计算机组成原理实验报告参考模板

一、CPU设计方案综述

(一) 总体设计概述

本CPU为Verilog实现的流水线MIPS-COU,支持的指令集包含{MIPS-C3={LB、LBU、LH、LHU、LW、SB、SH、SW、ADD、ADDU、SUB、SUBU、MULT、MULTU、DIV、DIVU、SLL、SRL、SRA、SLLV、SRLV、SRAV、AND、OR、XOR、NOR、ADDI、ADDIU、ANDI、ORI、XORI、LUI、SLT、SLTI、SLTIU、SLTU、BEQ、BNE、BLEZ、BGTZ、BLTZ、BGEZ、J、JAL、JALR、JR、MFHI、MFLO、MTHI、MTLO}。CPU主要包含了PC,NPC,GRF,ALU,EXT,CTRL,.FWandSCTRL,MUX,MulAndDiv等模块,同时存储器外置于tb,这些模块按照数据通路、控制信号,冒险控制的设计逐级展开。

(二) 关键模块定义

1. GRF

信号名	方向	描述
clk	I	CPU时钟
reset	I	同步复位信号
WE	I	写使能
A1[4:0]	I	rs输入
A2[4:0]	I	rt输入
A3[4:0]	I	rd输入
WD[31:0]	I	寄存器文件写入数据
PC[31:0]	I	current pc
RD1[31:0]	О	读寄存器文件时寄存器rs的输出
RD2[31:0]	0	读寄存器文件时寄存器rt的输出

2. NPC

信号名	方向	描述
PC[31:0]	1	当前PC值
IMM26[25:0]	1	j型指令的26位立即数
IMM16[15:0]	1	b型指令的16位立即数
IMM32[31:0]	I	jr型指令的寄存器数据
NPCOP[2:0]	I	npc控制指令
Zero[4:0]	I	第0位beq信号,1为跳转,0为pc+4;第一位bgez信号,1为跳转,0为pc+4
NPC[31:0]	0	下一个PC的值
PCA4[31:0]	0	当前PC+4

功能定义

OP值	功能
000	pc+4
001	B类指令
010	JAL类指令,跳26lmm
011	JR类指令,跳寄存器

3. ALU

信号名	方向	描述
A[31:0]	I	第一个操作数
B[31:0]	I	第二个操作数
SHAMT[4:0]	I	移位信号
ALUOP[3:0]	1	ALU功能控制
ALUOUT[31:0]	0	ALU计算结果

功能定义

OP值	功能
0000	A+B
0001	A-B
0010	A B
0011	A&B
0100(lui)	B<<16
0101(SLL)	B<< shamt
0110(SLTI)	若A小于B,则输出1,否则0(有符号)
0111(NOR)	~(A B)
1000	B< <a[4:0]< td=""></a[4:0]<>
1001	若A小于B,则输出1,否则0(无符号)
1010	B>>>A[4:0]
1011	B>>A[4:0]
1100	A^B
1101	B>>>shamt
1110	B>>shamt

CMP

信号名	方向	描述
CMPOP[3:0]	I	控制信号
Rs[31:0]	I	转发后的Rs
Rt[31:0]	I	转发后的Rt
Zero	0	1为真0为假,对于当前B指令

BEQ 4'b0000 BGEZ 4'b0001 BLTZ 4'b0010 BGTZ 4'b0011 BLEZ 4'b0100 BNE 4'b0101

4.CTRL

信号名	方向	描述
InstrD[31:0]	1	D级指令
NPCOPD[2:0]	О	npc功能控制
ExtopInD[1:0]	О	D级扩展控制
DmweToM	О	数据文件写使能,流水到M级
RFWE	О	grf写使能流水到W级
A3[4:0]	О	根据指令选择的A3
RFWDMUX[2:0]	О	grf写入控制
ALUBMUX[2:0]	О	ALUB端控制
ALUOP[3:0]	О	ALUOP,流水到E
DMOP[2:0]	О	流水到M级控制DM写入
TuseRs[2:0]	О	Rs的Tuse
TuseRt[2:0]	0	Rt的Tuse
TnewE[2:0]	О	指令在E级的Tnew
CMPOP[3:0]	О	CMP控制信号

信号控制矩阵

指令	指令 类型	指令码	NPCOP	RFWE	ALUOP	EXTOP	DMWE	А3	ALUBMUX	DMOP	СМРОР	EXTDMOP
ADDU	R	100001	PC+4(000)	1	ADD(0000)	XX	0	InstrD[15:11]	000	XXX	XXXX	xxx
SUBU	R	100011	PC+4	1	SUB(0001)	XX	0	InstrD[15:11]	000	XXX	XXXX	XXX
ORI	1	001101	PC+4	1	ori(0010)	01	0	InstrD[20:16]	001	XXX	XXXX	XXX
LW	1	100011	PC+4	1	ADD	00	0	InstrD[20:16]	001	XXX	XXXX	XXX
SW	1	101011	PC+4	0	ADD	00	1	XXX	001	000	XXXX	XXX
BEQ	1	000100	B(001)	0	XXXX	XX	0	XXX	000	XXX	0000	XXX
LUI	1	001111	PC+4	1	LUI	01	0	InstrD[20:16]	001	XXX	XXXX}	XXX
SLL	R	000000	PC+4	1	SLL(0101)	XX	0	InstrD[15:11]	000	XXX	XXXX	XXX
J	J	000010	010(J)	0	XXXX	XX	0	XXX	XXX	XXX	XXXX	XXX
JAL	J	000011	010	1	XXXX	XX	0	31	XXX	XXX	XXXX	XXX
JR	R	001000	011(JR)	0	XXXX	XX	0	XXX	XXX	XXX	XXXX	XXX
ADDIU	1	001001	PC+4	1	ADD	00	0	InstrD[20:16]	001	XXX	XXXX	XXX
BGEZ	1	000001//00001	001	0	XXXX	00	0	XXX	XXX	XXX	0001	XXX
JALR	R	001001	011	1	XXXX	XX	0	InstrD[15:11]	XXX	XXX	XXXX	XXX
SLTI	1	001010	PC+4	1	0110	00	0	InstrD[20:16]	001	XXX	XXXX	XXX
LB	1	100000	PC+4	1	ADD	00	0	InstrD[20:16]	001	XXX	XXXX	010
SB	1	101000	PC+4	0	ADD	00	1	XXX	001	001	XXXX	XXX
ADD(无溢 出)	R	100000	PC+4	1	ADD	XX	0	InstrD[15:11]	000	XXX	XXXX	XXX
ADDI(无溢 出)	1	001000	PC+4	1	ADD	00	0	InstrD[20:16]	001	XXX	xxxx	XXX

指令	指令	指令码	NPCOP	RFWE	ALUOP	EXTOP	DMWE	A3	ALUBMUX	DMOP	СМРОР	EXTDMOP
BLTZ	1	000001//00000	001	0	XXXX	XX	0	XXX	XXX	XXX	0010	XXX
BGTZ	1	000111	001	0	XXXX	XX	0	XXX	XXX	XXX	0011	XXX
BLEZ	1	000110	001	0	XXXX	XX	0	XXX	XXX	XXX	0100	XXX
BNE	1	000101	001	0	XXXX	XX	0	XXX	XXX	XXX	0101	XXX
AND	R	100100	PC+4	1	0011	XX	0	InstrD[15:11]	000	XXX	XXXX	XXX
NOR	R	100111	PC+4	1	0111	XX	0	InstrD[15:11]	000	XXX	xxxx	XXX
OR	R	100101	PC+4	1	0010	XX	0	InstrD[15:11]	000	XXX	xxxx	XXX
SLT	R	101010	PC+4	1	0110	XX	0	InstrD[15:11]	000	XXX	xxxx	XXX
SLLV	R	000100	PC+4	1	1000	XX	0	InstrD[15:11]	000	XXX	xxxx	XXX
SLTU	R	101011	PC+4	1	1001	XX	0	InstrD[15:11]	000	XXX	xxxx	XXX
SRAV	R	000111	PC+4	1	1010	XX	0	InstrD[15:11]	000	XXX	xxxx	XXX
SRLV	R	000110	PC+4	1	1011	XX	0	InstrD[15:11]	000	XXX	xxxx	XXX
SUB(无 溢出)	R	100010	PC+4	1	0001	XX	0	InstrD[15:11]	000	XXX	XXXX	XXX
XOR	R	100110	PC+4	1	1100	XX	0	InstrD[15:11]	000	XXX	xxxx	XXX
SLTIU	1	001011	PC+4	1	1001	00	0	InstrD[20:16]	001	XXX	xxxx	XXX
SRA	R	000011	PC+4	1	1101	XX	0	InstrD[15:11]	000	XXX	XXXX	XXX

指令	指令类型	指令码	NPCOP	RFWE	ALUOP	EXTOP	DMWE	А3	ALUBMUX	DMOP	СМРОР	EXTDMOP
ANDI	I	001100	PC+4	1	0011	01	0	InstrD[20:16]	001	XXX	XXXX	XXX
SRL	R	000010	PC+4	1	1110	XX	0	InstrD[15:11]	000	XXX	XXXX	XXX
XORI	1	001110	PC+4	1	1100	01	0	InstrD[20:16]	001	XXX	XXXX	XXX
LBU	1	100100	PC+4	1	ADD	00	0	InstrD[20:16]	001	XXX	XXXX	001
LH	1	100001	PC+4	1	ADD	00	0	InstrD[20:16]	001	XXX	XXXX	100
LHU	1	100101	PC+4	1	ADD	00	0	InstrD[20:16]	001	XXX	XXXX	011
SH	1	101001	PC+4	0	ADD	00	1	XXXX	001	010	XXXX	XXX
MFHI	R	010000	PC+4	1	XXXX	XX	0	InstrD[15:11]	XXX	XXX	XXXX	XXX
MFLO	R	010010	PC+4	1	XXXX	XX	0	InstrD[15:11]	XXX	XXX	XXXX	XXX
MULT	R	011000	PC+4	0	XXXX	XX	0	XXXX	XXX	XXX	XXXX	XXX
MULTU	R	011001	PC+4	0	XXXX	XX	0	XXXX	XXX	XXX	XXXX	XXX
MTHI	R	010001	PC+4	0	XXXX	XX	0	XXXX	XXX	XXX	XXXX	XXX
MTLO	R	010011	PC+4	0	XXXX	XX	0	XXXX	XXX	XXX	XXXX	XXX
DIV	R	011010	PC+4	0	XXXX	XX	0	XXXX	XXX	XXX	XXXX	XXX
DIVU	R	011011	PC+4	0	XXXX	XX	0	XXXX	XXX	XXX	XXXX	XXX

指令	指令 类型	指令码	SELOP	RFWDOP	MADOP	InstrMAD
ADDU	R	100001	000	000	0000	0
SUBU	R	100011	000	000	0000	0
ORI	I	001101	000	000	0000	0
LW	I	100011	XXX	001	0000	0
SW	I	101011	XXX	XXX	0000	0
BEQ	I	000100	XXX	XXX	0000	0
LUI	I	001111	000	000	0000	0
SLL	R	000000	000	000	0000	0
J	J	000010	XXX	XXX	0000	0
JAL	J	000011	001	000	0000	0
JR	R	001000	XXX	XXX	0000	0
ADDIU	1	001001	000	000	0000	0
BGEZ	I	000001//00001	XXX	XXX	0000	0
JALR	R	001001	001	000	0000	0
SLTI	I	001010	000	000	0000	0
LB	1	100000	XXX	001	0000	0
SB	I	101000	XXX	XXX	0000	0
ADD(无溢 出)	R	100000	000	000	0000	0
ADDI(无溢 出)	I	001000	000	000	0000	0
BLTZ	I	000001//00000	XXX	XXX	0000	0
BGTZ	I	000111	XXX	XXX	0000	0
BLEZ	1	000110	XXX	XXX	0000	0
BNE	I	000101	XXX	XXX	0000	0
AND	R	100100	000	000	0000	0
NOR	R	100111	000	000	0000	0
OR	R	100101	000	000	0000	0
SLT	R	101010	000	000	0000	0
SLLV	R	000100	000	000	0000	0

