IV. Reprezentări interne

- reprezentări interne elementare
 - fac parte din arhitectura calculatorului
 - deci sunt implementate în hardware
 - accesibile direct programatorilor
- structuri de date mai complexe
 - pe baza reprezentărilor elementare
 - definite și accesibile programatorilor prin software

Reprezentări elementare

- date numerice
 - numere întregi, raționale
 - doar anumite submulțimi ale acestora
- date alfa-numerice
 - caractere etc.
- instrucțiuni
 - singurele specifice fiecărui sistem
 - deci nestandardizate și neportabile

Studiul reprezentărilor

• reprezentări numerice

$$repr(n_1) op repr(n_2) = repr(n_1 op n_2) ???$$

- exemplu dacă adunăm două variabile întregi, rezultatul va fi scris corect?
- erori de reprezentare
 - aproximări
 - depășiri

Transmiterea informațiilor

- între diverse medii
 - între calculatoare/sisteme
 - între componente ale aceluiași calculator/sistem
- pot apărea erori de transmisie
 - datorită perturbărilor/funcționării incorecte
 - semnal digital unii biţi sunt inversaţi
 - se dorește detectarea apariției acestor erori
 - și chiar corectarea lor, unde e posibil

Moduri de detectare/corectare

- adăugarea de biți suplimentari redundanți
- paritate 1 bit suplimentar
 - permite detecția apariției unei erori (pe 1 bit)
 - paritate (im)pară: număr total (im)par de biți 1
- cod Hamming
 - 4 biţi de informaţie, 3 biţi suplimentari
 - permite detectarea/corecţia mai multor erori simultan

Exemplu paritate impară

• emițător

- are de trimis valoarea $(110)_2$
- 2 biţi (par) pe 1, deci bitul suplimentar va fi 1
- se va trimite $(1101)_2$

receptor

- primeşte şirul de biţi
- dacă numărul de biți pe 1 este par eroare
- altfel elimină bitul de paritate și obține $(110)_2$

IV.1. Codificări alfanumerice

Codificări alfanumerice

- calculatorul nu poate reprezenta direct caractere
 - sau alte informații nenumerice: imagini etc.
- fiecărui caracter îi este asociat în mod unic un număr
 - este de fapt o codificare
 - codificarea poate fi la nivel hardware
 (reprezentare elementară) sau software

Standarde

- ASCII
 - fiecare caracter 7 biți plus unul de paritate
- EBCDIC
 - fost concurent al ASCII
- ISO 8859-1
 - extinde codul ASCII: diacritice etc.
- Unicode, UCS
 - caractere non-latine

Codul ASCII

- literele mici au coduri consecutive
 - în ordinea dată de alfabetul englez
 - 'a' 97; 'b' 98; ...; 'z' 122
- similar literele mari (65, 66, ..., 90)
- similar caracterele care afișează cifrele zecimale
 - atenție: codul pentru caracterul '0' este 48 (nu 0)
- comparații lexicografice comparator binar

IV.2. Reprezentări interne numerice

Scrierea pozițională

- este tot o reprezentare
 - 397 nu este un număr, ci reprezentarea unui număr
- introdusă de indieni/arabi
- factor implicit ataşat fiecărei poziții din reprezentare
- esențială pentru arhitectura calculatoarelor
 - permite algoritmi eficienți de calcul (adunare...)

Baze de numerație

- orice număr natural d>1
- mulţimea cifrelor în baza d: {0,1,...,d-1}
- calculatorul lucrează în baza d=2
 - tehnic: cel mai ușor de implementat fizic 2 cifre
 - teoretic: baza 2 se "potrivește" cu logica booleană
 - ca simboli și ca operații
 - operațiile se pot implementa prin funcții booleene

Limitele reprezentărilor

- în practică, numărul de cifre este finit
- exemplu numere întregi fără semn
 - pe 1 octet: $0 \div 2^{8}$ -1 (= 255)
 - pe 2 octeți: $0 \div 2^{16}$ -1 (= 65535)
 - pe 4 octeți: $0 \div 2^{32}$ -1 (= 4294967295)
- orice număr mai mare (sau mai mic) decât limitele nu va putea fi reprezentat corect

Scrierea pozițională

- fie baza $d \in N^*-\{1\}$
- și reprezentarea dată de șirul de cifre $a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_{-m}$
- numărul corespunzător reprezentării este $\sum_{i=-m}^{n-1} (a_i \times d^i)$
- di este factorul implicit asociat poziției i
 - inclusiv pentru puteri negative

