Introduction à R

Laurent Rouvière

Septembre 2020

Table des matières

Présentation du cours	1
Rstudio, Rmarkdown et packages R	7
Objets R	8
Gérer des données Importer des données Manipuler les données avec Dplyr	
Visualiser des données Graphes conventionnels Visualisation avec ggplot2	21 21 24
Cartes leaflet	29
Modèle de régression avec R	33
Présentation du cours	
Présentation	

- *Prérequis*: bases en programmation, probabilités et statistique.
- Objectifs : comprendre et utiliser les outils R classiques en datascience :
 - importer et assembler des tables, manipuler des individus et des variables.
 - visualiser des données.
 - outils classiques et tidyverse.
- Enseignant: Laurent Rouvière, laurent.rouviere@univ-rennes2.fr
 - Recherche: statistique non paramétrique, apprentissage statistique.
 - Enseignement : statistique et probabilités (Université, école d'ingénieur, formation continue).
 - Consulting: énergie (ERDF), finance, marketing.

Documents de cours

- Slides disponibles à l'url https://lrouviere.github.io/intro_R/
- Tutoriel: compléments de cours et exercises disponible à https://lrouviere.github.io/TUTO_R/

Ressources

- Le *net* : de nombreux tutoriels
- Livre : R pour la statistique et la science des données, PUR

Pourquoi R?

- De plus en plus de données, dans de plus en plus de domaines (énergie, santé, sport, économie....)
- La science des données contient tous les outils qui permettent d'extraitre de l'information à partir de données. Elle comprend :
 - l'importation de données
 - la manipulation
 - la visualisation
 - le choix et l'entrainement de modèles
 - la visualisation de modèles (ils sont de plus en plus complexes...)
 - la restitution et la visualisation des résultats (applications web)

Remarque importante

- Toutes ces notions peuvent être réalisées avec R.
- R (data scientits) et Python (informaticiens) font partie des outils les plus utilisés en sciences des données.

Quelques mots sur R

- **R** est un logiciel libre et gratuit.
- Il est distribué par le CRAN (Comprehensive R Archive Network) à l'url suivante : https://www.r-project.org.
- Tous les statisticiens (notamment) peuvent contributer en créant des fonctions et en les distribuant à la communauté (packages).

Conséquence

- Le logiciel est toujours à jour.
- Une des principales raisons de son succés.

Exemple: Les Iris de Fisher

```
> data(iris)
> summary(iris)
##
   Sepal.Length
                  Sepal.Width
                                              Petal.Width
                                Petal.Length
        :4.300 Min. :2.000
                              Min. :1.000
                                             Min. :0.100
## Min.
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000
                              Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057
                               Mean :3.758 Mean :1.199
##
   3rd Qu.:6.400
                 3rd Qu.:3.300
                               3rd Qu.:5.100
                                             3rd Qu.:1.800
## Max. :7.900
                               Max. :6.900 Max. :2.500
                Max. : 4.400
##
        Species
## setosa
          :50
## versicolor:50
## virginica:50
##
##
##
```

Objectifs

La problématique

Expliquer *species* par les autres variables.

- Species est variable qualitative.
- Confronté à un problème de classification supervisée.

Manipulation des données

```
> apply(iris[,1:4],2,mean)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.843333    3.057333    3.758000    1.199333
> apply(iris[,1:4],2,var)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 0.6856935    0.1899794    3.1162779    0.5810063
```

Remarque

Non informatif pour le problème (expliquer Species).

Manipulation avec dplyr

— *dplyr* est un package de tidyverse qui permet de faciliter la manipulation des données, notamment en terme de syntaxe.

```
> library(dplyr)
> iris %>% group_by(Species) %>% summarise_all(mean)
## # A tibble: 3 x 5
   Species Sepal.Length Sepal.Width Petal.Length Petal.Width
    <fct>
                     <dbl>
                           <db1>
                                            <dbl>
                                                       <db1>
## 1 setosa
                      5.01
                                 3.43
                                             1.46
                                                        0.246
## 2 versicolor
                    5.94
                                 2.77
                                             4.26
                                                       1.33
## 3 virginica
                      6.59
                                 2.97
                                             5.55
                                                        2.03
```

— Plus intéressant : nous obtenons les moyennes pour chaque espèce.

Visualisation

$\ \, Visualisation \,\, avec \,\, ggplot 2$

> library(ggplot2)
> ggplot(iris)+aes(x=Species,y=Sepal.Length)+geom_boxplot()

Un modèle d'arbre

```
> library(rpart)
> tree <- rpart(Species~.,data=iris)</pre>
> library(rpart.plot)
> rpart.plot(tree)
                                                                                    setosa
                                                                                    versicolor
                                                       setosa
                                                                                    virginica
                                                     .33 .33 .33
                                                       100%
                                             yes -Petal.Length < 2.5- no
                                                                       .00 .50 .50
                                                                         67%
                                                                     Petal.Width < 1.8
                                   1.00 .00 .00
                                                           .00 .91 .09
                                                                                   .00 .02 .98
```

Carte avec ggmap

— Objectif : visualiser les températures en france pour une date donnée.

