$\mathbf{X} = (X_1, \cdots, X_n)^T$ are said to be jointly Gaussian if

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

 $\mathbf{X} = (X_1, \cdots, X_n)^T$ are said to be jointly Gaussian if

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

 $ightharpoonup E\mathbf{X} = \boldsymbol{\mu}$ and $\Sigma_X = \Sigma$.

 $ightharpoonup \mathbf{X} = (X_1, \cdots, X_n)^T$ are said to be jointly Gaussian if

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

- $E\mathbf{X} = \boldsymbol{\mu}$ and $\Sigma_X = \Sigma$.
- ▶ The moment generating function is given by

$$M_{\mathbf{X}}(\mathbf{s}) = e^{\mathbf{s}^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{s}^T \boldsymbol{\Sigma} \, \mathbf{s}}$$

 $ightharpoonup \mathbf{X} = (X_1, \cdots, X_n)^T$ are said to be jointly Gaussian if

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} \left|\Sigma\right|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

- $E\mathbf{X} = \boldsymbol{\mu}$ and $\Sigma_X = \Sigma$.
- ▶ The moment generating function is given by

$$M_{\mathbf{X}}(\mathbf{s}) = e^{\mathbf{s}^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{s}^T \boldsymbol{\Sigma} \, \mathbf{s}}$$

 $\label{eq:when X,Y} \mbox{ are jointly Gaussian, the joint density is given by}$

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left(\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right)}$$

► The multi-dimensional Gaussian density has some important properties.

- ► The multi-dimensional Gaussian density has some important properties.
- ▶ If X_1, \dots, X_n are jointly Gaussian then they are independent if they are uncorrelated.

- The multi-dimensional Gaussian density has some important properties.
- ▶ If X_1, \dots, X_n are jointly Gaussian then they are independent if they are uncorrelated.
- ▶ If X_1, \dots, X_n be jointly Gaussian (with zero means) then there is an orthogonal transform $\mathbf{Y} = A\mathbf{X}$ such that Y_1, \dots, Y_n are jointly Gaussian and independent.

- The multi-dimensional Gaussian density has some important properties.
- ▶ If X_1, \dots, X_n are jointly Gaussian then they are independent if they are uncorrelated.
- ▶ If X_1, \dots, X_n be jointly Gaussian (with zero means) then there is an orthogonal transform $\mathbf{Y} = A\mathbf{X}$ such that Y_1, \dots, Y_n are jointly Gaussian and independent.
- ▶ X_1, \dots, X_n are jointly Gaussian if and only if $\mathbf{t}^T \mathbf{X}$ is Gaussian for for all non-zero $\mathbf{t} \in \Re^n$.

• Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.

- ▶ Suppose $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of X.

- Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW$$

- ▶ Suppose $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$
- Let μ_X and Σ_X denote the mean vector and covariance matrix of X. Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X;$$

- ▶ Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

- Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

lacktriangle The mgf of W is given by

- Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

$$M_W(u) = E\left[e^{uW}\right]$$

- ▶ Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

lacktriangle The mgf of W is given by

$$M_W(u) = E\left[e^{uW}\right] = E\left[e^{u \,\mathbf{t}^T \mathbf{X}}\right]$$

- Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

$$M_W(u) = E\left[e^{uW}\right] = E\left[e^{u \mathbf{t}^T \mathbf{X}}\right]$$

= $M_X(u\mathbf{t})$

- ▶ Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

$$M_W(u) = E\left[e^{uW}\right] = E\left[e^{u \mathbf{t}^T \mathbf{X}}\right]$$
$$= M_X(u\mathbf{t}) = e^{u\mathbf{t}^T \mu_x + \frac{1}{2}u^2 \mathbf{t}^T \Sigma_x \mathbf{t}}$$

- Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

$$M_W(u) = E\left[e^{uW}\right] = E\left[e^{u\mathbf{t}^T\mathbf{X}}\right]$$
$$= M_X(u\mathbf{t}) = e^{u\mathbf{t}^T\mu_x + \frac{1}{2}u^2\mathbf{t}^T\Sigma_x\mathbf{t}}$$
$$= e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2}$$

- ▶ Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

$$M_W(u) = E\left[e^{uW}\right] = E\left[e^{u\mathbf{t}^T\mathbf{X}}\right]$$
$$= M_X(u\mathbf{t}) = e^{u\mathbf{t}^T\mu_x + \frac{1}{2}u^2\mathbf{t}^T\Sigma_x\mathbf{t}}$$
$$= e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2}$$

showing that W is Gaussian

- Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

$$M_W(u) = E\left[e^{uW}\right] = E\left[e^{u\mathbf{t}^T\mathbf{X}}\right]$$
$$= M_X(u\mathbf{t}) = e^{u\mathbf{t}^T\mu_x + \frac{1}{2}u^2\mathbf{t}^T\Sigma_x\mathbf{t}}$$
$$= e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2}$$

showing that W is Gaussian

▶ Shows density of X_i is Gaussian for each i. For example, if we take $\mathbf{t} = (1, 0, 0, \dots, 0)^T$ then $\mathbf{t}^T \mathbf{X}$ would be X_1 .

$$M_W(u) = e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2}$$

$$M_W(u) = e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2} = e^{u\,\mathbf{t}^T\mu_X + \frac{1}{2}u^2\,\mathbf{t}^T\Sigma_X\mathbf{t}}$$

$$M_W(u) = e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2} = e^{u\,\mathbf{t}^T\mu_X + \frac{1}{2}u^2\,\mathbf{t}^T\Sigma_X\mathbf{t}}$$

▶ This implies

$$M_W(u) = e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2} = e^{u\,\mathbf{t}^T\mu_X + \frac{1}{2}u^2\,\mathbf{t}^T\Sigma_X\mathbf{t}}$$

► This implies

$$E\left[e^{u\,\mathbf{t}^T\mathbf{X}}\right] \ = \ e^{u\,\mathbf{t}^T\mu_X + \frac{1}{2}u^2\,\mathbf{t}^T\Sigma_X\mathbf{t}}, \ \forall u \in \Re, \forall \mathbf{t} \in \Re^n, \ \mathbf{t} \neq 0$$

$$M_W(u) = e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2} = e^{u\mathbf{t}^T\mu_X + \frac{1}{2}u^2\mathbf{t}^T\Sigma_X\mathbf{t}}$$

► This implies

$$E\left[e^{u\,\mathbf{t}^T\mathbf{X}}\right] = e^{u\,\mathbf{t}^T\mu_X + \frac{1}{2}u^2\,\mathbf{t}^T\Sigma_X\mathbf{t}}, \ \forall u \in \Re, \forall \mathbf{t} \in \Re^n, \ \mathbf{t} \neq 0$$

$$E\left[e^{\mathbf{t}^T\mathbf{X}}\right] = e^{\mathbf{t}^T\mu_X + \frac{1}{2}\mathbf{t}^T\Sigma_X\mathbf{t}}, \ \forall \mathbf{t}$$

$$M_W(u) = e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2} = e^{u\,\mathbf{t}^T\mu_X + \frac{1}{2}u^2\,\mathbf{t}^T\Sigma_X\mathbf{t}}$$

► This implies

$$E\left[e^{u \mathbf{t}^T \mathbf{X}}\right] = e^{u \mathbf{t}^T \mu_X + \frac{1}{2}u^2 \mathbf{t}^T \Sigma_X \mathbf{t}}, \ \forall u \in \Re, \forall \mathbf{t} \in \Re^n, \ \mathbf{t} \neq 0$$

$$E\left[e^{\mathbf{t}^T \mathbf{X}}\right] = e^{\mathbf{t}^T \mu_X + \frac{1}{2}\mathbf{t}^T \Sigma_X \mathbf{t}}, \ \forall \mathbf{t}$$

This implies X is jointly Gaussian.

$$M_W(u) = e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2} = e^{u\,\mathbf{t}^T\mu_X + \frac{1}{2}u^2\,\mathbf{t}^T\Sigma_X\mathbf{t}}$$

▶ This implies

$$E\left[e^{u \mathbf{t}^T \mathbf{X}}\right] = e^{u \mathbf{t}^T \mu_X + \frac{1}{2}u^2 \mathbf{t}^T \Sigma_X \mathbf{t}}, \ \forall u \in \Re, \forall \mathbf{t} \in \Re^n, \ \mathbf{t} \neq 0$$

$$E\left[e^{\mathbf{t}^T \mathbf{X}}\right] = e^{\mathbf{t}^T \mu_X + \frac{1}{2}\mathbf{t}^T \Sigma_X \mathbf{t}}, \ \forall \mathbf{t}$$

This implies X is jointly Gaussian.

