Modele liniowe

Michał Kos

Uniwersytet Wrocławski

Plan wykładu

- Problem wyboru modelu
- ② Diagnostyka
 - Partial regression plots
 - Macierz H w diagnostyce modelu
 - Miara DFFITS
 - Odległość Cook'a
 - Miara DFBETAS
 - Miary Variance inflation factor oraz Tolerance

Table of Contents

- Problem wyboru modelu
- 2 Diagnostyka
 - Partial regression plots
 - Macierz H w diagnostyce modelu
 - Miara DFFITS
 - Odległość Cook'a
 - Miara DFBETAS
 - Miary Variance inflation factor oraz Tolerance

Problem wyboru modelu

Na poprzednim wykładzie poznaliśmy tzw. "problem wyboru modelu", który próbuje odpowiedzieć na pytanie:

Które zmienne objaśniające $X_1, ..., X_{p-1}$ w istotny sposób wpływają na zmienną objaśnianą Y, a dla których ów wpływ jest pomijalny?

Równoważnie możemy pytać o nośnika prawdziwego wektora parametrów $S=Supp(\beta)=\{i:\beta_i\neq 0\}$, gdyż warunek $\beta_i=0$ pociąga za sobą brak istotności zmiennej X_i .

Problem wyboru modelu

Poznaliśmy kilka statystycznych narzędzi umożliwiajacych **częściową** odpowiedź na powyższe pytanie:

- ogólny test F, umożliwiający porównanie wyłącznie modeli hierarchicznych (model pełny zawiera wszystkie zmienne znajdujące się w modelu zredukowanym),
- maksymalizacja współczynnika determinacji R^2 , umożliwiająca porównanie modeli o tej samej liczbie zmiennych objaśniających,
- maksymalizacja modyfikowanego współczynnika determinacji R^2_{adj} , (mało stabilne kryterium).

Widzimy, że każda z metod ma swoje ograniczenia. Przy użyciu ogólnego test F nie możemy porównywać modeli niehierarchicznych. Za pomocą R^2 możemy porównywać modele niehierarchiczne, ale muszą one mieć tą samą liczbę zmiennych, a R^2_{adi} działa w mało stabilny sposób.

Problem wyboru modelu

Alternatywnymi metodami wyboru modelu są:

- kryterium informacyjne Akaike (AIC Akaike information criterion),
- Bayesowskie kryterium informacyjne (BIC Bayesian information criterion; SIC – Schwarz inf. crit.),
- kryterium C_p Mallows'a.

AIC i BIC

Kryteria AIC oraz BIC są modyfikacjami metody największej wiarogodności i są skonstruowane w taki sposób, by znaleźć balans pomiędzy dopasowaniem modelu do danych i nadmierną złożonością modelu:

$$\hat{\beta} = \operatorname{argmax}_b(\operatorname{log}(\operatorname{likelihood}(b)) - \operatorname{kara} \operatorname{za} \operatorname{"duże"} \operatorname{p})$$

Składnik log(likelihood(b)) odpowiada za dopasowanie modelu do danych. Z kolei drugi składnik jest karą za wykorzystywanie nieistotnych zmiennych. W ścisły sposób kryterium AIC można zdefiniować w następujący sposób:

① Dla dowolnej podmacierzy $\tilde{\mathbb{X}}$ (o l. kol. \tilde{p}) macierzy planu \mathbb{X} wyznacz statystykę:

$$AIC(\tilde{\mathbb{X}}) = n\log\left(\frac{SSE(\tilde{\mathbb{X}})}{n}\right) + 2\tilde{p}$$

 ${f 2}$ wybierz model ${f ilde{\mathbb X}}$ o najniższej wartości statystyka AIC.