Chargement des données + fond de carte

— Données téléchargées sur le site de meteofrance (temperatures d'à peu près 60 stations).

```
+ aes(y=Latitude,x=Longitude,color=t),size=5)+
+ scale_color_continuous(low="yellow",high="red")
```

Une première carte

Modèle de prévision

— Algorithme de *plus proche voisins* pour estimer la température sur toutes les longitudes et latitudes du territoires.

```
> library(FNN)
> mod <- knn.reg(train=D[,.(Latitude,Longitude)],y=D[,t],
+ test=Test1[,.(Latitude,Longitude)],k=1)$pred</pre>
```

— Visualisation avec ggmap.

```
> library(ggmap)
> ggmap(fond)+geom_polygon(data=Test5,
+ aes(y=Latitude,x=Longitude,
+ fill=temp1,color=temp1,group=dept),size=1)+
+ scale_fill_continuous(low="yellow",high="red")+
+ scale_color_continuous(low="yellow",high="red")
```

La carte finale

Application web avec shiny

- Shiny est un package R qui permet la création de pages web interactives.
- Exemple : graphiques standards pour un jeu de données.
 - Graphiques descriptifs pour un jeu de données : https://lrouviere.shinyapps.io/DESC_APP/
 - Visualisation des stations velib à Rennes : https://lrouviere.shinyapps.io/velib/

Dans cette partie

- 10 heures pour 4 thèmes :
 - Rstudio et Rmarkdown
 - Objets R
 - Importation et manipulation de données avec dplyr
 - Visualisation de données avec ggplot
- 1 thème = slides + Tutoriel (complément de cours + exercices)

Rstudio, Rmarkdown et packages R

Rstudio

- **RStudio** est une *interface* facilitant l'utilisation de R.
- Egalement libre et gratuit : https://www.rstudio.com.

L'écran est divisé en 4 parties :

- Console: pour entrer les commandes et visualiser les sorties.
- Workspace and History: visualiser l'historique des objets créés.

- Files Plots...: voir les répertoires et fichiers dans l'environnement de travail, les graphes de sortie, installer les packages...
- Script : éditeur pour entrer les commandes R et les commentaires. Penser à régulièrement sauvegarder ce fichier!

Rmarkdown

Fichier Rmarkdown

- Un fichier Rmarkdown (.Rmd) permet de produire un document de travail.
- Il contient le code, les sorties et des commentaires sur le travail réalisé.
- Il produit des rapports de grande qualité de différentes formes (documents, diaporama, etc...).
- Ce diaporama est du *Rmarkdwon*.
- Recherche Reproductible : en cliquant sur un bouton, on peut ré-executer tout le code du fichier et exporter les résultats sous un format rapport.
- Documents dynamiques : possibilité d'exporter le rapport final dans différents formats : html, pdf, rtf, slides, notebook...

Packages

- Ensemble de programmes R qui complètent et améliorent les fonctions de \mathbf{R} .
- Un package est généralement dédié à des méthodes ou domaines d'application spécifiques.
- Plus de 13 000 packages actuellement.
- Contribue au *succès* de R (toujours à jour).

2 phases

- Installation: install.packages(package.name) (une seule fois).
- Chargement : library(package.name) (chaque fois).
- On peut aussi utiliser le bouton package dans Rstudio.
- \implies Chapitre 1 du tuto.

Objets R

Numérique et caractères

```
— Numérique (facile)
```

```
> x <- pi
> x
## [1] 3.141593
> is.numeric(x)
## [1] TRUE
```

— Caractères

```
> b <- "X"
> paste(b,1:5,sep="")
## [1] "X1" "X2" "X3" "X4" "X5"
```

Vecteurs

- Création : c, seq, rep

```
> x1 <- c(1,3,4)
> x2 <- 1:5
> x3 <- seq(0,10,by=2)
> x4 <- rep(x1,3)
> x5 <- rep(x1,3,each=3)

-- Extraction: []
> x3[c(1,3,4)] # pareil que x3[x1]
## [1] 0 4 6
```

Logique

— Vrai ou Faux

```
> 1<2

## [1] TRUE

> 1==2

## [1] FALSE

> 1!=2

## [1] TRUE
```

— Souvent utile pour sélectionner des composantes d'un vecteur

```
> x <- 1:3
> test <- c(TRUE, FALSE, TRUE)
> x[test]
## [1] 1 3
```

$Probl\`eme$

Sélectionner les tailles plus grandes que 174.

```
> size>174

## [1] TRUE TRUE TRUE TRUE FALSE

> size[size>174]

## [1] 178.8362 185.0309 180.4393 185.4450
```

Facteurs

— Pour représenter les variables qualitatives :

```
> x1 <- factor(c("a","b","b","a","a"))
> x1
## [1] a b b a a
## Levels: a b
> levels(x1)
## [1] "a" "b"
```

Variable mal définie

— On suppose que les données sont *codées* : 0=homme, 1=femme

```
> X <- c(1,1,0,0,1)

> summary(X)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0 0.0 1.0 0.6 1.0 1.0
```

— $Problème : \mathbf{R}$ interprète X comme un vecteur continu \Longrightarrow cela peut générer des problèmes dans l'étude statistique.

