## **BUSINESS CASE STUDY PROJECT**

1.1. Data type of all columns in the "customers" table.





1.2. Get the time range between which the orders were placed.



1.3. Count the Cities & States of customers who ordered during the given period.

```
WITH date_range AS (

SELECT
DATE(MIN(order_purchase_timestamp)) AS start_date, DATE(MAX(order_purchase_timestamp)) AS end_date
FROM `scaler-dsml-sql-387615.CASE_STUDY.orders`
)
```

SELECT COUNT(DISTINCT c.customer\_city) AS city\_count, COUNT(DISTINCT c.customer\_state) AS state\_count FROM `scaler-dsml-sql-387615.CASE\_STUDY.customers` c



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/3A 16884481616310/She et1?publish=yes

2.1 Is there a growing trend in the no. of orders placed over the past years?

Yes, there a growing trend in the no. of orders placed over the past years

SELECT EXTRACT(YEAR FROM order\_purchase\_timestamp) AS year,

COUNT(\*) AS order\_count FROM `scaler-dsml-sql-387615.CASE\_STUDY.orders` GROUP BY year ORDER BY year;

| Row | year ▼ | 11   | order_count ▼ |
|-----|--------|------|---------------|
| 1   |        | 2016 | 329           |
| 2   |        | 2017 | 45101         |
| 3   |        | 2018 | 54011         |



https://public.tableau.com/app/profile/lanka. ajay.kumar/viz/Isthereagrowingtrendintheno\_ofordersplacedoverthepastyears/Sheet1 ?publish=yes

## **2.2** Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

SELECT EXTRACT(YEAR FROM order\_purchase\_timestamp) AS year, EXTRACT(MONTH FROM order\_purchase\_timestamp) AS month, COUNT(\*) AS order\_count FROM `scaler-dsml-sql-387615.CASE\_STUDY.orders` GROUP BY year, month ORDER BY year, month;

| Row | year ▼ | month ▼ | order_count ▼ |
|-----|--------|---------|---------------|
| 1   | 2016   | 9       | 4             |
| 2   | 2016   | 10      | 324           |
| 3   | 2016   | 12      | 1             |
| 4   | 2017   | 1       | 800           |
| 5   | 2017   | 2       | 1780          |
| 6   | 2017   | 3       | 2682          |
| 7   | 2017   | 4       | 2404          |
| 8   | 2017   | 5       | 3700          |
| 9   | 2017   | 6       | 3245          |
| 10  | 2017   | 7       | 4026          |
| 11  | 2017   | 8       | 4331          |

 $\frac{https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/Canweseesomekindofmonthlyseasonalityintermsoftheno\_ofordersbeingplaced/Sheet1?publish=yes}{}$ 



# 2.3 During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs: Dawn
7-12 hrs: Mornings
13-18 hrs: Afternoon
19-23 hrs: Night

## SELECT

CASE

WHEN EXTRACT(HOUR FROM order\_purchase\_timestamp) BETWEEN 0 AND 6 THEN 'Dawn' WHEN EXTRACT(HOUR FROM order\_purchase\_timestamp) BETWEEN 7 AND 12 THEN 'Morning' WHEN EXTRACT(HOUR FROM order\_purchase\_timestamp) BETWEEN 13 AND 18 THEN 'Afternoon' WHEN EXTRACT(HOUR FROM order\_purchase\_timestamp) BETWEEN 19 AND 23 THEN 'Night' END AS time\_slot,

COUNT(\*) AS order\_count

FROM `scaler-dsml-sql-387615.CASE\_STUDY.orders`

GROUP BY time\_slot;

| Row | time_slot ▼ | order_count ▼ |
|-----|-------------|---------------|
| 1   | Morning     | 27733         |
| 2   | Dawn        | 5242          |
| 3   | Afternoon   | 38135         |
| 4   | Night       | 28331         |

## In Afternoon 38135 orders, the Brazilian customers mostly place their orders



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/DuringwhattimeofthedaydotheBraziliancustomersmostlyplacetheirordersDawnMorningAfternoonorNight/Sheet1?publish=yes

3.1 Get the month-on-month no. of orders placed in each state.

SELECT EXTRACT(MONTH FROM o.order\_purchase\_timestamp) AS month,

c.customer\_state AS state,

COUNT(\*) AS order\_count

FROM `scaler-dsml-sql-387615.CASE\_STUDY.orders` o

JOIN `scaler-dsml-sql-387615.CASE\_STUDY.customers` c ON o.customer\_id = c.customer\_id

**GROUP BY month, state** 

ORDER BY month, state;

| Row | month ▼ | st | ate ▼ | order_count ▼ |
|-----|---------|----|-------|---------------|
| 1   | 1       | A( |       | 8             |
| 2   | 1       | Al | -     | 39            |
| 3   | 1       | Al | M     | 12            |
| 4   | 1       | AF |       | 11            |
| 5   | 1       | BA | 4     | 264           |
| 6   | 1       | CE |       | 99            |
| 7   | 1       | DF | -     | 151           |
| 8   | 1       | ES | 3     | 159           |
| 9   | 1       | G  | )     | 164           |
| 10  | 1       | M  | A     | 66            |
| 11  | 1       | М  | G     | 971           |



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/Getthemonthonmon thno ofordersplacedineachstate /Sheet1?publish=yes

### 3.2 How are the customers distributed across all the states?

SELECT customer\_state, COUNT(\*) as customer\_count

FROM `scaler-dsml-sql-387615.CASE\_STUDY.customers`

# GROUP BY customer\_state ORDER BY customer\_count DESC;

| Row | customer_state ▼ | customer_count 🔻 |
|-----|------------------|------------------|
| 1   | SP               | 41746            |
| 2   | RJ               | 12852            |
| 3   | MG               | 11635            |
| 4   | RS               | 5466             |
| 5   | PR               | 5045             |
| 6   | SC               | 3637             |
| 7   | BA               | 3380             |
| 8   | DF               | 2140             |
| 9   | ES               | 2033             |
| 10  | GO               | 2020             |
| 11  | PE               | 1652             |
| 12  | CE               | 1336             |
| 13  | PA               | 975              |



 $\underline{\text{https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/Howarethecustomersdistributedacrossallthestates/She} \\ \underline{\text{et1?publish=yes}}$ 

4.1 Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment\_value" column in the payments table to get the cost of orders.

```
Row percentage_increase 1 136.9768716466...
```

#### **SELECT**

(SUM(CASE WHEN EXTRACT(YEAR FROM o.order\_purchase\_timestamp) = 2018 AND EXTRACT(MONTH FROM o.order\_purchase\_timestamp) <= 8 THEN p.payment\_value ELSE 0 END)

- SUM(CASE WHEN EXTRACT(YEAR FROM o.order\_purchase\_timestamp) = 2017 THEN p.payment\_value ELSE 0 END))

/ SUM(CASE WHEN EXTRACT(YEAR FROM o.order\_purchase\_timestamp) = 2017 THEN p.payment\_value ELSE 0 END) \* 100

AS percentage\_increase

#### **FROM**

`scaler-dsml-sql-387615.CASE\_STUDY.orders` o

JOIN `scaler-dsml-sql-387615.CASE\_STUDY.payments` p ON o.order\_id = p.order\_id

### **WHERE**

EXTRACT(YEAR FROM o.order\_purchase\_timestamp) IN (2017, 2018)

AND EXTRACT(MONTH FROM o.order\_purchase\_timestamp) BETWEEN 1 AND 8;

## 4.2 Calculate the Total & Average value of order price for each state?

#### **SELECT**

customer\_state,
SUM(oi.price) AS total\_order\_price,
AVG(oi.price) AS average\_order\_price
FROM

`scaler-dsml-sql-387615.CASE\_STUDY.orders` o

JOIN `refined-sum-390315.BUSINESS\_CASE.order\_items` oi ON o.order\_id = oi.order\_id

JOIN `scaler-dsml-sql-387615.CASE\_STUDY.customers` c ON o.customer\_id = c.customer\_id

