

Yemi .R. Odeyemi

rikiodeyemi@gmail.com

Objective

- → To build a predictive model to classify driver-passenger mutation
- → To determine the optimal class boundary for the mutation label

Background

- → Cancer is a genetic disease
- → Characteristics of cancer
 - uncontrolled cell division leading to an overgrown group of cells called a *tumor*
 - the spread of tumor cells throughout the body to form new tumors, a process called metastasis
- → Mutation of proto-oncogenes to oncogenes
- → Mutation is a random process
- → Passenger mutations are mutations that have no impact on a cell's phenotype (Neutral)
- → Mutations that drive cancer progression are known as Driver mutations

Cell

DNA Nucleus Chromosome

^{****}Human chromosomes showing bands from Giemsa staining and the positions (shown by black dots) of known proto-oncogenes; mutations in proto-oncogenes lead to cancer.

Algorithm: Logit Model

Concept:

→ Probabilistic in nature

The Binomial Distribution

In a binomial experiment, the probability of exactly *X* successes in *n* trials is

$$P(X) = \frac{n!}{(n-X)!X!} \cdot p^X \cdot q^{n-X}$$

or

$$P(X) = \underbrace{p^{X} \cdot q^{n-X}}_{\text{number of possible desired outcomes}} \cdot \underbrace{p^{X} \cdot q^{n-X}}_{\text{probability of desired outcor}}$$

The Statistical Assumption:

- → Response variable has to be binary in nature
 - 0, 1 : Passenger vs Driver mutation
- → No high Intercorrelations among the predictors
- → Linear relationship between the logit of the outcome and each predictor

$$ln(\frac{p}{1-p}) = \beta_0 + \beta_1 x + \epsilon$$

CRISP-DM

Data Source: CbioPortal

- → Cancer genomic database for interactive exploration of multidimensional cancer genomics data sets.
- Primary source of mutation
 - **♦** Mutation organized by Cancer type and genes
- → Data types:
 - DNA Copy number data
 - ◆ mRNA
 - **♦** MicroRNA

About the data by the **numbers**

- Extracted mutation from 17 subtypes where cancer is known to be present
 - Glioblastoma
 - Ovarian & Peritoneal carcinoma
 - Prostate adenocarcinoma and sarcoma
 - Apoptosis regulation signaling pathway
- → Mutation 50000+
 - → For each mutation the following was extracted
 - Chromosome
 - Start and ending position
 - Reference and alternate nucleotide
- → Mutation data inputted into the dbWGFP and 48 scores were generated
 - MutationTaster_score
 - ◆ Grantham
 - ◆ FATHMM_score

Exploratory Data Analysis

- → Summary statistics
 - Descriptives/Measure of central tendency
 - Gaussian distribution
- → Data structure
- → Predictors-response features identification
- Response feature class identification and class distribution

```
> round(prop.table(table(can_final$label)),2)

0.56 0.44
> cox = c('red','blue')
> barplot(table(can_final$label),col = cox,main = 'Driver-Passenger distribution')
```


0

Data Preparation/Preprocessing/Munging/Cleaning 1

- → Removal of redundant predictors
- → Handle missing values
- → Regular expression

Data Preparation/Preprocessing/Munging/Cleaning 2

- → Conversion of dichotomous response feature to binary format
- → Multicollinearity check using a matrix
 - Correlation Coefficient Matrix
 - Pearson correlation coefficient
 - 0.98
- → Test for gaussian distribution
 - Wilk -shapiro test

> cor(can_final\$RadialSVM_score,can_final\$LR_score)
[1] 0.9845177

Modeling

- → Synthetic Minority Over-Sampling Technique (SMOTE)***
- Data Partitioning
 - ◆ Training set 80% : Test set 20%
 - Cross validation
 - 10-fold
- → Train the model
 - Logit regression
- → Test the model

```
570695e-01 9.997724e-01 9.881839e-01 1.592497e-01 9.910566e-01 9.829237e-01 8.677807e-01 7.202952e-01
                         9.183464e-01 2.785107e-01 9.607404e-01 5.271994e-01 5.041432e-01
 330414e-01 8.789682e-01 9.947639e-01 9.872100e-01 9.340141e-01 7.765957e-01 4.997745e-01 9.816193e-01 9.185839e-01
3.974829e-01 9.963156e-01 9.940960e-01 9.946712e-01 9.610790e-01 9.955965e-01 9.967506e-01 9.888871e-01 9.919557e-01
3.923766e-01 9.963396e-01 9.964399e-01 9.981030e-01 9.551203e-01 9.253074e-01 8.940288e-01 9.992915e-01 9.992021e-01
.959266e-01 9.422534e-01 6.598698e-01 8.806844e-01 8.108822e-01 7.996138e-01 9.726406e-01 9.940078e-01 9.958327e-01
 946190e-01 9.139973e-01 9.970194e-01 9.976445e-01 9.939372e-01 9.889806e-01 9.848353e-01 8.912791e-01 6.660996e-01
 970510e-01 9.976213e-01 9.909768e-01 9.997289e-01 9.967002e-01 9.960272e-01 9.704390e-01 9.410307e-01
.615960e-01 8.772457e-01 9.524913e-01 9.871707e-01 9.901319e-01 9.473112e-01 9.142062e-01 9.872585e-01
 760212e-01 9.403901e-01 9.371401e-01 9.788633e-01 8.141584e-01 8.767850e-01 9.829978e-01 9.679205e-01 7.988701e-01
 333060e-01 9.842015e-01 9.337873e-01 9.379607e-01 9.491019e-01 9.479322e-01 9.596056e-01 9.920175e-01 9.
.722173e-01 9.864176e-01 9.913562e-01 9.766734e-01 9.896016e-01 9.893218e-01 9.892933e-01 9.761590e-01 9.804773e-01
```

Class Probability Boundary & Optimal Cutoff

row.names	0	1
8	0.149170055	0.850829945
14	0.048483922	0.951516078
16	0.391613323	0.608386677
17	0.495368559	0.504631441
18	0.295485105	0.704514895
20	0.027682133	0.972317867
21	0.508209869	0.491790131
22	0.440269348	0.559730652
26	0.175860254	0.824139746
29	0.303197247	0.696802753

	200	200
2522	0.583175241	0.416824759
2523	0.890820573	0.109179427
2526	0.989550213	0.010449787
2528	0.833423926	0.166576074
2529	0.108332819	0.891667181
2530	0.950326212	0.049673788
2536	0.973244698	0.026755302
2539	0.384637083	0.615362917
2541	0.986186932	0.013813068
2543	0.970495766	0.029504234

```
> library(InformationValue)
> optCutOff <- optimalCutoff(testData$label, predicted)[1]
> optCutOff
[1] 0.4497724
> |
```

Model Selection: Akaike Information Criteria

Statistical tool that compares the quality of a set of models to each other

Ranks each model from best to worst.

$$AIC = 2K - 2 \log(\mathcal{L}(\hat{\theta}|y)),$$

Where

- → K is the number of model parameters (the number of variables in the model plus the intercept)
- → Log-likelihood is a measure of model fit. The higher the number, the better the fit. This is usually obtained from statistical output.

Feature Importance of the Mutation Scores

- → Random Forest Method
- → Stepwise Regression
- Information value and Weight of evidence

Feature Importance_RF

Diagnostics: Area Under the Curve

•

→ Sensitivity/Recall/True Positive Rate

- Proportion of positive data points that are correctly considered as positive, with respect to all positive data points
- ◆ Higher TPR → less misclassification of positive data points

→ Fall Out/False Positive Rate

- Proportion of negative data points that were mistakenly classified as positive with respect to all negative data points
- ◆ Higher FPR → more misclassification of negative data points

Conclusion

- → Theoretical class boundary is not always the same as the optimal class boundary.
- → Comparative studies of the logit model with random forest model yielded almost similar AUC
- → Removal of the top 3 mutation scores had a significant impact on the models' AUC
- → Hypothesis testing yielded no significant difference between the top 3 mutation scores in the variable importance
- → Exploration of SVD,PCA and t-SNE for dimension reduction would enable holistic view of the features

Miscellany: R packages

(DMwR) - Functions and data for the book "Data Mining with R" and SMOTE algorithm

{caret} - modeling wrapper, functions, commands

{pROC} - Area Under the Curve (AUC) functions

{Dplyr} - Data manipulation