Algoritmos sobre Números

Prof. Martín Vigil

Sequência de Fibonacci

1, 1, 2, 3, 5, 8, 13, 21, 34...

Sequência de Fibonacci

Fib(n) = n-ésimo elemento da série

n	Fib(n)
1	1
2	1
3	2
4	3
5	5
6	8
k	Fib(k-1) + Fib(k-2)

Sequência de Fibonacci: razão de ouro (φ)

F(n)	F(n-1)	F(n)/F(n-1)
1	1	1
2	1	2
3	2	1.5
5	3	1.666666667
8	5	1.6
13	8	1.625
21	13	1.615384615
34	21	1.619047619
55	34	1.617647059
89	55	1.618181818

a/b = (a+b)/a = 1.6180339887498948420 ...

Sequência de Fibonacci: razão de ouro (φ)

Algoritmo Recursivo para Fib(n)

$$Fib(n) = Fib(n-1) + Fib(n-2)$$

```
    função Fib(n)
    se n == 1 OU n == 2
    retorne 1
    senão
    retorne Fib(n-1) + Fib(n-2)
```

Executando Fib(6)

```
    função Fib(n)
    se n == 1 OU n == 2
    retorne 1
    senão
    retorne Fib(n-1) + Fib(n-2)
```


Executando Fib(5)

Análise do Algoritmo Recursivo para Fib(n)

$$Fib(n) = Fib(n-1) + Fib(n-2)$$

$$T(n) = T(n-1) + T(n-2) + 1$$

$$T(n) \subseteq O(g(n))$$

$$T(n) = T(n-1) + T(n-2) + 1$$
 $T(n)$

$$T(n) = T(n-1) + T(n-2) + \Theta(1)$$
 $\Theta(1) = c$

$$T(n-1) \qquad T(n-2)$$

1 1 1 T(n-2) T(n-3) T(n-3) T(n-4)

Análise Imprecisa do Algoritmo Recursivo para Fib(n)

- $T(n) \in O(2^n)$ porém não é preciso
- Existe $g(n) < 2^n$ tal que $T(n) \in O(g(n))$

Análise Precisa do Algoritmo Recursivo para Fib(n)

• Fib(n) = Fib(n-1) + Fib(n-2) é uma recorrência linear no formato

$$x_{n} = A_{1}x_{n-1} + A_{2}x_{n-2} + ... + A_{k}x_{n-k}$$
, onde A é um constante

Análise Precisa do Algoritmo Recursivo para Fib(n)

- Fib(n) = Fib(n-1) + Fib(n-2) é uma recorrência linear no formato
- Pode ser traduzido em uma equação linear de raízes x e x'

Fib(n) = Fib(n-1) + Fib(n-2)
$$\rightarrow$$
 k=2 termos
$$x^{k} = x^{k-1} + x^{k-2}$$
$$x^{2} = x^{1} + x^{0}$$
$$x^{2} = x^{1} + 1 \rightarrow x' = (1+5^{1/2})/2 \text{ e } x' = (1-5^{1/2})/2$$

Análise Precisa do Algoritmo Recursivo para Fib(n)

- Fib(n) = Fib(n-1) + Fib(n-2) é uma recorrência linear
- Pode ser traduzido em uma equação linear de raízes x e x'
- Pode ser re-escrito como Fib(n) = $(x)^n + (x')^n$

Fib(n) =
$$((1+5^{1/2})/2)^n + ((1-5^{1/2})/2)^n$$

Fib(n) = $((1+5^{1/2})/2)^n + ((1-5^{1/2})/2)^n$
T(n) \approx Fib \in O($(1+5^{1/2})/2)^n + ((1-5^{1/2})/2)^n$)
T(n) \approx Fib \in O($(1+5^{1/2})/2)^n = O(\mathbf{\phi}^n)$

Algoritmo Iterativo para Fib(n)

```
função Fib(n)
   n1 = 1
3. n2 = 1
  n3 = 1
5.
6.
     para i = 3, 4, ..., n
      n3 = n1 + n2
       n1 = n2
8.
       n2 = n3
0.
      retorne n3
```

Análise do Algoritmo Iterativo para Fib(n)

```
função Fib(n)
2.
       n1 = 0
                                             3 instruções
3.
     n2 = 1
4.
    n3 = 1
5.
6.
       para i = 3, 4, ..., n
7.
           n3 = n1 + n2
                                            4n instruções
           n1 = n2
8.
                                              para n > 2
           n2 = n3
9.
0.
       retorne n3
                                               1 instrução
```

$$T(n) = 4n + 4 \in \Theta(n)$$