This is a Very Important Title!

Person McSomething (Dated: December 13, 2021)

This abstract is abstract.

If you want to learn more about using LATEX, you should check UiO's official tutorials: https://www.mn.uio.no/ifi/tjenester/it/hjelp/latex/

If you are familiar with IATEX and you want to learn more about the REVTeX4-1 document class, check: http://www.physics.csbsju.edu/370/papers/Journal_Style_Manuals/auguide4-1.pdf

I. INTRODUKSON

II. TEORI

A. Vet ikke om denne kan være med

I dette eksperimentet skal vi bruke Crank-Nicolson tilnærmingen. Denne kombinerer to andre tilnærminger: forrover differanse og bakover differanse. Forover differanse baserer seg på å at man kan finne stigningen mellom et punkt u_i^n og neste punkt u_i^{n+1} ved ligningen

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{(\delta x)^2}$$

Vi ser her på kun i én dimensjon. Vi har også antatt at tidstegene er så små at punktet u_i^n kun kan bli påvirket av nabopunktene. Da får vi at

$$u_i^{n+1} = u_i^n + (u_{i+1}^n - 2u_i^n + u_{i-1}^n) \frac{\Delta t}{(\Delta x)^2}$$

Hvis vi nå definerer $\alpha \equiv \frac{\Delta t}{(\Delta x)^2}$ får vi at

$$u_i^{n+1} = (1-2\alpha)u_i^n + \alpha(u_{i+1}^n + u_{i-1}^n)$$

Så har vi bakover differanse som baserer seg på å finne stigningen mellom forrige tidspunkt u_i^{n-1} og det nåværende tidpunktet u_i^n .

$$\frac{u_i^n - u_i^{n-1}}{\Delta t} = \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{(\Delta x)^2}$$

og på samme måte som med forover får vi nå

$$u_i^{n-1} = (1+2\alpha)u_i^n - \alpha(u_{i+1}^n + u_{i-1}^n)$$

B. Numerisk tillnærming

V har da fra Schrödingerlikningen at

$$i\frac{\delta u}{\delta t} = -\frac{\delta^2 u}{\delta x^2} - \frac{\delta^2 u}{\delta y^2} + v(x, y)$$

eller

$$\frac{\delta u}{\delta t} = i \frac{\delta^2 u}{\delta x^2} + i \frac{\delta^2 u}{\delta y^2} - i v(x, y)$$

Vi skal så bruke Crank-Nicolson tilnærming så vi starter med å approksimere den venstre-siden

$$\frac{du}{dt} = \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t}$$

Hvor n er tidstegt vi er i. Crank-Nicolson baser seg på forover og bakover tilnærminger. For forover har vi at

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = F_{i,j}^n$$

mens bakover har vi

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = F_{i,j}^{n+1}$$

Så kombinerer vi disse forover og bakover

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \theta F_{i,j}^{n+1} - (1 - \theta) F_{i,j}^n$$

slik at for $\theta=1$ har vi bakovertilnærmingen og for $\theta=0$ har vi forovertilnærmingen. For Crank-Nicolson setter vi $\theta=\frac{1}{2}$ slik at vi får

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \frac{1}{2} (F_{i,j}^{n+1} - F_{i,j}^n)$$

III. METODE

A. Initialtilstand

Vi trenger en initialtilstand, altså tilstanden $u(x,y,t=0)=u_{i,j}^0$. Vi skal bruke en Gaussisk initialtilstand på formen

$$u(x,y,t=0) = \frac{1}{C}e^{-\frac{(x-x_c)^2}{2\sigma_x^2} - \frac{(y-y_c)^2}{2\sigma_y^2} + ip_x(x-x_c) + ip_y(y-y_c)}$$

Siden dette er Gaussisk så vil x_c og y_c være toppunktet til $p_{i,j}$ og der det vil være mest sannsynlig at partikkelen er. p_x og p_y er bevegelsesmengden til partikkelen. σ_x og σ_y er bredden til funksjonen. C er normaliseringskonstanten. Siden vi skal gjøre dette over et gitter får vi heller

$$u_{i,j}^{0} = \frac{1}{C}e^{-\frac{(x_{i}-x_{c})^{2}}{2\sigma_{x}^{2}} - \frac{(y_{j}-y_{c})^{2}}{2\sigma_{y}^{2}} + ip_{x}(x_{i}-x_{c}) + ip_{y}(y_{j}-y_{c})}$$

Vi må også normalisere dette, altså at $\sum_{i,j} u_{i,j}^n * u_{i,j}^n = \sum_{i,j} p_{i,j}^n = 1$, og så det vi da må gjøre er å la

$$C = \sum_{i,j} \left| e^{-\frac{(x_i - x_c)^2}{2\sigma_x^2} - \frac{(y_j - y_c)^2}{2\sigma_y^2} + ip_x(x_i - x_c) + ip_y(y_j - y_c)} \right|^2$$

Å normalisere slikt gjør vi kun i initialtilstanden, men dersom systemet er nøyaktig nok, vil $\sum_{i,j} p$ holde seg ganske nærme 1. Vår matrise vil være på størrelsen $M \times M$ og dimensjonene vil være normalisert så laveste verdiene av x og y vil være 0 og høyeste 1. Vi vil fortsatt bruke Dirichlet grensebetingelser så vi setter u(x=0,y,t)=u(x=1,y,t)=u(x,y=0,t)=u(x,y=1,t)=0 uansett tidssteg. Det gjør at vi egentlig ikke trenger å finne tidsutviklingen i grensene så for når begrenser vi U til å være en $(M-2) \times (M-2)$ -matrise, med $u_{0,0}^n=u(x=0+h,y=0+h,t)$ og $u_{M-3,M-3}=u(x=1-h,y=1-h)$. Hvor h da er steglengden.

B. Lage spalten

Så trenger vi å lage en vegg og en spalteåpning. Vi skal sette spalten i midten av systemet vårt, altså har den et midtpunkt i x=0,5. Så skal tykkelsen på veggen være 0,02 i x-retning. I y-retning har vi da hullene og veggene. Vi vil i starten bruke to spalte, men vil også variere mellom å bruke én spalte, tre spalte og ikke ha noen vegg i det hele tatt. Vi tar først eksempelet med to åpninger. Da har vi først en vegg, så en åpning på 0,05, deretter et en vegg også på 0,05, så en ny åpning på 0,05 og til slutt en vegg som er like lang som den første veggen. Lengden på åpningene og veggene mellom åpningene vil ikke forandre seg når vi endrer antall åpninger, men veggene på sidene vil endre seg avhengig av antall åpninger vi har. For å finne lengden for endeveggene kan vi da bruke

$$l_{endevegg} = \frac{1 - \left(n_{slits} + n_{mellomvegger}\right) \cdot 0.05}{2}$$

Vi får da at

Antall åpninger	Endevegg
1	0,475
2	0,425
3	0,375

Vi går da fra 0 opp til den tilhørende vegglengden og finner høyden åpningen starter i, så går vi 0,05 opp for å finne hvor skilleveggen starter, så går vi enda 0,05 opp for å finne hvor neste åpning starter og fortsetter slik for å få til vi når endeveggen. Vi finner da y-verdiene vi trenger og får vegger som i Figure 1, Figure 2 og Figure 3

Figure 1. Veggenes og åpningenes start og ender på y-aksen i tillegg til veggenes tykkelse. Veggen har her én åpning.

Figure 2. Veggenes og åpningenes start og ender på y-aksen i tillegg til veggenes tykkelse. Veggen har her to åpninger

Figure 3. Veggenes og åpningenes start og ender på y-aksen i tillegg til veggenes tykkelse. Veggen har her tre åpninger

C. Bruke Crank-Nicolson

Vi hadde fra Crank-Nicolson at

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \frac{1}{2} (F_{i,j}^{n+1} - F_{i,j}^n)$$

I vårt tilfelle er

$$F_{i,j} = i\frac{\delta^2 u}{\delta x^2} + i\frac{\delta^2 u}{\delta y^2} - iv(x,y)u$$

 $\dot{\mathrm{sa}}$

$$F_{i,j}^{n} = i\frac{\delta^{2}u^{n}}{\delta x^{2}} + i\frac{\delta^{2}u^{n}}{\delta u^{2}} - iv(x,y)u^{n}$$

