

TEST REPORT

APPLICANT : BDE Technology Co., Ltd

PRODUCT NAME : BDE Low Power, Long Range Sub-1G Module

MODEL NAME : BDE-RFM216

BRAND NAME : BDE

FCC ID : 2ABRUBDRFM216

STANDARD(S) : 47 CFR Part 15 Subpart C

RECEIPT DATE : 2019-11-27

TEST DATE : 2019-12-04 to 2019-12-05

ISSUE DATE : 2019-12-16

Edited by:

Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cr

DIRECTORY

1. Technical Information · · · · · · · 4
1.1. Applicant and Manufacturer Information 4
1.2. Equipment Under Test (EUT) Description 4
1.3. Host Information 5
1.4. The Channel Number and Frequency 6
1.5. Test Standards and Results ······ 8
1.6. Environmental Conditions 9
2. 47 CFR Part 15C Requirements ·······10
2.1. Conducted Emission ·······10
2.2. Radiated Emission ·······14
Annex A Test Uncertainty27
Annex B Testing Laboratory Information28

Change History					
Version Date Reason for change					
1.0	2019-12-16	First edition			

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	BDE Technology Co., Ltd				
Applicant Address:	Innovation Building C1-1105, 182 Science Ave, Science City,				
	Guangzhou, China				
Manufacturer:	BDE Technology Co., Ltd				
Manufacturer Address:	Innovation Building C1-1105, 182 Science Ave, Science City,				
	Guangzhou, China				

1.2. Equipment Under Test (EUT) Description

Product Name:	BDE Low Power, Long Range Sub-1G Module		
Serial No:	(N/A, marked #1 by test site)		
Equipment Type:	FHSS		
Modulation Type:	2-GFSK		
Data Rate:	5kbps, 50kbps 200kbps		
Operating Frequency Range:	5kbps, 50kbps: 902.2MHz - 927.8MHz		
Operating Frequency Kange.	200kbps: 902.4MHz - 927.6MHz		

Note 1: This is a Class II permissive change report for FCC ID: 2ABRUBDRFM216, we tested and recorded the test results for below test items.

- 1. Conducted Emission
- 2. Radiated Emission

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

1.3. Host Information

Product Name:	BDE Low Power, Long Range Sub-1G USB Dongle
Model Name:	BDE-USB216
Brand Name:	BDE
Hardware Version:	2.2
Software Version:	1.0
Antenna Type:	Helical Antenna
Antenna Gain:	4.37dBi

1.4. The Channel Number and Frequency

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	902.2 33 908.8 66 915.4		· · ·	99	922.0		
1	902.4	34	909.0	67	915.6	100	922.2
2	902.6	35	909.2	68	915.8	101	922.4
3	902.8	36	909.4	69	916.0	102	922.6
4	903.0	37	909.6	70	916.2	103	922.8
5	903.2	38	909.8	71	916.4	104	923
6	903.4	39	910.0	72	916.6	105	923.2
7	903.6	40	910.2	73	916.8	106	923.4
8	903.8	41	910.4	74	917.0	107	923.6
9	904.0	42	910.6	75	917.2	108	923.8
10	904.2	43	910.8	76	917.4	109	924.0
11	904.4	44	911.0	77	917.6	110	924.2
12	904.6	45	911.2	78	917.8	111	924.4
13	904.8	46	911.4	79	918.0	112	924.6
14	905.0	47	911.6	80	918.2	113	924.8
15	905.2	48	911.8	81	918.4	114	925.0
16	905.4	49	912.0	82	918.6	115	925.2
17	905.6	50	912.2	83	918.8	116	925.4
18	905.8	51	912.4	84	919.0	117	925.6
19	906.0	52	912.6	85	919.2	118	925.8
20	906.2	53	912.8	86	919.4	119	926.0
21	906.4	54	913.0	87	919.6	120	926.2
22	906.6	55	913.2	88	919.8	121	926.4
23	906.8	56	913.4	89	920.0	122	926.6
24	907.0	57	913.6	90	920.2	123	926.8
25	907.2	58	913.8	91	920.4	124	927.0
26	907.4	59	914.0	92	920.6	125	927.2
27	907.6	60	914.2	93	920.8	126	927.4
28	907.8	61	914.4	94	921	127	927.6
29	908.0	62	914.6	95	921.2	128	927.8
30	908.2	63	914.8	96	921.4		
31	908.4	64	915.0	97	921.6		
32	908.6	65	915.2	98	921.8		

Note: The black bold channels were selected for 5kbps and 50kbps test.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	902.4	16	908.8	32	915.2	48	921.6
1	902.8	17	909.2	33	915.6	49	922.0
2	903.2	18	909.6	34	916.0	50	922.4
3	903.6	19	910.0	35	916.4	51	922.8
4	904.0	20	910.4	36	916.8	52	923.2
5	904.4	21	910.8	37	917.2	53	923.6
6	904.8	22	911.2	38	917.6	54	924.0
7	905.2	23	911.6	39	918.0	55	924.4
8	905.6	24	912.0	40	918.4	56	924.8
9	906.0	25	912.4	41	918.8	57	925.2
10	906.4	26	912.8	42	919.2	58	925.6
11	906.8	27	913.2	43	919.6	59	926.0
12	907.2	28	913.6	44	920.0	60	926.4
13	907.6	29	914.0	45	920.4	61	926.8
14	908.0	30	914.4	46	920.8	62	927.2
15	908.4	31	914.8	47	921.2	63	927.6

Note: The black bold channels were selected for 200kbps test.

1.5. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	N/A	N/A
2	15.247(a)1 15.247(h)	Hopping Mechanism	N/A	N/A	N/A	N/A
3	15.247(a)	Number of Hopping Frequency	N/A	N/A	N/A	N/A
4	N/A	Duty Cycle	N/A	N/A	N/A	N/A
5	15.247(b)	Maximum Peak Conducted Output Power	N/A	N/A	N/A	N/A
6	15.247(b)	Maximum Average Conducted Output Power	N/A	N/A	N/A	N/A
7	15.247(a)	20dB Bandwidth	N/A	N/A	N/A	N/A
8	15.247(a)	Carrier Frequency Separation	N/A	N/A	N/A	N/A
9	15.247(a)	Time of Occupancy (Dwell time)	N/A	N/A	N/A	N/A
10	15.247(d)	Conducted Spurious Emission	N/A	N/A	N/A	N/A
11	15.207	Conducted Emission	Dec 04, 2019	Lin Jiayong	PASS	No deviation
12	15.209, 15.247(d)	Radiated Emission	Dec 05, 2019	Gao Jianrou	PASS	No deviation

Page 8 of 30

Note 1: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013.

Note 2: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

1.6. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15-35
Relative Humidity (%):	30-60
Atmospheric Pressure (kPa):	86-106

2.47 CFR Part 15C Requirements

2.1. Conducted Emission

2.1.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
5- 30	60	50	

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

2.1.2. Test Description

Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference

Tel: 86-755-36698555

Http://www.morlab.cn

Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

2.1.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

Test Setup:

Test Mode: <u>EUT+PC+ + Adapter+915M TX</u>

Test voltage: AC 120V/60Hz

The measurement results are obtained as below:

 $E [dB\mu V] = U_R + L_{Cable loss} [dB] + A_{Factor}$

U_R: Receiver Reading

A_{Factor}: Voltage division factor of LISN

(L Phase)

NO. Fre.		Emission Level (dBμV)		Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1500	53.62	37.38	66.00	56.00		PASS
2	0.1814	48.61	33.05	64.42	54.42		PASS
3	0.5054	33.65	24.55	56.00	46.00	Line	PASS
4	0.7806	33.09	24.63	56.00	46.00	Lille	PASS
5	1.2205	32.20	23.82	56.00	46.00		PASS
6	5.5426	38.93	30.96	60.00	50.00		PASS

Tel: 86-755-36698555

Http://www.morlab.cn

(N Phase)

