2. 边界点引理和强极值原理

$$\psi_{1}$$
 $w(x) = e^{\theta(|x-x_{0}|^{2}-r^{2})} - 1, \quad x \in B_{r}(x_{0}) := B_{r}, \ \theta > 0.$

则

$$w(x) < 0 = w|_{\partial B_r}, \ \forall x \in \Omega, \exists F$$

且对于 ∂B_r 上的向量场 ν ,只要它与 Ω 的外单位法向场 \vec{n} 的夹角小于 $\frac{\pi}{2}$,均有

$$\frac{\partial w}{\partial \nu} = e^{\theta(|x-x_0|^2-1)} 2\theta(x-x_0) \cdot \nu > 0, \quad \text{on} \quad \partial B_r.$$

计算 反过来考虑 W 满足的多型

$$Lw = \left[-4\theta^{2} \sum_{ij=1}^{n} a^{ij} (x - x_{0})_{i} (x - x_{0})_{j} - (\sum_{i=1}^{n} 2\theta a^{ii} - C) \right]$$

$$+2\theta \sum_{i=1}^{n} b^{i} (x - x_{0})_{i} e^{\theta(|x - x_{0}|^{2} - r^{2})} - C$$

$$\leq \lambda(x) \left[-4\theta^{2} \sum_{ij=1}^{n} \frac{a^{ij}}{\lambda(x)} (x - x_{0})_{i} (x - x_{0})_{j} \right]$$

$$-(\sum_{i=1}^{n} 2\theta \frac{a^{ii}}{\lambda(x)} - \frac{C}{\lambda(x)})$$

$$+2\sum_{i=1}^{n}\theta\frac{b^{i}}{\lambda(x)}(x-x_{0})_{i}]e^{\theta(|x-x_{0}|^{2}-r^{2})}$$

< 0 in $B_r(x_0)\backslash B_{r/2}(x_0)$.

(4.3)

上式最后一个不等式需要取 $\theta > 0$ 充分大,并且需要假设L的系数满足(4.1)和条件

$$\frac{a^{ii}(x)}{\lambda(x)}$$
, $\frac{b^{i}(x)}{\lambda(x)}$ 和 $\frac{C(x)}{\lambda(x)}$ 均在Ω有界, $i=1,2,\cdots,n$, $C(x)$ 在Ω中非负. (4.4)

受此启发,我们有若Lu < 0 且边界 取初值则 边界外 法 可要 有 性质 与 Newman 条件的 题来系

Lemma

(Hopf: proc Amer Math Soc. 3 (1952), 781-793)**4.3** 设 $\Omega \subset R^n$ 为开集, 它在 $y_0 \in \partial \Omega$ 满足内部球条件, L的系数满足(4.1)和(4.4), 并且存在δ > 0使得

 $u \in C^2(\Omega \cap B_\delta(y_0)) \cap C(\overline{\Omega \cap B_\delta(y_0)}) \text{ ä} Lu \leq 0 \text{ in } \Omega \cap B_\delta(y_0).$

如果 $u(y_0) > u(x)$, $C(x)u(y_0) \geq 0$, $\forall x \in \Omega \cap B_{\delta}(y_0)$, 则

$$\liminf_{t\to 0^{-}} \frac{u(y_{0}) - u(y_{0} + t\nu)}{|t|} > 0, 直接 im 可能不程$$

其中向量场 ν 与 Ω 的外单位法向场 \vec{n} 的夹角小于 $\frac{\pi}{2}$. 特别当 $\frac{\partial u}{\partial x}|_{x=m}$ 存在时,则它一定大于零。

证明 Ω 在 $y_0 \in \partial \Omega$ 处满足内部球条件的意思是: 存在 $B_r(x_0) \subset \Omega$ 使得 $\overline{B_r(x_0)} \cap \partial \Omega \longrightarrow \{y_0\}$. 不妨设 $B_r(x_0) \subset B_\delta(y_0)$, 否则取更小的r > 0即可. 我们希望构造 $\bar{w} \in C^2(\overline{B_r(x_0)})$ 使得 $\forall 0 < \varepsilon << 1$,

