$\frac{x^2}{x^2}$ (i) Assume that d_1, d_2, \dots, d_n are Q_{nxn} - conjugate, where Q_n is positive définite matrix. Please show di, dz; , , dn are linear indépendent. Suppose { d1, d2, d3, ..., dn} are linear dependent. se 3 some ax + 0 s.t. a,d, + a2d2 + - + andn = Onx1 $\Rightarrow \sum_{k=1}^{n} a_k d_k = 0$ $\sum_{k=1}^{n} a_k Q d_k = 0$ $\sum_{k=1}^{n} a_k d_i^{T} Q d_k + a_i d_i^{T} Q d_i = 0$ $d_1, ..., d_n$ are Q-conjugate : $\sum_{\substack{k=1\\k\neq k}}^n Q_k d_k^T Q_k d_k = 0$ an dit Qdi = 0 and $a\bar{x} \neq 0$

 \Rightarrow $di^{T}Qdi = 0$ $-\infty$ (i Q is positive definite). Hence, $\{d_1, d_2, ..., d_n\}$ are linear independent.

.