, 若 h($\langle a1, c1 \rangle$) = h($\langle a2, c2 \rangle$),则 $\langle f(a1), g(c1) \rangle$ = $\langle f(a2), g(c2) \rangle$,所以 f(a1) = f(a2),g(c1) = g(c2),因为 f 是 A 到 B 的双射,g 是 C 到 D 的双射,所以 a1 = a2,c1 = c2,所以 $\langle a1, c1 \rangle$ = $\langle a2, c2 \rangle$,所以 h 是单射。

综合 1) 和 2), h 是双射。

八、 $(12 \, \text{分})$ < G, *> 是个群, $u \in G$,定义 G 中的运算 " Δ " 为 $a\Delta b = a*u-1*b$,对任意 $a, b \in G$,求证:< G, Δ >也是个群。

证明: 1) $\forall a, b \in G$, $a\Delta b = a*u-1*b \in G$, 运算是封闭的。

- 2) ∀a, b, c∈G, (aΔb) Δc= (a*u-1*b) *u-1*c=a*u-1* (b*u-1*c) =aΔ (bΔc), 运算 是可结合的。
 - 3) ∀a∈G, 设 E 为Δ的单位元,则 aΔE=a*u-1*E=a,得 E=u,存在单位元。
- 4)∀a∈G, aΔx=a*u-1*x=E, x=u*a-1*u, 则 xΔa=u*a-1*u*u-1*a=u=E, 每个元素都有逆元。

所以〈G, Δ〉也是个群。

九、(10 分) 已知: D=<V, E>, V={1, 2, 3, 4, 5}, E={<1, 2>, <1, 4>, <2, 3>, <3, 4>, <3, 5>, <5, 1>}, 求 D 的邻接距阵 A 和可达距阵 P。

解: D的邻接距阵 A和可达距阵 P如下:

十、(10分)求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。

解: 最优二叉树为

权=148

离散数学考试试题(B卷及答案)

一、(10 分) 求命题公式 $\neg(P \land Q) \leftrightarrow \neg(\neg P \rightarrow R)$ 的主合取范式。

 $\mathbf{M}: \neg (P \land Q) \leftrightarrow \neg (\neg P \rightarrow R) \Leftrightarrow (\neg (P \land Q) \rightarrow \neg (\neg P \rightarrow R)) \land (\neg (\neg P \rightarrow R) \rightarrow \neg (P \land Q))$

- $\Leftrightarrow ((P \land Q) \lor (\neg P \land \neg R)) \land ((P \lor R) \lor (\neg P \lor \neg Q))$
- \Leftrightarrow $(P \land Q) \lor (\neg P \land \neg R)$
- $\Leftrightarrow (P \vee \neg R) \wedge (Q \vee \neg P) \wedge (Q \vee \neg R)$
- $\Leftrightarrow (P \lor Q \lor \neg R) \land (P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R)$
- $\Leftrightarrow M_1 \land M_3 \land M_4 \land M_5$
- 二、(8分)叙述并证明苏格拉底三段论

解: 所有人都是要死的, 苏格拉底是人, 所以苏格拉底是要死的。

符号化: F(x): x 是一个人。G(x): x 要死的。A: 苏格拉底。

命题符号化为 $\forall x (F(x) \rightarrow G(x)), F(a) ⇒ G(a)$

证明:

- (1) $\forall x (F(x) \rightarrow G(x))$ P
- $(2) F(a) \rightarrow G(a)$

T(1), US

(3) F(a)

Р

(4) G(a)

T(2)(3), I

三、(8 分) 已知 A、B、C 是三个集合,证明 A \cap (B \cup C) = (A \cap B) \cup (A \cap C)

证明: $x \in A \cap (B \cup C) \Leftrightarrow x \in A \land x \in (B \cup C)$

 $\Leftrightarrow x \in A \land (x \in B \lor x \in C)$

 \Leftrightarrow ($x \in A \land x \in B$) \lor ($x \in A \land x \in C$)

 $\Leftrightarrow x \in (A \cap B) \ \forall x \in A \cap C$

 $\Leftrightarrow x \in (A \cap B) \cup (A \cap C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

四、(10 分) 已知 R 和 S 是非空集合 A 上的等价关系,试证: 1) R \cap S 是 A 上的等价关系; 2) 对 $a \in A$, $[a]_{R \cap S} = [a]_R \cap [a]_S$ 。

解: $\forall x \in A$,因为 R 和 S 是自反关系,所以 $\langle x, x \rangle \in R$ 、 $\langle x, x \rangle \in S$,因而 $\langle x, x \rangle \in R \cap S$,故 R \cap S 是自反的。

 $\forall x, y \in A$, 若 $\langle x, y \rangle \in R \cap S$, 则 $\langle x, y \rangle \in R$, $\langle x, y \rangle \in S$, 因为 R 和 S 是对称关系,所以因

 $\langle y, x \rangle \in \mathbb{R}, \langle y, x \rangle \in \mathbb{S}, 因而 \langle y, x \rangle \in \mathbb{R} \cap \mathbb{S}, 故 \mathbb{R} \cap \mathbb{S}$ 是对称的。

 \forall x、y、z \in A,若 \langle x,y \rangle \in R \cap S 且 \langle y,z \rangle \in R \cap S,则 \langle x,y \rangle \in R、 \langle x,y \rangle \in S 且 \langle y,z \rangle \in R、 \langle x,z \rangle \in S,因为 R 和 S 是传递的,所以因 \langle x,z \rangle \in R、 \langle x,z \rangle \in S,因而 \langle x,z \rangle \in R \cap S 是传递的。

总之 R∩S 是等价关系。

2) 因为 $x \in [a]_{R \cap S} \Leftrightarrow \langle x, a \rangle \in R \cap S \Leftrightarrow$

 $\langle x, a \rangle \in \mathbb{R} \land \langle x, a \rangle \in \mathbb{S} \Leftrightarrow x \in [a]_{\mathbb{R}} \land x \in [a]_{\mathbb{S}} \Leftrightarrow x \in [a]_{\mathbb{R}} \cap [a]_{\mathbb{S}}$

所以[a]_{R∩S}=[a]_R∩[a]_S。

五、(10 分) 设 $A = \{a, b, c, d\}$, $R \neq A$ 上的二元关系,且 $R = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle\}$, 求 r(R)、s(R) 和 t(R)。

 $R = \{(a, b), (b, a), (b, c), (c, d), (a, a), (b, b), (c, c), (d, d)\}$

$$s(R) = R \cup R^{-1} = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle c, b \rangle, \langle d, c \rangle\}$$

$$R^2 = \{\langle a, a \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle b, d \rangle\}$$

$$R^3 = \{\langle a, b \rangle, \langle a, d \rangle, \langle b, a \rangle, \langle b, c \rangle\}$$

$$R^4 = \{\langle a, a \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle b, d \rangle\} = R^2$$

$$t(R) = \bigcup_{i=1}^{\infty} R^{i} = \{\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle a, a \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle b, d \rangle,$$

 $\langle a, d \rangle$

六、(15分) 设 A、B、C、D 是集合, f 是 A 到 B 的双射, g 是 C 到 D 的双射, 令 h: A×C→B ×D 且 \forall <a, c> \in A×C, h(<a, c>) = <f(a), g(c)>。证明 h 是双射。

证明: 1) 先证 h 是满射。

 $\forall \langle b, d \rangle \in B \times D$,则 $b \in B$, $d \in D$,因为 f 是 A 到 B 的双射, g 是 C 到 D 的双射,所以存在 $a \in A$, $c \in C$,使得 f(a) = b, f(c) = d,亦即存在 $\langle a, c \rangle \in A \times C$,使得 $h(\langle a, c \rangle) = \langle f(a), g(c) \rangle = \langle b, d \rangle$,所以 h 是满射。

2) 再证 h 是单射。

 $\forall \langle a1, c1 \rangle$ 、 $\langle a2, c2 \rangle \in A \times C$,若 h($\langle a1, c1 \rangle$) = h($\langle a2, c2 \rangle$),则 $\langle f(a1), g(c1) \rangle$ = $\langle f(a2), g(c2) \rangle$,所以 f(a1) = f(a2),g(c1) = g(c2),因为 f 是 A 到 B 的双射,g 是 C 到 D 的双射,所以 a1=a2,c1=c2,所以 $\langle a1, c1 \rangle$ = $\langle a2, c2 \rangle$,所以 h 是单射。

综合 1) 和 2), h 是双射。

七、 $(12 \, f)$ 设(G, *) 是群, $H \in G$ 的非空子集,证明(H, *) 是(G, *) 的子群的充要条件是若 (G, *) (H, *)

证明: $\Rightarrow \forall a, b \in H f b^{-1} \in H$, 所以 $a*b^{-1} \in H$.

⇐∀a∈H, 则 e=a*a⁻¹∈H

 $a^{-1}=e*a^{-1}\in H$

- $: a, b ∈ H \not B b^{-1} ∈ H, : a*b=a* (b^{-1})^{-1} ∈ H$
- $:H_{C}$ 且 H≠Φ, ∴*在 H 上满足结合律
- ∴ ⟨H, *> 是 ⟨G, *> 的子群。
- 八、(10分)设 G=<V, E>是简单的无向平面图,证明 G至少有一个结点的度数小于等于 5。

解:设 G 的每个结点的度数都大于等于 6,则 $2|E|=\Sigma d(v) \ge 6|V|$,即 $|E|\ge 3|V|$,与简单无向平面图的 $|E|\le 3|V|-6$ 矛盾,所以 G 至少有一个结点的度数小于等于 5。

九. G=〈A,*〉, A={a,b,c},*的运算表为: (写过程,7分)

- (1) G是否为阿贝尔群?
- (2) 找出 G 的单位元; (3) 找出 G 的幂等元 (4) 求 b 的逆元和 c 的逆元

解:
$$(1)$$
 $(a*c)*(a*c)=c*c=b=a*b=(a*a)*(c*c)$

$$(a*b)*(a*b)=b*b=c=a*c=(a*a)*(b*b)$$

$$(b*c)*(b*c)=a*a=a=c*b=(b*b)*(c*c)$$

所以 G 是阿贝尔群

- (2) 因为 a*a=a a*b=b*a=b a*c=c*a=c 所以 G 的单位元是 a
- (3) 因为 a*a=a 所以 G 的幂等元是 a
- (4) 因为 b*c=c*b=a, 所以 b 的逆元是 c 且 c 的逆元是 b
- 十、(10分)求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。

解: 最优二叉树为

权=148

离散数学考试试题(A卷及答案)

一、(10分)

(1) 证明 $(P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow (P \rightarrow R)$

(2) 求 $(P \lor Q) \rightarrow R$ 的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。

解: (1) 因为
$$((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

$$\Leftrightarrow \neg ((\neg P \lor Q) \land (\neg Q \lor R)) \lor (\neg P \lor R)$$

$$\Leftrightarrow (P \land \neg Q) \lor (Q \land \neg R) \lor \neg P \lor R$$

$$\Leftrightarrow$$
 $(P \land \neg Q) \lor ((Q \lor \neg P \lor R) \land (\neg R \lor \neg P \lor R))$

$$\Leftrightarrow (P \land \neg Q) \lor (Q \lor \neg P \lor R)$$

$$\Leftrightarrow (P \lor Q \lor \neg P \lor R) \land (\neg Q \lor Q \lor \neg P \lor R)$$

 \Leftrightarrow T

所以, $(P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow (P \rightarrow R)$ 。

(2) $(P \lor Q) \rightarrow R \Leftrightarrow \neg (P \lor Q) \lor R \Leftrightarrow (\neg P \land \neg Q) \lor R$

$$\Leftrightarrow (\neg P \lor (Q \land \neg Q) \lor R) \land ((P \land \neg P) \lor \neg Q \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor \neg Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor R)$$

$$\Leftrightarrow M_2 \wedge M_4 \wedge M_6$$

$$\Leftrightarrow m_0 \vee m_1 \vee m_3 \vee m_5$$

所以, 其相应的成真赋值为 000、001、011、101、111: 成假赋值为: 010、100、110。

二、 $(10 \, \mathcal{G})$ 分别找出使公式 $\forall x(P(x) \rightarrow \exists y(Q(y) \land R(x, y)))$ 为真的解释和为假的解释。

解: 设论域为{1,2}。

若
$$P(1)=P(2)=T$$
, $Q(1)=Q(2)=F$, $R(1, 1)=R(1, 2)=R(2, 1)=R(2, 2)=F$, 则

 $\forall x (P(x) \rightarrow \exists y (Q(y) \land R(x, y)))$

$$\Leftrightarrow \forall x (P(x) \rightarrow ((Q(1) \land R(x, 1)) \lor (Q(2) \land R(x, 2))))$$

 $\Leftrightarrow (P(1) \rightarrow ((Q(1) \land R(1, 1)) \lor (Q(2) \land R(1, 2)))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R(2, 1)))) \land (P(2) \rightarrow ((Q(2) \land R($

