Doing Science: from Start to Finish (day 4)

Dr. Félix E. Rivera-Mariani

https://github.com/friveramariani/DoingScienceWorkshops

Today's goals

- Differentiate between good and poor structures in questions,
 hypothesis, and purpose
- Designing questions and hypotheses from existing data
- Implement questions related to the epicycle of data analysis
- Familiarize with the type of data and format for properly gathering data

The Scientific Method: Review

 Two directions between question and background research

Epicycles with the experiment

 Epicycle between results and hypothesis

The Scientific Method: The question

- What are the most frequent words in the students expectations' about the workshop "Doing Science: from Start to Finish"?

The Scientific Method: *The Hypothesis*

The students expectations' of the Doing Science workshop will contain words that are in the title of the workshop.

The Scientific Method

Plaste shortcut 10 10 10 10 folder

brand

Fishery | Invert selection

Results

The Scientific Method

Plaste shortcut 10 10 10 10 folder

brand

Fishery | Invert selection

Results

The Scientific Method: *The Results*

The Scientific Method: Align or partially align?

The Scientific Method: *partially align*

The Scientific Method: new question(s)

If each of you sent a hypothesis, and then resubmitted a new hypothesis, what could be a question that may have originated from our experiment about student's expectations?

The Scientific Method: good questions?

- a) Will the students' hypothesis 1 and hypothesis 2 align with the results of the students expectations' results?
- b) Will students hypotheses (hypothesis 1 vs hypothesis 2) share commo words?
- c) Will students' hypothesis 1 have higher number of letters than hypothesis 2?
- d) Will students' hypothesis 2 be better than hypothesis 1?

The Scientific Method: good questions?

Meet the criteria:

- 1. Specific
- 2. Testable

- a) Will the students' hypothesis 1 and hypothesis 2 align with the results of the students expectations' results?
- b) Will students hypotheses (hypothesis 1 vs hypothesis 2) share commo words?
- c) Will students' hypothesis 1 have higher number of letters than hypothesis 2?
- d) Will students' hypothesis 2 be better than hypothesis 1?

The Scientific Method: hypothesis from the question

Using the <u>same words</u> used already in these two questions, design a hypothesis for each question

- b) Will students hypotheses (hypothesis 1 vs hypothesis 2) share commo words?
- c) Will students' hypothesis 1 have higher number of letters than hypothesis 2?

The Scientific Method: hypothesis from the question

Using the <u>same words</u> used already in these two questions, design a hypothesis for each question

- b) Students' hypothesis 1 vs hypothesis 2 <u>will</u> share commo words.
- c) Students' hypothesis 1 <u>will</u> have higher number of letters than hypothesis 2.

Students' hypothesis 1 vs hypothesis 2 will share commo words.

Common words in hypothesis 1

students workshop workshop

Common words in hypothesis 2

workshop expectations words will learn students science Students' hypothesis 1 vs hypothesis 2 will share commo words.

Did the results align, partially align, or not at all with the hypothesis?

Words in hypothesis 1

Words in hypothesis 2

workshop expectations words will learn students science

Students' hypothesis 1 vs hypothesis 2 will share commo words.

The results align, and there was an additional finding: students have more common words in common in hypothesis 2

Words in hypothesis 1

Words in hypothesis 2

workshop expectations words will learn students science

• Is this format correct for data analysis?

hyp1		hyp2	
	685		155
	216		183
	137		92
	226		147
	101		124
	127		124
	76		140
	117		143
			78
			120

• Is this format correct for data analysis?

No

hyp1		hyp2	
	685		155
	216		183
	137		92
	226		147
	101		124
	127		124
	76		140
	117		143
			78
			120

•	What	is the	depend	lent va	riable?

What is the independent variable?

hyp1		hyp2	
	685		155
	216		183
	137		92
	226		147
	101		124
	127		124
	76		140
	117		143
			78
			120

•	What	is t	the	de	oend	dent	varia	ble?
---	------	------	-----	----	------	------	-------	------

Number of letters

- What is the independent variable?
 - Hypotheses

hyp1		hyp2	
	685		155
	216		183
	137		92
	226		147
	101		124
	127		124
	76		140
	117		143
			78
			120

Variables = titles of columns

• Rows = observations for each variable

hypothesis	letters
hyp1	685
hyp1	216
hyp1	137
hyp1	226
hyp1	101
hyp1	127
hyp1	76
hyp1	117
hyp2	155
hyp2	183
hyp2	92
hyp2	147
hyp2	124
hyp2	124
hyp2	140
hyp2	143
hyp2	78
hyp2	120

 There is an outlier that may prevent us from correctly interpreting the results

How many variable are present in this table?

