

Hardware-Secured System for Secure Communications and Message Exchange

Alexandre Valente Rodrigues

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Ricardo Chaves

Acknowledgments

I would like to thank my parents for their friendship, encouragement and caring over all these years, for always being there for me through thick and thin and without whom this project would not be possible. I would also like to thank my grandparents, aunts, uncles and cousins for their understanding and support throughout all these years.

Quisque facilisis erat a dui. Nam malesuada ornare dolor. Cras gravida, diam sit amet rhoncus ornare, erat elit consectetuer erat, id egestas pede nibh eget odio. Proin tincidunt, velit vel porta elementum, magna diam molestie sapien, non aliquet massa pede eu diam. Aliquam iaculis.

Fusce et ipsum et nulla tristique facilisis. Donec eget sem sit amet ligula viverra gravida. Etiam vehicula urna vel turpis. Suspendisse sagittis ante a urna. Morbi a est quis orci consequat rutrum. Nullam egestas feugiat felis. Integer adipiscing semper ligula. Nunc molestie, nisl sit amet cursus convallis, sapien lectus pretium metus, vitae pretium enim wisi id lectus.

Donec vestibulum. Etiam vel nibh. Nulla facilisi. Mauris pharetra. Donec augue. Fusce ultrices, neque id dignissim ultrices, tellus mauris dictum elit, vel lacinia enim metus eu nunc.

I would also like to acknowledge my dissertation supervisors Prof. Some Name and Prof. Some Other Name for their insight, support and sharing of knowledge that has made this Thesis possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were always there for me during the good and bad times in my life. Thank you.

To each and every one of you - Thank you.

Abstract

Individuals with high responsibility jobs such as government officials, top level company executives and diplomats are high profile targets to digital attacks, since they manage very sensitive information. Thus, attacks can have very damaging consequences for them and organizations. To maximize security, it is in their best interest to avoid storing cryptographic keys, passwords and perform critical cryptographic operations in their personal computers. This thesis proposes a cheap, relatively efficient but highly secure physical personal system, in a client-server mode, which enables individuals to securely exchange messages and sensitive documents. The proposed system secures communication by providing confidentiality and authentication to messages. This system will be responsible for performing every cryptography operation, store and manage cryptographic keys. All operations are performed inside the device and keys are never exposed to the outside, in order to not jeopardize the security of the communications.

Keywords

Communication Security; Secure Physical Device; Confidentiality; Authentication.

Resumo

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibu-

lum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam

egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et

sapien ullamcorper pharetra. Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet,

wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus

enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis. Aliquam aliquet, est a ullamcorper

condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales

ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna.

Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor

diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non, auctor dapibus, pede.

Palavras Chave

Colaborativo; Codificaçãoo; Conteúdo Multimédia; Comunicação;

٧

Contents

1	Intro	duction	1
	1.1	Problem	3
	1.2	Requirements	3
2	Arcl	itecture	5
	2.1	Services	7
	2.2	Components	7
	2.3	Operations	8
		2.3.1 Administration Operations	9
		2.3.2 Data Exchange Operations	9
		2.3.3 Key Exchange Operations	9
3	Solu	tion Protocol	11
	3.1	Initial State	13
	3.2	Protocol	13
		3.2.1 Authentication Protocol	13
		3.2.2 Administration Protocol	14
		3.2.3 Data Exchange Protocol	15
		3.2.4 Key Exchange Protocol	17
4	This	is the Fourth Chapter	21
	4.1	Development Process	23
	4.2	Development Environment	24
	4.3	Client Application	24
		4.3.1 User Interface	25
		4.3.2 Vivamus luctus elit sit amet mi	25
5	This	is the Fifth Chapter	27
	5.1	Maecenas vitae nulla consequat	29
	5.2	Proin ornare dignissim lacus	30

6	6 Conclusion		
	6.1	Conclusions	35
	6.2	System Limitations and Future Work	36
Α	Cod	e of Project	37
В	A La	arge Table	45

List of Figures

2.1	Client and device	7
2.2	Client application and secure device	8
3.1	Authentication Protocol	14
3.2	Change Authentication PIN protocol	14
3.3	Data Exchange Encryption Protocol	15
3.4	Digital Signature Generation	16
3.5	Digital Signature Verification	17
3.6	Import Public Key	17
3.7	Protocol to generate new key to share with user.	18
3.8	Protocol to save key, received from another user	18
4.1	Complete User Interface	26
5.1	Test Environment	29
5.2	Adaptation System Behavior Test	31

List of Tables

	5.1	Network Link Conditioner Profiles	30
		Example table	
	B.2	Example of a very long table spreading in several pages	46
	is	t of Algorithms	
4	.1	Time Control Strategy	24

Listagens

4.1	A listing with a Tikz picture overlayed	25
A.1	Example of a XML file.	37
A.2	Assembler Main Code	38
A.3	Matlab Function	39
A.4	function.m	40
A.5	HTML with CSS Code	40
A.6	HTML CSS Javascript Code	42
A.7	PYTHON Code	43

Acronyms

UI User Interface

1

Introduction

Contents

1.1	Problem	3
1.2	Requirements	3

In the modern world, most people have access to a computer, involved in many everyday tasks, such as, web browsing, communications, social networks, news, entertainment, among many others. There is no limit to what you can achieve with the Internet, using just a computer. For this reason, computers have a wide range of attacks potentially exploitable by hackers, by taking advantage of software vulnerabilities or user mistakes. This is of great concern to people with high responsibilities from their jobs, who deal with sensitive information, such as, government officials, top level company executives and diplomats. Suffering an attack to a personal computer can be highly damaging as it can carry severe consequences for companies and countries. In addition, high profile officials who deal with sensitive information are more likely to be targeted by attackers.

