4. Fields

4.1 Fields

 $(F,+,\cdot)$ is a field \iff

- (F,+) = abelian group
- (F^*,\cdot) = abelian group
- $a(b+c) = ab + ac \forall a, b, c \in F$

4.2 Extension Fields

If F and E are fields and $F\subset E$ then E is an extension of F

Example

- 1. For the field $\mathbb Q$ the smallest extension field that contains $\sqrt{2}$ is $\mathbb Q(\sqrt{2})=\{a+b\sqrt{2}:a,b\in\mathbb Q\}$
 - $\circ \ \mathbb{Q}(\sqrt{2})$ has the roots of $f(x)=x^2-2)\Rightarrow$ splitting field
- 2. For the field $\mathbb Q$ the smallest extension field that contains $i=\sqrt{-1}$ is $\mathbb Q(i)=\{a+bi:a,b\in\mathbb Q\}$
- 3. We can adjoin the fields $\Rightarrow \mathbb{Q}(\sqrt{2},i) = \mathbb{Q}(\sqrt{2})(i)$
 - $\circ \ \ \text{An element} \ \ \underbrace{\alpha+\beta i}_{\alpha,\beta\in\mathbb{Q}(\sqrt{2})} = (a+b\sqrt{2}) + (c+d\sqrt{2})i \ \text{with} \ a,b,c,d\in\mathbb{Q} \Rightarrow \{1,\sqrt{2},i,i\sqrt{2}\}$

is a basis for our extension field

4.3 Field automorphisms

Let F be a field

A **field automorphism** is a bijection f:F o F s.t $orall a,b\in F$

- f(a+b) = f(a) + f(b)
- f(ab) = f(a)f(b)

Property

If f is an automorphism of an extension field F of $\mathbb Q$ then $f(q)=q\ orall q\in\mathbb Q$

Intuition

• The automorphism fixes everything in $\mathbb Q$

Proof

Suppose
$$f(1) = q$$

$$q = f(1) = f(1 \cdot 1) = f(1)f(1) = q^2$$

$$q = f(1) = f(1 \cdot 1 \cdot 1) = f(1)f(1)f(1) = q^3$$

$$\Rightarrow q^n = q \Rightarrow q = 1$$

Perfect fields

F is called perfect if char F=0 or char char F=p and $F^p=\{a^p:a\in F\}=F$

Theorem

Every finite field is perfect

Proof

Let $\phi(x)=x^p$ be a mapping. We want to prove ϕ is an automorphism

- $\phi(ab) = (ab)^p = a^p b^p = \phi(a)\phi(b)$
- $\bullet \ \ \phi(a+b) = (a+b)^p = a^p + \tbinom{p}{1}a^{p-1}b + ... + \tbinom{p}{p-1}ab^{p-1} + b^p = a^p + b^p \ (\text{since} \ p|\tbinom{p}{i}))$
- Since $x^p \neq 0$ when $x \neq 0 => Ker\phi = \{0\} \Rightarrow \phi$ is injective
- F is finite => ϕ is surjective
- ullet ϕ is bijective therefore an automorphism therefore $F^p=F$

Finite fields

For each prime p and n>0 there is, a unique finite field of order p^n

Structure

As addition:
$$GF(p^n) pprox \underline{\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus ... \oplus \mathbb{Z}_p}$$
 As multiplication $GF(p^n) pprox \mathbb{Z}_{p^n-1}$

Subfields

For each divisor $m|n\ GF(p^n)$ has a unique subfield of order p^m These are the only subfields of $GF(p^n)$

Proof

•
$$p^n - 1 = (p^m - 1)(p^{n-m} + ... + p^m + 1) \Rightarrow p^m - 1|p^n - 1 \Rightarrow p^n - 1 = (p^m - 1)t$$

$$\bullet \ \operatorname{Let} K = \{x \in GF(p^m) : x^{p^m} = x\}$$

$$\circ \ x^{p^m} - x$$
 has at most p^m zeros in $GF(p^n) \Rightarrow |K| \leq p^m$

$$\circ$$
 Let $\langle a
angle = GF(p^n)^* \Rightarrow |a^t| = p^m - 1$ and $(a^t)^{p^m-1} = 1 => a^t \in K$

 $\circ \:$ So K is a subfield of $GF(p^n)$ of order p^m