Versuchsbericht P428 Röntgenstrahlung und Materialanalyse

Gabriel Remiszewski und Christian Fischer ${\rm durchgef\"{u}hrt~am~15/16.11.2023}$

Inhaltsverzeichnis

4	Fazit	5
3	Laue-Aufnahme	4
2	Bedienung des Rastertunnelmikroskops	2
1	Einleitung	1

1. Einleitung

2. Bedienung des Rastertunnelmikroskops

Tabelle 1: gemessene Energie und Höhe der charakteristischen Linien verschieder Metalle

Metall	Energie E/keV	Höhe in Detektionen		
	6,4(7)	10700(600)		
FeZn	6,8(8)	4300(300)		
гедп	8,7(9)	1430(80)		
	9,7(9)	200(300)		
	3,5(6)	223(9)		
	8,2(8)	72(17)		
Ag1	9,2(9)	33(7)		
	22,2(17)	240(14)		
	24,9(19)	26(3)		
	8,5(8)	248(14)		
	10,0(9)	1170(90)		
Au	$12(1)^{'}$	640(40)		
	13,7(12)	53(7)		
	8,2(8)	7900(400)		
Cu	9,0(9)	1080(80)		
	3,8(6)	351(13)		
	8,3(8)	206(19)		
In	9,1(9)	43(14)		
	24,1(19)	99(7)		
	27(3)	11,8(17)		
	6,4(7)	13 600(1200)		
Fe	6,8(8)	5200(600)		
	9,9(9)	370(170)		
	17,7(14)	1050(60)		
Mo	19,8(16)	149(9)		
	6,5(7)	310(30)		
Ni	7,5(8)	6500(600)		
111	7,9(8)	4720(160)		
	8,2(8)	320(30)		
	9,2(9)	134(16)		
Pb	11(1)	1210(80)		
1.0	12,9(11)	700(30)		
	15,1(13)	57(5)		
	4,0(6)	640(30)		
	8,3(8)	160(30)		
Sn		` ′		
	9,0(9)	29(8)		
Titor	25,1(19)	58(4)		
Titan	4,9(7)	8400(1200)		
	5,7(7)	50(10) 112(15)		
117	7,6(8)	\ \ /		
W	8,6(9)	1570(70)		
	9,9(9)	1600(500)		
	12(1)	101(7)		
Zn	8,8(9)	7200(500)		
	9,7(9)	990(90)		
7	12(1)	56(11)		
Zr	16,0(13)	1690(70)		
	17,9(14)	230(30)		

Tabelle 2: Energien der charakteristischen Linien von Unbekannt1

Energie E/keV	Höhe in Detektionen
5,5(7)	2800(400)
6,5(7)	8000(1000)
6,7(8)	3800(300)

Tabelle 3: Energien der charakteristischen Linien von Unbekannt2

Energie E/keV	Höhe in Detektionen
8,1(8)	4320(140)
8,7(9)	3530(80)

Tabelle 4: Energien der charakteristischen Linien von Unbekannt3

Energie E/keV	Höhe in Detektionen
8,1(8)	4500(400)
8,7(9)	2700(300)

Tabelle 5: Energien der charakteristischen Linien von Unbekannt4

Energie E/keV	Höhe in Detektionen
5,7(7)	520(80)
5,2(7)	200(70)
7,0(8)	6100(1300)
7,7(8)	2000(1200)

3. Laue-Aufnahme

Tabelle 6: Miller-Indizes

Punkt	x' _P / p	$y_{ m P}^\prime$ / p	$x_{ m P}$ / p	$y_{ m P}$ / ${ m p}$	$z_{ m Q}$ / p	$\Delta z_{ m Q}$ / p	(h, k, l)
A01	1289	1665	-273	-184	106	18	$(\bar{5}\bar{3}2)$
A02	1364	1660	-198	-189	75	14	$(\bar{5}\bar{5}2)$
A03	1360	1589	-202	-260	106	18	$(\bar{3}\bar{5}2)$
A04	1739	1538	177	-311	123	20	$(3\bar{5}2)$
A05	1762	1623	200	-226	90	16	$(5\bar{5}2)$
A06	1862	1623	300	-226	134	21	$(5\bar{3}2)$
A07	1875	2058	313	209	134	21	(532)
A08	1776	2072	214	223	94	17	(552)
A09	1762	2158	200	309	129	21	(352)
A10	1363	2121	-199	272	110	19	$(\bar{3}52)$
A11	1363	2030	-199	181	73	14	$(\bar{5}52)$
A12	1283	2018	-279	169	104	18	$(\bar{5}32)$
B01	1507	1638	-55	-211	49	11	$(\bar{1}\bar{4}1)$
B02	1579	1623	17	-226	53	11	$(1\bar{4}1)$
B03	1807	1793	245	-56	64	13	$(4\bar{1}1)$
B04	1810	1908	248	59	66	13	(411)
B05	1597	2086	35	237	59	12	(141)
B06	1507	2075	-55	226	55	12	$(\bar{1}41)$
B07	1360	1884	-202	35	44	10	$(\bar{4}11)$
B08	1362	1803	-200	-46	44	10	$(\bar{4}\bar{4}1)$
C01	1414	1482	-148	-367	147	23	$(\bar{2}\bar{5}2)$
C02	1535	1416	-27	-433	172	25	$(0\bar{5}2)$
C03	1672	1450	110	-399	159	24	$(2\bar{5}2)$
C04	1974	1695	412	-154	176	26	$(\bar{5}\bar{2}2)$
C05	2039	1835	477	-14	203	28	$(\bar{5}02)$
C06	1983	1985	421	136	178	26	(522)
C07	1689	2248	127	399	162	24	(252)
C08	1548	2286	-14	437	175	26	(052)
C09	1422	2222	-140	373	148	23	$(\bar{2}52)$
C10	1200	1958	-362	109	135	22	$(\bar{5}22)$
C11	1161	1843	-401	-6	150	23	$(\bar{5}02)$
C12	1205	1730	-357	-119	134	21	$(\bar{5}\bar{2}2)$
D01	1236	1543	-326	-306	181	26	$(\bar{4}\bar{4}2)$
D02	1891	1478	329	-371	216	29	$(4\bar{4}2)$
D03	1913	2205	351	356	219	29	(442)
D04	1236	2152	-326	303	180	26	(442)
E01	1025	1585	-357	-264	179	26	(422)
E02	1262	1302	-300	-547	315	36	$(\bar{2}\bar{4}2)$
E03	1830	1239	268	-610	350	40	$(2\bar{4}2)$
E04	2175	1516	613	-333	380	40	$(4\bar{2}2)$
E05	2204	2169	642	320	390	40	(422)
E06	1859	2462	297	613	360	40	(242)
E07	1262	2402	-300	553	320	40	$(\bar{2}42)$
E08	1017	2104	-545	255	300	40	$(\bar{4}22)$
F01	850	1390	-712	-459	500	50	$(\bar{3}\bar{2}2)$
F02	1057	1147	-505	-702	520	50 50	$(\bar{2}\bar{3}2)$
F03	2069	1016	507	-833	620	50	$(2\bar{3}2)$
F04	2388	1260	826	-589	650	50	$(3\bar{2}2)$
F05	2430	2431	868	582	680	50	(322)
F06	2115	2684	553	835	640	50 50	(232)
F07	1048	2583	-514	734	540	50 50	$(\bar{2}32)$
F08	834	2309	-728	460	520	50	$(\bar{3}22)$

4. Fazit