Solutions to Time Series Analysis: with Applications in ${\bf R}$

Johan Larsson 2017-04-04

Contents

Preface			
1	Introduction		
	1.1	Larain	7
	1.2	Colors	8
	1.3	Random, normal time series	8
	1.4	Random, χ^2 -distributed time series	10
	1.5	t(5)-distributed, random values	11
	1.6	Dubuque temperature series	13
2	Fun	damental concepts	15
	2.1	Basic properties of expected value and covariance	15
	2.2	Dependence and covariance	15
	2.3	Strict and weak stationarity	15
	2.4	Zero-mean white noise	16
	2.5	Zero-mean stationary series	17
	2.6	Stationary time series	17
	2.7	First and second-order difference series	18
	2.8	Generalized difference series	18
	2.9	Zero-mean stationary difference series	18
	2.10	Zero-mean, unit-variance process	19
	2.11	Drift	19
	2.12	Periods	19
	2.13	Drift, part 2	20
	2.14	Stationarity, again	20
	2.15	Random variable, zero mean	20
	2.16	Mean and variance	20
	2.17	Variance of sample mean	21
	2.18	Sample variance	21

3	Trends	27
	2.30 Rayleigh distribution	24
	2.29 Random cosine wave further	24
	2.28 Random cosine wave extended	24
	2.27 Polynomials	24
	2.26 Semivariogram	23
	2.25 Random cosine wave	23
	2.24 Measurement noise	23
	2.23 Stationarity in sums of stochastic processes	23
	2.22 Asymptotic stationarity	22
	2.21 Random walk with random starting value	22
	2.20 Random walk	21
	2.19 Random walk with drift	21

Preface

This book contains solutions to the problems in the book *Time Series Analysis: with Applications in R*, third edition, by Cryer and Chan. It is provided as a github repository so that anybody may contribute to its development. Unlike the book, the solutions here use lattice graphics when possible instead of base graphics.

6 CONTENTS

Chapter 1

Introduction

1.1 Larain

Use software to produce the time series plot shown in Exhibit 1.2, on page 2. The data are in the file named larain.

```
library(TSA)
library(latticeExtra)

data(larain, package = "TSA")
```

```
xyplot(larain, ylab = "Inches", xlab = "Year", type = "o")
```


1.2 Colors

Produce the time series plot displayed in Exhibit 1.3, on page 3. The data file is named color.

```
data(color)
xyplot(color, ylab = "Color property", xlab = "Batch", type = "o")
```


1.3 Random, normal time series

Simulate a completely random process of length 48 with independent, normal values. Plot the time series plot. Does it look "random"? Repeat this exercise several times with a new simulation each time.

```
xyplot(as.ts(rnorm(48)))
xyplot(as.ts(rnorm(48)))
```


As far as we can tell there is no discernable pattern here.

1.4 Random, χ^2 -distributed time series

Simulate a completely random process of length 48 with independent, chi-square distributed values, each with 2 degrees of freedom. Display the time series plot. Does it look "random" and nonnormal? Repeat this exercise several times with a new simulation each time.

```
xyplot(as.ts(rchisq(48, 2)))
xyplot(as.ts(rchisq(48, 2)))
```


The process appears random, though non-normal.

1.5 t(5)-distributed, random values

Simulate a completely random process of length 48 with independent, t-distributed values each with 5 degrees of freedom. Construct the time series plot. Does it look "random" and nonnormal? Repeat this exercise several times with a new simulation each time.

It looks random but not normal, though it should be approximately so, considering the distribution that we have sampled from.

1.6 Dubuque temperature series

Construct a time series plot with monthly plotting symbols for the Dubuque temperature series as in Exhibit 1.7, on page 6. The data are in the file named tempdub.

```
data(tempdub)
xyplot(tempdub, ylab = "Temperature", xlab = "Year")
```


Chapter 2

Fundamental concepts

2.1 Basic properties of expected value and covariance

(a)

$$Cov[X,Y] = Corr[X,Y]\sqrt{Var[X]Var[Y]}$$
(2.1)

$$=0.25\sqrt{9\times4} = 1.5\tag{2.2}$$

$$Var[X,Y] = Var[X] + Var[Y] + 2Cov[X,Y]$$
(2.3)

$$= 9 + 4 + 2 \times 3 = 16 \tag{2.4}$$

(2.5)

(b)
$$Cov[X, X + Y] = Cov[X, X] + Cov[X, Y] = Var[X] + Cov[X, Y] = 9 + 1.5 = 10.5$$

(c)

$$Corr[X + Y, X - Y] = Corr[X, X] + Corr[X, -Y] + Corr[Y, X] + Corr[Y, -Y]$$

$$(2.6)$$

$$=\operatorname{Corr}[Y,X] + \operatorname{Corr}[Y,-Y] \tag{2.7}$$

$$=1 - 0.25 + 0.25 - 1 \tag{2.8}$$

$$=0 (2.9)$$

(2.10)

2.2 Dependence and covariance

 $\operatorname{Cov}[X+Y,X-Y] = \operatorname{Cov}[X,X] + \operatorname{Cov}[X,-Y] + \operatorname{Cov}[Y,X] + \operatorname{Cov}[Y,-Y] = \operatorname{Var}[X] - \operatorname{Cov}[X,Y] + \operatorname{Cov}[X,Y] - \operatorname{Var}[Y] = 0$ since $\operatorname{Var}[X] = \operatorname{Var}[Y].$

2.3 Strict and weak stationarity

(a) We have that

$$P(Y_{t_1}, Y_{t_2}, \dots, Y_{t_n}) = P(X_1, X_2, \dots, X_n) = P(Y_{t_1-k}, Y_{t_2-k}, \dots, Y_{t_n-k}),$$

which satisfies our requirement for strict stationarity.

(b) The autocovariance is given by

$$\gamma_{t,s} = \operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}[X, X] = \operatorname{Var}[X] = \sigma^2.$$

(c)

Figure 2.1: A white noise time series: no drift, independence between observations.

2.4 Zero-mean white noise

(a) $E[Y_t] = E[e_t + \theta e_{t-1}] = E[e_t] + \theta E[e_{t-1}] = 0 + 0 = 0 \\ V[Y_t] = V[e_t + \theta e_{t-1}] = V[e_t] + \theta^2 V[e_{t-1}] = \sigma_e^2 + \theta^2 \sigma_e^2 = \sigma_2^2 (1 + \theta^2)$ For k = 1 we have

$$C[e_t + \theta e_{t-1}, e_{t-1} + \theta e_{t-2}] = C[e_t, e_{t-1}] + C[e_t, \theta e_{t-2}] + C[\theta e_{t-1}, e_{t-1}] + C[\theta e_{t-1}, \theta e_{t-2}] = 0 + 0 + \theta V[e_{t-1}] + 0 = \theta \sigma_e^2, \operatorname{Corr}[Y_t = \theta e_{t-1}, \theta e_{t-1}] + C[\theta e_{t-1}, \theta e_{t-$$

and for k = 0 we get

$$Corr[Y_t, Y_{t-k}] = Corr[Y_t, Y_t] = 1$$

and, finally, for k > 0:

$$C[e_t + \theta e_{t-1}, e_{t-k} + \theta e_{t-k-1}] = C[e_t, e_{t-k}] + C[e_t, e_{t-1-k}] + C[\theta e_{t-1}, e_{t-k}] + C[\theta e_{t-1}, \theta e_{t-1-k}] = 0$$

given that all terms are independent. Taken together, we have that

$$Corr[Y_t, Y_{t-k}] = \begin{cases} 1 & \text{for } k = 0\\ \frac{\theta}{1+\theta^2} & \text{for } k = 1 \\ 0 & \text{for } k > 1 \end{cases}$$

And, as required,

$$\operatorname{Corr}[Y_t, Y_{t-k}] = \begin{cases} \frac{3}{1+3^2} = \frac{3}{10} & \text{if } \theta = 3\\ \frac{1/3}{1+(1/3)^2} = \frac{1}{10/3} = \frac{3}{10} & \text{if } \theta = 1/3 \end{cases}.$$

(b) No, probably not. Given that ρ is standardized, we will not be able to detect any difference in the variance regardless of the values of k.

2.5 Zero-mean stationary series

(a)
$$\mu_t = E[Y_t] = E[5 + 2t + X_t] = 5 + 2E[t] + E[X_t] = 5 + 2t + 0 = 2t + 5$$

(b)
$$\gamma_k = \text{Corr}[5 + 2t + X_t, 5 + 2(t - k) + X_{t-k}] = \text{Corr}[X_t, X_{t-k}]$$

(c) No, the mean function (μ_t) is constant and the aurocovariance $(\gamma_{t,t-k})$ free from t.

2.6 Stationary time series

(a)
$$\operatorname{Cov}[a + X_t, b + X_{t-k}] = \operatorname{Cov}[X_t, X_{t-k}],$$

which is free from t for all k because X_t is stationary.

(b)
$$\mu_t = E[Y_t] = \begin{cases} E[X_t] & \text{for odd } t \\ 3 + E[X_t] & \text{for even } t \end{cases}.$$

Since μ_t varies depending on t, Y_t is not stationary.

2.7 First and second-order difference series

(a)
$$\mu_t = E[W_t] = E[Y_t - Y_{t-1}] = E[Y_t] - E[Y_{t-1}] = 0$$

because Y_t is stationary.

$$\text{Cov}[W_t] = \text{Cov}[Y_t - Y_{t-1}, Y_{t-k} - Y_{t-1-k}] = \text{Cov}[Y_t, Y_{t-k}] + \text{Cov}[Y_t, Y_{t-1-k}] + \text{Cov}[-Y_{t-k}, Y_{t-k}] + \text{Cov}[-Y_{t-k}, Y_{t-k}] = \text{Cov}[Y_t - Y_{t-1-k}] = \text{Cov}[Y_t - Y_{t-1-k}] + \text{Cov}[Y_t - Y_{t-1-k}] + \text{Cov}[Y_t - Y_{t-1-k}] + \text{Cov}[-Y_t - Y_{t-1-k}] = \text{Cov}[Y_t - Y_{t-1-k}] + \text{Cov}[-Y_t - Y_t - Y_{t-1-k}] + \text{Cov}[-Y_t - Y_t - Y_t$$

(b) In (a), we discovered that the difference between two stationary processes, ∇Y_t itself was stationary. It follows that the difference between two of these differences, $\nabla^2 Y_t$ is also stationary.

2.8 Generalized difference series

$$E[W_t] = c_1 E[Y_t] + c_2 E[Y_t] + \dots + c_n E[Y_t]$$
(2.11)

$$= E[Y_t](c_1 + c_2 + \dots + c_n), \tag{2.12}$$

and thus the expected value is constant. Moreover,

$$Cov[W_t] = Cov[c_1Y_t + c_2Y_{t-1} + \dots + c_nY_{t-k}, c_1Y_{t-k} + c_2Y_{t-k-1} + \dots + c_nY_{t-k-n}]$$
(2.13)

$$= \sum_{i=0}^{n} \sum_{j=0}^{n} c_i c_j \operatorname{Cov}[Y_{t-j} Y_{t-i-k}]$$
(2.14)

$$=\sum_{i=0}^{n}\sum_{j=0}^{n}c_{i}c_{j}\gamma_{j-k-i},$$
(2.15)

which is free of t; consequently, W_t is stationary.

2.9 Zero-mean stationary difference series

(a)
$$E[Y_t] = \beta_0 + \beta_1 t + E[X_t] = \beta_0 + \beta_1 t + \mu_{t_m},$$

which is not free of t and hence not stationary.

$$Cov[Y_t] = Cov[X_t, X_t - 1] = \gamma_{t-1}$$

$$E[W_t] = E[Y_t - Y_{t-1}] = E[\beta_0 + \beta_1 t + X_t - (\beta_0 + \beta_1 (t-1) + X_{t-1})] = \beta_0 + \beta_1 t - \beta_0 - \beta_1 t + \beta_1 = \beta_1$$

is free of t and, furthermore, we have

$$Cov[W_t] = Cov[\beta_0 + \beta_1 t + X_t, \beta_0 + \beta_1 (t-1) + X_{t-1}] = Cov[X_t, X_{t-1}] = \gamma_k$$

which is also free of t, thereby proving that W_t is stationary.

(b)
$$E[Y_{t}] = E[\mu_{t} + X_{t}] = \mu_{t} + \mu_{t} = 0 + 0 = 0, \quad \text{andCov}[Y_{t}] = \text{Cov}[\mu_{t} + X_{t}, \mu_{t-k} + X_{t-k}] = \text{Cov}[X_{t}, X_{t-k}] = \gamma_{k}$$
$$\nabla^{m} Y_{t} = \nabla(\nabla^{m} Y_{t})$$

Currently unsolved.

2.10 Zero-mean, unit-variance process

(a) $\mu_{t} = E[Y_{t}] = E[\mu_{t} + \sigma_{t}X_{t}] = \mu_{t} + \sigma_{t}E[X_{t}] = \mu_{t} + \sigma_{t} \times 0 = \mu_{t}\gamma_{t,t-k} = \text{Cov}[Y_{t}] = \text{Cov}[\mu_{t} + \sigma_{t}X_{t}, \mu_{t-k} + \sigma_{t-k}X_{t-k}] = \sigma_{t}\sigma_{t-k}C[X_{t}] = \sigma_$

(b) First, we have

$$Var[Y_t] = Var[\mu_t + \sigma_t X_t] = 0 + \sigma_t^2 Var[X_t] = \sigma_t^2 \times 1 = \sigma_t^2$$

since $\{X_t\}$ has unit-variance. Futhermore,

$$\operatorname{Corr}[Y_t, Y_{t-k}] = \frac{\sigma_t \sigma_{t-k} \rho_k}{\sqrt{\operatorname{Var}[Y_t] \operatorname{Var}[Y_{t-k}]}} = \frac{\sigma_t \sigma_{t-k} \rho_k}{\sigma_t \sigma_{t-k}} = \rho_k,$$

which depends only on the time lag, k. However, $\{Y_t\}$ is not necessarily stationary since μ_t may depend on t.

(c) Yes, ρ_k might be free from t but if σ_t is not, we will have a non-stationary time series with autocorrelation free from t and constant mean.

2.11 Drift

(a) $\operatorname{Cov}[X_t, X_{t-k}] = \gamma_k E[X_t] = 3t$

 $\{X_t\}$ is not stationary because μ_t varies with t.

(b) $E[Y_t] = 3 - 3t + E[X_t] = 7 - 3t - 3t = 7 \operatorname{Cov}[Y_t, Y_{t-k}] = \operatorname{Cov}[7 - 3t + X_t, 7 - 3(t-k) + X_{t-k}] = \operatorname{Cov}[X_t, X_{t-k}] = \gamma_k$ Since the mean function of $\{Y_t\}$ is constant (7) and its autocovariance free of t, $\{Y_t\}$ is stionary.

