Exercici 17. Siguin n > 1 un nombre natural i p el menor nombre natural primer que divideix n. Demostreu que si $p^3 > n$, llavors n és primer(i p=n) o bé $\frac{n}{n}$ és primer.

Solució. Sigui n un nombre major estrictament que 1 i pertanyent als naturals. Pel Teorema Fonamental de l'Aritmètica sabem que n és primer o és compost. Demostrarem l'enunciat per casos segons si n és primer o compost.

Si n és primer, la seva factorització és $n=1\cdot n$, i per tant n és el nombre primer més petit que divideix n (recordem que 1 no es considera primer i a més $n\neq 1$, ja que n>1). Aleshores en efecte n=p.

En el cas de que n sigui compost, sabem que $n=p\cdot c,\ c\neq 1$ i $c\in \mathbb{Z}$. Tenim per hipòtesis que $p^3>n$, que és el mateix que $p^3>p\cdot c$. D'aquí obtenim $p^2>c$, i alhora sabem que p< c, ja que p és el menor nombre natural primer que divideix n. Un altre cop pel Teorema Fonamental de l'Aritmètica, c pot ser primer o producte de primers. Però si c és producte de primers, ha de ser producte de primers majors que p, i alehores $c>(p+1)\cdot (p+1)=p^2+2p+1$, i això contradiu $c< p^2$. Per tant $c=\frac{n}{p}$ és primer i queda l'enunicat demostrat.