DUW - DYNAMIKA

- 1. Umiemy już (z kinematyki) policzyć:
 - współrzędne uogólnione q
 - wektor więzów Φ
 - Jakobian Φ_α
 - tę dziwną macierz Γ
 - macierze obrotów poszczególnych układów R_i
- 2. Dokładamy do tego, na podstawie danych:
 - macierz masową członu M
 - wektor sił uogólnionych Q
 - wektor nieoznaczonych mnożników Lagrange'a λ (nieznany!)

$$\mathbf{M} = \begin{bmatrix} \mathbf{M}_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{M}_n \end{bmatrix}, \text{ gdzie } \mathbf{M}_i = \begin{bmatrix} m_i & 0 & 0 \\ 0 & m_i & 0 \\ 0 & 0 & J_{z_i} \end{bmatrix} \text{ (a to przecież znamy z polecenia)}$$

Wektor sił uogólnionych \mathbf{Q} wyznaczamy kawałkami (które później zsumujemy). Będzie to część odpowiadająca za grawitację $\mathbf{Q}^{\mathbf{G}}$, część odpowiadająca za siły czynne $\mathbf{Q}^{\mathbf{F}}$ i część odpowiadająca za tłumiki $\mathbf{Q}^{\mathbf{G}}$. Poniżej masz wzory na policzenie tego dla każdego z członów ($\mathbf{Q}_{i}^{\mathbf{G}}, \mathbf{Q}_{i}^{\mathbf{F}}$ i $\mathbf{Q}_{i}^{\mathbf{G}}$), które najpierw sumujemy w celu uzyskania pełnego wektora dla członu \mathbf{Q}_{i} , a później wzór jak to skleić do całego globalnego \mathbf{Q} .

$$\mathbf{Q}_i^G = \begin{bmatrix} m_i \mathbf{g} \\ 0 \end{bmatrix}$$

gdzie \mathbf{g} jest <u>wektorem</u> grawitacji $[0, -9.81]^T$ (czyli w efekcie cały wektor $\mathbf{Q_i}^{\mathbf{G}}$ ma 3 elementy), a $\mathbf{m_i}$ to oczywiście masa

$$\mathbf{Q}_{i}^{F} = \begin{bmatrix} \mathbf{F} \\ (\mathbf{\Omega}\mathbf{R}_{i}\mathbf{s}^{(i)})^{T} \mathbf{F} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{2\times2} \\ (\mathbf{\Omega}\mathbf{R}_{i}\mathbf{s}^{(i)})^{T} \end{bmatrix} \mathbf{F}$$

gdzie F to wektor siły działającej <u>bezpośrednio</u> na dany człon, a $\mathbf{s}^{(i)}$ to wektor od początku układu π_i do dowolnego punktu na linii wektora F, zapisany w układzie π_i . Przyjmijmy, że w wektorku $\mathbf{s}^{(i)}$ chodzi o punkt przyłożenia siły, będzie najłatwiej. Tutaj jak widać już jest uwzględniony też moment pochodzący od F.

$$\mathbf{Q}_{i}^{C} = \begin{bmatrix} \mathbf{I}_{2\times2} \\ \left(\mathbf{\Omega}\mathbf{R}_{i}\mathbf{s}_{A}^{(i)}\right)^{T} \end{bmatrix} \mathbf{u} F, \qquad \mathbf{Q}_{j}^{C} = \begin{bmatrix} \mathbf{I}_{2\times2} \\ \left(\mathbf{\Omega}\mathbf{R}_{j}\mathbf{s}_{B}^{(j)}\right)^{T} \end{bmatrix} (-\mathbf{u} F)$$

Gdzie, po kolei:

u jest wersorem kierunkowym tłumika (wzdłuż tłumika, mamy to z obliczeń dla więzów postępowych)

 $F = c*(d_{prim})$ jest wartością siły

c jest współczynnikiem tłumienia tłumika

d_{prim} (tam powinna być kropka nad d) jest prędkością wydłużania siłownika (wykorzystujemy wartość z poprzedniego kroku całkowania)

 s_A i s_B to znowu wektorki do punktów na osi, po jednym przy każdym z ciał (też je już mamy)

3. Tym razem strategia jest od drugiej strony. Zamiast liczyć położeń i ich różniczkować najpierw uzyskujemy przyspieszenia każdego członu, a później to całkujemy. Będziemy to robić różnymi metodami. Ogólnie chodzi nam o rozwiązanie, a następnie całkowanie układu:

$$\begin{bmatrix} \mathbf{M}_{N \times N} & \mathbf{\Phi}_{\mathbf{q}}^T \\ \mathbf{\Phi}_{\mathbf{q}} & \mathbf{0}_{m \times m} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}}_{N \times 1} \\ -\lambda_{m \times 1} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{N \times 1} \\ \mathbf{\Gamma}_{m \times 1} \end{bmatrix}$$

gdzie znamy już wszystko poza wektorem, gdzie jest q_{bis} i λ - właśnie to chcemy policzyć. Po rozwiązaniu lecimy całkowanie trzema metodami (do wyboru).

Euler

Przykładowy kod na stronie 32-33 skryptu DUW_3 (skrypt Calkuj.m)

RK

Przykładowy kod na stronie 33 skryptu DUW_3 (skrypt Calkuj_ode45.m)

Baumgarte

Tutaj rozwiązujemy zamiast tego w każdym kroku układ poniżej (różnica jest w prawych stronach):

$$\begin{bmatrix} \mathbf{M} & \mathbf{\Phi}_{\mathbf{q}}^T \\ \mathbf{\Phi}_{\mathbf{q}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}} \\ -\lambda \end{bmatrix} = \begin{bmatrix} \mathbf{Q} \\ \mathbf{\Gamma} - 2\alpha \cdot \mathbf{\Phi}_{\mathbf{q}} \dot{\mathbf{q}} - \beta^2 \cdot \mathbf{\Phi} \end{bmatrix}$$

Przykładowy kod na stronie 34 skryptu DUW_3 (skrypt Calkuj_Baumgarte.m)