Scilab Textbook Companion for Signals and Systems by P. R. Babu and R. Anandanatarajan¹

Created by
Subrata Mukherjee
BTECH
Electronics Engineering
NIT Durgapur
College Teacher
Debasis Mitra
Cross-Checked by
K. V. P. Pradeep

August 6, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Signals and Systems

Author: P. R. Babu and R. Anandanatarajan

Publisher: Purushothaman , Narayanaguda, Hyderabad

Edition: 3

Year: 2009

ISBN: 9788183710640

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Signals an introduction	7
2	Systems an introduction	21
3	Time domain analysis of discrete time systems	32
4	Time domain analysis of continuous time systems	56
7	Laplace Transform Analysis of Signals and Systems	69
8	Fourier analysis of discrete time signals	80
12	Random processes	88

List of Scilab Codes

Exa	1.7	Sketch the following signals	7
Exa	1.8	Sketch the following signals	8
Exa	1.12	Check whether the given signal is periodic or not	9
Exa	1.13	Check whether the given signal is periodic or not	10
Exa	1.14	Check whether the given signal is periodic or not	12
Exa	1.15	Find the even and odd components of the signals	13
Exa	1.16	Determine power and rms value of the following signal	14
Exa	1.17	Determine power and rms value of the signals	15
Exa	1.19.a	Sketch the followins signal and calculate the energy	16
Exa	1.21	Sketch the followins signal and calculate the energy	17
Exa	1.22	Find which of the following signal is causal or non causal	18
Exa	2.2	Find which of the following signal is causal or non causal	21
Exa	2.3	Check whether the following systems are linear or not	22
Exa	2.4	Check whether the following systems are linear or not	25
Exa	2.5	Determine whether the following systems are time in-	
		variant or not	26
Exa	2.7	Check for the following systems	29
Exa	6.0	Example 6 0f question and answer section	32
Exa	3.13	Represent the sequence as sum of shifted unit impulse	33
Exa	3.15	Determine the convolution sum of two sequences	34
Exa	3.16	Determine the output response	35
Exa	3.17	Find the convolution of the sequences	35
Exa	3.18	Find the convolution	35
Exa	3.19	Find the convolution of the following sequence	36
Exa	3.20	Find the convolution	36
Exa	3.21	Determine the response of the below relaxed system .	37
Exa	3.22	Find the response	38
Exa	3.23	Find the convolution of the following sequences	39

Exa 3.25	Find whether the systems are causal and stable	42
Exa 3.26	Find the step response	46
Exa 3.27	Find the convolution of the following sequences	49
Exa 3.28	Find the convolution	52
Exa 3.31	Find the cross correlation of two finite length sequences	54
Exa 3.32	Find the input signal	54
Exa 4.4.2	Find the step response of the following impulse response	56
Exa 4.6	Find the convolution of the following signals	57
Exa 4.7	Find the convolution of the following signals	60
Exa 4.8	Find the covolution Of the following signals	62
Exa 4.9	Find the covolution Of the following signals	63
Exa 4.10	Find the covolution Of the following signal	64
Exa 4.11	Find the covolution Of the following signals	65
Exa 4.12	Find the convolution of the following signals	66
Exa 7.1.1	Find the laplace transform and Roc of the following sig-	
	nal	69
Exa 7.1.2	Find the laplace transform and Roc of the following sig-	
	nal	69
Exa 7.2	Find the laplace transform and Roc of the following sig-	
	nal	70
Exa 7.3	Find the laplace transform and Roc of the following sig-	
	nal	71
Exa 7.4	Find the laplace transform	72
Exa 7.5	Find the laplace transform of the following signal	72
Exa 7.6	Find the laplace transform	73
Exa 7.7	Find the laplace transform of the following signal	74
Exa 7.8	Find the laplace transform	75
Exa 7.11	find the laplace transform	76
Exa 7.16	Find the laplace transform of the following signals	76
Exa 7.22	Find the laplace transform	78
Exa 8.14	Find the convolution of the signals given below using	
	fourier transform	80
Exa 8.19	Use fourier transform to determine the response of the	
	following signal	81
Exa 8.25	Find IDFT of the following signals	83
Exa 8.26	Find the circular convolution of two sequences	84
Exa 8.27	Find the circular convolution of the following sequences	84
Exa 8.28	Find the linear and circular convolution	85

Exa 8.29	Find DFT of the following sequences 8
Exa 12.1	Show whether independent or not 8
Exa 12.2	Find the probability of the problem 8
Exa 12.3	Find the probability that tails shows up at least once . 9
Exa 12.4	Probability to find the required sample size 9
Exa 12.5	Probability to find the first white ball on the 3rd draw 9
Exa 12.6	To find the required probabilities 9
Exa 12.7	find the required probabilities
Exa 12.8	Find the given probabilities
Exa 12.9	Find the required probabilities 9
Exa 12.10	find the required probabilities
Exa 12.11	Find the required probabilities 9
Exa 12.12	Find the required probabilities
Exa 12.13	Find the required probabilities 9
Exa 12.14	Find the mean value of the current under following con-
	ditions
Exa 12.16	Find the following
Exa 12.17	Probablity that R lies between 110 and 120 ohm 9
Exa 12.18	Find the mean and variance if they exist 9
Exa 12.19	Find the required values
Exa 12.20	Find the correlation
Exa 12.52	Find the average power

Chapter 1

Signals an introduction

Scilab code Exa 1.7 Sketch the following signals

```
1 // Example 1_7 < i >
2 //Sketch the following signal.
3 clc;
4 clear all;
5 t=-5:1/1000:5;
6 for i=1:length(t)
       if t(i)>1 then
8
            x(i)=0;
9
       else
10
            x(i)=1;
11
       end
12 end
13 f=scf(0);
14 plot2d(t,x);
15 plot(t,x,'red');
16 xtitle('Required figure', 't', 'x(t)');
17 xgrid();
18 xs2jpg(0, 'problem1_7_i-plot.jpg');
19 / \text{Example } 1_7 < \text{ii} >
20 //Sketch the following signal.
21 clc;
```

```
22 t = -5:1/1000:5;
23 for i=1:length(t)
24
       if t(i)<1 then
25
            x(i)=0;
26
       else
27
            x(i)=1;
28
       end
29 end
30 for i=1:length(t)
       x1(i) = -2*x(i);
31
32 end
33 // figure
34 f = scf(0);
35 plot2d(t,x);
36 xtitle('required figure', 't', 'x(t)');
37 \text{ xs2jpg(0, 'problem1.7.2-plot-a.jpg');}
38 // figure
39 f=scf(1);
40 plot2d(t,x1);
41 plot(t,x1, 'blue');
42 xtitle('Required figure', 't', 'x1(t)');
43 xs2jpg(1, 'problem1.7.2-plot-b.jpg');
```

Scilab code Exa 1.8 Sketch the following signals

```
1 //Example 1.8. <i>2 //Sketch the following signal
3 clc;
4 clear all;
5 t=-10:.001:10;
6 for i=1:length(t)
7     if t(i)>=-2 & t(i)<3 then
8         x(i)=1;
9     else
10     x(i)=0;</pre>
```

```
11
        end
12 end
13 //figure
14 f=scf(0);
15 plot2d(t,x);
16 xtitle('Required figure', 't', 'x(t)');
17 xs2jpg(0, 'EX1_8_1-plot.jpg');
18 / \text{Example } 1.8. < ii >
19 //Sketch the following signal.
20 \text{ clc};
21 clear all;
22 t = -10 : .001 : 10;
23 for i=1:length(t)
        if t(i) >= 0 & t(i) <= 2 then
24
25
            x(i)=1;
26
        else
27
            x(i)=0;
28
        end
29 end
30 / figure
31 f = scf(0);
32 plot2d(t,x,1);
33 xtitle('Required figure', 't', 'x(t)');
34 \text{ xs2jpg(0, 'EX1_8_2-plot.jpg');}
```

Scilab code Exa 1.12 Check whether the given signal is periodic or not

```
1 //Example 1.12 < i >
2 //check whether the given signal is periodic or not
3 clc;
4 t = -5:.01:5;
5 x = %i * (exp(%i * 5 * t));
6 subplot(311)
7 plot(t,x);
8 disp('(a) This shows that the given signal is
```

```
periodic with priod (.4*\%pi)');
9 / Example 1.12 < ii >
10 //Show whether the given signal is periodic or not
11 clc;
12 t = -1/5:0.001:1/5;
13 x = \sin(50 * \%pi * t);
14 subplot (312)
15 plot(t,x);
16 disp('(b) the plotting shows that the given signal is
       periodic with period 1/25');
17 //Example 1.12. < iii >
18 //Check whether the given signal is periodic or not
19 clc;
20 t = -1:0.01:1;
21 x=20*\cos((10*\%pi*t)+(\%pi/6));
22 subplot (313)
23 plot(t,x);
24 disp('(c) Plot shows that the given signal is
      periodic with period .2');
25
26 disp('In the figure we have the plots of part (a) -
      (c) in clockwise order strating from the top left
      ')
```

Scilab code Exa 1.13 Check whether the given signal is periodic or not

```
//Example 1.13<i>//Check whether the given signal is periodic or not
clc;
t=-10:.01:10;
y=2*cos(10*t+1)-sin(4*t-1);
subplot(221)
plot(t,y);
disp('(a) The following signal is periodic with period %pi');
```

```
9 / \text{Example } 1.13 < \text{ii} >
10 //Show whether the given signal is periodic or not
11 clc;
12 t = -1 : .01 : 1;
13 x = \cos(60 * \%pi * t) + \sin(50 * \%pi * t);
14 subplot (222)
15 plot(t,x);
16 disp('(b) Ther following figure shows that the given
      signal is periodic with the following period');
17 / \text{Example } 1.13 < \text{iv} >
18 //Check whether the given signal is periodic or not
19 clc;
20 t = -10:0.01:10;
21 x=3*\cos(4*t)+2*\sin(\%pi*t);
22 subplot (223)
23 plot(t,x);
24 disp('(c)The signal is not periodic since ratio of
      two time periods is %pi/4 which is not rational
      number');
25 //Example 1.13 < V>
26 //Check whether the given signal is periodic or not
27 clc;
28 t=0:10;
29 for i=1:length(t)
       u(i)=1;
30
31 end
32 x=u(i)-(1/2);
33 subplot (224)
34 plot(t,x);
35 disp('(d)The signal is not periodic as seen from
      figure');
36
37 disp('In the figure we have the plots of part (a) -
      (d) in clockwise order strating from the top left
      ')
```

Scilab code Exa 1.14 Check whether the given signal is periodic or not

```
1 / Example 1.14 < i >
2 //Find whether the following signal is periodic or
3 clc;
4 n = -10:10;
5 x = \cos(2*\%pi*n);
6 subplot (321)
7 plot2d(n,x);
8 f=(2*\%pi)/(2*\%pi);//where f is the no of cycles/
      sample.
9 N=1/f;//where N is the no of samples per cycle.
10 disp('samples', N, '(a) The given signal is periodic');
11 / Example 1.14 < ii >
12 //Find whether the following signal is periodic or
13 clc;
14 n = -20:20;
15 x = \exp(\%i * 6 * \%pi * n);
16 subplot (322)
17 plot2d3(n,x);
18 f=(6*\%pi)/(2*\%pi);//where f is the no of cycles per
      sample.
19 N=1/f; //where N is the no of samples per cycle.
20 disp('samples', N, '(b) the given signal is periodic');
21 / \exp 1.14 < 1v >
22 //Find whether the given signal is periodic or not
23 clc;
24 n = -30:30;
25 x = \exp(\%i * (2*\%pi/3)*n) + \exp(\%i * (3*\%pi/4)*n);
26 subplot (323)
27 plot2d3(n,x);
28 disp('(c)The given signal is periodic');
```

```
29 //Example 1.14 < v >
30 //Find whether the given signal is periodic or not;
31 clc;
32 n = -20:20;
33 x = exp(%i*(3*%pi/5)*(n+1/2));
34 subplot (324)
35 plot(n,x);
36 f=(3*\%pi/5)/(2*\%pi);/where f is the no of cycles
      per sample.
37 N=1/f; //where n is the no of samples per cycle.
38 disp('samples',N,'(d)the given signal is periodic');
39 / Example 1.14 < vi >
40 //whether the given signal is periodic or not
41 clc;
42 n = -40:40;
43 x=12*cos(20*n);
44 subplot (325)
45 plot(n,x);
46 f=20/(2*%pi);//where f is the no of cycles per
      sample
47 N=1/f; //where n is the no of sample per cycle
48 disp('samples', N, '(e) the given signal is not peridic
      ');
49
50 disp('In the figure we have the plots of part (a) -
      (d) in clockwise order strating from the top left
      <sup>'</sup>);
```

