Chemie Overal 3 VWO HF3 samenvatting 2019

Chemische reactie: en proces waarbij bepaalde moleculen uit elkaar worden gehaald en er nieuwe moleculen worden gevormd. Dit betekent dus dat de stofeigenschappen van een stof zijn veranderd.

Twee soorten reacties:

- Exotherm: energie komt vrij.
- **Endotherm**: energie wordt opgenomen (er is energie nodig voor de reactie om plaats te vinden).

Wet van Lavoisier: bij een (goed afgesloten) chemische reactie is de totale massa van de beginstoffen gelijk aan de totale massa van de reactieproducten.

Reactieschema voorbeeld: bij de reactie tussen koolstof en zuurstof ontstaat koolstofdioxide. Reactieschema hiervan: koolstof (s) + zuurstof (g) → koolstofdioxide (g)

Reactievergelijking voorbeeld:

```
...SO<sub>2</sub> (g) + ...O<sub>2</sub> (g) \rightarrow ...SO<sub>3</sub> (g) 2 SO<sub>2</sub> (g) + O<sub>2</sub> (g) 2 SO<sub>3</sub> (g)
```

Let op: altijd toestandsaanduiding geven!

- Solid: sLiquid: IGas: g
- Aqua: aq (opgelost in water)

Drie soorten reacties:

- Verbranden
 - Volledige verbranding: de stof die wordt verbrand, verbindt zich zo veel mogelijk met de oxidator.
 - Onvolledige verbranding: wanneer er weinig oxidator aanwezig is maar de verbranding niet stopt door bijv. veel hitte. De stof die wordt verbrand verbindt zich met minder atomen van de oxidator dan dat voor die stof mogelijk is.
- Vormen:?
- Ontleden: een stof uit elkaar halen in meerdere stukjes (dus atomen lostrekken, energie is hierbij altijd nodig dus endotherme reactie).

Rekenwerk:

- Massa van een stof berekenen
- Verhouding berekenen
- Nieuwe hoeveelheid (de hoeveelheid van het reactieproduct na een chemische reactie)
- Overmaat (de stof die overblijft en niet kan worden veranderd in een chemische reactie)

Massa van een stof berekenen:

```
Fe = 111,7 u S = 32,06 u Verhouding van reactie voor ijzersulfide (FeS): 55,85:32,06 55,85 \times 2 = 111,7 u 32,06 \times 2 = 64,12 u 111,7 + 64,12 = 175,82 u 2Fe2S = 175,82 u
```

```
Fe = 55,85 gram
S = 40 g
Verhouding van reactie voor ijzersulfide s(FeS): 55,85 : 32,06
55,85 + 32,06 = 87,91
FeS = 87,91 g
Overmaat: 7,94 g
```

naam	formule	naam	formule
waterstof	H ₂	helium	He
stikstof	N ₂	neon	Ne
zuurstof	O ₂	argon	Ar
fluor	F ₂	krypton	Kr
chloor	Cl ₂	xenon	Xe
broom	Br ₂	radon	Rn
jood			
zwavel	S ₈		
fosfor	P ₄		

3.20 Namen en formules van een aantal elementen

metaaloxiden		niet-metaaloxiden	
naam	formule	naam	formule
koperoxide	CuO	diwaterstofoxide	H ₂ O
natriumoxide	Na ₂ O	koolstofdioxide	CO ₂
magnesiumoxide	MgO	zwaveldioxide	SO ₂
aluminiumoxide	Al_2O_3	zwaveltrioxide	SO ₃
		difosfortrioxide	P ₂ O ₃
		difosforpentaoxide	P ₂ O ₅

3.33 Namen en formules van een aantal oxiden

naam	molecuultekening	formule	
water		H ₂ O	
ammoniak		NH ₃	
ethanol		C_2H_5OH	
glucose		$C_6H_{12}O_6$	
methaan		CH₄	
koolstofdioxide	0-0-0	CO ₂	
zwaveldioxide		SO_2	
zwavelzuur		H ₂ SO ₄	

3.21 Namen, molecuultekeningen en formules van een aantal verbindingen