ЛАБОРАТОРНАЯ РАБОТА №4 ИССЛЕДОВАНИЕ ПОЛЕВЫХ ТРАНЗИСТОРОВ

1. Краткие теоретические сведения

Полевыми (униполярными) транзисторами называются полупроводниковые приборы, в которых электрический ток создается основными носителями заряда под действием продольного электрического поля, а управление током (модуляция) осуществляется поперечным электрическим полем, создаваемым на управляющем электроде.

Область полупроводникового прибора, ПО которой протекает управляемый ток, называется *каналом*. Электрод, через который носители заряда втекают в канал, называется *истоком*, а электрод, через который они вытекают из канала, – *стоком*. Электрод, используемый для управления площадью поперечного сечения канала (током канала), называется Затвор должен быть электрически изолирован от канала. затвором. зависимости от способа изоляции различают:

- ПТ с управляющим p-n-переходом;
- ПТ с изолированным затвором или транзисторы металл диэлектрик – полупроводник (МДП-транзисторы).

В настоящее время широко применяются полевые транзисторы с барьером Шотки (ПТШ), в которых в качестве управляющего перехода используется барьер Шотки. Полевые транзисторы с высокой подвижностью электронов, использующие свойства гетероперехода, работают в диапазоне СВЧ.

Структура полевого транзистора с управляющим p-n-переходом и каналом n-типа приведена на рис. 7.1, а. На подложке из p-кремния создается тонкий слой полупроводника n-типа, выполняющий функции канала, т. е. токопроводящей области, сопротивление которой регулируется электрическим полем. Нижний p-n-переход изолирует канал от подложки и задает начальную толщину канала. Обычно выводы истока и подложки соединяют.

Принцип действия ПТ с управляющим p-n-переходом основан на увеличении сопротивления активного слоя (канала) путем расширения p-n-перехода при подаче на него обратного напряжения. Для эффективного управления сопротивлением канала полупроводник, образующий область затвора, легирован сильнее (p+), чем области канала (n) (см. рис. 7.1), при этом расширение обедненного слоя происходит в сторону канала. Наиболее характерной чертой полевых транзисторов является высокое входное сопротивление, т. к. ток затвора мал, поэтому они управляются напряжением. При $U_{3N} = 0$ сопротивление канала минимально $R_{\kappa 0} = \rho l/hw$, где ρ - удельное сопротивление полупроводника канала; l, w – длина и ширина

канала соответственно, h — расстояние между металлургическими границами n-слоя канала. Чем больше обратное напряжение на затворе U_{3H} , тем шире p-n-переходы, тоньше канал и выше его сопротивление. При некотором напряжении на затворе, называемом *напряжением отсечки* $U_{3H \, \text{отс}}$, канал полностью перекрывается обедненными слоями. Сопротивление канала становится очень большим и реально достигает значений десятки — сотни мегаом.

При подаче на сток положительного напряжения U_{CU} (рис. 7.1, б) в канале возникает ток I_{C} и напряжение в любом сечении канала $U_{KU}(x)$, измеренное относительно истока, является функцией расстояния до истока x за счет конечного значения удельного сопротивления канала. Поэтому и

Рис. 7.1. Полевой транзистор с управляющим p-n-переходом: a- структура транзистора ; б- транзистор в режиме отсечки U- исток, 3- затвор, C- сток, $\Pi-$ подложка

напряжение между любым сечением канала и затвором $\mathrm{U}_{\mathrm{K3}}(\mathrm{x})$ является функцией расстояния до истока – x .

 $U_{K3}(x)$ Минимальным $\mathbf{x} = \mathbf{0}$ является напряжение при $U_{K3}(0) = U_{II3} = -U_{3II},$ - $U_{K3}(x)$ a максимальным при $U_{K3}(\ell) = U_{C3} = U_{CH} + U_{H3}$. Причем для управляющего перехода эти напряжения являются запирающими, поэтому ширина перехода возрастает от истока к стоку, а ширина канала уменьшается. <mark>При некотором напряжении</mark> сток – исток, называемом *напряжением насыщения* $U_{CH} = U_{CH \text{ нас}}$, канал вблизи стока сужается до минимальной толщины (см. рис. 7.1, б). Сопротивление канала при этом $R_{\kappa \text{ нас}} \neq \infty$ больше начального $R_{\kappa 0}$. Под действием напряжения насыщения через канал протекает ток максимальной величины:

$$I_{\text{C max}} = U_{\text{CM Hac}} / R_{\text{K Hac}}$$
 (7.1).

