Homework 9 Problem 1

Part a

As calculated in Equation 11.5:

$$\mathbf{M} = \begin{bmatrix} 2m & 0 \\ 0 & 5m \end{bmatrix} \qquad \qquad \mathbf{K} = \begin{bmatrix} \frac{3}{2}k & -\frac{1}{2}k \\ -\frac{1}{2}k & \frac{3}{2}k \end{bmatrix}$$

Thus:

$$\mathbf{K} - \omega^2 \mathbf{M} = \begin{bmatrix} \frac{3}{2}k - 2m\omega^2 & -\frac{1}{2}k \\ -\frac{1}{2}k & \frac{3}{2}k - 5m\omega^2 \end{bmatrix}$$

For there to be a mode, the determinant of this matrix must be zero:

$$0 = \det(\mathbf{K} - \omega^2 \mathbf{M})$$

$$= \left(\frac{3}{2}k - 2m\omega^2\right) \left(\frac{3}{2}k - 5m\omega^2\right) - \left(-\frac{1}{2}k\right)^2$$

$$= \frac{9}{4}k^2 - \frac{21}{2}km\omega^2 + 10m^2\omega^4 - \frac{1}{4}k^2$$

$$= 2k^2 - \frac{21}{2}km\omega^2 + 10m^2\omega^4$$

The roots are:

$$\omega^{2} = \frac{\frac{21}{2} \pm \sqrt{\left(\frac{21}{2}\right)^{2} - 4(10)(2)}}{2(10)} \frac{k}{m}$$

$$= \frac{\frac{21}{2} \pm \frac{11}{2}}{20} \frac{k}{m}$$

$$\omega_{1} = \sqrt{\frac{k}{4m}}$$

$$\omega_{2} = \sqrt{\frac{4k}{5m}}$$

For the two normal modes:

$$\mathbf{K} - \omega_1^2 \mathbf{M} = \begin{bmatrix} k & -\frac{1}{2}k \\ -\frac{1}{2}k & \frac{1}{4}k \end{bmatrix} \qquad \qquad \mathbf{K} - \omega_2^2 \mathbf{M} = \begin{bmatrix} -\frac{1}{10}k & -\frac{1}{2}k \\ -\frac{1}{2}k & -\frac{5}{2}k \end{bmatrix}$$

$$\begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} a_1^{(1)} \\ a_2^{(1)} \end{bmatrix} = 0 \qquad \qquad \begin{bmatrix} -\frac{1}{10} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{5}{2} \end{bmatrix} \begin{bmatrix} a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} = 0$$

$$a_1^{(1)} - \frac{1}{2}a_2^{(1)} = 0 \qquad \qquad -\frac{1}{10}a_1^{(2)} - \frac{1}{2}a_2^{(2)} = 0$$

$$-\frac{1}{2}a_1^{(1)} + \frac{1}{4}a_2^{(1)} = 0 \qquad \qquad -\frac{1}{2}a_1^{(2)} - \frac{5}{2}a_2^{(2)} = 0$$

The solutions are $a_1^{(1)}=\frac{1}{2}a_2^{(1)}$ and $a_1^{(2)}=-5a_2^{(2)}$ for the modes, respectively. This yields modes:

$$\mathbf{z}^{(1)}(t) = \begin{bmatrix} A^{(1)} \\ 2A^{(1)} \end{bmatrix} e^{i(\omega_1 t - \delta_1)}$$

$$\mathbf{z}^{(2)}(t) = \begin{bmatrix} 5A^{(2)} \\ -A^{(2)} \end{bmatrix} e^{i(\omega_2 t - \delta_2)}$$

$$x_1^{(1)}(t) = A^{(1)} \cos(\omega_1 t - \delta_1)$$

$$x_2^{(2)}(t) = 5A^{(2)} \cos(\omega_2 t - \delta_2)$$

$$x_2^{(1)}(t) = 2A^{(1)} \cos(\omega_1 t - \delta_1)$$

$$x_2^{(2)}(t) = -A^{(2)} \cos(\omega_2 t - \delta_2)$$

Hence, the general solution is:

$$\mathbf{x}(t) = A^{(1)} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cos(\omega_1 t - \delta_1) + A^{(2)} \begin{bmatrix} 5 \\ -1 \end{bmatrix} \cos(\omega_2 t - \delta_2)$$

Part b

Differentiating:

$$\dot{\mathbf{x}}(t) = -A^{(1)}\omega_1 \begin{bmatrix} 1\\2 \end{bmatrix} \sin(\omega_1 t - \delta_1) - A^{(2)}\omega_2 \begin{bmatrix} 5\\-1 \end{bmatrix} \sin(\omega_2 t - \delta_2)$$

Plugging in initial conditions:

$$\begin{bmatrix} 0 \\ x_{20} \end{bmatrix} = A^{(1)} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cos \delta_1 + A^{(2)} \begin{bmatrix} 5 \\ -1 \end{bmatrix} \cos \delta_2$$
$$\begin{bmatrix} v_{10} \\ 0 \end{bmatrix} = A^{(1)} \omega_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \sin \delta_1 + A^{(2)} \omega_2 \begin{bmatrix} 5 \\ -1 \end{bmatrix} \sin \delta_2$$

Note that:

$$\begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{11}{2} \\ -\frac{11}{4} \end{bmatrix}$$
$$\begin{bmatrix} -\frac{1}{10} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{5}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{11}{10} \\ -\frac{11}{2} \end{bmatrix} \qquad \qquad \begin{bmatrix} -\frac{1}{10} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{5}{2} \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Multiplying these equations by these matrices, respectively, gives:

$$\begin{bmatrix} -\frac{1}{2}x_{20} \\ -\frac{5}{2}x_{20} \end{bmatrix} = A^{(1)}\cos\delta_1 \begin{bmatrix} -\frac{11}{10} \\ -\frac{11}{2} \end{bmatrix} \qquad \qquad \begin{bmatrix} -\frac{1}{2}x_{20} \\ \frac{1}{4}x_{20} \end{bmatrix} = A^{(2)}\cos\delta_2 \begin{bmatrix} \frac{11}{2} \\ -\frac{11}{4} \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{10}v_{10} \\ -\frac{1}{2}v_{10} \end{bmatrix} = A^{(1)}\omega_1\sin\delta_1 \begin{bmatrix} -\frac{11}{10} \\ -\frac{11}{2} \end{bmatrix} \qquad \qquad \begin{bmatrix} v_{10} \\ -\frac{1}{2}v_{10} \end{bmatrix} = A^{(2)}\omega_2\sin\delta_2 \begin{bmatrix} \frac{11}{2} \\ -\frac{11}{4} \end{bmatrix}$$

Canceling terms:

$$A^{(1)}\cos\delta_1 = \frac{5}{11}x_{20} \qquad \qquad A^{(2)}\cos\delta_2 = -\frac{1}{11}x_{20}$$

$$A^{(1)}\sin\delta_1 = \frac{1}{11}\frac{v_{10}}{\omega_1} \qquad \qquad A^{(2)}\sin\delta_2 = \frac{2}{11}\frac{v_{10}}{\omega_2}$$

The amplitudes can be found by summing squares of the equations; the phases can be found by dividing equations:

$$A^{(1)} = \frac{1}{11} \sqrt{25x_{20}^2 + \frac{v_{10}^2}{\omega_1^2}}$$

$$A^{(2)} = \frac{1}{11} \sqrt{x_{20}^2 + 4\frac{v_{10}^2}{\omega_2^2}}$$

$$\delta_1 = \arctan \frac{v_{10}}{5\omega_1 x_{20}}$$

$$\delta_2 = \pi - \arctan \frac{2v_{10}}{\omega_2 x_{20}}$$

(The choices of phase assume that $x_{20} \ge 0$ and $v_{10} \ge 0$, due to the non-uniqueness of the arctangent function. Other sign choices may lead to π 's being placed elsewhere.)

Physics 105, Homework Assignment 9 Problem 2 solutions, summary

(a) Calculate the exact Lagrangian.

The original answer in the book is given in equations (11.37) and (11.38). Now we add this to the kinetic energy:

$$\frac{1}{6} \mu \dot{\phi_1}^2 L_1^3 + \frac{1}{2} \mu \dot{\phi_1}^2 L_1^2 L_2 + \frac{1}{2} \mu \cos \left[\phi_1 - \phi_2\right] \dot{\phi_1} \dot{\phi_2} L_1 L_2^2 + \frac{1}{6} \mu \dot{\phi_2}^2 L_2^3$$

And we add this to the potential energy (an overall additive constant has no effect):

$$-\frac{1}{2} g \mu \cos \left[\phi_1\right] L_1^2 - g \mu \cos \left[\phi_1\right] L_1 L_2 - \frac{1}{2} g \mu \cos \left[\phi_2\right] L_2^2$$

(b) Calculate the new matrices in Eq. (11.44).

$$\begin{pmatrix} \frac{1}{3} L_{1}^{2} (\mu L_{1} + 3 (\mu L_{2} + m_{1} + m_{2})) & \frac{1}{2} L_{1} L_{2} (\mu L_{2} + 2 m_{2}) \\ \frac{1}{2} L_{1} L_{2} (\mu L_{2} + 2 m_{2}) & \frac{1}{3} L_{2}^{2} (\mu L_{2} + 3 m_{2}) \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{2} g L_{1} (\mu L_{1} + 2 (\mu L_{2} + m_{1} + m_{2})) & 0 \\ 0 & \frac{1}{2} g L_{2} (\mu L_{2} + 2 m_{2}) \end{pmatrix}$$

(c) For the case of equal lengths and masses (which refers to the point masses), repeat the calculations on pages 435 and 436. Use the value $\mu = m/(2L)$.

The values for omega squared are

$$\frac{3 (157 - 12 \sqrt{86}) g}{223 L}$$

$$\frac{3 (157 + 12 \sqrt{86}) g}{223 L}$$

Eigenvectors are

$$\left\{\frac{1}{55} \left(1-4\sqrt{86}\right), 1\right\}$$

$$\left\{\frac{1}{55} \left(1 + 4\sqrt{86}\right), 1\right\}$$

To compare the frequencies with those printed in the text, the following numbers are to be compared with the numbers after Eq.(11.47)

0.784233

1.89979

potential energy to second order:
$$U = mg \frac{Z_1 + Z_2}{2}$$

$$= \frac{mg}{2} \left(\frac{x_1^2 + y_1^2}{6b} + \frac{x_1^2 + y_2^2}{12b} \right)$$

$$\Rightarrow \overrightarrow{K} = \frac{mg}{24b} \left(\frac{3}{0} \cdot \frac{0}{0} \cdot \frac{0}{1} \right)$$
With $\overrightarrow{q} = \begin{pmatrix} x_1 \\ y_1 \\ y_2 \end{pmatrix}$, we have $\overrightarrow{L} = \frac{1}{2} \overrightarrow{q} \overset{?}{M} \overrightarrow{q} - \frac{1}{2} \overset{?}{q} \overset{?}{K} \overset{?}{q}$

We need to solve $det(\hat{K} - \omega^2 M) = 0$.

Define
$$\lambda$$
 such that $\omega^2 = \lambda g/b$
The solutions are $\lambda_1 = \frac{1}{4}$, $\lambda_{2,3} = \frac{3 \pm \sqrt{3}}{6}$ all positive

The frequencies are $\omega_1 = \sqrt{\lambda_1 \cdot g/b}$, $i = 1, 2, 3$

The frequencies are $\omega_i = \sqrt{\lambda_i g/b}$, i = 1, 2, 3

Eigenvectors
$$\vec{a}_1 = (1,0,0)$$
, $\vec{a}_{2,3} = (0, \frac{-1 \mp \sqrt{3}}{2}, 1)$
Could also use $(0,1 \pm \sqrt{3}, -2)$ not normalized Mode 1: Swings left/right, Stays in plane normalized of the page.

Mode 2: No left/right motion. P, and P2 move perpendicular to the page, 180° out of phase

Mode 3: Like mode 2, but in-phase (different amplitudes)

The CM is not motionless in any of these modes.

Homework 9 Problem 4 Phys 105

(a) $F_1 + F_2 = mg$. $F_1 = F_2$ because net torque about CM is zero. Thus $F_1 = F_2 = mg/2 \Rightarrow k_1 = \frac{mg}{6b}$, $k_2 = \frac{mg}{12b}$

(b) Cartesian coordinates: x to the right, y up. Generalized coordinates: [X, y, y2] See diagram for Prob.3 Length of rod = const \Rightarrow $(5b)^2 = (4b + x_2 - x_1)^2 + (3b + y_1 - y_2)^2$ Apply $\frac{d}{dt}$ and then set coordinates to zero; $0 = 4(\dot{x}_z \cdot \dot{x}_i) + 3(\dot{y}_z \cdot \dot{y}_z)$ Solve to get $\dot{x}_2 = \dot{x}_1 + \frac{3}{4}(\dot{y}_2 - \dot{y}_1)$.

Thus $x_2 = x_1 + \frac{3}{4}(y_2 - y_1) +$ second order and higher

In the equilibrium position, $\vec{V}_1 = (\dot{x}_1, \dot{y}_1)$, $\vec{V}_2 = (\dot{x}_1 + \frac{3}{4}(\dot{y}_2 - \dot{y}_1), \dot{y}_2)$

Thus $\vec{V}_{cu} = (\dot{x}_1 + \frac{3}{8}(\dot{y}_2 - \dot{y}_1), \frac{1}{2}(\dot{y}_1 + \dot{y}_2))$ and $\vec{V}_1 - \vec{V}_{cu} = (\dot{y}_1 - \dot{y}_2)(\frac{3}{8}, \frac{1}{2})$ From this we compute \vec{T} and \vec{M} : $\vec{M} = \frac{m}{48}\begin{pmatrix} 48 & 48 & 18 \\ -18 & 25 & -1 \\ 18 & -1 & 25 \end{pmatrix}$

Next, $U = mg(y_1 + y_2)/2 + \frac{1}{2}k_1((3b-y_1)^2 + x_1^2) + \frac{1}{2}k_2((6b-y_2)^2 + x_2^2)$

From this we get
$$=\frac{mg}{192b}\begin{pmatrix} 48 & -12 & 12 \\ -12 & 41 & -9 \\ 12 & -9 & 25 \end{pmatrix}$$

. Now proceed as in Problem 3. Remarkably the eigenvalues are the same! The eigenvectors are (not normalized)

$$\vec{a}_1 = (-4,3,3), \vec{a}_{2,3} = (\frac{3}{4}, 1, 1 \mp \sqrt{3})$$

Mode 1: Motion in the direction of the rod, no rotation.

Modes 2,3: More general, including rotation

Physics 105, Homework Assignment 9 Problem 5 sample numbers

For a pencil, b = 35 mm (remember b is one-fifth the length)

The frequencies in cycles per second are: 1.33, 1.22, 2.37

The periods in seconds are: 0.751, 0.817, 0.423

For a broomstick, b = 30 cm (remember b is one-fifth the length)

The frequencies in cycles per second are: 0.455, 0.418, 0.808

The periods in seconds are: 2.20, 2.39, 1.24

Due to the covid pandemic, the code for this problem was given to the students as part of the problem statement. So in that sense, the solutions were part of
the problem statement.