COMP 472: Artificial Intelligence Machine Learning Naive Bayes Classification video #2

Russell & Norvig: Sections 12.2 to 12.6

Today

- Introduction to ML
- 2. Naïve Bayes Classification YOU ARE HERE!

- a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks

Motivation

- How do we represent and reason when the is uncertainly in the necessary knowledge?
 - It <u>might</u> rain tonight
 - If you have red spots on your face, you <u>might</u> have the measles
 - □ This e-mail is most likely spam
 - I can't read this character, but it looks like a "B"
 - These 2 pictures are very likely of the same person
 - **...**
 - One way, is to use probability theory

Remember...

- P is a probability function:
 - $0 \le P(A) \le 1$
 - $P(A) = 0 \Rightarrow$ the event A will never take place
 - \neg P(A) = 1 \Rightarrow the event A must take place
 - $\sum_{i} P(A_{i}) = 1 \Rightarrow$ one of the outcomes A_{i} will take place
 - $P(A) + P(\sim A) = 1$
- Joint probability
 - intersection $A_1 \cap ... \cap A_n$ is an event that takes place if all the events $A_1,...,A_n$ take place
 - □ denoted $P(A \cap B)$ or P(A,B)
- Sum Rule
 - union $A_1 \cup ... \cup A_n$ is an event that takes place if at least one of the events $A_1,...,A_n$ takes place
 - □ denoted $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Conditional Probability

- Prior (or unconditional) probability
 - Probability of an event before any evidence is obtained
 - P(A) = 0.1 P(rain today) = 0.1
 - i.e. Your belief about A given that you have no evidence
- Posterior (or conditional) probability
 - Probability of an event given that you know that B is true
 (B = some evidence)
 - P(A|B) = 0.8 P(rain today | cloudy) = 0.8
 - □ i.e. Your belief about A given that you know B

Conditional Probability (con't)

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

Chain Rule

With 2 events, the probability that A and B occur is:

$$P(A,B) = P(A|B) \times P(B)$$

- With 3 events, the probability that A, B and C occur is:
 - The probability that A occurs

 - Times, the probability that B occurs, assuming that A occurred
 Times, the probability that C occurs, assuming that A and B have occurred
- With n events, we can generalize to the Chain rule:

$$P(A_{1}, A_{2}, A_{3}, A_{4}, ..., A_{n})$$

$$= P(A_{1}) \times P(A_{2} | A_{1}) \times P(A_{3} | A_{1}, A_{2}) \times ... \times P(A_{n} | A_{1}, A_{2}, A_{3}, ..., A_{n-1})$$

So what?

- we can do probabilistic inference
 - □ i.e. infer new knowledge from observed evidence

Joint probability distribution:

Getting the Probabilities

 in most applications, you just count from a set of observations

$$P(A) = \frac{count_of_A}{count_of_all_events}$$

$$P(A | B) = P(A \cap B) = \frac{count_of_A_and_B_together}{count_of_all_B}$$

Combining Evidence

- Assume now 2 pieces of evidence:
- Suppose, we know that
 - P(Cavity | Toothache) = 0.12
 - □ P(Cavity | Young) = 0.18
- A patient complains about Toothache and is Young...
 - □ what is P(Cavity | Toothache ~ Young)?

Combining Evidence

	Toothache		~Toothache		sidence t)1
	Young	> Young	Young	~ Young ev	idouse #2
Cavity	0.108	0.012	0.072	0.008	
~Cavity	0.016	0.064	0.144	0.576	

 $P(Toothache \cap Cavity \cap Young)$

- But how do we get the data?
- In reality, we may have dozens, hundreds of variables
- We cannot have a table with the probability of all possible combinations of variables
 - \Box Ex. with 16 binary variables, we would need 2^{16} entries

Independent Events

- In real life:
 - some variables are independent...
 - eg: living in Montreal & tossing a coin
 - P(Montreal, head) = P(Montreal) * P(head)
 - eg: probability of tossing 2 heads in a row
 - \square P(head, head) = 1/2 * 1/2 = 1/4
 - some variables are not independent...
 - eg: living in Montreal & wearing boots
 - □ P(Montreal, boots) ≠ P(Montreal) * P(boots)

Independent Events

- Two events A and B are independent:
 - if the occurrence of one of them does not influence the occurrence of the other
 - i.e. A is independent of B if P(A) = P(A|B)
- If A and B are independent, then:
 - $P(A,B) = P(A|B) \times P(B) \text{ (by chain rule)} \text{ (by elevious stide 7)}$ $= P(A) \times P(B) \text{ (by independence)}$
- To make things work in real applications, we often assume that events are independent
 - $\neg P(A,B) = P(A) \times P(B)$

Conditional Independent Events

- Two events A and B are <u>conditionally</u> independent given <u>C</u>:
 - Given that C is true, then any evidence about B cannot change our belief about A

when C is True

Bayes' Theorem

given:

$$P(A|B) = P(A,B)$$

$$P(B)$$
so $P(A,B) = P(A|B) \times P(B)$

$$P(B|A) = \frac{P(A,B)}{P(A)}$$
 so $P(A,B) = P(B|A) \times P(A)$

then:

$$P(A|B) \times P(B) = P(B|A) \times P(A)$$

and:

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

So?

