OOI - Zadaća 4

Student: Daris Mujkić 19413

Zadatak: Vrtlar želi urediti svoj vrt koristeći dvije vrste biljaka: <u>ukrasne grmove</u> i <u>cvjetne sadnice</u>. Cilj mu je osigurati zdravu i estetski privlačnu zelenu površinu, pri čemu vrt treba zadovoljiti određene uvjete - <u>bar 519.5 m² pokrivenosti tla, tačno 519.5 jedinica estetske vrijednosti</u> i <u>najviše 1985 jedinica ukupne vode</u> potrebne za zalijevanje. Svaki ukrasni grm <u>košta 3.5 KM</u> i doprinosi sa <u>5.8 m² pokrivenosti tla, 4.5 jedinica estetske vrijednosti</u> i zahtijeva <u>2.5 jedinica vode</u> za zalijevanje. Svaka cvjetna sadnica <u>košta 5.1 KM</u>, doprinosi sa <u>4.5 m² pokrivenosti tla, 5.5 jedinica estetske vrijednosti</u> i zahtijeva <u>1.5 jedinica vode</u>.

- a. Uz pomoć simpleks metoda pronađite optimalan broj ukrasnih grmova i cvjetnih sadnica treba nabaviti vrtlar kako bi uredio svoj vrt uz minimalne troškove. Broj ukrasnih grmova i cvjetnih sadnica može biti bilo koji realan pozitivan broj. Sve podatke koji se ne mogu tačno izraziti kao cijeli brojevi ili decimalni brojevi sa konačno mnogo i relativno malo decimala vodite u simpleks tabelama kao razlomke. Obavezno prodiskutirajte ne samo koliki je optimalan broj obje vrste biljaka, nego i koliko iznose "rezerve" i "viškovi", odnosno koliko je pri optimalnom broju biljaka ostane vode u rezervi, odnosno koliki je premašaj pokrivenosti tla u odnosu na minimalno zahtjevanu. Koristite Dantzigovo pravilo pivotiranja.
- b. Rješenje dobijeno pod a. provjerite uz pomoć odgovarajućih funkcija za rješavanje problema linearnog programiranja u Juliji (potrebno je navesti šta su bili ulazni podaci i šta je dobijeno kao izlaz).

Izrada:

arg min
$$Z(x) = 3.5x_1 + 5.1x_2$$

p.o.
 $5.8x_1 + 4.5x_2 >= 519.5$ (dopunska i vještačka)
 $4.5x_1 + 5.5x_2 = 519.5$ (vještačka)
 $2.5x_1 + 1.5x_2 <= 1985$ (dopunska)
 $x_1, x_2 >= 0$
 $5.8x_1 + 4.5x_2 - x_3 + x_5 = 519.5$
 $4.5x_1 + 5.5x_2 + x_6 = 519.5$
 $2.5x_1 + 1.5x_2 + x_4 = 1985$
 $x_1, x_2, x_3, x_4, x_5, x_6 >= 0$

$$x_5 = 519.5 - 5.8x_1 - 4.5x_2 + x_3$$

 $x_6 = 519.5 - 4.5x_1 - 5.5x_2$
 $x_6 = 3.5x_1 + 5.1x_2 + M(x_5 + x_6)$

arg min
$$Z(x) = 3.5x_1 + 5.1x_2 + M(519.5 - 5.8x_1 - 4.5x_2 + \frac{x_3}{4.5} + 519.5 - 4.5x_1 - 5.5x_2)$$

arg min $Z(x) = 3.5x_1 + 5.1x_2 + M(1039 - 10.3x_1 - 10x_2 + \frac{x_3}{4.5})$
arg min $Z(x) = (3.5 - 10.3M)x_1 + (5.1 - 10M)x_2 + M\frac{x_3}{4.5} + 1039M$

arg max -Z(x) =
$$(10.3M - 3.5)x_1 + (10M - 5.1)x_2 - Mx_3 - 1039M$$

p.o

 $5.8x_1 + 4.5x_2 - x_3 + x_5 = 519.5$
 $4.5x_1 + 5.5x_2 + x_6 = 519.5$
 $2.5x_1 + 1.5x_2 + x_4 = 1985$
 $x_1, x_2, x_3, x_4, x_5, x_6 >= 0$

početna baza B = (x5, x6, x4)

