Proteins and signal transduction

01.17.2017

Protein Synthesis

Proteins

- Majority of the dry weight of the cell
- Variety of functions:
 - _____proteins cytoskeleton (microtubules, actin), chromosome scaffolds
 - ______ catalyze chemical reactions (metabolism). Synthesize molecules (______).
 - Transfer information (TFs, ______)
 - Molecular Machines.

How can one class of biomolecules give rise to so many diverse functions?

They can adopt many different structures (_______

Structural variety in proteins

- Made up of ______aa, not just 4 residues like in RNA or DNA computational possibilities
- Flexible about the C-N _____bond

Structure \rightarrow

Making proteins

Watch the translational machine, the ribosome, in action

Translation: how proteins are made

From the Genetic Code to the aa seq

- _____: a set of 3 nucleotides in the mRNA seq that codes for 1 aa.
- _____: corresponding triplete seqon the tRNA that brings the specific aa to the ribosome during the translation.

messenger RNA

The genetic code

	Second Position						
		U	С	A	G		
First Position	U	UUU Phe [F] UUC Phe [F] UUA Leu [L] UUG Leu [L]	UCU Ser [S] UCC Ser [S] UCA Ser [S] UCG Ser [S]	UAU Tyr [Y] UAC Tyr [Y] UAA Stop UAG Stop	UGU Cys [C] UGC Cys [C] UGA Stop UGG Trp [W]	U C A G	
	С	CUU Leu [L] CUC Leu [L] CUA Leu [L] CUG Leu [L]	CCU Pro [P] CCC Pro [P] CCA Pro [P] CCG Pro [P]	CAU His [H] CAC His [H] CAA GIn [Q] CAG GIn [Q]	CGU Arg [R] CGC Arg [R] CGA Arg [R] CGG Arg [R]	U C A G	T h i r d
	A	AUU IIe [I] AUC IIe [I] AUA IIe [I] AUG Met [M]	ACU Thr [T] ACC Thr [T] ACA Thr [T] ACG Thr [T]	AAU Asn [N] AAC Asn [N] AAA Lys [K] AAG Lys [K]	AGU Ser [S] AGC Ser [S] AGA Arg [R] AGG Arg [R]	U C A G	o s i t i o n
	G	GUU Val [V] GUC Val [V] GUA Val [V] GUG Val [V]	GCU Ala [A] GCC Ala [A] GCA Ala [A] GCG Ala [A]	GAU Asp [D] GAC Asp [D] GAA Glu [E] GAG Glu [E]	GGU Gly [G] GGC Gly [G] GGA Gly [G] GGG Gly [G]	U C A G	

The Genetic Code

• 4 unique bases so 4^3 = 64 potential codons

• 20 amino acids

• What do the other 44 codons code for?

The Genetic Code

• 4 unique bases = _____potential codons

_____amino acids

What do the other 44 codons code for?

Genetic code is redundant (several codons for 1 amino acid)

Punctuation

The Genetic Code

Punctuation

- Start codon is ____ = ____
 - Translational _____
- Stop codons: UAA, UAG, UGA
 - Translational stop

Terminology: coding vs non-coding DNA

4 levels of protein structure

Primary 1° Secondary 2° Tertiary 3° Quarternary 4°

Primary Structure of proteins

Dipeptide

Tripeptide

Methionylglutamylalanine (Met-Glu-Ala or MEA)

Tetrapeptide

Linear sequence of amino acids in the polymer (_____)

PROTEIN STRUCTURE

- Proteins don't exist in the cell as extended chains
- They fold into ______and ____structures (Globular)
- Primary structure determines these structures

Strong chemical bonds

- ______ peptide bond = strong
- ______ reversible, weaker

Weak chemical bonds (noncovalent) stabilize protein structure

- Ionic bond
- Hydrogen bond
- van der Waals interaction
- Hydrophobic interaction
 - clustering of side chains

Secondary structures

3 flavors

____helix

____sheet

____coil

Figure 2.23b

Tertiary structure

Figure 3-10 Molecular Biology of the Cell (© Garland Science 2008)

Quaternary structure

Quaternary structure in action

• ATP synthase: a molecular machine in motion

Think/pair/share

- Design a protein for a cellular function of your choice. How would you make it? (Hint: consider tertiary and/or quaternary structure).
- "Break" your engineered protein. How would you do it? (Hint: think about the genetic code).

PROTEIN FUNCTIONS

• Enzymes: biological catalysts

Activation energy

In biological systems,

- _____facilitates getting over the to move the reaction forward.
- _____effectively _____the activation energy.

Active sites

Kinases

• Bind a ______group onto another protein

Phosphate group ______the other protein

What is signal transduction?

- 1. Signal (small molecule, light, hormone, sugar, salt.....)
- 2. Signal gets inside cell (______)
- 3. Signal transfer and ______

Two-component systems

Many types of two-component systems

- Nitrate and nitrite utilization
- Inorganic phosphate utilization
- Oxygen
- Cell cycle (e.g. Caulobacter crescentus)

Eukaryotic signal transduction

- Allows for ______ of a stimulus
- _____the signal coming from the stimulus.

Information transfer

RAS pathway

https://www.youtube.com/watch?v=oDjDUUhGVsI

Fig. 5.20