NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NASA-CR-161444) SOLAR ENERGY FACILITY AT NORTH HAMPTON RECREATION CENTER, DALLAS, TEXAS Final Report (Travis-Braun and Associates, Inc.) 141 p HC A07/MF A01

N80-26766

01 Unclas CSCL 10A G3/44 23530

DOE/NASA CONTRACTOR REPORT DOE/NASA CR-161444

SOLAR ENERGY FACILITY AT NORTH HAMPION RECREATION CENTER, DALLAS, TEXAS - FINAL REPORT

Prepared by

Travis-Braun and Associates, Inc. 4140 Office Parkway Dallas, Texas 75204

Under DOE Contract EX-76-C-01-2543

Monitored by

National Aeronautics and Space Administration George C. Marshall Space Flight Center, Alabama 35812

For the U. S. Department of Energy

U.S. Department of Energy

NT/	ገጥ	•	ヘセ

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agents the United States Department of Energy, the United States National Aeronautics and Space Administration, nor any federal employees, nor any of their contractors, subcontractors or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.

			AL REPORT STANDARD TITLE PAGE		
4 '	REPORT NO. DOE/NASA CR-161444	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.		
4.	TITLE AND SUBTITLE		5. REPORT DATE		
	Solar Energy Facility at North	Hampton Recreation Center	May 1980		
	Dallas, Texas - Final Report	nampion recteasion center,	6. PERFORMING ORGANIZATION CODE		
7.	AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT #		
_	PERFORMING ORGANIZATION NAME AND AD				
9.			10. WCRK UNIT NO.		
	Travis-Braun and Associates,	inc.	ALL CONTRACT OF CRANS NO		
	4140 Office Parkway		11. CONTRACT OR GRANT NO.		
	Dallas, Texas 75204		EX-76-C-01-2543 13. TYPE OF REPORT & PERIOD COVERED		
12.	SPONSORING AGENCY NAME AND ADDRESS		- 13. THE OF KEPOKT I PERIOD SOLEKES		
	U. S. Department of Energy		Contractor Report		
	Conservation and Solar Energy	_	. Final		
	Washington, D. C. 20585	<i>(</i>	14. SPONSORING AGENCY CODE		
	Washington, D. C. 20585				
15.	SUPPLEMENTARY NOTES				
!	This work was done under the	technical management of Mr. Wi	lliam A. Hagen, National		
		stration, Marshall Space Flight (
16.	ABSTRACT				
	Facility located at the North North Hampton, Dallas, Texas Building Services Department Marilla, Dallas, Texas 7520 The solar energy system sq. ft. building enclosing a surrounded by a recreational is designed to provide 80 per annual space cooling, and 90 The solar energy system included to subsystem, a 6,000 water preheat subsystem, an chilled water storage subsystem.	Final Technical Progress Report Hampton Park Recreation and S. This Document was prepared a Architectural Planning and D1. Em is installed in a single state gymnasium, locker area, and a area and athletic field. The ercent of the annual space head percent of the domestic hot budes a 238 single glazed flate D gallon hot water storage sub absorption chiller subsystem stem. The auxiliary back up so gallon natural gas water he	Health Center, 3710 for the City of Dallas, Design Division, 1500 ory (two heights), 16,000 health care clinic e solar energy system ting, 48 percent of the water requirements. plate, 3,650 sq. ft. area system, a domestic hot with a 2,000 gallon tank ystem is a gas-fired		
	energy to satisfy hot water		arer brostnes any additional		
	chergy to satisfy not water	Toma Toquetanontos.			
	This report also provides a summary of project information, project chronology, project costs, the five modes of system operation, description of the Site Data Acquisition System (SDAS), system performance summary, experience recommendations, system operational verification, drawings and major component manufacturers information.				
17.	KEY WORDS	18. DISTRIBUTION ST	ATEMENT UC-59a		
		Unclassified-Un			
_					
•			15 1111		
		william (i)	crooping of		
		WILLIAM A. BROO			
		Mgr. Solar Ener	gy Applications Projects		
19.	SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF. (of this page)	21, NO. OF PAGES 22. PRICE		
	Unclassified	Unclassified	115 NTIS		

TABLE OF CONTENTS

		Page
I.	Introduction	1
II.	Summary of Project Information	4
III.	Project Chronology	6
IV.	Project Costs	9
٧.	Modes of Operation	10
VI.	Description of Site Data Acquisition System (SDAS)	13
VII.	System Performance	16
VIII.	Recommendations	19
	Appendix	
	A. System Operational Verification	22
	B. Drawings	24
	C. Major Component Manufacturers Information	46

I. Introduction

In September 1976, the City of Dallas entered into an agreement with the Energy Research and Development Administration (now the U.S. Department of Energy) for a Solar Heating and Cooling Demonstration to be performed on the North Hampton Park Recreation and Health Center. The building is a single story (two heights) enclosing a gymnasium, locker area, and health care clinic surrounded by a recreational area and athletic field. The exterior of the building is brick veneer over masonary block. Total building area is 16,000 square feet, of which 8,000 square feet is for the gymnasium, which is conventionally heated and is not a part of their demonstration. The remaining portion of the building is occupied by the clinic and recreational area. The building is presently owned by the City of Dallas Parks and Recreation Department and operated by the City of Dallas Building Services Department.

The solar energy system is designed to provide 80 percent of the annual space heating, 48 percent of the annual space cooling, and 90 percent of domestic hot water requirements. The solar energy system includes a solar loop system, a hot water storage system, a domestic hot water system, an absorption chiller system, and a chilled water storage system. The solar heat transfer medium is an aqueous solution of 35 percent ethylene glycol.

The solar loop system consists of 238 single glazed flat-plate collectors, by Lennox, Inc., with a gross area of 3,650 square feet. The collectors are roof mounted in 29 arrays facing south. All of the collectors are tilted at a fixed angle of 25 degrees from horizontal. This loop also includes a heat exchanger for transfer of thermal

energy to the hot water storage system, and an over temperature heat rejection fan coil unit.

The hot water storage system includes a 6,000 gallon storage tank, heat exchanger, and a gas-fired boiler for supplemental energy. The storage tank is inside of the mechanical room, and insulated with four inches of urethane. This hot water is the media used for building space heat through the air handling system.

Space cooling is supplied by using solar energy to operate an ARKLA absorption chiller. Chilled water is stored in a 2,000 gallon tank located in the mechanical room and insulated with four inches of urethane. Auxiliary space cooling is provided by two vapor compression units.

Domestic supply water is preheated by heat exchangers on the hot side of the absorption chiller condenser loop and the hot water storage tank loop. A conventional 100 gallon natural gas water heater provides any additional energy to satisfy load requirements.

The system as described is shown schematically in Figure 1, and has five modes of solar operation:(1) Collector to Storage, (2) Space Heating, (3) Space Cooling, (4) Excess Heat Rejection, and (5) Domestic Hot Water Heating.

Figure 1. DALLAS RECREATION CENTER SOLAR ENERGY SYSTEM SCHEMATIC

Summary of Project Information II.

General Information

Owner:

City of Dallas

Architect:

City of Dallas

Solar Designer:

General Electric Company

Solar Designer: (Final Design)

Travis-Braun & Associates, Inc.

Mechanical Engineer:

Travis-Braun & Associates, Inc.

Project Manager:

NASA - Thomas O. Davidson/William A. Hagen

City of Dallas - Randolph Meyers

General Contractor:

Natkin & Company

Operational Date:

June, 1978

Building:

Health care clinic, locker room,

gymnasium - 8,000 square feet

conditioned.

Location:

North Hampton Park

Recreation and Health Center

3710 North Hampton

Dallas, Texas

Climatic Data

Latitude:

32°N

Ambient Temperature:

January - 46°F August - 85°F

Heating Degree Days:

Yearly - 2382

January - 626

Annual Cooling Hours:

1529

Peak Daily Insolation:

2400 BTU/FT²/Day

Annual Sunshine:

68%

Solar Energy System

Application:

Heating - 80% Cooling - 48% Hot Water - 90%

Collector:

Type - Flat Plate, single glazed Fluid Medium - 35% Etylene Glycol Manufacturer - Honeywell, Inc. Gross Area - 3,650 Square Feet Orientation - 25° from horizon

Hot Water Storage:

Type - Steel Tank

Capacity - 6,000 gallons Insulation - 4" urethane Auxiliary - Gas-fired boiler

Space Cooling System:

Type - 25 ton ARKLA absorption chiller Storage - 2,000 gallon chilled water Auxiliary - 2 vapor compression units

III. Project Chronology

November 24, 1975 - General Electric notifies City of Dallas that North Hampton Recreation Center has been selected as one of eight G.E. designed solar demonstration sites.

December 1, 1975 - Mr. Bob Turbyfill of General Electric is placed in charge of design. General Electric will review and approve all final designs. City will act as Project Architect with outside Structural, Mechanical, and Engineering consultants.

March 1, 1976 - City of Dallas is notified that solar cooling will be included in project.

April 13, 1976

- Meeting with General Electric, City of Dallas, and E.R.D.A. representatives to discuss possible General Electric conflict of interest. It is decided that General Electric should not be allowed to provide collectors during phase II implementation. Design should be made without a specific collector being selected.

June 14, 1976

- City of Dallas enters agreement with Travis-Braun and Associates, Inc. for assistance in preparing technical unsolicited request for cost sharing to E.R.D.A.

<u>July 14, 1976</u> - Copies of General Electric's final design report are received by City of Dallas.

September 30, 1976City of Dallas enters into a cost sharing contract with E.R.D.A. for solar implementation at North Hampton Center. City of Dallas also extends agreement with Travis-Braun to prepare final design; assist in technical report preparation, collector selection, and phase II implementation.

- Solar collector manufacturer is selected using an unbiased point rating system. Honeywell, Inc., flat plate collectors are selected.

March 1977

- Redesign based on additional collector area is completed, finalized, and accepted by E.R.D.A. Project Manager. Honeywell, Inc., is accepted as successful bidder for collectors by City of Dallas. The construction documents package is submitted to City Manager's office to be included on City Council's agenda for approval and advertisement of bids.

<u>April 1977</u>	-	City Council gives approval to advertise for bids on April 18, 1977. The project was advertised for bid on April 21, 1977.
<u>May 1977</u>	-	A Pre-bid Conference was held on May 6, 1977. Bids were opened May 12, 1977 with Natkin and Company being the successful bidder. A Critical Design Review was held May 23, 1977, consisting of a technical presentation of the system design and a revised cost estimate. Representatives of E.R.D.A. and PRC Systems Sciences Company were present.
<u>June 1977</u>	-	Critical Design Response, by PRC Systems Sciences Company, is received June 10, 1977. Final design presentation and cost estimate is given to E.R.D.A. on June 24, 1977.
July 14, 1977	-	Authorization received from E.R.D.A. for implementation of demonstration.
August 29, 1977	-	Construction begins on the solar system and mechanical room addition.
November 1977	-	Plumbing and electrical are 75% complete.
January -February 1978	•••	Construction is halted due to extreme weather conditions.
March 1978	-	Storage tanks order is cancelled due to delivery delays. A secondary vendor is chosen and tanks are delivered and in place by end of March. Collector array is put in place and covered for protection during the remainder of construction.
<u>April 1978</u>	-	Masonry work on mechanical room is complete. Collector loop piping is finished and pressure tested. Exterior piping is flashed, insulated, and jacketed; interior piping and storage tanks are finished and insulated. Construction is 85% complete.
<u>May 1978</u>	-	Project is approximately 90% complete. The solar system is operational with storage tank temperatures of 194 degrees F. to 198 degrees F. The ARKLA chiller has successfully cooled the building with solar energy.
<u>July 1978</u>	-	Project is basically complete. Some temperature sensors are relocated at the request of DOE project management and IBM representatives.

September 4, 1978 - Site data acquisition begins.

November 13, 1978 - The dedication ceremony was held with guest speaker Mr. Thomas Davidson of NASA giving a short presentation to City officials and local news media.

IV. Project Costs

<u>Item</u>	<pre>Estimated (\$)</pre>	<u>Actual (\$</u>)
Collector Array	54,621	62,530
Support Structure	18,700	20,800
Piping	42,456	66 395
Duckwork	4,512	11,220
Insulation	19,655	17,550
Heating/Cooling Equipment	22,068	21,625
Storage	18,000	26,850
Controls	45,825	48,000
Electrical Power	-0-	5,985
General Construction	44,000	42,580
Labor	53,543	*
OH & P and G & A Expenses	115,266 438,656	$\frac{61,145}{384,680}$
Less City of Dallas 10% Share TOTAL Project Cost	- 43,865 \$394,791	\$384,680

^{*} Labor is included in individual item category.

V. Modes of Operation

The system, shown schematically in Figure 1, has five modes of solar operation.

Mode 1 - Collector-to-Storage: This mode is entered when either of two collector absorber plate thermal switches close and activate pump P-1 at 180°F for cooling and 120°F for heating, respectively. The set points are automatically selected by manual demand switches on the control panel. When the solution temperature leaving the collector system exceeds the hot water storage temperature by 20°F, pump P-2 is energized. This pump continues to operate until the collector-storage temperature difference is less than 3°F.

Mode 2 - Space Heating: This mode is entered when the HEAT AUTO switch on the console switch panel is in the ON position. Pumps P-4 and P-5 are energized when valves V-3, V-6, and V-7 on their respective hot water coils begin to open to the coil. At the same time, the control cycle for valves V-4 and V-5 will be enabled. The signal from an electronic sensor downstream of valve V-4, reset by an outdoor electronic sensor, causes valve V-5 to be positioned to maintain heating water at a selected temperature. The selected temperature is reset inversely to changes in outdoor temperature.

If the solar heated water temperature becomes too low to supply the heating demand, valve V-5 reaches the full open position to storage, a time delay circuit is initiated, valve V-5 closes to the storage tank, and valve V-4 opens so that hot water from the gas-fired boiler may be used to satisfy the heating loads. The control cycle for

values V-4 and V-5 has a time delay which is adjustable up to a maximum of five nours. The time delay is to prevent valve oscillations. If, during this cycle, heating requirements are satisfied and valve V-4 reaches the fully closed position to the boiler, another time delay cycle is initiated which will cancel the previous time delay cycle and restore space heating to valve V-5 and the solar energy source.

Mode 3 - Space Cooling: When the COOL AUTO switch on the console switch panel is in the ON position, pump P-7 starts if any chilled water valve (V-8, V-9, or V-10) is open to the cooling coil. Pump P-6 is interlocked to start when pump P-7 is started and the absorption chiller control circuit is enabled. Pump P-8 and the cooling tower fan are controlled by the absorption chiller controls. Valve V-11 will attempt to maintain generator water temperature at 170°F. The chilled water inventory will be maintained by energizing the chiller when chilled water return temperature exceeds 50°F and by de-energizing the chiller at 44°F. If, during the cooling portion of the cycle, cooling demands cannot be met by the chilled water system and any chilled water valve reaches full open to the coil position, a time delay cycle is initiated which closes chilled water valves V-8, V-9, and V-10 to the coils, and enables the respective air conditioning unit to allow the chilled water storage to recover. During this cycle, pump P-7 will be locked on to provide required circulation through the chiller. The time delay cycle is adjustable for up to five hours. After the time delay period, the air conditioning unit de-energized and the solar mode re-entered.

Mode 4 - Excess Heat Rejection: The hot water storage is provided with two alarm thermostats. One initiates an alarm at the central control console when the storage temperature reaches a selected low level. The other thermostat indicates an alarm if the hot water storage temperature reaches a selected high level. At the same time a high temperature alarm exists, valve V-1 will be positioned to divert collector solution through heat rejector HX4, where excess energy is dissipated to the outside air.

Mode 5 - Domestic Hot Water: Domestic hot water (DHW) is preheated by heat exchanger HX3 when the cooling tower is active. Energy from the hot water storage is entered at heat exchanger HX2 when pump P-3 is on. Pump P-9 is on continuously.

VI. Description of the Site Data Acquisition System (SDAS)

A complete data acquisition system with 55 sensor points was installed in order to obtain information for performance and operation evaluation of the solar heating and cooling system. The equipment and sensors were furnished at government expense in accordance with "Instrumentation Installation Guidelines for the National Solar Heating and Cooling Demonstration Program". Each sensor is identified by a code number and the parameter measured. Table 1 lists the individual sensors and their measured parameters; the specific location may be found on Figure 1. In the chart below, the number sequence in the code indicates the general data group being measured:

Number Sequence	<u>Data Group</u>
001 to 099	climatological
100 to 199	collector
200 to 299	thermal storage
300 to 399	domestic hot water
400 to 499	space heating
500 to 599	space cooling
600 to 699	building/load

Each sensor provides input to the SDAS module every five minutes, 24 hours per day. The SDAS digitizes the input and stores it on a magnetic cassette tape. Once a day the collected data is transmitted by telephone to an IBM facility in Huntsville, Alabama for reduction. Monthly reports are prepared and distributed from the data collected.

The monitoring system is intended to provide the following information:

- * Energy saving resulting from the use of solar system.
- * Percentage of total building heating and cooling load provided by solar system.
- * Thermal performance and reliability of major components over the demonstration period.