Simpleks tabela

Baza	bi	X1	X2	X3	X4	X5	X6
X5	519.5	5.8	4.5	-1	0	1	0
X6	519.5	4.5	5.5	0	0	0	1
X4	1985	2.5	1.5	0	1	0	0
М	1039	10.3	10	-1	0	0	0
Z	0	-3.5	-5.1	0	0	0	0

Baza	bi	X1	X2	X3	X4	X5	X6	Т
X5	1039/2	29/5	9/2	-1	0	1	0	89.57
X6	1039/2	9/2	11/2	0	0	0	1	115.4
X4	1985	5/2	3/2	0	1	0	0	794
M	1039	103/10	10	-1	0	0	0	
Z	0	-7/2	-51/10	0	0	0	0	

Pivot: 29/5

Tmax = $min\{t1,t2,t3\}$ = 89.57 Iz baze izlazi x5, a ulazi x1

Baza	bi	X1	X2	Х3	X4	X6	Т
X1	5195/58	1	45/58	-5/29	0	0	115.4
X6	13507/116	0	233/116	45/48	0	1	57.97
X4	204285/116	0	-51/116	25/58	1	0	
М	13507/116	0	233/116	45/58	0	0	
Z	36365/116	0	-1363/580	-35/58	0	0	

Pivot: 233/116 Tmax = 57.97

Iz baze izlazi x6, a ulazi x2 (ispada i druga vjestacka, brisemo red M)

Baza	bi	X1	X2	X3	X4	Т
X1	10390/233	1	0	-110/233	0	
X2	13507/233	0	1	90/233	0	150.07
X4	832539/466	0	0	140/233	1	2973.35
Z	1052507/2330	0	0	74/233	0	

Pivot: 90/233 Tmax = 150.07

Iz baze izlazi x2, a ulazi x3

Baza	bi	X1	X2	X3	X4
X1	1039/9	1	11/9	0	0
Х3	13507/90	0	233/90	1	0
X4	30535/18	0	-14/9	0	1
Z	7273/18	0	-37/45	0	0

Algoritam terminira!

Z = 7273/18 = 404.0555

x1 = 1039/9 = 115.4444

 $x^2 = 0$

x3 = 13507/90 = 150.0777

x4 = 30535/18 = 1696.3888

x5 = 0

x6 = 0

X1 predstavlja optimalan broj ukrasnih grmova.

X2 predstavlja optimalan broj cvjetnih sadnica.

X3 je višak u odnosu na zahtjeve ograničenja pokrivenosti (cca. 150 m² više nego što je dato kao granica).

X4 nam predstavlja neiskorištene jedinice vode (naše rezerve).

```
model=Model(HiGHS.Optimizer)
188
      @variable(model,x1>=0)
189
     @variable(model,x2>=0)
     @objective(model,Min,3.5x1+5.1x2)
191
      @constraint(model,c1,5.8x1+4.5x2>=519.5)
192
     @constraint(model,c2,4.5x1+5.5x2==519.5)
193
      @constraint(model,c3,2.5x1+1.5x2<=1985)</pre>
194
     print(model)
195
196
197
     optimize!(model)
     termination status(model)
198
     primal status(model)
199
     println("Rjesenje je ",objective value(model))
200
     println("x1= ",value(x1))
201
     202
     println("x3= ",-(519.5-value(c1)))
203
     println("x4=",1985-value(c3)) ✓
204
205
                  DEBUG CONSOLE
PROBLEMS
         OUTPUT
                                TERMINAL
                                          PORTS
                                                 COMN
                  : Optimal
Model
       status
Objective value : 4.0405555556e+02
HiGHS run time
                            0.08
Rjesenje je 404.05555555555554
x1= 115.44444444444444
x2 = 0.0
x3= 150.0777777777778
x4=1696.3888888888889
```