Bayesian statistics

Exercise 1 (Bernoulli model):

You would like to estimate the probability θ of winning a lottery game through n i.i.d. observations. You assume a uniform prior distribution on θ .

- 1. Give the posterior distribution of θ .
- 2. Deduce the Bayes estimator of θ .
- 3. Compute the Bayes quadratic risk of this estimator.
- 4. Compare this estimator to the maximum likelihood estimator (MLE) in terms of Bayes quadratic risk and in terms of quadratic risk.

Exercise 2 (Poisson model):

The daily number of admissions to a cinema is supposed to be Poisson with parameter θ . The prior distribution on θ is exponential with parameter $\lambda > 0$. You want to estimate θ using n i.i.d. samples.

- 1. Give the posterior distribution of θ .
- 2. Deduce the Bayes estimator of θ .
- 3. Compute the Bayes quadratic risk.

Exercise 3 (Gaussian model – mean):

The daily power consumption of a company is supposed to have a gaussian distribution. You want to estimate the mean θ through n independent observations; the variance σ^2 is known. The prior distribution of θ is itself gaussian with mean μ and variance 1.

- 1. Give the posterior distribution of θ .
- 2. Deduce the Bayes estimator of θ .
- 3. Compute the Bayes quadratic risk. Which term dominates for large n, bias or variance?

Exercise 4 (Bernoulli model – discrete prior):

You want to estimate the fraction θ of electric cars in Paris. The prior distribution on θ is uniform over $\{\frac{1}{4}, \frac{1}{3}\}$. You have n i.i.d. observations.

- 1. Give the posterior distribution of θ .
- 2. Deduce the Bayes estimator of θ .
- 3. Study the behavior of Bayes estimator for large n, depending on the true parameter $\theta \in (0,1)$.

Exercise 5 (Translated exponential):

The lifetimes of laptops are supposed to have a translated exponential distribution of the form:

$$P(X > x) = \exp(\theta - x), \quad \forall x > \theta,$$

where $\theta > 0$ is unknown. You have n observations. The prior distribution of θ is exponential with parameter $\lambda > 0$.

- 1. Give the posterior distribution of θ .
- 2. Deduce the Bayes estimator of θ .
- 3. Compare with the maximum likelihood estimator (MLE) for large n.
- 4. Compare the quadratic risk and the Bayes quadratic risk of the MLE.

Exercise 6 (Exponential model – mean):

You want to estimate the mean $g(\theta) = \frac{1}{\theta}$ of an exponential distribution with parameter θ using n i.i.d. samples; the prior on θ is itself exponential with parameter λ .

- 1. Give the posterior distribution of θ .
- 2. Deduce the Bayes estimator of $g(\theta)$.
- 3. What is the Bayes risk?

Exercise 7 (Poisson model – Jeffreys prior):

We would like to use a non-informative prior for the Poisson model.

- 1. Give the Jeffreys prior on θ . Observe that this prior is *improper*, in the sense that it is not a probability measure.
- 2. For that prior, give the posterior distribution of θ .
- 3. Deduce the Bayes estimator of θ and compare it to that of Exercise 2.
- 4. Compute the quadratic risk of this estimator.

Exercise 8 (Gaussian vector):

Some signal is supposed to have a gaussian distribution with unknown mean $\theta \in \mathbb{R}^d$ and known covariance matrix Γ . You want to estimate $g(\theta) = w^T \theta$ for some $w \in \mathbb{R}^d$ through n independent observations x_1, \ldots, x_n . The prior of θ is itself Gaussian with zero mean and unit covariance matrix.

- 1. Give the posterior distribution of θ .
- 2. Deduce the Bayes estimator of $g(\theta)$.