TABLE 1
INSTRUMENTATION FOR NORTH HAMPTON RECREATION CENTER

<u>Designation</u> . <u>Name</u>

A. Temperature

T001	Outside ambient temperature
T100	Collector inlet temperature
T150	Collector outlet temperature
T101	Heat exchanger #1 outlet (solar loop) temperature
T151	Heat exchanger #1 inlet (solar loop) temperature
T102	Heat exchanger #1 inlet (storage loop) temperature
T152	Heat exchanger #1 outlet (storage loop) temperature
T200	Hot water tank top temperature
T201	Hot water tank center temperature
T202	Hot water tank bottom temperature
T400	Hot water boiler inlet temperature
T450	Hot water boiler outlet temperature
T401	Heating water temperature (bypassing hot water boiler)
T402	Heating water (auxiliary assisted) temperature
T300	Solar hot water outlet heat exchanger #2 temperature
T350	Solar hot water inlet heat exchanger #2 temperature
T301	Existing DHW heater inlet temperature
T351	Existing water heater outlet temperature
T302	City water supply to heat exchanger #3 temperature
T352	Heat exchanger #3 outlet temperature
T500	Absorption chiller solar return temperature
T550	Absorption chiller solar inlet temperature
T50]	Chilled water supply to storage temperature
T551	Space cooling chiller return temperature
T502	Cold water storage tank top temperature
T103	Collector absorber temperature
T503	Absorption chiller cooling tower inlet temperature
T553	Absorption chiller cooling tower return temperature
T600	Inside ambient temperature
T504	Chilled water to space cooling temperature
T554	Space cooling return temperature
T505	Cold water storage tank bottom temperature

TABLE 1 (continued)

	Designation	Name
В.	Flow	
	W100 W102 W300 W302 W400 W401 W500 W501 W503 F300 F400	Collector flow (35% Glycol Prestone II) Heat exchanger #1 (storage side) flow Hot water to DHW heat exchanger #2 flow City water inlet to heat exchanger #3 Hot water to heating flow (auxiliary assist) Hot water to heating flow (solar only) Solar hot water to absorption chiller Chill water flow Cooling tower flow Gas flow to DHW heater natural gas 270,000 BTU Gas flow to hot water heating boiler natural gas 525,000 BTU
c.	Power	
	EP100 EP101 EP300 EP400 EP500** EP501 EP502 EP503 EP504 EP600 EP601	Collector pump power P1 Solar heat exchanger pump power P2 Hot water circulation pumps P3 & DHW Space heating hot water pumps P4 & P5 power Solar heated water to absorption chiller pump P6 AC 1 direct expansion unit & fans power Cooling tower fan & pump P8 power AC 2 direct expansion unit & fans power Space cooling water pump P7 power Air handler 1 blower Air handler 2 blower
D.	Insolation	
	1001	Total insolation S/N 15829F3

^{**&#}x27;When P6 is running, add 150 watts (ARKLA solution pump)

VII. System Performance

System data acquisition began in September 1978. Initial monitoring identified changes that were needed in instrumentation location and adjustments to the solar mechanical components. System performance to date may be characterized as being very disappointing due to low overall thermal efficiencies. The following is a summary of system performances, by operational modes, for the month of August 1979:

* Collector to Storage Mode:

Insolation, total incident	213.5 MBTU
Collected energy	66.3 MBTU
Efficiency total	31.1 %
Efficiency during collector operation	37.4 %
Electrical operating energy	2.6 MBTU
Solar energy delivered to storage	63.8 MBTU
Storage losses from tank	3.4 MBTU
Storage efficiency	94.7 %

NOTE: 3.4 $\overline{\text{MBTU}}$ loss from storage includes 0.7 $\overline{\text{MBTU}}$ decrease of energy in storage for month.

* Space Heating Mode:

Data on space heating mode is not available although site personnel report system heated the building satisfactorily throughout a below temperature winter in 1978 - 1979.

* Space Cooling Mode:

Cooling load provided by solar	16.9 MBTU
Cooling load provided by auxiliary	<u>68.4</u> MBTU
Total building cooling load	85.3 MBTU
% of cooling load provided by solar	19.8
Total cooling produced by solar	25.4 MBTU
Energy extracted from hot water storage for absorption chiller	60.8 MBTU
Solar chiller COP	0.42

* Excess Heat Rejection Mode:

Heat rejected 13.2 MBTU

NOTE: The heat rejection coil operated regularly during

August providing assurance that this feature operates properly.

* Domestic Hot Water Mode:

Hot water consumption	2284 gal/mo. 74 gal/day	
Average temperature of water delivered	133°F	
Incoming water temperature	86°F	

NOTE: A malfunction of the automatic controls for the DHW subsystem has resulted in fossil fuel supplied energy being transferred to the hot water storage for the solar system, which is the reverse of design plan.

At present time this is being prevented by turning off the natural gas to the boiler.

For the month summarized the Dallas Recreation Center solar energy system resulted in a negative savings of 0.03 MBTU of fossil fuel and 5.97 MBTU of electrical energy. The negative value was due to (1) the reverse flow of energy from the DHW tank to the thermal storage tank and (2) the cooling load supplied by the absorption chiller required more electricity than would have been required had a conventional air conditioner supplied the load. This level of efficiency is representative of the system's performance during May, June, July, August, September, and October of 1979.

VIII. Recommendations

Experience to date indicates that this concept has promise of acceptable performance. All of the system's individual components function, but their control and sequencing have not been properly adjusted. On site personnel do not have the expertise or capability of making the needed changes. As a result, many simple adjustments and/or modifications that could improve performance have not been made.

The suggested changes that would improve this system's performance and improve future designs are as follows:

Maintenance Personnel - Since on-site and City of Dallas, Building Services maintenance personnel do not have expertise necessary to adequately maintain the solar system, a knowledgeable outside contractor should be procured to maintain the system. NOTE: This has very recently been accomplished and improved performance should be forthcoming.

Automatic Controls (General) - All known malfunctioning controls should be repaired or adjusted as necessary. It would probably be useful to perform a thorough "System Operational Check" similar to an "Acceptance Test" to identify any hidden control problems.

Installations being made in locations with untrained on-site personnel, should have a minimum of manual override control capability. In many cases, this system's low thermal performance has been due to manual override of the solar system and use of auxilliary energy, with the underlying problem receiving no attention for long periods of time. This problem might be overcome by using lock-out type control panel switches.

Future installations of this level of complexity, should seriously consider use of micro processor control now available, in lieu of conventional electronics. For a new design this method of control can be very cost effective with today's technological advances in this area.

Space Cooling Automatic Controls - The absorption chiller control circuit should be adjusted to de-energize the chiller when chilled returned water is less than 44°F. At present the chiller is operating when the system should be using the available chilled water storage.

The chilled water tank temperature is being maintained too low and should be allowed to increase to improve overall system efficiency.

Auxilliary air conditioners are operating concurrently with the absorption chiller and the chilled water circulation pumps.

This mode of operation persists even when sufficient chilled water is available to handle building cooling load. The controls must be adjusted to prevent this from occurring.

<u>Leaking Three-Way Valves</u> - Leaking 3-way valves have been a source of unwanted energy transfer in many areas. As with any mechanical system, the components must be maintained and operated as intended to achieve the desired results.

<u>Site Data Acquisition System (SDAS)</u> - Has been very beneficial in identifying system malfunctions. It could, however, be more useful if information were more immediately available, in the area of major component failure. Recently this has improved with the remote data collection personnel notifying City of Dallas personnel of system failures, such as none functioning pumps.

It is felt that the system can achieve its design potential if the necessary adjustments are made as needed. The system has never had its control system de-bugged adequately, and as a result been unable to demonstrate the true potential of solar heating and cooling.

Appendix A
System Operational Verification

A. System Operational Verification

In order to verify that the system was operational and free of any irregularities that would prevent its intended operation, system components were individually tested. Representatives from manufacturers of major system components were brought in to assist in their equipment start-up. The system was verified as operational in this manner.

Subsequent installations funded and managed by the Department of Energy require formal acceptance test plans with documented results. A formal acceptance test as described was not a part of this project, but certainly would have been useful.

Appendix B Drawings FOLDOUT FRAME

SOLAR

NORTH

HAMPTON

PARK

RECREATION

3700 NORTH HAMPTON

RÜAD

OUIGINAL PAGE IS OF POOR QUALITY

APPROVED Construc	
<u></u>	
,	

INDEX OF DRAWINGS

ARCHITECTURAL

AT GITE OLAH BLOG OLAHE

AT BITE PLAN BLEG CLAN C BITE OTHER AZ FLE, PLANO & REFLEWEL CLG. PLANA AT EXTER OR ELEVO. C 5000.

SECTONS
SECTIONS
AS WALL SECTIONS
AS FOUNDATION PLAN & DOLD.
AS DETAILS

STRUCTURAL

MECHANICAL

PLUMBING

H-1 ROOF CLAN-MECH, & DOLG. M-2 FLR. PLAN-MECH.

MS TECH. RMS TOLET RM. FLR
PLAND, SECTED. & H.W. PP.HQ
DIGLAMOS
MM FROT & SECOND FLR. PLAND,
SECTED, & AC WINDED.
HS ROOF PLAN
HG PP.W. SECTEVATC
HT DAGRAMOS & DTLO.
MS DAGRAMOS & OTLO.
MS DAGRAMOS & OTLO.
MS DAGRAMOS & OTLO.
MS DAGRAMOS & OTLO.

ME-1 NDERFLOOR PLAN

ELECTRICAL

E-1 ROOF PLAN & SOUND SYSTEM OTLS. E-8 = ROOT & SECOND PLR PLAN & LIGHT FIX SCHED.

LFOLDOUT FRAME

IMPLEMENTATIO

٦K RECREATION

AND

HEALTH

CENTER

ROAD

F

OUIGINAL PAGE IS of POOR QUALITY DALLAS , TEXAS

DRAWINGS

PLUMBING

MECHANICAL

M-1 ROOF CLAN-MECH, & DOLG. M-2 FLR. PLMI-MECH.

MS TECH. RTS TOLET RM. FLR.
PLANS, SESTES, & H.H. PPING
DAGRAMS
MY FIRST & SECOND PLR. PLANS,
SECTES, & AC SUMED.
HIS ROOF PLAN
HIS PING SCHENATIC
HIS DAGRAMS & DILS.
HIS DAGRAMS & DILS.
HIS DAGRAMS & DILS.
HIS DAGRAMS & ONLS.

ME-I INDERFLOOR PLAN

ELECTRICAL

E-1 ROOF PLAN & SOUND SYSTEM OTLS. E-2 = ROT & SECOND PLR. PLAN & L-GHT FIX SCUED.

BUILDING SERVICES DEPARTMENT

MOCKINGEIND 1500 WEST

LANE

PALLAS

TEXAS

75235

ARCHITECTURAL

DESIGN

DIVISION

PIGINAL PAGE IS

102 SITE PLAN

() BUILDING PLAN

PEOLDOUT FRAME

ORIGINAL PAGE IS

R POOR QUALITY

POST SECTION OF EXISTING

() BUILDING PLAN

TOTAL ANGLES OF THE TOTAL CO. BY THE TOTAL ANGLE OF THE TOTAL CO. BY THE BY THE TOTAL CO. BY THE BY THE TOTAL CO. BY THE TOTA

26

4()2 MALL SECTION 29

GOO WALL SECTION

504 SECTION

503 SECTION

17 10 45 530 CX

ORIGINAL PAGE IS OF POOR OUTLITY

501 FOUNDATION PLAN

OTO EXP JT D PARAPET

6 2 EXP JT & RCOP

6

60

66

61

STEETS CECT CHANDRAL

615 SILL 20 CHOR TO ROOF

GII SECTION DEADOR IS
ORIGINAL PAGE IS POOR OUALITY

GIO SECTION & MICED CAP

SIG SECTION & STAIRS

SIDEXPUT DAME PAYER HALL

FOLDOU'T FRAME.

COMO SECTION DE ENTE

613 EXP. JT & BRICK MILL

609 SECTION DOBSERY PLATFORM

EXP JT & ROSE

SECTION BEAGE IS ORIGINAL PAGE IS TO PAR OUALITY

EXP. JT. & MET PAVEL HALL

SECTION & OBSERV PLATFORM

600 SECTION D PARAPET . COS SECTION CAMP

607 HEAD = and

606 JAMB DOOR

GOS JAMB = ma

603 HEAD & noon

2001 AND SHEET

BOR JAMD & NOUSON

COI EILL & NOON

TYPICAL HEATING WATER COIL PIPING DIAGRAM

WATER TO WATER HEAT EXCHANGER PIPING DIAGRAM (TYPICAL)

COOLING TOWER PIPING DIAGRAM

ORIGINAL PAGE IN OURLITY

•	TYP'C	AL PL	IMP P	"PiNG	DIAGRAM	
DESIGNATION	PI;	P 2	P6	P	P 8	
GPM	_ 55	120	95	<u> </u>	%ු	
HEAD FT	60	15	15	35	15	
RPM	750	1750	1750	- "TO	<u> </u>	
HP -	5	11/2	11/2		i z	
EGUAL TO DELL FLOODSET	1/2 50. 1510	1/2 AB 1510	たみり	1015. 200	. 12 में ठे 1510	

P4 | P5 | 10 | 17 | 25 | 20 | 170 |

UMP FIRMS DIAGRAM

ABSORPTION CHILLER PIERRS DIAGRAM

OPEN SYSTEM EXPANSION TANK PIPING DETAIL

PUMP PIPING DIAGRAM

PG	P7	P8
15	97	15
1750	100	150
1760	100	150
1760	100	150
1760	100	100
1760	100	100
1760	100	100
1760	100	100
1760	100	100
1760	100	100
1760	1760	100
1760	1760	100
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1760
1760	1760	1

Control of Maria

NORTH HAMPTON 1989 NO CAPACITY & HIGHER CENTER

SOLAR MACLEMEN TATION

THE FIRST LAST,

WALL MOUNTED EXHAUST FAN

ROOF RAILING DETAIL

test pipe politizs. Parricular wipe restings is attendisting and dutable shown, with shooth bends and weided joints ground mooth and flier. Adjust ratio je prior to embracy to ensure national allocations that the foliate. Space page and some ben 7f on confirm, a contract of the solutions of the continuous contracts among failures, data weight of the solutions of the solutions of the continuous contracts and all pages at page 21, and with well plants of the solution of the solutions of the solut

24' NPT (5 EL)

WELLOSET (5 EL)

FIRST

STORY

STOR

HOT WATER STORAGE TANK

6000 GA

Te -TEMPERATURE ≥ COLLECTOR OUTLET *F
T -TEMPERATURE ≥ COLLECTOR INLET *F

T - AMBIENT TEMPERATURE

30

HOT WATER STORAGE TANK

6000 **64.**.

CHILLED WATER STORAGE TANK

2000 GAL.

NORTH HAMPTON (2018 LOCAL STICK) & FEATH CENTER

SOLAR PUBLICITY (ATTON)

(ALAS)

39

ATURE ? COLLECTOR OUTLET F ATURE ? COLLECTOR INLET F T TEMPERATURE

Elacand Jun tira for Purps 1 a 4

ORIGINAL PAGE IS

PARTIAL FLOOR PLAN — DENTAL AREA SCALE 1/45 FLOOR PLAN — DENTAL PLAN

stantens are in separate, individual enclosures sual, 3 pole, mechanically held contactor

ORIGINAL S PANEL "DPA" 120/206 YOUT 3 4 4 WINE 400 AMR 4 BUS 400 AMR NEUT BUS SENYES しいんご WIRE BATE 4 1/0 127 175" 80 3 4.2 ZC.F.W C

** STANTERS ARE IN SEPARATE, INDIVIDUAL ENCLOSURES ** OOA, 3 POLE, MECHANICALLY HELD CONTACTOP,

DESHEAVIOR OFFICE CHAPT POOM ACTIVITY HOOM Y FRONT LOBBY Ϋ́C THIS CONTROL IN --SELLES WITH OTHER EYMNASIUM CONTROL - GYMNASIUM OFFICE . OUTPUT CAN & PACHE AMPL'HEN ----JUNCYION DOX A .. IP FILL (MIN) CAR L MILERE JUNCTICAL BOX - MICHOSHOUS CAP & MECLER PHOND CAR

RETREATION SOUND SYSTEM NO SCALE

LIGHTING PANEL SCHEDULE MAINS IP-20A IS-20A OTHER PRECISED TO LOCA S. C. Mariety 100 MLO 3 19 225 12 ini kaset C 1. 1. 1 100 -|-3

2

ELECTRICAL SUB-CONTRACTOR TO PISCONNECT EXISTING AIR HAND. "2 AND PROVIDE SOA 3P BREAKER AND CONNECT NEW AIR HANDIER IN SPACE. ELECTRICAL SUB-CONTRACTOR TO DISCONNECT EVISTING AIR HAND." | AND PROVIDE ADA-3P BREAKER AND CONNECT NEW AIR HANDLER IN SPACE. VERIFY WIRE SIZE TO BE USED IN CONNECTING AIR HANDLERS WITH UNIT SUPPLIER.

NORTH HAMPTON PARK RECREATION & HEALTH CENTER

SOLAR IMPLEMENTATION

TRAVIS BRAIN & ASSOCIATES PA ENGINEERS DALLAS, TEXAS

6-4-76-76-100; E-1

L O A 3P 4W EL S IN NEW LION , SEE E2

LIG	HT	FIX	TURE	SCH	IEDULI	Ξ.	1	
MANUFACTURER	CAT. NO	TYPE	FINISH	LENS	MOUNTING	LAMP	REMAR	KS
PROGRESS	F022 32	NCAND.	WHITE		TRACK	PAR 38	PENDANT	MTO
LITHONIA	N,4012	LOUR.	11		SURFACE	n n n		
PASS & SEYMOUR	35	INCAND	PORCELAN		SURFACE	ICO W. I. F.	PULL CHA	IN
STONCO	150-L	INCAND	ALUM,	207	WALL	FAR-38		-
LITHONIA	,765 L.A	FLOUR	WHITE	ACRYLIC	SURFACE	2-40W		-

ORIGINAL PAGE IS OF POOR QUALITY

	i.	ST. PAHEL S IS	DOA MLO	
CKT	BREAKE!	NOICH ST RTER	WIRE SIZE	SERVING
357	351	1 AP2 1	3 10-72 6	P1.199 121
4,0	274	3-411A ()	3-12-45	FUMP P-3
,31: -7	30A	F2H5 5	3° . 2 . 1/2 C	FUND FOR
1179-3	2CA	Maria	3 "10-12"C	W at. 19-22
2.27.	20 m	N. 1 2 114 . A. 1. 124	IMM. SLICE	AUSTREE
4 6.2	CN	1 '(4.;	7,15-12,0	Mar., 1-5
· 4	1.1	hatta c	20,204,00	P-1: P.6
· · · · ·	. 3,4	LUBAC .	3° 2.7.°C	ויוידן דים
717,12	7: 4	16840	3"12.K"C	0.7.6.
				1

^{*} ALL BEFORERS NOT SIGNAL SHALL BE ZOAHP FRIER FOR PAIRL'S' THE MAPPING. 2 STARES FOR THE SERVICES TO DIE FURNISHED STITLEMOND CHECKFROCKER.

