

15 Report DAHC19-77-C-0051

RESEARCH NOTE

①
NW

LEVEL

VOL. 3

A069164

⑥

TECHNIQUES FOR RESEARCH ON FACTORS AFFECTING THE UTILIZATION OF WOMEN IN
NON-TRADITIONAL ROLES. Volume III. Appendices B, C, D, E,

F and G.

DAQ 69165

Denise/Polit, [REDACTED] Sharon/Weissbach, [REDACTED] Ronald L./Nuttall, Ph.D.
Laboratory for Statistical and Policy Research
Boston College
Chestnut Hill, Mass. 02167

28 Apr [REDACTED] 78

Appendices B, C, D, E, F and G

DDC FILE COPY

12 129p.

Prepared for

U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES
5001 Eisenhower Boulevard
Alexandria, Va. 22333

18 ARI

19

r-n-79-12-vol-3-app-b-9

This document has been approved
for public release and sale; its
distribution is unlimited.

79 05 25 031

411 124 6u

TABLE OF CONTENTS

APPENDIX B Privacy Act Statement

APPENDIX C Field Manual

APPENDIX D Base-by-Base Descriptions

APPENDIX E Factor Analysis, 100 Variables

APPENDIX F Factor Analysis, Section-by-Section

APPENDIX G Attitude Scales by Certain Demographic Variables

79 05 25 031

APPENDIX B
PRIVACY ACT STATEMENT

DATA REQUIRED BY THE PRIVACY ACT OF 1974
(5 U.S.C. 552a)

TITLE OF FORM		PRESCRIBING DIRECTIVE
1 AUTHORITY		AR 70-1
10 USC Sec 4503		
2 PRINCIPAL PURPOSE(S) The data collected with the attached form are to be used for research purposes only.		
3 ROUTINE USES This is an experimental personnel data collection form developed by the U.S. Army Research Institute for the Behavioral and Social Sciences pursuant to its research mission as prescribed in AR 70-1. When identifiers (name or Social Security Number) are requested they are to be used for administrative and statistical control purposes only. Full confidentiality of the responses will be maintained in the processing of these data.		
4. MANDATORY OR VOLUNTARY DISCLOSURE AND EFFECT ON INDIVIDUAL NOT PROVIDING INFORMATION Your participation in this research is strictly voluntary. Individuals are encouraged to provide complete and accurate information in the interests of the research, but there will be no effect on individuals for not providing all or any part of the information. This notice may be detached from the rest of the form and retained by the individual if so desired.		

FORM Privacy Act Statement - 28 Sep 75

DA Form 4388-R, 1 May 75

APPENDIX C
FIELD MANUAL

Table of Contents

I. Introduction	1
II. Questionnaire Administration, Preliminary Tasks	3
III. Directions for Administering Questionnaires	6
IV. Administration Session Observation Form	16
V. Leading Discussion Groups, Preliminary Tasks	17
VI. Directions for Leading Discussion Groups and Recording Observations	18
VII. Organizational Procedures	27
VIII. Materials Checklist	28
IX. Schedule of Administration Sessions	29
X. Schedule of Discussion Sessions	30
XI. Coding System	31

I. Introduction

As part of the project "Techniques for Research on Factors Affecting the Utilization of Women in Non-Traditional Roles", approximately 1200 soldiers at four Army bases in the United States will be surveyed by representatives of the Laboratory for Statistical and Policy Research. An additional three hundred soldiers will be surveyed in Europe by representatives of the Army Research Institute. Sixteen different forms of the "Survey of Opinions about the Role of Women in the Army" will be administered. There are a number of technical details which are important in order to have efficient questionnaire administration. Careful planning of administrative details is also necessary for good record keeping and minimizing errors in coding for data analysis. This Field Manual deals with the specific methods to be used in administering the survey.

In order to differentiate between the sixteen different forms of the questionnaire, each booklet will be individually numbered so that the identification number indicates the format and question type of the questionnaire. All traditionally answered Likert questionnaires will be sealed with red tabs while green tabs will be used on Traditional Multiple Choice questionnaires. The tabs on Likert questionnaires with answer sheets will be yellow, and blue tabs will indicate Multiple Choice questionnaires with answer sheets. Answer sheets will be identified by numbers and each answer sheet will be secured within a questionnaire booklet that has the same identification number.

Administration of the questionnaires involves four sessions at each Army base with two sessions in the morning and two in the afternoon. Administration sessions will be followed by separate discussion sessions for officers and enlisted personnel. One man and one woman will be present at

each administration session and each discussion session. According to a balanced design, each administrator will have equal exposure to the various formats.

Two days will be spent at each base. Testing will be done on the morning and afternoon of the first day. The second day will be used as a buffer against errors. Errors might include things such as not enough subjects being obtained on the first day, mistakes in scheduling or room allocation, or other problems discovered upon arriving at the Army base. Record keeping, filling in forms and tallying observational data will occupy the administrators during times when they are not administering the questionnaires.

Questionnaire Administration, Preliminary Tasks (Continued)

2. One administrator, the main administrator whose code number will be entered on the questionnaire or answer sheet, should have a copy of the appropriate directions for his or her section. This main administrator will be the one who reads the directions to the soldiers. This administrator should have a sample sealed questionnaire to hold up and point to when explaining directions.
3. Both administrators in the room should have a watch with a second hand, two sets of time cards, and two sets of cards to hand out at the end of the survey to thank the soldiers and ask some of them to remain for a discussion. One administrator will place time cards on the two piles of Likert questionnaires and hand out cards to soldiers placing their booklets in those piles while the other administrator will do the same for the two piles of Multiple Choice questionnaires. Depending on which group is being sampled for discussion groups, one of the administrators will have two sets of cards which all say "You have now completed the survey and are free to leave. Thank you for your participation." while the other administrator will have a set of cards for officers in which every other card asks the officer to remain for a discussion and another set of cards for enlisted personnel in which every third card requests that the soldier participate in a discussion. (Although only five people are needed from each of the two groups in the room, it is advisable to over-sample when possible in case some of those chosen do not stay for the discussion.)
4. Both administrators should have an Administration Session Observation Form and should fill in the details at the top of the page before the session begins. Both administrators will fill out the forms during and after each administration session. By having two forms completed each session, inter-rater reliability of the subjective judgments can be checked.
5. Have a box of pencils ready to hand out.

PRECEDING PAGE BLANK

DIRECTIONS FOR MILITARY REPRESENTATIVE

(The words in all capital letters are statements to be made. Those not in capitals indicate instructions to the military representative.)

AS YOU CAN SEE, THERE ARE FOUR BOXES OF BOOKLETS AT THE FRONT OF THE ROOM. THIS IS WHERE YOU WILL GO TO PICK UP YOUR QUESTIONNAIRE BOOKLET. IF YOU ARE AN ENLISTED WOMEN, GET YOUR QUESTIONNAIRE HERE (Point to box with appropriate sign on it). IF YOU ARE AN ENLISTED MAN, GET YOUR QUESTIONNAIRE HERE (Point). WOMEN OFFICERS WILL GET THEIR BOOKLETS FROM THIS SET (Point) AND MEN OFFICERS SHOULD PICK UP QUESTIONNAIRES FROM THIS GROUP OF BOOKLETS (Point). IT'S VERY IMPORTANT TO THE RESEARCH THAT YOU PICK UP YOUR QUESTIONNAIRE FROM THE CORRECT PILE.

WHEN YOU PICK UP YOUR QUESTIONNAIRE, DO NOT OPEN IT. KEEP THE BOOKLET CLOSED UNTIL YOU ARE GIVEN INSTRUCTIONS. AFTER YOU GET YOUR QUESTIONNAIRE, LOOK AT THE COLOR OF THE TAB AT THE BOTTOM. THOSE OF YOU WHO GET BOOKLETS WITH RED OR GREEN TABS SHOULD GO TO ROOM _____. THOSE WITH BLUE OR YELLOW TABS SHOULD STAY IN THIS ROOM (or GO TO ROOM _____. AGAIN, THOSE OF YOU WHO GET BOOKLETS WITH RED OR GREEN TABS SHOULD GO TO ROOM _____. THOSE WITH BLUE OR YELLOW TABS SHOULD STAY IN THIS ROOM (or GO TO ROOM _____. THERE ARE SIGNS UP THAT TELL YOU WHICH ROOM YOU SHOULD BE IN (Point to signs).

WHEN THIS SURVEY IS FINISHED, SOME OF YOU WILL BE ASKED TO STAY IN THE ROOM AND TAKE PART IN A DISCUSSION. IF YOU ARE GIVEN A CARD WHICH ASKS YOU TO STAY FOR A DISCUSSION, RETURN TO YOUR SEAT AND WAIT UNTIL IT IS TIME FOR THE DISCUSSION TO BEGIN.

ALRIGHT, NOW YOU MAY COME TO THE FRONT OF THE ROOM AND PICK UP YOUR QUESTIONNAIRES.

III. Directions for Administering Questionnaires

A. Traditional Response Mode (Red and Green Tabs)

(The words in all capital letters are statements to be made by the administrator. Those not in capitals indicate instructions to the administrator.)

(After everyone is assigned to a room and seated, hand out pencils to each soldier.)

GOOD MORNING/AFTERNOON. THE BOOKLETS THAT HAVE BEEN HANDED OUT ARE QUESTIONNAIRES CONCERNING THE ROLES OF WOMEN AND MEN IN THE ARMY. DOES EVERYONE HAVE A BOOKLET AND A PENCIL? (When all have booklets and pencils, proceed.) EVERYONE IN THIS ROOM SHOULD HAVE A BOOKLET WITH A RED OR GREEN TAB. USING THE ERASER END OF YOUR PENCIL PLEASE BREAK THE TABS IN THIS MANNER. (Demonstrate.)

THERE IS A LOOSE PAPER IN EACH BOOKLET WHICH IS A STATEMENT GUARANTEEING YOUR PRIVACY. YOU MAY READ THE PAPER NOW AND MAY KEEP IT AND TAKE IT OUT OF THE ROOM WITH YOU WHEN YOU LEAVE. IT INSURES CONFIDENTIALITY AND STATES THAT THE ONLY PURPOSE OF THE QUESTIONNAIRE IS FOR RESEARCH.

NOW WOULD YOU PLEASE LOOK AT THE INSIDE COVER OF YOUR BOOKLET. THE INSTRUCTIONS FOR FILLING OUT THE QUESTIONNAIRE ARE GIVEN HERE. (Open the sample booklet and point to the instructions.) WOULD YOU PLEASE FOLLOW ALONG AS I READ THE INSTRUCTIONS. (Read through the instruction page as follows:)

THIS SURVEY IS SPONSORED BY THE DEPARTMENT OF THE ARMY. ITS PURPOSE IS TO FIND OUT HOW SOLDIERS, BOTH MALE AND FEMALE, OFFICERS AND ENLISTED,

A.Traditional Response Mode (Continued)

FEEL ABOUT THE ASSIGNMENT OF MEN AND WOMEN TO VARIOUS KINDS OF ARMY JOBS. ALL QUESTIONS SHOULD BE ANSWERED ON THE QUESTIONNAIRE ITSELF. IN EACH CASE, JUST CIRCLE THE NUMBER OF THE ANSWER YOU HAVE CHOSEN.

THE EXAMPLE ASKS YOU TO GIVE YOUR OPINION ABOUT THE QUESTION: "HOW GOOD ARE MOST SOLDIERS AT THEIR JOB?" IN THIS EXAMPLE, THE PERSON BELIEVES THAT MOST SOLDIERS ARE "VERY GOOD" AT THEIR JOB AND THEREFORE HAS MARKED ANSWER NUMBER 1.

ANOTHER EXAMPLE, WHICH IS NOT WRITTEN IN YOUR BOOKLET? MIGHT BE A STATEMENT THAT YOU ARE ASKED TO AGREE OR DISAGREE WITH, SUCH AS "MOST SOLDIERS ARE VERY GOOD AT THEIR JOBS". THEN YOU WOULD BE ASKED TO CIRCLE THE NUMBER THAT CORRESPONDS TO THE WAY YOU FEEL ABOUT THE STATEMENT. IF THE CHOICES WERE 1."STRONGLY AGREE", 2."MODERATELY AGREE", 3."SLIGHTLY AGREE", 4."SLIGHTLY DISAGREE", 5."MODERATELY DISAGREE", AND 6. "STRONGLY DISAGREE", A PERSON WHO STRONGLY DISAGREES WITH THE STATEMENT WOULD CIRCLE THE NUMBER 6 ON THE QUESTIONNAIRE.

NOW LET'S CONTINUE READING THE INSTRUCTION PAGE IN YOUR BOOKLETS.

SELECT ONLY ONE ANSWER TO EACH QUESTION. IF YOU WANT TO COMMENT ON A PARTICULAR QUESTION, THIS IS WHAT YOU SHOULD DO: FIRST, CIRCLE THE NUMBER OF THE ANSWER YOU THINK IS BEST, AND THEN WRITE YOUR COMMENT ON THE BACK OF

A. Traditional Response Mode (Continued)

THE QUESTIONNAIRE. (Hold up a sample booklet and point to the section for comments.)

IF YOU HAVE ANY QUESTIONS, PLEASE FEEL FREE TO ASK ONE OF THE PEOPLE ADMINISTERING THE SURVEY. JUST RAISE YOUR HAND, AND ONE OF THEM WILL COME OVER TO YOU.

WHEN YOU HAVE FINISHED, LOOK BACK OVER ALL THE QUESTIONS AND MAKE SURE YOU DIDN'T ACCIDENTALLY SKIP ANY OF THEM.

WHEN YOU ARE FINISHED WITH THE QUESTIONNAIRE, PLEASE PLACE YOUR BOOKLET ON THIS TABLE. THERE ARE TWO PILES FOR OFFICERS AND TWO FOR ENLISTED PERSONNEL, AS CAN BE SEEN BY THE CARDS MARKING EACH SPACE.

IF YOU ARE AN OFFICER AND THERE IS A RED TAB ON YOUR BOOKLET, PLEASE PLACE YOUR COMPLETED QUESTIONNAIRE HERE. (Point to spot where pile will be.) OFFICERS WITH GREEN TABS ON THEIR BOOKLETS WILL PLACE THEIR BOOKLETS HERE. (Point to second spot.) IF YOU ARE AN ENLISTED PERSON AND THE TAB ON YOUR BOOKLET IS RED, PLEASE PLACE YOUR COMPLETED QUESTIONNAIRE HERE (Point to spot). ENLISTED PERSONS HOLDING BOOKLETS WITH GREEN TABS WILL PLACE THEIR COMPLETED QUESTIONNAIRES ON THIS SPOT. (Point to spot.) PLEASE BE SURE TO RETURN ALL PENCILS TO THIS BOX.

A. Traditional Response Mode (Continued)

SOME PEOPLE IN THE ROOM HAVE SLIGHTLY DIFFERENT FORMS THAN OTHERS, AS INDICATED BY THE DIFFERENT COLORS OF THE TABS, BUT BASICALLY ALL THE QUESTIONNAIRES DEAL WITH THE SAME INFORMATION.

ARE THERE ANY QUESTIONS?

YOU MAY NOW BEGIN TO ANSWER THE QUESTION. (Be sure to note starting time precisely).

III. Directions for Administering Questionnaires

B. OPSCAN Answer Sheet Response Mode (Blue and Yellow Tabs)

(The words in all capital letters are statements to be made by the administrator. Those not in capitals indicate instructions to the administrator.)

(After everyone is assigned to a room and seated, hand out pencils to each soldier.)

GOOD MORNING/AFTERNOON. THE BOOKLETS THAT HAVE BEEN HANDED OUT ARE QUESTIONNAIRES CONCERNING THE ROLES OF WOMEN AND MEN IN THE ARMY. DOES EVERYONE HAVE A BOOKLET AND A PENCIL? (When all have booklets and pencils, proceed.) EVERYONE IN THIS ROOM SHOULD HAVE A BOOKLET WITH A BLUE OR YELLOW TAB. USING THE ERASER END OF YOUR PENCIL, PLEASE BREAK THE TAB IN THIS MANNER. (Demonstrate.)

THERE ARE TWO LOOSE SHEETS IN EACH BOOKLET. THE FIRST PAPER IS A STATEMENT GUARANTEEING YOUR PRIVACY. YOU MAY READ THE PAPER NOW AND KEEP IT AND TAKE IT OUT OF THE ROOM WITH YOU WHEN YOU LEAVE. IT INSURES CONFIDENTIALITY AND STATES THAT THE ONLY PURPOSE OF THE QUESTIONNAIRE IS FOR RESEARCH.

THE OTHER LOOSE SHEET IN YOUR BOOKLET IS THE ANSWER SHEET ON WHICH YOU ARE TO MARK ALL YOUR ANSWERS. DO NOT WRITE ON THE BOOKLET ITSELF BUT FILL IN ANSWERS ON THE ANSWER SHEET. (Hold up sample answer sheet.) WHEN YOU ARE FINISHED WITH THE ENTIRE SURVEY, PLEASE PLACE THE ANSWER SHEET INSIDE THE BOOKLET

B. OPSCAN Answer Sheet Response Mode (Continued)

AND HAND IN BOTH OF THEM. BE SURE TO USE ONLY THE PENCILS THAT HAVE BEEN HANDED OUT. DO NOT USE ANY PENS OR PENCILS THAT YOU MAY HAVE BROUGHT WITH YOU.

NOW WOULD YOU PLEASE LOOK AT THE INSIDE COVER OF YOUR BOOKLET. THE INSTRUCTIONS FOR FILLING OUT THE QUESTIONNAIRE ARE GIVEN HERE. (Open the sample booklet and point to the instructions.) WOULD YOU PLEASE FOLLOW ALONG AS I READ THE INSTRUCTIONS. (Read through the instruction page as follows:)

THIS SURVEY IS SPONSORED BY THE DEPARTMENT OF THE ARMY. ITS PURPOSE IS TO FIND OUT HOW SOLDIERS, BOTH MALE AND FEMALE, OFFICERS AND ENLISTED, FEEL ABOUT THE ASSIGNMENT OF MEN AND WOMEN TO VARIOUS KINDS OF ARMY JOBS.

ALL QUESTIONS SHOULD BE ANSWERED ON THE SEPARATE ANSWER SHEET YOU HAVE BEEN GIVEN. IN EACH CASE, FILL IN THE BLOCK ON THE ANSWER SHEET THAT CORRESPONDS TO THE ANSWER YOU HAVE CHOSEN.

THE EXAMPLE ASKS YOU TO GIVE YOUR OPINION ABOUT THE QUESTION: "HOW GOOD ARE MOST SOLDIERS AT THEIR JOB?"

IN THIS EXAMPLE, THE PERSON BELIEVES MOST SOLDIERS ARE "VERY GOOD" AT THEIR JOB AND THEREFORE FILLED IN BLOCK #1 ON THE ANSWER SHEET.

ANOTHER EXAMPLE, WHICH IS NOT WRITTEN IN YOUR BOOKLET, MIGHT BE A STATEMENT THAT YOU ARE ASKED TO AGREE OR DISAGREE WITH, SUCH AS "MOST SOLDIERS ARE VERY GOOD AT THEIR JOBS". THEN YOU WOULD BE ASKED TO FILL IN THE BLOCK THAT

B. OPSCAN Answer Sheet Response Mode (Continued)

CORRESPONDS TO THE WAY YOU FEEL ABOUT THE STATEMENT. IF THE CHOICES WERE:

1. "STRONGLY AGREE", 2. "MODERATELY AGREE", 3. "SLIGHTLY AGREE", 4. "SLIGHTLY DISAGREE", 5. "MODERATELY DISAGREE", AND 6. "STRONGLY DISAGREE", A PERSON WHO STRONGLY DISAGREES WITH THE STATEMENT WOULD FILL IN THE BLOCK UNDER THE NUMBER 6 ON THE ANSWER SHEET FOR THAT ITEM.

PLEASE NOTE ON YOUR ANSWER SHEET THAT THE QUESTION NUMBERS RUN ACROSS THE PAGE FOR EACH SECTION. IF YOU CHANGE YOUR MIND ON ANY QUESTION, ERASE YOUR ANSWER COMPLETELY BEFORE MARKING YOUR NEW CHOICE.

NOW LET'S CONTINUE READING THE INSTRUCTION PAGE IN YOUR BOOKLETS.

SELECT ONLY ONE ANSWER TO EACH QUESTION. IF YOU WANT TO COMMENT ON A PARTICULAR QUESTION THIS IS WHAT YOU SHOULD DO: FIRST, FILL IN THE BLOCK ON THE ANSWER SHEET THAT CORRESPONDS TO THE ANSWER YOU THINK IS BEST, AND THEN WRITE YOUR COMMENT ON THE BACK OF THE QUESTIONNAIRE. (Hold up sample booklet and point to the section for comments.) DO NOT MAKE ANY EXTRA MARKS ON THE ANSWER SHEET.

IF YOU HAVE ANY QUESTIONS, PLEASE FEEL FREE TO ASK ONE OF THE PEOPLE ADMINISTERING THE SURVEY. JUST RAISE YOUR HAND, AND ONE OF THEM WILL COME OVER TO YOU.

WHEN YOU HAVE FINISHED, LOOK BACK OVER ALL THE BLOCKS ON YOU ANSWER SHEET AND MAKE SURE YOU DIDN'T ACCIDENTALLY SKIP ANY OF THEM.

WHEN YOU ARE FINISHED WITH THE QUESTIONNAIRE, PLEASE PLACE YOUR BOOKLET AND ANSWER SHEET ON THIS TABLE. THERE ARE TWO PILES FOR OFFICERS AND TWO PILES FOR ENLISTED PERSONNEL, AS CAN BE SEEN BY THE CARDS MARKING EACH SPACE.

B. OPSCAN Answer Sheet Response Mode (Continued)

IF YOU ARE AN OFFICER AND THERE IS A YELLOW TAB ON YOUR BOOKLET, PLEASE PLACE YOUR COMPLETED QUESTIONNAIRE AND ANSWER SHEET HERE (Point to spot where pile will be). OFFICERS WITH BLUE TABS ON THEIR BOOKLETS WILL PLACE THEIR BOOKLETS AND ANSWER SHEETS HERE (Point to second spot). IF YOU ARE AN ENLISTED PERSON AND THE TAB ON YOUR BOOKLET IS YELLOW, PLEASE PLACE YOUR COMPLETED QUESTIONNAIRE AND ANSWER SHEET HERE (Point to spot). ENLISTED PERSONS HOLDING BOOKLETS WITH BLUE TABS WILL PLACE THEIR COMPLETED QUESTIONNAIRES AND ANSWER SHEETS IN THIS SPOT (Point to spot). PLEASE BE SURE TO RETURN ALL PENCILS TO THIS BOX (Point to box).

SOME PEOPLE IN THE ROOM MAY HAVE SLIGHTLY DIFFERENT FORMS THAN OTHERS, AS INDICATED BY THE COLOR OF THE TABS, BUT BASICALLY ALL THE QUESTIONNAIRES DEAL WITH THE SAME INFORMATION.

ARE THERE ANY QUESTIONS? (Answer questions.)

YOU MAY NOW BEGIN TO ANSWER THE QUESTIONS. REMEMBER TO PUT ALL YOUR ANSWERS ON THE ANSWER SHEET. (Be sure to note starting time precisely.)

III. Directions for Administering Questionnaires

C. Timing and Sampling for Discussions

After the soldiers have been working on the questionnaire for ten minutes, time cards with number "one" (T1) on them are placed on the spots where the four piles of questionnaires are to be collected. At five minute intervals thereafter, the administrators continue to place time cards on the piles (T2, T3, etc.) until all questionnaires are finished. One administrator places the cards on the two multiple choice piles and the other administrator places time cards on the two Likert piles.

Both administrators in the room are responsible for handing out cards of thanks to the soldiers but one of the administrators will also be handing out cards asking soldiers to participate a discussion. These cards will be dispersed throughout the two decks of thank you cards. In each session, only those taking Multiple Choice questionnaires (blue or green tabs) or for alternate sessions those taking Likert formats (red or yellow tabs) will be sampled. Since there will be approximately 25 officers and 35 enlisted persons in each room, and half of each group can be expected to be taking each format, one half of the officers and one third of the enlisted persons who hand in questionnaires with red tabs (traditional format room) or yellow tabs (OPSCAN answer sheet room) when the Likert questionnaires will be discussed or green tabs (traditional format room) or blue tabs (OPSCAN answer sheet room) when the Multiple Choice questionnaires will be discussed, will be given a card that asks them to stay in the room rather than just the standard thank you card that the other soldiers are given. The card will have the following message: "You have been chosen to participate in a discussion session. Please return to your seat and wait until given further instructions. Thank you."

C. Timing and Sampling for Discussions (Continued)

When all questionnaires are finished, one administrator from each of the two rooms will accompany either the officers or the enlisted persons to the other administration room. In this way, approximately ten officers will be in one room and ten enlisted persons in the other room for discussion sessions.

(In a situation where there are fewer soldiers in each administration session (such as might occur at the European site) and there is only one administrator in the room, the time cards and random selection of soldiers for discussion sessions can be handled by one person).

Main Administrator: _____ Second Administrator: _____

Recorder: _____ Date: _____ Time: _ AM _ PM

Response Mode: Traditional OPSCAN sheet Army Base: _____

IV. Administration Session Observation Form

1. How many questions were asked before respondents began filling in the questionnaire? (during or after the explanations) _____
2. What comments were made before respondents began filling in the questionnaire?
3. How many questions were asked by those with a Likert form while they were filling in the questionnaire? _____
4. How many questions were asked by those with a Multiple Choice form while they were filling in the questionnaire? _____
5. What comments were made while respondents were filling in the questionnaire?
6. How many questions were asked after respondents finished filling in the questionnaire? _____
7. What comments were made after respondents finished filling in the questionnaire?

ADDITIONAL OBSERVATIONS CONCERNING ATMOSPHERE DURING TEST ADMINISTRATION:
(noise level, facial expressions, tone of questions etc.)

V. Leading Discussion Groups, Preliminary Tasks

Preparation in each room:

1. Each room should have an overhead projector. Make sure it is working. The set of transparencies to be used in the discussion of the questionnaire should be placed near the projector. Check to be sure that the transparencies are of a Likert questionnaire when Likert items are to be discussed and of a multiple choice questionnaire when that format is to be discussed.
2. Have a stack of about fifteen of the appropriate blank questionnaires to be handed out to all discussants.
3. Fill out the label on the side of the tape being used to record the particular session. Include information about the discussion leader, date, time of day, Army base and questionnaire format. Place the tape in the cassette recorder, make sure the recorder is working, and rewind so that all is ready for recording as soon as the session begins.

VI. Directions for Leading Discussion Groups and Recording Observations

(Hand out a blank questionnaire in the compact, men first version, using the Likert or Multiple Choice format depending on which format the discussants were administered.

NOW THAT YOU HAVE TAKEN THE QUESTIONNAIRE CONCERNING NON-TRADITIONAL ROLES FOR WOMEN IN THE ARMY, WE WOULD LIKE TO FIND OUT YOU OPINIONS ABOUT THE DIFFERENT SECTIONS OF THE QUESTIONNAIRE. IS EVERYONE HERE AN OFFICER/ENLISTED PERSON? (Be sure that officers and enlisted persons are not mixed in the same room.) WE ARE GOING TO TAPE RECORD THIS SESSION SO THAT WE CAN KEEP TRACK OF THE PARTS OF THE QUESTIONNAIRE THAT YOU THOUGHT WERE WORTHWHILE AND THOSE THAT YOU THOUGHT NEED IMPROVEMENT. (Start the tape recorder). THIS FORM MAY OR MAY NOT BE EXACTLY LIKE THE ONE YOU HAD BUT ALL FORMS DEAL BASICALLY WITH THE SAME INFORMATION, SO WE CAN ALL DISCUSS THE QUESTIONNAIRE TOGETHER EVEN IF SOME OF YOU ANSWERED THE QUESTIONS ON A SLIGHTLY DIFFERENT FORM.

(Using an overhead projector and transparencies, ask questions about Section A, B, C, D, and E. Every page of the compact version will be presented on the overhead projector as each section is discussed. The discussion leader may take some notes while conducting the session, but the main task of recording information will be that of the second administrator in the room. The tape recordings can be used after the discussion to augment the notes that were taken and settle any differences that may arise between the two administrators in interpreting what took place during the discussion. If there is only one administrator, as might occur at European sites, he or she can both lead the discussion and take notes but in this case the tape recordings should be used extensively after the session to make sure that no information was missed.)

- 18A- DISCUSSION FORM

Discussion Group Leader: _____ Recorder: _____

Date: _____ Time: __ AM __ PM Discussants: __ Officers __ Enlisted Number: _____

Questionnaire Format: __ Likert __ Multiple Choice Army Base: _____

SECTION A: THIS FIRST SECTION DEALS WITH REACTIONS THAT TAKE PLACE WHEN WOMEN ARE ASSIGNED TO SUPPORT COMPANIES LIKE SIGNAL OR MILITARY POLICE AND THEN ASKS ABOUT REACTIONS WHEN WOMEN ARE ASSIGNED TO COMBAT COMPANIES SUCH AS ARMOR OR INFANTRY.

1. DO YOU HAVE ANY COMMENTS ABOUT THIS SECTION OF THE QUESTIONNAIRE?

2. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY DISLIKED?

DISCUSSION FORM (Continued)

3. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY LIKED?

4. DID YOU THINK THAT THE ANSWER CATEGORIES WERE GOOD? DID THEY GIVE YOU A
CHANCE TO ANSWER QUESTIONS THE WAY YOU WANTED?

Section B: THIS NEXT SECTION DEALS WITH THE KINDS OF THINGS THAT YOU THINK
MEN AND WOMEN IN THE ARMY ARE ABLE TO DO.

1. DO YOU HAVE ANY COMMENTS ABOUT THIS SECTION OF THE QUESTIONNAIRE?

2. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY DISLIKED?

3. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY LIKED?

4. (Multiple Choice Questions Only) WHAT DO YOU THINK OF THE RESPONSE
CATEGORIES IN THIS SECTION?

DISCUSSION FORM (Continued)

SECTION C: NOW LOOK AT PART C. THIS SECTION ASKS ABOUT DIFFERENCES BETWEEN MEN AND WOMEN WHICH MIGHT INFLUENCE THEIR PERFORMANCE IN THE ARMY AND IT ALSO ASKS FOR OPINIONS ABOUT THE KINDS OF JOBS THAT ARE APPROPRIATE FOR WOMEN IN THE ARMY.

1. DO YOU HAVE ANY COMMENTS ABOUT THIS SECTION OF THE QUESTIONNAIRE?
2. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY DISLIKED?
3. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY LIKED?
4. (Multiple Choice Questions Only) WHAT DO YOU THINK OF THE RESPONSE ALTERNATIVES IN THIS SECTION?

DISCUSSION FORM (Continued)

SECTION D: THE NEXT SECTION PRESENTS SITUATION AND ASKS YOU TO TELL HOW YOU
THINK JOHN JONES, A TYPICAL MALE PRIVATE, WOULD ACT, AND HOW YOU
THINK MARY JONES, A TYPICAL FEMALE PRIVATE, WOULD ACT.

1. DO YOU HAVE ANY COMMENTS ABOUT THIS PART OF THE QUESTIONNAIRE?
2. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY DISLIKED?
3. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY LIKED?
4. (Multiple Choice Questions Only) WHAT DO YOU THINK OF THE RESPONSE CATEGORIES IN THIS SECTION?

DISCUSSION FORM (Continued)

SECTION E: IN THIS SECTION, YOU WERE ASKED TO RATE ENLISTED MEN AND WOMEN ON THEIR STRENGTH, ENDURANCE, AND GUTS.

1. DO YOU HAVE ANY COMMENTS ABOUT THIS SECTION OF THE QUESTIONNAIRE?
2. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY DISLIKED?
3. WERE THERE ANY QUESTIONS IN THIS SECTION THAT YOU PARTICULARLY LIKED?
4. (Multiple Choice Questions Only) WHAT DO YOU THINK OF THE RESPONSE CATEGORIES IN THIS SECTION?

DISCUSSION FORM (Continued)

(After going over the questionnaire section by section, the following general questions are asked).

1. DO YOU HAVE ANY SUGGESTIONS FOR WAYS IN WHICH THIS QUESTIONNAIRE COULD BE IMPROVED?
2. ARE THERE ANY OPINIONS ABOUT THIS TOPIC THAT YOU DIDN'T GET A CHANCE TO STATE IN THE QUESTIONNAIRE BUT WANT TO MENTION NOW?
3. HOW DO YOU THINK THE ARMY CAN BEST USE THE INFORMATION GAINED FROM THIS SURVEY?

DISCUSSION FORM (Continued)

4. WHAT OTHER COMMENTS WOULD YOU LIKE TO MAKE ABOUT THE QUESTIONNAIRE THAT YOU THINK WOULD HELP US?

OBSERVATIONS

1. Did there seem to be any differences between the ways in which men and women reacted to the survey? _____ If yes, explain.

2. Please check each of the following attitudes you felt was displayed during the discussion session. Use one check if the attitude was present but not the dominant tone. Use two check marks if you felt that the majority of people in the room demonstrated the attitude.

interest boredom lack of communication
 enthusiasm lack of seriousness hostility

3. Additional observations concerning the atmosphere during the test administration:

Additional Instructions for Leading Discussion Groups:

1. Reassure the participants about their anonymity being maintained especially when turning on the tape recorder.
2. Throughout the discussion period, stress the fact that the Army is very interested in the results of this survey and will be using information gained to help make some decisions about the role of women in the Army.
3. In cases when participants are reticent to speak, it may be necessary to use probes to stimulate discussion. When soldiers are not responding to the discussion questions, the discussion leader should focus on specific items from the questionnaire to try and get responses. In each section, the following items should be used when trying to stimulate discussion:

<u>Part A</u>	<u>Part B</u>	<u>Part C</u>	<u>Part D</u>	<u>Part E</u>
6	27 & 47	60	#4	89 & 92
12	31 & 51	68		
18	35 & 55	72		

VII. Organizational Procedures

After the Administration Session:

1. Collect signs and pencils
2. Go through the piles of questionnaires and fill in the spaces marked A, B, and T on the answer sheet or on the back cover of the questionnaire, depending on the answer format used. Fill in space A with the number corresponding to the main administrator who gave directions for filling out the questionnaire. Fill in space B with number code for the Army base. Fill in space T with numbers corresponding to the five minute interval in which the questionnaire was finished. There will be a numbered time card on the top of the pile and all questionnaires under it will be coded with that number until another numbered time card is reached. When the time interval is coded for all questionnaires, replace the time cards in their packets.
3. Check pencils and sharpen those that are dull.
4. Place the Administration Session Observation Forms in the envelope for finished forms.
5. Place all finished questionnaires and answer sheets in boxes. Comments will not be analyzed in the field.

After the Discussion Session:

1. Collect blank questionnaires from soldiers in the discussion groups.
2. Return the transparencies to their packet.
3. Put the finished observation forms of both the leader and recorder in the labeled envelope.
4. When both sides of a tape are finished, put the tape in the correctly labeled envelope.

VIII. Materials Checklist

A. Administration Materials

1. Signs to indicate where to pick up questionnaires
2. Signs describing room assignment
3. One sign asking respondents not to open booklets until instructed to do so
4. Signs to indicate placement of piles of completed questionnaires
5. Pencils in a box (about 75 for each room)
6. Sets of time cards
7. Yellow cards asking soldiers to stay for discussion mixed with blue "thank you" cards
8. Administration Session Observation Forms
9. Sets of ordered questionnaires ready to be placed in four piles or boxes
10. Administration Directions
11. Sample sealed questionnaires (with privacy statement or with both privacy statement and answer sheet)
12. Direction for the military representative to use while explaining to the soldiers how to pick up questionnaires and room assignments

B. Administration Room Equipment

1. Table or desks
2. Watch or clock
3. Pencil sharpener

C. Discussion Session Materials

1. Likert transparencies
2. Multiple choice transparencies
3. Blank Likert questionnaires, compact
4. Blank multiple choice questionnaires, compact
5. Blank cassette tapes
6. Directions for Leading Discussion Groups and Recording Observations

D. Discussion Room Equipment

1. Overhead projector
2. Cassette tape recorder

E. Organizational Materials

1. Schedule of administration sessions and discussion sessions
2. Envelope for completed Administration Observation Forms
3. Box for completed questionnaires
4. Envelope for completed tapes
5. Envelope for completed Discussion Group Observation Forms

F. Training Manual

IX. Schedule of Administration Sessions

In order to avoid any bias associated with the administrator or time of day, the following schedule will be followed for questionnaire administration at the four bases in America. The circled code indicates the main administrator.

<u>Session</u>	<u>Administrators</u>			
Morning 1	(A1) AO Traditional	(A3) (AO) Traditional	(A1) AO OPSCAN	(A3) (AO) OPSCAN
Morning 2	(A3) A2 OPSCAN	(A1) (A2) OPSCAN	(A3) A4 Traditional	(A1) (A4) Traditional
Afternoon 1	(A1) (AO) OPSCAN	(A3) AO OPSCAN	(A1) (AO) Traditional	(A3) AO Traditional
Afternoon 2	(A3) (A2) Traditional	(A1) A2 Traditional	(A3) (A4) OPSCAN	(A1) A4 OPSCAN
	<u>Base 0</u>	<u>Base 1</u>	<u>Base 2</u>	<u>Base 3</u>

X. Schedule of Discussion Sessions

Each discussion group will be led primarily by one of the administrators in the room, with minimal assistance from the other, whose main task will be to record observations. The circled code indicates the discussion leader.

		<u>Enlisted</u>	<u>Officers</u>
Base 0	Morning (Likert)	A1, A2	A3, A0
	Afternoon (MC)	(A3) A0	(A1) A2
Base 1	Morning (Likert)	(A1) A0	(A3) A2
	Afternoon (MC)	A3, (A2)	A1, (A0)
Base 2	Morning (MC)	A3, (A0)	A1, (A4)
	Afternoon (Likert)	(A1) A4	(A3) A0
Base 3	Morning (MC)	(A3) A4	(A1) A0
	Afternoon (Likert)	A1, (A0)	A3, (A4)

XI. Coding System

Codes for Administrators (A):*

A0	Lee S. Weissbach	A5	_____
A1	Sharon Weissbach	A6	_____
A2	Ronald L. Nuttall	A7	_____
A3	Joan Hunter	A8	_____
A4	Alan Orenstein	A9	_____

* Even numbers are for men, odd numbers for women.

Codes for Bases (B):

B0	Fort Leonard Wood	B5	_____
B1	Fort Bragg	B6	_____
B2	Fort Polk	B7	_____
B3	Fort Lewis	B8	_____
B4	_____	B9	_____

Codes for Questionnaire Identification (ID):

Order
Within
Packets

Order Within Packets						
1	100-199	compact	men first	traditional	Likert	
5	200-299	compact	women first	traditional	Likert	
9	300-399	dispersed	men first	traditional	Likert	
13	400-499	dispersed	women first	traditional	Likert	
15	500-599	compact	men first	OPSCAN sheet	Likert	
11	600-699	compact	women first	OPSCAN sheet	Likert	
7	700-799	dispersed	men first	OPSCAN sheet	Likert	
3	800-899	dispersed	women first	OPSCAN sheet	Likert	
8	900-999	compact	men first	traditional	Multiple Choice	
4	1000-1099	compact	women first	traditional	Multiple Choice	
16	1100-1199	dispersed	men first	traditional	Multiple Choice	
12	1200-1299	dispersed	women first	traditional	Multiple Choice	
10	1300-1399	compact	men first	OPSCAN sheet	Multiple Choice	
14	1400-1499	compact	women first	OPSCAN sheet	Multiple Choice	
2	1500-1599	dispersed	men first	OPSCAN sheet	Multiple Choice	
6	1600-1699	dispersed	women first	OPSCAN sheet	Multiple Choice	

APPENDIX D
BASE-BY-BASE DESCRIPTIONS

BASE-BY-BASE DESCRIPTIONS

Administrative Procedure

The respondents were seated in one of the two administration rooms (except at Fort Bragg, where only one large room was available). In Europe, the initial instructions were read by Dr. Savell and in the U.S. they were read by Colonel Blodgett. The respondents then picked up their questionnaires and proceeded to the appropriate room. Those with OPSCAN answering sheets were assigned to one room and those using the traditional answering mode were assigned to the other room. At all bases there was a rotation of administrators so that each

answering format was presented an equal number of times by a male and a female.

During the first administration, a previously undetected error came to light. In Part H of the answer sheets, there were 4 items for which there were an insufficient number of options, in comparison with the options specified on the questionnaire itself. For example, question 129 ("Are most of your friends in the Army...?") has 3 alternative responses, but the answer sheet had room for only options 1 and 2. After this error was detected, the soldiers were instructed to write in the number corresponding to their choice directly beside the question number on their answer sheets, as shown below. A sign was made and held up to show respondents how to record their answers should this problem arise:

129	1	2	3

Answer sheets with such write-ins were corrected manually, as described in a subsequent section. In the European administrations, similar instructions were given but the soldiers were also instructed to reverse items 118 and 119. A computer program was used to place these items in the proper order.

Discussion Sessions

At each base, two discussion sessions were held for officers and

two for enlisted personnel. The purpose of the separate discussions according to rank was to encourage the soldiers to speak more freely than might be the case in a mixed session. Only Multiple Choice or Likert items were discussed at any given session except at Fort Bragg where the item type was not considered in assigning soldiers to a discussion group.¹ As in the questionnaire administration, two members of the field team were present in each room. At the U.S. bases, the schedule rotated the team members through the sessions, with one male and one female always assigned to a discussion. In Germany, one male led all the discussion groups with one female present to take notes.

When the discussion group was assembled, the soldiers were given a blank questionnaire to use as a guide. A "Compact - Men First" form was always used, and the soldiers were told that the form might be somewhat different than the one they completed. Overhead transparencies of the questionnaire pages were also available.

The discussion group leader informed the soldiers that the purpose of the discussions was to find out their opinions about the different sections of the questionnaire. It had originally been planned to discuss the questionnaire on a section-by-section basis, encouraging comments about individual items. In accordance with this aim, the discussion form was arranged according to questionnaire sections. In practice, however, it was seldom possible to impose such a structure on the discussions. For example, in discussing a particular item or section, respondents were often reminded of an issue raised in another

1. It had been discovered at previous bases that item type made little difference in the nature of the discussions, so to avoid additional complications, the sampling plan for discussion groups was simplified by sampling from the total group of officers or enlisted persons regardless of questionnaire type.

section. On the whole, it was considerably more difficult to generate comments concerning methodological than substantive issues. The soldiers appeared to be very interested in the question of women in the Army, and there was therefore no difficulty in stimulating a discussion. However, it was generally not feasible to obtain reaction on an item-by-item basis.

The discussion sessions required, on the average, about 45 minutes to complete. The secondary administrator recorded notes and comments, and made observations. The majority of the discussions in the U.S. were also tape recorded.

Situations at Individual Bases

Fort Lewis January 9 - 11

At Ft. Lewis the boxes of questionnaires were late arriving as air baggage, so sessions had to be canceled for Monday January 9. The liaison at Ft. Lewis was notified Sunday night and was able to postpone the administration sessions until Tuesday. Monday was used to set up the administration rooms and practice the procedures. Wednesday morning was used as a back-up day to survey those who had not reported on Tuesday.

At Ft. Lewis there were two rooms directly next to each other. Soldiers assembled in the larger room and were then divided into the two rooms according to the type of questionnaire they picked up. Ft. Lewis was the only place at which soldiers were asked to sit in rows according to their units to facilitate taking the role. At all the other bases sign-in sheets were used.

A total of 197 soldiers reported at Ft. Lewis although 264 had been asked to take the survey. The fact that we were forced to reschedule sessions probably resulted in fewer completed questionnaires than might otherwise have been obtained. According to observations it seemed that the individual soldiers had not been inconvenienced by the schedule change and so this factor would not be expected to influence the attitudes of the respondents toward the survey.

Two discussion sessions were held after each of the administrations on Tuesday. The two sessions in the morning consisted of people who had taken a Likert form of the questionnaire. Discussants in the two afternoon sessions were chosen from those who had taken Multiple Choice forms. Eleven officers participated in the discussion in the morning and twelve in the afternoon. Ten enlisted persons participated in the morning discussion session while only five stayed for the afternoon discussion. At Ft. Lewis as at the other Forts, soldiers were sampled according to the planned method when possible, but soldiers often said they were unable to stay for discussions so we were forced to modify the sampling system in an attempt to get discussion groups that were large enough.

Fort Leonard Wood January 12 - 13

At Ft. Leonard Wood, there were some problems with room assignment. In the morning of the first day (January 12), the two rooms were on different floors of the building and then a change was made so that both rooms were on the same floor but still not next to each other. In this situation we were careful to guide the soldiers to the proper

room. The rooms were too small for the number of people being surveyed and in some cases people taking a traditional form of the questionnaire had to write without desks. In the morning session 114 people reported and 87 people reported in the afternoon.

The back-up day had a very small number reporting and in some cases all respondents stayed in the same room. Three nurses started the questionnaire at 8:30 A.M. and fifteen people reported at the scheduled time of 9:00 A.M. At 9:55 A.M. seven additional women officers reported to take the survey so flexibility was needed in dealing with the situation. In the afternoon ten people were surveyed. At Fort Leonard Wood as at the other bases, the second day tended to be less formal than the first because fewer people were involved and scheduling was less rigid. At each base, the same schedule for administrators was followed on the second day as charted for the first. Discussion groups were held on the first day but not on the second.

At Fort Leonard Wood, eight officers and ten enlisted persons participated in discussions in the morning and eleven officers and seven enlisted persons stayed for discussion in the afternoon. The majority of respondents who were women officers were nurses at all bases but this was particularly so at Ft. Leonard Wood where we met in the hospital to accomodate their schedules.

Fort Polk January 16 - 17

At Ft. Polk, questionnaire administration took place in two rooms in the educational building which were fairly close to each other. The only problem with location was that it was necessary to go outside to

get from one room to the other. The first session was held on Monday morning January 16. There were 96 soldiers present. During Colonel Blodgett's instructions, one woman asked what the purpose was of the survey. Colonel Blodgett gave an extensive explanation with examples so the subjects at this session received a much fuller description than any others who were surveyed. Eighty-one soldiers reported to the afternoon session and 39 reported the morning of the second day. Discussion sessions were made up of thirteen officers and ten enlisted persons in the morning and six officers and eight enlisted persons in the afternoon.

Fort Bragg January 19 - 20

At Ft. Bragg, administration conditions deviated most from those prescribed because we were given only one administration room. Within that constraint, things went fairly smoothly. All sessions were held in one day. Two sessions were held in the morning and two in the afternoon. The respective sizes of the groups at each session were: 42, 80, 55 and 40.

One discussion session was held after each administration. Nine officers and eight enlisted persons participated in morning discussions and six officers (all male) and eleven enlisted persons stayed for discussions in the afternoon. At Ft. Bragg, as at the other bases, people seemed genuinely interested in the issue and participated fully in discussion sessions. A number of people stayed after completing their questionnaire to make comments and some others volunteered to participate in discussion groups.

APPENDIX E
FACTOR ANALYSIS, 100 VARIABLES

TABLE E.1
FACTOR ANALYSIS OF 100 LIKERT ITEMS, COMMUNALITIES

VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
v1	0.493688	1	22.56378	22.5	22.5
v2	0.43633	2	8.83788	8.8	31.4
v3	0.54035	3	5.90013	5.9	37.3
v4	0.59244	4	6.79466	6.8	42.1
v5	0.52967	5	3.31978	3.3	45.4
v6	0.71486	6	2.60486	2.6	48.0
v7	0.67697	7	2.41539	2.4	50.4
v8	0.55994 >MC	6	2.04089	2.0	52.5
v9	0.65949	9	1.85764	1.9	54.3
v10	0.52800	10	1.59697	1.6	55.9
v11	0.57495	11	1.52501	1.5	57.4
v12	0.66325	12	1.45126	1.5	58.9
v13	0.72059	13	1.34608	1.3	60.2
v14	0.63975	14	1.23950	1.3	61.5
v15	0.75122	15	1.18667	1.2	62.7
v16	0.74636	16	1.17677	1.2	63.9
v17	0.58368	17	1.13589	1.1	65.0
v18	0.73902	18	1.09834	1.1	66.1
v19	0.50282	19	1.05749	1.1	67.2
v20	0.59373	20	1.01075	1.0	69.2
v21	0.55585	21	0.97237	1.0	69.2
v22	0.58792	22	0.94798	0.9	70.1
v23	0.53627	23	0.90624	0.9	71.0
v24	0.51474 >MC	24	0.85308	0.9	71.9
v25	0.44370 >MC	25	0.83853	0.8	72.7
v26	0.59423 >MC	26	0.83244	0.8	73.5
v27	0.62197 >MC	27	0.76898	0.8	74.3
v28	0.54961 >MC	28	0.75921	0.8	75.1
v29	0.78832	29	0.74723	0.7	75.8
v30	0.77317	30	0.73169	0.7	76.6
v31	0.74681	31	0.70915	0.7	77.3
v32	0.88017	32	0.69753	0.7	78.0
v33	0.99930	33	0.69304	0.7	78.7
v34	0.89413	34	0.67068	0.7	79.3
v35	0.74797	35	0.646671	0.6	80.0
v36	0.70212	36	0.64058	0.6	80.6
v37	0.83582	37	0.61824	0.6	81.2
v38	0.81811	38	0.59707	0.6	81.8
v39	0.50643 >MC	39	0.58474	0.6	82.4
v40	0.64905	40	0.56326	0.6	83.0
v41	0.71559 >MC	41	0.54451	0.5	83.5
v42	0.64997 >MC	42	0.53140	0.5	84.0

0.639237945	43	0.52077	0.5	84.6
0.621672475	44	0.50365	0.5	85.1
0.641213455	45	0.50067	0.5	85.6
0.78167	46	0.48526	0.5	86.1
0.80161	47	0.47003	0.5	86.5
0.60520	48	0.45898	0.5	87.0
0.59125	49	0.45569	0.5	87.4
0.63026	50	0.43767	0.4	87.9
0.66025	51	0.42821	0.4	88.3
0.76386	52	0.41222	0.4	88.7
0.83625	53	0.40418	0.4	89.1
0.79169	54	0.39885	0.4	89.5
0.75212	55	0.37569	0.4	89.9
0.74830	56	0.37440	0.4	90.3
0.78330	57	0.36202	0.4	90.7
0.67182	58	0.36130	0.4	91.0
0.336666	59	0.35371	0.4	91.4
0.63119	60	0.34037	0.3	91.7
0.45591	61	0.33757	0.3	92.1
0.36304	62	0.33116	0.3	92.4
0.46689	63	0.32672	0.3	92.7
0.49814	64	0.32263	0.3	93.0
0.50343	65	0.31613	0.3	93.3
0.68725	66	0.29889	0.3	93.6
0.41234	67	0.29651	0.3	93.9
0.73256	68	0.29122	0.3	94.2
0.69421	69	0.28115	0.3	94.5
0.37800	70	0.27207	0.3	94.8
0.67911	71	0.26806	0.3	95.1
0.45395	72	0.26205	0.3	95.3
0.42335	73	0.24972	0.2	95.6
0.62477	74	0.24696	0.2	95.8
0.73176	75	0.24074	0.2	96.1
0.49090	76	0.23200	0.2	96.3
0.67475	77	0.22787	0.2	96.5
0.78956	78	0.21446	0.2	96.7
0.66742	79	0.21326	0.2	96.9
0.38434	80	0.20732	0.2	97.2
0.55262	81	0.19810	0.2	97.3

	0.42333	97.5	0.2	97.7
v82	0.50867	82	0.18651	97.7
v83	0.57858	83	0.17986	97.9
v84	0.68404	84	0.17427	98.1
v85	0.69011	85	0.16627	98.2
v86	0.59450	86	0.16359	98.4
v87	0.71801	87	0.16033	98.6
v88	0.71686	88	0.15401	98.7
v89	0.70334	89	0.15120	98.9
v90	0.63884	90	0.14586	99.0
v91	0.74507	91	0.14380	99.2
v92	0.77071	92	0.13436	99.3
v93	0.72418	93	0.12684	99.4
v94	0.59648	94	0.12221	99.6
v109	0.65348	95	0.11320	99.7
v110	0.57097	96	0.10293	99.8
v111	0.50650	97	0.09284	99.9
v112	0.51288	98	0.08293	99.9
v113	0.64525	99	0.05768	100.0
v114		100		

MORE THAN 25 ITERATIONS REQUIRED.

TABLE E.2
FACTOR ANALYSIS OF 100 MULTIPLE CHOICE ITEMS, COMMUNALITIES

VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
V1	0.48057	1	23.32483	23.3	23.3
V2	0.34262	2	9.89481	9.9	33.2
V3	0.38867	3	4.25097	4.3	37.5
V4	0.377758	4	2.93856	2.9	40.4
V5	0.52594	5	2.50724	2.5	42.9
V6	0.51403	6	2.26963	2.3	45.2
V7	0.25742	7	1.91940	1.9	47.1
V8	0.51354	8	1.79255	1.8	48.9
V9	0.56502	9	1.69639	1.7	50.6
V10	0.54561	10	1.55326	1.6	52.1
V11	0.65412	11	1.47640	1.5	53.6
V12	0.53221	12	1.44240	1.4	55.1
V13	0.47604	13	1.35902	1.4	56.4
V14	0.58249	14	1.30448	1.3	57.7
V15	0.56526	15	1.27255	1.3	59.0
V16	0.64579	16	1.19720	1.2	60.2
V17	0.55426	17	1.15706	1.2	61.4
V18	0.64186	18	1.13011	1.1	62.5
V19	0.57533	19	1.09413	1.1	63.6
V20	0.50793	20	1.05565	1.1	64.6
V21	0.54806	21	1.02365	1.0	65.7
V22	0.51800	22	1.01367	1.0	66.7
V23	0.52447	23	0.97698	1.0	67.7
V24	0.56548	24	0.96602	1.0	68.6
V25	0.59633	25	0.90994	0.9	69.5
V26	0.65133	26	0.889037	0.9	70.4
V27	0.62640	27	0.85316	0.9	71.3
V28	0.63125	28	0.82759	0.8	72.1
V29	0.57480	29	0.81786	0.8	72.9
V30	0.60987	30	0.79314	0.8	73.7
V31	0.61098	31	0.76514	0.8	74.5
V32	0.68000	32	0.75435	0.8	75.2
V33	0.68257	33	0.73071	0.7	76.0
V34	0.69146	34	0.70879	0.7	76.7
V35	0.65112	35	0.69689	0.7	77.4
V36	0.67063	36	0.68942	0.7	78.1
V37	0.68310	37	0.68981	0.7	78.7
V38	0.69064	38	0.65054	0.7	79.4
V39	0.61794	39	0.63447	0.6	80.0

V40	0.63444	40	0.61102	80.6
V41	0.72521	41	0.59311	81.2
V42	0.66660	42	0.57987	81.8
V43	0.70574	43	0.56944	82.4
V44	0.64116	44	0.56732	83.0
V45	0.70713	45	0.55580	83.5
V46	0.77738	46	0.53932	84.0
V47	0.79884	47	0.52263	84.6
V48	0.71300	48	0.51701	85.1
V49	0.67341	49	0.50400	85.6
V50	0.69186	50	0.50002	86.1
V51	0.75977	51	0.48588	86.6
V52	0.76559	52	0.46785	87.0
V53	0.81025	53	0.45356	87.5
V54	0.81121	54	0.44746	87.9
V55	0.79539	55	0.43762	88.4
V56	0.76393	56	0.42876	88.8
V57	0.79645	57	0.42463	89.2
V58	0.71846	58	0.41034	89.7
V59	0.46897	59	0.40425	90.1
V60	0.65488	60	0.39855	90.5
V61	0.51993	61	0.37579	90.8
V62	0.36399	62	0.37326	91.2
V63	0.46926	63	0.36830	91.6
V64	0.46245	64	0.36277	91.9
V65	0.38968	65	0.35616	92.3
V66	0.531791	66	0.34757	92.6
V67	0.24289	67	0.34070	93.0
V68	0.63685	68	0.33342	93.3
V69	0.510801	69	0.31300	93.6
V70	0.45608	70	0.31172	93.9
V71	0.61563	71	0.29963	94.2
V72	0.32148	72	0.29903	94.5
V73	0.31939	73	0.27952	94.8
V74	0.54920	74	0.27377	95.1
V75	0.62392	75	0.26727	95.4

V76	0.50259	76	0.25554	0.3
V77	0.66920	77	0.25508	0.3
V78	0.75572	78	0.24556	0.2
V79	0.61092	79	0.23942	0.2
V80	0.40563	80	0.23358	0.2
V81	0.51227	81	0.23162	0.2
V82	0.65812	82	0.22766	0.2
V83	0.33015	83	0.21898	0.2
V84	0.43442	84	0.21628	0.2
V85	0.63019	85	0.21112	0.2
V86	0.66895	86	0.19897	0.2
V87	0.51791	87	0.19857	0.2
V88	0.68237	88	0.18482	0.2
V89	0.63729	89	0.17970	0.2
V90	0.70524	90	0.17032	0.2
V91	0.65804	91	0.16866	0.2
V92	0.68547	92	0.16381	0.2
V93	0.76029	93	0.15403	0.2
V94	0.71905	94	0.14653	0.1
V109	0.54055	95	0.14262	0.1
V110	0.65865	96	0.13512	0.1
V111	0.53440	97	0.13303	0.1
V112	0.49630	98	0.11699	0.1
V113	0.48032	99	0.11492	0.1
V114	0.62660	100	0.11289	0.1

MORE THAN 25 ITERATIONS REQUIRED.

TABLE E.3
FACTOR ANALYSIS OF 100 LIKERT ITEMS, PATTERN MATRIX
AND FACTOR CORRELATION MATRIX

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7	FACTOR 8	FACTOR 9	FACTOR 10
V1	-0.05736	0.03728	-0.01138	-0.00179	0.33123	0.07405	0.01340	-0.12806	-0.05662	-0.09860
V2	-0.15417	0.02662	-0.02112	-0.04505	-0.35939	-0.01545	-0.03928	-0.06329	0.06124	0.17576
V3	0.03212	-0.03957	0.12382	0.2927	0.60798	-0.05145	0.02395	-0.05268	0.01715	-0.00716
V4	-0.06946	-0.04199	0.01106	-0.05318	0.56660	-0.06049	0.02692	-0.19042	0.10830	-0.00170
V5	-0.14709	-0.07460	0.01419	-0.04162	-0.35950	0.06227	-0.08579	0.00983	-0.0907	0.21944
V6	-0.02590	0.00741	0.04517	-0.01211	0.74502	-0.03221	0.04057	-0.05384	-0.03583	-0.05478
V7	-0.01153	0.03443	-0.05327	0.00365	0.53705	0.08134	0.04309	-0.10995	-0.03283	-0.02321
V8	0.0267	-0.01605	-0.01855	0.01556	-0.57712	0.00995	0.01238	-0.05137	0.05513	0.81695
V9	0.18440	-0.07076	-0.02605	-0.09181	0.46470	0.02356	0.05818	-0.12002	0.02365	-0.16679
V10	-0.07607	0.06784	-0.01496	-0.03558	-0.02393	0.00759	0.00952	-0.61944	-0.06516	-0.09628
V11	-0.1866	-0.02875	0.01360	-0.03575	-0.0929	-0.03094	-0.14210	-0.21980	0.05054	0.23222
V12	0.03262	-0.02079	-0.01673	0.09159	0.15673	-0.01638	0.11750	-0.58570	0.03997	-0.02360
V13	-0.03324	-0.03250	-0.00151	-0.02426	0.06111	0.00016	0.00229	-0.93411	0.07079	-0.03885
V14	-0.11498	0.02368	0.08253	0.03554	-0.07693	0.02430	-0.09657	0.31218	-0.06459	0.26944
V15	-0.01879	-0.00117	0.04776	0.02277	0.15170	0.01294	0.07388	-0.70161	0.04547	-0.04579
V16	0.02576	0.06604	-0.00600	0.02365	0.13009	0.06382	0.03718	-0.88633	0.03216	-0.03222
V17	0.13604	-0.00878	-0.0920	-0.00271	0.07296	-0.05516	0.04670	-0.02463	-0.02095	0.82753
V18	0.01367	0.00905	0.01367	-0.00368	0.02915	0.05432	-0.57730	0.05700	-0.12174	-0.02360
V19	-0.00478	-0.03154	0.02950	0.03439	0.03824	0.05332	0.03470	0.05717	0.01048	0.04075
V20	-0.00973	-0.00212	0.22702	0.03069	0.01479	0.08826	-0.00706	0.02772	0.00983	-0.02772
V21	0.15357	0.05050	-0.20172	-0.07786	-0.07991	0.10330	-0.05780	-0.14020	0.13420	-0.03136
V22	0.02868	0.01369	0.37154	0.00652	0.03673	0.08248	-0.04030	-0.01142	0.05790	-0.02733
V23	0.05330	-0.04455	0.59434	-0.02092	0.06595	0.00275	-0.03444	0.00983	0.01648	0.03227
V24	-0.01136	-0.00509	0.39224	0.06095	-0.06216	0.00005	-0.00069	0.00191	-0.07125	0.05864
V25	0.01996	-0.02927	0.10546	0.03277	-0.05305	0.05749	-0.00665	0.00093	-0.05893	0.00386
V26	-0.10920	0.00643	0.63809	0.09557	0.06247	0.08700	0.06372	-0.16000	0.13420	-0.03493
V27	-0.09765	-0.04486	0.69133	-0.00657	0.02970	-0.02755	-0.05780	-0.00334	0.02733	-0.02350
V28	-0.00460	-0.01029	0.48138	0.01343	0.02087	0.09503	0.09173	0.03096	-0.07105	-0.01086
V29	0.03451	0.73664	-0.01871	-0.06478	-0.05502	0.03133	0.02371	-0.02170	0.02508	0.00831
V30	-0.01575	0.82763	0.00710	0.02359	-0.01935	-0.03093	-0.02411	0.01478	-0.01798	0.02223
V31	-0.02650	0.83667	0.06693	0.09658	-0.01454	0.06650	0.06372	-0.03324	0.0046	-0.03493
V32	-0.01338	0.36640	0.03053	-0.13118	-0.02193	0.01929	0.08775	0.00086	-0.03536	-0.02350
V33	-0.00434	0.81111	0.0604	-0.19736	0.03536	0.04132	0.09173	0.03096	-0.07105	-0.01086
V34	-0.02176	0.84731	-0.02776	-0.15775	0.04221	-0.00788	-0.01053	0.00408	0.00687	0.02397
V35	-0.01163	0.34660	-0.02417	0.07226	0.00763	-0.02901	-0.05656	-0.03239	-0.02177	-0.02707
V36	-0.0019	0.12785	-0.11112	0.13452	0.04403	-0.04782	-0.05549	0.03577	-0.01712	-0.02813
V37	0.00819	0.81553	0.01086	-0.12442	0.01883	-0.02053	-0.01693	0.01035	-0.00786	0.02074
V38	0.01211	0.45930	-0.00744	-0.03592	0.04492	-0.02490	0.02208	0.01826	-0.00833	-0.00613
V39	0.03678	-0.01294	-0.13340	0.03137	0.01414	-0.00708	0.01030	-0.07377	0.36685	-0.04208
V40	-0.04111	-0.05003	-0.07447	-0.02555	0.0433	-0.03445	-0.10375	-0.11590	0.55561	-0.08555
V41	0.36876	-0.01698	-0.10355	-0.09262	0.04128	0.09709	0.02241	-0.12428	0.44006	-0.06232

FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7	FACTOR 8	FACTOR 9	FACTOR 10
V42	0.11127	0.03141	-0.03572	-0.03223	0.15685	-0.08122	0.04152	-0.10534	-0.38009
V43	0.05079	-0.02662	0.16300	-0.08223	0.12132	-0.03215	-0.02415	-0.09139	0.41673
V44	-0.02547	-0.04224	-0.03761	-0.02444	0.03390	-0.07825	-0.06638	0.04435	-0.02119
V45	-0.02372	-0.01627	-0.10620	0.00578	0.08451	0.01358	0.01580	-0.00705	-0.27250
V46	0.06923	-0.07868	0.16000	-0.01926	0.09212	-0.05008	0.07112	0.08070	0.22034
V47	0.14519	0.03458	0.16064	0.01991	0.06412	-0.02246	0.11126	0.08587	-0.14625
V48	0.01698	-0.00677	0.07766	-0.10669	0.01908	0.00160	0.06203	-0.36929	-0.11916
V49	-0.03349	0.40632	0.07213	0.24251	-0.06994	-0.03408	0.02147	0.45789	-0.06712
V50	0.36237	-0.09597	-0.01928	0.24484	0.02809	-0.03118	-0.03645	-0.00409	0.10138
V51	0.05967	-0.01203	0.04797	0.40702	-0.02440	0.02519	-0.04415	-0.00308	0.01623
V52	-0.03317	0.13020	-0.00521	-0.36330	-0.05501	-0.01905	0.03707	-0.00585	0.02884
V53	-0.03012	0.18135	0.00007	0.03705	-0.05515	-0.02150	-0.02250	0.01126	-0.01831
V54	0.06914	0.08549	-0.02010	0.24631	0.01666	-0.01301	-0.03469	0.0504	0.02972
V55	0.22139	0.03254	-0.02110	0.52992	-0.04034	0.01197	-0.06035	-0.04701	-0.0203
V56	-0.05219	-0.02737	-0.02110	0.72050	0.00478	-0.01907	-0.00939	-0.02606	-0.01925
V57	-0.04133	0.06791	-0.00716	0.21546	0.01856	-0.04018	0.00780	0.02230	-0.00606
V58	-0.02287	-0.02757	0.02372	0.48935	0.02130	-0.01411	0.03707	0.02254	-0.01609
V59	0.17958	0.01818	-0.00978	-0.15613	0.04662	-0.04157	0.03469	0.0504	0.01317
V60	0.32865	-0.03422	-0.05221	0.07331	0.13783	0.02588	-0.04612	0.15229	-0.05036
V61	0.22233	-0.10496	-0.03842	0.03776	0.19538	-0.05704	0.01622	-0.03073	0.13719
V62	0.1597	0.06236	-0.04189	-0.04218	0.04637	0.0315	0.02103	-0.05890	0.07661
V63	-0.00168	-0.00017	0.01715	-0.02829	0.03519	0.04535	-0.01879	-0.05464	-0.0344
V64	0.25663	0.02303	-0.03630	0.0507	-0.00130	-0.09394	0.0238	0.09763	-0.11422
V65	-0.56266	0.06495	0.05138	-0.01585	-0.05332	0.03503	-0.05781	-0.06052	-0.05036
V66	-0.27251	-0.00146	0.02645	0.05958	-0.11256	0.05323	-0.02940	0.08928	-0.02127
V67	-0.02956	0.04032	0.06387	-0.06544	-0.09427	-0.02392	-0.07241	0.10201	-0.02102
V68	-0.39930	-0.06890	0.06285	0.03991	0.06900	-0.05673	-0.01566	0.12963	-0.03773
V69	-0.27151	0.08052	-0.03343	-0.00306	-0.07250	0.01202	-0.03946	0.09763	-0.09314
V70	-0.36454	0.01416	-0.03759	0.01974	0.02141	0.09675	0.03347	0.05408	0.12492
V71	0.19869	0.00927	0.01530	0.03907	0.01606	0.06239	0.01130	0.00558	0.11818
V72	0.05557	-0.01421	0.02572	0.03290	0.07675	-0.00132	-0.02902	0.1355	-0.02051
V73	-0.20325	0.06004	-0.05470	0.01275	0.08507	0.06127	-0.00203	-0.02102	0.1657
V74	-0.40557	0.05621	0.04220	-0.05414	-0.00921	0.10012	-0.07679	0.03836	0.06693
V75	-0.26096	-0.03763	-0.04878	0.03932	-0.01839	0.07601	-0.01938	0.02491	0.10020
V76	0.31595	0.08496	0.02856	-0.06216	0.09326	0.03809	0.00926	-0.17829	0.17968
V77	-0.31296	-0.02938	-0.02582	0.03308	0.07675	-0.00132	-0.02902	0.07194	-0.01699
V78	-0.30821	-0.04360	-0.04771	0.02779	0.15952	-0.00757	-0.01355	0.22665	-0.04997
V79	-0.53429	0.04104	0.07860	-0.03269	-0.07650	-0.02943	-0.01677	0.09208	-0.03189
V80	0.10303	-0.02013	-0.01361	0.02405	0.08491	-0.06047	0.06588	0.14497	-0.02678
V81	-0.13959	-0.05390	0.02871	0.03210	-0.05629	0.02171	0.02186	0.1815	-0.09409
V82	0.08139	-0.00237	-0.06914	0.03777	0.02235	-0.01490	0.12644	-0.05394	0.06748
V83	-0.09616	0.00636	0.04766	0.01496	-0.07064	0.09550	-0.01621	0.05032	-0.08409
V84	0.07096	-0.02539	-0.02111	-0.03780	0.10344	-0.01412	0.04928	0.12179	0.05113
V85	-0.13276	-0.04126	0.05648	-0.06632	-0.07571	0.05039	0.30039	-0.03994	0.04575
V86	0.06500	0.03266	0.06627	0.03093	-0.01037	-0.02657	0.20723	0.05092	0.04007
V87	-0.07129	0.01229	0.00113	0.03269	-0.00269	0.07508	0.01569	-0.13239	0.04204

FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7	FACTOR 8	FACTOR 9	FACTOR 10
V68	0.03838	0.06266	-0.08755	0.02938	0.11663	-0.03032	0.11209	0.02201	0.14387
V69	0.01204	-0.03594	-0.00132	0.01119	-0.00124	0.1104	0.02254	0.04493	-0.05266
V70	0.01111	-0.02692	0.01336	0.01976	-0.02357	0.94213	0.04470	0.01727	-0.01226
V71	-0.03432	-0.03228	0.13932	-0.00156	-0.01541	0.96544	-0.01504	-0.04791	-0.01139
V72	0.01836	-0.00771	-0.05553	-0.10955	0.02726	0.39804	0.03114	-0.07384	0.38658
V73	0.07050	0.00263	-0.12082	-0.00907	0.06515	0.59525	0.02226	-0.05798	0.30222
V74	0.03855	0.07729	0.01405	0.02496	0.06340	0.34204	0.08127	0.01762	0.35771
V75	0.07631	-0.01541	0.01260	-0.07142	0.00018	0.01184	0.13366	-0.12175	-0.05375
V76	-0.07777	0.05644	0.02768	-0.03286	-0.01189	0.00520	0.04971	-0.11361	-0.03551
V77	-0.04441	-0.04315	-0.04054	0.04500	0.01448	0.01074	-0.0240	-0.02011	0.02359
V78	-0.07502	0.06850	0.00650	0.05262	0.02016	0.03611	-0.03791	0.01792	-0.04891
V79	0.07786	-0.07526	-0.00425	0.06023	0.11201	-0.09187	0.01204	0.00393	-0.00734
V80	0.05894	0.003321	-0.03111	0.07055	0.13626	0.07083	-0.00833	0.12473	-0.03684
V81	0.01036	-0.03147	0.08571	-0.04054	0.06940	0.04901	0.05312	-0.02527	0.02391
V82	-0.02528	-0.12190	0.03446	-0.02426	-0.05726	-0.04231	0.03714	-0.04882	0.03682
V83	-0.01964	0.07477	-0.06464	0.14408	0.04587	0.02401	0.05607	-0.02833	0.03123
V84	-0.03270	0.04117	0.03077	-0.03903	-0.04628	-0.04247	0.08027	0.02960	0.03634
V85	0.07966	0.02936	0.08115	-0.10514	-0.05338	-0.02632	-0.10112	0.05994	0.02908
V86	-0.03940	-0.04316	-0.01021	-0.16778	0.03579	0.02371	0.01405	0.00677	-0.03852
V87	-0.05237	0.04642	0.01948	-0.13013	0.06004	0.04148	-0.05718	0.04669	-0.04032
V88	-0.03290	0.05974	-0.03277	0.01619	0.02008	0.03063	0.01204	-0.03946	0.01946
V89	0.02220	-0.03177	-0.11484	-0.03015	-0.05782	0.08029	0.05834	0.00812	-0.15293
V90	0.02150	0.00476	-0.02718	-0.03125	-0.02960	-0.03074	0.12437	0.02341	0.10564
V91	-0.06951	-0.11923	0.08763	-0.20332	-0.07565	-0.05101	0.02268	0.09840	0.01557
V92	-0.03037	0.07200	-0.07880	0.12508	0.07575	0.02002	0.03005	0.0172	-0.09278
V93	0.03932	0.02956	-0.10106	-0.05379	-0.05226	0.05226	0.11519	-0.07595	0.00603
V94	0.04379	-0.05807	-0.0024	-0.11757	-0.02361	-0.13120	-0.01050	-0.02267	0.05875
V95	0.06476	0.01310	-0.03672	-0.02891	0.05023	0.02897	-0.0171	-0.01100	-0.05165
V96	-0.01023	0.06939	-0.02669	-0.11077	0.04413	0.02020	0.03684	0.01404	-0.07678
V97	0.01029	0.04112	0.03229	0.01010	0.0926	0.04637	0.01930	-0.01305	-0.04345
V98	0.01289	0.03302	-0.21079	0.03053	-0.00973	0.02787	0.03860	-0.01367	0.0154
V99	-0.71105	0.03678	-0.08260	-0.00246	-0.01927	-0.00632	0.0002	0.04441	-0.03226
V20	-0.63623	0.03341	0.02103	-0.01792	-0.00957	0.03974	0.05777	-0.01777	-0.01285
V21	-0.13422	-0.13625	0.05710	0.01340	-0.16213	-0.07599	0.03769	0.03017	0.02451
V22	-0.45223	-0.12896	0.03264	0.03412	0.03709	-0.01581	0.04983	0.04836	-0.01798
V23	-0.18652	0.06701	0.06387	-0.02229	-0.06112	0.02825	0.02250	-0.04621	0.01050
V24	-0.05178	-0.02633	0.01176	0.12128	0.02489	0.05980	-0.04873	0.07226	-0.0244
V25	-0.04628	0.05589	-0.03750	-0.01685	-0.03909	0.03006	0.03204	-0.02795	0.58211
V26	-0.05357	0.06055	0.03375	-0.02647	0.05684	0.01091	0.02107	-0.01219	0.03827
V27	0.06703	-0.02944	-0.06652	0.04883	0.00928	0.03624	-0.01156	-0.01948	-0.07704

FACTOR 11	FACTOR 12	FACTOR 13	FACTOR 14	FACTOR 15	FACTOR 16	FACTOR 17	FACTOR 18	FACTOR 19	FACTOR 20
V28	-0.29851	-0.24302	-0.031772	-0.046642	0.02201	0.0232	0.02167	-0.09040	0.05265
V29	0.02996	0.02203	0.01345	0.06610	-0.08414	-0.02383	0.03331	0.02271	-0.07004
V30	-0.03194	0.07148	0.01740	0.09095	0.03538	-0.03794	0.07386	-0.00772	0.0751
V31	-0.04163	0.02256	0.03821	0.04059	0.11617	-0.02260	-0.01576	0.04601	0.03654
V32	0.01741	-0.01075	0.03534	0.04214	-0.10892	-0.05108	0.01213	-0.0479	-0.06302
V33	0.02197	-0.02665	-0.01088	0.06443	-0.19850	0.00490	-0.02335	-0.04319	-0.01153
V34	-0.09714	-0.03181	0.01999	-0.03554	-0.13341	0.03496	0.01746	-0.05644	-0.04674
V35	0.04533	0.03894	0.00172	0.02172	0.07445	0.02702	-0.01557	-0.02876	0.11537
V36	-0.02192	-0.00765	-0.01824	-0.05706	0.10062	0.05299	0.00943	-0.03719	0.05659
V37	0.03420	-0.01972	-0.01759	-0.06746	-0.14257	-0.01098	0.01445	-0.03409	0.05695
V38	-0.03209	-0.05448	-0.07390	-0.0831	-0.08863	-0.01352	-0.05050	-0.03409	-0.03248
V39	-0.36365	0.01571	0.00121	0.04007	0.08982	0.10584	-0.01532	0.00476	0.01721
V40	-0.22938	0.05579	-0.01726	0.01767	0.00629	0.11877	-0.00194	-0.01489	-0.12222
V41	0.02941	-0.03470	-0.03622	-0.02568	-0.07715	0.06028	0.06112	-0.01215	-0.01246
V42	-0.10443	-0.11127	-0.11245	-0.03203	0.03557	0.06408	0.10420	-0.01024	-0.01621
V43	-0.27959	0.12196	0.12196	0.06066	-0.03665	0.03735	0.064073	-0.01073	0.05748
V44	0.10331	0.02077	-0.04116	0.02522	-0.01356	0.07480	0.09690	0.13022	-0.09248
V45	0.04271	0.08419	-0.05991	-0.10355	-0.02874	-0.00892	0.08973	0.05970	-0.05092
V46	0.10346	0.06238	-0.14669	-0.09261	0.02478	-0.04251	0.17127	0.08351	0.13560
V47	0.03504	0.03527	-0.14935	-0.10429	0.06600	-0.01064	0.10023	-0.09741	-0.15911
V48	-0.01953	0.03858	-0.07298	-0.05950	-0.07226	0.01115	0.07329	-0.02245	-0.09060
V49	0.06524	-0.36502	-0.2d455	-0.08863	-0.17451	0.01154	0.01221	0.01289	-0.13246
V50	-0.03913	-0.05263	0.02115	-0.01792	-0.01377	0.05193	0.04819	-0.01038	0.02012
V51	0.03225	-0.06651	-0.01841	-0.0476	0.00424	-0.04632	-0.01366	0.07432	0.03322
V52	-0.01264	0.06431	-0.07309	0.03211	-0.54908	-0.06167	0.05316	-0.1068	-0.08507
V53	0.00844	0.0232	-0.00732	-0.00733	-0.71220	0.01115	0.07329	-0.02350	-0.12573
V54	-0.00490	0.02330	0.04750	-0.0272	-0.67913	-0.02183	-0.02d26	-0.01770	0.00599
V55	-0.03761	0.02209	0.00706	0.01721	-0.34151	-0.00490	0.01265	-0.01127	0.09858
V56	-0.07908	0.04047	0.02076	0.02915	-0.23189	0.01940	-0.03080	-0.03313	0.00326
V57	0.02121	-0.05699	-0.07968	-0.0456	-0.70632	0.0412	-0.0447	-0.04922	-0.00695
V58	-0.01716	-0.05421	-0.03976	-0.03521	-0.14071	-0.04462	-0.10225	-0.01078	-0.03388
V59	-0.25411	-0.04043	-0.21051	-0.17114	-0.65451	-0.11184	0.04246	0.08421	0.00612
V60	0.01474	-0.45610	0.15867	0.10151	-0.05887	-0.12168	-0.01120	0.04086	0.01361
V61	-0.08240	0.23420	-0.07734	-0.06015	-0.6235	-0.01476	0.09040	0.10425	0.06115
V62	0.00989	-0.24118	-0.04833	0.01798	-0.02945	-0.02260	0.07168	-0.02429	-0.02747
V63	0.03267	0.58357	0.05835	0.0806	-0.06213	-0.04621	-0.06235	0.06391	0.04778
V64	0.04761	0.66051	0.01251	-0.32343	0.02960	0.07180	0.05410	-0.03816	0.06941
V65	0.04597	0.65649	0.00130	-0.2919	-0.02001	-0.0040	-0.35824	0.02400	-0.01299
V66	-0.33020	-0.05743	-0.08142	-0.06597	-0.04766	-0.05835	0.03429	0.00112	-0.06222
V67	0.07604	0.07024	0.01795	-0.07686	-0.2252	0.02320	0.01183	0.02870	0.39270
V68	-0.03119	-0.05465	-0.03516	0.00515	-0.04321	-0.04453	-0.03771	-0.01349	-0.03517
V69	-0.09990	-0.06979	0.02288	0.03814	-0.05120	-0.11856	-0.02793	0.02336	0.00756
V70	-0.07687	-0.10307	0.03159	0.08302	-0.10654	-0.06620	0.01442	0.06391	0.05262
V71	-0.03107	-0.15694	0.01340	0.11245	-0.08627	-0.0921	-0.10247	-0.01765	0.48663
V72	0.02330	0.02330	0.05332	-0.33179	-0.06609	0.07411	-0.12529	-0.00535	0.37849
V73	0.02391	0.11213	0.13124	-0.05952	0.04009	-0.13976	-0.09513	0.04173	0.35266

	FACTOR 11	FACTOR 12	FACTOR 13	FACTOR 14	FACTOR 15	FACTOR 16	FACTOR 17	FACTOR 18	FACTOR 19	FACTOR 20
V74	0.03661	-0.09924	0.19129	0.07565	-0.12184	0.00024	-0.08517	-0.06553	-0.11128	0.06215
V75	0.01450	-0.05914	0.15818	0.07238	-0.07216	-0.05966	-0.06911	-0.05906	0.01704	0.05602
V76	0.03287	0.11886	0.07279	-0.03695	0.01259	0.03994	0.04093	0.06072	-0.02748	0.03636
V77	0.03609	-0.16718	0.18106	0.06911	-0.10251	-0.02909	-0.01541	-0.01292	0.01769	0.22010
V78	-0.02225	-0.25336	0.23305	0.10525	-0.03905	-0.07297	-0.02136	-0.02284	-0.00121	0.05224
V79	-0.02362	-0.06330	0.01989	0.01624	-0.06460	-0.05204	-0.02421	-0.03352	-0.11824	-0.00664
V80	-0.07610	0.16565	-0.06768	-0.03940	0.01446	0.04267	-0.02118	0.16760	0.08223	-0.08022
V81	-0.03664	0.05408	0.16553	0.04082	0.01031	0.13662	0.01666	0.69335	-0.03349	0.039
V82	-0.00895	-0.93146	-0.10151	0.02575	0.07501	0.01928	0.02642	0.70064	0.06636	0.03260
V83	-0.01961	-0.04375	0.02832	0.04177	-0.04983	0.85092	0.06781	-0.02223	-0.02034	-0.02034
V84	0.08115	-0.01131	-0.12994	-0.00114	0.01452	0.46703	0.03954	0.16706	-0.02660	0.01511
V85	0.00338	-0.01530	0.07588	0.00087	-0.06915	0.05733	0.09701	-0.01927	-0.05039	0.03392
V86	0.00795	-0.02561	0.01205	0.02509	0.05441	-0.04823	-0.01202	0.09116	0.00321	0.03366
V87	-0.00120	-0.02533	0.09734	0.03277	-0.08828	0.06427	0.68666	-0.03544	-0.01310	0.03760
V88	-0.03279	-0.04493	-0.04109	-0.03372	0.08619	0.01765	0.27177	0.10942	-0.03697	-0.03795
V89	-0.14490	-0.01375	0.04867	-0.06348	-0.03333	0.05771	-0.01234	0.02139	-0.00104	0.03300
V90	-0.06222	0.00938	0.00846	0.03348	0.06224	0.04408	0.04489	0.00215	-0.01757	0.05325
V91	0.06382	0.00207	-0.01314	0.07008	0.0560	0.02517	0.00823	-0.02352	0.06642	-0.01462
V92	0.07957	0.20867	-0.19234	-0.11565	-0.0616	-0.00306	0.01069	-0.00783	-0.06663	-0.11308
V93	0.03680	0.14349	-0.14594	-0.03372	0.08619	0.01765	0.27177	0.10942	-0.03697	-0.03795
V94	0.13804	0.09655	-0.21563	-0.07560	0.12835	-0.02519	0.10114	0.05477	0.03701	-0.05818
V109	-0.08425	0.12710	-0.29597	-0.17346	-0.06209	-0.07243	0.02248	-0.00466	0.09142	-0.05863
V110	-0.03185	0.04305	-0.71122	0.01706	0.02966	0.02234	0.03142	-0.05010	0.01205	0.04221
V111	-0.01876	-0.01217	-0.69584	0.08612	-0.01939	0.04865	0.01267	0.00778	0.01656	-0.02527
V112	0.06175	-0.47029	-0.03777	0.00777	-0.07206	-0.06851	-0.05358	0.04300	-0.04237	0.03356
V113	0.02184	0.37077	-0.22632	-0.04190	0.03556	0.04900	-0.00871	0.02532	0.08904	0.01681
V114	0.26029	-0.51350	-0.15617	0.10492	-0.05767	-0.10627	-0.06098	0.04470	-0.01062	0.06515

FACTOR CORRELATIONS

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7	FACTOR 8	FACTOR 9	FACTOR 10
FACTOR 1	1.00000	-0.10435	-0.04567	-0.12866	0.30863	-0.12339	0.18530	-0.19081	0.33213	-0.32686
FACTOR 2	-0.10435	1.00000	-0.08565	-0.03852	-0.11441	-0.06565	-0.05392	-0.03647	-0.03347	0.11256
FACTOR 3	-0.09567	-0.08565	1.00000	-0.03291	-0.08820	0.32888	-0.0268	-0.05053	-0.02065	-0.02065
FACTOR 4	-0.12866	-0.03852	-0.03591	1.00000	-0.03204	-0.11441	-0.10563	-0.18710	-0.12098	0.13671
FACTOR 5	0.30863	-0.11441	-0.08820	-0.02304	1.00000	-0.01989	-0.29960	0.17168	-0.36386	-0.32092
FACTOR 6	-0.05392	-0.03204	-0.10563	-0.01989	1.00000	0.18889	-0.11536	-0.03622	-0.02308	-0.02308
FACTOR 7	-0.03647	-0.01989	-0.18889	-0.00000	-0.00000	1.00000	-0.23179	-0.13226	-0.022598	-0.022598
FACTOR 8	-0.02065	-0.18710	-0.03636	-0.23179	-0.23179	-0.00000	1.00000	-0.22577	-0.35477	-0.35477

FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7	FACTOR 8	FACTOR 9	FACTOR 10
FACTOR 9	0.33213	-0.03367	0.00503	-0.12098	0.17168	0.03622	0.13226	-0.22588	1.00000
FACTOR 10	-0.32686	0.11254	-0.02045	0.13671	-0.32092	-0.02308	-0.18678	0.35477	-0.22567
FACTOR 11	-0.05660	0.13173	-0.32963	-0.07509	-0.14180	-0.17662	-0.10076	0.03644	1.00000
FACTOR 12	0.30318	-0.04399	-0.01480	-0.12549	0.15107	-0.00601	0.14143	-0.24934	-0.02075
FACTOR 13	-0.33245	0.05878	0.03403	0.09374	-0.19154	0.02963	-0.23721	0.33404	-0.00423
FACTOR 14	-0.12176	-0.16323	0.07413	0.06116	-0.09486	-0.02667	-0.03739	0.17464	0.30820
FACTOR 15	0.15633	-0.35444	-0.03070	-0.36739	0.09382	-0.01600	0.06560	-0.03968	0.08962
FACTOR 16	0.22849	-0.06304	0.02603	-0.05920	0.18003	0.09734	0.25378	-0.13415	-0.17584
FACTOR 17	0.22873	-0.07674	0.14498	-0.14103	0.20259	0.19052	0.41038	-0.28366	-0.15648
FACTOR 18	0.10373	-0.17395	0.08126	-0.01991	0.11382	0.03515	0.18072	-0.02141	0.28112
FACTOR 19	0.20535	-0.18559	0.21588	0.02932	0.18628	0.06699	0.13339	-0.15274	-0.15470
FACTOR 20	-0.26098	0.16553	0.01200	0.17484	-0.06034	0.07003	-0.05887	0.23025	-0.23475

FACTOR 11	FACTOR 12	FACTOR 13	FACTOR 14	FACTOR 15	FACTOR 16	FACTOR 17	FACTOR 18	FACTOR 19	FACTOR 20
FACTOR 1	-0.05660	0.30318	-0.33245	-0.12176	0.15633	0.22849	0.10373	0.20535	-0.26098
FACTOR 2	0.13178	-0.04399	0.05878	-0.16323	-0.35444	-0.06304	-0.07476	-0.17395	0.16553
FACTOR 3	-0.32963	-0.01490	0.04030	0.07413	-0.03070	0.02603	0.14498	-0.08126	0.21588
FACTOR 4	-0.07509	-0.12549	0.09374	0.06116	-0.36739	-0.05920	-0.14103	-0.01991	0.02932
FACTOR 5	-0.14180	0.15107	-0.19154	-0.09486	0.09382	0.18003	0.20259	0.11382	0.17464
FACTOR 6	-0.17662	-0.06011	0.02603	-0.02667	-0.01600	0.09734	0.19052	0.03515	-0.06034
FACTOR 7	-0.10076	0.14143	-0.23721	-0.09739	0.06260	0.25378	0.41038	0.18072	-0.07003
FACTOR 8	0.03644	-0.24934	0.33404	0.17444	-0.03968	-0.13415	-0.28366	-0.02141	0.15274
FACTOR 9	-0.00423	0.27485	-0.26327	-0.17549	0.08646	0.16751	0.20259	0.07522	-0.10886
FACTOR 10	0.02075	-0.27230	0.30820	0.08962	-0.17584	-0.15648	-0.28112	-0.15470	0.23475
FACTOR 11	1.00000	0.05786	0.01277	-0.02591	0.01934	-0.14172	-0.08638	-0.11327	-0.22080
FACTOR 12	0.05786	1.00000	-0.49201	-0.11998	0.13766	0.13980	0.22860	0.19857	-0.24827
FACTOR 13	0.01277	-0.40901	1.00000	0.14027	-0.10895	-0.15659	-0.25056	-0.11953	-0.25240
FACTOR 14	-0.02591	-0.11998	0.14027	1.00000	0.05500	-0.13772	-0.10778	-0.03574	-0.02054
FACTOR 15	0.01934	0.13766	-0.10895	0.05500	1.00000	0.11597	0.06970	0.13112	-0.11170
FACTOR 16	-0.14172	0.13980	-0.15659	-0.13772	0.11587	1.00000	0.26706	0.21947	-0.20531
FACTOR 17	-0.08638	0.22860	-0.25056	-0.10778	0.06970	1.00000	0.25366	0.20808	-0.12763
FACTOR 18	-0.11327	0.19357	-0.11953	-0.03574	0.13112	0.21947	1.00000	0.23346	-0.06371
FACTOR 19	0.22080	0.25050	-0.25544	-0.02054	0.09428	0.12851	0.20808	0.20366	-0.13070
FACTOR 20	-0.08459	-0.24827	0.25240	-0.11700	-0.020531	-0.05887	-0.06371	-0.12763	1.00000

TABLE E.4
FACTOR ANALYSIS OF 100 MULTIPLE CHOICE ITEMS, PATTERN MATRIX
AND FACTOR CORRELATION MATRIX

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7	FACTOR 8	FACTOR 9	FACTOR 10
V1	0.02418	0.03180	0.70540	0.01577	0.00872	0.03764	-0.02227	-0.02773	0.00751	-0.02024
V2	-0.06157	-0.04845	-0.02333	-0.01290	0.08207	0.00476	0.02274	0.04562	0.24534	-0.05698
V3	0.00192	0.05297	0.20324	0.07051	-0.00862	-0.03779	-0.01042	-0.01779	-0.05792	0.00842
V4	0.05240	0.03680	-0.08902	0.03652	0.07106	-0.00376	-0.01978	0.04597	-0.01511	-0.10296
V5	0.03964	0.03661	0.32139	-0.01505	-0.01236	-0.02867	0.00458	-0.10757	-0.18072	0.01501
V6	0.01931	-0.00837	-0.43593	-0.05305	0.03324	0.01721	-0.02932	-0.00039	0.01188	-0.13159
V7	-0.04039	0.0066	0.66912	0.03599	0.00147	-0.10007	0.09263	0.00838	0.08873	-0.01551
V8	0.05219	-0.0330	-0.03499	-0.05431	0.08469	-0.05519	-0.01487	-0.00574	-0.05171	-0.01476
V9	-0.02932	-0.05593	0.63231	0.07012	0.12591	0.04424	-0.02340	-0.05403	-0.19701	-0.11314
V10	0.01296	-0.06918	0.56405	-0.03711	-0.03658	0.00407	-0.06882	-0.06573	-0.07694	0.01566
V11	-0.03685	-0.15719	0.01344	-0.05086	-0.05426	0.03442	-0.03347	0.10900	0.17781	0.0623
V12	-0.03325	-0.03339	-0.07622	-0.04343	0.04102	-0.00294	0.03294	-0.04492	-0.00222	-0.05988
V13	0.00908	0.03057	-0.04431	-0.00234	-0.03151	-0.02931	0.06488	0.06440	-0.06345	0.01894
V14	0.10870	0.03035	0.3854	0.00232	0.12650	0.10481	-0.02045	-0.04618	-0.20122	0.10287
V15	-0.01310	-0.01852	-0.26036	-0.00092	-0.03658	-0.00710	-0.00549	-0.00004	-0.04328	0.02057
V16	0.03315	0.00331	0.38805	-0.04497	0.03023	-0.11359	0.00492	-0.02634	-0.00355	0.01351
V17	0.02071	0.04606	0.10529	0.02365	-0.04265	0.01915	-0.02106	0.01182	-0.02045	0.06746
V18	0.01122	-0.01077	0.00232	0.02277	0.01014	-0.09336	-0.05424	-0.02041	-0.10453	0.01737
V19	0.02309	0.1600	-0.04456	-0.01014	-0.01672	0.01580	0.02575	-0.05816	0.00076	-0.06660
V20	-0.03930	-0.05105	0.03620	0.03453	-0.01740	0.05467	-0.01728	-0.02779	-0.08929	-0.12972
V21	0.00443	0.01940	0.00172	-0.00939	-0.01267	-0.01998	0.02970	-0.03101	-0.01686	-0.0862
V22	-0.05086	0.12672	0.00232	0.02275	0.02104	-0.09336	-0.05424	-0.02041	-0.10453	0.01737
V23	0.01273	0.00093	0.04241	-0.01014	-0.01672	0.01580	0.02575	-0.05816	0.00076	-0.06660
V24	-0.10383	0.11191	0.01605	-0.05341	-0.01740	0.05467	-0.01728	-0.02779	-0.08929	-0.12972
V25	-0.09360	0.21151	-0.0518	0.03620	0.03453	-0.01740	0.05467	-0.01728	-0.02779	-0.08929
V26	0.03519	0.23336	0.00974	0.01172	-0.01267	0.03723	0.15706	0.02116	-0.12447	-0.24651
V27	-0.11084	0.06604	-0.01267	-0.31963	-0.12935	-0.011804	-0.09336	-0.05424	-0.02041	-0.10453
V28	-0.038052	0.43216	0.02352	-0.09841	-0.055383	-0.01605	-0.03655	-0.02886	0.02886	-0.63478
V29	-0.04219	0.30064	-0.05275	-0.01014	-0.06677	-0.0242	0.03526	-0.02961	0.00651	-0.05228
V30	-0.01349	0.35498	0.07965	-0.13368	0.02012	0.01573	0.15212	0.07389	-0.03613	-0.43011
V31	-0.15703	0.21526	0.00134	0.01257	-0.01296	0.18224	0.23784	0.01167	-0.05777	-0.20801
V32	-0.01121	0.54025	-0.02266	-0.17457	0.11710	0.06845	0.10574	0.03823	-0.05662	-0.09526
V33	0.19294	0.622821	-0.00229	-0.13644	-0.03982	0.05383	0.03937	0.04934	-0.09016	-0.18874
V34	0.24035	0.58650	0.09248	-0.05355	-0.09135	-0.09685	0.05130	0.05008	0.17011	-0.14593
V35	-0.01349	0.56019	0.0770	0.05575	0.06877	-0.0242	0.10826	-0.04610	0.13743	-0.03225
V36	-0.00593	0.21526	0.00134	0.01257	-0.05876	0.00953	0.07474	-0.03074	-0.02594	-0.16739
V37	0.27334	0.48503	-0.01647	-0.06403	-0.05542	0.06637	0.13106	-0.00529	0.01665	-0.10119
V38	0.04498	0.41775	0.01122	-0.07873	-0.09756	0.05604	0.11884	0.03066	0.02881	-0.09620
V39	0.12373	-0.11306	0.0992	0.52719	0.07120	0.05664	0.13841	-0.00802	-0.06416	-0.00023
V40	0.23647	-0.07281	0.07459	-0.21183	0.10397	0.03069	0.02646	-0.00381	0.01783	-0.00169
V41	0.21804	0.08664	0.02433	-0.06657	0.08887	-0.01205	-0.03640	-0.09115	-0.11365	0.12719

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7	FACTOR 8	FACTOR 9	FACTOR 10
V42	0.24283	-0.10904	0.17825	-0.17459	0.08749	0.08133	0.01065	-0.01374	0.01078	-0.10627
V43	0.34333	-0.06114	0.03605	0.03748	-0.01560	-0.01770	-0.01396	-0.03258	0.02761	-0.22611
V44	0.26683	-0.05556	-0.07453	0.06207	-0.0014	0.03194	-0.01566	-0.06016	0.14553	-0.35134
V45	0.23369	-0.06298	-0.05107	0.04856	-0.05137	0.35852	0.0726	-0.10668	0.01506	-0.42509
V46	0.50013	-0.01888	-0.10662	-0.01748	-0.07133	0.00904	0.02254	-0.04918	-0.05949	-0.20390
V47	0.45619	-0.01044	-0.93302	0.01232	-0.00887	0.02247	0.02893	-0.04232	-0.14226	-0.62053
V48	0.24405	0.04993	0.31666	-0.06813	0.04523	-0.02678	-0.00057	-0.06015	-0.05312	0.01557
V49	0.12433	-0.04256	0.1420	-0.31283	0.05120	-0.03012	0.12255	-0.06871	0.18425	0.16265
V50	0.32534	-0.01179	0.02006	0.01579	0.04751	-0.03018	-0.01911	-0.15327	0.12371	0.08113
V51	0.21537	-0.03036	0.05388	-0.02864	-0.01776	-0.0407	-0.00122	-0.02720	-0.0211	-0.01490
V52	0.43109	0.07702	0.08945	-0.06887	0.14778	-0.00861	-0.02011	-0.11537	-0.01757	-0.01033
V53	0.79844	0.12089	0.01204	-0.06424	0.14931	0.04699	0.01594	-0.13387	-0.01114	0.01777
V54	0.62203	0.15832	0.05110	-0.03679	-0.00424	0.03551	0.02007	0.10610	0.00371	0.01190
V55	0.50512	0.09816	0.03336	-0.02193	-0.02100	-0.04828	-0.00235	-0.08784	0.07805	-0.02263
V56	0.44705	-0.01036	0.03476	0.01768	0.01261	0.0072	-0.04803	-0.09078	-0.09759	-0.10207
V57	0.017203	0.13974	-0.01098	-0.00522	0.05899	0.06678	0.03786	-0.05251	-0.03157	0.01925
V58	0.42727	-0.00747	0.06790	0.01115	0.03455	-0.01034	0.02156	-0.07421	-0.01650	0.04425
V59	0.01820	-0.03918	0.06015	-0.00924	0.425641	-0.01348	-0.00398	-0.05339	0.02118	0.02404
V60	0.01995	0.04814	-0.06219	0.03802	0.58029	-0.00487	-0.00137	-0.03298	-0.01838	0.02885
V61	-0.05520	0.04282	0.12411	-0.07492	0.20454	0.01664	-0.05155	-0.07577	-0.05743	-0.00423
V62	0.02902	-0.09151	-0.01032	-0.02980	-0.01578	0.0583	0.03677	0.01618	0.00776	-0.00956
V63	0.01736	-0.01453	0.01557	-0.04574	0.11136	0.10123	-0.05577	-0.05583	0.05434	-0.07124
V64	-0.01749	0.02103	0.07774	-0.00311	-0.01615	0.1698	0.03114	0.07781	0.23905	-0.06693
V65	-0.02831	-0.02593	-0.11295	0.05831	-0.03292	0.13292	0.03528	0.09147	0.27746	-0.03149
V66	0.03604	0.11309	-0.03190	-0.00017	0.05853	0.02693	0.04558	0.04278	0.35310	-0.09732
V67	-0.04223	-0.03423	0.01017	0.00706	-0.01467	-0.00338	0.05706	-0.05217	0.02738	0.04852
V68	0.05829	0.00917	0.02117	0.07471	-0.01774	0.05018	-0.01341	-0.01399	-0.01401	0.42788
V69	0.36743	-0.0994	-0.03664	-0.06678	0.06678	-0.07922	0.12016	0.08814	0.04278	0.06868
V70	-0.08362	-0.03711	0.10241	-0.16474	0.08070	-0.01708	0.10151	0.06181	0.06198	-0.11826
V71	-0.13069	0.02141	0.01500	-0.05418	0.02895	-0.05959	0.10152	0.06927	0.01522	0.00973
V72	-0.01031	-0.03936	-0.01498	-0.02250	0.01299	0.12509	0.03246	0.08904	0.06927	0.00859
V73	0.06364	-0.00707	-0.10250	0.07919	0.16328	-0.04300	0.0368	-0.09507	-0.13386	-0.12924
V74	0.06853	-0.05223	0.0994	-0.03664	-0.06678	-0.30492	0.06311	-0.04118	0.12104	-0.02446
V75	0.07223	-0.19607	0.03275	-0.00298	0.21362	0.00318	0.03849	-0.05684	-0.50222	0.01034
V76	0.06287	0.01149	-0.10526	-0.01463	0.03266	0.04266	0.03203	0.06779	0.20499	-0.03632
V77	0.21911	-0.07688	0.03480	-0.06205	0.27821	-0.09604	-0.08559	-0.05171	-0.25169	0.03110
V78	0.12618	-0.04052	0.06746	0.02926	0.34288	-0.10700	-0.02048	-0.07088	-0.17070	-0.04292
V79	-0.03333	-0.02066	0.10589	0.03897	-0.07655	-0.03559	-0.04675	0.00524	-0.29602	-0.04040
V80	0.07966	-0.07945	-0.05806	0.01003	-0.01064	0.10800	0.00030	0.05354	0.12974	0.02430
V81	-0.03557	0.03648	0.00218	-0.00111	-0.02613	0.18500	0.05906	-0.02918	-0.03282	0.03031
V82	0.23808	-0.03456	0.01270	-0.06006	0.03193	0.54677	0.03397	-0.03761	-0.19023	0.00774
V83	-0.02794	-0.00382	-0.02586	0.02111	0.34288	-0.02474	0.17876	0.04390	-0.05899	0.20107
V84	0.08159	-0.05146	-0.03330	-0.00501	-0.04074	0.14139	-0.03330	-0.02358	-0.05863	-0.05202
V85	-0.06290	-0.05804	0.03281	-0.05194	0.04227	0.05194	0.04994	-0.91240	0.09713	0.02389
V86	0.03405	-0.07259	0.02717	-0.08370	-0.03316	-0.03466	-0.02537	-0.03352	-0.03234	-0.03499
V87	-0.12638	0.06257	-0.01200	0.01176	0.05790	0.16356	0.03830	-0.17292	0.03583	-0.00739

FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7	FACTOR 8	FACTOR 9	FACTOR 10
V88	0.09982	0.04722	0.09015	-0.00163	0.13783	0.11857	-0.06025	-0.16145	-0.06161
V89	-0.04602	0.01426	0.01035	-0.03035	0.01731	0.00355	0.02319	0.01120	-0.03573
V90	-0.32932	-0.02599	0.02635	0.00091	-0.01626	0.03732	0.89318	-0.03550	0.01087
V91	0.03901	-0.01310	-0.03576	0.05681	0.00121	0.04278	0.74337	-0.02572	0.00372
V92	0.13689	-0.08929	0.08054	0.0038	0.10583	-0.13491	0.29822	0.00112	-0.05747
V93	0.23387	-0.10205	0.10103	0.00031	0.01474	-0.12015	0.37361	-0.02692	-0.07531
V94	-0.33720	-0.11761	-0.06046	-0.04223	0.01730	-0.08874	0.28624	-0.03133	-0.04255
V109	-0.00381	0.02922	-0.00393	-0.06354	0.31031	0.11729	-0.00358	0.03949	-0.01893
V110	0.03840	0.14714	0.03095	-0.02858	0.47742	-0.03297	-0.01981	0.01185	0.05981
V111	0.13733	0.08494	0.07842	-0.03946	0.31709	-0.10453	-0.00846	0.03575	-0.04131
V112	-0.03189	0.10702	-0.03798	0.03565	-0.17600	0.01251	0.03942	-0.00549	0.07773
V113	-0.02236	0.30739	0.01831	-0.00350	0.21473	-0.03229	-0.0285	-0.11010	-0.01615
V114	-0.05087	-0.04270	0.00639	-0.11262	-0.35743	0.08174	-0.00875	0.07807	-0.05722
V115	0.02217	-0.02922	0.01138	-0.00339	-0.03011	0.17138	-0.00358	0.03949	-0.01893
V116	0.06500	0.04333	0.01937	0.25608	0.02804	0.11955	0.07864	0.10390	0.08191
V117	-0.04267	-0.01372	0.01420	-0.56823	-0.02494	-0.06344	0.09265	-0.03518	-0.02741
V118	-0.20469	0.11795	0.22226	-0.03782	-0.11510	-0.00971	0.01443	-0.02016	-0.01742
V119	0.01837	-0.06272	0.04669	-0.00339	0.20257	-0.15327	0.17351	-0.00289	-0.010561
V120	0.02217	-0.02922	0.01138	-0.00339	-0.03011	0.17138	-0.00358	0.03949	-0.01893
V121	0.06500	0.04333	0.01937	0.25608	0.02804	0.11955	0.07864	0.10390	0.08191
V122	-0.04267	-0.01372	0.01420	-0.56823	-0.02494	-0.06344	0.09265	-0.03518	-0.02741
V123	-0.20469	0.11795	0.22226	-0.03782	-0.11510	-0.00971	0.01443	-0.02016	-0.01742
V124	0.01837	-0.06272	0.04669	-0.00339	0.20257	-0.15327	0.17351	-0.00289	-0.010561
V125	0.01503	0.06914	0.03096	-0.02083	0.17138	-0.14604	0.16414	-0.01341	-0.04607
V126	-0.04354	-0.09619	-0.16415	-0.49079	-0.01048	0.07789	-0.19248	-0.02270	-0.03778
V127	0.02684	0.211670	0.03229	0.05657	-0.04418	0.02623	0.02237	-0.02383	0.07497
V128	0.02429	-0.14400	0.04159	-0.48890	0.08022	0.07164	-0.06492	0.0932	-0.10043
V129	-0.01782	0.02928	-0.10486	-0.00489	-0.06929	-0.03518	-0.04007	0.04973	-0.07296
V130	0.03154	0.03854	0.03336	-0.02083	0.06969	0.34615	-0.11553	-0.09230	-0.0798
V131	0.64742	0.01460	0.02324	0.01998	0.05502	-0.03864	0.00322	-0.06779	0.01817
V132	-0.12266	0.03752	0.1522	0.04185	0.03670	-0.00028	0.04655	-0.02337	0.04257
V133	0.18921	0.02473	0.05121	-0.06015	-0.11361	0.02466	-0.00479	0.01035	-0.05815
V134	-0.07890	0.01863	0.04297	0.11253	0.02955	-0.0662	-0.03548	-0.06615	-0.02365
V135	0.02806	-0.03637	-0.05538	-0.08257	-0.00850	0.06300	0.06282	0.00000	-0.02089
V136	0.14187	-0.00027	0.01479	0.03351	-0.05744	-0.09912	-0.09340	0.12823	0.01735
V137	0.28418	0.09152	0.07072	0.01887	-0.02747	0.05022	-0.08462	-0.09479	0.13919

FACTOR 11	FACTOR 12	FACTOR 13	FACTOR 14	FACTOR 15	FACTOR 16	FACTOR 17	FACTOR 18	FACTOR 19	FACTOR 20
V28	-0.01321	-0.03510	0.23506	0.06552	-0.01744	0.08904	-0.00778	-0.07227	0.03394
V29	0.12804	-0.03950	0.07818	-0.07039	-0.01065	-0.02107	0.05229	0.01857	-0.02075
V30	0.37262	0.02870	0.12203	0.01381	0.06959	-0.02700	0.01817	-0.12249	0.09407
V31	0.06350	0.04949	0.36152	0.09376	0.02774	0.22799	-0.00256	0.0282	-0.01469
V32	-0.02636	-0.00415	0.14749	-0.01498	0.11413	-0.02460	-0.03042	-0.11039	0.07930
V33	-0.02837	-0.03220	-0.05938	0.00415	0.02456	-0.10785	-0.09355	-0.00777	0.06693
V34	0.14163	0.04163	-0.18632	-0.00273	-0.05840	0.01526	0.02124	0.13857	-0.06693
V35	0.19293	0.00993	0.06566	0.07284	-0.08702	-0.06427	-0.08440	-0.01619	-0.15277
V36	0.67573	-0.01419	-0.11919	0.06938	-0.02878	-0.02248	0.01032	0.08337	-0.08797
V37	0.20766	0.02950	-0.16992	-0.02010	0.02516	-0.02476	0.03277	0.04105	0.05712
V38	0.33149	-0.00052	0.03139	-0.04275	0.01822	0.12669	0.12199	-0.02118	0.08391
V39	-0.03278	0.01922	0.00217	0.03824	-0.06839	0.05097	-0.06547	-0.05264	0.03222
V40	0.05253	-0.01357	0.17495	-0.03095	-0.06847	0.07766	-0.17603	0.05601	0.13277
V41	0.42970	-0.04339	0.10037	0.08784	0.07042	0.03099	-0.15918	0.0737	-0.06712
V42	0.33908	-0.16841	0.16345	-0.01263	0.05835	0.14523	-0.36677	-0.10205	0.12795
V43	-0.14073	-0.12948	0.10712	-0.11671	-0.09427	0.10071	-0.09346	0.03511	0.01880
V44	-0.03817	-0.11039	0.09746	-0.05843	-0.07389	0.0360	-0.21685	0.07800	0.06976
V45	-0.09520	-0.03317	0.03062	-0.16018	-0.11055	0.02686	-0.11918	0.05601	0.13277
V46	0.03373	-0.05795	0.01871	-0.06348	-0.09372	-0.0760	-0.23515	-0.0454	-0.17603
V47	-0.10591	-0.05769	0.09763	-0.01512	-0.13802	-0.01335	-0.25785	-0.10800	0.12403
V48	-0.01388	-0.09197	0.34475	-0.08626	0.00924	0.17760	-0.13262	-0.03280	-0.07868
V49	0.12485	-0.01714	0.17353	-0.00829	-0.09762	0.10336	-0.07822	-0.08321	-0.18544
V50	0.22804	-0.08532	0.20088	-0.04768	-0.14756	0.04297	-0.12454	-0.03384	-0.07257
V51	0.06364	-0.10217	0.48020	-0.05421	-0.07444	0.19415	-0.12987	0.02968	-0.07797
V52	-0.02205	-0.05928	0.10493	-0.01914	0.00944	0.01504	0.01661	-0.11517	-0.02662
V53	-0.17214	-0.03458	-0.00674	-0.06306	-0.01967	-0.01836	-0.01833	-0.04115	-0.08811
V54	-0.01763	-0.02376	0.32531	-0.05957	-0.08027	0.00726	-0.0726	-0.04916	-0.01314
V55	0.06396	-0.11164	0.06405	0.00449	-0.10200	0.08102	-0.12718	-0.06663	-0.02125
V56	0.37926	-0.10026	0.06306	0.05820	-0.06468	0.01528	-0.11454	-0.04605	-0.06691
V57	0.01330	-0.05650	-0.00904	-0.04009	-0.05420	0.03129	0.00367	-0.01397	-0.05923
V58	-0.20249	-0.13532	-0.19197	-0.02156	-0.01967	-0.01626	-0.00933	-0.0719	-0.15267
V59	0.07007	0.00042	-0.03381	-0.03429	-0.10698	0.01431	-0.06245	-0.05747	-0.02030
V60	0.05967	-0.11948	0.06685	-0.15264	-0.35689	0.05585	-0.07543	0.01158	-0.03205
V61	-0.03184	-0.05193	-0.02655	-0.0738	0.23017	0.09404	0.04605	-0.04522	-0.03570
V62	-0.03509	0.03447	-0.01119	0.03215	-0.56304	-0.03193	-0.01425	0.00015	-0.05118
V63	-0.01453	-0.12350	0.04511	0.08564	-0.56382	0.03012	0.05564	-0.0853	0.03686
V64	0.03160	0.08125	-0.01946	0.02389	0.03862	-0.09373	-0.03929	0.16136	-0.02706
V65	-0.00647	0.03325	0.12653	-0.00191	-0.4440	-0.16085	-0.21187	-0.03099	0.18090
V66	-0.25183	0.05503	-0.00904	0.11879	0.17389	-0.04440	0.13031	-0.01718	0.15884
V67	0.03069	-0.01806	0.00773	-0.04728	0.01137	0.02096	0.01437	0.01278	0.01542
V68	-0.10776	0.10719	-0.05030	0.11534	0.12762	0.01580	0.20772	-0.01556	0.10431
V69	-0.02170	0.03397	-0.10304	0.03220	0.10469	-0.1398	-0.03706	0.0502	0.16715
V70	-0.03056	0.01085	-0.27204	0.17088	0.10063	-0.12870	0.01520	0.07337	0.22736
V71	0.01033	0.14945	-0.18809	0.09026	0.15907	-0.18578	-0.00565	0.01306	0.17998
V72	0.08414	0.12753	0.01134	0.09240	0.04629	-0.07177	-0.04708	0.26722	0.01448
V73	-0.04592	0.08251	0.12605	-0.07139	-0.10025	-0.01629	-0.08277	-0.06690	-0.07470

	FACTOR 11	FACTOR 12	FACTOR 13	FACTOR 14	FACTOR 15	FACTOR 16	FACTOR 17	FACTOR 18	FACTOR 19	FACTOR 20
V74	-0.05673	0.09640	-0.09940	0.14763	0.21796	-0.09086	0.00535	-0.00523	0.08004	0.11766
V75	0.10180	-0.13195	0.06025	-0.0522	0.07111	-0.05918	-0.0761	-0.04454	-0.05476	-0.09543
V76	-0.03715	0.15473	-0.06067	0.12541	0.12542	0.15447	0.10015	-0.01566	0.17776	0.13310
V77	0.05549	-0.04546	0.05498	-0.03266	-0.07226	0.03354	0.02274	-0.11700	-0.20811	0.02210
V78	0.04080	-0.10987	0.05425	-0.20345	-0.05739	0.04423	-0.00319	-0.02567	-0.20169	0.04863
V79	0.10220	-0.02684	0.06120	-0.12032	-0.00365	0.02717	-0.04664	-0.12271	-0.04020	-0.13613
V80	-0.09583	0.02211	-0.00906	-0.05608	0.22439	-0.00198	0.07380	0.10691	-0.04421	0.23353
V81	-0.02091	-0.02770	0.01063	-0.05750	-0.08071	0.04339	-0.04160	0.03453	0.04225	0.01682
V82	-0.06509	-0.12003	0.03710	-0.02715	-0.15583	-0.03056	0.00448	-0.12711	-0.07636	-0.12929
V83	0.02663	0.05973	0.00273	0.00719	0.01367	-0.13618	0.03211	-0.33116	-0.02226	0.02795
V84	0.03904	-0.02362	-0.09683	-0.04050	-0.0226	0.00253	-0.01969	-0.49130	-0.18692	-0.11050
V85	0.01429	0.07220	-0.00798	0.03247	0.05467	-0.02708	-0.02171	0.09389	0.06073	0.09194
V86	-0.34151	-0.05256	-0.07183	0.07252	0.01849	0.00787	-0.01122	0.01487	0.02412	-0.04973
V87	0.02793	0.04319	-0.08304	0.05897	0.12660	-0.00058	-0.22561	-0.09316	-0.16196	0.13099
V88	-0.06263	-0.07029	0.01594	0.10163	0.01314	0.02987	-0.43964	-0.18410	-0.25080	-0.05272
V89	-0.12927	-0.35056	0.06963	0.01351	0.00478	-0.02388	0.00339	0.01651	0.05382	-0.01024
V90	-0.03424	-0.04448	-0.03014	0.02895	0.04746	0.05751	-0.00344	0.05015	-0.03659	0.02736
V91	0.19140	0.06531	-0.05954	-0.03441	-0.02594	-0.06281	0.02195	-0.02528	-0.0625	-0.02774
V92	-0.05736	-0.06224	0.28998	-0.10278	-0.15978	0.13860	-0.01265	-0.16426	-0.18590	0.04493
V93	-0.09817	-0.11439	-0.29980	-0.09737	-0.12754	0.09919	-0.06683	-0.19165	-0.26078	-0.01244
V94	0.05243	-0.06743	0.05905	0.00071	-0.18308	0.00496	0.00486	0.13022	-0.26411	-0.12467
V109	0.10105	-0.11177	-0.06592	-0.020215	0.01521	0.01418	0.04833	0.03270	-0.25743	-0.21518
V110	-0.02760	-0.01932	-0.00161	-0.06343	-0.04887	-0.06343	-0.10421	-0.05006	0.04456	-0.27497
V111	-0.10548	-0.01920	-0.02433	0.15928	-0.08219	-0.13397	-0.11238	-0.00891	-0.02762	-0.30228
V112	-0.08765	0.08354	-0.00780	0.05664	0.40210	0.02448	0.10296	0.09415	-0.07616	-0.04131
V113	-0.06664	0.00347	0.00291	-0.06508	-0.36524	-0.08910	-0.04042	-0.09500	0.04522	-0.13006
V114	-0.11729	0.15028	-0.02908	-0.02908	-0.39814	-0.11995	-0.01211	0.05489	-0.07454	-0.09159

FACTOR 21 FACTOR 22

V1	0.04358	-0.03762
V2	-0.25418	0.09067
V3	0.16705	0.00044
V4	0.02047	-0.01026
V5	0.04028	0.08525
V6	0.06166	-0.05266
V7	0.02533	0.11741
V8	0.02042	-0.02946
V9	0.05017	-0.00909
V10	-0.09926	-0.21823
V11	-0.21520	0.07411
V12	0.17699	0.01209
V13	0.08365	0.10886

FACTOR 21		FACTOR 22		FACTOR 21		FACTOR 22	
V15	0.04994	-0.03935		V60	-0.05236	-0.03386	
V15	0.06341	-0.04658		V61	0.18472	0.06310	
V16	-0.19089	-0.07040		V62	-0.01901	0.00971	
V17	0.02502	0.06400		V63	0.06151	-0.03899	
V18	0.03487	-0.15678		V64	-0.05031	-0.06157	
V19	-0.02139	-0.02861		V65	-0.01065	-0.07791	
V20	-0.09791	-0.06313		V66	-0.34279	-0.07728	
V21	-0.01022	-0.00592		V67	-0.01174	-0.29663	
V22	-0.03074	0.03295		V68	-0.39519	-0.21155	
V23	0.06448	-0.02738		V69	0.24644	-0.11989	
V24	-0.06350	0.13710		V70	-0.04497	-0.04497	
V25	0.03604	-0.02920		V71	-0.03017	-0.10832	
V26	-0.16994	0.02768		V72	0.00082	-0.18735	
V27	-0.11149	-0.02224		V73	-0.14530	0.00315	
V28	0.04814	-0.16537		V74	-0.31439	-0.15079	
V29	0.03912	0.06912		V75	0.05201	0.09420	
V30	-0.09179	0.03067		V76	-0.03697	-0.04496	
V31	-0.01887	-0.05013		V77	-0.12763	-0.04011	
V32	-0.04192	0.04255		V78	-0.37119	-0.07682	
V33	0.02496	0.06547		V79	0.22543	0.17272	
V34	-0.00632	0.03673		V80	-0.19588	-0.03994	
V35	0.01556	-0.02047		V81	-0.0470	0.01835	
V36	-0.00592	-0.08463		V82	-0.09827	0.04095	
V37	-0.04516	0.0292		V83	0.06177	-0.10975	
V38	0.09237	-0.10898		V84	0.03888	0.02957	
V39	0.22925	0.13562		V85	-0.3514	-0.03625	
V40	0.43380	0.01402		V86	-0.01658	-0.00998	
V41	0.21534	0.03095		V87	0.01644	-0.03076	
V42	0.19374	0.07762		V88	0.04235	0.02383	
V43	0.22321	-0.01657		V89	0.03594	0.01831	
V44	0.70005	0.10101		V90	0.04623	-0.00909	
V45	0.17210	-0.01621		V91	-0.38409	-0.06432	
V46	0.07461	-0.05440		V92	-0.00616	-0.10121	
V47	-0.00648	-0.14128		V93	-0.04223	-0.02697	
V48	0.09953	-0.14574		V94	-0.01120	-0.03826	
V49	0.21126	0.14210		V95	-0.01554	-0.09101	
V50	-0.00344	-0.03282		V96	0.12334	-0.29279	
V51	0.02664	-0.07606		V97	0.03347	-0.25463	
V52	0.03377	0.07109		V98	-0.00232	-0.08248	
V53	0.08308	0.13773		V99	0.00034	-0.05050	
V54	0.07217	0.09758		V100	0.12597	0.09804	
V55	0.06039	-0.00667					
V56	0.05775	-0.04150					
V57	0.00557	0.08359					
V58	0.07576	-0.15671					
V59	0.03375	0.08090					

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6	FACTOR 7	FACTOR 8	FACTOR 9	FACTOR 10
FACTOR 1	1.00000	0.06934	0.10702	-0.11939	0.24446	0.04835	0.09069	-0.25917	-0.18044	-0.13375
FACTOR 2	-0.06934	1.00000	-0.01141	-0.30632	-0.04636	0.12933	0.32522	-0.01481	0.06962	-0.35472
FACTOR 3	0.10702	-0.01141	1.00000	-0.04635	0.16028	-0.11184	0.03145	-0.17474	-0.16879	0.04873
FACTOR 4	-0.11939	-0.30632	-0.04635	1.00000	-0.05309	-0.10708	-0.19932	0.04347	-0.04266	0.32169
FACTOR 5	0.24446	0.04835	0.16028	-0.05309	1.00000	-0.05879	-0.03442	-0.18393	-0.22704	-0.04931
FACTOR 6	-0.09069	0.32522	0.12933	-0.05879	0.04342	1.00000	0.09635	-0.05696	0.15445	-0.15688
FACTOR 7	-0.25917	0.01145	-0.19932	-0.03442	0.05635	1.00000	-0.08791	0.08738	-0.23897	-0.00000
FACTOR 8	-0.18044	-0.01145	-0.17474	0.04347	-0.18393	-0.05696	1.00000	-0.17679	0.00592	-0.02554
FACTOR 9	-0.13375	-0.30632	-0.19932	-0.04635	0.22704	0.15445	0.08138	0.17679	1.00000	-0.00000
FACTOR 10	-0.16879	-0.04636	-0.10708	-0.05309	-0.04931	-0.15688	-0.23897	0.00592	-0.02554	1.00000
FACTOR 11	-0.15445	-0.11184	-0.12933	-0.05879	0.04248	0.05729	0.28959	-0.16577	-0.05835	-0.16593
FACTOR 12	-0.15688	-0.32522	-0.19932	-0.03442	0.22704	0.05635	0.02535	0.29722	-0.27067	-0.02744
FACTOR 13	-0.23897	0.01145	-0.07209	-0.34654	0.00119	-0.23923	0.06168	0.02535	-0.17575	-0.19191
FACTOR 14	-0.00000	-0.29593	-0.07209	-0.08481	-0.10918	0.10638	-0.04062	0.09779	-0.06900	-0.06900
FACTOR 15	-0.02554	-0.19932	-0.04635	-0.05309	-0.04528	-0.26922	0.09108	0.02823	0.24385	0.03356
FACTOR 16	-0.16593	-0.11184	-0.12933	-0.05879	-0.06779	-0.35953	0.01246	-0.01052	0.21432	0.18761
FACTOR 17	-0.02744	-0.32522	-0.19932	-0.03442	0.02266	-0.11370	0.02232	-0.05723	-0.02563	0.01974
FACTOR 18	-0.19191	-0.11184	-0.07209	-0.34654	-0.08097	-0.16693	-0.15062	-0.07889	0.21291	0.04239
FACTOR 19	-0.06900	-0.29593	-0.07209	-0.04877	-0.14244	0.10797	-0.15221	-0.10169	-0.06222	0.12903
FACTOR 20	-0.06900	-0.19932	-0.04635	-0.09093	-0.01925	-0.14286	-0.24271	-0.03555	0.02594	0.18624
FACTOR 21	-0.01658	-0.32522	-0.19932	-0.00879	-0.12050	-0.11877	-0.24469	0.03164	0.08888	0.18237
FACTOR 22	-0.02394	0.23343	-0.01804	-0.19242	-0.17155	0.06521	-0.02700	-0.01444	-0.15313	-0.11400
	0.06528	-0.01474	-0.02649	-0.07964	-0.06028	-0.04727	-0.13781	0.04726	-0.13795	0.02686

	FACTOR 11	FACTOR 12	FACTOR 13	FACTOR 14	FACTOR 15	FACTOR 16	FACTOR 17	FACTOR 18	FACTOR 19	FACTOR 20
FACTOR 1	0.18638	-0.28593	0.25886	-0.19108	-0.33165	0.11911	-0.25573	-0.18588	-0.20328	-0.36236
FACTOR 2	0.31924	0.07208	0.06967	0.08666	0.02149	0.02226	-0.01827	-0.04877	0.09093	0.00879
FACTOR 3	0.10380	-0.34654	0.06481	-0.39218	-0.05283	-0.16630	-0.03153	-0.14244	-0.01925	-0.12050
FACTOR 4	-0.22937	0.00118	-0.10918	-0.04528	0.06779	-0.11370	0.08097	-0.10797	-0.14286	-0.11877
FACTOR 5	0.04248	-0.23923	0.10638	-0.26922	-0.35963	0.02232	-0.16693	-0.15221	-0.24271	-0.24469
FACTOR 6	0.05729	0.01648	-0.04062	0.09108	0.01246	0.05723	-0.12062	-0.10169	-0.03164	-0.03164
FACTOR 7	0.28959	-0.02535	0.09779	0.02823	-0.01062	-0.02563	-0.07689	-0.06222	0.02594	0.08888
FACTOR 8	-0.16577	0.29722	-0.17575	0.26061	0.21432	0.01974	0.21291	0.26162	0.19723	0.18237
FACTOR 9	-0.05835	0.27067	-0.19191	0.24385	0.18761	0.01168	0.04239	0.12903	0.18624	0.21605
FACTOR 10	-0.16553	-0.02744	-0.06090	-0.06356	-0.06201	-0.06752	0.12557	0.01658	0.03915	0.15231
FACTOR 11	-1.00000	-0.10510	0.20796	-0.10363	-0.02779	0.02776	-0.10491	-0.04077	-0.05852	0.33519
FACTOR 12	-0.10510	1.00000	-0.22612	0.28592	0.26434	0.00721	0.13241	0.22934	0.21535	0.26125
FACTOR 13	0.20796	-0.22612	1.00000	-0.15746	-0.19595	-0.04933	-0.09323	-0.13560	-0.12372	-0.22907
FACTOR 14	-0.10363	0.38592	-0.15746	0.21460	0.09145	0.10381	0.14451	0.19240	0.21605	0.33519
FACTOR 15	-0.02779	0.26434	-0.19595	0.24460	1.00000	-0.10651	0.20315	0.17665	0.24469	0.10401
FACTOR 16	0.02776	0.06721	-0.04933	0.09145	-0.10651	1.00000	-0.04435	0.01341	-0.01963	-0.10401
FACTOR 17	-0.10491	0.13241	-0.09323	0.10381	0.20315	-0.04435	1.00000	0.09751	0.10221	0.15620
FACTOR 18	-0.04077	0.22934	-0.13560	0.14451	0.17665	0.01341	0.09312	1.00000	0.09312	0.46664

	FACTOR 11	FACTOR 12	FACTOR 13	FACTOR 14	FACTOR 15	FACTOR 16	FACTOR 17	FACTOR 18	FACTOR 19	FACTOR 20
FACTOR 19	-0.05952	0.21535	-0.12372	0.19240	0.24119	-0.01943	0.10221	0.09312	1.00000	0.14588
FACTOR 20	-0.01463	0.26125	-0.22907	0.15231	0.33519	-0.10401	0.15620	0.16664	0.14588	1.00000
FACTOR 21	0.01985	-0.22118	0.17373	-0.06554	-0.11790	-0.04425	-0.12130	-0.18031	-0.03847	-0.19077
FACTOR 22	-0.03293	-0.04177	0.04812	0.05709	-0.03298	0.04838	0.05379	-0.05188	0.06293	-0.13610

	FACTOR 21	FACTOR 22
FACTOR 1	0.23343	0.06528
FACTOR 2	-0.01804	-0.01474
FACTOR 3	0.18242	0.02649
FACTOR 4	-0.17155	-0.07964
FACTOR 5	0.06521	-0.06028
FACTOR 6	0.02700	-0.04727
FACTOR 7	-0.01444	-0.13781
FACTOR 8	-0.15313	0.04756
FACTOR 9	-0.11400	-0.13795
FACTOR 10	-0.02394	0.02686
FACTOR 11	0.01985	-0.03293
FACTOR 12	-0.22118	-0.04177
FACTOR 13	0.17373	0.04812
FACTOR 14	-0.06554	0.05379
FACTOR 15	-0.11790	-0.03298
FACTOR 16	-0.04425	0.04838
FACTOR 17	-0.12130	0.05379
FACTOR 18	-0.18031	-0.05188
FACTOR 19	-0.03847	0.06293
FACTOR 20	-0.19077	-0.13410
FACTOR 21	1.00000	0.08927
FACTOR 22	0.08927	1.00000

APPENDIX F
FACTOR ANALYSIS, SECTION-BY-SECTION

TABLE F.1
COMMUNALITIES, LIKERT PART A

2 VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
V1	0.39697	1	9.50162	36.5	36.5
V2	0.38545	2	2.66362	10.3	46.9
V3	0.47939	3	1.92530	7.4	54.3
V4	0.51317	4	1.60792	6.2	60.5
V5	0.43865	5	1.31386	5.1	65.5
V6	0.65174	6	1.12912	4.3	69.9
V7	0.61984	7	0.78361	3.0	72.9
V8	0.46554	8	0.66491	2.6	75.4
V9	0.57117	9	0.65353	2.5	77.9
V10	0.42813	10	0.55878	2.1	80.1
V11	0.51689	11	0.53064	2.0	82.1
V12	0.59918	12	0.48340	1.9	84.0
V13	0.67098	13	0.45918	1.8	85.8
V14	0.56786	14	0.43649	1.7	87.4
V15	0.68926	15	0.41779	1.6	89.0
V16	0.70380	16	0.37125	1.4	90.5
V17	0.51775	17	0.34063	1.3	91.8
V18	0.68476	18	0.33922	1.3	93.1
V17	0.57578	19	0.28792	1.1	94.2
V78	0.69545	20	0.27691	1.1	95.3
V89	0.64777	21	0.24967	1.0	96.2
V90	0.71264	22	0.22789	0.9	97.1
V91	0.52743	23	0.20940	0.8	97.9
V92	0.65974	24	0.19695	0.6	98.7
V93	0.71763	25	0.18016	0.7	99.3
V94	0.61113	26	0.16996	0.7	100.0

CONVERGENCE REQUIRED 17 ITERATIONS

TABLE F.2
COMMUNALITIES, MULTIPLE CHOICE PART A

VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
V1	0.37558	1	7.53750	29.0	29.0
V2	0.22514	2	2.74028	10.5	39.5
V3	0.30005	3	2.09972	8.1	47.6
V4	0.30446	4	1.41806	5.5	53.1
V5	0.43806	5	1.24644	4.8	57.9
V6	0.42015	6	1.10665	4.3	62.1
V7	0.45747	7	0.96433	3.7	65.8
V8	0.40154	8	0.85755	3.3	69.1
V9	0.46205	9	0.81141	3.1	72.2
V10	0.46045	10	0.72829	2.8	75.0
V11	0.35608	11	0.64264	2.5	77.5
V12	0.42468	12	0.61140	2.4	79.9
V13	0.38030	13	0.53808	2.1	81.9
V14	0.48878	14	0.53409	2.1	84.0
V15	0.49373	15	0.50799	2.0	85.9
V16	0.58060	16	0.47664	1.8	87.8
V17	0.45796	17	0.45614	1.8	89.5
V18	0.57855	18	0.42644	1.6	91.2
V19	0.57106	19	0.37972	1.5	92.3
V20	0.67135	20	0.36021	1.4	94.0
V21	0.55560	21	0.31654	1.2	95.2
V22	0.65640	22	0.31175	1.2	96.4
V23	0.53349	23	0.27273	1.0	97.5
V24	0.59873	24	0.23665	0.9	98.4
V25	0.71019	25	0.22842	0.9	99.3
V26	0.59656	26	0.19012	0.7	100.0

TABLE F.3
PATTERN MATRIX AND FACTOR CORRELATION MATRIX,
LIKERT PART A

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6
V1	0.04370	0.02063	0.33826	0.52270	-0.10176	0.06897
V2	0.04514	0.01892	-0.45089	0.30011	0.13069	-0.12585
V3	0.07964	0.01301	0.68277	-0.14843	0.04477	-0.01156
V4	0.22796	0.00642	0.56694	0.08004	0.02149	-0.01933
V5	-0.04168	0.03844	-0.47913	0.10912	0.18615	-0.07847
V6	0.02406	-0.02115	0.82420	0.18892	-0.01007	-0.00632
V7	0.05031	0.01781	0.73559	0.16890	-0.00038	0.04668
V8	0.05524	-0.00799	-0.07416	-0.05516	0.78114	0.06558
V9	0.10621	-0.02038	0.53949	0.05625	-0.11894	0.17476
V10	0.44525	-0.03165	-0.09388	0.42032	-0.09866	0.11369
V11	-0.35620	0.01972	-0.14835	0.29681	0.18164	-0.16183
V12	0.71137	0.03807	0.18466	-0.15177	0.02537	-0.03310
V13	0.89675	0.00965	-0.02134	0.07805	-0.03001	0.01719
V14	-0.41193	0.04763	-0.15097	0.16798	0.21662	-0.16581
V15	0.80198	0.03578	0.08290	0.01498	-0.00385	-0.01916
V16	0.79196	0.05452	0.07398	0.09971	0.04878	0.03581
V17	-0.02497	-0.06338	0.10427	-0.02110	0.85818	-0.00590
V18	0.63160	0.01012	-0.00612	-0.02683	-0.07898	0.17799
V19	-0.08269	0.18333	-0.00207	0.12741	0.07275	-0.61356
V20	-0.25485	0.16060	0.08452	0.07248	0.14907	-0.61135
V21	-0.03871	0.81487	0.03039	0.06880	-0.02661	-0.00211
V22	0.03945	0.94577	-0.01530	-0.03510	-0.02335	-0.00162
V23	0.09050	0.69096	-0.04143	-0.09327	-0.02953	0.08614
V24	-0.01606	0.11403	-0.02146	0.10061	0.08193	0.83036
V25	-0.02316	0.11704	0.06972	0.09272	0.03903	0.82697
V26	-0.03293	0.12836	0.08227	-0.01168	-0.01046	0.73939

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6
FACTOR 1	1.00000	0.03980	0.50958	0.09868	-0.41585	0.58094
FACTOR 2	0.03980	1.00000	0.01279	0.11617	0.01919	0.20082
FACTOR 3	0.50958	0.01279	1.00000	-0.01274	-0.36403	0.35897
FACTOR 4	0.09868	0.11617	-0.01274	1.00000	0.06266	-0.03322
FACTOR 5	-0.41585	0.01919	-0.36403	0.06266	1.00000	-0.40756
FACTOR 6	0.58094	0.20082	0.35897	-0.03322	-0.40756	1.00000

TABLE F.4
PATTERN MATRIX AND FACTOR CORRELATION MATRIX,
MULTIPLE CHOICE PART A

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6
v1	0.05450	-0.04670	-0.13706	-0.00170	0.11842	0.59535
v2	0.03783	0.02582	0.10558	0.02251	-0.40265	0.08081
v3	0.09641	0.00682	0.05495	-0.01914	0.47780	0.10277
v4	-0.11663	-0.05509	-0.03094	0.03728	-0.46649	0.01808
v5	-0.04553	-0.01238	-0.04833	-0.07233	0.61543	0.20552
v6	-0.08636	-0.01439	-0.06656	0.02355	-0.46232	-0.31944
v7	0.14359	0.06969	0.00728	-0.05378	0.16827	0.56071
v8	0.08314	-0.00111	-0.05803	0.76925	-0.03978	-0.05132
v9	0.07557	-0.05906	-0.07770	-0.13306	0.42890	0.23871
v10	0.57267	-0.03045	-0.04830	-0.05633	-0.17219	0.28815
v11	-0.31326	-0.02819	0.13644	0.03710	-0.25229	0.15193
v12	0.49136	0.03294	-0.05545	-0.00148	0.22754	-0.01203
v13	-0.52416	0.00459	0.01501	0.06479	-0.12114	0.08136
v14	0.52702	-0.02821	-0.11319	-0.03876	0.20102	-0.04385
v15	-0.57422	-0.03195	-0.00977	0.04013	-0.12950	-0.11539
v16	0.74723	0.04643	0.01747	-0.07248	-0.15690	0.25518
v17	-0.09116	0.01608	0.06865	0.17492	0.06661	0.12423
v18	0.62164	-0.08290	-0.21856	-0.08192	0.04503	-0.10976
v77	0.14314	-0.17481	-0.66333	0.02141	0.01425	-0.00539
v78	0.36439	-0.15533	-0.56304	-0.02437	0.02137	-0.02758
v89	-0.02642	0.27291	-0.02005	-0.01702	0.02089	0.02009
v90	0.00958	0.91072	-0.00659	-0.04595	-0.04422	0.00449
v91	0.06363	0.72827	-0.07198	0.07065	0.01493	-0.04860
v92	0.00710	0.09613	-0.75649	-0.01540	0.01340	0.07870
v93	-0.09053	0.16355	-0.83787	-0.08265	-0.00783	0.10853
v94	-0.04979	0.11780	-0.75004	-0.02725	0.00339	-0.04321

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5	FACTOR 6
FACTOR 1	1.00000	-0.08344	-0.45573	-0.37644	0.43141	0.31666
FACTOR 2	-0.08344	1.00000	-0.15699	0.00411	0.01938	0.05017
FACTOR 3	-0.45573	-0.15699	1.00000	0.33505	-0.31014	-0.00108
FACTOR 4	-0.37644	0.00411	0.33505	1.00000	-0.34625	-0.18899
FACTOR 5	0.43141	0.01938	-0.31014	-0.34625	1.00000	0.23743
FACTOR 6	0.31666	0.05017	-0.00108	-0.18899	0.23743	1.00000

TABLE F.5
COMMUNALITIES, LIKERT PART B, ITEMS DEALING
WITH MEN'S ABILITIES

VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
V19	0.41215	1	7.89220	39.5	39.5
V20	0.50237	2	4.20060	21.0	60.5
V21	0.39282	3	1.13449	5.7	66.1
V22	0.51570	4	0.98246	4.9	71.0
V23	0.42265	5	0.70126	3.5	74.6
V24	0.35499	6	0.62903	3.1	77.7
V25	0.22474	7	0.55713	2.8	80.5
V26	0.49016	8	0.50739	2.5	83.0
V27	0.48525	9	0.46668	2.3	85.4
V28	0.44673	10	0.42441	2.1	87.5
V29	0.73542	11	0.40659	2.0	89.5
V30	0.73348	12	0.37757	1.9	91.4
V31	0.69315	13	0.36567	1.8	93.2
V32	0.85733	14	0.30275	1.5	94.7
V33	0.86913	15	0.25420	1.3	96.0
V34	0.85802	16	0.24394	1.2	97.2
V35	0.67317	17	0.20383	1.0	98.3
V36	0.60256	18	0.15143	0.8	99.0
V37	0.79379	19	0.11630	0.6	99.6
V38	0.77331	20	0.08200	0.4	100.0

CONVERGENCE REQUIRED 6 ITERATIONS

TABLE F.6
COMMUNALITIES, LIKERT PART B, ITEMS DEALING
WITH WOMEN'S ABILITIES

VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
V39	0.35915	1	7.36701	36.8	36.8
V40	0.58039	2	3.99462	20.0	56.8
V41	0.53580	3	1.52490	7.6	64.4
V42	0.49654	4	0.96270	4.8	69.2
V43	0.50386	5	0.74007	3.7	72.9
V44	0.49763	6	0.66218	3.3	76.3
V45	0.51826	7	0.54649	2.7	79.0
V46	0.71360	8	0.47967	2.4	81.4
V47	0.71841	9	0.45223	2.3	83.7
V48	0.51752	10	0.40900	2.0	85.7
V49	0.37513	11	0.40044	2.0	87.7
V50	0.53832	12	0.37852	1.9	89.6
V51	0.58317	13	0.37180	1.9	91.5
V52	0.68506	14	0.32963	1.6	93.1
V53	0.78368	15	0.31643	1.6	94.7
V54	0.71043	16	0.29323	1.5	96.1
V55	0.63559	17	0.23494	1.2	97.3
V56	0.63691	18	0.21812	1.1	98.4
V57	0.71589	19	0.17117	0.9	99.3
V58	0.56603	20	0.14633	0.7	100.0

CONVERGENCE REQUIRED 8 ITERATIONS

TABLE F.7

COMMUNALITIES, MULTIPLE CHOICE PART B, ITEMS DEALING
WITH MEN'S ABILITIES

N:	VARIABLE	EST COMMUNALITY	FACTOR		EIGENVALUE	PCT OF VAR	CUM PCT
			1	2			
1	V19	0.40089	1		8.30503	41.5	41.5
2	V20	0.41156	2		1.55724	7.8	49.3
3	V21	0.35605	3		1.14958	5.7	55.1
4	V22	0.38224	4		1.09278	5.5	60.5
5	V23	0.39194	5		0.88558	4.4	65.0
6	V24	0.44526	6		0.72910	3.6	68.6
7	V25	0.35206	7		0.69439	3.5	72.1
8	V26	0.54800	8		0.62938	3.1	75.2
9	V27	0.49198	9		0.57701	2.9	78.1
10	V28	0.54232	10		0.56462	2.8	80.9
11	V29	0.39104	11		0.51741	2.6	83.5
12	V30	0.48797	12		0.50044	2.5	86.0
13	V31	0.47790	13		0.45564	2.3	88.3
14	V32	0.54107	14		0.43549	2.2	90.5
15	V33	0.57446	15		0.37252	1.9	92.3
16	V34	0.54615	16		0.35701	1.8	94.1
17	V35	0.48178	17		0.32576	1.6	95.7
18	V36	0.53964	18		0.30618	1.5	97.3
19	V37	0.61241	19		0.29194	1.5	98.7
20	V38	0.58050	20		0.25284	1.3	100.0

CONVERGENCE REQUIRED 10 ITERATIONS

TABLE F.8
COMMUNALITIES, MULTIPLE CHOICE PART B, ITEMS DEALING
WITH WOMEN'S ABILITIES

VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
V39	0.43095	1	11.37409	56.9	56.9
V40	0.53052	2	1.33212	6.7	63.5
V41	0.53706	3	1.02069	5.1	68.6
V42	0.54559	4	0.81502	4.1	72.7
V43	0.62708	5	0.61960	3.1	75.8
V44	0.54787	6	0.53652	2.7	78.5
V45	0.60642	7	0.48524	2.4	80.9
V46	0.70978	8	0.44071	2.2	93.1
V47	0.71363	9	0.40019	2.0	85.1
V48	0.64807	10	0.37308	1.9	87.0
V49	0.52612	11	0.35416	1.8	88.8
V50	0.58994	12	0.33634	1.7	90.4
V51	0.66556	13	0.32133	1.6	92.0
V52	0.68749	14	0.29085	1.5	93.5
V53	0.76192	15	0.26394	1.3	94.8
V54	0.73302	16	0.24850	1.2	96.1
V55	0.68646	17	0.22627	1.1	97.2
V56	0.66879	18	0.20938	1.0	98.2
V57	0.73736	19	0.19416	1.0	99.2
V58	0.63191	20	0.15770	0.6	100.0

CONVERGENCE REQUIRED 7 ITERATIONS

TABLE F.9

PATTERN MATRIX AND FACTOR CORRELATION MATRIX, LIKERT PART B,
ITEMS DEALING WITH MEN'S ABILITIES

	FACTOR 1	FACTOR 2	FACTOR 3
V19	-0.05716	-0.05339	0.75269
V20	0.01224	0.12474	0.71623
V21	0.11833	0.56643	0.10044
V22	-0.00991	0.35403	0.50753
V23	0.01669	0.54892	0.19248
V24	-0.07223	0.50041	0.09350
V25	-0.03990	0.34235	0.03604
V26	0.01799	0.77604	-0.04527
V27	-0.02667	0.84589	-0.17260
V28	0.02576	0.50751	0.27268
V29	0.83086	-0.00821	-0.01881
V30	0.83591	-0.02245	0.03362
V31	0.82022	0.03958	0.03180
V32	0.92162	0.06742	-0.04623
V33	0.90204	0.04788	-0.01861
V34	0.91341	0.01706	0.00124
V35	0.80534	-0.01458	-0.02340
V36	0.70823	-0.17221	0.05563
V37	0.88512	0.04513	-0.05577
V38	0.87632	-0.02504	-0.00128

FACTOR CORRELATIONS

	FACTOR 1	FACTOR 2	FACTOR 3
FACTOR 1	1.00000	-0.17537	-0.14695
FACTOR 2	-0.17537	1.00000	0.56011
FACTOR 3	-0.14695	0.56011	1.00000

TABLE F.10
PATTERN MATRIX AND FACTOR CORRELATION MATRIX, LIKERT PART B,
ITEMS DEALING WITH WOMEN'S ABILITIES

	FACTOR 1	FACTOR 2	FACTOR 3
V39	-0.08442	<u>0.48365</u>	-0.10768
V40	0.00635	<u>0.75021</u>	-0.01999
V41	0.11157	<u>0.73861</u>	0.13013
V42	0.01438	<u>0.70291</u>	0.02099
V43	0.02992	<u>0.73229</u>	0.06143
V44	-0.11149	<u>0.66208</u>	-0.11324
V45	-0.05022	<u>0.69302</u>	-0.12386
V46	-0.06276	<u>0.78324</u>	0.00604
V47	-0.07433	<u>0.76295</u>	0.05402
V48	0.15320	<u>0.74410</u>	0.17002
V49	0.50264	<u>-0.15831</u>	-0.04126
V50	-0.04913	0.01769	-0.79888
V51	-0.01744	-0.01280	<u>-0.82088</u>
V52	0.68547	-0.06338	-0.21848
V53	<u>0.98519</u>	0.01543	0.02995
V54	<u>0.78782</u>	0.03118	-0.13881
V55	<u>0.34561</u>	0.03522	-0.58647
V56	<u>0.22015</u>	-0.02203	-0.71429
V57	<u>0.81539</u>	0.02197	-0.10269
V58	<u>0.16783</u>	-0.08734	-0.65263

FACTOR CORRELATIONS

	FACTOR 1	FACTOR 2	FACTOR 3
FACTOR 1	1.00000	-0.30841	-0.48262
FACTOR 2	-0.30841	1.00000	0.16508
FACTOR 3	-0.48262	0.16508	1.00000

TABLE F.11
PATTERN MATRIX AND FACTOR CORRELATION MATRIX, MULTIPLE CHOICE PART B,
ITEMS DEALING WITH MEN'S ABILITIES

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4
V19	-0.03793	0.64356	0.11654	-0.02494
V20	0.05351	0.49371	0.23419	0.00412
V21	-0.12706	0.11028	0.02735	0.65174
V22	-0.01551	0.43695	0.29231	0.07223
V23	0.05519	0.26425	0.29974	0.21303
V24	-0.02872	0.12585	0.65643	0.01189
V25	0.06010	0.02206	0.59591	-0.00007
V26	0.28566	-0.06145	0.57894	0.07134
V27	0.30934	-0.07916	0.29938	0.30126
V28	0.29584	0.35451	0.20519	0.06489
V29	0.19690	0.58670	-0.20093	0.13931
V30	0.36634	0.13167	-0.01613	0.37478
V31	0.25047	0.27030	0.13870	0.18363
V32	0.55556	0.29458	0.06182	-0.05033
V33	0.78256	0.16173	0.03425	-0.16528
V34	0.67973	-0.04621	0.05718	0.09757
V35	0.46594	-0.08113	0.14565	0.25616
V36	0.18587	-0.10679	0.02668	0.72962
V37	0.67581	-0.03931	0.11921	0.08607
V38	0.46247	0.11884	0.01202	0.34407
FACTOR CORRELATIONS				
FACTOR 1	1.00000	0.42635	0.51151	0.52684
FACTOR 2	0.42635	1.00000	0.43965	0.31929
FACTOR 3	0.51151	0.43965	1.00000	0.40041
FACTOR 4	0.52684	0.31929	1.00000	1.00000

TABLE F.12
PATTERN MATRIX AND FACTOR CORRELATION MATRIX MULTIPLE CHOICE PART B,
ITEMS DEALING WITH WOMEN'S ABILITIES

	FACTOR 1	FACTOR 2	FACTOR 3
V39	-0.07426	<u>0.75849</u>	-0.11819
V40	0.10749	<u>0.66919</u>	0.07551
V41	0.28954	<u>0.32618</u>	<u>0.31766</u> <i>communicate</i>
V42	0.23315	<u>0.57325</u>	0.02501
V43	<u>0.52455</u>	<u>0.30765</u>	0.03750
V44	<u>0.5223852</u>	<u>0.28505</u>	-0.18293
V45	<u>0.5274550</u>	<u>0.27309</u>	-0.17652
V46	<u>0.76081</u>	<u>0.13456</u>	-0.12591
V47	<u>0.71955</u>	<u>0.09053</u>	0.07790
V48	<u>0.44844</u>	<u>0.22286</u>	<u>0.32497</u> <i>field pack</i>
V49	<u>0.00170</u>	<u>0.11349</u>	<u>0.13292</u>
V50	<u>0.52809</u>	<u>0.05650</u>	<u>0.36083</u> <i>driving</i>
V51	<u>0.44968</u>	<u>0.18377</u>	<u>0.40334</u> <i>15-mile walk</i>
V52	<u>0.73934</u>	<u>0.06727</u>	0.06238
V53	<u>0.92370</u>	<u>-0.01978</u>	-0.18677
V54	<u>0.922721</u>	<u>-0.07447</u>	-0.06551
V55	<u>0.92650</u>	<u>-0.01980</u>	0.06367
V56	<u>0.65828</u>	<u>-0.01145</u>	<u>0.32358</u> <i>bed spread</i>
V57	<u>0.95804</u>	<u>-0.10111</u>	-0.10179
V58	<u>0.55246</u>	<u>0.10093</u>	<u>0.34851</u> <i>machining</i>

FACTOR CORRELATIONS

	FACTOR 1	FACTOR 2	FACTOR 3
FACTOR 1	1.00000	0.67588	0.37628
FACTOR 2	0.67588	1.00000	0.19031
FACTOR 3	0.37628	0.19031	1.00000

FACTOR STRUCTURE

TABLE F.13
COMMUNALITIES, LIKERT PART C

2 VARIABLE EST COMMUNALITY

		FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
	V59	1	7.97116	36.2	36.2
3	V60	2	1.67243	7.6	43.8
	V61	3	1.43832	6.5	50.4
	V62	4	1.16764	5.3	55.7
4	V63	5	0.94947	4.3	60.0
	V64	6	0.90252	4.1	64.1
	V65	7	0.88397	4.0	68.1
5	V66	8	0.77644	3.5	71.6
	V67	9	0.75333	3.4	75.1
	V68	10	0.67944	3.1	78.2
6	V69	11	0.59787	2.7	80.9
	V70	12	0.55911	2.5	83.4
	V71	13	0.55216	2.5	85.9
7	V72	14	0.50720	2.3	88.2
	V73	15	0.47743	2.2	90.4
	V74	16	0.39487	1.8	92.2
8	V75	17	0.38408	1.7	93.9
	V76	18	0.30989	1.4	95.4
	V77	19	0.30006	1.4	96.7
9	V78	20	0.28171	1.3	98.0
	V79	21	0.22882	1.0	99.0
	V80	22	0.21202	1.0	100.0

CONVERGENCE REQUIRED 11 ITERATIONS

TABLE F.14
COMMUNALITIES, MULTIPLE CHOICE PART C

2:	VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
	V59	0.30726	1	7.35934	33.5	33.5
	V60	0.51526	2	1.51794	6.9	40.4
	V61	0.42204	3	1.32710	6.0	46.4
	V62	0.21353	4	1.13175	5.1	51.5
	V63	0.34799	5	1.00126	4.6	56.1
	V64	0.34594	6	0.94312	4.3	60.4
	V65	0.21971	7	0.86586	3.9	64.3
	V66	0.45343	8	0.81193	3.7	68.0
	V67	0.02255	9	0.73790	3.4	71.3
	V68	0.55625	10	0.69493	3.2	74.5
	V69	0.38974	11	0.66909	3.0	77.5
	V70	0.30231	12	0.63357	2.9	80.4
	V71	0.50307	13	0.57061	2.6	83.0
	V72	0.15453	14	0.56653	2.6	85.6
	V73	0.13620	15	0.52568	2.4	88.0
	V74	0.46843	16	0.48870	2.2	90.2
	V75	0.52792	17	0.43636	2.0	92.2
	V76	0.36208	18	0.41341	1.9	94.1
	V77	0.56986	19	0.38225	1.7	95.8
	V78	0.67367	20	0.35471	1.6	97.4
	V79	0.49785	21	0.34014	1.5	99.0
	V80	0.24459	22	0.22775	1.0	100.0

CONVERGENCE REQUIRED 12 ITERATIONS

TABLE F. 15
PATTERN MATRIX AND FACTOR CORRELATION MATRIX,
LIKERT PART C

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4
V59	-0.29903	0.16234	0.12991	-0.04437
V60	0.01427	-0.07645	-0.35918	<u>0.59494</u>
V61	-0.44496	-0.00006	0.37979	0.19949
V62	0.00114	-0.06091	0.53388	-0.04334
V63	0.10568	0.01487	0.68244	-0.11555
V64	-0.39868	0.28823	0.00344	-0.23926
V65	0.63012	0.04893	0.16464	0.00167
V66	0.62224	0.22587	0.01009	0.17826
V67	0.21599	0.37413	-0.01006	0.00421
V68	0.00533	0.10353	0.02459	0.30660
V69	0.44925	0.27263	-0.01156	0.34864
V70	0.03198	0.17303	-0.02112	0.38622
V71	0.31627	0.22719	-0.11505	<u>0.46473</u>
V72	-0.09672	0.58697	-0.01986	0.04103
V73	0.02328	0.32296	-0.14620	<u>0.34963</u>
V74	0.58522	0.06646	-0.11139	0.10923
V75	0.62163	-0.09316	-0.01192	0.32708
V76	-0.35296	0.17401	0.11028	-0.20420
V77	0.25628	-0.02635	-0.05616	<u>0.62131</u>
V78	0.22494	-0.20365	-0.20149	<u>0.63556</u>
V79	0.74225	-0.06331	-0.04886	0.07265
V80	<u>-0.39344</u>	-0.06147	0.23392	0.08341

FACTOR CORRELATIONS				
	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4
FACTOR 1	1.00000	0.05834	-0.39484	0.50897
FACTOR 2	0.05834	1.00000	-0.02007	0.14341
FACTOR 3	-0.39484	-0.02007	1.00000	-0.33772
FACTOR 4	0.50897	0.14341	-0.33772	1.00000

TABLE F.16
PATTERN MATRIX AND FACTOR CORRELATION MATRIX,
MULTIPLE CHOICE PART C

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5
c_5	-0.12674	<u>0.37922</u>	0.19397	0.10189	-0.16808
v_{60}	-0.21407	<u>0.52590</u>	0.32402	0.00725	0.01258
v_{61}	-0.02710	<u>0.51821</u>	-0.00778	0.02517	-0.23095
c_6	-0.04072	<u>0.51193</u>	-0.08824	-0.09735	0.17706
v_{62}	0.10827	<u>0.62434</u>	0.02169	-0.16571	0.01742
v_{63}	0.14330	<u>-0.03428</u>	0.09301	0.22139	<u>0.40569</u>
c_7	<u>v_{64}</u>	0.05241	0.03897	0.10048	<u>0.47653</u>
v_{65}	0.06944	-0.00852	0.02129	0.17344	-0.06998
v_{66}	<u>0.63842</u>	-0.01993	0.13001	0.02457	<u>0.07290</u>
c_8	<u>v_{67}</u>	0.02822	0.12037	0.02450	-0.09650
v_{68}	<u>0.86842</u>	-0.04380	0.14739	<u>0.48386</u>	0.15790
v_{69}	<u>0.09146</u>	-0.08790	-0.08609	<u>0.51720</u>	-0.04381
c_9	<u>v_{70}</u>	0.14985	0.03366	<u>0.72050</u>	0.13211
v_{71}	-0.05381	-0.13479	-0.05217	<u>0.36001</u>	
v_{72}	0.02529	-0.03508	0.02023	0.06675	
c_{10}	<u>v_{73}</u>	-0.11597	0.09477	0.20646	-0.13972
v_{74}	0.28594	-0.29080	-0.13541	0.09625	0.16816
v_{75}	<u>-0.63879</u>	-0.08315	0.21384	0.00917	-0.16024
c_{11}	<u>v_{76}</u>	<u>0.53043</u>	-0.02968	-0.05089	0.05804
v_{77}	-0.15271	0.11800	<u>0.44648</u>	-0.21251	-0.29055
v_{78}	-0.16449	0.18165	<u>0.63994</u>	-0.12878	-0.30693
v_{79}	<u>-0.51328</u>	0.01173	-0.01976	0.00573	<u>-0.33639</u>
c_{12}	<u>v_{80}</u>	0.18562	-0.28478	0.21968	<u>0.24668</u>

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5
FACTOR 1	1.00000	-0.46014	-0.21653	0.55924	0.53406
FACTOR 2	-0.46014	1.00000	0.15890	-0.44604	-0.31318
FACTOR 3	-0.21653	0.15890	1.00000	-0.07948	0.06173
FACTOR 4	0.55924	-0.44604	-0.07948	1.00000	0.31798
FACTOR 5	0.53406	-0.31318	0.06173	0.31798	1.00000

TABLE F.17
COMMUNALITIES, LIKERT PART D

FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
1	3.08423	38.6	38.6
2	1.30239	16.3	54.8
3	1.00381	12.5	67.4
4	0.95397	11.9	79.3
5	0.88156	11.0	90.3
6	0.30320	3.8	94.1
7	0.25896	3.2	97.4
8	0.21185	2.6	100.0

AFTER 11 ITERATIONS COMMUNALITY OF ONE OR MORE VARIABLES EXCEEDED 1.0, PA2 FACTORING TERMINATED

TABLE F.18
COMMUNALITIES, MULTIPLE CHOICE PART D

VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
V81	0.32310	1	2.65520	33.02	33.02
V82	0.51365	2	1.37304	17.2	50.4
V83	0.16861	3	1.12062	14.0	64.4
V84	0.33154	4	0.97681	12.2	76.6
V85	0.51232	5	0.92930	11.6	88.2
V86	0.55785	6	0.43393	5.4	93.6
V87	0.36744	7	0.28421	3.6	97.2
V88	0.54604	8	0.22686	2.8	100.0

AFTER 19 ITERATIONS COMMUNALITY OF ONE OR MORE VARIABLES EXCEEDED 1.0. PA2 FACTORING TERMINATED

TABLE F.19
PATTERN MATRIX AND FACTOR CORRELATION MATRIX,
LIKERT PART D

FACTOR PATTERN		FACTOR 1	FACTOR 2	FACTOR 3
e_5	V81	-0.15555	-0.00868	<u>0.83446</u>
e_6	V82	0.27900	0.05918	<u>0.61663</u>
e_7	V83	0.11625	-0.11651	<u>0.26636</u>
e_8	V84	0.47973	0.00824	0.21569
e_9	V85	-0.14515	-1.04909	0.00205
e_{10}	V86	0.22903	-0.59630	0.03127
e_{11}	V87	0.35763	-0.25250	0.02301
e_{12}	V88	0.94708	-0.00376	-0.07625
FACTOR CORRELATIONS		FACTOR 1	FACTOR 2	FACTOR 3
e_1	FACTOR 1	1.00000	-0.40563	0.41476
e_2	FACTOR 2	-0.40963	1.00000	-0.26939
e_3	FACTOR 3	0.41476	-0.26939	1.00000

TABLE F.20
PATTERN MATRIX AND FACTOR CORRELATION MATRIX,
MULTIPLE CHOICE PART D

2 3 4 5 6 7 8 9 10 11 12		1 2 3			
2 3 4 5 6 7 8 9 10 11 12		FACTOR PATTERN	FACTOR 1	FACTOR 2	FACTOR 3
5	V81		0.00965	0.09757	0.46136
6	V82		0.57570	0.08218	0.27118
7	V83		0.32900	-0.07640	0.23444
8	V84		0.54038	0.03602	0.04224
9	V85		-0.21307	-1.00869	0.13771
10	V86		0.29288	-0.63542	-0.11629
11	V87		0.25049	-0.16064	0.14726
12	V88		0.89239	-0.06464	-0.14119
2 3 4 5 6 7 8 9 10 11 12		FACTOR CORRELATIONS			
11	FACTOR 1	1.00000	-0.28451	0.36365	
12	FACTOR 2	-0.28451	1.00000	-0.20594	
13	FACTOR 3	0.36365	-0.20594	1.00000	

TABLE F.21
COMMUNALITIES, LIKERT PART E

2 VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
V39	0.62986.	1	3.17559	52.9	52.9
V90	0.70432	2	1.59506	26.6	79.5
V91	0.50532	3	0.51631	8.6	88.1
V92	0.62204	4	0.31839	5.3	93.4
V93	0.68501	5	0.20410	3.4	96.8
V94	0.55546	6	0.19051	3.2	100.0

CONVERGENCE REQUIRED 17 ITERATIONS

TABLE F.22
COMMUNALITIES, MULTIPLE CHOICE PART E

2 VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
V89	0.53902	1	3.01577	50.3	50.3
V90	0.63770	2	1.67098	27.8	78.1
V91	0.50999	3	0.50666	8.4	86.6
V92	0.55159	4	0.34715	5.8	92.3
V93	0.67883	5	0.25176	4.2	96.5
V94	0.55718	6	0.20765	3.5	100.0

CONVERGENCE REQUIRED 15 ITERATIONS

TABLE F.23
PATTERN MATRIX AND FACTOR CORRELATION MATRIX,
LIKERT PART E

FACTOR PATTERN		FACTOR CORRELATIONS	
		FACTORY 1	FACTORY 2
C_5	V89	-0.03867	0.81863
C_5	V90	-0.05174	0.29346
C_5	V91	0.09893	0.66331
C_6	V92	0.93468	0.00383
C_6	V93	0.52224	-0.02679
C_7	V94	0.75986	0.02607
C_8			
C_{10}	FACTORY 1	1.00000	0.37628
C_{10}	FACTORY 2	0.37628	1.00000

TABLE F.24
PATTERN MATRIX AND FACTOR CORRELATION MATRIX,
MULTIPLE CHOICE PART E

C ₂		FACTOR PATTERN	
		FACTOR 1	FACTOR 2
C ₅	V89	-0.00512	0.77562
C ₆	V90	-0.04360	<u>0.94689</u>
C ₇	V91	0.04519	<u>0.71689</u>
C ₈	V92	0.78510	-0.01535
C ₉	V93	<u>0.93308</u>	0.01510
C ₁₀	V94	<u>0.76623</u>	0.60496
FACTOR CORRELATIONS			
C ₈			
C ₉			
		FACTOR 1	FACTOR 2
C ₁₀	FACTOR 1	1.00000	0.33161
	FACTOR 2	0.33161	1.00000
C ₁₁			

TABLE F.25
COMMUNALITIES, PART G

#:		VARIABLE	EST COMMUNALITY	FACTOR	EIGENVALUE	PCT OF VAR	CUM PCT
		V103	0.43365	1	4.27824	35.7	35.7
		V104	0.39633	2	1.55973	13.0	48.6
		V105	0.40348	3	1.33548	11.1	59.8
		V106	0.43636	4	0.94038	7.8	67.6
4		V107	0.39813	5	0.70666	5.9	73.5
		V108	0.41456	6	0.64760	5.4	78.9
		V109	0.37323	7	0.57364	4.8	83.7
		V110	0.55992	8	0.53152	4.4	88.1
		V111	0.47542	9	0.42276	3.5	91.6
		V112	0.35389	10	0.36820	3.1	94.7
		V113	0.31734	11	0.35483	3.0	97.7
		V114	0.41228	12	0.28089	2.3	100.0

CONVERGENCE REQUIRED 9 ITERATIONS

TABLE F.26
PATTERN MATRIX AND FACTOR CORRELATION MATRIX, PART G

2 FACTOR PATTERN		3		
		FACTOR 1	FACTOR 2	FACTOR 3
V103		0.11070	0.04993	0.10544
V104		-0.04133	0.54108	0.31383
V105		0.00245	0.68993	0.00489
V106		0.10544	0.02937	0.70849
V107		0.00971	0.51232	0.28728
V108		0.09294	0.74521	-0.16766
V109		0.55164	-0.04616	0.18952
V110		0.74830	0.07519	-0.06171
V111		0.52975	0.31250	-0.15058
V112		-0.50548	-0.00349	-0.08799
V113		0.47460	0.08393	0.17392
V114		-0.74893	0.11373	0.04863
3 FACTOR CORRELATIONS				
11		FACTOR 1	FACTOR 2	FACTOR 3
12	FACTOR 1	1.00000	0.40248	0.33560
13	FACTOR 2	0.40248	1.00000	0.29100
14	FACTOR 3	0.33560	0.29100	1.00000

