一.

1. B, E.

2. 1/16, 7.5.

 $3. \times \sqrt{\times}$

4.
$$x_{k+1} = x_k - \frac{x_k^3 - 1/3}{3x_k^2}$$
, A,C

5. 7.5.

6. $3x^3 + 10x^2 + 5x + 1$.

$$\boldsymbol{L} = \begin{bmatrix} 1 & & & & \\ 1 & 1 & & & \\ 1 & 0 & 1 & \\ 1 & 1/2 & 0 & 1 \end{bmatrix}, \ \boldsymbol{U} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ & 2 & 2 & 3 \\ & & 1 & 1 \\ & & & -1/2 \end{bmatrix}, \ \boldsymbol{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

三.

(1).
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 4 \\ 1 & 9 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3.5 \end{bmatrix}$.

(2). $x_1 = 6/7$, $x_2 = 57/196$.

四.

左边: a_{ij}:= a_{ij}+ca_{kj};

右边: a_{ij}:= a_{ij}-a_{ik}a_{jk};

五.

(1). 8/9.

(2). $x_1 = \sqrt{3/5}$, $\mbox{!} \mbox{!} 0.775$; $A_1 = 5/9$, $\mbox{!} \mbox{!} 0.5556$.

(3). 结果为 34/39, 比(1)的结果更准确。

六.

(1). 5.

(2). $4\frac{161}{256}$, \$\Pm\$ 4.629.

(3). (2)的结果更准确,从稳定性角度考虑,(1)的方法应满足 $h \leq 2/3$,显然它违反了。七.

应写出 G-S 迭代法的迭代矩阵,须证明其谱半径<1. 此时利用严格对角占优这一条件,用反证法证明。

如果从 Jacobi 迭代法的迭代矩阵入手,再利用定理 4.9,得出 G-S 迭代收敛的结论,会被扣 1 分。