FOLDOUT FRAME

· SECOND FLOOR PLAI

FIRST FLOOR .PLAN

OF BUILDING

· SECOND FLOOR PLAN

FIRST FLOOR .PLAN

SOLAR BATELON

-SCALE : NONE

SK1976-6-4

RB JUNE 16

· 1_ ...

Appendix C
Major Component Manufacturers Information

Collectors

operation
maintenange
and
installation
instructions

SOLAR 501,368M 2/79

RETAIN THESE INSTRUCTIONS FOR FUTURE REFERENCE

Supersedes 9/78

FRAMING - FLASHING - COLLECTOR MOUNTING

I-SHIPPING AND PACKING LIST

Package 1 of 1 Contains

1 - Assembled solar collector

II - SHIPPING DAMAGE

Check unit for shipping damage. Contact the last carrier immediately if any damage is found.

III - GENERAL

These instructions are intended as a general guide and do not supersed elocal codes. Authorities having jurisdiction should be consulted before installation.

IV - APPLICATION

The consulting engineer, architect or Lennox dealer must determine the solar collector application including desired number of collec-

tors, placement, mounting angle and plumbing sequence. Generally the collectors should face South and be placed at an incline angle as follows:

Space heating—angle equals latitude of installation minus 10°

Space cooling—angle equals latitude plus 15°

Water heating - angle equals latitude

Specifics of the structure and surrounding environment must be considered in the detailed design of the collector array.

FIGURE 1 FIGURE 2 TRIM FACING (OPTIONAL) TRIM COVER (OPTIONAL) - TRIM (OPTIONAL) ROOFING MATERIAL COVER FRAME MOUNTING SCREWS x 4" SLEEPER 18" (3 mm) O SOLAR COLLECTOR DRAIN HOLES 48" (1219 mm)--TRUSS RAFTER 2" x 4" SLEEPER **SECTION A-A** TYPICAL MOUNTING DETAIL

FIGURE 3

This instruction outlines one typical method of framing and installing the solar collectors. Other designs may be substituted if the basic guidelines within the instruction are followed. Figure 1 illustrates a typical residential application.

V-OPERATIONAL NOTES

Performance and operating characteristics vary with most solar installations. Design information regarding an installation will provide operating temperature ranges, fluid flow rates, capacities and other pertinent specifics. Several general performance characteristics should be noted as follows:

1 - WEEP HOLES

Two weep holes with plugs installed are located on each end of the collector pan. Plugs should be removed from the bottom (2) weep holes to allow any moisture to drain from the collector. The top 2 plugs should remain installed.

2 - CONDENSATION

Specific climatic conditions may result in the formation of condensation inside the collector, particularly when the glass cover is cold. As the collector is exposed to the sun and the glass cover warms, the condensation will evaporate.

3 - GLASS COVER PLATE

Any accumulation of dirt, soot, or other debris must be cleaned from the collector panel for proper transmission of solar energy to the absorber plate. Refer to collector maintenance.

V-SOLAR COLLECTOR

The collectors must mount on a watertight roof. Roof construction must be adequate to support the collectors and mounting frame. Solar collectors must be installed with the flow tubes in the vertical position. Figure 3 illustrates details for a typical mounting frame. Install the frame and solar collectors as follows:

- 1 Center sleepers over trusses and secure to roof. Figure 4 shows the sleeper flashed into the roof.
 - a Length of sleepers required for a single row of collectors is 86-1/2 inches.

- b Length of sleepers required for two rows of collectors is 162-5/8 inches.
- 2 Figure 5 illustrates typical framing construction for one row of collectors. Figure 6 illustrates construction for two rows of collectors. 2" > 8" dimensional lumber is utilized.
- 3 Position first collector 4-7/8 inches from end of frame and then maintain 1/8 inch between remainder of collectors. Refer to Figure 7. Secure collectors to frame with lag bolts (4 per collector). If desired the inside spacing could enclose the supply and return header runs where they penetrate through the roof.

NOTF - Solar collectors can be piped individually as they are set or if working area permits, piped after all collectors are set.

USE 2" x 8" DIMENSIONAL LUMBER "X" EQUALS NUMBER OF COLLECTORS MULTIPLIED BY 3 FEET FOR MOUNTING FRAME PLUS 8 INCHES SECURE BASE FRAMING TO SLEEPERS WITH LAG BOLTS SLEEPER SOLAR COLLECTOR Α D F В С Ε DETAIL OF BOTTOM 86-1/2 68-1/2 6-1/4 6-3/4 6-1/4 3/4 inches OF FRAME DRILL DRAIN HOLES 2197 1740 159 171 159 19 IN THE BOTTOM OF mm MOUNTING FRAME (3 4" on 24" centers) MOUNTING FRAME FOR SINGLE ROW COLLECTORS

FIGURE 5

4 - The temperature control system (not provided with collectors) includes a temperature sensor which is to be installed in one collector. Install sensor in desired collector before hoisting collector to mounting position. Remove collector cover frame/glass assembly and install sensor on what will be the top (outlet) manifold of the absorber plate. Refer to Figure 8 and the sensor manufacturer's instructions to properly secure the sensor. Secure sensor to manifold, route wires to the outside of collector pan and reinstall cover frame/glass assembly.

•

CAUTION!I

When reinstalling glass cover and frame DO NOT overtighten screws. If collector cabinet is twisted even a slight amount and the glass cover is secured too tightly the glass cover will break.

5 - After the system has been leak tested and the insulation has been installed on outdoor piping, flash the frame and solar collectors as illustrated in Figure 9. This flashing prevents air flow around collectors minimizing convection losses. This trim can bolt directly to the collector frame.

FIGURE 9

PIPING

VI-PIPING FOR SOLAR COLLECTORS

- A Basic Piping Fundamentals
- 1 Flared Connections
 - a Cut pipe to size with a roller type tubing cutter. See Figure 10.

FIGURE 10

b-Remove any burrs with knife or reaming tool as shown in Figure 11.

FIGURE 11

c - Flare tubing with a flaring tool as illustrated in Figure 12.

FIGURE 12

d - Align parts as shown in Figure 13 and tighten using two wrenches to prevent twising lines. Figure 14 shows cutaway of flared connections.

TIGHTEN NUT USING TWO WRENCHES

FIGURE 14

- 2 Soldered Connections
 - a Cut the pipe to size.
 - b Remove burr.
 - c Fit tubing into coupling maintaing a tight and proper clearance. See Figure 15.
 - d Use minimum 95-5 rated solder.
 - e Make joint using proper amount of heat to draw solder in joint.
 - f Cool and clean the joint with wet cloth.

FIGURE 15

B - General Guidelines

1 - The solar collectors can be assembled in parallel, series or series-parallel combinations. Figure 16 illustrates various sequencing arrangements. The supply header is always positioned at the bottom side of collectors while the return header is on the top.

NOTE - For residential applications, no more than two collectors should be connected in series.

TABLE 1

IABLE	
APPLICATION	SIZE
Single family heating and heating/cooling	1-1/8" (38 mm)
Multi-family heating and heating/cooling	3" (76 mm)
Commercial heating and heating/cooling	4" (102 mm)

2 - Table 1 lists information for sizing headers.

3 - Avoid direct connection of dissimilar metals. Where copper pip-

ing connects to different piping materials, dielectric insulating couplers should be used to prevent corrosion.

FIGURE 16

C - Header and Collector Piping

Once the collector array is in place, the collectors are joined with a header pipe and silicone connector hoses. The Lennox Manifold Kit

(ordered separately) contains pre-fabricated headers with hose connectors welded in place. Also included are hose clamps, copper header couplings, header end caps and silicone hose. Figure 17 shows the arrangement of seven collectors, the header and the connecting silicone hoses. The collector array shown in Figure 17 requires cutting the header pipe.

The following steps provide a general assembly format.

NOTE - LSC18-1 Series collectors have threaded inlet and outlet connections. The necessary 90 Provide thread to hose adaptor (Lencox part number 1588101) must be ordered septimize figure 18 c'etails this thread to hose adaptor. OOR QUALITY

- 1 Install collector array per the system design specifications.
- 2 Lengthen header pipes if necessary by joining additional header sections with the provided couplings. All hose connector must be aligned properly.
- 3 Shorten header by cutting with a tubing cutter. Cut at increments to allow proper spacing of collectors.
- 4 Weld end caps on one end of each supply and return header (the end depends on the flow pattern of system design.)
- 5 Provide fittings at outlet end of the return header (top header) for installation of an air vent valve. The air vent valve must be positioned vertically at the highest point in the system to function properly. See Figure 19.
- 6 Install heads at proper ends of collector array and clamp 12 in. (30 mm) sections of silicone hose onto the header and collector fittings. See Figures 20 and 21.

FIGURE 17

FIGURE 18

- 7 Connect supply plumbing line to the bottom (supply) header and the return plumbing line to the top (return) header.
- 8 Leak test the installation thoroughly at a test pressure of at least 50 psi (345 kPa) and make any needed repairs. Insulate all outdoor piping with 3/4 inch (19 mm) thick foamed plastic insulation. Waterproof outdoor pipe insulation with two coats of plastic finish reinforced with glass mesh. Install per manufacturer's recommendations.

VIII - INSULATION

Adequate insulation of all system piping is important for maximum efficiency.

A - Indoor Plumbing --

All interior piping, including solar collection, solar heating, and domestic hot and cold piping, shall be insulated with 1" (25 mm) thick split, preformed glass fiber pipe insulation, 3-1/2 lb. (1.56 kg.) minimum density, with pre-sized glass cloth secured with adhesive and staples. Fittings and valves shall be insulated with preformed glass fiber fittings or by wrapping with glass fiber blanket to meet thickness of adjacent insulation, coating with insulating cement and covering with pre-sized glass cloth secured with adhesive. Flanges and unions shall not be insulated.

FIGURE 19

B - Outdoor Plumbing -

Insulate all outdoor piping with at least 3/4 in. (19 mm) thick foam plastic insulation equal to "Armaflex". All piping must be protected from the environment to avoid diminished efficiencies. Waterproof outdoor pipe insulation with two coats of plastic finish reinforced with glass mesh. Install per manufacturer's recommendation. Insulate valves, flexible pipe fittings, and unions.

IMPORTANT

Insulation of the system plumbing, headers and connecting hoses is essential to avoid heat losses.

FIGURE 20

FIGURE 21

MAINTENANCE

XI - MAINTENANCE

- 1 If the glass cover becomes dirty, clean the glass using a soft clean cloth, mild soap or detergent and clean rinse water. Alkalies can stain the glass if allowed to remain in contact too long. Careful, thorough cleaning of collectors should be undertaken periodically. A quick rinsing of the collector covers with a garden hose is recommended if the glass covers collect dirt. Wash with the garden hose only in the morning or evening when the collectors are not exposed to direct sunlight.
- 2 Use rubber gloves when handling solar collector to avoid finger prints on glass.

NOTE - The collector surface temperature can burn. Handle solar collector with caution.

3 - To replace the glass, remove the collector as shown in Figure 22 and dismantle according to Figure 23. To re-assemble frame, insert the glass sheets and new gaskets into side pieces making sure the glass is centered and the ends are even. Next insert the glass into the end pieces and secure with existing screws. Use sealer compound on corner joints.

CAUTIONII

When reinstalling glass cover and frame DO NOT overtighten screws. If collector cabinet is twisted even a slight amount and the glass cover is secured too tightly the glass cover will break.

FIGURE 23

- 4 To replace an LSC18-1 Series absorber plate refer to following sequence and Figure 24.
 - a Drain Collector.
 - b Remova collector frame.
 - c Remove plate seal and gasket on each end of collector.
 - d Disconnect flare fitting on each end of collector.
 - e Remove 6 screws securing absorber and left plate from cabinet. Avoid touching coating on plate.
 - f When re-assembling absorber plate, tighten screws between 10 lbs. and 15 lbs. torque.
- 5 To replace an LSC18-2 Series absorber plate, refer to the following sequence and Figure 24.
 - a Drain Collector.
 - b Remove collector frame.
 - c Remove grommet at each end of collector.
 - d Remove six screws securing absorber plate.
 - e Remove the metal insulation retaining angle from each
 - f Slide absorber plate first to one end to remove. Lift absorber plate from cabinet being careful not to touch the black coating on absorber plate face.
 - 9 When re-assembling absorber plate, tighten screws with between 10 lbs. and 15 lbs. torque.
- 6 The propylene glycol/distilled water fluid should be tested annually by a Lennox serviceman for proper freeze protection and inhibitor level. Lennox recommends Dow Chemicals DOWFROST (Catalogue no. 12863)

to insure that the propylene glycol contains the proper inhibitors. The installer should premix and keep on hand a quantity of proper propylene glycol and distilled water Solar Transfer Fluid in a covered container.

Absorption Chiller

DESIGN DELIVERED CAPACITY, Btu/h 306,0001	CONDENSING WATER DATA
•	Design Heat Rejection, Btu/h
DESIGN DELIVERED CAPACITY, Tons I.M.E 25.51	Design Inlet Temperature, °F
·	Design Outlet Temperature, °F 101.7
ENERGY REQUIREMENTS	Permissible Range of Inlet Temp 75 to 90
Design Hot Water Input, Btu/h	Design Flow, gpm90
Design Hot Water Injet; Bitdyn	Pressure Drop, Feet of Water, at 90 gpm 22.9
Design Hot Water Outlet Temperature, °F 184.8	Permissible Range of Flow, gpm 50 to 110
Permissible Range of Inlet Temp:	Pressure Drop, Feet of Water, at 110 gpm 33.5
Design Hot Water Flow, gpm90	Maximum Working Pressure, psig 100
	Unit Water Volume, Gallons, Approx
Pressure Drop, Feet of Water, at 90 gpm 20.7	Fouling Factor
Permissible Range of Flow, gpm	Tourning Factor
Pressure Drop, Feet of Water, at 100 gpm 25.6	FOR COOLING TOWER OF FOTION
Maximum Working Pressure, psig	FOR COOLING TOWER SELECTION
Electrical Voltage, 60 Hz, 1 Phase	Maximum Heat Rejection, Btu/h
Maximum Wattage Draw150	Range, °F
.	Minimum Permissible Sump Temperature, °F 75 ³
CHILLED WATER DATA	
Design Inlet Temperature, °F	SERVICE CONNECTIONS
Design Outlet Temperature, °F	Hot Water Inlet and Outlet 2" FPT
Design Flow, gpm60	Chilled Water Inlet and Outlet 2½" FPT
Pressure Drop, Feet of Water, at 60 gpm 9.8	Condensing Water Inlet and Outlet 2½" FPT
Permissible Range of Flow, gpm 30 to 100	
Pressure Drop, Feet of Water, at 100 gpm 26.9	PHYSICAL DATA, APPROXIMATES
Maximum Working Pressure, psig 100	Operating Weight, Pounds
Unit Water Volume, Gallons, Approx	Shipping Weight, Pounds
Fouling Factor	Crated Size, Inches

NOTES: 1. Capacity at design conditions. For capacities at other conditions, see Page 4.

- 2. Units equipped for operation on 230V-50Hz-1Ph available on special order.
- 3. Thermostatic switch to control tower fan MUST be used. Set to "cut out" at 75°F.
- 4. Includes circulating water weights.
- 5. Units as shipped contain Lithium Bromide charge.

