# §1.2 **数列极限**

#### 1.2.1 数列极限的定义

#### 什么是数列

数列就是一个接一个且永无尽头的数的排列. 例如,

$$1,\ 2,\ 3,\ \cdots,\ n,\ \cdots \ 1,\ rac{1}{2},\ rac{1}{2^2},\ \cdots,\ rac{1}{2^n},\ \cdots$$

特点是有头无尾,有限个数不称为数列.

#### 数列的表示

一般地,数列可以表示为

$$a_1, a_2, a_3, \cdots, a_n, \cdots$$

也可简单表示为  $\{a_n\}$ , 其中  $a_n$  称为数列的通项, n 称为下标, 下标不具有实

质意义, 它只是表明  $a_n$  为数列的第 n 项, 下标应从小到大顺序跑遍所有自然数, 下标可以用其它字母替代. 象这种可以用其它字母替代的符号称为 哑符号. 重要的是数列的通项表达式, 它给出了数列的排列规律, 知道了通项也就知道了整个数列.

#### 收敛数列和发散数列

有一类数列具有特别重要的意义,它的项的值随着下标增大而趋于一个特定的数.这种数列称为收敛数列.例如,

**0.3, 0.33, 0.333, ..., 
$$0.33 \cdot \cdot \cdot \cdot 3$$
, ...** (1.1)

$$3.1, 3.14, 3.141, 3.1415, \cdots$$
 (1.2)

另一类数列是通项不趋向于一个数,例如,

$$1, \frac{1}{2}, 1, \frac{1}{3}, \cdots, 1, \frac{1}{n}, \cdots$$
 (1.3)

**定义** 1 设  $\{a_n\}$  是给定的数列. 如果有一个实数 a 具有下列性质: 对任意给定的一个正数  $\epsilon$ , 总存在一个自然数  $N=N(\epsilon)$ , 使得当 n>N 时, 不等式

$$|a_n - a| < \varepsilon$$

成立, 则称 a 是数列  $\{a_n\}$  的极限, 或数列  $\{a_n\}$  以 a 为极限, 也称数列  $\{a_n\}$  收敛于 a. 记成

$$\lim_{n o\infty}a_n=a,\;\;\; {f x}\;\; \lim a_n=a,$$

也可以记成  $a_n \to a$   $(n \to \infty)$ , 称为"当 n 趋于无穷时,  $a_n$  趋于 a".

一个数列若不是收敛数列, 就称为发散数列, 或称数列是发散的.

1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10

对于(1.1)中的数列,因为

$$a_n = rac{3}{10} + rac{3}{10^2} + \cdots + rac{3}{10^n} = rac{3}{10} \cdot rac{1 - rac{1}{10^n}}{1 - rac{1}{10}} = rac{1}{3} - rac{1}{3 imes 10^n},$$

所以, 对于任意正数  $\varepsilon$ , 可取  $N = [1/\varepsilon] + 1$ , 当 n > N 时, 就有

$$\left|a_n-rac{1}{3}
ight|=rac{1}{3 imes 10^n}<rac{1}{10^n}<rac{1}{n}<rac{1}{N}$$

这就说明  $\lim_{n \to \infty} a_n = \frac{1}{3}$ .

#### 两点说明

- 1. 定义中 ε 必须是任意给定的正数, 而不是某个正数, 任意性强调的是"任意地小"的方面, 而不是 "任意大"的方面.
- 2. 当  $\varepsilon$  给定后, 再来寻求满足条件的 N, 因而 N 通常与  $\varepsilon$  有关. 一般来说, 当  $\varepsilon$  变小时, N 会变大. 例如上面的  $N = [1/\varepsilon] + 1$ . 当 N 满足要求时, N+1, N+1 等都满足要求, 并不需要找出满足要求最小的 N, 实际上只要指出 N 的存在性.

#### 几何解释

数列  $\{a_n\}$  收敛于 a 的几何描述是: 对于任意的正数  $\varepsilon$ , 都存在自然数 N, 使得当 n > N 时, 在实数轴上与  $\{a_n\}$  对应的点都落在以 a 为中心以  $\varepsilon$  为半径的开区间  $(a-\varepsilon,a+\varepsilon)$  中.



例 1 若  $\alpha > 0$ , 则  $\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0$ .

证明 分析: 希望  $|\frac{1}{n^{\alpha}}-0|<\varepsilon$ , 即  $\frac{1}{n^{\alpha}}<\varepsilon$ , 即

$$n^{lpha}>rac{1}{arepsilon}$$

$$n>\left(rac{1}{arepsilon}
ight)^{1/lpha},$$

只要取  $N = [(\frac{1}{\varepsilon})^{1/\alpha}] + 1$ .

书写:  $\forall \varepsilon > 0, \exists N = [(\frac{1}{\varepsilon})^{1/\alpha}] + 1,$  当 n > N 时, 有

$$\left|rac{1}{n^{lpha}}-0
ight|<rac{1}{N^{lpha}}<rac{1}{1/arepsilon}=arepsilon,$$

于是  $\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0$ .

例 2 求证: 
$$\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=0$$
.

证明 因为

$$a_n=\sqrt{n+1}-\sqrt{n}=rac{1}{\sqrt{n+1}+\sqrt{n}}<rac{1}{\sqrt{n}},$$

所以  $\forall \varepsilon > 0$ ,  $\exists N = \left[\frac{1}{\varepsilon^2}\right] + 1$ , 当 n > N 时, 有

$$|a_n-0|<rac{1}{\sqrt{n}}<rac{1}{\sqrt{N}}<rac{1}{\sqrt{1/arepsilon^2}}=arepsilon,$$

这说明 
$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0$$
.