- We typically want to know: P(Hypothesis | Evidence)
 - P(Disease | Symptoms)... P(meningitis | red spots)
 - P(Cause | Side Effect)... P(misaligned brakes | squeaky wheels)
- But P(Hypothesis | Evidence) is hard to gather
 - ex: out of all people who have red spots... how many have meningitis?
- However P(Evidence | Hypothesis) is easier to gather
 - ex: out of all people who have the meningitis ... how many have red spots?

P(Hypothesis | Evidence) = P(Evidence | Hypothesis) × P(Hypothesis)

P(Evidence) = P(Evidence)

Assume we only have 1 hypothesis

Assume:

- P(spots=yes | meningitis=yes) = 0.4
- P(meningitis=yes) = 0.00003
- P(spots=yes) = 0.05
 P(meningitis = yes) spots = yes)
 - $P(spots = yes | meningitis = yes) \times P(meningitis = yes)$

$$P(spots = yes)$$
0.4 × 0.00003

 $=\frac{0.4\times0.00003}{0.05}=0.00024$

→ If you have spots... you are more likely to have meningitis than if we don't know about you having spots

- Predict the weather tomorow based on tonight's sunset...
- Assume we have 3 hypothesis...

 - \Box H_3 : weather will be mixed $P(H_3) = 0.3$

P(E2 |H1)

- And 1 piece of evidence with 3 possible values
 - \Box E_1 : today, there's a beautiful sunset
 - □ E₂: today, there's a average sunset <</p>
 - □ E₃: today, there's no sunset

P(E _x H _i)	E ₁	E ₂	E ₃
H ₁	0.7	0.2	0.1
H ₂	0.3	0.3	0.4
H ₃	0.4	0.4	0.2

- Observation: average sunset (E₂)
- Question: how will be the weather tomorrow?
 - □ P(H_i | E₂)?
 - predict the weather that maximizes the probability
 - \Box select H_i such that $P(H_i \mid E_2)$ is the greatest

$$P(H_i | E_2) = \frac{P(H_i) \times P(E_2 | H_i)}{P(E_2)}$$

$$P(E_2) = P(H_1) \times P(E_2 | H_1) + P(H_2) \times P(E_2 | H_2) + P(H_3) \times P(E_2 | H_3)$$

$$=.2x.2+.5x.3+.3x.4=.04+.15+.12=0.31$$

$$P(H_{1} | E_{2}) = \frac{P(H_{1}) \times P(E_{2} | H_{1})}{P(E_{2})} = \frac{.2x.2}{.2x} = .129$$

$$P(H_{2} | E_{2}) = \frac{P(H_{2}) \times P(E_{2} | H_{2})}{P(E_{2})} = \frac{.5x.3}{.3x} = .384$$

$$P(H_{3} | E_{2}) = \frac{P(H_{3}) \times P(E_{2} | H_{3})}{P(E_{2})} = \frac{.3x.4}{.3x} = .387$$
We argument

 \Rightarrow H₂ is the most likely hypothesis, given the evidence

$$P(H_2 \mid E_2)$$
 is the highest

Tomorrow the weather will be bad H2

$$H_{NB} = \underset{H_{i}}{\operatorname{argmax}} \underbrace{\frac{P(H_{i}) \times P(E|H_{i})}{P(E)}}_{P(E)}$$

function

Bayes' Reasoning

- Out of n hypothesis...
 - □ we want to find the most probable H_i given the evidence E
- So we choose the H_i with the largest P(H_i|E)

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} P(H_i | E) = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E | H_i)}{P(E)}$$

- But... P(E)
 - \Box is the same for all possible H_i (and is hard to gather anyways)
 - so we can drop it
- So Bayesian reasoning:

$$H_{NB} = \operatorname{argmax} \frac{P(H_i) \times P(E|H_i)}{P(E)} = \operatorname{argmax} P(H_i) \times P(E|H_i)$$

Representing the Evidence

- The evidence is typically represented by many attributes/features
 - beautiful sunset? clouds? temperature? summer?, ...
- so often represented as a feature/attribute vector

	evidence				hypothesis
	sunset	clouds	temp	summer	weather
	a_1	a_2	a ₃ .	a ₄	tomorrow
e1	beautiful	no	high	yes	Nice

= e1 = <sunset:beautiful, clouds:no, temp:high, summer:yes>

Sections

Values

Combining Evidence

Now we have decomposed the joint probability distribution into much smaller pieces...

