SBML Model Report

Model name: "HIVHPVcoinfection"

December 1, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following eight authors: Andrew Leber¹, Raquel Hontecillas², Stanca Ciupe³, Stefan Hoops⁴, Meghna Verma⁵, Samantha Erwin⁶, Vida Abedi⁷ and Josep Bassaganya-Riera⁸ at December 16th 2015 at 1:33 p.m. and last time modified at December 16th 2015 at 1:33 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	7
events	0	constraints	0
reactions	18	function definitions	11
global parameters	10	unit definitions	3
rules	0	initial assignments	3

 $^{^{1}}VT$, ajleber@vt.edu

 $^{^2} VT$, rmagarzo@vt.edu

³VT, stanca@math.vt.edu

 $^{^4} VT$, shoops@vbi.vt.edu

⁵VT, meghna89@vt.edu

⁶VT, sherwin@vt.edu

 $^{^7} VT$, abedi@vt.edu

 $^{^8 {}m VT}$, jbassaga@vt.edu

Model Notes

This is a COPASI version of the HIV/HPV coinfection model submitted to PLoS One.

Authors: Meghna Verma*, Samantha Erwin*, Vida Abedi, Raque Hontecillas, Stefan Hoops, And

Title: Modeling the mechanisms by which HIV-associated immunosuppression influences HPV

* Contributed equally to the work

Corresponding Authors: Josep Bassaganya-Riera and Stanca Ciupe

2 Unit Definitions

This is an overview of five unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition ml

2.2 Unit time

Name time

Definition 86400 s

2.3 Unit substance

Name substance

Definition item

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
default	default		3	1	litre	Ø	

3.1 Compartment default

This is a three dimensional compartment with a constant size of one ml.

Name default

4 Species

This model contains seven species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
					tion
s2	V	default	item· ml^{-1}		
s3	I	default	item \cdot ml ⁻¹		\Box
s4	T	default	item \cdot ml ⁻¹		\Box
s14	W	default	item \cdot ml ⁻¹		\Box
s16	E	default	item \cdot ml ⁻¹		\Box
s13	Y2	default	item \cdot ml ⁻¹		\Box
s12	Y1	default	item \cdot ml ⁻¹		

5 Parameters

This model contains ten global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
e_rt	e_rt		0.000		✓
e_pi	e_pi		0.000		
epi	epi		0.500		$ \overline{\mathbf{Z}} $
omega	omega		0.001		$ \overline{\mathscr{A}} $
mu	mu		0.048		
beta	beta	1.53	3907922912206 · 1	0^{-7}	
c1	c1		23.000		$\overline{\mathbf{Z}}$
N1	N1		467.000		$\overline{\mathbf{Z}}$
S	S		5564.026		$\overline{\mathbf{Z}}$
d	d		0.010		$ \mathbf{Z} $

6 Initialassignments

This is an overview of three initial assignments.

6.1 Initialassignment s3

Derived unit contains undeclared units

Math beta \cdot [s4] \cdot [s2]

6.2 Initialassignment beta

Derived unit contains undeclared units

 $\quad \text{Math} \ \ \tfrac{c1}{N1\cdot[s4]}$

6.3 Initialassignment s

Derived unit contains undeclared units

Math $d \cdot [s4] + beta \cdot [s4] \cdot [s2]$

7 Function definitions

This is an overview of eleven function definitions.

7.1 Function definition Constant_flux__irreversible

Name Constant flux (irreversible)

Argument v

Mathematical Expression

$$v$$
 (1)

7.2 Function definition

Death_of_HPV_self_proliferating_cells_due_to_effector_cells

Name Death of HPV self-proliferating cells due to effector cells

Arguments a, [s13], [s16]

Mathematical Expression

$$a \cdot [s16] \cdot [s13] \tag{2}$$

7.3 Function definition

Rate_Law_for_Production_of_HPV_due_to_HPVinfected_1

Name Rate Law for Production of HPV due to HPVinfected_1

Arguments k1, mu, [s12]

Mathematical Expression

$$mu \cdot k1 \cdot [s12] \tag{3}$$

7.4 Function definition Logistic_term_for_Effector_cells_1

Name Logistic term for Effector cells_1

Arguments b, omega, [s13], [s16], [s4]

