

SIGIR2018、WWW2018 知识图谱研究综述

肖仰华 复旦大学知识工场实验室 shawyh@fudan.edu.cn 2018.08.16

SIGIR 18、WWW18 知识图谱(KG)研究概览

分类	相关论文
知识获取	上下文事实发现: Weakly-supervised Contextualization of Knowledge Graph Facts, SIGIR18
	KG扩充: Enriching Taxonomies With Functional Domain Knowledge, SIGIR18
	三元组规范化: CESI: canonicalizing open knowledge bases using embeddings and side information, WWW18
知识挖掘	必有属性挖掘: Are all people married? Determining obligatory attributes in knowledge bases, WWW18
	分面标注: Facet annotation using reference knowledge bases, WWW18
知识应用	会话系统: Response Ranking with Deep Matching Networks and External Knowledge in Information-seeking Conversation Systems, SIGIR18
	问答系统: Knowledge-aware Attentive Neural Network for Ranking Question Answer Pairs SIGIR18; Never-ending learning for open-domain question answering over knowledge bases, WWW18
	推荐系统: Improving Sequential Recommendation with Knowledge-enhanced Memory Networks SIGIR18 DKN: deep knowledge-aware network for news recommendation, WWW18
知识评估	KG补全评价指标: On Link Prediction in Knowledge Bases: Max-K Criterion and Prediction Protocols, SIGIR18
	规则评估: Estimating rule quality for knowledge base completion with the relationship between coverage assumption, WWW18

趋势1(知识获取):基于深度学习的知识获取成为热点

知识获取:上下文知识获取

Weakly-supervised Contextualization of Knowledge Graph Facts, SIGIR18

研究问题:对于给定的KG事实(实体关

系三元组), 找出相关的事实

Figure 1: A Freebase subgraph that consists of relevant facts to the query fact founderOf (Bill Gates, Microsoft).

存在的挑战:

KG很大,即使在很小邻域找相关的事实,都会产生大量候选事实

Neural Fact Contextualization Method

知识获取: Taxonomy补全

Enriching Taxonomies With Functional Domain Knowledge, SIGIR18

研究问题:知识结构扩充,即对于大量新出现的concepts,如何将其加入已有的知识结构中

存在的挑战:

- 未知concept检测
- 新concept插入已有的知识结构,如何 保证新创建的关系的语义完整性

已有工作的不足:

- 受语言限制
- 受领域限制
- 无法用于大规模的知识结构扩充

- 生成concepts的embeddings (w2v + d2v)
- 寻找与新concept相似的K个已有concepts
- 基于图特征和语义特征的learning to rank 排序, 确定新concept合适的插入位置(父节点)

知识获取: 三元组规范化

CESI: canonicalizing open knowledge bases using embeddings and side information, WWW18

研究问题: 信息抽取, openIE抽取出的三元组规范化

已有工作的不足:

- 现有方法主要通过人工定义的特征将三元组进行聚类,再进行规范化。
- 人工方法进行特征工程代价巨大,次优

- 使用embedding方法学 习openIE抽取出的三元 组的语义表示
- 在Embedding下的语义 空间进行聚类

趋势2(知识挖掘): 具有应用价值的新型知识挖掘问题 受到关注

知识挖掘:必有属性挖掘

Are all people married? Determining obligatory attributes in knowledge bases, WWW18

研究问题: 找到知识图谱中概念的必有属性

挑战:

- 知识库中存在数十万的概念,难以利用人工来判断哪些属性是概念必有的
- 开放世界假设, 使得无法判断一条没有包含在知识库中的三元组的真假

- 提出了基于概念层次结构来推断概念 的必有属性
- 基本假设
 - 假设知识库的不完全性在知识库的所有类中都是均匀分布的。如果一个属性在某个概念中分布较稀疏(而在其他概念中分布较密),则可推断它一定不是分布较为稀疏的概念的必有属性

Figure 1: Examples of attributes and classes.

知识挖掘:分面标注

Facet annotation using reference knowledge bases, WWW18

研究问题: 概念的分面 (Facet) 属性自动标注

已有工作的不足:

现有方法只是找到了概念的某个分面属性的所有值, 但没有将这个分面属性给标注出来

- 利用知识图谱中三元组的谓词来作为分面的属性名
- 定义了三个度量函数来评估分面属性和谓词的相似度
 - specificity, coverage, and frequency

Figure 1: Facets that characterize books.

Figure 3: The Facet Annotation process.