指令	指令 类型	指令码	SELOP	RFWDOP	MADOP	InstrMAD
SLTU	R	101011	000	000	0000	0
SRAV	R	000111	000	000	0000	0
SRLV	R	000110	000	000	0000	0
SUB(无溢 出)	R	100010	000	000	0000	0
XOR	R	100110	000	000	0000	0
SLTIU	I	001011	000	000	0000	0
SRA	R	000011	000	000	0000	0
ANDI	I	001100	000	000	0000	0
ORI	I	001101	000	000	0000	0
SRL	R	000010	000	000	0000	0
XORI	I	001110	000	000	0000	0
LBU	I	100100	XXX	001	0000	0
LH	I	100001	XXX	001	0000	0
LHU	I	100101	XXX	001	0000	0
SH	I	101001	XXX	XXX	0000	0
MFHI	R	010000	010	000	0000	1
MFLO	R	010010	011	000	0000	1
MULT	R	011000	XXX	XXX	0001	1
MULTU	R	011001	XXX	XXX	0010	1
MTHI	R	010001	XXX	XXX	0011	1
MTLO	R	010011	XXX	XXX	0100	1
DIV	R	011010	XXX	XXX	0101	1
DIVU	R	011011	XXX	XXX	0110	1

5.FWandSCTRL

信号名	方向	描述
A1D[4:0]	I	
A2D[4:0]	I	
A1E[4:0]	I	
A2E[4:0]	I	
A1M[4:0]	I	
A2M[4:0]	I	
A3M[4:0]	I	
A3W[4:0]	I	
WEE	I	
WEM	I	
WEW	I	
InsrtMADInD	I	D阶段指令是否为乘除指令
BusyOrStart	I	E阶段是否将或正在执行乘除法
TuseRs[2:0]	I	
TuseRt[2:0]	I	
TnewE[2:0]	I	
TnewM[2:0]	I	
FWCMPRS[2:0]	0	cmpRS转发
FWCMPRT[2:0]	0	cmpRT转发
FWALURS[2:0]	0	ALURS转发
FWALURT[2:0]	0	ALURT转发
FWDMRT[2:0]	0	DM写入数据转发
Stall	0	停止信号

T译码	指令
TuseRs	
2	
1	ADDU SUBU ORI LW SW LUI SLTI ADDIU ADD ADDI AND NOR OR SLT SLLV SLTU SRAV SRLV SUB XOR SLTIU ADNI ORI XORI LBU LB LH LHU SH SB MULT MULTU MTHI DIV DIVU
0	BEQ JR JALR BGEZ BLTZ BGTZ BLEZ BNE
TuseRt	
2	SW SH SB
1	ADDU SUBU SLL ADD AND NOR OR SLT SLLV SLTU SRAV SRLV SUB XOR SRA SRL MULT MULTU DIV DIVU
0	BEQ BNE
TnewE	
2	LW LBU LB LH LHU
1	ADDU SUBU ORI LUI SLL SLTI ADDIU ADD ADDI AND NOR OR SLT SLLV SLTU SRAV SRLV SUB XOR SLTIU SRA ANDI ORI SRL XORI MFHI MFLO
0	JAL JALR

