SEPPI'S TOPOLOGY NOTES

Buskirk, Adam
Preheim, Michael
Marmorstein, Michael
Original notes by Dr Josef Dorfmeister,
for his Differential Topology reading course

Compiled September 19, 2016

Contents

1	Ianifolds	5
	1 Topological Manifolds	
	2 Smooth Manifolds	
	.3 Cobordism	
	4 Smooth Maps	5
2	angent Bundle	7
3	ransversality 9	9
4	Vector Fields	1
5	Differential Forms	3

4 CONTENTS

Manifolds

- 1.1 Topological Manifolds
- 1.2 Smooth Manifolds
- 1.3 Cobordism

1.4 Smooth Maps

If M and N are topological manifolds, the natural notion of a morphism is $f: M \to N$ continuous. Then two topological manifolds M, N, are equivalent if there exists a homeomorphism $f: M \to N$. Topological manifolds together with continuous maps form a category.

Definition 1.4.1. A **category** consists of objects C and arrows A. Each arrow goes from some object C (the source) to another object (the target). These arrows are often called **morphisms**. Furthermore, for each object $c \in C$ there exists a morphism $1_c \in A$ such that the source and target of 1_c are both c. In addition, morphisms can be composed and composition satisfies additivity. For $x, y \in C$ we write $\text{Hom}(x, y) \subset A$ as the set of morphisms from x to y. Stated this way, composition becomes

$$\circ: \operatorname{Hom}(x,y) \times \operatorname{Hom}(y,z) \to \operatorname{Hom}(x,z)$$
$$\circ: (f,g) \mapsto g \circ f$$

Example 1.4.2. The category of topological manifolds is defined by C being the class of all topological manifolds with arrows A being continuous maps between them.

For smooth manifolds, we need the correct notion of a morphism.

Definition 1.4.3. A map $f: M \to N, M, N$ smooth manifolds, is called **smooth** when for each chart (U, φ) for M and each chart (V, ψ) for N, the composition

$$\psi \circ f \circ \varphi^{-1} \in C^{\infty}(\varphi(U), \mathbb{R}^n).$$

The set of smooth maps from M to N is denoted $C^{\infty}(M,N)$. A smooth map with smooth inverse is called a **diffeomorphism**.

Lemma 1.4.4. If $g: L \to M$ and $f: M \to N$ are smooth maps, then so is $f \circ g: L \to N$.

Tangent Bundle

Transversality

Vector Fields

Differential Forms