Quantum Codes, Transversal Gates, and Representation Theory

Ian Teixeira
Ph.D. Candidate
University of Maryland, College Park
March 6, 2025

Overview

- I. Background
- II. A Difficult Problem
- III. Getting It All For Free
- IV. The View From The Mountaintop

Part I

Background

Error Correction: Especially Important for Quantum!

Qubits/QuDits are inherently noisy Quantum advantage is lost Need quantum error correction

A Quantum Code is a Protected Subspace

• Qubit:

$$\alpha |0\rangle + \beta |1\rangle \in \mathbb{C}^2$$

• Quantum code: Pick 2-dimensional subspace of *n*-qubits

$$\alpha \left| \overline{0} \right\rangle + \beta \left| \overline{1} \right\rangle \in \underbrace{\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2}_{n}$$

A code has distance d if for each error E with weight < d

$$\langle \overline{0} | E | \overline{1} \rangle = 0 = \langle \overline{1} | E | \overline{0} \rangle$$
$$\langle \overline{0} | E | \overline{0} \rangle = \langle \overline{1} | E | \overline{1} \rangle$$

Stabilizer Codes

- $\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Pauli Group: $P = \langle \{1, X, Y, Z\}^{\otimes n} \rangle$
- Stabilizer Codes:
 - Let $S \subset P$ be abelian with $-1 \notin S$
 - Code is simultaneous +1 eigenspace of S
 - $|S| = 2^{n-k} \implies K = 2^k$
 - Specially denoted [[n, k, d]] (instead of ((n, K, d)))
- Almost all known quantum codes are stabilizer
 - Simple structure and many fault-tolerant techniques exist

Part II

A Difficult Problem

E. Kubischta and I. Teixeira*, Family of Quantum Codes with Exotic Transversal Gates, *Physical Review Letters*, December 2023

* Equal Contribution

Transversal Gates

October 2021

- Single qubit gate is a matrix in U(2)
- Called transversal if h^{⊗n} preserves the code space and enacts the logical gate g
- Transversal gates are naturally fault tolerant they don't spread errors
- Eastin-Knill*: transversal gates cannot be universal, transversal gate group G at most a finite subgroup of SU(2)

^{*} B. Eastin and E. Knill, Restrictions on Transversal Encoded Quantum Gate Sets, Physical Review Letters, (2009)

Finite Subgroups of SU(2)

October 2021

Clifford Gates:
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ $F = HS^{\dagger}$

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

$$F = HS^T$$

$G \subset SU(2)$	Order	Generators
C _m	m	$\langle Ph(2\pi/m) \rangle$
Dic _m	4m	$\langle X, Ph(\pi/m) \rangle$
$2\mathrm{T}$	24	(X, Z, F)
2O = Clifford	48	(X, Z, F, H, S)
2I	120	(Χ, Ζ, F, Φ)

Why is 2I important?

May 2022

- Super golden gate sets*
 - Single-qubit (SU(2)) universal gate sets $\mathcal{U} = G + \tau$ with optimal navigation properties, minimizing expensive τ gates

- $\mathcal{U}_1 = 20 + T$
 - » Most standard universal gate set (Clifford)
 - Many stabilizer codes implement 2O transversally
- $\mathcal{U}_2 = 2I + \tau_{60}$
 - » Icosahedral gate set
 - » Most efficient (single qubit) universal gate set
 - » Need codes that implement 2I transversally

^{*} O. Parzanchevski and P. Sarnak, Super-golden-gates for PU(2), Advances in Mathematics, (2018)

Transversal Gates and Representation Theory Summer 2022

Goal: Find code with transversal gate group 2I. How?

Novel Idea: Code must transform in faithful 2-dim irrep of 2I.

- Representation theory primer:
 - A representation of G is a homomorphism: $\lambda : G \rightarrow U(V)$
 - Called irrep if no subspace is invariant under G action
 - λ-Isotypic projector: $P_{\lambda} = \frac{\dim \lambda}{|G|} \sum_{g \in G} \text{Tr}(\lambda^*(g))g^{\otimes n}$

Character Table 2I

Summer 2022

Size	1	1	30	20	20	12	12	12	12
$oldsymbol{\pi}_1$	1	1	1	1	1	1	1	1	1
$oldsymbol{\pi}_2$	2	-2	0	1	-1	φ	$arphi^{ ext{-}1}$	- $\varphi^{ ext{-}1}$	$-\varphi$
$\overline{m{\pi}_2}$	2	-2	0	1	-1	- $arphi^{-1}$	$-\varphi$	φ	$arphi^{ ext{-}1}$
π_3						φ	- $\varphi^{\text{-}1}$	- $arphi^{-1}$	φ
$\overline{m{\pi}_3}$	3	3	-1	0	0	$-arphi^{-1}$	φ	φ	- $arphi^{-1}$
$\boldsymbol{\pi}_4$	4	-4	0	-1	1	1	-1	1	-1
$oldsymbol{\pi}_{4'}$	4	4	0	1	1	-1	-1	-1	-1
$oldsymbol{\pi}_5$	5	5	1	-1	-1	0	0	0	0
π_6	6	-6	0	0	0	-1	1	-1	1
				/					

 $\varphi = (1 + \sqrt{5})/2$ is the golden ratio

Code Finding Procedure

Summer 2022

- Looking for codespace $C = \{ |\overline{0}\rangle, |\overline{1}\rangle \}$ transforming in π_2
 - Write $|\overline{0}\rangle = \sum_{i=1}^{\mu} a_i |b_i\rangle$
 - $\mu = \operatorname{rank}(P_{\pi_2})$
 - » $|b_i\rangle$ is eigenvector of P_{π_2}
 - » a_i ∈ \mathbb{C}
 - $C = \mathbb{C}[G] \cdot |\overline{O}\rangle$
- Arbitrary choice of $a_i \implies C$ has distance $d = 1 \implies useless$
- Knill-Laflamme conditions:
 - $\langle \overline{0} | E | \overline{0} \rangle = \langle \overline{1} | E | \overline{1} \rangle \text{ and } \langle \overline{0} | E | \overline{1} \rangle = 0$
 - Number of equations is $N_d = 2 \sum_{i=1}^{d-1} 3^i \binom{n}{i}$
- Goal: Find solution of N_d equations in μ variables

Exotic Gates and Non-stabilizer Codes

November 2022

Lemma. Any code that implements 2I transversally must be non-stabilizer.

Proof sketch.

- Stabilizer codes:
 - Every g ∈ G defined over field $\mathbb{Q}(e^{i\pi/2^r})$ for some r
- 2I contains gate $\Phi = \frac{1}{2} \begin{pmatrix} \varphi + i\varphi^{-1} & 1 \\ -1 & \varphi i\varphi^{-1} \end{pmatrix}$ where $\varphi = \frac{1 + \sqrt{5}}{2}$
- $\sqrt{5}$ is not in this field
 - → 2I not in Clifford hierarchy (we dubbed this exotic)
 - mo stabilizer code can implement 2I transversally

But The Problem Is Hard

Winter 2023

• Not feasible (even for d = 3)

n	3	5	7	9	11
$N_{d=3}$	72	210	420	702	1056 266
μ	4	10	28	84	266

- Simplifying assumptions
 - » $|\overline{0}\rangle$ is a +1 eigenvector of $Z^{\otimes n}$

$$|\bar{1}\rangle = X^{\otimes n} |\bar{0}\rangle$$

- » a_i ∈ \mathbb{R}
- Even weight errors automatically satisfy Knill-Laflamme conditions*

^{*} E. Kubischta, I. Teixeira, and J. M. Silvester, Quantum weight enumerators for real codes with X and Z exactly transversal, (2023)

Finding a Needle in a Much Smaller Haystack Spring 2023

• With these simplifying assumptions:

n	3	5	7	9	11
$N_{d=3}$	18	30	42	54	66
N _{d=3} μ	4	10	28	84	266

- We finally find a code!
 - ((11, 2, 3)) code with transversal gate group 2I
 - Novel non-stabilizer code
 - Found using UMD Zaratan
 - Numerical precision coefficients

Can We Do Better?

Spring 2023

- For π_2 irrep: no \implies try $\overline{\pi_2}$ instead
- We find a smaller code!
 - ((7, 2, 3)) with transversal gate group 2I
 - Exact coefficients

$$\begin{split} &\left| \overline{0} \right\rangle = \frac{\sqrt{15}}{8} \left| D_0^7 \right\rangle + \frac{\sqrt{7}}{8} \left| D_2^7 \right\rangle + \frac{\sqrt{21}}{8} \left| D_4^7 \right\rangle - \frac{\sqrt{21}}{8} \left| D_6^7 \right\rangle \\ &\left| \overline{1} \right\rangle = -\frac{\sqrt{21}}{8} \left| D_1^7 \right\rangle + \frac{\sqrt{21}}{8} \left| D_3^7 \right\rangle + \frac{\sqrt{7}}{8} \left| D_5^7 \right\rangle + \frac{\sqrt{15}}{8} \left| D_7^7 \right\rangle \end{split}$$

- $|D_{w}^{n}\rangle$ is a Dicke state

$$|D_w^n\rangle = \frac{1}{\sqrt{\binom{n}{w}}} \sum_{wt(s)=w} |s\rangle$$

» sum is over all length n bit strings of Hamming weight w

A Hint of Something Deeper

June 2023

First part of implementation of the Parzanchevski/Sarnak super efficient universal gate set is accomplished

- Finding higher distance codes intractable but we can go in another direction
- For $\overline{\pi_2}$ we notice that $P_{\overline{\pi_2}}EP_{\overline{\pi_2}}=0$ for all weight-1 errors E
- weight 1 errors automatically satisfy Knill-Laflamme condition
- Is there a more general theory here?

Part III

Free Codes as in Free Beer and Free Speech

E. Kubischta and I. Teixeira*, **Quantum Codes from Twisted Unitary t-Groups**. *Physical Review Letters*, July 2024

^{*} Equal Contribution

Unitary t-Groups and Representation Theory

The following are equivalent:

(1) $G \subset U(q)$ is a unitary t-group

(2)
$$\frac{1}{|G|} \sum_{g \in G} \left(\mathbf{F}^{\downarrow} \otimes \mathbf{F}^{\downarrow}^{*} \right)^{\otimes t} (g) = \int_{\mathrm{U}(q)} \left(\mathbf{F} \otimes \mathbf{F}^{*} \right)^{\otimes t} (g) \, dg$$

(3)
$$\frac{1}{|G|} \sum_{g \in G} (1 \oplus Ad^{\downarrow})^{\otimes t}(g) = \int_{U(q)} (1 \oplus Ad)^{\otimes t}(g) dg$$

(4)
$$\frac{1}{|G|} \sum_{g \in G} R^{\downarrow}(g) = \int_{U(g)} R(g) dg$$
, $\forall R \in \mathscr{E}_t$

(5)
$$\frac{1}{|G|} \sum_{g \in G} R^{\downarrow}(g) = 0$$
, $\forall R \in \mathcal{E}_t, R \neq 1$

(6)
$$\langle 1, R^{\downarrow} \rangle = 0$$
, $\forall R \in \mathcal{E}_t, R \neq 1$

λ -Twisted Unitary *t*-Groups

The following are equivalent:

(1) $G \subset U(q)$ is a λ -twisted unitary t-group

(2)
$$\frac{1}{|G|} \sum_{g \in G} |\lambda(g)|^2 \left(\mathsf{F}^{\downarrow} \otimes \mathsf{F}^{\downarrow *} \right)^{\otimes t} (g) = \int_{U(q)} (\mathsf{F} \otimes \mathsf{F}^*)^{\otimes t} (g) \, dg$$

(3)
$$\frac{1}{|\mathsf{G}|} \sum_{g \in \mathsf{G}} |\lambda(g)|^2 (1 \oplus \mathsf{Ad}^{\downarrow})^{\otimes t}(g) = \int_{\mathsf{U}(q)} (1 \oplus \mathsf{Ad})^{\otimes t}(g) \, dg$$

