南京工业大学 <u>高等数学 A-2</u> 试题 (A) 卷 (闭)

2013---2014 学年 第 2 学期 使用班级 ____ 江浦大一学生

班级		学号			姓名		
题号		1]	=	四	五	六	总分
得分							
一、单项选择题(本大题共 5 小题, 每小题 3 分, 总计 15 分) $1、直线 l: \frac{x-1}{2} = \frac{y}{0} = \frac{z-2}{1}$ 与平面 $\pi: x-y-2z+6=0$ 之间的夹角为(
(A) 0	(I	$(3)\frac{\pi}{6}$	(<i>C</i>)	$\frac{\pi}{4}$	(D)	$\frac{\pi}{2}$	
2、设函数 $f(x, y)$ 在点 (a,b) 的偏导数存在,则 $\lim_{x\to 0} \frac{f(a+x,b)-f(a-x,b)}{x} = ($)							
(A) 0	(B)	$f_{x}(2a,b)$	(C)	$f_x(a,b)$	(D)	$2f_x(a,b)$	
3、二次积分 $\int_0^4 dx \int_x^{2\sqrt{x}} f(x,y) dy$ 交换积分次序后为()							
$(A) \int_0^4 dy \int_y^{2\sqrt{y}} f(x, y) dx $ (B) $\int_0^4 dy \int_{\frac{y^2}{4}}^y f(x, y) dx$							
$(C) \int_0^4 dy \int_y^{\frac{y^2}{4}} f(x, y) dx $ (D) $\int_0^4 dy \int_0^4 f(x, y) dx$							
4、设椭圆 $L: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的周长为 l ,则 $\oint_L (\sqrt{3}x + 2y)^2 ds = ($)							
(A) l	4 .	(B) 3 l	(C) 4l	((D) 12 l	
5、极限 $\lim_{n\to\infty} u_n = 0$ 是级数 $\sum_{n=1}^{\infty} u_n$ 收敛的()							
		n-1		要条件 (D) 既非充分	也非必要条何	‡
二、填空题(本大题共 5 小题,每小题 3 分,总计 15 分)							
1、已知曲面 $z=4-x^2-y^2$ 在点 M 处的切平面与平面 $2x+2y+z-1=0$ 平行,则点 M 的坐标							
为。							
2、设函数 $y = xe^{2x}$ 是某二阶常系数线性齐次微分方程的解,则该微分方程为。							
3、设 Σ 为曲面 $x^2 + y^2 + z^2 = R^2$,则曲面积分 $\bigoplus_{\Sigma} \frac{1}{x^2 + y^2 + z^2} dS =$ 。							
4、函数 <i>f</i>	$(x) = \frac{1}{x} \mathbb{R} \mathcal{H}$	成 $x-2$ 的幂	导级数为			。(注明	收敛域)

5、设
$$f(x)$$
 是以 2π 为周期的函数,且在 $(-\pi, \pi]$ 上有表达式 $f(x) = \begin{cases} -1, -\pi < x \le 0, \\ 1, 0 < x \le \pi \end{cases}$

是 f(x) 的傅立叶级数的和函数,则 $S(2\pi)$ = _______。

三、解答下列各题(本大题共4小题,每小题7分,总计28分,每题要有必要的解题步骤)

- 1、设函数 $f(x, y, z) = x^2 + 2y^2 + 3z^2 4x 6y 8z + 5$ 求:
- (1)、函数 f(x, y, z) 在点(2,1,2) 处的梯度。
- (2)、函数 f(x, y, z) 在点(2,1,2) 处方向导数的最大值。

2、设
$$\frac{x}{z} = \ln \frac{z}{y}$$
,求 dz 。

3、计算二重积分
$$\iint_D x dx dy$$
, 其中 D 是由曲线 $y = \sqrt{4-x^2}$ $(x>0)$ 与三条直线 $y=x, x=3$, $y=0$ 所围成的平面闭区域。

4、 计算
$$\oint_L (2xy-2y)dx + (x^2-4x)dy$$
, 其中曲线 $L: x^2 + y^2 = 9$, 方向为逆时针。

四、解答下列各题(本大题共4小题,每小题7分,总计28分,每题要有必要的解题步骤)

1、已知曲线 y = f(x)过原点且在点(x, y)处的切线斜率等于2x + y,求此曲线方程。

2、求函数 $f(x,y) = x^2 + 4y^2 + 9$ 在区域 $D = \{(x,y) \mid x^2 + y^2 \le 4\}$ 上的最大值和最小值。

3、判别级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{3^n \cdot n}$ 的敛散性,若收敛,求该级数的和。

4、计算 $\bigoplus_{\Sigma}(x-y)dxdy+(y-z)xdydz$,其中 Σ 为柱面 $x^2+y^2=1$ 及平面 z=0,z=3所围成的空间闭区域 Ω 的整个边界曲面的外侧。

五、应用题(本题8分)

如图,一平面均匀薄片是由抛物线 $y = a(1-x^2)(a>0)$ 及 x 轴所围成的,现要求当此薄片以 (1,0) 为支点向右方倾斜时,只要 θ 角不超过 45° ,则该薄片便不会向右翻倒,问参数 a 最大不能超过 多少?

六、证明题(本题6分)

设偶函数 f(x) 的二阶导数 f''(x) 在 x = 0 的某邻域内连续, 且 f(0) = 1, f''(0) = 2,

证明:级数
$$\sum_{n=1}^{\infty} [f(\frac{1}{n})-1]$$
 收敛。