Scilab code Exa 1.15 Find the even and odd components of the signals

```
1 //Example 1.15<i>2 //Find the even and odd components of the signal
3 clc;
4 clear;
5 t=-10:.1:10;
```

```
6 for j=1:length(t)
       i=t(j);
8
       x(j)=\cos(i)+\sin(i)+\cos(i)*\sin(i);
       y(j) = \cos(-i) + \sin(-i) + \cos(-i) * \sin(-i);
10
       e(j)=(1/2)*(x(j)+y(j));
11
       o(j)=(1/2)*(x(j)-y(j));
12 end
13 disp('In the plot even component is in red and odd
      component is in blue')
14 plot(t,e, 'red')
15 plot(t,o,'blue')
16 / \text{Example } 1.15 < \text{ii} >
17 //Find the even and odd components of the signal
18 clc;
19 clear;
20 n = -2:2;
21 c=3;
22 x = [-2 1 2 -1 3];
23 for j=1:length(n)
24
       i=n(j);
25
       xe(j)=(1/2)*(x(c+i)+x(c-i));
       xo(j)=(1/2)*(x(c+i)-x(c-i));
26
27 end
28 xe=[xe(c-2), xe(c-1), xe(c+0), xe(c+1), xe(c+2)];
29 xo = [xo(c-2), xo(c-1), xo(c+0), xo(c+1), xo(c+2)];
30
31 disp(xo, 'odd component')
32 disp(xe, 'even component')
```

Scilab code Exa 1.16 Determine power and rms value of the following signal

```
1 //Example 1.16
2 //Determine the power of the signal
3 clc;
```

Scilab code Exa 1.17 Determine power and rms value of the signals

```
1 // Example 1.17 < i >
2 //Determine the power and the rms value of the
      signal
3 clc;
4 t=0:0.001:10;
5 y=5*cos(50*t+%pi/3);
6 P=(integrate('5^2*(cos(50*t))^2', 't', 0, 2*\%pi))/(2*
      %pi);
7 rmsvalue=sqrt(P);
8 disp(P, 'The power of the given signal is:');
9 disp(rmsvalue, 'the rms value is:');
10 / Example 1.17 < ii >
11 //Determine the power amd rms value of the signal
12 clc;
13 t=0:0.001:10;
14 x1=10*sin(50*t+%pi/4);
15 x2=16*\cos(100*t+\%pi/3);
16 P1=(integrate('10^2*(\sin(50*t))^2', 't', 0,2*%pi))/(2*
      %pi);
17 P2=(integrate('16^2*(\cos(100*t))^2', 't',0,2*%pi))
      /(2*\%pi);
18 P = P1 + P2;
```

```
19 rmsvalue=sqrt(P);
20 disp(P, 'The power of the given signal is:');
21 disp(rmsvalue, 'the rms value is:');
22 //Example 1.17 <iii>
23 // Determine the power and rms value of the signal
24 clc;
25 t=0:0.001:10;
26 	 x1=5*cos(15*t);
27 	 x2=5*\cos(5*t);
28 P1=(integrate('5^2*(\cos(15*t))^2', 't',0,2*%pi))/(2*
      %pi);
29 P2=(integrate('5^2*(\cos(5*t))^2', 't',0,2*%pi))/(2*
      %pi);
30 P = P1 + P2;
31 rmsvalue=sqrt(P);
32 disp(P, 'The power of the given signal is:');
33 disp(rmsvalue, 'the rms value is: ');
```

Scilab code Exa 1.19.a Sketch the followins signal and calculate the energy

```
//Example 1.19.1
//whether the signal is energy signal or power
signal
clc;
t = 0:0.001:10;
y = exp (-10*t);
E = integrate ( '(exp(-10*t)) ^2 ', 't ', 0, 2*
%pi );
disp (E, 'Energy of the s i g n a l i s ');
disp ( 'since the energy is finite hence it is energy signal');
figure
plot(t,y,'red');
xtitle('Required figure');
```

Scilab code Exa 1.21 Sketch the following signal and calculate the energy

```
1 / \text{Example } 1.21 < i >
2 //whether the signal is energy signal
3 clc;
4
   t = 0:0.001:10;
   y = \exp(-3*t);
   E= integrate ( ' (\exp(-3*t)) ^2 ', 't', 0,2*
       %pi );
7 disp (E, 'Energy of the signalis');
    disp ('since the energy is finite, hence it is
       energy signal');
    //example1.21<iii>>
10 //show whethet x(t)=cost is a power or energy signal
11 clc;
12 t=0:0.01:100;
13 x = cos(t);
14 P=(integrate('cos(t)^2', 't', 0, 2*\%pi))/(2*\%pi);
15 disp(P, 'The power of the signal is:');
16 E=(integrate('cos(t)^2', 't', 0, 2*\%pi));
17 disp(E, 'The energy is:');
18 disp('As t tends to infinity energy also tends to
      iinfinity but power remains finite.hence it is
     power signal');
19 / Example 1.21 < iv >
20 //Find the energy of the signal
21 clc;
22 E=0; //initialize
23 for n=0:200
24
       x(n+1)=(1/3)^n;
25 end
26 \quad for \quad n=0:200
       E=E+x(n+1)^2;
27
28 end
```

```
29 if E<%inf then
30     disp(E, 'The energy of the signal is;');
31 else disp('The given signal is not energy signal');
32 end</pre>
```

Scilab code Exa 1.22 Find which of the following signal is causal or non causal

```
1 / \text{Example } 1.22 < i >
2 //Find whether the given signal is causal or not.
3 clear all;
4 clc;
5 t = -10:10;
6 a = .5;
7 for i=1:length(t)
       if t(i)<0 then
8
9
            x1(i)=0;
10
       else
            x1(i) = exp(a.*t(i));
12
       end
13 end
14 causal=%t;
15 for i=1:length(t)
16
       if t(i) < 0 & x1(i) ~= 0 then</pre>
            causal=%f;
17
18
       end
19 end
20 disp(causal,"The statement that the system is causal
       is:");
21 / Example 1.22 < ii >
22 //Find whether the given signal is causal or not.
23 clear all;
24 clc;
25 t = -10:10;
26 for i=1:length(t)
```

```
27
       if t(i)>0 then
28
            x2(i)=0;
29
       else
30
            x2(i) = exp(-2.*t(i));
31
       end
32 end
33 causal=%t;
34 for i=1:length(t)
       if t(i) < 0 & x2(i)^=0 then
35
36
            causal=%f;
37
       end
38 end
39 disp(causal,"The statement that the system is causal
       is:");
40 / Example 1.22 < iii >
41 //Find whether the given signal is causal or not.
42 clear all;
43 clc;
44 t = -10:10;
45 c=2;
46 for i=1:length(t)
       x3(i) = sin(c.*t(i));
47
48
       end
49 causal=%t;
50 for i=1:length(t)
       if t(i) < 0 & x3(i) ~= 0 then</pre>
51
52
            causal=%f;
53
       end
54 end
55 disp(causal,"The statement that the system is causal
       is:");
56 / Example 1.22 < iv >
57 //Find whether the given signal is causal or not.
58 clear all;
59 clc;
60 n = -10:10;
61 for i=1:length(n)
62
       if n(i) < -3 \mid n(i) > 2 then
```

```
63
            x1(i)=0;
64
       else
65
            x1(i)=1;
66
       end
67
       end
68 causal=%t;
69 for i=1:length(n)
       if n(i) < 0 & x1(i) ~= 0 then</pre>
70
71
            causal=%f;
72
       end
73 end
74 disp(causal, "The statement that the system is causal
       is:");
75 / \text{Example } 1.22 < v >
76 //Find whether the given signal is causal or not.
77 clear all;
78 clc;
79 n = -10:10;
80 for i=1:length(n)
       if n(i) > -2 then
81
82
            x2(i)=(1/2)^n(i);
83
       else
84
            x2(i)=0;
85
       end
86
       end
87 causal=%t;
88 for i=1:length(n)
       if n(i) < 0 & x2(i)^=0 then
89
90
            causal=%f;
91
       end
92 end
93 disp(causal,"The statement that the system is causal
       is:");
```

Chapter 2

Systems an introduction

Scilab code Exa 2.2 Find which of the following signal is causal or non causal

```
1 / \text{Example } 2.2 < i >
2 //Find whether the given signal is causal or not.
3 clear all;
4 clc;
5 n=10; x1(1)=1; x2(1)=1;
6 for i=2:length(n)
     x1(i)=i;
      x2(i)=i-1;
9
      y(i)=x1(i)+1 ./x2(i);
10
11 causal=%t;
12 for i=1:length(n)
       if n(i) < 0 & y(i) ~= 0 then</pre>
13
            causal=%f;
14
15
        end
16 end
17 disp(causal, "The statement that the system is causal
       is:");
18 / \text{Example } 2.2 < \text{ii} >
19 //Find whether the given signal is causal or not.
```

```
20 clear all;
21 clc;
22 n=10; x1(1)=1; x2(1)=-1;
23 for i=2:length(n)
24
     x1(i)=i;
      x2(i)=i-2;
25
26
      y(i)=x1(i).*x1(i)+x2(i);
       end
27
28 causal=%t;
29 for i=1:length(n)
       if n(i) < 0 & y(i)^=0 then
30
            causal=%f;
31
32
       end
33 end
34 disp(causal, "The statement that the system is causal
       is:");
35 //Example 2.2 < vi >
36 //Find whether the given signal is causal or not.
37 clear all;
38 clc;
39 n = -10:10;
40 for i=1:length(n)
41
     x(i)=i;
      y(i)=(i.^2);
42
43
       end
44 causal=%t;
45 for i=1:length(n)
       if n(i) < 0 & y(i) ~= 0 then</pre>
46
            causal=%f;
47
48
       end
50 disp(causal,"The statement that the system is causal
       is:");
```

Scilab code Exa 2.3 Check whether the following systems are linear or not

```
1 / Example 2.3 < v >
2 //Check whether the following signal is linear or
3 clear;
4 close;
5 clc;
6 T=20; //length of the signal
7 \quad A = 5;
8 B=4;
9 \quad for \quad n=1:T
       x(n)=n;
10
       y(n) = A * x(n) + B;
11
12 end
13 x1=x;
14 y1 = y;
15 for n=1:T
        x2(n)=2; y2(n)=A*x2(n)+B;
16
17 \text{ end}
18 z = y1 + y2;
19 \quad for \quad n=1:T
20
        y3(n) = A*(x1(n)+x2(n))+B;
21 end
22 if z==y3 then
        disp('The following signal is linear');
23
24 else
        disp('The following signal is non linear');
25
26 \, \text{end}
27 //Example 2.3 < vi >
28 //Check whether the following signal is linear or
      not.
29 clear;
30 close;
31 clc;
32 T=20; //length of the signal
33 \times 1(1) = 1;
34 \times 2(1) = 2;
35 for n=2:T
        x1(n)=n;
36
```

```
37
        x2(n) = 2*n;
        y1(n) = (2*(x1(n)))+(1/x1(n-1));
38
        y2(n) = (2*(x2(n))) + (1/x2(n-1));
39
40 \, end
41 z = y1 + y2;
42 for n=2:T
       y3(n) = (2*(x1(n)+x2(n)))+(1/(x1(n-1)+x2(n-1)));
43
44 end
45 if z==y3 then
        disp('The following signal is linear');
47 else
        disp('The following signal is non linear');
48
49 end
50 / \text{Example } 2.3 < \text{vii} >
51 //Check whether the following signal is linear or
52 clear;
53 close;
54 clc;
55 T=20; //length of the signal
56 \quad for \quad n=1:T
57
       x(n)=n;
       y(n)=n*x(n);
58
59 end
60 \times 1 = x;
61 y1=y;
62 for n=1:T
        x2(n)=2; y2(n)=n*x2(n);
63
64 end
65 z = y1 + y2;
66 \quad for \quad n=1:T
        y3(n)=n*(x1(n)+x2(n));
67
68 end
69 if z==y3 then
        disp('The following signal is linear');
70
71 else
72
        disp('The following signal is non linear');
73 end
```

Scilab code Exa 2.4 Check whether the following systems are linear or not

```
1 / \text{Example } 2.4 < i >
2 //Check whether the following signal is linear or
      not.
3 clear;
4 close;
5 clc;
6 T=20; //length of the signal
7 \quad for \quad n=1:T
        x1(n)=n; x2(n)=2*n;
        y1(n) = exp(x1(n));
9
        y2(n) = exp(x2(n));
10
11 end
12 z = y1 + y2;
13 for n=1:T
        y3(n) = exp(x1(n) + x2(n));
14
15 end
16 if z==y3 then
17
        disp('The following signal is linear');
18 else
        disp('The following signal is non linear');
19
20 end
21 / Example 2.4 < ii >
22 //Check whether the following signal is linear or
      not.
23 clear;
24 close;
25 \text{ clc};
26 T=20;//length of the signal
27 \text{ for } n=1:T
28
        x1(n)=n; x2(n)=2*n;
        y1(n)=x1(n)*x1(n);
29
        y2(n)=x2(n)*x2(n);
30
```

```
31 end
32 z = y1 + y2;
33 \text{ for } n=1:T
       y3(n) = (x1(n)+x2(n))^2;
34
35 end
36 if z==y3 then
       disp('The following signal is linear');
37
38 else
       disp('The following signal is non linear');
39
40 \, \text{end}
41 / Example 2.4 < iii >
42 //Check whether the following signal is linear or
43 clear;
44 close;
45 clc;
46 T=20; //length of the signal
47 for n=1:T
       x1(n)=n; x2(n)=2*n;
48
       y1(n)=n^2*(x1(n));
49
       y2(n)=n^2*(x2(n));
50
51 end
52 z = y1 + y2;
53 for n=1:T
       y3(n)=n^2*(x1(n)+x2(n));
54
55 end
56 if z==y3 then
       disp('The following signal is linear');
57
58 else
       disp('The following signal is non linear');
59
60 end
```

