РТУ МИРЭА

Физико-технологический институт

Дисциплина: Метрология, стандартизация и технические измерения

Овчинников Сергей Андреевич, к.т.н., доцент Кафедра метрологии и стандартизации

Москва, 2021

ЛЕКЦИЯ 2.МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Раздел
01

Организационная база метрологического обеспечения

Метрологические требования и объекты метрологического обеспечения

- Метрологическое обеспечение установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений
- Метрологические требования требования к влияющим на результат и показатели точности измерений характеристикам (параметрам) измерений, эталонов единиц величин, стандартных образцов, средств измерений, а также к условиям, при которых эти характеристики (параметры) должны быть обеспечены
- Объект метрологического обеспечения любой материальный объект или система или их составляющие (процессы, явления, события) с целью определения состояния которых выполняется логически завершенная совокупность измерений, позволяющая получать измерительную информацию, необходимую для выработки решений по приведению объекта в желаемое состояние
- Метрологическое обеспечение объекта метрологическое обеспечение измерений, выполняемых на объекте

Классификация метрологического обеспечения объектов

По типу деятельности

- По типу деятельности метрологическое обеспечение может быть направлено на обеспечение выполнения работ или оказание услуг, являющихся объектами различных стадий жизненного цикла электронной продукции
- При выполнении работ деятельность по метрологическому обеспечению может осуществляться как в отношении процессов, так и в отношении продукции, причем контроль процесса и контроль его результата могут являться альтернативными или дополнять друг друга
- Классификация по типу деятельности позволяет конкретизировать работы по метрологическому обеспечению объекта и ограничить возможный круг требований к ним.

02

По СФЕРЕ ДЕЯТЕЛЬНОСТИ

- Метрологическое обеспечение объектов существенно зависит от характера самого объекта, который, в свою очередь, в значительной мере определяется сферой деятельности и характером решаемых задач, а также требуемых процессов измерений.
- Примеры: испытания продукции в машиностроении; контроль состояния автотранспортных средств; геодезические измерения в строительстве; проектирование интегральных микросхем, контроль качества электронных сборок, различные виды (типы) испытаний ИМС
- Для каждой из сфер деятельности уже имеются и могут быть усовершенствованы специфические для неё приемы решения задач метрологического обеспечения. Наличие развитой и удобной для практики классификации метрологического обеспечения объектов по сферам деятельности может облегчить конкретизацию потребностей в метрологическом обеспечении и уточнить потребность и способы метрологического подтверждения пригодности элементов МОИ

По характеру Объекта

- По характеру объекта можно выделить метрологическое обеспечение следующих работ или услуг:
- Научно-исследовательские (НИР)
- Опытно-конструкторские (ОКР)
- Технологические (HTP, OTP)
- Испытания оборудования, процессов, продукции
- Контроль условий, процессов, продукции
- Измерения, испытания, контроль в процессе производства продукции или оказания услуг
- Измерения, испытания, контроль в процессе эксплуатации продукции
- Измерения, испытания, контроль в процессе ремонта технических устройств и систем
- Измерения, испытания, контроль в процессе утилизации продукции

По организационной форме объекта

- Объектами метрологического обеспечения, с точки зрения их организационной формы, могут выступать:
- объединения предприятий и организаций (научнопроизводственные объединения, концерны, холдинги, корпорации и др.)
- предприятия (организации)
- структурные подразделения предприятия (организации)
- На практике часто используются понятия: метрологическое обеспечение предприятия (цеха, участка), метрологическое обеспечение объединения и т.д. Здесь следует иметь в виду, что например, "метрологическое обеспечение цеха" это метрологическое обеспечение всех измерительных процессов, осуществляемых в цеху. Для более крупных организационных структур, например, объединения это совокупное метрологическое обеспечение всех предприятий, входящих в объединение.

Цели метрологического обеспечения

- Повышение качества продукции, эффективности управления производством и уровня автоматизации производственных процессов
- Обеспечение взаимозаменяемости электронных компонентов, деталей, узлов и агрегатов, создание необходимых условий для кооперирования производства и развития специализации
- Повышение эффективности научно-исследовательских и опытно-конструкторских работ, экспериментов и испытаний
- Обеспечение достоверного учета и повышение эффективности использования материальных ценностей и энергетических ресурсов

Задачи метрологического обеспечения

(на примере предприятия производителя/разработчика ИРЭ/ЭКБ)

- Проведение анализа состояния измерений на предприятии, разработка на его основе и осуществление мероприятий по совершенствованию метрологического обеспечения на предприятии, участие в разработке и выполнении заданий, предусмотренных комплексными программами метрологического обеспечения отрасли
- Установление рациональной номенклатуры измеряемых параметров технологических процессов при производстве ИРЭ/ЭКБ и оптимальных норм точности измерений
- Проведение работ по созданию и внедрению современных методик выполнения измерений и СИ, испытаний и контроля, установлению рациональной номенклатуры применяемых на предприятии СИ и поверочной аппаратуры
- Внедрение государственных и отраслевых стандартов, разработка и внедрение стандартов организаций, регламентирующих нормы точности измерений, методики выполнения измерений и другие положения метрологического обеспечения разработки, производства, испытаний и эксплуатации электронной продукции
- Проведение метрологической экспертизы проектов нормативно-технической, конструкторской и технологической документации на ИРЭ и ЭКБ
- Организация поверки, калибровки и аттестации СИ и оборудования, применяемых при производстве электронной продукции
- Аттестация методик выполнения измерений
- Контроль за производством, состоянием, применением и ремонтом СИ и соблюдением метрологических правил, требований и норм на предприятии

Структура метрологического обеспечения

• Научной основой метрологического обеспечения является метрология — наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности

- Нормативной основой метрологического обеспечения являются правила и нормы метрологического обеспечения, установленные в стандартах Государственной системы обеспечения единства измерений
- Государственная система обеспечения единства измерений (ГСИ) комплекс установленных стандартами взаимоувязанных правил, положений, требований и норм, определяющих организацию и методику проведения работ по оценке и обеспечению точности измерений

Объекты ГСИ: единицы физических величин; государственные эталоны и поверочные схемы; методы и средства поверки средств измерений (СИ); номенклатура нормируемых метрологических характеристик СИ; нормы точности измерений; методики выполнения измерений; требования к стандартным образцам состава и свойств веществ и материалов; организация и порядок проведения государственных испытаний, поверки и метрологической аттестации СИ, метрологической экспертизы нормативно-технической, проектной, конструкторской и технологической документации, экспертизы и аттестации данных о свойствах веществ и материалов

- Техническими основами метрологического обеспечения являются:
- Система государственных эталонов единиц физических величин, обеспечивающая воспроизведение единиц с наивысшей точностью
- Система передачи размеров единиц физических величин от эталонов всем средствам измерений с помощью образцовых средств измерений и других средств поверки
- Система разработки, постановки на производство и выпуска в обращение рабочих средств измерений, обеспечивающих определение с требуемой точностью характеристик электронной продукции, технологических процессов и других объектов в сфере материального производства, при научных исследованиях и в других видах деятельности
- Система обязательных государственных испытаний средств измерений, предназначенных для серийного или массового производства продукции и ввоза их из-за границы партиями, обеспечивающая единообразие средств измерений при разработке и выпуске в обращение
- Система обязательной государственной и ведомственной поверки или метрологической аттестации средств измерений, обеспечивающая единообразие средств измерений при их изготовлении, эксплуатации и ремонте
- Система стандартных образцов состава и свойств веществ и материалов, обеспечивающая воспроизведение единиц величин, характеризующих состав и свойства веществ и материалов электронной техники
- Система стандартных справочных данных о физических константах и свойствах веществ и материалов, обеспечивающая достоверными данными научные исследования, разработку технологических процессов и конструкций изделий, процессов получения и использования материалов

- Организационной основой метрологического обеспечения является Государственная метрологическая служба РФ
- Государственная метрологическая служба выполняет работы по обеспечению единства измерений в стране на межрегиональном и межотраслевом уровне и осуществляющая государственный метрологический контроль и надзор.
- В настоящее время ГМС России состоит из Государственной метрологической службы, руководство которой осуществляется Росстандартом, а также из метрологических служб органов государственного управления и юридических лиц.
- Государственная метрологическая служба включает:
 - 1) государственные научные метрологические центры (ГНМЦ);
 - 2) органы ГМС на территории субъектов РФ. Государственная метрологическая служба включает также центры государственных эталонов, специализирующиеся на различных единицах измерения физических величин.

