Resumo Álgebra Linear

Gino Chen Hsiang-Jan

26 de Outubro de 2015

Contents

1	Projeção ortogonal	2
2	Matrizes	3
3	Processo de Gram-Schmidt	3
4	Decomposição QR via Gram-Schmidt	3
5	Transformação Householder	4
6	Decomposição de Schur	4

1 Projeção ortogonal

Definição 1.1. [Anton,AlgLinApl-pt,2010] Dizemos que dois vetores não nulos $u e v em \mathbb{R}^n$ são ortogonais (ou perpendiculares) se u.v = 0. Também convencionamos que o vetor nulo em \mathbb{R}^n é ortogonal a cada vetor em \mathbb{R}^n . Um conjunto não vazio de vetores em \mathbb{R}^n é denominado ortogonal se dois quaisquer de seus vetores forem ortogonais. Um conjunto ortogonal de vetores unitários é dito ortonormal.

Teorema 1.2. [Anton,AlgLinApl-pt,2010]

(a) Se a e b constantes não ambas nulas, então uma equação da forma:

$$ax + by + c = 0$$

representa uma reta em \mathbb{R}^2 de normal n = (a, b).

(b) Se a, b e c constantes não ambas nulas, então uma equação da forma:

$$ax + by + cz + d = 0$$

representa um plano em \mathbb{R}^3 de normal n = (a, b, c).

Teorema 1.3. [Anton,AlgLinApl-pt,2010] Teorema das projeções $Se\ u,v\in\mathbb{R}^n\ e\ se\ v\neq 0$, então $u\ pode\ ser$ escrito de maneira única na forma $u=w_1+w_2$, em que w_1 é um múltiplo escalar de $v\ e\ w_2$ é ortogonal a v.

Definição 1.4. [Anton,AlgLinApl-pt,2010] No teorema das projeções:

 w_1 é chamado de projeção ortogonal de u ou componente vetorial de u ao longo de v e denotado como proj $_v$ u e pode ser calculado por:

$$w_1 = proj_v u = \frac{\langle u, v \rangle}{\langle v, v \rangle} v$$

 w_2 é chamado de componente vetorial de u a v e pode ser calculado por:

$$w_2 = u - proj_v u = u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v$$

Definição 1.5. [Anton,AlgLinApl-pt,2010] Dizemos que um conjunto de dois ou mais vetores num espaço com produto interno é **ortogonal** se quaisquer dois vetores distintos do conjunto forem ortogonais.

Definição 1.6. [Anton,AlgLinApl-pt,2010] Um conjunto ortogonal no qual cada vetor tem normal 1 é ortonormal.

Teorema 1.7. [Anton,AlgLinApl-pt,2010] Se $S = \{v_1, v_2, v_3, \dots, v_n\}$ for um conjunto ortogonal de vetores não nulos num espaço com produto interno, então S é linearmente independente

Teorema 1.8. [Anton,AlgLinApl-pt,2010] Se $S = \{v_1, v_2, v_3, \dots, v_n\}$ for uma base ortogonal de espaço com produto interno $V \in V \in V$ então :

$$u = \frac{\langle u, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle u, v_2 \rangle}{\|v_2\|^2} v_2 + \frac{\langle u, v_3 \rangle}{\|v_3\|^2} v_3 + \dots + \frac{\langle u, v_n \rangle}{\|v_n\|^2} v_n$$

Teorema 1.9. [Anton,AlgLinApl-pt,2010] Se $S = \{v_1, v_2, v_3, \dots, v_n\}$ for uma base ortonormal de espaço com produto interno V e $u \in V$ então :

$$u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \langle u, v_3 \rangle v_3 + \dots + \langle u, v_n \rangle v_n$$

Teorema 1.10. [Anton,AlgLinApl-pt,2010] Seja W um subespaço de dimensão finita de um espaço vetorial com produto interno V

(a) Se $S = \{v_1, v_2, v_3, \dots, v_n\}$ for uma base ortogonal de W e $u \in V$ então:

$$u = \frac{\langle u, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle u, v_2 \rangle}{\|v_2\|^2} v_2 + \frac{\langle u, v_3 \rangle}{\|v_3\|^2} v_3 + \dots + \frac{\langle u, v_n \rangle}{\|v_n\|^2} v_n$$

(b) Se $S = \{v_1, v_2, v_3, \dots, v_n\}$ for uma base ortonormal de W e $u \in V$ então:

$$u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \langle u, v_3 \rangle v_3 + \dots + \langle u, v_n \rangle v_n$$

Teorema 1.11. [Anton,AlgLinApl-pt,2010] Cada espaço vetorial não nulo de dimensão finita possui alguma base ortonormal.

2 Matrizes

Definição 2.1. [Noble,AlgLinApl-pt,1986] Chama-se de matriz transposta hermitiana, denotado por A^H , $A^H = \overline{A}^t$, que é a complexa cojugada da transposta ordinária.

Definição 2.2. [Noble,AlgLinApl-pt,1986] Chama-se de matriz hermitiana uma matriz tal que $A^H = A$.

Lema 2.3. [Noble,AlgLinApl-pt,1986] Uma matriz hermitiana é a soma de uma matriz real simétrica e de uma matriz imaginária anti-simétrica.

Lema 2.4. [Noble, AlgLin Apl-pt, 1986] As propriedades de matrizes são válidas:

- $\overline{AB} = \overline{A}.\overline{B}$
- $\bullet \ (\overline{A})^t = (\overline{A^t})$

Definição 2.5. [Noble, AlgLin Apl-pt, 1986] Uma matriz P tal que $P^HP = PP^H = I$ é chamada matriz unitária.

Definição 2.6. [Noble,AlgLinApl-pt,1986] Uma matriz P real tal que $P^TP = PP^T = I$ é chamada matriz ortogonal.

Teorema 2.7. [Noble, AlgLin Apl-pt, 1986]

- (i) Tanto as colunas quanto as linhas de uma matriz unitária (ou ortogonal) formal um cojunto ortonormal.
- (ii) Se P é unitária, então |detP| = 1.
- (iii) Se P e Q são unitárias, então o mesmo acontece com PQ.
- (iv) Se P é unitária, então, para todos os x e y, temos (Px, Py), $\|Px\|_2 = \|x\|_2$ e $\|P\|_2 = 1$.
- (v) Se λ for um autovalor da matriz unitária P, então $|\lambda| = 1$.

3 Processo de Gram-Schmidt

[Anton,AlgLinApl-pt,2010] Para converter uma base $\{u_1,u_2,u_3,\ldots,u_n\}$ numa base ortogonal $\{v_1,v_2,v_3,\ldots,v_n\}$, efetue as seguintes contas:

$$\begin{aligned} v_1 &= u_1 \\ v_2 &= u_2 - \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1 \\ v_3 &= u_3 - \frac{\langle u_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_3, v_2 \rangle}{\|v_2\|^2} v_2 \\ &\vdots \\ v_n &= u_n - \frac{\langle u_n, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_n, v_2 \rangle}{\|v_2\|^2} v_2 - \frac{\langle u_n, v_3 \rangle}{\|v_3\|^2} v_3 + \dots - \frac{\langle u_n, v_n \rangle}{\|v_n\|^2} v_n \end{aligned}$$

Para converter a base ortogonal numa base ortonormal $\{q_1, q_2, q_3, \dots, q_n\}$ normalize os vetores da base ortonormal:

$$q_i = \frac{v_i}{\|v_i\|}, i = 1, 2, 3, \dots, n$$

4 Decomposição QR via Gram-Schmidt

[Anton,AlgLinApl-pt.2010] Seja A uma matriz $m \times n$ tal que $A = [u_1 \ u_2 \ u_3 \dots u_n]$ e $u_1, u_2, u_3, \dots, u_n$ são vetores de dimensão m linearmente independentes. Existe uma matriz $Q = [q_1 \ q_2 \ q_3 \dots q_n]$, através do processo de Gram-Schmidt, formado por uma base ortonormal projetados pelos vetores de $u_1, u_2, u_3, \dots, u_n$. Temos então:

$$\begin{cases} u_1 = \langle u_1, q_1 \rangle q_1 + \langle u_1, q_2 \rangle q_2 + \langle u_1, q_3 \rangle q_3 + \dots \langle u_1, q_n \rangle q_n \\ u_2 = \langle u_2, q_1 \rangle q_1 + \langle u_2, q_2 \rangle q_2 + \langle u_2, q_3 \rangle q_3 + \dots \langle u_2, q_n \rangle q_n \\ u_3 = \langle u_3, q_1 \rangle q_1 + \langle u_3, q_2 \rangle q_2 + \langle u_3, q_3 \rangle q_3 + \dots \langle u_3, q_n \rangle q_n \\ \vdots \\ u_n = \langle u_n, q_1 \rangle q_1 + \langle u_n, q_2 \rangle q_2 + \langle u_n, q_3 \rangle q_3 + \dots \langle u_n, q_n \rangle q_n \end{cases} \Leftrightarrow \begin{bmatrix} \langle u_1, q_2 \rangle & \langle u_1, q_2 \rangle & \langle u_2, q_3 \rangle & \langle u_2, q_3 \rangle \\ \vdots & \langle u_n, q_n \rangle & \langle u_n, q_n \rangle & \langle u_n, q_n \rangle q_n \end{cases}$$

$$A = QR = [q_1 \ q_2 \ q_3 \dots q_n] \begin{bmatrix} \langle u_1, q_1 \rangle & \langle u_1, q_2 \rangle & \langle u_1, q_3 \rangle & \dots & \langle u_1, q_n \rangle \\ 0 & \langle u_2, q_2 \rangle & \langle u_2, q_3 \rangle & \dots & \langle u_2, q_n \rangle \\ 0 & 0 & \langle u_3, q_3 \rangle & \dots & \langle u_3, q_n \rangle \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \langle u_n, q_n \rangle \end{bmatrix}$$

Transformação Householder 5

Noble, Alg
Lin Apl-pt, 1986 Seja V um espaço vetorial de corpo K munido de produto interno, $w \in V$ e $H \subset V$ tal que H é um hiperplano normal a w. Deseja-se achar a matriz de transformação H_w , onde dado qualquer $x \in V$ desejamos encontrar um $y \in V$ tal que y é reflexão de x em relação a H.

Para tal finalidade, usaremos uma representação em \mathbb{R}^2 para melhor visualizar a dedução.

Na figura acima, p como a projeção de x em H e s é combinação linear de w.

Projeção de x em p-x:

$$p - x = -\frac{\langle w, x \rangle}{\langle w, w \rangle} w$$

temos também:

$$s=2(p-x)=-2\frac{\langle w,x\rangle}{\langle w,w\rangle}w$$

A reflexão $y \notin y = x + s$, então:

$$y = x - 2\frac{\langle w, x \rangle}{\langle w, w \rangle} w = x - 2\frac{\langle w, x \rangle w}{\langle w, w \rangle} = x - 2\frac{w\langle w, x \rangle}{\langle w, w \rangle}$$
$$y = x - \frac{2}{w^t w} w \cdot w^t x \Leftrightarrow y = \left(I - \frac{2}{w^t w} w \cdot w^t\right) x$$

Definimos a transformação linear H_w como:

$$H_w(x) = \left(I - \frac{2}{w^t w} w. w^t\right) x$$

6 Decomposição de Schur

formação unitária P^HAP , a uma matriz T triangular superior com os autovalores de A sobre a diagonal de T. Chamamos T uma forma canônica de Schur para A e a decomposição $A=PTP^H$ é chamada de uma decomposição de Schur de A. Se A e seus autovalores são reais, então podemos também tomar P real.

Algoritmo: Dado uma matriz quadrada $A, n \times n$:

- 1. Achar os n autovalores, $\lambda_1 \ldots, \lambda_n$
- $2. A_0 \leftarrow A.$
- 3. Para i = 1, ..., n 1 faça os passos abaixo:
 - 3.1. $Q_i = [v_i W_i]$ e $W_i = [w_{i+1} \dots w_n]$ onde v_i é o autovetor **normalizado** associado a λ_i na matriz A_i e $w_{i+1} \dots w_n$ são vetores normais a v_i escolhidos arbitrariamente. (preencha com vetores normais) tal que Q_i seja unitário. Lembrando que $W_i^H v_i = 0$.
 - 3.2. Seja A_i de dimensão $n-i+1\times n-i+1$ e A_{i+1} de dimensão $n-i\times n-i$, faça: A_i é matriz de bloco tal que $A_i=\begin{bmatrix} \lambda_i & b_i \\ 0 & A_{i+1} \end{bmatrix}$ e $A_i\leftarrow Q_i^HA_{i-1}Q_i$
- 4. $A_n \leftarrow \lambda_n \in P \leftarrow Q_1 Q_2 Q_3 \dots$