Kawasaki Quantum Summer Camp 2025

量子テレポーテーション

Jul 30, 2025

沼田祈史 Kifumi Numata IBM Quantum

量子テレポーテーションとは何だと思いますか? (予想)

はじめに:

量子テレポーテーションとは? (予想例)

量子テレポーテーションとは?

量子テレポーテーションとは?

量子テレポーテーションとは?

地上と通信衛星間の量子テレポーテーションの例

出典: https://arxiv.org/ftp/arxiv/papers/1707/1707.00934.pdf

量子テレポーテーションのプロトコル

- **(1) 地球のアリスがある量子 Q (暗号) を持っています。**
- (2) 特別な関係にあるふたごの量子 (2) が地球と人工衛星の上にあります。 この2つ量子の関係は「量子もつれ」という関係です。

量子テレポーテーションのプロトコル

(3) 地球のアリスが地上の2つの量子に特殊な測定(もつれ測定)をします。 (量子もつれ状態にあるボブの量子の状態が瞬時に変わります。)

量子テレポーテーションのプロトコル

(4) アリスが測定結果をメールや電話でボブに送り、 ボブはもらった結果をもとに自分の量子を補正します。 ボブの量子がアリスの持っていた暗号に変化します!

IBMの量子コンピューター

アリスからボブに暗号(量子状態)を送ります

(1) 地球のアリスがある量子 (Q) (暗号) を持っています。

(2) 特別な関係にあるふたごの量子 (1) が地球と人工衛星の上にあります。 この2つ量子の関係は「量子もつれ」という関係です。

(3) 地球のアリスが地上の2つの量子に特殊な測定(もつれ測定)をします。 (量子もつれ状態にあるボブの量子の状態が瞬時に変わります。)

(4) アリスが測定結果をボブに送り、 ボブはもらった結果をもとに自分の量子を補正します。 ボブの量子がアリスの持っていた暗号に変化します!

(補足) 量子テレポーテーションアルゴリズムの詳細

Qiskitではビットの並びが | q2 q1 q0>です $|\psi_0\rangle = |00\rangle \otimes (\alpha|0\rangle + \beta|1\rangle)$ Aliceの持っている暗号 Bob $|\psi_{1}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle)$ $= \frac{1}{\sqrt{2}}(\alpha|000\rangle + \alpha|110\rangle + \beta|001\rangle + \beta|111\rangle)$ $|\psi_3\rangle$ $|\psi_2
angle=rac{1}{\sqrt{2}}(lpha|000
angle+lpha|110
angle+eta|011
angle+eta|101
angle)$ q0が1の時のみq1にXを操作 $=rac{1}{\sqrt{2}}(lpha(|00
angle+|11
angle)|0
angle+eta(|01
angle+|10
angle)|1
angle)$ aとβでまとめる $|\psi_3
angle=rac{1}{2}(lpha(|00
angle+|11
angle)(|0
angle+|1
angle)+eta(|01
angle+|10
angle)(|0
angle-|1
angle)$ q0にHを操作 $=\frac{1}{2}((\alpha|0\rangle+\beta|1\rangle)|00\rangle+(\alpha|1\rangle+\beta|0\rangle)|10\rangle+(\alpha|0\rangle-\beta|1\rangle)|01\rangle+(\alpha|1\rangle-\beta|0\rangle)|11\rangle)$ q2にそのまま暗号が q1が1の時は q0が1の時は q0にZゲートをかける q2にXゲートをかける q2にXゲートをとZゲートを $\frac{1}{2}$ $\frac{1}$

