Calcolo Matriciale e Ricerca Operativa Programmazione Lineare Programmi a variabili continue

Andrea Grosso
Dipartimento di Informatica
Università di Torino
grosso@di.unito.it - 011-6706824

Sommario

Programmi lineari in 2D

Forma standard dei programmi lineari

Soluzioni di vertice

Sommario

Programmi lineari in 2D

Forma standard dei programmi lineari

Soluzioni di vertice

Metodo grafico

$$\max_{i=1}^{n} z = c_1x_1 + c_2x_2$$
soggetto a $a_{i1}x_1 + a_{i2}x_2 \le b_i$ $i = 1, 2, ..., m$.

$$\max z = c_1x_1 + c_2x_2$$
 soggetto a $a_{i1}x_1 + a_{i2}x_2 \leq = \geq b_i$ $i=1,2,\ldots,m.$

Se un programma lineare ha solo due variabili di decisione (x_1, x_2) si presta ad essere risolto con una costruzione grafica.

ightharpoonup Rappresentare in \mathbb{R}^2 la regione ammissibile

$$S_a = \{(x_1, x_2): a_{i1}x_1 + a_{i2}x_2 \le \ge b_i, i = 1, 2, \dots, m\}$$

Studiare le curve di livello della funzione obiettivo

$$z = c_1 x_1 + c_2 x_2$$
 (rette isocosto/isoprofitto).

max
$$z = 8x_1 + 3x_2$$

soggetto a $4x_1 + 5x_2 \le 10$
 $4x_1 + 10x_2 \le 15$
 $x_1 \le 1$
 $x_1, x_2 \ge 0$.

Sommario

Programmi lineari in 2D

Forma standard dei programmi lineari

Soluzioni di vertice

Forma generale di un PL

$$\max / \min \ z = c_1 x_1 + \dots + a_i x_n$$
 soggetto a
$$d_{IS} \leftarrow a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n \ge b_i \qquad i = 1, \dots, k,$$

$$a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n \le b_i \qquad i = k+1, \dots, l,$$
 eq
$$a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n = b_i \qquad i = l+1, \dots, m.$$

Forma generale di un PL

 S_a insieme convesso (poliedro/politopo).

Forma standard di un PL

$$\max_{j=1} z = \sum_{j=1}^n c_j x_j$$
 soggetto a $\sum_{j=1}^n a_{ij} x_j = b_i$ $i=1,\ldots,m$ Sist. Cyuddiani $x_1,\ldots,x_n \geq 0$.

- Programma di massimizzazione.
- Vincoli di uguaglianza.
- ▶ Disuguaglianze $x_j \ge 0$, per ogni j = 1, ..., n.

Forma standard di un PL

max
$$z=\sum_{j=1}^n c_jx_j$$
 soggetto a $\sum_{j=1}^n a_{ij}x_j=b_i$ $i=1,\ldots,m$ $x_1,\ldots,x_n\geq 0.$

- ► Programma di massimizzazione.
- Vincoli di uguaglianza.
- ▶ Distiguaglianze $x_j \ge 0$, per ogni j = 1, ..., n.

Ogni PL è equiva ente a un PL in forma standard.

√ - Da min a max.

$$\min \ z = \sum_{j=1}^n c_j x_j \iff \max \ \bar{z} = -\sum_{j=1}^n c_j x_j$$
 soggetto a $x \in S_a$ soggetto a $x \in S_a$

2 - Eliminazione di variabili non-positive.

$$x_j \leq 0 \iff x_j = -\bar{x}_j, \, \bar{x}_j \geq 0.$$

} Eliminazione di variabili libere.

$$x_j$$
 libera \iff $x_j = x_j^+ - x_j^-, x_j^+, x_j^- \ge 0.$

Eliminazione di disuguaglianze.

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \iff \sum_{j=1}^{n} a_{ij} x_j + y_i = b_i, \quad y_i \ge 0$$

Eliminazione di disuguaglianze.

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \iff \sum_{j=1}^{n} a_{ij} x_{j} + \underbrace{y_{i}}_{\text{var. di slack}} = b_{i}, \quad \underline{y_{i}} \geq 0.$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \iff \sum_{j=1}^{n} a_{ij} x_{j} - \underbrace{y_{i}}_{\text{var. di surplus}} = b_{i}, \quad \underline{y_{i}} \geq 0.$$

min
$$z = 4x_1 + 5x_2 - x_3$$

soggetto a $2x_1 + x_3 \ge 7$ $2x_1 + x_2 \le 16$
 $x_1 + x_2 \le 16$ $x_1 + 2x_2 = 8$
 $x_1 \ge 0, x_2 \le 0, x_3$ libera.

 $x_3 - x_3^+ - x_3^-$

max
$$z = -4x_1 - 5x_2 + x_3$$

soggetto a $2x_1 + x_3 \ge 7$
 $x_1 + x_2 \le 16$
 $x_1 + 2x_2 = 8$
 $x_1 \ge 0, x_2 \le 0, x_3$ libera.

$$\begin{array}{ll} \max \ z = -4x_1 - \delta x_2 + x_3 \\ \text{soggetto a} & 2x_1 + x_3 \geq 7 \\ & x_1 + x_2 \leq 16 \\ & x_1 + 2x_2 = 8 \\ & x_1 \geq 0, x_2 \leq 0, x_3 \text{ libera.} \\ & x_2 = -\bar{x}_2, \quad \bar{x}_2 \geq 0. \end{array}$$

$$\begin{array}{ll} \text{max } z = -4x_1 + 5\bar{x}_2 + x_3^+ - x_3^- \\ \text{soggetto a} & 2x_1 + x_3^+ - x_3^- - x_4 = 7 \\ & x_1 - \bar{x}_2 + x_5 = 16 \\ & x_1 - 2\bar{x}_2 = 8 \\ & x_1, \bar{x}_2, x_3^+, x_3^-, x_4, x_5 \geq 0. \end{array}$$

Esempio 2.

max
$$z=8x_1+3x_2$$

soggetto a $4x_1+5x_2\leq 10$
 $4x_1+10x_2\leq 15$
 $x_2\leq 1$
 $x_1,x_2\geq 0.$

Esempio 2.

$$\begin{array}{ll} \max \ z = 8x_1 + 3x_2 \\ \text{soggetto a} & 4x_1 + \ 5x_2 \le 10 \\ & 4x_1 + 10x_2 \le 15 \\ & x_2 \le 1 \\ & x_1, x_2 \ge 0. \\ \\ \max \ z = 8x_1 + 3x_2 \\ \text{soggetto a} & 4x_1 + \ 5x_2 + x_3 = 10 \\ & 4x_1 + 10x_2 + x_4 = 15 \\ & x_2 + x_5 = 1 \\ & x_1, \dots, x_5 \ge 0. \end{array}$$

$$\max z = -x_1 + 3x_2$$
 soggetto a
$$2x_1 + 3x_2 \ge 6$$

$$3x_1 - 4x_2 \le 7$$

$$x_1, x_2 \ge 0.$$

$$2 \times_{1} + 3 \times_{2} + 9_{1} = 6$$

 $3 \times_{1} - 4 \times_{2} - 9_{2} = 2$
 $\times_{1} \times_{2} , 9_{1} \times_{2} \ge 0$

Esempio 3.

Sol

$$\max \ z = -x_1 + 3x_2$$
 soggetto a $2x_1 + 3x_2 \ge 6$ $3x_1 - 4x_2 \le 7$ $x_1, x_2 \ge 0$.
$$\max \ z = -x_1 + 3x_2$$
 soggetto a $2x_1 + 3x_2 - x_3 = 6$ $3x_1 - 4x_2 + x_4 = 7$ $x_1, x_2, x_3, x_4 \ge 0$.

Ipotesi di lavoro e notazioni

Programma in forma standard

$$\max\{z = \boldsymbol{c}^T \boldsymbol{x} \colon \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \ \boldsymbol{x} \ge \boldsymbol{0}\}$$

$$\max z = \sum_{j=1}^n c_i x_i$$
soggetto a $\sum_{j=1}^n a_{ij} x_j = b_i$ $i = 1, \dots, m$

$$x_j \ge 0$$
 $j = 1, \dots, n$

Dimensioni e notazione

$$\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{c} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m$$

$$S_a = \{x \colon \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}$$

$$S_a = \{ \mathbf{X} \colon \mathbf{A}\mathbf{X} = \mathbf{b}, \ \mathbf{X} \geq \mathbf{0} \}$$

 $\mathbf{A} = (\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n).$

$$x = \text{variabili di controllo}$$

Ipotesi sul rango

 $\rho(\mathbf{A}) = m$, $m < n - \underline{no}$ equazioni ridondanti o contraddittorie.

Infinite soluzioni per $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Sommario

Programmi lineari in 2D

Forma standard dei programmi lineari

Soluzioni di vertice

Insiemi convessi

Dati $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$, $\alpha \in [0,1]$ il punto

$$\mathbf{x} = \mathbf{v} + \alpha(\mathbf{u} - \mathbf{v}) =$$
$$= \alpha \mathbf{u} + (1 - \alpha)\mathbf{v}$$

è una combinazione lineare convessa di u, v.

▶ Un insieme $S \subseteq \mathbb{R}^n$ è *convesso* se per ogni coppia $u, v \in S$ tutte le combinazioni lineari convesse di u, v sono elementi di S.

▶ Dato S convesso, un punto $x \in S$ è un vertice di S se non esistono $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}, \ \boldsymbol{u} \neq \boldsymbol{v}, \ \alpha \in (0,1)$ tali che

$$\mathbf{x} = \alpha \mathbf{u} + (1 - \alpha) \mathbf{v}.$$

Dato S convesso, un punto $x \in S$ è un vertice di S se non esistono $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}, \ \boldsymbol{u} \neq \boldsymbol{v}, \ \text{tali che}$

$$x=\frac{1}{2}u+\frac{1}{2}v.$$

Vertici della regione ammissibile

Teorema. Se il programma lineare

$$\max\{z = \boldsymbol{c}^T \boldsymbol{x} \colon \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \, \boldsymbol{x} \geq \boldsymbol{0}\}\$$

ammette soluzioni ottime, allora almeno una di esse è un vertice di $S_a = \{ \mathbf{x} \in \mathbb{R}^n \colon \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}.$

Vertici della regione ammissibile

Dimostrazione.

Sia x^* ottimo: $z^* = c^T x^* = \max\{c^T x : x \in S_a\}$. Caso banale: $s \in x = 0 \implies x^*$ vertice

Dimostrazione.

- Sia x^* ottimo: $f = c^T x^* = \max\{c^T x : x \in S_a\}$.
- ightharpoonup Caso banale: se $x = 0 \implies x^*$ vertice,

$$\mathbf{0} = \frac{1}{2} \mathbf{u} + \frac{1}{2} \mathbf{v} \\
\mathbf{u}, \mathbf{v} \in S_{a} \subseteq \mathbb{R}_{+}^{n}$$

$$\implies \forall i \begin{cases} \frac{1}{2} u_{i} + \frac{1}{2} v_{i} = 0 \\ u_{i}, v_{i} \geq 0 \end{cases} \implies u_{i} = v_{i} = 0$$

Dimostrazione.

- Sia \mathbf{x}^* ottimo: $\mathbf{z}^* = \mathbf{c}^T \mathbf{x}^* = \max\{\mathbf{c}^T \mathbf{x} : \mathbf{x} \in S_a\}$.
- Caso banale: se $x = 0 \implies x^*$ vertice.

$$\mathbf{0} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}$$

$$\mathbf{u}, \mathbf{v} \in S_a \subseteq \mathbb{R}^n_+$$

$$\Rightarrow \forall_i \begin{cases} \frac{1}{2}u_i + \frac{1}{2}v_i = 0 \\ u_i, v_i \ge 0 \end{cases}$$

$$\Rightarrow u_i = v_i = 0$$

- $\mathbf{x}^* \neq \mathbf{0}$, cioè $\mathbf{x}^* \neq (\underbrace{x_1^*, \dots, x_k^*}_{0}, \underbrace{x_{k+1}^*, \dots, x_n^*}_{-\mathbf{0}})^T$
- Se x^* è un yertice, il teorema vale.

