Chapter 1

Vector Spaces

1.1 Fields

Definition 1.1. A field is a set F with two operations, called **addition** (denoted by +) and **multiplication** (denoted by \cdot), which satisfy the following axioms.

- (A 1) If $a \in F$ and $b \in F$, then $a + b \in F$.
- (A 2) a+b=b+a for all $a,b \in F$.
- (A 3) (a+b) + c = a + (b+c) for all $a, b, c \in F$.
- (A 4) There is an element 0_F in F such that $0_F + a = a$ for all $a \in F$.
- (A 5) For each $a \in F$ there is an element -a in F such that $a + (-a) = 0_F$.
- (M 1) If $a \in F$ and $b \in F$, then $a \cdot b \in F$.
- (M 2) $a \cdot b = b \cdot a$ for all $a, b \in F$.
- (M 3) $(a \cdot b) + c = a + (b \cdot c)$ for all $a, b, c \in F$.
- (M 4) There is an element 1_F in $F \setminus \{0_F\}$ such that $1_F \cdot a = a$ for all $a \in F$.
- (M 5) For each $a \in F \setminus \{0_F\}$ there is an element a^{-1} in F such that $a \cdot a^{-1} = 1_F$.
 - (D) $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.

Remark.

- For simplification, we usually write ab instead of $a \cdot b$.
- The axioms labeled with "A" and "M" are usually called the **axioms of addition** and the **axioms of multiplication**, respectively. The axiom labeld with "D" is the **distributive law**.
- The elements 0_F and 1_F are usually called the **additive identity** and the **multiplicative identity** of F, respectively. Also, -a and a^{-1} are called the **additive inverse** and the **multiplicative inverse** of a, respectively.
- Subtraction and division can be defined using additive and multiplicative inverses.

Example. \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.

Example. Let $\mathbb{B} = \{0, 1\}$ and the operations \oplus and \odot are defined as follows.

$$\begin{array}{c|ccccc} \oplus & 0 & 1 & & \odot & 0 & 1 \\ \hline 0 & 0 & 1 & & \hline 0 & 0 & 0 \\ 1 & 1 & 0 & & 1 & 0 & 1 \\ \end{array}$$

Then \mathbb{B} is a field with \oplus and \odot as addition and multiplication, respectively.

Proposition 1.2. Let F be a field with $a, b, c \in F$.

- (a) If a + b = a + c, then b = c.
- (b) If a + b = a, then $b = 0_F$.
- (c) If $a + b = 0_F$, then b = -a.
- (d) -(-a) = a.

Proof.

(a) It can be proved by

$$b = 0_F + b$$

$$= (-a + a) + b$$

$$= -a + (a + b)$$

$$= -a + (a + c)$$

$$= (-a + a) + c$$

$$= 0_F + c$$

$$= c.$$

- (b) By applying (a), it follows from $a + b = a + 0_F$ that $b = 0_F$.
- (c) By applying (a), it follows from a + b = a + (-a) that b = -a.
- (d) Since $-a + a = 0_F$, we have a = -(-a) by (c).

Proposition 1.3. Let F be a field with $a, b, c \in F$ and $a \neq 0_F$.

- (a) If $a \cdot b = a \cdot c$, then b = c.
- (b) If $a \cdot b = a$, then $b = 1_F$.
- (c) If $a \cdot b = 1_F$, then $b = a^{-1}$.
- (d) $(a^{-1})^{-1} = a$.

Proof. The proof is omitted since it is similar to that of Proposition 1.2. \Box

Proposition 1.4. Let F be a field with $a, b \in F$.

(a) $0_F \cdot a = 0_F$.

(b) $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$.

(c)
$$(-a) \cdot (-b) = a \cdot b$$
.

Proof.

(a) Since

$$0_F \cdot a + 0_F \cdot a = (0_F + 0_F) \cdot a = 0_F \cdot a,$$

we have $0_F \cdot a = 0_F$ by Proposition 1.2 (b).

(b) Since

$$(-a) \cdot b + a \cdot b = (-a + a) \cdot b = 0_F \cdot b = 0_F$$

we have $(-a) \cdot b = -(a \cdot b)$ by Proposition 1.2 (c). The other half can be proved similarly.

(c) By applying (b) twice, we have

$$(-a) \cdot (-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b.$$

1.2 Vector Spaces

Definition 1.5. A vector space over a field F is a set V with two operations, called addition (denoted by +) and scalar multiplication (denoted by ·), which satisfy the following axioms.

- (V 1) If $x \in V$ and $y \in V$, then $x + y \in V$.
- (V 2) x + y = y + x for all $x, y \in V$.
- (V 3) (x+y) + z = x + (y+z) for all $x, y, z \in V$.
- (V 4) There is an element 0_V in V such that $0_V + x = x$ for all $x \in V$.
- (V 5) For each $x \in V$ there is an element -x such that $x + (-x) = 0_V$.
- (V 6) If $a \in F$ and $x \in V$, then $a \cdot x \in V$.
- (V 7) $(a \cdot b) \cdot x = a \cdot (b \cdot x)$ for all $a, b \in F$ and $x \in V$.
- (V 8) $1_F \cdot x = x$ for all $x \in V$.
- (V 9) $a \cdot (x + y) = a \cdot x + a \cdot y$ for all $a \in F$ and $x, y \in V$.
- (V 10) $(a+b) \cdot x = a \cdot x + b \cdot x$ for all $a, b \in F$ and $x \in V$.

Remark.

- For simplification, we usually write ax instead of $a \cdot x$.
- The elements 0_V is usually called the **additive identity** of V, and -x is called the **additive inverse** of x in V.
- Subtraction can be defined using additive inverses.

Examples.

- A field is a vector space over itself, e.g., \mathbb{R} is a vector space over \mathbb{R} .
- \mathbb{C} is a vector space over \mathbb{R} .
- \mathbb{R} is a vector space over \mathbb{Q} .

Examples.

• The set of **n-tuples** with elements from a field F is denoted by F^n . For $x = (x_1, \ldots, x_n) \in F^n$, $y = (y_1, \ldots, y_n) \in F^n$, and $c \in F$, we define the operations of addition and scalar multiplication by

$$x + y = (x_1 + y_1, \dots, x_n + y_n)$$
 and $c \cdot x = (c \cdot x_1, \dots, c \cdot x_n)$.

Then F^n is a vector space over F.

• The set of all $m \times n$ matrices with elements from a field F is denoted by $F^{m \times n}$. For $A, B \in F^{m \times n}$ and $c \in F$, we define the operations of addition and scalar multiplication by

$$(A+B)_{ij} = A_{ij} + B_{ij}$$
 and $(c \cdot A)_{ij} = c \cdot A_{ij}$

for $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$. Then $F^{m \times n}$ is a vector space over F.

