

SMART WASTE MANAGEMENT SYSTEM

NTI -DEY(March 2023)

Under supervision

Dr. Mohamed

Dr. Eman Sayed

Team Members

Sarah Alaa Maryam Sameh Aya Abaas Yasmin Mohamed

INTRODUCTON

- A smart city is a interconnected system that applies new technologies to manage a wide variety of city services more efficiently.
- Therefore, we do this project.
- Smart bins are an intelligent waste management system.
- Recycling is the best way to manage waste that helps preserve natural resources and reduce environmental pollution
- One of the most important benefits of recycling is that it helps reduce the amount of waste that is stored in landfills.

IOT INTEGRATION

- Arduino uno
- Ultrasonic Sensor (HCSR04)
- LED
- Node-red
- HiveMQ server
- Arduino IDE
- Proteus 8 professional
- Sim900d (GSM Module)
- LCD

File Edit Sketch Tools Help Arduino Uno -√ .⊙.. sketch mar23a.ino const int trigPin = 12; //trig pin connection const int echoPin = 13; const int ledpin = 11; //echopin connection long duration; int distanceCm; int state = LOW; void setup() { Serial.begin(9600); pinMode (11 ,OUTPUT); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); 13 14 void loop() { 15 delayMicroseconds(2); 16 digitalWrite(trigPin, HIGH); 17 delayMicroseconds(10); 18 digitalWrite(trigPin, LOW); 19 duration = pulseIn(echoPin, HIGH); 20 distanceCm= duration*0.034/2; 21 // put your main code here, to run repeatedly: 22 if(Serial.available()){ 23 char cmd = Serial.read(); 24 if(cmd=='A'){ 25 digitalWrite(trigPin, LOW); 26 27 28 Serial.println(distanceCm); 29 30 **≡** 6 Output Compiling libraries... com is sharing your screen. Stop sharing rs\marya\AppData\Local\Temp\arduino\cores\arduino_avr_uno_9dc40fe23a197ebd51721ad4abbcd94f\core.a Linking everything together... Ln 11, Col 26 Arduino Uno [not connected] 🗘 1 🗖

3/23/2023

18°C

مشمس جزئیاً

Q Search

Introduction:

- Recycling is the best way to manage waste that helps preserve natural resources and reduce environmental pollution. Through recycling, we can save energy, prevent the depletion of natural resources, and reduce toxic gases released from waste burning.
- One of the most important benefits of recycling is that it helps reduce the
 amount of waste that is stored in landfills. Landfills pose a serious threat to
 the environment and public health. Recycling reduces the need for new
 landfills and helps preserve natural spaces, But due to the lack of recycling
 bins used in waste classification, the recycling process often takes a lot of
 time and effort to divide this waste.

Dataset Preparation:

We used Garbage classification dataset in Kaggle which contains 2527 images of garbage classified into 6 classes: (cardboard, glass, metal, paper, plastic, trash). Then to use it, resized the images into 224x224 to prepare the data. After that we split the data into train: test 60:40.

Models

- To improve the accuracy, we used 4 models to choose the best one (the highest accuracy):
- (VGG19, ResNet50V2, MobileNet, DenseNet169)
- Finally, we used DenseNet169 with accuracy 95.7%.

Our model:

1.DenseNet169 Model:

The model architecture depends on the blocks of residual, it contains convolution layer, maxpool layer, 4 dense blocks,3 transition layers (1 transition layer between the dense blocks) and fully connected layer

Layers	Output Size	DenseNet 169	
Convolution	112×112	7×7 conv, stride 2	
Pooling	56×56	3×3 max pool, stride 2	
Dense Block (1)	56×56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	
Transition	56×56	1×1 conv	
Layer (1)	28×28	2×2 average pool, stride 2	
Dense Block (2)	28×28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	
Transition Layer (2)	28×28	1×1 conv	
	14×14	2×2 average pool, stride 2	
Dense Block (3)	14×14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	
Transition	14×14	1×1 conv	
Layer (3)	7×7	2×2 average pool, stride 2	
Dense Block (4)	7×7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	
Classiciantian	1×1	7×7 global average pool	
Classification Layer	1000	1000D fully-connected, softmax	

Model in details:

VGG19 Model:

Resnet50V2 Model:

MobileNet Model

This is a comparison of the models used in classification

models	accuracy	loss	Total Parameters	Trainable Parameters
DenseNet169	0.9574	0.1323	3,538,984	3,504,872
MobileNetV2	0.9347	0.1945	14,307,880	14,149,480
ResNet50V2	0.9159	0.298	25,613,800	25,568,360
VGG19	0.9238	0.4075	143,667,240	143,667,240

Results:

