

3D Computer Game Programming

Basic Math for Game Development

3D Computer Game Programming

VECTOR

Points vs Vectors

- A point has position but NOT length and direction (relative to a coordinate system).
- A vector represents a displacement from a point (relative to a coordinate system) and it has length and direction, but not position. It can be moved anywhere.
- A scalar has only size (a number).

3D Computer Game Programming

3

Coordinate Systems

 All points and vectors are defined relative to some coordinate system. Shown below are a 2D coordinate system and a right- and a left-handed 3-D coordinate system.

Vectors and Coordinate Systems

- A vector v between points P = (1, 3) and Q = (4, 1),
 - v = (3, -2)
 - calculated by (Q P) subtracting the coordinates individually
 - To "go" from P to Q, we move down by 2 and right by 3.
 - Since v has no position, the two arrows labeled v are the same vector. The 3D case is also shown.

5

3D Computer Game Programming

Vector as a Displacement b/w Two Points

The difference between 2 points is a vector:

$$\mathbf{v} = \mathbf{Q} - \mathbf{P}$$
.

The sum of a point and a vector is a point:

$$P + v = Q$$

6

Vector Representations

- A vector v = (33, 142.7, 89.1) is a row vector.
- A vector $\mathbf{v} = (33, 142.7, 89.1)^{\mathsf{T}}$ is a column vector. It is the same as

$$v = \begin{pmatrix} 33\\142.7\\89.1 \end{pmatrix}$$

3D Computer Game Programming

7

Basic Vector Operation - Addition

- Given two vectors v = (x, y, z) and w = (a, b, c)
 v + w = (x+a, y+b, z+c)
- Properties of Vector addition
 - Commutative: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$
 - Associative: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
 - Additive Identity: v + 0 = v
 - Additive Inverse: **v** + (-**v**) = 0

3D Computer Game Programming

Basic Vector Operation - Multiplication

- Given v = (x, y, z) and a Scalar s and t, sv = (sx, sy, sz) and tv = (tx, ty, tz)
- Properties of Vector multiplication
 - Associative: $(st)\mathbf{v} = s(t\mathbf{v})$
 - Multiplicative Identity: 1v = v
 - Scalar Distribution: v(s+t) = sv+tv
 - Vector Distribution: s (v+w) = sv+sw
- If v and w are vectors,
 - so is **v** + **w**,
 - and so is sv, where s is a scalar.

9

3D Computer Game Programming

Basic Vector Operation - Subtraction

Subtracting **c** from **a** is equivalent to adding **a** and (-**c**), where -**c** = (-1)**c**.

10

Linear Combinations of Vectors

- $\mathbf{v}_1 \pm \mathbf{v}_2 = (\mathbf{v}_{1x} \pm \mathbf{v}_{2x}, \mathbf{v}_{1y} \pm \mathbf{v}_{2y}, \mathbf{v}_{1z} \pm \mathbf{v}_{2z})$
- $s\mathbf{v} = (sv_x, sv_y, sv_z)$
- A linear combination of the m vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_m}$ is a vector $\mathbf{w} = \mathbf{a_1}\mathbf{v_1} + \mathbf{a_2}\mathbf{v_2} + ... + \mathbf{a_m}\mathbf{v_m}$.
 - Example: 2(3, 4,-1) + 6(-1, 0, 2) forms the vector (0, 8, 10).

3D Computer Game Programming

11

Vector Magnitude and Unit Vectors

|w| - the magnitude (length, size) of n-vector w

$$|\mathbf{w}| = \sqrt{w_1^2 + w_2^2 + \dots + w_n^2}$$

Example:

the magnitude of $\mathbf{w} = (4, -2)$ is sqrt(20) and that of $\mathbf{w} = (1, -3, 2)$ is sqrt(14).

- A unit vector has magnitude |v| = 1.
- The unit vector pointing in the same direction as vector a is â= a/|a| (if |a| ≠0).
- Converting a to â is called normalizing vector a.

