

Lecture Eleven Practice

Practice problems

mac2311keeran / Lecture Eleven / Lecture Eleven Practice

Abstract. Practice problems for Lecture Eleven Content

Problem. 1: Implicitly derive the expression $6x^3y^2 = -1$ and solve for $\frac{dy}{dx}$.

$$\frac{dy}{dx} =$$

Problem. 2: Implicitly derive the expression $4x^3y^3 = -2y$ and solve for $\frac{dy}{dx}$.

$$\frac{dy}{dx} =$$

Problem. 3: Implicitly derive the expression $7 \sin(xy^2) = 5$ and solve for $\frac{dy}{dx}$.

$$\frac{dy}{dx} =$$

Problem. 4: Implicitly derive the expression $\cos(x^2y^2) = 3x$ and solve for $\frac{dy}{dx}$.

$$\frac{dy}{dx} =$$

Problem. 5: Implicitly derive the expression $9 x^2 \sin(y) = xy$ and solve for $\frac{dy}{dx}$.

$$\frac{dy}{dx} =$$

Problem. 6: Compute the following derivative:

Problem. 7: Compute the following derivative:

$$\frac{d}{dx}(-3\arcsin(3x)) =$$

Problem. 8: Implicitly derive the expression $8e^{(xy)} = -2$ and solve for $\frac{dy}{dx}$.

$$\frac{dy}{dx} =$$

Problem. 9: Implicitly derive the expression $9 e^{(x^3y^3)} = y^2$ and solve for $\frac{dy}{dx}$.

$$rac{dy}{dx} =$$

Problem. 10: Implicitly derive the expression $3 x e^{(x^2 y^2)} = x^2$ and solve for $\frac{dy}{dx}$.

$$\frac{dy}{dx} =$$

Problem. 11: Compute the following derivative:

$$rac{d}{dx}ig(-\arctanig(x^2ig)ig)=$$

Problem. 12: Compute the following derivative:

$$\frac{d}{dx}(-2\ \operatorname{arcsec}(x+1)) =$$