=> fil req

FILE 'REGISTRY' ENTERED AT 16:17:45 ON 23 MAY 2008 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2008 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

22 MAY 2008 HIGHEST RN 1021988-26-0 STRUCTURE FILE UPDATES: DICTIONARY FILE UPDATES: 22 MAY 2008 HIGHEST RN 1021988-26-0

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH January 9, 2008.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/support/stngen/stndoc/properties.html

=> d his

T.2

L17

(FILE 'HOME' ENTERED AT 16:02:26 ON 23 MAY 2008)

FILE 'HCAPLUS' ENTERED AT 16:02:35 ON 23 MAY 2008

E US20060166029/PN

L1 1 S E3 SEL RN

> FILE 'REGISTRY' ENTERED AT 16:03:09 ON 23 MAY 2008 26 S E1-26

FILE 'LREGISTRY' ENTERED AT 16:06:22 ON 23 MAY 2008 L3 0 S (FE(L)CR(L)AL(L)SI(L)LA(L)CE(L)P(L)CU)/ELS

FILE 'REGISTRY' ENTERED AT 16:08:15 ON 23 MAY 2008

L456518 S (FE(L)CR(L)AL)/ELS AND AYS/CI L5

26 S L2 AND L4

L6 41801 S L4 (L) SI/ELS

41801 S L4 AND SI/ELS L7

L8 17 S L2 AND L7

L9 567 S L7 AND LA/ELS

L10 3 S L2 AND L9

L11 125 S L9 AND CE/ELS

L12 1 S L2 AND L11

L13 1 S L11 AND P/ELS

L14 1 S L13 AND (CU OR TI OR NB)/ELS

L15 95 S L11 AND (CU OR TI OR NB)/ELS

L16 32 S L15 AND CU/ELS

17 S L16 AND TI/ELS

L18 15 S L17 AND NB/ELS

L19 2 S (L13 OR L18) AND MG/ELS

L20 1 S L13 AND L19 5/23/2008 10/535,602 2

L21 1 S L19 NOT L20 L22 13 S L18 NOT L20-21

FILE 'HCAPLUS' ENTERED AT 16:16:54 ON 23 MAY 2008

1 S L20 L23 L24 1 S L21 L25 13 S L22

=> fil hcap

FILE 'HCAPLUS' ENTERED AT 16:17:47 ON 23 MAY 2008 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 23 May 2008 VOL 148 ISS 22 FILE LAST UPDATED: 22 May 2008 (20080522/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d 123 ibib abs hitstr hitind

L23 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2005:1153052 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 143:425118

Steel slab with small number of surface cracks TITLE:

INVENTOR(S): Wakao, Masamitsu
PATENT ASSIGNEE(S): Nippon Steel Corp., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JP 2005298909	А	20051027	JP 2004-117474	200404
PRIORITY APPLN. INFO.:			JP 2004-117474	13 200404

AB A steel slab with a small number of surface cracks contains C 0.001-1.5, Mn 0.01-3.0, Si 0.005-4.0, S 0.001-0.05, N 0.0020-0.02, O 0.0005-0.0050, Al 0.006-0.1, \geq 1 form Nb 0.04-0.1, Ti 0.004-0.1, and V 0.01-0.1 and optionally \geq 1 of Ni, Cu, Cr, Mo, B, Zr, Mg, Ca at \leq 1.0. The steel also contains P 0.05-0.5 and Ce and/or La 0.005-0.5%. The average value of γ grain diameter in a 5-35 mm range from the slab surface is \leq 3 mm.

IT 868054-58-4

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(steel slab with small number of surface cracks)

RN 868054-58-4 HCAPLUS

CN Iron alloy, base, Fe 90-100, Si 0-4, Mn 0-3, C 0-1.5, B 0-1, Ca 0-1, Cr 0-1, Cu 0-1, Mg 0-1, Mo 0-1, Ni 0-1, Zr 0-1, Ce 0-0.5, La 0-0.5, P 0-0.5, Al 0-0.1, Nb 0-0.1, Ti 0-0.1, V 0-0.1 (9CI) (CA INDEX NAME)

Component		pone rcer	nt	Component Registry Number
======+= Fe Si Mn C B Ca Cr Cu Mg Mo Ni Zr Ce La	Pe			Registry Number +====================================
P Al Nb Ti V	0 0 0 0	- - - -	0.5 0.1 0.1 0.1	7723-14-0 7429-90-5 7440-03-1 7440-32-6 7440-62-2

- IC ICM C22C038-00
 - ICS B22D011-00; B22D011-108; C22C038-58
- CC 55-3 (Ferrous Metals and Alloys)
- IT 12716-99-3, properties 868054-45-9, properties 868054-46-0, properties 868054-47-1, properties 868054-50-6, properties 868054-51-7 868054-52-8, properties 868054-53-9 868054-54-0 868054-57-3 868054-58-4

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(steel slab with small number of surface cracks)

=> d 124 ibib abs hitstr hitind

L24 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:453407 HCAPLUS Full-text DOCUMENT NUMBER: 141:10219

TITLE: High-Al stainless steel plate and double-layered plate, process for producing the same, a honeycomb structure therefrom and process for producing the honeycomb structure

INVENTOR(S): Inaguma, Tooru; Konya, Shogo; Sakamoto, Hiroaki;

Tamura, Motonori

PATENT ASSIGNEE(S): Nippon Steel Corporation, Japan

SOURCE: PCT Int. Appl., 86 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2004046406	A1	20040603	WO 2003-JP14832	200311 20
			DK, EE, ES, FI, FR, GB, SE, SI, SK, TR	GR, HU,
JP 2004169110				200211
JP 2004169111	A	20040617	JP 2002-336049	200211
	B2 A	20070808 20040617	JP 2002-336050	20
		20080423		200211
JP 2004169112	A	20040617	JP 2002-336051	200211 20
JP 2004169113	A	20040617	JP 2002-336052	200211
JP 2004169114	A	20040617	JP 2002-336053	200211
JP 2004176086	А	20040624	JP 2002-340969	200211 25
JP 4083548 EP 1580288		20080430 20050928	EP 2003-774096	
			GB, GR, IT, LI, LU, NL,	200311 20 SE, MC,
			BG, CZ, EE, HU, SK US 2005-535602	200512
US 20080069717	A1	20080320	US 2007-981933	12 200710
RITY APPLN. INFO.:			JP 2002-336048 #	31 A 200211 20
			JP 2002-336049	A 200211

JP 2002-336050 Α 200211 20 JP 2002-336051 Α 200211 20 JP 2002-336052 200211 20 JP 2002-336053 Α 200211 20 JP 2002-340969 200211 25 WO 2003-JP14832 200311 20 US 2005-535602 А3 200512 12

20

AB An Fe-Cr-Al stainless steel plate with high Al content exceeding 6.5% and double-layered plate thereof; a honeycomb structure produced from the stainless steel plate or double-layered plate; and a process for producing the stainless steel plate and double-layered plate. In particular, an Fe-Cr-Al stainless steel plate of high Al content characterized by comprising, in terms of mass%, 10 to 30% of Cr and more than 6.5 to 15% of Al, and high-Al double-layered plate thereof. Preferably, further, one or both of 0.02 to 0.1% of Ti and 0.02 to 0.3% of Nb are contained and simultaneously 0.01 to 0.1% of La, 0.01 to 0.1% of Ce and 0.01 to 0.05% of P are contained therein. Also preferably, further, 0.01 to 1.0 mass% of Cu is contained. Still also preferably, further, 0.001 to 0.1 mass% of Mg is contained. Furthermore, there is provided a honeycomb structure produced from this Fe-Cr-Al stainless steel plate and suitable for catalyst supports.

