

Dissociation in a Tubular Reactor

Tubular reactors are often used in continuous large-scale production, for example in the petroleum industry. One key design and optimization parameter is the conversion, or the amount of reactant that reacts to form the desired product. In order to achieve high conversion, process engineers optimize the reactor design: its length, width, and heating system. An accurate reactor model is a very useful tool, both at the design stage and in tuning an existing reactor.

Figure 1: Dissociation reaction in a tubular reactor.

This example deals with a gas-phase dissociation process, species A reacts to form B (see Figure 1). The following physics interfaces are used:

- Chemistry.
- Laminar Flow with compressible formulation.
- Transport of Concentrated Species.
- · Heat Transfer in Fluids.

Model Definition

KEY INSTRUCTIVE ELEMENTS

This model illustrates several attractive features in the Chemical Reaction Engineering Module:

- Using Transport of Concentrated Species to account for multicomponent diffusion.
- Implementation of temperature- and composition-dependent reaction kinetics.
- How to use the Reacting Flow multiphysics coupling to account for reaction kinetics in the Single-Phase Flow and Heat Transfer in Fluids interface. Composition dependent

properties, as well as the resulting heat source, are defined automatically by the Chemistry interface.

- Defining user-defined species and including them in a thermodynamic system.
- The use of a mapped mesh to discretize a slender geometry, typical for tubular reactors.

HANDLING THERMAL AND TRANSPORT PROPERTIES — CHEMISTRY

The molecule N_2O_4 is a dimer which exists in a strongly temperature dependent equilibrium:

$$N_2O_4 \leftrightarrow 2NO_2$$

The kinetics of reaction is defined as

$$-R_{\rm N_2O_4} = k_{\rm f} c_{\rm N_2O_4} - \frac{k_{\rm f}}{K_{\rm eq}} c_{\rm NO_2}$$

where $k_{\rm f}$ denotes the forward reaction rate constant (SI unit: s⁻¹), c represents the concentration of species (SI unit: mol/m³) and $K_{\rm eq}$ is the equilibrium constant (dimensionless).

The Chemistry interface coupled with Thermodynamics can provide all species and mixture thermal and transport properties. These properties can be used directly in other physics interfaces. Species and their properties can be selected from the COMSOL database.

The section Modeling Instructions, explains how to add a new species to this database, because nitrogen dioxide (NO_2) and nitrogen tetroxide (N_2O_4) are not available.

HANDLING EXPANDING FLOW — COMPRESSIBLE FLOW FORMULATION

Each mole of the reactant, A, reacts to form two moles of the product, B:

$$A \leftrightarrow 2B$$

This leads to a volumetric expansion of the gas mixture as the reaction proceeds. The fluid's change in density influences the gas velocity in the reactor, causing an acceleration as the reaction proceeds.

In order to model the flow, use a compressible formulation of the Navier–Stokes equations, defined according to the following equations:

$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot \left[-p\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T) - \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\mathbf{I} \right]$$

$$\nabla \cdot (\rho \mathbf{u}) = 0$$

Here ρ denotes the solution's density (SI unit: kg/m³), **u** is the velocity vector (SI unit: m/s), p gives the pressure (SI unit: Pa), μ represents the solution's viscosity (SI unit: kg/ $(m \cdot s)$, or $Pa \cdot s$, and **I** denotes the identity matrix.

The density is varying and depends on the pressure, temperature, and composition according to the ideal gas law. This is the default gas phase model, as defined in the Thermodynamics interface's Gas System node under Thermodynamic Model. It is coupled to other interfaces in the model via the Chemistry interface's Mixture Properties section.

The model applies the Laminar Flow interface, which solves the above equations, describing the momentum balances and the continuity (mass conservation) for fluids with variations in density.

CONVECTION AND DIFFUSION IN MULTICOMPONENT SYSTEMS — TRANSPORT OF CONCENTRATED SPECIES

As the dissociation reaction proceeds, the composition of the mixture changes from pure A at the inlet to a mixture of A and B.

The total mass flux is strongly influenced by the flux of each species. In addition, several molecular interactions occur; A interacts with B and other A molecules, B interacts with A and other B molecules. This implies that the simple Fick's law formulation, with one constant diffusivity for each species is not applicable here. In a concentrated multicomponent mixture you must account for all possible interactions, and the flux is dependent on the fluid's local composition. Simple Fick diffusivity accounts only for the interaction between solvent and solute. In the Transport of Concentrated Species with the Maxwell-Stefan or Mixture-Averaged diffusion equations, multicomponent diffusivities describe the interactions between all components in the system.

Since a change in a gas mixture composition affects the density, the species transport equation needs to be coupled with the flow equations (Laminar Flow, Navier-Stokes in this case).

Now consider a mathematical formulation of this discussion. The mass-balance equation for each species is

$$\frac{\partial}{\partial t}(\rho w_{\mathbf{A}}) + \nabla \cdot \mathbf{n}_{\mathbf{A}} = R_{\mathbf{A}}$$

$$\frac{\partial}{\partial t}(\rho w_{\rm B}) + \nabla \cdot \mathbf{n}_{\rm B} = R_{\rm B}$$

where w_A and w_B are the mass fractions of each component, \mathbf{n}_A and \mathbf{n}_B are the total fluxes of the species (including both convective and diffusive contributions), and $R_{
m A}$ and $R_{
m B}$ are given by the reaction kinetics from Chemistry interface. As mentioned earlier, it is possible to rewrite the mass-balances equations for each species by replacing one of the species' mass balance with a total mass balance. A solution with two species follows following equation:

$$\frac{\partial}{\partial t}(\rho(w_A + w_B)) + \nabla \cdot (\mathbf{n}_A + \mathbf{n}_B) = R_A + R_B$$

Because the system consists only of two species, the sum of w_A and w_B is always unity, and the sum of the reaction terms is zero. The above equation now becomes

$$\frac{\partial}{\partial t} \rho + \nabla \cdot (\mathbf{n}_A + \mathbf{n}_B) = 0$$

which is the total mass-balance equation.

GEOMETRY

The geometry of the tubular reactor is rotationally symmetric, and it is possible to reduce the model from 3D to a 2D axisymmetric problem. This means that you only have to model half of the tube cross section, as illustrated in Figure 2.

Figure 2: Model geometry.

BOUNDARY CONDITIONS

Laminar Flow interface

The flow in the reactor is driven by Normal inflow velocity at inlet. The walls are represented by no slip boundary conditions $\mathbf{u} = 0$.

Transport of Concentrated Species interface

At the inlet, the mass fraction of A is set close to unity (0.99). The outlet boundary condition is a convective flux condition. The convective flux condition implies that diffusive flux for the species is zero perpendicular to the boundary. This is a common assumption when modeling the outlet in tubular reactors.

No-flux conditions — referred to as insulation/symmetry in COMSOL Multiphysics apply at all other boundaries. Across these boundaries a no (total) mass flux condition is prescribed for all species.

MESH

In this example, a mapped (structured) mesh is a good choice due to the reactor's regular shape. The use of a structured mesh is especially suitable when the requirements for the mesh density is uneven. In this example a denser mesh is required in the inlet region and

the reactor wall. This is achieved by specifying the edge element distribution, as you see in Modeling Instructions.

Study I — Results and Discussion for Isothermal Conditions

Under isothermal conditions, the Laminar Flow and Transport of Concentrated Species interfaces, coupled using a Reacting Flow multiphysics node, are applied to solve the compressible Navier-Stokes equations together with mass transport equations including Maxwell-Stefan diffusion. The Chemistry interface defines the reactions kinetics as well as the transport properties of the fluid mixture. The binary diffusivity and the viscosity are defined dependent on the composition. The Reacting Flow coupling synchronizes the properties and applies them in the coupled interfaces.

Figure 3 shows the velocity magnitude for the isothermal case at different reactor cross sections. The velocity increases along the axis direction (z) because of the volume expansion of gas mixture during the proceeding of reaction.

Figure 3: Velocity magnitude for the isothermal case.

Figure 4 shows the mass fraction of species B for the isothermal case at different reactor cross sections. Closer to the reactor walls, the convective flow velocity is lower, due to the no slip condition on the walls. Consequently the mass fraction of species B increases toward the wall. The average mass fraction of species B at the outlet is 95%.

Figure 4: Mass fraction of species B for the isothermal case.

The average conversion rate depends on the flow-rate profile, density distribution, and velocity field. It is defined as

$$\gamma_{\rm B} = \frac{\int w_{\rm B} \rho \mathbf{u} \cdot \mathbf{n} \, \mathrm{d}s}{\int \rho \mathbf{u} \cdot \mathbf{n} \, \mathrm{d}s}$$

The average conversion rate at the outlet under isothermal conditions is 94%.

Model Definition — Nonisothermal Model

Now it is time to expand the model by including an energy-balance equation to model a varying temperature field in the reactor. In the previous model, the temperature was constant and set to 500 K. Now assume that the gas enters the reactor at room temperature, 293 K, and that the surroundings outside of the reactor walls is heated to accelerate the reaction. In addition, the heat of reaction is also included, acting as a source term.

The influence of the temperature on the reaction rate is significant. In gas phase, the equilibrium proportion of nitrogen dioxide is greater at higher temperature or lower pressure. Thus, the reaction rate increases as the fluid flows through the reactor and is heated by the walls and by the heat of reaction.

The energy-balance equation is

$$\rho C_p \frac{\partial T}{\partial t} + \nabla \cdot (-k \nabla T) = Q - \rho C_p (\mathbf{u} \cdot \nabla T)$$

where k is the thermal conductivity (SI unit: W/(m·K)), $C_{\rm p}$ is the specific heat capacity (SI unit: $J/(kg \cdot K)$, and Q is the heat source term (SI unit: W/m).

The boundary conditions for the energy balance are similar to those of the mass balances. At the inlet, the gas temperature is specified, in this case to 293 K.

The default Axial symmetry condition gives a zero temperature gradient at the symmetry boundary: $\mathbf{n} \cdot \nabla T = 0$. At the outlet, the same equation results in a purely convective flux condition.

Model the reactor's heated walls by applying a heat flux condition on the wall:

$$\mathbf{n} \cdot (k \nabla T) = U(T_{\mathbf{f}} - T)$$

Use the heat transfer coefficient $U = 50 \text{ W/(m}^2 \cdot \text{K})$ for the heat transfer to the reactor surroundings, and the heating temperature $T_{\rm f}$ = 500 K.

Study 2 — Results and Discussion for Nonisothermal Conditions

For the nonisothermal case the Heat Transfer in Fluids interface is solved for, along with fluid flow and mass transfer, by coupling it the Reacting Flow node. For a consistent heat transfer a Chemistry interface is required in the coupling. The reason for this is that the Chemistry interface defines the thermodynamic properties of the mixture, the enthalpy and heat capacity, and the excess heat due to the reaction. The properties of each participating species is also needed. In this model this is provided by the user defined species added in Thermodynamics.

Figure 5 shows the velocity magnitude for the nonisothermal case at different crosssections of reactor. The velocity magnitude for the nonisothermal case is slightly higher than that for the isothermal case (see Figure 3).

Figure 5: Velocity magnitude for the nonisothermal case.

Figure 6 shows the mass fraction of species B for the nonisothermal case at different crosssections of reactor. At the region close to the side wall, the mole fraction is much higher than that in the central region due to the higher temperature close to the wall. The overall mole fraction is lower than that for the isothermal conditions (see Figure 4) because of the low temperature in the reactor. The average conversion rate at the outlet is 58% under nonisothermal conditions.

Figure 6: Mass fraction of species B for the nonisothermal case.

Figure 7 shows the temperature distribution under nonisothermal conditions. The temperature is much higher close to the reactor wall. This temperature profile has a significant impact on the reaction rate in the reactor; see Figure 6.

Figure 7: Temperature distribution for nonisothermal case.

Application Library path: Chemical_Reaction_Engineering_Module/ Thermodynamics/dissociation

Modeling Instructions

From the File menu, choose New.

NEW

- I In the New window, Start by adding the individual physics interfaces for mass transfer, fluid flow, and heat transfer in fluids.
- 2 click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D Axisymmetric.

- 2 In the Select Physics tree, select Chemical Species Transport> Transport of Concentrated Species (tcs).
- 3 Click Add.
- **4** In the **Mass fractions (1)** table, enter the following settings:

wΑ wB

- 5 In the Select Physics tree, select Fluid Flow>Single-Phase Flow>Laminar Flow (spf).
- 6 Click Add.
- 7 In the Select Physics tree, select Heat Transfer>Heat Transfer in Fluids (ht).
- 8 Click Add.
- 9 Click Study.
- 10 In the Select Study tree, select General Studies>Stationary.
- II Click Done.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- 3 Click Load from File.
- 4 Browse to the model's Application Libraries folder and double-click the file dissociation parameters.txt.

Gas System I (pp I)

In this model, a Thermodynamic System containing NO2 and N204 is used. Import the predefined system from a file. See the Appendix below for details on how to create the system.

- I In the Physics toolbar, click Thermodynamics and choose Import System.
- 2 Browse to the model's Application Libraries folder and double-click the file dissociation thermo system.xml.

Since NO2 and N2O4 are not available in the built-in thermodynamics database, they have been created as **User-Defined Species** in the imported file.

GEOMETRY I

The model geometry is simply a rectangle.

Rectangle I (rI)

- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type W0.
- 4 In the Height text field, type L0.
- 5 Click Build All Objects.
- 6 Click the **Zoom Extents** button in the **Graphics** toolbar.

DEFINITIONS

Average I (aveob I)

- I In the **Definitions** toolbar, click **Monlocal Couplings** and choose **Average**. You will use this function later in the results analysis. With the check box Compute integral in revolved geometry enabled, it automatically performs a surface integration by multiplication with 2*pi*r.
- 2 In the Settings window for Average, locate the Source Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 Select Boundary 3 only.

GLOBAL DEFINITIONS

Use the **Gas System I** to generate a corresponding **Chemistry** interface.

Gas System I (pp I)

In the Model Builder window, under Global Definitions>Thermodynamics right-click Gas System I (ppI) and choose Generate Chemistry.

SELECT SPECIES

- I Go to the **Select Species** window.
- 2 Click Add All.
- 3 Click **Next** in the window toolbar.

CHEMISTRY SETTINGS

- I Go to the Chemistry Settings window.
- 2 From the Mass transfer list, choose Concentrated species.
- 3 Click Finish in the window toolbar.

CHEMISTRY (CHEM)

Reaction I

- I In the Model Builder window, under Component I (compl) right-click Chemistry (chem) and choose Reaction.
- 2 In the Settings window for Reaction, locate the Reaction Formula section.
- 3 In the Formula text field, type N204<=>N02.
- 4 Click Apply.

Now, the reaction is unbalanced. To make it stoichiometrically balanced, click Balance.

