P, NP, NP-Complete and NP-Hard

Introduction (1/1)

- Some Algorithms we've seen in this class
 - Sorting O(N log N)
 - Searching O(log N)
 - Shortest Path Finding O(N^2)
 - However, some problems only have
 - Exponential Time Algorithm O(2^N)
 - 0/1 Knapsack problem O(2^N)
 - Travelling Salesman Problem O(2^N)
 - So What?

Introduction (2/2)

N	10	20	30	40	50	60
O(N)	.00001 second	.00002 second	.00003 second	.00004 second	.00005 second	.00006 second
$O(N^2)$.0001 second	.0004 second	.0009 second	.0016 second	.0025 second	.0036 second
) O(N3	.001 second	.008 second	.027 second	.064 second	.125 second	.216 second
)	1 second	3.2 seconds	24.3 seconds	1.7 minutes	5.2 minutes	13.0 minutes
O(N ⁵	.001 second	1.0 second	17.9 minutes	12.7 days	35.7 years	366 centuries
)	.059 second	58 minutes	6.5 years	3855 centuries	2*10 ⁸ centuries	10 ¹³ centuries
$O(2^N)$					3/30	

Motivation

• Traveling Salesman Problem (n = 1000)

• Compute 1000!

- Even **Electron** in the Universe is a **Super Computer**,
- And they work for the Estimated Life of the Universe,
- WE CANNOT SOLVE THIS PROBLEM!!!
- This kind of problems are NP-Complete.

P⇒NP

NP: Non-deterministic Polynomial

P: Polynomial

NPC: Non-deterministic Polynomial Complete

- P: the class of problems which can be solved by a deterministic polynomial algorithm.
- NP: the class of decision problem which can be solved by a non-deterministic polynomial algorithm.
- NP-hard: the class of problems to which every NP problem reduces.
- NP-complete (NPC): the class of problems which are NP-hard and belong to NP.

Relationship among P, NP, NP-Complete and NP-Hard

Decision problems

- The solution is simply "Yes" or "No".
- Optimization problem : more difficult Decision problem
- E.g. the traveling salesperson problem
 - Optimization version: Find the shortest tour Decision version:

Is there a tour whose total length is less than or equal to a constant C?

Nondeterministic algorithms

- A nondeterministic algorithm is an algorithm consisting of two phases: guessing and checking.
- Furthermore, it is assumed that a nondeterministic algorithm always makes a correct guessing.

Nondeterministic algorithms

- They do not exist and they would never exist in reality.
- They are useful only because they will help us define a class of problems: NP problems

NP algorithm

If the checking stage of a nondeterministic algorithm is of polynomial time-complexity, then this algorithm is called an NP (nondeterministic polynomial) algorithm.

NP problem

- If a decision problem can be solved by a NP algorithm, this problem is called an NP (nondeterministic polynomial) problem.
- NP problems : (must be decision problems)

To express Nondeterministic Algorithm

- Choice(S): arbitrarily chooses one of the elements in set S
- Failure : an unsuccessful completion
- Success: a successful completion

Nondeterministic searching Algorithm:

```
j ← choice(1 : n) /* guess
if A(j) = x then success /* check
else failure
```

- A nondeterministic algorithm terminates unsuccessfully iff there exist no set of choices leading to a success signal.
- The time required for choice(1 : n) is O(1).
- A deterministic interpretation of a non-deterministic algorithm can be made by allowing unbounded parallelism in computation.

Problem Reduction

- Problem A reduces to problem B (A∞B)
 - iff A can be solved by using any algorithm which solves B.
 - If A∞B, B is more difficult (B is at least as hard as A)

- Note: T(tr₁) + T(tr₂) < T(B)</p>
- $T(A) \le T(tr_1) + T(tr_2) + T(B) \sim O(T(B))$

Polynomial-time Reductions

- We want to solve a problem R; we already have an algorithm for S
- We have a transformation function T
 - Correct answer for R on x is "yes", iff the correct answer for S on T(x) is "yes"
- Problem R is polynomially reducible to S if such a transformation T can be computed in polynomial time
- The point of reducibility: S is at least as hard to solve as R

Polynomial-time Reductions

We use reductions (or transformations) to prove that a problem is NP-complete

Algorithm for **R**

- x is an input for R; T(x) is an input for S
- $(\mathsf{R} \propto \mathsf{S})$

NPC and NP-hard

- A problem A is NP-hard if every NP problem reduces to A.
- A problem A is NP-complete (NPC) if A∈NP and every NP problem reduces to A.
 - Or we can say a problem A is NPC if A∈NP and A is NP-hard.

NP-Completeness

- "NP-complete problems": the hardest problems in NP
- Interesting property
 - If any one NP-complete problem can be solved in polynomial time, then every problem in NP can also be solved similarly (i.e., P=NP)
- Many believe P≠NP

Importance of NP-Completeness

- NP-complete problems: considered "intractable"
- Important for algorithm designers & engineers
- Suppose you have a problem to solve
 - Your colleagues have spent a lot of time to solve it exactly but in vain
 - See whether you can prove that it is NP-complete
 - If yes, then spend your time developing an approximation (heuristic) algorithm
- Many natural problems can be NP-complete

Relationship Between NP and P

- It is not known whether P=NP or whether P is a proper subset of NP
- It is believed NP is much larger than P
 - But no problem in NP has been proved as not in P
 - No known deterministic algorithms that are polynomially bounded for many problems in NP
 - So, "does P = NP?" is still an open question!

SAT is NP-complete

- Every NP problem can be solved by an NP algorithm
- Every NP algorithm can be transformed in polynomial time to an SAT problem (a Boolean formula C)
- Such that the SAT problem is satisfiable iff the answer for the original NP problem is "yes"
- That is, every NP problem ∞ SAT
- SAT is NP-complete

 Definition of the <u>satisfiability problem</u>: Given a Boolean formula, determine whether this formula is satisfiable or not.

- A <u>literal</u>: x_i or -x_i
- A <u>clause</u>: $x_1 \vee x_2 \vee -x_3 \equiv C_i$
- A <u>formula</u>: conjunctive normal form
 C₁& C₂& ... & C_m

The Satisfiability Problem

- The <u>satisfiability</u> problem
 - A logical formula:

$$x_1 \ v \ x_2 \ v \ x_3$$

& - x_1
& - x_2

the assignment:

$$X_1 \leftarrow F, X_2 \leftarrow F, X_3 \leftarrow T$$

will make the above formula true.

$$(-x_1, -x_2, x_3)$$
 represents $x_1 \leftarrow F, x_2 \leftarrow F, x_3 \leftarrow T$

- If there is <u>at least one</u> assignment which satisfies a formula, then we say that this formula is <u>satisfiable</u>; otherwise, it is <u>unsatisfiable</u>.
- An unsatisfiable formula:

$$X_1 \ V \ X_2$$

& $X_1 \ V \ -X_2$
& $-X_1 \ V \ X_2$
& $-X_1 \ V \ -X_2$

Traveling salesperson problem

- Given: A set of n planar points
 Find: A closed tour which includes all points exactly once such that its total length is minimized.
- This problem is NP-complete.

Partition problem

- Given: A set of positive integers S Find: S_1 and S_2 such that $S_1 \cap S_2 = \emptyset$, $S_1 \cup S_2 = S$, $\sum_{i \in S_1} i = \sum_{i \in S_2} i$ (partition into S_1 and S_2 such that the sum of S_1 is equal to S_2)
- e.g. S={1, 7, 10, 9, 5, 8, 3, 13}
 - $S_1 = \{1, 10, 9, 8\}$
 - $S_2 = \{7, 5, 3, 13\}$
- This problem is NP-complete.

Art gallery problem

Chromatic Number Decision Problem (CN)

Def: A coloring of a graph G = (V, E) is a function f: V → { 1, 2, 3,..., k } such that if (u, v) ∈ E, then f(u)≠f(v). The CN problem is to determine if G has a coloring for k.

<Theorem> Satisfiability with at most 3 literals per clause (SATY) ∞ CN.