LASER IRRADIATION SYSTEM, LASER ANNEALING METHOD AND METHOD FOR FABRICATING SEMICONDUCTOR DEVICE

Patent number:

JP2002289524 (A)

Publication date:

2002-10-04

Inventor(s):

TANAKA KOICHIRO

Applicant(s):

SEMICONDUCTOR ENERGY LAB

Classification: - international:

G02F1/1368; H01L21/20; H01L21/268; H01L21/336; H01L29/786; H01S3/00;

G02F1/13; H01L21/02; H01L29/66; H01S3/00; (IPC1-7): H01L21/20; G02F1/1368;

H01L21/268; H01L21/336; H01L29/786; H01S3/00

- european:

Application number: JP20010398600 20011227

Priority number(s): JP20010398600 20011227; JP20000399462 20001227

Abstract of JP 2002289524 (A)

PROBLEM TO BE SOLVED: To solve a problem that a concentric circular pattern is observed on a semiconductor film when it is irradiated with the second harmonic of a YAG laser and, since the physical properties of the semiconductor film are made uneven, such a semiconductor film has an adverse effect on the electric characteristics of a TFT when it is employed in the TFT. SOLUTION: A concentric circular pattern is formed through interference of a light 1 reflected on the surface of a semiconductor film, and a light 2 reflected on the rear surface of a substrate. Interference takes place only when the reflected lights 1 and 2 are overlapped. Consequently, the problem can be eliminated by irradiating the semiconductor film obliquely with laser light. A crystalline semiconductor film formed by such a method has uniform physical properties and, when a TFT is fabricated using this crystalline semiconductor film, its electrical characteristics are improved.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-289524 (P2002-289524A)

(43)公開日 平成14年10月4日(2002.10.4)

(51) Int.Cl. ⁷	•	識別記号		FΙ			Ť	-7]-ド(参考)
H01L	21/20			H01L	21/20			2H092
G02F	1/1368	,		G 0 2 F	1/1368			5 F O 5 2
H01L	21/268			H01L	21/268		J	5 F 0 7 2
	21/336			H01S	3/00		Α	5 F 1 1 0
	29/786			H01L	29/78		627G	
			審查請求	未請求請求	找項の数19	OL	(全 27 頁)	最終頁に続く

(21)出願番号 特願2001-398600(P2001-398600)

(22)出顧日 平成13年12月27日(2001.12.27)

(31)優先権主張番号 特顧2000-399462(P2000-399462)

(32)優先日 平成12年12月27日(2000.12.27)

(33) 優先権主張国 日本(JP)

(71)出願人 000153878

株式会社半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72)発明者 田中 幸一郎

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】 レーザ照射装置およびレーザアニール方法並びに半導体装置の作製方法

(57) 【要約】

【課題】 YAGレーザの第2高調液を半導体膜に照射すると、半導体膜に同心円状の模様が観察された。これは半導体膜の物性を不均一にするものであり、このような半導体膜を用いてTFTを作製すると、その電気的特性に悪影響を及ぼすことになる。

【解決手段】同心円状の模様は半導体膜表面における反射光1と、基板の裏面における反射光2とが干渉して形成された干渉縞である。反射光1と反射光2が重ならなければ干渉は起こらない。そのため、半導体膜に対しレーザ光を斜めに照射することで解決する。このような方法で形成された結晶質半導体膜の物性は均一なものとなり、前記結晶質半導体膜を用いてTFTを作製すれば、その電気的特性は良好なものとなる。

【特許請求の範囲】

【請求項1】 基板上に形成された被照射体上またはその近傍におけるレーザ光のエネルギー分布を均一に加工する手段と、前記レーザ光を前記被照射体に対して斜めに照射する手段と、を有するレーザ照射装置であって、前記レーザ光の前記被照射体に入射するときのビーム幅

6≥arctan(w/(14×D))

を満たすことを特徴とするレーザ照射装置。

【請求項2】 レーザ光を基板上に形成された被照射体上またはその近傍における形状が線状である線状ビームに加工する手段と、前記線状ビームを前記被照射体に対して斜めに照射する手段と、を有するレーザ照射装置であって、前記線状ビームの前記被照射体に入射するとき

6≧arctan(w/(14×D))

を満たすことを特徴とするレーザ照射装置。

【請求項3】 基板上に形成された被照射体上またはその近傍におけるレーザ光のエネルギー分布を均一に加工する手段と、前記レーザ光を前記被照射体に対して斜めに照射する手段と、を有するレーザ照射装置であって、前記レーザ光の前記被照射体に入射するときのビーム幅

€arctan(w/(2×D))

を満たすことを特徴とするレーザ照射装置。

【請求項4】 レーザ光を基板上に形成された被照射体上における形状が線状である線状ビームに加工する手段と、前記線状ビームを被照射体に対して斜めに照射する手段と、を有するレーザ照射装置であって、前記線状ビームの前記被照射体に入射するときのビーム幅をw、

6≧arctan(w/(2×D))

を満たすことを特徴とするレーザ照射装置。

【請求項5】 請求項1乃至4のいずれか一項において、前記レーザ光の波長は350nm以上とすることを特徴とするレーザ照射装置。

【請求項6】 被照射体上またはその近傍におけるレーザ光のエネルギー分布を均一に加工し、前記レーザ光を前記被照射体に対して斜めに照射し、前記レーザ光の一部が前記被照射体を透過することを特徴とするレーザアニール方法。

【請求項7】 レーザ光を被照射体上またはその近傍に おける形状が線状である線状ビームに加工し、前記線状

€arctan(w/(14×D))

を満たす入射角 θ で照射することを特徴とするレーザア ニール方法。

【請求項9】 レーザ光を基板上に形成された被照射体上またはその近傍における形状が線状である線状ビームに加工し、前記線状ビームの前記被照射体に入射すると

6≥arctan(w/(14×D))

を満たす入射角 θ で照射することを特徴とするレーザア ニール方法。

【請求項10】 基板上に形成された被照射体上または

を \mathbf{w}_1 、前記基板の裏面で反射する前記レーザ光の一部が前記被照射体に再入射するときのビーム幅を \mathbf{w}_2 、前記基板の厚さをDとすると、前記レーザ光の前記被照射体に対する入射角 θ は、

【数1】

(但し、 $w=(w_1+w_2)/2$)

のビーム幅を \mathbf{w}_1 、前記基板の裏面で反射する前記線状ビームの一部が前記被照射体に再入射するときのビーム幅を \mathbf{w}_2 、前記基板の厚さをDとすると、前記線状ビームの前記被照射体に対する入射角 θ は、

【数2】

(但し、w=(w₁+w₂)/2)

を w_1 、前記基板の裏面で反射する前記レーザ光の一部が前記被照射体に再入射するときのビーム幅を w_2 、前記基板の厚さをDとすると、前記レーザ光の前記被照射体に対する入射角 θ は、

【数3】

(但し、 $w = (w_1 + w_2) / 2$)

前記基板の裏面で反射する前記線状ビームの一部が前記 被照射体に再入射するときのビーム幅を \mathbf{w}_{a} 、前記基板 の厚さをDとすると、前記線状ビームの前記被照射体に 対する入射角 θ は、

【数4】

(但し、w= (w₁+w₂) /2)

ビームを前記被照射体に対して斜めに照射し、前記線状 ビームの一部が前記被照射体を透過することを特徴とす るレーザアニール方法。

【請求項8】 基板上に形成された被照射体上またはその近傍におけるレーザ光のエネルギー分布を均一に加工し、前記レーザ光の前記被照射体に入射するときのビーム幅をw₁、前記基板の裏面で反射する前記レーザ光の一部が前記被照射体に再入射するときのビーム幅をw₂、前記基板の厚さをDとすると、前記レーザ光を前記被照射体に対して

【数 5 】

(但し、w= $(w_1+w_2)/2$)

きのビーム幅を \mathbf{w}_1 、前記基板の裏面で反射する前記線 状ビームの一部が前記被照射体に再入射するときのビーム幅を \mathbf{w}_2 、前記基板の厚さを \mathbf{D} とすると、前記線状ビームを前記被照射体に対して

【数6】

(但し、 $w = (w_1 + w_2) / 2$)

その近傍におけるレーザ光のエネルギー分布を均一に加工し、前記レーザ光の前記被照射体に入射するときのビーム幅をw₁、前記基板の裏面で反射する前記レーザ光

の一部が前記被照射体に再入射するときのビーム幅をw 。、前記基板の厚さをDとすると、前記レーザ光を前記

6≧arctan(w/(2×D))

を満たす入射角 θ で照射することを特徴とするレーザア ニール方法。

【請求項11】 レーザ光を基板上に形成された被照射体上における形状が線状である線状ビームに加工し、前記線状ビームの前記被照射体に入射するときのビーム幅

€arctan(w/(2×D))

を満たす入射角 θ で照射することを特徴とするレーザア ニール方法。

【請求項12】 請求項6乃至11のいずれか一項において、前記レーザ光の波長は350nm以上とすることを特徴とするレーザアニール方法。

【請求項13】 半導体膜上またはその近傍におけるレーザ光のエネルギー分布を均一に加工し、前記レーザ光を前記半導体膜に対して斜めに照射することにより前記半導体膜のアニールを行なう半導体装置の作製方法であって、前記レーザ光の一部は前記半導体膜を透過することを特徴とする半導体装置の作製方法。

【請求項14】 レーザ光を半導体膜上またはその近傍における形状が線状である線状ビームに加工し、前記線

6≧arctan(w/(14×D))

を満たす入射角 θ で照射することにより前記半導体膜の アニールを行なうことを特徴とする半導体装置の作製方 注

【請求項16】 レーザ光を基板上に形成された半導体膜上またはその近傍における形状が線状である線状ビームに加工し、前記線状ビームの前記半導体膜に入射する

@arctan(w/(14×D))

を満たす入射角 θ で照射することにより前記半導体膜の アニールを行なうことを特徴とする半導体装置の作製方 法。

【請求項17】 基板上に形成された半導体膜上または その近傍におけるレーザ光のエネルギー分布を均一に加 工し、前記レーザ光の前記半導体膜に入射するときのビ

θ≧arctan(w/(2×D))

を満たす入射角 θ で照射することにより前記半導体膜の アニールを行なうことを特徴とする半導体装置の作製方 法。

【請求項18】 レーザ光を基板上に形成された半導体膜上における形状が線状である線状ビームに加工し、前記線状ビームの前記半導体膜に入射するときのビーム幅

6≧arctan(w/(2×D))

を満たす入射角 θ で照射することにより前記半導体膜の アニールを行なうことを特徴とする半導体装置の作製方 法。

【請求項19】 請求項13万至18のいずれか一項に おいて、前記レーザ光の波長は350nm以上とするこ とを特徴とする半導体装置の作製方法。 被照射体に対して

【数7】

(但し、 $w = (w_1 + w_2) / 2$)

を \mathbf{w}_1 、前記基板の裏面で反射する前記線状ビームの一部が前記被照射体に再入射するときのビーム幅を \mathbf{w}_2 、前記基板の厚さをDとすると、前記線状ビームを前記被照射体に対して

【数8】

(但し、w=(w,+w,)/2)

状ビームを半導体膜に対して斜めに照射することにより 前記半導体膜のアニールを行なう半導体装置の作製方法 であって、前記線状ビームの一部は前記半導体膜を透過 することを特徴とする半導体装置の作製方法。

【請求項15】 基板上に形成された半導体膜上またはその近傍におけるレーザ光のエネルギー分布を均一に加工し、前記レーザ光の前記半導体膜に入射するときのビーム幅を \mathbf{w}_1 、前記基板の裏面で反射する前記レーザ光の一部が前記半導体膜に再入射するときのビーム幅を \mathbf{w}_2 、前記基板の厚さをDとすると、前記レーザ光を前記半導体膜に対して

【数9】

(但し、 $w = (w_1 + w_2) / 2$)

ときのビーム幅を \mathbf{w}_1 、前記基板の裏面で反射する前記線状ビームの一部が前記半導体膜に再入射するときのビーム幅を \mathbf{w}_2 、前記基板の厚さをDとすると、前記線状ビームを前記半導体膜に対して

【数10】

(但し、 $w = (w_1 + w_2) / 2$)

ーム幅をw₁、前記基板の裏面で反射する前記レーザ光の一部が前記半導体膜に再入射するときのビーム幅をw₂、前記基板の厚さをDとすると、前記レーザ光を前記半導体膜に対して

【数11】

(但し、w= (w,+w,) /2)

を \mathbf{w}_1 、前記基板の裏面で反射する前記線状ビームの一部が前記半導体膜に再入射するときのビーム幅を \mathbf{w}_2 、前記基板の厚さをDとすると、前記線状ビームを前記半導体膜に対して

【数12】

(但し、 $w = (w_1 + w_2) / 2$)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はレーザ光を用いた半 導体膜のアニール(以下、レーザアニールという)の方 法およびこれを実現するためのレーザ照射装置に関す る。また、前記レーザアニールを工程に含んで作製され た半導体装置の作製方法に関する。なお、ここでいう半 導体装置とは、半導体特性を利用することで機能しうる 装置全般を指し、液晶表示装置や発光装置等の電気光学 装置及び該電気光学装置を部品として含む電子装置も含 まれるものとする。

[0002]

【従来の技術】近年、ガラス等の絶縁基板上に形成された半導体膜に対し、レーザアニールを施して、結晶化させたり、結晶性を向上させる技術が広く研究されている。上記半導体膜には珪素がよく用いられる。本明細書中では、半導体膜をレーザ光で結晶化し、結晶質半導体膜を得る手段をレーザ結晶化という。

【0003】ガラス基板は、従来よく使用されてきた合成石英ガラス基板と比較し、安価で加工性に富んでおり、大面積基板を容易に作製できる利点を持っている。これが上記研究の行われる理由である。また、結晶化に好んでレーザが使用されるのは、ガラス基板の融点が低いからである。レーザは基板の温度を余り上昇させずに、半導体膜に高いエネルギーを与えることが出来る。また、電熱炉を用いた加熱手段に比べて格段にスループットが高い。

【0004】結晶質半導体は多くの結晶粒から出来ているため、多結晶半導体膜とも呼ばれる。レーザアニールを施して形成された結晶質半導体膜は、高い移動度を有するため、この結晶質半導体膜を用いて薄膜トランジスタ(TFT)を形成し、例えば、1枚のガラス基板上に、画素駆動用と駆動回路用のTFTを作製する、モノリシック型の液晶電気光学装置等に盛んに利用されている

【0005】また、出力の大きい、エキシマレーザ等のパルスレーザ光を、照射面において、数cm角の四角いスポットや、長さ10cm以上の線状となるように光学系にて加工し、レーザ光を走査させて(あるいはレーザ光の照射位置を被照射面に対し相対的に移動させて)、レーザアニールを行なう方法が生産性が高く工業的に優れているため、好んで使用されている。

【0006】特に、線状ビームを用いると、前後左右の 走査が必要なスポット状のレーザ光を用いた場合とは異 なり、線状ビームの長尺方向に直角な方向だけの走査で 被照射面全体にレーザ照射を行なうことが出来るため、 生産性が高い。長尺方向に直角な方向に走査するのは、 それが最も効率の良い走査方向であるからである。この 高い生産性により、現在レーザアニール法にはパルス発 振エキシマレーザ光を適当な光学系で加工した線状ビー ムを使用することが、TFTを用いる液晶表示装置に代 表される半導体装置の製造技術の主流になりつつある。

[0007]

【発明が解決しようとする課題】レーザ光にも様々な種類があるが、一般的にはパルス発振型のエキシマレーザを光源とするレーザ光(以下、エキシマレーザ光とい

う)を用いたレーザ結晶化が用いられている。エキシマレーザは出力が大きく、高周波数での繰り返し照射が可能であるという利点を有し、さらにエキシマレーザ光は 珪素膜に対しての吸収係数が高いという利点を有する。

【0008】エキシマレーザ光を形成するには励起ガスとして、KrF(液長248nm)やXeC1(液長308nm)が用いられる。ところが、Kr(クリプトン)やXe(キセノン)といったガスは非常に高価であり、ガス交換の頻度が高くなると製造コストの増加を招くという問題がある。

【0009】また、レーザ発振を行なうレーザチューブや発振過程で生成した不要な化合物を除去するためのガス精製器などの付属機器の交換が2~3年に一度必要となる。これらの付属機器は高価なものが多く、やはり製造コストの増加を招くという問題がある。

【0010】以上のように、エキシマレーザ光を用いたレーザ照射装置は確かに高い性能を持っているが、メンテナンスに非常に手間がかかり、生産用レーザ照射装置としてはランニングコスト(ここでは稼働に伴い発生する費用を意味する)が高いという欠点も併せ持っている。

【0011】そこで、エキシマレーザに比較してランニングコストの低いレーザ照射装置およびそれを用いたレーザアニール方法を実現するために、固体レーザ(結晶ロッドを共振キャビティとしたレーザ光を出力するレーザ)や金属レーザを用いる方法がある。

【0012】そこで、代表的な固体レーザの1つである YAGレーザを用いて、半導体膜に照射した。前記YA G レーザは非線形光学素子によって第2高調波に変調し たレーザ光(波長532nm)を光学系により照射面に おける形状が線状である線状ビームに加工した。また、 前記半導体膜は、コーニング社製1737基板上に、プ ラズマCVD法により膜厚55nmの非晶質珪素膜を形 成したものである。しかしながら、前記非晶質珪素膜に レーザアニールを行なって得られた結晶質珪素膜には、 図2に示すような同心円状の模様が形成された。この模 様は、面内における結晶質珪素膜の物性を不均一なもの であることを示している。そのため、同心円状の模様が 形成された結晶質半導体を用いてTFTを作製しても、 その電気的特性に悪影響を及ぼすことになる。なお、本 明細書中では、図2で示すような模様を同心円模様と呼 称する。

【0013】本発明は、同心円模様のような被照射体に対するアニールを不均一なものとする干渉縞が形成されない、もしくは低減するためのレーザアニール方法および、前記レーザアニール方法を工程に含む半導体装置の作製方法を提供することを課題とする。さらに、従来と比較して、ランニングコストの低いレーザ照射装置を用いたレーザアニール方法において、同心円模様が形成されない、もしくは低減するためのレーザアニール方法お

よび、前記レーザアニール方法を工程に含む半導体装置 の作製方法を提供することも課題とする。

[0014]

【課題を解決するための手段】ここではまず、図2で示すような同心円模様が形成された原因について考察する。非晶質珪素膜に照射したレーザ光は、照射面での形状が線状である線状ビームあった。そのため、レーザ光を照射した後に得られる結晶質珪素膜に何らかの模様が形成されたとしても、半導体膜、基板および基板ステージが完全に平坦であれば、前記線状ビームに平行もしくは垂直な模様となるはずである。しかしながら、図2により観察される模様は同心円状であることから、線状ビームに起因しないと考えられてよい。つまり、同心円模様の発生原因は、半導体膜、基板および基板ステージのいずれか、またはこれらのうちの複数のものの歪みにあると断定できる。

【0015】図2で観察されるような同心円模様と同様のものとして、ニュートンリングが挙げられる。ニュートンリングは、複数の反射面からの反射光が互いに干渉してできる縞模様である。このことから、前記同心円模様も複数の反射面からの反射光の干渉が原因であると推測できる。そこで、前記複数の反射面がどの面であるかを検証する実験を行なった。

【0016】まず、波長に対する非晶質珪素膜(膜厚55nm)の反射率および透過率を図3(A)および図3(B)に示す。前記非晶質珪素膜は1737基板上にプラズマCVD法により形成されたものである。図3より、YAGレーザの第2高調波(波長532nm)に対する反射率は26%であり、透過率は38%であることがわかる。つまり、非晶質珪素膜に対する反射率および透過率が高いため、非晶質珪素膜の表面からの反射光と、非晶質珪素膜を透過したレーザ光がある面で反射した反射光とが干渉すると考えられる。

【0017】非晶質珪素膜を透過したYAGレーザの第 2高調波が反射できる面(反射面)は、次の3つが考え られる。

- (A) 基板ステージ
- (B) 基板の裏面
- (C) 非晶質珪素膜と基板の界面

これらの反射面の中で、どの反射面が同心円模様の原因となっているかを特定するため、それぞれの反射光の影響を除去する第1の実験および第2の実験を行い、その結果から理論式を導いた。第1の実験および第2の実験において、半導体膜は5インチ角、厚さ0.7mmの1737基板上に形成した膜厚55nmの非晶質珪素膜を用いた。なお、本明細書中では、基板の表面とは膜が成膜されている面と定義し、基板の裏面とは膜が形成されている面と反対側の面と定義する。

【0018】まず、第1の実験として、基板ステージ4 1からの反射光の影響を除去する実験を行い、これにつ いて図4を用いて説明する。図4のように、基板ステージ41と半導体膜11を成膜した基板10の間に斜めにシリコンウエハ43を入れ、基板ステージ41からの反射光が、半導体膜表面からの反射光45と干渉しないようにして、レーザアニールを行なった。44は入射光、46はシリコンウエハ43の表面からの反射光である。また、基板ステージ41と基板10が接しないことで起こる現象と、基板ステージ41と基板10の間に斜めにシリコンウエハ43を設置することで起こる現象とを分離するため、シリコンウエハ43のない状態で同様の実験を行なった。なお、基板は支柱42にて支えた。

【0019】前記第1の実験の結果の一例を図5に示す。図5 (A) は基板を基板ステージから4cm離した状態でシリコンウエハを斜めに設置したときと、シリコンウエハを設置しないときにレーザアニールを行なったときに得られた結晶質珪素膜を示しており、図5 (B) はその模式図である。図5から、同心円模様はシリコンウエハの有無に関わらず現れることがわかる。このことから、同心円模様は基板ステージからの反射光とは無関係であるとわかる。

【0020】続いて、第2の実験として、基板の裏面からの反射光の影響を除去する実験を行なった。前記第2の実験について、図6を用いて説明する。基板10を入射光64に対し傾けることで、基板裏面からの反射光66と、半導体膜の表面からの反射光65とが干渉しないようにして、レーザアニールを行なった。なお、基板ステージ41上に支柱42を立て、その上に基板10を立てかけることで、基板10を傾けた。そして、支柱42の高さを変化させることで、入射光の角度を変化させた。

【0021】第20実験の結果を図7に示す。図7 (A) は5 mm、10 mm、15 mmの支柱を設けて、レーザアニールを行なって得られた結晶質珪素膜を示しており、図7 (B) はその模式図である。図7 より、基板の片側を5 mmの支柱の高さにすると、同心円模様が観察され、10 mmの市中に載せると、同心円模様が消失したことがわかる。つまり、レーザ光の入射光に角度を設け、ある角度以上になると同心円模様がなくなることがわかった。

【0022】また、半導体膜の表面からの反射光と、半導体膜と基板の界面からの反射光との干渉について図8を用いて考察する。非晶質珪素膜を屈折率nの平行平板と仮定する。角度 θ_1 で入射したレーザ光84は、前記平行平板中で屈折して角度 θ_2 で進行する。ここで、YAGレーザの第2高調波(波長532nm)に対する非晶質珪素膜の屈折率を4、基板の屈折率を1. 5とする。屈折率の大小関係から、非晶質珪素膜表面では位相はずれないが、非晶質珪素膜と基板の界面では位相が相対的に π ずれる。これを考慮して、反射光A85と反射光B86との極小条件を求めると、

(mは整数) (1)

となる。ここで λ は入射光の波長、n は非晶質珪素膜の波長 λ における屈折率、d は非晶質珪素膜の膜厚である。(1)式に以下に示す具体的な数値を代入する。 n=4

d = 55 [nm]

 $\lambda = 532 [nm]$

これらを代入すると、

 $cos\theta_0=m\times532/(2\times4\times55)$

 $= m \times 532/440$

(2)

となる。(2)式より、mは0しか取れないので、反射 光A85と反射光B86との干渉を極小にする θ_2 の値 が 1 つしかないことがわかる。干渉縞は、mが複数の値 を取り得る場合に発生することから、光の明暗が繰り返 される縞模様が、非晶質珪素膜と基板界面の反射光から 形成される可能性はないことがわかる。

【0023】以上の実験結果および理論式から、同心円 模様の原因は、非晶質珪素膜表面からの反射光と、基板 の裏面からの反射光の干渉により形成されたものと断定 できる。同心円模様が形成されたのは、基板が一方向だ けでなく、二方向とも反っているためと考えられる。も し、基板がシリンドリカルレンズのように一方向のみが 歪んでいれば、同心円模様とはならず、平行な縞模様が 形成されることになる。図10は温度640℃で5時間 の加熱処理後の1737ガラス基板の歪みを測定した結 果を示している。図10(A)は横軸にx方向を、図1 0 (B) は横軸にy方向を取り、縦軸は歪みを示してい る。横軸のx方向およびy方向は、図9に示すように、 基板におけるオリフラ(オリエンテーション・フラッ ト)と呼ばれる切り込みが右上に来るように置いた状態 で、便宜的に定めた。図10より、両方向とも反ってい るのが明らかである。この歪みはレーザアニールにおい て影響を及ぼすこともあるが、TFTなどの半導体装置 を作製するための他の工程においては、現状では問題に ならない程度のものである。

【0024】本発明は、第2の実験で基板を傾けてレーザアニールを行なったときに、同心円模様が現れなくなったことから、基板に対してレーザ光に角度を設けて照射することを特徴とする。本発明を適用することで、レーザ光の干渉による結晶質半導体膜の物性のばらつきを除去または低減することが出来る。このような結晶質半導体膜を用いて、TFTを作製すれば、その電気的特性は良好なものが得られる。

【0025】本発明において用いるレーザ光は光学系により線状に加工して照射することが望ましい。なお、レーザ光を線状に加工するとは、照射面における形状が線状になるようにレーザ光を加工しておくことを意味する。即ち、レーザ光の断面形状を線状に加工することを意味する。また、ここでいう「線状」は、厳密な意味で「線」を意味しているのではなく、アスペクト比の大き

い長方形(もしくは長楕円形)を意味する。例えば、アスペクト比が10以上(好ましくは100~1000 0)のもの指す。

【0026】固体レーザは一般的に知られているものを用いることができ、YAGレーザ(通常はNd:YAGレーザを指す)、Nd:YLFレーザ、Nd:YVO4レーザ、Nd:YAIO3レーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ、ガラスレーザなどを用いることができる。特に、コヒーレント性やパルスエネルギーで優位なYVO4レーザやYAGレーザが好ましい。また、金属レーザとして、ヘリウムカドミウムレーザ、銅蒸気レーザ、金蒸気レーザが挙げられる。

【0027】但し、基板の裏面からの反射光が半導体膜の表面の反射光と干渉することから、半導体膜を透過する波長でなくてはならない。図3(B)に膜厚55nmの非晶質珪素膜の波長に対する透過率を示した。図3

(B)から、膜厚55nmの非晶質珪素膜を透過するには350nm以上(好ましくは400nm以上)の波長でなくてはならない。しかし、本発明において半導体膜の材料に限定はなく、珪素だけでなく、例えば珪素ゲルマニウム(SiGe)合金などの非晶質構造を有する化合物半導体膜を適用しても良い。半導体膜を透過する波長は、半導体膜の種類、膜厚等によって異なるので、実施者が適宜決定すれば良い。

【0028】例えば、YAGレーザを用いるのであれば、YAGレーザの基本液(第1高調液)は1064nmと波長が長いので、第2高調液(波長532nm)を用いるのが好ましい。第1高調液は非線形素子を含む波長変調器によって、第2高調液、第3高調液または第4高調液に変調することができる。各高調液の形成は公知の技術に従えば良い。また、本明細書中において、「固体レーザを光源とするレーザ光」には第1高調液だけでなく、途中で波長を変調した高調液を含むものとする。【0029】また、YAGレーザで良く用いられるQスイッチ法(Q変調スイッチ方式)を用いても良い。これはレーザ共振器のQ値を十分低くしておいた状態から、急激にQ値を高めてやることにより非常にエネルギー値が高く急峻なパルスレーザを出力する方法である。これは公知の技術である。

【0030】本発明で用いる固体レーザは、基本的には 固体結晶、共振ミラー及び固体結晶を励起するための光 源があればレーザ光を出力できるため、エキシマレーザ のようにメンテナンスの手間がかからない。即ち、ラン ニングコストがエキシマレーザに比べて非常に低いた め、半導体装置の製造コストを大幅に低減することが可 能となる。また、メンテナンスの回数が減れば生産ライ ンの稼働率も高まるため製造工程のスループット全体が 向上し、このことも半導体装置の製造コストの低減に大 きく寄与する。さらに、固体レーザの専有面積はエキシマレーザに比べて小さいので、製造ラインの設計に有利である。

【0031】また、被照射体として珪素膜を用いる場合、350 n m以上の波長を有するレーザ光であれば、本発明を適用することは非常に有効であることは上述の通りである。固体レーザや金属レーザと比較すると、現状のガスレーザはコストの掛かるレーザではあるが、本発明を実現するために、KrF エキシマレーザ、Ar レーザ、Kr レーザ、 CO_2 レーザ等を用いることももちろん可能である。

【0032】このように、本発明を適用すれば、基板の表面および裏面での反射光同士が干渉することを防ぐため、同心円模様のような被照射体に対するアニールを不均一なものとする干渉縞が形成されない、もしくは低減するためのレーザアニール方法を実現することが可能となる。このようなレーザアニール方法を用いて被照射体のアニールを行なえば、均一なアニールを行なうことが可能となる。特に半導体膜のアニールに適用すれば、均一なアニールが行われるため、一様な物性を有する半導体膜を得ることができる。そして、このような半導体膜を用いて下下で、を製まれば、その電気的特性のばらつきは低減され、下下で用いて作製される半導体装置の動作特性および信頼性をも向上し得る。

[0033]

【発明の実施の形態】本発明の実施形態では、レーザ光の入射角度について図1を用いて説明する。

【0034】レーザ光は、半導体膜(被照射体)にビーム幅 w_1 で入射する。このときの入射角を θ とする。一般的に半導体膜は $25\sim80$ nmの厚さで成膜されているが、ガラス基板の厚さD(0.7mm)に比べて非常に薄いことから、半導体膜による光路のずれは無視できる。そのため、半導体膜を透過したレーザ光はほぼ真っ直ぐに基板の裏面まで進行し、基板の裏面において反射する。基板の裏面によって反射したレーザ光(反射光)は、再び半導体膜に達し、基板の外に射出される。このとき、入射光と反射光とが、半導体膜上で全く交差することがなければ、半導体膜内での光の干渉は起こらない。つまり、同心円模様が形成されることはない。

【0035】同心円模様の生じない条件を図1から式に 直すと、

$$D \times t$$
 a n $\theta \ge w/2$ (3)
∴ $\theta \ge$ a r c t a n ($w/(2 \times D)$) (3) '
但し、 $w = (w_1 + w_2)/2$

となる。しかし、第2の実験の結果から、前記入射光と前記反射光とが完全に離れていなくても、同心円模様は低減できた。そこで、同心円模様を低減させることの出来る条件は、D=0.7 [mm]、 $tan\theta=5/126$ 、 $w_1=w_2=w=0.4[mm]$ として計算すると、0.7×5/126=0.4/x (xは整数)

 $\therefore x = 14.4$

となる。よって、実験から得られた同心円模様の生じな い条件式は、

$$D \times t \text{ an } \theta \ge w/14$$
 (4)
 $\therefore \theta \ge \text{ arctan } (w/(14 \times D))$ (4) '

【0036】この条件を満たす角度 θ でレーザ光を入射させて半導体膜のアニールを行なうと、半導体膜にこれまで形成されていた同心円模様のような被照射体に対するアニールを不均一なものとする干渉縞を低減することができ、均一なアニールを行なうことが出来るため、良好な物性を有する半導体膜を形成することができる。例えば、半導体膜の結晶化に本実施形態で示すレーザアニール方法を適用すれば、良好な物性を有する結晶質半導体膜を形成することができる。この結晶質半導体膜を用いてTFTを作製すれば、その電気的特性は良好なものとなる。さらに、このようなTFTを用いて半導体装置を作製すれば、その動作特性および信頼性をも向上し得る。なお、本明細書中において、角度 θ は基板に対して垂直方向からのずれを指す。

[0037]

【実施例】 [実施例1] 本発明の実施例について図11 および図13(A)を用いて説明する。

【0038】まず、基板として、コーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる透光性を有するものを用いる。なお、基板300としては、石英基板やシリコン基板を用いても良い。また、本実施例の処理温度に耐えうる耐熱性が有するプラスチック基板を用いてもよい。本実施例では、126mm角、厚さ0.7mmのコーニング社製1737ガラス基板を用意した。

【0039】次いで、基板300上に酸化珪素膜、窒化 珪素膜または酸化窒化珪素膜などの絶縁膜から成る下地 膜301を形成する。本実施例では下地膜301として 2層構造を用いるが、前記絶縁膜の単層膜または2層以 上積層させた構造を用いても良い。下地膜301の一層 目としては、プラズマCVD法を用い、SiH、N H₃、及びN₃Oを反応ガスとして成膜される酸化窒化珪 素膜301aを10~200nm(好ましくは50~10 Onm) 形成する。本実施例では、膜厚50nmの酸化窒 化珪素膜301a(組成比Si=32%、O=27%、 N=24%、H=17%)を形成した。次いで、下地膜 301の二層目としては、プラズマCVD法を用い、S i H,、及びN。Oを反応ガスとして成膜される酸化室化 珪素膜301bを50~200nm (好ましくは100 ~150nm) の厚さに積層形成する。本実施例では、膜 厚100mmの酸化窒化珪素膜401b(組成比Si= 32%、O=59%、N=7%、H=2%)を形成し た。

【0040】次いで、基板上に半導体膜302を形成する。半導体膜302は、非晶質構造を有する半導体膜を公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により、20~200nm、好ましくは25~80nm(代表的には30~60nm)の厚さで形成する。半導体膜の材料に限定はないが、好ましくは珪素または珪素ゲルマニウム(SiGe)合金などで形成すると良い。本実施例では、プラズマCVD法を用い、55nmの非晶質珪素膜を成膜した。

【0041】なお、本実施例では、基板上に酸化珪素膜や酸化窒化珪素膜等の下地絶縁膜を形成してから半導体膜を形成している。基板上に下地絶縁膜を形成してから半導体膜を形成している場合は、レーザ光の反射する面が増えることになる。しかしながら、基板と下地絶縁膜の屈折率はほとんど同じであることから、下地絶縁膜と基板との界面での屈折率の変化は無視できる。

【0042】続いて、半導体膜の結晶化を行なう。半導体膜の結晶化にはレーザアニール法による結晶化を適用する。半導体膜の結晶化には、レーザアニール法による結晶化の他に、熱結晶化法、またはニッケルなどの触媒を用いた熱結晶化法等があり、これらの結晶化法のいずれかとレーザアニール法による結晶化とを組み合わせて行なっても良い。レーザ結晶化には、本発明を適用して実施する。

【0043】レーザアニール法による結晶化は、まず非晶質半導体膜が含有する水素を放出させておくことが望ましく、400~500℃で窒素雰囲気に1時間程度曝して、含有する水素量を5atom%以下にしておくと良い。これにより、膜の耐レーザ性が著しく向上する。

【0044】ここで、光学系について図11を用いて説 明する。レーザ発振器201として、大出力の連続発振 またはパルス発振の固体レーザ(YAGレーザ、YVO 、レーザ、YLFレーザ、YA10。レーザ、ルビーレー ザ、アレキサンドライドレーザ、Ti:サファイアレー ザ、ガラスレーザ等)を用いるのが望ましい。もちろ ん、大出力であって、半導体膜および基板に対して透過 する波長を有するのであれば連続発振またはパルス発振 のガスレーザ (KrFエキシマレーザ、Arレーザ、K rレーザ、CO、レーザ等)や金属レーザ(ヘリウムカ ドミウムレーザ、銅蒸気レーザ、金蒸気レーザ等) など を用いても良い。そして、前記レーザ発振器201から 発振されたレーザ光を、光学系を用いて、照射面の形状 が線状である線状ビームに加工する。前記光学系には、 例えば、レーザ光を長く拡大するための長焦点距離のシ リンドリカルレンズ205と、レーザ光を細く集光する ための長焦点距離のシリンドリカルレンズ206とを用 いる。長焦点距離のシリンドリカルレンズを用いると、 収差を抑え、照射面またはその近傍においてエネルギー 分布の均一なレーザ光を得ることが出来る。また、長焦 点距離のシリンドリカルレンズは、半導体膜への入射光 のビーム幅と、基板の裏面からの反射光のビーム幅とを 著しく変化させないためにも有効である。発明者の実験 によると、焦点距離が500mm以上のシリンドリカル レンズを使うと、収差の影響を劇的に低減することが出 来た。

【0045】シリンドリカルレンズ206の手前には、反射ミラー207を設け、レーザ光の進行方向を変更できるようにした。反射ミラー207により、照射面に入射するレーザ光の角度を調整し、目的とする角度θにすることが出来る。反射ミラー207の角度により、シリンドリカルレンズ206の角度も変更すると、照射面においてより対称性のあるレーザ光を形成することができる

【0046】また、線状ビームを半導体膜に照射する際、線状ビームの重ね合わせ率(オーバーラップ率)を50~98%として照射しても良いし、重ね合わせずに照射しても良い。半導体膜の状態やレーザ光の遅延時間等によって最適条件は異なるため、実施者が適宜決定するのが好ましい。

【0047】本実施例では、レーザ発振器としてYAGレーザを用い、非線形光学素子202により第2高調波に変調し、光学系を用いて長さ130mm、幅0.4mmの線状ビームに加工して半導体膜に照射した。このとき、基板に対して垂直方向から5度ずらして照射した。長焦点距離のシリンドリカルレンズ206を用いていることから、 $\mathbf{w}_1 = \mathbf{w}_2 = \mathbf{w} = 0$.4 [mm] としてよい。本実施例での照射条件を(4)式に当てはめると、左辺け

0. 7×tan5=0. 0612 であり、右辺は、

0.4/8=0.0500

であるから、(4) 式を満たしており、レーザアニールによって得られる結晶質半導体膜には同心円模様が観察されず、均一なアニールを行なうことができる。このような結晶質半導体膜を用いてTFTを作製すると、その電気的特性は良好なものが得られる。

【0048】 [実施例2] 本実施例では実施例1とは異なる実施例について図12を用いて説明する。

【0049】基板および半導体膜は実施例1にしたがって作製する。本実施例においても、コーニング社製1737ガラス基板を用い、前記ガラス基板上にCVD法により非晶質珪素膜(膜厚55nm)を形成した。

【0050】ここで、光学系について図12を用いて説明する。図12で示す光学系は、図11で示した光学系と対応する部分には同じ符号を用いている。本実施例では、反射ミラー207はレーザ光に対し45度に固定しているが、基板ステージ203を水平方向から角度 θ 傾けている。

【0051】本実施例では、レーザ発振器としてYAGレーザを用い、非線形光学素子202により第2高調波

に変調し、光学系を用いて長さ $130\,\mathrm{mm}$ 、幅 $0.4\,\mathrm{m}$ mの線状ビームに加工して半導体膜に照射した。このとき、基板に対して垂直方向から $10\,\mathrm{g}$ ずらして照射した。長焦点距離のシリンドリカルレンズ $206\,\mathrm{e}$ 用いていることから、 $\mathrm{w_1}=\mathrm{w_2}=\mathrm{w}=0.4\,\mathrm{[mm]}$ としてよい。本実施例での照射条件を(4)式に当てはめると、左辺は、

0. 7×tan10=0. 1234 であり、右辺は、

0.4/8=0.0500

であるから、(4) 式を満たしており、レーザアニールによって得られる結晶質半導体膜には同心円模様が観察されず、均一なアニールを行なうことができる。このような結晶質半導体膜を用いてTFTを作製すると、その電気的特性は良好なものが得られる。

【0052】 [実施例3] 本実施例ではアクティブマトリクス基板の作製方法について図13~図21を用いて説明する。

【0053】まず、本実施例ではコーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板300を用いる。なお、基板300としては、石英基板やシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを用いても良い。また、本実施例の処理温度に耐えうる耐熱性が有するプラスチック基板を用いてもよい。