IT 695231-93-7

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(high-Al stainless steel plate and double-layered plate, process for producing the same, a honeycomb structure therefrom and process for producing the honeycomb structure)

RN 695231-93-7 HCAPLUS

CN Iron alloy, base, Fe 52-83, Cr 10-30, Al 6.5-15, Si 0.1-1, Cu 0-1, Mn 0-0.5, Nb 0-0.3, Ce 0-0.1, La 0-0.1, Mg 0-0.1, Ti 0-0.1 (9CI) (CA INDEX NAME)

Component	Cor	npon	ent	Compoi	nent
	Pe	erce	nt	Registry	Number
=====+				=+======	
Fe	52	_	83	7439	9-89-6
Cr	10	_	30	7440	0-47-3

```
Al
     6.5 - 15
                    7429-90-5
Si
      0.1 - 1
                    7440-21-3
Cu
      0 - 1
                    7440-50-8
      0 - 0.5
                    7439-96-5
Mn
      0 - 0.3
                    7440-03-1
Nb
      0
            0.1
                    7440-45-1
Ce
      0 - 0.1
                    7439-91-0
La
      0 - 0.1
                    7439-95-4
Ma
      0 - 0.1
                    7440-32-6
Τi
```

IC ICM C22C038-00

ICS C22C038-20; C22C038-26; B01D053-94; B01J035-04

CC 55-3 (Ferrous Metals and Alloys)

IT 695231-68-6 695231-69-7 695231-70-0 695231-71-1 695231-72-2 695231-73-3 695231-74-4 695231-75-5 695231-76-6 695231-77-7 695231-78-8 695231-79-9 695231-80-2 695231-81-3 695231-82-4 695231-83-5 695231-84-6 695231-85-7 695231-86-8 695231-87-9 695231-88-0 695231-89-1 695231-90-4 695231-91-5 695231-92-6 695231-93-7

RL: PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(high-Al stainless steel plate and double-layered plate, process for producing the same, a honeycomb structure therefrom and process for producing the honeycomb structure)

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

\Rightarrow d 125 ibib abs hitstr hitind 1-13

L25 ANSWER 1 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2007:838986 HCAPLUS Full-text

4

DOCUMENT NUMBER: 147:216528

TITLE: Seawater corrosion resistant steel for welded structure and method for corrosion prevention of

ballast tank for ship

INVENTOR(S): Usami, Akira; Nagasawa, Makoto; Kato, Kenji

PATENT ASSIGNEE(S): Nippon Steel Corp., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 20pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2007191730	A	20070802	JP 2006-8247	
				200601
				17
PRIORITY APPLN. INFO.:			JP 2006-8247	
				200601
				17

AB The base steel comprises C 0.03-0.2, Si 0.01-2.5, Mn 0.1-2.0, P ≤ 0.03 , S ≤ 0.03 , Al 0.01-0.3, at least one of Cu 0.01-2.0, Cr 0.01-3.5, Ni 0.01-5.5, Mo 0.01-2.5, W 0.01-2.5, Sb 0.01-0.3, Sn 0.01-0.3, Se 0.01-0.3, and Pb 0.01-0.3

weight%, and balance Fe and has a metal-base coating with thickness 0.5-500 μm . The coating mainly comprises a metal with immersion potential in seawater lower than that of the base steel. Optionally the base steel contains Nb, V, Ti, Ta, Zr, B, Mg, Ca, Y, La, and/or Ce. The coating may be a hot-dip coating or a thermal spray coating of Zn, Zn alloy, Al, or Al alloy or a Zn-rich primer coating. The ballast tank is made of the steel. Preferably cathodic protection method is applied to the ballast tank. The steel and its ballast tank have excellent corrosion resistance in seawater.

IT 945038-46-0

RL: TEM (Technical or engineered material use); USES (Uses) (base steel; seawater corrosion resistant steel for ship ballast tank)

RN 945038-46-0 HCAPLUS

CN Iron alloy, base, Fe 76-100,Ni 0-5.5,Cr 0-3.5,Mo 0-2.5,Si 0-2.5,W 0-2.5,Mn 0.1-2,Cu 0-2,Ta 0-0.5,V 0-0.5,Zr 0-0.5,Al 0-0.3,Pb 0-0.3,Sb 0-0.3,Se 0-0.3,Sn 0-0.3,C 0-0.2,Nb 0-0.2,Ti 0-0.2,Ce 0-0.1,La 0-0.1,Y 0-0.1 (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CC 55-10 (Ferrous Metals and Alloys)
Section cross-reference(s): 56

IT 12709-12-5, uses 12762-79-7, uses 64513-85-5, uses 69075-13-4, uses 74279-13-3, uses 75043-57-1, uses 79121-67-8, uses 79373-82-3, uses 117220-23-2, uses 118393-99-0, uses 194293-96-4, uses 214463-63-5, uses 944541-94-0, uses 944541-95-1, uses 944541-96-2 944541-97-3 944542-00-1, uses 944542-01-2, uses 944542-02-3, uses 944542-04-5, uses 944542-06-7, uses 944542-07-8, uses 944542-09-0, uses 944542-12-5, uses 944542-13-6 944542-15-8 945038-46-0 RL: TEM (Technical or engineered material use); USES (Uses) (base steel; seawater corrosion resistant steel for ship ballast

L25 ANSWER 2 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2007:323205 HCAPLUS Full-text

DOCUMENT NUMBER: 146:341846

TITLE: Anticorrosive welded joint for steel and its

joint structure

INVENTOR(S): Sakashita, Shinji; Hisamoto, Atsushi; Yamashita,

Toru

PATENT ASSIGNEE(S): Kobe Steel, Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 52pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

tank)

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JР 2007069265	А	20070322	JP 2006-216083	200608
PRIORITY APPLN. INFO.:			JP 2005-229982 A	08 200508 08

AB The anticorrosive welded joint for combining base steel materials is characterized in that a content of component for forming an anticorrosive film

in the weld metal (CA; weight%) and that in the base materials (CB; weight%) satisfy the relationship of $0.30 \le \text{CA/CB} \le 3.0$. The components for forming the anticorrosive film include Co and Mg. The welded joint structures are useful for ships, petroleum tanks, etc.

IT 929211-63-2

RL: TEM (Technical or engineered material use); USES (Uses) (base steel; anticorrosive welded steel joints for ships and petroleum tanks)

RN 929211-63-2 HCAPLUS

CN Iron alloy, base, Fe 66-100,Co 0-5,Cr 0-5,Cu 0-5,Mo 0-5,Ni 0-5,Mn 0-2,Si 0-2,As 0-0.5,Bi 0-0.5,Nb 0-0.5,Sb 0-0.5,Se 0-0.5,Sn 0-0.5,Te 0-0.5,V 0-0.5,C 0-0.3,Ce 0-0.2,La 0-0.2,Ti 0-0.2,Al 0-0.1 (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CC 55-9 (Ferrous Metals and Alloys)

IT 56293-71-1, uses 56668-21-4, uses 66161-73-7, uses 249298-12-2, uses 254431-05-5, uses 929080-82-0, uses 929080-83-1, uses 929080-84-2, uses 929080-85-3, uses 929080-86-4 929080-87-5, uses 929080-88-6, uses 929080-89-7, uses 929080-90-0, uses 929080-91-1, uses 929080-93-3, uses 929080-94-4, uses 929080-95-5, uses 929080-96-6, uses 929080-97-7, uses 929080-98-8, uses 929080-99-9, uses 929081-00-5 929081-01-6, uses 929081-03-8 929081-06-1, uses 929081-09-4, uses 929081-10-7 929081-11-8, uses 929081-12-9, uses 929081-51-6 929081-56-1 929081-58-3 929211-63-2 RL: TEM (Technical or engineered material use); USES (Uses) (base steel; anticorrosive welded steel joints for ships and petroleum tanks)

L25 ANSWER 3 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2005:467968 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 143:29987

TITLE: High-tensile steel showing high toughness at

welding heat affected zone and its manufacture

INVENTOR(S): Hasegawa, Taishi

PATENT ASSIGNEE(S): Nippon Steel Corp., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 18 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
		20050602	TD 2002 276020	
JP 2005139509	A	20050602	JP 2003-376820	200311 06
JP 4012497 PRIORITY APPLN. INFO.:	В2	20071121	JP 2003-376820	
				200311 06

AB The claimed steel contains C 0.001-0.05, Si 0.01-0.50, Mn 0.10-3.0, W 0.10-1.0, P \leq 0.03, S \leq 0.02, and O \leq 0.01 weight% and satisfies W precipitation amount (to added W amount) \leq 1% and \leq 10% at \geq Acl point heat affected zone (HAZ) and at base metal, resp., and LP value \leq 2.5 for suppressed precipitation of W-

5/23/2008 10/535,602 9

containing Laves phase to give tensile strength ≥ 550 MPa; where LP = 3Si + W + 2Cr + 0.5Mo (the element symbols indicate their percent contents). Optionally, the steel contains (1) Nb 0.005-0.1, V 0.005-0.3, Ti 0.005-0.1, Zr 0.005-0.1, Mo 0.01-1.0, (2) Ni 0.01-5.0, Cu 0.01-1.0, Co 0.01-2.0, Cr 0.10-1.0 B 0.0003-0.005, (3) Ca 0.0003-0.005, Mg 0.0003-0.005, Ba 0.0003-0.005, Y 0.0005-0.10, Ce 0.0005-0.10, La 0.0005-0.10, and/or (4) Al 0.002-0.20, Ta 0.002-0.20, Hf 0.002-0.20 weight%. The steel is manufactured by temperature keeping at $400-700^{\circ}$ for ≤ 30 h in cooling process after hot working or heat treatment.

853014-96-7 ΤТ

> RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(cooling in manufacture of high-tensile steel containing tungsten for toughness at welding heat affected zone)

853014-96-7 HCAPLUS RN

CN Iron alloy, base, Fe 84-100, Ni 0-5, Mn 0.1-3, Co 0-2, W 0.1-1, Cr 0-1, Cu 0-1, Mo 0-1, Si 0-0.5, V 0-0.3, Al 0-0.2, Hf 0-0.2, Ta 0-0.2, Ce 0-0.1, La 0-0.1, Nb 0-0.1, Ti 0-0.1, Y 0-0.1, Zr 0-0.1 (9CI) (CA INDEX NAME)

Component	Comp Pei		ent	Component Registry Number
Fe	84	_	100	7439-89-6
Νi	0	_	5	7440-02-0
Mn	0.1	_	3	7439-96-5
Со	0	_	2	7440-48-4
\overline{W}	0.1	_	1	7440-33-7
Cr	0	_	1	7440-47-3
Cu	0	_	1	7440-50-8
Mo	0	_	1	7439-98-7
Si	0	_	0.5	7440-21-3
V	0	_	0.3	7440-62-2
Al	0	_	0.2	7429-90-5
Нf	0	_	0.2	7440-58-6
Ta	0	_	0.2	7440-25-7
Ce	0	_	0.1	7440-45-1
La	0	_	0.1	7439-91-0
Nb	0	_	0.1	7440-03-1
Τi	0	_	0.1	7440-32-6
Y	0	_	0.1	7440-65-5
Zr	0	_	0.1	7440-67-7

IC ICM C22C038-00

ICS B21B003-00; C21D008-02; C22C038-22; C22C038-58

55-5 (Ferrous Metals and Alloys)

CC ΙT 852509-78-5, processes 852509-79-6, processes 852509-80-9, 852509-81-0, processes 852509-82-1, processes processes 852509-83-2, processes 852509-84-3, processes 852509-85-4, 852509-86-5, processes 852509-87-6, processes processes 852509-88-7, processes 852509-89-8, processes 852509-90-1, processes 852509-91-2, processes 852509-92-3 852509-93-4, processes 852509-94-5 852509-95-6, processes 852509-96-7, processes 852509-97-8 852509-98-9 852509-99-0 852510-00-0, 852510-01-1, processes 852510-02-2, processes processes 852510-03-3, processes 852510-04-4, processes 852510-05-5, processes 852510-06-6, processes 852510-07-7, processes 852510-08-8, processes 852510-09-9, processes 852510-10-2, processes 852510-11-3, processes 852510-12-4, processes 852510-13-5, processes 852510-14-6, processes 852510-15-7,

processes 852510-16-8, processes 852510-17-9 852510-18-0 852510-19-1, processes 852510-20-4, processes 852510-21-5,

processes 852510-22-6, processes 853014-96-7

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(cooling in manufacture of high-tensile steel containing tungsten for toughness at welding heat affected zone)

L25 ANSWER 4 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2005:9611 HCAPLUS Full-text

DOCUMENT NUMBER: 142:98070

TITLE: Manufacture of thick steel sheet having low

material anisotropy and dispersion

INVENTOR(S): Hasegawa, Toshinaga; Minagawa, Masaki;

Shirahata, Hiroyuki

PATENT ASSIGNEE(S): Nippon Steel Corp., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 16 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2005002372	А	20050106	JP 2003-164431	200306 09
PRIORITY APPLN. INFO.:			JP 2003-164431	200306 09

The title sheet is manufactured from a steel slab containing C 0.02-0.3, Si 0.01-2, Mn 0.1-2, Al 0.001-0.1, N 0.001-0.01, P \leq 0.02, S \leq 0.01, and austenite recrystn. inhibitor and strength improver selected from Cu 0.01-1.5, Mo 0.01-2, W 0.01-2, V 0.005-0.5, Nb 0.003-0.2, Ta 0.005-0.2, Zr 0.003-0.1, and B 0.0002-0.005 weight% by (1) heating at 1000-1300°, (2) rolling at austenite nonrecrystn. area to partial recrystn. area for total draft 30-90% to generate austenite recrystn. rate 0-60% by finish rolling, and then (3) keeping at \geq Ar3 point and heating at \geq Ac3 point and \leq 950° for 10-1000 s. The steel sheet may further contain (i) Ni 0.01-6, Cr 0.01-2, and/or Ti 0.003-0.1 and/or (ii) Mg 0.0001-0.01, Ca 0.0005-0.01, Y 0.001-0.1, La 0.005-0.1, and/or Ce 0.005-0.1 weight%. The resulting sheet is especially suitable for marine construction, ships, bridges, welded linepipes, etc.

IT 817199-24-9

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(hot rolling of thick steel sheet for low material anisotropy and dispersion) $\label{eq:control}$

RN 817199-24-9 HCAPLUS

CN Iron alloy, base, Fe 83-100,Ni 0-6,Mn 0.1-2,Cr 0-2,Mo 0-2,Si 0-2,Cu 0-1.5,V 0-0.5,C 0-0.3,Nb 0-0.2,Ta 0-0.2,Al 0-0.1,Ce 0-0.1,La 0-0.1,Ti 0-0.1,Y 0-0.1,Zr 0-0.1 (9CI) (CA INDEX NAME)

Component Component Component
Percent Registry Number

```
83 - 100 7439-89-6
      0 – 6
                  7440-02-0
  Νi
       0.1 - 2
                  7439-96-5
  Mn
       0 - 2
                   7440-47-3
  Cr
       0 – 2
                   7439-98-7
  Мо
       0 – 2
                   7440-21-3
  Si
       0 - 1.5
                  7440-50-8
  Cu
  V
       0 - 0.5
                  7440-62-2
       0 - 0.3
  С
                  7440-44-0
      0 - 0.2
                  7440-03-1
  Nb
      0 - 0.2
                  7440-25-7
  Ta
       0
         - 0.1
  Al
                   7429-90-5
  Ce
       0 - 0.1
                  7440-45-1
       0 - 0.1
  La
                  7439-91-0
  Τi
       0 - 0.1
                  7440-32-6
  Y
       0 - 0.1
                  7440-65-5
       0 - 0.1
  Zr
                  7440-67-7
```

IC ICM C21D008-02

ICS C22C038-00; C22C038-14; C22C038-58

CC 55-11 (Ferrous Metals and Alloys)

IT 12754-97-1, processes 56293-71-1, processes 64513-85-5, processes 125684-13-1, processes 138724-94-4, processes 177263-05-7, processes 817199-07-8, processes 817199-11-4, processes 817199-15-8, processes 817199-21-6, processes 817199-24-9

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(hot rolling of thick steel sheet for low material anisotropy and dispersion)

L25 ANSWER 5 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:801445 HCAPLUS Full-text

DOCUMENT NUMBER: 141:282013

TITLE: High-Cr cast iron having high resistance to heat, corrosion, and wear for incinerator and

stoker furnace grate

INVENTOR(S): Murakami, Shoqo; Nanba, Shiqenobu

PATENT ASSIGNEE(S): Kobe Steel, Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 12 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2004270002	А	20040930	JP 2003-65187	
				200303 11
PRIORITY APPLN. INFO.:			JP 2003-65187	
				200303

AB The claimed cast iron contains C >2.0 and \leq 4.0, Si 0.5-4, Cr >30 and \leq 50, and Al 1-8 weight%. Optionally, the cast iron contains (1) Mo and/or W (as total)

 ≤ 5 (not containing 0), (2) Nb, Ti, V, Zr, Hf, and/or Ta (as total) ≤ 0.5 (not containing 0) and/or N 0.002-0.03 , (3) Cu ≤ 5 (not containing 0), Ni ≤ 10 (not containing 0), Mn ≤ 5 (not containing 0), and/or B ≤ 0.003 (not containing 0), and/or (4) Ce, La, Pr, Nd, and/or Y (as total) ≤ 1 weight%.

IT 760977-35-3

RL: DEV (Device component use); USES (Uses)

(high-Cr cast iron having high resistance to heat, corrosion, and wear for incinerator and stoker furnace)

RN 760977-35-3 HCAPLUS

CN Iron alloy, base, Fe 18-66, Cr 30-40, Ni 0-10, Al 1-8, Cu 0-5, Mn 0-5, Mo 0-5, C 2-4, Si 0.5-4, Ce 0-1, La 0-1, Nd 0-1, Pr 0-1, Y 0-1, Hf 0-0.5, Nb 0-0.5, Ta 0-0.5, Ti 0-0.5, V 0-0.5, Zr 0-0.5 (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IC ICM C22C037-06

ICS C22C037-08; F23G005-00; F23G005-44; F23G005-48

CC 60-5 (Waste Treatment and Disposal)

Section cross-reference(s): 47, 55

IT 760961-81-7 760961-82-8 760961-83-9 760961-85-1 760961-86-2 760961-88-4 760961-90-8 760961-92-0 760961-93-1 760961-94-2 760961-96-4 760961-97-5 760961-99-7 760962-01-4 760962-02-5 760962-05-8 760977-35-3

RL: DEV (Device component use); USES (Uses)

(high-Cr cast iron having high resistance to heat, corrosion, and wear for incinerator and stoker furnace)

L25 ANSWER 6 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:411814 HCAPLUS Full-text

DOCUMENT NUMBER: 140:410196

TITLE: Martensitic heat-resistant iron alloy and its

manufacture by normalizing

INVENTOR(S): Yoshizawa, Mitsuru; Igarashi, Masaaki PATENT ASSIGNEE(S): Sumitomo Metal Industries Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 22 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	JP 2004143513	A	20040520	JP 2002-308705	
					200210
					23
	JP 3969279	В2	20070905		
PRIO	RITY APPLN. INFO.:			JP 2002-308705	
					200210
					23

AB The claimed Fe alloy contains C ≤ 0.01 , Cr > 10 and ≤ 15 , Si 0.025-1, Mn 0.05-5, Mo ≤ 5 , W 5-15, B 0.0005-0.03, sol.Al 0.001-0.2, and Co ≤ 15 , Ni ≤ 15 , and/or Cu ≤ 5 , and impurities containing P ≤ 0.05 and S ≤ 0.02 weight% by satisfying Cr + 6Si + 4Mo + 1.5W + 12Al - 4Ni - 2Mn - Cu - 2Co ≤ 15 (the element symbols indicate their percent contents). Alternatively, the Fe alloy contains C 0.005-0.02, Cr > 10 and ≤ 15 , Si 0.025-1, Mn 0.05-5, Mo ≤ 5 , W 5-15, B 0.0005-0.03, sol.Al 0.001-0.2, Nb 0.01-0.15, and Co ≤ 15 , Ni ≤ 15 , and/or Cu ≤ 5 , and

impurities containing P \leq 0.05 and S \leq 0.02 weight% by satisfying Cr + 6Si + 4Mo + 1.5W + 12Al + 5Nb - 4Ni - 2Mn - Cu - 2Co \leq 15. Optionally, the Fe alloy contains Ta \leq 0.15, Ti \leq 0.1, and/or Nd \leq 0.05 weight% by satisfying Cr + 6Si + 4Mo + 1.5W + 12Al + 5Nb + 8Ti - 4Ni - 2Mn - Cu - 2Co \leq 15. The Fe alloy may further contain Ca \leq 0.02, Mg \leq 0.02, La \leq 0.2, Ce \leq 0.2, Y \leq 0.2, and/or Hf \leq 0.2 weight%. The claimed process comprises hot working the above Fe alloy and then normalizing at 1050-1200°. The Fe alloy provides high creep strength at high temperature for long time and resistance to steam oxidation 688064-38-2