Mathematical Expression

$$\frac{\text{omega} \cdot [\text{s}13] \cdot [\text{s}16] \cdot [\text{s}16]}{\text{b} \cdot [\text{s}4]} \tag{4}$$

7.5 Function definition Production of HPV_infected_cells

Name Production of HPV infected cells

Arguments N2, p, phi, psi, [s12], [s14], [s2]

Mathematical Expression

$$psi \cdot [s14] \cdot \frac{(1+p \cdot [s2]) \cdot N2 - [s12]}{phi + (1+p \cdot [s2]) \cdot N2 - [s12]} \tag{5}$$

7.6 Function definition Rate_Law_for_production_of_HIV_infected_cells_1

Name Rate Law for production of HIV infected cells_1

Arguments beta, e_rt, [s2], [s4]

Mathematical Expression

$$(1 - e_rt) \cdot beta \cdot [s4] \cdot [s2] \tag{6}$$

7.7 Function definition Production_of_HPV_due_to_HPV_self_proliferating_1

Name Production of HPV due to HPV self-proliferating_1

Arguments k2, mu, [s13]

Mathematical Expression

$$mu \cdot k2 \cdot [s13] \tag{7}$$

7.8 Function definition Rate_Law_for_Production_of_HIV_virion_1

Name Rate Law for Production of HIV virion_1

Arguments N1, delta, e_pi, [s3]

Mathematical Expression

$$(1 - e_{-pi}) \cdot N1 \cdot delta \cdot [s3]$$
 (8)

7.9 Function definition Rate_Law_for_Production_of_Effector_cell_1_1

Name Rate Law for Production of Effector cell_1_1

Arguments omega, [s13], [s16]

Mathematical Expression

omega
$$\cdot$$
 [s13] \cdot [s16] (9)

7.10 Function definition Proliferation_of_HPV_self_proliferating

Name Proliferation of HPV self-proliferating

Arguments epi, r, [s13]

Mathematical Expression

$$r \cdot epi \cdot [s13]$$
 (10)

7.11 Function definition

Death_of_HPV_self_proliferating_due_to_Effector_cells

Name Death of HPV self-proliferating due to Effector cells

Arguments a, [s12], [s16]

Mathematical Expression

$$\mathbf{a} \cdot [\mathbf{s}12] \cdot [\mathbf{s}16] \tag{11}$$

8 Reactions

This model contains 18 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	re1	Production of HIV virion	$\emptyset \xrightarrow{s3} s2$	
2	re3	Death of HIV	s2	
3	re4	Production of HIV infected cells	$s4 \xrightarrow{s2} s3$	
4	re5	Production of T cells	$\emptyset \longrightarrow s4$	
5	re7	Decay of T cells	$s4 \longrightarrow \emptyset$	
6	re8	Decay of HIV-infected	$s3 \longrightarrow \emptyset$	
7	re9	Production of HPV-self-proliferating cells by HPV infected	$s12 \longrightarrow s13$	
8	re11	Production of HPV due to HPVinfected	$\emptyset \xrightarrow{s12} s14$	
9	re12	Death of HPV infected due to Effector cells	$s12 \xrightarrow{s16} \emptyset$	
10	re14	Decay of HPV self-proliferating	$s13 \longrightarrow \emptyset$	
11	re15	Logistic term for Effector cells	$s16 \xrightarrow{s13, s4} \emptyset$	
12	re17	Death of HPV self-proliferating cells due to effector cells	$s13 \xrightarrow{s16} \emptyset$	
13	re18	Decay of HPV-infected cells	s12 → Ø	
14	re20	Decay of HPV	$s14 \longrightarrow \emptyset$	
15	re24	Proliferation of HPV self-proliferating cells	$s13 \xrightarrow{s13} 2 s13$	
16	re25	Production of HPV infected cells	$s12 \xrightarrow{s14, s2} 2 s12$	
17	re26	Production of Effector cell	$s16 \xrightarrow{s13} 2 s16$	

Nº	Id	Name	Reaction Equation	SBO
18	Productionof_HPV_dueto_HPV_selfproliferating	Production of HPV due to HPV self proliferating	$\emptyset \xrightarrow{s13} s14$	

