Please check the examination details below	ow before entering your candidate information			
Candidate surname	Other names			
Centre Number Candidate Nu	umber			
Pearson Edexcel Inter	national Advanced Level			
Monday 13 January	2025			
Morning (Time: 1 hour 30 minutes)	Paper reference WMA12/01			
Mathematics				
International Advanced Subsidiary/Advanced Level Pure Mathematics P2				
You must have: Mathematical Formulae and Statistica	Total Marks Tables (Yellow), calculator			

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

4	CD1	1.1	. •		~			1
1.	The	arithme	etic.	series	2	1S	given	by

$$S = 2 + 5 + 8 + 11 + \dots + 254$$

Find

(a) the number of terms in the series,

(2)

(b) the sum of the series.

(2)

Question 1 continued	
	(Total for Question 1 is 4 marks)

2.	(a) Find the first 4 terms, in ascending powers of x , of the binomial expansion of	
	$(2-5x)^8$	
	giving each term in simplest form.	(4)
	This expansion is to be used to find an approximation for 2.05 ⁸	
	(b) State the value of x that should be used.	
	(There is no need to carry out this calculation.)	(1)

Question 2 continued	
(Total for Qu	estion 2 is 5 marks)

Figure 1

Figure 1 shows an open-topped container used for holding water.

The container is in the shape of a cuboid and is made of sheet metal.

The base of the container is a rectangle 3x metres by x metres.

The height of the container is y metres as shown in Figure 1.

Given that the capacity of the container is 120 m³

(a) show that the area $A \,\mathrm{m}^2$ of the sheet metal used to make the container is given by

$$A = Px^2 + \frac{Q}{x}$$

where P and Q are positive constants to be found.

(4)

(b) Use calculus to find the value of x for which A has a stationary value, giving your answer to 3 significant figures.

(4)

(c) Find $\frac{d^2A}{dx^2}$ and hence show that the value of x found in part (b) gives the minimum value of A.

(2)

Question 3 continued

Question 3 continued

Question 3 continued	
(Total for Question	n 3 is 10 marks)
(Total for Question	

4.	In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.	
	Given that, in a particular geometric series,	
	• the sum of the first three terms is 70.2	
	• the sum to infinity is 75	
	find, for this series,	
	(a) the common ratio,	
		(4)
	(b) the first term.	(2)

Question 4 continued	
(Te	otal for Question 4 is 6 marks)

5.	$f(x) = 3x^3 + ax^2 - 10x + b$
J.	$1(\lambda) 3\lambda + u\lambda = 10\lambda + 0$

where a and b are constants.

Given that (3x - 4) is a factor of f(x),

(a) show that 16a + 9b = 56

(2)

Given further that when f(x) is divided by (x-2) the remainder is b,

(b) find the value of a and the value of b.

(4)

(c) Hence, using algebra, fully factorise f(x).

(3)

_		

Question 5 continued

Question 5 continued	
	-
	_
	_
	-
	_
	_
	-
	_
	_
	-
	-
	_
	_
	-
	_
	_
	-
	_
	_
	-
	-
	_
	_
	-
	_
	_
	-

Question 5 continued	
	(Total for Question 5 is 9 marks)

6.

Figure 2

The point A(-1, 2) and the point B(11, 6) both lie on a circle with centre P.

The point M is the midpoint of AB.

Given that the line l passes through M and P, as shown in Figure 2,

(a) find an equation for l, giving your answer in the form y = mx + c, where m and c are constants.

(4)

Given that P has coordinates (7, k), where k is a constant,

(b) find the value of k,

(1)

(c) find an equation for the circle.

(3)

Question 6 continued

Question 6 continued

Question 6 continued	
(Total f	For Question 6 is 8 marks)
	- /

7. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

(i) The table below shows values of x and y, where $y = \log_{10}(x+5)$, for x values between -1 and 4

x	-1	0	1	2	3	4
$y = \log_{10}(x+5)$	log ₁₀ 4	log ₁₀ 5	log ₁₀ 6	log ₁₀ 7	log ₁₀ 8	log ₁₀ 9

Using the trapezium rule with all the y values in the given table, show that

$$\int_{-1}^{4} \log_{10}\left(x+5\right) \mathrm{d}x \approx \log_{10} k$$

where k is an integer to be found.

(3)

(ii) Find the value of a such that

$$2\log_5(5-a) - \log_5(a+25) = 1$$
(5)

Question 7 continued

Question 7 continued

Question 7 continued	
	Total for Question 7 is 8 marks)

8. (i) A student state

"If x and y are irrational numbers, $x \neq y$, then xy is also irrational." Show, by counter example, that this statement is not always true.

(1)

(ii) Prove, using algebra, that for all odd integers n, the value of the expression

$$n^3 + 3n + 2$$

is always even but never a	multiple of 4
----------------------------	---------------

(4)

ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	

Question 8 continued	
	(Total for Question 8 is 5 marks)
	(10tai 101 Question o is 3 mai ks)

DO NOT WRITE IN THIS AREA

Figure 3

In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

Figure 3 shows a sketch of part of the curve with equation

$$y = \frac{9x^2\left(5 - \sqrt{x}\right)}{5} \qquad x \geqslant 0$$

The curve has a turning point at the point M, as shown in Figure 3.

(a) Using calculus, find the coordinates of M.

(5)

The curve crosses the x-axis at the point P, as shown in Figure 3.

(b) Use algebra to find the *x* coordinate of *P*.

(2)

The finite region R, shown shaded in Figure 3, is bounded by the curve, the line through M parallel to the x-axis and the line through P parallel to the y-axis.

(c) Use algebraic integration to find the area of R, giving your answer to one decimal place.

(5)

Question 9 continued

Question 9 continued		

Question 9 continued
(Total for Question 9 is 12 marks)

10. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

(a) Show that

$$\cos\theta \left(3\tan\theta + \frac{2}{\tan\theta}\right) \equiv \sin\theta + \frac{2}{\sin\theta} \qquad \theta \neq \frac{n\pi}{2}$$
(4)

(b) Hence solve, for $0 < x < 2\pi$, the equation

$$\cos x \left(3\tan x + \frac{2}{\tan x} \right) = 4\sin x - 5$$

giving your answers to 3 significant figures.

(4)

Question 10 continued

Question 10 continued	
	(Total for Question 10 is 8 marks)
Т	TOTAL FOR PAPER IS 75 MARKS

