O Donner la limite en $+\infty$ des fonctions x^2 et x. En déduire la limite en $+\infty$ de la fonction x^2+x .

- **①** Donner la limite en $+\infty$ des fonctions x^2 et x. En déduire la limite en $+\infty$ de la fonction x^2+x .
 - \rightarrow On peut dire que la fonction x ont pour limite $+\infty$ quand x tend vers $+\infty$ et c'est la même chose pour x^2 puisque le produit de deux grands nombres positif est encore un grand nombre positif.
 - On peut en déduire que $x^2 + x$ a pour limite $+\infty$ quand x tend vers $+\infty$ car la somme de deux grands nombres positifs est un grand nombre positif.

- **O** Donner la limite en $+\infty$ des fonctions x^2 et x. En déduire la limite en $+\infty$ de la fonction x^2+x .
 - ightarrow On peut dire que la fonction x ont pour limite $+\infty$ quand x tend vers $+\infty$ et c'est la même chose pour x^2 puisque le produit de deux grands nombres positif est encore un grand nombre positif.
 - On peut en déduire que x^2+x a pour limite $+\infty$ quand x tend vers $+\infty$ car la somme de deux grands nombres positifs est un grand nombre positif.
- ② Donner la limite en $-\infty$ des fonctions x^3 et x. En déduire la limite en $-\infty$ de la fonction $x^3 + x$.

- **O** Donner la limite en $+\infty$ des fonctions x^2 et x. En déduire la limite en $+\infty$ de la fonction x^2+x .
 - ightarrow On peut dire que la fonction x ont pour limite $+\infty$ quand x tend vers $+\infty$ et c'est la même chose pour x^2 puisque le produit de deux grands nombres positif est encore un grand nombre positif.
 - On peut en déduire que x^2+x a pour limite $+\infty$ quand x tend vers $+\infty$ car la somme de deux grands nombres positifs est un grand nombre positif.
- ② Donner la limite en $-\infty$ des fonctions x^3 et x. En déduire la limite en $-\infty$ de la fonction x^3+x .
 - ightarrow On peut dire que la fonction x ont pour limite $-\infty$ quand x tend vers $-\infty$ et c'est la même chose pour x^3 puisque le produit de trois grands nombres négatifs est encore un nombre négatif (par la règle des signes) dont la valeur absolue est grande.

- **O** Donner la limite en $+\infty$ des fonctions x^2 et x. En déduire la limite en $+\infty$ de la fonction $x^2 + x$.
 - ightarrow On peut dire que la fonction x ont pour limite $+\infty$ quand x tend vers $+\infty$ et c'est la même chose pour x^2 puisque le produit de deux grands nombres positif est encore un grand nombre positif.
 - On peut en déduire que x^2+x a pour limite $+\infty$ quand x tend vers $+\infty$ car la somme de deux grands nombres positifs est un grand nombre positif.
- ② Donner la limite en $-\infty$ des fonctions x^3 et x. En déduire la limite en $-\infty$ de la fonction x^3+x .
 - ightarrow On peut dire que la fonction x ont pour limite $-\infty$ quand x tend vers $-\infty$ et c'est la même chose pour x^3 puisque le produit de trois grands nombres négatifs est encore un nombre négatif (par la règle des signes) dont la valeur absolue est grande.
- Onner la limite en $+\infty$ de la fonction $\frac{1}{x}$. En déduire la limite en $+\infty$ de la fonction $\frac{4}{x}+2$ ainsi que celle de la fonction $x-\frac{1}{x}+1$.

- **9** Donner la limite en $+\infty$ des fonctions x^2 et x. En déduire la limite en $+\infty$ de la fonction $x^2 + x$.
 - \rightarrow On peut dire que la fonction x ont pour limite $+\infty$ quand x tend vers $+\infty$ et c'est la même chose pour x^2 puisque le produit de deux grands nombres positif est encore un grand nombre positif.
 - On peut en déduire que $x^2 + x$ a pour limite $+\infty$ quand x tend vers $+\infty$ car la somme de deux grands nombres positifs est un grand nombre positif.
- ② Donner la limite en $-\infty$ des fonctions x^3 et x. En déduire la limite en $-\infty$ de la fonction x^3+x .
 - ightarrow On peut dire que la fonction x ont pour limite $-\infty$ quand x tend vers $-\infty$ et c'est la même chose pour x^3 puisque le produit de trois grands nombres négatifs est encore un nombre négatif (par la règle des signes) dont la valeur absolue est grande.
- ② Donner la limite en $+\infty$ de la fonction $\frac{1}{x}$. En déduire la limite en $+\infty$ de la fonction $\frac{4}{x} + 2$ ainsi que celle de la fonction $x \frac{1}{x} + 1$.
 - \rightarrow En utilisant la calculatrice, on constate que la limite de $\frac{1}{x}$ en $+\infty$ est 0.
 - De même la fonction $\frac{4}{x}$ a pour limite 0 en $+\infty$ et donc par somme de limites, on peut en déduire que la fonction $\frac{4}{x} + 2$ a pour limite 2 en $+\infty$.
 - La fonction x tend vers $+\infty$ quand x tend vers $+\infty$ donc par somme de limites, on en déduit que $x-\frac{1}{\nu}+1$ tend vers $+\infty$ quand x tend vers $+\infty$.

- **9** Donner la limite en $+\infty$ des fonctions x^2 et x. En déduire la limite en $+\infty$ de la fonction $x^2 + x$.
 - \rightarrow On peut dire que la fonction x ont pour limite $+\infty$ quand x tend vers $+\infty$ et c'est la même chose pour x^2 puisque le produit de deux grands nombres positif est encore un grand nombre positif.
 - On peut en déduire que $x^2 + x$ a pour limite $+\infty$ quand x tend vers $+\infty$ car la somme de deux grands nombres positifs est un grand nombre positif.
- ② Donner la limite en $-\infty$ des fonctions x^3 et x. En déduire la limite en $-\infty$ de la fonction x^3+x .
 - ightarrow On peut dire que la fonction x ont pour limite $-\infty$ quand x tend vers $-\infty$ et c'est la même chose pour x^3 puisque le produit de trois grands nombres négatifs est encore un nombre négatif (par la règle des signes) dont la valeur absolue est grande.
- ② Donner la limite en $+\infty$ de la fonction $\frac{1}{x}$. En déduire la limite en $+\infty$ de la fonction $\frac{4}{x} + 2$ ainsi que celle de la fonction $x \frac{1}{x} + 1$.
 - \rightarrow En utilisant la calculatrice, on constate que la limite de $\frac{1}{x}$ en $+\infty$ est 0.
 - De même la fonction $\frac{4}{x}$ a pour limite 0 en $+\infty$ et donc par somme de limites, on peut en déduire que la fonction $\frac{4}{x} + 2$ a pour limite 2 en $+\infty$.
 - La fonction x tend vers $+\infty$ quand x tend vers $+\infty$ donc par somme de limites, on en déduit que $x-\frac{1}{\nu}+1$ tend vers $+\infty$ quand x tend vers $+\infty$.

• Soit la fonction définie sur \mathbb{R} par $f(x) = x^2 - x + 1$.

• Soit la fonction définie sur $\mathbb R$ par $f(x)=x^2-x+1$. o Comme x^2 a pour limite $+\infty$ en $+\infty$ et x également alors on a une forme indéterminée du type $+\infty-+\infty$.

On fait la manipulation suivante :

$$x^{2} - x + 1 = x^{2} \times (\frac{x^{2}}{x^{2}} - \frac{x}{x^{2}} + \frac{1}{x^{2}}) = x^{2} \times (1 - \frac{1}{x} + \frac{1}{x^{2}})$$

Or par somme et inverse de limites, on en déduit que $(1-\frac{1}{x}+\frac{1}{x^2})$ tend vers 1 quand x tend vers $+\infty$. De plus, x^2 tend vers $+\infty$ en $+\infty$.

Donc par produit de limite, on en déduit que x^2-x+1 tend vers $+\infty$ en $+\infty$.

• Soit la fonction définie sur $\mathbb R$ par $f(x)=x^2-x+1$. o Comme x^2 a pour limite $+\infty$ en $+\infty$ et x également alors on a une forme indéterminée du type $+\infty-+\infty$.

On fait la manipulation suivante :

$$x^{2} - x + 1 = x^{2} \times (\frac{x^{2}}{x^{2}} - \frac{x}{x^{2}} + \frac{1}{x^{2}}) = x^{2} \times (1 - \frac{1}{x} + \frac{1}{x^{2}})$$

Or par somme et inverse de limites, on en déduit que $(1-\frac{1}{x}+\frac{1}{x^2})$ tend vers 1 quand x tend vers $+\infty$. De plus, x^2 tend vers $+\infty$ en $+\infty$.

Donc par produit de limite, on en déduit que x^2-x+1 tend vers $+\infty$ en $+\infty$.

Soit la fonction définie sur \mathbb{R}^+ par $g(x) = \frac{x+2}{x+1}$

• Soit la fonction définie sur $\mathbb R$ par $f(x)=x^2-x+1$. \to Comme x^2 a pour limite $+\infty$ en $+\infty$ et x également alors on a une forme indéterminée du type $+\infty-+\infty$.

On fait la manipulation suivante :

$$x^{2} - x + 1 = x^{2} \times (\frac{x^{2}}{x^{2}} - \frac{x}{x^{2}} + \frac{1}{x^{2}}) = x^{2} \times (1 - \frac{1}{x} + \frac{1}{x^{2}})$$

Or par somme et inverse de limites, on en déduit que $(1 - \frac{1}{x} + \frac{1}{x^2})$ tend vers 1 quand x tend vers $+\infty$. De plus, x^2 tend vers $+\infty$ en $+\infty$.

Donc par produit de limite, on en déduit que x^2-x+1 tend vers $+\infty$ en $+\infty$.

③ Soit la fonction définie sur \mathbb{R}^+ par $g(x) = \frac{x+2}{x+1}$. → Comme les fonctions x+2 et x+1 tendent vers $+\infty$ en $+\infty$ alors on a une forme indéterminée du type $\frac{\infty}{\infty} = 0 \times \infty$.

On fait la manipulation suivante :

$$g(x) = \frac{x+2}{x+1} = \frac{x(\frac{x}{x} + \frac{2}{x})}{x(\frac{x}{x} + \frac{1}{x})} = \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}}$$

Par somme et inverse de limites, la fonction $1+\frac{2}{x}$ tend vers 1 en $+\infty$ et c'est aussi le cas de la fonction $1+\frac{1}{x}$. Donc par quotient de limites, on en déduit que g tend vers $\frac{1}{1}=1$ quand x tend vers $+\infty$.

• Soit la fonction définie sur $\mathbb R$ par $f(x)=x^2-x+1$. \to Comme x^2 a pour limite $+\infty$ en $+\infty$ et x également alors on a une forme indéterminée du type $+\infty-+\infty$.

On fait la manipulation suivante :

$$x^{2} - x + 1 = x^{2} \times (\frac{x^{2}}{x^{2}} - \frac{x}{x^{2}} + \frac{1}{x^{2}}) = x^{2} \times (1 - \frac{1}{x} + \frac{1}{x^{2}})$$

Or par somme et inverse de limites, on en déduit que $(1 - \frac{1}{x} + \frac{1}{x^2})$ tend vers 1 quand x tend vers $+\infty$. De plus, x^2 tend vers $+\infty$ en $+\infty$.

Donc par produit de limite, on en déduit que x^2-x+1 tend vers $+\infty$ en $+\infty$.

③ Soit la fonction définie sur \mathbb{R}^+ par $g(x) = \frac{x+2}{x+1}$. → Comme les fonctions x+2 et x+1 tendent vers $+\infty$ en $+\infty$ alors on a une forme indéterminée du type $\frac{\infty}{\infty} = 0 \times \infty$.

On fait la manipulation suivante :

$$g(x) = \frac{x+2}{x+1} = \frac{x(\frac{x}{x} + \frac{2}{x})}{x(\frac{x}{x} + \frac{1}{x})} = \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}}$$

Par somme et inverse de limites, la fonction $1+\frac{2}{x}$ tend vers 1 en $+\infty$ et c'est aussi le cas de la fonction $1+\frac{1}{x}$. Donc par quotient de limites, on en déduit que g tend vers $\frac{1}{1}=1$ quand x tend vers $+\infty$.

Liste des formes indéterminées

On va résumer les formes indéterminées en utilisant les signes ∞ et 0 ainsi que certaines correspondances

$$\frac{1}{0^+} = +\infty \tag{1}$$

$$\frac{1}{0^{-}} = -\infty \tag{2}$$

$$\frac{1}{\infty} = 0$$

$$\frac{0}{\infty} = 0$$
(3)

$$\frac{0}{\infty} = 0 \tag{4}$$

$$\frac{\pm\infty}{0}=\pm\infty$$
 on trouve le signe avec la règle des signes (5)

$$0 \times \infty$$
: FI (6)

$$\frac{\infty}{\infty}$$
: FI (7)

$$+\infty - +\infty$$
: FI (8)

$$\frac{0}{0}$$
: FI (9)