- Dimostrazione.
 - I Sia \underline{x}^* ottimo: $z^* = c^T \underline{x}^* = \max\{c^T \underline{x} : \underline{x} \in S_a\}$.
 - **2** Caso banale: se $x = 0 \implies x^*$ vertice.

$$\begin{array}{c}
\mathbf{0} = \frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v} \\
\mathbf{u}, \mathbf{v} \in S_a \subseteq \mathbb{R}_+^n
\end{array}
\Longrightarrow
\begin{array}{c}
\forall i \\
\left\{\frac{1}{2}u_i + \frac{1}{2}v_i = 0 \\
u_i, v_i \ge 0
\end{array}
\Longrightarrow
\begin{array}{c}
u_i = v_i = 0
\end{array}$$

2 b
$$\underline{\mathbf{x}}^* \neq \underline{\mathbf{0}}$$
, cioè $\mathbf{x}^* = (\underbrace{x_1^*, \dots, x_k^*}_{>0}, \underbrace{x_{k+1}^*, \dots, x_n^*}_{=\underline{\mathbf{0}}})^T$.

- >0 =0 Se x* è un vertice, il teorema vale.
- **3** ► Se **x*** non è un vertice...

- $ightharpoonup x^*$ non vertice $\Longrightarrow \exists x' \in S_a$:
 - ottimo, e $\{i: x_i' > 0\} \subset \{i: x_i^* > 0\}.$
- ► Se proviagio l'implicazione, il peorema vale (perché)?
- Siano $\boldsymbol{u}, \boldsymbol{v} \in S_a$ distinti, con $\boldsymbol{x}^* = \frac{1}{2}\boldsymbol{u} + \frac{1}{2}\boldsymbol{v}$. 1. $\boldsymbol{u}_i = v_i = x_i^* = 0$ per $i = k+1, \ldots, n$

- $ightharpoonup x^*$ non vertice $\implies \exists x' \in S_a$:
 - x' ottime, e $\{i: x_i' > 0\}$ $\{i: x_i^* > 0\}$.
- ► Se proviamo l'implicazione, il teorema vale (perché)?
- Siarlo $u, v \in S_a$ distinti, con $x^* = \frac{1}{2}u + \frac{1}{2}v$.

1.
$$u_i = v_i = k_i^* = 0 \text{ per/} i = k+1,\ldots,n.$$

$$\frac{1}{2}u_i + \frac{1}{2}v_i = 0, u_i, v_i \ge 0 \implies u_i = v_i = 0.$$

2. $\boldsymbol{u}, \boldsymbol{v}$ sono soluzioni ottime!

$$x^*$$
 non vertice $\implies \exists x' \in S_a$:

almeno una componente nulla in piu

$$x'$$
 ottimo, e $\{i: x_i' > 0\} \subset \{i: x_i^* > 0\}.$

Posso scentere fino a x^n=0 quindi è vertice O fino a quando trovo un vertice

► Se proviamo l'implicazione, il teorema vale (perché)?

Siano
$$u, v \in S_a$$
 distinti, con $x^* = \frac{1}{2}u + \frac{1}{2}v$. (1. q while has $1. u_i = v_i = x_i^* = 0$ per $i = k+1, \ldots, n$.

$$\frac{1}{2}u_i + \frac{1}{2}v_i = 0, u_i, v_i \ge 0 \implies \underbrace{u_i = v_i = 0}_{\text{Come sopri}}.$$

2. u, v sono soluzioni ottime! Se per assurdo $c^T u < z^*$:

$$z^* = c^T x^* = \frac{1}{2} \underbrace{c^T u}_{\leq z^*} + \frac{1}{2} \underbrace{c^T v}_{\leq z^*} < z^* \implies \underbrace{z^* < z^*}_{contrad}.$$

- Sia $\mathbf{y} = (\mathbf{u} \mathbf{v}) = (y_1, \dots, y_n)^T \neq 0$.

 Ipotesi: almeno un $y_j < 0$ (se no, $\mathbf{y} = \mathbf{v} \mathbf{u}$).

