Analysis of Factors Affecting Mammal Longevity

Em Schissler

4/9/2021

Background

Previous studies have aimed to determine the factors contributing to animal longevity. These factors have included size, metabolism, weight, predation, environment, and diet. However, the definitive factors of longevity remain unknown, and the general pattern of heavier animals living longer has been questioned as the sole determinant of increased lifespan, given the exceptions to this rule within the Animal Kingdom (Ebert, 2008). Additionally, there has been debate over whether animals with a strictly plant-based diet, a strictly meat-based diet, or a combination of both have an increased average lifespan, due to the varying nutritional benefits different foods provide (Wilder et al., 2013).

In this project, we will analyze two datasets. First, I will investigate whether a combination of diet and body mass impacts the average lifespan of mammals using Animal Diversity Web (ADW) data. To further validate the data and results, I will compare the ADW data with the MammalDIET data to determine if the proportion of each diet group is consistent across both datasets, thereby assessing if the ADW sample is representative.

The hypothesis is that increased body mass and a specific diet result in higher average lifespans when combined, as some of the longest-living mammals on the planet have diets consisting of plants (herbivores/omnivores) and possess the largest body mass within the class Mammalia. We will test whether there is a difference in the mean lifespan of mammals across at least one of three diet groups, whether there is an association between mean body mass and mean lifespan of mammals, and whether the effect of diet on mammal longevity depends on the average body mass. Additionally, we will examine the interaction between diet and average body mass.

Open the Dataset

Down below I imported data from the CSV file FinalMammalData into an R data frame (mammal.data).

```
mammal.data <- read.csv("FinalMammalData.csv", header=T)</pre>
print(mammal.data)
##
                            Species Lifespan
                                                AvgMass
                                                               Diet
## 1
                 Canis lupus dingo
                                       14.80
                                                14500.00 Carnivore
## 2
         Crossarchus platycephalus
                                       13.30
                                                 1100.00 Carnivore
## 3
               Tadarida aegyptiaca
                                       10.00
                                                   16.30 Carnivore
               Cystophora cristata
## 4
                                       35.00
                                              230000.00 Carnivore
## 5
                    Mustela itatsi
                                        2.00
                                                  300.00 Carnivore
## 6
                Mellivora capensis
                                        7.50
                                                10000.00 Carnivore
```

##		Mustela erminea	1.50		Carnivore
##		Myotis lucifugus	6.50		Carnivore
##	9	Myotis sodalis	20.00		Carnivore
##		Leopardus guigna	11.00		Carnivore
##		Felis chaus	13.00		Carnivore
##	12	Myrmecobius fasciatus	5.00	526.00	Carnivore
##	13	Lasionycteris noctivagans	12.00	10.00	Carnivore
##	14	Leopardus geoffroyi	14.50	4000.00	Carnivore
##	15	Orcaella brevirostris	32.00	124000.00	Carnivore
##	16	Mustela nivalis	2.00	55.00	Carnivore
##	17	Otaria flavescens	18.00	245000.00	Carnivore
##	18	Martes zibellina	8.00	1250.00	Carnivore
##	19	Orycteropus afer	18.00	61000.00	Carnivore
##	20	Tursiops truncatus	25.00	400000.00	Carnivore
##	21	Myotis austroriparius	21.00	6.60	Carnivore
##	22	Rhinolophus ferrumequinum	30.00	25.50	Carnivore
##	23	Macrotus californicus	10.40	12.50	Carnivore
##	24	Peponocephala electra	30.00	228000.00	Carnivore
##	25	Myotis auriculus	3.00	6.50	Carnivore
##	26	Aonyx capensis	11.00	15800.00	Carnivore
##	27	Felis manul	2.26	3.75	Carnivore
##	28	Vulpes macrotis	5.50	2150.00	Carnivore
##	29	Nycticeius humeralis	2.00	10.00	Carnivore
##	30	Neofelis nebulosa	11.00	20000.00	Carnivore
##	31	Cryptotis parva	1.00	4.50	Carnivore
##	32	Delphinus delphis	20.00	118000.00	Carnivore
##	33	Eptesicus fuscus	19.00	23.00	Carnivore
##	34	Myotis septentrionalis	18.50	7.50	Carnivore
##	35	Nyctalus leisleri	9.00	15.50	Carnivore
##	36	Monachus tropicalis	20.00	135000.00	Carnivore
##	37	Didelphis albiventris	1.67	1625.00	Carnivore
##	38	Ommatophoca rossii	21.00	182500.00	Carnivore
##	39	Tarsius tarsier	10.00	116.00	Carnivore
##	40	Myosorex varius	0.00	12.00	Carnivore
##	41	Eumetopias jubatus	25.00	735000.00	Carnivore
##		Plecotus auritus	15.00	8.00	Carnivore
##	43	Hyperoodon ampullatus	37.00	6650000.00	Carnivore
##	44	Talpa europaea	2.50	100.00	Carnivore
##	45	Zalophus wollebaeki	20.00	150000.00	Carnivore
##	46	Acinonyx jubatus	8.00	46500.00	Carnivore
##	47	Odobenus rosmarus	35.00	1000000.00	Carnivore
##	48	Galago demidoff	4.50	60.00	Carnivore
##	49	Caracal caracal	12.00	13500.00	Carnivore
##	50	Hipposideros fulvus	12.00	9.00	Carnivore
##	51	Blarina brevicauda	2.50		Carnivore
##		Panthera leo	14.00	199000.00	
##		Hydrurga leptonyx	26.00	400000.00	
##		Arctocephalus australis	21.00	130000.00	
##		Lynx canadensis	14.50		Carnivore
##		Cephalorhynchus hectori	20.00		Carnivore
		•			