12

Normalizing a Vector

- v = (2,4,4)
- |v|=sqrt(4+16+16)=6

$$\hat{v} = (2/6,4/6,4/6) = (0.33,0.66,0.66)$$

3D Computer Game Programming

13

Standard Unit Vectors

- The standard unit vectors in 3D are i = (1,0,0), j = (0, 1, 0), and k = (0, 0, 1). k always points in the positive z direction
- In 2D, $\mathbf{i} = (1,0)$ and $\mathbf{j} = (0, 1)$.
- The standard unit vectors are orthogonal.

3D Computer Game Programming

Vector Dot Product

- The dot product of n-vectors \mathbf{v} and \mathbf{w} is $\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + ... + v_n w_n$
- The dot product properties:
 - The dot product is commutative: $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
 - The dot product is distributive: $(a \pm b) \cdot c = a \cdot c \pm b \cdot c$
 - The dot product is associative over multiplication by a scalar: (sa)·b = s(a·b)
 - The dot product of a vector with itself is its magnitude squared: b⋅b = |b|²

15

3D Computer Game Programming

Vector Dot Product - Angle Between 2 Vectors (1)

Given two vectors b and c and the angle θ between b and c,

$$\cos(\theta) = \hat{\mathbf{b}} \cdot \hat{\mathbf{c}}$$

because

 $\boldsymbol{b} = (|\boldsymbol{b}| \, \text{cos} \, \phi_{\text{b}}, \, |\boldsymbol{b}| \, \text{sin} \, \phi_{\text{b}})$ and

 $\mathbf{c} = (|\mathbf{c}| \cos \phi_c, |\mathbf{c}| \sin \phi_c)$

 $\mathbf{b} \cdot \mathbf{c} = |\mathbf{b}||\mathbf{c}| \cos \varphi_c \cos \varphi_b + |\mathbf{b}||\mathbf{c}| \sin \varphi_b \sin \varphi_c$

= $|\mathbf{b}||\mathbf{c}|\cos(\phi_c - \phi_b)$

 $= |\mathbf{b}||\mathbf{c}|\cos\theta$

where $\theta = \phi_c - \phi_b$ is the smaller angle between **b** and **c**:

3D Computer Game Programming

Vector Dot Product - Angle Between 2 Vectors (2)

- The cosine is
 - positive if θ < 90°,
 - 0 if $\theta = 90^{\circ}$,
 - and negative if θ > 90°.

• Unit vectors **b** and **c** are perpendicular (orthogonal, normal) if **b**⋅**c** = 0.

ξ.

3D Computer Game Programming

17

Vector Cross Product (3D Vectors Only)

- The Cross Product of a and b is denoted by axb.
- It is a VECTOR, perpendicular to the plane defined by a and b.
- **a** \mathbf{x} $\mathbf{b} = (a_y b_z a_z b_y) \mathbf{i} + (a_z b_x a_x b_z) \mathbf{j} + (a_x b_y a_y b_x) \mathbf{k}$ where $\mathbf{i} = (1,0,0), \ \mathbf{j} = (0,1,0), \ \mathbf{k} = (0,0,1)$
- The determinant below also gives the result:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

3D Computer Game Programming

Geometric Interpretation of the Cross Product

3D Computer Game Programming

19

Cross Product Example

- Ginen two vectors a=(3,-3,1) and b=(4,9,2).
 - 1. Calculate the cross product between them.

Sol.) axb =
$$\mathbf{i}(-3\cdot2-1\cdot9)-\mathbf{j}(3\cdot2-1\cdot4)+\mathbf{k}(3\cdot9+3\cdot4)=-15\mathbf{i}-2\mathbf{j}+39\mathbf{k}$$

2. Calculate the area of the parallelogram spanned by the vectors.

Sol.) the area is $|axb| = sqrt(15^2+2^2+39^2)$

20

Properties of the Cross-Product

- i x j = k; j x k = i; k x i = j
- $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$;
- $a \times (b \pm c) = a \times b \pm a \times c;$
- $(sa) \times b = s(a \times b)$
- $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
 - for example, **a** = (a_x, a_y, 0), **b** = (b_x, b_y, 0), **c** = (0, 0, c_z)
 - c = a x b is perpendicular to a and to b. The direction of c is given by a right/left hand rule in a right/left-handed coordinate system.

