PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-234303

(43) Date of publication of application: 31.08.2001

(51)Int.Cl.

C22C 38/00 B21B 3/02 C21D C21D H01F 1/18 // H02K 1/02

(21)Application number: 2000-051861

(71)Applicant: SUMITOMO METAL IND LTD

(22)Date of filing:

28.02.2000

(72)Inventor: NAKAYAMA TAISEI

MITSUNAGA TAKASHI

(54) HIGH STRENGTH NONORIENTED SILICON STEEL SHEET EXCELLENT IN FATIGUE RESISTANCE AND ITS PRODUCING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To produce a high strength nonoriented silicon steel sheet excellent in fatigue resistance without causing deterioration in its magnetic properties.

SOLUTION: This steel sheet has a steel composition composed of ≤0.01% C, ≤3.3% Si, ≤2.0% Mn, ≤0.01% S, \leq 3.0% acid soluble Al, \leq 0.1% P, \leq 0.005% N and the balance Fe with inevitable impurities, and in which the following inequality (1) is satisfied: Sieq*σw/τ≥4.0...(1), wherein Sieg=Si+acid soluble Al+1/2Mn, σw is a fatigue limit (MPa), and τ is a ferritic crystal grain size (μ m). In its production, a slab having the above steel composition is heated at ≤1300° C, is hot-rolled and is thereafter (i) subjected to hot rolled sheet annealing at 600 to 1,000° C, or is (ii) subjected to one or two times cold rolling including process annealing as hot-rolled, is next subjected to finish annealing at 700 to 1,000° C and is moreover applied with surface coating of an organic matter or a combined material of an organic matter and an inorganic matter.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-234303 (P2001-234303A)

(43)公開日 平成13年8月31日(2001.8.31)

(51) Int.Cl. ⁷		識別記号		FI					テーマコード(参考)
C 2 2 C	38/00	303		C 2	2 C	38/00		303U	4K033
B 2 1 B	3/02			B 2	1 B	3/02			5 E O 4 1
C 2 1 D	8/12			C 2	1 D	8/12		Α	5H002
	9/46	501				9/46		501B	
C 2 2 C	38/06			C 2	2 C	38/06			
			審查請求	未請求	於 簡	項の数3	OL	(全 5 頁)	最終頁に続く
(21)出願番号		特願2000-51861(P200	(71)出願人 000002118						
						住友金	属工業	株式会社	
(22)出願日		平成12年2月28日(200	0. 2. 28)			大阪府	大阪市	中央区北浜	4丁目5番33号
				(72)	発明者	」 中山	大成		
						和歌山	県和歌	山市湊1850和	幹地 住友金属工
						業株式	会社和	歌山製鉄所四	勺
				(72)	発明者	至 三長	崇		
						和歌山	県和歌	山市湊1850都	針地 住友金属工
						業株式	会社和	歌山製鉄所P	勺
				(74)	代理人	100081	352		
						弁理士	広瀬	章一	
							•		最終頁に続く
				1					

(54) 【発明の名称】 耐疲労特性に優れた高強度無方向性電磁鋼板とその製造法

(57)【要約】

【課題】 磁気特性の劣化を招くことなく、耐疲労特性 に優れた、高強度の無方向性電磁鋼板を提供する。

【解決手段】 C:0.01%以下、Si:3.3 %以下、Mn:2.0 %以下、S:0.01%以下、酸可溶Al:3.0 %以下、P:0.1 %以下、N:0.005 %以下、残部Feおよび不可避不純物より成る鋼組成とし、下記式(1) を満たすようにする。

Sieq* σ w/ $\tau \ge 4.0$ · · · · · (1)

ただし、Sieq=Si+酸可溶Al+1/2Mn、 σ W は疲労限 (MPa)、 τ はフェライト結晶粒径 (μ m)である。製造にあたっては、上記鋼組成を有するスラブを1300℃以下で加熱し熱間圧延を行った後、(i)600~1000℃で熱延板焼鈍を行うか、あるいは(ii)熱間圧延ままま冷間圧延を1回または中間焼鈍をはさんで冷間圧延を2回行い、次いで700~1000℃で仕上焼鈍を行い、さらに、有機または、有機および無機の複合物よりなる表面コーティング行う。