— Solution:

```
> X <- as.factor(X)
> levels(X) <- c("man","woman")
> X
## [1] woman woman man man woman
## Levels: man woman
> summary(X)
## man woman
## 2 3
```

Matrice

— Création

```
> m <- matrix(1:4,nrow=2,byrow=TRUE)
> m
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
```

— Extraction

```
> m[1,2]
> m[1,] #Première ligne
> m[,2] #Seconde colonne
```

Liste

— Permet de regrouper plusieurs objets de différents types dans un même objet :

```
> mylist <- list(vector=1:5,mat=matrix(1:8,nrow=2))
> mylist
## $vector
## [1] 1 2 3 4 5
##
## $mat
## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
```

— Extraction :

```
> mylist[[1]]
> mylist$vector
> mylist[["vector"]]
```

Dataframe

— Objets pour représenter des données dans R.

```
> name <- c("Paul","Mary","Steven","Charlotte","Peter")
> sex <- c(0,1,0,1,0)
> size <- c(180,165,168,170,175)
> data <- data.frame(name,sex,size)
> data
## name sex size
## 1 Paul 0 180
## 2 Mary 1 165
## 3 Steven 0 168
## 4 Charlotte 1 170
## 5 Peter 0 175
```

Problème 1

sex est interprété comme une variable continue. C'est une variable qualitative.

Solution

Il faut la convertir en facteur.

```
> data$sex <- as.factor(data$sex)</pre>
> levels(data$sex) <- c("man", "woman")</pre>
> summary(data)
             sex size
man :3 Min. :165.0
                               size
##
       name
## Length:5
## Class:character woman:2 1st Qu.:168.0
## Mode :character
                               Median :170.0
##
                               Mean :171.6
##
                               3rd Qu.:175.0
##
                               Max. :180.0
```

Problème 2

name est interprété comme une variable. C'est plutôt un identifiant.

```
> row.names(data) <- data$name
> data <- data[,-1] #suppression de la colonne name
> data
## sex size
```

```
## Paul man 180

## Mary woman 165

## Steven man 168

## Charlotte woman 170

## Peter man 175
```

Conclusion

Il est crucial de toujours vérifier que les données sont correctement interprétées par \mathbf{R} (avec summary ou mode par exemple).

Tibbles

- Un *tibble* est une version moderne du dataframe, qui conserve les avantages et supprime les inconvénients (selon les créateurs du tibble).
- C'est la version dataframe du *tidyverse* (nécessité de charger ce package).
- Deux différences notables :
 - les variables qualitatives sont par défaut des caractères (et non des facteurs);
 - pas de rownames.

Exemple: data frame

```
> name <- c("Paul", "Mary", "Steven", "Charlotte", "Peter")
> sex <- c(0,1,0,1,0)
> size <- c(180,165,168,170,175)
> age <- c("old", "young", "young", "old", "old")</pre>
> data <- data.frame(sex,size,age)</pre>
> rownames(data) <- name
> summary(data)
##
        sex
                    size
                            age
## Min. :0.0 Min. :165.0 Length:5
## 1st Qu.:0.0 1st Qu.:168.0 Class :character
## Median :0.0 Median :170.0 Mode :character
## Mean :0.4 Mean :171.6
## 3rd Qu.:1.0 3rd Qu.:175.0
## Max. :1.0 Max. :180.0
```

Example: tibble

```
> library(tidyverse)
> data1 <- tibble(name,sex,size,age)</pre>
> #data1 <- column_to_rownames(data1, var="name")</pre>
> summary(data1)
       name
##
                         sex
                                      size
                                                    age
## Length:5 Min. :0.0 Min. :165.0 Length:5
## Class:character 1st Qu.:0.0 1st Qu.:168.0 Class:character
## Mode :character Median :0.0 Median :170.0
                                               Mode :character
##
                    Mean :0.4 Mean :171.6
##
                     3rd Qu.:1.0 3rd Qu.:175.0
##
                   Max. :1.0 Max. :180.0
```

dataframe vs tibbles

Principale différence : pas de facteur dans les tibbles (par défaut).

```
\implies Chapitre 2 du tuto.
```

Gérer des données

Importer des données

- Les données sont généralement contenues dans des *fichiers* avec les individus en ligne et les variables en colonnes.
- Les fonctions read.table et read.csv permettent d'importer des données à partir de fichiers .txt et .csv.
 > data <- read.table("file",...)
 > data <- read.csv("file",...)</pre>
- ... correspondent à un tas d'options souvent très *importantes* car les fichiers de données contiennent toujours des spécificités (données manquantes, noms de variables...)
- Fichiers .xls : on pourra les *convertir* en .csv ou utiliser des packages spécifiques.

