Indifference Problem Notes

Kit Levy

7/15 Post-Meeting Notes:

Overview: Looking at how indifferent voters not showing up to vote affects the expected social welfare of voting rules' selected winning candidate

 $u = \text{distribution of voters}, f(u) = \text{density function of distribution } u, F(u) = \text{CDF}, F(\frac{1}{2}) = \text{number of votes for candidate } a, u' = \text{voters who actually show up to vote}$

People in u have utilities $u_i = (p_a, p_b)$, show up to vote with prob $u_{\text{choice } \#1} - u_{\text{choice } \#2}$ aka strength of preference between the two candidates (eventually maybe entropy(u))

Probability a person will vote:
$$u_1 - u_2 = \begin{cases} u_1 - (1 - u_1) & \text{if } u \ge \frac{1}{2} \\ (1 - u_1) - u_1 & \text{if } u \ge \frac{1}{2} \end{cases} = \begin{cases} 2u_1 - 1 & \text{if } u \ge \frac{1}{2} \\ 1 - 2u_1 & \text{if } u \ge \frac{1}{2} \end{cases}$$

<u>Problem:</u> Investigating "distortion" = $\frac{\mathbb{E}[sw(f(u),u)]}{\mathbb{E}[sw(f(u'),u)]}$ for different voting rules

sw(f(u'), u) = total social welfare (from all of u) in an election where only u' vote

Distortion $\geq 1 \rightarrow$ people not showing up harmed soc. welfare, distortion $< 1 \rightarrow$ people not showing up improved outcome's sw, find examples?

Eventually try to find bounds on distortion for different voting rules

Starting subproblem: imagine u as drawn from a Beta distribution $u_i \sim \text{Beta}(\alpha, \beta)$ (because can extend to more dimensions with $\text{Dirichlet}(\vec{\delta})$, doesn't necessarily have to be)

Find
$$\alpha, \beta$$
 such that $\begin{cases} F(\frac{1}{2}) \geq \frac{1}{2} & \text{(aka more people in } u \text{ prefer } a \text{ over } b) \\ \mathbb{E}_{u'}[f(u')] = \text{ B} & \text{(expected winner if only } u' \text{ vote is B)} \end{cases}$

 $\mathbb{E}_{u'}[f(u')] = b$ equiv to $\int_0^{\frac{1}{2}} (1 - 2u) f(u) du \leq \int_{\frac{1}{2}}^1 (2u - 1) f(u) du$ (ex. votes for A \le ex. votes for B) (1 - 2u) = probability you vote if located at u, f(u) = prob a person's prefs are located at u, $\int_0^{\frac{1}{2}} (1 - 2u) f(u) du$ = expected people who will vote (i.e. are in u') and who prefer A

Constraints:

1.
$$\frac{1}{B(\alpha,\beta)} \frac{\int_0^{\frac{1}{2}} t^{\alpha-1} (1-t)^{\beta-1} dt}{\int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt} \le \frac{1}{2}$$

2.
$$\int_0^{\frac{1}{2}} (1 - 2u)(u^{\alpha - 1}(1 - u)^{\beta - 1})du \le \int_{\frac{1}{2}}^1 (2u - 1)(u^{\alpha - 1}(1 - u)^{\beta - 1})du$$

To-Do List (starting 7/16):

- 1. Find subproblem's example of α,β for various voting rules
 - (a) Investigate whether to do it analytically or with numerical integration

1

- (b) Try for plurality voting, then IRV, Borda, etc.
- (c) Write up examples
- 2. Analyze distortion for examples
- 3. Investigate bounds for examples
- 4. Find examples where distortion < 1

No distribution $u \sim \text{Beta}(\alpha, \beta)$ exists such that A strictly wins with full turnout and B strictly wins with turnout weighted according to |2u - 1|:

Proof. Let $f(u) = \frac{1}{B(\alpha,\beta)} u^{\alpha-1} (1-u)^{\beta-1}, u \in [0,1]$. Let $F(x) = \int_0^x f(u) du$. A wins under full turnout and B wins with weighted turnout \iff

Constraint 1: $F(\frac{1}{2}) < \frac{1}{2}$ and

Constraint 2: $\int_0^{\frac{1}{2}} (1 - 2u) f(u) du < \int_{\frac{1}{2}}^1 (2u - 1) f(u) du$

Fulfilling Constraint 1:

$$F(\frac{1}{2}) < \frac{1}{2}$$

$$\implies \int_0^{\frac{1}{2}} f(u) du > \frac{1}{2}$$

$$\implies \alpha < \beta.$$

Fulfilling Constraint 2:

$$\int_{0}^{\frac{1}{2}} (1 - 2u) f(u) du < \int_{\frac{1}{2}}^{1} (2u - 1) f(u) du$$

$$\implies -\int_{0}^{\frac{1}{2}} (2u - 1) f(u) du < \int_{\frac{1}{2}}^{1} (2u - 1) f(u) du$$

$$\implies 0 < \int_{\frac{1}{2}}^{1} (2u - 1) f(u) du + \int_{0}^{\frac{1}{2}} (2u - 1) f(u) du$$

$$\implies \int_{0}^{1} (2u - 1) f(u) du > 0$$

$$\implies 2 \int_{0}^{1} u f(u) du - \int_{0}^{1} f(u) du > 0$$

Because f(u) is a probability density, we know $\int_0^1 f(u)du = 1$ and $\int_0^1 u f(u)du = \mathbb{E}[u]$.

