Details of Question 1

- ➤ Data- Dataset.data [rows 4177, columns-9, final value ranges between 0 and 30]
- > 5 Fold-indexes [[0, 834], [835, 1669], [1670, 2504], [2505, 3339], [3340, 4176]]
- ➤ Different plots showing relation between features and final output Plot-1 it's between first four features and output value

Plot-2 it's between last four features and output value

Not sure << It is clear from the plot-1 that feature-1 will create noise in the learning process. So, we can remove it.>>

1(a) `.predict()' from scratch using the outcomes of `.fit()'.

1(b) [Implemented MSE function]

Observation: Table-I

Fold-Number	Training MSE	Validation MSE
1	3.774039336741574	9.880113
2	5.333943966901227	3.024387
3	4.638637144821676	5.8376906899
4	5.114791452508	3.754576202268
5	5.04191978	4.035545
Mean of all errors	4.78066633	5.306462

Same errors using MSE of sklearn- TableII

Fold-Number	Training MSE	Validation MSE
1	3.774039336741574	9.880113
2	5.333943966901227	3.024387
3	4.638637144821676	5.8376906899
4	5.114791452508	3.754576202268
5	5.04191978	4.035545
Mean of all errors	4.78066633	5.306462

Comparison between Table-I and Tabel-II: There is no difference between self-defined MSE function and sklearn.mse function. Both are giving the same values.

1(c)

Observation: Table-I

Fold-Number	Training MSE	Validation MSE
1	3.774039336741574	9.880113
2	5.333943966901227	3.024387
3	4.638637144821676	5.8376906899
4	5.114791452508	3.754576202268
5	5.04191978	4.035545
Mean of all errors	4.78066633	5.306462

Same errors using MSE of sklearn- TableII

Fold-Number	Training MSE	Validation MSE
1	3.774039336741574	9.880113
2	5.333943966901227	3.024387
3	4.638637144821676	5.8376906899
4	5.114791452508	3.754576202268
5	5.04191978	4.035545
Mean of all errors	4.78066633	5.306462

Same result as 1(b).

1(d)

Fold-Number	Training MSE	Validation MSE
1	3.774039336741574	9.880113
2	5.333943966901227	3.024387
3	4.638637144821676	5.8376906899
4	5.114791452508	3.754576202268
5	5.04191978	4.035545
Mean of all errors	4.78066633	5.306462

Same results as in 1(b) and (c)

Details of Question 2

- ➤ Dataset_1 dimensions 5000 samples, 2 classes
- > 5-folds indexes
- [[0, 999], [1000, 1999], [2000, 2999], [3000, 3999], [4000, 4999]]
- 2(a) Visualization of the 'dataset 1' in the form of scatter plot

2(c) Table representing train accuracy for each fold considered as validation set [Lr=0.5 gives optimal values]

Lr = 0.1 Table-III

Fold Number	Train accuracy	Validation accuracy
1	0.8505	0.851
2	0.84925	0.844
3	0.8505	0.841
4	0.846	0.859
5	0.849	0.844

Table-IV

Fold-Number	Training MSE	Validation MSE
1	0.090	0.091
2	0.090	0.095
3	0.091	0.090
4	0.092	0.087
5	0.091	0.093
Mean of all errors	0.091	0.091

Plotting the curves-Fold- 0 Fold-0 Accuracy Loss 0.85 Training Validation Training Validation 0.7 0.80 0.6 0.75 O.70 S 0.5 0.65 0.4 0.3 100 200 300 350 400 150 200 Iteration Fold-1 Fold- 1 Fold- 1 Loss Accuracy Training 0.85 Training 0.7 Validation Validation 0.80 0.6 0.75 0.70 0.5 0.4 0.65 0.60 0.3 100 150 200 250 300 350 400 100 200 300 350 Iteration Fold-2 Fold- 2 Fold- 2 Loss Accuracy 0.85 Training Training 0.7 Validation Validation 0.80 0.6 0.75 0.70 S 0.5 0.4 0.65 0.3 0.60 100 200 200 Iteration Iteration Fold-3 Fold- 3 Fold- 3 Accuracy Training Validation Training 0.85 0.7 Validation 0.80 0.6 0.75 0.70 0.5 0.4