2))))

$$\Leftrightarrow$$
 $(T \rightarrow ((F \land F) \lor (F \land F))) \land (T \rightarrow ((F \land F) \lor (F \land F)))$

$$\Leftrightarrow (T \rightarrow F) \land (T \rightarrow F)$$

 \Leftrightarrow F

若
$$P(1)=P(2)=T$$
, $Q(1)=Q(2)=T$, $R(1, 1)=R(1, 2)=R(2, 1)=R(2, 2)=T$, 则

$$\forall x (P(x) \rightarrow \exists y (Q(y) \land R(x, y)))$$

$$\Leftrightarrow \forall x (P(x) \rightarrow ((Q(1) \land R(x, 1)) \lor (Q(2) \land R(x, 2))))$$

$$\Leftrightarrow$$
 $(P(1) \rightarrow ((Q(1) \land R(1, 1)) \lor (Q(2) \land R(1, 2)))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)) \lor (Q(2) \land R(2, 1))))) \land (P(2) \rightarrow ((Q(1) \land R(2, 1)))) \land ($

2))))

$$\Leftrightarrow (T \rightarrow ((T \land T) \lor (T \land T))) \land (T \rightarrow ((T \land T) \lor (T \land T)))$$

$$\Leftrightarrow (T \rightarrow T) \land (T \rightarrow T)$$

$$\Leftrightarrow T$$

三、(10分)

在谓词逻辑中构造下面推理的证明:每个喜欢步行的人都不喜欢做汽车,每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车,因而有的人不喜欢步行。

解 论域: 所有人的集合。A(x): x喜欢步行; B(x): x喜欢坐汽车; C(x): x喜欢骑自行车; 则推理化形式为:

 $\forall x(A(x) \rightarrow \neg B(x)), \ \forall x(B(x) \lor C(x)), \ \neg \forall x C(x) \vdash \exists x \neg A(x)$ 下面给出证明:

(1) $\neg \forall x C(x)$ P (2) $\exists x \neg C(x)$ T(1), E

 $(3)\neg C(c)$ T(2), ES

 $(4) \forall x (B(x)) \lor C(x))$ P

 $(5) B(c) \lor C(c)$ T(4), US

(6) B(c) T(3)(5), I

 $(7) \forall x (A(x) \rightarrow \neg B(x))$

 $(8) A(c) \rightarrow \neg B(c)$ T(7), US

 $(9) \neg A(c)$ T(6)(8), I

 $(10) \exists x \neg A(x)$ T(9), EG

四、(10分)

下列论断是否正确? 为什么?

- (1) 若 $A \cup B = A \cup C$,则 B = C。
- (2) 若 $A \cap B = A \cap C$,则 B = C。
- (3) 若 $A \oplus B = A \oplus C$,则 B = C。

解 (1)不一定。例如,令 $A = \{1\}$, $B = \{1, 2\}$, $C = \{2\}$,则 $A \cup B = A \cup C$,但B = C不成立。

- (2)不一定。例如,令 $A=\{1\}$, $B=\{1,\ 2\}$, $C=\{1,\ 3\}$,则 $A\cap B=A\cap C$,但B=C不成立。
- (3) 成立。因为若 $A \oplus B = A \oplus C$,对任意的 $x \in B$,当 $x \in A$ 时,有 $x \in A \cap B \Rightarrow x \notin A \oplus B \Rightarrow x \notin A \oplus C = (A \cup C) (A \cap C) \Rightarrow x \in A \cap C \Rightarrow x \in C$,所以 $B \subseteq C$;当 $x \notin A$ 时,有 $x \notin A \cap B$,而 $x \in B \Rightarrow x \in A \cup B$,所以 $x \in A \cup B A \cap B = A \oplus B \Rightarrow x \in A \oplus C$,但 $x \notin A$,于是 $x \in C$,所以 $B \subset C$ 。

同理可证, $C \subseteq B$ 。

因此, 当 $A \oplus B = A \oplus C$ 时, 必有 B = C。

五、(10 分) 若 R 是集合 A 上的自反和传递关系,则对任意的正整数 n, $R^n = R$.

证明 当n=1时,结论显然成立。设n=k时, $R^k=R$ 。当n=k+1时, $R^{k+1}=R^k*R$ =R*R。下面由R是自反和传递的推导出R*R=R即可。

由传递性得 R*R $\subseteq R$ 。另一方面,对任意的 $\langle x, y \rangle \in R$,由 R 自反得 $\langle y, y \rangle \in R$,再由关系的复合得 $\langle x, y \rangle \in R*R$,从而 R $\subseteq R*R$ 。因此,R=R*R。

由数学归纳法知,对任意的正整数 n, $R^n = R$ 。

六、(15 分) 设函数 $f: R \times R \rightarrow R \times R$, f定义为: $f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。

- (1)证明f是单射。
- (2)证明 f 是满射。
- (3) 求逆函数 f⁻¹。
- (4) 求复合函数 f^{-1} of 和f of 。

证明 (1) 对任意的 x, y, x_1 , $y_1 \in R$, 若 $f(\langle x, y \rangle) = f(\langle x_1, y_1 \rangle)$, 则 $\langle x+y, x-y \rangle = \langle x_1 + y_1, x_1-y_1 \rangle$, $x+y=x_1+y_1$, $x-y=x_1-y_1$, 从而 $x=x_1$, $y=y_1$, 故 f 是单射。

(2) 对任意的
$$\langle u, w \rangle \in R \times R$$
, 令 $x = \frac{u + w}{2}$, $y = \frac{u - w}{2}$, 则 $f(\langle x, y \rangle) = \langle \frac{u + w}{2} + \frac{u - w}{2}$,

$$\frac{u+w}{2} - \frac{u-w}{2} > = \langle u, w \rangle$$
, 所以 f 是满射。

$$(3)f^{-1}(\langle u, w \rangle) = \langle \frac{u+w}{2}, \frac{u-w}{2} \rangle_{\circ}$$

$$(4)f^{-1}\circ f(\langle x,y\rangle) = f^{-1}(f(\langle x,y\rangle)) = f^{-1}(\langle x+y,x-y\rangle) = \langle \frac{x+y+x-y}{2}, \frac{x+y-(x-y)}{2} \rangle$$

 $=\langle x, y \rangle$

$$f \circ f(\langle x, y \rangle) = f(f(\langle x, y \rangle)) = f(\langle x + y, x - y \rangle) = \langle x + y + x - y, x + y - (x - y) \rangle = \langle 2x, 2y \rangle$$

七、(15 分) 设 $X = \{1, 2, 3, 4\}$, $R \in X$ 上的二元关系, $R = \{\langle 1, 1 \rangle, \langle 3, 1 \rangle, \langle 1, 3 \rangle, \langle 1$

- $\langle 3, 3 \rangle, \langle 3, 2 \rangle, \langle 4, 3 \rangle, \langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 1, 2 \rangle \}$
 - (1) 画出 R 的关系图。
 - (2)写出 R 的关系矩阵。
 - (3)说明 R 是否是自反、反自反、对称、传递的。
 - 解 (1)R 的关系图如图所示:
 - (2) R 的关系矩阵为:

$$M(R) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

(3)对于 R 的关系矩阵,由于对角线上不全为 1, R 不是自反的;由于对角线上存在非 0元,R 不是反自反的;由于矩阵不对称,R 不是对称的;

经过计算可得

$$M(R^2) = egin{pmatrix} 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 \end{pmatrix} = M(R)$$
,所以 R 是传递的。

八、 $(10 \, \mathcal{G})$ 若 $\langle G, * \rangle$ 是群,H是 G 的非空子集,则 $\langle H, * \rangle$ 是 $\langle G, * \rangle$ 的子群 \Leftrightarrow 对任意的 a、 $b \in H$ 有 $a * b^{-1} \in H$ 。

证明 必要性: 对任意的 a、 $b \in H$,由 $\langle H, * \rangle$ 是 $\langle G, * \rangle$ 的子群,必有 $b^{-1} \in H$,从而 $a*b^{-1} \in H$ 。

充分性: 由 H 非空, 必存在 $a \in H$ 。于是 $e = a*a^{-1} \in H$ 。

任取 $a \in H$,由 $e \cdot a \in H$ 得 $a^{-1} = e * a^{-1} \in H$ 。

对于任意的 a、 $b \in H$,有 $a*b=a*(b^{-1})^{-1} \in H$,即 $a*b \in H$ 。

又因为H是G非空子集,所以*在H上满足结合律。

综上可知, $\langle H, * \rangle$ 是 $\langle G, * \rangle$ 的子群。

九、(10 分) 给定二部图 $G = \langle V_1, V_2, E \rangle$, 且 $|V_1 \cup V_2| = m$, |E| = n, 证明 $n \leq m^2/4$ 。

证明 设 $|V_1|=m_1$,则 $|V_2|=m-m_1$,于是 $n \leq m_1(m-m_1)=m_1m-m_1^2$ 。因为 $(\frac{m}{2}-m_1)^2 \geq 0$,

即 $\frac{m^2}{4} \ge mm_1 - m_1^2$,所以 $n \le m^2/4$ 。

离散数学考试试题(B卷)

一、(20分)用公式法判断下列公式的类型:

$$(1)(\neg P \lor \neg Q) \rightarrow (P \leftrightarrow \neg Q)$$

$$(2)(P \downarrow Q) \rightarrow (P \land \neg (Q \lor \neg R))$$

解: (1) 因为(¬
$$P$$
 \lor ¬ Q) \to (P \leftrightarrow ¬ Q) \Leftrightarrow ¬(¬ P \lor ¬ Q) \lor (P \land ¬ Q) \lor (¬ P \land Q)

$$\Leftrightarrow$$
 $(P \land Q) \lor (P \land \neg Q) \lor (\neg P \land Q)$

$$\Leftrightarrow m_1 \vee m_2 \vee m_3$$

 $\Leftrightarrow M_0$

所以,公式($\neg P \lor \neg Q$) $\rightarrow (P \leftrightarrow \neg Q)$ 为可满足式。

(2) 因为
$$(P \downarrow Q) \rightarrow (P \land \neg (Q \lor \neg R)) \Leftrightarrow \neg (\neg (P \lor Q)) \lor (P \land \neg Q \land R))$$

$$\Leftrightarrow (P \lor Q) \lor (P \land \neg Q \land R))$$

$$\Leftrightarrow (P \lor Q \lor P) \land (P \lor Q \lor \neg Q) \land (P \lor Q \lor R)$$

$$\Leftrightarrow (P \lor Q) \land (P \lor Q \lor R)$$

$$\Leftrightarrow (P \lor Q \lor (R \land \neg R)) \land (P \lor Q \lor R)$$

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor Q \lor \neg R) \land (P \lor Q \lor R)$$

$$\Leftrightarrow M_0 \wedge M_1$$

$$\Leftrightarrow m_2 \vee m_3 \vee m_4 \vee m_5 \vee m_6 \vee m_7$$

所以,公式 $(P \downarrow Q) \rightarrow (P \land \neg (Q \lor \neg R))$ 为可满足式。

二、(15分)在谓词逻辑中构造下面推理的证明:每个科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人或事业半途而废的人。

解:论域:所有人的集合。Q(x): x是勤奋的; H(x): x是身体健康的; S(x): x是科学家; C(x): x是事业获得成功的人; F(x): x是事业半途而废的人; 则推理化形式为:

 $\forall x(S(x) \rightarrow Q(x)), \ \forall x(Q(x) \land H(x) \rightarrow C(x)), \ \exists x(S(x) \land H(x)) \vdash \exists x(C(x))$ $\lor F(x))$

下面给出证明:

$(1) \exists \ x (s(x) \land H(x))$	P	
$(2) S(a) \wedge H(a)$	T(1), ES	
$(3) \forall x(s(x) \rightarrow Q(x))$	P	
$(4) S(a) \rightarrow Q(a)$	T(1), US	
(5) S (a)	T(2), I	
(6) Q(a)	T(4)(5), I	
(7) H (a)	T(2), I	
$(8)Q(a) \wedge H(a)$	T(6)(7), I	
$(9) \forall x (Q(x) \land H(x) \rightarrow C(x))$	P	
$(10) Q(a) \land H(a) \rightarrow C(a)$	T(9), Us	
(11)C(a)	T(8)(10), I	
$(12) \exists x C(x)$	T(11), EG	
$(13) \exists \ x (C(x) \lor F(x))$	T(12), I	
三、(10 分) 设 $A = \{\emptyset, 1, \{1\}\}, B = \{0, \{0\}\}, 求 P(A), P(B) - \{0\}, P(B) \oplus B$ 。		
$P(A) = \{\emptyset, \{\emptyset\}, \{1\}, \{\{1\}\}, \{\emptyset, 1\}, \{\emptyset, \{1\}\}, \{1, \{1\}\}, \{\emptyset, 1, \{1\}\}\}\}$		
$P(B) - \{0\} = \{\emptyset, \{0\}, \{\{0\}\}, \{0, \{0\}\}\} - \{0\} = \{\emptyset, \{0\}, \{\{0\}\}, \{0, \{0\}\}\}\}$		
$P(B) \oplus B = \{\emptyset, \{0\}, \{\{0\}\}, \{0, \{0\}\} \oplus \{0, \{0\}\}\} = \{\emptyset, 0, \{\{0\}\}, \{0, \{0\}\}\}\}$		
四、 $(15 分)$ 设 R 和 S 是集合 A 上的任意关	至系,判断下列命题是否成立?	

