MA2001

LIVE LECTURE 8

Q&A: log in to PollEv.com/vtpoll

Topics for week 8

- 4.1 Row spaces and Column spaces
- 4.2 Ranks
- 4.3 Nullspaces and Nullities

Row Space and Column Space

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2n} \\ \vdots & \vdots & & \vdots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \dots & \mathbf{a}_{mn} \end{pmatrix}$$

$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$ Row space, column space, nullspace

m x n matrix A	Subspace	Basis	Dimension
Row space	Subspace of R ⁿ	Non-zero rows in REF	Rank (# non-zero rows in REF)
Column space	Subspace of R ^m	Corresponding "pivot" columns in A	Rank (# pivot columns in REF)
Nullspace	Subspace of \mathbb{R}^n Same as solution space of $Ax = 0$	From the spanning vectors in the general solution	Nullity (# parameters in general solution)

Rank

```
If \mathbf{R} is a row-echelon form of \mathbf{A},
  rank(A) = the number of nonzero rows of R
            = the number of leading entries in R
             = the number of pivot columns in R
  = largest number of linearly independent rows in \mathbf{A} = dim (row space of \mathbf{A})
  = largest number of linearly independent columns in \mathbf{A} = dim (column space of \mathbf{A})
For an m \times n matrix \mathbf{A}, rank(\mathbf{A}) \leq \min\{m, n\}.
An m \times n matrix A with rank(A) = min\{m, n\} is said to be of full rank.
```

 $Rank(\mathbf{A}) = largest$ number of linearly independent rows in \mathbf{A} = largest number of linearly independent columns in A

Rank by inspection

What is the rank of each of the following matrices?

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} \quad \text{rank}(\mathbf{A}) = 1$$

$$rank(\mathbf{A}) = 1$$

All rows are scalar multiples of each other

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 0 & 0 & 0 \end{pmatrix} \quad \frac{\text{rank}(\mathbf{B})}{\text{Two rows that}} = 2$$

$$rank(\mathbf{B}) = 2$$

Two rows that are not scalar multiples of each other

$$\boldsymbol{C} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \quad \text{rank}(\boldsymbol{C}) = 2$$
Third row is the

$$rank(\mathbf{C}) = 2$$

Third row is the sum of first two rows Third column is the same as first column

Dimension Theorem of Matrix

 $rank(\mathbf{A}) + nullity(\mathbf{A}) = \# columns of \mathbf{A}$

pivot columns

(correspond to basis for column space of \mathbf{A}) rank(\mathbf{A})

non-pivot columns

(correspond to parameters in general solutions) nullity(A)

Row equivalence $A \rightarrow \rightarrow B$

Preserve row space and rank

Preserve nullspace and nullity

Does not preserve column space, but preserve linearity relations among columns

For both **A** and **R**:

- column#1 + column#4 = column#3
- column#1, #3, #4 are linearly dependent
- column#2, #3, #4 are linearly independent

LIVE LECTURE 8

8

True or False

LIVE LECTURE 8

9

Basis for Linear Span

```
Let V = \text{span}\{ u_1, u_2, ..., u_k \} Basis \leftarrow
```

We need to remove the redundant vectors among u_1 , u_2 , ..., u_k to get a basis for V.

Column space method:

- Form a matrix A using u₁, u₂, ..., u_k as its columns.
- Reduce A to row echelon form R
- Identify the pivot columns in R
- The corresponding columns in A form a basis for V.

Example

$$span\{(1,2,2,1), (3,6,6,3), (4,9,9,5), (-2,-1,-1,1), (5,8,9,4)\}$$

$$\begin{pmatrix}
1 & 3 & 4 & -2 & 5 \\
2 & 6 & 9 & -1 & 8 \\
2 & 6 & 9 & -1 & 9 \\
1 & 3 & 5 & 1 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 4 & -2 & 5 \\
0 & 0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Basis for the linear span: $\{(1,2,2,1), \frac{(3,6,6,3)}{(4,9,9,5)}, \frac{(-2,-1,-1,1)}{(5,8,9,4)}\}$

Deriving basis for Rⁿ

```
S = \{(2, -1, 0), (1, -1, 3), (-5, 1, 0), (1, 0, 1)\}
How to get a basis from S for \mathbb{R}^3?
```

Throw out redundant vectors from S
Arrange the vectors as columns of a matrix
Look for pivot columns of the REF

$$T = \left\{ \begin{pmatrix} 2 \\ 1 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\}$$

How to extend T to a basis for \mathbb{R}^4 ?

