BIOSTAT 802 Homework #1

Due on January 29, 2018 in class

Problem 1: (Item Response Model) Suppose n students each take an examination with k items. Each item is scored as correct or incorrect, and Y_{ij} equals 1 if the i-th subject correctly answers the j-th item and 0 otherwise. Assume $Y_{ij} \stackrel{ind}{\sim} \text{Bernoulli}(\pi_{ij})$ with

$$logit(\pi_{ij}) = logit(\pi_{ij}|\theta_i, \alpha_j, \beta_j) = \alpha_j \theta_i - \beta_j$$

where the two regression coefficients α_j , β_j may be interpreted as follows. Parameter α_j measures the discriminatory power (to discriminate between strong and weak students) of the j-th item, and parameter β_j represents the difficulty of the j-th item. The quantity θ_i represents the unobserved "ability" of the i-th student, which may be assumed to follow a certain distribution under density $\phi(\theta)$. Thus, when $\alpha_j > 0$, this model implies that stronger students are more likely to correctly answer the j-th item. The objective is to obtain the MLE of α_j and β_j . Solve the following problems:

- (a) Set up the probability space.
- (b) Set up the action space.
- (c) Give the decision function based on the method of MLE.
- (d) Give the risk function under the squared error loss function.

Problem 2 Consider two independent normal populations $X \sim N(\mu_1, 1)$ and $Y \sim N(\mu_2, 1)$, with $\mu_1 \in (-\infty, \infty)$ and $\mu_2 \in (-\infty, \infty)$. The objective is to establish a decision rule for a comparison between the two means. Suppose the action space $A = \{a_0, a_1\}$ where a_0 corresponds to the case for $\mu_1 \leq \mu_2$ and otherwise, a_1 . The loss function is given as follows:

$$L((\mu_1, \mu_2), a_0) = \begin{cases} 0, & \text{if } \mu_1 \leq \mu_2 \\ \mu_1 - \mu_2, & \text{if } \mu_1 > \mu_2; \end{cases}$$

$$L((\mu_1, \mu_2), a_1) = \begin{cases} \mu_2 - \mu_1, & \text{if } \mu_1 \leq \mu_2 \\ 0, & \text{if } \mu_1 > \mu_2; \end{cases}$$

Now given random samples (iid) X_1, \ldots, X_m and Y_1, \ldots, Y_n from the above normal populations, respectively, define a decision rule of the following form:

$$\delta_c(X_1, \dots, X_m; Y_1, \dots, Y_n) = \begin{cases} a_0, & \text{if } \bar{X} \leq \bar{Y} + c, \\ a_1, & \text{otherwise,} \end{cases}$$

where $c \in (-\infty, \infty)$ is a constant, and \bar{X} and \bar{Y} are the respective sample means.

- (a) Let $\theta = \mu_1 \mu_2$. Write the expression of the loss function $L(\theta, \delta_c(x_1, \dots, x_m; y_1, \dots, y_n))$.
- (b) Derive the risk function of the decision rule δ_c under the above loss function in part (a).
- (c) Consider a class of decision rules given by $D = \{\delta_c(x_1, \dots, x_m; y_1, \dots, y_n), c \in (-\infty, \infty)\}$. Show that in this class D every decision rule is inadmissible.

Problem 3 Consider a probability space $(\mathcal{X}, \mathcal{B}_x, \mathcal{P} = \{P_\theta, \theta \in \Theta\})$. Show the following statements.

- (a) If $\delta_0(x)$ is the unique minimax decision rule with respect to the loss function $L(\theta, a)$, then δ_0 is admissible.
- (b) If $\delta_0(x)$ is an admissible decision rule and has a constant risk function on Θ , then δ_0 is the minimax decision rule.