A Book of Abstract Algebra (2nd Edition)

Chapter 24, Problem 1EA

1 Bookmark

Show all steps: (

ON

Problem

REMARK ON NOTATION: In some of the problems which follow, we consider polynomials with coefficients in \mathbb{Z}_n for various n. To simplify notation, we denote the elements of \mathbb{Z}_n by 1, 2, ..., n-1 rather than the more correct $\overline{1}, \overline{2}, \ldots, \overline{n-1}$

Let $a(x) = 2x^2 + 3x + 1$ and $b(x) = x^3 + 5x^2 + x$. Compute a(x) + b(x), a(x) - b(x) and a(x)b(x) in $\mathbb{Z}[x]$, $\mathbb{Z}_5[x]$, $\mathbb{Z}_6[x]$, and $\mathbb{Z}_7[x]$.

Step-by-step solution

Step 1 of 4

Consider two polynomials $a(x) = 2x^2 + 3x + 1$ and $b(x) = x^3 + 5x^2 + x$.

Consider the ring $\mathbb{Z}[x]$.

Now evaluate a(x)+b(x) by adding corresponding coefficients.

$$a(x)+b(x) = 2x^2 + 3x + 1 + x^3 + 5x^2 + x$$
$$= 0x^3 + 2x^2 + 3x + 1 + x^3 + 5x^2 + x + 0$$
$$= x^3 + 7x^2 + 4x + 1$$

Thus,

a(x)+b(x) in the ring $\mathbb{Z}[x]$ is x^3+7x^2+4x+1 .

Now evaluate a(x)-b(x).

$$a(x)-b(x) = 2x^2 + 3x + 1 - (x^3 + 5x^2 + x)$$

$$= 0x^3 + 2x^2 + 3x + 1 - (x^3 + 5x^2 + x + 0)$$

$$= -x^3 - 3x^2 + 2x + 1$$

Thus,

$$a(x)-b(x)$$
 in the ring $\mathbb{Z}[x]$ is $[-x^3-3x^2+2x+1]$.

Now evaluate a(x)b(x).

$$a(x)b(x) = (2x^2 + 3x + 1)(x^3 + 5x^2 + x)$$

$$= 2x^5 + 10x^4 + 2x^3 + 3x^4 + 15x^3 + 3x^2 + x^3 + 5x^2 + x$$

$$= 2x^5 + 13x^4 + 18x^3 + 8x^2 + x$$

Thus,

$$a(x)b(x)$$
 in the ring $\mathbb{Z}[x]$ is $2x^5 + 13x^4 + 18x^3 + 8x^2 + x$.

Comment

Step 2 of 4

Consider the ring $\mathbb{Z}_5[x]$.

Write the polynomials $a(x) = 2x^2 + 3x + 1$ and $b(x) = x^3 + 5x^2 + x$ as elements in $\mathbb{Z}_5[x]$.

For this compute the remainder get by dividing each coefficients by 5.

Thus,

$$a(x) = 2 \pmod{5} x^2 + 3 \pmod{5} x + 1 \pmod{5}$$
$$= 2x^2 + 3x + 1$$

And,

$$b(x) = 1 \pmod{5} x^3 + 5 \pmod{5} x^2 + 1 \pmod{5} x$$

= $x^3 + x$

Now evaluate a(x)+b(x) by adding corresponding coefficients. Here operation addition is addition modulo 5.

$$a(x)+b(x) = 2x^2 + 3x + 1 + x^3 + x$$

= $x^3 + 2x^2 + 4x + 1$

Thus,

$$a(x)+b(x)$$
 in the ring $\mathbb{Z}_5[x]$ is x^3+2x^2+4x+1 .

Now evaluate a(x)-b(x).

$$a(x)-b(x) = 2x^2 + 3x + 1 - (x^3 + x)$$

$$= 0x^3 + 2x^2 + 3x + 1 - (x^3 + 0x^2 + x + 0)$$

$$= -x^3 + 2x^2 + 2x + 1$$

Thus,

$$a(x)-b(x)$$
 in the ring $\mathbb{Z}_5[x]$ is $-x^3+2x^2+2x+1$

Now evaluate a(x)b(x).

$$a(x)b(x) = (2x^2 + 3x + 1)(x^3 + x)$$
$$= 2x^5 + 2x^3 + 3x^4 + 3x^2 + x^3 + x$$
$$= 2x^5 + 3x^3 + 3x^4 + 3x^2 + x$$

3 of 4		
3 of 4		

Consider the ring $\mathbb{Z}_6[x]$.

Write the polynomials $a(x) = 2x^2 + 3x + 1$ and $b(x) = x^3 + 5x^2 + x$ as elements in $\mathbb{Z}_6[x]$.

For this compute the remainder get by dividing each coefficients by 6.

Thus,

$$a(x) = 2 \pmod{6} x^2 + 3 \pmod{6} x + 1 \pmod{6}$$
$$= 2x^2 + 3x + 1$$

And,

$$b(x) = 1 \pmod{6} x^3 + 5 \pmod{6} x^2 + 1 \pmod{6} x$$

= $x^3 + x^2 + x$

Now evaluate a(x)+b(x) by adding corresponding coefficients. Here operation addition is addition modulo 6.

$$a(x)+b(x) = 2x^2 + 3x + 1 + x^3 + 5x^2 + x$$
$$= x^3 + x^2 + 4x + 1$$

Thus.

$$a(x)+b(x)$$
 in the ring $\mathbb{Z}_6[x]$ is x^3+x^2+4x+1

Now evaluate a(x)-b(x).

$$a(x)-b(x) = 2x^2 + 3x + 1 - (x^3 + 5x^2 + x)$$

$$= 0x^3 + 2x^2 + 3x + 1 - (x^3 + 5x^2 + x + 0)$$

$$= -x^3 - 3x^2 + 2x + 1$$

Thus,

$$a(x)-b(x)$$
 in the ring $\mathbb{Z}_6[x]$ is $[-x^3-3x^2+2x+1]$.

Now evaluate a(x)b(x). Here multiplication is multiplication modulo 6.

$$a(x)b(x) = (2x^{2} + 3x + 1)(x^{3} + 5x^{2} + x)$$

$$= 2x^{5} + 4x^{4} + 2x^{3} + 3x^{4} + 3x^{3} + 3x^{2} + x^{3} + 5x^{2} + x$$

$$= 2x^{5} + x^{4} + 0x^{3} + 2x^{2} + x$$

$$= 2x^{5} + x^{4} + 2x^{2} + x$$

Thus,

$$a(x)b(x)$$
 in the ring $\mathbb{Z}_6[x]$ is $2x^5 + x^4 + 2x^2 + x$

Comment

Step 4 of 4

Consider the ring $\mathbb{Z}_{7}[x]$.

Write the polynomials $a(x) = 2x^2 + 3x + 1$ and $b(x) = x^3 + 5x^2 + x$ as elements in $\mathbb{Z}_6[x]$.

For this compute the remainder get by dividing each coefficients by 7.

Thus,

$$a(x) = 2 \pmod{7} x^2 + 3 \pmod{7} x + 1 \pmod{7}$$
$$= 2x^2 + 3x + 1$$

And,

$$b(x) = 1 \pmod{7} x^3 + 5 \pmod{7} x^2 + 1 \pmod{7} x$$
$$= x^3 + x^2 + x$$

Now evaluate a(x)+b(x) by adding corresponding coefficients. Here operation addition is addition modulo 7.

$$a(x)+b(x) = 2x^2 + 3x + 1 + x^3 + 5x^2 + x$$
$$= x^3 + 0x^2 + 4x + 1$$
$$= x^3 + 4x + 1$$

Thus,

$$a(x)+b(x)$$
 in the ring $\mathbb{Z}_{7}[x]$ is $x^{3}+4x+1$.

Now evaluate a(x)-b(x).

$$a(x)-b(x) = 2x^2 + 3x + 1 - (x^3 + 5x^2 + x)$$

$$= 0x^3 + 2x^2 + 3x + 1 - (x^3 + 5x^2 + x + 0)$$

$$= -x^3 - 3x^2 + 2x + 1$$

Thus,

$$a(x)-b(x)$$
 in the ring $\mathbb{Z}_{7}[x]$ is $[-x^3-3x^2+2x+1]$.

Now evaluate a(x)b(x). Here multiplication is multiplication modulo 7.

$$a(x)b(x) = (2x^2 + 3x + 1)(x^3 + 5x^2 + x)$$

$$= 2x^5 + 3x^4 + 2x^3 + 3x^4 + x^3 + 3x^2 + x^3 + 5x^2 + x$$

$$= 2x^5 + 6x^4 + 4x^3 + x^2 + x$$

Thus,

$$a(x)b(x)$$
 in the ring $\mathbb{Z}_{7}[x]$ is $2x^{5}+6x^{4}+4x^{3}+x^{2}+x$

Comment