Semantic Data Modeling

Dominic Duggan
Stevens Institute of Technology
Based on material by
Dean Allemang, Grigoris Antoniou,
Frank van Harmelen and Jim Hendler

1

1

THE SEMANTIC WEB VISION

2

Semantic Web Enabled B2B Electronic Commerce

- Businesses enter partnerships
- Standard abstract domain models
- Translation services for data exchange
- Software agents:
 - Auctioning
 - Negotiations
 - Drafting contracts

3

3

Ontology

- Philosophy
 - The study of the nature of existence
- Computer Science
 - Explicit and formal specification of a conceptualization

4

Typical Components of Ontologies

- Terms denote important concepts
 - e.g. professors, staff, students, courses, departments
- Relationships between these terms
 - e.g. a class C is a subclass of another class C'
 - e.g. all professors are staff members

5

5

Example of a Class Hierarchy

6

Further Components of Ontologies

- Properties:
 - e.g. X teaches Y
- Value restrictions
 - e.g. only faculty members can teach courses
- Disjointness statements
 - e.g. faculty and general staff are disjoint
- · Logical relationships between objects
 - e.g. every department must include at least 10 faculty

7

7

The Role of Ontologies

- Shared understanding of a domain: semantic interoperability
 - overcome differences in terminology
 - mappings between ontologies

Web Ontology Languages

- RDF Schema
 - Data model for objects and relations between them
 - Describes properties and classes of RDF resources
 - Generalization hierarchies

9

9

Web Ontology Languages

- OWL
 - A richer ontology language
 - Relations between classes
 - e.g., disjointness
 - Cardinality
 - e.g., "exactly one"
 - Characteristics of properties
 - e.g., symmetry

Logic: Proof Theory

- Syntax:
 - Terms (entities)
 - John, Joe, CS548, Fall2014
 - Predicates (verbs)
 - ancestor, enrolledIn
 - Statements
 - enrolledIn(John,CS548)
 - John enrolledIn CS548
 - Logical Connectives (implication \rightarrow)
 - parent(X,Y) → ancestor(X,Y)

1

11

Logic: Proof Theory

- Inference Rules:
 - Modus Ponens: If I have
 - a proof of (P \rightarrow Q) and
 - a proof of P
 - then I can prove Q
- Example
 - Rule: $parent(X,Y) \rightarrow ancestor(X,Y)$
 - Fact: parent(Joe,Mary)
 - Deduce: ancestor(Joe, Mary)

Logic: Proof Theory

- Example
 - Rule: parent(X,Y) \rightarrow ancestor(X,Y)
 - Rule: ancestor(X,Y) & ancestor(Y,Z) → ancestor(X,Z)
 - Fact: parent(Joe, Mary)
 - Fact: parent(Mary, Susan)
 - Deduce: ancestor(Joe, Mary)
 - Deduce: ancestor(Mary, Susan)
 - Deduce: ancestor(Joe, Susan)

13

13

Logic: Model Theory

- Semantics: meaning for the symbols
- Unary predicates = sets
 - Predicate: faculty(X)
 - Interpretation: set of faculty members {Joe,...}
- N-ary predicates = relations
 - Predicate: parent(X,Y)
 - Interpretation: set of pairs {(Joe,Mary), (Mary, Susan), ...}

Logic: Model Theory

- Logical entailment:
 - **Statement**: (Researcher(X) \rightarrow Faculty(X))
 - Interpretation:

```
If X \in Researcher then X \in Faculty
```

- Statement:

```
parent(X,Y) \rightarrow ancestor(X,Y)
```

– Interpretation:

```
If (X,Y) \in parent
then (X,Y) \in ancestor
```

15

15

Ontology vs Logic

- Logic: general language for inference
 - Prove: if P is true, then Q is true
 - Computationally expensive
 - Godel's Incompleteness Theorem
 - Datalog

Ontology vs Logic

- Ontology languages: restricted
 - Entities, and relationships between them
 - Restricted implication
 - $If x \in A$, then $x \in B$ if A subclass of B
 - If P(x,y), then Q(x,y) if P subproperty of Q

17