Project 5.5 (Unions and intersections). Given sets A_1, A_2, A_3, \ldots , develop recursive definitions for $\bigcup_{k=1}^n A_k$ and $\bigcap_{k=1}^n A_k$. Find and prove the extension of DeMorgan's laws (Theorem 4.5) for these unions and intersections.

Here is a recursive definition for $\bigcup_{k=1}^n A_k$ for all $n \in \mathbb{N}$:

- (i) Define $\bigcup_{k=1}^{1} A_k$ to be A_1 .
- (ii) Assuming $\bigcup_{k=1}^n A_k$ already defined, we define $\bigcup_{k=1}^{n+1} A_k$ to be $\bigcup_{k=1}^{n+1} A_k = (\bigcup_{k=1}^n A_k) \cup A_{n+1}$. Analogously, here is a recursive definition for $\bigcap_{k=1}^{n} A_k$ for any $n \in \mathbb{N}$:
 - (i) Define $\bigcap_{k=1}^{1} A_k$ to be A_1 .
- (ii) Assuming $\bigcap_{k=1}^n A_k$ already defined, we define $\bigcap_{k=1}^{n+1} A_k$ to be $\bigcap_{k=1}^{n+1} A_k = (\bigcap_{k=1}^n A_k) \cap A_{n+1}$.

DeMorgan's laws for these arbitrary unions and intersections are, for given sets $A_1, A_2, \ldots, A_n \subseteq X$,

$$(1) \left(\bigcup_{k=1}^{n} A_k \right)^c = \bigcap_{k=1}^{n} A_k^c$$

(2)
$$\left(\bigcap_{k=1}^{n} A_k\right)^c = \bigcup_{k=1}^{n} A_k^c$$
.

We start by proving (1) by induction on n. For the base case n = 1, we have by definition $\left(\bigcup_{k=1}^{1} A_k\right)^c = A_1^c = \bigcap_{k=1}^{1} A_k^c$. For the induction step, assume that $\left(\bigcup_{k=1}^{n} A_k\right)^c = \bigcap_{k=1}^{n} A_k^c$. Then by definition.

$$\left(\bigcup_{k=1}^{n+1} A_k\right)^c = \left(\left(\bigcup_{k=1}^n A_k\right) \cup A_{n+1}\right)^c.$$

By Theorem 4.5.

$$((\bigcup_{k=1}^{n} A_k) \cup A_{n+1})^c = (\bigcup_{k=1}^{n} A_k)^c \cap A_{n+1}^c$$
.

By induction hypothesis,

$$(\bigcup_{k=1}^n A_k)^c \cap A_{n+1}^c = (\bigcap_{k=1}^n A_k^c) \cap A_{n+1}^c = \bigcap_{k=1}^{n+1} A_k^c$$

which proves $\left(\bigcup_{k=1}^{n+1} A_k\right)^c = \bigcap_{k=1}^{n+1} A_k^c$. Analogously, we prove (2) by induction on n. For the base case n=1, we have by definition $\left(\bigcap_{k=1}^1 A_k\right)^c = A_1^c = \bigcup_{k=1}^1 A_k^c$. For the induction step, assume that $\left(\bigcap_{k=1}^n A_k\right)^c = \bigcup_{k=1}^n A_k^c$. Then by definition,

$$\left(\bigcap_{k=1}^{n+1} A_k\right)^c = \left(\left(\bigcap_{k=1}^n A_k\right) \cap A_{n+1}\right)^c.$$

By Theorem 4.5.

$$((\bigcap_{k=1}^{n} A_k) \cap A_{n+1})^c = (\bigcap_{k=1}^{n} A_k)^c \cup A_{n+1}^c$$
.

By induction hypothesis,

$$\left(\bigcap_{k=1}^{n} A_{k}\right)^{c} \cup A_{n+1}^{c} = \left(\bigcup_{k=1}^{n} A_{k}^{c}\right) \cup A_{n+1}^{c} = \bigcup_{k=1}^{n+1} A_{k}^{c},$$

which proves $\left(\bigcap_{k=1}^{n+1} A_k\right)^c = \bigcup_{k=1}^{n+1} A_k^c$.