# **Number Theory**

### **Definitions**

Divisor If p|q we say p is a factor or divisor of q and q is

divisible by p. P is a multiple of q

Fundamental theorum of Any integer can be expressed as the product of prime

Arithmetic factors  $x = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$ 

Highest Common Factor The highest number that is a divisor of two number.

Given two integers  $x = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$ , and y =

 $p_1^{b_1}p_2^{b_2}\dots p_n^n$  we can calculate the highest common factor as  $hcm(x,y)=p_1^{min(a_1,b_1)}p_2^{min(a_2,b_2)}\dots p_\infty^{min(a_n,b_n)}$ 

Lowest Common Multiple The lowest number which is a multiple of two

numbers

Relating HCM and LCM  $lcm(x,y) = \frac{x \times y}{hcf(x,y)}$ 

Euclids Algorithm gcd(a, b) = gcd(b, a%b) #(10)

Floor  $floor: \mathcal{R} \to \mathbb{Z}$ 

 $floor(x) = \lfloor x \rfloor = max\{a \in \mathbb{Z} | \ a \leq x\}$ 

Ceiling  $ceiling: \mathcal{R} \to \mathbb{Z}$ 

 $ceiling(x) = \lceil x \rceil = max\{a \in \mathbb{Z} | \ a \leq x\}$ 

### Fundamental Theorum of Arithmetic

Any integer is either prime itself prime or can be expressed as a product of prime factors

$$x = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$

Where  $p_1 \dots p_n$  are successive primes and  $a_1 \dots a_n$  are powers of that prime. For any given p, the corresponding a can be zero. We can find the prime factors of any given number by continually dividing through. The following shows how to extract the prime factors of 18

$$18 = 2^1 \times 3^2$$

Figure 1 Prime Factorisation of 18



### HCF/LCM

### Highest Common Factor (HCF)

Given two integers x and y and their corresponding prime factorisations

$$x = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$

$$y = p_1^{b_1} p_2^{b_2} \dots p_n^n$$

We can calculate the highest common factor as

$$hcm(x,y) = p_1^{min(a_1,b_1)} p_2^{min(a_2,b_2)} \dots p_{\infty}^{min(a_n,b_n)}$$



$$18 = 2^1 \times 3^2$$
,  $15 = 2^0 \times 3^1 \times 3^5$ 

$$hcf(15,18) = 2^{\min(0,1)} \times 3^{\min(1,2)} \times 5^{\min(0,1)} = 3$$

### Lowest Common Multiple (LCM)

Given two integers x and y and their corresponding prime factorisations

$$x = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$

$$y = p_1^{b_1} p_2^{b_2} \dots p_n^n$$

We can calculate the lowest common multiple as

$$lcm(x,y) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \dots p_{\infty}^{max(a_n,b_n)}$$





$$18 = 2^1 \times 3^2$$

$$15 = 2^0 \times 3^1 \times 3^5$$

$$lcm(15,18) = 2^{\max(0,1)} \times 3^{\max(1,2)} \times 5^{\max(0,1)} = 2 \times 3^2 \times 5^1 = 90$$

### Relating HCF and LCM

Given two integers x and y and their corresponding prime factorisations

$$x = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$

$$y = p_1^{b_1} p_2^{b_2} \dots p_n^n$$

We can show there is a relationship between lcm and hcf.

$$lcm(x,y) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \dots p_{\infty}^{max(a_n,b_n)}$$

$$hcf(x,y) = p_1^{min(a_1,b_1)} p_2^{min(a_2,b_2)} \dots p_{\infty}^{min(a_n,b_n)}$$

$$hcf(x,y) \times lcm(x,y) = p_1^{min(a_1,b_1) \times max(a_1,b_1)} p_2^{min(a_2,b_2) \times max(a_1,b_1)} \dots p_{\infty}^{min(a_n,b_n) \times max(a_n,b_n)}$$

$$hcf(x,y) \times lcm(x,y) = p_1^{a_1 \times b_1} p_2^{a_2 \times b_2} \dots p_n^{a_n \times b_n} = x \times y$$

So we now know that

$$lcm(x, y) = \frac{x \times y}{hcf(x, y)}$$

This is very powerful as we have efficient algorithms for calculating the hcf, whereas we do not have efficient algorithms for carrying out prime factorisation.

### **Euclids Algorithm for Gcd**

#### **PROOF**

#### Show that gcd(a,b) is a divisor of a-b

By the definition of a divisor we know that

$$a = x \times \gcd(a, b) \tag{1}$$

$$b = y \times \gcd(a, b) \tag{2}$$

$$a - b = (x - y) \times \gcd(a, b) \tag{3}$$

#### Show that gcd(a,b) is a common divisor of b and a-b

In the previous step we showed that gcd(a,b) is a divisor of a-b and by definition gcd(a,b) is a divisor of b. We hence know that gcd(a,b) is a common divisor of a and a-b. We know that gcd(a,b) must be less than or equal to gcd(b,a-b) by the definition of gcd(b,a-b) as the **greatest** common divisor

$$\gcd(a,b) \le \gcd(b,a-b) \tag{4}$$

#### Show that gcd(b,a-b) is a divisor of a

By the definition of a divisor we know that

$$a - b = m \times \gcd(b, a - b) \tag{5}$$

$$b = n \times \gcd(b, a - b) \tag{6}$$

$$a = (m+n) \times \gcd(b, a-b) \tag{8}$$

#### Show that gcd(b,a-b) is a common divisor of a and b

By definition gcd(b,a-b) is a divisor of b and we have shown that gcd(b,a-b) is a divisor of a. So we know that gcd(b,a-b) is a common divisor of a and b. Because gcd(a,b) is the **greatest** common divisor of a and b we know that

$$\gcd(a,b) \ge \gcd(b,a-b) \tag{9}$$

Taken (4) and (9) together we have shown that gcd(a, b) = gcd(b, a - b)

#### Show that gcd(b,a-b)=gcd(b,a%b)

We have shown that gcd(a, b) = gcd(b, a - b) = gcd(a - b, b). We can apply the formula multiple times

$$\gcd(a,b) = \gcd(a-b,b) = \gcd(a-2b,b) = \gcd(a-qb,b) \tag{10}$$

The definition of the % operator is

$$a\%b = a - \left(\frac{a}{b}\right) \times b \tag{11}$$

Letting  $q = \frac{a}{b}$  and substituting into the right hand side of (10) we have

$$\gcd(a,b) = \gcd(a-b,b) = \gcd(a-2b,b) = \gcd(a\%b,b) = \gcd(b,a\%b)$$
 (10)

We have now proved Euclids algorithm that

$$\gcd(a,b) = \gcd(b,a\%b) \tag{10}$$

#### IMPLEMENTATION (C#)

```
/// <summary>
/// Implementation of Euclids algorithm
/// </summary>
/// <param name="a"></param>
/// <param name="b"></param>
/// <returns></returns>
public static int HighestCommonFactor(int a, int b)
  if (a < b)
    return HighestCommonFactor(b, a);
  else
    int remainder = a % b;
    if (remainder == 0)
      return b;
    }
    else
      return HighestCommonFactor(b, remainder);
    }
 }
}
```

### Floor/Ceiling Functions

### **Definitions**

Floor – The greatest integer less than x

$$floor: \mathcal{R} \rightarrow \mathbb{Z}$$

$$floor(x) = \lfloor x \rfloor = max\{a \in \mathbb{Z} | a \le x\}$$

Ceiling – The smallest integer less than x

$$ceiling: \mathcal{R} \longrightarrow \mathbb{Z}$$

$$ceiling(x) = \lceil x \rceil = max\{a \in \mathbb{Z} | \ a \leq x\}$$

#### FIGURE 2FLOOR/CEILING



#### LISTING 1 EXAMPLES

- **♦** |1.0| = [1.0] = 1
- **◆** [1.0000001] = 1
- **◆** [1.0000001] = 2
- ♦ |1.9999999| = 1
- **♦** [1.9999999] = 2

