COMP5143 Advanced Database Management System

Fall 2015

Computer Science Department Prairie View A&M University

Mary Heejin Kim (aka Heejin Lim), Ph.D.

Chapter 2

Database Environment

Chapter 2 - Objectives

- · Purpose of three-level database architecture.
- Contents of external, conceptual, and internal levels.
- Purpose of external/conceptual and conceptual/internal mappings.
- Meaning of logical and physical data independence.
- Distinction between DDL and DML.
- A classification of data models.

Pearson Education © 2014

3

Chapter 2 - Objectives

- Purpose/importance of conceptual modeling.
- Typical functions and services a DBMS should provide.
- Function and importance of system catalog.
- Software components of a DBMS.
- Meaning of client—server architecture and advantages of this type of architecture for a DBMS.
- Function and uses of Transaction Processing Monitors.

Pearson Education © 2014

Objectives of Three-Level Architecture

- All users should be able to access same data.
- A user's view is immune to changes made in other views.
- Users should not need to know physical database storage details.

Pearson Education © 2014

5

Objectives of Three-Level Architecture

- DBA should be able to change database storage structures without affecting the users' views.
- Internal structure of database should be unaffected by changes to physical aspects of storage.
- DBA should be able to change conceptual structure of database without affecting all users.

Pearson Education © 2014

ANSI-SPARC Three-Level Architecture

Pearson Education © 2014

7

ANSI-SPARC Three-Level Architecture

External Level

- Users' view of the database.
- Describes that part of database that is relevant to a particular user.

Conceptual Level

- · Community view of the database.
- Describes what data is stored in database and relationships among the data.

Pearson Education © 2014

ANSI-SPARC Three-Level Architecture

Internal Level

- Physical representation of the database on the computer.
- Describes how the data is stored in the database.

Pearson Education © 2014

9

Differences between Three Levels of ANSI-SPARC Architecture

Pearson Education © 2014

Data Independence

Logical Data Independence

- Refers to immunity of external schemas to changes in conceptual schema.
- Conceptual schema changes (e.g. addition/removal of entities).
- Should not require changes to external schema or rewrites of application programs.

Pearson Education © 2014

11

Data Independence

Physical Data Independence

- Refers to immunity of conceptual schema to changes in the internal schema.
- Internal schema changes (e.g. using different file organizations, storage structures/devices).
- Should not require change to conceptual or external schemas.

Pearson Education © 2014

Data Independence and the ANSI-SPARC Three-Level Architecture

Pearson Education © 2014

13

Database Languages

Data Definition Language (DDL)

- Allows the DBA or user to describe and name entities, attributes, and relationships required for the application
- plus any associated integrity and security constraints.

Pearson Education © 2014

Database Languages

- Data Manipulation Language (DML)
 Provides basic data manipulation operations on data held in the database.
- Procedural DML allows user to tell system exactly how to manipulate data.
- Non-Procedural DML allows user to state what data is needed rather than how it is to be retrieved (e.g., SQL, QBE)
- Fourth Generation Languages (4GLs)

Pearson Education © 2014

15

Data Model

 Integrated collection of concepts for describing data, relationships between data, and constraints on the data in an organization.

Data Model comprises:

- a structural part;
- a manipulative part;
- possibly a set of integrity rules.

Pearson Education © 2014

Data Model

Purpose

To represent data in an understandable way.

Categories of data models include:

- Object-based
- Record-based
- Physical

Pearson Education © 2014

17

Data Models

Object-Based Data Models

Entity-Relationship

Semantic

Functional

Object-Oriented.

Record-Based Data Models

Relational Data Model Network Data Model Hierarchical Data Model.

Physical Data Models

Pearson Education © 2014

Relational Data Model

Branch

branchNo	street	city	postCode	
B005	22 Deer Rd	London	SW1 4EH	
B007	16 Argyll St	Aberdeen	AB2 3SU	
B003	163 Main St	Glasgow	G11 9QX	
B004	32 Manse Rd	Bristol	BS99 1NZ	
B002	56 Clover Dr	London	NW10 6EU	

Staff

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SL21	John	White	Manager	М	1-Oct-45	30000	B005
SG37	Ann	Beech	Assistant	F	10-Nov-60	12000	B003
SG14	David	Ford	Supervisor	М	24-Mar-58	18000	B003
SA9	Mary	Howe	Assistant	F	19-Feb-70	9000	B007
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003
SL41	Julie	Lee	Assistant	F	13-Jun-65	9000	B005

Pearson Education © 2014

19

Network Data Model

Pearson Education © 2014

Hierarchical Data Model

Pearson Education © 2014

21

Conceptual Modeling

- Conceptual schema is the core of a system supporting all user views.
- Should be complete and accurate representation of an organization's data requirements.
- Conceptual modeling is process of developing a model of information use that is independent of implementation details.
- Result is a conceptual data model.

Pearson Education © 2014

Functions of a DBMS

- · Data Storage, Retrieval, and Update.
- A User-Accessible Catalog.
- Transaction Support.
- Concurrency Control Services.
- Recovery Services.

Pearson Education © 2014

23

Functions of a DBMS (cont'd)

- Authorization Services.
- Support for Data Communication.
- Integrity Services.
- Services to Promote Data Independence.
- Utility Services.

Pearson Education © 2014

System Catalog

- Repository of information (metadata) describing the data in the database.
- One of the fundamental components of DBMS.
- Typically stores:
 - names, types, and sizes of data items
 - constraints on the data
 - names of authorized users
 - data items accessible by a user and the type of access
 - usage statistics

Pearson Education © 2014

25

Components of a DBMS

Pearson Education © 2014

Components of Database Manager

Pearson Education © 2014

27

Multi-User DBMS Architectures

- Teleprocessing
- File-server
- Client-server

Pearson Education © 2014

Teleprocessing

Traditional architecture.

Single mainframe with a number of terminals attached.

Trend is now towards downsizing.

Pearson Education © 2014

29

File-Server

- File-server is connected to several workstations across a network.
- Database resides on file-server.
- DBMS and applications run on each workstation.
- Disadvantages include:
 - Significant network traffic.
 - Copy of DBMS on each workstation.
 - Concurrency, recovery and integrity control more complex.

Pearson Education © 2014

File-Server Architecture

Pearson Education © 2014

31

Traditional Two-Tier Client-Server

- Client (tier 1) manages user interface and runs applications.
- Server (tier 2) holds database and DBMS.
- Advantages include
 - wider access to existing databases
 - increased performance
 - possible reduction in hardware costs
 - reduction in communication costs
 - increased consistency

Pearson Education © 2014

Traditional Two-Tier Client-Server

Pearson Education © 2014

33

Traditional Two-Tier Client-Server

Pearson Education © 2014

Three-Tier Client-Server

- Client side presented two problems preventing true scalability
 - 'Fat' client, requiring considerable resources on client's computer to run effectively.
 - Significant client side administration overhead.
- By 1995, three layers proposed, each potentially running on a different platform.

Pearson Education © 2014

35

Three-Tier Client-Server

Advantages:

- 'Thin' client, requiring less expensive hardware.
- Application maintenance centralized.
- Easier to modify or replace one tier without affecting others.
- Separating business logic from database functions makes it easier to implement load balancing.
- Maps quite naturally to Web environment.

Pearson Education © 2014

Three-Tier Client-Server

Pearson Education © 2014

37

Transaction Processing Monitors

Program that controls data transfer between clients and servers in order to provide a consistent environment, particularly for Online Transaction Processing (OLTP).

Pearson Education © 2014

TPM as middle tier of 3-tier client-server

Pearson Education © 2014