정규화 모델 (Regularization Model)

2025 Spring

머신러닝1

이두호

- 정규화 모델 1
 - 정규화 모델 배경
 - 정규화 모델 개념
 - Ridge Regression (능형회귀)
- 정규화 모델 2
 - Lasso
 - Elastic Net
 - 여러가지 정규화 모델

What is a good model?

현재 데이터(training data)를 잘 설명하는 모델

⇒ Explanatory modeling

미래 데이터(testing data)에 대한 예측 성능이 좋은 모델

⇒ Predictive modeling

Good Explanatory Model

현재 데이터(training data)를 잘 설명하는 모델 = 학습오차(training error) 를 최소화하는 모델

$$MSE_{(training)} = \frac{1}{n} \sum_{i=1}^{n} (Y - \hat{Y})^2$$

Good Predictive Model

$$E\left[MSE_{(testing)}\right] = E\left[(Y - \hat{Y})^2 | X\right]$$
$$= \sigma^2 + \left(E[\hat{Y}] - Y\right)^2 + E\left[\left(\hat{Y} - E[\hat{Y}]\right)^2\right]$$

= Irreducible error + Bias² + Variance

Good Predictive Model

미래 데이터(testing data)에 대한 예측 성능이 좋은 모델 = 미래 데이터에 대한 expected error 가 낮은 모델

$$E[MSE] = Error + Bias^2 + Variance$$

- Expected MSE를 줄이려면 bias, variance, 혹은 둘다 낮춰야함
- 그렇지 못하다면 둘 중에 하나라도 작으면 좋음
- Bias가 증가되더라도 variance 감소폭이 더 크다면 expected MSE는 감소(예측성능 증가)

Ordinary Linear Regression Model

$$MSE = \sum_{i=1}^{n} \left\{ Y_i - (w_0 + w_1 x_{1i} + w_2 x_{2i} + \dots + w_p x_{pi}) \right\}^2$$

$$\min_{w_0, \dots, w_p \in \mathbb{R}} MSE$$

$$\hat{\mathbf{w}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}, \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_p \\ (1+p) \times 1 \end{bmatrix}$$

회귀계수 w 에 대한 unbiased estimator 중 가장 분산이 작은 estimator (Best Linear and Unbiased Estimator: BLUE, Gauss-Markov Theorem)

Unbiased 를 포기 하더라도 (예측) 분산을 획기적으로 줄 일 수 없을까?

Subset selection

- Subset selection method는 전체 p 개의 입력변수 중 일부k 개만을 사용하여 회귀계수 \mathbf{w} 를 추정 하는 방법
- 전체 변수 중 일부만을 선택함으로써 bias가 증가할 수 있지만 variance는 감소함
 - Best subset selection
 - Forward stepwise selection
 - Backward stepwise selection
 - Least angle regression
 - Orthogonal matching pursuit

$$\min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + 999999w_3^2 + 999999w_4^2$$

$$w_3 \rightarrow 0$$
 $w_4 \rightarrow 0$

$$W_1, W_2, \cdots, W_p$$

$$C(\mathbf{w}) = \min_{\mathbf{w}} \left[\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{j=1}^{p} w_j^2 \right]$$
(1) Training error (2) Generalization

 λ : regularization parameter that controls the tradeoff between (1) and (2)

$$C(\mathbf{w}) = \min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} w_j^2$$

If λ is very big, then w_i approaches 0.

$$Y = \hat{w}_0$$
 \Rightarrow 과소적합(Underfitting)

If λ is very small, then w_i may not 0.

Regularization Method

- Regularization method 는 회귀계수 w 가 가질 수 있는 값에 제약조건을 부여하는 방법
- 제약조건에 의해 bias는 증가할 수 있지만 variance는 감 수한

최소제곱법

$$\min_{w_1, w_2} \sum_{i=1}^{n} \left\{ Y_i - (w_1 x_{1i} + w_2 x_{2i}) \right\}^2$$

정규화 방법

$$\min_{w_1, w_2} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + w_2 x_{2i}) \right\}^2$$

$$w_1^2 + w_2^2 \le 30$$
 w 값에 대한 제약조건 추가

Regularization Method

	(w ₁ , w ₂)	$W_1^2 + W_2^2$	MSE	
	(4, 5)	41	20	
	(3, 5)	34	23	$w_1^2 + w_2^2 \le 30$
	(4, 4)	32	25	
	(2, 5)	27	27	
	(2, 4)	18	25	
	(2, 3)	13	29	

Ridge Regression (능형회귀)

L₂-norm regularization:

오차제곱합을 최소화하면서 회귀계수 \mathbf{w} 의 \mathbf{L}_2 -norm을 제한

$$\min_{w_1, \dots, w_p} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2$$
s.t. $w_1^2 + \dots + w_p^2 \le t$

Ridge Regression

Ridge Regression

$$\min_{w_1, \dots, w_p} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2$$
s.t. $w_1^2 + \dots + w_p^2 \le t$

1 Equivalent (Lagrangian multiplier)

Ridge Regression

$$\min_{w_1, \dots, w_p} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2 + \lambda \sum_{j=1}^p w_j^2$$

MSE Contour

$$MSE(w_1, w_2) = \sum_{i=1}^{n} \left\{ Y_i - (w_1 x_{1i} + w_2 x_{2i}) \right\}^2$$

$$= \left(\sum_{i=1}^{n} x_{1i}^2 \right) w_1^2 + \left(\sum_{i=1}^{n} x_{2i}^2 \right) w_2^2 + \left(2 \sum_{i=1}^{n} x_{1i} x_{2i} \right) w_1 w_2$$

$$- \left(2 \sum_{i=1}^{n} Y_i x_{1i} \right) w_1 - \left(2 \sum_{i=1}^{n} Y_i x_{2i} \right) w_2 + \sum_{i=1}^{n} Y_i^2$$

$$= Aw_1^2 + Bw_1 w_2 + Cw_2^2 + Dw_1 + Ew_2 + F$$

Conic equation (2차원의 경우)

Conic section

$$Aw_1^2 + Bw_1w_2 + Cw_2^2 + Dw_1 + Ew_2 + F = 0$$

Discriminant of conic equation (판별식): $B^2 - 4AC$

$$B^2 - 4AC = 0$$
 \rightarrow parabola (포물선) $B^2 - 4AC > 0$ \rightarrow hyperbola (쌍곡선) $B^2 - 4AC < 0$ \rightarrow ellipse (타원) $B = 0$ and $A = C$ \rightarrow circle (원)

MSE Contour

$$MSE(w_1, w_2) = \left(\sum_{i=1}^{n} x_{1i}^2\right) w_1^2 + \left(\sum_{i=1}^{n} x_{2i}^2\right) w_2^2 + \left(2\sum_{i=1}^{n} x_{1i} x_{2i}\right) w_1 w_2 - \left(2\sum_{i=1}^{n} Y_i x_{1i}\right) w_1 - \left(2\sum_{i=1}^{n} Y_i x_{2i}\right) w_2 + \sum_{i=1}^{n} Y_i^2$$

$$= Aw_1^2 + Bw_1 w_2 + Cw_2^2 + Dw_1 + Ew_2 + F$$

$$B^{2} - 4AC = \left(2\sum_{i=1}^{n} x_{1i}x_{2i}\right)^{2} - 4\sum_{i=1}^{n} x_{1i}^{2}\sum_{i=1}^{n} x_{2i}^{2}$$

$$= 4\left\{\left(\sum_{i=1}^{n} x_{1i}x_{2i}\right)^{2} - \sum_{i=1}^{n} x_{1i}^{2}\sum_{i=1}^{n} x_{2i}^{2}\right\} < 0$$

By Cauchy-Schwartz inequality

Ridge Regression

Ridge Solution Path

Solution path : t 값에 따른 $(\hat{w}_1,\hat{w}_2)^{ridge}$ 의 변화

$$w_1^2 + w_2^2 \le t_3$$

$$w_1^2 + w_2^2 \le t_4$$

Least Squares Solutions

일반선형회귀분석의 회귀계수 \mathbf{w} 는 행렬 연산을 통해 구할 수 있음

$$\mathbf{X} = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1p} \\ 1 & X_{21} & X_{22} & \dots & X_{2p} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} \mathbf{y} = \begin{bmatrix} Y_1 & & & \mathbf{w}_0 \\ Y_2 & & & & \mathbf{w}_1 \\ \vdots & & & & & \vdots \\ Y_n & & & & \mathbf{w}_p \\ & & & & & & \mathbf{w}_p \end{bmatrix}$$

$$C(\mathbf{w})^{LS} = (\mathbf{y} - \mathbf{X}\mathbf{w})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$\frac{\partial C(\mathbf{w})^{LS}}{\partial \mathbf{w}} = -2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0}$$

$$\hat{\mathbf{w}}^{LS} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Ridge Solutions