【特許請求の範囲】

【請求項1】質量%で、

C:0.01%以下、Si:3.3%以下、Mn:2.0%以下、 S:0.01%以下、酸可溶A1:3.0%以下、P:0.1%以 下、

N:0.0050%以下、残部Feおよび不可避不純物より成る 鋼組成を有し、下記式(1)を満たすことを特徴とする耐 疲労特性に優れた高強度無方向性電磁鋼板。

Sieq* σ w/ $\tau \ge 4.0$ $\cdot \cdot \cdot \cdot \cdot (1)$

はそれぞれの化学成分の質量%)、σW は疲労限(MP a)、τはフェライト結晶粒径 (μm)である。

【請求項2】 請求項1記載の鋼組成を有するスラブを 1300℃以下の温度で加熱し熱間圧延を行った後、600~ 1000℃で熱延板焼鈍を行うか、あるいは熱間圧延まま、 冷間圧延を1回または中間焼鈍をはさんで冷間圧延を2 回以上行い、次いで700~1000℃で仕上焼鈍を行うこと を特徴とする、請求項1の式(1)を満たす耐疲労特性に 優れた高強度無方向性電磁鋼板の製造方法。

【請求項3】仕上げ焼鈍後に、有機または、有機および 無機の複合物よりなる表面コーティングを鋼板表面に形 成させる請求項2記載の高強度無方向性電磁鋼板の製造 方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、タービン発電機や 電気自動車の主モータ、工作機械用サーボモータなど高 速回転を必要とする回転機のロータ用として耐疲労特性 に優れかつ磁気特性の優れた高強度無方向性電磁鋼板と その製造方法に関する。

[0002]

【従来の技術】無方向性電磁鋼板はモータやトランスに 使用される。

【0003】近年、環境問題とエネルギー問題で特に回 転機の効率改善が求められている。発電機ではタービン 式でさらなる高速回転を指向しており、一方、モータで は電気自動車においては主モータが高トルクを得るため に高速回転を必要とするブラシレスDCモータや、工作 機械、ロボットなど応答性を高めるため高速回転を必要 とするサーボモータなど、高速回転に対する需要が高ま っている。

【0004】かかる高速回転の回転機では、回転子(ロ ータ) にかかる遠心力が重要な問題となる。特に永久磁 石を埋め込むブラシレスDCモータやサーボモータでは 埋め込んだ磁石がロータの電磁鋼板に対し常に遠心力に より圧縮応力をかける結果となり最悪の場合にはロータ が疲労破壊を起こす危険性がある。

【0005】従来技術では、高強度電磁鋼板として、た とえば特開平2-8346号公報や特開平2-22442 号公報 などに提案されているように、Ni、Mn、Nb、Zrなどを添 50 加することで強度を高める方法が知られている。しかし ながら、Ni、Nb、Zrなどの添加はコストアップを招くば かりか磁気特性を劣化させる欠点があった。

[0006]

【発明が解決しようとする課題】ここに、本発明の課題 は、磁気特性の劣化を招くことなく、耐疲労特性に優れ た、高強度の無方向性電磁鋼板とその製造方法を提供す ることである。

【0007】より具体的には、本発明の課題は表面コー ただし、Sieq=Si+酸可溶Al+1/2Mn(すべてSi、Al、Mn 10 ティング後に350MPa以上の疲労限を有し、50Hzで磁束密 度1.5Tの鉄損が10W/kg以下という磁気特性にも優れた無 方向性電磁鋼板とその製造方法を提供することである。

[0008]

【課題を解決するための手段】かかる課題を解決するた めに、本発明者らは種々検討の結果、下記の様な知見を 得て、磁気特性の劣化を招くことなく、耐疲労特性に優 れた無方向性電磁鋼板およびその製造方法を見出した。

【0009】すなわち、具体的には過去の疲労破壊した モータのロータを分析してみると、打ち抜かれた状態す なわち打ち抜き加工による微少な切り欠きをもった状態 での疲労限とその鋼材の結晶粒径に相関があることがわ かり、特に疲労限が350MPa未満の材料では10000rpmを超 えるような高速回転するモータでは切り欠き欠陥による 破壊を起こしたり、繰り返し応力による疲労破壊を起こ したりすることが分かった。

【0010】これらの破壊を明確にする指標として鋼材 化学成分、疲労限、結晶粒径を詳細に調べたところ、下 記式を満足することで破壊に対し十分であることが判明 した。

30 Sieq* $\sigma W / \tau \ge 4.0$

ただし、Sieg=Si+酸可溶Al+1/2Mn(Si、Al、Mnはいず れもそれぞれの化学成分の質量%)、σW は疲労限MPa で、τはフェライト結晶粒径 (μm)である。