- (1)若 R 和 S 是自反的,则 R*S 也是自反的。
- (2)若R和S是反自反的,则R*S也是反自反的。
- (3)若 R 和 S 是对称的,则 R*S 也是对称的。
- (4)若 R 和 S 是传递的,则 R*S 也是传递的。
- (5)若 R 和 S 是自反的,则 $R \cap S$ 是自反的。
- (6)若 R 和 S 是传递的,则 $R \cup S$ 是传递的。

解 (1)成立。对任意的 $a \in A$,因为 R 和 S 是自反的,则<a, a> $\in R$,<a, a> $\in S$,于是<a, a> $\in R*S$,故 R*S 也是自反的。

- (2)不成立。例如,令 $A = \{1, 2\}$, $R = \{<1, 2>\}$, $S = \{<2, 1>\}$,则 R 和 S 是反自反的,但 $R*S = \{<1, 1>\}$ 不是反自反的。
- (3)不成立。例如,令 $A = \{1, 2, 3\}$, $R = \{<1, 2>, <2, 1>, <3, 3>\}$, $S = \{<2, 3>, <3, 2>\}$,则 R 和 S 是对称的,但 $R*S = \{<1, 3>, <3, 2>\}$ 不是对称的。
- (4)不成立。例如,令 $A = \{1, 2, 3\}$, $R = \{<1, 2>, <2, 3>, <1, 3>\}$, $S = \{<2, 3>, 3>, 3>\}$
- <3, 1>, <2, 1>}, 则 R 和 S 是传递的,但 R*S={<1, 3>, <1, 1>, <2, 1>}不是传递的。
- (5)成立。对任意的 $a \in A$,因为 R 和 S 是自反的,则<a , a > \in R ,<a , a > \in S ,所以 R \cap S 是自反的。

五、(15 分) 令 $X=\{x_1, x_2, \dots, x_m\}, Y=\{y_1, y_2, \dots, y_n\}$ 。问

- (1)有多少个不同的由 *X* 到 *Y* 的函数?
- (2)当 n、m 满足什么条件时,存在单射,且有多少个不同的单射?
- (3)当 n、m 满足什么条件时,存在双射,且有多少个不同的双射?

解 (1)由于对X中每个元素可以取Y中任一元素与其对应,每个元素有n种取法,所以不同的函数共 n^m 个。

- (2)显然当 $|m| \le |n|$ 时,存在单射。由于在 Y 中任选 m 个元素的任一全排列都形成 X 到 Y 的不同的单射,故不同的单射有 $C_n^m m! = n(n-1)(n-m-1)$ 个。
- (3)显然当|m|=|n|时,才存在双射。此时 Y中元素的任一不同的全排列都形成 X到 Y的不同的双射,故不同的双射有 m!个。

六、(5 分) 集合 X上有 m 个元素,集合 Y上有 n 个元素,问 X 到 Y 的二元关系总共有 多少个?

解 X到 Y的不同的二元关系对应 $X \times Y$ 的不同的子集,而 $X \times Y$ 的不同的子集共有个 2^{mn} ,所以 X到 Y的二元关系总共有 2^{mn} 个。

七、(10 分) 若<G, *>是群,则对于任意的 a、 $b \in G$,必有惟一的 $x \in G$ 使得 a*x=b。证明 设 e 是群<G,*>的幺元。令 $x=a^{-1}*b$,则 $a*x=a*(a^{-1}*b)=(a*a^{-1})*b=e*b=b$ 。所以, $x=a^{-1}*b$ 是 a*x=b 的解。

若 $x' \in G$ 也是 a*x=b 的解,则 $x'=e*x'=(a^{-1}*a)*x'=a^{-1}*(a*x')=a^{-1}*b=x$ 。所以, $x=a^{-1}*b$ 是 a*x=b 的惟一解。

八、(10 分) 给定连通简单平面图 G=<V, E, F>, 且|V|=6, |E|=12。证明: 对任意 $f\in F$, d(f)=3。

证明 由偶拉公式得|V|-|E|+|F|=2,所以|F|=2-|V|+|E|=8,于是 $\sum_{f\in F}d(f)=2|E|=24$ 。若存在 $f\in F$,使得 d(f)>3,则 3|F|<2|E|=24,于是|F|<8,与|F|=8 矛盾。故对任意 $f\in F$,

离散数学考试试题(A卷及答案)

一、(10 分) 证明¬ $(A \lor B)$ →¬ $(P \lor Q)$, P, $(B \to A) \lor ¬P \vdash A$.

证明: $(1)\neg (A \lor B) \rightarrow \neg (P \lor Q)$

Р

 $(2)(P \lor Q) \rightarrow (A \lor B)$

T(1), E

(3)P

P

 $(4)A \lor B$

T(2)(3), I

 $(5)(B\rightarrow A) \lor \neg P$

Р

 $(6)B \rightarrow A$

T(3)(5), I

 $(7)A \lor \neg B$

T(6), E

 $(8)(A \lor B) \land (A \lor \neg B)$

T(4)(7), I

 $(9)A \wedge (B \vee \neg B)$

T(8), E

(10)A

T(9), E

二、(10 分)甲、乙、丙、丁 4 个人有且仅有 2 个人参加围棋优胜比赛。关于谁参加竞赛,下列 4 种判断都是正确的:

- (1)甲和乙只有一人参加:
- (2)丙参加,丁必参加;
- (3)乙或丁至多参加一人;
- (4)丁不参加,甲也不会参加。

请推出哪两个人参加了围棋比赛。

解 符号化命题,设 A: 甲参加了比赛; B: 乙参加了比赛; C: 丙参加了比赛; D: 丁参加了比赛。

依题意有,

- (1)甲和乙只有一人参加,符号化为 A⊕B⇔(¬A∧B)∨(A∧¬B);
- (2)丙参加,丁必参加,符号化为 $C\rightarrow D$;
- (3)乙或丁至多参加一人,符号化为 \neg ($B \land D$);
- (4)丁不参加,甲也不会参加,符号化为 $\neg D \rightarrow \neg A$ 。

所以原命题为: $(A \oplus B) \land (C \rightarrow D) \land (\neg (B \land D)) \land (\neg D \rightarrow \neg A)$

 $\Leftrightarrow ((\neg A \land B) \lor (A \land \neg B)) \land (\neg C \lor D) \land (\neg B \lor \neg D) \land (D \lor \neg A)$

 $\Leftrightarrow ((\neg A \land B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (\neg A \land B \land D) \lor (A \land \neg B \land D)) \land ((\neg B \land D) \lor (\neg B \land \neg A)$ $\lor (\neg D \land \neg A))$

 $\Leftrightarrow (A \land \neg B \land \neg C \land D) \lor (A \land \neg B \land D) \lor (\neg A \land B \land \neg C \land \neg D) \Leftrightarrow T$

但依据题意条件,有且仅有两人参加竞赛,故 $\neg A \land B \land \neg C \land \neg D$ 为 F。所以只有: $(A \land B \land \neg C \land \neg D)$ 为 $(A \land B \land \neg C \land \neg C)$ 为 $(A \land B \land \neg C)$ $(A \land A \land C)$ $(A \land B \land \neg C)$ $(A \land B \land \neg C)$ $(A \land A \land C)$ $(A \land A \land C)$ (A

 $\neg B \land \neg C \land D) \lor (A \land \neg B \land D) \Leftrightarrow T$, 即甲、丁参加了围棋比赛。

三、(10分)指出下列推理中,在哪些步骤上有错误?为什么?给出正确的推理形式。

 $(1)\forall x(P(x)\rightarrow Q(x))$

 $(2)P(y) \rightarrow Q(y)$ T(1), US

 $(3)\exists x P(x)$

(4)P(y) T(3), ES

(5)Q(y) T(2)(4), I

 $(6)\exists x Q(x)$ T(5), EG

解 (4)中 ES 错,因为对存在量词限制的变元 x 引用 ES 规则,只能将 x 换成某个个体常元 c,而不能将其改为自由变元。所以应将(4)中 P(v)改为 P(c),c 为个体常元。

正确的推理过程为:

 $(1)\exists x P(x)$ P

(2)P(c) T(1), ES

 $(3) \forall x (P(x) \rightarrow Q(x))$

 $(4)P(c)\rightarrow Q(c)$ T(3), US

(5)Q(c) T(2)(4), I

 $(6)\exists x Q(x)$ T(5), EG

四、 $(10 \, \%)$ 设 $A = \{a, b, c\}$,试给出 A 上的一个二元关系 R,使其同时不满足自反性、反自反性、对称性、反对称性和传递性。

解 设 $R = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle \}$,则

因为<b, $b> \notin R$, R 不自反;

因为< a, $a > \in R$, R 不反自反;

因为<b, c> \in R, <c, b> \notin R, R 不对称;

因为<a, $b>\in R$, <b, $a>\in R$, R 不反对称:

因为<b, a> \in R, <a, b> \in R, 但<b, b> \notin R, R不传递。

五、(15 分) 设函数 $g: A \rightarrow B$, $f: B \rightarrow C$,

- (1)若 $f \circ g$ 是满射,则f是满射。
- (2)若 $f \circ g$ 是单射,则g 是单射。

证明 因为 $g: A \rightarrow B$, $f: B \rightarrow C$, 由定理 5.5 知, $f \circ g$ 为 A 到 C 的函数。

- (1)对任意的 $z \in C$,因 $f \circ g$ 是满射,则存在 $x \in A$ 使 $f \circ g(x) = z$,即 f(g(x)) = z。由 $g \colon A \to B$ 可知 $g(x) \in B$,于是有 $y = g(x) \in B$,使得 f(y) = z。因此,f 是满射。
 - (2)对任意的 $x_1, x_2 \in A$,若 $x_1 \neq x_2$,则由 $f \circ g$ 是单射得 $f \circ g(x_1) \neq f \circ g(x_2)$,于是 $f(g(x_1)) \neq f(g(x_2))$,

必有 $g(x_1)\neq g(x_2)$ 。所以,g 是单射。

六、(15 分) 设 R 是集合 A 上的一个具有传递和自反性质的关系,T 是 A 上的关系,使得<a, $b>\in T\Leftrightarrow <a$, $b>\in R$ 且<b, $a>\in R$,证明 T 是一个等价关系。

证明 因 R 自反,任意 $a \in A$,有< a, $a > \in R$,由 T 的定义,有< a, $a > \in T$,故 T 自反。若< a, $b > \in T$,即< a, $b > \in R$ 且< b, $a > \in R$,也就是< b, $a > \in R$ 且< a, $b > \in R$,从而< b, $a > \in T$,故 T 对称。

若<a, $b>\in T$, <b, $c>\in T$, 即<a, $b>\in R$ 且<b, $a>\in R$, <b, $c>\in R$ 且<c, $b>\in R$, 因 R 传递,由<a, $b>\in R$ 和<b, $c>\in R$ 可得<a, $c>\in R$, 由<b, $a>\in R$ 和<c, $b>\in R$ 可得<c, $a>\in R$, 由<a, $c>\in R$ 和<c, $a>\in R$ 可得<a, $c>\in T$, 故 T 传递。

所以,T是A上的等价关系。

七、(15 分) 若<G, *>是群, H是 G 的非空子集, 则<H, *>是<G, *>的子群 \Leftrightarrow 对任意 的 a、 $b \in H$ 有 $a*b^{-1} \in H$ 。

证明 必要性:对任意的 a、b \in H,由<H,*>是<G,*>的子群,必有 b^{-1} \in H,从而 $a*b^{-1}$ \in H。

充分性: 由 H 非空, 必存在 $a \in H$ 。于是 $e = a*a^{-1} \in H$ 。

任取 $a \in H$,由 $e \cdot a \in H$ 得 $a^{-1} = e^*a^{-1} \in H$ 。

对于任意的 $a, b \in H$,有 $a*b=a*(b^{-1})^{-1} \in H$,即 $a*b \in H$ 。

又因为H是G非空子集,所以*在H上满足结合律。

综上可知, <H, *>是<G, *>的子群。

八、 $(15 \, \text{分})(1)$ 若无向图 G 中只有两个奇数度结点,则这两个结点一定是连通的。

(2)若有向图 G 中只有两个奇数度结点,它们一个可达另一个结点或互相可达吗?

