HOMEWORK 7

MATH 2001

QI WANG

ABSTRACT. This is the first homework assignment. The problems are from Hammack [Ham18, Ch.5]:

• Chapter 5, Exercises: 1, 2, 3, 4, 5, 16, 17, 18, 19, 20

CONTENTS

Chapter 5	2
Ch.5, Exercise 1	2
Ch.5, Exercise 2	2
Ch.5, Exercise 3	2
Ch.5, Exercise 4	3
Ch.5, Exercise 5	3
Ch.5, Exercise 16	3
Ch.5, Exercise 17	4
Ch.5, Exercise 18	4
Ch.5, Exercise 19	4
Ch.5, Exercise 20	5
References	6

Date: March 6, 2020.

2 QI

CHAPTER 5

Ch.5, Exercise 1. Suppose $n \in \mathbb{Z}$. If n^2 is even, then n is even.

Solution to Ch.5, Exercise 1.

Proposition Suppose $n \in \mathbb{Z}$. If n^2 is even, then n is even.

Proof. (Contrapositive) Suppose n is odd, then n = 2a + 1 for some $a \in \mathbb{Z}$ by definition. Thus $n^2 = 4a^2 + 4a + 1 = 2(a^2 + 2a) + 1$, so $n^2 = 2b + 1$ where $b = a^2 + 2a \in \mathbb{Z}$. Therefor n^2 is odd by definition.

Ch.5, Exercise 2. Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.

Solution to Ch.5, Exercise 2.

Proposition Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.

Proof. (Contrapositive) Suppose n is even, then $n = 2a, a \in \mathbb{Z}$ by definition. Thus $n^2 = 4a^2 = 2(2a^2)$, so $n^2 = 2b$ where $b = 2a^2 \in \mathbb{Z}$. Therefor n^2 is even by definition.

Ch.5, Exercise 3. Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2 - 2b)$ is odd, then a and *b* are odd.

Solution to Ch.5, Exercise 3.

Proposition Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2 - 2b)$ is odd, then a and b are odd.

Proof. (Contrapositive) Suppose a and b are even, then a = 2c and b = 2d for $c, d \in \mathbb{Z}$ by definition. Thus $a^2(b^2 - 2b) = 4c^2(4d^2 - 4d) =$ $2(2c^2(4d^2-4d))$, so $a^2(b^2-2b)=2q$ where $q=2c^2(4d^2-4d)\in\mathbb{Z}$. Therefor $a^2(b^2 - 2b)$ is even by definition.

Ch.5, Exercise 4. Suppose $a, b, c \in \mathbb{Z}$. If a does not divide bc, then a does not divide b.

Solution to Ch.5, Exercise 4.

Proposition Suppose $a, b, c \in \mathbb{Z}$. If a does not divide bc, then a does not divide b.

Proof. (Contrapositive) Suppose a divide b, then b = qa for some $q \in \mathbb{Z}$. Thus bc = qac = (qc)a, so bc = ra where r = qc. There for a divide bc by definition.

Ch.5, Exercise 5. Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$ then x < 0.

Solution to Ch.5, Exercise 5.

Proposition Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$ then x < 0.

Proof. (Contrapositive) Suppose $x \ge 0$. Then $x^2 \ge 0$ and $5x \ge 0$, so $x^2 + 5x > 0$.

Ch.5, Exercise 16. Suppose $x, y \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.

Solution to Ch.5, Exercise 16.

Proposition Suppose $x, y \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.

Proof. (Contrapositive) Suppose x and y have different parity (x is even, y is odd), then x = 2a, $a \in \mathbb{Z}$ and y = 2b + 1, $b \in \mathbb{Z}$ by definition. Thus x + y = 2a + 2b + 1 = 2(a + b) + 1, so x + y = 2c + 1

4 QI

where $c = a + b \in \mathbb{Z}$. Therefor x + y is odd. We get same proof when x is odd and y is even.

Ch.5, Exercise 17. If *n* is odd, then $8|(n^2-1)$.

Solution to Ch.5, Exercise 17.

Proposition If *n* is odd, then $8|(n^2-1)$

Proof. Suppose n is odd, then n=2a+1 for some $a\in\mathbb{Z}$ by definition. Thus $n^2-1=4a^2+4a=4(a^2+a)=4(a(a+1))$. Because a(a+1) is even, we have a(a+1)=2b for some $b\in\mathbb{Z}$. Thus $n^2-1=4(2b)=8b$. Therefor $8|(n^2-1)$ by definition.

Ch.5, Exercise 18. If $a, b \in \mathbb{Z}$, then $(a + b)^3 \equiv a^3 + b^3 \pmod{3}$.

Solution to Ch.5, Exercise 18.

Proposition If $a, b \in \mathbb{Z}$, then $(a + b)^3 \equiv a^3 + b^3 \pmod{3}$.

Proof. Suppose $a, b \in \mathbb{Z}$, then $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = (a^3 + b^3) + 3(a^2b + ab^2)$. Thus $(a + b)^3 (mod 3) = (a^3 + b^3) (mod 3) + 3(a^2b + ab^2) (mod 3) = (a^3 + b^3) (mod 3) + 0 = (a^3 + b^3) (mod 3)$ by definition. Therefor $(a + b)^3 \equiv a^3 + b^3 (mod 3)$.

Ch.5, Exercise 19. Let $a,b,c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b(modn)$ and $a \equiv c(modn)$, then $c \equiv b(modn)$.

Solution to Ch.5, Exercise 19.

Proposition Let $a,b,c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b(modn)$ and $a \equiv c(modn)$, then $c \equiv b(modn)$.

Proof. Suppose $a \equiv b(modn)$ and $a \equiv c(modn)$, then a(modn) = b(modn) and a(modn) = c(modn) by definition. Thus a(modn) = c(modn). Therefor $a \equiv c(modn)$ by definition.

Ch.5, Exercise 20. If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.

Solution to Ch.5, Exercise 20.

Proposition If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.

Proof. Suppose $a \equiv 1 \pmod{5}$, then $a \pmod{5} = 1 \pmod{5} = 1$ by definition. Thus a = 5b + 1 for some $b \in \mathbb{Z}$ by definition. Thus $a^2 = 25b^2 + 10b + 1 = 5(5b^2 + 2b) + 1$, so $a^2 = 5c + 1$ where $c = 5b^2 + 2b \in \mathbb{Z}$. Thus $a^2 \pmod{5} = 1 \pmod{5} = 1$. Therefor $a \equiv 1 \pmod{5}$ by definition.

REFERENCES

[Ham18] Richard Hammack, Book of Proof, 3 ed., Creative Commons, 2018.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

Email address: casa@math.colorado.edu