LISTA DE EXELCÍCIOS III - PDS 2024.1

ALUNO: JORO VITOR DE O. FRAGA

MAT: 537377

4. A Sabemon que XCNJ = x(nT), orde nT ino substituin t, portanto: $4000 \text{ mn} T = \frac{n \text{ mn}}{3} - 7 T = \frac{4}{12000} \Delta_{ii}$

b) Não, pois su tenho outros valores en que o corsero será igual, por exemplo: $\cos\left(\frac{\pi n}{3}\right) = \cos\left(\frac{13\pi n}{3}\right)$ 1 pora esse caso teríamos $T = \frac{13}{13000}$ s,

2. Consideramos que X[n] = X(nT):

C)
$$\chi_{c}(t) = \frac{\cos(2\pi \cdot 1000 \cdot t)}{\pi \cdot t} \rightarrow \chi[n] = \frac{\cos(2\pi \cdot 1000 \cdot n \cdot \frac{1}{5000})}{\pi \cdot n \cdot \frac{1}{5000}} \rightarrow \chi[n] = \frac{5000 \cos(\frac{2\pi n}{5})}{\pi \cdot n}$$

3. Temos que no tempo $w(t) = x_1(t)x_2(t)$, inso ina implicar que quando dor colerado no detnínio da prequência inemos obten uma convolução, portanto, $W(iR) = X_1(iR) \times X_2(iR)$. Outro dado é que $X_1(iR) = 0$, $|R| \ge R_1$ e $X_2(iR) = 0$, $|R| \ge R_2$. Devido a convolução feita, temos que W(iR) é limitado pela sona das larguras de bandas de $X_1(iR)$ e $X_2(iR)$, lego: W(iR) = 0, $|R_1 + R_2| \ge 0$. Com base no terrema de Nyquint, que para ene caso dia que $x_1 + x_2 + x_3 + x_4 + x_4 + x_5 = 0$. $T = \frac{1}{A} \rightarrow T \angle \frac{1}{A(R_1 + R_2)}$,

4. a Usando o teorema de Nyquist: frz 2.5.103, T=± : TZ 10.000

- b) Relacionando a frequência referento ao tempo discreto (w) o a frequência referente ao tempo contínuo (N), temos $W=2\pi\cdot\frac{\Gamma}{f_A}$: $\frac{\Gamma}{3}=2\pi\cdot\frac{\Lambda}{10^4} \rightarrow \frac{1}{3}\cdot 10000=2\Lambda$. $\Lambda=625 \text{ Mz}$, reraí a frequência de corte.

6. Se fo= 16KHz, então T= 1 . Para o sistema ser LET é necessário impedir o aliasing.

Como $f_a \ge 2 \text{Re}$ então $\text{Re} \le 8 \text{KHz}$, contrado, como é feito uma filtragan passa-baixa ende é necessório que $2 \text{Tr} \frac{\text{Re}}{f_a} \le \frac{\text{Tr}}{2} \Rightarrow \text{Re} \le \frac{f_a}{4}$: $\text{Re} \le 4 \text{KNz}$ poro que não sejo "cortado" após a filtragan. Portanto, Re = 4 KHz.

Yd(eiw) = + Wd(eiw) Xc(i\mu), Iw/Lit, após posson polo conversor D/C terror então que:

b)
$$xd[n] = xc(nT) -> xd[n] = \frac{xdn(x_m nT)}{x_m} \cdot como$$
 $T = \frac{\pi}{x_m}$ estas $x_m = \frac{\pi}{T}$, estas:

$$Xd[n] = \underline{sin(n)}$$
 \overline{rn} \overline{rn}

8. Temos que
$$\chi(nT_1)$$
 e apos passos pelo conversos D/C ye $(t) = \sum_{n=\infty}^{\infty} \chi_n(nT_1)$ sinc $\left(\frac{t-nT_2}{T_2}\right)$... ye $(t) = \chi_n\left(\frac{T_2}{T_1}, t\right)$, none caso se $T_2 > T_1$ inemos obten uma versão "expondida" do sinal e a $T_1 > T_2$ toronos uma versão "comprimida" do sinol, ou em outras palavros, $T_1 > T_2$ será um sinal velerado e $T_2 > T_1$ seró um sinal desoculerado.

9. Podemos alterar para: X[n] -> [51] -> [51] -> [31] -> [31] sem sofrer consequências. pois estou adicionando 0 em 5 (espandido) e logo em seguida comprimindo em 5, ficando então:

Expandinolo tomos que:
$$y_{A}[n] = \begin{cases} x \left[\frac{2h}{3}\right], & \frac{n}{3} \in \mathbb{Z} \end{cases}, \quad y_{B}[n] = \begin{cases} x \left[\frac{2h}{3}\right], & \frac{2n}{3} \in \mathbb{Z} \end{cases}$$

$$0, \quad C. \quad C.$$

Entar sai equivalentes, pois todo volor que n for intero en no ele seró intero em In e