证明 (1)设无向图 G 中只有两个奇数度结点 u 和 v 。从 u 开始构造一条回路,即从 u 出 发经关联结点 u 的边 e_1 到达结点 u_1 ,若 $d(u_1)$ 为偶数,则必可由 u_1 再经关联 u_1 的边 e_2 到达结点 u_2 ,如此继续下去,每条边只取一次,直到另一个奇数度结点为止,由于图 G 中只有两个奇数度结点,故该结点或是 u 或是 v 。如果是 v ,那么从 u 到 v 的一条路就构造好了。如果仍是 u ,该回路上每个结点都关联偶数条边,而 d(u) 是奇数,所以至少还有一条边关联结点 u 的边不在该回路上。继续从 u 出发,沿着该边到达另一个结点 $u_1^{'}$,依次下去直到另一个奇数度结点停下。这样经过有限次后必可到达结点 v ,这就是一条从 u 到 v 的路。

(2)若有向图 G 中只有两个奇数度结点,它们一个可达另一个结点或互相可达不一定成立。下面有向图中,只有两个奇数度结点 u 和 v 、v 之间都不可达。

离散数学考试试题(B 卷及答案)

- 一、 $(15 \, \mathcal{G})$ 设计一盏电灯的开关电路,要求受 3 个开关 A、B、C 的控制: 当且仅当 A 和 C 同时关闭或 B 和 C 同时关闭时灯亮。设 F 表示灯亮。
 - (1)写出 *F* 在全功能联结词组 {↑} 中的命题公式。
 - (2)写出 F 的主析取范式与主合取范式。

解 (1)设A: 开关A关闭; B: 开关B关闭; C: 开关C关闭; $F=(A \land C) \lor (B \land C)$ 。 在全功能联结词组 $\{ \uparrow \}$ 中:

$$\neg A \Leftrightarrow \neg (A \land A) \Leftrightarrow A^{\uparrow}A$$

$$A \land C \Leftrightarrow \neg \neg (A \land C) \Leftrightarrow \neg (A^{\uparrow}C) \Leftrightarrow (A^{\uparrow}C)^{\uparrow}(A^{\uparrow}C)$$

$$A \lor B \Leftrightarrow \neg (\neg A \land \neg B) \Leftrightarrow \neg ((A^{\uparrow}A) \land (B^{\uparrow}B)) \Leftrightarrow (A^{\uparrow}A)^{\uparrow}(B^{\uparrow}B)$$

所以

$$F \Leftrightarrow ((A^{\uparrow}C)^{\uparrow}(A^{\uparrow}C)) \vee ((B^{\uparrow}C)^{\uparrow}(B^{\uparrow}C))$$
$$\Leftrightarrow (((A^{\uparrow}C)^{\uparrow}(A^{\uparrow}C))^{\uparrow}((A^{\uparrow}C)^{\uparrow}(A^{\uparrow}C)))^{\uparrow}(((B^{\uparrow}C)^{\uparrow}(B^{\uparrow}C)))$$

 $(2)F \Leftrightarrow (A \land C) \lor (B \land C)$

$$\Leftrightarrow (A \land (B \lor \neg B) \land C) \lor ((A \lor \neg A) \land B \land C)$$

$$\Leftrightarrow (A \land B \land C) \lor (A \land \neg B \land C) \lor (A \land B \land C) \lor (\neg A \land B \land C)$$

$$\Leftrightarrow m_3 \vee m_5 \vee m_7$$

主析取范式

$$\Leftrightarrow M_0 \wedge M_1 \wedge M_2 \wedge M_4 \wedge M_6$$

主合取范式

- 二、(10分)判断下列公式是否是永真式?
- $(1)(\exists x A(x) \rightarrow \exists x B(x)) \rightarrow \exists x (A(x) \rightarrow B(x))$.
- $(2)(\forall x A(x) \rightarrow \forall x B(x)) \rightarrow \forall x (A(x) \rightarrow B(x)))$.

$$\text{A}(1)(\exists x A(x) \rightarrow \exists x B(x)) \rightarrow \exists x (A(x) \rightarrow B(x))$$

$$\Leftrightarrow (\neg \exists x A(x) \lor \exists x B(x)) \rightarrow \exists x (A(x) \rightarrow B(x))$$

$$\Leftrightarrow \neg(\neg \exists x A(x) \lor \exists x B(x)) \lor \exists x (\neg A(x) \lor B(x))$$

 $\Leftrightarrow (\exists x A(x) \land \neg \exists x B(x)) \lor \exists x \neg A(x) \lor \exists x B(x)$

 $\Leftrightarrow (\exists x A(x) \lor \exists x \neg A(x) \lor \exists x B(x)) \land (\neg \exists x B(x) \lor \exists x \neg A(x) \lor \exists x B(x))$

 $\Leftrightarrow \exists x (A(x) \lor \neg A(x)) \lor \exists x B(x)$

 \Leftrightarrow T

所以, $(\exists x A(x) \rightarrow \exists x B(x)) \rightarrow \exists x (A(x) \rightarrow B(x))$ 为永真式。

(2)设论域为 $\{1, 2\}$, 令A(1)=T; A(2)=F; B(1)=F; B(2)=T。

则 $\forall x A(x)$ 为假, $\forall x B(x)$ 也为假,从而 $\forall x A(x) \rightarrow \forall x B(x)$ 为真;而由于 $A(1) \rightarrow B(1)$ 为假,所以 $\forall x (A(x) \rightarrow B(x))$ 也为假,因此公式($\forall x A(x) \rightarrow \forall x B(x)) \rightarrow \forall x (A(x) \rightarrow B(x))$ 为假。该公式不是永真式。

三、(15 分)设 X 为集合, $A=P(X)-\{\emptyset\}-\{X\}$ 且 $A\neq\emptyset$,若|X|=n,问

- (1)偏序集<*A*, **⊂**>是否有最大元?
- (2)偏序集<A, ⊆>是否有最小元?
- (3)偏序集<A, ⊆>中极大元和极小元的一般形式是什么?并说明理由。

解 偏序集<A, $\subseteq>$ 不存在最大元和最小元,因为 n>2。

考察 P(X)的哈斯图,最底层的项点是空集,记作第 0 层,由底向上,第一层是单元集,第二层是二元集,…,由|X|=n,则第 n-1 层是 X 的 n-1 元子集,第 n 层是 X。偏序集<A, $\bigcirc>$ 与偏序集<P(X), $\bigcirc>$ 相比,恰好缺少第 0 层和第 n 层。因此<A, $\bigcirc>$ 的极小元就是 X 的所有单元集,即 $\{x\}$, $x\in X$;而极大元恰好是比 X 少一个元素,即 $X-\{x\}$, $x\in X$ 。

四、(10 分) 设 $A = \{1, 2, 3, 4, 5\}$, $R \in A$ 上的二元关系,且 $R = \{<2, 1>, <2, 5>, <2, 4>, <3, 4>, <4, 4>, <5, 2>\}$, 求 r(R)、s(R)和 t(R)。

解 $r(R)=R\cup I_A=\{<2, 1>, <2, 5>, <2, 4>, <3, 4>, <4, 4>, <5, 2>, <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>\}$

 $s(R) = R \cup R^{-1} = \{ \langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 1, 2 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle \}$

 $R^2 = \{<2, 2>, <2, 4>, <3, 4>, <4, 4>, <5, 1>, <5, 5>, <5, 4>\}$

 $R^3 = \{ <2, 1>, <2, 5>, <2, 4>, <3, 4>, <4, 4>, <5, 2>, <5, 4> \}$

 $R^4 = \{ \langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 1 \rangle, \langle 5, 5 \rangle, \langle 5, 4 \rangle \} = R^2$

 $t(R) = \bigcup_{i=1}^{\infty} R^{i} = \{ \langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 2, 2 \rangle, \langle 5, 1 \rangle,$

<5, 4>, <5, 5>}。

五、(10 分) 设函数 $g: A \rightarrow B$, $f: B \rightarrow C$,

- (1)若 $f \circ g$ 是满射,则f是满射。
- (2)若 fog 是单射,则 g 是单射。

证明 因为 $g: A \rightarrow B$, $f: B \rightarrow C$, 由定理 5.5 知, $f \circ g$ 为 A 到 C 的函数。

(1)对任意的 $z \in C$,因 $f \circ g$ 是满射,则存在 $x \in A$ 使 $f \circ g(x) = z$,即 f(g(x)) = z。由 $g \colon A \to B$ 可知 $g(x) \in B$,于是有 $y = g(x) \in B$,使得 f(y) = z。因此,f 是满射。

(2)对任意的 $x_1, x_2 \in A$,若 $x_1 \neq x_2$,则由 $f \circ g$ 是单射得 $f \circ g(x_1) \neq f \circ g(x_2)$,于是 $f(g(x_1)) \neq f(g(x_2))$,必有 $g(x_1) \neq g(x_2)$ 。所以,g 是单射。

六、(10分)有幺元且满足消去律的有限半群一定是群。

证明 设<*G*,*>是一个有幺元且满足消去律的有限半群,要证<*G*,*>是群,只需证明 *G* 的任一元素 a 可逆。

考虑 a, a^2 , …, a^k , …。因为 G 只有有限个元素,所以存在 k > l,使得 $a^k = a^l$ 。令 m = k - l,有 $a^{l*}e = a^{l*}a^m$,其中 e 是幺元。由消去率得 $a^m = e$ 。

于是,当 m=1 时,a=e,而 e 是可逆的;当 m>1 时, $a*a^{m-1}=a^{m-1}*a=e$ 。从而 a 是可逆的,其逆元是 a^{m-1} 。总之,a 是可逆的。

七、(20 分)有向图 G 如图所示, 试求:

- (1)求 G 的邻接矩阵 A。
- (2)求出 A^2 、 A^3 和 A^4 , v_1 到 v_4 长度为 1、2、3 和 4 的路有多少?
- (3)求出 A^TA 和 AA^T , 说明 A^TA 和 AA^T 中的第(2, 2)元素和第(2, 3)元素的意义。
- (4)求出可达矩阵P。
- (5)求出强分图。

解 (1)求 G 的邻接矩阵为:

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(2)由于

$$A^{2} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad A^{3} = \begin{pmatrix} 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 2 & 1 & 2 \\ 0 & 2 & 0 & 1 \end{pmatrix} \qquad A^{4} = \begin{pmatrix} 0 & 3 & 2 & 3 \\ 0 & 4 & 1 & 3 \\ 0 & 3 & 2 & 3 \\ 0 & 1 & 2 & 2 \end{pmatrix}$$

所以 v_1 到 v_4 长度为1、2、3和4的路的个数分别为1、1、2、3。

(3)由于

$$A^{T} A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 2 & 1 & 3 \end{pmatrix} \qquad AA^{T} = \begin{pmatrix} 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 \end{pmatrix}$$

再由定理 10.19 可知,所以 A^TA 的第(2, 2)元素为 3,表明那些边以 v_2 为终结点且具有不同始结点的数目为 3,其第(2, 3)元素为 0,表明那些边既以 v_2 为终结点又以 v_3 为终结点,并且具有相同始结点的数目为 0。 AA^T 中的第(2, 2)元素为 2,表明那些边以 v_2 为始结点且具

有不同终结点的数目为 2,其第(2,3)元素为 1,表明那些边既以 v_2 为始结点又以 v_3 为始结点,并且具有相同终结点的数目为 1。

$$B_{4} = A + A^{2} + A^{3} + A^{4} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 2 & 1 & 2 \\ 0 & 2 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 3 & 2 & 3 \\ 0 & 4 & 1 & 3 \\ 0 & 3 & 2 & 3 \\ 0 & 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 7 & 4 & 1 \\ 0 & 7 & 4 & 7 \\ 0 & 7 & 4 & 7 \\ 0 & 4 & 3 & 4 \end{pmatrix},$$

以求可达矩阵为
$$P = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

G的强分图。

离散数学考试试题(A 卷及答案)

一、(10 分) 某项工作需要派 A、B、C 和 D 4 个人中的 2 个人去完成,按下面 3 个条件,有几种派法?如何派?

