Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA4802 Ecuaciones en Derivadas Parciales 6 de septiembre de 2024

Auxiliar Extra

Profesores: Rayssa Cajú y Claudio Muñoz **Auxiliares** Benjamin Bórquez, Vicente Salinas y Jessica Trespalacios

[Criterio de Continuidad]

 $T \in \mathcal{D}'(\Omega) \iff \forall K \subset \Omega \text{ compacto, } \exists C(K) > 0, n(K) \in \mathbb{N} \text{ tal que}$

$$|\langle T, \varphi \rangle| \le C(K) \|\varphi\|_{N(K)}, \forall \varphi \in \mathcal{D}'(\Omega), \sup(\varphi) \subset K.$$

[Orden]

Diremos que $T \in \mathcal{D}'(\Omega)$ es de orden $N \in \mathbb{N}$ si este es el menor natural tal que:

$$\forall K \subset \Omega \text{ compacto}, \exists C(K) > 0, \quad |\langle T, \varphi \rangle| \leq C(K) \|\varphi\|_N, \forall \varphi \in \mathcal{D}'(\Omega), \sup(\varphi) \subset K.$$

Si esto no se cumple se dice que T es de orden infinito.

- P1. Determine el orden de las siguientes distribuciones
 - a) Sea $x_0 \in \mathbb{R}$, la delta dirac δ_{x_0} .
 - b) Dado $f \in L^1_{loc}(\mathbb{R})$,
 - c) Sea el operador valor principal definido por

$$\langle p.v.\frac{1}{x}, \varphi \rangle = \lim_{\varepsilon \to 0} \int_{\varepsilon < |x|} \frac{\varphi(x)}{x} dx.$$

d) Sea $\Omega = (0, \infty)$. Definition Λ el funcional

$$\langle \Lambda, \varphi \rangle = \sum_{m=1}^{\infty} (\partial^m \varphi)(1/m)$$

- **P2.** a) Si $T \in \mathcal{E}'(\Omega)$ tiene orden finito.
 - b) Si $T \in \mathcal{E}'(\Omega)$ tiene soporte $\{x_0\} \subset \mathbb{R}^d$, entonces existe $N \in \mathbb{N}, (c_\alpha)_{(\alpha \in \mathbb{N})} \subset \mathbb{R}$ tal que

$$T = \sum_{|\alpha| \le N} c_{\alpha} \partial^{\alpha} \delta_{x_0}$$

c) Si $T \in \mathcal{E}'(\Omega)$ y sup(T) = K compacto en Ω , entonces para todo $V \subset \Omega$ abierto, tal que $K \subset V$, V acotado, existe $N(V) \in \mathbb{N}$ y funciones continuas $(f_{\alpha})_{(\alpha \in \mathbb{N})} \subset \mathbb{R}^d$ con soporte en V tal que

$$T = \sum_{|\alpha| \le N} c_{\alpha} \partial^{\alpha} f_{\alpha}$$