Kryterium BIC jest zdefiniowana w analogiczny sposób z tą różnicą że szukamy minimum po statystykach postaci:

$$BIC(\tilde{\mathbb{X}}) = n \log \left(\frac{SSE(\tilde{\mathbb{X}})}{n} \right) + \log(n) \tilde{p}$$

Kryterium C_p Mallows'a

Widzieliśmy że w przypadku AIC i BIC istotne znaczenie miała statystyka $SSE(\tilde{\mathbb{X}})$, będąca miarą dopasowania modelu do danych. W przypadku kryterium C_p Mallows'a również odgrywa ona istotną rolę. Statystyka $C_{\tilde{p}}(\tilde{\mathbb{X}})$ Mallows'a stowarzyszona z modelem skonstruowanym na podstawie macierzy $\tilde{\mathbb{X}}$ ma postać:

$$C_{\tilde{p}}(\tilde{\mathbb{X}}) = \frac{SSE(\tilde{\mathbb{X}})}{MSE(F)} - n + 2\tilde{p}$$

Jednym z kryteriow oceny poprawności modelu jest to, czy nie wprowadza on znaczącego obciążenia w predykcji $B_i = E(\hat{Y}_i) - E(Y_i)$ i=1,...,n. Można pokazać że statystyka $C_{\tilde{p}}$ jest estymatorem następującego wyrażenia:

$$\frac{1}{\sigma^2} \sum_{i=1}^n B_i^2(\tilde{\mathbb{X}})$$

w związku z tym opisuje łączne zachowanie obciążeń. Kryterium Mallows'a stwierdza, że model ma dobre własności, gdy statystyka $C_{\tilde{p}}$ jest bliska lub mniejsza niż \tilde{p} . Dlatego na jego podstawie należy wybrać najoszczędniejszy model dla którego $C_{\tilde{p}}$ jest mniejsza niż $2\tilde{p}$, lub model o najmniejszym $C_{\tilde{p}}$.

Table of Contents

- 1 Problem wyboru modelu
- 2 Diagnostyka
 - Partial regression plots
 - Macierz H w diagnostyce modelu
 - Miara DFFITS
 - Odległość Cook'a
 - Miara DFBETAS
 - Miary Variance inflation factor oraz Tolerance

Partial regression plots

W statystyce wykresy typu **partial regression plot (added variable plots, adjusted variable plots, individual coefficient plots)** ukazują wpływ jaki wywiera dodanie nowej zmiennej objaśniającej \tilde{X}_i do modelu, który już zawiera kilka zmiennych niezależnych.

W regresji liniowej prostej wykres rozrzutu miedzy X i Y dobrze opisuje ich wzajemną relację. Jednakże, gdy mamy kilka zmiennych objaśniających sytuacja staje się bardziej skomplikowana. Wciąż można wytworzyć wykresy rozrzutu X_i vs Y (dla każdego X_i), ale wykresy te nie biorą pod uwagę wpływu pozostałych X-ów na model.

Tzw. wykresy partial regression plots wypełniają tą lukę, opisując relację X_i vs Y z uwzględnieniem wpływu pozostałych X–ów na model.

Partial regression plots

Konstrukcja wykresu partial regression plot dla zmiennej X_i :

- oblicz wektor residuów $e^{(Y)}$ dla modelu liniowego w którym zmienną objaśnianą jest Y a zmiennymi objaśniającymi są wszystkie X-y oprócz X_i ,
- oblicz wektor residuów $e^{(X_i)}$ dla modelu liniowego w którym zmienną objaśnianą jest X_i a zmiennymi objaśniającymi są wszystkie X-y oprócz X_i ,
- Stwórz wykres rozrzutu $e^{(X_i)}$ vs. $e^{(Y)}$

Ponieważ z definicji wektor residuów opisuje to czego nie wyjaśniły zmienne objaśniające, zatem wykres rozrzutu $e^{(X_i)}$ vs. $e^{(Y)}$ opisuje relację między X_i , a Y po uwzględnieniu wpływu pozostałych X-ów.

Zwykle powyższe wykresy tworzone są dla każdej zmienne X_i .

Partial regression plots

Własności wykresu partial regression plot dla zmiennej X_i :

- Jeżeli na wykresie $e^{(X_i)}$ vs. $e^{(Y)}$ nie obserwowana jest żadana wyraźna struktura, wskazuje to na fakt, iż zmienna X_i nie wnosi do modelu istotnej informacji ponad to co objaśniły pozostałe X-y,
- jeżeli obserwujemy relację liniową (o wsp. kierunkowym różnym od zera) wskazuje to na fakt, iż zmienna X_i wnosi dodatkową informację do modelu,
- przy pomocy wykresu $e^{(X_i)}$ vs. $e^{(Y)}$ możemy wykrywać odstępstwa od założeń modelu np.: obserwacje odstające, brak liniowej relacji, brak stałości wariancji itp.

Wektor studentyzowanych residuów

Do analizy założeń modelu liniowego stosowaliśmy do tej pory residua postaci $e_i = Y_i - \hat{Y}_i$. Wiemy, że pochodzą one z rozkładu $e \sim N(0, \sigma^2(\mathbb{I} - H))$. Łatwo zauważyć, że wariancja każdego elementu wektora e zależy od własności macierzy H:

$$var(e_i) = \sigma^2(1 - H_{ii})$$

i w konsekwencji mogą one być różne. Z drugiej strony błedy losowe ϵ (których predyktorem są residua e), mają równe wariancje $\epsilon \sim N(0, \sigma^2 \mathbb{I})$. Z tego względu często w analizie założeń modelu stosuje się tzw. studentyzowane residua postaci:

$$\tilde{e}_i = \frac{Y_i - \hat{Y}_i}{\sqrt{\hat{\sigma}^2 (1 - H_{ii})}}$$

gdzie $\hat{\sigma}^2$ jest pewnym estymatorem parametru σ^2 .

Wewnętrzna i zewnętrzna studentyzacja residuów

W literaturze można spotykać dwa rodzaje studentyzowanych residuów:

- residua studentyzowane wewnętrznie (standaryzowane, studentized residuals),
- residua studentyzowane zewnętrznie (studentized deleted residuals).

W residuach studentyzowanych wewnętrznie model konstruowany jest klasycznie, czyli przy użyciu wszystkich obsesrwacji ("wewnętrzny" – zawierający Y_i oraz wiersz w mac. planu stowarzyszony z Y_i). Na podstawie tak otrzymanego modelu wyznaczana jest wartość \hat{Y}_i oraz estymator wariancji postaci: $\hat{\sigma}^2 = s^2$ i w konsekwencji:

$$ilde{e_i} = rac{Y_i - \hat{Y}_i}{\sqrt{\hat{\sigma}^2(1 - H_{ii})}} = rac{e_i}{\sqrt{s^2(1 - H_{ii})}} = rac{e_i/\sqrt{\sigma^2(1 - H_{ii})}}{\sqrt{s^2/\sigma^2}}$$

Na podstawie wcześniejszych wykładów można by podejrzewać że \tilde{e}_i ma rozkład studenta $(e_i/\sqrt{\sigma^2(1-H_{ii})}\sim N(0,1);\ s^2/\sigma^2\sim "\chi^2_{n-p}/(n-p)")$. Okazuje się jednak, że licznik i mianownik nie są niezależnymi zmiennymi losowymi. Z tego względu rozkład \tilde{e}_i nie jest rozkładem studenta.

Wewnętnzna i zewnętrzna studentyzacja residuów

Źródłem zależności między licznikiem i mianownikiem jest wykorzystanie Y_i zarówno w liczniku $(e_i = Y_i - \hat{Y}_i)$ i w mianowniku (w statystyce s^2). Z poprzednich wykładów wiemy, że dla **nowej (niezależnej)** obserwacji \tilde{Y}_h statystyki $\tilde{Y}_h - \hat{Y}_h$ oraz s^2 są niezależne, co stanowi brakujący element w uzyskaniu rozkładu studenta.

Wewnętnzna i zewnętrzna studentyzacja residuów

Źródłem zależności między licznikiem i mianownikiem jest wykorzystanie Y_i zarówno w liczniku $(e_i = Y_i - \hat{Y}_i)$ i w mianowniku (w statystyce s^2). Z poprzednich wykładów wiemy, że dla **nowej (niezależnej)** obserwacji \tilde{Y}_h statystyki $\tilde{Y}_h - \hat{Y}_h$ oraz s^2 są niezależne, co stanowi brakujący element w uzyskaniu rozkładu studenta.

