

Lecture 3: Algorithms for SAT

Jediah Katz jediahk@seas.upenn.edu

Logistics

- Switching to async lectures
 - Posted by Tuesday evening, sometimes earlier
- Don't forget: Quiz 1 due tonight! HW1 due next Mon night

Naive Search for SAT

Naive algorithm: try every possible assignment until we find a satisfying assignment or exhaust the search space

Can interpret this as a DFS:

(search tree)

- When we set x = T, what happens to the clauses containing x?
- **Observation 1:** Any clause containing the positive literal *x* becomes satisfied, so we no longer need to consider those clauses
 - o In logic: $(T \lor 1 \lor 2 \lor \cdots) = T$
 - \circ Significance: we should remove all clauses containing x

Trimming the Search Space

- When we set x = T, what happens to the clauses containing \overline{x} ?
- **Observation 2:** Any clause containing the negative literal \overline{x} needs to be satisfied by a different literal, so we can ignore \overline{x} in that clause
 - o In logic: $(F \lor 1 \lor 2 \lor \cdots) = (1 \lor 2 \lor \cdots)$
 - Significance: we should remove \overline{x} from all clauses containing it

The Splitting Rule

- The previous observations are called the splitting rule and yield a smarter recursive backtracking algorithm
- Backtracking: repeatedly make a guess to explore partial solutions, and if we hit "dead end" (contradiction) then undo the last guess

The Splitting Rule

- After repeatedly applying the splitting rule to formula φ :
 - o If there are **no clauses left**, then all clauses have been satisfied, so φ is satisfied
 - $\varphi = \emptyset$ denotes that there are no clauses left
 - o If φ ever contains an **empty clause**, then all literals in that clause are False, so we made a mistake
 - ϵ denotes the empty clause
 - $\epsilon \in \varphi$ denotes that φ contains an empty clause

Backtracking Notation

- For a CNF φ and a literal x, define $\varphi|x$ (" φ given x") to be a new CNF produced by:
 - \circ Removing all clauses containing x
 - \circ Removing \overline{x} from all clauses containing it
- Conditioning is "commutative": $\varphi |x_1| x_2 = \varphi |x_2| x_1$

Backtracking (Pseudocode)


```
# check if \varphi is satisfiable

backtrack(\varphi):

if \varphi = \emptyset: return True

if \epsilon \in \varphi: return False

let x = \text{pick\_variable}(\varphi)

return backtrack(\varphi \mid x) OR backtrack(\varphi \mid \overline{x})
```


$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5

Steps

$$(\overline{1} \vee \overline{2})$$

$$(1 \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т				

$$(\overline{1} \vee \overline{2})$$

Conflict!

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	Т			

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \vee 2 \vee \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor \overline{4} \lor 5)$$

1	2	3	4	5
Т	F			

$$(\overline{1} \vee \overline{2})$$

$$\left(3 \vee \overline{4} \vee \overline{5}\right)$$

$$\left(3 \vee \overline{4} \vee 5\right)$$

1	2	3	4	5
Т	F	Т		

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F	F		

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$\left(3 \lor 4 \lor \overline{5}\right)$$

1	2	3	4	5
Т	F	F	Т	

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$
 Conflict!

$$\left(3 \lor 4 \lor \overline{5}\right)$$

1	2	3	4	5
Т	F	F	Т	Т

(<u>1</u>	V	<u>2</u>	
\				/

$$(\overline{1} \vee 2 \vee \overline{3})$$

$$3 \vee \overline{4} \vee \overline{5}$$

$$3 \lor 4 \lor \overline{5}$$

1	2	3	4	5
Т	F	F	Т	F

Efficient Splitting

- How do we compute $\varphi|x$?
- Goals:
 - Support fast searching for empty clauses
 - Support fast backtracking
 - Fast to actually compute $\varphi | x$

Naïve Idea 1

- Transform φ into $\varphi|x$ by deleting satisfied clauses and False literals from φ
 - Deletion not too expensive if we use linked lists
 - Can quickly recognize an empty clause (linked list will be empty), but need to check all clauses
 - Big issue: how do we backtrack?

