Module 1: Getting Started

- Every Thursday: 1 hour lecture
- Every Monday: 3 hour lab (starting from Jan 13)
- Thursday (March 27): Invited lecturer(s)
- Email: alice.chen@humber.ca
- Respond within 4-6 business hours

Assessment	Weight		
In-Class Participation	10%		
Group Discussion Assignments	15%		
Lab Assignments	50%		
Group Report – Clinical Case Study	25%		
Total	100%		

Class Participation

- Weekly class poll
- 1% per class * (10 out of 12 classes)
- Week 12 is mandatory attendance

Assessment	Weight		
In-Class Participation	10%		
Group Discussion Assignments	15%		
Lab Assignments	50%		
Group Report – Clinical Case Study	25%		
Total	100%		

Group Discussion Assignments

- Complete as a group after class
- 3 assignments x 5%
- Use the content to build knowledge towards completing the final group report

Assessment	Weight		
In-Class Participation	10%		
Group Discussion Assignments	15%		
Lab Assignments	50%		
Group Report – Clinical Case Study	25%		
Total	100%		

Lab Assignments

- 5 lab assignments x 10%
- Each assignment is split into two parts (Part A and B) and due on the Friday 11:59 PM after Part B
- For each assignment,
 total mark of the assignment =
 total of Part A + total of Part B.

Assessment	Weight		
In-Class Participation	10%		
Group Discussion Assignments	15%		
Lab Assignments	50%		
Group Report – Clinical Case Study	25%		
Total	100%		

Group Report - Clinical Case Study

- Run a RNASeq pipeline as a group and write a case study report.
- The lab on March 31 is reserved for group work and technical troubleshooting.

Missed and Late Evaluation Policy

- All students requesting an extension must follow the missed and late evaluation policy.
- (Mandatory) Complete this form for each missed assignment at least 24h before the assignment deadline.
- Evaluation of missed and late assignments is subjected to my approval.

Class Policy on Al Usage

- Humber College's Al Policy (link)
- Contends that un-cited and/or other unauthorized use of AI in assessments and assignments constitutes academic misconduct as defined in Humber's Academic Regulations.
- Do not provide ChatGPT (or any other AI tool) human information that is not open access.
- Cite which tool you used and its contribution to your assignment.
- You are responsible for the accuracy of your answers.

Class Policy on Al Usage

Lab Assignments

Code Example:

```
def foo():
    # some code here
    return answer

# Source: My code was generated by claude
```

Short Answer Example:

This figure shows that Gene A in fruit fly is upregulated in the treatment group. Source: I made ChatGPT read the figure.

Class Policy on Al Usage

Group Assignments & Group Report

- Communicate with your group members how you used AI tools in your contributions
- Cite this information at the end of your group submission

AI Sources:

- Member A used ChatGPT to proofread the Introduction section

Learning Strategies

- Coding is a technical skill that requires continuous learning.
- Software manuals and documentations are your friends.
- Use your creativity to find answers ethically. Most knowledge is publicly available.

Applications of genomics in clinical medicine ¹

- Clinical diagnosis: Used as diagnostics criteria for medical conditions.
- Disease gene identification: Identify the role of specific genes in heritable diseases.
- *Cancer genomics*: Used to understand how genomic variants in somatic cells are involved in the initiation and progression of cancer.
- *Disease treatment*: Inform targeted gene therapies to treat patient monogenic disorders in personalized medicine.
- *Prenatal diagnosis*: Risk assessment for genetic disorders in pregnancies.

Critical Path

- The lecture materials provide information to support the lab components:
 - Understanding the genetic basis of heritable diseases using public resources
 - RNASeq using Nextflow
 - Gene expression profiling using Nextflow
 - Somatic variant analysis using Nextflow
 - Linkage analysis and clinical applications of GWAS
- Find more details in the Critical Path pdf

RNA Sequencing ²

- Bulk RNA-Seq provides an average measure of gene expression across the entire population of cells.
- scRNA-Seq analyzes gene expression at the single-cell level, which helps to study cellular diversity and identify unique cell types
- Spatial RNA-Seq profiles gene expression with spatial resolution in a 3D context within tissue samples.

Bulk RNASeq using Nextflow ³

Differential Expression Analysis using Nextflow 4

Gene Ontology/Pathway Analysis

Clinical workflow for tumor genome analysis ⁵

Somatic Variant Analysis using Nextflow ⁶

Linkage Analysis ⁷

Figure 1. Workflow for the whole-genome sequencing filtering approach in human family data

GWAS⁸

(1) Polygenic Risk Score

2 Genotype data

	SNP1	SNP2	SNP3	SNP4
Individual 1	AT	CG	Π	CC
Individual 2	TA	GG	GT	CA
Individual 3	TT	CC	GT	CA
Individual 4	TT	CC	GG	AA

3 Polygenic risk score

Individual 1	1.5	_	0.5	+	4.0	-	0.0	= 5.0
Individual 2	1.5	-	0.0	+	2.0	-	1.5	= 2.0
Individual 3	0.0	-	1.0	+	2.0	-	1.5	= -0.5
Individual 4	0.0	_	1.0	+	0.0	_	3.0	= -4 0

(4) PRS distribution

(2) Functional Analysis

a What are the associated loci?

c What are the epigenomic effects of variants?

d What are the target genes in the locus?

Class Survey (1%)

What do you want to learn from this course? (link)