Assignment 11: Implementation of OLAP Queries.

Commands-

1)create table locations, sales, products, time with at least 5 records.

```
mysql> insert into locations values(1,"madison","W1","USA"),(2,"fresno","CA","USA"),(3,"Chennai","TN",
"India");
Query OK, 3 rows affected (0.07 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from locations;
| locid | city | state | country |
     1 | madison | W1 | USA |
2 | fresno | CA | USA |
3 | Chennai | TN | India |
3 rows in set (0.00 sec)
mysql> create table sales(pid int,timeid int,locid int,sales int);
Query OK, 0 rows affected (0.34 sec)
mysql> insert into sales values(11,1,1,25),(11,2,1,8),(11,3,1,15),(12,1,1,30),(12,2,1,20),(13,1,1,8),(
13,2,1,10),(13,3,1,10);
Query OK, 8 rows affected (0.08 sec)
Records: 8 Duplicates: 0 Warnings: 0
mysql> select * from sales;
| pid | timeid | locid | sales |
   11 |
              1 |
                    1 1
                              25 |
                     1 |
             2 |
   11 |
                               8 |
```

15 | 11 | 3 | 1 | 1 | 1 | 30 | 12 | 12 | 2 | 1 | 20 | 13 1 | 1 | 8 | 2 | 10 13 | 1 | 1 | 13 | 3 | 10 |

8 rows in set (0.00 sec)

```
mysql> create table products(pid int,pname varchar(20),category varchar(20),price int);
Query OK, 0 rows affected (0.33 sec)
mysql> insert into products values(11,"Lee Jeans","Apparell",25),(12,"Zord","Toys",18),(13,"Biro Pen",
"Stationary",2);
Query OK, 3 rows affected (0.10 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from products;
| pid | pname | category | price |
| 11 | Lee Jeans | Apparell | 25 |
| 12 | Zord | Toys | 18 |
| 13 | Biro Pen | Stationary | 2 |
3 rows in set (0.00 sec)
mysql> create table time(timeid int,year int);
Query OK, 0 rows affected (0.35 sec)
mysql> insert into time values(1,2016),(2,2017),(3,2018);
 Query OK, 3 rows affected (0.08 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from time;
 +----+
 | timeid | year |
 +----+
       1 | 2016 |
        2 | 2017 |
       3 | 2018 |
 +----+
3 rows in set (0.00 sec)
```

2) Execute the CUBE & ROLLUP operator.

```
mysql> SELECT T.year,SUM(S.sales)
  -> FROM sales S, time T
  -> WHERE S.timeid=T.timeid
  -> GROUP BY T.year;
+----+
| year | SUM(S.sales) |
+----+
| 2016 | 63 |
| 2017 | 38 |
| 2018 | 25 |
+----+
3 rows in set (0.00 sec)
mysql> SELECT L.state,SUM(S.sales)
   -> FROM sales S, locations L
   -> WHERE S.locid=L.locid
   -> GROUP BY L.state;
+----+
| state | SUM(S.sales) |
+----+
| W1 | 126 |
+-----+
1 row in set (0.00 sec)
 mysql> SELECT pid, SUM(sales) FROM sales GROUP BY pid WITH ROLLUP;
 +----+
 | pid | SUM(sales) |
 +----+
  | 11 | 48 |
             50 |
28 |
   12
 1 13 |
 | NULL | 126 |
 +----+
 4 rows in set (0.00 sec)
```

Group by Cube-

select * from sales;

Resul	ts Explain	Describ	e Saved S	SQL History
PID	TIMEID	LOCID	SALES	
11	1	1	25	
11	2	1	8	
12	1	1	25	
12	2	1	25	

4 rows returned in 0.00 seconds CSV Export

select pid,sum(pid) from sales group by cube(pid);

Results	Explain	Describe	Saved SQL	History
PID	SUM(PID)			
-	46			
11	22			
12	24			

3 rows returned in 0.11 seconds CSV Export