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(martensitic heat-resistant iron-chromium-tungsten alloy manufactured by normalizing)

RN 688064-38-2 HCAPLUS

ΙT

CN Iron alloy, base, Fe 22-85, Cr 10-15, W 5-15, Co 0-15, Ni 0-15, Cu 0-5, Mn 0-5, Mo 0-5, Si 0-1, Al 0-0.2, Ce 0-0.2, Hf 0-0.2, La 0-0.2, Nb 0-0.2, Ta 0-0.2, Y 0-0.2, C 0-0.1, Ti 0-0.1 (9CI) (CA INDEX NAME)

Component		rce	nt	Component Registry Number
Fe	 22		 85	7439-89-6
Cr	10	_	15	7440-47-3
W	5	_	15	7440-33-7
Со	0	_	15	7440-48-4
Ni	0	_	15	7440-02-0
Cu	0	_	5	7440-50-8
Mn	0	_	5	7439-96-5
Мо	0	_	5	7439-98-7
Si	0	_	1	7440-21-3
Al	0	_	0.2	7429-90-5
Ce	0	_	0.2	7440-45-1
Нf	0	_	0.2	7440-58-6
La	0	_	0.2	7439-91-0
Nb	0	_	0.2	7440-03-1
Ta	0	_	0.2	7440-25-7
Y	0	_	0.2	7440-65-5
С	0	_	0.1	7440-44-0
Ti	0	_	0.1	7440-32-6

IC ICM C22C038-00

ICS C21D006-00; C22C038-58

CC 55-5 (Ferrous Metals and Alloys)

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(martensitic heat-resistant iron-chromium-tungsten alloy manufactured by normalizing)

L25 ANSWER 7 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2004:411808 HCAPLUS Full-text DOCUMENT NUMBER: 140:410237

TITLE: Thick steel material having high resistance to

fatigue crack propagation and its manufacture

for welding structure

INVENTOR(S): Hasegawa, Toshinaga; Minagawa, Masanori;

Shirahata, Hiroyuki

PATENT ASSIGNEE(S): Nippon Steel Corp., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 25 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JР 2004143504	A	20040520	JP 2002-308402	
				200210 23
JP 3785392 PRIORITY APPLN. INFO.:	В2	20060614	JP 2002-308402	
				200210 23

The claimed steel material contains C 0.04-0.3, Si 0.01-2, Mn 0.1-3, Al 0.001-AΒ 0.1, N 0.001-0.01, P \leq 0.02, and S \leq 0.01 weight% and has dual phase structure consisting of soft phase and network hard secondary phase surrounding the soft phase by satisfying (1) the soft phase contains ferrite, tempered bainite, and/or tempered martensite and has average Vickers hardness ≤ 150 , (2) the hard phase contains bainite, martensite, tempered bainite, and/or tempered martensite and has average Vickers hardness ≥250, and (3) occupancy of the hard phase (PH) in grain boundary phase is PH ≥ 0.5 ; where PH = (total length of grain boundary occupied by the hard phase in observed cross section of grain boundary phase)/(total length of grain boundary in observed cross section). Optionally, the steel contains Ni 0.01-6, Cu 0.01-1.5, Cr 0.01-2, Mo 0.01-2, W 0.01-2, Ti 0.003-0.1, V 0.005-0.5, Nb 0.003-0.2, Zr 0.003-0.1, Ta 0.005-0.2, and/or B 0.0002-0.005 and/or (2) Mg 0.0001-0.01, Ca 0.0005-0.01, Y 0.0001-0.1, La 0.005-0.1, and/or Ce 0.005-0.1 weight%. The steel material is manufactured from a steel slab having the above composition by diffusion heat treating at $1200-1350^{\circ}$ for 2-100 h before hot rolling, hot rolling at $\geq Ac3$ point and $\leq 1250^{\circ}$, accelerated cooling from $\geq Ar3$ point to $\leq 400^{\circ}$ at $5-100^{\circ}/s$, and further accelerated cooling from (Acl point + 30°) to (Ac3 point - 10°) and $\leq 400^{\circ}$ at 5-100°/s for dual-phase region heat treatment.

IT 688737-26-0

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(thick steel material having soft/hard dual phase manufactured by hot rolling and heat treatment for resistance to fatigue crack propagation)

RN 688737-26-0 HCAPLUS

CN Iron alloy, base, Fe 80-100, Ni 0-6, Mn 0.1-3, Cr 0-2, Mo 0-2, Si 0-2, W 0-2, Cu 0-1.5, V 0-0.5, C 0-0.3, Nb 0-0.2, Ta 0-0.2, Al 0-0.1, Ce 0-0.1, La 0-0.1, Ti 0-0.1, Y 0-0.1, Zr 0-0.1 (9CI) (CA INDEX NAME)

Component	Cor	mponent	Component	
	Percent		Registry Numbe	r
=====+	=====		-+	=
Fe	80	- 100	7439-89-6	
Νi	0	- 6	7440-02-0	

```
Mn
     0.1 - 3
                    7439-96-5
Cr
      0 – 2
                   7440-47-3
      0 – 2
                   7439-98-7
Mο
      0 – 2
                    7440-21-3
Si
      0
        - 2
                    7440-33-7
W
      0
           1.5
                    7440-50-8
Cu
      0
        - 0.5
                    7440-62-2
7.7
      0 - 0.3
                    7440-44-0
С
Nb
      0 - 0.2
                   7440-03-1
     0 - 0.2
Ta
                   7440-25-7
     0 - 0.1
                   7429-90-5
Al
        - 0.1
      0
                    7440-45-1
Ce
      0
         - 0.1
La
                    7439-91-0
Тi
      0 - 0.1
                    7440-32-6
Y
      0 - 0.1
                    7440-65-5
Zr
     0
        - 0.1
                    7440-67-7
```

IC ICM C22C038-00

ICS C21D008-02; C22C038-06; C22C038-58

55-11 (Ferrous Metals and Alloys) CC

12730-76-6, processes 71836-95-8, Steel, Fe 98,Mn 1.6,C 0.2,Si IΤ 0.2, processes 73333-30-9, processes 110588-35-7, processes 216969-32-3, processes 688737-21-5, processes 688737-22-6 688737-23-7, processes 688737-24-8, processes 688737-25-9, processes 688737-26-0

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(thick steel material having soft/hard dual phase manufactured by hot rolling and heat treatment for resistance to fatigue crack propagation)

L25 ANSWER 8 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN 2003:711724 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER: 139:233484

Manufacture of high-tensile-strength steel TITLE:

having high toughness and ductility for welding

structure

Hasegawa, Toshinaga; Minagawa, Masaki; INVENTOR(S):

Shirahata, Hiroyuki

PATENT ASSIGNEE(S): Nippon Steel Corp., Japan

Jpn. Kokai Tokkyo Koho, 11 pp. SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
 JР 2003253331	А	20030910	JP 2002-58985	
				200203 05
PRIORITY APPLN. INFO.:			JP 2002-58985	
				200203 05

AΒ The title steel is manufactured from a slab containing C 0.01-0.2, Si 0.01-1, Mn 0.1-2, Al 0.001-0.1, N 0.001-0.01, P ≤ 0.02 , and S ≤ 0.01 weight% and having

C equivalent (Ceq.) 0.3-0.6, where Ceq. = C + Mn/6 + (Cu + Ni)/15 + (V + Mo + Cr)/5 (the element symbols indicate their percent contents), by following steps; heating to \geq Ac3 point and \leq 1300°; hot rolling at starting temperature \leq 950°, finish temperature \geq Ar3 point, and total draft \geq 30% containing austenite nonrecrystn. rolling; accelerated cooling at 3-100°/s from \geq Ar3 point to temperature showing austenite ratio 20-70%; and then keeping temperature at the accelerated cooling finish \pm 100° for 10-100 s after the cooling finish by heating, keeping, and/or cooling at \leq 0.5°/s. The steel may contain (1) Ni 0.01-5, Cu 0.01-1.5, Cr 0.01-2, Mo 0.01-2, W 0.01-2, Ti 0.003-0.1, V 0.005-0.5, Nb 0.003-0.1, Zr 0.003-0.1, Ta 0.005-0.2, and/or B 0.0002-0.005 and/or (2) Mg 0.0005-0.01, Ca 0.0005-0.01, Y 0.005-0.1, La 0.001-0.1, and/or Ce 0.001-0.1 weight%.

IT 594816-51-0

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(rolling and cooling in manufacture of high-tensile-strength steel having toughness and ductility for welding structure)

RN 594816-51-0 HCAPLUS

CN Iron alloy, base, Fe 83-100,Ni 0-5,Mn 0.1-2,Cr 0-2,Mo 0-2,W 0-2,Cu 0-1.5,Si 0-1,V 0-0.5,C 0-0.2,Ta 0-0.2,Al 0-0.1,Ce 0-0.1,La 0-0.1,Nb 0-0.1,Ti 0-0.1,Y 0-0.1,Zr 0-0.1 (9CI) (CA INDEX NAME)

Component	Pe	rce	nent ent	Component Registry Number
Fe Ni Mn Cr Mo W Cu Si V C Ta Al Ce La Nb Ti Y				+=====================================
Zr	0	-	0.1	7440-67-7

IC ICM C21D008-00

ICS B21B003-00; C22C038-00; C22C038-06; C22C038-58

- CC 55-11 (Ferrous Metals and Alloys)
- IT 12730-76-6, processes 60700-86-9, processes 64513-85-5, processes 69546-36-7, processes 100014-60-6, processes 171972-04-6, processes 594816-46-3, processes 594816-47-4, processes 594816-48-5, processes 594816-49-6, processes 594816-50-9 594816-51-0

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(rolling and cooling in manufacture of high-tensile-strength steel having toughness and ductility for welding structure) $\ \ \,$

L25 ANSWER 9 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1999:681595 HCAPLUS Full-text

DOCUMENT NUMBER: 131:312881

TITLE: Precipitation hardened silicon steel for machine

parts

INVENTOR(S): Shimizu, Takayasu; Shimizu, Yoshiyuki PATENT ASSIGNEE(S): Nippon Silicolloy Kogyo K. K., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 22 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11293410	А	19991026	JP 1998-94456	199804 07
JP 2954922 PRIORITY APPLN. INFO.:	В2	19990927	JP 1998-94456	199804 07

The steel contains C \leq 0.10, Si 2.0-9.0, Mn 0.05-6.0, Ni 1-24, Cr 6-28, Mo 0.2-4.0, Nb 0.03-2.0, Cu Λ <4.0, W \leq 4.0, Co \leq 3.0, Al \leq 1.0, TI \leq 2.0, V \leq 4.0, B \leq 3.0, Ce \leq 0.4, and La \leq 0.4%. The parts of the steel which require hard hardness are heat treated by the process including operations 1-2-3 described below. The parts of the steel which do not require hard hardness are heat treated by the process including operations 1-3 or 1-2. (1) Heating to 900-1100°, rapid cooling, and aging at 600-700°. (2) Heating to 950-1150° and rapid cooling. (3) Aging at 400-600°. The precipitation hardened steel has good mech. properties and is suitable for various machine parts.

IT 247938-24-5

RL: PEP (Physical, engineering or chemical process); PRP (Properties); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(precipitation hardened silicon steel manufactured by controlled heat treatment for machine parts)

RN 247938-24-5 HCAPLUS

CN Iron alloy, base, Fe 5.1-91, Cr 6-28, Ni 1-24, Si 2-9, Mn 0-6, Mo 0.2-4, Cu 0-4, V 0-4, W 0-4, B 0-3, Co 0-3, Nb 0-2, Ti 0-2, Al 0-1, Ce 0-0.4, La 0-0.4, C 0-0.1 (9CI) (CA INDEX NAME)

Component	P€	mpon erce	nt	Component Registry Number
Fe	 5.1		 91	=+====================================
Cr	6	_	28	7440-47-3
Ni	1	_	24	7440-02-0
Si	2	_	9	7440-21-3
Mn	0	_	6	7439-96-5
Mo	0.2	2 –	4	7439-98-7
Cu	0	_	4	7440-50-8
V	0	_	4	7440-62-2
\overline{W}	0	_	4	7440-33-7
В	0	_	3	7440-42-8
Со	0	_	3	7440-48-4

```
Иb
       0
               2
                        7440-03-1
Τi
        0
               2
                        7440-32-6
Αl
        0 -
              1
                        7429-90-5
        0
              0.4
                        7440-45-1
Ce
        0
                        7439-91-0
La
               0.4
               0.1
                        7440-44-0
```

IC ICM C22C038-00

CC 55-3 (Ferrous Metals and Alloys)

IT 247938-12-1 247938-13-2 247938-14-3 247938-15-4 247938-16-5 247938-17-6 247938-18-7 247938-19-8 247938-20-1 247938-21-2

247938-22-3 247938-23-4 247938-24-5 RL: PEP (Physical, engineering or chemical process); PRP

(Properties); TEM (Technical or engineered material use); PROC

(Process); USES (Uses)

(precipitation hardened silicon steel manufactured by controlled heat treatment for machine parts)

L25 ANSWER 10 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1997:809869 HCAPLUS <u>Full-text</u>

