Nick G. Toth Nov. 13, 2020 CIS 420 Assignment V

Exercise 1 (Sipser 3e - Exercise 2.30 a, d)

a) Use the Pumping Lemma to show that the language $L:=\left\{0^n1^n0^n1^n:n\geq 0\right\}$ is not context free.

Proof:

Suppose L is a context free language. Then by the Pumping Lemma for context free languages, there is a number p with the property that for any string $s \in L$ of length at least p, we can write s = uvxyz satisfying

- i) For each $i \ge 0$, $uv^i x y^i z \in L$,
- |ii| |vy| > 0,
- $iii) |vxy| \leq p$.

Set $s = 0^p 1^p 0^p 1^p$ and observe that |s| > p, so s can be pumped. Now let uvxyz = s as specified by the Pumping Lemma.

Since $|vxy| \le p$, we know that $|uz| \ge 3p$.

By the pigeon hole principle, either the first $0^p \subseteq u$ or the second $1^p \subseteq z$.

If the first $0^p \subseteq u$, then v^2xy^2 will begin with 1, or $0^p1 \subseteq u$, and v^2xy^2z will contain a string of 0s or 1s with length greater than p. But uv^2xy^2z begins with 0^p1 , so it cannot be an element of L.

If the second $1^p \subseteq z$, then v^2xy^2 will end with 0, or $01^p \subseteq z$, and uv^2xy^2 will contain a string of 0s or 1s with length greater than p. But uv^2xy^2z ends with 01^p , so it cannot be an element of L.

Therefore L cannot be a context free language.

d) Use the Pumping Lemma to show that the following language, L, is not context free.

$$\left\{t_1\#t_2\#\dots\#t_k:k\geq 2,\,t_i\in\{a,b\}^*\text{ for all i, and }t_m=t_n\text{ for some }m\neq n\right\}$$

Proof:

Suppose L is a context free language. Then by the Pumping Lemma for context free, languages, there is a number p with the property that for any string $s \in L$ of length at least p, we can write s = uvxyz satisfying

- i) For each $i \ge 0$, $uv^i x y^i z \in L$,
- $|ii\rangle |vy| > 0$,
- $|iii| |vxy| \le p.$

So take $s = t_1 \# t_2 = t \# t = a^p b^p \# a^p b^p$ and observe that |s| > p. s can be pumped, so let uvxyz = s as specified by the Pumping Lemma.

Note that condition ii tells us that v or y must be non-empty. Also note that

Case 1) Suppose # is a substring of vxy.

If x = #, then v = t or y = t, so pumping up to obtain ut^2xy^2z or uv^2xt^2z , and observe that either of these cases will give us a string $t_1\#t_2$ where $t_1 \neq t_2$, so uv^2xy^2z cannot be an element of L.

Otherwise # is a substring of v or y, so clearly uv^0xy^0z will not contain #, and thus uv^0xy^0z cannot be an element of L.

Case 2) Suppose vxy is a substring of t.

We know v or y is non empty, so clearly v^2xy^2 contains at least one more a or b than t. But then u or z must contain the remaining string, so uv^2xy^2z will have more as or bs on one side or the other of #. So uv^2xy^2z will not satisfy the palindrome property, and thus $uv^2xy^2z \notin L$.

Since $uv^2xy^2z \notin L$ for each of these cases, L cannot be context free.

Exercise 2 (Sipser 3e - Exercise 2.32)

Let $\Sigma = \{1,2,3,4\}$ and use the Pumping Lemma to show that the language C containing all strings in Σ^* such that the number of 1s equals the number of 2s, and the number of 3s equals the number of 4s is not context free.

Proof:

Suppose C is a context free language. Then by the Pumping Lemma for context free languages, there is a number p with the property that for any string $s \in C$ of length at least p, we can write s = uvxyz satisfying

- i) For each $i \ge 0$, $uv^i x y^i z \in C$,
- $|ii\rangle |vy| > 0$,
- $iii) |vxy| \le p$.

Let $s = 1^p 2^p 3^p 4^p$ and observe that |s| > p. s can be pumped, so let uvxyz = s as specified by the Pumping Lemma.

