## 2015-11-27

# 5. SNP Annotation

- VCF format
- SnpEff tool



## Difference between Ref. versions

http://www.ncbi.nlm.nih.gov/nuccore/299033929/

#### Phoenix dactylifera chloroplast, complete genome GenBank: GU811709.2 FASTA Graphics Go to: (V) LOCUS GU811709 circular PLN 16-SEP-2010 158462 bp DEFINITION Phoenix dactylifera chloroplast, complete genome. ACCESSION GH811709 VERSION GU811709.2 GI:299033929 **KEYWORDS** SOURCE chloroplast Phoenix dactylifera (date palm) ORGANISM Phoenix dactylifera Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; Liliopsida; Arecaceae; Coryphoideae; Phoeniceae: Phoenix. REFERENCE 1 (bases 1 to 158462) AUTHORS Yang, M., Zhang, X., Liu, G., Yin, Y., Chen, K., Yun, Q., Zhao, D., Al-Mssallem,I.S. and Yu,J. TITLE The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.) PLoS ONE 5 (9), E12762 (2010) JOURNAL 20856810 PUBMED

```
Phoenix dactylifera chloroplast, complete genome
GenBank: GU811709.1
This sequence has been updated. See current version.
        Graphics
FASTA
Go to: ♥
LOCUS
            GU811709
                                  158455 bp
                                               DNA
                                                       circular PLN 15-MAR-2010
DEFINITION
           Phoenix dactylifera chroroprast, complete genome.
ACCESSION.
           GH811709
VERSION.
            GU811709.1
                       GI:290790898
KEYWORDS
SOURCE
            chloroplast Phoenix dactylifera (date palm)
  ORGANISM
           Phoenix dactylifera
            Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
            Spermatophyta; Magnoliophyta; Liliopsida; Arecaceae; Coryphoideae;
            Phoeniceae; Phoenix.
REFERENCE
           1 (bases 1 to 158455)
  AUTHORS
            Yang, M., Al-Mssallem, I.S., Yu, J., Zhang, X., Liu, G., Chen, K. and
            Yun.Q.
  TITLE
            A complete chloroplast genome sequence of the date palm (Phoenix
            dactylifera L.)
           Unpublished
  JOURNAL
REFERENCE
            2 (bases 1 to 158455)
  AUTHORS
           Yang, M., Al-Mssallem, I.S., Yu, J., Zhang, X., Liu, G., Chen, K. and
            Yun.Q.
  TITLE
            Direct Submission
  JOURNAL
            Submitted (17-FEB-2010) Date Palm Genome Project Consortium, King
            Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh
            11442, Kingdom of Saudi Arabia
            [WARNING] On Jun 22, 2010 this sequence was replaced by
COMMENT
            gi:299033929.
```



