CASELLA-BERGER STATISTICAL INFERENCE SOLUTION: CHAPTER 7

VIRGIL CHAN

September 26, 2022

Contents

1.	Exercise 7.1	2
2.	Exercise 7.2	3
Re	ferences	4

1. Exercise 7.1

For each x, we find θ so that $f(x|\theta)$ is maximised.

x	0	1	2	3	4
θ	1	1	Either 2 or 3 works	3	3
(((0)	1	1	1	1	1
$ f(x \theta) $	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{-}{4}$

Therefore,

$$\hat{\theta}_1(x) = \begin{cases} 1 & \text{if } x = 0, 1, \\ 2 & \text{if } x = 2, \\ 3 & \text{if } x = 3, 4 \end{cases} \qquad \hat{\theta}_2(x) = \begin{cases} 1 & \text{if } x = 0, 1, \\ 3 & \text{if } x = 2, 3, 4, \end{cases}$$

are the possible MLEs' for θ .

3

2. Exercise 7.2

The likelihood function for β is given by

$$L(\beta|x_1, \dots, x_n) = \prod_{i=1}^n f(x_i; \alpha, \beta)$$

$$= \prod_{i=1}^n \frac{x_i^{\alpha - 1} e^{-\frac{x_i}{\beta}}}{\Gamma(\alpha) \beta^{\alpha}}$$

$$= \frac{\left(\prod_{i=1}^n x_i\right)^{\alpha - 1}}{\left[\Gamma(\alpha)\right]^n} \cdot \exp\left[-\frac{\sum_{i=1}^n x_i}{\beta}\right] \cdot \beta^{\alpha n},$$

and has derivative

$$\frac{\partial L}{\partial \beta} = \frac{\left(\prod_{i=1}^{n} x_i\right)^{\alpha - 1}}{\left[\Gamma(\alpha)\right]^n} \cdot \exp\left[-\frac{\sum_{i=1}^{n} x_i}{\beta}\right] \cdot \beta^{-\alpha n - 2} \cdot \left(\sum_{i=1}^{n} x_i - \alpha n \beta\right).$$

In particular,

$$\frac{\partial L}{\partial \beta} = 0 \iff \sum_{i=1}^{n} x_i - \alpha n \beta = 0$$

$$\iff \beta = \frac{\sum_{i=1}^{n} x_i}{\alpha n}.$$

It remains to show this β maximises L.

We note that the sign of $\frac{\partial L}{\partial \beta}$ is completely determined by the sign of the term $\sum_{i=1}^{n} x_i - \alpha n \beta$.

Thus, algebra says $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i}{\alpha n}$ is the MLE for β .

4 VIRGIL CHAN

REFERENCES

 $[BC01]\;$ Roger Berger and George Casella. Statistical Inference. 2nd edition. Florence, AL: Duxbury Press, June 2001.