TD 0 : Calcul différentiel pour fonctions $\mathbb{C} \to \mathbb{C}$

Dans toute cette feuille d'exercices, on identifie \mathbb{R}^2 à \mathbb{C} , en identifiant le couple $(x, y) \in \mathbb{R}^2$ à $z := x + iy \in \mathbb{C}$. L'objectif de la feuille est de faire quelques rappels d'analyse réelle et de calcul différentiel en deux variables réelles dans un contexte de « nombres complexes » et de préparer au premier cours.

Exercice 1. Quelques rappels d'analyse réelle :

- 1. Montrer à la main que $f: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$ n'est pas dérivable en l'origine.
- 2. Montrer que la fonction $\mathbb{R}^* \to \mathbb{R}, x \mapsto x^2 \sin(1/x)$ se prolonge en une fonction continue $g : \mathbb{R} \to \mathbb{R}$ qui est dérivable sur \mathbb{R} mais pas de classe \mathscr{C}^1 .
- 3. Construire une fonction deux fois dérivable mais pas \mathscr{C}^2 .

Exercice 2. Montrer que la fonction

$$f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \to \begin{cases} \frac{2x^2y + y^3}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{sinon} \end{cases}$$

est continue sur \mathbb{R}^2 , possède des dérivées partielles en l'origine, possède même des dérivées directionnelles dans toute direction en l'origine, mais n'est pas différentiable en l'origine.

Exercice 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ une application différentiable. On note u et v ses coordonnées : f = (u, v).

- 1. Soit $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x, -y)$. Écrire la matrice jacobienne de $f \circ \Phi$ et de $\Phi \circ f$ en fonction de celle de f.
- 2. Soit $||\cdot||$ la norme euclidienne sur \mathbb{R}^2 . La fonction $||f||^2 : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto ||f(x, y)||^2$ est-elle différentiable et si oui quelle est sa matrice jacobienne?

Exercice 4. Écrire les applications suivantes d'une variable $(x, y) \in \mathbb{R}^2$ (ou sous-ensemble) à valeurs dans \mathbb{C} comme des applications de la variable z := x + iy.

a)
$$(x, y) \mapsto -x + iy$$

d)
$$(x, y) \mapsto x^2 + y^2$$

g)
$$(x, y) \mapsto e^x$$

b)
$$(x, y) \mapsto y - ix$$

e)
$$(x, y) \mapsto x^2 - y^2$$

h)
$$(x, y) \mapsto \cos(y) + i\sin(y)$$

c)
$$(x, y) \mapsto x^2 + 2ixy - y^2$$
 f) $(x, y) \mapsto xy$

f)
$$(x, y) \mapsto xy$$

i)
$$(x, y) \mapsto \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}$$

Exercice 5. Soient $a, b \in \theta$ des nombres réels. Les applications suivantes sont des applications $\mathbb{C} \to \mathbb{C}$.

- Les écrire comme des applications $\mathbb{R}^2 \to \mathbb{R}^2$. (Si elles sont \mathbb{R} -linéaires, écrire leur matrice.) En tant qu'applications $\mathbb{R}^2 \to \mathbb{R}^2$, déterminer si elles sont continues, si elles admettent des dérivées partielles, si elles sont différentiables. Lorsque c'est le cas, déterminer si la différentielle est inversible.
- Lorsque ce sont des isométries ou similitudes, déterminer leurs éléments caractéristiques (rapports, axes, centre etc)

a)
$$z \mapsto z + 1 + 3i$$

e)
$$z \mapsto i\bar{z}$$

i)
$$z \mapsto |z|$$

b)
$$z \mapsto iz$$

f)
$$z \mapsto (a+ib)z$$

j)
$$z \mapsto z^2$$

c)
$$z \mapsto \bar{z}$$

g)
$$z \mapsto e^{i\theta}z$$

k)
$$z \mapsto z^3$$

d)
$$z \mapsto -\bar{z}$$

h)
$$z \mapsto |z|^2$$

1)
$$z \mapsto (2+3i)Re(z^2)$$