은평소방서 에너지 효율 진단 분석 보고서 2022년 01월 25일 Net-zero 더 늦기전에, 탄소중립 2050

(사)대한필름시공기술인협회

은평소방서 창유리 효율 진단

냉.난방설비 사용량이 많은 여름과 겨울철에

실내공간으로 유입되는 열기나 난방 손실을

특수장비로 계측.분석하고, 적절한 에너지 절감 대안을 제시함으로써

탄소배출 감축과 냉.난방설비 설치 및 이용 비용을 절감하는데 목적이 있습니다.

◆ 창유리 에너지 효율 진단 흐름도

건물 현황 분석

- 건물 현장 파악
- 건물 현장 분석
- Needs 파악

현장 모니터링

- 일사량 측정 및 분석기 설치 (Solar power meter & Solar module analyzer)
- 일사/실내온도 분단위 측정
- 유해자외선 측정
- 일사유입에 따른 실내온도 상관 관계 파악

필름 테스트

- 열차단/단열 필름 설치
- 일사량 측정 및 분석기 설치 (Solar power meter & Solar module analyzer)
- 일사/실내온도 분단위 측정
- 유해 자외선 측정

결과보고서 (개선효과분석)

- 일사량, 온도 상관관계 파악
- 에너지 시뮬레이션
- 경제성분석
- 분석결과 전달
- 개선사항

◆ 은평소방서 현황

외관 이미지

건물 방위각

건물 개요

• 준공년도: 2011년

• 주소: 서울특별시 은평구 통일로 962

• 구조 : 철근콘크리트

• 연면적 : 6,711m² (지상 4층, 지하 1층)

• 창호 : 24 mm(LOW-E 복층)유리 + 알루미늄 프레임

• 주변환경: 남향부 - 외부 일사차폐 요소 없음.

북향부 - 외부 일사차폐 요소 및 환경인자

요소 있음

남향부 이미지

북향부 이미지

현장 분석

• 남향부:

외부 일사 차폐 요소가 없고, 전면 유리 사용량이 입면 대비 높아 채광은 좋으나 일사 유입량 증가. 열축적현상 모니터 반사, 일사증가(블라인드), 온도불균형 발생.

• 북향부 :

외부 일사차폐(아파트 및 나무)요소가 있어 외부 일사 유입이 적음. Low-E 복층 유리지만, 성능 감소로 단열 성능이 낮아 실내온도 상승 및 손실이 커 효율이 나쁨.

◆ 현황 및 현장 파악 결론

- 창유리 열 차단(열 반사, 태양열 취득률) 성능 저하 실내로 열 유입에 따른 냉방기 사용 증가
- 창유리 및 프레임 단열성능 저하 겨울철 난방기 사용 증가
- 적정 실내온도 유지에 따른 에너지 사용량 증가

- 여름철 열기 유입에 따른 실내온도 상승 더위로 불쾌감 상승
- 겨울철 실내외 온도차에 의한 열손실로 실내온도 감소
- 환절기(냉.난방기 미 가동)시 실내온도 변화

- 적정 실내온도 유지 불가
- 남서향부는 과도한 태양광 유입으로 눈부심과 모니터 빛 반사 블라인드 이용
- 실내온도 불균형 발생 (창가 vs 실내 / 상부 vs 하부)

◆ 은평소방서 외관 이미지 및 방위각

개요

• 목적 : 필름 유무에 따른 내부 유입 일사량 및 온도 비교 평가

• 대상공간 : 소방행정과(은평소방서 3층 남향) 당직실(은평소방서 2층 북향)

• 대상공간별 적용 필름

구분	테스트제품	창호면 방위	기능
소방행정과	Sample #1	남향	일사차단 + 열차단 + 단열
당직실	Sample #2	북향	열차단 + 단열

• 적용 필름 스팩

구분	Test Sample #1	Test Sample #2
가시광선 투과율	52.0 %	68.0 %
가시광선 반사율(유리면)	21.2 %	13.5 %
태양방사 투과율	40.6 %	45.9 %
태양열취득률	0.33	0.42
수정방사율	0.35	0.06
자외선 투과율	0.1 %	0.1 %

• 계측기: 일사량계(실내유입일사량), 온도계(외주부 온도)

• 모니터링 기간 : 2021. 11. 10 (수) ~ 2021. 11. 14 (일)

계측기(일사량 + 온도 통합)

◆ 진단 계측기 설치 위치

테스트 기간 날씨 정보

2021. 11. 10 (수)

