항법 및 센싱 시스템

구 분		내 용					
과 목 구 분		녹색교통대학원 / 전기및전자공학과 특강 / 로봇공학제					
과 목 번 호		GT508/EE827C					
교과목명	국 문	항법 및 센싱 시스템					
표워크 0	영 문	Navigation and Sensing Systems					
담 당 교 수		공승현 (Prof. Seung-Hyun Kong)					
강의:실험:학점 (숙제시간)		3:0:3(6)					
학・석사 상호인정교과목 여부		Y	개설학기	Tu./Th.	PM 1:00)~14:15	
교과목 개요	본 과목에서는 자동차 항법 시스템에 사용되는 GNSS (Global Navigation						
	Satellite Systems)와 INS (Inertial Navigation System) 기술의 원리와 신호 체계						
	및 신호 처리 기술을 소개한다. 또한, 최신 영상과 Lidar 기반 항법 기술에						
	대하여 알아본다.						
	This course introduces the principles, signal structures, and signal processing						
	techniques for GNSS and INS that are used for vehicular navigation systems.						
	In addition, the course includes a study on recent navigation technologies						
	based on vision and Lidar.						

Grading:

Attendance (10%), Homework (15%), Mid-Term Exam (25%), Final Exam (25%), Project (25%)

Pre-Requisit:

EE202 (Signals and Systems), (optional) EE321 (Communication Theory)

Textbook:

A-GPS - Assisted GPS, GNSS, and SBAS, Artech House, V. Diggelen

Fundamentals of Global Positioning System Receivers - A software approach, Willey, J. Tsui

Course Schedule:

Period	Contents	Period	Contents
1week	Overview of GNSS	9week	GNSS Receiver Signal Processing
2week	Spreading Codes of GNSS	10week	Inertial navigation systems
3week	GNSS FEC	11week	Discrete Kalman Filtering
4week	GNSS Modulation - AltBOC	12week	Sensor fusion using Kalman Filters
5week	GNSS Modulation - MBOC	13week	(Case study) vision navigation
6week	GNSS receiver - RF part	14week	(Case study) lidar navigation
7week	GNSS receiver - Digital part	15week	(Case study) sensor fusion using Deep Learning
8week	Mid-Term	16week	Final