5.MulAndDiv

信号名	方向	描述	
clk	I	时钟	
reset	1	复位信号	
MADOP[3:0]	1	控制信号	
RS[31:0]	1	E级转发后的RS	
RT[31:0]	1	E级转发后的RT	
HI[31:0]	0	HI寄存器	
LO[31:0]	0	LO寄存器	
START	0	有MD指令在E级,准备执行	
BUSY	0	MD指令在E级执行中	

控制信号	功能
0001	(HI, LO) = GPR[rs]×GPR[rt] 有符号
0010	(HI, LO) = GPR[rs]×GPR[rt] 无符号
0011	HI<=RS
0100	LO<=RS
0101	有符号除
0110	无符号除

6.MUX

DataToGrfMux

```
module DataToGrfMux ( input [31:0] S0,
                      input [31:0] S1,
                      input [31:0] S2,
                      input [31:0] S3,
                      input [31:0] S4,
                      input [31:0] S5,
                      input [31:0] S6,
                      input [31:0] S7,
                      input [2:0] SELOP,
                      output[31:0] DATATOGRF
);
    DataToGrfMux CPUDataToGrfMuxINE(.S0(ALUOUTINE),
                                     .S1(PCE+8),
                                     .S2(HIFROMMAD),
                                     .S3(LOFROMMAD),
                                     .S4(0),
                                     .s5(0),
                                     .s6(0),
                                     .s7(0),
                                     .SELOP(SELOPINE),
                                     .DATATOGRF(DATATOGRFINE)
    );
```

```
SELOP
000 ALU输出
001 PC+8
010 HI
011 LO
```

RFWDMUX

信号名	方向	描述
RFWDOP[2:0]	1	控制信号
ALUOUT[31:0]	1	ALU计算结果
DMOUT[31:0]	I	数据存储器的输出数据
PCA4[31:0]	0	PC+4
RFWD[31:0]	0	写入GRF的数据

选择	功能
000	M级写入寄存器的数据
001	DMOUT

ALUBMUX

信号名	方向	描述
ALUBOP[2:0]	I	控制信号
rt[31:0]	I	转发后RT寄存器的值
IMM16[31:0]	I	经过EXT扩展后的16位立即数
ALUB[31:0]	0	ALUB的输入

选择	功能
000	rt
001	imm16(I型指令)

DMMUX

信号名	方向	描述
DMWE	I	是否要写
Addr[1:0]	1	地址低两位
DMMUXOP	1	sw sb sh的选择
DMOP[3:0]	0	输出到DM的写使能

选择	功能
000	SW
001	sb
010	sh

EXTDMMUX

信号名	方向	描述
Addr[1:0]	1	地址低两位
DataFromDM[31:0]	1	从DM读出的数据
EXTDMOP[2:0]	I	数据扩展选择信号
Dout[31:0]	0	扩展后的数据

000: 无扩展

001: 无符号字节数据扩展010: 符号字节数据扩展011: 无符号半字数据扩展100: 符号半字数据扩展

7. DM

信号名	方向	描述
DMOP[2:0]	I	写入数据方式选择
Address[31:0]	I	数据存储地址
Input[31:0]	I	输入数据
clk	I	全局时钟
Reset	I	同步清零
DMWE	I	写使能
PC[31:0]	I	рс
Data[31:0]	0	输出数据

选择	功能
000	32imm
001	sb8位

8. EXT

信号名	方向	描述
EXTOP[2:0]	I	选择信号
imm16[15:0]	I	16位立即数
shamt[4:0]	I	5位立即数
extout[31:0]	0	输出

