Mathematical Induction

Mala Rani Barman

Lecturer

Dept. of CSE

Sheikh Hasina University

- Mathematical induction, is a technique for proving results or establishing statements for natural numbers. This part illustrates the method through a variety of examples.
- Definition
- Mathematical Induction is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.
- The technique involves two steps to prove a statement, as stated below –
- Step 1(Base step) It proves that a statement is true for the initial value.
- Step 2(Inductive step) It proves that if the statement is true for the n^{th} iteration (or number n), then it is also true for $(n+1)^{th}$ iteration (or number n+1).

Procedure

- **Step 1** Consider an initial value for which the statement is true. It is to be shown that the statement is true for n = initial value.
- Step 2 Assume the statement is true for any value of n = k. Then prove the statement is true for n = k+1. We actually break n = k+1 into two parts, one part is n = k (which is already proved) and try to prove the other part.

$$1+3+5+\ldots+(2n-1)=n^2$$
 for $n=1,2,\ldots$

Solution

Step 1 – For $n=1,1=1^2$, Hence, step 1 is satisfied.

Step 2 – Let us assume the statement is true for $\ n=k$.

Hence, $1+3+5+\cdots+(2k-1)=k^2$ is true (It is an assumption)

We have to prove that $1+3+5+\ldots+(2(k+1)-1)=(k+1)^2$ also holds

$$1+3+5+\cdots+(2(k+1)-1)$$

$$=1+3+5+\cdots+(2k+2-1)$$

$$=1+3+5+\cdots+(2k+2-1)$$

$$=1+3+5+\cdots+(2k+1)$$

$$=1+3+5+\cdots+(2k-1)+(2k+1)$$

$$=k^2+(2k+1)$$

$$=(k+1)^2$$
 So, $1+3+5+\cdots+(2(k+1)-1)=(k+1)^2$ hold which satisfies the step 2. Hence, $1+3+5+\cdots+(2n-1)=n^2$ is proved.

 $3^n - 1$ is a multiple of 2 for n = 1, 2, ...

Solution

Step 1 – For $n=1,3^1-1=3-1=2$ which is a multiple of 2

Step 2 - Let us assume $\ 3^n-1$ is true for $\ n=k$, Hence, $\ 3^k-1$ is true (It is an assumption)

We have to prove that $3^{k+1}-1$ is also a multiple of 2

$$3^{k+1} - 1 = 3 \times 3^k - 1 = (2 \times 3^k) + (3^k - 1)$$

The first part $\ (2 imes 3k)$ is certain to be a multiple of 2 and the second part $\ (3k-1)$ is also true as our previous assumption.

Hence, $3^{k+1}-1$ is a multiple of 2.

So, it is proved that $3^{n}-1$ is a multiple of 2.

Prove that $(ab)^n=a^nb^n$ is true for every natural number n

Solution

Step 1 - For $n=1, (ab)^1=a^1b^1=ab$, Hence, step 1 is satisfied.

Step 2 - Let us assume the statement is true for n=k , Hence, $(ab)^k=a^kb^k$ is true (It is an assumption).

We have to prove that $\ (ab)^{k+1}=a^{k+1}b^{k+1}$ also hold

Given, $(ab)^k = a^k b^k$

Or, $(ab)^k(ab) = (a^kb^k)(ab)$ [Multiplying both side by 'ab']

Or,
$$(ab)^{k+1}=(aa^k)(bb^k)$$

Or,
$$(ab)^{k+1} = (a^{k+1}b^{k+1})$$

Hence, step 2 is proved.

So, $(ab)^n = a^n b^n$ is true for every natural number n.