#### **Fractional Part**

The floor gives the integer part of a real and subtracting the floor from the real gives the fractional part

$$\{x\} = x - |x|$$

We can use this notation to calculate possible values of [x + y]

### **Property Summary**

1. 
$$[x] = [x] = x \leftrightarrow x \in \mathbb{Z}$$

2. 
$$x-1 < [x] \le [x] < x+1, x \in \mathbb{R}$$

$$3. [-x] = -[x], x \in \mathbb{R}$$

**4.** 
$$-\lfloor x \rfloor = \lceil -x \rceil, \qquad x \in \mathbb{R}$$

$$5. [x] - [x] = 0 \leftrightarrow x \in \mathbb{Z}$$

**6.** 
$$[x] - [x] = 1 \leftrightarrow x \notin \mathbb{Z}$$

7. 
$$[x] = n \leftrightarrow n \le x < n+1, x \notin \mathbb{R}, n \notin \mathbb{Z}$$

8. 
$$[x] = n \leftrightarrow n-1 < x \le x \notin \mathbb{R}, n \notin \mathbb{Z}$$

**9.** 
$$[x] = n \leftrightarrow x - 1 < n \le \emptyset \in \mathbb{R}, n \notin \mathbb{Z}$$

**10.** 
$$[x] = n \leftrightarrow x \le n < x + 1, x \notin \mathbb{R}, n \notin \mathbb{Z}$$

$$11. \qquad \left\lceil \frac{x}{2} \right\rceil + \left\lfloor \frac{x}{2} \right\rfloor = x$$

12. 
$$[x + n] = [x] + n$$
, if n is an integer and x a real

13. 
$$[x + n] = [x] + n$$
, if n is an integer and x a real

14. 
$$x < n \rightarrow \lfloor x \rfloor < n$$
, if n is an integer and x a real

15. 
$$n < x \rightarrow n < [x]$$
 if n is an integer and x a real

**16.** [f([x])] = [f(x)] if f is continuous, monotonically increasing with the property that if  $f(x) \in \mathbb{Z}$  then  $x \in \mathbb{Z}$ 

## Property Detail

Property 7  $\lfloor x \rfloor = n \longleftrightarrow n \le x < n+1, x \notin \mathbb{R}, n \notin \mathbb{Z}$ 



Property 8  $[x] = n \leftrightarrow n-1 < x \le, x \notin \mathbb{R}, n \notin \mathbb{Z}$ 



#### **PROPERTY 16**

If we define function

$$f: \mathbb{R}' \to \mathbb{R} \mid \mathbb{R}' \subseteq \mathbb{R}$$
 is the domain of f

where f is **continuous** and **monotonically increasing** and where f has the following special property

**Property P:** if  $f(x) \in \mathbb{Z}$  then  $x \in \mathbb{Z}$ 

Then for all  $x \in \mathbb{R}'$  for which the property P holds

$$[f([x])] = [f(x)]$$

#### **PROOF**

In the simple case where  $x = \lceil x \rceil$  we have nothing to do. We hence focus on the case where  $x \neq \lceil x \rceil$ .

$$x \neq [x] \rightarrow x \leq [x]$$
 From the definition of the ceiling function

$$x \le [x] \to f(x) \le f([x])$$
 Because f is monotonically increasing

$$f(x) \le f([x]) \to [f(x)] \le [f([x])]$$
 Because ceiling is non decreasing

Assume

$$|f(x)| < |f([x])| \rightarrow |f([x])| - |f(x)| \ge 1$$
 Because ceiling only deals in integers

This means the monotonically increasing function f must increase above [f(x)] in order to make it possible for  $[f([x])] - [f(x)] \ge$  This means that the following two things must be true

$$\forall y \mid x \leq y < [x]$$

$$f(y) = [f(x)]$$

The special property P means that y must be an integer as [f(x)] is by definition an integer. But there cannot be an integer between x and [x] so we have a contradiction and hence it is not possible for

$$[f(x)] < [f([x])]$$
 and hence  $[f(x)] = [f([x])]$