1. (a) $||\mathbf{1} - T|| < 1$ implies that the power series $\sum_{0}^{\infty} ||\mathbf{1} - T||^n$ converges, since X is Banach this further implies that $\sum_{0}^{\infty} (\mathbf{1} - T)^n$ converges in X. For $N \in \mathbb{Z}_{>0}$ we find that

$$T\sum_{0}^{N} (\mathbf{1} - T)^{n} = \sum_{0}^{N} (\mathbf{1} - T)^{n} - \sum_{1}^{N+1} (\mathbf{1} - T)^{n} = 1 - (\mathbf{1} - T)^{N+1}$$

and hence

$$||\mathbf{1} - T\sum_{0}^{N} (\mathbf{1} - T)^{n}|| = ||\mathbf{1} - T||^{N+1}$$

taking $N \to \infty$ we find that

$$||\mathbf{1} - T\sum_{0}^{\infty} (\mathbf{1} - T)^{n}|| = 0 \implies T\sum_{0}^{\infty} (\mathbf{1} - T)^{n} = 1 \quad \Box$$

To see that the inverse is bounded, note that for any $N \in \mathbb{Z}_{>0}$

$$||\sum_{0}^{N} (\mathbf{1} - T)^{n}|| \le \sum_{0}^{N} ||\mathbf{1} - T||^{n} \implies ||\sum_{0}^{\infty} (\mathbf{1} - T)^{n}|| \le \sum_{1}^{\infty} ||\mathbf{1} - T||^{n} < \infty$$

(b) Applying (a), $S^{-1}T$ is invertible with bounded inverse, since

$$||\mathbf{1} - S^{-1}T|| = ||S^{-1}S - S^{-1}T|| \leq ||S^{-1}|| ||S - T|| < ||S^{-1}|| ||S^{-1}||^{-1} = 1$$

It is immediate that $(S^{-1}T)^{-1}S^{-1} = T^{-1}$, since

$$(S^{-1}T)^{-1}S^{-1}T = \mathbf{1} = SS^{-1}T(S^{-1}T)^{-1}S^{-1} = T(S^{-1}T)^{-1}S^{-1}$$

and T^{-1} is bounded since

$$||T^{-1}|| = ||(S^{-1}T)^{-1}S^{-1}|| \le ||(S^{-1}T)^{-1}||||S^{-1}|| < \infty \quad \Box$$

(c) Note that

$$||\mathbf{1} - (\mathbf{1} - \lambda^{-1}T)|| = \lambda^{-1}||T|| < 1 = ||1^{-1}||^{-1}$$

Hence by (b) we find that $\mathbf{1} - \lambda^{-1}T$ is invertible with bounded inverse, multiplying by $-\lambda$ we find that $T - \lambda \mathbf{1}$ is invertible with bounded inverse.

(d) Let $\lambda \in \rho(T)$ and fix $\delta = ||(T - \lambda \mathbf{1})^{-1}||^{-1}$, then let $\alpha \in N_{\delta}(\lambda)$, so that $\alpha = \lambda - \beta$ with $||\beta|| < \delta$. It follows that

$$||\mathbf{1} - (\mathbf{1} + \beta(T - \lambda \mathbf{1})^{-1})|| = |\beta| ||(T - \lambda \mathbf{1})^{-1}|| < 1 = ||\mathbf{1}^{-1}||^{-1}$$

so that $1 + \beta (T - \lambda 1)^{-1}$ is invertible with bounded inverse. It follows that

$$(\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1})^{-1} (T - \lambda \mathbf{1})^{-1} (T - (\lambda - \beta) \mathbf{1}) = (\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1})^{-1} (\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1}) = \mathbf{1}$$

so that $(\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1})^{-1} (T - \lambda \mathbf{1})^{-1}$ is a left sided inverse for $T - \alpha \mathbf{1} = T - (\lambda - \beta) \mathbf{1}$, it is also a right inverse because

$$(T - (\lambda - \beta)\mathbf{1})(\mathbf{1} + \beta(T - \lambda\mathbf{1})^{-1})^{-1}(T - \lambda\mathbf{1})^{-1}$$

$$= (T - \lambda\mathbf{1})(T - \lambda\mathbf{1})^{-1}(T - (\lambda - \beta)\mathbf{1})(\mathbf{1} + \beta(T - \lambda\mathbf{1})^{-1})^{-1}(T - \lambda\mathbf{1})^{-1}$$

$$= (T - \lambda\mathbf{1})(\mathbf{1} + \beta(T - \lambda\mathbf{1})^{-1})(\mathbf{1} + \beta(T - \lambda\mathbf{1})^{-1})^{-1}(T - \lambda\mathbf{1})^{-1}$$

$$= (T - \lambda\mathbf{1})(T - \lambda\mathbf{1})^{-1} = \mathbf{1}$$

so that
$$(T - \alpha \mathbf{1})^{-1} = (\mathbf{1} + \beta (T - \lambda \mathbf{1})^{-1})^{-1} (T - \lambda)^{-1} \in \mathcal{L}(X, X)$$

- (e) $\sigma(T) \subset \{\lambda \in K \mid |\lambda| \leq ||T||\}$ is bounded, and in (d) we showed that $\sigma(T) = \rho(T)^c$ is closed. By the Heine Borel theorem we conclude that $\sigma(T)$ is compact.
- 2. (a) We first check that the operator is bounded,

$$||M_g(f)|| = ||fg||_2 = \left(\int_X |fg|^2\right)^{\frac{1}{2}} \le \left(\int_X |f|^2 \, ||g||_\infty^2\right)^{\frac{1}{2}} = \sqrt{||g||_\infty^2 ||f||_2^2} = ||g||_\infty ||f||_2$$

Let $\epsilon > 0$, then by definition of essential supremum, there is some set E of positive measure such that $||g||_{\infty} - \epsilon \le |g(x)|$ for any $x \in E$, consider $f := \frac{1}{\sqrt{\mu(E)}}\chi_E$, it is clear that $||f||_2 = 1$, and we have that

$$||fg||_2 = \left(\int_X \left| \frac{1}{\sqrt{\mu(E)}} \chi_E g \right|^2 \right)^{\frac{1}{2}} \ge \left(\int_E \left(\frac{||g||_{\infty} - \epsilon}{\sqrt{\mu(E)}} \right)^2 \right)^{\frac{1}{2}} = (||g||_{\infty} - \epsilon) \left(\int_E \frac{1}{\mu(E)} \right)^{\frac{1}{2}} = ||g||_{\infty} - \epsilon$$

Since ϵ was arbitrary, we may conclude that $||M_g|| \ge ||g||_{\infty}$, where the opposite inequality is provided above, so we conclude that $||M_g|| = ||g||_{\infty}$.