(a)
$$u + \varepsilon \bar{w} \leq u(y_0)$$
, in $B_r(x_0) \setminus B_{r/2}(x_0)$

(b)
$$(u + \varepsilon \bar{w})|_{x=y_0} = u(y_0).$$

由此立即得

$$\liminf_{t\to 0^-}\frac{u(y_0)-u(y_0+t\nu)}{|t|}\geq -\varepsilon\frac{\partial \bar{w}}{\partial \nu}|_{x=y_0},$$

于是只要w 满足

$$(c) \qquad \frac{\partial \bar{w}}{\partial \nu}|_{x=y_0} < 0.$$

受上述函数w(x)的性质之启发,可设

$$\bar{w}(x) = e^{\theta(r^2 - |x - x_0|^2)} - 1$$
, ; $x \in B_r(x_0)$, $\theta > 0$.

类似于(4.3), 我们有

$$L\bar{w} = \left[-4\theta^{2} \sum_{ij=1}^{n} a^{ij} (x - x_{0})_{i} (x - x_{0})_{j} + \left(\sum_{i=1}^{n} 2\theta a^{ii} + C \right) \right]$$

$$-2\theta \sum_{i=1}^{n} b^{i} (x - x_{0})_{i} e^{\theta(r^{2} - |x - x_{0}|^{2})} - C$$

$$\leq \lambda(x) \left[-4\theta^{2} \sum_{ij=1}^{n} \frac{a^{ij}}{\lambda(x)} (x - x_{0})_{i} (x - x_{0})_{j} \right]$$

$$+ \left(\sum_{i=1}^{n} 2\theta \frac{a^{ii}}{\lambda(x)} + \frac{C}{\lambda(x)} \right)$$

$$-2 \sum_{i=1}^{n} \theta \frac{b^{i}}{\lambda(x)} (x - x_{0})_{i} e^{\theta(r^{2} - |x - x_{0}|^{2} - 1)}$$

$$< 0 \text{ in } B_{r}(x_{0}) \setminus B_{r/2}(x_{0}).$$

所以,
$$\forall \varepsilon \in (0,1)$$
, 有

$$L(\varepsilon \bar{w} + u - u(y_0)) = \varepsilon L \bar{w} + Lu - C(x)u(y_0)$$

$$< 0 + 0 - C(x)u(y_0)$$

$$\leq 0 \text{ in } B_r(x_0) \setminus B_{r/2}(x_0).$$

又

$$u(y_0) > u(x), \quad \forall x \in \Omega \cap B_{\delta}(y_0),$$

故可取 $\varepsilon \in (0,1)$ 使得

$$\varepsilon \bar{w} + u - u(y_0) < 0$$
, on $\partial B_{r/2}(x_0)$.

而

$$\varepsilon \bar{w} + u - u(y_0) \le \varepsilon \bar{w} = 0$$
, on $\partial B_r(x_0)$.

所以由弱极值原理(定理4.3)有,

$$\max_{\overline{B}_r(x_0)\setminus B_{r/2}(x_0)} \varepsilon \overline{w} + u - u(y_0) \le 0,$$

因此(a)成立.

Theorem

4.5 设 $\Omega \subset R^n$ 为<mark>连通开集</mark>, *L*的系数满足(4.1)和(4.4), $u \in C^2(\Omega)$ 满足

$$Lu < 0$$
 (or $Lu > 0$) in Ω .

如果存在 x_0 \in Ω使得

$$u(x_0) = \max_{\Omega} u \ (or \ u(x_0) = \min_{\Omega} u),$$

Ħ.

$$C(x)u(x_0) \geq 0$$
 (or $C(x)u(x_0) \leq 0$) in Ω ,

则
$$u(x) = u(x_0)$$
 in Ω .

证明. 只要对 $\max_{\Omega} u$ 的情况证明即可。反设

$$M:=\{x\in\Omega:\ u(x)=u(x_0)\}\neq\Omega,$$

则

$$\Omega \backslash M = \{ x \in \Omega : \ u(x) < u(x_0) \}$$

为非空开集. 因为 Ω 是连通的, 可 $\overline{\mathbf{u}}$ \mathbf{z} \in $\Omega \setminus M$ 使得

$$dist(\bar{x}, \partial M \cap \Omega) < dist(\bar{x}, \partial \Omega),$$

则存在球 $B_r(\bar{x})$ 和点 $y_0 \in \partial B_r(\bar{x}) \cap \partial M \cap \Omega$ 使得

$$u(x) < u(y_0) = u(x_0)$$
, in $B_r(\bar{x})$,

于是由引理4.4, $\frac{\partial u}{\partial r}|_{x=y_0} > 0$. 另一方面 y_0 是极大值点,

故 $\nabla u(y_0) = 0$,从而矛盾。 于木的外线向

Corollary

4.3 设 Ω 为 有 界 连 通 开 且 在 其 边 界 每 一 点 都 满 足 内 部 球 条 件 , L 的 系 数 满 足 (4.1) 和 (4.4) , $\alpha(x) \ge 0$ on $\partial \Omega$. 如 果 $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$ 满 足

$$\begin{cases} Lu \leq 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \vec{n}} + \alpha(x)u \leq 0 & \text{on } \partial \Omega. \end{cases}$$

则 $u(x) \leq 0$ in Ω , 或 $u \equiv a$ constant in Ω .

证明. 反设 $\max_{\bar{\Omega}} u > 0$, 令

$$\Omega_1 = \{x \in \Omega : \ u(x) < \max_{\bar{\Omega}} u\}.$$

Corollary

4.4 条件同*Corollary 4.3* 一样。 考虑混合边值问 题

$$\begin{cases} Lu = f(x) & \text{in } \Omega, \\ \frac{\partial u}{\partial \vec{n}} + \alpha(x)u = g(x) & \text{on } \partial\Omega. \end{cases}$$
 (4.5)

- (*i*) 问题(4.5)在 $C^2(\Omega) \cap C^1(\bar{\Omega})$ 中的解<mark>除相差一个常数外</mark>是唯一的;
- (ii) 如果存在 $x_0 \in \Omega$ 使得 $C(x_0) > 0$,或存在 $x_0 \in \partial \Omega$ 使得 $\alpha(x_0) > 0$,则问题(4.5)在 $C^2(\Omega) \cap C^1(\overline{\Omega})$ 中的解是唯一的.

证明. (i) 设有两个解 u_1 , u_2 . 对函数 $u_1 - u_2$ 和 $u_2 - u_1$ 应用Corollary4.3即可。
(ii) 反设有两个解,由(1)可设这两个解之差为一常数c, 代入(4.5)得

$$C(x)c = 0, \forall x \in \Omega; \quad \alpha(x)c = 0, \forall x \in \partial\Omega.$$

由此得c=0.

作业18:

Evans' Book: Problem 6.6: 5,6,10, 13, 15.

最后介绍著名的Alexandrov极值原理.

Theorem

4.6 设 $\Omega \subset R^n$ 为有界开集, L的系数满足(4.1), $C(x) \geq 0$ in Ω 和

$$b^{i}(x)/D^{*}(x), f(x)/D^{*}(x) \in L^{n}(\Omega), i = 1, 2, \dots, n,$$

其中
$$D^*(x) = [\det(a^{ij}(x))]^{1/n}$$
. 如果 $u \in C(\bar{\Omega}) \cap W^{2,n}_{loc}(\Omega)$ 满足

$$Lu \leq 0$$
 a.e. in Ω ,

则

$$\sup_{\Omega} u \leq \sup_{\partial \Omega} u^+ + \bar{C}||\frac{f}{D^*(x)}||_{L^n(\Omega)},$$

其中
$$\bar{C} = C(n, diam(\Omega), \max_{1 \leq i \leq n} ||\frac{b^i}{D^*(x)}||_{L^n(\Omega)}).$$