【0011】かくして、本発明の要旨とするところは次 の通りである。

(1) 質量%で、C:0.01%以下、Si:3.3 %以下、Mn: 2.0 %以下、S:0.01%以下、酸可溶A1:3.0 %以下、 P:0.1 %以下、N:0.0050%以下、残部Feおよび不可 避不純物より成る鋼組成を有し、下記式(1)を満たすこ とを特徴とする耐疲労特性に優れた高強度無方向性電磁 鋼板。

[0012] Sieq* $\sigma w/\tau \ge 4.0$ \cdots (1) ただし、Sieq=Si+酸可溶Al+1/2Mn(すべてSi、Al、Mn はそれぞれの化学成分の質量%)、 σW は疲労限 (MP a)、τはフェライト結晶粒径 (μm)である。

【0013】(2) 上記(1) 記載の鋼組成を有するスラブ を1300℃以下の温度で加熱し熱間圧延を行った後、600 ~1000℃で熱延板焼鈍を行うか、あるいは熱間圧延ま ま、冷間圧延を1回または中間焼鈍をはさんで冷間圧延 を2回以上行い、次いで700~1000℃で仕上焼鈍を行う

ことを特徴とする、上記(1)の式(1)を満たす耐疲労特 性に優れた高強度無方向性電磁鋼板の製造方法。

【0014】(3) 仕上げ焼鈍後に、有機または、有機お よび無機の複合物よりなる表面コーティングを鋼板表面 に形成させる上記(2) 記載の高強度無方向性電磁鋼板の 製造方法。

[0015]

【発明の実施の形態】このように、本発明によれば、所 定成分よりなるスラブを熱間圧延後、酸洗し冷間圧延 し、あるいは熱延板焼鈍し酸洗後冷間圧延し、所定の板 10 厚1回または中間焼鈍をはさみ2回以上の冷間圧延によ って所定の板厚に仕上げた後、連続焼鈍にて結晶粒径を 制御した後、必要により、無機バインダを含む樹脂ある いは樹脂のみよりなる有機無機の複合あるいは有機コー ティングを施す。

【0016】まず、本発明の鋼組成の限定理由を以下に 示す。なお、本明細書において鋼組成を表す「%」は特 にことわりがない限り、「質量%」である。

【0017】C:Cは、0.01%を越えて含有すると磁気 る。好ましくは0.005 %以下とする。

【0018】Si:Siは、磁気特性改善に必須の元素であ るが、3.3 %を越えて含有させると冷間圧延が困難とな るばかりか、モータに加工した際に打抜き破面に微少ク ラックを生じ易くなるため、3.3 %以下とした。好まし くは2.5 %以下である。下限は特に規定されないが、一 般には0.5 %好ましくは1.0 %である。

【0019】Mn:Mnは、磁気特性改善に有効な元素であ*

本発明では高速回転するモータでの疲労特性が重要とな 30 る。すなわち Sieq $*\sigma W/\tau$ が4.0 未満の材料は、合金成 分不足で母材そのものの疲労特性不良の場合か、合金成 分は十分だが粗大結晶粒であって切欠き疲労特性不良の 場合で、いずれも本発明の高速回転用部材に適しないた め、4.0 以上とした。上限は特に規定しないが、一般に は、15以下で十分であり、冷間圧延可能な成分でのSieq が5.0 以下であり結晶粒径 τ は最小でも 1μ m程度しか 工業的には製造できないことと、疲労限σW はフェライ ト組織では600MPaを超えないことを考慮しても、3000を 超えることはない。

【0026】本発明によれば、上述のような耐疲労性に 優れた高強度無方向性電磁鋼板は、スラブの熱間圧延、 熱延板焼鈍後あるいは熱間圧延まま、冷間加工を行い、 次いで仕上げ焼鈍を行うことで製造される。以下、これ らの製造工程について説明する。

【0027】まず、上記鋼組成を有するスラブを用意 し、1300℃以下の温度で加熱し通常の熱間圧延を行う。 1300℃を越えた加熱温度は鋼中のMnS を溶解させ磁気特 性の劣化を招く。圧延性を確保するために、好ましくは 1000~1200℃である。

*るが2.0%を越えて添加すると冷間圧延が困難となるた め、2.0 %以下とした。好ましくは、下限は0.1 %、上 限は1.0%である。さらに好ましくは0.1 ~0.7 %であ