1.1 Problem

New attacks, targeting computers, are discovered daily. They can come from zero-day vulnerabilities, phishing scams and many others, the opportunities are endless. It is impossible to predict and protect against all. Communications security, depends on the cryptography keys and passwords used. These are usually stored, along with other sensitive information, in the user's computer. Instead of storing the data in the user's computer, a more optimal solution, meaning, harder to compromise the security of communications, is to separate the platform used by the user for communications (the user's computer), and the device responsible for managing, securing communications and storing sensitive data. The goal is to add another layer of security, to make it difficult to compromise security even if the user's computer is compromised. A secure and independent solution is needed to establish secure channels of communication, store keys and perform critical operations, even if the computer might be compromised. A possible approach is the utilization of a personal physical device that is responsible for storing digital keys and perform critical operations. These devices need to be highly secure and independent from the user's personal computer.

1.2 Requirements

In order to address the problem and using the discussed approach, the implemented solution must comply with the following requirements:

- The box must be tamper-resistant, secure and personal;
- The system must allow secure interaction between different entities;
- All the user's secrets, such as keys and passwords must be stored in the device;
- The user's secrets must never be exposed to the outside;

- All critical operations must be performed in the device;
- The system must authenticate the user before performing operations. The system does not need to authenticate itself to the user;
- The system must be easy to use to the regular non-savvy user;
- The system should perform the operations in a reasonable time to minimize the user's wait;
- It should be relatively low cost.

Architecture

Contents

2.1	Services	7
2.2	Components	7
2.3	Operations	8

The objective of the system was to develop a device in a box format to enable users to establish safe channels of communication. This is achieved with a safe and secure device which is personal to each individual. In order to secure the communications between users, the device saves the user's sensitive data, such as keys, and performs all security critical operations. The system is designed so that each user has it's own physical box.

2.1 Services

The solution will provide several services, wich fullfill the requirements defined in 1.2.

- Secure Storage to save the user's sensitive cryptographic keys, passwords, documents or any data;
- Key management, generation, revocation and importation of keys when the users deem necessary;
- Confidentiality to keep the contents of the communications secret, except from authorized entities;
- Integrity to safeguard communications from unauthorized modifications;
- · Authentication to ascertain the identity of the data sender;
- Non-repudiation to prevent an entity from denying authorship of a piece of information.

2.2 Components

Figure 2.1: Client and device

The solution is composed of two main components, as shown in figure 2.1:

- The physical box which responsible for securing communications;
- The client application on the user's computer which provides an interface for the user to execute operations on the box.

By separating these components, the security of the system is isolated and solely of total responsibility of the box. It is not dependent on the user's personal computer.

Both components are connected through a common interface, such as USB, in order to be more easily accessible to the end users.

Figure 2.2 depicts the client application, interacting with the secure device through the application programming interface (API), the implementation of operations inside the device and secure storage where all the keys are stored.

Figure 2.2: Client application and secure device

Figure 2.2 depicts the client application, interacting with the secure device through the application programming interface (API), the implementation of operations inside the device and secure storage where all the keys are stored.

2.3 Operations

The system operations will ensure the system requirements and services are fulfilled. For the user to be able to execute them, he first must authenticate himself to the device. This is done with a PIN or password, which identifies the user. Once authenticated, the operations will be available to the user to be executed in the box.

The operations are split in three types:

- The administration operations manage the authentication and communication configuration;
- The data exchange operations secure the user's communication;
- The key exchange operations manage the keys stored inside the device, which will be used to secure communications.

2.3.1 Administration Operations

The administration operations will allow the user to manage the authentication related parameters. The only operations of this type is to change the authentication PIN. The device will be initialized from fabric with a default PIN which must be supplied to the user. Before performing any operation the user should change his PIN to begin secure communications.

2.3.2 Data Exchange Operations

The main operations will be responsible to secure the communications between users. These operations will fulfill the confidentiality, authentication and non-repudiation services.

- Secure data exchange with confidentiality and authentication. The objective of this operation is to send and receive data to and from the device. Plaintext data will be returned to the user encrypted and authenticated with their key stored inside the device. In the case of encrypted and authenticated messages, an error will be returned if the decryption was unsuccessful, otherwise, the user will receive the plaintext data;
- Digital Signature operation will provide non-repudiation to a piece of data. The user will send the
 information to the box, and the subsequent signature will be returned, which can be used to verify
 the data's authorship. To verify a signature, the user sends it to the device, and receives either
 success or failure to verify.

2.3.3 Key Exchange Operations

These operations will handle key exchange when new keys need to be generated and exchanged between users, to enable further communications, and to import other user's public keys. This will serve the secure storage and key management services.

The first operations will enable the user to ask for a new key, generated inside the box, in order to securely send it to another user. The user receiving the new key, generated by another user, will receive and store the key inside the box. The final operation will provide a way to import other user's public keys, as well as export their personal public key, to be shared with another user.

3

Solution Protocol

Contents

3.1	Initial State	13
3.2	Protocol	13

Symmetric keys will be used to encrypt and authenticate messages. They have better performance with larger messages compared to asymmetric keys. Each user can have stored in their box, several symmetric keys. This enables the user to establish secure communications with multiple different people or groups. The non-repudiation property of asymmetric keys will be used to create digital signatures of documents. The other use, will be to share symmetric keys between user who wish to communicate. The box stores the private and public key pair of the user, and the public keys of people the user wishes to trade secrets with.

3.1 Initial State

The users will receive the device with a pair of private and public keys, generated inside the device from fabric. Each device will have the user's public keys, whom he wishes to communicate. The user can request whose public keys he wants, before the device is initialized in fabric. This allows the users to trade symmetric keys between them, which they can user to begin trading data securely. In addition, the device can also come with a symmetric key stored in each the user's device.

For each user or group a user wants to communicate with, he has a symmetric key stored in the device.

When a new user wants to establish secure communications with an existing user or a group, he must share his public key with the user, ideally physically to ensure there are no mistakes or attacks. After this they can securely share symmetric keys to enable efficient and secure messaging.

3.2 Protocol

This section will explain and define the communication protocols between both components in more detail. For each operation, it will describe the different phases, what data is traded and why.

