

Simplificação de Funções Através de Diagramas de Veitch-Karnaugh

Universidade Federal de Uberlândia Faculdade de Computação Prof. João Henrique de Souza Pereira

Créditos dos slides para o Prof. Dr. Daniel D. Abdala

Na Aula Anterior ...

- Simplificação de funções via manipulação algébrica;
- Formas canônicas de funções lógicas
 - Soma de Produtos
 - Produto de Somas
- Obtenção de formas canônicas via manipulação algébrica;
- Obtenção de formas canônicas via tabela da verdade

Nesta Aula

- Mapas de Veitch-Karnaugh para 2, 3, 4 e 5 variáveis;
- Agrupamento de elementos;
- Processo sistemático de simplificação.

Mapas de Veitch-Karnaugh

- Mapa-K;
- Forma sistemática para simplificação de funções lógicas;
- Entrada função no formato SdP ou TV.

Mapa-K₍₂₎

Região onde

$$A = 1$$

Região onde

$$B = 0$$

	B	В
Ā		
Α		

Região onde

$$A = 0$$

 $\overline{\mathbf{A}}$

Α

Região onde

$$B = 1$$

Mapa-K₍₃₎

Região onde

Região onde

Região onde

Região onde

Região onde

$$\begin{array}{c|cccc}
B & B \\
\hline
A & B \\
\hline
C & C & \hline
C
\end{array}$$

Região onde

Mapa-K₍₄₎

Região onde

Região onde

Região onde

Região onde

Região onde

Prof. Dr. rer. nat . Daniel Duarte Abdala

Mapa-K₍₄₎ cont...

Região onde

Região onde

Passos para Simplificação Usando Mapa-K

- Passo 1: Colocar a função na forma de SdP
- Passo 2: Desenhar o mapa-K apropriado para o nº de variáveis;
- Passo 3: Mapear os termos da SdP que possuem saída "1" para o mapa-k
- Passo 4: Agrupar os "1"s do mapa de modo a utilizar todos eles;
- Passo 5: Para cada grupo, manter apenas as variáveis que não variam para nenhum dos "1"

Agrupamento de Termos nos mapas-K

Pegar o maior número de "1"s no mesmo grupo;

- Na realidade, agrupa-se, segundo a geometria acima visando juntar termos que possuem variáveis em comum.
- Note, no entanto, que os mapas-K se curvam sobre si mesmos. Desta forma é possível aplicar a mesma geometria considerando os mapas-K como espaços hipercurvos.

Agrupamento de Termos nos mapas-K

$Mapa-K_{(5)}$

Mapa-K₍₄₎ "dobrado"

Exemplo Mapa-K₂

• $F(A,B) = A \cdot B + A \cdot \overline{B}$

A	В	A·B	A·B	S						
0	0	0	0	0			_	I		
0	1	0	0	0			\overline{B}	В	1	
1	0	0	1	1	$\Rightarrow A \cdot \overline{B}$	Ā				
1	1	1	0	1	$\Rightarrow A \cdot B$	Α	1	1	\Rightarrow	Α

Exemplo Mapa-K₃

Exercício: Monte o Mapa de Karnaugh para a expressão:

• $F(A,B,C) = (\overline{A} \cdot C) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C)$

Exemplo Mapa-K₃

• $F(A,B,C) = (\overline{A} \cdot C) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot C)$

A	В	С	Ā·C	A·B·C	A·B·C	S							
0	0	0	0	0	0	0							
0	0	1	1	0	0	1	$\Rightarrow \overline{A}$. <u>B</u> .c					
0	1	0	0	0	0	0				ī	3		3
0	1	1	1	0	0	1	$\Rightarrow \overline{A}$	∙В∙С	Ā		1	1	
1	0	0	0	0	0	0							
1	0	1	0	1	0	1	□ A	- <u>B</u> -C	Α		1	1	
1	1	0	0	0	0	0				C		C	C
1	1	1	0	0	1	1	⇒ A	∙в∙с			1	ļ	
												С	

Representação Alternativa

- Há uma forma alternativa para representação;
- Mais fácil de mapear a partir da tabela verdade;
- Não requer a forma em soma de produto.

A	В	С	Ā·C	A·B·C	A·B·C	S	
0	0	0	0	0	0	0	
0	0	1	1	0	0	1	$\Rightarrow \overline{A} \cdot \overline{B} \cdot C$
0	1	0	0	0	0	0	A 00 01 11 10
0	1	1	1	0	0	1	$\Rightarrow \overline{A} \cdot B \cdot C$ 0 1 1
1	0	0	0	0	0	0	>
1	0	1	0	1	0	1	$\Rightarrow A \cdot \overline{B} \cdot C$
1	1	0	0	0	0	0	
1	1	1	0	0	1	1	A·B·C

LogiSim

- Ferramenta para simulação de Sistemas Digitais;
- Possível simular desde sistemas muito pequenos tal como uma porta lógica, quanto muito grandes, tais como um processador;
- http://sourceforge.net/projects/circuit/

LogiSim: Ferramentas

Projetando um simples Circuito

- Selecione o objeto desejado e clique na posição desejada na área do projeto;
- Portas lógicas são adicionadas com cinco entradas e em tamanho grande por definição;
- Para ligar dois pontos basta clicar no ponto A e arrastar o mouse clicado até o ponto B.

Bibliotecas

Exemplo: Processador MIPS

Exemplo: Multiplicador

Exemplo: Banco de Memória

Barramentos e Distribuidores

Passo 1: Construa o Circuito a ser Simplificado

Expressão do Circuito

Tabela Verdade do Circuito

Simplificação Via Mapa-K

Simplificação Via Mapa-K

Exercício

 Construa a tabela verdade e simplifique via diagrama de Veitch-Karnaugh a seguinte expressão:

F(A,B,C,D,E)=ABD+BCD+BCE+ACDE+BDE

Pro Lar

- Leitura (Tocci): 4.5 (pp. 112 121)
- Leitura (Capuano): 4.9 4.9.3 (pp. 104-128)
- Exercícios (Tocci): E = {4.11 4.19}
- Exercícios (Capuano): E = {4.9.2.2 ,4.9.3.2}

Bibliografia Comentada

TOCCI, R. J., WIDMER, N. S., MOSS, G. L. Sistemas Digitais – Princípios e Aplicações. 11ª Ed. Pearson Prentice Hall, São Paulo, S.P., 2011, Brasil.

- CAPUANO, F. G., IDOETA, I. V. Elementos de Eletrônica Digital. 40ª Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.