Note on Induced Norms

Thomas Maierhofer

May 17, 2019

1 Background: p Norms for Vectors

This section formally introduces p norms with a focus on the special cases $p = 0, 1, 2, \infty$. The p norm of a vector $x \in \mathbb{R}^d$ is denoted as $||x||_p$ and defined as

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p},$$

where $|x_i| = \text{sign}(x_i)x_i$ denotes the absolute value. In literature p norms are often denoted as l_p norms.

The most important special cases is the 2 norm, a.k.a. Euclidean norm. It is defined as

$$||x||_2 = \sqrt{\sum_{i=1}^d x_i^2}.$$

Other important cases include the 0 norm,

$$||x||_0 = \sum_{i=1}^d \mathbb{1}\{x_i \neq 0\},$$

the 1 norm, a.k.a. Manhattan norm,

$$||x||_1 = \sum_{i=1}^d |x_i|,$$

and the ∞ norm, a.k.a. maximum norm,

$$||x||_{\infty} = \max_{i=1,\dots,d} |x_i|.$$

A unit ball for a norm $||\cdot||$ contains all points with distance 1 around the origin, i.e. all points $\{x: ||x|| = 0\}$. The unit balls for the 1, 2, and ∞ norm in \mathbb{R}^2 are depicted in Figure 1. Note that for one-dimensional x, i.e. $x \in \mathbb{R}$, all p-norms conflate to the absolute value for p > 0.

Figure 1: Unit balls in \mathbb{R}^2 of the l_1 (left), l_2 (center), an l_{∞} norm (right).

1.1 Example: p-Norm of a Vector

The 5 dimensional vector

$$v = \begin{pmatrix} 1\\1\\-3\\-5 \end{pmatrix}$$

has 1 norm

$$||v||_1 = \sum_{i=1}^d |x_i|$$

= 1+1+3+5
= 10,

has 2 norm

$$||v||_2 = \sqrt{\sum_{i=1}^d x_i^2}$$

$$= \sqrt{1^2 + 1^2 + (-3)^2 + (-5)^2}$$

$$= \sqrt{36}$$

$$= 6.$$

and ∞ norm

$$||v||_{\infty} = \max_{i} |x_{i}|$$

$$= \max(1, 1, 3, 5)$$

$$= 5.$$

2 Induced Vector Norms

An induced vector norm is a function of an arbitrary vector $v \in \mathbb{R}^{n \times d}$ of the form

$$||v||_p = \sup_{\{x \in \mathbb{R}^d: ||x||_p \le 1\}} |v^T x|,$$

where $|\cdot|$ denotes the absolute value, i.e. a q-norm with arbitrary q>0. Intuitively, the induced norm of a vector v measures, or more precisely limits, how far it can project a vector x. In order for this statement to make sense, we need to limit the size of applicable vectors x by limiting the q norm of x to be 1 (note that the limitation $||x||_p \le 1$ simplifies is in practice $||x||_p = 1$). The size of the projection $v^T x$ is measured using the absolute value.

For some pairs of p and q, the induced norm $||A||_{p\to q}$ is analytically directly accessible, see Table 1.

Table 1: Analytically accessible induced vector norms $||v||_p$ for domain p.

		Induced norm	Maximizing input \hat{x}	remarks on \hat{x}
n	1	$ v _{\infty}$	$e_i, i = \arg\max v_j $	\hat{x} is one hot vector with
Р			j	1 where $ v_i $ is largest
	2	$ v _{2}$	$\frac{1}{ v _2}v$	\hat{x} is scaled version of v
				$\int_{1}^{\infty} v_{i} < 0$
	∞	$ v _{1}$	sign(v)	$\hat{x}_i = \begin{cases} 1 & v_i \le 0 \\ -1 & v_i < 0 \end{cases}$
				$(-1 v_i < 0$

2.1 Example: Induced Norm of a Vector of length 4

To illustrate the induced norm consider the following vector

$$v = \begin{pmatrix} 1 \\ 1 \\ -3 \\ -5 \end{pmatrix}.$$

Its induced norms and maximizing input vector are given in Table 2.

Table 2: Analytically accessible induced vector norms $||v||_p$ for domain p.

