- 7. a. Find the slope of  $\overrightarrow{AB}$ .
  - **b.** Find tan  $n^{\circ}$ .
  - c. Consider the statement: If a line with positive slope makes an acute angle of  $n^{\circ}$  with the x-axis, then the slope of the line is  $\tan n^{\circ}$ . Do you think this statement is true or false? Explain.



8. This exercise provides a geometric method of justifying the fact that you can use any two points on a line to determine the slope of the line. Horizontal and vertical segments have been drawn as shown. Supply the reason for each step.

## Key steps of proof:

1. 
$$\angle B \cong \angle A$$

$$2. \angle 1 \cong \angle 2$$

3. 
$$\triangle LBN \sim \triangle DAJ$$

4. 
$$\frac{BN}{AJ} = \frac{LB}{DA}$$
, or  $\frac{BN}{LB} = \frac{AJ}{DA}$ 

- 5. The slope of  $\overline{LN}$  equals  $\frac{BN}{LB}$ , and the slope of  $\overline{DJ}$  equals  $\frac{AJ}{DA}$ .
- 6. Slope of  $\overline{LN} = \text{slope of } \overline{DJ}$



## **Written Exercises**

- A 1. Name each line in the figure whose slope is:
  - a. positive
  - b. negative
  - c. zero
  - d. not defined
  - 2. What can you say about the slope of (a) the x-axis? and (b) the y-axis?



Find the slope of the line through the points named. If the slope is not defined, write not defined.

**4.** 
$$(1, 2)$$
;  $(-2, -5)$ 

5. 
$$(1, 2)$$
;  $(-2, 5)$ 

9. 
$$(6, -6)$$
;  $(-6, -6)$ 

10. 
$$(6, -6)$$
;  $(4, 3)$ 

11. 
$$(-4, -3)$$
;  $(-6, -6)$ 

Find the slope and length of  $\overline{AB}$ .

**12.** 
$$A(3, -1), B(5, -7)$$

13. 
$$A(-3, -2)$$
,  $B(7, -6)$ 

**14.** 
$$A(8, -7), B(-3, -5)$$

**15.** 
$$A(0, -9), B(8, -3)$$