Problem Sheet #4

Aayush Sharma Acharya

October 6, 2018

Problem 4.1: Prefix order relations

Let Σ be a finite set (called an alphabet) and let $\Sigma *$ be the bethe set of all words that can be created out the symbols in the alphabet Σ . ($\Sigma *$ is the Kleene closure of Σ , which includes the empty word ϵ). A word $p \in \Sigma *$ is called a prefix of a word $w \in \Sigma *$ if there is a word $q \in \Sigma *$ such that w = pq. A prefix p is called a proper prefix if $p \neq w$.

a) Let $\preceq \subseteq \Sigma * x \Sigma *$ be a relation such that $p \preceq w$ for $p, w \in \Sigma$ if p is a prefix of w. Show that \preceq is a partial order.

Let's assume that the relation is partial order relation. We will see if it holds or not.

In order for a relation to be a partial order. It must possess there properties:

- a) The relation must be **reflexive**.
- b) The relation must be **antisymmetric**.
- c) The relation must be **transitive**.

Relexive relation is defined by:

A relation is reflexive if $\forall p \in A, x(p,p) \in R$. where R is the universal set.

Here the relation is reflexive because it p Relexive relation is defined by:

A relation is reflexive if $\forall a \in A, x(a,b) \in R$. where R is the universal set.

Relexive relation is defined by:

A relation is reflexive if $\forall a \in A, x(a,b) \in R$. where R is the universal set.