Série 12

David Wiedemann

21 décembre 2020

1

Ce résultat découle directement du théorème de Lagrange.

En effet, $|\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}| = p^2$. Soit H un sous-groupe propre.

Donc |H| > 1 et $|H| < p^2$. Par Lagrange, on sait que $|H||p^2$, ce qui force |H|=p.

On en conclut que $H\simeq \mathbb{Z}/p\mathbb{Z}$, car tous les groupes d'ordre premier sont isomorphes au groupe cyclique.

$\mathbf{2}$

Dans ce qui suit, k représente le corps sur lequel U est défini et p sera la characteristique de ce corps.

Soit F un sous-groupe de U.

Supposons d'abord que $F \cap Z(U) \neq \{e\}$.

On a montré dans l'exercice 3 que le centre du groupe unipotent est l'ensemble des matrices de la forme

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ pour } a \in k$$

Si $F \cap Z(U) \neq \{e\}$, il existe une matrice

$$M = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ avec } a \in k^{\times}$$

appartenant à F.

Car F est un sous-groupe, le groupe cyclique engendré par M est contenu dans F.

Or |Z(U)| = p et il est clair que $\langle M \rangle = Z(U)$, il suit $Z(U) \subseteq F$.

Supposons maintenant que $F \not\supseteq Z(U)$.

Par l'absurde, supposons que $F \cap Z(U) \neq \{e\}$.

Or, la cardinalité de F est au pire p^2 , et la cardinalité de Z(U) est p. Si $F \cap Z(U)$ est différent de l'élément neutre, alors la cardinalité de $F \cap Z(U)$ doit être p (car $F \cap Z(U)$ est un sous-groupe de F), ce qui implique $F \supset Z(U)$.

Ceci contredit l'hypothèse $F \not\supseteq Z(U)$.

3

On suppose que $F \cap Z(U) = \{e\}.$

Car $|U| = p^3$, par Lagrange, il y a 2 possibilités pour |F|. Si |F| = p, alors il est évident que $|FZ(U)| = p^2$, donc

$$|FZ(U)/_{Z(U)}| = p$$

Et on en conclut que

$$FZ(U)/Z(U) \simeq \mathbb{Z}/p\mathbb{Z}$$

Ici, il est clair que FZ(U) forme un groupe, en effet, Z(U) est un groupe normal.

Supposons donc $|F|=p^2$. On en conclut que $FZ(U)>p^2$ (car l'intersection des deux groupes possède seulement l'élément neutre), et donc FZ(U)=U.

Il est clair que

$$F \simeq F/{\{e\}}$$

Donc

$$F \simeq F/_{F \cap Z(U)} \simeq FZ(U)/_{Z(U)} = U/_{Z(U)} \simeq k \oplus k \simeq \mathbb{Z}/_{p\mathbb{Z}} \times \mathbb{Z}/_{p\mathbb{Z}}$$

Ici, le premier isomorphisme est immédiat, le deuxième isomorphisme suit du deuxième théorème d'isomorphisme, le troisième suit de FZ(U) = U et le quatrième isomorphisme suit de l'exercice 3.3.

Soit $a \in k^{\times}$, montrons que le sous-groupe E engendré par la matrice

$$\begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

est un sous-groupe dont l'intersection avec Z(U) est l'élément neutre est qui n'est pas normal.

Par l'exercice 3.1, on voit que E forme un sous-groupe d'ordre p dont l'intersection avec Z(U) est $\{e\}$.

Posons

$$M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ alors } M^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

On vérifie facilement que $M \cdot M^{-1} = \text{Id}$ Pourtant,

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a & -a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \notin E$$

4

Si $F \supsetneq Z(U)$ et F est un sous-groupe propre, alors, par Lagrange, $|F| = p^2$, et donc

$$|F/Z(U)| = \frac{p^2}{p} = p$$

Ce qui force

$$F_{Z(U)} \simeq \mathbb{Z}_{p\mathbb{Z}}$$

, car tous les groupes d'ordre premier sont isomorphes.

Par le théorème de correspondance, il suffit de montrer que $F_{Z(U)}$ est normal dans $U_{Z(U)}$.

Pourtant, $U/Z(U) \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

En restreignant cet isomorphisme à F/Z(U), on trouve un sous-groupe d'ordre p dans $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Or $\mathbb{Z}/_{p\mathbb{Z}} \times \mathbb{Z}/_{p\mathbb{Z}}$ est abélien, et donc n'importe quel sous-groupe est normal. Il en suit que $F/_{Z(U)} \subseteq U/_{Z(U)}$, on conclut avec le théorème de correspondance, qui implique $F \subseteq U$.