# Digital System Design

#### Textbook:

- Digital Design. M. Morris Mano and Michael Ciletti. Pearson Education.
- Digital Design Principles and Practices 4th Ed., John F. Wakerly, Prentice Hall
- Logic and Computer Design Fundamentals, M. Morris Mano and Charles R. Kime (4th edition, 2008). Prentice Hall.

### Digital Systems Design

#### Digital Systems

transform signals that can be abstracted as discrete in range and domain

#### Design

process of coming up with a solution to a problem

Design: Given a specification / behavior of y, design / build system / circuit f (x)



# Digital versus Analog

 Digital systems have inputs and outputs that are represented by <u>discrete values</u>



Binary digital systems have exactly two possible input / output values, i.e., 0 or +5 V.

### Digital versus Analog

 Analog systems have inputs and outputs that take on a continuous range of values



### Pros & cons of digital vs analog

- Digital systems have inherent ability to deal with electrical signals that have been degraded by transmission through circuits
- The real world operates in an analog fashionthat is continuously;
  - thus digital systems need interface devices ( sensor, actuators, converters ) to control analog devices

### Advantages of Digital Techniques

- 1. Easy storage of information
- 2. Accuracy and precision
- 3. Easier to design
- 4. Programmability
- 5. Less affected by noise
- 6. Easier fabrication processes

# Number Systems

#### Introduction

- A bit is the most basic unit of information in a computer.
  - It is a state of "on" or "off" in a digital circuit.
  - Sometimes they represent high or low voltage
  - A byte is a group of eight bits.. It is the smallest possible addressable unit of computer storage.

- A word is a contiguous group of bytes.
  - Words can be any number of bits or bytes.
  - Word sizes of 16, 32, or 64 bits are most common.

# Common Number Systems

| System           | Base | Symbols             | Used by humans? | Used in computers? |
|------------------|------|---------------------|-----------------|--------------------|
| Decimal          | 10   | 0, 1, 9             | Yes             | No                 |
| Binary           | 2    | 0, 1                | No              | Yes                |
| Octal            | 8    | 0, 1, 7             | No              | No                 |
| Hexa-<br>decimal | 16   | 0, 1, 9,<br>A, B, F | No              | No                 |

# Quantities/Counting

| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 0       | 0      | 0     | 0                |
| 1       | 1      | 1     | 1                |
| 2       | 10     | 2     | 2                |
| 3       | 11     | 3     | 3                |
| 4       | 100    | 4     | 4                |
| 5       | 101    | 5     | 5                |
| 6       | 110    | 6     | 6                |
| 7       | 111    | 7     | 7                |

| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 8       | 1000   | 10    | 8                |
| 9       | 1001   | 11    | 9                |
| 10      | 1010   | 12    | A                |
| 11      | 1011   | 13    | В                |
| 12      | 1100   | 14    | С                |
| 13      | 1101   | 15    | D                |
| 14      | 1110   | 16    | Е                |
| 15      | 1111   | 17    | F                |

| Decimal | Binary | Octal | Hexa-<br>decimal |
|---------|--------|-------|------------------|
| 16      | 10000  | 20    | 10               |
| 17      | 10001  | 21    | 11               |
| 18      | 10010  | 22    | 12               |
| 19      | 10011  | 23    | 13               |
| 20      | 10100  | 24    | 14               |
| 21      | 10101  | 25    | 15               |
| 22      | 10110  | 26    | 16               |
| 23      | 10111  | 27    | 17               |

#### Decimal Number

- Base (Radix) is 10
- Digits (0,1,..9)
- Each position carries a weight.
- If we were to write 1936.25 using a power series expansion and base 10 arithmetic:

$$1 \times 10^{3} + 9 \times 10^{2} + 3 \times 10^{1} + 6 \times 10^{0} + 2 \times 10^{-1} + 5 \times 10^{-2}$$

MSD Weights: 
$$10^3 10^2 10^1 10^0 10^{-1} 10^{-2} 10^{-3}$$
 LSD

### **Binary Numbers**

- Strings of binary digits ("bits")
  - -One bit can store a number from the set (0, 1)
  - -n bits can store numbers from 0 to  $2^{n}-1$

### Binary – Powers of 2

- Positional representation
- Each digit represents a power of 2



• If we write 10111.01 using a decimal power series we convert from binary to decimal:

$$1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} =$$

$$= 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1 + 0 \times 0.5 + 1 \times 0.25 = 23.25$$

