Recognition of Fanout-free Functions

Tsung-Lin Lee Chun-Yao Wang

Presenter: 黄明瀧

Outline

- Preliminaries
- ► The Old Algorithm
- ► The New Algorithm
- Complexity and Performance

Task: Recognize Fanout-free Functions

- ▶ *f* is fanout-free
 - $\Leftrightarrow \exists$ form where each variable appears exactly once
 - $ightharpoonup f = x_1x_2 + x_1x_3$ is fanout-free

$$(f = x_1(x_2 + x_3))$$

- $lackbox{ }f=x_1x_2+x_2x_3+x_3x_1$ is NOT fanout-free
- Task: Given f in SOP form
 - 1. Is f fanout-free?
 - 2. If true, find a fanout-free form of \boldsymbol{f}
- Assume variables are positive

If not,
$$f(x_i) = \overline{x_i} \cdots \Rightarrow g(\overline{x_i}) = x_i \dots$$

Adjacency

 $\triangleright x_i$ and x_i are adjacent in f

$$\Leftrightarrow f(x_i=a)=f(x_i=a) \text{, for some } a=0 \text{ or } 1$$

- Notation: $x_i =_a x_i$
- ▶ Proven to be an equivalence relation

$$f = x_1 x_2 x_3 x_4 + x_1 x_2 x_3 x_5 + x_4 x_6 + x_5 x_6$$

$$\implies x_1 =_0 x_2 =_0 x_3, \ x_4 =_1 x_5$$

$$\implies$$
 adjacent classes: $\{x_1, x_2, x_3\}\{x_4, x_5\}\{x_6\}$

JPH's Procedure

Theorem: Given the adjacency partition $\{X_1,\dots,X_m\}$ for X we can decompose f like this:

Figure 1: Decomp. with Adjacency Relation

The procedure recursively decompose f, until g is **mutually adjacent**

JPH's Procedure (cont'd)

Figure 2: JPH's Procedure

Why is JPH's Procedure slow?

1. Recall $x_i =_a x_j$ iff the cofactors are the same.

Requires **equivalence checking** of two functions.

2. The new function g is found by building **truth table**.

 \implies Exponential time.

Disappearance and Adjacency

Lemma 1

 ${\sf Adjacency} \implies {\sf disappearance}$

$$x_i =_a x_j \implies \begin{cases} x_j \text{ disappears in } f(x_i = a) \\ x_i \text{ disappears in } f(x_j = a) \end{cases}$$

Lemma 2

Disappearance \implies adjacency

$$\begin{cases} x_j \text{ disappears in } f(x_i = a) \\ x_i \text{ disappears in } f(x_j = a) \end{cases} \implies x_i =_a x_j$$

Theorem

 $Adjacency \Leftrightarrow disappearance \\$

⇒ Check disappearance (polynomial time) to check adjacency

Example: Use disappearance to check adjacency

$$f=x_1x_2x_3x_4+x_1x_2x_3x_5+x_4x_6+x_5x_6$$
 Compute cofactors.

$$\begin{cases} f(x_1=0) = x_4x_6 + x_5x_6 \\ f(x_2=0) = x_4x_6 + x_5x_6 \\ f(x_3=0) = x_4x_6 + x_5x_6 \\ f(x_4=0) = x_1x_2x_3x_5 + x_5x_6 \\ f(x_5=0) = x_1x_2x_3x_4 + x_4x_6 \\ f(x_6=0) = x_1x_2x_3x_4 + x_1x_2x_3x_5 \end{cases}$$

Example: Find new function g

Find all adjacency classes

Repeat for
$$f(x_i=1)$$
, we find $x_4=_1x_5$ \Longrightarrow adjacent classes: $\{x_1,x_2,x_3\}\{x_4,x_5\}\{x_6\}$ \Longrightarrow $\phi_1=x_1x_2x_3,\phi_2=(x_4+x_5),\phi_3=x_6$

Deduce g

$$\begin{split} f(x_1, x_2, x_3, x_4, x_5, x_6) &= \mathbf{x_1} \mathbf{x_2} \mathbf{x_3} x_4 + \mathbf{x_1} \mathbf{x_2} \mathbf{x_3} x_5 + \mathbf{x_4} x_6 + \mathbf{x_5} x_6 \\ &= g(\phi_1, \phi_2, \phi_3) = \mathbf{\phi_1} \mathbf{\phi_2} + \mathbf{\phi_2} \mathbf{\phi_3} \end{split}$$

$$=f(\phi_1,\phi_1,\phi_1,\phi_2,\phi_2,\phi_3)= \frac{\phi_1\phi_1\phi_1\phi_2}{\phi_1\phi_1\phi_2}+\frac{\phi_1\phi_1\phi_1}{\phi_1\phi_2}+\frac{\phi_2\phi_3}{\phi_2\phi_3}+\frac{\phi_2\phi_3}{\phi_2\phi_3}$$
 (This is **not** a coincidence)

Example

After repeating the process (find adj. classes, deduce new function),

$$h(\theta_1,\theta_2)=\theta_1\theta_2$$

Only one adjacency class $\{\theta_1,\theta_2\}\implies f$ is fanout-less

Figure 3: A fanout-less realization of \boldsymbol{f}

Complexity and Performance

Complexity

N = number of variables, K = number of products (in SOP form)

▶ JPH's procedure: $O(N^2 2^N)$, due to equivalence check

lacksquare Proposed method: $O(N^2K)$

Performance

			CPU Time (s)		
Name	lits(sop)	#vars	IROF	JPH	Ours
l2_b10	10240	20	0.30	4	0.11
l4_b3	3072	24	0.10	6	0.08
l4_b6	7290	24	0.21	277	0.18
l6_b4	672	20	0.02	3	0.02
l6_b8a	132	52	0.02	>1hr	0.29
l6_b8b	24192	52	0.74	>1hr	2.08
18_b5	3380	29	0.09	>1hr	0.11
l10_b3	2160	30	0.07	>1hr	0.16
l14_b3	6720	42	0.20	>1hr	0.72

Figure 4: Experimental Results

References

▶ T. Lee and C. Wang, "Recognition of Fanout-free Functions,"