3	Dimensional Analysis.
	-There are four basic dimensions:
	L M T Q
	length mass time charge (dw about this one)
	Everything can be represented sin these
	dimentions. Ex speed = meters/sec = 1/T
	dimentions, Ex. speed = meters/sec = 1/T acceleration = meters/sec = 1/72
	Dimensional Analysis can be a huge help
	when solving Mc problems because you
	can must plot eliminate answers that are
	dimensionally incorrect.
	Additionally the following rules exist:
	- you continued can only
	add and subtract quantities that
	- Can multiply divide dimensions like fractions
	are the transfer of
	Ex. What in the timensions of
	$2\pi \sqrt{\frac{l}{g}}$ where $l = length$ $g = acceleration due to gravity$
	g = acceleration due to gravity
	$=2\pi\sqrt{\frac{L}{L/4T^2}}=2\pi/T^2=2\pi \cdot T=T$
	s aloctrosat
	doesn't change
	units

1. Dimensional Analysis

1. A particle is thrown into the air from ground level height h=0 with upward velocity v. Which of the following gives the height of the particle at time t from launch?

$$\text{a.}\quad h(t)=v\cdot t-\frac{1}{2}gt$$

$$\mathbf{b}. \quad h(t) = v \cdot t^2 - \frac{1}{2}gt$$

$$\mathbf{c}.\quad h(t)=v\cdot t-\frac{1}{2}gt^2$$

$$\mathrm{d.}\quad h(t)=v\cdot t^2-\frac{1}{2}gt^2$$

- 2. Newton's second law of motion states F=ma, what are the dimensions of F (force) in basic dimensions?
- 3. Challenge question! The universal law of gravitation states $F_{gravity} = G \frac{m_1 m_2}{R^2}$, where $F_{gravity}$ is a force, and m_1 and m_2 are masses, and R is a distance. What are the units of the gravitational constant G?
- 4. Super extra bonus challenge question! (From a past F=ma exam but it's really easy and you should be able to do it)

Inspired by a problem from the 2012 International Physics Olympiad, Estonia.

A very large number of small particles forms a spherical cloud. Initially they are at rest, have uniform mass density per unit volume ρ_0 , and occupy a region of radius r_0 . The cloud collapses due to gravitation; the particles do not interact with each other in any other way.

How much time passes until the cloud collapses fully? (The constant 0.5427 is actually $\sqrt{\frac{3\pi}{32}}$.)

- (A) $\frac{0.5427}{r_0^2 \sqrt{G\rho_0}}$
- (B) $\frac{0.5427}{r_0\sqrt{G\rho_0}}$
- (C) $\frac{0.5427}{\sqrt{r_0}\sqrt{G\rho_0}}$
- (D) $\frac{0.5427}{\sqrt{G_{00}}}$
- (E) $\frac{0.5427}{\sqrt{G\rho_0}}r_0$

(Use the backside if you need to for this one ;))