- 1. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2}{x^2 + 1}$. Să se calculeze f'(1). (4 pct.)
 - a) $\frac{1}{2}$; b) $-\frac{1}{4}$; c) 0; d) $\frac{1}{4}$; e) $-\frac{1}{2}$; f) 1.
- 2. Să se determine $m,n\in\mathbb{R}$ astfel încât ecuația $x^4+3x^3+mx^2+nx-10=0$ să admită soluția $x_1=\mathrm{i}.$ (4 pct.)
 - a) m = -10, n = 3; b) m = 1, n = -1; c) m = -9, n = 3; d) m = 0, n = 0; e) m = -3, n = 10; f) m = 3, n = -10.
- 3. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 2x + m, & x \leq 1 \\ e^x e, & x > 1 \end{cases}$ să fie continuă pe \mathbb{R} . (4 pct.)
 - a) m = 3; b) m = 1; c) m = 4; d) m = 0; e) nu există; f) m = 3/2.
- 4. Să se rezolve inecuația $\sqrt{x} < 1$. (4 pct.)
 - a) [0,1); b) (0,1); c) [0,1]; d) (-1,1); e) nu are soluții; f) $[0,\infty)$.
- 5. Dacă (a,b) este o soluție a sistemului de ecuații $\left\{ \begin{array}{l} x+y=2\\ xy=1 \end{array} \right.$, atunci (4 pct.)
 - a) $a^2 + b^2 = 1$; b) $a^2 + b^2 = 2$; c) $a^2 + b^2 < 0$; d) $a \ne b$; e) $a^2b^2 = 2$; f) $a^2 + b^2 = 3$.
- 6. Să se calculeze termenul al zecelea al progresiei aritmetice cu primul termen $a_1 = 5$ și rația r = 2. (4 pct.)
 - a) 10; b) 25; c) 23; d) 20; e) 30; f) 18.
- 7. Să se calculeze $\int_0^1 \frac{x^2}{x^3 + 1} dx$. (4 pct.)
 - a) $2 \ln 2$; b) $\frac{\ln 3}{4}$; c) $\frac{\ln 3}{2}$; d) $3 \ln 2$; e) $\ln 2$; f) $\frac{\ln 2}{3}$.
- 8. Soluțiile ecuației $9^x 4 \cdot 3^x + 3 = 0$ sunt (4 pct.)
 - a) $x_1=3$; b) $x_1=0$, $x_2=1$; c) nu există; d) $x_1=0$, $x_2=3$; e) $x_1=1$, $x_2=3$; f) $x_1=-1$, $x_2=-3$. ß8Notând $3^x=y$, rezultă y>0 și înlocuind în relație obținem $y^2-4y+3=0$. Soluțiile ecuației sunt y=1 și y=3. Din $3^x=1$, obținem x=0 și din $3^x=3$ rezultă x=1; deci $x\in\{0,1\}$.
- 9. Expresia $E = \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{3} \sqrt{2}}$, are valoarea (4 pct.)
 - a) $3\sqrt{2}$; b) $3\sqrt{3}$; c) 2; d) $2\sqrt{2}$; e) $2\sqrt{3}$; f) 3.
- 10. Fie ecuația $x^2 ax + 4 = 0$, unde $a \in \mathbb{R}$ este un parametru. Dacă soluțiile x_1 și x_2 ale ecuației verifică egalitatea $x_1 + x_2 = 5$, atunci (4 pct.)
 - a) $x_1 = x_2$; b) a < 0; c) $x_1, x_2 \notin \mathbb{R}$; d) a = 0; e) a = 5; f) a = 4.
- 11. Să se calculeze $\lim_{n\to+\infty} (\sqrt{n^2+n} \sqrt{n^2+1})$. (4 pct.)
 - a) $-\frac{1}{2}$; b) $\frac{1}{2}$; c) ∞ ; d) nu există; e) 1; f) -1.
- 12. Pe \mathbb{R} se definește legea de compoziție x*y=xy+2ax+by. Să se determine relația dintre a și b astfel încât legea de compoziție să fie comutativă. (4 pct.)
 - a) a b = 2; b) a = 2b; c) nu există; d) a = b; e) $a = \frac{b}{2}$; f) a + b = 1.

13. Se consideră funcția $f:[0,\infty)\to\mathbb{R},\, f(x)=\int_x^{x+1}\frac{t^2}{\sqrt{t^4+t^2+1}}\,dt.$ Decideți: (6 pct.)

a) f este impară; b) f are două puncte de extrem; c) graficul lui f admite o asimptotă oblică; d) graficul lui f admite o asimptotă orizontală; e) f(0) = 0; f) f este convexă.

14. Să se calculeze limita șirului $a_n = \sum_{k=1}^n \frac{k(k+1)}{2x^{k-1}}$, unde |x| > 1. (6 pct.)

a)
$$\frac{x^3}{(x-1)^3}$$
; b) $\frac{x}{x-1}$; c) $\frac{1}{x}$; d) $\frac{1}{x-1}$; e) $\frac{x^2}{(x-1)^2}$; f) ∞ .

- 15. Să se calculeze $\lim_{x\to 0} \frac{(x-1)^2 1}{x}$. (6 pct.)
 - a) ∞ ; b) 2; c) 1; d) nu există; e) -2; f) $-\infty$.
- 16. Să se calculeze valoarea minimă a funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{4x^2 + 28x + 85} + \sqrt{4x^2 28x + 113}$. (8 pct.)
 - a) $14\sqrt{2}$; b) 20; c) $12\sqrt{3}$; d) 19; e) $9\sqrt{5}$; f) $8\sqrt{6}$.
- 17. Să se rezolve ecuația $\begin{vmatrix} 2 & x & 0 \\ x & -1 & x \\ 2 & -5 & 4 \end{vmatrix} = 0$. (8 pct.)

a)
$$x_1 = 0$$
, $x_2 = 3$; b) $x_1 = -5/2$; c) $x_1 = 3$; d) $x_1 = 0$, $x_2 = 4$; e) $x_1 = 0$; f) $x_1 = 1$, $x_2 = 4$.

- 18. Fie $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^2 + z + 1$. Să se calculeze $f\left(\frac{-1 + i\sqrt{3}}{2}\right)$. (8 pct.)
 - a) -1; b) i; c) 1 i; d) 1 + i; e) $\sqrt{3}$; f) 0.