Supply Chain Data Analytics

Analyzing and Forcasting Supermarket Sales

Stan Brouwer (2671939) Liz Chen (2840693) Maaike Lamberts (2854979) Niek Schroor

2024-12-11

0.1 Data selection

We analyze, forecast and interpret the Superstore sales provided by Tableau using different statistical and machine learning methods.

The dataset provided contains information about products, sales and profits of a fictitious US company. The dataset contains about 10,000 rows with 1,850 unique product names and 17 product subcategories, covering four consecutive years on a daily basis.

We describe our work in the PDF version. However, we would like to recommend reading our quarto manuscript *here* as it contains the **relevant** R code in the Article Notebook.

0.2 Data Pre-processing

The superstore data set we selected is of high quality: At first glance (which needs to be verified during the visualization), the data appears to have been recorded regularly and without interruptions. There is no sign of a sudden structural change. Since the data are consumer products, it should contain both trends and seasonality. Nevertheless, we have included hypothetical steps to demonstrate our understanding of the data preprocessing procedure. In detail, we did:

- Remove whitespaces from column names
- Remove the Row ID column as it can be inferred by it's index
- Remove all columns with a single unique value, as storing these would be redundant
- Ensure machine-readable date formats in yyyy-mm-dd as these usually differ per locale.
- Ensure proper decimal separators
- Calculate the number of missing values (both NA and empty string "") per column.

After these steps (and transposing the table for better document formatting), the data looks as follows:

Table 1: First 3 Rows of the Data (Transposed)

Order_IDCA-2016-152156	CA-2016-152156	CA-2016-138688	
Order_D 201 6-11-08	2016-11-08	2016-06-12	
Ship_Dat 2 016-11-11	2016-11-11	2016-06-16	
Ship_Mo&econd Class	Second Class	Second Class	
$Customer C \mathbf{D} 12520$	CG-12520	DV-13045	
Customer <u>C</u> NimeGute	Claire Gute	Darrin Van Huff	
Segment Consumer	Consumer	Corporate	
City Henderson	Henderson	Los Angeles	
State Kentucky	Kentucky	California	
Postal_C42420	42420	90036	
Region South	South	West	
Product_HDR-BO-	FUR-CH-10000454	OFF-LA-10000240	
10001798			
Category Furniture	Furniture	Office Supplies	
Sub_Categorkcases	Chairs	Labels	
Product_BusheSomerset	Hon Deluxe Fabric	Self-Adhesive Address Labels	
Collection	Upholstered Stacking Chairs,	for Typewriters by Universal	
Bookcase	Rounded Back		
Sales 261.96	731.94	14.62	
Quantity 2	3	2	
Discount 0	0	0	
Profit 41.9136	219.5820	6.8714	

Source: Article Notebook

We did not find any missing values, confirming the quality of the data set. There is some more processing to do, for instance the removal of outliers. However, by doing so we impose our own assumptions on the data. Let's start by evaluating the descriptive statistics of our data and check if further processing is required.

Table 2: Descriptive Statistics for Numeric Columns

Column	Min	Max	Mean	Median	StdDev
Postal Code	1040	99301	55190.38	56430.5	32063.69

Column	Min	Max	Mean	Median	StdDev
Sales	0.444	22638.48	229.858	54.49	623.2451
Quantity	1	14	3.789574	3	2.22511
Discount	0	0.8	0.1562027	0.2	0.206452
Profit	-6599.978	8399.976	28.6569	8.6665	234.2601

Table 3: Descriptive Statistics for Date Columns

Column	Earliest	Latest	
Order_Date Ship_Date	2014-01-03 2014-01-07	2017-12-30 2018-01-05	

We inspect the orders with the lowest and highest Sales amount (in USD). The most expensive orders were professional printers, cameras and teleconferencing units with high unit prices. The orders with the lowest sales amount were often binders and had a high Discount rate.

Interestingly there are orders with a negative profit. They typically have high Discount rates and often concern the same item, such as the "Cubify CubeX 3D Printer Triple Head Print". The orders with a negative Profit were often part of a larger order (for instance CA-2016-108196), and placed by customers with multiple orders. We suspect these negative Profit's to be caused by items of lower quality that receive discounts, general discount codes, or volume discounts. However, due to the high discounts especially on orders with negative profit, we assume these to be valid orders.

