IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2010**

ISE PART II: MEng, BEng and ACGI

DISCRETE MATHEMATICS AND COMPUTATIONAL COMPLEXITY

Monday, 24 May 2:30 pm

Time allowed: 2:00 hours

There are FOUR questions on this paper.

Q1 is compulsory. Answer Q1 and any two of questions 2-4. Q1 carries 40% of the marks. Questions 2 to 4 carry equal marks (30% each).

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

G.A. Constantinides, G.A. Constantinides

Second Marker(s): M.M. Draief, M.M. Draief

NOTATION

The following notation may be used throughout this paper:

 \mathbb{R} : The set of real numbers.

 \mathbb{Z} : The set of integers.

 \mathbb{N} : The set of natural numbers.

 $\mathcal{P}(S)$: The power set of set S.

The Questions

1. [Compulsory]

- a) For the sets $S_1 = \{\emptyset, a\}$, and $S_2 = \{2, 3\}$, list the elements of:
 - i) $S_1 \cup S_2$,
 - ii) $S_1 \cap S_2$,
 - iii) $S_1 S_2$,
 - iv) $S_1 \times S_2$,
 - v) $\mathscr{P}(S_1)$.

[9]

- b) Provide one example of each of the following functions from \mathbb{N} to \mathbb{N} :
 - i) An injection but not a surjection,
 - ii) A surjection but not an injection,
 - iii) A bijection,
 - iv) Neither a surjection nor an injection.

[6]

- Express each of these statements using predicate logic syntax. You may assume the existence of an addition operation "+" over integers, and an equality predicate "=", both with the usual meaning, e.g. 4 + 1 = 3 + 2. The universe of discourse should be the set of integers.
 - i) "No matter which two integers a and b I choose, a+b has the same value as b+a".
 - ii) "If I want to sum any three integers, it doesn't matter whether I add the first two integers first, and then add the third, or whether I add the last two, and then add the first".
 - iii) "For every integer a, there is another integer b such that no matter which integer c I choose, if I add a to c and then add b to the result, I get back to c".

iv) "There is an integer to which I can add any integer a, and I get the result a".

[6]

- d) Solve the following recurrence relations, in each case stating whether the resulting sequence a_n is O(n).
 - i) $a_n = a_{n-1}$ for n > 1 with $a_1 = 1$,
 - ii) $a_n = 2a_{n-1} + 1$ for n > 1 with $a_1 = 1$,
 - iii) $a_n = a_{n-1} + a_{n-2} + 1$ for n > 1 with $a_0 = 0$, $a_1 = 0$.
 - iv) $a_n = \frac{3}{4}a_{n-1} \frac{1}{8}a_{n-2}$ for n > 1 with $a_0 = 1$, $a_1 = 1$.

[9]

- e) Provide one example each of a relation on $A = \{1, 2, 3\}$ that has each of the following properties. The cardinality of the relation should be at least 1 in all cases.
 - i) reflexive but not symmetric or transitive,
 - ii) transitive but not reflexive or symmetric,
 - iii) symmetric but not reflexive or transitive,
 - iv) reflexive and transitive but not symmetric,
 - v) reflexive and symmetric by not transitive,
 - vi) transitive and symmetric but not reflexive,
 - vii) reflexive, symmetric, and transitive.

[10]

- 2. Let A and B be finite sets.
 - a) State a formula for the number of functions from A to B in terms of the cardinalities of A and B.

[3]

b) Derive a formula for the number of injections from A to B in terms of the cardinalities of A and B.

[9]

c) Derive a formula for the number of surjections from A to B in terms of the cardinalities of A and B.

[9]

d) Derive a formula for the number of bijections from A to B in terms of the cardinalities of A and B.

[9]

- 3. a) Write a predicate logic expression for each of these statements, given that *R* is a relation on a set *A*. Use *A* as the universe of discourse.
 - i) "R is a reflexive relation".
 - ii) "R is a transitive relation".

[4]

R is said to be antisymmetric iff $\forall a \forall b (aRb \land bRa \rightarrow (a=b))$. A relation \leq is a partial order iff it is reflexive, antisymmetric, and transitive. A relation \leq is a total order if it is both a partial order and also $\forall a \forall b ((a \leq b) \lor (b \leq a))$.

Consider the relation $\leq_1 = \{(a,b) | \exists k \in \mathbb{N}(b=ka)\}$ on the set \mathbb{N} and $\leq_2 = \{(a,b) | \exists k \in \mathbb{N}(b=ka)\}$ on the set $B = \{1,2,3,4,6,8,12\}$.

b) Show that \leq_1 and \leq_2 are both partial orders.

[12]

c) Show that neither \leq_1 nor \leq_2 are total orders.

[6]

d) Draw the digraph of $R_1 = \{(1,2), (1,3), (2,4), (2,6), (3,6), (4,8), (4,12), (6,12)\}.$

[4]

e) Draw the digraph of $\{(b,b)|b \in B\} \cup R_1^*$, where R_1^* denotes the transitive closure of R_1 , and comment on its relationship to \leq_2 .

[4]

4. a) State the Master Theorem.

