Hierarchical Bayesian Dynamic Structural Equation Models: A Tutorial in Stan

FGME - 11 September, 2023

Jean-Paul Snijder^a, Valentin Pratz^a, and Anna-Lena Schubert^b

^aUniversity of Heidelberg, ^bUniversity of Mainz

1 Dynamic Structural Equation Modeling (DSEM)

Introduction

- Technological advancements are increasing availability of Intensive Longitudinal Data (ILD) from:
 - Experience Sampling Methods (ESM, EMA, AA)
 - Electro-EncephaloGram (EEG)
 - Wearables
- ILD are densely spaced repeated measures data collected from large samples
- Need for models that allow to examine dynamic changes over time
- Computational models are developed and adapted to match this growing demand

Dynamic Structural Equation Modeling

Combines: 1

- Time-series modeling
 - allows lagged relationships
- Multilevel modeling
 - allows modeling of nested data structures
- Structural equation modeling
 - allows latent variable/path analysis

DSEM in Mplus

Pros

- Widely used
- online user and program support
- Considered user-friendly
- Low computational time
 - Gibbs sampler with conjugate priors (Normal ⇔ Inverse Wishart)

Cons

- Not fully customizable
- currently doesn't support some model extensions and specifications
- limited prior options and access to sampler settings
 - i.e., no LKJ distribution
- Limited options for missing data
- License costs money

Stan

Pros

- Free
- Fully customizable
- Open Code & Reproducible Science
- Online community support
- Hamiltonian Monte Carlo
 - Efficient general-purpose MCMC sampler

Cons

- Programming can pose a barrier
 - Fully code-based
 - No GUI
- Higher computational time
 - but reasonable (minutes to hours)
 - not optimized for a specific model family

DSEM software alternatives

- dlsem in R:
 - Uses frequentist inference
- ctsem in R:
 - Slow for full Bayesian estimation
 - Oriented towards continuous time systems
 - but discrete can be used
 - Less user-friendly
 - No latent classes and limited non-continuous measurement models
- JAGS

Our project

- Stan tutorial using DSEM framework as example
 - 1. Introducing DSEM
 - 2. Improving the accessibility to Stan
- 6 model archetypes¹
 - 1. Bivariate, Single Case
 - 2. Bivariate, Multilevel
 - 3. Model 2 + predictor variable
 - 4. Model 2 + latent variable
 - 5. Model 3 + outcome variable
 - 6. Model 4 + mediation

Our project

Taken from ¹ slightly altered for fit

Our project

- Stan tutorial using DSEM framework as example
 - 1. Introducing DSEM
 - 2. Improving the accessibility to Stan
- 6 model archetypes¹
 - 1. Bivariate, Single Case
 - 2. Bivariate, Multilevel
 - 3. Model 2 + predictor variable
 - 4. Model 2 + latent variable
 - 5. Model 3 + outcome variable
 - 6. Model 4 + mediation

- For each archetype in Stan:
 - 1. Simple: tutorial model
 - 2. Reparam: reparameterized model
 - 3. Full: missing data model

2 DSEM

M2: Two Variable, Multilevel Model

- Model 2: two variables + multilevel
 - Stress
 - Sleep

M2: Two Variable, Multilevel Model

- Model 2: two variables + multilevel
 - Stress
 - Sleep
- Within- & between-person decomposition
 - Between: time-insensitive mean of subject
 - Within: time-sensitive deviation from that mean
- Allows for specifying time-dynamics in withinperson model

M2: Within-person Model I

ullet The decomposed within-person variables are the start of the within-person model ullet

M2: Within-person Model II

Relationships & Parameters:

- Regression:
 - β_{YX} = Stress_t regressed on Sleep_t

M2: Within-person Model II

Relationships & Parameters:

- Regression:
 - β_{YX} = Stress_t regressed on Sleep_t
- Time Dynamic Regressions:
 - $\Phi_{X,i}$ = auto-regressive parameter Stress
 - $\Phi_{Y,i}$ = auto-regressive parameter Sleep
 - $Stress_{i,t-1}^{(w)}$ and $Sleep_{i,t-1}^{(w)}$ are lag(1) variables
 - E.g., if $_t$ = observation 9 \Rightarrow $_{t-1}$ = observation 8 ...

M2: Within-person Model II

Relationships & Parameters:

- Regression:
 - β_{YX} = Stress_t regressed on Sleep_t
- Time Dynamic Regressions:
 - $\Phi_{X,i}$ = auto-regressive parameter Stress
 - $\Phi_{Y,i}$ = auto-regressive parameter Sleep
 - $\Phi_{XY,i}$ = cross-regressive parameter Sleep_{i,t} onto Stress_{i,t-1}
- Residual variances:
 - lacksquare $\Psi^2_{\chi,i}$ and $\Psi^2_{\gamma,i}$

M2: Between-person Model

3 Stan

Within-level model I

$$Stress_{i,t}^{(w)} = \mathcal{N}([\Phi_{X,i}][Stress_{i,t-1}^{(w)}] + [eta_{YX,i}][Sleep_{i,t}^{(w)}], \Psi_{X,i}^2) \ Sleep_{i,t}^{(w)} = \mathcal{N}([\Phi_{Y,i}][Sleep_{i,t-1}^{(w)}] + [\Phi_{XY,i}][Stress_{i,t-1}^{(w)}], \Psi_{Y,i}^2)$$