** Some negative profit products **

In figure x we plotted the quantities of the most sold products. Unfortunately, the sold quantities of individual products were too low to determine any meaningful trends.

Figure 1: Figure X Sale quantity of the most popular products

Our proposed workaround is to aggregate Product_Name by Sub_Category, and treat it as a single product for the rest of the assignment, which we plotted in figure X.

This aggregated Quantity starts to show trends and seasonality, and is much more useful to base predictions on! We will use these aggregated sub-categories for the rest of the assignment.

To properly finish our data preprocessing we ran some statistics on Quantity aggregated by Sub_Category. Table x contains some descriptive statistics.

Table 4: Statistics for Sub_Category quantity

Sub_Category	Min	Mean	Max	Sd	CI_lower	CI_upper
Accessories	1	3.84	14	2.28	3.68	4.00
Appliances	1	3.71	14	2.12	3.52	3.90
Art	1	3.77	14	2.13	3.62	3.92
Binders	1	3.92	14	2.29	3.80	4.04
Bookcases	1	3.81	13	2.28	3.51	4.11
Chairs	1	3.82	14	2.28	3.64	4.00
Copiers	1	3.44	9	1.83	3.01	3.87
Envelopes	1	3.57	9	2.05	3.32	3.82
Fasteners	1	4.21	14	2.41	3.89	4.53
Furnishings	1	3.72	14	2.16	3.58	3.86
Labels	1	3.85	14	2.35	3.61	4.09
Machines	1	3.83	11	2.17	3.43	4.23
Paper	1	3.78	14	2.23	3.66	3.90
Phones	1	3.70	14	2.19	3.56	3.84
Storage	1	3.73	14	2.19	3.58	3.88
Supplies	1	3.41	10	1.84	3.15	3.67
Tables	1	3.89	13	2.45	3.62	4.16

Source: Article Notebook

The statistics for Quantity aggregated by Sub_Category looks valid. We can visualize it as histogram and check for anomalies. Figure y contains histograms of Quantity per Sub_Category.

The histograms show that the quantities a right-skewed distributed. This is to be expected since most orders contain only a small number of items. We will not remove the outliers with large quantities since they appear valid.

0.3 Data Visualization

0.4 Forecasting Method Evaluation

Forecasting top 3 product categories (4a)

Let's forecast sold quantities for the three most sold sub-categories:

The steps taken for data preparation were:

- Identifying Top Subcategories: The top three subcategories are selected from our dataset based on their sold quantities. The top three were: Binders, furnishing and paper.
- The sold quantities are aggregated monthly to create a time series object which we can use in the forecasting.
- A KPSS showed that the data is non stationary. First-order differencing is applied to transform the data from non-stationary to stationary. The KPSS results in a p-value >0.05 showing the stationarity.

Source: Article Notebook

Three models are applied to each subcategory to forecast it. The models we use are: ARIMA, Holt-Winters and ETS. We have chosen these models because of their level of suitability for discrete time series data with all different levels of trend and seasonality. To evaluate the methods and its effectiveness, the data is split into a training set (70%) and testing set (30%).

To assess the results, we use the following performance metrics: ME, RMSE, MAE and MAPE. They are calculated for the training and testing phases of the forecast.

As we can see on the forecasting results ARIMA performed well for binders. We can state this because of the lowest RMSE if you compare it to the other models.

Combined Forecasts for Binders before differencing

Combined Forecasts for Paper before differencing

Combined Forecasts for Furnishings before differencing

Source: Article Notebook

KPSS Test for Level Stationarity

data: ts_diff

KPSS Level = 0.10182, Truncation lag parameter = 3, p-value = 0.1

KPSS Test for Level Stationarity

data: ts_diff

KPSS Level = 0.061982, Truncation lag parameter = 3, p-value = 0.1

KPSS Test for Level Stationarity

data: ts_diff

KPSS Level = 0.098438, Truncation lag parameter = 3, p-value = 0.1

Differenced Series for Top Subcategories

Source: Article Notebook

Combined Forecasts for Binders before differencing

Combined Forecasts for Paper before differencing

Combined Forecasts for Furnishings before differencing

Source: Article Notebook

KPSS Test for Differenced Sub-Category: Binders

As we can see on the forecasting results ARIMA performed well for binders. We can state this because of the lowest RMSE. - ARIMA Binders: - Forecasting results Binders:

For the subcategory furnishings we can see that the ETS forecasting method is the most stable across the training and testing phase. - ETS furnishings - Forecasting results Furnishings:

For the last subcategory and product paper the ETS model is again the most consistent, comparing the statistics for training and test set. The high variability in the test data leads to larger forecasting errors in all the 3 models.