2.12 Periods

 $E[Y_t] = E[e_t - e_{t-12}] = E[e_t] - E[e_{t-12}] = 0 \text{Cov}[Y_t, Y_{t-k}] = \text{Cov}[e_t - e_{t-12}, e_{t-k} - e_{t-12-k}] = \text{Cov}[e_t, e_{t-k}] - \text{Cov}[e_t, e_{t-12-k}] - \text{Cov}[e_t, e_{t-12-k}] = 0 \text{Cov}[e_t, e_{t-12-k}] - \text{Cov}[e_t, e_{t-12-k}]$

Then, as required, we have

$$\operatorname{Cov}[Y_t, Y_{t-k}] = \begin{cases} \operatorname{Cov}[e_t, e_{t-12}] - \operatorname{Cov}[e_t, e_t] - \\ \operatorname{Cov}[e_{t-12}, e_{t-12}] + \operatorname{Cov}[e_{t-12}, e_t] = \\ \operatorname{Var}[e_t] - \operatorname{Var}[e_{t-12}] \neq 0 & \text{for } k = 12 \end{cases}$$

$$\operatorname{Cov}[e_t, e_{t-k}] - \operatorname{Cov}[e_t, e_{t-12-k}] - \\ \operatorname{Cov}[e_{t-12}, e_{t-k}] + \operatorname{Cov}[e_{t-12}, e_{t-12-k}] = \\ 0 + 0 + 0 + 0 = 0 & \text{for } k \neq 12 \end{cases}$$

2.13 Drift, part 2

(a)
$$E[Y_t] = E[e_t - \theta e_{t-1}^2] = E[e_t] - \theta E[e_{t-1}^2] = 0 - \theta \text{Var}[e_{t-1}] = -\theta \sigma_e^2$$

And thus the requirement of constant variance is fulfilled. Moreover,

$$Var[Y_t] = Var[e_t - \theta e_{t-1}^2] = Var[e_t] + \theta^2 Var[e_{t-1}^2] = \sigma_e^2 + \theta^2 (E[e_{t-1}^4] - E[e_{t-1}^2]^2),$$

where

$$E[e_{t-1}^4] = 3\sigma_e^4$$
 and $E[e_{t-1}^2]^2 = \sigma_e^4$,

gives us

$$Var[Y_t] = \sigma_e^2 + \theta(3\sigma_e^4 - \sigma_e^2) = \sigma_e^2 + 2\theta^2\sigma_e^4$$

and

$$Cov[Y_t, Y_{t-1}] = Cov[e_t - \theta e_{t-1}^2, e_{t-1} - \theta e_{t-2}^2] = Cov[e_t, e_{t-1}] + Cov[e_t, -\theta e_{t-2}^2] + Cov[-\theta e_{t-1}^2, e_{t-1}]Cov[-\theta e_{t-1}^2, -\theta e_{t-2}^2] = Cov[e_t, e_{t-1}] + Cov[e_t, -\theta e_{t-2}^2] + Cov[-\theta e_{t-1}^2, e_{t-1}] + Cov[-\theta e_{t-1}^2, e_{t-1}^2, e_{t-1}] + Cov[-\theta e_{t-1}^2, e_{t-1}^2, e_{t-1}] + Cov[-\theta e_{t-1}^2, e_{t-1}^2, e_{t-1$$

which means that the autocorrelation function $\gamma_{t,s}$ also has to be zero.

(b) The autocorrelation of $\{Y_t\}$ is zero and its mean function is constant, thus $\{Y_t\}$ must be stationary.

2.14 Stationarity, again

(a) $E[Y_t] = E[\theta_0 + te_t] = \theta_0 + E[e_t] = \theta_0 + t \times 0 = \theta_0 \text{Var}[Y_t] = \text{Var}[\theta_0] + \text{Var}[te_t] = 0 + t^2 \sigma_e^2 = t^2 \sigma_e^2$ So $\{Y_t\}$ is not stationary.

(b) $E[W_t] = E[\nabla Y_t] = E[\theta_0 + te_t - \theta_0 - (t-1)e_{t-1}] = tE[e_t] - tE[e_{t-1} + E[e_{t-1}]] = 0 \text{Var}[\nabla Y_t] = \text{Var}[te_t] = -\text{Var}[(t-1)e_{t-1}] = t \text{ which varies with } t \text{ and means that } \{W_t\} \text{ is not stationary.}$

(c) $E[Y_t] = E[e_t e_{t-1}] = E[e_t] E[e_{t-1}] = 0 \text{Cov}[Y_t, Y_{t-1}] = \text{Cov}[e_t e_{t-1}, e_{t-1} e_{t-2}] = E[(e_t e_{t-1} - \mu_t^2)(e_{t-1} e_{t-2} - \mu_t^2)] = E[e_t] E[e_t]$ Both the covariance and the mean function are zero, hence the process is stationary.

2.15 Random variable, zero mean

- (a) $E[Y_t] = (-1)^t E[X] = 0$
- (b) $\operatorname{Cov}[Y_t, Y_{t-k}] = \operatorname{Cov}[(-1)^t X, (-1)^{t-k} X] = (-1)^{2t-k} \operatorname{Cov}[X, X] = (-1)^k \operatorname{Var}[X] = (-1)^k \sigma_t^2$
- (c) Yes, the covariance is free of t and the mean is constant.

2.16 Mean and variance

$$E[Y_t] = E[A + X_t] = E[A] + E[X_t] = \mu_A + \mu_X \text{Cov}[Y_t, Y_{t-k}] = \text{Cov}[A + X_t, A + X_{t-k}] = \text{Cov}[A, A] + \text{Cov}[A, X_{t-k}] + \text{Cov}[X_t, A] + \text{Cov}[A, X_{t-k}] +$$

2.17 Variance of sample mean

$$Var[\bar{Y}] = Var \left[\frac{1}{n} \sum_{t=1}^{n} Y_t \right] = \frac{1}{n^2} Var \left[\sum_{t=1}^{n} Y_t \right] = \frac{1}{n^2} Cov \left[\sum_{t=1}^{n} Y_t, \sum_{s=1}^{n} Y_s \right] = \frac{1}{n^2} \sum_{t=1}^{n} \sum_{s=1}^{n} \gamma_{t-s}$$

Setting k = t - s, j = t gives us

$$\operatorname{Var}[\bar{Y}] = \frac{1}{n^2} \sum_{j=1}^n \sum_{j=k=1}^n \gamma_k = \frac{1}{n^2} \sum_{j=1}^n \sum_{j=k+1}^{n+k} \gamma_k = \frac{1}{n^2} \left(\sum_{k=1}^{n-1} \sum_{j=k+1}^n \gamma_k + \sum_{k=-n+1}^0 \sum_{j=1}^{n+k} \gamma_k \right) = \frac{1}{n^2} \left(\sum_{k=1}^{n-1} (n-k) \gamma_k + \sum_{k=-n+1}^0 (n+k) \gamma_k \right)$$

2.18 Sample variance

(b)

(a) $\sum_{t=1}^{n} (Y_t - \mu)^2 = \sum_{t=1}^{n} ((Y_t - \bar{Y}) + (\bar{Y} - \mu))^2 = \sum_{t=1}^{n} ((Y_t - \bar{Y})^2 - 2(Y_t - \bar{Y})(\bar{Y} - \mu) + (\bar{Y} - \mu)^2) = n(\bar{Y} - \mu)^2 + 2(\bar{Y} - \mu) \sum_{t=1}^{n} (Y_t - \bar{Y}) + \sum_{t=1}^{n} (Y_t - \mu)^2 = \sum_{t=1}^{n} ((Y_t - \bar{Y}) + (\bar{Y} - \mu))^2 = \sum_{t=1}^{n} ((Y_t - \bar{Y}) + (Y_t - \mu))^2 = \sum_{t=1}^{n} ((Y_t - \bar{Y}) + (Y_t - \mu))^2 = \sum_{t=1}^{n} ((Y_t - \bar{Y}) + (Y_t - \mu))^2 = \sum_{t=1}^{n} ((Y_t - \bar{Y}) + (Y_t - \mu))^2 = \sum_{t=1}^{n} ((Y_t$

$$E[s^{2}] = E\left[\frac{n}{n-1}\sum_{t=1}^{n}(Y_{t}-\bar{Y})^{2}\right] = \frac{n}{n-1}E\left[\sum_{t=1}^{n}\left((Y_{t}-\mu)^{2}+n(\bar{Y}-\mu)^{2}\right)\right] = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]\right) = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]\right) = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]\right) = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]\right) = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]\right) = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]\right) = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]\right) = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]\right) = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]+$$

(c) Since $\gamma_k = 0$ for $k \neq 0$, in our case for all k, we have

$$E[s^2] = \gamma_0 - \frac{2}{n-1} \sum_{t=1}^{n} \left(1 - \frac{k}{n}\right) \times 0 = \gamma_0$$

2.19 Random walk with drift

(a) $Y_1 = \theta_0 + e_1 Y_2 = \theta_0 + \theta_0 + e_2 + e_1 Y_t = \theta_0 + \theta_0 + \dots + \theta_0 + e_t + e_{t-1} + \dots + e_1 = Y_t = t\theta_0 + e_t + e_{t-1} + \dots + e_1 \quad \Box$

(b) $\mu_t = E[Y_t] = E[t\theta_0 + e_t + e_{t-1} + \dots + e_1] = t\theta_0 + E[e_t] + E[e_{t-1}] + \dots + E[e_1] = t\theta_0 + 0 + 0 + \dots + 0 = t\theta_0$

(c)
$$\gamma_{t,t-k} = \text{Cov}[Y_t, Y_{t-k}] = \text{Cov}[t\theta_0 + e_t, +e_{t-1} + \dots + e_1, (t-k)\theta_0 + e_{t-k}, +e_{t-1-k} + \dots + e_1] = \text{Cov}[e_{t-k}, +e_{t-1-k} + \dots + e_1, e_{t-1-k} + \dots + e_t] = \text{Cov}[e_{t-k}, +e_{t-1-k} + \dots + e_t] = \text{Cov}[e_{t-k}, +e_t]$$

2.20 Random walk

(a) $\mu_1 = E[Y_1] = E[e_1] = 0 \\ \mu_2 = E[Y_2] = E[Y_1 - e_2] = E[Y_1] - E[e_2] = 0 - 0 = 0 \\ \dots \\ \mu_{t-1} = E[Y_{t-1}] = E[Y_{t-2} - e_{t-1}] = E[Y_{t-2} - e_{t$

(b)
$$Var[Y_1] = \sigma_e^2 Var[Y_2] = Var[Y_1 - e_2] = Var[Y_1] + Var[e_1] = \sigma_e^2 + \sigma_e^2 = 2\sigma_e^2 \dots Var[Y_{t-1}] = Var[Y_{t-2} - e_{t-1}] = Var[Y_{t-2}] + Var[e_1] = Var[e_1] + Var[e_1] = Var[e_1] + Var[e_1] = Var[e_1] + Var[e$$

(c)
$$\operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}[Y_t, Y_t + e_{t+1} + e_{t+2} + \dots + e_s] = \operatorname{Cov}[Y_t, Y_t] = \operatorname{Var}[Y_t] = t\sigma_e^2$$

2.21 Random walk with random starting value

(a)
$$E[Y_t] = E[Y_0 + e_t + e_{t-1} + \dots + e_1] = E[Y_0] + E[e_t] + E[e_{t-1}] + E[e_{t-2}] + \dots + E[e_1] = \mu_0 + 0 + \dots + 0 = \mu_0 \quad \Box$$

(b)
$$Var[Y_t] = Var[Y_0 + e_t + e_{t-1} + \dots + e_1] = Var[Y_0] + Var[e_t] + Var[e_{t-1}] + \dots + Var[e_1] = \sigma_0^2 + t\sigma_e^2 \quad \Box$$

(c)
$$Cov[Y_t, Y_s] = Cov[Y_t, Y_t + e_{t+1} + e_{t+2} + \dots + e_s] = Cov[Y_t, Y_t] = Var[Y_t] = \sigma_0^2 + t\sigma_e^2$$

(d)
$$\operatorname{Corr}[Y_t, Y_s] = \frac{\sigma_0^2 + t\sigma_e^2}{\sqrt{(\sigma_0^2 + t\sigma_e^2)(\sigma_0^2 + s\sigma_e^2)}} = \sqrt{\frac{\sigma_0^2 + t\sigma_e^2}{\sigma_0^2 + s\sigma_e^2}} \quad \Box$$

2.22 Asymptotic stationarity

(a)
$$E[Y_1] = E[e_1] = 0E[Y_2] = E[cY_1 + e_2] = cE[Y_1] + E[e_2] = 0 \dots E[Y_t] = E[cY_{t-1} + e_t] = cE[Y_{t-1}] + E[e_t] = 0 \quad \Box$$

(b)
$$\operatorname{Var}[Y_1] = \operatorname{Var}[e_1] = \sigma_e^2 \operatorname{Var}[Y_2] = \operatorname{Var}[cY_1 + e_2] = c^2 \operatorname{Var}[Y_{t-1}] + \operatorname{Var}[e_2] = c^2 \sigma_e^2 + \sigma_e^2 = \sigma_e^2 (1 + c^2) \dots \operatorname{Var}[Y_t] = \sigma_e^2 (1 + c^2 + c^4 - c^4) + \sigma_e^2 (1 + c^4) +$$

(c)

$$Cov[Y_t, Y_{t-1}] = Cov[cY_{t-1} + e_t, Y_{t-1}] = cCov[Y_{t-1}, Y_{t-1}] = cVar[Y_{t-1}] \quad givingCorr[Y_t, Y_{t-1}] = \frac{cVar[Y_{t-1}]}{\sqrt{Var[Y_t]Var[Y_{t-1}]}} = cVar[Y_{t-1}] - cVar[Y_{t-1}] = \frac{cVar[Y_{t-1}]}{\sqrt{Var[Y_t]Var[Y_{t-1}]}} = cVar[Y_{t-1}] - cVar[Y_{t-1}] - cVar[Y_{t-1}] = \frac{cVar[Y_{t-1}]}{\sqrt{Var[Y_t]Var[Y_{t-1}]}} = cVar[Y_{t-1}] - c$$

And, in the general case,

 $Cov[Y_t, Y_{t-k}] = Cov[cY_{t-1} + e_t, Y_{t-k}] = cCov[cY_{t-2} + e_{t-1}, Y_{t-k}] = c^3Cov[Y_{t-2} + e_{t-1}, Y_{t-k}] = \dots = c^kVar[Y_{t-k}]$ giving

$$\operatorname{Corr}[Y_t, Y_{t-k}] = \frac{c^k \operatorname{Var}[Y_{t-k}]}{\sqrt{\operatorname{Var}[Y_t] \operatorname{Var}[Y_{t-k}]}} = c^k \sqrt{\frac{\operatorname{Var}[Y_{t-k}]}{\operatorname{Var}[Y_t]}} \quad \Box$$

(d)
$$\operatorname{Var}[Y_t] = \sigma_e^2 (1 + c^2 + c^4 + \dots + c^{2t-2}) = \sigma_e^2 \sum_{t=1}^n c^{2(t-1)} = \sigma_e^2 \sum_{t=0}^{n-1} c^{2t} = \sigma_e^2 \frac{1 - c^{2t}}{1 - c^2}$$

And because

$$\lim_{t\to\infty}\sigma_e^2\frac{1-c^{2t}}{1-c^2}=\sigma_e^2\frac{1}{1-c^2}\quad\text{since }|c|<1,$$

which is free of t, $\{Y_t\}$ can be considered asymptotically stationary.

(e)

$$Y_t = c(cY_{t-2} + e_{t-1}) + e_t = \dots = e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + c^2 e_1 + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \operatorname{Var}[Y_t] = \operatorname{Var}[e_t + ce_{t-1} + ce$$

Futhermore,

$$E[Y_1] = E\left[\frac{e_1}{\sqrt{1-c^2}}\right] = \frac{E[e_1]}{\sqrt{1-c^2}} = 0E[Y_2] = E[cY_1 + e_2] = cE[Y_1] = 0 \dots E[Y_t] = E[cY_{t-1} + e_2] = cE[Y_{t-1}] = 0,$$

which satisfies our first requirement for weak stationarity. Also,

$$Cov[Y_t, Y_{t-k}] = Cov[cY_{t-1} + e_t, Y_{t-1}] = c^k Var[Y_{t-1}] = c^k \frac{\sigma_e^2}{1 - c^2},$$

which is free of t and hence $\{Y_t\}$ is now stationary.

2.23 Stationarity in sums of stochastic processes

$$E[W_t] = E[Z_t + Y_t] = E[Z_t] + Y[Z_t] = \mu_{Z_t} + \mu_{Y_t}$$

Since both processes are stationary – and hence their sums are constant – the sum of both processes must also be constant.

$$Cov[W_t, W_{t-k}] = Cov[Z_t + Y_t, Z_{t-k} + Y_{t-k}] = Cov[Z_t, Z_{t-k}] + Cov[Z_t, Y_{t-k}] + Cov[Y_t, Z_{t-k}] + Cov[Y_t,$$

2.24 Measurement noise

$$E[Y_t] = E[Y_t + e_t] = E[X_t] + E[e_t] - \mu_t \mathrm{Var}[Y_t] = \mathrm{Var}[X_t + e_t] = \mathrm{Var}[X_t] + \mathrm{Var}[e_t] = \sigma_X^2 + \sigma_e^2 \mathrm{Cov}[Y_t, Y_{t-k}] = \mathrm{Cov}[X_t + e_t, X_{t-k} + e_t] + \mathrm{Var}[Y_t] = \mathrm{Var}[X_t + e_t] + \mathrm{Var}[X$$

2.25 Random cosine wave

$$E[Y_t] = E\left[\beta_0 + \sum_{i=1}^k (A_i \cos(2\pi f_i t) + B_i \sin(2\pi f_i t))\right] = \beta_0 + \sum_{i=1}^k (E[A_i] \cos(2\pi f_i t) + E[B_i] \sin(2\pi f_i t) = \beta_0 \operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}\left[\sum_{i=1}^k (A_i \cos(2\pi f_i t) + B_i \sin(2\pi f_i t))\right] = \beta_0 + \sum_{i=1}^k (E[A_i] \cos(2\pi f_i t) + E[B_i] \sin(2\pi f_i t) = \beta_0 \operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}\left[\sum_{i=1}^k (A_i \cos(2\pi f_i t) + B_i \sin(2\pi f_i t))\right] = \beta_0 + \sum_{i=1}^k (E[A_i] \cos(2\pi f_i t) + E[B_i] \sin(2\pi f_i t) = \beta_0 \operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}\left[\sum_{i=1}^k (A_i \cos(2\pi f_i t) + B_i \sin(2\pi f_i t))\right] = \beta_0 + \sum_{i=1}^k (E[A_i] \cos(2\pi f_i t) + E[B_i] \sin(2\pi f_i t) = \beta_0 \operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}\left[\sum_{i=1}^k (A_i \cos(2\pi f_i t) + B_i \sin(2\pi f_i t))\right] = \beta_0 + \sum_{i=1}^k (E[A_i] \cos(2\pi f_i t) + E[B_i] \sin(2\pi f_i t) = \beta_0 \operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}\left[\sum_{i=1}^k (A_i \cos(2\pi f_i t) + B_i \sin(2\pi f_i t))\right] = \beta_0 + \sum_{i=1}^k (E[A_i] \cos(2\pi f_i t) + E[B_i] \sin(2\pi f_i t) = \beta_0 \operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}\left[\sum_{i=1}^k (A_i \cos(2\pi f_i t) + B_i \sin(2\pi f_i t))\right] = \beta_0 + \sum_{i=1}^k (E[A_i] \cos(2\pi f_i t) + E[B_i] \sin(2\pi f_i t) = \beta_0 \operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}\left[\sum_{i=1}^k (A_i \cos(2\pi f_i t) + B_i \cos(2\pi f_i t) + B_i \cos(2\pi f_i t)\right]$$

and is thus free of t and s.

(b)

2.26 Semivariogram

(a)
$$\Gamma_{t,s} = \frac{1}{2}E[(Y_t - Y_s)^2] = \frac{1}{2}E[Y_t^2 - 2Y_tY_s + Y_s^2] = \frac{1}{2}\left(E[Y_t^2] - 2E[Y_tY_s] + E[Y_s^2]\right) = \frac{1}{2}\gamma_0 + \frac{1}{2}\gamma_0 - 2\times \frac{1}{2}\gamma_{|t-s|} = \gamma_0 - \gamma_{|t-s|}\text{Cov}[Y_t - Y_t] + \frac{1}{2}\gamma_0 - 2\times \frac{1}{2}\gamma_{|t-s|} = \gamma_0 - \gamma_{|t-s|}\text{Cov}[Y_t - Y_t] + \frac{1}{2}\gamma_0 - 2\times \frac{1}{2}\gamma_{|t-s|} = \gamma_0 - \gamma_{|t-s|}\text{Cov}[Y_t - Y_t] + \frac{1}{2}\gamma_0 - 2\times \frac{1}{2}\gamma_{|t-s|} = \gamma_0 - \gamma_{|t-s|}\text{Cov}[Y_t - Y_t] + \frac{1}{2}\gamma_0 - 2\times \frac{1}{2}\gamma_0 - 2\times \frac{1}{2}\gamma_{|t-s|} = \gamma_0 - \gamma_{|t-s|}\text{Cov}[Y_t - Y_t] + \frac{1}{2}\gamma_0 - 2\times \frac{1}{2}$$

$$Y_t - Y_s = e_t + e_{t-1} + \dots + e_1 - e_s - e_{s-1} - \dots - e_1 = e_t + e_{t-1} + \dots + e_{s+1}, \quad \text{for } t > s\Gamma_{t,s} = \frac{1}{2} E[(Y_t - Y_s)^2] = \frac{1}{2} \text{Var}[e_t + e_{t-1} + \dots + e_{s+1}]$$

(b)

2.27 Polynomials

(a) $E[Y_t] = E[e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \dots + \phi^r e_{t-r}] = 0 \text{Cov}[Y_t, Y_{t-k}] = \text{Cov}[e_t + \phi e_{t-1} + \dots + \phi^r e_{t-r}, e_{t-k} + \phi e_{t-1-k} + \dots + \phi^r e_{t-r-k}]$

Hence, because of the zero mean and covariance free of t, it is a stationary process.

$$Var[Y_t] = Var[e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \dots + \phi^r e_{t-r}] = \sigma_e^2 (1 + \phi + \phi^2 + \dots + \phi^{2r}) Corr[Y_t, Y_{t-k}] = \frac{\sigma_e^2 \phi^k (1 + \phi^2 + \phi^4 + \dots + \phi^{2r-1})}{\sqrt{(\sigma_e^2 (1 + \phi + \phi^2 + \dots + \phi^{2r-1}))^2}}$$

2.28 Random cosine wave extended

(a) $E[Y_t] = E[R\cos{(2\pi(ft+\phi))}] = E[R]\cos{(2\pi(ft+\phi))} = E[R]\int_0^1 \cos(E[R\cos{(2\pi(ft+\phi))}])d\phi = E[R]\left[\frac{1}{2\pi}\sin{(2\pi(ft+\phi))}\right]$

(b)
$$\gamma_{t,s} = E[R\cos{(2\pi(ft+\phi))}R\cos{(2\pi(fs+\phi))}] = \frac{1}{2}E[R^2]\int_0^1 \left(\cos{(2\pi(f(t-s))} + \frac{1}{4\pi}\sin{(2\pi(f(t+s)+2\phi))}\right) = \frac{1}{2}E[R^2]\int_0^1 \left(\cos{(2\pi(f(t+s))} + \frac{1}{4\pi}\sin{(2\pi(f(t+s))} + \frac{1}{2}E[R^2]\right) + \frac{1}{2}E[R^2]\int_0^1 \left(\cos{(2\pi(f(t+s))} + \frac{1}{4\pi}\sin{(2\pi(f(t+s))} + \frac{1}{2}E[R^2]\right) + \frac{1}{2}E[R^2]\int_0^1 \left(\cos{(2\pi(f(t+s))} + \frac{1}{4\pi}\sin{(2\pi(f(t+s))} + \frac{1}{2}E[R^2]\right)\right) = \frac{1}{2}E[R^2]\int_0^1 \left(\cos{(2\pi(f(t+s))} + \frac{1}{4\pi}\sin{(2\pi(f(t+s))} + \frac{1}{2}E[R^2]\right)\right) + \frac{1}{2}E[R^2]\int_0^1 \left(\cos{(2\pi(f(t+s))} + \frac{1}{2}E[R^2] + \frac{1}{2}E[R^2]\right)\right) = \frac{1}{2}E[R^2]\int_0^1 \left(\cos{(2\pi(f(t+s))} + \frac{1}{2}E[R^2] + \frac{1}{2}E[R^2] + \frac{1}{2}E[R^2]\right)$$

2.29 Random cosine wave further

(a)
$$E[Y_t] = \sum_{j=1}^m E[R_j] E[\cos(2\pi (f_j t + \phi))] = \text{via } 2.28 = \sum_{j=1}^m E[R_j] \times 0 = 0$$

(b)
$$\gamma_k = \sum_{j=1}^m E[R_j] \cos{(2\pi f_j k)}, \text{ also from 2.28}.$$

2.30 Rayleigh distribution

$$Y = R\cos\left(2\pi(ft+\phi)\right), \quad X = R\sin\left(2\pi(ft+\phi)\right) \begin{bmatrix} \frac{\partial X}{\partial R} & \frac{\partial X}{\partial \Phi} \\ \frac{\partial Y}{\partial R} & \frac{\partial X}{\partial \Phi} \end{bmatrix} = \begin{bmatrix} \cos\left(2\pi(ft+\Phi)\right) & 2\pi R\sin\left(2\pi(ft+\Phi)\right) \\ \sin\left(2\pi(ft+\Phi)\right) & 2\pi R\cos\left(2\pi(ft+\Phi)\right) \end{bmatrix},$$

with jacobian

$$-2\pi R = -2\pi\sqrt{X^2 + Y^2}$$

and inverse Jacobian

$$\frac{1}{-2\pi\sqrt{X^2+Y^2}}.$$

Furthermore,

$$f(r,\Phi) = re^{-r^2/2}$$

and

$$f(x,y) = \frac{e^{-(x^2+y^2)/2}\sqrt{x^2+y^2}}{2\pi\sqrt{x^2+y^2}} = \frac{e^{-x^2/2}}{\sqrt{2\pi}} \frac{e^{-y^2/2}}{\sqrt{2\pi}} \quad \Box$$

Chapter 3

Trends