

Análisis de transcriptomas

Clase 4 - Alineamiento y cuantificación (Teoría y práctica)

Biología Computacional 2016

Selene L. Fernández-Valverde

Ensamblando transcriptomas

Ensamblando transcriptomas

Ensamblando transcriptomas

Objetivos de aprendizaje

En esta clase aprenderemos:

- Aprender a alinear datos de RNA-Seq a una referencia
 - Lecturas crudas
 - Transcritos generados de novo
- Entender los formatos SAM y BAM

¿Qué significa alinear (mapear) una secuencia?

 Es identificar la posición de origen (alta similitud) de *lecturas* o transcritos secuenciados en una secuencia de referencia (genomas o transcritos)

No podemos usar BLAST

- BLAST hace un alineamiento local, lo cual lo hace muy útil para buscar alineamientos parciales y/o divergentes en bases de datos grandes.
- BLAST es muy lento para alinear secuencias, lo que lo hace poco práctico alinear millones de secuencias.
- Dado que generalmente esperamos un alto nivel de similitud con la referencia en un experimento de secuenciación masiva necesitamos un algoritmo de alineamiento semi-global y muy rápido.

Burrows-Wheeler transform (BWT)

- Descubierta por David Wheeler en 1983.
- Permutación reversible de los caracteres en una cadena usada originalmente para comprimir datos.
- En 2005 se encontró que era extremadamente útil para encontrar subcadenas.
- En 2009 se comenzó a usar para alinear lecturas resultado de experimentos de secuenciación masiva.
- En conjunto con índices comprimidos (e.g. FM index) permite que el tiempo de alineamiento crece de manera lineal con la cantidad de secuencias.
- Permite alinear ~100 millones de lecturas por hora (Bowtie 1 solo thread)

ATCTTATC\$

\$ - Caracter que indica el final de una cadena

ATCTTATC\$

TCTTATC\$A

CTTATC\$AT

TTATC\$ATC

TATC\$ATCT

ATC\$ATCT

ATC\$ATCTT

TC\$ATCTTA

C\$ATCTTAT

\$ATCTTATC

\$ - Caracter que indica el final de una cadena

ATCTTATC\$ — Anctate

Anctate

Bernard

Bernard

ATCTTATC\$
TCTTATC\$A
CTTATC\$AT
TTATC\$ATC
TATC\$ATCT
ATC\$ATCT
ATC\$ATCTT
C\$ATCTTA
C\$ATCTTAT
\$ATCTTAT

\$ATCTTATC ATC\$ATCTT ATCTTATC\$ C\$ATCTTAT CTTATC\$AT TATC\$ATCT TC\$ATCTTA TCTTATC\$A TTATC\$ATC

\$ - Caracter que indica el final de una cadena

Ordenar

BWT

ATCTTATC\$ — ABUTTATA —

ATCTTATC\$
TCTTATC\$A
CTTATC\$AT
TTATC\$ATC
TATC\$ATCT
ATC\$ATCT
ATC\$ATCTT
C\$ATCTTA
C\$ATCTTAT

\$ATCTTATC
ATC\$ATCTT
ATCTTATC\$
C\$ATCTTAT
CTTATC\$AT
TATC\$ATCT
TC\$ATCTTA
TC\$ATCTTA

TTATC\$AT

\$ - Caracter que indica el final de una cadena

Ordenar

BWT

Permutat \$ Dermutat

ATCTTATC\$ TCTTATC\$A CTTATC\$AT TTATC\$ATC TATC\$ATCT ATC\$ATCTT TC\$ATCTTA C\$ATCTTAT \$ATCTTATC

\$ATCTTATC ATC\$ATCTT ATCTTATC\$ C\$ATCTTAT CTTATC\$AT TATC\$ATCT TC\$ATCTTA TCTTATC\$A TTATC\$AT

CT\$TTTAAC

\$ - Caracter que indica el final de una cadena

Ordenar

\$ATCTTATC ATCTTATC\$ TCTTATC\$A ATCATCTT CTTATC\$AT CTTATC\$ \$ATCTTAT ¡Esto es lo único que TTATC\$AT

ATCTTATC\$

guardamos!