3D Computer Game Programming

21

Properties of the Cross-Product (2)

- $a \cdot (a \times b) = 0$
- $|a \times b| = sqrt(|a|^2|b|^2-(a \cdot b)^2)$
- $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta$, where θ is the smaller angle between \mathbf{a} and \mathbf{b} .
- |a x b| is also the area of the parallelogram formed by a and b.
- a x b = 0 if a and b point in the same or opposite directions, or if one or both has length 0.

22

Application: Finding the Normal to a Plane

- Given any 3 non-collinear points p1, p2, and p3 in a plane, we can find a normal to the plane:
 - $\mathbf{a} = p2-p1$, $\mathbf{b} = p3-p1$, $\mathbf{n} = \mathbf{a} \times \mathbf{b}$. The normal on the other side of the plane is $-\mathbf{n}$.

3D Computer Game Programming

23

LINEAR INTERPOLATION OF 2 POINTS

Linear Interpolation of 2 Points

 Given two points A and B, a linear interpolation (lerp) of 2 points is given by

3D Computer Game Programming

25

Tweening and lerp

- One often wants to compute the point P(t) that is fraction t of the way along the straight line from point A to point B [the tween (for in-between) at t of points A and B].
- Tweening takes 2 polylines (shapes) and interpolates between them (using lerp) to make one turn into another (or vice versa).

26

Tweening and Animation

 To start, it is easiest if you use 2 shapes with the same number of lines.

3D Computer Game Programming

27

Tweening and Animation (2)

- We use polylines A and B, each with n points numbered 0, 1, ..., n-1.
- We form the points P_i (t) = (1-t)A_i + tB_i, for t = 0.0, 0.1, ..., 1.0 (or any other set of t in [0, 1]), and draw the polyline for P_i.

3D Computer Game Programming

Uses of Tweening

- In films,
 - Artists draw only the key frames of an animation sequence (usually the first and last).
 Tweening is used to generate the in-between
 - frames.

LINE, RAY, LINE SEGMENT

3D Computer Game Programming

Line, Line Segment, Ray

- A line passes through 2 points and is infinitely long.
- A line segment has 2 endpoints.
- A ray has a single endpoint.

3D Computer Game Programming

Representing Lines - Parametric Form

Parametric form: Given 2 points B and C, on the line, the line equation in parametric form is

$$L(t) = C + bt$$

where $b = (B-C)$
 $L(t)$ is a specific point on the line at t .

 $\begin{array}{c} a_{t}>1 \\ b \\ B \\ a_{t}=0 \end{array}$

If $-\infty \le t \le \infty$: it represents **line.**

If -∞≤*t*≤0 or 0≤*t*≤∞: **ray**.

If *0*≤*t*≤1: it represents **line segment.**

33

3D Computer Game Programming

Representing Lines - Parametric

- As t varies so does the position of L(t) along the line. (Let t be time.)
- If t=0, L(0) = C
- If t=1, L(1) = C + (B C) = B.
- If t>1, L(t) lies somewhere on the opposite side of B from C
- When t< 0 L(t) lies on the opposite side of C from B.
- If 0<t<1, L(t) lies fraction t of the way between C and B.
 - When t = 0.5, the point L(0.5) is the midpoint between C and B
 - When t = 0.3 the point L(0.3) is 30% of the way from C to B
 - The value of |t| is the ratio of the distances |L(t) C| to |B C|.

 $L(t) = C + \mathbf{b}t$ where $\mathbf{b} = (B-C)$

34

Representing Lines – Parametric Form(3)

 Find a parametric form for the line that passes through C=(3,5) and B=(2,7)

Sol)

$$L(t) = C + bt$$
 where $b = (B-C)$

Therefore,

$$L(t) = (3,5) + (-1,2)t = (3-t, 5+2t)$$
 where $-\infty \le t \le \infty$

3D Computer Game Programming

35

Planes: Parametric Form (1)

- A plane can be infinite in 2 directions, semi-infinite, or finite.
- Parametric form:
 - requires 3 non-collinear points on the plane, A, B, and C.
 - Given A, B, C on the same plane, the parametric form of the plane is P(s, t) = C + sa + tb,

where
$$\mathbf{a} = A - C$$
 and $\mathbf{b} = B - C$.

- $-\infty \le s \le \infty$ and $-\infty \le t \le \infty$: infinite plane.
- 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1: a finite plane, or patch.

36

Planes: Parametric Form (2)

We can rewrite

$$P(s,t) = C + s\mathbf{a} + t\mathbf{b}$$
,
where $\mathbf{a} = A - C$ and $\mathbf{b} = B - C$

as an affine combination of points:

$$P(s, t) = s A + t B + (1 - s - t) C$$

3D Computer Game Programming

37

Planes: Parametric Form (3)

The figure shows the available range of s and t as a square in parameter space, and the patch that results from this restriction in object space.

3D Computer Game Programming

4

Representing Planes: Point-Normal Form

- ax + by + cz = 1
- Point-normal form: $\mathbf{n} \cdot (P C) = 0$ where C is a given point on the plane and P(x,y,z) is any point on the plane.

3D Computer Game Programming

39

Intersections of a Line and a Plane

Intersections of a line and a line or plane are used in ray-tracing: we want to find the "hit point".

Intersections of a Line and a Plane (2)

- Suppose the ray $A + \mathbf{c} t$ hits at $t = t_{hit}$, the **hit time**.
 - At this value of $t = t_{hit}$, the ray and line or plane must have the same coordinates.
 - so $A + \mathbf{c} t_{hit}$ must satisfy the equation of the point normal form for the line or plane, $\mathbf{n} \cdot (P B) = 0$.
- When the ray intersects (hits) the line or plane, A + $\mathbf{c}t_{hit} = P$, giving $\mathbf{n} \cdot (A + \mathbf{c}t_{hit} B) = 0$.

3D Computer Game Programming

Intersections of a Line and a Plane(3)

- Expanding and solving for t_{hit} gives $t_{hit} = \mathbf{n} \cdot (\mathbf{B} \mathbf{A}) / \mathbf{n} \cdot \mathbf{c}$, if $\mathbf{n} \cdot \mathbf{c} \neq 0$.
 - If n·c = 0, the line is parallel to the plane and there is no intersection.
- To find the hit/intersection point P_{hit} , substitute t_{hit} into the representation of the ray: $P_{hit} = A + ct_{hit} = A + c(n \cdot (B A)/n \cdot c)$.

Intersections of a Line and a Plane - Example

Find where the ray A+ct hits the object n·(P-B)=0 given A=(2,3), c=(4,-4), n=(6,8), B=(7,7).

Sol)

$$\mathbf{n} \cdot (A + \mathbf{c} \ t_{hit} - B) = 0$$

 $t_{hit} = -7.75$
Intersection = (-29,34)

3D Computer Game Programming

43

TRANSFORM

Transformation

- What is transformation?
 - Maps points (x, y) to another points (x', y')
- Why do we need transformations in Computer Graphics and game development?
 - To position objects in a scene
 - To change the shape of objects
 - To create multiple copies of objects
 - To do projection for virtual cameras
 - To make animations

45

3D Computer Game Programming

Example Transforms

 The house has been scaled, rotated and translated, in both 2D and 3D.

16

Transform Order

3D Computer Game Programming

Transform - 2D Rotation

 Counterclockwise around a point (e.g origin) by angle θ:

$$\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} = \begin{pmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}$$

50

$$\begin{pmatrix} Q_{x} \\ Q_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) P_{x} - \sin(\theta) P_{y} \\ \sin(\theta) P_{x} + \cos(\theta) P_{y} \\ 1 \end{pmatrix}$$

Transform - 3D Rotation

Rotations are more complicated. We start by defining a roll (rotation counter-clockwise around an axis looking toward the origin):

3D Computer Game Programming

51

Example

A barn in its original orientation, and after a -70° x-roll, a 30° y-roll, and a -90° z-roll.

b). -700 x-roll

c). 300 y-roll

d). -900 z-roll

3D Computer Game Programming

3D Rotations

- 2D rotations
 - All 2D rotations are R_z.
 - 2D rotation matrices do commute.
 - Two 2D rotations combine to make a rotation given by the sum of the rotation angles.
- In 3D the situation is much more complicated, because rotations can be about different axes.
 - The order in which two rotations about different axes are performed does matter.
 - 3D rotations do not commute.

53

3D Computer Game Programming

Rotations about an arbitrary axis (passing through the origin)

Rotate by θ around a unit axis r

3D Computer Game Programming