М. Н. Леонтьева

ДОСТАТОЧНЫЕ УСЛОВИЯ РАЗРЕШИМОСТИ ДЛЯ БУЛЕВЫХ АЛГЕБР*

Завершая исследование разрешимости булевых алгебр в терминах вычислимости некоторой последовательности канонических идеалов, мы приводим в данной работе доказательство достаточности полученных условий такой разрешимости для булевых алгебр всех элементарных характеристик.

Kлючевые слова: булева алгебра, вычислимое множество, вычислимая модель, сильно вычислимая модель, n-вычислимость, разрешимая модель, элементарная характеристика булевой алгебры, идеал Ершова—Тарского.

1. История вопроса и основные результаты

Модель называется вычислимой, если ее носитель — вычислимое множество, операции — вычислимые функции, и отношения вычислимы. Вычислимая модель называется n-вычислимой, если существует алгоритм, определяющий по конечной Σ_n -формуле и набору элементов, истинна ли эта формула на этом наборе. Сильно вычислимая модель — та, для которой подобный алгоритм существует для всех формул исчисления предикатов. Мы будем называть модель разрешимой, если у нее существует сильно вычислимая изоморфная копия. В данной работе рассматриваются счетные булевы алгебры, которые кратко будем называть алгебрами; в качестве источника предварительных сведений по теории булевых алгебр будем использовать работу [1].

Множество атомов некоторой алгебры \mathfrak{B} обозначим $\operatorname{At}_0(\mathfrak{B})$, идеал безатомных элементов — $\operatorname{Als}_0(\mathfrak{B})$, идеал атомных элементов — $\operatorname{Atm}_0(\mathfrak{B})$. Через $\operatorname{F}_0(\mathfrak{B})$ обозначим идеал $\operatorname{\Phi}$ реше (идеал, порожденный атомами), $\operatorname{E}(\mathfrak{B}) = \operatorname{Als}_0(\mathfrak{B}) + \operatorname{Atm}_0(\mathfrak{B})$ — идеал Ершова—Тарского. Пусть $\{\operatorname{E}_n\}_{n\in\omega}$ — последовательность итерированных идеалов Ершова—Тарского, т. е. $\operatorname{E}_0(\mathfrak{B}) = \{0\}$, $\operatorname{E}_{n+1}(\mathfrak{B}) = (\operatorname{E}_n \circ \operatorname{E})(\mathfrak{B}) = \{x \in \mathfrak{B} | x/\operatorname{E}_n \in \operatorname{E}(\mathfrak{B}/\operatorname{E}_n)\}$. Для каждого $k \in \omega$ обозначим через At_k предикат, выделяющий в каждой алгебре множество таких элементов x, что x/E_k — атом. Аналогично определяются предикаты F_k , Als_k и Atm_k .

Определим некоторые наборы одноместных предикатных символов. Пусть $\Sigma_0 = \{E_0\}, \Sigma_n = \Sigma_0 \cup \{At_0, Als_0, Atm_0, E_1, \dots, At_{n-1}, Als_{n-1}, Atm_{n-1}, E_n\}$ для $n \ge 1$.

Пусть Т — элементарная теория некоторой алгебры \mathfrak{B} . Для каждой такой теории, кроме теории, соответствующей элементарной характеристике (∞ , 0, 0), Ю. Л. Ершов в [4] нашел конечный набор одноместных предикатов P_0, \ldots, P_m , определяемых формулами первого порядка, такой, что \mathfrak{B} сильно вычислима тогда и только тогда, когда \mathfrak{B}

^{*}Работа выполнена при финансовой поддержке РФФИ (проект N 11-01-00236) и АВЦП Рособразования «Развитие научного потенциала высшей школы» (проект 2.1.1.10726).

вычислима и вычислимы все предикаты P_0, \ldots, P_m . Набор P_0, \ldots, P_m имеет вид Σ_{n+1} , где n — первая элементарная характеристика алгебры. Позже С.С. Гончаровым было показано, что при $k \leq m$ вычислимость \mathfrak{B} вместе с вычислимостью предикатов P_1, \ldots, P_k равносильна вычислимости Σ_k -диаграммы в \mathfrak{B} , т. е. k-вычислимости.

