#### Rezolvarea problemelor de căutare



### **Objective**

Formularea problemelor ca probleme de optimizare a unei funcții obiectiv numerice și identificare modalităților inspirate de natură utile în rezolvarea lor. Specificarea, proiectarea și implementarea metodelor de optimizare inspirate de natură

# Aspecte teoretice



Rezolvarea problemelor ca proces de optimizare

Tipuri de probleme de optimizare.

Modalități de rezolvare a problemelor de căutare → Identificarea soluției potențiale optime:

- Stabilirea componentelor problemei
  - o Condiții (constrângeri) pe care trebuie să le satisfacă (parțial sau total) soluția
  - o Funcție de evaluare a unei soluții potențiale → identificareaa optimului
- Definirea spaţiul de căutare
- Stabilirea strategiei de identificare a soluției optime în spațiul de căutare



## Termen de predare

Laborator 3



### Cerințe

Specificaţi, proiectaţi şi implementaţi o aplicaţie care să rezolve una dintre problemele de mai jos. Fiecare dintre probleme trebuie rezolvată cu cele 2 tipuri de metode precizate (un algoritm evolutiv sau un algoritm inspirat de inteligenţa de grup (PSO)). Aplicaţia trebuie să respecte diagrama din Figura 1 şi trebuie să permită:

- Încărcarea datelor problemei (probleme cu date deja definite de către programator, probleme cu date definite de utilizator)
- Alegerea și parametrizarea metodei de rezolvare a problemei
  - o alegerea parametrilor necesari algoritmului
    - pentru algoritmul evolutiv
      - dimensiunea populatiei
      - numarul de generatii
      - dimensiunea cromozomului
      - parametri ai selectiei
      - probabilitatea de incrucisare şi cea de mutație
      - alţi parametri
    - pentru algoritmul de tip PSO
      - dimesniunea grupului de particule
      - viteza iniţială
      - factorul de inerţie
      - factorii de învăţare
- Afişarea soluţiei identificate
  - o ilustrarea prin grafice a modului în care evoluează soluțiile de la o generație/iterație la alta.
- Precizarea performanțelor metodei de rezolvare alese



Figura 1 Diagrama de clase

| Date de test       | Codul logic | Interfața | Aplicația<br>overall |
|--------------------|-------------|-----------|----------------------|
|                    |             |           | Overall              |
| Propuse de student | 60          | 20        | 60                   |
| Date de test 1     | 10          |           |                      |
| Date de test 2     | 20          |           |                      |
| Date de test 3     | 30          |           |                      |
| Date de test 4     | 40          |           |                      |
| Date bonus         | 100         |           |                      |

Total 240p + 100p bonus

Punctaj minim de realizat pentru validarea laboratorului 100p

- 1. Determinare punct(e) de minim într-un vector de valori reale EAs cu reprezentare întreagă
- 2. Determinare punct(e) de minim într-un vector de valori reale EAs cu reprezentare binară
- 3. Determinare punct(e) de minim într-un vector de valori reale PSO cu reprezentare întreagă
- 4. Determinare punct(e) de minim într-un vector de valori reale PSO cu reprezentare binară

Pentru fiecare problemă, se vor considera diferite date de test (vezi arhiva).

#### **Bonus**

5. Determinare punct(e) de minim pentru una din funcțiile de aici http://www.geatbx.com/docu/fcnindex-01.html#P89\_3085