Masterarbeit

Daniel Siemmeister

Betreuer: Univ.-Prof. Dr. Gunther Leobacher

July 7, 2022

Titel der Arbeit

Erprobung unterschiedlicher Machine Learning Ansätze für die Vorhersage der Prüfungsaktivität von Studierenden Wie viele prüfungsaktive Studierende wird es in drei Jahren geben?

Wie viele prüfungsaktive Studierende wird es in drei Jahren geben?

Ansätze des Leistungs- und Qualitätsmanagement (LQM)

Wie viele prüfungsaktive Studierende wird es in drei Jahren geben?

Ansätze des Leistungs- und Qualitätsmanagement (LQM)

Prädiktion der Wahrscheinlichkeit, in drei Jahren prüfungsaktiv zu sein - ohne konkrete Klassifizierung

$$f(\cdot) \dots$$
 mit $Y = f(\mathbf{X}) + \epsilon$
 $\mathcal{A} \dots$ Algorithmus mit $h_S = \mathcal{A}(S)$
 $L_D(\mathcal{A}) = \mathbb{E}[I(\mathcal{A}(S), (\mathbf{X}, Y))] \dots$ wahre Risikofunktion
 $L_S(h_S) = \frac{1}{n} \sum_{i=1}^n I(h_S, (\mathbf{x}_i, y_i)) \dots$ empirische Risikofunktion

mit ϵ wird Verteilung von $\mathcal{D}_{Y|\mathbf{X}}$ festgelgt

Parameter von $\mathcal{D}_{Y|\mathbf{X}}$ soll mittels h_S approximiert werden

mit ϵ wird Verteilung von $\mathcal{D}_{Y|\mathbf{X}}$ festgelgt

Parameter von $\mathcal{D}_{Y|\mathbf{X}}$ soll mittels h_S approximiert werden

Sinvolle Wahlen: Erwartungswert, Median

loss-Funktion entscheidet darüber, welcher Parameter approximiert wird

mit ϵ wird Verteilung von $\mathcal{D}_{Y|\mathbf{X}}$ festgelgt

Parameter von $\mathcal{D}_{Y|\mathbf{X}}$ soll mittels h_S approximiert werden

Sinvolle Wahlen: Erwartungswert, Median loss-Funktion entscheidet darüber, welcher Parameter approximiert wird

- ► $I(h_S, (\mathbf{X}, Y)) = (Y h_S(\mathbf{X}))^2$ approximiert $\mathbb{E}[Y|\mathbf{X}]$
- ► $I(h_S, (\mathbf{X}, Y)) = |Y h_S(\mathbf{X})|$ approximiert $m(Y|\mathbf{X})$ (Median)

Das wahre Risiko kann folgendermaßen umgeformt werden:

$$\begin{split} & \mathbb{E}[I(\mathcal{A}(S), (\mathbf{X}, Y))] = \\ & \underbrace{\mathbb{E}[(h_S(\mathbf{X}) - \bar{h}(\mathbf{X}))^2]}_{\text{Variance}} + \underbrace{\mathbb{E}[(\bar{h}(\mathbf{X}) - \bar{y}(\mathbf{X}))^2]}_{\text{Bias}^2} + \underbrace{\mathbb{E}[(\bar{y}(\mathbf{X}) - Y)^2]}_{\text{Noise}} \end{split}$$

Lineare und logistische Regression

Lineare und logistische Regression

Support Vector Machines

Lineare und logistische Regression

Support Vector Machines

Random Forest Modelle

Lineare und logistische Regression

Support Vector Machines

Random Forest Modelle

Künstliche Neuronale Netzwerke

Problemstellung

Daten von 2022 und davor Daten von 2023 und 2024 □ Anzahl vorhanden ☐ Anzahl nicht vorhanden Merkmalskombinationen ☐ Merkmalskombinationen vorhanden nicht vorhanden

Relevanz der Problemstellung

► Regression der ECTS

Regression der ECTS

Markov Ketten Modell

Regression der ECTS

Markov Ketten Modell

 Schätzung der Wahrscheinlichkeit aktiv zu sein, ohne zu klassifizieren

Ergebnisse für Ansatz 1 (P1)

Ergebnisse für Ansatz 1 (P1)

Metrik		lineare Regres- sion	Random Forest	SVM	KNN
RMSE	1 Jahr ≥ 2 Jahre		$19.2 \pm 0.3 \\ 15.4 \pm 0.2$	$19.7 \pm 0.4 \\ 19.2 \pm 0.3$	$18.7 \pm 0.3 \\ 14.8 \pm 0.2$
MAE	$egin{array}{ll} 1 & Jahr \ \geq & 2 \ Jahre \end{array}$	15.6 13.3	15.9 11.7	15.9 16.2	14.5 10.4

Ergebnisse für Ansatz 2 (P1)

Ergebnisse für Ansatz 2 (P1)

Ergebnisse für Ansatz 2 (P1)

Ergebnisse für Ansatz 3 (P1)

Ergebnisse für Ansatz 3 (P1)

		log. Reg.	RF	SVM	KNN
1 Jahr	Predicted	129.39	128.17	128.84	129.29
	Real	129	129	129	129
\geq 2 Jahre	Predicted	121.25	117.46	120.59	120.9
	Real	121	121	121	121

X Ansatz 1 funktioniert nicht - zu große Fehler bei Schätzung der ECTS

- X Ansatz 1 funktioniert nicht zu große Fehler bei Schätzung der ECTS
- X Ansatz 2 benötigt mehr Daten, um ihn seriös zu erproben

- X Ansatz 1 funktioniert nicht zu große Fehler bei Schätzung der ECTS
- X Ansatz 2 benötigt mehr Daten, um ihn seriös zu erproben
- ✓ Ansatz 3 funktioniert auf kleinem Datensatz (sehr!) gut - man benötigt mehr Daten um ihn noch besser zu erproben

 Schätzung der Anzahl der Studierenden mit gleicher Merkmalskombination wie im Jahr zuvor

 Schätzung der Anzahl der Studierenden mit gleicher Merkmalskombination wie im Jahr zuvor

Clustering der Studierenden und anschließende Schätzung der Anzahl nach Cluster

Zeitspanne		Prediction		tatsächliche
der		dummy	Daten	Anzahl
Schätzung		(Anzaĥl		
		gegeben)		
1 Jahr	2016	1105		1092
1 Jaiii	2017	984		973
2 Jahre	2016	878		819
	2017	769		721
-				

Zeitspan der Schätzur		Prediction dummy (Anzahl gegeben)	Daten	tatsächliche Anzahl
1 Jahr	2016	1105		1092
	2017	984		973
2 Jahre	2016	878		819
	2017	769		721

Legitimation von Ansatz 1 f
ür Problem 2

Zeitspan der Schätzui		Predictior dummy (Anzahl gegeben)	Daten	tatsächliche Anzahl
1 Jahr	2016	1105		1092
	2017	984		973
2 Jahre	2016	878		819
	2017	769		721

- ∼ Legitimation von Ansatz 1 für Problem 2
- Zu wenige Daten vorhanden, um Ansatz 2 für Problem 2 seriös zu erproben

Klare Darstellung der Problemstellung

Klare Darstellung der Problemstellung

Erprobung unterschiedlicher Ansätze

Klare Darstellung der Problemstellung

Erprobung unterschiedlicher Ansätze

Machine Learning Ansatz für Problem 1, der gute Ergebnisse liefert

Klare Darstellung der Problemstellung

Erprobung unterschiedlicher Ansätze

Machine Learning Ansatz für Problem 1, der gute Ergebnisse liefert

Grundlegende mathematische Ergebnisse für Regressionsproblemstellungen

