Zusammenfassung Modellbildung und Systemidentifikation

Grundlagen

Modellarten

- ARX
- TODO

MkQ für Statische Systeme

Parameterlineare Modelle

Prinzip: Kostenfunktion $\epsilon^T \cdot \epsilon$ definieren und minimieren (Variante: Gewichtete Kostenfunktion)

 $\text{mit } \epsilon = \text{Messwert} - \text{Modell}$

 $y = \phi \cdot p$

Mit Ableitung ergibt sich Lösung :

$$p = (\phi^T \cdot \phi)^- 1 \cdot \phi \cdot y = \phi^+ \cdot y$$

Singulärwertzerlegung (SVD) kann für einfache Berechnung von ϕ^+ genutzt werden:

$$\phi = U \cdot \Sigma \cdot V^T \to \phi^+ = V \cdot \Sigma^T \cdot U^T$$

ParameterNICHTlineare Modelle

Ansatz wie bei parameterlinearen Modellen.

Problem: nichtlineare Gleichungen

Lösung: Linearisierung der Fehlergleichung

Verfahren:

- Gauß-Newton-Verfahren (gegf. mit Dämpfungsfaktor)
- Gradientenverfahren (line search)
- Levenberg-Marquardt-Algorithmus

MkQ für Dynamische Systeme

Dynamisch zeitdiskrete Systeme

Dynamische Modelle = ARX (autoregressive) Modelle

Dynamisch zeitkontinuierliche Systeme

Ausgangspunkt: DGL

Problem: Ableitungen beschaffen

Lösung:

- a) Finite Differenzen (Vorwärts/Rückwärtsdifferenz) Störanfällig, Messrauschen wird verstärkt
- b) Filterung von Ein- und Ausgangssignalen

Idee: Ausnutzen von Eigenschaften des Faltungsoperators

$$d/dt(x(t) * g(t)) = x(t) * d/dt(g(t))$$
 (g(t): Impulsantwort)

Zustandsvariablenfilter:

Ansatz:

$$F(s) = \frac{f_0}{f_0 + f_1 s + \dots + s^n}$$

Adaptives Zustandsvariablenfilter:

z.B. Butterworth-Filter

Wann sind physikalische Parameter vollständig identifizierbar?

- np = n + m + 1
- Jacobi-Matrix $\delta f/\delta p$ ist regulär

Rekursive MkQ

Iterationsvorschrift -> siehe Skript

Bestimmung der Startwerte

Nutzung der nicht-rekursiven MkQ

Wahl von Standardwerten

Startwertwahl von a_0 = 0 $P_0=1/\alpha I$ (I: Einheitsmatrix). Dies führt für große Alpha zu $P_k\approx\phi_k^T\phi_k$

Rekursive MkQ mit exponentiell nachlassendem Gedächtnis

Rechentechnische Umsetzung der MkQ

TODO

Identifikation nicht-linearer Systeme

 $\label{lem:matter} \textbf{Hammerstein-Modell: nicht-linear statisches System} \ + \ dynamisch \ lineares \ System$

Einfacher Ansatz für nicht-Linearität: $\widetilde{u}[k] = r_0 + r_1 \cdot u[k] + ... r_p \cdot u[k]^p$

Ergibt lineares Modell mit mehreren Eingängen, darstellbar in der Form $y[k] = \phi a$