3.2.1 Authentication Protocol

Before executing any operation the user must authenticate himself to the device. The protocol described is pictured in figure 3.1.

- 1. The first phase is initiated by the user by sending a message to check if the box is alive and connected to the computer.
- 2. The operation will move to the second phase when the user receives an affirmative response. He will then send the operation code, which indicates he wants to authenticate himself, and the authentication PIN. The device will respond with a status parameter indicating failure or success.

Figure 3.1: Authentication Protocol

When successful the box will also return a session ID string, which the user will need for further operations, to prove he has authenticated himself.

3.2.2 Administration Protocol

Figure 3.2: Change Authentication PIN protocol

As explained before, there is only one administration operation, changing the authentication PIN, pictured in figure 3.2.

The user initiates by sending the operation code, identifying the operation, the new PIN number and the session ID acquired previously. The device verifies the session ID and send a response, indicating the success or failure of the operation.

3.2.3 Data Exchange Protocol

Figure 3.3: Data Exchange Encryption Protocol

The protocol to encrypt and authenticate data illustrated in figure ?? consists of:

- 1. The user sends the operation code and the data size, signaling he wants to send some data;
- 2. The box will respond with an OK message that the user can begin transmitting the data. It will be transmitted a maximum of X bytes per "packet". Each packet contains a part of the data and the size of the data in that packet. When the transmission ends, the device will confirm its reception;
- 3. The user subsequently will respond with the symmetric key ID, which he wants to encrypt and authenticate the data with. The box will handle the cryptographic operations and return a status message and the encrypted data size.
- 4. After the client confirms, the encrypted data with the additional MAC and IV parameters appended, will be returned in the same manner it was sent.

The protocol to decrypt and verify data authentication is very similar to the previous one, and is also pictured in figure 3.3.

- 1. The operation code is sent, as well as the encrypted data size;
- 2. The box will respond with an OK message that the user can begin transmitting the data, one packet at a time;
- 3. When the data transmission ends, the device will confirm its reception, and the user will subsequently respond with the symmetric key ID, which can decrypt and verify the data authentication;
- 4. After performing the decryption and authentication operations, the device will return a message indicating its success or failure. In case of a successful operations, it will return, in the same manner it was sent, the plaintext data.

In the case of digital signatures, the user's must have each others public keys, if they do not already have them.

Figure 3.4: Digital Signature Generation

The next protocols are relating to the generation and verification of digital signatures. The designed protocol for generation is represented in figure 3.5.

The user initiates by sending the operation code and the plaintext data size. When the box responds with an OK message, the user transmits the data to be signed, one packet at a time. In possession of the data, the device will generate the digital signature using the user's private key. When finished the signature is sent back to the user.

The protocol for verifying digital signatures is pictured in figure 3.5.

After the user sends the operation code, and the box responds with an OK message, the user transmits the data, used by the signer to generate the signature, one packet at a time. When done,

Figure 3.5: Digital Signature Verification

the user also sends the signature and the name of the signer, so the device knows what public key to use to verify the signature. Then, the device will verify the digital signature using the signer's public key, the data and the signature. The result will be sent back to the user.

3.2.4 Key Exchange Protocol

Figure 3.6: Import Public Key

Starting with the import public keys protocol, also represented in figure 3.6. The user send a message with the operation code, indicating he wants to store someone's public key. After the device responds

with an OK signal, the user sends the public key, and the name of the owner of the public key. The device, stores the public key, associated to the name sent by the user, and informs the user of the operation's success or failure.

Just like digital signatures, for users to be able to share symmetric keys between each other, they must possess each others public keys in their device. If not, they must physically meet to share them, and import them to their respective devices, with the available operation.

Figure 3.7: Protocol to generate new key to share with user.

The protocol to generate a new symmetric key, and securely share it with a user is represented in figure 3.7. The user sends a message with the operation code. After the device responds with an OK signal, the user sends the key ID, the name the key will be saved as, and the name of the user he wants to share the key with, so the device knows which public key to use to secure the key. A new symmetric key will be generated and saved in the device's secure storage, with the key ID sent by the user. The box will encrypt and sign the key with public-key cryptography, and send it to the user, which he can securely share with the other user.

Figure 3.8: Protocol to save key, received from another user.

The protocol for the other user to save the newly received symmetric key, and store it inside their

device is in figure 3.8.

After the operations code is sent and the OK signal is returned, the user sends the key ID, the name of the key sender, and the encrypted and signed key. The device will then verify the signature with the sender's public key and decrypt the key, subsequently saving it in the device's secure storage along with other keys already present.

This is the Fourth Chapter

Contents

4.1	Development Process	23
4.2	Development Environment	24
4.3	Client Application	24

Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non, auctor dapibus, pede.

4.1 Development Process

Suspendisse vestibulum dignissim quam. Integer vel augue. Phasellus nulla purus, interdum ac, venenatis non, varius rutrum, leo. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Duis a eros. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Fusce magna mi, porttitor quis, convallis eget, sodales ac, urna. Phasellus luctus venenatis magna. Vivamus eget lacus. Nunc tincidunt convallis tortor. Duis eros mi, dictum vel, fringilla sit amet, fermentum id, sem. Phasellus nunc enim, faucibus ut, laoreet in, consequat id, metus. Vivamus dignissim. Cras lobortis tempor velit. Phasellus nec diam ac nisl lacinia tristique. Nullam nec metus id mi dictum dignissim. Nullam quis wisi non sem lobortis condimentum. Phasellus pulvinar, nulla non aliquam eleifend, tortor wisi scelerisque felis, in sollicitudin arcu ante lacinia leo.:

- Technology Research and Related Works
- · Requirements Gathering and Study
- · Design of the Architecture
- Implementation Process
- · Testing and Functional Validation

Pellentesque nibh felis, eleifend id, commodo in, interdum vitae, leo. Praesent eu elit. Ut eu ligula. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Maecenas elementum augue nec nisl. Proin auctor lorem at nibh. Curabitur nulla purus, feugiat id, elementum in, lobortis quis, pede. Vivamus sodales adipiscing sapien. Vestibulum posuere nulla eget wisi. Integer volutpat ligula eget enim. Suspendisse vitae arcu. Quisque pellentesque. Nullam consequat, sem vitae rhoncus tristique, mauris nulla fermentum est, bibendum ullamcorper sapien magna et quam. Sed dapibus vehicula odio. Proin bibendum gravida nisl. Fusce lorem. Phasellus sagittis, nulla in hendrerit laoreet, libero lacus feugiat urna, eget hendrerit pede magna vitae lorem. Praesent mauris.

