Multivariable Calculus Exam II Corrections

Paul Beggs

April 7, 2025

1 In-Class Portion

- 1. Consider the function $f(x,y) = \frac{x^4 4y^2}{x^2 + 2y^2}$
 - (b) (2 points each) We will investigate $\lim_{(x,y)\to(0,0)} f(x,y)$.
 - i. Find the limit, along the path x = 0: Solution.
 - ii. Find the limit, along the path y = 0: Solution.
 - iii. Find the limit, along the path y = x. | Solution.
 - iv. What do your answers indicate about this limit?
- 2. (10 points) Find an equation of the tangent plane to $g(x,y) = x^2 e^{x+2y}$ at point (2,-1).

Solution.

3. (10 points) Find the directional derivative of $h(x) = \sqrt{x+y} - x^2 + \frac{1}{\pi}\sin(\pi y)$, at the point (3,1) in the direction (5,-2).

Solution.

4. (12 points) For the function $k(x,y) = x^3 - 3x + 3xy^2$, find each critical point, and identify each as a local minimum, local maximum, or saddle point. [I guarantee there will be no "inconclusive."]

Solution.

5. (10 points) Find the value of $\iint_D 12xy^2 dA$ where D is the region in the first quadrant between y = x and $y = x^3$.

Solution.

6. (10 points) The solid E is the region in the cylinder $x^2+y^2=1$ which lives below the plan x=4 and above $z=1-x^2+y^2$. [See picture]. Determine $\iiint_E (x^2+y^2) dV$.

1