

Start-Tech Academy

Time Series and Forecasting

A time series is a series of data points indexed (or listed or graphed) in time

order.

Time Series

Year	Profit
2001	50000
2002	60000
2003	70000
2004	60000
2005	75000

	A	В	
1	Time	Temperature	
2	10:00 AM	72	
3	10:05 AM	76	
4	10:10 AM	83	
5	10:15 AM	87	
6	10:20 AM	91	
7	10:25 AM	99	
8	10:30 AM	99	
9	10:35 AM	99	
10	10:40 AM	107	
11	10:45 AM	113	
12	10:50 AM	119	
13	10:55 AM	123	
14	11:00 AM	127	
15	11:05 AM	134	
16	11:10 AM	139	

City	Latitude	Temperature
Miami, FL	26	83
Houston, TX	30	82
Mobile, AL	31	82
Phoenix, AZ	33	92
Dallas, TX	33	85
Los Angeles, CA	34	75
Memphis, TN	35	81
Norfolk, VA	37	77
San Francisco, CA	38	64
Baltimore, MD	39	76
Kansas City, MO	39	76
Washington, DC	39	74
Pittsburgh, PA	40	71
Cleveland, OH	41	70
New York, NY	41	76
Boston, MA	42	72
Syracuse, NY	43	68

Time Series and Forecasting

Time Series Forecasting

Time series forecasting is the use of a model to predict future values based on previously observed values

2	Year	Sales
3	2012	15000
4	2013	15500
5	2014	16000
6	2015	16500
7	2016	17000
8	2017	17500
9	2018	18000
10	2019	18500
11	2020	19000
12	2021	19500
13	2023	20500
14	2024	21000

Retail Industry

Energy Industry

Government

Financial Organization

Agriculture

Define Goal Get Data Explore & **Visualize Series Pre-Process Data Partition Series Steps Apply Forecasting** Method(s) **Evaluate &** Compare Performance **Implement** Forecasts/System

Goal Definition

One must first determine

- 1. The purpose of generating forecasts,
- 2. The type of forecasts that are needed,
- 3. How the forecasts will be used by the organization,
- 4. What are the costs associated with forecast errors,
- 5. What data will be available in the future, and more

Goal Definition

Goal Definition Example

AMTRAK –US Railway company Ridership Data From Jan 1991 to March 2004

AMTRAK

Descriptive

Predictive

Goal Definition Example

event, such as airport closures due to inclement weather, or the opening of a new large national highway. This goal is retrospective in nature, and is therefore descriptive or even explanatory.

Amtrak might have is to forecast future monthly ridership on its trains for purposes of pricing.
Using demand data to determine pricing is called "revenue management" and is a popular practice by airlines and hotel chains

Forecasting Horizon

Basic Notation

$t = 1, 2, 3, \dots$	An index denoting the time period of interest.	
	t = 1 is the first period in a series.	
$y_1, y_2, y_3, \ldots, y_n$	A series of n values measured over n time periods,	
	where y_t denotes the value of the series at time period t .	
	For example, for a series of daily average temperatures,	
	$t = 1, 2, 3, \dots$ denotes day 1, day 2, and day 3;	
	y_1, y_2 , and y_3 denote the temperatures on days 1,2, and 3.	
F_t	The forecasted value for time period t .	
F_{t+k}	The k -step-ahead forecast when the forecasting time is t .	
	If we are currently at time period t , the forecast for the	
	next time period $(t + 1)$ is denoted F_{t+1} .	
e_t	The forecast error for time period t , which is the	
	difference between the actual value and the forecast	
	at time t , and equal to $y_t - F_t$	

Forecasting Horizon

Forecasting Horizon

The forecast horizon k is the number of periods ahead that we must forecast, and F_{t+k} is a k-step-ahead forecast.

In the Amtrak ridership example, one-month-ahead forecasts (F_{t+1}) might be sufficient for revenue management (for creating flexible pricing), whereas longer term forecasts, such as three-month ahead (F_{t+3}) , are more likely to be needed for scheduling and procurement purposes.

Forecasting

Forecasting Use and Automation

It is important to understand how the forecasts will be used

- Over-prediction vs under-prediction
- Presented to management or to the technical department
- Forecasts be used directly or will they be "adjusted" in some way before use
- Should forecasts be numerical or binary ("event"/"non-event")

Automation requirement

- 1. How many series need to be forecasted?
- 2. Is the forecasting an ongoing process or a one time event?
- 3. Which data and software will be available during the forecasting period?
- 4. What forecasting expertise will be available at the organization during the forecasting period?

The most basic and informative plot for visualizing a time series is the **time plot**. it is a line chart of the series values (y1, y2, . . .) over time (t = 1, 2, . . .), with temporal labels (e.g., calendar date) on the horizontal axis

Time Plot

Month	Ridership
Jan-91	1709
Feb-91	1621
Mar-91	1973
Apr-91	1812
May-91	1975
Jun-91	1862
Jul-91	1940
Aug-91	2013
Sep-91	1596
Oct-91	1725
Nov-91	1676
Dec-91	1814
Jan-92	1615
Mar-04	2132

Zooming in to a shorter period within the series can reveal patterns that are hidden when viewing the entire series. This is especially important when the time series is long.

Zooming in

Another possibility for better capturing the shape of the trend is to add a trend line By trying different trend lines one can see what type of trend (e.g., linear, exponential, cubic) best approximates the data.

Adding Trend Lines

It is often easier to see trends in the data when seasonality is suppressed. Suppressing seasonal patterns can be done by plotting the series at a cruder time scale

Suppressing Seasonality

Time series modeling assumes a relationship between an observation and the previous observation.

Previous observations in a time series are called lags. A useful type of plot to explore the relationship between each observation and a lag of that observation is called the scatter plot.

Lag Scatter Plot

What we will learn

- What is Feature Engineering
- The rationale and goals of feature engineering time series data.
- How to develop basic date-time based input features.
- How to develop more sophisticated lag and sliding window summary statistics features.

A time series dataset must be transformed to be modeled as a supervised learning problem.

Basics

time 1	value 1
time 2	value 2
time 3	value 3

input 1	output 1
input 2	output 2
input 3	output 3

Input variables are also called features in the field of machine learning, and the task before us is to create or invent new input features from our time series dataset.

Types of Feature

- **Date Time Features:** these are components of the time step itself for each observation.
- Lag Features: these are values at prior time steps.
- Window Features: these are a summary of values over a fixed window of prior time steps.

Date	Footfall
10 Jan 20	853
11 Jan 20	1376
12 Jan 20	1289
13 Jan 20	657

Weekend	Footfall 7 d ago	Last 7 Day avg
0	785	985
1	1456	972
1	1145	995
0	764	970

- Rolling window: add a summary of the values at previous time Steps
- **Expanding Window:** Another type of window that may be useful includes all previous data in the series.

Window Features

Date	Footfall
10 Jan 20	853
11 Jan 20	1376
12 Jan 20	1289
13 Jan 20	657

Last 7 Day avg	Maximum till date
985	1195
972	1195
995	1376
970	1376

Time Series – Resampling

Resampling

 Resampling – Changing frequency of available data to match the frequency of required forecast

- Types
 - 1. Upsampling
 - 2. Downsampling

Resampling

Upsampling – Where you increase the frequency of the samples, such as

from minutes to seconds.

Upsampling

Quarter	Footfall
Quarter 1	853
Quarter 2	1376
Quarter 3	1289
Quarter 4	657

Footfall
240
260
353
433
467
476
500
450
339
140
217
300

Resampling

Downsampling

Downsampling – Where you decrease the frequency of the samples, such as from days to months.

Quarter	Footfall
Y 1 – Q1	240
Y 1 – Q2	260
Y 1 – Q3	353
Y 1 – Q4	433
Y 2 – Q1	467
Y 2 – Q2	476
Y 2 – Q3	500
Y 2 – Q4	450
Y 3 – Q1	339
Y 3 – Q2	140
Y 3 – Q3	217
Y 3 – Q4	300

Quarter	Footfall
Year 1	1286
Year 2	1793
Year 3	1289

Power Transformation

To better identify the shape of a trend, it is useful to change the scale of the series

Changing the

Scale

Power Transformation

To better identify the shape of a trend, it is useful to change the scale of the series

If the trend on the new scale appears more linear, then the trend in the original series is closer to an new
function trend.

Changing the Scale

Moving Average Smoothening

What we will cover

- What is moving average smoothening? Why?
- Centered Window vs Trailing Window MA
- Feature engineering and forecasting using MA

MA smoothening is creating a new series where values are averages of the raw observations

Moving Average Smoothening

Month	Temp. (°F)	Moving average
Jan	39	
Feb	42	V
Mar	(50)	44
Apr	60	51
May	71	60
Jun	79	70
Jul	85	78
Aug	81	82
Sep	76	81

Moving Average Smoothening

MA smoothening is creating a new series where values are averages of the

raw observations

Moving AverageSmoothening

Moving Average Smoothening

Trailing MA can be used in 2 ways

1. Feature Engineering

Forecasting
 Forecating for month of June can be 60, which is trailing MA for previous 3 months

Time Series – White Noise

White noise is a sequence of random numbers

White Noise

Time Series – White Noise

White Noise Why?

- 1. To identify whether the series to be forecasted is white noise or not
- 2. The error values of our predictions are white noise or not

Summary

- Series should not be white noise
- Error values should be white noise

Time Series – Random Walk

Next value of the series is the modification of the previous value in the

sequence

Random Walk

Time Series – Random Walk

Random Walk

In the case of Random Walk, naïve forecasting gives the best result

Time Series – Smoothing

Simple exponential smoothing

- Moving Average smoothing
 Simple averaging
- Exponential smoothing weighted averaging

$$F_{t+1} = \alpha y_t + \alpha (1 - \alpha) y_{t-1} + \alpha (1 - \alpha)^2 y_{t-2} + \cdots$$

Smoothing constant

Time Series – Differencing

Differencing is a method for removing trend and seasonality

Removing trend and seasonality

1. Lag 1 Differencing

$$Y_t - Y_{t-1}$$

2. Lag k Differencing

$$Y_t - Y_{t-k}$$

	Month	MilesMM	lag1	Difference
0	1963-01-01	6827	NaN	NaN
1	1963-02-01	6178	6827.0	-649.0
2	1963-03-01	7084	6178.0	906.0
3	1963-04-01	8162	7084.0	1078.0
4	1963-05-01	8462	8162.0	300.0

Time Series – Differencing

Time Series – Auto regression model

Use only on series without trend and seasonality

Auto regression

Simple regression model

$$\hat{Y} = B_0 + B_1 \times X_1$$

Time Series – Auto regression model

$$\hat{Y} = B_0 + B_1 \times X_1$$

1. Step 1

Feed a set of X and Y values to the model

2. Step 2

Model tries to fit a straight line on the given values. Finds value of B0 and

B1 by minimizing total error

3. Step 3

Use B0 and B1 values to predict future values of Y

Fore auto regression model – lag values of same variable are used as input values

Steps

Time Series – Moving Average model

It is different from moving average smoothing method

Moving Average

Time Series – Moving Average model

Steps

1. Step 1

Build a forecasting model (AR or Persistence model)

2. Step 2

Find residual/ Forecast errors

3. Step 3

Build a forecast model on residuals

4. Step 4

Use forecasted residuals to update the initial forecast

If initial forecasting model is AR this technique is also called ARMA

ACF and **PACF**

1. Correlation-

Relation between 2 variables. Measured by Pearson's Correlation Coef.

Coef. Value	Relationship	Inference
+1	Positive	If x increases, y also increases
-1	Negative	If x increases, y decreases
0	No Relationship	If x increases, no effect on y

For time series analysis, instead of 2 different variables,

X is lagged value of y

So, therefore it is called AutoCorrelation => Correlation with itself

ACF and PACF

date	births	lag1
1959-01-01	35	NaN
1959-01-02	32	35.0
1959-01-03	30	32.0
1959-01-04	31	30.0
1959-01-05	44	31.0
1959-01-06	29	44.0
1959-01-07	45	29.0

Correlation

Coef = 0.8

Lag 1

date	births	lag2
1959-01-01	35	NaN
1959-01-02	32	NaN
1959-01-03	30	35.0
1959-01-04	31	32.0
1959-01-05	44	30.0
1959-01-06	29	31.0
1959-01-07	45	44.0

Lag 2

Correlation	
Coef = 0.6	

Lag 3

births	lag3
35	NaN
32	NaN
30	NaN
31	35.0
44	32.0
29	30.0
45	31.0
	32 30 31 44 29

Correlation Coef = 0.4

Autocorrelation

Lagged values with correlation coef. outside this cone can be used for MA

Partial Autocorrelation

Lag 1

date	births	lag1
1959-01-01	35	NaN
1959-01-02	32	35.0
1959-01-03	30	32.0
1959-01-04	31	30.0
1959-01-05	44	31.0
1959-01-06	29	44.0
1959-01-07	45	29.0

Correlation Coef = 0.8 Lag 2

date	births	lag2
1959-01-01	35	NaN
1959-01-02	32	NaN
1959-01-03	30	35.0
1959-01-04	31	32.0
1959-01-05	44	30.0
1959-01-06	29	31.0
1959-01-07	45	44.0

Correlation Coef = 0.6 Lag 1 -Lag 2

date	births	lag1	lag2
1959-01-01	35	NaN	NaN
1959-01-02	32	35.0	NaN
1959-01-03	30	32.0	35.0
1959-01-04	31	30.0	32.0
1959-01-05	44	31.0	30.0
1959-01-06	29	44.0	31.0
1959-01-07	45	29.0	44.0

Correlation Coef = 0.8

Partial Autocorrelation

Lagged values with correlation coef. outside this cone can be used for Autoregression

Time Series – ARIMA

ARIMA - Auto Regression Integrated Moving Average

Integrated – To handle trend and seasonality

It integrates differencing method into ARMA to handle any type of series

1. Step 1

Use differencing to remove trend and seasonality

2. Step 2

Use AR to do forecasting

3. Step 3

Use MA on residuals to update the forecast

4. Step 4

Add Trend and Seasonality to get the forecasted value

ARIMA

Time Series – ARIMA

Parameter

1. P – Order of autoregression

how many lag variables to choose

2. D – Order of Integration

Number of differencing needed

3. Q – Order of Moving Average

What is the window size for Moving Average

