Arduino – MQTT preko Ethernet Shiled-a

Internet stvari 2023. - IX termin

Nenad Petrović

Univerzitet u Nišu, Elektronski fakultet nenad.petrovic@elfak.ni.ac.rs, kancelarija 323

Uvod

- Message Queuing Telemetry Transport (MQTT) je publish-subscribe protokol za prenos podataka namenjen manjim loT uređajima
 - Male dimenzije
 - o Mala potrošnja
 - Ograničena procesorska moć
- Mali zahtev resursa i nizak overhead komunikacije
 - o Zaglavlja malih dimenzija sa ciljem povećanja protoka
- Zahteva mrežnu konekciju i povezanost na internet
- Arduino nema ugrađen mrežni čip, pa zahteva dodatke
 - Ethernet Shield
 - WiFi čip ESP32 ili ESP8266
- U nastavku ćemo videti primer kako Arduino može vršiti razmenu poruka u oba smera preko MQTT protokola korišćenjem Ethernet Shield-a i MQTT biblioteke

Pregled MQTT arhitekture – Publish/Subscribe

- Broker
 - Server koji služi kao posrednik u razmeni poruka
 - Ne čuva trajno podatke, samo ih prosleđuje pretplaćenim klijentima
- Topic
 - Predstavlja string na osnovu koga razlikujemo značenje i ulogu poruke
- Publish
 - Slanje poruke svima koji osluškuju dati topic
- Subscribe Mehanizam za prijavljivanje za osluškivanje poruka datog topic-a Temperatura: 24 C Subscribe **Topic: Temperature MQTT Client Publish** Topic: Temperature Komanda: Upali/ugasi Merenja **MQTT Broker** senzora Subscribe Publish Arduino Fizičke pojave **Topic: Commands Topic: Commands** Pametni aktuatori

Instalacija biblioteke PubSubClient u Arduino IDE

- Potrebno je prvo instalirati MQTT biblioteku
 - Sketch->Include Library->Manage Libraries...
- Ukucati naziv biblioteke PubSubClient
- Klik na Install
- Na početku programa
 - o #include <PubSubClient.h>
- MQTT + Ethernet Shield
 - o #include <SPI.h>
 - #include <Ethernet.h>

Inicijalizacija neophodnih promenljivih

- Podesiti MAC i IP adresu Ethernet Shielda
 - \circ byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
 - o IPAddress ip(192, 168, 1, 160);
- Podesiti adresu brokera, bez http prefix-a i slash simbola
 - o const char* server = "test.mosquitto.org";
- Kreirate Ethernet i MQTT objekte
 - o EthernetClient ethClient;
 - O PubSubClient mqttClient(ethClient);
- Deklaracija prototipa metoda za callback
 - void primiPoruka(char* topic, byte* sadrzaj, unsigned int duzina);

Setup funkcija

- Započeti Ethernet konekciju
 - o Ethernet.begin(mac, ip);
- Poželjno sačekati par sekundi da se Ethernet Shield pokrene
 - o delay(3000);
- Podesiti koji MQTT broker se koristi u razmeni poruka
 - o mqttClient.setServer(server, 1883);
 - server adresa brokera
 - port default za MQTT je 1883
- Konektovati se na broker
 - o mqttClient.connect("klijentId1")
 - U ovom primeru se konektujemo na javni broker, pa nisu neophodni username i password
 - o Za naš slučaj je dovoljno samo identifikator klijenta da se definiše
 - Ova funkcija vraća Boolean vrednost zavisno od uspešnosti konekcije
 - True: ako smo se uspešno konektovali
 - False: nije uspešna konekcija
- Ukoliko je prethodno vraćen true, podesiti callback funkciju za rukovanje događajem prijema poruke
 - o mqttClient.setCallback(primiPoruku);

Glavna petlja

- mqttClient.loop();
 - o Poziv .loop() funkcije je neophodan
 - o Keep-alive signal
 - o Rukovanje primljenim porukama omogućava
- mqttClient.subscribe("topic1");
 - Prijavljuje se naš Arduino da osluškujemo poruke na temu topic 1
 - Tema/topic predstavlja string promenljivu koje je broker svestan
 - Klijenti mogu da publikuju nove poruke i osluškuju tuđe poruke za datu temu
 - o Primeri
 - Recimo, za "temperature" topic možemo slati merenja temperaturnog senzora, pri čemu sam sadržaj poruke predstavlja temperaturu u celzijusima
 - Za topic "relay" možemo osluškivati komande da li da upalimo ili ugasimo potrošački uređaj, zavisno od sadržaja poruke – 1 ili 0
- mqttClient.publish("temperatura", tempC)
 - Slanje izmerene temperature na topic temperatura

```
void loop()
 // Neophodno na početku petlje
mqttClient.loop();
 // Pretplatiti se na temu "topic1"
mqttClient.subscribe("topic1");
 // Pokušati slanje sadržaja na temu "topic1"
if(mqttClient.publish("topic1", "Hello World"))
   Serial.println("Uspešno slanje");
else
   Serial.println("Neuspešno :(");
 // Da ne preopteretimo server!
delay(4000);
```

Rukovanje primljenim porukama

- Defnišemo callback funkciju pod nazivom primiPoruku
- Poziva se svaki put kada dođe poruka sa MQTT brokera
- Tri promenljive prosleđujemo
 - o Topic
 - Niz karaktera koji označava temu poruke
 - Message payload sadržaj poruke
 - Sam sadržaj poruke
 - Niz bajtova
 - o Dužina poruke
 - Dužina sadržaja poruke u bajtovima

```
void primiPoruku(char* topic, byte* sadrzaj, unsigned int duzina)
 //Štampaj topic
 Serial.print("Topic: ");
 Serial.println(topic);
 // Štampaj poruku
 Serial.print("Poruka: ");
 for (int i = 0; i < duzina; i ++)
   Serial.print(char(sadrzaj[i]));
 // Novi red po poruci
 Serial.println("");
```

Javni test broker

- HiveMQ
 - o https://www.hivemq.com/public-mqtt-broker/
- Demo
 - o https://www.hivemq.com/demos/websocket-client/
- Skup funkcionalnosti
 - o Publikovanje poruka Publish
 - o Prijem poruka Messages
- Dostupan javno online
 - Broker: broker.hivemq.com
 - TCP Port: 1883
 - Websocket Port: 8000

