i) RollNo.: (517B005

Name: ARABHI SUBHASH

District : VIZIANAGARAM

Sequence I:

CSI7BOOSARABHISUBHASHYIZIANAGARAM Sequence of omics:

5 ATGCCCTTATCCCATCCTACCCACTGTATATA
3-mess:

Second star, ATA, ATA, TAT, ATC, CCC, CCT, CTT, TTA, TAT, ATC

TCC, CCC, CCA, CAC, ACT, CTG, TGT, GTA, TAT,

ATA, TAT, ATA &

3-mex, Sorted;

{ A(C, A(T, ATA, ATA, ATC, ATC, ATG, CAC, CAT, C(A C(A) C(C) C(C) (CT, CCT) CPA, CTG, CTT, GAT G(C, GTA, TAC, TAT, TAT, TAT, TCC, TCC, TGC, TGT TTA}

4-mess:

SGATC, ATGC, TGCC, GCCC, CCCT, CCTT, CTTA, TTAT

TATC, ATCC, TCCC, CCCA, CCAT, CATC, ATCC, TCCT

CCTA, CTAC, TACC, ACCC, CCCA, CCCA, CCAC, CACT

ACTG, CTGT, TGTA, GTAT, TATA, ATAT, TATA,

4-Mess, Sostel!

ACCC, ACTO, ATAT, ATCC, ATCC, ATCC, CACT,

CATC, C(AC, CCAT) CCCA, CCCT, CCTA, CCTT

CTAC, CTGT, CTTA, GATG, GCCC, GTAT, TACC

TATA, TATA, TATC, TCCT, TGCC, TGTA

TTAT

5-mess:

Somey, Sooted:

EACCCA, ACTOT, ATATA, ATCCC, ATCCT, ATACC

CACTO, CATCC, CCACT, CCATC, CCAC, CCCAT,

CCCTT, CCTAC, CTTAT,

CCTTC, CCTAC, CTTAT,

GATGC, GCCCT, GTATA, TACCC, TATAT, TATCC

TCCCA, TCCTA, TGCC, TGTAT, TTATC

- 2) Roll No.: CS17B005 DOB: 18/1/2000 Set NO.: S+8 = 13
 - a) Method!i) For a k-med poefin is first k-1 letters and suffin is (ask k-1 letters.
 - Tonsides a pais A, B from set of given k-mess, there is an edge in the Overlapping graph if suffing a prefin(B)
 - ii) Join all such A,B pairs (directed edge from A+10) to get the overlapping googh

Step-1: (S + Suffin , P-+ Poefin)

c) Re constaucting staing: Follow hamiltonian path and merge last k-1 letters of this node to first k-1 letters of next node the stains is (GTA (TC GTGAAGGGAGG) CGTG CTGGGTGTTGAT

other-1:
$$CAT = - GAAAC = ACCACTGG$$

$$---GGAGAAAAAAACCACTGG$$

$$Score = 12xm - 5x1 - 2x7$$

$$= 110 - 7 - 21$$

$$= 92$$

other -2: CAT GAAAC _ ____ACCACTGG ----- GAAGAAAAAACCACTGG Score 2 8xm - Sx0 - 17xd

= 80-51

= 29

Ofher -3: CATGAAAC ACCACTGC_ GGA GAAAAACCACTGG

S(ore:
$$6 \times m - 10 \times S - 1 \times d$$

= $60 - 70 - 3$
= $-(3)$

4) Set No.: 13

True Pred	class 1	class 2				
class 1	R8 (+1)	8 (<i>+</i> ૨)				
class 2	33 (41)	12589 (fi)				

2) Total Data points:

$$c(\cos 1 - 88 + 8 = 96)$$

 $c(\cos 2 - 33 + 12589 = 12622)$

- + Data is highly imbalanced
- Minor class is class 2

- Using shannon entropy method to measure the balance of data

$$H = -\sum_{i=1}^{\infty} P(x_i) (og(P(x_i)))$$

$$+ H = -\frac{96}{96 + 12622} (09 \frac{96}{12622} - \frac{12622}{96 + 12622} (09 \frac{12622}{96 + 12622})$$

$$= 0.01602 + 0.003266$$

$$= 0.019285$$

Goorly balanced data (unbalanced)

