This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- BLURRY OR ILLEGIBLE TEXT
- SKEWED/SLATED IMAGES
- COLORED PHOTOS
- BLACK OR VERY DARK BLACK AND WHITE PHOTOS
- UNDECIPHERABLE GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-90909

(43)公開日 平成9年(1997)4月4日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
G 0 9 G	3/36			G 0 9 G	3/36		
G02F	1/133	505		G02F	1/133	505	
	1/139				1/137	505	

	審查請求	(未請求 請求項の数2 OL (全 5 頁)			
特顯平7-244802	(71)出顧人	000194918 ホシデン株式会社			
平成7年(1995)9月22日	大阪府八尾市北久宝寺1丁目4番33号				
	(72)発明者	萩野 修司 兵庫県神戸市西区高塚台4-3-1 ホシ デン株式会社開発技術研究所内			
	(72)発明者	柴▲崎▼ 稔 兵庫県神戸市西区高塚台4-3-1 ホシ デン株式会社開発技術研究所内			
	(74)代理人	弁理士 草野 卓 (外1名)			
		特願平7-244802 (71)出願人 平成7年(1995) 9月22日 (72)発明者			

(54) 【発明の名称】 LCD駆動装置

(57) 【要約】

【課題】 OCBモードLCDの駆動装置の簡単化、経 済化を図る。

【解決手段】 広視野角特性と高速応答性を同時に実現 させたOCB(OpticallyCompensated Birefringence)モ ードLCDのセルに印加する電圧は臨界電圧Vcr以上で なければならないことが知られている。この発明では、 ビデオ増幅器21,その出力より両極性のビデオ信号V 3, V₃ * を発生する手段 23, それら 2 つの信号を交 互に切換えて信号電極ドライバ5に供給するマルチプレ クサ24を設けると共に、これら回路の中間またはこれ ら回路と回路の間にリミッタを設けている。リミッタと しては、入力端子と出力端子との間に抵抗器を接続し、 出力端子とクリップ電圧入力端子との間に定電圧しきい 値素子 (例えばダイオード) を接続した簡単な回路で実 現できる。

【特許請求の範囲】

【請求項1】 ビデオ増幅器と、

そのビデオ増幅器の出力(V_2)より同相のビデオ信号 (V₃) と逆相のピデオ信号 (V₃*) とを生成する両 極性ビデオ信号発生器と、

その両極性ビデオ信号発生器より入力される前記同相の ビデオ信号(V3)と逆相のビデオ信号(V3*)とを 所定時間ずつ交互に切換選択するマルチプレクサと、 そのマルチプレクサの出力信号を入力して、OCBモー ドLCDの信号電極を交流駆動する信号電極ドライバ と、

前記しCDの走査電極を駆動する走査電極ドライバとを 具備するLCD駆動装置であって、

前記ビデオ増幅器、両極性ビデオ信号発生器、マルチプ レクサのいずれかの回路内または回路と回路の間にリミ ッタ回路を設け、液晶セルに印加する駆動電圧の大きさ をOCBモード液晶がペンド状態を維持するのに必要な 臨界電圧 (Vcr) 以上に制限したことを特徴とするLC D駆動装置。

【請求項2】 請求項1において、前記リミッタ回路 が、入力端子と出力端子との間に接続された抵抗器(R 1)と、出力端子とクリップ電圧入力端子との間に接続 された定電圧しきい値素子とにより構成されることを特 徴とするしCD駆動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明はOCBモードLC D (液晶表示素子) の駆動装置に関する。

[0002]

【従来の技術】最近、図3に示すように2枚の偏光板 1,2の間に、2軸性フイルム3とベンド・セル4を配 した構造のOCB (Optically Compensated Birefringe nce(複屈折)) モードLCDが東北大学によって開発さ れ、それに関連した次の論文が発表され注目されてい る。

