

INTRODUCTION

• A radial basis function (RBF) network is an artificial neural network that uses RBFs as activation functions. The output of the network is a linear combination of radial basis functions of the inputs and neuron parameters.

INTRODUCTION

 On the other hand, an RBF neuron measures similarity or distance. RBF network can be seen as a completely different approach by designing a neural network as a curve-fitting (approximation) problem in high-dimensional space.

introduction RADIAL BASIS FUNCTION NETWORK (SUMMARY) • A kind of supervised neural networks • Design of NN as curve-fitting problem. That is, approximate function with linear combination of Radial basis functions • Learning • find surface in multidimensional space best fit to training data • Generalization • Use of this multidimensional surface to interpolate the test data

DESIGNING

Require

- Determine the number of radial basis neurons
- Determine the radial basis function centers
- Select the radial basis function width parameter
 - ✓ smaller width alerting in untrained test data
 - ✓ larger width network of smaller size & faster execution

learning strategies

CAN ALSO BE TRAINED LIKE AN MLP (1/2)

$$E = \frac{1}{2} \sum_{i=1}^{N} (d_i(x) - f_i(x))^2 = \frac{1}{2} \sum_{i=1}^{N} e_i(x)^2$$

$$f(x) = \sum_{j=1}^{m} w_j h_j(x)$$

$$h_j(x) = \exp(-\beta_j ||x - c_j||^2)$$

$$h_i(x) = \exp(-\beta_i ||x - c_i||^2)$$

• Linear weights (output layer)

$$w_j \leftarrow w_j - \eta_1 \frac{\partial E}{\partial w_j}, \quad j = 1, 2, ..., m$$

• Positions of centers (hidden layer)

$$c_j \leftarrow c_j - \eta_2 \frac{\partial E}{\partial c_i}, \quad j = 1, 2, ..., m$$

• Spreads of centers (hidden layer)

$$\beta_j \leftarrow \beta_j - \eta_3 \frac{\partial E}{\partial \beta_j}, \quad j = 1, 2, ..., m$$

learning strategies

CAN ALSO BE TRAINED LIKE AN MLP (2/2)

$$E = \frac{1}{2} \sum_{i=1}^{N} (d_i(x) - f_i(x))^2 = \frac{1}{2} \sum_{i=1}^{N} e_i(x)^2$$

$$f(x) = \sum_{j=1}^{m} w_j h_j(x)$$

$$h_j(x) = \exp(-\beta_j || x - c_j ||^2)$$

• Gradient of linear weights (output layer)

$$\frac{\partial E}{\partial w_j} = \frac{\partial E}{\partial e_i(x)} \frac{\partial e_i(x)}{\partial w_j} = -\sum_{i=1}^N e_i(x) h_j(x), \qquad j = 1, 2, ..., m$$

• Gradient of positions of centers (hidden layer)

$$\frac{\partial E}{\partial c_{i}} = \frac{\partial E}{\partial e_{i}(x)} \frac{\partial e_{i}(x)}{\partial h_{j}(x)} \frac{\partial h_{j}(x)}{\partial c_{j}} = -\sum_{i=1}^{N} e_{i}(x) w_{j} h_{j}(x) \beta_{j} \parallel x - c_{j} \parallel, \quad j = 1, 2, ..., m$$

• Gradient of spreads of centers (hidden layer)

$$\frac{\partial E}{\partial \beta_{j}} = \frac{\partial E}{\partial e_{i}(x)} \frac{\partial e_{i}(x)}{\partial h_{j}(x)} \frac{\partial h_{j}(x)}{\partial \beta_{j}} = \sum_{i=1}^{N} e_{i}(x) w_{j} h_{j}(x) \| x - c_{j} \|^{2}, \quad j = 1, 2, \dots$$

MLP vs RBFN

-	
Global hyperplane	Local receptive field
EBP (Error BP)	LMS (Least mean square)
Local minima	Serious local minima
Smaller number of hidden neurons	Larger number of hidden neurons
Shorter computation time	Longer computation time
Longer learning time	Shorter learning time

APPROXIMATION • MLP : Global network • All inputs cause an output • RBF : Local network • Only inputs near a receptive field produce an activation • Can give "don't know" output

SVM Formulation
-- Maximizing the margin

o Goal: 1) Correctly classify all training data
$$wx_i + b \ge 1 \qquad if y_i = +1$$

$$wx_i + b \le -1 \qquad if y_i = -1$$

$$y_i(wx_i + b) \ge 1 \qquad \text{for all i}$$

2) Maximize the Margin
$$\frac{1}{2}w^i w$$
o We can formulate a Quadratic Optimization Problem and solve for w and b

Minimize
$$\Phi(w) = \frac{1}{2}w^i w$$
subject to
$$y_i(wx_i + b) \ge 1 \qquad \forall i$$

SVM Formulation

- -- Introducing a soft margin
- Non-separable classifier

Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples.

