

ITA OBJETIVO 1

2023

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A} = 6.02 \times 10^{23}\,{\rm mol}^{-1}$
- Carga elementar, $e=1.6\times 10^{-19}\,\mathrm{C}$
- Constante de Planck, $h = 6.6 \times 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg \, s}^{-1}$
- Constante de atoionização da água, $K_{\rm w}=1\times 10^{-14}$ Velocidade da luz no vácuo, $c=3\times 10^8\,{\rm m\,s^{-1}}$
- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
 - Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
 - Constante de Rydberg, $\mathcal{R}_{\infty} = 1.1 \times 10^7 \, \text{m}^{-1}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

- $\sqrt{2} = 1.4$
- $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol^{-1})} \end{array}$	Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol^{-1})} \end{array}$
Н	1	1,01	S	16	32,06
\mathbf{C}	6	12,01	Cl	17	$35,\!45$
N	7	14,01	Mo	42	$95,\!95$
O	8	16,00	Ru	44	101,07
Na	11	22,99	Pd	46	$106,\!42$
Mg	12	24,31			

Questão 1. A série de Balmer é formada pelo conjunto de linhas no espectro dos átomos de hidrogênio com $n_1=2$. As linhas dessa série são observadas em 656 nm, 486 nm, 434 nm e 410 nm.

Assinale a alternativa que mais se aproxima do próximo comprimento de onda na série.

- **A**() 317 nm
- **B**() 337 nm
- **C**() 357 nm
- $\mathbf{D}()$ 377 nm
- **E**() 397 nm

Questão 2. O etanol é um componente renovável e de queima limpa que pode ser adicionado à gasolina. A combustão do etanol líquido libera 684 kJ por mol de etanol em pressão constante e 25 °C.
Assinale a alternativa que mais se aproxima da energia interna de combustão do etanol líquido em e 25 °C.
${f A}(\)\ -684{ m kJmol}^{-1}$
$\mathbf{B}(\)\ -679\mathrm{kJmol}^{-1}$
$\mathbf{C}\left(\right) -639\mathrm{kJ}\mathrm{mol}^{-1}$
$\mathbf{D}\left(\right) +679\mathrm{kJ}\mathrm{mol}^{-1}$
$\mathbf{E}(\)\ +684\mathrm{kJmol}^{-1}$
Questão 3. A cafeína, um estimulante do café e do chá, tem massa molar entre $100\mathrm{gmol^{-1}}$ e $200\mathrm{gmol^{-1}}$. A composição percentual em massa desse composto é igual a $49,48\%$ de carbono, $5,19\%$ de hidrogênio, $28,85\%$ de nitrogênio e o restante de oxigênio.
Assinale a alternativa com a fórmula molecular da cafeína.
${f A}(\)\ {f C}_4{f H}_5{f N}_2{f O}$
$\mathbf{B}(\)\ \mathrm{C_5H_7N_2O}$
$\mathbf{C}(\)\ \mathrm{C_8H_{12}N_3O_2}$
$\mathbf{D}(\)\ \mathrm{C_8H_{10}N_4O_2}$
$\mathbf{E}(\)\ C_{10}H_{10}N_3O_2$
$ {\bf Quest{\~ao}~4.~~Assinale~a~alternativa~com~o~n\'umero~de~is\^omeros~constitucionais~com~f\'ormula~molecular~C_5H_{10}. } $
A () 8
B () 9
$\mathbf{C}(\)$ 10
D () 11
E () 12
Questão 5. Um nuclídeo tem átomos com 44 nêutrons, 42 prótons e 42 elétrons.
Assinale a alternativa com a representação correta do nuclídeo.
A () Molibdênio-44
B () Molibdênio-86
C() Rutênio-44
D () Rutênio-86

 $\mathbf{E}\left(\ \right)$ Paládio-86

Questão 6. O metal bário é produzido pela reação do metal alumínio com óxido de bário:

$$3 \operatorname{BaO}(s) + 2 \operatorname{Al}(s) \xrightarrow{\Delta} \operatorname{Al}_2 O_3(s) + 3 \operatorname{Ba}(s)$$

Considere as reações:

$$\begin{split} 2\,\mathrm{Ba}(s) + \mathrm{O}_2(g) &\longrightarrow 2\,\mathrm{BaO}(s) \quad \Delta H_\mathrm{r}^\circ = -1107\,\mathrm{kJ}\,\mathrm{mol}^{-1} \\ 2\,\mathrm{Al}(s) + \frac{3}{2}\,\mathrm{O}_2(g) &\longrightarrow \mathrm{Al}_2\mathrm{O}_3(s) \quad \Delta H_\mathrm{r}^\circ = -1676\,\mathrm{kJ}\,\mathrm{mol}^{-1} \end{split}$$

Assinale a alternativa que mais se aproxima da entalpia de reação de produção de bário metálico com alumínio.