Транзисторы с изолированным затвором (МДП-транзисторы). Характерное отличие полевых транзисторов с изолированным затвором состоит в том, что у них между металлическим затвором и областью полупроводника находится слой диэлектрика — двуокись кремния SiO₂. Поэтому полевые транзисторы с изолированным затвором называются МДП (металл — диэлектрик — полупроводник) или МОП (металл — окисел — полупроводник). Выпускаются МДП-транзисторы с индуцированным и встроенным каналом.

основе действия МДП-транзистора лежит эффект представляющий собой изменение величины и типа электропроводности полупроводника вблизи его границы с диэлектриком под действием приложенного напряжения. Рассмотрим МДП-структуру, изображенную на рис. 7.2, а и содержащую полупроводник р-типа. При подаче на затвор положительного напряжения, а на подложку отрицательного дырки выталкиваются полем с поверхности вглубь полупроводника и образуется слой с уменьшенной их концентраций. Такой режим называется *режимом* обеднения. Электроны в этом случае из глубины полупроводника притягиваются к диэлектрику и при некотором напряжении у поверхности полупроводника р-типа концентрация электронов превышает концентрацию дырок, т. е. появляется тонкий слой полупроводника с электропроводностью п-типа. Говорят, что произошла инверсия электропроводности <mark>полупроводника.</mark> Между областями истока и стока n-типа появилась (*индуцировалась*) область канала с тем же типом проводимости. Изменяя напряжения на затворе, можно изменять концентрацию электронов в канале, а значит, и его сопротивление. Если увеличивать положительное напряжение на затворе, концентрация электронов в канале увеличивается. Такой режим называется **режимом обогащения**.

МДП-транзисторе индуцированным c каналом (см. рис. 7.2, a) при напряжении на затворе $U_{3H} = 0$ канал отсутствует и при подаче $U_{CM} > 0$ ток стока будет равен нулю. Если увеличивать положительное напряжение на затворе, то, начиная с некоторого значения, называемого пороговым $U_{3U\, \text{non}}$, происходит инверсия электропроводности подложки и образуется канал (см. рис. 7.2, а). В справочниках обычно в качестве порогового приводится значение U_{3M} , при котором ток стока $I_{\rm C} = 10 \, {\rm MkA}$. При $U_{\rm 3M} > U_{\rm 3M \, nop}$ в МДП-транзисторах с каналом n-типа увеличение напряжения на затворе приводит к уменьшению сопротивления счет обогащения его электронами, ток стока при этом увеличивается. МДП-транзистор с индуцированным каналом работает в режиме обогащения.

В *МДП-транзисторе со встроенным каналом* п-типа, структура которого приведена на рис. 7.2, б, уже при отсутствии внешних напряжений

имеется канал, соединяющий области истока и стока. Поэтому при $U_{3H} = 0$ и $U_{CH} > 0$ протекает ток стока. При увеличении положительного напряжения на затворе область канала обогащается электронами и ток стока возрастает. При увеличении отрицательного напряжения на затворе канал обедняется электронами и ток стока уменьшается. МДП-транзисторы со встроенным каналом работают в режимах обогащения и обеднения.

Рис. 7.2. Структура МДП-транзистора: а – с индуцированным каналом; б – с встроенным каналом И – исток, 3 – затвор, С – сток, П – подложка

Полевые транзисторы включаются по схемам с общим затвором (ОЗ) (рис. 7.3, а), общим истоком (ОИ) (рис. 7,3, б), общим стоком (ОС) (рис. 7.3, в). Наиболее часто используется схема включения с ОИ.

Рис. 7.3. Схемы включения полевых транзисторов: а – с общим затвором; б – с общим истоком; в – с общим стоком

Статические ВАХ полевых транзисторов. Основными ВАХ ПТ являются выходные (стоковые) — $I_C = f(U_{CH})_{U_{3H}=const}$ и характеристики передачи (сток-затворные) — $I_C = f(U_{3H})_{U_{CH}=const}$.

На рис. 7.4 приведены выходные и передаточные ВАХ различных ПТ с каналом n-типа, включенных по схеме с ОИ: с управляющим p-n-переходом

(рис. 7.4, а, б); МДП-транзистора с индуцированным каналом (рис. 7.4, в, г) и МДП-транзистора со встроенным каналом (рис. 7.4, д, е).