TC\$ATCTTA C\$ATCTTAT \$ATCTTATC

TC\$ATCTTA TCTTATC\$A TTATC\$AT

ATC\$ATCT

CT\$TTTAAC

\$ - Caracter que indica el final de una cadena

Propiedad FT

Renglón

```
$0 ATCTTAT
  A<sub>0</sub> TC$ATCT T<sub>0</sub>
2 A_1 TCTTATC $_0
3 C<sub>0</sub> $ATCTTA T<sub>1</sub>
4 C<sub>1</sub> TTATC$A T<sub>2</sub>
5 T_0 ATC$ATC T_3
6 T_1 C$ATCTT A_0
7 T<sub>2</sub> CTTATC$ A<sub>1</sub>
8 T<sub>3</sub> TATC$AT C<sub>1</sub>
```


Propiedad FT

Propiedad FT

Renglón ATCTTAT TC\$ATCT TCTTATC \$ATCTTA TTATC\$A ATC\$ATC T_0 C\$ATCTT CTTATC\$ TATC\$AT

 T_0 **\$**₀ T_1 T_2 T_3 A_0 A_1

El rango de los caracteres se mantiene en la primera (F) y última (L) columna.

La primera columna se puede reconstruir ordenando la última

L- Last

Renglón

0	\$ ₀	C_0	
1	A_0	\mathbf{T}_0	
2	A_1	\$ ₀	
3	C_0	${f T}_1$	
4	C_1	\mathbf{T}_2	Secuencia original
5	\mathbf{T}_0	T_3	Secuencia original
6	${\bf T_1}$	\mathbf{A}_0	
7	T_2	A_1	
8	T_3	C_1	

Renglón

0	\$ ₀	
1	\mathbf{A}_0	
2	${\sf A}_1$	
3	\mathbf{C}_0	
4	C_1	
5	\mathbf{T}_0	
6	${\bf T}_1$	
7	T_2	
8	T_3	

C_0	
T_0	
\$ ₀	
\mathbf{T}_1	
T_2	
T_3	
A_0	
A_1	
C_1	

Renglón

0	\$ ₀	
1	A_0	
2	A_1	
3	C_0	
4	C_1	
5	\mathbf{T}_0	
6	${\bf T_1}$	
7	\mathbf{T}_2	
8	T_3	

C_0	
T_0	
\$0	
\mathbf{T}_1	
T_2	
T_3	
A_0	
A_1	
C_1	

Renglón

 $C_0 $_0$

Renglón

 $C_0 $_0$

 T_1C_0 \$0

 $T_1C_0 $_0$

 $A_0T_1C_0$ \$0

 $A_0 T_1 C_0 $_0$

Renglón

 $\mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Secuencia original

Renglón

 $\mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Secuencia original

Renglón

 $\mathbf{T}_3 \, \mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Secuencia original

Renglón

 $\mathbf{T}_3 \, \mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Secuencia original

Renglón

 $C_1 T_3 T_0 A_0 T_1 C_0 $_0$ Secuencia original

Renglón

 $C_1 T_3 T_0 A_0 T_1 C_0 $_0$ Secuencia original

Renglón

 $\mathbf{T}_2 \mathbf{C}_1 \mathbf{T}_3 \mathbf{T}_0 \mathbf{A}_0 \mathbf{T}_1 \mathbf{C}_0 \boldsymbol{\$}_0$ Secuencia original

Renglón

 $\mathbf{T}_2 \mathbf{C}_1 \mathbf{T}_3 \mathbf{T}_0 \mathbf{A}_0 \mathbf{T}_1 \mathbf{C}_0 \boldsymbol{\$}_0$ Secuencia original