## Variant Call Format(VCF)



| Command                                                                                                                                                                     | Start time             | End time               | Log1 | Log2        | Result             | MD5         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------|-------------|--------------------|-------------|
| Create BWA Index File<br>bwa index [-a is] GU811709_151125154120962                                                                                                         | 2015-11-25<br>16:05:25 | 2015-11-25<br>16:05:36 |      | <u>View</u> |                    |             |
| BWA : Alignment<br>bwa aln GU811709_151125154120962<br>SRR974758_1.fastq > 1.sai                                                                                            | 2015-11-25<br>16:05:36 | 2015-11-25<br>16:10:01 |      | <u>View</u> |                    |             |
| BWA : Alignment<br>bwa aln GU811709_151125154120962<br>SRR974758_2.fastq > 2.sai                                                                                            | 2015-11-25<br>16:10:01 | 2015-11-25<br>16:13:01 |      | <u>View</u> |                    |             |
| BWA : SAMPE<br>bwa sampe GU811709_151125154120962 1.sai 2.sai<br>SRR974758_1.fastq SRR974758_2.fastq > out.sam                                                              | 2015-11-25<br>16:13:01 | 2015-11-25<br>16:20:17 |      | View        | Download(5.8 GB)   | MD5         |
| Extract Unmapped Reads<br>python extractUnmappedFASTQ.py SRR974758_1.fastq<br>SRR974758_2.fastq out.sam                                                                     | 2015-11-25<br>16:58:41 | 2015-11-25<br>17:19:02 |      |             | Download(6.5 GB)   | MD5         |
| Convert SAM to BAM<br>samtools view -bS -o out.bam out.sam                                                                                                                  | 2015-11-26<br>01:45:27 | 2015-11-26<br>04:06:20 |      | <u>View</u> | Download(5.8 GB)   | MD5         |
| Sort BAM File<br>samtools sort out.bam out2                                                                                                                                 | 2015-11-26<br>04:11:57 | 2015-11-26<br>04:37:55 |      | <u>View</u> | Download(5.7 GB)   | MD          |
| Create BAM Index File<br>samtools index out2.bam                                                                                                                            | 2015-11-26<br>04:42:04 | 2015-11-26<br>04:43:19 |      |             | Download(779 byte) | MD5         |
| Uniquify SAM (Remove Multiple Hits)<br>perl sam2uniq.pl out.sam UBE > uniqout.sam                                                                                           | 2015-11-26<br>04:43:31 | 2015-11-26<br>04:49:51 |      |             | Download(26.7 MB)  | MD5         |
| Convert SAM to BAM [For Unique SAM ] samtools view -bS -o uniqout.bam uniqout.sam                                                                                           | 2015-11-26<br>04:50:13 | 2015-11-26<br>04:50:24 |      | <u>View</u> | Download(54.3 MB)  | MD5         |
| Sort BAM File [For Unique SAM]<br>samtools sort uniqout.bam out2                                                                                                            | 2015-11-26<br>04:50:46 | 2015-11-26<br>04:50:57 |      |             | Download(20 6 MB)  | MD5         |
| Create BAM Index File [For Unique SAM] samtools index out2.bam                                                                                                              | 2015-11-26<br>04:51:09 | 2015-11-26<br>04:51:20 |      |             | Download(439 byte) | MD5         |
| Mpileup and Create BCF File [For Unique SAM]<br>samtools mpileup - u-C55 -B00 -d10000000 -f<br>GUB11709_151125154120962 out2.bam   bcftools view -<br>bvcg - > uniq.var.bcf | 2015-11-26<br>04:51:31 | 2015-11-26<br>04:58:03 |      | View        | 1                  |             |
| Filter BCF and Convert to VCF File [For Unique SAM]<br>bcftools view uniq.var.bcf [perl vcfutils.pl varFilter -D10000<br>> out-unique.var.fit.vcf                           | 2015-11-26<br>04:58:03 | 2015-11-26<br>04:58:14 |      |             | Download(1.5 KB)   | <u>M D5</u> |
| Mplieup and Create BCF File<br>samtools mplieup -u -C50 -B00 -d10000000 -f<br>G0881709_151125154120962 out2.bam   bcftools view -<br>bvcg -> non-uniq.var.bcf               | 2015-11-26<br>04:58:25 | 2015-11-26<br>05:00:57 |      | <u>View</u> |                    |             |
| Filter BCF and Convert to VCF File<br>bcftools view non-uniq.var.bcf   perl vcfutils.pl varFilter -                                                                         | 2015-11-26<br>05:00:58 | 2015-11-26<br>05:01:09 |      |             | Download(1.4 KB)   | MD5         |

#### Reference:

- 1) https://en.wikipedia.org/wiki/Variant Call Format
- 2) <a href="https://samtools.github.io/hts-specs/VCFv4.2.pdf">https://samtools.github.io/hts-specs/VCFv4.2.pdf</a> (current version)

```
##fileformat=VCFv4.1↓
   ##samtoolsVersion=0.1.18 (r982:295)↓
   ##INFO=<ID=DP,Number=1,Type=Integer,Description="Raw read depth">↓
   ##INFO=<ID=DP4, Number=4, Type=Integer, Description="# high-quality ref-forward
   ##INFO=<ID=MQ,Number=1,Type=Integer,Description="Root-mean-square mapping qu
   ##INFO=<ID=FQ,Number=1,Type=Float,Description="Phred probability of all samp
   ##INFO=<ID=AF1, Number=1, Type=Float, Description="Max-likelihood estimate of t
   ##INFO=<ID=AC1, Number=1, Type=Float, Description="Max-likelihood estimate of
   ##INFO=<ID=G3,Number=3,Type=Float,Description="ML estimate of genotype frequ
  ##INFO=<ID=HWE, Number=1, Type=Float, Description="Chi^2 based HWE test P-value
   ##INFO=<ID=CLR,Number=1,Type=Integer,Description="Log ratio of genotype like
  ##INFO=<ID=UGT,Number=1,Type=String,Description="The most probable unconstra
13 ##INFO=<ID=CGT,Number=1,Type=String,Description="The most probable constrain
  ##INFO=<ID=PV4,Number=4,Type=Float,Description="P-values for strand bias, ba
   ##INFO=<ID=INDEL,Number=0,Type=Flag,Description="Indicates that the variant
  ##INFO=<ID=PC2,Number=2,Type=Integer,Description="Phred probability of the r
  ##INFO=<ID=PCHI2, Number=1, Type=Float, Description="Posterior weighted chi^2 P
  ##INFO=<ID=QCHI2, Number=1, Type=Integer, Description="Phred scaled PCHI2.">+
   ##INFO=<ID=PR,Number=1,Type=Integer,Description="# permutations yielding a s
  ##INFO=<ID=VDB, Number=1, Type=Float, Description="Variant Distance Bias">→
   ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">↓
   ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">↓
   ##FORMAT=<ID=GL,Nu
                                                          ihoods for RR,RA,AA ge
   ##FORMAT=<ID=DP.Nu
                                                          igh-quality bases">↓
   ##FORMAT=<ID=SP.Nu
                                                          ed-scaled strand bias
   ##FORMAT=<ID=PL,Numper-a,rype-integer
                                                            of Phred-scaled geno
   #CHROMA POSAIDA REFAALTAQUAL
                                                            /home/w3pipeline/ref
   GU811709|GU811709.2^4853
                                    gtttttttttttt
                                                    gTTTTtttttttttttttt,gTTTttttt
   GU811709|GU811709.2^9278
                                                    DP=8;VDB=0.0504;AF1=1;AC1=2;
   GU811709|GU811709.2^9279
                                                    DP=8;VDB=0.0007;AF1=0.5032;A
                                                    DP=99;VDB=0.0319;AF1=0.5;AC1
   GU811709|GU811709.2^13273
   GU811709|GU811709.2^21746
                                                    DP=163;VDB=0.0477;AF1=0.504;
  GU811709|GU811709.2^58971
                                                        DP=23;VDB=0.0153;AF1=0.5
34 GU811709 GU811709 2^61476
                                    aatagataga^aataga^
                                                       193^.^
                                                                INDEL;DP=56;VDB=
35 GU811709 GU811709 2 64480
                                                        DP=104; VDB=0.0481; AF1=0.
   [EUF]
```