【0054】次いで、基板300上に酸化珪素膜、窒化 珪素膜または酸化窒化珪素膜などの絶縁膜から成る下地 膜301を形成する。本実施例では下地膜301として 2層構造を用いるが、前記絶縁膜の単層膜または2層以 上積層させた構造を用いても良い。下地膜301の一層 目としては、プラズマCVD法を用い、SiH₄、N H_a、及びN_aOを反応ガスとして成膜される酸化窒化珪 素膜301aを10~200nm(好ましくは50~10 Onm) 形成する。本実施例では、膜厚50nmの酸化窒 化珪素膜301a(組成比Si=32%、O=27%、 N=24%、H=17%)を形成した。次いで、下地膜 301の二層目としては、プラズマCVD法を用い、S iH、及びN。Oを反応ガスとして成膜される酸化窒化 珪素膜301bを50~200nm (好ましくは100 ~150nm) の厚さに積層形成する。本実施例では、膜 厚100mmの酸化窒化珪素膜401b (組成比Si= 32%、O=59%、N=7%、H=2%)を形成し

【0055】次いで、下地膜上に半導体膜302を形成する。半導体膜302は、非晶質構造を有する半導体膜を公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により、25~200nm、好ましくは25~80nm(代表的には30~60nm)の厚さで形成する。半導体膜の材料に限定はないが、好ましく

は珪素または珪素ゲルマニウム(SiGe)合金などで 形成すると良い。本実施例では、プラズマCVD法を用 い、55nmの非晶質珪素膜を成膜した。

【0056】続いて、半導体膜の結晶化を行なう。半導 体膜の結晶化にはレーザ結晶化法を適用する。半導体膜 の結晶化には、レーザ結晶化法の他に、熱結晶化法、ま たはニッケルなどの触媒を用いた熱結晶化法等があり、 これらの結晶化法のいずれかとレーザ結晶化法と組み合 わせて行なっても良い。レーザ結晶化には、本発明を適 用して実施する。例えば、パルス発振型の固体レーザ (YAGレーザ、YVO,レーザ、YLFレーザ、YA 10,レーザ、ルビーレーザ、アレキサンドライドレー ザ、Ti:サファイアレーザ、ガラスレーザ等)、ガス レーザまたは金属レーザを光源とするレーザ光を光学系 を用いて線状ビームに加工し、図11または図12で示 すような方法で半導体膜に照射する。本実施例では、基 板を温度500℃の窒素雰囲気中に1時間曝した後、図 11で示したレーザアニール方法により半導体膜の結晶 化を行い、大粒径の結晶粒を有する結晶質珪素膜を形成 した。このとき、レーザ発振器にはYAGレーザを用 い、非線形光学素子により第2高調波に変調したレーザ 光を、光学系により線状ビームに加工して半導体膜に照 射した。線状ビームを半導体膜に照射する際、線状ビー ムの重ね合わせ率(オーバーラップ率)を50~98% として照射しても良いが、半導体膜の状態やレーザ光の 波長等によって最適条件は異なるため、実施者が適宜決 定すれば良い。また、連続発振型のレーザを用いる場合 には、エネルギー密度は0.01~100MW/cm² 程度(好ましくは0.1~10MW/cm)が必要で ある。そして、0.5~2000cm/s程度の速度で レーザ光に対して相対的にステージを動かして照射する のが望ましい。

【0057】このようにして得られた結晶質半導体膜を 所望の形状にパターニングして、半導体層402~40 6を形成する。本実施例では、結晶質珪素膜をフォトリ ソグラフィ法を用いたパターニング処理によって、半導 体層402~406を形成した。

【0058】半導体層402~406を形成した後、TFTのしきい値を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを行なってもよい。

【0059】次いで、半導体層402~406を覆うゲート絶縁膜407を形成する。ゲート絶縁膜407はプラズマCVD法またはスパッタ法を用い、厚さを40~150nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さで酸化窒化珪素膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成した。もちろん、ゲート絶縁膜は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。【0060】また、酸化珪素膜を用いる場合には、プラ

ズマCVD法でTEOS(Tetraethyl Orthosilicate) ${\rm LO_2}$ とを混合し、反応圧力 ${\rm LO_2}$ とを混合し、反応圧力 ${\rm LO_2}$ を混合し、反応圧力 ${\rm LO_2}$ 電力密度 ${\rm LO_2}$ 電力密度 ${\rm LO_2}$ 電力密度 ${\rm LO_2}$ で放電させて形成することができる。このようにして作製される酸化珪素膜は、その後 ${\rm LO_2}$ での数アニールによりゲート絶縁膜として良好な特性を得ることができる。

【0061】次いで、図13(B)に示すように、ゲー ト絶縁膜407上に膜厚20~100nmの第1の導電 膜408と、膜厚100~400nmの第2の導電膜4 09とを積層形成する。本実施例では、膜厚30nmの TaN膜からなる第1の導電膜408と、膜厚370n mのW膜からなる第2の導電膜409を積層形成した。 TaN膜はスパッタ法で形成し、Taのターゲットを用 い、窒素を含む雰囲気内でスパッタした。また、W膜 は、Wのターゲットを用いたスパッタ法で形成した。そ の他に6フッ化タングステン(WF_s)を用いる熱CV D法で形成することもできる。いずれにしてもゲート電 極として使用するためには低抵抗化を図る必要があり、 W膜の抵抗率は20μΩ c m以下にすることが望まし い。W膜は結晶粒を大きくすることで低抵抗率化を図る ことができるが、W膜中に酸素などの不純物元素が多い 場合には結晶化が阻害され高抵抗化する。従って、本実 施例では、高純度のW(純度99.999%)のター ゲットを用いたスパッタ法で、さらに成膜時に気相中か らの不純物の混入がないように十分配慮してW膜を形成 することにより、抵抗率9~20μΩ c mを実現するこ とができた。

【0063】次に、フォトリソグラフィ法を用いてレジストからなるマスク410~415を形成し、電極及び配線を形成するための第1のエッチング処理を行なう。第1のエッチング処理では第1及び第2のエッチング条件で行なう。本実施例では第1のエッチング条件として、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング用ガスにC

 F_4 と $C1_2$ と O_2 とを用い、それぞれのガス流量比を 25:25:10(sccm)とし、1Paの圧力でコイル型の電極に 500WのR F(13.56MHz)電力を投入してプラズマを生成してエッチングを行った。ここでは、松下電器産業(株)製の ICPを用いたドライエッチング装置(Model $E645-\Box ICP$)を用いた。基板側(試料ステージ)にも 150WのR F(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。この第 100エッチング条件によりW膜をエッチングして第 109 範層の端部をテーパー形状とする。

【0064】この後、レジストからなるマスク410~415を除去せずに第2のエッチング条件に変え、エッチング用ガスに CF_4 と $C1_2$ とを用い、それぞれのガス流量比を30:30(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して約30秒程度のエッチングを行った。基板側(試料ステージ)にも20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。 CF_4 と $C1_2$ を混合した第2のエッチング条件ではW膜及びTaN膜とも同程度にエッチング条件ではW膜及びTaN膜とも同程度にエッチングされる。なお、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10~20%程度の割合でエッチング時間を増加させると良い。

【0065】上記第1のエッチング処理では、レジストからなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15~45°となる。こうして、第1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層417~422(第1の導電層417b~422b)を形成する。416はゲート絶縁膜であり、第1の形状の導電層417~422で覆われない領域は20~50m程度エッチングされ薄くなった領域が形成される。

【0066】そして、レジストからなるマスクを除去せずに第1のドーピング処理を行い、半導体層にn型を付与する不純物元素を添加する。(図14(A))ドーピング処理はイオンドープ法、若しくはイオン注入法で行なえば良い。イオンドープ法の条件はドーズ量を $1\times10^{13}\sim5\times10^{15}/c$ m²とし、加速電圧を $60\sim10$ 0 keVとして行なう。本実施例ではドーズ量を $1.5\times10^{15}/c$ m²とし、加速電圧を80 keVとして行った。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いるが、ここではリン(P)を用いた。この場合、導電層417~421がn型を付与する不純物元素に対するマスクとなり、自己整合的に第1の高濃度不純物領域306~310には $1\times10^{20}\sim1\times10^{21}/c$ m の濃度

範囲でn型を付与する不純物元素を添加する。

【0067】次いで、レジストからなるマスクを除去せずに第2のエッチング処理を行なう。ここでは、エッチングガスに CF_4 と $C1_2$ と O_2 とを用い、W膜を選択的にエッチングする。この時、第2のエッチング処理により第2の導電層428b~433bを形成する。一方、第1の導電層417a~422aは、ほとんどエッチングされず、第2の形状の導電層428~433を形成する。

【0068】次いで、レジストからなるマスクを除去せずに、図14(B)に示すように、第2のドーピング処理を行なう。この場合、第1のドーピング処理よりもドーズ量を下げて、 $70\sim120$ ke Vの高い加速電圧で、n型を付与する不純物元素を導入する。本実施例ではドーズ量を1. 5×10^{14} /cm²とし、加速電圧を90ke Vとして行なった。第2のドーピング処理は第2の形状の導電層428~433をマスクとして用い、第2の導電層428~433bの下方における半導体層にも不純物元素が導入され、新たに第2の高濃度不純物領域423a~427bが形成される。

【0069】次いで、レジストからなるマスクを除去した後、新たにレジストからなるマスク434aおよび434bを形成して、図14(C)に示すように、第3のエッチング処理を行なう。エッチング用ガスにSF₆およびC1₂とを用い、ガス流量比を50:10(sccm)とし、1.3Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成し、約30秒のエッチング処理を行なう。基板側(資料ステージ)には10WのRF(13.56MHz)電力を投入し、実質的には負の自己バイアス電圧を印加する。こうして、前記第3のエッチング処理により、pチャネル型TFTおよび画素部のTFT(画素TFT)のTaN膜をエッチングして、第3の形状の導電層435~438を形成する。

【0070】次いで、レジストからなるマスクを除去した後、第2の形状の導電層428、430および第2の形状の導電層435~438をマスクとして用い、ゲート絶縁膜416を選択的に除去して絶縁層439~44を形成する。(図15(A))

