1.

Prop 103: Let ${}^\sim_N$ be a Euuclidian function on A. Define N(a)= $min\{{}^\sim_N(ba)\mid b\in A\setminus\{0\}\}$. Then N is a Euclidian Function.

Proof: Euclidean norm ${}^\sim_N$ be an Euclidean domain.

1. Then,

$$N(1) = \min\{ {}_N^\sim(x) : x \in A, x \neq 0 \}$$
 (1)

2. For $b \in A \setminus \{0\}$ we have

$$b$$
 is a unit $\iff_N^{\sim}(b) =_N^{\sim}(1)$. (2)

Then N is a Euclidian Function.

Proof. (1) follows from the second property of ${}^{\sim}_N$ as follows:

$$\forall a \in D, a \neq 0 \quad \widetilde{N}(1) \leq \widetilde{N}(1a) = \widetilde{N}(a)$$
(3)

To prove (2) suppose $b\in^\sim_N$ is a unit. Then,

$${}_{N}^{\sim}(1) \leq {}_{N}^{\sim}(u) \leq {}_{N}^{\sim}(bb^{-1}) = {}_{N}^{\sim}(1). \quad So \quad {}_{N}^{\sim}(b) = {}_{N}^{\sim}(1)$$

$$(4)$$

Conversely, suppose ${}^\sim_N(1)={}^\sim_N(b).$ Se divide ! by u, we have 1=bq+r for some $q,r\in D$ \ni r=0 or ${}^\sim_N(r)<{}^\sim_N(u).$ Since ${}^\sim_N(u)={}^\sim_N(1)$ is minimum, r=0. So, 1=bq. So, b is a unit. The proof is complete.

2.

a.

Suppose A is a UFD with the field F, Then a non-constant polynomial p_1 in A[x] is irreducible iff it's irreducible in F[x] and the gcd of the coefficient of p_1 is 1.

Proof: First note that the gcd of the coefficients of p_1 is 1 since, otherwise, we can factor out some element $c \in A$ from the coefficients of p_1 to write $p_1 = cp_1'$, contradicting the irreducibility of p_1 . Next, suppose $p_1 = p_2p_3$ for some non-constant polynomials p_2, p_3 in $F\left[x_1,\ldots,x_n\right]$. Then, for some $d \in A$, the polynomial dp_2 has coefficients in A and so, by factoring out the gcd q of the coefficients, we write $dp_2 = qp_2'$. Do the same for p_3 and we can write $p_1 = cp_2'p_3'$ for some $c \in F$. Now, let c = a/b for some $c \in A$. Then $c \in A$. Then $c \in A$. Then $c \in A$ from this, using the proposition, we get: $c \in A$ for some $c \in A$.

That is, b divides a. Thus, $c \in R$ and then the factorization $p_1 = cp_2'p_3'$ constitutes a contradiction to the irreducibility of p_1 .

For the other side. If p_1 is irreducible over F, then either it's irreducible over A or it contains a constant polynomial as a factor.

b.

Suppose A is a UFD with the field F, $p_1p_2\in\mathbb{Q}(A)[X]\setminus\{0\}$. Then $cont(p_1p_2)=cont(p_1)cont(p_2)$.

Proof: Clearly, $\cot(p_1p_2) \subset \cot(p_1)\cot(p_2)$. If $\mathfrak p$ is a prime ideal containing $\cot(p_1p_2)$, then $p_1p_2 \equiv 0$ modulo $\mathfrak p$. Since $A/\mathfrak p \ [x_1,\ldots,x_n]$ is a polynomial ring over an integral domain and thus is an integral domain, this implies either $p_1 \equiv 0$ or $p_2 \equiv 0 \pmod{\mathfrak p}$. Hence, either $\cot(p_1)$ or $\cot(p_2)$ is contained in $\mathfrak p$. Since $\sqrt{\cot(p_1p_2)}$ is the intersection of all prime ideals that $\cot(p_1p_2)$ and the choice of $\mathfrak p$ was arbitrary, $\cot(p_1)\cot(p_2) \subset \sqrt{\cot(p_1p_2)}$

We now prove the "moreover" part. Factoring out the gcd's from the coefficients, we can write $p_1=ap_1'$ and $p_2=bp_2'$ where the gcds of the coefficients of p_1',p_2' are both 1 . Clearly, it is enough to prove the assertion when p_1,p_2 are replaced by p_1',p_2' ; thus, we assume the gcd's of the coefficients of p_1,p_2 are both 1 .

