Confidential Customized for Lorem Ipsum LLC Version 1.0

Advisor: Kunwadee Sripanidkulchai

Natawat Kwanpum 5931017021

Final Presentation

Container Live Migration Using PageServer

Agenda

Introduction Implications

Background Conclusions

System Design

Evaluation

Cloud computing is the on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user.

Container?

"They are a type of virtualization technology, with their own CPU, memory and resources like a virtual machine. The difference, though, is that containers share the kernel (the brain) of the host operating system and don't need a guest operating system."

Why do we use the container?

- Isolation an application and its dependencies
- More efficient use of system resources (OS overhead)
- Portability
- Better application development

Deployment Model

laaS

Virtual Machine

+

Container runtime

docker Hicrosoft

Why do we need container live migration?

Live Migration?

Live migration refers to the process of moving a running application between different physical machines without disconnecting the client. Memory, storage, and network connectivity of the virtual machine are transferred from the original guest machine to the destination

Basic migration

- **Checkpoint**: **Stop** application and **dump memory states** to files
- **Transfer**: Copy checkpoint files to destination machine
- 3. **Restore** from checkpoint files and start application again

Downtime = service unavailable

More memory = More Downtime

"Let's decrease downtime!"

01 | To develop process of migration the containers across the cloud providers with low downtime

02 | To develop tools to facilitate migration process

How to decrease downtime?

1. **Pre-copy migration**

Predump -> Precopy -> Checkpoint -> Transfer -> Restore

2. Post-copy Migration (Lazy Migration)

Checkpoint (the minimal task state) -> Transfer -> Restore -> transfer faulted page

Pre-copy Migration

Downtime: 20.98

Post-copy Migration

"The component that allows to copy (rather than dump) user memory to a destination system during the course of live migration"

Normal Migration

BEFORE

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt labore dolore magna aliqua. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Client Implications:

Consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Lorem ipsum dolor sit amet, consectetur adipiscing elit tempor incididunt ut labore et dolore magna aliqua.

Diskless Migration (using Pageserver)

AFTER

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt labore dolore magna aliqua. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Client Implications:

Consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Lorem ipsum dolor sit amet, consectetur adipiscing elit tempor incididunt ut labore et dolore magna aliqua.

Proof of concept

Normal migration and migration using page server

TABLE II EVALUATION RESULT

Method	Scenario	Pre-dump	Pre-copy	Pre-migration	Checkpoint	Transfer	Restore	Downtime	Total Time
Normal	400c	-	-	-	9.44	20.69	6.32	37.09	37.09
Page Server	400c	- %	-	-	18.62	7.16	6.01	32.23	32.23

System overview

Containers

Page server

VPN

"Secure Data Transfer"

Dummy Server

"Conceal Service unavailable"

HAProxy

"Load balancer"

"Forward requests"

Automated Script

Evaluation Goal

"Ensure that pageserver can help to minimize downtime"

Application & instance size

Application

- Wordpress as a web server
- MySQL as a database

Source Instances

- AWS EC2
- Size t3.medium (2 vCPUs, 4 GB RAM)
- Region: ap-northeast-1 (Tokyo)

Destination Instances

- GCP Compute engine
- Size: n1-standard-1 (1 vCPU, 3.75 GB RAM)
- Region: asia-northeast-a (Tokyo)

We use **Siege** to generate request to web server (wordpress)

- Run each evaluation 10 times and use mean as a result
- Add workload in different scenario in term of concurrent connections
 - 0, 1, 5, 10, 50, 100, 200, 400

Result

Pre-copy = 20.98 s Pageserver = 21.15 s

Rsync optimization = 18.27 s Dummy server = 12.29 s

Pre-copy and Page server

Precopy migration with and without pageserver

experiment	scenario	predump	precopy	premigration	checkpoint	transfer	restore	downtime	totaltime	
precopy	400	10.794	31.994	42.788	3.547	10.774	6.194	20.980	63.768	
precopy-pageserver	400	10.943	31.966	42.909	22.935	6.406	6.141	36.549	79.458	

Pre-copy Pageserver Improve#1

- Use previous images

Precopy migration and Improvement#1

experiment	scenario	predump	precopy	premigration	checkpoint	transfer	restore	downtime	totaltime
precopy	400	10.794	31.994	42.788	3.547	10.774	6.194	20.980	63.768
test-pageserver-prev	400	21.009	28.384	49.393	10.090	4.351	6.129	21.152	70.545

=

Pre-copy Pageserver Improve#2

- Rsync optimization

experiment	scenario	predump	precopy	premigration	checkpoint	transfer	restore	downtime	totaltime	
precopy	400	10.794	31.994	42.788	3.547	10.774	6.194	20.980	63.768	
test-pageserver-prev-mysql	400	20.504	28.839	49.343	10.872	0.386	6.070	17.905	67.248	

=

Pre-copy Pageserver Improve#3

- Hold traffic with HAproxy

experiment	scenario	predump	precopy	premigration	checkpoint	transfer	restore	downtime	totaltime
precopy	400	10.794	31.994	42.788	3.547	10.774	6.194	20.980	63.768
precopy-pageserver-haproxy	400	18.220	25.607	43.827	5.102	0.328	6.451	12.294	56.121

Final Results

TABLE II EVALUATION RESULT

Method	Scenario	Pre-dump	Pre-copy	Pre-migration	Checkpoint	Transfer	Restore	Downtime	Total Time
Normal	400c	-	-	-	9.44	20.69	6.32	37.09	37.09
Page Server	400c	-	-	-	18.62	7.16	6.01	32.23	32.23
Pre-copy	400c	10.79	31.99	42.79	3.55	10.77	6.19	20.98	63.77
PC&PS	400c	21.01	28.38	49.39	10.09	4.35	6.13	21.15	70.54
PC & PS & Rsync	400c	20.63	28.96	49.59	11.24	0.39	6.05	18.27	67.87
PC & PS & HAProxy	400c	18.22	25.61	43.83	5.10	0.33	6.45	12.29	56.12

^aPC is refer to pre-copy and PS is refer to page server.

"Page server can help to minimize downtime by reducing writing and reading files from disk which are overhead of migration" Confidential Customized for **Lorem lpsum LLC** Version 1.0

Demo time!!

Thank you Q&A

