Lecture 26 – P, NP, and NP-Complete Problems COSE215: Theory of Computation

Jihyeok Park

2025 Spring

Recall

Definition (Decision Problem)

A decision problem π is a computational problem whose answer is either yes or no for a given input.

Recall

Definition (Decision Problem)

A decision problem π is a computational problem whose answer is either yes or no for a given input.

In this lecture, we will **classify** decision problems based on the **time complexity** of possible TMs (or NTMs) that solve the problems.

Contents

1. **P**

Time Complexity of TMs

P – Polynomial Time Complexity (Tractable Problems)

2. **NP**

Time Complexity of NTMs

NP – Nondeterministic Polynomial Time Complexity

NP – Verifier-based Definition

3. NP-complete

Polynomial Time Reduction (\leq_P)

NP-complete – Hardest Problems in NP

 $\langle SAT \rangle$ – The First NP-complete Problem

Other **NP-complete** Problems

4. Major Unsolved Problem: P = NP?

Contents

1. **P**

Time Complexity of TMs ${f P}$ – Polynomial Time Complexity (Tractable Problems)

2. **NP**

Time Complexity of NTMs

NP – Nondeterministic Polynomial Time Complexity

NP - Verifier-based Definition

3. NP-complete

Polynomial Time Reduction (\leq_P)

NP-complete – Hardest Problems in NP

⟨**SAT**⟩ – The First **NP-complete** Problem

Other **NP-complete** Problems

4. Major Unsolved Problem: P = NP?

Time Complexity of TMs

Definition (Time Complexity of TMs)

We say a **Turing machine (TM)** M has a **time complexity** $T : \mathbb{N} \to \mathbb{N}$ if M halts on w in at most T(n) moves for all $w \in \Sigma^*$ whose length is n.

Time Complexity of TMs

Definition (Time Complexity of TMs)

We say a **Turing machine (TM)** M has a **time complexity** $T : \mathbb{N} \to \mathbb{N}$ if M halts on w in at most T(n) moves for all $w \in \Sigma^*$ whose length is n.

Definition (**DTIME**)

A decision problem π is in **DTIME**(T(n)) if it is decidable by a TM M whose time complexity is T(n).

Time Complexity of TMs

Definition (Time Complexity of TMs)

We say a **Turing machine (TM)** M has a **time complexity** $T : \mathbb{N} \to \mathbb{N}$ if M halts on w in at most T(n) moves for all $w \in \Sigma^*$ whose length is n.

Definition (DTIME)

A decision problem π is in **DTIME**(T(n)) if it is decidable by a TM M whose time complexity is T(n).

We often use a big O notation to describe the time complexity of a TM:

$$f(n) = O(g(n)) \iff \exists k \in \mathbb{N}, n_0 \in \mathbb{N}. \ \forall n \geq n_0. \ f(n) \leq k \cdot g(n)$$

Time Complexity of TMs – Example

 $\langle EvenPalin \rangle$ – Is a word $w \in \{a,b\}^*$ an even-length palindrome?

Time Complexity of TMs – Example

 $\langle EvenPalin \rangle$ – Is a word $w \in \{a,b\}^*$ an even-length palindrome?

 В	a	b	a	a	b	a	В	

Time Complexity of TMs - Example

 $\langle \textbf{EvenPalin} \rangle$ – Is a word $w \in \{a,b\}^*$ an even-length palindrome?

Time Complexity of TMs - Example

 $\langle EvenPalin \rangle$ – Is a word $w \in \{a,b\}^*$ an even-length palindrome?

• • •	В	a	b	a	a	b	a	В	

The decision problem $\langle \mathbf{EvenPalin} \rangle$ is decidable by the above TM whose time complexity is $T(n) = (n+1)(n+2)/2 = O(n^2)$.

$$\langle \mathsf{EvenPalin} \rangle \in \mathsf{DTIME}(\mathcal{O}(n^2))$$

P - Polynomial Time Complexity

Definition (**P** – Polynomial Time Complexity)

A decision problem π is in **P** if it is decidable by a TM M whose time complexity is a **polynomial function** (i.e., $T(n) = O(n^k)$ for some $k \ge 0$).

$$\mathsf{P} = \bigcup_{k>0} \mathsf{DTIME}(O(n^k))$$

P – Polynomial Time Complexity

Definition (**P** – Polynomial Time Complexity)