Renglón

 $\mathbf{A}_1 \, \mathbf{T}_2 \, \mathbf{C}_1 \, \mathbf{T}_3 \, \mathbf{T}_0 \, \mathbf{A}_0 \, \mathbf{T}_1 \, \mathbf{C}_0 \, \mathbf{\$}_0$ Secuencia original

Renglón

 $A_1 T_2 C_1 T_3 T_0 A_0 T_1 C_0 $_0$ Secuencia original

Revirtiendo la transformación BWT

Renglón

0	\$ ₀	C_0
U	\mathbf{r}	
1	A_0	\mathbf{T}_0
2	A_1	\$0
3	C_0	${\bf T_1}$
4	C_1	\mathbf{T}_2
5	\mathbf{T}_0	T_3
6	${\bf T_1}$	\mathbf{A}_0
7	T_2	A_1
8	T_3	C_1

Renglón	
0	\$ ₀
1	\mathbf{A}_0
2	A_1
2 3	C_0
4	C_1
5	\mathbf{T}_0
6	${f T}_1$
7	T_2
8	T_3

	C_0		
	T_0		
	\$0		
	\mathbf{T}_1		
	T_2		
	T_3		
	A_0		
	\mathbf{A}_1		
	C_1		

Lectura: TTATC

		مکا
Rer	Q	ION
_		

\$0 A_0 A_1 \mathbf{C}_0 C_1 T_0 \mathbf{T}_1 T_2 T_3

BWT

 T_2 T_3 A_0 \mathbf{A}_1

Renglón

\$0 A_0 A_1 \mathbf{C}_0 C_1 T_0 \mathbf{T}_1 T_2

 T_3

BWT

 T_3

Renglón		
0	\$ ₀	
1	\mathbf{A}_0	
2	A_1	
3	\mathbf{C}_0	
4	C_1	
5	\mathbf{T}_0	
6	${\bf T_1}$	
7	\mathbf{T}_2	
0	Т2	

C_0	
T_0	
\$ ₀	
\mathbf{T}_1	
T_2	
T_3	
A_0	
A_1	
C_1	

Lectura: TTATC

R	en	q	lói	ገ
				-

\$0 A_0 A_1 \mathbf{C}_0 C_1 T_0 \mathbf{T}_1 T_2 T_3

BWT

 \mathbf{T}_1 T_2 T_3

Renglón		
0	\$ ₀	
1	\mathbf{A}_0	
2	\mathbf{A}_1	
3	C_0	
4	C_1	
5	\mathbf{T}_0	
6	${\bf T_1}$	
7	T_2	
8	T_3	

_	ĺ
C_0	
T_0	
\$ ₀	
\mathbf{T}_1	
T_2	
T ₃	
$egin{array}{c} \mathbf{A}_0 \ \mathbf{A}_1 \end{array}$	
C_1	

Lectura: TTATC

Renglón

\$0 A_0 A_1 \mathbf{C}_0 C_1 T_0 \mathbf{T}_1 T_2

 T_3

BWT

 \mathbf{T}_1 T_2 T_3 A_0 \mathbf{A}_1

Renglón		
0	\$ ₀	
1	A_0	
2	${\sf A}_1$	
3	\mathbf{C}_0	
4	C_1	
5	\mathbf{T}_0	
6	${\bf T}_1$	
7	T_2	
8	T_3	

C_0	
T_0	
\$ ₀	
T_1	
T ₂	
\mathbf{A}_0	
A_1	
C_1	

Lectura: TTATC

0 \$0

 $1 A_0$

 $2 A_1$

 $3 C_0$

 $4 C_1$

 $5 T_0$

 $\mathbf{6} \ \mathbf{T}_1$

 $7 T_2$

8 T₃

Suffix array

0

 T_0 5

\$0

 \mathbf{T}_1

 T_2

 T_3

 A_0

 \mathbf{A}_1

 C_1

8

5

0

7

2

4

6

1

3

Un sufijo podría indicarnos donde se encuentra en la secuencia original. Usa mucho espacio si tenemos millones de posiciones