## **GROUP BY**

## customer\_state;

| Row | customer_state ▼ | total_order_price 🔻 | average_order_price |
|-----|------------------|---------------------|---------------------|
| 1   | MT               | 156453.5299999      | 148.2971848341      |
| 2   | MA               | 119648.2199999      | 145.2041504854      |
| 3   | AL               | 80314.81            | 180.8892117117      |
| 4   | SP               | 5202955.050001      | 109.6536291597      |
| 5   | MG               | 1585308.029999      | 120.7485741488      |
| 6   | PE               | 262788.0299999      | 145.5083222591      |
| 7   | RJ               | 1824092.669999      | 125.1178180945      |
| 8   | DF               | 302603.9399999      | 125.7705486284      |
| 9   | RS               | 750304.0200000      | 120.3374530874      |
| 10  | SE               | 58920.85000000      | 153.0411688311      |
| 11  | PR               | 683083.7600000      | 119.0041393728      |

Sheet 1



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/CalculatetheTotalAveragevalueoforderpriceforeachstate/Sheet1?publish=yes

## 4.3. Calculate the Total & Average value of order freight for each state.

#### **SELECT**

```
customer_state,
```

SUM(oi.freight\_value) AS total\_order\_freight,

AVG(oi.freight\_value) AS average\_order\_freight

#### **FROM**

`scaler-dsml-sql-387615.CASE\_STUDY.orders` o

JOIN `refined-sum-390315.BUSINESS\_CASE.order\_items` oi ON o.order\_id = oi.order\_id

 ${\sf JOIN\,`scaler\text{-}dsml\text{-}sql\text{-}387615.CASE\_STUDY.customers\'c\ ON\ o.customer\_id} = c.customer\_id$ 

### **GROUP BY**

customer\_state;

| Row | customer_state ▼ | total_order_freight / | average_order_freigh |
|-----|------------------|-----------------------|----------------------|
| 1   | MT               | 29715.43000000        | 28.16628436018       |
| 2   | MA               | 31523.77000000        | 38.25700242718       |
| 3   | AL               | 15914.58999999        | 35.84367117117       |
| 4   | SP               | 718723.0699999        | 15.14727539041       |
| 5   | MG               | 270853.4600000        | 20.63016680630       |
| 6   | PE               | 59449.65999999        | 32.91786267995       |
| 7   | RJ               | 305589.3100000        | 20.96092393168       |
| 8   | DF               | 50625.499999999       | 21.04135494596       |
| 9   | RS               | 135522.7400000        | 21.73580433039       |
| 10  | SE               | 14111.46999999        | 36.65316883116       |
| 11  | PR               | 117851.6800000        | 20.53165156794       |

Sheet 1



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/CalculatetheTotalAveragevalueoforderfreightforeachstate/Sheet1?publish=yes

**5.1** Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time\_to\_deliver = order\_delivered\_customer\_date order\_purchase\_timestamp
- diff\_estimated\_delivery = order\_estimated\_delivery\_date order\_delivered\_customer\_date

#### **SELECT**

o.order\_id,

DATE\_DIFF(o.order\_delivered\_customer\_date, o.order\_purchase\_timestamp, DAY) AS delivery\_time, DATE\_DIFF(o.order\_estimated\_delivery\_date, o.order\_delivered\_customer\_date, DAY) AS diff\_estimated\_delivery

### **FROM**

`scaler-dsml-sql-387615.CASE\_STUDY.orders` o

JOIN `refined-sum-390315.BUSINESS\_CASE.order\_items` oi ON o.order\_id = oi.order\_id

| Row | order_id ▼                 | delivery_time ▼ | diff_estimated_delivery ▼ |
|-----|----------------------------|-----------------|---------------------------|
| 1   | 1950d777989f6a877539f5379  | 30              | -12                       |
| 2   | 2c45c33d2f9cb8ff8b1c86cc28 | 30              | 28                        |
| 3   | 65d1e226dfaeb8cdc42f66542  | 35              | 16                        |
| 4   | 635c894d068ac37e6e03dc54e  | 30              | 1                         |
| 5   | 3b97562c3aee8bdedcb5c2e45  | 32              | 0                         |
| 6   | 3b97562c3aee8bdedcb5c2e45  | 32              | 0                         |
| 7   | 68f47f50f04c4cb6774570cfde | 29              | 1                         |
| 8   | 276e9ec344d3bf029ff83a161c | 43              | -4                        |
| 9   | 54e1a3c2b97fb0809da548a59  | 40              | -4                        |
| 10  | fd04fa4105ee8045f6a0139ca5 | 37              | -1                        |
| 11  | 302bb8109d097a9fc6e9cefc5  | 33              | -5                        |
| 12  | 66057d37308e787052a32828   | 38              | -6                        |
| 13  | 19135c945c554eebfd7576c73  | 36              | -2                        |

### Sheet 1



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/DeliverytimevsEstimatedTimeDifference/Sheet1?publish=yes

## 5.2. Find out the top 5 states with the highest & lowest average freight value.

```
(
  SELECT
    customer_state,
    AVG(freight_value) AS avg_freight_value
  FROM
    `scaler-dsml-sql-387615.CASE_STUDY.customers` c
    JOIN `scaler-dsml-sql-387615.CASE_STUDY.orders` o ON c.customer_id = o.customer_id
    JOIN `refined-sum-390315.BUSINESS_CASE.order_items` oi ON o.order_id = oi.order_id
  GROUP BY
    customer_state
  ORDER BY
    avg_freight_value DESC
  LIMIT 5
)
UNION ALL
  SELECT
    customer_state,
    AVG(freight_value) AS avg_freight_value
```

```
FROM
    `scaler-dsml-sql-387615.CASE_STUDY.customers` c
    JOIN `scaler-dsml-sql-387615.CASE_STUDY.orders` o ON c.customer_id = o.customer_id
    JOIN `refined-sum-390315.BUSINESS_CASE.order_items` oi ON o.order_id = oi.order_id
    GROUP BY
    customer_state
ORDER BY
    avg_freight_value ASC
LIMIT 5
```

| Row | customer_state ▼ | avg_freight_value |
|-----|------------------|-------------------|
| 1   | RR               | 42.98442307692    |
| 2   | PB               | 42.72380398671    |
| 3   | RO               | 41.06971223021    |
| 4   | AC               | 40.07336956521    |
| 5   | PI               | 39.14797047970    |
| 6   | SP               | 15.14727539041    |
| 7   | PR               | 20.53165156794    |
| 8   | MG               | 20.63016680630    |
| 9   | RJ               | 20.96092393168    |
| 10  | DF               | 21.04135494596    |



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/Findoutthetop5stateswiththehighestlowestaveragefreightvalue /Sheet1?publish=yes

**5.3.** Find out the top 5 states with the highest & lowest average delivery time.

```
( SELECT c.customer_state,
```

```
AVG(date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY)) AS
avg_delivery_time
  FROM
    `scaler-dsml-sql-387615.CASE_STUDY.orders` o
  JOIN
    `scaler-dsml-sql-387615.CASE_STUDY.customers` c ON o.customer_id = c.customer_id
  GROUP BY
    c.customer_state
  ORDER BY
    avg_delivery_time DESC
  LIMIT 5
)
UNION ALL
  SELECT
    c.customer_state,
    AVG(date_diff(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY)) AS
avg_delivery_time
  FROM
     `scaler-dsml-sql-387615.CASE_STUDY.orders` o
  JOIN
    `scaler-dsml-sql-387615.CASE_STUDY.customers` c ON o.customer_id = c.customer_id
  GROUP BY
    c.customer_state
  ORDER BY
    avg_delivery_time ASC
  LIMIT 5
)
```

| Row | customer_state ▼ | avg_delivery_time |
|-----|------------------|-------------------|
| 1   | RR               | 28.97560975609    |
| 2   | AP               | 26.73134328358    |
| 3   | AM               | 25.98620689655    |
| 4   | AL               | 24.04030226700    |
| 5   | PA               | 23.31606765327    |
| 6   | SP               | 8.298061489072    |
| 7   | PR               | 11.52671135486    |
| 8   | MG               | 11.54381329810    |
| 9   | DF               | 12.50913461538    |
| 10  | SC               | 14.47956019171    |

Sheet 1



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/Findoutthetop5stateswiththehighestlowestaveragedeliverytime /Sheet1?publish=yes

5.4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

```
SELECT
```

```
c.customer_state,

AVG(date_diff(o.order_delivered_customer_date, o.order_estimated_delivery_date, DAY)) AS

avg_delivery_difference

FROM

`scaler-dsml-sql-387615.CASE_STUDY.orders` o

JOIN

`scaler-dsml-sql-387615.CASE_STUDY.customers` c ON o.customer_id = c.customer_id

GROUP BY

c.customer_state

HAVING

avg_delivery_difference < 0

ORDER BY

avg_delivery_difference ASC

LIMIT 5
```

| Row | customer_state | <b>▼</b> | avg_delivery_differen |
|-----|----------------|----------|-----------------------|
| 1   | AC             |          | -19.7625000000        |
| 2   | RO             |          | -19.1316872427        |
| 3   | AP             |          | -18.7313432835        |
| 4   | AM             |          | -18.6068965517        |
| 5   | RR             |          | -16.4146341463        |
|     |                |          |                       |



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/Findoutthetop5stateswheretheorderdeliveryisreallyfastascomparedtotheestimateddateofdelivery\_/Sheet1?publish=yes

**6.1.** Find the month-on-month no. of orders placed using different payment types.

```
DATE_TRUNC(o.order_purchase_timestamp, MONTH) AS order_month,
p.payment_type,
COUNT(o.order_id) AS order_count

FROM
   `scaler-dsml-sql-387615.CASE_STUDY.orders` o

JOIN
   `scaler-dsml-sql-387615.CASE_STUDY.payments` p ON o.order_id = p.order_id

GROUP BY
   order_month,
   p.payment_type

ORDER BY
   order_month
```

| Row | order_month ▼           | payment_type ▼ | order_count ▼ |
|-----|-------------------------|----------------|---------------|
| 1   | 2016-09-01 00:00:00 UTC | credit_card    | 3             |
| 2   | 2016-10-01 00:00:00 UTC | credit_card    | 254           |
| 3   | 2016-10-01 00:00:00 UTC | voucher        | 23            |
| 4   | 2016-10-01 00:00:00 UTC | debit_card     | 2             |
| 5   | 2016-10-01 00:00:00 UTC | UPI            | 63            |
| 6   | 2016-12-01 00:00:00 UTC | credit_card    | 1             |
| 7   | 2017-01-01 00:00:00 UTC | voucher        | 61            |
| 8   | 2017-01-01 00:00:00 UTC | UPI            | 197           |
| 9   | 2017-01-01 00:00:00 UTC | credit_card    | 583           |
| 10  | 2017-01-01 00:00:00 UTC | debit_card     | 9             |
| 11  | 2017-02-01 00:00:00 UTC | credit card    | 1356          |



https://public.tableau.com/app/profile/lanka.ajay.kumar/viz/Findthemonthonmonthnoofordersplacedusingdifferentpaymenttypes /Sheet1?publish=yes

6.2. Find the no. of orders placed on the basis of the payment installments that have been paid.

**SELECT** 

 $payment\_installments,$ 

COUNT(order\_id) AS order\_count

## FROM

`scaler-dsml-sql-387615.CASE\_STUDY.payments`

## **GROUP BY**

payment\_installments

| Row | payment_installment | order_count ▼ |  |
|-----|---------------------|---------------|--|
| 1   | 0                   | 2             |  |
| 2   | 1                   | 52546         |  |
| 3   | 2                   | 12413         |  |
| 4   | 3                   | 10461         |  |
| 5   | 4                   | 7098          |  |
| 6   | 5                   | 5239          |  |
| 7   | 6                   | 3920          |  |
| 8   | 7                   | 1626          |  |
| 9   | 8                   | 4268          |  |
| 10  | 9                   | 644           |  |
| 11  | 10                  | 5328          |  |