	57	Scapanus orarius	3.50		Carnivore
	58	Stenella coeruleoalba	50.00		Carnivore
	59	Phoca largha	32.00		Carnivore
	60	Monodon monoceros		1250000.00	
	61	Plecotus austriacus	15.00		Carnivore
##		Parascalops breweri	3.00		Carnivore
	63	Balaenoptera acutorostrata		7500000.00	
	64	Leopardus pardalis	8.50		Carnivore
	65	Pontoporia blainvillei	12.00		Carnivore
	66	Lutrogale perspicillata	7.00		Carnivore
	67	Sousa chinensis	40.00	265000.00	
	68	Arctocephalus gazella	25.00	83500.00	Carnivore
##	69	Sorex araneus	2.00	9.50	Carnivore
##	70	Stenella attenuata	46.00	112500.00	Carnivore
	71	Myotis grisescens	14.50	11.50	Carnivore
	72	Gracilinanus agilis	1.50		Carnivore
	73	Suncus murinus	1.50		Carnivore
##	74	Sousa teuszii	0.00	125000.00	Carnivore
##		Monachus monachus	30.00	307500.00	
##	76	Peromyscus maniculatus	1.00	17.00	Omnivore
##	77	Peromyscus leucopus	1.00	23.00	Omnivore
##	78	Pseudomys higginsi	1.50	65.00	Omnivore
##	79	Miopithecus talapoin	28.00	1350.00	Omnivore
##	80	Ursus thibetanus	25.00	100000.00	Omnivore
##	81	Tupaia glis	2.50	142.00	Omnivore
##	82	Galago zanzibaricus	16.50	146.80	Omnivore
##	83	Leontopithecus rosalia	15.00	654.50	Omnivore
##	84	Didelphis aurita	2.00	1290.00	Omnivore
##	85	Tamias amoenus	5.00	51.50	Omnivore
##	86	Macaca mulatta	30.00	8000.00	Omnivore
##	87	Salpingotus pallidus	2.50	9.80	Omnivore
##	88	Vulpes cana	10.00	2250.00	Omnivore
##	89	Calyptophractus retusus	13.50	1000.00	Omnivore
##	90	Cebus apella	40.00	3050.00	Omnivore
##	91	Aotus trivirgatus	20.00	800.00	Omnivore
##	92	Ursus arctos	25.00	340000.00	Omnivore
##	93	Erinaceus europaeus	8.00	1000.00	Omnivore
##	94	Sekeetamys calurus	2.08	64.00	Omnivore
##	95	Didelphis virginiana	1.75	3950.00	Omnivore
##	96	Sciurus niger	0.58	800.00	Omnivore
##	97	Mephitis mephitis	6.00	3500.00	Omnivore
##	98	Tamias palmeri	2.50	59.70	Omnivore
##	99	Mus musculus	1.25	21.00	Omnivore
##	100	Rattus norvegicus	2.00	400.00	Omnivore
##	101	Sciurus carolinensis	12.50	540.33	Omnivore
##	102	Dryomys nitedula	5.50	26.00	Omnivore
##	103	Cercopithecus diana	20.00	5500.00	Omnivore
##	104	Peromyscus aztecus	1.25	29.00	Omnivore
		Allenopithecus nigroviridis	23.00	4702.50	Omnivore
	106	Vulpes rueppellii	6.00	2400.00	Omnivore

