Parallel Split-Merge MCMC for the HDP

Generato da Doxygen 1.8.6

Mer 24 Feb 2016 13:09:30

Indice

1	Hier	archica	Dirichlet Process Mixture Model parallelizzabile	1
	1.1	Introdu	zione	1
2	Indi	ce dei n	amespace	3
	2.1	Lista d	ei namespace	3
3	Indi	ce della	gerarchia	5
	3.1	Gerard	hia delle classi	5
4	Indi	ce dei ti	pi composti	7
	4.1	Elenco	dei tipi composti	7
5	Indi	ce dei fi	le e	9
	5.1	Elenco	dei file	9
6	Doc	umenta	zione dei namespace	11
	6.1	Riferim	enti per il namespace CoeffSimilitudine	11
		6.1.1	Descrizione dettagliata	11
		6.1.2	Documentazione delle funzioni	11
			6.1.2.1 Coeff	11
			6.1.2.2 ScalarProdoct	12
			6.1.2.3 VectorNorm	13
7	Doc	umenta	zione delle classi	15
	7.1	Riferim	enti per la struct BETA	15
		7.1.1	Descrizione dettagliata	15
	7.2	Riferim	enti per la struct C	15
		7.2.1	Descrizione dettagliata	16
	7.3	Riferim	enti per la classe CategoricalCluster	16
		7.3.1	Descrizione dettagliata	18
		7.3.2	Documentazione dei costruttori e dei distruttori	18
			7.3.2.1 CategoricalCluster	18
		7.3.3	Documentazione delle funzioni membro	19
			7 3 3 1 IsEmpty	10

iv INDICE

		7.3.3.2	ResetStatistics	19
		7.3.3.3	ResetStatisticsLeft	19
		7.3.3.4	ResetStatisticsRight	19
		7.3.3.5	SetBeta	20
		7.3.3.6	SetBetaLeft	20
		7.3.3.7	SetBetaRight	20
		7.3.3.8	SetGlobalTable	20
		7.3.3.9	SetGlobalTableLeft	20
		7.3.3.10	SetGlobalTableRight	20
		7.3.3.11	SetStatistics	21
		7.3.3.12	SetStatisticsLeft	21
		7.3.3.13	SetStatisticsRight	21
		7.3.3.14	SetTheta	21
		7.3.3.15	SetThetaLeft	21
		7.3.3.16	SetThetaRight	21
		7.3.3.17	UpdateStatistics	22
		7.3.3.18	ViewBeta	22
		7.3.3.19	ViewBetaLeft	22
		7.3.3.20	ViewBetaRight	22
		7.3.3.21	ViewGlobalTable	22
		7.3.3.22	ViewGlobalTableLeft	23
		7.3.3.23	ViewGlobalTableRight	23
		7.3.3.24	ViewStatistics	23
		7.3.3.25	ViewStatisticsLeft	23
		7.3.3.26	ViewStatisticsRight	23
		7.3.3.27	ViewTheta	23
		7.3.3.28	ViewThetald	24
		7.3.3.29	ViewThetaLeft	24
		7.3.3.30	ViewThetaLeftId	24
		7.3.3.31	ViewThetaRight	24
		7.3.3.32	ViewThetaRightId	24
7.4	Templa	ate per la c	classe CategoricalDocument< DIM >	25
	7.4.1	Descrizio	one dettagliata	29
	7.4.2	Documer	ntazione dei costruttori e dei distruttori	29
		7.4.2.1	CategoricalDocument	29
	7.4.3	Documer	ntazione delle funzioni membro	29
		7.4.3.1	CheckLeftSubcluster	29
		7.4.3.2	CheckRightSubcluster	29
		7.4.3.3	InsertNewCluster	29
		7.4.3.4	RemoveCluster	30

INDICE v

7.4.3.5	RemoveCluster	30
7.4.3.6	RemoveCluster	30
7.4.3.7	ResetDataCountSub	30
7.4.3.8	Sampling	30
7.4.3.9	SetAlpha	31
7.4.3.10	SetDataset	31
7.4.3.11	SetNj	31
7.4.3.12	SortData	31
7.4.3.13	UpdateAllLocalTableSub	31
7.4.3.14	UpdateAllPiSub	32
7.4.3.15	UpdateLocalTable	32
7.4.3.16	UpdateLocalTableSub_OneCluster	32
7.4.3.17	UpdatePi	32
7.4.3.18	UpdatePiSub	33
7.4.3.19	UpdateZeta	33
7.4.3.20	UpdateZeta	33
7.4.3.21	UpdateZeta	33
7.4.3.22	UpdateZeta_and_Sub	33
7.4.3.23	UpdateZetaSub	34
7.4.3.24	ViewCluster	34
7.4.3.25	ViewCounts4c	34
7.4.3.26	ViewData	34
7.4.3.27	ViewDataCount	35
7.4.3.28	ViewDataCountID	35
7.4.3.29	ViewDataCountLeft	35
7.4.3.30	ViewDataCountLeftID	35
7.4.3.31	ViewDataCountRight	35
7.4.3.32	ViewDataCountRightID	36
7.4.3.33	ViewIdCounts	36
7.4.3.34	ViewLabel	36
7.4.3.35	ViewNj	36
7.4.3.36	ViewNumTableID	36
7.4.3.37	ViewNumTableLeftID	37
7.4.3.38	ViewNumTableRightID	37
7.4.3.39	ViewPi	37
7.4.3.40	ViewPiID	37
7.4.3.41	ViewPiLeft	38
7.4.3.42	ViewPiLeftID	39
7.4.3.43	ViewPiRight	39
7.4.3.44	ViewPiRightID	39

vi INDICE

7.5	Templa	ate per la c	classe CategoricalModel < DIM >	39
	7.5.1	Descrizio	one dettagliata	41
	7.5.2	Documer	ntazione delle funzioni membro	42
		7.5.2.1	AddOneCluster	42
		7.5.2.2	DefaultHyperparameter	43
		7.5.2.3	LogDensity	43
		7.5.2.4	Loglikelihood	43
		7.5.2.5	LoglikelihoodLeft	43
		7.5.2.6	LoglikelihoodRight	44
		7.5.2.7	Marginalized_Loglikelihood	44
		7.5.2.8	operator=	44
		7.5.2.9	operator=	44
		7.5.2.10	operator[]	44
		7.5.2.11	PrintLambdaInfo	45
		7.5.2.12	RemoveClusters	45
		7.5.2.13	RemoveOneCluster	45
		7.5.2.14	SetHyperparameter	45
		7.5.2.15	SetInitialClusters	45
		7.5.2.16	UpdateOneThetaCluster	45
		7.5.2.17	UpdateOneThetaSubCluster	46
		7.5.2.18	UpdateThetaCluster	46
		7.5.2.19	UpdateThetaSubCluster	46
		7.5.2.20	ViewBeta	46
		7.5.2.21	ViewBetaLeft	46
		7.5.2.22	ViewBetaRight	47
		7.5.2.23	ViewK	47
		7.5.2.24	ViewKey	47
	7.5.3	Documer	ntazione dei membri dato	47
		7.5.3.1	OMP_NUM_THREADS	47
7.6	Templa	ate per la c	classe CategoricalPosteriorAnalysis < DIM >	47
	7.6.1	Descrizio	one dettagliata	49
	7.6.2	Documer	ntazione delle funzioni membro	50
		7.6.2.1	AGPosteriorAnalysis	50
		7.6.2.2	KPosteriorAnalysis	51
		7.6.2.3	LeastSquareClustering	51
		7.6.2.4	LoadLabels	51
		7.6.2.5	LPML	51
		7.6.2.6	SetAllAlpha	52
		7.6.2.7	SetAllGamma	52
		7.6.2.8	SetAllK	52

INDICE vii

		7.6.2.9	SetD	52
		7.6.2.10	SetN	52
		7.6.2.11	SetTheta	53
		7.6.2.12	SetW	53
		7.6.2.13	Setwd	53
		7.6.2.14	TrackingClusters	53
		7.6.2.15	VisualizeBeta	53
7.7	Riferim	enti per la	struct CLUSTER	54
7.8	Riferim	enti per la	struct DATACOUNT	54
7.9	Templa	ate per la c	classe GenericCluster < ClassType, DIM >	54
	7.9.1	Descrizio	one dettagliata	56
	7.9.2	Documer	ntazione delle funzioni membro	56
		7.9.2.1	IsEmpty	56
		7.9.2.2	ResetStatistics	56
		7.9.2.3	ResetStatisticsLeft	56
		7.9.2.4	ResetStatisticsRight	57
		7.9.2.5	SetBeta	57
		7.9.2.6	SetBetaLeft	57
		7.9.2.7	SetBetaRight	57
		7.9.2.8	SetGlobalTable	57
		7.9.2.9	SetGlobalTableLeft	58
		7.9.2.10	SetGlobalTableRight	58
		7.9.2.11	SetStatistics	58
		7.9.2.12	SetStatisticsLeft	58
		7.9.2.13	SetStatisticsRight	58
		7.9.2.14	SetTheta	59
		7.9.2.15	SetThetaLeft	60
		7.9.2.16	SetThetaRight	60
		7.9.2.17	UpdateStatistics	60
		7.9.2.18	ViewBeta	60
		7.9.2.19	ViewBetaLeft	60
		7.9.2.20	ViewBetaRight	61
		7.9.2.21	ViewGlobalTable	61
		7.9.2.22	ViewGlobalTableLeft	61
		7.9.2.23	ViewGlobalTableRight	61
		7.9.2.24	ViewStatistics	61
		7.9.2.25	ViewStatisticsLeft	61
		7.9.2.26	ViewStatisticsRight	62
		7.9.2.27	ViewTheta	62
		7.9.2.28	ViewThetaLeft	62

viii INDICE

		7.9.2.29	ViewThetaRight	62
7.10	Templa	te per la cl	lasse GenericDocument< Type, DIM >	62
	7.10.1	Descrizio	ne dettagliata	65
	7.10.2	Documen	stazione delle funzioni membro	65
		7.10.2.1	CheckLeftSubcluster	65
		7.10.2.2	CheckRightSubcluster	65
		7.10.2.3	InsertNewCluster	65
		7.10.2.4	RemoveCluster	66
		7.10.2.5	RemoveCluster	67
		7.10.2.6	RemoveCluster	67
		7.10.2.7	ResetDataCountSub	67
		7.10.2.8	Sampling	67
		7.10.2.9	SetAlpha	67
		7.10.2.10	SetDataset	68
		7.10.2.11	SetNj	68
		7.10.2.12	SortData	68
		7.10.2.13	UpdateAllLocalTableSub	68
		7.10.2.14	UpdateAllPiSub	68
		7.10.2.15	UpdateLocalTable	69
		7.10.2.16	UpdateLocalTableSub_OneCluster	69
		7.10.2.17	UpdatePi	69
		7.10.2.18	UpdatePiSub	69
		7.10.2.19	UpdateZeta	70
		7.10.2.20	UpdateZeta	70
		7.10.2.21	UpdateZeta	70
		7.10.2.22	UpdateZeta_and_Sub	70
		7.10.2.23	UpdateZetaSub	71
		7.10.2.24	ViewCluster	72
		7.10.2.25	ViewCounts4c	72
		7.10.2.26	ViewData	72
		7.10.2.27	ViewDataCount	72
		7.10.2.28	ViewDataCountID	72
		7.10.2.29	ViewDataCountLeft	73
		7.10.2.30	ViewDataCountLeftID	73
		7.10.2.31	ViewDataCountRight	73
		7.10.2.32	ViewDataCountRightID	73
		7.10.2.33	ViewIdCounts	74
		7.10.2.34	ViewLabel	75
		7.10.2.35	ViewNj	75
		7.10.2.36	ViewNumTableID	75

INDICE ix

		7.10.2.37	7 ViewNumTableLeftID	 . 75
		7.10.2.38	3 ViewNumTableRightID	 . 75
		7.10.2.39	O ViewPi	 . 76
		7.10.2.40	ViewPiID	 . 76
		7.10.2.41	I ViewPiLeft	 . 76
		7.10.2.42	2 ViewPiLeftID	 . 76
		7.10.2.43	3 ViewPiRight	 . 77
		7.10.2.44	4 ViewPiRightID	 . 78
7.11	Templa	te per la cl	classe GenericPosteriorAnalysis< Type, DIM >	 . 78
	7.11.1	Descrizio	one dettagliata	 . 79
	7.11.2	Documen	ntazione delle funzioni membro	 . 79
		7.11.2.1	AGPosteriorAnalysis	 . 79
		7.11.2.2	KPosteriorAnalysis	 . 79
		7.11.2.3	LeastSquareClustering	 . 80
		7.11.2.4	LoadLabels	 . 80
		7.11.2.5	LPML	 . 80
		7.11.2.6	SetAllAlpha	 . 80
		7.11.2.7	SetAllGamma	 . 80
		7.11.2.8	SetAllK	 . 81
		7.11.2.9	SetD	 . 81
		7.11.2.10	O SetN	 . 81
		7.11.2.11	SetTheta	 . 81
		7.11.2.12	2 SetW	 . 81
		7.11.2.13	3 Setwd	 . 81
		7.11.2.14	4 TrackingClusters	 . 82
		7.11.2.15	5 VisualizeBeta	 . 82
7.12	Riferim	enti per la	struct greater_for_pair	 . 82
	7.12.1	Descrizio	one dettagliata	 . 82
7.13	Templa	te per la cl	classe HDP_MCMC< MODEL, DOCUMENT, DIM >	 . 82
	7.13.1	Descrizio	one dettagliata	 . 87
	7.13.2	Documen	ntazione delle funzioni membro	 . 87
		7.13.2.1	Algorithm	 . 87
		7.13.2.2	Check_Model	 . 87
		7.13.2.3	Gibbs_SubCluster	 . 87
		7.13.2.4	IsEmptySubcluster	 . 88
		7.13.2.5	SetAlphaFixed	 . 88
		7.13.2.6	SetAlphaPrior	 . 88
		7.13.2.7	SetDataset	 . 88
		7.13.2.8	SetGammaFixed	 . 88
		7.13.2.9	SetGammaPrior	 . 88

x INDICE

	7.13.2.10 SetK_init	89
	7.13.2.11 SetLambdaInfo	89
	7.13.2.12 SetSeed	89
	7.13.2.13 Swap	89
	7.13.2.14 UpdateBetaSub	89
	7.13.2.15 ViewD	90
	7.13.2.16 ViewK	90
	7.13.2.17 ViewN	90
	7.13.2.18 ViewW	90
7.13.	.3 Documentazione dei membri dato	90
	7.13.3.1 Model	90
	7.13.3.2 OMP_NUM_THREADS	91
7.14 Temp	plate per la classe ModelGeneric< Type, DIM >	91
7.14.	.1 Descrizione dettagliata	92
7.14.	.2 Documentazione delle funzioni membro	92
	7.14.2.1 AddOneCluster	92
	7.14.2.2 DefaultHyperparameter	92
	7.14.2.3 LogDensity	92
	7.14.2.4 Loglikelihood	93
	7.14.2.5 LoglikelihoodLeft	93
	7.14.2.6 LoglikelihoodRight	93
	7.14.2.7 Marginalized_Loglikelihood	93
	7.14.2.8 PrintLambdaInfo	94
	7.14.2.9 RemoveClusters	94
	7.14.2.10 RemoveOneCluster	94
	7.14.2.11 SetHyperparameter	94
	7.14.2.12 SetInitialClusters	94
	7.14.2.13 UpdateOneThetaCluster	95
	7.14.2.14 UpdateOneThetaSubCluster	95
	7.14.2.15 UpdateThetaCluster	95
	7.14.2.16 UpdateThetaSubCluster	95
	7.14.2.17 ViewBeta	95
	7.14.2.18 ViewBetaLeft	96
	7.14.2.19 ViewBetaRight	96
	7.14.2.20 ViewK	96
	7.14.2.21 ViewKey	96
7.15 Rifer	imenti per la struct NJK	96
7.15.	.1 Descrizione dettagliata	97
7.16 Rifer	imenti per la struct NUMTABLE	97
7.16.	.1 Descrizione dettagliata	97

INDICE xi

	7.17	Riferim	enti per la	ı cla	sse o	mpr	ng					 	97						
		7.17.1	Descrizio	one o	detta	gliata	a .					 	98						
		7.17.2	Documer	ntaz	ione (delle	e fur	nzior	ni m	eml	oro	 	 	 	 	 		 	99
			7.17.2.1	fixe	edSe	ed						 	 	 	 	 		 	99
			7.17.2.2	rbe	ernou	ılli .						 	99						
			7.17.2.3	rbe	eta .							 	99						
			7.17.2.4	rbi	inomi	al .						 	99						
			7.17.2.5	rch	hisq .							 	100						
			7.17.2.6	rdi	irichle	et .						 	100						
			7.17.2.7	rdi	scret	e .						 	100						
			7.17.2.8	rex	κp .							 	 	 	 	 		 	101
			7.17.2.9	rga	amma	a .						 	 	 	 	 		 	101
			7.17.2.10) rno	orm .							 		 	 	 	 	 	101
			7.17.2.11	1 rur	nif .							 	101						
			7.17.2.12	2 rur	nif .							 	 	 	 	 		 	102
			7.17.2.13	3 rur	nifdis	crete	е.					 	 	 	 	 		 	103
			7.17.2.14	4 se	tNum	1Thre	eads	S.				 		 	 	 	 	 	103
	7.18	Riferim	enti per la	ı stru	uct PI	١						 	 	 	 	 		 	103
		7.18.1	Descrizio	one (detta	gliata	a .					 	 	 	 	 		 	103
	7.19	Riferim	enti per la	ı clas	sse R	₹ngS	3trea	am				 	104						
		7.19.1	Documer	ntaz	ione (dei r	mem	nbri (dato			 	 	 	 	 		 	104
			7.19.1.1	ne	xtSee	ed .						 	104						
	7.20	Templa	ite per la c	olass	зе Тур	peCa	ateg	joric	al<	DI	/ >	 		 	 	 	 	 	105
		7.20.1	Descrizio	one (detta	gliata	a .					 		 	 	 	 	 	105
8	Docu	umenta	zione dei 1	file															107
	8.1	Riferim	enti per il t	file (Cluste	er.hp	pp .					 	 	 	 	 		 	107
		8.1.1	Descrizio	one (detta	gliata	a .					 	 	 	 	 		 	107
	8.2	Riferim	enti per il t	file I	Docui	men	ıt.hp	p.				 	107						
		8.2.1	Descrizio	one (detta	gliata	a .					 	 	 	 	 		 	108
	8.3	Riferim	enti per il t	file I	Funct	tions	s.hpp	р.				 	 	 	 	 		 	108
		8.3.1	Descrizio	one (detta	gliata	a .					 	109						
		8.3.2	Documer	ntaz	ione (delle	e fur	nzior	ni.			 	 	 	 	 		 	109
			8.3.2.1	An	ntonia	ık .						 	 	 	 	 		 	109
			8.3.2.2	Co	omput	teLo	ıgSti	irlinç	γNu	mbe	ers	 	109						
			8.3.2.3	Fir	ndBes	stNu	ımTa	able				 	 	 	 	 		 	110
			8.3.2.4	Ka	ahan_	_algo	orith	m .				 		 	 	 	 	 	111
	8.4	Riferim	enti per il t	file I	HDP_	_MC	MC.	.hpp				 		 	 	 	 	 	111
		8.4.1	Descrizio	one (detta	gliata	a .					 		 	 	 	 	 	111
	8.5	Riferim	enti per il t	file I	Mode	el.hp	p .					 	112						

xii INDICE

	8.5.1	Descrizione dettagliata
8.6	Riferim	nenti per il file omprng.hpp
	8.6.1	Descrizione dettagliata
8.7	Riferim	nenti per il file PosteriorAnalysis.hpp
	8.7.1	Descrizione dettagliata
8.8	Riferim	nenti per il file Struct.hpp
	8.8.1	Descrizione dettagliata
8.9	Riferim	nenti per il file Type.hpp
	8.9.1	Descrizione dettagliata

Hierarchical Dirichlet Process Mixture Model parallelizzabile

1.1 Introduzione

In questo codice e' implementato l'algoritmo proposti nel paper: J. Chang, J. W. Fisher III Parallel Sampling of HDPs using sub-clusters splits, NIPS, 2014.

Nel paper si fa riferimento solo al problema del topic-modeling, ma l'algoritmo e' estendibile a problemi di altro tipo, vedere il capitolo 7 di Relazione_Parisi_Perego.pdf In questo algoritmo si alternano passi di Gibbs sampler a passi di Metropolis-Hastings. Nei passi di Gibbs sampler si considerano soltanto i cluster non vuoti e si aggiornano le quantita' di interesse (β, π, θ) usando le full-conditional, equazioni dalla 3.3 alla 3.11; queste ultime non sono altro che alcuni step dell'algoritmo. Durante questi passi il numero di cluster rimane invariato. Con i passi di Metropolis-Hastings, invece, si propone l'unione di due cluster (mosse di merge) oppure la divisione di un cluster (mosse di split). Per ogni topic k si individuano due sub-topic, kl e kr che rispettivamente corrispondono al sub-topic sinistro e destro; i nuovi topic si propongono sulla base di tali sub-topic.

Per quanto riguarda l'inferenza sui parametri latenti e' stato trattato solo il caso di modelli coniugati.

2	Hierarchical Dirichlet Process Mixture Model parallelizzabile

Indice dei namespace

2.1 Lista dei namespace

Questa è l'elenco dei namespace documentati, con una loro breve descrizione:

CoeffSimilitudine

Namespace per i	I calcolo del coefficiente di	i similitudine Contiene	tre funzioni	template utili al
calcolo del coeffic	ciente di similitudine tra vette	ori di un qualsiasi tipo		

11

	• •				
In	ผเกอ	ומא	nam	Den:	$\Delta \Delta \Delta$
	uice	ucı	Halli	CONG	1 66

Indice della gerarchia

3.1 Gerarchia delle classi

Questo elenco di ereditarietà è ordinato approssimativamente, ma non completamente, in ordine alfabetico:

BETA 11
C
CLUSTER
DATACOUNT
GenericCluster < ClassType, DIM >
GenericCluster< TypeCategorical, 1 >
CategoricalCluster
GenericDocument< Type, DIM >
GenericDocument< TypeCategorical< DIM >, DIM >
CategoricalDocument < DIM >
GenericPosteriorAnalysis < Type, DIM >
GenericPosteriorAnalysis < TypeCategorical < DIM >, DIM >
CategoricalPosteriorAnalysis < DIM >
greater for pair
HDP MCMC< MODEL, DOCUMENT, DIM >
ModelGeneric < Type, DIM >
ModelGeneric < TypeCategorical < DIM >, DIM >
CategoricalModel < DIM >
NJK
NUMTABLE
omprng
PI
RngStream
TypeCategorical < DIM >
TypeCategorical < 1 >

6	Indice della gerarchia

Indice dei tipi composti

4.1 Elenco dei tipi composti

Queste sono le classi, le struct, le union e le interfacce con una loro breve descrizione:

BETA	
Pesi globali dei cluster	15
C	
Statistiche	15
CategoricalCluster	
Gestione informazioni cluster e sub-cluster per dati di verosimiglianza Categorical	16
CategoricalDocument< DIM >	
Classe derivata per il modello Dirichlet-Categorical	25
CategoricalModel < DIM >	
Modello Dirichlet-Categorical	39
CategoricalPosteriorAnalysis < DIM >	47
CLUSTER	54
DATACOUNT	54
GenericCluster< ClassType, DIM >	
Modello Generico di Cluster	54
GenericDocument< Type, DIM >	
Classe generica per i gruppi	62
GenericPosteriorAnalysis < Type, DIM >	
Classe generica per l'analisi a posteriori Classe virtuale dove tutti i metodi sono null. Ogni classe che eredita deve definire tutti i metodi della classe base e, se necessario, può aggiungere altri metodi. Invoca gli script R per l'analisi delle catene MCMC. Calcola l'indice LPML, riconosce i topic e individua il miglior clustering secondo il criterio dei minimi quadrati	78
greater_for_pair	
Criterio di confronto tra due elementi che sono coppie (unsigned int, double), da utilizzare nel sort di un vettore; il confronto è sul secondo valore nella coppia	82
HDP MCMC	82
ModelGeneric< Type, DIM >	-
Modello Generico di Model	91
NJK	
Numero degli elementi del gruppo j che sono nel cluster k	96
NUMTABLE	
Tavoli	97
ompring	٠.
Libreria Omprng per la generazione dei numeri casuali in OpenMp	97
PI	٠,
Pesi dei cluster in ogni gruppo	103
RngStream	104

TypeCategorical < DIM >	
Classe dei tipi per dati con verosimiglianza categorica	 105

Indice dei file

5.1 Elenco dei file

Questo è un elenco dei file documentati con una loro breve descrizione:

Cluster.hpp	
Strutture dei dati per la gestione dei cluster in base al modello scelto. In queste classi si definisce solo come gestire i parametri lanteti e gli altri parametri del cluster. Non sono presenti campionamenti, ma solo metodi che stampano e fissano i valori dei cluster e sub-cluster	107
Document.hpp	
In questo file sono presenti le classi che gestiscono i documenti o, piu' in generale, i gruppi di dati. La classe generica fornisce l'interfaccia comune, mentre le classi derivate e specializzate sono specifiche del modello	107
Functions.hpp	108
HDP_MCMC.hpp	111
Model.hpp	
Classe che si occupa di gestire tutti i cluster, campionamenti che dipendo dal modello scelto e funzioni che dipendono dal modello	112
omprng.hpp	
Generatore di numeri casuali in parallelo per OpenMP	112
PosteriorAnalysis.hpp	113
rngstream.hpp	??
Raccolta delle strutture che vengono utilizzate nei metodi di HDP_MCMC.hpp Si e' scelto di creare un file a parte con la dichiarazione delle strutture, perche' il loro utilizzo e' comune a piu' metodi	114
Type.hpp	
Strutture dati per i tipi di modello e dei cluster	114

Documentazione dei namespace

6.1 Riferimenti per il namespace CoeffSimilitudine

Namespace per il calcolo del coefficiente di similitudine Contiene tre funzioni template utili al calcolo del coefficiente di similitudine tra vettori di un qualsiasi tipo.

Funzioni

```
    template<typename T >
        double VectorNorm (vector< T > &v)
```

Calcola la norma di un vettore.

• template<typename T >

```
T ScalarProdoct (vector< T > &v1, vector< T > &v2)
```

Calcola il prodotto scalare tra due vettori.

template<typename T >
 double Coeff (vector< T > &v1, vector< T > &v2)

Calcola il coefficiente di similitudine tra due vettori.

6.1.1 Descrizione dettagliata

Namespace per il calcolo del coefficiente di similitudine Contiene tre funzioni template utili al calcolo del coefficiente di similitudine tra vettori di un qualsiasi tipo.

6.1.2 Documentazione delle funzioni

```
6.1.2.1 template < typename T > double CoeffSimilitudine::Coeff ( vector < T > & v1, vector < T > & v2 )
```

Calcola il coefficiente di similitudine tra due vettori.

Parametri

	v1	- primo vettore
Ì	v2	- secondo vettore

Restituisce

Coefficiente di similitudine

6.1.2.2 template < typename T > T CoeffSimilitudine::ScalarProdoct (vector < T > & v1, vector < T > & v2)

Calcola il prodotto scalare tra due vettori.

v1	- primo vettore
v2	- secondo vettore

Restituisce

Prodotto scalare tra i due vettori

6.1.2.3 template < typename T > double CoeffSimilitudine::VectorNorm (vector < T > & ν)

Calcola la norma di un vettore.

Parametri

V	- vettore di cui calcolare la norma

Restituisce

Norma del vettore

Documentazione dei namesp	ace
---------------------------	-----

Documentazione delle classi

7.1 Riferimenti per la struct BETA

Pesi globali dei cluster.

```
#include <Struct.hpp>
```

Attributi pubblici

- double a
- vector< double > **b_c**
- vector< double > Left
- vector< double > Right
- double k

7.1.1 Descrizione dettagliata

Pesi globali dei cluster.

La documentazione per questa struct è stata generata a partire dal seguente file:

· Struct.hpp

7.2 Riferimenti per la struct C

Statistiche.

```
#include <Struct.hpp>
```

Attributi pubblici

- STAT a
- STAT **b**
- STAT c
- STAT a_left
- STAT b_left
- STAT c_left
- STAT a_right
- STAT b_right
- STAT c_right

7.2.1 Descrizione dettagliata

Statistiche.

La documentazione per questa struct è stata generata a partire dal seguente file:

Struct.hpp

7.3 Riferimenti per la classe CategoricalCluster

Gestione informazioni cluster e sub-cluster per dati di verosimiglianza Categorical.

```
#include <Cluster.hpp>
```

Diagramma delle classi per CategoricalCluster

Tipi pubblici

using THETA = TypeCategorical< 1 >::THETA

Parametro latente, vettore di pesi degli elementi distinti nel cluster.

using Point = TypeCategorical < 1 >::Point

Singlo dato, dati ripetuti.

using STAT = TypeCategorical< 1 >::STAT

Statistiche per aggiornare l'iperparametro del parametro latente, numero di dati che sono cotentuti nel cluster e sub-cluster.

Membri pubblici

• CategoricalCluster ()

Costruttore di default.

∼CategoricalCluster ()=default

Distruttore di default.

CategoricalCluster (double _Beta, double _BetaLeft, double _BetaRight, THETA &_Theta, THETA &_Theta &_ThetaRight, STAT &_c, STAT &_cLeft, STAT &_cRight, unsigned int _NrTable, unsigned int NrTableRight)

Costruttore che richiede tutte le informazioni del cluster e subcluster.

void SetTheta (THETA &_Theta)

Fissa il parametro latente del cluster.

void SetThetaLeft (THETA &_ThetaLeft)

Fissa il parametro latente del sub-cluster sinistro.

void SetThetaRight (THETA &_ThetaRight)

Fissa il parametro latente del sub-cluster destro.

void SetBeta (double _Beta)

Fissa il peso del cluster.

void SetBetaLeft (double _BetaLeft)

Fissa il peso del sub-cluster sinistro.

void SetBetaRight (double _BetaRight)

Fissa il peso del sub-cluster destro.

void SetGlobalTable (unsigned int NrTable)

Fissa il numero di tavoli globali che caratterizza il cluster.

void SetGlobalTableLeft (unsigned int NrTableLeft)

Fissa il numero di tavoli globali che caratterizza il sub-cluster sinistro.

void SetGlobalTableRight (unsigned int _NrTableRight)

Fissa il numero di tavoli globali che caratterizza il sub-cluster destro.

void SetStatistics (STAT & c)

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del cluster.

void SetStatisticsLeft (STAT & cLeft)

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del sub-cluster sinistro.

void SetStatisticsRight (STAT &_cRight)

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del sub-cluster destro.

• void ViewTheta (THETA & Theta) const

Estrae il parametro latente del cluster.

void ViewThetaLeft (THETA & ThetaLeft) const

Estrae il parametro latente del sub-cluster sinistro.

void ViewThetaRight (THETA &_ThetaRight) const

Estrae il parametro latente del sub-cluster destro.

• double ViewThetald (unsigned int _id) const

Estrare l'i-esimo elemento del parametro latente del cluster.

double ViewThetaLeftId (unsigned int _id) const

Estrare l'i-esimo elemento del parametro latente del sub-cluster sinistro.

double ViewThetaRightId (unsigned int id) const

Estrare l'i-esimo elemento del parametro latente del sub-cluster destro.

• double ViewBeta () const

Estra il peso globale del cluster.

• double ViewBetaLeft () const

Estra il peso globale del sub-cluster sinistro.

· double ViewBetaRight () const

Estra il peso globale del sub-cluster destro.

· unsigned int ViewGlobalTable () const

Estra il numero globale dei tavoli nel cluster.

· unsigned int ViewGlobalTableLeft () const

Estra il numero globale dei tavoli nel sub-cluster sinistro.

unsigned int ViewGlobalTableRight () const

Estra il numero globale dei tavoli nel sub-cluster destro.

void ViewStatistics (STAT &_c) const

Estra la statistica del parametro latente del cluster.

void ViewStatisticsLeft (STAT &_cLeft) const

Estra la statistica del parametro latente del sub-cluster sinistro.

void ViewStatisticsRight (STAT &_cRight) const

Estra la statistica del parametro latente del sub-cluster destro.

void ResetStatistics (unsigned int W)

Azzera le statistiche nel cluster.

· void ResetStatisticsLeft (unsigned int W)

Azzera le statistiche nel sub-cluster sinistro.

void ResetStatisticsRight (unsigned int W)

Azzera le statistiche nel sub-cluster destro.

void UpdateStatistics (STAT &counts4cleft, STAT &counts4right)

Aggiorna le statistiche, ovvero gli iperparametri dei parametri latenti dei cluster e sub-cluster.

• bool IsEmpty () const

Controlla se il cluster non contiene elementi.

Attributi privati

double Beta

Peso globale del cluster.

double BetaLeft

Peso globale del sub-cluster sinistro.

double BetaRight

Peso globale del sub-cluster destro.

THETA Theta

Parametro latente del cluster: peso degli elementi distinti nel cluster.

THETA ThetaLeft

Parametro latente del sub-cluster sinisto: peso degli elementi distinti nel sub-cluster sinistro.

THETA ThetaRight

Parametro latente del sub-cluster destro: peso degli elementi distinti nel sub-cluster destro.

• STAT c

Statisitca per aggiornare il parametro latente del cluster: conteggi degli elementi finiti nel cluster.

· STAT cLeft

Statisitca per aggiornare il parametro latente del sub-cluster sinistro: conteggi degli elementi finiti nel sub-cluster sinistro.

· STAT cRight

Statisitca per aggiornare il parametro latente del sub-cluster destro: conteggi degli elementi finiti nel sub-cluster destro.

unsigned int NrTable

Numero di tavoli nel cluster.

· unsigned int NrTableLeft

Numero di tavoli nel sub-cluster sinistro.

unsigned int NrTableRight

Numero di tavoli nel sub-cluster destro.

Altri membri ereditati

7.3.1 Descrizione dettagliata

Gestione informazioni cluster e sub-cluster per dati di verosimiglianza Categorical.

Questa classe si occupa di memorizzare ed estrarre informazioni riguardati il peso globale del cluster e sub-cluster, parametri latenti dei cluster e sub-cluster, informazioni inerenti agli aggiornamenti degli iperparametri dei parametri lantenti. Nel caso di verosimiglianza caregorica. i dati sono ripetuti, i parametri lantenti sono i pesi degli elementi distinti e le statistiche sono i conteggi degli elementi distinti nel cluster. I parametri latenti non sono altro che i parametri della mistura.

Data

Febbrario 2016

7.3.2 Documentazione dei costruttori e dei distruttori

7.3.2.1 CategoricalCluster::CategoricalCluster (double _Beta, double _BetaLeft, double _BetaRight, THETA & _Theta, THETA & _ThetaRight, STAT & _c, STAT & _cLeft, STAT & _cRight, unsigned int _NrTable, unsigned int _NrTableLeft, unsigned int _NrTableRight)

Costruttore che richiede tutte le informazioni del cluster e subcluster.

_Beta	- Peso globale del cluster
_BetaLeft	- Peso globale del sub-cluster sinistro
_BetaRight	- Peso globale del sub-cluster destro
_Theta	- Parametro latente del cluster: peso degli elementi distinti nel cluster
_ThetaLeft	- Parametro latente del sub-cluster sinistro: peso degli elementi distinti nel sub-cluster sinistro
_ThetaRoght	- Parametro latente del sub-cluster destro: peso degli elementi distinti nel sub-cluster destro
_c	- Statisitca per aggiornare il parametro latente del cluster: conteggi degli elementi finiti nel
	cluster
_cLeft	- Statisitca per aggiornare il parametro latente del sub-cluster sinistro: conteggi degli elementi
	finiti nel sub-cluster sinistro
_cRight	- Statisitca per aggiornare il parametro latente del sub-cluster destro: conteggi degli elementi
	finiti nel sub-cluster destro
-NrTable	- Numero di tavoli nel cluster
-NrTableLeft	- Numero di tavoli nel sub-cluster sinistro
-NrTableRight	- Numero di tavoli nel sub-cluster destro

7.3.3 Documentazione delle funzioni membro

7.3.3.1 bool CategoricalCluster::lsEmpty () const [virtual]

Controlla se il cluster non contiene elementi.

Restituisce

TRUE se il cluster e' vuoto FALSE se non lo e'

Implementa GenericCluster < TypeCategorical, 1 >.

7.3.3.2 void CategoricalCluster::ResetStatistics (unsigned int W) [virtual]

Azzera le statistiche nel cluster.

Parametri

W	- dimensione della statistica con cui aggirnare gli iperparametri del parametro latente del
	cluster, numero di elementi distinti

Implementa GenericCluster< TypeCategorical, 1 >.

7.3.3.3 void CategoricalCluster::ResetStatisticsLeft (unsigned int W) [virtual]

Azzera le statistiche nel sub-cluster sinistro.

Parametri

W	- dimensione della statistica con cui aggirnare gli iperparametri del parametro latente del
	sub-cluster sinistro, numero di elementi distinti

Implementa GenericCluster< TypeCategorical, 1 >.

7.3.3.4 void CategoricalCluster::ResetStatisticsRight (unsigned int W) [virtual]

Azzera le statistiche nel sub-cluster destro.

 dimensione della statistica con cui aggirnare gli iperparametri del parametro latente del sub-cluster destro, numero di elementi distinti

 $Implementa\ Generic Cluster < \ Type Categorical,\ 1>.$

7.3.3.5 void CategoricalCluster::SetBeta (double _Beta) [virtual]

Fissa il peso del cluster.

Parametri

_Beta - peso in ingresso

Implementa GenericCluster< TypeCategorical, 1 >.

7.3.3.6 void CategoricalCluster::SetBetaLeft (double _BetaLeft) [virtual]

Fissa il peso del sub-cluster sinistro.

Parametri

_BetaLeft | - peso in ingresso

Implementa GenericCluster < TypeCategorical, 1 >.

7.3.3.7 void CategoricalCluster::SetBetaRight (double _BetaRight) [virtual]

Fissa il peso del sub-cluster destro.

Parametri

_BetaLeft | - peso in ingresso

Implementa GenericCluster< TypeCategorical, 1 >.

7.3.3.8 void CategoricalCluster::SetGlobalTable (unsigned int _NrTable) [virtual]

Fissa il numero di tavoli globali che caratterizza il cluster.

Parametri

NrTable - numero di tavoli che caratterizza il cluster

Implementa GenericCluster < TypeCategorical, 1 >.

7.3.3.9 void CategoricalCluster::SetGlobalTableLeft (unsigned int _NrTableLeft) [virtual]

Fissa il numero di tavoli globali che caratterizza il sub-cluster sinistro.

Parametri

NrTableLeft | - numero di tavoli che caratterizza il sub-cluster sinistro

Implementa GenericCluster< TypeCategorical, 1 >.

7.3.3.10 void CategoricalCluster::SetGlobalTableRight (unsigned int _NrTableRight) [virtual]

Fissa il numero di tavoli globali che caratterizza il sub-cluster destro.

NrTableLeft - numero di tavoli che caratterizza il sub-cluster destro

Implementa GenericCluster < TypeCategorical, 1 >.

7.3.3.11 void CategoricalCluster::SetStatistics (STAT & _c)

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del cluster.

Parametri

_c - statistiche del cluster, conteggi degli elementi finiti nel cluster

7.3.3.12 void CategoricalCluster::SetStatisticsLeft (STAT & _cLeft)

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del sub-cluster sinistro.

Parametri

_cLeft | - statistiche del sub-cluster sinistro, conteggi degli elementi finiti nel sub-cluster sinistro

7.3.3.13 void CategoricalCluster::SetStatisticsRight (STAT & _cRight)

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del sub-cluster destro.

Parametri

_cLeft | - statistiche del sub-cluster destro, conteggi degli elementi finiti nel sub-cluster destro

7.3.3.14 void CategoricalCluster::SetTheta (THETA & $_Theta$)

Fissa il parametro latente del cluster.

Parametri

_Theta | - parametro latente in ingresso di tipo THETA

7.3.3.15 void CategoricalCluster::SetThetaLeft (THETA & _ThetaLeft)

Fissa il parametro latente del sub-cluster sinistro.

Parametri

_ThetaLeft | - parametro latente in ingresso di tipo THETA

7.3.3.16 void CategoricalCluster::SetThetaRight (THETA & _ThetaRight)

Fissa il parametro latente del sub-cluster destro.

Parametri

```
_ThetaRight | - parametro latente in ingresso di tipo THETA
```

7.3.3.17 void CategoricalCluster::UpdateStatistics (STAT & counts4cleft, STAT & counts4right)

Aggiorna le statistiche, ovvero gli iperparametri dei parametri latenti dei cluster e sub-cluster.

Parametri

counts4cleft	- statistiche per aggiornare gli iperparametri dei parametri latenti del sub-cluster sinistro
counts4cright	- statistiche per aggiornare gli iperparametri dei parametri latenti del sub-cluster destro

```
7.3.3.18 double CategoricalCluster::ViewBeta ( ) const [virtual]
```

Estra il peso globale del cluster.

Restituisce

Peso del cluster

```
Implementa GenericCluster < TypeCategorical, 1 >.
```

7.3.3.19 double CategoricalCluster::ViewBetaLeft() const [virtual]

Estra il peso globale del sub-cluster sinistro.

Restituisce

Peso del sub-cluster sinistro

Implementa GenericCluster < TypeCategorical, 1 >.

7.3.3.20 double CategoricalCluster::ViewBetaRight()const [virtual]

Estra il peso globale del sub-cluster destro.

Restituisce

Peso del sub-cluster destro

Implementa GenericCluster< TypeCategorical, 1 >.

7.3.3.21 unsigned int CategoricalCluster::ViewGlobalTable () const [virtual]

Estra il numero globale dei tavoli nel cluster.

Restituisce

Numero di tavoli nel cluster

 $Implementa\ Generic Cluster < Type Categorical,\ 1>.$

7.3.3.22 unsigned int CategoricalCluster::ViewGlobalTableLeft() const [virtual] Estra il numero globale dei tavoli nel sub-cluster sinistro. Restituisce Numero di tavoli nel sub-cluster sinistro Implementa GenericCluster < TypeCategorical, 1 >. 7.3.3.23 unsigned int CategoricalCluster::ViewGlobalTableRight()const [virtual] Estra il numero globale dei tavoli nel sub-cluster destro. Restituisce Numero di tavoli nel sub-cluster destrp Implementa GenericCluster < TypeCategorical, 1 >. 7.3.3.24 void CategoricalCluster::ViewStatistics (STAT & $_c$) const Estra la statistica del parametro latente del cluster. Parametri - oggetto di tipo STAT in cui viene memorizzato la statistica del parametro latente del cluster 7.3.3.25 void CategoricalCluster::ViewStatisticsLeft (STAT & _cLeft) const Estra la statistica del parametro latente del sub-cluster sinistro. **Parametri** cLeft - oggetto di tipo STAT in cui viene memorizzato la statistica del parametro latente del subcluster sinistro 7.3.3.26 void CategoricalCluster::ViewStatisticsRight (STAT & _cRight) const Estra la statistica del parametro latente del sub-cluster destro. Parametri cLeft - oggetto di tipo STAT in cui viene memorizzato la statistica del parametro latente del subcluster destro

7.3.3.27 void CategoricalCluster::ViewTheta (THETA & _Theta) const

Estrae il parametro latente del cluster.

Parametri

_Theta | - oggetto di tipo THETA in cui viene memorizzato il parametro latente del cluster, peso degli elementi distinti nel cluster

7.3.3.28 double CategoricalCluster::ViewThetald (unsigned int _id) const

Estrare l'i-esimo elemento del parametro latente del cluster.

Parametri

Elemento	da estrarre
----------	-------------

Restituisce

peso dell'elemento nella posizione indicata del cluster

7.3.3.29 void CategoricalCluster::ViewThetaLeft (THETA & _ThetaLeft) const

Estrae il parametro latente del sub-cluster sinistro.

Parametri

_ThetaLeft	- oggetto di tipo THETA in cui viene memorizzato il parametro latente del cluster, peso degli
	elementi distinti nel sub-cluster sinistro

7.3.3.30 double CategoricalCluster::ViewThetaLeftId (unsigned int _id) const

Estrare l'i-esimo elemento del parametro latente del sub-cluster sinistro.

Parametri

Elemento	da estrarre

Restituisce

peso dell'elemento nella posizione indicata del sub-cluster sinistro

7.3.3.31 void CategoricalCluster::ViewThetaRight (THETA & $_$ ThetaRight) const

Estrae il parametro latente del sub-cluster destro.

Parametri

_ThetaRight	- oggetto di tipo THETA in cui viene memorizzato il parametro latente del cluster, peso degli
	elementi distinti nel sub-cluster destro

7.3.3.32 double CategoricalCluster::ViewThetaRightId (unsigned int $_id$) const

Estrare l'i-esimo elemento del parametro latente del sub-cluster destro.

Parametri

Elemento da estrarre

Restituisce

peso dell'elemento nella posizione indicata del subl-cluster destro

La documentazione per questa classe è stata generata a partire dal seguente file:

· Cluster.hpp

7.4 Template per la classe CategoricalDocument< DIM >

Classe derivata per il modello Dirichlet-Categorical.

#include <Document.hpp>

Diagramma delle classi per CategoricalDocument< DIM >

Tipi pubblici

• using STAT = TypeCategorical < 1 >::STAT

Statistiche per aggiornare gli iperparametri della distribuzione del parametro latente.

using THETA = TypeCategorical< 1 >::THETA

Parametro latente, vettore di pesi delle parole distinte nel cluster.

• using POINT = TypeCategorical < 1 >::Point

Singolo dato.

• using ClusterID = unsigned int

Identificativo del cluster.

Membri pubblici

· CategoricalDocument (double _alpha)

Costruttore alternativo.

· CategoricalDocument ()=default

Costruttore di default.

∼CategoricalDocument ()

Distruttore.

CategoricalDocument (CategoricalDocument &&doc)

Move constructor.

• CategoricalDocument (const CategoricalDocument &doc)=default

Copy constructor.

CategoricalDocument & operator= (const CategoricalDocument &doc)

Copy assignment operator.

• CategoricalDocument & operator= (CategoricalDocument &&doc)

Move assignment operator.

void UpdatePi (const vector< double > &_AllBeta, omprng &Gen)

Aggiorna i pesi dei topic specifici del documento; si veda equazione (3.5) in Relazione_Parisi_Perego.pdf.

• void UpdatePiSub (const double _BetaLeft, const double _BetaRight, const ClusterID k, omprng &Gen)

Aggiorna i pesi, specifici del documento, dei subtopic del topic k; ; si veda equazione (3.9) in Relazione_Parisi_-Perego.pdf.

• void UpdateAllPiSub (const vector< double > _BetaLeft, const vector< double > _BetaRight, omprng &Gen)

Aggiorna i pesi, specifici del documento, di tutti i subtopic, ; si veda equazione (3.9) in Relazione_Parisi_Perego.pdf.

 void UpdateLocalTable (const vector< long double > &_stirling, const vector< double > &_Beta, omprng &Gen)

Aggiorna i tavoli; si veda equazione (3.9) in Relazione_Parisi_Perego.pdf.

• void UpdateLocalTableSub_OneCluster (const vector< long double > &_stirling, const double _BetaLeft, const double _BetaRight, const ClusterID k, omprng &Gen)

Aggiorna i tavoli dei subtopic del topic k; si veda equazione (3.12) in Relazione_Parisi_Perego.pdf.

 void UpdateAllLocalTableSub (const vector< long double > &_stirling, const vector< double > &_BetaLeft, const vector< double > &_BetaRight, omprng &Gen)

Aggiorna i tavoli dei subtopic di tutti i topic; si veda equazione (3.12) in Relazione_Parisi_Perego.pdf.

void UpdateZeta (const THETA & Thetald, const POINT Vettld, omprng &Gen)

Aggiorna l'etichetta per il topic di una parola, campionata con il metodo Sampling; si veda equazione (3.7) in Relazione_Parisi_Perego.pdf.

void UpdateZeta_and_Sub (const THETA &_Thetald, const THETA &_ThetaldLeft, const THETA &_ThetaldRight, const unsigned int _VetIld, omprng &Gen)

Aggiorna l'etichetta per il topic e per il subtopic di una parola, campionate con il metodo Sampling si vedano equazioni (3.7) - (3.11) in Relazione_Parisi_Perego.pdf.

 void UpdateZetaSub (const THETA &_ThetaldLeft, const THETA &_ThetaldRight, const POINT id, const unsigned int nidik, const ClusterID k, omprng &Gen)

Distribuisce la parola id nei subtopic del topic k, dopo aver campionato l'etichetta del subtopic con il metodo Sampling si veda equazione (3.11) in Relazione_Parisi_Perego.pdf.

void UpdateZeta (const ClusterID _k)

Metodo che serve nelle mosse di M-H per rimuovere il topic k.

void UpdateZeta (const ClusterID _k1, const ClusterID _k2)

Metodo che serve nelle mosse di M-H per rimuovere due topic.

• unsigned int ViewNj () const

Visualizza il numero di parole nel documento j.

- void ViewData (vector < POINT > &_VettId) const
- void ViewCounts4c (ClusterID _k, STAT &_counts4cleft, STAT &_counts4cright)

Visualizza i conteggi necessari per aggiornare i parametri latenti dei subtopic.

unsigned int ViewNumTableID (const ClusterID k) const

Estrae il numero di tavoli in uno specifico topic.

• unsigned int ViewNumTableLeftID (const ClusterID _k) const

Estrae il numero di tavoli del subtopic sinistro di uno specifico topic.

unsigned int ViewNumTableRightID (const ClusterID k) const

Estrae il numero di tavoli del subtopic destro di uno specifico topic.

• unsigned int ViewDataCountID (const ClusterID k) const

Estrae il numero di parole nel topic k.

unsigned int ViewDataCountLeftID (const ClusterID _k) const

Estrae il numero di parole nel subtopic sinistro del topic k.

unsigned int ViewDataCountRightID (const ClusterID _k) const

Estrae il numero di parole nel subtopic destro del topic k.

void ResetDataCountSub (const ClusterID k)

Azzera il conteggio delle parole nel topic k.

void ViewDataCount (vector< unsigned int > & WordCount) const

Estrae il vettore del numero di parole in ogni topic.

void ViewDataCountLeft (vector< unsigned int > &_WordCountLeft) const

Estrae il vettore del numero di parole in ogni subtopic sinistro.

void ViewDataCountRight (vector< unsigned int > & WordCountRight) const

Estrae il vettore del numero di parole in ogni subtopic destro.

void ViewIdCounts (vector< pair< POINT, unsigned int >> &_nidjk, const ClusterID _k)

Estrae identificativi e conteggi delle parole nel topic k.

void ViewCluster (const ClusterID _k, pair< unordered_map< POINT, unsigned int >, unordered_map<
 POINT, unsigned int >> &_Cluster)

Estrae il topic k.

• double ViewPiID (const ClusterID _k) const

Estrae il peso, specifico del documento, del topic k.

double ViewPiLeftID (const ClusterID k) const

Estrae il peso, specifico del documento, del subtopic sinistro del topic k.

double ViewPiRightID (const ClusterID _k) const

Estrae il peso, specifico del documento, del subtopic destro del topic k.

void ViewPi (vector< double > & pi) const

Estrae il vettore di pesi dei topic specifici dei documenti.

void ViewPiLeft (vector< double > & pi) const

Estrae il vettore di pesi dei subotpic sinistri specifici dei documenti.

void ViewPiRight (vector< double > &_pi) const

Estrae il vettore di pesi dei subotpic destri specifici dei documenti.

void SetAlpha (const double _alpha)

Imposta il parametro di concentrazione del processo di Dirichlet che governa il documento.

void SetNj (const unsigned int _Nj)

Imposta il numero di parole nel documento j.

void SetPi (vector< double > &_Pi)

Imposta il vettore di pesi dei topic specifici dei documenti.

void InsertNewCluster (const pair< unordered_map< POINT, unsigned int >, unordered_map< POINT, unsigned int >> &NewCluster, const double _Pi, const double _PiLeft, const double _PiRight, const unsigned int _WordCount, const unsigned int _WordCountLeft, const unsigned int _WordCountRight, const unsigned int _LocalTable, const unsigned int _LocalTableRight)

Inserisce un nuovo topic.

void RemoveCluster (const vector < ClusterID > &_k)

Rimuove i topic con identificativo presente nel vettore in ingresso.

void RemoveCluster (const ClusterID _k)

Rimuove un topic.

• void RemoveCluster (ClusterID _k1, ClusterID _k2)

Rimuove due topic.

• unsigned int CheckLeftSubcluster (const ClusterID k)

Verifica se un topic ha il subtopic sinistro vuoto.

unsigned int CheckRightSubcluster (const ClusterID _k)

Verifica se un topic ha il subtopic destro vuoto.

void ViewLabel (vector< pair< POINT, ClusterID >> &Data)

Estrae le etichette associate alle parole.

void SetDataset (std::istringstream &SSTR)

Acquisisce i dati.

unsigned int SortData (unsigned int _K, omprng &Gen)

Smista le parole nel contenitore Zeta.

Membri privati

void UpdateDataCount ()

Aggiorna i conteggi delle parole nei topic.

void Sampling (std::vector< unsigned int > &_temp_counts, std::vector< double > &_Weights, unsigned int nidi, omprng &Gen)

Campionamento da distribuzione categorica per l'etichetta del topic o del subtopic.

Attributi privati

unordered_map< ClusterID, pair
 unordered_map< POINT,
 unsigned int >, unordered_map
 POINT, unsigned int > > Zeta

Contenitore dei dati. Per ogni cluster ho il subcluster sinistro e destro: nella mappa la chiave é il dato e il valore mappato é il numero di volte che il dato compare in quel documento, in quel cluster, in quel subcuster.

 unordered_map< POINT, unsigned int > Vocabulary

Vocabolario delle parole distinte del documento La chiave nella mappa e' il dato, il valore mapparo é il numero di volte che il dato compare nel documento.

· double alpha

Iperparametro del processo di Dirichlet che governa il documento.

· unsigned int Nj

Numero di parole contenute nel documento.

vector< double > Pi

Vettore di pesi del cluster specifici del documento.

 $\bullet \ \ \mathsf{vector} \! < \mathsf{double} > \! \mathsf{PiLeft}$

Vettore di pesi del subcluster sinistro specifici del documento.

vector< double > PiRight

Vettore di pesi del subcluster destro specifici del documento.

 $\bullet \ \ \mathsf{vector} \! < \mathsf{unsigned} \ \mathsf{int} > \mathsf{WordCount}$

Vettore di conteggi di dimensione K: l'elemento in posizione k indica il numero di dati del documento j nel cluster k.

vector< unsigned int > WordCountLeft

Vettore di conteggi di dimensione K: l'elemento in posizione k indica il numero di dati del documento j nel subcluster sinistro del cluster k.

vector< unsigned int > WordCountRight

Vettore di conteggi di dimensione K: l'elemento in posizione k indica il numero di dati del documento j nel subcluster destro del cluster k.

vector< unsigned int > LocalTable

Vettore dei tavoli di dimensione K : l'elemento in posizione k indica il numero di tavoli nel ristorante j che servono il piatto k.

vector< unsigned int > LocalTableLeft

Vettore dei tavoli di dimensione K : l'elemento in posizione k indica il numero di tavoli nel ristorante j che servono il piatto k left.

vector< unsigned int > LocalTableRight

Vettore dei tavoli di dimensione K : l'elemento in posizione k indica il numero di tavoli nel ristorante j che servono il piatto k right.

7.4.1 Descrizione dettagliata

template<unsigned int DIM = 1>class CategoricalDocument< DIM >

Classe derivata per il modello Dirichlet-Categorical.

Classe che rappresenta un documento per il problema del topic modeling. Gestisce le parole e si occupa del campionamento delle etichette per il topic a cui assegnare ogni parola. Gestisce i parametri del modello specifici del documento: $\alpha, \pi_j, \bar{\pi}_{jl}, \bar{m}_{jl}, \bar{m}_{jl}, \bar{m}_{jl}$; si occupa del campionamento di queste quantita'. Tiene traccia dei conteggi delle parole nei topic

Data

Febbraio 2016

7.4.2 Documentazione dei costruttori e dei distruttori

7.4.2.1 template < unsigned int DIM = 1 > CategoricalDocument < DIM >::CategoricalDocument (double _alpha) [inline]

Costruttore alternativo.

Parametri

_alpha | - iperparametro del processo di Dirichlet che governa il documento

7.4.3 Documentazione delle funzioni membro

7.4.3.1 template < unsigned int DIM > unsigned int Categorical Document < DIM > :: CheckLeft Subcluster (const Cluster ID $_k$)

Verifica se un topic ha il subtopic sinistro vuoto.

Parametri

_k | - id del topic di cui controllare il subtopic

7.4.3.2 template < unsigned int DIM > unsigned int Categorical Document < DIM > :: Check Right Subcluster (const Cluster ID $_k$)

Verifica se un topic ha il subtopic destro vuoto.

Parametri

_k | - id del topic di cui controllare il subtopic

7.4.3.3 template < unsigned int DIM > void CategoricalDocument < DIM >::InsertNewCluster (const pair < unordered_map < POINT, unsigned int >, unordered_map < POINT, unsigned int > & NewCluster, const double _Pi, const double _PiLeft, const double _PiRight, const unsigned int _WordCount, const unsigned int _WordCountLeft, const unsigned int _WordCountRight, const unsigned int _LocalTable, const unsigned int _LocalTableRight)

Inserisce un nuovo topic.

NewCluster	- il nuovo topic
_Pi	- peso del nuovo topic specifico del documento
_PiLeft	- peso del subtopic sinistro nuovo topic, specifico del documento
_PiRight	- peso del subtopic destro del nuovo topic, specifico del documento
_WordCount	- numero di parole nel nuovo topic
_WordCountLeft	- numero di parole nel subtopic sinistro del nuovo topic
_WordCount-	- numero di parole nel subtopic destro del nuovo topic
Right	
_LocalTable	- numero di tavoli che servono il nuovo piatto nel ristorante j
_LocalTableLeft	- numero di tavoli che servono il nuovo piatto left nel ristorante j
_LocalTable	- numero di tavoli che servono il nuovo piatto right nel ristorante j

7.4.3.4 template < unsigned int DIM > void Categorical Document < DIM > ::Remove Cluster (const vector < Cluster ID > & $_k$) [virtual]

Rimuove i topic con identificativo presente nel vettore in ingresso.

Parametri

k ∣ - vettore con di id dei topic da eliminare	 1-
	_K

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.5 template < unsigned int DIM > void Categorical Document < DIM >::RemoveCluster (const ClusterID _k)

Rimuove un topic.

Parametri

_k	- id del topic da eliminare

7.4.3.6 template < unsigned int DIM> void CategoricalDocument < DIM>::RemoveCluster (ClusterID $_k1$, ClusterID $_k2$)

Rimuove due topic.

Parametri

_k1	- id del topic da eliminare
_k2	- id del topic da eliminare

7.4.3.7 template<unsigned int DIM> void CategoricalDocument< DIM >::ResetDataCountSub (const ClusterID k)

Azzera il conteggio delle parole nel topic k.

Parametri

k	- id del topic

7.4.3.8 template < unsigned int DIM> void CategoricalDocument < DIM>::Sampling (std::vector < unsigned int > & _temp_counts, std::vector < double > & _Weights, unsigned int _nidj, omprng & Gen) [private], [virtual]

Campionamento da distribuzione categorica per l'etichetta del topic o del subtopic.

_temp_counts	- vettore che contiene i conteggi della parola id nei topic
_Weights	- pesi con cui campionare le etichette
_nidj	- numero di volte che la parola id compare nel documento j
Gen	- generatore di numeri casuali

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.9 template < unsigned int DIM> void CategoricalDocument < DIM>::SetAlpha (const double $_$ alpha) [virtual]

Imposta il parametro di concentrazione del processo di Dirichlet che governa il documento.

Parametri

_alpha - parametro di concentrazione del processo di Dirichlet che gov	erna il documento
--	-------------------

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.10 template < unsigned int DIM > void Categorical Document < DIM >::SetDataset (std::istringstream & SSTR) [virtual]

Acquisisce i dati.

Parametri

SSTR	- contiene id della parola e numero di volte che parola compare nel documento

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.11 template < unsigned int DIM> void CategoricalDocument < DIM >::SetNj (const unsigned int $_Nj$) [virtual]

Imposta il numero di parole nel documento j.

Parametri

_Nj	- numero di parole nel documento j

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.12 template < unsigned int DIM > unsigned int Categorical Document < DIM > ::SortData (unsigned int $_K$, omprng & Gen) [virtual]

Smista le parole nel contenitore Zeta.

Parametri

_K	- numero iniziale di topic
Gen	- generatore di numeri casuali

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.13 template < unsigned int DIM> void CategoricalDocument < DIM>::UpdateAllLocalTableSub (const vector < long double > & _stirling, const vector < double > & _BetaLeft, const vector < double > & _BetaRight, omprng & Gen) [virtual]

Aggiorna i tavoli dei subtopic di tutti i topic; si veda equazione (3.12) in Relazione_Parisi_Perego.pdf.

_stirling	- numeri di stirling
_BetaLeft	- pesi globali dei subtopic sinistri
_BetaRight	- pesi globali dei subtopic destri
Gen	- generatore di numeri casuali in parallelo

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.14 template < unsigned int DIM > void Categorical Document < DIM > :: Update All PiSub (const vector < double > _BetaLeft, const vector < double > _BetaLeft, omprng & Gen) [virtual]

Aggiorna i pesi, specifici del documento, di tutti i subtopic, ; si veda equazione (3.9) in Relazione_Parisi_Perego.pdf.

Parametri

_BetaLeft	- pesi globali dei subtopic sinistri
_BetaRight	- pesi globali dei subtopic destri
Gen	- generatore di numeri casuali in parallelo

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.15 template<unsigned int DIM> void CategoricalDocument< DIM>::UpdateLocalTable (const vector< long double > & _stirling, const vector< double > & _Beta, omprng & Gen) [virtual]

Aggiorna i tavoli; si veda equazione (3.9) in Relazione_Parisi_Perego.pdf.

Parametri

_stirling	- numeri di stirling
_Beta	- pesi globali dei topic
Gen	- generatore di numeri casuali in parallelo

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.16 template < unsigned int DIM > void CategoricalDocument < DIM >::UpdateLocalTableSub_OneCluster (const vector < long double > & _stirling, const double _BetaLeft, const double _BetaRight, const ClusterID k, omprng & Gen)

Aggiorna i tavoli dei subtopic del topic k; si veda equazione (3.12) in Relazione_Parisi_Perego.pdf.

Parametri

_stirling	- numeri di stirling
_BetaLeft	- peso globale del subtopic sinistro del topic k
_BetaRight	- peso globale del subtopic destro del topic k
k	- id del topic
Gen	- generatore di numeri casuali in parallelo

7.4.3.17 template<unsigned int DIM> void CategoricalDocument< DIM>::UpdatePi (const vector< double > & _AllBeta, omprng & Gen) [virtual]

Aggiorna i pesi dei topic specifici del documento; si veda equazione (3.5) in Relazione_Parisi_Perego.pdf.

_AllBeta	- pesi globali dei topic
Gen	- generatore di numeri casuali in parallelo

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.18 template < unsigned int DIM > void CategoricalDocument < DIM > :: UpdatePiSub (const double _BetaLeft, const double _BetaRight, const ClusterID k, omprng & Gen)

Aggiorna i pesi, specifici del documento, dei subtopic del topic k; ; si veda equazione (3.9) in Relazione_Parisi_-Perego.pdf.

Parametri

_BetaLeft	- peso globale del subtopic sinistro del topic k
_BetaRight	- peso globale dei subtopic destro del topic k
k	- id del topic
Gen	- generatore di numeri casuali in parallelo

7.4.3.19 template < unsigned int DIM = 1> void CategoricalDocument < DIM >::UpdateZeta (const THETA & _Thetald, const POINT _Vettld, omprng & Gen)

Aggiorna l'etichetta per il topic di una parola, campionata con il metodo Sampling; si veda equazione (3.7) in Relazione Parisi Perego.pdf.

Parametri

_Thetald	- vettore dei pesi della parola id in tutti i topic
_VettId	- id della parola
Gen	- generatore di numeri casuali in parallelo

7.4.3.20 template < unsigned int DIM > void Categorical Document < DIM >::UpdateZeta (const ClusterID _k)

Metodo che serve nelle mosse di M-H per rimuovere il topic k.

Parametri

_k	- id del topic

7.4.3.21 template < unsigned int DIM > void CategoricalDocument < DIM > :: UpdateZeta (const ClusterID _k1, const ClusterID _k2)

Metodo che serve nelle mosse di M-H per rimuovere due topic.

Parametri

_k1	- id del topic
_k2	- id del topic

7.4.3.22 template < unsigned int DIM> void CategoricalDocument < DIM>::UpdateZeta_and_Sub (const THETA & _Thetald, const THETA & _ThetaldRight, const unsigned int _Vettld, omprng & Gen)

Aggiorna l'etichetta per il topic e per il subtopic di una parola, campionate con il metodo Sampling si vedano equazioni (3.7) - (3.11) in Relazione_Parisi_Perego.pdf.

_Thetald	- vettore dei pesi della parola id in tutti i topic
_ThetaldLeft	- vettore dei pesi della parola id in tutti i subtopic sinistri
_ThetaldRight	- vettore dei pesi della parola id in tutti i subtopic destri
_VettId	- id della parola
Gen	- generatore di numeri casuali in parallelo

7.4.3.23 template<unsigned int DIM> void CategoricalDocument< DIM >::UpdateZetaSub (const THETA & _ThetaldLeft, const THETA & _ThetaldRight, const POINT id, const unsigned int nidjk, const ClusterID k, omprng & Gen)

Distribuisce la parola id nei subtopic del topic k, dopo aver campionato l'etichetta del subtopic con il metodo Sampling si veda equazione (3.11) in Relazione_Parisi_Perego.pdf.

Parametri

_ThetaldLeft	- vettore dei pesi della parola id in tutti i subtopic sinistri
_ThetaldRight	- vettore dei pesi della parola id in tutti i subtopic destri
id	- id della parola
nidjk	- numero di volte che la parola id nel documento j e' capitata nel topic k
k	- id del topic
Gen	- generatore di numeri casuali in parallelo

7.4.3.24 template<unsigned int DIM> void CategoricalDocument< DIM >::ViewCluster (const ClusterID _k, pair< unordered_map< POINT, unsigned int >> & _Cluster)

Estrae il topic k.

Parametri

_k	- id del topic da estrarre
_Cluster	- struttura in cui viene estratto il topic

7.4.3.25 template<unsigned int DIM> void CategoricalDocument< DIM >::ViewCounts4c (ClusterID _k, STAT & _counts4cleft, STAT & _counts4cright)

Visualizza i conteggi necessari per aggiornare i parametri latenti dei subtopic.

Parametri

_k	- id del topic
_counts4cleft	- conteggi per parametro latente del subtopic sinistro
_counts4cright	- conteggi per parametro latente del subtopic destro

7.4.3.26 template < unsigned int DIM > void Categorical Document < DIM > :: View Data (vector < POINT > & _ VettId) const

Estrae gli identificativi delle parole nel documento j

Parametri

_Vettld | - viene riempito con gli id delle parole nel documento j

7.4.3.27 template < unsigned int DIM > void CategoricalDocument < DIM >::ViewDataCount (vector < unsigned int > & WordCount) const [virtual]

Estrae il vettore del numero di parole in ogni topic.

Parametri

```
_WordCount - vettore del numero di parole in ogni topic
```

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.28 template<unsigned int DIM> unsigned int CategoricalDocument< DIM>::ViewDataCountID (const ClusterID _k) const

Estrae il numero di parole nel topic k.

Parametri

```
_k | - id del topic
```

Restituisce

Numero di parole nel topic k

7.4.3.29 template<unsigned int DIM> void CategoricalDocument< DIM>::ViewDataCountLeft (vector< unsigned int > & _WordCountLeft) const [virtual]

Estrae il vettore del numero di parole in ogni subtopic sinistro.

Parametri

```
_WordCountLeft | - vettore del numero di parole in ogni subtopic sinistro
```

 $Implementa\ Generic Document <\ Type Categorical <\ DIM>,\ DIM>.$

7.4.3.30 template < unsigned int DIM> unsigned int CategoricalDocument < DIM>::ViewDataCountLeftID (const ClusterID $_k$) const

Estrae il numero di parole nel subtopic sinistro del topic k.

Parametri

```
_k - id del topic
```

Restituisce

Numero di parole nel subtopic sinistro del topic k

7.4.3.31 template < unsigned int DIM > void Categorical Document < DIM > :: View Data Count Right (vector < unsigned int > & _Word Count Right) const [virtual]

Estrae il vettore del numero di parole in ogni subtopic destro.

_WordCount-	- vettore del numero di parole in ogni subtopic destro
Right	

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.32 template < unsigned int DIM > unsigned int Categorical Document < DIM > :: View Data Count Right ID (const Cluster ID $_k$) const

Estrae il numero di parole nel subtopic destro del topic k.

Parametri

```
_k | - id del topic
```

Restituisce

Numero di paorle nel subtopic destro del topic k

7.4.3.33 template < unsigned int DIM> void CategoricalDocument < DIM>::ViewIdCounts (vector < pair < POINT, unsigned int $>> \&_nidjk$, const ClusterID $_k$)

Estrae identificativi e conteggi delle parole nel topic k.

Parametri

_nidjk	- struttura che contiene identificativi e conteggi delle parole nel topic k
_k	- id del topic

7.4.3.34 template<unsigned int DIM> void CategoricalDocument< DIM>::ViewLabel (vector< pair< POINT, ClusterID>> & Data)

Estrae le etichette associate alle parole.

Parametri

Data	- struttura in cui estrarre le etichette

7.4.3.35 template<unsigned int DIM> unsigned int CategoricalDocument< DIM>::ViewNj()const [virtual]

Visualizza il numero di parole nel documento j.

Restituisce

Numero di parole nel documento j

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.36 template < unsigned int DIM > unsigned int Categorical Document < DIM > :: View Num Tablel D (const Cluster ID $_k$) const

Estrae il numero di tavoli in uno specifico topic.

k	- id del topic
_^	id del topio

Restituisce

Numero di tavoli nel ristorante j che servono il piatto k

7.4.3.37 template < unsigned int DIM> unsigned int CategoricalDocument < DIM>::ViewNumTableLeftID (const ClusterID $_k$) const

Estrae il numero di tavoli del subtopic sinistro di uno specifico topic.

Parametri

```
_k | - id del topic
```

Restituisce

Numero di tavoli nel ristorante j che servono il piatto k left

7.4.3.38 template < unsigned int DIM > unsigned int Categorical Document < DIM > :: ViewNumTableRightID (const ClusterID $_k$) const

Estrae il numero di tavoli del subtopic destro di uno specifico topic.

Parametri

```
_k | - id del topic
```

Restituisce

Numero di tavoli nel ristorante j che servono il piatto k destro

7.4.3.39 template < unsigned int DIM> void Categorical Document < DIM>::ViewPi (vector < double > & $_pi$) const [virtual]

Estrae il vettore di pesi dei topic specifici dei documenti.

Parametri

_pi	- vettore di pesi dei topic specifici dei documenti

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.40 template < unsigned int DIM > double Categorical Document < DIM >::ViewPilD (const ClusterID _k) const

Estrae il peso, specifico del documento, del topic k.

Parametri

Restituisce

Peso specifico del documento del topic k

7.4.3.41 template < unsigned int DIM > void Categorical Document < DIM > :: View PiLeft (vector < double > & $_pi$) const [virtual]

Estrae il vettore di pesi dei subotpic sinistri specifici dei documenti.

_pi - vettore di pesi dei subotopic sinistri specifici dei documenti

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.42 template < unsigned int DIM > double Categorical Document < DIM > :: ViewPiLeftID (const ClusterID k) const

Estrae il peso, specifico del documento, del subtopic sinistro del topic k.

Parametri

```
_k | - id del topic
```

Restituisce

Peso specifico del documento del subtopic sinistro del topic k

7.4.3.43 template < unsigned int DIM > void Categorical Document < DIM >:: View PiRight (vector < double > & _pi) const [virtual]

Estrae il vettore di pesi dei subotpic destri specifici dei documenti.

Parametri

_pi	- vettore di pesi dei subotopic destri specifici dei documenti

Implementa GenericDocument< TypeCategorical< DIM >, DIM >.

7.4.3.44 template < unsigned int DIM > double Categorical Document < DIM > :: View PiRight ID (const Cluster ID $_k$) const

Estrae il peso, specifico del documento, del subtopic destro del topic k.

Parametri

```
_k | - id del topic
```

Restituisce

Peso specifico del documento del subtopic destro del topic k

La documentazione per questa classe è stata generata a partire dal seguente file:

· Document.hpp

7.5 Template per la classe CategoricalModel < DIM >

Modello Dirichlet-Categorical.

#include <Model.hpp>

Diagramma delle classi per CategoricalModel < DIM >

Tipi pubblici

using THETA = TypeCategorical< 1 >::THETA

Parametro latente, vettore di pesi degli elementi distinti nel cluster.

using Point = TypeCategorical < 1 >::Point

Singlo dato, dati ripetuti.

using STAT = TypeCategorical< 1 >::STAT

Statistiche per aggiornare l'iperparametro del parametro latente, numero di dati che sono cotentuti nel cluster e sub-cluster.

• using HYP = TypeCategorical< 1 >::HYP

Iperparametro del parametro latente.

Membri pubblici

· CategoricalModel ()

Costruttore di default.

· CategoricalModel (const CategoricalModel &mod)=default

Copy costructor.

CategoricalModel (const CategoricalModel &&mod)

Move constructor.

CategoricalModel ()=default

Distruttore di default.

CategoricalCluster & operator[] (unsigned int _K)

Access operator per gli I-value.

CategoricalModel & operator= (const CategoricalModel &mod)

Assignement operator.

CategoricalModel & operator= (CategoricalModel &&mod)

Move assignement operator.

void SetHyperparameter (const HYP &_Lambda)

Fissa gli iperparametri dei parametri latenti.

void DefaultHyperparameter (size_t W)

Fissa gli iperparametri dei parametri latenti con i valori di default.

· void SetInitialClusters (unsigned int _K)

Fissa i cluster iniziali, assegnando i pesi globali iniziali.

double Marginalized_Loglikelihood (const unsigned int _K)

Calcola la verosmiglianza logaritmica marginale del cluster, una volta specificato l'id del clusters.

double Loglikelihood (const POINT X, const unsigned int _K)

Calcola la loglikelihood in un punto X una volta precisato l'id del cluster.

double LoglikelihoodLeft (const POINT X, const unsigned int _K)

Calcola la loglikelihood in un punto X una volta precisato l'id del sub-cluster sinistro.

double LoglikelihoodRight (const POINT X, const unsigned int _K)

Calcola la loglikelihood in un punto X una volta precisato l'id del sub-cluster destro.

long double LogDensity (const unsigned int _K)

Calcola la densita' del parametro latente che caratterizza il cluster specificato.

void UpdateThetaCluster (omprng &Gen)

Aggirnamento dei parametro latenti di tutti i clusters.

void UpdateThetaSubCluster (omprng &Gen)

Aggirnamento dei parametro latenti del sub-cluster sinistro e destro di tutti i clusters.

void UpdateOneThetaCluster (const unsigned int K, omprng &Gen)

Aggirnamento dei parametro latenti di un cluster, una volta precisato il suo id.

void UpdateOneThetaSubCluster (const unsigned int _K, omprng &Gen)

Aggirnamento dei parametro latenti del sub-cluster sinistro e destro di un cluster, una volta precisato il sui id.

void AddOneCluster (const unsigned int k)

Aggiunge un cluster vuoto ai clusters presenti ed aggiorna il parametro K, che identifica il numero di cluster attuali. I parametri del cluster devono essere specificati in un secondo momento.

void RemoveOneCluster (const unsigned int _K)

Rimuove un cluster una volta specificato l'id, ed aggiorna il parametro K, che identifica il numero di cluster attuali.

void RemoveClusters (const vector< unsigned int > &_K)

Rimuove piu' clusters una volta che sono specificati gli ID, ed aggiorna il parametro K, che identifica il numero di cluster attuali.

unsigned int ViewK () const

Da informazione sul numero di clusters correnti.

void ViewKey (vector< unsigned int > &Key) const

Visualizza gli ID dei clusters attulmente presenti.

void ViewBeta (vector< double > &_AllBeta)

Mostra i pesi globali dei cluster attualemente presenti.

void ViewBetaLeft (vector< double > &_AllBetaLeft)

Mostra i pesi globali del sub-cluster sinistro dei clusters attualemente presenti.

void ViewBetaRight (vector< double > & AllBetaRight)

Mostra i pesi globali del sub-cluster destro dei clusters attualemente presenti.

void PrintTheta ()

Stampa su file i valori dei parametri latenti dei cluster attualmente presenti, i pesi degli elementi distinti in ogni clusters.

· void PrintLambdaInfo () const

Attributi privati

• HYP Lambda

Vettore degli iperparametri.

· unsigned int K

numero corrente di cluster

 unordered_map< unsigned int, CategoricalCluster > Clusters

Insieme degli oggetti di tipo CategoricaCluster, individuati in base al sui Id.

unsigned int OMP_NUM_THREADS

7.5.1 Descrizione dettagliata

template<unsigned int DIM = 1>class CategoricalModel< DIM >

Modello Dirichlet-Categorical.

Verosimiglianza: Categorical. Prior sui parametri latenti: Dirichlet

Questa classe e' impiegata per campionare i parametri latenti da una Dirichlet, per il calcolo delle verosimiglianze e delle marginali per un modello Categorica. Gestisce anche l'aggiunta e la rimozione dei clusters, la stampa su file dei parametri latenti.

Data

Febbrario 2016

7.5.2 Documentazione delle funzioni membro

7.5.2.1 template < unsigned int DIM> void Categorical Model < DIM > ::AddOne Cluster (const unsigned int $_k$) [virtual]

Aggiunge un cluster vuoto ai clusters presenti ed aggiorna il parametro K, che identifica il numero di cluster attuali. I parametri del cluster devono essere specificati in un secondo momento.

_K | - Id del nuovo cluster che si aggiunge.

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.2 template < unsigned int DIM> void Categorical Model < DIM >::Default Hyperparameter (size_t W) [virtual]

Fissa gli iperparametri dei parametri latenti con i valori di default.

Parametri

W | - dimensione degli iperparametri

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.3 template < unsigned int DIM> long double Categorical Model < DIM >::LogDensity (const unsigned int $_K$) [virtual]

Calcola la densita' del parametro latente che caratterizza il cluster specificato.

Parametri

_K	- Id del cluster

Restituisce

Densita' logaritmica del cluster _K

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.4 template < unsigned int DIM > double Categorical Model < DIM > :: Loglikelihood (const POINT X, const unsigned int $_K$)

Calcola la loglikelihood in un punto X una volta precisato l'id del cluster.

Parametri

X	- punto di valutazione
_K	- id del cluster

Restituisce

verosmiglianza logaritmica valutante nel punto X del cluster _K

7.5.2.5 template < unsigned int DIM > double Categorical Model < DIM > ::Loglikelihood Left (const POINT X, const unsigned int $_K$)

Calcola la loglikelihood in un punto X una volta precisato l'id del sub-cluster sinistro.

Parametri

X	- punto di valutazione

_ <i>K</i>	- id del sub-cluster sinistro

Restituisce

verosmiglianza logaritmica valutante nel punto X del sub-cluster sinistro del cluster _K

7.5.2.6 template<unsigned int DIM> double CategoricalModel< DIM>::LoglikelihoodRight (const POINT X, const unsigned int $_K$)

Calcola la loglikelihood in un punto X una volta precisato l'id del sub-cluster destro.

Parametri

X	- punto di valutazione
_K	- id del sub-cluster destro

Restituisce

verosmiglianza logaritmica valutante nel punto X del sub-cluster destro del cluster _K

7.5.2.7 template < unsigned int DIM> double Categorical Model < DIM>::Marginalized_Loglikelihood (const unsigned int _K) [virtual]

Calcola la verosmiglianza logaritmica marginale del cluster, una volta specificato l'id del clusters.

Parametri

_K - id del cluster di cui si vuole calcolare la verosmiglianza logaritmica marginale

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.8 template < unsigned int DIM > Categorical Model < DIM > & Categorical Model < DIM > ::operator = (const Categorical Model < DIM > & mod)

Assignement operator.

Parametri

mod	- oggetto di tipo CategoricalModel

7.5.2.9 template<unsigned int DIM> CategoricalModel< DIM> & CategoricalModel< DIM>::operator= (CategoricalModel< DIM > && mod)

Move assignement operator.

Parametri

mod	- oggetto di tipo CategoricalModel

 $7.5.2.10 \quad template < unsigned \ int \ DIM > \textbf{CategoricalCluster \& CategoricalModel} < DIM > ::operator[] \ (\ unsigned \ int \ _K \)$

Access operator per gli l-value.

_K - a quale cluster si vuole accedere

7.5.2.11 template<unsigned int DIM> void CategoricalModel< DIM>::PrintLambdalnfo() const [virtual]

Stampa a video le informazioni degli iperparametri dei parametri latenti dei cluster

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.12 template < unsigned int DIM > void Categorical Model < DIM >::Remove Clusters (const vector < unsigned int > & _K) [virtual]

Rimuove piu' clusters una volta che sono specificati gli ID, ed aggiorna il parametro K, che identifica il numero di cluster attuali.

Parametri

_K - Vettore degli Id dei clusters che si vogliono rimuovere

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.13 template < unsigned int DIM > void Categorical Model < DIM >::RemoveOneCluster (const unsigned int _K) [virtual]

Rimuove un cluster una volta specificato l'id, ed aggiorna il parametro K, che identifica il numero di cluster attuali.

Parametri

_*K* | - Id del cluster che si vuole rimuovere

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.14 template < unsigned int DIM > void Categorical Model < DIM >::SetHyperparameter (const HYP & _Lambda)

Fissa gli iperparametri dei parametri latenti.

Parametri

_Lambda - Iperparametri in ingresso

7.5.2.15 template<unsigned int DIM> void CategoricalModel< DIM >::SetInitialClusters (unsigned int _K) [virtual]

Fissa i cluster iniziali, assegnando i pesi globali iniziali.

Parametri

_K - Numero di cluster iniziali

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.16 template < unsigned int DIM > void Categorical Model < DIM >::UpdateOneThetaCluster (const unsigned int _K, omprng & Gen) [virtual]

Aggirnamento dei parametro latenti di un cluster, una volta precisato il suo id.

Equazione (3.6) della relazione Relazione Parisi Perego.pdf

_ <i>K</i>	- id del cluster di cui si vuole aggiornare parametri lantenti
Gen	- Generatore dei numeri casuali

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.17 template<unsigned int DIM> void CategoricalModel< DIM>::UpdateOneThetaSubCluster (const unsigned int _K, omprng & Gen) [virtual]

Aggirnamento dei parametro latenti del sub-cluster sinistro e destro di un cluster, una volta precisato il sui id.

Equazione (3.10) della relazione Relazione Parisi Perego.pdf

Parametri

_K	- id del cluster di cui si vuole aggiornare i parametri latenti nei sui sub-clusters
Gen	- Generatore dei numeri casuali

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.18 template < unsigned int DIM> void Categorical Model < DIM>::Update Theta Cluster (omprng & Gen) [virtual]

Aggirnamento dei parametro latenti di tutti i clusters.

Equazione (3.6) della relazione Relazione_Parisi_Perego.pdf

Parametri

Gen	- Generatore dei numeri casuali

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.19 template < unsigned int DIM> void Categorical Model < DIM>::Update Theta Sub Cluster (omprng & Gen) [virtual]

Aggirnamento dei parametro latenti del sub-cluster sinistro e destro di tutti i clusters.

Equazione (3.10) della relazione Relazione_Parisi_Perego.pdf

Parametri

Gen	- Generatore dei numeri casuali

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.20 template < unsigned int DIM > void Categorical Model < DIM > :: View Beta (vector < double > & _All Beta) [virtual]

Mostra i pesi globali dei cluster attualemente presenti.

Parametri

AllBeta	- vettore riempito con i pesi globali dei clusters

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.21 template < unsigned int DIM> void CategoricalModel < DIM >::ViewBetaLeft (vector < double > & _AllBetaLeft) [virtual]

Mostra i pesi globali del sub-cluster sinistro dei clusters attualemente presenti.

AllBetaLeft - vettore riempito con i pesi globali del sub-cluster sinistro dei clusters

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.22 template < unsigned int DIM> void Categorical Model < DIM>::ViewBetaRight (vector < double > & _AllBetaRight) [virtual]

Mostra i pesi globali del sub-cluster destro dei clusters attualemente presenti.

Parametri

AllBetaRight - vettore riempito con i pesi globali del sub-cluster destro dei clusters

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.23 template < unsigned int DIM > unsigned int Categorical Model < DIM >::ViewK() const [virtual]

Da informazione sul numero di clusters correnti.

Restituisce

il numero corrente di clusters

Implementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.2.24 template < unsigned int DIM > void Categorical Model < DIM > :: View Key (vector < unsigned int > & Key) const [virtual]

Visualizza gli ID dei clusters attulmente presenti.

Parametri

Key - oggetto dove salvare gli ld dei clusters

Reimplementa ModelGeneric< TypeCategorical< DIM >, DIM >.

7.5.3 Documentazione dei membri dato

7.5.3.1 template<unsigned int DIM = 1> unsigned int CategoricalModel< DIM >::OMP_NUM_THREADS [private]

Numero di threads

La documentazione per questa classe è stata generata a partire dal seguente file:

· Model.hpp

7.6 Template per la classe CategoricalPosteriorAnalysis < DIM >

#include <PosteriorAnalysis.hpp>

Diagramma delle classi per Categorical Posterior
Analysis < DIM >

Tipi pubblici

using THETA = TypeCategorical< 1 >::THETA

Parametro latente, vettore di pesi delle parole distinte nel cluster.

using ClusterId = unsigned int

Identificativo del cluster.

· using GroupId = unsigned int

Identificativo del documento.

using Datald = unsigned int

Identificativo del dato.

• using Check = unsigned int

Variabile di controllo.

Membri pubblici

CategoricalPosteriorAnalysis ()=default

Costruttore di default.

~CategoricalPosteriorAnalysis ()=default

Distruttore di default.

unsigned int SetAllK ()

Imposta la catena AlIK.

unsigned int SetAllAlpha ()

Imposta la catena Alpha.

• unsigned int SetAllGamma ()

Imposta la catena Gamma.

• void SetVocabulary ()

Imposta il vocabolario.

• void VisualizeBeta (RInside &R, unsigned long BestClustering)

Chiama lo script R che visualizza le traiettorie della distribuzione dei topic nel corpus.

· void KPosteriorAnalysis (RInside &R, const unsigned int Burnin, const unsigned int Thinning)

Chiama lo script R per l'analisi della catena dei K.

 void AGPosteriorAnalysis (RInside &R, const unsigned int AlphaBurnin, const unsigned int AlphaThinning, const unsigned int GammaBurnin, const unsigned int GammaThinning, const char AlphaTry, const char GammaTry)

Chiama lo script R per l'analisi delle catene Alpha e Gamma.

• void Setwd (const std::string &_wd)

Imposta la working directory di R.

void SetW (const unsigned int _W)

Imposta il numero di parole distinte.

void SetD (const unsigned int _D)

Imposta il numero di documenti.

void SetN (const unsigned int _N)

Imposta il numero totale di parole.

void SetTheta (const unsigned long MaxIt)

Imposta la ricerca dei cluster, acquisendo da file i e i delle ultime iterazioni.

void LoadLabels (const unsigned long NrClusterings)

Acquisisce le etichette assegnate alle parole nelle ultime iterazioni.

unsigned long LeastSquareClustering ()

Individua il miglior clustering secondo il criterio dei minimi quadrati; si veda equazione (4.3) in Relazione_Parisi_-Perego.pdf.

void LPML (unsigned long MaxIt)

Calcola e stampa a video l'indice LPML; si vedano equazioni (4.1)- (4.2) in Relazione Parisi_Perego.pdf.

void TrackingClusters (RInside &R)

Effettua il riconoscimento dei topic.

Attributi privati

 unordered_map< unsigned int, vector< tuple< GroupId, Check, double, vector< double >>>> Theta

Struttura in cui memorizzare le informazioni sui topic riconosciuti. La chiave della mappa e' l'iterazione, il valore mappato e' il blocco di topic individuati a quella iterazione. Per ogni topic nel blocco si ha: l'etichetta assegnata al topic, il numero di parole in comune con i topic di altri blocchi aventi la stessa etichetta, il peso globale del topic, il vettore di pesi delle parole che rappresenta il topic.

vector< vector< double > > AllBeta

Memorizza i vettori delle ultime iterazioni.

 unordered_map< DataId, std::string > Vocabulary

Vocabolario del corpus.

vector< double > Alpha

Contiene i valori assunti da ad ogni iterazione, nel caso di prior su .

• vector< double > Gamma

Contiene i valori assunti da ad ogni iterazione, nel caso di prior su .

vector< unsigned int > AllK

Contiene il numero di cluster dedotti dall'algoritmo ad ogni iterazione.

std::string wd

Working directory per R.

· unsigned int W

Numero di parole distinte.

unsigned int N

Numero di parole totali.

unsigned int D

Numero di documenti.

vector< vector< unsigned int > > Labels

Contiene le etichette assegnate alle parole ad ogni iterazione.

deque< double > Pairwise_probabilities

Matrice necessaria per individuare il least square clustering L'elemento in posizione (i,j) e' una stima Monte Carlo della probabilita' che la parola i sia nello stesso topic della parola j.

7.6.1 Descrizione dettagliata

template < unsigned int DIM = 1>class CategoricalPosteriorAnalysis < DIM >

Classe per l'analisi a posteriori specifica del modello Dirichle-Categorical Legge e memorizza i risultati delle simulazioni in opportune strutture.

7.6.2 Documentazione delle funzioni membro

7.6.2.1 template<unsigned int DIM> void CategoricalPosteriorAnalysis< DIM>::AGPosteriorAnalysis (RInside & R, const unsigned int AlphaBurnin, const unsigned int AlphaThinning, const unsigned int GammaBurnin, const unsigned int GammaThinning, const char AlphaTry, const char GammaTry) [virtual]

Chiama lo script R per l'analisi delle catene Alpha e Gamma.

R	- Istanza di R
AlphaBurnin	- numero di valori iniziali della catena Alpha da scartare
AlphaThinning	- tiene un valore della catena Alpha ogni AlphaThinning valori
GammaBurnin	- numero di valori iniziali della catena Gamma da scartare
GammaThinning	- tiene un valore della catena Gamma ogni GammaThinning valori
AlphaTry	- yes se si vuole ripetere l'analisi della catena Alpha, no altrimenti
GammaTry	- yes se si vuole ripetere l'analisi della catena Gamma, no altrimenti

Implementa GenericPosteriorAnalysis< TypeCategorical< DIM >, DIM >.

7.6.2.2 template<unsigned int DIM> void CategoricalPosteriorAnalysis< DIM>::KPosteriorAnalysis (RInside & R, const unsigned int Burnin, const unsigned int Thinning) [virtual]

Chiama lo script R per l'analisi della catena dei K.

Parametri

R	- Istanza di R
Burnin	- numero di valori iniziali della catena da scartare
Thinning	- tiene un valore della catena ogni thinning valori

Implementa GenericPosteriorAnalysis< TypeCategorical< DIM >, DIM >.

7.6.2.3 template<unsigned int DIM> unsigned long CategoricalPosteriorAnalysis< DIM>::LeastSquareClustering () [virtual]

Individua il miglior clustering secondo il criterio dei minimi quadrati; si veda equazione (4.3) in Relazione_Parisi_-Perego.pdf.

Restituisce

Iterazione a cui e' stato individuato il miglior clustering

Implementa GenericPosteriorAnalysis< TypeCategorical< DIM >, DIM >.

7.6.2.4 template<unsigned int DIM> void CategoricalPosteriorAnalysis< DIM>::LoadLabels (const unsigned long NrClusterings) [virtual]

Acquisisce le etichette assegnate alle parole nelle ultime iterazioni.

Parametri

NrClusterings	- numero di iterazioni da monitorare

Implementa GenericPosteriorAnalysis < TypeCategorical < DIM >, DIM >.

7.6.2.5 template < unsigned int DIM> void CategoricalPosteriorAnalysis < DIM >::LPML (unsigned long MaxIt) [virtual]

Calcola e stampa a video l'indice LPML; si vedano equazioni (4.1)- (4.2) in Relazione_Parisi_Perego.pdf.

Parametri

Imposta il numero totale di parole.

MaxIt - numero di iterazioni da considerare nel calcolo di LPML Implementa GenericPosteriorAnalysis< TypeCategorical< DIM >, DIM >. 7.6.2.6 template<unsigned int DIM> unsigned int CategoricalPosteriorAnalysis< DIM>::SetAllAlpha () [virtual] Imposta la catena Alpha. Restituisce Lunghezza della catena Implementa GenericPosteriorAnalysis < TypeCategorical < DIM >, DIM >. 7.6.2.7 template < unsigned int DIM > unsigned int Categorical Posterior Analysis < DIM >::SetAllGamma () [virtual] Imposta la catena Gamma. Restituisce Lunghezza della catena $Implementa\ Generic Posterior Analysis < Type Categorical < DIM >, DIM >.$ 7.6.2.8 template < unsigned int DIM> unsigned int Categorical Posterior Analysis < DIM >:: SetAllK() [virtual] Imposta la catena AllK. Restituisce Lunghezza della catena Implementa GenericPosteriorAnalysis < TypeCategorical < DIM >, DIM >. 7.6.2.9 template < unsigned int DIM> void Categorical Posterior Analysis < DIM>::SetD (const unsigned int $_D$) [virtual] Imposta il numero di documenti. Parametri - numero di documenti D Implementa GenericPosteriorAnalysis < TypeCategorical < DIM >, DIM >. 7.6.2.10 template < unsigned int DIM > void Categorical Posterior Analysis < DIM >:: SetN (const unsigned int _N) [virtual]

_N - numero totale di parole

Implementa GenericPosteriorAnalysis< TypeCategorical< DIM >, DIM >.

7.6.2.11 template < unsigned int DIM> void CategoricalPosteriorAnalysis < DIM>::SetTheta (const unsigned long MaxIt) [virtual]

Imposta la ricerca dei cluster, acquisendo da file i e i delle ultime iterazioni.

Parametri

MaxIt - numero di iterazioni dell'algoritmo

Implementa GenericPosteriorAnalysis < TypeCategorical < DIM >, DIM >.

7.6.2.12 template < unsigned int DIM> void CategoricalPosteriorAnalysis < DIM >::SetW (const unsigned int _W) [virtual]

Imposta il numero di parole distinte.

Parametri

_W | - numero di parole distinte

Implementa GenericPosteriorAnalysis< TypeCategorical< DIM >, DIM >.

7.6.2.13 template < unsigned int DIM> void CategoricalPosteriorAnalysis < DIM >::Setwd (const std::string & _wd) [virtual]

Imposta la working directory di R.

Parametri

_wd | - working directory di R

 $Implementa\ Generic Posterior Analysis < Type Categorical < DIM >, DIM >.$

7.6.2.14 template < unsigned int DIM> void CategoricalPosteriorAnalysis < DIM>::TrackingClusters (RInside & R) [virtual]

Effettua il riconoscimento dei topic.

Parametri

R - Istanza di R

Implementa GenericPosteriorAnalysis < TypeCategorical < DIM >, DIM >.

7.6.2.15 template < unsigned int DIM> void CategoricalPosteriorAnalysis < DIM>::VisualizeBeta (RInside & R, unsigned long BestClustering) [virtual]

Chiama lo script R che visualizza le traiettorie della distribuzione dei topic nel corpus.

Parametri

R	- Istanza di R
BestClustering	- iterazione a cui e' stato individuato il least square clustering

Implementa GenericPosteriorAnalysis < TypeCategorical < DIM >, DIM >.

La documentazione per questa classe è stata generata a partire dal seguente file:

· PosteriorAnalysis.hpp

7.7 Riferimenti per la struct CLUSTER

Attributi pubblici

- pair< unordered_map< POINT, unsigned int >, unordered_map
 POINT, unsigned int > > b
- pair< unordered_map< POINT, unsigned int >, unordered_map
 POINT, unsigned int >> c
- pair< unordered_map< POINT, unsigned int >, unordered_map
 POINT, unsigned int >> a
- unordered_map< POINT, unsigned int > a sx
- unordered_map< POINT, unsigned int > a_dx

La documentazione per questa struct è stata generata a partire dal seguente file:

· Struct.hpp

7.8 Riferimenti per la struct DATACOUNT

Attributi pubblici

- vector< unsigned int > **b**
- vector< unsigned int > c
- vector< unsigned int > a

La documentazione per questa struct è stata generata a partire dal seguente file:

· Struct.hpp

7.9 Template per la classe GenericCluster < ClassType, DIM >

Modello Generico di Cluster.

#include <Cluster.hpp>

Membri pubblici

virtual void SetTheta (typename ClassType < DIM >::THETA &)=0

Fissa il parametro latente del cluster.

virtual void SetThetaLeft (typename ClassType < DIM >::THETA &)=0

Fissa il parametro latente del sub-cluster sinistro.

virtual void SetThetaRight (typename ClassType < DIM >::THETA &)=0

Fissa il parametro latente del sub-cluster destro.

virtual void SetBeta (double)=0

Fissa il peso del cluster.

• virtual void SetBetaLeft (double)=0

Fissa il peso del sub-cluster sinistro.

virtual void SetBetaRight (double)=0

Fissa il peso del sub-cluster destro.

virtual void SetGlobalTable (unsigned int)=0

Fissa il numero di tavoli globali che caratterizza il cluster.

virtual void SetGlobalTableLeft (unsigned int)=0

Fissa il numero di tavoli globali che caratterizza il sub-cluster sinistro.

virtual void SetGlobalTableRight (unsigned int)=0

Fissa il numero di tavoli globali che caratterizza il sub-cluster destro.

virtual void SetStatistics (typename ClassType < DIM >::STAT &)=0

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del cluster.

virtual void SetStatisticsLeft (typename ClassType< DIM >::STAT &)=0

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del sub-cluster sinistro.

virtual void SetStatisticsRight (typename ClassType < DIM >::STAT &)=0

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del sub-cluster destro.

virtual void ViewTheta (typename ClassType< DIM >::THETA &) const =0

Estrae il parametro latente del cluster.

virtual void ViewThetaLeft (typename ClassType < DIM >::THETA &) const =0

Estrae il parametro latente del sub-cluster sinistro.

virtual void ViewThetaRight (typename ClassType < DIM >::THETA &) const =0

Estrae il parametro latente del sub-cluster destro.

• virtual double ViewBeta () const =0

Estra il peso globale del cluster.

• virtual double ViewBetaLeft () const =0

Estra il peso globale del sub-cluster sinistro.

• virtual double ViewBetaRight () const =0

Estra il peso globale del sub-cluster destro.

virtual void ViewStatistics (typename ClassType < DIM >::STAT &) const =0

Estra la statistica del parametro latente del cluster.

virtual void ViewStatisticsLeft (typename ClassType< DIM >::STAT &) const =0

Estra la statistica del parametro latente del sub-cluster sinistro.

virtual void ViewStatisticsRight (typename ClassType < DIM >::STAT &) const =0

Estra la statistica del parametro latente del sub-cluster destro.

virtual unsigned int ViewGlobalTable () const =0

Estra il numero globale dei tavoli nel cluster.

virtual unsigned int ViewGlobalTableLeft () const =0

Estra il numero globale dei tavoli nel sub-cluster sinistro.

virtual unsigned int ViewGlobalTableRight () const =0

Estra il numero globale dei tavoli nel sub-cluster destro.

• virtual void ResetStatistics (unsigned int)=0

Azzera le statistiche nel cluster.

virtual void ResetStatisticsLeft (unsigned int)=0

Azzera le statistiche nel sub-cluster sinistro.

virtual void ResetStatisticsRight (unsigned int)=0

Azzera le statistiche nel sub-cluster destro.

virtual void UpdateStatistics (typename ClassType< DIM >::STAT &, typename ClassType< DIM >::STAT &)=0

Aggiorna le statistiche, ovvero gli iperparametri dei parametri latenti dei cluster e sub-cluster.

virtual bool IsEmpty () const =0

Controlla se il cluster non contiene elementi.

7.9.1 Descrizione dettagliata

template < template < unsigned int > class ClassType, unsigned int DIM > class GenericCluster < ClassType, DIM >

Modello Generico di Cluster.

Classe astratta dove tutti i metodi virtuali sono null. Le classi che ereditano da Cluster Generic servono per estrarre, memorizzare ed impostare i dati associati ai cluster ed ai sub-cluster. Pertanto si tratta di classi di appoggio, non fanno nessun tipo di campionamento

Data

Febbraio 2016

7.9.2 Documentazione delle funzioni membro

7.9.2.1 template<template< unsigned int > class ClassType, unsigned int DIM> virtual bool GenericCluster< ClassType, DIM >::IsEmpty () const [pure virtual]

Controlla se il cluster non contiene elementi.

Restituisce

TRUE se il cluster e' vuoto FALSE se non lo e'

Implementato in CategoricalCluster.

Azzera le statistiche nel cluster.

Parametri

W	- dimensione della statistica con cui aggirnare gli iperparametri del parametro latente del
	cluster

Implementato in CategoricalCluster.

7.9.2.3 template<template< unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster< ClassType, DIM>::ResetStatisticsLeft(unsigned int) [pure virtual]

Azzera le statistiche nel sub-cluster sinistro.

W	- dimensione della statistica con cui aggirnare gli iperparametri del parametro latente del
	sub-cluster sinistro

Implementato in CategoricalCluster.

7.9.2.4 template<template< unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster< ClassType, DIM>::ResetStatisticsRight (unsigned int) [pure virtual]

Azzera le statistiche nel sub-cluster destro.

Parametri

W	- dimensione della statistica con cui aggirnare gli iperparametri del parametro latente del
	sub-cluster destro

Implementato in CategoricalCluster.

7.9.2.5 template<template< unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster< ClassType, DIM>::SetBeta (double) [pure virtual]

Fissa il peso del cluster.

Parametri

_Beta	- peso in ingresso

Implementato in CategoricalCluster.

7.9.2.6 template<template< unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster< ClassType, DIM >::SetBetaLeft (double) [pure virtual]

Fissa il peso del sub-cluster sinistro.

Parametri

```
_BetaLeft - peso in ingresso
```

Implementato in CategoricalCluster.

7.9.2.7 template<template< unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster< ClassType, DIM >::SetBetaRight(double) [pure virtual]

Fissa il peso del sub-cluster destro.

Parametri

```
_BetaRight - peso in ingresso
```

Implementato in CategoricalCluster.

7.9.2.8 template< template< unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster< ClassType, DIM>::SetGlobalTable (unsigned int) [pure virtual]

Fissa il numero di tavoli globali che caratterizza il cluster.

NrTable - numero di tavoli che caratterizza il cluster

Implementato in CategoricalCluster.

7.9.2.9 template<template< unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster< ClassType, DIM>::SetGlobalTableLeft (unsigned int) [pure virtual]

Fissa il numero di tavoli globali che caratterizza il sub-cluster sinistro.

Parametri

NrTableLeft | - numero di tavoli che caratterizza il sub-cluster sinistro

Implementato in CategoricalCluster.

7.9.2.10 template < template < unsigned int > class ClassType, unsigned int DIM > virtual void GenericCluster < ClassType, DIM >::SetGlobalTableRight (unsigned int) [pure virtual]

Fissa il numero di tavoli globali che caratterizza il sub-cluster destro.

Parametri

NrTableRight - numero di tavoli che caratterizza il sub-cluster destro

Implementato in CategoricalCluster.

7.9.2.11 template < template < unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster < ClassType, DIM >::SetStatistics (typename ClassType < DIM >::STAT &) [pure virtual]

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del cluster.

Parametri

_c - statistiche del cluster

7.9.2.12 template < template < unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster < ClassType, DIM >::SetStatisticsLeft (typename ClassType < DIM >::STAT &) [pure virtual]

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del sub-cluster sinistro.

Parametri

_cLeft - statistiche del sub-cluster sinistro

7.9.2.13 template < template < unsigned int > class ClassType, unsigned int DIM > virtual void GenericCluster < ClassType, DIM >::SetStatisticsRight (typename ClassType < DIM >::STAT &) [pure virtual]

Fissa le statistiche, ovvero gli iperparametri dei parametri latenti del sub-cluster destro.

Parametri

_cRight | - statistiche del sub-cluster destro

7.9.2.14 template < template

Fissa il parametro latente del cluster.

```
_Theta | - parametro latente in ingresso di tipo THETA
```

7.9.2.15 template < template < unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster < ClassType, DIM >::SetThetaLeft(typename ClassType < DIM >::THETA &) [pure virtual]

Fissa il parametro latente del sub-cluster sinistro.

Parametri

_ThetaLeft	- parametro latente in ingresso di tipo THETA

7.9.2.16 template < template < unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster < ClassType, DIM >::SetThetaRight (typename ClassType < DIM >::THETA &) [pure virtual]

Fissa il parametro latente del sub-cluster destro.

Parametri

_ThetaRight	- parametro latente in ingresso di tipo THETA
-------------	---

7.9.2.17 template < template < unsigned int > class ClassType, unsigned int DIM > virtual void GenericCluster < ClassType, DIM >::UpdateStatistics (typename ClassType < DIM >::STAT & , typename ClassType < DIM >::STAT &)

[pure virtual]

Aggiorna le statistiche, ovvero gli iperparametri dei parametri latenti dei cluster e sub-cluster.

Parametri

counts4cleft	- statistiche per aggiornare gli iperparametri dei parametri latenti del sub-cluster sinistro
counts4cright	- statistiche per aggiornare gli iperparametri dei parametri latenti del sub-cluster destro

Estra il peso globale del cluster.

Restituisce

Peso del cluster

Implementato in CategoricalCluster.

7.9.2.19 template < template < unsigned int > class ClassType, unsigned int DIM> virtual double GenericCluster < ClassType, DIM >::ViewBetaLeft() const [pure virtual]

Estra il peso globale del sub-cluster sinistro.

Restituisce

Peso del sub-cluster sinistro

Implementato in CategoricalCluster.

7.9.2.20 template < template < unsigned int > class ClassType, unsigned int DIM> virtual double GenericCluster < ClassType, DIM >::ViewBetaRight () const [pure virtual]

Estra il peso globale del sub-cluster destro.

Restituisce

Peso del del sub-cluster destro

Implementato in CategoricalCluster.

7.9.2.21 template < template < unsigned int > class ClassType, unsigned int DIM> virtual unsigned int GenericCluster < ClassType, DIM >::ViewGlobalTable () const [pure virtual]

Estra il numero globale dei tavoli nel cluster.

Restituisce

Numero di tavoli nel cluster

Implementato in CategoricalCluster.

7.9.2.22 template < template < unsigned int > class ClassType, unsigned int DIM> virtual unsigned int GenericCluster < ClassType, DIM >::ViewGlobalTableLeft () const [pure virtual]

Estra il numero globale dei tavoli nel sub-cluster sinistro.

Restituisce

Numero di tavoli nel sub-cluster sinistro

Implementato in CategoricalCluster.

7.9.2.23 template < template < unsigned int > class ClassType, unsigned int DIM> virtual unsigned int GenericCluster < ClassType, DIM >::ViewGlobalTableRight() const [pure virtual]

Estra il numero globale dei tavoli nel sub-cluster destro.

Restituisce

Numero di tavoli nel sub-cluster destr

Implementato in CategoricalCluster.

7.9.2.24 template < template < unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster < ClassType, DIM >::ViewStatistics (typename ClassType < DIM >::STAT &) const [pure virtual]

Estra la statistica del parametro latente del cluster.

Parametri

_c | - oggetto di tipo STAT in cui viene memorizzato la statistica del parametro latente del cluster

7.9.2.25 template < te

Estra la statistica del parametro latente del sub-cluster sinistro.

_cLeft	- oggetto di tipo STAT in cui viene memorizzato la statistica del parametro latente del sub-
	cluster sinistro

7.9.2.26 template < template < unsigned int > class ClassType, unsigned int DIM> virtual void Generic Cluster < ClassType, DIM>::STAT &) const [pure virtual]

Estra la statistica del parametro latente del sub-cluster destro.

Parametri

_cRight	- oggetto di tipo STAT in cui viene memorizzato la statistica del parametro latente del sub-
	cluster destro

7.9.2.27 template < te

Estrae il parametro latente del cluster.

Parametri

_Theta	- oggetto di tipo THETA in cui viene memorizzato il parametro latente del cluster
--------	---

7.9.2.28 template < template < unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster < ClassType,
DIM >::ViewThetaLeft (typename ClassType < DIM >::THETA &) const [pure virtual]

Estrae il parametro latente del sub-cluster sinistro.

Parametri

_ThetaLeft	- oggetto di tipo THETA in cui viene memorizzato il parametro latente del sub-cluster sinistro

7.9.2.29 template < template < unsigned int > class ClassType, unsigned int DIM> virtual void GenericCluster < ClassType, DIM >::ViewThetaRight (typename ClassType < DIM >::THETA &) const [pure virtual]

Estrae il parametro latente del sub-cluster destro.

Parametri

```
_ThetaRight | - oggetto di tipo THETA in cui viene memorizzato il parametro latente del sub-cluster destro
```

La documentazione per questa classe è stata generata a partire dal seguente file:

Cluster.hpp

7.10 Template per la classe GenericDocument< Type, DIM >

Classe generica per i gruppi.

#include <Document.hpp>

Membri pubblici

virtual void UpdatePi (const vector< double > &, omprng &)=0

Aggiorna i pesi dei cluster specifici del gruppo; si veda equazione (3.5) in Relazione_Parisi_Perego.pdf.

virtual void UpdatePiSub (const double, const double, const unsigned int, omprng &)=0

Aggiorna i pesi, specifici del gruppo, dei subcluster del cluster k; si veda equazione (3.9) in Relazione_Parisi_Perego.pdf.

virtual void UpdateAllPiSub (const vector< double >, const vector< double >, omprng &)=0

Aggiorna i pesi, specifici del gruppo, di tutti i subcluster; ; si veda equazione (3.9) in Relazione_Parisi_Perego.pdf.

- virtual void UpdateLocalTable (const vector < long double > &, const vector < double > &, omprng &)=0
 Aggiorna i tavoli; si veda equazione (3.3) in Relazione_Parisi_Perego.pdf.
- virtual void UpdateLocalTableSub_OneCluster (const vector < long double > &, const double _, const double, const unsigned int, omprng &)=0

Aggiorna i tavoli dei subcluster del cluster k; si veda equazione (3.12) in Relazione_Parisi_Perego.pdf.

• virtual void UpdateAllLocalTableSub (const vector< long double > &, const vector< double > &, const vector< double > &, omprng &)=0

Aggiorna i tavoli dei subcluster di tutti i cluster; si veda equazione (3.12) in Relazione_Parisi_Perego.pdf.

• virtual void UpdateZeta (const typename Type::THETA &, const unsigned int, omprng &)=0

Aggiorna l'etichetta per il cluster di un dato, campionata con il metodo Sampling; si veda equazione (3.7) in Relazione-Parisi_Perego.pdf.

• virtual void UpdateZeta_and_Sub (const typename Type::THETA &, const typename Type::THETA &, const typename Type::THETA &, const unsigned int, omprng &)=0

Aggiorna l'etichetta per il cluster e per il subcluster di un dato, campionate con il metodo Sampling; si vedano equazioni (3.7) - (3.11) in Relazione_Parisi_Perego.pdf.

• virtual void UpdateZetaSub (const typename Type::THETA &, const typename Type::THETA &, const typename Type::Point, const unsigned int, const unsigned int, omprng &)=0

Distribuisce il dato nei subcluster del cluster k, dopo aver campionato l'etichetta del subcluster con il metodo Sampling; si veda equazione (3.11) in Relazione_Parisi_Perego.pdf.

virtual void UpdateZeta (const unsigned int)=0

Metodo che serve nelle mosse di M-H per rimuovere il cluster k.

virtual void UpdateZeta (const unsigned int, const unsigned int)=0

Metodo che serve nelle mosse di M-H per rimuovere due cluster.

virtual unsigned int ViewNj () const =0

Visualizza il numero di dati nel gruppo j.

- virtual void ViewData (vector< typename Type::Point > &) const =0
- virtual void ViewCounts4c (const unsigned int, typename Type::STAT &, typename Type::STAT &)=0

Visualizza i conteggi necessari per aggiornare i parametri latenti dei subcluster.

virtual unsigned int ViewNumTableID (const unsigned int) const =0

Estrae il numero di tavoli in uno specifico cluster.

virtual unsigned int ViewNumTableLeftID (const unsigned int) const =0

Estrae il numero di tavoli del subcluster sinistro di uno specifico cluster.

• virtual unsigned int ViewNumTableRightID (const unsigned int) const =0

Estrae il numero di tavoli del subcluster destro di uno specifico cluster.

virtual unsigned int ViewDataCountID (const unsigned int) const =0

Estrae il numero di dati nel cluster k.

virtual unsigned int ViewDataCountLeftID (const unsigned int) const =0

Estrae il numero di dati nel subcluster sinistro del cluster k.

virtual unsigned int ViewDataCountRightID (const unsigned int) const =0

Estrae il numero di dati nel subcluster destro del cluster k.

virtual void ResetDataCountSub (const unsigned int)=0

Azzera il conteggio dei dati nel cluster k.

virtual void ViewDataCount (vector< unsigned int > &) const =0

Estrae il vettore del numero di dati in ogni cluster.

virtual void ViewDataCountLeft (vector< unsigned int > &) const =0

Estrae il vettore del numero di dati in ogni subcluster sinistro.

virtual void ViewDataCountRight (vector< unsigned int > &) const =0

Estrae il vettore del numero di dati in ogni subcluster destro.

- virtual void ViewIdCounts (vector< pair< typename Type::Point, unsigned int >> &, const unsigned int)=0

 Estrae identificativi e conteggi dei dati nel cluster k.
- virtual void ViewCluster (const unsigned int, pair< unordered_map< typename Type::Point, unsigned int >, unordered map< typename Type::Point, unsigned int >> &)=0

Estrae il cluster k.

virtual double ViewPiID (const unsigned int) const =0

Estrae il peso, specifico del gruppo, del cluster k.

virtual double ViewPiLeftID (const unsigned int) const =0

Estrae il peso, specifico del gruppo, del subcluster sinistro del cluster k.

virtual double ViewPiRightID (const unsigned int) const =0

Estrae il peso, specifico del gruppo, del subcluster destro del cluster k.

virtual void ViewPi (vector< double > &) const =0

Estrae il vettore di pesi dei cluster specifici dei gruppi.

virtual void ViewPiLeft (vector< double > &) const =0

Estrae il vettore di pesi dei subcluster sinistri specifici dei gruppi.

virtual void ViewPiRight (vector< double > &) const =0

Estrae il vettore di pesi dei subcluster destri specifici dei gruppi.

virtual void SetAlpha (const double)=0

Imposta il parametro di concentrazione del processo di Dirichlet che governa il gruppo.

virtual void SetNj (const unsigned int)=0

Imposta il numero di dati nel gruppo j.

virtual void SetPi (vector< double > &)=0

Imposta il vettore di pesi dei cluster specifici dei gruppi.

virtual void InsertNewCluster (const pair< unordered_map< typename Type::Point, unsigned int >, unordered_map< typename Type::Point, unsigned int > > &, const double, const double, const double, const unsigned int, const unsigned int)=0

Inserisce un nuovo cluster.

virtual void RemoveCluster (const vector< unsigned int > &)=0

Rimuove i cluster con identificativo presente nel vettore in ingresso.

virtual void RemoveCluster (const unsigned int)=0

Rimuove un cluster.

virtual void RemoveCluster (unsigned int, unsigned int)=0

Rimuove due cluster.

virtual unsigned int CheckLeftSubcluster (const unsigned int)=0

Verifica se un cluster ha il subcluster sinistro vuoto.

· virtual unsigned int CheckRightSubcluster (const unsigned int)=0

Verifica se un cluster ha il subcluster destro vuoto.

virtual void ViewLabel (vector< pair< typename Type::Point, unsigned int >> &)=0

Estrae le etichette associate ai dati.

virtual void SetDataset (std::istringstream &)=0

Acquisisce i dati.

virtual unsigned int SortData (unsigned int, omprng &)=0

Smista i dati nel contenitore Zeta.

Membri privati

virtual void UpdateDataCount ()=0

Aggiorna i conteggi dei dati nei cluster.

• virtual void Sampling (std::vector< unsigned int > &, std::vector< double > &, unsigned int, omprng &)=0

Campionamento da distribuzione categorica per l'etichetta del cluster o del subcluster.

7.10.1 Descrizione dettagliata

template<typename Type, unsigned int DIM>class GenericDocument< Type, DIM >

Classe generica per i gruppi.

Classe astratta dove tutti i metodi virtuali sono null. Contiene i metodi che devono essere obbligatoriamente definiti in tutte le classi derivate.

Data

Febbraio 2016

7.10.2 Documentazione delle funzioni membro

7.10.2.1 template<typename Type, unsigned int DIM> virtual unsigned int GenericDocument< Type, DIM >::CheckLeftSubcluster (const unsigned int) [pure virtual]

Verifica se un cluster ha il subcluster sinistro vuoto.

Parametri

_k	- id del cluster di cui controllare il subcluster

7.10.2.2 template<typename Type, unsigned int DIM> virtual unsigned int GenericDocument< Type, DIM >::CheckRightSubcluster(const unsigned int) [pure virtual]

Verifica se un cluster ha il subcluster destro vuoto.

Parametri

_	- id del cluster di cui controllare il subcluster	

7.10.2.3 template < typename Type, unsigned int DIM > virtual void GenericDocument < Type, DIM >::InsertNewCluster (const pair < unordered_map < typename Type::Point, unsigned int >, unordered_map < typename Type::Point, unsigned int > > &, const double, const double, const double, const unsigned int, co

Inserisce un nuovo cluster.

Parametri

NewCluster	- il nuovo cluster
_Pi	- peso del nuovo cluster specifico del gruppo
_PiLeft	- peso del subcluster sinistro nuovo cluster, specifico del gruppo
_PiRight	- peso del subcluster destro del nuovo cluster, specifico del gruppo
_WordCount	- numero di dati nel nuovo cluster
_WordCountLeft	- numero di dati nel subcluster sinistro del nuovo cluster
_WordCount-	- numero di dati nel subcluster destro del nuovo cluster
Right	
_LocalTable	- numero di tavoli che servono il nuovo piatto nel ristorante j
_LocalTableLeft	- numero di tavoli che servono il nuovo piatto left nel ristorante j
LocalTable	- numero di tavoli che servono il nuovo piatto right nel ristorante j

7.10.2.4 template<typename Type, unsigned int DIM> virtual void GenericDocument< Type, DIM>::RemoveCluster (const vector< unsigned int > &) [pure virtual]

Rimuove i cluster con identificativo presente nel vettore in ingresso.

, , , , , , , , , , , , , , , , , , , ,	
k - Vettore	con gli id dei cluster da eliminare
A VOILOIC	con giria dei ciaster da ciirmitare

Implementato in CategoricalDocument< DIM >.

7.10.2.5 template<typename Type, unsigned int DIM> virtual void GenericDocument< Type, DIM>::RemoveCluster (const unsigned int) [pure virtual]

Rimuove un cluster.

Parametri

_k	- id del cluster da eliminare

7.10.2.6 template<typename Type, unsigned int DIM> virtual void GenericDocument< Type, DIM >::RemoveCluster (unsigned int, unsigned int) [pure virtual]

Rimuove due cluster.

Parametri

_k1	- id del cluster da eliminare
_k2	- id del cluster da eliminare

7.10.2.7 template < typename Type, unsigned int DIM > virtual void GenericDocument < Type, DIM >::ResetDataCountSub (const unsigned int) [pure virtual]

Azzera il conteggio dei dati nel cluster k.

Parametri

k	- id del cluster

7.10.2.8 template < typename Type, unsigned int DIM > virtual void Generic Document < Type, DIM >::Sampling (std::vector < unsigned int > & , std::vector < double > & , unsigned int, omprng &) [private], [pure virtual]

Campionamento da distribuzione categorica per l'etichetta del cluster o del subcluster.

Parametri

_temp_counts	- vettore che contiene i conteggi del dato id nei cluster
_Weights	- pesi con cui campionare le/la etichette/a
_nidj	- numero di volte che il dato id compare nel gruppo j
Gen	- generatore di numeri casuali

 $Implementato \ in \ Categorical Document < DIM >.$

7.10.2.9 template<typename Type, unsigned int DIM> virtual void GenericDocument< Type, DIM >::SetAlpha (const double) [pure virtual]

Imposta il parametro di concentrazione del processo di Dirichlet che governa il gruppo.

_alpha	- parametro di concentrazione del processo di Dirichlet che governa il gruppo
--------	---

Implementato in CategoricalDocument< DIM >.

7.10.2.10 template < typename Type, unsigned int DIM> virtual void GenericDocument < Type, DIM >::SetDataset (std::istringstream &) [pure virtual]

Acquisisce i dati.

Parametri

SSTR	- contiene id del dato e numero di volte che il dato compare nel gruppo

Implementato in CategoricalDocument< DIM >.

7.10.2.11 template < typename Type, unsigned int DIM > virtual void GenericDocument < Type, DIM >::SetNj (const unsigned int) [pure virtual]

Imposta il numero di dati nel gruppo j.

Parametri

_Nj	- numero di dati nel gruppo j

Implementato in CategoricalDocument< DIM >.

7.10.2.12 template < typename Type, unsigned int DIM> virtual unsigned int GenericDocument < Type, DIM >::SortData (unsigned int, omprng &) [pure virtual]

Smista i dati nel contenitore Zeta.

Parametri

_K	- numero iniziale di cluster
Gen	- generatore di numeri casuali

Implementato in CategoricalDocument< DIM >.

Aggiorna i tavoli dei subcluster di tutti i cluster; si veda equazione (3.12) in Relazione_Parisi_Perego.pdf.

Parametri

	_stirling	- numeri di stirling		
	_BetaLeft	aLeft - pesi globali dei subcluster sinistri		
_	_BetaRight - pesi globali dei subcluster destri			
	Gen	- generatore di numeri casuali in parallelo		

Implementato in CategoricalDocument< DIM >.

Aggiorna i pesi, specifici del gruppo, di tutti i subcluster; ; si veda equazione (3.9) in Relazione Parisi Perego.pdf.

_BetaLeft	- pesi globali dei subcluster sinistri		
_BetaRight - pesi globali dei subcluster destri			
Gen	- generatore di numeri casuali in parallelo		

Implementato in CategoricalDocument< DIM >.

Aggiorna i tavoli; si veda equazione (3.3) in Relazione_Parisi_Perego.pdf.

Parametri

_stirling	- numeri di stirling		
_Beta - pesi globali dei cluster			
Gen - generatore di numeri casuali in parallelo			

Implementato in CategoricalDocument< DIM >.

7.10.2.16 template<typename Type, unsigned int DIM> virtual void GenericDocument< Type, DIM
>::UpdateLocalTableSub_OneCluster (const vector< long double > & , const double _, const double , const unsigned int, omprng &) [pure virtual]

Aggiorna i tavoli dei subcluster del cluster k; si veda equazione (3.12) in Relazione_Parisi_Perego.pdf.

Parametri

_stirling	- numeri di stirling			
_BetaLeft	_BetaLeft - peso globale del subcluster sinistro del cluster k			
_BetaRight	_BetaRight - peso globale del subcluster destro del cluster k			
k	- id del cluster			
Gen	- generatore di numeri casuali in parallelo			

7.10.2.17 template < typename Type, unsigned int DIM> virtual void GenericDocument < Type, DIM>::UpdatePi (const vector < double > & , omprng &) [pure virtual]

Aggiorna i pesi dei cluster specifici del gruppo; si veda equazione (3.5) in Relazione_Parisi_Perego.pdf.

Parametri

_AllBeta	- pesi globali dei cluster
Gen	- generatore di numeri casuali in parallelo

Implementato in CategoricalDocument< DIM >.

7.10.2.18 template < typename Type, unsigned int DIM > virtual void GenericDocument < Type, DIM >::UpdatePiSub (const double, const double, const unsigned int, omprng &) [pure virtual]

Aggiorna i pesi, specifici del gruppo, dei subcluster del cluster k; si veda equazione (3.9) in Relazione_Parisi_-Perego.pdf.

Parametri

_BetaLeft	- peso globale del subcluster sinistro del cluster k			
_BetaRight	_BetaRight - peso globale dei subcluster destro del cluster k			
k	- id del cluster			
Gen	- generatore di numeri casuali in parallelo			

7.10.2.19 template<typename Type, unsigned int DIM> virtual void GenericDocument< Type, DIM>::UpdateZeta (const typename Type::THETA & , const unsigned int, omprng &) [pure virtual]

Aggiorna l'etichetta per il cluster di un dato, campionata con il metodo Sampling; si veda equazione (3.7) in Relazione Parisi Perego.pdf.

Parametri

_Thetald	- vettore dei pesi del dato in tutti i cluster		
_VettId	- id del dato		
Gen	- generatore di numeri casuali in parallelo		

7.10.2.20 template < typename Type, unsigned int DIM > virtual void GenericDocument < Type, DIM >::UpdateZeta (const unsigned int) [pure virtual]

Metodo che serve nelle mosse di M-H per rimuovere il cluster k.

Parametri

	_k - id del	cluster			
--	-------------	---------	--	--	--

7.10.2.21 template<typename Type, unsigned int DIM> virtual void GenericDocument< Type, DIM>::UpdateZeta (const unsigned int, const unsigned int) [pure virtual]

Metodo che serve nelle mosse di M-H per rimuovere due cluster.

Parametri

_k1	- id del cluster
_k2	- id del cluster

7.10.2.22 template<typename Type, unsigned int DIM> virtual void GenericDocument< Type, DIM
>::UpdateZeta_and_Sub (const typename Type::THETA & , const typename Type::THETA & , const typename
Type::THETA & , const unsigned int, omprng &) [pure virtual]

Aggiorna l'etichetta per il cluster e per il subcluster di un dato, campionate con il metodo Sampling; si vedano equazioni (3.7) - (3.11) in Relazione_Parisi_Perego.pdf.

Parametri

Thetald	- vettore dei pesi del dato in tutti i cluster
ThetaldLeft	- vettore dei pesi del dato in tutti i subcluster sinistri
_ motardEon	voltoro dei peer dei date in tatti i edecidetei cinictii
ThetaldRight	- vettore dei pesi del dato in tutti i subcluster destri
_ metalul light	- veitore dei pesi dei dato in tutti i subclustei destii
VettId	- id del dato
_veilla	- la del dato
Gen	- generatore di numeri casuali in parallelo
Gen	- generatore di numen casuali in parallelo

Distribuisce il dato nei subcluster del cluster k, dopo aver campionato l'etichetta del subcluster con il metodo Sampling; si veda equazione (3.11) in Relazione_Parisi_Perego.pdf.

_ThetaldLeft	- vettore dei pesi del dato id in tutti i subcluster sinistri
_ThetaldRight	- vettore dei pesi del dato id in tutti i subcluster destri
id	- id del dato
nidjk	- numero di volte che il dato id nel gruppo j e' capitata nel cluster k
k	- id del cluster
Gen	- generatore di numeri casuali in parallelo

Estrae il cluster k.

Parametri

_k	- id del cluster da estrarre
_Cluster	- struttura in cui viene estratto il cluster

7.10.2.25 template < typename Type, unsigned int DIM > virtual void GenericDocument < Type, DIM >::ViewCounts4c (const unsigned int, typename Type::STAT &) [pure virtual]

Visualizza i conteggi necessari per aggiornare i parametri latenti dei subcluster.

Parametri

	_k	- id del cluster
	_counts4cleft	- conteggi per parametro latente del subcluster sinistro
Ī	_counts4cright	- conteggi per parametro latente del subcluster destro

7.10.2.26 template < typename Type, unsigned int DIM > virtual void GenericDocument < Type, DIM >::ViewData (vector < typename Type::Point > &) const [pure virtual]

Estrae gli identificativi dei dati nel gruppi j

Parametri

_VettId	- viene riempito con gli id dei dati nel gruppo j

7.10.2.27 template < typename Type, unsigned int DIM> virtual void GenericDocument < Type, DIM>::ViewDataCount (vector < unsigned int > &) const [pure virtual]

Estrae il vettore del numero di dati in ogni cluster.

Parametri

_WordCount	- vettore del numero di dati in ogni cluster

Implementato in CategoricalDocument< DIM >.

7.10.2.28 template<typename Type, unsigned int DIM> virtual unsigned int GenericDocument< Type, DIM >::ViewDataCountID (const unsigned int) const [pure virtual]

Estrae il numero di dati nel cluster k.

```
_k | - id del cluster
```

Restituisce

Numero di dati nel cluster k

7.10.2.29 template < typename Type, unsigned int DIM> virtual void GenericDocument < Type, DIM >::ViewDataCountLeft (vector < unsigned int > &) const [pure virtual]

Estrae il vettore del numero di dati in ogni subcluster sinistro.

Parametri

```
_WordCountLeft | - vettore del numero di dati in ogni subcluster sinistro
```

Implementato in CategoricalDocument< DIM >.

Estrae il numero di dati nel subcluster sinistro del cluster k.

Parametri

```
_k - id del cluster
```

Restituisce

Numero di dati nel subcluster sinistro del cluster k

7.10.2.31 template < typename Type, unsigned int DIM> virtual void GenericDocument < Type, DIM>::ViewDataCountRight (vector < unsigned int > &) const [pure virtual]

Estrae il vettore del numero di dati in ogni subcluster destro.

Parametri

_WordCount-	- vettore del numero di dati in ogni subcluster destro
Right	

Implementato in CategoricalDocument< DIM >.

Estrae il numero di dati nel subcluster destro del cluster k.

Parametri

```
_k | - id del cluster
```

Restituisce

Numero di dati nel subcluster destro del cluster k

7.10.2.33 template < typename Type, unsigned int DIM> virtual void GenericDocument < Type, DIM>::ViewIdCounts (vector < pair < typename Type::Point, unsigned int>> &, const unsigned int) [pure virtual]

Estrae identificativi e conteggi dei dati nel cluster k.

_nidjk	- struttura che contiene identificativi e conteggi dei dati nel cluster k
_k	- id del cluster

7.10.2.34 template<typename Type, unsigned int DIM> virtual void GenericDocument< Type, DIM >::ViewLabel (vector< pair< typename Type::Point, unsigned int >> &) [pure virtual]

Estrae le etichette associate ai dati.

Parametri

Data	- struttura in cui estrarre le etichette

7.10.2.35 template < typename Type, unsigned int DIM > virtual unsigned int GenericDocument < Type, DIM >::ViewNj () const [pure virtual]

Visualizza il numero di dati nel gruppo j.

Restituisce

Numero di dati nel gruppo j

Implementato in CategoricalDocument< DIM >.

7.10.2.36 template<typename Type, unsigned int DIM> virtual unsigned int GenericDocument< Type, DIM >::ViewNumTableID (const unsigned int) const [pure virtual]

Estrae il numero di tavoli in uno specifico cluster.

Parametri

_k	- id del cluster

Restituisce

Numero di tavoli nel ristorante j che servono il piatto k

7.10.2.37 template<typename Type, unsigned int DIM> virtual unsigned int GenericDocument< Type, DIM >::ViewNumTableLeftID (const unsigned int) const [pure virtual]

Estrae il numero di tavoli del subcluster sinistro di uno specifico cluster.

Parametri

_k	- id del cluster

Restituisce

Numero di tavoli nel ristorante i che servono il piatto k left

7.10.2.38 template < typename Type, unsigned int DIM > virtual unsigned int GenericDocument < Type, DIM >::ViewNumTableRightID (const unsigned int) const [pure virtual]

Estrae il numero di tavoli del subcluster destro di uno specifico cluster.

```
_k - id del cluster
```

Restituisce

Numero di tavoli nel ristorante j che servono il piatto k right

7.10.2.39 template < typename Type, unsigned int DIM> virtual void GenericDocument < Type, DIM >::ViewPi (vector < double > &) const [pure virtual]

Estrae il vettore di pesi dei cluster specifici dei gruppi.

Parametri

```
_pi - vettore di pesi dei cluster specifici dei gruppi
```

Implementato in CategoricalDocument< DIM >.

7.10.2.40 template < typename Type, unsigned int DIM> virtual double GenericDocument < Type, DIM >::ViewPilD (const unsigned int) const [pure virtual]

Estrae il peso, specifico del gruppo, del cluster k.

Parametri

```
_k | - id del cluster
```

Restituisce

Peso specifico del gruppo del cluster k

7.10.2.41 template < typename Type, unsigned int DIM > virtual void GenericDocument < Type, DIM >::ViewPiLeft (vector < double > &) const [pure virtual]

Estrae il vettore di pesi dei subcluster sinistri specifici dei gruppi.

Parametri

```
_pi - vettore di pesi dei subcluster sinistri specifici dei gruppi
```

Implementato in CategoricalDocument< DIM >.

Estrae il peso, specifico del gruppo, del subcluster sinistro del cluster k.

Parametri

```
_k | - id del topic
```

Restituisce

Peso specifico del gruppo del subcluster sinistro del cluster k

7.10.2.43 template < typename Type, unsigned int DIM> virtual void Generic Document < Type, DIM>::ViewPiRight (vector < double > &) const [pure virtual]

Estrae il vettore di pesi dei subcluster destri specifici dei gruppi.

_pi - vettore di pesi dei subcluster destri specifici dei gruppi

Implementato in CategoricalDocument< DIM >.

Estrae il peso, specifico del gruppo, del subcluster destro del cluster k.

Parametri

_k - id del cluster

Restituisce

Peso specifico del documento del subcluster destro del cluster k

La documentazione per questa classe è stata generata a partire dal seguente file:

· Document.hpp

7.11 Template per la classe GenericPosteriorAnalysis < Type, DIM >

Classe generica per l'analisi a posteriori Classe virtuale dove tutti i metodi sono null. Ogni classe che eredita deve definire tutti i metodi della classe base e, se necessario, può aggiungere altri metodi. Invoca gli script R per l'analisi delle catene MCMC. Calcola l'indice LPML, riconosce i topic e individua il miglior clustering secondo il criterio dei minimi quadrati.

#include <PosteriorAnalysis.hpp>

Membri pubblici

• virtual unsigned int SetAllK ()=0

Imposta la catena AlIK.

• virtual unsigned int SetAllAlpha ()=0

Imposta la catena Alpha.

• virtual unsigned int SetAllGamma ()=0

Imposta la catena Gamma.

• virtual void VisualizeBeta (RInside &, unsigned long)=0

Chiama lo script R che visualizza le traiettorie della distribuzione dei cluster nel corpus.

• virtual void KPosteriorAnalysis (RInside &, const unsigned int, const unsigned int)=0

Chiama lo script R per l'analisi della catena dei K.

• virtual void AGPosteriorAnalysis (RInside &, const unsigned int, const unsigned int, const unsigned int, const unsigned int, const char, const char)=0

Chiama lo script R per l'analisi delle catene Alpha e Gamma.

- virtual void Setwd (const std::string &)=0
- virtual void SetW (const unsigned int)=0
- virtual void SetD (const unsigned int)=0

Imposta il numero di gruppi.

virtual void SetN (const unsigned int)=0

Imposta il numero totale di dati.

virtual void SetTheta (const unsigned long)=0

Imposta la ricerca dei cluster, acquisendo da file i e i delle ultime iterazioni.

• virtual void LoadLabels (const unsigned long)=0

Acquisisce le etichette assegnate ai dati nelle ultime iterazioni.

virtual unsigned long LeastSquareClustering ()=0

Individua il miglior clustering secondo il criterio dei minimi quadrati; si veda equazione (4.3) in Relazione_Parisi_-Perego.pdf.

virtual void LPML (unsigned long)=0

Calcola e stampa a video l'indice LPML; si vedano equazioni (4.1)- (4.2) in Relazione_Parisi_Perego.pdf.

virtual void TrackingClusters (RInside &)=0

Effettua il riconoscimento dei cluster.

7.11.1 Descrizione dettagliata

template<typename Type, unsigned int DIM>class GenericPosteriorAnalysis< Type, DIM>

Classe generica per l'analisi a posteriori Classe virtuale dove tutti i metodi sono null. Ogni classe che eredita deve definire tutti i metodi della classe base e, se necessario, può aggiungere altri metodi. Invoca gli script R per l'analisi delle catene MCMC. Calcola l'indice LPML, riconosce i topic e individua il miglior clustering secondo il criterio dei minimi quadrati.

7.11.2 Documentazione delle funzioni membro

7.11.2.1 template<typename Type, unsigned int DIM> virtual void GenericPosteriorAnalysis< Type, DIM
>::AGPosteriorAnalysis (RInside & , const unsigned int, const unsigned int, const unsigned int, const unsigned int, const char , const char) [pure virtual]

Chiama lo script R per l'analisi delle catene Alpha e Gamma.

Parametri

R	- Istanza di R
AlphaBurnin	- numero di valori iniziali della catena Alpha da scartare
AlphaThinning	- tiene un valore della catena Alpha ogni AlphaThinning valori
GammaBurnin	- numero di valori iniziali della catena Gamma da scartare
GammaThinning	- tiene un valore della catena Gamma ogni GammaThinning valori
AlphaTry	- yes se si vuole ripetere l'analisi della catena Alpha, no altrimenti
GammaTry	- yes se si vuole ripetere l'analisi della catena Gamma, no altrimenti

Implementato in CategoricalPosteriorAnalysis < DIM >.

7.11.2.2 template<typename Type, unsigned int DIM> virtual void GenericPosteriorAnalysis< Type, DIM >::KPosteriorAnalysis (RInside & , const unsigned int, const unsigned int) [pure virtual]

Chiama lo script R per l'analisi della catena dei K.

Parametri

R	- Istanza di R
Burnin	- numero di valori iniziali della catena catena da scartare
Thinning	- tiene un valore della catena ogni thinning valori

Implementato in CategoricalPosteriorAnalysis < DIM >.

7.11.2.3 template<typename Type, unsigned int DIM> virtual unsigned long GenericPosteriorAnalysis< Type, DIM >::LeastSquareClustering() [pure virtual]

Individua il miglior clustering secondo il criterio dei minimi quadrati; si veda equazione (4.3) in Relazione_Parisi_-Perego.pdf.

Restituisce

Iterazione a cui e' stato individuato il miglior clustering

Implementato in CategoricalPosteriorAnalysis < DIM >.

7.11.2.4 template<typename Type, unsigned int DIM> virtual void GenericPosteriorAnalysis< Type, DIM>::LoadLabels (const unsigned *long*) [pure virtual]

Acquisisce le etichette assegnate ai dati nelle ultime iterazioni.

Parametri

```
NrClusterings - numero di iterazioni da monitorare
```

Implementato in CategoricalPosteriorAnalysis < DIM >.

7.11.2.5 template < typename Type, unsigned int DIM > virtual void GenericPosteriorAnalysis < Type, DIM >::LPML (unsigned long) [pure virtual]

Calcola e stampa a video l'indice LPML; si vedano equazioni (4.1)- (4.2) in Relazione_Parisi_Perego.pdf.

Parametri

```
MaxIt - numero di iterazioni da considerare nel calcolo di LPML
```

Implementato in CategoricalPosteriorAnalysis < DIM >.

7.11.2.6 template < typename Type, unsigned int DIM > virtual unsigned int GenericPosteriorAnalysis < Type, DIM >::SetAllAlpha () [pure virtual]

Imposta la catena Alpha.

Restituisce

Lunghezza della catena

Implementato in CategoricalPosteriorAnalysis < DIM >.

7.11.2.7 template<typename Type, unsigned int DIM> virtual unsigned int GenericPosteriorAnalysis< Type, DIM >::SetAllGamma() [pure virtual]

Imposta la catena Gamma.

Restituisce

Lunghezza della catena

 $Implementato\ in\ Categorical Posterior Analysis < DIM>.$

```
7.11.2.8 template < typename Type, unsigned int DIM> virtual unsigned int GenericPosteriorAnalysis < Type, DIM
         >::SetAllK() [pure virtual]
Imposta la catena AllK.
Restituisce
     Lunghezza della catena
Implementato in CategoricalPosteriorAnalysis < DIM >.
7.11.2.9 template < typename Type, unsigned int DIM> virtual void GenericPosteriorAnalysis < Type, DIM >::SetD ( const
         unsigned int ) [pure virtual]
Imposta il numero di gruppi.
Parametri
                 _D | - numero di gruppi
Implementato in CategoricalPosteriorAnalysis < DIM >.
7.11.2.10 template < typename Type, unsigned int DIM > virtual void GenericPosteriorAnalysis < Type, DIM >::SetN (
          const unsigned int ) [pure virtual]
Imposta il numero totale di dati.
Parametri
                    - numero totale di dati
Implementato in CategoricalPosteriorAnalysis < DIM >.
7.11.2.11 template < typename Type, unsigned int DIM > virtual void GenericPosteriorAnalysis < Type, DIM >::SetTheta (
          const unsigned long ) [pure virtual]
Imposta la ricerca dei cluster, acquisendo da file i e i delle ultime iterazioni.
Parametri
             MaxIt - numero di iterazioni dell'algoritmo
Implementato in CategoricalPosteriorAnalysis < DIM >.
7.11.2.12 template<typename Type, unsigned int DIM> virtual void GenericPosteriorAnalysis< Type, DIM >::SetW (
          const unsigned int ) [pure virtual]
Imposta la dimensione dell'iperparametro della distribuzione del parametro latente
Parametri
                |W| - dimensione dell'iperparametro della distribuzione del parametro latente
Implementato in CategoricalPosteriorAnalysis < DIM >.
7.11.2.13 template < typename Type, unsigned int DIM > virtual void GenericPosteriorAnalysis < Type, DIM >::Setwd (
          const std::string & ) [pure virtual]
```

Imposta la working directory di R

```
_wd | - working directory di R
```

Implementato in CategoricalPosteriorAnalysis < DIM >.

7.11.2.14 template<typename Type, unsigned int DIM> virtual void GenericPosteriorAnalysis< Type, DIM >::TrackingClusters (RInside &) [pure virtual]

Effettua il riconoscimento dei cluster.

Parametri

```
R | - Istanza di R
```

Implementato in CategoricalPosteriorAnalysis < DIM >.

7.11.2.15 template<typename Type, unsigned int DIM> virtual void GenericPosteriorAnalysis< Type, DIM >::VisualizeBeta (RInside & , unsigned long) [pure virtual]

Chiama lo script R che visualizza le traiettorie della distribuzione dei cluster nel corpus.

Parametri

R	- Istanza di R
BestClustering	- iterazione a cui e' stato individuato il least square clustering

Implementato in CategoricalPosteriorAnalysis < DIM >.

La documentazione per questa classe è stata generata a partire dal seguente file:

· PosteriorAnalysis.hpp

7.12 Riferimenti per la struct greater_for_pair

Criterio di confronto tra due elementi che sono coppie (unsigned int, double), da utilizzare nel sort di un vettore; il confronto è sul secondo valore nella coppia.

```
#include <Functions.hpp>
```

Membri pubblici

• bool **operator()** (const std::pair< unsigned int, double > &x, const std::pair< unsigned int, double > &y) const

7.12.1 Descrizione dettagliata

Criterio di confronto tra due elementi che sono coppie (unsigned int, double), da utilizzare nel sort di un vettore; il confronto è sul secondo valore nella coppia.

La documentazione per questa struct è stata generata a partire dal seguente file:

· Functions.hpp

7.13 Template per la classe HDP_MCMC< MODEL, DOCUMENT, DIM >

HDP_MCMC.

```
#include < HDP_MCMC.hpp>
```

Membri pubblici

• HDP_MCMC()

Costruttore di default della classe in cui tutti gli elementi vegono inzializzati con il loro costruttore di default. Ai valori scalari viene assegnato il valore nullo I Flags sono inizializzati tutti con FALSE Gli oggetti inizializzati ma vuoti il numero di threads viene inizializzato invece con il valore passato da terminale.

• ∼HDP_MCMC ()=default

Distruttore di default.

void SetK_init (unsigned int _K)

Imposta il numero di cluster iniziale che desidera l'utente.

void SetDataset (const std::string &Dataset, const std::string &MainVariable)

Acquisisce il dataset da file e le dimensioni del dataset Chiama dei metodi di Corpus che si occupano di creare le struttre che gestiscono il dataset.

void SetAlphaFixed (double _Alpha)

Imposta Alpha fisso, il cui valore e' deciso dall'utente.

void SetAlphaPrior (double AA, double AB)

Imposta una prior su Alpha.

void SetGammaFixed (double _Gamma)

Imposta Gamma fisso, il cui valore e' deciso dall'utente.

void SetGammaPrior (double _GA, double _GB)

Imposta una prior su Gamma.

void SetLambdaInfo (HYP Lambda)

Imposta il valore su Lambda.

void SetSeed (const unsigned long Seed)

Fissa il seed, unico per l'intera esecuzione dell'algoritmo.

void Check Model (unsigned long burnin)

Impone il controllo dell'algoritmo con LPML.

• unsigned int ViewW ()

Estra la dimensione del parametro latente.

unsigned int ViewK ()

Estra il numero di cluster attuale.

• unsigned int ViewD ()

Estra il numero totale di gruppi stanziato.

• unsigned int ViewN ()

Estra la dimensione del dataset.

void Algorithm (unsigned int Iterations, unsigned int Iterations_Sub)

Algoritmo globale vedi Algorithm 3 Relazione_Parisi_Perego.pdf.

Tipi privati

- using THETA = typename MODEL< DIM >::THETA
- using POINT = typename MODEL< DIM >::POINT
- using HYP = typename MODEL< DIM >::HYP
- using Corpus = vector< DOCUMENT< DIM >>
- using ClusterID = unsigned int

Membri privati

template < class T > void Swap (T &Old, T &New)

Scambia le vecchie proposte inserendole nelle strutture definitive con quelle nuove Quando il metodo si chiude, le nuove proposte, che non sono state accettate nei passi di M-H, sono distrutte. Nelle mosse globali, le modifiche per le nuove proposte per i cluster e per le etichette vengono fatte direttamente nelle strutture definitive. Nel caso queste non sono accettate e' necessario reinserie nelle struttire definitive la situazione precedente alle proposte. E' un metodo template perche' e' usato sia per la struttura che racchiude i gruppi, Corpus, sia per la struttra che gestisce i clusters. Model.

• void Summary ()

Stampa a video un sunto delle impostazioni dell'algoritmo scelte.

· void SetClusters ()

Inizializza la struttura che gestisce i Clusters con il numero di cluster iniziale scelto.

void UpdateClusterCounts ()

Aggiorna gli iperparametri del parametro lantete, in base a come sono distribuiti i dati nei vari clusters.

void UpdateTable ()

aggiorna gli m_{jk} in ogni gruppo con l'equazione 3.3 in Relazione_Parisi_Perego.pdf Dopo di che $m_{.k} = \sum_j m_{jk}$ in modo da aggiornare i tavoli nel clusters

void UpdateSubTable ()

aggiorna i tavoli nei sub.cluster di ogni clusters, m_{jkl} , m_{jkr} in ogni gruppo con l'equazione 3.12 in Relazione_Parisi_Perego.pdf Dopo di che $m_{.kh} = \sum_{j} m_{jkh}$ in modo da aggiornare i tavoli in dei sub-clusters di ogni cluster

void UpdateDocWeights ()

Aggiorna in ogni gruppo i pesi dei clusters che compiaiono nel gruppo.

void UpdateDocWeights_Sub ()

Aggiorna in ogni gruppo i pesi dei sub-clusters di ogni cluster che compare nel gruppo.

void UpdateAssignment_Cluster_and_Subcluster ()

assegna le nuove etichette del cluster e del sub-cluster ad ogni dato

void UpdateAssignment_Cluster ()

assegna le nuove etichette del cluster, senza assegnare il sub-cluster, ad ogni dato Viene utilizzato nelle mosse di Merge/Split globale per fare le nuove prposte per le nuove etichette

• void UpdateBeta ()

Aggiorna i pesi globali di ogni cluser, compreso quello vuoto; Equazione di campionamento 3.4 di Relazione_Parisi_Perego.pdf.

void UpdateAllBetaSub ()

Aggiorna i pesi globali dei sub-cluster di ogni cluser, compresi i sub-cluster del cluster vuoto; Equazione di campionamento 3.8 di Relazione_Parisi_Perego.pdf.

void UpdateBetaSub (const ClusterID k)

Aggiorna i pesi globali dei sub-cluster del cluser identificato dal suo ID Utilizzato nel metodo UpdateAllbetaSub() e nei passi di Gibbs-sampler per le proposte dei sub-topic dopo aver accetatto le mosse di M-H. Equazione di campionamento 3.8 di Relazione_Parisi_Perego.pdf.

void EmptyCluster ()

Controlla quali cluster sono vuoti e li elimina.

• bool IsEmptySubcluster (const ClusterID _k)

Controlla se uno dei due sub-cluster del cluster identificato con il suo ID, e' vuoto.

void computeLogL ()

Calcola la matrice 8.12 con l'equazione 8.13, vedi Relazione_Parisi_Perego.pdf.

long double logq ()

Calcola la quantita' 3.25 della Relazione_Parisi_Perego.pdf.

void Gibbs SubCluster (const vector < ClusterID > &ProposedClusters)

Passi di Gibbs Sampler per campionare le nuove proposte per i sub-cluster dei nuovi cluster. Vengono utilizzate le equazioni da 3.8 a 3.12.

void LocalSplit ()

Mosse di split locale. Si propone la divisione di un cluster alla volta, in due cluster. Questa proposta e' la stessa per tutti i gruppi. Se si accetta la nuova prposta si campionano si sub-cluster dei due nuovi cluster in ogni gruppo.

• void LocalMerge ()

Mosse di merge locale. Si formano delle coppie casuali dei cluster attualmente presenti, cui proporre l'unione per formare un nuovo cluster. Se si accetta la nuova proposta si campionano i sub-cluster del nuovo cluster in ogni gruppo.

void GlobalMerge ()

Mosse di merge globale. Si formano delle una coppia casuale dei cluster attualmente presenti, cui proporre l'unione per formare un nuovo cluster. Si campionano le nuove quantita' per tutti i cluster, anche per quelli che erano gia' presenti. Se si accetta la nuova proposta si campionano i sub-cluster di tutti i clusters.

· void GlobalSplit ()

Mosse di split globale. Si sceglie casualmente un cluster non vuoto di cui proporre lo split e formare due nuovi clusters Si campionano le nuove quantita' per tutti i cluster, anche per quelli che erano gia' presenti. Se si accetta la nuova proposta si campionano i sub-cluster di tutti i clusters.

• void AlphaPrior ()

Campionamento della nuova Alpha, da usare nell'iterazione successiva dell'algoritmo.

• void GammaPrior ()

Campionamento della nuova Gamma, da usare nell'iterazione successiva dell'algoritmo.

void UpdateK ()

Aggiornamento del K corrente a fronte di aggiunta o eliminazione di clusters.

· void UpdateAllK ()

Aggiornamento dello storico dei K. Fatto alla fine di ogni iterazione.

• void SaveAllK ()

Salva su file lo storico dei K alla fine dell'algoritmo, per fare le analisi a posteriori.

void SaveAllAlpha ()

Salva su file lo storico degli Alpha, alla fine dell'algoritmo, per fare le analisi a posteriori.

void SaveAllGamma ()

Salva su file lo storico dei Gamma, alla fine dell'algoritmo, per fare le analisi a posteriori.

void SaveLastBeta ()

Salva su file i pesi globali dei clusters delle ultime 100 iterazioni.

void SaveLastTheta ()

Salva su file i parametri lantenti di ogni cluster che si e' manifestato nelle utlime 100 iterazionei.

• void LPML ()

Salva su file le quantia' necessarie per il calcolo dell' LPML, scartanto le prime burnin iterazioni.

void SaveLabels ()

Salva su file le etichette dei dati, ad ogni iterazione.

Attributi privati

Corpus corpus

Oggetto che gestisce i dati.

 std::tuple< bool, bool, bool, bool, bool, bool, bool, bool, bool > Flags

Flags che fornisce le informazioni necessarie per eseguire l'algoritmo con le caratteristiche richieste dall'utente. Il primo elemento e' true se il dateset e' stato caricato. Il secondo elemento e' true se sono state inserite informazioni su Alpha Il terzo elemento e' true se si vuole eseguire l'algoritmo con le prior su Alpha Il terzo elemento e' false se si vuole eseguire l'algoritmo con Alpha fisso Il quarto elemento e' true se sono stati inserite informazioni su Gamma Il quinto elemento e' true se si vuole eseguire l'algoritmo con le prior su Gamma Il quinto elemento e' false se si vuole eseguire l'algoritmo con Gamma fisso Il sesto elemento e' true se si sono inserite informazioni su Lambda Il settimo elemento e' true se si e' inserito un numero iniziale di cluster L'ottavo elemento e' true se si e' scelto un seme Il non elemento e' true se si vuole monitorare il modello con LPML.

unsigned int D

Numero totale di gruppi.

· unsigned int N

Numero totale di dati.

· unsigned int W

Dimensione dell'iperparametro della distribuzione del parametro latente.

· unsigned long It

Iterazione corrente.

· unsigned long MaxIt

Numeror massimo iterazioni (criterio stop)

· unsigned long MaxIt_SubCluster

Numero di iterazioni per i sub-cluster (criterio di stop)

· double Gamma

Parametro di concentrazione del processo di dirchlet che governa i clusters (all'iteriazione It)

vector< double > AllGamma

Storico dei Gamma in caso dell'uso della prior.

· double GA

Parametro di forma della prior su Gamma.

· double GB

Parametro di rate della prior su Gamma.

· double Alpha

Parametro di concentrazione del processo di dirchlet che governa i cluster nel gruppo (all'iteriazione It)

vector< double > AllAlpha

Strico degli Alpha nel caso dell'uso della prior.

· double AA

Parametro di forma della prior su Alpha.

• double AB

Parametro di rate della prior su Alpha.

unsigned int K

Numero corrente di cluster.

vector< unsigned int > AllK

Storico dei K.

vector< long double > LogStirlingNumbers

Stirling Number in scala logaritmica.

• MODEL< DIM > Model

Modello per la distribuzione iniziale.

double Beta_empty

peso globale del cluster "vuoto" all'iterazione It. aggrega i pesi dei cluster (al momento vuoti), che potrebbero manifestarsi nelle iterazioni successive alla It-esima.

vector< double > logL

Matrice necessaria per il calcolo dell' Hasting Ratio calcolata con le equazioni 8.12 e 8.13 di Relazione_Parisi_-Perego.pdf.

• unsigned int m

Numero totale di tavoli, da usare per campionare la Gamma, viene aggiornato dopo aver campionato dall'equazione 3.3 di Relazione_Parisi_Perego.pdf.

vector< double > CPO

Oggetto che memorizza $\sum_{It=1}^{MaxIt} f_{ij}(y_{ij}|\theta_{z_{ij}}^g)$.

unsigned long burnin_CPO

Iterazione dal quale iniziare a calcolare il CPO.

· omprng Gen

Generatore di numeri casuali in parallelo.

unsigned int OMP_NUM_THREADS

7.13.1 Descrizione dettagliata

 $template < template < unsigned \ int > class \ MODEL, \ template < unsigned \ int > class \ DOCUMENT, \ unsigned \ int \ DIM = 1 > class \ HDP_MCMC < MODEL, \ DOCUMENT, \ DIM >$

HDP MCMC.

Implementazione algoritmo globale. Gibbs Sampler per i clusters e i sub-cluster, Metropolis-Hastings per le mosse di Merge/Split locale e globale. Sono implementate le equazioni di campionamento dei pesi globali e dei tavoli. Si occupa di aggiornare i conteggi dei cluster in Model, controllando la situazione dei gruppi. Per dettagli sul funzionamento dell'algoritmo globale consultare documento Relazione_Parisi_Perego.pdf capitolo 3. Questa classe si appoggia sulle classi Cluster.hpp per la gestione dei cluster e la definizione di verosimiglianza, Model.hpp per l'eventuale campionamento dalle distribuzioni di interesse, l'inferenza sui parametri latenti e la definizione di prior e invece si appoggia a Document.hpp per la gestione dei dati e per il campionamento delle etichette La particolare classe Model e' l'istanzazione del parametro template MODEL. In Model.hpp e' implementato CategoricaModel (prior Dirichlet).

Data

Febbrario 2016

7.13.2 Documentazione delle funzioni membro

7.13.2.1 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM> void HDP_MCMC < MODEL, DOCUMENT, DIM >::Algorithm (unsigned int *Iterations*, unsigned int *Iterations*, unsigned int *Iterations*)

Algoritmo globale vedi Algorithm 3 Relazione Parisi Perego.pdf.

Parametri

	Iterations	- numero massimo di iterazioni (criterio di stop)
Ī	Iterations_Sub	- numero massimo di iterazione per il gibbs samplere che campiona i sub-topic (criterio di
		stop)

7.13.2.2 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM> void HDP_MCMC < MODEL, DOCUMENT, DIM >::Check_Model (unsigned long burnin)

Impone il controllo dell'algoritmo con LPML.

Parametri

burnin	- indica da quale iterazioni inziare a calcolarlo

7.13.2.3 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM > void HDP_MCMC < MODEL, DOCUMENT, DIM >::Gibbs_SubCluster (const vector < ClusterID > & ProposedClusters) [private]

Passi di Gibbs Sampler per campionare le nuove proposte per i sub-cluster dei nuovi cluster. Vengono utilizzate le equazioni da 3.8 a 3.12.

Parametri

Proposed-	- Etichette dei nuovi cluster di cui bisogna fare la proposta per i rispettivi sub-cluster
Clusters	

7.13.2.4 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM>
bool HDP_MCMC < MODEL, DOCUMENT, DIM >::IsEmptySubcluster (const ClusterID_k) [private]

Controlla se uno dei due sub-cluster del cluster identificato con il suo ID, e' vuoto.

Restituisce

TRUE se uno dei sub-cluster e' vuoto.

7.13.2.5 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM> void HDP_MCMC < MODEL, DOCUMENT, DIM >::SetAlphaFixed (double _Alpha)

Imposta Alpha fisso, il cui valore e' deciso dall'utente.

Parametri

_Alpha	- Valore fisso assegnato ad alpha dall'utente

7.13.2.6 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM> void HDP MCMC < MODEL, DOCUMENT, DIM >::SetAlphaPrior (double _AA, double _AB)

Imposta una prior su Alpha.

Parametri

_ <i>AA</i>	- parametro di forma passato dall'utente
_AB	- parametro di rate passato dall'utente

7.13.2.7 template < te

Acquisisce il dataset da file e le dimensioni del dataset Chiama dei metodi di Corpus che si occupano di creare le struttre che gestiscono il dataset.

Parametri

Dataset	- Nome del file che contiene i dati
MainVariable	- Nome del file che contiene le informazioni su delle dimensioni

7.13.2.8 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM> void HDP_MCMC < MODEL, DOCUMENT, DIM >::SetGammaFixed (double _Gamma)

Imposta Gamma fisso, il cui valore e' deciso dall'utente.

Parametri

Gamma	- Valore fisso assegnato a Gamma dall'utente

7.13.2.9 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM > void HDP_MCMC < MODEL, DOCUMENT, DIM >::SetGammaPrior (double _GA, double _GB)

Imposta una prior su Gamma.

_GA	- parametro di forma passato dall'utente
_GB	- parametro di rate passato dall'utente

7.13.2.10 template < t

Imposta il numero di cluster iniziale che desidera l'utente.

Parametri

_ <i>K</i>	- Cluster iniziali

7.13.2.11 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM > void HDP_MCMC < MODEL, DOCUMENT, DIM >::SetLambdaInfo (HYP Lambda)

Imposta il valore su Lambda.

Parametri

Lambda	- Parametro passato dall'utente
--------	---------------------------------

7.13.2.12 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM > void HDP_MCMC < MODEL, DOCUMENT, DIM >::SetSeed (const unsigned long Seed)

Fissa il seed, unico per l'intera esecuzione dell'algoritmo.

Parametri

Seed	- seed

7.13.2.13 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM> template < class T > void HDP_MCMC < MODEL, DOCUMENT, DIM > ::Swap (T & Old, T & New) [private]

Scambia le vecchie proposte inserendole nelle strutture definitive con quelle nuove Quando il metodo si chiude, le nuove proposte, che non sono state accettate nei passi di M-H, sono distrutte. Nelle mosse globali, le modifiche per le nuove proposte per i cluster e per le etichette vengono fatte direttamente nelle strutture definitive. Nel caso queste non sono accettate e' necessario reinserie nelle struttire definitive la situazione precedente alle proposte. E' un metodo template perche' e' usato sia per la struttura che racchiude i gruppi, Corpus, sia per la struttra che gestisce i clusters, Model.

Parametri

Old	- Situazione antecedente al cambiamento
New	- Nuove proposte, non accettate

7.13.2.14 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM> void HDP_MCMC < MODEL, DOCUMENT, DIM >::UpdateBetaSub (const ClusterID k) [private]

Aggiorna i pesi globali dei sub-cluster del cluser identificato dal suo ID Utilizzato nel metodo UpdateAllbetaSub() e nei passi di Gibbs-sampler per le proposte dei sub-topic dopo aver accetatto le mosse di M-H. Equazione di campionamento 3.8 di Relazione_Parisi_Perego.pdf.

k - id del cluster di cui si vuole aggiornare i pesi globali dei sui sub-cluster

7.13.2.15 template < t

Estra il numero totale di gruppi stanziato.

Restituisce

Numero totale di gruppi

7.13.2.16 template < t

Estra il numero di cluster attuale.

Restituisce

Numero di cluster

7.13.2.17 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM> unsigned int HDP_MCMC < MODEL, DOCUMENT, DIM >::ViewN ()

Estra la dimensione del dataset.

Restituisce

dimensione del dataset

7.13.2.18 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM> unsigned int HDP_MCMC < MODEL, DOCUMENT, DIM >::ViewW ()

Estra la dimensione del parametro latente.

Restituisce

dimensione parametro latente

- 7.13.3 Documentazione dei membri dato
- 7.13.3.1 template<template< unsigned int > class MODEL, template< unsigned int > class DOCUMENT, unsigned int DIM = 1> MODEL<DIM> HDP_MCMC< MODEL, DOCUMENT, DIM >::Model [private]

Modello per la distribuzione iniziale.

Tiene conto dell'opportuna verosimiglianza per avere un modello bayesiano coniugato per quanto riguarda l'inferenza sui parametri latenti.

7.13.3.2 template < template < unsigned int > class MODEL, template < unsigned int > class DOCUMENT, unsigned int DIM = 1> unsigned int HDP MCMC < MODEL, DOCUMENT, DIM >::OMP_NUM_THREADS [private]

Numero di threads

La documentazione per questa classe è stata generata a partire dal seguente file:

HDP_MCMC.hpp

7.14 Template per la classe ModelGeneric< Type, DIM >

Modello Generico di Model.

#include <Model.hpp>

Membri pubblici

• virtual unsigned int ViewK () const =0

Da informazione sul numero di clusters correnti.

virtual void ViewKey (vector< unsigned int > &) const

Visualizza gli ID dei clusters attulmente presenti.

virtual void SetHyperparameter (const typename Type::HYP &)=0

Fissa gl iperparametr dei parametri latenti.

virtual void DefaultHyperparameter (size_t)=0

Fissa gli iperparametri dei parametri latenti con i valori di default.

• virtual void SetInitialClusters (unsigned int)=0

Fissa i cluster iniziali, assegnando i pesi iniziali.

virtual double Marginalized Loglikelihood (const unsigned int)=0

Calcola la verosmiglianza logaritmica marginale del cluster, una volta specificato l'id del clusters.

virtual double Loglikelihood (const typename Type::Point, const unsigned int)=0

Calcola la loglikelihood in un punto X una volta precisato l'id del cluster.

virtual double LoglikelihoodLeft (const typename Type::Point, const unsigned int)=0

Calcola la loglikelihood in un punto X una volta precisato l'id del sub-cluster sinistro.

• virtual double LoglikelihoodRight (const typename Type::Point, const unsigned int)=0

Calcola la loglikelihood in un punto X una volta precisato l'id del sub-cluster destro.

virtual long double LogDensity (const unsigned int)=0

Calcola la densita' del parametro latente che caratterizza il cluster specificato.

virtual void UpdateThetaCluster (omprng &)=0

Aggirnamento dei parametro latenti di tutti i clusters.

virtual void UpdateThetaSubCluster (omprng &)=0

Aggirnamento dei parametro latenti del sub-cluster sinistro e destro di tutti i clusters.

virtual void UpdateOneThetaCluster (const unsigned int, omprng &)=0

Aggirnamento dei parametro latenti di un cluster, una volta precisato il suo id.

virtual void UpdateOneThetaSubCluster (const unsigned int, omprng &)=0

Aggirnamento dei parametro latenti del sub-cluster sinistro e destro di un cluster, una volta precisato il sui id.

virtual void AddOneCluster (const unsigned int)=0

Aggiunge un cluster vuoto ai clusters presenti ed aggiorna il parametro K, che identifica il numero di cluster attuali. I parametri del cluster devono essere specificati in un secondo momento.

virtual void RemoveOneCluster (const unsigned int)=0

Rimuove un cluster una volta specificato l'id, ed aggiorna il parametro K, che identifica il numero di cluster attuali.

virtual void RemoveClusters (const vector< unsigned int > &)=0

Rimuove piu' clusters una volta che sono specificati gli ID, ed aggiorna il parametro K, che identifica il numero di cluster attuali.

virtual void ViewBeta (vector< double > &)=0

Mostra i pesi globali dei cluster attualemente presenti.

virtual void ViewBetaLeft (vector< double > &)=0

Mostra i pesi globali del sub-cluster sinistro dei clusters attualemente presenti.

virtual void ViewBetaRight (vector< double > &)=0

Mostra i pesi globali del sub-cluster destro dei clusters attualemente presenti.

• virtual void PrintTheta ()=0

Stampa su file i valori dei parametri latenti dei cluster attualmente presenti.

• virtual void PrintLambdaInfo () const =0

7.14.1 Descrizione dettagliata

template<typename Type, unsigned int DIM = 1>class ModelGeneric< Type, DIM >

Modello Generico di Model.

Classe astratta dove tutti i metodi virtuali sono null. Le classi che ereditano da ModelGeneric servono per campionare i parametri latenti e gestire i relativi iperparametri, che di pendono dal modello scelto ed utilizzare. Gestisce funzioni variano in base la modello, come le il calolo delle versimiglianze, delle marginali e delle densita'. Gestione di tutti i cluster, aggiunge e rimuove cluster.

Data

Febbraio 2016

7.14.2 Documentazione delle funzioni membro

7.14.2.1 template < typename Type, unsigned int DIM = 1> virtual void ModelGeneric < Type, DIM >::AddOneCluster (const unsigned int) [pure virtual]

Aggiunge un cluster vuoto ai clusters presenti ed aggiorna il parametro K, che identifica il numero di cluster attuali. I parametri del cluster devono essere specificati in un secondo momento.

Parametri

```
\_K - Id del nuovo cluster che si aggiunge.
```

Implementato in CategoricalModel < DIM >.

7.14.2.2 template < typename Type, unsigned int DIM = 1> virtual void ModelGeneric < Type, DIM >::DefaultHyperparameter (size_t) [pure virtual]

Fissa gli iperparametri dei parametri latenti con i valori di default.

Parametri

```
W - dimensione degli iperparametri
```

Implementato in CategoricalModel < DIM >.

7.14.2.3 template < typename Type, unsigned int DIM = 1 > virtual long double ModelGeneric < Type, DIM >::LogDensity (const unsigned int) [pure virtual]

Calcola la densita' del parametro latente che caratterizza il cluster specificato.

_K	- Id del cluster

Restituisce

Desita' logaritmica del cluster _K

Implementato in CategoricalModel < DIM >.

7.14.2.4 template<typename Type, unsigned int DIM = 1> virtual double ModelGeneric< Type, DIM >::Loglikelihood (const typename Type::Point, const unsigned int) [pure virtual]

Calcola la loglikelihood in un punto X una volta precisato l'id del cluster.

Parametri

X	- punto di valutazione
_K	- id del cluster

Restituisce

verosmiglianza logaritmica valutante nel punto X del cluster _K

7.14.2.5 template < typename Type, unsigned int DIM = 1> virtual double ModelGeneric < Type, DIM >::LoglikelihoodLeft (const typename Type::Point, const unsigned int) [pure virtual]

Calcola la loglikelihood in un punto X una volta precisato l'id del sub-cluster sinistro.

Parametri

X	- punto di valutazione
_K	- id del sub-cluster sinistro

Restituisce

verosmiglianza logaritmica valutante nel punto X del sub-cluster sinistro del cluster _K

7.14.2.6 template < typename Type, unsigned int DIM = 1> virtual double ModelGeneric < Type, DIM >::LoglikelihoodRight (const typename Type::Point, const unsigned int) [pure virtual]

Calcola la loglikelihood in un punto X una volta precisato l'id del sub-cluster destro.

Parametri

X	- punto di valutazione
_K	- id del sub-cluster destro

Restituisce

verosmiglianza logaritmica valutante nel punto X del sub-cluster destro del cluster K

7.14.2.7 template < typename Type, unsigned int DIM = 1> virtual double ModelGeneric < Type, DIM >::Marginalized_Loglikelihood (const unsigned int) [pure virtual]

Calcola la verosmiglianza logaritmica marginale del cluster, una volta specificato l'id del clusters.

_K | - id del cluster di cui si vuole calcolare la verosmiglianza logaritmica marginale

Implementato in CategoricalModel < DIM >.

7.14.2.8 template < typename Type, unsigned int DIM = 1> virtual void ModelGeneric < Type, DIM >::PrintLambdaInfo () const [pure virtual]

Stampa a video le informazioni degli iperparametri dei parametri latenti dei cluster

Implementato in CategoricalModel < DIM >.

7.14.2.9 template<typename Type, unsigned int DIM = 1> virtual void ModelGeneric< Type, DIM >::RemoveClusters (const vector< unsigned int > &) [pure virtual]

Rimuove piu' clusters una volta che sono specificati gli ID, ed aggiorna il parametro K, che identifica il numero di cluster attuali.

Parametri

Parametri

_K - Vettore degli Id dei clusters che si vogliono rimuovere

Implementato in CategoricalModel < DIM >.

Rimuove un cluster una volta specificato l'id, ed aggiorna il parametro K, che identifica il numero di cluster attuali.

```
_K | - Id del cluster che si vuole rimuovere
```

Implementato in CategoricalModel < DIM >.

7.14.2.11 template < typename Type, unsigned int DIM = 1> virtual void ModelGeneric < Type, DIM >::SetHyperparameter (const typename Type::HYP &) [pure virtual]

Fissa gl iperparametr dei parametri latenti.

Parametri

_Lambda | - oggetto ti tipo HYP, iperparametri in ingresso del parametro latente

7.14.2.12 template < typename Type, unsigned int DIM = 1> virtual void ModelGeneric < Type, DIM >::SetInitialClusters (unsigned int) [pure virtual]

Fissa i cluster iniziali, assegnando i pesi iniziali.

Parametri

_K - Numero di cluster iniziali

Implementato in CategoricalModel < DIM >.

7.14.2.13 template<typename Type, unsigned int DIM = 1> virtual void ModelGeneric< Type, DIM >::UpdateOneThetaCluster(const unsigned int, omprng &) [pure virtual]

Aggirnamento dei parametro latenti di un cluster, una volta precisato il suo id.

Equazione (3.6) della relazione Relazione_Parisi_Perego.pdf

Parametri

_K	- id del cluster di cui si vuole aggiornare parametri lantenti
Gen	- Generatore dei numeri casuali

Implementato in CategoricalModel < DIM >.

7.14.2.14 template<typename Type, unsigned int DIM = 1> virtual void ModelGeneric< Type, DIM >::UpdateOneThetaSubCluster(const unsigned int, omprng &) [pure virtual]

Aggirnamento dei parametro latenti del sub-cluster sinistro e destro di un cluster, una volta precisato il sui id.

Equazione (3.10) della relazione Relazione_Parisi_Perego.pdf

Parametri

_K	- id del cluster di cui si vuole aggiornare i parametri latenti nei sui sub-clusters
Gen	- Generatore dei numeri casuali

Implementato in CategoricalModel < DIM >.

7.14.2.15 template<typename Type, unsigned int DIM = 1> virtual void ModelGeneric< Type, DIM >::UpdateThetaCluster (omprng &) [pure virtual]

Aggirnamento dei parametro latenti di tutti i clusters.

Equazione (3.6) della relazione Relazione_Parisi_Perego.pdf

Parametri

Gen	- Generatore dei numeri casuali

Implementato in CategoricalModel < DIM >.

7.14.2.16 template<typename Type, unsigned int DIM = 1> virtual void ModelGeneric< Type, DIM >::UpdateThetaSubCluster(omprng &) [pure virtual]

Aggirnamento dei parametro latenti del sub-cluster sinistro e destro di tutti i clusters.

Equazione (3.10) della relazione Relazione_Parisi_Perego.pdf

Parametri

Gen	- Generatore dei numeri casuali

Implementato in CategoricalModel < DIM >.

7.14.2.17 template<typename Type, unsigned int DIM = 1> virtual void ModelGeneric< Type, DIM >::ViewBeta (vector< double > &) [pure virtual]

Mostra i pesi globali dei cluster attualemente presenti.

```
AllBeta - vettore riempito con i pesi globali dei clusters
```

Implementato in CategoricalModel < DIM >.

7.14.2.18 template < typename Type, unsigned int DIM = 1> virtual void ModelGeneric < Type, DIM >::ViewBetaLeft (vector < double > &) [pure virtual]

Mostra i pesi globali del sub-cluster sinistro dei clusters attualemente presenti.

Parametri

```
AllBetaLeft - riempito con i pesi globali del sub-cluster sinistro dei clusters
```

Implementato in CategoricalModel < DIM >.

```
7.14.2.19 template<typename Type, unsigned int DIM = 1> virtual void ModelGeneric< Type, DIM >::ViewBetaRight (
vector< double > & ) [pure virtual]
```

Mostra i pesi globali del sub-cluster destro dei clusters attualemente presenti.

Parametri

```
AllBetaRight - riempito con i pesi globali del sub-cluster destro dei clusters
```

Implementato in CategoricalModel < DIM >.

```
7.14.2.20 template<typename Type, unsigned int DIM = 1> virtual unsigned int ModelGeneric< Type, DIM >::ViewK( ) const [pure virtual]
```

Da informazione sul numero di clusters correnti.

Restituisce

il numero corrente di clusters

Implementato in CategoricalModel < DIM >.

```
7.14.2.21 template < typename Type, unsigned int DIM = 1> virtual void ModelGeneric < Type, DIM >::ViewKey ( vector < unsigned int > & ) const [virtual]
```

Visualizza gli ID dei clusters attulmente presenti.

Parametri

```
Key - oggetto dove salvare gli ld dei clusters
```

Reimplementata in CategoricalModel < DIM >.

La documentazione per questa classe è stata generata a partire dal seguente file:

Model.hpp

7.15 Riferimenti per la struct NJK

Numero degli elementi del gruppo j che sono nel cluster k.

```
#include <Struct.hpp>
```

Attributi pubblici

- · unsigned int a
- · unsigned int b
- · unsigned int c
- · unsigned int k
- pair< unsigned int, unsigned int > a_sub
- pair< unsigned int, unsigned int > **b_sub**
- pair< unsigned int, unsigned int > c_sub

7.15.1 Descrizione dettagliata

Numero degli elementi del gruppo j che sono nel cluster k.

La documentazione per questa struct è stata generata a partire dal seguente file:

Struct.hpp

7.16 Riferimenti per la struct NUMTABLE

```
Tavoli.
```

```
#include <Struct.hpp>
```

Attributi pubblici

- unsigned int a_Left
- unsigned int a_Right
- unsigned int a
- unsigned int ja_Left
- · unsigned int ja Right
- · unsigned int ja
- unsigned int Tilde_sum
- vector< unsigned int > Tilde_b_c
- vector< unsigned int > Tilde_k

7.16.1 Descrizione dettagliata

Tavoli.

La documentazione per questa struct è stata generata a partire dal seguente file:

· Struct.hpp

7.17 Riferimenti per la classe omprng

Libreria Omprng per la generazione dei numeri casuali in OpenMp.

```
#include <omprng.hpp>
```

Membri pubblici

omprng ()

Costruttore di default.

• ~omprng ()

Distruttore.

void fixedSeed (long unsigned int)

Fissa seed.

• void randomSeed ()

Genera casualmente un seed.

void setNumThreads (int)

Imposta il numero di thread.

• double runif ()

Generazione da Uniforme tra 0 ed 1.

• double runif (double, double)

Generazione da Uniforme tra due valori fissati.

• double rnorm (double, double)

Generazione da Gaussiana.

• double rexp (double)

Generazione da Esponenziale.

• double rgamma (double, double)

Generazione da Gamma.

double rchisq (unsigned int)

Generazione da ChiQuadro.

double rbeta (double, double)

Generazione da Beta.

unsigned int rdiscrete (std::vector< double > &)

Campionamento da una variabile aleatoria discreta con supporto 0:(K-1)

• unsigned int runifdiscrete (unsigned int)

Campionamento da una variabile aleatoria discreta uniforme con supporto 0:(N-1)

unsigned int rbernoulli (double p)

Generazione da una Bernoulli $X \sim Bernoulli(p) P(X=1) = p P(X=0) = 1-p X=\{0,1\}.$

• unsigned int rbinomial (unsigned int n, double p)

Generazione da una Binomiale $X \sim Bin(n, p)$.

void rdirichlet (const vector< double > ¶ms, vector< double > &dir_sampled)

 $Generazione \ da \ una \ Dirichlet \ di \ dimensine \ d \ (X_1,...,X_d) \sim Dir(a_1,...,a_d) \ a_i > 0 \ i=\{1,...,d\} \ sum_\{X_i\} = 1.$

Attributi privati

• int nprocs

Numero di processori a disposizione.

RngStream * myRng

Oggetto RngStream. Implementazione dovuta a Matthew Bognar.

7.17.1 Descrizione dettagliata

Libreria Omprng per la generazione dei numeri casuali in OpenMp.

Si deve lo sviluppo a Matthew Bognar Department of Statistics and Actuarial Science University of Iowa http-://www.stat.uiowa.edu/~mbognar/omprng matthew-bognar@uiowa.edu

Data

Luglio 2014

7.17.2 Documentazione delle funzioni membro

7.17.2.1 void omprng::fixedSeed (long unsigned int myInt)

Fissa seed.

Parametri

Seed	- seme casuale

7.17.2.2 unsigned int omprng::rbernoulli (double p)

Generazione da una Bernoulli $X \sim Bernoulli(p)$ P(X=1) = p P(X=0) = 1-p X={0,1}.

Parametri

р	- probabilita' del successo
---	-----------------------------

Restituisce

realizzazione di una Bernoulli con supporto {0,1}

Data

Febbraio 2016

7.17.2.3 double omprng::rbeta (double alpha, double beta)

Generazione da Beta.

X~beta(alpha,beta)

 $f(x) = gamma(alpha+beta)/(gamma(alpha)*gamma(beta)) * x^{(alpha-1)} * (1-x)^{(beta-1)}$

0 < x < 1, alpha > 0, beta > 0

 $E(X) = alpha/(alpha+beta), Var(X) = alpha*beta / ((alpha+beta+1)*(alpha+beta)^2)$

Parametri

alpha	- primo parametro di forma
beta	- secondo parametro di forma

Restituisce

x - realizzazione di una Beta con df parametri di forma alpha e beta

7.17.2.4 unsigned int omprng::rbinomial (unsigned int n, double p)

Generazione da una Binomiale $X \sim Bin(n, p)$.

 $P(X=k) = n!/(k!(n-k)!) p^k (1-p)^k (n-k) k=\{0,1,...,n\}$

Parametri

n	- numero di prove
р	- probabilita' di successo

Restituisce

realizzazione di una Binomiale con supporto {0,1,...,n}

Data

Febbraio 2016

7.17.2.5 double omprng::rchisq (unsigned int)

Generazione da ChiQuadro.

X∼chisq(df)

 $f(x) = 1/(gamma(df/2)*2^{(df/2)}) * x^{(df/2-1)} * exp(-x/2)$

x > 0, df = 1,2,3,...

E(X) = df, Var(X) = 2*df

Parametri

df	- gradi di liberta'

Restituisce

realizzazione di una ChiQuadro con df gradi di liberta'

7.17.2.6 void omprng::rdirichlet (const vector < double > & params, vector < double > & dir_sampled)

Generazione da una Dirichlet di dimensine d $(X_1,...,X_d) \sim Dir(a_1,...,a_d)$ $a_i > 0$ $i=\{1,...,d\}$ $sum_{X_i} = 1$.

Parametri

params	- vettore dei parametri della Dirichlet
dir_sampled	- realizzazione della dirichlet

Data

Febbraio 2016

7.17.2.7 unsigned int omprng::rdiscrete (std::vector< double > & weights)

Campionamento da una variabile aleatoria discreta con supporto 0:(K-1)

K = size(inputvector)

Parametri

Logp	- logaritmi probabilita'/pesi

Restituisce

realizzazione di una variabile aleatoria discreta con supporto 0:(K-1) e probabilita' rispettive exp{Logp}

7.17.2.8 double omprng::rexp (double theta)

Generazione da Esponenziale.

X∼exp(theta)

f(x) = 1 / theta * exp(-x/theta)

x > 0, theta > 0

 $E(X) = theta, Var(X) = theta^2$

Parametri

theta	- parametro di scala
-------	----------------------

Restituisce

realizzazione di una esponenziale di parametro di scala theta

7.17.2.9 double omprng::rgamma (double alpha, double beta)

Generazione da Gamma.

X~gamma(alpha,beta)

 $f(x) = 1/(gamma(alpha)*beta^alpha) * x^(alpha-1) * exp(-x/beta)$

x > 0, alpha > 0, beta > 0

 $E(X) = alpha*beta, Var(X) = alpha*beta^2$

Parametri

alpha	- parametro di forma
beta	- parametro di scala

Restituisce

realizzazione di una gamma di parametro di forma alpha e di parametro di scala beta

7.17.2.10 double omprng::rnorm (double , double)

Generazione da Gaussiana.

Parametri

mu	- media
sigma	- deviazione standard

Restituisce

realizzazione di una gaussiana con media mu e varianza sigma^2

7.17.2.11 double omprng::runif ()

Generazione da Uniforme tra 0 ed 1.

Restituisce

realizzazione di una uniforme tra 0 ed 1

7.17.2.12 double omprng::runif (double a, double b)

Generazione da Uniforme tra due valori fissati.

Parametri

а	- estremo inferiore
b	- estremo superiore

Restituisce

realizzazione di una uniforme tra a e b

7.17.2.13 unsigned int omprng::runifdiscrete (unsigned int N)

Campionamento da una variabile aleatoria discreta uniforme con supporto 0:(N-1)

Parametri

N - numero di classi per il campionamento discreto
--

Restituisce

x - realizzazione di una variabile aleatoria discreta uniforme supporto 0:(N-1)

7.17.2.14 void omprng::setNumThreads (int nt)

Imposta il numero di thread.

Parametri

NumThread	hread - nume	o di thread		
-----------	--------------	-------------	--	--

La documentazione per questa classe è stata generata a partire dai seguenti file:

- · omprng.hpp
- · omprng.cpp

7.18 Riferimenti per la struct PI

Pesi dei cluster in ogni gruppo.

```
#include <Struct.hpp>
```

Attributi pubblici

- vector< double $> \mathbf{b}_{\mathbf{c}}$
- double a
- vector< double > Tilde_b_c
- · double Left
- · double Right

7.18.1 Descrizione dettagliata

Pesi dei cluster in ogni gruppo.

La documentazione per questa struct è stata generata a partire dal seguente file:

· Struct.hpp

7.19 Riferimenti per la classe RngStream

Membri pubblici

- RngStream (const char *name="")
- void ResetStartStream ()
- void ResetStartSubstream ()
- void ResetNextSubstream ()
- void SetAntithetic (bool a)
- void IncreasedPrecis (bool incp)
- bool **SetSeed** (const unsigned long seed[6])
- void AdvanceState (long e, long c)
- void GetState (unsigned long seed[6]) const
- void WriteState () const
- void WriteStateFull () const
- double RandU01 ()
- int RandInt (int i, int j)

Membri pubblici statici

• static bool SetPackageSeed (const unsigned long seed[6])

Membri privati

- double **U01** ()
- double **U01d** ()

Attributi privati

- double **Cg** [6]
- double **Bg** [6]
- double **Ig** [6]
- · bool anti
- bool incPrec
- std::string name

Attributi privati statici

• static double nextSeed [6]

7.19.1 Documentazione dei membri dato

7.19.1.1 double RngStream::nextSeed [static], [private]

Valore iniziale:

```
=
{
    12345.0, 12345.0, 12345.0, 12345.0, 12345.0, 12345.0
```

La documentazione per questa classe è stata generata a partire dai seguenti file:

- · rngstream.hpp
- · rngstream.cpp

7.20 Template per la classe TypeCategorical < DIM >

Classe dei tipi per dati con verosimiglianza categorica.

```
#include <Type.hpp>
```

Tipi pubblici

using THETA = vector< double >

Vettore dei parametri latenti dei cluster o sub-cluster.

• using Point = unsigned int

Dato singolo.

using HYP = vector< double >

Vettore degli iperparametri dei parametri lantenti dei cluster o sub-cluster.

using STAT = vector< unsigned int >

Vettore delle statistiche, aggiornamenti degli iperparametri dei parametri latenti dei cluster o sub-cluster.

7.20.1 Descrizione dettagliata

template < unsigned int DIM = 1>class TypeCategorical < DIM >

Classe dei tipi per dati con verosimiglianza categorica.

Data

Febbraio 2016

La documentazione per questa classe è stata generata a partire dal seguente file:

• Type.hpp

_					
Docu	man	tazian	ומא מ	Δ	200
DUCU		Lazivii	e uei		1033

Capitolo 8

Documentazione dei file

8.1 Riferimenti per il file Cluster.hpp

Strutture dei dati per la gestione dei cluster in base al modello scelto. In queste classi si definisce solo come gestire i parametri lanteti e gli altri parametri del cluster. Non sono presenti campionamenti, ma solo metodi che stampano e fissano i valori dei cluster e sub-cluster.

```
#include <vector>
#include <iostream>
#include "Type.hpp"
```

Composti

class GenericCluster< ClassType, DIM >

Modello Generico di Cluster.

· class CategoricalCluster

Gestione informazioni cluster e sub-cluster per dati di verosimiglianza Categorical.

8.1.1 Descrizione dettagliata

Strutture dei dati per la gestione dei cluster in base al modello scelto. In queste classi si definisce solo come gestire i parametri lanteti e gli altri parametri del cluster. Non sono presenti campionamenti, ma solo metodi che stampano e fissano i valori dei cluster e sub-cluster.

Data

Febbraio 2016

8.2 Riferimenti per il file Document.hpp

In questo file sono presenti le classi che gestiscono i documenti o, piu' in generale, i gruppi di dati. La classe generica fornisce l'interfaccia comune, mentre le classi derivate e specializzate sono specifiche del modello.

```
#include <unordered_map>
#include <utility>
#include <vector>
#include "Functions.hpp"
#include "Type.hpp"
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <tuple>
#include <fstream>
```

Composti

- class Generic Document< Type, DIM >

Classe generica per i gruppi.

class CategoricalDocument< DIM >

Classe derivata per il modello Dirichlet-Categorical.

8.2.1 Descrizione dettagliata

In questo file sono presenti le classi che gestiscono i documenti o, piu' in generale, i gruppi di dati. La classe generica fornisce l'interfaccia comune, mentre le classi derivate e specializzate sono specifiche del modello.

Data

Febbraio 2016

8.3 Riferimenti per il file Functions.hpp

```
#include <vector>
#include "omprng.hpp"
#include <math.h>
#include <random>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <utility>
#include <iomanip>
#include <omp.h>
#include #include #include <iomp.h>
#include #include
```

Composti

· struct greater_for_pair

Criterio di confronto tra due elementi che sono coppie (unsigned int, double), da utilizzare nel sort di un vettore; il confronto è sul secondo valore nella coppia.

Funzioni

void ComputeLogStirlingNumbers (unsigned int N, vector< long double > &logstirling)

Calcola i numeri di Stirling di prima specie s(n,m), per n=0,...,N e li memorizza nel vettore in ingresso. Per definizione: s(0,0)=s(1,1)=1, s(n,0)=0 per n>0, s(n,m)=0 per m>n, s(n,m)=s(n-1,m-1)+(n-1)*s(n-1,m). Il calcolo e' in scala logaritmica per ottenere maggior precisione.

• template<typename T >

T Kahan_algorithm (vector< T > &numbers)

Kahan_algorithm Fa le somme di vettori e riduce l'errore numerico, dovuto all'arrotondamento che fa la macchina.

• unsigned int Antoniak (double alpha, double beta, unsigned int njk, const std::vector< long double > &Log-Stirling, omprng &Gen)

Antoniak si occupa del campionamento dei tavoli in ogni gruppo, equazione 3.3 Relazione_Parisi_Perego.pdf.

 unsigned int FindBestNumTable (double alpha, unsigned int K, unsigned int njk, vector< long double > &StirlingNumber)

Campionare gli $\tilde{m_{jb}}$, ovvero il numero di tavoli che in un documento j hanno il cluster b campiona i tavoli temporanei dal'equazione 3.24 Relazione Parisi Perego.pdf.

8.3.1 Descrizione dettagliata

In questo file sono raccolte tutte quelle funzioni di supporto all'algoritmo che non sono specifiche del modello scelto.

Data

Febbraio 2016

8.3.2 Documentazione delle funzioni

8.3.2.1 unsigned int Antoniak (double *alpha*, double *beta*, unsigned int *njk*, const std::vector< long double > & *LogStirling*, omprng & *Gen*)

Antoniak si occupa del campionamento dei tavoli in ogni gruppo, equazione 3.3 Relazione Parisi Perego.pdf.

Parametri

Alpha	- parametro di concentrazione del processo di dirchlet che governa i cluster nel gruppo
Beta	- peso globale del cluster k di cui vogliamo campionare i tavoli
njk	- numero di elementi del gruppo j nel cluster k
LogStirling	- Vettore dei numeri di Stirling in scala logaritmica
Gen	- Generatore di numeri casuali

Restituisce

numero di tavoli che nel gruppo j servono il piatto k

8.3.2.2 void ComputeLogStirlingNumbers (unsigned int N, vector < long double > & logstirling)

Calcola i numeri di Stirling di prima specie s(n,m), per n=0,...,N e li memorizza nel vettore in ingresso. Per definizione: s(0,0)=s(1,1)=1, s(n,0)=0 per n>0, s(n,m)=0 per m>n, s(n,m)=s(n-1,m-1)+(n-1)*s(n-1,m). Il calcolo e' in scala logaritmica per ottenere maggior precisione.

Parametri

N	- valore massimo di n
logstirling	- vettore in cui memorizzare i numeri di Stirling in scala logaritmica

8.3.2.3 unsigned int FindBestNumTable (double alpha, unsigned int K, unsigned int njk, vector < long double > & StirlingNumber)

Campionare gli $\tilde{m_{jb}}$, ovvero il numero di tavoli che in un documento j hanno il cluster b campiona i tavoli temporanei dal'equazione 3.24 Relazione_Parisi_Perego.pdf.

Parametri

alpha	- parametro di concentrazione del processo di dirchlet che governa i cluster nel gruppo	
K	- numero corrente dei cluster	
njk	- numero di elementi del gruppo j nel cluster k	
StirlingNumber	- Vettore dei numeri di Stirling in scala logaritmica	

8.3.2.4 template<typename T > T Kahan_algorithm (vector< T > & numbers)

Kahan_algorithm Fa le somme di vettori e riduce l'errore numerico, dovuto all'arrotondamento che fa la macchina.

Parametri

numbers	- elementi da sommare tra di loro
---------	-----------------------------------

Restituisce

somma

8.4 Riferimenti per il file HDP_MCMC.hpp

```
#include "Model.hpp"
#include "Document.hpp"
#include "Struct.hpp"
#include "omprng.hpp"
#include "Functions.hpp"
#include <random>
#include <tuple>
#include <fstream>
#include <sstream>
#include <string>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <cstdlib>
#include <omp.h>
```

Composti

```
    class HDP_MCMC< MODEL, DOCUMENT, DIM >

HDP_MCMC.
```

8.4.1 Descrizione dettagliata

Classe di HDP_MCMC per l'esecuzione dell'algoritmo

Data

Febbraio 2016

8.5 Riferimenti per il file Model.hpp

Classe che si occupa di gestire tutti i cluster, campionamenti che dipendo dal modello scelto e funzioni che dipendono dal modello.

```
#include "Cluster.hpp"
#include "Functions.hpp"
#include "omprng.hpp"
#include <vector>
#include <unordered_map>
#include <utility>
#include <cmath>
#include <iostream>
#include <sstream>
#include <fstream>
```

Composti

class ModelGeneric
 Type, DIM >

Modello Generico di Model.

class CategoricalModel
 DIM >

Modello Dirichlet-Categorical.

8.5.1 Descrizione dettagliata

Classe che si occupa di gestire tutti i cluster, campionamenti che dipendo dal modello scelto e funzioni che dipendono dal modello.

Data

Febbraio 2016

8.6 Riferimenti per il file omprng.hpp

Generatore di numeri casuali in parallelo per OpenMP.

```
#include <omp.h>
#include <iostream>
#include "rngstream.hpp"
#include "sys/time.h"
#include <cmath>
#include <vector>
```

Composti

class omprng

Libreria Omprng per la generazione dei numeri casuali in OpenMp.

8.6.1 Descrizione dettagliata

Generatore di numeri casuali in parallelo per OpenMP.

8.7 Riferimenti per il file Posterior Analysis. hpp

```
#include <RInside.h>
#include <Rcpp.h>
#include <string>
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <queue>
#include <utility>
#include <utility>
#include <algorithm>
#include <math.h>
#include <tuple>
#include <iomanip>
#include <iomanip>
#include "Type.hpp"
```

Composti

class GenericPosteriorAnalysis
 Type, DIM >

Classe generica per l'analisi a posteriori Classe virtuale dove tutti i metodi sono null. Ogni classe che eredita deve definire tutti i metodi della classe base e, se necessario, può aggiungere altri metodi. Invoca gli script R per l'analisi delle catene MCMC. Calcola l'indice LPML, riconosce i topic e individua il miglior clustering secondo il criterio dei minimi quadrati.

class CategoricalPosteriorAnalysis < DIM >

Namespace

CoeffSimilitudine

Namespace per il calcolo del coefficiente di similitudine Contiene tre funzioni template utili al calcolo del coefficiente di similitudine tra vettori di un qualsiasi tipo.

Funzioni

```
    template<typename T >
        double CoeffSimilitudine::VectorNorm (vector< T > &v)
        Calcola la norma di un vettore.
    template<typename T >
        T CoeffSimilitudine::ScalarProdoct (vector< T > &v1, vector< T > &v2)
        Calcola il prodotto scalare tra due vettori.
    template<typename T >
        double CoeffSimilitudine::Coeff (vector< T > &v1, vector< T > &v2)
        Calcola il coefficiente di similitudine tra due vettori.
```

8.7.1 Descrizione dettagliata

Contiene le classi che gestiscono l'analisi a posteriori dei risultati prodotti dall'algoritmo. Per ogni modello esiste una classe derivata e specializzata. La classe generica fornisce l'interfaccia comune a tutte le classi specifiche di un modello.

Data

Febbraio 2016

8.8 Riferimenti per il file Struct.hpp

Raccolta delle strutture che vengono utilizzate nei metodi di HDP_MCMC.hpp Si e' scelto di creare un file a parte con la dichiarazione delle strutture, perche' il loro utilizzo e' comune a piu' metodi.

```
#include <vector>
#include <utility>
#include <unordered_map>
#include "Type.hpp"
```

Composti

struct BETA

Pesi globali dei cluster.

struct NJK

Numero degli elementi del gruppo j che sono nel cluster k.

struct PI

Pesi dei cluster in ogni gruppo.

struct NUMTABLE

Tavoli.

struct C

Statistiche.

- struct CLUSTER
- struct DATACOUNT

Ridefinizioni di tipo (typedef)

```
    using POINT = TypeCategorical< 1 >::Point
    using STAT = TypeCategorical< 1 >::STAT
```

8.8.1 Descrizione dettagliata

Raccolta delle strutture che vengono utilizzate nei metodi di HDP_MCMC.hpp Si e' scelto di creare un file a parte con la dichiarazione delle strutture, perche' il loro utilizzo e' comune a piu' metodi. Ogni volta che si aggiunge un nuovo modello e dei nuovi tipi di dati, bisogna aggiornare la lista in cui si rinomina i tipi di dati

Data

Febbraio 2016

8.9 Riferimenti per il file Type.hpp

Strutture dati per i tipi di modello e dei cluster.

```
#include <vector>
#include <iostream>
```

Composti

- class TypeCategorical < DIM >

Classe dei tipi per dati con verosimiglianza categorica.

8.9.1 Descrizione dettagliata

Strutture dati per i tipi di modello e dei cluster.