例 3 设数列  $\{a_n\}$  收敛于 a. 求证:  $\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n} = a$ .

**证明**: 因为  $\lim_{n\to\infty} a_n = a$ , 根据数列收敛的定义, 对任意正数  $\varepsilon$ , 存在自然数  $n_1$  使得当  $n > n_1$  时, 有  $|a_n - a| < \varepsilon/2$ . 现取自然数  $n_2$  使得  $2(|a_1 - a| + |a_2 - a| + \cdots + |a_m - a|)$ 

$$n_2>rac{2(|a_1-a|+|a_2-a|+\cdots+|a_{n_1}-a|)}{arepsilon}.$$

于是当  $n > N = n_1 + n_2$  时,有

$$egin{aligned} \left| rac{a_1 + a_2 + \cdots + a_n}{n} - a 
ight| &= \left| rac{a_1 - a + a_2 - a + \cdots + a_n - a}{n} 
ight| \ &\leqslant rac{|a_1 - a| + |a_2 - a| + \cdots + |a_{n_1} - a|}{n} + rac{|a_{n_1 + 1} - a| + \cdots + |a_n - a|}{n} \ &\leqslant rac{|a_1 - a| + |a_2 - a| + \cdots + |a_{n_1} - a|}{n_2} + rac{|a_{n_1 + 1} - a| + \cdots + |a_n - a|}{n - n_1} \ &\leqslant rac{arepsilon}{2} + rac{arepsilon}{2} = arepsilon. \end{aligned}$$

根据极限的定义知,有  $\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n} = a$ .

# 数列 $\{a_n\}$ 不以 a 为极限的陈述

若存在一个正数  $\varepsilon_0$ , 使得对任意自然数 N, 都可以找到自然数 n>N 满足  $|a_n-a|\geqslant \varepsilon_0$ , 则  $\{a_n\}$  不以 a 为极限.

从几何上说就是存在一个以a为中心的开区间,使得这个开区间之外有无穷多个与该数列对应的点.

1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10

#### 1.2.2 收敛数列的性质

性质 1 (极限的唯一性) 收敛数列的极限是唯一的.

**证明** 如果  $\{a_n\}$  有两个极限值 a 和 b. 根据极限的定义可知, 对于任意的正数  $\varepsilon$ , 对应两个极限值, 分别存在正整数  $N_1$  和  $N_2$ , 使得当

$$n>N_1$$
 时有  $|a_n-a|<rac{arepsilon}{2},$   $n>N_2$  时有  $|a_n-b|<rac{arepsilon}{2},$ 

因此, 当  $n > \max(N_1, N_2)$  时(即 n 同时满足  $n > N_1, n > N_2$ ), 上面两个不等式都满足, 所以

 $|a-b|=|(a-a_n)+(a_n-b)|\leqslant |a_n-a|+|a_n-b|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon.$  两个数的距离要小于任意一个数, 这两个数必须相等, 即 a=b. 证毕.

性质 2 (收敛数列的有界性) 收敛数列是有界的,即,数列中的所有项的绝对值不会超过某个固定的正数.

证明 设  $\{a_n\}$  收敛于 a, 由定义知道, 对于  $\varepsilon = 1$ , 存在一个自然数 N, 使得当 n > N 时, 有  $|a_n - a| < 1$ , 即当 n > N 时, 有  $|a_n| < |a| + 1$ .

取

$$M = \max(|a| + 1, |a_1|, |a_2|, \cdots, |a_N|),$$

注意到, 第一, 有限个数中一定能取到一个最大的; 第二, 上面确定的 M 显然与 n 无关. 则对所有自然数 n, 也就是数列的所有项, 都有  $|a_n| \leq M$ .

性质 3 (数列极限的比较) 设数列  $\{a_n\}$  和  $\{b_n\}$  分别收敛于 a 和 b.

- $1^{\circ}$  如果 a < b, 则当 n 充分大时, 有  $a_n < b_n$ .
- $2^{\circ}$  如果当 n 充分大时有  $a_n \geqslant b_n$ , 则  $a \geqslant b$ ;

证明 1° 设 a < b, 取  $\varepsilon = \frac{b-a}{2}$ , 则由定义知, 即存在正数  $N_1$ , 使得当  $n > N_1$ 时, 有  $a_n < a + \varepsilon = \frac{a+b}{2}$ . 同理, 存在  $N_2$ , 当  $n > N_2$  时, 有  $b_n > b - \varepsilon = \frac{a+b}{2}$ . 所以当  $n > \max(N_1, N_2)$  时, 就有  $a_n < b_n$ ,

2° 这是 1°的推论. 证毕.

#### 1.2.3 子数列

从数列  $\{a_n\}$  中取出无穷多项按照原来的顺序排列的数列  $\{a_{n_k}\}$  称为  $\{a_n\}$  的子数列.

定理 1 若数列  $\{a_n\}$  收敛于  $a_n$ 则  $\{a_n\}$  的任何子列也收敛于  $a_n$ 

证明 设  $\{a_{n_k}\}$   $(k \ge 1)$  是  $\{a_n\}$   $(n \ge 1)$  的一个子列, 对于任意给定的正数  $\varepsilon$ , 我们要指出, 存在一个正数 K, 使得 k > K 时, 有  $|a_{n_k} - a| < \varepsilon$ 

事实上, 由于  $\{a_n\}$  收敛于 a, 所以对于上述的  $\epsilon$ , 一定存在一个正数 N, 使得当 n > N 时, 有

$$|a_n-a|<\varepsilon$$
.

因为  $n_1 < n_2 < \cdots < n_k < \cdots$ , 而且都是正整数, 所以一定存在某个 K, 使得当 k > K 时,  $n_k > N$ , 于是, 当 k > K 时, 有

$$|a_{n_k}-a|<\varepsilon,$$

即  $\lim_{k o \infty} a_{n_k} = a$ . 证毕.

推论 1 若数列  $\{a_n\}$  有两个子数列分别收敛于不同的数,则  $\{a_n\}$  发散.

由此容易说明数列  $\{(-1)^n\}$  是发散的.

### 1.2.4 收敛数列的四则运算

性质 4 (数列极限的四则运算) 设 c 是常数,数列  $\{a_n\}$  和  $\{b_n\}$  分别收敛于 a 和 b,则

 $1^{\circ} \{a_n \pm b_n\}$  收敛于  $a \pm b$ ;

- 2° {ca<sub>n</sub>} 收敛于 ca;
- $3^{\circ}$   $\{a_nb_n\}$  收敛于 ab;
- $4^{\circ}$  若  $b \neq 0$ , 则  $\{a_n/b_n\}$  收敛于 a/b.

**证明** 1° 首先对求和的情况进行证明. 即要证明, 对于任意的正数  $\varepsilon$ , 可找到一个整数 N, 使得当 n > N 时, 有  $|(a_n + b_n) - (a + b)| < \varepsilon$ .

由于  $\{a_n\}$ ,  $\{b_n\}$  分别收敛于 a 和 b, 所以对于上述  $\varepsilon$ , 分别存在  $N_1$  和  $N_2$  使得,

当 
$$n>N_1$$
 时,有  $|a_n-a|<rac{arepsilon}{2},$ 

以及

当 
$$n>N_2$$
 时,有  $|b_n-b|<rac{arepsilon}{2},$ 

因此, 若取  $N = \max(N_1, N_2)$ , 则当 n > N 时, 上面两个式子同时成立, 所以有

$$|(a_n+b_n)-(a+b)|\leqslant |a_n-a|+|b_n-b|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon.$$

同样可证明两个数列相减的情况.

3° 首先注意到

$$|a_n b_n - ab| \le |a_n b_n - a_n b| + |a_n b - ab|$$
 $= |a_n||b_n - b| + |b||a_n - a|.$ 

其次注意到, 由于  $\{a_n\}$ ,  $\{b_n\}$  是收敛数列, 故都是有界的, 取一个大的界M, 使得

$$|a_n|, \ |b_n| < M \quad (n \geqslant 1).$$

因而  $|b| \leq M$ . 而且, 对于任意的正数  $\varepsilon$ , 存在一个整数 N, 使得当 n > N时,

$$|a_n-a|<rac{arepsilon}{2M}, \ \ |b_n-a|<rac{arepsilon}{2M}$$

同时成立. 所以当 n > N时, 有

$$|a_nb_n-ab| < M|b_n-b| + M|a_n-a| \ < M \cdot rac{arepsilon}{2M} + M \cdot rac{arepsilon}{2M} = arepsilon.$$

4°因为

$$rac{a_n}{b_n} = a_n \cdot rac{1}{b_n},$$

由  $3^{\circ}$  可知, 只需证明数列  $\left\{\frac{1}{b_n}\right\}$  收敛于  $\frac{1}{b}$  即可.

不妨假定 b > 0. 我们有

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{|b_n - b|}{|b_n b|}.$$

所以, 对于任意给定的正数  $\varepsilon$ , 存在 N, 使得当 n > N 时, 有

$$b_n > b - rac{b}{2} = rac{b}{2}$$

及

$$|b_n-b|<rac{b^2arepsilon}{2}.$$

故知, 当 n > N 时

$$\left| rac{1}{b_n} - rac{1}{b} 
ight| < rac{2}{b^2} \cdot rac{b^2 arepsilon}{2} = arepsilon.$$

即  $\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{b}$ . 证毕.

### 例 4

$$\lim_{n o \infty} rac{1 + 2 + \dots + n}{n^2} = \lim_{n o \infty} rac{rac{n(n+1)}{2}}{n^2} = \lim_{n o \infty} rac{1}{2} \left(1 + rac{1}{n}
ight) = rac{1}{2}.$$

#### 例 5

$$\lim_{n o\infty}rac{3n^3+2n^2-n+5}{2n^3+n^2+n+1}=\lim_{n o\infty}rac{3+rac{2}{n}-rac{1}{n^2}+rac{5}{n^3}}{2+rac{1}{n}+rac{1}{n^2}+rac{1}{n^3}}=rac{3}{2}.$$

# 例 6 求极限

$$\lim_{n o\infty}rac{2^n+5\cdot 3^n}{3^n+5\cdot 2^n}.$$

解

$$\lim_{n o\infty}rac{2^n+5\cdot 3^n}{3^n+5\cdot 2^n}=\lim_{n o\infty}rac{\left(rac{2}{3}
ight)^n+5}{1+5\cdot \left(rac{2}{3}
ight)^n}=5.$$

这里用到

$$\lim_{n o\infty}\left(rac{2}{3}
ight)^n=0.$$

#### 1.2.5 夹逼原理

定理 2 (夹逼原理) 若数列  $\{b_n\}$  和  $\{c_n\}$  都收敛于 a, 且对充分大的 n, 有

$$a_n\leqslant c_n\leqslant b_n,$$

则数列  $\{c_n\}$  也收敛, 而且极限也为 a.

