

$$B \Rightarrow C, C \Rightarrow D, ... X \Rightarrow Y, ... (transitive closures)$$

1. Normal forms & functional dependencies

2. Finding functional dependencies

3. Closures, superkeys & keys

Problems

Repeats?
Room/time change?

Deletes?

<u>Properties</u>

Class -> Room/time Room -> Lat, Lng

(more compact)

Example Enrollment table - "v1"

	SID	Class
	4749732	cs 145
	2720942	cs 145
	4823984	cs 145
	4287594	cs 145
375	2984994	cs 145
s145	8472374	cs 145
tudents	4723663	cs 145
	2478239	cs 145
	4763268	cs 145
	2364532	cs 145
	2364573	cs 145
	3476382	cs 145
	2347623	cs 145
00	2364579	cs 245
cs245	3476343	cs 245
tudents	2322232	cs 245

Class	Room	Time
cs 145	Nvidia Aud	T/R 4:30-6
cs 245	Nvidia Aud	T/R 3-4:30
cs 246	Nvidia Aud	M/W 3-4:30

Room	Lat	Lng
Nvidia Aud	37.4277° N	122.1742° W

Why Joins? (Recall)

Option 1 (organized tables, with 10s-100s of columns)

Zipcode	Census
94305	
94040	
94041	

Zipcode	Solar
94305	
94040	
94041	

Z	Zipcode	Bikeshare
	94305	
	94040	
	94041	

Zipcode ...

Option 2 ('universal table', with 1000s-millions of columns)

4	Zipcode {	Census	{	Solar	}	{	BikeSnare	}	
	94305								
	94040								
	94041								

Option 3 (One table per column, zipcode in each column)

Trade offs?

- Reads? Writes?
- 100s thousands of applications reading/writing data

Design Theory

- Design theory is about how to represent your data to avoid *anomalies*.
- Simple algorithms for "best practices"

Normal Forms

- 1st Normal Form (1NF) = All tables are flat
- <u>2nd Normal Form</u> = disused
- Boyce-Codd Normal Form (BCNF)
- 3rd Normal Form (3NF)

DB designs based on functional dependencies, intended to prevent data anomalies

Our focus in this lecture + next one

• 4th and 5th Normal Forms = see text books

1st Normal Form (1NF)

Student	Courses
Mary	{CS145,CS229}
Joe	{CS145,CS106}
•••	

Student	Courses
Mary	CS145
Mary	CS229
Joe	CS145
Joe	CS106

Violates 1NF.

In 1st NF

1NF Constraint: Types must be atomic!

A poorly designed database causes *anomalies*:

	1	
Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••		••

If every course is in only one room, contains *redundant* information!

A poorly designed database causes *anomalies*:

Student	Course	Room	
Mary	CS145	B01	
Joe	CS145	C12	
Sam	CS145	B01	

If we update the room number for one tuple, we get inconsistent data = an *update* anomaly

A poorly designed database causes *anomalies*:

Student	Course	Room

If everyone drops the class, we lose what room the class is in! = a <u>delete anomaly</u>

CS229

C12

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••		

Similarly, we can't reserve a room without students = an <u>insert</u> anomaly

Student	Course
Mary	CS145
Joe	CS145
Sam	CS145

Course	Room
CS145	B01
CS229	C12

Is this form better?

- Redundancy?
- · Update anomaly?
- · Delete anomaly?
- Insert anomaly?

Today: develop theory to understand why this design may be better **and** how to find this *decomposition*...

Functional Dependency

Def: Let A,B be *sets* of attributes We write A \rightarrow B or say A *functionally determines* B if, for any tuples t_1 and t_2 :

 $t_1[A] = t_2[A]$ implies $t_1[B] = t_2[B]$

and we call $A \rightarrow B$ a **functional dependency**

A->B means that "whenever two tuples agree on A then they agree on B."

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...,B_n\}$ in R,

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...,B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on R holds if for *any* t_i, t_j in R:

here..

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...,B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on R holds if for *any* t_i, t_j in R:

 $t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND } \dots \text{ AND } t_i[A_m] = t_i[A_m]$

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...,B_n\}$ in R,

The functional dependency $A \rightarrow B$ on R holds if for any t_i, t_j in R:

$$\begin{split} & \underline{\textbf{if}} \ t_i[A_1] = t_j[A_1] \ \text{AND} \ t_i[A_2] = t_j[A_2] \ \text{AND} \\ & \dots \ \text{AND} \ t_i[A_m] = t_j[A_m] \end{split}$$

 $\begin{array}{l} \underline{\textbf{then}} \; t_i[B_1] = t_j[B_1] \; \text{AND} \; t_i[B_2] = t_j[B_2] \\ \text{AND} \; \dots \; \text{AND} \; t_i[B_n] = t_i[B_n] \end{array}$

FDs for Relational Schema Design

High-level idea: why do we care about FDs?

- 1. Start with some relational schema
- 2. Find out its functional dependencies (FDs)
- 3. Use these to *design a better schema*One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01

Note: The FD {Course} -> {Room} holds on this table instance

However, cannot *prove* that the FD {Course} -> {Room} is *part of the schema*

Functional Dependencies as Constraints

Note that:

- You can check if an FD is violated by examining a single instance;
- However, you cannot prove that an FD is part of the schema by examining a single instance.
 - This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01

More Examples

An FD is a constraint which holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

 $\{Position\} \rightarrow \{Phone\}$

More Examples

EmpID	Name	Phone	Position	
E0045	Smith	1234 →	Clerk	
E3542	Mike	9876	Salesrep	
E1111	Smith	9876	Salesrep	
E9999	Mary	1234 →	Lawyer	

but *not* {Phone} → {Position}

ACTIVITY

A	В	С	D	E
1	2	4	3	6
3	2	5	1	8
1	4	4	5	7
1	2	4	3	6
3	2	5	1	8

Find at least *three* FDs which are violated on this instance:

A Picture Of FDs [recall]

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on R holds if for *any* t_i, t_j in R:

$$\begin{split} & \underline{\textbf{if}} \ t_i[A_1] = t_i[A_1] \ \text{AND} \ t_i[A_2] = t_j[A_2] \ \text{AND} \\ & \dots \ \text{AND} \ t_i[A_m] = t_j[A_m] \end{split}$$

 $\begin{array}{l} \underline{\textbf{then}} \; t_i[B_1] = t_j[B_1] \; \text{AND} \; t_i[B_2] = t_j[B_2] \\ \text{AND} \; \dots \; \text{AND} \; t_i[B_n] = t_i[B_n] \end{array}$

<u>Problems</u>

Repeats?
Room/time change?
Deletes?

<u>FDs</u>

Class -> Room,Time Room -> Lat, Lng

(more compact)

Table Decomposition

 R_1 = the *projection* of R on A_1 , ..., A_n , B_1 , ..., B_m

 R_2 = the *projection* of R on A_1 , ..., A_n , C_1 , ..., C_p

Conceptual Design

For a "mega" table

- Search for "bad" <u>dependencies</u>
- If any, keep <u>decomposing</u> the table into sub-tables until no more bad dependencies
- When done, the database schema is *normalized*

Recall: there are several normal forms...

1. Finding FDs

- Closures: How to compute FDs?
- > SuperKeys: One 'good' kind of FDs

2. Decomposing mega tables into 'good' tables

Boyce-Codd Normal Form, 3NF

Finding Functional Dependencies

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. $\{Name\} \rightarrow \{Color\}$
- 2. {Category} → {Department}
- 3. {Color, Category} \rightarrow {Price}

Given the provided FDs, we can see that $\{\text{Name, Category}\} \rightarrow \{\text{Price}\}\$ must also hold on **any instance**...

Which / how many other FDs do?!?

Finding Functional Dependencies

Given a set of FDs, $F = \{f_1, ..., f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called **Armstrong's Rules.**

- 1. Split/Combine
- 2. Reduction
- 3. Transitivity

1. Split/Combine

$$\boldsymbol{A}_{1},\,...,\boldsymbol{A}_{m} \rightarrow \boldsymbol{B}_{1},\!...,\!\boldsymbol{B}_{n}$$

1. Split/Combine

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

... is equivalent to the following *n* FDs...

$$A_1,...,A_m \rightarrow B_i$$
 for i=1,...,n

1. Split/Combine

And vice-versa, $A_1,...,A_m \rightarrow B_i$ for i=1,...,n

... is equivalent to ...

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

Reduction/Trivial

$$A_1,...,A_m \rightarrow A_j$$
 for any j=1,...,m

3. Transitive Closure

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and $B_1, ..., B_n \rightarrow C_1, ..., C_k$

3. Transitive Closure

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and $B_1, ..., B_n \rightarrow C_1, ..., C_k$

implies

$$A_1,...,A_m \rightarrow C_1,...,C_k$$

Finding Functional Dependencies

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. $\{Name\} \rightarrow \{Color\}$
- 2. {Category} → {Department}
- 3. {Color, Category} → {Price}

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Provided FDs:

Inferred FD	Rule used	1. {Name} → {Color}
4. {Name, Category} -> {Name}	Trivial	2. {Category} → {Dept.} 3. {Color, Category} → {Price}
5. {Name, Category} -> {Color}	Transitive (4 -> 1)	3. (Color, Category) → (Trice)
6. {Name, Category} -> {Category}	Trivial	
7. {Name, Category} -> {Color, Category}	Split/Combine (5 + 6)	
8. {Name, Category} -> {Price}	Transitive (7 -> 3)	

What's an algorithmic way to do this?

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$ and a set of FDs **F**:

Closure, $\{A_1, ..., A_n\}^{\dagger}$ is the set of attributes B s.t. $\{A_1, ..., A_n\} \rightarrow B$

Closure Algorithm

Start with $X = \{A_1, ..., A_n\}$, FDs F.

Repeat until X doesn't change; do:

if $\{B_1, ..., B_n\} \rightarrow C$ is in F and $\{B_1, ..., B_n\} \subseteq X$: then add C to X.

Return X as X⁺

Example: F

 $F = \{name\} \rightarrow \{color\}$

{category} → {department} {color, category} → {price}

Example Closures:

 $\{name\}^+ = \{name, color\}$

{name, category}⁺ = {name, category, color, dept, price}

 $\{color\}^+ = \{color\}$

Keys and Superkeys

A <u>superkey</u> is a set of attributes $A_1, ..., A_n$ s.t. for *any other* attribute **B** in R, we have $\{A_1, ..., A_n\} \rightarrow B$

I.e. all attributes are functionally determined by a superkey

A key is a minimal superkey

Meaning that no subset of a key is also a superkey

Superkey Algorithm:

For each set of attributes X

- Compute X⁺
- If X⁺ = set of all attributes thenX is a **superkey**
- If X is minimal, then it is a **key**

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}<sup>+</sup> = {name, category}
```

```
F = \begin{cases} \text{(name)} \rightarrow \{\text{color}\} \\ \text{(category)} \rightarrow \{\text{dept}\} \\ \text{(color, category)} \rightarrow \{\text{price}\} \end{cases}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}<sup>+</sup> = {name, category}
```

```
{name, category}<sup>+</sup> = {name, category, color}
```

```
F = \begin{cases} \text{(name)} \rightarrow \{\text{color}\} \\ \text{(category)} \rightarrow \{\text{dept}\} \\ \text{(color, category)} \rightarrow \{\text{price}\} \end{cases}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
F = \{name\} \rightarrow \{color\}
\{category\} \rightarrow \{dept\}
\{color, category\} \rightarrow \{price\}
```

```
{name, category}<sup>+</sup> = {name, category}
```

```
{name, category}<sup>+</sup> = {name, category, color}
```

```
{name, category}<sup>+</sup> = {name, category, color, dept}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X^+
```

```
{name, category}<sup>+</sup> = {name, category}
```

```
{name, category}<sup>+</sup> = {name, category, color}
```

```
{name, category}<sup>+</sup> = {name, category, color, dept}
```

```
{name, category}<sup>+</sup> = {name, category, color, dept, price}
```

Compute
$$\{A, F\}^+ = \{A, F, A, F, A,$$

$${A,B} \rightarrow {C}$$

 ${A,D} \rightarrow {E}$
 ${B} \rightarrow {D}$
 ${A,F} \rightarrow {B}$

Compute
$$\{A,B\}^+ = \{A, B, C, D\}$$

Compute
$$\{A, F\}^+ = \{A, F, B\}$$

R(A,B,C,D,E,F)

$${A,B} \rightarrow {C}$$

 ${A,D} \rightarrow {E}$
 ${B} \rightarrow {D}$
 ${A,F} \rightarrow {B}$

Compute $\{A,B\}^+ = \{A, B, C, D, E\}$

Compute $\{A, F\}^+ = \{A, B, C, D, E, F\}$

Why Do We Need the Closure?

With closure we can find all FD's easily

Is X → A true?
 Check if A ∈ X⁺
 (i.e., A is in Closure of X)

Note here that **X** is a *set* of attributes, but **A** is a *single* attribute. Why does considering FDs of this form suffice?

Recall the **Split/combine** rule:

$$X \rightarrow A_1, ..., X \rightarrow A_n$$

implies
 $X \rightarrow \{A_1, ..., A_n\}$

Using Closure to Infer ALL FDs

Compute X⁺, for every set of attributes X:

Example:
Given F =

 $\{A,B\} \rightarrow C$ $\{A,D\} \rightarrow B$ $\{B\} \rightarrow D$

```
{A}^{+} = {A}

{B}^{+} = {B,D}

{C}^{+} = {C}

{D}^{+} = {D}

{A,B}^{+} = {A,B,C,D}

{A,C}^{+} = {A,C}

{A,D}^{+} = {A,B,C,D}

{A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{-} = {B,C,D}

{A,B,C,D}^{+} = {A,B,C,D}
```

No need to compute all of these- why?

Example of Finding Keys

Product(name, price, category, color)

```
{name, category} → price
{category} → color
```

What is a key?

Example of Keys

Product(name, price, category, color)

```
{name, category} → price
{category} → color
```

```
{name, category}+ = {name, price, category, color}
= the set of all attributes

⇒ this is a superkey
⇒ this is a key, since neither name nor category alone is a superkey
```


1. Finding FDs

- Closures: How to compute FDs?
- > SuperKeys: One 'good' kind of FDs

2. Decomposing mega tables into 'good' tables

Boyce-Codd Normal Form, 3NF

Decompositions

 R_1 = the *projection* of R on A_1 , ..., A_n , B_1 , ..., B_m

 R_2 = the *projection* of R on A_1 , ..., A_n , C_1 , ..., C_p

Properties of Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

We need a decomposition to be "correct"

I.e. it is a **Lossless** decomposition

Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19.99

*			
	Name	Category	
	Gizmo	Gadget	
	OneClick	Camera	
	Gizmo	Camera	

Lossy Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Need to avoid "bad" decompositions

What's wrong here?

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Lossy Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

M

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera
OneClick	19.99	Camera
Gizmo	24.99	Camera

Lossless Decompositions

A decomposition R to (R1, R2) is **lossless** if $R = R1 \bowtie R2$

Boyce-Codd Normal Form (BCNF)

Main idea: define "good" and "bad" FDs as follows:

- X → A is a "good FD" if X is a (super) key
 I.e., A is the set of all attributes
- Else, X → A is a "bad FD"
 I.e., X functionally determines some attributes; other attributes can be duplicate/anomalies

We will try to eliminate the "bad" FDs!

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is **in BCNF** if:

if $\{A_1, ..., A_n\} \rightarrow B$ is a non-trivial FD in R

then $\{A_1, ..., A_n\}$ is a superkey for R

In other words: there are no "bad" FDs

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

 $\{SSN\} \rightarrow \{Name, City\}$

This FD is *bad* because it is **not** a superkey

 $\Rightarrow \underline{\text{Not}}$ in BCNF

What is the key? {SSN, PhoneNumber}

Example decomposition

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Madison

<u>SSN</u>	<u>PhoneNumber</u>
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

Now in BCNF!

 $\{SSN\} \rightarrow \{Name,City\}$

This FD is now good because it is the key

Let's check anomalies:

- Redundancy?
- Update?
- Delete?

BCNF Decomposition Algorithm

BCNFDecomp(R):

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq [$ all attributes]

Find a set of attributes X which has non-trivial "bad" FDs, i.e. is not a superkey, using closures

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq [$ all attributes]

if (not found) then Return R

If no "bad" FDs found, in BCNF!

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq [$ all attributes]

if (not found) then Return R

decompose R into $R_1(X^+)$ and $R_2(X \cup Rest)$

R2: Rest of attributes not in X⁺

BCNFDecomp(R):

Find a set of attributes X s.t.: $X^+ \neq X$ and $X^+ \neq [$ all attributes]

if (not found) then Return R

decompose R into $R_1(X^+)$ and $R_2(X \cup Rest)$

Return BCNFDecomp(R₂), BCNFDecomp(R₂)

Proceed recursively until no more "bad" FDs!

Example

Conceptual Design (recap)

For a "mega" table

- Search for "bad" <u>dependencies</u>
- If any, *keep <u>decomposing</u>* (lossless) the table into sub-tables until no more bad dependencies
- When done, the database schema is *normalized*

<u>FDs</u> Class -> Room,Time Room -> Lat, Lng

(more compact)

BCNF decomposition

SID	Class	Room	Time	Lat	Lng
4749732	cs 145	Nvidia Aud	T/R 4:30-6	37.4277° N	122.1742° W
2720942	cs 145	Nvidia Aud	T/R 4:30-6	37.4277° N	122.1742° W
4823984	cs 145	Nvidia Aud	T/R 4:30-6	37.4277° N	122.1742° W
4287594	cs 145	Nvidia Aud	T/R 4:30-6		
2984994	cs 145	Nvidia Aud	T/R 4:30-6		
8472374	cs 145	Nvidia Aud	T/R 4:30-6		
4723663	cs 145	Nvidia Aud	T/R 4:30-6		
2478239	cs 145	Nvidia Aud	T/R 4:30-6		
4763268	cs 145	Nvidia Aud	T/R 4:30-6		
2364532	cs 145	Nvidia Aud	T/R 4:30-6		
2364573	cs 145	Nvidia Aud	T/R 4:30-6		
3476382	cs 145	Nvidia Aud	T/R 4:30-6		
2347623	cs 145	Nvidia Aud	T/R 4:30-6		
2364579	cs 245	Nvidia Aud	T/R 3-4:30	37.4277° N	122.1742° W
3476343	cs 245	Nvidia Aud	T/R 3-4:30	37.4277° N	122.1742° W
2322232	cs 245	Nyidia Aud	T/R 3-4:30	37 4277° N	122 1742° W

Schema: SID, Class, Room, Time, Lat, Lng

FDs

Class -> Room,Time Room -> Lat, Lng

BCNF decomposition

- Find bad FD #1: Class⁺ -> Class, Room, Time, Lat, Lng
 Decomposed: R1(Class, Room, Time, Lat, Lng) and R2(SID, Class)
- Find bad FD #2: Room⁺ -> Room, Lat, Lng
 Decompose R1 into R11(Room, Lat, Lng) and R12(Class, Room, Time)
- ⇒ BCNF schema: R2(SID, Class), R12(<u>Class</u>, Room, Time), R11(<u>Room</u>, Lat, Lng)

Example Enrollment table - "v1"

	SID	Class
375 cs145 students	4749732	cs 145
	2720942	cs 145
	4823984	cs 145
	4287594	cs 145
	2984994	cs 145
	8472374	cs 145
	4723663	cs 145
	2478239	cs 145
	4763268	cs 145
	2364532	cs 145
	2364573	cs 145
	3476382	cs 145
	2347623	cs 145
300 cs245 students	2364579	cs 245
	3476343	cs 245
	2322232	cs 245

Class	Room	Time
cs 145	Nvidia Aud	T/R 4:30-6
cs 245	Nvidia Aud	T/R 3-4:30
cs 246	Nvidia Aud	M/W 3-4:30

Room	Lat	Lng
Nvidia Aud	37.4277° N	122.1742° W

A Problem with BCNF

We lose the FD {Company, Product} \rightarrow {Unit}!!

So Why is that a Problem?

<u>Unit</u>	Company
Galaga99	UW
Bingo	UW

Unit	Product
Galaga99	Databases
Bingo	Databases

No problem so far. All *local* FD's are satisfied.

Unit	Company	Product
Galaga99	UW	Databases
Bingo	UW	Databases

Let's put all the data back into a single table again:

Violates the FD {Company,Product} → {Unit}!!

The Problem

- We started with a table R and FDs F
- We decomposed R into BCNF tables R₁, R₂, ... with their own FDs F₁, F₂, ...
- We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD across tables!

<u>Practical Problem</u>: To enforce FD, must reconstruct R—on each insert!

Possible Solutions

 Various ways to handle so that decompositions are all lossless / no FDs lost

 Usually a tradeoff between redundancy / data anomalies and FD preservation...

BCNF vs 3NF

BCNF (recap)

X → A is a "good FD" if X is a (super) key
 I.e., A is the set of all attributes

3NF:

- $X \rightarrow A$ is a "good FD" if X is a (super) key
- Or, if A is part of any key

BCNF still most common- with additional steps to keep track of lost FDs...

Summary

- Constraints allow one to reason about redundancy in the data
- Normal forms describe how to remove this redundancy by decomposing relations
 - Elegant—by representing data appropriately certain errors are essentially impossible
 - For FDs, BCNF is the normal form.
- A tradeoff for insert performance: 3NF