비

평균기온: 4.2℃ 최고기온: 7.7℃ 최저기온: 0.7℃ 평균운량: 7.4 일강수량: 0.3mm 2021. 11. 11 (목)

구름 조금

평균기온: 5.3℃ 최고기온: 9.7℃ 최저기온: 2.1℃ 평균운량: 3.0 일강수량: 0.0mm 2021. 11. 12 (금)

맑음

평균기온: 4.5℃ 최고기온: 8.6℃ 최저기온: 1.3℃ 평균운량: 1.3 일강수량: 0.0mm 2021. 11. 13 (토)

구름 조금

평균기온 : 7.3℃ 최고기온 : 13.4℃ 최저기온 : 0.5℃ 평균운량 : 4.5 일강수량 : 0.0mm 2021. 11. 14 (일)

구름 조금

평균기온: 11.3℃ 최고기온: 16.4℃ 최저기온: 7.8℃ 평균운량: 3.4 일강수량: 0.0mm

※ 측정기간 중 24시간 미만 측정 데이터는 측정 근거로 사용하지 않습니다.

당직실(북향부 설치)

◆ 소방행정과 , 당직실의 일사량 비교

◆ 소방행정과 , 당직실의 실내온도 비교

현장진단 결과(필름적용 無)

◆ 현장상황별 진단 결과

소방행정실 vs 당직실 일사량 진단 결과

- 소방행정실(남향부) vs 당직실(북향부) 일사량 유입차가 매우 크다.
- 남향부
 - : 일사 유입량이 매우 높다(맑은 날 기준 240 W/m² 초과)
 - : 일사 유입량 증가로 눈부심, 모니터 반사 등 발생 블라인드 내림
- 북향부
 - : 일사 유입량이 매우 적다. (테스트 기간 전 영역대 40 W/m² 미만)
 - : 방위각 및 주변 건물, 나무에 의한 일사량 감소.

소방행정실 vs 당직실 실내온도 진단 결과

- 소방행정실(남향부) vs 당직실(북향부)의 실내온도 차가 매우 크다
- 남향부
 - : 주,야간 온도차가 크다. (11℃~35℃/ 온도 편차 약 24℃ 환절기,일사량영향)
 - : 맑은 날 기준 최고 온도가 30℃이상으로 매우 더운 공간임.
- 북향부
 - : 주,야간 온도차가 적다. (일사량이 없어 최고 실내온도는 17.4℃ 이내임)
 - : 외부 날씨에 영향이 없고(맑은날, 구름, 비) 외부 기온에 영향을 받음.

은평소방서 남향부(미설치 vs 설치) 결과

소방행정실(남향부 설치)

◆ 필름 설치 후 실내온도 변화

- 외부 날씨와 관계 없이 주간 온도 감소 / 야간시간대 실내온도 상승.
- 결과 분석

구분	온도 편차	감소 원인
남향부 최고 온도차	3.9℃~7.9℃감소	필름 설치에 따른 일사 유입감소, 창유리 열차단 + 단열 성능 강화
남향부 평균 온도차	2.53 ℃ ~ 3.32 ℃ 감소	글음 결시에 따는 걸시 ㅠ립삼소, 영규니 걸시한 트린걸 영웅 영화

• 필름 설치 후 일사량 감소에 의해 실내온도가 감소되었으며, 이는 전체 설치 시 이보다 높은 실내온도 변화가 예상됨.

Mini Map

◆ 필름 설치 후 실내온도 변화

은평소방서 북향부(미설치 vs 설치) 결과

- 외부 날씨와 관계 없이 전 시간대 실내온도 상승.
- 결과 분석

구분	온도 편차	감소 원인
북향부 최고 온도차	1.1 ℃ ~ 1.9 ℃ 상승	필름 설치에 따른 단열 성능 강화
북향부 평균 온도차	1.03 ℃ ~ 1.72 ℃ 상승	글음 걸시에 띄는 단결 영향 성외

• 필름 설치 후 창유리 단열 성능 강화로 실내온도가 상승되었으며, 이는 전체 설치 시 이보다 높은 실내온도 변화가 예상됨.