Indiquer le chemin

- Le fichier des données doit être placé dans le répertoire de travail. Sinon, il faut indiquer le *chemin* à read.table.
- Exemple : Importer le fichier data.csv enregistré dans /lectureR/Part1 :
 - Changement du répertoire de travail

```
> setwd("~/lectureR/Part1")
> df <- read.csv("data.csv",...)</pre>
```

— Spécification du chemin dans read.csv

```
> df <- read.csv("~/lecture_R/Part1/data.csv",...)</pre>
```

— Utilisation de la fonction file.path

```
> path <- file.path("~/lecture_R/Part1/", "data.csv")
> df <- read.csv(path,...)</pre>
```

Quelques options importantes

Il y a plusieurs options importantes dans read.table et read.csv:

```
sep: le caractère de séparation (espace, virgule...)
dec: le caractère pour le séparateur décimal (virgule, point...)
header: logique pour indiquer si le nom des variables est spécifié à la première ligne du fichier
row.names: vecteurs des identifiants (si besoin)
na.strings: vecteur de caractères pour identifier les données manquantes.
```

Exemple

- Fichier data_imp.txt
name;size;age
John;174;32
Peter;?;28
Mary;165.5;NA

Caractéristiques

- 3 variables (ou plutôt 2...)
- Première ligne = nom des variables
- Données manquantes = NA,?

Un premier essai

```
> path <- file.path("~COURS/EDHEC/R/SLIDES/", "data_imp.txt")
> df <- read.table(path)
> summary(df)
## V1
## Length:4
## Class :character
## Mode :character
```

$Probl\`eme$

R lit quatre lignes et une colonne!

Solution

```
> df <- read.table(path,header=TRUE,sep=";",dec=".",</pre>
                 na.strings = c("NA","?"),row.names = 1)
+
> df
##
         size age
## John 174.0 32
## Peter NA 28
## Mary 165.5 NA
> summary(df)
##
        size
                       age
## Min. :165.5 Min. :28
## 1st Qu.:167.6 1st Qu.:29
## Median :169.8 Median :30
## Mean
         :169.8 Mean :30
## 3rd Qu.:171.9 3rd Qu.:31
## Max.
        :174.0
                 Max.
                         :32
## NA's
          :1
                  NA's
                         :1
```

Package readr

- Version *tidyverse* pour l'importation.
- Il contient **read_table** et **read_csv** à la place de **read.table** et **read.csv** (underscores à la place des points).
- Dans *Rstudio*, on peut lire des données avec readr en cliquant sur **Import Dataset** (pas toujours efficace pour des données complexes).

Autres outils importations

- readxl: fichier au format Excel.
- sas7bdat: importation depuis SAS.

```
— foreign: formats SPSS ou STATA
```

— jsonlite : format JSON

— rvest: webscrapping

Concaténer des données

- L'information utile pour une analyse provient (souvent) de plusieurs tableaux de données.
- Besoin de correctement assembler ces tables avant l'étude statistique.
- Fonctions R standard: rbind, cbind, cbind.data.frame, merge...
- Fonctions R tidyverse: bind_rows, bind_cols, left_join, inner_join.

Un exemple avec 2 tables

```
> df1
## # A tibble: 4 x 2
   name nation
    <chr> <chr>
## 1 Peter USA
## 2 Mary GB
## 3 John Aus
## 4 Linda USA
> df2
## # A tibble: 3 x 2
## name
## <chr> <dbl>
## 1 John
          35
## 2 Mary
             41
## 3 Fred
```

Objectif

Un tableau de données avec 3 colonnes : name, nation et age.

bind_rows

```
> bind_rows(df1,df2)
## # A tibble: 7 x 3
   name nation age
   <chr> <chr> <dbl>
## 1 Peter USA
                   NA
## 2 Mary GB
                    NA
## 3 John Aus
                   NA
## 4 Linda USA
                   NA
## 5 John <NA>
                    35
## 6 Mary <NA>
                    41
## 7 Fred <NA>
```

 \implies Mauvais choix ici (2 lignes pour certains individus).

full_join

⇒ tous les individus sont conservés (NA sont ajoutés pour les quantités non mesurées.)

$left_join$

⇒ seuls les individus du *premier tableau (gauche)* sont conservés.

inner__join

⇒ on garde les individus pour lesquels nation et age sont mesurés.

Conclusion

- Plusieurs possibilités pour assembler des données.
- Important de faire le bon choix en fonction du contexte.
- \implies Partie 3.1 du tuto.

[1] 5.006

Manipuler les données avec Dplyr

- dplyr est un package efficace pour transformer et résumer des tableaux de données.
- Il propose une syntaxe claire (basée sur une grammaire) permettant de manipuler les données.
- Par exemple, pour calculer le moyenne de Sepal.Length de l'espèce setosa, on utilise généralement > mean(iris[iris\$Species=="setosa",]\$Sepal.Length)
- La même chose en dplyr s'obtient avec

```
> library(dplyr)
> iris %>% filter(Species=="setosa") %>%
+ summarise(mean(Sepal.Length))
## mean(Sepal.Length)
## 1 5.006
```

Grammaire dplyr

 \mathbf{dplyr} propose une $\mathit{grammaire}$ dont les principaux \mathbf{verbes} sont :

```
select(): selectionner des colonnes (variables)
filter(): filter des lignes (individus)
arrange(): ordonner des lignes
mutate(): créer des nouvelles colonnes (nouvelles variables)
summarise(): calculer des résumés numériques (ou résumés statistiques)
group_by(): effectuer des opérations pour des groupes d'individus
```

Penser à consulter la cheat sheet.