What should our quadratic optimization criterion be?

Minimize

$$\frac{1}{2}\mathbf{w}.\mathbf{w} + C\sum_{k=1}^{R} \varepsilon_k$$

SVM Formulation

- -- Maximizing the soft margin
- Hard Margin vs. Soft Margin
 - The old formulation:

Find **w** and *b* such that $\Phi(\mathbf{w}) = \frac{1}{2} \frac{\mathbf{w}^T \mathbf{w}}{\mathbf{w}}$ is minimized and for all $\{(\mathbf{X_i}, y_i)\}$ $y_i(\mathbf{w}^T \mathbf{x_i} + \mathbf{b}) \ge 1$

The new formulation incorporating slack variables:

Find **w** and *b* such that $\mathbf{\Phi}(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i} \xi_{i} \text{ is minimized and for all } \{(\mathbf{x}_{i}, y_{i})\}$ $y_{i} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b) \ge 1 - \xi_{i} \text{ and } \xi_{i} \ge 0 \text{ for all } i$

• Parameter C can be viewed as a way to control overfitting.

SVM Formulation

-- Maximizing the soft margin (cont'd)

The following Lagrangian should be considered

$$L(w,b,\xi;\ \alpha,\nu) = \frac{1}{2}w^{T}w + C\sum_{k=1}^{N} \xi_{k} - \sum_{k=1}^{N} \alpha_{k}(y_{k}[w^{T}x_{k} + b] - 1 + \xi_{k}) + \sum_{k=1}^{N} \nu_{k}\xi_{k}$$
where $\alpha_{k} \ge 0$, $\nu_{k} \ge 0$ for $k = 1,...,N$

• The solution is given by the saddle point of the Lagrangian

$$\max_{\alpha,\nu} \min_{w,b,\xi} (L(w,b,\xi;\alpha,\nu))$$
$$\int_{\frac{\partial L}{\partial w}} = 0 \to w = \sum_{K=1}^{N} \alpha_k y_k x_k$$

$$\begin{cases} \frac{\partial L}{\partial b} = 0 \to \sum_{k=1}^{N} \alpha_k y_k = 0 \\ \frac{\partial L}{\partial \xi} = 0 \to 0 \le \alpha_k \le C, k = 1, ..., N \end{cases}$$

SVM Formulation

- -- Maximizing the soft margin (dual form)
- Linear SVMs: Overview
 - The classifier is a separating hyperplane.
 - Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_t

Find $\alpha_1...\alpha_N$ such that

 $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i \mathbf{x_i}^T \mathbf{x_j} \text{ is maximized and}$

- (1) $\Sigma \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i

1

 $f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$

SVM An margin optimized linear classifier

SVM Extension -- classification on different feature spaces o Nonlinear classifier o Datasets that are linearly separable with some noise work out great: o But what are we going to do if the dataset is just too hard? o How about... mapping data to a higher-dimensional space:

SVM Extension: nonlinear classifier -- **Kernel tricky**

• Find $\alpha_1...\alpha_N$ such that

$$\begin{split} & \max_{\alpha_1 \dots \alpha_N} \, \mathcal{Q}(\alpha) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j K(x_i, x_j) \\ & \text{subject to} \quad \ (1) \, \sum_{i=1}^N \alpha_i y_i = 0 \;, \qquad (2) \; 0 \leq \alpha_i \leq C \; \; \text{for} \; \; \forall \, \alpha_i \end{split}$$

◆ The kernel function

$$K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$$

◆ Decision value is

$$v = \sum_{i=1}^{N} \alpha_i y_i K(x, x_i) + b$$

• Classifier is y(x) = sign(v)

