

数字信号处理

Digital Signal Processing

主讲人: 陈后金

电子信息工程学院

▶设计原理

IIR 数字滤波器设计是通过设计模拟滤波器而实现; 模拟滤波器是通过设计三个模板低通滤波器而实现; 低通滤波器是通过给定的边界频率及其衰耗而实现。

FIR数字滤波器设计是通过时域逼近或频域逼近的方法实现;由给定的 $H_d(e^{j\Omega})$,确定线性相位DF的类型、 $A_d(\Omega)$ 和 $\varphi_d(\Omega)$;再由窗函数法、频率取样法或优化设计求出数字滤波器H(z)。

➤ 阶数比较:设计满足下列指标的IIR数字滤波器和FIR数字滤波器, $\Omega_{\rm p1} = 0.2\pi \text{ rad}, \ \Omega_{\rm s1} = 0.22\pi \text{ rad}, \ \Omega_{\rm s2} = 0.4\pi \text{ rad}, \ \Omega_{\rm p2} = 0.42\pi \text{ rad},$ $A_p \le 1 dB$, $A_s \ge 50 dB$, 画出增益响应和相位响应,并加以对比。

IIR Chebyshev II型滤波器 阶数12, $A_p=0.62$ dB, $A_s=50$ dB

》 阶数比较:设计满足下列指标的IIR数字滤波器和FIR数字滤波器, $\Omega_{\rm pl}=0.2\pi$ rad, $\Omega_{\rm sl}=0.22\pi$ rad, $\Omega_{\rm s2}=0.4\pi$ rad, $\Omega_{\rm p2}=0.42\pi$ rad, $\Omega_{\rm p2}$

IIR 椭圆滤波器

阶数6, A_p=1dB, A_s=50dB

》 阶数比较:设计满足下列指标的IIR数字滤波器和FIR数字滤波器, $\Omega_{\rm pl}$ =0.2π rad, $\Omega_{\rm sl}$ =0.22π rad, $\Omega_{\rm s2}$ =0.4π rad, $\Omega_{\rm p2}$ =0.42π rad, $\Omega_{\rm pl}$ =0.42π rad, $\Omega_{\rm pl}$ =0.42π rad, $\Omega_{\rm pl}$ =0.42π rad, $\Omega_{\rm pl}$ =0.42π rad,

FIR Hamming 窗

阶数340, A_p=0.02dB, A_s=53.4dB

➤ 阶数比较:设计满足下列指标的IIR数字滤波器和FIR数字滤波器, $\Omega_{\rm pl}$ =0.2 π rad, $\Omega_{\rm sl}$ =0.22 π rad, $\Omega_{\rm s2}$ =0.4 π rad, $\Omega_{\rm p2}$ =0.42 π rad, $A_p \le 1 dB$, $A_s \ge 50 dB$, 画出增益响应和相位响应,并加以对比。

FIR PM算法滤波器 阶数164, A_p=0.9dB, A_s=50.8dB

阶数

IIR	Chebyshev II	12
	椭圆滤波器	6
FIR	Hamming窗	340
	PM算法滤波器	164

非线性相位

线性相位

结论:

实现相同的指标,FIR数字滤波器所需阶数远大于IIR数字滤波器

FIR数字滤波器易于实现线性相位,系统也易于实现

IIR适合处理对相位要求不高的信号,如语音信号

FIR适合处理对相位要求较高的信号,如图像信号

	IIR DF	FIR DF
稳定性	不一定	稳定
实现难易程度	难	易
实现线性相位	不能	台比
可用FFT实现	不用	可用
幅度响应	较好	不好
阶数	低	亩

谢谢

本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事和同行的交流,难以一一注明出处,特此说明并表示感谢!