8.1 Reaction re1

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Production of HIV virion

Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Nelson PW. Estimating kinetic parameters from Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Nelson PW. Estimating kinetic parameters from Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Nelson PW. Estimating kinetic parameters from Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Nelson PW. Estimating kinetic parameters from Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Nelson PW. Estimating kinetic parameters from Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Nelson PW. Estimating kinetic parameters from Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Nelson PW. Estimating kinetic parameters from Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Nelson PW. Estimating kinetic parameters from Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Nelson PW. Estimating kinetic parameters from Notes N1 - Ciupe MS, Bivort BL, Bortz DM, Engram JC, Paiardini M, Lawson B, et al. CD8+ N1 - Ciupe MS, Bivort BL, Bortz DM, Engram JC, Paiardini M, Lawson B, et al. CD8+ N1 - Ciupe MS, Bivort BL, Bortz DM, Blook BL, Bortz DM, Blook BL, Bortz DM, Blook BL, Bortz DM, Blook BL, Blook BL

Reaction equation

$$\emptyset \xrightarrow{s3} s2 \tag{12}$$

Modifier

Table 6: Properties of each modifier.

Id	Name	SBO
s3	I	

Product

Table 7: Properties of each product.

Id	Name	SBO
s2	V	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{default}) \cdot \text{Rate_Law_for_Production_of_HIV_virion_1}(\text{N1}, \text{delta}, \text{e_pi}, [\text{s3}])$$
 (13)

$$Rate_Law_for_Production_of_HIV_virion_1 \ (N1, delta, e_pi, [s3]) = (1 - e_pi) \cdot N1 \cdot delta \cdot [s3] \ (14)$$

$$Rate_Law_for_Production_of_HIV_virion_1 \\ (N1, delta, e_pi, [s3]) = (1 - e_pi) \cdot N1 \cdot delta \cdot [s3] \\ (15)$$

Table 8: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
delta	delta	1.0	

8.2 Reaction re3

This is an irreversible reaction of one reactant forming no product.

Name Death of HIV

Notes Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, et al. Rapid

Reaction equation

$$s2 \longrightarrow \emptyset$$
 (16)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
s2	V	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{default}) \cdot \text{c1} \cdot [\text{s2}] \tag{17}$$

8.3 Reaction re4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Production of HIV infected cells

Reaction equation

$$s4 \xrightarrow{s2} s3$$
 (18)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
s4	T	

Modifier

Table 11: Properties of each modifier.

Id	Name	SBO
s2	V	·

Product

Table 12: Properties of each product.

Id	Name	SBO
s3	I	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol} (\text{default}) \cdot \text{Rate_Law_for_production_of_HIV_infected_cells_1} (\text{beta}, \text{e_rt}, [\text{s2}], [\text{s4}])$$
 (19)

$$\begin{aligned} & Rate_Law_for_production_of_HIV_infected_cells_1 \, (beta, e_rt, [s2], [s4]) \\ &= (1 - e_rt) \cdot beta \cdot [s4] \cdot [s2] \end{aligned} \tag{20}$$

$$\begin{aligned} & Rate_Law_for_production_of_HIV_infected_cells_1 \, (beta, e_rt, [s2], [s4]) \\ &= (1 - e_rt) \cdot beta \cdot [s4] \cdot [s2] \end{aligned} \tag{21}$$

8.4 Reaction re5

This is an irreversible reaction of no reactant forming one product.

Name Production of T cells

Reaction equation

$$\emptyset \longrightarrow s4$$
 (22)

Product

Table 13: Properties of each product.

Id	Name	SBO
s4	T	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{default}\right) \cdot \text{Constant_flux_irreversible}\left(\text{s}\right)$$
 (23)

$$Constant_flux_irreversible(v) = v$$
 (24)

$$Constant_flux_irreversible(v) = v$$
 (25)

8.5 Reaction re7

This is an irreversible reaction of one reactant forming no product.

Name Decay of T cells

Notes Mohri H, Perelson AS, Tung K, Ribeiro RM, Ramratnam B, Markowitz M, et al. Increase

Reaction equation

$$s4 \longrightarrow \emptyset$$
 (26)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
s4	T	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{default}) \cdot d \cdot [\text{s4}]$$
 (27)

8.6 Reaction re8

This is an irreversible reaction of one reactant forming no product.

