Solutionnaire de l'examen 1 du 22 octobre 2010

Question # 1 (20 points). Soient les vecteurs colonnes suivants en notation Matlab :

$$\mathbf{a_1} = [2; -3; 5]$$
 $\mathbf{a_2} = [1; 4; 6]$ et $\mathbf{b} = [7; -27; 7]$

- -a) Est-ce que **b** est une combinaison linéaire de **a**₁ et de **a**₂ ?
- -b) Quelle est la dimension de l'espace vectoriel engendré par ces trois vecteurs?
- -c) En général, quelle condition doit rencontrer une matrice A de 3 lignes et de 3 colonnes pour que ses trois vecteurs colonnes soient linéairement indépendants?

Solution 1:

On veut savoir si un vecteur X existe tel que :

$$x_1^* \mathbf{a_1} + x_2^* \mathbf{a_2} + x_3^* \mathbf{b} = 0$$
, équation (1)

ce qui dénoterait que **b** est une combinaison linéaire de a_1 et a_2 , les poids étant x_1 , x_2 , et x_3 . En notation matricielle :

$$A^*X = 0$$
 équation (2)

avec
$$A = [2 \ 1 \ 7; -3 \ 4 \ -27; 5 \ 6 \ 7]$$
 et $\mathbf{X} = [x_1; x_2; x_3]$ équation (3)

On forme la matrice augmentée AUG = [2 1 7 0; -3 4 -27 0; 5 6 7 0]

et on procède à l'amener sous sa forme échelon réduit :

En équations :
$$x_1 + 5x_3 = 0$$
 équation (4)

$$x_2 -3 x_3 = 0$$
 équation (5)

La dernière ligne ci-haut, toute en zéros, signifie «aucune contrainte sur x_3 », donc x_3 = variable libre. Prenons, comme d'habitude, x_3 = 1.

Il suit : $x_2 = 3$ et $x_1 = -5$. L'équation (1) ci-haut devient donc :

$$-5*a_1 + 3*a_2 + 1*b = 0$$
 ou $b = 5*a_1 - 3*a_2$ équation (6)

Le vecteur **b** est donc une combinaison linéaire de \mathbf{a}_1 et \mathbf{a}_2 .

Solution 2:

Si les trois vecteurs $\mathbf{a_1}$, $\mathbf{a_2}$ et \mathbf{b} étaient linéairement indépendants, le déterminant de la matrice A serait différent de zéro. Dans ce cas inv(A) existerait et la seule solution de l'équation (2) $A^*\mathbf{X} = 0$ serait $\mathbf{X} = 0$, solution triviale.

Le déterminant de A est égal à :

$$det(A) = 2*[4*7 - 6*(-27)] - [-3*7 - 5*(-27)] + 7*[-3*6 - 5*4]$$
$$= 2*190 - 114 + 7*(-38) = 0$$

Les trois vecteurs ne sont donc pas linéairement indépendants.

Sous-question –b). Réponse : les deux vecteurs $\mathbf{a_1}$ et $\mathbf{a_2}$ engendrent un espace bidimensionnel \mathbb{R}^2 . Comme b est une combinaison linéaire de $\mathbf{a_1}$ et $\mathbf{a_2}$, \mathbf{b} est dans ce plan et n'ajoute pas une troisième dimension. La réponse est 2.

Sous-question –c). Réponse 1 : il faut que le déterminant de la matrice A soit différent de zéro. Dans ce cas, inv(A) existe et l'équation A*X = 0 aurait seulement la solution triviale X = inv(A)*0 = 0, ce qui montre qu'il n'y pas

de combinaison linéaire des trois vecteurs colonnes de A qui donne le vecteur zéro.

Réponse 2 : il faut que l'opération rref(A) donne trois colonnes pivots, c'est-à-dire, dans le présent cas d'une matrice carrée de rang 3, la matrice identité I₃.

Question # 2 (30 points). –a) On veut solutionner l'équation matricielle A***X** = **b** par la méthode de l'échelon réduit appliquée à la matrice augmentée AUG. En notation Matlab les données sont :

$$A = [1 -2 3; -4 5 6; 3 -2 1]$$
 et **b** = $[6; 24; 2]$

Suite à la commande rref(AUG), Matlab livre la réponse suivante :

Interpréter ce résultat et donner la valeur de X.

- -b) Est-ce qu'une autre méthode de solution pourrait donner **X** en fonction de **b**? Donner la formule sans l'exécuter numériquement.
- -c) Soit la matrice $M = [-1 \ 2 \ 2; 2 \ -1]$. Calculer son déterminant, son inverse inv(M), et le déterminant de inv(M).
- -a) Réponse : mise sous forme d'équation matricielle la réponse de rrefA) exprime ceci : $I_3*X = [1;2;3]$.

Comme I_3 ***X** = **X**, la valeur de **X** est [1 ; 2 ; 3].

Une autre façon de voir ce résultat est d'écrire les équations qui correspondent à rref(A). Elles sont tout simplement :

$$x_1 = 1$$

$$x_2 = 2$$

$$x_3 = 3$$

-b) Une autre façon de solutionner l'équation A*X = b est d'écrire :

$$Inv(A)^*A^*X = I_3^*X = X = inv(A)^*b$$

Si cela avait été demandé il aurait fallu évaluer inv(A). On aurait trouvé :

Avec Matlab on peut vérifier que inv(A)* $\mathbf{b} = [1; 2; 3]$

-b) AUTRE RÉPONSE : la méthode de Cramer. (Voir les notes du cours 06, pages 3-11, ou dans le livre de David Lay, pp. 201-204).

