数学2B 第1回の演習問題の解答例

問:次の集合は部分空間となるか、また部分空間である場合はその基底を求めよ、

$$W_{1} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \in \mathbf{R}^{3} : x_{1} + x_{2} + x_{3} = 0, \ 2x_{2} + 3x_{3} = 0 \right\}$$

$$W_{2} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \in \mathbf{R}^{3} : x_{1} + x_{2} + x_{3} = 1 \right\}$$

$$W_{3} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \in \mathbf{R}^{2} : x_{1} \geq 0, \ x_{2} = 0 \right\}$$

解答例:

• $\underline{W_2}$ は部分空間である.(a) $\mathbf{0} \in W_1$ (b) $\mathbf{x}, \mathbf{y} \in W_1$ ならば $\mathbf{x} + \mathbf{y} \in W_1$ (c) $\mathbf{x} \in W_1$, $\lambda \in \mathbf{R}$ ならば $\lambda \mathbf{x} \in W_1$ であることを示せばよい. $\mathbf{0}$ は $x_1 + x_2 + x_3 = 0$, $2x_2 + 3x_3 = 0$ を満たすので, (a) が成立

する.
$$m{x}=egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}, m{y}=egin{pmatrix} y_1 \ y_2 \ y_3 \end{pmatrix} \in W_1$$
 に対して、

$$x_1 + x_2 + x_3 = 0, \quad 2x_2 + 3x_3 = 0$$
 (1)

$$y_1 + y_2 + y_3 = 0, \quad 2y_2 + 3y_3 = 0$$
 (2)

が成立するが,これらより,

$$(x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3) = 0, \quad 2(x_2 + y_2) + 3(x_3 + y_3) = 0$$

となるので $x + y \in W_1$ となり, (b) が成立する. $x \in W_1$ と $\lambda \in \mathbf{R}$ とする. (1) より,

$$\lambda x_1 + \lambda x_2 + \lambda x_3 = 0$$
, $2\lambda x_2 + 3\lambda x_3 = 0$

となるので $\lambda x \in W_1$ となり, (c) が成立する.

また $a=^t(1,-3,2)$ としたとき, $W_1=\operatorname{Span}\{a\}$ であることを示す.すなわち,($\{a\}$ は 1 次独立なので) $\{a\}$ は W_1 の基底である. $\lambda \in \mathbf{R}$ に対し, λa は W_1 を定義する 2 本の等式を満たすので, $\operatorname{Span}\{a\} \subseteq W_1$ である.一方, W_1 は連立 1 次方程式の解全体で,これを解けば良い.第 2 式 $2x_2+3x_3=0$ を満たすためには, $x_3=2t(t$ は任意の実数)としたとき $x_2=-3t$ でなければならない.さらに $x_1+x_2+x_3=0$ を満たすように x_1 を定めると $x_1=t$ となる.すなわち, w_1 の要素は v_1 の要素は v_2 と表現でき,これは v_3 に含まれるので, v_4 こ v_4 である.以上より, v_4 こ v_4 が示せた.

- W_2 は部分空間ではない.なぜならば、 $\mathbf{0} \notin W_2$ である.
- $\underline{W_3}$ は部分空間ではない.なぜならば、 $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in W_3$ であるが、 $-1 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \not\in W_3$ である.