► This is a defining property of multidimensional Gaussian density

▶ Let $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian.

- ▶ Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.

- ▶ Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.

- ▶ Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ► We will once again show this using the moment generating function.

- ▶ Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ▶ We will once again show this using the moment generating function.
- Let μ_x and Σ_x denote mean vector and covariance matrix of \mathbf{X} . Similarly μ_y and Σ_y for \mathbf{Y}

- ▶ Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ► We will once again show this using the moment generating function.
- Let μ_x and Σ_x denote mean vector and covariance matrix of \mathbf{X} . Similarly μ_y and Σ_y for \mathbf{Y}
- We have $\mu_y = A\mu_x$ and

- ▶ Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ► We will once again show this using the moment generating function.
- Let μ_x and Σ_x denote mean vector and covariance matrix of \mathbf{X} . Similarly μ_y and Σ_y for \mathbf{Y}
- We have $\mu_y = A\mu_x$ and

$$\Sigma_y = E[(\mathbf{Y} - \mu_y)(\mathbf{Y} - \mu_y)^T]$$

- ▶ Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ▶ We will once again show this using the moment generating function.
- Let μ_x and Σ_x denote mean vector and covariance matrix of \mathbf{X} . Similarly μ_y and Σ_y for \mathbf{Y}
- We have $\mu_y = A\mu_x$ and

$$\Sigma_y = E \left[(\mathbf{Y} - \mu_y)(\mathbf{Y} - \mu_y)^T \right]$$

=
$$E \left[(A(\mathbf{X} - \mu_x))(A(\mathbf{X} - \mu_x))^T \right]$$

- ▶ Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ▶ We will once again show this using the moment generating function.
- Let μ_x and Σ_x denote mean vector and covariance matrix of \mathbf{X} . Similarly μ_y and Σ_y for \mathbf{Y}
- We have $\mu_y = A\mu_x$ and

$$\Sigma_y = E \left[(\mathbf{Y} - \mu_y)(\mathbf{Y} - \mu_y)^T \right]$$

=
$$E \left[(A(\mathbf{X} - \mu_x))(A(\mathbf{X} - \mu_x))^T \right]$$

=
$$E \left[A(\mathbf{X} - \mu_x)(\mathbf{X} - \mu_x)^T A^T \right]$$

- Let $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- We will once again show this using the moment generating function.
- Let μ_x and Σ_x denote mean vector and covariance matrix of \mathbf{X} . Similarly μ_y and Σ_y for \mathbf{Y}
- We have $\mu_y = A\mu_x$ and

$$\Sigma_{y} = E \left[(\mathbf{Y} - \mu_{y})(\mathbf{Y} - \mu_{y})^{T} \right]$$

$$= E \left[(A(\mathbf{X} - \mu_{x}))(A(\mathbf{X} - \mu_{x}))^{T} \right]$$

$$= E \left[A(\mathbf{X} - \mu_{x})(\mathbf{X} - \mu_{x})^{T} A^{T} \right]$$

$$= A E \left[(\mathbf{X} - \mu_{x})(\mathbf{X} - \mu_{x})^{T} \right] A^{T} = A \Sigma_{x} A^{T}$$

 $\,\blacktriangleright\,$ The mgf of Y is

ightharpoonup The mgf of Y is

$$M_Y(\mathbf{s}) = E\left[e^{\mathbf{s}^T\mathbf{Y}}\right] \quad (\mathbf{s} \in \Re^k)$$

$$M_Y(\mathbf{s}) = E\left[e^{\mathbf{s}^T\mathbf{Y}}\right] \quad (\mathbf{s} \in \Re^k)$$

= $E\left[e^{\mathbf{s}^TA\mathbf{X}}\right]$

$$M_Y(\mathbf{s}) = E\left[e^{\mathbf{s}^T\mathbf{Y}}\right] \quad (\mathbf{s} \in \Re^k)$$

= $E\left[e^{\mathbf{s}^TA\mathbf{X}}\right]$
= $M_X(A^T\mathbf{s})$

$$M_{Y}(\mathbf{s}) = E\left[e^{\mathbf{s}^{T}\mathbf{Y}}\right] \quad (\mathbf{s} \in \mathbb{R}^{k})$$

$$= E\left[e^{\mathbf{s}^{T}A}\mathbf{X}\right]$$

$$= M_{X}(A^{T}\mathbf{s})$$

$$(\text{Recall } M_{X}(\mathbf{t}) = e^{\mathbf{t}^{T}\mu_{x} + \frac{1}{2}\mathbf{t}^{T}\Sigma_{x}\mathbf{t}})$$

$$= e^{\mathbf{s}^{T}A\mu_{x} + \frac{1}{2}\mathbf{s}^{T}A\Sigma_{x}A^{T}\mathbf{s}}$$

$$M_{Y}(\mathbf{s}) = E\left[e^{\mathbf{s}^{T}\mathbf{Y}}\right] \quad (\mathbf{s} \in \Re^{k})$$

$$= E\left[e^{\mathbf{s}^{T}A}\mathbf{X}\right]$$

$$= M_{X}(A^{T}\mathbf{s})$$

$$(\text{Recall } M_{X}(\mathbf{t}) = e^{\mathbf{t}^{T}\mu_{x} + \frac{1}{2}\mathbf{t}^{T}\Sigma_{x}\mathbf{t}})$$

$$= e^{\mathbf{s}^{T}A\mu_{x} + \frac{1}{2}\mathbf{s}^{T}A\Sigma_{x}A^{T}\mathbf{s}}$$

$$= e^{\mathbf{s}^{T}\mu_{y} + \frac{1}{2}\mathbf{s}^{T}\Sigma_{y}\mathbf{s}}$$

$$M_{Y}(\mathbf{s}) = E\left[e^{\mathbf{s}^{T}\mathbf{Y}}\right] \quad (\mathbf{s} \in \Re^{k})$$

$$= E\left[e^{\mathbf{s}^{T}A}\mathbf{X}\right]$$

$$= M_{X}(A^{T}\mathbf{s})$$

$$(\text{Recall } M_{X}(\mathbf{t}) = e^{\mathbf{t}^{T}\mu_{x} + \frac{1}{2}\mathbf{t}^{T}\Sigma_{x}\mathbf{t}})$$

$$= e^{\mathbf{s}^{T}A\mu_{x} + \frac{1}{2}\mathbf{s}^{T}A\Sigma_{x}A^{T}\mathbf{s}}$$

$$= e^{\mathbf{s}^{T}\mu_{y} + \frac{1}{2}\mathbf{s}^{T}\Sigma_{y}\mathbf{s}}$$

This shows Y is jointly Gaussian

$$M_{Y}(\mathbf{s}) = E\left[e^{\mathbf{s}^{T}\mathbf{Y}}\right] \quad (\mathbf{s} \in \Re^{k})$$

$$= E\left[e^{\mathbf{s}^{T}A}\mathbf{X}\right]$$

$$= M_{X}(A^{T}\mathbf{s})$$

$$(\text{Recall } M_{X}(\mathbf{t}) = e^{\mathbf{t}^{T}\mu_{x} + \frac{1}{2}\mathbf{t}^{T}\Sigma_{x}\mathbf{t}})$$

$$= e^{\mathbf{s}^{T}A\mu_{x} + \frac{1}{2}\mathbf{s}^{T}A\Sigma_{x}A^{T}\mathbf{s}}$$

$$= e^{\mathbf{s}^{T}\mu_{y} + \frac{1}{2}\mathbf{s}^{T}\Sigma_{y}\mathbf{s}}$$

This shows Y is jointly Gaussian

▶ Why did we assume A has rank k?

 $ightharpoonup {f X}$ is jointly Gaussian and A is a k imes n matrix with rank k.

- **X** is jointly Gaussian and A is a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.

- **X** is jointly Gaussian and A is a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ▶ This shows all marginals of X are gaussian

- **X** is jointly Gaussian and A is a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ▶ This shows all marginals of X are gaussian
- ▶ For example, if you take A to be

$$A = \left[\begin{array}{cccc} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \end{array} \right]$$

then
$$\mathbf{Y} = (X_1, X_2)^T$$

▶ $\mathbf{X} = (X_1, \dots, X_n)^T$ is a Gaussian vector when $X_1, \dots X_n$ are jointly Gaussian.

