CSE 620: Selective Topics Introduction to Formal Verification

Master Studies in CSE Fall 2016

Lecture #2

Dr. Hazem Ibrahim Shehata

Assistant Professor

Dept. of Computer & Systems Engineering

Course Outline

- Computational Boolean Algebra
 - —Basics
 - Shannon Expansion
 - Boolean Difference
 - Quantification Operators
 - + Application to Logic Network Repair
 - —Validity Checking (Tautology Checking)
 - —Satisfiability Checking (SAT solving)
 - —Binary Decision Diagrams (BDD's)
- Model Checking
 - —Temporal Logics → LTL CTL
 - —SMV: Symbolic Model Verifier
 - —Model Checking Algorithms → Explicit CTL

Rob A. Rutenbar University of Illinois

Lecture 2.3

Computational Boolean Algebra: Quantification Operators

is Knapton/Digital

Computational Boolean Algebra, Cont...

What you know

- Shannon expansion lets you decompose a Boolean function
- Combinations of cofactors do interesting things, e.g., the Boolean difference

What you don't know

- Other combinations of cofactors that do useful things
 - The big ones: Quantification operators (this lecture)
 - Applications: Being able to do something impressive (next lecture)

AND: Fx • Fx' is Universal Quantification

- Have F(x1, x2, ..., xi, ... xn)
- AND cofactors: F_{xi} F_{xi}'
 - Name: Universal Quantification of function F with respect to (wrt) variable xi

- "(∀xi F)" is a new function
 - Yes, the sign is the "for all" symbol from logic (predicate calculus)
 - And, it does not depend on xi...

 $_{\mathsf{r}}$

OR: Fx + Fx' is Existential Quantification

- Have F(x1, x2, ..., xi, ... xn)
- OR the cofactors: F_{xi} +F_{xi}
 - Name: Existential Quantification of function F wrt variable xi
 - (∃xi F) [x1, x2, ..., xi-1, xi+1, ... xn]
- "(∃xi F)" is a new function
 - "∃" sign is "there exists" from logic;
 and function also does not depend on xi

Note, like anything involving cofactors, both these new functions do not depend on xi

Quantification Notation Makes Sense...

Extends to More Variables in Obvious Way

Additional properties

- Like Boolean difference, can do with respect to more than 1 var
- Suppose we have F(x,y,z,w)
- Example: $(\forall xy \ F)[z,w] = (\forall x \ (\forall y \ F)) = Fxy \cdot Fx'y \cdot Fxy' \cdot Fx'y \cdot F$
- Example: (∃xy F)[z,w] = (∃x (∃y F)) = Fxy + Fx'y + Fxy' + Fx'y ← Fx'y ←

Remember!

- $(\forall x \ F)$, $(\exists x \ F)$, and $\partial F / \partial x$ are all functions...
- ..but they are functions of all the vars except x
- We got rid of variable x and made 3 new functions

 $_{\mathsf{ar}}$ $oxedsymbol{\mathbb{I}}$

Quantification Example

- Consider this circuit, it adds X=0 or X=1 to a 2-bit number A1A0
 - It's just a 2-bit adder, but instead of B1B0 for the second operand, it is just 0X
 - It produces a carry out called C and also has a carry in called D

- What is (∀A1,A0 C)[X,D]...?
 - A function of only X,D. Makes a 1 for values of X,D that make carry C=1 for all values of operand input A1A0, i.e., makes a carry C=1 for all values of A1A0
- What is (∃A1,A0 C)[X,D]...?
 - A function of just X,D. Makes a 1 for values of X,D that make carry C=1, for some value of A1A0, i.e., there exists some A1A0 that, for this X,D makes C=1

Quantification Example

- Compute (∀A1,A0 C)[X,D]
 - C_{A1A0} C_{A1'A0} C_{A1A0'} C_{A1'A0'}

In words: No values of **X**,**D** that make C=1 independent of A1,A0

- Compute $(\exists A1,A0 C)[X,D]$
 - $C_{A1A0} + C_{A1'A0} + C_{A1A0'} + C_{A1'A0'}$

 In words: Yes, if at least one of $X,D = 1 \rightarrow C = 1$ indep of A1,A0

Rob A. Rutenbar University of Illinois

Lecture 2.4

Computational Boolean Algebra: Application to Logic Network Repair

ris Knapton/Digital

Quantification App: Network Repair

Suppose ...

- I specified a logic block for you to implement... f(a,b) = ab + b'
- ...but you implemented it wrong: in particular, you got ONE gate wrong

- Can we deduce how precisely to change this gate to restore correct function?
- Lets go with this very trivial test case to see how mechanics work...

Network Repair

Clever trick

- Replace our suspect gate by a
 4:1 mux with 4 arbitrary new vars
- By cleverly assigning values to d0 d1 d2 d3, we can fake any gate
- Question is: what are the right values of d's so g is repaired (==f)

b

A

Slide 34

Aside: Faking a Gate with a MUX

Remember...

You can do any function of 2 vars with one 4 input multiplexor (MUX)

Network Repair: Using Quantification

Next trick

Using Quantification

What now?

Think hard about exactly what we want:

- But this is something we have seen!
 - Universal quantification of function Z wrt variables a,b!
 - Any pattern of (d0 d1 d2 d3) that makes (∀ab Z)(d0,d1,d2,d3)==1 will do it!
 - (Aside: do you know where a, b went??)

Network Repair via Quantification: Try It...

Network Repair via Quantification: Continued

$$Z = [d0a'b + d1b' + d2ab] \oplus [ab + b'] = G \text{ exnor } f$$

Reminder: 📐

Q exnor 0 = Q'

Q exnor 1 = Q

Use nice property: cofactor of exnor is exnor of coractors!

$$Z_{a'b'} = G_{a'b'} \oplus f_{a'b'} \rightarrow \text{set a=0,b=0} \rightarrow$$

$$Z_{a'b} = G_{a'b} \oplus f_{a'b} \rightarrow \text{set a=0,b=1} \rightarrow$$

$$Z_{ab'} = G_{ab'} \oplus f_{ab'} \rightarrow \text{set a=1,b=0} \rightarrow$$

$$Z_{ab} = G_{ab} \oplus f_{ab} \rightarrow \text{set a=1,b=1} \rightarrow$$

$$Z_{ab} = G_{ab} \oplus f_{ab} \rightarrow \text{set a=1,b=1} \rightarrow$$

Repair via Quantification: Continued

- So, we got this: (∀ab Z)[d0,d1,d2,d3] ≠ d0' •d1•d2
- And know this: if can solve (∀ab Z)[d0,d1,d2,d3]==1 → repaired!
- Hey this one is not very hard…

$$99 = 0$$
 $99 = 0$
 $99 = 0$

Network Repair

Does it work? What do these d's represent?

- But in a real example, you have a **big** network-- 100 inputs, 50,000 gates
- When it doesn't work, it's a major hassle to go thru in detail
- This is a mechanical procedure to answer: Can we change 1 gate to repair?

Computational Boolean Alg Strategies

- What haven't we seen yet? Computational strategies
 - Example: find inputs to make (∀ab Z)(d0,d1,d2,d3)==1 for gate debug
 - This computation is called Boolean Satisfiability (also called SAT)
- Ability to do Boolean SAT efficiently is a big goal for us
 - We will see how to do this in later lectures...

Lecture 2.5

Computational Boolean Algebra: URP Tautology

Rob A. Rutenbar University of Illinois

Chapton/Digital Vision/Gr

Important Ex Computation: Tautology

- Let's build a real computational strategy for a real problem
- Tautology:
 - I will give you a representation a data structure -- for a Boolean function f()
 - You build an algorithm to tell—yes or rd if this function f() == 1 for every input
- You might be thinking: Hey, how hard can that be...??
 - Very, very hard.
 - What happens if I give you a function with 50 variables...?
 - Turns out this is a great example: illustrates all the stuff we need to know...

Start with: Representation

- We use a simple, early representation scheme for functions
 - Represent a function as a set of OR'ed product terms (i.e., a sum of products)
 - Simple visual: use a 3-var Boolean cube, with solid circles where f() = 1
 - So: each product term (circle in a Kmap) called a "cube" == 2^k corners circled

Positional Cube Notation (PCN)

- So, we say 'cube' and mean 'product term'
 - So, how to represent each cube? **PCN:** one slot per variable, 2 bits per slot
 - Write each cube by just noting which variables are true, complemented, or absent
 - In slot for var x: put 01

of of the original of the orig

• In slot for var x: put 10

if product term has ...x'... in it

• In slot for var x: put 11

if product terms has no x or x' in it

Slide 46

PCN Cube List = Our Representation

So, we represent a function as a cover of cubes (circle its 1's)

• This is a **list of cubes** (this is the 'sum') in **positional cube notation** (of products)

ou bugnet

Ex: f(a,b,c)=a +bc +ab => [01 11 11], [11 01 01], [01 01 11]

Tautology Checking

- How do we approach tautology as a computation?
 - Input = cube-list representing products in an SOP cover of f
 - Output = yes/no, f ==1 always or not
- Cofactors to the rescue

- Great result: f is a tautology if and only if fx and fx' are both tautologies
- This makes sense:

$$f(x=0), f(x=1)=1$$
on sefectors both obviously = 1

- If function f() = 1 \rightarrow then cofactors both obviously = 1
- If both cofactors = 1 \rightarrow $x \cdot F(x=1) + x' \cdot F(x=0) = x \cdot 1 + x' \cdot 1 = x + x' = 1$

Recursive Tautology Checking

- Suggests a recursive computation strategy:
 - If you cannot tell immediately that f==1 ...go try to see if each cofactor == 1!

f=1??

• What else do we need here?

Selection rules: which x is good to pick to split on?

• Termination rules: how do we know when to quit splitting, so we can

answer **==1** or **!=1** for function at this node of tree?

Mechanics: how hard is it to actually *represent* the cofactors?

Rob A. Rutenbar University of Illinois

Lecture 2.6

Computational Boolean
Algebra: URP Tautology—
Full Implementation

ris Knapton/Dig

Recursive Tautology Checking

- So, we think a recursive computation strategy will do it:
 - If you cannot tell immediately that f==1 ...go try to see if each cofactor == 1!

split or x $(f_x = 1 \text{ AND } f_{x'} = 1)??$ $y/n \quad y/n$ $f_x = 1??$ $f_{x'} = 1??$

- We need these:
 - Selection rules:
 - Termination rules:
 - Mechanics:

which x is good to pick to split on?

how do we know when to quit splitting, so we can answer ==1 or !=1 for function at this node of tree?

how hard is it to actually *represent* the cofactors?

Recursive Cofactoring

Do mechanics first (easy!). For each cube in your list:

- If you want cofactor wrt varx=15 look at x slot in each cube:
 - [... 10 ...] => just remove this cube from list, since it's a term with an x'
 - [... 01 ...] => just make this slot 11 == don't care, strike the x from product term
 - [... 11 ...] => just leave this alone, this term doesn't have any x in it
- If you want cofactor wrt var x=0 look at x slot in each cube:
 - [...01 ...] => just remove this cube from list, since it's a term with an x
 - [...10 ...] => just make this slot 11 == don't care, strike the x' from product term
 - [...11 ...] => just leave this alone, this term doesn't have any x in it

Unate Functions

- Selection / termination, another trick: Unate functions
 - Special class of Boolean functions
 - **f** is **unate** if a SOP representation only has each literal in **exactly one polarity**, either all true, or all complemented

Terminology

- f is positive unate in var x -- if changing x 0→1 keeps f constant or makes f: 0→1
- f is negative unate in var x -- if changing x 0→1 keeps f constant or makes f: 1→0
- Function that is not unate is called binate

Unate Functions

Analogous to monotone continuous functions

Example: for a Boolean function f positive unate in x

Can Exploit Unate Func's For Computation

Suppose you have a cube-list for f

a+b'c+ac UNATE

- A cube-list is unate if each var in each cube only appears in one polarity, not both
- Ex: f(a,b,c)=a +bc +ac → [01 11 11], [11 01 01], [01 11 01] is unate
- Ex: $f(a,b,c)=a +b'c +bc \rightarrow [01 11 11], [11 10 01], [11 01 01] is not$
- Easier to see if draw vertically

a+b'c+bc NOT

nbar 🔳

Using Unate Functions in Tautology Checking

- Beautiful result
 - It is very easy to check a unate cube-list for tautology
 - Unate cube-list for f is tautology iff it contains all don't care cube = [11 ... 11]
 - Reminder: what exactly is [11 11 11 ... 11] as a product term?

$$[01\ 01\ 01] = abc \quad [01\ 01\ 11] = ab \quad [01\ 11\ 11] = a \quad [11\ 11\ 11] =$$

- This result actually makes sense...
 - Cannot make a "1" with only product terms
 where all literals are in just one polarity. (Try it!)

Slide 56

© 2013, R.A. Rutenbar

So, Unateness Gives Us Termination Rules

- We can look for tautology directly, if we have a unate cube-list
 - If match rule, know immediately if ==1, or not

```
Rule 1: why: ==1 if cube-list has all don't care cube [11 11 ... 11] function at this leaf is (stuff + 1 + stuff) == 1

PRULE 2: Left cube-list unate and all don't care cube missing unate ==1 if and only if has [11 11 ... 11] cube
```


Recursive Tautology Checking

Lots more possible rules...

```
    Rule 3: ==1 if cube list has single var cube that appears in both polarities
    Why: function at this leaf is (stuff + x + x' + stuff) == 1
```


Recursive Tautology Checking

- But can't use easy termination rules unless unate cubelist
- Selection rule...? Pick splitting var to make unate cofactors!
 - Strategy: pick "most not-unate" (binate) var as split var
- Pick binate var with most product terms dependent on it (Why? Simplify more cubes)
 - If a tie, pick var with minimum | true var complement var | (L-R subtree balance)

 $_{r}$

Recursive Tautology Checking: Done!

```
Algorithm tautology(f represented as cubelist) {
   if (f is unate) {
    apply unate tautology termination rules directly
    if (==1) return (1)
    else return (0)
                          /* check if we can terminate recursion */
                          else if (any other termination rules, like rule 3, work?) {
                              return the appropriate value if ==1 or ==0
else { /* can't tell from this -- find splitting variable */
x = most-not-unate variable in f
return ( tautology( f_x ) && tautology( f_{x'}) )
                                                                                            © 2013, R.A. Rutenbar
Slide 60
```

Recursive Tautology Checking: Example

Tautology example: f = ab + ac + ab'c' + a'

Recursive Tautology Checking: Example

So we are done:

- Our tree has tautologies at all leaves!
- Note -- if any leaf !=1, then f != 1 too, this is how tautology fails

Computational Boolean Algebra

- Computational philosophy revisited
 - Strategy is so general and useful it has a name: Unate Recursive Paradigm
 - Abbreviated usually as "URP"

Summary

- Cofactors and functions of cofactors are important and useful
 - Boolean difference, quantifications; real applications like network repair
- Representations (data structures) for Boolean functions are critical
 - Truth tables, Kmaps, equations cannot be manipulated by software
 - Saw one real representation: Cube-list, positional cube notation

nbar