4.2 Development Environment

Cras sed ante. Phasellus in massa. Curabitur dolor eros, gravida et, hendrerit ac, cursus non, massa. Aliquam lorem. In hac habitasse platea dictumst. Cras eu mauris Algorithm 4.1. Quisque lacus. Donec ipsum. Nullam vitae sem at nunc pharetra ultricies. Vivamus elit eros, ullamcorper a, adipiscing sit amet, porttitor ut, nibh.

Algorithm 4.1: Time Control Strategy

```
nextBitrate \longleftarrow nextDownloadLevel
nextBitrate \leftarrow GetNextBitrate()
cpuLoad \leftarrow GetCpuLoad()
bitrateDelta \leftarrow getBitrateDelta(currentBitrate, nextBitrate)
if bitrateDelta > maxThreshold then
SetBitrate(nextBitrate)
if minThreshold < bitrateDelta < maxThreshold and numAttemps < 2 then
 numAttemps \leftarrow numAttemps + 1
else if minThreshold < bitrateDelta < maxThreshold and numAttemps = 2 then
   numAttemps \longleftarrow 0
else
 SetBitrate(nextBitrate)
if 0 < bitrateDelta < minThreshold and numAttemps < 3 then
| numAttemps \leftarrow numAttemps + 1
else if 0 < bitrateDelta < minThreshold and numAttemps = 3 then
   SetBitrate(nextBitrate)
```

Maecenas adipiscing mollis massa. Nunc ut dui eget nulla venenatis aliquet. Sed luctus posuere justo. Cras vehicula varius turpis. Vivamus eros metus, tristique sit amet, molestie dignissim, malesuada et, urna..

4.3 Client Application

Cras sed ante. Phasellus in massa. Curabitur dolor eros, gravida et, hendrerit ac, cursus non, massa. Aliquam lorem. In hac habitasse platea dictumst. Cras eu mauris. Quisque lacus. Donec ipsum. Nullam vitae sem at nunc pharetra ultricies.

Vivamus elit eros, ullamcorper a, adipiscing sit amet, porttitor ut, nibh. Maecenas adipiscing mollis massa. Nunc ut dui eget nulla venenatis aliquet. Sed luctus posuere justo. Cras vehicula varius turpis. Vivamus eros metus, tristique sit amet, molestie dignissim, malesuada et, urna.

Quisque lacus. Donec ipsum. Nullam vitae sem at nunc pharetra ultricies. Cras vehicula varius turpis.

```
return
                              list of formal
               function
value type
                              parameters
                name
    int puissance
                     (int x,
                                int n)
                                                   local variables
                                                     declaration
        for (i = 1; i <= n; i++)
                                                      instructions
                                                      instruction
                                                        return
   }
```

Listagem 4.1: A listing with a Tikz picture overlayed

And here another method (Listing 4.1) for mixing (overlay) a picture with a listing of code.

4.3.1 User Interface

Donec semper turpis sed diam. Sed consequat ligula nec tortor. Integer eget sem. Ut vitae enim eu est vehicula gravida. Morbi ipsum ipsum, porta nec, tempor id, auctor vitae, purus. Pellentesque neque. Nulla luctus erat vitae libero. Integer nec enim. Phasellus aliquam enim et tortor. Quisque aliquet, quam elementum condimentum feugiat, tellus odio consectetuer wisi, vel nonummy sem neque in elit. Curabitur eleifend wisi iaculis ipsum. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In non velit non ligula laoreet ultrices. Praesent ultricies facilisis nisl. Vivamus luctus elit sit amet mi. Phasellus pellentesque, erat eget elementum volutpat, dolor nisl porta neque, vitae sodales ipsum nibh in ligula. Maecenas mattis pulvinar diam. Curabitur sed leo..

Cras eu mauris. Quisque lacus. Donec ipsum. Nullam vitae sem at nunc pharetra ultricies. Vivamus elit eros, ullamcorper a, adipiscing sit amet, porttitor ut, nibh. Maecenas adipiscing mollis massa. Nunc ut dui eget nulla venenatis aliquet. Sed luctus posuere justo. Cras vehicula varius turpis.

4.3.2 Vivamus luctus elit sit amet mi

Nulla facilisi. In vel sem. Morbi id urna in diam dignissim feugiat. Proin molestie tortor eu velit. Aliquam erat volutpat. Nullam ultrices, diam tempus vulputate egestas, eros pede varius leo, sed imperdiet lectus est ornare odio. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin consectetuer velit in dui. Phasellus wisi purus, interdum vitae, rutrum accumsan, viverra in, velit. Sed enim risus, congue non, tristique in, commodo eu, metus. Aenean tortor mi, imperdiet id, gravida eu, posuere eu, felis.

Mauris sollicitudin, turpis in hendrerit sodales, lectus ipsum pellentesque ligula, sit amet scelerisque

urna nibh ut arcu. Aliquam in lacus.

Figures 4.1(a) and 4.1(b) proin at eros non eros adipiscing mollis.

Figure 4.1: Complete User Interface

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nulla placerat aliquam wisi. Mauris viverra odio. Quisque fermentum pulvinar odio. Proin posuere est vitae ligula. Etiam euismod. Cras a eros.

