Линейно пространство на свободните Вектори

Доказателство на свойства от 1) до 8)

1)
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
;
2) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$;
3) $\vec{d} = \vec{a} + \vec{a} = \vec{a}$;
4) $\vec{d} = \vec{a} + \vec{a} = \vec{a}$;
4) $\vec{d} = \vec{a} + \vec{a} = \vec{a}$;

5)
$$\exists 1 : 1.\vec{\alpha} = \vec{\alpha};$$

6) $\lambda \cdot (\mu \cdot \vec{\alpha}) = (\lambda \cdot \mu) \cdot \vec{\alpha};$
7) $(\lambda + \mu) \cdot \vec{\alpha} = \lambda \cdot \vec{\alpha} + \mu \cdot \vec{\alpha};$
8) $\lambda \cdot (\vec{\alpha} + \vec{e}) = \lambda \cdot \vec{\alpha} + \lambda \cdot \vec{e}.$

Hexa DABD e yenopeghux
$$\overrightarrow{DA} = \overrightarrow{DB} = \overrightarrow{a}$$
 $\overrightarrow{AB} = \overrightarrow{OD} = \overrightarrow{b}$
 $\overrightarrow{AB} = \overrightarrow{OD} + \overrightarrow{AB} = \overrightarrow{OB}$
 $\overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OB}$
 $\overrightarrow{AB} = \overrightarrow{AB} =$

2) Hera
$$\overrightarrow{OA} = \overrightarrow{a}$$
, $\overrightarrow{AB} = \overrightarrow{b}$ u $\overrightarrow{BC} = \overrightarrow{C}$
 $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{C} = (\overrightarrow{OA} + \overrightarrow{AB}) + \overrightarrow{BC} = \overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OC}$
 $\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{OA} + (\overrightarrow{AB} + \overrightarrow{BC}) = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC}$
 $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$

6) the gokahem, he
$$\lambda.(\mu.\vec{\alpha}) = (\lambda.\mu).\vec{\alpha}$$

Pastrengane Hacoyehute otcerku:
 $\vec{D}\vec{A} = \vec{\alpha}$, $\vec{O}\vec{B} = \mu.\vec{\alpha}$, $\vec{O}\vec{C} = \lambda.(\mu.\alpha)$, $\vec{\alpha}$

* Hanpabrehus : DAIIOBII DE 11 DB

* AZMHUHU:
$$|\vec{OC}| = |\vec{J}|. |\vec{OB}| = |\vec{J}|. |\vec{DI}|. |\vec{a}| = |\vec{OC}| = |\vec{OD}|$$

* Mocoxu:

1 cm.
$$\lambda > 0$$
, $\mu > 0 => \lambda$, $\mu > 0$

$$\overline{\partial c} \wedge \wedge \overline{\partial b} \wedge \wedge \overline{\partial A} => \overline{\partial c} \wedge \wedge \overline{\partial A} \qquad \lambda => \overline{\partial c} \wedge \wedge \overline{\partial b}$$

$$2a.$$
 $\lambda > 0$, $\mu < 0 => \lambda$, $\mu < 0$
 $\vec{O}\vec{C} \land \vec{O}\vec{B} \land \vec{V} \vec{O}\vec{A} \Rightarrow \vec{O}\vec{C} \land \vec{V} \vec{O}\vec{A} \downarrow \Rightarrow \vec{O}\vec{C} \land \vec{V} \vec{O}\vec{A} \rightarrow \vec{O}\vec{C} \land \vec{V} \vec{O}\vec{A} \rightarrow \vec{V} \vec{O}\vec{A} \rightarrow \vec{O}\vec{C} \land \vec{V} \vec{O}\vec{A} \rightarrow \vec{O}\vec{C} \land \vec{V} \vec{O}\vec{A} \rightarrow \vec{V} \vec{O} \vec{A} \rightarrow \vec{V} \vec{O}\vec{A} \rightarrow \vec{V} \vec{O}\vec{A} \rightarrow \vec{V} \vec{O}\vec{A} \rightarrow \vec{V} \vec{O}\vec{A} \rightarrow \vec{V} \vec{A} \rightarrow \vec{V} \vec{A} \rightarrow \vec{V} \vec{A} \rightarrow \vec{V} \vec{A} \rightarrow \vec{V} \vec{A}$

4 cm. 2 20, M20=> 2.M>0

$$\vec{OC} \wedge V \vec{OB} \wedge V \vec{DA} => \vec{OC} \wedge \wedge \vec{DA}$$

U360g: OC = OD 3a + 1, n => 6) e gokasaho

/ NEMA 1: Da ce gokanne, re sa tã (-1). ã = - ã. 1) Hexa $\vec{a} = \vec{o}$, Toraba $-\vec{a} = \vec{o}$ -u=v $(-1).\vec{a}=(-1).\vec{b}=\vec{0}=(-1).\vec{a}=-\vec{a}$ 2) Hexa $\vec{a} \neq \vec{o}$, $\vec{oA} = \vec{a}$, $\vec{OB} = (-1) \cdot \vec{a}$, $\vec{AO} = -\vec{a} \Rightarrow$ * 10B1=10A1=1A01 * OB NOA, AO NOA => OB MOA J=> OB=AO => Лема 2: Да се докане, че за +a; (-л). a= 1.(-a)= - (л.a). $(-\lambda).\vec{a} = [\lambda.(-1).\vec{a}] \stackrel{\text{DT}(6)}{=} \lambda.((-1).\vec{a}) \stackrel{\text{Thermal}}{=} \lambda.(-\vec{a})$ $(-\lambda)$, $\vec{\alpha} = [(1), \lambda, \vec{\alpha}] \stackrel{\text{def}}{=} (-1), (\lambda, \vec{\alpha}) \stackrel{\text{den}}{=} (-1), \vec{\alpha}$ $) \lambda \cdot (-\vec{\alpha}) = -(\lambda \cdot \vec{\alpha}) = (-\lambda), \vec{\alpha}.$ 7) Hexa $\lambda \neq 0$, $\mu \neq 0$, $\vec{\alpha} \neq \vec{\sigma}$, $(\lambda + \mu) \cdot \vec{\alpha} \stackrel{!}{=} \lambda \cdot \vec{\alpha} + \mu \cdot \vec{\alpha}$ Hexa DA=02, DB= 1.02, BC= 1.02 => /OC= 1.02+ 1.02 /OB = (1+ M). a $|\vec{DC}| = |\vec{OB}| + |\vec{BC}| = |\lambda| \cdot |\vec{a}| + |\mu| \cdot |\vec{a}| = (\lambda + \mu) \cdot |\vec{a}| = |\vec{DD}|$ Uzbog: 02 = 00

2 cn. Hera
$$3 < 0$$
, $\mu < 0 = > 1 + \mu < 0$
 $(2 + \mu) \cdot \vec{\alpha} = (-1 - \mu) \cdot (-\vec{\alpha}) = (-1) \cdot (-a) + (-\mu) \cdot (-\vec{\alpha}) = 1 \cdot \vec{\alpha} + \mu \cdot \vec{\alpha}$
Nema 2 or 7) 1 cn. Nema 2

3.1
$$\lambda + \mu = 0 = \lambda = -\lambda$$

 $\lambda \cdot \vec{a} + \mu \cdot \vec{a} = \lambda \cdot \vec{a} + (-\lambda \cdot \vec{a}) = \vec{a} = \lambda \cdot \vec{a} + (-(\lambda \cdot \vec{a})) = \vec{a} = \lambda \cdot \vec{a} + (-(\lambda \cdot \vec{a})) = \vec{a} = \lambda \cdot \vec{a} + \mu \cdot \vec{a}$
=> $(\lambda + \mu) \cdot \vec{a} = \lambda \cdot \vec{a} + \mu \cdot \vec{a}$

3.2
$$\lambda + \mu > 0$$
 Pastn. $(\lambda + \mu) = \nu > 0$, $\mu (-\mu) > 0$ or $\mu = \nu$. $\vec{\alpha} = \nu$.

=>
$$\lambda \cdot \vec{\alpha} + \mu \cdot \vec{\alpha} = \vec{\lambda} \cdot \vec{\alpha} - \mu \vec{\alpha} + \mu \cdot \vec{\alpha} = \vec{\lambda} \cdot \vec{\alpha} + \vec{\delta} = \vec{\lambda} \cdot \vec{\alpha} = (\lambda + \mu) \cdot \vec{\alpha}$$

3.3
$$\lambda + \mu \geq 0$$
 Npunarame 7) 1 cm. 30 weepunqueHThree $\lambda > 0$ u $(-\lambda - \mu) > 0$. Here $-\lambda - \mu = \lambda$ $(\lambda + \nu) \cdot \vec{\alpha} = \lambda \cdot \vec{\alpha} + (-\lambda - \mu) \cdot \vec{\alpha} = \lambda \cdot \vec{\alpha} + (-\lambda - \mu) \cdot \vec{\alpha} = \lambda \cdot \vec{\alpha} + (-\lambda - \mu) \cdot \vec{\alpha} = \lambda \cdot \vec{\alpha} + (-\lambda - \mu) \cdot \vec{\alpha} = \lambda \cdot \vec{\alpha} + (-\lambda - \mu) \cdot \vec{\alpha} = \lambda \cdot \vec{\alpha} + (-\lambda - \mu) \cdot \vec{\alpha} = \lambda \cdot \vec{\alpha} + (-\lambda - \mu) \cdot \vec{\alpha} = \lambda \cdot \vec{\alpha} + \mu \cdot \vec{\alpha}$

4 cm.
$$\lambda \geq 0$$
, $\mu > 0$ e aharoruyeh

Scanned with CamScanner