Optimization I

Janne Kettunen

•

1

Anomalies in LP Models

Janne Kettunen

Anomalies in LP Models

- · Redundant constraints
- · Alternate optimal solutions
- Unbounded solutions
- · No feasible solution

3

Let's assume a new constraint (on red) is added. What is its impact?

Alternate Optimal Solutions x_l Objective function isocost line: $450x_s + 300x_l = 78,300$ x_s

Unbounded Solutions
Unboundedness occurs when the objective function can improve indefinitely by varying one or more variables
Should not occur in realistic models, "real-life" constraints should prevent this
If unboundedness occurs, either wrong input data was entered or a relevant constraint was omitted

Logic Behind Simplex Algorithm

Janne Kettunen

8

The Feasible Region in an LP The feasible region in an LP is always convex. x_l A set S is convex when a line segment, 300 of any two points belonging to the set, Feasible region 250 belongs also to the set, i.e., if $p_1, p_2 \in S$ is convex then $\lambda p_1 + (1 - \lambda)p_2 \in S$ for $\lambda \in [0,1]$. 200 150 100 50 x_s 0 10 100 300

Corner Points Are only Defined for Convex Sets x_l A corner point is a point in the feasible region that is not the mid point of any other two points in the feasible region. Corner points of the feasible region x_s

The Optimal Solution in a Corner

If a feasible region has a corner point and the problem has an optimal solution then an optimal solution is at a corner point.

13

The Simplex Method

14

The Simplex Method

- Was developed in 1947 by George Dantzig

- · It is still widely used
- Identifies if the LP is infeasible, finds the optimal solution if such exists, and checks for unboundedness
- · Very fast for solving large practical problems

15

15

LP Problem Manipulations

Janne Kettunen

Equivalence of Minimization and Maximization Problems

$$\min 2x$$
 is equivalent to $\max ax \ge b$

17

17

Linearizing Problems with Absolute Values

 Absolute value in a minimization (maximization) objective function with positive (negative) coefficients for decision variables:

$$\begin{array}{ccc}
\min 2|x| & & & \min \\
ax \ge b & & ax \ge b
\end{array}$$

• Absolute value in an inequality constraint:

18

Linearized Version of the Problem

piecewise linear convex function

The minimization of a max of piecewise linear convex function:

$$min \max \left\{ -x + \frac{5}{2}, -\frac{2}{5}x + 2, 1/2x \right\}$$
$$ax \ge b$$

Linearizing Minmax Problems

The minimization of a max of piecewise linear convex function:

21

Similarly Linearizing Maxmin Problems

The maximization of a min of piecewise linear concave function:

$$\max \min \left\{ x, 1, -\frac{1}{4}x + 5 \right\} \qquad \qquad \max z \\ ax \ge b$$

22

Linearizing Ratio Constraints

Duality in Linear Programming

Janne Kettunen

LP in Standard Form, Vector Notation

· LP standard form:

subject to
$$\begin{aligned} & \min(or \ max) \ c^T x \\ & Ax = b & A \in \mathbb{R}^{m \times n} \\ & x \ge 0 & x \in \mathbb{R}^n \end{aligned}$$

Define:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 $(n,1)$ vector of decision variables $\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$ $(n,1)$ vector of objective function coefficients

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \qquad \begin{array}{c} \text{(m,n) matrix of} \\ \text{coefficients for} \\ \text{constraints} \end{array} \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \qquad \begin{array}{c} \text{(m,1) vector of} \\ \text{coefficients for} \\ \text{constraints' right hand} \\ \text{side} \end{array}$$

25

LP in Standard Form

• Any LP problem can be converted to the standard form:

subject to
$$\begin{aligned} & \min(or \ max) \ c^T x \\ & Ax = b & A \in \mathbb{R}^{m \times n} \\ & x \ge 0 & x \in \mathbb{R}^n \end{aligned}$$

- The tricks to do the conversion are as follows:
 - 1. Convert inequality constraints to equality constraints by adding distinct, nonnegative, slack variables in every ≤ inequality and subtracting such slack variables in every ≥ inequality
 - · 2. Eliminate nonpositive variables by substituting new variables equal to their negatives
 - 3. Eliminate unrestricted variables by substituting the difference of two new nonnegative variables

For example:

$$\begin{array}{c} min2x_1 - 3x_2 \\ 3x_1 + 4x_2 \le 4 \\ 2x_1 + x_2 \ge 1 \\ x_1 \ge 0, x_2 \le 0 \end{array}$$

Derivation of Dual Problem 1/3

• Let's start with the LP in the standard form and call this primal (P)

(P)
$$z = minc^{T}x$$

subject to $Ax = b$ $A \in \mathbb{R}^{m \times n}$
 $x \ge 0$ $x \in \mathbb{R}^{n}$

• We define a relaxed problem $P(\mathbf{p})$ where the constraints can be violated at a fixed cost or price p_i

$$z(p) = minc^{T}x + p^{T}(b - Ax)$$
subject to
$$x \ge 0 \quad x \in \mathbb{R}^{n}$$

$$p_{1}(b_{1} - a_{1}x) + \dots + p_{m}(b_{m} - a_{m}x)$$

Note that $z(p) \le z$ for any p. This is because $b - Ax^* = 0$ for x^* that is optimal for P and otherwise b - Ax < 0.