选择	功能
00	符号扩展16-32
01	无符号扩展16-32

9. IFU(分为PC和IM)

PC

信号名	方向	描述
npc[31:0]	I	下个PC值
reset	I	同步复位至0×0000_3000
clk	I	时钟
pc[31:0]	0	当前PC

IM

信号名	方向	描述
Addr[23:0]	I	当前指令地址
instr[31:0]	0	当前指令

9.流水线寄存器

```
module PipeD (
   input clk,
   input reset,
   input stall,
   input [31:0] InstrInF,
   input [31:0] PCA4F,
   input [31:0] PCF,
   output reg [31:0] PCD,
   output reg [31:0] PCA4D,
   output reg [31:0] InstrInD
);
```

```
module PipeE (
   input clk,
   input reset,
   input [31:0] PCD,
   input [31:0] InstrD,
   input RFWEInD,
   input DMWEInD,
   input [4:0] A3InD,
   input [31:0] IMM16EXTD,
   input [2:0] TnewEinD,
   input [2:0] RFWDMUXIND,
   input [2:0] ALUBMUXIND,
   input [3:0] ALUOPIND,
   input [1:0] EXTOPIND,
```

```
input [2:0] DMOPIND,
    input [31:0] RsInD,
    input [31:0] RtInD,
    input [2:0] EXTDMOPIND,
    input [2:0] SELOPIND,
    input [3:0] MADOPD,
    input condWinD,
    output reg [31:0] PCE,
    output reg [31:0] InstrE,
    output reg RFWEInE,
    output reg DMWEInE,
    output reg [4:0] A3InE,
    output reg [31:0] IMM16EXTE,
    output reg [2:0] TnewE,
    output reg [2:0] RFWDMUXINE,
    output reg [2:0] ALUBMUXINE,
    output reg [3:0] ALUOPINE,
    output reg [1:0] EXTOPINE,
    output reg [2:0] DMOPINE,
    output reg [31:0] RsInE,
    output reg [31:0] RtInE,
    output reg [2:0] EXTDMOPINE,
    output reg [2:0] SELOPINE,
    output reg [3:0] MADOPE,
    output reg condWinE
);
```

```
module PipeM (
    input clk,
   input reset,
    input [31:0] PCE,
   input [31:0] InstrE,
   input RFWEInE,
    input DMWEInE,
    input [4:0] A3InE,
    input [2:0] TnewE,
    input [2:0] RFWDMUXINE,
    input [2:0] DMOPINE,
    input [31:0] RtFromE,
    input [31:0] ALUOUTINE,
    input [2:0] EXTDMOPINE,
    input [31:0] DATATOGRFINE,
    input condWinE,
   output reg [31:0] PCM,
   output reg [31:0] InstrM,
    output reg RFWEInM,
   output reg DMWEInM,
   output reg [4:0] A3InM,
   output reg [2:0] TnewM,
   output reg [2:0] RFWDMUXINM,
   output reg [2:0] DMOPINM,
   output reg [31:0] RtInM,
    output reg [31:0] ALUOUTINM,
   output reg [2:0] EXTDMOPINM,
    output reg [31:0] DATATOGRFINM,
```

```
output reg condWinM
);
```

```
module PipeW (
    input clk,
    input reset,
    input [31:0] PCM,
    input [31:0] InstrM,
    input RFWEInM,
    input [4:0] A3InM,
    input [2:0] RFWDMUXINM,
    input [31:0] ALUOUTINM,
    input [31:0] DMOUTM,
    input [31:0] DATATOGRFINM,
    output reg [31:0] PCW,
    output reg [31:0] InstrW,
   output reg RFWEInW,
    output reg [4:0] A3InW,
    output reg [2:0] RFWDMUXINW,
    output reg [31:0] ALUOUTINW,
    output reg [31:0] DMOUTW,
    output reg [31:0] DATATOGRFINW
);
```

10.转发Mux

(三) 重要机制实现方法

1. 跳转

NPC模块在D级传递给CMP和NPC控制信号,CMP控制B类指令的Zero信号,CMPOP控制CMP判断的是哪条B指令的Zero,Zero信号传递到NPC中协同B指令跳转。NPC信号选择是什么类型的跳转,类型有J(跳26imm),JR(跳转发后的Rs,无转发视为原地转发),B(跳imm16,zero判断是否跳),和F级PC+4.