DOCUMENT NUMBER: 128:117874

TITLE: Austenitic stainless steel for heat exchangers

having high corrosion resistance at high

temperature

INVENTOR(S): Kimura, Hideto; Suwa, Minoru PATENT ASSIGNEE(S): Nippon Kokan Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
 JР 09324246	А	19971216	JP 1996-189300		199607
PRIORITY APPLN. INFO.:			JP 1996-82716	А	18

AB The steel contains C \leq 0.12, Si \leq 1.0, Mn \leq 5.0, P \leq 0.04, S \leq 0.03, Cr 14-22, Ni 10-25, Al 1.0-3.5, N \leq 0.02, Y + La + Ce \leq 0.07% and optionally Ti 0.05-0.5, V 0.1-1.0, Nb 0.1-1.0, Zr 0.1-1.0, and Cu 0.5-4.0%. The components of steel satisfy the following conditions: (1.5Si + Cr + 3Al) - (0.5Mn + Ni + 30C + 30N) <9 and C/5 - 12(Zr/91 + Nb/93 + Ti/48 + V/68) \leq 0. The steel is suitable for pipes for heat exchangers used in boilers and chemical plants. IT 201726-99-0

RL: DEV (Device component use); PRP (Properties); USES (Uses) (austenitic stainless steel for heat exchangers having high corrosion resistance at high temperature)

RN 201726-99-0 HCAPLUS

CN Iron alloy, base, Fe 36-74, Ni 10-25, Cr 14-22, Mn 0-5, Cu 0.5-4, Al 1-3.5, Nb 0.1-1, V 0.1-1, Zr 0.1-1, Si 0-1, Ti 0-0.5, C 0-0.1, Ce 0-0.1, La 0-0.1, Y 0-0.1 (9CI) (CA INDEX NAME)

COIII	ponene		-	nt.	Registry			
===	=====+				+======	•		
	Fe	36	_	74	743	39-89-6		
	Ni	10	_	25	744	40-02-0		
	Cr	14	_	22	744	40-47-3		
	Mn	0	_	5	743	39-96-5		
	Cu	0.5	_	4	744	40-50-8		
	Al	1	_	3.5	742	29-90-5		
	ИЬ	0.1	_	1	744	40-03-1		
	V	0.1	_	1	744	40-62-2		
	Zr	0.1	_	1	744	40-67-7		
	Si	0	_	1	744	40-21-3		
	Τi	0	_	0.5	744	40-32-6		
	С	0	_	0.1	744	40 - 44 - 0		
	Ce	0	_	0.1	744	40-45-1		
	La	0	_	0.1	743	39-91-0		
	Y	0	-	0.1	744	40-65-5		
IC	TCM	C22C0	30	0.0				
10					220038-59	3; F28F021-08	2	
CC					ls and Al)	
IT						201726-76-3	3 201726-77-4	4 201726-78-5
11								1 201726-83-2
						201726-86-5		
			-					3 201726-93-4
						201726-91-2		
		16-99-		2017	20-33-0	201/20-70-7	, 201120-91-0	201/20-30-3
				CA CO	mnonent i	100) · DRD /Dr	roperties); USE	FS (Heas)
					_	rse), trt (tr		10 (0363)

Component

RL: DEV (Device component use); PRP (Properties); USES (Uses) (austenitic stainless steel for heat exchangers having high corrosion resistance at high temperature)

L25 ANSWER 11 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1995:874763 HCAPLUS Full-text

DOCUMENT NUMBER: 123:262801

ORIGINAL REFERENCE NO.: 123:46889a,46892a

TITLE: Spring steel of high strength and high corrosion

resistance

INVENTOR(S): Kawaguchi, Yasunobu; Shimotsusa, Masataka; Momozaki, Kan; Nakayama, Takenori; Miyauchi,

Shigeaki; Yamamoto, Yoshinori; Ohkouchi, Norio

PATENT ASSIGNEE(S): Kabushiki Kaisha Kobe Seiko Sho, Japan

SOURCE: Can. Pat. Appl., 51 pp.

CODEN: CPXXEB

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

Component

Component

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
CA 2135035	A1	19950505	CA 1994-2135035	199411 03
CA 2135035 JP 07173577	C A	19990720 19950711	JP 1994-203719	199408 29

31231200	,0		10/333,002				
		B2 A1	19990809 19950614	EP	1994-117353		199411
EP	657557 R: DE, ES, FR	В1	19980513				03
US	5 5508002	A	19960416	US	1994-335346		199411 03
ES	2116506	Т3	19980716	ES	1994-117353		199411
US	5 5846344	A	19981208	US	1996-592546		03 199601
PRIORIT	Y APPLN. INFO.:			JP	1993-275514	A	26 199311 04
				JP	1994-203719	А	199408
				US	1994-335346	A1	199411

AB The steel contains C 0.3-0.6, Si 1.0-3.0, Mn 0.1-0.5, Cr 0.5-1.5, and Ni >0-1.0 and/or Mo 0.1-0.5% with Q = (0.23C+0.1)(0.7Si+1)(3.5Mn+1)(2.2Cr+1)(0.4Ni+1)(3Mo+1) = 2.5-4.5 and Q/logd = 2.0-4.0, where d is diameter (mm) of the steel bar or wire after hot rolling. The steel further contains Cu 0.1-1.0; V 0.01-0.5, Nb 0.01-1.0, Al 0.01-1.0, and/or Ti 0.01-1.0; Co 0.1-3.0 and/or W 0.1-1.0; and Ca 0.001-0.1, La 0.001-1.0, and Ce 0.001-1.0%. The rolling starting temperature on hot rolling of the steel is $850-1050^\circ$, the cooling starting temperature after hot rolling T = $700-900^\circ$, and the average cooling rate from T to 500° is $0.5-3.0^\circ/s$.

IT 169312-37-2

RN

RL: TEM (Technical or engineered material use); USES (Uses) (spring steel of high strength and high corrosion resistance) 169312-37-2 HCAPLUS

CN Iron alloy, base, Fe 82-98, Si 1-3, Co 0.1-3, Cr 0.5-1.5, Cu 0.1-1, W 0.1-1, Al 0-1, Ce 0-1, La 0-1, Nb 0-1, Ni 0-1, Ti 0-1, C 0.3-0.6, Mn 0.1-0.5, Mo 0.1-0.5, V 0-0.5, Ca 0-0.1 (9CI) (CA INDEX NAME)

Component				Component Registry Number
=====+ Fe	===== 82		98	+=====================================
Si	1	_	3	7440-21-3
Со	0.1	_	3	7440-48-4
Cr	0.5	_	1.5	7440-47-3
Cu	0.1	_	1	7440-50-8
W	0.1	_	1	7440-33-7
Al	0	_	1	7429-90-5
Ce	0	_	1	7440-45-1
La	0	_	1	7439-91-0
Nb	0	_	1	7440-03-1
Νi	0	_	1	7440-02-0
Ti	0	_	1	7440-32-6
С	0.3	_	0.6	7440-44-0

Mn 0.1 - 0.5 7439-96-5 Mo 0.1 - 0.5 7439-98-7 V 0 - 0.5 7440-62-2 Ca 0 - 0.1 7440-70-2

IC ICM C22C038-22

ICS C22C038-44; C22C038-34

CC 55-3 (Ferrous Metals and Alloys)

IT 169312-37-2

RL: TEM (Technical or engineered material use); USES (Uses) (spring steel of high strength and high corrosion resistance)

L25 ANSWER 12 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1992:218993 HCAPLUS $\underline{\text{Full-text}}$

DOCUMENT NUMBER: 116:218993

ORIGINAL REFERENCE NO.: 116:37033a,37036a

TITLE: High-strength weldable steel for coldworking INVENTOR(S): Simon, Arpad; Bachorik, Ludovit; Zoricak,

Miroslav

PATENT ASSIGNEE(S): Czech.

