

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Programação de Computadores I - BCC 701 Lista de Exercícios 2 Módulo 2 2014-1

Estrutura de Repetição

Exercício 01

Considere o somatório com *n* termos definido a seguir:

$$\frac{n}{k} - \frac{(n-1)}{(k+1)^2} + \frac{(n-2)}{(k+2)^3} - \frac{(n-3)}{(k+3)^4} + \frac{(n-4)}{(k+4)^5} - \cdots$$

Escreva um programa Scilab que solicite ao usuário o valor de n e calcule e imprima o valor desse somatório, considerando que k=50. Seu programa deve verificar se o valor de n digitado pelo usuário é um número positivo, solicitando repetidamente um novo valor, caso o valor digitado não seja válido. Você pode supor que o valor digitado pelo usuário será sempre um número inteiro (você apenas precisa testar se esse valor é positivo).

A seguir, um exemplo de execução do programa.

Exemplo

CÁLCULO DO SOMATÓRIO

DIGITE UM VALOR PARA n (n>0): -2

ERRO: O VALOR DE n DEVE SER > 0

DIGITE UM VALOR PARA n (n>0): 0

ERRO: O VALOR DE n DEVE SER > 0 DIGITE UM VALOR PARA n (n>0): 4

SOMATÓRIO COM 4 PARCELAS: 0.0788607

Exercício 02

O valor da função exponencial no ponto x pode ser aproximado pela seguinte expansão da série de Taylor:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots$$

Faça um programa em Scilab que leia o valor de x, o número de parcelas da série, e calcule o valor aproximado de e^x pela expansão acima.

A seguir, um exemplo de execução do programa.

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exemplo

Valor de x: 3.2

Número de termos: 10

O valor aproximado de e^3.2 é 24.489

Exercício 03

Escreva um programa que calcule o valor do somatório definido pela série abaixo:

$$S = (1 ^N) - (2 ^(N-1)) + (3 ^(N-2)) - ... + ((N-1) ^2) - (N ^1)$$

Para realização do cálculo do somatório o programa lê o número de parcelas do somatório, o qual deve ser par. A seguir, faz as impressões conforme as execuções descritas abaixo:

A seguir, dois exemplos de execução do programa.

Exemplo 1

QUANTIDADE DE PARCELAS (PAR):5

ATENÇÃO, O NÚMERO DE PARCELAS DEVE SER PAR!

QUANTIDADE DE PARCELAS (PAR):4

VALOR DO SOMATÓRIO: -2, COM 4 PARCELAS

Exemplo 2

QUANTIDADE DE PARCELAS (PAR):3

ATENÇÃO, O NÚMERO DE PARCELAS DEVE SER PAR!

QUANTIDADE DE PARCELAS (PAR):7

ATENÇÃO, O NÚMERO DE PARCELAS DEVE SER PAR!

QUANTIDADE DE PARCELAS (PAR):6

VALOR DO SOMATÓRIO: 5, COM 6 PARCELAS

Exercício 04

A **função exponencial** é uma das mais importantes funções da matemática. Descrita como **e**^x (onde **e** corresponde à constante matemática *neperiana*, base do *logarítmo neperiano*), ela pode ser definida como uma série infinita conforme a expressão:

$$e^{x} = \sum_{n=0}^{N} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{N}}{N!}$$

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Codifique um programa Scilab que receba como entrada do usuário o valor de **N** (obrigatoriamente maior do que zero), o valor de **Xmin**, o valor de **Xmax** (obrigatoriamente maior do que **Xmin**) e imprima na tela os valores da função exponencial para valores inteiros de **x** variando entre **Xmin** e **Xmax**. OBS.: Considere que o usuário sempre digita valores inteiros para a entrada, ou seja, não é necessário verificar se as entradas do usuário são inteiras.

A seguir, dois exemplos de execução do programa.