Select

But

Sélectionner des variables.

```
> df <- select(iris,Sepal.Length,Petal.Length)</pre>
> head(df)
## Sepal.Length Petal.Length
## 1
             5.1
                           1.4
## 2
              4.9
                           1.4
## 3
              4.7
                           1.3
## 4
              4.6
                           1.5
## 5
              5.0
                           1.4
                            1.7
## 6
              5.4
```

Filter

But

Filtrer des individus.

```
> df <- filter(iris,Species=="versicolor")</pre>
> head(df)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                       Species
## 1
             7.0
                                          1.4 versicolor
                       3.2
                                    4.7
## 2
                        3.2
                                                1.5 versicolor
             6.4
                                     4.5
## 3
                        3.1
             6.9
                                     4.9
                                                1.5 versicolor
                        2.3
## 4
             5.5
                                     4.0
                                                1.3 versicolor
## 5
             6.5
                         2.8
                                     4.6
                                                1.5 versicolor
             5.7
                         2.8
                                                1.3 versicolor
## 6
                                     4.5
```

Arrange

But

Ordonner des individus en fonction d'une variable.

```
> df <- arrange(iris, Sepal.Length)
> head(df)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
           4.3 3.0 1.1 0.1 setosa
                                         0.2 setosa
## 2
           4.4
                    2.9
                               1.4
                                          0.2 setosa
## 3
                     3.0
           4.4
                                1.3
                     3.2
## 4
                                1.3
                                          0.2 setosa
           4.4
## 5
           4.5
                     2.3
                                1.3
                                          0.3 setosa
## 6
           4.6
                     3.1
                                1.5
                                          0.2 setosa
```

Mutate

But

Définir des nouvelles variables dans le jeu de données.

```
> df <- mutate(iris,diff_petal=Petal.Length-Petal.Width)</pre>
> head(select(df,Petal.Length,Petal.Width,diff_petal))
## Petal.Length Petal.Width diff_petal
## 1
             1.4
                         0.2
                         0.2
## 2
                                    1.2
             1.4
## 3
             1.3
                        0.2
                                   1.1
                         0.2
                                    1.3
## 4
             1.5
## 5
             1.4
                         0.2
                                    1.2
## 6
                         0.4
                                    1.3
             1.7
```

Summarise

But

Calculer des résumés statistiques.

```
> summarise(iris,mean=mean(Petal.Length),var=var(Petal.Length))
## mean var
## 1 3.758 3.116278
```

Summarise_all et summarise_at

On peut également calculer des résumés pour des groupes de variables :

```
- summarize_all: toutes les variables du tibble
> iris1 <- select(iris, -Species)
> summarise_all(iris1, mean)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.843333 3.057333 3.758 1.199333

- summarize_at: choisir les variables du tibble
> summarise_at(iris,1:3, mean)
## Sepal.Length Sepal.Width Petal.Length
## 1 5.843333 3.057333 3.758
```

group_by

But

Faire des opérations pour des groupes de données.

L'opérateur pipe %>%

- L'opérateur pipe %>% permet d'enchaîner les commandes pour une syntaxe plus claire.
- Par exemple,

```
> mean(iris[iris$Species=="setosa", "Sepal.Length"])
## [1] 5.006
ou (un peu plus lisible)
> df1 <- iris[iris$Species=="setosa",]
> df2 <- df1$Sepal.Length
> mean(df2)
## [1] 5.006
```

ou (un peu plus lisible avec **dplyr**)

```
> df1 <- filter(iris,Species=="setosa")
> df2 <- select(df1,Sepal.Length)
> summarize(df2,mean(Sepal.Length))
## mean(Sepal.Length)
## 1 5.006
```

Pas satisfaisant

Création de deux objets dataframe (inutiles) pour un calcul "simple".

- Avec le *pipe*, on décompose et enchaîne les opérations :
 - 1. Les données
 - > iris
 - 2. On filtre les individus setosa

```
> iris %>% filter(Species=="setosa")
```

3. On garde la variable d'intérêt

```
> iris %>% filter(Species=="setosa") %>% select(Sepal.Length)
```

4. On calcule la moyenne

```
> iris %>% filter(Species=="setosa") %>%
+ select(Sepal.Length)%>% summarize_all(mean)
## Sepal.Length
## 1 5.006
```

Plus généralement

— L'opérateur pipe %>% applique l'objet de droite en considérant que le premier argument est l'objet de gauche (non symétrique).

```
> X <- as.numeric(c(1:10,"NA"))
> mean(X,na.rm = TRUE)
## [1] 5.5
ou, de façon équivalente,
> X %>% mean(na.rm=TRUE)
## [1] 5.5
```

