MATH 567: Lecture 21 (03/27/2025)

- * Facial disjunctions

 * practical algorithm

 * rank of cuts

 * Semidefinite relaxation

 $\frac{\text{Def}}{\text{J=1,...,k_i, i.e.}} \text{ Distance disjunction w.r.t.} \quad \text{Kif Distance of K for } \\ j=1,...,k_i, \text{ i.e., } \\ \text{Distance of K.} \\ \text{Signature of K.} \\ \text{Signature of K.} \\ \text{Distance of K.} \\ \text{Signature of K.} \\ \text{Distance of K.} \\ \text$

Theorem 16 If $D_1,...,D_p$ are favial disjunctions, then $K_p = K \cap_c(D_1 \cap D_p)$ in the theoretical algorithm

Proposition 17 Let S be any set (possibly nonconvex), and $H = \{\bar{x} | \bar{a}\bar{x} = \beta\}$ is a hyperplane such that $\bar{a}\bar{x} = \beta + \bar{x} \in S$. Then H(conv(S) = conv(H(S)).

Proof (Theorem 16)

We show the result for p=2, k==2, i=1,2.

We need to show
$$(K \cap_c D_i) \cap_c D_j = K \cap_c (D_i \cap D_j)$$

 $(K \cap_c D_i) \cap_c D_j = conv [conv(K \cap D_i) \cap D_j] \xrightarrow{D_i \cup D_j}$

$$= conv \left[\left(conv \left(K \Omega D_i \right) \Omega D_j \right) U \left(conv \left(K \Omega D_i \right) \Omega D_j \right) \right]$$

= conv [conv (KN Di NDj) U conv (KN Di NDj)]

by Proposition 17.

= conv $[(K \cap D_i \cap D_j) \cup (K \cap D_i \cap D_j)]$

 $= \operatorname{conv} \left[\left[\left[\left\langle \bigcap_{i} \bigcap_{j} \bigcap_{j} \right\rangle \right] \right] = \left[\left\langle \bigcap_{c} \left(\bigcap_{i} \bigcap_{j} \bigcap_{j} \right) \right\rangle \right].$

The theoretical algorithm might not work well in practice. Cretting efficient descriptions of the convex hulls in each step might be difficult.

A practical Algorithm

Step 0: $K_0 = K = \frac{1}{2} \times |A\bar{x}| \leq \bar{b}$

Stepi: Ki: current relaxation, and (izi) \(\times^i:\) optimal Solution over Ki

Find ax = B such that

(1) āx≤β is valid for Killy for some t>i.

(2) $\tilde{a}^{\dagger} \bar{x} \leq \beta$ is violated by \bar{x}^{i} (i.e., $\tilde{a}^{i} \bar{x}^{i} > \beta$).

Set $K_{iH} \leftarrow LP$ relaxation of $K_i \cap D_t \cap \{\bar{x} \mid \bar{a}\bar{x} \leq \beta\}$.

 $\max \beta - \bar{a}\bar{x}^i$ sis given s.t. $(\bar{a}\bar{x} \leq \beta)$ is derivable from $K_i \cap D_t)$ ____(1) by Farkas' (emma

normalization constraint: eg., $\sum_{i=1}^{n} |a_i| + |\beta| \leq 1.$ we can linearize this constraint

Without the normalization, the U could be unbounded. If (β, \bar{a}^{T}) works, then $100\beta-100\,\bar{a}^{T}\bar{x}^{i}$ gives a bigger expanation. And so does $10000\,\beta-10000\,\bar{a}^{T}\bar{x}^{i}$.

For (1), we will use variables representing the multipliers for deriving the constraint $\bar{a}\bar{x}^i \leq \beta$ from $K_i \cap D_t$.

4. How good is any such cutting plane algorithm? First, we define rank of cuts.

Kank of culs

 $K = \{ \overline{x} | A \overline{x} \leq \overline{b} \}$: All inequalities in $A \overline{x} \leq \overline{b}$, or derivable from $A \overline{x} \leq \overline{b}$ are rank 0 cuts (or inequalities).

Let $\overline{a} \times = \beta$ be valid for K. Then the Ca aut $[\overline{a}] \times = [\beta]$ is a rank 1 CG cut.

Combining some (or all) rank-1 CG outs and applying the CG procedure again gives me a rank 2 CG out.

Similar notion of rank can be defined for the LS-procedure, MIG cuts, etc.

Ideally, we want to derive inequalities with small rank, so that we do not have to apply the cut-procedure too many times.

Back to LS Procedure

Q: How many Steps to generate a good inequality?

Example: node packing on complete graph with 5 nodes.

complete graph!

somblete graph! Node packing problem:

A good inequality is x,+x,+x,+x,+x,==1 We can pick at most one node.

Recall the definitions of Mjr(K), Mj(K), and Pj(K). We have

M, (K) spenfied as

$$\left\{
\begin{pmatrix}
A_{\overline{x}} - \overline{b} & x_1 \leq 0 \\
A_{\overline{x}} - \overline{b} & (l - x_1) \leq 0 \\
x_1(l - x_1) = 0
\end{pmatrix}
\right\}.$$

we get odd hole inequalities of size 3: $x_1 + x_2 + x_3 \le 1$ $x_1 + x_2 + x_4 \le 1$

and $x_1 + x_2 + x_3 + x_4 + x_5 \le 2$, odd-hole inequality of Size 5. We do not get \Re .

9n $P_2(P_1(K))$, we get $x_1+x_2+x_3+x_4 \leq 1$ —(2)

To see (2) is valid for $P_2(P_1(K))$, we verify that (2) is valid for $P_1(K) \cap (x_2=0 \vee x_2=1)$.

 $P_1(K) \cap (X_2=0)$ gives $X_1 + X_3 + X_4 \leq 1$, which is there in $P_1(K)$.

 $P_{i}(K) \cap (X_{z=1})$ gives $X_{i} + X_{z} + X_{z} = 0$, which is also valid for $P_{i}(K)$, Since we originally (in K itself) have $X_{i} + X_{j} \leq 1 + (i,j)$. Hence $X_{z=1}$ immediately, forces $X_{j} = 0 + j \neq 2$.

But we still do not get & in P2 (P1(K)).

 $P_3(P_2(P_1(K)))$ gives $x_1+\cdots+x_5 \leq 1$ (*)

=> LS-rank of (x) is 3,

In general, LS rank of $x_i+\dots+x_k \le 1$ is $\le k-2$, and is often = k-2.

Q. Could we derive $x_1 + x_2 + x_3 + x_4 + x_5 \leq 1 - \cancel{*}$ in one step? As a vant-1 cut.

Semidefinite Relaxation

Recall:

$$M_{j}^{NL}(K) = \begin{cases}
(A\bar{x} - \bar{b})x_{j} \leq \bar{0} \\
(A\bar{x} - \bar{b})(i - x_{j}) \leq \bar{0}
\end{cases}, j = 1, ..., n.$$

We linearize $M_j^{NL}(K)$ $(x_j^2 \leftarrow x_j, x_i x_j \leftarrow y_i)$ to $M_j(K)$.

Define
$$M^{NL}(K) = \bigcap_{j=1}^{n} M_{j}^{NL}(K)$$
, and $M(K) = \bigcap_{j=1}^{n} M_{j}(K)$

We could linearize all systems, and then take their intersection. Equivalently we could take the intersection of the nonlinear systems, and then linearize.

Let
$$M_{+}(k) = M(k) \cap \{ \overline{x} \mid (\underline{a_0} + \overline{a}^{T} \overline{x})^2 = 0 \} + [\underline{a_0}] \in \mathbb{R}^{n+1} \}$$
.

 $\int \left[\frac{1}{x} \tilde{x}^{T}\right]$ is positive semidefinite You would think this restriction

You would think this restriction is always satisfied! But imposing it explicitly makes the difference — see Notes to follow...

M₊(K) is the semidefinite relaxation of the problem.

Def AER^{n×n} is positive comidefinite (PSD) if \$\frac{1}{x^{7}}A\times = 0 \tau\times ER^n. We write A > 0 If A is PSD, all its eigenvalues are nonnegative.

Back to example on vertex packing

$$M_{+}(K) \text{ has } (1-x_{1}-x_{2}-x_{5})^{2} = 0$$

$$\Rightarrow 1-2\sum_{i=1}^{5} x_{i} + \sum_{i=1}^{5} x_{i}^{2} + 2\sum_{i\neq j} x_{i}x_{j} = 0$$

$$x_{i}$$

$$\Rightarrow$$
 $1-\sum_{i=1}^{5} x_i = 0$, which is \Re !

M(K) has $(x_i+x_j \leq i) \times_i \implies x_i x_j \leq 0$ as $x_i^2 = x_i$ M(K) also has $(x_j \le 0) x_i \implies x_i x_j = 0$

Hence the semidefinite relaxation rank of (is 1!

$$\chi = \begin{pmatrix} 1 & \overline{\chi}^{\mathsf{T}} \\ \overline{\chi} & \overline{\chi}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} \frac{1}{x_1} & \chi_1^2 & \chi_2^2 & \chi_i \chi_1^2 \\ \chi_2 & \chi_2^2 & \chi_i \chi_1^2 \\ \vdots & \chi_n & \chi_j \chi_i & \chi_n^2 \end{pmatrix}.$$

Inequalities for
$$X$$
 can be written as $B \cdot X = 0$, where $A \cdot B = t$ vace $(A^T B)$

2) To get M(K) from M^{N2}(K), we replace
$$x_i^2$$
 by x_i and $x_i x_j$ by y_{ij} . Hence inequalities of M(K) can be written as

e written as
$$C \cdot \left(\begin{bmatrix} 1 & \overline{X}^T \\ \overline{X} & Y \end{bmatrix} \right) = 0, \text{ where } \operatorname{diag}(Y) = \overline{X}.$$

(3)
$$(a_0 + \overline{a}^T \overline{x})^2 = 0$$
 can be written equivalently as

$$\begin{bmatrix} a_{o} \ \bar{a}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} 1 & \bar{x}^{\mathsf{T}} \\ \bar{x} & \bar{x} \bar{x}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} a_{o} \\ \bar{a} \end{bmatrix} \geqslant 0 \Rightarrow \begin{bmatrix} a_{o} \ \bar{a}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} a_{o} + \bar{a}^{\mathsf{T}} \bar{x} \\ a_{o} \bar{x} + (\bar{x}^{\mathsf{T}}) \bar{a} \end{bmatrix} = \begin{bmatrix} a_{o} \ \bar{a}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} (a_{o} + \bar{a}^{\mathsf{T}} \bar{x}) \\ (a_{o} + \bar{a}^{\mathsf{T}} \bar{x}) \bar{x} \end{bmatrix}$$

$$= (a_0 + \bar{a}^T \bar{x})(a_0 + \bar{a}^T \bar{x}) \neq 0.$$

In other words, $M_{+}(K)$ has $\begin{bmatrix} 1 & \overline{x}^{T} \\ \overline{x} & Y \end{bmatrix} \geqslant 0$ as added constraints.