Exemplo 1

```
Digite o valor de N: 10
Digite o valor de Xmin: -5
Digite o valor de Xmax: 5

Para x = -5 ==> 0.864039
Para x = -4 ==> 0.0967196
Para x = -3 ==> 0.0533259
Para x = -2 ==> 0.135379
Para x = -1 ==> 0.367879
Para x = 0 ==> 1
Para x = 1 ==> 2.71828
Para x = 2 ==> 7.38899
Para x = 3 ==> 20.0797
Para x = 4 ==> 54.4431
Para x = 5 ==> 146.381
```

Exemplo 2

```
Digite o valor de N: 0
                                         Para x = 0 \Longrightarrow 1
Valor de N deve ser maior do que zero!
                                         Para x = 1 ==> 2.71828
                                         Para x = 2 => 7.38906
Digite o valor de N: -5
                                         Para x = 3 ==> 20.0855
Valor de N deve ser maior do que zero!
                                         Para x = 4 ==> 54.5982
                                         Para x = 5 ==> 148.413
Digite o valor de N: 25
                                         Para x = 6 => 403.429
Digite o valor de Xmin: 0
                                         Para x = 7 => 1096.63
                                         Para x = 8 ==> 2980.96
Digite o valor de Xmax: -5
Valor de Xmax deve ser maior do que
                                        Para x = 9 => 8103.06
                                         Para x = 10 => 22026.1
Xmin!
Digite o valor de Xmax: 10
```


Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 05

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$f(x,y) = \begin{cases} \frac{1}{xy} + \sin(x+y) & , se x + y for par \\ \sqrt{y^2 - 4x} & , se x * y for impar \\ \frac{3}{\sqrt{(x+y)}} & , nos demais casos \end{cases}$$

Escreva um programa para gerar a tabela de valores dessa função (conforme o exemplo a seguir), para valores de x e y nos seguintes intervalos:

- $2 \le x \le 30$ (com incrementos de 2 em x)
- $3 \le y \le 24$ (com incrementos de 3 em y)

Observação: Seu programa apenas precisa imprimir os valores da função, que estão contidos no retângulo destacado na figura abaixo.

A seguir, um exemplo de execução do programa.

Exemplo

X/Y	I	3	6	9	12	15	18	21	24
2	ı	1.71	1.07	2.22	1.03	2.57	0.94	2.84	0.78
4	ı	1.91	-0.50	2.35	-0.27	2.67	0.01	2.92	0.28
6	ı	2.08	-0.51	2.47	-0.74	2.76	-0.90	3.00	-0.98
8	ı	2.22	1.01	2.57	0.92	2.84	0.77	3.07	0.56
10	ı	2.35	-0.27	2.67	-0.00	2.92	0.28	3.14	0.53
12	ı	2.47	-0.74	2.76	-0.90	3.00	-0.98	3.21	-0.99
14	ı	2.57	0.92	2.84	0.77	3.07	0.56	3.27	0.30
16	ı	2.67	0.00	2.92	0.28	3.14	0.53	3.33	0.75
18	ı	2.76	-0.90	3.00	-0.98	3.21	-0.99	3.39	-0.91
20	ı	2.84	0.77	3.07	0.56	3.27	0.30	3.45	0.02
22	ı	2.92	0.28	3.14	0.53	3.33	0.75	3.50	0.90
24	ı	3.00	-0.98	3.21	-0.99	3.39	-0.91	3.56	-0.77
26	ı	3.07	0.56	3.27	0.30	3.45	0.02	3.61	-0.26
28	ı	3.14	0.54	3.33	0.75	3.50	0.90	3.66	0.99
30	١Į	3.21	-0.99	3.39	-0.91	3.56	-0.77	3.71	-0.56

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 06

Seja a função definida do \Re^2 :

f(x, y) =
$$\begin{cases} (x * y)/(x + y) & \text{, se x = y} \\ x^2 + y^2 & \text{, se (x+y) for impar} \\ (x + y)^3 & \text{, para os demais valores de x e y} \end{cases}$$

Escreva um programa para gerar a tabela de valores dessa função (conforme o exemplo a seguir), para valores de x e y nos seguintes intervalos:

- $1 \le x \le 8$ (com incrementos de 1 em x)
- $1 \le y \le x$ (com incrementos de 1 em y)

A seguir um exemplo de execução do programa.