	107	Chiropotes albinasus	17.00	2500.00	Omnivore	
	108	Phacochoerus africanus	16.50	100000.00	Omnivore	
##	109	Erythrocebus patas	21.00	10000.00	Omnivore	
	110	Saimiri vanzolinii	15.00	910.00	Omnivore	
##	111	Glirulus japonicus	6.00	27.00	Omnivore	
##	112	Sus verrucosus	8.00	76000.00	Omnivore	
##	113	Didelphis marsupialis	2.00	1530.00	Omnivore	
##	114	Oryzomys galapagoensis	2.00	64.50	Omnivore	
##	115	Potamochoerus larvatus	20.00	84500.00	Omnivore	
##	116	Isoodon auratus	2.50	485.00	Omnivore	
##	117	Microcebus rufus	7.00	50.00	Omnivore	
##	118	Sus scrofa	12.50	169000.00	Omnivore	
##	119	Nyctereutes procyonoides	11.00	7000.00	Omnivore	
##	120	Leontopithecus chrysopygus	10.00	572.50	Omnivore	
##	121	Vulpes pallida	10.00	2550.00	Omnivore	
##	122	Caluromys philander	3.40	250.00	Omnivore	
##	123	Procyon cancrivorus	14.00	5000.00	Omnivore	
##	124	Philander opossum	2.50	437.00	Omnivore	
##	125	Ursus americanus	10.00	224000.00	Omnivore	
##	126	Vulpes zerda	10.00	1500.00	Omnivore	
##	127	Papio hamadryas	37.00	15350.00	Omnivore	
##	128	Muntiacus reevesi	11.00	18000.00	Omnivore	
##	129	Chlorocebus aethiops	31.00	4000.00	Omnivore	
##	130	Mustela subpalmata	1.00	307.50	Omnivore	
##	131	Cercocebus agilis	20.00	9000.00	Omnivore	
##	132	Peromyscus eremicus	1.00	25.00	Omnivore	
##	133	Martes foina	10.00	1700.00	Omnivore	
##	134	Sigmodon fulviventer	0.17	210.00	Omnivore	
##	135	Vulpes velox	4.50	2500.00	Omnivore	
##	136	Cebus olivaceus	42.00	2655.00	Omnivore	
##	137	Elephantulus rufescens	1.00	42.50	Omnivore	
##	138	Cercocebus torquatus	30.00	9492.50	Omnivore	
##	139	Euoticus elegantulus	3.50	315.00	Omnivore	
##	140	Akodon azarae	0.79	19.00	Omnivore	
##	141	Napaeozapus insignis	3.00	26.00	Omnivore	
##	142	Chaetophractus nationi	14.00	2150.00	Omnivore	
##	143	Callithrix geoffroyi	10.00	270.00	Omnivore	
##	144	Spermophilus lateralis	7.00	257.00	Omnivore	
##	145	Saguinus nigricollis	13.90	475.00	Omnivore	
##	146	Canis lupus familiaris	29.50	35500.00	Omnivore	
##	147	Peromyscus attwateri	0.57	30.00	Omnivore	
##	148	Macaca sylvanus	22.00	13500.00	Omnivore	
##	149	Mesocricetus auratus	1.75	112.50	Omnivore	
##	150	Pan troglodytes	51.00	48000.00	Omnivore	
##	151	Bettongia lesueur	3.00	1100.00	Herbivore	
##	152	Ammotragus lervia	10.00	105000.00	Herbivore	
##	153	Cavia intermedia	1.01	622.50	Herbivore	
##	154	Sciurus granatensis	7.00	374.00	Herbivore	
##	155	Cacajao calvus	18.00	2500.00	Herbivore	
##	156	Erethizon dorsatum	6.00	9500.00	Herbivore	