NO.	Fre.	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1501	54.04	37.29	66.00	56.00		PASS
2	0.1588	53.65	36.29	65.52	55.52		PASS
3	0.1813	49.35	31.97	64.42	54.42		PASS
4	0.2672	42.68	29.00	61.21	51.21	Neutral	PASS
5	0.6139	35.46	23.53	56.00	46.00		PASS
6	1.2213	35.91	23.62	56.00	46.00		PASS
7	5.5961	37.42	31.50	60.00	50.00		PASS

Tel: 86-755-36698555

Http://www.morlab.cn

2.2. Radiated Emission

2.2.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705 - 30.0	30	30	
30 - 88	100	3	
88 - 216	150	3	
216 - 960	200	3	
Above 960	500	3	

Note 1: For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

Note 2: For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK). In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.2.2. Test Description

Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10:2013. For radiated emissions below or equal to 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane, for radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10:2013.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

- (a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be

higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

2.2.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note2: For the frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Tel: 86-755-36698555

Http://www.morlab.cn

5kbps

(30MHz to 10GHz, Antenna Horizontal, 5kbps)

(30MHz to 10GHz, Antenna Vertical, 5kbps)

(30MHz to 10GHz, Antenna Horizontal, 5kbps)

(30MHz to 10GHz, Antenna Vertical, 5kbps)

(30MHz to 10GHz, Antenna Horizontal, 5kbps)

(30MHz to 10GHz, Antenna Vertical, 5kbps)

50kbps

(30MHz to 10GHz, Antenna Horizontal, 5kbps)

(30MHz to 10GHz, Antenna Vertical, 5kbps)

(30MHz to 10GHz, Antenna Horizontal, 5kbps)

(30MHz to 10GHz, Antenna Vertical, 5kbps)

Plot for Channel = 128

(30MHz to 10GHz, Antenna Horizontal, 5kbps)

(30MHz to 10GHz, Antenna Vertical, 5kbps)

Tel: 86-755-36698555

200kbps

(30MHz to 10GHz, Antenna Horizontal, 200kbps)

(30MHz to 10GHz, Antenna Vertical, 200kbps)

Plot for Channel = 32

(30MHz to 10GHz, Antenna Horizontal, 200kbps)

(30MHz to 10GHz, Antenna Vertical, 200kbps)

Plot for Channel = 63

(30MHz to 10GHz, Antenna Horizontal, 200kbps)

(30MHz to 10GHz, Antenna Vertical, 200kbps)

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Tel: 86-755-36698555

Http://www.morlab.cn

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
	Morlab Laboratory		
Laboratory Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory		
	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Emission Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Cal. Due
Receiver	Receiver MY56400093		KEYSIGHT	2019.05.08	2020.05.09
LISN	812744	NSLK	Schwarzbeck	2019.05.08	2020.05.09
LIGIN	012/44	8127	Scriwarzbeck		
Pulse Limiter	9391	VTSD	Schwarzbeck	2019.05.08	2020.05.09
(20dB)	9391	9561-D			
Coaxial cable(BNC)	CB01	EMC01	Morlab	N/A	N/A
(30MHz-26GHz)	CBUT	EIVICUI	Williab	IN/A	IN/A
PC	OB68192 JS	T430i	Lenovo	NA	NA
Adaptor	NA	ADLX90N	Lenovo	NA	NA
Adapter	INA	CT3A			

4.2 List of Software Used

Description	Manufacturer	Software Version
MORLAB EMCR V1.2	MORLAB	V1.0

4.3 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2019.07.26	2020.07.25
Test Antenna - Bi-Log	9163-520	VULB 9163	Schwarzbeck	2019.05.08	2020.05.09
Test Antenna - Loop	1520-022	FMZB1520	Schwarzbeck	2019.02.15	2020.02.14
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2019.07.26	2020.07.25
Test Antenna – Horn	BBHA9170 #774	BBHA9170	Schwarzbeck	2019.07.26	2020.07.25
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2019.05.08	2020.05.09
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2019.05.08	2020.05.09
Notch Filter	N/A	WRCG-2400- 2483.5-60SS	Wainwright	2018.12.01	2019.11.30
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

END OF REPORT	