Мы рассматриваем следующую задачу: если $S \subseteq \Sigma_{n+1}$ — некоторое подмножество и известно, что \mathfrak{B} вычислима и в \mathfrak{B} вычислимы все предикаты из S, то можно ли утверждать, что \mathfrak{B} разрешима, т. е. обладает сильно вычислимым представлением?

Некоторые частные случаи рассматриваемой задачи были ранее рассмотрены в работах С. С. Гончарова, С. П. Одинцова, В. Н. Власова и П. Е. Алаева. Приведем краткий обзор этих результатов. В [2] построен пример неразрешимой алгебры с характеристикой $(\infty,0,0)$, которая n-вычислима для всех $n\in\omega$ (без равномерности по n). В [3] приводится пример неразрешимой и 0-вычислимой (т. е. просто вычислимой) алгебры характеристики $(0,\infty,0)$. При этом из [4] следует, что в этом случае 1-вычислимость влечет не только разрешимость, но и сильную вычислимость. Для (0,k,0) и (0,k,1), $k\in\omega$, ответ сразу следует из [4]: вычислимость означает и сильную вычислимость.

В [4] указаны достаточные условия сильной вычислимости (а значит, и разрешимости) и для всех остальных характеристик вида (m, *, *), где $m \in \omega$. Например, для характеристик $(m, \infty, 0)$ и $(m, \infty, 1)$ сильная вычислимость следует из (4m+1)-вычислимости. Небольшая модификация примера из [3], выполненная в [1], показывает, что 4m-вычислимости недостаточно и для разрешимости.

В [5] было показано, что для характеристики (1,1,0) 2-вычислимость влечет разрешимость, а для (1,0,1) 3-вычислимость влечет разрешимость. В [1] было завершено доказательство того, что для (1,1,0) уже 1-вычислимость влечет разрешимость. В [6] для характеристики (1,0,1) был построен пример 1-вычислимой и неразрешимой алгебры. В [7] было доказано, что для характеристики (1,0,1) уже 2-вычислимость влечет разрешимость. В [8] получено, что для характеристики $(m,1,0), m \geq 2$, разрешимость следует из (4m-3)-вычислимости, а для $(m,0,1), m \geq 2$, — из (4m-2)-вычислимости. В [9] доказано, что в случае алгебры характеристики (m,0,1), m > 0 из (4m-3)-вычислимости и вычислимости предиката Atm_{m-1} также следует разрешимость.

Автором было завершено исследование рассматриваемой задачи и получен ответ для всех возможных подмножеств S, который сформулирован в теореме 1.

Теорема 1. Пусть $n, p \in \omega$, \mathfrak{B} — вычислимая булева алгебра c первой элементарной характеристикой, равной $n, S \subseteq \Sigma_{n+1}$, и в \mathfrak{B} вычислимы все предикаты из S.

- 1. Пусть элементарная характеристика \mathfrak{B} равна (n, p, 1). Если для каждого k < n в S содержится At_k и хотя бы один из предикатов Als_k и Atm_k , то \mathfrak{B} разрешима; в противном случае она может быть неразрешимой.
- 2. Пусть элементарная характеристика \mathfrak{B} равна (n, p+1, 0). Если для каждого k < n в S содержится At_k и для каждого m < n-1 хотя бы один из предикатов Als_m и Atm_m , то \mathfrak{B} разрешима; в противном случае она может быть неразрешимой.
- 3. Пусть элементарная характеристика \mathfrak{B} равна $(n, \infty, 0)$ или $(n, \infty, 1)$. Если для каждого $k \leq n$ в S содержится At_k и для каждого m < n хотя бы один из предикатов Als_m и Atm_m , то \mathfrak{B} разрешима; в противном случае она может быть неразрешимой.

