ANDREW SOONG

408-888-0394 | asoong@umich.edu | https://www.linkedin.com/in/andrew-soong/

EDUCATION

University of Michigan | Ann Arbor, MI

Graduating May 2022

M.S. Mechanical Engineering (Controls Concentration)

GPA: 3.9/4.0

M.S. Electrical & Computer Engineering (Signal & Image Processing and Machine Learning Emphasis)

Santa Clara University | Santa Clara, CA

June 2020

B.S. Mechanical Engineering, Aerospace Engineering Minor

GPA: 3.6/4.0

- Computer Vision: Implemented methods for classifying fresh/rotten apples, oranges, and bananas at ~85% success
- (1) Blob detection found patches of rot and the RGB value of that patch was fed into a multi-layered perceptron
 - (2) Felzenszwalb segmentation distinguished rotten patches and the segmentation map was fed into a CNN
 - Method 1 yielded ~90% success rate and method (2) yielded ~80% success rate
- Machine Learning: Implemented Sparse Identification of Nonlinear Dynamics (SINDy) sparse regression algorithm
 - Implementation identified the correct dynamics of a Lorenz Attractor and pendulum with noisy data
- Linear Feedback Control Systems: Designed a MIMO LQR state feedback controller and observer
 - Utilized bode and singular value plots to aid in controller design in application for Reactive Ion Etching process
- Mechatronics: Gaining exposure to mathematical modeling, design, and simulation of electromechanical systems
 - Utilizing <u>MATLAB/Simulink</u> and <u>LabView</u> to implement mechatronic and control systems on a microcontroller for systems such as magnetic levitation, servo and stepper motors, and an inverted pendulum

WORK EXPERIENCE

Space Exploration Technologies Corp. (SpaceX)

Boca Chica, TX

Automation and Controls Associate Engineer

May 2021 – August 2021

- Set-up position control system in Siemens TIA for tower catch-arm hydraulics to catch a landing Heavy Booster
- Designed, in NX, a vibration isolating bracket, lowering 6g vibrations to 2g for remote I/O hardware on launch tower
- Owned <u>cable conduit schedule</u> and installation procedures for 200+ devices to direct the launch tower build process
- Designed <u>electrical CAD</u> (low/high voltage, serial comms, I/O) in <u>ePlan</u> and built electrical panels for production
- Wrote <u>PLC ladder logic</u> code in <u>Siemens TIA</u> for robot cell upgrades and automated nosecone load proofing station

Agilent Technologies

Santa Clara, CA

R&D Mechanical Engineering Intern

June 2019 - September 2019

- Increased manufacturing throughput by 4x with automated heater test bench capable of testing 4 heaters in parallel
- Designed stainless steel fixture in Siemens NX, enabling FTIR spectroscopy testing on electrospray nozzles
- Conducted step-response frequency testing of Silicon Nitride heater with Nitrogen flow for PID controller design
- Collected data using WAGO PLC and used Python for data analysis to compute model and PID controller parameters
- Implemented a PID controller in Structured Text and web-based HMI on WAGO PLC for heater testing

Lam Research Corporation

Fremont, CA

Engineering Intern

June 2018 – September 2018

- Created LED lighting system/brackets in <u>Siemens NX</u> to aid in high-speed video collection of silicon wafer washing
- Machined custom plastic plug mounts and Aluminum clamps using a <u>Tormach Personal CNC</u>

PROJECTS

Satellite Life Extension via Autonomous Solar Array Attachment

January 2021 – Present

- Northrop Grumman sponsored Multidisciplinary Design Project aimed at satellite life extension and augmentation
- Conducted literature review into current satellite failures and future on-orbit servicing/augmentation technologies
- Developed concept of operations and testing requirements for on-orbit autonomous roll-out solar array attachment
- Implemented RANSAC and ICP using Open3D in C++ for point cloud registration for attachment point localization
- Gave poster presentation at the American Society for Gravitational and Space Research conference in Baltimore, MD

Senior Capstone Project - Basil Leaf Automation

September 2019 – June 2020

- Designed, in <u>SolidWorks</u>, and prototyped an aluminum chassis for a robot capable of 2D cartesian motion
- Developed a <u>stepper motor class in Python</u> for stepper motor position control on a Raspberry Pi
- Pre-processed images using <u>Principal Component Analysis</u>, located centroid of leaves using <u>OpenCV</u>, and categorized fresh/rotten leaves at 73% accuracy using linear/quadratic discriminant analysis with Python scikit-learn library