Scilab code Exa 2.5 Determine whether the following systems are time invariant or not

```
1 / \text{Example } 2.5 < i >
2 // Determine whether the following system is time
      invariant or not.
3 clc;
4 clear all;
5 T=20; //length of the signal.
6 \text{ s=2;} // \text{shift}
7 \quad for \quad n=1:T
       x(n)=n;
8
       y(n)=n*x(n);
9
10 \, \text{end}
11 IP=x(T-s);
12 OP = y(T-s);
13 if IP==OP then
        disp('The given system is time invariant');
14
15 else
        disp('The given system is time variant');
16
17 \text{ end}
18 / \text{Example } 2.5 < \text{ii} >
19 //Determine whether the following system is time
      invariant or not.
20 clc;
21 clear all;
22 T=-10:10; //length of the signal.
23 s=2; //shift
24 for n=1:length(T)
25
       x(n) = 2;
       y(n)=x(n)*cos(50*\%pi.*T(n));
26
27 end
28 IP=x(T(n)-s);
29 OP=y(T(n)-s);
30 if IP==OP then
31
        disp('The given system is time invariant');
32 else
        disp('The given system is time variant');
33
34 end
35 //Example 2.5 < vi >
36 // Determine whether the following signal is time
```

```
invariant or not.
37 clc;
38 clear all;
39 N = 10;
40 s=1//shift;
41 k=2;
42 \quad for \quad n=1:N
        x(n)=n;
43
44 end
45 for n=1:(N/k)
        y(n)=x(k*n);
46
47 \text{ end}
48 ip=x(N-s);
49 op=y((N/k)-s);
50 if (ip==op) then
        disp('the following signal is time invariant');
51
52 else
        disp('The given signal is time variant');
53
54 / \text{Example } 2.5 < \text{vii} >
55 //Determine whether the following signal is time
      invariant or not.
56 clc;
57 clear all;
58 T = 20;
59 \text{ s=4}; // \text{shift}
60 \times (1) = 1
61 \quad for \quad n=2:T
62
        x(n)=n;
        y(n)=x(n-1).*x(n-1);
63
64 end
65 inputshift=x(T-s);
66 outputshift=y(T-s);
67 if (inputshift == outputshift) then
        disp('The given signal is time invariant');
68
69 else
        disp('The given signal is time variant');
70
71 end
```

Scilab code Exa 2.7 Check for the following systems

```
1 //Check for the following system.
2 / \text{Example } 2.7 < i >
3 \text{ clc};
4 clear ;//a>check whether static or dynamic
5 t=-10:.1:10; T=length(t)
6 \text{ s} = 2;
7 for i=1:length(t)
8
       x(i)=i;
9
       y(i) = abs(x(i));
10 end
11 if y(2) == x(2) & y(2) == x(1) then
        disp('The given signal is dynamic');
13 else
        disp('the given signal is static');
14
15 end
16 //b>check whether linear or non linear
17 \times 1 = x;
18 y1 = y;
19 for i=1:length(t)
       x2(i) = -2;
20
21
       y2(i) = abs(x2(i));
22 \quad end
23 for i=1:length(t)
24 z(i) = y1(i) + y2(i);
25 end
26 for i=1:length(t)
27
        y3(i) = abs(x1(i) + x2(i));
28 end
29 if z==y3 then
        disp('The given signal is linear');
30
31 else
32
        disp('Not linear');
```

```
33 end
34 //c>check whether time invariant or not
35 \quad IP=x(T-s);
36 \quad OP = y(T-s);
37 if IP == OP then
38 disp('the given signal is time invariant');
39 else
          disp('The given signal is not time invariant')
40
41
       end
42 //Check for the following systems
43 //Example 2.7 < ii >
44 clc;
45 clear all;//a>check whether static or dynamic
46 \text{ t=0:5; T=length(t); w=1;}
47 \text{ s} = 2;
48 for i=1:length(t)
       x(i)=i;
49
       y(i)=x(i)*cos(w*t(i));
50
51 end
52 if y(2) == x(2) & y(2) == x(1) then
       disp('The given signal is dynamic');
53
54 else
       disp('the given signal is static');
55
57 //b>check whether linear or non linear
58 x1=x;
59 \text{ y} 1 = \text{y};
60 for i=1:length(t)
61
       x2(i)=2*i;
       y2(i)=x2(i)*cos(w*t(i));
       y3(i) = cos(w*t(i))*(x1(i)+x2(i));
63
64 end
65 z = y1 + y2;
66 if z~=y3 then
       disp('The given signal is not linear');
67
68 else
       disp('linear');
69
```

Chapter 3

Time domain analysis of discrete time systems

Scilab code Exa 6.0 Example 6 0f question and answer section

```
1 //Example 6 0f question and answer section
2 clc;
3 clear; close;
4 n = -5 : .01 : 5;
5 for i=1:length(n)
       if n(i)<0 then
           x(i)=0; h1(i)=0; h2(i)=0;
8
       else
           x(i)=1;h1(i)=2;h2(i)=3;
9
10
       end
11
       h3(i)=h1(i)+h2(i)/when in parallel
12
       h4(i)=h1(i).*h2(i)/when in series
13 end
14 y1 = convol(x,h3);
15 y2 = convol(x, h4);
16 subplot (4,2,1);
17 plot(n,x,'black');
18 xtitle('x[n]');
19 subplot (4,2,2);
```

```
20 plot(n,h1, 'red');
21 xtitle('h1[n]');
22 subplot(4,2,3);
23 plot(n,h2, 'red');
24 xtitle('h2[n]');
25 subplot (4,2,4);
26 plot(n,h3,'blue');
27 xtitle('h3[n]');
28 subplot (4,2,5);
29 plot(n,h4,'blue');
30 xtitle('h4[n]');
31 subplot (4,2,6);
32 \quad n1 = -10 : .01 : 10;
33 plot(n1,y1, 'green');
34 xtitle('y1[n]');
35 subplot (4,2,7);
36 \quad n1 = -10 : .01 : 10;
37 plot(n1,y2, 'green');
38 xtitle('y2[n]');
```

Scilab code Exa 3.13 Represent the sequence as sum of shifted unit impulse

```
1 //example 3.13
2 //Represent the sequence as sum of shifted unit impulse.
3 clear;
4 close;
5 clc;
6 t= -1:1:4;T=3;
7 x=[3 2 -1 2 4 1];
8 for i =1: length (t)
9 if modulo(t(i),3)==0 then
10 h(i)=1;
11 else
```

```
12
   h(i) = 0;
13
    end
14
    end
15
   y = convol(x,h);
   //figure
16
17
   f=scf(0);
   plot2d (t,h)
18
   xtitle ( 'Input Re spons e ', 't ', 'h ( t ) '
19
    xs2jpg(0, 'problem38-plot-a.jpg');
20
21 // figure
22 f=scf(1);
23
   plot2d (t,x)
   xtitle ( 'Input Re spons e ', 't', 'x (t) '
24
    xs2jpg(1, 'problem38-plot-b.jpg');
25
   //figure
26
27
   f=scf(2);
28
   a = gca();
29
   t1 = -2:1:8;
30
   plot2d (t1 ,y)
   xtitle ( 'Output Re spons e ', 't ', 'y ( t) '
31
       );
    xs2jpg(2, 'problem38-plot-c.jpg');
32
```

Scilab code Exa 3.15 Determine the convolution sum of two sequences

```
1 //Example 3.15
2 //Determine the convolution sum of two sequences.
3 clc;
4 x=[1 4 3 2];
5 h=[1 3 2 1];
6 y=convol(x,h);
7 disp(y,'Convolution sum of the above two sequences is:");
```

Scilab code Exa 3.16 Determine the output response

```
//Example 3.16
//Determine the output response.
clc;
x=[1 2 3 2];
h=[1 2 2];
y=convol(x,h);
disp(y,'convolution of the above two sequences is:');
;
```

Scilab code Exa 3.17 Find the convolution of the sequences

```
1 //Example 3.17
2 //Find the convolution of the sequences.
3 x1=[1 -1 2 3];
4 x2=[1 -2 3 -1];
5 y=convol(x1,x2);
6 disp(y,'The convolution of the above sequences is:');
;
```

Scilab code Exa 3.18 Find the convolution

```
1 //Example 3.18
2 //Find the convolution.
3 clc;
4 x1=[1 -2 3 1];
5 x2=[2 -3 -2];
6 y=convol(x1,x2);
```

```
7 disp(y, 'The convolution of the above two sequences
    is:');
```

Scilab code Exa 3.19 Find the convolution of the following sequence

```
1 //Example 3.19
2 //Find the convolution of the following sequence.
3 x=[2 -1 1 3];
4 h=[3 4 2];
5 y=convol(x,h);
6 disp(y,'the convolution of the above sequence is:');
```

Scilab code Exa 3.20 Find the convolution

```
1 //Example 3.20
2 //Find the convolution of h(n)=a^n*u(n) and x(n)=b^n
      *u(n)
3 clear;
4 clc;
5 close;
6 n = -10:1/100:10;
7 a=5;
8 b=3;
9 for i =1:length(n)
       if n(i)<0 then
10
           h(i)=0;
11
12
           x(i)=0;
13
       else
           h(i)=a^n(i);
14
15
           x(i)=b^n(i);
16
       end;
17
       end;
18
       y = convol(h,x);
```

```
19 //
         figure
       f=scf(0);
20
       plot(n,h,'black');
21
       xtitle('input response1', 'n', 'h(n)');
22
23
       xs2jpg(0, 'problem29-plot-a.jpg');
24
          figure
       f = scf(1);
25
       plot(n,x,'red');
26
27
       xtitle('input response2', 'n', 'x(n)');
       xs2jpg(1, 'problem29-plot-b.jpg');
28
       n1 = -20:1/100:20;
29
30 //
         figure
31
       f = scf(2);
       plot(n1,y,'green');
32
       xtitle('output response', 'n1', 'y(n)');
33
       xs2jpg(2, 'problem29-plot-c.jpg');
34
```

Scilab code Exa 3.21 Determine the response of the below relaxed system

```
1 //Example 3.21
2 // Determine the response of the below relaxed system
3 clc;
4 close;
   n = -10 : .01 : 10;
6
    for i=1:length(n)
7
         if n(i) < 0 then
8
             h(i)=0; x(i)=0;
9
         else
10
             h(i)=(1/3)^n(i);
             x(i)=2^n(i);
11
12
         end
13
    end
14
    y = convol(h, x);
15
    //figure
```

```
f=scf(0);
16
    plot(n,h,'black');
17
    xtitle('input response1', 'n', 'h(n)');
18
    xs2jpg(0, 'problem29-plot-a.jpg');
19
20 // figure
21 f=scf(1);
22
    plot(n,x,'red');
    xtitle('input response2', 'n', 'x(n)');
23
    xs2jpg(1, 'problem29-plot-b.jpg');
24
25 // figure
26 f = scf(2);
27
   n1 = -20 : .01 : 20;
28
    plot(n1, y, 'green');
    xtitle('output response', 'n', 'y(n)');
29
    xs2jpg(2, 'problem29-plot-c.jpg');
30
```

Scilab code Exa 3.22 Find the response

```
1 //Example 3.22
2 clear;
3
   close ;
4
   clc ;
   t = -5:1/100:5;
6
   for i =1: length (t)
7
   if t(i) <0 then
   h(i)=0;
8
9
   x(i)=0;
10
   else
11
   h(i)=1;
12
    x(i)=1;
13
    end
14
    end
    y = convol(x,h);
15
16
    //figure
17
    f=scf(0);
```

```
plot2d (t,h)
18
   xtitle ( 'Input Re spons e ', 't ', 'h ( t ) '
19
   xs2jpg(0, 'problem31-plot-a.jpg');
20
21
   //figure
22
   f=scf(1);
23
   plot2d (t,x)
   xtitle ( 'Input Re spons e ', 't ', 'x ( t ) '
24
   xs2jpg(0, 'problem31-plot-b.jpg');
25
   //figure
26
   f=scf(2);
27
28
   a = gca();
   t1 = -10:1/100:10;
29
   plot2d (t1 ,y)
30
   xtitle ( 'Output Re spons e ', 't ', 'y (t)
31
      ');
32
    xs2jpg(0, 'problem31-plot-c.jpg');
```

