RISC-V ARCHITECTURE FOR MOTION PLANNING ALGORITHMS IN AUTONOMOUS DRONE APPLICATIONS

A senior design project submitted in partial fulfillment of the requirements for the degree of Bachelor of Science at Harvard University

Anthony JW Kenny S.B. Candidate in Electrical Engineering

Faculty Advisor: Vijay Janapa Reddi

Harvard University School of Engineering and Applied Sciences Cambridge, MA

March 1st, 2020 Version: 4.1

Abstract

This thesis aims to design RISC-V computer architecture that supports the fast execution of motion planning algorithms for drone applications. First, the computation of sampling-based motion planning algorithms commonly used in autonomous drones (such as Rapidly-exploring Random Tree (RRT), Rapidly-exploring Random Tree Star (RRT*), Probabalistic Road Map (PRM)) will be profiled on an unmodified RISC-V processor. From this profiling, common bottlenecks and hotspots in execution will be identified. Based on these results, this project will extend the RISC-V Instruction Set Architecture (ISA) and design a modified processor to support the extensions.

Contents

Pr	reface	i
	Abstract	i
	List of Acronyms	iii
	List of Figures	iv
	List of Tables	V
1	Introduction	1
	1.1 Problem Summary	1
	1.1.1 Problem Statement	1
	1.1.2 End User	1
	1.2 Project Overview	1
	1.2.1 Project Specifications	1
	1.2.2 Proposed Solution	1
	1.2.3 Project Structure	1
2	Background Information	2
3	Motion Planning in Software	3
4	Motion Planning in Hardware	4
5	RISC-V Processor	5
6	Discussion	6
7	Conclusion	7
Bi	bliography	8
Aı	ppendices	9
\mathbf{A}	Appendix 1	10

List of Acronyms

ISA Instruction Set Architecture

PRM Probabalistic Road Map

RRT Rapidly-exploring Random Tree

 $\mathbf{RRT^*}$ Rapidly-exploring Random Tree Star

List of Figures

List of Tables

Introduction

Introductory paragraph goes here. Something to frame the entire report.

- 1.1 Problem Summary
- 1.1.1 Problem Statement
- 1.1.2 End User
- 1.2 Project Overview
- 1.2.1 Project Specifications
- 1.2.2 Proposed Solution
- 1.2.3 Project Structure

Background Information

Motion Planning in Software

Motion Planning in Hardware

RISC-V Processor

Discussion

Conclusion

Bibliography

Appendices

Appendix A

Appendix 1