В данной работе приводится доказательство достаточности условий разрешимости булевых алгебр, сформулированных в теореме 1. Необходимость данных условий (в том смысле, в котором она указана в теореме 1) рассматривается в [10]¹.

2. Достаточные условия разрешимости для булевых алгебр

Булевы алгебры будем рассматривать как модели языка $\Sigma_{BA} = \{+, \cdot, -, 0, 1\}$, где «+» соответствует объединению элементов, «·» — пересечению, и «—» означает дополнение. Если $a_1, \ldots, a_n, b \in \mathfrak{A}$, то $a_1, \ldots, a_n|b$ означает, что $a_1 + \ldots + a_n = b$ и $a_i \cdot a_j = 0$ при $i \neq j$. Выражение a - b равно $a \cdot (-b)$. Определим еще один набор одноместных предикатных символов $\Sigma_n^* = \Sigma_n \cup \{F_0, \ldots, F_{n-1}\}$ для n > 0. В этом разделе мы будем работать с моделями, являющимися обогащением некоторой алгебры до языка $\Sigma_{BA} \cup \Sigma_n$ или $\Sigma_{BA} \cup \Sigma_n^*$. Если \mathfrak{B} — алгебра, то через \mathfrak{B}^{Σ_n} будем обозначать такое обогащение алгебры \mathfrak{B} до языка $\Sigma_{BA} \cup \Sigma_n$, в котором все символы из Σ_n интерпретируются в соответствии со своими определениями. То же самое касается обозначения $\mathfrak{B}^{\Sigma_n^*}$. Когда речь будет идти о конкретной алгебре \mathfrak{B} , мы не будет различать набор предикатных символов Σ_n и набор предикатов на алгебре \mathfrak{B} , который является интерпретацией символов из Σ_n ; для обоих наборов будет использоваться обозначение Σ_n .

Для доказательства следующего результата приведем сначала некоторые факты.

Теорема 2 [8]. Пусть $n \ge 1$. Пусть \mathfrak{C} — булева алгебра, причем \mathfrak{C}/E_n — либо двухэлементная, либо ненулевая безатомная алгебра. Модель \mathfrak{C}^{Σ_n} обладает вычислимым представлением тогда и только тогда, когда $\mathfrak{C}^{\Sigma_n^*}$ обладает Δ_2^0 -вычислимым представлением.

Утверждение следующей леммы получено релятивизацией предложения 1 из [8] относительно оракула \varnothing' .

Лемма 1. Пусть $\mathfrak{A} - \Delta_2^0$ -вычислимая алгебра, $H_0, H, H_1 \triangleleft \mathfrak{A}$, $H_0 \subseteq H \subseteq H_1$, при этом $H_0 \Delta_2^0$ -вычислим, а H лежит в классе Σ_2^0 . Предположим, что $(\mathfrak{C}, M) - \Delta_2^0$ -вычислимая алгебра с Δ_2^0 -вычислимым идеалом, и существует Δ_3^0 -вычислимый изоморфизм h из (\mathfrak{C}, M) на $(\mathfrak{A}/H, H_1/H)$. Тогда

- 1) $(\mathfrak{A}, H_0, H, H_1) \cong (\mathfrak{B}, L_0, L, L_1)$, где последняя модель Δ_2^0 -вычислимая алгебра с Δ_2^0 -вычислимыми идеалами;
- 2) при этом можно считать, что между моделями (H, H_0) и (L, L_0) , рассматриваемыми как алгебры Ершова с выделенным идеалом, существует Δ_2^0 -вычислимый изоморфизм.

Теорема 3. Пусть $n \in \omega$, \mathfrak{B} — вычислимая алгебра элементарной характеристики (n,0,1). Если для каждого k < n в \mathfrak{B} вычислим предикат At_k и хотя бы один из предикатов Als_k и Atm_k , то \mathfrak{B} — разрешимая алгебра.

ДОКАЗАТЕЛЬСТВО. Вычислимая безатомная алгебра является сильно вычислимой [4], поэтому для n=0 утверждение теоремы верно. Далее будем предполагать, что $n \ge 1$.