Z tego względu powstała modyfikacja zwana **zewnętrzną studentyzacją residuów**. Modyfikacja ta polega na tym że do wyznaczenie \tilde{e}_i korzystamy z modelu skonstruowanego z pominięciem w danych wartości Y_i oraz wiersza w mac. planu stowarzyszonego z Y_i . Aby podkreślić to, że wyłączona została i–ta obserwacja z danych będziemy stosować w dolnym indeksie znacznik "(i)". Wówczas:

$$\tilde{e}_i = \frac{Y_i - \hat{Y}_{(i)i}}{\sqrt{s_{(i)}^2 (1 - H_{(i)ii})}}$$

Ponieważ Y_i jest "nową" (niezależną) obserwacją dla modelu zbudowanego z pominięciem i-tej obserwacji, zatem licznik i mianownik są niezależne i $\tilde{e_i} \sim t_{n-1-p}$ (dodatkowe "-1" w liczbie stopni swobody, wynika z faktu że model zbudowano na n-1 obserwacjach). Warto zwrócić uwagę że do wyznaczenia wektora zewnętrznych studentyzowanych residuów musimy stworzyć n modeli.

Wewnętnzna i zewnętrzna studentyzacja residuów

Z praktycznego punktu widzenia zwykle obie wersje studentyzowanych residuów mają bardzo podobne własności i mogą być pomocne przy poszukiwaniu:

- obserwacji odstajacych,
- obserwacji wpływowych,
- ullet odstępstw od założeń dotyczących błędów $\epsilon.$

W R są dwie funkcje za pomocą, których można wyznaczyć odpowiednio wewnętrzne i zewnętrzne residua studentyzowana: rstandard(reg1), rstudent(reg1) (gdzie reg1 = Im(y x, data) – skonstruowany model).

Macierz H w diagnostyce modelu

Na jednym z wcześniejszych wykładów wprowadziliśmy oznaczenie na macierz rzutu ortogonalnego na przestrzeń $Lin(\mathbb{X})$:

$$H=\mathbb{X}(\mathbb{X}'\mathbb{X})^{-1}\mathbb{X}'$$

Miała ona szczególne znaczenie przy wyznaczaniu predykcji wektora odpowiedzi $\hat{Y} = HY$ i wektora (niestudentyzowanego) residuów $e = (\mathbb{I} - H)Y$.

Macierz H w diagnostyce modelu

Na jednym z wcześniejszych wykładów wprowadziliśmy oznaczenie na macierz rzutu ortogonalnego na przestrzeń $Lin(\mathbb{X})$:

$$H = \mathbb{X}(\mathbb{X}'\mathbb{X})^{-1}\mathbb{X}'$$

Miała ona szczególne znaczenie przy wyznaczaniu predykcji wektora odpowiedzi $\hat{Y} = HY$ i wektora (niestudentyzowanego) residuów $e = (\mathbb{I} - H)Y$.

W kontekście diagnostyki modelu istotne są elementy na diagonali macierzy H. Stanowią one miarę wpływu obserwacji Y_i na predykcję \hat{Y}_i , np. dla Y_1 :

$$\hat{Y}_1 = \underline{H_{11}Y_1} + H_{12}Y_2 + H_{13}Y_3 + \dots + H_{1n}Y_n$$

W tym kontekście czasami H_{ii} określane jest wagą i-tej obserwacji.

Macierz H w diagnostyce modelu

Z faktu, iż H jest macierzą rzutu ortogonalnego wynika, że:

- $0 \leqslant H_{ii} \leqslant 1$
- $\bullet \sum_{i=1}^{n} H_{ii} = Tr(H) = p$

Duże wartości H_{ii} sugerują, że i-ta obserwacja jest mocno odległa od centrum X-ów.

Obserwacje o wartości H_{ii} dalekiej od średniej wartości p/n należy szczegółowo przebadać. Potencjalnie mogą one być obserwacjami odstającymi lub wpływowymi!

Miara DFFITS

Do badania wpływu obserwacji Y_i na predykcję \hat{Y}_i można posłużyć się tzw. **miarą DFFITS dla i–tej obserwacji**, która ma postać:

$$DFFITS_i = \frac{\hat{Y}_i - \hat{Y}_{(i)i}}{\sqrt{s_{(i)}^2 H_{ii}}}$$

Z definicji łatwo zauważyć, że DFFITS dla i–tej obserwacji jest standaryzowaną różnicą pomiędzy predykcjami wartości Y_i uzyskanymi na podstawie dwóch modeli skonstruowanych na danych, odpowienio, z/bez obserwacji Y_i .

Miara DFFITS

Do badania wpływu obserwacji Y_i na predykcję \hat{Y}_i można posłużyć się tzw. **miarą DFFITS dla i–tej obserwacji**, która ma postać:

$$DFFITS_i = \frac{\hat{Y}_i - \hat{Y}_{(i)i}}{\sqrt{s_{(i)}^2 H_{ii}}}$$

Z definicji łatwo zauważyć, że DFFITS dla i–tej obserwacji jest standaryzowaną różnicą pomiędzy predykcjami wartości Y_i uzyskanymi na podstawie dwóch modeli skonstruowanych na danych, odpowienio, z/bez obserwacji Y_i .

Naturalnym jest oczekiwanie, że predykcje \hat{Y}_i i $\hat{Y}_{(i)i}$ będą przyjmowały podobne wartości. Odwrotna sytuacja implikuje znaczący wpływ obserwacji Y_i na obie predykcje i dużą (co do modułu) wartość statystyki $DFFITS_i$. Takim punktom warto się dokładnie przyjrzeć! W literaturze przyjmuje się, że dodatkowej analizie należy poddać te obserwacje dla których $|DFFITS_i| > 2\sqrt{p/n}$.

Odległość Cook'a (Cook's distance)

Do badania wpływu obserwacji Y_i na cały wektor predykcji \hat{Y} można posłużyć się tzw. **odległością Cook'a dla i–tej obserwacji**, która ma postać:

$$D_{i} = \sum_{j=1}^{n} \frac{(\hat{Y}_{j} - \hat{Y}_{(i)j})^{2}}{s^{2}p}$$

Z definicji łatwo zauważyć, że DFFITS dla i–tej obserwacji jest standaryzowaną różnicą pomiędzy predykcjami wektora Y uzyskanymi na podstawie dwóch modeli skonstruowanych na danych, odpowienio, z/bez obserwacji Y_i .

Odległość Cook'a (Cook's distance)

Do badania wpływu obserwacji Y_i na cały wektor predykcji \hat{Y} można posłużyć się tzw. **odległością Cook'a dla i–tej obserwacji**, która ma postać:

$$D_{i} = \sum_{j=1}^{n} \frac{(\hat{Y}_{j} - \hat{Y}_{(i)j})^{2}}{s^{2}p}$$

Z definicji łatwo zauważyć, że DFFITS dla i–tej obserwacji jest standaryzowaną różnicą pomiędzy predykcjami wektora Y uzyskanymi na podstawie dwóch modeli skonstruowanych na danych, odpowienio, z/bez obserwacji Y_i .

Naturalnym jest oczekiwanie, że predykcje \hat{Y} i $\hat{Y}_{(i)}$ będą przyjmowały podobne wartości. Odwrotna sytuacja implikuje znaczący wpływ obserwacji Y_i na obie predykcje i dużą (co do modułu) odległość Cook'a dla i–tej obserwacji.

W literaturze przyjmuje się, że dodatkowej analizie należy poddać te obserwacje dla których $|D_i| > 1$.

Miara DFBETAS

Do badania wpływu obserwacji Y_i na estymację parametru β_k można posłużyć się tzw. **miarą DFBETA dla i–tej obserwacji**, która dla parametru β_k ma postać:

$$DFBETA_k = \frac{\hat{\beta}_k - \hat{\beta}_{(i)k}}{s_{(i)}(\hat{\beta}_{(i)k})}; \qquad DFBETAS = (DFBETA_0, ..., DFBETA_{p-1})$$

gdzie $\hat{\beta}_k$ i $\hat{\beta}_{(i)k}$ są estymatorem parametru β_k uzyskanymi na podstawie dwóch modeli skonstruowanych na danych, odpowienio, z/bez obserwacji Y_i . Ponadto, $s_{(i)}(\hat{\beta}_{(i)k})$ jest estymatorem odchylenia standardowego estymatora $\hat{\beta}_{(i)k}$.

Miara DFBETAS

Do badania wpływu obserwacji Y_i na estymację parametru β_k można posłużyć się tzw. **miarą DFBETA dla i–tej obserwacji**, która dla parametru β_k ma postać:

$$DFBETA_k = \frac{\hat{\beta}_k - \hat{\beta}_{(i)k}}{s_{(i)}(\hat{\beta}_{(i)k})}; \qquad DFBETAS = (DFBETA_0, ..., DFBETA_{p-1})$$

gdzie $\hat{\beta}_k$ i $\hat{\beta}_{(i)k}$ są estymatorem parametru β_k uzyskanymi na podstawie dwóch modeli skonstruowanych na danych, odpowienio, z/bez obserwacji Y_i . Ponadto, $s_{(i)}(\hat{\beta}_{(i)k})$ jest estymatorem odchylenia standardowego estymatora $\hat{\beta}_{(i)k}$.

Naturalnym jest oczekiwanie, że estymatory $\hat{\beta}_k$ i $\hat{\beta}_{(i)k}$ będą przyjmowały podobne wartości. Odwrotna sytuacja implikuje znaczący wpływ obserwacji Y_i na oba estymatory, dużą (co do modułu) wartość statystyki $DFBETA_k$ i znaczący wpływ na estymację parametru β_k .

W literaturze przyjmuje się, że dodatkowej analizie należy poddać te obserwacje, dla których $|DFBETA_k| > 2/\sqrt{n}$.

Wspomnieliśmy, że poważnym problemem w regresji liniowej wielorakiej jest zjawisko **multikolinearności**. Do badania wielkości tego zjawiska można posłużyć się tzw. miarą **Variance inflation factor (VIF)**. *VIF* dla k-tej zmiennej objaśniającej bada, w jakim stopniu zmienna X_k objaśniana jest przez pozostałe zmienne objaśniające $X_1, ..., X_{k-1}, X_{k+1}, ..., X_{p-1}$.

Wspomnieliśmy, że poważnym problemem w regresji liniowej wielorakiej jest zjawisko **multikolinearności**. Do badania wielkości tego zjawiska można posłużyć się tzw. miarą **Variance inflation factor (VIF)**. *VIF* dla k-tej zmiennej objaśniającej bada, w jakim stopniu zmienna X_k objaśniana jest przez pozostałe zmienne objaśniające $X_1, ..., X_{k-1}, X_{k+1}, ..., X_{p-1}$.

Variance inflation factor można wyznaczyć w następujący sposób:

• Skonstruuj model liniowy, w którym zmienna X_k jest zmienną objaśnianą (" \tilde{Y} "), a pozostałe zmienne $X_1,...,X_{k-1},X_{k+1},...,X_{p-1}$ zmiennymi objaśniającymi:

$$X_{ik} = \beta_0 + \sum_{j \neq k} X_{ij}\beta_j + \epsilon_i \quad i = 1, ..., n$$

- $oldsymbol{0}$ wyznacz współczynnik determinacji R_k^2 dla powyższego modelu,
- **3** Variance inflation factor dla zmiennej X_k jest postaci:

$$VIF_k = (1 - R_k^2)^{-1}$$

Duże wartości VIF_k wskazują na bardzo silną korelację między X_k i pewną kombinacją liniową pozostałych zmiennych objaśniających. Implikuje to występowanie zjawiska multikolinearności. Zwykle obliczamy VIF_k dla każdej zmiennej objaśniającej X_k . Przyjmuje się, że sytuacja, w której VIF_k ma wartość większą niż 10, wskazuje na poważny problem z multikolinearnościa.

Duże wartości VIF_k wskazują na bardzo silną korelację między X_k i pewną kombinacją liniową pozostałych zmiennych objaśniających. Implikuje to występowanie zjawiska multikolinearności. Zwykle obliczamy VIF_k dla każdej zmiennej objaśniającej X_k . Przyjmuje się, że sytuacja, w której VIF_k ma wartość większą niż 10, wskazuje na poważny problem z multikolinearnością.

Czasami zamiast Variance inflation factor stosuje się miarę zwaną Tolerancją (Tolerance) zdefiniowaną jako odwrtotność VIF:

$$Tol_k = 1/VIF_k$$

Naturalnie w przypadku toleracji na problem z multikolinearnością wskazywać będą wartości mniejsze od 0.1.