TD 3. Modélisation CCS

Exercice 1 Donner la sémantique (systèmes de transition) des programmes CCS suivants

- a. $P \triangleq a.b.0$
- b. $P \triangleq a.0 + b.0$
- c. $P \triangleq a.0||b.0$

$$\begin{array}{ccc} P & \triangleq & \text{a.}(Q||\text{b.0}) \\ Q & \triangleq & \text{a.}R \\ R & \triangleq & \text{a.0} + \text{b.}Q \end{array}$$

1 Compteurs

On souhaite modéliser, à l'aide de CCS, les compteurs étudiés dans le thème précédent. On ignorera le test à zéro. On notera S^i_j les variables de processus représentant le compteur C_j dans l'état i.

Exercice 2 (Modélisation) Modéliser les compteurs C_2 et C_3 .

Exercice 3 (Composition parallèle) On souhaite maintenant simplifier la modélisation des compteurs en utilisant la composition parallèle.

- a. Trouver un terme CCS P tel que $P||C_{i-1}$ se comporte comme C_i .
- b. Trouver une manière directe d'exprimer les compteurs que nous appellerons C'_i . Quelle est la relation entre C_i et C'_i ?

Exercice 4 (Compteur non borné) On suppose l'existence d'un processus compteur non borné, représenté par la variable C'_{∞} , dont on va chercher des implémentations CCS. Ce compteur est spécifié par : $C'_{\infty} \sim \underbrace{S_1^0||\dots||S_1^0}$.

- a. En étudiant les transitions de C_{∞}' , proposer une implémentation simple.
- b. Prouver que:

$$\operatorname{moins} || C_{\infty}' \sim S_1^1 || C_{\infty}'$$

c. Proposer une autre implémentation de C'_{∞} .