Transformer and Self-Attention

hugging-face illustrated- transformer

self-attention

RNN structure is hard to parallel (GPU acceleration), CNN is hard to grab long-range info.

scaled dot-product attention

- Q query
- K key
- V value

Scaled Dot-Product Attention

 $Attention(Q,K,V) = softmax(rac{QK^T}{\sqrt{d_k}})V$

multi-head attention

different head focus on different types of relevance $MultiHead(Q,V,K) = Concat(head_1,\ldots,head_h)$ where $head_i = Attention(QW_i^Q,KW_i^K,VW_i^V)$

masked multi-head attention

predict the next word in a sequence given the previous words

FFN

ReLU

positional embedding

self-attention have non positional info

$$PE(pos,2i) = sin(pos/10000^{2i/d_{model}})$$

(a) Sinusoidal

structure of transformer

Figure 1: The Transformer - model architecture.

application

CNN

transformer is the complex version of CNN, In large model, transformer outperforms, but at smaller dataset, CNN performs better.

Vision Transformer

Figure 1: The architecture overview of Vision Transformer. This diagram is adapted from [34].

DEtection TRansformer

Fig. 1: **DETR** directly predicts (in parallel) the final set of detections by combining a common CNN with a transformer architecture. During training, bipartite matching uniquely assigns predictions with ground truth boxes. Prediction with no match should yield a "no object" (\varnothing) class prediction.

CNN backbone+ transformer⇒ detection (class, bounding box)

GPT

generative pre-trained transformer

unsupervised learning form large dataset+ fine tuning

Reference

Lee Hung-yi Machine learning lecture

speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/Tr
ansformer (v5).pdf

Attention is all your need Learning to Encode Position for Transformer with Continuous Dynamical Model End-to-End Object Detection with Transformers Training language models to follow instructions with human feedback AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Appendix

additive attention