Exemplo

X/Y	1	2	3	4	5	6	7	8
1	0.5							
2	5.0	1.0						
3	64.0	13.0	1.5					
4	17.0	216.0	25.0	2.0				
5	216.0	29.0	512.0	41.0	2.5			
6	37.0	512.0	45.0	1000.0	61.0	3.0		
7	512.0	53.0	1000.0	65.0	1728.0	85.0	3.5	
8	65.0	1000.0	73.0	1728.0	89.0	2744.0	113.0	4.0

Observação: faça somente a impressão dos dados destacados (retângulo).

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exercício 07

Escreva um programa que mostre, na forma tabular, o resultado da função **f**: **Z x Z → Z**, definida por:

$$f(x,y) = \frac{x^2 + 3y, \text{ se y for divisível por 2}}{x^2 - 3y, \text{ se y não for divisível por 2}}.$$

A tabela deve ser construída de tal forma que as linhas correspondam às variações dos valores de ${\bf x}$ de 1 a 10 e as colunas correspondam às variações dos valores de ${\bf y}$ de 1 a 10.

A seguir um exemplo de execução do programa.

Exemplo

	1	2	3	4	5	6	7	8	9	10
1	-2	7	-8	13	-14	19	-20	25	-26	31
2	1	10	-5	16	-11	22	-17	28	-23	34
3	6	15	0	21	-6	27	-12	33	-18	39
4	13	22	7	28	1	34	-5	40	-11	46
5	22	31	16	37	10	43	4	49	-2	55
6	33	42	27	48	21	54	15	60	9	66
7	46	55	40	61	34	67	28	73	22	79
8	61	70	55	76	49	82	43	88	37	94
9	78	87	72	93	66	99	60	105	54	111
10	97	106	91	112	85	118	79	124	73	130

Exercício 08

Seja
$$f: NxN \to N$$
 definida por $f(x,y) = \begin{cases} x^2 + 2y, se \ x + y \ for \ par \\ y^2 + 3x, caso \ contrário \end{cases}$.

Codifique um programa em Scilab que apresente os resultados da função f em formato tabular. As linhas da tabela correspondem aos resultados para os valores de x no intervalo [0,10] e as colunas aos resultados para os valores de y no intervalo [0,10].

A seguir um exemplo de execução do programa.

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exemplo

	0	1	2	3	4	5	6	7	8	9	10
0	0	1	4	9	8	25	12	49	16	81	20
1	3	3	7	7	19	11	39	15	67	19	103
2	4	7	8	15	12	31	16	55	_	87	24
3	9	11	13	15	25	19	45	23	73	27	109
4	16	13	20	21	24	37	28	61	32	93	36
5	15	27	19	31	31	35	51	39	79	43	115
6	36	19	40	27	44	43	48	67	52	99	56
7	21	51	25	55	37	59	57	63	85	67	121
8	64	25	68	33	72	49	76	73	80	105	84
9	27	83	31	87	43	91	63	95	91	99	127
10	100	31	104	39	108	55	112	79	116	111	120

Exercício 09

Uma sequência de Collatz modificada pode ser definida do seguinte modo:

Dado um número inteiro positivo n, se o resto da divisão inteira de n por 3 for 0, divida n por 3 (n/3); se o resto for 1, multiplique n por 4, some 2 e divida o resultado por 3 ((4n+2)/3); se o resto for 2, multiplique n por 2, subtraia 1 e divida o resultado por 3 ((2n-1)/3). Repita esse processo para o valor obtido, e assim sucessivamente, até que o valor obtido seja igual a 1.

Escreva um programa que leia um valor inteiro positivo *n* e imprima os valores da Sequência de Collatz para *n*. (OBS: Não é necessário verificar se o valor digitado é válido)

A seguir dois exemplos de execução do programa.