TABLE F.27
CORRELATION MATRIX FOR LIKERT SCALES

	ALIK1	ALIK2	ALIK3	CLIK1	CLIK2	CLIK3	CLIK4	OLIK1	OLIK2	ELIK1
ALIK1	1.0000 (0) S=0.001	0.6433 (555) S=0.001	0.3949 (556) S=0.001	0.5561 (541) S=0.001	-0.0961 (558) S=0.012	0.5024 (559) S=0.001	0.5794 (552) S=0.001	0.1528 (555) S=0.001	0.4781 (556) S=0.001	0.5646 (559) S=0.001
ALIK2	0.6433 (555) S=0.001	1.0000 (0) S=0.001	0.3706 (560) S=0.001	0.5639 (542) S=0.001	-0.0897 (559) S=0.017	0.3681 (559) S=0.001	0.4072 (553) S=0.001	0.1661 (556) S=0.001	0.5062 (557) S=0.001	0.4217 (560) S=0.001
ALIK3	0.3949 (556) S=0.001	0.3706 (560) S=0.001	1.0000 (0) S=0.001	0.3427 (544) S=0.001	-0.1227 (562) S=0.002	0.2578 (562) S=0.001	0.3608 (556) S=0.001	0.0596 (559) S=0.080	0.2249 (559) S=0.001	0.2773 (563) S=0.001
CLIK1	0.5561 (541) S=0.001	0.5639 (542) S=0.001	0.3427 (544) S=0.001	1.0000 (0) S=0.001	-0.1715 (547) S=0.001	0.5682 (549) S=0.001	0.7918 (547) S=0.001	0.0897 (545) S=0.018	0.5493 (545) S=0.001	0.5621 (548) S=0.001
CLIK2	-0.0961 (558) S=0.012	-0.0897 (559) S=0.017	-0.1227 (562) S=0.002	-0.1715 (547) S=0.001	1.0000 (0) S=0.001	-0.0837 (565) S=0.023	-0.2444 (560) S=0.001	-0.0102 (562) S=0.001	-0.0421 (562) S=0.001	-0.0313 (567) S=0.001
CLIK3	0.5024 (559) S=0.001	0.3681 (559) S=0.001	0.2578 (562) S=0.001	0.5682 (549) S=0.001	-0.0837 (565) S=0.023	1.0000 (0) S=0.001	0.6402 (556) S=0.001	0.1299 (556) S=0.083	0.1299 (562) S=0.001	0.3887 (562) S=0.001
CLIK4	0.5794 (552) S=0.001	0.4072 (553) S=0.001	0.3608 (556) S=0.001	0.7818 (547) S=0.001	-0.2444 (560) S=0.001	0.6402 (559) S=0.001	1.0000 (0) S=0.001	0.0587 (556) S=0.083	0.0587 (556) S=0.001	0.4592 (556) S=0.001
OLIK1	0.1528 (555) S=0.001	0.1661 (556) S=0.001	0.0596 (559) S=0.080	0.0897 (545) S=0.018	-0.0102 (562) S=0.404	0.1299 (562) S=0.001	0.0587 (556) S=0.083	1.0000 (0) S=0.001	0.5300 (562) S=0.001	0.5300 (563) S=0.001
OLIK2	0.4781 (556) S=0.001	0.5062 (557) S=0.001	0.2249 (559) S=0.001	0.5403 (545) S=0.001	-0.0421 (562) S=0.159	0.3887 (562) S=0.001	0.4592 (556) S=0.001	0.5300 (562) S=0.001	1.0000 (0) S=0.001	0.5210 (563) S=0.001
ELIK1	0.5646 (559) S=0.001	0.4217 (560) S=0.001	0.2773 (563) S=0.001	0.5621 (548) S=0.001	-0.0313 (567) S=0.229	0.5152 (566) S=0.001	0.6124 (560) S=0.001	0.1593 (563) S=0.001	0.5210 (563) S=0.001	1.0000 (0) S=0.001
ELIK2	0.1163 (558) S=0.003	0.0649 (559) S=0.063	0.0524 (562) S=0.108	-0.0608 (547) S=0.078	0.0081 (566) S=0.424	0.0424 (565) S=0.233	-0.0309 (559) S=0.157	0.3672 (562) S=0.001	0.1065 (562) S=0.006	0.3350 (567) S=0.001

----- PEARSON CORRELATION COEFFICIENTS -----

	ALIK1	ALIK2	ALIK3	CLIK1	CLIK2	CLIK3	CLIK4	DLIK1	DLIK2	ELIK1
GALL1	0.6100 (546) S=0.001	0.4477 (547) S=0.001	0.3357 (549) S=0.001	0.6224 (536) S=0.001	-0.1345 (552) S=0.001	0.6601 (553) S=0.001	0.7147 (546) S=0.001	0.1027 (549) S=0.008	0.4761 (550) S=0.001	0.5894 (553) S=0.001
GALL2	0.2599 (554) S=0.001	0.3468 (555) S=0.001	0.1708 (557) S=0.001	0.3595 (543) S=0.001	-0.1098 (560) S=0.005	0.2735 (560) S=0.001	0.2640 (554) S=0.001	0.0658 (557) S=0.001	0.3167 (558) S=0.001	0.2480 (561) S=0.001
GALL3	0.3578 (555) S=0.001	0.4586 (556) S=0.001	0.2324 (558) S=0.001	0.4322 (544) S=0.001	-0.0598 (561) S=0.079	0.3066 (561) S=0.001	0.3020 (555) S=0.001	0.0591 (558) S=0.081	0.3996 (559) S=0.001	0.3222 (562) S=0.001
V115	0.2049 (559) S=0.001	0.2863 (560) S=0.001	0.1564 (563) S=0.001	0.5334 (548) S=0.001	-0.0209 (567) S=0.309	0.0879 (566) S=0.018	0.3841 (560) S=0.001	0.0929 (563) S=0.014	0.2556 (563) S=0.001	0.2482 (568) S=0.001
V116	0.1393 (560) S=0.001	0.1491 (561) S=0.001	0.0968 (564) S=0.011	0.2536 (549) S=0.001	0.0261 (568) S=0.267	0.0641 (567) S=0.064	0.1814 (561) S=0.001	0.0221 (564) S=0.301	0.1474 (564) S=0.001	0.1522 (569) S=0.001
V117	-0.0191 (557) S=0.326	0.0532 (558) S=0.105	0.0814 (561) S=0.027	0.1748 (546) S=0.001	-0.0727 (565) S=0.042	0.0157 (564) S=0.355	0.1028 (558) S=0.008	0.0174 (561) S=0.341	0.0793 (561) S=0.030	0.0138 (566) S=0.372
V118	-0.0091 (552) S=0.415	0.0433 (553) S=0.155	0.0694 (556) S=0.051	0.1596 (541) S=0.001	-0.0323 (560) S=0.223	0.0534 (559) S=0.104	0.1086 (553) S=0.005	0.0066 (556) S=0.439	0.0678 (556) S=0.055	0.0418 (561) S=0.161
V120	0.1970 (557) S=0.201	0.2424 (558) S=0.001	0.1627 (561) S=0.001	0.4389 (546) S=0.001	-0.0357 (565) S=0.199	0.0799 (564) S=0.029	0.3003 (558) S=0.001	0.0630 (561) S=0.068	0.2105 (561) S=0.107	0.1983 (566) S=0.001
V121	-0.0288 (559) S=0.248	-0.0608 (560) S=0.075	-0.0636 (563) S=0.066	-0.2377 (548) S=0.001	0.0171 (567) S=0.342	0.0216 (566) S=0.304	-0.1385 (560) S=0.001	-0.0525 (563) S=0.001	-0.0695 (563) S=0.050	-0.0561 (568) S=0.091
V122	-0.0654 (559) S=0.061	0.0154 (560) S=0.358	0.0098 (563) S=0.409	0.0552 (548) S=0.099	-0.0195 (567) S=0.322	-0.0106 (566) S=0.401	0.0274 (561) S=0.259	0.0168 (563) S=0.346	-0.0061 (563) S=0.442	0.0060 (568) S=0.443
V123	-0.0835 (558) S=0.024	0.0495 (559) S=0.121	-0.0082 (562) S=0.423	0.1417 (547) S=0.001	-0.2316 (566) S=0.001	0.1237 (565) S=0.002	0.1208 (559) S=0.002	-0.0221 (562) S=0.300	0.0621 (562) S=0.071	-0.0320 (567) S=0.224

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	ALIK1	ALIK2	ALIK3	CLIK1	CLIK2	CLIK3	CLIK4	CLIK5	CLIK6	CLIK7	CLIK8	CLIK9
V124	-0.0985 (5571 S=0.010	0.0169 (5591 S=0.353	-0.0346 S=0.207	0.1426 (5611 S=0.001	-0.2195 (5641 S=0.001	0.1315 (5651 S=0.001	0.1200 (5681 S=0.002	-0.0123 (5691 S=0.386	0.0350 (5691 S=0.204	-0.0310 (5691 S=0.231		
V126	-0.1219 (5591 S=0.002	-0.2023 (5601 S=0.001	-0.2224 S=0.001	-0.1649 S=0.001	-0.1143 S=0.003	0.0084 S=0.421	-0.0855 S=0.022	-0.0701 S=0.048	-0.0988 S=0.010	-0.0654 S=0.060		
V128	0.0613 (5581 S=0.074	0.0279 S=0.255	0.0653 S=0.061	-0.0146 S=0.367	-0.0276 S=0.257	-0.1166 S=0.003	-0.0351 S=0.204	0.0438 S=0.150	-0.0051 S=0.452	-0.0284 S=0.250		
V130	-0.1527 (5541 S=0.001	-0.0470 S=0.135	-0.0369 S=0.011	0.0850 S=0.024	-0.2114 S=0.001	0.0816 S=0.027	0.0705 S=0.049	-0.0686 S=0.053	-0.0288 S=0.249	-0.0726 S=0.043		
RACE	0.1107 (5541 S=0.005	-0.0110 S=0.398	-0.0126 S=0.383	-0.0354 S=0.205	0.1232 S=0.002	-0.0062 S=0.442	-0.0463 S=0.138	0.0798 S=0.030	0.0087 S=0.419	0.0358 (5631 S=0.198		
V132	0.1368 (5531 S=0.001	0.2152 S=0.001	0.1953 S=0.001	0.2010 S=0.001	0.0792 S=0.030	0.0209 S=0.311	0.1019 S=0.008	0.0505 S=0.117	0.1457 S=0.001	0.0789 (5621 S=0.031		

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	ELIK2	GALL1	GALL2	GALL3	V115	V116	V117	V118	V120	V121
ALIK1	0.1163 (558) S=0.003	0.6100 (546) S=0.001	0.2599 (556) S=0.001	0.3578 (555) S=0.001	0.2049 (559) S=0.001	0.1393 (560) S=0.001	-0.0191 (557) S=0.326	-0.0091 (552) S=0.415	0.1970 (557) S=0.001	-0.0288 (559) S=0.248
ALIK2	0.0649 (559) S=0.003	0.4477 (547) S=0.001	0.3468 (555) S=0.001	0.4586 (556) S=0.001	0.2863 (560) S=0.001	0.1491 (561) S=0.001	0.0532 (558) S=0.105	0.0433 (553) S=0.155	0.2424 (558) S=0.001	-0.0668 (560) S=0.075
ALIK3	0.0524 (542) S=0.108	0.3357 (549) S=0.001	0.1708 (557) S=0.001	0.2324 (558) S=0.001	0.1564 (563) S=0.001	0.0968 (564) S=0.011	0.0814 (561) S=0.027	0.0694 (558) S=0.051	0.1627 (561) S=0.001	-0.0636 (563) S=0.066
CLIK1	-0.0603 (547) S=0.076	0.6224 (536) S=0.001	0.3595 (543) S=0.001	0.4322 (544) S=0.001	0.5334 (548) S=0.001	0.2536 (549) S=0.001	0.1748 (546) S=0.001	0.1596 (541) S=0.001	0.4389 (546) S=0.001	-0.2377 (548) S=0.001
CLIK2	0.0081 (566) S=0.424	-0.1345 (552) S=0.001	-0.1098 (560) S=0.005	-0.0598 (561) S=0.079	-0.0209 (567) S=0.309	0.0261 (568) S=0.267	-0.0727 (565) S=0.042	-0.0323 (560) S=0.223	-0.0357 (561) S=0.199	0.0171 (567) S=0.342
CLIK3	0.0424 (565) S=0.157	0.6601 (553) S=0.001	0.2735 (560) S=0.001	0.3066 (561) S=0.001	0.0879 (566) S=0.018	0.0641 (567) S=0.064	0.0157 (564) S=0.355	0.0534 (559) S=0.104	0.0799 (564) S=0.029	0.0216 (566) S=0.304
CLIK4	-0.0309 (559) S=0.233	0.7147 (546) S=0.001	0.2640 (554) S=0.001	0.3020 (555) S=0.001	0.3841 (560) S=0.001	0.1814 (561) S=0.001	0.1028 (558) S=0.008	0.1086 (553) S=0.005	0.3003 (558) S=0.001	-0.1385 (560) S=0.107
DLIK1	0.3672 (562) S=0.001	0.1027 (549) S=0.008	0.0658 (557) S=0.060	0.0591 (558) S=0.081	0.0929 (563) S=0.001	0.0221 (564) S=0.014	0.0174 (561) S=0.301	0.0064 (556) S=0.341	0.0630 (561) S=0.055	-0.0525 (563) S=0.050
DLIK2	0.1065 (562) S=0.006	0.4761 (550) S=0.001	0.3167 (558) S=0.001	0.3996 (559) S=0.001	0.2556 (563) S=0.001	0.1474 (564) S=0.001	0.0793 (561) S=0.030	0.0678 (556) S=0.055	0.2105 (561) S=0.001	-0.0695 (563) S=0.050
ELIK1	0.3350 (567) S=0.001	0.5894 (553) S=0.001	0.2480 (561) S=0.001	0.3222 (558) S=0.001	0.2482 (562) S=0.001	0.1522 (563) S=0.001	0.0138 (561) S=0.372	0.0418 (556) S=0.161	0.1983 (561) S=0.001	-0.0561 (568) S=0.091
ELIK2	1.0000 (501) S=0.001	0.0213 (552) S=0.309	-0.0499 (560) S=0.119	-0.0606 (561) S=0.076	-0.0656 (567) S=0.059	-0.0282 (568) S=0.251	-0.0204 (565) S=0.314	0.0032 (560) S=0.470	-0.0397 (565) S=0.173	0.0569 (567) S=0.088

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	GALL2	GALL1	GALL2	GALL3	V115	V116	V117	V118	V120	V121
GALL1	0.0213 552) S=0.309	1.0000 01 S=0.001	0.4176 553) S=0.001	0.4108 553) S=0.001	0.2162 553) S=0.001	0.0932 554) S=0.014	0.0437 552) S=0.095	0.0586 547) S=0.001	0.1744 521) S=0.001	-0.0348 554) S=0.207
GALL2	-0.0499 560) S=0.119	0.4176 553) S=0.001	1.0000 01 S=0.001	0.3526 561) S=0.001	0.0912 561) S=0.015	0.0335 562) S=0.214	0.0353 559) S=0.202	0.0599 554) S=0.080	0.0121 559) S=0.388	0.0275 561) S=0.258
GALL3	-0.0606 561) S=0.076	0.4108 553) S=0.001	0.3526 01 S=0.001	1.0000 01 S=0.001	0.1619 562) S=0.001	0.0584 563) S=0.002	0.1240 560) S=0.002	-0.0187 555) S=0.330	0.1639 560) S=0.001	0.0305 562) S=0.235
V115	-0.0656 567) S=0.059	0.2162 553) S=0.001	0.0912 01 S=0.015	0.1619 562) S=0.001	1.0000 01 S=0.001	0.4204 569) S=0.001	0.3425 566) S=0.001	0.2671 561) S=0.001	0.7250 566) S=0.001	-0.4094 566) S=0.001
V116	-0.0282 569) S=0.251	0.0932 554) S=0.014	0.0335 562) S=0.214	0.0584 563) S=0.083	0.4204 569) S=0.001	1.0000 01 S=0.001	0.2392 567) S=0.001	0.1577 562) S=0.001	0.3955 567) S=0.001	-0.0515 569) S=0.110
V117	-0.0204 565) S=0.314	0.0437 552) S=0.152	0.0353 560) S=0.202	0.1240 560) S=0.002	0.3425 566) S=0.001	0.2392 567) S=0.001	1.0000 01 S=0.001	0.5540 560) S=0.001	0.4124 565) S=0.001	-0.1373 567) S=0.001
V118	0.0032 560) S=0.470	0.0596 547) S=0.085	0.0599 554) S=0.080	0.0187 555) S=0.330	-0.0187 561) S=0.001	0.2671 562) S=0.001	0.1577 562) S=0.001	0.5540 560) S=0.001	1.0000 01 S=0.001	0.3296 560) S=0.001
V120	-0.0397 565) S=0.173	0.1744 552) S=0.001	0.0121 559) S=0.388	0.1639 560) S=0.001	0.7250 566) S=0.001	0.3955 567) S=0.001	0.4124 565) S=0.001	0.3296 560) S=0.001	1.0000 01 S=0.001	-0.3379 567) S=0.001
V121	0.0569 567) S=0.098	-0.0348 554) S=0.207	0.0275 561) S=0.258	0.0305 562) S=0.001	-0.4094 568) S=0.110	-0.0515 569) S=0.001	-0.1373 567) S=0.009	-0.0997 567) S=0.001	-0.3379 567) S=0.001	1.0000 01 S=0.001
V122	-0.0139 567) S=0.370	-0.0400 554) S=0.174	-0.0567 561) S=0.090	-0.0786 562) S=0.031	0.0627 563) S=0.068	0.1236 569) S=0.002	0.1707 567) S=0.001	0.1954 567) S=0.001	0.1197 567) S=0.002	-0.0740 567) S=0.039
V123	-0.0694 566) S=0.049	0.0769 553) S=0.035	0.1562 560) S=0.001	0.1439 561) S=0.001	-0.0038 568) S=0.464	-0.0432 567) S=0.152	-0.0132 566) S=0.377	-0.0680 562) S=0.054	-0.1250 566) S=0.001	0.0613 568) S=0.072

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	ELIK2	GALL1	GALL2	GALL3	V115	V116	V117	V118	V120	V121
V124	-0.0682 5651 S=0.053	0.0663 5521 S=0.060	0.1393 5591 S=0.001	0.1439 5601 S=0.496	0.0004 5661 S=0.001	-0.0627 5671 S=0.308	-0.0211 5651 S=0.001	-0.0736 5601 S=0.002	-0.1236 5651 S=0.127	0.0481 5670 S=0.127
V126	-0.0061 5671 S=0.442	-0.0325 5531 S=0.222	0.0173 5611 S=0.341	-0.0710 5621 S=0.046	-0.3677 5681 S=0.001	-0.1652 5691 S=0.003	-0.1159 5661 S=0.001	-0.1526 5611 S=0.001	-0.3242 5661 S=0.001	0.1761 5681 S=0.001
V128	-0.0057 5661 S=0.446	-0.0504 5521 S=0.119	-0.0637 5601 S=0.151	-0.0099 5611 S=0.407	0.0911 5671 S=0.009	0.0293 5681 S=0.243	0.0573 5651 S=0.087	0.0158 5601 S=0.355	0.0847 5651 S=0.022	-0.0640 5671 S=0.148
V130	-0.0677 5621 S=0.355	0.0393 5681 S=0.179	0.1566 5561 S=0.001	0.0977 5571 S=0.011	-0.0948 5531 S=0.012	-0.1241 5641 S=0.002	-0.0342 5611 S=0.209	-0.0805 5561 S=0.029	-0.2016 5611 S=0.001	0.0694 5631 S=0.050
RACE	0.1277 5611 S=0.001	-0.0030 5481 S=0.472	-0.1144 5561 S=0.003	-0.0641 5571 S=0.065	-0.0127 5631 S=0.392	-0.0010 5601 S=0.490	-0.0865 5631 S=0.020	-0.0316 5551 S=0.021	-0.0497 5601 S=0.120	-0.0186 5621 S=0.330
V132	-0.0448 5601 S=0.145	0.0859 5461 S=0.022	0.0727 5561 S=0.044	0.1193 5551 S=0.002	0.3872 5611 S=0.001	0.1985 5621 S=0.001	0.1723 5591 S=0.001	0.1852 5541 S=0.001	0.2982 5591 S=0.001	-0.1741 5611 S=0.001

(COEFFICIENT / (CASES) / SIGNIFICANCE)

(A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	V122	V123	V124	V126	V128	V130	RACE	V132
ALIK1	-0.0654 (559) S=0.061	-0.0835 (559) S=0.024	-0.0985 (557) S=0.010	-0.1219 (559) S=0.002	0.0613 (559) S=0.074	-0.1527 (554) S=0.001	0.1107 (554) S=0.005	0.1366 (553) S=0.001
ALIK2	0.0154 (560) S=0.358	0.0495 (559) S=0.121	0.0160 (558) S=0.353	-0.2023 (560) S=0.001	0.0279 (559) S=0.255	-0.0470 (559) S=0.135	-0.0110 (555) S=0.398	0.2152 (553) S=0.001
ALIK3	0.0098 (563) S=0.409	-0.0082 (562) S=0.423	-0.0346 (561) S=0.207	-0.2224 (563) S=0.001	0.0653 (562) S=0.061	-0.0969 (558) S=0.011	-0.0126 (557) S=0.383	0.1955 (556) S=0.001
CLIK1	0.0552 (548) S=0.099	0.1417 (547) S=0.001	0.1424 (546) S=0.001	-0.1649 (548) S=0.001	-0.0146 (547) S=0.367	0.0850 (544) S=0.024	-0.0354 (543) S=0.205	0.2010 (542) S=0.001
CLIK2	-0.0195 (567) S=0.322	-0.2316 (566) S=0.001	-0.2105 (565) S=0.001	-0.1143 (567) S=0.003	-0.0216 (566) S=0.257	-0.2114 (562) S=0.001	0.1232 (561) S=0.002	0.0792 (560) S=0.030
CLIK3	-0.0106 (566) S=0.401	0.1237 (565) S=0.002	0.1315 (564) S=0.001	0.0084 (566) S=0.421	-0.1166 (565) S=0.003	0.0816 (561) S=0.027	-0.0062 (560) S=0.442	0.0209 (559) S=0.311
CLIK4	0.0274 (560) S=0.259	0.1208 (559) S=0.002	0.1200 (558) S=0.002	-0.0855 (560) S=0.022	-0.0351 (559) S=0.204	0.0705 (555) S=0.049	-0.0463 (554) S=0.138	0.1019 (553) S=0.003
DLIK1	0.0168 (563) S=0.346	-0.0221 (562) S=0.300	-0.0123 (561) S=0.386	-0.0701 (563) S=0.010	0.0438 (562) S=0.150	-0.0686 (558) S=0.053	0.0798 (558) S=0.030	0.0505 (556) S=0.117
DLIK2	-0.0061 (563) S=0.442	0.0621 (562) S=0.071	0.0350 (561) S=0.204	-0.0988 (563) S=0.010	-0.0051 (562) S=0.452	-0.0288 (558) S=0.249	0.0087 (558) S=0.419	0.1457 (556) S=0.001
ELIK1	0.0060 (568) S=0.443	-0.0320 (562) S=0.224	-0.0310 (561) S=0.231	-0.0654 (569) S=0.060	-0.0284 (568) S=0.250	-0.0726 (564) S=0.043	0.0358 (563) S=0.198	0.0789 (562) S=0.031
ELIK2	-0.0139 (567) S=0.370	-0.0694 (566) S=0.049	-0.0682 (565) S=0.053	-0.0061 (567) S=0.442	-0.0057 (562) S=0.440	-0.0677 (566) S=0.055	0.1277 (561) S=0.001	-0.0449 (560) S=0.145

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

PEARSON CORRELATION COEFFICIENTS -----

	V122	V123	V124	V126	V128	V130	RACE	V132
GALL1	-0.0400 (554) S=0.174	0.0769 (553) S=0.035	0.0663 (552) S=0.060	-0.0325 (553) S=0.222	-0.0504 (552) S=0.119	0.0393 (548) S=0.179	-0.0030 (548) S=0.472	0.0859 (546) S=0.022
GALL2	-0.0567 (561) S=0.090	0.1562 (560) S=0.001	0.1393 (559) S=0.001	0.0173 (561) S=0.341	-0.0437 (560) S=0.151	0.1566 (556) S=0.001	-0.1144 (556) S=0.003	0.0727 (554) S=0.044
GALL3	-0.0788 (562) S=0.031	0.1439 (561) S=0.001	0.1439 (560) S=0.001	-0.0710 (562) S=0.046	-0.0099 (561) S=0.407	0.0977 (557) S=0.011	-0.0641 (557) S=0.065	0.1193 (555) S=0.002
V115	0.0627 (568) S=0.068	-0.0038 (567) S=0.464	0.0004 (566) S=0.496	-0.3677 (568) S=0.001	0.0991 (567) S=0.009	-0.0948 (567) S=0.012	-0.0127 (563) S=0.382	0.3872 (561) S=0.001
V116	0.1236 (569) S=0.002	-0.0432 (568) S=0.152	-0.0627 (567) S=0.068	-0.1652 (569) S=0.001	0.0293 (568) S=0.243	-0.1241 (568) S=0.002	-0.0010 (563) S=0.490	0.1985 (562) S=0.001
V117	0.1707 (567) S=0.001	-0.0132 (566) S=0.377	-0.0211 (565) S=0.308	-0.1159 (566) S=0.003	0.0573 (565) S=0.087	-0.0342 (565) S=0.209	-0.0865 (560) S=0.020	0.1723 (559) S=0.001
V118	0.1954 (562) S=0.001	-0.0680 (562) S=0.054	-0.0736 (560) S=0.041	-0.1526 (561) S=0.001	0.0158 (560) S=0.355	-0.0805 (556) S=0.029	-0.0314 (555) S=0.231	0.1852 (554) S=0.001
V120	0.1197 (567) S=0.002	-0.1250 (566) S=0.001	-0.1236 (565) S=0.002	-0.3242 (566) S=0.001	0.0847 (565) S=0.022	-0.2016 (565) S=0.001	-0.0697 (561) S=0.120	0.2982 (560) S=0.001
V121	-0.0740 (569) S=0.039	0.0613 (568) S=0.072	0.0481 (567) S=0.001	0.1761 (568) S=0.127	-0.0440 (567) S=0.147	0.0694 (567) S=0.148	-0.0186 (563) S=0.050	-0.1741 (561) S=0.160
V122	1.0000 (0) S=0.001	0.0739 (568) S=0.039	0.0619 (567) S=0.070	-0.0441 (568) S=0.001	-0.0283 (567) S=0.251	0.0782 (567) S=0.032	-0.0421 (562) S=0.160	0.0447 (561) S=0.145
V123	0.0739 (568) S=0.039	1.0000 (0) S=0.001	0.8981 (566) S=0.001	0.1533 (567) S=0.001	-0.1945 (566) S=0.001	0.8453 (566) S=0.001	-0.1913 (561) S=0.001	-0.0871 (560) S=0.020

(COEFFICIENT / (CASES) / SIGNIFICANCE)

(A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	V122	V123	V124	V126	V128	V130	RACE	V132
V124	0.0619 (5671 S=0.070	0.8981 (5661 S=0.001	1.0000 1 01 S=0.001	0.1555 (5661 S=0.001	-0.2025 (5651 S=0.001	0.8343 (5611 S=0.001	-0.2054 (5601 S=0.001	-0.0954 (5591 S=0.012
V126	-0.0441 (5681 S=0.147	0.1533 (5671 S=0.001	0.1555 1 5661 S=0.001	1.0000 1 01 S=0.001	-0.2055 (5681 S=0.001	0.3465 1 5641 S=0.001	-0.1159 1 5631 S=0.003	-0.7723 (5621 S=0.001
V128	-0.0283 (5671 S=0.251	-0.1945 (5661 S=0.001	-0.2025 (5651 S=0.001	-0.2055 (5681 S=0.001	1.0000 1 01 S=0.001	-0.2097 1 5631 S=0.001	-0.0355 1 5621 S=0.201	-0.0951 (5611 S=0.012
V130	0.0782 (5631 S=0.032	0.8453 (5621 S=0.001	0.8343 1 5611 S=0.001	0.3465 1 5601 S=0.001	-0.2097 1 5631 S=0.001	1.0000 1 01 S=0.001	-0.2531 1 5591 S=0.001	-0.2396 (5571 S=0.001
RACE	-0.0421 (5621 S=0.160	-0.1913 (5611 S=0.001	-0.2054 1 5601 S=0.001	-0.1159 1 5631 S=0.003	-0.0355 1 5621 S=0.201	-0.2531 1 5591 S=0.001	1.0000 1 01 S=0.001	0.0579 (5561 S=0.086
V132	0.0447 (5611 S=0.145	-0.0871 (5601 S=0.020	-0.0954 1 5591 S=0.012	-0.7723 1 5621 S=0.001	0.0951 1 5611 S=0.012	-0.2396 1 5571 S=0.004	0.0579 1 5561 S=0.004	1.0000 1 01 S=0.001

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

TABLE F.28
CORRELATION MATRIX FOR MULTIPLE CHOICE SCALES

	AMC1	AMC2	AMC3	AMC4	BMC1	BMC2	BMC3	BMC4	BMC5	BMC6	BMC7
AMC1	1.0000 (0.001 S=0.001	0.5914 (5541 S=0.001	0.3744 (5581 S=0.001	-0.0586 (5561 S=0.001	-0.0594 (5611 S=0.001	-0.0576 (5581 S=0.001	-0.0576 (5581 S=0.001	0.4592 (5531 S=0.001	0.3818 (5601 S=0.001	0.4908 (5561 S=0.001	
AMC2	0.5914 (5541 S=0.001	1.0000 (01 S=0.001	0.3209 (2571 S=0.001	0.0081 (5521 S=0.425	-0.0101 (5581 S=0.335	-0.0658 (5541 S=0.061	0.1118 (5531 S=0.004	0.2985 (5501 S=0.001	0.3496 (5571 S=0.001	0.3579 (5531 S=0.001	
AMC3	0.3744 (5581 S=0.001	0.3209 (5571 S=0.001	1.0000 (01 S=0.001	-0.0295 (5551 S=0.244	-0.0321 (5611 S=0.224	0.0013 (5571 S=0.488	0.0317 (5581 S=0.223	0.3017 (5531 S=0.001	0.2563 (5601 S=0.001	0.3217 (5561 S=0.001	
BMC1	-0.0586 (5561 S=0.084	0.0081 (5521 S=0.425	-0.0295 (5551 S=0.244	1.0000 (01 S=0.001	0.6416 (5641 S=0.001	0.6107 (5621 S=0.001	0.5878 (5621 S=0.001	0.3067 (5541 S=0.001	0.2687 (5651 S=0.001	0.2411 (5591 S=0.001	
BMC2	-0.0594 (5611 S=0.089	-0.0181 (5581 S=0.335	-0.0321 (5611 S=0.224	0.6416 (5641 S=0.001	1.0000 (01 S=0.001	0.5558 (5661 S=0.001	0.3934 (5661 S=0.001	0.2380 (5591 S=0.001	0.3981 (5691 S=0.001	0.1921 (5641 S=0.001	
BMC3	-0.0576 (5581 S=0.087	-0.0658 (5541 S=0.061	0.0013 (5571 S=0.488	0.6107 (5621 S=0.001	0.5558 (5661 S=0.001	1.0000 (01 S=0.001	0.3811 (5641 S=0.001	0.2210 (5561 S=0.001	0.1802 (5661 S=0.001	0.0967 (5611 S=0.001	
BMC4	0.0576 (5581 S=0.097	0.1118 (5551 S=0.004	0.0317 (5581 S=0.228	0.5878 (5621 S=0.001	0.3934 (5691 S=0.001	0.3811 (5641 S=0.001	1.0000 (01 S=0.001	0.2198 (5571 S=0.001	0.2479 (5671 S=0.001	0.3006 (5621 S=0.001	
BMC5	0.4592 (5531 S=0.001	0.2985 (5501 S=0.001	0.3017 (5541 S=0.001	0.3267 (5531 S=0.001	0.2380 (5591 S=0.001	0.2210 (5561 S=0.001	0.2198 (5571 S=0.001	1.0000 (5591 S=0.001	0.7542 (5671 S=0.001	0.9148 (5601 S=0.001	
BMC6	0.3918 (5601 S=0.001	0.3496 (5571 S=0.001	0.2563 (5601 S=0.001	0.2697 (5651 S=0.001	0.3981 (5691 S=0.001	0.1802 (5661 S=0.001	0.2479 (5671 S=0.012	0.7542 (5591 S=0.001	1.0000 (5671 S=0.001	0.7454 (5641 S=0.001	
BMC7	0.4308 (5561 S=0.001	0.3579 (5531 S=0.001	0.3217 (5571 S=0.001	0.2411 (5591 S=0.001	0.1921 (5641 S=0.001	0.0947 (5611 S=0.001	0.3006 (5621 S=0.012	0.9148 (5601 S=0.001	0.7454 (5641 S=0.001	1.0000 (5611 S=0.001	
BMC8	0.4533 (5571 S=0.001	0.3065 (5541 S=0.001	0.2907 (5571 S=0.001	0.3045 (5591 S=0.001	0.2092 (5641 S=0.001	0.1612 (5611 S=0.001	0.2133 (5621 S=0.001	0.9732 (5601 S=0.001	0.7156 (5641 S=0.001	0.8871 (5611 S=0.001	