A decision problem π is in **P** if it is decidable by a TM M whose time complexity is a **polynomial function** (i.e., $T(n) = O(n^k)$ for some $k \ge 0$).

$$\mathsf{P} = \bigcup_{k \geq 0} \mathsf{DTIME}(O(n^k))$$

For example, the decision problem $\langle EvenPalin \rangle$ is in **P**.

$$\langle \mathsf{EvenPalin} \rangle \in \mathsf{DTIME}(\mathit{O}(\mathit{n}^2)) \subseteq \mathsf{P}$$

P - Polynomial Time Complexity

Definition (**P** – Polynomial Time Complexity)

A decision problem π is in **P** if it is decidable by a TM M whose time complexity is a **polynomial function** (i.e., $T(n) = O(n^k)$ for some $k \ge 0$).

$$\mathbf{P} = \bigcup_{k \geq 0} \mathbf{DTIME}(O(n^k))$$

For example, the decision problem $\langle EvenPalin \rangle$ is in **P**.

$$\langle \mathsf{EvenPalin} \rangle \in \mathsf{DTIME}(\mathit{O}(\mathit{n}^2)) \subseteq \mathsf{P}$$

Definition (Tractable Problems)

A problem π is called a **tractable problem** if it is a **P** problem.

Contents

1. **P**

Time Complexity of TMs ${f P}$ – Polynomial Time Complexity (Tractable Problems)

2. **NP**

Time Complexity of NTMs

NP – Nondeterministic Polynomial Time Complexity

NP - Verifier-based Definition

3. NP-complete

Polynomial Time Reduction (\leq_P) **NP-complete** – Hardest Problems in **NP** (**SAT**) – The First **NP-complete** Problem Other **NP-complete** Problems

4. Major Unsolved Problem: **P** = **NP**?

Time Complexity of NTMs

Definition (Time Complexity of NTMs)

We say a **nondeterministic Turing machine (NTM)** M has a **time complexity** $T: \mathbb{N} \to \mathbb{N}$ if M halts on w in at most T(n) moves for all $w \in \Sigma^*$ whose length is n.

Time Complexity of NTMs

Definition (Time Complexity of NTMs)

We say a **nondeterministic Turing machine (NTM)** M has a **time complexity** $T : \mathbb{N} \to \mathbb{N}$ if M halts on w in at most T(n) moves for all $w \in \Sigma^*$ whose length is n.

Definition (NTIME)

A decision problem π is in **NTIME**(T(n)) if it is decidable by a NTM M whose time complexity is T(n).

Time Complexity of NTMs – Example

 $\langle MakeEvenPalin \rangle$ – Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?

Time Complexity of NTMs - Example

 $\langle MakeEvenPalin \rangle$ – Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?

 В	a	С	Ъ	С	С	a	В	

Time Complexity of NTMs – Example

 $\langle MakeEvenPalin \rangle$ – Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?

											_
	• • •	B	a	С	Ъ	С	С	a	B		
				-e]							-
				[b-)b]R		r	. 1/			
$M_{\langle {\sf MakeEvenPalin} angle} =$				[c-	→b] <i>R</i> →a] <i>R</i> →b] <i>R</i>		[a-	ightarrowa] L			
					Q	$[B \rightarrow B$	1/	Q	[<i>B</i> → <i>B</i>	81 <i>R</i>	
			star	t → (q_0)—	15 / 5	<u> </u>	q_1)—	ני כו	N	[¶] ⟨EvenPa

Time Complexity of NTMs - Example

 $\langle MakeEvenPalin \rangle$ – Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?

The decision problem $\langle \mathbf{MakeEvenPalin} \rangle$ is decidable by the above NTM whose time complexity is $T(n) = 2(n+1) + O(n^2) = O(n^2)$.

$$\langle \mathsf{MakeEvenPalin} \rangle \in \mathsf{NTIME}(\mathit{O}(\mathit{n}^2))$$

NP – Nondeterministic Polynomial Time Complexity

Definition (NP - Nondeterministic Polynomial Time Complexity)

A decision problem π is in **NP** if it is decidable by an NTM M whose time complexity is a **polynomial function** (i.e., $T(n) = O(n^k)$ for some $k \ge 0$).

$$\mathsf{NP} = \bigcup_{k \geq 0} \mathsf{NTIME}(O(n^k))$$

For example, the decision problem (MakeEvenPalin) is in NP.

