

Claims

We Claim:

1 A wavelength-selective optical transmission system comprising:

5

a first waveguide for transmitting a multiplexed optical signal therethrough;

10

a second waveguide coupled to said first waveguide wherein at least one of said first and second waveguides having a set of wavelength-selective Bragg gratings disposed near a coupling section between said first and second waveguides to reflect a reflecting optical signal back to said first waveguide and for transmitting a contra-directional optical signal and a co-directional optical signal having respectively a contra-directional selected wavelength and a co-directional selected wavelength corresponding to said Bragg gratings wherein one of said contra-directional and co-directional wavelengths is chosen as a designated wavelength, and said reflecting optical signal and one of said contra-directional or co-directional optical signals are outside of a predefined range surrounding said designated wavelength.

15

2 The wavelength-selective optical transmission system of claim 1

20

wherein:

said first waveguide and said second waveguide have two different propagation constants.

25

3 The wavelength-selective optical transmission system of claim 1
wherein:

said first waveguide and said second waveguide composed of two different materials.

30

4. The wavelength-selective optical transmission system of claim 1
wherein:
said Bragg gratings disposed on said first waveguide.

5. The wavelength-selective optical transmission system of claim 1
wherein:

 said Bragg gratings disposed on said second waveguide.

5 6. The wavelength-selective optical transmission system of claim 1
wherein:

 said Bragg gratings disposed on said first and second waveguides.

10 7. The wavelength-selective optical transmission system of claim 1
wherein:

 said Bragg gratings disposed on a cladding surrounding said first
waveguide.

15 8. The wavelength-selective optical transmission system of claim 1
wherein:

 said Bragg gratings disposed on a cladding surrounding said
second waveguide.

20 9. The wavelength-selective optical transmission system of claim 1
wherein:

 said Bragg gratings disposed on a cladding in a gap between said
first and second waveguides.

25 10. The wavelength-selective optical transmission system of claim 1
wherein:

 said Bragg gratings comprising a periodic variation of a refractive
index of an optical propagation material.

30 11. The wavelength-selective optical transmission system of claim 1
wherein:

 said Bragg gratings comprising a periodic variation of a structural
characteristic of an optical propagation material.

12. The wavelength-selective optical transmission system of claim 1
wherein:

5 said Bragg gratings comprising a periodic variation of a structural characteristic and a refractive index of an optical propagation material.

13. The wavelength-selective optical transmission system of claim 1
wherein:

10 at least one of said first and second waveguides are manufactured on a substrate by applying an integrated circuit (IC) manufacturing process thereon.

14. The wavelength-selective optical transmission system of claim 1
wherein:

15 said predefined range of wavelength surrounding said designated selected wavelength having a wavelength range between λ_{\min} and λ_{\max} and said first and second waveguide having an optical propagation constant of β_1 and β_2 respectively.

20 15. The wavelength-selective optical transmission system of claim 14
wherein:

said contra-directional wavelength is chosen as said designated wavelength and $\beta_1 < \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \max\left(\frac{2\beta_1}{\beta_1 + \beta_2}, \frac{\beta_2 - \beta_1}{\beta_1 + \beta_2}\right)$.

25 16. The wavelength-selective optical transmission system of claim 14
wherein:

said contra-directional wavelength is chosen as said designated wavelength and $\beta_1 > \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \max\left(\frac{\beta_1 + \beta_2}{2\beta_1}, \frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}\right)$.

17. The wavelength-selective optical transmission system of claim 14
wherein:

30 said co-directional wavelength is chosen as said designated wavelength and $\beta_1 < \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \min\left[\max\left(\frac{2\beta_1}{\beta_2 - \beta_1}, \frac{\beta_2 - \beta_1}{\beta_2 + \beta_1}\right), \frac{\beta_2 - \beta_1}{2\beta_1}\right]$.

18. The wavelength-selective optical transmission system of claim 14
wherein:

said co-directional wavelength is chosen as said designated wavelength and $\beta_1 > \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}$.

5 19. The wavelength-selective optical transmission system of claim 14
wherein:

said contra-directional wavelength is chosen as said designated wavelength and $\beta_2 > 3\beta_1$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_2 - \beta_1}{\beta_1 + \beta_2}$.

10 20. The wavelength-selective optical transmission system of claim 14
wherein:

said contra-directional wavelength is chosen as said designated wavelength and $\beta_1 < \beta_2 < 3\beta_1$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{2\beta_1}{\beta_1 + \beta_2}$.

21. The wavelength-selective optical transmission system of claim 14
wherein:

15 said contra-directional wavelength is chosen as said designated wavelength and $(\sqrt{5} - 2)\beta_1 < \beta_2 < \beta_1$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_1 + \beta_2}{2\beta_1}$.

22. The wavelength-selective optical transmission system of claim 14
wherein:

20 said contra-directional wavelength is chosen as said designated wavelength and $\beta_2 < (\sqrt{5} - 2)\beta_1$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_2 - \beta_1}{\beta_2 + \beta_1}$.

23. The wavelength-selective optical transmission system of claim 14
wherein:

said co-directional wavelength is chosen as said designated wavelength and $(\sqrt{5} - 2)\beta_2 < \beta_1 < \frac{\beta_2}{3}$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{2\beta_1}{\beta_2 - \beta_1}$.

25 24. The wavelength-selective optical transmission system of claim 14
wherein:

said co-directional wavelength is chosen as said designated wavelength and $\beta_1 < (\sqrt{5} - 2)\beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_2 - \beta_1}{\beta_2 + \beta_1}$.

25. The wavelength-selective optical transmission system of claim 14
wherein:

said co-directional wavelength is chosen as said designated wavelength and $\frac{\beta_2}{3} < \beta_1 < \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_2 - \beta_1}{2\beta_1}$.

5 26. The wavelength-selective optical transmission system of claim 14
wherein:

said co-directional wavelength is chosen as said designated wavelength and $\beta_1 > \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}$.

10 27. The wavelength-selective optical transmission system of claim 1
wherein:

said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a SiRN core.

15 28. The wavelength-selective optical transmission system of claim 1
wherein:

said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a Si core.

20 29. The wavelength-selective optical transmission system of claim 1
wherein:

said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a SiO_xN_y core.

25 30. The wavelength-selective optical transmission system of claim 1
wherein:

said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a Si₃N₄ core.

31. The wavelength-selective optical transmission system of claim 1
wherein:

5 said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a Ta₂O₅ & SiO₂ core.

32. The wavelength-selective optical transmission system of claim 1
wherein:

10 said first waveguide having a SiO₂ cladding and a doped SiO_xN_y core and said second waveguide have a SiO₂ cladding and a SiRN core.

33. The wavelength-selective optical transmission system of claim 1
wherein:

15 said first waveguide having a SiO₂ cladding and a doped SiO_xN_y core and said second waveguide have a SiO₂ cladding and a Si core.

34. The wavelength-selective optical transmission system of claim 1
20 wherein:

 said first waveguide having a SiO₂ cladding and a doped SiO_xN_y core and said second waveguide have a SiO₂ cladding and a SiO_xN_y core.

25 35. The wavelength-selective optical transmission system of claim 1
wherein:

 said first waveguide having a SiO₂ cladding and a doped SiO_xN_y core and said second waveguide have a SiO₂ cladding and a Ta₂O₅ & SiO₂ core.

30 36. The wavelength-selective optical transmission system of claim 1
wherein:

 said first waveguide having a first doped SiO₂ cladding and a doped SiO₂ core of different dopant concentration than said first doped SiO₂ cladding and said second waveguide have a second doped SiO₂ cladding and a SiRN core.

37. The wavelength-selective optical transmission system of claim 1
wherein:

5 said first waveguide having a first doped SiO₂ cladding and a
 doped SiO₂ core of different dopant concentration than said first
 doped SiO₂ cladding and said second waveguide have a second
 doped SiO₂ cladding and a Si core.

38. The wavelength-selective optical transmission system of claim 1
wherein:

10 said first waveguide having a first doped SiO₂ cladding and a
 doped SiO₂ core of different dopant concentration than said first
 doped SiO₂ cladding and said second waveguide have a second
 doped SiO₂ cladding and a Si_xN_y core.

15 39. The wavelength-selective optical transmission system of claim 1
wherein:

20 said first waveguide having a first doped SiO₂ cladding and a
 doped SiO₂ core of different dopant concentration than said first
 doped SiO₂ cladding and said second waveguide have a second
 doped SiO₂ cladding and a Si₃N₄ core.

40. The wavelength-selective optical transmission system of claim 1
wherein:

25 said first waveguide having a first doped SiO₂ cladding and a
 doped SiO₂ core of different dopant concentration than said first
 doped SiO₂ cladding and said second waveguide have a second
 doped SiO₂ cladding and a Ta₂O₅ & SiO₂ core.

30 41. The wavelength-selective optical transmission system of claim 1
wherein:

 said first waveguide having a first doped SiO₂ cladding and a
 SiO_xN_y core and said second waveguide have a second doped SiO₂
 cladding and a SiRN core.

42. The wavelength-selective optical transmission system of claim 1
wherein:

5

said first waveguide having a first doped SiO_2 cladding and a SiO_xN_y core and said second waveguide have a second doped SiO_2 cladding and a Si core.

43. The wavelength-selective optical transmission system of claim 1
wherein:

10

said first waveguide having a first doped SiO_2 cladding and a SiO_xN_y core and said second waveguide have a second doped SiO_2 cladding and a SiO_xN_y core.

44. The wavelength-selective optical transmission system of claim 1
wherein:

15

said first waveguide having a first doped SiO_2 cladding and a SiO_xN_y core and said second waveguide have a second doped SiO_2 cladding and a Si_3N_4 core.

20

45. The wavelength-selective optical transmission system of claim 1
wherein:

said first waveguide having a first doped SiO_2 cladding and a SiO_xN_y core and said second waveguide have a second doped SiO_2 cladding and a Ta_2O_5 & SiO_2 core.

25

46. A wavelength-selective optical transmission system comprising:

a first waveguide for transmitting a multiplexed optical signal therethrough;

30

a second waveguide coupled to said first waveguide wherein at least one of said first and second waveguides having a set of wavelength-selective Bragg gratings disposed near a coupling section between said first and second waveguides wherein said first and second waveguides having different propagation constants.

35

47. The wavelength-selective optical transmission system of claim 46
wherein:

5 said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a SiRN core.

48. The wavelength-selective optical transmission system of claim 46
wherein:

10 said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a Si core.

49. The wavelength-selective optical transmission system of claim 46
wherein:

15 said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a Si_xN_y core.

50. The wavelength-selective optical transmission system of claim 46
20 wherein:

 said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a Si₃N₄ core.

25 51. The wavelength-selective optical transmission system of claim 46
wherein:

 said first waveguide having a SiO₂ cladding and a doped SiO₂ core and said second waveguide have a SiO₂ cladding and a Ta₂O₅ & SiO₂ core.

30 52. The wavelength-selective optical transmission system of claim 46
wherein:

 said first waveguide having a SiO₂ cladding and a doped SiO_xN_y core and said second waveguide have a SiO₂ cladding and a SiRN core.

53. The wavelength-selective optical transmission system of claim 46
wherein:

5 said first waveguide having a SiO₂ cladding and a doped SiO_xN_y core and said second waveguide have a SiO₂ cladding and a Si core.

10 54. The wavelength-selective optical transmission system of claim 46
wherein:

15 said first waveguide having a SiO₂ cladding and a doped SiO_xN_y core and said second waveguide have a SiO₂ cladding and a SiO_xN_y core.

20 55. The wavelength-selective optical transmission system of claim 46
wherein:

25 said first waveguide having a SiO₂ cladding and a doped SiO_xN_y core and said second waveguide have a SiO₂ cladding and a Ta₂O₅ & SiO₂ core.

56. The wavelength-selective optical transmission system of claim 46
wherein:

25 said first waveguide having a first doped SiO₂ cladding and a doped SiO₂ core of different dopant concentration than said first doped SiO₂ cladding and said second waveguide have a second doped SiO₂ cladding and a SiRN core.

30 57. The wavelength-selective optical transmission system of claim 46
wherein:

30 said first waveguide having a first doped SiO₂ cladding and a doped SiO₂ core of different dopant concentration than said first doped SiO₂ cladding and said second waveguide have a second doped SiO₂ cladding and a Si core.

58. The wavelength-selective optical transmission system of claim 46
wherein:

5 said first waveguide having a first doped SiO_2 cladding and a
doped SiO_2 core of different dopant concentration than said first
doped SiO_2 cladding and said second waveguide have a second
doped SiO_2 cladding and a SiO_xN_y core.

10 59. The wavelength-selective optical transmission system of claim 46
wherein:

10 said first waveguide having a first doped SiO_2 cladding and a
doped SiO_2 core of different dopant concentration than said first
doped SiO_2 cladding and said second waveguide have a second
doped SiO_2 cladding and a Si_3N_4 core.

15 60. The wavelength-selective optical transmission system of claim 46
wherein:

20 20 said first waveguide having a first doped SiO_2 cladding and a
doped SiO_2 core of different dopant concentration than said first
doped SiO_2 cladding and said second waveguide have a second
doped SiO_2 cladding and a Ta_2O_5 & SiO_2 core.

25 61. The wavelength-selective optical transmission system of claim 46
wherein:

25 said first waveguide having a first doped SiO_2 cladding and a
 SiO_xN_y core and said second waveguide have a second doped SiO_2
cladding and a SiRN core.

30 62. The wavelength-selective optical transmission system of claim 46
wherein:

30 said first waveguide having a first doped SiO_2 cladding and a
 SiO_xN_y core and said second waveguide have a second doped SiO_2
cladding and a Si core.

63. The wavelength-selective optical transmission system of claim 46
wherein:

5 said first waveguide having a first doped SiO_2 cladding and a
 SiO_xN_y core and said second waveguide have a second doped SiO_2
 cladding and a SiO_xN_y core.

64. The wavelength-selective optical transmission system of claim 46
wherein:

10 said first waveguide having a first doped SiO_2 cladding and a
 SiO_xN_y core and said second waveguide have a second doped SiO_2
 cladding and a Si_3N_4 core.

65. The wavelength-selective optical transmission system of claim 46
wherein:

15 said first waveguide having a first doped SiO_2 cladding and a
 SiO_xN_y core and said second waveguide have a second doped SiO_2
 cladding and a Ta_2O_5 & SiO_2 core.

66. The wavelength-selective optical transmission system of claim 46
20 wherein:

25 said Bragg gratings reflecting an optical signal back to said first
 waveguide and transmitting a contra-directional optical signal and
 a co-directional optical signal having respectively a
 contra-directional selected wavelength and a co-directional selected
 wavelength corresponding to said Bragg gratings wherein one of
 said contra-directional and co-directional wavelengths is chosen as
 a designated wavelength, and said reflecting optical signal and one
 of said contra-directional or co-directional optical signals are
 outside of a predefined range surrounding said designated
 wavelength.

30 67. The wavelength-selective optical transmission system of claim 46
 wherein:

35 said first waveguide and said second waveguide are composed of
 two different materials.

68. The wavelength-selective optical transmission system of claim 46
wherein:

 said Bragg gratings disposed on said first waveguide.

5 69. The wavelength-selective optical transmission system of claim 46
wherein:

 said Bragg gratings disposed on said second waveguide.

10 70. The wavelength-selective optical transmission system of claim 46
wherein:

 said Bragg gratings disposed on said first and second waveguides.

15 71. The wavelength-selective optical transmission system of claim 46
wherein:

 said Bragg gratings disposed on a cladding surrounding said first
waveguide.

20 72. The wavelength-selective optical transmission system of claim 46
wherein:

 said Bragg gratings disposed on a cladding surrounding said
second waveguide.

25 73. The wavelength-selective optical transmission system of claim 46
wherein:

 said Bragg gratings disposed on a cladding in the gap between said
first and second waveguides.

74. The wavelength-selective optical transmission system of claim 66
wherein:

5 said predefined range of wavelength surrounding said designated selected wavelength having a wavelength range between λ_{\min} and λ_{\max} and said first and second waveguide having an optical propagation constant of β_1 and β_2 respectively.

75. The wavelength-selective optical transmission system of claim 74
wherein:

10 said contra-directional wavelength is chosen as said designated wavelength and $\beta_1 < \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \max\left(\frac{2\beta_1}{\beta_1 + \beta_2}, \frac{\beta_2 - \beta_1}{\beta_1 + \beta_2}\right)$.

76. The wavelength-selective optical transmission system of claim 74
wherein:

15 said contra-directional wavelength is chosen as said designated wavelength and $\beta_1 > \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \max\left(\frac{\beta_1 + \beta_2}{2\beta_1}, \frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}\right)$.

77. The wavelength-selective optical transmission system of claim 74
wherein:

20 said co-directional wavelength is chosen as said designated wavelength and $\beta_1 < \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \min\left[\max\left(\frac{2\beta_1}{\beta_2 - \beta_1}, \frac{\beta_2 - \beta_1}{\beta_2 + \beta_1}\right), \frac{\beta_2 - \beta_1}{2\beta_1}\right]$.

78. The wavelength-selective optical transmission system of claim 74
wherein:

 said co-directional wavelength is chosen as said designated wavelength and $\beta_1 > \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}$.

25 79. The wavelength-selective optical transmission system of claim 74
wherein:

 said contra-directional wavelength is chosen as said designated wavelength and $\beta_2 > 3\beta_1$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_2 - \beta_1}{\beta_1 + \beta_2}$.

80. The wavelength-selective optical transmission system of claim 74
wherein:

 said contra-directional wavelength is chosen as said designated wavelength and $\beta_1 < \beta_2 < 3\beta_1$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{2\beta_1}{\beta_1 + \beta_2}$.

5 81. The wavelength-selective optical transmission system of claim 74
wherein:

 said contra-directional wavelength is chosen as said designated wavelength and $(\sqrt{5} - 2)\beta_1 < \beta_2 < \beta_1$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_1 + \beta_2}{2\beta_1}$.

10 82. The wavelength-selective optical transmission system of claim 74
wherein:

 said contra-directional wavelength is chosen as said designated wavelength and $\beta_2 < (\sqrt{5} - 2)\beta_1$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_2 - \beta_1}{\beta_2 + \beta_1}$.

83. The wavelength-selective optical transmission system of claim 74
wherein:

15 said co-directional wavelength is chosen as said designated wavelength and $(\sqrt{5} - 2)\beta_2 < \beta_1 < \frac{\beta_2}{3}$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{2\beta_1}{\beta_2 - \beta_1}$.

84. The wavelength-selective optical transmission system of claim 74
wherein:

20 said co-directional wavelength is chosen as said designated wavelength and $\beta_1 < (\sqrt{5} - 2)\beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_2 - \beta_1}{\beta_2 + \beta_1}$.

85. The wavelength-selective optical transmission system of claim 74
wherein:

 said co-directional wavelength is chosen as said designated wavelength and $\frac{\beta_2}{3} < \beta_1 < \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_2 - \beta_1}{2\beta_1}$.

25 86. The wavelength-selective optical transmission system of claim 74
wherein:

 said co-directional wavelength is chosen as said designated wavelength and $\beta_1 > \beta_2$ and $\frac{\lambda_{\min}}{\lambda_{\max}} > \frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}$.

87. The wavelength-selective optical transmission system of claim 46
wherein:

5 said Bragg gratings comprising a periodic variation of a refractive index of an optical propagation material.

88. The wavelength-selective optical transmission system of claim 46
wherein:

10 said Bragg gratings comprising a periodic variation of a structural characteristic of an optical propagation material.

89. The wavelength-selective optical transmission system of claim 46
wherein:

15 said Bragg gratings comprising a periodic variation of a structural characteristic and a refractive index of an optical propagation material.

90. The wavelength-selective optical transmission system of claim 46
wherein:

20 at least one of said first and second waveguides are manufactured on a substrate by applying an integrated circuit (IC) manufacturing process thereon.

91. A wavelength-selective optical transmission system comprising:

25 a first and a second waveguides;

30 said second waveguide disposed on a vertically stacked position on said first waveguide and at least one of said first and second waveguides having a set of wavelength-selective Bragg gratings disposed near a coupling section between said first and second waveguides wherein said first and second waveguides having different optical propagation constants.

92. The wavelength-selective optical transmission system of claim 91
wherein:

35 said Bragg gratings comprising a periodic variation of a refractive index of an optical propagation material.

93. The wavelength-selective optical transmission system of claim 91
wherein:

5 said Bragg gratings comprising a periodic variation of a structural characteristic of an optical propagation material.

94. The wavelength-selective optical transmission system of claim 91
wherein:

10 said Bragg gratings comprising a periodic variation of a structural characteristic and a refractive index of an optical propagation material.

95. The wavelength-selective optical transmission system of claim 91
wherein:

15 at least one of said first and second waveguides are manufactured on a substrate by applying an integrated circuit (IC) manufacturing process thereon.

96. The wavelength-selective optical transmission system of claim 91
wherein:

20 said Bragg gratings disposed on said first waveguide.

97. The wavelength-selective optical transmission system of claim 91
wherein:

25 said Bragg gratings disposed on said second waveguide.

98. The wavelength-selective optical transmission system of claim 91
wherein:

30 said Bragg gratings disposed on said first and second waveguides.

99. The wavelength-selective optical transmission system of claim 91
wherein:

35 said Bragg gratings disposed on a cladding surrounding said first waveguide.

100. The wavelength-selective optical transmission system of claim 91
wherein:

said Bragg gratings disposed on a cladding surrounding said
second waveguide.

5

101. The wavelength-selective optical transmission system of claim 91
wherein:

said Bragg gratings disposed on a cladding in a gap between said
first and second waveguides.

10