##	157	Orthogeomys grandis	2.00	830.00	Herbivore	
	158	Ammodorcas clarkei	11.00	28500.00	Herbivore	
	159	Varecia rubra	20.00	3450.00	Herbivore	
	160	Hemibelideus lemuroides	4.00	945.00	Herbivore	
	161	Rucervus duvaucelii	20.00	176500.00	Herbivore	
##	162	Propithecus coquereli	27.00	4000.00	Herbivore	
	163	Dipodomys compactus	2.00	52.00	Herbivore	
	164	Myodes glareolus	1.25	18.50	Herbivore	
##	165	Ochotona pusilla	4.00	262.50	Herbivore	
##	166	Bubalus bubalis	25.00	725000.00	Herbivore	
	167	Sylvilagus palustris	4.00	1700.00	Herbivore	
##	168	Axis porcinus	20.00	43000.00	Herbivore	
##	169	Artibeus jamaicensis	8.00	50.00	Herbivore	
##	170	Marmota himalayana	15.00	6600.00	Herbivore	
##	171	Pongo pygmaeus	59.00	87000.00	Herbivore	
##	172	Lepus townsendii	8.00	3500.00	Herbivore	
##	173	Alces alces	22.00	520500.00	Herbivore	
##	174	Spalax ehrenbergi	3.00	325.00	Herbivore	
##	175	Capricornis crispus	21.00	37000.00	Herbivore	
##	176	Glis glis	9.00	135.00	Herbivore	
##	177	Macropus antilopinus	16.00	42500.00	Herbivore	
##	178	Myocastor coypus	6.00	7500.00	Herbivore	
##	179	Rangifer tarandus	12.50	186500.00	Herbivore	
##	180	Chinchilla lanigera	10.00	650.00	Herbivore	
##	181	Lepus tibetanus	0.51	2062.50	Herbivore	
##	182	Hydrochoerus hydrochaeris	6.00	50500.00	Herbivore	
##	183	Coendou prehensilis	17.00	3500.00	Herbivore	
##	184	Georychus capensis	3.00	181.00	Herbivore	
##	185	Cephalophus niger	11.00	17500.00	Herbivore	
##	186	Syncerus caffer	11.00	567500.00	Herbivore	
##	187	Przewalskium albirostris	18.00	135000.00	Herbivore	
##	188	Colobus polykomos	30.50	9500.00	Herbivore	
##	189	Gazella gazella	8.00	23250.00	Herbivore	
##	190	Marmota bobak	15.00	7300.00	Herbivore	
##	191	Hypsignathus monstrosus	30.00	326.00	Herbivore	
##	192	Oreamnos americanus	18.00	69300.00	Herbivore	
##	193	Procolobus verus	20.00	3350.00	Herbivore	
##	194	Oryctolagus cuniculus	9.00	2000.00	Herbivore	
##	195	Capra pyrenaica	16.00	57500.00	Herbivore	
##	196	Nanger granti	12.00	55000.00	Herbivore	
##	197	Ochotona curzoniae	0.33	150.00	Herbivore	
##	198	Rupicapra pyrenaica	22.00	37000.00	Herbivore	
##	199	Sciurus variegatoides	12.00	668.50	Herbivore	
##	200	Pseudochirulus herbertensis	5.00	1165.00	Herbivore	
##	201	Connochaetes gnou	20.00	133500.00	Herbivore	
##	202	Hylobates agilis	25.00	5000.00	Herbivore	
	203	Castor fiber	13.50	24000.00	Herbivore	
##	204	Chaetodipus nelsoni	2.08	14.25	Herbivore	
##	205	Bison bonasus	24.00	900000.00	Herbivore	
##	206	Microtus pinetorum	0.25	25.50	Herbivore	
		•				

```
## 207
                   Ailurus fulgens
                                       14.00
                                                4950.00
                                                         Herbivore
                         Dama dama
## 208
                                                         Herbivore
                                       25.00
                                               55000.00
## 209
              Cercopithecus cephus
                                       22.00
                                                         Herbivore
                                                4000.00
## 210
                 Kerodon rupestris
                                       5.00
                                                 950.00
                                                         Herbivore
## 211
                    Cervus elaphus
                                       20.00
                                              154200.00
                                                         Herbivore
## 212
                   Aotus nigriceps
                                       11.00
                                                 750.00
                                                         Herbivore
## 213
                Loxodonta cyclotis
                                       70.00 4350000.00
                                                         Herbivore
## 214
              Propithecus perrieri
                                       15.00
                                                4300.00
                                                         Herbivore
## 215
             Dendrolagus matschiei
                                        8.00
                                                9500.00
                                                         Herbivore
## 216
           Tamiasciurus hudsonicus
                                        5.00
                                                 212.97
                                                         Herbivore
## 217
                      Dugong dugon
                                       70.00
                                              315000.00
                                                         Herbivore
## 218
              Marmota flaviventris
                                       14.00
                                                3350.00
                                                         Herbivore
## 219
                     Bos javanicus
                                       18.00
                                              700000.00
                                                         Herbivore
                                               33000.00
## 220
              Pantholops hodgsonii
                                        8.00
                                                         Herbivore
## 221
           Trichosurus cunninghami
                                       12.00
                                                3500.00
                                                         Herbivore
             Cynopterus brachyotis
## 222
                                       25.00
                                                  65.00
                                                         Herbivore
## 223
               Sylvilagus obscurus
                                        1.00
                                                 900.00
                                                         Herbivore
## 224
                Reithrodon auritus
                                                  80.00
                                                         Herbivore
                                        0.31
## 225
               Arctictis binturong
                                       18.00
                                               14500.00 Herbivore
```

Preliminary Analyses

Visualizations Scatterplot and Histogram The data was tested for normality within each treatment group by plotting the original data on a scatter plot and adding histograms of both variables to the graph.

```
library(ggExtra)
library(ggplot2)

## Warning: package 'ggplot2' was built under R version 4.2.3

plot1<-ggplot()+
    geom_point(data=mammal.data, aes(x=AvgMass, y=Lifespan, color=Diet))+
    theme_bw()+
    xlab("Average Mass (g)")+
    ylab("Average Lifespan (years)")+
    labs(title=paste("Raw Data"))</pre>

print(plot1)
```


Transformations of the Data The initial data showed non-normal distributions, with the average mass data being right-skewed. To address this, a log transformation was applied to the average mass, and a square root transformation was used for the count data of average lifespan. After applying these transformations, the data was plotted again to visually assess whether it appeared more normally distributed within each treatment group.

```
mammal.data$Mass.tr <- log(mammal.data$AvgMass)
mammal.data$Lifespan.tr <- sqrt(mammal.data$Lifespan + 0.5)</pre>
```

New Scatter plots and Histograms after Transformation

```
library(ggExtra)
library(ggplot2)
plot2<-ggplot()+
    geom_point(data=mammal.data, aes(x=Mass.tr, y=Lifespan.tr, color=Diet))+
    theme_bw()+
    xlab("Average Mass (g)")+
    ylab("Average Lifespan (years)")+
    labs(title=paste("Transformed Data"))</pre>
print(plot2)
```

Transformed Data

Transformed Data

Reassigning Variables for Each Diet Category

Below, each original diet category (Carnivore, Omnivore, and Herbivore) was assgined their own variable so each diet category could be individually tested for normal distributions and equal variance within their data.

```
carnivore <- subset(mammal.data, Diet == "Carnivore ")
omnivore <- subset(mammal.data, Diet == "Omnivore")
herbivore <- subset(mammal.data, Diet == "Herbivore")</pre>
```

Regression normality test (Sharpio-Wilk)

Here, I conducted a test for normality on the average lifespan and average body mass variables for each diet dataset.

```
shapiro.test(carnivore$Mass.tr)

##

## Shapiro-Wilk normality test

##

## data: carnivore$Mass.tr

## W = 0.9047, p-value = 3.373e-05

shapiro.test(omnivore$Mass.tr)
```

```
##
##
   Shapiro-Wilk normality test
##
## data: omnivore$Mass.tr
## W = 0.97024, p-value = 0.07439
shapiro.test(herbivore$Mass.tr)
##
##
    Shapiro-Wilk normality test
##
## data: herbivore$Mass.tr
## W = 0.98915, p-value = 0.7762
shapiro.test(carnivore$Lifespan.tr)
##
##
   Shapiro-Wilk normality test
##
## data: carnivore$Lifespan.tr
## W = 0.97472, p-value = 0.1384
shapiro.test(omnivore$Lifespan.tr)
##
##
   Shapiro-Wilk normality test
##
## data: omnivore$Lifespan.tr
## W = 0.94413, p-value = 0.002408
shapiro.test(herbivore$Lifespan.tr)
##
##
   Shapiro-Wilk normality test
##
## data: herbivore$Lifespan.tr
## W = 0.94605, p-value = 0.003045
```