## Variant Effect Annotation

#### Predicts coding effects of genomic variants

#### ■ List of variant annotation tools

(https://en.wikipedia.org/wiki/SNP\_annotation)

List of available SNP annotation tools [edit]

To annotate large number of available NGS data, currently a large number of SNPs annotation tools is available. Some of them are specific to some specific annotation. Some of the available SNPs annotation tools are as follows SNPeff, VEP, ANNOVAR, FATHIMM, PhD-SNP, PolyPhen-2, SuSPect, F-SNP, AnnT SeattleSeq, SNPit, SCAN, Snap, SNPs8GO, LS-SNP, Snat, TREAT, TRAMS, Maviant, SNPdat, Snpranker, NGS - SNP, SVA, VARIANT, SIFT, PhD-SNP and Function and approach used in SNPs annotation tools are listed below

| Tools   | Description                                                                                                                                 | External resources use                                                | WebsiteURL                                        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|
| SNPeff  | SnpEff annotates variants based on their genomic locations and predicts coding effects. Use an interval forest approach                     | ENSEMBL, UCSC and organism<br>based eg. FlyBase, WormBase and<br>TAIR | http://snpeff.sourceforse.net/SnpEff_manual.htms9 |
| VEP     | Provides the location of specific variants in<br>individuals. Variants are calculated using sanger—<br>style resequencing data              | dbSNP, Ensembl, UCSC and NCBI                                         | http://www.ensembl.org/@                          |
| ANNOVAR | This tools is suitable for pirpoint a small subset<br>of functionally important variant. Use mutation<br>prediction approach for annotation | UCSC, RefSe and Ensembl                                               | http://www.operbioinformatics.org/annovar/8/      |

#### ■SnpEff tool (example outputs※)

Xhttp://snpeff.sourceforge.net/SnpEff\_manual.html

| Туре                      |        |         | Region                    |        |         |  |
|---------------------------|--------|---------|---------------------------|--------|---------|--|
| Type (alphabetical order) | Count  | Percent |                           |        |         |  |
| DOWNSTREAM                | 2,093  | 1.766%  |                           |        |         |  |
| INTERGENIC                | 26,314 | 22.204% |                           |        |         |  |
| INTRAGENIC                | 78     | 0.066%  | Type (alphabetical order) | Count  | Percent |  |
| INTRON                    | 54,238 | 45.767% | DOWNSTREAM                | 2,093  | 1.766%  |  |
| NON_SYNONYMOUS_CODING     | 237    | 0.2%    | EXON                      | 620    | 0.523%  |  |
| NON_SYNONYMOUS_START      | 1      | 0.001%  | INTERGENIC                | 26,314 | 22.204% |  |
| SPLICE_SITE_DONOR         | 4      | 0.003%  | INTRON                    | 54,238 | 45.767% |  |
| START_GAINED              | 57     | 0.048%  | NONE                      | 32,241 | 27.206% |  |
| STOP_GAINED               | 3      | 0.003%  | SPLICE_SITE_DONOR         | 4      | 0.003%  |  |
| STOP_LOST                 | 1      | 0.001%  | UPSTREAM                  | 2,102  | 1.774%  |  |
| SYNONYMOUS_CODING         | 378    | 0.319%  | UTR_3_PRIME               | 690    | 0.582%  |  |
| TRANSCRIPT                | 32,163 | 27.14%  | UTR_5_PRIME               | 206    | 0.174%  |  |
| UPSTREAM                  | 2,102  | 1.774%  |                           |        |         |  |
| UTR_3_PRIME               | 690    | 0.582%  |                           |        |         |  |
| UTR_5_PRIME               | 149    | 0.126%  |                           |        |         |  |

