

BAYESIAN POLICY SEARCH WITH PROBABILISTIC PROGRAMS

ARXIV:2010.00284

David Tolpin Yuan Zhou Hongseok Yang

Motivation

- Policy search ≡ inference (via stochastic control)
- Wingate et al. 2011: Bayesian policy search in deterministic domains
- van de Meent et al. 2016: Policy optimization in stochastic domains
- Bayesian policy search in stochastic domains?
- 1. David Wingate, Noah D Goodman, Daniel M Roy, Leslie P Kaelbling, and Joshua B Tenenbaum. Bayesian policy search with policy priors. IJCAI 2011
- 2. Jan-Willem van de Meent, Brooks Paige, David Tolpin, and Frank Wood. Black-box policy search with probabilistic programs. AISTATS 2016

Stochastic Metropolis-Hastings

$$p_{common}(\mathbf{1}|\mathbb{E}(r|\theta)) = \exp(\mathbb{E}(r|\theta) - U_r) = \prod_r (\exp(r - U_r))^{p_S(r|\theta)} = \prod_r p_{common}(\mathbf{1}|r)^{p_S(r|\theta)}$$

$$p_{our}(\mathbf{1}|\mathbb{E}(r|\theta)) = \frac{\mathbb{E}(r|\theta) - L_r}{U_r - L_r} = \sum_{r} p_{\mathcal{S}}(r|\theta) \left(\frac{r - L_r}{U_r - L_r}\right) = \sum_{r} p_{\mathcal{S}}(r|\theta) p_{our}(\mathbf{1}|r) - \text{mixture}!$$

Model

 $\tau \sim D_{\tau}$ — simulator trace

$$\theta \sim D_{\theta}$$

$$\mathbf{1} \sim \text{Bernoulli}\left(\frac{\mathbb{E}_{\tau}[\mathcal{P}(\theta, \tau)] - L_{r}}{U - I}\right)$$

Algorithm

1: loop

2: $au \sim D_ au$ (* always accept *)

3: $\theta' \sim D_{\theta}$

 $u \sim \text{Uniform}(0, 1)$

5: if $\{u < \min\left(1, \frac{\mathcal{P}(\theta', \tau) - L_r}{\mathcal{P}(\theta, \tau) - L_r}\right)\}$ then

 $: \qquad \theta \leftarrow \theta'$

7: end if

eta: Output heta

9: end loop

Probabilistic programs for policy search

■ $S(\theta)$ — simulator, returns reward r

Common conditioning

 $p_{common}(\mathbf{1}|r) = \exp(r - U_r)$

 U_r — an upper bound on r

Generative model

 $\mathbf{1} \sim \text{Bernoulli}(\exp(\mathbb{E}[S(\theta)] - U_r))$

lacktriangledown heta — parameters of interest

 $\theta \sim D_{\theta}$

Our conditioning

$$p_{our}(\mathbf{1}|r) = \frac{r - L_r}{U_r - L_r}$$

 U_r , L_r — upper and lower bounds on r

Generative model

$$\theta \sim D_{\theta}$$

$$\mathbf{1} \sim \text{Bernoulli}\left(\frac{\mathbb{E}[S(\theta)] - L_r}{U_r - L_r}\right)$$

Allows flattening of nested inference!

Case studies

Canadian traveller

RockSample