- ► Sia $y = (u v) = (y_1, ..., y_n)^T \neq 0.$
- ▶ Ipotesi: almeno un $y_j < 0$ (se no, y = v u).
- ► Consideriamo le soluzioni

$$\mathbf{x}' = \mathbf{x}^* + \mathbf{y}\mathbf{y}.$$

Per quali $\varepsilon > 0$ risulta $x' \in S_a$?

$$\mathbf{x}' \in S_a \iff \mathbf{A}\mathbf{x}' = \mathbf{b}, \ \mathbf{x}' \geq 0.$$

Fether Sia
$$\mathbf{y} = (\mathbf{u} - \mathbf{v}) = (y_1, \dots, y_n)^T \neq 0$$
.

- Ipotesi: almeno un $y_j < 0$ (se no, $\mathbf{y} = \mathbf{v} \mathbf{u}$).
 - ► Consideriamo le soluzioni

$$\mathbf{x}' = \mathbf{x}^* + \varepsilon \mathbf{y}$$

 $\partial \rho \cap Per \text{ quali } \varepsilon > 0 \text{ risulta } \mathbf{x}' \in S_a$?

$$x' \in S_a \iff Ax' = b, x' \geq 0.$$

1.
$$Ax' = b$$
.

$$Ax' = A(x^* + \varepsilon y) =$$

$$Ax^* + \varepsilon A(u - v) =$$

$$Ax^* + \varepsilon Au - \varepsilon Av = b$$

$$Av = b$$

2. $x' \geq 0$

ro 263

▶ Per quali $\varepsilon > 0$ $\mathbf{x}' \geq \mathbf{0}$? Per ogpi componente $i = 1, \dots, n$:

Per quali $\varepsilon > 0$ $\mathbf{x}' \geq \mathbf{0}$? Per ogni componente $i = 1, \ldots, n$: 1. $i \in k + 1, \ldots, n$: $x_i^* = u_i = v_i = 0, y_i = (u_i - v_i) = 0$, quindi $x_i' = x_i^* + \varepsilon y_i = 0 \quad \forall \varepsilon > 0$.

- Per quali $\varepsilon > 0$ $\mathbf{x}' \geq \mathbf{0}$? Per ogni componente $i = 1, \dots, n$:
 - 1. $i \in k+1, \ldots, n$: $x_i^* = u_i = v_i = 0$, $y_i = (v_i v_i) = 0$, quindi

$$x_i' = x_i^* + \varepsilon y_i = 0 \quad \forall \varepsilon > 0$$

2a.
$$y_i \ge 0 \implies x_i' = x_i^* + \varepsilon y_i \ge x_i^* \ge 0$$
.
2b. $y_i < 0$: $x_i^* + \varepsilon y_i \ge 0$ solo se

$$\varepsilon \leq -\frac{x_i^*}{y_i}$$

Per quali $\varepsilon > 0$ $\mathbf{x}' \geq \mathbf{0}$? Per ogni componente $i = 1, \dots, n$:

(1.) $\mathbf{x} \in \mathbf{k} + 1, \dots, n$:

hull, $\mathbf{x} \in \mathbf{v} \in \mathbf{v}$ $\mathbf{x}_i^* = \mathbf{u}_i = \mathbf{v}_i = 0$, $y_i = (\mathbf{u}_i - \mathbf{v}_i) = 0$, quindi $\mathbf{x}_i' = \mathbf{x}_i^* + \varepsilon y_i = 0 \quad \forall \varepsilon > 0$.

