General prototype of QFT: $|x\rangle$ $|x\rangle$ D Shor algorithm: General case $f: \mathbb{Z} \longrightarrow \times$ s.t f is periodic of period r and $f(0), \ldots, f(n-1)$ are pairwise distincts. Problem: find r. Application: X= G is a group, pick g < 6

Take $f: \mathbb{Z} \longrightarrow G$, $\pi = \operatorname{order} \operatorname{of} g$

-> for this, we use the some circuit!

We need to know in advance an upper bound N on The.

Then choose n such that $2^n \geqslant N^2$ i.e. $n \geqslant 2 \cdot \log_2 N$

Analysis of the circuit:

(a)
$$\frac{2^{n}}{2^{n}} \sum_{n=0}^{2^{n}} 1 \approx 10^{n}$$

(b) $\frac{2^{n}}{2^{n}} \sum_{n=0}^{2^{n}} 1 \approx 19^{n}$

(c) $\frac{2^{n}}{2^{n}} \sum_{n=0}^{2^{n}} 1 \approx 19^{n}$

(d) $\frac{2^{n}}{2^{n}} \sum_{n=0}^{2^{n}} 1 \approx 19^{n}$

(e) $\frac{2^{n}}{2^{n}} \sum_{n=0}^{2^{n}} \frac{2^{n}}{2^{n}} \sum_{n=0}^{2^{n}} \frac{3^{n}}{3^{n}} | \frac{1}{3}(n) \rangle$

(ii) $\frac{1}{2^{n}} \sum_{n=0}^{2^{n}} \frac{2^{n}}{2^{n}} \sum_{n=0}^{2^{n}} \frac{3^{n}}{3^{n}} | \frac{1}{3}(n) \rangle$

(iii) $\frac{1}{2^{n}} \sum_{n=0}^{2^{n}} \frac{2^{n}}{2^{n}} \sum_{n=0}^{2^{n}} \frac{3^{n}}{3^{n}} | \frac{1}{3}(n) \rangle$

(iv) $\frac{1}{2^{n}} \sum_{n=0}^{2^{n}} \frac{1}{2^{n}} \sum_{n=0}^{2^{n}} \frac{1}{3^{n}} | \frac{1}{3}(n) \rangle$

(iii) $\frac{1}{2^{n}} \sum_{n=0}^{2^{n}} \frac{1}{2^{n}} \sum_{n=0}^{2^{n}} \frac{1}{3^{n}} | \frac{1}{3$

Since
$$g(0), \dots, g(n-1)$$
 are pairwise distincts,
$$||qy||^2 = |qy_0|^2 + \dots + |qy_{n-1}|^2$$

$$||qy_0||^2 = \frac{1}{2^n} \frac{3^n y^{mb-1}}{2^n} \frac{3^n y^{mb}}{2^n} = \frac{1}{2^n} \frac{3^n y^{mb}}{3^n y^{mb}} - \frac{1}{2^n}$$

$$||qy_0|| = \frac{1}{2^n} \left| \frac{3^n y^{mb}}{3^n y^{mb}} - \frac{1}{2^n} \right|$$

How do we compute
$$|e^{i\theta}-1| = |e^{i\theta}/(e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}/2})|$$

$$= |e^{i\theta}/(e^{i\frac{\theta}/2}-e^{-i\frac{\theta}/2})|$$

$$= 2 |\sin \frac{\theta}/2|$$

Recall: $S_n = e^{\frac{2i\pi}{2}}$ $S_n = \exp\left(\frac{2i\pi ny m_b}{2^n}\right) \quad \text{and} \quad S_n^{ny} = \exp\left(\frac{2i\pi ny}{2^n}\right)$ $\left|Sin\left(\frac{\pi ny m_b}{2^n}\right)\right|$

$$\Rightarrow |qy,b| = \frac{1}{2^n} \left| \frac{\sin\left(\frac{\pi rym_b}{2^n}\right)}{\sin\left(\frac{\pi ry}{2^n}\right)} \right|$$

Expectation:
$$|q_{3,b}|$$
 will be large when $\frac{\pi n_{3}}{2^{n}}$ lose to $\frac{\pi}{3}$ with $\frac{\pi}{3} \in \mathbb{Z}$.

that is $\frac{\pi}{2^{n}}$ close to $\frac{\pi}{2^{n}}$.

