UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA INGENIERÍA DE SISTEMAS E INFORMÁTICA

ALGORITMOS EVOLUTIVOS DE APRENDIZAJE

Código: 1411-2278

ACTIVIDAD EN AULA INDIVIDUAL SEMANA 10 CALIFICADA (0-20)

Aplicaciones Clásicas: TSP y Asignación de Recursos

Docente: Ms. Ing. Johan Max Alexander López Heredia

Semestre: 2025-I **Duración:** 35 minutos

Código	Código Apellidos y Nombres	
0202114029	Dueñas Blas, Joseph	EMARIA.

INSTRUCCIONES GENERALES

Modalidad: Trabajo individual

■ Tiempo: 35 minutos para completar todas las actividades

■ Material: Solo lapicero (no calculadora, no laptop)

• Entrega: Al finalizar, entregar esta separata completa al docente

■ Calificación: Evaluación individual (0-20 puntos)

CONTEXTO: Problemas Clásicos de Optimización

En la **Semana 10** estudiaremos dos problemas fundamentales de optimización que son resueltos exitosamente con algoritmos genéticos:

- TSP (Traveling Salesperson Problem): Encontrar la ruta más corta que visite todas las ciudades exactamente una vez
- Asignación de Recursos: Asignar tareas a recursos minimizando costos o tiempos

Ambos problemas utilizan **representación permutacional** y requieren operadores genéticos especializados.

EJERCICIO 1: ANÁLISIS DEL TSP (4 puntos)

Situación: Una empresa de log´istica debe planificar la ruta de un camión que debe visitar 4 ciudades: A, B, C y D, partiendo y regresando a la ciudad A.

Matriz de distancias (en km):

	Α	В	С	D
Α	0	15	25	20
В	15	0	10	30
С	25	10	0	18
D	20	30	18	0

Pregunta 1.1 (2 puntos)

Identifica los componentes del problema para modelarlo con un algoritmo genético:

Variables de decisión: El orden de visita de las ciudades distintas a A

Función objetivo: Minimizar la distancia total del recorrido cerrado

Restricciones principales:

- Cada ciudad debe ser visitada exactamente una vez.
- Se debe empezar y terminar en la ciudad A.
- El cromosoma debe ser una permutación válida de las otras 3 ciudades (sin repetir).

Pregunta 1.2 (2 puntos)

Escribe dos posibles cromosomas (representación permutacional) para este problema:

Cromosoma 1: [B, C, D]Cromosoma 2: [D, B, C]

¿Qué representa cada posición en el cromosoma?

Cada posición indica el orden en que se visitan las ciudades, partiendo desde A.

Por ejemplo, el cromosoma [B, C, D] representa el recorrido: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$

EJERCICIO 2: REPRESENTACIÓN CROMOSÓMICA PARA ASIGNACIÓN (4 puntos)

Situación: Una fábrica tiene 4 máquinas (M1, M2, M3, M4) y debe asignar 4 trabajos (T1, T2, T3, T4). Cada trabajo debe ser asignado a exactamente una máquina.

Pregunta 2.1 (2 puntos)

Si tienes el cromosoma [3, 1, 4, 2], explica qué asignación representa:

Trabajo T1 se asigna a la máquina: M3

Trabajo T2 se asigna a la máquina: M1

Trabajo T3 se asigna a la máquina: $\underline{M4}$

Trabajo T4 se asigna a la máquina: M2

Pregunta 2.2 (2 puntos)

Propón un cromosoma diferente que sea válido para este problema y describe su asignación:

Tu cromosoma: [2, 4, 1, 3]

Asignación que representa:

T1 \rightarrow M2

T2 \rightarrow <u>M4</u>

T3 \rightarrow M1

 $T4 \rightarrow M3$

EJERCICIO 3: FUNCIÓN DE APTITUD EN TSP (4 puntos)

Usando la matriz de distancias del Ejercicio 1, calcula la función de aptitud para dos rutas específicas.