- (1)若 A 去,则 C 和 D 中要去 1 个人;
- (2)B 和 C 不能都去;
- (3)若C去,则D留下。

解 设 A: A 去工作; B: B 去工作; C: C 去工作; D: D 去工作。则根据题意应有: $A \rightarrow C \oplus D$, $\neg (B \land C)$, $C \rightarrow \neg D$ 必须同时成立。因此

$$(A \rightarrow C \oplus D) \land \neg (B \land C) \land (C \rightarrow \neg D)$$

$$\Leftrightarrow (\neg A \lor (C \land \neg D) \lor (\neg C \land D)) \land (\neg B \lor \neg C) \land (\neg C \lor \neg D)$$

$$\Leftrightarrow (\neg A \lor (C \land \neg D) \lor (\neg C \land D)) \land ((\neg B \land \neg C) \lor (\neg B \land \neg D) \lor \neg C \lor (\neg C \land \neg D))$$

$$\Leftrightarrow (\neg A \land \neg B \land \neg C) \lor (\neg A \land \neg B \land \neg D) \lor (\neg A \land \neg C) \lor (\neg A \land \neg C \land \neg D)$$

$$\lor (C \land \neg D \land \neg B \land \neg C) \lor (C \land \neg D \land \neg B \land \neg D) \lor (C \land \neg D \land \neg C) \lor (C \land \neg D \land \neg C)$$

 $\wedge \neg C \wedge \neg D$

$$\vee (\neg C \land D \land \neg B \land \neg C) \lor (\neg C \land D \land \neg B \land \neg D) \lor (\neg C \land D \land \neg C) \lor (\neg C \land D \land C) \lor$$

 $\neg C \land \neg D$)

$$\Leftrightarrow \mathsf{F} \vee \mathsf{F} \vee (\neg A \wedge \neg C) \vee \mathsf{F} \vee \mathsf{F} \vee (C \wedge \neg D \wedge \neg B) \vee \mathsf{F} \vee \mathsf{F} \vee (\neg C \wedge D \wedge \neg B) \vee \mathsf{F} \vee$$

 $(\neg C \land D) \lor F$

$$\Leftrightarrow (\neg A \land \neg C) \lor (\neg B \land C \land \neg D) \lor (\neg C \land D \land \neg B) \lor (\neg C \land D)$$

$$\Leftrightarrow (\neg A \land \neg C) \lor (\neg B \land C \land \neg D) \lor (\neg C \land D)$$
$$\Leftrightarrow T$$

故有三种派法: $B \land D$, $A \land C$, $A \land D$ 。

二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且 是工人,有些成员是青年人,所以,有些成员是青年专家。

解: 论域: 所有人的集合。S(x): x 是专家; W(x): x 是工人; Y(x): x 是青年人; 则推理化形式为:

 $\forall x(s(x) \land w(x)), \exists x y(x) \vdash \exists x(s(x) \land y(x))$

下面给出证明:

 $(1) \exists x Y(x)$ P

(2) Y(c) T(1), ES

 $(3) \forall x (S(x) \land W(x))$

 $(4) S(c) \wedge W(c)$ T(3), US

(5) S(c) T(4), I

 $(7) \exists x (S(x) \land Y(x))$ T(6), EG

三、(10 分) 设 $A \setminus B$ 和 C 是三个集合,则 $A \subset B \Rightarrow \neg (B \subset A)$ 。

证明: $A \subset B \Leftrightarrow \forall x(x \in A \to x \in B) \land \exists x(x \in B \land x \notin A) \Leftrightarrow \forall x(x \notin A \lor x \in B) \land \exists x(x \in B \land x \notin A)$

 $\Leftrightarrow \neg \exists x (x \in A \land x \notin B) \land \neg \forall x (x \notin B \lor x \in A) \Rightarrow \neg \exists x (x \in A \land x \notin B) \lor \neg \forall x (x \in A \lor x \notin B)$

 $\Leftrightarrow \neg(\exists x (x \in A \land x \notin B) \land \forall x (x \in A \lor x \notin B)) \Leftrightarrow \neg(\exists x (x \in A \land x \notin B) \land \forall x (x \in B \rightarrow x \in A))$ $\Leftrightarrow \neg(B \subset A).$

四、(15 分) 设 $A = \{1, 2, 3, 4, 5\}$, $R \neq A$ 上的二元关系,且 $R = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle\}$,求 r(R)、s(R)和 t(R)。

R $r(R) = R \cup I_A = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle, \langle 5, 5 \rangle\}$

 $s(R) = R \cup R^{-1} = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 1, 2 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle\}$

 $R^2 = \{\langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 1 \rangle, \langle 5, 5 \rangle, \langle 5, 4 \rangle\}$

 $R^3 = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 5, 4 \rangle\}$

 $R^4 = \{\langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 1 \rangle, \langle 5, 5 \rangle, \langle 5, 4 \rangle\} = R^2$

 $t(R) = \bigcup_{i=1}^{\infty} R^{i} = \{\langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 2, 2 \rangle, \langle 5, 1 \rangle,$

 $\langle 5, 4 \rangle, \langle 5, 5 \rangle \}$.

五、 $(10 \, \%) R$ 是非空集合 A 上的二元关系, 若 R 是对称的,则 r(R) 和 t(R) 是对称的。

证明 对任意的 x、 $y \in A$,若 xr(R)y,则由 $r(R) = R \cup I_A$ 得,xRy 或 xI_Ay 。因 R 与 I_A 对称,所以有 vRx 或 vI_Ax ,于是 vr(R)x。所以 r(R) 是对称的。

下证对任意正整数 n, R^n 对称。

因 R 对称,则有 $xR^2y \Leftrightarrow \exists z (xRz \land zRy) \Leftrightarrow \exists z (zRx \land yRz) \Leftrightarrow yR^2x$,所以 R^2 对称。若 R^n 对称,则 $x R^{n+1}y \Leftrightarrow \exists z (x R^n z \land zRy) \Leftrightarrow \exists z (z R^n x \land yRz) \Leftrightarrow y R^{n+1}x$,所以 R^{n+1} 对称。因此,对任意正整数 n, R^n 对称。

对任意的 x、 $y \in A$,若 xt(R)y,则存在 m 使得 xR^my ,于是有 yR^mx ,即有 yt(R)x。因此,t(R) 是对称的。

六、(10 分) 若 $f: A \rightarrow B$ 是双射,则 $f^{-1}: B \rightarrow A$ 是双射。

证明 因为 $f: A \rightarrow B$ 是双射,则 f^{-1} 是 B 到 A 的函数。下证 f^{-1} 是双射。

对任意 $x \in A$, 必存在 $y \in B$ 使 f(x) = y, 从而 $f^{-1}(y) = x$, 所以 f^{-1} 是满射。

对任意的 y_1 、 $y_2 \in B$,若 $f^{-1}(y_1) = f^{-1}(y_2) = x$,则 $f(x) = y_1$, $f(x) = y_2$ 。因为 $f: A \to B$ 是函数,则 $y_1 = y_2$ 。所以 f^{-1} 是单射。

综上可得, f^{-1} : $B \rightarrow A$ 是双射。

七、(10 分)设〈S, *〉是一个半群,如果 S 是有限集,则必存在 $a \in S$,使得 a*a=a。

证明 因为 $\langle S, * \rangle$ 是一个半群,对任意的 $b \in S$,由*的封闭性可知, $b^2 = b * b \in S$, $b^3 = b^2 * b \in S$,…, $b^n \in S$,…。

因为 S 是有限集,所以必存在 j > i,使得 $b^i = b^j$ 。令 p = j - i,则 $b^j = b^p * b^j$ 。所以对 $a \ge i$,有 $b^q = b^p * b^q$ 。

因为 $p \ge 1$,所以总可找到 $k \ge 1$,使得 $kp \ge i$ 。对于 $b^{kp} \in S$,有 $b^{kp} = b^p * b^{kp} = b^p * (b^p * b^{kp})$ $= \cdots = b^{kp} * b^{kp}$ 。

 $\Leftrightarrow a = b^{kp}$,则 $a \in S$ 且 a*a = a。

八、 $(20 \, \text{分})$ (1) 若 G 是连通的平面图,且 G 的每个面的次数至少为 $l(l \ge 3)$,则 G 的 边数 m 与结点数 n 有如下关系:

$$m \leq \frac{l}{l-2} (n-2)$$
.

证明 设G有r个面,则 $2m=\sum_{i=1}^r d(f_i) \geqslant lr$ 。由欧拉公式得,n-m+r=2。于是, m $\leqslant \frac{l}{l-2} (n-2)$ 。

(2) 设平面图 $G = \langle V, E, F \rangle$ 是自对偶图,则|E| = 2(|V| - 1)。

证明 设 $G^*=\langle V^*, E^*\rangle$ 是连通平面图 $G=\langle V, E, F\rangle$ 的对偶图,则 $G^*\cong G$,于是 $|F|=|V^*|=|V|$,将其代入欧拉公式 |V|-|E|+|F|=2 得, |E|=2(|V|-1) 。

离散数学考试试题(B卷及答案)

一、 (10 分) 证明 $(P \lor Q) \land (P \to R) \land (Q \to S) \vdash S \lor R$

证明 因为 $S \lor R \Leftrightarrow \neg R \to S$, 所以, 即要证 $(P \lor Q) \land (P \to R) \land (Q \to S) \vdash \neg R \to S$.

(1) $\neg R$ 附加前提 $(2)P \rightarrow R$ P

(3) $\neg P$ T(1)(2), I

 $(4)P \vee Q \qquad \qquad P$

(5)Q T(3)(4), I

$$(6)Q \rightarrow S$$

$$(7)S$$

$$(8) \neg R \rightarrow S$$

$$(9)S \lor R$$

$$P$$

$$T(5)(6), I$$

$$CP$$

$$T(8), E$$

二、(15分)根据推理理论证明:每个考生或者勤奋或者聪明,所有勤奋的人都将有所作为,但并非所有考生都将有所作为,所以,一定有些考生是聪明的。

设 P(e): e 是考生,Q(e): e 将有所作为,A(e): e 是勤奋的,B(e): e 是聪明的,个体域: 人的集合,则命题可符号化为: $\forall x(P(x) \rightarrow (A(x) \lor B(x)))$, $\forall x(A(x) \rightarrow Q(x))$,

 $\neg \forall x (P(x) \rightarrow Q(x)) \vdash \exists x (P(x) \land B(x))$.

$(1) \neg \forall x (P(x) \rightarrow Q(x))$	P
$(2)\neg\forall x(\neg P(x)\lor Q(x))$	T(1), E
$(3)\exists x(P(x)\land \neg Q(x))$	T(2), E
$(4)P(a) \land \neg Q(a)$	T(3), ES
(5)P(a)	T(4), I
$(6)\neg Q(a)$	T(4), I
$(7)\forall x (P(x) \rightarrow (A(x) \lor B(x))$	P
$(8)P(a) \rightarrow (A(a) \lor B(a))$	T(7), US
$(9)A(a) \vee B(a)$	T(8)(5), I
$(10)\forall x(A(x) \rightarrow Q(x))$	P
$(11)A(a) \rightarrow Q(a)$	T(10), US
$(12)\neg A(a)$	T(11)(6), I
(13)B(a)	T(12)(9), I
$(14)P(a) \wedge B(a)$	T(5)(13), I
$(15)\exists x (P(x) \land B(x))$	T(14), EG

三、(10分)某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数。

解 设 $A \times B \times C$ 分别表示会打排球、网球和篮球的学生集合。则:

|A|=12, |B|=6, |C|=14, $|A \cap C|=6$, $|B \cap C|=5$, $|A \cap B \cap C|=2$, $|(A \cup C) \cap B|=6$.

因为 $|(A \cup C) \cap B| = (A \cap B) \cup (B \cap C)| = |(A \cap B)| + |(B \cap C)| - |A \cap B \cap C| = |(A \cap B)| + 5 - 2 =$ 6,所以 $|(A \cap B)| = 3$ 。于是 $|A \cup B \cup C| = 12 + 6 + 14 - 6 - 5 - 3 + 2 = 20$, $|\overline{A \cup B \cup C}| = 25 - 20 =$ 5。故,不会打这三种球的共 5 人。

四、 $(10 \, \text{分})$ 设 A_1 、 A_2 和 A_3 是全集 U 的子集,则形如 $\bigcap_{i=1}^3 A_i'(A_i')$ 为 A_i 或 $\overline{A_i}$)的集合称为由 A_1 、 A_2 和 A_3 产生的小项。试证由 A_1 、 A_2 和 A_3 所产生的所有非空小项的集合构成全集 U

的一个划分。

证明 小项共 8 个,设有 r 个非空小项 s_1 、 s_2 、...、 $s_r(r \leq 8)$ 。

对任意的 $a \in U$,则 $a \in A_i$ 或 $a \in \overline{A_i}$,两者必有一个成立,取 A_i '为包含元素 a 的 A_i 或 $\overline{A_i}$,则 $a \in \bigcap_{i=1}^{3} A_i$ ',即有 $a \in \bigcup_{i=1}^{r} s_i$,于是 $U \subseteq \bigcup_{i=1}^{r} s_i$ 。又显然有 $\bigcup_{i=1}^{r} s_i \subseteq U$,所以 $U = \bigcup_{i=1}^{r} s_i$ 。

任取两个非空小项 s_p 和 s_q ,若 $s_p \neq s_q$,则必存在某个 A_i 和 $\overline{A_i}$ 分别出现在 s_p 和 s_q 中,于是 $s_p \cap s_q = \emptyset$ 。

综上可知, $\{s_1, s_2, ..., s_r\}$ 是 U的一个划分。

五、(15 分)设 R 是 A 上的二元关系,则: R 是传递的 $\Leftrightarrow R*R \subseteq R$ 。

证明 (5)若 R 是传递的,则<x,y> ∈ R*R $\Rightarrow \exists z(xRz \land zSy)$ $\Rightarrow xRc \land cSy$,由 R 是传递的得 xRy,即有<x,y> ∈ R,所以 R*R \subset R。

反之,若 $R*R\subseteq R$,则对任意的 x、y、 $z\in A$,如果 xRz 且 zRy,则< x, $y>\in R*R$,于是有 < x, $y>\in R$,即有 xRy,所以 R 是传递的。

六、(15 分) 若 G 为连通平面图,则 n-m+r=2,其中,n、m、r 分别为 G 的结点数、边数和面数。

证明 对G的边数m作归纳法。

别为 n'、m'和 r'。对 e 分为下列情况来讨论:

当 m=0 时,由于 G 是连通图,所以 G 为平凡图,此时 n=1,r=1,结论自然成立。假设对边数小于 m 的连通平面图结论成立。下面考虑连通平面图 G 的边数为 m 的情况。设 e 是 G 的一条边,从 G 中删去 e 后得到的图记为 G',并设其结点数、边数和面数分

