PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-165585

(43) Date of publication of application: 25.06.1996

(51)Int.CI.

4/00 H01L 21/3065

(21) Application number: 06-331766

(71)Applicant: NIPPON SOKEN INC

NIPPONDENSO CO LTD

(22) Date of filing:

09.12.1994

(72)Inventor: YOSHIDA TAKAHIKO **ASAUMI KAZUSHI**

YORINAGA MUNEO **SUGITO YASUNARI**

(54) PLASMA ETCHING METHOD

(57) Abstract:

PURPOSE: To make the average etching rate constant in each batch without being affected by the contaminant in a reaction vessel even in working the element for a pressure sensor needing a large amt. of etching.

CONSTITUTION: A substrate 6 to be etched is placed on a grounded electrode 5 opposed to a high-frequency electrode 2, a high-frequency power is impressed between the electrodes 2 and 5 to convert a reacting gas to plasma P, and etching is conducted. At this time, a self-bias monitor 7 is attached to measure the selfbias voltage VDC of the electrode 2, the highfrequency power to be impressed on the electrode 2 is adjusted based on the measured value, and the plasma state is kept constant in each batch.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公園番号

特開平8-165585 ✓

(43)公開日 平成8年(1996)6月25日

(51) Int.CL*

識別記号

FΙ

技術表示箇所

C23F 4/00

A 9352-4K

庁内整理番号

HO1L 21/3065

HO1L 21/302

審査請求 未請求 請求項の数2 FD (全 4 頁)

(21)	出願番号	

特願平6-331766

(22)出頭日

平成6年(1994)12月9日

(71)出顧人 000004695

株式会社日本自動車部品総合研究所

愛知県西尾市下羽角町岩谷14番地

(71)出頭人 000004260

日本電装株式会社

愛知県刈谷市昭和町1丁目1番地

(72)発明者 吉田 貴彦

爱知県西尾市下羽角町岩谷14番地 株式会

社日本自動車部品総合研究所内

(72)発明者 浅梅 一志

愛知県西尾市下羽角町岩谷14番地 株式会

社日本自動車部品総合研究所内

(74)代理人 弁理士 伊藤 求馬

最終頁に続く

(54) 【発明の名称】 プラズマエッチング方法

(57)【要約】

【目的】 エッチング量が多い圧力センサ用素子の加工 においても、反応容器内の汚れの影響を受けることな く、各パッチの平均エッチレートを一定とする。

【構成】 高周波電極2に対向して配した接地電極5上 に被エッチング材となる基板6を配し、これら電極2、 5間に高周波電力を印加して反応ガスにプラズマPを発 生させてプラズマエッチングを行なう。この時、上記高 周波電極2の自己パイアス電圧VDCを測定する自己パイ アスモニタ7を設け、その測定値に基づいて上記高周波 電極2に印加する高周波電力を調整して、プラズマ状態 が各パッチ毎に一定となるように制御する。

【特許請求の範囲】

【請求項1】 高周波電極に対向して配した接地電極上 に被エッチング材となる基板を配し、これら電極間に高 周波電力を印加することにより、反応ガスにプラズマを 発生させてエッチングを行なうプラズマエッチング方法 において、上記高周波電極の自己バイアス電圧VDCを測 定し、その測定値に基づいて上記高周波電極に印加する 高周波電力を調整して、上記電極間のプラズマ状態を制 御しつつエッチングを行なうことを特徴とするプラズマ エッチング方法。

【請求項2】 エッチング開始後の任意の時間におけ る、上記高周波電極の自己バイアス電圧VDC値が各バッ チ間で等しくなるように、投入する高周波電力を制御す る請求項1記載のプラズマエッチング方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はプラズマエッチング方法 に関する。詳しくは半導体基板や圧力センサ等のシリコ ンマイクロ加工型センサの加工工程において、基板表面 に凹部または開口部を形成するために、高周波放電によ 20 り発生したプラズマによってエッチングを行なうプラズ マエッチング方法に関する。

[0002].

