Commutative Algebra

Ikhan Choi

February 12, 2025

Contents

I	Affine schemes	2
1	Nullstellensatz	3
	1.1 Radicals	
	1.2 Affine varieties	3
2	Primary decomposition	4
	2.1 Primary ideals	4
	2.2 Uniqueness theorems	4
	2.3 Gröbner basis	4
3	Localization	5
	3.1	
	3.2 Valuation	5
II	Dimension theory	6
4		7
5	Homological dimensions	8

Part I Affine schemes

Nullstellensatz

- 1.1 Radicals
- 1.2 Affine varieties
- 1.1 (Weak nullstellensatz).
- 1.2 (Noether normalization theorem).

$$\operatorname{Spec}(\mathbb{C} + (x^2 - 1)\mathbb{C}[x]) = \{0, \mathbb{C}\}.$$

Primary decomposition

2.1 Primary ideals

- **2.1** (Primary ideals). Let *A* be a ring. An ideal \mathfrak{q} of *A* is called *primary* if A/\mathfrak{q} is non-zero and every zero-divisor of A/\mathfrak{q} is nilpotent. Let \mathfrak{q} be a primary ideal of *A*.
 - (a) The radical $r(\mathfrak{q})$ is the smallest prime ideal of A containing \mathfrak{q} .

2.2 Uniqueness theorems

Noether-Lasker

2.3 Gröbner basis

2.2 (Buchberger algorithm).

Exercises

primary vs prime powers primary vs prime radical

Localization

3.1

```
For f \in A, A_f := A[f^{-1}].

For \mathfrak{p} \in \operatorname{Spec} A, A_{\mathfrak{p}} := (A \setminus \mathfrak{p})^{-1}A is a local ring.

local ring extension of ideals

Since S^{-1}A is a flat A-module for a multiplicative set S \subset A, the localization functor S^{-1} := - \otimes_A S^{-1}A:

\operatorname{Mod}_A \to \operatorname{Mod}_{S^{-1}A} is always exact.
```

$$\operatorname{Spec}(A_{\mathfrak{p}}) \longleftrightarrow \{\mathfrak{q} \in \operatorname{Spec} A : \mathfrak{q} \subset \mathfrak{p}\}.$$

3.2 Valuation

DVR dedekind domains

Part II Dimension theory

4.1. Let *A* be a ring. A strictly increasing finite sequence $(\mathfrak{p}_i)_{i=0}^n$ of prime ideals of *A* is called a *prime chain* of length *n* in *A*. The *height* of a prime ideal \mathfrak{p} of *A* is the supremum of the length of prime chains containing \mathfrak{p} :

$$ht(\mathfrak{p}) := \sup\{n : \mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}, \ \mathfrak{p}_i \in \operatorname{Spec} A\}.$$

The *Krull dimension* or simply the *dimension* of *A* is the supremum of the heights of prime ideals of *A*:

$$\dim A := \sup \{ \operatorname{ht}(\mathfrak{p}) : \mathfrak{p} \in \operatorname{Spec} A \}.$$

- 4.2 (Krull Hauptidealsatz).
- 4.3 (Hilbert polynomials).
- **4.4** (Minimal number of generators of modules). The *embedding dimension* of *A* is defined edim $A := \dim_{A/\mathfrak{m}} \mathfrak{m}/\mathfrak{m}^2$. For a noetherian local ring *A*, edim $A = \dim A$ is the minimal number of generators of \mathfrak{m} .

Homological dimensions

5.1 (First change of rings). Let *A* be a ring, and let A' := A/xA be the quotient for a regular element $x \in A$. If M' is a non-zero A'-module with $\operatorname{pd}_{A'}(M') < \infty$, then $\operatorname{pd}_{A}(M') = \operatorname{pd}_{A'}(M') + 1$.

Proof. We introduce the inductive hypothesis on $p' := \operatorname{pd}_{A'}(M')$. Consider a short exact sequence of A'-modules

$$0 \to K' \to F' \to M' \to 0$$
,

where F' is a free A'-module.

On the other hand, we get $\operatorname{pd}_{A'}(K') = p' - 1$ because for any A'-module N' we have $\operatorname{Ext}_{A'}^i(K', N') = 0$ for $i \ge p'$ by the long exact sequence of A'-modules

$$0 \cong \operatorname{Ext}_{A'}^{i}(F', N') \to \operatorname{Ext}_{A'}^{i}(K', N') \to \operatorname{Ext}_{A'}^{i+1}(M', N') \cong 0, \qquad i \geq p'.$$

Therefore, the inductive hypothesis deduces

$$\operatorname{pd}_{A}(M') = \operatorname{pd}_{A}(K') + 1 = \operatorname{pd}_{A'}(K') + 1 = (p'-1) + 1 = p'.$$

 $\operatorname{gldim} A = \operatorname{pd}_A(A/\mathfrak{m}).$

5.2. Let *A* be a noetherian local ring.

Let $d := \dim A$, $g := \operatorname{gldim} A = \operatorname{pd}_{A}(k)$, and $e := \operatorname{edim} A$.

- (a) If A is regular, then A has finite global dimension.
- (b) If *A* has finite global dimension, then *A* is regular.

Proof. (a)

(b) It suffices to show e = d.

We want to find $x \in A$ such that

- (i) x is regular in A with gldim $A' < \infty$,
- (ii) $x \in \mathfrak{m} \setminus \mathfrak{m}^2$.

where we denote by A' := A/xA the quotient local ring with the maximal ideal \mathfrak{m}' and the residue field k' = k. Since the first condition implies d = d' + 1 by the first change of rings and the second condition implies that

 $d' = \operatorname{pd}_{A'}(k) < \infty$ implies that we can apply the first change of rings.

We have , d'=e' by the inductive hypothesis, and e'+1=e by the fact $\ker(\mathfrak{m}/\mathfrak{m}^2\to\mathfrak{m}'/\mathfrak{m}'^2)$