FRONT VIEW

RIGHT VIEW

			Flow 90 gr				
	Chilled \ Hot Wat	Nater Flov er Flow.	v 60 g; 90 g;		emperature Degrees i		out I
*							
	Hot	Hot		Leaving	DELIVE		Heat
7	Water Inlet	Water Outlet	Energy Input	Chilled S Water	CAPA	11Y	to be Rejecti
1	Temp	Temp	Blu/h	Temp.	Blu'h	Tons	Btu/h
		157.0	132,000	40	66,000	5.5	198,000
	160	156 6	149.200	45	88.800	7.4	238,000
		156 0	175.900	50	102 000	85	277.90
		161.1	172,600	40	98 400	8.2	271,000
	165	1605	197,900	45	129 600	10.8	347,50
		159.9	227,600	50	145.000	12 1	372, 60.
r		105 1	214.300	40	132.000	110	346,30
	176	164.5	240.700	45	166,800	13.9	407.50
		164 0	262,400	50	180 000	150	442,40
1		169.1	257,0 00	40	163.200	13.6	420,20
3	175	168.7	277,600	45 50	190 800	164	474 41
e c		168 2	297,500	50	213,600	178	511,10
ig.	100	173.1	302,400	40	192.000	160	494,40.
ù	180	172.9 172.2	313,800 341,200	45 50	224,400 246,000	18.7 20.5	538,20.
85º Inlet Condensina Witter							587,200
ini	185	176.9 176.8	352,300 354,900	40 45	218.400 252.000	18.2 21.0	570,70
320	103	1763	380,700	50	276.000	23.0	606,900 656,700
ω.		180.9	396.000	4C	237,600	19.8	633,607
	190	160.8	400,000	45	276,000	23.4	676 OU
		180 4	421,500	50	306 000	25 5	727.50
		184 7	448 700	40	258.000	21.5	706,70
Ė	195	184.8	446,700	45	304-000	25.5	752.70
}		184 €	4617-00		3,51 = 56	.7:	780.40
ľ		188.7	490,900	40	211.000	22.5	760 90.
	500	189.0	481,800	45	318,000	26.5	799.83
<u> </u>	1	188.6	493,200	50	360,000	30.0	853,20.
ă	165	162.8	96 ୫୦୦	45	60,000	5.0	156.8.
Wat	170	166.9	139.100	45	on, DOQ	8.0	235.1
buis	175	170.7	188 000	45	134,000	11.2	322.40
Condensing Water	180	174.7	234,000	45	168,000	14.0	409.000
ίδς	185	178.7	274 000	45	195 600	16.3	469,600
Inlet (190	182.5	327 900	45	225 600	18.8	553,400
u)	195	186.6	365,500	45	237.600	198	603,100
	100					21.0	<u> </u>

		Water Flow		ypr: gpm	Telapeta Degre	ture illi las Ellific	nheit
	Hot Water Inlet Temp	Hot Water Outlet Temp	Energy Input Btu/h	Leaving Chilled Water Temp	DELIVEI CAPAC Bruft		Heat to be Reject Btu'r
	160 160	156.1 155.9	174,200 180,000	40 45	108 000 115,200	90 96	282,20 235,30
	165 165	160.3 159.9	210 000 227,500	2 40 45	138,000 152,400	11 · · · · · · · · · · · · · · · · · ·	348 0.) 379,9.)
Water	170 170	164.1 163.8	259,000 270,900	40 45	174,090 189,600	14.5 15.8	432 90 460 50
	175 175	168 0 167 7	306,700 321,100	40 45	200 400 228,000	17.2 19.0	513 1.± 549 10
	180 180	172.0 171.8	351,800 357,600	40 45	236,400 269,20 0	19 7 21 6	588.2. 61670
	185 185	176.0 175.7	395.700 405.000	40 45	260 400 291 600	21 7 24 3	656.16 (36,63
ó	190 190	179.8 179.7	446.200 449.800	40 45	282,000 321,600	23.£ 26.8	72820 721.40.
	195 195	183.6 183.7	500.000 492.000	40 . 45	300.000 344,400	25 0 28.7	800.00. 836.405
i b	20 0 200	187.3 187.8	547,400 527,900	40 45	312,000 360,000	26.0 30.0	859,400 887,900

Condensing Water Floy, 30 gpm

Γ		- Manuary			and the same of th		
	_			ON OPER			
C		",			sursted for 15 ter Flow 54		eti sili seli.
(C	hilledWa	ater Flow	36 gpr	n Temper	atures in Di-	areas E	athre the c
7	166	1604	102 000	46	72° 000°		•.•:
Water	170	1643	151 400	45	98 QQQ	H.	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
jud	175	167 9	186 600	45	128,400	10	210
inns	180	1716	220.800	45	157 200	13.1	3 7 7 7 7 7
Intet Condensing	185	175.4	253.300	45	182 400	16.2	4.5
E	190	179 2	284.100	45	204 000	1.10	486 1 1
1 1	195	183 1	312,700	45	222 000	18.5	6/54 70
85	200	187 1	334.300	45	234 000	19.0	team incom

				Pump Sizii Gallons pe					
Flows gpm	30	40		1	11	80	,. .	1::	
Hot Wate Circuit	AM	NA		94.4	1.	11	1.7		
Chilled Water Circuit	2.5	4 1	11-8	4 8	134	17.4	[11 €	. • 10	
Condensing Water Circuit	NA	NA	:	10.5	1.4 1	183			

ORIGINAL PAGE IS OF POOR QUALITY

Where Proprets to Built On Quality
Arkia in asstries in:
PO Bill 584
Expressed it 477.4
FORM NO SHOULT 1, CCT 1976

62

Heat Exchangers HX1, HX2, HX3

Oslin Nation Co. Manufacturers Representatives

September 23, 1977

(214)631-5650 2532 IRVING BLVD. DALLAS, TEXAS 75207

JOB:

North Hampton Recreation Center

Dallas, Texas

ENGINEER:

Travis, Braun & Associates

Dallas, Texas

CONTRACTOR:

Natkin & Company

Dallas, Texas

HVAC

HEAT EXCHANGERS

- 1 Bell & Gossett Model WU-148-24 with 234 sq. ft. of heating surface. To be marked HX-1.
- Bell & Gossett Model WU-65-23 with 22.1 sq. ft. of heating surface. To be marked HX-2
- Bell & Gossett Model WU-63-23 with 12.7 sq. ft. of heating surface. To be marked HX-3

. TYPE "WU" HEAT EXCH | GERS ("U" Tube Design)

DIMENSIONS (Continued)

	UNIT NU	WRFR		fi,		DIM	ENSIO	IS IN	INCHES						• :	TING	Approx.
Į				2 Pass			4 Pass			2.4	and 6 f	225			ARD SO	FACE	Shpy. Wt.
	2 Pass	4 Pass	J	K	H	L	M	N	A	B	C	D	E	F		4 Pars	(Lbs.)
	₩13144-24	WU144-44	6 NPT	8	4 NPT	35/16	69/16	57/A	571/	177/0	36 ⁷ / ₈	12	14	4 FLG	116	111	635
	WU145-24	WU145-44	6 NPT	В	4 NPT		6 /16				487/8		14	4 FLG	146	139	720
i	WU148-24	WU14544	6 NPT	8	4 NPT	35/16	69/16	57/R	811/8	177/8	607/8	12	14	4 FLG	175	167	805
	WU147-24	WU147-44	6 NPT	8	4 NPT	35/16	69/16	57/8	931/8	177/8	727/8	12	14	4 FLG	204	196	890
	WU143-24	WU148-44	6 NPT	В	4 NPT	35/16	$6^9/_{16}$	57/8	$105^{1}/_{8}$	177/8	847/8	12	14	4 FLG	234	224	975
ļ	WU149-24	WU149-44	6 NPT	8	4 NPT	35/16	69/16	57/8	117 ¹ / ₈	177/8	967/8	12	14	4 FLG	263	252	1660
	WU144-28	WU144-48	6 NPT	8	4 NPT	35/16	69/16	57/8	571/8	177/8	347/B	13	14	6 FLG	116	111	635
	WU145-28		6 NPT	4	4 NPT	35/16	69/16	$5^{7}/_{8}$	691/*	177/8	$46^{7}/8$	13	14	6 FLG	146	139	720
1			6 NPT		4 NPT	35/16	69/16	$5^{7}/_{8}$	811/8	177/8	58 ⁷ /8	13	14	6 FLG	175	167	805
}	STATES WATER PROPERTY.		6 NPT		4 NPT	3./16	69/16	57/3	931/8	177/8	70 ⁷ /8	13	14	6 FLG	204	196	890
-			6 NPT		4 NPT	35/16	6 /16	57/8	1051/8	177/8	82 ⁷ /8	13	14	6 FLC	234	224	975
}			6 NPT	-	4 NPT	3,/19			1171/8	· · · · · · · · · · · · · · · · · · ·		13	14	6 FLG	263	252	1060
-			6 NPT		4 NPT	4	79/10	8	57 ³ / ₄	197/8	34	14	16	6 FLG	150	143	787
-	The same of the sa		6 NPT	91/4		4	79/16	8	$69^3/_4$	197/8	46	14	16	6 FLG	188	180	892
Ļ			6 NPT			4	79/16	8	813/4	197/8	58	14	1€	6 FLG	227	217	997
ŀ			6 NPT			4	$\frac{7^9}{16}$	8		197/8		14	16	6 FLG	265	254	1102
ŀ			6 NPT 6 NPT			4	$\frac{7^{9}}{16}$	8	$105^{3}/_{4}$			14	16	6 FLG	304	291	1207
}						4	79/16		$117^{3}/_{4}$			14	16	6 FLG	342	327	1312
-		WU164-410			4 NPT	4	79/16	8	573/4	197/8	313/4	16	16	8 FLG	150	143	787
		WU165-410			4 NPT	4	79/16	8	$69^{3}/_{4}$	197/8	433/4	16	16	8 FLG	188	180	892
		WU166-410			4 NPT	4	79/16	8	813/4	197/8	$55^{3}/_{4}$	16	16	8 FLG	227	217	997
		WU167-410				4	79/16		933/4	197/8	$67^{3}/_{4}$	16	16	8 FLG	<i>2</i> 65	254	1102
		WU168410 WU169410			4 NPT	4	79/10	8	$105^{3}/_{4}$	197/8	793/4	16	16	8 FLG	304	291	1207
-	-				4 NPT	4	79/16		$117^{3}/_{4}$		$91^{3}/_{4}$	16	16	8 FLG	342	327	1312
L		WU184-46			4 NPT		$8^3/8$	$9^{1}/_{4}$	631/2	22	391/2	$13^{3}/_{4}$	18	6 FLG	195	195	1015
-	WU185-26	WU185-46			4 NPT			91/4	75¹/ ₂	22	$51^{1}/_{2}$	133/4	18	6 FLG	242	242	1139
-	WU186-26	WU186-46			4 NPT				871/2		631/2				290	290	1263
- -	WU187-28 WU188-26	WU187-46 WU188-46			4 NPT	45/8	83/1	91/4	991/2	22	$75^{1}/_{2}$	$13^{3}/_{4}$	18	6 FLG	339	339	1387
-	WU189-26		6 NPT		4 NPT	4 ³ /8	83/8		$111^{1}/_{2}$		871/2				387	387.	1511
-		-							1231/2		991/2		18	6 FLG	435	435	1635
		WU184-412			4 NPT	45/H	83/8	91/4	651/2	22	391/4	15	18	8 FLG	195	195	1015
		WU 185-412			4 NPT	45/6	83/8	91/4	771/2	22	511/4	15	18	8 FLG	242	242	1139
_		WU186-412 WU187-412					$\frac{8^3}{8}$	9'/4	891/2		631/4		18	8 FLG	290	290	1263
		WU188-412			4 NPT				1011/2		751/4		18	8 FLG	339	339	1387
		WU189-412			4 NPT				$\frac{113^{1}}{125^{1}}$		871/4		18	8 FLG	387	387	1511
ļ.	-	WU204-48		~~~~							991/4		18	8 FLG	435	435	1635
	WU205-28		8 NFT	105/			$\frac{9^{1}}{2}$	8-/4	651/8	24	391/2		20	6 FLG	259	251	1402
	Transport			10 ⁵ / ₈			$9^{1}/_{2}$ $9^{1}/_{2}$	03,	77 ¹ / ₈		511/2	15	20	6 FLG	324	314	1560
	WU207-28			10 ⁵ / ₈				0 /4	89 ¹ / _a		631/2	15	20	6 FLG	388	377	1716
	WU208-28			105/8	6 NPT	43/8			1131/8		75 ¹ / ₂ 77 ¹ / ₂		20	6 FLG	453	439	1873
	WU209-28			101/1	6 NPT				$\frac{113}{125^{1}/_{8}}$		$\frac{77^{2}}{99^{1}/_{2}}$		20	6 FLG	517	502	2030
<u> </u>	Marie C. 7 Marie San Tambalan (1994)	WU204-410		105/		43/8								6 FLG	582	565	2187
_	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	WU205413		103/10			$\frac{9/2}{9^1/2}$	83/	69 ¹ / ₈	24	41 ¹ / ₄		20	8 FLG	259	251	1402
		WU206-416		103/8		43/8	$\frac{5}{9^{1}/2}$	83/.	931/8	24	63	1/ /2	20	10 FLG	324 388	314	1560
		WU207-416		105/		43/8			1051/8			171/2	20 20	10 FLG 10 FLG	453	439	1716. 1873
	WU208-216	WU208416	8 NPT	101/1	6 NPT	41/8			1171/8			171/2	20 1	10 FLG	517	502	2030
	WU209 216	WU209416	H NPT	105/A				83/4	1291/8	24				10 FLG	582		216/
		Leubined to ab							1						36.4	- OC - 1	£ ()

Dimensions are subject to change. If exact dimensions are needed for layout, write for certified prints.

TYPE "WU" HEAT EXCHAN "FRS ("U" Tube Design)

Cast iron or bolted steel legs can be supplied when specified.

Room for attenual of tube bundle, equal to or greater than "A", should be provided.

150 PSI WORKING PRESSURE CAST IRON HEADS Available only on the following units.

2-PASS					4-PASS					
SHELL DIA.	A	С	D	É	SHELL DIA.	A	В	C	g	É
10"	4	9%	14%	51/2	10"		NOT	AVAIL	ABLE	
12"	4	8%	18%	δ	12*		NOT	AVAIL	ABLE	
14"	5	10%	17%	6%	14"	4	9%	2716	17%	8%
16"	6	11%	19%	6¾	16"	4	91/6	2%	18%	834
18"	-	11%	22	7%	18"	-4	874	41/2	22	7
20"	6	13%	24	8	20"	8	11%	3X	24	7%

Flange connections for field piping drilled and faced per 150# ANSI standards.

DIMENSIONS 4" THRU 20" DIAMETER

"WU" type "U" tube
Shell diameter in inches
Tube bundle length in feet
Number of tube passes
Complete sales number consists of example: WU86-44

			1					Ċ	HMERSIC	MS IN INC	HES.								EAT		
	HT NUMBER	A 	2 PAI	13		4 PAI	13			8 PASS			2.	4, AN	D & P	ADS			URFA 80. F		AFPROX. SHIPPING
2 PASS	4 PARS	8 PAR	J	K	н	L	M	W	P	Ħ	8	A		c	9	E	F	2 Pass	4 Page	E Pess	RT.(LES.)
00433-24	MARINE.	-	11/4 NPT	2.70	1 NPT	1	13/4	21/4	-	-	_	40 ⁷ /s	71/4	29	63/8	41/2	21/2" NPT	4.1	4.1		78
WW4424	WINE A		11/4 NPT	21/4	1 NPT	1	12/4	21/4	-	-	-	527/6	71/4	41	63/4	41/2	21/3" NPT	5.7	5.7		92
WV-6-13	WU-46	-	11/4 NPT	21/0	1 NPT	1	13/4	21/4	_	-	-	647/6	71/4	53	63/1		21/3" NPT	<u>. </u>	7.2		106
10005.26	2044A	-	17/4 NPT	23/8	1 MPT	1	13/4	21/4	-	-	-	76 /	71/4	65	63/8		21/2" NPT				120
10947-34	W4144.	-	11/4 NPT	2º/s	1 NPT	1	13/4	21/4	-	-	-	881/₹	71/4	77	63/0	41/2	21/3" NPT	10.4	10,4	-	134
AMBER OF	WHO-43	WW43-65	2 NPT	32/4	11/s NPT	119/12	213/16	31/10	211/22	11/4 NPT	213/14	401/s	10,/7	271/1	57/s	6 ⁵ /€	21/3" NPT	12.7	127	9,6	125
. 9466.23	W1941-46	WW94-03	2 NPT	33/4	1º/a NPT	118/22	213/16	33/10	211/33	13/4 NPT	213/14	521/a	101/2	391/z	67/8	6º/c	21/2 " NPT	17.4	17.4	13.1	150
- myle-21	MARE 43	304 E3	2 NPT	33/4	11/2 NPT	119/22	210/10	33/16	211/22	11/4 NPT	213/14	641/5	101/2	511/2	67/2	5°/e	21/2" NPT	22.1	22.1	16.7	175
WWW.21	WVW-M	10053-63	2 NPT	33/4	11/2 NPT	34/91	212/10	33/10	211/23	11/4 NPT	213/14	761/6	101/1	ឆ"/2	67/6	65/0	21/1 " NPT	26.8	26,8	20.2	200
99497-23	WU0743	WHY-U	2 NPT	33/4	11/4 NPT	114/22	213/10	33/14	211/22	11/4 NPT	213/16	881/6	101/2	751/2	67/0	B*/2	21/2" NPT	31.5	31.5	23.8	225
WWW.27)	20000-43	WW8543	2 NPT	31/4	1º/s NPT	119/21	213/10	33/16	213/33	11/4 NPT	213/16	1001/4	101/1	871/2	6'/1	6ª/a	21/1" NPT	36.2	36.2	27.3	250
WH426	WH44	1000414	3 NPT	5	2 NPT	2	31/2	4	3	2 NPT	33/4	53	121/2	37	81/2	B ³ /e	4" FLG	32	32	26	222
DAME SH	1008-44	THIRL 24	3 NPT	5	2 NPT	2	31/2	4	3	2 NPT	32/4	65	121/2	49	B1/2	84/4	4" FLG	41	41	33	256
(M. M.).	1000-44	-	3 NPT	5	2 NPT	2	31/2	4	3	2 NPT	33/4	77	121/1	61	81/1	85/0	4"FLG	49	49	41	294
MART DE	100744	MA1-94 .	3 NPT	5	Z NPT	2	31/1	4	3	2 NPT	33/4	89	121/1	מ	81/2	8ª/a	4" FLG	58	58	48	330
ENDIE SK	WWW-44	MAN	3 NPT	5	2 NPT	2	31/1	4	3	2 NPT	33/4	101	121/2	85	81/2	84/0	4" FLG	67	67	55	366
MD46-34	W-105-14	WHICH-MI .	3 NPT	5	2 NPT	2	3,7,	4	3	2 NPT	33/4	113	121/1	97	81/2	85/4	4"FLG	75	75	62	402
MIN 186-35	WHT2646	WE 194-88	4 NPT	57/6	3 NPT	21/4	4º/a	41/4	313/16	21/s NPT	47/0	53	145/0	381/4	9	103/4	4" FLG	56	53	45	331
W#185-36	171 165 46	WHITE M	4 NPT	57/4	3 NPT	23/4	47/2	43/4	314/14	21/s NPT	47/0	65	142/4	481/4	9	103/4	4" FLG	71	68	56	384
404 706-2%	MARG 62	河湖縣	4 NPT	51/0	3 NPT	23/a	47/8	43/4	313/14	21/2 NPT	47/0	77	143/6	501/4	ß	103/4	4" FLG	86	82	68	437
WANTED	10197-4	加朴/四·德	4 NPT	57/4	3 NPT	28/4	4°/6	47/4	313/10	21/1 NPT	47/4	89	141/4	721/4	•	103/4	4" FLG	101	96	'90	490
W0986-25	WU189-46	神神 ()	4 NPT	57/0	3 NPT	20/0	47/4	43/4	313/10	21/2 NPT	47/8	101	141/4	841/4	9	103/4	4" FLG	116	110	92	543
WQ100-25	WA/100-45	991M-45	4 NPT	57/4	3 NPT	29/8	47/6	43/4	313/10	2 ¹ 分 NPT	47/6	113	141/4	961/4		103/4	4" FLG	131	124	104	596
-	100 1018-46	WE WILL	ANPT	51/6	3 NPT	23/2	47/4	43/4	314/16	21/2 NPT	47/4	125	144/4	1081/4	9	103/4	4" FLG	146	138	116	650
SEPERATE SE	M0134-40	MN174-00	S MPT	71/4	4 MPT	24/4	57/a	57/4	41/2	3 NPT	513/14	561/2	16 ⁵ /s	371/4	101/4	123/4	5" FLG	83	78	68	458
MAJN-79	COMM	M15-0	4 NPT	21/4	4 NPT	21/2	57/6	51/A	41/3	3 NPT	517/14	68,79	161/4	491/4	101/4	123/4	6" FLG	104	98	65	525
W1136.38	Witte.	W0138-86	4 MP1	73/4	4 NPT	21/4	51/4	57/4	41/3	3 NPT	513/14	801/1	165/6		101/4	123/4	5" FLG	126	119	103	584
WY 127 38	199 (27-46	100 T/7 46	4 NPT	71/4	4 NPT	21/4	57/4	51/0	41/2	3 NPT	513/10	521/1	16 ^s /8	731/4	101/4	123/4	5" FLG	148	1139	121	663
MA128-26	AM 138-44	390 125-66	4 MPT	7310	4 NPT	24/0	51/6	51/4	41/3	3 NPT	512/10	1041/2	161/1		101/4		5" FLG	169	160	139	732
10-0124-36	89136-A	Sel 129-46	4 NPT	77.	4 NFT	72/0	57/4	51/4	41/6	3 NPT	513/14	1161/2	164/	971/4	101/4	123/4	5"FLG	191	180	1156	801