**证明** 因为  $\{a_n\}$  和  $\{b_n\}$  都收敛于 a, 所以对于任意给定的正数  $\epsilon$ , 一定存在相应的正整数  $N_1$  和  $N_2$ , 使得当  $n > N_1$  时,  $|a_n - a| < \epsilon$ , 从而

$$a-\varepsilon < a_n$$
.

当  $n>N_2$  时,  $|b_n-a|<arepsilon$ , 从而

$$b_n < a + \varepsilon$$
.

条件中所谓"对充分大的 n", 即表明存在整数  $N_3$ , 使得当  $n > N_3$  时, 有

$$a_n\leqslant c_n\leqslant b_n.$$

1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10

现在取  $N = \max(N_1, N_2, N_3)$ , 则当 n > N 时, 上述三个不等式同时满足, 进而有

$$a - \varepsilon < a_n \leqslant c_n \leqslant b_n < a + \varepsilon$$
.

即  $|c_n - a| < \varepsilon$ , 这表明  $\{c_n\}$  收敛于 a. 证毕.

**例** 7 求  $\lim_{n\to\infty} \sqrt{1+\frac{1}{n^{\alpha}}}$ , 其中  $\alpha$  是给定的正实数.

解 当  $\alpha > 0$  时, 显然有

$$1<\sqrt{1+rac{1}{n^lpha}}<1+rac{1}{n^lpha}$$

但  $\lim_{n\to\infty} \left(1+\frac{1}{n^{\alpha}}\right) = 1$ , 所以应用定理 2, 所求极限为 1.

例 8 求 
$$\lim_{n\to\infty} \left( \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \cdots + \frac{1}{\sqrt{n^2+n}} \right)$$
.

解 注意到

$$rac{n}{\sqrt{n^2+n}} \leqslant rac{1}{\sqrt{n^2+1}} + rac{1}{\sqrt{n^2+2}} + \cdots + rac{1}{\sqrt{n^2+n}} \leqslant rac{n}{\sqrt{n^2+1}},$$

而

$$rac{n}{\sqrt{n^2+n}} = rac{1}{\sqrt{1+rac{1}{n}}}, \quad rac{n}{\sqrt{n^2+1}} = rac{1}{\sqrt{1+rac{1}{n^2}}}$$

因此

$$\lim_{n o\infty}rac{n}{\sqrt{n^2+n}}=\lim_{n o\infty}rac{n}{\sqrt{n^2+1}}=1,$$

所以, 利用定理 2, 可知所求的极限为 1.

例 9 求证  $\lim_{n\to\infty} \sqrt[n]{n} = 1$ .

证明 命  $\sqrt[n]{n} = 1 + \lambda_n$ , 则有

$$n = (1 + \lambda_n)^n = 1 + n\lambda_n + rac{n(n-1)}{2}\lambda_n^2 + \dots > 1 + rac{n(n-1)}{2}\lambda_n^2,$$

由上式解得  $\lambda_n < \sqrt{rac{2}{n}}$ ,故有

$$0<\sqrt[n]{n}-1=\lambda_n<\sqrt{rac{2}{n}}.$$

由两边夹定理、就得到所证结果。

#### 1.2.6 **Stolz 定理**

下面的定理在求数列的极限时, 也是常用的.

定理  $3 \left( \frac{\infty}{\infty} \right)$  型 Stolz 定理) 设  $\{a_n\}$ ,  $\{b_n\}$  是两个数列, 且  $\{b_n\}$  严格递增趋于  $+\infty$ . 若

$$\lim_{n o\infty}rac{a_{n+1}-a_n}{b_{n+1}-b_n}=A,$$

则有

$$\lim_{n o\infty}rac{a_n}{b_n}=A,$$

其中 A 可以是实数, 也可以是  $+\infty$  或  $-\infty$ .

**证明** 我们只证 A 是实数的情况, 其他情况可以类似证明. 不妨设  $\{b_n\}$  是正数列. 假设条件成立, 则对任意正数  $\varepsilon$ , 存在自然数 k 使得

$$A-arepsilon < rac{a_{n+1}-a_n}{b_{n+1}-b_n} < A+arepsilon, \quad n\geqslant k,$$

即,

$$(A-arepsilon)(b_{n+1}-b_n) < a_{n+1}-a_n < (A+arepsilon)(b_{n+1}-b_n), \quad n\geqslant k.$$

在上面不等式中,令 n 分别取  $k, k+1, \cdots, k+p-1$  并将所得不等式求和,得到

$$(A-\varepsilon)(b_{k+p}-b_k) < a_{k+p}-a_k < (A+\varepsilon)(b_{k+p}-b_k).$$

因此,

$$\frac{a_k}{b_{k+p}} - \frac{Ab_k}{b_{k+p}} - \varepsilon \left(1 - \frac{b_k}{b_{k+p}}\right) < \frac{a_{k+p}}{b_{k+p}} - A < \frac{a_k}{b_{k+p}} - \frac{Ab_k}{b_{k+p}} + \varepsilon \left(1 - \frac{b_k}{b_{k+p}}\right).$$

注意到  $\{b_n\}$  趋于  $+\infty$ , 对固定的 k 存在自然数 q, 使得当 p>q 时, 有

$$-arepsilon < rac{a_k}{b_{k+p}} - rac{Ab_k}{b_{k+p}} < arepsilon.$$

于是当 p > q 时, 有

$$-2arepsilon < rac{a_{k+p}}{b_{k+p}} - A < 2arepsilon.$$

从而定理得证.