5

This is the Fifth Chapter

Contents

5.1	Maecenas vitae nulla consequat	 • •	 	 	29
5.2	Proin ornare dignissim lacus	 	 	 	30

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi commodo, ipsum sed pharetra gravida, orci magna rhoncus neque, id pulvinar odio lorem non turpis. Nullam sit amet enim. Suspendisse id velit vitae ligula volutpat condimentum. Aliquam erat volutpat. Sed quis velit. Nulla facilisi. Nulla libero. Vivamus pharetra posuere sapien. Nam consectetuer. Sed aliquam, nunc eget euismod ullamcorper, lectus nunc ullamcorper orci, fermentum bibendum enim nibh eget ipsum. Donec porttitor ligula eu dolor. Maecenas vitae nulla consequat libero cursus venenatis. Nam magna enim, accumsan eu, blandit sed, blandit a, eros.

5.1 Maecenas vitae nulla consequat

Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros Figure 5.1, facilisis vel, eleifend non, auctor dapibus, pede.

Figure 5.1: Test Environment

Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non, auctor dapibus, pede Table 5.1 used in the tests. The Network Link Conditioner allows to force/simulate fluctuations in fixed network segments.

Table 5.1: Network Link Conditioner Profiles

Network Profile	Bandwidth	Packets Droped	Delay
Wifi	40 mbps	0%	1 ms
3G	780 kbps	0%	100 ms
Edge	240 kbps	0%	400 ms

Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non, auctor dapibus, pede.

5.2 Proin ornare dignissim lacus

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra. Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet, wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis.

Et "optimistic" nulla dui purus, eleifend vel, consequat non, dictum porta, nulla. Duis ante mi, laoreet ut, commodo eleifend, cursus nec, lorem. Aenean eu est. Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui G_j , nec ligula et lorem consequat ullamcorper p ut mauris eu mi mollis luctus j, porttitor ut, Equation (5.1), uctus posuere justo:

 $N_j \;\; \mathrm{ls} \; \mathrm{the} \; \mathrm{number} \; \mathrm{of} \; \mathrm{times} \; \mathrm{peer} \; j \; \mathrm{has} \; \mathrm{been} \; \mathrm{optimistically} \; \mathrm{unchoked}.$

 n_j Among the N_j unchokes, the number of times that peer j responded with unchoke or supplied segments to peer p.

 $C_{r[j]}$ The cooperation ratio of peer j. If peer j never supplied peer p, the information of $C_{r[j]}$ may not be available.

 $C_{r(max)}$ The maximum cooperation ratio of peer p's neighbors, i.e., $C_{r(max)} = max(C_r)$.

$$G_{j} = \begin{cases} \frac{n_{j}C_{r[j]}}{N_{j}} & \text{if } n_{j} > 0\\ \frac{C_{r(max)}}{N_{j} + 1} & \text{if } n_{j} = 0 \end{cases}$$
(5.1)

Cursus $C_{r(max)}$ conubia nostra, per inceptos hymenaeos j gadipiscing mollis massa $N_j=0$, unc ut dui eget nulla venenatis aliquet $G_j=C_{r(max)}$.

Vestibulum accumsan eros nec magna. Vestibulum vitae dui. Vestibulum nec ligula et lorem consequat ullamcorper. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Phasellus eget nisl ut elit porta ullamcorper. Maecenas tincidunt velit quis orci. Sed in dui. Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa.

Both Figures 5.2(a) and 5.2(b) Phasellus eget nisl ut elit porta "perfect" tincidunt. Class aptent taciti sociosqu ad litora torquent per conubia nostra.

Figure 5.2: Adaptation System Behavior Test

Cras sed ante. Phasellus in massa. Curabitur dolor eros, gravida et, hendrerit ac, cursus non, massa. Aliquam lorem. In hac habitasse platea dictumst. Cras eu mauris. Quisque lacus. Donec ipsum. Nullam vitae sem at nunc pharetra ultricies. Vivamus elit eros, ullamcorper a, adipiscing sit amet, porttitor ut, nibh. Maecenas adipiscing mollis massa. Nunc ut dui eget nulla venenatis aliquet. Sed luctus posuere justo. Cras vehicula varius turpis. Vivamus eros metus, tristique sit amet, molestie dignissim, malesuada et, urna.

6

Conclusion

Contents

6.1	Conclusions	35
6.2	System Limitations and Future Work	36

Pellentesque vel dui sed orci faucibus iaculis. Suspendisse dictum magna id purus tincidunt rutrum. Nulla congue. Vivamus sit amet lorem posuere dui vulputate ornare. Phasellus mattis sollicitudin ligula. Duis dignissim felis et urna. Integer adipiscing congue metus.

6.1 Conclusions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi commodo, ipsum sed pharetra gravida, orci magna rhoncus neque, id pulvinar odio lorem non turpis. Nullam sit amet enim. Suspendisse id velit vitae ligula volutpat condimentum. Aliquam erat volutpat. Sed quis velit. Nulla facilisi. Nulla libero. Vivamus pharetra posuere sapien. Nam consectetuer. Sed aliquam, nunc eget euismod ullamcorper, lectus nunc ullamcorper orci, fermentum bibendum enim nibh eget ipsum. Donec porttitor ligula eu dolor. Maecenas vitae nulla consequat libero cursus venenatis. Nam magna enim, accumsan eu, blandit sed, blandit a, eros.

Quisque facilisis erat a dui. Nam malesuada ornare dolor. Cras gravida, diam sit amet rhoncus ornare, erat elit consectetuer erat, id egestas pede nibh eget odio. Proin tincidunt, velit vel porta elementum, magna diam molestie sapien, non aliquet massa pede eu diam. Aliquam iaculis. Fusce et ipsum et nulla tristique facilisis. Donec eget sem sit amet ligula viverra gravida. Etiam vehicula urna vel turpis. Suspendisse sagittis ante a urna. Morbi a est quis orci consequat rutrum. Nullam egestas feugiat felis. Integer adipiscing semper ligula. Nunc molestie, nisl sit amet cursus convallis, sapien lectus pretium metus, vitae pretium enim wisi id lectus. Donec vestibulum. Etiam vel nibh. Nulla facilisi. Mauris pharetra. Donec augue. Fusce ultrices, neque id dignissim ultrices, tellus mauris dictum elit, vel lacinia enim metus eu nunc.

