

Figure 1: Prove se são ou não são planares.

Instituto de Matemática e Estatítica

2^a Lista de Teoria dos Grafos
Professor: Luerbio Faria
Data: 21/11/2015

- 1. Na Figura 1. Demonstre se são planares.
- Prove ou refute: N\u00e3o existe grafo Euleriano conexo simples com n\u00eamero par de v\u00e9rtices e n\u00eamero \u00eamero \u00eamero mpar de arestas.
- 3. Um grafo é semi-euleriano se existe uma trilha não fechada contendo todas as arestas de G. Prove que dado G=(V,E) um grafo conexo, então: G é semieuleriano se e somente se G possui exatamente 2 vértices de grau ímpar.
- 4. Para cada grafo a seguir diga para quais valores de m e n o grafo é hamiltoniano, euleriano, planar, o número cromático χ , o tamanho da maior clique ω , e o tamanho do maior conjunto independente α com a respectiva justificativa.

GRAFO	HAMILT.	EUL.	Planar	χ	ω	α
$K_{m,n}$						
K_n						
Q_n						
S_n						
P_n						
C_n						
Dodecaedro						
W_n						
$L(Q_3)$						
PETERSEN						

- 5. Prove que se G é um grafo Euleriano e e,f são duas arestas de G com um extremo comum, então G tem uma trilha Eulerianoa fechada no qual e,f aparecem consecutivamento
- 6. Mostre que se um grafo G=(V,E) é hamiltoniano, então L(G) é hamiltoniano.
- 7. Mostre que se um grafo G=(V,E) é eulerianiano, então L(G) é euleriano.

- 8. Dado um grafo G=(V,E) e $\omega(G)$ o tamanho do maior completo subgrafo de G, mostre que $\omega(G) \leq \chi \leq \Delta + 1$. Dê duas classes de grafos nas quais $\chi = \Delta + 1$.
- 9. Mostre o teorema das 6 cores, isto é se G é planar, então G é 6-colorível.
- 10. Mostre que em todo grafo G=(V,E) colorido com $\chi(G)$ cores satisfaz que para cada cor $c\in\{1,2,3,\ldots\chi\}$ existe um vértice $v\in V$ tal que para toda cor c diferente da cor c(v) de v existe um vizinho de v com a cor c.
- 11. Mostre que:
 - (a) Se G é planar, então G é 6 colorível.
 - (b) Se G é hamiltoniano, então L(G) é hamiltoniano.
 - (c) Se G é Euleriano, então L(G) é Euleriano.
 - (d) Mostre que vale o se e somente se em b) e c).
- 12. Dado um grafo G=(V,E) e $k\in \mathbb{N}^*$, uma k-coloração das arestas de G é uma função $f:E\to\{1,2,3,\ldots,k\}$ tal que $f(uv)\neq f(uw)$. O índice cromático $\chi'(G)$ é o menor k tal que G tem uma k coloração de arestas. Determine:

$$a)\chi'(K_3)$$
 $b)\chi'(K_4)$ $c)\chi'(K_5)$ $d)Petersen$
 $e)\chi'(K_n)$ $f)\chi'(W_n)$ $g)\chi'(C_n)$ $h)\chi'(Q_3)$

- i) Dado um grafo $G = (V, E), \delta$ e Δ serem, respectivamente, o grau mínimo e máximo de G. Determine os valores possíveis de $\chi'(G)$.
- 13. V (com justificativa) ou F (com contra-exemplo)
 - (a) () Se G contem K_n como subgrafo, então $\chi(G) > n$.
 - (b) () Se G satisfaz $\chi(G) > n$, então G contem K_n como subgrafo.
 - (c) () Dados $k, \ell \in \mathbb{N}^*, k \geq \ell$; Existe uma família de grafos com $\chi = k$ e $\omega = \ell$.
 - (d) () Se P=NP, então existe um algoritmo polinomial para todo problema de NP.
 - (e) () Se existe um algoritmo polinomial para um problema de NP, então P=NP.
 - (f) () $P \subseteq NP$.
- 14. Mostre que estão em NP:
 - (a) CICLO HAMILTONIANO
 - (b) TRILHA EULERIANA
 - (c) SATISFABILIDADE

Instância: I=(U,C), onde U é um conjunto de variáveis lógicas e C é uma coleção de cláusulas disjuntivas sob U.

 $\frac{\text{Pergunta:}}{U \text{ com um literal verdadeiro em cada cláusula de } C?}$

(d) MOCHILA

<u>Instância</u>: Capacidade M da mochila, Lucro L da mochila, seqüência de capacidades e lucros dos n objetos $(c_1, c_2, c_3, \ldots, c_n)$ e $(\ell_1, \ell_2, \ell_3, \ldots, \ell_n)$.