- ETS Furnishings:
- Forecasting results:

Residual Diagnostics: - The checks show no real autocorrelation for ARIMA models. Which indicates a good fitting forecast.

Conclusion (4a)

The most effective model is not the same in all the subcategories. Each model was validated based on its ability to capture seasonality and trend. ARIMA performed better for Binders, while ETS performed better for Furnishings and Paper.

Clustering (4b)

Results for Cluster_1

Sub-Category: Binders

ARIMA Accuracy:

ME RMSE MAE MPE MAPE MASE Training set 0.7706014 4.643476 2.982256 0.6865304 12.91204 0.4854835

Test set 5.9407398 10.783528 7.616473 10.3681817 17.32927 1.2398909

ACF1 Theil's U

Training set 0.04429472 NA Test set 0.04929320 0.3573866

Holt-Winters Accuracy:

ME RMSE MAE MPE MAPE MASE
Training set 0.8668058 5.215491 3.789990 -0.4040374 15.36545 0.6169751

Test set 2.2473496 8.712049 6.243226 0.1597635 16.02219 1.0163391

ACF1 Theil's U

Training set -0.389045966 NA
Test set -0.001830843 0.2777843

ETS Accuracy:

ME RMSE MAE MPE MAPE MASE

Training set 0.743354 4.712561 3.656409 1.358692 15.41708 0.5952293

Test set 7.439784 12.216161 8.825094 10.667088 20.93561 1.4366433

ACF1 Theil's U

Training set -0.2225537 NA Test set 0.0608554 0.3767484

Results for Cluster_2

Sub-Category: Paper

ARIMA Accuracy:

ME RMSE MAE MPE MAPE MASE
Training set 1.117384 6.309464 3.827714 1.702165 14.32157 0.5468163

Test set -9.014128 12.230774 10.375521 -30.103886 31.89519 1.4822173

ACF1 Theil's U

Training set -0.007064333 NA Test set 0.108516273 0.6984566

Holt-Winters Accuracy:

ME RMSE MAE MPE MAPE MASE

Training set 1.509544 7.27986 4.854547 3.325281 16.41309 0.6935067 Test set -12.036865 14.48061 13.347292 -39.791842 41.51609 1.9067560

ACF1 Theil's U

Training set -0.02710216 NA
Test set 0.10006713 0.845232

ETS Accuracy:

ME RMSE MAE MPE MAPE MASE

Training set 0.60941117 6.204628 4.474990 -1.66197953 18.73240 0.6392842

Test set 0.08500424 11.304488 8.247017 -0.08462612 20.47598 1.1781453

ACF1 Theil's U

Training set 0.005205508 NA

Test set 0.341519997 0.582549

Results for Cluster_3

Sub-Category: Furnishings

ARIMA Accuracy:

ME RMSE MAE MPE MAPE MASE

Training set 0.0050974 3.873555 2.567868 -6.624673 20.20958 0.5559302

Test set 3.9523810 7.782677 6.238095 10.720079 22.75340 1.3505155

ACF1 Theil's U

Training set -0.20160077 NA

Test set -0.03570035 0.6102339

Holt-Winters Accuracy:

ME RMSE MAE MPE MAPE MASE

Training set 0.9137655 4.164677 3.475419 7.490317 24.75583 0.7524103

Test set 3.6371987 7.200985 5.673333 9.724318 20.50134 1.2282474

ACF1 Theil's U

Training set -0.43317305 NA
Test set 0.01804785 0.5689788

ETS Accuracy:

ME RMSE MAE MPE MAPE MASE
Training set 0.7370579 3.466690 2.851745 0.4301648 20.85220 0.617388
Test set 6.0973038 8.354163 6.690832 20.7276401 23.55317 1.448531
ACF1 Theil's U