Ex. $(n=7)$ and $\frac{\pi}{2^{n}}$ and $\frac{\pi$

Conclusion: the outcome of Sher's circuit provides an approximation of some fraction with description
$$\pi$$
 at $\frac{1}{2^{n+1}}$.

Continued fonctions:

Let $\pi \in \mathbb{R}$. We wont to find a good approx of π with redical number $\pi = \pi_0 + y_2$ with $\pi_0 = L^{2} L$, $0 \le y_2 \le 1$

and $y_1 = \frac{1}{\alpha_1}$ with $\alpha_1 > 1$ (if $y_1 = 0$, do nothing)

continue with $\pi_1 : \pi_2 = \pi_1 + \pi_2$, $\pi_2 = L^{2} L^{2}$

At this point $\pi_1 = \pi_0 + \frac{1}{\pi_1 + \frac{1}{\alpha_2 + \frac$

Theorem A:
$$\left| z - \frac{Pn}{q_n} \right| < \frac{1}{q_n^2} \quad \text{(we say that } \frac{Pn}{q_n} \text{ is a good approx of } z \text{)}$$

Theorem B:

If
$$\frac{1}{9}$$
 is a faction s.t. $|x - \frac{7}{9}| < \frac{1}{2q^2}$
Then $\exists n \text{ s.t. } \frac{1}{9} = \frac{1}{9}$.

Examples:
$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{232 + \dots}}}$$

$$L_{3} 3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \dots$$

$$* \frac{1+\sqrt{5}}{2} = 4 + \frac{1}{106}$$

$$* \frac{1+\sqrt{5}}{2} = 4 + \frac{1}{1+\frac{1}{1$$

$$1, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \dots$$

Application to Shor's algorithm: Final algorithm is: 1 Run Shor's circuit and get the outcome y & fo, ..., 2"-1' (2) Compute $\frac{g}{2^n} \in [0,1]$ and its convergents $\frac{P_2}{q_1},\ldots,\frac{P_m}{q_m}$ \mathfrak{G} for each q_i , check if $f(0) = f(\gamma_i)$, if it's the case return q_i . (Remark: if q; is even, it's also intensting to try with 2q;) Analysis: 1) We proved that, with proba > 16% (in fact it's at least 60%) $\exists j = 1. \quad \left| \frac{1}{2^n} - \frac{1}{\pi} \right| \leq \frac{1}{2^{n+1}}$ ② By Pleason B, we know that I is a convergent of $z:=\frac{t}{2^n}$ if $2^n \ge r^2$, which is true because we assumed $2^n > N^2 > \pi^2$. $i \cdot e \cdot \frac{b}{n} = \frac{p_i}{q_i}$ for some i Sor is a multiple of gi Euler Juctim Moreover, any jappors with public at least 16%. So the probability that $\frac{1}{2}$ is irreducible is at least $0,16\frac{p(n)}{n}$, which night unfortunately be small if or is really badly chosen

However, if
$$n = p_1^{a_1} \cdots p_r^{a_r}$$
 (prime factorisation)

then $\frac{p(n)}{n} = (a - \frac{1}{p_1}) \cdots (a - \frac{1}{p_r})$

so $\frac{p(n)}{n}$ can be as small as one must, but this surprises n to be very large.

(b) Connectication to undivariate factions

let $f: \mathbb{Z}^m \longrightarrow \times$ ($m \in \mathbb{N}$), \times is a set)

Definition:

A purial of f is on element $a \in \mathbb{Z}^m \subseteq \mathbb{N}$. If $(a \cdot a) = f(a)$ the $\in \mathbb{Z}^m$.

We will work with $\mathbb{F}_q = fa \in \mathbb{Z}^m \subseteq \mathbb{N}$, $a : a$ is a point of a ?

It is a subgroup of \mathbb{Z}^m .

In what follows, \mathbb{T} will assume that \mathbb{F}_q is a lattice, i.e. it contains a \mathbb{F}_q -basis of \mathbb{F}_q^m , or equivalatly, the quotient \mathbb{F}_q^m is finite.

Example: $\mathbb{Z}^2 \longrightarrow \mathbb{Z}_{q_{\mathbb{Z}}}$
 $(n, g) \longmapsto 2x + 3g$
 (a_1b) is a puriod $(a : x + 3b) = 0$ (mod?)

e.g. (a,b) = (1,4)(a,b) = (0,7)