 $^{^{1}}$ См. также: *Леонтьева М. Н.* Минимальность некоторых условий разрешимости для булевых алгебр // Сиб. мат. журн. (в печати).

Предикат E_k выражается бескванторной формулой через At_k (при условии, что At_k не пусто) следующим образом. Пусть $c \in At_k(\mathfrak{B})$ — произвольный элемент. Тогда $x \in E_k(\mathfrak{B}) \Leftrightarrow (c+x \in At_k(\mathfrak{B}))\&(c \cdot x \notin At_k(\mathfrak{B}))$. Поэтому в условиях нашей теоремы для всех k < n предикат E_k вычислим.

Заметим, что $x \in \mathrm{Als}_k \Leftrightarrow \forall y \leq x (y \not\in \mathrm{At}_k)$, поэтому идеал Als_k принадлежит классу Π^0_1 . Аналогично имеем, что $x \in \mathrm{Atm}_k \Leftrightarrow \forall y \leq x \ (y \in \mathrm{Als}_k \to y \in \mathrm{E}_k)$. Поэтому если Als_k — вычислимый предикат, то $\mathrm{Atm}_k - \Pi^0_1$ -идеал. Также F_k можно записать \exists -формулой, используя At_k , поэтому $\mathrm{F}_k - \Sigma^0_1$ -идеал.

Получаем, что $(\mathfrak{B}^{\Sigma_{n-1}^*}, \operatorname{At}_{n-1}(\mathfrak{B}), \operatorname{F}_{n-1}(\mathfrak{B}), \operatorname{Als}_{n-1}(\mathfrak{B}), \operatorname{Atm}_{n-1}(\mathfrak{B}))$ можно рассматривать как Δ_2^0 -вычислимую алгебру. Тем самым мы оказываемся ровно в той же ситуации, что и в теореме 4 из [9]. Точно так же, как и там, применяя лемму 1, теорему 2 и пользуясь автоустойчивостью безатомных булевых алгебр, получаем существование сильно вычислимого представления для \mathfrak{B} . Теорема доказана.

Утверждение следующей леммы является частным случаем утверждения, полученного в доказательстве теоремы 3 из [8].

Лемма 2 [8]. Пусть $\mathfrak A$ — вычислимая булева алгебра, $\mathfrak A/E_n$ двухэлементна, и все множества $E_{n-1}, At_{n-1}, F_{n-1}, Als_{n-1}$ вычислимы. Тогда $(\mathfrak A, E_{n-1}(\mathfrak A)) \cong (\mathfrak A', E_{n-1}(\mathfrak A'))$, где $\mathfrak A'$ — вычислимая алгебра, и все множества $E_{n-1}(\mathfrak A'), At_{n-1}(\mathfrak A'), F_{n-1}(\mathfrak A'), Als_{n-1}(\mathfrak A')$, $Atm_{n-1}(\mathfrak A'), E_n(\mathfrak A')$ вычислимы. При этом между моделями $(F_{n-1}(\mathfrak A), E_{n-1}(\mathfrak A))$ и $(F_{n-1}(\mathfrak A'), E_{n-1}(\mathfrak A'))$, рассматриваемыми как алгебры Ершова с выделенным идеалом, существует частично-вычислимый изоморфизм.

Теорема 4. Пусть $n \in \omega$, \mathfrak{B} — вычислимая алгебра элементарной характеристики (n,1,0). Если для каждого k < n в \mathfrak{B} вычислим предикат At_k и для каждого m < n-1 вычислим хотя бы один из предикатов Als_m и Atm_m , то \mathfrak{B} — разрешимая алгебра.

