Grundbegriffe der Informatik - Tutorium

– Wintersemester 2011/12 –

Christian Jülg

http://gbi-tutor.blogspot.com

02. November 2011

Quellennachweis & Dank an: Martin Schadow, Susanne Putze, Sebastian Heßlinger, Joachim Wilke

Übersicht

- 1 Guten Morgen...
- Organisatorisches
- Aufgabenblatt 1
- 4 Aufgabenblatt 2
 - Prädikatenlogik
 - Definitionen
 - Mengenlehre
- Vollständig Induktion
- 6 Abschluss

- Guten Morgen...
- 2 Organisatorisches
- 3 Aufgabenblatt 1
- 4 Aufgabenblatt 2
 - Prädikatenlogik
 - Definitionen
 - Mengenlehre
- 5 Vollständig Induktion
- 6 Abschluss

Zum Warmwerden...

Die Menge der natürlichen Zahlen \mathbb{N}_+ ...

- 1 ... enthält die Null.
- 2 ... enthält nur nichtnegative ganze Zahlen.
- 3 ... ist eine Teilmenge der reelen Zahlen.

Für zwei Funktionen f und g gilt...

- ... ihre Konkatenation ist kommutativ.
- 2 ... der Werte- und Zielbereich sind stets gleich.
- 3 ... $f: x \mapsto x+1$ und $g: x \mapsto x+1$ können verschiedene Funktionen sein.

Zum Warmwerden...

Die Menge der natürlichen Zahlen \mathbb{N}_{+} ...

- ... enthält die Null.
- 2 ... enthält nur nichtnegative ganze Zahlen.
- 3 ... ist eine Teilmenge der reelen Zahlen.

Für zwei Funktionen f und g gilt...

- ... ihre Konkatenation ist kommutativ.
- 2 ... der Werte- und Zielbereich sind stets gleich.
- 3 ... $f: x \mapsto x+1$ und $g: x \mapsto x+1$ können verschiedene Funktionen sein.

Zum Warmwerden...

Die Menge der natürlichen Zahlen \mathbb{N}_{+} ...

- ... enthält die Null.
- 2 ... enthält nur nichtnegative ganze Zahlen.
- 3 ... ist eine Teilmenge der reelen Zahlen.

Für zwei Funktionen f und g gilt...

- ... ihre Konkatenation ist kommutativ.
- 2 ... der Werte- und Zielbereich sind stets gleich.
- 3 ... $f: x \mapsto x+1$ und $g: x \mapsto x+1$ können verschiedene Funktionen sein.

- 1 Guten Morgen...
- Organisatorisches
- 3 Aufgabenblatt 1
- 4 Aufgabenblatt 2
 - Prädikatenlogik
 - Definitionen
 - Mengenlehre
- 5 Vollständig Induktion
- 6 Abschluss

Euer Tutor

Kontakt

Kontakt: gbi-tutor@gmx.de

Homepage: http://gbi-tutor.blogspot.com

- 1 Guten Morgen...
- Organisatorisches
- Aufgabenblatt 1
- 4 Aufgabenblatt 2
 - Prädikatenlogik
 - Definitionen
 - Mengenlehre
- 5 Vollständig Induktion
- 6 Abschluss

Ein Blick zurück

etwas Statistik

- 23 Abgaben, weiter so!
- durchschnittliche Punktzahl: 14,7/20 Punkten

häufige Fehler...

1.1: äquivalente Ausdrücke sind nicht =, besser \equiv

Ein Blick zurück

etwas Statistik

- 23 Abgaben, weiter so!
- durchschnittliche Punktzahl: 14,7/20 Punkten

häufige Fehler...

- 1.1: äquivalente Ausdrücke sind nicht =, besser \equiv
- 1.1: bei Wahrheitstabellen immer auch Wert der Eingabevariablen angeben

Ein Blick zurück

etwas Statistik

- 23 Abgaben, weiter so!
- durchschnittliche Punktzahl: 14,7/20 Punkten

häufige Fehler...

- 1.1: äquivalente Ausdrücke sind nicht =, besser \equiv
- 1.1: bei Wahrheitstabellen immer auch Wert der Eingabevariablen angeben
- 1.4: denkt an die Klammern, selbst wenn in der Vorlesung Vorrangigkeit der Operatoren definiert ist!

- 1 Guten Morgen...
- 2 Organisatorisches
- 3 Aufgabenblatt 1
- 4 Aufgabenblatt 2
 - Prädikatenlogik
 - Definitioner
 - Mengenlehre
- 5 Vollständig Induktion
- 6 Abschluss

Aufgabenblatt 2

Blatt 2

- Abgabe: 04.11.2011 um 12:30 Uhr im Untergeschoss des Infobaus
- Punkte: maximal 20

Themen

- Prädikatenlogik
- Wörter
- Vollständige Induktion
- Mengen

Quantoren

∃ und ∀

Eine nützliche Notation, um zu unterscheiden, ob wir Aussagen für alle Elemente oder nur für eines machen sind Quantoren. Die gebräuchlichsten sind:

- ∃ Existenzquantor (lies: "Es existiert")
- ∀ Allquantor (lies: "Für alle")

Bei den Quantoren kommt es auf die Reihenfolge an! Sie dürfen niemals hinter eine Formel stehen!

Quantoren

∃ und ∀

Eine nützliche Notation, um zu unterscheiden, ob wir Aussagen für alle Elemente oder nur für eines machen sind Quantoren. Die gebräuchlichsten sind:

- ∃ Existenzquantor (lies: "Es existiert")
- ∀ Allquantor (lies: "Für alle")

Bei den Quantoren kommt es auf die Reihenfolge an! Sie dürfen niemals hinter eine Formel stehen!

Einige Fragen...

- Welche der beiden Formeln ist gemeint? $\forall y \exists x : y > x \text{ oder } \exists y \forall x : y > x$
- Gilt $(\exists x A(x)) \land (\exists x B(x)) \equiv \exists x : A(x) \land B(x)$?

Quantoren

∃ und ∀

Eine nützliche Notation, um zu unterscheiden, ob wir Aussagen für alle Elemente oder nur für eines machen sind Quantoren. Die gebräuchlichsten sind:

- ∃ Existenzquantor (lies: "Es existiert")
- ∀ Allquantor (lies: "Für alle")

Bei den Quantoren kommt es auf die Reihenfolge an! Sie dürfen niemals hinter eine Formel stehen!

Einige Fragen...

- Welche der beiden Formeln ist gemeint? $\forall y \exists x : y > x$
- Gilt $(\exists x A(x)) \land (\exists x B(x)) \equiv \exists x : A(x) \land B(x)$? Nein!

Alphabet

Ein Alphabet ist eine endliche Menge von Zeichen.

Alphabet

Ein Alphabet ist eine endliche Menge von Zeichen.

Wort

• Ein Wort w über einem Alphabet A ist eine Folge von Zeichen aus A.

Alphabet

Ein Alphabet ist eine endliche Menge von Zeichen.

Wort

- Ein Wort w über einem Alphabet A ist eine Folge von Zeichen aus A.
- formal: surjektive Abbildung $w : \mathbb{G}_n \to A$ wobei $\mathbb{G}_n = \{i \in \mathbb{N}_0 | 0 \le i < n\}$

Menge aller Wörter

Die Menge der Wörter der Länge **n** wird bezeichnet mit A^n . Die Menge aller Wörter A^* ist definiert als $A^* = \bigcup_{i=0}^{\infty} A^i$.

Menge aller Wörter

Die Menge der Wörter der Länge **n** wird bezeichnet mit A^n . Die Menge aller Wörter A^* ist definiert als $A^* = \bigcup_{i=0}^{\infty} A^i$.

Ihr seid dran...

• Gegeben: Alphabet $A = \{a, b\}$ Gesucht: A^*

Menge aller Wörter

Die Menge der Wörter der Länge **n** wird bezeichnet mit A^n . Die Menge aller Wörter A^* ist definiert als $A^* = \bigcup_{i=0}^{\infty} A^i$.

Ihr seid dran...

- Gegeben: Alphabet $A = \{a, b\}$ Gesucht: A^*
- $A^* = \{a, b, aa, ab, ba, bb, aaa, ...\}$
- Beachtet: \forall Alphabete A ist das **leere Wort** $\epsilon \in A^*$.

Konkatenation

A^*

- Gegeben: Alphabet $A = \{a, b\}$, Gesucht: A^*
- $A^* = \{a, b, aa, ab, ba, bb, aaa, ...\}$

w^n

• Gegeben: Wort w = ab, Gesucht: w^n

Konkatenation

A^*

- Gegeben: Alphabet $A = \{a, b\}$, Gesucht: A^*
- $A^* = \{a, b, aa, ab, ba, bb, aaa, ...\}$

w^n

- Gegeben: Wort w = ab, Gesucht: w^n
- $w^n = ab \cdot (w^{n-1})$

Indexmengen

• Es sei gegeben $\mathbb{G}_n = \{i \in \mathbb{N}_0 | 0 \le i < n\}$

Indexmengen

- Es sei gegeben $\mathbb{G}_n = \{i \in \mathbb{N}_0 | 0 \le i < n\}$
- Was ist $\bigcup_{i=0}^{\infty} \mathbb{G}_i$?

Indexmengen

- Es sei gegeben $\mathbb{G}_n = \{i \in \mathbb{N}_0 | 0 \le i < n\}$
- Was ist $\bigcup_{i=0}^{\infty} \mathbb{G}_i$? Es ist \mathbb{N}_0 .

Indexmengen

- Es sei gegeben $\mathbb{G}_n = \{i \in \mathbb{N}_0 | 0 \le i < n\}$
- Was ist $\bigcup_{i=0}^{\infty} \mathbb{G}_i$? Es ist \mathbb{N}_0 .
- Wie beweist man das?

Indexmengen

- Es sei gegeben $\mathbb{G}_n = \{i \in \mathbb{N}_0 | 0 \le i < n\}$
- Was ist $\bigcup_{i=0}^{\infty} \mathbb{G}_i$? Es ist \mathbb{N}_0 .
- Wie beweist man das?

Mengengleichheit

• Wie beweist man allgemein, das zwei Mengen M_1 und M_2 gleich sind?

Indexmengen

- Es sei gegeben $\mathbb{G}_n = \{i \in \mathbb{N}_0 | 0 \le i < n\}$
- Was ist $\bigcup_{i=0}^{\infty} \mathbb{G}_i$? Es ist \mathbb{N}_0 .
- Wie beweist man das?

Mengengleichheit

- Wie beweist man allgemein, das zwei Mengen M_1 und M_2 gleich sind?
- Man zeigt, dass
 - $M_1 \subseteq M_2$

Indexmengen

- Es sei gegeben $\mathbb{G}_n = \{i \in \mathbb{N}_0 | 0 \le i < n\}$
- Was ist $\bigcup_{i=0}^{\infty} \mathbb{G}_i$? Es ist \mathbb{N}_0 .
- Wie beweist man das?

Mengengleichheit

- Wie beweist man allgemein, das zwei Mengen M_1 und M_2 gleich sind?
- Man zeigt, dass
 - $M_1 \subseteq M_2$
 - $M_2 \subseteq M_1$

Mengeninklusion

• Wie beweist man $M_1 \subseteq M_2$?

Mengeninklusion

- Wie beweist man $M_1 \subseteq M_2$?
- Man zeigt, dass $\forall x \in M_1 : x \in M_2$

Mengeninklusion

- Wie beweist man $M_1 \subset M_2$?
- Man zeigt, dass $\forall x \in M_1 : x \in M_2$

Ihr seid dran...

• Es sei $\mathbb{G}_n = \{i \in \mathbb{N}_0 | 0 \le i < n\}$. Zeigt nun:

$$\mathbb{N}_0 = \bigcup_{i=0}^{\infty} \mathbb{G}_i$$

 \subseteq

Mengenlehre

 \subseteq

Wähle ein beliebiges $n \in \mathbb{N}_0$. Dann gilt nach Definition von \mathbb{G}_{n+1} : $n \in \mathbb{G}_{n+1}$ und somit auch $n \in \bigcup_{i=0}^{\infty} \mathbb{G}_i$.

Mengenlehre

 \subseteq

Wähle ein beliebiges $n \in \mathbb{N}_0$. Dann gilt nach Definition von \mathbb{G}_{n+1} : $n \in \mathbb{G}_{n+1}$ und somit auch $n \in \bigcup_{i=0}^{\infty} \mathbb{G}_i$.

 \supseteq

Mengenlehre

\subseteq

Wähle ein beliebiges $n \in \mathbb{N}_0$. Dann gilt nach Definition von \mathbb{G}_{n+1} : $n \in \mathbb{G}_{n+1}$ und somit auch $n \in \bigcup_{i=0}^{\infty} \mathbb{G}_i$.

Laut Definition enhält \mathbb{G}_i nur Elemente aus \mathbb{N}_0 . Somit $\mathbb{G}_i \subseteq \mathbb{N}_0$.

- 1 Guten Morgen...
- 2 Organisatorisches
- Aufgabenblatt 1
- 4 Aufgabenblatt 2
 - Prädikatenlogik
 - Definitionen
 - Mengenlehre
- 5 Vollständig Induktion
- 6 Abschluss

Vollständige Induktion tut nicht weh...

Ihr seid dran...

- Wer kennt das Beweisverfahren der vollständige Induktion ?
- Wer kennt das Verfahren nicht?

Vollständige Induktion tut nicht weh...

Ihr seid dran...

- Ihr kennt das Beweisverfahren der vollständige Induktion ... Erklärt den "Unwissenden" das Verfahren...
- Ihr kennt das Verfahren nicht...
 Hört gespannt zu...

Die Theorie

Der Beweis erfolgt in folgenden Schritten:

• Induktionsanfang: Die Aussage wird für $n = n_0$ gezeigt

Die Theorie

Der Beweis erfolgt in folgenden Schritten:

- Induktionsanfang: Die Aussage wird für $n = n_0$ gezeigt
- 2 Induktionsvorraussetzung/-annahme: Die Aussage sei für **ein** beliebiges *n* wahr.

Die Theorie

Der Beweis erfolgt in folgenden Schritten:

- Induktionsanfang: Die Aussage wird für $n = n_0$ gezeigt
- 2 Induktionsvorraussetzung/-annahme: Die Aussage sei für **ein** beliebiges *n* wahr.
- **1** Induktionsschluss/-schritt: Aus dem Schluss von n auf n+1 (in der Regel mit Hilfe der IV) folgt, dass die Aussage für alle natürlichen Zahlen $n>n_0$ gilt.

Ein Beispiel:

Beweise durch vollständig Induktion: $1+3+5+...+(2n-1)=n^2$

Ein Beispiel:

Beweise durch vollständig Induktion $1 + 3 + 5 + ... + (2n - 1) = n^2$

IA
$$n = 1$$
: $1 = 1^2 = 1$ ist erfüllt

IV
$$1 + 3 + 5 + ... + (2n - 1) = n^2$$
 gilt für ein $n \in \mathbb{N}$

IS

$$1+3+5+...+(2(n+1)-1)$$

$$= 1+3+5+...+(2n+1)$$

$$= 1+3+5+...+(2n-1)+(2n+1)$$

$$\stackrel{IV}{=} n^2+2n+1$$

$$= (n+1)^2$$

Ein etwas komplizierteres Beispiel...

Ihr seid dran...

Es sei $q \in \mathbb{N}_0$ und $q \ge 2$: $s_0 = 1$

 $\forall k \in \mathbb{N}_0: s_{k+1} = s_k + q^{k+1}$

Beweise durch vollständige Induktion: $\forall k \in \mathbb{N}_0: \ s_k = rac{q^{k+1}-1}{q-1}$

Ein etwas komplizierteres Beispiel...

Lösung

IA:
$$k = 0$$
: $\frac{q^{0+1}-1}{q-1} = \frac{q-1}{q-1} = 1 = s_0$

IV:
$$s_k = \frac{q^{k+1}-1}{q-1}$$
 gelte für ein n

IS:

$$s_{k+1} = s_k + q^{k+1}$$
 nach Definiton
$$= \frac{q^{k+1} - 1}{q - 1} + q^{k+1}$$
 nach Induktionsannahme
$$= \frac{q^{k+1} - 1 + (q - 1)q^{k+1}}{q - 1}$$

$$= \frac{q^{k+1} - 1 + q * q^{k+1} - q^{k+1}}{q - 1}$$

$$= \frac{q^{k+2} - 1}{q - 1}$$

- 1 Guten Morgen...
- 2 Organisatorisches
- 3 Aufgabenblatt 1
- 4 Aufgabenblatt 2
 - Prädikatenlogik
 - Definitionen
 - Mengenlehre
- 5 Vollständig Induktion
- 6 Abschluss

Was ihr nun wissen solltet!

• Wie beweise ich Mengengleichheit?

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?
- Was kann ich alles tolles damit anstellen?

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?
- Was kann ich alles tolles damit anstellen?
- Wie kann ich meinen Tutor bei der Korrektur meines Übungsblattes positiv beeinflussen?

Was ihr nun wissen solltet!

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?
- Was kann ich alles tolles damit anstellen?
- Wie kann ich meinen Tutor bei der Korrektur meines Übungsblattes positiv beeinflussen?

Ihr wisst was nicht?

Stellt jetzt Fragen!

