

12. Non-parametric tests

Albulene Grajcevci

Agenda

- 1. Introduction to non-parametric tests
- 2. The Wilcoxon rank-sum test
 - Theory
 - Conducing the analysis and reporting results
- 3. The Mann-Whitney test
 - Theory
 - Conducing the analysis and reporting results
- 4. The Kruskal-Wallis Test
 - Theory
 - Conducing the analysis and reporting results
- 5. Friedman's Anova
 - Theory
 - Conducing the analysis and reporting results

1. Introduction to non-parametric tests

- Sometimes the data you have violates the assumptions of parametric tests
- No matter how hard you may want to try there is simply no way possible for you to fix the problems in your data
- Good news though
 - >The family of non-parametric tests is there for you

1. Introduction to non-parametric tests

- Non-parametric tests or the assumption-free tests
- > Do not make the assumptions that you find in parametric tests
- > Technically parametric tests are more powerful

- The range of robust tests in SPSS is quite limited
- Non-parametric tests a nice option to test a hypothesis by still claiming to use a statistical test

1. Introduction to non-parametric tests

- The non-parametric tests you can use
- 1. The Wilcoxon rank-sum test & Mann-Whitney test- comparing two independent conditions
- 2. The Wilcoxon signed-rank test- Comparing two related conditions
- 3. The Kruskal-Wallis test-Differences between several independent groups
- 4. Friedman's Anova- Differences between several independent groups

2. The Wilcoxon rank-sum test & Mann-Whitney test

- > If you want to test for differences between two groups
- Similar logic to t-tests
- Both tests will do the job for you

2. The Wilcoxon rank-sum test & Mann-Whitney test

- Elegant logic behind both tests
- Ranking data
- Higher ranks in one group and lower in the other: your expectation
- ➤ IF groups are unequal in numbers of participants the test statistic for the Wilcoxon rank-sum is the sum of ranks in the group which has the lowest number of participants
- ➤ If groups as similar then this value corresponds to the smaller summed rank

2. Understanding ranks

Score	3	5	6	6	7	8	9	10	17	24	27	28	29	30	32	35	35	35	36	39
Potential Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Actual Rank	1	2	<mark>3.5</mark>	<mark>3.5</mark>	5	6	7	8	9	10	11	12	13	14	15	<mark>17</mark>	<mark>17</mark>	<mark>17</mark>	19	20
Group	С	С	С	С	С	С	С	С	С	N	Ν	N	N	С	N	N	N	N	N	N
Sum of ranks for C= 59							Sum of ranks for N= 151													

2. Conducting the test

- Conducting the test
- Calculating effect sizes

$$r = \frac{z}{\sqrt{N}}$$

2. Reporting Mann-Whitney test results

- Report
- Means of groups
- **▶** U-score, z-score, r-value and p-value

3. The Wilcoxon signed-rank test

- Used in cases when you are comparing two sets of scores that come from the same participants
- > Ideal for cases of measuring pre-post test scores
- The test itself is based on the differences between scores in the two conditions
- > Once the differences are calculated, they are ranked.

3. The Wilcoxon signed-rank test

- > Report
- Means of groups
- > T-score, z-score, r-value and p-value

- Differences between several independent groups
- The hypothesis of the test is that your groups come from different populations
- > The test looks at the differences between groups of scores
- ➤ E.G. take 50 students and divide them in 4 groups and each groups gets a special drink (i.e. tea, water etc.)

- The same logic for data ranking as the Mann-Whitney exept:
 - 1. Order the scores from the lowest to the highest
 - 2. Assign ranks starting with 1
 - 3. Divide by groups
 - 4. Find the total score and the average

No Soya		1 Soya I	Vieal	4 Soya Me	eals	7 Soya Meals		
Sperm (millions)	Rank	Sperm (millions)	Rank	Sperm (millions)	Rank	Sperm (millions)	Rank	
(million	4	0.33	3	0.40	6	0.31	1	
0.35	9	0.36	5	0.60	10	0.32	2	
0.88	17	0.63	11	0.96	19	0.56	7	
0.92	18	0.64	12	1.20	21	0.57	8	
1.22	22	0.77	14	1.31	24	0.71	13	
1.51	30	1.53	32	1.35	27	0.81	15	
1.52	31	1.62	34	1.68	35	0.87	16	
	33	1.71	36	1.83	37	1.18	20	
1.57	41	1.94	38	2.10	40	1.25	23	
2.43	46	2.48	42	2.93	48	1.33	25	
2.79	55	2.71	44	2.96	49	1.34	26	
3.40	59	4.12	57	3.00	50	1.49	28	
4.52	60	5.65	61	3.09	52	1.50	29	
4.72	65	6.76	64	3.36	54	1 2.09	39	
6.90	68	7.08	66	4.34	58	8 2.7	0 43	
7.58		7.26	67	5.81	6	2 2.7	5 45	
7.78	69			5.94	6	3 2.8	33 47	
9.62	72	7.92	70				07 51	
10.05	73	8.04	71	10.16			.28 5	
10.32	75	12.10	77	10.98		, 0	.11 5	
21.08	80	18.47	79	18.21		10	5	
Total (R _i)	927	1947.72	883			883	2	
everage (R _i)	46.35	A MARKET OF	44.15	5	4	14.15	2	

- Conducting the analysis
- Pairwise comparisons
- ➤ None vs. 1, none vs. 2, 1 vs 2 etc

4. Conducing the Kruskal-Wallis test

- Calculate effect size
- > Report H- score, degrees of freedom, p-value, r-value

5. Friedman's Anova

- Differnces between several related groups
- More than 2 conditions and the same entities have provided scores for all conditions

11 11 11	STATE ASSESSED	Weight	Start	Weight Month 1	Month 2	
	Start	Month 1	Month 2	(Ranks)	(Ranks)	(Ranks)
	63.75	65.38	81.34	1	2	3
Person 1	62.98	66.24	69.31	1	2	3
Person 2		67.70	77.89	1	2	3
Person 3	65.98	102.72	91.33	3	2	1
Person 4	107.27		72.87	1	2	3
Person 5	66.58	69.45		3	2	1
Person 6	120.46	119.96	114.26	diam's to 1	2	3
Person 7	62.01	66.09	68.01	2	3	1
	71.87	73.62	55.43		2	ing har re
Person 8		75.81	71.63	3	1	
Person 9	83.01	67.66	68.60	3		2
Person 10	76.62	67.00	CONTRACTOR OF STREET	R, 19	20	

5. Conducting the analysis and reporting it

- Calculate effect size
- > Report x- score, degrees of freedom, p-value, r-value

THANK YOU

Questions are welcome:)