Naïve Idea 2

- Simple fix: instead of modifying φ directly, create a copy first and modify that
 - Easy backtracking just restore the old formula
 - Big issue: too expensive (time and memory) to copy formula every time we split
 - What if we have hundreds of thousands, even millions of clauses?

Towards a smarter scheme

- **Observation:** we only need to look at clauses that contain the variable we are assigning
 - For each literal, store a pointer to list of all clauses that contain it
 - But we can do even better!
- Goal: don't modify the formula or copy it!
 - Issue: how do we know when a clause is satisfied or empty?

1 Watched Literal Scheme

- **Observation:** a clause can only become empty if it has just one unassigned literal remaining
 - Ideally, only need to check these clauses
- Each clause "watches" one literal and maintains watching invariant: the watched literal is True or unassigned
 - If the watched literal becomes False, watch another
 - If there are no more True/unassigned literals to watch, then the clause must be empty

1 Watched Literal Scheme

- Watchlists: each literal stores a pointer to a list of clauses currently watching it
- When setting x = T, only need to check watchlist of \overline{x}
 - Suppose we successfully maintain the watching invariant. What can we say about the watchlist of \bar{x} ?

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5

Steps

$$(\overline{1} \vee \overline{2})$$

$$(\boxed{1} \lor 2 \lor \boxed{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т				

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \vee 2 \vee \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т				

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \vee \overline{2} \vee \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	Т			

$$(\overline{1} \vee \overline{2})$$
 Conflict!

$$(\overline{1} \vee 2 \vee \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	Т			

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \vee 2 \vee \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F			

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F			

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F	Т		

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

Conflict!

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F	Т		

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F	F		

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$\left(3 \lor 4 \lor \overline{5}\right)$$

1	2	3	4	5
Т	F	F		

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$\left(3 \vee \overline{4} \vee \overline{5}\right)$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F	F	Т	

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F	F	Т	

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F	F	Т	Т

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

Conflict!

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F	F	Т	Т

$$(\overline{1} \vee \overline{2})$$

$$(\overline{1} \lor 2 \lor \overline{3})$$

$$(3 \lor \overline{4} \lor \overline{5})$$

$$(3 \lor 4 \lor \overline{5})$$

1	2	3	4	5
Т	F	F	Т	F

Unit Propagation (UP)

- A unit clause is a clause containing only one literal
- Unit propagation rule: for any unit clause $\{\ell\}$, we must set $\ell = T$
- Applying unit propagation can massively speed up the backtracking algorithm in practice
 - Combining with the splitting rule can lead to a "domino effect" of cascading unit propagation

The DPLL Algorithm

- Davis-Putnam-Logemann-Loveland (1962)
- Improved upon naive backtracking with unit propagation
- Still the basic algorithm behind most state-of-the-art SAT solvers today!


```
\begin{aligned} & \text{dpll}\,(\varphi): \\ & \text{if } \varphi = \emptyset\colon \text{return TRUE} \\ & \text{if } \epsilon \in \varphi\colon \text{return FALSE} \\ & \text{if } \varphi \text{ contains unit clause } \{\ell\}: \\ & \text{return dpll}\,(\varphi \,|\, \ell) \\ & \text{let } x = \text{pick\_variable}\,(\varphi) \\ & \text{return dpll}\,(\varphi \,|\, x) & \text{OR dpll}\,(\varphi \,|\, \overline{x}) \end{aligned}
```


$$\left(\begin{array}{c} \overline{1} \vee \overline{2} \\ \end{array} \right)$$

$$\left(\begin{array}{c} \overline{1} \vee \overline{2} \\ \end{array} \right)$$

$$\left(\begin{array}{c} 1 \vee \overline{2} \vee \overline{4} \\ \end{array} \right)$$

$$\left(\begin{array}{c} 1 \vee 2 \vee \overline{4} \\ \end{array} \right)$$

Steps

$$\left(\overline{1}\vee\overline{2}\right)$$
 Unit!

