

Tarea 4

6 de octubre de 2020

 $2^{\underline{0}}$ semestre 2020 - Profesores G. Diéguez - F. Suárez

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59:59 del 19 de octubre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template L^AT_FX publicado en la página del curso.
 - Cada problema debe entregarse en un archivo independiente de las demas preguntas.
 - Los archivos que debe entregar son un archivo PDF por cada pregunta con su solución con nombre numalumno-P1.pdf y numalumno-P2.pdf, junto con un zip con nombre numalumno.zip, conteniendo los archivos numalumno-P1.tex y numalumno-P2.tex que compilan su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1 - Relaciones de orden

Dados conjuntos A_1, \ldots, A_n y relaciones R_1, \ldots, R_n , donde cada R_i es una relación binaria sobre A_i , definimos el **producto directo** como el par (A, R), donde $A = A_1 \times \ldots \times A_n$, y R es una relación binaria sobre A tal que

$$(a_1,\ldots,a_n)R(b_1,\ldots,b_n)$$
 si y solo si $a_iR_ib_i$ para cada $i\in 1,\ldots,n$

Demuestre que si todos los R_i son relaciones de orden parcial, entonces R es una relación de orden parcial.

Problema 2 - Funciones y cardinalidad

- a) Sea $S = \{1, \dots, 2n\}$. Demuestre, utilizando el principio del palomar, que todo $X \subseteq S$ tal que |X| = n + 1 contiene un par de números consecutivos.
- b) Dados conjuntos X, Y, definimos

$$\phi(X,Y) = \{ f \mid f : X \to Y \}$$

Demuestre que si $|Y| \ge 2$ entonces $X \not\approx \phi(X, Y)$.

Hint: Use una demostración por contradicción.