Pregunta 3.1 (2 puntos)

Calcula la distancia total para la ruta representada por el cromosoma [A, B, C, D]: Distancias parciales:

- $A \rightarrow B: \underline{15}km$
- $B \rightarrow C: 10km$
- $C \rightarrow D: 18km$
- $D \rightarrow A: 20km$

Distancia total: 63km

Pregunta 3.2 (2 puntos)

Calcula la distancia total para la ruta representada por el cromosoma [A, D, C, B]: Distancias parciales:

- $A \rightarrow D: \underline{20} \text{ km}$
- $D \rightarrow C: 18 \text{ km}$
- $C \rightarrow B: 10 \text{ km}$
- $B \rightarrow A: 15 \text{ km}$

Distancia total: 63 km

¿Cuál ruta es mejor? Ambas rutas son igualmente buenas

¿Por qué? Porque la distancia total es la misma: 63 km en ambos casos. Por lo tanto, la función de aptitud sería igual para ambas rutas.

EJERCICIO 4: OPERADORES GENÉTICOS EN TSP (4 puntos)

Pregunta 4.1 (2 puntos)

Dado el cromosoma padre [A, B, C, D], aplica una mutación por intercambio (swap) entre las posiciones 1 y 3:

Cromosoma original: [A, B, C, D]

Cromosoma después de la mutación: [A, D, C, B]

Pregunta 4.2 (2 puntos)

¿Por qué no podemos usar cruce de un punto simple en problemas TSP? Explica con un ejemplo: **Ejemplo de cromosomas padre:**

Padre 1: [A, B, C, D] y Padre 2: [D, C, A, B]

¿Qué problema surgiría con cruce simple?

Si usamos cruce de un punto simple (por ejemplo, después del primer gen), podríamos generar:

- Hijo 1: [A, C, A, B]
- Hijo 2: [D, B, C, D]

Esto genera genes repetidos (A se repite en Hijo 1, D en Hijo 2) y otros ausentes (por ejemplo, falta D en el hijo 1).

Problema: En el TSP, cada ciudad debe aparecer una sola vez. El cruce simple rompe la validez de la permutación, generando soluciones inválidas para el problema.

EJERCICIO 5: PROBLEMA DE ASIGNACIÓN COMPLETO (4 puntos)

Situación: Una empresa debe asignar 3 empleados (E1, E2, E3) a 3 proyectos (P1, P2, P3). La matriz de tiempos (en horas) que cada empleado requiere para cada proyecto es:

	P1	P2	Р3
E1	8	6	10
E2	12	4	8
E3	9	7	5

Pregunta 5.1 (2 puntos)

Para el cromosoma [2, 3, 1], calcula el tiempo total:

Asignación:

E1 \rightarrow P2: 6 horas

 $E2 \rightarrow P3: 8 \text{ horas}$

E3 \rightarrow P1: 9 horas

Tiempo total: 23 horas

Pregunta 5.2 (2 puntos)

Propón un cromosoma que creas que podría dar un mejor resultado y calcula su tiempo total:

Tu cromosoma propuesto: [1, 2, 3]

Cálculo del tiempo total:

E1 \rightarrow P1: 8 horas

 $E2 \rightarrow P2: 4 \text{ horas}$

E3 \rightarrow P3: 5 horas

Tiempo total: 17 horas

GLOSARIO

Asignación de Recursos

Problema de optimización que busca asignar tareas a recursos minimizando costos, tiempos o maximizando eficiencia.

Cromosoma

Representación codificada de una solución al problema de optimización.

Función de Aptitud (Fitness)

Valor numérico que evalúa qué tan buena es una solución. En TSP, t'ipicamente es el inverso de la distancia total.

Mutación por Intercambio (Swap)

Operador de mutación que intercambia dos elementos en una representación permutacional.

Representación Permutacional

Codificación donde la solución es un ordenamiento específico de elementos sin repetición.

Restricción

Condición que debe cumplir toda solución válida del problema.

TSP (Traveling Salesperson Problem)

Problema clásico que busca la ruta más corta para visitar un conjunto de ciudades exactamente una vez y regresar al origen.

Variable de Decisión

Elemento que puede ser controlado o modificado para optimizar la solución del problema.

¡Exito en la evaluación!

Recordad: Los problemas clásicos de optimización son la base para resolver desafíos reales m ás complejos.