Reformater les données

- Certaines analyses statistiques nécessitent un format particulier pour les données.
- Un exemple jouet

```
> df <- iris %>% group_by(Species) %>%
  summarize_all(mean)
> head(df)
## # A tibble: 3 x 5
## Species Sepal.Length Sepal.Width Petal.Length Petal.Width
## <fct> <dbl> ## 1 setosa 5.01
                            <dbl>
                                                <dbl>
                             3.43
                                        1.46
                                                  0.246
## 2 versicolor
                             2.77
                  5.94
                                        4.26
                                                 1.33
## 3 virginica
                  6.59
                             2.97
                                        5.55
                                                  2.03
```

pivot_longer

— Assembler des colonnes en lignes avec \alert{pivot_longer} (anciennement gather):

Remarque

Même information avec un format différent.

pivot_wider

— Décomposer une ligne en plusieurs colonnes avec pivot_wider (anciennement spread).

```
> df1 %>% pivot_wider(names_from=variable,values_from=valeur)
## # A tibble: 3 x 5
   Species Sepal.Length Sepal.Width Petal.Length Petal.Width
##
   <fct>
                    <dbl>
                                  <db1>
                                              <dbl>
                                                          <db1>
## 1 setosa
                      5.01
                                  3.43
                                               1.46
                                                          0.246
## 2 versicolor
                       5.94
                                   2.77
                                               4.26
                                                          1.33
## 3 virginica
                       6.59
                                   2.97
                                               5.55
                                                          2.03
```

Separate

— Séparer une colonne en plusieurs.

```
> df <- tibble(date=as.Date(c("01/03/2015","05/18/2017",</pre>
        "09/14/2018"), "%m/%d/%Y"), temp=c(18,21,15))
> df1 <- df %>% separate(date,into = c("year","month","day"))
> df1
## # A tibble: 3 x 4
## year month day
                         temp
## <chr> <chr> <chr> <chr> <dbl>
## 1 2015 01
                 03
                          18
## 2 2017 05
                          21
                 18
## 3 2018 09
                 14
                          15
```

Unite

— Assembler des colonnes.

 \implies Partie 3.2 du tuto.

Visualiser des données

Graphes conventionnels

- Visualisation : cruciale à toutes les étapes d'une étude statistique.
- R Permet de créer un très grand nombre de type de graphes.
- On propose une (courte) présentation des graphes classiques,
- suivie par les graphes ggplot.

La fonction plot

- Fonction générique pour représenter (presque) tous les types de données.
- Pour un nuage de points, il suffit de renseigner un vecteur pour l'axe des x, et un autre vecteur pour celui des y.

```
> x <- seq(-2*pi,2*pi,by=0.1)
> plot(x,sin(x),type="l",xlab="x",ylab="sin(x)")
> abline(h=c(-1,1))
```


Graphes classiques pour visualiser des variables

- Histogramme pour une variable continue, diagramme en barre pour une variable qualitative.
- Nuage de points pour 2 variables continues.
- Boxplot pour une distribution continue.

Constat (positif)

Il existe une fonction R pour toutes les représentations.

Nuage de points sur un jeu de données

> plot(Sepal.Length~Sepal.Width,data=iris)


```
> #pareil que
> plot(iris$Sepal.Width,iris$Sepal.Length)
```

Histogramme (variable continue)

> hist(iris\$Sepal.Length,col="red")

Histogram of iris\$Sepal.Length

Diagramme en barres (variable qualitative)

> barplot(table(iris\$Species))

Boxplot (distribution)

> boxplot(Sepal.Length~Species,data=iris)

Visualisation avec ggplot2

- ggplot2 permet de faire des graphes **R** en s'appuyant sur une grammaire des graphiques (équivalent de **dplyr** pour manipuler les données).
- Les graphes produits sont de très bonnes qualités (pas toujours le cas avec les graphes conventionnels).
- La grammaire ggplot permet d'obtenir des graphes "complexes" avec une syntaxe claire et lisible.

Assembler des couches

Pour un tableau de données fixé, un graphe est défini comme une succession de couches. Il faut toujours spécifier :

- les données
- les *variables* à représenter
- le type de représentation (nuage de points, boxplot...).

Les graphes ggplot sont construits à partir de ces couches. On indique

- les données avec ggplot
- les variables avec aes (aesthetics)
- le type de représentation avec geom_

La grammaire

Les principaux verbes sont

- Data (ggplot) : les données, un dataframe ou un tibble.
- **Aesthetics (aes)** : façon dont les *variables* doivent être représentées.
- Geometrics (geom_...) : type de représentation.
- Statistics (stat_...) : spécifier les transformations des données.
- Scales (scale_...): modifier certains paramètres du graphe (changer de couleurs, de taille...).

Tous ces éléments sont séparés par un +.