Within-level model II

```
1 Stress_t ~ normal(phi_X * Stress_t_1 + beta_YX * Sleep_t, psi_X);
2 Sleep_t ~ normal(phi_Y * Sleep_t_1 + phi_XY * Stress_t_1, psi_Y);
```

$$Stress_{i,t}^{(w)} = \mathcal{N}([\Phi_{X,i}][Stress_{i,t-1}^{(w)}] + [eta_{YX,i}][Sleep_{i,t}^{(w)}], \Psi_{X,i}^2) \ Sleep_{i,t}^{(w)} = \mathcal{N}([\Phi_{Y,i}][Sleep_{i,t-1}^{(w)}] + [\Phi_{XY,i}][Stress_{i,t-1}^{(w)}], \Psi_{Y,i}^2)$$

Between-level model I

Using latent means and random intercepts/effects

$$X_i^{(b)} = \gamma_1 + u_{i1}$$
 $Y_i^{(b)} = \gamma_2 + u_{i2}$
 $\Phi_{Xi} = \gamma_3 + u_{i3}$
 $\Phi_{Yi} = \gamma_4 + u_{i4}$
 $\Phi_{XYi} = \gamma_5 + u_{i5}$
 $eta_{YXi} = \gamma_6 + u_{i6}$
 $\log \Psi_{Xi}^2 = \gamma_7 + u_{i7}$
 $\log \Psi_{Yi}^2 = \gamma_8 + u_{i8}$

 $oldsymbol{u} \sim ext{MVNormal}(oldsymbol{0}, oldsymbol{\Omega})$

Between-level model II

Using latent means and random intercepts/effects

```
1  real mu_X = gamma[1] + u[i,1];
2  real mu_Y = gamma[2] + u[i,2];
3
4  real phi_X = gamma[3] + u[i,3];
5  real phi_Y = gamma[4] + u[i,4];
6  real phi_XY = gamma[5] + u[i,5];
7  real beta_YX = gamma[6] + u[i,6];
8
9  real psi_X = sqrt(exp(gamma[7] + u[i,7]));
10  real psi_Y = sqrt(exp(gamma[8] + u[i,8]));
11
12  u[i] ~ multi_normal(rep_vector(0, 8), Omega);
```

$$X_i^{(b)} = \gamma_1 + u_{i1}$$
 $Y_i^{(b)} = \gamma_2 + u_{i2}$
 $\Phi_{Xi} = \gamma_3 + u_{i3}$
 $\Phi_{Yi} = \gamma_4 + u_{i4}$
 $\Phi_{XYi} = \gamma_5 + u_{i5}$
 $\beta_{YXi} = \gamma_6 + u_{i6}$
 $\log \Psi_{Xi}^2 = \gamma_7 + u_{i7}$
 $\log \Psi_{Yi}^2 = \gamma_8 + u_{i8}$

 $oldsymbol{u} \sim ext{MVNormal}(oldsymbol{0}, oldsymbol{\Omega})$

Optimization: Reparameterization

- Improves convergence, can speed up sampling
- ullet Classical example: $y \sim \mathcal{N}(\mu, \sigma^2) \Leftrightarrow y = \mu + \sigma \cdot ilde{y} ext{ with } ilde{y} \sim \mathcal{N}(0, 1)$

Handling missing data

- Missing data is unknown
- Parameters are unknown
- \rightarrow treat missing data like parameters
- Preserves uncertainty (unlike mean imputation etc.)

4 Simulation

Results with simulated data

- Model 2
- 100 subjects
- 100 observations
- relevant parameter ranges for sleep and stress
- for missing data model: 5% missingness
- no model misspecification
- Sampler:
 - 500 warmup/3500 sampling iterations
 - 4 chains, 16 cores

Model convergence

Model 2, simulated data convergence.

Parameter recovery

Model 2, simulated data. Errorbars: 95% CI.

5 Discussion

Future

- current: Simulations
 - relevant parameter ranges
 - prior calibration
- near: Standardized estimates
- near: Model implementation for cognitive behavioral tasks
- far: R Package with Stan as back-end

Thanks to

- Ellen Hamaker for instructional material on DSEM
- Mauricio Garnier-Villarreal (blavaan) for sharing his Stan knowledge online
- The Stan community for educational material on reparameterization and other tricks
- Valentin Pratz, student assistant

Thank you

Questions?

Github repo with presentation + reproducable model 2 example

References

Hamaker, E. L., Asparouhov, T., & Muthén, B. (2023). Dynamic Structural Equation Modeling as a Combination of Time Series Modeling, Multilevel Modeling, and Structural Equation Modeling. In R. H. Hoyle (Ed.), *Handbook of structural equation modeling* (2nd ed., pp. 576–597). New York: Guilford Press.

Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred Days of Cognitive Training Enhance Broad Cognitive Abilities in Adulthood: Findings from the COGITO Study. *Frontiers in Aging Neuroscience*, 2, 27.

https://doi.org/10.3389/fnagi.2010.00027