3. Gruppteori 3. Delgrupper & sidoklasser

22 juli

- 1. Hitta en delgrupp av permutationsgruppen S_4 som är isomorf med "klä om strumpan"-gruppen.
- **2**. Gruppen G består av mängden $\{e,\pi,\tau\}$ och operatorn \star som uppfyller multiplikationstabellen

Hitta en isomorfi från G till en delgrupp av S_3 .

- 3. Hitta en isomorfi från den dihedrala gruppen D_4 till en delgrupp av permutationsgruppen S_8 .
- Sats 3.1. (Cayleys sats). Varje grupp är isomorf med en delgrupp till någon permutationsgrupp S_n .
- **4**. Låt *G* vara gruppen i problem 2. Visa att $f(x) = \pi$ permuterar elementen i *G*.
- 5. Bevisa Cayleys sats konstruktivt.
- 6. Hitta alla grupper av storlek (a) 3 (b) 4.

Definition. Låt $H = \{h_1, h_2, \dots, h_n\}$ vara en delgrupp av G. För varje element a i G definierar vi $sidoklassen \ a \star H = \{a \star h_1, a \star h_2, \dots, a \star h_n\}$.

- 7. Vilka är sidoklasserna till delgruppen av rotationer i den dihedrala gruppen D_4 ?
- **8**. Vilka är sidoklasserna till delgruppen av $\{e, S\}$, \star i den dihedrala gruppen D_4 om S är en specifik spegling?
- 9. Observera gruppen av heltal under addition. Vilka är sidoklasserna till delgruppen av tal delbara med 7?
- 10. Låt M vara en delgrupp till G med k element. Hur många element har $a \star M$?
- 11. Finns det något element som inte är i någon sidoklass?
- 12. Visa att om två sidoklasser båda innehåller ett visst element så sammanfaller de.
- 13. (Lagranges sats). Visa att för en ändlig grupp G och en delgrupp H måste storleken av G.