Proin at eros non eros adipiscing mollis. Donec semper turpis sed diam. Sed consequat ligula nec tortor. Integer eget sem. Ut vitae enim eu est vehicula gravida. Morbi ipsum ipsum, porta nec, tempor id, auctor vitae, purus. Pellentesque neque. Nulla luctus erat vitae libero. Integer nec enim. Phasellus aliquam enim et tortor. Quisque aliquet, quam elementum condimentum feugiat, tellus odio consectetuer wisi, vel nonummy sem neque in elit. Curabitur eleifend wisi iaculis ipsum. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In non velit non ligula laoreet ultrices. Praesent ultricies facilisis nisl. Vivamus luctus elit sit amet mi. Phasellus pellentesque, erat eget elementum volutpat, dolor nisl porta neque, vitae sodales ipsum nibh in ligula. Maecenas mattis pulvinar diam. Curabitur sed leo.

Nulla facilisi. In vel sem. Morbi id urna in diam dignissim feugiat. Proin molestie tortor eu velit. Aliquam erat volutpat. Nullam ultrices, diam tempus vulputate egestas, eros pede varius leo, sed imperdiet lectus est ornare odio. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin consectetuer velit in dui. Phasellus wisi purus, interdum vitae, rutrum accumsan, viverra in, velit. Sed enim risus, congue

non, tristique in, commodo eu, metus. Aenean tortor mi, imperdiet id, gravida eu, posuere eu, felis. Mauris sollicitudin, turpis in hendrerit sodales, lectus ipsum pellentesque ligula, sit amet scelerisque urna nibh ut arcu. Aliquam in lacus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nulla placerat aliquam wisi. Mauris viverra odio. Quisque fermentum pulvinar odio. Proin posuere est vitae ligula. Etiam euismod. Cras a eros.

Nunc auctor bibendum eros. Maecenas porta accumsan mauris. Etiam enim enim, elementum sed, bibendum quis, rhoncus non, metus. Fusce neque dolor, adipiscing sed, consectetuer et, lacinia sit amet, quam.

6.2 System Limitations and Future Work

Aliquam aliquet, est a ullamcorper condimentum, tellus nulla fringilla elit, a iaculis nulla turpis sed wisi. Fusce volutpat. Etiam sodales ante id nunc. Proin ornare dignissim lacus. Nunc porttitor nunc a sem. Sed sollicitudin velit eu magna. Aliquam erat volutpat. Vivamus ornare est non wisi. Proin vel quam. Vivamus egestas. Nunc tempor diam vehicula mauris. Nullam sapien eros, facilisis vel, eleifend non, auctor dapibus, pede.

Code of Project

Nulla dui purus, eleifend vel, consequat non, dictum porta, nulla. Duis ante mi, laoreet ut, commodo eleifend, cursus nec, lorem. Aenean eu est. Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui. Vestibulum accumsan eros nec magna. Vestibulum vitae dui. Vestibulum nec ligula et lorem consequat ullamcorper.

Listagem A.1: Example of a XML file.

```
<BaseURL>svc_1-L0-</BaseURL>
10
              </SegmentInfo>
11
          </Representation>
          <Representation mimeType="video/SVC" codecs="svc" frameRate="30.00" bandwidth="1322.60"</p>
              width="352" height="288" id="L1">
              <BaseURL>svc_1/</BaseURL>
15
              <SegmentInfo from="0" to="11" duration="PT5.00S">
16
                  <BaseURL>svc_1-L1-</BaseURL>
17
              </SegmentInfo>
18
          </Representation>
       </Clip>
  </StreamInfo>
```

Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui. Maecenas tincidunt velit quis orci. Sed in dui. Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa. Duis dignissim euismod quam.

Listagem A.2: Assembler Main Code.

```
{\tt Constantes}
         ************************
         EQU 1 ; contagem ligada
         EQU 0
                  contagem desligada
  INPUT EQU 8000H ; endereço do porto de entrada
    ;(bit 0 = RTC; bit 1 = botão)
           EQÚ 8000H; endereço do porto de saída.
     ************************
     * Stack ****
14
15
  PLACE
16
  pilha:
fim_pilha:
             TABLE 100H ; espaço reservado para a pilha
17
18
20
21
  PLACE
           2000H
   ; Tabela de vectores de interrupção
24
25
           WORD rot0
26
27
                             29
     * Programa Principal
30
31
  PLACE
32
33
  inicio:
34
    MOV BTE, tab
MOV R9, INPUT
                      ; incializa BTE
35
                      ; endereço do porto de entrada
    MOV R10, OUTPUT MOV SP, fim_pilha
                        ; endereço do porto de Ìsada
37
38
     MOV R5, 1
                    ; inicializa estado do processo P1
39
     MOV R6, 1
                    ; inicializa estado do processo P2
40
    MOV R4, OFF
MOV R8, O
                   ; inicializa controle de RTC; inicializa contador
41
42
     MOV R7,
                 ; inicialmente não permite contagem; permite interrupções tipo 0
            OFF
43
```

```
ET
                  ; activa interrupções
46
   ciclo:
     CALL
            P1
                    ; invoca processo P1
49
     CALL
            P2
                     ; invoca processo P2
     JMP
            ciclo
                     ; repete ciclo
51
     ***********************
    * ROTINAS
54
55
56
     CMP R5, 1
JZ P1_1
57
                 ; se estado = 1
58
  J2 P1_1
CMP R5, 2
JZ P1_2
sai_P1:
                 ; se estado = 2
59
60
61
                 ; sai do processo.
62
     RET
63
64
65
  P1_1:
     MOVB RO, [R9] ; lê porto de entrada
66
     BIT RO, 1
JZ sai_P1
67
68
                     ; se botão não carregado, sai do processo
     MOV R7, ON
MOV R5, 2
                  ; permite contagem do display
; passa ao estado 2 do P1
69
70
  P1_2:
73
     MOVB RO, [R9] ; lê porto de entrada
75
     BIT RO, 1
     JNZ sai_P1
                     ; se botão continua carregado, sai do processo
     MOV R7, OFF MOV R5, 1
                   ; caso contrário, desliga contagem do display; passa ao estado 1 do P1
     JMP sai_P1
```

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Phasellus eget nisl ut elit porta ullamcorper. Maecenas tincidunt velit quis orci. Sed in dui. Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos.