. (Quiz1	Quiz2	Quiz3	Quiz4	Quiz5	Quiz6	Topic	Outline	First Draft	Final Draft	Reading Assignments	Attendance	Bonus	Exam1	Exam2	Exam3	Grade
N	0	4	(5 1.8	3		5	5	10		30	30	19	78.3	64.4		79.20
/:	9	5	7	7	5		5	5	10		30	30	21	73	91.8		91.50
t	7	11	. 10	8.8	3		5	5	10		29	29.5	12.5	85.8	108.4		100.60
е	3	5	6	5 (5		5	5	10		30	30	16.5	85.8	86.8		90.30
Z	9.5	0	5	5	2		0	5	0		28	29	19	100.6	79.6		86.80
i:	10	7	8	5.2	2		5	5	10		30	30	21.5	75.7	83		90.80
•	2	. 3	7	7 (5		5	5	10		29.5	30	15	85.8	69.4		83.70
F	12	. 8	9	7.5	5		5	5	10		30	30	13	82.1	75.5		89.70
	10	5	9	8.3	3		5	5	0		30	30	25.5	82.1	81.3		91
ć	0	6	3	10.7	7		5	5	10		29.5	29.5	13.5	78.3	70.5		81.60
E	8	5	5	7.8	3		5	5	10		29.5	29.5	18.5	96	89.5		96.50
F	10	12	12	2 13	2		5	5	10		30	30	19.5	93.2	94.3		104.1
16	0	7	′ (4.	7		5	5	10		29.5	29.5	11	82.1	80.4		82.6
T	5	8	7	7 2.8	3		5	5	10		29.5	29	14.5	71	70.6		80.4
£	8	5	6	5	3		5	5	10		30	29.5	19.5	78.4	79.5		87.2
€	5.5	3	3	7.2	2		5	0	10		30	29.5	18.5	67.3	54.6		7:
èl	5.5	7	9	10.	7		5	5	10		30	30	17	96.9	103.8		103.10
ŀ	11.5	12		1.	7		5	0	10		29	29.5	17	75.7	83.6		88.40
/	8	5	7	1.	7		5	5	10		30	30	23.5	82.1	74.4		8
iı	9.5	5	(EX			5	5	10		30	29.5	18	78.4	77.6		86.5
a I	ΕX	4	. 5	EX			5	5	10		29	29.5	10	75.6	47.7		73.6
	11.5	6	3	9.0	5		5	5	10		30	30	18	85.8	72.2		9
1	5	6	3	8.7	7		5	5	10		30	29.5	11.5	78.4	91		90
r	9	6	12	9.3	2		5	5	10		30	30	12.5	111.7	87.2		102.40
ia Ul	8	9	() 9	9		5	5	10		30	29.5	20	89.5	86.8		94.30

How many variable are present in this table?

1		2					3	4	5	6	7	8	,	9	10
name	Quiz1	Quiz2	Quiz3	Quiz4	Quiz	Quiz6	Topic	Outline	First Draft Final Draft	Reading Assignments	Attendance	Bonus	Exam1	Exam2 Ex	am3 Grade
	\ () 4	4	5 1.	8		5		5 10	30	30	19	78.3	64.4	79.20%
	/i		5	7	6		5	5	5 10	30	30	21	. 73	91.8	91.50%
	t 7	1:	1 1	8.	8		5	5	5 10	29	29.5	12.5	85.8	108.4	100.60%
	е 3	3	5	5	6		5	5	5 10	30	30	16.5	85.8	86.8	90.30%
	9.5	5	0	5	2		C)	0	28	29	19	100.6	79.6	86.80%
3	i: 10)	7	5.	2		5	5	5 10	30	30	21.5	75.7	83	90.80%
	2	2	3	7	6		5	5	5 10	29.5	30	15	85.8	69.4	83.70%
	F 12	2	8	9 7.	5		5	5	5 10	30	30	13	82.1	75.5	89.70%
	10) !	5	9 8.	3		5	5	5 0	30	30	25.5	82.1	81.3	91%
	ia ()	5	3 10.	7		5	5	5 10	29.5	29.5	13.5	78.3	70.5	81.60%
	€ 8	3 !	5	5 7.	8		5	5	5 10	29.5	29.5	18.5	96	89.5	96.50%
	10	1	2 1	2 1	2		5	5	5 10	30	30	19.5	93.2	94.3	104.10%
	ı ()	7	0 4.	7		5	5	5 10	29.5	29.5	11	82.1	80.4	82.60%
	n 5	5	8	7 2.	8		5	5	5 10	29.5	29	14.5	71	70.6	80.40%
	£ 8	3	5	5	3		5	5	5 10	30	29.5	19.5	78.4	79.5	87.20%
	ε 5.5	5	3	3 7.	2		5	5	10	30	29.5	18.5	67.3	54.6	73%
	5.5	5	7	9 10.	7		5	5	5 10	30	30	17	96.9	103.8	103.10%
	11.5	1	2	3 1.	7		5	5	10	29	29.5	17	75.7	83.6	88.40%
	<u>/</u>	3 !	5	7 1.	7		5	5	5 10	30	30	23.5	82.1	74.4	88%
	i 9.5	5 !	5	D EX			5	5	5 10	30	29.5	18	78.4	77.6	86.50%
	a EX	4	4	5 EX			5	5	5 10	29	29.5	10	75.6	47.7	73.60%
	11.5	5	5	9.	6		5	5	5 10	30	30	18	85.8	72.2	91%
		5	5	8.	7		5	5	5 10	30	29.5	11.5	78.4	91	90%
	r <u>c</u>)	5 1	2 9.	2		5	5	5 10	30	30	12.5	111.7	87.2	102.40%
ameia (8	3	9	0	9		5	5	5 10	30	29.5	20	89.5	86.8	94.30%