- ▶ $\mathbf{X} = (X_1, \dots, X_n)^T$ is a Gaussian vector when $X_1, \dots X_n$ are jointly Gaussian.
- ▶ They have many interesting special properties.

- ▶ $\mathbf{X} = (X_1, \dots, X_n)^T$ is a Gaussian vector when $X_1, \dots X_n$ are jointly Gaussian.
- ▶ They have many interesting special properties.
- $ightharpoonup X_i$ are independent iff they are uncorrelated

- ▶ $\mathbf{X} = (X_1, \dots, X_n)^T$ is a Gaussian vector when $X_1, \dots X_n$ are jointly Gaussian.
- ▶ They have many interesting special properties.
- \triangleright X_i are independent iff they are uncorrelated
- ▶ t^TX being Gaussian for every non-zero t is a defining property of Gaussian vectors.

► Finding the distribution of a rv by calculating its mgf is useful in many situations.

- ► Finding the distribution of a rv by calculating its mgf is useful in many situations.
- ▶ Let X_1, X_2, \cdots be iid with mgf $M_X(t)$.

- ► Finding the distribution of a rv by calculating its mgf is useful in many situations.
- ▶ Let X_1, X_2, \cdots be iid with mgf $M_X(t)$.
- Let $S_N = \sum_{i=1}^N X_i$ where N is a positive integer valued rv which is independent of all X_i .

- ► Finding the distribution of a rv by calculating its mgf is useful in many situations.
- ▶ Let X_1, X_2, \cdots be iid with mgf $M_X(t)$.
- ▶ Let $S_N = \sum_{i=1}^N X_i$ where N is a positive integer valued rv which is independent of all X_i .
- We want to find out the distribution of S_N .

- ► Finding the distribution of a rv by calculating its mgf is useful in many situations.
- ▶ Let X_1, X_2, \cdots be iid with mgf $M_X(t)$.
- ▶ Let $S_N = \sum_{i=1}^N X_i$ where N is a positive integer valued rv which is independent of all X_i .
- ▶ We want to find out the distribution of S_N .
- ▶ We can calculate mgf of S_N in terms of M_X and distribution of N.

- ► Finding the distribution of a rv by calculating its mgf is useful in many situations.
- Let X_1, X_2, \cdots be iid with mgf $M_X(t)$.
- ▶ Let $S_N = \sum_{i=1}^N X_i$ where N is a positive integer valued rv which is independent of all X_i .
- ▶ We want to find out the distribution of S_N .
- We can calculate mgf of S_N in terms of M_X and distribution of N.
- ▶ We can use properties of conditional expectation for this

$$E\left[e^{tS_N} \mid N=n\right] = E\left[e^{t\sum_{i=1}^{N} X_i} \mid N=n\right]$$

$$E\left[e^{tS_N} \mid N=n\right] = E\left[e^{t\sum_{i=1}^{N} X_i} \mid N=n\right]$$
$$= E\left[e^{t\sum_{i=1}^{n} X_i} \mid N=n\right]$$

$$E\left[e^{tS_N} \mid N=n\right] = E\left[e^{t\sum_{i=1}^{N} X_i} \mid N=n\right]$$
$$= E\left[e^{t\sum_{i=1}^{n} X_i} \mid N=n\right]$$
$$= E\left[e^{t\sum_{i=1}^{n} X_i}\right]$$

$$E\left[e^{tS_N} \mid N=n\right] = E\left[e^{t\sum_{i=1}^{N} X_i} \mid N=n\right]$$

$$= E\left[e^{t\sum_{i=1}^{n} X_i} \mid N=n\right]$$

$$= E\left[e^{t\sum_{i=1}^{n} X_i}\right] = E\left[\prod_{i=1}^{n} e^{tX_i}\right]$$

$$E\left[e^{tS_N} \mid N=n\right] = E\left[e^{t\sum_{i=1}^{N} X_i} \mid N=n\right]$$

$$= E\left[e^{t\sum_{i=1}^{n} X_i} \mid N=n\right]$$

$$= E\left[e^{t\sum_{i=1}^{n} X_i}\right] = E\left[\prod_{i=1}^{n} e^{tX_i}\right]$$

$$= \prod_{i=1}^{n} E\left[e^{tX_i}\right]$$

$$E\left[e^{tS_N} \mid N=n\right] = E\left[e^{t\sum_{i=1}^{N} X_i} \mid N=n\right]$$

$$= E\left[e^{t\sum_{i=1}^{n} X_i} \mid N=n\right]$$

$$= E\left[e^{t\sum_{i=1}^{n} X_i}\right] = E\left[\prod_{i=1}^{n} e^{tX_i}\right]$$

$$= \prod_{i=1}^{n} E\left[e^{tX_i}\right] = (M_X(t))^n$$

$$E\left[e^{tS_N} \mid N=n\right] = E\left[e^{t\sum_{i=1}^{N} X_i} \mid N=n\right]$$

$$= E\left[e^{t\sum_{i=1}^{n} X_i} \mid N=n\right]$$

$$= E\left[e^{t\sum_{i=1}^{n} X_i}\right] = E\left[\prod_{i=1}^{n} e^{tX_i}\right]$$

$$= \prod_{i=1}^{n} E\left[e^{tX_i}\right] = (M_X(t))^n$$

► Hence we get

$$E\left[e^{tS_N}\mid N\right] = \left(M_X(t)\right)^N$$

ightharpoonup We can now find mgf of S_N as

ightharpoonup We can now find mgf of S_N as

$$M_{S_N}(t) = E\left[e^{tS_N}\right]$$

ightharpoonup We can now find mgf of S_N as

$$M_{S_N}(t) = E \left[e^{tS_N} \right]$$
$$= E \left[E \left[e^{tS_N} \mid N \right] \right]$$

ightharpoonup We can now find mgf of S_N as

$$M_{S_N}(t) = E \left[e^{tS_N} \right]$$

$$= E \left[E \left[e^{tS_N} \mid N \right] \right]$$

$$= E \left[(M_X(t))^N \right]$$

 \blacktriangleright We can now find mgf of S_N as

$$M_{S_N}(t) = E [e^{tS_N}]$$

$$= E [E [e^{tS_N} | N]]$$

$$= E [(M_X(t))^N]$$

$$= \sum_{n=0}^{\infty} (M_X(t))^n f_N(n)$$

ightharpoonup We can now find mgf of S_N as

$$M_{S_N}(t) = E \left[e^{tS_N} \right]$$

$$= E \left[E \left[e^{tS_N} \mid N \right] \right]$$

$$= E \left[\left(M_X(t) \right)^N \right]$$

$$= \sum_{n=1}^{\infty} \left(M_X(t) \right)^n f_N(n)$$

$$= G_N(M_X(t))$$

where $G_N(s) = Es^N$ is the generating function of N

ightharpoonup We can now find mgf of S_N as

$$M_{S_N}(t) = E \left[e^{tS_N} \right]$$

$$= E \left[E \left[e^{tS_N} \mid N \right] \right]$$

$$= E \left[(M_X(t))^N \right]$$

$$= \sum_{n=1}^{\infty} (M_X(t))^n f_N(n)$$

$$= G_N(M_X(t))$$

where $G_N(s) = Es^N$ is the generating function of N

▶ This method is useful for finding distribution of S_N when we can recognize the distribution from its mgf

ightharpoonup We can also find distribution function of S_N directly using the technique of conditional expectations.

- We can also find distribution function of S_N directly using the technique of conditional expectations.
- ▶ $F_{S_N}(s) = P[S_N \le s]$ and we know how to find probabilities of events using conditional expectation.

- ightharpoonup We can also find distribution function of S_N directly using the technique of conditional expectations.
- ▶ $F_{S_N}(s) = P[S_N \le s]$ and we know how to find probabilities of events using conditional expectation.

$$P\left[\sum_{i=1}^{N} X_i \le s\right] = \sum_{n=1}^{\infty} P\left[\sum_{i=1}^{N} X_i \le s \mid N=n\right] P[N=n]$$

- \blacktriangleright We can also find distribution function of S_N directly using the technique of conditional expectations.
- ▶ $F_{S_N}(s) = P[S_N \le s]$ and we know how to find probabilities of events using conditional expectation.

$$P\left[\sum_{i=1}^{N} X_{i} \leq s\right] = \sum_{n=1}^{\infty} P\left[\sum_{i=1}^{N} X_{i} \leq s \mid N=n\right] P[N=n]$$
$$= \sum_{n=1}^{\infty} P\left[\sum_{i=1}^{n} X_{i} \leq s\right] P[N=n]$$

▶ Let $g: \Re \to \Re$ be a convex function. Then

$$g(EX) \le E[g(X)]$$

▶ Let $g: \Re \to \Re$ be a convex function. Then

$$g(EX) \le E[g(X)]$$

▶ For example, $(EX)^2 \le E[X^2]$

▶ Let $g: \Re \to \Re$ be a convex function. Then

$$g(EX) \le E[g(X)]$$

- ▶ For example, $(EX)^2 \le E[X^2]$
- Function q is convex if

$$g(\alpha x + (1 - \alpha)y) \le \alpha g(x) + (1 - \alpha)g(y), \ \forall x, y, \ \forall 0 \le \alpha \le 1$$

▶ Let $g: \Re \to \Re$ be a convex function. Then

$$g(EX) \le E[g(X)]$$

- ▶ For example, $(EX)^2 \le E[X^2]$
- ▶ Function *g* is convex if

$$g(\alpha x + (1 - \alpha)y) \le \alpha g(x) + (1 - \alpha)g(y), \ \forall x, y, \ \forall 0 \le \alpha \le 1$$

▶ If g is convex, then, given any x_0 , exists $\lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Let $g: \Re \to \Re$ be a convex function. Then

$$g(EX) \le E[g(X)]$$

- ▶ For example, $(EX)^2 \le E[X^2]$
- ▶ Function *q* is convex if

$$g(\alpha x + (1-\alpha)y) \le \alpha g(x) + (1-\alpha)g(y), \ \forall x, y, \ \forall 0 \le \alpha \le 1$$

▶ If g is convex, then, given any x_0 , exists $\lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Let $g: \Re \to \Re$ be a convex function. Then

$$g(EX) \le E[g(X)]$$

- ▶ For example, $(EX)^2 \le E[X^2]$
- ▶ Function *q* is convex if

$$g(\alpha x + (1-\alpha)y) \leq \alpha g(x) + (1-\alpha)g(y), \ \forall x,y, \ \forall 0 \leq \alpha \leq 1$$

▶ If g is convex, then, given any x_0 , exists $\lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

$$g(X(\omega)) \ge g(EX) + \lambda(EX)(X(\omega) - EX), \ \forall \omega$$

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

$$g(X(\omega)) \geq g(EX) + \lambda(EX)(X(\omega) - EX), \ \forall \omega$$

 $Y(\omega) \ge Z(\omega), \ \forall \omega \implies Y \ge Z$

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

$$g(X(\omega)) \geq g(EX) + \lambda(EX)(X(\omega) - EX), \ \forall \omega$$

 $Y(\omega) \ge Z(\omega), \ \forall \omega \implies Y \ge Z$

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

$$g(X(\omega)) \geq g(EX) + \lambda(EX)(X(\omega) - EX), \ \forall \omega$$

 $Y(\omega) \geq Z(\omega), \ \forall \omega \ \Rightarrow \ Y \geq Z$ Hence we get

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

$$g(X(\omega)) \ge g(EX) + \lambda(EX)(X(\omega) - EX), \ \forall \omega$$

 $Y(\omega) \ge Z(\omega), \ \forall \omega \ \Rightarrow \ Y \ge Z$ Hence we get

$$g(X) \geq g(EX) + \lambda(EX)(X - EX)$$

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

$$g(X(\omega)) \ge g(EX) + \lambda(EX)(X(\omega) - EX), \ \forall \omega$$

 $Y(\omega) \geq Z(\omega), \ \forall \omega \ \Rightarrow \ Y \geq Z \ \Rightarrow EY \geq EZ$ Hence we get

$$g(X) \geq g(EX) + \lambda(EX)(X - EX)$$

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

$$g(X(\omega)) \ge g(EX) + \lambda(EX)(X(\omega) - EX), \ \forall \omega$$

 $Y(\omega) \geq Z(\omega), \ \forall \omega \ \Rightarrow \ Y \geq Z \ \Rightarrow EY \geq EZ$ Hence we get

$$\begin{array}{rcl} g(X) & \geq & g(EX) + \lambda(EX)(X - EX) \\ \Rightarrow & E[g(X)] & \geq & g(EX) + \lambda(EX) \; E[X - EX] = g(EX) \end{array}$$

▶ We have: $\forall x_0$, $\exists \lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

$$g(X(\omega)) \ge g(EX) + \lambda(EX)(X(\omega) - EX), \ \forall \omega$$

 $Y(\omega) \geq Z(\omega), \ \forall \omega \ \Rightarrow \ Y \geq Z \ \Rightarrow EY \geq EZ$ Hence we get

$$g(X) \geq g(EX) + \lambda(EX)(X - EX)$$

$$\Rightarrow E[g(X)] \geq g(EX) + \lambda(EX) E[X - EX] = g(EX)$$

► This completes the proof

▶ Consider the set of all mean-zero random variables.

- ▶ Consider the set of all mean-zero random variables.
- ▶ It is closed under addition and scalar (real number) multiplication.

- ► Consider the set of all mean-zero random variables.
- ▶ It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies

- ► Consider the set of all mean-zero random variables.
- ▶ It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies
 - 1. Cov(X, Y) = Cov(Y, X)

- ► Consider the set of all mean-zero random variables.
- ▶ It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies
 - 1. Cov(X, Y) = Cov(Y, X)
 - 2. $Cov(X,X) = Var(X) \ge 0$ and is zero only if X = 0

- ► Consider the set of all mean-zero random variables.
- ▶ It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies
 - 1. Cov(X, Y) = Cov(Y, X)
 - 2. $Cov(X, X) = Var(X) \ge 0$ and is zero only if X = 0
 - 3. Cov(aX, Y) = aCov(X, Y)

- ► Consider the set of all mean-zero random variables.
- ▶ It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies
 - 1. Cov(X, Y) = Cov(Y, X)
 - 2. $Cov(X, X) = Var(X) \ge 0$ and is zero only if X = 0
 - 3. Cov(aX, Y) = aCov(X, Y)
 - 4. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- ▶ Thus Cov(X, Y) is an inner product here.

- ► Consider the set of all mean-zero random variables.
- It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies
 - 1. Cov(X, Y) = Cov(Y, X)
 - 2. $Cov(X,X) = Var(X) \ge 0$ and is zero only if X = 0
 - 3. Cov(aX, Y) = aCov(X, Y)
 - 4. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- ▶ Thus Cov(X,Y) is an inner product here.
- ▶ The Cauchy-Schwartz inequality ($|\mathbf{x}^T\mathbf{y}| \le ||\mathbf{x}|| \ ||\mathbf{y}||$) gives

- ► Consider the set of all mean-zero random variables.
- ▶ It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies
 - 1. Cov(X, Y) = Cov(Y, X)
 - 2. $Cov(X,X) = Var(X) \ge 0$ and is zero only if X = 0
 - 3. Cov(aX, Y) = aCov(X, Y)
 - 4. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- ▶ Thus Cov(X, Y) is an inner product here.
- ► The Cauchy-Schwartz inequality ($|\mathbf{x}^T\mathbf{y}| \le ||\mathbf{x}|| \ ||\mathbf{y}||$) gives

$$|\mathsf{Cov}(X,Y)| \leq \sqrt{\mathsf{Cov}(X,X) \; \mathsf{Cov}(Y,Y)} = \sqrt{\mathsf{Var}(X) \; \mathsf{Var}(Y)}$$

- ► Consider the set of all mean-zero random variables.
- ▶ It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies
 - 1. Cov(X, Y) = Cov(Y, X)
 - 2. $Cov(X,X) = Var(X) \ge 0$ and is zero only if X = 0
 - 3. Cov(aX, Y) = aCov(X, Y)
 - 4. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- ▶ Thus Cov(X, Y) is an inner product here.
- ► The Cauchy-Schwartz inequality ($|\mathbf{x}^T\mathbf{y}| \le ||\mathbf{x}|| \ ||\mathbf{y}||$) gives

$$|\mathsf{Cov}(X,Y)| \leq \sqrt{\mathsf{Cov}(X,X) \; \mathsf{Cov}(Y,Y)} = \sqrt{\mathsf{Var}(X) \; \mathsf{Var}(Y)}$$

▶ This is same as $|\rho_{XY}| < 1$

- ▶ Consider the set of all mean-zero random variables.
- ▶ It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies
 - 1. Cov(X, Y) = Cov(Y, X)
 - 2. $Cov(X, X) = Var(X) \ge 0$ and is zero only if X = 0
 - 3. Cov(aX, Y) = aCov(X, Y)
 - 4. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- ▶ Thus Cov(X, Y) is an inner product here.
- ► The Cauchy-Schwartz inequality $(|\mathbf{x}^T\mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||)$ gives

$$|\mathsf{Cov}(X,Y)| \leq \sqrt{\mathsf{Cov}(X,X) \; \mathsf{Cov}(Y,Y)} = \sqrt{\mathsf{Var}(X) \; \mathsf{Var}(Y)}$$

- ▶ This is same as $|\rho_{XY}| \le 1$
- A generalization of Cauchy-Schwartz inequality is Holder inequality

 \blacktriangleright For all p,q with p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$E[|XY|] \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(We assume all the expectations are finite)

For all p,q with p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$E[|XY|] \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(We assume all the expectations are finite)

 $\blacktriangleright \ \ \text{If we take} \ p=q=2$

$$E[|XY|] \le \sqrt{E[X^2] \ E[Y^2]}$$

For all p,q with p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$E[|XY|] \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(We assume all the expectations are finite)

• If we take p = q = 2

$$E[|XY|] \leq \sqrt{E[X^2] \; E[Y^2]}$$

For all p,q with p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$E[|XY|] \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(We assume all the expectations are finite)

• If we take p=q=2

$$E[|XY|] \le \sqrt{E[X^2] \ E[Y^2]}$$

$$\left| \mathsf{Cov}(X,Y) \right| \ = \ \left| E[(X - EX)(Y - EY)] \right|$$

For all p,q with p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$E[|XY|] \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(We assume all the expectations are finite)

• If we take p = q = 2

$$E[|XY|] \leq \sqrt{E[X^2] \; E[Y^2]}$$

$$\begin{aligned} \left| \mathsf{Cov}(X,Y) \right| &= \left| E[(X-EX)(Y-EY)] \right| \\ &\leq \left. E\left[\left| (X-EX)(Y-EY) \right| \right] \end{aligned}$$

For all p,q with p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$E[|XY|] \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(We assume all the expectations are finite)

• If we take p=q=2

$$E[|XY|] \le \sqrt{E[X^2] \ E[Y^2]}$$

$$\begin{aligned} \left| \mathsf{Cov}(X,Y) \right| &= \left| E[(X - EX)(Y - EY)] \right| \\ &\leq E\left[\left| (X - EX)(Y - EY) \right| \right] \\ &< \sqrt{E[(X - EX)^2] \ E[(Y - EY)^2]} \end{aligned}$$

 \blacktriangleright For all p,q with p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$E[|XY|] \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(We assume all the expectations are finite)

• If we take p = q = 2

$$E[|XY|] \le \sqrt{E[X^2] \ E[Y^2]}$$

$$\begin{split} \left| \mathsf{Cov}(X,Y) \right| &= \left| E[(X - EX)(Y - EY)] \right| \\ &\leq E\left[\left| (X - EX)(Y - EY) \right| \right] \\ &\leq \sqrt{E[(X - EX)^2]} \; E[(Y - EY)^2] \\ &= \sqrt{\mathsf{Var}(X) \, \mathsf{Var}(Y)} \end{split}$$

▶ First we will show, for p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y \in \Re$$

First we will show, for p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y \in \Re$$

For x > 0, $g(x) = -\log(x)$ is convex because $g''(x) = 1/x^2 \ge 0$, $\forall x$.

First we will show, for p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y \in \Re$$

- For x > 0, $g(x) = -\log(x)$ is convex because $g''(x) = 1/x^2 \ge 0$, $\forall x$.
- ▶ Hence, for all $x_1, x_2 > 0$ and $0 \le t \le 1$,

$$-\log(tx_1 + (1-t)x_2) \le -t\log(x_1) - (1-t)\log(x_2)$$

First we will show, for p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y \in \Re$$

- For x > 0, $g(x) = -\log(x)$ is convex because $g''(x) = 1/x^2 \ge 0$, $\forall x$.
- ▶ Hence, for all $x_1, x_2 > 0$ and $0 \le t \le 1$,

$$-\log(tx_1 + (1-t)x_2) \le -t\log(x_1) - (1-t)\log(x_2)$$

$$\Rightarrow \log(tx_1 + (1-t)x_2) \ge \log\left(x_1^t x_2^{(1-t)}\right)$$

First we will show, for p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y \in \Re$$

- For x > 0, $g(x) = -\log(x)$ is convex because $g''(x) = 1/x^2 \ge 0$, $\forall x$.
- ▶ Hence, for all $x_1, x_2 > 0$ and $0 \le t \le 1$,

$$-\log(tx_1 + (1-t)x_2) \leq -t\log(x_1) - (1-t)\log(x_2)$$

$$\Rightarrow \log(tx_1 + (1-t)x_2) \geq \log\left(x_1^t x_2^{(1-t)}\right)$$

$$\Rightarrow tx_1 + (1-t)x_2 \geq x_1^t x_2^{(1-t)}$$

▶ We have for all $x_1, x_2 > 0$ and $0 \le t \le 1$,

$$tx_1 + (1-t)x_2 \ge x_1^t x_2^{(1-t)}$$

• We have for all $x_1, x_2 > 0$ and $0 \le t \le 1$,

$$tx_1 + (1-t)x_2 \ge x_1^t x_2^{(1-t)}$$

▶ Take $x_1 = |x|^p$, $x_2 = |y|^q$, $t = \frac{1}{p}$ (and hence $1 - t = \frac{1}{q}$)

• We have for all $x_1, x_2 > 0$ and $0 \le t \le 1$,

$$tx_1 + (1-t)x_2 > x_1^t x_2^{(1-t)}$$

▶ Take $x_1 = |x|^p$, $x_2 = |y|^q$, $t = \frac{1}{p}$ (and hence $1 - t = \frac{1}{q}$)

$$(|x|^p)^{\frac{1}{p}} (|y|^q)^{\frac{1}{q}} \le \frac{1}{p} |x|^p + \frac{1}{q} |y|^q$$

• We have for all $x_1, x_2 > 0$ and 0 < t < 1,

$$tx_1 + (1-t)x_2 > x_1^t x_2^{(1-t)}$$

▶ Take $x_1 = |x|^p$, $x_2 = |y|^q$, $t = \frac{1}{p}$ (and hence $1 - t = \frac{1}{q}$)

$$(|x|^p)^{\frac{1}{p}} (|y|^q)^{\frac{1}{q}} \le \frac{1}{p} |x|^p + \frac{1}{q} |y|^q$$

 $\Rightarrow |xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y$

$$|xy| \leq \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y$$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y$$

► Take
$$x = X(\omega) (E|X|^p)^{-\frac{1}{p}}$$
, $y = Y(\omega) (E|Y|^q)^{-\frac{1}{q}}$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y$$

▶ Take $x = X(\omega) \left(E|X|^p \right)^{-\frac{1}{p}}$, $y = Y(\omega) \left(E|Y|^q \right)^{-\frac{1}{q}}$

$$\frac{|X(\omega)Y(\omega)|}{(E|X|^p)^{\frac{1}{p}} \ (E|Y|^q)^{\frac{1}{q}}} \ \le \ \frac{|X(\omega)|^p \ (E|X|^p)^{-1}}{p} \ + \ \frac{|Y(\omega)|^q \ (E|Y|^q)^{-1}}{q}$$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y$$

▶ Take $x = X(\omega) \left(E|X|^p \right)^{-\frac{1}{p}}$, $y = Y(\omega) \left(E|Y|^q \right)^{-\frac{1}{q}}$

$$\frac{|X(\omega)Y(\omega)|}{(E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}} \leq \frac{|X(\omega)|^p (E|X|^p)^{-1}}{p} + \frac{|Y(\omega)|^q (E|Y|^q)^{-1}}{q}$$

$$\Rightarrow \frac{|XY|}{(E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}} \leq \frac{|X|^p (E|X|^p)^{-1}}{p} + \frac{|Y|^q (E|Y|^q)^{-1}}{q}$$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y$$

▶ Take $x = X(\omega) \left(E|X|^p \right)^{-\frac{1}{p}}$, $y = Y(\omega) \left(E|Y|^q \right)^{-\frac{1}{q}}$

$$\frac{|X(\omega)Y(\omega)|}{(E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}} \leq \frac{|X(\omega)|^p (E|X|^p)^{-1}}{p} + \frac{|Y(\omega)|^q (E|Y|^q)^{-1}}{q}
\Rightarrow \frac{|XY|}{(E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}} \leq \frac{|X|^p (E|X|^p)^{-1}}{p} + \frac{|Y|^q (E|Y|^q)^{-1}}{q}$$

 $\Rightarrow \frac{E|XY|}{(E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}} \le \frac{1}{p} + \frac{1}{q} = 1$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y$$

▶ Take
$$x = X(\omega) (E|X|^p)^{-\frac{1}{p}}$$
, $y = Y(\omega) (E|Y|^q)^{-\frac{1}{q}}$

$$\Rightarrow \frac{E|XY|}{(E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}} \leq \frac{1}{p} + \frac{1}{q} = 1$$
$$\Rightarrow E|XY| \leq (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

$$g(EX) \le E[g(X)]$$

$$g(EX) \le E[g(X)]$$

▶ **Holder Inequality**: For p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$

$$E|XY| \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(assuming all expectations exist)

$$g(EX) \le E[g(X)]$$

▶ Holder Inequality: For p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$

$$E|XY| \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(assuming all expectations exist)

▶ For p = q = 2, the above is Cauchy-Schwartz inequality

$$g(EX) \le E[g(X)]$$

▶ Holder Inequality: For p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$

$$E|XY| \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(assuming all expectations exist)

- ▶ For p = q = 2, the above is Cauchy-Schwartz inequality
- ▶ This implies $|\rho_{XY}| \leq 1$

$$g(EX) \le E[g(X)]$$

▶ Holder Inequality: For p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$

$$E|XY| \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(assuming all expectations exist)

- ▶ For p = q = 2, the above is Cauchy-Schwartz inequality
- ▶ This implies $|\rho_{XY}| \le 1$
- Minkowski's Inequality:

$$(E|X+Y|^r)^{\frac{1}{r}} \le (E|X|^r)^{\frac{1}{r}} + (E|Y|^r)^{\frac{1}{r}}$$

Chernoff Bounds

► Recall Markov inequality. If *h* is positive, strictly increasing

$$P[X > a] = P[h(X) > h(a)] \le \frac{E[h(X)]}{h(a)}$$

Chernoff Bounds

► Recall Markov inequality. If *h* is positive, strictly increasing

$$P[X > a] = P[h(X) > h(a)] \le \frac{E[h(X)]}{h(a)}$$

▶ Take $h(x) = e^{sx}$, s > 0. Then

$$P[X > a] \le \frac{E[e^{sX}]}{e^{sa}} = \frac{M_X(s)}{e^{sa}}, \forall s > 0$$

Chernoff Bounds

 Recall Markov inequality. If h is positive, strictly increasing

$$P[X > a] = P[h(X) > h(a)] \le \frac{E[h(X)]}{h(a)}$$

▶ Take $h(x) = e^{sx}$, s > 0. Then

$$P[X > a] \le \frac{E[e^{sX}]}{e^{sa}} = \frac{M_X(s)}{e^{sa}}, \forall s > 0$$

► The RHS is a function of S. We can get a tight bound by using a value of s which minimizes RHS.

▶ Often we need to deal with sums of iid random variables.

- Often we need to deal with sums of iid random variables.
- ► Here is a simple version of an inequality very useful in such situations.

- Often we need to deal with sums of iid random variables.
- ► Here is a simple version of an inequality very useful in such situations.
- ▶ Let X_i be iid and let $X_i \in [a, b], \forall i$. Let $EX_i = \mu$

- Often we need to deal with sums of iid random variables.
- ► Here is a simple version of an inequality very useful in such situations.
- ▶ Let X_i be iid and let $X_i \in [a, b], \forall i$. Let $EX_i = \mu$

$$P\left[\left|\sum_{i=1}^{n} X_i - n\mu\right| \ge \epsilon\right] \le 2e^{-\frac{2\epsilon^2}{n(b-a)}}, \ \epsilon > 0$$

- Often we need to deal with sums of iid random variables.
- ► Here is a simple version of an inequality very useful in such situations.
- ▶ Let X_i be iid and let $X_i \in [a, b], \forall i$. Let $EX_i = \mu$

$$P\left[\left|\sum_{i=1}^{n} X_i - n\mu\right| \ge \epsilon\right] \le 2e^{-\frac{2\epsilon^2}{n(b-a)}}, \ \epsilon > 0$$

lacktriangle Note we do not need knowledge of any moments of X_i to calculate the bound

▶ Let X_1, X_2, \cdots be iid random variables

- ▶ Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$

- Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$
- ▶ Define $S_n = \sum_{i=1}^n X_i$. Then

- ▶ Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$
- ▶ Define $S_n = \sum_{i=1}^n X_i$. Then

$$ES_n = \sum_{i=1}^n EX_i = n\mu;$$

- Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$
- ▶ Define $S_n = \sum_{i=1}^n X_i$. Then

$$ES_n = \sum_{i=1}^n EX_i = n\mu;$$
 and $Var(S_n) = \sum_{i=1}^n Var(X_i) = n\sigma^2$

- ▶ Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$
- ▶ Define $S_n = \sum_{i=1}^n X_i$. Then

$$ES_n = \sum_{i=1}^n EX_i = n\mu;$$
 and $Var(S_n) = \sum_{i=1}^n Var(X_i) = n\sigma^2$

- ▶ Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$
- ▶ Define $S_n = \sum_{i=1}^n X_i$. Then

$$ES_n = \sum_{i=1}^n EX_i = n\mu;$$
 and $Var(S_n) = \sum_{i=1}^n Var(X_i) = n\sigma^2$

$$E\left[\frac{S_n}{n}\right] = \frac{1}{n}ES_n = \mu, \ \forall n$$

- ▶ Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$
- ▶ Define $S_n = \sum_{i=1}^n X_i$. Then

$$ES_n = \sum_{i=1}^n EX_i = n\mu;$$
 and $Var(S_n) = \sum_{i=1}^n Var(X_i) = n\sigma^2$

$$E\left[\frac{S_n}{n}\right] = \frac{1}{n}ES_n = \mu, \ \forall n$$

$$\operatorname{Var}\left(\frac{S_n}{n}\right) = \left(\frac{1}{n}\right)^2 \operatorname{Var}(S_n)$$

- ▶ Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$
- ▶ Define $S_n = \sum_{i=1}^n X_i$. Then

$$ES_n = \sum_{i=1}^n EX_i = n\mu;$$
 and $Var(S_n) = \sum_{i=1}^n Var(X_i) = n\sigma^2$

$$E\left[\frac{S_n}{n}\right] = \frac{1}{n}ES_n = \mu, \quad \forall n$$

$$\operatorname{Var}\left(\frac{S_n}{n}\right) = \left(\frac{1}{n}\right)^2\operatorname{Var}(S_n) = \frac{n\sigma^2}{n^2}$$

- Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$
- ▶ Define $S_n = \sum_{i=1}^n X_i$. Then

$$ES_n = \sum_{i=1}^n EX_i = n\mu;$$
 and $Var(S_n) = \sum_{i=1}^n Var(X_i) = n\sigma^2$

$$\begin{split} E\left[\frac{S_n}{n}\right] &= \frac{1}{n}ES_n = \mu, \ \, \forall n \\ \operatorname{Var}\left(\frac{S_n}{n}\right) &= \left(\frac{1}{n}\right)^2\operatorname{Var}(S_n) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}, \ \, \forall n \end{split}$$

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

lacksquare X_i are iid, $EX_i=\mu$, $\mathrm{Var}(X_i)=\sigma^2$, $S_n=\sum_{i=1}^n X_i$

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \mathsf{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

- ▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- $ightharpoonup rac{S_n}{n}$ 'converges' to its expectation, μ , as $n o \infty$

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

- ▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- $ightharpoonup rac{S_n}{n}$ 'converges' to its expectation, μ , as $n o \infty$
- By Chebyshev Inequality

$$P\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\mathsf{Var}(\frac{S_n}{n})}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}, \ \forall \epsilon > 0$$

lacksquare X_i are iid, $EX_i=\mu$, $Var(X_i)=\sigma^2$, $S_n=\sum_{i=1}^n X_i$

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

- ▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- $ightharpoonup rac{S_n}{n}$ 'converges' to its expectation, μ , as $n o \infty$
- By Chebyshev Inequality

$$P\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\mathsf{Var}(\frac{S_n}{n})}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}, \ \forall \epsilon > 0$$

► Thus, we get

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - \mu \right| \ge \epsilon \right] = 0, \quad \forall \epsilon > 0$$

 $\blacktriangleright X_i$ are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

- ▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- $ightharpoonup rac{S_n}{r}$ 'converges' to its expectation, μ , as $n o \infty$
- By Chebyshev Inequality

$$P\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\mathsf{Var}(\frac{S_n}{n})}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}, \ \forall \epsilon > 0$$

Thus, we get

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - \mu \right| \ge \epsilon \right] = 0, \quad \forall \epsilon > 0$$

Known as weak law of large numbers

► Suppose we are tossing a (biased) coin repeatedly

- Suppose we are tossing a (biased) coin repeatedly
- $X_i = 1$ if i^{th} toss came up head and is zero otherwise.

- Suppose we are tossing a (biased) coin repeatedly
- $X_i = 1$ if i^{th} toss came up head and is zero otherwise.
- ▶ $EX_i = p$ where p is the probability of heads.

- Suppose we are tossing a (biased) coin repeatedly
- $X_i = 1$ if i^{th} toss came up head and is zero otherwise.
- ▶ $EX_i = p$ where p is the probability of heads.
- $S_n = \sum_{i=1}^n X_i$ is the number of heads in n tosses

- Suppose we are tossing a (biased) coin repeatedly
- $X_i = 1$ if i^{th} toss came up head and is zero otherwise.
- ▶ $EX_i = p$ where p is the probability of heads.
- $S_n = \sum_{i=1}^n X_i$ is the number of heads in n tosses
- ▶ $\frac{S_n}{n}$ is the fraction of heads in n tosses.

- Suppose we are tossing a (biased) coin repeatedly
- $X_i = 1$ if i^{th} toss came up head and is zero otherwise.
- ▶ $EX_i = p$ where p is the probability of heads.
- $S_n = \sum_{i=1}^n X_i$ is the number of heads in n tosses
- $ightharpoonup rac{S_n}{n}$ is the fraction of heads in n tosses.
- ▶ We are saying $\frac{S_n}{n}$ 'converges' to p

- Suppose we are tossing a (biased) coin repeatedly
- $X_i = 1$ if i^{th} toss came up head and is zero otherwise.
- ▶ $EX_i = p$ where p is the probability of heads.
- $S_n = \sum_{i=1}^n X_i$ is the number of heads in n tosses
- ▶ $\frac{S_n}{n}$ is the fraction of heads in n tosses.
- ▶ We are saying $\frac{S_n}{n}$ 'converges' to p
- ► The probability of head is the limiting fraction of heads when you toss the coin infinite times

- Suppose we are tossing a (biased) coin repeatedly
- $X_i = 1$ if i^{th} toss came up head and is zero otherwise.
- ▶ $EX_i = p$ where p is the probability of heads.
- $S_n = \sum_{i=1}^n X_i$ is the number of heads in n tosses
- ▶ $\frac{S_n}{n}$ is the fraction of heads in n tosses.
- ▶ We are saying $\frac{S_n}{n}$ 'converges' to p
- ► The probability of head is the limiting fraction of heads when you toss the coin infinite times

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - p \right| \ge \epsilon \right] = 0, \quad \forall \epsilon > 0$$

► This is true of any event.

- ▶ This is true of any event.
- ► Consider repeatedly performing a random experiment

- This is true of any event.
- ► Consider repeatedly performing a random experiment
- $ightharpoonup X_i$ be the indicator of event A on i^{th} repetition

- This is true of any event.
- ► Consider repeatedly performing a random experiment
- $ightharpoonup X_i$ be the indicator of event A on i^{th} repetition
- ▶ Then $EX_i = P(A), \forall i$

- This is true of any event.
- Consider repeatedly performing a random experiment
- ▶ X_i be the indicator of event A on i^{th} repetition
- ▶ Then $EX_i = P(A), \forall i$
- \triangleright $\frac{S_n}{n}$ is the fraction of times the event A occurred.

- This is true of any event.
- Consider repeatedly performing a random experiment
- ➤ X_i be the indicator of event A on ith repetition
- ▶ Then $EX_i = P(A), \forall i$
- $\triangleright \frac{S_n}{n}$ is the fraction of times the event A occurred.
- ► The fraction of times an event occurs 'converges' to its probability as you repeat the experiment infinite times

ightharpoonup X is a random variable and we want to find EX.

- \triangleright X is a random variable and we want to find EX.
- ▶ Make multiple independent observations of X. Call them X_1, \dots, X_n .

- ▶ X is a random variable and we want to find EX.
- ▶ Make multiple independent observations of X. Call them X_1, \dots, X_n .
- ▶ These are called samples of X. $S_n = \sum_{i=1}^n X_i$

- ▶ X is a random variable and we want to find EX.
- ▶ Make multiple independent observations of X. Call them X_1, \dots, X_n .
- ▶ These are called samples of X. $S_n = \sum_{i=1}^n X_i$
- $\triangleright \frac{S_n}{n}$ is the sample mean average of all samples.

- X is a random variable and we want to find EX.
- ▶ Make multiple independent observations of X. Call them X_1, \dots, X_n .
- ▶ These are called samples of X. $S_n = \sum_{i=1}^n X_i$
- $\triangleright \frac{S_n}{n}$ is the sample mean average of all samples.
- ▶ $\frac{S_n}{n}$ has the same expectation as X but has much smaller variance.

- ▶ X is a random variable and we want to find EX.
- ▶ Make multiple independent observations of X. Call them X_1, \dots, X_n .
- ▶ These are called samples of X. $S_n = \sum_{i=1}^n X_i$
- $ightharpoonup rac{S_n}{n}$ is the sample mean average of all samples.
- ▶ $\frac{S_n}{n}$ has the same expectation as X but has much smaller variance.
- ► Sample mean 'converges' to expectation ('population mean')

- X is a random variable and we want to find EX.
- ▶ Make multiple independent observations of X. Call them X_1, \dots, X_n .
- ▶ These are called samples of X. $S_n = \sum_{i=1}^n X_i$
- $\triangleright \frac{S_n}{n}$ is the sample mean average of all samples.
- ▶ $\frac{S_n}{n}$ has the same expectation as X but has much smaller variance.
- ► Sample mean 'converges' to expectation ('population mean')
- ▶ This is the principle of sample surveys

- ▶ X is a random variable and we want to find EX.
- ▶ Make multiple independent observations of X. Call them X_1, \dots, X_n .
- ▶ These are called samples of X. $S_n = \sum_{i=1}^n X_i$
- $ightharpoonup \frac{S_n}{n}$ is the sample mean average of all samples.
- ▶ $\frac{S_n}{n}$ has the same expectation as X but has much smaller variance.
- ► Sample mean 'converges' to expectation ('population mean')
- ▶ This is the principle of sample surveys
- ▶ In general one can get an approximate value of expectation of *X* through simulations/experiments

- X is a random variable and we want to find EX.
- ▶ Make multiple independent observations of X. Call them X_1, \dots, X_n .
- ▶ These are called samples of X. $S_n = \sum_{i=1}^n X_i$
- $\triangleright \frac{S_n}{n}$ is the sample mean average of all samples.
- ▶ $\frac{S_n}{n}$ has the same expectation as X but has much smaller variance.
- ► Sample mean 'converges' to expectation ('population mean')
- ▶ This is the principle of sample surveys
- ▶ In general one can get an approximate value of expectation of *X* through simulations/experiments
- Known as Monte Carlo simulations

$$E\left[\frac{S_n}{n}\right] = \mu;$$
 and $Var\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$

$$E\left[\frac{S_n}{n}\right] = \mu;$$
 and $\operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$

▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero

$$E\left[\frac{S_n}{n}\right] = \mu;$$
 and $\operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$

- ▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- We would like to say $\frac{S_n}{n} \to \mu$.

