1장 알고리즘: 효율성, 분석, 차수

책 소개

- 알고리즘 기초(Foundations of Algorithms)
- 리차드 네아폴리탄 저, 도경구 역
- 홍릉과학출판사
- 주요 내용: 컴퓨터로 문제 푸는 기법 배우기

다루는 내용

• 1장: 알고리즘: 효율성, 분석, 차수

- 2장 6장: 다양한 문제풀이 기법 및 적용 예제
 - 2장 분할정복
 - 3장 동적계획
 - 4장 탐욕 알고리즘
 - 5장 되추적
 - 6장 분기한정법

• 7장 계산복잡도 소개: 정렬문제

• 8장 계산복잡도: 검색문제

• 9장 계산복잡도와 문제 난이도: NP 이론 소개

1장 주요 내용

- 1. 알고리즘
- 1. 효율적인 알고리즘 개발 중요성
- 1. 알고리즘 분석
- 1. 차수

1. 알고리즘

알고리즘이란?

- 컴퓨터를 이용하여 주어진 문제를 해결하는 기법
- 프로그래밍 언어, 프로그래밍 스타일과 무관
- 컴퓨터 프로그램은 여러 방법 중에서 한 가지 방법을 선택하여 구현
- 절차: 문제해결 알고리즘 적용 순서

알고리즘과 절차

• 절차: 문제해결 알고리즘 적용 순서

프로그램 설계 과정

알고리즘 효율성 분석

- 효율성: 문제해결을 위한 필수 요소
 - 컴퓨터 속도, 메모리 가격과 무관
 - 수천년, 수만년 동안 실행되어야 끝나는 비효율적 알고리즘이 일반적임.

- 분석: 알고리즘의 효율성 판단
 - 효율성 판단 기준: 계산복잡도
 - 계산복잡도
 - 시간복잡도: 특정 연산의 실행 횟수
 - 공간복잡도: 메모리 공간 사용 정도

- 차수: 계산복잡도 판단 기준
 - 계산복잡도 함수의 차수(order) 기준
 - 차수를 이용하여 알고리즘을 계산복잡도별로 분류 가능

알고리즘 효율성 비교 예제

● 문제: 전화번호부에서 '홍길동'의 전화번호 찾기

알고리즘 1: 순차검색

• 첫 쪽부터 '홍길동'이라는 이름이 나올 때까지 순서대로 찾는다.

알고리즘 2: 이분검색

- 전화번호부는 '가나다'순
- 먼저 'ㅎ'이 있을 만한 곳을 적당히 확인
- 이후 앞뒤로 뒤적여가며 검색

분석: 어떤 알고리즘이 더 효율적인가?

• 이분검색이 보다 효율적임.

알고리즘 표기법

- 자연어: 한글 또는 영어
 - 단점 1: 복잡한 알고리즘 설명과 전달 어려움
 - 단점 2: 실제로 구현하기 어려움

- 의사코드(Pseudo-code)
 - 실제 프로그래밍 언어와 유사한 언어로 작성된 코드
 - 자연어 사용의 단점 해결
 - 하지만 직접 실행할 수 없음.
 - 교재: C++에 가까운 의사코드 사용

강의에 사용되는 언어: 파이썬3

- 설치: 아나콘다(Anaconda) 패키지 설치 추천
- 주피터 노트북 활용
- 파이썬은 기본으로 제공된 패키지만 사용

파이썬 활용 장점

- 의사코드 수준의 프로그래밍 작성 가능
- 책의 의사코드와 매우 유사하게 구현하여 실행 가능

예제: 순차검색

- 문제: 리스트 S에 x가 항목으로 포함되어 있는가?
 - 입력 파라미터: 리스트 S와 값 x
 - 리턴값: x가 S의 항목일 경우 인덱스, 항목이 아닐 경우 -1.

- 알고리즘 (자연어):
 - $lacksymbol{x}$ 와 같은 항목을 찾을 때까지 S에 있는 모든 항목을 차례로 검사
 - 만일 *x*와 같은 항목을 찾으면 항목의 인덱스 내주기
 - $lacksymbol{\bullet}$ S를 모두 검사하고도 찾지 못하면 -1 내주기

```
In [51]: # 순차검색 알고리즘

def seqsearch(S, x):
    location = 0
    loop_count = 0

while location < len(S) and S[location] != x:
    loop_count += 1
    location += 1

if location < len(S):
    return (location, loop_count)
else:
    return (-1, loop_count)
```

```
In [77]: | seq = list(range(30))
          val = 5
          print(seqsearch(seq, val))
          (5, 5)
In [78]: | seq = list(range(30))
          val = 10
          print(seqsearch(seq, val))
          (10, 10)
In [79]: | seq = list(range(30))
          val = 20
          print(seqsearch(seq, val))
          (20, 20)
In [80]:
          seq = list(range(30))
          val = 29
          print(seqsearch(seq, val))
          (29, 29)
```

파이썬튜터 활용: 순차검색

- 입력값에 따라 while 반복문의 실행횟수가 선형적으로 늘어남.
- 위 순차검색 코드를 <u>PythonTutor: 순차검색</u> (http://pythontutor.com/visualize.html#code=%23%20%EC%88%9C%EC%B0%A8%E1,%20loop_count%29%0A%0Aseq%20%3D%20list%28range%2830%29%29%0Aval

순차검색 분석

- 특정 값의 위치를 확인하기 위해서 S의 항목 몇 개를 검색해야 하는가?
 - 특정 값과 동일한 항목의 위치에 따라 다름
 - 최악의 경우: *S*의 길이, 즉, 항목의 개수
- 좀 더 빨리 찾을 수는 없는가?
 - $lacksymbol{\bullet}$ S에 있는 항목에 대한 정보가 없는 한 더 빨리 찾을 수 없음.

2. 효율적 알고리즘 개발 중요성

효율적 검색 알고리즘 예제: 이분검색

- 문제: 항목이 비내림차순으로 정렬된 리스트 S에 x가 항목으로 포함되어 있는가?
 - 입력 파라미터: 리스트 S와 값 x
 - 리턴값: x가 S의 항목일 경우 인덱스, 항목이 아닐 경우 -1.

- 알고리즘 (자연어):
 - S의 중간에 위치한 항목과 x를 비교
 - \circ 만일 x와 같으면 해당 항목의 인덱스 내주기
 - \circ 만일 x가 중간에 위치한 값보다 작으면 중간 왼편에 위치한 구간에서 새롭게 검색
 - \circ 만일 x가 중간에 위치한 값보다 크면 중간 오른편에 위치한 구간에서 새롭게 검색
 - 검색 구간의 크기가 0이 될 때가지 위 절차 반복

```
In [63]: # 이분검색 알고리즘
          def binsearch(S, x):
              low, high = 0, len(S)-1
              location = -1
              loop_count = 0
              while low <= high and location == -1:</pre>
                  loop count += 1
                  mid = (low + high)//2
                  if x == S[mid]:
                      location = mid
                  elif x < S[mid]:</pre>
                      high = mid - 1
                  else:
                      low = mid + 1
              return (location, loop_count)
```

```
In [70]: | seq = list(range(30))
          val = 5
          print(binsearch(seq, val))
          (5, 5)
In [71]: | seq = list(range(30))
          val = 10
          print(binsearch(seq, val))
          (10, 3)
In [72]: | seq = list(range(30))
          val = 20
          print(binsearch(seq, val))
          (20, 4)
In [73]:
          seq = list(range(30))
          val = 29
          print(binsearch(seq, val))
          (29, 5)
```

파이썬튜터 활용: 이분검색

- 입력값이 달라져도 while 반복문의 실행횟수가 거의 변하지 않음.

이분검색 분석

- 이분검색으로 특정 값의 위치를 확인하기 위해서 S의 항목 몇 개를 검색해야 하는가?
 - while 반복문이 실행될 때마다 검색 대상의 총 크기가 절반으로 감소됨.
 - 따라서 최악의 경우 $\lg n + 1$ 개의 항목만 검사하면 됨.
 - 여기서 $lg := log_2$.

순차검색 vs 이분검색

배열의 크기	순차검색	이분검색	
n	n	$\lg n + 1$	
128	128	8	
1,024	1,024	11	
1,048,576	1,048,576	21	
4,294,967,296	4,294,967,296	33	

이분검색 활용

• 다음, 네이버, 구글, 페이스북, 트위터 등등 수백에서 수천만의 회원을 대상으로 검색을 진행하고 자 한다면 어떤 알고리즘 선택?

당연히 이분검색!

예제: 피보나찌 수 구하기 알고리즘

• 피보나치 수열 정의

$$f_0 = 0$$

 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2} \quad (n \ge 2)$

• 피보나찌 수 예제

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

피보나찌 수 구하기 알고리즘(재귀)

- 문제: 피보나찌 수열에서 n번째 수를 구하라.
 - 입력: 음이 아닌 정수
 - 출력: *n*번째 피보나찌 수

```
In [84]:
         # 피보나찌 수 구하기 알고리즘(재귀)
         def fib(n):
             if (n <= 1):
                 return n
             else:
                 return fib(n-1) + fib(n-2)
In [55]: | fib(3)
Out[55]: 2
In [56]:
         fib(6)
Out[56]:
In [57]:
         fib(10)
          55
Out[57]:
In [60]:
         fib(13)
          233
Out[60]:
```

fib 함수 분석

- 작성하기도 이해하기도 쉽지만, 매우 비효율적임.
- 이유는 동일한 값을 반복적으로 계산하기 때문.

• 예를들어, fib(5)를 계산하기 위해 fib(2)가 세 번 호출됨. 아래 나무구조 그림 참조.

fib 함수 호출 횟수

● *T*(*n*) = fib(n)을 계산하기 위해 fib 함수를 호출한 횟수. 즉, fib(n)을 위한 재귀 나무구조에 포함된 마디(node)의 개수

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = T(n-1) + T(n-2) + 1 \quad (n \ge 2)$$

$$> 2 \times T(n-2) \qquad (T(n-1) > T(n-2))$$

$$> 2^{2} \times T(n-4)$$

$$> 2^{3} \times T(n-6)$$

$$\cdots$$

$$> 2^{n/2} \times T(0)$$

$$= 2^{n/2}$$

- 증명
- 수학적 귀납법 활용
- 교재 14쪽, 정리 1.1 참조.

피보나찌 수 구하기 알고리즘 (반복)

- 한 번 계산한 값을 리스트에 저장해두고 필요할 때 활용.
- 중복 계산 없음.

```
In [85]: # 피보나찌 수 구하기 알고리즘 (반복)
         def fib2(n):
             f = []
             f.append(0)
             if n > 0:
                 f.append(1)
                 for i in range(2, n+1):
                      fi = f[i-1] + f[i-2]
                      f.append(fi)
             return f[n]
In [86]: | fib2(3)
Out[86]: 2
In [87]:
         fib2(6)
Out[87]:
In [88]:
         fib2(10)
          55
Out[88]:
In [89]:
         fib2(13)
          233
Out[89]:
```

fib2 함수 분석

- 중복 계산이 없는 반복 알고리즘은 수행속도가 훨씬 더 빠름.
- fib2 함수 호출 횟수 T(n)
 - T(n) = n + 1
 - 즉, f [0] 부터 f [n] 까지 한 번씩만 계산

두 피보나찌 알고리즘의 비교

n	n+1	$2^{n/2}$	Iterative	Recursive (Lower bound)
40	41	1,048,576	41 <i>ns</i>	1048 μs
60	61	1.1×10 ⁹	61 <i>ns</i>	1 sec
80	81	1.1×10 ¹²	81 <i>ns</i>	18 min
100	101	1.1×10 ¹⁵	101 ns	13 days
120	121	1.2×10 ¹⁸	121 ns	36 years
160	161	1.2×10 ²⁴	161 <i>ns</i>	3.8×10^7 years
200	201	1.3×10 ³⁰	201 ns	4×10^{13} years

- $1 \text{ ns} = 10^{-9} \text{ } \bar{\Sigma}$ $1 \mu \text{s} = 10^{-6} \text{ } \bar{\Sigma}$
- 가정: 피보나찌 수 하나를 계산하는 데 걸리는 시간 = 1 ns.

3. 알고리즘 분석

Analysis of Algorithms

- 시간복잡도(Time Complexity) 분석
 - Analyze the algorithm's efficiency by determining the number of times some basic operation is done as a function of the size of the input.
- 표현 척도
 - Input size (입력크기)
 - 배열의 크기, 리스트의 길이, 행렬에서 행과 열의 크기, 트리에서 마디와 이음
 선의 수, 그래프에서는 정점과 간선의 수
 - Basic operation (단위연산)
 - 비교 (comparison), 지정 (assignment)

분석 방법의 종류

- Worst-case time complexity analysis (최악의 경우 분석)
 - W(n) the maximum number of times the algorithm will ever do its basic operation for an input size of n.
 - 입력크기와 입력 값 모두에 종속
 - 단위연산이 수행되는 횟수가 최대인 경우
 - (Ex) Sequential search
- Best-case time complexity analysis (최선의 경우 분석)
 - B(n) the minimum number of times the algorithm will ever do its basic operation for an input size of n.
 - 입력크기와 입력 값 모두에 종속
 - 단위연산이 수행되는 횟수가 최소인 경우
 - (Ex) Sequential search

분석 방법의 종류

- Every-case time complexity analysis (모든 경우 분석)
 - T(n) the number of times the algorithm does the basic operation for an instance of size n
 - 입력크기에만 종속
 - 입력과는 무관하게 수행횟수 항상 일정
 - (Ex) Add array members, Exchange sort, Matrix multiplication
- Average-case time complexity analysis (평균의 경우 분석)
 - A(n) the average number of times the algorithm does the basic operation for an input size of n
 - 입력크기와 입력 값 모두에 종속
 - 모든 입력에 대해서 단위연산이 수행되는 기대치(평균)
 - 각 입력에 대해서 확률 할당 가능
 - 일반적으로 최악의 경우보다 계산이 복잡
 - (Ex) Sequential search

알고리즘: 순차검색 시간복잡도 분석 (최악)

- 단위연산: 배열의 아이템과 키 x와 비교연산 (S[location]!= x)
- 입력크기: 배열 안에 있는 아이템의 수 n
- 최악의 경우 분석:
 - x가 배열의 마지막 아이템이거나, x가 배열에 없는 경우, 단위연산이 n번 수행된다.
 - \blacksquare 따라서, W(n) = n.
- 순차검색 알고리즘의 경우, 입력(배열 S와 키x)에 따라서 검색하는 횟수가 달라지므로, Everycase 복잡도 분석은 불가능.

알고리즘: 순차검색 시간복잡도 분석 (최선)

- 단위연산: 배열의 아이템과 키 x와 비교 연산 (S[location]!= x)
- 입력크기: 배열 안에 있는 아이템의 수 n
- 최선의 경우 분석:
 - x가 S[1]일 때, 입력의 크기에 상관없이 단위연산이 1번만 수행된다.
 - 따라서, B(n) = 1.

알고리즘: 배열 덧셈

- 문제: 크기가 n인 배열 S의 모든 수를 더하라
 - 입력: 양수 n, 배열 S[1..n]
 - 출력: 배열 S에 있는 모든 수의 합
- 알고리즘:

```
number sum (int n, const number S[]) {
   index i;
   number result;

   result = 0;
   for (i = 1; i <= n; i++)
        result = result + S[i];
   return result;
}</pre>
```

배열 덧셈 알고리즘의 시간복잡도 분석

- 단위연산: 덧셈
- 입력크기: 배열의 크기 n
- 모든 경우 분석:
 - 배열 내용에 상관없이 for-루프가 n번 반복된다.
 - 각 루프마다 덧셈이 1회 수행된다.
 - 따라서 n에 대해서 덧셈이 수행되는 총 횟수는 T(n) = n이다.

알고리즘: 교환정렬

- 문제: 비내림차순(오름차순)으로 n개의 키를 정렬
 - 입력: 양수 n, 배열 S[1..n]
 - 출력: 비내림차순으로 정렬된 배열
- 알고리즘:

```
void exchangesort (int n, keytype S[]) {
   index i, j;

for (i = 1; i <= n-1; i++)
   for (j = i+1; j <= n; j++)
        if (S[j] < S[i])
        exchange S[i] and S[j];
}</pre>
```

알고리즘: 교환정렬 시간복잡도 분석 I

- 단위연산: 조건문 (S[i]와 S[i]의 비교)
- 입력크기: 정렬할 항목의 수 n
- 모든 경우 분석:
 - j-루프가 수행될 때마다 조건문 1번씩 수행
 - 조건문의 총 수행횟수
 - i = 1: j-루프 n-1 번 수행
 - i = 2: j-루프 n-2 번 수행
 - i = 3: j-루프 n-3 번 수행
 - 0 ..
 - i = n-1: j-루프 1 번 수행
 - ㅇ 따라서

$$T(n) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2}$$

알고리즘: 교환정렬 시간복잡도 분석 ॥

- 단위연산: 교환하는 연산 (exchange S[j] and S[i])
- 입력크기: 정렬할 항목의 수 n
- 최악의 경우 분석:
 - 조건문의 결과에 따라서 교환 연산의 수행여부가 결정된다.
 - 최악의 경우 = 조건문이 항상 참(true)이 되는 경우 = 입력 배열이 꺼꾸로 정렬되어 있는 경우

$$T(n) = \frac{(n-1)n}{2}$$

알고리즘: 순차검색 시간복잡도 분석 (평균)

- 단위연산: 배열의 아이템과 키 x와 비교 연산 (S[location]!= x)
- 입력크기: 배열 안에 있는 아이템의 수 n
- 평균의 경우 분석:
 - 배열의 아이템이 모두 다르다고 가정한다.
 - 경우 1: x가 배열 S안에 있는 경우만 고려
 - $1 \le k \le n$ 에 대해서 x가 배열의 k 번째 있을 확률 = 1/n
 - x가 배열의 k 번째 있다면, S를 찾기 위해서 수행하는 단위연산의 횟수 =k
 - 따라서,

$$A(n) = \sum_{k=1}^{n} k \times \frac{1}{n} = \frac{1}{n} \times \sum_{k=1}^{n} k = \frac{1}{n} \times \frac{n(n+1)}{2} = \frac{n+1}{2}$$

알고리즘: 순차검색 시간복잡도 분석 (평균)

- 경우2: x가 배열 S안에 없는 경우도 고려
 - x가 배열 S안에 있을 확률을 p라고 하면,
 - x가 배열의 k번째 있을 확률 = *p/n*
 - x가 배열에 없을 확률 = 1 p
 - 따라서,

$$A(n) = \sum_{k=1}^{n} \left(k \times \frac{p}{n}\right) + n(1-p)$$
$$= \frac{p}{n} \times \frac{n(n+1)}{2} + n(1-p)$$
$$= n\left(1 - \frac{p}{2}\right) + \frac{p}{2}$$

$$p = 1: A(n) = (n+1)/2$$

$$p = 1/2$$
: $A(n) = 3n/4 + 1/4$

Discussion

- 최악, 평균, 최선의 경우 분석 방법 중에서 어떤 분석이 가장 정확한가?
- 최악, 평균, 최선의 경우 분석 방법 중에서 어떤 분석을 사용할 것인가?
- The best: every-case time complexity. But, all algorithms don't have the case.
- Useful case
 - Average-case : 일반적인 경우
 - Worst-case: 단 한번의 사고가 중요한 경우

4. 차수

복잡도의 표기법

- *O*
- Big *O*, asymptotic upper bound
- Ω
- Omega, asymptotic lower bound
- **(**9)
- lacktriangle Theta, order, asymptotic tight bound ($O \cap \Omega$)

대표적인 복잡도 카테고리

- $\Theta(\lg n)$
- $\Theta(n)$: 1 $\bar{\uparrow}$ (linear time algorithm)
- $\Theta(n \lg n)$
- $\Theta(n^2)$: 2 $\stackrel{?}{\sim}$ (quadratic time)
- $\Theta(n^3)$: $3\bar{x}$ (cubic time)
- $\Theta(2^n)$: 지수 (exponential time)
- $\Theta(n!)$

최고차 항이 궁극적으로 지배한다

n	$0.1n^2$	$0.1n^2+n+100$	
10	10	120	
20	40	160	
50	250	400	
100	1,000	1,200	
1,000	100,000	101,100	

•
$$g(n)$$
 order of n^2
= $5n^2$
+ $100n$
+ 20
 $\in \theta$

 $(n^2) \equiv$

복잡도 함수의 증가율

시간복잡도별 실행시간 비교

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^3$	$f(n) = 2^n$
10	0.003 μs*	0.01 μs	0.033 μs	0.1 μs	1 μs	1 μs
20	0.004 μs	0.02 μs	0.086 μs	0.4 μs	8 μs	1 ms [†]
30	0.005 μs	0.03 μs	0.147 μs	0.9 μs	27 μs	1 s
40	0.005 μs	0.04 μs	0.213 μs	1.6 μs	64 μs	18.3 min
50	0.006 μs	0.05 μs	0.282 μs	2.5 μs	125 μs	13 days
102	0.007 μs	0.10 μs	0.664 μs	10 μs	1 ms	4×10^{13} years
103	0.010 μs	1.00 μs	9.966 μs	1 ms	1 s	
104	0.013 μs	10 μs	130 μs	100 ms	16.7 min	1 7 7 7 7
105	0.017 μs	0.10 ms	1.67 ms	10 s	11.6 days	
106	0.020 μs	1 ms	19.93 ms	16.7 min	31.7 days	
107	0.023 μs	0.01 s	0.23 s	1.16 days	31,709 years	
108	0.027 μs	0.10 s	2.66 s	115.7 days	3.17×10^7 years	The same
109	0.030 μs	1 s	29.90 s	31.7 days		

^{* 1} μ s = 10⁻⁶ second

 $^{1 \}text{ ms} = 10^{-3} \text{ second}$

Big O 표기법

- 정의: 점근적 상한 (Asymptotic Upper Bound)
 - 분석된 복잡도함수 g(n)이 어떤 함수 f(n)에 대해서 $g(n) \in O(f(n))$.
 - $n \ge N$ 인 모든 정수 n에 대해서 $g(n) \le c \times f(n)$ 이 성립하는 실수 c > 0와 음이 아닌 정수 N이 존재한다.
- $g(n) \in O(f(n))$ 읽는 방법:
 - *g*(*n*)의 점근적 상한은 *f*(*n*)이다.
 - Asymptotic upper bound of g(n) is f(n).
- 의미:
- 입력 크기 n에 대해서 이 알고리즘의 수행시간은 궁극적으로 f(n)보다 나쁘지는 않다.

Big O 표기법 (Cont)

Big *O* 표기법 (예)

- 어떤 함수 g(n)이 $O(n^2)$ 에 속한다는 말은
 - 함수g(n)은 궁극에 가서는 (즉, 어떤 N값 이후부터는) 어떤 2차 함수 cn2 보다는 작은 값을 가지게 된다는 것을 뜻한다. (그래프 상에서는 아래에 위치)
- $n^2 + 10n \in O(n^2)$?
 - $n \ge 10$ 인 모든 정수 n에 대해서 $n^2 + 10n \le 2n^2$ 이 성립한다. 그러므로 c = 2와 N = 10을 선택하면, 'Big O'의 정의에 의해서 $n^2 + 10n \in O(n^2)$ 이라고 결론지을 수 있다.
 - $n \ge 1$ 인 모든 정수 n에 대해서 $n^2 + 10n \le n^2 + 10n^2 = 11n^2$ 이 성립한다. 그러므로 c = 11와 N = 1을 선택하면, '큰 O'의 정의에 의해서 $n^2 + 10n \in O(n^2)$ 이라고 결론지을 수 있다.

•
$$2n^2$$
과 n^2 의비교
+ $10n$

- $5n^2 \in O(n^2)$?
 - c = 5와 N = 0을 선택하면, $n \ge 0$ 인 모든 정수 n에 대해서 $5n^2 \le 5n^2$ 이 성립한다.
- T(n) = n(n-1)/2?
 - $n \ge 0$ 인 모든 정수 n에 대해서 $n(n-1)/2 \le n^2/2$ 이 성립한다. 그러므로 c = 1/2과 N = 0을 선택하면, $T(n) \in O(n^2)$ 이라고 결론지을 수 있다.
- $n^2 \in O(n^2 + 10n)$?
 - $n \ge 0$ 인 모든 정수 n에 대해서, $n^2 \le 1 \times (n^2 + 10n)$ 이 성립한다. 그러므로, c = 1와 N = 0을 선택하면, $n^2 \in O(n^2 + 10n)$ 이라고 결론지을 수 있다.

- $n \in O(n^2)$?
 - $n \ge 1$ 인 모든 정수 n에 대해서, $n \le 1 \times n^2$ 이 성립한다. 그러므로, c = 1와 N = 1을 선택하면, $n \in O(n^2)$ 이라고 결론지을 수 있다.
- $n^3 \in O(n^2)$?
 - $n \ge N$ 인 모든 n에 대해서 $n^3 \le c \cdot n^2$ 이 성립하는 c와 N값은 존재하지 않는다. 즉, 양변을 n^2 으로 나누면, $n \le c$ 가 되는데, c를 아무리 크게 잡더라도 그 보다 더 큰 n이 존재한다. (성립하지 않음)

• $O(n^2)$: cn^2 보다 작은 값을 가지는 모든 함수.

Ω 표기법

- 정의: 점근적 하한 (Asymptotic Lower Bound)
 - 분석된 복잡도함수 g(n)이 어떤 함수 f(n)에 대해서 $g(n) \in \Omega(f(n))$
 - $n \ge N$ 인 모든 정수 n에 대해서 $g(n) \ge c \cdot f(n)$ 이 성립하는 실수 c > 0와 음이 아닌 정수 N이 존재한다.
- $g(n) \in \Omega(f(n))$ 읽는 방법:
 - *g*(*n*)의 점근적 하한은 *f*(*n*)이다.
 - Asymptotic lower bound of g(n) is f(n).
- 의미:
- 입력 크기 n에 대해서 이 알고리즘의 수행시간은 궁극적으로 f(n)보다 효율적이지는 못하다.

Ω 표기법

Ω 표기법 : 예

- 어떤 함수 g(n)이 $\Omega(n^2)$ 에 속한다는 말은
 - 그 함수는 궁극에 가서는 (즉 어떤 N 값 이후부터는) 어떤 2차 함수 $c \cdot n^2$ 의 값보다는 큰 값을 가지게 된다는 것을 뜻한다(그래프 상에서는 위에 위치).
- $n^2 + 10n \in \Omega(n^2)$?
 - $n \ge 0$ 인 모든 정수 n에 대해서 $n^2 + 10n \ge n^2$ 이 성립한다. 그러므로 c = 1와 N = 0을 선택하면, $n^2 + 10n \in \Omega(n^2)$ 이라고 결론지을 수 있다.
- $5n^2 \in \Omega(n^2)$?
 - $n \ge 0$ 인 모든 정수 n에 대해서, $5n^2 \ge 1 \cdot n^2$ 이 성립한다. 그러므로, c = 1와 N = 0을 선택하면, $5n^2 \in \Omega(n^2)$ 이라고 결론지을 수 있다.

Ω 표기법 : 예 (계속)

- T(n) = n(n-1)/2?
 - $n \ge 2$ 인 모든 n에 대해서 $n-1 \ge n/2$ 이 성립한다. 그러므로, $n \ge 2$ 인 모든 n에 대해서 $n(n-1)/2 \ge n/2 \cdot n/2 = 1/4n^2$ 이 성립한다. 따라서 c=1/4과 N=2를 선택하면, $T(n) \in \Omega(n^2)$ 이라고 결론지을 수 있다.
- $n^3 \in \Omega(n^2)$?
 - $n \ge 1$ 인 모든 정수 n에 대해서, $n^3 \ge 1 \cdot n^2$ 이 성립한다. 그러므로, c = 1과 N = 1을 선택하면, $n^3 \in \Omega(n^2)$ 이라고 결론지을 수 있다.

Ω 표기법 : 예 (계속)

- $n \in \Omega(n^2)$?
 - 모순유도에 의한 증명(Proof by contradiction)
 - $n \in \Omega(n^2)$ 이라고 가정. 그러면 $n \ge N$ 인 모든 정수 n에 대해서, $n \ge c \cdot n^2$ 이 성립하는 실수 c > 0, 그리고 음이 아닌 정수 N이 존재한다. 위의 부등식의 양변을 $c \cdot n$ 으로 나누면 $1/c \ge n$ 이 된다. 그러나 이 부등식은 절대로 성립할 수 없다. 따라서위의 가정은 모순이다.

Ω 표기법: 예 (Cont)

• $\Omega(n^2)$

❷ 표기법

- 정의: Asymptotic Tight Bound
 - 분석된 복잡도함수 g(n)이 어떤 함수 f(n)에 대해서 $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$.
 - $n \ge N$ 인 모든 정수 n에 대해서 $c \cdot f(n) \ge g(n) \le d \cdot f(n)$ 이 성립하는 실수 c > 0와 d > 0, 그리고 음이 아닌 정수 N이 존재한다.
- $g(n) \in \Theta(f(n))$ 읽는 방법:
 - g(n)의 차수(order=asymptotic tight bound)는 f(n)이다.
 - Asymptotic tight bound of g(n) is f(n).
- 예: $T(n) = n(n-1)/2 \in O(n^2)$ 이면서 $\Omega(n^2)$ 이다. 따라서 $T(n) = \Theta(n^2)$.

❷ 표기법

$\Theta(n^2)$

작은(Small) o 표기법

- 정의:작은 *o*
 - 분석된 복잡도 함수 g(n)이 어떤 함수 f(n)에 대해서 $g(n) \in o(f(n))$
 - lacktriangle 어떤 N값 이후부터는 모든 실수 c>0에 대해서 $g(n)\leq c\cdot f(n)$
- 참고: $g(n) \in o(f(n))$ 은 "g(n)은 f(n)의 작은 오(o)"라고 한다.

큰 O vs 작은 o

- 큰 *O*와의 차이점
 - 큰 O: 실수 c>0 중에서 하나만 성립하여도 됨
 - 작은 o: 모든 실수 c > 0에 대해서 성립하여야 함
- $g(n) \in o(f(n))$ 은 쉽게 설명하자면
 - g(n)이 궁극적으로 f(n)보다 '훨씬' 낫다(좋다)는 의미이다.

작은 *o* 표기법 : 예

- $n \in o(n^2)$?
- 증명:

c>0이라고 하자. $n\geq N$ 인 모든 n에 대해서 $n\leq c\cdot n^2$ 이 성립하는 N을 찾아야 한다. 이 부등식의 양변을 $cc\dot{n}$ 으로 나누면 $1/c\leq n$ 을 얻는다. 따라서 $N\geq 1/c$ 가 되는 어떤 N을 찾으면된다. 여기서 N의 값은 c에 의해 좌우된다.

예를 들어 만약 c=0.0001이라고 하면, N의 값은 최소한 10,000이 되어야 한다. 즉, $n\geq 10,000$ 인 모든 n에 대해서 $n\leq 0.0001\cdot n^2$ 이 성립한다.

작은 *o* 표기법 : 예 (계속)

- $n^{0}|o(5n)$?
- 모순 유도에 의한 증명: *c* = 1/6이라고 하자.

 $n \in o(5n)$ 이라고 가정하면, $n \geq N$ 인 모든 정수 n에 대해서, $n \leq 1/6 \cdot 5 \cdot n \leq 5/6 \cdot n$ 이 성립하는 음이 아닌 정수 N이 존재해야 한다.

그러나 그런 N은 절대로 있을 수 없다. 따라서 위의 가정은 모순이다.

극한(limit)을 이용하여 차수를 구하는 방법

• 정의:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \begin{cases} c & \text{for some } c > 0 \text{ if } g(n) \in \Theta(f(n)), \\ 0 & \text{if } g(n) \in o(f(n)) = O(f(n)) \setminus \Theta(f(n)), \\ \infty & \text{if } g(n) \in \Omega(f(n)) \setminus \Theta(f(n)). \end{cases}$$

• 예:다음이 성립함을 보이시오.

■
$$\frac{n^2}{2} \in o(n^3)$$

○ 이유: $\lim_{n \to \infty} \frac{n^2/2}{n^3} = \lim_{n \to \infty} \frac{1}{2n} = 0$

■ $b > a > 0$ 일 때, $a^n \in o(b^n)$

○ 이유: $0 < \frac{a}{b} < 1$. 따라서 $\lim_{n \to \infty} \frac{a^n}{b^n} = \lim_{n \to \infty} \left(\frac{a}{b}\right)^n = 0$.

로피탈(L'Hopital)의 법칙

• 정리: 로피탈(L'Hopital)의 법칙:

$$\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$$
 이면 $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \lim_{n\to\infty} \frac{g'(n)}{f'(n)}$ 이다.

- 예:다음이 성립함을 보이시오.
 - $\lg n \in o(n)$, 이유는

$$\lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln 2}}{1} \right) = 0$$

• $\log_a n \in \Theta(\log_b n)$, 이유는

$$\lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln a}}{\frac{1}{n \ln b}} \right) = \frac{\log b}{\log a} > 0$$

차수의 주요 성질 |

```
1. g iff f . 

(n (n ) ) \in O \in \Omega (f (g (n (n (n) )) <math>)
```

- $g(n) \in \Theta(f(n))$ iff $f(n) \in \Theta(g(n))$.
- b > 1이고 a > 1이면, $\log_a n \in \Theta(\log_b n)$ 은 항상 성립. 다시 말하면 로그(logarithm) 복잡도 함수는 모두 같은 카테고리에 속한다. 따라서 통상 $\Theta(\lg n)$ 으로 표시한다.
- b > a > 0이면, $a^n \in o(b^n)$. 다시 말하면, 지수(exponential) 복잡도 함수가 모두 같은 카테고리 안에 있는 것은 아니다.

차수의 주요 성질 Ⅱ

- 1. a > 0인 모든 a에 대해서, $a^n \in o(n!)$. 다시 말하면, n!은 어떤 지수 복잡도 함수보다도 나쁘다.
- 2. 복잡도 함수를 다음 순으로 나열해 보자.

$$\Theta(\lg n), \Theta(n), \Theta(n \lg n), \Theta(n^2), \Theta(n^j), \Theta(n^k), \Theta(a^n), \Theta(b^n), \Theta(n!)$$

여기서 k > j > 2이고 b > a > 1이다.

복잡도 함수 g(n)이 f(n)을 포함한 카테고리의 왼쪽에 위치하면, $g(n) \in o(f(n))$.

 $3. c \ge 0, d > 0, g(n) \in O(f(n)),$ 그리고 $h(n) \in \Theta(f(n))$ 이면,

$$c \cdot g(n) + d \cdot h(n) \in \Theta(f(n))$$

• ex) $5n + 3 \lg n + 10n \lg n + 7n^2 \in \Theta(n^2)$.

```
In [ ]:
In [ ]:
In [ ]:
```