Computer Vision

Paulo Dias, António Neves

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Edge Detection - Introduction

 Edges are useful to capture important events and changes in properties of the images/world

- Edge detection is difficult
 - noise
 - non ideal edges

Edge Detection - Introduction

- Edges correspond to
 - discontinuities in depth,
 - discontinuities in surface orientation,
 - changes in material properties,
 - variations in scene illumination.
- How to detect the relevant edges?

Edge Detection - example

para vermos as linhas da imagem podimos ver de pixel a pixel e fazer a dife

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Edge detection

- Typical 2 steps for edge detection:
 - Apply a mask (to approximate a derivative)
 - Aggregate detected pixels (edgels) in edges

Derivatives are used to detect edges

- 1st derivative
 - > or < 0 depending on I(x) variation
 - =0 in areas of same intensity

encontramos a maxima do valor

- 2nd derivative
 - =0 in both positive and negative edges

Burger and Burge

Edge detection – 1st derivative

1st derivative

$$f'(x) = \frac{df}{dx}(x)$$

Edge detection – 1st derivative

1st derivative – simple approximation

$$\frac{df}{du}(u) \; \approx \; \frac{f(u+1) - f(u-1)}{2} \; = \; 0.5 \cdot \left(f(u+1) - f(u-1) \right)$$

Burger and Burge

Edge detection – 1st derivative

Partial derivatives and gradient

$$H_x^D = \begin{bmatrix} -0.5 & \mathbf{0} & 0.5 \end{bmatrix} = 0.5 \cdot \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix}$$

$$H_y^D = \begin{bmatrix} -0.5 \\ \mathbf{0} \\ 0.5 \end{bmatrix} = 0.5 \cdot \begin{bmatrix} -1 \\ \mathbf{0} \\ 1 \end{bmatrix}$$

$$\nabla I(u,v) = \begin{bmatrix} \frac{\partial I}{\partial u}(u,v) \\ \frac{\partial I}{\partial v}(u,v) \end{bmatrix}$$

$$|\nabla I|(u,v) = \sqrt{\left(\frac{\partial I}{\partial u}(u,v)\right)^2 + \left(\frac{\partial I}{\partial v}(u,v)\right)^2}$$

Edge detection

Partial derivatives and gradient

Burger and Burge

- Derivatives Operators
 - Image gradient points into the direction of larger intensity variation

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradient amplitude

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

Gradient direction

How to use operators?

How to use operators?

- Roberts operator
 - Simple, fast but very noise sensitive

$$D_1 = I * H_1^R$$

$$D_2 = I * H_2^R$$

$$H_1^R = \begin{bmatrix} 0 & \mathbf{1} \\ -1 & 0 \end{bmatrix}$$
 and $H_2^R = \begin{bmatrix} -1 & 0 \\ 0 & \mathbf{1} \end{bmatrix}$

$$H_2^R = \left[egin{array}{ccc} -1 & 0 \ 0 & \mathbf{1} \end{array}
ight]_{\mathsf{Burger} ext{ and Burge}}$$

fazer o inverso, trocar o valor dos pixeis, tro

Prewitt operator

menos sensivel ao ruido que o Rc

$$H_x^P = \begin{bmatrix} -1 & 0 & 1 \\ -1 & \mathbf{0} & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^P = \begin{bmatrix} -1 & -1 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

-1 0 -1 -1 0 -1 -1 0 -1

Horizontal

Vertical

Sobel operator

+ usado, so muda para o a

$$H_x^S = \begin{bmatrix} -1 & 0 & 1 \\ -2 & \mathbf{0} & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 and $H_y^S = \begin{bmatrix} -1 & -2 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 2 & 1 \end{bmatrix}$

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Horizontal

Vertical

Sobel operator

Original Image

X – Direction Kernel

0

Resulting image

/ – Direction Kernel						
-1	-2	-1				
0	0	0				
1	2	1				

- Compass Edge Detection
 - alternative to gradient edge detection (Roberts and Sobel operators).
- Usually outputs two images
 - Gradient magnitude
 - edge orientation
- Gradient is estimated in eight (for a 3 x 3 convolution mask) possible orientation (from 0° [vertical] to 315° in steps of 45°.
- The convolution result of greatest magnitude indicates the gradient direction

Extended-Sobel Operator

$$H_0^{\text{ES}} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \qquad H_1^{\text{ES}} = \begin{bmatrix} -2 - 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix},$$

$$H_2^{\text{ES}} = \begin{bmatrix} -1 - 2 - 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}, \qquad H_3^{\text{ES}} = \begin{bmatrix} 0 - 1 - 2 \\ 1 & 0 - 1 \\ 2 & 1 & 0 \end{bmatrix},$$

$$H_4^{\text{ES}} = \begin{bmatrix} 1 & 0 - 1 \\ 2 & 0 - 2 \\ 1 & 0 - 1 \end{bmatrix}, \qquad H_5^{\text{ES}} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 - 1 \\ 0 - 1 - 2 \end{bmatrix},$$

$$H_6^{\text{ES}} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 - 2 - 1 \end{bmatrix}, \qquad H_7^{\text{ES}} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 - 1 & 0 \end{bmatrix}.$$

Edge detection – 2nd derivative

- Laplacian operator
 - Second derivative approximation of ∇^2

4-neighboorhood

8-neighboorhood

$$h = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$h = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Edge detection with first derivative are noise sensitive and object dependent
 - The first derivative of the image function should have an extremum at the position corresponding to the edge
 - It is much easier and more precise to find a zero-crossing position than an extremum.