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{and} \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

- ▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- We would like to say $\frac{S_n}{n} \to \mu$.
- We need to properly define convergence of a sequence of random variables

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

- ▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- ▶ We would like to say $\frac{S_n}{n} \to \mu$.
- We need to properly define convergence of a sequence of random variables
- ▶ One way of looking at this convergence is

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - \mu \right| \ge \epsilon \right] = 0, \quad \forall \epsilon > 0$$

lacksquare X_i are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

- ▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- We would like to say $\frac{S_n}{n} \to \mu$.
- We need to properly define convergence of a sequence of random variables
- ▶ One way of looking at this convergence is

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - \mu \right| \ge \epsilon \right] = 0, \quad \forall \epsilon > 0$$

► There are other ways of defining convergence of random variables

▶ Recall convergence of real number sequences.

- ▶ Recall convergence of real number sequences.
- A sequence of real numbers x_n is said to converge to x_0 , $x_n \to x_0$, if

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. \ |x_n - x_0| \le \epsilon, \ \forall n \ge N$$

- ▶ Recall convergence of real number sequences.
- A sequence of real numbers x_n is said to converge to x_0 , $x_n \to x_0$, if

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. \ |x_n - x_0| \le \epsilon, \ \forall n \ge N$$

► To show a sequence converges using this definition, we need to know (or guess) the limit.

- ▶ Recall convergence of real number sequences.
- A sequence of real numbers x_n is said to converge to x_0 , $x_n \to x_0$, if

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. \ |x_n - x_0| \le \epsilon, \ \forall n \ge N$$

- ► To show a sequence converges using this definition, we need to know (or guess) the limit.
- Convergent sequences of real numbers satisfy the Cauchy criterion

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. |x_n - x_m| < \epsilon, \ \forall n, m > N$$

- ▶ Recall convergence of real number sequences.
- A sequence of real numbers x_n is said to converge to x_0 , $x_n \to x_0$, if

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. \ |x_n - x_0| \le \epsilon, \ \forall n \ge N$$

- ► To show a sequence converges using this definition, we need to know (or guess) the limit.
- Convergent sequences of real numbers satisfy the Cauchy criterion

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. |x_n - x_m| \le \epsilon, \ \forall n, m \ge N$$

Now consider defining sequence of random variables X_n converging to X_0

- ► Recall convergence of real number sequences.
- A sequence of real numbers x_n is said to converge to x_0 , $x_n \to x_0$, if

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. \ |x_n - x_0| \le \epsilon, \ \forall n \ge N$$

- ► To show a sequence converges using this definition, we need to know (or guess) the limit.
- Convergent sequences of real numbers satisfy the Cauchy criterion

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. |x_n - x_m| \le \epsilon, \ \forall n, m \ge N$$

- Now consider defining sequence of random variables X_n converging to X_0
- ▶ These are not numbers. They are, in fact functions.

- ▶ Recall convergence of real number sequences.
- A sequence of real numbers x_n is said to converge to x_0 , $x_n \to x_0$, if

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. \ |x_n - x_0| \le \epsilon, \ \forall n \ge N$$

- ► To show a sequence converges using this definition, we need to know (or guess) the limit.
- Convergent sequences of real numbers satisfy the Cauchy criterion

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. |x_n - x_m| \le \epsilon, \ \forall n, m \ge N$$

- Now consider defining sequence of random variables X_n converging to X_0
- ▶ These are not numbers. They are, in fact functions.
- ► There are different notions of convergence of a sequence of functions to a function.

▶ Consider a sequence of functions g_n mapping \Re to \Re .

- ▶ Consider a sequence of functions g_n mapping \Re to \Re .
- ▶ We can say $g_n \to g_0$ if $g_n(x) \to g_0(x)$, $\forall x$.

- ▶ Consider a sequence of functions g_n mapping \Re to \Re .
- ▶ We can say $g_n \to g_0$ if $g_n(x) \to g_0(x)$, $\forall x$.
- ► This is known as point-wise convergence

- ▶ Consider a sequence of functions g_n mapping \Re to \Re .
- We can say $g_n \to g_0$ if $g_n(x) \to g_0(x)$, $\forall x$.
- ► This is known as point-wise convergence
- ▶ Or we can ask for $\int |g_n(x) g_0(x)|^2 dx \to 0$.

- ▶ Consider a sequence of functions g_n mapping \Re to \Re .
- We can say $g_n \to g_0$ if $g_n(x) \to g_0(x)$, $\forall x$.
- ► This is known as point-wise convergence
- ▶ Or we can ask for $\int |g_n(x) g_0(x)|^2 dx \to 0$.
- ► There are multiple notions of convergence that are reasonable for a sequence of functions.

- ▶ Consider a sequence of functions g_n mapping \Re to \Re .
- ▶ We can say $g_n \to g_0$ if $g_n(x) \to g_0(x)$, $\forall x$.
- ► This is known as point-wise convergence
- ▶ Or we can ask for $\int |g_n(x) g_0(x)|^2 dx \to 0$.
- ► There are multiple notions of convergence that are reasonable for a sequence of functions.
- ► Thus there would be multiple ways to define convergence of sequence of random variables.

▶ A sequence of random variables, X_n , is said to **converge** in **probability** to a random variable X_0 is

$$\lim_{n \to \infty} P[|X_n - X_0| > \epsilon] = 0, \ \forall \epsilon > 0$$

▶ A sequence of random variables, X_n , is said to **converge** in **probability** to a random variable X_0 is

$$\lim_{n \to \infty} P[|X_n - X_0| > \epsilon] = 0, \ \forall \epsilon > 0$$

This is denoted as $X_n \stackrel{P}{\rightarrow} X_0$

▶ A sequence of random variables, X_n , is said to **converge** in **probability** to a random variable X_0 is

$$\lim_{n \to \infty} P[|X_n - X_0| > \epsilon] = 0, \ \forall \epsilon > 0$$

This is denoted as $X_n \stackrel{P}{\rightarrow} X_0$

We would mostly be considering convergence to a constant.

▶ A sequence of random variables, X_n , is said to **converge** in **probability** to a random variable X_0 is

$$\lim_{n \to \infty} P[|X_n - X_0| > \epsilon] = 0, \ \forall \epsilon > 0$$

This is denoted as $X_n \stackrel{P}{\rightarrow} X_0$

- We would mostly be considering convergence to a constant.
- By the definition of limit, the above means

$$\forall \delta > 0, \ \exists N < \infty, \ s.t. \ P[|X_n - X_0| > \epsilon] < \delta, \ \forall n > N$$

▶ A sequence of random variables, X_n , is said to **converge** in **probability** to a random variable X_0 is

$$\lim_{n \to \infty} P[|X_n - X_0| > \epsilon] = 0, \ \forall \epsilon > 0$$

This is denoted as $X_n \stackrel{P}{\rightarrow} X_0$

- We would mostly be considering convergence to a constant.
- By the definition of limit, the above means

$$\forall \delta > 0, \ \exists N < \infty, \ s.t. \ P[|X_n - X_0| > \epsilon] < \delta, \ \forall n > N$$

• We only need marginal distributions of individual X_n to decide whether a sequence converges to a constant in probability

lacksquare X_i are iid, $EX_i=\mu$, $Var(X_i)=\sigma^2$, $S_n=\sum_{i=1}^n X_i$

- $\blacktriangleright X_i$ are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Then we saw

$$P\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\sigma^2}{n\epsilon^2}, \ \forall \epsilon > 0$$

- $ightharpoonup X_i$ are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Then we saw

$$P\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\sigma^2}{n\epsilon^2}, \ \forall \epsilon > 0$$

▶ Hence we have $\frac{S_n}{n} \stackrel{P}{\to} \mu$

- $ightharpoonup X_i$ are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Then we saw

$$P\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\sigma^2}{n\epsilon^2}, \ \forall \epsilon > 0$$

- ▶ Hence we have $\frac{S_n}{n} \stackrel{P}{\to} \mu$
- ► Weak law of large numbers says that sample mean converges in probability to the expectation