Scilab code Exa 3.23 Find the convolution of the following sequences

```
1 // example 3.23 < i >
2 //Find the convolution sum
3 clear;
4 close;
    clc ;
5
   t = -5:1/100:5;
   for i =1: length (t)
   if t(i) <0 then
9
    h(i) = 0;
10
    x(i) = 0;
11
    else
12
   h(i)=2^t(i);
13
    x(i)=1;
14
    end
```

```
15
    end
16
    y = convol(x,h);
   //figure
17
18
    f=scf(0);
19
    plot2d (t,h)
    xtitle ( 'Input Re spons e ', 't ', 'h ( t ) '
20
       );
    xs2jpg(0, 'problem32-plot-a.jpg');
21
22
    //figure
    f=scf(1);
23
24
    plot2d (t,x)
    xtitle ( 'Input Re spons e ', 't', 'x (t) '
25
    xs2jpg(1, 'problem32-plot-b.jpg');
26
    //figure
27
28
   f=scf(2);
29
    a = gca();
30
    t1 = -10:1/100:10;
31
    plot2d (t1 ,y)
    xtitle ( 'Output Re spons e ', 't ', 'y (t) '
32
        );
    xs2jpg(2, 'problem32-plot-c.jpg');
33
34 / \exp 3.23 < ii >
35 //Find the response using convolution sum
36 clear;
37 clc;
38
   close ;
39
   t = -5:1/100:5;
   for i =1: length (t)
40
    if t(i) <0 then
41
   h(i)=0;
42
43
    x(i) = 0;
    elseif t(i)<3 then
44
   h(i)=0;
45
    x(i)=1;
46
    else h(i)=1; x(i)=1;
47
48
    end
49
    end
```

```
y = convol(x,h);
50
51
   //figure
52
   f=scf(0);
53
    plot2d (t,h)
    xtitle ( 'Input Re spons e ', 't ', 'h (t) '
54
    xs2jpg(0, 'problem33-plot-a.jpg');
55
56
    //figure
57 f = scf(1);
    plot2d (t,x)
58
    xtitle ( 'Input Re spons e ', 't ', 'x ( t ) '
59
        );
60
    xs2jpg(1, 'problem33-plot-b.jpg');
61
    //figure
   f=scf(2);
62
   a = gca();
63
    t1 = -10:1/100:10;
64
    plot2d (t1 ,y)
65
    xtitle ( 'Output Re spons e ', 't ', 'y ( t )
66
       ');
    xs2jpg(2, 'problem33-plot-c.jpg');
67
68 / \text{example } 3.23 < \text{iii} >
69 //Find the response using convolution sum
70 clear;
71
   close ;
72
    clc ;
   t = -5:1/100:5;
73
74
   for i =1: length (t)
75
    if t(i) <0 then</pre>
   h(i)=0;
76
77
   x(i)=0;
78
   elseif t(i)<1 then
79
   h(i)=0;
80
   x(i)=1;
81 elseif t(i) \le 4 then h(i) = 1; x(i) = 1;
82 elseif t(i) <= 7 then
83
       h(i)=0;
       x(i)=1;
84
```

```
85
    end
86
    end
    y = convol(x,h);
87
    //figure
88
89
    f=scf(0);
90
    plot2d (t,h)
    xtitle ( 'Input Re spons e ', 't ', 'h ( t ) '
91
        );
    xs2jpg(0, 'problem34-plot-a.jpg');
92
93 // figure
94
    f=scf(1);
95
    plot2d (t,x)
    xtitle ( 'Input Re spons e ', 't ', 'x (t) '
96
        );
    xs2jpg(1, 'problem34-plot-b.jpg');
97
98
    //figure
    f=scf(2);
99
    t1 = -10:1/100:10;
100
    plot2d (t1 ,y)
101
    xtitle ( 'Output Re spons e ', 't ', 'y (t)
102
       ');
    xs2jpg(2, 'problem34-plot-c.jpg');
103
```

Scilab code Exa 3.25 Find whether the systems are causal and stable

```
1 //Example 3.25 < i >
2 //Find whether the system is causal and stable.
3 clear all;
4 clc;
5 n = -5:5;
6 for i =1: length (n)
7 if(n(i) <=0)
8 h(i) = 2^n(i);
9 else
10 h(i) = 0;</pre>
```

```
11
    end
12
    end
13
    causal =%t;
14
    for i =1: length (n)
15
    if n(i) <0 & h(i) ~=0 then</pre>
16
    causal =%f;
17
    end
18
    end
19
    disp (causal, 'The statement that the system is
       causal is: ');
20
     n = 0:100000;
21
    for i =1: length (n)
22
    if(n(i) <=0)</pre>
23
    h(i) = 2^n(i);
24
    else
25
    h(i) = 0;
26
    end
27
    end
28
    bibo = sum(h);
    if (bibo < %inf ) then</pre>
29
30
    disp (" system is bibo stable ");
31
    disp (" systes not stable ");
32
33 end
34 / \text{Example } 3.25 < \text{ii} >
35 //Find whether the system is causal and stable.
36 clear all;
37
   clc ;
    n = -5:5;
38
    for i =1: length (n)
39
40
    if(n(i) >=1)
41
    h(i) = \exp(2*n(i));
42
    else
43
    h(i) = 0;
44
    end
45
    end
    causal =%t;
46
    for i =1: length (n)
47
```

```
if n(i) <0 & h(i) ~=0 then</pre>
48
49
    causal =%f;
50
    end
51
    end
52
    disp (causal, 'The statement that the system is
       causal is: ');
53
     n = 0:100000;
    for i =1: length (n)
54
    if(n(i) >=1)
55
    h(i) = \exp(2*n(i));
56
57
    else
    h(i)=0;
58
59
    end
60
    end
61
    bibo = sum(h);
    if (bibo < %inf ) then</pre>
62
    disp (" system is bibo stable ");
63
64
    else
    disp (" system not stable ");
65
66
    end
67 / \text{Example } 3.25 < \text{iii} >
68 //Find whether the system is causal and stable.
69 clear all;
   clc ;
70
71
    n = -5:5;
72
    for i =1: length (n)
73
    if(n(i) <=3)
74
    h(i) = (5*n(i));
75
    else
76
    h(i) = 0;
77
    end
78
    end
79
    causal =%t;
    for i =1: length (n)
80
    if n(i) <0 & h(i) ~=0 then</pre>
81
82
    causal =%f;
83
    end
84
    end
```

```
85
     disp (causal, 'The statement that the system is
        causal is: ');
      n = 0:100000;
86
     for i =1: length (n)
87
88
     if(n(i) <=1)
89
     h(i) = (5*n(i));
90
     else
     h(i) = 0;
91
92
     end
93
     end
94
     bibo = sum(h);
95
     if (bibo < %inf ) then</pre>
96
     disp (" system is bibo stable ");
97
     else
     disp (" system not stable ");
98
99
100 / \text{Example } 3.2 < \text{iv} >
   //Find whether the system is causal and stable.
102 clear all;
103
     clc ;
104
     n = -5:5;
105
     for i =1: length (n)
     h(i) = \exp(-6*abs(n(i)));
106
107
     end
108
     causal =%t;
109
     for i =1: length (n)
110
     if n(i) <0 & h(i) ~=0 then</pre>
111
     causal =%f;
112
     end
113
     end
     disp (causal, 'The statement that the system is
114
        causal is: ');
115
      n = 0:100000;
     for i =1: length (n)
116
     h(i) = \exp(-6*abs(n(i)));
117
118
     end
119
     bibo = sum(h);
120
     if (bibo < %inf ) then</pre>
```

```
121  disp (" system is bibo stable ");
122  else
123  disp (" system not stable ");
124  end
```

Scilab code Exa 3.26 Find the step response

```
1 //Find the step response.
2 / \text{Example } 3.26 < i >
3 clear;
4 close;
5 clc;
6 n = -5 : .01 : 5;
7 for i=1:length(n)
        if n(i) == 2 then
9
            del1(i)=1;
            del2(i)=0;
10
        elseif n(i) == 3 then
11
            del1(i)=0; del2(i)=1;
12
13
        else
14
            del1(i)=0; del2(i)=0;
15
        end
        x1(i)=del1(i)+del2(i);
16
17
        if n(i) < 0 then
            x2(i)=0;
18
19
        else
20
            x2(i)=1;
21
        end
22 \text{ end}
23 y = convol(x1, x2);
24 // figure
25 f = scf(0);
26 plot(n,x1,'black');
27 xtitle('Delta function as input');
    xs2jpg(0, 'problem39-plot-a.jpg');
28
```

```
29 //figure
30 f = scf(1);
31 plot(n,x2, 'red');
32 xtitle('Unit function as input');
33
   xs2jpg(1, 'problem39-plot-b.jpg');
34 //figure
35 f = scf(2);
36 \quad n1 = -10 : .01 : 10;
37 plot(n1, y, 'green');
38 xtitle('Step function as output');
39 xs2jpg(2, 'problem39-plot-c.jpg');
40 //Example 3.26 <ii>>
41 //Find the step response.
42 clc;
43 clear;
44 close;
45 n = -5 : .01 : 5;
46 \ a=6;
47 for i=1:length(n)
48
       if n(i) < 0 then
            h(i)=0; x(i)=0;
49
50
       else
            h(i)=(-a)^n(i);
51
            x(i)=1;
52
53
       end
54 end
55 \text{ s=convol}(h,x);
56 //figure
57 f = scf(0);
58 plot(n,h, 'red');
59 xtitle('h(n)');
60 xs2jpg(0, 'problem40-plot-a.jpg');
61 //figure
62 f = scf(1);
63 plot(n,x, 'green');
64 xtitle('x(n)');
   xs2jpg(1, 'problem40-plot-b.jpg');
66 //figure
```

```
67 f = scf(2);
68 n1 = -10 : .01 : 10;
69 plot(n1,s,'blue');
 70 xtitle('s(n)');
71 xs2jpg(2, 'problem40-plot-c.jpg');
 72 //Example 3.26 < iii >
 73 //Find the step response of the system.
74 clc;
75 clear;
76 close;
77 n = -5 : .01 : 5;
78 for i=1:length(n)
79
        if n(i) < 0 then</pre>
80
             h(i)=0; x(i)=0;
81
        else
82
             h(i)=1;
             x(i)=1;
83
84
        end
85 end
86 \text{ s=convol}(h,x);
87 //figure
88 f = scf(0);
89 plot(n,h,'black');
90 xtitle('h[n]');
91 xs2jpg(0, 'problem41-plot-a.jpg');
92 // figure
93 f = scf(1);
94 plot(n,x,'red');
95 xtitle('x[n]');
96 xs2jpg(1, 'problem41-plot-b.jpg');
97 //figure
98 f = scf(2);
99 n1 = -10 : .01 : 10;
100 plot(n1,s, 'green');
101 xtitle('s[n]');
102 xs2jpg(2, 'problem41-plot-c.jpg');
103 //Example 3.26 <iv>
104 //Find the step response.
```

```
105 clc;
106 clear;
107 close;
108 n = -5 : .01 : 5;
109 for i=1:length(n)
110
        if n(i)<0 then
111
             h(i)=0; x(i)=0;
112
        else
             h(i) = ((1/2)^n(i)) + ((-(1/3))^n(i));
113
114
             x(i)=1;
115
        end
116 end
117 s=convol(h,x);
118 // figure
119 f=scf(0);
120 plot(n,h, 'red');
121 xtitle('h(n)');
122 xs2jpg(0, 'problem42-plot-a.jpg');
123 // figure
124 f=scf(1);
125 plot(n,x, 'green');
126 xtitle('x(n)');
127 xs2jpg(1, 'problem42-plot-b.jpg');
128 // figure
129 f = scf(2);
130 n1 = -10 : .01 : 10;
131 plot(n1,s,'blue');
132 xtitle('s(n)');
133 xs2jpg(2, 'problem42-plot-c.jpg');
```

