Selected Answers to Exercise 3*

DING Chao

April 15, 2019

1 P47-13(3)

$$\begin{split} &((x_1*x_2)^{-1})_{M[\sigma]} \\ =& I(^{-1})((x_1*x_2)_{M[\sigma]}) \\ =& (n-(x_1*x_2)_{M[\sigma]})) \bmod n \\ =& (n-I(*)(x_{1_{M[\sigma]}},x_{2_{M[\sigma]}}) \bmod n \\ =& (n-(x_{1_{M[\sigma]}}+_nx_{2_{M[\sigma]}})) \bmod n \\ =& (n-(\sigma(x_1)+_n\sigma(x_2)) \bmod n \\ =& (n-(1\bmod n)+_n(2\bmod n)) \bmod n \\ =& -3\bmod n \end{split}$$

$$\begin{split} &((x_1)^{-1}*(x_2)^{-1})_{M[\sigma]} \\ =& I(*)[(x_1^{-1})_{M[\sigma]}, (x_2^{-1})_{M[\sigma]}] \\ =& I(*)[I(^{-1})(\sigma(x_1)), I(^{-1})(\sigma(x_2))] \\ =& ((n-1) \bmod n) +_n ((n-2) \bmod n) \\ =& -3 \bmod n \end{split}$$

Since $((x_1 * x_2)^{-1})_{M[\sigma]} = ((x_1)^{-1} * (x_2)^{-1})_{M[\sigma]}$, by Definition 3.12(2), p36, $A_{M[\sigma]} = T$.

2 P47-14(2)

Lemma 1: $\models A \Rightarrow \models \forall x.A. \ (\Leftrightarrow indeed).$

^{*}ver 2.0. This document is maintained on https://github.com/sleepycoke/Mathematical_Logic_NJUCS

Proof. By $\models A$, we have for any (M, σ) , $A_{M[\sigma]} = T$. Therefore for any $a \in M$, $A_{M[\sigma[x:=a]]} = T$ (note that $\sigma[x:=a]$ is one specific assignment of all the σ s), which implies $\forall x.A_{M[\sigma]} = T$, aka $M \models_{\sigma} \forall x.A$. As a result, since (M, σ) is arbitrary, $\models \forall x.A$.

$$\begin{split} \text{Let } A &\triangleq (x \doteq y \to y \doteq x), \\ A_{M[\sigma]} \\ = &B_{\to}[(x \doteq y)_{M[\sigma]}, (y \doteq x)_{M[\sigma]}] \\ = &\begin{cases} F & \text{if } (x \doteq y)_{M[\sigma]} = T \text{ and } (y \doteq x)_{M[\sigma]} = F \\ T & \text{otherwise} \end{cases} \end{split}$$

However, $(x \doteq y)_{M[\sigma]} = T$ implies $\sigma(x) = \sigma(y)$, which implies $\sigma(y) = \sigma(x)$ and $(y \doteq x)_{M[\sigma]} = T$. Thus $A_{M[\sigma]} = T$. Applying Lemma 1 twice we get $\models \forall x \forall y.A$.

3 P49-24

 \Rightarrow

$$M \models_{\sigma} \forall x.A$$

$$\Rightarrow$$
For all $a \in M, A_{M[\sigma[x:=a]]} = T$

$$\Rightarrow$$
For all $a \in M$, $A_{M[\rho[x:=a]]} = T$, since z is fresh in A, where $\rho \triangleq \sigma[z:=a]$.

$$\Rightarrow \text{For all } a \in M, A_{M[\rho[x:=z_{M[\rho]}]]} = T$$

$$\Rightarrow$$
For all $a \in M, A[\frac{z}{x}]_{M[\rho]} = T$, by Lemma 3.24, p40.

$$\Rightarrow M \models_{\rho} \forall z. A[\frac{z}{x}]$$

$$\Rightarrow M \models_{\sigma} \forall z. A[\frac{z}{x}], \text{ since } z \notin FV(\forall z. A[\frac{z}{x}]).$$

 \Leftarrow

$$\begin{split} M &\models_{\sigma} \forall z.A[\frac{z}{x}] \\ \Rightarrow M &\models_{\rho} \forall z.A[\frac{z}{x}], \text{ since } z \notin FV(\forall z.A[\frac{z}{x}]), \text{ where } \rho \triangleq \sigma[z := a]. \\ \Rightarrow \text{For all } a \in M, A[\frac{z}{x}]_{M[\rho]} = T \\ \Rightarrow \text{For all } a \in M, A_{M[\rho[x := z_{M[\rho]}]]} = T, \text{ by Lemma 3.24, p40.} \\ \Rightarrow \text{For all } a \in M, A_{M[\rho[x := a]]} = T \\ \Rightarrow \text{For all } a \in M, A_{M[\sigma[x := a]]} = T, \text{ since } z \text{ is fresh in } A. \\ \Rightarrow M \models_{\sigma} \forall x.A \end{split}$$