Levene's Test

Down below, I then tested the assumption that the variances are equal within each diet to make sure that variance of mass and average lifespan is not higher in one diet group compared to the others.

```
#install.packages("Lawstat")
library(lawstat)

levene.test(carnivore$Lifespan.tr, carnivore$Mass.tr)

##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
```

```
##
## data: carnivore$Lifespan.tr
## Test Statistic = 0.10875, p-value = 1
levene.test(omnivore$Lifespan.tr, omnivore$Mass.tr)
## Warning in anova.lm(lm(resp.mean ~ d)): ANOVA F-tests on an essentially
perfect
## fit are unreliable
##
   Modified robust Brown-Forsythe Levene-type test based on the absolute
   deviations from the median
##
## data: omnivore$Lifespan.tr
## Test Statistic = 2.3236e+28, p-value < 2.2e-16
levene.test(herbivore$Lifespan.tr, herbivore$Mass.tr)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: herbivore$Lifespan.tr
## Test Statistic = 0.12208, p-value = 1
```

Although the variances were not equal and the data did not meet the criteria for normality, the general linear model test was conducted with approval from my professor. It is important to note that with a large sample size (n=225, with 75 per diet group), it can be challenging to achieve normality.

General Linear Model Test

Down below, the general linear model test was conducted to determine if the variables are associated with one another and to see if there is an interaction between the two explanatory variables.

```
glm.results<-lm(Lifespan.tr ~ Diet + Mass.tr +Diet:Mass.tr, data=mammal.data)</pre>
summary(glm.results)
##
## Call:
## lm(formula = Lifespan.tr ~ Diet + Mass.tr + Diet:Mass.tr, data =
mammal.data)
##
## Residuals:
       Min
                10 Median
                                 3Q
                                        Max
## -3.8782 -0.8198 -0.1932 0.7264 3.9991
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
```

```
## (Intercept)
                         2.00599
                                   0.28461 7.048 2.33e-11 ***
## DietHerbivore
                                   0.53287 -2.855 0.004723 **
                        -1.52115
## DietOmnivore
                        -1.71394
                                   0.48901 -3.505 0.000554 ***
## Mass.tr
                         0.21978
                                   0.03270 6.721 1.54e-10 ***
## DietHerbivore:Mass.tr 0.13483
                                   0.05943
                                             2.269 0.024273 *
                                   0.06320
## DietOmnivore:Mass.tr
                         0.19139
                                             3.028 0.002757 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.222 on 219 degrees of freedom
## Multiple R-squared: 0.4257, Adjusted R-squared:
## F-statistic: 32.46 on 5 and 219 DF, p-value: < 2.2e-16
```

Results

The general linear model results are significant, with a p-value of 2.2e-16. The explanatory variables—average body mass and diet—account for 42.57% of the variability in average lifespan, which is substantial given the complexity of factors influencing longevity.

Diet (Carnivore, Herbivore, Omnivore) - Categorical Explanatory Variable

The model rejects the null hypothesis, indicating significant differences in mean lifespan among the diet groups. Specifically, there is a mean difference of -1.52115 between carnivores and herbivores (p-value 0.004723), and -1.71394 between carnivores and omnivores (p-value 0.000554)

Body Mass - Numerical Explanatory Variable

The analysis reveals a positive association between mean body mass and mean lifespan, with each additional year of lifespan corresponding to a 0.21978 unit increase in body mass on average. This relationship is statistically significant (p-value 1.54e-10).

Diet x Body - Interaction between Explanatory Variables

The model identifies a significant interaction between diet and average body mass. This interaction is evident in the graphical representation (Figure 1), as the lines are not parallel. Specifically, there is an interaction when comparing carnivores to herbivores (0.12483, p-value 0.024273) and carnivores to omnivores (0.19139, p-value 0.002757).

