Chapitre 33

Groupe Symétrique

1 Permutations

Définition 1

Une bijection de [1, n] dans lui-même est appelée une **permutation** de [1, n]. L'ensemble des permutations de [1, n] sera noté S_n .

Exemple 2

Soient

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix} \quad \text{ et } \quad \sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$$

Calculer $\sigma\sigma'$, $\sigma'\sigma$, σ^2 et σ^{-1} .

Preuve:

On a:

$$\sigma\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix} \qquad \qquad \sigma'\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$$
$$\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix} \qquad \qquad \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{pmatrix}$$

Proposition 3

- 1. (S_n, \circ) est une groupe, appelé **groupe symétrique**.
- 2. S_n est fini et son cardinal vaut n!.
- 3. Ce groupe n'est pas abélien dès que $n \geq 3$.

Preuve:

- 3. S_3 n'est pas abélien car $\tau := \dots$ et $\tau' = \dots$ ne commutent pas. Soient $\sigma, \sigma' \in S_n \mid \sigma_{|\{1,2,3\}} = \tau$ et $\sigma'_{|\{1,2,3\}} = \tau'$, fixes sur $[\![4,n]\!]$, alors $\sigma\sigma' \neq \sigma'\sigma$.

Définition 4: Vocabulaire

Soit $\sigma \in S_n$.

- 1. Si $x \in [1, n]$, l'ensemble $\{\sigma^k(x), k \in \mathbb{Z}\}$ est appelé **orbite** de x.
- 2. On dit que x est un **point fixe** de σ si $\sigma(x) = x$.
- 3. On appelle **support** de σ l'ensemble des éléments de [1, n] qui ne sont pas des points fixes.
- 4. Deux permutations σ et σ' sont dites **conjuguées** s'il existe $\alpha \in S_n$ tel que $\sigma' = \alpha \sigma \alpha^{-1}$.

Proposition 5

Deux permutations dont les supports sont disjoints commutent.

Preuve:

Soient $\sigma, \sigma' \in S_n$. On note $S(\sigma) = \{x \in [1, n] \mid \sigma(x) \neq x\}$.

Supposons $S(\sigma) \cap S(\sigma') = \emptyset$.

Soit $x \in [1, n]$.

- \odot Si $x \in S(\sigma)$: $x \notin S(\sigma')$ donc $\sigma \sigma'(x) = \sigma(x) \in S(\sigma)$ par bijectivité de σ .
- \odot Si $x \notin S(\sigma)$: Soit $x \in S(\sigma')$ et on se ramène au 1er cas, soit $x \notin S(\sigma')$ et $\sigma \sigma'(x) = x = \sigma' \sigma(x)$.

Dans tous les cas, $\sigma \sigma'(x) = \sigma' \sigma(x)$

2 Cycles.

Définition 6

Soit p un entier supérieur à 2.

Une permutation γ est appellée un p-cycle s'il existe p éléments distincts $a_1, ..., a_p$ de [1, n] tels que

$$a_1 \xrightarrow{\gamma} a_2 \xrightarrow{\gamma} \dots \xrightarrow{\gamma} a_p \xrightarrow{\gamma} a_1.$$
 et $\forall b \in [1, n] \setminus \{a_1, ..., a_p\} \ \gamma(b) = b.$

On note alors $\gamma = (a_1 \ a_2 \dots a_p)$.

Exemple 7: Conjugué d'un cycle

Soit $\gamma = (a_1, ..., a_p)$ un p-cycle et $\sigma \in S_n$. Montrer que

$$\sigma \gamma \sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \ \sigma(a_p)).$$

Preuve:

Soit $b \in [1, n] \setminus {\sigma(a_1), ..., \sigma(a_p)}$.

Alors $\sigma \gamma \sigma^{-1}(b) = \sigma \gamma(\sigma^{-1}(b)) = \sigma \sigma^{-1}(b) = b$ car $b \notin \{\sigma(a_1), ..., \sigma(a_p)\}$ donc $\sigma^{-1}(b) \notin \{a_1, ..., a_p\}$ donc c'est un point fixe de γ .

Soit $j \in [1, p]$.

Alors $\sigma \gamma \sigma^{-1}(\sigma(a_j)) = \sigma \gamma(a_j) = \sigma(a_{j+1})$ avec $a_{p+1} := a_1$.

On a bien que $\sigma \gamma \sigma^{-1}$ et $(\sigma(a_1)...\sigma(a_p))$ sont égaux en tout point.

Remarque: Ceci démontre que tous les p-cycles sont conjugués.

Soient $\gamma = (a_1 \dots a_p)$ et $\gamma' = (b_1 \dots b_p)$ deux p-cycles.

Posons $\sigma \in S_n$ telle que :

- $\forall j \in [1, p] \ \sigma(a_j) = b_j$.
- Notons $[\![1,n]\!]\setminus\{a_1,...,a_p\}:=\{a_1',...,a_{n-p}'\}$ et $[\![1,n]\!]\setminus\{b_1,...b_p\}:=\{b_1',...,b_{n-p}'\}$.

On pose alors $\forall i \in [1, n - p] \ \sigma(a'_i) = b'_i$.

Alors σ est bien une bijection de $\llbracket 1, n \rrbracket$ dans lui-même car injective et de même cardinal.

On a donc $\gamma' = (b_1 \dots b_p) = (\sigma(a_1) \dots \sigma(a_p)) = \sigma \gamma \sigma^{-1}$ donc γ et γ' sont conjugués.

Exemple 8: Calculs sur un cycle

Soit $\gamma = (a_1 \dots a_p)$. Déterminer γ^{-1} et γ^p .

Preuve:

La réciproque γ^{-1} :

Si $\gamma(b) = b$ alors $\gamma^{-1}(b) = b$ car c'est un point fixe.

Soit $j \in [1, p-1]$, $\gamma(a_j) = a_{j+1}$ donc $a_j = \gamma^{-1}(a_{j+1})$.

Alors $\forall k \in [2, p], \ \gamma^{-1}(a_k) = a_{k-1}, \ \text{et} \ \gamma^{-1}(a_1) = a_p.$

Ainsi, $\gamma^{-1} = (a_p \ a_{p-1} \dots a_2 \ a_1).$

La puissance γ^p :

On a $\gamma = (a, \gamma(a), ..., \gamma^{p-1}(a))$ pour un $a \in [1, n]$.

 \circ $\gamma^p(a) = \gamma(\gamma^{p-1}(a)) = a.$

 \odot Soit $j \in [1, p-1], \gamma^p(\gamma^j(a)) = \gamma^j(\gamma^p(a)) = \gamma^j(a).$

 \odot Soit $b \in [1, n] \setminus \{a, \gamma(a), ..., \gamma^{p-1}(a)\}$, alors $\gamma^p(b) = b$ car point fixe.

Ainsi, $\forall x \in [1, n]$, $\gamma^p(x) = x$ donc $\gamma^p = id$.

Remarque: On pourrait aussi prouver que $p = \min\{j \in \mathbb{N}^* \mid \gamma^j = \mathrm{id}\}.$

3 Transpositions

Définition 9

Une permutation τ qui est un 2-cycle est appelé une **transposition**.

Une transposition est donc une permutation de la forme (a,b) où $\{a,b\}$ est une paire de [1,n].

Proposition 10: Involutivité

Si τ est une transposition, alors

$$\tau^2 = id$$
 et $\tau^{-1} = \tau$

Preuve:

C'est un 2-cycle donc $\tau^2 = id$. On en déduit que $\tau^{-1} = \tau$.

Proposition 11: Décomposition d'un cycle en produit de transpositions

Soit $\gamma = (a_1 \dots a_p)$. Alors

$$\gamma = (a_1 \ a_2)(a_2 \ a_3)...(a_{p-1} \ a_p)$$
 ou $\gamma = (a_1 \ a_p)(a_1 \ a_{p-1})...(a_1 \ a_2)$

Preuve:

Notons $\pi = (a_1 \ a_2)(a_2 \ a_3)...(a_{p-1} \ a_p)$. Montrons que $\gamma = \pi$.

⊙ Soit $b \in [1, n] \setminus \{a_1, ..., a_p\}$: $\gamma(b) = b$ et $\forall j \in [1, p - 1]$, $(a_j \ a_{j+1})(b) = b$ car $b \notin \{a_j, a_{j+1}\}$. Alors $\gamma(b) = \pi(b) = b$.

 $\odot \text{ Soit } j \in \llbracket 1, p-1 \rrbracket. \text{ Alors } \pi(a_j) = \left[...(a_{j-1} \ a_j)(a_j \ a_{j+1})... \right] (a_j) = \left[...(a_{j-1} \ a_j) \right] (a_{j+1}) = a_{j+1}.$

Donc $\forall x \in [1, n] \ \gamma(x) = \pi(x)$

Remarque: On retrouve que $(1\ 2)(2\ 3) = (1\ 2\ 3)$ et $(2\ 3)(1\ 2) = (3\ 2)(2\ 1) = (3\ 2\ 1) = (1\ 3\ 2)$ On a $(1\ 2)(2\ 3) \neq (2\ 3)(1\ 2)$.

