DM549/DS820/MM537/DM547

Lecture 12: Partial Orders, Modular Arithmetic

Kevin Aguyar Brix Email: kabrix@imada.sdu.dk

University of Southern Denmark

23 October, 2024

Last Time: Transitive Closure

Definition

For a relation R on a set A,

$$R^* = \bigcup_{i=1}^{\infty} R^i.$$

$$R \cup R^2 \cup R^3 \cup \cdots$$

Theorem (only proof sketch, Theorem 9.4.2)

The transitive closure of a relation R is

$$t(R) = R^*$$
.

Last Time: Equivalence Relations

Definitions:

- Equivalence relation: reflexive, symmetric, and transitive relation.
- Equivalence class of a with respect to equivalence relation R: $[a]_R$, the set of elements related to a.

Theorem (Theorem 9.5.2)

Let A be a set. There is a one-to-one correspondence between equivalence relations on A and partitions of A:

- (1) For any equivalence relation R on A, $P = \{[a]_R \mid a \in A\}$ is a partition of A.
- (2) For any partition $P = \{A_i \mid i \in I\}$ of A, there exists an equivalence relation R on A such that $\{[a]_R \mid a \in A\} = \{A_i \mid i \in I\}$.

Partial Orders

Definition (Definition 9.6.1)

A relation R on a set A is called a partial order (partiel ordning) if it is

- reflexive.
- antisymmetric, and
- transitive.

If this is the case, (A, R) is called a *partially ordered set* (partielt ordnet mængde) or *poset*.

Remarks:

- Instead of R, one often uses \leq or \leq for partial orders.
- When using these notations, a < b $(a \prec b)$ can be used to indicate that $a \le b$ $(a \le b)$ and $a \ne b$.

Hasse Diagrams

Idea: Special representation of a partially ordered set (A, \leq) .

Specifically: Like graph representation of relation but

- leave out edges implied by the relation being reflexive and transitive, and
- if $a \leq b$ and edge not implied, leave out arrow head but draw a under b.
 - Since partial orders are transitive and antisymmetric, there are no cycles, and this is possible!

Special Elements of Partially Ordered Sets

Definition (cf. Section 9.6.4)

Let (A, \preceq) be a poset. For $a \in A$, a is called

- a minimal element if $\neg \exists b \in A : b \prec a$.
- the *least* element if $\forall b \in A : a \prec b$.
- a maximal element if $\neg \exists b \in A : a \prec b$.
- the *greatest* element if $\forall b \in A : b \leq a$.

Remarks:

- Every least (greatest) element, is also a minimal (maximal) element, but not necessarily the other way around.
- If A is non-empty and finite, there always exists a minimal (maximal) element, but not necessarily least (greatest).

Total Orders

Definition (Definition 9.6.2)

Let (A, \preceq) be a poset. We call $a, b \in A$ comparable (sammenlignelige) if $a \preceq b$ or $b \prec a$.

Definition (Definition 9.6.3)

Let (A, \preceq) be a poset. If all $a, b \in A$ are comparable, we call \preceq a *total order* (total ordning).

Different view: Partial orders can be obtained from total order by removing edges.

The Lexicographic Order

Definition (cf. Section 9.6.2)

Let $(A_1, \leq_1), (A_2, \leq_2), \ldots, (A_n, \leq_n)$ be partial orders. Then we can define a *lexicographic order*, a partial order, \leq on $A_1 \times A_2 \times \cdots \times A_n$ as follows.

For two different elements $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n)$ of $A_1 \times A_2 \times \dots \times A_n$ that are not equal, $(a_1, a_2, \dots, a_n) \leq (b_1, b_2, \dots, b_n)$ holds if and only if

- \blacksquare $a_1 \prec_i b_1$, or
- there exists an i > 0 such that $a_1 = b_1, a_2 = b_2, \ldots, a_i = b_i$ and $a_{i+1} \prec_i b_{i+1}$.

How to think about this:

- Think of how words are ordered in a dictionary.
- For instance, consider n=4 and all four partial (in fact, total) orders are $(\{a,b,c,\ldots,z\},\leq)$ where $\ell_1\leq\ell_2$ iff ℓ_1 is no later than ℓ_2 in the alphabet.
- Then the corresponding lexicographic order can be viewed as the total order in which the corresponding four-letter words would appear in a dictionary.

A Quiz

Go to pollev.com/kevs

On the Exam

Date: 8 January, 2025.

Duration:

DM547, MM537: 3 hours

■ DM549, DS820: 4 hours

Allowed resources: Must not require the internet.

Tips:

- Start by getting an overview of the exam.
- Use paper and pen while taking the exam.
- Justify each answer to yourself (it may help to even write down reason).
- Use old exams to practice.

Q&A session:

The End of MM537 and DM547!

Number Theory

Definition: A branch of Mathematics devoted to the study of integers and their relations (such as divisibility).

Applications:

- Cryptology
- Hasing
- Pseudorandom numbers
- many more!

Beware: This topic may seem easy at first sight, but it is really one of the harder ones!

Divisibility

Definition (Definition 4.1.1)

For $a, b \in \mathbb{Z}$ with $a \neq 0$, we say that a divides b (a gar op i b) if there exists $c \in \mathbb{Z}$ such that ac = b. Then we write $a \mid b$ (and otherwise $a \nmid b$).

We call a a factor (faktor) or divisor of b, and we call b a multiple (multiplum) of a.

Theorem (Theorem 4.1.1)

Let $a, b \in \mathbb{Z}$ with $a \neq 0$. Then:

- (i) If $a \mid b$ and $a \mid c$ for some $c \in \mathbb{Z}$, then $a \mid (b + c)$.
- (ii) If $a \mid b$, then $a \mid bc$ for all $c \in \mathbb{Z}$.
- (iii) If $a \mid b$ and $b \mid c$ for some $c \in \mathbb{Z}$, then $a \mid c$.

Corollary (Corollary 4.1.1)

Let $a,b\in\mathbb{Z}$ with $a\neq 0$. Then, if $a\mid b$ and $a\mid c$, then $a\mid (kb+\ell c)$ for all $k,\ell\in\mathbb{Z}$.

Quotient and Remainder

Theorem (no proof, Theorem 4.1.3)

Let $a\in\mathbb{Z}$ and $d\in\mathbb{Z}^+.$ Then there exist precisely one pair $q\in\mathbb{Z}$, $r\in\{0,\ldots,d-1\}$ such that

$$a = dq + r$$
.

Definition (Definition 4.1.2)

In the theorem above, we call d the divisor (divisor), a the dividend (dividend), a the a

We also write

$$a \operatorname{div} d = q$$
 and $a \operatorname{mod} d = r$,

where we say "modulo" for "mod".

Modular Arithmetic

Definition (Definition 4.1.3)

Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. Then we have the *congruence* (kongruens)

$$a \equiv b \pmod{m}$$

if and only if m divides a-b. We also say that a and b are congruent (kongruente) modulo m.

Theorem (only proof sketch, Theorems 4.1.3 and 4.1.4)

Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. Then the following statements are equivalent:

- (i) $a \equiv b \pmod{m}$
- (ii) $a \mod m = b \mod m$
- (iii) There exists $k \in \mathbb{Z}$ with a = b + km.

Adding and Multiplying Congruences

Theorem (Theorem 4.5.1)

Let $a,b,c,d\in\mathbb{Z}$ and $m\in\mathbb{Z}^+$. If $a\equiv b\pmod m$ and $c\equiv d\pmod m$, then $a+c\equiv b+d\pmod m \quad \text{and} \quad a\cdot c\equiv b\cdot d\pmod m.$

Remark:

- In particular, that means that we can add the same number to both sides of a congruence or multiply them with the same number.
- Question to think about until next lecture: Does the same work for subtraction and (assuming $c \mid a$ and $d \mid b$) division?