Planificación de tareas

Miguel Ángel Dorado Maldonado

miguelangeldorado10@uma.es TCIS. Universidad de Málaga.

1 Un proyecto viene especificado por el siguiente orden de precedencia de sus actividades:

$$\begin{split} B &\longrightarrow C \\ A, B &\longrightarrow D \\ C, D &\longrightarrow E \\ A, B &\longrightarrow F \\ F &\longrightarrow G \\ E, G &\longrightarrow H \\ H &\longrightarrow I \end{split}$$

a) Realice un diagrama con la programación de las actividades.

Fig. 1. Diagrama de precedencia de actividades

b) Suponga el siguiente cuadro de duraciones para cada actividad.

Actividad	\overline{A}	B	C	D	E	F	G	Н	Ι
Duración (días)	3	1	2	1	10	2	8	6	3

Determine la duración del proyecto y su camino crítico.

Fig. 2. Diagrama de precedencia de actividades con duración

Conocidos los tiempos de duración de cada actividad, se calcula el camino crítico y la duración del proyecto por el método CPM. Para ello se calculan los tiempos de inicio early (E_i) y late (L_i) de cada actividad.

t	E_i	L_i
1	0	0
2 3	1	2
3	3	3
4	4	4
5	5	6
6	14	14
7	20	20
8	23	23

Una vez calculados estos tiempos, es necesario obtener los tiempos de holgura para encontrar el camino crítico. La holgura (H_{ij}) se calcula como L_j - E_i - D_{ij} , donde L_j es el tiempo de terminación más tardío de la actividad, E_i es el tiempo de inicio más temprano de la actividad y D_{ij} es la duración de la actividad. R_{ij} representa los nodos que representan inicio y fin de la actividad.

Tarea	R_{ij}	D_{ij}	E_i	L_j	H_{ij}	Crítico
A	$1 \longrightarrow 3$	3	0	3	0	X
В	$1 \longrightarrow 2$	1	0	2	1	
C	$2 \longrightarrow 4$	2	1	4	1	
D	$3 \longrightarrow 4$	1	3	4	0	X
E	$4 \longrightarrow 6$	10	4	14	0	X
F	$3 \longrightarrow 5$	2	3	6	1	
G	$5 \longrightarrow 6$	8	5	14	1	
Н	$6 \longrightarrow 7$	6	14	20	0	X
I	$7 \longrightarrow 8$	3	20	23	0	X

De esta forma se obtiene que el camino crítico es aquel cuyos valores de holgura sea 0. Por tanto, el camino crítico es $A \longrightarrow D \longrightarrow E \longrightarrow H \longrightarrow I$ y la duración del proyecto es de 23 días.

c) Obtenga el diagrama de Gantt.

2 Considere el proyecto que viene determinado por el siguiente diagrama con la programación de sus actividades.

 ${\bf Fig.\,3.}$ Diagrama de precedencia de actividades

a) Suponga el siguiente cuadro de duraciones para cada actividad.

Actividad		A	B	C	\overline{D}	E
Duración	(días)	3	4	2	6	3

Determine la duración del proyecto y su camino crítico.

Fig. 4. Diagrama de precedencia de actividades con duración

Se calcula la tabla de tiempos de inicio early (E_i) y late (L_i) de cada actividad.

t	E_i	L_i
1	0	0
$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	3	4
3	2 8	2 8
4	8	8
5	11	11

b) Suponga que no se conoce la duración de las actividades de forma determinista pero se estiman los siguientes tiempos optimista (t_o) , más probable (t_m) y pesimista (t_p) .

Actividad	t_o	t_m	t_p
A	2	5	8
В	1	4	6
C	2	2	3
D	4	6	9
E	3	5	7

Determine la duración estimada del proyecto y su varianza, así como su camino crítico.

3 La realización de un proyecto viene especificado por el siguiente orden de las actividades:

$$A \longrightarrow C$$

$$B, C \longrightarrow E$$

$$D \longrightarrow F$$

La duración de las actividades no se conoce de forma determinista pero se estiman los siguientes tiempos optimista, medio y pesimista. Determine la duración estimada del proyecto y su varianza.

Actividad	t_o	t_m	t_p
A	3	5	10
В	2	4	6
C	2	2	2
D	4	7	9
\mathbf{E}	4	5	7
F	3	6	10