若 e 为割边,则 G'有两个连通分支 G_1 和 G_2 。 G_i 的结点数、边数和面数分别为 n_i 、 m_i 和 r_i 。显然 $n_1+n_2=n'=n$, $m_1+m_2=m'=m-1$, $r_1+r_2=r'+1=r+1$ 。由归纳假设有 $n_1-m_1+r_1=2$, $n_2-m_2+r_2=2$,从而 $(n_1+n_2)-(m_1+m_2)+(r_1+r_2)=4$,n-(m-1)+(r+1)=4,即 n-m+r=2。

若 e 不为割边,则 n'=n, m'=m-1, r'=r-1, 由归纳假设有 n'-m'+r'=2,从而 n-(m-1)+r-1=2,即 n-m+r=2。

由数学归纳法知,结论成立。

七、(10分) 设函数 $g: A \rightarrow B$, $f: B \rightarrow C$, 则:

(1) $f \circ g$ 是 A 到 C 的函数;

(2)对任意的 $x \in A$,有 $f \circ g(x) = f(g(x))$ 。

证明 (1)对任意的 $x \in A$,因为 $g: A \to B$ 是函数,则存在 $y \in B$ 使 $\langle x, y \rangle \in g$ 。对于 $y \in B$,因 $f: B \to C$ 是函数,则存在 $z \in C$ 使 $\langle y, z \rangle \in f$ 。根据复合关系的定义,由 $\langle x, y \rangle \in g$ 和 $\langle y, z \rangle \in f$ 得 $\langle x, z \rangle \in g^*f$,即 $\langle x, z \rangle \in f \circ g$ 。所以 $D_{f,g} = A$ 。

对任意的 $x \in A$,若存在 y_1 、 $y_2 \in C$,使得< x, $y_1 >$ 、< x, $y_2 > \in f \circ g = g * f$,则存在 t_1 使得< x, $t_1 > \in g$ 且 $< t_1$, $y_1 > \in f$,存在 t_2 使得< x, $t_2 > \in g$ 且 $< t_2$, $y_2 > \in f \circ$ 因为 $g: A \rightarrow B$ 是函数,则 $t_1 = t_2$ 。又因 $f: B \rightarrow C$ 是函数,则 $y_1 = y_2 \circ$ 所以 A 中的每个元素对应 C 中惟一的元素。

综上可知, $f \circ g \in A$ 到 C 的函数。

(2)对任意的 $x \in A$,由 $g: A \to B$ 是函数,有< x, $g(x) > \in g$ 且 $g(x) \in B$,又由 $f: B \to C$ 是函数,得< g(x), $f(g(x)) > \in f$,于是< x, $f(g(x)) > \in g*f = f \circ g$ 。又因 $f \circ g$ 是 A 到 C 的函数,则可写为 $f \circ g(x) = f(g(x))$ 。

证明 对于任意 $a \in G$, 必有 $a^{-1} \in G$ 使得 $a^{-1}*a = e \in H$, 所以 $\langle a, a \rangle \in R$.

若< a, $b>\in R$,则 $a^{-1}*b\in H$ 。因为 H 是 G 的子群,故 $(a^{-1}*b)^{-1}=b^{-1}*a\in H$ 。所以< b, $a>\in R$ 。

若<a, $b>\in R$, <b, $c>\in R$, 则 $a^{-1}*b\in H$, $b^{-1}*c\in H$ 。因为 H 是 G 的子群,所以($a^{-1}*b$)*($b^{-1}*c$)= $a^{-1}*c\in H$,故<a, $c>\in R$ 。

综上可得, $R \neq G$ 中的一个等价关系。

对于任意的 $b \in [a]_R$,有< a, $b > \in R$, $a^{-1}*b \in H$,则存在 $h \in H$ 使得 $a^{-1}*b = h$,b = a*h,于是 $b \in aH$, $[a]_R \subseteq aH$ 。对任意的 $b \in aH$,存在 $h \in H$ 使得 b = a*h, $a^{-1}*b = h \in H$,< a, $b > \in R$,故 $aH \subseteq [a]_R$ 。所以, $[a]_R = aH$ 。

离散数学考试试题(A卷及答案)

- 一、(15分)用真值表方法判断下列公式的类型,并求(3)的主析取范式。
- $(1) \quad (P \rightarrow Q) \leftrightarrow (\neg P \lor Q) .$
- $(2) \neg (P \rightarrow Q) \land Q_{\circ}$
- $(3) (P \rightarrow Q) \land \neg R_{\circ}$

解 (1)、(2)和(3)的真值表如表 1、表 2和表 3 所示:

表 1

P	Q	$P{\rightarrow}Q$	$\neg P \lor Q$	$ \begin{array}{c} (P \rightarrow Q) \leftrightarrow (P \lor Q) \\ Q) \end{array} $
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	1	1	1

P Q	$P \rightarrow Q$	$\neg (P \rightarrow Q)$	$\neg (P \rightarrow Q) \land Q$
0 0	1	0	0
0 1	1	0	0
1 0	0	1	0
1 1	1	0	0

表 3

P Q R	$P{\rightarrow}Q$	$\neg R$	$(P \rightarrow Q) \land \neg R$
0 0 0	1	1	1
0 0 1	1	0	0
0 1 0	1	1	1
0 1 1	1	0	0
1 0 0	0	1	0
1 0 1	0	0	0
1 1 0	1	1	1
1 1 1	1	0	0

由上述真值表可知, (1) 为永真式, (2) 为永假式, (3) 为可满足式。

- (3) 的主析取范式为: m₀ V m₂ V m₆。
- 二、(15分)判断下列公式的类型:
- (1) $\forall x F(x) \rightarrow (\forall x \exists y G(x, y) \rightarrow \forall x F(x))$.
- $(2) \neg (F(x, y) \rightarrow R(x, y)) \land R(x, y).$
- (3) $\forall x \exists y F(x, y) \rightarrow \exists x \forall y F(x, y)$.

解 (1) 因为 $P o (Q o P) \Leftrightarrow \neg P \lor (\neg Q \lor P) \Leftrightarrow (\neg P \lor P) \lor \neg Q \Leftrightarrow T$,而 $\forall x F(x) \to (\forall x \exists y G(x, y) \to \forall x F(x))$ 是 $P \to (Q \to P)$ 的代换实例,所以 $\forall x F(x) \to (\forall x \exists y G(x, y) \to \forall x F(x))$ 为永真式。

- (2) 因为¬ $(P\rightarrow Q)$ $\land Q\Leftrightarrow$ ¬ $(¬P\lor Q)$ $\land Q\Leftrightarrow P\land ¬Q\land Q\Leftrightarrow F$,而¬ $(F(x, y)\rightarrow R(x, y))$ $\land R(x, y)$ 是¬ $(P\rightarrow Q)$ $\land Q$ 的代换实例,所以¬ $(F(x, y)\rightarrow R(x, y))$ $\land R(x, y)$ 为矛盾式。
 - (3) 取解释 I_1 为: 个体域为自然数集合 N; F(x, y) 为 x=y。则:

 $\forall x \exists y F (x, y) \rightarrow \exists x \forall y F (x, y) \Leftrightarrow \forall x \exists y (x = y) \rightarrow \exists x \forall y (x = y) \Leftrightarrow F$

取解释 I_2 为: 个体域为自然数集合 N; F(x, y) 为 $x \le y$ 。则:

 $\forall x \exists y F \ (x, \ y) \ \rightarrow \exists x \forall y F \ (x, \ y) \Leftrightarrow \forall x \exists y \ (x \leqslant y) \ \rightarrow \exists x \forall y \ (x \leqslant y) \Leftrightarrow T$

所以, $\forall x \exists y F(x, y) \rightarrow \exists x \forall y F(x, y)$ 为可满足式。

三、(10分)完成下列推理: 只要今天天气不好,就一定有考生不能提前进入考场, 当且仅当所有考生提前进入考场,考试才能准时进行。所以,如果考试准时进行,那么天气 就好。

解 设 P: 今天天气好, Q: 考试准时进行, A(e): e 提前进入考场, 个体域: 考生的

集合,则命题可符号化为: $\neg P \rightarrow \exists x \neg A (x)$, $\forall x A (x) \leftrightarrow Q \vdash Q \rightarrow P$ 。

$$(1) \neg P \rightarrow \exists x \neg A (x)$$

$$(2) \neg P \rightarrow \neg \forall x A (x)$$

$$(3) \forall x A (x) \rightarrow P$$

$$(4) \forall x A (x) \leftrightarrow Q$$

$$(5) (\forall x A (x) \rightarrow Q) \land (Q \rightarrow \forall x A (x))$$

$$T (4), E$$

$$(6) Q \rightarrow \forall x A (x)$$

$$T (5), I$$

 $(7) O \rightarrow P \qquad \qquad T(6) (3) , I$

四、(10 分) 证明 $A \times (B-C) = (A \times B) - (A \times C)$ 。

证明 因为< x, $y>\in A\times (B-C)$ $\Leftrightarrow x\in A\wedge y\in (B-C)$ $\Leftrightarrow x\in A\wedge (y\in B\wedge y\notin C)$ $\Leftrightarrow (x\in A\wedge y\in B)$ $\wedge (x\in A\wedge y\notin C)$ $\Leftrightarrow (< x, y>\in A\times B)$ $\wedge (< x, y>\notin A\times C)$ $\Leftrightarrow < x, y>\in (A\times B)$ $-(A\times C)$, 所以 $A\times (B-C)=(A\times B)$ $-(A\times C)$.

五、(10 分) 证明 R 的传递闭包 $t(R) = \bigcup_{i=1}^{\infty} R^{i}$ 。

证明: $\diamondsuit S = \bigcup_{i=1}^{\infty} R^i$, 显然有 $R \subseteq S$ 。

对任意 x、y、 $z \in A$,有($x \bigcup_{i=1}^{\infty} R^i y$) \wedge ($y \bigcup_{i=1}^{\infty} R^i z$) $\Rightarrow \exists m \ (xR^m y) \ \wedge \exists n \ (yR^n z) \Rightarrow (xR^m y)$ \wedge ($yR^n z$) $\Rightarrow xR^m * R^n z \Rightarrow xR^{m+n} z \Rightarrow x \bigcup_{i=1}^{\infty} R^i z$,所以 S 是传递的。

设 R'是包含 R 的传递关系,下证 $S=\bigcup\limits_{i=1}^{\infty}R^{i}\subseteq R'$ 。只需证对任意正整数 n 有 $R^{n}\subseteq R'$ 。

当 n=1 时,R⊂R',结论成立。

六、(10分) 若函数 $g: A \rightarrow B$ 和 $f: B \rightarrow C$ 是双射,则 $f \circ g: A \rightarrow C$ 是双射。

证明 对任意的 $z \in C$,由 $f: B \to C$ 是双射,即 $f: B \to C$ 是满射,则存在 $y \in B$ 使 f(y) = z。对于 $y \in B$,由 $g: A \to B$ 是双射,即 $g: A \to B$ 是满射,则存在 $x \in A$ 使 g(x) = y,于 是有 $f \circ g(x) = f(g(x)) = z$ 。所以 $f \circ g$ 是满射。

对任意的 x_1 、 $x_2 \in A$,若 $x_1 \neq x_2$,由 g: $A \rightarrow B$ 是双射,即 g: $A \rightarrow B$ 是单射,则 g (x_1) $\neq g$ (x_2),又由 f: $B \rightarrow C$ 是双射,即 f: $B \rightarrow C$ 是单射,则 f (g (x_1)) $\neq f$ (g (x_2)),于是 $f \circ g$ (x_1) $\neq f \circ g$ (x_2)。所以 $f \circ g$ 是单射。

综上可知, $f \circ g$ 是双射。

七、 $(15\, eta)$ 设(G, *)是由g生成的循环群,则若G为无限循环群,则G只有两个生成元g和 g^{-1} 。

证明 (1) 因为 g 是群 $\langle G, * \rangle$ 的生成元,所以对任意的 $a \in G$,存在 $i \in Z$ 使得 $a = g^i$ 。

又 $a = (g^{-1})^{-i}$, 所以 g^{-1} 也是群 $\langle G, * \rangle$ 的生成元。

再证 G 只有 g 和 g^{-1} 这两个生成元。假设 h 也是 G 的生成元,对 G 的元素 g,存在整数 s,使得 $g=h^s$ 。对于 h 来说,由 g 是 G 的生成元,存在整数 t,使得 $h=g^t$ 。于是, $g=h^s=g^{st}$ 。由 G 中的消去律得 $g^{st-1}=e$ 。因为 G 是无限群,必有 st-1=0。从而有 s=t=1 或 s=t=1,即 h=g 或 $h=g^{-1}$ 。

八、(15分)(1)画出4阶3条边的所有非同构无向简单图;

解 (1) 由握手定理可知,所画的无向简单图各结点度数之和为 2×3=6,最大度数小于或等于 3。于是所求无向简单图的度数列应满足的条件是:将 6分成 4个非负整数,每个整数均大于或等于 0 且小于或等于 3,并且奇数个数为偶数。将这样的整数列排列出来只有下列三种情况:

将每种度数列所有非同构的图都画出来即得所要求的全部非同构的图,如图所示。

(2) 一个连通无向图 G 中的结点 v 是割点 \Leftrightarrow 存在结点 u 和 w,使得连接 u 和 w 的每条路都经过 v。

证明 充分性: 若连通图 G 中存在结点 u 和 w,使得连接 u 和 w 的每条路都经过 v,则在子图 G— $\{v\}$ 中 u 和 w 必不可达,故 v 是 G 的割点。

必要性: 若v是G的割点,则G-{v}至少有两个连通分支 G_1 =< V_1 , E_1 >和 G_2 =< V_2 , E_2 >。任取u\in V_1 ,w0 \in V_2 ,因为G5 连通,故在G7 中必有连接u1 和v2 的路v0 的路v0 的路v0 中不可达,因此v0 必通过v,即v1 和v2 间的任意路必经过v3。

离散数学考试试题(B卷及答案)

二、(10 分) 举 例 说 明 下 面 推 理 不 正 确 : $\forall x \exists y (P(x) \rightarrow Q(y))$, $\forall y \exists z (R(y) \rightarrow Q(z)) \vdash \exists x \forall z (P(x) \rightarrow R(z))$ 。

解: 设论域为 $\{1, 2\}$, 令P(1)=P(2)=T; Q(1)=Q(2)=T; R(1)=R(2)=F。则:

 $\forall x \exists y (P(x) \rightarrow Q(y)) \Leftrightarrow \forall x ((P(x) \rightarrow Q(1)) \lor (P(x) \rightarrow Q(2)))$

$$\Leftrightarrow ((P(1) \rightarrow Q(1)) \lor (P(1) \rightarrow Q(2))) \land ((P(2) \rightarrow Q(1)) \lor (P(2) \rightarrow Q(2)))$$

 $\Leftrightarrow ((T {\rightarrow} T) \lor (T {\rightarrow} T)) \land ((T {\rightarrow} T) \lor (T {\rightarrow} T))$

 \Leftrightarrow T

 $\forall y \exists z (R(y) \rightarrow Q(z)) \Leftrightarrow \forall y ((R(y) \rightarrow Q(1)) \lor (R(y) \rightarrow Q(2)))$

$$\Leftrightarrow$$
 $((R(1)\rightarrow O(1))\lor(R(1)\rightarrow O(2)))\land((R(2)\rightarrow O(1))\lor(R(2)\rightarrow O(2)))$

$$\Leftrightarrow ((F \rightarrow T) \lor (F \rightarrow T)) \land ((F \rightarrow T) \lor (F \rightarrow T))$$

 \Leftrightarrow T

仴

$$\exists x \forall z (P(x) \rightarrow R(z)) \Leftrightarrow \exists x ((P(x) \rightarrow R(1)) \land (P(x) \rightarrow R(2)))$$

$$\Leftrightarrow ((P(1) \rightarrow R(1)) \land (P(1) \rightarrow R(2))) \lor ((P(2) \rightarrow R(1)) \land (P(2) \rightarrow R(2)))$$

$$\Leftrightarrow ((T \rightarrow F) \land (T \rightarrow F)) \lor ((T \rightarrow F) \land (T \rightarrow F))$$

$$\Leftrightarrow F$$

所以, $\forall x \exists y (P(x) \rightarrow Q(y))$, $\forall y \exists z (R(y) \rightarrow Q(z)) \vdash \exists x \forall z (P(x) \rightarrow R(z))$ 不正确。

三、(15分)在谓词逻辑中构造下面推理的证明: 所有牛都有角,有些动物是牛,所以,有些动物有角。

解: 令P(x): x是牛; Q(x): x有角; R(x): x是动物; 则推理化形式为:

 $\forall x(P(x)\rightarrow Q(x)), \exists x(P(x)\land R(x)) \vdash \exists x(Q(x)\land R(x))$

下面给出证明:

$$(1) \exists x (P(x) \land R(x))$$

$(2) P(a) \wedge R(a)$	T(1), ES
$(3) \forall x (P(x) \rightarrow Q(x))$	P
$(4) P(a) \rightarrow Q(a)$	T(3), US
(5) P(a)	T(2), I
(6) Q(a)	T(4)(5), I
(7) R(a)	T(2), I
$(8)Q(a) \land R(a)$	T(6)(7), I
$(9) \exists \ x (Q(x) \land R(x))$	T(8), EG

四、(10 分) 证明 $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$ 。

证明: 因为< x, $y > \in (A \cap B) \times (C \cap D) \Leftrightarrow x \in (A \cap B) \wedge y \in (C \cap D) \Leftrightarrow x \in A \wedge x \in B \wedge y \in C \wedge y$ $\in D \Leftrightarrow (x \in A \wedge y \in C) \wedge (x \in B \wedge y \in D) \Leftrightarrow < x$, $y > \in A \times C \wedge < x$, $y > \in B \times D \Leftrightarrow < x$, $y > \in (A \times C) \cap (B \times D)$, 所以 $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$.

五、(15 分) 设 $A = \{1, 2, 3, 4, 5\}$, $R \not\in A$ 上的二元关系,且 $R = \{<2, 1>, <2, 5>, <2, 4>, <3, 4>, <4, 4>, <5, 2>\}$,求 r(R)、s(R)和 t(R)。

解 $r(R)=R\cup I_A=\{<2, 1>, <2, 5>, <2, 4>, <3, 4>, <4, 4>, <5, 2>, <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>\}$

 $s(R) = R \cup R^{-1} = \{ \langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 1, 2 \rangle, \langle 4, 4 \rangle \}$

 $R^2 = \{ <2, 2>, <2, 4>, <3, 4>, <4, 4>, <5, 1>, <5, 5>, <5, 4> \}$

 $R^3 = \{ <2, 1>, <2, 5>, <2, 4>, <3, 4>, <4, 4>, <5, 2>, <5, 4> \}$

 $R^4 = \{ \langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 1 \rangle, \langle 5, 5 \rangle, \langle 5, 4 \rangle \} = R^2$

 $t(R) = \bigcup_{i=1}^{\infty} R^{i} = \{ \langle 2, 1 \rangle, \langle 2, 5 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 2 \rangle, \langle 2, 2 \rangle, \langle 5, 1 \rangle, \langle 5, 4 \rangle, \langle 5, 5 \rangle \}_{\circ}$

六、(10分) 若函数 f: $A \rightarrow B$ 是双射,则对任意 $x \in A$,有 $f^{-1}(f(x)) = x$ 。

证明 对任意的 $x \in A$,因为 $f: A \to B$ 是函数,则 $\langle x, f(x) \rangle \in f$,于是 $\langle f(x), x \rangle \in f^{-1}$ 。由 f^{-1} 是 B 到 A 的函数,于是可写为 $f^{-1}(f(x)) = x$ 。

七、(10分) 若 G 为有限群,则 $|G|=|H| \cdot [G:H]$ 。

2>, <4, 3>}

证明 设[G:H]=k, a_1 、 a_2 、...、 a_k 分别为H的k个左陪集的代表元,由定理8.38得

$$G = \bigcup_{i=1}^{k} [a_i]_R = \bigcup_{i=1}^{k} a_i H$$

又因为对 H 中任意不同的元素 x、 $y \in H$ 及 $a \in G$,必有 $a*x \neq a*y$,所以 $|a_1H| = ... = |a_kH|$ =|H|。因此

$$|G| = \bigcup_{i=1}^{k} a_i H = \sum_{i=1}^{k} |a_i H| = k |H| = |H| \cdot [G:H]$$

八、(20分)(1)画出3阶2条边的所有非同构有向简单图。

解:由握手定理可知,所画的有向简单图各结点度数之和为4,且最大出度和最大入度均小于或等于2。度数列与入度列、出度列为:

1、2、1: 入度列为 0、1、1 或 0、2、0 或 1、0、1; 出度列为 1、1、0 或 1、0、1 或 0、2、0

2、2、0: 入度列为1、1、0; 出度列为1、1、0

四个所求有向简单图如图所示。

(2) 设 $G \neq n(n \ge 4)$ 阶极大平面图,则 G 的最小度 $\delta \ge 3$ 。

证明 设v是极大平面图 G 的任一结点,则v在平面图 G—{v}的某个面f内。由于 G—{v}是一个平面简单图且其结点数大于等于 G3,所以 G6f7。由 G7 的极大平面性,G7 上的结点之间都有边,因此 G8f8f9。由G9 的任意性可得,G9 的最小度 G8f9。

离散数学考试试题(A卷及答案)

一、(10 分) 求($P \downarrow Q$)→($P \land \neg (Q \lor \neg R)$)的主析取范式

$$\mathfrak{M}: (P \downarrow Q) \rightarrow (P \land \neg (Q \lor \neg R)) \Leftrightarrow \neg (\neg (P \lor Q)) \lor (P \land \neg Q \land R))$$

 $\Leftrightarrow (P \lor Q) \lor (P \land \neg Q \land R))$

 $\Leftrightarrow (P \lor Q \lor P) \land (P \lor Q \lor \neg Q) \land (P \lor Q \lor R)$

 $\Leftrightarrow (P \lor Q) \land (P \lor Q \lor R)$

 $\Leftrightarrow (P \vee Q \vee (R \wedge \neg R)) \wedge (P \vee Q \vee R)$

 $\Leftrightarrow (P \lor Q \lor R) \land (P \lor Q \lor \neg R) \land (P \lor Q \lor R)$

 $\Leftrightarrow M_0 \wedge M_1$

 $\Leftrightarrow m_2 \lor m_3 \lor m_4 \lor m_5 \lor m_6 \lor m_7$

二、(10 分)在某次研讨会的休息时间,3 名与会者根据王教授的口音分别作出下述判断:

甲说:王教授不是苏州人,是上海人。

乙说:王教授不是上海人,是苏州人。

丙说: 王教授既不是上海人, 也不是杭州人。

王教授听后说: 你们 3 人中有一个全说对了,有一人全说错了,还有一个人对错各一半。 试判断王教授是哪里人?

解 设设 P: 王教授是苏州人; Q: 王教授是上海人; R: 王教授是杭州人。则根据题 意应有:

 \mathbb{Z} : $\neg Q \land P$

丙: $\neg Q \land \neg R$

王教授只可能是其中一个城市的人或者 3 个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有一 $Q \land P$,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

$$\begin{array}{l} ((\neg P \land Q) \land ((Q \land \neg R) \lor (\neg Q \land R))) \lor ((\neg Q \land P) \land (\neg Q \land R)) \\ \\ \Leftrightarrow (\neg P \land Q \land Q \land \neg R) \lor (\neg P \land Q \land \neg Q \land R) \lor (\neg Q \land P \land \neg Q \land R) \\ \\ \Leftrightarrow (\neg P \land Q \land \neg R) \lor (P \land \neg Q \land R) \\ \\ \Leftrightarrow \neg P \land Q \land \neg R \\ \\ \Leftrightarrow \top \end{array}$$

因此, 王教授是上海人。

三、(10 分)证明 tsr(R) 是包含 R 的且具有自反性、对称性和传递性的最小关系。

证明 设R 是非空集合A 上的二元关系,则由定理 4.19 知,tsr(R) 是包含R 的且具有自反性、对称性和传递性的关系。

若 R 是包含 R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知 $r(R) \subseteq R$ 。由定理 4.15 和由定理 4.16 得 $sr(R) \subseteq s(R') = R'$,进而有 $tsr(R) \subseteq t(R') = R'$ 。 综上可知,tsr(R) 是包含 R 的且具有自反性、对称性和传递性的最小关系。

四、(15 分) 集合 $A = \{a, b, c, d, e\}$ 上的二元关系 R 为 $R = \{\langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle a, e \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle b, e \rangle, \langle c, c \rangle, \langle c, d \rangle, \langle c, e \rangle, \langle d, d \rangle, \langle d, e \rangle, \langle e, e \rangle\},$

- (1)写出 R 的关系矩阵。
- (2) 判断 R 是不是偏序关系, 为什么?