Метрологическое обеспечение измерений

- Метрологическое обеспечение измерений (МОИ) систематизированный, строго определенный набор средств и методов, направленных на получение измерительной информации, обладающей свойствами, необходимыми для выработки решений по приведению объекта управления в целевое состояние.
- МОИ представляет собой совокупность **элементов** и **процессов**, необходимых для получения измерительной информации с заданными свойствами

• Элементы МОИ:

- эталоны, единицы величин и шкалы измерений;
- поверочные и калибровочные установки;
- средства измерений, стандартные образцы;
- вспомогательное оборудование;
- методики (измерений, поверки, калибровки, испытаний, контроля, аттестации, метрологической экспертизы)
- операторов (специалистов, выполняющих измерения, поверителей, калибровщиков, испытателей и др.)
- условия измерений (испытаний, поверки, калибровки и др.)

Процессы метрологического обеспечения

• Процессы МОИ:

- Проектирование МОИ, включая установление требований к показателям точности и полноте, достоверности, своевременности и актуальности измерительной информации; выбор принципов, методов и методик измерений; выбор элементов МОИ
- Метрологическое подтверждение пригодности элементов МОИ установленным требованиям, в т.ч. испытания в целях утверждения типа СИ, поверку и калибровку СИ, аттестацию методик измерений, метрологическую экспертизу технической документации и др.
- Подготовительные и вспомогательные работы (действия), связанные с проектированием МОИ, метрологическим подтверждением пригодности элементов МОИ и поддержанием функционирования системы МОИ

Система МОИ

- Система МОИ представляет совой комплекс организационных форм, методических приемов и материальных объектов, обеспечивающих реализацию метрологического обеспечения объекта на протяжении всего его жизненного цикла
- Этапы работ по созданию и поддержанию функционирования системы МОИ включают в себя:
 - Планирование и определение требований к измерениям, испытаниям, контролю с целью достижения желаемого уровня производительности и качества при производстве электронной продукции;
 - Проектирование и разработку процессов измерений в технологических операциях
 - Метрологическое подтверждение пригодности элементов МОИ
 - Анализ состояния метрологического обеспечения объектов в технологии
 - Принятие решений о совершенствовании системы МОИ

- Метрологическое обеспечение научно-технической продукции это комплекс мероприятий, включающий:
- определение на научной основе рациональной номенклатуры измеряемых параметров, допускаемых пределов и погрешностей их измерения при заданной доверительной вероятности
- обоснование перечня параметров контролируемых в процессе эксплуатации и требований к достоверности контроля
- определение номенклатуры технических средств метрологического обеспечения (средств измерения и измерительного контроля, стандартных образцов), их создание, хранение и применение
- установление требований и нормирование метрологических характеристик средств измерения и измерительного контроля
- разработку соответствующей нормативно-технической документации
- проведение метрологической экспертизы документации на продукцию и опытных образцов продукции
- определение совокупности показателей (параметров) качества и методов оценки качества продукции

Жизненный цикл продукции (ЖЦП)

Совокупность взаимосвязанных процессов последовательного изменения состояния продукции от обоснования ее разработки до окончания эксплуатации и последующей ликвидации

Стадия жизненного цикла продукции (СЖЦП)

Часть жизненного цикла продукции, характеризующаяся совокупностью выполняемых работ и их конечными результатами

Исследование и обоснование разработки

01

Разработка

02

Производство (Изготовление)

03

Поставка

04

Эксплуатация (применение, хранение)

05

Ликвидация

06

Научно-технические решения ТЗ на НИР/ОКР/ОТР Утвержденная РКД и ТД Опытные образцы Выпуск Продукции в соответствии с требованиями Сохранение соответствия продукции при ее передаче

Целевое использование, обслуживание, ремонт

Ликвидация, уничтожение

- Метрологическое обеспечение должно обеспечивать достижение требуемого качества продукции, сокращение сроков на ее разработку, изготовление и испытание, повышение эксплуатационной надежности.
- Метрологическое обеспечение призвано сопровождать продукцию на всех этапах ее жизненного цикла (ЖЦ), начиная от исследования и обоснования разработки, кончая утилизацией.