Add on non-redundant vectors to T

Arrange the vectors as rows of a matrix Look for 'missing' leading entries of the REF

Extending basis

$$S = \{(1, 4, -2, 5, 1), (2, 9, -1, 8, 2), (2, 9, -1, 9, 3)\}$$
 complete R to a 5x5 matrix

$$\mathbf{A} = \begin{pmatrix}
1 & 4 & -2 & 5 & 1 \\
2 & 9 & -1 & 8 & 2 \\
2 & 9 & -1 & 9 & 3
\end{pmatrix}$$
Gaussian
$$\mathbf{R} = \begin{pmatrix}
1 & 4 & -2 & 5 & 1 \\
0 & 1 & 3 & -2 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
form a basis for \mathbf{R}^5
are not redundant in row space of \mathbf{A}

$$\mathbf{E.g.} \ (0 \ 0 \ 1 \ 0 \ 0)$$
E.g. $(0 \ 0 \ 0 \ 0 \ 1)$

$$\{ (1, 4, -2, 5, 1), (2, 9, -1, 8, 2), (2, 9, -1, 9, 3), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1) \}$$

True or False

We can also use column space method to extend a set in Rⁿ to a basis for Rⁿ

$$\mathbf{A} = (\mathbf{c_1} \ \mathbf{c_2} \ \dots \ \mathbf{c_k}) \xrightarrow{\text{row echelon form}} \mathbf{R} = (\mathbf{c_1}^* \ \mathbf{c_2}^* \ \dots \ \mathbf{c_k}^*)$$

add the "missing" pivot columns

$$\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{\text{G.E.}} \mathbf{R} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$Av \in Column space of A$ Visualization

a linear combination of the columns of **A** belong to column space of **A**

For any $\mathbf{v} \in \mathbf{R}^n$, $\mathbf{A}\mathbf{v}$ belongs to the column space of \mathbf{A}

Every vector in the column space of \mathbf{A} has the form $\mathbf{A}\mathbf{v}$ for some $\mathbf{v} \in \mathbf{R}^n$

Consistency of LS and column space

Column space of AB

 \boldsymbol{A} : m \times n

B:
$$n \times k$$
 B = $(b_1 \ b_2 \ ... \ b_k)$

$$AB = (Ab_1) (Ab_2) ... (Ab_k)$$

columns of **AB** in terms of columns of **B**

each column of $AB \in \text{column space of } A$

column space of $AB \subseteq \text{column space of } A$

Rank(AB) VS Rank(A)

column space of $AB \subseteq \text{column space of } A$

$$rank(AB) \leq rank(A)$$

True or false:

column space of $AB \subseteq \text{column space of } B \subseteq \mathbf{x}$

$$rank(AB) \leq rank(B) \checkmark$$

row space of $AB \subseteq \text{row space of } B$

$$\dim(U+V)=\dim(U)+\dim(V)-\dim(U\cap V)$$

Exercise 4 Q23

$$rank(\mathbf{A} + \mathbf{B}) \leq rank(\mathbf{A}) + rank(\mathbf{B})$$

$$m{A} = (m{a}_1 \ m{a}_2 \ \dots \ m{a}_n)$$
 $U = \text{Column space of } m{A} = \text{span}\{m{a}_1, \, m{a}_2, \, ..., \, m{a}_n\}$
 $m{B} = (m{b}_1 \ m{b}_2 \ \dots \ m{b}_n)$
 $V = \text{Column space of } m{B} = \text{span}\{m{b}_1, \, m{b}_2, \, ..., \, m{b}_n\}$
 $m{A} + m{B} = (m{a}_1 + m{b}_1 \ m{a}_2 + m{b}_2 \ \dots \, m{a}_n + m{b}_n)$
 $W = \text{Column space of } m{A} + m{B} = \text{span}\{m{a}_1 + m{b}_1, \, m{a}_2 + m{b}_2, \, ..., \, m{a}_n + m{b}_n\}$

