Universidad Nacional de Rosario

Facultad de Ciencias Exactas, Ingenieria Y Agrimensura

Análisis de Lenguajes de Programación R322

Trabajo Práctico I - Informe

Alumnos:

Tomas Octavio Castagnino Ernesto Jesús Savio Julián Paz

Ejercicio 1.

La sintaxis abstracta de este lenguaje es la siguiente:

```
intexp ::= nat \mid var \mid -_u intexp
          |var| ++
           | intexp + intexp |
           | intexp -_b intexp |
            intexp \times intexp
           intexp \div intexp
boolexp ::= \mathbf{true} \mid \mathbf{false}
           | intexp == intexp
            intexp! = intexp
            intexp > intexp
            intexp < intexp
            bolean exp \land bolean exp
            bolean exp \lor bolean exp
           \neg \ boleanexp
comm ::= \mathbf{skip}
           |var = intexp|
           comm; comm
           if boleanexp then else comm
           repeat comm until boolexp
```

La sintaxis concreta de este lenguaje es la siguiente:

```
digit ::= \mathbf{'0'} \mid \mathbf{'1'} \mid \cdots \mid \mathbf{'9'}
letter ::= 'a' | \cdots | 'Z'
nat ::= digit \mid digit \ nat
var ::= letter \mid letter var
intexp ::= nat
              var
              '-' intexp
              var'++'
              intexp '+' intexp intexp '-' intexp
              intexp '*' intexp
              intexp '/' intexp
             \ '(' intexp ')'
boolexp ::= 'true' | 'false'
               |intexp'| == 'intexp
                intexp'! =' intexp
                intexp' <' intexp
intexp' >' intexp
                intexp '&&' intexp
                intexp'||' intexp
                ^{\prime }!^{\prime }\ boolexp
               \ '(' boolexp ')'
comm ::= \mathbf{skip}
            'case' '{' caseComm '}'
            var' = i intexp
            comm ';' comm
            'if' boolexp '{' comm '}'
            'if' boolexp '{' comm '}' 'else' '{' comm '}'
            'repeat' '{' comm '}' 'until' boolexp
caseComm = boolexp':'' \{'comm'\}'caseComm
               |\epsilon|
```

Ejercicio 3.

Para poder hacer los parsers tuvimos que pensar en como representar el orden de precedencia. Para ello fue útil pensar que nuestra sintaxis concreta tiene las siguientes reglas:

```
intExp := (intExp '+' \mid intExp '-' \mid \epsilon) intTerm
intTerm := (intTerm '*' | intTerm '/' | \epsilon) intUnary
intUnary := '-' intUnary \mid intAtom
intAtom := nat \mid var ('++' \mid \epsilon) \mid '(' intExp ')'
boolExp := (boolExp ' || ' | \epsilon) boolTerm
boolTerm := (boolTerm '&&' | \epsilon) boolUnary
boolUnary := '!' boolUnary | boolAtom
boolAtom := 'true' | 'false' | '(' boolExp ')' | boolComp
boolComp := intExp \ ('==' intExp \ | \ '!=' intExp \ | \ '<' intExp \ | \ '>' intExp)
commExp := (commExp '; ' | \epsilon) commAtom
commAtom := 'skip' \mid commIf \mid commRepeat \mid commCase \mid commAss
commIf := \text{'if'}\ boolExp\ \text{'then'}\ commExp\ (\ \text{'else'}\ commExp\ |\ \epsilon)
commRepeat := 'repeat' '{' comm '}' 'until' boolexp
commCase := 'case' '{' caseComm '}'
commAss := var '=' intexp
caseComm = boolexp ':' '{' comm '}' caseComm
```

Ejercicio 4. La regla de derivación para este ejercicio es:

$$\frac{x \in Dom(\sigma)}{\langle x++, \sigma \rangle \Downarrow_{exp} \langle x, [\sigma \mid x : \sigma(x)+1] \rangle} \text{VarInc}$$

Ejercicio 5.

Para demostrar que la relacion de evaluación de un paso \rightsquigarrow es determinista tenemos que demostrar que si $\langle c, \sigma \rangle \rightsquigarrow \langle c_1, \sigma_1 \rangle$ y $\langle c, \sigma \rangle \rightsquigarrow \langle c_2, \sigma_2 \rangle$ entonces $\langle c_1, \sigma_1 \rangle = \langle c_2, \sigma_2 \rangle$. Para eso vamos a hacer induccion sobre $\langle c, \sigma \rangle \rightsquigarrow \langle c_1, \sigma_1 \rangle$. Hacemos analisis por casos sobre la ultima regla aplicada en la derivacion. Pudiendo usar la Hipotesis Inductiva en los casos que contiene subderivaciones.

