Statistics 203: Introduction to Regression and Analysis of Variance

ANOVA: fixed effects

Jonathan Taylor

Today

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{\,i\,j}\,=\,n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- Qualitative / categorical variables.
- One & Two-way ANOVA models.

Categorical variables

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- ullet Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{\,i\,j}\,=\,n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- Most variables we have looked at so far were continuous: height, rating, etc.
- In many situations, we record a categorical variable: gender, state, country, etc.
- How do we include this in our model?

Example: tool lifetime

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two samplet-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- Outcome: *Y*, lifetime of a cutting tool on a lathe.
- Predictor:
 - \bullet X_1 , lathe speed, revolutions per minute
 - \bullet T, tool type (A or B)
- Goal: to study if the effect of lathe speed is different depending on the tool type.

Solution #1: stratification

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- ullet Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- One solution is to "stratify" data set by this categorical variable.
- We could break data set up into 2 groups by tool type, fit model

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \varepsilon_i$$

in each group.

■ Problem: this results in very small samples in each group: low degrees of freedom for estimating σ^2 in each group.

Solution #2: qualitative predictors

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ANOVA table: Two-way (assuming $n_{i,i} = n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- IF it is reasonable to assume that σ^2 is constant for each observation.
- THEN, we can incorporate all observations into 1 model.

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,1} * X_{i,2} + \varepsilon_i$$

where

$$X_{i,2} = \begin{cases} 1 & \text{if } T = A, \\ 0 & \text{otherwise.} \end{cases}$$

- This model estimate different slopes and intercepts within each model:
 - for tool type A: slope= $\beta_1 + \beta_3$, intercept= $\beta_0 + \beta_2$
 - for tool type B: slope= β_1 , intercept= β_0
- Test for different slopes: $H_0: \beta_3 = 0$.
- Test for different intercepts: $H_0: \beta_2 = 0$.
- Test for different slope & intercept : $H_0: \beta_2 = \beta_3 = 0$.
- Here is the example

More than two levels

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors

More than two levels

- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

If our categorical variable has r levels (i.e. r different tool types t_1, \ldots, t_r) then we need to add r-1 categorical variables to X: for $1 \le j \le r-1$

$$C_{i,j} = \begin{cases} 1 & \text{if } T_i = t_j \\ 0 & \text{otherwise.} \end{cases}$$

- Note: there are many ways to "code" the qualitative variable. The scheme aboves that the mean in group r is β_0 and the coeffi cients of the columns $C_{i,j}$ represent differences from the mean of group r.
- To look for different "slopes" for a given continuous predictor X we need to add r-1 more columns: for $1 \le j \le r-1$

$$I_{i,j} = X_i * C_{i,j}, \qquad 1 \le i \le n.$$

■ These are our fi rst "real" interactions: taking some columns of a smaller *X* and multiplying them together (i.e. the *C* columns and *X* columns).

Analysis of Variance models

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- Models with only qualitative variables.
- One-way ANOVA: extension of "two-sample" *t*-test.
- Example: in studying the effect of BP on heart disease we might consider the overall health (Poor, Moderate, Good).
- Two-way ANOVA: more than one qualitative variable: include an ethnicity as part of our study of the effect of BP on heart disease.

One-way ANOVA

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- Generalizes two sample *t*-test: more than one level.
- One-way ANOVA model: observations: $(Y_{ij}), 1 \le i \le r, 1 \le j \le n_i$: r groups and n_i samples in i-th group.

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \qquad \varepsilon_{ij} \sim N(0, \sigma^2).$$

- Constraint: $\sum_{i=1}^{r} \alpha_i = 0$. Why a constraint? Otherwise, model is unidentifiable: r+1 parameters for only r means. We can find infinitely many choices of $(\mu, \alpha, \dots, \alpha_r)$ that yield same means for each Y_{ij} .
- This particular constraint comes down to a different "coding" of the group levels (see $C_{i,j}$ above). In this case, α_i 's are differences from "grand mean" μ .

Extension of two sample *t***-test**

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- ullet Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

■ Model is easy to fit:

$$\widehat{Y}_{ij} = \frac{1}{n_i} \sum_{i=1}^{n_i} Y_{ij}.$$

Simplest question: is there any group effect?

$$H_0: \alpha_1 = \cdots = \alpha_r = 0$$
?

■ Test is based on *F*-test with full model vs. reduced model. Reduced model just has an intercept.

ANOVA tables: One-way

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

_	Source	SS	df	E(MS)
	Treatments	$SSTR = \sum_{i=1}^{r} n_i \left(\overline{Y}_{i.} - \overline{Y} \right)^2$	r-1	$\sigma^2 + \frac{\sum_{i=1}^r n_i \alpha_i^2}{r-1}$
	Error	n .	$\sum_{i=1}^{r} n_i - r$	σ^2

- Notation: \overline{Y}_{i} is *i*-th group mean, \overline{Y}_{i} is overall mean.
- We see that under $H_0: \alpha_1 = \cdots = \alpha_r = 0$, the expected value of SSTR and SSE is σ^2 .
- Entries in the ANOVA table are, in general, independent.
- Therefore, under H_0

$$F = \frac{MSTR}{MSTO} = \frac{\frac{SSTR}{df_{TR}}}{\frac{SSE}{df_E}} \sim F_{df_{TR}, df_E}.$$

■ Reject H_0 at level α if $F > F_{1-\alpha, df_{TR}, df_{TO}}$.

Example: rehab surgery

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- ullet Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

Example: rehab surgery

- How does prior fi tness affect recovery from surgery? Observations: 24 subjects' recovery time.
- Three fi tness levels: below average, average, above average.
- If you are in better shape before surgery, does it take less time to recover?

