Um Breve Guia para Uso em Experimentos Científicos

Jonathan S. Ramos

jonathan@usp

ICMC - USP SCC5854 – GBDI

29 de novembro de 2021

Motivação

Introdução ●O

Introdução • O

@luminousmen.com

Um teste estatístico (ou de significância) serve para

"Verificar se os dados amostrados fornecem evidência suficiente para que se possa aceitar como verdadeira a hipótese de pesquisa, precavendo-se, com certa segurança, de que as diferenças observadas nos dados não são meramente casuais."

Fonte: https://docs.ufpr.br/~vayego/pedeefes/resumo_11.pdf

Motivação

Introdução ○●

Introdução ○●

Erros comuns

"Alguns estudos apontam que os alunos de pós-graduação, apesar de compreenderem a importância da estatística, não possuem a capacidade de aplicá-la corretamente na pesquisa científica e que as atitudes, sucessos e fracassos diante dos desafios estatísticos estão ligados ao conhecimento básico."

Fonte: https://cloud-dental.paliari.com.br/storage/2021/2/25/05393a59-6cca-4335-8977-80e2b43c0188.pdf

Sumário

- Conhecimentos Básicos

A escolha do teste estatístico apropriado requer:

2 - Como esses dados estão distribuídos

3 - Tipos de amostras examinadas

1 - Tipo de Dado - Exercício Prático

Classifique as variáveis em qualitativas ou quantitativas, em seguida, em nominal, ordinal, discreta ou contínua

Cliente	Profissão	Altura (m)	lernos Comprados	Salário (R\$)	Rating do Cliente
Zonas	Músico	1.75	1	5,800	3
Milela	Cientista	1.76	4	4,500	2
Zuninho	Médico	1.93	2	8,700	5
Pedro	Advogado	1.82	1	5,000	3

Tabela: Informações fornecidas por um alfaiate, com dados básicos sobre os clientes e a *rating* dos produtos (que variam de 1, péssimo, a 5, ótimo).

1 - Tipo de Dado - Exercício Prático

Classifique as variáveis em qualitativas ou quantitativas, em seguida, em nominal, ordinal, discreta ou contínua

Qualitativa	Qualitativa	Quantitativa	Quantitativa	Quantitativa	Qualitativa
Pedro	Advogado	1.82	1	5,000	3
Zuninho	Médico	1.93	2	8,700	5
Milela	Cientista	1.76	4	4,500	2
Zonas	Músico	1.75	1	5,800	3
Cliente	Profissão	Altura (m)	Comprados	Salário (R\$)	Cliente
			Ternos		Rating do

Tabela: Informações fornecidas por um alfaiate, com dados básicos sobre os clientes e a *rating* dos produtos (que variam de 1, péssimo, a 5, ótimo).

Classifique as variáveis em qualitativas ou quantitativas, em seguida, em nominal, ordinal, discreta ou contínua

Cliente	Profissão	Altura (m)	Ternos Comprados	Salário (R\$)	Rating do Cliente
Zonas	Músico	1.75	1	5,800	3
Milela	Cientista	1.76	4	4,500	2
Zuninho	Médico	1.93	2	8,700	5
Pedro	Advogado	1.82	1	5,000	3
Qualitativa Nominal	Qualitativa Nominal	Quantitativa Contínua	Quantitativa Discreta	Quantitativa Contínua	Qualitativa Ordinal

Tabela: Informações fornecidas por um alfaiate, com dados básicos sobre os clientes e a *rating* dos produtos (que variam de 1, péssimo, a 5, ótimo).

Símbolos comumente usadas na estatística

Símbolo	Descrição
$egin{array}{c} \mu \ ar{ ilde{ ilde{x}}} \end{array}$	Média Aritmética Populacional Média Aritmética Amostral
S^2	Variância
σ	Desvio Padrão
Мо	Moda
Md	Mediana
Q _i	Quartis

Fonte: https:

//www.ufsm.br/app/uploads/sites/413/2018/11/04_estatistica.pdf

A escolha do teste estatístico apropriado requer:

1 - Classificação do tipo de dado

2 - Como esses dados estão distribuídos

- Distribuição Normal Paramétrico
- Distribuição Anormal –Não-paramétrico

3 - Tipos de amostras examinadas

Monte uma distribuição de frequência para a variável RAM

Imagine que no laboratório GBDI temos apenas 16 máquinas em funcionamento (nomeadas de A a P), e cada uma possui memória RAM reportada a seguir:

PC A	В	С	D	Е	F	G	Н	- 1	J	K	L	М	N	0	Р
RAM 4	4	6	6	6	8	8	8	8	8	8	10	10	10	12	12

Monte uma distribuição de frequência para a variável RAM

Imagine que no laboratório GBDI temos apenas 16 máquinas em funcionamento (nomeadas de A a P), e cada uma possui memória RAM reportada a seguir:

PC A	В	С	D	Е	F	G	Н	-1	J	K	L	М	N	0	Р
RAM 4	4	6	6	6	8	8	8	8	8	8	10	10	10	12	12

Monte uma distribuição de frequência para a variável RAM

Imagine que no laboratório GBDI temos apenas 16 máquinas em funcionamento (nomeadas de A a P), e cada uma possui memória RAM reportada a seguir:

PC A	В														
RAM 4	4	6	6	6	8	8	8	8	8	8	10	10	10	12	12

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

Monte uma distribuição de frequência para a variável RAM

Imagine que no laboratório GBDI temos apenas 16 máquinas em funcionamento (nomeadas de A a P), e cada uma possui memória RAM reportada a seguir:

			- 1					- 1			-				
PC A	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	Р
RAM 4	4	6	6	6	8	8	8	8	8	8	10	10	10	12	12

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

Média
$$\mu = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 8$$

Monte uma distribuição de frequência para a variável RAM

Imagine que no laboratório GBDI temos apenas 16 máquinas em funcionamento (nomeadas de A a P), e cada uma possui memória RAM reportada a seguir:

			- 1		_			- p		3	_				
PC A	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	Р
RAM 4	4	6	6	6	8	8	8	8	8	8	10	10	10	12	12

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

$$\mu = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 8$$

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2} \approx 2.42$$

Monte uma distribuição de frequência para a variável RAM

Imagine que no laboratório GBDI temos apenas 16 máquinas em funcionamento (nomeadas de A a P), e cada uma possui memória RAM reportada a seguir:

PC A	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	P
RAM 4	4	6	6	6	8	8	8	8	8	8	10	10	10	12	12

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

$$\mu = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 8$$

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2} \approx 2.42$$

Monte uma distribuição de frequência para a variável RAM

Imagine que no laboratório GBDI temos apenas 16 máquinas em funcionamento (nomeadas de A a P), e cada uma possui memória RAM reportada a seguir:

PC A	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р
RAM 4	4	6	6	6	8	8	8	8	8	8	10	10	10	12	12

Outros Gráficos

Box-Plot, Q-Q Plot

Monte uma distribuição de frequência para a variável RAM

Imagine que no laboratório GBDI temos apenas 16 máquinas em funcionamento (nomeadas de A a P), e cada uma possui memória RAM reportada a seguir:

PC A	В	С	D	Е	F	G	Н	- 1	J	K	L	М	N	0	Р
RAM 4	4	6	6	6	8	8	8	8	8	8	10	10	10	12	12

Existe uma forma "mais fácil"?

Existem vários testes de normalidade [1]. São mais usados:

- Shapiro-Wilk: Média e desvio padrão da população são desconhecidos.
- Kolmogorov-Smirnov: Média e desvio padrão da população são conhecidos.

Monte uma distribuição de frequência para a variável RAM

Imagine que no laboratório GBDI temos apenas 16 máquinas em funcionamento (nomeadas de A a P), e cada uma possui memória RAM reportada a seguir:

PC A	В	С	D	Е	F	G	Н	-1	J	K	L	М	N	0	Р
RAM 4	4	6	6	6	8	8	8	8	8	8	10	10	10	12	12

Existe uma forma "mais fácil"?

Existem vários testes de normalidade [1]. São mais usados:

- Shapiro-Wilk: Média e desvio padrão da população são desconhecidos.
- Kolmogorov-Smirnov: Média e desvio padrão da população são conhecidos.

Atenção!

O ideal é não confiar cegamente nos testes, mas fazer uma análise visual também

Conhecimentos Básicos

A escolha do teste estatístico apropriado requer:

- 1 Classificação do tipo de dado
- 2 Como esses dados estão distribuídos
- 3 Tipos de amostras (variáveis) examinadas
 - Dependentes Variável de resposta;
 - Representa uma grandeza cujo valor depende de como a variável independente é manipulada;
 - Independentes Variável de grupamento;
 - Representa uma grandeza que está sendo manipulada em um experimento:

3 - Tipo de Amostras - Exercício Prático

Identifique as variáveis dependentes e independentes

Em uma análise de tempo de resposta de uma consulta SQL em dois PCs diferentes (A e B), temos o tempo de execução para realizar a mesma consulta em cada um deles, no final, gueremos saber o tempo de resposta de cada PC.

3 - Tipo de Amostras - Exercício Prático

Identifique as variáveis dependentes e independentes

Em uma análise de tempo de resposta de uma consulta SQL em dois PCs diferentes (A e B), temos o tempo de execução (Independente) para realizar a mesma consulta em cada um deles, no final, queremos saber o tempo de resposta de cada PC (Dependente).

Identifique as variáveis dependentes e independentes

- Em uma análise de tempo de resposta de uma consulta SQL em dois PCs diferentes (A e B), temos o tempo de execução (Independente) para realizar a mesma consulta em cada um deles, no final, queremos saber o tempo de resposta de cada PC (Dependente).
- Em uma tarefa de Segmentação, temos a quantidade de pixels corretamente e incorretamente segmentados (VPs, VNs, FNs, FPs) para cada região de interesse do experimento. Com esses valores conseguimos calcular várias medidas, tais como precisão, revocação, etc.

Identifique as variáveis dependentes e independentes

- Em uma análise de tempo de resposta de uma consulta SQL em dois PCs diferentes (A e B), temos o **tempo de execução** (**Independente**) para realizar a mesma consulta em cada um deles, no final, queremos saber **o tempo de resposta de cada PC** (**Dependente**).
- Em uma tarefa de Segmentação, temos a quantidade de pixels corretamente e incorretamente segmentados (VPs, VNs, FNs, FPs) (Independentes) para cada região de interesse do experimento. Com esses valores conseguimos calcular várias medidas, tais como precisão, revocação, etc.

3 - Tipo de Amostras - Exercício Prático

Identifique as variáveis dependentes e independentes

- Em uma análise de tempo de resposta de uma consulta SQL em dois PCs diferentes (A e B), temos o tempo de execução (Independente) para realizar a mesma consulta em cada um deles, no final, queremos saber o tempo de resposta de cada PC (Dependente).
- Em uma tarefa de Segmentação, temos a quantidade de pixels corretamente e incorretamente segmentados (VPs, VNs, FNs, FPs) (Independentes) para cada região de interesse do experimento. Com esses valores conseguimos calcular várias medidas, tais como precisão, revocação, etc (Dependentes).

Dados Pareados

- Os dados entre os grupos possuem algum tipo de correlação.
- Estatisticamente dependentes;

Não-Pareados

- Os dados entre os grupos não possuem nenhum tipo de correlação direta.
- Estatisticamente independentes;

Fonte: https://www.youtube.com/watch?v=SFd8laQIL7M

Sumário

1 Introdução2 Conhecimentos Básicos

- 3 Teste de Hipóteses
- 4 Conclusões

Testes de Significância

O que é um teste de significância/hipótese?

■ É uma regra de decisão para aceitar ou rejeitar uma hipótese estatística com base nos elementos amostrais.

Testes de Significância

O que é um teste de significância/hipótese?

- É uma regra de decisão para aceitar ou rejeitar uma hipótese estatística com base nos elementos amostrais.
- Para tal, precisamos definir uma **Hipótese nula** (H_0) e uma **Hipótese alternativa** (H_1), assim como um nível de significância α (10%, 5%, 1%).

O que é um teste de significância/hipótese?

- É uma regra de decisão para aceitar ou rejeitar uma hipótese estatística com base nos elementos amostrais.
- Para tal, precisamos definir uma **Hipótese nula** (H_0) e uma **Hipótese alternativa** (H_1), assim como um nível de significância α (10%, 5%, 1%).

 $\alpha = P(\text{rejeitar}H_0|H_0\text{verdadeira})$ $\beta = P(\text{não rejeitar}H_0|H_0\text{\'e falsa})$

O que é um teste de significância/hipótese?

- É uma regra de decisão para aceitar ou rejeitar uma hipótese estatística com base nos elementos amostrais.
- Para tal, precisamos definir uma **Hipótese nula** (H_0) e uma **Hipótese alternativa** (H_1), assim como um nível de significância α (10%, 5%, 1%).

$$\alpha = P(\text{rejeitar}H_0|H_0\text{verdadeira})$$
 $\beta = P(\text{não rejeitar}H_0|H_0\text{\'e falsa})$

	Realidade				
		Ī	H ₀ verdadeira		H ₀ falsa
Decisão	Aceitar H ₀	T	Decisão correta (1 - α)	1	Erro Tipo II (β)
	Rejeitar H ₀		Erro Tipo I (α)		Decisão correta (1- β)

Tabela: Possíveis erros e acertos em um teste de hipótese.

O que é um teste de significância/hipótese?

- É uma regra de decisão para aceitar ou rejeitar uma hipótese estatística com base nos elementos amostrais.
- Para tal, precisamos definir uma **Hipótese nula** (H_0) e uma **Hipótese alternativa** (H_1), assim como um nível de significância α (10%, 5%, 1%).

$$\alpha = P(\text{rejeitar}H_0|H_0\text{verdadeira})$$
 $\beta = P(\text{não rejeitar}H_0|H_0\text{\'e falsa})$

		Realidade				
		H ₀ verdadeira	H ₀ falsa			
Decisão	Aceitar H ₀	Decisão correta (1 - α)	Erro Tipo II (β)			
	Rejeitar H ₀	Erro Tipo I (α)	Decisão correta (1- β)			

Tabela: Possíveis erros e acertos em um teste de hipótese.

Erro do tipo I (α) é empregado nas pesquisas no teste de significância.

Com isso, podemos realizar três tipos diferentes de teste

Unilateral à esquerda

- H₀: Meu método é mais rápido que o competidor;
- H₁: Meu método não é mais rápido que o competidor;

Teste de Hipóteses 00000000

Unilateral à esquerda

- H₀: Meu método é mais rápido que o competidor;
- H₁: Meu método não é mais rápido que o competidor:

Bicaudal ou Bilateral

- H₀: Meu método é similar ao competidor;
- H₁: Meu método não é similar ao competidor:

Com isso, podemos realizar três tipos diferentes de teste

Unilateral à esquerda

- H₀: Meu método é mais rápido que o competidor;
- H₁: Meu método não é mais rápido que o competidor;

Bicaudal ou Bilateral

- H₀: Meu método é similar ao competidor;
- H₁: Meu método não é similar ao competidor:

Unilateral à direita

- H₀: Meu método é mais eficaz que o competidor;
- H₁: Meu método não é mais eficaz que o competidor;

Como escolher o teste estatístico adequado (não-pareado)

Como escolher o teste estatístico adequado (pareado)

Passos para aplicar um teste de significância

In Enunciar as hipóteses H_0 e H_1 ;

- In Enunciar as hipóteses H_0 e H_1 ;
- **2** Definir o limite do erro α

Teste de significância

- In Enunciar as hipóteses H_0 e H_1 ;
- **2** Definir o limite do erro α
- Definir qual teste será aplicado assim como a região crítica e a região de aceitação;

- In Enunciar as hipóteses H_0 e H_1 ;
- **2** Definir o limite do erro α
- Definir qual teste será aplicado assim como a região crítica e a região de aceitação;
- Com os elementos amostrais, calcular o valor da variável teste (valor de p);

- I Enunciar as hipóteses H_0 e H_1 ;
- **2** Definir o limite do erro α
- Definir qual teste será aplicado assim como a região crítica e a região de aceitação;
- Com os elementos amostrais, calcular o valor da variável teste (valor de p);
- **Solution** Solution Solution

Contextualização

Resultados obtidos na segmentação de regiões anatômica da coluna

1 - Dados: Quantitativa contínua

Tempo de execução Quanto menor, melhor

- 1 Dados: Quantitativa contínua
 - 2 Distribuição: anormal

Tempo de execução Quanto menor, melhor

- 1 Dados: Quantitativa contínua2 Distribuição: anormal
- 3 Tipo amostra: independente

Tempo de execução Quanto menor, melhor

- 1 Dados: Quantitativa contínua
 2 Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

H₀: meu método apresenta resultados menores que o competidor H₁: caso oposto (negação de H₀);

Tempo de execução Quanto menor, melhor

- 1 Dados: Quantitativa contínua2 Distribuição: anormal
- 3 Tipo amostra: independente

- H₀: meu método apresenta resultados menores que o competidor H₁: caso oposto (negação de H₀);
- $\alpha = 0.01 (99\% \text{ de confiança});$

Tempo de execução Quanto menor, melhor

- 1 Dados: Quantitativa contínua2 Distribuição: anormal
- 3 Tipo amostra: independente

- H₀: meu método apresenta **resultados**menores que o competidor
 H₁: caso oposto (negação de H₀):
 - H_1 : caso oposto (negação de H_0);
- $\alpha = 0.01 (99\% \text{ de confiança});$
- 3 Teste de Wilcoxon unicaudal à esquerda;

Tempo de execução Quanto menor, melhor

- 1 Dados: Quantitativa contínua
 2 Distribuição: anormal
- 3 Tipo amostra: independente

- H₀: meu método apresenta **resultados menores** que o competidor
 - H_1 : caso oposto (negação de H_0);
- $\alpha = 0.01 (99\% \text{ de confiança});$
- 3 Teste de Wilcoxon unicaudal à esquerda;
- 4 Valor-p calculado = 0.000;

- 1 Dados: Quantitativa contínua
 2 Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

- H₀: meu método apresenta resultados menores que o competidor H₁: caso oposto (negação de H₀);
- $\alpha = 0.01 (99\% \text{ de confianca})$:
- 3 Teste de Wilcoxon unicaudal à esquerda;
- 4 Valor-p calculado = 0.000;
- 5 Aceitar H₀ H₀ (0.00(p) < 0.001(α)) Meu método possui F-Measure significantemente maior que o competidor com 99% de confianca;

F-Measure (DSC) Quanto maior, melhor 88 90 92 94 96 98 Percentage (%)

- 1 Dados: Quantitativa contínua 2 - Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

- Ho: meu método apresenta resultados menores que o competidor H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confianca):
- Teste de Wilcoxon unicaudal à esquerda:
- Valor-p calculado = 0.000;
- Aceitar H_0 H_0 $(0.00(p) < 0.001(\alpha))$ Meu método possui F-Measure significantemente major que o competidor com 99% de confianca:

F-Measure (DSC) Quanto maior, melhor 88 90 92 94 96 98 Percentage (%)

Dados: Quantitativa continua, dependente

- Milliseconds

 1 Dados: Quantitativa contínua
 2 Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

- H₀: meu método apresenta resultados menores que o competidor H₁: caso oposto (negação de H₀);
- $\alpha = 0.01 (99\% \text{ de confianca})$:
- 3 Teste de Wilcoxon unicaudal à esquerda:
- 4 Valor-p calculado = 0.000;
- 5 Aceitar H₀ H₀ (0.00(p) < 0.001(α))
 Meu método possui F-Measure
 significantemente maior que o
 competidor com 99% de confiança;

F-Measure (DSC) Quanto maior, melhor 88 90 92 94 96 98 Percentage (%)

Dados: Quantitativa continua, dependente Distribuição: anormal

- 1 Dados: Quantitativa contínua 2 - Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

- Ho: meu método apresenta resultados menores que o competidor H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confianca):
- Teste de Wilcoxon unicaudal à esquerda:
- Valor-p calculado = 0.000;
- Aceitar H_0 H_0 $(0.00(p) < 0.001(\alpha))$ Meu método possui F-Measure significantemente major que o competidor com 99% de confianca:

F-Measure (DSC) Quanto maior, melhor 88 90 94 96 98 Percentage (%)

Dados: Quantitativa continua, dependente Distribuição: anormal

3 - Tipo amostra: dependente

Tempo de execução

- 1 Dados: Quantitativa contínua 2 - Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

- Ho: meu método apresenta resultados menores que o competidor H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confianca):
- Teste de Wilcoxon unicaudal à esquerda:
- Valor-p calculado = 0.000;
- Aceitar H_0 H_0 $(0.00(p) < 0.001(\alpha))$ Meu método possui F-Measure significantemente major que o competidor com 99% de confianca:

F-Measure (DSC)

Dados: Quantitativa continua, dependente Distribuição: anormal

3 - Tipo amostra: dependente

Passos para o teste de hipótese

Ho: meu método apresenta resultados majores que o competidor H_1 : caso oposto (negação de H_0);

Tempo de execução Quanto menor, melhor

- 1 Dados: Quantitativa contínua 2 - Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

- Ho: meu método apresenta resultados menores que o competidor H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confianca):
- Teste de Wilcoxon unicaudal à esquerda:
- Valor-p calculado = 0.000;
- Aceitar H_0 H_0 $(0.00(p) < 0.001(\alpha))$ Meu método possui F-Measure significantemente major que o competidor com 99% de confianca:

F-Measure (DSC) Quanto major, melhor

Dados: Quantitativa continua, dependente Distribuição: anormal

3 - Tipo amostra: dependente

- Ho: meu método apresenta resultados majores que o competidor
 - H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confiança);

Tempo de execução Quanto menor, melhor

- 1 Dados: Quantitativa contínua 2 - Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

- Ho: meu método apresenta resultados menores que o competidor H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confianca):
- Teste de Wilcoxon unicaudal à esquerda:
- Valor-p calculado = 0.000;
- Aceitar H_0 H_0 $(0.00(p) < 0.001(\alpha))$ Meu método possui F-Measure significantemente major que o competidor com 99% de confiança:

F-Measure (DSC) Quanto major, melhor

Dados: Quantitativa continua, dependente Distribuição: anormal

3 - Tipo amostra: dependente

- Ho: meu método apresenta resultados majores que o competidor
 - H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confiança);
- Teste de Wilcoxon unicaudal à direita:

Tempo de execução

- 1 Dados: Quantitativa contínua 2 - Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

- Ho: meu método apresenta resultados menores que o competidor H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confianca):
- Teste de Wilcoxon unicaudal à esquerda:
- Valor-p calculado = 0.000;
- Aceitar H_0 H_0 $(0.00(p) < 0.001(\alpha))$ Meu método possui F-Measure significantemente major que o competidor com 99% de confianca:

F-Measure (DSC) Quanto major, melhor

Dados: Quantitativa continua, dependente Distribuição: anormal

3 - Tipo amostra: dependente

- Ho: meu método apresenta resultados majores que o competidor
 - H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confiança);
- Teste de Wilcoxon unicaudal à direita:
- Valor-p calculado = 0.000:

Tempo de execução

- 1 Dados: Quantitativa contínua 2 - Distribuição: anormal
- 3 Tipo amostra: independente

Passos para o teste de hipótese

- Ho: meu método apresenta resultados menores que o competidor H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confianca):
- Teste de Wilcoxon unicaudal à esquerda:
- Valor-p calculado = 0.000;
- Aceitar H_0 H_0 $(0.00(p) < 0.001(\alpha))$ Meu método possui F-Measure significantemente maior que o competidor com 99% de confianca:

F-Measure (DSC) Quanto major, melhor

Dados: Quantitativa continua, dependente Distribuição: anormal

3 - Tipo amostra: dependente

- Ho: meu método apresenta resultados majores que o competidor
 - H_1 : caso oposto (negação de H_0);
- α = 0.01 (99% de confiança);
- Teste de Wilcoxon unicaudal à direita:
- Valor-p calculado = 0.000:
- Aceitar H_0 (0.00(p) < 0.001(α)) Meu método é significantemente mais rápido que o competidor com 99% de confianca:

Sumário

- 4 Conclusões

 Conhecimentos Básicos
 Teste de Hipóteses
 Conclusões
 Referências

 00000000
 0000000
 0
 0

Conclusões

Os erros nos experimentos estatísticos

Geralmente, se dão devido a falhas nos conhecimentos básicos;

 Conhecimentos Básicos
 Teste de Hipóteses
 Conclusões
 Referências

 00000000
 0000000
 0
 0

Conclusões

Os erros nos experimentos estatísticos

Geralmente, se dão devido a falhas nos conhecimentos básicos;

Os dados seguem uma distribuição normal?

Conclusões

Os erros nos experimentos estatísticos

Geralmente, se dão devido a falhas nos conhecimentos básicos;

Os dados seguem uma distribuição normal?

Como vai comparar seus resultados?

Quer mostrar que eles são maiores, menores ou iguais aos competidores?

Conclusões

Os erros nos experimentos estatísticos

Geralmente, se dão devido a falhas nos conhecimentos básicos;

Os dados seguem uma distribuição normal?

Como vai comparar seus resultados?

Quer mostrar que eles são maiores, menores ou iguais aos competidores?

Os teses estatísticos e análises são variados

- Foi apresentado uma visão geral;
- Cada caso pode necessitar de uma análise mais personalizada;
- Assim como um maior aprofundamento nos testes.

- [1] Asghar Ghasemi e Saleh Zahediasl. "Normality tests for statistical analysis: a guide for non-statisticians". eng. Em: International journal of endocrinology and metabolism 10.2 (2012). PMC3693611[pmcid], pp. 486–489. ISSN: 1726-913X. DOI: 10.5812/ijem.3505. URL: https://doi.org/10.5812/ijem.3505.
- [2] Barun K. Nayak e Avijit Hazra. "How to choose the right statistical test?" eng. Em: Indian journal of ophthalmology 59.2 (2011). Indian JOphthalmol_2011_59_2_85_77005[PII], pp. 85–86. ISSN: 1998-3689. DOI: 10. 4103/0301-4738.77005. URL: https://doi.org/10.4103/0301-4738.77005.

Obrigado pela Atenção!

Contato:

jonathan@usp.br