

Interpretable Long Term Waypoint-Based Trajectory Prediction Model

Amina Ghoul, Itheri Yahiaoui and Fawzi Nashashibi

What is motion prediction?

Predicting agent's future behavior in dynamic, multi agent system.

Autonomous vehicle pipeline

Why is motion prediction challenging?

Future is uncertain.

Why is motion prediction challenging?

Future is uncertain.

Interaction between agents.

Related Work

Input Representation

Input cues:

 The agents' past states (coordinates, velocity, heading...)

Encoder

Related Work

Input Representation

Input cues:

- The target agent's past states.
- Interaction with its environment.
 - Other agents.
 - The static scene.

d x 966

Trajectory 6

80 x 2d points

Final destination

Input cues:

- The target agent's past states.
- Interaction with its environment.
- Its Long Term Waypoint (LTW) : An agent future trajectory is most influenced by its final destination.

Final destination

Input cues:

- The target agent's past states.
- Interaction with its environment.
- Its Long Term Waypoint (LTW):
 An agent future trajectory is most influenced by its final destination.
- In practice: GPS provides waypoints to reach the final destination.

- Follow-up to our previous work : TrajDCM
- Interpretable.
- Lightweight.
- Supervised training.
- Goal based.
- A new type of input: Long Term Waypoints (LTW).

Key insight: The long term waypoint capture most uncertainty of a trajectory.

General Architecture

1. Extract potential goals from a dynamic radial grid.

1. Extract potential goals from a dynamic radial grid.

2. Target Prediction

1) Discrete Choice Model (DCM) prediction:

- 1) DCM prediction:
- a) Behavioral functions

Keep Direction (dir).

Collision Avoidance (col).

Occupancy/ Overtaking (occ).

- 1) DCM prediction:
- b) Introduction of the LTW

Minimizing the angle (dangle).

Minimizing the distance (ddist).

2. Target Prediction

2) Neural Network Prediction:

$\overline{\mathsf{WayDCM}}$

3. Motion Estimation: Conditioned on goals.

Waymo Dataset

Table: Past, future and prediction horizons on different motion prediction datasets

Dataset	Past (s)	Future (s)	Prediction (s)	
nuScenes	3	5	5	
INTERACTION	1	3	3	
Argoverse 1	2	3	3	
Argoverse 2	5	6	6	
Waymo	1	8	3, 5 and 8	

Waymo Dataset

- Provides 103,354, 20s 10Hz segments (over 20 million frames)
- Collected from different cities in the United States of America (San Francisco, Montain View, Los Angeles, Detroit, Seattle and Phoenix)

Past time horizon: 1 second Prediction horizon: 3 seconds

Long term Waypoint: the position of agent at 8 seconds

Results

- *MinADE*₆: Average of pointwise L2 distances between the predicted trajectory and ground truth.
- *MinFDE*₆: Average of pointwise L2 distances between the final points of the prediction and ground truth.

Table: Comparison of different methods on the Waymo validation set

Model	$MinADE_6$	$MinFDE_6$	
MotionCNN	0.3365	0.6145	
$MultiPath{++}$	0.2692	0.4951	
LSTM	0.4018	0.8029	
MHA-LSTM	0.3141	0.7577	
TrajDCM	0.3060	0.7201	
WayDCM (without ddist)	0.2779	0.6261	
WayDCM	0.2721	0.6037	

Results

$$u_k = \beta_{\textit{dir}} \textit{dir}_k + \beta_{\textit{occ}} \textit{occ}_k + \beta_{\textit{col}} \textit{col}_k + \beta_{\textit{ddir}} \textit{ddir}_k + \beta_{\textit{ddist}} \textit{ddist}_k$$

Table: Estimated parameters β

Model	$eta_{ extit{dir}}$	β_{col}	β_{occ}	$eta_{ extsf{dangle}}$	$eta_{ extit{ddist}}$
TrajDCM	-2.70	-0.07	-0.06	-	-
WayDCM (without ddist)	-3.48	-0.09	-0.04	-15.23	-
WayDCM	-2.64	-0.05	-0.06	-10.83	-20.86

Conclusion and future work

- Fist approach using Long Term Waypoints.
- Long Term Waypoints should be included in motion prediction datasets.
- For future work: use this approach with other goal set representations.

Thank you for your attention!