Определение 1. Арифметическая прогрессия — это (конечная или бесконечная) последовательность чисел . . . , a_1, a_2, a_3, \ldots , в которой разность $d = a_k - a_{k-1}$ между соседними числами одинакова для всех k; она называется разностью или приращением прогрессии.

- **Задача 1.** Выразите n-ый член арифметической прогрессии через первый член и разность.
- Задача 2. Найдите 50-ое натуральное число, большее 90, с остатком 3 от деления на 4.
- **Задача 3.** Каждый член некоторой последовательности (кроме крайних, если такие есть) равен среднему арифметическому двух соседних членов: $a_k = (a_{k-1} + a_{k+1})/2$. Верно ли, что эта последовательность арифметическая прогрессия? Верно ли обратное утверждение?

Задача 4. Выразите сумму всех членов конечной арифметической прогрессии a_1, a_2, \ldots, a_n

- а) через два крайних члена и количество слагаемых;
- б) через начальный член, количество слагаемых и приращение.

Задача 5. Найдите сумму всех трёхзначных чисел, оканчивающихся на 7.

Задача 6. а) Дан квадратный трёхчлен $f(x) = ax^2 + bx + c$. При каких условиях на a, b и c найдётся такая арифметическая прогрессия (a_n) , что $a_1 + \ldots + a_n = f(n)$ при всех натуральных n? **б)** Найдите арифметическую прогрессию, сумма первых n членов которой равна $2n^2 - 3n$.

Задача 7*. Можно ли покрыть натуральный ряд k арифметическими прогрессиями с различными целыми разностями, не равными 1, если **a)** k=2; **b)** k=3; **r)** k=5.

Определение 2. Геометрическая прогрессия — это (конечная или бесконечная) последовательность ненулевых чисел . . . , a_1, a_2, a_3, \ldots , в которой отношение $q = a_k/a_{k-1}$ соседних чисел одинаково для всех k; оно называется знаменателем прогрессии.

Задача 8. Будет ли геометрической прогрессией последовательность, k-ый член которой равен a) $0, \underbrace{0 \dots 0}_{k} 3;$ 6) $\underbrace{1 \dots 1}_{k};$ в) $g_k \cdot h_k$, где $(g_k), (h_k)$ — геометрические прогрессии?

Задача 9. Выразите n-ый член геометрической прогрессии через первый член и знаменатель.

Задача 10. Выразите сумму всех элементов конечной геометрической прогрессии через начальный член, количество слагаемых и знаменатель.

Задача 11. Торговец принёс на рынок мешок орехов. Первый покупатель купил 1 орех, второй -2 ореха, третий -4, и так далее: каждый следующий покупатель покупал вдвое больше орехов, чем предыдущий. Орехи, купленные последним, весили 50 кг, после чего у продавца остался один орех. Сколько килограммов орехов было у продавца вначале? (Все орехи одинаковые.)

Задача 12. Найдите все геометрические прогрессии, у которых каждый член, начиная с третьего, равен сумме двух предыдущих.

Определение 3. *Числами Фибоначчи* называют элементы последовательности F_0, F_1, F_2, \ldots , в которой первые два члена F_0, F_1 равны 1, а каждый следующий член равен сумме двух предыдущих: $F_n = F_{n-1} + F_{n-2}$ при всех натуральных $n \geqslant 2$.

Задача 13. а) Вычислите первые 10 чисел Фибоначчи. б) Представьте последовательность Фибоначчи в виде суммы двух геометрических прогрессий, т. е. найдите такие прогрессии (g_n) и (h_n) , что $F_n = g_n + h_n$ при всех $n \in \mathbb{N}$.

1	2	3	4 a	4 б	5	6 a	6 6	7 a	7 б	7 в	7 Г	8 a	8 6	8 B	9	10	11	12	13 a	13 б