Un premier exemple

> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+geom_point()

Couleur et taille

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+
+ geom_point(color="blue",size=2)
```


Couleur avec une variable qualitative

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Species)+geom_point()
```


Couleur avec une variable continue

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Petal.Width)+geom_point()
```


Changer la couleur

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Petal.Width)+geom_point()+
+ scale_color_continuous(low="yellow",high="red")
```


Histogramme

> ggplot(iris)+aes(x=Sepal.Length)+geom_histogram(fill="red")

Diagramme en barres

```
> ggplot(iris)+aes(x=Species)+geom_bar(fill="blue")
```


Facetting (plus compliqué)

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+geom_point()+
+ geom_smooth(method="lm")+facet_wrap(~Species)
```


Combiner ggplot et dplyr

- Souvent important de construire un bon jeu de données pour obtenir un bon graphe.
- Par exemple

```
> head(df)
## # A tibble: 6 x 3
      size weight.20 weight.50
##
     <db1>
                <dbl>
                          <dbl>
## 1
       153
                 61.2
                           81.4
## 2
       169
                 67.5
                           81.4
## 3
       168
                 69.4
                           80.3
## 4
       169
                 66.1
                           81.9
                           79.2
## 5
       176
                 70.4
## 6
       169
                 67.6
                           88.9
```

Objectif

Etape dplyr

— Assembler les colonnes weight.M et weight.W en une colonne weight:

```
> df1 <- df %>% pivot_longer(-size,names_to="age",values_to="weight")
> df1 %>% head()
## # A tibble: 6 x 3
##
      size age
                     weight
##
     <dbl> <chr>
                      <dbl>
## 1
       153 weight.20
                      61.2
## 2
       153 weight.50
                      81.4
## 3
       169 weight.20
                      67.5
       169 weight.50
## 4
                       81.4
## 5
       168 weight.20
                       69.4
## 6
      168 weight.50
                       80.3
> df1 <- df1 %>% mutate(age=recode(age,
+ "weight.20"="20", "weight.50"="50"))
```

Etape ggplot

```
> ggplot(df1)+aes(x=size,y=weight,color=age)+
+ geom_point()+geom_smooth(method="lm")+theme_classic()
```


Compléments: quelques démos

- > demo(image)
 > example(contour)
 > demo(persp)
 > library("lattice");demo(lattice)
 > example(wireframe)
 > library("rgl");demo(rgl)
 > example(persp3d)
 > demo(plotmath);demo(Hershey)
- \implies Chapitre 4 du tuto.

Cartes leaflet

Introduction

- De nombreuses applications nécessitent des *cartes* pour *visualiser* des données ou les résultats d'un modèle.
- De $nombreux \ packages \ R$: ggmap, RgoogleMaps, maps...
- Dans cette partie : leaflet.

Fond de carte

- Leaftet est une des librairies open-source JavaScript les plus populaires pour faire des cartes interactives.
- Documentation : here
- > library(leaflet)
- > leaflet() %>% addTiles()

Différents styles de fonds de carte

```
> Paris <- c(2.35222,48.856614)
> leaflet() %>% addTiles() %>%
+ setView(lng = Paris[1], lat = Paris[2],zoom=12)
```



```
> leaflet() %>% addProviderTiles("Stamen.Toner") %>%
+ setView(lng = Paris[1], lat = Paris[2], zoom = 12)
```


Avec des données

— Localiser 1000 séismes près des Fiji

```
> data(quakes)
> head(quakes)
## lat long depth mag stations
## 1 -20.42 181.62 562 4.8 41
## 2 -20.62 181.03 650 4.2 15
## 3 -26.00 184.10 42 5.4 43
## 4 -17.97 181.66 626 4.1 19
## 5 -20.42 181.96 649 4.0 11
## 6 -19.68 184.31 195 4.0 12
```

Séismes avec une magnitude plus grande que 5.5

```
> quakes1 <- quakes %>% filter(mag>5.5)
> leaflet(data = quakes1) %>% addTiles() %>%
+ addMarkers(~long, ~lat, popup = ~as.character(mag))
```


Remarque

La magnitude apparaît lorsqu'on cliquer sur un marker.

add Circle Markers

```
> leaflet(data = quakes1) %>% addTiles() %>%
+ addCircleMarkers(~long, ~lat, popup=~as.character(mag),
+ radius=3,fillOpacity = 0.8,color="red")
```


 \implies Fiche 5.

Modèle de régression avec R

Données

But

Expliquer ou prédire la sortie Y par les entrées X_1, \ldots, X_p .

Exemple: ozone

