会話データからの感情分析

最終発表

1班

 長濱
 志歩
 坂上
 太一

 越塚
 毅
 小滝
 遼

北原 優江

原田 暁生

藤澤夏帆

目次

- 1. プロジェクト課題の目的
- 2. 中間発表からの変更点
- 3. 音声処理
 - 3-1. 特徴量について
 - 3-2. 実験(データの説明)
 - 3-3. 実験結果①
 - 3-4. 実験結果②(Dataset1)
 - 3-5. 特徴量の重要度
 - 3-6. 考察

4. 自然言語処理

- 4-1. 単語分散表現を用いる手法
- 4-2. 文章分散表現を求める手法
- 4-3. 深層学習を用いる手法
- 4-4. 実験(データの説明)
- 4-5. 実験結果
- 4-6. 考察
- 5. まとめ

1. プロジェクト課題の目的

• 音声処理の手法を学ぶ

• 統計的自然言語処理の手法を学ぶ

• 機械学習の手法を学ぶ

2. 中間発表からの変更点

中間発表での構想

変更後

3. 音声処理

```
特徴量について
3-1.
     実験(データの説明)
3-2.
     実験結果(1)
3-3.
     実験結果(2)
3-4.
     特徴量の重要度
3-5.
     考察
3-5.
```

3-1. 特徴量について

- スペクトル包絡 (低次のメルケプストラム) 人間の声道の特性を表す。メルケプストラムは低周波数領域を細かくサンプリング。
- デルタメルケプストラムメルケプストラムの時間変化の微分.動的変化を表す.
- パワー 音量を表す。

3. 音声処理

```
特徴量について
3-1.
     実験(データの説明)
3-2.
     実験結果(1)
3-3.
     実験結果(2)
3-4.
     特徴量の重要度
3-5.
     考察
3-5.
```

3-2. 実験

- [Dataset1] 4感情ラベル付きセリフ集読み上げデータ (自作)
 - サンプル数: 100
 - ラベルの付け方: 班員全員でラベル付け
 - 音声データの作り方: ラベルを元に班員が読み上げ
 - 感情:喜び,怒り,悲しみ,ニュートラル
- [Dataset2] 8感情ラベル付きスピーチデータ (RAVDESS)
 - サンプル数: 1440
 - 感情: neutral, calm, happy, sad, angry, fearful, disgust, surprised

3. 音声処理

```
3-1. 特徴量について
```

- 3-2. 実験(データの説明)
- 3-3. 実験結果①
- 3-4. 実験結果②
- 3-5. 特徴量の重要度
- 3-5. 考察

3-3. 実験結果①

• Dataset1に対し、スペクトル包絡に主成分分析を適用.

先行研究 [庄子,安藤 2016] の結果

Dataset1の結果

3-3. 実験結果①

• Dataset1に対し,スペクトル包絡に主成分分析を適用.

先行研究 [庄子,安藤 2016] の結果

Dataset1の結果

3. 音声処理

```
3-1. 特徴量について
3-2. 実験(データの説明)
```

- 3-3. 実験結果①
- 3-4. 実験結果②
- 3-5. 特徴量の重要度
- 3-5. 考察

3-4. 実験結果② (Dataset1)

バリデーション手法: leave-one-out, 評価指標: accuracy

	線形カーネルSVM	ガウシアンカーネルSVM
100 Samples	0.32	0.41
800 Samples	0.33	0.32

800 Samples はノイズを加える等で拡張をしたデータ

3-4. 実験結果② (Dataset2)

バリデーション手法: stratified 6-fold, 評価指標: accuracy

線形カーネルSVM	ガウシアンカーネル SVM	MLP(2~4 Layers)
0.64	0.60	0.67

3. 音声処理

3-5.

3-5.

```
3-1. 特徴量について
3-2. 実験(データの説明)
3-3. 実験結果①
3-4. 実験結果②
```

考察

特徴量の重要度

3-5. 特徴量の重要度

Permutation Importance

特徴量の列をシャッフルして、 ベースラインからどれだけ精度が落ちるか

緑色のエラーバーは、精度の下り幅が 正規分布に従うと仮定した場合の 95%信頼区間

3. 音声処理

```
特徴量について
3-1.
     実験(データの説明)
3-2.
     実験結果(1)
3-3.
     実験結果(2)
3-4.
     特徴量の重要度
3-5.
     考察
3-5.
```

3-6. 考察

- Dataset1のスペクトル包絡に対する主成分分析の結果が 期待する結果とならなかった。
- → データ数が少なく、本来の低次元空間を求められなかった。

- Permutation Importanceの結果は、Powerが最も精度が落ちた。
- → 音声からの感情解析では、Powerが重要な特徴量である。

4. 自然言語処理

- 4-1. 単語分散表現を用いる手法
- 4-2. 文章分散表現を求める手法
- 4-3. 深層学習を用いる手法
- 4-4. 実験(データの説明)
- 4-5. 実験結果
- 4-6. 考察

4-1. 単語分散表現を用いる手法

Step1. 単語分散表現の獲得

☐ Word2vec [Mikolov et al. 2013]

Skip-Gramモデル

2層のNNを用いて推定.

低次元高密度ベクトル

☐ Fasttext [P.Bojanowski et al. 2016]

Subword model による精度向上

 $\mathfrak{D}_{\mathrm{word}} = \{ \mathrm{word} \ \mathcal{O}$ 文字 N-gram, Prefix, Suffix 等 $\}$ $V(\mathrm{word}) = \sum_{w \in \mathfrak{D}_{\mathrm{word}}} V(w)$, $V(\cdot)$: 分散表現

[良] 見出し語化で対応できてない部分を補える

[悪] 関係ない単語が関連付けられる可能性

4-1. 単語分散表現を用いる手法

Step2-1. 単語分散表現から文章分散表現へ SWEM (Simple Word-Embedding-Based Model) [D Shen et al. 2018]

4-1. 単語分散表現を用いる手法

Step2-2. 単語分散表現から文章分散表現へ 極性辞書を用いる手法 (Sentiment Document Vector)

感情に関係する単語が埋もれないようにする

参考: TWE [Y Liu et al. 2015], SCDV [D. Mekala et al. 2017]

4. 自然言語処理

- 4-1. 単語分散表現を用いる手法
- 4-2. 文章分散表現を求める手法
- 4-3. 深層学習を用いる手法
- 4-4. 実験(データの説明)
- 4-5. 実験結果
- 4-6. 考察

4-2. 文章分散表現を直接求める手法

Doc2vec (PV-DM/PV-DBOW) [Quoc V.Le 2014] 私はとても PV-DM 確率を出力 私 私 とても すごい とても $W_{V,K}$ $W_{K,V}$ すごい は は 嬉しい 嬉しい 単語One-hot Average ベクトル Softmax $W_{D,K}$ 文章分散表現 V:全ての文章に出現する単語数 文章One-hot ベクトル D:文章数

4. 自然言語処理

- 4-1. 単語分散表現を用いる手法
- 4-2. 文章分散表現を求める手法
- 4-3. 深層学習を用いる手法
- 4-4. 実験(データの説明)
- 4-5. 実験結果
- 4-6. 考察

4-3. 深層学習を用いる手法

□ LSTM, Bi-LSTM, GRU

(Max/Average) Pooling / Attention

Full connected Layer (2~4 layers)

Softmax

全ての時刻の出力 $(t = 1, \dots T)$ を返す

語順を考慮した学習を行う

4. 自然言語処理

- 4-1. 単語分散表現を用いる手法
- 4-2. 文章分散表現を求める手法
- 4-3. 深層学習を用いる手法
- 4-4. 実験(データの説明)
- 4-5. 実験結果
- 4-6. 考察

4-4. 実験

ニュートラル

Twitterの5感情ラベル付きコーパス(自作)

■ サンプル数: 約10000ツイート

■ ラベルの付け方: 班員2名でラベルづけ

4. 自然言語処理

- 4-1. 単語分散表現を用いる手法
- 4-2. 文章分散表現を求める手法
- 4-3. 深層学習を用いる手法
- 4-4. 実験(データの説明)
- 4-5. 実験結果
- 4-6. 考察

4-5. 実験結果(カウントベース)

適合率と再現率を考慮した Accuracy

バリデーション手法: stratified 6-fold, 評価指標: mean-F1 ✓

特徴量(次元数)	Naïve Beys (多項分布モデル)	Logistic Regression	GBDT (LightGBM)	MLP (2~4 Layers)
単語文章行列 (11799)	0.49	0.46	0.49	0.46
tf-idf (11799)	0.45	0.43	0.49	0.46
N-gram (155648)	0.48	0.47	0.49	_
N-gram + tf-idf (155648)	0.47	0.43	0.49	_

4-5. 実験結果(単語分散表現)

特徴量(次元数)	Logistic Regression	GBDT (LightGBM)	MLP (2~4 Layers)
Word2vec aver (200)	0.44	0.44	0.45
Word2vec max (200)	0.40	0.43	0.41
Word2vec hier (200)	0.39	0.41	0.41
Word2vec aver+max (400)	0.44	0.44	0.45
Fasttext aver (300)	0.47	0.46	0.49
Fasttext max (300)	0.44	0.48	0.45
Fasttext hier (300)	0.44	0.44	0.46
Fasttext aver+max (600)	0.48	0.48	0.49
Fasttext + SDV (900)	0.48	0.48	0.48

4-5. 実験結果(文章分散表現,深層モデル)

特徴量(次元数)	Logistic Regression	GBDT (LightGBM)	MLP (2~4 Layers)
Doc2Vec PV-DBOW (300)	0.46	0.46	0.47
Doc2Vec PV-DM (300)	0.41	0.40	0.41
Doc2Vec Concat (600)	0.47	0.46	0.46

LSTM	Bi-LSTM	GRU
0.50	0.51	0.50

4. 自然言語処理

- 4-1. 単語分散表現を用いる手法
- 4-2. 文章分散表現を求める手法
- 4-3. 深層学習を用いる手法
- 4-4. 実験(データの説明)
- 4-5. 実験結果
- 4-6. 考察

4-6. 考察

- Word2vecよりFasttextの方が精度が良い。
 - → subword modelによる効果があった。
- Bag-of-wordsモデルと語順考慮のモデルの精度差が小さい。
 - → Twitterのような文法が曖昧なデータに対しては、 特別なアプローチが必要。文字レベルでの入力等。
- 深層モデルのEmbeddingを学習済み単語分散表現で初期化、 重みの学習をしないことで過学習を防げる。

5. まとめ

- ケプストラムやデルタケプストラム、パワーを用いて、 人の音声を解析する手法を学んだ。
- 古典的なカウントベースから深層学習まで 多くの統計的自然言語処理の手法について学んだ。
- 機械学習の多クラス分類手法(SVM, Logistic回帰等)を学んだ。
- 機械学習の精度検証や特徴量選択の手法を学んだ。

付録1. カウントベースの手法

1. 単語文章行列

2. 単語 N-gram

「私は/全然/楽しく/ない」 ■

N=1:{私は,全然,楽しく,ない}

N=2:{私は全然,全然楽しく,楽しくない}

N=3:{私は全然楽しく,全然楽しくない}

高次元スパース行列

付録1. カウントベースの手法

3. tf-idf による重み付け

bow(w,d) = [文章 d 内の単語 w の出現回数]

$$tf(w,d) = rac{bow(w,d)}{[
文章 d 内の単語数]}$$

tf- $idf(w,d) = tf(w,d) \cdot idf(w)$

$$idf(w) = \frac{[全文章数 N]}{[単語 w が含まれる文章数]}$$

特定の文書にしか出現しない単語やN-gramの重要度を上げる