- Canny objectives
 - Good location (zero crossing)
 - Minimize weak edges

- Canny Edge Detector (1986)
 - Process in five steps:
 - 1. Gaussian filter to smooth and remove noise
 - 2. Find intensity gradients of the image (Sobel operator)
 - 3. Non-maximum supression
 - 4. Double threshold to determine potential edges High threshold for strong pixels

Low threshold for non-relevant pixels

5. Edge Tracking by Hysteresis

Transform weak into strong pixels, if at least one neighboring pixels is processed as strong

minVal

- Canny Edge Detector (1986)
 - Process in five steps:
 - 1. Gaussian filter to smooth and remove noise

- Canny Edge Detector (1986)
 - Process in five steps:

2. Find intensity gradients of the image (Sobel operator)

- Canny Edge Detector (1986)
 - Process in five steps:
 - 3. Non-maximum suppression

- Canny Edge Detector (1986)
 - Process in five steps:
 - 4. Double threshold to determine potential edges

High threshold for strong pixels

Low threshold for nonrelevant pixels

- Canny Edge Detector (1986)
 - Process in five steps:
 - 5. Edge Tracking by Hysteresis

Transform weak into strong pixels, if at least one neighboring pixels is processed as strong

Images from https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123

Original Image

1D convolution (x,y) with Gaussian smoothing $\sigma = 6$

Canny edges

Burger and Burge

Edge detection - comparison

- Possible criteria:
 - Number of weak/false edges
 - Connectivity

— ...

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Lines detection

- Same rationale of detecting "roof" like profiles along "strategic" orientations: 0°; 45°; 90°; 135° [see compass]
- Convolution Kernels

$$h_1 = \begin{bmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix} \quad h_2 = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \quad h_3 = \begin{bmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

- Lines detected this way are collections of edges.
 Most of the time non single pixel wide edges.
- Necessary to introduce line thinning algorithms

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Hough transform (1962)

- Technique for having edges "vote" for plausible line locations
- Represent line edges in polar coordinates (r, θ) in the Hough space

Line edge in original image

Conversion to (r, θ) representation

Line representation in Hough space

Hough transform

Line representation in Hough space


```
0 r
15 189.0
30 282.0
45 355.7
60 407.3
75 429.4
```

```
0 r
15 318.5
30 376.8
45 407.3
60 409.8
75 385.3
```

Θ	r
15	419.0
30	443.6
45	438.4
60	402.9
75	340.1

Hough Transform

 Higher cell values in Hough accumulator are the Hough parameters of the lines for which angle and distance can be determined

Hough Transform

- Classical Hough transform for line identification
- Extended to identifying positions of other shapes as circles or ellipses.

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Corner detector

- Corners in images can be located using local detectors;
 - Input to the corner detector is the Gray-level image
 - Output is the image in which values are proportional to the likelihood that the pixel is a corner.
 - Interest points are obtained by thresholding the result of the corner detector.
- Edge detectors themselves are not stable at corners.
 - Gradient at the tip is ambiguous

Moravec corner detector

- One of the earliest corner detection 1979
- Corner: point with low self-similarity
 - Tests pixels as corners considering similarity between nearby, largely overlapping patches.
 - Similarity is measured by taking the sum of squared differences (SSD) between the corresponding pixels of two patches

Harris corner detector

- Auto-correlation based
- Improvement upon Moravec's corner detector
- Use a sliding window W patch and estimate the sum of square differences of the discriminant function:

$$N = \begin{bmatrix} \sum_{\substack{window \\ vindow}} f_r^2(r,c) & \sum_{\substack{vindow \\ window}} f_r(r,c) \cdot f_c(r,c) \end{bmatrix} \qquad f_r(r,c) : \text{horizontal gradient}$$

$$f_c(r,c) : \text{vertical gradient}$$

• Compute smallest eigenvalue of the structure tensor: $\lambda_{\min} \approx \frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)} = \frac{\det(M)}{\operatorname{tr}(M)}$

with the trace $\mathrm{tr}(M)=m_{11}+m_{22}$.

Corner detector

- Other corner detector:
 - Kitchen 82
 - Harris 88
 - Deriche 90
 - Mehrotra 90
 - Schmid 98
 - Smith 98

— ...

Sumary

- Edges
 - Introduction
 - Edge detection
- Lines and corners
 - Line detection operators
 - Hough Transform
 - Harris corner detector
 - Other feature detectors

Other feature detectors

- Several feature descriptors more or less invariant to scale, rotation, affine transformations:
 - Histogram based (use histogram of oriented gradient)
 - SIFT Scale invariant feature transform
 - SURF Speeded-Up Robust Features
 - GLOH Gradient Location and Orientation Histogram
 - HOG Histogram of Oriented Gradients
 - Compact descriptors (use binary strings comparing pairs of intensity images)
 - BRIEF Binary Robust Independent Elementary Features
 - FAST Features from accelerated segment test
 - ORB Oriented FAST and Rotated BRIEF
 - BRISK Binary Robust invariant scalable keypoints

Other feature detectors - SIFT

SIFT Basic idea:

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge Segment Test

Distinctive image features from scale-invariant keypoints. David G. Lowe. IJCV 60 (2), pp. 91-110, 2004

Other feature detectors - SIFT

SIFT Full version:

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Distinctive image features from scale-invariant keypoints. David G. Lowe. IJCV 60 (2), pp. 91-110, 2004