

(1) 2717272/22-03

(2) Е 21 В 23/00; Е 21 В 118 (72) Б. А. Кирш

11) Всесоюзный науч-

ий институт по тех-

ВОЯСОВА ДЛЯ ОДУ-

ГРУБ В СКВАЖИНЕ,

с. шпиндель, якорь,

ещеется тем, что, с

возможности исполь-

и эксплуатационных

ния надежности, оно

зительной храповой

и муфты расположены

вне корпуса уст-

ю п. 1, отличаю-

механизм поворота

винтовой пары — спи-

ремедиенного на кор-

реплеченного на шпин-

вышеяя надежности захвата керна, керкоподрезающая кромка выполнена в форме ломаной линии с горизонтальными и наклонными участками, при этом угол между ними Δ определяется по формуле

$$\Delta = \arctg \frac{1,7}{\sqrt{1,34 - 1}} - \frac{\pi}{90}$$

а сама кромка расположена относительно оси рычажка на расстоянии L , определяемое по формуле

$$L = 1,34^n$$

где n — порядковый номер ряда расположения рычажка в направлении сверху вниз;

1 — радиальное расстояние между кернообразующей кромкой породоразрушающего якоря и осью рычажка.

2960822/22-03

Е 21 В 23/00

Б. Л. Нечаев, В. А. Гецкин (71) Калининско-союзного научно-исследовательского института по креплению скважин и буровым растворам

(54) (57) СПОСОБ РЕМОНТА ОБСАДНЫХ КОЛОНН,

включающий спуск в скважину пластира для ликвидации большей интервала повреждения обсадной колонны, его расширение и прижатие к обсадной колонне путем создания радиальных нагрузок, отличающихся тем, что, с целью уменьшения напряжений, возникающих в теле обсадной колонны в интервале повреждения, на пластыре выше и ниже интервала повреждения обсадной колонны создаются радиальные нагрузки большие, чем радиальные нагрузки на пластыре, соответствующие интервалу повреждения обсадной колонны.

(11) 909114 (21) 2773784/22-03

(22) 31.05.79 3(51) Е 21 В 29/00

(53) 622.248.13 (72) С. Ф. Петров, М. Л. Кисельман, В. И. Мишин и С. В. Виноградов (71) Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам

(54) (57) СПОСОБ РЕМОНТА ОБСАДНЫХ КОЛОНН,

включающий спуск в скважину пластира для ликвидации большей интервала повреждения обсадной колонны, его расширение и прижатие к обсадной колонне путем создания радиальных нагрузок, отличающихся тем, что, с целью уменьшения напряжений, возникающих в теле обсадной колонны в интервале повреждения, на пластыре выше и ниже интервала повреждения обсадной колонны создаются радиальные нагрузки большие, чем радиальные нагрузки на пластыре, соответствующие интервалу повреждения обсадной колонны.

(11) 909115 (21) 2924656/22-03

(22) 03.07.80 3(51) Е 21 В 31/00

(53) 622.248.4 (72) Н. Г. Курбанов, А. П. Гасанов, С. Л. Айдынов и Н. Н. Рзаев

(54) (57) 1. ЛОВИТЕЛЬ КАБЕЛЯ, содержащий корпус и захват, отличающиеся тем, что, с целью повышения надежности извлечения кабеля целиком путем его принудительного вво-

2967688/22-03

Е 21 В 25/14

2) Ю. Е. Варсобин ордена Трудового и ордена Октябрьского института нефтехимии

(f1) 909117 (21) 2892
(22) 04.03.80 3(51) Е 21

(11) 909114 (21) 2773784/22-03

(22) May 31, 1979 3(51) E 21 B 29/00

(53) 622.248.13 (72) S. F. Petrov, M. L. Kisel'man, V. I. Mishin, and S. V. Vinogradov (71)
All-Union Scientific Research Institute of Well Casing and Drilling Muds

(54) (57) METHOD FOR REPAIR OF CASINGS,

including lowering into the well of a patch of length greater than the damaged section of casing, expanding it and squeezing it against the casing by creating radial loads, *distinguished by the fact that*, with the aim of reducing the stresses arising in the body of the casing in the damaged section, radial loads are created on the patch above and below the damaged section of the casing that are larger than the radial loads on the patch corresponding to the damaged section of the casing.

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following Patents and Abstracts from Russian to English:

ATLANTA
BOSTON
BRUSSELS
CHICAGO
DALLAS
DETROIT
FRANKFURT
HOUSTON
LONDON
LOS ANGELES
MIAMI
MINNEAPOLIS
NEW YORK
PARIS
PHILADELPHIA
SAN DIEGO
SAN FRANCISCO
SEATTLE
WASHINGTON, DC

Patent 1786241 A1
Patent 989038
Abstract 976019
Patent 959878
Abstract 909114
Patent 907220
Patent 894169
Patent 1041671 A
Patent 1804543 A3
Patent 1686123 A1
Patent 1677225 A1
Patent 1698413 A1
Patent 1432190 A1
Patent 1430498 A1
Patent 1250637 A1
Patent 1051222 A
Patent 1086118 A
Patent 1749267 A1
Patent 1730429 A1
Patent 1686125 A1
Patent 1677248 A1
Patent 1663180 A1
Patent 1663179 A2
Patent 1601330 A1
Patent SU 1295799 A1
Patent 1002514

PAGE 2
AFFIDAVIT CONTINUED
(Russian to English Patent/Abstract Translations)

Kim Stewart

Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
9th day of October 2001.

Maria A. Serna

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX