# Entendendo e aplicando Inteligência Artificial - Parte II

Adriano Mendes

Inteligência Artificial

#### **Algorítimos**

- Regressores
- SVM
- D-Trees
- Redes Neurais & Deep learning

# **—**

#### Nota:

#### Confira mais detalhes em:

- https://www.asimovinstitute.org/neural-network-zoo/
- http://deeplearningbook.com.br/
- https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
- https://www.digitalvidya.com/blog/types-of-neural-networks/



A mostly complete chart of

# Rede Neural Convolucional (CNN)

- Convolutional Neural Network (CNN), são um tipo especializado de redes neurais
- Capacidade de extração de características (convolução)
- Amplamente usadas em problemas envolvendo imagens (Visão Computacional)
- Principais problemas
  - Classificação de imagens
  - Reconhecimento de objetos
  - Reconhecimento de pedestres

# **Imagens e pixels**



### Características

Margarida



Dente de leão



Rosa



#### Características

- Cores
- Numero de pétalas
- Tamanho das pétalas
- Tamanho do núcleo

| Cores | Num. Pétalas | Tam. Pétalas | Tam. Núcleo | CLASSE        |
|-------|--------------|--------------|-------------|---------------|
| 0     | 25           | 5            | 20          | Margarida     |
| 1     | 30           | 0,5          | 0,3         | Dente de leão |
| 1     | 15           | 20           | 5           | Rosa          |
| 0     | 23           | 6            | 19          | Margarida     |
| 1     | 27           | 0,6          | 0,4         | Dente de leão |
| 1     | 16           | 19           | 6           | Rosa          |

#### Nota:

<sup>-</sup> Dataset disponível em: https://www.kaggle.com/alxmamaev/flowers-recognition

### Rede Neural Densa & Convolucionais







- Não usam todos os pixels
- Usam uma rede neural tradicional, mas nas camadas iniciais transforma os dados
- Descobre as característica mais relevantes

# **Redes Neurais Convolucionais (CNN)**

- Quais são as melhoras características?
- Em um problema de reconhecimento de faces
  - Localização do nariz
  - Distância dos olhos
  - Localização da boca
- Como diferenciar uma face humana de um animal?
- CNN consegue "descobrir" estas características

# **Redes Neurais Convolucionais (CNN)**

#### Etapas executadas

- Passo 1: Convolução
- Passo 2: Pooling
- Passo 3: Flattening
- Passo 4: Rede Neural Densa

- Operador de convolução
  - Convolução é uma operação matemática aplicada a funções, e a ideia é entender como uma função afeta a outra (detalhes)
  - No caso de redes neurais, a imagem e o kernel são as funções, e o resultado da operação representa a matriz de características
  - Sobre os kernels
    - https://en.wikipedia.org/wiki/Kernel\_(image\_processing)
  - Exemplo on-line
    - http://setosa.io/ev/image-kernels/

| 1 | 1 | 1  | 1     | 1 | 1 | 0 |
|---|---|----|-------|---|---|---|
| 0 | 1 | 0  | 1     | 0 | 1 | 0 |
| 0 | 1 | 0  | 1     | 1 | 1 | 1 |
| 1 | 1 | 1  | 1     | 1 | 1 | 0 |
| 1 | 1 | 1  | 1     | 1 | 0 | 1 |
| 1 | 0 | 0  | 1     | 0 | 0 | 0 |
| 1 | 1 | 1  | 0     | 1 | 0 | 1 |
|   |   | In | nagen | า |   |   |



| 3 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

Mata de Características

$$(1 * 1) + (1 * 0) + (1 * 1) + (0 * 1) + (1 * 1) + (0 * 0) + (0 * 1) + (1 * 0) + (0 * 1) = 3$$

Χ

| 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 |
|   |   |   |   |   |   |   |

Imagem



| 3 | 5 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$$(1 * 1) + (1 * 0) + (1 * 1) + (1 * 1) + (0 * 1) + (1 * 0) + (1 * 1) + (0 * 0) + (1 * 1) = 5$$

| 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 |
|   |   |   |   |   |   |   |

Imagem



| 3 | 5 | 4 | 0 | 0 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$$(1 * 1) + (1 * 0) + (1 * 1) + (0 * 1) + (1 * 1) + (0 * 0) + (0 * 1) + (1 * 0) + (1 * 1) = 4$$

| 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 |
|   |   |   |   |   |   |   |

Imagem



| 3 | 5 | 4 | 5 | 0 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$$(1 * 1) + (1 * 0) + (1 * 1) + (1 * 1) + (0 * 1) + (1 * 0) + (1 * 1) + (1 * 0) + (1 * 1) = 5$$

| 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 |
|   |   |   |   |   |   |   |

Imagem



| 3 | 5 | 4 | 5 | 4 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

$$(1 * 1) + (1 * 0) + (0 * 1) + (0 * 1) + (1 * 1) + (0 * 0) + (1 * 1) + (1 * 0) + (1 * 1) = 4$$

| 1 | 1 | 1 | 1    | 1 | 1 | 0 |
|---|---|---|------|---|---|---|
| 0 | 1 | 0 | 1    | 0 | 1 | 0 |
| 0 | 1 | 0 | 1    | 1 | 1 | 1 |
| 1 | 1 | 1 | 1    | 1 | 1 | 0 |
| 1 | 1 | 1 | 1    | 1 | 0 | 1 |
| 1 | 0 | 0 | 1    | 0 | 0 | 0 |
| 1 | 1 | 1 | 0    | 1 | 0 | 1 |
|   |   |   | 2000 |   |   |   |