$$\langle \mathsf{MakeEvenPalin} \rangle \in \mathsf{NTIME}(\mathit{O}(\mathit{n}^2)) \subseteq \mathsf{NP}$$

Definition (Search Problem)

A search problem π is a decision problem that asks for the existence of a witness x (i.e., a solution) in the search space S(w) for a given input w, satisfying the another decision problem π' as a verification problem.

$$\forall w \in \Sigma^*$$
. $\pi(w) = \text{yes} \iff \exists x \in S(w)$. $\pi'(w, x) = \text{yes}$

Definition (Search Problem)

A search problem π is a decision problem that asks for the existence of a witness x (i.e., a solution) in the search space S(w) for a given input w, satisfying the another decision problem π' as a verification problem.

$$\forall w \in \Sigma^*$$
. $\pi(w) = \text{yes} \iff \exists x \in S(w)$. $\pi'(w, x) = \text{yes}$

For example, \langle MakeEvenPalin \rangle is a search problem with \langle EvenPalin \rangle as a verification problem:

Definition (Search Problem)

A search problem π is a decision problem that asks for the existence of a witness x (i.e., a solution) in the search space S(w) for a given input w, satisfying the another decision problem π' as a verification problem.

$$\forall w \in \Sigma^*$$
. $\pi(w) = \text{yes} \iff \exists x \in S(w)$. $\pi'(w, x) = \text{yes}$

For example, \langle MakeEvenPalin \rangle is a search problem with \langle EvenPalin \rangle as a verification problem:

 $\langle \mathsf{MakeEvenPalin} \rangle(w) = \mathsf{yes} \iff \exists x \in S(w). \ \langle \mathsf{EvenPalin} \rangle(x) = \mathsf{yes}$

where the search space S(w) of an input w is defined as follows:

$$S(w) = \{x \mid x = (a \text{ possible replacement of all c's in } w \text{ with a's or b's})\}$$

Definition (Search Problem)

A search problem π is a decision problem that asks for the existence of a witness x (i.e., a solution) in the search space S(w) for a given input w, satisfying the another decision problem π' as a verification problem.

$$\forall w \in \Sigma^*$$
. $\pi(w) = \text{yes} \iff \exists x \in S(w)$. $\pi'(w, x) = \text{yes}$

For example, \langle MakeEvenPalin \rangle is a search problem with \langle EvenPalin \rangle as a verification problem:

 $\langle \mathsf{MakeEvenPalin} \rangle(w) = \mathsf{yes} \iff \exists x \in S(w). \langle \mathsf{EvenPalin} \rangle(x) = \mathsf{yes}$ where the search space S(w) of an input w is defined as follows:

$$S(w) = \{x \mid x = (a \text{ possible replacement of all c's in } w \text{ with a's or b's})\}$$

e.g.,
$$w = acbcca$$
 $S(w) = \begin{cases} aabaaa, aababa, aabbaa, aabbba, abbaaa, abbbaa, abbbaa, abbbba \end{cases}$

NP – Nondeterministic Polynomial Time Complexity

Definition (**NP** – Verifier-based Definition)

A search problem π defined with a verification problem π' is in **NP** if there is a polynomial time TM M as a **verifier** for π :

$$\forall w \in \Sigma^*$$
. $\forall x \in S(w)$. $\pi'(w, x) = \text{yes} \iff (w, x) \in L(M)$

NP – Nondeterministic Polynomial Time Complexity

Definition (**NP** – Verifier-based Definition)

A search problem π defined with a verification problem π' is in **NP** if there is a polynomial time TM M as a **verifier** for π :

$$\forall w \in \Sigma^*$$
. $\forall x \in S(w)$. $\pi'(w,x) = \text{yes} \iff (w,x) \in L(M)$

For example, (MakeEvenPalin) is a search problem in NP:

NP – Example: **(SAT)**

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

NP – Example: **(SAT)**

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

$NP - Example: \langle SAT \rangle$

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

Yes! For example, $x_1 = \#f$, $x_2 = \#f$, and $x_3 = \#t$ is a satisfying assignment.

$NP - Example: \langle SAT \rangle$

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

Yes! For example, $x_1 = \#f$, $x_2 = \#f$, and $x_3 = \#t$ is a satisfying assignment.

Is it $\langle SAT \rangle$ in NP?

$NP - Example: \langle SAT \rangle$

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

Yes! For example, $x_1 = \#f$, $x_2 = \#f$, and $x_3 = \#t$ is a satisfying assignment.