SOURCE: Czech., 2 pp.

CODEN: CZXXA9

DOCUMENT TYPE: Patent LANGUAGE: Slovak

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
CS 270858	В1	19900814	CS 1987-4976	
				198707
				02
PRIORITY APPLN. INFO.:			CS 1987-4976	
				198707
				0.2

The steels manufactured by vacuum refining contain Mn 1.25-1.8 and B 0.0005-0.005% in addition to C 0.01-0.12, Si and Cr \leq 0.5 each, P \leq 0.035, S 0.001-0.03, Zr 0.05-0.2 (at Mn/Zr ratio of 9-36), Al \leq 0.1, Mo \leq 0.6, Cu \leq 0.3, Ni \leq 1, and Nb, Ti, V, Ce, and/or La \leq 0.45%. The steel can be rapidly cooled in hot rolling to promote transformation of austenite to acicular ferrite. The resulting steel strip shows good mech. properties, and can be cold worked immediately after hot rolling. Thus, the hot-rolled strip (containing C 0.006, Mn 1.5, Si 0.32, P 0.017, S 0.012, Al 0.054, Ti 0.006, Zr 0.098, Nb 0.037, Mo 0.234, B 0.002, Cr 0.021, Cu 0.077, and Ni 0.045%) showed yield strength of 732 MPa, tensile strength 840 MPa, elongation 18.3%, and notched impact toughness of 112 J/cm2.

IT 141092-02-6

RL: USES (Uses)

(ferritic strip, for cold forming after hot rolling)

RN 141092-02-6 HCAPLUS

CN Iron alloy, base, Fe 93-99,Mn 1.2-1.8,Ni 0-1,Mo 0-0.6,Cr 0-0.5,Si 0-0.5,Ce 0-0.4,La 0-0.4,Nb 0-0.4,Ti 0-0.4,V 0-0.4,Cu 0-0.3,Zr 0-0.2,Al 0-0.1,C 0-0.1 (9CI) (CA INDEX NAME)

Component Component Component
Percent Registry Number

```
Fe
      93 – 99
                       7439-89-6
       1.2 - 1.8
                       7439-96-5
       0
          - 1
                       7440-02-0
Νi
       0
             0.6
                       7439-98-7
Мо
                        7440 - 47 - 3
Cr
       0
              0.5
       0
              0.5
                       7440-21-3
Si
       0
                       7440-45-1
Ce
             0.4
       0
         - 0.4
                       7439-91-0
La
       0 - 0.4
                       7440-03-1
Nb
       0 - 0.4
                       7440-32-6
Τi
          - 0.4
V
       0
                       7440-62-2
           - 0.3
       0
Cu
                       7440-50-8
       0
              0.2
Zr
                       7440-67-7
Al
       Ω
             0.1
                       7429-90-5
С
       0
               0.1
                       7440 - 44 - 0
```

IC ICM C22C038-00

CC 55-3 (Ferrous Metals and Alloys)

IT 141092-02-6 141092-03-7, Aluminum 0.1, carbon 0.1, copper

0.1, iron 98, manganese 1.5, molybdenum 0.2, silicon 0.3, zirconium

0.1, uses

RL: USES (Uses)

(ferritic strip, for cold forming after hot rolling)

L25 ANSWER 13 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1972:409055 HCAPLUS Full-text

DOCUMENT NUMBER: 77:9055

ORIGINAL REFERENCE NO.: 77:1543a,1546a
TITLE: Nickel-based alloy

INVENTOR(S): Borisov, V. A.; Karlov, S. V.; Shpitsberg, A.

L.; Khatuntseva, L. M.; Skakov, Yu. A.; Zhuchin,

V. N.

SOURCE: U.S.S.R. From: Otkrytiya, Izobret., Prom.

Obraztsy, Tovarnye Znaki 1972, 49(4), 87-8.

CODEN: URXXAF

DOCUMENT TYPE: Patent LANGUAGE: Russian

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
SU 326238		19720119	SU	
				196910

03

AB A Ni-base alloy used for springy sensing elements contained: Cr 16-25, W 6-16, Co 4.5-10, Al 0.8-2.5, Ti 2.0-5.0, B 0.008-0.25, Fe 10-24, Nb 0.8-2.5, C \leq 0.05, S \leq 0.02, P \leq 0.02, Mn \leq 0.8, Si \leq 0.5, Ce \leq 0.1, Cu 0.5-2.5, V 0.1-1.0, La 0.01-1.0, Y 0.01-1, Zr 0.05-0.5%, and the rest Ni. The components, such as Fe, Nb, Cu, V, La, Y, and Zr, were added to improve the mech. and tech. properties of the alloy.

IT 12779-29-2

RL: USES (Uses)

(for springs)

RN 12779-29-2 HCAPLUS

CN Nickel alloy, base, Ni 13-60, Cr 16-25, Fe 10-24, W 6-16, Co 4.5-10, Ti 2-5, Al 0.8-2.5, Nb 0.8-2.5, Cu 0.5-2.5, V 0.1-1, La 0-1, Y 0-1, Mn 0-0.8, Si 0-0.5, Zr 0-0.5, B 0-0.2, Ce 0-0.1 (9CI) (CA INDEX NAME)

Compone	nt Com	pone	ent	Component			
	Pe:	ccer	nt	Registry	Number		
======	==+=====			+======			
Ni	13	_	60	744	10-02-0		
Cr	16	_	25	744	10-47-3		
Fe	10	_	24	743	39-89-6		
W	6	-	16	744	10-33-7		
Со	4.5	_	10	744	10 - 48 - 4		
Τi	2	_	5	744	10-32-6		
Al	0.8	_	2.5	742	29-90-5		
Nb	0.8	_	2.5	744	10-03-1		
Cu	0.5	_	2.5	744	10-50-8		
V	0.1	_	1	744	10-62-2		
La	0	_	1	743	39-91-0		
Y	0	_	1	744	10-65-5		
Mn	0	_	0.8	743	39-96-5		
Si	0	_	0.5	744	10-21-3		
Zr	0	_	0.5	744	10-67-7		
В	0	_	0.2	744	10-42-8		
Ce	0	_	0.1	744	10-45-1		
T.C	0.0						
IC C22C CC 56-2 (Nonferrous Metals and Alloys) IT 12779-29-2							
RL: USES (Uses) (for springs)							

=>