解 (1) R 的关系矩阵为:

$$M(R) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(2) 由关系矩阵可知,对角线上所有元素全为 1,故 R 是自反的; $r_{ij} + r_{ji} \leq 1$,故 R 是反对称的;可计算对应的关系矩阵为:

$$M(R^{2}) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = M(R)$$

由以上矩阵可知R是传递的。

五、(10 分) 设 A、B、C 和 D 为任意集合,证明 $(A-B) \times C = (A \times C) - (B \times C)$ 。证明:因为

$$\langle x , y \rangle \in (A - B) \times C \Leftrightarrow x \in (A - B) \land y \in C$$

$$\Leftrightarrow (x \in A \land x \notin B) \land y \in C$$

$$\Leftrightarrow (x \in A \land y \in C \land x \notin B) \lor (x \in A \land y \in C \land y \notin C)$$

$$\Leftrightarrow (x \in A \land y \in C) \land (x \notin B \lor y \notin C)$$

$$\Leftrightarrow (x \in A \land y \in C) \land \neg (x \in B \land y \in C)$$

$$\Leftrightarrow \langle x, y \rangle \in (A \times C) \land \langle x, y \rangle \notin (B \times C)$$

$$\Leftrightarrow \langle x, y \rangle \in (A \times C) - (B \times C)$$

所以, $(A-B) \times C = (A \times C - B \times C)$ 。

六、(10 分) 设 $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow A$,证明: 如果 $h \circ g \circ f = I_A$, $f \circ h \circ g = I_B$, $g \circ f \circ h$ $= I_C$,则 f、g、h 均为双射,并求出 f^{-1} 、 g^{-1} 和 h^{-1} 。

解 因 I_A 恒等函数,由 $h \circ g \circ f = I_A$ 可得 f 是单射,h 是满射;因 I_B 恒等函数,由 $f \circ h \circ g = I_B$ 可得 g 是单射,f 是满射;因 I_C 恒等函数,由 $g \circ f \circ h = I_C$ 可得 h 是单射,g 是满射。从而 f、 $g \circ h$ 均为双射。

由 $h \circ g \circ f = I_A$,得 $f^{-1} = h \circ g$;由 $f \circ h \circ g = I_B$,得 $g^{-1} = f \circ h$;由 $g \circ f \circ h = I_C$,得 $h^{-1} = g \circ f \circ h$

七、 $(15\,
m 分)$ 设(G,*)是一代数系统,运算*满足交换律和结合律,且 $a*x=a*y\Rightarrow x=y$,证明: 若 G 有限,则 G 是一群。

证明 因 G 有限,不妨设 $G = \{a_1, a_2, \cdots, a_n\}$ 。由 $a*x = a*y \Rightarrow x = y$ 得,若 $x \neq y$,

则 $a*x \neq a*y$ 。于是可证,对任意的 $a \in G$,有 aG = G。又因为运算*满足交换律,所以 aG = G = Ga。令 $e \in G$ 使得 a*e = a。对任意的 $b \in G$,令 c*a = b,则 b*e = (c*a)*e = c*(a*e) = c*a = b,再由运算*满足交换律得 e*b = b,所以 e 是关于运算*的幺元。对任意 $a \in G$,由 aG = G 可知,存在 $b \in G$ 使得 a*b = e,再由运算*满足交换律得 b*a = e,所以 b 是 a 的逆元。由 a 的任意性知,G 中每个元素都存在逆元。故 G 是一群。

八、 $(20 \, \text{分})(1)$ 证明在 n 个结点的连通图 G 中,至少有 n-1 条边。

证明 不妨设 G 是无向连通图(若 G 为有向图,可略去边的方向讨论对应的无向图)。设 G 中结点为 v_1 、 v_2 、…、 v_n 。由连通性,必存在与 v_1 相邻的结点,不妨设它为 v_2 (否则可重新编号),连接 v_1 和 v_2 ,得边 e_1 ,还是由连通性,在 v_3 、 v_4 、…、 v_n 中必存在与 v_1 或 v_2 相邻的结点,不妨设为 v_3 ,将其连接得边 e_2 ,续行此法, v_n 必与 v_1 、 v_2 、…、 v_{n-1} 中的某个结点相邻,得新边 e_{n-1} ,由此可见 G 中至少有 n-1 条边。

(2)给定简单无向图 $G=\langle V, E \rangle$,且|V|=m,|E|=n。试证:若 $n \geqslant C_{m-1}^2+2$,则 G是哈密尔顿图。

证明 若 $n \ge C_{m-1}^2 + 2$,则 $2n \ge m^2 - 3m + 6$ (1)。

若存在两个不相邻结点u、v使得 d(u)+d(v)< m,则有 $2n=\sum_{w\in V}d(w)< m+(m-2)(m-3)+m=m^2-3m+6$,与(1)矛盾。所以,对于 G 中任意两个不相邻结点u、v 都有 $d(u)+d(v)\ge m$ 。由定理 10. 26 可知,G 是哈密尔顿图。

离散数考试试题(B卷及答案)

一、 $(10 \, \text{分})$ 使用将命题公式化为主范式的方法,证明 $(P \rightarrow Q) \rightarrow (P \land Q) \Leftrightarrow (Q \rightarrow P) \land (P \rightarrow Q) \Rightarrow (P \land Q) \Leftrightarrow (Q \rightarrow P) \land (P \rightarrow Q) \Leftrightarrow (Q \rightarrow P) \land (Q \rightarrow P) \land$ $\vee Q$).

证明: 因为
$$(P \rightarrow Q) \rightarrow (P \land Q) \Leftrightarrow \neg (\neg P \lor Q) \lor (P \land Q)$$

$$\Leftrightarrow (P \land \neg Q) \lor (P \land Q)$$

$$(Q \rightarrow P) \land (P \lor Q) \Leftrightarrow (\neg Q \lor P) \land (P \lor Q)$$

$$\Leftrightarrow (P \land \neg Q) \lor (\neg Q \land Q) \lor (P \land P) \lor (P \land Q)$$

$$\Leftrightarrow (P \land \neg Q) \lor P$$

$$\Leftrightarrow (P \land \neg Q) \lor (P \land (Q \lor \neg Q))$$

$$\Leftrightarrow (P \land \neg Q) \lor (P \land Q) \lor (P \land \neg Q)$$

$$\Leftrightarrow (P \land \neg Q) \lor (P \land Q)$$

所以, $(P \rightarrow Q) \rightarrow (P \land Q) \Leftrightarrow (Q \rightarrow P) \land (P \lor Q)$ 。

二、(10 分) 证明下述推理: 如果 A 努力工作,那么 B 或 C 感到愉快;如果 B 愉快, 那么A不努力工作:如果D愉快那么C不愉快。所以,如果A努力工作,则D不愉快。

解 设A: A 努力工作; $B \setminus C \setminus D$ 分别表示 $B \setminus C \setminus D$ 愉快; 则推理化形式为:

 $A \rightarrow B \lor C$, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

(1)A附加前提 $(2)A \rightarrow B \lor C$ Р $(3)B \vee C$ T(1)(2), I $(4) B \rightarrow \neg A$ Р $(5)A \rightarrow \neg B$ T(4), E $(6) \neg B$ T(1)(5), I(7) CT(3)(6), I $(8)D \rightarrow \neg C$ $(9) \neg D$ T(7)(8), I $(10)A \rightarrow \neg D$ CP 三、(10 分) 证明 $\forall x \forall y (P(x) \rightarrow Q(y)) \Leftrightarrow (\exists x P(x) \rightarrow \forall y Q(y))$ 。 $\forall x \forall y (P(x) \rightarrow Q(y)) \Leftrightarrow \forall x \forall y (\neg P(x) \lor Q(y))$

 $\Leftrightarrow \forall x (\neg P(x) \lor \forall y Q(y))$ $\Leftrightarrow \forall x \neg P(x) \lor \forall y Q(y)$ $\Leftrightarrow \neg \exists x P(x) \lor \forall y Q(y)$ $\Leftrightarrow (\exists x P(x) \rightarrow \forall v O(v))$

四、(10 分) 设 $A = \{\emptyset, 1, \{1\}\}, B = \{0, \{0\}\}, 求 P(A), P(B) - \{0\}, P(B) \oplus B$ 。 $P(A) = \{\emptyset, \{\emptyset\}, \{1\}, \{\{1\}\}, \{\emptyset, 1\}, \{\emptyset, \{1\}\}\}, \{1, \{1\}\}\}, \{\emptyset, 1, \{1\}\}\}\}$ $P(B) - \{0\} = \{\emptyset, \{0\}, \{\{0\}\}\}, \{0, \{0\}\}\} - \{0\} = \{\emptyset, \{0\}\}, \{\{0\}\}\}, \{0, \{0\}\}\}$ $P(B) \oplus B = \{\emptyset, \{0\}\}, \{\{0\}\}\}, \{0, \{0\}\}\} \oplus \{0, \{0\}\}\} = \{\emptyset, \{0, \{0\}\}\}, \{0, \{0\}\}\}$ 五、(15分)设 $X = \{1, 2, 3, 4\}$, $R \not\in X \bot$ 的二元关系, $R = \{\langle 1, 1 \rangle, \langle 3, 1 \rangle, \langle 1, 3 \rangle, \langle 3, 3 \rangle, \langle 3, 2 \rangle, \langle 4, 3 \rangle, \langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 1, 2 \rangle\}$

- (1) 画出 R 的关系图。
- (2)写出 R 的关系矩阵。
- (3)说明 R 是否是自反、反自反、对称、传递的。
- 解 (1)R的关系图如图所示:
- (2) R 的关系矩阵为:

$$M(R) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

(3)对于 R 的关系矩阵,由于对角线上不全为 1, R 不是自反的;由于对角线上存在非 0元, R 不是反自反的;由于矩阵不对称, R 不是对称的;

经过计算可得

$$M(R^2) = egin{pmatrix} 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 \end{pmatrix} = M(R)$$
,所以 R 是传递的。

六、(15 分) 设函数 $f: R \times R \rightarrow R \times R$, f 定义为: $f(\langle x, y \rangle) = \langle x + y, x - y \rangle$ 。

- (1)证明f是单射。
- (2) 证明 f 是满射。
- (3) 求逆函数 f^{-1} 。
- (4) 求复合函数 f^{-1} of 和 f of f

证明 (1) 对任意的 x, y, x_1 , $y_1 \in R$, 若 $f(\langle x, y \rangle) = f(\langle x_1, y_1 \rangle)$, 则 $\langle x+y, x-y \rangle = \langle x_1 + y_1, x_1-y_1 \rangle$, $x+y=x_1+y_1$, $x-y=x_1-y_1$, 从而 $x=x_1$, $y=y_1$, 故 f 是单射。

(2) 对任意的
$$\langle u, w \rangle \in R \times R$$
, $\diamondsuit x = \frac{u+w}{2}$, $y = \frac{u-w}{2}$, 则 $f(\langle x, y \rangle) = \langle \frac{u+w}{2} + \frac{u-w}{2}$,

$$\frac{u+w}{2} - \frac{u-w}{2} > = \langle u, w \rangle$$
, 所以 f 是满射。

$$(3)f^{-1}(\langle u, w \rangle) = \langle \frac{u+w}{2}, \frac{u-w}{2} \rangle.$$

$$(4)f^{-1}\circ f(\langle x,y\rangle) = f^{-1}(f(\langle x,y\rangle)) = f^{-1}(\langle x+y,x-y\rangle) = \langle \frac{x+y+x-y}{2}, \frac{x+y-(x-y)}{2} \rangle$$

 $f \circ f(\langle x, y \rangle) = f(f(\langle x, y \rangle)) = f(\langle x + y, x - y \rangle) = \langle x + y + x - y, x + y - (x - y) \rangle = \langle 2x, 2y \rangle.$

七、(15 分) 给定群〈G, *>, 若对 G 中任意元 a 和 b, 有 $a^3*b^3 = (a*b)^3$, $a^4*b^4 = (a*b)^4$, $a^5*b^5 = (a*b)^5$, 试证〈G, *>是 Abel 群。

证明 对G中任意元a和b。

因为 $a^3*b^3 = (a*b)^3$,所以 $a^{-1}*a^3*b^3*b^{-1} = a^{-1}*(a*b)^3*b^{-1}$,即得 $a^2*b^2 = (b*a)^2$ 。同理,由 $a^4*b^4 = (a*b)^4$ 可得, $a^3*b^3 = (b*a)^3$ 。由 $a^5*b^5 = (a*b)^5$ 可得, $a^4*b^4 = (b*a)^4$ 。

于是 $(a^3*b^3)*(b*a) = (b*a)^4 = a^4*b^4$,即 $b^4*a = a*b^4$ 。同理可得, $(a^2*b^2)*(b*a) = (b*a)^3 = a^3*b^3$,即 $b^3*a = a*b^3$ 。

由于 $(a*b)*b^3=a*b^4=b^4*a=b*(b^3*a)=b*(a*b^3)=(b*a)*b^3$,故 a*b=b*a。

八、 $(15 \, \%)$ (1) 证明在 n 个结点的连通图 G 中,至少有 n-1 条边。

证明 不妨设 G 是无向连通图(若 G 为有向图,可略去边的方向讨论对应的无向图)。设 G 中结点为 v_1 、 v_2 、…、 v_n 。由连通性,必存在与 v_1 相邻的结点,不妨设它为 v_2 (否则可重新编号),连接 v_1 和 v_2 ,得边 e_1 ,还是由连通性,在 v_3 、 v_4 、…、 v_n 中必存在与 v_1 或 v_2 相邻的结点,不妨设为 v_3 ,将其连接得边 e_2 ,续行此法, v_n 必与 v_1 、 v_2 、…、 v_{n-1} 中的某个结点相邻,得新边 e_{n-1} ,由此可见 G 中至少有 n-1 条边。

(2) 试给出|V|=n, $|E|=\frac{1}{2}(n-1)(n-2)$ 的简单无向图 $G=\langle V,E\rangle$ 是不连通的例子。解 下图满足条件但不连通。

0