- Этап исследования и обоснования разработки включает разработку, согласование и утверждение технического задания.
- На этом этапе осуществляется:
- предварительное определение номенклатуры измеряемых параметров продукции и ее составных частей с определением требований к погрешностям их измерения;
- выбор методов измерения и оценка возможностей существующего парка средств измерения;
- организация проведения, в случае необходимости, комплекса научно-исследовательских и опытно-конструкторских работ по разработке новых средств измерения;
- определение номенклатуры контролируемых в процессе эксплуатации параметров с предварительной проработкой методов контроля технического состояния продукции;
- разработка предложений по метрологическому обеспечению испытаний продукции;
- организация и проведение метрологической экспертизы материалов технического задания с последующей разработкой плана мероприятий по устранению выявленных недостатков.

- Этап разработки включает разработку эскизного и технического проектов, разработку конструкторской документации, изготовление опытного образца и проведение его предварительных испытаний, подготовку к государственным испытаниям, государственные испытания.
- На данном этапе осуществляется:
- выбор (установление) измеряемых и контролируемых в процессе производства, испытаний и эксплуатации продукции параметров, а также параметров технологических процессов;
- выбор средств измерения и контроля установленных параметров с заданными точностью и достоверностью;
- разработка, в случае необходимости, новых средств измерения, контроля и испытаний;
- разработка разделов пояснительной записки эскизного проекта по метрологическому обеспечению в соответствии с требованиями технического задания и метрологической экспертизы;
- разработка разделов пояснительной записки технического проекта в части метрологического обеспечения, программ и методик по проведению метрологической экспертизы технического проекта;
- проведение метрологической экспертизы конструкторской и технологической документации;
- проведение метрологической экспертизы программы и методики предварительных испытаний;
- Указанные этапы являются определяющими, поскольку именно здесь устанавливается оптимальное число измеряемых и контролируемых параметров, параметров качества, определяется необходимость создания новых средств измерения и контроля, новых методик выполнения измерений, решается задача обеспечения средств измерения средствами их поверки и калибровки. От того насколько эффективными окажутся мероприятия на данных этапах жизненного цикла зависят сроки и затраты на производство продукции.

- На этапе производства метрологическое обеспечение должно способствовать выпуску продукции, соответствующей требованиям конструкторской, технологической и нормативной документации, предупреждению производственного брака, получению информации о качестве готовой продукции и состоянии технологического процесса.
- Требуемые показатели качества продукции достигаются путем измерительного контроля каждой операции технологического процесса. Для достижения высоких показателей качества осуществляется:
- автоматизация процессов измерения и измерительного контроля;
- установление методов и средств измерения в технологическом процессе;
- разработка методик выполнения измерений и их аттестация;
- проведение метрологической экспертизы технической документации и технологического процесса.

- На этапе эксплуатации используется основная масса средств измерения и контроля для оценки и прогнозирования технического состояния продукции, отыскания отказов и неисправностей, измерения характеристик, настройки, калибровки, юстировки и регулировки.
- Метрологическое обеспечение на данном этапе представляет собой комплекс научных и организационно-технических мероприятий, направленных на выполнение своевременных измерений, на обеспечение единства и требуемой точности измерений и повышение достоверности измерительного контроля параметров.
- На этапе капитального ремонта либо модернизации осуществляется:
- метрологический надзор за соблюдением метрологических норм и правил, за состоянием и применением средств измерения;
- уточнение в конструкторской и ремонтной технологической документации значений контролируемых параметров, а также
 параметров и характеристик технологических процессов ремонта (модернизации).
- Утилизация последний этап ЖЦ продукции. В этом случае метрологическое обеспечение должно способствовать переходу от процессов простого уничтожения продукции к ее промышленной переработке, использованию только тех изделий или материалов, которые соответствуют требованиям надежности, качества и безопасности для жизни людей и окружающей среды. Это должно достигаться путем надежных и точных измерений, соответствующих аналитических исследований состава утилизируемых материалов. По-существу, утилизация как технологический процесс во многом аналогична производству.