【従来の技術】一対の電極間に、高周波電圧を印加して 発生するプラズマを利用してシリコンウエハ等をエッチ ングすることが行なわれている(例えば特開平6-52 996号公報等)。反応性ガスプラズマを用いてプラズ マエッチングを行なう場合、被エッチング材表面におけ るエッチング量を各バッチ毎に均一とするために、反応 容器内の真空度、電極間隔、ガス組成等のパラメータ調 30 ートを同じにすることができる。 整が行なわれる。これらパラメータは、エッチング開始 前に設定されるとエッチング終了まで一定に保持され、 エッチング終了後、前パッチと比べてエッチング特性に 変化がある場合には、次パッチ実施前に反応容器内のク リーニングを実施したり、上記各パラメータの再調整を 行なっている。

[0003]

【発明が解決しようとする課題】ところで、シリコンマ イクロ加工型センサの1つである圧力センサのダイヤフ ラム部をエッチング加工する場合には、エッチング量が 40 出すようになしてある。 数100μm と多くなる。このため、エッチング中に多 量の反応生成物が発生し、これが電極等反応容器内部に 付着することで、放電状態の経時変化が大きくなる。そ の上、汚れの付着状態はパッチ毎に異なり、エッチング ガス組成やガス圧、放電電力等の各パラメータをバッチ 毎に同じにしても、平均エッチレートがバッチ毎に変化 するという不具合があった。また、バッチ毎に反応容器 内のクリーニングを実施するのは、生産性の低下につな がり、経済的ではなかった。

【0004】本発明は、エッチング量が多い場合におい 50 される高周波電力を調節可能としてある。

ても、反応容器内の汚れの影響を受けることなく、各バ ッチの平均エッチレートを一定とすることのできるプラ ズマエッチング方法を提供することを目的とする。

2

[0005]

【課題を解決するための手段】本発明の要旨を図1を参 照して説明すると、高周波電極2に対向して配した接地 電極5上に被エッチング材となる基板6を配し、これら 電極2、5間に高周波電力を印加することにより、反応 ガスにプラズマPを発生させてエッチングを行なうプラ 10 ズマエッチング方法であって、上記高周波電極2の自己 パイアス電圧VDCを検出し、その検出値に基づいて上記 高周波電極2に印加する高周波電力を調整して、上記電 極2、5間のプラズマ状態を制御しつつエッチングを行 なうものである(請求項1)。具体的には、エッチング 開始後の任意の時間における、上記高周波電極2の自己 バイアス電圧VDC値が各バッチ間で等しくなるように、 投入する高周波電力を制御するのがよい(請求項2)。

[0006]

【作用】プラズマは、その特性から、プラズマ空間内で はどこでも同電位となり、従って、プラズマを囲う電極 電位によってその状態が左右される。今、一方の電極5 は接地電位であり、高周波放電によってその電位が変化 することがないため、他方の髙周波電極2の自己バイア ス電圧VDCを測定し、これをバッチ毎に等しくするよう に調整を行なうことで、プラズマ状態をパッチ毎に揃え ることができる。かくして、プラズマ中で発生するラジ カルやイオン等のエッチングに直接関与する粒子の発生 や、その粒子の基板への入射頻度、エネルギーがバッチ 毎に再現性よく行なえる結果、パッチ間の平均エッチレ

[0007]

【実施例】図1に本実施例で使用した陽極結合方式の平 行平板型ドライエッチング装置の概略図を示す。反応容 器1内には中央部付近に高周波印加電極である電極2

(陰極) が配され、該電極2には高周波電源3より高周 波が印加されるようになしてある。上記電極2の上端部 には反応ガス導入口4が接続されており、該導入口4を 経て反応容器1内に導入された反応ガスGは、上記電極 2の底面に設けたガス吹き出し口よりシャワー状に吹き

【0008】反応容器1底面には、上記電極2に対向し て接地電極5 (陽極) が配してある。上記接地電極5上 面にはエッチング対象である基板6が配され、該基板6 の上面には、凹部または開口部を形成する箇所を除き、 エッチングマスク61が形成してある。

【0009】上記高周波電源3には高周波電極2の自己 バイアス電圧VDCを測定するための自己バイアスモニタ 7が接続してあり、自己パイアスモニタ7の測定結果に 基づいて、上記高周波電源3により高周波電極2に印加

(3)

【0010】上記装置によりプラズマエッチングを行な う場合には、図示されない流量制御装置によって反応ガ スを反応容器1内に導入し、高周波電源3により上記電 極2に高周波電力を印加してプラズマ P を発生させる。 上記反応容器1には底部に反応ガス搬出口12が設けて あり、ゲートパルブ11を調整し、図示されない真空排 気系によって反応容器 1 内を一定圧に保っている。な お、上記電極5は図示されない温度コントローラによっ て温度調節することが可能で、基板6の温度を一定に保

【0011】プラズマPは極めて反応性に富み、エッチ ングマスク61を形成していない基板6表面は、プラズ マP中のラジカルやイオンとの間で生ずる物理化学的反 応等によりエッチング除去される。反応ガスとしては、 例えば、六フッ化イオウ (SF₆) ガスと酸素 (O₂) ガスの混合ガスが用いられる。