- 5 Click Balance in the upper-right corner of the Reaction Formula section.
- 6 Locate the Rate Constants section. Select the Specify equilibrium constant check box.
- 7 In the k^{f} text field, type kf.
- 8 In the Model Builder window, click Chemistry (chem).
- 9 In the Settings window for Chemistry, locate the Species Matching section.
- 10 From the Species solved for list, choose Transport of Concentrated Species.
- II Find the **Bulk species** subsection. In the table, enter the following settings:

Species	Туре	Mass fraction	Value (I)	From Thermodynamics
N2O4	Variable	wA	Solved for	N2O4
NO2	Variable	wB	Solved for	NO2

12 Click to expand the Calculate Transport Properties section. Drag and drop below Materials.

Now add the **Reacting Flow** multiphysics coupling node. When using the **Chemistry** interface it supports both isothermal and nonisothermal flow.

MULTIPHYSICS

Reacting Flow I (nirf1)

In the Physics toolbar, click Multiphysics Couplings and choose Domain>Reacting Flow.

LAMINAR FLOW (SPF)

Since the density variation is large, the flow cannot be regarded as incompressible. Therefore select **Compressible flow**.

I In the Model Builder window, under Component I (compl) click Laminar Flow (spf).

- 2 In the Settings window for Laminar Flow, locate the Physical Model section.
- 3 From the Compressibility list, choose Compressible flow (Ma<0.3). Define the pressure reference level in the interface properties.
- **4** In the p_{ref} text field, type p_amb.

Inlet 1

- In the Physics toolbar, click Boundaries and choose Inlet.
- 2 Select Boundary 2 only.
- 3 In the Settings window for Inlet, locate the Boundary Condition section.
- 4 From the list, choose Fully developed flow.
- **5** Locate the **Fully Developed Flow** section. In the $U_{\rm av}$ text field, type v_in.

Outlet I

- I In the Physics toolbar, click Boundaries and choose Outlet.
- **2** Select Boundary 3 only.
- 3 In the Settings window for Outlet, locate the Pressure Conditions section.
- 4 Select the Normal flow check box.

TRANSPORT OF CONCENTRATED SPECIES (TCS)

- I In the Model Builder window, under Component I (compl) click Transport of Concentrated Species (tcs).
- 2 In the Settings window for Transport of Concentrated Species, locate the **Transport Mechanisms** section.
- 3 From the Diffusion model list, choose Maxwell-Stefan.
- 4 Locate the Species section. From the From mass constraint list, choose wB.

Species Molar Masses 1

- I In the Model Builder window, under Component I (compl)> Transport of Concentrated Species (tcs) click Species Molar Masses I.
- 2 In the Settings window for Species Molar Masses, locate the Molar Mass section.
- 3 From the $M_{\rm wA}$ list, choose Molar mass (chem/N2O4).
- 4 From the $M_{
 m wB}$ list, choose Molar mass (chem/NO2).

Transport Properties 1

- I In the Model Builder window, click Transport Properties I.
- 2 In the Settings window for Transport Properties, locate the Diffusion section.

3 In the table, enter the following settings:

Species I	Species 2	Diffusivity	Diffusion coefficient (m^2/s)
wA	wB	Maxwell-Stefan diffusivity , N2O4-NO2 (chem)	comp I.chem.D_N2O4_N O2

Reaction Sources I

- I In the Physics toolbar, click **Domains** and choose Reaction Sources.
- 2 Select Domain 1 only.
- 3 In the Settings window for Reaction Sources, locate the Reactions section.
- 4 From the $R_{
 m wA}$ list, choose Reaction rate for species N2O4 (chem).

Inflow I

- I In the Physics toolbar, click Boundaries and choose Inflow.
- 2 Select Boundary 2 only.
- 3 In the Settings window for Inflow, locate the Inflow section.
- **4** In the $\omega_{0,wA}$ text field, type wN204_in.

Outflow I

- I In the Physics toolbar, click Boundaries and choose Outflow.
- 2 Select Boundary 3 only.

MESH I

A mapped mesh is suitable for fluid flow.

Mapped I

In the Mesh toolbar, click Mapped.

Distribution I

- I Right-click Mapped I and choose Distribution.
- **2** Select Boundaries 1 and 4 only.
- 3 In the Settings window for Distribution, locate the Distribution section.
- 4 From the Distribution type list, choose Predefined.
- 5 In the Number of elements text field, type 100.
- 6 In the Element ratio text field, type 50.

Distribution 2

I In the Model Builder window, right-click Mapped I and choose Distribution.

- **2** Select Boundaries 2 and 3 only.
- 3 In the Settings window for Distribution, locate the Distribution section.
- 4 From the Distribution type list, choose Predefined.
- 5 In the Number of elements text field, type 10.
- 6 In the Element ratio text field, type 5.

For the isothermal case decouple the Heat Transfer in Fluids interface in the Reacting Flow coupling feature. Also apply a constant value Tf for the temperature. This is needed to provide the reaction rate and density with a valid temperature.

MULTIPHYSICS

Reacting Flow I (nirf1)

- I In the Model Builder window, under Component I (compl)>Multiphysics click Reacting Flow I (nirfl).
- 2 In the Settings window for Reacting Flow, locate the Coupled Interfaces section.
- 3 From the Heat transfer (optional, requires Chemistry) list, choose None.
- **4** Locate the **Temperature** section. In the *T* text field, type Tf.

STUDY - ISOTHERMAL MODEL

- I In the Model Builder window, click Study I.
- 2 In the Settings window for Study, type Study Isothermal Model in the Label text field.
- 3 Locate the Study Settings section. Clear the Generate default plots check box.

Step 1: Stationary

Turn off the **Heat Transfer in Fluids** interface to avoid solving for the temperature.

- I In the Model Builder window, under Study Isothermal Model click Step 1: Stationary.
- 2 In the Settings window for Stationary, locate the Physics and Variables Selection section.
- 3 In the table, clear the Solve for check box for Heat Transfer in Fluids (ht).
- 4 In the Home toolbar, click **Compute**.

RESULTS

Global Evaluation 1

- I In the Model Builder window, expand the Results node.
- 2 Right-click Results>Derived Values and choose Global Evaluation.

- 3 In the Settings window for Global Evaluation, locate the Expressions section.
- **4** In the table, enter the following settings:

Expression	Unit	Description
aveop1(w*spf.rho*wB)/aveop1(w*spf.rho)	1	

5 Click ▼ next to **= Evaluate**, then choose **New Table**.

Revolution 2D I

In the **Results** toolbar, click **More Datasets** and choose **Revolution 2D**.

Velocity, isothermal

- I In the Results toolbar, click **3D Plot Group**.
- 2 In the Settings window for 3D Plot Group, type Velocity, isothermal in the Label text field.

Slice 1

- I Right-click Velocity, isothermal and choose Slice.
- 2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)>Laminar Flow> Velocity and pressure>spf.U - Velocity magnitude - m/s.
- 3 Locate the Plane Data section. From the Plane list, choose xy-planes.
- 4 In the Planes text field, type 10.
- 5 Locate the Coloring and Style section. Clear the Color legend check box.
- 6 Right-click Slice I and choose Duplicate.

Slice 2

- I In the Model Builder window, click Slice 2.
- 2 In the Settings window for Slice, locate the Plane Data section.
- 3 From the Plane list, choose yz-planes.
- 4 In the Planes text field, type 1.
- 5 Locate the Coloring and Style section. Select the Color legend check box.
- **6** Click to expand the **Title** section. From the **Title type** list, choose **None**.
- 7 In the Velocity, isothermal toolbar, click Plot.
- 8 Click the **Zoom Extents** button in the **Graphics** toolbar.

Velocity, isothermal

In the Model Builder window, right-click Velocity, isothermal and choose Duplicate.

Mass fraction, B, isothermal

- I In the Model Builder window, under Results click Velocity, isothermal I.
- 2 In the Settings window for 3D Plot Group, type Mass fraction, B, isothermal in the Label text field.

Slice 1

- I In the Model Builder window, expand the Mass fraction, B, isothermal node, then click Slice 1.
- 2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compl)> Transport of Concentrated Species>Species wB>wB - Mass fraction - I.

Slice 2

- I In the Model Builder window, click Slice 2.
- 2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the **Expression** section. From the menu, choose **Component I (compl)>** Transport of Concentrated Species>Species wB>wB - Mass fraction - I.
- 3 In the Mass fraction, B, isothermal toolbar, click Plot.
- 4 Click the **Zoom Extents** button in the **Graphics** toolbar.

Add a new study for the nonisothermal simulation. This makes it straightforward to compare results from the two setups.

ADD STUDY

- I In the Home toolbar, click Add Study to open the Add Study window.
- 2 Go to the Add Study window.
- 3 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
- 4 Click Add Study in the window toolbar.
- 5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY - NONISOTHERMAL MODEL

- I In the Model Builder window, click Study 2.
- 2 In the Settings window for Study, type Study Nonisothermal Model in the Label text field.

Now set up the **Heat Transfer in Fluids** interface. Note that the heat source due to reactions is automatically accounted for when **Chemistry** is included in the **Reacting Flow** coupling feature. Hence there is no need to add a Heat Source feature in Heat Transfer in Fluids.

HEAT TRANSFER IN FLUIDS (HT)

In the Model Builder window, under Component I (compl) click Heat Transfer in Fluids (ht).

Outflow I

- I In the Physics toolbar, click Boundaries and choose Outflow.
- 2 Select Boundary 3 only.

Temperature I

- I In the Physics toolbar, click Boundaries and choose Temperature.
- 2 Select Boundary 2 only.
- 3 In the Settings window for Temperature, locate the Temperature section.
- **4** In the T_0 text field, type T_amb.

Heat Flux I

- I In the Physics toolbar, click Boundaries and choose Heat Flux.
- 2 Select Boundary 4 only.
- 3 In the Settings window for Heat Flux, locate the Heat Flux section.
- **4** In the q_0 text field, type Ua*(Tf-T).

For the nonisothermal case reenable the **Heat Transfer in Fluids** interface in the **Reacting** Flow coupling feature. This synchronizes the temperature solved for among all other coupled interfaces. The thermodynamic properties of the mixture are defined by the **Chemistry** interface.

MULTIPHYSICS

Reacting Flow I (nirf1)

- I In the Model Builder window, under Component I (compl)>Multiphysics click Reacting Flow I (nirfl).
- 2 In the Settings window for Reacting Flow, locate the Coupled Interfaces section.
- 3 From the Heat transfer (optional, requires Chemistry) list, choose Heat Transfer in Fluids (ht).

STUDY - NONISOTHERMAL MODEL

- I In the Model Builder window, click Study Nonisothermal Model.
- 2 In the Settings window for Study, locate the Study Settings section.
- 3 Clear the Generate default plots check box.
- 4 In the Home toolbar, click **Compute**.

RESULTS

Global Evaluation 1

In the Model Builder window, under Results>Derived Values right-click Global Evaluation I and choose **Duplicate**.

Global Evaluation 2

- I In the Model Builder window, click Global Evaluation 2.
- 2 In the Settings window for Global Evaluation, locate the Data section.
- 3 From the Dataset list, choose Study Nonisothermal Model/Solution 2 (sol2).
- 4 Click ▼ next to **= Evaluate**, then choose **Table I Global Evaluation I**.

Revolution 2D 2

- I In the Results toolbar, click More Datasets and choose Revolution 2D.
- 2 In the Settings window for Revolution 2D, locate the Data section.
- 3 From the Dataset list, choose Study Nonisothermal Model/Solution 2 (sol2).

Velocity, isothermal

In the Model Builder window, under Results right-click Velocity, isothermal and choose Duplicate.

Velocity, nonisothermal

- I In the Model Builder window, under Results click Velocity, isothermal I.
- 2 In the Settings window for 3D Plot Group, type Velocity, nonisothermal in the Label text field.
- 3 Locate the Data section. From the Dataset list, choose Revolution 2D 2.
- 4 Locate the Plot Settings section. From the View list, choose View 3D 2.

Slice 1

- I In the Model Builder window, expand the Velocity, nonisothermal node, then click Slice I.
- 2 In the Velocity, nonisothermal toolbar, click Plot.
- 3 In the Settings window for Slice, in the Graphics window toolbar, click ▼ next to Go to Default View, then choose Go to View 3D 2.
- 4 Click the **Zoom Extents** button in the **Graphics** toolbar.

Mass fraction, B. isothermal

In the Model Builder window, under Results right-click Mass fraction, B, isothermal and choose Duplicate.

Mass fraction B, nonisothermal

- I In the Model Builder window, under Results click Mass fraction, B, isothermal I.
- 2 In the Settings window for 3D Plot Group, type Mass fraction B, nonisothermal in the Label text field.
- 3 Locate the Data section. From the Dataset list, choose Revolution 2D 2.
- 4 In the Mass fraction B, nonisothermal toolbar, click Plot.
- 5 Locate the Plot Settings section. From the View list, choose View 3D 2.
- 6 Click the **Zoom Extents** button in the **Graphics** toolbar.
- 7 Right-click Mass fraction B, nonisothermal and choose Duplicate.

Temperature

- I In the Model Builder window, under Results click Mass fraction B, nonisothermal I.
- 2 In the Settings window for 3D Plot Group, type Temperature in the Label text field.
- 3 In the Temperature toolbar, click Plot.

Slice 1

- I In the Model Builder window, expand the Temperature node, then click Slice I.
- 2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the **Expression** section. From the menu, choose **Component I (compl)>** Heat Transfer in Fluids>Temperature>T - Temperature - K.

Slice 2

- I In the Model Builder window, click Slice 2.
- 2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the **Expression** section. From the menu, choose **Component I (compl)>** Heat Transfer in Fluids>Temperature>T - Temperature - K.
- 3 In the Temperature toolbar, click Plot.
- 4 Click the **Zoom Extents** button in the **Graphics** toolbar.

Follow the steps below to create the thermodynamic system used in the model. Two User-**Defined Species** are also created.

From the File menu, choose New.

NEW

In the New window, click Blank Model.

GLOBAL DEFINITIONS

In the Physics toolbar, click A Thermodynamics and choose User-Defined Species.

ENTER NAME AND FORMULA

- I Go to the Enter Name and Formula window.
- 2 In the text field, type N204.
- **3** In the text field, type 10544-72-6.
- 4 In the text field, type N204.
- 5 Click **Next** in the window toolbar.

ENTER PARAMETERS

- I Go to the Enter Parameters window.
- **2** Find the **Constants** subsection. In the table, enter the following settings:

Name	Values	Unit
Absolute entropy	304.32	J/mol/K
Critical compressibility factor	0.233	1
Critical pressure	1.0031e+07	Pa
Critical temperature	431.15	K
Critical volume	8.249e-05	m^3/mol
Molecular mass	92.011	g/mol
Normal boiling point temperature	294.3	K
Standard enthalpy of formation	9163	J/mol
van der Waals area	0	m^2/mol
van der Waals volume	0	m^3/mol

3 Find the **Model parameters** subsection. In the table, enter the following settings:

Name	Values	Unit
Acentric factor	0.85327	1

4 Click **Next** in the window toolbar.

DEFINE PROPERTIES

- I Go to the Define Properties window.
- 2 Find the Heat capacity (J/(K*mol)) subsection. Click + Add.
- 3 In the Ideal gas table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
151.499	22.8199439	0.248101835	-	-	223.998
4	173	092	0.000129016	2.079765128	6
			784375	68e-07	

