1 Modos de convergencia

Definición 1 Dado $\{F_n\}$ una secuencia de funciones de distribución. Si existe una función de distribución F tal que $F_n(x) \to F(x)$ cuando $n \to \infty$ en cada punto x en el cual F es continua, se dice que F_n converge en ley (o débilmente) a F. Nota: $F_n \to F$.

Si $\{X_n\}$ es una secuencia de variables aleatorias y $\{F_n\}$ es la correspondiente secuencia de funciones distribución, se dice que X_n converge en distribución (o ley) a X si existe una variable aleatoria X con función distribución F tal que $F_n \stackrel{w}{\to} F$.

Nota: $X_n \xrightarrow{L} X$.

Definición 2 Dado $\{X_n\}$ una secuencia de variables aleatorias definidas sobre algún espacio de probabilidad (Ω, S, P) . Se dice que la secuencia $\{X_n\}$ converge en probabilidad a la variable aleatoria X si $\forall \varepsilon > 0$, $P([|X_n - X| > \varepsilon]) \to 0$ cuando $n \to \infty$.

Nota: $X_n \xrightarrow{P} X$.

Teorema 1 $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{L} X$.

Definición 3 Dado $\{X_n\}$ una secuencia de variables aleatorias tales que $E(|X_n|^r) < \infty$ para algún r > 0. Se dice que X_n converge en la media r-ésima a una variable aleatoria X si $E(|X|^r) < \infty$ y $E(|X_n - X|^r) \to 0$ cuando $n \to \infty$. Nota: $X_n \xrightarrow{r} X$.

Teorema 2 $X_n \xrightarrow{r} X$ para algún r > 0. Entonces, $X_n \xrightarrow{P} X$.

Definición 4 Dado $\{X_n\}$ una secuencia de variables aleatorias. Se dice que X_n converge casi seguramente (a.s.) a una variable aleatoria X si y sólo si $P\left(\lim_{n\to\infty}[X_n=X]\right)$ = 1 $\left(oP\left(\left\{w:X_n(w)\to X(w) \ cuando\ n\to\infty\right\}\right)=1\right)$. Nota: $X_n\xrightarrow{a.s.} X$ o $X_n\to X$ con probabilidad 1.

Teorema 3 $X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{P} X$.

2 Leyes de los grandes números y teorema del límite central

Teorema 4 (La ley débil de los grandes números) Sean $X_1, X_2,...$ una sucesión de variables aleatorias independientes e idénticamente distribuidas con media finita μ . Entonces, para $\epsilon > 0$, $\lim_{n \to \infty} P\left(\left[\left|\frac{X_1 + ... + X_n}{n} - \mu\right| > \epsilon\right]\right) = 0$. Nota: Supóngase desviación estándar finita.

Teorema 5 (Lema de Borel-Cantelli) (a) Sea $\{A_n\}$ una secuencia de eventos tal que $\sum_{n=1}^{\infty} P(A_n) < \infty$. Entonces P(A) = 0.

(b) $\overline{Si} \{A_n\}$ es una secuencia independientes de eventos tal que $\sum_{n=1}^{\infty} P(A_n) = \infty$, entonces P(A) = 1.

Nota: Dada una secuencia de eventos $\{A_n\}$ en S.

$$\frac{\overline{\lim}}{\overline{\lim}_{n\to\infty}} A_n = \lim_{n\to\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \text{ donde } A = \overline{\lim}_{n\to\infty} A_n.$$
A es un evento que infinitamente mucho de los A_n ocurren. Se escribirá también como:

 $A = \{ w \in \Omega : \forall n \in \mathbb{Z}^+, \exists n_o \ge n \ tal \ que \ w \in A_{n_o} \}.$

 $P(A) = P(\overline{\lim_{n \to \infty}} A_n) = P(A_n \text{ i.o.}) \text{ donde i.o. significa "infinitamente a menudo"}.$

Teorema 6 (La ley fuerte de los grandes números) $Si X_1, X_2, ... son variables aleato$ rias independientes e identicamente distribuidas con media finita μ . Entonces $P\left(\lim_{n\to\infty}\left[\frac{X_1+\ldots+X_n}{n}=\mu\right]\right)$

Nota: Supóngase cuarto momento finito.

Teorema 7 (El teorema central del límite) Sean $X_1, X_2,...$ una sucesión de variables aleatorias independientes e idénticamente distribuidas con media finita μ y varianza finita σ^2 . Entonces $\lim_{n\to\infty} P(\left[\frac{X_1+\ldots+X_n-n\mu}{\sigma\sqrt{n}}\leq x\right]) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{x^2}{2}} dx$. Nota: Supóngase que la función generadora de momentos de X_n existe.