- $\mathbf{A}(\)\ -24\,\mathrm{kJ\,mol}^{-1}$
- $\mathbf{B}(\)\ -16\,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- $C() -12 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $D() +16 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\mathbf{E}(\)\ +24\,\mathrm{kJ\,mol}^{-1}$

Questão 7. O "ar" na roupa espacial dos astronautas é, na verdade, oxigênio puro na pressão de 0.3 bar. Cada um dos dois tanques da roupa espacial tem o volume de $3980\,\mathrm{cm}^3$ e pressão inicial de $5860\,\mathrm{kPa}$. A temperatura do tanque é mantida em $16\,\mathrm{^{\circ}C}$.

Assinale a alternativa que mais se aproxima da massa de oxigênio contida nos tanques.

- **A**() 155 g
- **B**() 310 g
- **C**() 465 g
- **D**() 620 g
- **E**() 775 g

Questão 8. A testosterona é o principal hormônio sexual masculino e um esteroide anabolizante.

Testosterona

Assinale a alternativa com o número de átomos de hidrogênio na testosterona.

- **A**() 22
- **B**() 24
- **C**() 26
- **D**() 28
- **E**() 30

Questão 9. A cada segundo, uma lâmpada emite 2.4×10^{21} fótons com comprimento de onda igual a 633 nm.

 $\textbf{Assinale} \ a \ alternativa \ que \ mais \ se \ aproxima \ da \ potência \ produzida \ pela \ lâmpada \ como \ radiação \ nesse \ comprimento \ de \ onda.$

A ()	$250\mathrm{W}$
\mathbf{A})	200 W

 \mathbf{B} () 500 W

C() 750 W

 $\mathbf{D}(\)\ 1000\,\mathrm{W}$

E() 1250 W

Questão 10. Considere os dados em $25\,^{\circ}$ C.

	$C_3H_8(g)$	$\mathrm{H}_{2}\mathrm{O}\left(\mathrm{l}\right)$	$CO_2(g)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	$-104\mathrm{kJ}\mathrm{mol}^{-1}$	$-286\mathrm{kJ}\mathrm{mol}^{-1}$	$-394\mathrm{kJ}\mathrm{mol}^{-1}$

Assinale a alternativa que mais se aproxima do volume de propano que deve ser queimado a $0\,^{\circ}\mathrm{C}$ e $1\,\mathrm{atm}$ para fornecer $350\,\mathrm{kJ}$ de calor.

- **A**() 3,1 L
- **B**() 3,5 L
- **C**() 4,1 L
- **D**() 4,5 L
- **E**() 5,1 L

Questão 11. A densidade do gás de um composto de boro e hidrogênio é 0,685 g L⁻¹ em 200 °C, quando sua pressão é 730 Torr. O composto é formado por 78,1% de boro e 21,9% de hidrogênio em massa.

Assinale a alternativa com a fórmula molecular do composto.

- $\mathbf{A}()$ BH₃
- $\mathbf{B}(\)\ \mathrm{BH}_4$
- $\mathbf{C}()$ B_2H_6
- $\mathbf{D}()$ B_2H_8
- $\mathbf{E}(\)\ \mathrm{B}_{2}\mathrm{H}_{10}$

Questão 12. Considere os compostos:

- 1. $CH_3CH_2CH_2OH$
- $2. \ \mathrm{CH_{3}CH_{2}CH_{2}CH_{2}COOH}$
- 3. CH_2CHCH_3
- 4. CH_3C_2Br

Assinale a alternativa com a classificação dos compostos, respectivamente.

- $\mathbf{A}\left(\ \right)$ Álcool; ácido carboxílico; alceno; haleto orgânico.
- ${f B}\,(\,\,\,)$ Aldeído; ácido carboxílico; alcino; haleto orgânico.
- $\mathbf{C}\left(\ \right)$ Cetona; aldeído; alcino; haleto de arila.
- $\mathbf{D}\left(\ \right)$ Álcool; ácido carboxílico; alceno; haleto orgânico.
- E() Álcool; aldeído; alcano; peróxido orgânico.