## **Machine Learning HW4**

B04705003 資工三 林子雋

Collaborator:助教提供的 pytorch code、資工三:張立暐提供 gensim word2vec 會讓 performance 變好的意見

1. (1%) 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何?

| 模型架構     | 模型使用 pytorch 實作:                                                                                                                                                                                                                                                     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 1.先讓 encode 好的 sequence 經過 Embedding 取出相對應的 word vector。                                                                                                                                                                                                             |
|          | 2. 讓每個 sequence 通過 GRU(雙向)算出 hidden state。                                                                                                                                                                                                                           |
|          | 3. 讓 hidden state 通過 sequential 的 linear 層,map 到 2 維空間(也就是 label 的                                                                                                                                                                                                   |
|          | 維度)                                                                                                                                                                                                                                                                  |
|          | <pre>DeepJimNetwork (     (embedding): Embedding(11464, 100)     (gru): GRU(100, 200, dropout=0.4, bidirectional=True)     (linear): Sequential (         (0): Linear (400 -&gt; 400)         (1): Dropout (p = 0.5)         (2): Linear (400 -&gt; 2)     ) }</pre> |
| Epochs   | 預設 Epochs 是 1000,但是大約 3 個 epoch 就可以關掉了(因為 overfitting 很快)                                                                                                                                                                                                            |
| Batch    | 256                                                                                                                                                                                                                                                                  |
| size     |                                                                                                                                                                                                                                                                      |
| Optimize | 使用 RMSProp                                                                                                                                                                                                                                                           |
| r        | 原因:聽實驗室的學長說用 RMSProp train RNN 系列的會準確率會比較穩定收斂                                                                                                                                                                                                                        |
| Loss     | 使用 cross entropy loss                                                                                                                                                                                                                                                |
| function |                                                                                                                                                                                                                                                                      |



## 2. (1%) 請說明你實作的 BOW model,其模型架構、訓練過程和準確率為何?

| 模型架構 | 使用 pytorch 實作         |
|------|-----------------------|
|      | 1. 將句子轉成 10000 維的向量   |
|      | 2. 通過 DNN map 到 2 維空間 |

```
DNN (
                   (linear): Sequential (
                      (0): Linear (10000 -> 500)
                             ReLU (inplace)
                       (2): Dropout (p = 0.5)
                      (3): Linear (500 -> 500)
                      (4): ReLU (inplace)
                      (5): Dropout (p = 0.5)
                      (6): Linear (500 -> 2)
                1000 個 epoch,但大約第三個 epoch 之後就會 overfit
Epochs
Batch size
                256
Optimizer
                RMSProp
Loss function
                Cross entropy
                  1.00
Accuracy
                                                                 valid accuracy
                                                                 training_accuracy
                  0.95
                  0.90
                Accuracy
                  0.85
                  0.80
                  0.75
                                         10
                                             12
                                                  14
                                                      16
                                                          18
                                      Epochs
                  1.4
Loss
                                                               valid_losses
                                                               training_losses
                  1.2
                  1.0
                  0.8
                  0.6
                  0.4
                  0.2
                  0.0 L
                                        10
                                            12
                                                14
                                                    16
                                                        18
                                     Epochs
```

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

| 預測出    | today is a good                                    |        | today is hot,    |        | today is a day, |        | today is a good |        |
|--------|----------------------------------------------------|--------|------------------|--------|-----------------|--------|-----------------|--------|
| 的機率    | day, but it is hot                                 |        | but it is a good |        | but it is hot   |        | day, it is hot. |        |
| 分布     |                                                    |        | day              |        |                 |        |                 |        |
| Bag of | 正面                                                 | 負面     | 正面               | 負面     | 正面              | 負面     | 正面              | 負面     |
| Word 方 | 0.5469                                             | 0.4531 | 0.5469           | 0.4531 | 0.4239          | 0.5761 | 0.8179          | 0.1821 |
| 法      |                                                    |        |                  |        |                 |        |                 |        |
| RNN 方  | 正面                                                 | 負面     | 正面               | 負面     |                 |        |                 |        |
| 法      | 0.3588                                             | 0.6412 | 0.9955           | 0.0045 |                 |        |                 |        |
| 差異原    | 1. 第一句的經過 bag of word 的轉換之後,都會是一模一樣的 vector,所以兩句被判 |        |                  |        |                 |        |                 |        |
| 因      | 斷成同樣的機率分布是很自然的。另外,我作了拔除"but"或"good"的實驗,            |        |                  |        |                 |        |                 |        |
|        | 發現到,bag of words 當中,good 對預測結果的影響非常大,推測是因為訓練過      |        |                  |        |                 |        |                 |        |
|        | 程中,good 被標記成正面的 data 比較多,造成 BOW 比較容易因為這樣而誤判。       |        |                  |        |                 |        |                 |        |
|        | 2. 而 RNN 的方法能夠正確分類是因為順序性的資訊有被包含在模型的訓練,因此語          |        |                  |        |                 |        |                 |        |
|        | 氣轉折的句子比較容易被判斷出來。                                   |        |                  |        |                 |        |                 |        |

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響,並討論原因。

|     | 「有」標點符號  | 「無」標點符號  |
|-----|----------|----------|
| 正確率 | 0.820475 | 0.808275 |

## 討論:

在不調整其他參數,只去調整是否有標點符號這個變因時,會發現到「有」標點符號的的情況下準確率會比較高,推測是因為標點符號在 twitter 當中,也是包含重要的語氣資訊(例如:"! 符號)

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-supervised training 對準確率的影響,並討論原因。

|                  | 「有」semi-supervised                       | 「無」 semi-supervised |
|------------------|------------------------------------------|---------------------|
| 標記方法             | <br>  1. Loop:先用 training data 訓練好一個<br> |                     |
|                  | <br>  模型,用這個模型去標信心機率分布有<br>              |                     |
|                  | 一項大於 0.9 的 data 之後(也就是對某                 |                     |
|                  | 一個 label 的信心大於 0.9),拿這些新                 |                     |
|                  | 標好的 data 放入 training data 中(並            |                     |
|                  | 且將新標得 data 從沒有 no label                  |                     |
|                  | training data 移除)。                       |                     |
|                  | 2. 重複 Loop 三次                            |                     |
| 第一個 iteration 的  | 0.815175                                 | 0.815175            |
| testing accuracy |                                          |                     |
| 第二個 iteration 的  | 0.8129                                   |                     |
| testing accuracy |                                          |                     |
| 第三個 iteration 的  | 0.8136                                   |                     |

| testing accuracy |  |
|------------------|--|
|                  |  |

## 討論:

很明顯發現使用 semi-supervise 之後,準確率並沒有因此顯著提升,反倒下降,推測是因為

新標進來的 label 仍然不夠準確,因此準確率並沒有變得更好。