	5	e Perale	chaining linear probing
1)	0	7	2), O 5, V 21 31 1 1
	-1	NEW YORK	1 7
	2		-34 May 7-1 (11) Car = 50037
	3	3	3.4 3
	4		1000年,100日 100日 100日 100日 100日 100日 100日 100日
	5	1,2,	15.7 50 60 00 34 5-0012 = (5-0) 7
	6	27	10+(EN) 3+(6-0)27 ESINDF
	7		
3)	0	3	double hashing
		174	上、近代の)フェ(50) 中 三(77) 主 (77)
	2	子	1.0-A.2+15-AD7=
	3	5	1.3-10/305-13-9) F-17-17
-	4		DE15-101, 22/6-11/9-1-1007
	5	12	DE-10016+(20)3.21 - 34
	6,	27	7+(8:4) 7+(N-H) = (N) 9 H
0	33	= 38	こうおものるおきにからう。こう
1	1)	2'-	33+115/+ (Di-11)7 = F.60.7 x
1	10	$(-c_i)$	+ Wed-not = 11 7 in in the same
			F = H = 0

```
find time complexity using substitution
4) f(1) = Co
                                 f(h-1)=f(n-2)+c,(h-1)+c2
    F(n) = F(n-1) +Gn+C2, n70
                                 Isubstitute into 1
   F(h) = [f(n-z) +c, (n-1) +c,] +c,n +c, (
                    5 ob into @ f(n-2)=f(n-3)+(1(n-2) + C2
   f(n)=[f(n-3)+c,(n-2)+c,]+c,(n-1)+c2+c,n+c2
       = f(n-3) +c,(h-2)+c,(h-1)+c,n+3(c2)
   General Formula
   f(n)=f(n-k)+c,(n-(k-1))+C,(n-(k-2))...c,n+ kc2
   f(1)=(, F(n)=f(n-(n-1))+c,(n-(n-1-1))...c,n+(n-1)62
   n-k=1 f(n) = f(1)+c_1(2)+c_1(3)...+c_1(n)+(n-1)c_2
           | F(n)= Co+C, (2+3+...n)+(n-nc2
   K= h-1
  Sub n-1 fork
                   * sub co for f(1)
   in general formula
6 f(n)=c,+c,(\(\Si-1\)) +(n-1)c,
                       since the sum is from 2 mm
                       we can take the supplied 1 + n minrs!
 F(n)=Co+c, (n(n+1)-1) +(h-1)c2
    = co+c1(n2+n-1)+c2n-c2
             no is the upper bound of this function.
 oo F(n) E O(n')
```

5)	. total Leaves (r, level):
	2. if r.isleaf():
	return level
	Count = O
4.1	s. for each child c of c do:
	6. count t= total Leaves (C; level +1)
	return count
و خا لالان	シェニスクランナインナイン・イン・イン・イン・イン・イン・デー・ティット
	line 2: we check if the current node is a peaf,
ODF	line 3: if it is we return the corrent level.
337-3	line 4: a variable to hold the sum of the levels
	of all the children vaciables
	lines: looping through every child
	ines, adding the lavale at 11 11
	THE CUITENT Dede to the con
(ine 7: returning the sum

5b)	Time complexity: A desired and a second
	et the if Statement Cline 2,3) be constant c,
	et everything inside the loop (line 5,6) be constant 62
	et everything eke Cline 9,7) be constant Cz
	er everything esections if is de constitutions
1:6	leaf node: c
1	therwise: (2 (degree(r)) + c3
1	2 saturation is a contract of .
fC	n) = # operations on leaves + # operations internal nod
	$= \sum_{i=1}^{n} c_{i} + \sum_{i=1}^{n} (c_{i} + c_{i}) (\text{degree}(n))$
-	$= \sum_{i=1}^{n} c_i + \sum_{i=1}^{n} (c_i + c_i)$ $= \sum_{i=1}^{n} c_i + \sum_{i=1}^{n} (c_i + c_i)$ $= \sum_{i=1}^{n} c_i + \sum_{i=1}^{n} (c_i + c_i)$
	= leaves x c, + internal x degree (1) x C2
_	= leaves x cp + internal x cs + n x cz = = = = = = = = = = = = = = = = = =
	n is largest scale Variable
	of F(n) E O(n)
	000 3 in 2 30