Раздел
02

Нормативно-правовые основы метрологического обеспечения

Конституция Российской Федерации

Федеральный закон от 26.06.2008 г. №102-Ф3 «Об обеспечении единства измерений»

Постановления правительства РФ по отдельным вопросам метрологической деятельности

Нормативные документы ФАТРиМ по отдельным вопросам (направлениям) метрологической деятельности

Национальные стандарты (в т.ч. ГСИ) и стандарты организаций по обеспечению единства измерений

ФЕДЕРАЛЬНЫЙ ИНФОРМАЦИОННЫЙ ФОНД ПО ОБЕСПЕЧЕНИЮ ЕДИНСТВА ИЗМЕРЕНИЙ

нормативные правовые акты российской федерации	стандарты государственной системы обеспечения единства измерений		СВЕДЕНИЯ ОБ ОТНЕСЕНИИ ТЕХНИЧЕСКИХ СРЕДСТВ К СРЕДСТВАМ 1 200
условные шифры знаков поверки	шифры калибровочных клейм [уведомления об осуществлении деятельности по производству эталонов единиц величин, стандартных образцов и средств измерений 3 249
информация и данные гсссд	международные документы		международные договоры
аттестованные методики (методы) измерений 36 679	ПЕРВИЧНЫЕ РЕФЕРЕНТНЫЕ МЕТОДИКИ (МЕТОДЫ) ИЗМЕРЕНИЙ [РЕФЕРЕНТНЫЕ МЕТОДИКИ (МЕТОДЫ) ИЗМЕРЕНИЙ ————————————————————————————————————
ЕДИНЫЙ ПЕРЕЧЕНЬ ИЗМЕРЕНИЙ, ОТНОСЯЩИХСЯ К СФЕРЕ ГОСУДАРСТВЕННОГО РЕГУЛИРОВАНИЯ	государственные первичные эталоны российской федерации	и	эталоны единиц величин
международные сличения 437	УТВЕРЖДЁННЫЕ ТИПЫ СТАНДАРТНЫХ ОБРАЗЦОВ 9 019		утверждённые типы средств измерений 93 659

Нормативноправовая основа обеспечения единства измерений

В Конституции Российской Федерации, статья 71, указано, что стандарты, эталоны, метрическая система и исчисление времени находятся в ведении РФ. Основные принципы ГСИ определены Федеральным законом «Об обеспечении единства измерений», правовыми актами: Указом Президента РФ и Постановлением Правительства РФ

ФЗ №102-ФЗ «Об обеспечении единства измерений»

Принят Государственной Думой 11 июня 2008 г. Регулирует отношения, возникающие при выполнении измерений, установлении и соблюдении требований к измерениям, единицам величин, эталонам единиц величин, стандартным образцам, средствам измерений, применении стандартных образцов, средств измерений, методик (методов) измерений, а также при осуществлении деятельности по обеспечению единства измерений, предусмотренной законодательством Российской Федерации об обеспечении единства измерений, в том числе при выполнении работ и оказании услуг по обеспечению единства измерений.

Постановления Правительства Российской Федерации по отдельным вопросам (направлениям) метрологической деятельности

- от 23 марта 2001 г. № 225 «Об утверждении Положения о Государственной службе времени, частоты и определения параметров вращения Земли» (с изменениями от 2 августа 2005 г., 10 марта, 2 сентября 2009 г., 8 сентября 2010 г.)
- от 20 августа 2001 г. № 596 «Об утверждении Положения о Государственной службе стандартных справочных данных о физических константах и свойствах веществ и материалов»
 - (с изменениями от 2 августа 2005 г., 10 марта, 2 сентября 2009 г., 8 сентября 2010 г.)
- от 31 октября 2009 г. № 879 «Об утверждении Положения о единицах величин, допускаемых к применению в Российской Федерации»
- от 2 ноября 2009 г. № 884 «Об утверждении Положения о Государственной службе стандартных образцов состава и свойств веществ и материалов»
- от 22 декабря 2009 г. № 1057 «О порядке оплаты работ и (или) услуг по обеспечению единства измерений по регулируемым ценам»
- от 20 апреля 2010 г. № 250 «О перечне средств измерений, поверка которых осуществляется только аккредитованными в установленном порядке в области обеспечения единства измерений государственными региональными центрами метрологии»
- от 23 сентября 2010 г. № 734 «Об эталонах единиц величин, используемых в сфере государственного регулирования обеспечения единства измерений»

КОМПЛЕКС НОРМАТИВНЫХ ДОКУМЕНТОВ ГСИ

- Государственные стандарты и другие нормативные документы, определяющие передачу размера единиц величин, порядок проведения испытаний, поверки и калибровки СИ
- Рекомендации Государственных научных метрологических центров
- Указатели «Государственные стандарты» и «Нормативные документы в области метрологии»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ FOCT P 8.820— 2013