Combining Evidence

	e_{2}^{2}	
toothache	young	cavity
yes	yes	yes? or no?

But since we only care about <u>ranking</u> the hypothesis...

Example 4 many pieces of evidence

2 hypol	theois 2 clooped
Play Tennis	

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
Day1	Sunny	. Hot	- High -	Weak-	No Hi=
Day2	Sunny	Hot	High	Strong	No
Day3	Overcast.	Hot	High	Weak -	-> Ves H2 3
Day4	Rain-	Mild	High	Weak -	> Ves
Day5	Rain	Cool	Normal	Weak	Ves
Day6	Rain	Cool	Normal	Strong	No
Day7	Overcast	Cool	Normal	Strong	Mes
Day8	Sunny	Mild	High	Weak	No
Day9	Sunny	Cool	Normal	Weak	Yes
Day10	Rain	Mild	Normal	Weak	Ves
Day11	Sunny	Mild	Normal	Strong	Mes
Day12	Overcast	Mild	High	Strong	Ves
Day13	Overcast	Hot	Normal	Weak	Yes
Day14	Rain	Mild	High	Strong	No

play tennis

Goal: Given a new instance X=<a1,..., an>, classify as Yes/No

$$H_{NB} = \underset{H_{i}}{\operatorname{argmax}} \frac{P(H_{i}) \times P(E \mid H_{i})}{P(E)} = \underset{H_{i}}{\operatorname{argmax}} P(H_{i}) \times P(E \mid H_{i}) = \underset{H_{i}}{\operatorname{argmax}} P(H_{i}) \times P(< a_{1}, a_{2}, a_{3}, ..., a_{n} > \mid H_{i}) = \underset{H_{i}}{\operatorname{argmax}} P(H_{i}) \times \underset{H_{i}}{\prod} P(a_{j} \mid H_{i})$$

 Naïve Bayes: Assumes that the attributes/features are conditionally independent given the hypothesis

• Goal: Given a new instance $X = \langle a_1, ..., a_n \rangle$, classify as Yes/No

- 1. 1st estimate the probabilities from the training examples:
 - a) For each hypothesis H_i estimate P(H_i)
 - For each attribute value a_j of each instance (evidence) estimate $P(a_j | H_i)$

1. TRAIN:

compute the probabilities from the training set

P(PlayTennis = yes) =
$$9/14 = 0.64$$

P(PlayTennis = no) = $5/14 = 0.36$ prior probabilities P(H_i)

$$P(Wind = strong | PlayTennis = no) = 3/5 = 0.60$$

conditional probabilities $P(a_i | H_i)$

Application of Bayesian Reasoning

- Categorization: P(Category | Features of Object)
 - Diagnostic systems: P(Disease | Symptoms)
 - Text classification: P(sports_news | text)
 - Character recognition: P(character | bitmap)
 - Speech recognition: P(words | acoustic signal)
 - Image processing: P(face_person | image features)
 - Spam filter: P(spam_message | words in e-mail)

Digit Recognition

< 1,1:255, LZ:100,

28,28:255

784 BotuKes

MNIST dataset

- data set contains handwritten digits from the American Census Bureau employees and American high school students
- 28 x 28 grayscale images
- training set: 60,000 examples
- test set: 10,000 examples.
- Features: each pixel is used as a feature so:
 - there are $28 \times 28 = 784$ features
 - each feature = 256 greyscale value
- Task: classify new digits into one of the 10 classes

Postal Code Recognition

```
BAM BAM
42 T-REX RD.
PANGAEA, RB 48016

FRED FLINSTONE
69 OLD SCHOOL AVE
BEDROCK, OLDEN-TOWN
77005
```


Comments on Naïve Bayes Classification

- A simple probabilistic classifier based on Bayes' theorem
 - with strong (naive) independence assumption
 - i.e. the features/attributes are conditionally independent given the classes
 - eg: assumes that the word ambulance is conditionally independent of the word accident given the class SPORTS

BUT:

- fast, simple
- gives confidence in its class predictions (i.e., the scores)
- surprisingly very effective on real-world tasks
- basis of many spam filters

Today

- Introduction to ML
- Naïve Bayes Classification video #2

 Application to Spam Filtering video #3
- 3. Decision Trees
- 4. (Evaluation
- Unsupervised Learning)
- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks

Up Next

- 1. Introduction to ML
- 2. Naive Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks