## Digitaltechnik Wintersemester 2017/2018 2. Vorlesung





#### Inhalt



- 1. Einleitung
- 2. Darstellung von natürlichen Zahlen
- 3. Umrechnen zwischen Zahlensystemen
- 4. Addition von vorzeichenlosen Binärzahlen
- 5. Vorzeichenbehaftete Binärzahlen
- 6. Weitere Rechenbeispiele
- 7. Logikgatter
- 8. Zusammenfassung

## **Einleitung**



| 100101000110000101000111101101100          | 00010010 |
|--------------------------------------------|----------|
| 00010010110111011010011101111111111        | 11111100 |
| 0101101011010110001010110010111            | 11101111 |
| 10111111101101000000011000011101           | 11111110 |
| 000010110100111011010111011000000          | 00001111 |
| 101000111010111100011001011001011          | 11000111 |
| 100001010001100001100010011000010          | 01001110 |
| 101110001110111010 <b>0001</b> 10001000010 | 00100000 |
| 000010110010100111000010000001010          | 1100110  |
| 110001001111000000001010000110011          | 11010000 |
| 100101111000100010110010111011000          | 00110001 |
| 1011001011011100001001001001000            | 00101100 |
| 010111101110001101001110001000011          | 10001100 |
| 011101100101111011111011100000100          | 01000101 |
| 000100011010101110000000011111100          | 01100110 |
| 101000111011110110101011000001111          | 10000101 |

### **Organisatorisches**



- Übungsbetrieb angelaufen
  - ▶ bisher 732 Anmeldungen im Moodle
  - 650 Zuordnungen zu Übungsgruppen
  - G22 und G23 (Mo 14:25-16:05) kaum nachgefragt
  - mehr Interessenten für G24 (Fr 11:40-13:20)?
- Testate erst ab KW 44
- Übungsausfall am 31.10.2017 (Reformationstag)
  - betrifft G05, G08, G09
  - kein Ersatztermin
  - Lösungsvorschlag und Sprechstunde nutzen
  - zugehörige Testate (T2) wie geplant in KW 45

## Rückblick auf letzte Vorlesung



- Beherrschen von Komplexität
  - Abstraktion
  - Diszplin
  - Hierarchie
  - Modularität
  - Regularität
- Digitale Abstraktion
  - Bits und Bitfolgen
  - binäre Größenfaktoren (KiBi, MeBi, GiBi, TeBi)
  - Nibble, Bytes, Wort

# Wiederholung: Zweierpotenzen schnell schätzen



- etwa wie viele Farben definiert
  - ▶ 15 bit Real Color?
  - 24 bit True Color?
  - 42 bit Deep Color?
- wie viele Bits nötig zur Repräsentation von
  - 24 Übungsgruppen
  - 750 Studierenden (DT)
  - 26 360 Studierenden (TU Da)

## Überblick der heutigen Vorlesung



- ➤ Zahlensysteme: Bitfolgen ↔ (ganze) Zahlen
  - Dezimal-, Binär-, Hexadezimalzahlen
  - Darstellung
  - Umrechnung
  - Addition von Binärzahlen
  - Vorzeichenbehaftete Binärzahlen
- Logikgatter: Einfache Boolsche Funktionen
  - Wahrheitswertetabellen
  - Symbole und Schreibweisen
  - Anwendung



Harris 2013 Kap. 1.4 + 1.5 Seite 9 - 22

## Darstellung von natürlichen Zahlen



| 11011000010011100111100100001011111100  | 00 |
|-----------------------------------------|----|
| 11101110001000110101100101001110011100  | 10 |
| 000100100110010010111111000110100010000 | 01 |
| 001011110110100010111100000000000111000 | 10 |
| 001111001111000100101101010100011100100 | 11 |
| 01001011111000000000                    | 00 |
| 11110010111111110010010011010000011111  | 11 |
| 010001110000010111001000110010111111011 | 10 |
| 110101011011111100000100111011011001111 | 00 |
| 101100101001011001010101111001111001110 | 01 |
| 011000110100100101111011011111010010000 | 01 |
| 01110011101001011001001111000111000010  | 11 |
| 001111011101001101010011000111111110010 | 10 |
| 0111111000100110011010110001101010101   | 10 |
| 01110010010000110011010000010111111101  | 11 |
| 11000100100001110001011111011001011110  | 11 |

## **Definition von Zahlenmengen**



- ▶ natürliche Zahlen  $\mathbb{N} = \{0, 1, 2, ...\}$
- ganze Zahlen  $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- ▶ rationale Zahlen  $\mathbb{Q} = \{\frac{a}{b} : a \in \mathbb{Z} \land b \in \mathbb{N} \land b \neq 0\}$
- ightharpoonup reele Zahlen  $\mathbb R$
- komplex, transzendent, algebraisch, ...
- $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| < |\mathbb{R}|$
- $\triangleright \infty \notin \mathbb{N}$

# Darstellungen von natürlichen Zahlen — Beispiele



hexadezimal: 
$$1F3A_{16} = 10 \cdot 16^0 + 3 \cdot 16^1 + 15 \cdot 16^2 + 1 \cdot 16^3$$
  
=  $10 \cdot 1 + 3 \cdot 16 + 15 \cdot 256 + 1 \cdot 4096$   
=  $7994_{10}$ 

# Darstellungen von natürlichen Zahlen — Verallgemeinerung (Abstraktion)



#### **Definition: vorzeichenloses Stellenwertsystem**

Für eine Basis  $b \in \mathbb{N} \land b \geq 2$  ist  $Z_b := \{0, 1, ..., b-1\}$  die Menge der verfügbaren Ziffern. Die Funktion  $u_{b,k}$  bildet eine Ziffernfolge der Breite  $k \in \mathbb{N}$  auf eine natürliche Zahl ab:

$$\mathsf{u}_{b,k} : (a_{k-1} \dots a_1 a_0) \in Z_b^k \mapsto \sum_{i=0}^{k-1} a_i \cdot b^i \in \mathbb{N}$$

## Vorzeichenlosen Stellenwertsystem



- polyadisches Zahlensystem
- ▶ niedrigstwertige Stelle (LSB): a<sub>0</sub>
- ▶ höchstwertige Stelle (MSB):  $a_{k-1}$
- ▶ kleinste darstellbare Zahl:  $\sum_{i=0}^{k-1} 0 \cdot b^i = 0$
- ▶ größte darstellbare Zahl:  $\sum_{i=0}^{k-1} (b-1) \cdot b^i = b^k 1$
- ► Anzahl der darstellbaren Werte:  $|Z_b^k| = |Z_b|^k = b^k$
- eineindeutig (bijektiv) auf Wertebereich  $\{0, ..., b^k 1\}$  für festes k

## Häufig verwendete Basen



|          | dual/binär                    | oktal            | dezimal           | hexadezimal                         |
|----------|-------------------------------|------------------|-------------------|-------------------------------------|
| b        | 2                             | 8                | 10                | 16                                  |
| $Z_b$    | $\{0,1\}\coloneqq \mathbb{B}$ | $\{0,\ldots,7\}$ | $\{0,\ldots,9\}$  | $\{0, \dots, 9, A, B, C, D, E, F\}$ |
| Literale | 1101 00112                    | 323 <sub>8</sub> | 211 <sub>10</sub> | <i>D</i> 3 <sub>16</sub>            |
|          | 0b11010011                    | 0o323            | 0d211             | 0xD3                                |
|          |                               | 0323             | 211               |                                     |

#### weniger gebräuchlich:

- ▶ b = 20 wenn man mit Händen und Füßen rechnet
- ▶ b = 60 zur Angabe von Zeit bzw. Längen-/Breitengrade
- b = 12 ein "Dutzend"

## Umrechnen zwischen Zahlensystemen



| 01011111100001010100110000101011101100     | 01  |
|--------------------------------------------|-----|
| 111011010101011010010111001111111110101111 | 110 |
| 01010100000010110111101001111001111111     | 110 |
| 10000100101101001110100100101100100001     | 110 |
| 10101100010000101010000000011000111111     | 111 |
| 110001100111011101000001111010001110100    | 01  |
| 111010100011101111110100000011111110100    | 11  |
| 1000101100100100110011111000101111111000   | 000 |
| 0110100011111100101101111000101011110      | 00  |
| 1100000001000010100011100100001000010      | 000 |
| 0001000000001011011101011111001111011      | 111 |
| 10010110111101100001011100110011001        | 01  |
| 10010111010011010010010110001101111001     | 00  |
| 1011000001010110100101111000111011111      | 00  |
| 101111101110000001100110011100111111       | 110 |
| 01110100101010101111100110000101000011     | 01  |
|                                            |     |

## Handwerkszeug: Zweiterpotenzen



## Handwerkszeug: Nibble-Werte



| $0000_2 =$          | 0 <sub>10</sub>  | $= 0_{16}$        |
|---------------------|------------------|-------------------|
| $0001_2 =$          | 1 <sub>10</sub>  | = 1 <sub>16</sub> |
| $0010_2 =$          | 2 <sub>10</sub>  | $= 2_{16}$        |
| $0011_2 =$          | 3 <sub>10</sub>  | $= 3_{16}$        |
| $0100_2 =$          | 4 <sub>10</sub>  | $= 4_{16}$        |
| $0101_2 =$          | 5 <sub>10</sub>  | $= 5_{16}$        |
| $0110_2 =$          | 6 <sub>10</sub>  | $= 6_{16}$        |
| $0111_2 =$          | 7 <sub>10</sub>  | $= 7_{16}$        |
| $1000_2 =$          | 810              | $= 8_{16}$        |
| 1001 <sub>2</sub> = | 9 <sub>10</sub>  | $= 9_{16}$        |
| $1010_2 =$          | 10 <sub>10</sub> | $= A_{16}$        |
| 1011 <sub>2</sub> = | 11 <sub>10</sub> | $= B_{16}$        |
| $1100_2 =$          | 12 <sub>10</sub> | $= C_{16}$        |
| 1101 <sub>2</sub> = | 13 <sub>10</sub> | $= D_{16}$        |
| 1110 <sub>2</sub> = | 14 <sub>10</sub> | $= E_{16}$        |
| 1111 <sub>2</sub> = | 15 <sub>10</sub> | $= F_{16}$        |
|                     |                  |                   |

### $Bin\ddot{a}r/Hexadezimal o Dezimal$



polyadische Abbildung anwenden:

$$u_{2,5}(1\ 0011_2) = 2^4 + 2^1 + 2^0 = 19_{10}$$

$$u_{16,3}(4AF_{16}) = 4 \cdot 16^2 + 10 \cdot 16^1 + 15 \cdot 16^0 = 1199_{10}$$

#### **Binär** ↔ **Hexadezimal**



- Nibble-weise umwandeln
- bei least significant bit beginnen
- führende Nullen weglassen oder ergänzen (je nach geforderter Bitbreite)
- ightharpoonup 11 1010 0110 1000<sub>2</sub> = 3*A*68<sub>16</sub>

 $\triangleright$  7BF<sub>16</sub> = 111 1011 1111<sub>2</sub>

# Dezimal $\rightarrow$ Binär (Prinzip auch für größere Basen anwendbar)



Methode 1
 (links nach rechts):
 maximale Zweierpotenzen
 abziehen

$$53_{10}$$
= 32 + 21
= 32 + 16 + 5
= 32 + 16 + 4 + 1
=  $2^5 + 2^4 + 2^2 + 2^0$ 
= 11 0101<sub>2</sub>

Methode 2 (rechts nach links): Halbieren mit Rest

$$53_{10}$$
= 2 \cdot 26 + 1
= 2 \cdot (2 \cdot 13 + 0) + 1
= 2 \cdot (2 \cdot (6 + 1) + 0) + 1
= 2 \cdot (2 \cdot (2 \cdot (3 + 0) + 1) + 0) + 1
= 2 \cdot (2 \cdot (2 \cdot (2 \cdot (2 \cdot (1 + 1) + 0) + 1) + 0) + 1

## Umrechnen zwischen Zahlensystemen





#### Zweierpotenzen verinnerlichen!

### Addition von vorzeichenlosen Binärzahlen



| 011001100001100010110010101011101101    | 000 |
|-----------------------------------------|-----|
| 1001011000110101011011100001001100110   | 010 |
| 001011000011010000011111111111111111111 | 110 |
| 0000010100101000010110000001011000011   | 011 |
| 1000011100111010111010001110000101110   | 110 |
| 0101111111111010010010101100001100100   | 101 |
| 1111110001011110000011011011011000001   | 010 |
| 0110010100110111000100011010101011011   | 101 |
| 010111000100001011011000101010100110001 | 010 |
| 10101010000101011111111101100000100011  | 000 |
| 10100101110010100111101101010111100101  | 110 |
| 00110100100010011011011111001101000110  | 000 |
| 10011110010000011000010110010010010     | 010 |
| 0100100111110100000111111101000100010   | 011 |
| 10110110110010111000110111111101001111  | 001 |
| 1011100001011010000111001010110111011   | 010 |

### **Schriftliche Addition**



Dezimal:

▶ Binär:

|   |   | 1 | 1 |   | Übertrag |
|---|---|---|---|---|----------|
|   | 1 | 0 | 1 | 1 | Summand  |
| + | 0 | 0 | 1 | 1 | Summand  |
| = | 1 | 1 | 1 | 0 | Summe    |

### Addition mit Überlauf



Binär:

- Digitale Systeme arbeiten i.d.R. mit festen Bitbreiten
  - Langzahlarithmetik nur in Software (Bitbreite nur durch verfügbaren Arbeitsspeicher beschränkt)
  - Overflow-flag zum Signalisieren arithmetischer Ausnahmen in Hardware
- Operation (bspw. Addition) läuft über, wenn Ergenis nicht mit der verfügbaren Bitbreite dargestellt werden kann
- für 4 bit Addierer gilt: 11 + 6 = 1

### Vorzeichenbehaftete Binärzahlen



| 0011111001111111110110111111100100111         | 0000 |
|-----------------------------------------------|------|
| 110111111001110010110010001100100101          | 1100 |
| 10000111010000000101111001001111111           | 1010 |
| 011101111001100101011010000010100101          | 0000 |
| 001000011010011101010101010101010101          | 0010 |
| 101111100101111001001101100001100011          | 0001 |
| 00111111101010101010110100010100101001        | 1010 |
| 111100100111101000 <b>0101</b> 10111111101000 | 0000 |
| 1010101111110101000101010011000110111         | 1000 |
| 0110110101101011111110101101101001100         | 1000 |
| 11010010110101111100001110010101011           | 0011 |
| 1001011101100110110101011110000101110         | 0001 |
| 000010000011111011000001101101101100          | 0000 |
| 111000111000011011111010011000010111          | 1001 |
| 000111001110101100001010000110110001          | 1110 |
| 10110000000101101110101110111000001           | 1011 |

# Darstellungen von ganzen Zahlen — Dezimal



$$+5347_{10} = (7 \cdot 1 + 4 \cdot 10 + 3 \cdot 100 + 5 \cdot 1000) \cdot 1$$

$$= (7 \cdot 10^{0} + 4 \cdot 10^{1} + 3 \cdot 10^{2} + 5 \cdot 10^{3}) \cdot (-1)^{0}$$

- Vorzeichen
  - spezielle Ziffer an höchstwertiger Stelle
  - kann auch als 0/1 repräsentiert werden

# Darstellung von ganzen Zahlen — Verallgemeinerung (Abstraktion)



### **Definition: Betrag und Vorzeichen**

Für eine Basis  $b \in \mathbb{N} \land b \ge 2$  ist  $Z_b := \{0, 1, ..., b-1\}$  die Menge der verfügbaren Ziffern. Die Funktion bv $_{b,k}$  bildet eine Ziffernfolge der Breite  $k \in \mathbb{N}$  auf eine ganze Zahl ab:

$$\mathsf{bv}_{b,k} : (a_{k-1} \dots a_1 a_0) \in \{0,1\} \times Z_b^{k-1} \mapsto (-1)^{a_{k-1}} \cdot \sum_{i=0}^{k-2} a_i \cdot b^i \in \mathbb{Z}$$

## Ganze Zahlen als Betrag und Vorzeichen



- ▶ niedrigstwertige Stelle: a<sub>0</sub>
- ▶ höchstwertige Stelle:  $a_{k-1}$
- kleinste darstellbare Zahl:  $(-1)^1 \cdot \sum_{i=0}^{k-2} (b-1) \cdot b^i = -(b^{k-1}-1)$
- ▶ größte darstellbare Zahl:  $(-1)^0 \cdot \sum_{i=0}^{k-2} (b-1) \cdot b^i = +(b^{k-1}-1)$
- ▶ Anzahl der darstellbaren Werte:  $2 \cdot b^{k-1} 1$
- ▶ nicht eindeutig (doppelte Darstellung für Null: ±0)

## Binärdarstellung mit Betrag und Vorzeichen



Beispiele

inkompatibel mit binärer (unsigned) Addition:

# Darstellung von ganzen Zahlen — Digitaler "Goldstandard"



### **Definition: Zweierkomplement**

Die Funktion  $s_k$  bildet eine Bitfolge der Breite  $k \in \mathbb{N}$  auf eine ganze Zahl ab:

$$s_k: (a_{k-1}...a_1a_0) \in \mathbb{B}^k \mapsto a_{k-1}\cdot (-2^{k-1}) + \sum_{i=0}^{k-2} a_i \cdot 2^i \in \mathbb{Z}$$

- auch für Basen b > 2 verallgemeinerbar: s<sub>b,k</sub>
- wird aber heute kaum noch verwendet

## **Ganze Zahlen als Zweierkomplement**



- ▶ niedrigstwertige Stelle: a<sub>0</sub>
- ▶ höchstwertige Stelle:  $a_{k-1}$
- ▶ kleinste darstellbare Zahl:  $1 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 0 \cdot 2^i = -2^{k-1}$
- ▶ größte darstellbare Zahl:  $0 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 1 \cdot 2^i = 2^{k-1} 1$
- Anzahl der darstellbaren Werte: 2<sup>k</sup>
- ▶ eineindeutig (bijektiv) auf Wertebereich  $\{-2^{k-1}, \dots, 2^{k-1} 1\}$  für festes k

## Binärdarstellung im Zweierkomplement



Beispiele

$$s_4(1010_2) \quad = \ 0 \ \cdot \ 2^0 \ + \ 1 \ \cdot \ 2^1 \ + \ 0 \ \cdot \ 2^2 \ + \ 1 \ \cdot -2^3 = -6_{10}$$

$$s_4(0110_2) \quad = \ 0 \ \cdot \ 2^0 \ + \ 1 \ \cdot \ 2^1 \ + \ 1 \ \cdot \ 2^2 \ + \ 0 \ \cdot -2^3 = +6_{10}$$

kompatibel mit binärer (unsigned) Addition:

kein Überlauf bei Addition positiver und negativer Zahl gleicher Breite

## $\textbf{Dezimal} \rightarrow \textbf{Zweierkomplement}$



 Methode 1 (links nach rechts): Größtmögliche Zweierpotenzen abziehen

$$-53_{10} = -64 + 11$$

$$= -64 + 8 + 3$$

$$= -64 + 8 + 2 + 1$$

$$= -2^{6} + 2^{3} + 2^{1} + 2^{0}$$

$$= 100 \ 1011_{2}$$

Methode 2 (rechts nach links):
 Betrag negieren =
 Komplement (bitweise a = 1 - a)
 und Inkrement (+1)
 (Reihenfolge beachten!)

$$-53_{10} = \overline{53_{10}} + 1$$

$$= \overline{011} \ 0101_2 + 1$$

$$= 100 \ 1010_2 + 1$$

$$= 100 \ 1011_2$$

- ▶ in beiden Fällen auf korrekte/geforderte Bitbreite achten
- ggf. müssen führende Null(en) schon für Betragsdarstellung eingefügt werden

## Negieren = Komplement und Inkrement

 $s_k(\overline{a_{k-1} \dots a_0}) = \overline{a_{k-1}} \cdot (-2^{k-1}) + \sum_{i=1}^{k-1} \overline{a_i} \cdot 2^i$ 



$$= (1 - a_{k-1}) \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} (1 - a_i) \cdot 2^i$$

$$= \underbrace{\left(1 \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} 1 \cdot 2^i\right)}_{-1} - \underbrace{\left((a_{k-1}) \cdot (-2^{k-1}) + \sum_{i=0}^{k-2} a_i \cdot 2^i\right)}_{\mathbf{S}_k(a_{k-1}, \dots, a_0)}$$

## Bitbreitenerweiterung



- notwendig, um unterschiedliche breite Bitfolgen zu addieren
- zero extension:
  - Auffüllen mit führenden Nullen für vorzeichenlose Darstellung

$$u_{2,k+1}(0a_{k-1}...a_0) = 0 \cdot 2^k + \sum_{i=0}^{k-1} a_i \cdot 2^i = u_{2,k}(a_{k-1}...a_0)$$

- signed extension:
  - Auffüllen mit Wert des Vorzeichen-Bits für Zweierkomplement Darstellung

$$s_{k+1}(a_{k-1}a_{k-1} \dots a_0) = a_{k-1} \cdot \underbrace{(-2^k)}_{2 \cdot (-2^{k-1})} + a_{k-1} \cdot 2^{k-1} + \sum_{i=0}^{k-2} a_i \cdot 2^i$$

$$= a_{k-1} \cdot \left(-2^{k-1} - 2^{k-1} + 2^{k-1}\right) + \sum_{i=0}^{k-2} a_i \cdot 2^i$$

$$= s_k(a_{k-1} \dots a_0)$$

## Bitbreitenerweiterung — Beispiel



► −5<sub>10</sub> im Zweierkomplement von 4 auf 8 Bit erweitern:

$$5_{10} = 0101_{2}$$

$$\Rightarrow -5_{10} = \overline{0101_{2}} + 1$$

$$= 1010_{2} + 1$$

$$= 1011_{2}$$

$$= 1111 \ 1011_{2}$$

# Vergleich der binären Zahlendarstellungen für k=4



|                                                                           | Vorzeichenlos: u <sub>2.k</sub> | Betrag/Vorzeichen: bv <sub>2,k</sub> | Zweierkomplement: s <sub>k</sub> |
|---------------------------------------------------------------------------|---------------------------------|--------------------------------------|----------------------------------|
| $\mathbb{Z}$                                                              | $\{0,\ldots,2^k-1\}$            | $\{-2^{k-1}+1,\ldots,2^{k-1}-1\}$    |                                  |
| 15                                                                        | 1111                            |                                      |                                  |
| 14                                                                        | 1110                            |                                      |                                  |
| 13                                                                        | 1101                            |                                      |                                  |
| 12                                                                        | 1100                            |                                      |                                  |
| 11                                                                        | 1011                            |                                      |                                  |
| 10                                                                        | 1010                            |                                      |                                  |
| 9                                                                         | 1001                            |                                      |                                  |
| 9<br>8<br>7                                                               | 1000                            |                                      |                                  |
| 7 ———                                                                     | 0111                            | 0111                                 | 0111                             |
| 6                                                                         | 0110                            | 0110                                 | 0110                             |
| 5                                                                         | 0101                            | 0101                                 | 0101                             |
| 4                                                                         | 0100                            | 0100                                 | 0100                             |
| 3                                                                         | 0011                            | 0011                                 | 0011                             |
| 2                                                                         | 0010<br>0001                    | 0010<br>0001                         | 0010<br>0001                     |
| 0                                                                         |                                 | 0001                                 | 0001                             |
| 1                                                                         | 0000                            | 1001                                 | 1111                             |
| -1<br>-2                                                                  |                                 | 1010                                 | 1110                             |
| -3                                                                        |                                 | 1011                                 | 1101                             |
| _4                                                                        |                                 | 1100                                 | 1100                             |
| 6<br>5<br>4<br>3<br>2<br>1<br>0<br>-1<br>-2<br>-3<br>-4<br>-5<br>-6<br>-7 |                                 | 1101                                 | 1011                             |
| _ <del>-</del> 6                                                          |                                 | 1110                                 | 1010                             |
| _ <del>7</del>                                                            |                                 | iiii                                 | 1001                             |
| -8                                                                        |                                 |                                      | 1000                             |
|                                                                           |                                 |                                      |                                  |

