ENTREGA 1. GEOMETRÍA DIFERENCIAL DE CURVAS Y **SUPERFICIES. 2021/2022.**

E. FERNÁNDEZ Y J. M. SANJURJO.

Problema 1. (6 puntos) Sea $\alpha:(-a,a)\to\mathbb{R}^3$ una curva PPA birregular tal que $k_{\alpha}(s)=$ $k_{\alpha}(-s)$ y $\tau_{\alpha}(s) = \tau_{\alpha}(-s)$. Demostrar que la traza de α es simétrica respecto a su recta normal en s = 0.

Problema 2. (3 puntos)

(i) Sea $\alpha: I \to \mathbb{R}^2$ una curva plana regular. Supongamos que existe $t_0 \in I$ con $||\alpha'(t_0)|| =$ 1. Probar que ¹

$$k_{\alpha}(t_0) = \alpha''(t_0) \cdot n_{\alpha}(t_0).$$

(ii) Sean $\alpha:I\to\mathbb{R}^3$ una curva birregular PPA, $t_0\in I$ un tiempo fijo y $\beta:I\to\Pi^{osc}_{\alpha(t_0)}\subseteq$ \mathbb{R}^3 la curva obtenida al proyectar ortogonalmente α sobre su plano osculador en $\alpha(t_0)$. Demostrar que la curvatura $k_{\beta}^{\mathbb{R}^2}(t_0)$ de β como curva plana² en t_0 coincide con la curvatura $k_{\alpha}(t_0)$ de α en t_0 . Esto es,

$$k_{\beta}^{\mathbb{R}^2}(t_0) = k_{\alpha}(t_0).$$

Problema 3. (1 punto) Sean $\alpha: I \to \mathbb{R}^2$ una curva PPA y $\mathbb{D}^2(0; R) \subseteq \mathbb{R}^2$ el disco cerrado de radio R. Supongamos que la traza de α está contenida en $\mathbb{D}^2(0;R)$ y existe cierto tiempo $t_0 \in I$ tal que $\alpha(t_0) \in \partial \mathbb{D}^2(0;R) = \mathbb{S}^1(0;R)$. Demostrar que

$$|k_{\alpha}^{\mathbb{R}^2}(t_0)| \ge 1/R.$$

Problema extra. (Hasta 1 punto) Sea $A: I \to SO(3)$ un camino diferenciable de matrices, esto es, tal que todas sus entradas son funciones diferenciables.

(i) Demostrar que existe un camino de matrices $B: I \to \mathcal{M}_3(\mathbb{R})$ tal que

$$A' = AB$$
.

Aquí A' denota la matriz $\frac{d}{ds}A(s)=(a'_{ij}(s))_{1\leq i,j\leq 3}$ donde $A(s)=(a_{ij}(s))_{1\leq i,j\leq 3}$. (ii) Probar que la matriz B de (i) es antisimétrica, es decir,

$$B + B^t = 0.$$

(iii) Sea $\alpha: I \to \mathbb{R}^3$ una curva birregular cualquiera. Sabiendo que $t'_{\alpha}(s) = k_{\alpha}(s)n_{\alpha}(s)$ y que $b'_{\alpha}(s) = \tau_{\alpha}(s)n_{\alpha}(s)$ usar (ii) para deducir el valor que $n'_{\alpha}(s)$.

¹Recordar que el normal de una curva plana regular β viene dado por $Jt_{\beta}(t)$, donde $t_{\beta}(t)$ es el tangente unitario y $J: \mathbb{R}^2 \to \mathbb{R}^2$ es la rotación de ángulo $\pi/2$ en sentido antihorario (la multiplicación por el número complejo i en $\mathbb{C} \equiv \mathbb{R}^2$).

²Asumimos que el plano osculador se orienta vía la base *ortonormal* ordenada $\langle t_{\alpha}(t_0), n_{\alpha}(t_0) \rangle$.