$$(2) \underbrace{i \in 1, \dots, k}_{i:2a}:$$

$$(2a) \underbrace{y_i \ge 0}_{y_i < 0} \Longrightarrow \underbrace{x'_i = x_i^* + \varepsilon y_i \ge x_i^* \ge 0}_{y_i < 0}.$$

$$(2b) \underbrace{y_i \ge 0}_{y_i < 0} \Longrightarrow \underbrace{x'_i = x_i^* + \varepsilon y_i \ge 0}_{solo se}.$$

$$\varepsilon \leq -\frac{x_i^*}{y_i}$$

▶ In $\mathbf{x} = \mathbf{x}^* + \varepsilon \mathbf{y}$, fissiamo

$$\varepsilon = \min \left\{ -\frac{x_i^*}{y_i} : y_i < 0 \right\}.$$

Conclusione. Per la scelta di ε , almeno una delle

h° eevi

$$x_i^* + \varepsilon y_i \ge 0$$
 $y_i < 0$ (see go x_i^*

satura (=è soddisfatta per uguaglianza), quindi

- $(x'_k, \dots, x'_n = 0,$
- ightharpoonup almeno una x'_1, \ldots, x'_k è = 0.

$$\{i\colon x_i'>0\}\subset \{i\colon x_i^*>0\}.$$

ott

Inoltre:

$$c^{T}x' = c^{T}(x^{*} + \varepsilon y) =$$

$$= c^{T}x^{*} + \varepsilon c^{T}u - \varepsilon c^{T}v =$$

$$= z^{*} + \varepsilon z^{*} - \varepsilon z^{*} = z^{*}.$$

x' ottima.

Lemma. Sia $\mathbf{x} \in S_a = \{\mathbf{x} \colon \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}\}.$ \mathbf{x} è un vertice di $S_a \iff$ le colonne di \mathbf{A} in $\{\mathbf{A}_j \colon x_j > 0\}$ sono linearmente indipendenti.

Dimostrazione. Sia

$$\mathbf{x} = (x_1, \dots, x_k, \underbrace{x_k, \dots, x_n}_{>0})$$

 $m{x}$ vertice $\Longrightarrow m{A}_1, \dots, m{A}_k$ l.i. Per assurdo: $m{A}_1, \dots, m{A}_k$ non i.i. Allora esistono y_1, \dots, y_k : $\sum_{j=1}^k y_k m{A}_j = m{0}$. Poniamo $m{y} = (y_1, \dots, y_k, 0, \dots, 0) \in \mathbb{R}^n$. Nota: $m{A}_{m{y}} = \sum_{i=1}^n y_i m{A}_i = \sum_{i=1}^k y_j m{A}_i = m{0}$.

Dimostrazione. Sia

$$\mathbf{x} = (\underbrace{x_1, \dots, x_k}_{>0}, \underbrace{x_k, \dots, x_n}_{=0}).$$

 \mathbf{x} vertice $\Longrightarrow \mathbf{A}_1, \dots, \mathbf{A}_k$ l.i.

Per assurdo: $\mathbf{A}_1, \dots, \mathbf{A}_k$ nor l.i.

Allora esistono y_1, \dots, y_k : $\sum_{j=1}^k y_k \mathbf{A}_j = \mathbf{0}$.

Poniamo $\mathbf{y} = (y_1, \dots, y_k, 0, \dots, 0)^T \in \mathbb{R}^t$.

Nota: $\mathbf{A}\mathbf{y} = \sum_{j=1}^n y_j \mathbf{A}_j = \sum_{j=1}^k y_j \mathbf{A}_j = \mathbf{0}$.

Definiamo

$$u = x + \varepsilon y$$
, $v = x - \varepsilon y$ $(\varepsilon > 0)$

Dimostrazione. Sia

$$\mathbf{x} = (\underbrace{x_1, \dots, x_k}_{>0}, \underbrace{x_k, \dots, x_n}_{=0}).$$

$$m{eta}(x ext{ vertice}) \Longrightarrow m{A}_1, \dots, m{A}_k ext{ l.i.}$$

Rer assurdo: A_1, \ldots, A_k non l.i.

Allora esistono y_1, \ldots, y_k : $\sum_{j=1}^k y_j A_j = \mathbf{0}$. Poniamo $\mathbf{y} = (y_1, \ldots, y_k, 0, \ldots, 0)^T \in \mathbb{R}^n$.

