Turing patterns in reaction-diffusion systems

By Carolina and Sophia

Overview

Theory

Research question & motivation

Results: Pattern production

Results: Minkowski measures and functionals

Validity of results: Pearson comparison

Performance evaluation

Theory: Turing Patterns

→ all due to reaction and diffusion interplay!

Images from Pearson's Complex patterns in a Simple System (1993)

Theory: Turing Patterns

→ all due to reaction and diffusion interplay!

Images from Pearson's Complex patterns in a Simple System (1993)

Theory: Turing Patterns

Images from Pearson's Complex patterns in a Simple System (1993)

Theory: Grey-Scott model

u - activator (A)

v - inhibitor (B)

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + u v^2 - (F + k)v$$

F - feed rate

k - kill rate

Solve using 5-point stencil in space dimension & forward Euler in time dimension

How can we quantify patterns?

VS

Theory: Minkowski Measures

Apply measures at each threshold grey level (1-256)

 $\rho = 100$

$$\rho = 150$$

$$\rho = 200$$

White pixel area

Boundary length Euler characteristic

Research question:

 Do our quantitative characterizations by Minkowski functionals correspond to experimental values established by Mecke (1996)?

Motivation

Turing patterns can explain pattern formation in nature!

Little research on reproducing Mecke on modern simulations

Results

The simulated system

Time-evolved simulations

Simulation for dotted pattern

Results

The Minkowski measures and functionals

Comparing to literature

Morphological characterization of patterns in reaction-diffusion systems

Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (Received 24 October 1995)

0.084

0.118

15	Dots	Stripes
A	0.176	0.137

RMS vs Mecke

Dots

Stripes

0.131

0.720

*Coefficient errors for all fits in appendix

Validity of simulation results

Comparing our functionals to Pearson's (1993)

Statistical analysis:

Pearson's vs. our functionals

RMS		
Dots	Stripes	
0.131	0.080	
0.283	0.083	
0.258	0.290	

Orientation agreement		
Same-sign	Pearson corr. coeff.	
1.000	0.851	
0.698	0.531	
1.000	0.893	

Performance evaluation

Performance evaluation

Conclusion

Thank you for listening!

Extra slides: Errors

Different RNG seeds for each run – 20 runs, mean and std error for p, v and chi, as well as p_v, p_s, p_chi

Polynomial analysis

$$NRMS_{range} = \frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} [P_1(r_i) - P_2(r_i)]^2}}{\max_{r} P_2(r) - \min_{r} P_2(r)}$$

Normalised RMS to compare p chi with the others: a dimensionless 'fraction-of-full-height' error

$$NRMS_{range} = \frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[P_1(r_i) - P_2(r_i) \right]^2}}{\max_{r} P_2(r) - \min_{r} P_2(r)}} \rho = \frac{\sum_{i=1}^{N} \left(\Delta_{ours}(r_i) - \overline{\Delta}_{ours} \right) \left(\Delta_{Mecke}(r_i) - \overline{\Delta}_{Mecke} \right)}{\sqrt{\sum_{i=1}^{N} \left(\Delta_{ours}(r_i) - \overline{\Delta}_{ours} \right)^2} \sqrt{\sum_{i=1}^{N} \left(\Delta_{Mecke}(r_i) - \overline{\Delta}_{Mecke} \right)^2}},$$

Pearson coefficient – measures linear relationship between two variables; shows us global consistency of fluctuations around the mean (mean-centered, d/n take into account vertical offsets).

Cosine angle between two sampled difference vectors

$$\Delta_{ours}(r) = P_{dots}(r) - P_{stripes}(r), \Delta_{Mecke}(r) = M_{dots}(r) - M_{stripes}(r)$$

$$f_{same} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1} [\Delta_{ours}(r_i) \Delta_{Mecke}(r_i) > 0],$$

Fraction of thresholds whose orientation matches

Theory: Minkowski Measures

Geometric measures for morphological differences

White pixel area

Boundary length

Difference in # of components

Extra slides: Functional forms

$$p_v(\rho) = \tanh^{-1}(2v - 1),$$

$$p_s(\rho) = \frac{s}{v(1-v)} = 4s \cosh^2[p_v(\rho)],$$

$$p_{\chi}(\rho) = \frac{\chi}{s},$$

Chosen by Mecke because the functionals occur in many fields of physics. Direct connection to reaction-diffusion systems unclear.

Allows for polynomial fitting – and coefficients that depend on experimental conditions

$$p_s(\rho) = \frac{s}{v(1-v)}$$

Shape due to inhomogeneities in experimental photos?

15	Dots	Stripes
æ	0.118	0.084
S	Dots	Stripes
æ	0.131	0.720
S	Dots	Stripes
A Y	0.176	0.137

Orientation agreement		
Same-sign	Pearson corr. coeff.	
1.000	-0.510	
0.278	-0.390	
0.764	0.151	

Polynomial coefficient errors

Polynomial coefficient errors

Polynomial coefficient errors

Extra slides: All Pearson plots