- 4 Click + Add.
- 5 In the **Ideal gas** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
223.998 6	17.3772455 746	0.320995572 054	- 0.000454437 286832	2.762832138 4e-07	310.997 7

- 6 Click + Add.
- 7 In the Ideal gas table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
310.997 7	7.55672923 384	0.415727941 528	- 0.000759045 229188	6.027678816 86e-07	325.497 6

9 In the **Ideal gas** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
325.497	23.1617866 623	0.271901466 969	- 0.000317178	1.502643229	557.495
O	023	969	762095	376-07	1

10 Click + Add.

II In the Ideal gas table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
557.495 1	41.6009681 57	0.172676299 817	- 0.000139194	4.384549405 52e-08	803.992 4
			835147		

12 Click + Add.

13 In the **Ideal gas** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
803.992 4	59.00323116 88	0.107741868 801	- 5.842985401 52e-05	1.036052532 e-08	1499.98 5

14 Find the Saturated liquid density (mol/m^3) subsection. In the Natural logarithm liquid viscosity table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
261.9	23723.391 3174	- 54.58722096 23	0.161934291 432	- 0.0002373087 54858	343.146 6

15 Find the Thermal conductivity (W/(K*m)) subsection. Click + Add.

16 In the **Vapor** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
380.003 8	29.7807267 369	- 0.219234326 434	0.000540095 868453	- 4.445934103 39e-07	400

17 Find the Vapor viscosity (Pa*s) subsection. Click + Add.

18 In the **Vapor viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
300.003	1.631159576 29e-05	1.409301058 36e-07	6.483836631 56e-10	- 6.820538383 04e-13	335.002 35

19 Click + Add.

20 In the **Vapor viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
335.002 35	- 9.55153890 719e-06	9.06784306 719e-08	- 4.29802526 723e-11	5.86563034 883e-15	558.69014 735

21 Click + Add.

22 In the **Vapor viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
558.69014 735	- 1.14075878 119e-05	1.00644861 511e-07	- 6.08191762 446e-11	1.65089321 605e-14	999.99

23 Click **Finish** in the window toolbar.

Define species NO2.

GLOBAL DEFINITIONS

In the Physics toolbar, click Thermodynamics and choose User-Defined Species.

ENTER NAME AND FORMULA

- I Go to the Enter Name and Formula window.
- 2 In the text field, type NO2.
- **3** In the text field, type 10102-44-0.
- 4 In the text field, type NO2.
- 5 Click **Next** in the window toolbar.

ENTER PARAMETERS

I Go to the Enter Parameters window.

2 Find the **Constants** subsection. In the table, enter the following settings:

Name	Values	Unit
Absolute entropy	239.92	J/mol/K
Critical compressibility factor	0.233	I
Critical pressure	10132500	Pa
Critical temperature	431.15	K
Critical volume	8.249e-05	m^3/mol
Molecular mass	46.0055	g/mol
Normal boiling point temperature	294.15	K
Standard enthalpy of formation	33180	J/mol

3 Find the **Model parameters** subsection. In the table, enter the following settings:

Name	Values	Unit
Acentric factor	0.851088	1

4 Click **Next** in the window toolbar.

DEFINE PROPERTIES

- I Go to the Define Properties window.
- 2 Find the Heat capacity (J/(K*mol)) subsection. Click + Add.
- 3 In the Ideal gas table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
165.999	35.8254425 805	- 0.056729323 2053	0.000356001 767705	- 4.780045445 41e-07	223.998

- 4 Click + Add.
- 5 In the Ideal gas table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
223.998	32.4036320 949	- 0.010901217 7757	0.000151410 73262	- 1.735516966 57e-07	310.997

7 In the **Ideal gas** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
310.997 7	27.9650785 955	0.031914727 4807	1.373786477 07e-05	2.599126147	470.49
1	955	4807	07e-05	39e-08	

- 8 Click + Add.
- **9** In the **Ideal gas** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
470.49	24.29983551 33	0.055285232 749	- 3.593419464 8e-05	9.200011437 17e-09	963.490 7

10 Find the Saturated liquid density (mol/m^3) subsection. In the Natural logarithm liquid viscosity table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
261.902	47780.804	-	0.262321273	-	327.993
6	8854	96.00259640	72	0.0004233463	2
		11		67284	

II Click + Add.

12 In the Natural logarithm liquid viscosity table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
327.993 2	103808.2 17268	- 608.4590654 62	1.824720948 65	- 0.0020111838 3356	373.748 3

13 Click + Add.

14 In the Natural logarithm liquid viscosity table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
373.748 3	350445.7 55442	- 2588.1673 7322	7.121623457	- 0.00673531012 243	392.389 2

IS Click + Add.