[0003] F Wide viewing angle display mode f or active matrix LCD using bendalignment liquid cr ystal cell 」;東北大学 T. Uchida 他; EURODISPL AY'93 digest, p. 149 \sim p. 152 (1993)

「広視野角と高速応答を同時に実現するセル技術を開 発」:東北大学 内田龍男:フラットパネルディスプレ イ1995, 日経BP社 日経マイクロデバイス編p.150~ p. 154 (1994)

この〇CBモードLCDは複屈折によって生じる偏光状 態の変化を3次元的に補償することによって、広視野角 特性と高速応答性を同時に実現したものである。

【0004】液晶の様に光学的に一軸性の物質は、光軸 からずれた方向では複屈折現象が生じる。この問題を解 決するためには光学的に複屈折を補償して取り除く必要 がある。しかし、ツイスト構造のTN-LCDでは、そ 50 28種類または256×2=512種類もの電圧が必要

の補償方法は非常に難しい。しかし、液晶を一方向に配 向させたような光学的に一軸性の物質では比較的容易で あり、その結果、図3の〇CBセルが誕生したのであ

2

【0005】液晶分子のプレティルト角(基板内面に対 する液晶分子の長軸の傾き角度)を上基板と下基板で逆 に配向させると、図4に示すように、 スプレー、 イスト、 ベンドの各状態のいずれかになる。どの状態 になるかを調べるために、ギプス (Gibbs)の自由エンタ 10 ルピイGが内田、他によって求められた。それを図5に 示す。図5から分かるように、スプレイ、ツイスト、ベ ンドのうち、どの状態になるかを決めるクリティカルな 電圧(臨界電圧と言う) Vcrが存在する。また臨界電圧 Vcrより低い場合はスプレイ状態になり、高い場合はツ イスト状態或いはベンド状態になることが分かった。

【0006】臨界電圧Vcrより高い場合に生ずるツイス ト状態は液晶セルの内、中央部の僅か±10%以下の領 域だけであるので、Vcr以上ではベンド状態と考えても 光学特性に差がでない。従って、ベンド状態で代表させ 20 ることができる。重要なのは、OCBモードLCDはセ ルに印加する駆動電圧が臨界電圧Vcr以上になるように 駆動しなければならないと言うことである。しかし、現 在のところその駆動装置は公表されていないように思わ れる。ここでは、この発明を得る前の段階で考えられた 駆動装置について図6を参照して説明する。

【0007】OCBモードLCD100の列状の信号電 極は信号電極ドライバ5により駆動され、また行状の走 査電極は走査電極ドライバ6により駆動される。信号電 極ドライバ5及び走査電極ドライバ6にタイミング回路 30 7よりタイミング信号が供給される。タイミング回路7 にはクロック発生器8よりクロックが供給されると共 に、外部より水平同期信号Sh 及び垂直同期信号Sv が 供給される。

【0008】外部よりビデオ信号VがA/D変換器9に 入力され、黒レベルから白レベルまでを6ピット(64 階調)や8ビット(256階調)などのデジタルデータ に変換され、D/A変換器10に入力される。D/A変 換器10で入力信号は液晶を駆動するのに必要な電圧レ ベルにアナログ変換される。このとき、D/A変換器1 0ヘデータ用電圧発生器11から供給するデータ用電圧 を前述の臨界電圧Vcr以上にすることで、OCBセル1 00にVcr以下の電圧がかからないようにしている。

[0009]

【発明が解決しようとする課題】この発明を得る前の段 階で考えられたOCBモードLCDの駆動装置では、A **/D変換器 9 で黒レベルから白レベルまでを例えば 6 ビ** ット(64階調)または8ピット(256階調)のデジ タルデータに変換したとすれば、液晶の交流化駆動のた めに正負両極性の電圧が必要であるので、64×2=1

3

になる。そのためデータ用電圧発生器11及びD/A変 換器10の回路構成が複雑になる問題があった。

【0010】この発明の目的は、OCBモードLCDに 対する駆動装置の簡単化、経済化を図ろうとするもので ある。

[0011]

【課題を解決するための手段】

(1) 請求項1の発明のLCD駆動装置は、ビデオ増幅 器と、そのビデオ増幅器の出力(V2)より同相のビデ オ信号 (V3) と逆相のビデオ信号 (V3 *)とを生成 する両極性ビデオ信号発生器と、その両極性ビデオ信号 発生器より入力される同相のビデオ信号 (V3) と逆相 のビデオ信号 (V3 *) とを所定時間ずつ交互に切換選 択するマルチプレクサと、そのマルチプレクサの出力信 号を入力して、OCBモードLCDの信号電極を交流駆 動する信号電極ドライバと、LCDの走査電極を駆動す る走査電極ドライバとにより構成される。

【0012】更に、この発明ではビデオ増幅器、両極性 ビデオ信号発生器、マルチプレクサのいずれかの回路内 または回路と回路の間にリミッタ回路を設け、液晶セル に印加する駆動電圧の大きさを、OCBモード液晶がベ ンド状態を維持するのに必要な臨界電圧(Vcr)以上に 制限するものである。

(2) 請求項2の発明では、前記(1) において、リミ ッタ回路が、入力端子と出力端子との間に接続された抵 抗器(R₁)と、出力端子とクリップ電圧入力端子との 間に接続された定電圧しきい値素子(D)とにより構成 される。

$$E = E vc - Vcr - V_f$$

が印加される。しかし V_f はダイオードDの順電圧であ る。To はクリップ電圧入力端子である。図2Bに示す ようなビデオ信号V2 が入力端子INに入力されたとす

$$V_D = V_2 - E$$

$$= V_2 - Evc + Vcr + V_f$$

$$= - (Evc - V_2) + Vcr + V_f$$

$$\geq - Vcr + Vcr + V_f = V_f$$

となり、 V_D は順電圧 V_f またはそれ以上となるので、 ダイオードDはオンとなり、このときリミッタの出力電

$$V_3 = E + V_f = Evc - Vcr$$

2 のピーク波形 Vp がクリップされ、 Vp のないビデオ

$$Evc-V_3 \ge Vcr$$

となる。ビデオ信号 V3 は両極性ビデオ信号発生器 23 に入力され、電圧利得が1の電圧ホロア回路23aを通 して出力端子OUT₁及び反転増幅器23bに供給され

$$G = -R_3 / R_2 = -1$$

となる。演算増幅器Q2 の正相入力端子には基準電圧E vcが供給されているので、反転増幅器23bの入力電圧

$$V_{in} = V_3 - Evc$$

となる。従ってEvcを基準とした出力電圧Vout は、

[0013]

【発明の実態の形態】この発明の実施例を図1に、図6 と対応する部分に同じ符号を付けて示し、重複説明を省 略する。この発明では入力ビデオ信号V」はビデオ増幅 器21で所定のレベルまで増幅された後リミッタ回路2 2に入力され、OCBセル100に印加される電圧が臨 界電圧Vcr以下にならないように、大きさが制限され る。大きさの制限されたビデオ信号 V2 は両極性ビデオ 信号発生器23に入力され、交流駆動のために必要な同 10 相のビデオ信号 V3 と逆相のビデオ信号 V3 * とが作ら れ、マルチプレクサ24に供給される。マルチプレクサ 24では、両極性のV3とV3*とを所定時間ずつ交互 に切換選択して信号電極ドライバ5に供給する。信号電 極ドライバ5はピデオ信号V3 またはV3 * でLCDの 信号電極を駆動する。

【0014】リミッタ回路22と両極性ビデオ信号発生 器23の回路の一例と、要部の波形図を図2に示す。い ま簡単化のためアクティブマトリックスLCDの場合 は、基準電圧Evcが共通電極(液晶を介して画素電極 (表示電極)と対向する) に印加され、また単純マトリ クスLCDの場合は走査電板(信号電板と液晶を介して 対向する)が基準電圧Evcで順次駆動されるものとす