Is it $\langle SAT \rangle$ in NP? Yes!

We can construct a polynomial time TM as a **verifier** for $\langle SAT \rangle$, which takes 1) a **Boolean formula** and 1) an **assignment** of Boolean variables, and checks whether the assignment satisfies the formula.

NP – Example: **(SAT)**

 $\langle SAT \rangle$ (Boolean SATisfiability problem) – Is a given Boolean formula (consisting of Boolean variables, \land , \lor , and \neg) satisfiable?

For example, is the following Boolean formula satisfiable?

$$(x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

Yes! For example, $x_1 = \#f$, $x_2 = \#f$, and $x_3 = \#t$ is a satisfying assignment.

Is it $\langle SAT \rangle$ in NP? Yes!

We can construct a polynomial time TM as a **verifier** for $\langle SAT \rangle$, which takes 1) a **Boolean formula** and 1) an **assignment** of Boolean variables, and checks whether the assignment satisfies the formula.

In other words, we can construct a polynomial time NTM for $\langle SAT \rangle$ by 1) generating all assignments of Boolean variables and 2) verifying whether the assignment satisfies the formula using the verifier.

Contents

1. P

Time Complexity of TMs

P – Polynomial Time Complexity (Tractable Problems)

2. **NP**

Time Complexity of NTMs

NP – Nondeterministic Polynomial Time Complexity

NP – Verifier-based Definition

3. NP-complete

Polynomial Time Reduction (\leq_P) **NP-complete** – Hardest Problems in **NP** (**SAT**) – The First **NP-complete** Problem Other **NP-complete** Problems

4. Major Unsolved Problem: P = NP?

Polynomial Time Reduction (\leq_P)

Definition (Polynomial Time Reduction (\leq_P))

A decision problem π_1 is **polynomial time reducible** to another decision problem π_2 (denoted by $\pi_1 \leq_P \pi_2$) if there exists a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ such that:

$$\forall w \in \Sigma^*$$
. $\pi_1(w) = \text{yes} \iff \pi_2(f(w)) = \text{yes}$

Polynomial Time Reduction (\leq_P)

Definition (Polynomial Time Reduction (\leq_P))

A decision problem π_1 is **polynomial time reducible** to another decision problem π_2 (denoted by $\pi_1 \leq_P \pi_2$) if there exists a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ such that:

$$\forall w \in \Sigma^*$$
. $\pi_1(w) = \text{yes} \iff \pi_2(f(w)) = \text{yes}$

We say that π_2 is **harder** than π_1 if $\pi_1 \leq_P \pi_2$ because we can solve π_1 in polynomial time if we can solve π_2 in polynomial time.

Polynomial Time Reduction (\leq_P)

Definition (Polynomial Time Reduction (\leq_P))

A decision problem π_1 is **polynomial time reducible** to another decision problem π_2 (denoted by $\pi_1 \leq_P \pi_2$) if there exists a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ such that:

$$\forall w \in \Sigma^*$$
. $\pi_1(w) = \text{yes} \iff \pi_2(f(w)) = \text{yes}$

We say that π_2 is **harder** than π_1 if $\pi_1 \leq_P \pi_2$ because we can solve π_1 in polynomial time if we can solve π_2 in polynomial time.

If a decision problem π_2 is in **NP** and $\pi_1 \leq_P \pi_2$, then π_1 is in **NP**.

Consider the following two decision problems:

- $\langle MakeEvenPalin \rangle$ Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?
- (SAT) Is a given Boolean formula satisfiable?

Consider the following two decision problems:

- $\langle MakeEvenPalin \rangle$ Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?
- (**SAT**) Is a given Boolean formula satisfiable?

We can show that $\langle \mathbf{MakeEvenPalin} \rangle \leq_P \langle \mathbf{SAT} \rangle$ by the following polynomial time computable function f:

$$f(a_1 a_2 \cdots a_n) = \bigwedge_{i=1}^n ((x_i \wedge x_{n+1-i}) \vee (\neg x_i \wedge \neg x_{n+1-i})) \\ \wedge \bigwedge \{x_i \mid a_i = a\} \wedge \bigwedge \{\neg x_i \mid a_i = b\}$$

 $(x_i = \#t \text{ means that } a_i = \texttt{a} \text{ and } x_i = \#f \text{ means that } a_i = \texttt{b})$

Consider the following two decision problems:

- \langle MakeEvenPalin \rangle Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?
- (SAT) Is a given Boolean formula satisfiable?