Training set -0.2087083 NA
Test set 0.3729315 0.7455977

Clusters of Subcategories Based on Time-Series Features

Residual Diagnostics for Sub-Category: Binders

Residuals from ARIMA(0,1,2)(0,1,0)[12]

Ljung-Box test

data: Residuals from ARIMA(0,1,2)(0,1,0)[12]

Q* = 2.6295, df = 5, p-value = 0.7569

Model df: 2. Total lags used: 7

Residual Diagnostics for Sub-Category: Paper

Residuals from ARIMA(0,1,1)(0,1,0)[12]

Ljung-Box test

data: Residuals from ARIMA(0,1,1)(0,1,0)[12]

Q* = 6.6676, df = 6, p-value = 0.3527

Model df: 1. Total lags used: 7

Residual Diagnostics for Sub-Category: Furnishings

Residuals from ARIMA(0,0,0)(0,1,0)[12] with drift

Ljung-Box test

data: Residuals from ARIMA(0,0,0)(0,1,0)[12] with drift Q* = 9.5952, df = 7, p-value = 0.2127

Model df: 0. Total lags used: 7

Cluster MeanRMSE MeanMAPE
1 Cluster_1 10.783528 17.32927
2 Cluster_2 12.230774 31.89519
3 Cluster_3 7.782677 22.75340

Source: Article Notebook

Cluster 1 (e.g., Binders): ARIMA outperformed other methods due to significant autocorrelation and trend components.

Cluster 2 (e.g., Furnishings): ETS was the most accurate method, effectively balancing trend and seasonality.

Cluster 3 (e.g., Paper): ETS also performed best, with ARIMA showing higher error rates due to variability in random components.

Residual diagnostics were performed for all ARIMA models, confirming no significant autocorrelation (p > 0.05).

Cluster-Level Metrics based on mean RMSE and MAPE show: - Cluster 1 had the lowest RMSE using ARIMA. - Cluster 2 and 3 were better modeled with ETS

Conclusion (4b)

Clustering allows for tailored forecasting strategies. We conclude that for the given data set ARIMA is more effective for clusters with strong trends, while ETS is preferable for clusters with mixed seasonal and trend characteristics. The approach aligns with lecture notes, emphasizing the importance of adapting models based on time series characteristics.

0.5 Forecasting future values

Forecasting 3 products (5a)

In this session, we focused on evaluating different forecasting models (ARIMA, Holt-Winters, and ETS) for multiple sub-categories by analyzing their accuracy metrics, such as RMSE, MAPE, and residual diagnostics. Based on the evaluation results, we selected the best-performing model for each sub-category. We then used these models to forecast the future outcomes for each sub-category, projecting the data for the next year. Note: we may need to interpret the outcomes and explain why we pick the certain model

```
Series: binders_ts
ARIMA(1,1,1)(0,1,0)[12]
```

Coefficients:

```
ar1 ma1
-0.4781 -0.4819
s.e. 0.2324 0.2426
```

Training set error measures:

```
ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.864453 5.931761 4.092168 -1.363101 15.06142 0.558023 -0.03746012
```

```
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 Jan 2018 32.48390 23.31571 41.65208 18.462370 46.50543
```

Feb	2018	23.77181	14.59632	32.94731	9.739103	37.80452
Mar	2018	45.85265	35.59989	56.10541	30.172412	61.53289
Apr	2018	46.20475	35.63662	56.77287	30.042185	62.36730
May	2018	44.08009	32.93968	55.22051	27.042295	61.11789
Jun	2018	44.61784	33.06359	56.17210	26.947139	62.28855
Jul	2018	40.36072	28.34867	52.37277	21.989869	58.73157
Aug	2018	44.48366	32.05796	56.90937	25.480189	63.48714
Sep	2018	73.42488	60.58630	86.26346	53.789962	93.05979
Oct	2018	51.45299	38.22024	64.68573	31.215253	71.69072
Nov	2018	72.43955	58.82134	86.05775	51.612293	93.26680
Dec	2018	89.44597	75.45417	103.43777	68.047363	110.84458

