Thinking with Circuits

From Logic to Probabilistic and Back

Renato Lui Geh

Boolean Algebra

		х	у	$x \wedge y$
		0	0	0
$x, y \in \{0, 1\}$	$x \wedge y \Leftrightarrow$	0	1	0
,		1	0	0
		1	1	1

	х	у	$x \lor y$
	0	0	0
$x \lor y \Leftrightarrow$	0	1	1
	1	0	1
	1	1	1

	х	$\neg x$
$x \Leftrightarrow$	0	1
	1	0

Propositional logic?

$$\phi(\mathbf{X}, Y, Z) = [\mathbf{X} \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg \mathbf{X}]$$

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$
Are there $X = x$, $Y = y$, $Z = z$ s.t.
$$\phi(X = x, Y = y, Z = z) = 1$$
?

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$

Are there
$$X = x$$
, $Y = y$, $Z = z$ s.t.

$$\phi(X = x, Y = y, Z = z) = 1?$$

X	у	Z	$\phi(\mathbf{x},\mathbf{y},z)$	X	у	Z	$\phi(\mathbf{x},\mathbf{y},z)$
0	0	0	1	1	0	0	1
0	0	1	0	1	0	1	1
0	1	0	1	1	1	0	0
0	1	1	1	1	1	1	1

$$\phi(\mathbf{X}, Y, Z) = [\mathbf{X} \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg \mathbf{X}]$$

Are there
$$X = x$$
, $Y = y$, $Z = z$ s.t.

$$\phi(X = x, Y = y, Z = z) = 1?$$

х	у	Z	$\phi(\mathbf{x},\mathbf{y},z)$	X	у	Z	$\phi(\mathbf{x},\mathbf{y},z)$
0	0	0	1 🗸	1	0	0	1 🗸
0	0	1	0 🗶	1	0	1	1 🗸
0	1	0	1 🗸	1	1	0	0 🗶
0	1	1	1 🗸	1	1	1	1 🗸

$$SAT = \checkmark$$

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$

Are there X = x, Y = y,

$$\phi(X = x, Y = y, \lambda = z) = 12$$

X	у		$\phi(\mathbf{v}, \mathbf{z})$	x	у	Z	$\phi(\mathbf{x}, \mathbf{y}, z)$
	0		1 🗸	1	0	0	1 🗸
	U	1	0 X	1	0	1	1 🗸
0	1	0	1 🗸	1	1	0	0 🗶
0	1	1	1 🗸	1	1	1	1 🗸

$$SAT = \checkmark$$

$$\phi(\mathbf{X}, Y, Z) = [\mathbf{X} \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg \mathbf{X}]$$

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$

How many
$$X = x$$
, $Y = y$, $Z = z$ s.t.

$$\phi(X = x, Y = y, Z = z) = 1?$$

X	у	Z	$\phi(\mathbf{x},\mathbf{y},z)$	X	у	Z	$\phi(\mathbf{x},\mathbf{y},z)$
0	0	0	1	1	0	0	1
0	0	1	0	1	0	1	1
0	1	0	1	1	1	0	0
0	1	1	1	1	1	1	1

$$\phi(\mathbf{X}, Y, Z) = [\mathbf{X} \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg \mathbf{X}]$$

How many
$$X = x$$
, $Y = y$, $Z = z$ s.t.

$$\phi(X = x, Y = y, Z = z) = 1?$$

х	у	Z	$\phi(\mathbf{x},\mathbf{y},z)$	х	у	Z	$\phi(x, y, z)$
0	0	0	1 🗸	1	0	0	1 🗸
0	0	1	0 🗶	1	0	1	1 🗸
0	1	0	1 🗸	1	1	0	0 🗶
0	1	1	1 🗸	1	1	1	1 🗸

$$\#\mathbf{SAT} = 6$$

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$
How many $X = x$, $Y = y$, $Z = x$ s.t.

$$X = x$$
,

$$Y = y$$
, Z

$$Z = x s.t$$

$$\phi(X=x,Y=y,Z=z)$$

X	у		$\phi(\mathbf{v},\mathbf{y},\mathbf{y})$	X	у	Z	$\phi(\mathbf{x},\mathbf{y},z)$
0	0	Q	1	1	0	0	1 🗸
	1	1	0 X	1	0	1	1 🗸
0	1	0	1 🗸	1	1	0	0 🗶
0	1	1	1 🗸	1	1	1	1 🗸

$$\#\mathbf{SAT} = 6$$

CNF

Conjunctive Normal Form

$$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4)$$

CNF	DNF
Conjunctive Normal Form	Disjunctive Normal Form
$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4)$	$(\neg Y_1 \wedge \neg Y_2) \vee (Y_3 \wedge Y_4)$

Conjunctive Normal Form Disjunctive Normal Form Negation Normal Form
$$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4)$$
 $(\neg Y_1 \wedge \neg Y_2) \vee (Y_3 \wedge Y_4)$ $\neg Z_1 \wedge (Z_2 \vee \neg Z_3) \vee Z_4$

NNF

CNF

Conjunctive Normal Form

$$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4)$$

DNF

Disjunctive Normal Form

$$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4) \qquad (\neg Y_1 \wedge \neg Y_2) \vee (Y_3 \wedge Y_4) \qquad \neg Z_1 \wedge (Z_2 \vee \neg Z_3) \vee Z_4$$

NNF

Negation Normal Form

$$\neg Z_1 \wedge (Z_2 \vee \neg Z_3) \vee Z_4$$

NNF

CNF

DNF

NNF

Conjunctive Normal Form

Disjunctive Normal Form

Negation Normal Form

$$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4) \qquad (\neg Y_1 \wedge \neg Y_2) \vee (Y_3 \wedge Y_4) \qquad \neg Z_1 \wedge (Z_2 \vee \neg Z_3) \vee Z_4$$

$$(\neg Y_1 \wedge \neg Y_2) \vee (Y_3 \wedge Y_4)$$

$$\neg Z_1 \wedge (Z_2 \vee \neg Z_3) \vee Z_4$$

NNF CNF DNF

CNF

DNF

NNF

Conjunctive Normal Form

Disjunctive Normal Form

Negation Normal Form

$$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4) \qquad (\neg Y_1 \wedge \neg Y_2) \vee (Y_3 \wedge Y_4) \qquad \neg Z_1 \wedge (Z_2 \vee \neg Z_3) \vee Z_4$$

$$(\neg Y_1 \wedge \neg Y_2) \vee (Y_3 \wedge Y_4)$$

Logic Circuits

$$x, y \in \{0, 1\} \qquad x \wedge y$$

Normal Forms in Logic Circuits

CNF

Conjunctive Normal Form

$$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4)$$

Normal Forms in Logic Circuits

CNF

Conjunctive Normal Form

$$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4) \qquad (\neg Y_1 \wedge \neg Y_2) \vee (Y_3 \wedge Y_4)$$

DNF

Disjunctive Normal Form

$$(\neg Y_1 \land \neg Y_2) \lor (Y_3 \land Y_4)$$

Normal Forms in Logic Circuits

CNF

Conjunctive Normal Form

$$(X_1 \vee \neg X_2) \wedge (\neg X_3 \vee X_4) \qquad (\neg Y_1 \wedge \neg Y_2) \vee (Y_3 \wedge Y_4) \qquad \neg Z_1 \wedge (Z_2 \vee \neg Z_3) \vee Z_4$$

DNF

Disjunctive Normal Form

$$(\neg Y_1 \land \neg Y_2) \lor (Y_3 \land Y_4)$$

NNF

Negation Normal Form

$$\neg Z_1 \land (Z_2 \lor \neg Z_3) \lor Z_4$$

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$

Are there
$$X = x$$
, $Y = y$, $Z = z$ s.t. $\phi(X = x, Y = y, Z = z) = 1$?

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$

Are there
$$X = x$$
, $Y = y$, $Z = z$ s.t. $\phi(X = x, Y = y, Z = z) = 1$?

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$

Are there X = x, Y = y, Z = z s.t. $\phi(X = x, Y = y, Z = z) = 1$?

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$

How many
$$X = x$$
, $Y = y$, $Z = z$ s.t. $\phi(X = x, Y = y, Z = z) = 1$?

$$\phi(X, Y, Z) = [X \land (\neg Y \lor Z)] \lor [(\neg Z \lor Y) \land \neg X]$$

How many
$$X = x$$
, $Y = y$, $Z = z$ s.t. $\phi(X = x, Y = y, Z = z) = 1$?

Knowledge Compilation

The World of Logic Circuits

Succinctness in Logic Circuits

Querying in Logic Circuits

L	CO	VA	\mathbf{CE}	\mathbf{IM}	\mathbf{EQ}	\mathbf{SE}	\mathbf{CT}	\mathbf{ME}
NNF	0	0	0	0	0	0	0	0
DNNF	/	0	/	0	0	0	0	/
d-NNF	0	0	0	0	0	0	0	0
s-NNF	0	0	0	0	0	0	0	0
f-NNF	0	0	0	0	0	0	0	0
d-DNNF	/	/	/	/	?	0	/	/
SDD	/	/	/	/	?	0	/	/
BDD	0	0	0	0	0	0	0	0
FBDD	/	/	/	/	?	0	/	/
OBDD	/	/	/	/	/	0	/	/
OBDD <	/	/	/	/	/	/	/	/
DNF	/	0	/	0	0	0	0	/
CNF	0	/	0	/	0	0	0	0
PI	/	/	/	/	/	/	0	/
IP	1	/	/	/	/	/	0	✓
MODS	/	/	/	/	/	/	/	/

Notation	Query
CO	Consistency check
VA	Validity check
CE	Clausal entailment check
IM	Implicant check
\mathbf{EQ}	Equivalence check
\mathbf{SE}	Sentential entailment check
CT	Model counting
\mathbf{ME}	Model enumeration

Notation	Description
✓	In P
X	Not in P
0	Not in P unless $P = NP$
?	Unknown

[Darwiche and Marquis, 2002]

Transformations in Logic Circuits

L	CD	FO	SFO	$\wedge \mathbf{C}$	\wedge BC	$\vee \mathbf{C}$	\vee BC	$\neg \mathbf{C}$
NNF	/	0	/	✓	/	/	/	√
DNNF	/	/	/	0	0	/	/	0
d-NNF	/	0	/	/	/	/	/	/
s-NNF	/	0	/	/	/	/	/	/
f-NNF	/	0	/	X	X	X	X	/
d-DNNF	/	0	0	0	0	0	0	/
SDD	/	0	0	0	0	0	0	/
BDD	/	0	/	/	/	/	/	1
FBDD	/	X	0	X	0	X	0	/
OBDD	/	X	/	X	0	X	0	/
OBDD <	/	X	/	X	/	X	/	1
DNF	/	/	/	X	/	/	/	X
CNF	/	0	/	/	/	X	/	X
PI	/	/	/	X	X	X	/	X
IP	1	X	X	X	✓	X	X	X
MODS	/	/	/	X	✓	X	X	X

** · · ·	
Notation	Query
CD	Conditioning
FO	Forgetting
SFO	Singleton forgetting
$\wedge \mathbf{C}$	Conjunction
$\wedge \mathbf{BC}$	Bounded conjunction
\vee C	Disjunction
∨BC	Bounded disjunction
$\neg \mathbf{C}$	Negation

Notation	Description
✓	In P
X	Not in P
0	Not in P unless $P = NP$
?	Unknown

[Darwiche and Marquis, 2002]

Probabilistic Circuits

Querying in Probabilistic Circuits

Query	+Sm?	+Dec?	+Det?	+Str Dec?
Evidence	√	√	/	√
Marginals	0	✓	/	✓
Conditionals	0	/	/	✓
MPE	0	0	/	√
Shannon Entropy*	0	0	/	✓
Rényi Entropy*	0	0	✓	✓
Cross Entropy*	0	0	0	√
Kullback-Leibler Div*	0	0	0	✓
Rényi's Alpha Div*	0	0	0	√
Cauchy-Schwarz Div*	0	0	0	√
Logical Events	0	0	0	√
Mutual Information*	0	0	0	✓

Transformations in Probabilistic Circuits

(Query	+Sm?	+Dec?	+Det?	+Str Dec?
Sum	$w_1 \cdot p + w_2 \cdot q$	√	√	0	0
Product	$p\cdot q$	0	0	0	✓
Down	$p^n, n \in \mathbb{N}$	0	0	0	✓
Power	$p^{\alpha}, \alpha \in \mathbb{R}$	0	0	/	✓
Quotient	$\frac{p}{a}$	0	0	/	✓
Log	$\log(p)$	0	0	✓	✓
Exp	$\exp(p)$	0	0	✓	✓

[Vergari et al., 2021]

Logic Circuits \subset **Probabilistic Circuits**

A	В	С	$\phi(\mathbf{x})$
0	0	0	1
1	0	0	1
0	1	0	0
1	1	0	0
0	0	1	1
1	0	1	1
0	1	1	0
1	1	1	1

$$\phi(A,B,C) = (A \vee \neg B) \wedge (\neg B \vee C)$$

Logic Circuits ⊂ **Probabilistic Circuits**

A	В	C	$\phi(\mathbf{x})$	$p(\mathbf{x})$
0	0	0	1	0.140
1	0	0	1	0.024
0	1	0	0	0.000
1	1	0	0	0.000
0	0	1	1	0.560
1	0	1	1	0.096
0	1	1	0	0.000
1	1	1	1	0.180

$$\phi(A,B,C) = (A \vee \neg B) \wedge (\neg B \vee C)$$

Circuits in Visual Query Answering

Circuits in Natural Language Processing

Circuits in Neural Networks

$$\mathbf{x} \rightarrow f \rightarrow \mathbf{z} \rightarrow \mathbf{F}$$
 $\mathbf{y} \rightarrow \mathbf{y} \rightarrow \mathbf{z} \rightarrow \mathbf{S}$
 $\mathbf{y} \rightarrow \mathbf{y} \rightarrow \mathbf{z} \rightarrow \mathbf{z} \rightarrow \mathbf{z}$
 $\mathbf{y} \rightarrow \mathbf{z} \rightarrow \mathbf{z} \rightarrow \mathbf{z} \rightarrow \mathbf{z}$
 $\mathbf{y} \rightarrow \mathbf{z} \rightarrow \mathbf{z$

Circuits in Deep Probabilistic Logic Programming

Thinking with Circuits

From Logic to Probabilistic and Back

Renato Lui Geh