This inline MATLAB code for i=1:3, disp('cool'); end; uses the \mcode{} command.1

Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa. Duis dignissim euismod quam. Nullam euismod metus ut orci.

Listagem A.3: Matlab Function

```
1 for i = 1:3
2   if i >= 5 && a ~= b % literate programming replacement
3   disp('cool'); % comment with some \mathbb{H}_{\mathbb{F}}Xin it: \pi x^2
4   end
5   [:,ind] = max(vec);
6   x_last = x(1,end) - 1;
7   v(end);
8   ylabel('Voltage (\muV)');
9   end
```

¹MATLAB Works also in footnotes: for i=1:3, disp('cool'); end;

Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa. Duis dignissim euismod quam. Nullam euismod metus ut orci.

Listagem A.4: function.m

```
copyright 2010 The MathWorks, Inc.
function ObjTrack(position)

tunction ObjTrack(position)

tunuction ObjTrack(position)

tun
```

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Phasellus eget nisl ut elit porta ullamcorper. Maecenas tincidunt velit quis orci. Sed in dui. Nullam ut mauris eu mi mollis luctus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Sed cursus cursus velit. Sed a massa. Duis dignissim euismod quam. Nullam euismod metus ut orci. Vestibulum erat libero, scelerisque et, porttitor et, varius a, leo.

Listagem A.5: HTML with CSS Code

```
margin: 0;
11
        }
      </style>
      <link rel="stylesheet" href="css/style.css" />
14
     </head>
15
    <header> hey </header>
16
     <article> this is a article </article>
17
     <body>
18
      <!-- Paragraphs are fine -->
      <div id="box">
        >
21
          Hello World
22
        23
        Hello World
24
        Hello World
25
        </div>
27
      <div>Test</div>
28
      <!-- HTML script is not consistent -->
29
      <script src="js/benchmark.js"></script>
30
      <script>
31
        function createSquare(x, y) {
32
          // This is a comment.
33
          var square = document.createElement('div');
34
          square.style.width = square.style.height = '50px';
          square.style.backgroundColor = 'blue';
37
38
           * This is another comment.
39
           */
          square.style.position = 'absolute';
          square.style.left = x + 'px';
          square.style.top = y + 'px';
43
44
          var body = document.getElementsByTagName('body')[0];
45
          body.appendChild(square);
        };
```

```
// Please take a look at +=

window.addEventListener('mousedown', function(event) {

// German umlaut test: Berührungspunkt ermitteln

var x = event.touches[0].pageX;

var y = event.touches[0].pageY;

var lookAtThis += 1;

});

//body>

// body>
// Comman umlaut test: Berührungspunkt ermitteln

var x = event.touches[0].pageY;

var y = event.touches[0].pageY;

var lookAtThis += 1;

// Comman umlaut test: Berührungspunkt ermitteln

var x = event.touches[0].pageY;

var y = event.touches[0].pageY;

var lookAtThis += 1;

// Comman umlaut test: Berührungspunkt ermitteln

var x = event.touches[0].pageY;

var y = event.touches[0].pageY;

// Var lookAtThis += 1;

// Comman umlaut test: Berührungspunkt ermitteln

var x = event.touches[0].pageY;

// Var lookAtThis += 1;

// Comman umlaut test: Berührungspunkt ermitteln

// Comman umlaut test: Berührungspunkt ermitteln

// Comman umlaut test: Berührungspunkt ermitteln

// Var y = event.touches[0].pageY;

// Var lookAtThis += 1;

// Comman umlaut test: Berührungspunkt ermitteln

// Var y = event.touches[0].pageY;

// Var lookAtThis += 1;

// Comman umlaut test: Berührungspunkt ermitteln

// Var y = event.touches[0].pageY;

// Var lookAtThis += 1;

// Comman umlaut test: Berührungspunkt ermitteln

// Var y = event.touches[0].pageY;

// Var lookAtThis += 1;

// Comman umlaut test: Berührungspunkt ermitteln

// Var y = event.touches[0].pageY;

// Var lookAtThis += 1;

// Comman umlaut test: Berührungspunkt ermitteln

// Var y = event.touches[0].pageY;

// Var lookAtThis += 1;

// Var lookAtThis += 1
```

Nulla dui purus, eleifend vel, consequat non, dictum porta, nulla. Duis ante mi, laoreet ut, commodo eleifend, cursus nec, lorem. Aenean eu est. Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui. Vestibulum accumsan eros nec magna. Vestibulum vitae dui. Vestibulum nec ligula et lorem consequat ullamcorper.

Listagem A.6: HTML CSS Javascript Code

```
2 @media only screen and (min-width: 768px) and (max-width: 991px) {
3
     #main {
       width: 712px;
       padding: 100px 28px 120px;
    }
    /* .mono {
      font-size: 90%;
10
    } */
11
12
     .cssbtn a {
13
       margin-top: 10px;
14
       margin-bottom: 10px;
       width: 60px;
16
       height: 60px;
17
       font-size: 28px;
18
       line-height: 62px;
19
    }
20
```

Nulla dui purus, eleifend vel, consequat non, dictum porta, nulla. Duis ante mi, laoreet ut, commodo eleifend, cursus nec, lorem. Aenean eu est. Etiam imperdiet turpis. Praesent nec augue. Curabitur ligula quam, rutrum id, tempor sed, consequat ac, dui. Vestibulum accumsan eros nec magna. Vestibulum vitae dui. Vestibulum nec ligula et lorem consequat ullamcorper.