27

Derivation of Dual Problem 2/3

- Therefore, z(p) is the lower bound on the optimal value of P
- A price vector p^* such that $z(p^*)=z$ is equivalent of solving the dual problem (D)

(D)
$$\max_{\boldsymbol{p} \in \mathbb{R}^m} [z(\boldsymbol{p})] \qquad \longleftrightarrow \quad \max_{\boldsymbol{p} \in \mathbb{R}^m} \left[\min_{\boldsymbol{x} \geq \boldsymbol{0}} \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{P}^T (\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}) \right]$$

- The objective of the dual problem (D) is to find a vector \mathbf{p} of prices that makes violating the constraints of P as inconvenient as possible
- The dual problem (D) is not linear but it can be reformulated as such

Derivation of Dual Problem 3/3

• We can rewrite $\max_{\boldsymbol{p} \in \mathbb{R}^m} \left[\min_{\boldsymbol{x} \geq \boldsymbol{0}} \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{P}^T (\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}) \right]$ as follows

$$\max_{\boldsymbol{p} \in \mathbb{R}^{m}} \left\{ \boldsymbol{p}^{T} \boldsymbol{b} + \left[\min_{\boldsymbol{x} \geq \boldsymbol{0}} (\boldsymbol{c}^{T} - \boldsymbol{p}^{T} \boldsymbol{A}) \boldsymbol{x} \right] \right\}$$

$$\max_{\boldsymbol{p} \in \mathbb{R}^{m}} \left[\boldsymbol{p}^{T} \boldsymbol{b} + \begin{cases} 0 & \text{if } \boldsymbol{c}^{T} - \boldsymbol{p}^{T} \boldsymbol{A} \geq 0 \\ -\infty & \text{otherwise} \end{cases} \right]$$

• Since, the objective function is a maximization, the constraint $c^T - p^T A \ge 0$ is optimal to impose, resulting in

subject to
$$\mathbf{c}^T - \mathbf{p}^T \mathbf{A} \ge 0$$
 (D) $\max \mathbf{p}^T \mathbf{b}$ subject to $\mathbf{c}^T - \mathbf{p}^T \mathbf{A} \ge 0$ $\mathbf{p} \in \mathbb{R}^m$

- The dual (D) is now a linear programming problem
- The components of \boldsymbol{p} are dual variables

29

29

The Importance of Dual Solution

- The optimal dual variables p^* (aka shadow prices) can provide intuitive interpretations, namely:
 - · Penalty of breaking a constraint
 - Marginal cost
 - Fair prices

Formulating and Solving LP Models

Janne Kettunen

31

31

To Start Consider Using Excel's Solver

- · It is provided by Frontline Systems
- It is a good choice for a smaller problem as Excel is commonly available in any workplace
- However,
 - the problems that Solver can deal with are limited by their size up to 200 variables and 200 constraints
 - Also, Solver does not perform very well on challenging mathematical programming problems
- To improve the Solver's performance, it is possible to purchase a license to Frontline System's Solver (removes the size limitations and allows to invoke Gurobi solver, which is an industrial scale solver)

Guidelines for Formulating Optimization Models in Excel

- 1. Organize the data for the model in the spreadsheet.
- 2. Reserve separate cells in the spreadsheet for each decision variable in the model.
- 3. Create a formula in a cell in the spreadsheet that corresponds to the objective function.
- 4. For each constraint, create a formula in a separate cell in the spreadsheet that corresponds to the left-hand side (LHS) of the constraint.

33

33

How Solver Views the Model

- Target cell The cell in the spreadsheet that represents the objective function
- Changing cells The cells in the spreadsheet representing the decision variables
- Constraint cells The cells in the spreadsheet representing the LHS formulae for the constraints

Example Excel Formulation 1/2

Decision variables:

 x_s =number of standard hot tubs to produce x_l =number of luxury hot tubs to produce

Objective function:

$$Max 350x_s + 300x_l$$

Constraints:

pumps: $x_s + x_l \le 200$ labor: $9x_s + 6x_l \le 1566$ tubing: $12x_s + 16x_l \le 2880$

non-negativity: $x_s \ge 0$

 $x_l \ge 0$

35

35

Example Excel Formulation 2/2 Product Mix Model - Hot Tubs Resources Required (per Tub) **Tub Type** В Pumps Labor (Hours) 9 6 Tubing (Feet) 12 16 Unit Profit \$350 \$300 **Production Mix Decisions Hot Tub Type** В **Number Produced** 0 Available **Resource Constraints** Used Pumps 200 **NOTE**: The <= text entries are Labor (Hours) 1,566 not required. They are added to Tubing (Feet) 2,880 enhance readability. Financial Summary Hot Tub Type Total Profit \$0.00 \$0.00 \$0.00 36 "Product Mix – Hot Tubs.xlsx"

Importance of Standalone Commercial Solvers

- Excel even with Gurobi solver is not capable to efficiently deal with largescale optimization problems (faced in big data problems):
 - The size of the data can make it inefficient (or impossible) to import and manipulate the problem in Excel
 - Fast enough updating of data in Excel may not be possible for dynamic problems
 - Custom algorithms may be required to efficiently solve complex optimization models (e.g., multi-objective, challenging integer, non-linear, or stochastic programming models)
 - Efficient processing of data to generate the model and the output report might not be possible in Excel and requires the use of a programming language, e.g., Python or Java
- Therefore, after solving the first few examples with Solver, we will formulate and solve mathematical programming models using Python and Gurobi!

27

37

Interpreting the Results of Excel's Solver

Janne Kettunen

31		ai	nd Re	Shr	יו נס		
Product Mix Model - Hot Tubs							
Todace Wilk Woder - Hot Tubs							
Resources Required (per Tub)							
Гub Туре	Α	В					
Pumps	1	1					
abor (Hours)	9	6					
Tubing (Feet)	12	16					
Jnit Profit	\$350	\$300					
Production Mix Decisions							
Hot Tub Type	Α	В					
Number Produced	0	0					
Resource Constraints	Used		Available				
Pumps	0	<=	200	NO	NOTE: The <= text entries are		
abor (Hours)	0	<=	1,566	not required. They are added to enhance readability.			
Tubing (Feet)	0	<=	2,880				
Financial Summary							
Hot Tub Type	Α	В	Total				
Profit	\$0.00	\$0.00	\$0.00				

Why Sensitivity Analysis of Results?

- The curse of optimization: "Being perfectly wrong or approximately correct"
- Model parameters are at best estimates of what might happen in reality (e.g., there is uncertainty in demand, resource requirements, prices, profit margins)
- Therefore, we want to understand how sensitive
 - · (i) the value of the objective function is to the changes in input parameters and
 - (ii) the optimal decision is to the changes in input parameters
- Why can't we just solve the problem many times?
 - Takes too long time for large problems
 - Also, the sensitivity analysis (or sensitivity report) gives bounds for the
 parameters where the results hold rather than just solving for a single instance of
 the problem

42

Scaling Issues in Excel's Solver

Janne Kettunen

Scaling Issues 1/3

- For a model to be well-scaled, the constant terms in the model should be of "similar magnitude":
 - Terms should not be different by many "orders of magnitude"
 - E.g. if all the constant terms in the constraints are between 1 and 1,000, but the objective function coefficients are between 0.000001 and 0.000000001, then the model is *ill-scaled*
- As the solution algorithm runs, intermediate calculations are made that make coefficients larger or smaller.
- If a problem is ill-scaled, memory storage accuracy may force the computer to use approximations of the actual numbers (round-off errors) that may be inaccurate.

45

45

Scaling Issues 2/3

- Most problems can be formulated in a way to minimize scaling errors through appropriate definition of the decision variables. E.g.,
 - Let's say that the objective function coefficients for some model are in \$'s and range between \$25,000,000 and \$100,000,000, RHS values reflect various resource availabilities and vary between 500 and 5000, and constraint coefficients represent unit resource consumptions and vary between 10 and 250.
 - Restating the objective function coefficients in \$ millions makes their range (25 to 100) much closer in magnitude to the rest of the coefficients thus making the model "well-scaled."

46

Scaling Issues 3/3

- Scaling & Excel's solver:
- Scaling problems sometimes prevents Excel's solver from being able to solve the problem accurately.
 - · Solver may complain that the model is nonlinear.
 - This either means you have inadvertently added a nonlinearity, or the problem is ill-scaled.
- If necessary, you can also change the "Constraint Precision" level in Solver's Options dialog box (e.g., from 0.00001 to 0.0000001).

47

47

Summary

- When solving an LP model, the outcome can be one of the following:
 - Unique optimal solution
 - · Alternate optimal solutions
 - · Unbounded solutions
 - There are no feasible solution
- Simplex is a powerful method to solve LP problems
- Many non-linear optimization problems can be linearized, e.g., when we have:
 - Absolute values
 - Minmax and Maxmin problems (that are created to approximate convex and concave non-linear functions)
 - Ratio constraints
- · Dual solution allows to obtain shadow prices to conduct sensitivity analysis
- Use Excel and solver for small problems and Python and Gurobi for large problems

48