Clase 9

Cálculo 3

Carlos Martínez Ranero

Departamento de Matemática Universidad de Concepción

Recordatorio de la clase anterior.

• Regla de la cadena

Objetivos de la clase de hoy.

- Aplicaciones de la regla de la cadena
- Teorema de la función implícita

Vector gradiente y derivadas direccionales.

Definición

Sea $A \subset \mathbb{R}^n$ un conjunto abierto y $\vec{a} \in A$, definimos el vector gradiente $\nabla f(\vec{a}) = (f_{x_1}(\vec{a}), \dots, f_{x_n}(\vec{a}))$

Ejemplo 1:

Si $f(x, y) = x^2 + 2xy$ entonces

$$\nabla(f)(x,y)=(f_x,f_y)=(2x+2y,2x)$$

$$\nabla(f)(1,2) = (6,2)$$

Vector gradiente y derivadas direccionales.

Utilizando el gradiente podemos escribir la buena aproximación afín como

$$L(\vec{x}) = f(\vec{a}) + \nabla(f)(\vec{a}) \cdot (\vec{x} - \vec{a})$$

Derivadas Direccionales.

Teorema

Sea f una función una función diferenciable en \vec{a} y \vec{u} un vector unitario. Entonces

$$\frac{\partial f}{\partial \vec{u}}(\vec{a}) = \nabla(f)(\vec{a}) \cdot \vec{u}$$

Solución:

- Consideremos el caso de 2 variables, para simplificar la notación.
- Sea (a) = (a, b) y $\vec{u} = (u, v)$.
- g(h) = (a + hu, b + hv)
- Observemos que $\frac{d}{dh}\Big|_{h=0} f(g(h)) = \frac{\partial f}{\partial \vec{u}}(a,b)$

5

Derivadas Direccionales.

Solución:

Usando la regla de la cadena tenemos que

•
$$\frac{d}{dh}\bigg|_{h=0} f(g(h)) = \frac{\partial f}{\partial \vec{u}}(a,b) = \nabla(f)(a,b) \cdot (u,v).$$

Derivadas Direccionales.

Teorema

Si f es una función diferenciable en \vec{a} , entonces gradiente $\nabla(f)(\vec{a})$ representa la dirección de mayor crecimiento de la función f y decrece mas rapido en la dirección $-\nabla(f)(\vec{a})$.

Solución:

- $\frac{\partial f}{\partial \vec{u}}(\vec{a}) = \nabla(f)(\vec{a}) \cdot \vec{u}$
- Por la desigualdad de Cauchy-Schawrz se tiene
- $\quad \bullet \ \, -\nabla(f)(\vec{a})\|\vec{u}\| \leq \nabla(f)(\vec{a}) \cdot \vec{u} \leq \nabla(f)(\vec{a})\|\vec{u}\|.$

Gradiente.

Ejemplo 2

Supongamos que la altura de una montaña esta dada por la función $h(x,y) = \frac{40}{4+x^2+3y^2}$. Supongamos que una rio pasa por el punto (1, 1, 5). Encontrar la ecuación que describe la trayectoria del rio.

Solución:

- La trayectoria del rio corresponde a una función f(t) = (x(t), y(t), z(t)), con f(0) = (1, 1, 5).
- La clave es notar que el rio sigue la trayectoria dada por la pendiente mas inclinada.
- La cual corresponde a $-\nabla(h)$.

8

Gradiente.

Solución:

- $\nabla(h) = \left(\frac{-80x}{(4+x^2+3y^2)^2}, \frac{-240y}{(4+x^2+3y^2)^2}\right)$
- Ahora necesitamos que (x'(t), y'(t) vaya en la dirección de -∇(h(x(t), y(t)))
- Asi que podemos suponer que (x'(t), y'(t)) = (x(t), 3y(t)).
- Resolviendo la ecuación diferencial y evaluando en la gráfica tenemos:
- $f(t) = (e^t, e^3t, h(e^t, e^{3t}))$

Aplicaciones de la Regla de la cadena.

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$ y $c \in \mathbb{R}$. Recordemos que el conjunto de nivel

$$N_c = f^{-1}(c) = {\vec{x} \in U : f(\vec{x}) = c}$$

Ejemplo 3

Si $f(x, y) = x^2 + y^2$, entonces $f^{-1}(1)$, $f^{-1}(4)$ son circulos de radio 1 y radio 4, respectivamente.

Aplicaciones de la Regla de la cadena.

Teorema

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$, $c \in \mathbb{R}$, $S = f^{-1}(c)$ y $\vec{a} \in S$. Si $\nabla(f)(\vec{a}) \neq \vec{0}$, entonces $\nabla(f)(\vec{a}) \perp S$.

Solución:

- $r(t) = (x(t), y(t), z(t)) \subset S, r(0) = \vec{a}$, entonces
- $\frac{d}{dt}(f(r(0))) = \nabla(f)(\vec{a}) \cdot r'(0) = 0$
- Por lo tanto, $\nabla(f)(\vec{a}) \perp S$.