趋势3(知识应用):利用知识图谱等各种背景知识增强数据的描述,显著提升推荐、问答的效果,成为主流趋势

知识应用:会话系统

Response Ranking with Deep Matching Networks and External Knowledge in Information-seeking Conversation Systems, SIGIR18

研究问题: 检索式会话系统中的答案排序

已有工作的不足: 大多注重用户输入信息和候选答案之间的匹配模式,

Figure 1: The architecture of DMN-PRF model for conversation response ranking.

知识应用:问答系统

Knowledge-aware Attentive Neural Network for Ranking Question Answer Pairs, SIGIR18

研究问题:问答系统中的答案排序

已有工作的不足:目前多基于神经网络对问题和答案句建模,但忽略了问题的背景信息和隐含的关系

Table 1: Example of QA candidate pairs.

Question	When was Pokemon first started ?
	Is a media franchise published and owned by
Positive Answer	Japanese video game company <i>Nintendo</i> and
	created by Satoshi Tajiri in 1996 .
	The official logo of Pokemor for its interna-
Negative Answer	tional release; "Pokemon is short for the
	original Japanese title of "Pocket Monsters".

Score (Negative answer) > Score (positive answer)

Knowledge-aware Attentive Neural Network: 使用KG中的知识来增强问题和答案句的表示

知识应用:问答系统

Never-ending learning for open-domain question answering over knowledge bases, WWW18

研究问题: 在开放域的KBQA中,将自然语言问题转换为语义表示(如SPARQL)

已有工作的不足:

- 现有工作将训练过程(离线)和问答过程(在线)严格分开,方法存在两类不足:
 - 需要大量的标记数据集,但这些数据集很多时候并没有现成的
 - 无法对训练集没有覆盖的领域进行有效回答

- 提出了一种<mark>持续学习</mark>的KBQA方法:
 - 在离线训练过程中,从少量训练数据集中自动学习出模板
 - 在在线问答过程中,当遇到模板 未覆盖的问题时,出发持续学习 模型

知识应用: 推荐系统

Improving Sequential Recommendation with Knowledge-enhanced Memory Networks, SIGIR18

研究问题: 推荐系统中的序列化推荐

已有工作的不足:

• 大多基于RNN, 虽然能在一定程度上捕获序列依赖, 但难以记忆和维护长期数据

知识应用: 推荐系统

DKN: deep knowledge-aware network for news recommendation, WWW18

研究问题: 新闻推荐

已有工作的不足:

新闻标题和正文中通常存在大量的实体,实体间的语义关系可以有效地扩展用户兴趣。然而这种语义关系难以被传统方法(话题模型、词向量)发掘

解决方案:

使用知识图谱特征学习得到实体向量和关系向量,然后将这些低维向量引入推荐系统,学习得到用户向量和物品向量

利用CNN提取词、实体以 及实体上下文中的特征

趋势4(知识评估):实用化知识评估、针对开放世界假设的知识评估受到关注

知识评估: 补全评估

On Link Prediction in Knowledge Bases: Max-K Criterion and Prediction Protocols, SIGIR18

研究问题: KG 补全中的评价指标

- 不合理,不同任务的答案个数不同
- 由于任务的差异性,全局的K难以设置

Max-K criterion

Figure 1: Two example answer predicting distributions.

左图:实体 1-10在预测的概率分布上起统治作用。

右图:没有任何实体在预测的概率分布上起统治作用,但实

体1-40的概率比其他要大。

- · 返回max K个答案来评估模型的性能
- 对于不同任务更合理,更个性化

知识评估:规则评估

Estimating rule quality for knowledge base completion with the relationship between coverage assumption, WWW18

研究问题: 知识图谱补全,包括产生新的事实或规则

挑战:

- 无法判断一条没有包含在知识库中的三元组的真假
- 知识图谱中只存在正例,不存在负例

- 提出了一个打分函数来评估从知识库 中学习出的一阶规则的质量
- 在估计一个规则的质量时,考虑了不 在知识库中的三元组的信息

Figure 1: The set of predictions $\mathbb{P}_{B\Rightarrow R}$ can be divided into labeled ($KP_{B\Rightarrow R}$) and unlabeled ($U_{B\Rightarrow R}$) examples. Furthermore, $U_{B\Rightarrow R}$ can be subdivided into the unknown positives ($UP_{B\Rightarrow R}$) and unknown negatives ($UN_{B\Rightarrow R}$).

- 从两个角度对未知信息进行估计:
 - 一个规则覆盖的正例比率在已知KB和未知KB上是相同的
 - 一条关系的所有未标记数据中,有多少比例是正确的

总结

- 深度学习与知识图谱的深度融合已经成为普遍趋势
- 数据驱动已经成为大数据 时代知识工程的主要手段
- 知识引导已经成为突破应用瓶颈的重要思路之一

• <u>以知识图谱为代表的大数</u> 据知识工程方兴未艾