- Ass. Entonces la forma de c es v = e y si $\langle e, \sigma \rangle \Downarrow_{exp} \langle n, \sigma_1 \rangle$ sabemos que $\langle c_1, \sigma_1 \rangle = \langle \mathbf{skip}, [\sigma_1 | v : n] \rangle$. En la derivacion de $\langle c, \sigma \rangle \leadsto \langle c_2, \sigma_2 \rangle$ vemos que la ultima regal aplicada no puede ser otra que no sea Ass por la forma de c. Sabiendo que \Downarrow_{exp} es determinsta sabemos que $\sigma_1 = \sigma_2$. Como la regla usa ese Ass y \Downarrow_{exp} es determinista concluimos entonces que $\langle c_1, \sigma_1 \rangle = \langle c_2, \sigma_2 \rangle$.
- Seq_1 . Entonces la forma de c es \mathbf{skip} ; c'. En la derivacion de $\langle c, \sigma \rangle \leadsto \langle c_2, \sigma_2 \rangle$ vemos que la ultima regla aplicada no puede ser Seq_2 porque \mathbf{skip} no deriva a nada entonces la ultima regla usada es Seq_1 . Concluimos entonces que $\langle c_1, \sigma_1 \rangle = \langle c_2, \sigma_2 \rangle$.
- Seq_2 . Entonces la forma de c es co_0 ; co_1 y $\langle co_0, \sigma \rangle \leadsto \langle co1'_0, \sigma1' \rangle$. O sea, $\langle c_1, \sigma_1 \rangle = \langle co1'_0; co_1, \sigma1' \rangle$. En la derivacion de $\langle c, \sigma \rangle \leadsto \langle c_2, \sigma_2 \rangle$ vemos que la ultima regla aplicada no puede ser Seq_1 porque para usar esta regla co_0 deberia ser **skip** y sabemos que co_0 deriva, por lo que entonces $co_0 \neq \text{skip}$.

Ahora, sabemos que para la derivacion de $\langle c, \sigma \rangle \rightsquigarrow \langle c_2, \sigma_2 \rangle$ se usa la regla Seq_2 . Y teniendo que $\langle co_0, \sigma \rangle \rightsquigarrow \langle co2'_0, \sigma2' \rangle$ queda que $\langle c_2, \sigma_2 \rangle = \langle co2'_0; co_1, \sigma2' \rangle$.

Como co_0 es una subderivacion de c por Hipotesis Inductiva tenemos que su derivacion es determinista. Esto es que como $\langle co_0, \sigma \rangle \leadsto \langle co1_0', \sigma1' \rangle$ y $\langle co_0, \sigma \rangle \leadsto \langle co2_0', \sigma2' \rangle$ entonces $\langle co1_0', \sigma1' \rangle = \langle co2_0', \sigma2' \rangle$.

Por lo tanto, $\langle c_1, \sigma_1 \rangle = \langle co1'_0; co_1, \sigma1' \rangle = \langle co2'_0; co_1, \sigma2' \rangle = \langle c_2, \sigma_2 \rangle$. Quedando entonces que $\langle c_1, \sigma_1 \rangle = \langle c_2, \sigma_2 \rangle$. En consecuencia la regla Seq2 es determinista.

■ If_1 . Supongamos que la última regla de derivación que se aplicó fue If_1 . Por lo tanto la derivación tendrá la siguiente forma:

$$\frac{\langle b, \sigma \rangle \downarrow_{exp} \langle true, \sigma' \rangle}{\langle if \ b \ then \ \hat{c} \ else \ \hat{c}', \sigma \rangle \leadsto \langle \hat{c}, \sigma' \rangle} \ If_1$$

Esto nos lleva a decir que $c = (if \ \hat{b} \ then \ \hat{c} \ else \ \hat{c}')$. Ahora veamos que sucede en la derivación $\langle c, \sigma \rangle \leadsto \langle c_2, \sigma_2 \rangle$

Como c es un if then else solo es posible aplicar las reglas If_1 o If_2 .

Por otro lado, como ψ_{exp} es determinista resulta que:

$$\langle b, \sigma \rangle \downarrow_{exp} \langle true, \sigma' \rangle (1)$$

Luego como el estado inicial en la segunda derivación es el mismo que la primer derivación y vale (1), resulta que solo es posible aplicar la regla If_1 , por lo tanto tenemos que $\langle c_2, \sigma_2 \rangle$ tiene la forma:

$$\langle c_2, \sigma_2 \rangle = \langle \hat{c}, \sigma' \rangle = \langle c_1, \sigma_1 \rangle$$

Como ambas derivaciones derivan a lo mismo, resulta que la regla If_1 debe ser determinista.

- If_2 . (Análogo a If_1)
- Repeat. Supongamos que la ultima regla de evaluación aplicada es Repeat. Por la forma de la misma, tenemos que: $\langle c, \sigma \rangle = \langle repeat \ c \ until \ b, \sigma_1 \rangle$ y $\langle c_1, \sigma \rangle = \langle c; if \ b \ then \ skip \ else \ repeat \ c \ until \ b, \sigma \rangle$ Como c tiene la forma $repeat \ until$, no queda otra opción que aplicar la regla Repeat en la segunda derivación.

