moyennés

A. Godichon-Baggioni

Algorithmes de gradient stochastiques

Algorithme de gradient stochastique moyenné

Régression linéaire

DÉFINITION

Algorithme movenné:

$$\overline{m}_n = \frac{1}{n+1} \sum_{k=0}^n m_k$$

où les m_k sont les estimateurs de gradient stochastique.

Ecriture récursive :

$$m_{n+1} = m_n - \gamma_{n+1} \nabla_h g\left(X_{n+1}, m_n\right)$$
$$\overline{m}_{n+1} = \overline{m}_n + \frac{1}{n+2} \left(m_{n+1} - \overline{m}_n\right).$$

avec
$$\gamma_n = c_{\gamma} n^{-\alpha}$$
 et $\alpha \in (1/2, 1)$.

LEMME DE TOEPLITZ

Lemme

Soit (a_n) positive telle que $\sum_{n>0} a_n = +\infty$ et X_n une suite de variables aléatoires convergeant presque sûrement vers X. Alors

$$\frac{1}{\sum_{k=0}^{n} a_k} \sum_{k=0}^{n} a_k X_k \xrightarrow[n \to +\infty]{p.s} X.$$

Application:

$$m_n \xrightarrow[n \to +\infty]{p.s} m \implies \overline{m}_n \xrightarrow[n \to +\infty]{p.s} m$$

Algorithme moyenné

Algorithme moyenné

0000000000

Régression linéaire

Algorithme moyenné

Algorithme moyenné

Algorithme moyenné

Algorithme moyenné

0000000000

Régression linéaire

Régression linéaire

Vitesse de convergence

Un corollaire du lemme de Toeplitz

Corollaire

Soit (X_n) une suite de variables aléatoires positives et (a_n) une suite positive telles que

$$X_n = o(a_n)$$
 p.s.

Alors

Algorithme movenné

$$\sum_{k=1}^{n} X_k = o\left(\sum_{k=1}^{n} a_k\right) \quad a.s.$$

CADRE (GRADIENT STOCHASTIQUE)

(PS1) Il existe $\eta > \frac{1}{n} - 1$ et $C_n \ge 0$ tels que

$$\mathbb{E}\left[\left\|\nabla_{h}g\left(X,h\right)\right\|^{2+2\eta}\right] \leq C_{\eta}\left(1+\left\|h-m\right\|^{2+2\eta}\right)$$

(PS2) G est deux fois continûment différentiable et

$$\lambda_{\min} := \lambda_{\min} \left(\nabla^2 G(m) \right) > 0.$$

(PS1) et **(PS2)**
$$\Longrightarrow$$
 $||m_n - m||^2 = O\left(\frac{\ln n}{n^{\alpha}}\right)$ p.s.

Algorithme movenné

(PS3) Il existe
$$\eta > 0$$
 et $C_{\eta} \ge 0$ t.q pour tout $h \in \mathcal{B}_{\eta} := \mathcal{B}(m, \eta)$,
$$\|\nabla G(h) - \nabla^2 G(m)(h - m)\| \le C_{\eta} \|h - m\|^2$$

Régression linéaire

L'hypothèse (**PS3**) est vérifiée si $\nabla^2 G(.)$ est Lipschitz sur \mathcal{B}_n .

Théorème

On suppose que les hypothèses (PS1) à (PS3) sont vérifiées. Alors, pour tout $\delta > 0$,

$$\|\overline{m}_n - m\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right)$$
 p.s.

PREUVE

Algorithme movenné

La preuve repose sur le résultat suivant :

Théorème

Soit (ξ_k) une suite de différences de martingale telle que

$$\mathbb{E}\left[\left\|\xi_{k}\right\|^{2}\left|\mathcal{F}_{k-1}\right|\right] \leq C.$$
 Alors, pour tout $\delta > 0$,

$$\left\| \sum_{k=1}^{n} \xi_k \right\|^2 = o\left(n(\ln n)^{1+\delta} \right) \quad p.s.$$

EFFICACITÉ ASYMPTOTIQUE

(PS4) La fonction $\Sigma : \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R})$ définie par

$$\Sigma(h) = \mathbb{E}\left[\nabla_h g(X, h) \nabla_h g(X, h)^T\right]$$

est continue en *m*.

Théorème

On suppose que les hypothèses (PS1) à (PS4) sont vérifiées. Alors

$$\sqrt{n}\left(\overline{m}_n-m\right)\xrightarrow[n\to+\infty]{\mathcal{L}}\mathcal{N}\left(0,H^{-1}\Sigma H^{-1}\right)$$

avec
$$H = \nabla^2 G(m)$$
 et $\Sigma = \Sigma(m)$.

Algorithme moyenné

Régression linéaire

•0000000

L'ALGORITHME

Algorithme moyenné:

$$\theta_{n+1} = \theta_n + \gamma_{n+1} \left(Y_{n+1} - X_{n+1}^T \theta_n \right) X_{n+1}$$
$$\overline{\theta}_{n+1} = \overline{\theta}_n + \frac{1}{n+2} \left(\theta_{n+1} - \overline{\theta}_n \right)$$

Régression linéaire

0.000000

avec
$$\overline{\theta}_0 = \theta_0$$
.

VITESSE DE CONVERGENCE

Théorème

Algorithme moyenné

On suppose qu'il existe $\eta > \frac{1}{\alpha} - 1$ tel que X et ϵ admettent des moments d'ordre $4 + 4\eta$ et $2 + 2\eta$. Alors pour tout $\delta > 0$,

$$\|\overline{\theta}_n - \theta\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right) p.s. \quad et \quad \sqrt{n}\left(\overline{\theta}_n - \theta\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, \sigma^2 H^{-1}\right)$$

SIMULATIONS

FIGURE - Evolution de l'erreur quadratique moyenne de l'estimateur de gradient θ_n (SGD) et de sa version moyennée $\overline{\theta}_n$ (ASGD) en fonction de la taille d'échantillon n dans le cadre de la régression linéaire.

Réécriture du TLC : Sous H0,

Algorithme movenné

$$\sqrt{n} \frac{\left(\overline{\theta}_n - \theta_0\right)^T H\left(\overline{\theta}_n - \theta_0\right)}{\sigma^2} \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Régression linéaire

00000000

Application: Soit \overline{H}_n et $\hat{\sigma}_n^2$ des estimateurs consistants. Alors

$$C_n := \sqrt{n} \frac{\left(\overline{\theta}_n - \theta_0\right)^T \overline{H}_n \left(\overline{\theta}_n - \theta_0\right)}{\widehat{\sigma}_n^2} \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Régression linéaire

00000000

EXERCICE

- 1. Proposer un estimateur récursif de *H*.
- 2. Montrer sa consistance.
- 3. Proposer un estimateur récursif de σ^2 .
- 4. Montrer sa consistance et donner sa vitesse de convergence.
- 5. Donner sa normalité asymptotique.

CONSTRUCTION DE \overline{H}_n ET σ_n^2

Ecriture directe:

$$\overline{H}_{n} = \frac{1}{n+1} \left(H_{0} + \sum_{k=1}^{n} X_{k} X_{k}^{T} \right)$$

$$\hat{\sigma}_{n}^{2} = \frac{1}{n+1} \left(\sigma_{0}^{2} + \sum_{k=1}^{n} \left(Y_{k} - X_{k}^{T} \overline{\theta}_{k-1} \right)^{2} \right)$$

Régression linéaire

00000000

Ecriture récursive :

$$\overline{H}_{n+1} = \overline{H}_n + \frac{1}{n+2} \left(X_{n+1} X_{n+1}^T - \overline{H}_n \right)
\hat{\sigma}_{n+1}^2 = \hat{\sigma}_n^2 + \frac{1}{n+2} \left(\left(Y_{n+1} - X_{n+1}^T \overline{\theta}_n \right)^2 - \hat{\sigma}_n^2 \right)$$

SIMULATIONS

FIGURE – Comparaison de la fonction de répartition de C_n avec n=5000, pour $\alpha=0.66$ et $\alpha=0.75$, et de celle d'une Chi 2 à 10 degrés de liberté dans le cadre du modèle linéaire.

Algorithme moyenné

Régression linéaire

L'ALGORITHME

Algorithme movenné:

$$\theta_{n+1} = \theta_n + \gamma_{n+1} \left(Y_{n+1} - \pi \left(X_{n+1}^T \theta_n \right) \right) X_{n+1}$$

$$\overline{\theta}_{n+1} = \overline{\theta}_n + \frac{1}{n+2} \left(\theta_{n+1} - \overline{\theta}_n \right)$$

$$\text{avec } \overline{\theta}_0 = \theta_0 \text{ et } \pi(x) = \frac{e^x}{1 + e^x}.$$

VITESSE DE CONVERGENCE

Théorème

On suppose que X admet un moment d'ordre 4. Alors pour tout $\delta > 0$,

$$\|\overline{\theta}_n - \theta\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right) p.s. \quad et \quad \sqrt{n}\left(\overline{\theta}_n - \theta\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, H^{-1}\right)$$

SIMULATIONS

FIGURE – Evolution de l'erreur quadratique moyenne par rapport à la taille de l'échantillon des estimateurs de gradients θ_n (SGD) et de leurs versions moyennées $\bar{\theta}_n$ (ASGD) dans le cadre de la régression logistique.

Tester H0 : $\theta = \theta_0$ "en ligne"

Réécriture du TLC : Sous H0.

$$\sqrt{n} \left(\overline{\theta}_n - \theta_0 \right)^T H \left(\overline{\theta}_n - \theta_0 \right) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Application: Soit H_n un estimateur consistant de H. Alors

$$C_n := \sqrt{n} \left(\overline{\theta}_n - \theta_0 \right)^T \overline{H}_n \left(\overline{\theta}_n - \theta_0 \right) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi_d^2$$

Régression logistique 0000000000

EXERCICE

- 1. Proposer un estimateur récursif de *H*.
- 2. Donner sa vitesse de convergence.

CONSTRUCTION DE H_n

Rappel:

$$\nabla^{2}G(\theta) = \mathbb{E}\left[\pi\left(X^{T}\theta\right)\left(1 - \pi\left(X^{T}\theta\right)\right)XX^{T}\right].$$

Ecriture directe:

$$\overline{H}_n = \frac{1}{n+1} \left(H_0 + \sum_{k=1}^n \pi \left(X_k^T \overline{\theta}_{k-1} \right) \left(1 - \pi \left(X_k^T \overline{\theta}_{k-1} \right) \right) X_k X_k^T \right)$$

Ecriture récursive :

$$\overline{H}_{n+1} = \overline{H}_n + \frac{1}{n+2} \left(\pi \left(X_{n+1}^T \overline{\theta}_n \right) \left(1 - \pi \left(X_{n+1}^T \overline{\theta}_n \right) \right) X_{n+1} X_{n+1}^T - \overline{H}_n \right)$$

SIMULATIONS

Algorithme movenné

FIGURE – Comparaison de la fonction de répartition de C_n , avec n = 20000 et $\alpha = 0.66$ ou $\alpha = 0.75$, et de la fonction de répartition d'une Chi deux à 5 degrés de liberté dans le cadre de la régression logistique.

MOYENNÉ PONDÉRÉ

$$\overline{m}_n = \frac{1}{\sum_{k=1}^n \log(k+1)^w} \sum_{k=1}^n \log(k+1)^w m_k$$

FIGURE – Evolution de l'erreur quadratique moyenne par rapport à la taille de l'échantillon des estimateurs de gradients θ_n (SGD) et de leurs versions moyennées $\bar{\theta}_n$ (ASGD) dans le cadre de la régression logistique.

EXERCICE

- ► Sur un même graphique, tracer l'évolution de l'erreur quadratique moyenne de l'algorithme de gradient et de sa version moyennée (pour cela, on pourra générer 50 échantillons).
- ► Faire un tableau pour comparer les erreurs quadratiques movennes pour $c_{\gamma} = 10^{-2}, 0.1, 1, 5, 100$ et $\alpha = 0.5, 0.66, 0.75, 1.$
- ► Faire de même pour la régression logistique avec $\theta = (-2, -1, 0, 1, 2)$ et $X \sim U[0, 1]$.
- ► Revenir à l'exemple de la régression linéaire mais en prenant $X \sim \mathcal{N}(0, D)$ avec $D = \text{diag}(10^{-2}, 10^{-1}, 1, 10, 10^2)$. Regarder les évolutions des erreurs quadratiques moyennes pour les estimateurs de gradient stochastique et leurs versions moyennées.