Observe that vxy can't contain both 1s and 3s or both 2s and 4s since $|vxy| \le p$, and that 1^p is contained in u or 4^p is contained in z.

If 1^p is contained in u, then $u'v^2xy^2z$ must contain more than p 2s, where u' is obtained by replacing every occurrence of 1 in u with the empty string. So uv^2xy^2z cannot be in C.

If 4^p is contained in z, then uv^2xy^2z' must contain more than p 3s, where z' is obtained by replacing every occurrence of 4 in z with the empty string. So uv^2xy^2z cannot be in C.

So uv^2xy^2z cannot be an element of C in general, and thus C is not a context free language.

Exercise 3

Convert the following PDA into a CFG.

Note: I didn't save quite enough time to finish this exercise, sadly; it was more challenging than I anticipated. Why did I spend extra time to create the PDA that you already gave us? That's an excellent question.

Step 1 Not complete

$$\begin{array}{l} A_{13} \rightarrow 0 A_{13} 0 \\ A_{13} \rightarrow 1 A_{13} 1 \end{array}$$

Step 2

Not complete

$$A_{04} \rightarrow A_{13}$$

$$A_{13} \to A_{22}$$

$$A_{11} \to A_{11}$$

$$A_{33} \to A_{33}$$

$$A_{01} \rightarrow A_{0x}A_{y1}$$

$$A_{02} \to A_{0x} A_{y2}$$

$$A_{03} \rightarrow A_{0x} A_{y3}$$

$$A_{04} \to A_{0x} A_{y4}$$

$$\begin{split} A_{12} &\to A_{1x} A_{y2} \\ A_{13} &\to A_{1x} A_{y3} \\ A_{14} &\to A_{1x} A_{y4} \\ A_{23} &\to A_{2x} A_{y3} \\ A_{24} &\to A_{2x} A_{y4} \\ A_{34} &\to A_{3x} A_{y4} \end{split}$$

Step 3:
$$A_{00} \rightarrow \epsilon$$
, $A_{11} \rightarrow \epsilon$, $A_{22} \rightarrow \epsilon$, $A_{33} \rightarrow \epsilon$, $A_{44} \rightarrow \epsilon$.

Exercise 4 (Sipser 3e - Exercise 3.2 b, c)

This exercise concerns TM M₁, whose description and state diagram appear in Example 3.9. In each of the parts, give the sequence of configurations that M₁ enters when started on the indicated input string.

b) 1#1.

 $q_11#1$ Start configuration: Configuration 2: $xq_3#1$ $x#q_51$ Configuration 3: Configuration 4: $xq_6#x$ Configuration 5: $q_7x #x$ Configuration 6: $xq_1#x$ Configuration 7: $x #q_8 x$ Configuration 8: $x # x q_8$

Accepting Configuration: $x # x q_{accept}$

c) 1##1.

Start configuration: $q_11##1$ Configuration 2: $xq_3##1$ Configuration 3: $x#q_5#1$

Rejecting Configuration: $x #q_{reject} #1$.

Exercise 5 (Sipser 3e - Exercise 3.8 b, c)

Give implementation-level descriptions of Turing machines that decide the following languages over the alphabet {0,1}.

b) {w | w contains twice as many 0s as 1s }

- 1. Scan the tape from the head, and mark the first unmarked 1. If there are no unmarked 1s, go to step 4.
- 2. Scan the tape from the head and mark the first unmarked 0. Reject if there are no 0s.
- 3. Scan the tape from the head and mark the first unmarked 0. Reject if there are no 0s. Otherwise go to step 1.
- 4. Scan the tape from the head and mark the first unmarked 0. Accept if there are no unmarked 0s. Reject otherwise.

c) {w | w does not contain twice as many 0s as 1s}

- 1. Scan the tape from the beginning and mark the first unmarked 1. If there are no unmarked 1s, then go to step 4.
- 2. Scan from the beginning and mark the first unmarked 0. Accept if there are no unmarked 0s.
- 3. Scan and mark the first unmarked 0. Accept if there are no unmarked 0s. Otherwise go to step 1.
- 4. Scan from the beginning and mark the first unmarked 0. Accept if an unmarked 0 is found. Reject otherwise.