Evaluating distribution choices

MONTE CARLO SIMULATIONS IN PYTHON

Izzy WeberCurriculum Manager, DataCamp

Choosing variable probability distributions

- 1. Gain an intuitive understanding of data and available probability distributions
- 2. Use Maximum Likelihood Estimation (MLE) to compare candidate distributions
- 3. Use Kolmogorov-Smirnov test to evaluate goodness of fit of probability distributions
 - Quantifies distance between the empirical distribution of the data and the theoretical candidate probability distribution
 - Use scipy.stats.kstest() to calculate

Evaluating choice of distribution: age

```
results = []
list_of_dists = ["laplace", "norm", "expon"]
for i in list_of_dists:
    dist = getattr(st, i)
    param = dist.fit(dia["age"])
    result = st.kstest(dia["age"], i, args=param)
    print(result)
```

Results for Laplace, normal, and exponential distributions in that order:

```
KstestResult(statistic=0.09511179937112832, pvalue=0.0006239579389182981)
KstestResult(statistic=0.0615913626181368, pvalue=0.06703225234359811)
KstestResult(statistic=0.2536037941921312, pvalue=1.5202547969084796e-25)
```

Evaluating choice of distribution: age

Results for Laplace, normal, and exponential distributions in that order:

```
KstestResult(statistic=0.09511179937112832, pvalue=0.0006239579389182981)
KstestResult(statistic=0.0615913626181368, pvalue=0.06703225234359811)
KstestResult(statistic=0.2536037941921312, pvalue=1.5202547969084796e-25)
```


Evaluating choice of distribution: tc blood serum

```
results = []
list_of_dists = ["laplace", "norm", "expon"]
for i in list_of_dists:
    dist = getattr(st, i)
    param = dist.fit(dia["tc"])
    result = st.kstest(dia["tc"], i, args=param)
    print(result)
```

Results for Laplace, normal, and exponential distributions in that order:

```
KstestResult(statistic=0.06435779928393615, pvalue=0.04915329841106708)
KstestResult(statistic=0.051165295747227724, pvalue=0.19085587687385897)
KstestResult(statistic=0.3318461436889846, pvalue=7.018486943525e-44)
```

Let's practice!

MONTE CARLO SIMULATIONS IN PYTHON

Visualizing simulation results

MONTE CARLO SIMULATIONS IN PYTHON

Izzy WeberCurriculum Manager, DataCamp

Answering questions using Monte Carlo simulations

What are the differences in the predicted y values for people who are in the fourth quartile of each predictor compared to the first quartile?

Starting with the simulated results

df_summary.head()

		age 	bmi	bp	tc	ldl	hdl	tch	ltg	glu	predicted_y
1	0	54.491842	32.512362	82.131464	203.075420	114.043050	44.820017	5.137683	5.254633	100.815909	209.297688
-1	1	66.380490	29.380708	98.810054	136.474760	68.457982	51.691298	3.455412	4.572478	96.117969	177.081339
1	2	59.003285	27.015225	92.195168	242.796424	126.541644	86.050629	2.423928	4.640063	87.485747	123.192425
1	3	34.803821	20.961365	86.852597	168.762268	110.113823	53.158621	3.925988	4.080205	79.187999	84.284908
	4	56.732615	32.682115	118.384860	226.152964	136.838283	46.467736	4.376397	5.374001	104.184429	244.900141

Answering our question

```
dic_diffs = {}
for var in ["age", "bmi", "bp", "tc", "ldl", "hdl", "tch", "ltg", "glu"]:
    var_q25 = np.quantile(df_summary[var], 0.25)
    var_q75 = np.quantile(df_summary[var], 0.75)
    q75_outcome = np.mean(df_summary[(df_summary[var] > var_q75)]["predicted_y"])
    q25_outcome = np.mean(df_summary[(df_summary[var] < var_q25)]["predicted_y"])</pre>
    y_diff = q75_outcome - q25_outcome
    dic_diffs[var] = [y_diff]
df_diffs = pd.DataFrame.from_dict(dic_diffs)
df_diffs.head()
```

```
age bmi bp tc ldl hdl tch ltg glu
0 36.721 114.462 87.101 42.625 35.413 -77.653 82.835 105.611 74.744
```

Simulating 1,000 times

```
df_diffs.head()
```

```
ldl
                bmi
                         bp
                                                 hdl
                                                         tch
                                                                  ltg
                                                                          glu
                                 tc
       age
    30.045
            108.973
                                     31.060 -75.885
0
                     81.107
                             36.728
                                                     79.829
                                                              101.231
                                                                       67.215
                                                              100.964
    36.860
            112.486
                     86.164
                                     33.970 -71.609
                                                      77.367
                                                                       72.301
                             39.596
    30.387
            110.651
                     79.972
                             44.655
                                     39.583 -74.377
                                                      82.354
                                                              103.808
                                                                       71.804
            113.609
                             34.706
                                     23.764 -75.798 83.070
    35.047
                     83.241
                                                              102.119
                                                                       75.230
    31.050
            109.022
                     81.727
                                                     80.866
                             41.590
                                     31.136 -73.955
                                                              101.668
                                                                       74.225
```

 This DataFrame has 1,000 rows: one row for each set of mean difference from each of the 1,000 simulations

Pairplot

sns.pairplot(df_diffs)

Pairplot

sns.pairplot(df_diffs)

Clustermap

sns.clustermap(df_diffs.corr())

Converting to long format

 DataFrames in long format often contain two columns: the variable name and the other the corresponding value

```
      variable
      y_diff

      0 age
      30.045

      1 age
      36.860

      2 age
      30.387

      3 age
      35.047

      4 age
      31.050
```

Boxplot

```
sns.boxplot(x="variable", y="y_diff", data=df_diffs_long)
```


Let's practice!

MONTE CARLO SIMULATIONS IN PYTHON

Sensitivity analysis

MONTE CARLO SIMULATIONS IN PYTHON

Izzy WeberCurriculum Manager, DataCamp

Sensitivity analysis

- Helps us understand the impact of the range of inputs
- Illustrates the patterns or trends when summarized in tables or plots

If we increase or decrease the values for bmi and hdl using a Monte Carlo simulation, how will the predicted y values (disease progression) change?

Defining the parameters

```
cov_dia = dia[["age", "bmi", "bp", "tc", "ldl", "hdl", "tch", "ltg", "glu"]].cov()
mean_dia = dia[["age", "bmi", "bp", "tc", "ldl", "hdl", "tch", "ltg", "glu"]].mean()
```


Defining the simulation function

```
def simulate_bmi_hdl(cov_dia, mean_list):
    list_ys = []
    for i in range (50):
        simulation_results = st.multivariate_normal.rvs(mean=mean_list,
                                                         size=500, cov=cov_dia)
        df_results = pd.DataFrame(simulation_results,
                                  columns=["age","bmi","bp","tc","ldl","hdl","tch","ltg","glu"])
        predicted_y = regr_model.predict(df_results)
        df_y = pd.DataFrame(predicted_y, columns=["predicted_y"])
        df_summary = pd.concat([df_results, df_y], axis=1)
        y = np.mean(df_summary["predicted_y"])
        list_ys.append(y)
    return(np.mean(list_ys))
```

Perform simulations with a range of input parameters

```
hdl = []
bmi = []
simu_y = []
for mean_hdl_inc in np.arange(-20, 50, 30):
    for mean_bmi_inc in np.arange(-7, 11, 3):
        mean_list = mean_dia + np.array([0, mean_bmi_inc, 0, 0, 0, mean_hdl_inc, 0, 0, 0])
        hdl.append(mean_hdl_inc)
        bmi.append(mean_bmi_inc)
        mean_y = simulate_bmi_hdl(cov_dia, mean_list)
        simu_y.append(mean_y)
df_sa = pd.concat([pd.Series(hdl), pd.Series(bmi), pd.Series(simu_y)], axis=1)
df_sa.columns = ["hdl_inc", "bmi_inc", "y"]
```

Styled DataFrames of sensitivity analysis results

hdl_inc						
-20	128.313347	146.788965	165.237888	183.925198	202.439964	220.860332
10	99.150789	117.993128	136.040590	154.108108	173.100882	191.778971
40	70.351470	89.323106	106.627512	125.809040	144.166632	162.095737

Hexbin plot for sensitivity analysis results

Hexbin plot for dense parameter space

Let's practice!

MONTE CARLO SIMULATIONS IN PYTHON

Congratulations!

MONTE CARLO SIMULATIONS IN PYTHON

Izzy Weber
Curriculum Manager, DataCamp

What we've covered

- What Monte Carlo simulations are and why they are useful
- Sampling from probability distributions as the basis for Monte Carlo simulations
- The steps of performing Monte Carlo simulations
- How to further evaluate and interpret simulation results

Tips on further learning

- 1. Continue learning about statistics
 - DataCamp skill track: Statistics Fundamentals with Python
- 2. Expand on your data visualization skills
 - Introduction to Data Visualization with Seaborn
 - Intermediate Data Visualization with Seaborn

Thank you!

MONTE CARLO SIMULATIONS IN PYTHON