Treceri dintr-o bază d în baza 10

- conform formulei anterioare
- virgula rămâne în același loc
- exemplu

$$5E4,D_{(16)} = 5 \times 16^2 + 14 \times 16^1 + 4 \times 16^0 + 13$$

 $\times 16^{-1} = 20480 + 3584 + 64 + 0,8125 =$
 $24128,8125_{(10)}$

Trecerea din baza 10 în baza d

Exemplu:
$$87,35_{(10)} = 1010111,01(0110)_{(2)}$$

partea întreagă

$$87/2 = 43 \text{ rest } 1$$

$$43 / 2 = 21 \text{ rest } 1$$

$$21/2 = 10 \text{ rest } 1$$

$$10 / 2 = 5 \text{ rest } 0$$

$$5/2 = 2 \text{ rest } 1$$

$$2/2 = 1 \text{ rest } 0$$

$$1/2 = 0 \text{ rest } 1$$

$$87_{(10)} = 1010111_{(2)}$$

(cifrele se scriu de jos în sus)

partea fracționară

$$0.35 \times 2 = 0.7 + 0$$

$$0.7 \times 2 = 0.4 + 1$$

$$0.4 \times 2 = 0.8 + 0$$

$$0.8 \times 2 = 0.6 + 1$$

$$0.6 \times 2 = 0.2 + 1$$

$$0.2 \times 2 = 0.4 + 0$$

$$0.4 \times 2 = 0.8 + 0$$

(perioadă)

$$0.35_{(10)} = 0.01(0110)_{(2)}$$

Conversii între baze

- o bază este o putere a celeilalte baze
 - $-d_1 = d_2^k \Rightarrow$ fiecărei cifre în baza d_1 îi corespund exact k cifre în baza d_2
- ambele baze sunt puteri ale numărului *n*
 - conversia se poate face prin intermediul bazei n

$$703,102_{(8)} = 111\ 000\ 011,001\ 000\ 010_{(2)} =$$

$$= 0001 \ 1100 \ 0011,0010 \ 0001 \ 0000_{(2)} =$$

$$=1C3,21_{(16)}$$

Aproximare și depășire

- o reprezentare are *n* cifre la partea întreagă și *m* cifre la partea fracționară
 - -n și m sunt finite
- dacă numărul necesită mai mult de *n* cifre la partea întreagă, se produce depășire
- dacă numărul necesită mai mult de *m* cifre la partea fracționară, apare o aproximare
 - de cel mult 2^{-m}

IV.3. Reprezentările BCD și în exces

Reprezentarea BCD

- numerele sunt reprezentate ca şiruri de cifre în baza 10
 - fiecare cifră este reprezentată pe 4 biţi
- utilitate
 - aplicații de tip business (financiar etc.)
 - afișaje în baza 10 (temperatură etc.)
- calculele sunt dificil de efectuat
 - adunare nu se poate utiliza direct un sumator

Adunarea BCD (1)

problemele apar atunci când suma cifrelor depășește 9

Adunarea BCD (2)

- soluţie
 - se adună 6 (0110) atunci când suma depăşeşte 9
- temă: de ce?

Sumator BCD

Reprezentarea în exces

- pornește de la scrierea pozițională
 - numere pozitive
 - pe *n* biți, intervalul reprezentabil este $0 \div 2^n$ -1
- reprezentarea Excess-k
 - pentru fiecare șir de biți, din valoarea care îi
 corespunde în scrierea pozițională se scade k
 - intervalul reprezentabil devine $-k \div 2^n k 1$

Exemplu: Excess-5

Binar	Zecimal	Excess-5	Binar	Zecimal	Excess-5
0000	0	-5	1000	8	3
0001	1	-4	1001	9	4
0010	2	-3	1010	10	5
0011	3	-2	1011	11	6
0100	4	-1	1100	12	7
0101	5	0	1101	13	8
0110	6	1	1110	14	9
0111	7	2	1111	15	10

IV.4. Reprezentări în virgulă fixă

Reprezentări numerice: probleme

- reprezentarea semnului
 - nu există simbol special, doar cele pentru cifre
- virgula
 - trebuie cunoscută în orice moment poziția sa
- operații aritmetice
 - implementare cât mai eficientă
 - nu este posibil pentru toate operațiile simultan
 - trebuie decis pe care le optimizăm

Codificări în virgulă fixă

- semnul este folosit unul dintre biți
- virgula
 - are întotdeauna aceeași poziție în șirul de cifre
 - deci poziția nu mai trebuie memorată
- operații implementate eficient
 - adunare, scădere
- codificările pe **n**+**m** biţi (**n**≥1, **m**≥0)
 - $-\mathbf{m}=0$ numere întregi
 - **n**=1 numere subunitare