능형회귀분석의 회귀계수 W도 행렬 연산을 통해 구할 수 있음

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \\ & & & & & & & & \\ \hline X_{nn} & X_{n2} & \dots & X_{np} \\ & & & & & & & \\ \hline X_{nn} & X_{nn} & & & & & \\ \hline X_{nn} & X_{nn} & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & & & \\ \hline X_{nn} & & & & \\ X_{nn} & & & & \\ \hline X_{nn} & & & & \\$$

$$C(\mathbf{w})^{ridge} = (\mathbf{y} - \mathbf{X}\mathbf{w})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w}^{\mathsf{T}}\mathbf{w}$$

$$\frac{\partial C(\mathbf{w})^{ridge}}{\partial \mathbf{w}} = -2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\left(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I}_{p}\right)\mathbf{w} = \mathbf{0}$$

$$\hat{\mathbf{w}}^{ridge} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I}_{p}\right)^{-1} \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Least Absolute Shrinkage and Selection Operator

변수 선택 가능

L₁-norm regularization: 회귀계수 w 의 L₁-norm을 제한

Lasso

$$\min_{w_1, \dots, w_p} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2$$

s.t.
$$|w_1| + \dots + |w_p| \le t$$

1 Equivalent (Lagrangian multiplier)

$$\min_{w_1, \dots, w_p} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2 + \lambda \sum_{j=1}^p |w_j|$$

Lasso Solution path

Lasso Solutions

$$\min \sum_{i=1}^{n} \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2 + \lambda \sum_{j=1}^{p} w_j^2 \quad \Rightarrow \quad \hat{\mathbf{w}}^{ridge} = \left(\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_p \right)^{-1} \mathbf{X}^{\top} \mathbf{y}$$

$$\min \sum_{i=1}^{n} \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2 + \lambda \sum_{j=1}^{p} |w_j| \quad \Rightarrow \quad \hat{\mathbf{w}}^{lasso} = ?$$

- Ridge와 달리 Lasso는 closed form solution 을 구하는 것이 불가능
 (L₁-norm 미분 불가능)
- Numerical optimization methods:
 - Quadratic programming techniques (1996, Tibshirani)
 - LARS algorithm (2004, Efron et al.)
 - Coordinate descent algorithm (2007, Friedman et al.)

Lasso Parameter

Lasso

$$\min_{w_1, \dots, w_p} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2 + \lambda \sum_{j=1}^p |w_j|$$

$$\lambda \to 0$$
: 최소제곱법

$$\lambda \to \infty : \mathbf{W} \to \mathbf{0}$$

 λ 값을 어떻게 설정할 것인가?

몇 개의 변수를 선택할 것인가?

Lasso Parameter

 λ 값을 크게 잡으면? λ 값을 작게 잡으면? 적은 변수 간단한 모델 해석 쉬움 높은 학습 오차(training error 증가) Underfitting 위험 증가

많은 변수 복잡한 모델 해석 어려움 낮은 학습 오차 Overfitting 위험 증가

Lasso parameter

Solution Paths of Ridge and Lasso

Ridge	Lasso	
L ₁ -norm regularization	L ₂ -norm regularization	
변수 선택 불가능	변수 선택 가능	
Closed form solution 존재	Closed form solution 존재하지 않음 (수치해석적 방법 이용)	
입력변수 간 상관관계가 높은 상황에서 좋은 예측 성능	입력변수 간 상관관계가 높은 상황에서 ridge에 비해 상대적으로 예측성능이 떨어짐	

Elastic Net

- Elastic Net = Ridge + Lasso (L₁- and L₂- norm regularization)
- Elastic Net은 상관관계가 큰 입력변수를 동시에 선택/배제하는 특성

Elastic Net

$$\min_{w_1, \dots, w_p} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2$$

s.t.
$$\alpha \sum_{j=1}^{p} |w_j| + (1 - \alpha) \sum_{j=1}^{p} w_j^2 \le t$$

 \bigcirc

Equivalent (Lagrangian multiplier)

$$\min_{w_1, \dots, w_p} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2 + \lambda \left(\alpha \sum_{j=1}^p |w_j| + (1 - \alpha) \sum_{j=1}^p w_j^2 \right)$$

Elastic Net Parameters

$$\min_{w_1, \dots, w_p} \sum_{i=1}^n \left\{ Y_i - (w_1 x_{1i} + \dots + w_p x_{pi}) \right\}^2 + \lambda_1 \sum_{j=1}^p |w_j| + \lambda_2 \sum_{j=1}^p w_j^2$$

• 일정 범위 내로 λ_1 과 λ_2 를 조정하여 오차가 가장 작은 결과를 보이는 λ_1 과 λ_2 값을 선정함

Ridge vs. Lasso vs. Elastic Net

