Planche d'exercices nº 1

Exercice 1.1 — Marche aléatoire sur \mathbb{Z} .

Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires indépendantes définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$. Soit $p \in [0, 1]$. On suppose que, pour tout $k \geqslant 1$, on a

$$P(X_k = 1) = p$$
 et $P(X_k = -1) = 1 - p$.

Enfin, pour $n \ge 1$, on note $S_n = X_1 + \cdots + X_n$.

- 1. Pour tout $n \ge 1$, calculer l'espérance et la variance de S_n .
- 2. (a) Rappeler la définition de la convergence presque sûre.
 - (b) En utilisant un résultat célèbre, montrer que $\frac{1}{n}S_n$ converge presque sûrement vers 2p-1.
- 3. (a) Démontrer que si $p > \frac{1}{2}$, alors S_n tend presque sûrement vers $+\infty$. De même, démontrer que si $p < \frac{1}{2}$, alors S_n tend presque sûrement vers $-\infty$.
 - (b) Le même argument permet-il de dire quelque chose lorsque p vaut $\frac{1}{2}$?
- 4. Supposons $p \neq \frac{1}{2}$. On pose

$$A := \{ \omega \in \Omega : \forall x \in \mathbb{Z}, \exists n \geqslant 1, \forall m \geqslant n, S_m(\omega) \neq x \}.$$

Montrer que A est bien un événement, c'est-à-dire qu'il appartient à \mathscr{F} . Le décrire par une phrase en français et établir que sa probabilité vaut 1.

Exercice 1.2 — Passages en zéro.

Conservons les notations de l'exercice 1. On introduit Z la variable aléatoire à valeurs dans $\mathbb{N} \cup \{\infty\}$ qui compte combien de fois la suite $(S_n)_{n\geqslant 1}$ passe en zéro :

$$Z(\omega) := \operatorname{Card} (\{n \geqslant 1 : S_n(\omega) = 0\}).$$

Pour tout $n \ge 1$, on introduit l'événement $A_n := \{S_n = 0\} := \{\omega \in \Omega : S_n(\omega) = 0\}.$

- 1. Pour tout $n \ge 1$, calculer $\mathbf{P}(A_n)$.
- 2. Expliquer pourquoi $Z = \sum_{n=1}^{\infty} \mathbf{1}_{A_n}$.
- 3. Déterminer, pour chaque valeur de p, si l'espérance de Z est finie ou infinie.
- 4. (a) Si $p \neq \frac{1}{2}$, peut-on en déduire que $\mathbf{P}(Z \neq \infty) = 1$? Que $\mathbf{P}(Z \neq \infty) > 0$?
 - (b) Si $p = \frac{1}{2}$, peut-on en déduire que $\mathbf{P}(Z = \infty) = 1$? Que $\mathbf{P}(Z = \infty) > 0$?

Exercice 1.3 — Produits aléatoires.

Soient X_1, X_2, \ldots des variables aléatoire réelles indépendantes identiquement distribuées, de loi exponentielle de paramètre 1. Soit $n \ge 1$. On pose $Y_n := \prod_{i=1}^n X_i$.

- 1. Que vaut $\mathbf{E}[Y_n]$?
- 2. Montrer que $\mathbf{E}[\sqrt{X_1}] = \sqrt{\pi}/2$. En déduire la valeur de $\mathbf{E}[\sqrt{Y_n}]$.
- 3. Montrer que, pour tout t>0, on a $\mathbf{P}(Y_n\geqslant t)\leqslant \frac{1}{\sqrt{t}}(\sqrt{\pi}/2)^n$.

Exercice 1.4 — Le quantificateur "pour presque tout".

Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilité. Soit $(A_i)_{i \in I}$ une famille d'événements. Pensons chaque A_i comme défini par une certaine condition dépendant de ω , qu'on note $\mathcal{P}_i(\omega)$ et qui peut être tantôt vraie tantôt fausse. On a ainsi $A_i = \{\omega \in \Omega : \mathcal{P}_i(\omega)\}$.

Étant donné une propriété $\mathcal{P}(\omega)$ telle que $\{\omega \in \Omega : \mathcal{P}(\omega)\}$ soit mesurable, on définit "pour presque tout ω , on a $\mathcal{P}(\omega)$ " comme signifiant $\mathbf{P}(\{\omega \in \Omega : \mathcal{P}(\omega)\}) = 1$. Cela est raisonnable. En effet, "pour tout ω , on a $\mathcal{P}(\omega)$ " est équivalent à $\{\omega \in \Omega : \mathcal{P}(\omega)\} = \Omega$.

- 1. On suppose que $\bigcap_{i \in I} A_i \in \mathscr{F}$ et que pour presque tout ω , pour tout $i \in I$, on a $\mathcal{P}_i(\omega)$. Montrer que pour tout $i \in I$, pour presque tout ω , on a $\mathcal{P}_i(\omega)$.
- 2. On suppose que I est dénombrable et que pour tout $i \in I$, pour presque tout ω , on a $\mathcal{P}_i(\omega)$. Démontrer que pour presque tout ω , pour tout $i \in I$, on a $\mathcal{P}_i(\omega)$.
- 3. Soit X une variable aléatoire réelle à densité, par exemple de loi uniforme sur [0,1]. Prenons dans cette question $I = \mathbb{R}$ et, pour $i \in I$, posons $\mathcal{P}_i(\omega) = "X(\omega) \neq i$ ". Est-il vrai que, pour tout $i \in I$, pour presque tout ω , on a $\mathcal{P}_i(\omega)$? Que pour presque tout ω , pour tout $i \in I$, on a $\mathcal{P}_i(\omega)$? Quelle leçon tirer de tout cela?

Exercice 1.5 — Toute loi se réalise.

- 1. Soit (E, \mathcal{E}) un espace mesurable. Soit μ une mesure de probabilité sur (E, \mathcal{E}) . Démontrer qu'il existe une variable aléatoire X à valeurs dans E et de loi μ .
- 2. Soit $n \ge 1$. Pour tout $i \in \{1, ..., n\}$, on se donne un espace mesurable (E_i, \mathcal{E}_i) et une mesure de probabilité μ_i sur cet espace mesurable. Construire des variables aléatoires indépendantes $X_1, ..., X_n$ telles que, pour tout $i \in \{1, ..., n\}$, la variable aléatoire X_i soit de loi μ_i .

Exercice 1.6 — Lemmes de Borel-Cantelli.

Soit $(A_n)_{n\geq 0}$ une suite d'événements. On s'intéresse à trois conditions :

- (I) presque sûrement, il existe un rang à partir duquel les A_n n'ont pas lieu,
- (II) il existe un rang tel que presque sûrement, après ce rang, les A_n n'aient pas lieu,
- (III) il existe un rang tel qu'après ce rang, presque sûrement les A_n n'aient pas lieu.
 - 1. (a) Réécrire ces conditions sans utiliser "presque sûrement", en écrivant plutôt que certaines probabilités sont égales à 1.
 - (b) Montrer que (II) implique (I).
 - (c) Montrer que (II) équivaut à (III).
 - (d) Montrer que (I) équivaut à : $\mathbf{P}(\forall n \ge k, A_n \text{ n'a pas lieu}) \xrightarrow[k \to \infty]{} 1.$
 - (e) On se donne X une variable aléatoire à valeurs dans \mathbb{N} telle que, pour tout $n \in \mathbb{N}$, on ait $\mathbf{P}(X \ge n) > 0$ (pourquoi un tel X existe-t-il?). On pose $A_n := \{X \ge n\}$. Montrer que cette construction fournit un contre-exemple à $(I) \Longrightarrow (II)$.
 - (f) (bonus) On pose T le rang aléatoire à partir duquel aucun des A_n n'a lieu, en posant $T(\omega) = \infty$ lorsque ce rang n'est pas défini. Autrement dit, pour tout $\omega \in \Omega$, on pose

$$T(\omega) := \inf\{k \in \mathbb{N} : \forall n \geqslant k, \, \omega \notin A_n\}.$$

Montrer que (I) équivaut à "T est fini presque sûrement" et que (II) équivaut à $||T||_{\infty} < \infty$.

- 2. Démontrer le lemme de Borel-Cantelli. $Indication : \mathbf{P}(\bigcup_{k \ge n} A_k) \le \sum_{k \ge n} \mathbf{P}(A_k).$
- 3. Pour chaque $n \ge 1$, on lance un dé équilibré à n faces, numérotées de 1 à n^2 , et on pose A_n l'événement "le $n^{\text{ème}}$ dé tombe sur la face 1". Montrer que cette situation vérifie (I) mais pas (II).
- 4. Rappeler l'énoncé du lemme de Borel-Cantelli indépendant. Montrer que cet énoncé devient faux si on enlève l'hypothèse d'indépendance.

 Indication: On pourra s'inspirer de la question 1e.

Exercice 1.7 — Une condition suffisante pour la convergence presque sûre.

Soient $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles et X une variable aléatoire réelle.

1. Montrer que, si pour tout $\varepsilon > 0$, on a

$$\sum_{n=1}^{\infty} \mathbf{P}(|X_n - X| > \varepsilon) < \infty,$$

alors $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$.

- 2. Appliquer la question 1 pour démontrer que, dans le contexte de l'exercice 3, on a la convergence $Y_n \xrightarrow[n \to \infty]{\text{p.s.}} 0$.
- 3. On suppose désormais que les variables aléatoires X_n sont indépendantes et on s'intéresse à la réciproque du résultat précédent.
 - (a) On suppose, pour cette sous-question uniquement, que $X_n \xrightarrow[n \to \infty]{\text{p.s.}} c$, où c est une constante. Démontrer que, pour tout $\varepsilon > 0$, on a $\sum_{n \ge 1} \mathbf{P}(|X_n c| > \varepsilon) < \infty$.
 - (b) On suppose que $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$, pour une certaine variable aléatoire X. Démontrer qu'il existe une constante c à laquelle X est égale presque sûrement.
 - (c) En déduire que si $X_n \xrightarrow[n \to \infty]{\text{p.s.}} X$, alors on a $\sum_{n \geqslant 1} \mathbf{P}(|X_n X| > \varepsilon) < \infty$. On rappelle que la réciproque que nous venons d'établir utilise l'hypothèse additionnelle d'indépendance des X_n .

Exercice 1.8 — Convergences de variables aléatoires.

Dans les cas suivants, quels sont les différents modes de convergence que la suite de variables aléatoires réelles $(X_n)_{n\geqslant 1}$ est susceptible de réaliser?

1.
$$\mathbf{P}\left(X_n = 1 - \frac{1}{n}\right) = \mathbf{P}\left(X_n = 1 + \frac{1}{n}\right) = \frac{1}{2};$$

2.
$$\mathbf{P}(X_n = n) = \frac{1}{2^n}, \ \mathbf{P}(X_n = \frac{1}{n}) = 1 - \frac{1}{2^n};$$

3.
$$\mathbf{P}(X_n=0)=1-\frac{1}{n^2}, \mathbf{P}(X_n=n^2)=\frac{1}{n^2};$$

4.
$$\mathbf{P}(X_n = 0) = 1 - \frac{1}{n}, \ \mathbf{P}(X_n = 1) = \frac{1}{n};$$

5.
$$\mathbf{P}(X_n = 0) = 1 - n^{-3/2}, \ \mathbf{P}(X_n = n) = n^{-3/2}.$$

Exercice 1.9 — En extrayant, on peut rendre presque sûre la convergence en probabilité. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles convergeant en probabilité vers une variable aléatoire X. Montrer qu'il existe une extractrice déterministe φ telle que, pour tout $n\geqslant 1$, on ait $\mathbf{P}(|X_{\varphi(n)}-X|>\frac{1}{n})\leqslant \frac{1}{n^2}$. Étant donnée une telle extractrice, montrer que la sous-suite $(X_{\varphi(n)})_{n\geqslant 1}$ converge presque sûrement.

Exercice 1.10 — Ratatiner X_n en le multipliant par un petit réel déterministe a_n .

- 1. Soit X une variable aléatoire réelle. Montrer que $\mathbf{P}(|X| \geqslant k) \xrightarrow[k \to \infty]{} 0$.
- 2. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles. Montrer qu'il existe une suite $(a_n)_{n\geqslant 1}$ de réels strictement positifs telle que $a_nX_n\xrightarrow[n\to\infty]{\text{p.s.}} 0$.

Exercice 1.11 — Récurrence de la marche aléatoire symétrique sur \mathbb{Z} .

On reprend les hypothèses et notations de l'exercice 1. On suppose en outre que $p = \frac{1}{2}$, et on cherche à montrer que presque sûrement, on a liminf $S_n = -\infty$ et $\limsup S_n = +\infty$.

- 1. Pour $K \ge 1$ fixé et $\ell \ge 0$, on pose $A_{\ell} := \{X_{\ell K+1} = \cdots = X_{\ell K+K} = +1\}$. Montrer que pour tout K, presque sûrement, une infinité de A_{ℓ} est réalisée.
- 2. En déduire que pour tout K, on a $\mathbf{P}(\forall n \ge 1, -K/2 < S_n < K/2) = 0$, puis que $\mathbf{P}(\{\limsup S_n = +\infty\} \cup \{\liminf S_n = -\infty\}) = 1$.
- 3. Expliquer pourquoi $\mathbf{P}(\liminf S_n = -\infty) = \mathbf{P}(\limsup S_n = +\infty)$. En déduire que $\mathbf{P}(\liminf S_n = -\infty) = \mathbf{P}(\limsup S_n = +\infty) \geqslant \frac{1}{2}$.
- 4. Montrer que l'événement { $\limsup S_n = +\infty$ } appartient à la tribu queue de la suite (X_n) . On rappelle que cette tribu est par définition $\bigcap_{k\geqslant 1} \sigma(X_i:i\geqslant k)$.
- 5. Utiliser la loi du 0–1 de Kolmogorov pour conclure que $\mathbf{P}(\limsup S_n = +\infty) = 1$ et $\mathbf{P}(\liminf S_n = -\infty) = 1$.
- 6. En déduire que pour presque tout ω , pour tout $x \in \mathbb{Z}$, la trajectoire $(S_n(\omega))_{n\geqslant 1}$ passe une infinité de fois par la valeur x.

Exercice 1.12 — Démonstration de la loi forte des grands nombres dans le cas \mathbf{L}^4 . Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles indépendantes identiquement distribuées vérifiant $\mathbf{E}(X_1^4) < \infty$. Pour tout $n\geqslant 1$, on pose $Z_n=\frac{1}{n}(X_1+\cdots+X_n)$.

- 1. On suppose pour l'instant que $\mathbf{E}[X_1] = 0$.
 - (a) Montrer que les espérances $\mathbf{E}[X_1^3X_2]$, $\mathbf{E}[X_1^2X_2X_3]$ et $\mathbf{E}[X_1X_2X_3X_4]$ sont bien définies et donner leur valeur.
 - (b) Calculer $\mathbf{E}[Z_n^4]$.
 - (c) Montrer que la variable $\sum_{n=1}^{\infty} Z_n^4$ est intégrable et en déduire que Z_n converge presque sûrement vers 0.
- 2. En retirant l'hypothèse $\mathbf{E}[X_1] = 0$, déduire de la question précédente que Z_n converge presque sûrement vers $\mathbf{E}[X_1]$.

Indications pour l'exercice 1.1.

- 1. Utiliser les propriétés de l'espérance et de la variance pour se ramener au calcul pour X_1 .
- 2. (a) Cela revient à dire que, presque sûrement, on a convergence.
 - (b) Penser à la loi forte des grands nombres.
- 3. (a) Utiliser la question 2b.
 - (b) Soit $(s_n)_{n\geqslant 1}$ une suite de réels telle que $\frac{1}{n}s_n$ converge vers 0. Est-ce que ces informations permettent de déterminer si oui ou non $s_n \xrightarrow[n\to\infty]{} +\infty$?
- 4. Pour montrer que A est un événement, l'écrire à l'aide d'intersections et d'unions dénombrables. La formulation en français s'intéresse à combien de fois chaque élément de \mathbb{Z} est visitée par $(S_n(\omega))_{n\geqslant 1}$. Pour démontrer que $\mathbf{P}(A)=1$, utiliser la question 3a.

Indications pour l'exercice 1.2.

- 1. Le nombre $S_n(\omega)$ est nul si et seulement si, dans la somme qui le définit, il y a exactement autant de +1 que de -1.
- 2. Que compte $\sum_{n=1}^{\infty} \mathbf{1}_{A_n}$? Par exemple, que se passe-t-il si ω appartient à A_2 et A_6 mais à aucun des autres A_n ?
- 3. Utiliser les deux questions précédentes.
- 4. (a) Pour une variable aléatoire réelle Y, les conditions $\mathbf{E}(Y) < \infty$ et $\mathbf{P}(Y = \infty) > 0$ sont-elles compatibles?
 - (b) Les conditions $\mathbf{E}(Y) = \infty$ et $\mathbf{P}(Y = \infty) = 0$ sont-elles compatibles?

Indications pour l'exercice 1.3.

- 1. Utiliser les propriétés usuelles de l'espérance pour se ramener au calcul de $\mathbf{E}[X_1]$.
- 2. Rappelez-vous l'expression de $\mathbf{E}[f(X)]$ lorsque X est à densité. Cela permet d'exprimer l'espérance $\mathbf{E}[\sqrt{X_1}]$ comme une intégrale. Par changement de variable $y = \sqrt{x}$, on ramène le calcul de cette intégrale à des formules classiques sur les gaussiennes. Enfin, la valeur de $\mathbf{E}[\sqrt{Y_n}]$ se déduit de celle de $\mathbf{E}[\sqrt{X_1}]$ comme à la question 1.
- 3. Utiliser la question précédente et une célèbre inégalité de la théorie des probabilités.

Indications pour l'exercice 1.4.

- 1. N'y a-t-il pas un événement de probabilité 1 inclus dans A_i ?
- 2. Appliquer la sous-additivité dénombrable aux complémentaires des A_i .
- 3. Écrire les choses posément. Par exemple, quel est l'ensemble

$$\{\omega \in \Omega : \forall i \in I, \ X(\omega) \neq i\} ?$$

Quant à la leçon à tirer, elle concerne les manipulations qu'on a le droit ou non de faire avec le quantificateur "pour presque tout".

Indications pour l'exercice 1.5.

- 1. Tout d'abord, on doit choisir un certain $(\Omega, \mathcal{F}, \mathbf{P})$. L'exercice nous donne E et \mathscr{E} donc posons $\Omega := E$ et $\mathscr{F} := \mathscr{E}$. Que pourrait-on bien poser pour \mathbf{P} ? Ensuite, il conviendra de choisir une fonction mesurable appropriée X de Ω vers E. Gardant en tête que $\Omega = E$, quelle est la seule fonction naturelle qui vous vienne en tête? Ne pas chercher quelque chose de compliqué.
- 2. Se donner des variables aléatoires X_1, \ldots, X_n à valeurs dans E_1, \ldots, E_n , c'est pareil que se donner une variable aléatoire $X = (X_1, \ldots, X_n)$ à valeurs $E_1 \times \cdots \times E_n$. Dire que les X_i sont indépendantes et chacune de loi μ_i , cela revient à dire quoi sur la loi de X? Ne peut-on pas ainsi se ramener à la question 1?

Indications pour l'exercice 1.6.

- 1. Pour la question 1c, utiliser l'exercice 4. Concernant la question 1d, on rappelle que si (B_k) est une suite croissante d'événements, alors $\mathbf{P}(B_k)$ converge vers $\mathbf{P}(\bigcup_i B_i)$. Pour l'existence de X, il suffit par exemple de prendre une variable aléatoire de loi géométrique de paramètre $\frac{1}{2}$ et de rappeler que de telles variables aléatoires existent, d'après l'exercice 5. Pour la question bonus, ne pas prendre peur et écrire posément les définitions.
- 2. On a $\mathbf{P}(\limsup A_i) \leqslant P(\bigcup_{i \geqslant n} A_i) \leqslant \sum_{i=n}^{\infty} \mathbf{P}(A_i) \xrightarrow[n \to \infty]{} 0$. Une autre démonstration est possible : $\mathbf{E}\left[\sum_i \mathbf{1}_{A_i}\right] = \sum_i \mathbf{P}(A_i) < \infty$ donc presque sûrement, seul un nombre (aléatoire mais) fini des A_i a lieu.
- 3. Appliquer le lemme de Borel-Cantelli. Par ailleurs constater que même si vous prenez n gigantesque, la probabilité que le prochain dé fasse 1 est peut-être très petite mais jamais nulle.
- 4. Reprendre la question 1e avec une variable aléatoire pour laquelle $\mathbf{P}(X \ge n)$ converge suffisamment vite vers 0.

Indications pour l'exercice 1.7.

- 1. Par Borel-Cantelli, les $\Omega_{\varepsilon} = \liminf\{|X_n X| \leq \varepsilon\}$ ont probabilité 1. On remarque ensuite que $X_n(\omega)$ converge vers $X(\omega)$ pour tout ω de l'événement $\bigcap_{n\geqslant 1} \Omega_{1/n}$, qui est de probabilité 1.
- 2. Application directe.
- 3. (a) Utiliser le lemme de Borel-Cantelli indépendant.
 - (b) Utiliser la loi du 0-1 de Kolmogorov. On pourra aussi redémontrer puis employer le résultat suivant : si une variable aléatoire réelle X vérifie

$$\forall t \in \mathbb{R}, \quad \mathbf{P}(X \leqslant t) \in \{0, 1\},$$

alors il existe une constante c telle que X=c presque sûrement. Ce résultat peut se redémontrer en étudiant la fonction de répartition de X.

(c) Application immédiate des questions précédentes.

Indications pour l'exercice 1.8.

- 1. La suite (X_n) converge vers 1 dans \mathbf{L}^{∞} . Que peut-on déduire sur les autres modes de convergence?
- 2. On a une convergence presque sûre (utiliser Borel-Cantelli) et dans tous les \mathbf{L}^p vers 0, sauf pour $p = \infty$.
- 3. On a une convergence vers 0 presque sûrement (et donc en probabilité et en loi), mais pas dans L^1 , ni dans aucun L^p , $p \ge 1$.
- 4. On a convergence vers 0 dans \mathbf{L}^p pour tout $p \in [1, \infty[$, et donc en probabilité et en loi. Concernant la convergence presque sûre, on ne peut rien déduire. Si on rajoute que les (X_n) sont indépendantes, on n'a pas convergence presque sûre, par Borel-Cantelli. Si en revanche, on fixe U de loi uniforme sur [0,1] et que l'on définit $X_n := \mathbf{1}_{U \leq 1/n}$, les X_n ont bien la loi de l'énoncé et convergent presque sûrement vers 0.
- 5. On a convergence presque sûre vers 0, et convergence \mathbf{L}^p si et seulement si p < 3/2.

Indications pour l'exercice 1.9.

On définit $\varphi(1) = 1$ et $\varphi(n+1) = \max(\varphi(n)+1, k_n)$, où k_n est tel que pour tout $i \ge k_n$, on ait $\mathbf{P}(|X_i - X| > \frac{1}{n}) \le \frac{1}{n^2}$. On conclut en employant le lemme de Borel-Cantelli.

Indications pour l'exercice 1.10.

- 1. Quand on a une suite décroissante d'événements A_n , la probabilité de A_n converge vers $\mathbf{P}(\bigcap_k A_k)$.
- 2. Pour chaque n, on peut trouver k_n tel que $\mathbf{P}(|X_n| \leq k_n) \leq \frac{1}{n^2}$. Montrer que poser $a_n = \frac{1}{nk_n}$ convient.

Indications pour l'exercice 1.11.

- 1. Cela peut se démontrer par Borel-Cantelli indépendant.
- 2. Le premier point découle de

$$\bigcap_{n \geqslant 1} \{ -K/2 < S_n < K/2 \} \subset \bigcap_{n \in \mathbb{N}} A_n^c$$

et le deuxième de

$$\{\limsup_{n} S_n = +\infty\} = \bigcup_{n \ge 1} \{S_n \ge K/2\} \text{ et } \{\limsup_{n} S_n = -\infty\} = \bigcup_{n \ge 1} \{S_n \le -K/2\}.$$

- 3. Pour la première partie de la question, utiliser le fait que $p = \frac{1}{2}$ pour trouver un lien entre $(-S_n)_{n\geqslant 1}$ et $(S_n)_{n\geqslant 1}$. Quant à la seconde partie de la question, elle recourt à la question précédente.
- 4. On peut écrire $\{\limsup_n S_n = +\infty\} = \{\limsup_n S_{n+k} S_k = +\infty\}$, or $S_{n+k} S_k$ est mesurable pour la tribu $\sigma(X_i : i \ge k)$.
- 5. Appliquer la loi du 0–1 et l'une des question précédentes.
- 6. Découle de la question 5 et du fait que la suite $(S_n(\omega))_{n\geqslant 1}$ est à valeurs dans \mathbb{Z} et fait des sauts de ± 1 .

Indications pour l'exercice 1.12.

1. On trouve

$$\mathbf{E}(Z_n^4) = \frac{1}{n^4} \sum_{k=1}^n \mathbf{E}(X_i^4) + \frac{1}{n^4} \sum_{1 \le i \ne j \le n} \mathbf{E}(X_i^2 X_j^2) = \frac{1}{n^3} \mathbf{E}(X_1^4) + \frac{n-1}{2n^3} \mathbf{E}(X_1^2)^2.$$

Par conséquent, $\sum_{n\geqslant 1} \mathbf{E}(Z_n^4)$ converge, donc par Fubini $\sum_{n\geqslant 1} Z_n^4$ est intégrable, donc presque sûrement finie, donc $(Z_n)_{n\geqslant 1}$ converge presque sûrement vers 0.

2. Il suffit d'appliquer le résultat de la question précédente à la suite $(X_n - \mathbf{E} X_1)_{n \in \mathbb{N}}$.

Planche d'exercices nº 2

Exercice 2.1 — Somme de deux variables aléatoires de Poisson indépendantes.

Soient X_1 et X_2 des variables aléatoires indépendantes de loi de Poisson de paramètres respectifs λ_1 et λ_2 .

- 1. Déterminer l'espérance conditionnelle $\mathbf{E}[X_1 + X_2 \mid X_1]$.
- 2. Étant donnés des entiers k et n vérifiant $n \ge k \ge 0$, calculer $\mathbf{P}(X_1 + X_2 = n)$ et $\mathbf{P}(X_1 = k \text{ et } X_1 + X_2 = n)$.
- 3. Déterminer l'espérance conditionnelle $\mathbf{E}[X_1 \mid X_1 + X_2]$, puis en calculer l'espérance. Qu'observe-t-on?

Exercice 2.2 — Somme d'un nombre aléatoire de variables aléatoires.

Soit $(X_i)_{i\geqslant 1}$ une famille de variables aléatoires à valeurs dans \mathbb{N} . On suppose ces variables aléatoires indépendantes, de même loi et d'espérance μ . Soit N une variable aléatoire à valeurs dans \mathbb{N} , indépendante de la famille $(X_i)_{i\geqslant 1}$. On pose $S=\sum_{i=1}^N X_i$. Lorsque $N(\omega)=0$, on pose par convention $S(\omega)=0$.

- 1. Quel lien y a-t-il entre S et la quantité $\sum_{i=1}^{\infty} X_i \mathbf{1}_{N \geqslant i}$?
- 2. Pourquoi est-il incorrect d'écrire $\mathbf{E}[S] = \sum_{i=1}^{N} \mathbf{E}[X_i]$?
- 3. Pour $n \in \mathbb{N}$, calculer $\mathbf{E}[S\mathbf{1}_{N=n}]$. En déduire $\mathbf{E}[S \mid N]$, puis $\mathbf{E}[S]$.
- 4. Pour $r \in [0,1]$, calculer $\mathbf{E}[r^S \mid N]$ en fonction de $\varphi_{X_1}(r) = \mathbf{E}[r^{X_1}]$. En déduire la fonction génératrice de S en fonction de celle de X_1 et de celle de N.

Exercice 2.3 — Tribu enqendrée par une partition.

1. Soit $(A_i)_{i\in I}$ une partition de Ω , c'est-à-dire une famille de parties non-vides A_i qui sont disjointes et vérifient $\bigcup_{i\in I} A_i = \Omega$. On suppose dans cette question que I est dénombrable. Montrer que la tribu sur Ω engendrée par cette partition est

$$\sigma(A_i : i \in I) = \left\{ \bigcup_{j \in J} A_j : J \subset I \right\}.$$

En déduire que dans le cas où I est fini de cardinal n, cette tribu a exactement 2^n éléments.

2. Posons $\Omega = \mathbb{R}$, $I = \mathbb{R}$ et $A_i = \{i\}$. On veut démontrer que dans ce cas, on a

$$\sigma(A_i : i \in I) \neq \left\{ \bigcup_{j \in J} A_j : J \subset I \right\}.$$

- (a) Montrer que $\left\{\bigcup_{j\in J} A_j : J\subset I\right\}$ est l'ensemble de toutes les parties de \mathbb{R} .
- (b) Démontrer que $\sigma(A_i : i \in I)$ est l'ensemble de toutes les parties de \mathbb{R} qui sont soit dénombrable, soit de complémentaire dénombrable.

- (c) Donner une partie de $\mathbb R$ qui n'est ni dénombrable, ni de complémentaire dénombrable.
- (d) Conclure. Pourquoi cela ne contredit-il pas la question 1?

Exercice 2.4 — Sujet d'examen (deuxième session, juin 2023).

On munit l'ensemble

$$\Omega = \{a, b, c, d, e, f, g, h, i, j, k, \ell\}$$

de la tribu de toutes ses parties et de la mesure de probabilité uniforme. On considère deux variables aléatoires réelles X et Y sur Ω , définies comme suit :

- 1. Déterminer la loi de X et la loi de Y.
- 2. Les variables aléatoires X et Y sont-elles indépendantes?
- 3. Combien d'éléments a la tribu $\sigma(Y)$? Et la tribu $\sigma(X,Y)$?
- 4. Calculer $\mathbf{E}[X \mid Y]$ et remplir la dernière ligne du tableau. Seul le résultat est demandé.

Exercice 2.5 — Somme finie implique support dénombrable.

On se donne une famille $(A_i)_{i\in I}$ d'événements disjoints qui sont chacun de probabilité non nulle. Montrer que I est nécessairement dénombrable.

Indication: montrer que pour tout $n \ge 1$, il ne peut pas y avoir strictement plus de n indices $i \in I$ vérifiant $\mathbf{P}(A_i) \ge 1/n$.

Exercice 2.6 — Égalités et inégalités.

Soient X et Y deux variables aléatoires réelles intégrables définies sur un espace de probabilité $(\Omega, \mathscr{F}, \mathbf{P})$. Soit \mathscr{G} une sous-tribu de \mathscr{F} .

- 1. Montrer que l'inégalité $\mathbf{E}[X \mid \mathscr{G}] \leq \mathbf{E}[Y \mid \mathscr{G}]$ a lieu presque sûrement si et seulement si pour tout $A \in \mathscr{G}$, on a $\mathbf{E}[X\mathbf{1}_A] \leq \mathbf{E}[Y\mathbf{1}_A]$.
- 2. Montrer que l'égalité $\mathbf{E}[X \mid \mathcal{G}] = \mathbf{E}[Y \mid \mathcal{G}]$ a lieu presque sûrement si et seulement si pour tout $A \in \mathcal{G}$, on a $\mathbf{E}[X\mathbf{1}_A] = \mathbf{E}[Y\mathbf{1}_A]$.

Exercice 2.7 — Variance conditionnelle.

Soit X une variable aléatoire réelle définie sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$. On suppose qu'on a $\mathbf{E}[X^2] < \infty$. Soit \mathcal{G} une sous-tribu de \mathcal{F} . On introduit

$$\operatorname{Var}(X \mid \mathscr{G}) := \mathbf{E}[X^2 \mid \mathscr{G}] - \mathbf{E}[X \mid \mathscr{G}]^2.$$

- 1. Que vaut $\operatorname{Var}(X \mid \mathscr{G})$ lorsqu'on a $\mathscr{G} = \mathscr{F}$? Et quand $\mathscr{G} = \{\varnothing, \Omega\}$?
- 2. Montrer que si X est \mathscr{G} -mesurable, alors $\operatorname{Var}(X \mid \mathscr{G})$ est nulle presque sûrement. Démontrer que cela est toujours vrai si on suppose seulement qu'il existe une variable aléatoire Y qui est \mathscr{G} -mesurable et telle que X = Y presque sûrement.

- 3. On suppose dans cette question que $\operatorname{Var}(X \mid \mathscr{G})$ est nulle presque sûrement. Démontrer qu'il existe une variable aléatoire Y qui est \mathscr{G} -mesurable et telle que X = Y presque sûrement.
- 4. Démontrer que $Var(X) = \mathbf{E}[Var(X \mid \mathcal{G})] + Var(\mathbf{E}[X \mid \mathcal{G}]).$
- 5. Soient \mathcal{G} et \mathcal{H} deux sous-tribus de \mathcal{F} vérifiant $\mathcal{H} \subset \mathcal{G}$. Établir que l'inégalité suivante a lieu presque sûrement :

$$\mathbf{E}[\operatorname{Var}(X \mid \mathscr{G}) \mid \mathscr{H}] \leq \operatorname{Var}(X \mid \mathscr{H}).$$

6. Essayer de comprendre intuitivement, en termes "d'information", ce que signifient certains résultats établis aux questions précédentes. Vous paraissent-ils plutôt naturels ou contre-intuitifs?

Exercice 2.8 — Un cousin de l'exercice 5.

Montrer que toute sous-tribu \mathscr{G} de \mathscr{F} est de la forme $\sigma(X)$, pour une variable aléatoire X bien choisie.

Exercice 2.9 — Envoyons chaque ω sur l'étiquette de son bloc.

Soit $(A_i)_{i\in I}$ une partition dénombrable de Ω par des éléments de \mathscr{F} . Soit

$$Z:(\Omega,\mathscr{F})\to (I,\mathscr{P}(I))$$

la fonction qui, pour tout $i \in I$, est constante égale à i sur le bloc A_i . Montrer que $\sigma(Z) = \sigma(A_i : i \in I)$.

Exercice 2.10 — Du bon usage de la symétrie autour des espérances conditionnelles.

- 1. Soit (X, Y) un couple de variables aléatoires réelles. On suppose que X est intégrable et que $h: \mathbb{R} \to \mathbb{R}$ est une fonction mesurable telle que $\mathbf{E}[X \mid Y] = h(Y)$ presque sûrement. Soit (X', Y') un couple de variables aléatoires ayant même loi que (X, Y). Montrer que $\mathbf{E}[X' \mid Y'] = h(Y')$ p.s.
- 2. Soient m et n deux entiers vérifiant $n \ge m \ge 1$. Soient X_1, \ldots, X_n des variables aléatoires i.i.d. intégrables. Pour tout $k \in \{1, \ldots, n\}$, on pose $S_k := X_1 + \cdots + X_k$.
 - (a) Montrer que pour $i \in \{1, ..., n\}$, on a $\mathbf{E}[X_i \mid S_n] = \mathbf{E}[X_1 \mid S_n]$ presque sûrement.
 - (b) En déduire que $\mathbf{E}[S_m \mid S_n] = \frac{m}{n} S_n$ presque sûrement.

Exercice 2.11 — Deux points de vue sur une même chose.

Soient Ω , E et R trois ensembles. Soit $Z:\Omega\to E$ une fonction. Pour tout $e\in Z(\Omega)$, on pose $A_e=Z^{-1}(\{e\})$. On définit ainsi une partition $(A_e:e\in Z(\Omega))$ de Ω .

Soit maintenant $Y:\Omega\to R$ une fonction. Montrer que les deux assertions suivantes sont équivalentes :

- 1. il existe une fonction $h: E \to R$ telle que $Y = h \circ Z$,
- 2. pour tout $e \in Z(\Omega)$, la fonction Y est constante sur A_e .

Indications pour l'exercice 2.1.

- 1. Que dire de l'espérance conditionnelle d'une somme de deux variables aléatoires positives? On se ramène alors à deux cas faciles, connus : $\mathbf{E}[X_1 \mid X_1]$ et $\mathbf{E}[X_1 \mid X_2]$. Pour le second cas, utiliser l'indépendance.
- 2. Commencer par le second calcul, en ré-écrivant la probabilité recherchée sous la forme $\mathbf{P}(X_1 = k \text{ et } X_2 = n k)$. On peut ensuite en déduire $\mathbf{P}(X_1 + X_2 = n)$ en sommant sur k et en cherchant à faire apparaître un binôme de Newton.
- 3. Combiner la proposition 1.4 du cours avec la question précédente.

Indications pour l'exercice 2.2.

- 1. Posez les choses proprement. Par exemple, que donnent ses formules si $N(\omega) = 3$?
- 2. Concentrez votre attention sur le rôle joué par N.
- 3. Observez que $S\mathbf{1}_{N=n} = (X_1 + \cdots + X_n)\mathbf{1}_{N=n}$. Pour la seconde partie de la question, employer la proposition 1.4 puis l'item 3 du théorème 3.1.
- 4. Procédez comme à la question précédente, en commençant par réécrire $r^{S}\mathbf{1}_{N=n}$ sour la forme "quelque chose qui fait intervenir seulement X_{1}, \ldots, X_{n} " fois $\mathbf{1}_{N=n}$.

Indications pour l'exercice 2.3.

- 1. Posons $\mathscr{G} = \sigma(A_i : i \in I)$ et $\mathscr{H} = \left\{ \bigcup_{j \in J} A_j : J \subset I \right\}$. Utiliser la dénombrabilité de I et le fait que la tribu \mathscr{G} contient tous les A_i pour montrer que tout élément de \mathscr{H} appartient à \mathscr{G} . Cela établit $\mathscr{H} \subset \mathscr{G}$. Puis, utiliser de nouveau la dénombrabilité de I pour montrer que \mathscr{H} est une tribu on rappelle que $\bigcup_{j \in \mathscr{O}} A_j = \mathscr{O}$. Revenant à la définition de \mathscr{G} , en déduire que $\mathscr{G} \subset \mathscr{H}$.
- 2. L'essentiel de cette question est la sous-question b. Notons $\mathscr C$ l'ensemble de toutes les parties de $\mathbb R$ qui sont soit dénombrable, soit de complémentaire dénombrable. Il convient de vérifier que $\mathscr C$ est une tribu et que tout élement de $\mathscr C$ appartient à $\sigma(A_i:i\in I)$. Quant à l'absence de contradiction, elle provient du fait que nous travaillons ici avec un I qui n'est pas dénombrable.

Indications pour l'exercice 2.4.

- 1. Pour chaque valeur α susceptible d'être prise par X, il convient de déterminer la probabilité de l'événement $\{X = \alpha\}$. Idem pour Y.
- 2. Question niveau licence.
- 3. Chacune de ces tribus est engendrée par une partition. Pour $\sigma(Y)$, il y a un bloc par valeur possible β de Y, et le bloc correspondant est $\{Y = \beta\}$. Pour $\sigma(X,Y)$, il y a un bloc par valeur possible (α,β) de (X,Y), et le bloc correspondant est $\{X = \alpha, Y = \beta\}$. On se ramène alors à la question 1 de l'exercice 3.
- 4. Penser à la proposition 1.4.

Indications pour l'exercice 2.5.

Suivez l'indication écrite en fin d'exercice, en gardant bien à l'esprit que les A_i sont

disjoints. Rappelez-vous qu'une union dénombrable d'ensembles finis est toujours dénombrable. Cela est également vrai pour une union dénombrable d'ensembles dénombrables mais nous n'aurons pas besoin de ce fait.

Indications pour l'exercice 2.6.

- 1. Une implication est facile. Pour l'autre, poser \tilde{X} (resp. \tilde{Y}) une espérance conditionnelle de X (resp. Y) par rapport à \mathscr{G} et prendre $A = \{\tilde{X} \geqslant \tilde{Y}\}$.
- 2. Découle du premier point par double inégalité.

Indications pour l'exercice 2.7.

Pour la question 3, poser Y une espérance conditionnelle de X sachant \mathscr{G} et utiliser l'hypothèse pour montrer que $\mathbf{E}[(X-Y)^2 | \mathscr{G}] = 0$, puis en déduire que $\mathbf{E}[(X-Y)^2] = 0$. Concernant la question 4, détailler le calcul du membre de droite et chercher les simplifications. La question 5 découle de l'inégalité de Jensen conditionnelle.

Indications pour l'exercice 2.8.

On cherche une variable aléatoire X naturellement associée à \mathscr{G} . Elle sera à valeurs dans un espace mesurable (E,\mathscr{E}) . Prenons $E=\Omega$. Quelle tribu \mathscr{E} a-t-on envie d'essayer? Quelle fonction X peut-on considérer? Ne pas chercher une fonction compliquée. Une fois les candidats trouvés, poser les définitions et voir si ça fonctionne.

Indications pour l'exercice 2.9.

Que dire de $Z^{-1}(\{i\})$? Dès lors que vous aurez reconnu cet ensemble, l'inclusion de tribus $\sigma(A_i : i \in I) \subset \sigma(Z)$ suivra. Pour vous en rendre compte, il conviendra toutefois que vous vous rappeliez les définitions des deux tribus étudiées. Pour l'autre inclusion, exploitez la dénombrabilité de I pour écrire tout élément de $\sigma(Z)$ sous la forme d'une union dénombrable de parties de la forme $Z^{-1}(\{i\})$.

Une façon alternative d'aborder l'exercice est d'utiliser la question 1 de l'exercice 3. Pour $J \subset I$, que dire de $Z^{-1}(J)$?

Indications pour l'exercice 2.10.

- 1. Revenir posément aux définitions, en écrivant les choses l'une après l'autre.
- 2. (a) On sait que $\mathbf{E}[X_1 \mid S_n]$ peut s'écrire sous la forme $h(X_1)$. Se ramener alors à la question précédente. Pour ce faire, une étape intermédiaire est de vérifier que, pour tout $i \in \{1, \ldots, n\}$, les variables aléatoires (X_i, S_n) et (X_1, S_n) ont même loi. Intuitivement, pourquoi est-ce le cas?
 - (b) On a $\mathbf{E}[X_1 + \cdots + X_n \, | \, S_n] = \mathbf{E}[S_n \, | \, S_n] = S_n$ presque sûrement. Grâce à la question précédente, en déduire $\mathbf{E}[X_1 \, | \, S_n]$, puis conclure.

Indications pour l'exercice 2.11.

L'implication $1 \implies 2$ ne présente pas de difficultés, dès lors qu'on prend soin d'écrire posément les choses. Quant à l'autre implication, si Y est constante sur A_e , alors Y prend une unique valeur sur A_e : appeler cette valeur h(e) est un bon choix.

Planche d'exercices nº 3

Exercice 3.1 — Gaussienne conditionnée par une somme ou une différence.

Soient $X, Y \sim \mathcal{N}(0, 1)$ indépendantes. Posons S = X + Y et D = X - Y.

- 1. Montrer que (S, D) est gaussien centré et déterminer la matrice de covariance.
- 2. Déterminer $\mathbf{E}[X \mid S]$ et $\mathbf{E}[X \mid D]$.

Exercice 3.2 — Partiel 2016.

Soient X et Y deux variables aléatoires normales centrées réduites $\mathcal{N}(0,1)$ indépendantes. On pose Z = X + 2Y. Montrer qu'il existe un unique a tel que X = aZ + W avec W indépendant de Z. En déduire l'expression de $\mathbf{E}[X \mid Z]$ et $\mathbf{E}[X^2 \mid Z]$.

Exercice 3.3 — Espérance conditionnelle sur l'ordre statistique.

Soient U_1, U_2 i.i.d. de loi uniforme sur [0, 1] et posons $M := \max\{U_1, U_2\}, m := \min\{U_1, U_2\}$. Soit $f : \mathbb{R} \to \mathbb{R}$ mesurable bornée. Le but de cet exercice est de calculer $\mathbf{E}[f(m) \mid M]$.

1. Montrer qu'il existe une fonction mesurable φ telle que, pour toute g mesurable bornée, on ait

$$\mathbf{E}[g(M)f(m)] = \mathbf{E}[g(M)\varphi(M)].$$

2. Établir

$$\mathbf{E}[g(M)f(m)] = 2\int_0^1 g(x) \left(\int_0^x f(y) \, dy \right) dx,$$
$$\mathbf{E}[g(M)\varphi(M))] = \int_0^1 g(x) \left(2x \, \varphi(x) \right) dx.$$

3. En déduire que l'on peut choisir $\varphi(x) = \frac{1}{x} \int_0^x f(y) \, dy$ (pour x > 0) et conclure :

$$\mathbf{E}[f(m) \mid M] = \frac{1}{M} \int_{0}^{M} f(x) \, \mathrm{d}x \quad \text{p.s.}$$

Exercice 3.4 — Indépendance et conditionnement.

Soient X et Y deux variables aléatoires de Bernoulli indépendantes de même paramètre p. On définit $Z = \mathbf{1}_{\{X+Y=0\}}$. Calculer $\mathbf{E}[X \mid Z]$ et $\mathbf{E}[Y \mid Z]$. Puis, démontrer ou réfuter l'assertion suivante : « Si X et Y sont deux variables aléatoires indépendantes, alors les variables aléatoires $\mathbf{E}[X \mid \mathscr{G}]$ et $\mathbf{E}[Y \mid \mathscr{G}]$ sont indépendantes ».

Exercice 3.5 — Convergence en probabilités vers 0 et conditionnement.

Soit $(X_i)_{i\geqslant 1}$ une suite de variables aléatoires réelles positives et $(\mathscr{F}_i)_{i\geqslant 1}$ une suite de soustribus de \mathscr{F} . On suppose que

$$\mathbf{E}[X_i \mid \mathscr{F}_i] \xrightarrow[i \to \infty]{\mathbf{P}} 0.$$

- 1. Montrer que $(X_i)_{i\geqslant 1}$ converge en probabilité vers 0.
- 2. Montrer que la réciproque est fausse en général.

Exercice 3.6 — Un théorème de convergence à rebours.

Soit $(\mathscr{G}_n)_{n\geqslant 0}$ une suite décroissante de sous-tribus de \mathscr{F} , c'est-à-dire vérifiant $\mathscr{G}_n\supseteq\mathscr{G}_{n+1}$ pour tout $n\geqslant 0$. On suppose que $\mathscr{G}_0=\mathscr{F}$. Soit X une variable aléatoire appartenant à $\mathbf{L}^2(\mathbf{P}):=\mathbf{L}^2(\Omega,\mathscr{F},\mathbf{P})$. On veut démontrer que si l'on pose $\mathscr{G}_\infty:=\bigcap_{n\geqslant 0}\mathscr{G}_n$, alors la convergence suivante a lieu dans $\mathbf{L}^2(\mathbf{P})$:

$$\lim_{n \to \infty} \mathbf{E}[X \mid \mathscr{G}_n] = \mathbf{E}[X \mid \mathscr{G}_\infty].$$

On rappelle qu'une intersection arbitraire de tribus est toujours une tribu, donc $\mathbf{E}[X \mid \mathscr{G}_{\infty}]$ est bien définie. Pour établir ce résultat, on procède comme suit :

1. Rappelez-vous que l'application

$$\langle Y, Z \rangle := \mathbf{E}[YZ], \quad \mathbf{L}^2(\mathbf{P}) \times \mathbf{L}^2(\mathbf{P}) \to \mathbb{R},$$

définit un produit scalaire sur $\mathbf{L}^2(\mathbf{P})$, et que la norme associée est la norme usuelle de $\mathbf{L}^2(\mathbf{P})$. L'espace $(\mathbf{L}^2(\mathbf{P}), \langle \cdot, \cdot \rangle)$ est un espace de Hilbert.

2. Soit $(X_n)_{n\geqslant 0}$ une suite d'éléments orthogonaux dans $\mathbf{L}^2(\mathbf{P})$, c'est-à-dire vérifiant $\langle X_n, X_m \rangle = 0$ dès que $n \neq m$. Montrer que si

$$\sum_{n\geqslant 0} \langle X_n, X_n \rangle < \infty,$$

alors la suite de sommes partielles $\sum_{k=1}^{n} X_k$, $n \ge 1$, converge dans $\mathbf{L}^2(\mathbf{P})$ vers un élément de $\mathbf{L}^2(\mathbf{P})$. Indication : montrer qu'il s'agit d'une suite de Cauchy.

3. Montrer que les variables aléatoires

$$\mathbf{E}[X \mid \mathscr{G}_n] - \mathbf{E}[X \mid \mathscr{G}_{n+1}], \quad n \geqslant 0,$$

sont orthogonales dans $L^2(\mathbf{P})$.

4. Montrer que la suite

$$\sum_{k=0}^{n} (\mathbf{E}[X \mid \mathcal{G}_k] - \mathbf{E}[X \mid \mathcal{G}_{k+1}]), \qquad n \geqslant 0,$$

converge quand $n \to \infty$ vers un élément de $\mathbf{L}^2(\mathbf{P})$. En déduire que la suite de variables aléatoires $\mathbf{E}[X \mid \mathcal{G}_n]$ converge dans $\mathbf{L}^2(\mathbf{P})$, et vérifier que sa limite est $\mathbf{E}[X \mid \mathcal{G}_{\infty}]$. Indication : pour ce dernier point, utiliser le résultat de la question 2.

Exercices bonus

Exercice 3.7 — Interprétation de la covariance.

Soit Z = (X, Y) un vecteur aléatoire gaussien à valeurs dans \mathbb{R}^2 . On suppose que $\mathbf{E}[X] = \mathbf{E}[Y] = 0$, $\mathrm{Var}(X) = \mathrm{Var}(Y) = 1$ et que $\mathrm{Cov}(X, Y) = \rho$.

- 1. Montrer que $|\rho| \leq 1$ et calculer $\mathbf{E}(X \mid Y)$.
- 2. On pose $U = X \rho Y$, $V = \sqrt{1 \rho^2} Y$. Quelles sont les lois de U et de V? Les variables U et V sont-elles indépendantes?
- 3. Calculer $\mathbf{E}[U^2V^2]$, $\mathbf{E}[UV^3]$, $\mathbf{E}[V^4]$. En déduire $\mathbf{E}[X^2Y^2]$.

Exercice 3.8 — Coordonnées polaires et gaussiennes.

Soit (X_1, X_2) un couple de variables aléatoires admettant la densité de probabilité

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}(x_1^2 - 2\rho x_1 x_2 + x_2^2)\right),$$

où $\rho \in]-1,1[$.

- 1. Vérifier que f est une densité de probabilité sur \mathbb{R}^2 et trouver les densités marginales de X_1 et X_2 . À quelle condition les variables aléatoires X_1 et X_2 sont-elles indépendantes?
- 2. On introduit les coordonnées polaires (R, Φ) du couple (X_1, X_2) : $R = \sqrt{X_1^2 + X_2^2}$ et $\Phi \in [0, 2\pi[$ est définie par

$$\cos \Phi = \frac{X_1}{R}$$
 et $\sin \Phi = \frac{X_2}{R}$ si $R > 0$, $\Phi = 0$ si $R = 0$.

Déterminer la densité du couple (R, Φ) , puis celle de Φ .

3. Déterminer la densité de R lorsque $\rho=0$. Que peut-on dire des variables aléatoires R et Φ dans ce cas?

Exercice 3.9 — Conditionnement et densités.

1. Considérons un couple de variables aléatoires (U, X) de densité jointe

$$f_{(U,X)}(u,x) := \mathbf{1}_{[0,1]}(u) \, \mathbf{1}_{\mathbb{R}_+}(x) \, ue^{-ux}.$$

Montrer que pour toute fonction mesurable bornée $g: \mathbb{R} \to \mathbb{R}$, on a presque sûrement

$$\mathbf{E}[g(X) \mid U] = \int_{\mathbb{D}} g(x) U e^{-Ux} \mathbf{1}_{R_{+}}(x) dx.$$

On dit que, conditionnellement à U, la variable X suit la loi exponentielle $\mathrm{Exp}(U)$.

On rappelle que la loi gamma de paramètre $(c,\theta)\in(0,\infty)\times(0,\infty)$, notée $\Gamma(2,\theta)$, admet pour densité

$$\frac{\theta^c}{\Gamma(c)} x^{c-1} e^{-\theta x} \mathbf{1}_{\{x>0\}}, \qquad x \in \mathbb{R}.$$

- 2. Soient X, Y deux variables exponentielles indépendantes de paramètre θ , et posons W := X + Y. Calculer la densité jointe $f_{(X,X+Y)}$ et en déduire que X + Y suit la loi $\Gamma(2,\theta)$.
- 3. Montrer que, pour toute fonction mesurable et bornée g, on a presque

$$\mathbf{E}[g(X) \mid W] = \frac{1}{W} \int_0^W g(u) \, \mathrm{d}u \text{ p.s.}$$

On dit que, conditionnellement à W, la variable X est uniformément distribuée sur [0, W].

Exercice 3.10 — Un critère d'indépendance.

Soit \mathscr{G} une sous-tribu de \mathscr{F} . Pour $A \in \mathscr{F}$, on note $\mathbf{P}(A \mid \mathscr{G}) := \mathbf{E}[\mathbf{1}_A \mid \mathscr{G}]$.

- Montrer que deux tribus G, ℋ ⊂ ℱ sont indépendantes si et seulement si, pour tout B ∈ ℋ, on a P(B | G) = P(B).
 Indication : montrer que lorsque cette condition est satisfaite, pour tout A ∈ ℋ et B ∈ G, on a P(A ∩ B) = P(A)P(B).
- 2. Montrer que lorsque cette condition est satisfaite, pour toute variable aléatoire X mesurable par rapport à \mathcal{H} , bornée ou positive, on a $\mathbf{E}[X \mid \mathcal{G}] = \mathbf{E}[X]$. En particulier, deux variables aléatoires X, Y sont indépendantes si et seulement si, pour toute fonction mesurable bornée $h : \mathbb{R} \to \mathbb{R}$, on a

$$\mathbf{E}[h(X) \mid Y] = \mathbf{E}[h(X)].$$

3. Montrer que la condition $\mathbf{E}[X \mid \mathcal{G}] = \mathbf{E}[X]$ n'implique en général pas que X est indépendant de \mathcal{G} .

Exercice 3.11 — Problème de l'embarquement dans l'avion.

Cent passagers font la queue pour monter à bord d'un avion de 100 places. La première personne, Mortdecai, a perdu sa carte d'embarquement et choisit son siège au hasard. Chaque passager suivant prend son siège attribué si celui-ci est libre et choisit sinon un siège libre totalement au hasard. Quelle est la probabilité que le dernier passager s'asseye effectivement à sa place attitrée?

Exercice 3.12 — Strong ratio theorem pour \mathbb{Z} .

Soit μ une loi de support \mathbb{Z} . Dans le même espace de probabilités, on considère $(X_i)_{i\geqslant 1}$ i.i.d. de loi μ et on pose $S_n:=\sum_{i=1}^n X_i$, pour tout $n\in\mathbb{N}$. On fixe $(s_n)_{n\geqslant 1}$ une suite dans \mathbb{Z} telle que

$$\mathbf{P}(S_n = s_n)^{1/n} \xrightarrow[n \to \infty]{} 1$$

Le but de cet exercice est de montrer le strong ratio theorem : pour tout $b \in \mathbb{Z}$, on a :

$$\frac{\mathbf{P}(S_{n-1} = s_n - b)}{\mathbf{P}(S_n = s_n)} \xrightarrow[n \to \infty]{} 1$$

Dans la suite, on fixe la suite (s_n) et $b \in \mathbb{Z}$.

1. Pour tout $n \ge 1$, on pose $N_n := \operatorname{Card}(\{1 \le i \le n : X_i = b\})$. Établir que :

$$\mathbf{E}\left(\frac{N_n}{n} \mid S_n = s_n\right) = \mathbf{P}(X_1 = b) \frac{\mathbf{P}(S_{n-1} = s_n - b)}{\mathbf{P}(S_n = s_n)}$$

2. Montrer que pour tout $\varepsilon > 0$, il existe $c_{\varepsilon} > 0$ et $n_{\varepsilon} > 1$ tel que :

$$\mathbf{P}(\left|\frac{N_n}{n} - \mathbf{P}(X_1 = b)\right| > \varepsilon) \leqslant \exp(-c_{\varepsilon}n),$$

pour tout $n \geqslant n_{\varepsilon}$.

3. Déduire le strong ratio theorem.

Ce résultat est particulièrement utile pour l'étude des limites locales d'objets combinatoires aléatoires, et il joue un rôle actif même dans la recherche actuelle (voir par exemple les notes de cours de Saint-Flour de Nicolas Curien pour des applications aux cartes aléatoires). La méthode de démonstration que nous présentons est due à Jacques Neveu. Le résultat peut être étendu sans difficulté aux lois apériodiques ainsi qu'à \mathbb{Z}^d pour $d \ge 1$. On peut également remplacer S_{n-1} par S_{n-k} pour un $k \ge 0$ fixé.

Exercice 3.13 — Biais par la taille.

On considère une population avec un très grand nombre n de ménages. On modélise la taille des ménages par des variables aléatoires i.i.d. $(X_i)_{1 \leqslant i \leqslant n}$ à valeurs dans \mathbb{N}^* , de loi $\mathbf{P}(X_1 = k) = p_k$ et d'espérance

$$m = \mathbf{E}[X_1] = \sum_{k \geqslant 1} k p_k < \infty.$$

On note T_n la taille du ménage d'un individu choisi uniformément au hasard dans la population.

1. Justifier que, pour tout $k \ge 1$, on a

$$\mathbf{E}[\mathbf{1}_{T_n=k} \mid X_1, \dots, X_n] = \frac{1}{\sum_{i=1}^n X_i} \sum_{i=1}^n X_i \mathbf{1}_{\{X_i=k\}}.$$

2. Montrer que, pour tout $k \ge 1$, on a

$$\mathbf{P}(T_n = k) \longrightarrow \frac{k}{m} p_k$$
 quand $n \to \infty$.

Exercice 3.14 — Plus petit événement mesurable et positivité.

Soit $\mathcal{A} \subset \mathscr{F}$ une tribu et X une variable aléatoire positive. Montrer que l'événement

$$\{\mathbf{E}[X \mid \mathcal{A}] > 0\}$$

est, à événement négligeable près, le plus petit événement A-mesurable contenant l'événement $\{X > 0\}$.

Exercice 3.15 — Une identité symétrique.

Soit X, Y deux variables aléatoire à valeurs dans \mathbb{R} . On suppose que X et Y sont intégrables et que $\mathbf{E}[X \mid Y] = Y$ et $\mathbf{E}[Y \mid X] = X$ p.s. Montrer que X = Y p.s.

Indications pour l'exercice 3.1.

- 1. Utiliser que toute combinaison linéaire de gaussiennes indépendantes est gaussienne. Penser à la bilinéarité de la covariance.
- 2. Ecrire X en fonction de S et D.

Indications pour l'exercice 3.2.

Écrire X = aZ + W avec W indépendant de Z équivaut à imposer Cov(W, Z) = 0. Utiliser cette équation afin de déterminer a.

Indications pour l'exercice 3.3.

- 1. Poser φ comme une version de $\mathbf{E}[f(m) \mid M]$. L'existence provient du fait qu'on conditionne par rapport à la tribu engendrée par M.
- 2. Utiliser que par indépendance la densité de (U_1, U_2) est donné par le produit des densité.
- 3. Identifier les deux formes intégrales obtenues pour tout g.

Indications pour l'exercice 3.4.

Déterminer la loi de Z. Utiliser la méthode de la fonction muette ou le conditionnement par rapport à une partition.

Indications pour l'exercice 3.5.

1. Utiliser que pour tout $\varepsilon > 0$ et $i \ge 1$, on a :

$$\mathbf{1}_{X_i>\varepsilon}\leqslant \frac{X_i}{\varepsilon}.$$

Concluer en utilisant la croissance de l'espérance conditionnelle et distinguant quand $\mathbf{E}(X_i | \mathcal{F}_i)$ est grand ou petit.

2. Considerer \mathcal{F}_i la tribu grossière, pour tout $i \geq 1$, et X_i de moyenne constante non nulle mais convergeant en probabilité vers 0.

Indications pour l'exercice 3.6.

- 1. Revoir le cours Section 2.2.
- 2. Montrer que la suite est de Cauchy et utiliser la complétude.
- 3. Calculer le produit scalaire et le théorème 4.6 du cours.
- 4. Utiliser que c'est une somme téléscopique et la question 2.

Indications exercices Bonus:

Indications pour l'exercice 3.7.

- 1. Utiliser Cauchy–Schwarz et écrire X comme une combinaison lineaire de Y et une autre variable gaussienne indépendante de Y.
- 2. Déterminer la matrice des covariance.

3. Exploiter l'indépendance de (U, V) puis revenir écrire X, Y en fonction de U et V.

Indications pour l'exercice 3.8.

- 1. Les variables aléatoires X_1 et X_2 suivent la loi $\mathcal{N}(0,1)$. Elles sont indépendantes si et seulement si $\rho = 1$.
- 2. La densité du couple (R, Φ) est donnée par

$$f(r,\varphi) = \frac{r}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{r^2(1-\rho\sin(2\varphi))}{2(1-\rho^2)}\right) \mathbf{1}_{r>0} \mathbf{1}_{0<\varphi<2\pi}.$$

La densité de Φ est donnée par

$$f_{\Phi}(\varphi) = \frac{\sqrt{1 - \rho^2}}{2\pi} \frac{\mathbf{1}_{]0,2\pi]}(\varphi)}{(1 - \rho \sin 2\varphi)}.$$

3. Pour $\rho = 0$, R admet pour densité $re^{-r^2/2}\mathbf{1}_{r>0}$, Φ est de loi uniforme sur $[0, 2\pi]$, et les variables R et Φ sont indépendantes.

Indications pour l'exercice 3.9.

- 1. Voir exercice 3.1 et Section 5.3 du cours.
- 2. Calculer $f_{(X,X+Y)}(x,w)$ via le changement $(x,y)\mapsto (x,w=x+y)$. Intégrer en x pour avoir la densité de W.

Indications pour l'exercice 3.10.

Indications pour l'exercice 3.11.

Procéder par récurrence sur n ou par symmétrie. Montrer que la probabilité cherchée vaut 1/2 pour $n \ge 2$.

Indications pour l'exercice 3.12.

- 1. Ecrire $N_n = \sum_{i=1}^n \mathbf{1}_{X_i=b}$ et exploiter la linearité de l'esperance conditionnelle.
- 2. Inégalité que N_n est une binomiale de paramétre $(n, \mathbf{P}(X_1 = b))$
- 3. Utiliser l'item 2 pour contrôler la déviation de N_n/n et conclure que $\mathbf{E}(\frac{N_n}{n} \mid S_n = s_n)$ converge vers $\mathbf{P}(X_1 = b)$. Utiliser l'item 1 pour déduire le résultat voulu.

Indications pour l'exercice 3.13.

- 1. Conditionner par (X_1, \ldots, X_n) et compter le nombre d'individus vivant dans des ménages de taille k (pondération par la taille).
- 2. Utiliser la loi des grands nombres pour le numérateur et le dénominateur. Passer à la limite des rapports : $\frac{\frac{1}{n}\sum X_i \mathbf{1}_{X_i=k}}{\frac{1}{n}\sum X_i} \to \frac{kp_k}{m}$ p.s.

Indications pour l'exercice 3.14.

Indications pour l'exercice 3.15.

Commencer par traiter le cas où X et Y sont dans L^2 . Pour le cas général utiliser une troncature pour vous rammenez au cas L^2 .

Planche d'exercices n° 4

Exercice 4.1. Montrer que toute filtration est de la forme $\mathscr{F}_n = \sigma(X_0, \dots, X_n)$, pour des variables aléatoires X_i bien choisies.

Indications ou Correction: Si \mathcal{F} est une tribu sur Ω , remarquer que \mathcal{F} est la plus petite tribu rendant mesurable la variable aléatoire $Y:(\Omega,\mathcal{F})\to(\Omega,\mathcal{F})$ avec $Y(\omega)=\omega$. Généraliser alors cette remarque en prenant de même X_i à valeurs dans (Ω,\mathcal{F}_i) .

Exercice 4.2. Soient $(\Omega, \mathscr{F}, (\mathscr{F}_n), \mathbf{P})$ un espace de probabilité filtré, T et S deux temps d'arrêt, \mathscr{F}_T et \mathscr{F}_S les tribus respectives des événements antérieurs à T et S. Montrer que :

- 1. $S \wedge T$, $S \vee T$, S + T sont des temps d'arrêt.
- 2. Si T est un temps d'arrêt constant $(T = p \text{ avec } p \in \mathbf{N})$, alors $\mathscr{F}_T = \mathscr{F}_p$,
- 3. T est \mathcal{F}_T -mesurable,
- 4. Si $S \leq T$, $\mathscr{F}_S \subset \mathscr{F}_T$,
- 5. $\mathscr{F}_{S \wedge T} = \mathscr{F}_S \cap \mathscr{F}_T$,
- 6. T + S est $\mathscr{F}_{S \vee T}$ -mesurable,
- 7. $\{S < T\} \in \mathscr{F}_S \cap \mathscr{F}_T, \{S = T\} \in \mathscr{F}_S \cap \mathscr{F}_T.$

Indications ou Correction:

(i)Soit $n \in \mathbb{N}$. Il s'agit de montrer que $(S \wedge T \leq n)$, $(S \vee T \leq n)$ et $(S + T \leq n)$ sont des éléments de \mathcal{F}_n .

$$(S \wedge T \le n) = (S \wedge T > n)^c = [(S > n) \cap (T > n)]^c =$$

= $(S > n)^c \cup (T > n)^c = (S \le n) \cup (T \le n)$

Or, S et T étant des temps d'arrêt, $(S \le n)$ et $(T \le n)$ sont deux éléments de \mathcal{F}_n et $(S \land T \le n) \in \mathcal{F}_n$.

De même, $(S \vee T \leq n) = (S \leq n) \cap (T \leq n) \in \mathcal{F}_n$. Enfin,

$$(S+T \le n) = \bigcup_{k=0}^{n} (S \le k) \cap (T \le n-k)$$

Or, pour $0 \le k \le n$, $(S \le k) \in \mathcal{F}_k \subset \mathcal{F}_n$ et $(T \le n - k) \in \mathcal{F}_{n-k} \subset \mathcal{F}_n$ donc $(S + T \le n) \in \mathcal{F}_n$ ce qui termine la démonstration.

(ii) Supposons que S = p p.s.

L'événement $(S \le n)$ est alors \emptyset si p > n et Ω si $p \le n$.

Par conséquent, puisque $\emptyset \in \mathcal{F}_n$, on peut écrire

$$\mathcal{F}_S = \{A \in \mathcal{F}, A \in \mathcal{F}_n, \text{ pour tout } n \geq p\} = \bigcap_{n \geq p} \mathcal{F}_n = \mathcal{F}_p$$

(iii) Soit $A \in \mathcal{F}_S$ et soit $n \in \mathbb{N}$. Comme $(T \leq n) \subset (S \leq n)$, on peut écrire $A \cap (T \leq n) = A \cap (S \leq n) \cap (T \leq n)$.

Mais, $A \cap (S \leq n) \in \mathcal{F}_n$ et $(T \leq n) \in \mathcal{F}_n$ (T est un temps d'arrêt) donc $A \cap (S \leq n) \cap (T \leq n) \in \mathcal{F}_n$ et $A \cap (T \leq n) \in \mathcal{F}_n$.

On a donc $A \in \mathcal{F}_T$.

(iv) Soit $n \in \mathbb{N}$.

On a

$$(S < T) \cap (S \le n) = \bigcup_{k=0}^{n} (S = k) \cap (T > k)$$

Mais, pour $0 \le l \le n$,

$$(S = k) = (S \le k) \cap (S \le k - 1)^c \in \mathcal{F}_k \subset \mathcal{F}_n$$

et

$$(T > k) = (T \le k)^c \in \mathcal{F}_k \subset \mathcal{F}_n$$

De ce fait, $(S < T) \cap (S \le n) \in \mathcal{F}_n$ et $(S < T) \in \mathcal{F}_S$. On a de même,

$$(S < T) \cap (T \le n) = \bigcup_{k=0}^{n} (T = k) \cap (S < k)$$

et comme pour $0 \le k \le n$, $(T = k) \in \mathcal{F}_k \subset \mathcal{F}_n$ et $(S < k) = (S \le k - 1) \in \mathcal{F}_{k-1} \subset \mathcal{F}_n$, on a aussi $(S < T) \cap (T \le n) \in \mathcal{F}_n$ et $(S < T) \in \mathcal{F}_T$. Enfin,

$$(S = T) = (S < T)^c \cap (T < S)^c \in \mathcal{F}_S \cap \mathcal{F}_T$$

puisque \mathcal{F}_S et \mathcal{F}_T sont deux tribus.

Exercice 4.3. On considère une suite $(X_n)_{n\geq 0}$ de variables aléatoires définies sur un espace de probabilité $(\Omega, \mathscr{F}, \mathbf{P})$, à valeurs dans [0, 1], indépendantes et de même loi uniforme sur [0, 1]. On pose, pour $n \geq 0$, $\mathscr{F}_n = \sigma(X_k, k \leq n)$. On introduit la variable aléatoire

$$T = \inf\{n \ge 1; \ X_n > X_0\},\$$

avec la convention inf $\emptyset = \infty$.

- 1. Montrer que T est un temps d'arrêt de la filtration $(\mathscr{F}_n)_{n>0}$.
- 2. Déterminer la loi de T. Calculer son espérance.

Indications ou Correction:

- 1- Remarquer que (T > n) s'exprime à l'aide des variables X_0, X_1, \ldots, X_n .
- 2 Calculer P(T = n) = P(T > n 1) P(T > n) puis, en conditionnant par X_0 , montrer que

$$P(T > n) = E(E(1_{X_1 < X_0, X_2 < X_0, \dots, X_n < X_0} / X_0)) = E(X_0^n) = 1/n + 1.$$

Exercice 4.4. Soit $(M_n)_{n\geq 0}$ une martingale telle que $E(M_n^2)<+\infty$.

- 1) Montrer que $(M_n^2)_{n\geq 0}$ est une sous-martingale. On pose $(\langle M\rangle_n)_{n\geq 0}$ le processus croissant $(A_n)_{n\geq 0}$ intervenant dans la décomposition de Doob de la sous-martingale $(M_n^2)_{n\geq 0}$. Ce processus s'appelle le *crochet* de M.
 - 2) Montrer que

$$E((M_{n+p} - M_n)^2) = E(M_{n+p}^2) - E(M_n^2) = E(\langle M \rangle_{n+p}) - E(\langle M_n \rangle)$$

Indications ou Correction:

- 1- Utiliser l'inégalité de Jensen avec la fonction convexe $x\mapsto x^2$.
- 2 Remarquer que $E(M_nM_{n+p})=E(M_n^2)$.

Exercice 4.5. a) Soit $X=(X_n)_{n\geq 0}$ une surmartingale telle que $\mathrm{E}(X_n)$ est constante. Montrer que $(X_n)_{n\geq 0}$ est une martingale.

b) Soit $(X_n)_{n\geq 0}$ un processus adapté à la filtration $(\mathcal{F}_n)_{n\geq 0}$. Montrer que $(X_n)_{n\geq 0}$ est une $\{\mathcal{F}_n\}_n$ -martingale si et seulement si il existe $c\in\mathbf{R}$ telle que pour tout temps d'arrêt borné τ de $(\mathcal{F}_n)_{n\geq 0}$ on a $\mathrm{E}(X_\tau)=c$.

Indications ou Correction:

a) Si X est une surmartingale on a pour $n \in \mathbb{N}$

$$\mathrm{E}(X_{n+1} \mid \mathcal{F}_n) \leq X_n$$

Donc la v.a. $U_n = X_n - \mathbb{E}(X_{n+1} \mid \mathcal{F}_n)$ est ≥ 0 mais d'après l'hypothèse sa moyenne est nulle car

$$E(E(X_{n+1} \mid \mathcal{F}_n)) = E(X_{n+1}) = E(X_n)$$

On en tire que $U_n = 0$ p.s. et donc $E[X_{n+1} \mid \mathcal{F}_n] = X_n$ p.s.

b) Si X est une martingale la propriété est une conséquence du Théorème d'arrêt: $E[X_{\tau}]$ est égal à $E[X_0]$ pour tout temps d'arrêt borné τ .

Inversement pour montrer la propriété de martingale il faut prouver que pour tout $A \in \mathcal{F}_n$

$$E[M_{n+1}1_A] = E[M_n1_A]$$

L'idée est de trouver deux temps d'arrêt bornés τ_1, τ_2 tels que la relation $E[X_{\tau_1}] = E[X_{\tau_2}]$ entraine la relation de martingale précédente. On choisit, pour $A \in \mathcal{F}_n$, $\tau_1(\omega) = n$ si $\omega \in A$ et n+1 si $\omega \in A^C$.

et $\tau_2 \equiv n+1$; τ_1 est un temps d'arrêt: en effet $\{\tau_1 \leq k\} = \emptyset$ si $k \leq n-1$ et A si k = n et Ω si $k \geq n+1$.

et donc $\{\tau_1 \leq k\} \in \mathcal{F}_k$ dans tous les cas de figure. Or $X_{\tau_1} = X_n 1_A + X_{n+1} 1_{A^C}$ et la relation $\mathbb{E}[X_{\tau_1}] = \mathbb{E}[X_{n+1}]$ donne

$$E[X_n 1_A] + E[X_{n+1} 1_{A^C}] = E[X_{\tau_1}] = E[X_{n+1}] =$$

$$= E[X_{n+1} 1_A] + E[X_{n+1} 1_{A^C}]$$

d'où par soustraction on déduit la relation de martingale recherchée.

Exercice 4.6. Soit $p \in]0,1[$. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes identiquement distribuées vérifiant $\mathbf{P}(X_1=+1)=p$ et $\mathbf{P}(X_1=-1)=1-p$, et soit la filtration $\mathscr{F}_0=\{\varnothing,\Omega\}, \mathscr{F}_n=\sigma(X_1,\ldots,X_n)$. On note $\mu=\mathrm{E}[X_1]$ et $\sigma^2=\mathrm{Var}X_1$. On pose, $S_0=0$ et pour $n\geq 1$, $S_n=X_1+\cdots+X_n$.

- 1. Montrer que $S_n-n\mu$ et $M_n:=(S_n-n\mu)^2-n\sigma^2$ sont des martingales relativement à la filtration $(\mathscr{F}_n)_{n\geq 0}$.
- 2. Montrer que $\left(\frac{1-p}{p}\right)^{S_n}$ est une martingale relativement à la filtration $(\mathscr{F}_n)_{n\geq 0}$.
- 3. On définit $\psi(x) = pe^x + (1-p)e^{-x}$, pour $x \in \mathbf{R}$. Montrer que, pour tout $\theta \in \mathbf{R}$, $e^{\theta S_n}/\psi(\theta)^n$ est une martingale relativement à la filtration $(\mathscr{F}_n)_{n\geq 0}$.

Indications ou Correction: Les calculs se font sans difficulté particulière en écrivant que $S_{n+1} = S_n + X_{n+1}$ et en utilisant des propriétés de l'espérance conditionnelle : la linéarité, le fait que $E(XY/\mathcal{F}) = XE(Y/\mathcal{F})$ si X est \mathcal{F} -mesurable et $E(Z/\mathcal{F}) = E(Z)$ si Z est indépendante de \mathcal{F} .

Exercice 4.7. Soit $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ un espace de probabilité filtré sur lequel on considère deux martingales $(X_n)_{n\geq 0}$ et $(Y_n)_{n\geq 0}$ de carré intégrable.

- a) Montrer que pour m < n on a $E(X_m X_n \mid \mathcal{F}_m) = X_m^2$ b) Montrer que $E(X_n Y_n) E(X_0 Y_0) = \sum_{k=1}^n E((X_k X_{k-1})(Y_k Y_{k-1}))$.

Indications ou Correction:

a) Puisque X_m est \mathcal{F}_n -mesurable $(m \leq n)$ on a

$$E(X_n X_m \mid \mathcal{F}_n) - X_m^2 = E(X_n X_m - X_m^2 \mid \mathcal{F}_n) = X_m \underbrace{E(X_n - X_m \mid \mathcal{F}_n)}_{=0} = 0.$$

b) Puisque $X_{k-1} = E(X_k/\mathcal{F}_{k-1})$ et $Y_{k-1} = E(Y_k/\mathcal{F}_{k-1})$, on a

$$E(X_k Y_{k-1}) = E(X_{k-1} Y_{k-1})$$

$$E(X_{k-1} Y_k) = E(X_{k-1} Y_{k-1})$$

d'où

$$E((X_k - X_{k-1})(Y_k - Y_{k-1})) = E(X_k Y_k) - E(X_{k-1} Y_{k-1})$$

et on trouve la relation cherchée en faisant la somme.

Exercice 4.8. Montrer que le carré d'une sous-martingale n'est pas nécessairement une sous-martingale.

Indications ou Correction: Un exemple débile mais très parlant est de considérer la suite (déterministe!) $X_n = n-1$ pour $n \ge 0$. C'est une sous-martingale puisqu'elle est croissante. Mais $(X_n^2)_{n>0}$ est la suite $1,0,1,2,\ldots$ n'est pas croissante...

Exercice 4.9. Montrer que lorsqu'une sur-martingale positive atteint 0, elle y reste.

Indications ou Correction : Définir $\tau = \inf\{n \geq 0, X_n = 0\}$ et montrer que pour tout k > 0 on a $E(X_{\tau+k} 1_{\tau < +\infty}) = 0$.

Exercice 4.10. Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires i.i.d. de loi $\mathbf{P}(X_1 =$ +1) = $\mathbf{P}(X_1 = -1) = 1/2$, et soit la filtration $\mathscr{F}_0 = \{\varnothing, \Omega\}, \mathscr{F}_n = \sigma(X_1, \dots, X_n)$. On fixe un entier $N \geq 1$, et pour $x \in \{0, \dots, N\}$, on considère la marche aléatoire issue de x: $S_0 = x$ et pour $n \ge 1$ $S_n = x + \sum_{k=1}^n X_i$.

- 1. Montrer que S_n et $M_n := S_n^2 n$ sont des martingales relativement à la filtration $(\mathscr{F}_n)_{n>0}$.
- 2. On considère le temps $T:=\inf\{n\,;\,S_n=0\ {\rm ou}\ S_n=N\}.$ Montrer que T est un temps d'arrêt.

- 3. Pour $m \geq 0$, on introduit l'événement $A_m = \{X_{mN+1} = \cdots = X_{(m+1)N} = +1\}$. Montrer que pour $q \geq 1$, $\{T > qN\} \subset \bigcap_{m=0}^{q-1} A_m^c$, et en déduire une majoration de $\mathbf{P}(T > qN)$. Montrer que $\mathbf{E}[T] = \sum_{j \geq 0} \mathbf{P}(T > j) < +\infty$ et que $T < +\infty$ p.s.
- 4. Calculer $E[S_T]$ et en déduire que $P(S_T = 0) = 1 x/N$.
- 5. Calculer $E[M_T]$ et en déduire E[T].

Indications ou Correction:

Pour 3), remarquer que si A_m est vérifié pour $0 \le m \le q-1$, $S_{(m+1)N} = S_{mN} + N$ donc soit S_{mN} est compris entre 0 et N et S_k passe nécessairement par N pour un k entre mN+1 et mN+N, soit S_{mN} est inférieur à -1 ou supérieur à N+1 et donc S_k est passé auparavant par 0 ou N puisque $0 \le x \le N$. Dans tous les cas, $T \le mN$.

La relation sur E(T) est classique. Pour conclure, remarquer que pour $mN+1 \le j \le mN+N$, on a $P(T>j) \le P(T>mN+1)$ et découper la série en tranches de N indices consécutifs.

Exercice 4.11. Soit $(X_n, n \ge 0)$, une suite de variables réelles, indépendantes, centrées et de carrés intégrables : $\mathrm{E}[X_n] = 0$ et $\sigma_n^2 = \mathrm{E}[X_n^2] < \infty$. On pose $S_n = X_0 + \cdots + X_n$ et on définit la filtration $(\mathscr{F}_n)_{n \ge 0}$ par $\mathscr{F}_n = \sigma(X_0, \dots, X_n)$.

- 1. Montrer que $(S_n)_{n\geq 0}$ est une martingale relativement à la filtration $(\mathscr{F}_n)_{n\geq 0}$.
- 2. Montrer que $\tau = \inf\{n : |S_n| \ge x\}$ est un temps d'arrêt.
- 3. En utilisant τ , montrer l'inégalité de Kolmogorov :

$$\mathbf{P}\left(\max_{0 \le i \le n} |S_i| \ge x\right) \le x^{-2} \operatorname{Var}(S_n)$$

valable pour tout réel x > 0 et tout $n \in \mathbb{N}$.

Indications ou Correction: Pour 3), remarquer que $(\max_{0 \le i \le n} |S_i| \ge x) = (\tau \le n)$. Calculer alors $\mathbb{E}(S_n 1_{\tau \le n})$ en décomposant τ sur ses différentes valeurs entre 0 et n et utiliser le fait que $(\tau = k)$ est \mathcal{F}_k -mesurable.

Exercice 4.12. Soit $(X_n, n \ge 1)$ une suite i.i.d. telle que

$$\mathbf{P}(X_n = 1) = \mathbf{P}(X_n = -1) = \frac{1}{2}.$$

Montrer la convergence p.s. de la série

$$\sum_{n=1}^{\infty} \frac{X_n}{n}.$$

Indications ou Correction : Poser $S_k = \sum_{n=1}^k \frac{X_n}{n}$ et remarquer que $(S_k)_{k\geq 1}$ est une martingale. Calculer $E(S_k^2)$ et montrer que cette martingale est bornée dans L^2 .

Exercice 4.13. Soient les trois affirmations suivantes :

- (i) une surmartingale $(X_n)_{n\geq 0}$ ne peut pas tendre presque sûrement vers $+\infty$ car une telle surmartingale serait minorée et par conséquent convergerait vers une variable aléatoire finie.
- (ii) une surmartingale $(X_n)_{n\geq 0}$ ne peut pas tendre presque sûrement vers $+\infty$ car la suite $(\mathrm{E}(X_n))_{n\geq 0}$ est décroissante, et si $\varliminf_n X_n = \varliminf_n X_n = +\infty$ p.s on aurait par Fatou :

$$+\infty = \mathrm{E}[\underline{\lim}_{n} X_{n}] \le \underline{\lim}_{n} \mathrm{E}[X_{n}] \le \mathrm{E}[X_{0}] < +\infty.$$

(iii) Une surmartingale peut tendre presque sûrement vers $+\infty$. Y a-t-il une affirmation juste ?

Indications ou Correction: Seule la troisième affirmation est juste. Pour construire un exemple, remarquer que si $Z_n = \sum_{k=0}^n X_k$ où la suite $(X_k)_{k\geq 0}$ est composée de variables indépendantes, $(Z_n)_{n\geq 0}$ est une sur-martingale si $E(X_i) \leq 0$. Choisir alors chaque X_i prenant les deux valeurs 1 et $-i^2$ avec des probabilités ajustées pour que $E(X_i) \leq 0$ et que $\sum_{i=0}^{\infty} P(X_i = -i) < +\infty$. Appliquer alors Borel-Cantelli et conclure.

Exercice 4.14. Soit $(X_n)_{n\geq 0}$ une suite de v.a. à valeurs [0,1] et posons $\mathcal{F}_n = \sigma(X_0,\ldots,X_n)$. On suppose que $X_0=a\in[0,1]$ p.s. et que

$$P\left(X_{n+1} = \frac{X_n}{2} \mid \mathcal{F}_n\right) = 1 - X_n \qquad P\left(X_{n+1} = \frac{1 + X_n}{2} \mid \mathcal{F}_n\right) = X_n$$

- 1) Montrer que $(X_n)_{n\geq 0}$ est une martingale qui converge p.s. et dans L^2 vers une v.a. Z.
 - 2) Montrer que $E((X_{n+1} X_n)^2) = \frac{1}{4}E(X_n(1 X_n)).$
 - 3) Calculer E(Z(1-Z)). Quelle est la loi de Z?

Indications ou Correction: 1) On a $P(X_{n+1} = a/X_n = x)$ égal à (1-x) si a = x/2 et x si a = (1-x)/2 et donc $E(X_{n+1} \mid X_n) = X_n$. La martingale $(X_n)_{n\geq 0}$, étant positive, elle converge p.s. vers une v.a. Z. Comme elle est aussi bornée la convergence a lieu dans L^p pour tout p > 0.

2) Bien sûr on va utiliser la formule

$$E((X_{n+1} - X_n)^2) = E(E((X_{n+1} - X_n)^2 \mid \mathcal{F}_n))$$
(4.1)

Or

$$E((X_{n+1} - X_n)^2 \mid \mathcal{F}_n) = E(X_{n+1}^2 - 2X_{n+1}X_n + X_n^2 \mid \mathcal{F}_n)$$
(4.2)

On a

$$E(X_{n+1}^2 \mid \mathcal{F}_n) = \left(\frac{X_n}{2}\right)^2 (1 + 3X_n) + \left(\frac{1 + X_n}{2}\right)^2 X_n = \frac{X_n}{4} (1 + 3X_n)$$

On remplace dans (4.2), en se rappelant que $E(X_{n+1} \mid X_n) = X_n$:

$$E((X_{n+1} - X_n)^2 \mid \mathcal{F}_n) = \frac{X_n}{4}(1 + 3X_n) - 2X_n^2 + X_n^2 = \frac{1}{4}X_n(1 - X_n)$$

3) Comme $X_n \to_{n\to\infty} Z$ p.s. on a

$$(X_{n+1}-X_n)^2 \underset{n\to\infty}{\to} 0$$
 et $X_n(1-X_n) \underset{n\to\infty}{\to} Z(1-Z)$.

S'agissant de v.a. bornées la convergence a lieu aussi dans L^1 . Donc

$$E(X_n(1-X_n)) \underset{n\to\infty}{\to} E(Z(1-Z))$$
$$E((X_{n+1}-X_n)^2) \underset{n\to\infty}{\to} 0$$

Mais grâce à 2)

$$E((X_{n+1} - X_n)^2) = \frac{1}{4}E(X_n(1 - X_n))$$

d'où on déduit $\mathrm{E}(Z(1-Z))=0$. Il s'ensuit que Z ne peut prendre que les valeurs 1 et 0: elle est donc de Bernoulli. Il n'y a plus qu'à calculer $p=\mathrm{P}(Z=1)$. Mais

$$p = P(Z = 1) = E(Z) = \lim_{n \to \infty} E(X_n) = E(X_0) = a$$

Exercice 4.15. (Une preuve de la loi 0-1 de Kolmogorov par les martingales) Soit $(Y_n)_{n\geq 1}$ une suite de v.a. indépendantes. On définit

$$\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$$
 $\mathcal{F}_\infty = \sigma(\bigcup_n \mathcal{F}_n)$
 $\mathcal{F}^n = \sigma(Y_n, Y_{n+1}, \dots)$ $\mathcal{F}^\infty = \bigcap_n \mathcal{F}^n.$

- 1) Soit $A \in \mathcal{F}^{\infty}$. En utilisant la martingale $E^{\mathcal{F}_n}(1_A)$, montrer que P(A) = 0 ou 1.
- 2) Montrer que, si X est une v.a.r. \mathcal{F}^{∞} -mesurable, X=a p.s.

Indications ou Correction : 1) Comme $A \in \mathcal{F}^{\infty}$, alors $A \in \mathcal{F}^{n+1}$ pour tout n; donc A est indépendant de \mathcal{F}_n et $E^{\mathcal{F}_n}(1_A) = E(1_A) = P(A)$. Par ailleurs (Théorème ??), $E^{\mathcal{F}_n}(1_A) \to E^{\mathcal{F}_{\infty}}(1_A) = 1_A$ (puisque $\mathcal{F}^{\infty} \subset \mathcal{F}_{\infty}$!). Donc P(A) ne peut prendre que les valeurs 0 ou 1.

2) Soit $F(t) = P(X \le t)$ la fonction de répartition de X. On sait que F croît de 0 à 1 mais, grâce à 1), F(t) ne peut prendre que les valeurs 0 ou 1. Donc $F(t) = 1_{[a,+\infty[}$ et X = a p.s.

Exercice 4.16. Soit $(Z_n)_{n\geq 1}$ une suite de v.a. indépendantes telles que $P(Z_i=1)=P(Z_i=-1)=\frac{1}{2}$ pour $i=1,2,\ldots$ On pose $S_0=0$, $S_n=Z_1+\cdots+Z_n$, $\mathcal{F}_0=\{\Omega,\emptyset\}$ et $\mathcal{F}_n=\sigma(Z_1,\ldots,Z_n)$. Soient a un entier >0 et λ un réel tel que $0<\lambda<\pi/(2a)$. On définit $\tau=\inf\{n\geq 0,|S_n|=a\}$ (avec la convention $\tau=+\infty$ si l'ensemble est vide) le temps de sortie de]-a,a[.

- a) Montrer que $X_n = (\cos \lambda)^{-n} \cos(\lambda S_n)$ est une $(\mathcal{F}_n)_{n>0}$ -martingale.
- b) Montrer que

$$1 = E(X_{n \wedge \tau} \ge \cos(\lambda a) E((\cos \lambda)^{-n \wedge \tau})$$

- c) En déduire que $E((\cos \lambda)^{-\tau}) \le (\cos(\lambda a))^{-1}$.
- e) Montrer que la martingale $(X_{n \wedge \tau})_{n > 0}$ converge dans L^1 .
- f) Que vaut $E((\cos \lambda)^{-\tau})$? Est-ce que τ est intégrable? Est-ce que $\tau \in L^2$?

Indications ou Correction:

a) Comme Y_{n+1} est indépendante de \mathcal{F}_n , $\mathrm{E}(\sin(\lambda Y_{n+1})) = 0$ et $\mathrm{E}(\cos(\lambda Y_{n+1})) = \cos \lambda$, on a

$$E^{\mathcal{F}_n}(X_{n+1} \mid \mathcal{F}_n) = (\cos \lambda)^{-(n+1)} E(\cos(\lambda(S_n + Z_n)) =$$

$$= (\cos \lambda)^{-(n+1)} E^{\mathcal{F}_n}(\cos(\lambda S_n) \cos(\lambda Y_{n+1}) - \sin(\lambda S_n) \sin(\lambda Y_{n+1})) =$$

$$= (\cos \lambda)^{-(n+1)} \cos(\lambda S_n) \cos(\lambda Y_{n+1}) = (\cos \lambda)^{-n} \cos(\lambda S_n) = X_n$$

b) $n \wedge \tau$ étant un temps d'arrêt borné on a $E(X_{n \wedge \tau}) = E(X_0) = 1$. Par ailleurs

$$E(X_{n\wedge\tau}) = E((\cos\lambda)^{-n\wedge\tau}\cos(\lambda S_{n\wedge\tau})) \ge \cos(\lambda a)E((\cos\lambda)^{-n\wedge\tau}), \tag{4.3}$$

 $\operatorname{car} |S_{n \wedge \tau}| \leq a \text{ et } \lambda S_{n \wedge \tau} \in [-\lambda a, \lambda a] \subset [-\pi/2, \pi/2].$

c) Si $n \to \infty$, alors $(\cos \lambda)^{-n \wedge \tau} \nearrow (\cos \lambda)^{-\tau}$, et par le théorème de convergence monotone on peut passer à la limite dans l'inégalité prouvée dans b); on obtient donc que la v.a. $(\cos \lambda)^{-\tau}$ est intégrable. Ceci étant vrai pour des valeurs de λ pour lesquelles $\cos \lambda < 1$, on a $P(\tau = +\infty) = 0$. On peut donc passer à la limite:

$$X_{n \wedge \tau} = (\cos \lambda)^{-n \wedge \tau} \cos(\lambda S_{n \wedge \tau}) \to (\cos \lambda)^{-\tau} \cos(\lambda a) = X_{\tau}$$
 (4.4)

Comme de plus

$$|X_{n \wedge \tau}| = |\cos \lambda|^{-n \wedge \tau} \cos(\lambda S_{n \wedge \tau})| \le (\cos \lambda)^{-\tau}$$

on peut appliquer le théorème de Lebesgue:

$$E(|X_{n\wedge\tau}-X_{\tau}|)\underset{n\to\infty}{\longrightarrow} 0$$

D'où la convergence dans L^1 .

d) On a, par passage à la limite sous l'espérance,

$$1 = E(X_{\tau}) = \cos(\lambda a)E((\cos \lambda)^{-\tau})$$

et donc $E((\cos \lambda)^{-\tau}) = (\cos \lambda a)^{-1}$. Si $0 < \lambda < \pi/(2a)$, alors $\rho = (\cos \lambda)^{-1} > 1$ On vient de démontrer que pour un tel nombre ρ on a

$$\sum_{k=1}^{\infty} \rho^k P\{\tau = k\} < +\infty$$

Comme pour k grand on a $\rho^k > k$, ceci entraine que la série $\sum_{k=1}^{\infty} k P\{\tau = k\}$ est

sommable, et donc τ est intégrable. On a également $\rho^k > k^p$ pour k grand et p arbitraire fixé. Donc $\tau \in L^p$ pour tout p > 0. Alternativement on aurait pu remarquer que si on pose $\eta = \log \rho > 0$, alors

$$E(e^{\eta \tau}) = \sum_{k=1}^{\infty} e^{\eta k} P\{\tau = k\} < +\infty$$

et donc τ a une transformée de Laplace qui est finie dans un voisinage de l'origine, ce qui entraine que tous ses moments sont finis.

Exercice 4.17. Soit $(S_n)_{n\geq 0}$ une marche aléatoire simple sur \mathbf{Z} : $S_0=0$, $S_n=U_1+\cdots+U_n$, où les v.a. U_i sont indépendantes et de même loi et telles que $P\{U_i=1\}=p, P\{U_i=-1\}=1-p:=q$.

- a) Soit $Z_n = (\frac{q}{p})^{S_n}$. Montrer que $(Z_n)_{n \ge 0}$ est une martingale positive.
- b) Déduire d'une inégalité maximale appliquée à la martingale $(Z_n)_{n\geq 0}$ que

$$P\left\{\sup_{n\geq 0} S_n \geq k\right\} \leq \left(\frac{p}{q}\right)^k$$

et que, lorsque q > p,

$$E\Big(\sup_{n\geq 0} S_n\Big) \leq \frac{p}{q-p}$$

Indications ou Correction:

a) Notons que $Z_{n+1} = Z_n(\frac{q}{p})^{U_{n+1}}$. Comme U_{n+1} et \mathcal{F}_n sont indépendantes et Z_n est \mathcal{F}_n mesurable, on a

$$E(Z_{n+1} \mid \mathcal{F}_n) = Z_n E((\frac{q}{p})^{U_{n+1}})$$

$$= Z_n[\frac{q}{p}P(U_{n+1} = 1) + \frac{p}{q}P(U_{n+1} = -1)] = Z_n[\frac{q}{p}.p + \frac{p}{q}.q] = Z_n$$

 $(Z_n)_{n>0}$ est donc une martingale évidemment positive.

b) Notons d'abord que l'inégalité est triviale (et sans intérêt) si p > q. Supposons donc p < q. L'inégalité maximale pour la martingale positive $(Z_n)_{n \ge 0}$ s'écrit, pour $\alpha > 0$,

$$P\left(\sup_{0 \le n \le N} Z_n \ge \alpha\right) \le \frac{1}{\alpha} E(Z_0) = \frac{1}{\alpha}$$

soit encore

$$P\left(\sup_{0 \le n \le N} \left(\frac{q}{p}\right)^{S_n} \ge \alpha\right) \le \frac{1}{\alpha} \tag{4.5}$$

Notons que, puisque $\frac{q}{p} > 1$,

$$\sup_{0 \le n \le N} \left(\frac{q}{p}\right)^{S_n} = \left(\frac{q}{p}\right)^{\sup_{0 \le n \le N} S_n}$$

et donc (4.8) s'eécrit

$$P\left(\left(\frac{q}{p}\right)^{\sup_{0 \le n \le N} S_n} \ge \alpha\right) \le \frac{1}{\alpha}$$

soit

$$P\left(\sup_{0 \le n \le N} S_n \ge \frac{\ln \alpha}{\ln(\frac{q}{n})}\right) \le \frac{1}{\alpha}$$
(4.6)

En choisissant $\alpha = (\frac{q}{p})^k$, pour $k \in \mathbb{N}$, (4.9) devient

$$P\left(\sup_{0 < n < N} S_n \ge k\right) \le \left(\frac{q}{p}\right)^k \tag{4.7}$$

Comme $1_{\{\sup_{0 \le n \le N} S_n \ge k\}} \to 1_{\{\sup_{n \ge 0} S_n \ge k\}}$ quand $N \to +\infty$, et que cette suite positive est uniformément majorée par 1, le théorème de convergence dominée permet de passer à la limite dans (4.10) et d'obtenir $P(\sup_{n \ge 0} S_n \ge k) \le {p \choose q}^k$.

On sait de plus que pour une variable $X \ge 0$, on a

$$E(X) \le \sum_{k>0} P(X \ge k+1).$$

Par conséquent,

$$\mathbb{E}\left(\sup_{n\geq 0} S_n\right) \leq \sum_{k\geq 0} \mathbb{P}\left(\sup_{n\geq 0} S_n \geq k+1\right) \leq \sum_{k\geq 0} \left(\frac{p}{q}\right)^{k+1} = \frac{\frac{p}{q}}{1-\frac{p}{q}} = \frac{p}{q-p}$$

Exercice 4.18. Soit $(Y_n, n \ge 0)$ une suite de variables aléatoires réelles positives définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$ indépendantes et de même espérance 1. On pose, pour $n \ge 0$, $\mathcal{F}_n = \sigma(Y_0, \cdots, Y_n)$ et $X_n = Y_0 \cdots Y_n$.

- 1. Montrer que X_n , resp. $\sqrt{X_n}$, est une (\mathscr{F}_n) -martingale, resp. surmartingale. Montrer que le produit infini $\prod_{k=0}^{\infty} \mathrm{E}(\sqrt{Y_k})$ converge dans \mathbf{R}_+ . On note ℓ sa limite.
- 2. On suppose que $\ell=0$. Montrer que $\sqrt{X_n}\to 0$ p.s. Montrer que (X_n) converge dans L^1 .

3. On suppose $\ell > 0$. Montrer que $\sqrt{X_n}$ est une suite de Cauchy dans L^2 . En déduire que (X_n) (X_n) converge dans L^1 .

4. Application

Soient p et q deux probabilités distinctes sur un ensemble dénombrable E et (Z_n) une suite de variables aléatoires indépendantes à valeurs dans E et de même loi q.

On suppose que, pour tout $x \in E$, q(x) > 0 (notations : $p(x) := p(\{x\})$ et $q(x) := q(\{x\}), x \in E$). On pose

$$X_n = \frac{p(Z_0)}{q(Z_0)} \cdots \frac{p(Z_n)}{q(Z_n)}.$$

À partir de ce qui précède, montrer que $X_n \to 0$ p.s.

Indications ou Correction:

1) On a, puisque Y_{n+1} est indépendante de \mathcal{F}_n et $E(Y_{n+1}) = 1$,

$$E(X_{n+1} | \mathcal{F}_n) = E(Y_1 \dots Y_{n+1} | \mathcal{F}_n) = Y_1 \dots Y_n E(Y_{n+1} | \mathcal{F}_n) = X_n.$$

 $(X_n)_{n\geq 0}$ est donc une martingale; $(\sqrt{X_n})_{n\geq 0}$ est une surmartingale puisque la fonction $x\to \sqrt{x}$ est concave.

2) On a

$$E(\sqrt{X_n}) = \prod_{k=1}^n E(\sqrt{Y_n}) \underset{n \to \infty}{\to} 0$$

Mais la surmartingale positive $(\sqrt{X_n})_{n\geq 0}$ converge p.s. vers une v.a. $Z\geq 0$. Par le Lemme de Fatou

$$E(Z) = E\left(\lim_{n \to \infty} \sqrt{X_n}\right) \le \lim_{n \to \infty} E(\sqrt{X_n}) = 0.$$

Donc Z=0 et $X_n \to_{n\to\infty} 0$ p.s. Si $(X_n)_{n\geq 0}$ était régulière la convergence aurait lieu aussi dans L^1 et donc on devrait avoir $\mathrm{E}(X_n) \to_{n\to\infty} 0$, en contradiction avec le fait que $\mathrm{E}(X_n)=1$ pour tout n.

3) De l'hypothèse $\prod_{k=1}^{\infty} \mathrm{E}(\sqrt{Y_k}) > 0$ on tire facilement que pour tout $\varepsilon > 0$ il existe m_0 tel que $1 - \varepsilon \leq \prod_{k=m_0}^{\infty} \mathrm{E}(\sqrt{Y_k}) \leq 1$ (rappelons que $\mathrm{E}(\sqrt{Y_k}) \leq 1$). Aussi, si $n \geq m$

on a
$$\sqrt{X_n X_m} = Y_1 \dots Y_m \sqrt{Y_{m+1} \dots Y_n}$$
, d'où

$$E(\sqrt{X_n X_m}) = E(\sqrt{Y_{m+1}}) \dots E(\sqrt{Y_n})$$

Donc

$$E[(\sqrt{X_n} - \sqrt{X_m})^2] = E(X_n + X_m - 2\sqrt{X_n X_m}) =$$

$$= 2 - 2E(Y_1 \dots Y_m \sqrt{Y_{m+1} \dots Y_n}) = 2\left(1 - \prod_{k=m+1}^n E(\sqrt{Y_k})\right) \xrightarrow[n,m\to\infty]{} 0$$

et la suite $(\sqrt{X_n})_{n\geq 0}$ est de Cauchy dans L^2 . Elle est donc convergente dans L^2 . Étudions la convergence L^1 de $(X_n)_{n\geq 0}$:

$$||X_n - X_m||_1 = \mathrm{E}(|X_n - X_m|) = \mathrm{E}(|\sqrt{X_n} - \sqrt{X_m}|(\sqrt{X_n} + \sqrt{X_m})) \le$$

$$\le ||\sqrt{X_n} - \sqrt{X_m}||_2 ||\sqrt{X_n} + \sqrt{X_m}||_2.$$

Donc la suite $(X_n)_{n\geq 0}$ est de Cauchy dans L^1 , ce qui implique que c'est une martingale régulière.

Exercice 4.19. Soient Y_1, Y_2, \cdots des variables aléatoires i.i.d. telles que

$$P(Y_1 = -1) = q$$
, $P(Y_1 = 1) = p$, avec $p + q = 1$, $0 .$

On pose
$$X_0 = 0$$
, $Z_0 = 1$, et pour $n \ge 1$, $X_n = Y_1 + \dots + Y_n$, $Z_n = \left(\frac{q}{p}\right)^{X_n}$.

- 1. Montrer que (Z_n) est une martingale positive. Montrer que $Z_n \to 0$ p.s.
- 2. On pose, pour $k \in \mathbb{N}^*$, $T_k = \inf\{n \geq 0 ; X_n \geq k\}$. En considérant la martingale $(Z_{T_k \wedge n})$ et la décomposition

$$Z_{T_k \wedge n} = Z_{T_k \wedge n} 1\{T_k < \infty\} + Z_{T_k \wedge n} 1\{T_k = \infty\},$$

montrer que

$$\mathbf{P}(T_k < \infty) = \left(\frac{p}{q}\right)^k.$$

3. En déduire que $\sup_{n\geq 0} X_n$ suit une loi géométrique de paramètre 1-p/q, et ainsi que

$$E(\sup_{n\geq 0} X_n) = \frac{p}{q-p}.$$

Indications ou Correction : a) Notons que $Z_{n+1} = Z_n(\frac{q}{p})^{U_{n+1}}$. Comme U_{n+1} et \mathcal{F}_n sont indépendantes et Z_n est \mathcal{F}_n mesurable, on a

$$E(Z_{n+1} \mid \mathcal{F}_n) = Z_n E((\frac{q}{p})^{U_{n+1}})$$

$$= Z_n[\frac{q}{p}P(U_{n+1} = 1) + \frac{p}{q}P(U_{n+1} = -1)] = Z_n[\frac{q}{p}.p + \frac{p}{q}.q] = Z_n$$

 $(Z_n)_{n>0}$ est donc une martingale évidemment positive.

b) Notons d'abord que l'inégalité est triviale (et sans intérêt) si p > q. Supposons donc p < q. L'inégalité maximale pour la martingale positive $(Z_n)_{n\geq 0}$ s'écrit, pour $\alpha > 0$,

$$P\left(\sup_{0 < n < N} Z_n \ge \alpha\right) \le \frac{1}{\alpha} E(Z_0) = \frac{1}{\alpha}$$

soit encore

$$P\left(\sup_{0 \le n \le N} \left(\frac{q}{p}\right)^{S_n} \ge \alpha\right) \le \frac{1}{\alpha} \tag{4.8}$$

Notons que, puisque $\frac{q}{n} > 1$,

$$\sup_{0 < n < N} \left(\frac{q}{p}\right)^{S_n} = \left(\frac{q}{p}\right)^{\sup_{0 \le n \le N} S_n}$$

et donc (4.8) s'eécrit

$$P\left(\left(\frac{q}{p}\right)^{\sup_{0 \le n \le N} S_n} \ge \alpha\right) \le \frac{1}{\alpha}$$

soit

$$P\left(\sup_{0 \le n \le N} S_n \ge \frac{\ln \alpha}{\ln(\frac{q}{p})}\right) \le \frac{1}{\alpha}$$
(4.9)

En choisissant $\alpha = (\frac{q}{p})^k$, pour $k \in \mathbb{N}$, (4.9) devient

$$P\left(\sup_{0 \le n \le N} S_n \ge k\right) \le \left(\frac{q}{p}\right)^k \tag{4.10}$$

Comme $1_{\{\sup_{0 \le n \le N} S_n \ge k\}} \to 1_{\{\sup_{n \ge 0} S_n \ge k\}}$ quand $N \to +\infty$, et que cette suite positive est uniformément majorée par 1, le théorème de convergence dominée permet de passer à la limite dans (4.10) et d'obtenir $P(\sup_{n \ge 0} S_n \ge k) \le (\frac{p}{q})^k$.

On sait de plus que pour une variable $X \geq 0$, on a

$$E(X) \le \sum_{k \ge 0} P(X \ge k + 1).$$

Par conséquent,

$$E\left(\sup_{n\geq 0} S_n\right) \leq \sum_{k\geq 0} P\left(\sup_{n\geq 0} S_n \geq k+1\right) \leq \sum_{k\geq 0} \left(\frac{p}{q}\right)^{k+1} = \frac{\frac{p}{q}}{1-\frac{p}{q}} = \frac{p}{q-p}$$

Exercice 4.20. Soit $(\Omega, (\mathcal{F}_n)_{n\geq 0}, P)$ un espace de probabilité filtré et ν une mesure finie sur $\mathcal{F} = \mathcal{F}_{\infty}$. On suppose que, pour tout $n\geq 0$, P domine ν sur \mathcal{F}_n et on note X_n la densité de Radon-Nikodym: X_n est donc \mathcal{F}_n -mesurable et

$$\nu(A) = \int_{A} X_n d\mathbf{P}$$

pour tout $A \in \mathcal{F}_n$ (en particulier $X_n \geq 0$).

- a) Montrer que $(X_n)_{n\geq 0}$ est une martingale intégrable.
- b) Montrer que $(X_n)_{n>0}$ converge vers une variable intégrable X.
- c) Montrer que si P domine ν sur \mathcal{F}_{∞} , X est la densité de Radon-Nikodym correspondante.
- d) On suppose que les deux mesures ν , P sont étrangères sur \mathcal{F}_{∞} : il existe donc $S \in \mathcal{F}_{\infty}$ tel que P(S) = 1 et $\nu(S) = 0$. Montrer qu'alors X = 0, p.s.

Indications ou Correction:

a) Puisque $\Omega \in \mathcal{F}_n$

$$\nu(\Omega) = \int_{\Omega} X_n d\mathbf{P} = \mathbf{E}(X_n)$$

et $\nu(\Omega)$ étant fini par hypothèse, X_n , qui est ≥ 0 , est intégrable par rapport à P.

Par ailleurs, soient n < p et $A \in \mathcal{F}_n$: on a donc $\nu(A) = \mathrm{E}(X_n 1_A)$. De plus, puisque 1_A est aussi une variable \mathcal{F}_p -mesurable, $\mathrm{E}(X_p 1_A) = \nu(A)$ d'où l'on tire $\mathrm{E}(X_p 1_A) = \mathrm{E}(X_n 1_A)$, pour tout $A \in \mathcal{F}_n$ soit encore $X_n = \mathrm{E}(X_p \mid \mathcal{F}_n)$. $(X_n)_{n \geq 0}$ est bien une martingale intégrable.

b) $(X_n)_{n\geq 0}$ étant une martingale positive elle converge p.s. vers une variable aléatoire ≥ 0 , X. Notons que X est intégrable car, d'après le lemme de Fatou,

$$E(X) = E\left(\lim_{n\to\infty} X_n\right) \le \underline{\lim}_{n\to\infty} E(X_n) = \nu(\Omega) < \infty$$

c) Supposons que P domine ν sur \mathcal{F}_{∞} . Ceci implique par le Théorème de Radon-Nikodym qu'il existe une variable aléatoire Y, \mathcal{F}_{∞} -mesurable, telle que

$$\nu(A) = \mathcal{E}(Y1_A)$$
 pour tout $A \in \mathcal{F}_{\infty}$ (4.11)

Si $A \in \mathcal{F}_n \subset \mathcal{F}_\infty$ on a donc

$$E(X_n 1_A) = E(Y 1_A) \tag{4.12}$$

Ceci signifie que $X_n = \mathrm{E}(Y \mid \mathcal{F}_n)$. On a alors $X_n = \mathrm{E}(Y \mid \mathcal{F}_n) \to_{p.s.} \mathrm{E}(Y \mid \mathcal{F}_\infty) = Y$; donc X = Y P-p.s.

d) Posons $Y_n = \mathrm{E}(1_S \mid \mathcal{F}_n)$. $(Y_n)_{n \geq 0}$ est une martingale positive et bornée $(Y_n \leq 1)$ qui converge p.s. vers 1_S , puisque $S \in \mathcal{F}_{\infty}$ (on applique toujours le théorème ??). On a alors

$$0 = \nu(S) = \int 1_S d\nu = \lim_{n \to \infty} \int Y_n d\nu = \lim_{n \to \infty} E(Y_n X_n) =$$
$$= \lim_{n \to \infty} E(X_n E(1_S \mid \mathcal{F}_n)) = \lim_{n \to \infty} E(1_S X) = E(1_S X) = E(X)$$

où la dernière égalité vient du fait que $1_S = 1$ P-p.s.; X étant une variable positive de moyenne nulle par rapport à P on déduit que X = 0 P-p.s.

Exercice 4.21. (Identité de Wald) Soit $(Y_n)_{n\geq 1}$ une suite de v.a.r. indépendantes, intégrables, de même loi. On pose $m=\mathrm{E}(Y_1),\, S_0=0,\, \mathcal{F}_0=\{\Omega,\emptyset\}$ et, pour $n\geq 1,\, S_n=Y_1+\cdots+Y_n,\, \mathcal{F}_n=\sigma(Y_1,\ldots,Y_n)$. Soit τ un temps d'arrêt intégrable.

- 1) On pose $X_n = S_n nm$. Montrer que $(X_n)_{n \ge 0}$ est une martingale.
- 2) Montrer que, pour tout n, $E(S_{n \wedge \tau}) = mE(n \wedge \tau)$.
- 3) Montrer que $E(S_{\tau})$ est intégrable et que $E(S_{\tau}) = E(\tau)$. (considérer d'abord le cas $Y_n \geq 0$).
- 4) Supposons $P(Y_n = -1) = P(Y_n = 1) = \frac{1}{2}$, pour tout n et $\tau = \inf\{n; S_n \ge a\}$, où a est un entier ≥ 1 . Montrer que τ n'est pas intégrable.

Indications ou Correction:

- 1) Puisque Y_{n+1} est indépendante de \mathcal{F}_n , $E^{\mathcal{F}_n}(Y_{n+1}) = E(Y_{n+1}) = m$ p.s. On a alors $E^{\mathcal{F}_n}(X_{n+1} X_n) = E^{\mathcal{F}_n}(Y_{n+1}) m = 0$ p.s.
- 2) $(X_{n\wedge\nu})_{n\geq 1}$ étant une martingale grâce à A1), on a $\mathrm{E}(X_{n\wedge\nu})=\mathrm{E}(X_0)$, c'est-à-dire $\mathrm{E}(S_{n\wedge\nu})=m\mathrm{E}(n\wedge\nu)$.
- 3) Supposons les $Y_n \geq 0$. Alors la suite $(S_n)_{n\geq 0}$, et donc aussi $(S_{n\wedge \nu})_{n\geq 0}$, est positive et croissante, d'où $\mathrm{E}(S_{n\wedge \nu})\uparrow\mathrm{E}(S_{\nu})$ et, pour les mêmes raisons $\mathrm{E}(n\wedge \nu)\uparrow\mathrm{E}(\nu)$. Ce qui implique que $\mathrm{E}(S_{\nu})=m\mathrm{E}(\nu)<+\infty$. Pour traiter le cas général, il suffit de poser

$$Y_n^{(1)} = Y_n^+, \quad S_n^{(1)} = Y_1^{(1)} + \dots + Y_n^{(1)}$$

 $Y_n^{(2)} = Y_n^+, \quad S_n^{(2)} = Y_1^{(2)} + \dots + Y_n^{(2)}$

 $Si\ m_1=\mathrm{E}(Y_n^{(1)}), m_2=\mathrm{E}(Y_n^{(1)})$ (donc $m=m_1-m_2$) alors on vient de voir que

$$E(S_{\nu}^{(1)}) = m_1 E(\nu), \qquad E(S_{\nu}^{(2)}) = m_2 E(\nu)$$

et donc par soustraction, toutes les quantités apparaissant dans l'expression étant finies,

$$E(S_{\nu}) = E(S_{\nu}^{(1)}) - E(S_{\nu}^{(2)}) = (m_1 - m_2)E(\nu) = mE(\nu)$$

4) Comme le processus $(S_n)_{n\geq 1}$ peut se déplacer sur \mathbb{Z} d'un pas vers la gauche ou la droite seulement, il est clair que $S_{\tau}=a$ p.s. On aurait donc $\mathrm{E}(S_{\tau})=a$, alors que, si τ était intégrable d'après 3) on devrait avoir

$$E(S_{\tau}) = E(\tau)E(Y_1) = 0.$$

Exercice 4.22. Soit $(X_n)_{n\geq 0}$ une martingale intégrable et soit ν un temps d'arrêt vérifiant

$$P(\nu < +\infty) = 1, \quad E(|X_{\nu}|) < +\infty \quad \int_{\{\nu > n\}} |X_n| \, dP \underset{n \to \infty}{\longrightarrow} 0$$

1) Montrer que

$$\int_{\{\nu > n\}} |X_{\nu}| \, d\mathbf{P} \underset{n \to \infty}{\longrightarrow} 0$$

- 2) Montrer que $\mathrm{E}(|X_{\nu\wedge n}-X_{\nu}|) \to 0$.
- 3) En déduire que $E(X_{\nu}) = E(X_0)$.

Indications ou Correction:

1) Puisque $\nu < +\infty$ on a $|X_{\nu}| 1_{\{\nu > n\}} \to 0$ p.s. pour $n \to \infty$; comme la v.a. $|X_{\nu}|$ est supposée intégrable et clairement $|X_{\nu}|1_{\{\nu>n\}} \leq |X_{\nu}|$, on peut appliquer le théorème de Lebesgue, lequel donne $E(|X_{\nu}|1_{\{\nu>n\}}) \to 0$.

$$E(|X_{\nu \wedge n} - X_{\nu}|) = E(|X_n - X_{\nu}|1_{\{\nu > n\}}) \le E(|X_n|1_{\{\nu > n\}}) + E(|X_{\nu}|1_{\{\nu > n\}})$$

et le terme de droite tend à 0 pour $n \to \infty$ grace aux hypothèses et à 1).

3) Comme $\nu \wedge n$ est un temps d'arrêt borné, par le théorème d'arrêt on sait que $E(X_{\nu \wedge n}) = E(X_0)$. Donc

$$|E(X_{\nu}) - E(X_0)| = |E(X_{\nu}) - E(X_{\nu \wedge n})| \le E(|X_{\nu}) - E(X_{\nu \wedge n}|)$$

et ce dernier terme tend vers 0 pour $n \to \infty$ grâce à 2).

Exercice 4.23. Soit $(X_n)_{n\geq 0}$ une surmartingale intégrable. On suppose qu'il existe une constante M telle que, pour tout $n \ge 1$,

$$E(|X_n - X_{n-1}|/\mathcal{F}_{n-1}) \le M$$
 p.s.

1) Montrer que, si $(V_n)_{n\geq 1}$ est un processus positif tel que V_n soit \mathcal{F}_{n-1} -mesurable, on a

$$E\left(\sum_{n=1}^{\infty} V_n | X_n - X_{n-1}|\right) \le ME\left(\sum_{n=1}^{\infty} V_n\right)$$

- 2) Soit ν un temps d'arrêt *intégrable* (pas nécessairement borné).
- 2a) Montrer que $E(\nu) = \sum_{n \ge 1} P\{\nu \ge n\}$.

2b) Déduire de 1) que
$$E(\sum_{n>1}^{n-1} 1_{\{\nu \ge n\}} |X_n - X_{n-1}|) < +\infty.$$

- 2c) Que vaut $\sum_{n\geq 1} 1_{\{\nu\geq n\}} (X_n X_{n-1})$? En déduire que X_{ν} est intégrable.
- 3) Montrer que $(X_{\nu \wedge p})_{p>0}$ tend vers X_{ν} dans L^1 lorsque $p \to +\infty$ 4)
- 4a) Montrer que si $A \in \mathcal{F}_{\nu_1}$, alors $A \cap \{\nu_1 \leq k\} \in \mathcal{F}_{\nu_1 \wedge k}$.
- 4b) En déduire que , si $\nu_1 \leq \nu_2$ sont deux temps d'arrêt avec ν_2 intégrable, on a

$$E(X_{\nu_2} \mid \mathcal{F}_{\nu_1}) \le X_{\nu_1}$$

Indications ou Correction:

1) On a

$$E\left(\sum_{n=1}^{\infty} V_n | X_n - X_{n-1} |\right) = \sum_{n=1}^{\infty} E(V_n E^{\mathcal{F}_{n-1}}(|X_n - X_{n-1}|)) \le$$

$$\le ME\left(\sum_{n=1}^{\infty} V_n\right)$$

2a) Comme $\{\nu \geq n\} = \{\nu \leq n-1\}^C \in \mathcal{F}_{n-1}$, on peut appliquer 1) à $V_n = 1_{\{\nu \geq n\}}$, ce qui donne

$$\mathbb{E}\left(\sum_{n=1}^{\infty} 1_{\{\nu \ge n\}} | X_n - X_{n-1}| \right) \le M \mathbb{E}\left(\sum_{n=1}^{\infty} 1_{\{\nu \ge n\}}\right) = M \mathbb{E}(\nu)$$

2b) Si $\nu(\omega) = p$ on a

$$\sum_{n=1}^{\infty} 1_{\{\nu \ge n\}} (X_n - X_{n-1}) = \sum_{n=1}^{p} (X_n - X_{n-1}) = X_p - X_0.$$

Donc

$$\sum_{n=1}^{\infty} 1_{\{\nu \ge n\}} (X_n - X_{n-1}) = X_{\nu} - X_0.$$

3) On peut écrire

$$X_{\nu} - X_{\nu \wedge p} = \sum_{n=1}^{\infty} V_n (X_n - X_{n-1})$$

avec $V_n = 1_{\{\nu \geq n\}} - 1_{\{\nu \wedge p \geq n\}} = 1_{\{\nu \wedge p < n \leq \nu\}}$. On vérifie immédiatement que V_n est \mathcal{F}_{n-1} -mesurable et donc, d'après 1) (ici M=1),

$$\mathrm{E}(|X_{\nu} - X_{\nu \wedge p}|) \le \mathrm{E}\left(\sum_{n=1}^{\infty} V_n\right) = \mathrm{E}(\nu - \nu \wedge p) \underset{n \to \infty}{\to} = 0$$

(par le théorème de convergence dominèe).

4) Si $n \ge p$ le théorème d'arret donne

$$E^{\mathcal{F}_{\nu_1 \wedge p}}(X_{\nu_2 \wedge n}) \le X_{\nu_1 \wedge p}$$

Il s'agit maintenant de passer à la limite en n et p. Comme $X_{\nu_2 \wedge n} \to_{n \to \infty} X_{\nu_2}$ dans L^1 , on sait que ceci entraine

$$\mathrm{E}^{\mathcal{F}_{\nu_1 \wedge p}}(X_{\nu_2 \wedge n}) \underset{n \to \infty}{\longrightarrow} \mathrm{E}^{\mathcal{F}_{\nu_1 \wedge p}}(X_{\nu_2})$$
 dans L^1

On doit maintenant passer à la limite en p dans la relation

$$E^{\mathcal{F}_{\nu_1 \wedge p}}(X_{\nu_2}) \le X_{\nu_1 \wedge p}$$

Il est clair que $X_{\nu_1 \wedge p} \rightarrow_{n \rightarrow \infty} X_{\nu_1}$ p.s.; il reste à prouver que

$$\mathrm{E}^{\mathcal{F}_{\nu_1 \wedge p}}(X_{\nu_2}) \underset{n \to \infty}{\longrightarrow} \mathrm{E}^{\mathcal{F}_{\nu_1}}(X_{\nu_2}),$$

ce qui est assez intuitif, mais qui demande un peu d'attention sur le plan formel. On peut remarquer que $(E^{\mathcal{F}_{\nu_1 \wedge p}}(X_{\nu_2}))_{n \geq 0}$ est une martingale par rapport à la filtration $(\mathcal{G}_n)_{n \geq 0}$, où $\mathcal{G}_n = \mathcal{F}_{\nu_1 \wedge n}$. Elle converge donc p.s. et dans L^1 vers $E^{\mathcal{G}_{\infty}}(X_{\nu_2})$, où

$$\mathcal{G}_{\infty} = \sigma \Big(\bigcup_{n=0}^{\infty} \mathcal{F}_{n \wedge n} \Big)$$

Il nous reste donc à prouver que $\mathcal{G}_{\infty} = \mathcal{F}_{\nu_1}$. L'inclusion $\mathcal{G}_{\infty} \subset \mathcal{F}_{\nu_2}$ est évidente. Inversement soit $A \in \mathcal{F}_{\nu_1}$. Alors par définition $A \cap \{\nu_1 \leq p\}$. Mais on a même $A \cap \{\nu_1 \leq p\} \in \mathcal{F}_{\nu_1 \wedge n}$ car

$$A \cap \{\nu_1 \le p\} \cap \{\nu_1 \land p \le p\} = A \cap \{\nu_1 \le p\} \in \mathcal{F}_{\nu_1 \land n}$$

Mais p.s. on a $1_A = \lim_{p \to \infty} \uparrow 1_{A \cap \{\nu_1 \le p\}}$, et A est donc bien \mathcal{G}_{∞} -mesurable, 1_A étant la limite croissante d'une suite de v.a. \mathcal{G}_{∞} -mesurables.

Exercice 4.24. À l'instant 1, une urne contient une boule blanche et une boule rouge. On tire une boule et on la remplace par deux boules de la même couleur que celle tirée, ce qui donne la nouvelle composition de l'urne à l'instant 2, et ainsi de suite suivant le même procédé.

On note Y_n et $X_n = \frac{Y_n}{n+1}$ le nombre et la proportion de boules blanches dans l'urne à l'instant n. On pose $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$.

- 1) Montrer que $(X_n)_{n\geq 1}$ est une martingale qui converge p.s. vers une v.a. U et que l'on a, pour tout $k\geq 1$, $\lim_{n\to\infty} \mathrm{E}(X_n^k)=\mathrm{E}(U^k)$.
 - 2) On fixe $k \ge 1$. On pose, pour $n \ge 1$,

$$Z_n = \frac{Y_n(Y_n+1)...(Y_n+k-1)}{(n+1)(n+2)...(n+k)}$$

Montrer que $(Z_n)_{n\geq 1}$ est une martingale. Quelle est sa limite? En déduire la valeur de $\mathrm{E}(U^k)$.

3) Soit X une v.a. réelle à valeurs dans un intervalle borné p.s. Montrer que sa fonction caractéristique se développe en série de puissances

$$\varphi(t) = \sum_{k=0}^{\infty} \frac{\varphi^{(k)}(0)}{k!} t^k \tag{4.13}$$

pour tout $t \in \mathbf{R}$.

4) Quelle est la loi de U?

Indications ou Correction:

1) On a $P(Y_{n+1}=Y_n+1\mid \mathcal{F}_n)=X_n$ et $P(Y_{n+1}=Y_n\mid \mathcal{F}_n)=1-X_n$, d'où,

$$E(Y_{n+1} \mid \mathcal{F}_n) = (Y_n + 1)X_n + Y_n(1 - X_n) = X_n + Y_n = (n+2)X_n$$

et donc on a p.s.

$$E(X_{n+1} \mid \mathcal{F}_n) = \frac{1}{n+2} E(Y_{n+1} \mid \mathcal{F}_n) = X_n.$$

 $(X_n)_{n\geq 1}$ étant une martingale bornée (et d'ailleurs aussi positive!), elle converge p.s. vers une v.a. U mais, comme $0\leq X_n\leq 1$, on peut pour tout k, appliquer le théorème de convergence dominée et obtenir $\lim_{n\to\infty} \mathrm{E}(X_n^k) = \mathrm{E}(U^k)$.

2) On a p.s.

$$E(Z_{n+1} | \mathcal{F}_n) = E(Z_{n+1} 1_{\{Y_{n+1} = Y_n\}} | \mathcal{F}_n) + E(Z_{n+1} 1_{\{Y_{n+1} = Y_n + 1\}} | \mathcal{F}_n) =$$

$$= \frac{n+1-Y_n}{n+1} \frac{Y_n(Y_n+1)\dots(Y_n+k-1)}{(n+2)(n+3)\dots(n+k+1)} +$$

$$+ \frac{Y_n}{n+1} \frac{(Y_n+1)(Y_n+2)\dots(Y_n+k-1)}{(n+2)(n+3)\dots(n+k+1)} =$$

$$= \frac{(Y_n+1)\dots(Y_n+k-1)[Y_n(n+1-Y_n)+(Y_n+k)Y_n]}{(n+2)(n+3)\dots(n+k+1)} =$$

$$= \frac{Y_n(Y_n+1)\dots(Y_n+k-1)}{(n+1)(n+3)\dots(n+k)} = Z_n.$$

Comme $\frac{Y_n}{n+2} \to_{n \to \infty} U$ p.s., pour tout r fixé, $\frac{Y_n+r}{n+r+2} \to U$ p.s. et donc $Z_n \to U^k$ p.s. et, puisque $0 \le Z_n \le 1$, $\lim_{n \to \infty} \mathrm{E}(Z_n) \to \mathrm{E}(U)$. $(Z_n)_{n \ge 1}$ étant une martingale on a donc

$$E(Z_n) = E(Z_1) = \frac{1}{k+1} = E(U^k).$$

3) On sait que

$$\varphi(t) - \sum_{k=0}^{n} \frac{\varphi^{(k)}(0)}{k!} t^{k} = \frac{\varphi^{(n+1)}(\tau)}{(n+1)!} \tau^{n+1}$$

où τ est un réel compris entre 0 et t. Or

$$|\varphi^{(n+1)}(\tau)| = |i^{n+1} E(X^{n+1} e^{i\tau X})| \le E(|X^{n+1}|] \le M^{n+1}$$

où M est tel que $|X| \leq M$ p.s. Donc

$$\left| \varphi(t) - \sum_{k=0}^{n} \frac{\varphi^{(k)}(0)}{k!} t^{k} \right| \le \frac{|tM|^{n+1}}{(n+1)!}$$

Le terme de droite convergeant vers 0 pour $n \to \infty$, ceci termine la preuve de 3)

4) Notons maintenant φ la fonction caractéristique de U. On a $\varphi^{(k)}(0)=i^k\mathrm{E}(U^k)=\frac{i^k}{k+1}$ et on peut appliquer (4.13), car $0\leq U\leq 1$ p.s.; donc

$$\varphi(t) = \sum_{k=0}^{\infty} \varphi^{(k)}(0) \frac{t^k}{k!} = \sum_{k=0}^{\infty} \frac{(it)^k}{(k+1)!} = \frac{e^{it} - 1}{it} = \int_0^1 e^{itx} \, dx$$

ce qui montre que U suit la loi uniforme sur [0, 1].

Exercice 4.25. On a une population de taille fixée $N \in \mathbb{N}^*$ qui se renouvelle entièrement à chaque génération et dont chaque individu est de type a ou A. Chaque individu de la génération n+1 choisit son (seul) parent de la génération n de façon uniforme et indépendante des autres individus et hérite le type du parent.

On note X_n le nombre d'individus de type a dans la génération n et on pose $\mathscr{F}_n := \sigma(X_0, \cdots, X_n)$. On a alors $\mathbf{P}(X_{n+1} = i \,|\, \mathscr{F}_n) = \binom{N}{i}\, (\frac{X_n}{N})^i (1 - \frac{X_n}{N})^{N-i}$, pour tout $i \in \{0, \cdots, N\}$. On suppose que p.s. $X_0 = k \in \{0, \cdots, N\}$.

- 1. Montrer que $(X_n, n \ge 0)$ est une martingale et discuter la convergence de X_n vers une variable X_∞ quand $n \to \infty$.
- 2. Montrer que $M_n := \left(\frac{N}{N-1}\right)^n X_n(N-X_n)$ est une martingale.
- 3. Calculer $E(X_{\infty})$ et $E(X_{\infty}(N-X_{\infty}))$.
- 4. Calculer la loi de X_{∞} et commenter.

Indications ou Correction: Remarquer que X_n et M_n sont deux martingales positives qui convergent p.s. De plus X_n et $X_n(N-X_n)$ sont des suites bornés. Appliquer le théorème de convergence dominée pour obtenir les relations sur X_{∞} . \square

Exercice 4.26. Soient $f:[0,1] \to \mathbb{R}$, une fonction Lipschitzienne de constante de Lipschitz L > 0 et X une v.a. à valeurs [0,1], de loi uniforme. On pose, notant [x] la partie entière du réel x,

$$X_n = \frac{[2^n X]}{2^n}$$
 et $Z_n = 2^n (f(X_n + \frac{1}{2^n}) - f(X_n))$

- a) Etudier la convergence de $(X_n)_{n>0}$.
- b) Montrer l'égalité de tribus

$$\bigcap_{n\geq 0} \sigma(X_n, X_{n+1}, \dots) = \sigma(X)$$

c) Déterminer la loi conditionnelle de X_{n+1} sachant $(X_k)_{k \le n}$. En déduire que $(Z_n)_{n \ge 0}$ est une martingale bornée.

On note Z_{∞} sa limite p.s. et dans L^1 .

- d) Montrer qu'il existe g telle que $Z_{\infty} = g(X)$.
- e) Calculer la loi conditionnelle de X sachant X_n et montrer que p.s.,

$$Z_n = \int_{X_n}^{X_n + \frac{1}{2^n}} g(u) du$$

f) Déduire que pour tout $k, n, 1 \le k \le 2^n - 1$,

$$f(\frac{k}{2^n} + \frac{1}{2^n}) - f(\frac{k}{2^n}) = \int_{\frac{k}{2^n}}^{\frac{k+1}{2^n}} g(u)du$$

et conclure que pour tout $x \in [0, 1]$,

$$f(x) - f(0) = \int_0^x g(u)du$$
 (4.14)

g) Conclure que toute fonction Lipschitzienne est primitive (au sens général) d'une fonction mesurable bornée.

Indications ou Correction : a) Posons $X_n = 2^{-n}[2^nX]$. On a, par définition de la partie entière,

$$X = \frac{2^n X}{2^n} \le X_n \le \frac{2^n X + 1}{2^n} = X + \frac{1}{2^n}$$

De ce fait, $X_n \to X$.

b) Comme X est la limite de la suite $(X_n)_{n\geq 0}$ et que pour tout $k\geq 0$ fixé, $(X_n)_{n\geq k}$ est une suite de variables $\sigma(X_k,X_{k+1},\dots)$ mesurables, on en déduit que X est $\sigma(X_k,X_{k+1},\dots)$ -mesurable. Ceci étant vrai pour tout k, X est mesurable par rapport à $\bigcap_{n\geq 0}\sigma(X_n,X_{n+1},\dots)$.

Inversement, chacune des v.a. X_n est évidemment $\sigma(X)$ mesurable puisqu'exprimée comme fonction de X. De ce fait, $\sigma(X_n, X_{n+1}, \dots) \subset \sigma(X)$ et on a donc l'inclusion $\bigcap_{n>0} \sigma(X_n, X_{n+1}, \dots) \subset \sigma(X)$ d'où l'égalité de tribus cherchée.

Notons aussi que si $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$, alors $\mathcal{F}_n = \sigma(X_n)$ puisque la connaissance de l'approximation dyadique d'ordre n d'un réel détermine toutes les approximations dyadiques d'ordres inférieurs.

c) Soit $0 \le k \le 2^n$. Si $X_n = k2^{-n}$, c'est dire que $[2^nX] = k$ et donc que $k \le 2^nX < k+1$.

Ceci entraine que $2k \le 2^{n+1}X < 2k+2$ et donc $[2^{n+1}X]$ peut prendre l'une des deux valeurs 2k ou 2k+1; donc soit $X_{n+1}=k2^{-n}=X_n$ soit $X_{n+1}=(2k+1)2^{-(n+1)}=X_n+2^{-(n+1)}$.

En somme pour $0 \le k \le 2^n - 1$ on a

$$\begin{cases}
P(X_{n+1} = \frac{k}{2^n} \mid X_n = \frac{k}{2^n}) = \frac{P(\frac{k}{2^n} \le X < \frac{2k+1}{2^{n+1}})}{P(X_n = k2^{-n})} = \frac{1}{2} \\
P(X_{n+1} = \frac{2k+1}{2^{n+1}} \mid X_n = \frac{k}{2^n}) = \frac{P(\frac{2k+1}{2^n+1} \le X < \frac{k+1}{2^n})}{P(X_n = k2^{-n})} = \frac{1}{2}
\end{cases}$$
(4.15)

d'où on obtient, en faisant les moyennes par rapport aux lois conditionnelles,

$$\begin{cases}
E(f(X_{n+1} \mid X_n) = \frac{1}{2}(f(X_n) + f(X_n + \frac{1}{2^{n+1}})) \\
E(f(X_{n+1} + \frac{1}{2^{n+1}} \mid X_n) = \frac{1}{2}(f(X_n + \frac{1}{2^{n+1}}) + f(X_n + \frac{2}{2^{n+1}}))
\end{cases}$$
(4.16)

Nous pouvons maintenant déterminer $E(Z_{n+1} \mid \mathcal{F}_n) = E(Z_{n+1} \mid X_n)$.

$$E(Z_{n+1} \mid \mathcal{F}_n) = 2^{(n+1)} \cdot \frac{1}{2} (f(X_n + \frac{1}{2^n}) - f(X_n)) = Z_n$$

 $(Z_n)_{n\geq 0}$ est donc une martingale, évidemment bornée puisque $|f(X_n+\frac{1}{2^n})-f(X_n)|\leq L2^{-n}$, d'où $|Z_n|\leq L$. A ce titre, $(Z_n)_{n\geq 0}$ est une martingale bornée dans L^2 qui converge p.s. et dans L^1 .

d) Notons que Z_n est une variable $\sigma(X_n)$ mesurable (comme fonction de X_n) et donc $\sigma(X_n, X_{n+1}, \dots)$ mesurable.

La limite $Z_{\infty} = \lim Z_n$ est donc $\sigma(X_n, X_{n+1}, \dots)$ mesurable et ceci pour tout n. Vu l'égalité des tribus prouvée en b), Z_{∞} est $\sigma(X)$ -mesurable et donc il existe g borélienne telle que $Z_{\infty} = g(X)$.

e) Calculons alors la loi de X sachant X_n . Soit $0 \le k \le 2^n - 1$. Si $X_n = k2^{-n}$, c'est que $[2^nX] = k$ et donc $k2^{-n} \le X \le (k+1)2^{-n}$. On a donc pour $k2^{-n} \le a < b \le (k+1)2^{-n}$,

$$P(a \le X \le b \mid X_n = \frac{k}{2^n}) = \frac{P(a \le X \le b)}{P(X_n = \frac{k}{2^n})} = \frac{P(a \le X \le b)}{P(\frac{k}{2^n} \le X < \frac{k+1}{2^n})} = 2^n(b-a)$$

C'est dire que la loi conditionnelle de X sachant X_n est une loi uniforme sur l'intervalle $[X_n, X_n + 2^{-n}]$. La martingale $(Z_n)_{n \geq 0}$ étant régulière et fermée à droite par Z_{∞} , on a alors

$$Z_n = \mathcal{E}(Z_{\infty} \mid \mathcal{F}_n) = \mathcal{E}(g(X) \mid \mathcal{F}_n) = \mathcal{E}(g(X) \mid \sigma(X_n)) =$$

$$= 2^n \int_{X_n}^{X_n + 2^{-n}} g(u) du$$
(4.17)

f) L'événement $\{X_n = \frac{k}{2^n}\}$, pour $0 \le k \le 2^n - 1$ a probabilité positive car

$$P(X_n = \frac{k}{2^n}) = P(\frac{k}{2^n} \le X < \frac{k+1}{2^n}) = \frac{1}{2^n} > 0,$$

et pour $\omega \in \{X_n = \frac{k}{2^n}\}$ l'égalité (4.17) dévient

$$f(\frac{k+1}{2^n}) - f(\frac{k}{2^n}) = \int_{k2^{-n}}^{(k+1)2^{-n}} g(u)du$$

et donc, en sommant,

$$f(\frac{k+1}{2^n}) - f(0) = \int_0^{(k+1)2^{-n}} g(u)du$$

Utilisant le fait que les dyadiques sont denses dans [0,1] et que f est continue, on obtient alors que la (4.14) est vraie pour tout $x \in [0,1]$.

Exercice 4.27. Soit $(X_n, n \ge 0)$, une suite de variables aléatoires réelles indépendantes, intégrables telles que $\mathrm{E}[X_n] = 0$, pour tout $n \ge 0$. On fixe $p \ge 1$, on pose $X_0^{(p)} = X_1^{(p)} = \cdots = X_{p-1}^{(p)} = 0$ et pour tout $n \ge p$, on pose

$$X_n^{(p)} = \sum_{1 \le i_1 < i_2 < \dots < i_p \le n} X_{i_1} X_{i_2} \cdots X_{i_p} .$$

Montrer que $(X_n^{(p)}, n \ge 0)$ est une martingale relativement à la filtration (\mathscr{F}_n) , donnée par $\mathscr{F}_n = \sigma(X_1, \cdots, X_n)$ si $n \ge 1$ et $\mathscr{F}_0 = \{\varnothing, \Omega\}$.

Indications ou Correction: Remarquer que les produits qui apparaissent dans la somme définissant $X_{n+1}^{(p)}$ sont soit les ceux qui apparaissent dans $X_n^{(p)}$, soient ont un X_{n+1} comme dernier facteur. Montrer alors grâce à l'indépendance que dans ce dernier cas l'espérance conditionnelle par rapport à \mathcal{F}_n est nulle.

Exercice 4.28. 1. Soit $Y_1, Y_2, \dots, Y_n, \dots$ des variables aléatoires réelles définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$ de loi commune : $\mathbf{P}(Y_n = -1) = \mathbf{P}(Y_n = 1) = 1/2$ et indépendantes.

On pose $X_0 = 0$, $\mathscr{F}_0 = \{\Omega, \varnothing\}$ et, pour $n \geq 1$, $X_n = Y_1 + \cdots + Y_n$, $\mathscr{F}_n = \sigma(Y_1, Y_2, \cdots, Y_n)$.

On pose

$$M_0 = 0$$
 et, pour $n \ge 1$, $M_n = \sum_{k=1}^n \text{sgn}(X_{k-1})Y_k$

où sgn(x) = 1 si x > 0, = -1 si x < 0, = 0 si x = 0.

- (a) Montrer que (M_n) est une martingale de carré intégrable et déterminer la décomposition de Doob de la sous-martingale (M_n^2) .
- (b) Quelle est la décomposition de Doob de la sous-martingale $(|X_n|,\ n\geq 0)$?
- (c) Montrer que pour tout $n \geq 1$, M_n est $\sigma(|X_1|, \dots, |X_n|)$ -mesurable.

Indications ou Correction:

- a) Remarquer que $\operatorname{sgn}(X_k)^2 = 1_{X_k \neq 0}$. On en déduit que le processus croissant associé à M_n^2 est $\sum_{k=0}^{n-1} 1_{X_k \neq 0}$.
 - b) On a $E(|X_k|/\mathcal{F}_{k-1}) = E(|x + Y_k|)$ avec $x = X_{k-1}$. Donc

$$E(|X_k|/\mathcal{F}_{k-1}) - |X_{k-1}| = \frac{1}{2}|X_{k-1} + 1| + \frac{1}{2}|X_{k-1} - 1| - |X_{k-1}| = 1_{X_{k-1} = 0}$$

en utilisant le fait que X_{k-1} est entier. De ce fait,

$$|X_n| = M_n + \sum_{k=0}^{n-1} 1_{X_k = 0}.$$

c) Remarquer que $1_{X_k=0} = 1_{|X_k|=0}$.

Exercice 4.29. Soit X une variable aléatoire réelle de loi $\mathcal{N}(0, \sigma^2)$, avec $\sigma^2 \in]0, \infty[$. Pour tout $k \in \mathbb{N}$, soit η_k une variable aléatoire de loi $\mathcal{N}(0, \varepsilon_k^2)$, avec $\varepsilon_k > 0$. On suppose que X, η_0 , η_1 , \cdots sont indépendantes. On définit $Y_k = X + \eta_k$, $k \in \mathbb{N}$ et $\mathscr{F}_n = \sigma(Y_0, \cdots, Y_n)$, $n \in \mathbb{N}$, $\mathscr{F}_\infty = \sigma(Y_n, n \geq 0)$.

Nous essayons de mesurer une quantité aléatoire X avec une suite indépendante d'expériences. L'expérience k donne comme résultat $Y_k = X + \eta_k$, où η_k est une erreur qui dépend de la précision des instruments. Après n expériences, la meilleure prévision possible sur X est

$$X_n := \mathrm{E}(X \mid \mathscr{F}_n) = \mathrm{E}(X \mid Y_0, \cdots, Y_n).$$

On se demande s'il est possible d'obtenir la valeur de X quand n tend vers l'infini, et notamment si X_n converge vers X.

- 1. Montrer que (X_n) est une martingale et que X_n converge p.s. et dans \mathbf{L}^1 vers une variable aléatoire X_{∞} . Quelle est la relation entre X et X_{∞} ?
- 2. Montrer que $\sup_n \mathrm{E}(X_n^2) < \infty$. Montrer que les trois propriétés suivantes sont équivalentes :
 - a) $X_n \to X$ dans \mathbf{L}^2 ; b) $X_n \to X$ dans \mathbf{L}^1 ; c) X est \mathscr{F}_{∞} -mesurable.
- 3. Calculer $E(Y_iY_j)$, $E(Y_i^2)$ et $E(XY_i)$ pour $i, j \ge 0$, $i \ne j$. Montrer que pour tous $n \ge 0$ et $i = 0, \dots, n$, on a $E(Z_nY_i) = 0$, où

$$Z_n := X - \frac{\sigma^2}{1 + \sigma^2 \sum_{k=0}^n \varepsilon_k^{-2}} \sum_{j=0}^n \varepsilon_j^{-2} Y_j.$$

4. Montrer que pour tout $n \ge 0$ la variable Z_n est indépendante de $\{Y_0, \dots, Y_n\}$ et en déduire que $X_n = X - Z_n$.

- 5. Calculer $\mathrm{E}((X-X_n)^2)$ et montrer que $X_n\to X$ dans \mathbf{L}^2 si et seulement si $\sum_{i=0}^\infty \varepsilon_i^{-2}=\infty.$
- 6. Discuter le cas $\varepsilon_i=\varepsilon>0$ pour tout $i\geq 0$, notamment les liens avec la loi des grands nombres.

Indications ou Correction:

- 1- La convergence est un résultat du cours. On sait de plus que $\mathbb{E}(X/\mathcal{F}_n) \to$ $E(X/\mathcal{F}_{\infty}).$
 - 2 Pour $c \Rightarrow a$, on sait que la martingale converge dans L^2 vers $E(X/\mathcal{F}_{\infty})$.

 - 4 Utiliser le fait que le vecteur $(Y_0, Y_1, \dots, Y_n, Z_n)$ est un vecteur gaussien. 5 Calculer $\mathbb{E}(Z_n^2)$ en remplaçant Y_j par $X + \eta_j$ et en utilisant l'indépendance des

variables centrées. Pour faciliter les calculs il sera intéressant de noter $\alpha_n = \sum_{j=0}^n \varepsilon_j^{-2}$.