TYPE "WU" HEAT EXCHANGERS ("U" Tube Design)

ORIGINAL PAGE IS
OF POOR QUALITY

DESIGN PRESSURES—A.S.M.E. CONSTRUCTION CAST IRON & BRASS UNITS

	4" 6" 8" 10" 4 & 6 Pass 10" 2 Pass 12" 6 Pass 12" 2 & 4 Pass 14"	•	DESIGN F	RESSURES		MAX. TEMP. AV. OF			
		TUBE S	IDE.	SHELI	SIDE	TUBE & SHELL SID			
	DIAMETER	WORKING	TEST	WORKING	TEST	CAST IRON	BRASS		
-	4"	150 psi	300 psi	150 psi	300 psi	375 F	300 F		
2	. 6"	150 psi	300 psi	150 psi	300 psi	375 F	300 F		
	8"	150 psi	300 psi	150 psi	300 psi	375 F	300 F		
	10" 4 & 6 Pass		300 psi	150 psi	300 psi	375 F	300 F		
	10° 2 Pass	125 psi	250 psi	150 psi	300 psi	375 F	300 F		
	12" 6 Pass	150 psi	300 psi	150 psi	300 psi	375 F	_		
	12" 2 & 4 Pass	125 psi	250 psi	150 psi	300 psi	375 F	300 F		
درهسودو	14"	125 psi	250 psi	150 psi	300 psi	375 F	300 F		
	16"	125 psi	250 psi	150 psi	300 psi	375 F	300 F		
	18"	125 psi	250 psi	150 psi	300 psi	375 F	300 F		
	20"	125 psi	250 psi	150 psi	300 psi	375 F	300 F		

For tube side pressure higher than shown, special heads are required. Consult B & G Representative for specifications and dimensions.

CONSTRUCTION

Standard "WU" Heat Exchangers are constructed according to A.S.M.E. requirements for pressures and temperature noted in table above. A Manufacturers' Data Report for Unfired Pressure Vessels, Form No. U-1 as required by the provisions of the A.S.M.E. Code Rules is furnished with each unit.

This form is signed by a qualified inspector, holding a National Board Commission, and is certified by the Mutual Boiler and Machinery Insurance Company, Factory Mutual Group of Insurance Companies, that construction conforms to the latest A.S.M.E. Code for unfired pressure vessels. The A.S.M.E. "U" symbol is stamped on each vessel.

MATERIALS

PART	STANDARD CAST IRON UNIT	BRASS UNIT
	2,4 & 6 Pass	2 & 4 Pass
Shell	Steel	Steel
Head	Cast Iron	Cast Eress
Tubes ¾" O.D.	€hpper	Copper
Tube Sheet	Steel	Rolled Naval Brass
Baffles	\$teel	Steel
Nuts & Bolts	Steel	Steel

Pumps P3, P4, P5

This page has been deleted because of copyright information. For information on Bell and Gossett, series 60 in-line pumps, contact Bell and Gossett (ITT), B200N Austin Ave., Morton Grove, Ill. 60053.

Series 60 Pumps can be furnished in bronze-fitted, all iron, or all bronze construction to suit your application P3 P4 P5 P3, P4, P5 DOTTED-IN CURVES REPRESENT STOCK PUMP SELECTIONS FEET 30 51/4" 3 <u>x</u> TOTAL HEAD 31/2" 31/2" SAFACITY IN U.S. GALLONS PER MINUTE CAPACITY IN U.S. GALLONS PER MINUTE -FEET z 43/4 HEYD HEAD 41/6" 3%~ 3% 1/4 HP CAPACITY IN U.S. GALLONS PER MINUTE CAPACITY IN U.S. GALLONS PER MINUTE ĸ ĸ **Q**23H HEAD CAPACITY IN U.S. GALLONS PER MINUYE CAPACITY IN U.S. GALLONS PER MINUTE

Curves based upon shop test using clear cold water at a temperature of not over 85° F. Horsepower curves do not include motor service factor.

_ _

STANDARD VOLTAGES

4 HP, 1 PH, 115 Volts. 1/2 HP, 1 PH, 115/230 Volts. 1/4 to 3/4 HP, 3 PH, 200-230/460 Volts. 1 to 2 HP, 208 or 230/460 Volts.

1 Suction

1 Suction

2 HP, 208 or 230/460 Volts. 1/4 to 3/4 HP, 3 PH, 200-230/460 Volts. 1 to 2 HP, 208 or 230/460 Volts. All single phase motors have built-in overload protection.

Companion flanges furnished for suction and discharge

		or suction and	SUCTION &		DIMENS	ONS IN INC	HES	
STOCK PUMP	PUMP SIZE	MOTOR HP	DISCHARGE SIZE (NPT)	Α	В	С	D	E
MODEL		1/4	1	1513/16	11	4%	61/8	37/16
	1AA	1/3	1	1613/16	11	43/8	61//8	37/6
	1AA		11/4	1513/16	11	5	71/2	37/16
60-11	11/4AA	1/4		1613/16	11	5	71/2	37/16
	11/4AA	1/3	11/4	175/16	11	5	71/2	37/16
_	11/4AA	1/2	11/4	 		51/8	77/8	3%
	1½ÅÅ	1/4	1½	16	11½	51/8	77/8	3%
	1½AA	1/3	11/2	17	111/2	51/8	77/8	35/8
60-13	1½AA	1/2	1½	171/2	11½	51/8	77/8	35/8
_	1½AA	3/4	11/2	18	11½			
	2AA	1/4	2	161/8	11½	51/8	8	33/
	2AA	1/3	2	171//8	11½	51/8	8	3 ³ / ₂
	2AA	1/2	2	17%	11½	51/8	8 8	33/
60-14	2AA	3/4	2	181//8	11½	5½		
		1/2	11/2	201/4	13½	5%	91/2	31/
60-15	1½A 1½A	3/4	11/2	213/4	13½	51/8	91/2	31/
60-16	1½A	1 1	11/2	193/4	13½	5%	91/2	31/
60-17	1½A	11/2	11/2	20%	131/2	55/8	91/2	31/
•			2	211/4	14	53/4	9%	31/
	2A	1/2	2	213/4	14	53/4	9%	31,
	2A	3/4	2	193/4	14	53/4	9%	31,
60-19	2A	1 11/	2	20%	14	53/4	97/8	31
60-20	2A	11/2	2	21%	14	53/4	97/8	31
60-21**	2.A	2**	Dimensions are a	2 - 18				n nurni

^{**}Not available in single phase.

Construction Materials

FOR PARTS IN CONTACT WITH FLUID PUMPED

PARTS IN CONTACT W	BRONZE FITTED PUMP	ALL IRON PUMP	ALL BRONZE PUMP	
DESCRIPTION		Cast Iron	Bronze	
Volute	Cast Iron		Iron with Brass Face Plate	
Bearing Bracket	Cast Iron	Cast Iron	Brass	
Impeller	Brass	Steel (AA)/Cast Iron (A)		
	Steel	Steel	Steel	
Impeller Key	Steel	Steel	Brass	
Impeller Lock Washer	Brass (AA) Steel (A)	Plated Steel	Brass	
Impeller Lock Nut	Steel	Steel	Steel	
Pump Shaft		Stainless Steel	Copper	
Shaft Sleeve	Copper		Rubber Bellows	
Seal Assembly	Carbon Seal Ring, Remite Seat, Synthetic Rubber Bellows and Stainless Steel Spring			

Pumps P1, P2, P6, P7, P8

AURORA PUMP A UNIT OF GENERAL SIGNAL BOO AIRPORT FIOAD NORTH AURORA ILLINOIS 60542

NO	NO. OF PRINTS					
13	FOR APPROVAL					
	FINAL					

SALES OF	FICE: AUROR	A + UM	P-DALLAS	,7. PO# 8	16U-93-7-1A
ACTORY ORI JCିଡ:	JER NUMBER: TOT	(27)			
ERVICE:		· · · · · · · · · · · · · · · · · · ·			
NGINEER: _		, <u></u>			
CONTRACTOR OLD TO: MEFERENCE:	NATKIN & P.I HAMPTO	G. N SOLAR		PO# _	7449-1007
		P	UMP	1	
/ 20		XYA SIZE	344 MODEL		
			***************************************		RH⊠ LH□
BASE:	construction:	COUPLING:	STUFFING BOX:	CONNECTIONS	LUBRICATION
☐ STEEL DRIP RIM	STANDARD FITTED	⊠ standard	MECHANICAL SEAL		⊠ GREASE
		SPACER	⊠ STANDARD	☐ FLANGE	OIL
STEEL	Ο	☑ GUARD		□ 125 #	
FABRICATED STEEL	D		☐ PACKING	□ 250 #	
SILLE			☐ LANTERN RING		
			IOTOR	.	
5_iP.	PHASE _	60 HERTZ	208 volts /	750 RPM	184-T FRAME
IY: 🛛 AURO	RA 🔀 ODP	□ ve	RTICAL		OR NOT MOUNTED
OTHER			RIZONTAL FACTORY MANUFAC	CHOICE VED	FACTORY ON TICAL UNITS.
	☐ XPROOF	PA:	RT WINDING MANUFAC		
		SPECIAL	REQUIREMENTS		
UMP:					
PRIVE:					
ELECTRICAL: _					
ERTIFIED	SECTION: 340	PAGE: 25	CURVE NUMBER:	3PC-116	331
DOINT.			MAINTENANCE:		
•	ву: <u>В</u>		9/29/72 OFFICE:		<i>P</i> 4
1	PRINTS ARE NOT TO SCAL	E AND ARE CERTI	MANUFACTURING UNTIL A FIED CORRECT ONLY FOR DRA PUMP, NORTH AUROR	THIS ORDER. ALL	ED.
THIS ORDER	CAN BE RELEASED FO	R MANUFACTU	RING AS SHOWN:	AUTHORITY:	
	R MANUFACTURING P			OFFICE:	
			79	DATE:	

73

NOTES

- 1. ALL DIMENSIONS IN INCHES.
- 2. DIMENSIONS MAY VARY±1/4.
- 3. NOT FOR CONSTRUCTION PURPOSES UNLESS CERTIFIED.
- 4. NA = NOT APPLICABLE.
- 5. CHECK DISCHARGE POSITION, CASING DIMENSIONS WHICH EXCEED DIMENSION "D" MAY REQUIRE PADS FOR THE PUMP AND/OR MOTOR.
- 6. CONDUIT BOX IS SHOWN IN APPROXIMATE LOCATION.
 DIMENSIONS ARE NOT SPECIFIED AS THEY VARY WITH
 EACH MOTOR MANUFACTURER.
- * DIM "HT" MAY VARY 1/8" to 1".
- † D DIMENSIONS OF $6 \times 6 \times 12$ PUMP WITH 254T THRU 326T MOTOR IS 8".

POSITION (4)

	BASE	SIZE	HA	нв	HE	НG	Н	H	нР	HP.
							QTY	SIZE		
	1	12 × 30	12	30	9	3	2	:	15	-
7	2	17 × 34	17	34	15	3	A	7,	1.	1'4
	3	18 × 38	18	38	16	4	4	2,	1.	
	4	18 × 42	18	42	16	4	4	•	1.	1.
	5	18 x 44	18	44	15	4	4	1	1	
	6	18 × 48	18	48	15	4	4	9	1	

			PI	JMP5	WITH 7	HREA	DED CO	NNECTIC	345			
PU	MP SIZE					Ī		D	н		HL.	
DISCHARGE	SUCTION	CASE BORE	×	Υ	z	DC	DD	FRAME 1	FRAME 2 & 3	FRAME 1	FRAME 2	FRAME 3
τ',	11/2	7	5',	2',,	41,,	413	5 1	77.4	NA	4'',	NA	NA
١,	1,	9	64,	2	51,	63.	6,	7.	NA	41,	NA	NA
1,	2	7	5.	2',	4314	5	5 '.	73,	NA	417,	NA	АИ
1 ;	2	9	6.	23,	5 ,	6'.	6 .	7 '.	8',	4',	6.	NA
1 1	2	12	7 3,	21,	7	8	8 .	NA	8',	NA	63.	NA
		PUMP	5 W17	TH AM	. STD.	125 L	B. FLAN	GED CO	NECTIO	NS.		
2	2',	7	51.	1.	41,	5 %	5 '	6 '3	7''.	410.	5'',	NA
2	2 :	9	7		5".	6 ;	6 ,	6.	7.	4 ,	5 ',	NA
2	2,	12	8		7',	8 .	8 .	NA	7	NA	5,	NA
2 ;	3	7	5 .	2	4 1,	·	٥.	7'.	8'.	41.,	6'	NA
2 ;	3	9	7 .	2	5 1,,	6 ,*	7 .	7	8	4 ,	6	ΝX
2 ;	3	12	8 ,	2	74	8 '.	8 '.	NA	8.	NA	6	NA
3	4	9	7	2 ,	6,	6.	7	7'.	В.	4 ',	6',	NA
3	4	12	8	2,	7'.,	8 .	8 .	NA	8 '.	NA	6.	6,
4	4	7	6 .	2 .	5,	6	7.	7".	8''.	5.	6 '	HA
4	5	9 A	7.	3.	5 '4	6 .	7',	NA	9,	NA	7'.	7.
4	5	9B		2',	6 ¹.		18	NA	9	NA	7	NA
4	5	12	٤.	2 ',	7 .	8	9.	NA	9.	НA	7.	7.
5	6	12	9	2.	8',	9.	10 ,	NA	91,	N.A.	7 '.	71.
. 6	6	9	8,	21.	7	8	9	NA	9.	МА	7.	NA
6	6	12	9.	3 .	8	9	10 ,	NA	10 .	NA	NA	8.