		Induced norm	Maximizing input \hat{x}
g	1	$ v _{\infty} = 5$	$(e_i, i = \underset{i}{\operatorname{arg max}} v_j) = (0, 0, 0, 1)$
r	2	$ v _2 = 6$	$\frac{1}{ v _2}v = \frac{1}{6}(1, 2, -3, -5) = (\frac{1}{6}, \frac{1}{6}, -\frac{1}{2}, -\frac{5}{6})$
	∞	$ v _1 = 10$	sign(v) = (1, 1, -1, -1)

3 Induced Matrix Norms

An induced matrix norm is a function of an arbitrary matrix $A \in \mathbb{R}^{n \times d}$ of the form

$$||A||_{p \to q} = \sup_{\{x \in \mathbb{R}^d : ||x||_p \le 1\}} ||Ax||_q.$$

Intuitively, the induced norm of a matrix A measures, or more precisely limits, how far it can distort a vector x. In order for this statement to make sense, we

need to limit the size of applicable vectors x by limiting the p norm of x to be 1 (note that the limitation $||x||_p \le 1$ simplifies is in practice $||x||_p = 1$). The size of the "distorted x" Ax is measured using the q norm. A common notational shorthand when p = q is to write

$$||A||_p = ||A||_{p \to p}.$$

For some pairs of p and q, the induced norm $||A||_{p\to q}$ is analytically directly accessible, see Table 3.

Table 3: Analytically accessible induced norms $||A||_{p\to q}$ for domain p and codomain q. NP hard stands for "non-deterministic polynomial-time hardness" which means not computable for our purposes.

		q		
		1	2	∞
p	1	$\max l_1 \text{ norm of a } $	$\max l_2 \text{ norm of a}$ column	$\max l_{\infty} \text{ norm of a}$
	2	NP-hard	max singular value	
	∞	NP-hard	NP-hard	row $\max l_1$ norm of a row

3.1 Example: Induced Norm of a 2×2 matrix

In order to get a better handle on this theoretical concept, consider the induced norm of the following matrix

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}.$$

The applicable input vectors $\{x \in \mathbb{R}^d : ||x||_p = 1\}$ for the $||\cdot||_p = 1, 2$ and ∞ norm, are depicted in Figure 1. All x on the unit circle have $||x||_p = 1$, for $p = 1, 2, \infty$ respectively. Note that the applicable input vectors x are **not** specific to the choice of A but only to the choice of the p. In order to find the supremum over all applicable input vectors, all applicable x are multiplied by x. The points x are depicted in Figure 2. The induced norm is defined as the maximum x norm of all points x

We can use Table 3 to compute $||||A||_{p\to q}$ for some combinations of p and q, see values reported in Table 4. Figure 3 shows Ax with q-norm circles of radius $||A||_{p\to q}$ around the origin. The intersection of the q norm circles with $Ax: ||x||_p = 1$ shows which Ax achieves the induced norm, i.e. the $\sup_x ||Ax||_q$.

Figure 2: Projection of the unit circles by A, i.e. Ax for every point $\{x \in \mathbb{R}^d : ||x||_p = 1\}$ for p = 1 (left), p = 2 (center), and $p = \infty$ (right).

Figure 3: The colored circles are unit circles of size $||A||_{p\to q}$ for every point $x, ||x||_p = 1$ with p = 1 (left), p = 2 (center), an $p = \infty$ (right). The 1 norm is depicted in red, the 2 norm in green, and the ∞ norm in blue. Induced norms that are hard to compute were omitted.

Table 4: Analytically accessible results $||A||_{p\to q}$ for our example. These values match up with the size of the colored circles in Figure 3.

			${ m q}$	
		1	2	∞
n	1	$\max(1 + 3 , 1 + 2) = 4$ NP-hard	$\max(\sqrt{10}, \sqrt{5}) \approx$	$\max(3 , 2) = 3$
Р		2) = 4	3.16	
	2	NP-hard	$\sigma_{\rm max} \approx 3.62$	$\max(\sqrt{10}, \sqrt{5}) \approx$
				3.16
	∞	NP-hard	NP-hard	$\max(1 + 3 , 1 +$
				2) = 4