Scilab code Exa 3.27 Find the convolution of the following sequences

```
\begin{array}{lll} 1 & // \, example & 3.27 \, < \, i \, > \\ 2 & // \, Find & the & convolution & sum \\ 3 & \textbf{clear} & ; \end{array}
```

```
4 clc;
   close ;
5
   t = -10:1/100:10;
7
   for i =1: length (t)
8
    if t(i) <0 then
9
    h(i) = 0;
10
    x(i)=0;
11
    else
12
    h(i) = (1/2)^t(i);
    x(i) = \cos(\%pi * t(i));
13
14
    end
15
    end
16
   y = convol (x,h);
17 // figure
     f=scf(0);
18
    plot2d (t,h)
19
    xtitle ( 'Input Re spons e ', 't ', 'h ( t ) '
20
        );
21
    xs2jpg(0, 'EX3_27_1-plot-a.jpg');
22
    //figure
23
      f = scf(1);
24
    plot2d (t,x)
    xtitle ( 'Input Re spons e ', 't', 'x ( t ) '
25
       );
    xs2jpg(1, 'EX3_27_1-plot-b.jpg');
26
27
    //figure
28
      f=scf(2);
    t1 = -20:1/100:20;
29
    plot2d (t1 ,y)
30
    xtitle ( 'Output Re spons e ', 't ', 'y (t) '
31
        );
    xs2jpg(2, 'EX3_27_1-plot-c.jpg');
32
33 / \text{example } 3.27 < \text{ii} >
34 //Find the response using convolution sum
35 clear;
   close ;
36
37
    clc ;
    t = -10:1/100:10;
38
```

```
39
    for i =1: length (t)
40
    if t(i) <0 then
    h(i)=0;
41
    x(i)=(1/3)^{-(-t(i))};
42
43
    elseif t(i) == 0 then
44
    h(i) = 0;
    x(i)=0;
45
    else h(i)=1; x(i)=0;
46
47
    end
48
    end
    y = convol (x,h);
49
    //figure
50
51
    f=scf(0);
52
    plot2d (t,h)
    xtitle ( 'Input Re spons e ', 't ', 'h ( t ) '
53
    xs2jpg(0, 'EX3_27_2-plot-a.jpg');
54
    //figure
55
    f=scf(1);
56
57
    plot2d (t,x)
    xtitle ( 'Input Re spons e ', 't ', 'x ( t ) '
58
    xs2jpg(1, 'EX3_27_2-plot-b.jpg');
59
    //figure
60
    f=scf(2);
61
62
    a = gca();
63
    t1 = -20:1/100:20;
64
    plot2d (t1 ,y)
    xtitle ( 'Output Re spons e ', 't ', 'y (t)
65
       ');
     xs2jpg(2, 'EX3_27_2-plot-c.jpg');
66
67 //example 3.27 < iii >
68 //Find the response using convolution sum
69 clear;
70
   close ;
71
    clc ;
72
    t = -5:1/100:5;
    for i =1: length (t)
73
```

```
74
    if t(i) <0 then
75
    h(i)=0;
76
    x(i)=0;
77
    elseif t(i) <= 10 then
78
    x(i)=(1/2)^t(i);
79
    h(i)=1;
80 else
       h(i)=0;
81
82
       x(i)=(1/2)^t(i);
83
    end
84
    end
85
    y = convol(x,h);
86
    //figure
    f=scf(0);
87
    plot2d (t,h)
88
    xtitle ( 'Input Re spons e ', 't ', 'h (t) '
89
        );
    xs2jpg(0, 'EX3_27_3-plot-a.jpg');
90
91 // figure
92 f = scf(1);
    plot2d (t,x)
93
    xtitle ( 'Input Re spons e ', 't ', 'x (t) '
94
        );
    xs2jpg(1, 'EX3_27_3-plot-b.jpg');
95
96
    //figure
    f=scf(2);
97
98
    a = gca();
    t1 = -10:1/100:10;
99
    plot2d (t1 ,y)
100
    xtitle ( 'Output Re spons e ', 't ', 'y (t)
101
        , );
    xs2jpg(2, 'EX3_27_3-plot-c.jpg');
102
```

Scilab code Exa 3.28 Find the convolution

```
1 //Example 3.28
2 //Find the convolution.
3 clc;
4 clear;
5 close;
6 n = -5 : .01 : 5;
7 for i=1:length(n)
        if n(i) < 0 then
9
            x1(i)=0;
10
        else
11
            x1(i)=1;
12
        end
13
        if n(i) < 3 then
14
            x2(i)=0;
15
        else
            x2(i)=2;
16
17
        end
18
        if n(i) < 6 then
19
            x3(i)=0;
20
        else
21
            x3(i)=1;
22
        end
        x(i)=x1(i)-x2(i)+x3(i);
23
        if n(i) < -2 \mid n(i) > 9 then
24
25
            h(i)=0;
26
        else
27
            h(i)=1;
28
        end
29 end
30 y = convol(x,h);
31 //figure
32 f = scf(0);
33 plot(n,h,'red');
34 xtitle('h[n]');
35 xs2jpg(0, 'problem43-plot-a.jpg');
36 //figure
37 \text{ f=scf(1)};
38 plot(n,x,'blue');
```

```
39     xtitle('x[n]');
40     xs2jpg(1, 'problem43-plot-b.jpg');
41     //figure
42     f=scf(2);
43     n1=-10:.01:10;
44     plot(n1,y,'green');
45     xtitle('y[n]');
46     xs2jpg(2, 'problem43-plot-c.jpg');
```

Scilab code Exa 3.31 Find the cross correlation of two finite length sequences

Scilab code Exa 3.32 Find the input signal

```
1 //Example 3.32
2 //Find the input signal
3 clc;t=1:7;
4 y=[1 5 10 11 8 4 1];
5 h=[1 2 1 0 0 0 0];
6 Y=fft(y,-1);//-1 is taken to obtain the fourier transform of y.
7 H=fft(h,-1);
8
9 X=Y./H;
```

Chapter 4

Time domain analysis of continuous time systems

Scilab code Exa 4.4.2 Find the step response of the following impulse response

```
1 // Example 4.4 < ii >
2 //Find the step response of the following impulse
      response.
3 clc;
4 t = -1 : .01 : 1;
5 for i=1:length(t)
       if t(i) == 0 then
            del1(i)=1; del2(i)=0;
      elseif t(i) == 1 then
9
            del1(i)=0; del2(i)=1;
10
       else
            del1(i)=0; del2(i)=0;
11
12 end
13 h(i)=del1(i)-del2(i);
14 if t(i) < 0 then
15
       u(i)=0;
16 else
17
       u(i)=1;
```

```
18 end
19 end
20 s=convol(h,u);
21 t1=-10:.05:10;
22 f=scf(0);
23 plot(t1,s,'red');
24 xtitle('s[t]');
25 xs2jpg(0, 'EX4_4_2-plot-a.jpg');
```

Scilab code Exa 4.6 Find the convolution of the following signals

```
1 //Find the covolution Of the following signals.
2 / \text{Example } 4.6 < i >
3 clc;
4 clear;
5 close;
6 a = .5;
7 b = .6;
8 t = -4 : .01 : 4;
9 for i=1:length(t)
10
       if t(i)<0 then
11
            x1(i)=0; x2(i)=0;
12
        else
13
            x1(i) = exp(-a.*t(i));
            x2(i) = exp(-b.*t(i));
14
15
        end
16 end
17 y = convol(x1, x2);
18 f = scf(0);
19 subplot(3,1,1);
20 plot(x1,t,'red');
21 xtitle('x1[t]');
22 subplot (3,1,2);
23 plot(x2,t,'blue');
24 xtitle('x2[t]');
```

```
25 subplot(3,1,3);
26 t1 = -8:.01:8;
27 plot(t1, y, 'green');
28 xtitle('y[n]');
29 xs2jpg(0, 'EX4_6_1-plot-a.jpg');
30 //Find the covolution Of the following signals.
31 / \text{Example } 4.6 < \text{ii} >
32 clc;
33 clear;
34 close;
35 t = -4 : .01 : 4;
36 for i=1:length(t)
37
        if t(i)<0 then
            x1(i)=0; x2(i)=0;
38
39
        else
40
            x1(i)=1;
            x2(i)=1;
41
42
        end
43 end
44 y = convol(x1, x2);
45 f = scf(0);
46 subplot(3,1,1);
47 plot(x1,t, 'red');
48 xtitle('x1[t]');
49 subplot (3,1,2);
50 plot(x2,t,'blue');
51 xtitle('x2[t]');
52 subplot(3,1,3);
53 t1 = -8:.01:8;
54 plot(t1,y,'green');
55 xtitle('y[n]');
56 xs2jpg(0, 'EX4_{-}6_{-}2-plot-a.jpg');
57 //Find the covolution Of the following signals.
58 / \text{Example } 4.6 < \text{iii} >
59 clc;
60 clear;
61 close;
62 t = -4 : .01 : 4;
```

```
63 for i=1:length(t)
64
        if t(i)<0 then
             x1(i)=0; x2(i)=0;
65
66
        else
67
             x1(i)=t(i);
68
             x2(i)=1;
69
        end
70 \text{ end}
71 y = convol(x1, x2);
72 f = scf(0);
73 subplot(3,1,1);
74 plot(x1,t, 'red');
75 xtitle('x1[t]');
76 subplot(3,1,2);
77 plot(x2,t,'blue');
78 xtitle('x2[t]');
79 subplot(3,1,3);
80 t1 = -8:.01:8;
81 plot(t1, y, 'green');
82 xtitle('y[n]');
83 xs2jpg(0, 'EX4_6_3-plot-a.jpg');
84 //Find the covolution Of the following signals.
85 //Example 4.6 < iv >
86 clc;
87 clear;
88 close;
89 t = -4 : .01 : 4;
90 for i=1:length(t)
91
        if t(i)<0 then
92
             x1(i)=0; x2(i)=0;
93
        else
94
             x1(i)=sin(t(i));
95
             x2(i)=1;
96
        end
97 end
98 y = convol(x1, x2);
99 f = scf(0);
100 subplot(3,1,1);
```

```
101 plot(x1,t,'red');
102 xtitle('x1[t]');
103 subplot(3,1,2);
104 plot(x2,t,'blue');
105 xtitle('x2[t]');
106 subplot(3,1,3);
107 t1=-8:.01:8;
108 plot(t1,y,'green');
109 xtitle('y[n]');
110 xs2jpg(0, 'EX4_6_4-plot-a.jpg');
```

Scilab code Exa 4.7 Find the convolution of the following signals

```
1 //Find the covolution Of the following signals.
2 / \text{Example } 4.7 < i >
3 clc;
4 clear;
5 close;
6 t = -4 : .01 : 4;
7 // Define signal h(t)=u(t+2)
8 for i=1:length(t)
9
       if t(i) < -2 then
            h(i)=0;
10
11
       else
12
            h(i)=1;
13
       end
14
       // Define signal x(t) = exp^(-2*t)*u(t)
15
       if t(i) < 0 then
16
       x(i)=0;
17 else
       x(i) = exp(-2.*t(i));
18
19 end
20 end
21 y=convol(h,x);//convolution is done
22 f = scf(0);
```

```
23 subplot (3,1,1);
24 plot(h,t, 'red');
25 xtitle('h[t]');
26 subplot (3,1,2);
27 plot(x,t, 'blue');
28 xtitle('x[t]');
29 subplot (3,1,3);
30 t1 = -8 : .01 : 8;
31 plot(t1, y, 'green');
32 xtitle('y[n]');
33 xs2jpg(0, 'problem52-plot.jpg');
34 //Find the covolution Of the following signals.
35 / \text{Example } 4.7 < \text{iii} >
36 clc;
37 clear;
38 close;
39 t = -4 : .01 : 4;
40 // Define signal h(t)=u(t-2)
41 for i=1:length(t)
42
       if t(i) < -1 then
43
            h(i)=0;
44
       else
45
            h(i)=1;
46
       end
       // Define signal x(t)=u(t+1)
47
48
       if t(i) < 2 then
49
       x(i)=0;
50 else
51
       x(i)=1;
52 end
54 y=convol(h,x);//The convolution is done here.
55 subplot(3,1,1);
56 plot(h,t,'red');
57 xtitle('input response 2', 't', 'h[t]');
58 subplot (3,1,2);
59 plot(x,t,'blue');
60 xtitle('input response 2', 't', 'x[t]');
```

```
61 subplot(3,1,3);
62 t1 = -8:.01:8;
63 plot(t1, y, 'green');
64 xtitle('output response', 't', 'y[t1]');
65 //Find the covolution Of the following signals.
66 / \text{Example } 4.7 < \text{ii} >
67 clc;
68 clear;
69 close;
70 t = -4 : .01 : 4;
71 for i=1:length(t)
72
            x(i) = exp(-abs(t(i)));
            if t(i) < -1 then
73
74
           h(i) = 0;
75
            else
             h(i) = \exp(-2.*(t(i)+1));
76
77
            end
78
       end
79 y=convol(h,x); //Here convolution of the above two
      signals is done
80 subplot(3,1,1);
81 plot(h,t,'red');
82 xtitle('input response 2', 't', 'h[t]');
83 subplot(3,1,2);
84 plot(x,t, 'blue');
85 xtitle('input response 2', 't', 'x[t]');
86 subplot(3,1,3);
87 t1 = -8 : .01 : 8;
88 plot(t1, y, 'green');
89 xtitle('output response', 't', 'y[t1]');
```