----- PEARSON CORRELATION COEFFICIENTS -----

	AMC1	AMC2	AMC3	AMC1	AMC2	AMC3	AMC1	AMC2	AMC3	AMC1	AMC2	AMC3	AMC1	AMC2	AMC3
BMCW5	0.3774 (5581 S=0.001	0.3196 (5551 S=0.001	0.2542 (5581 S=0.001	0.2687 (5621 S=0.001	0.4112 (5661 S=0.001	0.2048 (5631 S=0.001	0.1729 (5641 S=0.001	0.7340 (5591 S=0.001	0.9627 (5671 S=0.001	0.7724 (5641 S=0.001	0.9627 (5671 S=0.001	0.9627 (5641 S=0.001	0.7724 (5641 S=0.001	0.9627 (5671 S=0.001	0.9627 (5641 S=0.001
BMCW6	0.3223 (5611 S=0.001	0.1500 (5571 S=0.001	0.2200 (5611 S=0.001	0.2820 (5631 S=0.001	0.2622 (5691 S=0.001	0.3589 (5651 S=0.001	0.1236 (5661 S=0.001	0.8525 (5601 S=0.002	0.6503 (5681 S=0.001	0.6655 (5641 S=0.001	0.6503 (5681 S=0.001	0.6655 (5641 S=0.001	0.6503 (5681 S=0.001	0.6655 (5641 S=0.001	0.6503 (5681 S=0.001
BMCW7	0.4517 (5611 S=0.001	0.3678 (5581 S=0.001	0.2908 (5611 S=0.001	0.2467 (5641 S=0.001	0.1728 (5701 S=0.001	0.0555 (5661 S=0.094	0.4249 (5671 S=0.001	0.7995 (5601 S=0.001	0.7444 (5691 S=0.001	0.8864 (5651 S=0.001	0.7444 (5691 S=0.001	0.8864 (5651 S=0.001	0.7444 (5691 S=0.001	0.8864 (5651 S=0.001	0.7444 (5691 S=0.001
CNC1	0.5613 (5481 S=0.001	0.4827 (5461 S=0.001	0.3426 (5481 S=0.001	0.0494 (5401 S=0.125	-0.0246 (5521 S=0.282	-0.0663 (5491 S=0.060	0.0997 (5491 S=0.010	0.6009 (5441 S=0.001	0.5117 (5511 S=0.001	0.6395 (5481 S=0.001	0.5117 (5511 S=0.001	0.6395 (5481 S=0.001	0.5117 (5511 S=0.001	0.6395 (5481 S=0.001	0.5117 (5511 S=0.001
CNC2	0.4393 (5551 S=0.001	0.1996 (5521 S=0.001	0.2289 (5551 S=0.001	0.0358 (5571 S=0.199	0.0795 (5621 S=0.047	0.0530 (5581 S=0.106	0.0642 (5591 S=0.065	0.5672 (5531 S=0.001	0.4654 (5621 S=0.001	0.5417 (5571 S=0.001	0.4654 (5621 S=0.001	0.5417 (5571 S=0.001	0.4654 (5621 S=0.001	0.5417 (5571 S=0.001	0.4654 (5621 S=0.001
CNC3	0.5325 (5581 S=0.001	0.3469 (5561 S=0.001	0.2960 (5581 S=0.001	-0.0370 (5591 S=0.191	-0.0515 (5651 S=0.111	-0.0290 (5611 S=0.247	0.0982 (5621 S=0.010	0.5704 (5571 S=0.001	0.3992 (5641 S=0.001	0.6026 (5601 S=0.001	0.3992 (5641 S=0.001	0.6026 (5601 S=0.001	0.3992 (5641 S=0.001	0.6026 (5601 S=0.001	0.3992 (5641 S=0.001
CNC4	0.3029 (5621 S=0.001	0.2015 (5591 S=0.001	0.2571 (5621 S=0.001	-0.0653 (5641 S=0.059	-0.0258 (5701 S=0.269	-0.0910 (5661 S=0.015	-0.0204 (5671 S=0.314	0.6110 (5601 S=0.001	0.4384 (5691 S=0.001	0.6076 (5641 S=0.001	0.4384 (5691 S=0.001	0.6076 (5641 S=0.001	0.4384 (5691 S=0.001	0.6076 (5641 S=0.001	0.4384 (5691 S=0.001
CNC5	0.4469 (5531 S=0.001	0.4007 (5511 S=0.001	0.2796 (5531 S=0.001	-0.0212 (5541 S=0.309	0.0444 (5591 S=0.147	-0.0325 (5551 S=0.222	-0.0307 (5561 S=0.235	0.5137 (5501 S=0.001	0.4731 (5591 S=0.001	0.5198 (5541 S=0.001	0.4731 (5591 S=0.001	0.5198 (5541 S=0.001	0.4731 (5591 S=0.001	0.5198 (5541 S=0.001	0.4731 (5591 S=0.001
DMC1	0.0463 (5511 S=0.138	0.0048 (5511 S=0.455	0.0222 (5551 S=0.301	0.2455 (5561 S=0.001	0.1514 (5621 S=0.001	0.1773 (5581 S=0.001	0.1492 (5591 S=0.001	0.1383 (5531 S=0.001	0.0949 (5611 S=0.012	0.1140 (5571 S=0.004	0.0949 (5611 S=0.001	0.1140 (5571 S=0.004	0.0949 (5611 S=0.001	0.1140 (5571 S=0.004	0.0949 (5611 S=0.001
DMC2	0.4322 (5541 S=0.001	0.2720 (5501 S=0.001	0.2877 (5541 S=0.001	0.1095 (5601 S=0.005	0.1064 (5611 S=0.006	0.0966 (5581 S=0.011	0.0637 (5591 S=0.066	0.6626 (5531 S=0.001	0.5223 (5611 S=0.001	0.5932 (5561 S=0.001	0.5223 (5611 S=0.001	0.5932 (5561 S=0.001	0.5223 (5611 S=0.001	0.5932 (5561 S=0.001	0.5223 (5611 S=0.001
EMC1	0.4367 (5561 S=0.001	0.2879 (5521 S=0.001	0.2885 (5551 S=0.001	0.1628 (5571 S=0.001	0.1131 (5621 S=0.004	0.1213 (5591 S=0.002	0.1455 (5591 S=0.001	0.7150 (5611 S=0.001	0.5280 (5571 S=0.001	0.7008 (5611 S=0.001	0.5280 (5571 S=0.001	0.7008 (5611 S=0.001	0.5280 (5571 S=0.001	0.7008 (5611 S=0.001	0.5280 (5571 S=0.001

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	AMC1	AMC2	AMC3	BMC1	BMC2	BMC3	BMC4	BMC1	BMC2	BMC3
EMC2	-0.0150 (556) S=0.356	0.0424 (553) S=0.160	-0.0015 (556) S=0.486	0.4594 (557) S=0.001	0.2548 (563) S=0.001	0.2798 (559) S=0.001	0.3263 (560) S=0.010	0.0995 (554) S=0.007	0.1040 (562) S=0.007	0.0917 (558) S=0.015
GALL1	0.53347 (544) S=0.001	0.2891 (539) S=0.001	0.2755 (543) S=0.001	0.0654 (543) S=0.146	0.0696 (548) S=0.052	0.0395 (545) S=0.179	0.0709 (545) S=0.049	0.6274 (539) S=0.001	0.4762 (547) S=0.001	0.6031 (543) S=0.001
GALL2	0.2084 (559) S=0.001	0.1775 (554) S=0.001	0.1292 (558) S=0.001	0.1144 (558) S=0.003	0.1532 (563) S=0.001	0.1211 (560) S=0.002	0.0032 (560) S=0.470	0.3789 (554) S=0.001	0.3762 (562) S=0.001	0.3162 (558) S=0.001
GALL3	0.2855 (559) S=0.001	0.2930 (554) S=0.001	0.2007 (558) S=0.001	0.0139 (553) S=0.371	0.0265 (563) S=0.265	0.0116 (560) S=0.392	0.0010 (560) S=0.491	0.3415 (554) S=0.001	0.3094 (562) S=0.001	0.2952 (558) S=0.001
V115	0.3091 (561) S=0.001	0.3510 (557) S=0.001	0.2426 (560) S=0.001	-0.0430 (563) S=0.154	0.0132 (568) S=0.376	-0.0912 (565) S=0.015	0.0936 (565) S=0.013	0.3143 (558) S=0.001	0.3037 (567) S=0.001	0.3708 (562) S=0.001
V116	0.1800 (562) S=0.001	0.1746 (558) S=0.001	0.0624 (561) S=0.070	-0.0127 (564) S=0.381	0.0016 (569) S=0.485	-0.0359 (566) S=0.197	0.0250 (566) S=0.277	0.1433 (556) S=0.001	0.1260 (568) S=0.001	0.1626 (563) S=0.001
V117	0.0955 (561) S=0.012	0.0324 (557) S=0.223	0.0352 (560) S=0.203	0.0082 (563) S=0.423	0.0392 (508) S=0.175	-0.0164 (565) S=0.366	0.0030 (565) S=0.472	0.1070 (558) S=0.006	0.0565 (567) S=0.090	0.1139 (562) S=0.003
V118	0.1288 (555) S=0.001	0.0797 (551) S=0.031	0.0344 (554) S=0.205	0.0107 (556) S=0.401	0.0452 (561) S=0.143	0.0149 (558) S=0.363	0.0378 (558) S=0.187	0.1262 (552) S=0.001	0.0942 (560) S=0.013	0.1231 (556) S=0.002
V120	0.2549 (561) S=0.001	0.2788 (557) S=0.001	0.1664 (560) S=0.001	-0.0064 (563) S=0.439	-0.0035 (568) S=0.467	-0.0464 (565) S=0.136	0.0987 (565) S=0.009	0.2334 (558) S=0.001	0.2385 (567) S=0.001	0.2759 (562) S=0.001
V121	-0.1867 (561) S=0.001	-0.2201 (557) S=0.001	-0.1163 (560) S=0.003	0.0130 (563) S=0.008	0.0510 (504) S=0.113	0.0624 (565) S=0.009	-0.0317 (565) S=0.226	-0.1247 (559) S=0.001	-0.1355 (587) S=0.001	-0.1334 (583) S=0.001
V122	0.0105 (558) S=0.402	-0.0017 (554) S=0.484	-0.0461 (557) S=0.139	0.0208 (560) S=0.312	0.0155 (563) S=0.356	0.0099 (562) S=0.408	0.0346 (562) S=0.207	0.0204 (558) S=0.316	-0.0140 (564) S=0.370	0.0167 (560) S=0.364

(COEFFICIENT / CASES) / SIGNIFICANCE)

(A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	AMC1	AMC2	AMC3	BMC1	BMC2	BMC3	BMC4	BMC5	BMC6	BMC7	BMC8	BMC9
V123	-0.1757 1.5601 S=0.501	-0.1562 1.5561 S=0.001	-0.1271 1.5591 S=0.001	0.0990 1.5621 S=0.011	0.1362 1.5671 S=0.001	0.1296 1.5641 S=0.001	-0.0924 1.5641 S=0.014	0.1371 1.5571 S=0.001	0.0934 1.5661 S=0.013	0.0935 1.5611 S=0.080		
V124	-0.1980 1.5561 S=0.001	-0.1626 1.5551 S=0.001	-0.1336 1.5591 S=0.001	0.0711 1.5611 S=0.005	0.1092 1.5661 S=0.005	0.1194 1.5631 S=0.002	-0.0863 1.5631 S=0.020	0.1033 1.5561 S=0.007	0.0667 1.5651 S=0.057	0.0666 1.5601 S=0.135		
V126	-0.2148 1.5601 S=0.017	-0.2753 1.5561 S=0.001	-0.2042 1.5591 S=0.001	0.0330 1.5621 S=0.218	0.1066 1.5671 S=0.006	0.1575 1.5641 S=0.001	-0.0685 1.5641 S=0.052	-0.1134 1.5571 S=0.004	-0.0984 1.5661 S=0.010	-0.1547 1.5611 S=0.001		
V128	0.0893 1.5601 S=0.017	0.0469 1.5561 S=0.135	0.0415 1.5591 S=0.163	-0.0891 1.5621 S=0.017	-0.1230 1.5671 S=0.002	-0.1282 1.5641 S=0.001	-0.1039 1.5641 S=0.007	-0.0425 1.5571 S=0.158	-0.0232 1.5661 S=0.071	-0.0620 1.5611 S=0.071		
V130	-0.2010 1.5581 S=0.001	-0.1775 1.5541 S=0.001	-0.1300 1.5571 S=0.001	0.1225 1.5601 S=0.002	0.1806 1.5651 S=0.001	0.1739 1.5621 S=0.001	-0.0928 1.5621 S=0.014	0.0967 1.5551 S=0.011	0.0826 1.5551 S=0.025	0.0212 1.5591 S=0.308		
RACE	0.1119 1.5501 S=0.003	0.1521 1.5451 S=0.001	0.0512 1.5491 S=0.115	-0.0103 1.5551 S=0.404	-0.1135 1.5521 S=0.004	-0.0889 1.5521 S=0.061	0.0658 1.5521 S=0.001	-0.0981 1.5461 S=0.007	-0.1124 1.5541 S=0.002	-0.0411 1.5501 S=0.168		
V132	0.1897 1.5531 S=0.001	0.2376 1.5481 S=0.001	0.1890 1.5521 S=0.001	-0.0121 1.5531 S=0.388	-0.0121 1.5581 S=0.001	-0.0566 1.5581 S=0.091	-0.1177 1.5551 S=0.003	0.0727 1.5551 S=0.003	0.1620 1.5501 S=0.001	0.1641 1.5571 S=0.001	0.1948 1.5531 S=0.001	

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	BMCW4	BMCW5	BMCW6	BMCW7	CMC1	CMC2	CMC3	CMC4	CMC5	DMC1
AMC1	0.4533 (5571 S=0.001	0.3774 (5581 S=0.001	0.3223 (5611 S=0.001	0.4517 (5611 S=0.001	0.5613 (5611 S=0.001	0.4303 (5651 S=0.001	0.5825 (5581 S=0.001	0.3629 (5621 S=0.001	0.4469 (5531 S=0.001	0.0463 (5551 S=0.138
AMC2	0.3065 (5541 S=0.001	0.3196 (5551 S=0.001	0.1500 (5571 S=0.001	0.3678 (5581 S=0.001	0.4827 (5611 S=0.001	0.1994 (5521 S=0.001	0.3669 (5561 S=0.001	0.2015 (5591 S=0.001	0.4007 (5511 S=0.001	0.0048 (5511 S=0.455
AMC3	0.2907 (5571 S=0.001	0.2542 (5581 S=0.001	0.2200 (5611 S=0.001	0.2908 (5611 S=0.001	0.3426 (5681 S=0.001	0.2289 (5551 S=0.001	0.2969 (5581 S=0.001	0.2571 (5621 S=0.001	0.2796 (5531 S=0.001	0.0222 (5551 S=0.301
BMCW1	0.3045 (5591 S=0.001	0.2687 (5621 S=0.001	0.2820 (5631 S=0.001	0.2467 (5641 S=0.001	0.0694 (5611 S=0.125	0.0358 (5571 S=0.199	0.0370 (5591 S=0.191	0.0658 (5641 S=0.059	0.0212 (5541 S=0.309	0.2655 (5561 S=0.001
BMCW2	0.2392 (5641 S=0.001	0.4112 (5661 S=0.001	0.2622 (5691 S=0.001	0.1728 (5701 S=0.001	0.0246 (5521 S=0.282	0.0705 (5621 S=0.747	0.0515 (5651 S=0.111	0.0258 (5701 S=0.269	0.0444 (5591 S=0.147	0.1514 (5621 S=0.091
BMCW3	0.1612 (5611 S=0.001	0.2048 (5631 S=0.001	0.3589 (5651 S=0.001	0.0555 (5661 S=0.094	0.0663 (5491 S=0.060	0.0530 (5581 S=0.106	0.0290 (5611 S=0.247	0.0910 (5621 S=0.015	0.0325 (5551 S=0.222	0.1773 (5581 S=0.001
BMCW4	0.2133 (5621 S=0.001	0.1729 (5641 S=0.002	0.1236 (5661 S=0.001	0.4249 (5671 S=0.001	0.0997 (5691 S=0.010	0.0642 (5591 S=0.065	0.0982 (5621 S=0.010	0.0204 (5671 S=0.314	0.0307 (5561 S=0.235	0.1692 (5591 S=0.001
BMCW1	0.9732 (5601 S=0.001	0.7940 (5591 S=0.001	0.8525 (5601 S=0.001	0.7995 (5601 S=0.001	0.6009 (5461 S=0.001	0.5672 (5531 S=0.001	0.5704 (5371 S=0.001	0.6110 (5601 S=0.001	0.5137 (5501 S=0.001	0.1383 (5531 S=0.001
BMCW2	0.7156 (5641 S=0.001	0.89627 (5671 S=0.001	0.6503 (5681 S=0.001	0.7444 (5691 S=0.001	0.5117 (5511 S=0.001	0.4454 (5621 S=0.001	0.3992 (5641 S=0.001	0.4384 (5641 S=0.001	0.4731 (5591 S=0.001	0.0949 (5611 S=0.012
BMCW3	0.9871 (5611 S=0.001	0.7724 (5641 S=0.001	0.6055 (5641 S=0.001	0.8864 (5651 S=0.001	0.6395 (5481 S=0.001	0.5417 (5571 S=0.001	0.6026 (5601 S=0.001	0.6076 (5661 S=0.001	0.5198 (5561 S=0.001	0.1140 (5571 S=0.004
BMCW4	1.0300 (5611 S=0.001	0.7434 (5631 S=0.001	0.7505 (5641 S=0.001	0.7787 (5641 S=0.001	0.5794 (5471 S=0.001	0.5596 (5571 S=0.001	0.5823 (5611 S=0.001	0.5951 (5651 S=0.001	0.5127 (5541 S=0.001	0.1338 (5571 S=0.001

(COEFFICIENT / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	BMC45	BMC55	BMC65	BMC75	BMC85	CNC1	CNC2	CNC3	CNC4	CNC5	DMC1
BMC45	0.7434 1.5e11 S=0.001	1.0000 1.0 S=0.001	0.6853 1.5661 S=0.001	0.6731 1.5661 S=0.001	0.5024 1.5501 S=0.001	0.4699 1.5601 S=0.001	0.4215 1.5621 S=0.001	0.4757 1.5641 S=0.001	0.4748 1.5651 S=0.001	0.4748 1.5571 S=0.001	0.0878 1.5591 S=0.019
BMC55	0.7535 1.5631 S=0.001	0.6853 1.01 S=0.001	1.0000 1.01 S=0.001	0.5744 1.5691 S=0.001	0.4333 1.5521 S=0.001	0.4587 1.5611 S=0.001	0.3672 1.5641 S=0.001	0.4050 1.5651 S=0.001	0.3714 1.5701 S=0.001	0.3714 1.5591 S=0.001	0.1559 1.5621 S=0.001
BMC65	0.7535 1.5661 S=0.001	0.6853 1.5661 S=0.001	1.0000 1.01 S=0.001	0.5744 1.5691 S=0.001	0.4333 1.5521 S=0.001	0.4587 1.5611 S=0.001	0.3672 1.5641 S=0.001	0.4050 1.5651 S=0.001	0.3714 1.5701 S=0.001	0.3714 1.5591 S=0.001	0.1559 1.5621 S=0.001
BMC75	0.7787 1.5661 S=0.001	0.6731 1.5661 S=0.001	0.6744 1.01 S=0.001	1.0000 1.01 S=0.001	0.6369 1.5521 S=0.001	0.4642 1.5621 S=0.001	0.5409 1.5651 S=0.001	0.4888 1.5701 S=0.001	0.4913 1.5591 S=0.001	0.4913 1.5591 S=0.001	0.1162 1.5621 S=0.001
BMC85	0.5754 1.5471 S=0.001	0.5024 1.5521 S=0.001	0.4333 1.5521 S=0.001	0.6369 1.5621 S=0.001	1.0000 1.01 S=0.001	0.4921 1.5431 S=0.001	0.6378 1.5511 S=0.001	0.5582 1.5531 S=0.001	0.6946 1.5491 S=0.001	0.6946 1.5491 S=0.001	-0.0141 1.5491 S=0.371
CNC1	0.5596 1.5571 S=0.001	0.4699 1.5601 S=0.001	0.4587 1.5611 S=0.001	0.4642 1.5621 S=0.001	0.4921 1.5681 S=0.001	1.0000 1.01 S=0.001	0.5874 1.5601 S=0.001	0.4886 1.5631 S=0.001	0.3863 1.5551 S=0.001	0.3863 1.5551 S=0.001	-0.0526 1.5551 S=0.108
CNC2	0.5596 1.5571 S=0.001	0.4699 1.5601 S=0.001	0.4587 1.5611 S=0.001	0.4642 1.5621 S=0.001	0.4921 1.5681 S=0.001	1.0000 1.01 S=0.001	0.5874 1.5601 S=0.001	0.4886 1.5631 S=0.001	0.3863 1.5551 S=0.001	0.3863 1.5551 S=0.001	-0.0526 1.5551 S=0.212
CNC3	0.5823 1.5611 S=0.001	0.4215 1.5621 S=0.001	0.3672 1.5651 S=0.001	0.2609 1.5621 S=0.001	0.3778 1.5511 S=0.001	0.9999 1.01 S=0.001	0.5974 1.01 S=0.001	1.0000 1.01 S=0.001	0.6922 1.5661 S=0.001	0.6922 1.5661 S=0.001	-0.0360 1.5581 S=0.001
CNC4	0.5551 1.5621 S=0.001	0.4757 1.5621 S=0.001	0.4850 1.5641 S=0.001	0.4888 1.5691 S=0.001	0.5582 1.5601 S=0.001	0.4949 1.01 S=0.001	0.4949 1.01 S=0.001	1.0000 1.01 S=0.001	0.5027 1.5661 S=0.001	0.5027 1.5661 S=0.001	-0.0049 1.5631 S=0.032
CNC5	0.5127 1.5541 S=0.001	0.4748 1.5571 S=0.001	0.4757 1.5581 S=0.001	0.3716 1.5591 S=0.001	0.4913 1.5611 S=0.001	0.6946 1.5631 S=0.001	0.3863 1.5651 S=0.001	0.4922 1.5571 S=0.001	0.5027 1.5601 S=0.001	0.5027 1.5601 S=0.001	-0.0787 1.5541 S=0.001
DMC1	0.6338 1.5571 S=0.001	0.6078 1.5591 S=0.001	0.6078 1.5611 S=0.001	0.1559 1.5621 S=0.003	0.1162 1.5621 S=0.003	-0.0141 1.5481 S=0.003	0.0526 1.5551 S=0.003	-0.0343 1.5581 S=0.003	-0.0049 1.5631 S=0.003	-0.0787 1.5541 S=0.001	1.0000 1.01 S=0.001
DMC2	0.6559 1.5501 S=0.001	0.5445 1.5571 S=0.001	0.5002 1.5621 S=0.001	0.5384 1.5611 S=0.001	0.5339 1.5471 S=0.001	0.5241 1.5551 S=0.001	0.5056 1.5571 S=0.001	0.5127 1.5621 S=0.001	0.4880 1.5541 S=0.001	0.4880 1.5541 S=0.001	0.4003 1.5601 S=0.001
EMC1	0.7039 1.5571 S=0.001	0.5089 1.5591 S=0.001	0.5313 1.5621 S=0.001	0.5855 1.5491 S=0.001	0.5510 1.5491 S=0.001	0.5619 1.5621 S=0.001	0.5245 1.5591 S=0.001	0.4950 1.5631 S=0.001	0.4950 1.5561 S=0.001	0.4950 1.5561 S=0.001	0.0580 1.5561 S=0.001

1 COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	BMCN4	BMCN5	BMCN6	BMCN7	CNC1	CNC2	CNC3	CNC4	CNC5	CNC6	CNC7
EMC2	0.1023 (558) S=0.008	0.1025 (560) S=0.008	0.0815 (563) S=0.027	0.0759 (563) S=0.036	-0.0668 (550) S=0.059	-0.0038 (556) S=0.464	-0.0294 (560) S=0.244	-0.1757 (564) S=0.001	-0.1069 (555) S=0.006	-0.2309 (559) S=0.001	
GALL1	0.6250 (543) S=0.001	0.5065 (545) S=0.001	0.4962 (548) S=0.001	0.5132 (548) S=0.001	0.5753 (537) S=0.001	0.7312 (543) S=0.001	0.6593 (545) S=0.001	0.4776 (549) S=0.001	0.4511 (541) S=0.001	0.0403 (543) S=0.174	
GALL2	0.3557 (556) S=0.001	0.3867 (560) S=0.001	0.3718 (563) S=0.001	0.2801 (563) S=0.001	0.3308 (551) S=0.001	0.3431 (558) S=0.001	0.2358 (560) S=0.001	0.2284 (564) S=0.001	0.3014 (556) S=0.001	0.0455 (558) S=0.142	
GALL3	0.3272 (558) S=0.001	0.3030 (560) S=0.001	0.3110 (563) S=0.001	0.2849 (563) S=0.001	0.3724 (551) S=0.001	0.3418 (559) S=0.001	0.2829 (560) S=0.001	0.2575 (561) S=0.001	0.3282 (556) S=0.001	0.0892 (558) S=0.018	
V115	0.3168 (563) S=0.001	0.2767 (564) S=0.001	0.2942 (567) S=0.001	0.3619 (563) S=0.001	0.4958 (551) S=0.001	0.1411 (561) S=0.001	0.3209 (564) S=0.001	0.3212 (569) S=0.001	0.5121 (558) S=0.001	-0.0104 (561) S=0.403	
V116	0.1623 (564) S=0.001	0.1135 (565) S=0.003	0.0674 (568) S=0.054	0.1794 (559) S=0.001	0.2634 (552) S=0.001	0.0852 (562) S=0.022	0.1046 (565) S=0.006	0.1435 (570) S=0.001	0.2190 (559) S=0.001	0.0016 (562) S=0.484	
V117	0.1062 (563) S=0.006	0.0554 (564) S=0.094	0.0869 (567) S=0.019	0.1291 (568) S=0.001	0.1405 (551) S=0.001	0.0372 (561) S=0.189	0.0176 (564) S=0.339	0.1297 (569) S=0.001	0.2101 (558) S=0.001	0.0268 (561) S=0.263	
V118	0.1415 (556) S=0.001	0.0922 (558) S=0.015	0.0771 (560) S=0.034	0.1265 (561) S=0.001	0.1756 (545) S=0.001	0.1473 (555) S=0.001	0.1247 (558) S=0.002	0.1600 (562) S=0.001	0.1729 (552) S=0.001	-0.0229 (554) S=0.295	
V120	0.2434 (563) S=0.001	0.2053 (564) S=0.001	0.1482 (567) S=0.001	0.3141 (566) S=0.001	0.4052 (551) S=0.001	0.1369 (561) S=0.001	0.2451 (564) S=0.001	0.2371 (569) S=0.001	0.3983 (558) S=0.001	-0.0003 (561) S=0.498	
V121	-0.1323 (563) S=0.001	-0.1205 (565) S=0.002	-0.0872 (567) S=0.019	-0.1657 (568) S=0.001	-0.2416 (552) S=0.001	-0.0530 (562) S=0.105	-0.1911 (565) S=0.001	-0.1411 (569) S=0.001	-0.2555 (559) S=0.001	-0.0143 (561) S=0.368	
V122	0.0181 (560) S=0.335	-0.0099 (562) S=0.407	0.0269 (564) S=0.262	0.0230 (565) S=0.292	0.0420 (549) S=0.163	-0.0513 (559) S=0.113	-0.0304 (562) S=0.236	-0.0151 (564) S=0.360	0.0420 (556) S=0.156	-0.0107 (558) S=0.400	

(COEFFICIENT / (CASES) / SIGNIFICANCE)

(A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEAKSON CORRELATION COEFFICIENTS -----

	BMCN4	BMCN5	BMCN6	BMCN7	CMC1	CMC2	CMC3	CMC4	CMC5	CMC6
V123	0.1169 (562) S=0.003	0.1279 (563) S=0.001	0.1946 (566) S=0.001	-0.0075 (567) S=0.429	0.0029 (550) S=0.473	0.0670 (560) S=0.057	-0.0929 (563) S=0.014	0.1197 (568) S=0.002	0.0309 (557) S=0.233	0.0375 (560) S=0.188
V124	0.0839 (561) S=0.023	0.1032 (562) S=0.007	0.1513 (565) S=0.001	-0.0190 (566) S=0.326	-0.0002 (549) S=0.498	0.0395 (559) S=0.175	-0.1106 (562) S=0.004	0.1067 (567) S=0.006	0.0345 (561) S=0.208	0.0328 (559) S=0.219
V126	-0.1461 (562) S=0.001	-0.0620 (563) S=0.071	-0.0147 (566) S=0.364	-0.1930 (567) S=0.001	-0.2047 (550) S=0.001	-0.0630 (560) S=0.068	-0.1718 (563) S=0.001	-0.1294 (568) S=0.001	-0.2169 (557) S=0.001	0.0250 (560) S=0.277
V128	0.0514 (562) S=0.112	-0.0132 (563) S=0.377	0.0001 (566) S=0.499	0.0508 (567) S=0.114	0.0920 (550) S=0.015	0.0241 (560) S=0.285	0.0499 (563) S=0.119	0.0491 (568) S=0.121	0.1346 (557) S=0.001	-0.0190 (560) S=0.327
V130	0.0721 (560) S=0.044	0.1154 (561) S=0.003	0.1711 (564) S=0.001	-0.0414 (565) S=0.163	-0.0390 (549) S=0.181	0.0303 (558) S=0.238	-0.1261 (561) S=0.001	0.0956 (568) S=0.011	0.0090 (555) S=0.416	0.0291 (558) S=0.247
RACE	-0.0733 (550) S=0.043	-0.1271 (552) S=0.001	-0.1520 (555) S=0.001	-0.0059 (541) S=0.445	0.0276 (541) S=0.261	-0.0391 (548) S=0.180	0.1070 (551) S=0.006	-0.0974 (556) S=0.011	-0.0139 (547) S=0.373	-0.0853 (552) S=0.023
V132	0.1885 (554) S=0.001	0.1062 (555) S=0.006	0.0719 (558) S=0.045	0.2355 (543) S=0.001	0.2627 (551) S=0.006	0.1070 (554) S=0.001	0.1533 (559) S=0.001	0.1706 (549) S=0.001	0.2574 (554) S=0.001	0.0519 (554) S=0.111

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	DMC2	EMC1	EMC2	GALL1	GALL2	GALL3	V115	V116	V117	V118
AMC1	0.4322 (554) S=0.001	0.4367 (556) S=0.001	-0.0156 S=0.356	0.5347 (544) S=0.001	0.2034 S=0.001	0.2855 S=0.001	0.3091 S=0.001	0.1800 S=0.001	0.0955 S=0.012	0.1288 S=0.001
AMC2	0.2720 (550) S=0.001	0.2879 (552) S=0.001	0.0424 S=0.160	0.2691 1.539) S=0.001	0.1775 1.554) S=0.001	0.2980 1.556) S=0.001	0.3510 1.557) S=0.001	0.1746 1.558) S=0.001	0.0324 1.559) S=0.001	0.0797 1.551)
AMC3	0.2877 (554) S=0.001	0.2885 (555) S=0.001	-0.0015 S=0.486	0.2755 1.543) S=0.001	0.1282 1.558) S=0.001	0.2007 1.560) S=0.001	0.2426 1.561) S=0.001	0.0624 1.561) S=0.001	0.0352 1.561) S=0.001	0.0344 1.554)
AMC41	0.1095 (526) S=0.305	0.1628 (557) S=0.001	0.4594 S=0.001	0.0456 1.543) S=0.001	0.1164 1.558) S=0.003	0.0139 1.563) S=0.371	-0.0430 1.563) S=0.154	-0.0127 1.564) S=0.361	0.0082 1.564) S=0.423	0.0107 1.556) S=0.401
AMC42	0.1064 (561) S=0.030	0.1131 (562) S=0.004	0.2548 S=0.001	0.0696 1.548) S=0.052	0.1532 1.563) S=0.001	0.0265 1.563) S=0.265	0.0132 1.568) S=0.376	0.0016 1.569) S=0.485	0.0392 1.568) S=0.175	0.0452 1.561)
AMC43	0.0966 (557) S=0.011	0.1213 (559) S=0.002	0.2798 S=0.001	0.0395 1.545) S=0.179	0.1211 1.560) S=0.002	0.0116 1.560) S=0.392	-0.0912 1.565) S=0.015	-0.0359 1.566) S=0.197	-0.0166 1.566) S=0.366	0.0149 1.558)
AMC44	0.0637 (558) S=0.066	0.1455 S=0.001	0.3243 S=0.001	0.0709 1.561) S=0.049	0.0032 1.560) S=0.470	0.0010 1.560) S=0.491	0.0936 1.565) S=0.013	0.0250 1.566) S=0.277	0.0030 1.565) S=0.472	0.0376 1.558)
B4Cd1	0.6626 (552) S=0.001	0.7150 S=0.001	0.0995 S=0.010	0.6274 1.554) S=0.001	0.3789 1.539) S=0.001	0.3415 1.554) S=0.001	0.3143 1.558) S=0.001	0.1433 1.559) S=0.001	0.1070 1.558) S=0.006	0.1262 1.552)
B4Cd2	0.5223 (501) S=0.001	0.5280 1.561) S=0.001	0.1040 1.562) S=0.007	0.4742 1.547) S=0.001	0.3762 1.562) S=0.001	0.3094 1.567) S=0.001	0.3037 1.567) S=0.001	0.1260 1.568) S=0.001	0.0565 1.567) S=0.001	0.0942 1.560)
B4Cd3	0.5932 (556) S=0.001	0.7098 1.557) S=0.001	0.0917 S=0.015	0.6031 1.543) S=0.001	0.3162 1.558) S=0.001	0.2952 1.558) S=0.001	0.3708 1.562) S=0.001	0.1626 1.563) S=0.001	0.1139 1.562)	0.1231 1.556)
B4Cd4	0.6539 (556) S=0.001	0.7039 1.557) S=0.008	0.1023 1.543) S=0.001	0.6250 1.558) S=0.001	0.3557 1.558) S=0.001	0.3272 1.563) S=0.001	0.3188 1.564) S=0.001	0.1603 1.564) S=0.001	0.1065 1.556)	0.1615 1.556)

(COEFFICIENT / CASES) / SIGNIFICANCE)