Listagem A.7: PYTHON Code

```
1 class TelgramRequestHandler(object):
2   def handle(self):
3     addr = self.client_address[0]  # Client IP-adress
4     telgram = self.request.recv(1024)  # Recieve telgram
5     print "From: %s, Received: %s" % (addr, telgram)
6     return
```

A Large Table

Aliquam et nisl vel ligula consectetuer suscipit. Morbi euismod enim eget neque. Donec sagittis massa. Vestibulum quis augue sit amet ipsum laoreet pretium. Nulla facilisi. Duis tincidunt, felis et luctus placerat, ipsum libero vestibulum sem, vitae elementum wisi ipsum a metus. Nulla a enim sed dui hendrerit lobortis. Donec lacinia vulputate magna. Vivamus suscipit lectus at quam. In lectus est, viverra a, ultricies ut, pulvinar vitae, tellus. Donec et lectus et sem rutrum sodales. Morbi cursus. Aliquam a odio. Sed tortor velit, convallis eget, porta interdum, convallis sed, tortor. Phasellus ac libero a lorem auctor mattis. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Nunc auctor bibendum eros. Maecenas porta accumsan mauris. Etiam enim enim, elementum sed, bibendum quis, rhoncus non, metus. Fusce neque dolor, adipiscing sed, consectetuer et, lacinia sit amet, quam. Suspendisse wisi quam, consectetuer in, blandit sed, suscipit eu, eros. Etiam ligula enim, tempor ut, blandit nec, mollis eu, lectus. Nam cursus. Vivamus iaculis. Aenean risus purus, pharetra in, blandit quis, gravida a, turpis. Donec nisl. Aenean eget mi. Fusce mattis est id diam. Phasellus faucibus interdum sapien. Duis quis nunc. Sed enim. Nunc auctor bibendum eros. Maecenas porta accumsan mauris. Etiam enim enim, elementum sed, bibendum quis, rhoncus non, metus. Fusce neque dolor, adipiscing sed, consectetuer et, lacinia sit amet, quam.

Table B.1: Example table

Benchmark: ANN	#Layers	#Nets	#Nodes* $(3) = 8 \cdot (1) \cdot (2)$	Critical path $(4) = 4 \cdot (1)$	Latency (T_{iter})
A1	3–1501	1	24-12008	12-6004	4
A2	501	1	4008	2004	2–2000
A3	10	2-1024	160-81920	40	60^{\dagger}
A4	10	50	4000	40	80–1200
Benchmark: FFT	FFT size [‡]	#Inputs	#Nodes*	Critical path	Latency (T_{iter})
	(1)	$(2) = 2^{(1)}$	$(3) = 10 \cdot (1) \cdot (2)$	$(4) = 4 \cdot (1)$	(5)
F1	1–10	2–1024	20–102400	4–40	6–60 [†]
F2	5	32	1600	20	40 – 1500
Benchmark: Random	#Types	#Nodes	#Networks	Critical path	Latency (T_{iter})
networks	(1)	(2)	(3)	(4)	(5)
R1	3	10-2000	500	variable	(4)
R2	3	50	500	variable	$(4) \times [1; \cdots; 20]$

^{*} Excluding constant nodes.

Values in bold indicate the parameter being varied.

As Table B.1 shows, the data can be inserted from a file, in the case of a somehow complex structure. Notice the Table footnotes.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi commodo, ipsum sed pharetra gravida, orci magna rhoncus neque, id pulvinar odio lorem non turpis. Nullam sit amet enim. Suspendisse id velit vitae ligula volutpat condimentum. Aliquam erat volutpat. Sed quis velit. Nulla facilisi. Nulla libero. Vivamus pharetra posuere sapien. Nam consectetuer. Sed aliquam, nunc eget euismod ullamcorper, lectus nunc ullamcorper orci, fermentum bibendum enim nibh eget ipsum. Donec porttitor ligula eu dolor. Maecenas vitae nulla consequat libero cursus venenatis. Nam magna enim, accumsan eu, blandit sed, blandit a, eros.

And now an example (Table B.2) of a table that extends to more than one page. Notice the repetition of the Caption (with indication that is continued) and of the Header, as well as the continuation text at the bottom.

Table B.2: Example of a very long table spreading in several pages

Time (s)	Triple chosen	Other feasible triples
0	(1, 11, 13725)	(1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745	(1, 12, 10980)	(1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
5490	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
10980	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
		Continued on next page

[†] Value kept proportional to the critical path: (5) = (4) * 1.5.

 $^{^{\}ddagger}$ A size of x corresponds to a 2^x point FFT.

Table B.2 – continued from previous page

	Table B.2 –	continued from previous page
Time (s)	Triple chosen	Other feasible triples
13725	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
16470	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
19215	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
21960	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
24705	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
27450	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
30195	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
32940	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
35685	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
38430	(1, 13, 10980)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
41175	(1, 12, 13725)	(1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
43920	(1, 12, 10720)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
46665	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
49410	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
52155	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
54900	(1, 12, 10470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
57645	(1, 13, 13725)	
60390	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
63135	(1, 12, 13723)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
65880	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
	(2, 2, 2745)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
68625 71370	(1, 13, 13725)	(2, 3, 0), (3, 1, 0)
	, , ,	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
74115 76860	(1, 12, 13725) (1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
79605	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0) (2, 2, 2745), (2, 3, 0), (3, 1, 0)
82350	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
85095	(1, 12, 13725)	(1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
87840	(1, 12, 13723)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
90585	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
93330	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
96075	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
98820	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
101565	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
104310	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
107055	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
109800	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
112545	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
115290	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
118035	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
120780	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
123525	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
126270	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
129015	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
131760	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
134505	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
137250	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
139995	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
142740	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
145485	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
148230	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
	· · · · · · · · · · · · · · · · · · ·	Continued on next page

Table B.2 – continued from previous page

Time (s)	Triple chosen	Other feasible triples
150975	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
153720	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
156465	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
159210	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
161955	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
164700	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)