1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10

例 10 设  $\{a_n\}$  是数列, 且  $\lim a_n = a \in \mathbb{R}$ . 则有

$$\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a.$$

证明 令  $A_n = a_1 + a_2 + \cdots + a_n$ ,  $B_n = n$ . 则  $\{B_n\}$  严格递增趋于  $+\infty$ , 且满足  $\lim_{n\to\infty} \frac{A_{n+1}-A_n}{B_{n+1}-B_n} = \lim_{n\to\infty} a_{n+1} = a$ . 根据 Stolz 定理, 即得结论.

例 11 设 k 是自然数. 求极限  $\lim_{n \to \infty} \frac{1^k + 2^k + \cdots + n^k}{n^{k+1}}$ .

解 根据 Stolz 定理, 有

$$egin{aligned} &\lim_{n o\infty} rac{1^k+2^k+\cdots+n^k}{n^{k+1}} \ &= \lim_{n o\infty} rac{(n+1)^k}{(n+1)^{k+1}-n^{k+1}} = \lim_{n o\infty} rac{(n+1)^k}{\sum_{i=0}^k C_{k+1}^i n^i} \ &= \lim_{n o\infty} rac{(1+1/n)^k}{\sum_{i=0}^k C_{k+1}^i (1/n)^{k-i}} = rac{1}{k+1} \end{aligned}$$

#### 1.2.7 确界原理

设 X 是一个由一些实数组成的非空集合. 如果  $a \in X$ , 且对任意  $x \in X$ , 有  $x \leq a$ , 那么 a 称为 X 的极大元. 如果  $a \in X$ , 且对任意  $x \in X$ , 有  $x \geq a$ , 那么 a 称为 X 的极小元. 如果存在一个实数 A, 使得对于任何  $x \in X$ , 有  $x \leq A$ , 则称 A 是数集 X 的一个上界. 如果存在实数 B, 使得对于任何  $x \in X$ , 有  $x \in X$ , 有  $x \geq B$ , 则称 B 是数集 X 的一个下界. 如果数集 X 既有上界, 又有下界, 则称 X 是有界集合.

显然, 极大元是一个上界, 极小元是一个下界, 而且极大元和极小元都是唯一的. 但是如果数集 *X* 有上界(或者下界), 则它的上界(或者下界)一定不是唯一的. 我们感兴趣的是最小的上界或最大的下界.

所谓数集 X 的最小的上界 A 是指: 第一, A 是它的一个上界; 第二, 比 A 小一点点的数都不是它的上界. 用数学的语言来描述就是, 对于任意的正数  $\varepsilon$ , 数  $A-\varepsilon$  都不是 X 的上界, 因此一定存在一个数  $x_{\varepsilon}\in X$ , 使得  $x_{\varepsilon}>A-\varepsilon$ . 这种最小的上界称为 X 的上确界, 记为  $\sup X$ . 同理可定义下确界, 记为  $\inf X$ . 容易看出, 上确界是上界中的极小元, 而下确界是下界中极大元, 因此上确界和下确界只要存在必定是唯一的.

例如:

$$\inf\left\{rac{1}{n},\ n=1,2,\cdots
ight\}=0, \quad \sup\left\{rac{1}{n},\ n=1,2,\cdots
ight\}=1$$
  $\inf(0,\ 1)=0, \quad \sup(0,\ 1)=1$ 

顺便指出, 如果 X 没有上界, 则记  $\sup X = +\infty$ . 如果 X 没有下界, 则记  $\inf X = -\infty$ .

**定理** 4 (**确界原理**) 非空有上界的数集 X 必有上确界; 非空有下界的数集 X 必有下确界.

**证明** 设 X 是一个非空有上界的集合, 记 Y 是 X 的所有上界构成的集合, 当然 Y 是非空数集, 且对于任意  $x \in X$  和  $y \in Y$  有  $x \leqslant y$ . 根据完备公理, 存在实数 c 使得对于任意  $x \in X$  和  $y \in Y$  有  $x \leqslant c \leqslant y$ . 这说明 c 是 X 一个上界, 而且 Y 中任意元素都不比它小, 因此, c 是 X 的最小上界, 即, 上确界. 同理可证下确界的情况. 证毕.

# 定理 5 (单调有界判别法) 单调数列收敛的充分必要条件是其为有界数列.

证明 设数列  $\{a_n\}$  单调递增有上界, 因此根据确界原理, 数集

$$X=\{a_1,a_2,a_3,\cdots,a_n,\cdots\}$$

必有上确界, 记为 a. 我们将看到, a 就是数列  $\{a_n\}$  的极限. 注意到, 对于任意给定的正数  $\varepsilon$ , 数  $a-\varepsilon$  不是 X 的上界, 因此数列中存在一个项  $a_N \in X$ , 使得  $a_N > a-\varepsilon$ . 又因为  $\{a_n\}$  是单调递增的, 所以当 n>N 时, 有  $a_n \geqslant a_N > a-\varepsilon$  显然  $a+\varepsilon > a \geqslant a_n$  对任何 n 成立. 所以当 n>N 时, 有  $|a_n-a|<\varepsilon$ . 因而,  $\lim a_n=a$ . 证毕.

例 12 设 
$$a_n = \sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}} \ (n \ {
m 重根式}), \, {
m \vec{x}} \ \lim_{n \to \infty} a_n.$$

解  $a_n$  就是由如下递推关系  $a_1 = \sqrt{2}$ ,  $a_{n+1} = \sqrt{a_n + 2}$  定义的一个数列. 首先观察到:  $a_2 = \sqrt{2 + \sqrt{2}} > a_1$ ,  $a_3 = \sqrt{2 + \sqrt{2} + \sqrt{2}} > \sqrt{2 + \sqrt{2}} = a_2$ . 如果  $a_n > a_{n-1}$  成立, 则

$$a_{n+1}-a_n=\sqrt{a_n+2}-\sqrt{a_{n-1}+2}=rac{a_n-a_{n-1}}{\sqrt{a_n+2}+\sqrt{a_{n-1}+2}}>0,$$

即  $a_{n+1} > a_n$ , 所以由归纳法证得,  $\{a_n\}$  是单调递增的.