Al aplicar esta regla obtenemos que:

$$\langle c_2, \sigma_2 \rangle = \langle c; if b then skip else repeat c until $b, \sigma \rangle = \langle c_1, \sigma_1 \rangle$$$

 $\therefore \langle c_1,\sigma_1\rangle = \langle c_2,\sigma_2\rangle.$ Por lo tanto la regla Repeat es determinista.

Ejercicio 6. Denotemos c_1 y c_2 al primer y segundo programa respectivamente. Para ver que c_1 y c_2 son semáticamente equivalentes si para todo estado $\sigma \in \Sigma$ vale que:

$$\langle c_1, \sigma \rangle \to^* \langle skip, \sigma' \rangle$$
 si y solo si $\langle c_2, \sigma \rangle \to^* \langle skip, \sigma' \rangle$

Sea $\sigma \in \Sigma$ un estado cualquiera. Luego tenemos que:

Programa A:

$$\frac{x \in Dom(\sigma)}{\langle x, \sigma \rangle \ \psi_{exp} \ \langle \sigma(x), \sigma \rangle} \operatorname{Var} \quad \frac{\langle 1, \sigma \rangle \ \psi_{exp} \ \langle 1, \sigma \rangle}{\langle 1, \sigma \rangle \ \psi_{exp} \ \langle \sigma(x), \sigma \rangle} \operatorname{Const}$$

$$\frac{\langle x + 1, \sigma \rangle \ \psi_{exp} \ \langle \sigma(x) + 1, \sigma \rangle}{\langle x = x + 1, \sigma \rangle \ \rightarrow \ \langle skip, [\sigma \mid x : \sigma(x) + 1] \rangle} \operatorname{Ass}$$

Luego,

$$\frac{\langle x = x + 1, \sigma \rangle \to \langle skip, [\sigma \mid x : \sigma(x) + 1] \rangle}{\langle x = x + 1; y = x, \sigma \rangle \to \langle skip; y = x, [\sigma \mid x : \sigma(x) + 1] \rangle} \operatorname{Seq2}$$

Luego,

$$\frac{1}{\langle skip; y = x, [\sigma \mid x : \sigma(x) + 1] \rangle} \rightarrow \langle y = x, [\sigma \mid x : \sigma(x) + 1] \rangle \xrightarrow{\text{Seq1}}$$

Por último tenemos que,

$$\frac{x \in Dom([\sigma \mid x : \sigma(x) + 1])}{\langle x, [\sigma \mid x : \sigma(x) + 1] \rangle \quad \Downarrow_{exp} \quad \langle \sigma(x) + 1, [\sigma \mid x : \sigma(x) + 1] \rangle} \operatorname{Var}}{\langle y = x, [\sigma \mid x : \sigma(x) + 1] \rangle \quad \rightarrow \quad \langle skip, [\sigma \mid x : \sigma(x) + 1] \mid y : \sigma(x) + 1] \rangle} \operatorname{Ass}$$

Por lo tanto tenemos que:

$$\langle y = x + +, \sigma \rangle \ \to^* \ \langle skip, [\ [\sigma \mid x : \sigma(x) + 1\] \mid y : \sigma(x) + 1] \rangle$$

Programa B:

$$\frac{x \in Dom(\sigma)}{\langle x + +, \sigma \rangle \quad \Downarrow_{exp} \quad \langle x, [\sigma \mid x : \sigma(x) + 1] \rangle} \text{VarInc}$$

Luego aplicamos sobre este resultado:

$$\overline{\langle x, [\sigma \mid x : \sigma(x) + 1] \rangle} \downarrow_{exp} \overline{\langle \sigma(x) + 1, [\sigma \mid x : \sigma(x) + 1] \rangle}$$
 Var

Por último aplicamos la regla para la asignación:

$$\frac{\langle x++,\sigma\rangle \ \Downarrow_{exp} \ \langle \sigma(x)+1, [\sigma \mid x:\sigma(x)+1]\rangle}{\langle y=x++,\sigma\rangle \ \to \ \langle skip, [\ [\sigma \mid x:\sigma(x)+1 \] \ | \ y:\sigma(x)+1]\rangle} \text{Ass}$$

Por lo tanto podemos decir que:

$$\langle y = x + +, \sigma \rangle \ \to^* \ \langle skip, [\ [\sigma \mid x : \sigma(x) + 1\] \mid y : \sigma(x) + 1] \rangle$$

Habiendo analizado ambos programas podemos afirmar que los mismos derivan a:

$$\langle skip, \ [\ [\sigma \mid x : \sigma(x) + 1] \ y : \sigma(x) + 1] \rangle \ (1)$$

y σ es un estado aleatorio resulta que para todo estado $\sigma \in \Sigma$ vale (1), en consecuencia ambos programas son semánticamente equivalentes.