Vi bruker deretter at

$$\frac{\delta^2 u^n}{\delta x^2} \approx \frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{\Delta x^2}$$

Siden i er den eneste som varierer i med hensyn på x, er det denne vi vil bruke her. Tilsvarende får vi at

$$\frac{\delta^2 u^n}{\delta y^2} = \approx \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{\Delta y^2}$$

Så vi får da at

$$F^{n} = i \begin{pmatrix} \frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{\Delta x^{2}} \\ + \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{\Delta y^{2}} - v_{i,j}u_{i,j} \end{pmatrix}$$

Vi går igjen tilbake til

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \frac{1}{2} (F_{i,j}^{n+1} - F_{i,j}^n)$$

og flytter over slik at vi får

$$u_{i,j}^{n+1} - \frac{\Delta t}{2} F_{i,j}^{n+1} = u_{i,j}^n + \frac{\Delta t}{2} F_{i,j}^n$$

$$u_{i,j}^{n+1} = u_{i,j}^{n} \\ -\frac{i\Delta t}{2\Delta x^{2}}(u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i-1,j}^{n+1}) \\ -\frac{i\Delta t}{2\Delta y^{2}}(u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}) = \\ +\frac{i\Delta t}{2\Delta y^{2}}(u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}) \\ +\frac{i\Delta t}{2\Delta y^{2}}(u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}) \\ -\frac{i\Delta t}{2}v_{i,j}u_{i,j}^{n} = \\ -\frac{i\Delta t}{2}v_{i,j}u_{i,j}^{n} \end{aligned}$$

Vi skal gå over samme steglengde på x og y aksen så vi setter $\Delta x = \Delta y = h$. Så definerer vi $r \equiv \frac{i\Delta t}{2h^2}$ slik at vi

$$\frac{u_{i,j}^{n+1}}{-\frac{i\Delta t}{2\Delta x^2}(u_{i+1,j}^{n+1}-2u_{i,j}^{n+1}+u_{i-1,j}^{n+1})} = \frac{u_{i,j}^n}{+r(u_{i+1,j}^n-2u_{i,j}^n+u_{i-1,j}^n)} = \frac{+r(u_{i+1,j}^n-2u_{i,j}^n+u_{i-1,j}^n)}{+r(u_{i,j+1}^n-2u_{i,j}^n+u_{i,j-1}^n)} \text{os}$$

D. Matriseform

FOr å gjøre det litt raskere skal vi konvertere om til matriseform som i Kilde 1. Denne gangen har vi imedlertid to dimensjoner så det blir litt annerledes. Første forskjellen er at vi har en todimensjonal matrise med elementer $u_{i,j}$ hvor radene er y-aksen og kollonnene y-aksen, mens vi trenger en vektor for å tidsuvikle ved hjelp av matriser. Vi vil derfor lage en vektor \vec{u} som organiserer matrisen slik

Så $k = i + j \cdot (M - 2)$. Det betyr at \vec{u} er $(M - 2)^2$ stor. Vi skal så lage matrisene A og B slik at

$$B\vec{u}^n = \vec{c}$$

og

$$A\vec{c} = \vec{u}^{n+1}$$

La oss ta et eksempel i (M-2)=3. Da vil matrisen Aog B være

$$A = \begin{pmatrix} a_0 & -r & 0 & -r & 0 & 0 & 0 & 0 & 0 \\ -r & a_1 & -r & 0 & -r & 0 & 0 & 0 & 0 & 0 \\ 0 & -r & a_2 & 0 & 0 & -r & 0 & 0 & 0 & 0 \\ -r & 0 & 0 & a_3 & -r & 0 & -r & 0 & 0 & 0 \\ 0 & -r & 0 & -r & a_4 & & -r & 0 & -r & 0 \\ 0 & 0 & -r & 0 & -r & a_5 & 0 & 0 & -r & 0 \\ 0 & 0 & 0 & -r & 0 & 0 & a_6 & -r & 0 & 0 \\ 0 & 0 & 0 & 0 & -r & 0 & -r & a_7 & -r & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

og

$$u_{i,j}^{n+1} - \frac{\Delta t}{2} F_{i,j}^{n+1} = u_{i,j}^n + \frac{\Delta t}{2} F_{i,j}^n$$
 Vi utvider F og får
$$u_{i,j}^{n+1} - \frac{i\Delta t}{2} V_{i,j} u_{i,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}) = \frac{i\Delta t}{2\Delta y^2} (u_{i+1,j}^n - 2u_{i,j}^n + u_{i,j-1}^n) - \frac{i\Delta t}{2} v_{i,j} u_{i,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}) = \frac{i\Delta t}{2\Delta y^2} (u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n) - \frac{i\Delta t}{2} v_{i,j} u_{i,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}) = \frac{i\Delta t}{2\Delta y^2} (u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n) - \frac{i\Delta t}{2} v_{i,j} u_{i,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1})$$

Hvor diagonalene er satt sammen av vektorene \vec{a} og bhvor elementene er gitt som

$$a_k = 1 + 4r + \frac{i\Delta t}{2}v_{i,j}$$

$$b_k = 1 - 4r - \frac{i\Delta t}{2}v_{i,j}$$

Av disse matrisene kan vi se to ting. Foruten om diagonalen er A = -B. I tillegg foruten om diagonalene er matrisene satt sammen av to $M-2 \times M-2$ matriser. Diagonalen til B består av matrisen P med som har sidediagonalene r. For M-2=3 får vi da at

$$P = \begin{pmatrix} 0 & r & 0 \\ r & 0 & r \\ 0 & r & 0 \end{pmatrix}$$

Denne matrisen vil gå diagonalt ned over B. Som sidedi- $\vec{u} = (u_{0.0}, u_{1.0}, u_{2.0}(...)u_{M-2.0}u_{0.1}, (...)u_{0.M-2}, (...)u_{M-2,M-2}$ agonaler til denne matrisen, altså under og til venstre for Pvil vi har matrisen Rsom har diagonalen bestående av $r.\,$ Så for M-2=3har vi da

$$R = \begin{pmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{pmatrix}$$

Så da har vi uten å ta hensyn til diagonalen at

$$-A = B = \begin{pmatrix} P & R & 0 \\ R & P & 0 \\ 0 & R & P \end{pmatrix}$$

Legger vi så til vektorene \vec{a} og \vec{b} langs diagonalene har vi matrisene A og B.

- IV. RESULTATER
- V. DISKUSJON
- VI. CONKLUSJON

ACKNOWLEDGMENTS

I would like thank myself for writing this beautiful document.

REFERENCES

- Reference 1
- Reference 2

Appendix A: Name of appendix

This will be the body of the appendix.

Appendix B: This is another appendix

Tada.

Note that this document is written in the two-column format. If you want to display a large equation, a large figure, or whatever, in one-column format, you can do this like so:

This text and this equation are both in one-column format. [?]

$$\frac{-\hbar^2}{2m}\nabla^2\Psi + V\Psi = i\hbar\frac{\partial}{\partial t}\Psi \tag{B1}$$

Note that the equation numbering (this: B1) follows the appendix as this text is technically inside Appendix B. If you want a detailed listing of (almost) every available math command, check: https://en.wikibooks.org/wiki/LaTeX/Mathematics.

And now we're back to two-column format. It's really easy to switch between the two. It's recommended to keep the two-column format, because it is easier to read, it's not very cluttered, etc. Pro Tip: You should also get used to working with REVTeX because it is really helpful in FYS2150.

One last thing, this is a code listing:

This will be displayed with a cool programming font!

You can add extra arguments using optional parameters:

This will be displayed with a cool programming font!

You can also list code from a file using lstinputlisting. If you're interested, check https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings.

This is a basic table:

Table I. This is a nice table

Hey	Hey	Hey	
Hello	Hello	Hello	
Bye	Bye	Bye	

You can a detailed description of tables here: https://en.wikibooks.org/wiki/LaTeX/Tables.

I'm not going to delve into Tikz in any level detail, but here's a quick picture:

Figure 4. This is great caption

If you want to know more, check: https://en.wikibooks.org/wiki/LaTeX/PGF/TikZ.