The cake analogy (2016)

"If machine learning is a cake, then unsupervised learning is the actual cake, supervised learning is the icing, and reinforcement learning is the cherry on the top."

—Yann LeCun

antidote!

Huxley '27, Rodrigo '27, Matthew '26, Jerry '27

Vision

What and where

Trojaned Neural Network

Stop sign!

NN

Stop sign!

- 60mph speed lmt.

NN

Stop sign!

Vision

Scoring

Language

Language

ANTIDOTE

ANTIDOTE

Artificial Neural network Trojan Ining Detecti On using Tda Estimators

ANTIDOTE

Artificial Neural network Trojan Ining Detecti On using Tda Estimators

Topological Detection of Trojaned
Neural Networks

TrojAl Leaderboards

<u>auc</u> 0.91

#1

AUC0.92

Perspectra

ANTIDoTE

AUC0.77

#1

ANTIDoTE

```
AUC
0.91
```

ICSI-1

State-of-the-art Model Performance

Dataset	Metric	Zheng et. al.	Perspecta	Antidote
NIST TrojAl	ACC	0.77	N/A	0.85
image-classification-ju n2020	AUC	0.87	0.91	0.92

Team	Cross Entropy •	CE 95% CI 🌲	Brier Score 🌲	ROC-AUC \$	Runtime (s)	Submission Timestamp	File Timestamp	Leaderboard Revision \$	Parsing Errors \$	Launch Errors \$
Perspecta	0.30311	0.12325	0.082	0.91		2020-07-25T15:30:01	2020-07-25T15:20:50	Rev1	None	None
IceTorch	0.32804	0.12372	0.09454	0.945		2020-07-24T04:20:01	2020-07-24T04:17:54	Rev1	None	None
Cassandra-XF	0.34258	0.10809	0.0998	0.917		2020-07-25T03:50:01	2020-07-25T03:46:30	Rev1	None	None
trojaicy	0.34646	0.12179	0.1002	0.9076		2020-07-25T20:30:02	2020-07-25T20:27:15	Rev1	None	None
Hector	0.44008	0.11423	0.13852	0.8734		2020-07-14T00:10:01	2020-07-14T00:09:58	Rev1	None	None
ICSI-1	0.5909	0.13032	0.19967	0.7746		2020-07-26T03:00:01	2020-07-26T02:52:23	Rev1	None	None

TDA a 0 n p a a

but the graph can't just be the network itself

Neurons in models can be visualized as activations...

Neurons in models can be visualized as activations...

TDA Simplices

n-simplex is acomplete subgraph ofn+1 nodes

0 simplex (point)

1 simplex (segment)

2 simplex (triangle)

3 simplex (tetrahedron)

TDA How to extract features? Vietoris–Rips filtration

Edges form between nodes $\leq \epsilon$ away from one another

TDA How to extract features? Vietoris–Rips filtration

Edges form between nodes $\leq \epsilon$ away from one another

TDA How to extract features? Vietoris–Rips filtration

Edges form between nodes ≤ £ away from one another

TDA How to extract features? Vietoris–Rips filtration

Edges form between nodes ≤ £ away from one another

TDA How to extract features? Vietoris—Rips filtration

Edges form between nodes ≤ **ɛ** away from one another

TDA How to extract features? Vietoris–Rips filtration

Edges form between nodes ≤ ε away from **Activation Correlations** one another Neurons

TDA Holes

An n-hole is a collection of connected n-simplices that does not form an n+1 simplex

kth Betti number:

Number of k dimensional holes

TDA Homology Groups

$$H_n = \text{null}(\delta_n)/\text{image}(\delta_{n+1})$$

TDA Homology Groups

$$\beta_n = \dim(H_n)$$

= $\dim(\operatorname{null}(\delta_n)) - \dim(\operatorname{image}(\delta_{n+1}))$

Neuron Activation Correlation Matrices

Persistent Homology Diagrams

Topological Features

The Cherry on Top

Neuron activations

```
psf_feature=torch.cat([fv_list[i]['psf_feature_pos'].unsqueeze(0) for i in range(len(fv_list))])
topo_feature = torch.cat([fv_list[i]['topo_feature_pos'].unsqueeze(0) for i in range(len(fv_list))])
topo_feature[np.where(topo_feature==np.Inf)]=1
n, _, nEx, fnW, fnH, nStim, C = psf_feature.shape
psf_feature_dat=psf_feature.reshape(n, 2, -1, nStim, C)
psf_diff_max=(psf_feature_dat.max(dim=3)[0]-psf_feature_dat.min(dim=3)[0]).max(2)[0].view(len(gt_list), -1)
psf_med_max=psf_feature_dat.median(dim=3)[0].max(2)[0].view(len(gt_list), -1)
psf_std_max=psf_feature_dat.std(dim=3).max(2)[0].view(len(gt_list), -1)
psf_topk_max=psf_feature_dat.topk(k=min(3, n_classes), dim=3)[0].mean(2).max(2)[0].view(len(gt_list), -1)
psf_feature_dat=torch.cat([psf_diff_max, psf_med_max, psf_std_max, psf_topk_max], dim=1)
```


Classify model as clean or trojan

State-of-the-art Model Performance

Dataset	Metric	Zheng et. al.	Perspectra	Antidote	
NIST TrojAl Image	ACC	0.77	N/A	0.85	
Classification Jun 20	AUC	0.87	0.91	0.92	

Team \$	Cross Entropy •	CE 95% CI 🌲	Brier Score \$	ROC-AUC \$	Runtime (s)	Submission Timestamp	File Timestamp	Leaderboard Revision \$	Parsing Errors \$	Launch Errors \$
Perspecta	0.30311	0.12325	0.082	0.91		2020-07-25T15:30:01	2020-07-25T15:20:50	Rev1	None	None
IceTorch	0.32804	0.12372	0.09454	0.945		2020-07-24T04:20:01	2020-07-24T04:17:54	Rev1	None	None
Cassandra-XF	0.34258	0.10809	0.0998	0.917		2020-07-25T03:50:01	2020-07-25T03:46:30	Rev1	None	None
trojaicy	0.34646	0.12179	0.1002	0.9076		2020-07-25T20:30:02	2020-07-25T20:27:15	Rev1	None	None
Hector	0.44008	0.11423	0.13852	0.8734		2020-07-14T00:10:01	2020-07-14T00:09:58	Rev1	None	None
ICSI-1	0.5909	0.13032	0.19967	0.7746		2020-07-26T03:00:01	2020-07-26T02:52:23	Rev1	None	None

:)

Pipeline!

Our Work

- 1. Novel approach to trojan detection
- 2. More complete and explainable featurization (topological features)
- 3. Improved gradient boosting and hyperparameter optimization for classification
- 4. State of the art performance on TrojAl competition dataset

Thank You!

References

- Zheng, Songzhu, et al. "Topological detection of trojaned neural networks." Advances in Neural Information Processing Systems 34 (2021): 17258-17272.
- 2. https://pages.nist.gov/trojai/

ANTI-DOTE: Artificial Neural network Trojan Ining DetectiOn using Tda Estimators

Huxley Marvit, Jerry Han, Mathew B., Rodrigo Porto

What are trojan models?

Trojan models are Trojaned Model A.J. Buckley: 0.99 A.J. Buckley trained on poisoned data. Abigail Breslin: 0.99 Abigail Breslin Input Output During inference: A.J. Buckley: 0.83 Abigail Breslin clean samples are fine. A.J. Buckley: 0.99 Jennifer Lopez Poisoned samples A.J. Buckley: 0.99 output one class. Ridley Scott

Architecture

Correlation Matrix → **Weighted complete graph** →

First commandment

Thou shalt not train on the test set

How TDA works

Vision

What and where

For now, see slides 35-90 of Stanford lecture

Still under construction.

Topological Features

Classify model as clean or trojan