Université de Grenoble École doctorale EEATS

THÈSE CIFRE PRÉSENTÉE PAR

JORY LAFAYE

LABORATOIRE : INRIA GRENOBLE RHÔNE-ALPES ENTREPRISE : ALDEBARAN

Commande des mouvements et de l'équilibre d'un robot humanoïde à roues omnidirectionnelles

Directeur : Dr. Bernard Brogliato, Inria

Encadrants :
Dr. Pierre-Brice Wieber, Inria
Dr. Cyrille Collette, Aldebaran
Dr. Sebastien Dalibard, Aldebaran

Table des matières

Re	ésumé											
I	Intro	Introduction 6										
	I.1	Contexte d'étude										
	I.2	État de l'art										
		I.2.1 Commande et équilibre des robots à roues										
		I.2.1.1 Les robots à une et deux roues										
		I.2.1.2 Les robots à trois roues et plus										
		I.2.2 Commande et équilibre des robots bipèdes										
		I.2.3 Synthèse et conclusion										
	I.3	Contributions scientifiques										
	I.4	Plateforme expérimentale										
	I.5	Contributions techniques										
	I.6	Organisation du document										
	1.0	Organisation du document										
II	Mod	délisation du système										
	II.1	Choix du modèle et conséquences										
	II.2	Modélisation dynamique										
		II.2.1 Problème de complémentarité mixte										
		II.2.2 Les trois roues en contact avec le sol										
		II.2.3 Le robot bascule sur deux roues										
	II.3	II.2.3 Le robot bascule sur deux roues										
	11.5											
		1										
		II.3.2 Choix de la dynamique d'extrapolation										
		II 3.3 Formulation du modèle prédictif										

Ш	Com	mande par modèle prédictif	9							
	III.1	.1 Principe								
	III.2	Outil mathématique et contraintes associées	9							
	III.3	1	0							
		III.3.1 Introduction	0							
		III.3.2 Lorsque les trois roues sont en contact avec le sol	0							
		III.3.2.1 Formulation des objectifs	0							
		III.3.2.2 Formulation des contraintes	0							
		1 1	0							
		III.3.3 Lorsque le robot bascule sur deux roues	0							
		III.3.3.1 Formulation des objectifs	0							
		III.3.3.2 Formulation des contraintes	1							
		III.3.3.3 Problème quadratique résultant	1							
		III.3.4 Gestion de la transition entre les deux états	. 1							
		III.3.4.1 Formulation des objectifs	1							
		III.3.4.2 Formulation des contraintes	1							
		III.3.4.3 Problème quadratique résultant	. 1							
	III.4	7 1	1							
		III.4.1 Choix d'un superviseur et conséquences	. 1							
		III.4.2 Fonctionnement du superviseur								
		III.4.3 Fonctionnement de l'estimateur d'impact	. 2							
	III.5	5 Vers une modélisation unifiée des deux dynamiques								
		III.5.1 Problème de complémentarité linéaire								
		III.5.2 Méthodes de résolution	.2							
T T 7	3.4									
IV			13							
		Les différentes valeurs à observer								
		Capteurs disponibles								
	14.3	Méthodes de mesure et conséquences								
		IV.3.1 Mesure de la posture du robot								
		IV.3.2 Observation de la position de la base mobile								
		IV.3.3 Observation des vitesses et accélérations du robot et de la base								
		IV.3.4 Observation de l'angle de basculement et d'inclinaison du sol	.4							
V	Résu	ltats et expérimentations 1	15							
•	V.1	•								
	V.2	Expériences en l'absence de perturbation et sur sol horizontal								

		V.2.1	Protocole expérimental	16						
		V.2.2	Analyse des expériences	16						
		V.2.3	L'importance du choix des pondérations							
	V.3	Expérie	ences de compensation de perturbations	16						
		V.3.1	Protocole expérimental	16						
		V.3.2	Analyse des expériences	16						
		V.3.3	Les limites	16						
	V.4	Expérie	ences de compensation de l'inclinaison du sol	16						
		V.4.1	Protocole expérimental	16						
		V.4.2	Analyse des expériences	16						
		V.4.3	Les limites	16						
VI	Synt	hèse		17						
VI.1 Contributions										
		ctives	17							
			sion	17						
Bil	oliogr	aphie		17						
				10						
An	nexes	8		18						
A	Pepper, un robot humanoïde à roues omnidirectionnelles Optimisation du choix du modèle dynamique									
В										
C Résolution d'un problème quadratique										
D) "MPC-WalkGen", librairie C++ implémentant la commande par modèle prédictif									

Table des figures

[1]

Chapitre I

Introduction

1	.1	C_{Λ}	'n	tes	cte	ų,	Δt	114	ď	ρ
	_			LEX		"	CI			•

- I.2 État de l'art
- I.2.1 Commande et équilibre des robots à roues
- I.2.1.1 Les robots à une et deux roues
- I.2.1.2 Les robots à trois roues et plus
- I.2.2 Commande et équilibre des robots bipèdes
- I.2.3 Synthèse et conclusion
- I.3 Contributions scientifiques
- I.4 Plateforme expérimentale
- **I.5** Contributions techniques
- I.6 Organisation du document

