Cours 1: Ensembles

1 Ensembles et sous-ensembles

Définition - Un ensemble E est une « collection d'objets », appelés éléments de E. Si x est un élément de E, on dit que x appartient à E et on note $x \in E$.

Notations:

- 1. On note entre { } les éléments d'un ensemble.
- 2. On note ∅ l'ensemble vide, c'est à dire l'ensemble qui ne contient aucun élément.
- 3. Un ensemble $E = \{e\}$ qui n'a qu'un seul élément est appelé un singleton.

Deux façons de définir un ensemble :

- 1. en extension : on donne la liste de tous ses éléments.
- 2. en compréhension : on donne une propriété qui caractérise ses éléments : $A = \{x \in E/P(x)\}$.

Définition - On dit que deux ensembles sont égaux lorsqu'ils ont les mêmes éléments.

Définition - Soient E et F deux ensembles. On dit que E est inclus dans F, si tout élément de E est un élément de F. On note $E \subset F$ et on dit que E sous-ensemble de F ou encore une partie de F. On a donc :

$$E \subset F \iff (\forall x \in E, \ x \in F).$$

Remarques:

1. Soit E un ensemble, on a toujours :

$$\emptyset \subset E \text{ et } E \subset E$$
).

2. Soient E et F deux ensembles, si $E \subset F$ et $E \neq F$, alors on note aussi parfois $E \subsetneq F$ et on dit que l'inclusion est stricte.

Proposition - Soient E, F et G trois ensembles. On a :

$$E = F \iff (E \subset F \text{ et } F \subset E).$$

$$E \subset F \subset G \Rightarrow E \subset G.$$

Définition - Soit E un ensemble. On appelle ensemble des parties de E l'ensemble de tous les sousensembles de E. On le note $\mathscr{P}(E)$.

Remarque:

Soit E un ensemble, on a

- 1. $\emptyset \in \mathscr{P}(E)$ et $E \in \mathscr{P}(E)$.
- $2. \ (x \in E) \iff (\{x\} \subset E) \iff (\{x\} \in \mathscr{P}(E)).$

Proposition - Soient E et F deux ensembles. On a :

$$E \subset F \Rightarrow \mathscr{P}(E) \subset \mathscr{P}(F).$$

$$E = F \iff \mathscr{P}(E) = \mathscr{P}(F).$$

Proposition - Si E est un ensemble à n éléments, où n est un entier naturel, alors $\mathscr{P}(E)$ a 2^n éléments.

2 Intersection et union

Définition - Soient E et F deux ensembles, alors :

- 1. L'intersection de E et F est l'ensemble constitué des éléments qui sont à la fois dans E et dans F. On la note $E \cap F$. Lorsque $E \cap F = \emptyset$, on dit que E et F sont disjoints.
- 2. L'union de E et F est l'ensemble constitué des éléments qui sont dans E ou dans F. On la note $E \cup F$.

Remarques : Soient E et F deux ensembles, on a donc :

- 1. $x \in E \cap F \iff (x \in E \text{ et } x \in F)$
- 2. $x \in E \cup F \iff (x \in E \text{ ou } x \in F)$.

Proposition - Soient E et F deux ensembles. On a :

- 1. $E \cap F \subset E \subset E \cup F$.
- 2. Si $E \subset F$, alors $E \cap F = E$ et $E \cup F = F$.

Proposition - Soient E, F et G trois ensembles. On a :

1. Commutativité :

$$E \cap F = F \cap E$$
 et $E \cup F = F \cup E$.

2. Associativité:

$$(E \cap F) \cap G = E \cap (F \cap G)$$
 et $(E \cup F) \cup G = E \cup (F \cup G)$.

