1. Motivation

1.1. Plane curves

- Curves mainly parametrised: $\alpha: I \to \mathbb{R}^2$, $I \subset \mathbb{R}$ interval, with a direction.
- Four vertex theorem: every closed plane curve has at least 4 vertices.

1.2. Surfaces

• Surfaces are 2-dimensional subsets of \mathbb{R}^3 .

2. Regular curves in \mathbb{R}^n

2.1. Regular curves, length and tangent vectors

- Let I be open interval, then $\alpha: I \to \mathbb{R}^n$ is parametrised curve.
- $\underline{\alpha}$ is **smooth** if $\underline{\alpha}(u) = (\alpha_1(u), ..., \alpha_n(u))$ where all $\alpha_i : I \to \mathbb{R}$ are smooth maps.
- Image $\underline{\alpha}(I) \subset \mathbb{R}^n$ is the **trace**.
- Tangent vector of α at u is

$$\underline{\alpha}'(u) = (\alpha_1'(u), ..., \alpha_n'(u))$$

- $\underline{\alpha}$ is regular if $\forall u \in I, \underline{\alpha}'(u) \neq 0$. $\underline{\alpha}$ is singular at u if $\underline{\alpha}'(u) = 0$.
- If α is regular, unit tangent vector of α at u is

$$\underline{t}(u) = \underline{\alpha}' \frac{u}{\|\underline{\alpha}'(u)\|}$$

- If $\forall u \in I, \|\underline{\alpha}'(u)\| = 1$ then $\underline{\alpha}$ is a **unit speed curve**. If $\forall u \in I, \|\underline{\alpha}'(u)\| = c, \underline{\alpha}$ is **constant speed curve**.
- **Example**: unit circle $\underline{\alpha}(u) = (\cos u, \sin u)$ is regular: $\alpha'(u) = (-\sin u, \cos u) \neq 0$. It is unit speed as $\|\alpha'(u)\| = 1$.
- Example: helix $\underline{\alpha}(u) = (\cos u, \sin u, u)$, $\underline{\alpha}'(u) = (-\sin u, \cos u, 1)$, $\|\underline{\alpha}'(u)\| = \sqrt{2}$ so constant speed.
- Example: cusp $\underline{\alpha}(u) = (u^3, u^2)$, $\underline{\alpha}'(u) = (3u^2, 2u)$ so $\underline{\alpha}'(u) = 0 \iff u = 0$ so $\underline{\alpha}$ singular at 0.
- Example: node $\underline{\alpha}(u) = (u^3 u, u^2 1)$. So $\underline{\alpha}(-1) = \underline{\alpha}(1) = (0, 0)$ so it has a self-intersection at the origin. $\underline{\alpha}'(u) = (3u^2 1, 2u)$ so is regular.
- Definition: let $\underline{\alpha}:I\to\mathbb{R}^n,\ [a,b]\subset I.\ \underline{\alpha}$ is rectifiable on [a,b] if

$$L\Big(\underline{\alpha}|_{[a,b]}\Big) \coloneqq \sup \left\{ \sum_{i=0}^{n-1} \left\|\underline{\alpha}(u_{i+1}) - \underline{\alpha}(u_i)\right\| \colon n \in \mathbb{N}, a = u_0 < \dots < u_m = b \right\}$$

is finite. Then $L(\underline{\alpha}|_{[a,b]})$ is the (arc) length of $\underline{\alpha}:[a,b]\to\mathbb{R}^n$.

• Proposition: let $\underline{\alpha}: I \to \mathbb{R}^n$ smooth, $[a, b] \subset I$. Then

$$L\left(\underline{\alpha}|_{[a,b]}\right) = \int_{a}^{b} \|\underline{\alpha}'(u)\| \, \mathrm{d}u$$

2.2. Reparametrisation

- **Definition**: let $\underline{\alpha}: I \to \mathbb{R}^n$ be smooth regular curve. A **parameter change** for α is a smooth map $h: J \to I$, $J \subset \mathbb{R}$ is open interval, where
 - $\forall t \in J, h'(t) \neq 0$
 - h(J) = I.

 $\underline{\tilde{\alpha}} = \underline{\alpha} \circ h : J \to \mathbb{R}^n$ is a reparametrisation of $\underline{\alpha}$. If h' > 0, h is orientation preserving, otherwise it is orientation reversing.

• **Proposition**: let $\underline{\alpha}: I \to \mathbb{R}^n$ be smooth, regular curve, $u_0 \in I$, $\ell: I \to \mathbb{R}$ defined by

$$\ell(u) = \int_{u_0}^u \lVert \underline{\alpha}'(t) \rVert \, \mathrm{d}t$$

Let $J = \ell(I)$. Then ℓ is strictly monotone increasing and $\underline{\tilde{\alpha}} = \underline{\alpha} \circ \ell^{-1} : J \to \mathbb{R}^n$ is unit speed.

• **Proposition**: let $\underline{\alpha}: I \to \mathbb{R}^n$ be smooth regular curve and $\underline{\tilde{\alpha}} := \underline{\alpha} \circ h: J \to \mathbb{R}^n$ be reparametrisation of $\underline{\alpha}$ with parameter change $h: J \to I$. Let $[a, b] \subset I$ and $[c, d] = h^{-1}([a, b])$. Then

$$L(\underline{\alpha}|_{[a,b]}) = L(\underline{\tilde{\alpha}}|_{[c,d]})$$

i.e. length is independent of parametrisation.

3. Plane curves

3.1. Unit normal vectors and curvature

• **Definition**: let $\alpha: I \to \mathbb{R}^2$ be smooth regular plane curve. The **unit normal** vector of α at u is

$$\underline{n}_{\alpha}(u) = \underline{t}(u) \begin{bmatrix} \cos(\pi/2) & \sin(\pi/2) \\ -\sin(\pi/2) & \cos(\pi/2) \end{bmatrix} = (-t_2(u), t_1(u))$$

- Lemma: let $\alpha: I \to \mathbb{R}^2$ be smooth unit speed plane curve. Then $\underline{t}'(s) = \alpha''(s)$ is parallel to $\underline{n}(s)$.
- **Definition**: (signed) curvature $\kappa(s)$ of unit speed plane curve $\alpha: I \to \mathbb{R}^2$ at $s \in I$ is defined by

$$\underline{t}'(s) = \kappa(s)\underline{n}(s)$$

Note that we can compute $\kappa(s)$ by

$$\underline{t}'(s) \cdot \underline{n}(s) = \kappa(s)\underline{n}(s) \cdot \underline{n}(s) = \kappa(s) \|\underline{n}(s)\|^2 = \kappa(s)$$

- Rule for sign of curvature: if curve turns clockwise, curvature is negative, if curve turns anti-clockwise, its curvature is positive.
- **Proposition**: let $\alpha: I \to \mathbb{R}^2$ be any smooth regular plane curve, $\alpha(u) = (x(u), y(u))$. Then its curvative is

$$\kappa(u) = \frac{x'(u)y''(u) - x''(u)y'(u)}{\left(\left(x'(u)\right)^2 + \left(y'(u)\right)^2\right)^{3/2}}$$

• **Definition**: let $\alpha: I \to \mathbb{R}^2$ regular and smooth, $\kappa: I \to \mathbb{R}$ be its curvature, $n: I \to \mathbb{R}^2$ its unit normal vector. Assume $\kappa(u) \neq 0$. Then **radius of curvature** of α at $\alpha(u)$ is

$$r(u) = \frac{1}{|\kappa(u)|}$$

The **centre of curvature** of α at $\alpha(u)$ is

$$e(u) = \alpha(u) + \frac{1}{|\kappa(u)|} n(u)$$

Corresponding **curvature circle** of α at $\alpha(u)$ is

$$\left\{P\in\mathbb{R}^2:\|P-e(u)\|=r(u)\right\}$$

3.2. Four vertex theorem and fundamental theorem of plane curves

- **Definition**: let $\alpha: I \to \mathbb{R}^2$ regular and smooth, $\kappa: I \to \mathbb{R}$ its curvature. Then
 - $\alpha(u)$ is **inflection point** of α if $\kappa(u) = 0$.
 - $\alpha(u)$ is **vertex** of α if $\kappa'(u) = 0$.
- Example: for parabola $\alpha(u) = (u, u^2)$,

$$\kappa(u) = \frac{2}{\left(1 + 4u^2\right)^{3/2}}, \quad \kappa'(u) = -\frac{24u}{\left(1 + 4u^2\right)^{5/2}}$$

So there are no inflection points, and there is one vertex at the origin (u = 0).

- Jordan Curve Theorem: a simple closed continuous curve $\alpha : [a, b] \to \mathbb{R}^2$ divides \mathbb{R}^2 into two regions: one bounded and one unbounded.
- Four vertex theorem: let $\alpha : [a,b] \to \mathbb{R}^2$ smooth, regular, closed, simple plane curve. Then α has at least 4 vertices.
- Theorem (Isoperimetric inequality): let $\alpha : [a, b] \to \mathbb{R}^2$ smooth, regular, simple plane curve of length $L = l(\alpha)$ and A be area of bounded region enclosed by a. Then

$$L^2 > 4\pi A$$

with equality iff α describes a circle.

- Theorem (Fundamental theorem of local theory of plane curves): let $I \subset \mathbb{R}$ open interval, smooth $\kappa: I \to \mathbb{R}$, $s_o \in I$, $a \in \mathbb{R}^2$, $v_0 \in \mathbb{R}^2$, $||v_0|| = 1$. Then exists unique smooth unit speed curve $\alpha: I \to \mathbb{R}^2$ with curvature $\kappa_\alpha = \kappa$ satisfying $\alpha(s_0) = a, \alpha'(s_0) = t_\alpha(s_0) = v_0$
- Remark: all orientation preserving isometries of \mathbb{R}^2 are of the form

$$f(x) = f_{A,b}(x) = x \cdot A + b, \quad A \in SO(2), b \in \mathbb{R}^2$$