【0020】S:Sの添加は逆に磁気特性を劣化させる ため S は 0.01%以下とした。好ましくは 0.005 %以下で ある。

【0021】酸可溶A1:磁気特性を改善するのに重要な 元素であるが、3.0%を越えて含有すると硬さの著しい 上昇をまねき冷間圧延が困難となるばかりかモータに加 工した際に打抜き破面に微少クラックを生じ易くなるた め3.0 %以下とした。好ましくは0.6 %以上2.5 %以下 である。

【0022】P:打抜き性を確保するための機械的性質 を改善するのに重要であるが0.1 %を越えて含有すると 冷間圧延時の破断を引き起こすため0.1 %以下とした。 好ましくは0.08%以下である。

【0023】N:磁気特性にとって有害でありA1と結合 したAIN を形成し結晶粒を微細化させ磁気特性劣化をま 時効が起こり磁気特性を劣化させるため0.01%以下とす 20 ねくのでNを0.0050%以下とした。好ましくは0.0035% 以下である。

> 【0024】Sieq* σW/τ:Sieqは、磁気特性を改善 し、機械的強度を高める元素の当量であり、下記式で表 される。この値が高いほど鋼材そのものの疲労に対し効 果がある。ただし、過度の添加では冷間圧延が困難とな るばかりかその後の仕上げ焼鈍で結晶粒が粗大となり、 切り欠き疲労特性は逆に低下する。

[0025]

Sieq = Si(%) +酸可溶 A1(%) +1/2Mn(%) · · · (2)

【0028】熱間圧延それ自体は慣用のそれであればよ く、特に制限はないが、好ましくは、特開昭56-130425 号公報のように行えばよい。

【0029】熱間圧延後、場合により、さらなる磁気特 性改善のために所望により、熱延板焼鈍を行う。熱延板 焼鈍温度は600 ℃未満では効果がなく、1100℃を越える と結晶粒が過度に粗大化し、冷間圧延時に破断等のトラ ブルを引き起こす。

【0030】熱延板焼鈍を行わない場合には、熱間圧延 ままで冷間圧延を行う。このときの冷間圧延は1回また は中間焼鈍をはさみ2回以上で行う。冷間圧延による仕 上げ板厚は、好ましくは、0.2 ~0.7 mmである。

【0031】仕上げ焼鈍は、好ましくは連続焼鈍により 700 ~1000℃で行う。仕上焼鈍温度700 ℃未満では再結 晶組織が十分得られず磁気特性は不良となり、かつ硬さ の上昇を招く。一方、1000℃超では結晶粒が著しく粗大 化し、モータコア抜き加工の際、微少な割れを生じ疲労 特性が劣るので1000℃以下とする。

【0032】焼鈍後、打抜性を重視する用途には、鋼板 表面に樹脂のみあるいは、樹脂と無機バインダの混合物 50 からなる表面コーティングを施す。この表面コーティン

5

グは、慣用のものであればよく、特に制限はない。 【0033】

【実施例】C:0.002 %、Si:2.3 %、Mn:0.2 %、S:0.003 %、酸可溶A1:1.9 %、P:0.02%、N:0.0018%、残部Feおよび不可避不純物より成る基本鋼組成を有するスラブ(227 mm 厚、1000mm幅)を1150℃で加熱し通常の熱間圧延を行い、2.0 mm厚の熱延コイルに仕上げた。

【0034】熱延板焼鈍を800 ℃で行い、通常の酸洗後、1回の冷間圧延で0.50mm厚の冷延コイルに仕上げた。一部のものは熱延板焼鈍を行わずに、熱間圧延まま冷間圧延を行った。

【0035】次いで、850 ℃の連続焼鈍にて再結晶焼鈍である仕上げ焼鈍を行った。かかる再結晶焼鈍後のフェライト結晶粒径は55μmであった。

【0036】このようにして製造した冷延鋼板に対し *

* て、アクリル樹脂エマルジョン、クロム酸マグネシウム、ほう酸よりなる膜厚0.4 μmの表面コーティングをロールコータ方式により鋼板表面に形成させた。得られた供試材に対して磁気特性および疲労特性を評価した。磁気特性はJIS C-2550に規定されたエプスタイン試験枠を用い、50Hzで磁束密度1.5Tの時の鉄損で比較し10W/kg以下を良好とした。

【0037】疲労特性は引張試験の形状試片を打ち抜き加工により作成し、電磁片振り振動法による疲労試験を10 行い疲労限を測定した。疲労限は350MPa以上を良好とした。なお、本例(No.1~9)では450~590MPaの引張強度が得られた。表1に供試材の鋼組成と共に製造条件、特性をまとめて示す。

