

Cairo University-Faculty of Engineering

Network Communication Simulation Project

Name	ID	Sec	BN		
محمد شعبان محمد حسن	9230775	3	44		
نبيل ابراهيم عبدالعاطي عبدالرازق	9230945	4	26		

Project Supervisor: Dr Khaled Fouad

Course: ELC 2080

1-System Design: Here's a flow chart of the system of RTOS Communicating Tasks S&W

Results and Discussion: 1-Troughput_values

Expected the Throughput become Less with increase in Pdrop& Tout

TOUT P_DROP	2%	4%	8%
150	9127	8891	8727
175	8544	8382	7957
200	8146	7941	7682

1.1-Plot the throughput

1-as a function of P drop for different values of timeout period Tout

2-as a function of Tout for different values of P drop

2) average number of transmissions of a packet as function _of Pdrob

TOUT P_DROP	2%	4%	8%
150	1.374	1.382	1.411
175	1.343	1.362	1.385
200	1.316	1.341	1.348

- 1. As drop % increases, average transmissions per packet increase
- 2. As TOUT increases, retransmissions become slower, possibly lowering retries but increasing delay

3)Total_packets were dropped due to being transmitted more than 4 times.

TOUT P_DROP	2%	4%	8%
150	234	220	237
175	233	229	238
200	229	224	227

4) 3D_distribution_of_average number of transmissions

Implementation Of GBN System

1-System Design: GBN and S&W have similar flowcharts, but S&W sends one packet at a time, while Go-Back-N sends multiple before ACKs. So, the Different Part of Flow Sending and Acks Handling

Different Part OF Flow For GBN THAT HAVE WINDOW SIZE N

2-Results and Discussion: 1-Troughput_values

WINDOW SIZE	N = 2		N= 4		N=8				
TOUT P_DROP	2%	4%	8%	2%	4%	8%	2%	4%	8%
150	6692	6590	6103	10275	9549	8570	11757	11599	10340
175	6502	6407	5907	9226	8911	8181	8944	8974	7802
200	6308	6102	5894	8308	8166	7529	8526	8394	7416

- Larger window size → more packets sent before waiting for ACKs
- Better bandwidth utilization so Throughput increases
- Expected the Throughput become Less with increase in Pdrop& Tout

1- throughput as a function of P_drop for different values of timeout period Tout (N=2)

2- throughput as a function of Tout for different values of P_drop (N=2)

1- throughput as a function of P_{drop} for different values of timeout period Tout (N = 4)

2- throughput as a function of Tout for different values of P_drop (N=4)

1- throughput as a function of P_drop for different values of timeout period Tout (N=8)

2- throughput as a function of Tout for different values of P_drop (N=8)