Name Decay of HIV-infected

Notes Klatt NR, Shudo E, Ortiz AM, Engram JC, Paiardini M, Lawson B, et al. CD8+ lymphoc

Reaction equation

$$s3 \longrightarrow \emptyset$$
 (28)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
s3	I	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{default}\right) \cdot \text{k1} \cdot [\text{s3}] \tag{29}$$

Table 16: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.0	\overline{Z}

8.7 Reaction re9

This is an irreversible reaction of one reactant forming one product.

Name Production of HPV-self-proliferating cells by HPV infected

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$s12 \longrightarrow s13$$
 (30)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
s12	Y1	

Product

Table 18: Properties of each product.

Id	Name	SBO
s13	Y2	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{default}) \cdot \text{epi} \cdot [\text{s}12]$$
 (31)

8.8 Reaction re11

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Production of HPV due to HPVinfected

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$\emptyset \xrightarrow{s12} s14 \tag{32}$$

Modifier

Table 19: Properties of each modifier.

Id	Name	SBO
s12	Y1	

Product

Table 20: Properties of each product.

Id	Name	SBO
s14	W	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}\left(\text{default}\right) \cdot \text{Rate_Law_for_Production_of_HPV_due_to_HPVinfected_1}\left(\text{k1,mu,}\left[\text{s12}\right]\right)$$
 (33)

 $Rate_Law_for_Production_of_HPV_due_to_HPVinfected_1 \\ (k1, mu, [s12]) = mu \cdot k1 \cdot [s12] \quad (34)$

 $Rate_Law_for_Production_of_HPV_due_to_HPVinfected_1 (k1, mu, [s12]) = mu \cdot k1 \cdot [s12] \quad (35)$

Table 21: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1000.0	

8.9 Reaction re12

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Death of HPV infected due to Effector cells

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$s12 \xrightarrow{s16} \emptyset \tag{36}$$

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
s12	Y1	

Modifier

Table 23: Properties of each modifier.

Id	Name	SBO
s16	Е	

Kinetic Law

Derived unit contains undeclared units

 $v_9 = \text{vol}(\text{default}) \cdot \text{Death_of_HPV_self_proliferating_due_to_Effector_cells}(a, [s12], [s16])$ (37)

 $Death_of_HPV_self_proliferating_due_to_Effector_cells (a, [s12], [s16]) = a \cdot [s12] \cdot [s16] \quad (38)$

 $Death_of_HPV_self_proliferating_due_to_Effector_cells \\ (a,[s12],[s16]) = a \cdot [s12] \cdot [s16] \quad (39)$

Table 24: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
a	a	0.01	

8.10 Reaction re14

This is an irreversible reaction of one reactant forming no product.

Name Decay of HPV self-proliferating

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$s13 \longrightarrow \emptyset$$
 (40)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
s13	Y2	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{default}\right) \cdot \text{k1} \cdot [\text{s13}] \tag{41}$$

Table 26: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.048	\square

8.11 Reaction re15

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name Logistic term for Effector cells

Reaction equation

$$s16 \xrightarrow{s13, s4} \emptyset \tag{42}$$

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
s16	Е	

Modifiers

Table 28: Properties of each modifier.

Id	Name	SBO
s13	Y2	
s4	T	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{default}\right) \cdot \text{Logistic_term_for_Effector_cells_1}\left(b, \text{omega}, [\text{s}13], [\text{s}16], [\text{s}4]\right) \quad (43)$$

$$Logistic_term_for_Effector_cells_1 \ (b, omega, [s13], [s16], [s4]) = \frac{omega \cdot [s13] \cdot [s16] \cdot [s16]}{b \cdot [s4]} \tag{44}$$

$$Logistic_term_for_Effector_cells_1 \ (b, omega, [s13], [s16], [s4]) = \frac{omega \cdot [s13] \cdot [s16] \cdot [s16]}{b \cdot [s4]} \tag{45}$$

Table 29: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
b	b	$3.5 \cdot 10^{-5}$	

8.12 Reaction re17

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name Death of HPV self-proliferating cells due to effector cells

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$s13 \xrightarrow{s16} \emptyset \tag{46}$$

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
s13	Y2	

Modifier

Table 31: Properties of each modifier.

