

LEAP powered by Intel® oneAPI AI Analytics Toolkit

Problem Statement: Open Innovation in Education

Team Name: C5ailabs

Team Members: Rohit Sroch, Sujith R Kumar, Mohan K Rachumallu, Shubham Jain

Problem Statement

MOOCs

(Massive Open Online Courses)

200K

Users in 2012

380M

Users in 2020

34.26%

CAGR 2022-27*

5% -10% Completion rate

Key Challenges

Lengthy videos

Instructor Availability

Slow response from forums

No real time Q&A/Mentor

Approach

LEAP

(Learning Enhancement and Assistance Platform)

Al based platform

Powered by Intel OneAPI

Quality Education

All time Availability

Key Features of LEAP

Ask Question/Doubt

Conversational AI Examiner

Feedback from AI Examiner

Multilingual Support

Reference: PRNewswire, Edtechreview; holoniq

High Level Architecture

intel

LEAP: Detailed Model Architecture Diagram for Both Components

Static-QAT-INT8 is 4.44X times faster in performance as compared to baseline For our Extractive QA Model

Ask Question/Doubt Model					
Extractive Question Answering Model					
	Pytorch (Base) - FP32	Pytorch (IPEX) - FP32	Static-QAT-I NT8	Static-Smooth-QA T-INT8	
Latency (milli sec)	64.513	39.329	14.514	15.24	
Throughput (samples/sec)	15.501	25.427	68.9	65.616	
F1 Score (SQuAD-v1)	76.11	76.11	75.72	75.72	

Interactive Conversational AI Examiner Model					
TFIDF Embedding Model					
		Intel Extension For Scikit-Learn			
Latency (milli sec)	0.761	0.752			
Throughput (samples/sec)	1313.63	1330.49			

Table: Latency/Throughput/Speed-Up Benchmark result for **our Extractive Question Answering ALBERT Model (Multilingual)** and **TFIDF Embedding Model** on Intel® Dev Cloud machine (Intel® Xeon® Platinum 8480+ (4th Gen: Sapphire Rapids) - 224v CPUs 503GB RAM) with optimization using IPEX-FP32, Static-QAT-INT8 using Intel® Neural Compressor and TFIDFVectorizer using Intel® Extension for Scikit-Learn.

Demo Link and Screenshots

Link: https://www.youtube.com/watch?v=M51BFcoJa3k

Demo Screenshots

Demo Screenshots

intel. GitHub Link (Codes should be public and available after hackathon also) 125

https://github.com/rohitc5/intel-oneAPI

Result Summary (unique aspects of oneAPI/SYCL used)

for Scikit-Learn

Intel Extractive QA Model (BERT Topology) Latency/Speed-Up Comparison with IPEX and Intel® Neural Compressor

Extractive QA Model Speed Up Comparison

Fig: Latency/Speed-Up Benchmark result for our Extractive Question Answering ALBERT Model (Multilingual) on Intel® Dev Cloud machine (Intel® Xeon® Platinum 8480+ (4th Gen: Sapphire Rapids) - 224v CPUs 503GB RAM) with optimization using IPEX-FP32 and Static INT8-Quantization using Intel® Neural Compressor.

For Ask Question/Doubt Extractive QA Model

Extractive QA Model (BERT Topology) Throughput/F1 Score Comparison with IPEX and Intel® Neural Compressor

Extractive QA Model F1 Score (SQuAD-v1) Comparison

Fig: Throughput/F1 Score Benchmark result for our Extractive Question Answering ALBERT Model (Multilingual) on Intel® Dev Cloud machine (Intel® Xeon® Platinum 8480+ (4th Gen: Sapphire Rapids) - 224v CPUs 503GB RAM) with optimization using IPEX-FP32 and Static INT8-Quantization using Intel® Neural Compressor. Also, the model (https://huggingface.co/ai4bharat/indic-bert) was fine-tuned on SQuAD-v1 dataset.

For Ask Question/Doubt Extractive QA Model

Scikit-Learn (Base) vs Intel® Extension for Scikit-Learn

Fig: Benchmark results for **TFIDFVectorizer** Embedding model during training and inference on Intel® Dev Cloud machine (Intel® Xeon® Platinum 8480+ (4th Gen: Sapphire Rapids) - 224v CPUs 503GB RAM). Please Note that we don't see much of a difference may be because we used a tiny dataset.

HA . K2KS

https://huggingface.co/rohitsroch

THANK YOU

Problem Statement

MOOCs (Massive Open Online Courses) have surged in popularity in recent years, particularly during the COVID-19 pandemic. These online courses are typically free or low-cost, making education more accessible worldwide.

Key Challenges

Online learning has become imperative to students. However, learning experience is not optimal, due to key challenges include:

- To sift through pile of lengthy videos or documents to find relevant information
- 2. Resolving doubts can be a time-consuming process
- 3. 24x7 Teacher availability for guidance

Objective

To mitigate challenges, we propose our **LEAP** (Learning Enhancement and Assistance Platform), which is an Al-powered platform designed to enhance student learning outcomes and provide equitable access to quality education.

Ask Question/Doubt

Conversational AI Examiner

Feedback from AI Examiner

Highly Reliable