Uncertainty Quantification of Low-Dimensional Models

Anthony DeGennaro Scott Dawson Clarence W. Rowley III Princeton University

APS 68th Annual DFD Meeting Boston, MA November 2015

Outline

Introduction

Methodology

Example: Cylinder Flow

Topic

Introduction

- 2 Methodology
- Example: Cylinder Flow

Motivation

- Low-dimensional modeling is a useful method for examining high-dimensional data
 - Proper Orthogonal Decomposition (POD)
 - Data compression
 - Dominant spatial features
 - Inexpensive models
 - Dynamic Mode Decomposition (DMD)
 - Linear description of dynamical system
 - Spatial modes + frequencies
- Uncertainty quantification is a useful method for investigating statistical variations
 - Polynomial Chaos Expansions (PCE)
 - Assumes a-priori probabilistic knowledge of uncertainty
 - Efficient sampling algorithm
 - Accurate surrogate model
- Can we investigate statistical variations in low-dimensional models efficiently/accurately?

Applications

- POD Galerkin Models of Fluid Flows
 - Computationally-inexpensive model
 - Collect data from simulations/experiments
 - Calculate POD of output data
 - Project governing flow equations onto POD modes
- DMD Analysis of Fluid Flows
 - Determine linear modes/frequencies describing flow behavior
- Sensitive to parametric variations/uncertainties
 - Physical parameters (eg. Reynolds number)
 - Boundary conditions
 - Sensor noise

Topic

- Introduction
- 2 Methodology
- 3 Example: Cylinder Flow

Methodology

- Identify source of uncertainty
 - Physical parameters (eg. Reynolds number)
 - Boundary conditions
 - Sensor noise
- Write a probabilistic description of uncertainty (ie. PDF)
- Utilize efficient sampling of probability space
 - Quadrature nodes corresponding to a spectral basis
- Collect simulation data using discrete points in probability space
 - Immersed boundary projection method (IBPM) code
- Quantify uncertainty in outputs
 - POD modes
 - DMD modes
 - DMD eigenvalues

Polynomial Chaos Expansions (PCE)

- Polynomial Chaos Framework ¹
 - Let $\mathbf{Z}=(Z_1\dots Z_d)$ be d random variables with PDF $\rho(\mathbf{Z})$ that parameterize ice
 - Let $\{\Phi_k\}$ denote the set of polynomials which are orthogonal w.r.t. $\rho(\mathbf{Z})$
 - Let $y(\mathbf{Z})$ denote the mapping from \mathbf{Z} to an aerodynamic performance metric
- Probabilistic Collocation Method:
 - Representation

$$y(\mathbf{Z}) \approx \sum_{|i|=0}^{N} y_i \Phi_i(\mathbf{Z})$$

Orthonormality

$$\langle f, g \rangle = \int_{\Gamma} f(\mathbf{z}) g(\mathbf{z}) \rho(\mathbf{z}) d\mathbf{z}$$

 $\langle \Phi_i, \Phi_i \rangle = \delta_{ii}$

Quadrature

$$y_k = \langle y, \Phi_k \rangle \approx \sum_{i=0}^{Q} y(\mathbf{Z}^{(k)}) \Phi_k(\mathbf{Z}^{(k)}) w_k$$

¹Xiu D. Numerical Methods for Stochastic Computations: A Spectral Method Approach.
Princeton University Press, 2010.

Polynomial Chaos Expansions (PCE)

Monte Carlo

$$y \approx \delta(\xi - \xi_k)$$

- Draw random samples from distribution
- Function exists at discrete points

Polynomial Chaos

$$y\approx\sum_{i}^{Q}c_{i}\psi_{i}(\xi)$$

- Use Q quadrature points
- Construct (Q-1) order polynomial fit

Polynomial Chaos Expansions (PCE)

Monte Carlo Sampling

Quadrature Sampling Grid

Topic

Introduction

- Methodology
- Example: Cylinder Flow

Setup

Small Spike

Medium Spike

Large Spike

Range of Flow Behavior

Cylinder, Re = 100

Perturbed Cylinder, Re = 100

Statistical Variance in Modes

Projection Error

- Choose the Q-1 points halfway between Q quadrature nodes
- ullet Calculate true modes and interpolated modes at Q-1 points
- Compare error between true modes and interpolated modes vs. true modes and mean modes

$$N(Y) \equiv max(||Y(\xi_k) - \Phi(\xi_k)||_2)$$
 , $k = 1...Q - 1$

MODE	$N(y_P)$	$N(\overline{y})$	$N(\overline{y})/N(y_P)$
1	4e-3	3e-1	75
2	3e-2	9e-1	30
3	2e-1	1.2	6
4	7e-1	1.5	2
5	2e-1	1.8	9

PCE model captures range of symmetrical to asymmetrical modes

DMD Eigenvalues

