a. On dresse un tableau de l'évolution qualitative des quantités de matière au cours du titrage.

	Évolution des quanti- tés de matière des ions dans le bécher			Estimation de la pente	
	Cl-	Ag⁺	NO ₃	Na⁺	
V < V _{éqv}	И	0	7	\rightarrow	$\lambda_{NO_{i}} < \lambda_{O_{i}}$: pente négative
$V > V_{ m \'eqv}$	0	7	7	\rightarrow	Pente positive

La pente est plus forte pour $V > V_{\text{éqv}}$ car $\lambda_{\text{NO}_3} < \lambda_{\text{CI}}$ et un ion NO₃ « remplace » un ion Cl⁻ (stœchiométries identiques).

Les conductivités ioniques molaires des ions nitrate et chlorure sont proches, donc la courbe n'est que légèrement décroissante.

b. À l'équivalence :
$$\frac{n_{\text{CI}^-, \text{début}}}{1} = \frac{n_{\text{Ag}^+, \text{éqv}}}{1}$$
 soit $n_{\text{CI}^-, \text{début}} = c \times V_{\text{éqv}}$.

A. N.:
$$n_{\text{Cl}^-,d\acute{e}but} = 200 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1} \times 8,3 \times 10^{-3} \text{ L} = 1,66 \text{ mmol}$$

dans l'échantillon de volume V = 10,0 mL, soit 16,6 mmol dans les 100 mL de solution.

On en déduit :
$$m_{\text{NaCl}} = 10 \times n_{\text{Cl}^-, \text{début}} \times M$$
.

A. N.: $m_{\text{N=Cl}} = 10 \times 1,66 \times 10^{-3} \, \text{mol} \times 58,4 \, \text{g} \cdot \text{mol}^{-1} = 969 \, \text{mg}$. D'après les indications du fabricant, l'échantillon de départ contient 99,5% de chlorure de sodium, soit une masse de chlo-

rure de sodium de 0,995 g ou encore 995 mg dans un échantillon de masse m = 1,00 g.

La masse déterminée étant très proche de celle indiquée par le fabricant, et compte-tenu des incertitudes expérimentales, ces deux valeurs sont considérées comme compatibles.

1. Questions préliminaires

a. Le deuxième point des données indique qu'une solution saturée comporte des ions en solution aqueuse, mais aussi le soluté solide. Or le **DOC**. **2** indique la présence de particules solides dans la solution S_2 . Cette solution S_2 est obtenue à partir de la solution S_1 (solution de chlorure de calcium) dans laquelle est ajoutée une solution d'hydroxyde de sodium, jusqu'à apparition de particules solides d'hydroxyde de calcium Ca(OH)₂. La solution S_2 ainsi obtenue est donc saturée.

b. Dans la solution saturée S_2 : Ca²⁺(aq), Cl⁻(aq), Na⁺(aq), HO⁻(aq) et Ca(OH)₂(s).

Dans la solution S_3 , le solide a été éliminé par filtration, il ne reste donc que : $Ca^{2+}(aq)$, $Cl^{-}(aq)$, $Na^{+}(aq)$ et $HO^{-}(aq)$.

Masse et quantité de matière d'ion calcium manquante dans l'aquarium

La concentration en masse d'ion calcium mesurée dans l'aquarium est $c_{\text{mesurée}} = 360 \text{ mg} \cdot \text{L}^{-1}$. Or le **DOC. 1** indique une concentration en masse optimale d'ion calcium dans un aquarium de $c_{\text{optimale}} = 400 \text{ mg} \cdot \text{L}^{-1}$.

Le volume de l'aquarium est V = 100 L.

La masse de calcium manquante dans l'aquarium est donc :

$$m_{\text{manquante}} = (c_{\text{optimale}} - c_{\text{mesurée}}) \times V.$$

Cela correspond à une quantité de matière d'ion calcium

manquant :
$$n_{\text{manquante}} = \frac{m_{\text{manquant}}}{M(\text{Ca}^{2+})}$$
.
A. N. : $m_{\text{manquante}} = (400 - 360) \times 100 = 4.0 \text{ g}$
et $n_{\text{manquante}} = \frac{4.0}{40.0} = 0.10 \text{ mol.}$

Concentration en ion calcium dans la solution saturée en hydroxyde de calcium

Dans l'expérience décrite dans le **DOC. 2**, la précipitation a été atteinte. Ainsi, la solution filtrée S_3 contient des ions Ca^{2+} et HO^- à la valeur limite de solubilité. Filtrer permet d'éliminer le précipité formé, soit l'excès de $Ca(OH)_2(s)$, tout en conservant les ions en solution à leur limite de solubilité.

Le titrage décrit dans le **DOC. 2** permet ainsi de déterminer la concentration en ion hydroxyde dans la solution saturée.

La réaction support de titrage mise en jeu est :

$$H_3O^+(aq) + HO^-(aq) \rightarrow H_3O(\ell)$$

L'équivalence est repérable graphiquement par une rupture de pente : $V_{A.\acute{e}qv} = 9.0 \text{ mL}$.

À l'équivalence :
$$\frac{n_{\text{Ho}^-,\text{début}}}{1} = \frac{n_{\text{H}_3\text{O}^+,\text{éqv}}}{1}$$
, soit $c_{\text{HO}^-} \times V_3 = c_{\text{A}} \times V_{\text{A},\text{éqv}}$.

Ainsi : $c_{\text{HO}^-} = \frac{c_{\text{A}} \times V_{\text{A},\text{éqv}}}{V_3}$.

A. N.:
$$c_{HO^{-}} = \frac{0.100 \times 9.0}{20.0} = 4.5 \times 10^{-2} \text{ mol} \cdot L^{-1}$$
.

Lors de la dissolution du solide : $Ca(OH)_2(s) \rightarrow Ca^{2+}(aq) + 2 HO^{-}(aq)$

Ainsi:
$$c_{\text{ca}^{2+}} = \frac{c_{\text{HO}^-}}{2}$$
.
A. N.: $c_{\text{ca}^{2+}} = \frac{4.5 \times 10^{-2}}{2} = 2.3 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$.

Volume de solution saturée à ajouter à l'aquarium

$$V_{\text{ajout}} = \frac{n_{\text{manquant}}}{c_{\text{Ca}^{2+}}}.$$
A. N. : $V_{\text{ajout}} = \frac{0.10}{2.3 \times 10^{-2}} = 4.4 \text{ L}.$

Le volume à ajouter semble cohérent par rapport au volume de l'aquarium (100 L). Le **DOC. 1** indique par ailleurs une préparation de 10 L de solution par la méthode du Kalkwasser, on s'attend donc à obtenir une valeur de solution à ajouter inférieure à 10 L pour cet aquarium.