2. 流水线延迟槽

跳转指令在D级时,PC+4的指令在F级,跳转指令只更新PC值,PC+4指令进入D级,该指令即为延迟槽。同时JAL应用PC+8写入\$31

3. 转发和暂停

在D级的CTRL模块对D级指令进行AT译码,将TuseRs和TuseRt和A3D送入转发暂停单元.

```
module FWandSCTRL(
  input [4:0] A1D,
  input [4:0] A2D,
  input [4:0] A1E,
  input [4:0] A2E,
  input [4:0] A2M,
  input [4:0] A3M,
  input [4:0] A3M,
  input [4:0] A3W,
  input [4:0] A3W,
  input WEE,
  input WEM,
  input WEW,
  input [2:0] TuseRs,
```

```
input [2:0] TuseRt,
    input [2:0] TnewE,
    input [2:0] TnewM,
   output [2:0] FWCMPRS,
   output [2:0] FWCMPRT,
   output [2:0] FWALURS,
   output [2:0] FWALURT,
   output [2:0] FWDMRT,
   output Stall
   ); // FW
   //FWCMP
   assign FWCMPRS = (A1D==A3M && WEM && A3M)? CMPFROMM:
                     (A1D==A3W && WEW && A3W)? CMPFROMW: CMPFROMD;
    assign FWCMPRT = (A2D==A3M && WEM && A3M)? CMPFROMM:
                     (A2D==A3W && WEW && A3W)? CMPFROMW: CMPFROMD;
    //FWALURS
    assign FWALURS = (A1E==A3M && WEM && A3M)? `ALUFROMM:
                     (A1E==A3W && WEW && A3W)? ALUFROMW: ALUFROME;
    assign FWALURT = (A2E==A3M && WEM && A3M)? ALUFROMM:
                     (A2E==A3W && WEW && A3W)? ALUFROMW: ALUFROME;
    //FWDMRT
   assign FWDMRT = (A2M == A3W \&\& WEW \&\& A3W)?1:0;
   //stall
   wire StallRsE,StallRsM,StallRtE,StallRtM;
   assign StallRsE = (TuseRs<TnewE) && (A1D) && (A1D==A3E) &&WEE;
   assign StallRsM = (TuseRs<TnewM) && (A1D) && (A1D==A3M) && WEM;
   assign StallRtE = (TuseRt<TnewE) && (A2D) && (A2D==A3E) && WEE;
   assign StallRtM = (TuseRt<TnewM) && (A2D) && (A2D==A3M) && WEM;
    assign Stall = StallRsE|StallRsM|StallRtE|StallRtM;
endmodule
```

