БЖД

Выполнила студентка группы М8О-407Б Довженко Анастасия.

Теория 1

- Что значит "КЕО характеризует освещённость точек помещения"?
 - KEO выраженное в процентах отношение освещённости в данной точке внутри помещения (EBH) к одновременному значению наружной горизонтальной освещённости, создаваемой светом полностью открытого небосвода (EHAP).
- Почему для нормирования естественного освещения используется КЕО?
 - КЕО оценивает размеры оконных проёмов, вид остекления и переплётов, их загрязнение, то есть способность системы естественного освещения пропускать свет. Естественное освещение характеризуется тем, что создаваемая освещённость изменяется в чрезвычайно широких пределах в зависимости от времени дня, года, метеорологических факторов. Поэтому естественное освещение невозможно количественно задавать величиной освещённости. В качестве нормируемой величины для естественного освещения принята относительная величина коэффициент естественной освещённости (КЕО).
- Светоотдача у каких лам больше?
 Самой большой светоотдачей обладают газоразрядные лампы.
- Возможно ли использовать для наружного освещения люминисцентные лампы и почему?
 - Для некоторых видов люминесцентных ламп существуют ограничения по температуре окружающей среды (при температурах, близких к 0 градусам), следовательно, их использовать невозможно.
- Определить требуемую величину искусственного освещения для: 1) работ в литейном цехе; 2) выполнения чертёжных работ (с указанием ссылки на нормативный документ).
 - Нормативный документ СНи
П 23-05-95 Литейный цех 36лк. Чертёжные работы 1250лк-5000лк.
- В чём отличие общего локализованного освещения от местного?
 - Общее освещение это освещение, при котором светильники размещаются в верхней зоне помещения. Светильники могут быть расположены равномерно или применительно к расположению оборудования или рабочих мест.

• В каких случаях для расчёта искусственного освещения применяется точечный метод, а в каких метод светового потока?

Точечный метод применяется в случае, если свет, отражённый от стен и потолка не имеет большого значения, например, в цехах с крупногабаритным оборудованием и т.д.. Метод светового потока более сложен и учитывает отражения от стен, потолка и других поверхностей.

• С чем связано недостаточное значение КЕО в зданиях?

Недостаточное значение KEO в знаниях связано с небольшим количеством естественного освещения внутри зданий. Кроме того, причиной может служить тёмная окраски интерьера (от тёмных цветов свет отражается хуже, чем от светлых)

Теория 2

• Почему шум нормируется показателем "уровень звукового давления"(дБ), а не "звуковое давление"(Па)?

Слух человека способен реагировать на прирост звукового давления, шум нормируется исходя из отношения звукового давления или интенсивности звука в точке к соответствующему пороговому значению.

• В чем отличия единиц измерения дБ и дБА? Какая взаимосвязь между методом нормирования по предельному спектру и эквивалентному уровню?

ДБА – уровень звукового давления шума в нормируемом диапазоне частот, корректированный по частотной характеристике А шумомера. при нормировании шума используют 2 метода: нормирование по предельному спектру шума и интегральная оценка. Первый метод нормирования является основным для постоянных шумов. Здесь нормируются уровни звуковых давлений в восьми октавных полосах. Совокупность допустимых уровней звукового давления в восьми октавных полосах частот называется предельным спектром. Причём, с ростом частоты допустимые уровни уменьшаются. Интегральная оценка применяется для нормирования непостоянных шумов и в тех случаях, когда не известен спектр реального шума. Нормируемым показателем в этом случае является эквивалентный уровень звука широкополосного постоянного шума, оказывающий на человека такое же влияние, как и реальный непостоянный шум, измеряемый по шкале А шумомера. При этом нормируемая величина измеряется в дБА.

- В каких случаях нормирование осуществляется только в дБА? В тех случаях, когда не известен спектр реального шума.
- Определить уровень шума от точечного источника на расстоянии 8м и 64м, если на расстоянии 2 м уровень шума составляет 80 дБА?

На расстоянии 8 м - 68 дБA, на расстоянии 8 м - 50 дБA

- Определить уровень шума от плоскостного источника размерами (200м х150м), на расстоянии 50 м и 100м, если на расстоянии 25 м уровень шума равен 82 дБА? На расстоянии 50м 82 дБА, на расстоянии 100м 79 дБА
- Эффективность акустического экрана на частоте 1000Гц составляет 18,35 дБ, а на частоте 2000 Гц = 16,48 дБ, размеры экрана hxl=1.2x1.4 м. определить на каком расстоянии от источника шума установлен экран (а), если расстояние от экрана до рабочего места (b) составляет 1,3 м?

Экран установлен на расстоянии 0.16 м.

Задача 2, вариант 6

Рассчитать общеобменную вентиляцию в цехе (на участке) X, обеспечивающую требуемое состояние воздушной среды при условии одновременной работы всех Y работников и выделении в воздух вредного вещества Z. Температура воздуха в помещении 21° С. Исходные данные для расчёта массы, выделяющихся вредных веществ на малярном участке, количество рабочих мест 4, вредные вещества сольвент. Применяемый лакокрасочный материал Шпаклёвка $\Pi\Phi$ -002, расход лакокрасочных материалов на единицу площади изделия 1000.

```
ПДК Сольвент = 100 \text{ мг/м}\hat{3}
C_n = 0
L_1 = m/(\Pi \coprod K - C_n) = 10 aqm/(\Pi \coprod K - C_n)
a = 12 \text{ м2/ч} – производительность одного рабочего дня
q = 1000 \; \text{г/м2} – расход лакокрасочных материалов на единицу площади изделия
m = 25\% — содержание летучих компонентов в краске.
L_1 = 30000 \text{ м}3/\text{ч}
L_M = \sum_{i=1}^4 L_{M_i} = 4L_i = 120000 \text{ м3/ч}
Скорость движения воздуха в воздуховоде на участке I: v_1 = 12 \text{ м/c}
d_1 = 0.033 \sqrt{\frac{L_1}{v_1 \pi}} = 0.931 м
d_{1}^{'=0.9} \text{ M}
= \frac{0.033^{2}L_{1}}{\pi d_{1}^{'2}} = 12.838
v_{1}
= \frac{353}{273+t} = 1.201
Диаметры воздуховодов для II, III, IV участков d_i = \frac{d'_{i-1}}{0.7}
Сопротивление движению воздуха на каждом участке: H = \frac{v_1^{'2}}{2} (\lambda \frac{1}{d' + \sum_{i=1}^n \epsilon_{M_i}})
Общее сопротивление движению воздуха на каждом участке: H_C = \sum_{i=1}^m H_i = 1006
k = 1.1
L_B = L * k = 120000 * 1.1 = 132000
Выбираем вентилятор В-Ц4-76 №20 с диаметром рабочего колеса 2м с КПД 84
```

Частота вращения электродвигателя 1470 мин-1, мощность 75 кВт

Задача 7, вариант 6

Определить уровень звукового давления на рабочем месте шлифовальщика, если в цехе расположено 3 токарных станка, 3 фрезерных и 2 шлифовальных. Расстояние от рабочего места, на котором необходимо определить уровень шума, до токарных станков 5м, 6м и 8.2м, до фрезерных станков 2.55м, 4.25м, 7.3м, до шлифовальных станков 1м и 4.9м. Исходные данные для решения задачи приведены в таблицах 4.10 – 4.13.

Размеры цеха axbxh = 9x6.5x4.2, в стене протяжённостью 9м расположено 4 окна, размерами axb = 1.8x2.4. При расчётах принимать, что стены цеха из кирпича, а пол и потолок из бетона.

В помещении планируется выполнить звукопоглощение. Рассчитать эффективность применения данного метода защиты материалом

Определение площади ограждающих поверхностей

S пола = 58.5 м2

S стен = 130.2 м2

S окон = 17.28 м2

S огр = 2S пола + S стен - S окон = 229.92 м2

S облицовки =S потолка +S стен -S окон -S облицовки =171.72 м2

S огр, без облицовки =2S пола +S стен -S окон -S облицовки $=58.2~\mathrm{m}2$

Расстояние от расчётной точки до акустического центра ближайшего источника шума $r_{min}=1\ \mathrm{M}$

 $5r_{min} = 5$ м. На расстоянии до 5м находятся 1 токарный станок, 2 фрезерных станка и 2 шлифовальных станка, все остальные источники находятся на большем расстоянии.

Так как измерение уровня шума производится на рабочем месте шлифовальщика (то есть непосредственно возле станка), из таблицы допускаемых уровней звукового давления в октавных полосах частот ГОСТа 12.01.003-83 выберем пункт 5.

	Частоты, Гц									
По казагель	63	125	250	500	1000	2000	4000	80	000	
Коэффициент звукопоглощения стен, α _{ст}	l.	0,024	0,025	0,031	0,042	0,049	0,07	1		
по эффициент звукопотлощения стен, ост	-	0,024	0,023	0,031	0,042	0,045	0,07			
Ко эффициент звукопоглощения пола и										
потолка, α_0 и α_{0T}	lı.	0,011	0,012	0,016	0,019	0,023	0,035	1		
Эквивалентная площадь		-,	-,	-,	-,	-,	-,			
звукопоглощения, A, м ²	lı .	3.997	4.227	5.373	6.966	8.244	11.999	1		
Средний коэффициент звукопогло щения,		0,00,		5.575	0.000	0.211	11.000			
среднии коэффициент звукопоглощения, а _{сэ}	h	0.017	0.018	0.023	0.03	0.036	0.052	1		
Акустическая постоянная помещения, В,	+'	0.017	0.010	0.023	0.05	0.030	0.032			
M ²	lı.	4.068	4.306	5.501	7.183	8.529	12.66			
									_	
Ко эффициент, учитывающий на рушение										
диффузности звукового поля в										
помещении к	lı.	1.25	1.25	1.25	1.25	1.25	1.25			
Уровень зву кового давления, L, дБ		98.92	99.63	101.52	96.25	93.31	90.9			
Ко эффициент звукопоглощения									_	
облицованных поверхностей, α _{ст} α _{пт}		0,33	0,68	0,95	0,88	0,96	0,8			
Эквивалентная площадь										
звукопоглощения после облицовки										
помещения, A ₁ , м ²		57.21	117.27	163.76	151.96	165.91	139.18			
Средний коэффициент звукопоглощения										
после акустической обработки										
помещения, асы	-	0.249	0.51	0.712	0.661	0.722	0.605			
А кустичес кая постоянная помещения, B_1 , M^2		76.16	239.34	569,4	448.17	595.92	352.58			
м во эффициент, учигывающий на рушение	-	/0.10	235.34	509.4	440.1/	555.52	332.36			
диффузности звуко вого поля в										
помещении k ₁		1.34	2.05	2.5	2.5	2.5	2.5			
снижение уровня звуково го давления,	\vdash	1.54	2.03	2.3	2.0	2.0	2.0		_	
после акустической обработки										
помещения, Δ L, дБ		13.01	19.6	23.16	20.96	21.45	17.46			
уро вень шума в помещении после его										
акустической обработки, L _{пксле} , дБ		85.91	80.03	78.36	75.29	71.86	73.44			
допустимый уро вень шума, Lдоп, дБ		83	82	78	75	73	71			

На октавных полосах частот 250Γ ц и 2000Γ ц акустическая обработка данным материалом обеспечивает уровень шума ниже допустимого, а на 1000Γ ц находится на уровне нормы в пределах погрешности. На низких высоких частотах снижение шума недостаточно и необходима дополнительная обработка или использование других средств защиты.

Показатель	Частоты, Гц								
	63	125	250	500	1000	2000	4000	8000	
уровень шума в помещении после его акустической обработки, $L_{\text{после}}$, дБ		83.75	76.07	69.51	69.54	62.2	69.28		
допустимый уровень шума, Lдоп, дБ		83	82	78	75	73	71		