【0071】次いで、新たにレジストからなるマスク445cを形成して第3のドーピング処理を行なう。この第3のドーピング処理により、pチャネル型 TFTの活性層となる半導体層に前記一導電型とは逆の導電型を付与する不純物元素が添加された不純物領域446、447を形成する。第2の導電層435a、438aを不純物元素に対するマスクとして用い、p型を付与する不純物元素を添加して自己整合的に不純物領域を形成する。本実施例では、不純物領域446、447はジボラン($B_{\rm o}$ H_o)を用いたイオンドープ法で形成す

る。(図15(B))この第3のドーピング処理の際には、nチャネル型TFTを形成する半導体層はレジストからなるマスク445a~445cで覆われている。第1のドーピング処理及び第2のドーピング処理によって、不純物領域446、447にはそれぞれ異なる濃度でリンが添加されているが、そのいずれの領域においてもp型を付与する不純物元素の濃度を 2×10^{20} ~ 2×10^{21} /c m となるようにドーピング処理することにより、pチャネル型TFTのソース領域およびドレイン領域として機能するために何ら問題は生じない。本実施例では、pチャネル型TFTの活性層となる半導体層の一部が露呈しているため、不純物元素(ボロン)を添加しやすい利点を有している。

【0072】以上までの工程で、それぞれの半導体層に 不純物領域が形成される。

【0073】次いで、レジストからなるマスク445a ~445cを除去して第1の層間絶縁膜461を形成す る。この第1の層間絶縁膜461としては、プラズマC VD法またはスパッタ法を用い、厚さを100~200 nmとして珪素を含む絶縁膜で形成する。本実施例で は、プラズマCVD法により膜厚150nmの酸化窒化 珪素膜を形成した。もちろん、第1の層間絶縁膜461 は酸化窒化珪素膜に限定されるものでなく、他の珪素を 含む絶縁膜を単層または積層構造として用いても良い。 【0074】次いで、図15 (C) に示すように、加熱 処理を行なって、半導体層の結晶性の回復、それぞれの 半導体層に添加された不純物元素の活性化を行なう。こ の加熱処理はファーネスアニール炉を用いる熱アニール 法で行なう。熱アニール法としては、酸素濃度が1pp m以下、好ましくは0.1ppm以下の窒素雰囲気中で 400~700℃、代表的には500~550℃で行な えばよく、本実施例では550℃、4時間の熱処理で活 性化処理を行った。なお、熱アニール法の他に、レーザ アニール法、またはラピッドサーマルアニール法(RT A法)を適用することができる。

【0075】なお、結晶化の際にニッケルなどを触媒として熱結晶化法も適用した場合は、上記活性化処理と同時に、金属元素が高濃度のリンを含む不純物領域423a、425a、426a、446a、447aを結晶化する。そのため、前記不純物領域に前記金属元素がゲックリングされ、主にチャネル形成領域となる半導体層中の金属元素濃度が低減される。このようにして作製したチャネル形成領域を有するTFTはオフ電流値が下がり、結晶性が良いことから高い電界効果移動度が得られ、良好な特性を達成することができる。

【0076】また、第1の層間絶縁膜を形成する前に加熱処理を行なっても良い。ただし、用いた配線材料が熱に弱い場合には、本実施例のように配線等を保護するため層間絶縁膜(珪素を主成分とする絶縁膜、例えば窒化珪素膜)を形成した後で活性化処理を行なうことが好ま

LV

【0077】さらに、3~100%の水素を含む雰囲気中で、300~550℃で1~12時間の熱処理を行い、半導体層を水素化する工程を行なう。本実施例では水素を約3%の含む窒素雰囲気中で410℃、1時間の熱処理を行なった。この工程は層間絶縁膜に含まれる水素により半導体層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行なっても良い

【0078】また、活性化処理としてレーザアニール法を用いる場合には、上記水素化を行った後、連続発振型またはパルス発振型の固体レーザ(YAGレーザ等)、ガスレーザ、金属レーザ等のレーザビームを照射することが望ましい。そして、本発明を用いて斜めから照射すれば、同心円模様のような干渉縞の形成が除去または低減されるため、均一なアニールを行なうことができる。

【0079】次いで、第10層間絶縁膜461上に無機 絶縁膜材料または有機絶縁物材料から成る第20層間絶 縁膜462を形成する。本実施例では、膜厚 1.6μ m のアクリル樹脂膜を形成したが、粘度が $10\sim1000$ c p、好ましくは $40\sim200$ c pのものを用い、表面 に凸凹が形成されるものを用いた。

【0080】本実施例では、鏡面反射を防ぐため、表面に凸凹が形成される第2の層間絶縁膜を形成することによって画素電極の表面に凸凹を形成した。また、画素電極の表面に凹凸を持たせて光散乱性を図るため、画素電極の下方の領域に凸部を形成してもよい。その場合、凸部の形成は、TFTの形成と同じフォトマスクで行なうことができるため、工程数の増加なく形成することができる。なお、この凸部は配線及びTFT部以外の画素部領域の基板上に適宜設ければよい。こうして、凸部を覆う絶縁膜の表面に形成された凸凹に沿って画素電極の表面に凸凹が形成される。

【0081】また、第2の層間絶縁膜462として表面が平坦化する膜を用いてもよい。その場合は、画素電極を形成した後、公知のサンドブラスト法やエッチング法等の工程を追加して表面を凹凸化させて、鏡面反射を防ぎ、反射光を散乱させることによって白色度を増加させることが好ましい。

【0082】そして、駆動回路506において、各不純物領域とそれぞれ電気的に接続する配線 $463\sim467$ を形成する。なお、これらの配線は、膜厚50nmのTi膜と、膜厚50nmの合金膜(A1とTiとの合金膜)との積層膜をパターニングして形成する。

【0083】また、画素部507においては、画素電極470、ゲート配線469、接続電極468を形成する。(図16)この接続電極468によりソース配線(443bと449の積層)は、画素TFTと電気的な接続が形成される。また、ゲート配線469は、画素T

FTのゲート電極と電気的な接続が形成される。また、 画素電極470は、画素TFTのドレイン領域442と 電気的な接続が形成され、さらに保持容量を形成する一 方の電極として機能する半導体層458と電気的な接続 が形成される。また、画素電極470としては、A1ま たはAgを主成分とする膜、またはそれらの積層膜等の 反射性の優れた材料を用いることが望ましい。

【0084】以上の様にして、nチャネル型TFT501とpチャネル型TFT502からなるCMOS回路、及びnチャネル型TFT503を有する駆動回路506と、画素TFT504、保持容量505とを有する画素部507を同一基板上に形成することができる。こうして、アクティブマトリクス基板が完成する。

【0085】駆動回路506のnチャネル型TFT50 1はチャネル形成領域423c、ゲート電極の一部を構 成する第1の導電層428aと重なる低濃度不純物領域 423b (GOLD領域)、とソース領域またはドレイ ン領域として機能する高濃度不純物領域423aを有し ている。このnチャネル型TFT501と電極466で 接続してCMOS回路を形成するpチャネル型TFT5 02にはチャネル形成領域446d、ゲート電極の外側 に形成される不純物領域446b、446c、ソース領 域またはドレイン領域として機能する高濃度不純物領域 446aを有している。また、nチャネル型TFT50 3にはチャネル形成領域425c、ゲート電極の一部を 構成する第1の導電層430aと重なる低濃度不純物領 域425b(GOLD領域)、とソース領域またはドレ イン領域として機能する髙濃度不純物領域425aを有 している。

【0086】画素部の画素TFT504にはチャネル形成領域426c、ゲート電極の外側に形成される低濃度不純物領域426b(LDD領域)とソース領域またはドレイン領域として機能する高濃度不純物領域426aを有している。また、保持容量505の一方の電極として機能する半導体層447a、447bには、それぞれp型を付与する不純物元素が添加されている。保持容量505は、絶縁膜444を誘電体として、電極(438aと438bの積層)と、半導体層447a~447cとで形成している。

【0087】また、本実施例の画素構造は、ブラックマトリクスを用いることなく、画素電極間の隙間が遮光されるように、画素電極の端部をソース配線と重なるように配置形成する。

【0088】また、本実施例で作製するアクティブマトリクス基板の画素部の上面図を図17に示す。なお、図13~図16に対応する部分には同じ符号を用いている。図16中の鎖線A—A'は図17中の鎖線A—A'で切断した断面図に対応している。また、図16中の鎖線B—B'は図17中の鎖線B—B'で切断した断面図に対応している。

【0089】以上のようにして作製されるアクティブマ・トリクス基板は一様にアニールされた半導体膜を用いて作製されたTFTを有しており、動作特性や信頼性を十分なものとなり得る。

【0090】なお、本実施例は実施例1または2と自由に組み合わせることが可能である。

【0091】 [実施例4] 本実施例では、実施例3で作製したアクティブマトリクス基板から、反射型液晶表示装置を作製する工程を以下に説明する。説明には図18を用いる。

【0092】まず、実施例3に従い、図17の状態のアクティブマトリクス基板を得た後、図17のアクティブマトリクス基板上、少なくとも画素電極470上に配向膜567を形成しラビング処理を行なう。なお、本実施例では配向膜567を形成する前に、アクリル樹脂膜等の有機樹脂膜をパターニングすることによって基板間隔を保持するための柱状のスペーサ572を所望の位置に形成した。また、柱状のスペーサに代えて、球状のスペーサを基板全面に散布してもよい。

【0093】次いで、対向基板569を用意する。次いで、対向基板569上に着色層570、571、平坦化膜573を形成する。赤色の着色層570と青色の着色層572とを重ねて、遮光部を形成する。また、赤色の着色層と緑色の着色層とを一部重ねて、遮光部を形成してもよい。

【0094】本実施例では、実施例3に示す基板を用いている。従って、実施例3の画素部の上面図を示す図17では、少なくともゲート配線469と画素電極470の間隙と、ゲート配線469と接続電極468の間隙と、接続電極468と画素電極470の間隙を遮光する必要がある。本実施例では、それらの遮光すべき位置に着色層の積層からなる遮光部が重なるように各着色層を配置して、対向基板を貼り合わせた。

【0095】このように、ブラックマスク等の遮光層を 形成することなく、各画素間の隙間を着色層の積層から なる遮光部で遮光することによって工程数の低減を可能 とした。

【0096】次いで、平坦化膜573上に透明導電膜からなる対向電極576を少なくとも画素部に形成し、対向基板の全面に配向膜574を形成し、ラビング処理を施した。

【0097】そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材568で貼り合わせる。シール材568にはフィラーが混入されていて、このフィラーと柱状スペーサによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液晶材料575を注入し、封止剤(図示せず)によって完全に封止する。液晶材料575には公知の液晶材料を用いれば良い。このようにして図18に示す反射型液晶表示装置が完成する。そして、必要があれ

ば、アクティブマトリクス基板または対向基板を所望の 形状に分断する。さらに、対向基板のみに偏光板(図示 しない)を貼りつけた。そして、公知の技術を用いてF PCを貼りつけた。

【0098】以上のようにして作製される液晶表示装置は一様にアニールされた半導体膜を用いて作製されたTFTを有しており、前記液晶表示装置の動作特性や信頼性を十分なものとなり得る。そして、このような液晶表示装置は各種電子機器の表示部として用いることができる。

【0099】なお、本実施例は実施例1乃至3と自由に 組み合わせることが可能である。

【0100】 [実施例5] 本実施例では、実施例3で示したアクティブマトリクス基板を作製するときのTFTの作製方法を用いて、発光装置を作製した例について説明する。本明細書において、発光装置とは、基板上に形成された発光素子を該基板とカバー材の間に封入した表示用パネルおよび該表示用パネルにICを実装した表示用モジュールを総称したものである。なお、発光素子は、電場を加えることで発生するルミネッセンス(Blectro Luminescence)が得られる有機化合物を含む層(発光層)と陽極層と、陰極層とを有する。また、有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)があり、これらのうちどちらか、あるいは両方の発光を含む。

【0101】なお、本明細書中では、発光素子において 陽極と陰極の間に形成された全ての層を有機発光層と定 義する。有機発光層には具体的に、発光層、正孔注入 層、電子注入層、正孔輸送層、電子輸送層等が含まれ る。基本的に発光素子は、陽極層、発光層、陰極層が順 に積層された構造を有しており、この構造に加えて、陽 極層、正孔注入層、発光層、陰極層や、陽極層、正孔注 入層、発光層、電子輸送層、陰極層等の順に積層した構 造を有していることもある。

【0102】図19は本実施例の発光装置の断面図である。図19において、基板700上に設けられたスイッチングTFT603は図19のnチャネル型TFT503を用いて形成される。したがって、構造の説明はnチャネル型TFT503の説明を参照すれば良い。

【0103】なお、本実施例ではチャネル形成領域が二つ形成されるダブルゲート構造としているが、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。

【0104】基板700上に設けられた駆動回路は図19のCMOS回路を用いて形成される。従って、構造の説明はnチャネル型TFT501とpチャネル型TFT502の説明を参照すれば良い。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。

【0105】また、配線701、703はCMOS回路のソース配線、702はドレイン配線として機能する。また、配線704はソース配線708とスイッチングTFTのソース領域とを電気的に接続する配線として機能し、配線705はドレイン配線709とスイッチングTFTのドレイン領域とを電気的に接続する配線として機能する。

【0106】なお、電流制御TFT604は図19のpチャネル型TFT502を用いて形成される。従って、構造の説明はpチャネル型TFT502の説明を参照すれば良い。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。

【0107】また、配線706は電流制御TFTのソース配線(電流供給線に相当する)であり、707は電流制御TFTの画素電極710上に重ねることで画素電極710と電気的に接続する電極である。

【0108】なお、710は、透明導電膜からなる画素電極(発光素子の陽極)である。透明導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化五、との化合物、酸化スズまたは酸化インジウムを用いることができる。また、前記透明導電膜にガリウムを添加したものを用いても良い。画素電極710は、上記配線を形成する前に平坦な層間絶縁膜711上に形成する。本実施例においては、樹脂からなる平坦化膜711を用いてTFTによる段差を平坦化することは非常に重要である。後に形成される発光層は非常に薄いため、段差が存在することによって発光不良を起こす場合がある。従って、発光層をできるだけ平坦面に形成しうるように画素電極を形成する前に平坦化しておくことが望ましい。

【0109】配線701~707を形成後、図19に示すようにバンク712を形成する。バンク712は100~400nmの珪素を含む絶縁膜もしくは有機樹脂膜をパターニングして形成すれば良い。

【 0 1 1 0 】 なお、バンク 7 1 2 は絶縁膜であるため、成膜時における素子の静電破壊には注意が必要である。本実施例ではバンク 7 1 2 の材料となる絶縁膜中にカーボン粒子や金属粒子を添加して抵抗率を下げ、静電気の発生を抑制する。この際、抵抗率は $1 \times 10^6 \sim 1 \times 10^{12} \Omega$ m (好ましくは $1 \times 10^8 \sim 1 \times 10^{12} \Omega$ m) となるようにカーボン粒子や金属粒子の添加量を調節すれば良い。

【0111】画素電極710の上には発光層713が形成される。なお、図19では一画素しか図示していないが、本実施例ではR(赤)、G(緑)、B(青)の各色に対応した発光層を作り分けている。また、本実施例では蒸着法により低分子系有機発光材料を形成している。具体的には、正孔注入層として20nm厚の銅フタロシアニン(CuPc)膜を設け、その上に発光層として7

0 nm厚のトリスー8ーキノリノラトアルミニウム錯体 (Alq。) 膜を設けた積層構造としている。Alq。に キナクリドン、ペリレンもしくはDCM1といった蛍光 色素を添加することで発光色を制御することができる。 【0112】但し、以上の例は発光層として用いること のできる有機発光材料の一例であって、これに限定する 必要はまったくない。発光層、電荷輸送層または電荷注 入層を自由に組み合わせて発光層(発光及びそのための キャリアの移動を行なわせるための層) を形成すれば良 い。例えば、本実施例では低分子系有機発光材料を発光 層として用いる例を示したが、中分子系有機発光材料や 高分子系有機発光材料を用いても良い。なお、本明細書 中において、昇華性を有さず、かつ、分子数が20以下 または連鎖する分子の長さが10μm以下の有機発光材 料を中分子系有機発光材料とする。また、高分子系有機 発光材料を用いる例として、正孔注入層として20nm のポリチオフェン(PEDOT)膜をスピン塗布法によ り設け、その上に発光層として100nm程度のパラフ ェニレンビニレン (PPV) 膜を設けた積層構造として も良い。なお、PPVのπ共役系高分子を用いると、赤 色から青色まで発光波長を選択できる。また、電荷輸送 層や電荷注入層として炭化珪素等の無機材料を用いるこ とも可能である。これらの有機発光材料や無機材料は公 知の材料を用いることができる。

【0113】次に、発光層713の上には導電膜からなる陰極714が設けられる。本実施例の場合、導電膜としてアルミニウムとリチウムとの合金膜を用いる。勿論、公知のMgAg膜(マグネシウムと銀との合金膜)を用いても良い。陰極材料としては、周期表の1族もしくは2族に属する元素からなる導電膜もしくはそれらの元素を添加した導電膜を用いれば良い。

【0114】この陰極714まで形成された時点で発光素子715が完成する。なお、ここでいう発光素子715は、画素電極(陽極)710、発光層713及び陰極714で形成されたダイオードを指す。

【0115】発光素子715を完全に覆うようにしてパッシベーション膜716を設けることは有効である。パッシベーション膜716としては、炭素膜、窒化珪素膜もしくは窒化酸化珪素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層で用いる。

【0116】この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC(ダイヤモンドライクカーボン)膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い発光層713の上方にも容易に成膜することができる。また、DLC膜は酸素に対するブロッキング効果が高く、発光層713の酸化を抑制することが可能である。そのため、この後に続く封止工程を行なう間に発光層713が酸化するといった問題を防止できる。

【0117】さらに、パッシベーション膜716上に封止材717を設け、カバー材718を貼り合わせる。封止材717としては紫外線硬化樹脂を用いれば良く、内部に吸湿効果を有する物質もしくは酸化防止効果を有する物質を設けることは有効である。また、本実施例においてカバー材718はガラス基板や石英基板やプラスチック基板(プラスチックフィルムも含む)の両面に炭素膜(好ましくはダイヤモンドライクカーボン膜)を形成したものを用いる。

【0118】こうして図19に示すような構造の発光装置が完成する。なお、バンク712を形成した後、パッシベーション膜716を形成するまでの工程をマルチチャンバー方式(またはインライン方式)の成膜装置を用いて、大気解放せずに連続的に処理することは有効である。また、さらに発展させてカバー材718を貼り合わせる工程までを大気解放せずに連続的に処理することも可能である。

【0119】こうして、プラスチック基板を母体とする 絶縁体501上にnチャネル型TFT601、602、 スイッチングTFT (nチャネル型TFT) 603および電流制御TFT (nチャネル型TFT) 604が形成 される。ここまでの製造工程で必要としたマスク数は、 一般的なアクティブマトリクス型発光装置よりも少ない。

【0120】即ち、TFTの製造工程が大幅に簡略化されており、歩留まりの向上および製造コストの低減が実現できる。

【0121】さらに、図19を用いて説明したように、ゲート電極に絶縁膜を介して重なる不純物領域を設けることによりホットキャリア効果に起因する劣化に強い n チャネル型TFTを形成することができる。そのため、信頼性の高い発光装置を実現できる。

【0122】また、本実施例では画素部と駆動回路の構成のみ示しているが、本実施例の製造工程に従えば、その他にも信号分割回路、D/Aコンバータ、オペアンプ、γ補正回路などの論理回路を同一の絶縁体上に形成可能であり、さらにはメモリやマイクロプロセッサをも形成しうる。

【0123】さらに、発光素子を保護するための封止 (または封入)工程まで行った後の本実施例の発光装置 について図20を用いて説明する。なお、必要に応じて 図19で用いた符号を引用する。

【0124】図20(A)は、発光素子の封止までを行った状態を示す上面図、図20(B)は図20(A)をC-C, で切断した断面図である。点線で示された801はソース側駆動回路、806は画素部、807はゲート側駆動回路である。また、901はカバー材、902は第1シール材、903は第2シール材であり、第1シール材902で囲まれた内側には封止材907が設けられる。

【0125】なお、904はソース側駆動回路801及びゲート側駆動回路807に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)905からビデオ信号やクロック信号を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。

