文本表征学习

6. 大粒度文本单元表征

EE1513

宋彦

大纲

- 短语及句子的表征学习算法
 - Doc2vec
 - Context2vec
- 句子级语言模型
 - Skip-thought
- 从有监督的任务中学习文本表征
 - · 自然语言推理 (NLI)

为什么我们需要短语及句子级别的表征

- · 有很多句子级别的NLP任务
 - 情感分析
 - 文本分类
 - 摘要
 - • • • •
- 针对这些任务的机器学习算法需要把句子表征为一个向量
- 句子向量并非词向量的简单求和, 而是包含了字所没有的信息
- 所以需要句子级别表征的学习算法

Doc2vec - 背景

Doc2vec - 概述

- Le and Mikolov (2014)
 - 受到word2vec算法的启发,引入一个特殊的词表示段落
 - 提出两种学习段落表征的方法
 - 段落表征向量的分布式记忆模型 (PV-DM)
 - 段落表征向量的分布式词袋模型(PV-DBOW)

Doc2vec - PV-DM

- PV-DM 训练
 - 使用滑动窗口选择上下文词
 - 特殊词和上下文词被用于预测下一个词
 - 模型存储所有学习的参数(包括词向量和分类器参数)

• PV-DM 预测

• 随机初始化句子表征,固定所有模型参数,使用SGD更新句子表征直到收敛,得到测试句子的表征

Doc2vec - PV-DBOW

- PV-DBOW 训练

 - 模型存储分类器中的参数

• PV-DBOW 预测

• 随机初始化句子表征,固定所有模型参数,使用SGD更新句子表征直到收敛,得到测试句子的表征

Doc2vec - 问题

- 词序信息被忽视
- · 需要SGD获取句子表征

• 因此需要更好的学习句子表征的方法

Context2vec - 背景

输入定长,用LSTM考虑语序关系

- 另一种学习句子表征的方法:
 - 使用BiLSTM编码词序
 - 与任务相关的训练
 - 使用词向量来记录从大规模语料中学习的信息

Context2vec

- Context2vec
 - 结构化上下文
 - 结构化样本

Context2vec

• 比较: context2vec = word2vec - CBOW + BiLSTM

Melamud et al., context2vec: Learning Generic Context Embedding with Bidirectional LSTM, CoNLL-2016

Context2vec - 评测

- 句子补全: 使用一个词补全句子
- •词汇替换: 给定词汇列表, 选择列表中的一个词替换句子中的某个词
- •词义消歧:选择当前词在当前语境下的意义

TEST

This <u>adds</u> a wider perspective.

TRAIN

- They add (s2) a touch of humor.
- The minister <u>added</u> (s4): the process remains fragile.
- Implementation: Shortest context-context cosine distance (kNN)

Context2vec - 评测

	c2v	Avg*
Sentence completion	65.1	49.7
LexSub (sample)	56.0	42.5
LexSub (all-words)	47.9	38.9
WSD	72.8	61.4

* Avg baseline:

- Based on standard Skip-gram word embeddings
- · Hyperparameters optimized: context size, word weights.

句子级语言模型

句子级语言模型

- 我们不能直接通过平均词向量的方式得到句子向量,因为句子中词的顺序对句义有很大影响
- Skip-Thought (Kiros, et al, 2015): 在词语言模型中,词义由其周围词决定。受其启发,句子的表征由其周围的句子决定
- Skip-Thought包括三个部分
 - 编码器 (RNN)
 - 输入: 稀疏的句子表征
 - 输出: 句子向量表征
 - 前句解码器(RNN)
 - 输入: 句子向量表征
 - 输出: 前一个句子的预测
 - 后句解码器(RNN)
 - 输入:句子向量表征
 - 输出: 后一个句子的预测

Kiros et al., Skip-Thought Vectors, ICML-2015

- 给定包括三个连续句子的元组 (s_{i-1}, s_i, s_{i+1}) • s_i 是第i个句子; s_{i-1} 是前一个句子; s_{i+1} 是后一个句子
- •使用下面的架构编码s;和重建s;-1与 s;+1

• 红色和绿色分别代表前一个句子和后一个句子的解码器

• 编码器

- 设w1, w2, ···, wN为句子中的单词, N为该句子中的单词数。
- 在每个时间步,编码器都会产生一个隐状态 h^t,它是序列 w¹,w²,…,w^t 的表示。
- 因此隐状态 h^N 代表完整的句子。
- 然后我们迭代以下方程序列来编码句子。

$$\mathbf{r}^t = \sigma(\mathbf{W}_r\mathbf{x}^t + \mathbf{U}_r\mathbf{h}^{t-1})$$
 $\bar{\mathbf{h}}^t$ 是时刻t时,提出的更新向量 $\mathbf{z}^t = \sigma(\mathbf{W}_z\mathbf{x}^t + \mathbf{U}_z\mathbf{h}^{t-1})$ \mathbf{z}^t 是更新门 \mathbf{r}^t 是重置门 $\mathbf{h}^t = (1 - \mathbf{z}^t) \odot \mathbf{h}^{t-1} + \mathbf{z}^t \odot \bar{\mathbf{h}}^t$ \odot 是逐个成分的成绩

• 解码器

- 解码器是一个神经网络语言模型, 其给定条件是编码器输出
- •解码器的计算与编码器类似,只是引入矩阵 Cz、Cr、C,它们用于通过更新门、重置门和隐状态计算。
- 每个解码器使用单独的参数
- 连接解码器隐藏状态的权重矩阵共用一套参数, 用于计算单词的分布
- 解码通过下面的方程序列迭代

$$\mathbf{r}^t = \sigma(\mathbf{W}_r^d \mathbf{x}^{t-1} + \mathbf{U}_r^d \mathbf{h}^{t-1} + \mathbf{C}_r \mathbf{h}_i)$$
 \mathbf{h}^t_{i+1} 是 t 时刻的隐向量 $\mathbf{z}^t = \sigma(\mathbf{W}_z^d \mathbf{x}^{t-1} + \mathbf{U}_z^d \mathbf{h}^{t-1} + \mathbf{C}_z \mathbf{h}_i)$ $\bar{\mathbf{h}}^t = \tanh(\mathbf{W}^d \mathbf{x}^{t-1} + \mathbf{U}^d (\mathbf{r}^t \odot \mathbf{h}^{t-1}) + \mathbf{C} \mathbf{h}_i)$ $\mathbf{h}_{i+1}^t = (1 - \mathbf{z}^t) \odot \mathbf{h}^{t-1} + \mathbf{z}^t \odot \bar{\mathbf{h}}^t$ \mathbf{i} 表示于一个句子

- 目标函数
 - 针对每个样本, 损失是前一句子与后一句子损失的和
 - 总损失是所有训练样本损失之和

$$\sum_{t} \text{log} P(w_{i+1}^{t} | w_{i+1}^{< t}, \mathbf{h}_{i}) + \sum_{t} \text{log} P(w_{i-1}^{t} | w_{i-1}^{< t}, \mathbf{h}_{i})$$

Skip-Thought 实验

- 语义相关性
 - 在 SemEval shared task 上训练
 - 使用简单的逻辑回归
- 结果与有监督的方法类似,超越了除去Dependency Tree LSTM 之外的所有方法

Method	r	ρ	MSE
Illinois-LH [18]	0.7993	0.7538	0.3692
UNAL-NLP [19]	0.8070	0.7489	0.3550
Meaning Factory [20] ECNU [21]	$0.8268 \\ 0.8414$	0.7721	0.3224
Mean vectors [22] DT-RNN [23] SDT-RNN [23] LSTM [22] Bidirectional LSTM [22] Dependency Tree-LSTM [22]	0.7577	0.6738	0.4557
	0.7923	0.7319	0.3822
	0.7900	0.7304	0.3848
	0.8528	0.7911	0.2831
	0.8567	0.7966	0.2736
	0.8676	0.8083	0.2532
bow	0.7823	0.7235	0.3975
uni-skip	0.8477	0.7780	0.2872
bi-skip	0.8405	0.7696	0.2995
combine-skip	0.8584	0.7916	0.2687
combine-skip+COCO	0.8655	0.7995	0.2561

Skip-Thought 的特点及用处

- 特点
 - 非监督方法训练
 - 通用性强
 - 非常直接的句子级语言模型
 - 对噪音有很强的容忍性
 - 无需深度清洗训练数据
 - 可以创造的表征直接有用

• 用处

- 它被设计用于普适性应用
- 在很多任务上不一定可以超越最好的模型
- 在文本处理流程中可能会有用处
 - 可以继续进一步预训练
 - 对噪音有一定的容忍性
- 未来研究
 - 探究方法局限的解决方法
 - 使用更大的上下文、网络结构和表征空间

前面不已经是监督了吗? 哦,上下文为样本,不是标签,所以是无监督

从有监督的任务中学习

从有监督的任务中学习

- 我们已经展示了无监督方法有助于学习短语和句子的表征,那么我们能否利用有监督的方法学习表征?
- 有监督方法的好处
 - 人工标注数据
 - 易于设计目标函数
 - 对下游任务更加友好
- 有监督方法的问题:
 - 需要人工标注
 - 固定的目标函数, 缺乏灵活性
 - 对大多数有帮助,但是可能会损害其他任务

从有监督的任务中学习

- 选择合适的任务很重要
- 选择合适的模型结构很重要

Conneau et al., Supervised Learning of Universal Sentence Representations from Natural Language Inference Data, EMNLP-2017

训练任务 - 自然语言推理

- · 为什么选择自然语言推理 (NLI)
 - NL1是一个很重要的理解任务
 - 是一个典型的分类任务
 - 易于数据处理
 - 需要句子之间的语义推理
 - 训练的过程可以学习语义信息

训练任务 - 自然语言推理

- 网络架构
 - 前提和假设通过同一个编码器然后得到 表征 u 和 v
 - 结合 u 和 v: (u, v, |u-v|, u*v)
 - 使用全连接层分类

网络架构的影响

- 什么样的架构最适合把句子编码为一个向量?
 - CNN? RNN? LSTM? 双向? …
- 一些重要的特征
 - 考虑序列信息?
 - 更多参数?
 - 层次结构?
 - 更多的与词相关的信息?

评测

Task type	Task	
	Sentiment analysis for movie reviews (MR and SST)	
	Sentiment analysis for product reviews (CR)	
Binary and multi-class classification	Subjectivity / objectivity (SUBJ)	
	Opinion polarity (MPQA)	
	Question answering (TREC)	
Entailment and semantic relatedness	Entailment (SICK-E) and relatedness (SICK-R)	
Semantic Textual Similarity	SemEval 2014 (STS14)	
Paraphrase detection	Microsoft paraphrase classification (MRPC)	
Caption image retrieval	Caption - Image retrieval (COCO)	

评测 - 架构

- BiLSTM-Max 取得最好的分数
- NL1上表现好并不意味着更好的迁移能力
- 一些架构在迁移方面表现不好

Model		NLI		Transfer	
	dim	dev	test	micro	macro
LSTM	2048	81.9	80.7	79.5	78.6
GRU	4096	82.4	81.8	81.7	80.9
BiGRU-last	4096	81.3	80.9	82.9	81.7
BiLSTM-Mean	4096	79.0	78.2	83.1	81.7
Inner-attention	4096	82.3	82.5	82.1	81.0
HConvNet	4096	83.7	83.4	82.0	80.9
BiLSTM-Max	4096	85.0	84.5	85.2	83.7

评测 - 句子表征的维度

• 对于Inner-Attention, HConvNet, BiLSTM-Max, 模型 性能随着维度升高而变好

•对于LSTM, GRU, BiGRU-last和 BiLSTM-Max, 性能受到 维度的影响不大