Scilab code Exa 4.8 Find the covolution Of the following signals

```
1 //Find the covolution Of the following signals.
2 //Example 4.8
```

```
3 clc;
4 clear;
5 close;
6 t = -4 : .01 : 4;
7 for i=1:length(t)
8
       if t(i) >= 0 & t(i) <= 2 then
9
            x(i)=1;
       else
10
11
            x(i)=0;
12
       end
       if t(i) >= 0 & t(i) <= 3 then
13
       h(i)=1;
14
15 else
16
       h(i)=0;
17 \text{ end}
18 end
19 y=convol(h,x); // Convolution of the above two signals
       is done.
20 subplot(3,1,1);
21 plot(t,h, 'red');
22 xtitle('input response 2', 't', 'h[t]');
23 subplot(3,1,2);
24 plot(t,x,'blue');
25 xtitle('input response 2', 't', 'x[t]');
26 subplot(3,1,3);
27 t1 = -8:.01:8;
28 plot(t1, y, 'green');
29 xtitle('output response', 't', 'y[t1]');
```

Scilab code Exa 4.9 Find the covolution Of the following signals

```
1 //Find the covolution Of the following signals.
2 //Example 4.9
3 clc;
4 clear;
```

```
5 close;
6 t = -10 : .01 : 10;
7 //input signal: x(t)=u(t-3)-u(t-5)
8 for i=1:length(t)
9
       if t(i) < 3 \mid t(i) > 5 then
10
            x(i)=0;
11
       else
            x(i)=1;
12
13
       end
       //h(t) = \exp(-3*t)*u(t)
14
       if t(i) >= 0 then
15
16
       h(i) = exp(-3.*t(i));
17 else
18
       h(i)=0;
19 end
20 end
21 y = convol(h, x); // cconvolution of the above two
      signals
22 subplot(3,1,1);
23 plot(t,h, 'red');
24 xtitle('input response 2', 't', 'h[t]');
25 subplot(3,1,2);
26 plot(t,x,'blue');
27 xtitle('input response 2', 't', 'x[t]');
28 subplot(3,1,3);
29 t1 = -20 : .01 : 20;
30 plot(t1, y, 'green');
31 xtitle('output response', 't', 'y[t1]');
```

Scilab code Exa 4.10 Find the covolution Of the following signal

```
1 //Find the covolution Of the following signals. 2 //Example 4.10 3 clc; 4 clear;
```

```
5 close;
6 t = -20 : .01 : 20;
7 for i=1:length(t)
       if t(i) < 0 | t(i) > 2 then
8
9
            x(i)=0;
10
       else
11
            x(i)=1;
12
       end
13
       if t(i) >= 10 then
       h(i)=1;
14
15 else
16
       h(i)=0;
17 \text{ end}
18 end
19 y = convol(h,x);
20 subplot(3,1,1);
21 plot(t,h, 'red');
22 xtitle('input response 2', 't', 'h[t]');
23 subplot(3,1,2);
24 plot(t,x,'blue');
25 xtitle('input response 2', 't', 'x[t]');
26 subplot(3,1,3);
27 t1 = -40 : .01 : 40;
28 plot(t1,y,'green');
29 xtitle('output response', 't', 'y[t1]');
```

Scilab code Exa 4.11 Find the covolution Of the following signals

```
1 //Find the covolution Of the following signals.
2 //Example 4.11
3 clc;
4 clear;
5 close;
6 t=-5:.01:5;
7 for i=1:length(t)
```

```
if t(i) < 0 \mid t(i) > 2 then
8
9
            x(i)=0;
10
        else
11
            x(i)=1;
12
        end
13
        if t(i) < -1 \mid t(i) > 2 then
14
       h(i)=0;
15 else
16
       h(i) = 2;
17 \text{ end}
18 end
19 y = convol(h,x);
20 subplot(3,1,1);
21 plot(t,h,'red');
22 xtitle('input response 2', 't', 'h[t]');
23 subplot(3,1,2);
24 plot(t,x,'blue');
25 xtitle('input response 2', 't', 'x[t]');
26 subplot(3,1,3);
27 t1 = -10 : .01 : 10;
28 plot(t1, y, 'green');
29 xtitle('output response', 't', 'y[t1]');
```

Scilab code Exa 4.12 Find the convolution of the following signals

```
1 //Find the covolution Of the following signals.
2 //Example 4.12 <i>3 clc;
4 clear;
5 close;
6 t=-5:.01:5;
7 for i=1:length(t)
8    if t(i)>=0 & t(i) <=2 then
9    x(i)=sin(%pi*t(i));
10 else</pre>
```

```
11
       x(i)=0;
12
       end
13 if t(i) < 1 | t(i) > 3 then
14
       h(i)=0;
15 else
16
       h(i)=1;
17 \text{ end}
18 end
19 y=convol(h,x); //convolution of the above two signals
       is done here.
20 subplot (3,1,1);
21 plot(t,h, 'red');
22 xtitle('input response 2', 't', 'h[t]');
23 subplot(3,1,2);
24 plot(t,x,'blue');
25 xtitle('input response 2', 't', 'x[t]');
26 subplot(3,1,3);
27 t1 = -10 : .01 : 10;
28 plot(t1, y, 'green');
29 xtitle('output response', 't', 'y[t1]');
30 //Find the covolution Of the following signals.
31 / Example 4.12 < ii >
32 clc;
33 clear;
34 close;
35 t = -5 : .01 : 5;
36 for i=1:length(t)
37
       if t(i)<0 then
38
            x(i)=0;
        elseif t(i)<1 then
39
40
            x(i)=1+t(i);
       elseif t(i)<2 then
41
42
       x(i)=1-t(i);
43 else
       x(i)=0;
44
45 end
46 \text{ if } t(i) < 0 \mid t(i) > 2 \text{ then}
       h(i)=0;
47
```

```
48 else
       h(i)=1;
49
50 end
51 end
52 y = convol(h,x);
53 subplot(3,1,1);
54 plot(t,h, 'red');
55 xtitle('input response 2', 't', 'h[t]');
56 subplot(3,1,2);
57 plot(t,x,'blue');
58 xtitle('input response 2', 't', 'x[t]');
59 subplot(3,1,3);
60 t1 = -10 : .01 : 10;
61 plot(t1,y,'green');
62 xtitle('output response', 't', 'y[t1]');
```

Chapter 7

Laplace Transform Analysis of Signals and Systems

Scilab code Exa 7.1.1 Find the laplace transform and Roc of the following signal

```
//Example 7.1.1
//Find the laplace transform and Roc of the
following signal

clc;
close;
syms t;
a=5;
x=exp(-a*t);
b=6;c=7;
s=b+c*%i;
X=integrate((exp(-(a+s)*t)),'t',0,%inf);
disp(X);
disp(real(s));
disp('Since real(s)>-a, so the integral converges');
```

Scilab code Exa 7.1.2 Find the laplace transform and Roc of the following signal

```
1 //Example 7_1_2
2 //Find the laplace transform and Roc of the
      following signal.
3 clc;
4 t = -10:.01:10;
5 a=4;
6 for i=1:length(t)
       if t(i)>0 then
7
           x(i)=0;
8
9
       else
           x(i) = -exp(-a*t(i));
10
11
       end
12 end
13 s = %s;
14 numfs=1;
15 \text{ denfs=s+.04};
16 fs=syslin('c', numfs/denfs);
17 fs1=csim('impulse',t,fs);
18 f=scf(0);
19 subplot (2,1,1);
20 plot2d(t,x,2);
21 xtitle('Phrasing');
22 xgrid;
23 subplot(2,1,2);
24 plot2d(t,fs1,1);
25 xtitle('Solution');
26 xgrid;
27 disp(fs);
28 disp('As real(s)<-a, so the integral converges for
      real(s) < -a');
29 xs2jpg(0, 'EX7_1_2-plot-a.jpg');
```

Scilab code Exa 7.2 Find the laplace transform and Roc of the following signal

```
1 //Example 7.2
2 //Find the laplace transform and Roc of the following signal
3 clc;
4 close;
5 syms t;
6 x=exp(-3*t)+exp(-2*t);
7 b=6;c=7;
8 s=b+c*%i;
9 X=integrate((exp(-(3+s)*t))+(exp(-(2+s)*t)),'t',0, %inf);
10 disp(X);
11 disp(real(s));
12 disp('Since real(s)>-2,so the integral converges');
```

Scilab code Exa 7.3 Find the laplace transform and Roc of the following signal

```
1 //Example 7.3
2 //Find the laplace transform and Roc of the following signal
3 clc;
4 close;
5 syms t;
6 a=3;b1=-8;
7 x1=exp(-a*t);
8 b=6;c=7;
9 s=b+c*%i;
10 X1=integrate((exp(-(a+s)*t)),'t',0,%inf);
11 x2=exp(-2*t);
12 X2=integrate((exp(-(b1+s)*t)),'t',-%inf,0);
13 disp(X1);
```

```
14 disp(X2);
15 X=X1+X2; disp(X);
16 disp(real(s));
17 disp('Since -a < real(s)>-b1, so the integral converges');
```

Scilab code Exa 7.4 Find the laplace transform

```
1 //Example 7.4
2 //Find the laplace transform
3 clc;
4 close;
5 syms t;
6 b=4;
7 \quad a=2; c=1;
8 s=a+c*\%i;
9 X1=integrate((exp(-(b+s)*t)), 't',0,%inf);
10 X2=integrate((exp(-(s-b)*t)), 't',-%inf,0);
11 disp(X1);
12
    disp(X2);
13 X=X1+X2; disp(X)
14 disp(real(s));
15 disp('Since -b < real(s) < b, so the integral converges'
      );
```

Scilab code Exa 7.5 Find the laplace transform of the following signal

```
1 //Example 7.5.2
2 //Find the laplace transform of the following signal
    .
3 clc;
4 close;
5 t=-10:.01:10;
```

```
6 for i=1:length(t)
       if t(i) >= 0 then
           x(i)=1;
8
9
       else
10
           x(i)=0;
11
       end
12 end
13 s = %s;
14 numfs=1;
15 denfs=s;
16 fs=syslin('c', numfs/denfs);
17 fs1=csim('impulse',t,fs);
18 disp(fs);
19 f=scf(0);
20 subplot(2,1,1);
21 plot2d(t,x,2);
22 xtitle('Phrasing');
23 xgrid;
24 subplot(2,1,2);
25 plot2d(t,fs1,1);
26 xtitle('solution');
27 xgrid;
28 xs2jpg(0, 'EX7_5-plot-a.jpg');
```

Scilab code Exa 7.6 Find the laplace transform

```
1 //Example 7.6
2 //Find the laplace transform
3 clc;
4 t=-5:.05:5;
5 w=2*%pi;
6 x=cos(w*t);
7 s=%s;
8 numfs=s;
9 denfs=s^2+w^2;
```

```
10 fs=syslin('c',numfs/denfs);
11 disp(fs);
12 fs1=csim('impulse',t,fs);
13 f=scf(0);
14 subplot(2,1,1);
15 plot2d(t,x,2);
16 xtitle('Phrasing');
17 xgrid;
18 subplot(2,1,2);
19 plot2d(t,fs1,1);
20 xtitle('Solution');
21 xgrid;
22 xs2jpg(0, 'EX7_6-plot-a.jpg');
```

Scilab code Exa 7.7 Find the laplace transform of the following signal

```
1 //Example 7.7.1
2 //Find the laplace transform of the following.
3 clc;
4 close;
5 syms t,;
   x=1;
   a=2; c=1;
   s=a+c*%i;
9 X=integrate((exp(-s*t)), 't',2,%inf);
   disp(X);
10
11 //Example 7.7.2
12 //Find the laplace transform .
13 clc;
14 t = -10 : .01 : 10;
15 for i=1:length(t)
       if t(i) >= 0 then
16
17
           x(i)=(t(i)^2)*exp(-2*t(i));
18
       else
19
           x(i)=0;
```

```
20
       end
21 end
22 s = %s;
23 numfs=2;
24 \text{ denfs}=(s+2)^3;
25 fs=syslin('c', numfs/denfs);
26 fs1=csim('impulse',t,fs);
27 disp(fs);
28 f = scf(0);
29 subplot(2,1,1);
30 plot2d(t,x,2);
31 xtitle('Phrasing');
32 xgrid;
33 subplot(2,1,2);
34 plot2d(t,fs1,1);
35 xtitle('Solution');
36 xgrid;
37 \text{ xs2jpg}(0, 'EX7_7_2-plot-a.jpg');
```

Scilab code Exa 7.8 Find the laplace transform

```
1 //Example7.8
2 //Find the laplace transform .
3 clc;
4 s=%s;t=-10:10;
5 numfs=2*s;
6 denfs=s^2-8;
7 fs=syslin('c',numfs/denfs);
8 fs1=csim('impulse',t,fs);
9 f=scf(0);
10 plot2d(t,fs1,1);
11 xtitle('Solution');
12 xgrid;
13 xs2jpg(0, 'problem110-plot-a.jpg')
14 disp(fs,'fs=');
```