【0015】リミッタ回路22は抵抗器R1とダイオー ドDの逆L形回路で構成される。抵抗器R1 の入力端に ビデオ信号V₂が、ダイオードDのカソードにクリップ 電圧

30 ると、基準電圧Evcとの差Evc-V2がOCBセルの臨 界電圧Vcrまたはそれ以下になると、ダイオードDの端 子電圧VD は

圧V₃は

にクランプされる。従って図2Bに示したビデオ信号V=40 信号 V_3 が出力端子 OUT_0 に得られる。図2Cから明 らかなように、

る。反転増幅器23bは演算増幅器Q2と抵抗値の相等 しい抵抗器R2, R3で構成される。その電圧利得G は、R2, R3を抵抗値を表すものとすれば、

Vinは、

50

$$V_{out} = -V_{in} = -(V_3 - Evc)$$

6 • • • • • • • • • (7)

となり、出力端子OUT2と端子T2との間の電圧とし て出力される。出力端子OUT2の電圧をV3 * とすれ

(8')

$$\therefore V_3 * - Evc = - (V_3 - Evc)$$

図2Cから明らかなように、V3とV3 *とはEvcに対 して互いに対称となる。また基準電圧Evcは電圧V3と V3 * の中心電圧と言うこともできる。

【0016】既に述べたように〇CBセルにおいて、液 晶を挟んで対向する一方の電極には基準電圧Evcが印加 10 in となり、この値は (4) 式より

$$|V_3 - Evc| = |V_{in}| \ge Vcr$$

また V3 * が信号電極に印加されたときは | V3 * - E vc | となり、この値は(8) 式より | V_{in} | に等しく、

$$|V_3|^* - Evc| = |V_{in}| \ge Vcr$$

となる。このようにしてV3, V3 * いずれを印加した 場合もOCBセルには臨界電圧Vcr以上の電圧が印加さ れる。

【0017】図1の例ではリミッタ回路22をビデオ増 幅器21と両極性ビデオ信号発生器23との間に設けた が、同様の機能を有するリミッタ回路をビデオ増幅器2 1、両極性ビデオ信号発生器23、マルチプレクサ24 のいずれかの回路内または回路と回路の間に設けてもよ い。またリミッタ回路22のダイオードDの代わりに、 直列接続された複数のダイオードや他の定電圧しきい値 素子を用いてもよい。

[0018]

【発明の効果】以上述べたように、この発明ではビデオ 増幅器21、両極性ビデオ信号発生器23、マルチプレ クサ24のいずれかの回路内または回路と回路の間に簡 単なリミッタを設けることによってOCBセルに印加さ 30 ードLCDに対する駆動装置のブロック図。 れる電圧を臨界電圧Vcr以上に保持している。従って、

され、他方の電極には信号電極を通じて駆動電圧V3 ま たはV3 * が交互に供給される。従ってOCBセル間に 印加される電圧の大きさは図2Cから分かるように、信 号電極にV3 が印加されたときは | V3 - Evc | = | V

(10)

この発明によれば簡単で経済的なOCBセルの駆動装置 が得られる。

【図面の簡単な説明】

従って(9)式より

【図1】この発明の実施例を示すプロック図。

【図2】Aは図1のリミッタ回路22と両極性ビデオ信 20 号発生器 2 3 の一例を示す回路図、B及びCはAの要部 の信号波形図。

【図3】〇CBモード液晶セルの原理的な構成を示す斜 視図。

【図4】液晶のプレティルト角を上下基板で逆に配向さ せた場合に生ずる液晶分子の3つの配向状態を示す原理 的な液晶セルの正面図。

【図5】スプレイ、ベンド及びツイストモードの液晶セ ルの自由エンタルピィ対印加電圧特性を示すグラフ。

【図6】この発明を得る前の段階で考えられた〇CBモ

【図1】

【図2】