We can show that $\langle \mathbf{MakeEvenPalin} \rangle \leq_P \langle \mathbf{SAT} \rangle$ by the following polynomial time computable function f:

$$f(a_1 a_2 \cdots a_n) = \bigwedge_{i=1}^n ((x_i \wedge x_{n+1-i}) \vee (\neg x_i \wedge \neg x_{n+1-i})) \\ \wedge \bigwedge \{x_i \mid a_i = a\} \wedge \bigwedge \{\neg x_i \mid a_i = b\}$$

 $(x_i = \#t \text{ means that } a_i = \texttt{a} \text{ and } x_i = \#f \text{ means that } a_i = \texttt{b})$

For example,

$$f(\mathsf{acba}) = ((x_1 \land x_4) \lor (\neg x_1 \land \neg x_4)) \land ((x_2 \land x_3) \lor (\neg x_2 \land \neg x_3)) \land x_1 \land \neg x_3 \land x_4$$

Consider the following two decision problems:

- $\langle MakeEvenPalin \rangle$ Is a word $w \in \{a, b, c\}^*$ convertible to an even-length palindrome by replacing all c's with a's or b's?
- (**SAT**) Is a given Boolean formula satisfiable?

We can show that $\langle \mathbf{MakeEvenPalin} \rangle \leq_P \langle \mathbf{SAT} \rangle$ by the following polynomial time computable function f:

$$f(a_1 a_2 \cdots a_n) = \bigwedge_{i=1}^n ((x_i \wedge x_{n+1-i}) \vee (\neg x_i \wedge \neg x_{n+1-i})) \\ \wedge \bigwedge \{x_i \mid a_i = a\} \wedge \bigwedge \{\neg x_i \mid a_i = b\}$$

 $(x_i = \#t \text{ means that } a_i = \texttt{a} \text{ and } x_i = \#f \text{ means that } a_i = \texttt{b})$

For example,

$$f(\mathsf{acba}) = ((x_1 \land x_4) \lor (\neg x_1 \land \neg x_4)) \land ((x_2 \land x_3) \lor (\neg x_2 \land \neg x_3)) \land x_1 \land \neg x_3 \land x_4$$

Thus, we can solve $\langle MakeEvenPalin \rangle$ using a machine for $\langle SAT \rangle$, and $\langle SAT \rangle$ is harder problem than $\langle MakeEvenPalin \rangle$.

Definition (NP-hard – Harder Problems Than All NP)

A decision problem π is in **NP-hard** if $\forall \pi' \in \mathbf{NP}$, $\pi' \leq_P \pi$.

Definition (NP-hard – Harder Problems Than All NP)

A decision problem π is in **NP-hard** if $\forall \pi' \in \mathbf{NP}$, $\pi' \leq_P \pi$.

In other word, π is in NP-hard if π is harder than all problems in NP.

Definition (NP-hard – Harder Problems Than All NP)

A decision problem π is in **NP-hard** if $\forall \pi' \in \mathbf{NP}$, $\pi' \leq_P \pi$.

In other word, π is in NP-hard if π is harder than all problems in NP.

Definition (**NP-complete** – Hardest Problems in **NP**)

A decision problem π is in **NP-complete** if

- \bullet π is in **NP**, and
- **2** π is in **NP-hard** (i.e., $\forall \pi' \in \mathbf{NP}, \ \pi' \leq_P \pi$).

Definition (NP-hard – Harder Problems Than All NP)

A decision problem π is in **NP-hard** if $\forall \pi' \in \mathbf{NP}, \ \pi' \leq_P \pi$.

In other word, π is in NP-hard if π is harder than all problems in NP.

Definition (NP-complete – Hardest Problems in NP)

A decision problem π is in **NP-complete** if

- $\mathbf{0}$ π is in **NP**, and
- **2** π is in **NP-hard** (i.e., $\forall \pi' \in \mathbf{NP}, \ \pi' \leq_P \pi$).

In other word, π is in **NP-complete** if π is the **hardest problem in NP**.

Theorem (Cook-Levin theorem)

 $\langle SAT \rangle$ is in NP-complete.

¹https://en.wikipedia.org/wiki/Cook-Levin_theorem

Theorem (Cook–Levin theorem)

 $\langle SAT \rangle$ is in NP-complete.