<u>,</u>	18 × 48	18 48	15 4	41.		
	"D" DIM	OTE: WHEN TWO D' DIMENSIONS RE INDICATED LWAYS USE THE		1	2	3
	LARGER	FIGURE.	WG	101 ,	13'' .	13 ' .
		CASE	7	5'.	6	
		BORE	9	6 '	7	7
	- S		12		7	7
	MOTOR FRAME	C APPROX.	0.	BA	SE NUM	BER
	56	12		1	11A	MA
	143T	11		1	NA	NA
	145T	12		1	. 3	NA
į	1827	13		1	3	NA
	# 184T	14		1	3	NA
7	213T	16	5	2	3	NA
	2157	18	5 ,	2	3	NA
1	254T	21	6.	3	4	4
ı	256T	23	6',	NA	4	4
	2847	24	7	NA	5	5
	284TS	22	7	NA.	5	5
1	286T	25	7	NA	5	5
Į	286TS	24	7	NA	5	5
I	324T	26	8	NA	6	6
I	324T5	25	8	NA	6	٥
ĺ	326T	28	8	NA	6	٤
Ĺ	326TS	26	8	NA	6	6
I	364T	29	9	NA	6	6
	364TS	27	9	NA	6	6

AURORA PUMP AUNIT OF GENERAL SIGNAL 800 AIRPORT ROAD-NORTH AURORA ILLINOIS-60542

ORIGINAL PAGE IS OF POOR QUALITY 'ATED FEBRUARY 1969

TECTION 340 PAGE 404 _____ 1-1 _ X 2 x 9A SERIES 340 OR 3 _ J ___ **ENCLOSED IMPELLER**

OF POOR QUALITY

AURORA PUMP AUNIT OF GENERAL SIGNAL

800 AIRPORT ROAD NORTH AURORA ILLINOIS 60542

NO	NO. OF PRINTS							
ノフ	FOR APPROVAL							
•	FINAL							

Pales 0	OFFICE: <u>Auro</u> A	RA FUMI	- PALLA	S PO# 9	52 -93-7-1A
	ROER NUMBER: _9K	7-12488			
JOB:					
ENGINEER:					
CONTRACTO)R:				
()LD TO: _	->-2	CO. MILTON S	SOLAR	PO# <u>7</u>	449 - 1007
ļ		P	UMP		
DAVE NUME	BER OF UNITS 2x2	2 /2 × 6 SIZE	324 MODEL _	POWER SERIES	PUMP ONLY
100	GPM	5TDH	1750 RPM	M ROTATION:	RH⊠ LH□
^4SE:	CONSTRUCTION:	COUPLING:	STUFFING BOX:	CONNECTIONS	LUBRICATION
ப் STEEL	STANDARD	STANDARD	MECHANICAL SEAL	THREADED	፟ GREASE
DEIP RIM	FITTED	☐ SPACER	☑ STANDARD	☐ FLANGE	OIL
LX STEEL		⊠ GUARD		□ 125 #	
FADDICAT	ED		☐ PACKING	250 #	
STEEL			☐ LANTERN RING		
		N	IOTOR		
HP.	PHASE	60 HERTZ	208 volts	1750 RPM	143-7 FRAME
Y: 🗹 AUR	ORA 🔀 ODP	□ ve	RTICAL	NOTE: MOT	OR NOT MOUNTED
□ отн			444411546	CHOICE VED	FACTORY ON TICAL UNITS.
	☐ XPROC	PA.	RT WINDING MANUFAC	Nonen .	
		SPECIAL I	REQUIREMENTS		
: JMP:				1	
NVE:					
ELECTRICAL:					
GERTIFIED	SECTION: 320	PAGE: 25	CURVE NUMBER:	31PC -1092	26
TRUT:	SPECIAL:	DATE:	MAINTENANCE: 7 / 24 / 72 OFFICE:	AURORA	
	PRINTS ARE NOT TO SCA	LE AND ARE CERTI	MANUFACTURING UNTIL A	THIS ORDER. ALL	ED.
			DRA PUMP, NORTH AUROR	AUTHORITY:	
	R CAN BE RELEASED FO			OFFICE:	

76

DATE:

AURORA MODEL 324A PUK S _____ SECTION 320 PAGE . 251 ON STEEL BASES

DATED OCTOBER 1974

SUPERSEDES PAGE 251 DATED APRIL 1973

	FRAME	С	Н	НА	нв	HD	HE	HG	НР
		APPROX.							
	48	10	3 8	9	21	711,6	7	2 1 16	101,
	56	12	3,	9	21	7 11 16	7	2 116	10',
	€ 143T	11	7,	9	21	7 11/16	7	2110	10',
Â	145T*	12	3,	9	21	7 11 10	7	2 '.16	10',
	182T	13	1,	10	24	7.,	7	25	12
	184T	14	1/2	10	24	77.	7	25	12
	213T	16	1,2	12	27	8 ¼	9	3	131,

PU	MP SIZE								!
DISCHARGE	SUCTION	CASE BORE	w	х	Y	DC	DD	DE	HL.
3/4	1	6	131%	5 1/2	11/4	33/14	3 7/16	3 1/4	4 % /14
3/4	1	7	131/4	614	1 1/4	3 15/14	4	47/16	4 19/14
1	11/4	4	13 1/4	4%	111/4	21/4	2 1/4	21/4,	4 3/6
1	11/4	5	133/10	5	2	213/14	2 1/4	3	4 1/4
1	1 1/4	6	133/4	5 1/2	1 13/16	354.	3 1/4	3 %	413/14
1 1/4	1 1/2	5	1314	5	1 15/1.	2 %	215/4	3 1/1.	4 %
1 1/4	1 1/2	7A	131/4	6 1/4	2	4	41/14	4 1/2	4 15/14
1 1/4	1 1/2	7B	13 3/4.	6 1/4	21/10	4	41/4	4 1/4	53/14
14	1 1/2	9	133/1.	8	21/4	513/4	53/4.	5 13/1.	5 %
1 1/2	2	4	13%	5	21/4	2 1/2	3	2 1/4	5 3/1.
1 1/2	2	7	133/16	7	21/4	41/14	41/4	4 1/4	5 1/4
2	2 1/2	4	13 1/4	5	31/4	21/2	3	2 13/14	6 1/4
2	2 1/4	5	133,	6	211/14	3	3 1/1.	3 1/1.	5 1/4
1 2	2 1/2	6	135/4.	6	2 3/4	3 1/3	311/4	4%	5 1/4
2	21/2	7	131,	7	2 13/14	4 1/14	45/14	4 1/4	6
3	3	6	13',	8	3 ',	3',	47/14	5',	6 13 1

PUMP AURORA A UNIT OF GENERAL SIGNAL 800 AIRPORT ROAD - NORTH AURORA ILLINOIS - 60542

NPT DISCHARGE POSITION (2)

NOTES

TURER.

- 1. ALL DIMENSIONS IN INCHES.
- 2. DIMENSIONS MAY VARY ± 3 8.
- 3. NOT FOR CONSTRUCTION PURPOSES UNLESS CERTIFIED.
- 4. CONDUIT BOX SHOWN IN APPROXIMATE LOCATION. CAPACITOR, WHEN FURNISHED, NORMALLY APPEARS ON TOP OF MOTOR, DIMENSIONS ARE NOT SPECIFIEC AS THEY VARY WITH EACH MOTOR MANUFAC-

X Z-1/Z X O SERTES 3

DATION 329 PAGE 415

AURORA PUMP

A UNIT OF GENERAL SIGNAL CORPORATION

AURORA PUMP

NO	NO. OF PRINTS						
13	FOR APPROVAL						
FINAL							

SALES O	FFICE: AURO	ZA PUN	IP-DALLA	5, 1 PO# 8	49-93-7-1A
	RDER NUMBER: 9K	7-12485			
JOB: ERVICE:					
LNGINEER:					
CONTRACTO		2 00		11 7	UU9- 1007
OLD TO: _ REFERENCE	NATKIN P-G HAM	PTON SO	LAR	PO# <u></u>	777 1007
			UMP		
ONENUME	BER OF UNITS 2 x 2	1/2 x 6 SIZE		POWER SERIES	PUMP ONLY
90	GPM	FT TOH	1750 RPI	M ROTATION:	RH⊠ LH□
-PASE:	CONSTRUCTION:	COUPLING:	STUFFING BOX:	CONNECTIONS	LUBRICATION
JSTEEL	⊠ STANDARD	🔀 STANDARD	MECHANICAL SEAL	X THREADED	⊠ GREASE
DRIP RIM	FITTED	☐ SPACER	⊠ STAMDARD	☐ FLANGE	OIL
ß STEEL	<u> </u>	☑ GUARD		□ 125 #	
FABRICAT	ED		☐ PACKING	250 #	
STEEL			☐ LANTERN RING		
•		M	IOTOR		
3/4 HP.	3 PHASE	60 HERTZ	208 VOLTS /	1750 RPM C	56 FRAME
3Y: 🔀 AUR	ORA 🔀 ODP	□ ve	RTICAL	NOTE: MOT	OR NOT MOUNTED
□ отн		₩ но	RIZONTAL FACTO	OF Y CHOICE AT F	FACTORY ON TICAL UNITS.
	. D XPROC	DF DPA	RT WINDING MANUFA	CIURER .	
		SPECIAL	REQUIREMENTS		
UMP:					
\D!\\F.			OB	IGINAL PAGE IS	
)RIVE:				POOR QUALITY	
ELECTRICAL:					
CERTIFIED	SECTION 320	PAGE: 25	CURVE NUMBER	31PC- 100	726
RINT:	SPECIAL:	_ PAGE	MAINTENANCE		
	BY: 33		9/29/77 OFFICE		1
	THIS ORDER WILL NOT E	BE PROCESSED FOR	MANUFACTURING UNTIL FIED CORRECT ONLY FO	APPROVAL IS RECEIV R THIS ORDER. ALL	ED.
	ORDERS SUBJECT TO AC	CEPTANCE AT AURO	ORA PUMP, NORTH AURO	RA, ILLINOIS.	
"HIS ORDE	R CAN BE RELEASED F	OR MANUFACTU	RING AS SHOWN:	AUTHORITY:	
	OR MANUFACTURING			OFFICE:	

79

DATE:_

AURORA MODEL 324A PUL S ____ SECTION 320 PAGE 251 ON STEEL BASES

DATED OCTOBER 1.74

SUPERSEDES PAGE 257 DATED APRIL 1973

	FRAME	С	Н	НА	нв	НД	HE	НG	НР
		APPROX.							
	48	10	3	9	21	7 11 16	7	2',,	10 ',
	56	12	' .	9	21	7,11	7	2 7.16	10 ',
	143T	11	3 6	9	21	7 11 14	7	27.16	10 1,
	145T*	12	3,	9	21	71116	7	27.14	10',
	182T	13	1,2	10	24	7',	7	25,	12
	184T	14	1/2	10	24	7 ′,	7	23,	12
	213T	16	1/2	12	27	81/4	9	3	131,

PUMP SIZE			}						l
DISCHARGE	SUCTION	CASE BORE	w	х	Y	DC	DD	DE	HL.
3/4	1	6	131/4	5 1/4	14	33/4	3 1/16	3 1/4	4 4/4
3/4	1	7	13 1/4	61/4	1 %	3 15/4.	4	41/14	411/14
. 1	11/4	4	131/4	41/4	111/4	2 1/4	2 1/4	27/16	4 %
1	11/4	5	133/4	5	2	213/14	2 1/4	3	4 1/4
1	14	6	133/4	5 1/2	7 15 14	33/4	3 %	3 1/4	4 13/14
14	1 1/2	5	1314	5	1 15/4	2'.	215/16	31/4.	41/4
1 1/4	1 1/2	7A	13 1/4	61/4	2	4	41/14	4 1/2	4 13/16
1 1/4	1 1/3	7B	13 1/4.	6 1/4	2 1/1.	4	41/4	4 %	53/4
14	1 1/2	9	13 3/4	8	21/4	5 13/14	5 3/4	513/14	5 1/4
1 12	2	4	13 %	5	21/4	2 1/4	3	21/4	5 3/4
1 4	2	7	13 1/14	7	21/4	4154	414	4 1/4	5 %
2	21/2	4	13 1/4	5	31/14	2 1,	3	2 13/14	6 1/3
2	2 1/2	5	1334	6	211/4	3	33/4	3 1/4	5 ¾
2	2 1/2	6	133/4	6	2 1/4	3 1/3	311/14	4 %	5%
2	2 1/2	7	131,	7	2 15/14	4114	43/14	4 %	6
3	3	6	13',	8	35,	3',	47.14	5 '.	6 13 14

AURORA PUMP A UNIT OF GENERAL SIGNAL 800 AIRPORT ROAD+NORTH AURORA ILLINOIS+60542

NPT DISCHARGE POSITION (2) NPT DISCHARGE

I. ALL BIMENSIONS IN INCHES.

POSITION (4)

- 2. DIMENSIONS MAY VARY ± 3 8.
- 3. NOT FOR CONSTRUCTION
- PURPOSES UNLESS CERTIFIED.
- 4. CONDUIT BOX SHOWN IN APPROXIMATE LOCATION. CAPACITOR, WHEN FURNISHED. NORMALLY APPEARS ON TOP OF MOTOR. DIMENSIONS ARE NOT SPECIFIED AS THEY VARY WITH EACH MOTOR MANUFAC-TURER.

AURORA PUMP

A UNIT OF GENERAL SIGNAL CORPORATION

ORIGINAL PAGE IS OF POOR QUALITY

AURORA PUMP

A UNIT OF GENERAL SIGNAL

800 AIRPORT ROAD-NORTH AURORA ILLINOIS-60542

NO. OF PRINTS 17 FOR APPROVAL FINAL

SALES OF	EICE, Augo	A PHAT	-DALLAS	- /	250-02-7 10
E CTORY OR	DER NUMBER: 9	7-1248	6 DALLAS	ــ PO#	30-43-7-74
JOB:					
RVICE:					
ENGINEER: _					
CONTRACTOR	NATKIN &	Co		PO# <u>Z</u>	449-1007
REFERENCE:	P-7 HAMI	LTON S	OLAR	PU# <u>/</u> _	
		P	UMP		
UNE NUMBE	ROFUNITS 1/2 *	2×7 SIZE	324 MODEL	POWER SERIES	PUMP ONLY
60	GPM 35	TDH	1750RPM		RH⊠ LH□
PASE:	CONSTRUCTION:	COUPLING:	STUFFING BOX:	CONNECTIONS	LUBRICATION
STEEL DRIP RIM	☑ STANDARD	🗹 STANDARD	☑ MECHANICAL SEAL	☑ THREADED	☑ GREASE
DAIR AIM	FITTED .	☐ SPACER	⊠ STANDARD	☐ FLANGE	OIL
X STEEL	O	☑ GUARD		□ 125 #	
FABRICATED			☐ PACKING	250 #	
SIEEL			☐ LANTERN RING	O	
			IOTOR		
HP.	3 PHASE	60 HERTZ	208 VOLTS /	750 RPM _	143-1 FRAME
Y: 🛭 AURO	RA 🔀 ODP	□ ve	RTICAL		OR NOT MOUNTED
OTHER			AAAAU ICA O	CROICE VED	FACTORY ON TICAL UNITS.
			RT WINDING		
		SPECIAL	REQUIREMENTS		
JMP:					
RIVE:					
December 1997					
ELECTRICAL: _					
CERTIFIED S	SECTION:	_ PAGE:	CURVE NUMBER:	31PC-109	33
"RINT:	SPECIAL:		MAINTENANCE:	2000	<u> </u>
. 6			アノ <mark>ンタ / フラ</mark> OFFICE: MANUFACTURING UNTIL A		<u>T</u>
F	PRINTS ARE NOT TO SCA	LE AND ARE CERTI	FIED CORRECT ONLY FOR DRA PUMP, NORTH AUROR.	THIS ORDER. ALL	
HIS UBUED	CAN BE RELEASED F	OR MANUFACTU	RING AS SHOWN:	AUTHORITY:	
	R MANUFACTURING		HANGE ORDER:	OFFICE:	
HELEMOLI OF	I MAROI AOI OIMRO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00	DATE:	

82

AURORA MODEL 324A PUT S _____ SECTION 320 PAGE 251 ON STEEL BASES

DATED OCTOBER 1974

SUPERSEDES PAGE 251 DATED APRIL 1973

	FRAME	С	н	HA	нв	НD	HE	НG	НР
		APPROX.							
	48	10	3,	9	21	7 11.4	7	2'16	10 1,
	56	12	3,6	9	21	7 11 16	7	27:16	101,
	≠ 143T	11	3 8	9	21	711,	7	27,14	10 1,
ST.	145T·	12	3,	9	21	7 11 1.	7	27.16	10 1/2
	182T	13	1,	10	24	7'.	7	25,	12
	184T	14	1/2	10	24	7 7,	7	234	12
	213T	16	1;	12	27	814	9	3	13 1,

PUMP SIZE									
DISCHARGE	SUCTION	CASE BORE	w	X	Υ	DC	DD	DE	HL.
3/4	1	6	131;	5 1/2	14	35/16	37/4	3 %	41/14
3/4	1	7	131	6 1/4	1 1/4	3 15/16	4	47/14	411/14
1	1 1/4	4	1314	41/4	133/4	2 %	2 1/4	21/16	4%
1	1 ¼	5	1334	5	2	213/14	21/4	3	4 1/4
1	1 1/4	6	133,14	51;	1 15/14	33/16	3 %	3 1/4	413/14
14	1 1/2	5	1314	5	1 15/14	2 1/4	215/4	31/16	4%
11/4	11/4	7A	1314	614	2	4	41/14	4 1/2	4 15/14
1 ¼	1 1/2	7B	13%,	61/4	21/14	4	41/4	4 1/4	53/16
1 1/4	1 1/2	9	133.14	8	21/4	5 13/14	53/4	5 13/10	5 1/4
1 1/4	2	4	133,	5	21/	2 1/3	3	2 3/4	5 3/14
11/2	2	7	13 ³ 14	7	21/4	41/14	41/4	4%	5 1/4
2	2 1/3	4	13 3	5	31/4.	2 1/2	3	213/1.	61/4
2	21;	5	133,	6	211/16	3	33/14	3 1/4.	51/4
2	2 1/2	6	1334.	6	2 1/4	3 1/2	3 11/1.	4 1/4	5 1/4
2	2 1/2	7	131,	7	2 15/14	41/14	43/14	4%	6
3	3	6	13 '-	8	33,	3 7	4744	5 74	6 13/16

- 1. ALL DIMENSIONS IN INCHES.
- Z. DIMENSIONS MAY VARY ± 3/8.
- 3. NOT FOR CONSTRUCTION PURPOSES UNLESS CERTIFIED.
- 4. CONDUIT BOX SHOWN IN APPROXIMATE LOCATION, CAPACITOR, WHEN FURNISHED, NORMALLY APPEARS ON TOP OF MOTOR. DIMENSIONS ARE NOT SPECIFIED AS THEY VARY WITH EACH MOTOR MANUFAC-TURER.

