nimslo project: actionable study guide & implementation plan

path $A \rightarrow path C \rightarrow path B$ progression with optional path D

phase 1: foundation - classical stereo vision (path A)

timeline: weeks 8-9 (sept 8-21)

week 8: fundamentals & setup

learning objectives:

- understand stereo vision principles
- grasp epipolar geometry basics
- set up FOSS development environment

actionable tasks:

1. environment setup (day 1-2)

- install OpenCV, numpy, matplotlib, scikit-image
- test installation with basic image loading
- create project directory structure

2. **theory deep-dive** (day 3-4)

- read: "Multiple View Geometry" ch. 9-11 (hartley & zisserman) available free online
- watch: cyrill stachniss stereo vision lectures on youtube
- understand: camera models, calibration, rectification

3. **nimslo analysis** (day 5-6)

- capture/acquire sample 4-image sets
- analyze lens spacing and baseline geometry
- measure approximate focal lengths and distortion

4. **basic implementation** (day 7)

- load and display all 4 nimslo images
- implement simple feature detection (harris corners)
- visualize detected features across all frames

week 9: core stereo algorithms

learning objectives:

- implement feature matching between image pairs
- understand stereo rectification process
- generate basic disparity maps

actionable tasks:

1. **feature matching** (day 1-3)

- implement SIFT/ORB feature extraction
- create feature matching pipeline between adjacent pairs
- · filter matches using RANSAC for outlier removal
- visualize good matches overlaid on image pairs

2. stereo rectification (day 4-5)

- calculate fundamental matrix from matched features
- implement stereo rectification algorithm
- verify rectification quality (horizontal epipolar lines)

3. disparity estimation (day 6-7)

- implement block matching algorithm
- try semi-global block matching (SGBM) from OpenCV
- generate and visualize disparity maps
- convert disparity to rough depth estimates

deliverable: basic stereo depth estimation working between at least one image pair

phase 2: enhancement - optical flow integration (path C)

timeline: weeks 10-11 (sept 22 - oct 5)

week 10: optical flow fundamentals

learning objectives:

- understand dense vs sparse optical flow
- grasp lucas-kanade and farneback methods
- connect flow to stereo disparity

actionable tasks:

1. flow theory study (day 1-2)

- read opency optical flow tutorials
- understand brightness constancy assumption
- study horn-schunck vs lucas-kanade approaches

2. dense flow implementation (day 3-4)

- implement farneback optical flow between adjacent nimslo frames
- visualize flow fields as color-coded vectors
- experiment with flow parameters for best results

3. **flow-stereo connection** (day 5-7)

- compare optical flow with stereo disparity
- use flow for stereo correspondence refinement
- implement flow-guided disparity smoothing

week 11: motion-based depth & animation

learning objectives:

- · use optical flow for depth estimation
- create smooth multi-frame animations
- temporal interpolation techniques

actionable tasks:

1. motion depth cues (day 1-2)

- analyze flow magnitude patterns for depth inference
- combine flow-based depth with stereo depth
- weight combination based on confidence measures

2. **animation generation** (day 3-5)

- create traditional 4-frame wigglegram
- implement flow-based frame interpolation
- generate smoother 8+ frame animations
- experiment with different playback speeds/orders

3. **quality assessment** (day 6-7)

- develop quantitative metrics (alignment error, smoothness)
- compare flow-enhanced vs basic stereo results
- identify failure cases and limitations

phase 3: innovation - neural network integration (path B)

timeline: weeks 12-13 (oct 6-19)

week 12: CNN depth estimation

learning objectives:

- understand deep stereo networks
- implement transfer learning approach
- · compare ML vs classical results

actionable tasks:

- 1. **literature review** (day 1-2)
 - study key papers: DPSNet, DeepStereo, StereoNet
 - understand network architectures for stereo
 - identify suitable pretrained models
- 2. dataset preparation (day 3-4)
 - augment nimslo image pairs for training
 - create ground truth depth from classical pipeline
 - split data for training/validation
 - implement data loading pipeline
- 3. model implementation (day 5-7)
 - start with simple CNN architecture
 - implement disparity regression network
 - train on nimslo-specific data
 - fine-tune pretrained stereo networks if available

week 13: attention & comparison

learning objectives:

- implement attention mechanisms
- quantitative comparison of all methods
- identify best hybrid approach

actionable tasks:

1. attention mechanisms (day 1-3)

- implement spatial attention for correspondence
- add attention visualization
- compare attention maps with classical features

2. comprehensive evaluation (day 4-5)

- test all methods on same image sets
- measure: accuracy, speed, visual quality
- create comparison tables and visualizations

3. **hybrid optimization** (day 6-7)

- combine best aspects of all approaches
- classical initialization + CNN refinement
- flow-guided attention mechanisms
- optimize for nimslo-specific characteristics

deliverable: comprehensive comparison and hybrid method implementation

phase 4: documentation & presentation

timeline: weeks 14-16 (oct 20 - dec 10)

week 14: analysis & documentation

actionable tasks:

- 1. quantitative analysis of all methods
- 2. identify novel contributions beyond standard approaches
- 3. document failure cases and future improvements
- 4. prepare technical documentation

weeks 15-16: presentation & refinement

actionable tasks:

- 1. create compelling visual demonstrations
- 2. prepare academic presentation materials
- 3. finalize code documentation and README

"dessert" phase: structure from motion (path D)

optional enhancement - implement if ahead of schedule

quick wins for path D:

- 1. camera calibration: use OpenCV calibration on nimslo system
- 2. pose estimation: calculate relative camera positions
- 3. **sparse 3D:** triangulate matched features into 3D points
- 4. visualization: create point cloud viewer with Open3D

advanced path D:

- dense multi-view stereo reconstruction.
- mesh generation and texturing
- interactive 3D model export

resource recommendations

FOSS tools priority:

- OpenCV: core computer vision algorithms
- scikit-image: image processing utilities
- **PyTorch:** neural network implementation
- **Open3D:** 3D visualization (for path D)
- matplotlib/plotly: visualization and analysis

key learning resources:

- computer vision: foundations and applications (szeliski) free online
- opency-python tutorials comprehensive and practical
- cyrill stachniss computer vision lectures excellent theory
- · first principles of computer vision youtube channel

evaluation metrics to track:

alignment accuracy (pixel-level error)

- depth estimation quality (where ground truth available)
- processing time per image set
- visual smoothness of animations
- novelty of approach vs existing methods

project log template

```
## [date] - progress update
### completed:
-
### challenges:
-
### next steps:
-
### insights:
```