### Weitere Rechenbeispiele



| 01100001101011001011000001001001111010   | 0 ( |
|------------------------------------------|-----|
| 100010101110001000101010101011000000010  | 1 ( |
| 111110110000100101111010001110101101     | 0   |
| 010100100000010101011110001110110001101  | 11  |
| 000100000110111000111001011101000011000  | 0 ( |
| 1000101011111100101111110010101101010    | 1 ( |
| 010101010111111010010110100111101000101  | 1 1 |
| 101110110000000100011001000101111010011  | 11  |
| 10000110010100001000100010101011100011   | 0   |
| 011110101010101111000010111001000010010  | 0 ( |
| 01010100010111010010101010010011011011   | 1 1 |
| 110100001001010000011001111101101001001  | 1 1 |
| 111001001001100100110110100000010011101  | 0   |
| 11110011010001010001011010111001110011   | 11  |
| 1110001000101111111110100011111111010101 | 0 ( |
| 101010000110100111100110001001010001110  | 1 ( |

#### Wertebereiche



► U<sub>2,7</sub>

bv<sub>2,6</sub>

► S<sub>2,10</sub>

### $\mathbf{Bin\ddot{a}r} \rightarrow \mathbf{(Hexa-)Dezimal}$



$$\sim$$
  $u_{2.6}(11\ 0011_2) =$ 

$$\triangleright$$
 bv<sub>2,6</sub>(11 0011<sub>2</sub>) =

$$ightharpoonup$$
  $s_{2.6}(11\ 0011_2) =$ 

 $\rightarrow$  hex(11 0011<sub>2</sub>) =

## $\textbf{Dezimal} \rightarrow \textbf{Zweierkompliment, Addition}$



▶ 8 Bit Zweierkomplement von 60<sub>10</sub> =

▶ 6 Bit Zweierkomplement von −20<sub>10</sub> =

binär addieren:

Überlauf?

### Nabla-Katalog für Rechnerarchitektur



https://nabla.algo.informatik.tu-darmstadt.de

| Binäre Addition                         |                                                          |                    |
|-----------------------------------------|----------------------------------------------------------|--------------------|
| Addition und Subtraktion                | o von Bits                                               |                    |
|                                         | Binary number: addition Bereitgestellt von Wikipedia.org |                    |
| Leicht                                  |                                                          | 0 0                |
| <ul><li>Mittel</li></ul>                |                                                          | 0 0                |
| Schwer                                  |                                                          | 0 0                |
| Start                                   |                                                          |                    |
| Erstellungsdatum: Freitag, 26. Mai 2017 |                                                          | Autor: Lukas Weber |

# Logikgatter



| 010010100111111011100111000100101111000   | 001 |
|-------------------------------------------|-----|
| 0001001010011000110001111111101101000     | 011 |
| 11001010000100110010111101000100101       | 101 |
| 11110100101101011011000110010101100110    | 010 |
| 01000010010010010101010101010010000011010 | 000 |
| 11110111100100100001010110001011010110    | 010 |
| 11101000100001011000110111011000001000    | 000 |
| 1001101011100101000111101011111010101     | 110 |
| 10111001101111100000010001001101000100    | 010 |
| 100101100110000100110100010010101000010   | 100 |
| 110101011111111000011111100010110111111   | 100 |
| 10101111010101111110100100011000100000    | 100 |
| 01011001111001001100000010011100001100    | 001 |
| 10100111001110110011111110000011010100    | 011 |
| 00101101101011011100111110111100101100    | 110 |
| 000110111011111100111011111110001000      | 010 |