#### Hexadecimal

- Strings of 0s and 1s too hard to write
- Use base-16 or <u>hexadecimal</u> 4 bits
- The first 10 digits are borrowed from the decimal system and the letters A, B, C, D, E, F are used for the digits 10, 11, 12, 13, 14, 15

| Dec | Bin  | Hex |
|-----|------|-----|
| 0   | 0000 | 0   |
| 1   | 0001 | 1   |
| 2   | 0010 | 2   |
| 3   | 0011 | 3   |
| 4   | 0100 | 4   |
| 5   | 0101 | 5   |
| 6   | 0110 | 6   |
| 7   | 0111 | 7   |

| Dec | Bin  | Hex |
|-----|------|-----|
| 8   | 1000 | 8   |
| 9   | 1001 | 9   |
| 10  | 1010 | Α   |
| 11  | 1011 | В   |
| 12  | 1100 | С   |
| 13  | 1101 | D   |
| 14  | 1110 | Е   |
| 15  | 1111 | F   |

### Octal System

- Its base is 8
- Eight digits 0, 1, 2, 3, 4, 5, 6, 7

$$(236.4)_8 = (?)_{10}$$
  
 $2 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1} = 158.5$ 

#### **Conversion Among Bases**

The possibilities:



### Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$
Base

#### Decimal to Decimal



### Binary to Decimal

- Technique
  - Multiply each bit by  $2^n$ , where n is the "weight" of the bit
  - The weight is the position of the bit, starting from
     0 on the right
  - Add the results



What is 10011100 in decimal?

### Decimal to Binary

- Technique I
- Find largest power-of-two smaller than decimal number
- 2. Make the appropriate binary digit a '1'
- Subtract the "power of 2" from decimal
- 4. Do the same thing again

#### Example

Convert 28 decimal to binary

```
32 \ is \ too \ large, \ so \ use \ 16
\operatorname{Binary} \to 10000 \qquad \operatorname{Decimal} \to 28 - 16 = 12
\operatorname{Next} \ is \ 8
\operatorname{Binary} \to 11000 \qquad \operatorname{Decimal} \to 12 - 8 = 4
\operatorname{Next} \ is \ 4
\operatorname{Binary} \to 11100 \qquad \operatorname{Decimal} \to 4 - 4 = 0
```

#### Technique II

- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1

## Example

$$125_{10} = ?_2$$



- Conversion from decimal fraction to binary:
  - same method used for integers except multiplication is used instead of division.

Convert  $(0.8542)_{10}$  to binary (give answer to 6 digits).

$$0.8542 \times 2 = 1 + 0.7084 \quad a_{-1} = 1 \text{ MSB}$$
 $0.7084 \times 2 = 1 + 0.4168 \quad a_{-2} = 1$ 
 $0.4168 \times 2 = 0 + 0.8336 \quad a_{-3} = 0$ 
 $0.8336 \times 2 = 1 + 0.6672 \quad a_{-4} = 1$ 
 $0.6675 \times 2 = 1 + 0.3344 \quad a_{-5} = 1$ 
 $0.3344 \times 2 = 0 + 0.6688 \quad a_{-6} = 0 \text{ LSB}$ 

$$(0.8542)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4}a_{-5}a_{-6})_2 = (0.110110)_2$$

### Hexadecimal to Binary

- Technique
  - Convert each hexadecimal digit to a 4-bit equivalent binary representation

### Example

 $10AF_{16} = ?_2$ 



 $10AF_{16} = 0001000010101111_2$ 

#### Binary to Hexadecimal

Convert groups of 4 bits



### Hexadecimal to Binary

- Technique
  - Convert each hexadecimal digit to a 4-bit equivalent binary representation

### Example

 $10AF_{16} = ?_2$ 



 $10AF_{16} = 0001000010101111_{2}$ 

## Octal to Binary

- Technique
  - Convert each octal digit to a 3-bit equivalent binary representation