ДОКАЗАТЕЛЬСТВО. Рассуждая так же, как в теореме 3, получим, что все предикаты из $\Sigma_{n-1}^* \cup \{At_{n-1}, Als_{n-1}, F_{n-1}\}$ лежат в классе Δ_2^0 . Поэтому $(\mathfrak{B}, E_{n-1}, At_{n-1}, Als_{n-1}, F_{n-1})$ можно рассматривать как Δ_2^0 -вычислимую модель. Релятивизуя лемму 2 относительно оракула \varnothing' и полагая $\mathfrak{A} = \mathfrak{B}$, получим, что $(\mathfrak{B}, E_{n-1}(\mathfrak{B})) \cong (\mathfrak{B}', E_{n-1}(\mathfrak{B}'))$, где \mathfrak{B}' и множества $E_{n-1}(\mathfrak{B}')$, $At_{n-1}(\mathfrak{B}')$, $Als_{n-1}(\mathfrak{B}')$, $F_{n-1}(\mathfrak{B}')$, F_{n

Между алгебрами Ершова $F_{n-1}(\mathfrak{B})$ и $F_{n-1}(\mathfrak{B}')$ существует изоморфизм, являющийся частичной Δ_2^0 -вычислимой функцией. Поскольку все предикаты из Σ_{n-1}^* являются подмножествами F_{n-1} и Δ_2^0 -вычислимы в \mathfrak{B} , они будут Δ_2^0 -вычислимы и в \mathfrak{B}' .

Получаем, что $(\mathfrak{B}')^{\Sigma_n^*}$ Δ_2^0 -вычислима. В силу теоремы 2 алгебра $(\mathfrak{B}')^{\Sigma_n}$ обладает вычислимым представлением. Следовательно, \mathfrak{B} обладает сильно вычислимым представлением. Теорема доказана.

Теорема 5. Пусть $n \in \omega$, \mathfrak{B} — вычислимая алгебра элементарной характеристики $(n,\infty,0)$. Если для каждого $k \leq n$ в \mathfrak{B} вычислим предикат At_k и для каждого m < n вычислим хотя бы один из предикатов Als_m и Atm_m , то \mathfrak{B} — разрешимая алгебра.

ДОКАЗАТЕЛЬСТВО. Предположим, что это не так. Тогда существует вычислимая, но не разрешимая алгебра $\mathfrak A$ элементарной характеристики $(n, \infty, 0)$ такая, что для каждого

 $k \leq n$ вычислим предикат $\mathrm{At}_k(\mathfrak{A})$ и для каждого m < n вычислим хотя бы один из предикатов $\mathrm{Als}_m(\mathfrak{A})$ и $\mathrm{Atm}_m(\mathfrak{A})$.

Пусть \mathfrak{C} — сильно вычислимая алгебра элементарной характеристики (n+1,1,0). Это значит, что в алгебре \mathfrak{C} вычислимы все предикаты из Σ_n .

Рассмотрим алгебру $\mathfrak{C} \times \mathfrak{A}$. Это вычислимая алгебра элементарной характеристики (n+1,1,0), и для каждого $k \leq n$ в $\mathfrak{C} \times \mathfrak{A}$ вычислим предикат At_k , и для каждого m < n вычислим хотя бы один из предикатов Als_m и Atm_m . По теореме 4 получаем, что $\mathfrak{C} \times \mathfrak{A}$ разрешима. В алгебре $\mathfrak{C} \times \mathfrak{A}$ существует элемент a такой, что $\hat{a} \cong \mathfrak{A}$. Из разрешимости алгебры $\mathfrak{C} \times \mathfrak{A}$ следует разрешимость \hat{a} , а значит, и разрешимость \mathfrak{A} .

Получаем, что сделанное нами предположение неверно. Теорема доказана.

3. Случаи
$$(n,k+1,0),\,(n,k,1)$$
 и $(n,\infty,1)$ для $k>0$

Мы рассмотрели алгебры элементарных характеристик (n,0,1), (n,1,0) и $(n,\infty,0)$. Теперь покажем, как из этих результатов можно получить аналогичные утверждения для характеристик (n,k+1,0), (n,k,1), $(n,\infty,1)$, где k>0.