Exemplo 1

Digite um número inteiro positivo: 12 Sequencia de Collatz: 12 4 6 2 1

Exemplo 2

Digite um número inteiro positivo: 231 Sequencia de Collatz: 231 77 51 17 11 7 10 14 9 3 1

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exercício 10

Suponha que você deposita R\$ 500,00 reais em uma conta de investimento, no início de cada mês. No final de cada mês, é creditado um rendimento de 1% do saldo total da conta. Por exemplo, no final do primeiro mês, o saldo da conta seria R\$ 505,00, e no final do segundo mês seria R\$ 1015,05.

Escreva um programa que leia um determinado valor de capital C, que você gostaria de poupar, e calcule o menor número de meses que você teria que investir para que o saldo da sua conta figue maior ou igual a C.

A seguir dois exemplos de execução do programa.

Exemplo 1

Conta de Investimento	
Valor de capital desejado: 1000	
Período mínimo de investimento =	2 meses

Exemplo 2

Conta de Investimento	
Valor de capital desejado: 4200	
Período mínimo de investimento =	8 meses

Exercício 11

A **Jurubeba Foods and Snacks Co** venceu a licitação da UFOP para o fornecimento das refeições do Restaurante Universitário. Ela fornecerá três tipos de pratos: o vegetariano, o com carne bovina e o com peixe. Para saber o total de refeições fornecidas em um dia, e as porcentagens fornecidas de cada tipo de prato, é utilizado um programa de computador que possui o seguinte comportamento em sua execução:

- O programa exibe as informações de opções para o usuário:
- O usuário escolhe a sua opção;
- No momento que for digitado 0 (zero) o programa encerra sua execução. No caso do zero ser digitado na primeira entrada de dados, o programa deve avisar o usuário que não ocorreram entradas válidas.
- As entradas numéricas são sempre números inteiros (não há necessidade de verificar se são números reais). O programa verifica se a entrada é um dos valores validos: 1, 2 ou 3. Uma entrada inválida causa a exibição de uma mensagem para o usuário, permitindo que ele faça uma nova escolha de refeição.
- No momento que o programa for encerrado, é impresso o número total de refeições fornecidas, a porcentagem de refeições vegetarianas, a porcentagem de refeições com carne bovina e a porcentagem de refeições com peixe.

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Codifique um programa Scilab que realize a mesma execução descrita anteriormente e de acordo com os exemplos de execução ilustrados abaixo.

Exemplo de Execução 1

```
(1) VEGETARIANO -- (2) BOVINO -- (3) PEIXE
(0) FINALIZAR
DIGITE A OPÇÃO: 0
PROGRAMA ENCERRADO SEM ENTRADAS VÁLIDAS !
```

Exemplo de Execução 2

```
(1) VEGETARIANO -- (2) BOVINO -- (3) PEIXE
(0) FINALIZAR
DIGITE A OPÇÃO: 4
OPÇÃO INVÁLIDA !
DIGITE A OPÇÃO: 5
OPÇÃO INVÁLIDA !
DIGITE A OPÇÃO: 1
DIGITE A OPÇÃO: 8
OPÇÃO INVÁLIDA !
DIGITE A OPÇÃO: 2
DIGITE A OPÇÃO: 3
DIGITE A OPÇÃO: 1
DIGITE A OPÇÃO: 1
DIGITE A OPÇÃO: 1
DIGITE A OPÇÃO: 1
DIGITE A OPÇÃO: 2
DIGITE A OPÇÃO: 3
DIGITE A OPÇÃO: 3
DIGITE A OPÇÃO: 0
TOTAL ME PRATOS SERVIDOS: 10
PORCENTAGEM DE PRATOS VEGETARIANOS: 50
PORCENTAGEM DE PRATOS COM BOVINO: 20
PORCENTAGEM DE PRATOS COM PEIXE: 30
```