【0126】次に、断面構造について図20(B)を用いて説明する。基板700の上方には画素部806、ゲート側駆動回路807が形成されており、画素部806は電流制御TFT604とそのドレインに電気的に接続された画素電極710を含む複数の画素により形成される。また、ゲート側駆動回路807はnチャネル型TFT601とpチャネル型TFT602とを組み合わせたCMOS回路(図14参照)を用いて形成される。

【0127】画素電極710は発光素子の陽極として機能する。また、画素電極710の両端にはバンク712が形成され、画素電極710上には発光層713および発光素子の陰極714が形成される。

【0128】陰極714は全画素に共通の配線としても機能し、接続配線904を経由してFPC905に電気的に接続されている。さらに、画素部806及びゲート側駆動回路807に含まれる素子は全て陰極714およびパッシベーション膜716で覆われている。

【0129】また、第1シール材902によりカバー材901が貼り合わされている。なお、カバー材901と発光素子との間隔を確保するために樹脂膜からなるスペーサを設けても良い。そして、第1シール材902の内側には封止材907が充填されている。なお、第1シール材902、封止材907としてはエポキシ系樹脂を用いるのが好ましい。また、第1シール材902はできるだけ水分や酸素を透過しない材料であることが望ましい。さらに、封止材907の内部に吸湿効果をもつ物質や酸化防止効果をもつ物質を含有させても良い。

【0130】発光素子を覆うようにして設けられた封止 材907はカバー材901を接着するための接着剤としても機能する。また、本実施例ではカバー材901を構成するプラスチック基板901aの材料としてFRP(Fiberglass-Reinforced Plastics)、PVF(ポリビニルフロライド)、マイラー、ポリエステルまたはアクリルを用いることができる。

【0131】また、封止材907を用いてカバー材901を接着した後、封止材907の側面(露呈面)を覆うように第2シール材903を設ける。第2シール材903は第1シール材902と同じ材料を用いることができる

【0132】以上のような構造で発光素子を封止材90

7に封入することにより、発光素子を外部から完全に遮断することができ、外部から水分や酸素等の発光層の酸化による劣化を促す物質が侵入することを防ぐことができる。従って、信頼性の高い発光装置が得られる。

【0133】以上のようにして作製される発光装置は一様にアニールされた半導体膜を用いて作製されたTFTを有しており、前記発光装置の動作特性や信頼性を十分なものとなり得る。そして、このような発光装置は各種電子機器の表示部として用いることができる。

【0134】なお、本実施例は実施例1万至3と自由に 組み合わせることが可能である。

【0135】 [実施例6] 本発明を適用して、様々な半導体装置(アクティブマトリクス型液晶表示装置、アクティブマトリクス型発光装置、アクティブマトリクス型 E C 表示装置)を作製することができる。即ち、それら電気光学装置を表示部に組み込んだ電子機器全てに本発明を実施できる。

【0136】その様な電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図21、図22及び図23に示す。

【0137】図21(A)はパーソナルコンピュータであり、本体2001、画像入力部2002、表示部2003、キーボード2004等を含む。本発明を表示部2003に適用することができる。

【0138】図21(B)はビデオカメラであり、本体2101、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106等を含む。本発明を表示部2102に適用することができる。

【0139】図21 (C) はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示部2205等を含む。本発明は表示部2205に適用できる。

【0140】図21 (D) はゴーグル型ディスプレイであり、本体2301、表示部2302、アーム部2303等を含む。本発明は表示部2302に適用することができる。

【0141】図21(E)はプログラムを記録した記録 媒体(以下、記録媒体と呼ぶ)を用いるプレイヤーであ り、本体2401、表示部2402、スピーカ部240 3、記録媒体2404、操作スイッチ2405等を含 む。なお、このプレイヤーは記録媒体としてDVD(D igtial Versatile Disc)、CD 等を用い、音楽鑑賞や映画鑑賞やゲームやインターネッ トを行なうことができる。本発明は表示部2402に適 用することができる。

【0142】図21(F)はデジタルカメラであり、本体2501、表示部2502、接眼部2503、操作スイッチ2504、受像部(図示しない)等を含む。本発明を表示部2502に適用することができる。

【0143】図22(A)はフロント型プロジェクターであり、投射装置2601、スクリーン2602等を含む。本発明は投射装置2601の一部を構成する液晶表示装置2808やその他の駆動回路に適用することができる。

【0144】図22(B)はリア型プロジェクターであり、本体2701、投射装置2702、ミラー2703、スクリーン2704等を含む。本発明は投射装置2702の一部を構成する液晶表示装置2808やその他の駆動回路に適用することができる。

【0145】なお、図22(C)は、図22(A)及び図22(B)中における投射装置2601、2702の構造の一例を示した図である。投射装置2601、2702は、光源光学系2801、ミラー2802、2804~2806、ダイクロイックミラー2803、プリズム2807、液晶表示装置2808、位相差板2809、投射光学系2810で構成される。投射光学系2810は、投射レンズを含む光学系で構成される。本実施例は三板式の例を示したが、特に限定されず、例えば単板式であってもよい。また、図22(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。

【0146】また、図22(D)は、図22(C)中における光源光学系2801の構造の一例を示した図である。本実施例では、光源光学系2801は、リフレクター2811、光源2812、レンズアレイ2813、2814、偏光変換素子2815、集光レンズ2816で構成される。なお、図22(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。

【0147】ただし、図22に示したプロジェクターにおいては、透過型の電気光学装置を用いた場合を示しており、反射型の電気光学装置及び発光装置での適用例は図示していない。

【0148】図23(A)は携帯電話であり、本体2901、音声出力部2902、音声入力部2903、表示部2904、操作スイッチ2905、アンテナ2906等を含む。本発明を表示部2904に適用することができる

【0149】図23(B)は携帯書籍(電子書籍)であり、本体3001、表示部3002、3003、記憶媒体3004、操作スイッチ3005、アンテナ3006

等を含む。本発明は表示部3002、3003に適用することができる。

【0150】図23 (C) はディスプレイであり、本体3101、支持台3102、表示部3103等を含む。本発明は表示部3103に適用することができる。本発明のディスプレイは特に大画面化した場合において有利であり、対角10インチ以上(特に30インチ以上)のディスプレイには有利である。

【0151】以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1~4または5のどのような組み合わせからなる構成を用いても実現することができる。

[0152]

【発明の効果】本発明によれば、被照射体(例えば、半導体膜)に対してレーザ光を斜めに照射することで、被照射体(半導体膜)に形成される同心円模様のような被照射体に対するアニールを不均一なものとする干渉縞を除去、または低減することができ、レーザアニール後の被照射体(半導体膜)の物性を均一なものにすることが出来る。このようは半導体膜を用いて半導体装置を作製すれば、半導体装置の性能を大幅に向上させうる。

【0153】また、レーザアニールの際にレーザ光を線状に加工してスループットを向上させることも可能である。さらに、メンテナンスの容易な固体レーザや金属レーザを用いることで従来のエキシマレーザを用いたレーザアニールよりもスループットの向上やコストの低減が達成できる。延いてはTFTやTFTで形成された液晶表示装置等の半導体装置の製造コストを低減することができる。

【図面の簡単な説明】

【図1】 レーザ照射装置の構成の例を示す図。

【図2】 同心円模様の一例を示す図。

【図3】 (A) 非晶質珪素膜(膜厚55nm) における波長に対する反射率を示す図。

(B) 非晶質珪素膜(膜厚55nm)における波長に対する透過率を示す図。

【図4】 基板ステージの影響を除去してレーザアニールを行なったことを示す図。

【図5】 基板ステージの影響を除去してレーザアニールを行なった結果の一例を示す図。

【図6】 基板の裏面の影響を除去してレーザアニール を行なったことを示す図。

【図7】 基板の裏面の影響を除去してレーザアニール を行なった結果の一例を示す図。

【図8】 半導体膜の表面の反射光と、基板と半導体膜の界面における反射光との干渉について考察するための 図

【図9】 基板のxおよびy方向について説明する図。 【図10】(A)基板のx方向に対する歪みの例を示す

(B) 基板のy方向に対する歪みの例を示す図。

【図11】 本発明のレーザアニール方法の一例を示す図。

【図12】 本発明のレーザアニール方法の一例を示す 図。

【図13】 画素TFT、駆動回路のTFTの作製工程を示す断面図。

【図14】 画素TFT、駆動回路のTFTの作製工程を示す断面図。

【図15】 画素TFT、駆動回路のTFTの作製工程を示す断面図。

【図16】 画素TFT、駆動回路のTFTの作製工程を示す断面図。

【図17】 画素TFTの構成を示す上面図。

【図18】 アクティブマトリクス型液晶表示装置の作 製工程を示す断面図。

【図19】 発光装置の駆動回路及び画素部の断面構造図。

【図20】(A)発光装置の上面図。

(B) 発光装置の駆動回路及び画素部の断面構造図。

【図21】 半導体装置の例を示す図。

【図22】 半導体装置の例を示す図。

【図23】 半導体装置の例を示す図。

[図6]

[図3]

【図8】

(A)

(B)

(A)

(B)

(A)

(B)

【図12】

【図13】

【図15】

【図16】

【図17】

【図18】

【図19】

[図20]

【図21】

【図22】

【図23】

フロントページの続き

(51) Int. C1. THO 1 S 3/00

識別記号

FΙ

テーマコード(参考)

Fターム(参考) 2H092 JA28 MA30 MA35 NA24

5F052 AA02 BA01 BA02 BA07 BA18

BB01 BB02 BB03 BB04 BB05

BB06 BB07 CA07 DA01 DA02

DA03 DB01 DB02 DB03 DB07

JA01

5F072 AB01 KK12 KK15 QQ02 YY08

5F110 AA16 BB02 BB04 BB05 CC02

DD01 DD02 DD03 DD05 DD13

DD14 DD15 DD17 EE01 EE04

EE06 EE09 EE14 EE23 EE44

EE45 FF02 FF03 FF04 FF09

FF30 GG01 GG02 GG13 GG24

GG25 GG32 GG34 GG43 GG45

GG47 GG52 HJ01 HJ04 HJ12

HJ13 HJ23 HL04 HL06 HM14

HM15 NN02 NN03 NN04 NN22

NN23 NN24 NN27 NN34 NN35

NN40 NN44 NN73 PP01 PP03

PP05 PP06 PP29 PP34 PP35

QQ04 QQ24 QQ25 QQ28