Conceitos
básicos
e evolução do
computador

Objetivos de aprendizagem

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

Após ler este capítulo, você será capaz de:

- Explicar as funções gerais e a estrutura de um computador digital.
- Apresentar uma visão geral da evolução da tecnologia dos computadores desde os primeiros computadores digitais até os últimos microprocessadores.
- > Apresentar uma visão geral da arquitetura x86.
- Definir sistemas embarcados e listar alguns dos

Organização e arquitetura

Arquitetura e Organização de Computadores

- Arquitetura de computador refere-se aos atributos de um sistema visíveis a um programador.
- Organização de computador refere-se às unidades operacionais e suas interconexões que percebam as especificações de arquitetura.
- > Historicamente, e ainda hoje, a distinção entre arquitetura e organização tem sido importante.
- Dos diferentes modelos na família têm diferentes características de preço e desempenho.

Estrutura e função

WILLIAM STALLINGS Arquitetura e Organização de Computadores

- 10ª edição
- Em cada nível, o projetista está interessado em:
- Estrutura: o modo como os componentes são inter-relacionados.
- Função: a operação individual de cada componente como parte da estrutura.
- Em termos de descrição, temos duas escolhas:
- 1. começar de baixo e subir até uma descrição completa, ou
- 2 company com uma trigão do cima o docompor o

Função

Arquitetura e Organização de Computadores 10º edição

- Em termos gerais, há somente quatro funções básicas que podem ser apresentadas pelo computador:
- 1. Processamento de dados
- 2. Armazenamento de dados
- 3. Movimentação de dados
- 4. Controle

Arquitetura e Organização de Computadores

- A figura a seguir fornece uma visão hierárquica de uma estrutura interna de um computador de processador único tradicional.
- > Há quatro componentes estruturais principais:
- 1. Unidade central de processamento (CPU do inglês, Central Processing Unit).
- 2. Memória principal.
- 3. E/S.
- 1 Cistoma do interconovão

Arquitetura e Organização de Computadores

Arquitetura e Organização de Computadores 10º edição

- > O mais complexo componente é a CPU.
- Seus principais componentes estruturais são os seguintes:
- 1. Unidade de controle.
- 2. Unidade lógica e aritmética (ALU do inglês, Arithmetic and Logic Unit).
- 3. Registradores.
- 4. Interconexão da CPU.

WILLIAM STALLINGS Arquitetura e Organização de Computadores

10ª edição

- Quando os processadores todos residem em um único chip, o termo computador multicore é usado.
- Cada unidade de processamento é chamada de core.
- Outra característica proeminente de computadores contemporâneos é o uso de múltiplas camadas de memória, chamada de memória cache, entre o processador e a memória principal.

A figure a cognite ó uma migão gimplificada dog

CORE Unidade

aritmética e

lógica (ALU)

Lógica de

load/store

Cache de dados L1

Cache de

dados L2

Lógica de

instrução

I-cache L1

Cache de

instruções L2

WILLIAM STALLINGS

WILLIAM STALLINGS Arquitetura e Organização de Computadores

- Uma placa de circuito impresso (PCB do inglês, Printed Circuit Board) é uma placa rígida e plana que mantém e interconecta chips e outros componentes eletrônicos.
- A placa de circuito impresso principal em um computador é chamada de placa de sistema ou placa-mãe.
- > Um chip é um pedaço único de material semicondutor, em geral de silício, no qual os circuitos eletrônicos e portas lógicas são fabricados.

Arquitetura e Organização de Computadores 10º edição

- Em linhas gerais, os elementos funcionais de um core são:
- Lógica de instrução: inclui as tarefas envolvidas em buscar instruções, e decodificar cada instrução a fim de determinar a operação de instrução e os locais de memória dos operandos.
- Unidade lógica e aritmética (ALU): executa a operação especificada por uma instrução.
- Lógica de load/store: gerencia a transferência

Arquitetura e Organização de Computadores

10ª edição

> Layout do core do zEnterprise EC12:

WILLIAM STALLINGS Arquitetura e Organização de Computadores

10ª edição

As principais subáreas dentro dessa área do core são as seguintes:

- > ISU
- > IFU
- > IDU
- > LSU
- > XU
- > FXU

Arquitetura e Organização de Computadores

10ª edição

As principais subáreas dentro dessa área do core são as seguintes:

- > DFU
- > RU
- > COP
- > I-cache
- > Controle L2
- Dados-L2

N T-- - + - - T O

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

A primeira geração: válvulas

- > O mais famoso computador de primeira geração é conhecido como computador IAS.
- A figura a seguir mostra sua estrutura. Ela consiste em:
- Uma memória principal.
- Uma unidade lógica e aritmética (ALU).
- > Uma unidade de controle.
- Equipamento de entrada/saída (E/S)

Arquitetura e Organização de Computadores

Arquitetura e
Organização de
Computadores
10ª edição

A primeira geração: válvulas

Arquitetura e Organização de Computadores

10ª edição

A primeira geração: válvulas

Fluxograma da operação do AS sem necessidado de acesso do AS sem necessidado de acesso de aces de acesso de aces d

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

A segunda geração: transistores

- A primeira mudança principal no computador eletrônico vem com a substituição das válvulas pelo transistor.
- > O transistor, que é menor, mais barato e gera menos calor do que a válvula, pode ser usado da mesma maneira que uma válvula para construir computadores.
- Ao contrário da válvula, que requer fios, placas de metal e cápsula de vidro, além de vácua e transister é um dispositivo de estado

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

A segunda geração: transistores

- A segunda geração viu uma introdução de unidades aritméticas e lógicas e unidades de controle, o uso de linguagem de programação de alto nível e a disponibilização dos softwares de sistema com o computador.
- Tornou-se amplamente aceito classificar os computadores em gerações com base na tecnologia nos fundamentos de hardware empregados.
- > Veja figura a seguir.

WILLIAM STALLINGS
Arquitetura e
Organização de
Computadores
10ª edição

A segunda geração: transistores

> Gerações de computador:

Geração	Datas aproximadas	Tecnologia	Velocidade normal (operações por segundo)
1	1946–1957	Válvula	40.000
2	1957–1964	Transistor	200.000
3	1965–1971	Integração em pequena e média escala	1.000.000
4	1972–1977	Integração em grande escala	10.000.000
5	1978–1991	Integração em escala muito grande	100.000.000
6	1991–	Integração de escala ultra grande	> 1.000.000.000

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

A terceira geração: circuitos integrados

- Em 1958, chegou a realização que revolucionou a eletrônica e iniciou a era da microeletrônica: a invenção do circuito integrado.
- A figura a seguir representa os conceitos-chave de um circuito integrado.
- Os primeiros circuitos integrados são conhecidos como **integração em pequena escala** (SSI do inglês, Small-Scale Integration).

WILLIAM STALLINGS
Arquitetura e
Organização de
Computadores

10ª edição

Chip encapsulado

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

A terceira geração: circuitos integrados

- Por volta de 1964, a IBM anunciou o System/360, uma nova família de produtos de computador.
- > O conceito de uma família de computadores compatíveis foi moderno e extremamente bem-sucedido.
- As características de uma família são as seguintes:
- > Conjunto de instruções semelhante ou idêntico

Arquitetura e Organização de Computadores

10ª edição

A terceira geração: circuitos integrados

- > Maior velocidade.
- > Número cada vez maior de portas de E/S.
- > Aumento do tamanho de memória.
- > Maior custo.

Como esse conceito de família poderia ser implementado?

Arquitetura e Organização de Computadores

10ª edição

A terceira geração: circuitos integrados

- As diferenças foram conseguidas com base em três fatores:
- 1. velocidade básica,
- 2. tamanho e
- 3. grau de simultaneidade
- > O System/360 não apenas ditou o curso futuro da IBM, mas também teve um impacto profundo sobre a indústria inteira.
- Muitos do sous roquirsos tornaram-so nadrão do

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

Gerações posteriores

Com a introdução da integração em grande escala (LSI), mais de 1.000 componentes podem ser colocados em um único chip de circuito integrado.

A integração em escala muito grande (VLSI — do inglês, Very-Large-Scale Integration) alcançou mais de 10.000 componentes por chip, enquanto os chips com integração em escala ultragrande (ULSI — do inglês, Ultra-Large-Scale

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

- As propostas dos x86 atuais representam os resultados de décadas de esforço de projeto em computadores com conjunto complexo de instruções (CISC do inglês, Complex Instruction Set Computers).
- Uma técnica alternativa para o projeto do processador é o computador com conjunto de instruções reduzido (RISC — do inglês, Reduced Instruction Set Computers).
- A arquitetura ARM é usada em uma grande variedade de sistemas embarcados e é um dos

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

> Evolução dos microprocessadores Intel:

(a) Processadores da década de 1970					
4004	8008	8080	8086	8088	
1971	1972	1974	1978	1979	
108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz	
4 bits	8 bits	8 bits	16 bits	8 bits	
2.300	3.500	6.000	29.000	29.000	
10	8	6	3	6	
640 bytes	16 kB	64 kB	1 MB	1 MB	
	1971 108 kHz 4 bits 2.300	4004800819711972108 kHz108 kHz4 bits8 bits2.3003.500108	4004 8008 8080 1971 1972 1974 108 kHz 108 kHz 2 MHz 4 bits 8 bits 8 bits 2.300 3.500 6.000 10 8 6	4004 8008 8080 8086 1971 1972 1974 1978 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10 MHz 4 bits 8 bits 16 bits 2.300 3.500 6.000 29.000 10 8 6 3	

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

Evolução dos microprocessadores Intel:

	(b) Processadores da década de 1980			
	80286	386TM DX	386TM SX	486TM DX CPU
Introduzido	1982	1985	1988	1989
Velocidade de clock	6–12,5 MHz	16–33 MHz	16–33 MHz	25–50 MHz
Largura do barramento	16 bits	32 bits	16 bits	32 bits
Número de transistores	134.000	275.000	275.000	1,2 milhão
Dimensão da tecnologia de fabricação (µm)	1,5	1	1	0,8–1
Memória endereçável	16 MB	4 GB	16 MB	4 GB
Memória virtual	1 GB	64 TB	64 TB	64 TB
Cache	_	_	_	8 kB

WILLIAM STALLINGS Arquitetura e Organização de Computadores

10ª edição

> Evolução dos microprocessadores Intel:

	(c) Processadores da década de 1990			
	486TM SX	Pentium	Pentium Pro	Pentium II
Introduzido	1991	1993	1995	1997
Velocidade de clock	16-33 MHz	60–166 MHz,	150-200 MHz	200–300 MHz
Largura do barramento	32 bits	32 bits	64 bits	64 bits
Número de transistores	1,185 milhão	3,1 milhões	5,5 milhões	7,5 milhões
Dimensão da tecnologia de fabricação (µm)	1	0,8	0,6	0,35
Memória endereçável	4 GB	4 GB	64 GB	64 GB
Memória virtual	64 TB	64 TB	64 TB	64 TB
Cache	8 kB	8 kB	512 kB L1 e 1 MB L2	512 kB L2

Arquitetura e Organização de Computadores

10ª edição

> Evolução dos microprocessadores Intel:

	(d) Processadores recentes			
	Pentium III	Pentium 4	Core 2 Duo	Core i7 EE 4960X
Introduzido	1999	2000	2006	2013
Velocidade de clock	450–660 MHz	1,3–1,8 GHz	1,06–1,2 GHz	4 GHz
Largura do barramento	64 bits	64 bits	64 bits	64 bits
Número de transistores	9,5 milhões	42 milhões	167 milhões	1,86 bilhão
Dimensão da tecnologia de fabricação (nm)	250	180	65	22
Memória endereçável	64 GB	64 GB	64 GB	64 GB
Memória virtual	64 TB	64 TB	64 TB	64 TB
Cache	512 kB L2	256 kB L2	2 MB L2	1,5 MB L2/15 MB L3
Número de cores	1	1	2	6

Sistemas embarcados

Arquitetura e Organização de Computadores

- > O termo **sistema embarcado** refere-se ao uso de eletrônica e software dentro de um produto, ao contrário de um computador de uso geral, como um sistema de laptop ou desktop.
- Hoje em dia, alguns, ou a maioria, dos dispositivos que usam energia elétrica têm um sistema computacional embarcado.
- > A figura a seguir mostra em termos gerais uma organização de sistema embarcado.
- Além do processador e da memória, existem

Sistemas embarcados

Arquitetura e Organização de Computadores

A Internet das Coisas

Arquitetura e Organização de Computadores

- ➤ A Internet das Coisas (IoT do inglês, Internet of Things) é um termo que se refere à interconexão expansiva dos dispositivos inteligentes, indo de aplicações a minúsculos sensores.
- Com referência aos sistemas terminais suportados, a internet passou por cerca de quatro gerações de implantação:
- 1. Tecnologia da informação (TI)
- 2. Tecnologia operacional (TO)
- 3. Tecnologia pessoal
- 1 Tognologia do concor/atuador

Sistemas operacionais embarcados

Arquitetura e Organização de Computadores

10º edição

- > Há duas técnicas gerais para desenvolver o sistema operacional (SO) embarcado:
- 1. A primeira técnica é pegar um SO existente e adaptar para a aplicação embarcada. Por exemplo, há versões embarcadas de Linux, Windows e Mac, bem como outros sistemas operacionais comerciais e particulares especializados para sistemas embarcados.
- 2. A outra técnica é desenvolver e implementar um SO direcionado unicamente para o uso embarcado. Um exemplo é o TinyOS, amplamente usado em redecado de conser com fie

Processadores para aplicações versus processadores dedicados

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

- Processadores de aplicações são definidos pela capacidade do processador de executar sistemas operacionais complexos, como Linux, Android e Chrome.
- > O processador de aplicações é naturalmente de uso geral.
- Um processador dedicado é dedicado a uma ou a algumas poucas tarefas específicas exigidas pelo dispositivo hospedeiro.
- Por conta de tal sistema embarcado ser dedicado

Microprocessadores versus microcontroladores

Arquitetura e Organização de Computadores

- Os primeiros chips de microprocessadores incluíam registradores, uma ALU e algum tipo de unidade de controle ou de lógica de processamento de instrução.
- Chips de microprocessadores atuais incluem diversos cores e uma quantidade substancial de memória cache.
- > Um chip microcontrolador faz uso substancialmente diferente do espaço de lógica.
- A figura a seguir mostra em termos gerais os

Microprocessadores versus microcontroladores

WILLIAM STALLINGS Arquitetura e Organização de Computadores

Arquitetura ARM

Arquitetura e Organização de Computadores

- 10º edição arquitetura
- A arquitetura ARM refere-se a uma arquitetura de processador que evoluiu dos princípios de desenvolvimento do RISC e é usada em sistemas embarcados.
- > Os chips ARM são processadores de alta velocidade que são conhecidos pelo pequeno tamanho do die e pelo baixo consumo de energia.
- Os chips ARM são os processadores dos populares dispositivos Apple, o iPod e o iPhone, e são usados em praticamente todos os smartphones Android.

Arquitetura ARM

WILLIAM STALLINGS Arquitetura e Organização de Computadores

10ª edição

- A ARM Holdings licencia um número de microprocessadores especializados e relacionados às tecnologias, mas a maior parte de sua linha de produtos é a família das arquiteturas de microprocessadores Cortex.
- > Há três arquiteturas Cortex, convenientemente denominadas pelas iniciais A, R e M:
- 1. Cortex-A e Cortex-A50
- 2. Cortex-R

 $\frac{1}{2}$ $C \circ x + \circ x - M$

Computação em nuvem

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

- ➤ A NIST define a computação em nuvem, em NIST SP-800-145:
- Computação em nuvem
- Um modelo para possibilitar acesso onipresente, conveniente e sob demanda a um grupo compartilhado de recursos de computação configuráveis que pode ser rapidamente fornecido e liberado com um esforço mínimo de gerenciamento ou interação do provedor de serviço.

Computação em nuvem

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

- ➤ O armazenamento em nuvem consiste em um armazenamento de base de dados e aplicações de base de dados hospedadas nos servidores da nuvem.
- ▶ O provedor de serviço de nuvem (CSP do inglês, Cloud Service Provider) mantém os recursos de computação e armazenamento de dados que estão disponíveis na internet ou em redes privadas.
- Praticamente todos os serviços de nuvem são providos pelo uso de um dos três modelos (apresentados na figura a seguir): Saas Baas e

Computação em nuvem

Arquitetura e Organização de Computadores