AURORA PUMP A UNIT OF GENERAL SIGNAL

800 AIRPORT ROAD - NORTH AURORA ILLINOIS - 60542

OFFINAL PAGE IS OR QUALITY

DATED MARCH 1966

40130 (6-76)

AURORA PUMP AUNIT OF GENERAL SIGNAL

800 AIRPORT ROAD NORTH AURORA ILLINOIS 60542

NO. OF PRINTS										
13	FOR APPROVAL									
	FINAL									

SALES OF	FFICE: AUROL	2A + U	MP · DALLA	5, 7. PO# Ps	rı-93-7-1A
JOB:	DER NUMBER: 70	1-1240			
TRVICE:					
INGINEER: _					
CONTRACTOR		<u> </u>			140 140
HEFERENCE:	NATKIN E P. 8 HAMPI	ON SOLA	n P	PO# <u></u>	1444 - 1001
TETERENCE.			UMP		
DNE NUMBE	ER OF UNITS 3 × 3		324 _{MODEL} _		
.90		7 TDH			
. '	GPM	TDH	TO CO RPM	ROTATION:	RH⊠ LH□
BASE:	CONSTRUCTION:	COUPLING:	STUFFING BOX:	CONNECTIONS	LUBRICATION
STEEL DRIP RIM	STANDARD	⊠ standard	🗵 MECHANICAL SEAL	☐ THREADED	™ GREASE
5	FillED	☐ SPACER	STANDARD	☐ FLANGE	OIL
La STEEL	O	☑ GUARD		□ 125 #	
FABRICATE	D		☐ PACKING	250 #	
STEEL			☐ LANTERN RING	O	
		M	OTOR		
1.5 HP.	3PHASE		208 VOLTS /	750 RPM /	45-T FRAME
i Y: 🗵 AURO	RA 🔀 ODP	☐ VEF	RTICAL		OR NOT MOUNTED
OTHE	_		RIZONTAL FACTOR) MANUFAC	CHOICE	ACTORY ON FICAL UNITS.
•		F L PAR	IT WINDING MANUFAC	IOREN	
		SPECIAL P	REQUIREMENTS		
P MP:				O'T INAL PAGE	E IS
°C°IVE:		<u></u>		POOR QUAL	
	W				
ELECTRICAL:				to different constraints of the second of th	
GERTIFIED	SECTION 320	PACE: 25	CURVE NUMBER:	31PC-177	448
BRILLE	SPECIAL:		CORVE NOWBER:		
	BY: _ 33		1/29/77 OFFICE:		
			IANUFACTURING UNTIL A		D.
			RA PUMP, NORTH AURORA		
TUIS OPDER	CAN BE RELEASED FO	R MANUEACTUR	ING AS SHOWN.	AUTHORITY:	
	R MANUFACTURING PI			OFFICE:	
				DATE:	

AURORA MODEL 324A PUL S _____ SECTION 320 PAGE 251 ON STEEL BASES

DATED OCTOBER 1974

SUPERSEDES PAGE 251 DATED APRIL 1973

	FRAME	C APPROX	Н	HΑ	нв	НD	HE	НG	HP
	48	10	3	9	21	7 11 14	7	2',	10 1
1	56	12	1,	9	21	711,6	7	27.16	10 ',
-	143T	11	73.	9	21	7"	7	2714	10',
J	145T·	12	3,	9	21	7 1/14	7	2 '.,	101;
Ĵ	182T	13	12	10	24	7 ',	7	25,	12
	184T	14	1/2	10	24	77,	7	23,	12
	213T	16	1,	12	27	8 1/4	9	3	1312

PU	MP SIZE		1		1		l]	1
DISCHARGE	SUCTION	CASE BORE	w	х	Y	DC	DD	DE	HL
3/4	1	6	131/4	5 1/2	13/4	3 1/4.	37/4	3 1/4	47/14
₹4	ī	7	13 4	6 1/4	1 %	3 15/14	4	41/4	4 11/14
1	11/4	4	13 1/4	41/4	111/46	2 1/4	21/4	21/4.	4%
1	14	5	1334.	5	2	2 13/14	2 %	3	4 1/4
1	11/4	6	133/14	5 1/4	1 15/14	35/14	31,	3 1/4	413/4.
11/2	11/4	5	131/4	5	1 15/14	21/4	213/14	31/14	4 1/4
1 1/4	1 1/3	7.A	13 1/4	6 1/4	2	4	41/14	4 1/2	4 15/14
14	1 1/2	7B	13 1/4.	6 1/4	21/14	4	4 1/4	4 %	53/16
1 1/4	1 1/2	9	13 1/1.	8	21/4	513/1.	53/4	5 13/14	5 1/4
1 1/2	2	4	133,	5	2 1/4	2 1/2	3	21/4	53/4
1 1/2	2	7	1334.	7	21/4	454	41/4	4 1/8	5 1/4
2	2 1/3	4	13 %	5	3 1/14	2 1/2	3	2 13/14	6 1/4
2	2 1/2	5	13 %	6	211/4	3	3 3/4.	3 1/4	5 1/4
2	2 1/3	6	135/14	6	2 1/4	3 1/2	314	4%	5 1/4
2	2 ',	7	131/4	7	2 15/16	41/4	43/14	4 1/4	6
3	3	6	13 '-	8	3 '.	3',	471.	5 7	611

NOTES

- 1. ALL DIMENSIONS IN INCHES.
- 2. DIMENSIONS MAY VARY ± 3 8. 3. NOT FOR CONSTRUCTION
- PURPOSES UNLESS CERTIFIED.
- 4. CONDUIT BOX SHOWN IN APPROXIMATE LOCATION. CAPACITOR, WHEN FURNISHED, NORMALLY APPEARS ON TOP OF MUTOR. DIMENSIONS ARE NOT SPECIFIED AS THEY VARY WITH EACH MOTOR MANUFAC-

PUMP AURORA A UNIT OF GENERAL SIGNAL

800 AIRPORT ROAD+NORTH AURORA ILLINOIS+60542

3 x 3 x 6 SERIES 320 ENCLOSED IMPELLER

SECTION 320 PAGE 417
DATED OCTOBER 1974

50

100

150

0

AURORA PUMP A UNIT OF GENERAL SIGNAL

250

CAPACITY-G.P.M.

350

31PC-122448

Cooling Tower

Transpirit March Control Control

BALTIMORE AIRCOIL MODEL VN, VL, VS, COOLING TOWERS

E.A.C. SERIAL MINNER 77-5260P PROTEER Travis Braun Assoc. Dallace UNIT TYPE All hot-dip galvanized steel, factory-assembled, councerflow blow through. Not-dip galvanized steel, factory-assembled, councerflow blow through. Not-dip galvanized steel self-cleaning W-sheped gas and centrifugal fans polymore depends the sloping undersides of the pan. Reavy gauge hot-dip galvanized steel channel and angle framework. NOME-UP FLOAT STRAINER All hot-dip galvanized steel with large-area removable perforated sureens; antivortexing paffel assembly to prevent air entrainment in leaving water (except units for remote sump operation). YAN DISCRANCE Not-dip galvanized steel couls provided on each fan discharge extending within the pan to increase fon efficiency and prevent water from entering fans. ACCESS Not-dip galvanized steel circular access doors at ends of tower, held in place by wingnuts. ELEED-OFF Waste water bleed-line with adjustable valve provided (except units for remote sump operation). FAN NUMELS Forwardly curved centrifugal squirrel cage type of hot-dip galvanized steel. Exercically and dynamically believed. Fan housings have compound curve inlet rings for efficient air entry. FAN SIMPT Wells shift of ground and polished steel. Expected surface coated with rust preventative. BEARINGS BEARINGS Self-aligning, heavy duty, grease-lubricated, ball hearings with eccentric aligning, heavy duty sleeve bearings with two piece cast iron bodies, deep vell reservoirs and of cups. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric lacking collars on of two end of each fan thait. Beaching bearings are self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric lacking collars on of two end of each fan thait. Beaching bearings are self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric lacking collars. DRIVE DRIVE Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected posi	customer Natki	n & Co. Dallas, TX	2.0. 7449–1002	:
Hot-dip galvanized steel self-cleaning V-shaped pan and centrifugal fans counted beneath the sloping undersides of the pan. Heavy gauge hot-dip galvanized steel channel and angle framework. Brass float valve with adjustable plastic float ball (except units for remote sump operation). All hot-dip galvanized steel with large-area removable perforated screens; antivortexing baffle assembly to prevent air entrainment in leaving water (except units for remote sump operation). AND DISCHARGE Hot-dip palvanized steel cust provided on each fan diacharge extending within the pan to increase fon efficiency and prevent sater from entering fans. Hot-dip palvanized steel circular access doors at ends of tower, held in place by wingnuts. Hot-dip palvanized steel circular access doors at ends of tower, held in place by wingnuts. FAN NHEELS Hot-dip palvanized steel circular access doors at ends of tower, held in place by wingnuts. FORWARD (average centrifugal squitrel cage type of hot-dip galvanized steel. Statically and dynamically balenced. Fan housings have compound curve inlet rings for efficient air entry. FAN SHAFT Solid shaft of ground and polished steel. Exposed surface coated with rust preventative. BEARINGS BEARINGS BEARINGS BEARINGS Self-aligning, heavy duty, prease-lubricated, ball bearings with eccentric locking collars on drive and of each fan shaft. Bearings with eccentric locking collars and oil cups. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Not proper bear and oil cups. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Hot prevents and	S.A.C. SERIAL NUME	R 77-5260P ENGINEER	Travis Braun Assoc. Dallas	,
DONSTRUCTION counted beneath the sloping undersides of the ran. Heavy gauge hot-dip galvantzed steet channel and angle fracework. Dispersion STRAINER All hot-dip galvanized steel with large-area removable perforated screens; antivortexing baffle assembly to prevent air entrainment in leaving water (except units for remote sump operation). Not-dip galvanized steel couls provided on each fan discharge extending within the pan to increase fan efficiency and prevent steer from entering fans. ACCESS Hot-dip galvanized steel circular access doors at ends of tower, held in place by wingnuts. BELEED-OFF Waste water bleed-line with adjustable valve provided (except units for remote sump operation). PAN UNEELS Forwardly curved centrifugal squitral cage type of hot-dip galvanized steel. Statically and dynamically balanced. Fan housings have compound curve inlet rings for efficient air entry. Solid shaft of ground and polished steel. Exposed surface coated with rust preventative. BEARINGS Walled shaft with solid bearing journals at ends. Expused surface coated with rust preventative. Self-aligning, heavy duty sleeve bearings with two piece cast iron bodies, deep well reservoirs and oil cups. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars, heavy duty, grease-buricated, ball bearings with eccentric locking collars. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. When the proposed by the proposed by the factory. Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. Hot-dip galvanized steel screens. WAL PAGE IN Wave-formed, Melamine impregnated, Neoprene-Asbestos (2M) 19 mils thick, with all leading and trailing edges rolled to double chi	UNIT TYPE	All hot-dip galvanized steel, factory-assembled,	counterflow blow through.	
All hot-dip galvanized steel with large-area removable perforated sureens; antivortexing baffic assembly to prevent air entrainment in leaving water (except units for remote sump operation). FAN DISCHARGE Hot-dip galvanized steel couls provided on each fun discharge extending within the pan to increase fon efficiency and prevent water from entering fans. ACCESS Hot-dip galvanized steel circular access doors at ends of tower, held in place by wingnuts. BLEED-OFF Waste water bleed-line with adjustable valve provided (except units for remote sump operation). FAN WHEELS Forwardly curved centrifugal squirrel cage type of hot-dip galvanized steel. Statically and dynamically balanced. Fan housings have compound curve inlet rings for efficient air entry. FAN SHAFT Solid shaft of ground and polished steel. Expered surface coated with rust preventative. Belankes Belankes Self-aligning, heavy duty, grease-luvricated, ball bearings with eccentric locking collar on drive end of each fan shaft. Remaining bearings are self-aligning, heavy duty steeve bearings with two piece cast iron bodies, deep well reservoirs and oil cups. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. DRIVZ V-belt type with taper lock sheaves. Selected for 150% motor nameplate horse-power. Mounted and aligned at the factory. MOTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. FAN GUARD SCREEKS NAL PAGE IS NAL PA		mounted beneath the sloping undersides of the pa	pan and centrifugal fans an. Heavy gauge hot-dip	
antivortexing baffle assembly to prevent air entrainment in leaving water (except units for remote sump operation). FAN DISCHARGE CONIS Hot-dip galvanized steel cowls provided on each fun discharge extending within the pan to increase fan efficiency and prevent sater from entering fans. ACCESS Hot-dip galvanized steel circular access doors at ends of tower, held in place by wingnuts. BLEED-OFF Waste water bleed-line with adjustable valve provided (except units for remote sump operation). FAN WHEELS Forwardly curved centrifugal squirrel cage type of hot-dip galvanized steel. Statically and dynamically balenced. Fan housings have compound curve inlet rings for efficient air entry. FAN SHAFT Solid shaft of ground and poliched steel. Exposed surface coated with rust preventative. Boliou steel shaft with solid bearing journals at ends. Expused surface coated with rust preventative. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collar on drive end of each fan shaft. Remaining bearings are self-aligning, heavy duty sleeve bearings with two piece cast iron bodies, deep well reservoirs and oil cups. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Well type with taper lock sheaves. Selected for 150% motor nameplate horse-power. Monted and aligned at the factory. HOTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. FAN GUARD SCREENS Hot-dip galvanized steel screens. NAL PAGE IS Self-aligning palvanized steel channel-forced construction separable from pan section. WET DECK Wave-formed, Nelomine impregnated, Neoprene-Asbestos (NA) 19 mils thick, with all leading and trailing edges rolled to double thickness. ELihinators shall be constructed of hot-dip galvanized, steel and be removable in eastly handled sections. They shall logate the free destinct changes in sir	=		ball (except units for remote	
the pan to increase fan efficiency and prevent mater from entering fans. ACCESS Hot-dip galvanized steel circular access doors at ends of tower, held in place by wingnuts. BLEED-OFF Waste water bleed-line with adjustable valve provided (except units for remote sump operation). FAN WHEELS Forwardly curved centrifugal squirrel cage type of hot-dip galvanized steel. Statically and dynamically balanced. Fan housings have compound curve inlet rings for efficient air entry. FAN SHAFT Solid shaft of ground and polished steel. Emposed surface coated with rust preventative. Bollow steel shaft with solid bearing journals at ends. Emposed surface coated with rust preventative. BEARINGS Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collar on drive end of each fan shaft. Remaining bearings are self-aligning, heavy duty sleeve bearings with two piece cast iron bodies, deep well reservoirs and oil cups. [X] Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. [X] Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. [X] Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. [X] Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. [X] Self-aligning, heavy duty, grease-lubricated for 150% motor nameplate horse-power. Mounted and aligned at the factory. MEDTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. PAN GUARD SCREENS [NoTOR ONTINED Reported Selection of the service factor of the service form pan section. WEAT TRANSFER SECTION CONST. WEAT TRANSFER SECTION CONST. Weat-formed, Melamine impregnated, Neoprene-Asbestos (NAM) 19 mils thick, with all leading and trailing edges volled to double thickness. ELIHINATORS Eliminators shall be constructed of hot-dip galvanized' steel and be removable in easily handled sections.	STRAINER	antivortexing baffle assembly to prevent air ent		:
Place by wingnuts. Waste water bleed-line with adjustable valve provided (except units for remote sump operation). FAN WHEELS Forwardly curved centrifugal squirrel cage type of hot-dip galvanized steel. Statically and dynamically balanced. Fan housings have compound curve inlet rings for efficient air entry. FAN SHAFT Solid shaft of ground and polished steel. Exposed surface coated with rust preventative. Hollow steel shaft with solid bearing journals at ends. Exposed surface coated with rust preventative. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collar on drive end of each fan shaft. Remaining bearings are self-aligning, heavy duty sleeve bearings with two piece cast iron bodies, deep well reservoirs and oil cups. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. V-belt type with taper lock sheaves. Selected for 150% motor asmeplate horse-power. Nounted and aligned at the factory. BOTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. FAN GUARD SCREENS Hot-dip galvanized steel screens. WAL PAGE IN SCREENS Hot-dip galvanized steel channel-forced construction separable from pan section. WET DECK Wave-formed, Melamine impregnated, Neoprene-Asbestos (32A) 19 mils thick, with all leading and trailing edges rolled to doubte thickness. ELIMINATORS Eliminators shall be constructed of hot-dip galvanized in sir				<u>:</u>
FAN WHEELS Forwardly curved centrifugal squirrel cage type of hot-dip galvanized steel. Statically and dynamically balanced. Fan housings have compound curve inlet rings for efficient air entry. FAN SHAFT Solid shaft of ground and polished steel. Exposed surface coated with rust preventative. Belliow steel shaft with solid bearing journals at ends. Exposed surface coated with rust preventative. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collar on drive end of each fan shaft. Remaining bearings are self-aligning, heavy duty sleeve bearings with two piece cast iron bodies, deep well reservoirs and oil cups. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. Whett type with taper lock sheaves, Selected for 150% motor nameplate horse-power. Mounted and aligned at the factory. BOTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. FAN GUARD SCREENS Hot-dip galvanized steel screens. VAL PAGE 18 "CAR (MALITY) Hot-dip galvanized steel channel-forced construction separable from pan section. WET DECK Wave-formed, Melamine impregnated, Neoprene-Asbestos (MA) 19 mils thick, with all leading and trailing edges volled to double thickness. Eliminators shall be constructed of hot-dip galvanized' steel and be removable in easily handled sections. They shall inpart three distinct changes in air	ACCESS		at ends of tower, held in .	
Statically and dynamically balanced. Fan housings have compound curve inlet rings for efficient air entry. Solid shaft of ground and polished steel. Exposed surface coated with rust preventative. Bollow steel shaft with solid bearing journals at ends. Exposed surface coated with rust preventative. BEARINGS Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collar on drive end of each fan shaft. Remaining bearings are self-aligning, heavy duty sleeve bearings with two piece cost iron bodies, deep well reservoirs and oil cups. X Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. V-belt type with taper lock sheaves. Selected for 150% motor nameplate horse-power. Nounted and aligned at the factory. Prip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. FAN GUARD SCREENS Hot-dip galvanized steel screens. VAL PAGE IS CONTONED CONST. WET DECK Nave-formed, Melamine impregnated, Neoprene-Asbestos (NAM) 19 mils thick, with all leading and trailing edges rolled to double thickness. ELIMINATORS ELIMINATORS Eliminators shall be constructed of hot-dip galvanize's steel and be removable in easily handled sections. They shall impart three distinct changes in sir	BLEED-OFF		ovided (except units for re-	
BEARINGS BEARINGS Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collar on drive end of each fan shaft. Remaining bearings are self-aligning, heavy duty sleeve bearings with two piece cast iron bodies, deep well reservoirs and oil cups. X Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. W-belt type with taper lock sheaves. Selected for 150% motor nameplate horse-power. Mounted and aligned at the factory. EOTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. FAN GUARD SCREENS Hot-dip galvanized steel screens. WAL PAGE IS COR QUALITY BEAT TRANSFER BLOT-dip galvanized steel channel-forced construction separable from pan section. Wave-formed, Melamine impregnated, Neoprene-Asbestos (MA) 19 mils thick, with all leading and trailing edges rolled to double thickness. ELIMINATORS Eliminators shall be constructed of hot-dip galvanized steel and be removable in eastly handled sections. They shall impart three distinct changes in air	FAN WHEELS	Statically and dynamically balanced. Fan housing		
Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collar on drive end of each fan shaft. Remaining bearings are self-aligning, heavy duty sleeve bearings with two piece cast iron bodies, deep well reservoirs and oil cups. Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. DRIVZ V-belt type with taper lock sheaves. Selected for 150% motor nameplate horse-power. Mounted and aligned at the factory. EOTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. FAN GMARD SCREENS Hot-dip galvanized steel screens. NAL PAGE IS COR OUALITY Heat TRANSFER SECTION CONST. Were-formed, Melamine impregnated, Neoprene-Asbestos (GMA) 19 mils thick, with all leading and trailing edges rolled to double thickness. ELIMINATORS Eliminators shall be constructed of hot-dip galvanize(steel and be removable in eastly handled sections. They shall inpart three distinct changes in sir	FAN SILAFT	· ·	ed surface coated with rust	!
locking collar on drive end of each fan shaft. Remaining bearings are self- aligning, heavy duty sleeve bearings with two piece cast iron bodies, deep well reservoirs and oil cups. X Self-aligning, heavy duty, grease-lubricated, ball bearings with eccentric locking collars. X V-belt type with taper lock sheaves. Selected for 150% motor nameplate horse- power. Mounted and aligned at the factory. MOTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. PAN GUARD			at ends. Exposed surface	
V-belt type with taper lock sheaves. Selected for 150% motor nameplate horse- power. Mounted and aligned at the factory. MOTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. PAN GUARD SCREENS Hot-dip galvanized steel screens. NAL PAGE IS COR OUALITY MEAT TRANSFER SECTION CONST. Hot-dip galvanized steel channel-formed construction separable from pan section. WET DECK Wave-formed, Melamine impregnated, Neoprene-Asbestos (MA) 19 mils thick, with all leading and trailing edges rolled to double thickness. ELIMINATORS Eliminators shall be constructed of hot-dip galvanized steel and be removable in easily handled sections. They shall impart three distinct changes in air	BEARINGS	locking collar on drive end of each fan shaft. aligning, heavy duty sleeve bearings with two p	Remaining bearings are self-	
MOTOR Drip-proof ball bearing type with 1.15 service factor, suitable for outdoor service. Adjustable motor base, located in protected position under pan side. FAN GUARD SCREENS Hot-dip galvanized steel screens. NAL PAGE IS COR (NIALITY MEAT TRANSFER SECTION CONST. Hot-dip galvanized steel channel-formed construction separable from pan section. WET DECK Wave-formed, Melamine impregnated, Neoprene-Asbestos (NIA) 19 mils thick, with all leading and trailing edges rolled to double thickness. ELIMINATORS Eliminators shall be constructed of hot-dip galvanized steel and be removable in easily handled sections. They shall import three distinct changes in air	. [x	, , , , , , , , , , , , , , , , , , , ,	all bearings with eccentric	
FAN GUARD SCREENS Hot-dip galvanized steel screens. NAL PAGE IS SCREENS NAL PAGE IS NAL PAGE IS COR QUALITY HEAT TRANSFER SECTION CONST. WET DECK Wave-formed, Melamine impregnated, Neoprene-Asbestos (NIA) 19 mils thick, with all leading and trailing edges rolled to double thickness. ELIMINATORS Eliminators shall be constructed of hot-dip galvanized steel and be removable in easily handled sections. They shall impact three distinct changes in sir	DRIVE		for 150% motor nameplate horse-	•
SCREENS ****COP (NIALITY** ****HEAT TRANSFER Hot-dip galvanized steel channel-formed construction separable from pan section. WET DECK Wave-formed, Melamine impregnated, Neoprene-Asbestos (NIA) 19 mils thick, with all leading and trailing edges rolled to double thickness. ELIMINATORS Eliminators shall be constructed of hot-dip galvanized steel and be removable in easily handled sections. They shall impart three distinct changes in air	MOTOR	service. Adjustable motor base, located in pro		
HEAT TRANSFER SECTION CONST. WET DECK Wave-formed, Melamine impregnated, Neoprene-Asbestos (MM) 19 mils thick, with all leading and trailing edges rolled to double thickness. ELIMINATORS Eliminators shall be constructed of hot-dip galvanized steel and be removable in easily handled sections. They shall impart three distinct changes in air		Hot-dip galvanized steel screens.		
with all leading and trailing edges rolled to double thickness. ELIMINATORS Eliminators shall be constructed of hot-dip galvanized steel and be removable in easily handled sections. They shall impart three distinct changes in air				
in easily handled sections. They shall impart three distinct changes in air	WET DECK			:
with minimum air resistance, and shall direct discharged air away from the fans.	ELIMINATORS	in easily handled sections. They shall impart direction to effectively strip entrained moists	three distinct changes in air are from the leaving air stream	•
WATER DISTRIBU- Hot-dip galvanized steel spray header and branches. Removable branches and TION SYSTEM plastic spray nozzles held in place with anap-in rubber grommets.		Hot-dip galvanized steel spray header and branc plastic spray nozzles held in place with snap-i	thes. Removable branches and in rubber grownets.	
FINISH Unit given double corrosion protection with special B.A.C. zinc-chromatized aluminum paint after assembly.	FINISH		ecial B.A.C. zinc-chromatized	

