MAT116.1 - Programming with MatLab MOCK EXAM

Paola Bacigaluppi and Davide Torlo

Institute of Mathematics, University of Zurich

Exercise 1 (2 P.) Sequence!

- a) Write a script called 'sequence.m' which:
 - Given the recursive sequence $a_1 = 1$, $a_n = \frac{1}{1 + 0.5a_{n-1}}$, finds the first 10 values of the sequence;
 - plots these values as discrete points (no lines between them);
 - adds a title on the top of the plot;
 - adds a label for the x axis;
 - saves automatically the plot in 'sequence_plot.fig';
 - closes the figure.
- b) The sequence a_n converges to $a = \sqrt{3} 1$. Build a function 'tolerance_sequence.m' that takes as input a tolerance ε and stops the sequence a_n when the error $|a_n a| \le \varepsilon$. The output is the first n such that $|a_n a| \le \varepsilon$.

INPUT: tolerance.

OUTPUT: first n such that $|a_n - a| \le \varepsilon$.

Exercise 2 (2 P.) Mistery

a) Create a function called 'mistery.m' that loads the structure 'mistery_vector.mat', which has a vector of integers called mistery_vect, and returns the number of 0 elements of the vector (how many times the value 0 appear in the vector) and the mode value of the vector. INPUT:

OUTPUT: number of zero elements, mode value

- b) Create a script called 'mistery_plot.m'. The script should:
 - load the file 'mistery_vector.mat' and the vector as above;
 - reshape it into a matrix 400×640 ;
 - spy this matrix;
 - save the plot into 'mistery_figure.fig';
 - close the figure.

Exercise 3 (2 P.) Functions

- a) Given the sequence of functions $f_k(x) = k\sqrt{2}e^{-kx}\cos(\pi/4+kx)$, do a script 'plotting_functions.m' that
 - plots on [0,1] all the functions in one figure for $k=1,\ldots,5$;
 - uses colors red, blue, green, yellow and magenta in this order;
 - adds also a legend and a title;
 - saves the figure as 'plotted_functions.fig';
 - closes the figure.
- b) Code a function called 'symbolic_integration.m'. Use the symbolic tool of MATLAB to compute $\int_0^1 f_k(x)dx$. The function receives k as input, and returns the value (a double, not symbolic) of the integral.

INPUT: k

OUTPUT: $\int_0^1 f_k(x) dx$ (as double).

Exercise 4 (2 P.) Factorial!

a) Build a function 'my_factorial.m' that, given a big number M, finds the first natural number n such that n! > M.

(Hint: remember that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$)

 $\begin{array}{l} \text{INPUT: } M \\ \text{OUTPUT: } n \end{array}$

b) In a function 'factorial_matrix.m', build a matrix A of dimension $n \times n$, with n given as an input, where

$$A_{ij} = \begin{cases} (j \mod i)! & \text{if } i < j \\ (i \operatorname{div} j)! & \text{if } i \ge j \end{cases}$$

for $i, j \in \{1, ..., n\}$, where div is the integer division and mod is the remainder of the integer division. Return the mean value of the whole matrix.

INPUT: n

OUTPUT: $\frac{1}{n^2} \sum_{i,j=1}^n A_{ij}$