Nota:
$$\mathbf{A}\mathbf{y} = \sum_{i=1}^{n} y_{i} \mathbf{A}_{i} = \sum_{i=1}^{k} y_{i} \mathbf{A}_{i} = \mathbf{0}.$$

Prtus Definiamo

$$\underbrace{\mathbf{0}}_{\mathbf{u}} \mathbf{u} = \mathbf{x} + \varepsilon \mathbf{y}, \quad \underbrace{\mathbf{v}}_{\mathbf{v}} = \mathbf{x} - \varepsilon \mathbf{y} \quad (\varepsilon > 0).$$

$$Au = \underbrace{Ax}_{=b} + \varepsilon \underbrace{Ay}_{=0} = b. \quad \text{[vincol) stand]}$$

Anche Av = b.

- Per $\varepsilon = \text{sufficientemente piccolo}, \ \boldsymbol{v}, \boldsymbol{v} \ge 0.$
- Scegliamo

$$\varepsilon \le \frac{x_i}{y_i} \quad y_i < 0 \qquad \text{per } \mathbf{v} \ge \mathbf{0}$$

$$\varepsilon \le \frac{x_i}{y_i} \quad y_i > 0 \qquad \text{per } \mathbf{v} \ge \mathbf{0}$$

X120

Per $\varepsilon > =$ sufficientemente piccolo, $\boldsymbol{u}, \boldsymbol{v} \geq 0$.

Scegliamo

$$arepsilon \leq -rac{x_i}{y_i} \quad y_i < 0 \qquad \qquad \mathsf{per} \ oldsymbol{u} \geq oldsymbol{0}$$
 $arepsilon \leq rac{x_i}{y_i} \quad y_i > 0 \qquad \qquad \mathsf{per} \ oldsymbol{v} \geq oldsymbol{0}$

▶ Allora $\boldsymbol{u}, \boldsymbol{v} \in S_a$.

- \triangleright **x** non vertice di $S_a \implies A_1, \ldots, A_k$ non l.i.
- Per assurdo: $\mathbf{A}_1, \dots, \mathbf{A}_k$ l.i.

$$x = \frac{1}{2}u + \frac{1}{2}v.$$

Provide
$$u_j = v_j = 0$$
 per $j = k + 1, ..., n$. (come $x \times X$)

Allora:

$$\mathbf{A}\mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{A}_j = \sum_{j=1}^{k} x_j \mathbf{A}_j = \mathbf{b}$$

$$\mathbf{A}\mathbf{u} = \sum_{i=1}^{n} u_{i}\mathbf{A}_{j} = \sum_{i=1}^{\kappa} u_{i}\mathbf{A}_{j} = \mathbf{b}$$

$$\mathbf{A}\mathbf{v} = \sum_{j=1}^{n} v_j \mathbf{A}_j = \sum_{j=1}^{k} v_j \mathbf{A}_j = \mathbf{b}$$

max
$$z = 8x_1 + 3x_2$$
 max $z = 8x_1 + 3x_2$ soggetto a $4x_1 + 5x_2 \le 10$ soggetto a $4x_1 + 5x_2 + x_3 = 10$ $4x_1 + 10x_2 \le 15$ $4x_1 + 10x_2 + x_4 = 15$ $x_2 \le 1$ $x_2 + x_5 = 1$ $x_1, x_2 \ge 0$.

A' $(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0)$

A' $(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0)$

A $(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0)$

A $(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0)$

A $(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0)$

max
$$z = 8x_1 + 3x_2$$
 max $z = 8x_1 + 3x_2$
soggetto a $4x_1 + 5x_2 \le 10$ soggetto a $4x_1 + 5x_2 + x_3 = 10$
 $4x_1 + 10x_2 \le 15$ $4x_1 + 10x_2 + x_4 = 15$
 $x_2 \le 1$ $x_2 + x_5 = 1$
 $x_1, x_2 \ge 0$. $x_1, \dots, x_5 \ge 0$.
A' $(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0)$

$$\begin{pmatrix} 4 & 5 & 1 & 0 \\ 4 & 10 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$B(x_1 = \frac{5}{4}, x_2 = 1, x_3 = 0, x_4 = 0, x_5 = 0)$$

$$\begin{pmatrix} 4 & 5 \\ 4 & 10 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 5 \\ 4 & 10 \\ 0 & 1 \end{pmatrix}$$

ય