GCHSM Gaussian Charge distributed Harmonic Solvation Model User Manual Ver. 1.0.0 October 2025 Nakai Group Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University

GCHSM User Manual Version 1.0.0

Release date: October 2025

Abstract

This manual describes how to install, configure, and run GCHSM, a wrapper of PySCF that implements the Gaussian Charge—distributed Harmonic Solvation Model (GC-HSM) for quantum-chemical calculations in solution and gas phase. GC-HSM addresses limitations of the original HSM and enables accurate evaluation of condensed-phase thermodynamic quantities.

1. Overview

GCHSM requires an input file to operate. The default filename for this file is "input.inp", and it primarily consists of the following three sections:

- Main section
- Title section
- Geometry section

An empty line is inserted at the end of both the Main and Title sections. Below is an example of an input file for calculating vibrational frequencies for water molecules in solution.

%MAIN	Main section
CALCTYPE = hess	
METHOD = HF	
DFTTYP = B3LYP-D3BJ	
BASIS = cc-pvdz	
HSM = TRUE	
PROJECT = TRUE	
FREQTEMP = 298.15	
%END	
#vibrational frequency calculation	Title section
%GEOMETRY	Geometry section
0 1	
O 0.000000000000 0.00000002290434 0.12533601079751	
H 0.0000000000000 0.75867849691627 -0.46855429138676	
H 0.0000000000000 -0.75867851982061 -0.46855430941074	
%END	

1.1. MAIN section

%MAIN	Main section
CALCTYPE = hess	Calculation Details
METHOD = HF	Specify Functional
DFTTYP = B3LYP-D3BJ	
BASIS = cc-pvdz	Specify Base Functions
HSM = TRUE	Perform HSM Calculation
PROJECT = TRUE	
FREQTEMP = 298.15	
%END	

Keyword/option separator is either a half-width space or the Tab key.

	Option	[Default]	Contents	
✓	CALCTYPE	[sp]	: Specify the following calculation types:	
			• sp: Single-point energy calculation	
			 opt: Structure optimization calculation 	
			hess: Frequency calculation	
			• freq: Thermodynamic property evaluation	
✓	METHOD	[DFT]	: Specifies the functional. HF, DFT, and MP2 are supported.	
✓	DFTTYP	[B3LYP]	: Effective only when METHOD=DFT is specified.	
✓	BASIS	[STO-3G]	: Specifies the basis set.	
✓	HSM	[TRUE]	: Performs GC-HSM calculations.	
			When HSM = TRUE, performs calculations in an aqueous	
			solvent environment using:	
			(SCRF = CPCM, ALPHA = 1.2, EPS = 80.1510, ORDER = 17)	
			When HSM = FALSE, performs calculations in the gas phase	
✓	SCRF	[CPCM]	: CPCM and COSMO methods are supported.	
✓	ALPHA	[1.2]	: Specifies the scaling factor for PCM calculations.	
✓	EPS	[80.1510]	: Specifies the solvent's relative dielectric constant.	
✓	ORDER	[17]	: Specifies the Lebedev order.	
✓	PROJECT	[FALSE]	: Indicates whether to project into translational and rotational	
			spaces.	
✓	NE_CAVITY	[PCM]	: Specifies the method for generating cavity surfaces when calculating non-electrostatic terms. For NE_CAVITY = PCM, grid subdivision of cavity spheres is applied. For NE_CAVITY = SES, a polyhedral approximation of cavity spheres is used.	

✓	NE_MODEL	[GAMESS]	: Specifies the method for calculating dispersion and repulsive
			energy. Only NE_MODEL=GAMESS is permitted.
			Calculation performed according to references [1,2].
✓	NE_DENSITY	[0.997]	: Specifies the density of solvent molecules.
✓	NE_MOLAR_MASS	[18.01528]	: Specifies the molecular weight of the solvent molecule.
✓	NE_CAV_MODEL	[SPT]	: Specifies the calculation method for cavity generation
			energy. NE_CAV_MODEL=SPT is only valid and performs
			calculations based on reference [3].
1	NE_SPT_T	[298.15]	: Specifies temperature for cavitation energy calculation.
✓	NE_SPT_SIGMA	[1.50]	: Specifies solvent radius.
✓	NE_SPT_VM	[18.07]	: Specifies solvent molecular volume.
✓	NE_SPT_ALPHA	[0.000257]	: Specifies the isobaric-isothermal volume coefficient of the
			solvent.
✓	NE_SPT_P	[1.0]	: Specifies pressure.
✓	NE_SPT_PUNIT	[atm]	: Specifies the pressure unit as defined in NE_SPT_P.
1	FREQTEMP	[298.15]	: Specifies the temperature to use when calculating internal
			energy and entropy. Multiple temperatures can be specified.
✓	MOLE	[LINEAR]	: Valid when CALCTYPE=freq is specified. Specifies the shape
			of the numerator.

1.2. Title section

#vibrational frequency calculation	Title section
------------------------------------	---------------

The Title section is used to append information related to the calculation. Begin with "#".

1.3. Geometry section

%G	SEOMETRY			Geometry Section
0 1				Charge, Spin Multiplicity
0	0.00000000000000	0.00000002290434	0.12533601079751	Coordinates for Atomic 1
Н	0.00000000000000	0.75867849691627	-0.46855429138676	Coordinates for Atomic 2
Н	0.00000000000000	-0.75867851982061	-0.46855430941074	Coordinates for Atomic 3
%E	ND			

The Geometry section begins with specifying two integer values: the charge and spin multiplicity of the input structure. After a newline, specify the atomic positions using decimal Cartesian coordinates (in angstroms).

2. Output

When submitting a job, two output files are generated: I. input.out and II. freq.out. Notably, I. has the same name as the input file (input.inp).

2.1. input. out

Z. I. Input. out	
~ (omitted) Execution of GCHSM begun Mon Oct 06 17:10:55 2025	Job Submission Date and Time
vibrational frequency calculation	Title Section Output
SYSTEM	System Information
Total number of atoms 3 Number of electrons 10 Charge of system 0 Spin multiplicity 1 Number of basis functions 24 Number of occupied orbitals 5	Number of Atoms Number of Electrons Charge Spin Multiplicity Number of Basis Functions Number of Occupied Orbitals
VIBRATION OPTIONS	
Projection of trans/rot: ON (nTR = 6)	Projection status
Computational Details	Computational Parameters
Method HF DFT functional - Basis cc-pvdz Dispersion DFT-D3(BJ)/D3	Functional Basis Set Presence of Dispersion
	Tresence of Dispersion
PCM Details	PCM Information
SCRF (PCM) CPCM Dielectric 80.1510 vdW scale alpha 1.200 Lebedev order 17	PCM Type Relative Permittivity Scaling Factor Number of Lebedev Grid Points
Non-electrostatic Contributions	Non-Electrostatic Term Calculation
[Surface] Kind: PCM Area (Ang.^2): 164.930193 Volume (Ang.^3): 192.557609 Number of surface point: 228	Cavity Construction Method Surface Area Volume Total Number of Grid Points (or Total Number of Tessellations for SES)

[Dispersion/Repulsion] Model : GAMESS Density : 3.332768e-02 E_disp (kcal/mol) : -3.044875 E_rep (kcal/mol) : 0.178001	Dispersion/Repulsive Energy Computational Algorithm Density Dispersion Energy Repulsive Energy
[Cavitation] Model : SPT G_cav (kcal/mol) : 2.192535 H_c (kcal/mol) : 0.190439 T*S_c (kcal/mol) : -2.002096	Cavity Generation Energy Computational Method Free Energy Enthalpy Contribution Entropy Contribution
Total non-electrostatic energy (kcal/mol): -0.674339	Non-electrostatic Energy
*** Start vibrational frequency calculation ***	Normal Mode Analysis
HARMONIC FREQUENCIES	
Mode Frequency(cm-1) Note	
1 17.59 2 23.84 3 17.76 4 227.20 5 365.60 6 609.25 7 1664.19 8 3555.84 9 3908.11	If imaginary frequencies are present, print "Imag" in the Note field If any frequency is less than 10 cm ⁻¹ , print "low" in the Note field
Thermochemistry at 298.15 K	Thermodynamic Calculations
Temperature : 298.15 K Pressure : 1.00 atm Total Mass : 18.015 Amu	(Temperature) Temperature Pressure Mass
Internal energy	Internal Energy
E(vib) : 54.60 kJ/mol 13.05 kcal/mol E(rot) : 4.93 kJ/mol 1.18 kcal/mol E(trans): 3.72 kJ/mol 0.89 kcal/mol Total E : 63.26 kJ/mol 15.12 kcal/mol	Vibration Energy Rotational Energy Translational Energy Total Energy
Entropy	<i>Entropy</i>
S(vib) : 0.00002 kJ/mol/K S(rot) : 0.01436 kJ/mol/K S(trans): 0.08387 kJ/mol/K Total S : 0.09826 kJ/mol/K	Electronic Entropy Rotational Entropy Translational Entropy Total Entropy
Execution of GCHSM terminated normally Mon Oct 06 17:10:57 2025	Job completion time
5	

2. 2. freq. out

- 1 31.357883648009
- 2 81.795728860024
- 3 75.988009145976
- 4 382.649803121748
- 5 309.735845474172
- 6 442.385022641645
- 7 1691.249913131260
- 8 3849.887419632710
- 9 3963.622756143805

The first column contains vibrational mode numbers, and the second column corresponds to vibrational frequencies (in cm⁻¹). When CALCTYPE is set to "freq", this file is exclusively used for thermodynamic quantity calculations.

References

- [1] F. M. Floris and J. Tomasi, "Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation", *J. Comput. Chem.*, **10**, 616 (1989).
- [2] F. M. Floris, J. Tomasi, and J.L.P. Ahuir, "Dispersion and repulsion contributions to the solvation energy: Refinements to a simple computational model in the continuum approximation", *J. Comput. Chem.*, **12**, 784 (1991).
- [3] R. A. Pierotti, "A Scaled Particle Theory of Aqueous and Nonaqueous Solutions", *Chem. Rev.*, **76**, 717 (1976).

■HSM review

1. 中井浩巳, "調和溶媒和モデル (HSM) を用いた凝縮系の自由エネルギー計算", J. Comput. Chem. Jpn. **16**, 83 (2017).

■HSM theory

2. H. Nakai and A. Ishikawa, "Quantum chemical approach for condensed-phase thermochemistry: Proposal of a harmonic solvation model, *J. Chem. Phys.*, **141**, 174106 (2014).

■GC-HSM theory

3. In preparation.

■HSM illustrative applications

- 4. A. Ishikawa and H. Nakai, "Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules", *Chem. Phys. Lett.*, **624**, 6 (2015).
- 5. M. Okoshi, A. Ishikawa, Y. Kawamura, and H. Nakai, "Theoretical Analysis of the Oxidation Potentials of Organic Electrolyte Solvents", *ECS Electrochem. Lett.*, **4**, A103 (2015).
- 6. A. Ishikawa and H. Nakai, "Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential", *Chem. Phys. Lett.*, **650**, 159 (2016).
- 7. A. Ishikawa, M. Kamata, and H. Nakai, "Quantum chemical approach for condensed-phase thermochemistry (IV): Solubility of gaseous molecules", *Chem. Phys. Lett.*, **655-656**, 103 (2016).