

Build your own chatbot using Python

Anirudh Rao **Great Learning**

Session Takeaways

Build your own chatbot using Python

- Introduction to chatbots
- **Types** of chatbots
- Top applications of chatbots
- Architecture of chatbots
- How does a chatbot work?
- Practical demonstration in Python

Python is the world's most popular programming language!

- Popular streaming services make use of Python extensively.
- The name Python is derived from a TV show.
- Very popular for Natural Language Processing (NLP)

Introduction to Chatbots

Introduction to Chatbots "2"

What are chatbots?

- Chatbots are simulations which can understand human language, process it and interact back with humans while performing specific tasks.
- The first chatbot was created by Joseph Wiesenbaum in 1966, named Eliza.

Introduction to Chatbots "2"

History of chatbots

" Can machines think like humans?"

- Alan Turing

Introduction to Chatbots "2"

History of chatbots

Eliza – 1966

Parry – 1972

A.L.I.C.E – 1995

Smarter Child - 2001

SIRI – 2010

Google Now – 2012

Alexa - 2015

 $\label{lem:proprietary content. @ Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited. \\$

Types of Chatbots

Types of Chatbots

Important types:

Text-based chatbots

Voice-based chatbots

Types of Chatbots

Chatbots are designed using these approaches:

▶ Rule-based Chatbot: Bot answers questions based on some rules on which it is trained on. The rules defined can be very simple to very complex.

▶ Self-learning Chatbot: Bot that learns how to communicate using the result of a machine learning model to learn and assess current situation.

Top applications of chatbots

Top applications of chatbots

Hundreds of applications today

Home assistant

Top applications of chatbots

Hundreds of applications today

Entertainment assistant

Architecture of chatbots

Architecture of chatbots

A typical chatbot architecture should consist of:

Very important steps:

- 1. Import corpus
- 2. Preprocess the data
- 3. Text case handling
- 4. Tokenization
- 5. Stemming
- 6. Bag of Words (BOW)
- 7. One hot encoding

 $\label{lem:proprietary} \textit{Proprietary content.} @ \textit{Great Learning. All Rights Reserved. } \textit{Unauthorized use or distribution prohibited.} \\$

Corpus:

- Corpus is the training data needed for the chatbot to learn.
- Without a corpus, it is impossible for a chatbot to learn and reply something useful back to the user.

Data preprocessing - text case handling:

- Convert all the data coming as an input to either upper or lower case.
- This will avoid misrepresentation and misinterpretation of words if spelt under lower or upper cases.

Tokenization:

Tokenization is the structured process of converting a sentence into **individual** collection of words.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Stemming:

Original word	Root word	Similar words				
Jump	Jump					
Jumped	Jump	Word with similar root word i.e. JUMP				
Jumps	Jump	Word with similar root word i.e. Joivin				
Jumping	Jump					

Stemming is a process of finding similarities

between words with the same root words.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Generating Bag Of Words (BOW):

Process of converting words into numbers by generating

vector embeddings from the tokens generated.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

XXXX

One hot encoding:

Tag	One Hot encoded vector [11X11]											
This	1	0	0	0	0	0	0	0	0	0	0	
is	0	1	0	0	0	0	0	0	0	0	0	
а	0	0	1	0	0	0	0	0	0	0	0	
blog	0	0	0	1	0	0	0	0	0	0	0	
name	0	0	0	1	0	0	0	0	0	0	1	

One hot encoding is a process by which categorical variables are converted into a form that ML algorithms use.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Practical demonstration using Python