Государственная система обеспечения единства измерений

МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Основные положения

Издание официальное

Москва Стандартинформ 2019 ГОСТ Р 8.596—2002

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

Основные положения

Издание официальное

Раздел 03

Эталонная база

ГОСУДАРСТВЕННОЕ РЕГУЛИРОВАНИЕ В СФЕРЕ ЕДИНИЦ ИЗМЕРЕНИЯ

ЕДИНИЦА ВЕЛИЧИНЫ

фиксированное значение величины, которое принято за единицу данной величины и применяется для количественного выражения однородных с ней величин

ЭТАЛОН ЕДИНИЦЫ ВЕЛИЧИНЫ

техническое средство, предназначенное для воспроизведения, хранения и передачи единицы величины

ГОСУДАРСТВЕННЫЙ ПЕРВИЧНЫЙ ЭТАЛОН ЕДИНИЦЫ ВЕЛИЧИНЫ

государственный эталон единицы величины, обеспечивающий воспроизведение, хранение и передачу единицы величины с наивысшей в РФ точностью, утверждаемый в этом качестве в установленном порядке и применяемый в качестве исходного на территории РФ

Виды эталонов

- Естественный эталон эталон, основанный на присущих и воспроизводимых свойствах материального объекта или явления.
- Примеры:
- ячейка тройной точки воды как естественный эталон термодинамической температуры;
- естественный эталон разности электрических потенциалов, основанный на эффекте Джозефсона;
- естественный эталон электрического сопротивления, основанный на квантовом эффекте Холла;
- образец меди как естественный эталон электропроводности.
- Примечания
- Значение величины естественного эталона приписывается по соглашению и не требует установления связи с другими эталонами того же вида.
- Показатели точности определяются с учетом двух составляющих: первая связана с согласованным значением величины, вторая связана с конструкцией, исполнением и хранением эталона.
- Естественные эталоны, которые основаны на квантовых явлениях, обычно имеют наивысшую стабильность.
- Прилагательное «естественный» не означает, что такой эталон может быть создан и использован без специального обслуживания или что такой эталон невосприимчив к внутренним и внешним влияниям.

Виды эталонов

- Первичный эталон эталон, основанный на использовании первичной референтной методики измерений или созданный как артефакт, выбранный по соглашению.
- Примечания
- Первичный эталон обеспечивает воспроизведение единицы или шкалы измерений с наивысшей точностью.
- Метрологические свойства первичных эталонов единиц величин устанавливают независимо от других эталонов единиц этих же величин.
- Для первичного эталона, воспроизводящего единицу в специфических условиях (высокие и сверхвысокие частоты, малые и большие энергии, давления, температуры, особые состояния вещества и т.п.) используют термин первичный специальный эталон.

Виды эталонов

- Вторичный эталон эталон, получающий единицу величины или шкалу измерений непосредственно от первичного эталона данной единицы или шкалы.
- Эталон сравнения эталон, применяемый для сличений эталонов, которые по тем или иным причинам не могут быть непосредственно сличены друг с другом.
- Рабочий эталон эталон, предназначенный для передачи единицы величины или шкалы измерений средствам измерений.
 - Примечание При необходимости рабочие эталоны подразделяют на разряды (1-й, 2-й, ..., n-й). В этом случае передачу единицы осуществляют через цепочку соподчиненных по разрядам рабочих эталонов. При этом от последнего рабочего эталона в этой цепочке единицу передают средству измерений.

Способы выражения точности эталонов

Способы выражения погрешности первичных эталонов

- К составляющим погрешности первичных эталонов относят (предполагается, что систематические погрешности эталона предварительно исключены):
- случайные погрешности;
- неисключенные систематические погрешности (НСП).
- При необходимости указывают нестабильность эталона во времени.

Способы выражения погрешности вторичных эталонов

- Для вторичного эталона указывают суммарную погрешность, образованную случайными погрешностями и НСП первичного и вторичного эталонов при передаче размера единицы величины от первичного эталона, погрешностью передачи размера единицы величины от первичного вторичному эталону, а также нестабильностью вторичного эталона.
- Допускается указывать отдельно суммарное СКО, обусловленное влиянием случайных погрешностей. НСП вторичного эталона и нестабильность вторичного эталона.
- Примечание НСП вторичного эталона учитывает НСП передачи размера единицы величины.

ЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
(МГС)
INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ FOCT 8.381— 2009

Государственная система обеспечения единства измерений

ЭТАЛОНЫ

Способы выражения точности

Издание официально

Распределение количества эталонов по областям измерений и государственным научным метрологическим институтам (ГНМИ)

		Метрологическая область											
Количество эталонов		Акустика, Ультразвук и Вибрация	Электричество и магнетизм	Длина и угол	Масса, сила, давление и вязкость	Фотометрия и радиометрия	Физико- химические измерения	Радиация и ионизирующие излучения	Термометрия	Время и Частота			
ГНМИ	460	AUV	EM	L	M	PR	QM	RI	T	TF			
	160	9	43	13	26	22	15	14	17	1			
вниим	55	3 🗌	12	6 🗌	13	2	4	8 🗆	7				
вниифтри	51	6 🗌	17 🗌	1 🗆	6 🗌		7	6 🗆	7	1 🗆			
внииофи	27		3 🗌		1 🗆	21 🗌	1 _		1 🗆				
вниир 🗆	5				4 🗌		1						
СНИИМ	6		5						1				
УНИИМ	10		2	2	2		3 🗌		1 _				
вниимс	8		4	4									

- ВНИИМ Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева
- ВНИИФТРИ Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений
- ВНИИОФИ Всероссийский научно-исследовательский институт оптико-физических измерений
- ВНИИР Всероссийский научно-исследовательский институт расходометрии
- СНИИМ Сибирский научно-исследовательский институт метрологии
- УНИИМ Уральский научно-исследовательский институт метрологии
- ВНИИМС Всероссийский научно-исследовательский институт метрологической службы

Структура и состав государственных эталонов РФ

AUV Акустика, Ультразвук и Вибрация

- Звук в воздушной среде
- Звук в водной среде
- Вибрация

ЕМ Электричество и магнетизм

- Напряжение, сила и сопротивление постоянного тока
- Импеданс в мегагерцовом диапазоне
- Напряжение, сила и мощность переменного тока
- Высокое напряжение и сила тока
- Другие измерения постоянного тока и малой частоты
- Электрические и магнитные поля
- Радиочастотные измерения
- Материалы

М Масса, сила, давление и вязкость

- Macca
- Плотность
- Давление
- Сила
- Вращающий момент, Вязкость, Твердость, Сила тяжести
- Расход жидкости

RI Радиация и ионизирующие излучения

- Дозиметрия
- Радиоактивность
- Нейтронные измерения

QM Физико-химические измерения

- Химикаты высокой степени отчистки
- Неорганическое растворы
- Органическое растворы
- Газы
- Электролитическая проводимость
- Материалы с улучшенными свойствами
- Биологическая среда и материалы
- Продукты питания
- Осадок, грунтовые породы, рудные породы и частицы

PR Фотометрия и радиометрия

- Фотометрия
- Свойства детекторов и источников
- Свойства материалов
- Волоконная оптика

Т Термометрия

- Температура
- Влажность
- Термофизические величины

Т Время и Частота

- Расхождения в шкале времени
- Частота
- Интервал времени

L Длина и угол

- Лазер
- Линейный и угловые измерения

Стандартные образцы

• Стандартный образец (CO) — материал, достаточно однородный и стабильный в отношении определенных свойств для того, чтобы использовать его при измерении или при оценивании качественных свойств в соответствии с предполагаемым назначением.

Примечания

- 1 Оценивание качественного свойства дает значение этого качественного свойства и соответствующую неопределенность. Эта неопределенность не является неопределенностью измерений.
- 2 Стандартные образцы с приписанными значениями величины или без них могут использоваться для контроля прецизионности измерений, тогда как для калибровки или контроля правильности измерений могут использоваться только стандартные образцы с приписанными значениями величины.
- 3 Некоторые стандартные образцы могут иметь приписанные значения величины, которые являются метрологически прослеживаемыми к внесистемной единице измерения. К таким образцам относятся вакцины, которым Всемирной организацией здравоохранения приписываются Международные Единицы (МЕ).
- 4 Один и тот же стандартный образец не может использоваться и для калибровки, и для контроля точности результатов измерений применительно к одной и той же измерительной системе.

Спасибо за внимание!