Codificări redundante

- codificare redundantă
 - există cel puțin un număr cu două reprezentări diferite
 - probleme la operațiile aritmetice
- codificările folosite în practică
 - reprezentarea numerelor pozitive la fel ca la numere fără semn; diferențe - numere negative
 - unele prezintă două reprezentări pentru 0

Reprezentarea prin modul și semn

• notație: A+S

$$\begin{split} val_{A+S}^{n,m} \left(a_{n-1} a_{n-2} \dots a_{1} a_{0} a_{-1} \dots a_{-m} \right) &= \\ &= \begin{cases} a_{n-2} \times 2^{n-2} + \dots + a_{-m} \times 2^{-m} & \text{dacă } a_{n-1} = 0 \\ -\left(a_{n-2} \times 2^{n-2} + \dots + a_{-m} \times 2^{-m} \right) & \text{dacă } a_{n-1} = 1 \end{cases} \end{split}$$

- similar cu scrierea în baza 2
 - bitul cel mai din stânga reprezintă semnul
 - virgula este implicită

Modul și semn - limite

- pe n+m biți sunt 2^{n+m} reprezentări diferite
 - dar numai 2^{n+m} -1 numere diferite
 - redundantă: $val_{A+S}^{n+m}(00...0) = val_{A+S}^{n+m}(10...0) = 0$
- valorile extreme reprezentabile

$$\max_{A+S}^{n,m} = val_{A+S}^{n,m}(01...1) = 2^{n-1} - 2^{-m}$$

$$\min_{A+S}^{n,m} = val_{A+S}^{n,m}(11...1) = -(2^{n-1} - 2^{-m})$$

– deci numerele reprezentabile sunt în intervalul $[-(2^{n-1}-2^{-m}); +(2^{n-1}-2^{-m})]$

Modul și semn - precizie

- numerele reprezentabile exact încep cu min=-(2ⁿ⁻¹-2^{-m})
 - și continuă cu pasul 2^{-m}
- celelalte numere din interval aproximare
 - eroarea cel mult 2^{-m}
- deci precizia reprezentării este 2^{-m}
- pentru n+m fixat
 - numere mai mari = precizie mai slabă și invers

Exemple (1)

$$val_{A+S}^{8,0}(00110011) = 2^{5} + 2^{4} + 2^{1} + 2^{0} = 51$$

$$val_{A+S}^{6,2}(00110011) = 2^{3} + 2^{2} + 2^{-1} + 2^{-2} = 12,75$$
sau
$$val_{A+S}^{6,2}(00110011) = val_{A+S}^{8,0}(00110011) : 2^{2} = 51 : 4 = 12,75$$

$$val_{A+S}^{4,4}(00110011) = 2^{1} + 2^{0} + 2^{-3} + 2^{-4} = 3,1875$$
sau
$$val_{A+S}^{4,4}(00110011) = val_{A+S}^{8,0}(00110011) : 2^{4} = 51 : 16 = 3,1875$$

Exemple (2)

$$val_{A+S}^{8,0}(10110011) = -(2^{5} + 2^{4} + 2^{1} + 2^{0}) = -51$$

$$val_{A+S}^{4,4}(10110011) = -(2^{1} + 2^{0} + 2^{-3} + 2^{-4}) = -3,1875$$
sau
$$val_{A+S}^{4,4}(10110011) = val_{A+S}^{8,0}(10110011) : 2^{4} = -51 : 16 = -3,1875$$

$$min_{A+S}^{8,0} = val_{A+S}^{8,0}(111111111) = -127$$

$$min_{A+S}^{4,4} = val_{A+S}^{4,4}(111111111) = -7,9375$$
sau
$$min_{A+S}^{4,4} = min_{A+S}^{8,0} : 2^{4} = -127 : 16 = -7,9375$$

Exemple (3)

$$\max_{A+S}^{8,0} = val_{A+S}^{8,0} (0111111111) = 127$$

$$\max_{A+S}^{4,4} = val_{A+S}^{4,4} (011111111) = 7,9375$$
sau
$$\min_{A+S}^{4,4} = \min_{A+S}^{8,0} : 2^4 = 127 : 16 = 7,9375$$

- intervale reprezentabile
 - $-A+S^{8,0}$: [-127; 127] \rightarrow 255 numere, din 1 în 1
 - $-A+S^{4,4}$: [-7,9375; 7,9375] → 255 numere, din 0,0625 în 0,0625 (=1:16)

Operații în A+S

- adunare/scădere
 - stabilirea semnului rezultatului (comparaţie)
 - aplicarea algoritmilor cunoscuți
- înmulțire/împărțire
 - similar algoritmilor cunoscuți
- în general mai complex decât ne-am dori
 - nu putem utiliza pur şi simplu un sumator
 "clasic" pentru adunare