Chapitre II

Modélisation du système

II.1 Choix du modèle et conséquences

- Choix d'un modèle dynamique rigide multi corps
- Compromis fidélité/compléxité et temps de calcul
- Choix du nombre de corps (lien vers anexe pour une optimisation des valeur).
- Phénomènes physiques non-pris en compte : Mécanique de contact roue/sol + jeu articulaire + élasticité hip roll + moments des différents sous corps rigide

II.2 Modélisation dynamique

II.2.1 Problème de complémentarité mixte

- Présentation des variables (c, b, forces de contact sur chaque roues)
- Equations des énergies cin/pot
- Contraintes sur la position de b donc problème de comlémentarité sur les forces de contact
- Problème de résolution de ce problème de complémentarité mixte, il faut donc le séparer en plusieurs parties

II.2.2 Les trois roues en contact avec le sol

- Etat des forces de contact définies (toutes en contact)
- En dériver l'équation du cop (barycentre des forces de contact)
- Linéarisation et approximations

II.2.3 Le robot bascule sur deux roues

- Etat des forces de contact définies (seul deux des forces sont en contact)
- CoP fixé
- Changement de variable pour utiliser l'angle de basculement
- En dériver l'équation liant l'angle, c et b.
- Linéarisation et approximations

II.3 Modélisation de la dynamique future

II.3.1 Nécessité de prédire le futur

- Les contraintes dynamiques sont trop fortes pour autoriser un contrôle sans prédiction du futur à haute accélération.
 - Démontrer en calculant les accélérations limites dans différents cas
- Non nécéssité d'un modèle dynamique précis dans le futur (feedback, on ne calcule que la première commande)
 - Permet d'assurer une stabilité à long terme (quelques secondes)

II.3.2 Choix de la dynamique d'extrapolation

- Contraintes : Linéarité entre les variables / accélérations continues donc polynome d'ordre 3
- Formulation de l'équation d'état
- Calcul des dérivées

II.3.3 Formulation du modèle prédictif

- Formulation du modèle prédictif
- Problème de controlabilité dans le cas de basculement.
- Inversions de matrice

Chapitre III

Commande par modèle prédictif

III.1 Principe

- Commande optimale sous contraintes
- Résoudre le problème sur un horizon donné, en utilisant un modèle prédisant le futur
- La solution optimale du système n'est pas connu si l'on ne connait pas less objectifs et contraintes futures
 - Exemple de faire un déplacement triangle
 - Utilisation de la commande optimale dans la marche bipède.
- Intéret lorsque les contraintes sont fortes par rapport aux dynamiques de mandées de mouvement

III.2 Outil mathématique et contraintes associées

- On veut faire tourner le programme rapidement.
- Il n'existe généralement pas de solution analytique à un problème d'optimisation sous contrainte
- on ne peut guère aller plus compliqué qu'une résolution quadratique sous contrainte linéaire
- On va donc utiliser une formulation de QP
- Ce type d'optimisation nous permet de minimiser une norme 2, ce qui est suffisant. Le temps de calcul ne dépend pas du nombre d'objectifs.
 - Il faudra linéariser les contraintes du problème
- Le temps de calcul dépend du nombre de contraintes, il faudra donc choisir un ensemble de contraintes linéaires conservatives suffisament petit, mais sans restreindre trop le système.
 - Lien vers l'anexe our expliquer comment on résoud un qp

III.3 Formulation des problèmes d'optimisations

III.3.1 Introduction

- On ne peut pas résoudre simplement un problème de complémentarité mixte
- On décide de séparer la résolution du problème en 3 parties
- Expliquer les deux premières, dépendant des dynamiques
- Expliquer le problème avec la transition, et la non gestion de l'impact.
- Un superviseur est écrit permettant de gérer les différents états.

III.3.2 Lorsque les trois roues sont en contact avec le sol

III.3.2.1 Formulation des objectifs

- Tracking control
- Robustesse (CoP)
- Stabilité numérique (jerk)

III.3.2.2 Formulation des contraintes

- Respecter la dynamique : CoP

- Limites vitesses/accélérations de la base

- Respecter la cinématique : C-B

III.3.2.3 Problème quadratique résultant

- Ecrire le problème résultant

III.3.3 Lorsque le robot bascule sur deux roues

III.3.3.1 Formulation des objectifs

- Minimiser l'angle
- Minimiser la vitesse angulaire
- Stabilité numérique

III.3.3.2 Formulation des contraintes

- Contrainte sur l'angle ¿ 0
- Respecter la cinématique : C-B
- Limites vitesses/accélérations de la base

III.3.3.3 Problème quadratique résultant

- Ecrire le problème résultant

III.3.4 Gestion de la transition entre les deux états

III.3.4.1 Formulation des objectifs

- Minimiser la vitesse
- Robustesse (CoP)
- Stabilité numérique (jerk)

III.3.4.2 Formulation des contraintes

- Respecter la dynamique : CoP

- Limites vitesses/accélérations de la base

- Respecter la cinématique : C-B

III.3.4.3 Problème quadratique résultant

- Ecrire le problème résultant

III.4 Gestion des deux modèles dynamiques exclusifs

III.4.1 Choix d'un superviseur et conséquences

- Problème de transitions entre les controlleurs
- Il faut un superviseur qui gère les différents états
- Parler de l'estimateur d'impact
- Limitations due au superviseur : Détection tardive / inadéquate / Choix non optimal / Oscillations
 - Avantages : Gérer de manière simple différents modèles dynamiques

III.4.2 Fonctionnement du superviseur

- Expliquer le fonctionnement du superviseur et des différents états

III.4.3 Fonctionnement de l'estimateur d'impact

- Détailler le fonctionnement de l'estimateur d'impact

III.5 Vers une modélisation unifiée des deux dynamiques

III.5.1 Problème de complémentarité linéaire

- Considérer uniquement un problème de basculement dans une direction
- dire que par la suite, se limiter à ce cas permet de gérer tout les cas, en faisant quelques hyothèses
 - Enoncer la dynamique de complémentarité
 - Problème : Il y a 2^n états possibles linéaires à la dynamique.

III.5.2 Méthodes de résolution

- Considérer que lorsque le robot ne bascle pas, la commande ne le fera pas basculer. On se retrouver dans le cas du premier programme d'optimisation uniquement
- Si un baculement est mesure, faire un apriori qu'il n'y aura pas de rebond possible. Ainsi, il n'y a qu'une variable à choisir : le temps d'impact.
- On se retrouve avec un problème non-linéaire, qui devient linéaire en choisissant l'état de cette variable.
 - Il y a n choix possibles.
 - On peut résoudre n QP et choisir le plus optimal.
 - Ou alors on peut résoudre 3 QP et faire converger l'état de la variable.
 - Présenter le problème d'optimisation unifié

Chapitre IV

Mesures et observateurs

IV.1 Les différentes valeurs à observer

- Position / vitesse / accélération base et corps
- angle / vitesse angulaire / accélération angulaire basculement base
- angle de la pente

IV.2 Capteurs disponibles

- mre / imu

IV.3 Méthodes de mesure et conséquences

IV.3.1 Mesure de la posture du robot

- En utilisant les mre et le modèle théorique du robot
- Nécessite un bon modèle du robot et une bonne calibration

IV.3.2 Observation de la position de la base mobile

- On mesure la vitesse des roues. On en déduit la position de la base en intégrant dans le temps et en utilisant un modèle des roues
 - Dérive due à l'intégration. Ne mesure pas les glissements sur le sol

IV.3.3 Observation des vitesses et accélérations du robot et de la base

- Celles-ci sont observées en utilisant la prédiction du mouvement du robot au prochain pas de temps (utilisation de la dynamique d'ordre 3)
- Mieux que dériver la psoition du robot, moins de sensibilité au bruit (dérivation, quantification, capteur)
 - Moins réactif aux erreurs en vitesses et accélérations
- Le robot étant commencé en position pour le cors, et en vitesse pour les roues, cela n'a pas grande importance

IV.3.4 Observation de l'angle de basculement et d'inclinaison du sol

- Système de base non observable. On mesure la somme des deux angles avec les accéléros, et la somme des variations angulaire avec les gyro.
 - Pas de capteurs de force sur les roues. On ne sait pas lesquelles sont au sol.
 - Il faut faire des hypothèses pour rendre le système observable
 - Problèmes : Non-détections et faux-positifs
 - Considère que lorsque l'angle est constant, alors on est sur une pente
 - Sinon, toute variation de l'angle est considéré comme un push
 - Problèmes si on perturbe le robot avec une dynamique lente

Chapitre V

Résultats et expérimentations

- V.1 Schéma de contrôle en boucle fermée
- V.2 Expériences en l'absence de perturbation et sur sol horizontal
- V.2.1 Protocole expérimental
- V.2.2 Analyse des expériences
- V.2.3 L'importance du choix des pondérations
- V.3 Expériences de compensation de perturbations
- V.3.1 Protocole expérimental
- V.3.2 Analyse des expériences
- V.3.3 Les limites
- V.4 Expériences de compensation de l'inclinaison du sol
- V.4.1 Protocole expérimental
- V.4.2 Analyse des expériences
- V.4.3 Les limites

Chapitre VI

Synthèse

- VI.1 Contributions
- VI.2 Perspectives
- VI.3 conclusion

Bibliographie

[1] S Miasa, M Al-Mjali, A Al-Haj Ibrahim, and T A Tutunji. Fuzzy control of a two-wheel balancing robot using dspic. In 2010 7th International Multi-Conference on Systems Signals and Devices (SSD), pages 1–6, 2010.

Annexe A

Pepper, un robot humanoïde à roues omnidirectionnelles

Annexe B

Optimisation du choix du modèle dynamique

Annexe C

Résolution d'un problème quadratique

Annexe D

"MPC-WalkGen", librairie C++ implémentant la commande par modèle prédictif