Scilab code Exa 7.11 find the laplace transform

```
1 //Example 7.11
2 //Find the laplace transform .
3 clc;
4 t = -10:.01:10;
5 for i=1:length(t)
       if t(i) >= 0 then
           x(i) = exp(-2.*t(i))*sin(2*t(i));
8
       else
9
           x(i)=0;
10
       end
11 end
12 s = \%s;
13 numfs=2;
14 denfs=(s+2)^2+4;
15 fs=syslin('c',numfs/denfs);
16 fs1=csim('impulse',t,fs);
17 disp(fs);
18 f=scf(0);
19 subplot(2,1,1);
20 plot2d(t,x,2);
21 xtitle('Phrasing');
22 xgrid;
23 subplot(2,1,2);
24 plot2d(t,fs1,1);
25 xtitle('Solution');
26 xgrid;
27 xs2jpg(0, 'problem109-plot-a.jpg');
```

Scilab code Exa 7.16 Find the laplace transform of the following signals

```
1 //Example7.16.1
2 //Find the laplace transform .
3 clc;
4 s = \%s; t = -5:5;
5 numfs=s^2+4*s+3;
6 denfs=(s^2+4*s+5)^2;
7 fs=syslin('c', numfs/denfs);
8 fs1=csim('impulse',t,fs);
9 plot2d(t,fs1,1);
10 xtitle('Solution');
11 xgrid;
12 disp(fs);
13 //Example7.16.2
14 //Find the laplace transform .
15 clc;
16 s = \%s; t = -5:5;
17 numfs=s+3;
18 denfs = (s^2+6*s+10);
19 fs=syslin('c', numfs/denfs);
20 fs1=csim('impulse',t,fs);
21 f = scf(0);
22 plot2d(t,fs1,1);
23 xtitle('Solution');
24 xgrid;
25 xs2jpg(0, 'EX7_16_2-plot-a.jpg');
26 disp(fs);
27 //Example7.16.3
28 //Find the laplace transform.
29 clc;
30 \text{ s=\%s; t=-5:5;}
31 numfs=(s+2)^2;
32 denfs=(s^2+4*s+5)^2;
33 fs=syslin('c',numfs/denfs);
34 fs1=csim('impulse',t,fs);
35 plot2d(t,fs1,1);
36 xtitle('Solution');
37 xgrid;
38 disp(fs);
```

Scilab code Exa 7.22 Find the laplace transform

```
1 //Example 7.22
2 //Find the laplace transform .
3 clc;
4 t = -10:.01:10;
5 for i=1:length(t)
       y(i) = \exp(-t(i)) - 2 \cdot \exp(-2 \cdot t(i)) + \exp(-3 \cdot t(i));
       x(i) = exp(-0.5*t(i));
8 end
9 s = %s;
10 numfs1=1;
11 denfs1=s+0.5;
12 fs=syslin('c', numfs1/denfs1);
13 numfs2=2;
14 denfs2=(s+1)*(s+2)*(s+3);
15 fs1=syslin('c',numfs2/denfs2);
16 \text{ hs=fs1/fs};
17 hs1=csim('impulse',t,hs);
18 subplot(3,1,1);
19 plot2d(t,x,2);
20 xtitle('Phrasing');
21 xgrid;
22 subplot (3,1,2);
23 plot2d(t,y,3);
24 xtitle('Phrasing');
25 xgrid;
26 subplot(3,1,3);
27 plot2d(t,hs1,1);
28 xtitle('Solution');
29 xgrid;
30 \text{ disp(fs,'fs}=:');
31 disp(fs1, 'fs1 =: ');
32 \text{ disp(hs,'hs=:');}
```

Chapter 8

Fourier analysis of discrete time signals

Scilab code Exa 8.14 Find the convolution of the signals given below using fourier transform

```
2 //Example 8.14
3 //Find the convolution of the signals given below
      using fourier transform
4 clc;
5 clear all;
6 n = -10:10;
7 for i=1:length(n)
       if n(i) \ge 0 then
9
           x1(i)=(1/2)^n(i);
           x2(i)=(1/3)^n(i);
10
11
       else
12
           x1(i)=0;
13
           x2(i)=0;
14
       end
15 end
16 subplot(3,2,1)
17 plot(x1,n);
```

```
18 xtitle('(a) x1(n)');
19 subplot (3,2,2)
20 plot(x2,n);
21 xtitle('(b) x2(n)');
22 X1 = fft(x1, -1);
23 X2 = fft(x2, -1);
24 subplot (3,2,3)
25 plot(X1,n);
26 xtitle('(c) X1(n)');
27 subplot (3,2,4)
28 plot(X2,n);
29 xtitle('(d) X2(n)');
30 \times 3 = \times 2 \cdot \times \times 1;
31 subplot (3,2,5)
32 plot(X3,n);
33 xtitle('(e) X3(n)');
34 x3 = fft(X3,1);
35 disp(x3, 'The result of convolution is:');
36 subplot (3,2,6)
37 plot(x3,n);
38 xtitle('(f) x3(n)');
```

Scilab code Exa 8.19 Use fourier transform to determine the response of the following signal

```
10
            h(i) = (1/2)^n(i);
11
       else
12
            x(i)=0;
13
            h(i) = 0;
14
       end
15 end
16 subplot (3,2,1)
17 plot(x,n);
18 xtitle('(a)x(n)');
19 subplot (3,2,2)
20 plot(h,n);
21 xtitle('(b)h(n)');
22 X = fft(x, -1);
23 H = fft(h, -1);
24 subplot (3,2,3)
25 plot(X,n);
26 xtitle('(c)X(n)');
27 subplot (3,2,4)
28 plot(H,n);
29 xtitle('(d)H(n)');
30 \quad Y = H . * X;
31 subplot(3,2,5)
32 plot(Y,n);
33 xtitle('(e)Y(n)');
34 y = fft(Y,1);
35 disp(y, 'The output response is:');
36 subplot (3,2,6)
37 plot(y,n);
38 xtitle('(f)y(n)');
39
40
41 clf()
42
43 //Example 8.19.2
44 //Use fourier transform to determine the response of
       the following signal
45 clc;
46 clear;
```

```
47 \quad n = -10:10
48 for i=1:length(n)
        if n(i) >= 1 then
49
50
             x(i)=(-1)^n(i);
51
            h(i) = (1/2)^n(i);
52
        else
             x(i)=0;
53
            h(i)=0;
54
        \quad \text{end} \quad
55
56 end
57 subplot (3,2,1)
58 plot(x,n);
59 \text{ xtitle}('x(n)');
60 subplot(3,2,2)
61 plot(h,n);
62 xtitle('h(n)');
63 X = fft(x, -1);
64 H = fft(h, -1);
65 subplot (3,2,3)
66 plot(X,n);
67 xtitle('X(n)');
68 subplot(3,2,4)
69 plot(H,n);
70 xtitle('H(n)');
71 Y = H . * X;
72 subplot (3,2,5)
73 plot(Y,n);
74 xtitle('Y(n)');
75 y = fft(Y,1);
76 disp(y, 'The output response is:');
77 subplot (3,2,6)
78 plot(y,n);
79 xtitle('y(n)');
```

Scilab code Exa 8.25 Find IDFT of the following signals

```
//Example 8.25.1
//Find idft of the following
clc;

X=[1 1-%i*2 -1 1+%i*2];

x=fft(X,1);

disp(x);

//Example 8.25.2

//Find idft of the following

clc;

X=[1 0 1 0];

x=fft(X,1);

disp(x);
```

Scilab code Exa 8.26 Find the circular convolution of two sequences

```
1
2  //Example 8.26
3  //Find the circular convolution of two sequences
4  clc;
5  clear all;
6  x1=[1 2 3 4];
7  x2=[1 -1 2 1];
8  X1=fft(x1,-1);
9  X2=fft(x2,-1);
10  X3=X1.*X2;
11  x3=fft(X3,1);
12  disp(x3,'The circular convolution is:');
```

Scilab code Exa 8.27 Find the circular convolution of the following sequences

```
1 2 //Example 8.27
```

Scilab code Exa 8.28 Find the linear and circular convolution

```
1
2 //Example 8.28
3 //Find the linear and circular convolution
4 clc;
5 clear all;
6 x1 = [1 2 3 4];
7 \times 2 = [2 \ 3 \ 4 \ 1];
8 //Linear convolution
9 z = convol(x1, x2);
10 disp(z, 'The linear convolution is:');
11 //To obtain circular convolution
12 X1 = fft(x1, -1);
13 X2 = fft(x2, -1);
14 X3 = X1. * X2;
15 	ext{ x3=fft}(X3,1);
16 disp(x3, 'The circular convolution is:');
```

Scilab code Exa 8.29 Find DFT of the following sequences

```
1 //Find dft of the following sequence
2 //Example 8.29.1
3 clc;
4 n = -10:10;
5 for i=1:length(n)
       if n(i) == 0 then
6
7
            x(i)=1;
8
       else
9
            x(i)=0;
10
       end
11 end
12 y = fft(x, -1);
13 disp(y, 'The dft of the sequence is:');
14 //Find dft of the following sequence
15 //Example 8.29.2
16 clc;
17 n = -10:10; n0=2;
18 for i=1:length(n)
19
       if n(i) == n0 then
20
            x(i)=1;
21
       else
            x(i)=0;
22
23
       end
24 end
25 y = fft(x, -1);
26 disp(y, 'The dft of the sequence is:');
27 //Find dft of the following sequence
28 //Example 8.29.3
29 clc;
30 n = -10:10; a = 2;
31 for i=1:length(n)
32
      x(i)=a^n(i);
```

```
33 end
34 y=fft(x,-1);
35 disp(y,'The dft of the sequence is:');
```

Chapter 12

Random processes

Scilab code Exa 12.1 Show whether independent or not

```
//Example 12.1
//Show whether independent or not
disp('Two events are independent if P(A and B)=P(A)P(B)')
disp(0.28, 'P(A and B)=')
disp(0.8*0.35, 'P(A)*P(B)=')
disp('Hence A and B are independent')
```

Scilab code Exa 12.2 Find the probability of the problem

```
1 //Example 12.2
2 //Find the probability of the problem.
3 disp('The sample space in this case is:-');
4 disp('(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)');
5 disp('(2,1) (2,2) (3,3) (4,4) (5,5) (6,6)');
6 disp('(3,1) (2,2) (3,3) (4,4) (5,5) (6,6)');
7 disp('(4,1) (2,2) (3,3) (4,4) (5,5) (6,6)');
8 disp('(5,1) (2,2) (3,3) (4,4) (5,5) (6,6)');
```

```
9 disp('(6,1), (2,2), (3,3), (4,4), (5,5), (6,6)');
10 disp('Implies that N=36');
11 disp('Let A be the event of sum 7');
12 disp('A=\{1,6\} (2,5) (3,4) (4,3) (5,2) (6,1)} i.e n(A
     )=6 ');
13 p_a=6/36;
14 disp(p_a, 'Hence the probability of getting a sum 7
      is p(A) = 6/36 = ');
15 disp('Let B be the event of sum 11');
16 disp('A=\{5,6\}\ (6,5)\}\ i.e.\ n(B)=2');
17 p_b=2/36;
18 disp(p_b, 'Hence the probability of getting a sum 2
      is P(B) = 2/36 = ';
19 disp('Let C be the event of sum 7 or 11');
20 disp('Probabilty of getting a sum of 7 or 11 ,P(C)=P
     (A)+P(B);
21 p_c=p_a+p_b;
22 disp(p_c,'Hence the probability of getting a sum 7
     or 11 is P(C)=');
23 disp('Let D be the event of sum 3');
24 disp('A = \{1,2\} (2,1)} i.e n(A)=2');
25 p_d=2/36;
26 disp(p_d, 'Hence the probability of getting a sum 3
      is P(D) = 2/36 = ';
27 disp('Let E be the event of sum 2 or 12');
28 disp('Probabilty of getting a sum of 2 or 12 P(E)=P
     (sum of 2)+P(sum of 12)');
29 disp('P(sum of 2)=1/36 P(sum of 12)=1/36')
30 p_e = 2/36;
31 disp(p_e,'Hence the probability of getting a sum of
     2 or 12 is P(E)=');
32 disp('Let F be the event of sum 2 or 3 Or 12');
33 disp('Probabilty of getting a sum of 2 or 3 or 12 ,P
     (F)=P(D)+P(E)');
34 p_f = p_d + p_e;
35 disp(p_f,'Hence the probability of getting a sum 2
     or 3 or 12 is P(F)=');
```

Scilab code Exa 12.3 Find the probability that tails shows up at least once

```
//Example12.3
//Find the probability that tails shows up at least once.
disp('Let A be the event that tail shows atleast once');
disp('Eac toss has two possible outcmes H ,T');
disp(2^3, 'Hence the total no of outcomes is 2^3=');
disp(1-(1/2^3), 'P(A)=1-Probability of getting all head i.e 1/8=');
```