b) Accord =
$$\frac{TP+FN}{TP+FP+TN+FN} = \frac{t_1+t_2}{t_1+t_1+t_2}$$

= $\frac{88+12589}{88+8+33+12589} = \frac{12677}{12718} = 0.99678$
 $\sim 99.687.$

$$\text{precision}, \text{class-1} = \frac{+1}{+(++1)} = \frac{88}{88+33} = 0.72728$$

$$frecision, class = \frac{tz}{12589} = 0.99936$$

Recall, class 1 =
$$\frac{+1}{+1+f_2}$$
 = $\frac{88}{88+8}$ = 0.91667

Recall, class 2 =
$$\frac{t2}{t_2+f_1} = \frac{12589}{(2589+3)} = 0.99739$$

$$class 1 = 2 \times 0.727 \times 0.9166 = 0.81106$$

$$0.727 + 0.9166$$

5) @ Small would Network:

The graph in which most nodes are not neighbours of one another but most nodes are reachable from every other node with small path length.

+ Neighbours are likely to be neighbors de each other

- L-avy pathlength, c-clusting coefficient n-no. of nodes in network i) Lx (og(n)

ii) L&, C& be L, C of equivalent random network with same avg. Jegree

*
$$\sigma$$
 (small-coefficient) = $\frac{C/C\sigma}{L/L\sigma}$ >1

A small woold Network with ronodes

B) Scale-free network

ollows a former law i.e.

 $P(k) \sim k^{-b}$

K P(K)- prob. of nodes in network having K connections

= nk/n = fraction of nodes with k-degree axb- farameter, typically lies in (2,3)

A scale free network with 16 nodes

Algorithms Coded in Python for different Questions

Q1: K-mers

```
def get_mers(s,k):
    arr = []
    for i in range(len(s)-k+1):
        arr.append(s[i:i+k])
    print(len(s),len(arr))
    return arr

1    print(get_mers('GATGCCCTTATCCCATCCTACCCACTGTATATA',5))

33    29
['GATGC', 'ATGCC', 'TGCCC', 'GCCCT', 'CCCTT', 'CCTTA', 'CTTAT', 'TTATC', 'TATCC', 'ATCCC', 'TCCCA', 'CCCAT', 'CCATC', 'ATCAT', 'TCCTA', 'CCTAC', 'TATCAT', 'CCTAC', 'ACCCAT', 'CCACC', 'CCACT', 'CCACT', 'CATGT', 'CTGTAT', 'TGTAT', 'GTATAT', 'ATATAT']

1    print(sorted(get_mers('CGTACTCGTGAAGGAGGCGTGCTGGGTGTTGAT',3)))

33    31
['AAG', 'ACT', 'AGG', 'AGG', 'CGT', 'CGT', 'CGT', 'CTC', 'CTG', 'GAA', 'GAG', 'GAT', 'GCG', 'GCT', 'GGA', 'GGC', 'GGT', 'GTA', 'TGG', 'TGG', 'TGG', 'TGG', 'TGT', 'TTG']
```

Q2: Overlapping Graph and Hamiltonian Path

```
1 arr = ['AAG','ACT','AGG','GGC','CGT','CGT','CGT','CTC','CTG','GAA','GAG','GAT','GCG','GCT','GGA','GGC','GGG','GGT','GTA','GT
  graph = [[] for i in range(len(arr))]
3 for i in range(len(arr)):
       for j in range(len(arr)):
           if arr[i][1:] == arr[j][:-1]:
              graph[i].append(j)
  def get_ham(t,graph,visited,c,n):
8
       if c == n:
          return 1
10
       for i in graph[t]:
11
           if visited[i] == -1:
12
              visited[i] = c
13
               if get_ham(i,graph,visited,c+1,n) == 1:
14
                  return 1
               visited[i] = -1
15
16
       return -1
```

```
print('CG',end='')
for i in fin:
    print(i[-1],end='')
```

CGTACTCGTGAAGGAGGCGTGCTGGGTGTTGAT

Q3: Dynamic Programming approach for Best Alignment and Matrix Weights

```
1 m=10;s=-7;d=-3
2 a = 'GGAGAAAAAACCACTGG';b = 'CATGAAACACCACTGG'
3 dp = [[[0, '', ''] \text{ for } j \text{ in } range(len(b)+1)] \text{ for } i \text{ in } range(len(a)+1)]
4 for i in range(1,len(b)+1):
       dp[0][i] = [d*i,'-'*i,b[:i]]
6 for i in range(1,len(a)+1):
       dp[i][0] = [d*i,a[:i],'-'*i]
7
8 for i in range(1,len(a)+1):
       for j in range(1,len(b)+1):
9
            if a[i-1] == b[j-1]:
10
                dp[i][j][0] = dp[i-1][j-1][0]+m
11
                dp[i][j][1] = dp[i-1][j-1][1]+a[i-1]
12
                dp[i][j][2] = dp[i-1][j-1][2]+b[j-1]
13
14
15
                if dp[i-1][j-1][0]+s >= dp[i-1][j][0]+d:
                    if dp[i-1][j-1][0]+s >= dp[i][j-1][0]+d:
16
17
                         dp[i][j][0] = dp[i-1][j-1][0]+s
                         dp[i][j][1] = dp[i-1][j-1][1]+a[i-1]
18
19
                        dp[i][j][2] = dp[i-1][j-1][2]+b[j-1]
20
                    else:
21
                        dp[i][j][0] = dp[i][j-1][0]+d
                         dp[i][j][1] = dp[i][j-1][1]+'-'
22
23
                        dp[i][j][2] = dp[i][j-1][2]+b[j-1]
                else:
24
25
                    if dp[i-1][j][0]+d >= dp[i][j-1][0]+d:
                        dp[i][j][0] = dp[i-1][j][0]+d
26
27
                         dp[i][j][1] = dp[i-1][j][1]+a[i-1]
28
                        dp[i][j][2] = dp[i-1][j][2]+'-'
                    else:
29
30
                        dp[i][j][0] = dp[i][j-1][0]+d
                        dp[i][j][1] = dp[i][j-1][1]+'-'
31
32
                        dp[i][j][2] = dp[i][j-1][2]+b[j-1]
```

```
1 dp[-1][-1]
```

[109, '-GGA-GAAA-AAACCACTGG', 'C--ATGAAAC--ACCACTGG']

		С	Α	T	G	Α	Α	Α	С	Α	С	С	Α	С	T	G	G
	0	-3	-6	-9	-12	-15	-18	-21	-24	-27	-30	-33	-36	-39	-42	-45	-48
G	-3	-6	-9	-12	1	-2	-5	-8	-11	-14	-17	-20	-23	-26	-29	-32	-35
G	-6	-9	-12	-15	-2	-5	-8	-11	-14	-17	-20	-23	-26	-29	-32	-19	-22
A	-9	-12	1	-2	-5	8	5	2	-1	-4	-7	-10	-13	-16	-19	-22	-25
G	-12	-15	-2	-5	8	5	2	-1	-4	-7	-10	-13	-16	-19	-22	-9	-12
A	-15	-18	-5	-8	5	18	15	12	9	6	3	0	-3	-6	-9	-12	-15
A	-18	-21	-8	-11	2	15	28	25	22	19	16	13	10	7	4	1	-2
Αl	-21	-24	-11	-14	-1	12	25	38	35	32	29	26	23	20	17	14	11
A	-24	-27	-14	-17	-4	9	22	35	32	45	42	39	36	33	30	27	24
A	-27	-30	-17	-20	-7	6	19	32	29	42	39	36	49	46	43	40	37
Αl	-30	-33	-20	-23	-10	3	16	29	26	39	36	33	46	43	40	37	34
C	-33	-20	-23	-26	-13	0	13	26	39	36	49	46	43	56	53	50	47
C	-36	-23	-26	-29	-16	-3	10	23	36	33	46	59	56	53	50	47	44
A	-39	-26	-13	-16	-19	-6	7	20	33	46	43	56	69	66	63	60	57
C	-42	-29	-16	-19	-22	-9	4	17	30	43	56	53	66	79	76	73	70
T	-45	-32	-19	-6	-9	-12	1	14	27	40	53	50	63	76	89	86	83
G	-48	-35	-22	-9	4	1	-2	11	24	37	50	47	60	73	86	99	96
G	-51	-38	-25	-12	1	-2	-5	8	21	34	47	44	57	70	83	96	109