General Linear Model Scatter plot with 2 Explanatory Variables & Regression Line

Down below the results of the general linear model test on were plotted on a scatter plot with regression lines.

```
library(ggplot2)
ggplot()+
   geom_point(data=mammal.data, aes(x=Mass.tr, y=Lifespan.tr, color=Diet))+
   geom_smooth(data=mammal.data, aes(x=Mass.tr, y=Lifespan.tr, color=Diet),
method="lm", se=F)+
```

```
theme_bw()+
  xlab("Average Mass (g)")+
  ylab("Average Lifespan (years)")+
  labs(title=paste("The Effect of Average Mass and Diet on Average Lifespan
in Mammals"))
## `geom_smooth()` using formula = 'y ~ x'
```

The Effect of Average Mass and Diet on Average Lifespa

Figure 1: Scatter plot measuring average lifespan (years) compared with diet (Carnivore, Herbivore, Omnivore) and average mass (g). Regression lines are shown and color-coded according to diet (n=225, n=75 per diet category). Data provided by Animal Diversity Web.

Comparing datasets to see the proportion of each diet group in mammals are the same.

For this next step, we compared the proportion of each diet in mammals from the MammalDiet dataset and Animal Diversity Website dateset to see if the proprtions were the same.

Open the Second Dataset

• Download the full dataset here:

Down below the dataset csv titles were changed to ADWdiet.data and mammalDIET.data respectfully

```
ADWdiet.data <- read.csv("FinalADWMammal.csv", header=T)</pre>
head(ADWdiet.data)
##
                    Species
                                  Diet
## 1
           Acinonyx jubatus Carnivore
         Aepyceros melampus Herbivore
## 3 Ailuropoda melanoleuca Herbivore
## 4
            Ailurus fulgens Herbivore
## 5
              Akodon azarae Omnivore
## 6 Alcelaphus buselaphus Herbivore
mammalDIET.data <- read.csv("FinalMammalDIET.csv", header=T)</pre>
head(mammalDIET.data)
##
                  Species
                                Diet
## 1
       Abrocoma bennettii Herbivore
## 2 Abrocoma boliviensis Herbivore
## 3
          Abrocoma budini Herbivore
## 4
         Abrocoma cinerea Herbivore
## 5
        Abrocoma famatina Herbivore
## 6
       Abrocoma shistacea Herbivore
```

The necessary packages, tidyverse and dplyr, were installed in order to be able to count how many of each diet group there are in each dataset.

```
#install.packages("tidyverse")
#install.packages("dplyr")
```

The proportions of the observed and expected vector were calculated using the count() function.

```
library(tidyverse)
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'stringr' was built under R version 4.2.3
## — Attaching core tidyverse packages -
                                                               - tidyverse
2.0.0 -
## √ dplyr
               1.1.4
                          ✓ readr
                                      2.1.5
## √ forcats 1.0.0

√ stringr

                                      1.5.1
## ✓ lubridate 1.9.3

√ tibble

                                      3.2.1
## √ purrr
               1.0.2

✓ tidyr

                                      1.3.1
## — Conflicts —
```

```
tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag() masks stats::lag()
## 1 Use the conflicted package (<http://conflicted.r-lib.org/>) to force
all conflicts to become errors
ADWdiet.data %>% count(Diet)
##
         Diet
## 1 Carnivore 200
## 2 Herbivore 310
## 3 Omnivore 98
mammalDIET.data %>% count(Diet)
         Diet
##
## 1 Carnivore 1637
## 2 Herbivore 1926
## 3 Omnivore 1788
```

From this we see that the following proportions for the observed (ADW = 608) and the expected (MammalDIET = 5351). C=Carnivore, O=Omnivore, and H=Herbivore.

ADW:

C=0.32 O=0.16 H=0.50

MammalDIET:

C=0.31 O=0.36 H=0.33

Chi-Square Goodness of Fit Test

The Chi-Square Goodness of Fit Test was conducted to determine if the observed proportions matched the expected proportions.