Известно, что алгебра характеристики $(n, \alpha, 1)$, $\alpha \in \omega \cup \{\infty\}$, $\alpha \neq 0$, изоморфна прямому произведению алгебр характеристик $(n, \alpha, 0)$ и (n, 0, 1), а алгебра характеристики (n, k, 0) для $k > 1, k \in \omega$, представляется с помощью произведения k штук алгебр характеристики (n, 1, 0).

Если алгебра $\mathfrak A$ представляется в виде произведения алгебр как $\mathfrak A \cong \mathfrak B \times \mathfrak C$, то существуют элементы $a_1,a_2|1$ в $\mathfrak A$ такие, что $\hat a_1 \cong \mathfrak B$, а $\hat a_2 \cong \mathfrak C$. Если в алгебре $\mathfrak A$ вычислим некоторый предикат из Σ_n , то он вычислим также в $\hat a_1$ и $\hat a_2$. Отсюда заключаем, что если в $\mathfrak A$ вычислимы все предикаты из Σ_{n+1} , для n равного первой элементарной характеристике $\mathfrak A$, которые необходимы для разрешимости алгебр $\mathfrak B$ и $\mathfrak C$, то алгебры $\mathfrak B$ и $\mathfrak C$ будут обладать сильно вычислимым представлением, а значит, таким представлением будет обладать и $\mathfrak A$.

В силу приведенных рассуждений получаем, что для алгебр характеристики $(n, \infty, 1)$ достаточные условия разрешимости совпадают с $(n, \infty, 0)$, для характеристики (n, k, 0) для k > 1 совпадают с (n, 1, 0) и, наконец, для (n, k, 1) при k > 0 совпадают с (n, 0, 1).

Автор выражает благодарность научному руководителю д-ру физ.-мат. наук П. Е. Алаеву за постановку задачи и поддержку в ходе решения.

Список литературы

- 1. Гончаров С. С. Счетные булевы алгебры и разрешимость. Новосибирск: Научная книга, 1996.
- 2. Гончаров С. С. Ограниченные теории конструктивных булевых алгебр // Сиб. мат. журн. 1976. Т. 17, № 4. С. 797–812.
- 3. Гончаров С. С. Некоторые свойства конструктивизации булевых алгебр // Сиб. мат. журн. 1975. Т. 16, N 2. С. 264–278.

- 4. *Ершов Ю. Л.* Разрешимость элементарной теории дистрибутивных структур с относительными дополнениями и теории фильтров // Алгебра и логика. 1964. Т. 3, № 3. С. 17–38.
- 5. *Одинцов С. П.* Ограниченные теории конструктивных булевых алгебр нижнего слоя. Препринт N 21 / Ин-т математики CO AH CCCP. Новосибирск, 1986.
- 6. Власов В. Н. Конструктивизируемость булевых алгебр элементарной характеристики (1,0,1) // Алгебра и логика. 1998. Т. 37, № 5. С. 499–521.
- 7. *Алаев П. Е.* Разрешимые булевы алгебры характеристики (1,0,1) // Математические труды. 2007. Т. 7, № 1. С.3–12.
- 8. *Алаев П. Е.* Сильно конструктивные булевы алгебры // Алгебра и логика. 2005. Т. 7, № 1. С. 3–23.
- 9. Леонтьева М. Н. Булевы алгебры элементарной характеристики (1,0,1) с вычислимыми множеством атомов и идеалом атомных элементов // Вестн. Новосиб. гос. ун-та. Серия: Математика, механика, информатика. 2010. Т. 10, вып. 1. С. 64–68.
- 10. Леонтъева М. Н. Булевы алгебры элементарной характеристики (1,0,1) с вычислимыми множеством атомов и идеалом Ершова—Тарского // Алгебра и логика. 2011. Т. 50, № 2. С. 133—151.

Материал поступил в редколлегию 26.06.2009

Адрес автора

ЛЕОНТЬЕВА Маргарита Николаевна Новосибирский государственный университет ул. Пирогова, 2, Новосибирск, 630090, Россия e-mail: Margarita.Leontyeva@gmail.com