Efficient file sharing between host and unikernel

DIPLOMA THESIS
Fotis Xenakis

Supervisor: Nectarios Koziris

30/10/2020

Cloud computing & virtualization

In the beginning there was the **cloud**:

- Utility computing
- Everything as a Service
- Large scale

Relying on **virtualization**:

- Elasticity for the provider
- Isolation for the user

Operating systems

General-purpose guest OS:

Imposes isolation

In practice:

Only runs a single application

Could be more **efficient**. Bloat!

GUS	Application
GKS	Guest OS
HUS	Hypervisor
HKS	Host OS
	Hardware

Unikernels

"OS" + application:

- Library OS
- Single address space

Thus:

- Efficiency (size, memory, time)
- Performance(?)

OSv: Linux compatibility, many features, many(!) file systems

GKS	Unikernel	
HUS	Hypervisor	
HKS	Host OS	
	Hardware	

File systems & virtualization

Traditionally:

- Guest: disk (block device)
- Host: **file** (opaque)
- Indirection

Access to the host fs:

- High level
- Easier for the guest
- Access from the host too

Virtio-fs

Until now:

- NFS, SMB, VirtFS...
- Network

virtio-fs:

- Virtualization-native
- virtio, FUSE
- virtiofsd

Virtio-fs DAX window

Shared guest⇔host memory:

- mmap()
- No VMEXIT
- Better performance

Thesis goals

Technical:

- virtio-fs DAX window in OSv
- Read-only
- Boot from virtio-fs

...or not:

- Contribution to FOSS project
- Practical work ⇒ practical value

Virtio-fs in OSv

Pre-existing, elementary implementation

Driver:

- Low-level PCI device handling
- Agnostic to FUSE

File system:

- High-level fs operations
- Knows FUSE

DAX window in OSv

Driver:

PCI

File system:

- map alignment
- FUSE_SETUPMAPPING
- FUSE_REMOVEMAPPING

DAX window manager

Problem: Solution:

Multiple mappings

- Chunks
- Stack (LIFO)

Boot from virtio-fs

Initially:

- Boot fs: always ramfs
- Root fs: dynamically rofs ⇒ ZFS ⇒ ramfs

Eventually:

- Optional kernel command line option
- Root fs: rofs, ZFS, virtio-fs, ramfs
- Backwards compatible

Changes to kernel and tools

Evaluation

Various scenarios:

- Microbenchmark
- Startup time
- Real-world application

Microbenchmark

Flexible I/O tester (fio)

- 1 file / multiple files
- Total size 1 GiB
- Serial / random reading
- Throughput

Comparison:

- Host (baseline)
- Linux: virtio-fs, virtio-fs-DAX
- OSv: virtio-fs, virtio-fs-DAX, ZFS, rofs, ramfs, NFS

Microbenchmark results (single file)

Microbenchmark results (multiple files)

Startup time

Simple web (spring) application

- OSv boot
- Root fs mount
- Application initialization

Comparison:

OSv: virtio-fs, virtio-fs-DAX,
 ZFS, rofs, ramfs

Application benchmark

Nginx static web server:

- Many files ~MiB
- Vegeta HTTP load client
- Requests / second

Comparison:

OSv: virtio-fs, virtio-fs-DAX,
 ZFS, rofs, ramfs

Summary

Technical conclusions:

- virtio-fs in OSv useful (changes without rebuilding)
- DAX window ⇒ excellent performance
- Pleasant development on OSv (like application development)

Non-technical conclusions:

- Open, supportive communities
- Contribution

Contribution

OSv has had read-only DAX support since this commit in June - github.com/cloudius-syste...

You are welcome to write a guest post on the QEMU blog (https://qemu.org/blog/) that gives an overview of OSv and the virtio-fs device interface. I imagine people would be interested in learning about both these topics.

The git repo for the QEMU website and blog is here: https://gitlab.com/gemu-project/gemu-web

You can create a new blog post by dropping a Markdown file into _posts/. Images can be added to screenshots/ directory.

The blog post can be sent to the QEMU mailing list using git-send-email(1) with Thomas Huth <thuth redhat com> CCed. Please also CC virtio-fs redhat com and we'll review it.

Stefan

Thank you!

Questions?