(A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	DMC2	EMC1	EMC2	GALL1	GALL2	GALL3	V115	V116	V117	V118
BNCH5	0.5445 (559) S=0.001	0.5689 (559) S=0.001	0.1025 (560) S=0.008	0.5065 (545) S=0.001	0.3867 (560) S=0.001	0.3030 (560) S=0.001	0.2767 (564) S=0.001	0.1135 (565) S=0.003	0.0554 (564) S=0.094	0.0922 (558) S=0.015
BNCH6	0.5602 (561) S=0.001	0.5313 (562) S=0.001	0.0815 (563) S=0.027	0.4962 (548) S=0.001	0.3718 (563) S=0.001	0.3110 (563) S=0.001	0.2042 (563) S=0.001	0.0674 (567) S=0.054	0.0869 (568) S=0.019	0.0771 (560) S=0.034
BNCH7	0.5394 (561) S=0.001	0.5955 (562) S=0.001	0.0759 (563) S=0.036	0.5132 (548) S=0.001	0.2801 (563) S=0.001	0.2849 (563) S=0.001	0.3819 (568) S=0.001	0.1794 (569) S=0.001	0.1291 (568) S=0.001	0.1265 (561) S=0.001
CNC1	0.5339 (547) S=0.201	0.5510 (549) S=0.001	-0.0668 (550) S=0.059	0.5753 (537) S=0.001	0.3308 (551) S=0.001	0.3724 (551) S=0.001	0.4958 (551) S=0.001	0.2634 (552) S=0.001	0.1405 (551) S=0.001	0.1756 (545) S=0.001
CNC2	0.5241 (555) S=0.001	0.5419 (555) S=0.001	-0.0038 (556) S=0.464	0.7312 (543) S=0.001	0.3431 (558) S=0.001	0.3418 (558) S=0.001	0.1411 (561) S=0.001	0.0852 (562) S=0.022	0.0372 (561) S=0.189	0.1473 (555) S=0.001
CNC3	0.5056 (537) S=0.001	0.6063 (559) S=0.001	-0.0294 (560) S=0.244	0.6593 (545) S=0.001	0.2358 (560) S=0.001	0.2829 (560) S=0.001	0.3209 (564) S=0.001	0.1046 (565) S=0.006	0.0176 (564) S=0.339	0.1247 (558) S=0.002
CNC4	0.5127 (562) S=0.001	0.5245 (563) S=0.001	-0.1757 (564) S=0.001	0.4770 (549) S=0.001	0.2234 (564) S=0.001	0.2575 (564) S=0.001	0.3212 (569) S=0.001	0.1435 (570) S=0.001	0.1297 (569) S=0.001	0.1600 (562) S=0.001
CNC5	0.4890 (554) S=0.001	0.4550 (554) S=0.086	-0.1069 (555) S=0.006	0.4511 (541) S=0.001	0.3014 (556) S=0.001	0.3282 (556) S=0.001	0.5121 (558) S=0.001	0.2190 (559) S=0.003	0.2101 (558) S=0.001	0.1729 (552) S=0.295
DMC1	0.4003 (560) S=0.001	0.6580 (558) S=0.001	0.2309 (559) S=0.319	0.0403 (543) S=0.001	0.0455 (558) S=0.174	0.0892 (558) S=0.142	-0.0104 (561) S=0.018	0.0016 (561) S=0.403	0.0268 (561) S=0.005	-0.0229 (554) S=0.131
DMC2	1.0000 (0) S=0.001	0.5530 (557) S=0.001	0.0200 (558) S=0.001	0.5605 (542) S=0.001	0.3414 (557) S=0.001	0.3898 (557) S=0.001	0.2380 (560) S=0.001	0.1099 (561) S=0.005	0.0834 (560) S=0.024	0.0478 (553) S=0.295
EMC1	0.5530 (557) S=0.001	1.0000 (0) S=0.001	0.2881 (563) S=0.001	0.5853 (545) S=0.001	0.2785 (559) S=0.001	0.2964 (559) S=0.001	0.1891 (562) S=0.001	0.1058 (563) S=0.006	-0.0156 (562) S=0.356	0.0773 (555) S=0.034

(COEFFICIENT / CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	DMC2	EMC1	EMC2	GALL1	GALL2	GALL3	V115	V116	V117	V118
EMC2	0.0200 (558) S=0.319	0.2881 (563) S=0.001	1.0000 (0) S=0.001	-0.0145 (545) S=0.368	0.0887 (559) S=0.018	0.0154 (559) S=0.358	-0.1335 (562) S=0.001	-0.0445 (562) S=0.146	-0.0527 (562) S=0.106	-0.0015 (555) S=0.486
GALL1	0.5605 (542) S=0.001	0.5853 (545) S=0.001	-0.0145 (0) S=0.368	1.0000 (549) S=0.001	0.4280 (548) S=0.001	0.3973 (548) S=0.001	0.2296 (548) S=0.001	0.1095 (548) S=0.005	0.0680 (548) S=0.056	0.1394 (548) S=0.001
GALL2	0.3414 (557) S=0.001	0.2785 (559) S=0.001	0.0887 (559) S=0.018	0.4280 (549) S=0.001	1.0000 (0) S=0.001	0.4057 (563) S=0.001	0.1294 (563) S=0.001	0.0370 (563) S=0.190	0.0279 (563) S=0.255	0.0505 (556) S=0.117
GALL3	0.3398 (557) S=0.001	0.2964 (559) S=0.001	0.0154 (559) S=0.358	0.3973 (548) S=0.001	0.4057 (548) S=0.001	1.0000 (563) S=0.001	0.2076 (563) S=0.001	0.0890 (563) S=0.017	0.0512 (563) S=0.112	0.0647 (556) S=0.064
V115	0.2380 (560) S=0.001	0.1831 (562) S=0.001	-0.1335 (562) S=0.001	0.2296 (548) S=0.001	0.1294 (563) S=0.001	0.2076 (563) S=0.001	1.0000 (0) S=0.001	0.4133 (0) S=0.001	0.3534 (569) S=0.001	0.3120 (561) S=0.001
V116	0.1099 (561) S=0.005	0.1058 (563) S=0.006	-0.0445 (563) S=0.146	0.1095 (549) S=0.005	0.0370 (561) S=0.190	0.0890 (564) S=0.017	0.4133 (564) S=0.001	1.0000 (569) S=0.001	0.2376 (569) S=0.001	0.2793 (561) S=0.001
V117	0.0834 (560) S=0.024	-0.0156 (562) S=0.356	-0.0527 (562) S=0.106	0.0680 (548) S=0.056	0.0279 (563) S=0.255	0.0512 (563) S=0.112	0.3534 (563) S=0.001	0.2376 (569) S=0.001	1.0000 (0) S=0.001	0.5175 (561) S=0.001
V118	0.0478 (553) S=0.131	0.0773 (555) S=0.034	-0.0015 (555) S=0.460	0.1394 (541) S=0.001	0.0505 (556) S=0.117	0.0647 (556) S=0.004	0.3128 (561) S=0.001	0.2793 (561) S=0.001	0.5175 (561) S=0.001	1.0000 (0) S=0.001
V120	0.1875 (560) S=0.001	0.1321 (562) S=0.001	-0.1244 (562) S=0.002	0.2071 (548) S=0.001	0.1293 (563) S=0.001	0.1672 (563) S=0.001	0.7331 (568) S=0.001	0.4221 (568) S=0.001	0.3870 (568) S=0.001	0.3864 (568) S=0.001
V121	-0.1251 (560) S=0.002	-0.0201 (562) S=0.016	0.0353 (562) S=0.012	-0.1163 (548) S=0.003	-0.0458 (563) S=0.139	-0.0865 (563) S=0.020	-0.4415 (568) S=0.001	-0.0490 (568) S=0.121	-0.1161 (568) S=0.003	-0.1401 (568) S=0.001
V122	0.0135 (557) S=0.375	-0.0708 (559) S=0.047	-0.0285 (545) S=0.251	-0.0250 (560) S=0.290	0.0162 (560) S=0.360	0.0082 (560) S=0.423	0.1003 (560) S=0.009	0.0676 (560) S=0.054	0.2591 (560) S=0.001	0.1916 (556) S=0.001

(COEFFICIENT / CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	DMC2	EMC1	EMC2	GALLI	GALL2	GALL3	V115	V116	V117	V118
V123	0.1049 (5591 S=0.007	0.0576 (5611 S=0.006	-0.0035 S=0.467	0.0253 (5471 S=0.278	0.1722 (5621 S=0.001	0.0680 (5621 S=0.054	-0.0415 (5671 S=0.162	-0.0630 (5681 S=0.067	0.0260 (5671 S=0.269	-0.0242 (5601 S=0.284
V124	0.0885 (5591 S=0.018	0.0147 (5601 S=0.364	-0.0355 S=0.201	-0.0090 (5461 S=0.417	0.1526 (5611 S=0.001	0.0311 (5611 S=0.231	-0.0129 (5661 S=0.380	-0.0630 (5671 S=0.067	0.0150 (5661 S=0.361	-0.0298 (5591 S=0.241
V126	-0.0703 (5591 S=0.049	-0.0604 S=0.077	0.0676 S=0.055	-0.097 (5611 S=0.052	0.0520 (5471 S=0.109	-0.0706 (5621 S=0.047	-0.3992 (5621 S=0.001	-0.2061 (5681 S=0.001	-0.0779 (5671 S=0.032	-0.1242 (5601 S=0.002
V128	0.0373 (5591 S=0.189	0.0385 S=0.182	-0.0135 S=0.375	0.0140 (5611 S=0.372	-0.0944 (5471 S=0.013	-0.0317 (5621 S=0.226	0.1719 (5671 S=0.001	0.1327 (5681 S=0.001	0.1120 (5671 S=0.004	0.1052 (5601 S=0.006
V130	0.0917 (5571 S=0.015	0.0131 S=0.379	0.0034 S=0.468	-0.0074 (5591 S=0.432	0.1723 (5601 S=0.001	0.0253 (5621 S=0.275	-0.1097 (5661 S=0.003	-0.1329 (5661 S=0.001	-0.0246 (5651 S=0.280	-0.0844 (5581 S=0.023
RACE	-0.1165 (5501 S=0.003	0.0156 S=0.358	-0.0111 S=0.397	-0.0098 (5511 S=0.410	-0.1445 (5401 S=0.001	-0.0334 (5531 S=0.216	-0.0292 (5551 S=0.447	0.0057 (5561 S=0.167	-0.0411 (5551 S=0.167	0.0110 (5481 S=0.398
V132	0.1419 (5521 S=0.001	0.1057 S=0.006	-0.0600 S=0.014	0.0945 (5541 S=0.079	0.0624 (5401 S=0.071	0.1083 (5551 S=0.005	0.4519 (5581 S=0.001	0.1946 (5591 S=0.001	0.1438 (5581 S=0.001	0.1724 (5511 S=0.001

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	V120	V121	V122	V123	V124	V126	V128	V130	RACE	V132
AMC1	0.2548 (561) S=0.001	-0.1867 (561) S=0.001	0.0105 (558) S=0.402	-0.1757 (560) S=0.001	-0.1980 (559) S=0.001	-0.2148 (560) S=0.001	0.0893 (556) S=0.017	-0.2010 (558) S=0.001	0.1161 (550) S=0.003	0.1897 (553) S=0.001
AMC2	0.2788 (557) S=0.001	-0.2201 (557) S=0.001	-0.0017 (554) S=0.484	-0.1562 (556) S=0.001	-0.1626 (555) S=0.001	-0.2753 (556) S=0.001	0.0469 (556) S=0.135	-0.1775 (554) S=0.001	0.1521 (545) S=0.001	0.2376 (548) S=0.001
AMC3	0.1664 (560) S=0.001	-0.1163 (560) S=0.003	-0.0461 (557) S=0.139	-0.1271 (559) S=0.001	-0.1336 (558) S=0.001	-0.2042 (559) S=0.001	0.0415 (559) S=0.163	-0.1300 (557) S=0.001	0.0512 (549) S=0.115	0.1896 (552) S=0.001
BMCM1	-0.0064 (563) S=0.439	0.0630 (563) S=0.068	0.0208 (560) S=0.312	0.0960 (562) S=0.011	0.0711 (561) S=0.046	0.0330 (562) S=0.218	-0.0891 (562) S=0.017	0.1225 (560) S=0.002	-0.0103 (550) S=0.404	-0.0121 (553) S=0.388
BMCM2	-0.0035 (568) S=0.467	0.0510 (569) S=0.113	0.0155 (565) S=0.356	0.1362 (567) S=0.001	0.1092 (566) S=0.005	0.1066 (567) S=0.006	-0.1230 (567) S=0.002	0.1806 (565) S=0.001	-0.1135 (555) S=0.004	-0.0566 (558) S=0.091
BMCM3	-0.0464 (565) S=0.136	0.0024 (565) S=0.069	0.0099 (562) S=0.408	0.1296 (564) S=0.001	0.1194 (563) S=0.002	0.1575 (564) S=0.001	-0.1282 (564) S=0.001	0.1739 (562) S=0.001	-0.0689 (560) S=0.053	-0.1177 (555) S=0.003
BMCM4	0.0987 (565) S=0.009	-0.0317 (565) S=0.226	0.0346 (562) S=0.207	-0.0924 (564) S=0.014	-0.0863 (563) S=0.020	-0.0685 (564) S=0.052	-0.1039 (564) S=0.007	-0.0928 (564) S=0.014	0.0658 (562) S=0.061	0.0727 (555) S=0.043
BMCM1	0.2334 (558) S=0.001	-0.1247 (559) S=0.002	0.0204 (556) S=0.316	0.1371 (557) S=0.001	0.1033 (556) S=0.007	-0.1134 (557) S=0.004	0.0425 (556) S=0.052	0.0967 (555) S=0.011	-0.0981 (556) S=0.011	0.1620 (550) S=0.001
BMCM2	0.2385 (567) S=0.001	-0.1355 (567) S=0.001	-0.0140 (564) S=0.370	0.0934 (566) S=0.013	0.0667 (565) S=0.057	-0.0984 (566) S=0.010	-0.0232 (566) S=0.291	0.0826 (564) S=0.025	-0.1214 (554) S=0.002	0.1441 (557) S=0.001
BMCM3	0.2759 (562) S=0.001	-0.1334 (563) S=0.001	0.0147 (560) S=0.364	0.0595 (561) S=0.080	0.0466 (560) S=0.135	0.0466 (561) S=0.001	-0.1547 (561) S=0.071	0.0620 (559) S=0.308	0.0212 (550) S=0.168	0.1948 (553) S=0.001
BMCM4	0.2434 (563) S=0.001	-0.1323 (563) S=0.001	0.0181 (560) S=0.335	0.1169 (562) S=0.003	0.0839 (561) S=0.023	-0.1461 (562) S=0.001	0.0514 (560) S=0.112	0.0721 (559) S=0.044	-0.0733 (550) S=0.043	0.1885 (554) S=0.001

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	V120	V121	V122	V123	V124	V126	V128	V130	RACE	V132
BMC15	0.2053 (564) S=0.001	-0.1205 (565) S=0.002	-0.0099 (562) S=0.407	0.1279 (563) S=0.001	0.1032 (562) S=0.007	-0.0620 (563) S=0.071	-0.0132 (563) S=0.377	0.1154 (563) S=0.003	-0.1271 (552) S=0.001	0.1062 (555) S=0.006
BMC16	0.1482 (567) S=0.001	-0.0872 (567) S=0.019	0.0269 (564) S=0.262	0.1944 (566) S=0.001	0.1513 (565) S=0.001	-0.0147 (566) S=0.364	0.0001 (566) S=0.499	0.1711 (566) S=0.001	-0.1520 (564) S=0.001	0.0719 (558) S=0.045
BMC17	0.3141 (568) S=0.001	-0.1657 (568) S=0.001	0.0230 (565) S=0.292	-0.0075 (567) S=0.429	-0.0190 (566) S=0.326	-0.1930 (567) S=0.001	0.0508 (567) S=0.114	-0.0414 (567) S=0.163	-0.0059 (555) S=0.445	0.2355 (558) S=0.001
CMC1	0.4052 (551) S=0.001	-0.2416 (552) S=0.001	0.0420 (549) S=0.163	0.0029 (550) S=0.473	-0.0002 (549) S=0.498	-0.2047 (550) S=0.001	0.0920 (550) S=0.015	-0.0390 (548) S=0.181	0.0276 (541) S=0.261	0.2627 (543) S=0.001
CMC2	0.1389 (561) S=0.001	-0.0530 (562) S=0.105	-0.0513 (559) S=0.113	0.0670 (560) S=0.057	0.0395 (559) S=0.175	-0.0630 (560) S=0.068	0.0241 (560) S=0.285	0.0303 (558) S=0.238	-0.0391 (548) S=0.180	0.1070 (551) S=0.006
CMC3	0.2451 (564) S=0.001	-0.1911 (565) S=0.001	-0.0304 (562) S=0.236	-0.0929 (563) S=0.014	-0.1106 (562) S=0.004	-0.1718 (563) S=0.001	0.0499 (563) S=0.119	-0.1261 (561) S=0.001	0.1070 (551) S=0.006	0.1533 (554) S=0.001
CMC4	0.2371 (569) S=0.001	-0.1411 (569) S=0.001	-0.0151 (566) S=0.360	0.1197 (568) S=0.002	0.1067 (567) S=0.006	-0.1294 (568) S=0.001	0.0491 (568) S=0.121	0.0956 (566) S=0.011	-0.0974 (556) S=0.001	0.1706 (559) S=0.001
CMC5	0.3933 (558) S=0.001	-0.2555 (559) S=0.001	0.0430 (556) S=0.156	0.0309 (557) S=0.233	0.0345 (556) S=0.208	-0.2169 (557) S=0.001	0.1346 (557) S=0.001	0.0090 (557) S=0.416	-0.0139 (556) S=0.373	0.2574 (547) S=0.001
DMC1	-0.0003 (561) S=0.493	-0.0143 (561) S=0.369	-0.0107 (558) S=0.400	0.0375 (560) S=0.188	0.0328 (559) S=0.219	0.0250 (560) S=0.277	-0.0190 (560) S=0.327	0.0291 (558) S=0.247	-0.0853 (552) S=0.023	0.0519 (554) S=0.111
DMC2	0.1875 (560) S=0.001	-0.1251 (560) S=0.002	0.0135 (557) S=0.375	0.1049 (559) S=0.007	0.0885 (558) S=0.018	-0.0703 (559) S=0.048	0.0373 (559) S=0.189	0.0917 (557) S=0.015	-0.1165 (550) S=0.003	0.1419 (552) S=0.001
EMC1	0.1321 (562) S=0.001	-0.0901 (562) S=0.016	-0.0708 (559) S=0.047	0.0576 (561) S=0.086	0.0147 (560) S=0.364	-0.0604 (561) S=0.077	0.0385 (561) S=0.182	0.0131 (559) S=0.379	0.0156 (551) S=0.358	0.1057 (554) S=0.006

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	V120	V121	V122	V123	V124	V126	V128	V130	RACE	V132
EMC2	-0.1244 (562) S=0.002	0.0953 (562) S=0.012	-0.0285 (559) S=0.251	-0.0035 (561) S=0.467	-0.0355 (560) S=0.201	0.0676 (561) S=0.055	-0.0135 (561) S=0.375	0.0034 (559) S=0.468	-0.0111 (551) S=0.397	-0.0600 (554) S=0.079
GALL1	0.2071 (549) S=0.001	-0.1163 (549) S=0.003	-0.0250 (545) S=0.280	0.0253 (547) S=0.278	-0.0090 (546) S=0.417	-0.0697 (547) S=0.052	0.0140 (547) S=0.372	-0.0074 (545) S=0.432	-0.0098 (545) S=0.410	0.0945 (540) S=0.014
GALL2	0.1293 (563) S=0.001	-0.0458 (563) S=0.139	0.0152 (560) S=0.360	0.1722 (562) S=0.001	0.1526 (561) S=0.001	0.0520 (562) S=0.109	-0.0944 (562) S=0.013	0.1723 (560) S=0.001	-0.1445 (553) S=0.001	0.0624 (555) S=0.071
GALL3	0.1672 (563) S=0.001	-0.0865 (563) S=0.020	0.0082 (560) S=0.423	0.0680 (502) S=0.054	0.0311 (501) S=0.231	-0.0706 (562) S=0.047	-0.0317 (562) S=0.226	0.0253 (560) S=0.275	-0.0334 (553) S=0.216	0.1083 (555) S=0.005
V115	0.7331 (508) S=0.001	-0.4415 (568) S=0.001	0.1000 (565) S=0.009	-0.0415 (567) S=0.162	-0.0129 (566) S=0.390	-0.3992 (567) S=0.001	0.1719 (567) S=0.001	-0.1097 (565) S=0.005	-0.0292 (555) S=0.246	0.4519 (558) S=0.001
V116	0.4221 (569) S=0.001	-0.0490 (569) S=0.121	0.0676 (566) S=0.054	-0.0630 (568) S=0.067	-0.0630 (567) S=0.067	-0.2041 (568) S=0.001	0.1327 (568) S=0.001	-0.1329 (566) S=0.001	0.0057 (556) S=0.447	0.1946 (559) S=0.001
V117	0.3870 (568) S=0.001	-0.1087 (563) S=0.005	0.2591 (565) S=0.001	0.0260 (507) S=0.269	0.0150 (566) S=0.361	-0.0779 (567) S=0.032	0.1120 (567) S=0.004	-0.0246 (565) S=0.280	-0.0611 (555) S=0.167	0.1438 (558) S=0.001
V118	0.3864 (561) S=0.001	-0.1401 (562) S=0.001	0.1918 (559) S=0.001	-0.0242 (560) S=0.284	-0.0298 (559) S=0.241	-0.1242 (560) S=0.002	0.1052 (561) S=0.006	-0.0844 (558) S=0.023	0.0110 (548) S=0.398	0.1724 (551) S=0.001
V120	1.0000 (0) S=0.001	-0.3277 (568) S=0.001	0.1617 (565) S=0.001	-0.1079 (567) S=0.005	-0.0925 (566) S=0.014	-0.3306 (567) S=0.001	0.1518 (567) S=0.001	-0.2017 (565) S=0.001	0.0650 (555) S=0.145	0.3401 (558) S=0.001
V121	-0.3277 (568) S=0.001	1.0000 (0) S=0.001	-0.0082 (566) S=0.422	0.0408 (567) S=0.166	0.0244 (566) S=0.281	-0.2406 (567) S=0.001	-0.0583 (567) S=0.083	0.0645 (565) S=0.022	-0.0330 (555) S=0.219	-0.2179 (558) S=0.001
V122	0.1417 (565) S=0.001	-0.0082 (566) S=0.422	1.0000 (0) S=0.001	0.0850 (564) S=0.022	0.1023 (563) S=0.008	-0.0017 (564) S=0.484	-0.0326 (564) S=0.220	0.1293 (562) S=0.001	-0.0091 (552) S=0.415	0.0515 (555) S=0.113

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

----- PEARSON CORRELATION COEFFICIENTS -----

	V120	V121	V122	V123	V124	V126	V128	V130	RACE	V132
V123	-0.1079 1 S=0.005	0.0408 1 S=0.166	0.0850 1 S=0.022	1.0000 1 S=0.001	0.8923 1 S=0.001	0.2151 1 S=0.001	-0.1345 1 S=0.001	0.8453 1 S=0.001	-0.2165 1 S=0.001	-0.0173 1 S=0.034
V124	-0.0925 1 S=0.014	0.0244 1 S=0.281	0.1023 1 S=0.008	0.8923 1 S=0.001	1.0000 1 S=0.001	0.2165 1 S=0.001	-0.1300 1 S=0.001	0.8227 1 S=0.001	-0.2200 1 S=0.001	-0.0982 1 S=0.010
V126	-0.3306 1 S=0.001	0.2406 1 S=0.001	-0.0017 1 S=0.001	0.2151 1 S=0.001	0.2165 1 S=0.001	1.0000 1 S=0.001	-0.2590 1 S=0.001	0.3776 1 S=0.001	-0.1672 1 S=0.001	-0.7291 1 S=0.001
V128	0.1518 1 S=0.001	-0.0583 1 S=0.083	-0.0326 1 S=0.220	-0.1345 1 S=0.001	-0.1300 1 S=0.001	-0.2590 1 S=0.001	1.0000 1 S=0.001	-0.2109 1 S=0.001	-0.0140 1 S=0.001	0.2095 1 S=0.001
V130	-0.2017 1 S=0.001	0.0845 1 S=0.022	0.1293 1 S=0.001	0.8453 1 S=0.001	0.8227 1 S=0.001	0.3776 1 S=0.001	-0.2109 1 S=0.001	1.0000 1 S=0.001	-0.2820 1 S=0.001	-0.2135 1 S=0.001
RACE	0.0450 1 S=0.145	-0.0330 1 S=0.219	-0.0091 1 S=0.415	-0.2165 1 S=0.001	-0.2200 1 S=0.001	-0.1672 1 S=0.001	-0.0140 1 S=0.001	-0.2820 1 S=0.001	1.0000 1 S=0.001	0.0683 1 S=0.055
V132	0.3401 1 S=0.001	-0.2179 1 S=0.001	0.0515 1 S=0.113	-0.0773 1 S=0.034	-0.0773 1 S=0.013	-0.7291 1 S=0.010	0.2095 1 S=0.001	-0.2135 1 S=0.001	0.0683 1 S=0.055	1.0000 1 S=0.001

(COEFFICIENT / (CASES) / SIGNIFICANCE) (A VALUE OF 99.0000 IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED)

APPENDIX G
ATTITUDE SCALES BY CERTAIN DEMOGRAPHIC VARIABLES

Table G. 1
MEAN ATTITUDE SCALE SCORES*, BY EXPERIENCE IN UNIT
WITH WOMAN COMPANY COMMANDER, BY SEX

	Not Assigned to Unit With Woman Company Commander		Assigned to Unit With Woman Company Commander	
	<u>Male</u>	<u>Female</u>	<u>Male</u>	<u>Female</u>
AMC1	19.8	23.0	20.6	24.1
AMC2	34.3	33.6	34.1	34.1
AMC3	5.9	6.8	5.3	6.6
BMCW1	41.8	50.5	41.0	52.2
BMCW2	18.6	21.0	18.2	21.3
BMCW3	14.3	18.7	14.1	19.0
CMC1	11.5	14.7	11.5	15.5
CMC2	14.7	15.5	15.0	15.8
CMC3	4.1	5.2	3.5	5.2
CMC4	5.5	6.7	5.8	6.6
CMC5	11.3	13.8	11.2	13.9
DMC2	11.8	13.2	12.0	13.2
EMC1	10.8	12.0	11.1	12.4
Approximate N	283	117	44	125

*Higher Scores reflect more positive attitudes.

Table G.2
MEAN ATTITUDE SCALE SCORES*, BY EXPERIENCE IN UNIT WITH
MEN AND WOMEN SOLDIERS, BY SEX

	Not Assigned to Unit With Men & Women Soldiers		Assigned to Unit With Men & Women Soldiers	
	Male	Female	Male	Female
AMC1	20.2	23.2	19.8	23.6
AMC2	23.5	27.1	22.9	26.0
AMC3	6.2	6.3	5.6	6.7
BMCW1	42.4	46.6	41.4	51.6
BMCW2	19.0	21.2	18.3	21.1
BMCW3	14.7	17.1	14.1	18.9
CMC1	11.6	16.1	11.5	15.1
CMC2	14.7	15.5	15.0	15.8
CMC3	4.4	5.2	3.9	5.2
CMC4	5.4	7.2	5.6	6.6
CMC5	11.3	13.8	11.2	13.9
DMC2	12.1	13.0	11.6	13.2
EMC1	11.5	11.8	10.5	12.2
Approximate N	108	10	218	232

*Higher scores reflect a more positive attitude.

Table G.3
 MEAN ATTITUDE SCALE SCORE*, BY EXPERIENCE IN SMALL UNIT
 WITH MEN & WOMEN SOLDIERS, BY SEX

	Not Assigned to Small Unit With Men & Women Soldiers		Assigned to Small Unit With Men & Women Soldiers	
	<u>Male</u>	<u>Female</u>	<u>Male</u>	<u>Female</u>
AMC1	20.0	22.5	19.9	23.8
AMC2	23.3	25.4	22.9	26.2
AMC3	5.9	6.9	5.7	6.6
BMCW1	42.3	47.7	41.5	52.1
BMCW2	18.8	20.0	18.3	21.4
BMCW3	14.6	17.9	14.1	19.1
CMC1	11.6	14.7	11.6	15.2
CMC2	14.4	14.4	15.1	16.0
CMC3	4.2	4.8	4.0	5.3
CMC4	5.5	6.3	5.6	6.7
CMC5	11.3	13.5	11.3	13.9
DMC2	12.3	12.4	11.4	13.4
EMC1	11.2	11.2	10.5	12.4
Approximate N	152	41	170	198

*Higher scores reflect more positive attitudes.

Table G.4
MEAN ATTITUDE SCALE SCORES*, BY SUPERVISORY EXPERIENCE, BY SEX

	No Supervisory Experience		Experience Supervising Men & Women		Experience Supervising Men Only		Experience Supervising Women Only	
	Male	Female	Male	Female	Male	Female	Male	Female
AMC1	21.8	23.3	18.9	23.9	21.3	21.1	29.0	23.6
AMC2	25.1	25.9	22.7	26.1	23.3	24.9	27.0	28.5
AMC3	6.1	7.1	5.5	6.5	6.4	7.8	7.0	6.6
BMCW1	42.0	47.3	41.3	52.6	42.8	50.7	46.0	51.5
BMCW2	18.9	19.9	18.4	21.3	18.8	22.5	22.0	21.5
BMCW3	14.5	17.8	14.2	19.3	14.5	17.4	19.0	18.3
CMC1	11.9	14.7	11.5	15.3	11.5	14.5	12.0	15.0
CMC2	14.8	15.1	14.6	16.0	15.1	15.4	16.0	14.4
CMC3	4.3	5.3	3.8	5.2	4.4	4.6	6.0	5.4
CMC4	5.3	6.4	5.6	6.8	5.4	6.3	6.0	6.2
CMC5	10.8	13.4	11.2	14.0	11.5	13.5	15.0	13.9
DMC2	11.8	12.9	11.6	13.4	12.2	12.5	14.0	12.5
EMC1	11.5	11.8	10.6	12.2	11.1	12.3	15.0	13.0
Approximate N	32	48	197	167	94	15	1	11

*Higher scores reflect more positive attitudes.

Table G.5

MEAN ATTITUDE SCALE SCORES*, BY EXPERIENCE WITH
OPPOSITE SEX SUPERVISOR, BY SEX OF RESPONDENT

	Never Had Supervisor of Opposite Sex		Had Supervisor of Opposite Sex	
	Male	Female	Male	Female
AMC1	19.8	23.7	22.8	20.6
AMC2	23.0	24.0	23.3	26.1
AMC3	5.8	6.0	5.7	6.7
BMCW1	41.7	50.4	41.8	51.3
BMCW2	18.5	20.9	18.8	21.1
BMCW3	14.3	18.6	14.3	18.8
CMC1	11.3	15.6	12.2	15.1
CMC2	14.6	17.7	15.4	15.6
CMC3	4.2	4.8	4.0	5.3
CMC4	5.5	7.8	5.6	6.6
CMC5	11.2	14.3	11.5	13.8
DMC2	11.7	13.4	11.9	13.2
EMC1	10.9	12.4	10.6	12.1
Approximate N	251	7	76	234

*Higher scores reflect more positive attitudes.

Table G.6
MEAN ATTITUDE SCALE SCORES*, BY EXPERIENCE WITH
SAME SEX SUPERVISOR, BY SEX OF RESPONDENT

	Never Had Supervisor of Same Sex		Had Supervisor of Same Sex	
	<u>Male</u>	<u>Female</u>	<u>Male</u>	<u>Female</u>
AMC1	21.3	24.0	19.9	23.2
AMC2	24.5	26.5	23.0	25.8
AMC3	5.3	6.9	5.8	6.6
BMCW1	40.6	51.3	41.8	51.4
BMCW2	18.6	21.2	18.5	21.1
BMCW3	14.2	18.6	14.3	19.0
CMC1	11.5	15.4	11.5	14.9
CMC2	14.2	15.8	14.8	15.6
CMC3	4.2	5.4	4.1	5.1
CMC4	4.7	6.8	5.6	6.5
CMC5	11.1	14.1	11.3	13.7
DMC2	12.4	13.5	11.8	13.0
EMC1	12.1	12.2	10.7	12.2
Approximate N	17	100	309	142

*Higher scores reflect more positive attitudes.

Table G.7

MEAN ATTITUDE SCALE SCORES, BY EXPERIENCE IN
FIELD TRAINING EXERCISES, BY RESPONDENT'S SEX

	No Experience With Men & Women Soldiers in a <u>Field Training Exercise</u>		Had Experience With Men & Women Soldiers in a <u>Field Training Exercise</u>	
	<u>Male</u>	<u>Female</u>	<u>Male</u>	<u>Female</u>
AMC1	20.4	23.3	19.7	23.7
AMC2	23.4	26.0	22.9	26.1
AMC3	6.1	7.0	5.7	6.6
BMCW1	43.1	50.1	40.9	51.9
BMCW2	19.1	20.8	18.2	21.3
BMCW3	14.9	18.5	13.9	19.0
CMC1	11.8	14.7	11.4	15.3
CMC2	15.2	15.9	14.5	15.6
CMC3	4.4	5.2	3.9	5.2
CMC4	5.7	6.8	5.5	6.6
CMC5	11.3	13.8	11.3	13.8
DMC2	11.9	12.9	11.7	13.4
EMC1	11.2	12.7	10.6	12.0
Approximate N	123	69	200	173

*Higher scores reflect more positive attitudes.