16 In the **Natural logarithm liquid viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
392.389	1568690.0	-	30.858388682	-	407.640
2	0637	11902.217	4	0.02689961402	9
		6906		05	

17 Click + Add.

18 In the **Natural logarithm liquid viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
407.640	2741379.0	-	52.029741525	-	414.419
9	2684	20532.527	5	0.04421170810	4
		0178		71	

19 Click + Add.

20 In the **Natural logarithm liquid viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
414.419 4	23901405. 4952	- 173710.8 75824	421.65131041 4	- 0.34151243686 1	421.197 9

21 Click + Add.

2 In the Natural logarithm liquid viscosity table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
421.197 9	- 24025981. 4299	167653.9 80875	- 388.81060 475	0.299881956897	424.587 2

In the **Natural logarithm liquid viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
424.587 2	1171039730.24	- 8276305.5 5206	19498.646 0424	15.3132882369	426.281 8

Click + **Add**.

In the Natural logarithm liquid viscosity table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
426.281 8	3800925140.26	26714385. 1401	- 62584.827 1252	48.872322602	427.976 4

Click + Add.

28 In the Natural logarithm liquid viscosity table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
427.976 4	17346687004.3	- 121524715.03 9	283787.3 097	- 220.90278 402	429.671 1

Click + **Add**.

In the Natural logarithm liquid viscosity table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
429.671 1	- 22629305820. 2	157591051.5 88	- 365815.9 95308	283.0511356 23	431.365 7

31 Find the Thermal conductivity (W/(K*m)) subsection. Click + Add.

In the **Vapor** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
420.004	- 15.8305048 878	0.11194015 1375	- 0.000264111 354853	2.08523312 366e-07	425.8040 58

34 In the **Vapor** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
425.8040 58	0.14269261 0769	- 0.00059891 8170081	1.86430549 483e-07	1.62236779 811e-09	483.75782 068

35 Click + Add.

36 In the **Vapor** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
483.75782 068	0.5684037 79574	- 0.0032389 4475326	5.6437616 1541e-06	- 2.1380062 5176e-09	530.26097 9312

37 Click + Add.

38 In the **Vapor** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
530.26097 9312	4.2809008 7709	- 0.0242427	4.5254053 1072e-05	- 2.7037878	605.72250 3968
		367105		2249e-08	

39 Click + **Add**.

40 In the **Vapor** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
605.72250 3968	3.5428055 9853	- 0.0205871 257316	3.9218928 1862e-05	- 2.3716706 7416e-08	651.76214 6706

41 Click + Add.

42 In the **Vapor** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
651.76214 6706	- 8.5219226 1186	0.0349456 86068	- 4.5985178 9874e-05	1.9859572 1224e-08	744.87380 587

In the **Vapor** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
744.87380 587	- 6.6910478 0557	0.0275717 867906	- 3.6085650 7461e-05	1.5429502 5977e-08	791.06789 8284

- Find the **Vapor viscosity (Pa*s)** subsection. Click + Add.
- In the **Vapor viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
300.003	0.000239189 260846	- 2.409144420	8.253321071 35e-09	- 9.099492928	307.002 9
		54e-06		19e-12	

- Click + **Add**.
- In the **Vapor viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
307.002 9	- 1.898101390 51e-05	1.136683094 12e-07	3.576765425 72e-11	- 1.771522194 67e-13	335.002 3

- Click + Add.
- In the **Vapor viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
335.002 3	- 3.285009332	2.378681678 97e-07	- 3.349756465	1.917440546 02e-13	488.999 5
3	25e-05	976-07	66e-10	026-13	3

- 51 Click + Add.
- In the **Vapor viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
488.999 5	- 2.442117017 96e-05	1.861569300 97e-07	2.292265858 81e-10	1.196587316 21e-13	579.997 8

54 In the **Vapor viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
579.997	-	1.135452846	-	4.770847765	684.995
8	1.038297197 48e-05	49e-07	1.040336188 59e-10	88e-14	8

55 Click + Add.

56 In the **Vapor viscosity** table, enter the following settings:

T(K), low	a0	al	a2	a3	T(K), high
684.995 8	1.956684734 45e-06	5.950266113 49e-08	- 2.513879422 83e-11	9.316600107 34e-15	999.99

57 Click Finish in the window toolbar.

Create a **Thermodynamic System** including the created species.

GLOBAL DEFINITIONS

In the Physics toolbar, click A Thermodynamics and choose Thermodynamic System.

SELECT SYSTEM

- I Go to the Select System window.
- 2 Click Next in the window toolbar.

SELECT SPECIES

- I Go to the Select Species window.
- 2 From the Database list, choose User defined.
- 3 Click Add All.
- 4 Click **Next** in the window toolbar.

SELECT THERMODYNAMIC MODEL

- I Go to the Select Thermodynamic Model window.
- 2 Click Finish in the window toolbar.

GLOBAL DEFINITIONS

Gas System I (ppI)

- I In the Model Builder window, under Global Definitions>Thermodynamics right-click Gas System I (ppI) and choose Export Thermodynamic System.
- 2 Browse to a suitable folder, enter the filename dissociation_thermo_system.xml, and then click Save.

ROOT

- I In the Model Builder window, click the root node.
- 2 In the root node's **Settings** window, locate the **Presentation** section.
- 3 Find the Thumbnail subsection. Click Load from File.
- **4** Browse to the model's Application Libraries folder and double-click the file dissociation_userdef_species.png.