Inference for linear combinations

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{i\,i}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

Suppose we want to "infer" something about

$$\sum_{i=1}^{r} a_i (\mu + \alpha_i).$$

$$\operatorname{Var}\left(\sum_{i=1}^{r} a_i \overline{Y}_{i\cdot}\right) = \sigma^2 \sum_{i=1}^{r} \frac{a_i^2}{n_i}.$$

■ Usual confi dence intervals, *t*-tests.

Two-way ANOVA

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{i,i}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- Second generalization: more than one grouping variable.
- Two-way ANOVA model: observations:

 $(Y_{ijk}), 1 \le i \le r, 1 \le j \le m, 1 \le k \le n_{ij}$: r groups in fi rst grouping variable, m groups ins second and n_{ij} samples in (i,j)-"cell":

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}, \qquad \varepsilon_{ijk} \sim N(0, \sigma^2).$$

- Again: just a regression model.
- Main effects: α , β .
- Interaction effects $(\alpha\beta)$: "second derivatives"

Constraints on the parameters

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- ullet Extension of two sample $t ext{-test}$
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{i\,i}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- $\blacksquare \sum_{i=1}^{r} \alpha_i = 0$
- $\blacksquare \sum_{j=1}^{m} \beta_j = 0$
- $\blacksquare \sum_{j=1}^{m} (\alpha \beta)_{ij} = 0, 1 \le i \le r$
- $\blacksquare \sum_{i=1}^{r} (\alpha \beta)_{ij} = 0, 1 \le j \le m.$

Fitting model

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

Easy to fi t:

$$\widehat{Y}_{ijk} = \overline{Y}_{ij.} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} Y_{ijk.}$$

Inference for combinations

$$\operatorname{Var}\left(\sum_{i=1}^{r} \sum_{j=1}^{m} a_{ij} \overline{Y}_{ij}\right) = \sigma^{2} \cdot \sum_{i=1}^{r} \sum_{j=1}^{m} \frac{a_{ij}^{2}}{n_{ij}}.$$

■ Usual *t*-tests, confi dence intervals.

Questions of interest

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two samplet-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model

Questions of interest

- ullet ANOVA table: Two-way (assuming $n_{i\,i}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

Are there main effects for the grouping variables?

$$H_0: \alpha_1 = \dots = \alpha_r = 0, \qquad H_0: \beta_1 = \dots = \beta_m = 0.$$

Are there interaction effects:

$$H_0: (\alpha\beta)_{ij} = 0, 1 \le i \le r, 1 \le j \le m.$$

ANOVA table: Two-way (assuming $n_{ij} = n$)

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{i\,j}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

Term	SS
A	$SSA = nm \sum_{i=1}^{r} \left(\overline{Y}_{i} - \overline{Y}_{} \right)^{2}$
B	$SSB = nr \sum_{j=1}^{m} (\overline{Y}_{\cdot j} - \overline{Y}_{\cdot i})^2$
AB	$SSAB = n \sum_{i=1}^{r} \sum_{j=1}^{m} \left(\overline{Y}_{ij} - \overline{Y}_{i} - \overline{Y}_{.j} + \overline{Y}_{} \right)^{2}$
Error	$SSE = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y}_{ij.})^2$

ANOVA table: Two-way (continued)

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two sample
 t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ANOVA table: Two-way (assuming $n_{i,i} = n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

$$SS \qquad df \qquad E(MS)$$

$$SSA \qquad r-1 \qquad \sigma^2 + nm \frac{\sum_{i=1}^r \alpha_i^2}{r-1}$$

$$SSB \qquad m-1 \qquad \sigma^2 + nr \frac{\sum_{j=1}^m \beta_j^2}{m-1}$$

$$SSAB \qquad (m-1)(r-1) \qquad \sigma^2 + n \frac{\sum_{i=1}^r \sum_{j=1}^m (\alpha\beta)_{ij}^2}{(r-1)(m-1)}$$

$$SSE \qquad (n-1)mr \qquad \sigma^2$$

■ Under $H_0: (\alpha\beta)_{ij} = 0, \forall i, j$ the expected value of SSAB and SSE is σ^2 – use these for an F-test. Use

$$\frac{MSAB}{MSE} = \frac{SSAB/df_{AB}}{SSE/df_E} \sim F_{(m-1)(r-1),(n-1)mr}$$

to test H_0 .

■ To test $H_0: \alpha_i = 0, \forall i$, use

$$\frac{MSA}{MSE} = \frac{SSA/df_A}{SSE/df_E} \sim F_{r-1,(n-1)mr}.$$

■ To test $H_0: \beta_i = 0, \forall i$, use

$$\frac{MSB}{MSE} \frac{SSB/df_B}{SSE/df_E} \sim F_{m-1,(n-1)mr}$$
.

Example: kidney failure

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- ullet Extension of two sample t-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{i\,j}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- Time of stay in hospital depends on weight gain between treatments and duration of treatment.
- Two levels of duration, three levels of weight gain.
- Is there an interaction? Main effects?
- Here is the example

Caveats

- Today
- Categorical variables
- Example: tool lifetime
- Solution #1: stratification
- Solution #2: qualitative predictors
- More than two levels
- Analysis of Variance models
- One-way ANOVA
- Extension of two samplet-test
- ANOVA tables: One-way
- Example: rehab surgery
- Inference for linear combinations
- Two-way ANOVA
- Constraints on the parameters
- Fitting model
- Questions of interest
- ullet ANOVA table: Two-way (assuming $n_{ij}=n$)
- ANOVA table: Two-way (continued)
- Example: kidney failure
- Caveats

- Testing for main effects is NOT the same as usual.
- R uses SSE from full model (including interactions) as denominator.
- This allows for interaction terms with no main effects.