TABLE SI: Summary Statistics, by Lesion Classification

Available Data, Parameter	Malignant Lesions	Benign Lesions	
CT quantitative			
Unenhanced attenuation (HU)	33.1 (24.8-42.6)	11.2 (-34.3 to 55.1)	
Portal venous phase attenuation (HU)	76.6 (33.0-121.6)	75.6 (-29.3 to 156.6)	
Delayed phase attenuation (HU)	64.8 (27.8-88.1)	37.3 (-16.0 to 81.4)	
APEW (%)	40.8 (-94.6 to 63.5)	67.3 (-265.3 to 84.8)	
RPEW (%)	19.0 (-30.1 to 46.5)	54.5 (-27.7 to 1034.4)	
CT descriptive			
Long-axis diameter (cm)	3.45 (1.60-21.20)	3.17 (1.20–12.04)	
Short-axis diameter (cm)	2.18 (1.17-18.30)	2.40 (0.76-10.83)	

Note—Data are median (range). APEW = absolute percentage enhancement washout, RPEW = relative percentage enhancement washout.

TABLE S2: Summary Statistics, by Lesion Classification

		Malignant		Benign	
Available CT Data	Comparison	Affirmative	Alternate	Affirmative	Alternate
Descriptive CT data					
Calcification	Yes vs no	2	20	7	68
Fat	Yes vs no	1	21	8	67
Texture	Homogeneous vs heterogenous	6	16	37	38
Margin	Well- vs ill-defined	20	2	75	0
Medical history	Prior malignancy vs none known	14	8	13	62

Note—Data are number of lesions.

APPENDIX S3: Examples of Using the Probability Predictive Formula

The estimated probability (π) of observing a malignant lesion can be obtained from the equation below, based on the linear combination of the regression coefficients provided in Table 4 in the main text and observed predictor variables:

$$\pi(X_1, X_2, X_3, X_4, X_5, X_6) = \frac{1}{1 + \exp\{-(a + X_1b + X_2c + X_3d + X_4e + X_5f + X_6g)\}}, (1)$$

where X_1 = portal venous phase attenuation (in Hounsfield units), X_2 = delayed phase attenuation (in Hounsfield units), X_3 = absolute percentage enhancement washout (APEW, in %), X_4 = long-axis diameter (in centimeters), X_5 = patient age (in years), and X_6 = medical history (where previous malignancy = 1 and no previous malignancy = 0).

Example I

Suppose we have a patient in whom we observe the following CT quantitative data for an adrenal lesion: unenhanced attenuation, 20 HU; portal venous attenuation, 80 HU; and delayed attenuation, 42.8 HU. The APEW = [(portal venous attenuation - delayed attenuation) / (portal venous attenuation - unenhanced attenuation)] × 100 = <math>[(120 - 55) / (120 - 15)] × 100 = 62%. The probability of malignancy is calculated as follows:

$$\pi (X_1, X_2, X_3) = \frac{1}{1 + \exp\{-[-7.7673 + (80 \times -0.1458) + (42.8 \times 0.2807) + (62 \times 0.0765)]\}}. (2)$$

Thus, the probability of malignancy is 6.5%.

Example 2

Suppose in the above example, we also have access to the following descriptive, demographic and past medical data: maximum long-axis diameter of the adrenal lesion, 3.0 cm; age, 80 years; and positive medical history of a primary malignancy, 1. The probability of malignancy is calculated as follows:

$$\pi (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}) = \frac{1}{1 + \exp \{-[-25.7660 + (80 \times -0.2140) + (42.8 \times 0.4539) + (62 \times 0.1446) + (3.0 \times 0.3278) + (80 \times 0.1193) + (1 \times 4.6300)]\}}.$$
 (3)

Thus, the probability of malignancy is 66.0%.