ARIMA Forecast for Binders (Next 12 Months)


```
ETS(M,N,A)

Call:
ets(y = paper_ts)

Smoothing parameters:
   alpha = 0.3075
   gamma = 1e-04

Initial states:
```

1 = 22.5954

s = 17.4472 16.5763 -4.1253 15.2986 0.421 -5.102 -0.6145 -0.0341 -7.985 -2.6766 -15.6576 -13.5481

sigma: 0.2365

AIC AICc BIC 365.1517 380.1517 393.2197

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 1.450303 6.386648 4.166875 1.75373 14.03399 0.5245018 0.03600045

		${\tt Point}$	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018		30.45588	21.22661	39.68516	16.34092	44.57085
Feb	2018		28.34651	19.27484	37.41819	14.47258	42.22044
Mar	2018		41.32776	28.18367	54.47185	21.22561	61.42990
Apr	2018		36.01933	23.73891	48.29976	17.23804	54.80062
May	2018		43.97017	29.09477	58.84557	21.22021	66.72013
Jun	2018		43.39031	28.07408	58.70653	19.96616	66.81445
Jul	2018		38.90220	24.12853	53.67588	16.30782	61.49659
Aug	2018		44.42410	27.84663	61.00158	19.07104	69.77717
Sep	2018		59.30522	38.44478	80.16566	27.40193	91.20850
Oct	2018		39.87917	22.81850	56.93984	13.78712	65.97122
Nov	2018		60.58102	38.27853	82.88352	26.47230	94.68975
Dec	2018		61.45110	38.17748	84.72473	25.85717	97.04504

ETS Forecast for Paper (Next 12 Months)


```
ETS(M,A,A)
Call:
ets(y = furnishings_ts)
  Smoothing parameters:
    alpha = 0.0438
    beta = 0.0437
    gamma = 2e-04
  Initial states:
    1 = 15.4275
    b = -0.1137
    s = 13.3158 \ 15.6269 \ -2.2962 \ 10.1503 \ -5.0017 \ -2.448
           -3.4406 -1.0728 -1.1262 -4.3688 -11.689 -7.6497
  sigma: 0.2527
     AIC
             AICc
                        BIC
338.8888 359.2888 370.6992
Training set error measures:
```

RMSE

ME

MAE

MPE

MAPE

MASE

Training set 0.6402485 3.793384 2.884208 -0.8302416 16.2441 0.5352139

ACF1
Training set 0.04613441

Training	set	0.04613441
----------	-----	------------

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2018		21.37433	14.45350	28.29515	10.789837	31.95882
Feb	2018		18.56644	12.52244	24.61044	9.322944	27.80994
Mar	2018		27.11574	18.26943	35.96205	13.586481	40.64500
Apr	2018		31.58782	21.22159	41.95404	15.734048	47.44158
May	2018		32.87189	21.95559	43.78819	16.176845	49.56693
Jun	2018		31.73384	20.95052	42.51717	15.242170	48.22551
Jul	2018		33.95710	22.18459	45.72960	15.952604	51.96159
Aug	2018		32.63192	20.83816	44.42569	14.594916	50.66893
Sep	2018		49.01546	31.92061	66.11032	22.871140	75.15979
Oct	2018		37.79884	23.38308	52.21460	15.751844	59.84584
Nov	2018		56.95159	36.44698	77.45621	25.592490	88.31070
Dec	2018		55.87232	34.96477	76.77986	23.896983	87.84765

ETS Forecast for Furnishings (Next 12 Months)

Applying to all data (5b)

In this session, we first grouped the sub-categories into clusters based on key time-series features, including trend strength, seasonal strength, and random strength, using hierarchical clustering. Once the clusters were formed, we applied and evaluated multiple forecasting models—ARIMA, Holt-Winters, and ETS—on each sub-category within its respective cluster, comparing their accuracy metrics such as RMSE and MAPE. Based on the evaluation results, we selected the best-performing model for each sub-category and used it to forecast the future outcomes within a year, leveraging the clustering to enhance the accuracy and relevance of our predictions.

Source: Article Notebook

0.6 Forecast interpretation

Lorem Ipsum

Source: Article Notebook

Forecasting??

ARIMA Forecast for Monthly Sales

Holt-Winters Forecast for Monthly Sales

