МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Домашнее задание № <u>1</u> по дисциплине «Методы машинного обучения»

ИСПОЛНИТЕЛЬ:	Шапиев М.М.	
	ФИО	
группа ИУ5-24М		
	подпись	
	""2020	г.
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю.Е.	
	ФИО	
		—
	Подпись	
	""2020	Γ.

Москва - 2020

Задание

- Исследование предметной области, определение функциональных задач;
- Выбор и анализ алгоритмов анализа тональности текстовой информации;
- Разработка структуры программного продукта;
- Сбор, очистка и предобработка обучающей выборки;
- Программная реализация алгоритма наиболее точного алгоритма классификации;
- Обеспечение модульности системы для возможности подключения к другой системе;
- Тестирование разработанной системы с целью выявления ошибок при работе, а также с целью определения точности распознавания;

Реализация задания

Выбор набора данных

В качестве набора данных используются русскоязычный корпус коротких текстов RuTweetCorp состоящий из 17,639,674 записей. Для тех, кто занимается задачей тонового анализа предлагаю ознакомиться с корпусами, автоматически распределенными на две группы: «заведомо положительные» (114,911 записей) и «заведомо отрицательные» (111,923 записей). Корпус собран на основе русскоязычных постов микроблогинговой площадки Twitter.

Текстовое описание набора данных

Несмотря на ограничения API twitter, был собран корпус русскоязычных twitter-постов, автоматически размеченных на два класса (положительные и отрицательные). Корпус нейтральных постов собирается отдельно. Каждый текст в корпусе имеет следующие атрибуты: – дата публикации; – имя автора; – текст твита; – класс, к которому принадлежит текст (положительный, отрицательный, нейтральный); – количество добавлений сообщения в избранное; – количество ретвитов (количество копирований этого сообщения другими пользователями); – количество друзей пользователя; – количество пользователей, у которых данный юзер в друзьях (количество фоловеров); – количество листов, в которых состоит пользователь.

Постановка задачи

Основной целью анализа тональности является нахождение мнений в тексте и выявление их свойств. Какие именно свойства будут исследоваться, зависит уже от поставленной задачи. К примеру, целью анализа может быть автор, то есть лицо, которому принадлежит мнение.

Мнения делятся на два типа:

- 1. непосредственное мнение;
- 2. сравнение.

Непосредственное мнение содержит высказывание автора об одном объекте. Формальное определение непосредственного мнения выглядит так: "непосредственным мнением называется кортеж из пяти элементов (e, f, op, h, t), где:

- 1. (*entity*, *feature*) объект тональности е (сущность, насчет которой высказывается автор) или его свойства f (атрибуты, части объекта);
- 2. *orientation* или *polarity* тональная оценка (эмоциональная позиция автора относительно упомянутой темы);
- 3. *holder* субъект тональности (автор, то есть кому принадлежит это мнение);
- 4. момент времени *time*, когда было оставлено мнение.

Примеры тональных оценок:

- позитивная;
- негативная;
- нейтральная.

Под «нейтральной» подразумевается, что текст не содержит эмоциональной окраски. Также могут существовать и другие тональные оценки.

Предварительная обработка набора данных

Очистка и предобработка данных

Процедура очистки и предобработки обучающей выборки выглядит следующим образом:

- приведение к нижнему регистру;
- замена «ё» на «е»;
- замена ссылок на токен «URL»;
- замена упоминания пользователя на токен «USER»;

- удаление знаков пунктуации.

Векторное отображение слов

Входными данными сверточной нейронной сети является матрица с фиксированной высотой п, где каждая строка представляет собой векторное отображение слова в признаковое пространство размерности k. Для формирования embedding-слоя нейронной сети я использовал утилиту дистрибутивной семантики Word2Vec, предназначенную для отображения семантического значения слов в векторное пространство. Word2Vec находит взаимосвязи между словами согласно предположению, что в похожих контекстах встречаются семантически близкие слова.

Далее с помощью библиотеки Gensim обучил Word2Vec-модель со следующими параметрами:

size = 200 — размерность признакового пространства;

window = 5 — количество слов из контекста, которое анализирует алгоритм;

min_count = 3 — слово должно встречаться минимум три раза, чтобы модель его учитывала.

На следующем этапе каждый текст был отображен в массив идентификаторов токенов. Я выбрал размерность вектора текста s=26, поскольку при данном значении полностью покрываются 99,71% всех текстов в сформированном корпусе. Если при анализе количество слов в твите превышало высоту матрицы, оставшиеся слова отбрасывались и не учитывались в классификации. Итоговая размерность матрицы предложения составила $s\times d=26\times 200$.

Распределение длины слов

Часть 1. Предварительная подготовка данных

```
import pandas as pd
import numpy as np
n = ['id', 'date', 'name', 'text', 'typr', 'rep', 'rtw', 'faw', 'stcount', 'foll', 'frien', 'listcount']
data_positive = pd.read_csv('data/positive.csv', sep=';', error_bad_lines=False, names=n, usecols=['text'])
data_negative = pd.read_csv('data/negative.csv', sep=';', error_bad_lines=False, names=n, usecols=['text'])
sample_size = min(data_positive.shape[0], data_negative.shape[0])
raw_data = np.concatenate((data_positive['text'].values[:sample_size],
                                   data negative['text'].values[:sample size]), axis=0)
labels = [1] * sample_size + [0] * sample_size
import re
def preprocess_text(text):
     text = text.lower().replace("ë", "e")
     text = re.sub('((www\.[^\s]+)|(https?://[^\s]+))', 'URL', text)
     text = re.sub('@[^\s]+', 'USER', text)
     text = re.sub('[^a-zA-Za-xA-x1-9]+', ' ', text)
     text = re.sub(' +', ' ', text)
     return text.strip()
data = [preprocess text(t) for t in raw data]
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data, labels, test size=0.2, random state=2)
```

Часть 2. Модели

Задача состоит в том, чтобы выбрать комбинацию классификатора, метода векторизации, п-граммовой схемы и других параметров таким образом, чтобы максимизировать качество классификации.

Выбраны две модели: наивный байесовский классификатор и линейный классификатор (минимизация через стохастический градиентный спуск). Иногда для таких задач используется SVM, но он очень медленно работает на большом количестве объектов и функций. Логические методы классификации вообще не рассматриваются, так как они абсолютно не подходят для этой задачи.

Байесовский классификатор не нуждается в большом выборе параметров, но параметры линейной модели подбираем на сетке.

По результатам тестирования, лучшей оказалась следующая модель:

- Схема n-грамм: (1, 3) (униграммы + биграммы + триграммы);
- Метод векторизации: TF-IDF;
- Тип модели: линейная модель;
- Параметры модели: penalty -12, alpha -0.000001, loss $-\log$.

Результаты точности распознавания этой модели представлены на рисунке 13.

```
NB: 0.7301672333333333
Linear: 0.742810033333334
Linear Parameters: {'alpha': 0.000001, 'loss': 'log', 'penalty': 'l2'}
TF-IDF Vectorizer
```

Результаты наилучшей модели

Для этой же модели, наивный байесовский классификатор показал результат на **1.2%** хуже.

Так же был взят корпус коротких текстов с сервиса Яндекс.Маркет. Для

данной выборки оба классификатора показали примерно одинаковый результат точности распознавания около 92%.

Сверточная нейронная сеть

sentence

Для построения нейронной сети использовалась библиотека Keras, которая выступает высокоуровневой надстройкой над TensorFlow, CNTK и Theano. В нашем случае embedding-слой был инициирован весами, полученными при обучении Word2Vec. Чтобы минимизировать изменения в embedding-слое, на первом этапе замораживаем этот слой.

В разработанной архитектуре использованы фильтры с высотой h=(2, 3, 4, 5), которые предназначены для параллельной обработки биграмм, триграмм, 4-грамм и 5-грамм соответственно. Добавил в нейронную сеть по 10 свёрточных слоев для каждой высоты фильтра, функция активации — ReLU.

d x s representation of convolution layers with the same and sesture concatenated fully-connected 2 classes

Архитектура сверточной нейронной сети показана на рисунке.

Архитектура сверточной нейронной сети

После обработки слоями свертки, карты признаков поступали на слои

hidden laver

субдискретизации, где к ним применялась операция 1-max-pooling, тем самым извлекая наиболее значимые n-граммы из текста. На следующем этапе происходило объединение в общий вектор признаков (слой объединения), который подавался в скрытый полносвязный слой с 30 нейронами. На последнем этапе итоговая карта признаков подавалась на выходной слой нейронной сети с сигмоидальной функцией активации.

Поскольку нейронные сети склонны к переобучению, после embedding-слоя и перед скрытым полносвязным слоем добавим dropout-регуляризацию с вероятностью выброса вершины p=0.2.

Итоговую модель конфигурируем функцией оптимизации Adam (Adaptive Moment Estimation) и бинарной кросс-энтропией в качестве функции ошибок. Качество работы классификатора оценивается в критериях точности, полноты и F-меры.

Результаты точности работы данной сверточной нейронной сети можно увидеть на рисунке.

```
precision recall f1-score
0 0.78194 0.78243 0.78218
1 0.78089 0.78040 0.78064
```

Результаты точности распознавания нейронной сети для данных с Twitter

Для массива данных Яндекс. Маркет точность составила 98%.

Сравнить точность распознавания всех алгоритмов на разных данных можно по таблице.

Таблица – Результаты точности каждого алгоритма

Алгоритм	Яндекс.Маркет	Twitter
Сверточная нейронная	98.0%	78.2%
сеть		
Наивный байесовский	92.0%	73.0%
классификатор		
Линейный	92.7%	74.2%
классификатор		

По результатам испытаний, видно, что сверточная нейронная сеть опережает по точности остальные алгоритмы.

Так же можно сделать вывод о том, что качество корпуса коротких текстов Twitter ниже чем Яндекс.Маркет.

Выводы

Все построенные модели обладают очень хорошими показателями. Сверточная нейронная сеть при этом обладает наилучшими показателями по точности. Для дальнейшей работы предпочтительнее будет использовать ее.