La solution de $A^*X = b$ est donnée par :

 $x_i = \det A_i(\mathbf{b})/\det A$ où $A_i(b)$ est la matrice obtenue en remplaçant la ième colonne par le vecteur \mathbf{b} .

(PAS REQUIS À L'EXAMEN). Si on exécute numériquement cette approche on trouve : $x_1 = det [6 -2 3; 24 5 6; 2 -2 1] / det(A)$

= -48/(-48) = 1. Puis
$$x_2$$
 = -96/(-48) = 2 et x_3 = -144/(-48) = 3

Réponse à -c). Le déterminant de M est égal à :

$$(-1)^*(1-4) - 2^*(-2-4) + 2^*(4+2) = 3 + 12 + 12 = 27$$

Le déterminant de inv(M) est 1/27.

Pour l'inverse de M on procède par opération sur les lignes (voir le cours 03) :

-1
2
2
1
0
0
-1
2
0
5/9
-4/9
2/9

0
3
6
2
1
0
$$\approx$$
0
3
0
2/3
-1/3
2/3
 \approx
0
3
0
2/3
-1/3
2/3

0
0
-9
-2
1
0
0
-9
-2
-2
1

0
0
-9
-2
-2
1
0
0
-9
-2
-2
1

-1 0 0 1/9 -2/9 -2/9 1 0 0 -1/9 2/9 2/9 0 3 0 2/3 -1/3 2/3
$$\approx$$
 0 1 0 2/9 -1/9 2/9 0 0 -9 -2 -2 1 0 0 1 2/9 2/9 -1/9

La matrice inverse M est constituée par les trois colonnes de droite. On peut l'écrire comme suit:

De façon assez surprenante 9*inv(M) est la matrice originale M.

Question # 3 (25 points). -a) Accomplir la factorisation LU de la matrice $A = [2 \ 3; 4 \ 8]$

- -b) Décrire un exemple de l'application de la factorisation LU au calcul matriciel.
- -c) Nommer une contrainte sur une matrice en général pour qu'elle soit factorisable en LU.

Réponse : -a) On part de
$$A = 2$$
 3 et on écrit $L = 2$ 0
4 8 4 *

l'étoile symbolisant une inconnue. On divise la première colonne de L par 2 parce qu'on veut une diagonale constituée de 1s.

On a donc: L = 1 0

2 *

La prochaine étape est de transformer A vers sa forme échelon. L'opération L2 → L2 – 2L1 va nous créer un zéro en bas à gauche :

AMODIF = 2 3 On saisit le pivot (2) de la deuxième colonne 0 2

pour l'introduire dans L: L = 1 0

• 2 2

On divise le 2 de la diagonale par 2 pour obtenir : L = 1 0

• 2 1

- Notre U est AMODIF. On vérifie que le produit L*U redonne A.
- **-b) Réponse** : Une application de la factorisation LU d'une matrice A est que la solution de l'équation A***X** = **b** est facilitée. On écrit :

 $A^*X = L^*U^*X = L^*Y = b$ où Y est par définition $Y = U^*X$

Connaissant L et **b** on solutionne Y = inv(L)*b. Avec ce Y solutionné on trouve X = inv(U)*Y.

- **-c) Réponse** : Contraintes (voir p. 29 du cours 04): Pour la matrice générale m x n la décomposition LU exige :
- l'existence d'une matrice carrée L de dimension m x m, triangulaire inférieure, et possédant des 1 sur la diagonale;
- l'existence d'une matrice U de dimension m x n qui est une forme échelon de la matrice A.

Question # 4 (25 points). –a) Trouver les valeurs propres et les vecteurs propres de la matrice

$$A = [1 \ 2; 0 \ 3].$$

-b) Diagonaliser la matrice $B = \begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$.

Réponse : -a) On trouve les valeurs propres en mettant le déterminant de la matrice $(A - \lambda I_2)$ égal à zéro. On a donc :

Det
$$1 - \lambda$$
 2 = $(1 - \lambda) * (3 - \lambda) = 0$
0 3 - λ

D'où il vient : $\lambda_1 = 1$ et $\lambda_2 = 3$

Pour $\lambda_1=1$ on doit avoir $A^*V=\lambda_1V=\lambda_1^*I_2^*V$, avec $V=[x_1;x_2]$. On doit donc avoir :

$$(A - \lambda_1 I_2)^*V = 0$$
, ce qui donne $[(1-1) \ 2; 0 \ (3-1)]^*[x_1; x_2] = [0; 0]$

En équations, la première est : $0^*x_1 + 2^*x_2 = 0$

ce qui donne immédiatement $x_2 = 0$.

La deuxième ligne est $0*x_1 + 2*x_2 = 0$ et n'apporte aucune contrainte sur x_1 . La variable x_1 est donc libre et on peut la prendre comme étant 1. Le vecteur propre V1 est donc V1 = [1; 0].

Pour
$$\lambda_2 = 3$$
 la matrice (A - $\lambda_2 I_2$) = [(1 - 3) 2; 0 (3 - 3)] = [-2 2; 0 0].

La première équation est : $-2x_1 + 2x_2 = 0$, d'où $x_1 = x_2$. La deuxième équation est $0*x_1 + 0*x_2 = 0$, ce qui signifie aucune contrainte sur x_1 ou x_2 . On peut donc prendre V2 = [1; 1].

Remarquer que V2 = [5; 5] ou V2 = [-21; -21] sont aussi bons : ces vecteurs pointent dans la même direction. Mais [1; 1] est plus pratique comme vecteur propre de base.

Réponse pour -b)