Over Temperature Heat Exchanger

Air Conditioning Equipment

Draw-Thru Central Station Weathermaker

UNIT NO. AC-1

MODEL NO. 39ED12

DESCRIPTION

as Single-Zone Weathermakers for cooling or heating using remote sources of refrigeration and heat offer a wide freedom of design. Unit flexibility permits precise matching of the units to the individual system requirements. These "Weathermakers" provide cooling, dehumidifying, heating, humidifying, filtering and circulation of air for comfort and industrial applications. They are extremely compact and may be floor mounted or suspended with horizontal or vertical discharge. Choice of coils for direct-expansion or chilled water cooling, and steam, hot water or electric heating.

Mili	galvanized	steei	cabinet	with	external	hat	channel		
	ame, 1 inch								
glass fiber NFPA-90A insulation, double wall insulated									
drain pan and removable panels for access.									

• •		, doi	uble ir	ilet, sta	atically	r and d	ynam.
ically b	alanced	fan with	solid	shaft,	self-al	igning	pillow
block b	all beari	ngs with	exten	ded gre	ease fit	ttings.	Motor
and driv	re to be	factory r	nount	ed.			

Cartridge type coils with ripple corrugated fins mechanically bonded to staggered tubes and removable from either side of casing.

ACCESSORIES

	Velocity Filter Secti	on	•		
	Filters			• •	
	isolators	•		•	
	Cooling Coil	. :		•	
	Heating Coil				
·	Motor .				
ο.	Mixing box				
	Access section with hinged d	oors		•	
	Plenum section		• *	•	
	Zoning damper section	•.			
	Steam grid humidifier	_ P.S.I.		📑 lb. per hou	r
	Outdoor or roof-top option		•		
	Roof mounting curb	•	•		
	-				-
					_
	•				_

See attached drawing No.(s).

CAPACITY

•	OAIAOIT	
6,000	Total CFM / / .	
	Outside Air CFM	
	Total S.P.	
/	E.S.P.	
	B.H.P.	
	Motor H.P.	
260 000	Volts Phase Hert	Z
$\frac{269,900}{1}$	BTUH Total Cooling	
188,931	BTUH Sensible Cooling	
.81.9 V	°F. E.D.B.	
67.6	°F. E.W.B.	
53.1. v	°F. L.D.B.	
52.91	°F. L.W.B.	
<u>6000 /</u>	**XEXXXXCoil CFM	
_522	**XXXXXXXFace Vel.	
	G.P.M.	
	Ft. P.D.	
R-22 √	Refrigerant	
45.68	°F. Suction	
6	Row 14 (XR) (FL) Fin, Cooling Coil	
	BTUH Heating	
	°F. E.A.T.	
	°F. L.A.T.	
	°F. E.W.T.	
	°F. L.W.T.	
	G.P.M.	
	Ft. P.D.	
	lb. Steam P.S.I.	
	Row Fin, Heating Coil	
	KW Heating	•
	Heater Control Steps	
	Heater Volts Phase Hert	, ,
	treater voits rhase there	. 4

.

CHILLED WATER COOLING COILS

Two Carrier 28SW chilled water cooling coils with spiral aluminum fins, 5/8" O.D. copper tubes, steel headers, heavy gauge galvanized steel casing, and standard return bends. Maximum operating limits are 300 PSIG and 200 degrees F.

Desig	<u>CFM</u>	FA	<u>FV</u>	Total	<u>Sensible</u>	EAT	GPM	PD
Zone-2	3700	8.53	434	Total 142,000 \	102,213	82/68	, 22.2	3.51
Zone-3	1574	3.83	411	.54,100V	41,123	82/68	·8.0	/ .9'

R/F TFXNTL . 24 x 36 6/8 16 x 24

					Œ	ar.	rie		CAR DIVISION	m 97 /	** ** CORP		G COMP	IE, M.T.	2	28	35	`	
			144	1 1	27.9	33.4	39.0			_									\ <u>\</u> \
			138		26.7	32.0	37.4											DATE	202-2
			132		3,5	30.6	35.7			- 	·								S-
, z z			126		24.4	29.2	34.1	g	15%	21,516	267/8	327/26	38				CARRIER NO.		28
3/4 11/2 3/8" DIA. 190LES ON	2		120	1 9	23.2	27.9	32.5	L.	4732	4	3 ²⁵ /32	37/16	31732				3		İ
			114	17.	22.1	26.5	30.9	ш	20726	28	31,716	37,78	421716					DIMENSIONS CERTIFIED BY	
₩ EBS			108	1 7	20.02	25.1	29.2	80 G	17/16	23	28716	3478	391716		JOB NAME	JOB LOCATION.	BUYER NO.	NSIONS CE	ROW)
ON 3" CENTERS	27/32 1/2		102	1 2	20.01	23.7	27.6	90.60		225/16	27,78	337/16	39				BUYER	DIME	82 F
+ 3° + 11 ¹ / ₂ ° - + 11 ¹ / ₂ ° - + 11 ¹ / ₂ ° - + + 11 ¹ / ₂ ° - + + + + + + + + + + + + + + + + + +	7 ROW 1 ²⁷ /32 2 ROW 1 ¹ /2	(INCHES)	96	11.2	10.5	22.3	26.0	TUBE	2	£	02	(%	28	COND. RATE.	WATER GPM △P FT-WG		-		-S (
A + 11. A + 5. 3.78. DIA. 1	4 0 N	GTH - A	06	12.0		20.9	24.4							STEAM CO	1		-		COILS
97.4+	3/4	AREAS, UBE LEN	84	3.76	15:0	19.5	22.7							SAT. STE			+		HEATING
		NAL T	78	9.07	175.1	18.1	21.1								CAP.				ł
	2" NOM.	NO	72	8.37	711.5	16.7	19.5							JRE DROP	AIR TEMP.ºF				BEND
			99	7.67	70.5	15.3	17.9							- PRESSURE DROF	1	1-1			SU U
			99	6.98	7.57	13.9	16.2			PECIA	14 15 1	1 80		<	A A N		-		28
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	21/32		54	6.28	8.30	12.5	14.6			TTDN3.	11 12 13	- 0 7			FACE VEL.		-		
·			48	5.58	7.43	9.29	13.0	*	ERIAL	TAM N TAM N	9 6	н	\[\frac{\sigma}{\sigma}		SCFM				
	COILS		42	4.88	6.50	8.13				SMO.	F 6 7	5 1 6	L LIRN MEN	CLEANABLE 14,ALUM; - 14,COPPER	FACE AREA				
S82 - 826 CCH CON N	RMANCE,		\mathfrak{G}	4.19	5.57	6.96	1	7:0	LIN C	EPARA PIRAL 01L T 7 10	2 4	\vdash	H - HALF ; F-FULL	ENDS CLE ENDS B - 14,A	NUMBER				47ED 4-15-71
MOTE: AIR VALVE FURNISHED ON EACH HIEADER CONNECTION FOR VENTING COIL.	FOR BEST PERFORMANCE, COILS SHOULD BE PIPED FOR COUNTERFLOW OF AM AND WATER.		30	3.49	4.65			-	. 3±	ERIES	-	2 8	H - HAL	2-STO. HEADER & CLEANABLE RETURN BENDS A - 8, ALUM; B - 14, ALUM; K - 8, COPPER; L - 14, COPPER	COR. NUI				1
MOTE: FURNISH HEADER FOR VE	FOR BE SHOULE OF AIR			2.79	3.72						-	SAMPLE COIL NO.					+		SUPERSEDES 285-207
CODE		1118	FACE	2	3	2 (2	3B				POSITION	SAWPLE	CIRCUITING	HEADER STYLE FIN SERIES AND MATERIAL	Y. IDENT.		-		5-29-73
	<u> </u>						1 / 1 / 1								Ę.				S-2

Thermometers

Trerice

DIAL THERMOMETERS **ADJUSTABLE ANGLE** BI-METAL TYPE

ADJUSTABLE FOR VIEWING AT ANY ANGLE. HEAD MAY BE TURNED 360° AND TILTED OVER A FULL 180° ARC.

SPECIFICATIONS

- Type 304 stainless steel.
- All welded construction.
- Easy to recalibrate by loosening a socket head screw, located in back of thermometer head.
- Anti-Parallax dial avoids reading errors. White dial with Black numbers and graduations on raised ring for surest, sharpest, easiest readability.

- Rustproof Dustproof Leatproof Hermetically Sealed. Connection Nut: ½" N.P.T. standard.

 Stem diameter: ¼". Standard stem lengths: 2½", 4", 6", 9", 12", 18", 24", including threads. Available in stem lengths up to 72".
- Actuated by super-sensitive bi-metallic Helix Coil No liquids.
- Bi-metallic element dampened with silicone for minimum pointer vibration and maximum heat transfer.
- Guaranteed accurate within 1% around entire dial range.
- Over-range protection 50% up to 500°F, 10% above 500°F.
- Extra-heavy glass crystal. Plastic or tempered crystal can be supplied at extra charge.

DIMENSIONS

	STAND	ARD D	IAL RANGES	
	Fahrenheit	⁰/Div.	Centigrade	°/Div.
	-100 to 100°	2°	-50 to 100°	1°
	-40 to 160°	2°2°1°2°5°5°5°	-10 to 110°	1°
	0 to 180°	2°	**0 to 50°	½°
. <u> </u>	7/**25 to 125°	1°	0 to 100°	
	20 to 240°	2°	0 to 150°	1° 2° 5°
7	50 to 300°	2°	0 to 250°	2
1	50 to 400°	5ຶ	100 to 400°	5
1	50 to 500°		,	
	150 to 750°	10°		
1	*200 to 1000°	10°		İ

*Not recommended for continuous use above 800°F. **Ranges 25 to 125°F and 0 to 50°C not available with 2%" Stem. Special dial ranges and stem lengths available at extra charge. Above ranges can also be furnished in combination, e.g.: 30 to 240°F, and 0 to 115°C, as a double scale at no extra

ORDER BY SPECIFYING:

State quantity, Catalog number, name, range, stem length and separable socket specification, if required.

State quantity, Catalog number, name, range, stem length and separable socket specification, if required.				OF POOR QUALITY		
Catalog Number	Nominal Stem Length (Including Thread)	Catalog Number	Nominal Stem Length (Including Thread)	Catalog Number	Nominal Stem Length (Including Thread)	
B85602 B85604 B85606	2%" 4 " 6"	885609 885612 885618	9" 12" 18"	B85624	24"	

DIAL THERMOMETERS BI-METAL TYPE ACCESSORIES

SEPARABLE SOCKETS

SOCKET WITHOUT EXTENSION NECK Supplied for thermometers having 4" or longer stem length.

SOCKET WITH EXTENSION NECK Supplied for thermometers having 6" or longer stem length.

Nominal Thermometer Stem Length	Socket (1) Insertion Length	Extension Neck ① Length	MATERIAL				
			Brass	Stainless Steel 304	Stainless Steel 316		
4"	21/2"	None	76-4G2	76-4G5	76-4G6		
6''	41/2"	None	76-4J2	76-4J5	76-4J6		
5 6"	21/2"	2"	76-4JC2	76-4JC5	76-4JC6		
9"	71/2"	None	76-4M2	76-4M5	76-4M6		
9"	41/2"	3''	76-4MC2	76-4MC5	76-4MC6		
12"	101/2"	None	76-4R2	76-4R5	76-4R6		
12"	71/2"	3"	76-4RC2	76-4RC5	76-4RC6		
18"	161/2"	None	76-Wa2	76-Wa5	76-Wa6		
18"	131/2"	3"	76-WaC2	76-WaC5	76-WaC6		
24"	221/2"	None	76-Wk2	76-Wk5	76-Wk6		
24"	191/2"	3"	76-WkC2	76-WkC5	76-WkC6		

FIXED FLANGED

For mounting thermometers

Items printed in dark shaded areas are normally carried in stock.

PRESSURE — TEMPERATURE RATING LBS. PER SQ. INCH

MATERIAL	TEMPERATURE - °F.							
	70°	200°	400°	600°	800°	1000°	1200°	
BRASS	5000	4200	1000					
A.I.S.I 304	7000	6200	5600	5400	5200	4500	1650	
A,I.S.I 316	7000	7000	6400	6200	6100	5100	2500	

ADAPTER HUB For connecting %" N.P.T. conn. to %" N.P.T.

SWIVEL FLANGE
For adjusting viewing angle

No. 75-4-2 Brass No. 75-4-5 Stainless Steel

No. 77-3 Steel

No. 77S-3 Cadmium Plated Steel With Brass Hub

M. D. Trerice Ed. Detroit, Kich., U.S.A.

NAME

ENGINEERING DEPT.

O. TRERICE CO.

ェ

TEST WELLS

NOTE FOR PART BREAKDOWN REFER TO DWG. #169-18