150 200 250

Iteration

0.65

0 50 100 150 200 250 300 350 400

Iteration

Fold- 4

Lr=0.5

Table-III

Fold Number	Train accuracy	Validation accuracy
1	0.889	0.885
2	0.886	0.887
3	0.887	0.889
4	0.887	0.892
5	0.888	0.885

Table-IV

Fold-Number	Training MSE	Validation MSE
1	0.07	0.07
2	0.07	0.08
3	0.07	0.07
4	0.07	0.07
5	0.07	0.07
Mean of all errors	0.07	0.07

350 400

0.60

100

150

200

Iteration

250

300

350 400 50 100 150 200 250 300

50

2(d) L2-regularization

With the optimal value of λ , repeat the tables and curves of part (c) above.

Table-V

Fold Number	Train accuracy	Validation accuracy	Value of λ
1	0.892	0.886	0.001,0.5
2	0.88875	0.887	0.001,0.5
3	0.88825	0.89	0.001,0.5
4	0.8875	0.894	0.001,0.5
5	0.8895	0.886	0.001,0.5

Table-VI

Fold-Number	Training MSE	Validation MSE
1	0.07	0.08
2	0.07	0.08
3	0.07	0.07
4	0.07	0.07
5	0.07	0.07
Mean of all errors	0.07	0.07

Fold- 0

Plots

Fold- 0

350

100 150 200 250

Fold- 1

350

Fold- 3

200

Accuracy

100 150

0.90

Fold- 4

100

150

200

Iteration

250

300

350

Fold- 4

Fold- 3

Observation- Validation accuracy increases by almost 1% in maximum cases as opposed to the 2(c) observations of validation score.

2(e) Repeat with sklearns' logistic regression part c and d

Table-VII

Fold Number	Train accuracy	Validation accuracy
1	0.892	0.887
2	0.89025	0.89
3	0.8895	0.893
4	0.889	0.893
5	0.892	0.888

Observation: statistics are almost similar to observations made in previous sections, as we have performed grid search for optimal values in our self-defined fit functions.

Details of Question 3

- ➤ Dataset- dataset_2.mat [rows-10000, columns-2, classes-4]
- Fold-indexes: [[0, 1999], [2000, 3999], [4000, 5999], [6000, 7999], [8000, 9999]]

3(a) Visualization of the 'dataset_2' in the form of scatter plot

3(b) One-vs-One (OVO) **Table-VIII**

Fold Number	Validation accuracy	Value of λ, Lr
1	0.888	0.001,0.5
2	0.901	0.001,0.5
3	0.884	0.001,0.5
4	0.889	0.001,0.5
5	0.889	0.001,0.5

Class-wise accuracy for each fold : **Table-IX**

Fold Number	Class-1 accuracy	Class-2 accuracy	Class-3 accuracy	Class-4 accuracy
1	0.9516	1.0	0.772	0.8430
2	0.93032	1.0	0.7466	0.873
3	0.938461	1.0	0.7389	0.8605
4	0.9552	1.0	0.7587	0.8488
5	0.9302	1.0	0.756302	0.86590

3(c) One -vs- Rest(OVR) Table-X

Fold Number	Validation accuracy	Value of λ, Lr
1	0.9215	0.001,0.5
2	0.913	0.001,0.5
3	0.9285	0.001,0.5
4	0.92	0.001,0.5
5	0.9185	0.001,0.5

Class-wise accuracy for each fold: Table-XI

Fold Number	Class-1 accuracy	Class-2 accuracy	Class-3 accuracy	Class-4 accuracy
1	1.0	1.0	0.815	0.860
2	1.0	1.0	0.800	0.856
3	1.0	1.0	0.838	0.866
4	1.0	1.0	0.851	0.823
5	1.0	1.0	0.818	0.876

3(d) Repeat above results using sklearn' logistic regression- Table-XII

Fold Number	Accuracy(One vs One)	Accuracy(One vs Rest)
1	0.9215	0.921
2	0.9275	0.927
3	0.9365	0.935
4	0.921	0.9195
5	0.9185	0.9185

Observation: Accuracies are almost same in case of OVR, but in OVO it differs by almost 3%. It might because of taking another class as reference class. In my case, I have run the fit by taking class-4 as the reference class.