(4)
$$\frac{1}{|G|} \sum_{g \in G} |\lambda(g)|^2 \mathbf{R}^{\downarrow}(g) = \int_{U(q)} \mathbf{R}(g) dg$$
, $\forall \mathbf{R} \in \mathscr{E}_t$

(5)
$$\frac{1}{|G|} \sum_{g \in G} |\lambda(g)|^2 R^{\downarrow}(g) = 0$$
, $\forall R \in \mathcal{E}_t, R \neq 1$

(6)
$$\langle \lambda^* \lambda, R^{\downarrow} \rangle = 0$$
, $\forall \mathbf{R} \in \mathcal{E}_t, \mathbf{R} \neq \mathbf{1}$

Key Lemma

Lemma

Suppose a code transforms in an irrep λ of G and an error E transforms in an irrep R of U(q). If $\langle 1, \lambda^* R^{\downarrow} \lambda \rangle = 0$ then the KL conditions are automatically satisfied for the error E.

Main Result

Theorem

If G is a λ -twisted unitary t-group then every subspace of $(\mathbf{F}^{\downarrow})^{\otimes n}$ that transforms in λ is a $|\lambda|$ -dimensional quantum code with distance $d \geq t + 1$ and transversal gate group $\lambda(G)$.

Corollary

 $2I \subset SU(2)$ is a $\overline{\pi}_2$ -twisted unitary 2-group thus every $\overline{\pi}_2$ subspace of ${\pi_2}^{\otimes n}$ is a 2-dimensional quantum code with $d \geq 3$ and transversal gate group 2I.

Part IV

The View From the Mountaintop

E. Kubischta and I. Teixeira. * Quantum Codes from Irreducible

Products of Characters. Designs, Codes and Cryptography, Accepted

February 2025

^{*} Equal Contribution

Ad irreducible subgroups of SU₂

- Tetrahedral group A₄
- Octahedral group S₄, equivalently qubit Cl₁(2) (3-design)
- Icosahedral group A₅ (5-design)

(maximal) Ad irreducible subgroups of SU₃

- Cl₁(3)
- $\Sigma_{168} \cong PSL_2(\mathbb{F}_7)$
- $\Sigma_{360} \cong A_6$, 3-design

Table of free codes with transversal unitary *t*-groups

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K	$G = oldsymbol{\lambda}(\mathcal{G})$	$N = q^n$	G	t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$2.A_5$	2^{7}	$2.A_5$	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			37		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	SL(3,2)		$2^{3} \rtimes SL(3,2)$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$2.A_{7}$	6^9	$6.A_7$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5				2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	SU(4,2)		SU(4,2)	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$4_1.PSL(3,4).2_3$	8^{5}	$4_1.PSL(3,4).2_3$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$2.M_{12}.2$	12^{5}	$2.M_{12}.2$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$2.M_{22}.2$	56^{3}	$2.M_{22}.2$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	SU(5,2)	10^{5}	SU(5,2)	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	6.Suz	11088^{5}	6.Suz	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	PSp(6,3)	14^{6}	Sp(6,3)	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	$3.J_{3}$	18^{5}	$3.J_{3}$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	$^{2}F_{4}(2)'$	27^{5}	$^{2}F_{4}(2)'$	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	2.Ru	1248^{3}	2.Ru	2
45 M_{24} 23 ⁶ M_{24} 2	43	SU(7,2)		SU(7,2)	2
	45	M_{23}		M_{23}	2
342 3.ON 495 ⁴ 3.ON 2	45	M_{24}	23^{6}	M_{24}	2
	342	3.ON	495^{4}	3.ON	2

Table of small free codes for other notable groups

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
24 2. $Co1$ 9152000 ³ 2. $Co1$
$3.G_2(3)$ 27^4 $3.G_2(3)$
78 $Fi22$ 352^6 $2.Fi22$
248 Thompson 27000^4 Thompson
4371 Baby Monster 53936390144 ⁴ Baby Monster
8671 Fi24 1603525 ³ Fi24
196,883 Monster Group 8980616927734375 ³ Monster Grou

Thank you

Questions?