4 Théorème de décomposition.

Théorème 12: Décomposition en produit de cycles à supports disjoints

Soit $\sigma \in S_n$. Il existe $\gamma_1, ..., \gamma_r$ r cycles à supports disjoints tels que

$$\sigma = \gamma_1 \gamma_2 ... \gamma_r.$$

Les γ_i commutent et cette décomposition est unique à l'ordre près.

Preuve:

Soit $\sigma \in S_n$.

Une relation d'équivalence sur [1, n].

Pour $i, j \in [1, n]$, on note $i \sim j$ si $\exists k \in \mathbb{Z} \mid j = \sigma^k(i)$.

- \odot Soit $i \in [1, n]$. $i = \sigma^0(i)$ donc $i \sim i$.
- \odot Soient $i, j \in [1, n] \mid i \sim j$. Alors $\exists k \in \mathbb{Z} \mid j = \sigma^k(i) : i = \sigma^{-k}(j)$ et $j \sim i$.
- © Soient $h, i, j \in \llbracket 1, n \rrbracket \mid h \sim i$ et $i \sim j : \exists k, l \in \mathbb{Z} \mid i = \sigma^k(h)$ et $j = \sigma^l(i)$ donc $j = \sigma^{l+k}(h)$ et $j \sim h$.

Il existe alors une partition de [1, n] en classes d'équivalences.

On fixe $x \in [1, n]$.

Prouvons qu'il existe $p \in \mathbb{N}^*$ tel que $[x] = \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$

On pose $p = \min\{k \in \mathbb{N}^* \mid \sigma^k(x) = x\}$. Cet ensemble est minoré. Il est non-vide car :

$$S: \begin{cases} \mathbb{Z} \to \llbracket 1, n \rrbracket \\ k \mapsto \sigma^k(x) \end{cases}$$
 n'est pas injective.

Ainsi, $\exists k, k' \in \mathbb{Z} \mid k < k' \text{ et } \sigma^k(x) = \sigma^{k'}(x) \text{ donc } \sigma^{k'-k}(x) = x.$

Or $k' - k \in \mathbb{N}^*$, donc $\{k \in \mathbb{N}^* \mid \sigma^k(x) = x\} \neq \emptyset$.

Il faut montrer que $[x] = \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$

 \supset est trivial.

Par division euclidienne : $\exists ! (q,r) \in \mathbb{Z}^2 \mid k = qp + r \text{ et } 0 \le r \le p - 1.$

Donc $y = \sigma^k(x) = \sigma^{pq+r}(x) = \sigma^r(\sigma^{pq}(x)) = \sigma^r(x) : y \in \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$

Notons $A_1, ..., A_r$ les classes d'équivalences non triviales de \sim . On a prouvé que :

$$\forall j \in [1, r] \ \exists x_j \in [1, n] \ \exists p_j \in \mathbb{N}^* \mid A_j = \{x_j, \sigma(x_j), ..., \sigma^{p_j - 1}(x_j)\}.$$

On pose alors $\gamma_j = (x_j \ \sigma(x_j) \ ... \ \sigma^{p_j-1}(x_j))$, il est clair que $\sigma = \gamma_1 \gamma_2 ... \gamma_r$.

Exemple 13: Une décomposition

Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 1 & 7 & 8 & 6 & 2 & 3 \end{pmatrix}$$
.

1. Décomposer σ en produit de cycles à supports disjoints.

2. Déterminer σ^4 , σ^{12} et σ^{666} .

Preuve:

$$\boxed{1.} \ \sigma = (1\ 5\ 8\ 3)(2\ 4\ 7)$$

$$\begin{array}{l} 2. \\ \odot \ \sigma^4 = (\gamma_1 \gamma_2)^4 \underset{\text{comm}}{=} \ \gamma_1^4 \gamma_2^4 = \gamma_2 \ \text{car} \ \gamma_1^4 = \text{id et} \ \gamma_2^4 = \gamma_2^3 \gamma_2 = \gamma_2. \\ \odot \ \sigma^{12} = (\gamma_1^4)^3 (\gamma_2^3)^4 = \text{id} \\ \odot \ \sigma^{666} = (1 \ 8)(3 \ 5) \ \text{car} \ \sigma^{666} = \sigma^{12 \times 55} \sigma^6. \\ \end{array}$$

$$\circ \sigma^{12} = (\gamma_1^4)^3 (\gamma_2^3)^4 = id$$

$$\circ \sigma^{666} = (1\ 8)(3\ 5) \text{ car } \sigma^{666} = \sigma^{12 \times 55} \sigma^{6}.$$