```
> ozone <- read.table("ozone.txt")</pre>
> head(ozone %>% select(1:5))
          ## 20010601
           87 15.6 18.5 18.4
## 20010602
           82 17.0 18.4 17.7
            92 15.3 17.6 19.5
## 20010603
           114 16.2 19.7 22.5
## 20010604
                              1
## 20010605
          94 17.4 20.5 20.4
          80 17.7 19.8 18.3
## 20010606
```

But

Expliquer ou prédire la concentration maximale quotidienne en O3 (colonne maxO3) par les autres variables.

Modélisation statistique

— Il existe une fonction inconnue $m: \mathbb{R}^p \to \mathbb{R}$ telle que

$$Y = m(X_1, \dots, X_p) + \varepsilon.$$

- ε : termes d'erreur (petits).
- Job du statisticien : trouver un bon estimateur \widehat{m} de m à partir des données $(x_1, y_1), \ldots, (x_n, y_n)$ où $x_i \in \mathbb{R}^p$ et $y_i \in \mathbb{R}$.

$Mod\`ele\ statistique$

Permet de construire des estimateurs.

Un exemple : le modèle linéaire

— Hypothèse: la fonction inconnue m est linéaire

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n + \varepsilon,$$

 $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ sont les paramètres inconnus.

— Moindres carrés :

$$\widehat{\beta} = (X^t X)^{-1} X^t Y.$$

— Estimateur de m:

$$\widehat{m}(x) = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots \widehat{\beta}_p x_p.$$

Structure

— Les modèles sur R sont souvent entrainés de la même façon :

```
> method(formula,data=...,options)
```

avec

```
- method: nom de la méthode;

- formula: sortie Y et les entrées X_j;

- data: jeu de données;
```

— options : options en fonction de la méthode.

La méthode (ou le modèle)

Remarque

Chaque modèle correspond à un fonction R.

fonction R	algorithme	Package	Problème
$\overline{ m lm}$	modèle linéaire		Reg
$_{ m glm}$	modèle logistique		Class
lda	analyse discriminante linéaire	MASS	Class
\mathbf{svm}	Support Vector Machine	e1071	Class
knn.reg	plus proches voisins	FNN	Reg
$_{ m knn}$	plus prohees voisins	class	Class
rpart	arbres	rpart	Reg and Class
\mathbf{glmnet}	ridge et lasso	glmnet	Reg and Class

Formules

Remarque

Pour spécifier les entrées et la sortie.

```
> lm(Y \sim X1 + X3, data = df)

\Rightarrow Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon

> lm(Y \sim X1 + I(X3)^2, data = df)

\Rightarrow Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3^2 + \varepsilon

> lm(Y \sim , data = df)

\Rightarrow Y = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p + \varepsilon
```

Exemple

```
> mod.lin <- lm(max03~T12+Ne9,data=ozone)
> mod.lin
##
## Call:
## lm(formula = max03 ~ T12 + Ne9, data = ozone)
##
```

```
## Coefficients:

## (Intercept) T12 Ne9

## 7.638 4.457 -2.696
```

```
 \begin{array}{l} -- \text{ Mod\`ele}: maxO3 = \beta_0 + \beta_1 T12 + \beta_2 Ne9 + \varepsilon. \\ -- \text{ Estimateurs}: \widehat{\beta}_0 = 7.638, \widehat{\beta}_1 = 4.457, \widehat{\beta}_2 = -2.696. \end{array}
```

Estimateur de m

$$\widehat{m}(x) = 7.638 + 4.457 T12 - 2.696 Ne9.$$

Faire des prévisions

— Une fois le modèle ajusté, on peut l'utiliser pour *pédire*.

Exemple

- Météofrance prédit pour demain : T12=20 et Ne9=4.9.
- Concentration en ozone prédite par le modèle pour demain?
- Réponse :

$$\widehat{m}(T12 = 20, Ne9 = 4.9) = 7.638 + 4.457 * 20 - 2.696 * 4.9 = 83.5676$$

.

Fonction predict

— predict est une fonction générique : on peut l'utiliser pour n'importe quel modèle de régression (linéaire, logistique, arbre...)

```
> predict(model.name,newdata=newdataset,...)
```

— Exemple

```
> new.df <- data.frame(T12=20,Ne9=4.9)
> predict(mod.lin,newdata=new.df)
## 1
## 83.57509
```

Très important

Utiliser la même structure pour les 2 data-frames.

Estimer l'erreur quadratique de prédiction

— La performance d'un estimateur \widehat{m} est souvent mesurée par son erreur quadratique moyenne :

$$MSE(\widehat{m}) = E[(Y - \widehat{m}(X))^2].$$

- Cette erreur (inconnue) peut être calculée par validation hold out :
 - Séparer les données en un échantillon d'apprentissage et un échantillon test.
 - Entrainer le modèle sur les données d'apprentissage $\Longrightarrow \hat{m}$.
 - Calculer la MSE

$$\frac{1}{n_{test}} \sum_{i \in test} (y_i - \widehat{m}(x_i))^2.$$

Un exemple

— Data splitting

```
> library(caret)
> set.seed(12345)
> index.train <- createDataPartition(1:nrow(ozone),p=2/3)
> train <- ozone %>% slice(index.train$Resample1)
> test <- ozone %>% slice(-index.train$Resample1)
```

— Ajustement du modèle

```
> mod <- lm(max03~.,data=train)</pre>
```

— Calcul de la MSE

En pratique

- Très utile pour choisir un modèle.
- Exemple : plusieurs modèles (linéaire, arbre, forêt aléatoire...)

M'ethode

- 1. Estimer la MSE pour tous les algorithmes;
- 2. Choisir celui avec la plus petite MSE.

 \implies fiche 6.

Merci