

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME										
CENTRE NUMBER						CANDIDATE NUMBER				
MATHEMATICS									97	09/53
Paper 5 Mechan	nics 2 (M2)						May	//Jun	e 2018
							1	hour	15 m	inutes
Candidates answ	wer on t	he Quest	ion Pa	per.						
Additional Mater	ials:	List of F	ormu	lae (MF9))					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

and vertically projection, fir	upwards cond the speed	omponents of and direction	f 18 m s ⁻¹ an of motion	and $25 \mathrm{ms^{-1}}$ of B .	respectivel	y. For the	instant 4 s af
		•••••	•••••				
		•••••		••••			
•••••		••••••	•••••			••••••	••••••••••
••••••			•••••				••••••
		•••••	•••••	•••••		•••••	
••••••		••••••					•••••
		•••••	•••••				
		••••••					
		•••••	•••••	•••••			•••••
		•••••					
		•••••		••••			

A non-uniform rod AB of length 0.5 m and weight 8 N is freely hinged to a fixed point at A . The romakes an angle of 30° with the horizontal with B above the level of A . The rod is held in equilibriumly a force of magnitude 12 N acting in the vertical plane containing the rod at an angle of 30° to A applied at B (see diagram). Find the distance of the centre of mass of the rod from A .	ın
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••

	dv .	
i) S	Show that $\frac{\mathrm{d}v}{\mathrm{d}t} = 2t - 5\mathrm{e}^{-t}$.	[2
••		
•		
1) (Given that $v = 8$ when $t = 1$, express v in terms of t .	[

		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
(iii)	Find the speed of projection of P .	2]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

A small object is projected from a point O with speed $V \,\mathrm{m\,s^{-1}}$ at an angle of 45° above the horizontal.

(i) Expr	ess x and y in terms of t , and hence find the equation of the path.	
•••••		•••••
•••••		
•••••		
•••••		•••••
•••••		•••••
•••••		••••••
he obiec	t passes through the point with coordinates (24, 18).	
ii) Find	V.	
•••••		
•••••		•••••

x for these points.	[3

incli of el belo	article P of mass $0.7 \mathrm{kg}$ is attached by a light elastic string to a fixed point O on a smooth plane ned at an angle of 30° to the horizontal. The natural length of the string is $0.5 \mathrm{m}$ and the modulus asticity is $20 \mathrm{N}$. The particle P is projected up the line of greatest slope through O from a point A w the level of O . The initial kinetic energy of P is $1.8 \mathrm{J}$ and the initial elastic potential energy in string is also $1.8 \mathrm{J}$.
(i)	Find the distance <i>OA</i> . [2]
(ii)	Find the greatest speed of P in the motion. [6]

A particle P of mass $0.2 \, \mathrm{kg}$ is attached to one end of a light inextensible string of length $0.6 \, \mathrm{m}$. The other end of the string is attached to a particle Q of mass $0.3 \, \mathrm{kg}$. The string passes through a small hole H in a smooth horizontal surface. A light elastic string of natural length $0.3 \, \mathrm{m}$ and modulus of elasticity $15 \, \mathrm{N}$ joins Q to a fixed point A which is $0.4 \, \mathrm{m}$ vertically below H. The particle P moves on the surface in a horizontal circle with centre H (see diagram).

	7			stic string is		ed. [4
		 	•••••		•••••	•••••
		 			•••••	
		 			•••••	
•••••		 	•••••			
•••••		 	•••••			
••••••		 	•••••		•••••	
•••••		 	•••••			
••••••		 	•••••		•••••	
••••••		 	•••••		•••••	

 •••••
••••••
••••••
••••••

A uniform solid cone has height 1.2 m and base radius 0.5 m. A uniform object is made by drilling a cylindrical hole of radius 0.2 m through the cone along the axis of symmetry (see diagram).

(i) Show that the height of the object is 0.72 m and that the volume of the cone removed by the

drilling is $0.0352\pi \mathrm{m}^3$.	[4]
[The volume of a cone is $\frac{1}{3}\pi r^2 h$.]	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

 •••••
 ••••••
••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.