We need to show that

- \bigcirc (SAT) is in NP, and
- \bigcirc (SAT) is in NP-hard.

¹https://en.wikipedia.org/wiki/Cook-Levin_theorem

Theorem (Cook–Levin theorem)

 $\langle SAT \rangle$ is in NP-complete.

We need to show that

- \bigcirc (**SAT**) is in **NP**, and
- \bigcirc \langle **SAT** \rangle is in **NP-hard**.

For \bigcirc 1, we already know that $\langle SAT \rangle$ is in NP.

¹https://en.wikipedia.org/wiki/Cook-Levin_theorem

Theorem (Cook–Levin theorem)

 $\langle SAT \rangle$ is in NP-complete.

We need to show that

- \bigcirc (SAT) is in NP, and
- \bigcirc $\langle SAT \rangle$ is in NP-hard.

For $\bigcirc{1}$, we already know that $\langle \mathbf{SAT} \rangle$ is in \mathbf{NP} .

For \bigcirc , we need to show that $\forall \pi \in \mathbf{NP}, \ \pi \leq_P \langle \mathbf{SAT} \rangle$.

¹https://en.wikipedia.org/wiki/Cook-Levin_theorem

Theorem (Cook–Levin theorem)

 $\langle SAT \rangle$ is in NP-complete.

We need to show that

- \bigcirc (SAT) is in NP, and
- \bigcirc (SAT) is in NP-hard.

For (1), we already know that $\langle SAT \rangle$ is in NP.

For 2, we need to show that $\forall \pi \in \mathbf{NP}$, $\pi \leq_P \langle \mathbf{SAT} \rangle$.

The core idea is to simulate an NTM M for π using a Boolean formula ϕ such that ϕ is satisfiable if and only if M accepts w. But, we skip the details of the proof. Please refer to the link¹ for the details.

¹https://en.wikipedia.org/wiki/Cook-Levin_theorem

Other **NP-complete** Problems

Theorem (Lemma)

A decision problem π is in NP-hard if $\langle SAT \rangle \leq_P \pi$

²https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Other **NP-complete** Problems

Theorem (Lemma)

A decision problem π is in **NP-hard** if $\langle SAT \rangle \leq_P \pi$

This lemma is very useful to show that a decision problem π is in **NP-complete** by showing that 1) π is in **NP** and 2) \langle **SAT** $\rangle \leq_P \pi$.

²https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Other **NP-complete** Problems

Theorem (Lemma)

A decision problem π is in NP-hard if $\langle SAT \rangle \leq_P \pi$

This lemma is very useful to show that a decision problem π is in **NP-complete** by showing that 1) π is in **NP** and 2) \langle **SAT** $\rangle \leq_P \pi$.

We can show that all of the following decision problems are in $\ensuremath{\text{NP-complete}}$ by using this lemma: 2

- $\langle \mathbf{SubsetSum} \rangle$ Given a set of integers S and an integer t, is there a subset $S' \subseteq S$ such that $\sum S' = t$?
- ⟨Clique⟩ Given a graph G and an integer k, is there a clique of size k in G?
- **(VertexCover**) Given a graph G and an integer k, is there a vertex cover of size k in G?
- . . .

²https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Contents

1. P

Time Complexity of TMs ${f P}$ – Polynomial Time Complexity (Tractable Problems)

2. **NP**

NP – Nondeterministic Polynomial Time Complexity
NP – Verifier-based Definition

3. NP-complete

Polynomial Time Reduction (\leq_P) **NP-complete** – Hardest Problems in **NP**(**SAT**) – The First **NP-complete** Problem

Other **NP-complete** Problems

4. Major Unsolved Problem: P = NP?

Major Unsolved Problem: P = NP?

"If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in creative leaps, no fundamental gap between solving a problem and recognizing the solution once it's found."

— Scott Aaronson, UT Austin

Summary

1. **P**

Time Complexity of TMs

P – Polynomial Time Complexity (Tractable Problems)

2. **NP**

Time Complexity of NTMs

NP – Nondeterministic Polynomial Time Complexity

NP – Verifier-based Definition

3. NP-complete

Polynomial Time Reduction (\leq_P)

NP-complete – Hardest Problems in NP

 $\langle SAT \rangle$ – The First NP-complete Problem

Other **NP-complete** Problems

4. Major Unsolved Problem: P = NP?

Next Lecture

Course Review

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr