Principales Acciones de Control: un punto de vista de Transformada de Laplace

Leonid Fridman

Ifridman@servidor.unam.mx

Departamento de Control, Facultad de Ingeniería Universidad Nacional Autónoma de México

17 de febrero de 2009

Índice

- Introducción
- 2 Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Índice

- Introducción
- 2 Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- 5 Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- 🕜 Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Principales Acciones de Control

Clasificación

- P Proporcional,
- Integral,
- D Derivativa,
- PI Proporcional Integral,
- PD Proporcional Derivativa,
- PID Proporcional Integral Derivativa.

Índice

- Introducción
- Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- 6 Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- 🕜 Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Ejemplo Introductorio

Planta: Modelo matemático

Ecuación diferencial

$$\ddot{y} + k_1 \dot{y} + k_2 y = u + d$$

donde

- y(t) salida medible,
- u(t) entrada de control,
- d perturbación, (considerada constante).

Sistema mecánico:

- y posición, \dot{y} velocidad, \ddot{y} aceleración,
- k_1 viscocidad, k_2 constante de Hook,
- u fuerza externa,
- d términos no considerados en el modelo.

Controlador proporcional

$$u = -k_p y$$

donde k_p es la "constante proporcional" del controlador.

Análisis en lazo cerrado: suponga $y(0) = \dot{y}(0) = 0$,

$$s^{2}Y(s) + sk_{1}Y(s) + k_{2}Y(s) = -k_{p}Y(s) + \frac{d}{s}$$
$$Y(s)(s^{2} + sk_{1} + k_{2}) = -k_{p}Y(s) + \frac{d}{s}$$

Entonces

$$Y(s) = \frac{1}{s^2 + sk_1 + (k_p + k_2)} \frac{d}{s}$$

Controlador proporcional: Análisis de estabilidad

Polinomio característico en lazo cerrado

$$\lambda^2 + \lambda k_1 + (k_p + k_2) = 0$$

condición suficiente y necesaria para estabilidad: $k_1 > 0$ y $k_p + k_2 > 0$.

Notas

- Si $k_1 < 0$, k_p no puede garantizar estabilidad.
- Si $k_1 > 0$, k_n puede garantizar estabilidad!

Controlador proporcional: respuesta en estado permanente

Teorema del valor final

$$y(\infty) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{d}{s^2 + sk_1 + (k_p + k_2)} = \frac{d}{k_p + k_2}$$

El error en estado permanente ε se define como

$$\varepsilon := \left| \frac{d}{k_p + k_2} \right|$$

Notas

Aumentando k_p es posible ajustar el error ε .

Índice

- Introducción
- 2 Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- 6 Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- 🕜 Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Control proporcional: ejemplo.

Si $k_1 = 2$ y $k_2 = -3$, tenemos

$$\ddot{y} + 2\dot{y} - 3y = u + d$$

con control porporcional (P) $u = -k_p y$ y $y(0) = \dot{y}(0) = 0$, se tiene

$$s^{2}Y(s) + 2sY(s) - 3Y(s) = -k_{p}Y(s) + \frac{d}{s}$$
$$Y(s)(s^{2} + 2s - 3) = -k_{p}Y(s) + \frac{d}{s}$$

Entonces

$$Y(s) = \frac{1}{s^2 + 2s + (k_p - 3)} \frac{d}{s}$$

Control proporcional: ejemplo.

Controlador proporcional: Análisis de estabilidad

Polinomio característico en lazo cerrado

$$\lambda^2 + 2\lambda + (k_p - 3) = 0$$

 $k_p > 3$ garantiza estabilidad.

Control proporcional: ejemplo.

Controlador proporcional: respuesta en estado permanente

Valor final

$$y(\infty) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{d}{s^2 + 2s + (k_p - 3)} = \frac{d}{k_p - 3}$$

El error en estado permanente ε es

$$\varepsilon := \left| \frac{d}{k_p - 3} \right|$$

Si se quiere

$$\varepsilon = \left| \frac{d}{k_p - 3} \right| < 0.1 \Rightarrow k_p > \frac{d + 0.3}{0.1}$$

Indice

- Control proporcional
 - Ejemplo numérico
 - Conclusiones
- - Conclusiones
- - Ejemplo: sistemas de primer orden
- - Ejemplo
- - Ejemplo

Conclusiones

- ullet en algunos casos k_p permite mejorar la estabilidad,
- pero no puede garantizarla, se necesita $k_1 > 0$,
- ocurre al no permitir ajustar los dos coeficientes del polinomio característico independientemente,

$$\lambda^2 + \lambda k_1 + (k_p + k_2) = 0$$

ullet permite ajustar el error en estado permanente arepsilon ajustando la ganacia $k_p.$

Índice

- Introducción
- Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- 6 Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- 🕜 Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Planta: Modelo matemático

Ecuación diferencial

$$\ddot{y} + k_1 \dot{y} + k_2 y = u + d$$

donde

- \bullet y(t) salida medible,
- u(t) entrada de control,
- d perturbación, (considerada constante).

Controlador Integral

$$u = -k_i \int_0^t y(\tau) d\tau$$

donde k_i es la "constante integral" del controlador.

Análisis en lazo cerrado: suponga $y(0) = 0, \dot{y}(0) = 0$,

$$s^{2}Y(s) + sk_{1}Y(s) + k_{2}Y(s) = -k_{i}\frac{Y(s)}{s} + \frac{d}{s}$$
$$\left[Y(s)(s^{2} + sk_{1} + k_{2}) = -k_{i}\frac{Y(s)}{s} + \frac{d}{s}\right]s$$

Entonces

$$Y(s) = \frac{d}{s^3 + k_1 s^2 + k_2 s + k_i}$$

Controlador proporcional: Análisis de estabilidad

Polinomio característico en lazo cerrado

$$\lambda^3 + k_1 \lambda^2 + k_2 \lambda + k_i = 0$$

es necesario (mas no suficiente) que $k_1, k_2, k_i > 0$.

Notas

- Si $k_1 < 0$ o $k_2 < 0$, k_i no puede garantizar estabilidad,
- aumentamos el orden del sistema,
- solo podemos modificar 1 de los 3 parametros del polinomio característico.
- en este sentido se "deteriora" la estabildiad.

Controlador integral: respuesta en estado permanente

Teorema del valor final

$$y(\infty) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} s \frac{d}{s^3 + k_1 s^2 + k_2 s + k_i} = 0$$

por tanto, el error en estado permanente $\varepsilon = 0$.

Notas

El control integral elimina el error en estado permanente si el sistema es estable.

Si $k_1 = 3$ y $k_2 = 2$, tenemos

$$\ddot{y} + 3\dot{y} + 2y = u + d$$

con d=2, si u=0 entonces

$$Y(s) = \frac{1}{s^2 + 3s + 2} \frac{2}{s}$$

en este caso, el error en estado estable es

$$y(\infty) = \lim_{s \to 0} sY(s) = 1$$

y el sistema tiene error en estado estable $\varepsilon=1$,

Figura: Salida y(t) sin control.

Ahora con control integral (I) $u = \int_0^\tau y(\tau)d\tau$ y $y(0) = \dot{y}(0) = 0$, se tiene

$$s^{2}Y(s) + 3sY(s) + 2Y(s) = -k_{i}\frac{Y(s)}{s} + \frac{d}{s}$$

Entonces

$$Y(s) = \frac{d}{s^3 + 3s^2 + 2s + k_i}$$

$$y(\infty) = \lim_{s \to 0} sY(s) = 0$$

y el error en estado permanente es $\varepsilon=0$ si el sistema es estable.

Figura: Salida y(t). Constante integral $k_i=2$

Figura: Salida y(t). Constante integral $k_i = 7$

Índice

- Introducción
- 2 Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- 6 Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- 🕜 Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Conclusiones

- incrementa el orden del polinomio característico,
- o complica el análisis de estabilidad,
- es posible que provoque inestabilidad,
- garantiza error en cero en estado estable.

Índice

- Introducción
- Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- 6 Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Planta: Modelo matemático

Ecuación diferencial

$$\ddot{y} + k_1 \dot{y} + k_2 y = u + d$$

donde

- \bullet y(t) salida medible,
- u(t) entrada de control,
- d perturbación, (considerada constante).

Controlador Derivativo

$$u = -k_d \dot{y}$$

donde k_d es la "constante derivativa" del controlador.

Análisis en lazo cerrado: suponga $y(0) = 0, \dot{y}(0) = 0$,

$$s^{2}Y(s) + sk_{1}Y(s) + k_{2}Y(s) = -k_{d}sY(s) + \frac{d}{s}$$
$$Y(s)(s^{2} + sk_{1} + k_{2}) = -k_{d}sY(s) + \frac{d}{s}$$

Entonces

$$Y(s) = \frac{1}{s^2 + (k_1 + k_d)s + k_2} \frac{d}{s}$$

Controlador Derivativo: Analisis de estabilidad

Polinomio característico en lazo cerrado

$$\lambda^2 + (k_1 + k_d)\lambda + k_2 = 0$$

condición suficiente y necesaria para estabilidad: $k_1 + k_d > 0$ y $k_2 > 0$.

Notas

- Si $k_2 < 0$, k_d no puede garantizar estabilidad.
- Si $k_2 > 0$, k_d puede garantizar estabilidad.

Controlador Derivativo: respuesta en estado permanente

Teorema del valor final

$$y(\infty) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} \frac{d}{s^2 + (k_1 + k_d)s + k_2} = \frac{d}{k_2}$$

El error en estado permanente es

$$\varepsilon := \left| \frac{d}{k_2} \right|$$

Notas

- Modificando k_d NO es posible ajustar el error ε ,
- El error en estado permanente no depende del controlador.

Conclusiones

- si $k_2 < 0$, k_d no puede garantizar estabilidad,
- no es posible modificar el error en estado permanente,
- requiere derivar $y \Rightarrow$ problemas con RUIDO.
- dado sus pobres propiedades y sensibilidad al ruido, no se acostumbra usar solamente acción derivativa.

Indice

- - Ejemplo numérico
 - Conclusiones
- - Conclusiones
- Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- - Ejemplo
- - Ejemplo

Control Proporcional-Integral (PI)

Planta: Modelo matemático

Ecuacion diferencial

$$\ddot{y} + k_1 \dot{y} + k_2 y = u + d$$

donde

- \bullet y(t) salida medible,
- u(t) entrada de control,
- d perturbación, (considerada constante).

Controlador Proporcional-Integral

$$u = -k_p y - k_i \int_0^t y(\tau) d\tau$$

donde k_p es la "constante proporcional" y k_i es la "constante integral" del controlador.

Control Proporcional-Integral (PI)

Análisis en lazo cerrado: suponga $y(0) = 0, \dot{y}(0) = 0$,

$$s^{2}Y(s) + sk_{1}Y(s) + k_{2}Y(s) = -k_{p}Y(s) - k_{i}\frac{1}{s}Y(s) + \frac{d}{s}$$
$$Y(s)(s^{2} + sk_{1} + k_{2}) = \left(-k_{p} - k_{i}\frac{1}{s}\right)Y(s) + \frac{d}{s}$$

Entonces

$$Y(s) = \frac{d}{s^3 + k_1 s^2 + (k_2 + k_p)s + k_i}$$

Control Proporcional-Integral (PI)

Controlador PI: Analisis de estabilidad

Polinomio característico en lazo cerrado

$$\lambda^{3} + k_{1}\lambda^{2} + (k_{2} + k_{p})\lambda + k_{i} = 0$$

condición necesaria para estabilidad: $k_1 > 0, k_2 + k_p > 0, k_i > 0$.

Notas

- aumentamos el orden del sistema,
- por tanto, es mas dificil analizar su estabilidad,
- pues solo podemos modificar 2 de los 3 coeficientes del polinomio característico,
- entonces no podemos garantizar estabilidad.

Control Proporcional-Integral (PI)

Controlador PI: respuesta en estado permanente

Teorema del valor final

$$y(\infty) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} s \frac{d}{s^3 + k_1 s^2 + (k_2 + k_p)s + k_i} = 0$$

por tanto, el error en estado permanente $\varepsilon = 0$.

Notas

El control PI hereda la propiedad del control integral al eliminar el error en estado permanente provisto que el sistema sea estable.

Índice

- Introducción
- 2 Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- 5 Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- 🕜 Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Control Proporcional-Integral (PI): ejemplo.

Importante

Sin embargo, control PI es ideal para sistemas de primer orden.

Planta: Modelo matemático

Ecuación diferencial

$$\dot{y} + k_1 y = u + d$$

donde

- y(t) salida medible,
- \bullet u(t) entrada de control,
- d perturbación, (considerada constante).

Sistema térmico (temperatura en una habitación)

- y(t): temperatura en el interior, u(t) fuente de calor,
- k_1 : coeficiente de transferencia térmica,
- d: temperatura exterior.

Control Proporcional-Integral (PI): ejemplo

Análisis en lazo cerrado: suponga y(0) = 0,

$$sY(s) + k_1Y(s) = -k_pY(s) - k_i\frac{1}{s}Y(s) + \frac{d}{s}$$

 $Y(s)(s+k_1) = \left(-k_p - k_i\frac{1}{s}\right)Y(s) + \frac{d}{s}$

Entonces

$$Y(s) = \frac{d}{s^2 + (k_1 + k_p)s + k_i}$$

Control Proporcional-Integral (PI): ejemplo

Controlador PI: Analisis de estabilidad

Polinomio característico en lazo cerrado

$$\lambda^2 + (k_1 + k_p)\lambda + k_i = 0$$

condicion necesaria y suficiente para estabilidad: $k_1 + k_p > 0, k_i > 0$.

Notas

- aumentamos el orden del sistema,
- o por tanto, es mas dificil analizar su estabilidad,
- sin embargo, podemos modificar TODOS los coeficientes del polinomio característico,
- por tanto siempre es posible garantizar estabilidad, sin importar los parámetros de la planta.

Control Proporcional-Integral (PI): ejemplo

Controlador PI: respuesta en estado permanente

Teorema del valor final

$$y(\infty) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} s \frac{d}{s^2 + (k_1 + k_p)s + k_i} = 0$$

por tanto, el error en estado permanente $\varepsilon = 0$.

Conclusiones

- El control PI elimina el error en estado permanente, provisto que el sistema sea estable.
- ademas, como ya vimos, para un sistema de primer orden siempre garantiza la existencia de una combinación de ganancias $\{k_n, k_i\}$ de modo que el sistema es estable.

Indice

- - Ejemplo numérico
 - Conclusiones
- - Conclusiones
- - Ejemplo: sistemas de primer orden
- Control Proporcional-Derivativo (PD)
 - Ejemplo
- - Ejemplo

Planta: Modelo matemático

Ecuación diferencial

$$\ddot{y} + k_1 \dot{y} + k_2 y = u + d$$

donde

- y(t) salida medible,
- u(t) entrada de control,
- d perturbación, (considerada constante).

Controlador Proporcional-Derivativo

$$u = -k_p y - k_d \dot{y}$$

donde k_p es la "constante proporcional" y k_d es la "constante derivativa" del controlador.

Análisis en lazo cerrado: suponga $y(0) = 0, \dot{y}(0) = 0$,

$$s^{2}Y(s) + sk_{1}Y(s) + k_{2}Y(s) = -k_{p}Y(s) - k_{d}sY(s) + \frac{d}{s}$$
$$Y(s)(s^{2} + sk_{1} + k_{2}) = (-k_{p} - k_{d}s)Y(s) + \frac{d}{s}$$

Entonces

$$Y(s) = \frac{1}{s^2 + (k_1 + k_d)s + k_2 + k_p} \cdot \frac{d}{s}$$

Controlador PD: Análisis de estabilidad

Polinomio característico en lazo cerrado

$$\lambda^2 + (k_1 + k_d)\lambda + k_2 + k_p = 0$$

condición necesaria para estabilidad: $k_1 + k_d > 0, k_2 + k_p > 0.$

Notas

- siempre puede garantizarse estabilidad con una selección apropiada de $\{k_p,k_d\}$,
- ullet ajuste de k_d y k_p permite no solo mejorar estabilidad, sino ubicar los polos del polinomio característico.

Proposición

Para sistemas de orden dos, el ajuste de k_d y k_p permite ubicar, arbitrariamente, los polos en lazo cerrado.

Prueba. Consideramos el sistema

$$\ddot{y} + k_1 \dot{y} + k_2 y = u$$

y aplicamos el controlador PD $u=-k_py-k_d\dot{y}$, entonces el polinomio característico en lazo cerrado es

$$\lambda^2 + (k_1 + k_d)\lambda + (k_2 + k_p) = 0$$

Suponga que se desean los polos en lazo cerrado en p_1 y p_2 . Entonces, el polinomio característico deseado deberia ser

$$(\lambda - p_1)(\lambda - p_2) = \lambda^2 - (p_1 + p_2)\lambda + p_1 p_2 = 0$$

Por tanto, para ubicar los polos en lazo cerrado, nesecito eligir los valores k_d y k_p de modo que ambos polinomios característicos sean iguales. Es decir, se debe cumplir

$$-(p_1 + p_2) = k_1 + k_d$$
$$p_1 p_2 = k_2 + k_p$$

y entonces

$$k_d = -p_1 - p_2 - k_1 k_p = p_1 p_2 - k_2$$

Controlador PID: respuesta en estado permanente

Teorema del valor final

$$y(\infty) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} s \frac{1}{s^2 + (k_1 + k_d)s + k_2 + k_p} \cdot \frac{d}{s} = \frac{d}{k_2 + k_p}$$

por tanto, el error en estado permanente es

$$\varepsilon = \left| \frac{d}{k_2 + k_p} \right|$$

Notas

- El error en estado permanente se puede ajustar usando la ganancia proporcional k_p ,
- no aumenta el orden del sistema.

Índice

- Introducción
- 2 Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- 5 Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- 🕜 Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Control Proporcional-Derivativo (PD): ejemplo

Si $k_1 = -3$ y $k_2 = 2$, tenemos

$$\ddot{y} - 3\dot{y} + 2y = u + d$$

con d=2. El sistema sin control

- tiene un punto de equilibrio en $y = 1, \dot{y} = 0$,
- ullet por tanto, tendria error en estado permanente arepsilon=1.
- el punto de equilibrio es inestable: $\lambda^2 3\lambda + 2 = (\lambda 2)(\lambda 1)$,

Usamos un control PD $u=-k_py-k_d\dot{y}$, entonces

$$\ddot{y} + (k_d - 3)\dot{y} + (2 + k_p)y = d$$

Control Proporcional-Derivativo (PD): ejemplo

Queremos ubicar los polos en lazo cerrado $p_1 = -3, p_2 = -6$, entonces

$$(\lambda + 3)(\lambda + 6) = \lambda^2 + 9\lambda + 18 = \lambda^2 + (k_d - 3)\lambda + k_p$$

entonces $k_p:=18, k_d=12$. El error en estado permanente deberia ser

$$\varepsilon = \frac{d}{2 + k_p} = \frac{2}{20} = 0.1$$

Control Proporcional-Derivativo (PD): ejemplo

Figura: Salida y(t). Constante proporcional $k_p=18$, constante derivativa $k_d=12$. Error en estado permanente calculado $\varepsilon=0.1$.

Indice

- - Ejemplo numérico
 - Conclusiones
- - Conclusiones
- - Ejemplo: sistemas de primer orden
- - Ejemplo
- Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Planta: Modelo matematico

Ecuación diferencial

$$\ddot{y} + k_1 \dot{y} + k_2 y = u + d$$

donde

- y(t) salida medible,
- u(t) entrada de control,
- d perturbación, (considerada constante).

Controlador Proporcional-Derivativo

$$u = -k_p y - k_d \dot{y} - k_i \int_0^t y(\tau) d\tau$$

donde k_p es la "constante proporcional", k_d es la "constante derivativa" y k_i es la "constante integral" del controlador.

Analisis en lazo cerrado: suponga $y(0) = 0, \dot{y}(0) = 0$,

$$s^{2}Y(s) + sk_{1}Y(s) + k_{2}Y(s) = -k_{p}Y(s) - k_{d}sY(s) - k_{i}\frac{1}{s}Y(s) + \frac{d}{s}$$
$$Y(s)(s^{2} + sk_{1} + k_{2}) = \left(-k_{p} - k_{d}s - k_{i}\frac{1}{s}\right)Y(s) + \frac{d}{s}$$

Entonces

$$Y(s) = \frac{d}{s^3 + (k_1 + k_d)s^2 + (k_2 + k_p)s + k_i}$$

Controlador PID: Analisis de estabilidad

Polinomio característico en lazo cerrado

$$\lambda^{3} + (k_{1} + k_{d}) + \lambda^{2} + (k_{2} + k_{p})\lambda + k_{i} = 0$$

condición necesaria para estabilidad: $k_1 + k_d > 0, k_2 + k_p > 0, k_i > 0.$

Notas

- siempre puede garantizarse estabilidad con una selección apropiada de $\{k_p,k_d,k_i\}$,
- pues podemos modificar TODOS los coeficientes del polinomio característico.
- aumentamos el orden del sistema,
- por tanto, es mas dificil analizar su estabilidad.

Controlador PID: respuesta en estado permanente

Teorema del valor final

$$y(\infty) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} s \frac{d}{s^3 + (k_1 + k_d)s^2 + (k_2 + k_p)s + k_i} = 0$$

por tanto, el error en estado permanente $\varepsilon = 0$.

Notas

El control PID hereda la propiedad del control integral al eliminar el error en estado permanente provisto que el sistema sea estable.

Índice

- Introducción
- Control proporcional
 - Ejemplo numérico
 - Conclusiones
- Control integral
 - Conclusiones
- 4 Control Derivativo
- 5 Control Proporcional-Integral (PI)
 - Ejemplo: sistemas de primer orden
- 6 Control Proporcional-Derivativo (PD)
 - Ejemplo
- Control Proporcional-Integral-Derivativo (PID)
 - Ejemplo

Control Proporcional-Derivativo (PID): ejemplo

Si $k_1 = -3$ y $k_2 = 2$, tenemos

$$\ddot{y} - 3\dot{y} + 2y = u + d$$

con d=2. El sistema es inestable y tiene un punto de equilibrio estable sin controlador en y=1. Usamos un control PID $u=-k_py-k_i\int y(\tau)d\tau-k_d\dot{y}$, entonces

$$\ddot{y} + (k_d - 3)\dot{y} + (k_p + 2)y + k_i \int_0^t y(\tau)d\tau = d$$

$$y^{(3)} + (k_d - 3)\ddot{y} + (k_p + 2)\dot{y} + k_i y = 0$$

Queremos ubicar los polos en lazo cerrado $p_1=-3, p_2=-6, p_3=-9$, entonces

$$(\lambda+3)(\lambda+6)(\lambda+9) = \lambda^2 + 18\lambda^2 + 99\lambda + 162 = \lambda^2 + (k_d-3)\lambda^2 + (k_p+2)\lambda + k_i$$

Control Proporcional-Derivativo (PID): ejemplo

Figura: Salida y(t). $k_i = 162$, $k_p = 97$, $k_d = 21$

Conclusiones

- hereda las propiedades tanto del control P, el control I y del control D:
 - permite compensar el valor de k_2 : control P,
 - elimina el error en estado permanente: control I, (si el sistema es estable)
 - permite compensar el valor de k_1 : control D,
- de esta forma, se pueden modificar TODOS los coeficientes del polinomio característico,
- por tanto, se puede garantizar estabilidad sin importar los valores de k_1 y k_2 (sin importar los parámetros de la planta),
- aumenta el grado del polinomio característico.

El fin (porfin)...

Gracias por tu tiempo!

Los datos no son información, la información no es conocimiento, el conocimiento no es sabiduría, la sabiduría no es *nirvana*.

M. Vidyasagar, [CDC 08, Cancún]