Id	Name	SBO
s16	Е	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = vol\left(default\right) \cdot Death_of_HPV_self_proliferating_cells_due_to_effector_cells\left(a, [s13], [s16]\right) \tag{47}$$

$$Death_of_HPV_self_proliferating_cells_due_to_effector_cells (a, [s13], [s16]) = a \cdot [s16] \cdot [s13] \tag{48}$$

$$Death_of_HPV_self_proliferating_cells_due_to_effector_cells (a, [s13], [s16]) = a \cdot [s16] \cdot [s13] \tag{49}$$

Table 32: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
a	a	0.01	

8.13 Reaction re18

This is an irreversible reaction of one reactant forming no product.

Name Decay of HPV-infected cells

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$s12 \longrightarrow \emptyset$$
 (50)

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
s12	Y1	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{default}) \cdot \text{mu} \cdot [\text{s}12]$$
 (51)

8.14 Reaction re20

This is an irreversible reaction of one reactant forming no product.

Name Decay of HPV

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$s14 \longrightarrow \emptyset$$
 (52)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
s14	W	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}(\text{default}) \cdot \text{k1} \cdot [\text{s14}] \tag{53}$$

Table 35: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.05	

8.15 Reaction re24

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Proliferation of HPV self-proliferating cells

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$s13 \xrightarrow{s13} 2 s13 \tag{54}$$

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
s13	Y2	

Modifier

Table 37: Properties of each modifier.

Id	Name	SBO
s13	Y2	

Product

Table 38: Properties of each product.

Id	Name	SBO
s13	Y2	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{default}) \cdot \text{Proliferation_of_HPV_self_proliferating}(\text{epi}, \text{r}, [\text{s}13])$$
 (55)

Proliferation_of_HPV_self_proliferating (epi, r, [s13]) =
$$r \cdot epi \cdot [s13]$$
 (56)

Proliferation_of_HPV_self_proliferating (epi, r, [s13]) =
$$r \cdot epi \cdot [s13]$$
 (57)

Table 39: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
r	r	0.1	

8.16 Reaction re25

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name Production of HPV infected cells

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$s12 \xrightarrow{s14, s2} 2s12 \tag{58}$$

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
s12	Y1	

Modifiers

Table 41: Properties of each modifier.

Id	Name	SBO
s14	W	
s2	V	

Product

Table 42: Properties of each product.

Id	Name	SBO
s12	Y1	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = vol\left(default\right) \cdot Production of_HPV_infected_cells\left(N2, p, phi, psi, [s12], [s14], [s2]\right) \quad (59)$$

$$\begin{split} & Production of_HPV_infected_cells \, (N2,p,phi,psi,[s12],[s14],[s2]) \\ &= psi \cdot [s14] \cdot \frac{(1+p \cdot [s2]) \cdot N2 - [s12]}{phi + (1+p \cdot [s2]) \cdot N2 - [s12]} \end{split} \tag{60}$$

$$\begin{split} & Production of_HPV_infected_cells (N2, p, phi, psi, [s12], [s14], [s2]) \\ &= psi \cdot [s14] \cdot \frac{(1+p \cdot [s2]) \cdot N2 - [s12]}{phi + (1+p \cdot [s2]) \cdot N2 - [s12]} \end{split} \tag{61}$$

24

Table 43: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
N2	N2		10000.000		
p	p	2	$2.0833 \cdot 10^{-5}$	5	\square
phi	phi	1	1000000.000)	
psi	psi		0.007	7	\square

8.17 Reaction re26

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Production of Effector cell

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$s16 \xrightarrow{s13} 2 s16 \tag{62}$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
s16	E	

Modifier

Table 45: Properties of each modifier.

Id	Name	SBO
s13	Y2	

Product

Table 46: Properties of each product.