Scilab code Exa 12.4 Probability to find the required sample size

```
1 //Example 12.4
2 //Probability to find the required sample size.
3 disp('Let A be the event of choosing a sample size
     of 6 containing two red, one green, two blue and
      one white blue ball.');
4 funcprot(0)
5 function c = combination ( n , r )
6 c = prod (n : -1 : n-r+1)/prod (1:r)
7 endfunction
8 disp('The number of combination of choosing 6 balls
     from 14 balls is 14 C 6 ways')
9 disp ('The number of combination of choosing 2 red
     balls from 4 balls is 4 C 2 ways')
10 disp ('The number of combination of choosing 1 from 3
      green balls is 3 C 1 ways')
11 disp('The number of combination of choosing 2 from 5
      green balls is 5 C 2 ways')
```

Scilab code Exa 12.5 Probability to find the first white ball on the 3rd draw

```
1 //Example 12.5
  2 // Probability to find the first white ball on the 3
                       rd draw.
   3 disp ('Let A be the event of drawing the first white
                        ball at the third draw from 15 balls ')
  4 disp('Let W be the event of drawing a 10 white balls
         disp('Let B be the event of drawing a 5 black balls'
  6 disp('Hence we have 1st draw :B 2nd Draw :B
                       Draw :W');
  7 funcprot(0)
  8 function c = combination (n, r)
  9 c = prod (n : -1 : n-r+1)/prod (1:r)
10 endfunction
11 \operatorname{disp}(P(A) = \{(5 \ C \ 1) * (5 \ C \ 1) * (10 \ C \ 1)\} / \{(15 \ C \ 1) * (15 \ C \ 1) * 
                      C 1)*(15 C 1)}=')
12 p=(combination(5,1)*combination(5,1)*combination
                        (10,1))/(combination(15,1)*combination(15,1)*
                        combination (15,1))
13 disp(p)
```

Scilab code Exa 12.6 To find the required probabilities

Scilab code Exa 12.7 find the required probabilities

Scilab code Exa 12.8 Find the given probabilities

```
1 //Example 12.8
2 //Find the given probabillities.
3 disp('P{R1/So}=0.15 and P{Ro/S}=0.75');
4 disp((1-0.15), 'P{Ro/So}1-P{R1/So}');
5 disp((1-0.075), 'P{R1/S1}1-P{Ro/S1}');
6 disp('P{R1}=P{R1/So}P(So)+P{R1/S1}P{S1}=');
7 disp(((0.15)*(0.85)+(0.925)*(1-0.85)), '(0.15)(0.85)+(0.925)(1-0.85)=');
8 disp('Using Bayes Rule:')
```

```
9 disp('P{S1/R1}=(P{R1/S1}P{S0})/P{R0}=');

10 p=(0.925*0.15/0.266)

11 disp(p,'(0.925)(1-0.85)/0.266=');

12 disp('P{Ro/So}P{So}/P{Ro}');

13 disp('P{Ro/So}P{So}/(P{Ro/So}P{So}+P{Ro/S1}P{S1}=');

14 p=(0.85)*(0.85)/((0.85)*(0.85)+(0.075)*(0.15))

15 disp(p,'(0.85)(0.85)/((0.85)+(0.075)(0.15))=')

;
```

Scilab code Exa 12.9 Find the required probabilities

```
1 //Example 12.9
2 //Find the required probabilities.
3 disp('Let H be the event that Husband is alive')
4 disp('Let W be the event that wife is alive')
5 disp('P(H) = 0.85
                      P(W) = 0.9,
6 disp (0.85*0.9, P(both alive) = P(H)P(W) = ')
7 disp (0.15*0.1, P(\text{neither alive}) = (1-P(H))(1-P(W)) = )
8 disp(0.85+0.9-0.765, P(Atleast one is alive)=P(H)+P(
     W)-P(both are alive)=')
9 disp('P(only one is alive)=P(Husband is alive and
      wife is dead)OR P(Husband is dead and wife is
      alive)')
10 disp('P(H)(1-P(W))+(1-P(H))P(W)=')
11 \operatorname{disp}((0.85)*(1-0.9)+(1-0.85)*(0.9), '(0.85)(1-0.9)
      +(1-0.85)(0.9)=')
```

Scilab code Exa 12.10 find the required probabilities

```
1 //Example 12.10
2 //find the required probabilities.
3 disp('P(Plant shut down)=P(S1&S2&S3 is offline) or P(S1&S2 is offline) or P(S1&S3 are offline)=')
```

```
4  p=(0.01)*(0.03)*(0.05)+(0.01)*(0.03)*(1-0.05)+(0.01)
    *(1-0.03)*(0.05)
5  disp('(0.01)*(0.03)*(0.05)+(0.01)*(0.03)*(1-0.05)
    +(0.01)*(1-0.03)*(0.05)=')
6  disp(p)
7  disp(1-p, 'P(Plant on line)=1-P(Plant shut down)=')
8  disp('P(plant is online/S1 failed)=')
9  disp((0.01)*(1-0.03)*(1-0.05)/0.01, 'P(plant is online and S1 failed)/P(S1 failed)=(0.01)
    *(1-0.03)*(1-0.05)/0.01')
```

Scilab code Exa 12.11 Find the required probabilities

```
1 //Exampple 12.11
2 //Find the required probabilities.
3 disp(0.45, 'Let SS be the event that Ramesh pass in
      Signal and systems, P(SS)=')
4 disp (0.32, 'Let RP be the event that Ramesh pass in
     Random process P(RP)=')
5 \operatorname{disp}(0.15, P(\operatorname{passed in both})=')
6 disp('P(passed in either one subject)=P(SS U RP)')
7 disp (0.45+0.32-0.15, P(SS)+P(RP)-P(passed in both)
      =0.45+0.32-0.15=')
  disp(1-0.62, P(passed in neither of the subjects)=1*
     P(passed in either subjects)=1-0.62=')
9 disp('P( passed in one subject)=');
10 disp(0.45*0.68+0.55*0.32, P(SS)*P(failed in RP)+P(
      failed in SS *P(RP) = (0.45)*(1-0.32)+(1-0.45)
      *(0.32)=')
11 disp(1-0.45, 'P(failed in SS)=1-P(SS)=1-0.45')
```

Scilab code Exa 12.12 Find the required probabilities

```
1 //Example 12.12
2 //Find the required probabilities.
3 disp('P(A occurs exactly k times in N trials)=(n C K
     [P(A)]^k[1-P(A)]^(N-k)
4 disp('P(A) = 1/6 P(^A) = 5/6')
5 funcprot(0)
6 function c = combination ( n , r )
7 c = prod (n : -1 : n-r+1) / prod (1:r)
8 endfunction
9 disp('P( 3 shows up exactly twice in 6 trials)=(6 c
      2)*(1/6)^2*(5/6)^4=')
10 p=combination (6,2)*(1/6)^2*(5/6)^4;
11 disp(p);
12 disp('P(4 shows up atleast twice)=1-P(4 does not
     shows up)-P(4 shows up once)')
13 disp('P(4 does not show up)=(6 \ c \ 0)*(1/6)^0*(5/6)^6=
      ')
14 p=combination(6,0)*(1/6)^0*(5/6)^6;
15 disp(p);
16 disp('P(4 shows up once)=(6 c 1)*(1/6)^1*(5/6)^5=')
17 p=combination(6,1)*(1/6)^1*(5/6)^5;
18 disp(p);
19 disp ('P(4 shows up at least twice) = 1 - (5/6)^6 - (5/6)^5 =
      ')
20 p=1-(5/6)^6-(5/6)^5;
21 disp(p);
```

Scilab code Exa 12.13 Find the required probabilities

```
1 //Example 12.13

2 //Find the required probabilities.

3 disp('P(X>0.6)=1-F(0.6)=')

4 disp(%e^(-1.2), '1-(1-e^(-1.2))=e^(-1.2)=')

5 disp(1-%e^(-0.5), 'P(X<=0.25)=(1-e^(2*(-1.2))=1-e^(-0.5)=')
```

```
6 disp('P(0.4 < X <= 0.8)=F(0.8)-F(0.4)=')
7 disp((1-%e^(-1.6))-(1-%e^(-0.8)), '(1-e^(-1.6))-(1-e^(-0.8))=')
```

Scilab code Exa 12.14 Find the mean value of the current under following conditions

```
1 //Example 12.14
2 //Find the mean value of the current under following conditions.
3 disp('I=Io[e^(nV)-1]')
4 disp('E[I]=E[Io[e^(nV)-1]]:')
5 Xo=0; X1=2;
6 X=integrate('%e^(10*X)-1','X',Xo,X1);
7 disp(10^(-9)*X/2,'Hence E[I]=')
```

Scilab code Exa 12.16 Find the following

```
1 //Example 12.16
2 //Find the following.
3 Xo=0; X1=1
4 X=integrate('2*X*((1-X)^2)', 'X', Xo, X1)
5 disp(X, 'E[X]=')
6 Xo=0; X1=1
7 X2=integrate('2*X^2*((1-X)^2)', 'X', Xo, X1)
8 disp(X2, 'E[X^2]=')
9 disp(6*X+3*(X2), 'E[6X+3X^2]=6E[X]+3E[X^2]=')
10 disp(2*X+3, 'E[2*X+3]=2E[X]+3=')
11 x1=2*X+3
12 disp(4*X2+9+12*X, 'E[(2*X+3)^2]=E[4*X^2+9+12*X]=')
13 x2=4*X2+9+12*X
14 disp(x2-x1^2, 'Variance of (2*X+3)=E[(2*x+3)^2]-{E[2*X+3]}^2=')
```

Scilab code Exa 12.17 Probablity that R lies between 110 and 120 ohm

```
1 //Example 12.17
2 //Probablity that R lies between 110 and 120 ohm
3 clc;
4 X0=110;
5 X1=120;
6 X=integrate('1/(130-100)', 'X', X0, X1);
7 disp(X, 'The probability that R lies between 110 and 120 is :');
```

Scilab code Exa 12.18 Find the mean and variance if they exist

```
//Example 12.18
//Find the mean and variance, if they exist.
Xo=0; X1=1

X=integrate('X*(X^3/12)', 'X', Xo, X1)

disp(X, 'E[X]=')

Xo=0; X1=1

X2=integrate('X^2*(X^3/12)', 'X', Xo, X1)

disp(X2, 'E[X^2]=')

disp(X2-X^2, 'Variance =E[X^2]-E[X]^2=')

x=1:1:5;

y=sum(x^2)/15;
disp(y, 'E[X]=sum(x*f(x))=sum(x^2)/15')

y1=sum(x^3)/15;
disp(y1, 'E[X]=sum(x^2*f(x))=sum(x^3)/15')

disp(y1-y^2, 'Variance =E[X^2]-E[X]^2=')
```

Scilab code Exa 12.19 Find the required values

```
//Example 12.19
//Find the required values.
x=[0,0;8,8;8,0]
y=[0,0;3,3;0,3]
deff('z=f(x,y)','z=x/6')
I=int2d(x,y,f)
disp(I,'E[X]=')
deff('z=f(x,y)','z=y/6')
I=int2d(x,y,f)
disp(I,'E[Y]=')
deff('z=f(x,y)','z=x*y/6')
I=int2d(x,y,f)
disp(I,'E[Y]=')
deff('z=f(x,y)','z=x*y/6')
I=int2d(x,y,f)
disp(I,'E[XY]=')
```

Scilab code Exa 12.20 Find the correlation

```
1 Xo = 0; X1 = 1
2 X = integrate('X*(X+0.5)', 'X', Xo, X1)
3 \text{ disp}(X, 'E[X]=')
4 \text{ Yo} = 0; Y1 = 1
5 Y = integrate('Y*(Y+0.5)', 'Y', Yo, Y1)
6 disp(Y, 'E[Y]=')
7 x = [0,0;1,1;1,0]
8 y = [0,0;1,1;0,1]
9 \ \text{deff}(\ 'z=f(x,y)\ ',\ 'z=x*y*(x+y)\ ')
10 I = int2d(x,y,f)
11 disp(I, 'E[XY] = ')
12 disp(I-X*Y, 'cov(X,Y)=E[XY]-E[X]E[Y]=');
13 cov = I - X * Y
14 \text{ Xo} = 0; \text{X} 1 = 1
15 X2 = integrate('X^2*(X+0.5)', 'X', Xo, X1)
16 disp(X2, 'E[X^2]=')
17 \text{ Yo} = 0; Y1 = 1
```

```
18  Y2=integrate('Y^2*(Y+0.5)', 'Y', Yo, Y1)
19  disp(Y2, 'E[Y^2]=')
20  disp(X2-X^2, 'Variance of X=E[X^2]-E[X]^2)=')
21  v1=X2-X^2
22  disp(Y2-Y^2, 'Variance of Y=E[Y^2]-E[Y]^2)=')
23  v2=Y2-Y^2
24  disp(cov/sqrt(v1*v2), 'Correlation coefficient of X and Y=cov(X,Y)/(s.d of X*s.d of Y)=')
```

Scilab code Exa 12.52 Find the average power

```
1 //Example 12.52
2 //Find the average power.
3 Xo=-(4*%pi); X1=4*%pi
4 X=integrate('(1-(X/(4*%pi)))', 'X', Xo, X1)
5 disp(X/(4*%pi), 'Average Power=')
```