Renglá	'n	
0	\$ ₀	
1	A_0	
2	A_1	
3	\mathbf{C}_0	
4	C_1	
5	\mathbf{T}_0	
6	${f T}_1$	
7	T_2	

Suffix array

C_0	8
\mathbf{T}_0	5
\$ ₀	0
\mathbf{T}_1	7
T_2	2
T_3	4
A_0	6
A_1	1
C_1	3

Lectura: TTATC

Un sufijo podría indicarnos donde se encuentra en la secuencia original. Usa mucho espacio si tenemos millones de posiciones

Renglá	'n
0	\$ ₀
1	A_0
2	A_1
3	C_0
4	C ₁

 $5 T_0$

 \mathbf{T}_1

 T_2

 T_3

Suffix array

Lectura: TTATC

 $A_1 T_2 C_1 T_3 T_0 A_0 T_1 C_0 $_0$

Un sufijo podría indicarnos donde se encuentra en la secuencia original. Usa mucho espacio si tenemos millones de posiciones

Full-text Minute-size (FM) index

Renglón

 A_0 \mathbf{A}_1 C_0 C_1 T_0 \mathbf{T}_1 T_2 \mathbf{T}_3

Checkpoints

 T_0 [A:0,T:1,C:1,G:0] T_2 T_3 A_0 \mathbf{A}_1 [A:2,T:4,C:1,G:0]

Lo que hacemos es utilizar "checkpoints" a lo largo del BWT para indicarnos la posición. Cuando encontramos un match, buscamos el "checkpoint" más cercano para identificar su posición en la referencia (genoma o transcriptoma).

A esto se le conoce como FM index y es muy pequeño.

Full-text Minute-size (FM) index

Renglón

 A_0

 \mathbf{A}_1

 C_0

 C_1

 T_0

 \mathbf{T}_1

 T_2

 \mathbf{T}_3

Checkpoints

 T_0

 T_2

 T_3

 A_0

 \mathbf{A}_1

[A:0,T:1,C:1,G:0]

[A:2,T:4,C:1,G:0]

Lectura: TTATC

Lo que hacemos es utilizar "checkpoints" a lo largo del BWT para indicarnos la posición. Cuando encontramos un match, buscamos el "checkpoint" más cercano para identificar su posición en la referencia (genoma o transcriptoma).

A esto se le conoce como FM index y es muy pequeño.

Errores o Mismatches

- De no identificarse ningún alineamiento perfecto de la lectura a la secuencia de referencia se toman los alineamientos parciales y se permuta el nucleótido candidato a mismatch (A,T, C, G) y se trata de seguir extendiendo el sitio con similitud a la lectura de interés.
- A esto se le conoce como "backtracking" y generalmente se limita a un número arbitrario de ciclos para evitar incrementar demasiado el tiempo de alineamiento.
- Se hace más backtracking en nucleótidos con baja calidad.
- Dado que el tiempo de cálculo es lineal, no es tan tardado tratar de hacer esto para buscar el lugar de origen de lecturas con errores.

Lecturas en pares (paired-end)

 Muchas veces una sola lectura se encuentra usando alineamiento via BWT. Dado que sabemos el tamaño aproximado del inserto algunos algoritmos utilizan alineamientos Smith-Waterman (SW) para encontrar su par en la región vecina.

Software para alinear lecturas a una referencia

- bowtie2 TopHat (https://ccb.jhu.edu/software/ tophat/index.shtml)
- bowtie (http://bowtie-bio.sourceforge.net/ index.shtml)
- BWA (http://bio-bwa.sourceforge.net/)
- STAR (https://github.com/alexdobin/STAR)

Software para mapear transcritos a una referencia

- GMAP (http://research-pub.gene.com/gmap/)
- Blat (https://genome.ucsc.edu/goldenpath/help/ blatSpec.html)
- Exonerate (http://www.animalgenome.org/bioinfo/ resources/manuals/exonerate/beginner.html)

Práctica - anotando un transcriptoma usando Trinotate

http://liz-fernandez.github.io/transcriptome_analysis/03-mapping.html

