

The power of Advanced Process Modelling

Nicolas Descoins – BlueWatt Mark Matzopoulos - PSE

Presentation Outline

- What is a Waste Water Treatment Plant (WWTP) ?
- How can first-principle modelling (FPM) improve the operation of plants
- Example : model-based energy audit and retro-fit of a biofiltration process
- Technology trends in water industry and influence of emerging environmental laws
- Conclusions

Urban WWTP overview

Municipal Water treatment consists in 4 major steps:

1 – Primary treatments :

Separate oil and particles from water

2 – Biological treatments :

Remove dissolved pollution from water (Carbon, Nitrogen, Phosphorus)

3 – Secondary separation :

Remove growing bacteria from water

4 – Sludge disposal :

Anaerobic digestion of sludge, dewatering/drying,...

Microbial activity in Bio-degradable Water

Two main consortium of bacteria are naturally active in waste water

Nitrification

Heterotrophs:

C-removal + De-nitrification

$$O_2$$
, NO_3 , $C_{substrate}$
 \downarrow
 X_h
 \downarrow
 N_2 , CO_2

$$NH_4^+ + 1.86O_2^- + ... \rightarrow 0.02X_a^- + 0.98NO_3^- + ...$$

$$0.65C_{substrate} + 4.89 NO_3^- + ... \rightarrow X_h + 2.27 N_2 + ...$$

Autotrophs requires oxygen to grow

Heterotrophs can use oxygen or nitrate to grow

The level of dissolved oxygen (with the nitrate concentration) in the reactors is a way to control the activity of bacteria.

Electricity costs for Urban Water Treatment

Microbial activity is the "engine" of water purification

Aeration is 60 to 80 % of the total electricity bill of a plant

is the "fuel" of aerobic processes.

- Switzerland total WWTP electricity: 400 GWh/year
- Represent almost 15 % of the total electricity bill of a city
- Most of the plants operate at sub-optimal conditions

BlueWatt ENGINEERING A member of the PSE Group

Model-based support to plant operation

- Can deal with hydrodynamic and load typical variations
- Can deal with temperature effects
- Well suited technology for attached biomass processes (biofilm)
- Predictive capabilities : can deal with various time scales

gWATER Modeling Framework

Example: optimization of bio-filtration

Energy audit and aeration control system retro-fit

Physical phenomena involved in Bio-filtration

Biofor® Process (Degremont)

- Fluid mechanics: Two-phase flow trough a porous media
- Mass transfer phenomena: Gas/Liquid and Biofilm/Liquid
- Suspended Solids retention through the media
- Waste Water Microbial Biology modelling: IWA models
- Fully Dynamic process : progressive fouling, periodic backwashes

Modelling approach : Gas / Liquid / Biofilm

Some constitutive equations solved by gPROMS:

1D transport equations in a Packed Bed

$$\frac{\partial(\varepsilon C)}{\partial t} + u \frac{\partial C}{\partial z} = \frac{\partial}{\partial z} \left(\varepsilon K \frac{\partial C}{\partial z} \right) + \dot{r_{gl}} - \dot{r_{bl}}$$

1D transport equations in a flat Biofilm

$$\frac{\partial(S)}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial S}{\partial x} \right) + \dot{r_{bl}} + \dot{\theta}_{bio}$$

$$\frac{\partial(X)}{\partial t} + \frac{\partial(u_{bio}X)}{\partial x} = -\dot{\theta}_{bio}$$

A-BAF model

A mean transversal representation

- Gas / Liquid mass transfer via an experimental law
- Biological model (IWA ASM1 model)
- 1D growing Biofilm model (IWA model)
- Kozeny-Carmann equation for head losses
- Boundary layer modelling for liquid / biofilm transfer
- 1D Filtration equation
- Theorical model for filtration coefficient

2 stage bio-filtration process: Bacteria competition

Dissolved Carbon-Nitrogen profiles inside biofilter

Most of the physical variables involved in bio-filtration and associated dynamics are accessible :

Valuable research and engineering tool

Bio-filtration modelling accuracy in literature

BioStyr® Modelling vs experiments on a pilot in the literature

RUN 1: Observed versus Predicted nitrification performance

A good calibration procedure can lead to accurate predictions of nitrogen removal in the pilot

Two parameters are crucial:

Biofilm Specific Surface Biofilm Density

Results reproduced from E. Vigne phD

Example of calibration results on a real plant

	TSS (mg/l)	COD (mg/l)	N-NH₄ (mg-N/l)	N-NO_x (mg/l)	P _{tot} (mg-P/I)
Model results Stage 1 (measurements not yet available)	28.8*	49.3	6.7*	50.1	1.1
Models results Stage 2	7.9	24.5	0.4	56.3	0.9
Measurements (mean 2012)	7.0	25.0	0.4	59.0	0.5

Optimal aerations rates: control retro-fit

Water Quality constraints

- No constraint on Nitrate (no De-Nitrification)
- COD removal > 90 %
- TSS removal > 90 %
- $NH_{4} < 1.5 \text{ mgN/l}$

The objective is to determine what could be improved regarding the aeration control strategy

Decision variables

The set-point of the existing control system is set as a decision variable

Minimize electricity consumed by compression

First results: Minimal electricity consumption

Autotrophs bacteria growth rate is strongly affected by temperature for temperature below 15° C

The water temperature seems to have a strong effect on global biological performances

Depending on the existing control system,

Up to 40 % electricity savings are possible

First results: Optimal values for aerations rates

FPM combined with optimizations allow to determine optimal values for aerations rates.

Trends in Water Treatment industry

Current situation

Less space available in cities

More compact processes

Bio-filtration (BAF)
Moving bed biofilm reactor (MBBR)
Membranes biological reactors (MBR)
Sequential Batch reactor (SBR)

New legislations for water protection

New treatments and technologies

Ozonation
Active carbon
Micro-filtration
Hydrothermal gasification
Bio-plastic production

•••

Future: +20 - 50 % electricity for water treatment

The link between energy and the water cycle

Water is needed for energy production....

«Thirsty energy» WorldBank.org

... and energy is needed for water treatment.

Water Treatment is a crucial stage.

Thank you for your attention

Questions?