Thus, $2\int_0^1 u f(u) du - \int_0^1 f(u) du > 0 \implies 2\mathbb{E}[u] - 1 > 0 \implies \mathbb{E}[u] > \frac{1}{2}$

For $u \sim \text{Beta}(\alpha, \beta)$, $\mathbb{E}[u] = \frac{\alpha}{\alpha + \beta}$.

Thus,
$$\mathbb{E}[u] > \frac{1}{2} \implies \frac{\alpha}{\alpha + \beta} > \frac{1}{2}$$

 $\implies \alpha > \beta$.

Because Constraint $1 \iff \alpha < \beta$ and Constraint $2 \iff \alpha > \beta$, there is no distribution $u \sim \text{Beta}(\alpha, \beta)$ that fulfills both constraints.

It follows that there is no distribution $u \sim \text{Beta}(\alpha, \beta)$ that fulfills both constraints for any distribution of votes proportional to |2u-1|.

No distribution $u \sim \text{Beta}(\alpha, \beta)$ exists such that A strictly wins with full turnout and B strictly wins with turnout weighted according to any function w such that w(u) is symmetric around $u = \frac{1}{2}$:

Proof. Let w(u) be symmetric around $u = \frac{1}{2}$.

Then,
$$\int_0^1 w(u)f(u)du = \int_0^1 w(1-u)f(u)du$$

For $u \sim \text{Beta}(\alpha, \beta)$ we have:

- f(u) > f(1-u) on $u \in [0, \frac{1}{2}) \iff \alpha < \beta$
- $f(u) = f(1-u) \iff \alpha = \beta$
- f(u) < f(1-u) on $u \in [0, \frac{1}{2}) \iff \alpha > \beta$

So if f(u) has more mass on the left (i.e. a wins the unweighted vote with full turnout, i.e. $F(\frac{1}{2}) > \frac{1}{2}$, i.e. $\alpha < \beta$), and w(u) is symmetric, then:

We know $w(u) \ge 0$, and f(u) > f(1-u) on $u \in [0, \frac{1}{2}, \text{ so } w(u)f(u) > w(u)f(1-u)$

$$\implies \int_0^{\frac{1}{2}} w(u)f(u)du > \int_0^{\frac{1}{2}} w(u)f(1-u)du$$

Let
$$t = 1 - u$$
 (while $u \in [0, \frac{1}{2}]$). $\int_0^{\frac{1}{2}} w(u) f(1 - u) du = \int_1^{\frac{1}{2}} w(1 - t) f(t) (-dt) = \int_{\frac{1}{2}}^1 w(t) f(t) dt$

$$\implies \int_0^{\frac{1}{2}} w(u) f(u) du > \int_{\frac{1}{2}}^1 w(t) f(t) dt$$

$$\implies \int_0^{\frac{1}{2}} w(u)f(u)du > \int_{\frac{1}{2}}^1 w(u)f(u)du$$

 \implies weighted votes for a > weighted votes for b.

Thus, for votes distributed according to $u \sim \text{Beta}(\alpha, \beta)$, a wins the unweighted election \implies a wins any election weighted according to a function w such that w(u) is symmetric around $u = \frac{1}{2}$.

7/23 Post-Meeting Notes

Distortion = $\frac{sw(a^*,u)}{\mathbb{E}[sw(f(P'),u)]}$, a^* = optimal welfare alternative, P = fixed preference profile, $P' \subseteq P$ = after dropout according to w(u)

Next goals:

- 1. Axiomatize/parametrize w
 - w should be symmetric around $u = \frac{1}{2}$, need $w(x) = w(\sigma(x))$ (permutation of x)
 - Look at goals of voting, give characteristics of w maybe
 - Conj. if w is symmetric and single-peaked at $\frac{1}{2}$ then $\mathbb{E}[sw(f(P'), u)] \geq \mathbb{E}[sw(f(P), u)]$
- 2. Two "types of voters"/model with two lines of different proportions
 - $v_a: u_a$ and $v_b: u_b$ (two utility locations), $Pr[v_a] = p_a$ and $Pr[v_b] = p_b$ (two proportions of each group)
 - Find restrictions on u_a, u_b, p_a (lin eq) where $F(\frac{1}{2}) \geq \frac{1}{2}$ and $\int_{\frac{1}{2}}^{1} w(x) f(x) dx \geq \int_{0}^{\frac{1}{2}} w(x) f(x) dx$
 - Fix $w(x) = (2x-1)^2 \to \text{parametrize as } (cx-\frac{c}{2})^2 \text{ (different steepnesses of curve)}$
- 3. Characterize continuous (Lipschitz) distributions f where for symmetric w weighted turnout can flip outcome
 - $\{f: F(\frac{1}{2}) \ge \frac{1}{2}, \int_{\frac{1}{2}}^{1} w(x)f(x)dx \ge \int_{0}^{\frac{1}{2}} w(x)f(x)dx\}$
 - $\iff \int_{\frac{1}{2}}^{1} w(x)[f(x) f(1-x)]dx \ge 0$, parametrize somehow?

Two groups model:

Majority prefers a and b wins election with turnout \iff

$$\begin{cases} p_a > 1 - p_a \\ w(u_b)(1 - p_a) > w(u_a)p_a \end{cases}$$

$$w(u_b)(1 - p_a) > w(u_a)p_a$$

$$\implies w(u_b) - p_a(w(u_b) + w(u_a)) > 0$$

$$\implies \frac{1}{2} < p_a < \frac{w(u_b)}{w(u_b) + w(u_a)}$$

For w(u) = |2u - 1|:

$$p_{a} < \frac{w(u_{b})}{w(u_{b}) + w(u_{a})}$$

$$\implies p_{a} < \frac{2u_{b} - 1}{2u_{b} - 1 + 1 - 2u_{a}}$$

$$\implies p_{a} < \frac{2u_{b} - 1}{2u_{b} - 2u_{a}}$$

$$\implies \frac{1}{2} < \frac{2u_{b} - 1}{2u_{b} - 2u_{a}}$$

$$\implies u_{b} - u_{a} < 2u_{b} - 1$$

$$\implies u_{a} + u_{b} > 1$$

Investigating possible f:

Goal: characterize continuous f where weighting turnout according to a symmetric w can flip the outcome of an election, $\{f: F(\frac{1}{2}) \ge \frac{1}{2}, \int_{\frac{1}{2}}^{1} w(x)f(x)dx \ge \int_{0}^{\frac{1}{2}} w(x)f(x)dx\}$

Approaching as a convex optimization problem:

$$D(f) = \int_{\frac{1}{2}}^{1} w(u)[f(u) - f(1-u)]du$$

Feasible space: $S = \{ f \in C^0([0,1]) : f \ge 0, \int_0^1 f = 1, \int_0^{\frac{1}{2}} f > \frac{1}{2} \}$

Maximize D(f) over S (aka asking question: $\exists f \in S \text{ s.t. } D(f) > 0$?)

(see Python script, not sure how to interpret)

Trying to linearize everything with nudge function:

 $f(u) = f_0(u) + \epsilon g(u)$ where $f_0(u) = 1$ (uniform density for baseline), $\int_0^1 g(u) du = 0$, $\epsilon << 1$ controls deviation (still fulfills pdf requirements)

Full turnout condition:

$$\int_0^{\frac{1}{2}} f(u)du = \int_0^{\frac{1}{2}} (1 + \epsilon g(u))du = \frac{1}{2} + \epsilon \int_0^{\frac{1}{2}} g(u)du$$

 \implies A wins under full turn out \iff $\epsilon \int_0^{\frac{1}{2}} g(u) du > 0$

Weighted turnout condition:

$$\int_{\frac{1}{2}}^{1} w(u)f(u)du - \int_{0}^{\frac{1}{2}} w(u)f(u)du = \int_{0}^{1} w(u)f(u)\operatorname{sgn}(u - \frac{1}{2})du$$

$$\int_0^1 w(u)(1+\epsilon g(u))\operatorname{sgn}(u-\frac{1}{2})du = \int_0^1 w(u)\operatorname{sgn}(u-\frac{1}{2})du + \epsilon \int_0^1 w(u)g(u)\operatorname{sgn}(u-\frac{1}{2})du$$

 $\int_0^1 w(u) \operatorname{sgn}(u-\frac{1}{2}) du = 0$ because $\operatorname{sgn}(u-\frac{1}{2})$ flips from -1 to 1 and w is symmetric, so the two halves should cancel out.

 \implies B wins with weighted turnout $\iff \epsilon \int_0^1 w(u)g(u)\operatorname{sgn}(u-\frac{1}{2})du > 0$

A wins under full turnout and B wins with weighted turnout \iff

Constraint 1: $\epsilon \int_0^{\frac{1}{2}} g(u) du > 0$ and

Constraint 2: $\epsilon \int_0^1 w(u)g(u)\operatorname{sgn}(u-\frac{1}{2})du > 0$