T.D. I - Analyse réelle

I - Suites

I.1 - Étude de suites

Exercice 1. (Suite arithmétique) Soit (u_n) une suite arithmétique. Sachant que $u_{80} = 393$ et $u_{15} = 133$, calculer u_1 .

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_0=1$ et, pour tout n entier naturel non nul, $u_{n+1}=\sqrt{4u_n}$.

- 1. Déterminer u_1, \ldots, u_5 en écrivant les résultats sous la forme d'une puissance de 2.
- **2.** Pour tout n entier naturel non nul, on pose $v_n = \ln(u_n) \ln(4)$. Déterminer la nature de la suite (v_n) et en déduire l'expression de v_n en fonction de n.
- **3.** Donner l'expression de u_n en fonction de n puis en déduire la limite de (u_n) .

Exercice 3. (Sommes classiques) Soit $n \in \mathbb{N}$. Exprimer, en fonction de n les sommes suivantes :

1.
$$\sum_{k=0}^{n} 1$$
.

2.
$$\sum_{k=1}^{n} 2$$
.

3.
$$\sum_{k=0}^{n} k$$
.

1

Exercice 4. (Une suite arithmético-géométrique) Soit (u_n) la suite définie par $u_0 = 0$ et, pour tout n entier naturel, $u_{n+1} = -\frac{1}{2}u_n + 12$.

- **1.** Déterminer la solution ℓ de l'équation $\ell = -\frac{\ell}{2} + 12$. Pour tout n entier naturel, on pose $v_n = u_n \ell$.
- **2.** Déterminer la nature de la suite (v_n) .
- **3.** En déduire l'expression de u_n en fonction de n.

I.2 - Étude de limites

Exercice 5. (Série harmonique) Pour tout entier naturel n non nul, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

- **1.** Soit $n \in \mathbb{N}^*$. Montrer que $H_{2n} H_n \geqslant \frac{1}{2}$.
- **2.** En déduire que (H_n) tend vers $+\infty$.

Exercice 6. (Espérance d'une géométrique) Soit $q \in]-1,1[$. Déterminer $\lim_{n \to +\infty} \sum_{k=1}^n kq^{k-1}$.

Exercice 7. Pour tout *n* entier naturel non nul, on pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

- **1.** Montrer que, pour tout $k \ge 2$, $\frac{1}{k^2} \le \frac{1}{k-1} \frac{1}{k}$.
- **2.** Montrer que (S_n) est majorée par 2.
- **3.** En déduire que (S_n) converge.

Exercice 8. Soit (u_n) la suite définie par $u_0 = 1$ et $u_{n+1} = u_n + e^{-u_n}$.

- 1. Montrer que (u_n) est croissante.
- **2.** En supposant que (u_n) est majorée, aboutir à une contradiction.
- **3.** En déduire la limite de la suite (u_n) .

Exercice 9. (Une suite homographique) Soit (u_n) la suite définie par $u_0 = 0$ et, pour tout n entier naturel, $u_{n+1} = \frac{2u_n + 3}{u_n + 4}$. Pour tout n entier naturel, on pose $v_n = \frac{u_n - 1}{u_n + 3}$.

1. Déterminer la nature de la suite (v_n) .

2. Exprimer v_n puis u_n en fonction de n.

3. Déterminer la limite de la suite (u_n) .

Exercice 10. (Constante d'Euler) Pour tout n entier naturel non nul, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

1. Pour tout $x \ge 0$, montrer les inégalités

$$\ln(1+x) \leqslant x \text{ et } \frac{x}{1+x} \leqslant \ln(1+x).$$

2. Montrer que, pour tout $k \ge 1$,

$$\frac{1}{k+1} \leqslant \ln(k+1) - \ln(k) \leqslant \frac{1}{k}.$$

3. En déduire que, pour tout $n \ge 1$,

$$u_{n+1} - 1 \leqslant \ln(n+1) \leqslant u_n.$$

4. En déduire que, pour tout $n \ge 1$,

$$\ln(n+1) \leqslant u_n \leqslant 1 + \ln(n).$$

Pour tout $n \ge 2$, on pose $c_n = H_{n-1} - \ln(n)$.

- **5.** Calculer $c_{n+1} c_n$ et en déduire le sens de variation de la suite (c_n) .
- **6.** Montrer que, pour tout $n \ge 2$, $c_n \le 1 + \ln(n-1) \ln(n)$.
- 7. En déduire que la suite (c_n) est convergente.

II - Fonctions

II.1 - Développements limités

Exercice 11. (Calculs de limites en 0) Déterminer les limites suivantes :

1.
$$\lim_{x\to 0} \frac{e^x-1}{x}$$
.

2.
$$\lim_{x \to 0} \frac{\ln(1+2x)}{\sqrt{x}-1}$$
.

Exercice 12. (Équivalents en $+\infty$) Déterminer des équivalents simples, en $+\infty$, des fonctions suivantes :

1.
$$\frac{x^5+4x^4+2}{2x^3+x+1}$$
.

4.
$$\ln(1+x^2)$$
.

2.
$$\frac{e^x + e^{-x}}{2}$$
.

$$5. \ \frac{e^{-x} + 3x + 2}{x^2 + 1}.$$

3.
$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

Exercice 13. (Calculs de limites en $+\infty$) Soit $\alpha \in \mathbb{R}$. Déterminer

1.
$$\lim_{n\to+\infty} \left(1+\frac{\alpha}{n}\right)^n$$
.

2.
$$\lim_{x \to +\infty} x \left(e^{3/x} - 1 \right)$$
.

Exercice 14. (Calculs de développements limités) Déterminer le développement limité, à l'ordre 2, en 0 de :

1.
$$\frac{e^x - 1}{x}$$
.

2.
$$\frac{1}{1+\ln(1+x)}$$

II.2 - Étude de courbes

Exercice 15. Déterminer l'équation de la tangente ainsi que le la position de la courbe de par rapport à cette tangente aux points précisés.

1.
$$e^x en 0$$
.

4.
$$x e^x e^x = 0$$
.

2.
$$e^x en 2$$
.

5.
$$\frac{e^x - 1}{r}$$
 en 0.

3.
$$ln(x)$$
 en 1.

Exercice 16. On considère la fonction $f: x \mapsto x + \sqrt{x^2 - 1}$.

- 1. Déterminer le domaine de définition \mathcal{D} de f.
- **2.** Étudier les limites de f en $+\infty$ et en $-\infty$.
- **3.** Montrer que, pour tout $x \in D \setminus \{-1,1\}$, f'(x) et f(x) sont de même signe.
- **4.** Déterminer les variations de f sur $[1, +\infty[$.
- **5.** Montrer que, pour tout $x \in D$, f(x)f(-x) = -1 et en déduire les variations de f sur $]-\infty,-1]$.
- **6.** Montrer que la droite Δ d'équation y=2x est asymptote à la courbe représentative de $f \mathcal{C}_f$ en $+\infty$.
- 7. Tracer \mathscr{C}_f et Δ .