## Example

$$705_8 = ?_2$$



$$705_8 = 111000101_2$$

### Decimal to Octal

- Technique
  - Divide by 8
  - Keep track of the remainder

## Example

$$1234_{10} = ?_{8}$$



### Decimal to Hexadecimal

- Technique
  - Divide by 16
  - Keep track of the remainder

## Example

$$1234_{10} = ?_{16}$$



### **Common Powers**

#### • Base 10

| Power            | Preface | Symbol | Value         |
|------------------|---------|--------|---------------|
| 10-12            | pico    | p      | .000000000001 |
| 10 <sup>-9</sup> | nano    | n      | .00000001     |
| 10 <sup>-6</sup> | micro   | μ      | .000001       |
| 10 <sup>-3</sup> | milli   | m      | .001          |
| 10 <sup>3</sup>  | kilo    | k      | 1000          |
| 10 <sup>6</sup>  | mega    | M      | 1000000       |
| 10 <sup>9</sup>  | giga    | G      | 1000000000    |
| 10 <sup>12</sup> | tera    | T      | 1000000000000 |

### • Base 2

| Power           | Preface | Symbol | Value      |
|-----------------|---------|--------|------------|
| 210             | kilo    | k      | 1024       |
| 2 <sup>20</sup> | mega    | M      | 1048576    |
| 230             | Giga    | G      | 1073741824 |

# Binary Number Systems

## Binary Number Systems

- Unsigned Binary Code
- Signed Binary Codes
- Floating-Point System

### **Unsigned Binary Code**

- The Unsigned Binary Code is used to represent positive integer numbers.
- What is the range of values that can be represented with n bits in the Unsigned Binary Code?

 $[0, 2^{n}-1]$ 

## **Unsigned Binary Code**

 Example 1: Represent (26)<sub>10</sub> in Unsigned Binary Code

$$26_{10} = 11010$$

 Example 2: Represent (26)<sub>10</sub> in Unsigned Binary Code using 8 bits.

$$26_{10} = 00011010$$

• Example 3: Represent  $(26)_{10}$  in Unsigned Binary Code using 4 bits.

## Unsigned Binary Code (4 bits)

| Unsigned | Decimal |
|----------|---------|
| 0000     | 0       |
| 0001     | 1       |
| 0010     | 2       |
| 0011     | 3       |
| 0100     | 4       |
| 0101     | 5       |
| 0110     | 6       |
| 0111     | 7       |
| 1000     | 8       |
| 1001     | 9       |
| 1010     | 10      |
| 1011     | 11      |
| 1100     | 12      |
| 1101     | 13      |
| 1110     | 14      |
| 1111     | 15      |

# Unsigned Binary Code: Arithmetic & Logic Operations

- Arithmetic Operations:
  - Addition
  - Subtraction
  - Multiplication
  - Division
- Logic Operations
  - AND CONJUNCTION
  - OR DISJUNCTION
  - NOT NEGATION
  - XOR EXCLUSIVE OR

### Signed Binary Codes

- These are codes used to represent positive and negative numbers.
- Three types of signed binary number representations:
  - signed magnitude
  - 1's complement
  - 2's complement

### How To Represent Signed Numbers

- In each case: left-most bit indicates sign: positive (0) or negative (1).
- The remaining bits represent the magnitude of the number





### Example:

| Sign & Mag. Code | <u>Decimal</u> |
|------------------|----------------|
| 01101            | +13            |
| <b>1</b> 1101    | -13            |
| 00101            | +5             |
| 10101            | -5             |

## One's Complement Representation

- The one's complement of a binary number involves inverting all bits.
  - 1's comp of 00110011 is 11001100
  - 1's comp of 10101010 is 01010101
- For an n bit number N, the 1's complement is (2<sup>n</sup>-1) – N.

 To find negative of 1's complement number take the 1's complement.





## Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.
  - 2's comp of 00110011 is 11001101
  - 2's comp of 10101010 is 01010110
- For an n bit number N the 2's complement is (2<sup>n</sup>-1) - N + 1.

 To find negative of 2's complement number, take the 2's complement.





### Two's Complement Shortcuts

- Algorithm 1 Simply complement each bit and then add 1 to the result.
  - Finding the 2's complement of (01100101)<sub>2</sub> and of its 2's complement

## Two's Complement Shortcuts

 Algorithm 2 – Starting with the least significant bit, copy all of the bits up to and including the first 1 bit and then complementing the remaining bits.

```
N = 01100101[N] = 10011011
```

 Machines that use 2's complement arithmetic can represent integers in the range

$$-2^{n-1} \le N \le 2^{n-1}-1$$

where n is the number of bits available for representing N.

- For 2's complement, more negative numbers than positive.
- For 1's complement, two representations for zero.
- 2's complement most important (only 1 representation for zero).