另一方面, 显然  $a_1 < 2$ , 若  $a_n < 2$ , 则  $a_{n+1} = \sqrt{a_n + 2} < 2$ . 即数列 $\{a_n\}$  是有上界的. 因此  $\{a_n\}$  收敛. 设其极限为 a. 将递推公式变为

$$a_{n+1}^2 = a_n + 2$$

在上式两端令  $n \to \infty$  得  $a^2 = a + 2$ , 解得 a = -1 或 a = 2. 但是  $a_n > 0$ , 故  $a \ge 0$ , 从而可知  $\lim_{n \to \infty} a_n = 2$ .

1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10

# 定理 6 (Bolzano-Weierestrass 定理) 有界数列一定存在收敛的子列.

**证明** 设  $\{a_n\}$  是一个有界的数列, 不妨设  $\{a_n\} \subset [c,d]$ .  $[c,\frac{c+d}{2}]$  和  $[\frac{c+d}{2},d]$  这两个区间中至少有一个含有数列  $\{a_n\}$  的无穷多项, 记这个区间为  $[c_1,d_1]$ . 同样, 在  $[c_1,\frac{c_1+d_1}{2}]$  和  $[\frac{c_1+d_1}{2},d_1]$  这两个区间中至少有一个含有数列  $\{a_n\}$  的无穷多项, 记这个区间为  $[c_2,d_2]$ . 继续做下去, 可得一列区间  $[c_k,d_k]$ ,  $k=1,2,\cdots$ , 使得每个这样的区间都含有数列  $\{a_n\}$  的无穷多项, 且

$$d_k - c_k = rac{1}{2^k} (d-c), \,\, k = 1, 2, \cdots,$$

$$c\leqslant c_1\leqslant c_2\leqslant \cdots\leqslant c_{k-1}\leqslant c_k < d_k\leqslant d_{k-1}\leqslant \cdots\leqslant d_1\leqslant d.$$

由这两个式子并根据定理 5, 可知

$$\lim_{k o\infty}c_k=\lim_{k o\infty}d_k=a.$$

在  $[c_1,d_1]$  中取数列的一项  $a_{n_1}$ ,接着在  $[c_2,d_2]$  中取  $a_{n_2}$ ,且  $n_2>n_1$ . 继续下去,可取  $\{a_n\}$  的子列  $a_{n_k}\in [c_k,d_k]$ . 根据两边夹定理得  $\lim_{k\to\infty}a_{n_k}=a$ . 证毕.

定义 2 数列  $\{a_n\}$  称为 Cauchy 数列 (或基本列), 若对任意给定的正数  $\varepsilon$ , 存在整数  $N=N(\varepsilon)$  (即 N 可能依赖于  $\varepsilon$  ), 使得当 m,n>N 时, 就有

$$|a_n-a_m|<\varepsilon$$
.

注意, 基本列的条件也可以说成: 对任意给定的正数  $\varepsilon$ , 存在自然数 N, 使得当 n > N 时, 不等式

$$|a_{n+p} - a_n| < \varepsilon$$

对所有自然数 p 成立.

# 定理 7 (Cauchy 准则) 数列 $\{a_n\}$ 收敛的充分必要条件是: $\{a_n\}$ 是基本列.

证明 必要性是容易证明的,下面证明充分性. 对于正数 1, 存在整数  $N_1$ ,使得当  $m,n\geqslant N_1$  时,有  $|a_m-a_n|<1$ . 令

$$M = \max(|a_1|, |a_2|, \cdots, |a_{N_1}|, |a_{N_1}| + 1).$$

则有  $|a_n| \leq M$ ,  $n = 1, 2, \cdots$ . 这说明  $\{a_n\}$  是有界的. 由定理 6, 存在收敛的子列  $\{a_{n_k}\}$ .

因为  $\{a_n\}$  是基本列, 所以对任意正数  $\varepsilon$ , 存在整数  $N_2$ , 使得当  $m,n \ge N_2$  时, 有  $|a_m-a_n|<\frac{\varepsilon}{2}$ . 因为  $\lim_{k\to\infty}a_{n_k}=a$ , 对于这个  $\varepsilon$ , 存在一个整数 K, 使得当 k>K 时, 有  $|a_{n_k}-a|<\frac{\varepsilon}{2}$ . 特别可取一个  $n_k$  使得  $n_k>N_2$  且 k>K. 于是, 当  $n>N_2$  时, 有

$$||a_n-a|\leqslant |a_n-a_{n_k}|+|a_{n_k}-a|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon.$$

所以,  $\lim_{n\to\infty} a_n = a$ . 证毕.

 $1.2.1 \quad 1.2.2 \quad 1.2.3 \quad 1.2.4 \quad 1.2.5 \quad 1.2.6 \quad 1.2.7 \quad 1.2.8 \quad 1.2.9 \quad 1.2.10$ 

例 13 设 
$$a_n = \frac{\sin 1}{1^2} + \frac{\sin 2}{2^2} + \cdots + \frac{\sin n}{n^2}$$
, 求证  $\{a_n\}$  收敛.

