Conditional Expected Shortfall

Nonparametric Estimation

Young-geun Kim ygeunkim.github.io

Statistics, SKKU

12 Dec, 2019

- Risk Measures
- Nonparametric Estimation
- Simulation
- Oata Analysis

Reviewed Paper

[1] Z. Cai and X. Wang. "Nonparametric estimation of conditional VaR and expected shortfall". In: *Journal of Econometrics* 147.1 (2008), pp. 120-130. ISSN: 0304-4076. DOI: 10.1016/j.jeconom.2008.09.005.

Keywords

Boundary effects, Empirical likelihood, Expected shortfall, Local linear estimation, Nonparametric smoothing, Value-at-risk, Weighted double kernel

Section 1

Risk Measures

Value at Risk

Given time horizon,

Figure 1: Loss Distribution - Can the financial institution still be in business after a catastrophic event?

Two Viewpoints

Tsay (2010) says that

- Financial institution: Maximal loss of a financial position during a given time period for a given probability
 - Measure of loss under normal market conditions
- Regulatory committe: Minimal loss under extraordinary market circumstances

Definition

- p: Right tail probability
- I: Time horizon
- L(I): loss function of the asset from t to t+I
- F_I : CDF of L(I)

$$p = P[L(I) \ge VaR]$$

i.e. VaR can be computed by finding the p-th quantile.

Quantile Loss

Figure 2: CDF of Loss

$$VaR = \inf \{x: F_I(x) \ge 1 - p\}$$

Loss function and log Returns

Consider dollar $\{P_t\}$.

$$L(I) = P_{t+1} - P_t = R_{t+1} + \ldots + R_{t+1}$$

where $R_t = P_t - P_{t-1}$ is the return series.

- Loss occurs when the return R_t are negative
- Use *negative returns*

log Returns

Taylor expansion

For any $x_0 > 0$,

$$\ln x \approx \ln x_0 + \frac{1}{x_0}(x - x_0)$$

Write $x = x_2$, $x_0 = x_1$. Then

$$\ln \frac{x_2}{x_1} \approx \frac{x_2}{x_1} - 1 = \frac{x_2 - x_1}{x_1}$$

Percentage change

- Log returns $Y_t = \ln R_t$ correspond approximately to percentage changes
- Use negative log returns
- VaR by Upper quantile of the distribution of log return

VaR using log Return

log return

Cai and Wang (2008) used the following value in a real example part.

$$-100 Y_{t+1} = -100 \ln \frac{P_{t+1}}{P_t} pprox ext{percentage loss}$$

Dollar amount of VaR

From t to t+1,

$$VaR = P_t \times VaR(-100Y_{t+1})$$

Subadditivity

- When two portfolios are merged, the risk measure should not be greater than the sum of each.
- VaR underestimates the actual loss.
- Thus, Expected shortfall

VaR and Expected Loss

- VaR: Quantile loss of the loss distribution
- ES: Expected value of loss function if the VaR is exceeded

$$ES:=E[L(I) \mid L(I) \geq VaR]$$

Conditional information

- $\{X_t: t = 1, \dots n\}$
- Exogenous variable: economic, market variables
- or past observed returns e.g. $\{Y_{t-1}\}$

Conditional VaR

- Stationary log-return $\{Y_t: t=1,\ldots n\}$
- Conditional information $\{X_t: t = 1, \dots n\}$
- Conditional VaR (CVaR)

$$\nu_p(x) = S^{-1}(p \mid x)$$

where

- $S(y \mid x) := 1 F(y \mid x)$
- F: conditional CDF of Y_t given $X_t = x$.

Conditional Expected Shortfall

$$\mu_{p}(x) = E\left[Y_{t} \mid Y_{t} \geq \nu_{p}(x), X_{t} = x\right]$$

$$= \frac{1}{P\left(Y_{t} \geq \nu_{p}(x) \mid X_{t} = x\right)} \int_{\nu_{p}(x)}^{\infty} yf(y \mid x)dy$$

$$= \frac{1}{p} \int_{\nu_{p}(x)}^{\infty} yf(y \mid x)dy$$

Section 2

Nonparametric Estimation

Goal

Risk measures

- CVaR: $\hat{\nu}_p(x)$
- CES: $\hat{\mu}_p(x)$

Workflow of Estimation

Plugging-in Method

$$\hat{\mu}_p(x) = \frac{1}{p} \int_{\hat{\nu}_p(x)}^{\infty} y \hat{f}(y \mid x) dy$$

What to estimate

- Conditional PDF: $\hat{f}(y \mid x)$
- CVaR: $\hat{\nu}_p(x) = \hat{S}^{-1}(p \mid x)$ by inverting the conditional CDF

Weighted Double Kernel Local Linear

Section 3

Simulation

AR(1)-GARCH(1, 0)

$$\begin{cases} X_t = Y_{t-1} \\ Y_t = 0.01 + 0.62X_t + \sigma_t \epsilon_t \\ \sigma_t^2 = 0.15 + 0.65\sigma_{t-1}^2 \\ \epsilon_t \sim N(0, 1) \end{cases}$$

True conditional distribution

Since $\epsilon_t \sim N(0,1)$,

$$\sigma_t \epsilon_t \sim N(0, \sigma_t^2)$$

$$Y_t \mid X_t \sim N\left(0.01 + 0.62X_t, \sigma_t^2\right)$$

True CES

- For each X_t , pnorm(x, mean, sd) gives the conditional cdf value.
- Inverting $S(y \mid x) = 1 F(y \mid x)$ gives $\nu_p(x)$.

$$\nu_p(x) = S^{-1}(p \mid x)$$

• Plugging-in method gives $\mu_p(x)$.

$$\mu_p(x) = \frac{1}{p} \int_{\nu_p(x)}^{\infty} y f(y \mid x) dy$$

Goal of MC Simulation

- Compute the error between the true $\mu_p(x)$ and $\hat{\mu}_p(x)$
- Is the estimator of Cai and Wang (2008) good?

Process

Monte Carlo Samples:

- For fixed x_t (pre-determined grid points)
- ② Generate GARCH(1, 0): (σ_t, ϵ_t)
- **3** Generate Y_t using AR(1) for each $X_t = Y_{t-1}$
- **4** AR(1): $Y_t = 0.01 + 0.62Y_{t-1} + \sigma_t \epsilon_t$

Expected Prediction Error

Figure 3: Simulating Expected prediction error

Monte Carlo Samples

```
#>
         sigma
               garch
                         mc
                               хt
                                      уt
                         s1 0.005 -0.397
#>
      1: 0.655 -0.41011
#>
     2:0.655
              0.12022
                         s1 0.010
                                   0.136
     3: 0.655 -0.54705
                         s1 0.015 -0.528
#>
#>
     4: 0.655
              1.04436
                         s1 0.020
                                   1.067
#>
     5: 0.655 0.21571
                         s1 0.025
                                   0.241
#>
        0.655 - 0.00527 \text{ s} 20 \ 0.480
                                   0.302
  1997:
         0.655 0.67677 s20 0.485
                                   0.987
  1998: 0.655 -0.52315 s20 0.490 -0.209
#> 1999: 0.655 0.65742 s20 0.495
                                   0.974
#> 2000: 0.655 -0.20423 s20 0.500
                                   0.116
```

Numerical Results

Section 4

Data Analysis

Bitcoin

Figure 4: Bitcoin price in USD

Daily Return

As mentioned, Cai and Wang (2008) used daily return defined by y_t : = $-100 \ln \frac{P_t}{P_{t-1}}$

Figure 5: Daily return of bitcoin price

CES for DJI

Volatility smile

Figure 6: Conditional Expected Shortfall given each lagged variable value

Interpretation

Following Cai and Wang (2008),

- Risk tends to be lower when lagged log loss is close to the emprirical average,
- and larger otherwise
- Bitcoin price is more likely to fall if there were a loss within the last day than if there was a same amount of positive return.

References

Cai, Zongwu, and Xian Wang. 2008. "Nonparametric estimation of conditional VaR and expected shortfall." *Journal of Econometrics* 147 (1): 120–30. https://doi.org/10.1016/j.jeconom.2008.09.005.

Tsay, Ruey S. 2010. Analysis of Financial Time Series. John Wiley & Sons.