Below, the values needed to calculate the chi-square test were assigned variables and the results were visually represented in a table with with frequency, diet, and group, as the variables.

```
# Observed and expected counts
observed <- c(200, 98, 310) # Carnivores, Omnivores, Herbivores
expected <- c(1637, 1788, 1926)

# Perform Chi-squared test
chi.results <- chisq.test(observed, p = expected / sum(expected))
print(chi.results)

##
## Chi-squared test for given probabilities
##</pre>
```

```
## data: observed
## X-squared = 93.46, df = 2, p-value < 2.2e-16
```

Table

```
# Observed and expected frequencies
observed freq <-c(0.32,0.16,0.50)
expected_freq<- c(0.31, 0.36, 0.33)
#Creating a dataframe with the values
mammalpropDATA <- data.frame(frequency = c(observed freq, expected freq))</pre>
mammalpropDATA$Diet <- c("Carnivore", "Omnivore",</pre>
"Herbivore", "Carnivore", "Omnivore", "Herbivore")
mammalpropDATA$Group <- c("Observed", "Observed", "Observed", "Expected",</pre>
"Expected", "Expected")
print(mammalpropDATA)
##
     frequency
                    Diet
                            Group
## 1
          0.32 Carnivore Observed
## 2
          0.16 Omnivore Observed
## 3
          0.50 Herbivore Observed
## 4
          0.31 Carnivore Expected
          0.36 Omnivore Expected
## 5
## 6
          0.33 Herbivore Expected
```

A group bar plot was created to visually represent the difference in frequencies between groups categorized by diet.

Group Bar Plot

```
library(ggplot2)
ggplot()+
geom_bar(data=mammalpropDATA, aes(x=Diet, y=frequency, fill=Group),
stat="identity", position="dodge")+
theme_bw(base_size=16)+
ylab("Frequency")
```


Figure

2. Group Bar Graph comparing the frequency of each diet group (Carnivore, Omnivore, Herbivore) between the observed ADW data values and the expected ADW data values if the proportions matched the MammalDIET data proportions. Data provided by Animal Diversity Web and Kissling, W.D. et al.

In the second analysis, the Chi-Square Goodness of Fit test indicates that the observed proportions in the ADW data differ significantly from the expected proportions based on the MammalDIET data (χ^2 = 93.46, df = 2, p-value = 2.2e-16). This discrepancy suggests that the proportions of diet categories in the ADW data are not as expected: the proportion of herbivores is much higher than predicted, while the proportion of omnivores is much lower (Table 1, Figure 5). It is also important to note that the critical χ^2 value for df = 2 is 5.99, and the observed χ^2 value far exceeds this threshold, resulting in a very small p-value.

Conclusion

My general linear model supported my biological hypothesis, indicating that average body mass and diet significantly impact mammal lifespan, explaining 42.57% of the variability. However, the assumptions for the GLM were not met, and the Animal Diversity Web (ADW) dataset, which was not proportionate to the larger MammalDIET dataset, might not be a representative sample. The ADW dataset's overrepresentation of herbivores could have skewed results, as herbivores showed the longest lifespans, but the significant difference

between datasets suggests that the ADW data may not accurately reflect mammalian diets (Figures 4 & 5, Table 1).

Despite the GLM's significant results, the data did not meet the assumptions for normality and equal variance, which could affect the conclusions. The ADW dataset's smaller sample size and non-representative nature, coupled with potential biases, highlight limitations. Future research should consider using more balanced datasets and exploring factors beyond body mass and diet, including predation and environmental influences. This study could inform conservation efforts and animal care practices by providing insights into factors affecting longevity, challenging media claims about weight and diet, and suggesting directions for broader research, including non-mammalian vertebrates and specific dietary components.

Bibliography

Animal Diversity Web. Quaardvark. 2013. University of Michigan Museum of Zoology. https://animaldiversity.ummz.umich.edu/quaardvark/search/1E37C501-393E-0001-32B7-2A6014F113B8/?start=1.

Ebert T. 2008. Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus. Exp Gerontol: 43(8):734-8.

Kissling WD, Dalby L, Fløjgaard C, Lenoir J, Sandel B, Sandom C, Trøjelsgaard K, Svenning J-C. 2014. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Dryad Digital Repository. doi: 10.5061/dryad.6cd0v. Price S, Hopkins S. 2015. The macroevolutionary relationship between diet and body mass across mammals. Biological Journal of the Linnean Society: 115(1):173–184. https://doi.org/10.1111/bij.12495.

Speakman J. 2005. Body size, energy metabolism and lifespan. Lifespan, Reproduction And Ecology. J Exp Biol 208 (9): 1717–1730.

Wilder M, Le Couteur D, Simpson S. 2013. Diet mediates the relationship between longevity and reproduction in mammals. Age (Dordr),: 35(3): 921–927.