### Schichtenmodell eines Computers



Anwendungssoftware

Programme

Betriebssysteme

Gerätetreiber

Architektur

Befehle Register

Mikroarchitektur Datenpfade Steuerung

Logik

Addierer Speicher

Digitalschaltungen

UND Gatter Inverter

Analogschaltungen

Verstärker Filter

Bauteile

Transistoren Dioden

Physik

Elektronen

#### George Boole, 1815 - 1864



- in einfachen Verhältnissen geboren
- brachte sich selbst Mathematik bei
- Professor am Queen's College in Irland
- "An Investigation of the Laws of Thought" (1854)
- ⇒ grundlegende logische Variablen und Operationen



#### **Logische Operationen**



- verknüpfen binäre Werte:  $\mathbb{B}^n \to \mathbb{B}^k$
- $\triangleright$  zunächst k=1
- ▶ Beispiele für
  - ▶ n = 1: NOT
  - ▶ n = 2: AND, OR, XOR
  - ▶ n = 3: MUX
- Charakterisierung durch Wahrheitswertetabellen

#### $\textbf{BUF}: \mathbb{B} \to \mathbb{B}$





#### $\text{NOT}: \mathbb{B} \to \mathbb{B}$





alternativ:  $Y = !A = \sim A$ 

AND :  $\mathbb{B}^2 \to \mathbb{B}$ 





| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

alternativ:  $Y = A \cdot B = A \& B = A \land B$ 

OR :  $\mathbb{B}^2 \to \mathbb{B}$ 





| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

alternativ:  $Y = A|B = A \lor B$ 

 $\textbf{XOR}: \mathbb{B}^2 \to \mathbb{B}$ 





| Α | В | Υ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

alternativ:  $Y = A^B$ 

# NAND : $\mathbb{B}^2 \to \mathbb{B}$





| Α | В | Υ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

 $\text{NOR}: \mathbb{B}^2 \to \mathbb{B}$ 





| Α | В | Υ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

XNOR :  $\mathbb{B}^2 \to \mathbb{B}$ 





| Α | В | Υ |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

entspricht Test auf Gleichheit

### Zusammenfassung



| 1011110111010101001101000111101110111011   | 11   |
|--------------------------------------------|------|
| 01111111111010100111110001101001100000     | 1 (  |
| 0010011011010000000011100000010011         | 11   |
| 110001110100111010111110111110101001001    | 11   |
| 00000000000000001001011101001010111        | 11   |
| 000010010010001110011110111101111111111    | 11   |
| 00001011001100101111100011111011011010     | 11   |
| 000111011100001111100000100001101111010    | 0 (  |
| 101101110011101101101010100100100100100    | 0    |
| 11100001101001010111001010100100011011     | 0    |
| 0110111000011110000110101101010010001111   | 1 (  |
| 111011000100111111010011110001101111010001 | 11   |
| 00101010010111101101000001010101011110     | 0 (  |
| 111110100010000110101011111001111001011    | 11   |
| 0000010101010111110010010101011111001111   | 0    |
| 1001110111011110001000010110010011111100   | ) () |

### Zusammenfassung und Ausblick



- ► Zahlensysteme: Bitfolgen ↔ (ganze) Zahlen
  - Dezimal-, Binär-, Hexadezimalzahlen
  - Darstellung
  - Umrechnung
  - Addition von Binärzahlen
  - Vorzeichenbehaftete Binärzahlen
- Logikgatter
  - Darstellung
  - Wahrheitswertetabellen
- nächste Vorlesung behandelt
  - physikalische Realisierung von Logikgattern