ÉQUATIONS DIFFÉRENTIELLES

Prof: M. BA

Année scolaire : 2024 - 2025

Classe: Ts

CHAP 9 : ÉQUATIONS DIFFÉRENTIELLES

I. Activité (Oscillateur harmonique)

On dispose d'un pendule élastique horizontal non amorti composé d'un ressort de raideur k et d'un solide (S) de masse m fixé à l'extrémité mobile du ressort.

À l'équilibre, l'abscisse x du centre d'inertie G de (S) est repérée par rapport à O dans le repère (O, \overrightarrow{u}) . On écarte (S) de sa position d'équilibre puis on le relâche avec une vitesse initiale v. Les forces de frottements sont supposées nulles.

- 1. Faire le bilan des forces appliquées à (S).
- 2. Établir l'équation du mouvement du solide (S).

Correction de l'activité

1. Bilan des forces appliquées à (S):

On note x(t) l'abscisse du centre d'inertie G du solide (S) à l'instant t, mesurée par rapport à la position d'équilibre.

— Le solide (S) est soumis à la force de rappel du ressort, proportionnelle à l'allongement x(t) et dirigée vers la position d'équilibre.

Donc: $\vec{F}_{ressort} = -kx(t) \vec{u}$

— Il n'y a pas de frottement (hypothèse de l'énoncé).

Par le principe fondamental de la dynamique (PFD) appliqué au solide (S) dans le repère (O, \vec{u}) :

$$m \ddot{x}(t) = -kx(t)$$

2. Équation du mouvement du solide (S):

On obtient l'équation différentielle :

$$m\ddot{x}(t) + kx(t) = 0$$
 ou encore $\ddot{x}(t) + \omega^2 x(t) = 0$ où $\omega^2 = \frac{k}{m}$

Il s'agit d'une EDL linéaire d'ordre 2 à coefficients constants sans second membre, modélisant un oscillateur harmonique non amorti.

Solution générale:

$$x(t) = A\cos(\omega t) + B\sin(\omega t)$$
 où $A, B \in \mathbb{R}$

Conditions initiales:

Si le solide est relâché avec une vitesse initiale v et une position initiale $x(0) = x_0$, alors :

$$x(0) = A = x_0$$
 et $\dot{x}(0) = B\omega = v \Rightarrow B = \frac{v}{\omega}$

D'où la solution particulière :

$$x(t) = x_0 \cos(\omega t) + \frac{v}{\omega} \sin(\omega t)$$

II. Définitions et exemples

- On appelle **équation différentielle linéaire (EDL)**, toute équation qui met en relation une fonction f avec une ou plusieurs de ses dérivées. <u>Résoudre</u> ou <u>intégrer</u> une telle équation c'est donc déterminer l'expression de f(x) qui constitue l'inconnue à rechercher. Une EDL admet toujours une infinité de solutions mais une seule des solutions vérifie $f(x_0) = y_0$
- **Exemple:** $(E_1): f''(x) f'(x) + 2f(x) = 0; (E_2): f'(x) + 2f(x) = x^2 + 1 \text{ etc.}$
- Comme y = f(x); on notera plus souvent y' = f'(x) et y'' = f''(x). Ainsi les équations précédentes s'écrivent :

$$(E_1): y'' - y' + 2y = 0$$
 et $(E_2): y' + 2y = x^2 + 1$

— Si la dérivée $n^{\text{ième}}$ figure dans l'équation, on dit que l'EDL est d'ordre n. L'équation (E_1) de l'exemple précédent est d'ordre 2 et (E_2) de l'exemple précédent est d'ordre 1.

III. Résolution

1. EDL sans second membre

a. EDL d'ordre 1 sans second membre

Une EDL d'ordre 1 sans second membre est une équation de la forme : ay' + by = 0; a et b sont des réels avec $a \neq 0$. Les solutions d'une telle équation sont de la forme :

$$f(x) = Ke^{-\frac{b}{a}x} \quad \text{où } K \in \mathbb{R}.$$

Exemple

Les solutions de y' + 2y = 0 sont de la forme $f(x) = Ae^{-2x}$ où $A \in \mathbb{R}$.

b. EDL d'ordre 2 sans second membre

Une EDL d'ordre 2 sans second membre est une équation de la forme :

$$ay'' + by' + cy = 0$$

où a, b et c sont des réels avec $a \neq 0$.

Pour résoudre une telle équation, on considère l'équation du second degré suivante :

$$(EC): ar^2 + br + c = 0$$

appelée Équation caractéristique puis on détermine son discriminant.

Si $\Delta = 0$; alors (EC) admet une solution double r_0 et les solutions de l'EDL sont de la forme :

$$f(x) = (Ax + B)e^{r_0x} \quad \text{où } A, B \in \mathbb{R}.$$

Si $\Delta > 0$; alors (EC) admet deux solutions réelles r_1 et r_2 et les solutions de l'EDL sont de la forme :

$$f(x) = Ae^{r_1x} + Be^{r_2x} \quad \text{où } A, B \in \mathbb{R}.$$

Si $\Delta < 0$; alors (EC) admet deux solutions complexes $z_1 = \alpha + i\beta$ et $z_2 = \alpha - i\beta$ et les solutions de l'EDL sont de la forme :

$$f(x) = [A\cos(\beta x) + B\sin(\beta x)]e^{\alpha x} \quad \text{où } A, B \in \mathbb{R}.$$

Exercice d'application

Soit l'équation (E): y'' + y' - 2y = 0.

- 1. Déterminer les solutions de (E).
- 2. Déterminer la solution de (E) qui vérifie f(0) = 3 et f'(0) = 0.

Solution

1. L'équation (E): y'' + y' - 2y = 0 est une EDL d'ordre 2 sans second membre. Son équation caractéristique est :

$$(EC): r^2 + r - 2 = 0$$

Elle admet deux solutions réelles $r_1 = 1$ et $r_2 = -2$. Ainsi les solutions de (E) sont de la forme :

$$f(x) = Ae^x + Be^{-2x} \quad \text{où } A, B \in \mathbb{R}.$$

2. On a f(0) = A + B = 3 et f'(0) = A - 2B = 0De là, on tire A = 2B et 2B + B = 3 donc B = 1, A = 2 $Donc \mid f(x) = 2e^x + e^{-2x}$

2. EDL avec second membre

Il existe deux types d'EDL avec second membre :

- EDL d'ordre 1 avec second membre : $ay' + by = \varphi(x)$ où $a; b \in \mathbb{R}$ avec $a \neq 0$. EDL d'ordre 2 avec second membre : $ay'' + by + cy = \varphi(x)$ où $a; b; c \in \mathbb{R}$ avec $a \neq 0$.

Dans les deux cas, φ est une fonction donnée

Pour résoudre de telles équations, on détermine la solution h de l'EDL sans second membre obtenue en enlevant φ . On cherche par suite la solution particulière q obtenue grâce à l'information donnée dans l'exercice.

Les solutions générales sont alors de la forme :

$$f(x) = g(x) + h(x)$$

Exercice d'application

Soit l'équation différentielle $(E): y'-2y=xe^x$

- 1. Déterminer les réels a et b pour que la fonction $u(x) = (ax + b)e^x$ soit une solution de (E).
- 2. En déduire toutes les solutions de (E).
- 3. Déterminer la solution de (E) qui s'annule en 0.

Correction

Soit l'équation différentielle $(E): y'-2y=xe^x$

1. Déterminer les réels a et b pour que la fonction $u(x) = (ax + b)e^x$ soit une solution de (E).

On pose $u(x) = (ax + b)e^x$.

Calculons sa dérivée :

$$u'(x) = [(ax + b)e^x]' = ae^x + (ax + b)e^x = (a + ax + b)e^x$$

Donc:

$$u'(x) - 2u(x) = (a + ax + b)e^{x} - 2(ax + b)e^{x} = (a - ax - b)e^{x}$$

3

On veut que $u'(x) - 2u(x) = xe^x$, donc :

$$(a - ax - b)e^x = xe^x \Rightarrow a - ax - b = x$$

Égalité entre deux polynômes :

$$-ax + (a - b) = x$$

Identification des coefficients:

$$\begin{cases} -a = 1 \Rightarrow a = -1 \\ a - b = 0 \Rightarrow -1 - b = 0 \Rightarrow b = -1 \end{cases}$$

Donc a = -1 **et** b = -1.

2. En déduire toutes les solutions de (E).

L'équation différentielle est linéaire du premier ordre.

L'ensemble des solutions est donné par :

$$y(x) = y_p(x) + y_h(x)$$

- Une solution particulière est $y_p(x) = (-x-1)e^x$
- L'équation homogène associée est y'-2y=0, dont la solution générale est $y_h(x)=Ce^{2x}$

Toutes les solutions de (E) sont donc :

$$y(x) = (-x - 1)e^x + Ce^{2x}, \quad C \in \mathbb{R}$$

3. Déterminer la solution de (E) qui s'annule en x=0.

On cherche C tel que y(0) = 0.

$$y(0) = (-0 - 1)e^{0} + Ce^{0} = -1 + C$$

On veut y(0) = 0, donc:

$$-1 + C = 0 \Rightarrow C = 1$$

La solution de (E) qui s'annule en x = 0 est donc :

$$y(x) = (-x - 1)e^x + e^{2x}$$

NB.

Soit une équation différentielle linéaire homogène de la forme :

$$y' + a(x)y = 0$$

Si u(x) et v(x) sont deux solutions de cette équation, alors u(x) + v(x) est aussi une solution.

NB.

Si u_1 et u_1 sont deux solutions particulières de la même équation différentielle non homogène, alors $u_1 + u_1$ n'est pas forcément solution.