

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 2001030933
PUBLICATION DATE : 06-02-01

APPLICATION DATE : 16-07-99
APPLICATION NUMBER : 11203506

APPLICANT : TOYOTA AUTOM LOOM WORKS LTD;

INVENTOR : WATANABE TOSHIYUKI;

INT.CL. : B62D 6/00 B62D 5/04 // B62D113:00
B62D117:00 B62D137:00

TITLE : ELECTRIC POWER STEERING DEVICE

ABSTRACT : PROBLEM TO BE SOLVED: To provide a means to enable the constantly light operation of a steering wheel, and reduce a shock generated when the steering angle of the steering wheel reaches the maximum in an electric power steering device.

SOLUTION: The electric power steering device comprises a sensor 42 to detect the steering angle of a steering wheel, a means 16 to damp the driving force of an electric motor 44 when the steering angle of the steering wheel approaches the maximum value and exceeds the damping starting angle, a means 52 to detect the steering load applied to the steering wheel, a means to detect the steering speed of the steering wheel, and a means 16 to set the damping starting angle according to the steering load and the steering speed of the steering wheel. The shock at the maximum steering angle is minimized by appropriately changing the damping starting angle, and the steering wheel can lightly be steered to the maximum steering angle.

COPYRIGHT: (C)2001,JPO

D5a

Disclaimer:

This English translation is produced by machine translation and may contain errors. The JPO, the INPI, and those who drafted this document in the original language are not responsible for the result of the translation.

Notes:

1. Untranslatable words are replaced with asterisks (****).
2. Texts in the figures are not translated and shown as it is.

Translated: 17:37:06 JST 02/26/2009

Dictionary: Last updated 02/13/2009 / Priority:

CLAIM + DETAILED DESCRIPTION

[Claim(s)]

[Claim 1] In the electric formula power-steering equipment which controls an electric motor based on handle operation, and steers a steering wheel using the driving force of this electric motor An attenuation means to attenuate the driving force of said electric motor when it is detected by said rudder angle detection means a rudder angle detection means to detect the rudder angle of said steering wheel, and that said steering wheel approached the predetermined maximum rudder angle, and exceeded the attenuation start angle, A steering load detection means to detect the load which acts on said steering wheel, and a steering speed detection means to detect the steering speed of said steering wheel, Load to said steering wheel detected by said steering load detection means, and electric formula power-steering equipment characterized by having an attenuation start rudder angle setting means to set up said attenuation start rudder angle according to the steering speed of said steering wheel detected by said steering speed detection means.

[Claim 2] Electric formula power-steering equipment according to claim 1 characterized by said attenuation means being a means to reduce the drive electric power of said electric motor.

[Claim 3] Electric formula power-steering equipment according to claim 1 or 2 characterized by said steering speed detection means being an operation means to find steering speed according to an operation from the rudder angle detected by said rudder angle detection means.

[Claim 4] Electric type power-steering equipment given in any 1 clause of the Claims 1-3 characterized by said steering load detection means being a load current detection means to detect the load current which flows through said electric motor.

[Claim 5] Electric type power-steering equipment according to claim 4 characterized by setting up said attenuation start angle from the function with which said attenuation start rudder angle setting means makes a variable the load current detected by said load current detection means, and steering speed detected by said steering speed detection means.

[Detailed Description of the Invention]**[0001]**

[Field of the Invention] Especially this invention relates to the technology for reducing the shock produced when a steering wheel reaches the maximum rudder angle and what is called a steering end about electric type power-steering equipment.

[0002]

[Description of the Prior Art] Electric formula power-steering equipment generates auxiliary steering power using an electric motor etc., and tends to assist or reduce the steering power applied to a handle (steering wheel) by the driver. The electric assistant equipment which made the electric motor the source of a drive is used for common electric formula power-steering equipment. The output rod of electric assistant equipment is made to move according to the steering power applied to the handle, and a steering wheel is steered through the bell crank, tie rod, and knuckle arm to which the tip part of this output rod was connected (see drawing 1).

[0003] Moreover, in the electric type power-steering equipment of the general former, in order

to set up the maximum rudder angle, the stopper which regulates the motion in contact with a knuckle arm is prepared in the body side.

[0004] Since this stopper is rigid body structure, when a knuckle arm contacts, a shock generates it. Especially the impulse force produced in electric formula power-steering equipment when rotation of an electric motor stops in an instant since the auxiliary steering power by an electric motor is added besides the steering power by a driver may become very big. Such a shock being vibrating and giving a driver displeasure has a possibility of making the constituent factor of power-steering equipment producing fault, from the first.

[0005] If a steering wheel reaches this side of the maximum rudder angle, and a predetermined rudder angle (attenuation start rudder angle) to this problem as shown, for example in JP,H9-58491,A etc., the drive electric power supplied to an electric motor is reduced, and a means to attenuate motorised power is proposed. Since according to this means the driving force of an electric motor will decline if a steering wheel exceeds an attenuation start rudder angle, the shock at the time of a knuckle arm touching a stopper becomes small.

[0006]

[Problem to be solved by the invention] However, like the description to JP,H9-58491,A, even if it decreases the driving force of an electric motor from a fixed attenuation start rudder angle, a sometimes big shock may occur or a handle may become heavy at an early stage conversely.

[0007] There is this invention in offering a means by which the shock produced when a steering wheel reaches the maximum rudder angle can be reduced while it is made in view of this situation and enables always light handle operation in electric formula power-steering equipment.

[0008]

[Means for solving problem] In order to attain the above-mentioned purpose, this invention person thought that the cause of the above-mentioned problem was in the steering speed (angular velocity of horizontal rotation) of a steering wheel, and the load (it is called the following "steering load") which acts on a steering wheel from sidewall etc., as a result of examining many things. That is, when the steering speed of a steering wheel is a high speed, or when steering load is small, even if motorised power is reduced, inertia cannot fully drop steering speed of a steering wheel, but it is thought that a knuckle arm and a stopper collide strongly. Moreover, the steering speed of a steering wheel is a low speed conversely, or since the work load for steering a steering wheel to the maximum rudder angle becomes large fairly when steering load is large, it is desirable [the auxiliary steering power of an electric motor] not to make it fall to near the maximum rudder angle, but to maintain.

[0009] Then, this invention controls an electric motor based on handle operation, and sets it to the electric type power-steering equipment which steers a steering wheel using the driving force of an electric motor. An attenuation means to attenuate the driving force of an electric motor when it is detected by a rudder angle detection means a rudder angle detection means to detect the rudder angle of a steering wheel, and that the steering wheel approached the predetermined maximum rudder angle, and exceeded the attenuation start angle, A steering load detection means to detect the load which acts on a steering wheel, and a steering speed detection means to detect the steering speed of a steering wheel. It is characterized by having an attenuation start rudder angle setting means to set up an attenuation start rudder angle according to the steering load to the steering wheel detected by the steering load detection means, and the steering speed of the steering wheel detected by the steering speed detection means.

[0010] Thus, by changing an attenuation start rudder angle suitably based on steering speed and steering load, while making the shock in the maximum rudder angle into the minimum, it becomes possible to perform handle operation lightly to the maximum rudder angle.

[0011] In addition, an attenuation means to decrease the driving force of an electric motor has a desirable means to reduce the drive electric power of an electric motor.

[0012] Moreover, the steering speed can find steering speed according to an operation from the rudder angle from which a sensor for exclusive use was not formed, but ** was also detected by the rudder angle detection means.

[0013] About a steering load detection means, since the load of a steering wheel corresponds to

the load which acts on an electric motor, it is suitable for it to consider it as a load current detection means to detect the load current which flows into an electric motor.

[0014] Furthermore, it is a simple means to set up the load current detected by a load current detection means and the steering speed detected by a steering speed detection means based on the function made into a variable, and it is suitable for an attenuation start rudder angle.

[0015]

[Mode for carrying out the invention] With reference to Drawings, the suitable embodiment of this invention is explained in detail hereafter.

[0016] Drawing 1 shows one embodiment of the electric type power-steering equipment for forklifts with which this invention was applied, and the mark 10 shows among the figure the handle in which rotation operation is done by the driver. The upper end of the steering shaft 12 is combined with this handle 10. The torque sensor 14 for detecting the torque and the hand of cut which were added by rotation operation of the handle 10 is interposed in the steering shaft 12 as a handle operation state detection means. The detection signal of the torque sensor 14 is sent to the control device 16 which made the subject the microcomputer which bears control of the whole power-steering equipment.

[0017] The lower end of the steering shaft 12 is connected to drag links 22 and 24 through the gearbox 18 and the pit man arm 20. Rotational movement of a steering shaft 12 is changed into a straight-line motion by the gearbox 18 and the pit man arm 20, and drag links 22 and 24 reciprocate linearly along with the longitudinal direction.

[0018] The tip part of the drag link 24 is connected to the bell crank 28 which is the input part of the steering gear style which supports and steers a steering wheel 26 through the output rod 32 of the below-mentioned electric assistant equipment 30. The bell crank 28 is attached to the central part of the rear axle beam 34, and is rotated in a horizontal direction by making a drag link 24 reciprocate. The knuckle arm 38 is attached to each end of right and left of the rear axle beam 34 by the kingpin 36 possible [rotation] in the horizontal direction, and the knuckle arm 38 is connected to the bell crank 28 through the tie rod 40. Moreover, the back wheel which is a steering wheel 26 is rotatably supported by each knuckle arm 38. Therefore, if rotation operation of the handle 10 is carried out, the steering power is told to a bell crank 28 through a drag link 24 from a steering shaft 12 and this is rotated, the knuckle arm 38, as a result a steering wheel 26 will rotate through the tie rod 40 (steering).

[0019] In addition, in order to set up the maximum rudder angle of a steering wheel 26, the stopper (not shown) which regulates the motion in contact with the knuckle arm 38 is really formed in the rear axle beam 34.

[0020] Moreover, the potentiometer which detects the amount of rotations of a kingpin 36 is formed as a rudder angle sensor (rudder angle detection means) 42 which detects a rudder angle. Although it is variously as a rudder angle sensor 42, structure is easy, and since it excels in endurance, a potentiometer is desirable. The rudder angle detection signal of the rudder angle sensor 42 is inputted into the control device 16, and control of this power-steering equipment is presented with it.

[0021] Electric formula power-steering equipment is equipped with the electric assistant equipment 30 which generates the auxiliary steering power for assisting or reducing the steering power by a driver further. The electric assistant equipment 30 of illustration is what uses the driving force of the electric motor (only henceforth a "motor") 44 as auxiliary steering power. It is constituted by movement conversion mechanisms (not shown), such as a pinion rack mechanism of housing 46 inside, and a ball screw mechanism, so that rotational movement of the axis of rotation of a motor 44 may be changed into the straight-line motion of the output rod 32. The output rod 32 is projected possible [an attitude] from housing 46, and the tip part combines with the tip part of a drag link 24, and is connected to the bell crank 28. Since housing 46 is supported by the machine stool (not shown), if it drives a motor 44 and the output rod 32 is made to move to housing 46 A bell crank 28 can be rotated and it becomes possible to assist the steering power by the driver told to a bell crank 28 by this through a drag link 24 from a handle 10.

[0022] The drive of a motor 44 is controlled by the control device 16. As shown in drawing 2, in

detail [a motor 44] The drive of a motor 44 is controlled by the chopper circuit 50 which carries out on-off control of the drive current supplied to a motor 44 being connected from the battery 48 and the battery 48, emitting a drive control signal in the chopper circuit 50 from the control device 16, and carrying out on-off control of the drive current. The drive control signal of the control device 16 is a pulse signal, for example, by changing the duty ratio, can change the duty ratio of on--off of the drive current by the chopper circuit 50, and can fluctuate the driving force of a motor 44.

[0023] The load current detector circuit 52 which detects the current (load current) which flows into the motor 44 which is a load machine is connected to the chopper circuit 50 in series. Since the load (steering load) added to a steering wheel 26 is transmitted from sidewall etc. to a motor 44, load current is changed according to the size of the steering load. Therefore, the load current detector circuit 52 functions as a steering load detection means to detect the size of steering load. Although not shown in drawing 2 as a load current detector circuit 52, what consists of a resistor connected to the chopper circuit 50 in series, for example can be considered, and the load current which flows through a motor 44 can be detected by detecting the potential difference of the both ends of this resistor. The output from a resistor is digitized by the A/D conversion machine, and is inputted into the control device 16.

[0024] The control device 16 is constituted considering a microcomputer as a subject, as mentioned above. That is, the control device is equipped with the input-and-output part, the central operation processing part (CPU), and the memory part (ROM, RAM). The program which controls a motor 44 based on the detection signal from the torque sensor 14, the rudder angle sensor 42, and the load current detector circuit 52 at the time of handle operation is memorized by ROM of the memory part.

[0025] Next, an operation of the electric type power-steering equipment of the above-mentioned composition is explained.

[0026] When a driver does rotation operation of the handle 10 in one way in the rudder angle of a steering wheel 26, the state, i.e., the going-straight state, of zero, The steering power is told to drag links 22 and 24 through a steering shaft 12, a gearbox 18, and the pit man arm 20, a bell crank 28 rotates, and the rudder angle of a steering wheel 26 is changed. Moreover, the torque which could come, simultaneously was added to the steering shaft 12 is detected by the torque sensor 14. The control device 16 determines auxiliary steering power from the torque detection signal, makes the motor 44 of electric assistant equipment 30 drive, and moves the output rod 32 in the move direction and this direction of a drag link 24. Thereby, not only the steering power from a drag link 24 but the auxiliary steering power from electric assistant equipment 30 is added to a bell crank 28, and a driver becomes possible [carrying out rotation operation of the handle 10 by light power].

[0027] If rotation operation of such a handle 10 is continued in this direction, a steering wheel 26 will approach maximum rudder angle thetaMAX by the side of this direction. this embodiment was shown previously — conventionally like composition if a steering wheel reaches attenuation start rudder angle thetaS before maximum rudder angle thetaMAX As shown in drawing 3 , it reduces gradually with the duty ratio of the drive current supplied to a motor 44 to the increase in a rudder angle, motorised power is decreased, and it is planning reducing the shock by the knuckle arm 38 and a stopper colliding.

[0028] On the other hand, unlike composition, this embodiment serves as variable conventionally and attenuation start rudder angle thetaS The steering speed of a steering wheel 26 (rotational angular velocity omega=d theta/dt), It is supposed that steering start rudder angle thetaS will be set up with the control device 16 according to the size of the steering load which acts on load current IM 26, i.e., a steering wheel. [the control device 16 / a thing] in detail if it recognizes that the steering wheel 26 reached predetermined rudder angle thetaJ before maximum rudder angle thetaMAX from the output signal of the rudder angle sensor 42 While finding the moment steering speed omega of the steering wheel 26 at the time by operation processing from the output signal of the rudder angle sensor 42, the detection value IM of the load current detector circuit 52 is read as steering load, and attenuation start rudder angle thetaS is determined from these values.

[0029] In addition, although said predetermined rudder angle thetaJ may be defined suitably, it is desirable the same value as minimum thetaMIN of an attenuation start rudder angle or to consider it as the angle of this side slightly. In this embodiment, thetaJ shall take the same value as thetaMIN. Moreover, although it is the angle which can be defined suitably also about minimum thetaMIN of an attenuation start rudder angle, the duty ratio of the drive current supplied to a motor 44 is the maximum, and the value which load current (steering load) IM is the minimum, and is selected as thing optimal when it is in the maximum steering speed omega is desirable.

[0030] Since rotation of a steering wheel 26 may not fully be slowed down by inertia even if it decreases the driving force of a motor 44 when the steering speed omega is a high speed, or when load current IM is small, as for angle difference deltatheta between attenuation start rudder angle thetaS and maximum rudder angle thetaMAX, enlarging is desirable. on the contrary, when the steering speed omega is a low speed Since the auxiliary steering power from electric assistant equipment 30 may not work effectively before a steering wheel reaches maximum rudder angle thetaMAX when load current IM is large, it is desirable to make small angle difference deltatheta between attenuation start rudder angle thetaS and maximum rudder angle thetaMAX. We decided to think that the function which makes a variable the rudder angle speed omega and load current IM can express angle difference deltatheta between maximum rudder angle thetaMAX and suitable attenuation start rudder angle thetaS, and to ask for attenuation start rudder angle thetaS by the following formula in this embodiment from this.

[0031]

$$\theta S = \theta MAX - \delta\theta = \theta MAX - f(\omega, IM) \dots (1)$$

Although various forms are taken from various conditions about the concrete formula of f (ω, IM), in this embodiment, it set as follows.

[0032] First, load current (steering load) IM was set constant, and the simulation of changing attenuation start rudder angle thetaS so that angle difference deltatheta may increase linearly with the increase in the steering speed omega, as shown in drawing 4 was performed. Drawing 4 shall show the case where load current IM is the minimum, and angle difference deltatheta shall become maximum ($\theta MAX - \theta MIN$) in the highest steering speed omegaMAX. In this case, the handle could be lightly operated to maximum rudder angle thetaMAX, and the result of fully decreasing came out of the impulse force in maximum rudder angle thetaMAX.

[0033] Moreover, steering speed omega was considered as the maximum high speed and regularity, and like drawing 5, attenuation start rudder angle thetaS was changed so that angle difference deltatheta might decrease linearly with the increase in load current IM. The good result was obtained like [this simulation] the above.

[0034] Furthermore, as shown in the following formula (2), what multiplied by linear function [of load current IM] h (IM) which draws the graph of drawing 5 on the linear function g describing the graph of drawing 4 (ω) was set to angle difference deltatheta, and it asked for the formula (3) from the formula (1). A formula (2) is regarded as an amendment value (maximum is 1) of the angle difference asked for function h (IM) by Function g (ω), as shown in the vertical axis of the right-hand side in drawing 5. Attenuation start rudder angle thetaS called for from a formula (3) also brought a good result in the simulation.

[0035]

$$\delta\theta = f(\omega, IM) = g(\omega) - h(IM) \dots (2)$$

$$\text{therefore } \theta S = \theta MAX - g(\omega) \text{ and } h(IM) \dots (3)$$

The formula (3) obtained as stated above is memorized by ROM of the control device 16. [a thing] if it recognizes that the steering wheel 26 attained the control device 16 with predetermined rudder angle thetaJ near the maximum rudder angle thetaMAX (=thetaMIN) with the signal from the rudder angle sensor 42 as mentioned above The moment steering speed omega of the steering wheel 26 at the time is calculated from the output signal of the rudder angle sensor 42, the detection value IM of the load current detector circuit 52 is inputted simultaneously, and steering start rudder angle thetaS is calculated and set up from the formula (3) memorized by ROM.

[0036] And if a steering wheel 26 is further steered in this direction and the aforementioned attenuation start rudder angle thetaS is reached, the control device 16 will recognize the state

with the detection signal from the rudder angle sensor 42, and will decrease the driving force of a motor 44 from the time. In this embodiment, the duty ratio of the drive current of the motor 44 when reaching maximum rudder angle thetaMAX is beforehand memorized by ROM of the control device 16. He is trying to emit a drive control signal in the chopper circuit 50 of a motor 44 so that a duty ratio may decrease from the time of a steering wheel 26 reaching attenuation start rudder angle thetaS gradually as a rudder angle becomes large.

[0037] thus — since the steering speed of the steering wheel 26 is fully slowed down even if a stopper touches the knuckle arm 38 when a steering wheel 26 reaches maximum rudder angle thetaMAX since suitable attenuation start rudder angle thetaS is selected and motorised power is decreased from there — a shock — **** — it is small. Moreover, since the auxiliary steering power by a motor 44 is also effective to maximum rudder angle thetaMAX, a driver becomes possible [performing handle operation by light power].

[0038] As mentioned above, although the suitable embodiment of this invention was explained in detail, it cannot be overemphasized that this invention is not limited to the above-mentioned embodiment. For example, in the above-mentioned embodiment, although he is trying to decrease motorised power gradually, as a dotted line shows drawing 3 , you may reduce a duty ratio steeply. Moreover, although motorised power is attenuated by reducing the duty ratio of the drive current to a motor 44 in the above-mentioned embodiment, a means for reducing voltage etc. to reduce drive electric power by other means, and to decrease motorised power can also be taken.

[0039] Furthermore, although it asks for a computing equation like a formula (3) beforehand and being computed from the formula The data of load current, steering speed, an attenuation start angle, etc. is beforehand extracted by the simulation or actual examination, the map is formed, and you may make it ask for optimal attenuation start rudder angle thetaS from the map. Moreover, about the parameter which asks for attenuation start rudder angle thetaS, introduction of other parameters other than load current and steering speed is not barred. In addition, since load current is used as a value equivalent to the steering load which acts on a steering wheel, it may detect steering load from a distortion sensor etc.

[0040] Furthermore, the electric type power-steering equipment by this invention is not restricted to a forklift, but can be applied to other vehicles.

[0041]

[Effect of the Invention] As stated above, according to this invention, the shock at the time of a steering wheel reaching the maximum rudder angle can be reduced effectively. Therefore, generating of vibration, breakage of the composition member of power-steering equipment, etc. which give displeasure to various evils by a shock, for example, a driver, can be prevented or eased.

[0042] Moreover, in order that according to this invention the auxiliary control power by a motor may act effectively until a steering wheel reaches the maximum rudder angle, handle operation can be performed lightly and it is effective in the operativity of vehicles improving.

[Translation done.]

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号
特開2001-30933
(P2001-30933A)

(43)公開日 平成13年2月6日(2001.2.6)

(51)Int.Cl.⁷

B 6 2 D 6/00
5/04

// B 6 2 D 113:00
117:00
137:00

識別記号

F I

B 6 2 D 6/00
5/04

テーマコード^{*}(参考)
3 D 0 3 2
3 D 0 3 3

審査請求 未請求 請求項の数5 O L (全 6 頁)

(21)出願番号

特願平11-203506

(22)出願日

平成11年7月16日(1999.7.16)

(71)出願人 000003218

株式会社豊田自動織機製作所
愛知県刈谷市豊田町2丁目1番地

(72)発明者 渡辺 敏之
愛知県刈谷市豊田町2丁目1番地 株式会
社豊田自動織機製作所内

(74)代理人 100088155

弁理士 長谷川 芳樹 (外2名)
Fターム(参考) 3D032 CC01 CC08 DA03 DA09 DA15
DA64 DC03 DC08 DD09 DD10
EA02 EB11 EC22 GG06
3D033 CA03 CA15 CA16 CA18 CA19
CA20 CA21

(54)【発明の名称】 電気式パワーステアリング装置

(57)【要約】

【課題】 電気式パワーステアリング装置において、常に軽いハンドル操作を可能とすると共に、操舵輪が最大舵角に達した際に生ずる衝撃を低減することができる手段を提供すること。

【解決手段】 本発明による電気式パワーステアリング装置は、操舵輪26の舵角を検出するセンサ42と、操舵輪が最大舵角に接近して減衰開始角度を越えた場合に電動モータ44の駆動力を減衰させる手段16と、操舵輪に作用する操舵負荷を検出する手段52と、操舵輪の操舵速度を検出する手段と、操舵負荷及び操舵輪の操舵速度に応じて減衰開始舵角を設定する手段16とを備えることを特徴とする。このように減衰開始舵角を適宜変更することで、最大舵角での衝撃を最小とすると共に、ハンドル操作を最大舵角まで軽快に行うことが可能となる。

【特許請求の範囲】

【請求項1】ハンドル操作に基づき電動モータを制御し、該電動モータの駆動力をを利用して操舵輪を操舵する電気式パワーステアリング装置において、前記操舵輪の舵角を検出する舵角検出手段と、前記操舵輪が所定の最大舵角に接近して減衰開始角度を越えたことが前記舵角検出手段により検出された場合に、前記電動モータの駆動力を減衰させる減衰手段と、前記操舵輪に作用する負荷を検出する操舵負荷検出手段と、

前記操舵輪の操舵速度を検出する操舵速度検出手段と、前記操舵負荷検出手段により検出された前記操舵輪に対する負荷、及び、前記操舵速度検出手段により検出された前記操舵輪の操舵速度に応じて前記減衰開始舵角を設定する減衰開始舵角設定手段と、を備えることを特徴とする電気式パワーステアリング装置。

【請求項2】前記減衰手段が前記電動モータの駆動電力を低下させる手段であることを特徴とする請求項1に記載の電気式パワーステアリング装置。

【請求項3】前記操舵速度検出手段が、前記舵角検出手段により検出された舵角から操舵速度を演算により求める演算手段であることを特徴とする請求項1又は2に記載の電気式パワーステアリング装置。

【請求項4】前記操舵負荷検出手段が前記電動モータを流れる負荷電流を検出する負荷電流検出手段であることを特徴とする請求項1～3のいずれか1項に記載の電気式パワーステアリング装置。

【請求項5】前記減衰開始舵角設定手段が、前記負荷電流検出手段により検出される負荷電流と、前記操舵速度検出手段により検出される操舵速度とを変数とする関数から前記減衰開始角度を設定することを特徴とする請求項4に記載の電気式パワーステアリング装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、電気式パワーステアリング装置に関し、特に、操舵輪が最大舵角、いわゆるステアリングエンドに達した際に生ずる衝撃を低減するための技術に関する。

【0002】

【従来の技術】電気式パワーステアリング装置は、電動モータ等を利用して補助操舵力を発生し、運転者によりハンドル（ステアリングホイール）に加えられる操舵力を補助ないしは軽減しようとするものである。一般的な電気式パワーステアリング装置は、電動モータを駆動源とした電動アシスト装置を用いており、ハンドルに加えられた操舵力に応じて電動アシスト装置の出力ロッドを進退させ、この出力ロッドの先端部が接続されたベルクランク、タイロッド及びナックルアームを介して操舵輪を操舵するようになっている（図1を参照）。

【0003】また、従来一般の電気式パワーステアリン

グ装置においては、最大舵角を設定するために、ナックルアームに接してその動きを規制するストップが車体側に設けられている。

【0004】このストップは剛体構造であるため、ナックルアームが接触した際に衝撃が発生する。特に、電気式パワーステアリング装置においては、運転者による操舵力の他に、電動モータによる補助操舵力が付加されているため、電動モータの回転が一瞬にして停止することにより生ずる衝撃力は極めて大きなものとなることがある。このような衝撃は振動となり運転者に不快感を与えることはもとより、パワーステアリング装置の構成要素に不具合を生じさせるおそれがある。

【0005】かかる問題に対しては、例えば特開平9-58491号公報等に示されているように、操舵輪が最大舵角の手前、所定の舵角（減衰開始舵角）に達したならば、電動モータに供給する駆動電力を低下させてモータ駆動力を減衰させるという手段が提案されている。この手段によれば、操舵輪が減衰開始舵角を越えると、電動モータの駆動力が減衰されるので、ナックルアームがストップに接した際の衝撃が小さくなる。

【0006】

【発明が解決しようとする課題】しかしながら、特開平9-58491号公報に記載のように、一定の減衰開始舵角から電動モータの駆動力を減衰しても、時として大きな衝撃が発生したり、逆に早期にハンドルが重くなったりすることがある。

【0007】本発明は、かかる事情に鑑みてなされたものであり、電気式パワーステアリング装置において、常に軽いハンドル操作を可能とすると共に、操舵輪が最大舵角に達した際に生ずる衝撃を低減することができる手段を提供することにある。

【0008】

【課題を解決するための手段】上記目的を達成するため、本発明者は種々検討した結果、上記問題点の原因が、操舵輪の操舵速度（水平方向の回動の角速度）と、接地面等から操舵輪に作用する負荷（以下「操舵負荷」という）にあると考えた。すなわち、操舵輪の操舵速度が高速である場合や操舵負荷が小さい場合には、モータ駆動力が減じられても、慣性により操舵輪の操舵速度を十分に落とすことができず、ナックルアームとストップとが強く衝突すると考えられる。また、逆に操舵輪の操舵速度が低速であり又は操舵負荷が大きい場合、操舵輪を最大舵角まで操舵するための仕事量は相当に大きくなるため、電動モータの補助操舵力は最大舵角の近傍まで低下させず、維持することが望ましい。

【0009】そこで、本発明は、ハンドル操作に基づき電動モータを制御し、電動モータの駆動力を利用して操舵輪を操舵する電気式パワーステアリング装置において、操舵輪の舵角を検出する舵角検出手段と、操舵輪が所定の最大舵角に接近して減衰開始角度を越えたことが

舵角検出手段により検出された場合に、電動モータの駆動力を減衰させる減衰手段と、操舵輪に作用する負荷を検出手段と、操舵輪の操舵速度を検出手段と、操舵速度検出手段と、操舵負荷検出手段により検出された操舵輪に対する操舵負荷、及び、操舵速度検出手段により検出された操舵輪の操舵速度に応じて減衰開始舵角を設定する減衰開始舵角設定手段とを備えることを特徴としている。

【0010】このように、操舵速度と操舵負荷とに基づいて減衰開始舵角を適宜変更することで、最大舵角での衝撃を最小とすると共に、ハンドル操作を最大舵角まで軽快に行うことが可能となる。

【0011】なお、電動モータの駆動力を減衰する減衰手段は、電動モータの駆動電力を低下させる手段が好ましい。

【0012】また、操舵速度は、専用のセンサを設げずとも、舵角検出手段により検出された舵角から操舵速度を演算により求めることができる。

【0013】操舵負荷検出手段については、操舵輪の負荷は電動モータに作用する負荷に対応するので、電動モータに流れる負荷電流を検出手段とすることが好適である。

【0014】更に、減衰開始舵角は、負荷電流検出手段により検出される負荷電流と、操舵速度検出手段により検出される操舵速度とを変数とする関数に基づいて設定することが、簡便な手段であり、好適である。

【0015】

【発明の実施の形態】以下、図面を参照して本発明の好適な実施形態について詳細に説明する。

【0016】図1は、本発明が適用されたフォークリフト用の電気式パワーステアリング装置の一実施形態を示しており、図中、符号10は、運転者により回転操作されるハンドルを示している。このハンドル10には、ステアリングシャフト12の上端が結合されている。ステアリングシャフト12には、ハンドル10の回転操作により加えられたトルク及び回転方向を検出するためのトルクセンサ14が、ハンドル操作状態検出手段として介設されている。トルクセンサ14の検出信号は、パワーステアリング装置全体の制御を担うマイクロコンピュータを主体とした制御装置16に送られるようになっている。

【0017】ステアリングシャフト12の下端は、ギヤボックス18及びピットマンアーム20を介してドラッグリンク22, 24に接続されている。ステアリングシャフト12の回転運動はギヤボックス18及びピットマンアーム20により直線運動に変換され、ドラッグリンク22, 24はその長手方向に沿って直線的に往復運動される。

【0018】ドラッグリンク24の先端部は、操舵輪26を支持し操舵する操舵機構の入力部であるベルクラン

10

20

30

40

50

ク28に、後述の電動アシスト装置30の出力ロッド32を介して接続されている。ベルクランク28は、リアアクスルビーム34の中央部に取り付けられており、ドラッグリンク24を往復動させることで水平方向において回動されるようになっている。リアアクスルビーム34の左右の各端部には、キングピン36によりナックルアーム38が水平方向において回動可能に取り付けられており、ナックルアーム38はベルクランク28にタイロッド40を介して接続されている。また、各ナックルアーム38には操舵輪26である後車輪が回転可能に支持されている。従って、ハンドル10を回転操作し、その操舵力をステアリングシャフト12からドラッグリンク24を経てベルクランク28に伝え、これを回動させると、タイロッド40を介してナックルアーム38、ひいては操舵輪26が回動（操舵）される。

【0019】なお、操舵輪26の最大舵角を設定するために、ナックルアーム38に接してその動きを規制するストップ（図示しない）がリアアクスルビーム34に一体形成されている。

【0020】また、舵角を検出する舵角センサ（舵角検出手段）42として、キングピン36の回転量を検出するポテンショメータが設けられている。舵角センサ42としては種々あるが、構造が簡単であり耐久性に優れていることから、ポテンショメータが好ましい。舵角センサ42の舵角検出信号は制御装置16に入力され、本パワーステアリング装置の制御に供される。

【0021】電気式パワーステアリング装置は、更に、運転者による操舵力を補助ないしは軽減するための補助操舵力を発生する電動アシスト装置30を備えている。図示の電動アシスト装置30は、電気モータ（以下、単に「モータ」という）44の駆動力を補助操舵力として利用するものであり、ハウジング46内部のピニオン・ラック機構やボールねじ機構等の運動変換機構（図示しない）によって、モータ44の回転軸の回転運動を出力ロッド32の直線運動に変換するよう構成されている。出力ロッド32はハウジング46から進退可能に突出しており、その先端部はドラッグリンク24の先端部と結合してベルクランク28に接続されている。ハウジング46は機台（図示しない）に支持されているので、モータ44を駆動して出力ロッド32をハウジング46に対して進退させると、ベルクランク28を回動させることができ、これによってハンドル10からドラッグリンク24を経てベルクランク28に伝えられる運転者による操舵力を補助することが可能となる。

【0022】モータ44の駆動は制御装置16により制御される。より詳細には、図2に示すように、モータ44には、バッテリ48と、バッテリ48からモータ44に供給される駆動電流をオンオフ制御するチョッパ回路50とが接続されており、制御装置16からチョッパ回路50に駆動制御信号を発して駆動電流をオンオフ制御

することで、モータ44の駆動を制御するようになっている。制御装置16の駆動制御信号は、例えばパルス信号であり、そのデューティ比を変化させることにより、チョッパ回路50による駆動電流のオンオフのデューティ比を変え、モータ44の駆動力を増減することができる。

【0023】チョッパ回路50には、負荷器であるモータ44に流れる電流（負荷電流）を検出する負荷電流検出回路52が直列に接続されている。モータ44には、接地面等から操舵輪26に加わる負荷（操舵負荷）が伝わるため、その操舵負荷の大きさに応じて負荷電流が変動する。従って、負荷電流検出回路52は、操舵負荷の大きさを検出する操舵負荷検出手段として機能するものである。負荷電流検出回路52としては図2には示されないが、例えばチョッパ回路50に直列に接続された抵抗器からなるものが考えられ、この抵抗器の両端の電位差を検出することにより、モータ44を流れる負荷電流を検出することができる。抵抗器からの出力はA/D変換器によりデジタル化され、制御装置16に入力される。

【0024】制御装置16は、前述したようにマイクロコンピュータを主体として構成されたものである。すなわち、制御装置は、入出力部、中央演算処理部（CPU）、記憶部（ROM、RAM）を備えている。記憶部のROMには、ハンドル操作時のトルクセンサ14、舵角センサ42及び負荷電流検出回路52からの検出信号に基づきモータ44を制御するプログラム等が記憶されている。

【0025】次に、上記構成の電気式パワーステアリング装置の作用について説明する。

【0026】操舵輪26の舵角がゼロの状態、すなわち直進状態から、運転者がハンドル10を一方向に回転操作した場合、その操舵力はステアリングシャフト12、ギヤボックス18及びピットマンアーム20を通してドラッグリンク22、24に伝えられ、ベルクランク28が回動して操舵輪26の舵角が変更される。また、これと同時に、ステアリングシャフト12に加えられたトルクがトルクセンサ14により検出され、制御装置16はそのトルク検出信号から補助操舵力を決定し、電動アシスト装置30のモータ44を駆動させ、ドラッグリンク24の移動方向と同方向に、出力ロッド32を移動させる。これにより、ベルクランク28には、ドラッグリンク24からの操舵力のみならず、電動アシスト装置30からの補助操舵力が付加され、運転者は軽い力でハンドル10を回転操作することが可能となる。

【0027】このようなハンドル10の回転操作を同方向に続けると、操舵輪26は、同方向側の最大舵角 θ_{MAX} に接近する。本実施形態においては、先に示した従来構成と同様に、操舵輪が最大舵角 θ_{MAX} の手前の減衰開始舵角 θ_s に達したならば、図3に示すように、モータ44に供給される駆動電流のデューティ比を舵角の増

加に伴って徐々に減じてモータ駆動力を減衰し、ナックルアーム38とストップが衝突することによる衝撃を低減することを図っている。

【0028】一方、本実施形態は、従来構成と異なり、減衰開始舵角 θ_s が可変となっており、操舵輪26の操舵速度（回動の角速度 $\omega = d\theta / dt$ ）と、負荷電流 I_H 、すなわち操舵輪26に作用する操舵負荷の大きさとに応じて操舵開始舵角 θ_s を制御装置16により設定することとしている。詳細には、制御装置16は、操舵輪26が最大舵角 θ_{MAX} の手前の所定舵角 θ_1 に達したことを舵角センサ42の出力信号から認識したならば、その時点の操舵輪26の瞬間操舵速度 ω を舵角センサ42の出力信号から演算処理により求めると共に、負荷電流検出回路52の検出値 I_H を操舵負荷として読み取り、これらの値から減衰開始舵角 θ_s を決定する。

【0029】なお、前記所定舵角 θ_1 は適宜定めてよいが、減衰開始舵角の最小値 θ_{MIN} と同じ値又は僅かにその手前の角度とすることが好ましい。この実施形態では、 θ_1 は θ_{MIN} と同じ値をとるものとした。また、減衰開始舵角の最小値 θ_{MIN} についても適宜定め得る角度であるが、モータ44に供給される駆動電流のデューティ比が最大であり、負荷電流（操舵負荷） I_H が最小で、且つ、最大の操舵速度 ω にあるときに最適なものとして選定される値が好ましい。

【0030】操舵速度 ω が高速である場合、或いは、負荷電流 I_H が小さい場合には、モータ44の駆動力を減衰しても慣性により操舵輪26の回動が十分に減速されないことがあるため、減衰開始舵角 θ_s と最大舵角 θ_{MAX} との間の角度差 $\Delta\theta$ は大きくすることが好ましい。逆に、操舵速度 ω が低速である場合、或いは、負荷電流 I_H が大きい場合には、操舵輪が最大舵角 θ_{MAX} に達する前に電動アシスト装置30からの補助操舵力が有効に働くことがあるので、減衰開始舵角 θ_s と最大舵角 θ_{MAX} との間の角度差 $\Delta\theta$ を小さくすることが好ましい。このことから、舵角速度 ω と負荷電流 I_H を変数とする関数により最大舵角 θ_{MAX} と好適な減衰開始舵角 θ_s との間の角度差 $\Delta\theta$ を表すことができると考え、本実施形態においては、減衰開始舵角 θ_s を次式で求めることとした。

【0031】

$$\theta_s = \theta_{MAX} - \Delta\theta \\ = \theta_{MAX} - f(\omega, I_H) \quad \dots \quad (1)$$

$f(\omega, I_H)$ の具体的な式については様々な条件から色々な形を探るものであるが、本実施形態では次のようにして定めた。

【0032】まず、負荷電流（操舵負荷） I_H を一定とし、図4に示すように操舵速度 ω の増加に伴って角度差 $\Delta\theta$ が一次関数的に増加するよう減衰開始舵角 θ_s を変化させるというシミュレーションを行った。図4は、負荷電流 I_H が最小である場合を示し、最高の操舵速度 ω_{MAX} では角度差 $\Delta\theta$ は最大値 $(\theta_{MAX} - \theta_{MIN})$ となるも

のとした。かかる場合、最大舵角 θ_{MAX} までハンドルを軽く操作することができ、最大舵角 θ_{MAX} における衝撃力は十分に低減されるという結果が出た。

【0033】また、操舵速度 ω を最高速、一定とし、図5の如く負荷電流 I_H の増加に伴って角度差 $\Delta\theta$ が直線的に減じるように減衰開始舵角 θ_s を変化させた。このシミュレーションも、上記と同様、良好な結果が得られた。

【0034】更に、次の式(2)に示すように、図4の*

$$\begin{aligned}\Delta\theta &= f(\omega, I_H) = g(\omega) \cdot h(I_H) \\ \therefore \theta_s &= \theta_{MAX} - g(\omega) \cdot h(I_H)\end{aligned}$$

以上述べたようにして得られた式(3)は、制御装置16のROMに記憶されている。前述したように、制御装置16は、操舵輪26が最大舵角 θ_{MAX} の近傍の所定舵角 $\theta_1 (= \theta_{MIN})$ と達したことを舵角センサ42からの信号により認識したならば、その時点の操舵輪26の瞬間操舵速度 ω を舵角センサ42の出力信号から演算し、同時に負荷電流検出回路52の検出値 I_H を入力し、ROMに記憶された式(3)から操舵開始舵角 θ_s を演算し、設定する。

【0036】そして、更に操舵輪26が同方向に操舵され、前記の減衰開始舵角 θ_s に達したならば、制御装置16はその状態を舵角センサ42からの検出信号により認識し、その時点から、モータ44の駆動力を減衰する。本実施形態では、最大舵角 θ_{MAX} に達した時におけるモータ44の駆動電流のデューティ比が予め制御装置16のROMに記憶されており、操舵輪26が減衰開始舵角 θ_s に達した時点から、舵角が大きくなるに従ってデューティ比が徐々に減じるよう、モータ44のチョッパ回路50に駆動制御信号を発するようしている。

【0037】このように、適当な減衰開始舵角 θ_s を選定し、そこからモータ駆動力を減衰することとしているので、操舵輪26が最大舵角 θ_{MAX} に達した際、ナックルアーム38とストップが接しても、操舵輪26の操舵速度は十分に減速されているので、衝撃は極く僅かである。また、モータ44による補助操舵力も最大舵角 θ_{MAX} まで有効であるので、運転者は軽い力でハンドル操作を行うことが可能となる。

【0038】以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されることは言うまでもない。例えば、上記実施形態では、モータ駆動力を徐々に減衰するようにしているが、図3において点線で示すように、急峻にデューティ比を減じてもよい。また、上記実施形態では、モータ44に対する駆動電流のデューティ比を減じることでモータ駆動力を減衰させているが、電圧を減じる等、他の手段により駆動電力を低減してモータ駆動力を減衰する手段を探ることもできる。

【0039】更に、式(3)のような演算式を予め求め、その式から算出することとしているが、負荷電流、

*グラフを描く一次関数 $g(\omega)$ に図5のグラフを描く負荷電流 I_H の一次関数 $h(I_H)$ を乗じたものを角度差 $\Delta\theta$ とし、式(1)から式(3)を求めた。式(2)は、図5における右側の縦軸に示すように、関数 $h(I_H)$ を関数 $g(\omega)$ により求められる角度差の補正值(最大値は1)としてとらえたものである。式(3)から求められる減衰開始舵角 θ_s もシミュレーションにおいて良好な結果となった。

【0035】

$$\Delta\theta = f(\omega, I_H) \quad \dots \quad (2)$$

$$\therefore \theta_s = \theta_{MAX} - g(\omega) \cdot h(I_H) \quad \dots \quad (3)$$

操舵速度、減衰開始角度等のデータを予めシミュレーションや実際の試験により採取してマップを形成しておき、そのマップから最適な減衰開始舵角 θ_s を求めるようとしてもよい。また、減衰開始舵角 θ_s を求めるパラメータについては、負荷電流及び操舵速度以外の他のパラメータの導入を妨げるものではない。なお、負荷電流は、操舵輪に作用する操舵負荷に相当する値として用いているので、操舵負荷を歪センサ等から検出してもよい。

【0040】更に、本発明による電気式パワーステアリング装置はフォークリフトに限らず、他の車両にも適用可能である。

【0041】

【発明の効果】以上述べたように、本発明によれば、操舵輪が最大舵角に達した際の衝撃を効果的に低減することができる。従って、衝撃による様々な弊害、例えば運転者に不快感を与える振動の発生やパワーステアリング装置の構成部材の破損等を防止ないしは緩和することができる。

【0042】また、本発明によれば、操舵輪が最大舵角に達するまで、モータによる補助操作力が有効に作用するため、軽快にハンドル操作を行うことができ、車両の操作性が向上するという効果もある。

【図面の簡単な説明】

【図1】本発明が適用可能な電気式パワーステアリング装置の一実施形態を概略的に示す斜視図である。

【図2】本発明による電気式パワーステアリング装置における電動モータとその制御系の関係を概略的に示すブロック図である。

【図3】本発明によるモータ駆動力の減衰の仕方を示す、舵角とデューティ比との関係のグラフである。

【図4】負荷電流を一定とした場合における操舵速度と角度差(最大舵角と減衰開始舵角の差)との間の関係を示すグラフである。

【図5】操舵速度を一定とした場合における負荷電流と角度差(最大舵角と減衰開始舵角の差)との間の関係を示すグラフである。

【符号の説明】

50 10…ハンドル、14…トルクセンサ、16…制御装置

(減衰手段、減衰開始舵角設定手段、操舵速度検出手段、演算手段)、26…操舵輪、30…電動アシスト装置、42…舵角センサ(舵角検出手段)、44…電動モ*

*ータ、48…バッテリ、50…チョッパ回路、52…負荷電流検出回路。

【図1】

【図2】

【図3】

【図4】

【図5】