Reprezentarea în complement față de 1

• notație: C₁

$$\begin{aligned} & val_{C_{n}}^{n,m} \left(a_{n-1} a_{n-2} \dots a_{1} a_{0} a_{-1} \dots a_{-m} \right) = \\ & = \begin{cases} a_{n-2} \times 2^{n-2} + \dots + a_{-m} \times 2^{-m} & a_{n-1} = 0 \\ \left(a_{n-2} \times 2^{n-2} + \dots + a_{-m} \times 2^{-m} \right) - \left(2^{n-1} - 2^{-m} \right) & a_{n-1} = 1 \end{cases} \end{aligned}$$

- temă: demonstrați că valoarea este negativă pentru $a_{n-1} = 1$
 - deci a_{n-1} reprezintă semnul

Complement față de 1 - limite

- pe n+m biți sunt 2^{n+m} reprezentări diferite
 - dar numai 2^{n+m} -1 numere diferite
 - redundantă: $val_{A+S}^{n+m}(00...0) = val_{A+S}^{n+m}(11...1) = 0$
- valorile extreme reprezentabile

$$\max_{A+S}^{n,m} = val_{A+S}^{n,m}(01...1) = 2^{n-1} - 2^{-m}$$

$$\min_{A+S}^{n,m} = val_{A+S}^{n,m}(10...0) = -(2^{n-1} - 2^{-m})$$

– deci numerele reprezentabile sunt în intervalul $[-(2^{n-1}-2^{-m}); +(2^{n-1}-2^{-m})]$

Complement față de 1 - precizie

- numerele reprezentabile exact încep cu min=-(2ⁿ⁻¹-2^{-m})
 - și continuă cu pasul 2^{-m}
- celelalte numere din interval aproximare
 - eroarea cel mult 2^{-m}
- deci precizia reprezentării este 2-m
- pentru n+m fixat
 - numere mai mari = precizie mai slabă și invers

Complementare

- reprezentările pentru numerele pozitive ușor de determinat
- pentru numere negative mai greu
- există o relație între reprezentarea numărului q și cea a numărului -q?
- da: reprezentarea lui -q se obține negând toți biții din reprezentarea lui q
 - operație comutativă valabilă și pentru q < 0

Exemple (1)

$$val_{C_{1}}^{8,0}(00110011) = 2^{5} + 2^{4} + 2^{1} + 2^{0} = 51$$

$$val_{C_{1}}^{6,2}(00110011) = 2^{3} + 2^{2} + 2^{-1} + 2^{-2} = 12,75$$

$$sau$$

$$val_{C_{1}}^{6,2}(00110011) = val_{A+S}^{8,0}(00110011) : 2^{2} = 51 : 4 = 12,75$$

$$val_{C_{1}}^{4,4}(00110011) = 2^{1} + 2^{0} + 2^{-3} + 2^{-4} = 3,1875$$

$$sau$$

$$val_{C_{1}}^{4,4}(00110011) = val_{A+S}^{8,0}(00110011) : 2^{4} = 51 : 16 = 3,1875$$

Exemple (2)

$$val_{C_{1}}^{8,0}(11001100) = (2^{6} + 2^{3} + 2^{2}) - (2^{7} - 2^{0}) = 76 - 127 = -51$$

$$val_{C_{1}}^{4,4}(11001100) = (2^{2} + 2^{-1} + 2^{-2}) - (2^{3} - 2^{-4}) = -3,1875$$

$$sau$$

$$val_{C_{1}}^{4,4}(11001100) = val_{C_{1}}^{8,0}(11001100) : 2^{4} = -51 : 16 = -3,1875$$

$$min_{C_{1}}^{8,0} = val_{C_{1}}^{8,0}(10000000) = 0 - (2^{7} - 2^{0}) = -127$$

$$min_{C_{1}}^{4,4} = val_{C_{1}}^{4,4}(10000000) = 0 - (2^{3} - 2^{-4}) = -7,9375$$

$$sau$$

$$min_{C_{1}}^{4,4} = min_{C_{1}}^{8,0} : 2^{4} = -127 : 16 = -7,9375$$

Exemple (3)

- intervale reprezentabile
 - $-C_1^{8,0}$: [-127; 127] \rightarrow 255 numere, din 1 în 1
 - $-C_1^{4,4}$: [-7,9375; 7,9375] \rightarrow 255 numere, din 0,0625 în 0,0625 (=1:16)

Operații în C₁

- putem aduna două numere în C₁ cu ajutorul unui sumator "clasic"?
- da, dar în doi pași
 - în al doilea pas, la rezultat se adună transportul obținut la primul pas
 - deci trebuie două sumatoare pentru o adunare
- scădere: adunăm descăzutul cu simetricul scăzătorului