행렬대수 1 - 최소제곱법, 벡터미분, 정규방정식

시립대학교 통계학과

2019년 6월 3일

1 단순선형회귀분석

1.1 예제: 자동차의 속도와 제동거리

자동차가 달리는 속도(speed,mph)와 제동거리(dist,ft)의 관계를 알아보기 위하여 50대의 자동차로 실험한 결과 자료와 산포도가 아래와 같다.

위와 같은 자료를 이용하여 자동차의 속도가 주어졌을 경우 제동거리의 평균에 대한 예측을 하려고 한다면 어떤 방법을 사용해야 할까? 회귀분석(regression analysis)는 여러 가지 변수들의 관계를 분석하는 통계적 방법이다. 일반적으로 한 개 또는 여러 가지의 설명변수들(explanatory variables)이 관심있는 종속변수(response variable)에 어떤 형태로 영향을 미치는지에 파악하고 설명변수와 종속변수의 관계를 통계적으로 추론하는 것이 회귀분석의 목적이다.

자동차의 속도를 x 라고 하고 제동거리를 y 라고 하면 다음과 같은 선형식으로 자동차의 속도와 제동거리의 관계를 나타내는 것을 단순선형회귀식(simple linear regression equation)이라고 한다.

$$E(y|x) = \beta_0 + \beta_1 x \tag{1}$$

식 (1)은 y의 평균이 x 의 선형식으로 나타나는 관계를 가정한 것이며 절편 β_0 와 기울기 β_1 은 모르는 모수로서

자료를 통하여 추정해야 한다.

위에서 본 cars 예제와 같이 n 개의 자료를 독립적으로 추출하였다면 자료의 생성 과정을 다음과 같은 선형 회귀모형(linear regression model)로 나타낸다. 종속변수 y는 설명변수 x의 선형식으로 나타내어지는 결정적인 요인과 확률 변수로 나타내어지는 임의의 오차항 e의 합으로 나타내어진다.

$$y_i = E(y_i|x_i) + e_i = \beta_0 + \beta_1 x_i + e_i, \quad i = 1, 2, ..., n$$
 (2)

위에서 오차항 e_i 평균이 0이고 분산이 σ^2 인 임의의 확률분포를 따르며 서로 독립이다.

$$E(e_i) = 0$$
, $V(e_i) = \sigma^2$ $i = 1, 2, ..., n$

1.2 최소제곱법

단순회귀식 (2)에서 모수 β_0 와 β_1 를 회귀계수(regression coefficient) 라고 하며 자료(observation; data)를 수집 하여 추정해야 한다. n개의 자료를 이용하여 회귀계수 β_0 와 β_1 를 추정하려고 할 때 가장 쉽고 오래됬으며 또한 가장 유용한 방법인 최소제곱법(least square method)을 사용할 수 있다. 일단 위의 식 (2)에서 종속변수의 관측값 y_i 을 대응하는 설명변수 $x=x_i$ 를 이용하여 예측한 값은 $\beta_0+\beta_1x_i$ 이다. 여기서 실제 관측하여 얻어진 값 y_i 와 예측값 $\beta_0+\beta_1x_i$ 사이에는 차이가 발생한다. 그 차이를 잔차(residual)라고 하며 표현하면 다음과 같다.

$$r_i = y_i - E(y_i|x_i) = y_i - (\beta_0 + \beta_1 x_i)$$

잔차는 위에 식에서 알 수 있듯이 관측값과 회귀식을 통한 예측값의 차이를 나타낸 것이다. 그러면 자료를 가장 잘 설명할 수 있는 회귀직선을 얻기 위해서는 잔차 r_i 를 가장 작게하는 회귀모형을 세워야 한다. 잔차들을 최소로 하는 방법들 중 하나인 최소제곱법은 잔차들의 제곱합을 최소로 하는 회귀계수를 추정하는 방법이다. 잔차들의 제곱합은 다음과 같이 표현된다.

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$
(3)

위의 잔차 제곱합 $S(\beta_0,\beta_1)$ 을 최소화하는 β_0 와 β_1 의 값을 구하는 방법은 잔차 제곱합이 β_0 와 β_1 의 미분 가능한 2차 함수이고 아래로 볼록한 함수(convex function)임을 이용한다. 각각의 회귀계수에 대해서 편미분을 하고 0으로 놓으면 아래와 같이 정리된다.

$$\frac{\partial S(\beta_0, \beta_1)}{\partial \beta_0} = \sum_{i=1}^n (-2)[y_i - (\beta_0 + \beta_1 x_i)] = 0$$
(4)

$$\frac{\partial S(\beta_0, \beta_1)}{\partial \beta_1} = \sum_{i=1}^n (-2x_i)[y_i - (\beta_0 + \beta_1 x_i)] = 0$$
 (5)

위의 연립방정식을 행렬식으로 표시하면 다음과 같이 나타낼 수 있다.

$$\begin{bmatrix} n & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} = \begin{bmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i} y_{i} \end{bmatrix}$$

위의 방정식을 풀어서 구한 회귀계수의 추정치를 $\hat{\beta}_0$, $\hat{\beta}_1$ 이라고 하면 다음과 같이 주어진다.

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2}$$

2 회귀식의 행렬형식

일반적으로 회귀모형에서 종속변수의 수는 하나인 경우가 많지만 설명변수의 수는 여러 개인 경우가 많다. 이런 경우 중선형회귀식(multiple linear regression)은 다음과 같이 표현할 수 있고, p개의 설명변수가 있다고 가정하고 (x_1, x_2, \cdots, x_p) 표본의 크기 n인 자료가 얻어지면 선형회귀식을 행렬로 다음과 같이 표현할 수 있다.

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + e_i$$
 (6)

$$= x_i^t \beta + e_i \tag{7}$$

위의 식을 다시 표현하면 다음과 같이 쓸 수 있다.

$$y_i = \begin{bmatrix} 1 & x_{i1} & x_{i2} & \cdots & x_{ip} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix} + e_i$$

n개의 관측치가 있을때 n개의 회귀식을 행렬식으로 표현하면 다음과 같다.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

위의 식을 벡터를 이용하여 표시하면 다음과 같다.

$$y = X\beta + e \tag{8}$$

위의 행렬식에서 각 벡터와 행렬의 차원은 다음과 같다.

- $y: n \times 1$
- $X: n \times (p+1)$
- β : $(p+1) \times 1$
- $e: n \times 1$

여기서 회귀분석의 오차항은 서로 독립이고 동일한 분산을 갖는다. 즉, 오차항은 다음의 분포를 따른다. 즉, E(e)=0이므로 관측값 벡터 y의 평균을 보면

$$E(y|X) = E(X\beta + e) = X\beta + E(e) = X\beta$$
(9)

3 최소제곱추정

최소제곱추정법(least square estimation)은 자료의 관계을 잘 반영하는 회귀식을 구한 다음 실제 관측값 y_i 과 예측값 $x_i^t \beta$ 간에 차이인 잔차를 가장 작게 만드는 것이 목적이다. 모든 잔차항의 제곱의 합을 최소화하는 방법을 최소제곱법이라고 하며 이를 이용하여 회귀계수의 추정량을 찾는다.

$$\min_{\beta} \sum_{i=1}^{n} (y_i - x_i^t \beta)^2 = \min_{\beta} (y - X\beta)^t (y - X\beta)$$
(10)

 $\hat{oldsymbol{eta}}$ 는 잔차의 제곱합 (10) 을 최소로 하는 최소제곱 추정량이다. 잔차의 제곱합을 $S(oldsymbol{eta})$ 이라고 하면

$$S(\beta) = (y - X\beta)^{t} (y - X\beta)$$

$$= y^{t}y - y^{t}X\beta - \beta^{t}X^{t}y + \beta^{t}X^{t}X\beta$$

$$= y^{t}y - 2\beta^{t}X^{t}y + \beta^{t}X^{t}X\beta$$
(11)

여기서 $S(\pmb{\beta})$ 를 최소로 하는 회귀계수벡터의 값을 구하기 위하여 $S(\pmb{\beta})$ 를 회귀계수벡터 $\pmb{\beta}$ 로 미분한후 $\pmb{0}$ 으로 놓고 선형 방정식을 풀어야 한다.

다음 절에 나오는 벡터미분을 이용하면

$$\frac{\partial S(\hat{\beta})}{\partial \beta} = \frac{\partial}{\partial \beta} (y^t y - 2\beta^t X^t y + \beta^t X^t X \beta)$$
$$= 0 - 2X^t y + 2X^t X \beta$$
$$= 0$$

최소제곱 추정량을 구하기 위한 정규방정식은 다음과 같이 쓸 수 있다.

$$X^t X \beta = X^t y \tag{12}$$

방정식 (12)를 정규방정식(normal equation)이라고 한다. 만약 X^tX 가 정칙행렬일 경우 최소제곱법에 의한 회귀계수 추정량 $\hat{m{\beta}}$ 다음과 같다.

$$\hat{\boldsymbol{\beta}} = (X^t X)^{-1} X^t y \tag{13}$$

예측값 벡터 \hat{y} 는 E(y|X)의 추정치로서 다음과 같다.

$$\hat{E}(y|X) = \hat{y} = X\hat{\beta} = X(X^tX)^{-1}X^ty$$

만약 X^tX 가 정칙행렬이 아닐 경우 최소제곱법에 의한 회귀계수 추정량 $\hat{\beta}$ 은 X^tX 의 일반화 역행렬 $(X^tX)^-$ 를 이용하여 다음과 같이 구한다. 이 경우 일반화 역행렬이 유일하지 않기 때문에 회귀계수 추정량도 유일하지 않다.

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^t \boldsymbol{X})^- \boldsymbol{X}^t \boldsymbol{y}$$

위에서 살펴본 cars 자료에 대한 회귀분석의 결과와 추정된 회귀직선은 다음과 같다.

$$E(dist|speed) = -17.5791 + 3.9324 * (speed)$$

```
res <- lm(dist~speed, data=cars)
summary(res)
##
## Call:
## lm(formula = dist ~ speed, data = cars)
## Residuals:
      Min 10 Median 30
                                   Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## speed
               ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
plot(cars)
abline(res)
```


4 벡터미분

4.1 스칼라미분

벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대한 표기법을 정의하는 방법이다. 보통 스칼라(scalar)에 대한 미분은 일분수 함수 $f:\Re^1\to\Re^1$ 또는 다변수 함수(function of several variables) $f:\Re^p\to\Re^1$ 에서 쉽게 정의된다. 만약 y=f(x) 또는 y=f(x)라고 하면 다음과 같이 미분이주어진다.

$$\frac{\partial y}{\partial x} = \frac{\partial f(x)}{\partial x} = f'(x)$$

$$\frac{\partial y}{\partial x} = \frac{\partial f(x)}{\partial x} = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \cdots, \frac{\partial f(x)}{\partial x_p}\right) = \nabla f(x)$$

함수가 다변수함수일 경우 함수의 값을 각 축의 변수로 미분한 것(partial derivative)을 벡터로 표시하는 것을 gradient 라고 한다.

4.2 벡터미분의 표기 방법

이제 다변량함수(multivariate function), $f: \Re^p \to \Re^q$ 에 대한 미분을 생각해보자. 앞 절에서 본것과 같이 스칼라 함수를 여러 변수로 미분하여 partial derivative를 구한 뒤 gradient를 만드는 경우 열벡터와 행벡터 중 하나를 선택해야 한다. 이러한 선택은 절대적인 것이 아니며 각 분야의 특성과 편의에 따라 다르게 선택 될 수 있다.

이제 간단한 예제를 고려해 보자. 두 열벡터 $x=(x_1,x_2)^t\in\Re_2$, $y=(y_1,y_2,y_3)^t\in\Re^3$ 를 고려하고 다음과 같은 함수로 두 벡터의 관계가 정의된다고 하자.

$$y_1 = x_1^2 + x_2$$
, $y_2 = \exp(x_1) + 3x_2$, $y_3 = \sin(x_1) + x_2^3$

일단 각각의 partial derivative $\partial y_i/\partial x_i$ 를 구해야 하며 이는 scalar 미분으로 쉽게 구해진다.

$$\frac{\partial y_1}{\partial x_1} = 2x_1, \qquad \frac{\partial y_2}{\partial x_1} = \exp(x_1), \qquad \frac{\partial y_3}{\partial x_1} = \cos(x_1)$$

$$\frac{\partial y_1}{\partial x_2} = 1, \qquad \frac{\partial y_2}{\partial x_1} = 3, \qquad \frac{\partial y_3}{\partial x_1} = 3x_2^2$$

통계학에서는 벡터 y를 벡터 x로 미분하려면 다음과 같이 분모 표기법 (Denominator layout)을 사용하여 표기한다.

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \equiv \frac{\partial \mathbf{y}^t}{\partial \mathbf{x}} \stackrel{\equiv}{=} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \frac{\partial y_3}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_3}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 & \exp(x_1) & \cos(x_1) \\ 1 & 3 & 3x_2^2 \end{bmatrix}$$

즉 분모표기법은 분모를 열벡터로, 분자를 행벡터로 보고 각각 위치에 있는 변수들에 대하여 미분을 표기하는 방법이다.

4.3 핵심곳식

디음은 분모표기법을 이용한 가장 기본적이고 핵심적인 미분 공식들이다. 공식을 유도하는 경우 분모표기법에서는 $\partial y/\partial x \equiv \partial y^t/\partial x$ 임을 이용한다. 변환이 있거나 여러가지 곱이 있는 경우 미분할 대상 벡터를 가장 왼쪽에 전치형태(즉, 행벡터의 형태로)로 놓는 것이 필요하다. 예를 들어

$$\frac{\partial a^t V f(x)}{\partial x} = \frac{\partial f(x)^t V^t a}{\partial x} = \frac{\partial f(x)^t}{\partial x} V^t a = \frac{\partial f(x)}{\partial x} V^t a$$

또한 행렬은 교환법칙이 성립하지 않기 때문에 연산의 순서를 유지해야 하는 것을 유념하자.

1. 기본행렬 미분 벡터 c를 상수벡터하고 하자.

$$\frac{\partial c}{\partial x} = 0, \quad \frac{\partial x}{\partial x} = I$$

2. 벡터-스칼라 미분

이 경우는 $x \in \Re^1$, $y \in \Re^9$ 인 경우이며 결과는 다음과 같이 행벡터로 결과가 주어진다.

$$\frac{\partial y}{\partial x} \stackrel{=}{=} \frac{\partial y^t}{\partial x} = \left[\frac{\partial y_1}{\partial x}, \frac{\partial y_2}{\partial x}, \cdots, \frac{\partial y_q}{\partial x} \right]$$

3. 스칼라-벡터 미분

이 경우는 $x \in \Re^p$, $y \in \Re^1$ 인 경우이며 결과는 다음과 같이 열벡터로 결과가 주어진다.

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_p} \end{bmatrix}$$

4. 상수벡터와 내적에 대한 미분

열벡터 $a = p \times 1$ 상수벡터이라고 하고 $y = a^t x = x^t a$ 라 하자.

$$\frac{\partial y}{\partial x} = \frac{\partial a^t x}{\partial x} = \frac{\partial x^t a}{\partial x} = \begin{bmatrix} \frac{\partial a^t x}{\partial x_1} \\ \frac{\partial a^t x}{\partial x_2} \\ \vdots \\ \frac{\partial a^t x}{\partial x_p} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix} = a$$

5. 선형변환에 대한 미분

행렬 A를 $q \times p$ 행렬이라고 하고 y = Ax라 하자. 여기서 행렬 A를 다음과 같이 나타내자.

$$A = egin{bmatrix} a_1^t \ a_2^t \ dots \ a_q^t \end{bmatrix} ext{ or } A^t = [a_1 \ a_2 \ \cdots \ a_q]$$

위의 내적에 대한 미분 결과를 이용하면 다음은 결과를 얻는다.

$$\frac{\partial y}{\partial x} = \frac{\partial Ax}{\partial x}$$

$$\equiv \frac{\partial x^t A^t}{\partial x}$$

$$= \frac{\partial}{\partial x} [x^t a_1 \ x^t a_2 \ \cdots \ x^t a_q]$$

$$= [\frac{\partial x^t a_1}{\partial x} \ \frac{\partial x^t a_2}{\partial x} \ \cdots \ \frac{\partial x^t a_q}{\partial x}]$$

$$= [a_1 \ a_2 \ \cdots \ a_q]$$

$$= A^t$$

위의 결과를 응용하면 다음의 결과를 얻는다.

$$\frac{\partial Ax}{\partial x} = A^t$$
 and $\frac{\partial x^t A}{\partial x} = A$

6. 이차형식

$$\frac{\partial x^t A x}{\partial x} = \frac{\partial x^t}{\partial x} A x + \frac{\partial x^t A^t}{\partial x} x = A x + A^t x$$

만약 행렬 A가 대칭이면

$$\frac{\partial x^t A x}{\partial x} = 2Ax$$