证明 因为

$$|a_{n+p} - a_n| = \left| \frac{\sin(n+1)}{(n+1)^2} + \dots + \frac{\sin(n+p)}{(n+p)^2} \right|$$
 $\leq \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+p)^2}$ 
 $< \frac{1}{n(n+1)} + \dots + \frac{1}{(n+p-1)(n+p)}$ 
 $= \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n}.$ 

所以,对于任意给定的正数  $\varepsilon$ ,取  $N=\left[\frac{1}{\varepsilon}\right]$ ,当 n>N 时,对任何自然数 p 都

$$|a_{n+p}-a_n|<\varepsilon$$
.

由 Cauchy 准则可知  $\{a_n\}$  收敛.

例 14 设  $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ . 求证  $\{a_n\}$  发散.

证明 对任何自然数 n, 取 p = n, 则有

$$a_{2n}-a_n=rac{1}{n+1}+rac{1}{n+2}+\cdots+rac{1}{n+n}>rac{1}{2n}+rac{1}{2n}+\cdots+rac{1}{2n}=rac{1}{2}.$$

由 Cauchy 准则可知  $\{a_n\}$  发散.

一般地, 设  $\alpha > 1$ ,

$$a_n=1+rac{1}{2^{lpha}}+rac{1}{3^{lpha}}+\cdots+rac{1}{n^{lpha}},$$

则  $\{a_n\}$  收敛.

1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10

### 1.2.8 **自然对数底** e

**定理** 8 设  $e_n = \left(1 + \frac{1}{n}\right)^n, \ n \geqslant 1, 则数列 \left\{e_n\right\}$  收敛.

# 证明 由平均不等式

$$e_n = 1 \cdot (1 + \frac{1}{n}) \cdot (1 + \frac{1}{n}) \cdot \dots \cdot (1 + \frac{1}{n})$$

$$< \left(\frac{1 + n(1 + \frac{1}{n})}{n + 1}\right)^{n+1} = \left(\frac{n + 2}{n + 1}\right)^{n+1} = e_{n+1}.$$

这说明  $\{e_n\}$  是单调递增数列.

令 
$$d_n = (1 + \frac{1}{n})^{n+1}$$
. 由平均不等式

$$\left(rac{n}{n+1}
ight)^{n+1}=1\cdot \overbrace{rac{n+1}{n+1}\cdotsrac{n}{n+1}}^{n+1} \ <\left(rac{1+(n+1)rac{n}{n+1}}{n+2}
ight)^{n+2}=\left(rac{n+1}{n+2}
ight)^{n+2},$$

即  $\frac{1}{d_n} < \frac{1}{d_{n+1}}$ , 因而  $d_n > d_{n+1}$ . 于是有

$$e_1 < e_2 < \cdots < e_n < d_n < d_{n-1} < \cdots < d_2 < d_1$$

由此可知数列  $\{e_n\}$  严格单调递增有上界, 所以此数列收敛.

记

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$
.

以后我们将用 Taylor 展开的方法进一步证明, e 是一个无理数, 其数值是  $e = 2.718281828 \cdots$  在微积分以及在工程技术运用中, 常用到以 e 为底的对数, 这种对数称为自然对数, 简记为  $\ln$ 

例 15 求 
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^{-n}$$
.

解

$$egin{align} \lim_{n o\infty} \left(1-rac{1}{n}
ight)^{-n} &= \lim_{n o\infty} \left(1+rac{1}{n-1}
ight)^n \ &= \lim_{n o\infty} \left(1+rac{1}{n-1}
ight)^{n-1} \left(1+rac{1}{n-1}
ight) \ &= e. \end{split}$$

#### 1.2.9 发散到无穷大的数列

**定义** 3 设  $\{a_n\}$  是给定的数列, 若对于任意给定的正数 M, 都存在自然数 N, 使得当 n > N 时, 有  $|a_n| > M$ , 则称数列  $\{a_n\}$  发散到无穷大, 记作

$$\lim_{n \to \infty} a_n = \infty, \;\;\; \ \, \ \, \ \, \ \, \ \, \ \, a_n \to \infty \; (n \to \infty)$$

例如,
$$\{n\}$$
,  $\{\sum_{k=1}^n \frac{1}{k}\}$ ,  $\{-\sqrt{n}\}$ ,  $\{(-1)^n n\}$ .

**定义** 4 设  $\{a_n\}$  是给定的数列, 若对于任意给定的正数 M, 都存在自然数 N, 使得当 n > N 时, 有  $a_n > M$ , 则称数列  $\{a_n\}$  发散到正无穷大, 记作

$$\lim_{n \to \infty} a_n = +\infty, \;\;\; \ \, \ \, \ \, \ \, \ \, \ \, a_n \to +\infty \; (n \to \infty)$$

**定义** 5 设  $\{a_n\}$  是给定的数列, 若对于任意给定的正数 M, 都存在自然数 N, 使得当 n > N 时, 有  $a_n < -M$ , 则称数列  $\{a_n\}$  发散到负无穷大, 记作

$$\lim_{n o\infty}a_n=-\infty,\;\;\; oxtimes_{}a_n o -\infty\;(n o\infty)$$

## 定理 9 单调数列发散到无穷大的充分必要条件是其为一个无界数列.

**证明** 条件的必要性是显然的. 现在证明充分性, 我们考虑单调递增的情形, 即: 如果  $\{a_n\}$  是单调递增但无上界的数列, 则  $a_n \to +\infty$   $(n \to \infty)$ .

事实上, 对任意的正数 M, 因为  $\{a_n\}$  无上界, 故必然存在自然数 N, 使得  $a_N > M$ . 由于数列是单调递增的, 所以当 n > N 时, 有  $a_n > a_N > M$ . 这就是所要的证明. 证毕.

