Homework 1 Yunxiao Xiang – N12351630

Problem 0: Data Processing

In this part, I set mypath to where I store all the ".gz" files, and did the following:

- 1> Unzipped ".gz" files into same folder
- 2> Processed data into dataframe, with time converted into Timestamp object and set as index
- 3> Read data from each file and combine them in to two dataframes "quotes" and "trades"
- 4> Saved two dataframes as "trades.csv" "quotes.csv" files for future uses

the head of the data frame looks like this:

#### trades

| timestamp               | symbology | price | size | exchange | saleconditions | iscorrection | iscancel | isopen | isclose |
|-------------------------|-----------|-------|------|----------|----------------|--------------|----------|--------|---------|
| 2008-10-01 09:30:43.844 | CBL       | 19.89 | 100  | Р        | @              | false        | false    | false  | false   |
| 2008-10-01 09:31:07.575 | CBL       | 19.91 | 284  | D        | F              | false        | false    | false  | false   |
| 2008-10-01 09:34:11.675 | CBL       | 19.74 | 200  | D        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:02.216 | CBL       | 19.58 | 700  | Т        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:02.216 | CBL       | 19.58 | 700  | Т        | Q              | false        | false    | false  | false   |
| 2008-10-01 09:35:05.816 | CBL       | 19.58 | 1400 | Т        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:07.556 | CBL       | 19.58 | 100  | Т        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:07.586 | CBL       | 19.58 | 100  | Т        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:08.096 | CBL       | 19.58 | 100  | Р        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:08.096 | CBL       | 19.58 | 100  | Р        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:08.126 | CBL       | 19.58 | 200  | Т        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:10.797 | CBL       | 19.59 | 100  | Т        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:11.097 | CBL       | 19.4  | 100  | Т        | @              | false        | false    | false  | false   |
| 2008-10-01 09:35:11.127 | CBL       | 19.62 | 200  | Р        | F              | false        | false    | false  | false   |
| 2008-10-01 09:35:11.127 | CBL       | 19.62 | 100  | Р        | F              | false        | false    | false  | false   |

## Problem 1.1:

(1) In this problem, I reproduced Figures 1.3, 1.4, 1.5 according to trades and quotes in NYSE on 2008-10-15. Here are the plots:





(2) And I compute the estimated first-order autocovariance of the price changes and the implied spread in the Roll model, by shift price to get difference in price ('dp') and shift dp to get autocov of dp. I'm using data on 2018-10-15 9:30 am – 16:00 pm, the computed

First-order autocov is: -6.505267086376985e-05 Implied spread is: 0.016131047190281213

(3) Then I plot the Roll implied spread using rolling 30-minute intervals, the plot looks like follows:



From the graph, the pattern roughly correspond to the smirk in 1.5 because the spread are higher at the beginning and the end of the day. What is different is the implied spread is high during 12-13, that might be caused by large price changes without actual spread changing too much.

#### Problem 2.1

Please see the last page

### Problem 2.2

In this problem I implemented the quote and tick test to classify trades in NYSE, the classification algorithm is as follows:

- We first use quote test, where we look back into the previous second and find the nearest bid and ask price. If the price of the trade = last bid, it is classified as a "sell". If the price of the trade = last ask, it is classified as a "buy", if it is somewhere in the middle or we cannot find quotes in last second, we will raise exception and move to tick test
- In tick test we compare the current trade price with last price within 10 mins (I choose 10 mins because I think any price before 10 mins ago is not as meaningful), if the current price is higher, it is classified as a "buy". If the current price if lower, it is classified as a "sell". If the current price and last price are equal, we look for the next closest historical price and compare with the same logic. If there is no more price in 10min, it will classify the trade as "cannot be classified".

After I classified each trade, I add a column in the data frame called "Buy or sell" to store the type of the trade, and I also save the dataframe as "trades\_with\_classification.csv" file under "mypath", the head of the data frame looks like this:

| trades_ | _witn_ | _cıassı | fication |
|---------|--------|---------|----------|
|         |        |         |          |

| timestamp               | symbology | price | size | exchange | saleconditions | iscorrection | iscancel | isopen | isclose | Buy or sell          |
|-------------------------|-----------|-------|------|----------|----------------|--------------|----------|--------|---------|----------------------|
| 2008-10-01 09:37:16.763 | CBL       | 19.78 | 3000 | N        | @              | false        | false    | false  | false   | Cannot be identified |
| 2008-10-01 09:37:35.754 | CBL       | 19.7  | 200  | N        | F              | false        | false    | false  | false   | Sell                 |
| 2008-10-01 09:37:41.455 | CBL       | 19.75 | 100  | N        | @              | false        | false    | false  | false   | Buy                  |
| 2008-10-01 09:37:42.505 | CBL       | 19.75 | 100  | N        | @              | false        | false    | false  | false   | Buy                  |
| 2008-10-01 09:37:44.845 | CBL       | 19.72 | 200  | N        | @              | false        | false    | false  | false   | Sell                 |
| 2008-10-01 09:37:44.905 | CBL       | 19.7  | 100  | N        | @              | false        | false    | false  | false   | Sell                 |
| 2008-10-01 09:37:44.905 | CBL       | 19.7  | 200  | N        | @              | false        | false    | false  | false   | Sell                 |
| 2008-10-01 09:37:44.905 | CBL       | 19.7  | 200  | N        | @              | false        | false    | false  | false   | Sell                 |
| 2008-10-01 09:37:51.565 | CBL       | 19.78 | 100  | N        | @              | false        | false    | false  | false   | Buy                  |
| 2008-10-01 09:37:52.105 | CBL       | 19.78 | 100  | N        | F              | false        | false    | false  | false   | Buy                  |
| 2008-10-01 09:38:22.287 | CBL       | 19.71 | 100  | N        | F              | false        | false    | false  | false   | Sell                 |
| 2008-10-01 09:38:46.018 | CBL       | 19.72 | 100  | N        | @              | false        | false    | false  | false   | Buy                  |
| 2008-10-01 09:38:46.018 | CBL       | 19.72 | 100  | N        | @              | false        | false    | false  | false   | Buy                  |
| 2008-10-01 09:38:46.108 | CBL       | 19.72 | 100  | N        | F              | false        | false    | false  | false   | Buy                  |
| 2008-10-01 09:38:58.289 | CBL       | 19.65 | 200  | N        | F              | false        | false    | false  | false   | Sell                 |
|                         |           |       |      |          |                |              |          |        |         |                      |

# Problem 2.3

In this problem we are using GM to compute the delta from the last observed delta, I create a new column in dataframe called "delta" to store the values, and the plot looks like:



```
Using class notation:
     B = ETY | sul]
     = ETY | sell A VI. P(V | sell) + ETY | sell A II - IP(I | sell)
                                205 = (a)(3 a) # 10 + 424 = (a)
Part I: IP(V/sell) = P(sell/V)-P(V)
P(sell)
                    = 1-m
           ETV|Sell ND] = (1-8) V+ SY
 Part I: E ( ) ( ( ) ( ) [ ] = V
            P(I|Sul) = \frac{P(I \cap cell)}{P(Sul)} = \frac{P(cell \mid I) P(I)}{P(Sul)}
                      = 25m-1n+1
```

$$= \frac{58^{10} - 4 + 1}{28^{10} + 10} + \frac{58^{10} - 4 + 1}{58^{10} + 10}$$

$$= \frac{58^{10} - 4 + 1}{58^{10} + 10} + \frac{58^{10} - 4 + 1}{1 - 4}$$

$$= \frac{58^{10} - 4 + 1}{58^{10} + 10} + \frac{58^{10} - 4 + 1}{1 - 4}$$