#### ■ Effect type of the SnoEff tool ※

| Effect Type                                                                                                                                                                                                                                               | Region               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| NONE CHROMOSOME CUSTOM CDS                                                                                                                                                                                                                                | NONE                 |
| INTERGENIC INTERGENIC_CONSERVED                                                                                                                                                                                                                           | INTERGENIC           |
| UPSTREAM                                                                                                                                                                                                                                                  | UPSTREAM             |
| UTR_5_PRIME UTR_5_DELETED START_GAINED                                                                                                                                                                                                                    | UTR_5_PRIME          |
| SPLICE_SITE_ACCEPTOR                                                                                                                                                                                                                                      | SPLICE_SITE_ACCEPTOR |
| SPLICE_SITE_DONOR                                                                                                                                                                                                                                         | SPLICE_SITE_DONOR    |
| SPLICE_SITE_REGION                                                                                                                                                                                                                                        | SPLICE_SITE_REGION   |
| INTRAGENIC START_LOST SYNONYMOUS_START NON_SYNONYMOUS_START GENE TRANSCRIPT                                                                                                                                                                               | EXON or NONE         |
| EXON EXON_DELETED NON_SYNONYMOUS_CODING SYNONYMOUS_CODING FRAME_SHIFT CODON_CHANGE CODON_INSERTION CODON_CHANGE_PLUS_CODON_INSERTION CODON_DELETION CODON_DELETION CODON_CHANGE_PLUS_CODON_DELETION STOP_GAINED SYNONYMOUS_STOP STOP_LOST RARE_AMINO_ACID | EXON                 |
| INTRON<br>INTRON_CONSERVED                                                                                                                                                                                                                                | INTRON               |
| UTR_3_PRIME<br>UTR_3_DELETED                                                                                                                                                                                                                              | UTR_3_PRIME          |
| DOWNSTREAM                                                                                                                                                                                                                                                | DOWNSTREAM           |
| REGULATION                                                                                                                                                                                                                                                | REGULATION           |



## Variant Effect Annotation(DatePalm vcf)

#### ASSIGNMENT[9]

Apply SnpEff tool to vcf files at chloroplast genome of date palm dataset (SRA100551) and investigate variant effect types.

- SNPeff manual = http://snpeff.sourceforge.net/SnpEff\_manual.html
- ■Install at NIG supercomputer wget http://sourceforge.net/projects/snpeff/files/snpEff\_latest\_core.zip (url in manual) unzip snpEff\_latest\_core.zip cd snpeff

#Phoenix\_dactylifera

GU811709.genome: Phoenix\_dactylifera

■ Apply query vcf files to target database cp SRA100551/snpeff/query/\*.vcf ./ edit 1<sup>st</sup> column from GU811709 | GU811709.2 to GU811709 for all \*.vcf remove all comments lines (start #) for all \*.vcf java -Xmx400M -jar snpEff.jar -ud 200 GU811709 query/AJW.vcf > AJW ann.vcf



### Variant Effect Annotation(DatePalm vcf)

#### ■ Check variant annotations

GU811709 21746 . G T 225.0

"DP=229;VDB=0.0487;AF1=0.5;AC1=1;DP4=29,27,87,86;MQ=42;FQ=141;PV4=0.88,1,1,0.074";ANN=T|synonymous\_variant|LOW|rpoC1|

Gene 21631 24418 transcript ADD63235.1 Coding 2...

GU811709 21750 . T C 70.0

"DP=231;VDB=0.0403;AF1=0.5;AC1=1;DP4=90,95,25,21;MQ=42;FQ=73;PV4=0.51,0.37,1,1";ANN=C|missense\_variant|MODERATE|

rpoC1 | ...

#### ■ Check SNP supEff summary.html

Number of effects by type and region





#### Count <u>unique</u> annotations for AJW ann.vcf

| AnnType            | Count | Percent |
|--------------------|-------|---------|
| downstream gene    |       |         |
| intergenic region  |       |         |
| intron variant     |       |         |
| missense variant   |       |         |
| synonymous variant |       |         |
| upstream gene      |       |         |

# THANK YOU!