

Mise en place pour l'émission et la réception Exemple de programme SSTV : *CPIX* Protocole trame noir et blanc, SSTV 8 Protocole trame couleur, Scottie S1 Spécifications protocoles

La télévision à balayage lent permet de transmettre par ondes radio une image fixe sur une bande passante étroite correspondant à celle du son. La transmission est assurée par un émetteur/récepteur et le codage/décodage de trame sur l'ordinateur. Le signal module la BF qui à son tour module la porteuse : Il s'agit donc d'une sous-porteuse.

Mise en place pour la réception et émission

Il est nécessaire d'avoir un ordinateur, un émetteur/récepteur et entre les deux une interface qui sert à quelques réglages comme le volume, la commutation en émission du poste par exemple.

L'interface se connecte sur la sortie haut-parleur et l'entrée micro du poste et de l'ordinateur puisque le signal est compris entre 20 Hz et 20 KHz (BF).

Exemple de programme SSTV : CPIX

Sur la figure suivante, voici une image SSTV reçue avec le logiciel CPIX:

Figure 2

Sur la gauche de la fenêtre, on a la possibilité de régler l'image reçue comme la luminosité, la saturation etc. Le curseur « De-skew Image » permet de redresser l'image si éventuellement elle est pas correctement droite (synchronisation).

Sur la partie droite on trouve les commandes d'émission, de réception, de l'auto-réception (dès qu'il y a une trame SSTV, le décodage commence automatiquement) et de StandBy qui permet de cesser toutes activités en réception et en émission. Nous trouvons également un menu avec le choix des modes SSTV (protocole des trames) comme le Scottie S1, Martin M1 avec la possibilité de basculer automatiquement vers le mode utilisé à la réception d'une trame (peut-être désactivé avec « Lock RX Mode »). La zone « Spectral Display » montre une représentation fréquentielle des signaux reçus sur l'entrée de la carte son avec une graduation cohérente avec le protocole des trames (synchro, couleur). Le barre graphe avec le haut-parleur représente le niveau à l'entrée de la carte son.

Au milieu en bas, nous avons une zone où les images reçues sont rangées, on peut aussi les enregistrer sur le disque dur au format .bmp ou .jpeg en cliquant sur « Autosave ».

Protocole trame noir et blanc, SSTV 8

Le mode SSTV 8 était utilisé quand la SSTV a commencé en 1958 où l'image s'affiche en **8 secondes** et fait **120 lignes**. Ci-dessous, le format d'une trame SSTV 8:

Chaque image commence toujours par une trame de synchronisation verticale annonçant à la station réceptrice le début de la transmission de l'image.

Ensuite, une ligne est décomposée en 120 pixels et chacuns de ces pixels ont une luminosité: Entre 1 500 Hz pour le noir et 2 300 Hz pour le blanc. Entre ces deux extrémités il y toutes les autres fréquences correspondantes à des niveaux de gris différents.

Pour annoncer à la station réceptrice qu'elle doit passer à la ligne suivante, une fréquence de 1 200 Hz pendant 5 ms est transmise : Synchro horizontale.

Par calcul, on peut trouver la durée d'un pixel qui est 60ms / 120 lignes = $500 \mu S$.

Sur la figure 4 suivante, un exemple de trame comportant trois lignes :

La figure 5 représente la trame correspondante au codage des première et deuxième ligne :

Figure 5

Sur les figures 6 et 7, des images SSTV 8 et SSTV 12 : On constate que plus l'image met longtemps à être transmise, plus l'image est « nette » puisque elle contient davantage d'informations en l'occurrence les pixels. Il existe aussi la SSTV 24 et SSTV 36 toujours en noir et blanc.

Figure 6

Figure 7

Protocole trame couleur, Scottie S1

Une trame Scottie S1 a une durée de 110,54 s avec un format de 320x256 avec 16 millions de couleurs. La figure ci-dessous montre une trame :

Figure 8

La trame commence par un leader tone, un Break, un autre leader tone permettant le calibrage de l'image.

Le **code VIS** (Verticale Interval Signal) permet l'identification du mode utilisé pour la station réceptrice. Il est composé de 10 bits :

Bit de start	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit de parité	Bit de stop
--------------	-------	-------	-------	-------	-------	-------	-------	------------------	-------------

Figure 9

Pour le Scottie S1, la valeurs décimale sera 60. Les 1 sont déterminés par un signal de 1 100 Hz et les 0 par un signal de 1 300 Hz.

Ensuite, est transmis le codage de l'image commencant par le **start**, **les couleurs RVB** dont avant chaques lignes de couleurs transmisent un **synch porch**. La présence de ces synchronisations rend plus facile la mise en œuvre d'un dispositif permettant d'éliminer les changements de couleur causés par la SSB (décalages). Entre la ligne bleue et la rouge, le **séparateur**.

Figure 10

Spécifications des modes les plus courants

	Scottie 1	Scottie 2	Scottie DX
Code VIS (décimal)	60	56	76
Color mode	RGB (1500-2300Hz)	RGB (1500-2300Hz)	RGB (1500-2300Hz)
Nombre de lignes	256	256	256
Format	320x256	320×256	320x256
Temps de transmission	109,6 s	71,1 s	268,9 s
Color scan time	138,4 ms et 432 <i>µ</i> s/pixel	88,064 ms et 275µs/pixel	345,6 ms et 1,1 ms/pixel

	Martin M1	Martin M2
Code VIS (décimal)	44	40
Color mode	RGB (1500-2300Hz)	RGB (1500-2300Hz)
Nombre de lignes	256	256
Format	320×256	320x256
Temps de transmission	114 s	58 s
Color scan time	146.4 ms et 46 <i>u</i> s/pixel	73.2 ms et 230 <i>us/</i> pixel

	Robot 36	Robot 72
Code VIS (décimal)	8	12
Color mode	Y, R-Y, B-Y	У, R-У, В-У
Nombre de lignes	240	240
Format	320×240	320×240
Temps de transmission	36 s	72 s

	Р3	P5	P7
Code VIS (décimal)	113	114	115
Color mode	RGB (1500-2300Hz)	RGB (1500-2300Hz)	RGB (1500-2300Hz)
Nombre de lignes	496	496	496
Format	640×496	640×496	640×496
Temps de transmission	203 s	304,6 s	406,1 s
Color scan time	133,3 ms et 208 <i>µ</i> s/pixel	200 ms et 312 <i>µ</i> s/pixel	266,6 ms et 417 <i>µ</i> s/pixel