

TP3 VALIDER UNE PERFORMANCE CINEMATIQUE

MPSI

AMELIORER UNE PERFORMANCE CINEMATIQUE

OUVRE PORTAIL DOMOTICS

1 Presentation du Systeme

1.1 Mise en situation, fonction principale

Les deux vantaux du portail sont mis en mouvement par des motorisations identiques. Chaque dispositif est constitué :

- d'un moto réducteur fixé sur le pilier,
- d'un bras encastré sur l'arbre du moto réducteur,
- d'une bielle de poussée qui relie le bras au vantail.

1.2 Commande de l'ouverture et de la fermeture :

- Mettre le système sous tension à l'aide de l'interrupteur placé sur le coté du boîtier électrique.
- Basculer les interrupteurs du pupitre sur les positions « hors-service ». Appuyer sur le bouton « En service ».
 Enfoncer en permanence le bouton « enclenchement ». Une impulsion sur le bouton « démarrage » lance l'ouverture, une seconde impulsion arrête le mouvement et une troisième assure la fermeture.
- Sur cette version de laboratoire des capteurs de position relèvent les déplacements angulaires du grand vantail et du bras associé. Ces mesures sont transmises à l'ordinateur par l'intermédiaire d'une « carte d'acquisition ».
- Un logiciel adapté permet de les exploiter et en particulier de donner les courbes correspondantes en fonction du temps : Documentation_Portail.pdf_(Dossier Transfert : MPSI2/TP3/ouvre_portail)

1.3 Modélisation et paramétrage du système

$$\overrightarrow{OA} = -b\overrightarrow{y_1} + a\overrightarrow{x_1} \, ; \qquad \overrightarrow{AB} = c \, ; \overrightarrow{BC} = d\overrightarrow{x_3} \, ; \ \overrightarrow{CO} = e\overrightarrow{y_2} - f\overrightarrow{x_2} \,$$

$$\text{a=150mm} \, ; \quad \text{b=100} \quad \text{mm} \, ; \quad \text{c=d=280mm} \, ; \quad \text{e=20mm} \, ;$$

$$\text{d=250mm}$$

$$(\overrightarrow{x_1}, \overrightarrow{x_4}) = (\overrightarrow{y_1}, \overrightarrow{y_4}) = \theta_{41} \,$$

$$(\overrightarrow{x_1}, \overrightarrow{x_3}) = (\overrightarrow{y_1}, \overrightarrow{y_3}) = \theta_{31} \,$$

$$(\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{y_1}, \overrightarrow{y_2}) = \theta_{21} \,$$

Bâti	1
Ventail	2
Bielle	3
Moteur	4

2 PROBLEME POSE

Objectif du TP

L'objectif du TP est de déterminer la loi de commande qui donnera une relation entre $heta_{21}$ et $heta_{41}$

<u>Objectif</u> : Déterminer la loi à imposer au moteur pour obtenir le déplacement angulaire du bras

<u>Objectif</u>: Estimer l'écart entre performance mesurée et performance simulée (groupe modélisateur/ expérimentateur)

(groupe modélisateur/simulateur)

Prise de connaissance de la maquette numérique fournie

- ✓ Sur un ordinateur connecté du réseau, ouvrir Solidworks et activer le complément MECA3D.
- ✓ Copier l'ensemble du répertoire ouvre_portail (situé dans le dossier transfert mpsi2/TP3) dans votre espace personnel
- ✓ Ouvrir la maquette SW de la plateforme (fichier assemblage
- « Portail_modele_eleve.SLDASM» du dossier intitulé « ouvre portail/Portail Modele SW Assemblage »
- ✓ Repérer les différentes classes d'équivalence.

Prise de connaissance du système Ouvre portail

✓ Lancer le logiciel

- ✓ Lancer la mesure
- ✓ Une fois la mesure effectuée appuyer sur « Stop la mesure »
- ✓ Cliquer droit sur la courbe : exporter

Mise en place du modèle

- ✓ Réaliser le graphe de liaison du système.
- \checkmark Écrire l'équation vectorielle traduisant la fermeture géométrique de la chaîne de solides.
- $\checkmark \quad \text{Projeter cette relation sur} \ \ ^{\overrightarrow{X}_1} \ \ \text{et} \ ^{\overrightarrow{y}_1}.$

Mise en place du protocole de mesure

- \checkmark Il faut mettre en place une mesure permettant d'obtenir la loi entrée-sortie du système.
- ✓ On se réfèrera aux fiches 2 et 3 du document **Documentation_Maxpid.pdf** (Dossier Transfert : MPSI2/TP3/Maxpid)

 ✓ Eliminer θ₃₁. ✓ Cette équation est compliquée à résoudre analytiquement. On utilise pour cela une méthode numérique de Newton. Copier dans votre espace perso puis ouvrir le programme « fermeture_geo.py » situé dans le dossier transfert avec « spyder ». ✓ Exécuter le programme et analyser le tracé. 	
Simulation	Mesure
✓ Compléter la modélisation meca3D	
✓ Dans l'arborescence de meca3D et dans Analyse, vérifier les paramètres de simulation.	 ✓ Réaliser une mesure sur une grande plage de mouvement pour obtenir la loi « entrée-sortie » expérimentale.
✓ Mettre en place la simulation.	
✓ Tracer les courbes Meca3D adéquates pour obtenir le tracé de la loi entrée sortie	
Traitement des résultats	Traitement des résultats
✓ Exporter les données meca3D vers Excel	A partir des positions mesurées, à l'aide d'un tableur ou directement sur Python :
✓ Lancer « Excel » et charger ce fichier.	✓ Tracer la loi entrée/sortie.

Analyse des écarts

- ✓ Dans un tableur Excel ou dans un programme Python faire un tracer de courbe permettant superposer les courbes simulée, analytiques et expérimentales.
- ✓ Comment sont mesurées ces valeurs ?
- ✓ La consigne que vous avez imposée semble t'elle respectée ?
- ✓ Cet écart vous semble t'il être la seule source de l'écart sur le déplacement de la plateforme ?
- ✓ Suite à la mise en place du protocole expérimental, avez-vous rencontré des difficultés qui pourraient être source d'un écart entre mouvement réel et mouvement mesuré ?
- ✓ Si oui, estimer l'ordre de grandeur de cet écart.