## 1's Complement Addition

- Using 1's complement numbers, adding numbers is easy.
  - Step 1: Add binary numbers
  - Step 2: Add carry to low-order bit

• For example, suppose we wish to add  $(12)_{10} + (1)_{10}$ .  $(12)_{10} = +(1100)_2 = 01100_2$  in 1's comp.  $(1)_{10} = +(0001)_2 = 00001_2$  in 1's comp.



### 1's Complement Subtraction

- Using 1's complement numbers, subtracting numbers is also easy.
  - Step 1: Take 1's complement of 2<sup>nd</sup> operand
  - Step 2: Add binary numbers
  - Step 3: Add carry to low order bit

• For example, Let's compute  $(12)_{10}$  -  $(1)_{10}$ .

$$(12)_{10} = +(1100)_2 = 01100_2$$
 in 1's comp.  
 $(-1)_{10} = -(0001)_2 = 11110_2$  in 1's comp.



## 2's Complement Addition

- Using 2's complement numbers, adding numbers is easy.
  - Step 1: Add binary numbers
  - Step 2: Ignore carry bit

## 2's Complement Addition

• Let's compute  $(12)_{10} + (1)_{10}$ .  $(12)_{10} = +(1100)_2 = 01100_2$  in 2's comp.  $(1)_{10} = +(0001)_2 = 00001_2$  in 2's comp.



### 2's Complement Subtraction

- Step 1: Take 2's complement of 2<sup>nd</sup> operand
- Step 2: Add binary numbers
- Step 3: Ignore carry bit

## 2's Complement Subtraction

• Let's compute  $(12)_{10}$  -  $(1)_{10}$ .  $(12)_{10} = +(1100)_2 = 01100_2$  in 2's comp.  $(-1)_{10} = -(0001)_2 = 11111_2$  in 2's comp.



• Let's compute  $(13)_{10} - (5)_{10}$ .  $(13)_{10} = +(1101)_2 = (01101)_2$  $(-5)_{10} = -(0101)_2 = (11011)_2$ 



 Discarding the carry bit, the sign bit is zero, indicating a correct result.

$$(01000)_2 = +(1000)_2 = +(8)_{10}.$$

• Let's compute  $(5)_{10} - (12)_{10}$ .

 Here, there is no carry bit and the sign bit is 1. This indicates a negative result.

$$(11001)_2 = -(7)_{10}$$

# **Binary Codes**

# Binary Codes

- A binary code is just an assignment of information to bit patterns.
- A binary number is mathematically defined, while a binary code is just an assignment of numeric values to bit patterns.
- Is of 2 types:
  - Weighted code: each bit position is assigned with a weight (BCD, 2421)
  - Non weighted code- no weights associated to the bit positions (Gray Code, excess 3 code)

# Binary Coded Decimal (BCD)

- formed by converting each digit of a decimal number individually into binary
- requires more digits than conventional binary
- has advantage of very easy conversion to/from decimal
- used where input and output are in decimal form

# Binary Coded Decimal (BCD)

- Also known as the 8421 code.
  - Each Decimal Digit is represented by 4 bits
  - $-(0-9) \Rightarrow Valid combinations$
  - $-(10-15) \Rightarrow$  Invalid combinations

| Decimal | BCD  |
|---------|------|
| 0       | 0000 |
| 1       | 0001 |
| 2       | 0010 |
| 3       | 0011 |
| 4       | 0100 |
| 5       | 0101 |
| 6       | 0110 |
| 7       | 0111 |
| 8       | 1000 |
| 9       | 1001 |

| Decimal | Binary | BCD      |
|---------|--------|----------|
| 0       | 0000   | 0000     |
| 1       | 0001   | 0001     |
| 2       | 0010   | 0010     |
| 3       | 0011   | 0011     |
| 4       | 0100   | 0100     |
| 5       | 0101   | 0101     |
| 6       | 0110   | 0110     |
| 7       | 0111   | 0111     |
| 8       | 1000   | 1000     |
| 9       | 1001   | 1001     |
| 10      | 1010   | 00010000 |
| 11      | 1011   | 00010001 |
| 12      | 1100   | 00010010 |
| 13      | 1101   | 00010011 |
| 14      | 1110   | 00010100 |
| 15      | 1111   | 00010101 |

• BCD is not equivalent to binary.