【0038】 【表1】

4	M		豉	∌	(10.00	:s%)				スラブ 加熱	熱廷板 焼鈍	仕上 板厚	仕上 焼鈍	σW	τ	0 W/T	Sieq* σ¶/τ	¥14×80
ħ	重	С	s	P	5i	Mn	A1	N	Sieq	(℃)	(°C)	(mm)	(°C)	(NPa)	(m m)		D 47 2	(T/kg)
	1	0.002	0.003	0. 02	2. 3	0. 2	1. 9	0.0027	4.8	1150	800	0.5	850	426	55	7, 75	33, 31	3.8
本	2	0,003	0,004	0. 05	1. 7	0. 2	1. 9	0.0033	3. 7	1180	780	D. 85	880	433	85	6, 66	24.65	3.2
7	3	0.003	0.005	0.05	1	1. 9	1. 3	0.0015	3, 3	1150	800	0, 5	915	386	52	7. 42	24. 13	3.7
発	4	0.001	0,002	0, 03	1, 8	0.3	2.3	0.0011	4, 3	1150	800	0, 35	890	369	41	9,00	38, 25	2, 9
明	5	0, 002	0.002	0. 03	2. 0	0. 2	1. 1	0, 0009	4. 1	1150	800	D. 27	820	401	79	5.08	20. 81	2.7
34	6	0. 804	0.005	0. D5	0. 6	0. 5	1. 5	0. 0023	2. 4	1150	なし	0.5	750	355	24	14. 79	34. 76	4. 9
例	7	0.003	0.001	0.01	0.8	0. 5	0. 7	0.0041	1.8	1150	なし	0.85	790	369	39	9.46	16. 56	4. 5
	8	0.003	0.002	0, 02	2	0. 2	2	0.0032	4. J	1150	なし	0, 65	800	390	95	4, 11	16, 83	8, 5
	9	0,008	0. 01	0.08	0. 3	2	0. 9	0.0019	2. Z	1150	800	0. 5	920	367	60	6, 12	13, 46	6
	10	0,005	0, 001	0. 02	4	0, 3.	1	0. 0046	5. 2	1150	860		冷	Œ	破	断		
	11	0.008	0.003	0.05	0.5	2. 7	1. 7	0.0035	3.6	1150	なし		冷	Œ	酸	断		
比	12	0, 003	0.005	9. 05	1	1.9	4	0,0008	6	1150	850		冷	Œ	破			
較	13	0.001	0, 005	D, GB	0, 9	0.3	0. 3	0, 0022	0, 8	1150	900	0, 5	950	315	105	3,00	2, 25	5,67
**	14	0.002	0.004	0.03	3. 5	1.2	0.5	0.0019	4.6	1150	800	0, 35	1085	299	150	1.99	9, 17	2, 3
例	15	0.004	0, 05	0.05	1	1.7	1.5	0.0022	3. 4	1150	なし	0.35	1050	305	107	2.85	9, 55	2, 59
	16	0.03	0.001	0.01	0.8	1.9	2	0.0072	3. 3	1150	なし	0.5	850	401	35	11.46	87. 24	10. 52
	17	0.003	0.001	0.85	2. 3	0. 2	1	0,0008	3. 4	1150	なし		冷	圧.	破	断		
	18	0,003	0.001	0.01	1. 3	2	0	0.0055	2. 8	1150	なし	0.5	850	285	90	3. 17	7. 28	7. 3

[0039]

【発明の効果】以上説明してきたように、本発明によれば、表面コーティング後に350MPa以上の疲労限を有し、※

※50Hzで磁束密度1.5Tの鉄損が10W/kg以下という磁気特性 にも優れた無方向性電磁鋼板が提供されるのであって、 その実用上の意義は大きい。

フロントページの続き

(51) Int.C1.		識別記号	FΙ		テーマコード(参考)
H O 1 F	1/16		H O 1 F	1/16	A
	1/18			1/18	
// H02K	1/02		H O 2 K	1/02	Z

F ターム(参考) 4K033 AA01 FA01 FA13 HA01 HA03

KAOO RAO3 SAO3 TAO3

5E041 AA02 AA19 BC01 BC05 CA04

HB05 HB07 HB11 NN01 NN06

NN17 NN18

5H002 AA08

1. JP,2001-234303,A