Imagem



| 3 | 5 | 4 | 5 | 4 |
|---|---|---|---|---|
| З | 5 | ß | 6 | ო |
| 4 | 6 | 5 | 5 | 6 |
| 5 | 5 | 4 | 5 | 2 |
| 5 | 3 | 5 | 2 | 4 |

$$(1 * 1) + (0 * 0) + (1 * 1) + (0 * 1) + (0 * 1) + (0 * 0) + (1 * 1) + (0 * 0) + (1 * 1) = 4$$

- Com o uso do filtro, consegue-se reduzir o tamanho dos dados para facilitar o processamento
- Partes da imagem podem se perder, mas a rede "guarda" as característica principais
- Após todo o processo, ainda é aplicada a função de ativação "Relu"



A convolução é a aplicação de vários kenels a imagem original

- A camada de Pooling
  - Tem a função de enfatizar as características principais
  - Assim como na convolução, Pooling é uma operação aplicada em cima dos valores da matriz (imagem)

| 1 | 2 | 1 | 2 | 0 |
|---|---|---|---|---|
| 1 | 2 | 1 | 1 | 1 |
| 2 | 1 | 1 | 1 | 2 |
| 2 | 1 | 2 | 0 | 3 |
| 3 | 1 | 3 | 0 | 3 |





| 2 | 0 | 0 |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 0 | 0 |

Pooled feature map

| 1 | 2 | 1 | 2 | 0 |
|---|---|---|---|---|
| 1 | 2 | 1 | 1 | 1 |
| 2 | 1 | 1 | 1 | 2 |
| 2 | 1 | 2 | 0 | 3 |
| 3 | 1 | 3 | 0 | 3 |





| 2 | 2 | 0 |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 0 | 0 |

Pooled feature map

|     |     |   | 0 |                                    |
|-----|-----|---|---|------------------------------------|
| 1 2 | 2 1 | 1 | 1 | _                                  |
| 2 1 | _ 1 | 1 | 2 | $\left\langle \cdot \right\rangle$ |
| 2 1 | . 2 | 0 | 3 |                                    |
| 3 1 | _ 3 | 0 | 3 |                                    |

| 2 | 2 | 1 |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 0 | 0 |

Pooled feature map

| 1 | 2 | 1 | 2 | 0 |
|---|---|---|---|---|
| 1 | 2 | 1 | 1 | 1 |
| 2 | 1 | 1 | 1 | 2 |
| 2 | 1 | 2 | 0 | 3 |
| 3 | 1 | 3 | 0 | 3 |





| 2 | 2 | 1 |
|---|---|---|
| 2 | 0 | 0 |
| 0 | 0 | 0 |

Pooled feature map



- Camada de Pooling
  - Diminui a dimensão dos dados
  - Reduz o overfitting e ruídos nos dados
  - Podem ser max pooling, mean pooling, lembando que sempre queremos maximizar as características principais



# **CNN** - Passo 3 : Flattening

- A camada de Flattening
  - Basicamente aqui os dados em forma matricial são convertidos para serem a entrada da rede neural densa



### **CNN** - Passo 4 : Rede Neural Densa



### **CNN**

- Vendo na prática um exemplo
  - Mostrando uma CNN funcionando https://scs.ryerson.ca/~aharley/vis/conv/



# **Experimento 2**

- Ideia
  - Realizar o reconhecimento de roupas utilizando CNN implementada por Tensorflow
- Recursos
  - Linguagem Python¹ via distribuição Anaconda² e frameworks Tensorflow³
  - Usando a base de dados Fashion MNIST<sup>4</sup>
  - Fazendo uso de Jupyter Notebooks usando a IDE do VS Code<sup>5</sup>

- (1) https://www.python.org/
- (2) https://www.anaconda.com/
- (3) http://www.Tensorflow.com
- (4) https://www.openml.org/d/40996
- (5) https://code.visualstudio.com/ e https://code.visualstudio.com/docs/python/data-science-tutorial

# **Experimento 3**

- Ideia
  - Realizar o reconhecimento de objetos utilizando Fast R-CNN implementada por Tensorflow
- Recursos
  - Linguagem Python via distribuição Anaconda e frameworks Tensorflow
  - Fazendo uso de Jupyter Notebooks usando a IDE do VS Code

### Referências

#### **SITES**

- Python.org
  https://www.python.org/https://www.python.org/
- OpenML.org https://www.openml.org/
- Data Science Academy https://www.datascienceacademy.com.br/pages/home
- Towards Data Science https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
- IA Experts https://iaexpert.academy/

### Referências

#### Livros

- Katia Faceli, Inteligência Artificial Uma Abordagem de Aprendizado de Máquina Gen, 2011
- Russell Stuart, Artificial Intelligence, A modern approach, 3ª edição, Pearson, 2010
- Jake VanderPlas, Python Data Science Handbook, O'Reilly, 2016
- Joel Gruss, Data Science from Scratch, O'Reilly, 2015