$$(\overline{1} \lor 2)$$

$$\left(1 \vee \overline{2} \vee 3\right)$$

$$\left(\begin{array}{c|c} 1 \lor 2 \lor \overline{4} \end{array}\right)$$

1	2	3	4
Т			

$$(\overline{1} \vee \overline{2})$$

Conflict!

$$\left(1 \vee \overline{2} \vee 3\right)$$

$$\left(\begin{array}{c|c}1 \lor 2 \lor \overline{4}\end{array}\right)$$

1	2	3	4
Т	F		

$$(\overline{1} \lor 2)$$

$$(1 \lor \overline{2} \lor 3)$$

$$(1 \lor 2 \lor \overline{4})$$

1	2	3	4
F			

$$(\overline{1} \lor 2)$$

$$\left(\begin{array}{c|c} \mathbf{1} \lor \mathbf{\overline{2}} \lor \mathbf{3} \end{array}\right)$$
 Unit

1	2	3	4
F	Т		

$$(\overline{1} \lor 2)$$

$$1 \vee \overline{2} \vee 3$$

$$\left(\begin{array}{c|c}1\vee2\vee\overline{4}\end{array}\right)$$

1	2	3	4
F	Т	Т	

Engineering Matters

- Since the main DPLL subroutine might run exponentially many times, every speedup counts
- DPLL spends by far the most time on UP
 - o How can we speed this up?
- Although DPLL has a natural recursive formulation, recursion is slow — lots of overhead
 - We can make DPLL iterative using a stack

2 Watched Literals (2WL)

- Key observation: a clause can only be unsatisfied or unit if it has at most one non-False literal
 - Optimize unit propagation: only visit those clauses
- Each clause "watches" two literals and maintains
 watching invariant: the watched literals are not False,
 unless the clause is satisfied
 - If a watched literal becomes False, watch another
- If can't maintain invariant, clause is unit (can propagate)

2 Watched Literals (2WL)

- Still use watchlists (list of all clauses watching each lit)
- Best part: since backtracking only unassigns variables, it can never break the 2WL invariant
 - Don't need to update watchlists

Iterative DPLL

- A **decision** refers to any time our algorithm *arbitrarily* assigns a variable (without being forced to do so)
 - Selecting a literal and assigning it True is a decision
 - Unit propagation & reassigning selected literal after backtracking are not decisions
- All assignments implied by the ith decision are said to be on the ith decision level
 - Can assignments ever be on the zeroth decision level?

Iterative DPLL

- Maintain a stack with the assignments from each decision level
 - Whenever we make a new decision, copy the current assignment onto the top of the stack
- To backtrack: pop the current assignment off the stack, restoring the previous one

Assignment Stack

Т	Т	F	Т	Т
Т	Т	F		
Т				
1	2	3	4	5

Set
$$2 = T$$
. Propagate $3 = F$.

Set
$$1 = T$$

Pop	o! 「	\Rightarrow	Т	Т	F	Т	Т	Backtrack!
	Т	Т	F			Set	2 =	T. Propagate $3 = F$.
	Т						1 =	
	1	2	3	4	5			

Iterative DPLL (Pseudocode)


```
dpll(\varphi):
    if unit propagate() = CONFLICT: return UNSAT
    while not all variables have been set:
        let x = pick variable()
        create new decision level
        set x = T
        while unit propagate() = CONFLICT:
            if decision level = 0: return UNSAT
            backtrack()
            set x = F
   return SAT
```


- Propagation queue: queue of literals that have been set to False, so the clauses watching them must watch a different literal
- Whenever we set a literal x to True, add \overline{x} to queue


```
unit propagate():
    while prop queue is nonempty:
        remove first literal x
        for each clause C initially watching x:
            let y = other literal watched by C
            if y = T: continue
            else make C watch non-False lit instead of x
            if none exists:
                if y = F:
                    return CONFLICT
                else set y = T
```


A. Biere, Handbook of satisfiability. Amsterdam: IOS Press, 2009.

N. Eén and N. Sörensson, "An Extensible SAT-solver," *Theory and Applications of Satisfiability Testing Lecture Notes in Computer Science*, pp. 502–518, 2004.