[8]

- b) Write pseudo-code for four procedures, each operating on an array a of integers of length n, and respectively having execution time:
 - i) that is a $\Omega(n)$ function,
 - ii) that is a $\Omega(2^n)$ function,
 - iii) that the Master Theorem shows to be a O(n) function,
 - iv) that the Master Theorem shows to be a $O(n^2 \log n)$ function.

You may assume that no compiler optimizations would be performed on your code.

[14]

Let Π denote the set of all problems. Let A denote the set of all algorithms. Let Q(x,y,z) be the predicate "Algorithm x solves problem y in worst-case time O(z)", where z is a function of the size, n, of the problem instance. For example, $Q(\texttt{myalg}, \texttt{myprob}, n^2)$ states that myalg solves myprob in worst-case quadratic time. Let P be the set of all tractable problems. Define P in terms of Q using predicate logic syntax.

[4]

d) Give one example each of: a tractable problem, an unsolvable problem, and a solvable problem not known to be tractable.

[4]

```
Discrete Mathematics
                    and Computational Complexity.
1. a) (i) S, US2 = { $\phi_{a}, 2, 3} \ Solution 2010
1ii) S, a S, = $
(iii) S_1 - S_2 = \{\phi, a\}
(iv) S, xS_2 = S(\phi, 2), (\phi, 3), (a, 2), (a, 3)
(v) P(s) = \{\phi, \{\phi\}, \{a\}, \{\phi, a\}\}
b) (i) + (n) = n + 1
(ii) + (n) = Ln/2 
(iii) \forall n = n
 (iv) + (n) = \lfloor n/2 \rfloor + 1
c) (Na \forall b (a + b = b + a)
(ii) Ya Yb Yc ((a+b)+c = & +(b+c))
(iii) \forall a \exists b \forall c ((a+c)+b=c)

(iv) \exists b \forall a (b+a=a)
   d)(i) a_n = 1 (n7,1) is O(n)
  (ii) a_n = \alpha 2^n - 1 \quad (n > 1)
  a_1 = 2\alpha - 1 = 1
=> \alpha_1 = 2\alpha - 1 = 1
\Rightarrow \alpha_1 = 2\alpha - 1 = 1
Not \alpha(n)
      (iii) form r2 - r -1 = 0
          term 1 - r - 1 = 0
1^2 - 4 \cdot 1 \cdot (-1) \neq 0 \Rightarrow distinct pools.
          Buts ove r_1 = 1 - \sqrt{1 + 4} = \frac{1}{2}(1 - \sqrt{5})
    C_2 = \frac{1}{2}(1+\sqrt{5}).
    a_n = \alpha_1 r_1^n + \alpha_2 r_2^n - \frac{1}{|\mathbf{z}+1-1|}
              = \propto, r^n + \propto_2 r^n - 1
  \alpha \propto (+\alpha_2 - 1) = 0 => \alpha < \Gamma_1 + \alpha_2 \Gamma_p - \Gamma_1 = 0
             \alpha_1 f_1 + \alpha_2 f_2 - 1 = 0
```

E 2. 17

nt 0(n) (iv) $(r-\frac{1}{2})(r-\frac{1}{4})=0 \rightarrow \text{distint roots}$. $\alpha_n = \alpha_1 \left(\frac{1}{2}\right)^n + \alpha_2 \left(\frac{1}{4}\right)^n$ $\alpha_1 + \alpha_2 = 1$ $\Rightarrow \alpha_1 = 3$, $\alpha_2 = -2$ $2\alpha_1 + \alpha_2 = 4$ $a_n = 3(\frac{1}{2})^n - 2(\frac{1}{4})^n$ nho is O(n)e) (i) $R = \{ (1,1), (3,2), (3,3), (1,2), (2,3) \}$

(ii) $R = \{(1,2), (2,3)\}$ (iii) $R = \{(1,2), (2,3), (2,1), (3,2)\}$ (iv) $R = \{(1,1), (2,2), (3,3), (1,2)\}$ $R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (2,1), (3,2)\}$ (v_i) R = $\{(1,1),(1,2),(2,1),(2,2)\}$ (Vii) R= [1,2,3] x [1,2,3] (10)

2a.)	[B] IAI	(bolwoh)				[3]	
	181! (B-1A1)!	(BIX (B)-	-() x x ((181-1A1+1) element t	- each t select)	ine ore	grander grande
c)	(A)-(B)!	(A x (IA) fever d	1-1)× X	(1A1-181+1) mt (xlad	each t	[9] Eb3	,:^-
_d.)	[A]!	(who the the	ur is also	B !, vi	-e A = B	[1] (9]	/*= /*=
							_r- _r-
							.~-
							9 m
	<u> </u>						· /-
							,r- ,r-
							,~. ,~.
	•						,>= ,>=
							, e = -

be a red number, bil be en b) (i) proc p1 (aCn): integer) t:=t+aci] nac p2 (a CN: integer)

lf 13/1

result:= p2 (a C1 t n-1) + p2(a (2 t n)) prox p3(acn): integer) remlt: = p3(a(1 t Ln/2)]) result: = result +1 rult-=1