Id	Name	SBO
s16	E	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(\text{default}) \cdot \text{Rate_Law_for_Production_of_Effector_cell_1_1}(\text{omega}, [\text{s}13], [\text{s}16])$$
 (63)

$$Rate_Law_for_Production_of_Effector_cell_1_1 (omega, [s13], [s16]) = omega \cdot [s13] \cdot [s16] \quad (64)$$

Rate_Law_for_Production_of_Effector_cell_1_1 (omega, [s13], [s16]) = omega
$$\cdot$$
 [s13] \cdot [s16] (65)

8.18 Reaction Production_of_HPV_due_to_HPV_self_proliferating

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Production of HPV due to HPV self proliferating

Notes Murall CL, Bauch CT, Day T. Could the human papillomavirus vaccines drive virulence

Reaction equation

$$\emptyset \xrightarrow{s13} s14 \tag{66}$$

Modifier

Table 47: Properties of each modifier.

Id	Name	SBO
s13	Y2	

Product

Table 48: Properties of each product.

Id	Name	SBO
s14	W	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}(\text{default}) \cdot \text{Production_of_HPV_due_to_HPV_self_proliferating_1}(\text{k2}, \text{mu}, [\text{s13}])$$
 (67)

Production_of_HPV_due_to_HPV_self_proliferating_1 (k2, mu, [s13]) =
$$mu \cdot k2 \cdot [s13]$$
 (68)

Table 49: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k2	k2	1000.0	

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

9.1 Species s2

Name V

Notes HIV

Initial concentration $48000 \text{ item} \cdot \text{ml}^{-1}$

This species takes part in four reactions (as a reactant in re3 and as a product in re1 and as a modifier in re4, re25).

$$\frac{\mathrm{d}}{\mathrm{d}t}s2 = |v_1| - |v_2| \tag{70}$$

9.2 Species s3

Name I

Notes HIV infected cells

Initial concentration $2364.02569593148 \text{ item} \cdot \text{ml}^{-1}$

Initial assignment s3

This species takes part in three reactions (as a reactant in re8 and as a product in re4 and as a modifier in re1).

$$\frac{\mathrm{d}}{\mathrm{d}t}s3 = |v_3| - |v_6| \tag{71}$$

9.3 Species s4

Name T

Notes CD4+ T cells

Initial concentration $320000 \text{ item} \cdot \text{ml}^{-1}$

This species takes part in four reactions (as a reactant in re4, re7 and as a product in re5 and as a modifier in re15).

$$\frac{d}{dt}s4 = |v_4| - |v_3| - |v_5| \tag{72}$$

9.4 Species s14

Name W

Notes HPV

Initial concentration $0 \text{ item} \cdot \text{ml}^{-1}$

This species takes part in four reactions (as a reactant in re20 and as a product in re11, Production_of_HPV_due_to_HPV_self_proliferating and as a modifier in re25).

$$\frac{\mathrm{d}}{\mathrm{d}t}s14 = |v_8| + |v_{18}| - |v_{14}| \tag{73}$$

9.5 Species s16

Name E

Notes HPV specific CTL

Initial concentration $0.01 \text{ item} \cdot \text{ml}^{-1}$

This species takes part in five reactions (as a reactant in re15, re26 and as a product in re26 and as a modifier in re12, re17).

$$\frac{\mathrm{d}}{\mathrm{d}t}s16 = 2|v_{17}| - |v_{11}| - |v_{17}| \tag{74}$$

9.6 Species s13

Name Y2

Notes HPV self-proliferating cells

Initial concentration $0 \text{ item} \cdot \text{ml}^{-1}$

This species takes part in nine reactions (as a reactant in re14, re17, re24 and as a product in re9, re24 and as a modifier in re15, re24, re26, Production_of_HPV_due_to_HPV_self_proliferating).

$$\frac{d}{dt}s13 = |v_7| + 2|v_{15}| - |v_{10}| - |v_{12}| - |v_{15}| \tag{75}$$

9.7 Species s12

Name Y1

Notes HPV infected cells

Initial concentration $1 \text{ item} \cdot \text{ml}^{-1}$

This species takes part in six reactions (as a reactant in re9, re12, re18, re25 and as a product in re25 and as a modifier in re11).

$$\frac{\mathrm{d}}{\mathrm{d}t}s12 = 2 v_{16} - v_7 - v_9 - v_{13} - v_{16} \tag{76}$$

 $\mathfrak{BML2}^{lAT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany