UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO CIRCUITOS DIGITAIS (2014/1)

Prof. Dr. Marcelo de Oliveira Johann Graduandos:

Paulo Renato Lanzarin (228818) Ricardo Gabriel Herdt (160622)

Relatório do laboratório 06: Projeto de decodificador para 7 segmentos

1 Descrição

O projeto deste laboratório consistiu na elaboração de um decodificador para 7 segmentos. Mais precisamente, os 4 bits de entrada são decodificados para o correspondente dígito de 0 a 9 (os quais são "desenhados"em segmentos de LED's enumerados de 'a' a 'g'). Para tanto, a partir de uma tabela verdade construída relacionando cada valor de entrada com os segmentos acionados, minimizou-se a correspondente função booleana através de mapas de Karnaugh e construiu-se o circuito.

2 Tabela Verdade

As funções de decodificação para ativação de cada LED (obtidas a partir da minimização por mapa de Karnaugh através dos valores da tabela-verdade acima) e a montagem dos circuitos especificos são como seguem nas subseções.

nº	$i_3i_2i_1i_0$	a	b	c	d	e	f	g
0	0000	1	1	1	1	1	1	0
1	0001	0	1	1	0	0	0	0
2	0010	1	1	0	1	1	0	1
3	0011	1	1	1	1	0	0	1
4	0100	0	1	1	0	0	1	1
5	0101	1	0	1	1	0	1	1
6	0110	1	0	1	1	0	1	1
7	0111	1	1	1	0	0	0	0
8	1000	1	1	1	1	1	1	1
9	1001	1	1	1	0	0	1	1

Tabela 1: Tabela verdade

3 Equações minimizadas

$$a: i_2.i_0 + i_1 + i_3 + \neg i_2. \neg i_0$$

$$b: \neg i_3. \neg i_2 + \neg i_1. \neg i_0 + i_3 + i_1. i_0$$

$$c: i_0 + \neg i_1 + i_2 + i_3$$

$$d: \neg i_2. \neg i_0 + i_2. \neg i_1. i_0 + \neg i_2. i_1 + i_1. i_0$$

$$e: \neg i_2. \neg i_0 + i_1. i_0$$

$$f: \neg i_1. \neg i_0 + i_3 + \neg i_3. i_2. \neg i_0 + \neg i_3. i_2. \neg i_1$$

$$g: i_1. \neg i_0 + i_2. \neg i_1 + i_3 + \neg i_2. i_1$$

4 Circuitos

O decodificador de 7 segmentos foi projetado em blocos no programa *Max+plus II*. Foram dispostas entradas de i0 a i3 que são conectadas em decodificadores menores projetados especificamentes para as funções de cada LED e que levam cada um a uma saída (que consistem dos correspondentes LEDs do dígito). A tabela verdade do decodificador é como segue, com 0-9 representando os dígitos que são ativados e a-g representando os LEDs correspondentes do dígito.

Figura 1: Visão geral do circuito

Figura 2: Decodificador 'a'

Figura 3: Decodificador 'b'

Figura 4: Decodificador 'c'

Figura 5: Decodificador 'd'

Figura 6: Decodificador 'e'

Figura 7: Decodificador 'f'

Figura 8: Decodificador 'g'

5 Simulação

A simulação funcional foi organizada de modo a cobrir todas as combinações possiveis para ativar os dígitos de 0 a 9 (como pode ser conferido na tabela verdade da seção 2). O resultado é tal como segue na figura:

Figura 9: Simulação Funcional

6 Conclusão

O experimento foi importante ao concretizar a noção de otimização de circuitos através da minimização por mapas de Karnaugh. Entrentanto, nota-se que isto foi possível levando em conta que o projeto em questao é de um circuito relativamente simples e, para algo mais complexo, seria impraticável proceder desta maneira.