Рис. 7.4. Статические BAX полевых транзисторов: а, б – с управляющим p-n-переходом;

в, Γ – МДП с индуцированным каналом; д, e – МДП с встроенным каналом; а, в, д – выходные характеристики; б, Γ , e – сток-затворные характеристики

Дифференциальные параметры полевых транзисторов. Основными дифференциальными параметрами полевых транзисторов являются:

- крутизна S = $\mathrm{dI_c}/\mathrm{dU_{3u}}|_{\mathrm{U_{cu}=const}};$

– внутреннее (дифференциальное) сопротивление $R_i = dU_{cu}/dI_u|_{U_{3u}=const}$

— коэффициент усиления по напряжению $\mu = dU_{cu}/dU_{3u}|_{I_c=const}$

Все три параметра связаны выражением $\mu = SR_i$.

Параметры транзисторов можно определить по статическим характеристикам, как показано на рис. 7.5. Для рабочей точки А (U'_{CH} , I'_{C} , U'_{3H}) крутизна и дифференциальное сопротивление определяются следующими выражениями:

$$S = \frac{\Delta I_{c}}{\Delta U_{3H}} \bigg|_{U_{CH} = U'_{CH}} = \frac{I^{v}_{C} - I^{iv}_{C}}{U'''_{3H} - U''_{3H}} \bigg|_{U_{CH} = U'_{CH}}$$
(7.2);

$$R_{i} = \frac{\Delta U_{cu}}{\Delta I_{c}} \bigg|_{U_{3H} = U'_{3H}} = \frac{U'''_{CH} - U''_{CH}}{I'''_{C} - I''_{C}} \bigg|_{U_{3H} = U'_{3H}}$$
(7.3).

Рис. 7.5. Определение дифференциальных параметров ПТ по семейству выходных ВАХ

В настоящее время широкое распространение получили ПТШ, выполненные из арсенида галлия и работающие на частотах до 30 ГГц, которые используются в малошумящих усилителях СВЧ, усилителях мощности и генераторах.

УГО ПТ, полярности подключения источников напряжения и режимы работы приведены в табл. 7.1. Для маркировки ПТ как и для БТ используется буквенно-

цифровая система обозначений согласно ОСТ 11.336.038-77.

Полевые транзисторы

			Условное	
Тип ПТ	Тип	Тип	обозначение и	Режим
1 1111 111	канала	подложки	полярности внешних	работы
			напряжений	
Транзистор	n	р	C _C +	_
с управляющим			- 0 2	
р-п-переходом			+0 N 0-	
	р	n	+0-3-N	_
МДП-транзистор	n	p	-0	Обогащение
c	11	Р	(1-) + o	ооог ащение
индуцированным			+• 3 - или 0	
каналом			- о И	
	р	n	- « 3 — + или 0	Обогащение
МЛП транацатор	n	n	+ 0 	Обогащение
МДП-транзистор	n	p	•+ он	(обеднение)
со встроенным			+ (-) • 3 II	(оосдисние)
каналом			-(+)• M • • -	
	p	n	<u> </u>	Обогащение
			-(+) • 3 Н нли 0	(обеднение)
			+(-)o +	

2. Контрольные вопросы

Контрольные вопросы и задания и задания

- 1. Какие существуют разновидности ПТ?
- 2. Перечислите основные элементы конструкции ПТ с управляющим р-п-переходом и МДП-транзисторов.
- 3. Поясните устройство и принцип действия ПТ с управляющим р-п-переходом.
- 4. Поясните принцип действия МДП-транзисторов со встроенным и индуцированным каналом. <u>Опишите режимы работы этих транзисторов.</u>
- 5. Изобразите график и поясните поведение характеристики передачи и выходных характеристик ПТ различного типа.
- 6. Какие напряжения называются напряжением отсечки $U_{3 \text{M orc}}$ и пороговым напряжением $U_{3 \text{M nop}}$?
 - 7. Перечислите области применения ПТ.
 - 8. Почему ПТ обладает усилительными свойствами?
- 9. Какими физическими явлениями ограничивается диапазон рабочих частот в ПТ?

10. Поясните физический смысл дифференциальных параметров $\Pi T - S, R_i,$

μ?