 $W \subseteq U + V \Rightarrow \dim W \leq \dim(U + V) \leq \dim(U) + \dim(V)$

 $U + V = \text{span}\{a_1, a_2, ..., a_n, b_1, b_2, ..., b_n\}$

Exercise 4 Q20

Suppose AB = 0.

Show that column space of $B \subseteq \text{nullspace of } A$

$$B = (b_1 \ b_2 \ ... \ b_k)$$
 $AB = (Ab_1 \ Ab_2 \ ... \ Ab_k)$
 $AB = 0$

$$\Rightarrow (Ab_1 \ Ab_2 \ \dots \ Ab_k) = 0$$

$$\Rightarrow Ab_1 = 0, Ab_2 = 0, ..., Ab_k = 0$$

$$\Rightarrow b_1, b_2, ..., b_k \in \text{nullspace of } A$$

 \Rightarrow column space of $B \subseteq$ nullspace of A

Solution set of non-homogeneous system

If we know the general solution of Ax = 0 and one particular solution of Ax = b, then we have the general solution of Ax = b.

```
general solution of \mathbf{A}\mathbf{x} = \mathbf{b} general solution of \mathbf{A}\mathbf{x} = \mathbf{b} \mathbf{A}\mathbf{x} = \mathbf{b} \mathbf{A}\mathbf{x} = \mathbf{b}
```

The solution set of $\mathbf{A}\mathbf{x} = \mathbf{b} = \{ \mathbf{u} + \mathbf{v} \mid \mathbf{u} \text{ belongs to nullspace of } \mathbf{A} \}$

nullspace of **A**

Solving Linear system with MATLAB

```
Ax = 0
>> rref( [A 0])
>> null(A)
                     (give basis for nullspace of A)
Ax = b (consistent)
                                                             general solution
                                                                 of Ax = b
>> rref( [A b])
>> A \ b
                        (give a particular solution)
>> linsolve(A, b)
```

Exercise 4 Q25(a) [Tutorial 7]

nullspace of **A** equals nullspace of **A**^T**A**

Strategy: Show $S \subseteq T$ and $T \subseteq S$

```
v \in \text{nullspace of } A \Rightarrow Av = 0 \Rightarrow A^{\mathsf{T}}Av = 0
```

 $\Rightarrow \mathbf{v} \in \text{nullspace of } \mathbf{A}^{\mathsf{T}} \mathbf{A}$

So nullspace of $A \subseteq$ nullspace of A^TA

```
v \in \text{nullspace of } A^TA \Rightarrow A^TAv = 0 \Rightarrow v^TA^TAv = 0 \Rightarrow (Av)^TAv = 0 \Rightarrow Av = 0 hint: sum of squares
```

So nullspace of $A^TA \subseteq$ nullspace of A

Map of LA

the zero space

A is an $n \times n$ matrix

A is invertible	chapter 2	A is not invertible
det A ≠ 0	chapter 2	det A = 0
rref of A is identity matrix	chapter 1	rref of A has a zero row
AX= 0 has only the trivial solution	chapter 1	AX= 0 has non-trivial solutions
AX= B has a unique solution	chapter 1	AX= B has no solution or infinitely many solutions
rows (columns) of A are linearly independent	chapter 3	rows (columns) of A are linearly dependent
row (column) space of A = R ⁿ	chapter 4	row (column) space of $A \neq R^n$
i.e. A is full rank rank(A) = n	chapter 4	rank(A) < n
.e. nullspace of A is nullity(A) = 0	chapter 4	nullity(A) > 0

to be continued