We have that if gcd(a, b) = gcd(a, c) = 1, then gcd(a, bc) = 1

(The proof of the lemma is not trivial but is by elementary algebra.) We argue by induction on the sum of the numbers of the terms in f,g; that is, we assume the proposition has been established for any pair of polynomials with one less total number of the terms. Let $(c) = \gcd(\cot(p_1p_2))$; i.e., c is the gcd of the coefficients of p_1p_2 . Assume $(c) \neq (1)$; otherwise, we are done. Let p_1', p_2' denote the highest-degree terms of p_1, p_2 in terms of lexicographical monomial ordering. Then $p_1'p_2'$ is precisely the leading term of p_1p_2 and so c divides the (unique) coefficient of $p_1'p_2'$ (since it divides all the coefficients of p_1p_2). Now, if c does not have a common factor with the (unique) coefficient of p_1' and does not have a common factor with that of p_2' , then, by the above lemma, $\gcd(c, \cot(p_1'p_2')) = (1)$. But c divides the coefficient of $p_1'p_2'$; so this is a contradiction. Thus, either c has a common factor with the coefficient of p_1' or does with that of p_2' ; say, the former is the case. Let $(d) = \gcd(c, \cot(p_1'))$. Since d divides the coefficients of $p_1p_2 - p_1'p_2 = (p_1 - p_1')p_2$, by inductive hypothesis, $(d) \supset \gcd(\cot((p_1 - p_1')p_2')) = \gcd(\cot(p_1 - p_1'))$. Since (d) contains $\cot(p_1')$, it contains $\cot(p_1)$; i.e., (d) = (1), a contradiction.

If $\gcd(\cot(p_1p_2))=(1)$, then there is nothing to prove. So, assume otherwise; then there is a non-unit element dividing the coefficients of p_1p_2 . Factorizing that element into a product of prime elements, we can take that element to be a prime element π . Now, we have:

$$(\pi) = \sqrt{(\pi)} \supset \sqrt{\operatorname{cont}(p_1 p_2)} \supset \operatorname{cont}(p_1) \operatorname{cont}(p_2)$$
 (5)

Thus, either (π) contains $\mathrm{cont}(p_1)$ or $\mathrm{cont}(p_2)$; contradicting the gcd's of the coefficients of p_1, p_2 are both $1. \square$

3.

Eclidean Algorithm:gcd(a,b)=gcd(b,a mod b)

$$\begin{array}{l} \gcd(X^6+3X^5+7X^4+12X^3+15X^2+9X+9,\!X^4+6X^3+13X^2+12X+3) = \gcd(X^4+6X^3+13X^2+12X+3,\!-3X^5-6X^4+12X^2+9X+9) = \gcd(X^6-3X^5-6X^4+12X^2+9X+9,\!12X^4+51X^3+48X^2+18X+9) = \gcd(X^6-3X^4+51X^3+48X^2+18X+9,\!6.75X^3+24X^2+13.5X+11.25) = \gcd(X^6-3X^3+24X^2+13.5X+11.25,\!\frac{25}{3}X^3+24X^2-6X-11) = X^2+3X+3 \end{array}$$

4.

Basic theorem on symmetric polynomials: For a symmetric polynomial F over any domain $f \in F(x_1, x_2, \cdots, x_n)$, there exists a polynomial $g(x_1, x_2, \cdots, x_n) \in F[x_1, x_2, \ldots, x_n]$ such that $f = g(\sigma_1, \sigma_2, \cdots, \sigma_n)$, that is, can be tabulated by the basic symmetric polynomial polynomial.

$$P(X_{1}X_{2}X_{3}) = X_{1} + X_{1}X_{2} + X_{1}X_{2}X_{3}$$

 $Q = Z_{6663} \circ (P)$

$$\chi_{1}(X_{1}+X_{1}X_{2}+X_{2}X_{3}) = \chi_{1}(\xi_{2}(X_{1}X_{2}X_{3})-X_{1}X_{3} + X_{1})$$

$$= 6_{1}(X_{1})(6_{2}(X_{1}X_{2}X_{3})-6_{2}(X_{1}X_{3})$$

$$+6(X_{1})(6_{2}(X_{1}X_{2}X_{3})-6_{2}(X_{1}X_{3}))$$

$$6, = \chi_{1} + \chi_{2} + \chi_{3}$$
 $6z = \chi_{1} \chi_{2} + \chi_{3} \chi_{1} + \chi_{2} \chi_{3}$
 $6z = \chi_{1} \chi_{2} \chi_{3}$

$$X_{1} + X_{2} + X_{1} + X_{2}^{2} + X_{3}^{2} = \frac{6_{1}^{2} - 2_{6} + 6_{3}}{6_{1} + 2_{5}^{2} + 2_{$$

$$P(X_1 X_1 X_2) + P(X_2 X_3 X_1) + P(X_3 X_1 X_2)$$

$$= 6_1^2 - 26_1 + 36_3 + 6_16_2 - 36_3 = 6_1^2 - 26_1 + 6_16_2$$

$$= 6_1^2 - 26_1 + 6_16_2$$

$$= 6_1^2 - 26_1 + 6_16_2$$