Welcome!

Subject: PHYSICS – 2 [1203]

Heat & Thermodynamics, Oscillations, Waves & Optics

Faculty – Nandita Deb

Lecturer, Department of Physics

American International University-Bangladesh

Cubic No- 41035, Email- nandita.deb@aiub.edu

Chapter – 16 (Waves-I) Lesson- 17

16-1 TRANSVERSE WAVE

Types of Waves

Waves are of three main types:

1. Mechanical waves:

- most familiar waves because we encounter them almost constantly;
- common examples include water waves, sound waves, and seismic waves.
- > All these waves have two central features:
 - (i) They are governed by Newton's laws, and
 - (ii) they can exist only within a material medium, such as water, air, and rock.

2. Electromagnetic waves

- > less familiar waves, but we use them constantly;
- > common examples include visible and ultraviolet light, radio and television waves, These waves require no material medium to exist.
- Light waves from stars, for example, travel through the vacuum of space to reach us.
- \triangleright All electromagnetic waves travel through a vacuum at the same speed c = 2.998 \times 10⁸ m/s.

3. Matter waves

- commonly used in modern technology, but unfamiliar.
- These waves are associated with electrons, protons, and other fundamental particles, and even atoms and molecules.
- ➤ Because we commonly think of these particles as constituting matter, such waves are called matter waves.

There are two types of *MECHANICAL WAVES* such as

- Transverse Wave
- > Longitudinal Wave

1. Transverse Wave

- ➤ When the particles of the medium vibrate about their mean positions perpendicular to the direction of propagation, then the wave is called transverse wave.
- The Figure shows a transverse wave. The particles of the medium in transverse wave, move up and down and the wave travels in a horizontal direction.
- ➤ Example When a stone is thrown in water of a pond.

Transverse Waves

Figure 1: Generating transverse waves on a string

2. Longitudinal Waves

- ➤ When particles of the medium vibrate about their mean position parallel to the direction of propagation of the disturbance, the wave is called longitudinal wave.
- ➤ The figure shows a longitudinal wave. During flow of the wave compression and refraction of the medium take place
- Example Waves in a spring, Sound wave etc.

Traveling Wave

Both a transverse wave and a longitudinal wave are said to be traveling waves because the both travel from one point to another.

In this chapter we will focus on Transverse Waves.

The displacement of a transverse sinusoidal wave:

At time t, the displacement y of the element located at position x is given by

$$y(x, t) = y_m \sin(kx - \omega t)$$
 (1)

• Question - From the wave function of a traveling wave, $y(x,t) = y_m \sin(kx - \omega t)$, prove that (i) $k = 2\pi/\lambda$, (ii) $\omega = 2\pi/T$ (iii) $v = +\omega/k$ and (iv) $v = -\omega/k$.

Solution:

Wavelength and Angular Wave Number:

At time t = 0, Equation (1) becomes

$$y(x, 0) = y_m \sin kx$$
(2)

By definition, the displacement y is the same at both ends of this wavelength

— that is, at
$$x = x_1$$
 and $x = x_1 + \lambda$ Thus, by Eq.2

$$y_m \sin k x_1 = y_m \sin k (x_1 + \lambda)$$

$$= y_m \sin (k x_1 + k\lambda) \qquad(3)$$

A sine function begins to repeat itself when its angle (or argument) is increased by 2π rad,

i. e sink
$$x_1 = \sin (k x_1 + 2\pi)$$
......(a)

Comparing Eq (3) and Eq (a) we must have $k\lambda = 2\pi \, rad$, or

$$k = \frac{2 \pi}{\lambda}$$
 (Angular Wave Number) (4)

k is called the **Angular Wave Number** of the wave. **S.I Unit** – Radian/meter.

$$[y(x, t) = y_m \sin(kx - \omega t) \dots (1)]$$

Angular Frequency

Figure shows a graph of the displacement y of Eq.1 vs time t at a certain position along the string, taken to be x = 0.

Then Eq (1) becomes

$$y(0, t) = y_m \sin(-\omega t)$$

= - $y_m \sin \omega t$; (x = 0).... (5)

Where, $\sin(-\alpha) = -\sin \alpha$

Period: We define the period of oscillation T of a wave to be the time any string element takes to move through one full oscillation. Applying Eq.5 to both ends of this time interval and equating the results yield

$$- y_m \sin \omega t_1 = - y_m \sin \omega (t_1 + T)$$

$$= - y_m \sin (\omega t_1 + \omega T) \qquad (6)$$

This can only be true if $\omega T = 2\pi$ or if [since $\sin \omega t_1 = \sin (\omega t_1 + 2\pi)$]

$$\omega = \frac{2\pi}{T}$$
; (Angular Frequency)(7)

Where, ω = Angular Frequency of the wave. S.I Unit – Radian/second.

Wave speed

$$kx - \omega t = a constant.(8)$$

To find the wave speed v, we take the derivative of Eq. 8, getting

$$\frac{d}{dt} [kx - \omega t] = \frac{d}{dt} [constant]$$

$$k \frac{dx}{dt} - \omega = 0$$
or,
$$\frac{dx}{dt} = \frac{\omega}{k} = v \qquad (9)$$

Using Eq (4)
$$\left[k = \frac{2\pi}{\lambda}\right]$$
 and Eq (7) $\left[\omega = \frac{2\pi}{T}\right]$, we can rewrite the wave speed as,
$$v = \frac{\omega}{k} = \frac{\frac{2\pi}{T}}{\frac{2\pi}{\lambda}} = \frac{\lambda}{T} = \lambda f \quad (wave speed) \dots (10)$$

- Figure Equation (1) [$y(x, t) = y_m \sin(kx \omega t)$] describes a wave moving in the positive direction of x.
- We can find the equation of a wave traveling in the opposite direction by replacing t in Eq.(1) with -t. This corresponds to the condition

Thus, a wave traveling in the negative direction of x is described by the equation

$$y(x, t) = y_m \sin(kx + \omega t)$$
 (12)

To find the wave speed v, we take the derivative of Eq.12, getting

$$k \frac{dx}{dt} + \omega = 0; Or, \frac{dx}{dt} = -\frac{\omega}{k} = v$$
so.
$$\frac{dx}{dt} = -\frac{\omega}{k} \qquad(13)$$

The minus sign (compare Eq.10) verifies that the wave is indeed moving in the negative direction of x.

Problem-1:

If a wave $y(x, t) = (6.0 \text{ mm}) \sin(kx + (600 \text{ rad/s})t + \varphi)$ travels along a string, how much time does any given point on the string take to move between displacements y = + 2.0 mm and y = -2.0 mm?

Solution:
$$y = y_m \sin(kx + \omega t + \varphi)$$

1st we have to write both equations

$$2 = 6\sin(kx + 600 t_1 + \varphi)$$
$$-2 = 6\sin(kx + 600 t_2 + \varphi)$$

Taking arc sin of Both Equations

$$kx + 600 t_1 + \varphi = \frac{\pi}{180} sin^{-1} (1/3)$$

$$kx + 600 t_2 + \varphi = \frac{\pi}{180} sin^{-1} (-1/3) = -\frac{\pi}{180} sin^{-1} (1/3)$$

By Subtracting these 2 equations

$$600 (t_1 - t_2) = \frac{2\pi}{180} sin^{-1} (1/3)$$

Therefore the time taken to move between these 2 displacements is

$$t_1 - t_2 = 0.0011 \, s$$

Thank you For Your ATTENTION!! (Questions and Answers)