#### **BCD** Addition

- One decimal digit + one decimal digit
  - If the result is 1 decimal digit (≤9), then it is a simple binary addition
  - Example: 5 0101 + 3 + 0011  $8 \iff 1000$

– If the result is two decimal digits (≥ 10), then binary addition gives invalid combinations Example:

 If the binary result is greater than 9, correct the result by adding 6



#### 2421 code

- Represents the decimal numbers from 0 to 9.
- Up to 4, it is same as BCD.
- It is a self complementing code

| DD | 8421 | 2421 |
|----|------|------|
|    |      |      |
| 0  | 0000 | 0000 |
| 1  | 0001 | 0001 |
| 2  | 0010 | 0010 |
| 3  | 0011 | 0011 |
| 4  | 0100 | 0100 |
| 5  | 0101 | 1011 |
| 6  | 0110 | 1100 |
| 7  | 0111 | 1101 |
| 8  | 1000 | 1110 |
| 9  | 1001 | 1111 |

## Non Weighted code

- Excess-3 code
- Self-complementing code
- Not weighted
- Corresponding BCD code + 0011<sub>2</sub>
  - Binary counters

|    | -    |      |      |
|----|------|------|------|
| DD | 8421 | 2421 | Ex-3 |
| 0  | 0000 | 0000 | 0011 |
| 1  | 0001 | 0001 | 0100 |
| 2  | 0010 | 0010 | 0101 |
| 3  | 0011 | 0011 | 0110 |
| 4  | 0100 | 0100 | 0111 |
| 5  | 0101 | 1011 | 1000 |
| 6  | 0110 | 1100 | 1001 |
| 7  | 0111 | 1101 | 1010 |
| 8  | 1000 | 1110 | 1011 |
| 9  | 1001 | 1111 | 1100 |

## **Gray Code**

- Unweighted code.
- Every transition from one value to the next value involves only one bit change.
- Also called cyclic/reflected code.
- Good for error detection.

| Decimal | Binary | Gray Code | Decimal | Binary | Gray code |
|---------|--------|-----------|---------|--------|-----------|
| 0       | 0000   | 0000      | 8       | 1000   | 1100      |
| 1       | 0001   | 0001      | 9       | 1001   | 1101      |
| 2       | 0010   | 0011      | 10      | 1010   | 1111      |
| 3       | 0011   | 0010      | 11      | 1011   | 1110      |
| 4       | 0100   | 0110      | 12      | 1100   | 1010      |
| 5       | 0101   | 0111      | 13      | 1101   | 1011      |
| 6       | 0110   | 0101      | 14      | 1110   | 1001      |
| 7       | 0111   | 0100      | 15      | 1111   | 1000      |

### **Alphanumeric Codes**

- Apart from numbers, computers also handle textual data.
- Character set frequently used includes:
  - alphabets: 'A' .. 'Z', and 'a' .. 'z'
  - digits: '0' .. '9'
  - special symbols: '\$', ':, ', '@', '\*', ...
  - non-printable: SOH, NULL, BELL, ...
- Two widely used standards:
  - ASCII (American Standard Code for Information Interchange)
  - EBCDIC (Extended BCD Interchange Code)

- In ASCII, each character is represented by a 7-bit code.
- EBCDIC (8 bit) was one of the first widely-used computer codes that supported upper *and* lowercase alphabetic characters, in addition to special characters, such as punctuation and control characters.

### **Parity**

- The method of parity is widely used as a method of error detection.
  - Extar bit known as parity is added to data word
  - The new data word is then transmitted.
- Two systems are used:
  - Even parity: the number of 1's must be even.
  - Odd parity: the number of 1's must be odd.

#### • Example:

|       | Even Parity | Odd parity |
|-------|-------------|------------|
| 11001 | 110011      | 110010     |
| 11110 | 111100      | 111101     |
| 11000 | 110000      | 110001     |

### Overflow / Underflow

- When addition of two numbers cause the result is greater than the largest number of available bits
  - Overflow
- When addition result is smaller than the smallest number the bits can hold.
  - Underflow
- Addition of a positive and a negative number cannot give an overflow or underflow.

### Overflow example

$$011 (+3)_{10}$$

$$011 (+3)_{10}$$

$$110 (+6)_{10}$$

- 1's complement computer interprets it as -1
- $(+6)_{10} = (0110)_2$  requires four bits

# Underflow examples

Two's complement addition

$$101 (-3)_{10}$$

$$101 (-3)_{10}$$
Carry 1 010 (-6)<sub>10</sub>

The computer sees it as +2.  $(-6)_{10} = (1010)_2$  again requires four bits