根据DEMW级的A1A2A3和WE信号转发,通过Tuse和Tnew控制暂停

二、测试方案

(一) 典型测试样例

```
ori $28, 0
ori $29, 0

#data
li $8, 1
li $9, 11
li $10, 111
li $11, 1111
li $12, 11111
li $13, 111111
li $14, 1111111
li $15, 11111111

##addr
```

```
ori $16, 0
ori $17, 20
ori $18, 40
ori $19, 60
ori $20, 80
ori $21, 100
sw $8, 0($16)
sw $9, 4($16)
sw $10, 8($16)
sw $11, 12($16)
sw $12, 16($16)
sw $13, 20($16)
sw $14, 24($16)
sw $15, 28($16)
##zhuanfa
## 1
Tw $1, 0($16)
sw $1, 8($17)
nop
## 2
lw $2, 4($16)
addu $10, $10, $11
sw $2, 0($18)
# 3
addu $1, $3, $4
subu $2, $4, $3
ori $3, 151
sw $1, 16($16)
#stall
#4
ori $4, 4
sw $4, 0($0)
nop
nop
nop
##
lw $17, 0($0)
sw $4, 0($17)
##
#5
addu $7, $8, $9
##
addu $6, $8, $9
beq $6, $7, branch1
##
subu $3, $14, $15
nop
ori $25, 56
branch1:
#6
jal branch2
addu $31, $31, $31
#
nop
branch2:
subu $31, $31, $26
ori $31, 0x30e8
nop
```

```
nop
nop
nop
##

lw $4, 0($0)
beq $6, $4, branch2
##
nop
lw $4, 0($0)
ori $1, 0
beq $6, $4, branch2
```

```
li $1, 848
li $2, 8481
li $3, 447
li $4, 4878
li $5, 4876
li $6, 8979
li $7, 9741
li $8, 4871
li $9, 1409
li $10, 454
li $11, 47
li $12, 4721
li $13, 48787
li $14, 5989
li $15, 5987
li $16, 487
li $17, 5978
li $18, 47
li $19, 2021
li $20, 497
li $21, 587
li $22, 48
li $23, 488
1i $24, 878
li $25, 487
li $26, 87
li $27, 481
1i $28, 484
li $29, 4184
1i $30, 48
li $31, 878
sb $1, 0($0)
sb $2, 1($0)
sb $3, 2($0)
sb $4, 3($0)
1h $4, 2($0)
sw $4, 0($0)
sh $5, 2($0)
sh $6, 4($0)
sh $7, 6($0)
1b $7, 5($0)
1b $7, 6($0)
1b $7, 7($0)
1b $8, 4($0)
sh $7, 6($0)
```

```
1bu $7, 5($0)
1bu $7, 6($0)
1bu $7, 7($0)
1bu $8, 4($0)
1hu $8, 6($0)
jal ddd
add $31, $1, $2
addi $15, $15, 1
sw $31, 8($0)
jal d1
sw $31, 12($0)
lw $31, 0($0)
d1:
beq $31, $0,d2
li $31, 2
addi $31, $31, 5
d2:
li $31, 0
```

(二) 自动测试工具

讨论区

三、思考题

为什么需要有单独的乘除法部件而不是整合进 ALU? 为何需要有独立的 HI、LO 寄存器?

答:乘除法速度十分慢,如果放在ALU,则在执行乘法时其他指令都会被阻塞在D级,降低流水线速度。 将HI LO从32个寄存器独立出来,大大降低了其他指令与乘除法间的冲突,提高了流水线的速度。同时 HI LO正好两个也符合32位乘法与除法的计算(乘法最多64位,除法有余数和商)。

2. 参照你对延迟槽的理解, 试解释"乘除槽"

答:乘除槽的作用与延迟槽一样,在将乘除指令传入E级时默认将下一条指令传入D级,如果是与HI LO有 关的指令就将D级指令暂停,否则继续传递,这条指令就是乘除槽,可以利用编译调度插入合适的指 令,提高流水线速度。

3.举例说明并分析何时按字节访问内存相对于按字访问内存性能上更有优势。 (Hint: 考虑 C 语言中字符串的情况)

答:如果我要存一个字节,而只能按字访问,则一个字节需要一个字的空间来存储,这样存储同样的字节,按字访问比按字节访问所需空间多了四倍。如果按字存储需要模拟按字节存储,则需要取字,将字的某个字节换为存储字节,再将字存到原来位置,操作麻烦。

为了对抗复杂性你采取了哪些抽象和规范手段?这些手段在译码和处理数据冲突的 时候有什么样的特点与帮助?

答:将指令大致分为计算,跳转,访存三类。其中计算又分为R和I类指令,填写真值表时按一类指令填写,然后再按一类指令添加。由于计算类指令的Tuse和Tnew几乎都相同,所以处理数据冲突填写T译码时按计算,访存,跳转来一类类填写。

在本实验中你遇到了哪些不同指令类型组合产生的冲突? 你又是如何解决的? 相应的测试样例是什么样的?


```
store类 $1, x($y)
上述W级向M级转发
2.
load类 $1, x($y)

XXXXX

store类 $1, x($y)

上述流水线寄存器同步转发信息
3.
运算类 $1, $x, $y

XXXXX

XXXXX

Store类 $1, x($y)

上述GRF内部转发

测试用例见上

通过Tuse/Tnew矩阵可以将冲突指令分类,然后一类一类构造
```