【0012】この時、高周波電源3に接続した自己パイ アスモニタ7により、高周波電極3の自己パイアス電圧 VDCを測定し、プラズマ状態を制御する方法を図2に基 づいて説明する。自己バイアス電圧VDCの値は、エッチ ングガス圧やガス組成、投入パワー等のエッチングパラ メータを固定しておいてもバッチ毎に変化し、また、同 ーバッチ時でもエッチング中に経時変化する。そこで、 1パッチ目は、各エッチングパラメータをある値に設定 して実際にエッチングを行ない、その時の高周波電極3 の自己パイアス電圧VDCを測定して(工程(1))、一 定時間間隔で記録する(工程(2))。 2 バッチ目以降 は、エッチング開始後、各経過時間における自己パイア ス電圧VDCを測定して(工程(3))、その値が1バッ チ目と一致するように、高周波電源3の出力を随時操作 する(工程(4))。その結果、パッチ毎のエッチング 開始後、各経過時間での自己パイアスVDCの値を等しく することができ、同一のプラズマ状態を得ることで、バ ッチ毎の平均エッチレートを等しくすることができる。

【0013】一般にプラズマ状態に簡易に測るには、基 板設置電極の自己パイアス電圧Vocを調べることが行な われている。ただし、本発明で用いる陽極結合方式の装 置では、基板設置電極5は接地電位となっており、高周 波放電によってその電位が変化することはない。 そこ で、本発明では、高周波電極2で測定される自己バイア ス電圧Vncのエッチング中の経時変化およびパッチ毎の 差が大きいことに注目し、基板を設置していない陰極 側、すなわち髙周波電極2の自己パイアス電圧V_{DC}をバ ッチ毎に揃える。これにより、バッチ毎のプラズマ状態 の差を小さくし、陽極側、すなわち基板設置側でのエッ チングにおけるバッチ毎のばらつきを小さくすることを 可能としたものである。

【0014】なお、上記の制御方法は、手動によること も可能であるが、必要とされる自己バイアス電圧VDCの 測定時間間隔はエッチングプロセスによって異なり、一 50 5 接地電極

概には決まらない。従って、短い時間間隔で制御する必 要がある時には、コンピュータを用いて自動制御するこ とが好ましい。

4 .

【0015】次に上記した装置を用いてプラズマエッチ ングを行ない、本発明の効果を確認した。エッチング基 板6には直径4インチのシリコンウエハを用い、エッチ ングマスク61にはスパッタ成膜したクロム膜を用い て、ウエハ面内に等間隔で約800個の開口部を形成し た。反応ガスとして六フッ化イオウガスと酸素ガスの混 10 合ガス (混合比 65:35) を用い、ガス流量を反応容 器11当たり10sccm、ガス圧0. 3Torr、投入電力の 初期値を電極単位面積当たり1.8W/cm²、エッチン グ時間25分の条件でエッチングを行なった。図2のフ ローチャートに示した自己パイアス電圧VDCの測定によ る高周波出力制御を、エッチング開始後5分間隔で行な った場合のバッチ毎の平均エッチレートの変化を図3に 示す。また、上記制御を行なわずにエッチングを行なっ た場合の平均エッチレートの変化を図3に併記した。平 均エッチレートはウエハ内から規則的に188点を測定 し、加算平均をとったものであり、1パッチ目のエッチ レートを基準値1.00として表した。

【0016】図に明らかなように、本発明方法による制 御を行なった場合には、行なわない場合に比べて平均エ ッチレートのばらつきが著しく小さくなっていることが わかる。

[0017]

【発明の効果】以上のように、本発明方法によれば、陽 極結合方式のプラズマエッチングにおいて、陰極側の高 周波電極の自己パイアス電圧VDCを測定し、これに基づ いて高周波出力を制御することにより、エッチング中の プラズマ状態をパッチ毎に等しくし、パッチ間の平均エ ッチレートの変化を小さくすることができるという優れ た効果を有する。

【図面の簡単な説明】

【図1】本発明の実施例において使用したエッチング装 層の概略図である。

【図2】本発明に基づきエッチレートを制御する工程を 示すフローチャートである。

【図3】本発明の実施例におけるバッチ毎の平均エッチ 40 レートの変化を表すグラフである。

【符号の説明】

- P プラズマ
- G 反応ガス
- 1 反応容器
- 11 ゲートバルブ
- 12 反応ガス搬出口
- 2 髙周波電極
- 3 髙周波電源
- 4 反応ガス導入口

5

6 基板

61 エッチングマスク

7 自己パイアスモニタ

【図1】

[図3]

【図2】

フロントページの続き

(72)発明者 頼永 宗男

愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72) 発明者 杉戸 泰成

愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内