종합 비교 분석

은평소방서 테스트 공간(남향부, 북향부) 분석 결과

◆ 남향부 종합 비교 분석 결과

테스트 기간 남향부에 대한 일사량, 주간 실내온도, 야간 실내온도 분석 결과에 따른 종합 분석

남향부 테스트 결과 분석

✓ 필름 설치 후 변화

일사량 감소, 창유리 단열성능 향상 실내온도 변화 발생

주간 평균 온도 2.53°C~ 3.32°C 감소 야간 평균 온도 0.21°C~ 0.43°C 상승

남향부 윈도우 필름 적용 가능 제품

✓ 남향부 윈도우 필름 적용시 창유리 성능 강화 제품 성능

구분	추천 제품 성능	이 유
내·외부용	내부용 / 외부용	외부용 필름 설치 시 외벽 유리면부터 열차단을 하기에 성능이 매우 우수함.
밝기	50 % 이하	실내 조도에 따른 밝기 조절(눈부심 감소, 모니터 반사 감소)
열차단 성능(태양열 취득율)	0.33 이하	실내 유입되는 태양열 감소 (추천성능보다 낮을수록 실내온도 감소)
수정방사율	0.43 이하	창유리 단열성능 증가(추천성능보다 낮을수록 창유리 단열성능 증가)

❖ 기타 : 창호 프레임 단열성능 향상 제품(문풍지 등) 추가 시 보다 높은 실내온도 유지 및 에너지 절감효과 발생

◆ 북향부 종합 비교 분석 결과

테스트 기간 북향부에 대한 일사량, 주간 실내온도, 야간 실내온도 분석 결과에 따른 종합 분석

북향부 테스트 결과 분석

✓ 필름 설치 후 변화

창유리 단열성능 향상으로 실내온도 변화 발생

평균 온도 1.03°C~ 1.72°C 상승 최고 온도 1.1°C~ 1.9°C 상승

북향부 윈도우 필름 적용 가능 제품

✓ 북향부 윈도우 필름 적용시 창유리 성능 강화 제품 성능

구분	추천 제품 성능	이 유
내·외부용	내부용	실내용 필름 설치 시 외벽 유리면부터 단열을 하기에 성능이 매우 우수함.
밝기	40.0 % 이상	실내 조도에 따른 밝기 조절(눈부심 감소, 모니터 반사 감소)
열차단 성능(태양열 취득율)	0.33 이하	실내 유입되는 태양열 감소 (추천성능보다 낮을수록 실내온도 감소)
수정방사율	0.43 이하	창유리 단열성능 증가(추천성능보다 낮을수록 창유리 단열성능 증가)

❖ 기타 : 창호 프레임 단열성능 향상 제품(문풍지 등) 추가 시 보다 높은 실내온도 유지 및 에너지 절감효과 발생

◆ 은평소방서 종합 분석 결과 및 고찰

남서향부 종합 분석 결과 및 고찰

- ✓ 방위각과 지역 특징으로 주간에는 덥고 야간에는 추운 공간임.
- ✓ 필름 설치 후 주간에는 실내온도 감소가 뚜렷하고, 야간에는 실내온도 상승의 발생하여 실내온도에 영향을 크게 줌.
- ✓ 특히 하절기 실내온도 감소로 인해 냉방기 사용량 및 이용시간이 감소하여 비용절감에 효율적일 것임.
- ✓ 실내조도 조절에 따른 눈부심 방지, 모니터 반사 감소.
- ✓ 필름 설치 시 26℃ 적절한 실내온도 유지로 근무 환경 개선.

북동향부 종합 분석 결과 및 고찰

- ✓ 필름 설치 후 창유리의 단열성능 향상으로 실내온도의 상승 효과 발생.
- ✓ 실내온도 상승으로 난방기 사용 시간 감소(겨울철 난방기 사용 감소 효과)
- √ 창가주변의 열손실로 인한 실내온도 감소 방지.

은평소방서 종합 분석 결과 및 고찰

- √ 현장 테스트를 통한 건물 창유리에 대한 열성능 취약 현황 조사 및 윈도우 필름을 통한 개선 방안 제시.
- ✓ 윈도우 필름 설치 시 근무환경(빛, 열) 개선 및 건물에너지 효율 향상 기대
- ✓ 윈도우 필름 적용을 통한 연간 냉난방에너지 10% 이상 절감 가능 예상.

- 추가 지원 및 개선 방안 제시 -

(사)대한필름시공기술인협회는 윈도우 필름 설치 시 현 보고서를 기반으로 추가 에너지 절감에 대한 정략적분석을 진행합니다.

냉,난방비 절감 금액 🕂 투자자본 수익률 분석 🕂 투자비회수기간 🕂 경제성 분석

필요하신 기관은 별도 요청을 해주시면 진행을 도와드리도록 하겠습니다.

감사합니다