Proposition - Soient E, F et G trois ensembles. On a :

1. Distributivité de \cap par rapport à \cup :

$$E \cap (F \cup G) = (E \cap F) \cup (E \cap G).$$

2. Distributivité de \cup par rapport à \cap :

$$E \cup (F \cap G) = (E \cup F) \cap (E \cup G).$$

Proposition - Soient E un ensemble et A et B deux sous-ensembles de E. On a :

- 1. $A \cap \emptyset = \emptyset$ et $A \cup \emptyset = A$.
- 2. $A \cap E = A$ et $A \cup E = E$.

Définition - Soient E un ensemble et $A_1, A_2, ..., A_n$ des sous-ensembles de E, pour $n \in \mathbb{N}, n \ge 1$. On dit que $\{A_1, A_2, ..., A_n\}$ de E forme une partition de E, si

- 1. $A_i \neq \emptyset$, pour tout i.
- 2. $A_i \cap A_j = \emptyset$, pour tous $i \neq j$.
- 3. $A_1 \cup A_2 \cup ... \cup A_n = E$.

3 Différence et complémentaire

Définition - Soit E un ensemble.

1. Soit F un ensemble. La différence de E par F est l'ensemble constitué des éléments de E qui ne sont pas dans F. On la note $E \setminus F$.

$$E \setminus F = \{x \in E, \ x \notin F\}.$$

2. Soit A un sous-ensemble de E. Le complémenatire de A dans E est l'ensemble $E \setminus A$. On le note $C_E(A)$, ou A^C ou encore \overline{A} lorsque l'ensemble E est fixé.

$$C_E(A) = \{ x \in E, \ x \notin A. \}$$

Proposition - Soient E un ensemble et A et B deux sous-ensembles de E. On a :

- 1. $C_E(\emptyset) = E$ et $C_E(E) = \emptyset$.
- 2. $C_E(C_E(A)) = A$.
- 3. Si $A \subset B$, alors $C_E(B) \subset C_E(A)$.
- 4. $A \setminus B = A \cap C_E(B)$.

Proposition - Soient E un ensemble et A et B deux sous-ensembles de E. On a :

$$C_E(A \cap B) = C_E(A) \cup C_E(B).$$

$$C_E(A \cup B) = C_E(A) \cap C_E(B).$$

Définition - Soient E et F deux ensembles. La différence symétrique de E par F est l'ensemble constitué des éléments qui sont soit dans E, soit dans F, mais pas dans les deux. On la note $E \triangle F$. On a donc :

$$E\triangle F = (E \cup F) \setminus (E \cap F) = (E \setminus F) \cup (F \setminus E).$$

Proposition - Soient E et F deux ensembles disjoints, alors $E \triangle F = E \cup F$.

4 Produit cartésien

Définition - Soient E et F deux ensembles. Le produit cartésien de E par F est l'ensemble constitué des couples (x, y), où x est un élément de E et y un élément de F. On le note $E \times F$.

$$E \times F = \{(x, y)/x \in E \text{ et } y \in F\}.$$

Remarque:

1. On généralise au produit cartésien de n ensembles $E_1, E_2, ..., E_n$, pour $n \in \mathbb{N}, n > 0$:

$$E_1 \times E_2 \times ... \times E_n = \{(x_1, x_2, ..., x_n), x_i \in E_i, \text{ pour tout } 1 \le i \le n.$$

2. Lorsque F=E, on note $E\times E=E^2$. On appelle diagonale de E^2 l'ensemble $D=\{(a,a),a\in E\}$. Et pour tout $n\in\mathbb{N},n>0$, on note $E\times\ldots\times E=E^n$.

Remarques:

- 1. Soit E un ensemble, alors $E \times \emptyset = \emptyset \times E = \emptyset$.
- 2. Soient E et F deux ensembles, alors $\forall (x,y) \in E \times F, \ \forall (x',y') \in E \times F$:

$$(x,y) = (x',y') \iff x = x' \text{ et } y = y'.$$

3. Soient E et F deux ensembles, en général $E \times F \neq F \times E$.

Proposition - Soient E et F deux ensembles, alors :

$$E \times F = \emptyset \iff (E = \emptyset \text{ ou } F = \emptyset).$$