Then, by setting $C_{00} = C_{11} = 0$, $C_{01} = 2$, and $C_{10} = 1$ in Eq. (8.19), the minimum Bayes' risk C^* can be expressed as a function of $P(H_0)$ as

$$C^*[P(H_0)] = P(H_0) \int_{-\delta}^{\delta} \frac{1}{2} e^{-|x|} dx + 2[1 - P(H_0)] \left[\int_{-\infty}^{-\delta} e^{2x} dx + \int_{\delta}^{\infty} e^{-2x} dx \right]$$

$$= P(H_0) \int_{0}^{\delta} e^{-x} dx + 4[1 - P(H_0)] \int_{\delta}^{\infty} e^{-2x} dx$$

$$= P(H_0)(1 - e^{-\delta}) + 2[1 - P(H_0)]e^{-2\delta}$$
(8.35)

From the definition of δ [Eq. (8.34)], we have

$$e^b = \frac{4[1 - P(H_0)]}{P(H_0)}$$

Thus

$$e^{-\delta} = \frac{P(H_0)}{4[1 - P(H_0)]}$$
 and $e^{-2\delta} = \frac{P^2(H_0)}{16[1 - P(H_0)]^2}$

Substituting these values into Eq. (8.35), we obtain

$$C^*[P(H_0)] = \frac{8P(H_0) - 9P^2(H_0)}{8[1 - P(H_0)]}$$

Now the value of $P(H_0)$ which maximizes C^* can be obtained by setting $dC^*[P(H_0)]/dP(H_0)$ equal to zero and solving for $P(H_0)$. The result yields $P(H_0) = \frac{2}{3}$. Substituting this value into Eq. (8.34), we obtain the following minimax test:

$$|x| \lesssim \ln \frac{4(1-\frac{2}{3})}{\frac{2}{3}} = \ln 2 = 0.69$$

8.13. Suppose that we have *n* observations X_i , i = 1, ..., n, of radar signals, and X_i are normal iid r.v.'s under each hypothesis. Under H_0 , X_i have mean μ_0 and variance σ^2 , while under H_1 , X_i have mean μ_1 and variance σ^2 , and $\mu_1 > \mu_0$. Determine the maximum likelihood test.

By Eq. (2.52) for each X_i , we have

$$f(x_i|H_0) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} (x_i - \mu_0)^2\right]$$
$$f(x_i|H_1) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} (x_i - \mu_1)^2\right]$$

Since the X_i are independent, we have

$$f(\mathbf{x} | H_0) = \prod_{i=1}^{n} f(x_i) H_0) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu_0)^2 \right]$$
$$f(\mathbf{x} | H_1) = \prod_{i=1}^{n} f(x_i | H_1) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu_1)^2 \right]$$

With $\mu_1 - \mu_0 > 0$, the likelihood ratio is then given by

$$\Lambda(\mathbf{x}) = \frac{f(\mathbf{x} \mid H_1)}{f(\mathbf{x} \mid H_0)} = \exp \left\{ \frac{1}{2\sigma^2} \left[\sum_{i=1}^{n} 2(\mu_1 - \mu_0) x_i - n(\mu_1^2 - \mu_0^2) \right] \right\}$$

Hence, the maximum likelihood test is given by

$$\exp\left\{\frac{1}{2\sigma^2}\left[\sum_{i=1}^n 2(\mu_1 - \mu_0)x_i - n(\mu_1^2 - \mu_0^2)\right]\right\} \underset{H_0}{\overset{H_1}{\geq}} 1$$