Problem R-84I ($C_9H_{14}O_2$). Shown below is the partial NMR spectrum (100 MHz, CS_2 solvent, deuterium decoupled) of a deuterated cyclohexene derivative (the CH_3 resonances are not shown).

(a) Provide a complete interpretation of the signals shown. Give chemical, shifts and coupling constants. Assume first order analysis.

H¹ 5.53
$$\delta$$
, J = 10, 0.8 Hz, coupled to: H₂, H₃

H² 5.36 δ , J = 10 Hz, coupled to: H₁

H³ 1.77 δ , J = 13, 3, 0.8 Hz, coupled to: H₄, H₅, H₂

H⁴ 1.57 δ , J = 13, 12 Hz, coupled to: H₃, H₅

H⁵ 1.98 δ , J = 12, 3 Hz, coupled to: H₄, H₃

Source Org. Magn. Reson. 1973, v. 5, #10, Spect. #0635

(b) Using this information, draw a good representation of the conformation of compound **R-84I**. Label the hydrogens (1, 2, etc.) of your structure. Are the CH₃ and CO₂CH₃ groups cis or trans? (Hint: which group is larger in a cyclohexane?)

We only know that $\rm H_5$ must be axial, because of the large coupling to $\rm H_4$, thus the $\rm CO_2Me$ group is equatorial. Since Me is larger than $\rm CO_2Me$ in a cyclohexane, we assume that this is also the case for cyclohexene, thus placing the methyl equatorial. If the methyl were axial, the ring would flip, $\rm H_5$ would be equatorial, and the NMR spectrum would not fit the structure.

$$CH_3$$
 E H_5 D H_4 D

"W" coupling (0.8 Hz)

CH₃

H₂

H₃

H₄

H₄

Problem N-156. The major photoaddition product of anisole and cyclooctene has been assigned to structure A and B by different groups. Assign the protons in the 270 MHz NMR spectrum below, showing whether A or B is the currect structure. The bottom spectrum shows two portions of the ¹H NMR spectrum (270 MHz) of the adduct. Upper plots show effects of decoupling at positions shown by arrows.

Problem N-302 ($C_{17}H_{19}NO_4$): 250 MHz ¹H NMR spectra of the four isomers of cocaine are shown below. Which proton appears at δ 5.3-5.6? **Assign relative stereochemistry to the four isomers. Assign the protons at \delta 1.8 and 2.5 for 1 and 2.1 for 2 (***JOC* **1982,** *47***, 13).**

 $\begin{array}{c} \textbf{Problem R-275} \; (C_{12}H_{12}O) \\ 270 \; \text{MHz} \; ^1\text{H NMR spectrum in } C_6D_6 \end{array}$

Source: E. K. Eisenhart/Reich

	A	В	C	D	E	F	G
δ	6.7	5.9	3.1	2.4	2.25	1.95	1.8
	dt	dt	dd	dd	(dddd)	ddt	dq
J	5.5	5.5	13.0	13.0	(9.3)	18.6	18.6
	2.5	2.2	3.9	9.3	(6.5)	6.5	2.5
	2.5	2.2			(3.9)	2.4	2.5
					(2.5)	2.4	2.5

$$H_{B}$$
 H_{E}
 H_{A}
 H_{F}
 H_{G}
 H_{C}
 H_{D}
 H_{B}
 H_{C}
 H_{D}
 H_{C}
 H_{D}
 H_{C}
 H_{D}
 H_{C}
 H_{C

Conformation of benzyl:

 ${\sf H}_{\sf E}$

Steric effect

 J_{DE} large

 $J_{DE}\approx J_{CE}$

J_{CE} small, H_C downfield (C=O anisotropy)

J_{DE} large

J_{CE} small

Chemical shift of H_C?

 $^{3}J_{AB} = 10 \text{ Hz}, \text{ not } 5.5 \text{ Hz}$

 $^3J_{AF}$ and $^3J_{AG}$ usually different in cyclohexenes

Answer

 H_{F}

Start the structure with J. The methyl dd suggests a CH_3 -CH=CH unit

The only vinyl proton with a 7 Hz quartet coupling is E, so the end vinyl proton is E (CH₃-CH_E=CH)

 H_C also ahows a small quartet (long range) splitting, so it can be assigned to the next proton in the chain. Since the H_C - H_E coupling is only 11 Hz, the double bond must be cis. One can rule out H_B and H_D for the one coupled to H_E because each shows a 15 Hz coupling, which is not possible for the coupling partner of H_E .

The next proton must be B, since it has couplings of 10 and 15, whereas D has 10 and 7 Hz.

 $\rm H_{\rm F}$ is a pentet from nearly equal coupling to the methyl K and $\rm H_{\rm D}$

Problem R-65. The 300 MHz 1 H NMR spectrum of phenylsuccinic acid in CDCl $_3$ -DMSO-d $_6$ is shown below. From the line positions given, calculate the coupling constants $J_{\rm ax}$, $J_{\rm bx}$ and $J_{\rm ab}$ (Source: Aldrich Spectral Viewer).

Phenylsuccinic acid partially labeled with 13 C at the carboxyl group marked gave the 100 MHz 1 H NMR spectrum below (δ 2.2-3.3, acetone-d₆). What is the fraction of 13 C incorporation? Estimate the carbon-proton couplings $^{3}J_{\text{C-Ha}}$ and $^{3}J_{\text{C-Hb}}$ from this spectrum.

Draw Newman projections for the three possible staggered conformations of phenylsuccinic acid and determine which is the major one in acetone- d_6 solution.

$$H_A$$
 H_A
 H_B
 $HO_2^{13}C$
 H_B
 $HO_2^{13}C$

Found:

Expect:

 $J_{\rm AX}$ 10.2 large $J_{\rm BX}$ 5.5 small

 $J_{\rm AC}$ 3.1 small $J_{\rm BC}$ 7.3 large

 J_{AX} small J_{BX} small J_{AC} small J_{BC} large

$\begin{array}{c} \text{HO}_2\text{C} & \begin{array}{c} \text{H}_X \\ \text{HO}_2^{13}\text{C} \end{array} \end{array} \begin{array}{c} \text{H}_B \\ \text{H}_A \end{array}$

Expect:

 $J_{\rm AX}$ large $J_{\rm BX}$ small

 $J_{
m AC}$ small $J_{
m BC}$ large

True

$$H_B$$
 H_X
 CO_2H
 $HO_2^{13}C$
 H_A

Expect:

 $J_{\rm AX}$ large

 $J_{\rm BX}$ small

 $J_{
m AC}$ small $J_{
m BC}$ small

not true