#### 1.2.10 上极限与下极限

我们知道收敛数列是有界的而且任何子列与原数列有相同的极限. 又根据定理 6, 有界数列必有收敛子列. 一般来说有界数列可能有许多有不同极限的子列. 如果 a 是数列  $\{a_n\}$  的某个子列的极限, 那么称 a 为  $\{a_n\}$  的一个部分极限. 我们要问: 当有界数列的任何收敛子列都有相同的极限时, 也就是只有一个部分极限, 该有界数列是否收敛? 回答是肯定的, 证明留作习题.

因此,不收敛的有界数列至少有两个子列分别收敛到不同的数.显然有界数列的所有子列的极限所成的集合仍是有界的集合,这个集合有确定的上确界和下确界.对于无界的数列,也可以取出趋于  $+\infty$  或  $-\infty$  的子列.

对于数列  $\{a_n\}$ , 集合

$$\mathrm{E} = \{l \in \mathbb{R} \cup \{+\infty, -\infty\}: \ a_n \ \mathsf{中有子列} \ a_{k_n} \to l, \ n \to \infty\}$$

总是非空的. 令  $a^* = \sup E$ ,  $a_* = \inf E$ , 他们分别被称为数列  $\{a_n\}$  的上极限和下极限, 记作

$$\limsup_{n o\infty}a_n, \quad \liminf_{n o\infty}a_n, \quad$$
 或者  $\overline{\lim}_{n o\infty}a_n, \quad \underline{\lim}_{n o\infty}a_n$ 

根据上确界和下确界的定义, 可以证明  $a^*$  和  $a_*$  都在 E 中, 因此有界数列  $\{a_n\}$  的上(下)极限正是它的一切收敛子列的极限所组成的集合中的最大(小)者. 显然下确界不超过上确界, 而且不难证明  $a_n \to a$  等价于  $\overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n = a$ .

定理 10 
$$\overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{k \geqslant n} a_k, \quad \underline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{k \geqslant n} a_k.$$

证明 我们只对有界数列的情况证明. 设  $\{a_n\}$  是一个有界数列, 则集合  $B_n = \{a_n, a_{n+1}, \cdots\}$  是有界数集, 记

$$eta_n = \inf B_n = \inf_{k \geqslant n} a_k.$$

不难看出  $\{\beta_n\}$  单调递增且有界, 因此有极限  $\beta = \lim \beta_n$ . 利用下确界的定义, 存在自然数  $k_1$  使得

$$\beta_1 \leqslant a_{k_1} < \beta_1 + 1$$
.

又存在  $k_2 \geqslant k_1 + 1$  使得

$$eta_{k_1+1}\leqslant a_{k_2}$$

按此法可归纳地选出自然数  $k_n$  使得

$$eta_{k_{n-1}+1} \leqslant a_{k_n} < eta_{k_{n-1}+1} + rac{1}{n},$$

以及  $k_{n-1} < k_n$ . 因为  $\{\beta_{k_{n-1}+1}\}$  是  $\{\beta_n\}$  的子列, 它有极限  $\beta$ , 所以根据夹逼原理知  $\lim_{n\to\infty} a_{k_n} = \beta$ . 这说明  $\beta$  是一个部分极限.

 $\beta$  也是最小的部分极限, 因为对每个  $\varepsilon > 0$ , 存在自然数 n, 使得  $\beta - \varepsilon < \beta_n$ . 因此当  $k \ge n$  时, 有  $a_k \ge \beta_n > \beta - \varepsilon$ . 由此知  $\{a_n\}$  的部分极限都不会比  $\beta - \varepsilon$  小. 因为  $\varepsilon$  是任意正数, 所以部分极限都不会比  $\beta$  小, 这说明  $\beta$  是最小的部分极限. 即,  $\beta = \lim_{n \to \infty} a_n$ . 同理可证明上极限的情况.

## 性质 5

$$\underline{\lim}_{n \to \infty} (-a_n) = -\overline{\lim}_{n \to \infty} a_n \tag{1}$$

$$\overline{\lim}_{n\to\infty}(-a_n) = -\underline{\lim}_{n\to\infty}a_n \tag{2}$$

## 性质 6 下面的式子两端都有意义时成立:

$$\underline{\lim_{n\to\infty}} a_n + \underline{\lim_{n\to\infty}} b_n \leqslant \underline{\lim_{n\to\infty}} (a_n + b_n) \leqslant \underline{\lim_{n\to\infty}} a_n + \overline{\lim_{n\to\infty}} b_n \tag{3}$$

$$\underline{\lim_{n\to\infty}} a_n + \overline{\lim_{n\to\infty}} b_n \leqslant \overline{\lim_{n\to\infty}} (a_n + b_n) \leqslant \overline{\lim_{n\to\infty}} a_n + \overline{\lim_{n\to\infty}} b_n \tag{4}$$

当  $a_n, b_n$  都非负时, 上面式子中的加号改为乘号时也成立.

证明 设  $a = \underline{\lim}_{n \to \infty} a_n$ ,  $b = \overline{\lim}_{n \to \infty} b_n$ . 对任意  $\varepsilon > 0$ , 任意自然数 N, 存在自然数 n > N 使得  $a_n < a + \varepsilon$ ,  $b_n < b + \varepsilon$ . 因而

$$a_n + b_n < a + b + 2\varepsilon$$
.

这说明

$$arprojlim_{n o\infty}(a_n+b_n)\leqslant a+b+2arepsilon.$$