Premier Principe

Pour un système thermodynamique au repos

Variation d'énergie Travail reçu au cours Chaleur recue au cours interne du système de la transformation de la transformation

Pour une transformation isochore W = 0

$$\Delta U = Q$$

L'énergie interne est la bonne fonction d'état pour les transformations isochores

Application : compression isotherme d'un gaz parfait

Travail reçu par le gaz :
$$W=\int_{V_1}^{V_2} p\,\mathrm{d}V = -nRT_1\int_{V_1}^{V_2} \frac{\mathrm{d}V}{V} = -nRT\ln\left(\frac{V_2}{V_1}\right)$$

Variation d'énergie interne : $\Delta U=0 \qquad {\rm Car~la~temp\'erature~est~constante,~et~pour~un~gaz~parfait,~U~ne~d\'epend~que~de~T}$

Premier principe:

$$\Delta U = W + Q = 0 \qquad \text{donc} \qquad Q = -W$$

Enthalpie

Pour une transformation monobare

$$\Delta H = Q$$

L'enthalpie est la bonne fonction d'état pour les transformations monobares

ex : Chauffer de l'eau – dans une casserole

Enthalpie de changement d'état

Variation d'enthalpie lors d'un changement d'état à pression constante

 h_v : enthalpie massique de vaporisation (J g⁻¹) h_f : enthalpie massique de fusion (J g⁻¹)

 $\vec{h_s}$: enthalpie massique de sublimation (J g⁻¹)

$Application: {\tt calorim\'etrie}$

On mélange dans un calorimètre une masse m_l d'eau liquide à la température T_l à une masse m_σ de glace à la température T_σ . On suppose que toute la glace fond, déterminer la température

réfrigérateur

$$\Delta H = Q = 0 = m_l c_l (T_f - T_l) + m_g c_g (0 - T_g) + 0$$
adiabatique refroidissement du liquide de la glace de la glace

$$T_f = T_l + m_g \frac{c_g T_g - h_f}{m_l c_l}$$

Second principe

Il existe une fonction d'état extensive appelée entropie, notée Stelle que lors d'une transformation :

$$\Delta S = S_{\text{\'echang\'ee}} + S_{\text{cr\'e\'ee}}$$

$$S_{\text{cr.}}^{\downarrow} \geqslant 0$$

 $S_{\rm cr.} = 0$

Pour une transformation <u>réversible</u>

Une transformation physiquement possible dans les deux sens

Causes d'irreversibilité

Frottements

Différence de température

Différence de pression

Principes Thermodynamique

Machines thermiques

Premier principe : $\Delta U = W + Q_c + Q_f = 0$

Second principe: $\Delta S = S_{\text{ech.}} + S_{\text{cre.}} \geqslant \frac{Q_c}{T_c} + \frac{Q_f}{T_f}$

|égalité en cas de cycle réversible

Rendement du moteur : $\eta=\frac{-W}{Q_c}=\frac{Q_c+Q_f}{Q_c}=1+\frac{Q_f}{Q_c}\bigvee^{\P}_{Q_c}\frac{1-\frac{T_f}{T_c}}{1-\frac{T_f}{T_c}}$

Premier principe : $\Delta U = W + Q_c + Q_f = 0$

Second principe: $\Delta S = S_{\text{ech.}} + S_{\text{cre.}} \geqslant \frac{Q_c}{T_c} + \frac{Q_f}{T_f}$

Efficacité du frigo : $e=\frac{Q_f}{W}=-\frac{Q_f}{Q_f+Q_c} \left| \stackrel{\leqslant}{\underset{T_f}{\longleftarrow}} \frac{1}{\frac{T_c}{T_f}-1} \right|$

|égalité en cas de cycle réversible