

What is the Generalized Linear Model (GLM)?

Class of models that relate X (inputs) to Y (output)

- Allows for a unification of models that have errors of the following form:
- Normal (Gaussian)Poisson
  - Gamma
    - Jamma
  - Tweedie
  - Binomial (Logistic)
  - Multinomial
- MLE is found by iteratively reweighted least squares

 $E(\mathbf{Y}) = \boldsymbol{\mu} = g^{-1}(\mathbf{X}\boldsymbol{\beta})$ 

 $Var(\mathbf{Y}) = V(\boldsymbol{\mu}) = V(g^{-1}(\mathbf{X}\boldsymbol{\beta})).$ 

## Same predictors, different family and link functions











## What is the Generalized Linear Model (GLM)?

Class of models that relate X (inputs) to Y (output)

$$\operatorname{E}(\mathbf{Y}) = \boldsymbol{\mu} = g^{-1}(\mathbf{X}\boldsymbol{\beta})$$
  
 $\operatorname{Var}(\mathbf{Y}) = \operatorname{V}(\boldsymbol{\mu}) = \operatorname{V}(g^{-1}(\mathbf{X}\boldsymbol{\beta})).$ 

- ${\rm Var}({\bf Y})={\rm V}(\pmb{\mu})={\rm V}(g^{-1}({\bf X}\pmb{\beta})).$  Allows for a unification of models that have errors of the following form:
  - Normal (Gaussian)
  - Poisson
  - Gamma
  - Tweedie
  - Binomial (Logistic)
  - Multinomial
- MLE is found by iteratively reweighted least squares

