Embedded Wireless Sensor Design for Long Term Structural Health Monitoring

Christopher Bessin², Patrick Blum¹, Matthew P. Iannucci¹, Jordan T. Kirby¹, Zachary McIntosh¹, Elizabeth L. Paul², Michael A. Regan¹, Justin W. Skenyon², Charles J. Wesley¹, and Samuel D. Wiley¹

¹Finite Element Modelling ²Instrumentation Development

May 1, 2014

 $I\ have\ read\ this\ paper\ in\ its\ entirety\ and\ approve\ it\ for\ submission.$

Christopher Bessin	Date
Patrick Blum	Date
Matthew P. Iannucci	Date
Jordan T. Kirby	Date
Zachary McIntosh	Date
Elizabeth L. Paul	Date
Michael A. Regan	Date
Justin W. Skenyon	Date
Charles J. Wesley	Date
Samuel D. Wiley	Date

Contents

1	\mathbf{Intr}	roducti	ion					
	1.1	Object	tives					
		1.1.1	Phase One					
		1.1.2	Phase Two					
	1.2	Layou	t					
2	Fin	ite Ele	ement Model (FEM)					
	2.1	Introd	luction					
		2.1.1	Background of Claiborne Pell Bridge					
		2.1.2	Introduction of FEM					
	2.2	Abaqu	as FEM Verification					
		2.2.1	L Beam Analysis					
	2.3	Claibo	orne Pell Bridge Model					
		2.3.1	Modeling Large Suspension Bridges					
		2.3.2	Model Process					
		2.3.3	Limitations of Abaqus FEM					
3	Inst	rumer	ntation Package					
	3.1	_						
	3.2		processor					
	J	3.2.1	Necessary Specifications					
		3.2.2	Platform Options					
		3.2.3	Final Platform					
	3.3		rs					
	3.3	3.3.1	Accelerometer					
		3.3.2	Strain Gauge					
		3.3.3	GPS Receiver					
		3.3.4	CORS					
		3.3.5	Analog to Digital Converter					
	3.4		onics Design					
	0.1	3.4.1	Introduction					
		3.4.2	Circuitry					
		3.4.3	Printed Circuit Board					
	3.5		are Design					
	3.6							

Δ	Sen	sor Pa	ckage Schematics	15		
7	Con	nclusio	n	14		
		6.2.2	Dynamic Loading	13		
		6.2.1	Model Improvements	13		
	6.2	FEM		13		
		6.1.4	Package Assembly	13		
		6.1.3	GPS Time Synchronization	13		
		6.1.2	Wireless Transmission	13		
		6.1.1	Integration of Strain Gauge	13		
	6.1		mentation	13		
6	Fut	ure De	evelopment	13		
		5.2.2	Comparison of Developed Abaqus Model with Developed Abaqus Mode	l 12		
		5.2.1	Comparison of Developed Abaqus Model with Literature	12		
	5.2	Phase	Two Data Analysis	12		
		5.1.1	Comparison of Preliminary Abaqus Model and Preliminary Data	12		
	5.1	Phase	One Data Analysis	12		
5	Dat	Data Analysis				
		4.2.5	Experimental Observed Efficiency	11		
		4.2.4	Battery Discharge Curve	11		
		4.2.3	Cell Phone Accelerometer	11		
		4.2.2	1.5g Tri-Axial Accelerometer Data	11		
	1.4	4.2.1	6g Tri-Axial Accelerometer Data	11		
	4.2		Two Data Collection	11		
	4.1	4.1.1	6g Tri-Axial Accelerometer Data	11		
4	Dat 4.1	a Colle	ection One Data Collection	11 11		
		3.6.3	Battery Selection	10		
		3.6.2	Energy Scavenging Potential	10		
		3.6.1	Power Budget	10		

List of Figures

A.1	Schematic of BeagleBone Black	16
A.2	Schematic of Copernicus II GPS Receiver	1
A.3	Schematic of four ADS1113 ADC units in parallel	18
A.4	Schematic of 5V and 3.3V voltage regulator circuit	19
A.5	Schematic of MMA7361 $\pm 1.5g/\pm 6g$ Tri-Axial Accelerometer	20

List of Tables

Introduction

- 1.1 Objectives
- 1.1.1 Phase One
- 1.1.2 Phase Two
- 1.2 Layout

Finite Element Model (FEM)

- 2.1 Introduction
- 2.1.1 Background of Claiborne Pell Bridge
- 2.1.2 Introduction of FEM
- 2.2 Abaqus FEM Verification
- 2.2.1 L Beam Analysis
- 2.3 Claiborne Pell Bridge Model
- 2.3.1 Modeling Large Suspension Bridges
- 2.3.2 Model Process
- 2.3.3 Limitations of Abaqus FEM

Instrumentation Package

\mathbf{o}	-	T			1	1	•
3.		I 7	1 f r	റ	111	Ct.	ion
v	. т		TUL	v	ıч	Cυ.	$\mathbf{L}\mathbf{U}\mathbf{I}\mathbf{J}$

3.2 Microprocessor

- 3.2.1 Necessary Specifications
- 3.2.2 Platform Options
- 3.2.3 Final Platform

3.3 Sensors

3.3.1 Accelerometer

Necessary Specifications

Sensor Options

Sensor Selection

3.3.2 Strain Gauge

Necessary Specifications

Sensor Options

Sensor Selection

3.3.3 GPS Receiver

Necessary Specifications

Sensor Options

Sensor Selection

3.3.4 CORS

3.3.5 Analog to Digital Converter

Necessary Specifications

Dietform Ontions

- 3.4.3 Printed Circuit Board
- 3.5 Software Design
- 3.6 Package Power
- 3.6.1 Power Budget
- 3.6.2 Energy Scavenging Potential

Wind Potential

Solar Potential

3.6.3 Battery Selection

Data Collection

- 4.1 Phase One Data Collection
- 4.1.1 6g Tri-Axial Accelerometer Data
- 4.2 Phase Two Data Collection
- 4.2.1 6g Tri-Axial Accelerometer Data
- 4.2.2 1.5g Tri-Axial Accelerometer Data
- 4.2.3 Cell Phone Accelerometer
- 4.2.4 Battery Discharge Curve
- 4.2.5 Experimental Observed Efficiency

Data Analysis

- 5.1 Phase One Data Analysis
- 5.1.1 Comparison of Preliminary Abaqus Model and Preliminary Data
- 5.2 Phase Two Data Analysis
- 5.2.1 Comparison of Developed Abaqus Model with Literature
- 5.2.2 Comparison of Developed Abaqus Model with Developed Abaqus Model

Future Development

0 1	T 1	, , •
6.1	Ingtriim	entation
$\mathbf{v} \cdot \mathbf{r}$		CHUAUIUH

- 6.1.1 Integration of Strain Gauge
- 6.1.2 Wireless Transmission
- 6.1.3 GPS Time Synchronization
- 6.1.4 Package Assembly

Fabrication of Circuit Board

Battery Integration

Package Enclosure

Power Management

Package Location

6.2 FEM

- 6.2.1 Model Improvements
- 6.2.2 Dynamic Loading

Conclusion

Appendix A Sensor Package Schematics

Figure A.1: Schematic of BeagleBone Black

Figure A.2: Schematic of Copernicus II GPS Receiver

Figure A.3: Schematic of four ADS1113 ADC units in parallel

Figure A.4: Schematic of 5V and 3.3V voltage regulator circuit

Figure A.5: Schematic of MMA7361 $\pm 1.5g/\pm 6g$ Tri-Axial Accelerometer