BAC S2 2002 1er groupe

EXERCICE 1

C désigne l'ensemble des nombres complexes.

- 1. Montrer que, dans \mathbb{C} , la somme des racines nièmes de l'unité est égale à zéro ($n \ge 2$)
- 2. En utilisant les résultats du 1) montré que $\cos \frac{\pi}{5}$ est une solution de l'équation $4x^2 2x 1 = 0$.
- 3. En déduire les valeurs exactes de $\cos \frac{\pi}{5}$, $\cos \frac{2\pi}{5}$ et $\cos \frac{\pi}{10}$

EXERCICE 2

63 candidats se sont présentés au baccalauréat comportant une épreuve de Maths et une épreuve de Sciences Physiques : SP.

math sp	2	6	10	14	18	totaux
6	4	2	1	0	0	7
8	2	5	2	0	0	9
10	1	6	16	5	1	29
12	0	2	3	6	2	13
14	0	1	0	1	3	5
totaux	7	16	22	12	6	63

On appelle X = (xi) la série statistique des notes de Sciences Physiques et Y = (yi) la série statistique des notes de Mathématiques.

- 1. Déterminer pour chaque xi la moyenne z_i de la série conditionnelle y/z_i .
- 2. On considère la série double (xi,zi)
- a) Dans le plan rapporté à un repère orthonormé construire le nuage de points M(xi, zi).
- b) Calculer le coefficient de corrélation linéaire entre la série X = (xi) et Z = (Zi).
- c) Déterminer une équation de la droite d'ajustement linéaire de Z et X par la méthode des moindres carrés. 33
- d) Tracer cette droite.

PROBLEME

A. On considère la fonction g définie sur $R + \{1\}$ par :

$$g(x) = \frac{1}{\ln^2 x} - \frac{1}{\ln x}$$
 pour tout $x > 0$ et $x \ne 1$; $g(0) = 0$.

- 1. Montrer que g est continue à droite en zéro.
- 2. Etudier les limites de g aux bornes de son ensemble de définition.

Dresser le tableau de variation de g.

En déduire le signe de g(x) en fonction de x.

B. On considère la fonction f définie sur $R + \{1\}$ par :

$$f(x) = -\frac{x}{\ln x} \text{ si } x > 0 \text{ et } x \neq 1 \text{ ; } f(0) = 0 \text{ .}$$

- 1. Montrer que f est continue à droite et dérivable à droite au point O. En déduire l'existence d'une demi-tangente à la courbe représentative C de f au point d'abscisse 0.
- 2. Étudier les limites de f aux bornes de son ensemble de définition.
- 3. Comparer f'(x) et g(x). En déduire les variations de f et son tableau de variations.
- 4. Déterminer l'équation de la tangente D à la courbe C au point d'abscisse e2.
- 5. Soit M le point de C d'abscisse x et N le point de D de même abscisse x. On pose $\varphi(x) = \overline{NM}$.

Montrer que : $\varphi(x) = f(x) + \frac{x + e^2}{4}$

Déduire de A) le tableau de variations de ϕ ' (x) puis le signe de ϕ ' (x) sur]1 ;+ ∞ [.

En déduire le signe de ϕ (x) sur]1 ;+ ∞ [et la position de \mathbf{C} par rapport à D pour les points d'abscisse x >1.

- 6. Représenter dans le plan rapporté à un repère orthonormé la courbe **C** et la droite D (unité 2 cm).
- C. On revient à la fonction g du A).

On note Cg la courbe représentative de g dans le plan rapporté à un repère orthonormé (unité 2 cm).

Sans construire Cg, calculer en cm 2 l'aire de la partie plane comprise entre la courbe Cg, l'axe des abscisses et les droites d'équations respectives : x = e et $x = e^2$.