• The set of **functions** from a nonempty set S to a field F is denoted by $\mathcal{F}(S, F)$. For $f, g \in \mathcal{F}(S, F)$ and $c \in F$, we define the operations of addition and scalar multiplication by

$$(f+g)(s) = f(s) + g(s)$$
 and $(c \cdot f)(s) = c \cdot f(s)$

for all $s \in S$. Then $\mathcal{F}(S, F)$ is a vector space over F.

• The set of **polynomials** with coefficients from a field F is denoted by $\mathcal{P}(F)$. For $f, g \in \mathcal{P}(F)$ and $c \in F$ with

$$f(t) = \sum_{i=0}^{n} a_i t^i$$
 and $g(t) = \sum_{i=0}^{n} b_i t^i$,

we define the operations of addition and scalar multiplication by

$$(f+g)(t) = \sum_{i=0}^{n} (a_i + b_i)t^i$$
 and $(c \cdot f)(t) = \sum_{i=0}^{n} (c \cdot a_i)t^i$.

Then $\mathcal{P}(F)$ is a vector space over F.

Proposition 1.6. Let V be a vector space with $x, y, z \in F$.

- (a) If x + y = x + z, then y = z.
- (b) If x + y = x, then $y = 0_V$.
- (c) If $x + y = 0_V$, then y = -x.
- (d) -(-x) = x.

Proof. The proof is omitted since it is similar to that of Proposition 1.2. \Box

Proposition 1.7. Let V be a vector space over a field F with $x \in V$ and $a \in F$.

- (a) $0_F \cdot x = 0_V$.
- (b) $a \cdot 0_V = 0_V$.
- (c) $(-a) \cdot x = -(a \cdot x) = a \cdot (-x)$.

Proof. The proof is omitted since it is similar to that of Proposition 1.4. \Box

1.3 Subspaces

Definition 1.8. Let V be a vector space over a field F. Then a subset W of V is called a **subspace** of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

Theorem 1.9. Let V be a vector space over a field F and $W \subseteq V$. Then W is a subspace of V if the following conditions hold.

- (a) $0_V \in W$.
- (b) $x + y \in W$ for all $x, y \in W$.
- (c) $ax \in W$ for all $x \in W$ and $a \in F$.

Proof. Since a vector in W is also in V, $(V\ 2)$, $(V\ 3)$, $(V\ 7)$, $(V\ 8)$, $(V\ 9)$ and $(V\ 10)$ in Definition 1.5 hold trivially. Furthermore, (a) implies $(V\ 4)$, (b) implies $(V\ 1)$, (c) implies $(V\ 6)$, and $(V\ 5)$ is also true since

$$-x = -(1_F x) = (-1_F)x \in W$$

holds for all $x \in W$. Thus, W is a vector space over F.

Corollary 1.10. Let V be a vector space over a field F and $W \subseteq V$. Then W is a subspace of V if and only if the following conditions hold.

- (a) $0_V \in W$.
- (b) $ax + y \in W$ for all $x, y \in W$ and $a \in F$.

Proof. (\Rightarrow) Straightforward. (\Leftarrow) For all $x, y \in W$ and $a \in F$, we have

$$x + y = 1_F x + y \in W$$
 and $ax = ax + 0_V \in W$.

Thus, W is a subspace of V by Theorem 1.9.

Example. The set of polynomials in $\mathcal{P}(F)$ with degree not greater than n is denoted by $\mathcal{P}_n(F)$, where the **degree** of a nonzero polynomial

$$f(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_m t^m$$

is defined to be the largest integer n such that $a_n \neq 0_F$, and the degree of zero polynomial is defined to be -1. Then one can verify that $\mathcal{P}_n(F)$ is a subspace of $\mathcal{P}(F)$.

Examples.

- An $n \times n$ matrix A is called **diagonal** if $A_{ij} = 0_F$ for all $i, j \in \{1, ..., n\}$ with $i \neq j$. Then one can verify that the set of $n \times n$ diagonal matrices is a subspace of $F^{n \times n}$.
- The **trace** of an $n \times n$ matrix A, denoted by tr(A), is defined by

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

Then one can verify that the set of $n \times n$ matrices that have trace equal to 0_F is a subspace of $F^{n \times n}$.

Proposition 1.11. Let V be a vector space and let W_1 and W_2 be subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

Proof. Since W_1 and W_2 are subspaces of V, we have $0_V \in W_1 \cap W_2$. Furthermore, for each $x, y \in W_1 \cap W_2$ and for each $a \in F$, we have $ax + y \in W_1 \cap W_2$ by Corollary 1.10. Thus, $W_1 \cap W_2$ is a subspace of V.

Example. Let W_1 be the set of $n \times n$ diagonal matrices. Let W_2 be the set of $n \times n$ matrices that have trace equal to 0_F . Then since both W_1 and W_2 are subspaces of $F^{n \times n}$, we can conclude that $W_1 \cap W_2$ is also a subspace of $F^{n \times n}$.

Definition 1.12. Let V be a vector space and let $S_1, S_2 \subseteq V$. Then the **sum** of S_1 and S_2 , denoted by $S_1 + S_2$, is the set

$$\{x + y : x \in S_1 \text{ and } y \in S_2\}.$$

Proposition 1.13. Let V be a vector space and let W_1 and W_2 be subspaces of V. Then the following statements are true.

- (a) $W_1 + W_2$ is a subspace of V.
- (b) If U is a subspace of V with $W_1 \cup W_2 \subseteq U$, then $W_1 + W_2 \subseteq U$.

Proof.

(a) We have $0_V = 0_V + 0_V \in W_1 + W_2$. For each $x, y \in W_1 + W_2$ and for each $a \in F$, by Definition 1.12 there exist $x_1, y_1 \in W_1$ and $x_2, y_2 \in W_2$ such that $x = x_1 + x_2$ and $y = y_1 + y_2$. Thus,

$$ax + y = a(x_1 + x_2) + (y_1 + y_2)$$

$$= (ax_1 + ax_2) + (y_1 + y_2)$$

$$= (ax_1 + y_1) + (ax_2 + y_2)$$

$$\in W_1 + W_2.$$

(b) Let x be a vector in $W_1 + W_2$. Then by Definition 1.12 there exists $x_1 \in W_1$ and $x_2 \in W_2$ such that $x = x_1 + x_2$. We have $x_1 \in U$ since $W_1 \subseteq U$. Also, we have $x_2 \in U$ since $W_2 \subseteq U$. It follows that $x = x_1 + x_2 \in U$, and thus $W_1 + W_2 \subseteq U$.

1.4 Spanning Sets

Definition 1.14. Let V be a vector space over a field F and let $S \subseteq V$. Then a vector $x \in V$ is called a **linear combination** of S if there exist scalars $a_1, \ldots, a_n \in F$ and vectors $x_1, \ldots, x_n \in S$ for some nonnegative integer n such that

$$x = \sum_{i=1}^{n} a_i x_i.$$

Remark.

- If n = 0, then the sum in the right hand side is 0_V since nothing are added up. Thus, 0_V is a linear combination of any subset of V.
- Note that n should be finite. Thus, in the vector space \mathbb{R} over the field \mathbb{Q} , e is not a linear combination of \mathbb{Q} even if we have

$$e = \sum_{i=0}^{\infty} \frac{1}{i!}.$$

Definition 1.15. Let V be a vector space over a field F and let $S \subseteq V$. Then the **span** of S, denoted span(S), is defined as the set of all linear combinations of S.

Theorem 1.16. Let V be a vector space over F and let $S \subseteq V$. Then the following statements are true.

- (a) $\operatorname{span}(S)$ is a subspace of V.
- (b) If U is a subspace of V such that $S \subseteq U$, then $\operatorname{span}(S) \subseteq U$.

Proof.

(a) Let $c \in F$ and $x, y \in \text{span}(S)$. Then there exist scalars $a_1, \ldots, a_n \in F$ and vectors $x_1, \ldots, x_n \in S$ such that

$$x = a_1 x_1 + \dots + a_n x_n.$$

Also, there exist scalars $b_1, \ldots, b_n \in F$ and vectors $y_1, \ldots, y_m \in S$ such that

$$y = b_1 y_1 + \dots + b_n y_m.$$

Thus, we have

$$cx + y = c(x_1 + \dots + x_n) + (y_1 + \dots + y_m)$$

= $cx_1 + \dots + cx_n + y_1 + \dots + y_m$
 $\in \operatorname{span}(S).$

Furthermore, $0_V \in \text{span}(S)$. Hence, span(S) is a subspace of V by Corollary 1.10.

(b) Let $x \in \text{span}(S)$. Then there exist scalars $a_1, \ldots, a_n \in F$ and vectors $x_1, \ldots, x_n \in S$ such that

$$x = a_1 x_1 + \dots + a_n x_n.$$

Since $S \subseteq U$, we have $x_1, \ldots, x_n \in U$, and it follows that $x = a_1 x_1 + \cdots + a_n x_n \in U$ due to the closeness of U. Thus, span $(S) \subseteq U$.

Definition 1.17. Let V be a vector space and let $S \subseteq V$. If $\operatorname{span}(S) = V$, then S is called a **spanning set** of V, and we also say S **spans** V.

Example. $\{(0,1,1),(1,0,1),(1,1,0)\}$ is a spanning set of \mathbb{R}^3 since for any $x,y,z\in\mathbb{R}$,

$$(x,y,z) = \frac{-x+y+z}{2} \cdot (0,1,1) + \frac{x-y+z}{2} \cdot (1,0,1) + \frac{x+y-z}{2} \cdot (1,1,0).$$

Proposition 1.18. Let V be a vector space and let $R, S \subseteq V$.

- (a) $S \subseteq \operatorname{span}(S)$.
- (b) If $R \subseteq S$, then $\operatorname{span}(R) \subseteq \operatorname{span}(S)$.
- (c) S = span(S) if and only if S is a subspace of V.
- (d) $\operatorname{span}(R \cup S) = \operatorname{span}(R) + \operatorname{span}(S)$.

Proof.

- (a) Straightforward.
- (b) It is true since a linear combination of a subset of S is also a linear combination of S.
- (c) (\Rightarrow) Straightforward from Theorem 1.16 (a).
 - (\Leftarrow) Note that any linear combination of S is in S due to closeness of addition and scalar multiplication in S. Thus, $\operatorname{span}(S) \subseteq S$, and it follows that $S = \operatorname{span}(S)$.
- (d) Since $R \subseteq \operatorname{span}(R)$ and $S \subseteq \operatorname{span}(S)$, we have $R \cup S \subseteq \operatorname{span}(R) + \operatorname{span}(S)$. Thus, by Theorem 1.16, we have $\operatorname{span}(R \cup S) \subseteq \operatorname{span}(R) + \operatorname{span}(S)$. On the other side, since

$$\operatorname{span}(R) \subseteq \operatorname{span}(R \cup S)$$
 and $\operatorname{span}(S) \subseteq \operatorname{span}(R \cup S)$,

we can conclude that $\operatorname{span}(R) \cup \operatorname{span}(S) \subseteq \operatorname{span}(R \cup S)$. Thus, $\operatorname{span}(R) + \operatorname{span}(S) \subseteq \operatorname{span}(R \cup S)$ by Proposition 1.13.

1.5 Linearly Independent Sets

Definition 1.19. Let V be a vector space over a field F and let $S \subseteq V$.

• S is linearly dependent if there exist scalars $a_1, a_2, \ldots, a_n \in F \setminus \{0_F\}$ and distinct vectors $x_1, x_2, \ldots, x_n \in S$ for some positive integer n such that

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = 0_V.$$

• S is **linearly independent** if it is not linearly dependent.

Remark.

• Note that \varnothing is linearly independent.

Theorem 1.20. Let V be a vector space over a field F and let $S \subseteq V$. Then the following statements are equivalent.

- (a) S is linearly dependent.
- (b) There exists $x \in S$ with $x \in \text{span}(S \setminus \{x\})$.
- (c) There exists $x \in S$ with $\operatorname{span}(S) = \operatorname{span}(S \setminus \{x\})$.

Proof.

(i) First we assume (a) and prove (b). Suppose that

$$a_0x_0 + a_1x_1 + \cdots + a_nx_n = 0_V$$

where a_0, a_1, \ldots, a_n are nonzero scalars and x_0, x_1, \ldots, x_n are distinct vectors. Then

$$x_0 = (-a_0)^{-1}(a_1x_1 + \dots + a_nx_n)$$

= $((-a_0)^{-1}a_1)x_1 + \dots + ((-a_0)^{-1}a_n)x_n$
 $\in \operatorname{span}(S \setminus \{x_0\}).$

(ii) Then we assume (b) and prove (c). Since

$$x \in \operatorname{span}(S \setminus \{x\})$$
 and $S \setminus \{x\} \subset \operatorname{span}(S \setminus \{x\})$,

we have $S \subseteq \operatorname{span}(S \setminus \{x\})$. Thus, $\operatorname{span}(S) \subseteq \operatorname{span}(S \setminus \{x\})$ by Theorem 1.16, and we can conclude that $\operatorname{span}(S) = \operatorname{span}(S \setminus \{x\})$.

- (iii) Then we assume (c) and prove (b). It is straightforward since $x \in S \subseteq \text{span}(S) = \text{span}(S \setminus \{x\})$.
- (iv) Finally we assume (b) and prove (a). Without loss of generality, let $a_1, \ldots, a_n \in F$ be nonzero scalars and $x_1, \ldots, x_n \in S \setminus \{x\}$ be distinct vectors such that $x = a_1x_1 + \cdots + a_nx_n$. Then we have

$$(-1_F)x + a_1x_1 + \dots + a_nx_n = 0_V$$

which completes the proof.

Example. Let $S = \{(0,1,1), (1,0,1), (1,1,0)\}$ be a subset of \mathbb{R}^3 . Suppose that $a_1, a_2, a_3 \in \mathbb{R}$ are scalars such that

$$a_1(0,1,1) + a_2(1,0,1) + a_3(1,1,0) = (0,0,0).$$

Then we have the following system of equations.

$$a_2 + a_3 = 0$$

$$a_1 + a_3 = 0$$

$$a_1 + a_2 = 0$$

Since the only solution to this system of equations is $a_1 = a_2 = a_3 = 0$, we can conclude that S is linearly independent by Definition 1.19.

Example. Let $S = \{(1,1,1), (0,1,1), (1,0,1), (1,1,0)\}$ be a subset of \mathbb{R}^3 . We can conclude that S is linearly dependent since

$$(1,1,1) = \frac{1}{2} \cdot (0,1,1) + \frac{1}{2} \cdot (1,0,1) + \frac{1}{2} \cdot (1,1,0).$$

Proposition 1.21. Let V be a vector space and let R, S be subsets of V with $R \subseteq S$.

- (a) If R is linearly dependent, then so is S.
- (b) If S is linearly independent, then so is R.

Proof.

(a) Suppose that R is linearly dependent. Then by Definition 1.19 there exists $x \in R$ such that $x \in \text{span}(R \setminus \{x\})$. Also, we have $R \setminus \{x\} \subseteq S \setminus \{x\}$ since $R \subseteq S$. Thus, $x \in \text{span}(S \setminus \{x\})$, and it follows that S is linearly dependent.

(b) Straightforward from (a).

1.6 Bases and Dimension

Definition 1.22. A basis for a vector space V is a linearly independent subset of V that spans V.

Examples.

- \varnothing is a basis for $\{0_V\}$.
- $\{e_1, \ldots, e_n\}$ is a basis for F^n , where e_i is the *n*-tuple whose *i*-th component is 1_F and the other components are all 0_F .
- $\{E_{ij}: 1 \leq i \leq m \text{ and } 1 \leq j \leq n\}$ is a basis for $F^{m \times n}$, where E_{ij} is the matrix whose (i, j)-entry is 1_F and the other entries are all 0_F .
- $\{t^0, t^1, t^2, \dots, t^n\}$ is a basis for $\mathcal{P}_n(F)$.
- $\{t^0, t^1, t^2, \dots\}$ is a basis for $\mathcal{P}(F)$.

Proposition 1.23. Let V be a vector space. If there exists a finite set S that spans V, then there is a subset Q of S that is a finite basis of V.

Proof. The proof is by induction on |S|. For the induction basis, suppose that |S| = 0, i.e., $S = \emptyset$. Then the proposition holds since one can choose $Q = \emptyset$ as a basis for V.

Now assume the induction hypothesis that the proposition holds for |S| = n with $n \geq 0$. If S is linearly independent, then we can choose Q = S as a basis for V. Otherwise, there exists $x \in S$ with $\mathrm{span}(S \setminus \{x\}) = \mathrm{span}(S)$, i.e., $S \setminus \{x\}$ spans V. Thus, by induction hypothesis there is a subset Q of $S \setminus \{x\}$ that is a basis for V, which completes the proof.

Theorem 1.24 (Replacement Theorem). Let V be a vector space over a field F. Let S be a finite set that spans V, and let $Q \subseteq V$ be a finite linearly independent set. Then $|Q| \leq |S|$, and there exists $R \subseteq S \setminus Q$ such that both $|Q \cup R| = |S|$ and $\operatorname{span}(Q \cup R) = V$ hold.

Proof. The proof is based on induction on |Q|. The theorem holds for |Q| = 0, i.e., $Q = \emptyset$, since we have $|\emptyset| \le |S|$, $|\emptyset \cup S| = |S|$ and $\operatorname{span}(\emptyset \cup S) = V$.

Now suppose that the theorem is true for |Q| = m with $m \ge 0$, and we prove that the theorem holds for |Q| = m + 1. Let $Q = \{x_1, \ldots, x_{m+1}\}$ and let $Q' = \{x_1, \ldots, x_m\}$. By induction hypothesis, there exists $R' = \{y_1, \ldots, y_k\} \subseteq S \setminus Q'$ such that |Q'| + |R'| = |S| and span $(Q' \cup R') = V$. Since $Q' \cup R'$ spans V, there exists $a_1, \ldots, a_m, b_1, \ldots, b_k \in F$ such that

$$x_{m+1} = \sum_{i=1}^{m} a_i x_i + \sum_{j=1}^{k} b_j y_j.$$

If $b_j = 0_F$ for all $j \in \{1, ..., k\}$, then $x_{m+1} \in \text{span}(Q') = \text{span}(Q \setminus \{x_{m+1}\})$, implying that Q is linearly dependent, contradiction. Thus, there must exist some $j \in \{1, ..., k\}$ such that $b_j \neq 0_F$.s Without loss of generality, suppose that $b_k \neq 0_F$ with $k \geq 1$. Also, let $R = \{y_1, ..., y_{k-1}\}$. Then $|Q \cup R| = (m+1) + (k-1) = |S|$, and we have $|Q| \leq |S|$. It follows that

$$Q' \cup R' \subseteq Q \cup R \cup \{y_k\} \subseteq \operatorname{span}(Q \cup R),$$

where the second inclusion holds because

$$y_k = (-b_k)^{-1} \left(\sum_{i=1}^m a_i x_i + (-1_F) x_{m+1} + \sum_{i=1}^{k-1} b_j y_j \right) \in \operatorname{span}(Q \cup R).$$

Then, we have

$$V = \operatorname{span}(Q' \cup R') \subseteq \operatorname{span}(Q \cup R) \subseteq V.$$

by Theorem 1.16. Thus, $\operatorname{span}(Q \cup R) = V$, which completes the proof.

Corollary 1.25. Let V be a vector space and Q be a linearly independent subset of V that is infinite. Then each spanning set of V is infinite.

Proof. Suppose that there is a finite set S that spans V. Let Q' be a subset of Q with |Q'| = |S| + 1. By Proposition 1.21, we can conclude that Q' is also linearly independent. Thus, we have $|Q'| \leq |S|$ by replacement theorem (Theorem 1.24), contradiction. \square

Corollary 1.26. Let V be a vector space. If V has a finite basis, then each basis for V has the same size.

Proof. Let S be a finite basis for V and Q an arbitrary basis for V. Since $V = \operatorname{span}(S)$ and Q is linearly independent, it follows that Q is finite by Corollary 1.25, and thus we have $|Q| \leq |S|$. Also, since $V = \operatorname{span}(Q)$ and S is linearly independent, we have $|S| \leq |Q|$. Thus, |Q| = |S|.

Definition 1.27. Let V be a vector space.

- V is **finite-dimensional** if it has a finite basis. In this case, the number of vectors in each basis for V is called the **dimension** of V, denoted by $\dim(V)$.
- V is **infinite-dimensional** if it is not finite-dimensional.

Remark.

• If a vector space has a linearly independent subset that is infinite, we can conclude that it is infinite-dimensional by Corollary 1.25.

Examples. One can find the dimension of a vector space by any basis it admits.

- $\dim(\{0_V\}) = 0$.
- $\dim(F^n) = n$.
- $\dim(F^{m \times n}) = mn$.
- $\dim(\mathcal{P}_n(F)) = n + 1$.
- $\mathcal{P}(F)$ is infinite-dimensional.

Examples. Note that the dimension of a vector space depends on its field of scalars.

- Let $V = \mathbb{C}$ be a vector space over \mathbb{R} . Then we have $\dim(V) = 2$ since $\{1, i\}$ is a basis for V.
- Let $W = \mathbb{C}$ be a vector space over \mathbb{C} . Then we have $\dim(W) = 1$ since $\{1\}$ is a basis for V.

Proposition 1.28. Let V be a vector space. Then a subset of V of $n = \dim(V)$ vectors is linearly independent if and only if it is a spanning set of V.

Proof. (\Rightarrow) Suppose that Q is linearly independent with |Q| = n. By replacement theorem (Theorem 1.24), there exists $R \subseteq S \setminus Q$ such that $|Q \cup R| = |S|$ and $\operatorname{span}(Q \cup R) = V$. Since |Q| = |S|, we have |R| = 0, i.e., $R = \emptyset$. Thus, $\operatorname{span}(Q) = V$.

(\Leftarrow) Suppose that S spans V with |S| = n. By Proposition 1.23, there is a subset Q of S that is a basis of V. Then we have |Q| = n, implying Q = S. Thus, S is a basis for V.

Proposition 1.29. Let V be a finite-dimensional vector space. Let $S = \{x_1, \ldots, x_n\}$ be a basis for V. Then for each $x \in V$, there exist a unique n-tuple $(a_1, \ldots, a_n) \in F^n$ with

$$x = a_1 x_1 + \dots + a_n x_n.$$

Proof. Since $x \in \text{span}(S)$, there exist scalars $a_1, \ldots, a_n \in F$ such that

$$x = a_1 x_1 + \dots + a_n x_n.$$

Now we prove the uniqueness. Let $b_1, \ldots, b_n \in F$ be scalars with

$$x = b_1 x_1 + \dots + b_n x_n.$$

Then we have

$$0_V = (a_1 - b_1)x_1 + \dots + (a_n - b_n)x_n,$$

and it follows that $(a_1 - b_1, a_2 - b_2, \dots, a_n - b_n) = 0_{F^n}$ since S is linearly independent. Thus, $(a_1, \dots, a_n) = (b_1, \dots, b_n)$.

Proposition 1.30. Let V be a finite-dimensional vector space. Let V' be a subspace of V. Then the following statements are true.

- (a) $\dim(V') < \dim(V)$.
- (b) If $\dim(V') = \dim(V)$, then V' = V.

Proof. Let S and S' be bases for V and V', respectively.

- (a) Since S' is linearly independent and V = span(S), we have $|S'| \leq |S|$ by replacement theorem (Theorem 1.24). Thus, $\dim(V') \leq \dim(V)$.
- (b) Since S' is linearly independent and $|S'| = \dim(V)$, we have $\operatorname{span}(S') = V$ by Proposition 1.28. Thus, $V' = \operatorname{span}(S') = V$.

Example. Let W be the set of $n \times n$ diagonal matrices, which is a subspace of $F^{n \times n}$. Then one can verify that $\{E_{ii} : 1 \leq i \leq n\}$ is a basis for W, where E_{ij} is the matrix whose (i, j)-entry is 1_F and the other entries are 0_F . Thus, $\dim(W) = n$.

Chapter 2

Linear Transformations

2.1 Linear Transformations

Definition 2.1. Let V and W be vector spaces over a field F. A transformation $T: V \to W$ is said to be **linear** if

$$T(ax + y) = aT(x) + T(y)$$

holds for any scalar $a \in F$ and any vectors $x, y \in V$. The set of all linear transformations from V to W is denoted by $\mathcal{L}(V, W)$, and $\mathcal{L}(V)$ for short if V = W.

Proposition 2.2. Let V and W be vector spaces over a common field F. Let $T:V\to W$ be linear. Then we have the following properties.

- (a) $T(0_V) = 0_W$.
- (b) For nonnegative integer n,

$$T\left(\sum_{i=1}^{n} a_i x_i\right) = \sum_{i=1}^{n} a_i T(x_i)$$

hold for any $a_1, \ldots, a_n \in F$ and $x_1, \ldots, x_n \in V$.

Proof.

(a) Since

$$T(0_V) + T(0_V) = 1_F T(0_V) + T(0_V) = T(1_F 0_V + 0_V) = T(0_V),$$

we have $T(0_V) = 0_W$ by Proposition 1.6 (b).

(b) The proof is by induction on n. The induction basis with n=0 is proved by

$$T\left(\sum_{i=1}^{0} a_i x_i\right) = T(0_V) = 0_W = \sum_{i=1}^{0} a_i T(x_i).$$

Now assume the induction hypothesis that the property holds for n = k. Then it follows that

$$T\left(\sum_{i=1}^{k+1} a_i x_i\right) = T\left(a_{k+1} x_{k+1} + \sum_{i=1}^k a_i x_i\right)$$

$$= a_{k+1} T(x_{k+1}) + T\left(\sum_{i=1}^k a_i x_i\right) \qquad \text{(linearity of } T\text{)}$$

$$= a_{k+1} T(x_{k+1}) + \sum_{i=1}^k a_i T(x_i) \qquad \text{(induction hypothesis)}$$

$$= \sum_{i=1}^{k+1} a_i T(x_i),$$

which completes the proof.

Theorem 2.3. If V and W are vector spaces over a field F, then $\mathcal{L}(V,W)$ is also a vector space over F.

Proof. For any $c \in F$ and $T_1, T_2 \in \mathcal{L}(V, W)$, since

$$(cT_1 + T_2)(ax + y) = cT_1(ax + y) + T_2(ax + y)$$
 (linearity of $cT_1 + T_2$)

$$= c(aT_1(x) + T_1(y)) + (aT_2(x) + T_2(y))$$
 (linearity of T_1 and T_2)

$$= acT_1(x) + cT_1(y) + aT_2(x) + T_2(y)$$

$$= a(cT_1(x) + T_2(x)) + (cT_1(y) + T_2(y))$$

$$= a(cT_1 + T_2)(x) + (cT_1 + T_2)(y)$$
 (linearity of $cT_1 + T_2$)

holds for each $a \in F$ and $x, y \in V$, we have $cT_1 + T_2 \in \mathcal{L}(V, W)$. Furthermore, $0_{\mathcal{F}(V,W)} \in \mathcal{L}(V,W)$. Thus, $\mathcal{L}(V,W)$ is a subspace of $\mathcal{F}(V,W)$.

Theorem 2.4. Let V and W be vector spaces and let $T:V\to W$ be linear. Then for any subset S of V, we have

$$T(\operatorname{span}(S)) = \operatorname{span}(T(S)).$$

Proof. If $y \in T(\text{span}(S))$, then there exist $a_i \in F$ and $x_i \in S$ for each $1 \leq i \leq n$ such that

$$y = T\left(\sum_{i=1}^{n} a_i x_i\right) = \sum_{i=1}^{n} a_i T(x_i) \in \operatorname{span}(T(S)).$$

Thus, $T(\operatorname{span}(S)) \subseteq \operatorname{span}(T(S))$.

On the other hand, if $y \in \text{span}(T(S))$, then there exist $a_i \in F$ and $x_i \in S$ for each $1 \le i \le n$ such that

$$y = \sum_{i=1}^{n} a_i T(x_i) = T\left(\sum_{i=1}^{n} a_i x_i\right) \in T(\operatorname{span}(S)).$$

Thus, $\operatorname{span}(T(S)) \subseteq T(\operatorname{span}(S))$, which completes the proof.

2.2 Rank and Nullity

Definition 2.5. Let V and W be vector spaces. The **range** of a transformation $T: V \to W$, denoted by $\mathcal{R}(T)$, is defined by

$$\mathcal{R}(T) = \{ y \in W : y = T(x) \text{ for some } x \in V \}.$$

Proposition 2.6. Let V and W be vector spaces over a field F. If $T:V\to W$ is linear, then $\mathcal{R}(T)$ is a subspace of W.

Proof. For each $a \in F$ and $y, y' \in \mathcal{R}(T)$, there exist $x, x' \in V$ such that y = T(x) and y' = T(x'). Since

$$ay + y' = aT(x) + T(x') = T(ax + x'),$$

we have $ay + y' \in \mathcal{R}(T)$. Furthermore, $0_W = T(0_V) \in \mathcal{R}(T)$. Thus, $\mathcal{R}(T)$ is a subspace of W.

Definition 2.7. Let V and W be vector spaces. The **null space** of a transformation $T: V \to W$, denoted by $\mathcal{N}(T)$, is defined by

$$\mathcal{N}(T) = \{ x \in V : T(x) = 0_W \}.$$

Proposition 2.8. Let V and W be vector spaces over a field F. If $T:V\to W$ is linear, then $\mathcal{N}(T)$ is a subspace of V.

Proof. For each $a \in F$ and $x, x' \in \mathcal{N}(T)$, we have

$$T(ax + x') = aT(x) + T(x') = a0_W + 0_W = 0_W.$$

Thus, $ax + x' \in \mathcal{N}(T)$. Furthermore, $0_V \in \mathcal{N}(T)$ since $T(0_V) = 0_W$. Thus, $\mathcal{N}(T)$ is a subspace of V.

Definition 2.9. Let X and Y be sets. Let $f: X \to Y$ be a function.

- f is **injective** if T(x) = T(x') implies x = x' for all $x, x' \in X$.
- f is surjective if there exists $x \in X$ with T(x) = y for each $y \in Y$.
- f is **bijective** if f is injective and surjective.

Proposition 2.10. Let V and W be vector spaces and let $T: V \to W$ be linear. Let S be a subset of V. Then the following statements are true.

- (a) T is injective if and only if $\mathcal{N}(T) = \{0_V\}$.
- (b) If T is injective, then S is linearly dependent if and only of T(S) is linearly dependent.

Proof.

- (a) (\Rightarrow) We have $T(0_V) = 0_W$ since T is linear. If $T(x) = 0_W$, then $x = 0_V$ since T is injective. Thus, $\mathcal{N}(T) = \{0_V\}$.
 - (\Leftarrow) Suppose that $x, y \in V$ be vectors with T(x) = T(y). Since

$$T(x - y) = T(x) - T(y) = 0_W,$$

we have $x-y \in \mathcal{N}(T)$, and thus $x-y=0_V$, implying x=y. Thus, T is injective.

(b) (\Rightarrow) If $x \in \text{span}(S \setminus \{x\})$ for some $x \in S$, then

$$T(x) \in T(\operatorname{span}(S \setminus \{x\}))$$

= $\operatorname{span}(T(S \setminus \{x\}))$ (*T* is linear)
= $\operatorname{span}(T(S) \setminus \{T(x)\})$. (*T* is injective)

 (\Leftarrow) If $T(x) \in \text{span}(T(S) \setminus \{T(x)\})$ for some $x \in S$, then

$$T(x) \in \operatorname{span}(T(S) \setminus \{T(x)\})$$

= $\operatorname{span}(T(S \setminus \{x\}))$ (*T* is injective)
= $T(\operatorname{span}(S \setminus \{x\}))$. (*T* is linear)

Thus, $x \in \text{span}(S \setminus \{x\})$ since T is injective.

Definition 2.11. Let V and W be vector spaces. Let $T: V \to W$ be linear.

- The rank of T, denoted by rank(T), is the dimension of $\mathcal{R}(T)$.
- The **nullity** of T, denoted by $\operatorname{nullity}(T)$, is the dimension of $\mathcal{N}(T)$.

Definition 2.12. Let $f: X \to Y$ be a function. Let D be a subset of X. Then the **restriction** of f to D is the function $f': D \to Y$ with f'(x) = f(x) for each $x \in D$.

Proposition 2.13. Let V and W be vector spaces and let $T: V \to W$ be linear. Let U be a subspace of V. Then the restriction of T to U is linear.

Proof. Let $T': U \to W$ be the restriction of T to U. Then T' is linear since for each $a \in F$ and $x, y \in U$, we have

$$T'(ax + y) = T(ax + y) = aT(x) + T(y) = aT'(x) + T'(y).$$

Theorem 2.14 (Rank-nullity Theorem). Let V and W be finite-dimensional vector spaces over F. Let $T: V \to W$ be linear. Then we have

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V).$$

Proof. Let S be a basis for V and Q a basis for $\mathcal{N}(T)$. By replacement theorem (Theorem 1.24), there is $R \subseteq S \setminus Q$ such that $Q \cup R$ is a basis for V.

We prove that T(R) is a basis for $\mathcal{R}(T)$. First,

$$\mathcal{R}(T) = T(\operatorname{span}(Q \cup R))$$

$$= \operatorname{span}(T(Q \cup R))$$

$$= \operatorname{span}(T(Q) \cup T(R))$$

$$= \operatorname{span}(T(R)). \qquad (T(Q) = \{0_V\})$$

Now we prove that T(R) is linearly independent. Let T' be the restriction of T to R. Since R is linearly independent, it suffices to prove that T' is injective. Suppose that T(x) = T(x') for some $x, x' \in R$. Then we have $T(x - x') = T(x) - T(x') = 0_W$, and thus $x - x' \in \mathcal{N}(T) = \operatorname{span}(Q)$. It follows that x is a linear combination of $Q \cup \{x'\}$. If $x \neq x'$, then

$$x \in \operatorname{span}(Q \cup \{x'\}) \subseteq \operatorname{span}(Q \cup R \setminus \{x\}),$$

contradiction to the fact that $Q \cup R$ is linearly independent. Thus, T' is injective, implying T(R) is linearly independent.

Note that |T(R)| = |R| since T' is injective. Thus,

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = |Q| + |T(R)| = |Q| + |R| = \dim(V). \quad \Box$$

2.3 Isomorphisms

Definition 2.15. Let X, Y, Z be sets. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then the **composition** of f and g is the function $gf: X \to Z$ such that

$$(gf)(x) = g(f(x))$$

for all $x \in X$.

Definition 2.16. The **identity function** over a set X is a function $I_X : X \to X$ with $I_X(x) = x$ for all $x \in X$.

Definition 2.17. Let X and Y be sets. A function $f: X \to Y$ is said to be **invertible** if there exists a function $f^{-1}: Y \to X$, called the **inverse** of f, such that

$$f^{-1}f = I_X$$
 and $ff^{-1} = I_Y$.

Proposition 2.18. Let X and Y be sets. Let $f: X \to Y$ and $g: Y \to X$ be functions.

- (a) If f is invertible, then f^{-1} is invertible.
- (b) If f is invertible, then f^{-1} is linear.
- (c) If f is invertible, then either $gf = I_X$ or $fg = I_Y$ implies $g = f^{-1}$.
- (d) f is invertible if and only if f is bijective.

Proof.

- (a) Straightforward from Definition 2.17.
- (b) For $a \in F$ and $y, y' \in Y$, we have

$$f^{-1}(ay + y') = f^{-1}(af(f^{-1}(y)) + f(f^{-1}(y')))$$
 (ff⁻¹ = I_Y)
= $f^{-1}(f(af^{-1}(y) + f^{-1}(y')))$ (linearity of f)
= $af^{-1}(y) + f^{-1}(y')$. (f⁻¹f = I_X)

Thus, f^{-1} is linear.

(c) If $gf = I_X$, then

$$g = gI_Y = g(ff^{-1}) = (gf)f^{-1} = I_X f^{-1} = f^{-1}$$

If $fg = I_Y$, then

$$g = I_X g = (f^{-1}f)g = f^{-1}(fg) = f^{-1}I_Y = f^{-1}.$$

(d) (\Rightarrow) Suppose that f is invertible. Then f is injective since for each $x, x' \in X$ with f(x) = f(x'), we have

$$x = (f^{-1}f)(x) = f^{-1}(f(x)) = f^{-1}(f(x')) = (f^{-1}f)(x') = x'.$$

Also, f is surjective since for each $y \in Y$, we have

$$y = (ff^{-1})y = f(f^{-1}(y)).$$

 (\Leftarrow) If f is bijective, then for each $y \in Y$ there exists a unique element $x \in X$ with f(x) = y. Thus, there exists a function $g: Y \to X$ such that

$$g(f(x)) = x$$

for each $x \in X$. For any $y \in Y$, if $x \in X$ is the element such that f(x) = y, then we have

$$f(g(y)) = f(g(f(x))) = f(x) = y.$$

Thus, f is invertible since $gf = I_X$ and $fg = I_Y$.

Definition 2.19. Let V and W be vector spaces. An **isomorphism** from V onto W is a invertible linear transformation from V to W. If there is an isomorphism from V onto W, then V and W are said to be **isomorphic**, denoted by $V \cong W$.

Lemma 2.20. Let V and W be finite-dimensional vector spaces with $\dim(V) = \dim(W)$. Let $T: V \to W$ be linear. Then T is injective if and only if T is surjective.

Proof. (\Rightarrow) If T is injective, then $\mathcal{N}(T) = \{0_V\}$, implying nullity(T) = 0. Then we have

$$\dim(\mathcal{R}(T)) = \operatorname{rank}(T) = \dim(V) - \operatorname{nullity}(T) = \dim(W) - 0 = \dim(W).$$

Since $\mathcal{R}(T)$ is a subspace of W with $\dim(\mathcal{R}(T)) = \dim(W)$, we can conclude that $\mathcal{R}(T) = W$ by Proposition 1.30.

 (\Leftarrow) If T is surjective, then $\mathcal{R}(T) = W$. Thus,

$$\operatorname{nullity}(T) = \dim(V) - \operatorname{rank}(T) = \dim(W) - \dim(W) = 0,$$

implying $\mathcal{N}(T) = \{0_V\}$. It follows that T is injective.

Lemma 2.21. Let V and W be finite-dimensional vector spaces over a field F. Let $S = \{x_1, x_2, \ldots, x_n\}$ be a basis for V and let y_1, y_2, \ldots, y_n be vectors in W. Then there exists a unique $T \in \mathcal{L}(V, W)$ with $T(x_i) = y_i$ for each $i \in \{1, \ldots, n\}$.

Proof. Let T be the transformation that satisfies

$$T(a_1x_1 + a_2x_2 + \dots + a_nx_n) = a_1y_1 + a_2y_2 + \dots + a_ny_n$$

for any $a_1, a_2, \ldots, a_n \in F$. It is obvious that $T(x_i) = y_i$ for each $i \in \{1, \ldots, n\}$, and T is linear since

$$T\left(c\sum_{i=1}^{n} a_i x_i + \sum_{i=1}^{n} b_i x_i\right) = T\left(\sum_{i=1}^{n} (ca_i + b_i) x_i\right)$$

$$= \sum_{i=1}^{n} (ca_i + b_i) y_i$$

$$= c\sum_{i=1}^{n} a_i y_i + \sum_{i=1}^{n} b_i y_i$$

$$= cT\left(\sum_{i=1}^{n} a_i x_i\right) + T\left(\sum_{i=1}^{n} b_i x_i\right)$$

holds for any scalars $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n, c \in F$. To see the uniqueness, if $T' \in \mathcal{L}(V, W)$ satisfies $T'(x_i) = y_i$ for each $i \in \{1, \ldots, n\}$, then we have

$$T'(a_1x_1 + \dots + a_nx_n) = a_1T'(x_1) + \dots + a_nT'(x_n)$$

= $a_1T(x_1) + \dots + a_nT(x_n)$
= $T(a_1x_1 + \dots + a_nx_n)$.

for any $a_1, \ldots, a_n \in F$. Thus, T' = T.

Theorem 2.22. Let V and W be finite-dimensional vector spaces over a field F. Then $V \cong W$ if and only if $\dim(V) = \dim(W)$.

Proof. (\Rightarrow) Let T be an isomorphism from V onto W. Since T is invertible, T is bijective. Then we have $\operatorname{rank}(T) = \dim(W)$ since $\mathcal{R}(T) = W$. Furthermore, since T is injective, we have $\operatorname{nullity}(T) = 0$, and it follows that $\operatorname{rank}(T) = \dim(V)$ by $\operatorname{rank-nullity}$ theorem (Theorem 2.14). Thus, $\dim(V) = \operatorname{rank}(T) = \dim(W)$.

(\Leftarrow) Suppose that $S = \{x_1, x_2, \dots, x_n\}$ is a basis for V and $R = \{y_1, y_2, \dots, y_n\}$ is a basis for W. Then by Lemma 2.21 there exists $T \in \mathcal{L}(V, W)$ such that $T(x_i) = y_i$ for each $i \in \{1, \dots, n\}$. Since R is a basis for W, for each $y \in W$ there exist scalars $a_1, \dots, a_n \in F$ such that

$$y = \sum_{i=1}^{n} a_i y_i = \sum_{i=1}^{n} a_i T(x_i) = T\left(\sum_{i=1}^{n} a_i x_i\right).$$

It follows that T is surjective, and we can conclude that T is bijective by Lemma 2.20. Thus, T is an isomorphism from V onto W, implying $V \cong W$.

2.4 Coordinates and Matrix Representations

Definition 2.23. Let V be an finite-dimensional vector space over a field F with $\dim(V) = n$. An **ordered basis** for V is a finite sequence

$$\beta = (x_1, x_2, \dots, x_n)$$

of vectors in V such that the set $S = \{x_1, x_2, \dots, x_n\}$ is a basis for V.

Examples.

- The standard ordered basis for F^n is (e_1, \ldots, e_n) , where e_i is the *n*-tuple whose *i*-th component is 1_F and the other components are all 0_F .
- The standard ordered basis for $\mathcal{P}_n(F)$ is (t^0, t^1, \dots, t^n) .

Definition 2.24. Let V be a finite-dimensional vector space over a field F. Let $\beta = (x_1, \ldots, x_n)$ be an ordered basis for V. Then we define $\phi_{\beta}: V \to F^n$ such that

$$\phi_{\beta}(x) = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \quad \text{for each } x \in V \text{ with } x = \sum_{i=1}^n a_i x_i,$$

where $a_1, a_2, \ldots, a_n \in F$. For each vector x in V, $\phi_{\beta}(x)$ is called the **coordinate** of x with respect to β , denoted by $[x]_{\beta}$.

Proposition 2.25. Let $\beta = (x_1, \dots, x_n)$ be an ordered basis for a vector space V over F. Then ϕ_{β} is an isomorphism from V onto F^n .

Proof. ϕ_{β} is linear since

$$\phi_{\beta} \left(c \sum_{i=1}^{n} a_i x_i + \sum_{i=1}^{n} b_i x_i \right) = \phi_{\beta} \left(\sum_{i=1}^{n} (ca_i + b_i) x_i \right) = \begin{pmatrix} ca_1 + b_1 \\ \vdots \\ ca_n + b_n \end{pmatrix} = c \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
$$= c \cdot \phi_{\beta} \left(\sum_{i=1}^{n} a_i x_i \right) + \phi_{\beta} \left(\sum_{i=1}^{n} b_i x_i \right)$$

holds for any $a_1, \ldots, a_n, b_1, \ldots, b_n, c \in F$. Also, ϕ_{β} is invertible since there exists $\phi_{\beta}^{-1}: F^n \to V$ with

$$\phi_{\beta}^{-1} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

for any $a_1, a_2, \ldots, a_n \in F$. Thus, ϕ_{β} is an isomorphism.

Definition 2.26. Let V and W be finite-dimensional vector spaces over a field F. Let

$$\beta = (x_1, \dots, x_n)$$
 and $\gamma = (y_1, \dots, y_m)$

be ordered basis for V and W, respectively. Then we define $\Phi^{\gamma}_{\beta}: \mathcal{L}(V,W) \to F^{m \times n}$ by

$$\Phi_{\beta}^{\gamma}(T) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix},$$

for each $T \in \mathcal{L}(V, W)$, where

$$T(x_1) = a_{11}y_1 + a_{21}y_2 + \dots + a_{m1}y_m$$

$$T(x_2) = a_{12}y_1 + a_{22}y_2 + \dots + a_{m2}y_m$$

$$\vdots$$

$$T(x_n) = a_{1n}y_1 + a_{2n}y_2 + \dots + a_{mn}y_m$$

hold. For each linear $T: V \to W$, the matrix $\Phi_{\beta}^{\gamma}(T)$ is called the **matrix representation** of T with respect to β and γ , denoted by $[T]_{\beta}^{\gamma}$.

Proposition 2.27. Let $\beta = (x_1, \ldots, x_n)$ and $\gamma = (y_1, \ldots, y_m)$ be ordered bases for a vector spaces V and W over F, respectively. Then for any $T \in \mathcal{L}(V, W)$, we have

$$\left([T]_{\beta}^{\gamma} \right)_{ij} = \left([T(x_j)]_{\gamma} \right)_i$$

for any $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$.

Proof. Let

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Since $T(x_i) = a_{1i}y_1 + a_{2i}y_2 + \cdots + a_{mi}y_m$, we have

$$[T(x_j)]_{\gamma} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}.$$

Thus,

$$\left([T(x_j)]_{\gamma} \right)_i = a_{ij}$$

holds, which completes the proof.

Theorem 2.28. Let β and γ be ordered bases for a vector spaces V and W over F, respectively. Then Φ^{γ}_{β} is an isomorphism from $\mathcal{L}(V, W)$ onto $F^{m \times n}$.

Proof. Let $\beta = (x_1, \ldots, x_n)$ and $\gamma = (y_1, \ldots, y_m)$. Note that Φ_{β}^{γ} is linear since for any $c \in F$ and $T_1, T_2 \in \mathcal{L}(V, W)$, we have

$$\begin{aligned}
\left([cT_1 + T_2]_{\beta}^{\gamma} \right)_{ij} &= \left([(cT_1 + T_2)(x_j)]_{\gamma} \right)_i & \text{(Proposition 2.27)} \\
&= \left([cT_1(x_j) + T_2(x_j)]_{\gamma} \right)_i \\
&= \left(c[T_1(x_j)]_{\gamma} + [T_2(x_j)]_{\gamma} \right)_i & \text{(}\phi_{\gamma} \text{ is linear)} \\
&= c\left([T_1(x_j)]_{\gamma} \right)_i + \left([T_2(x_j)]_{\gamma} \right)_i \\
&= c\left([T_1]_{\beta}^{\gamma} \right)_{ij} + \left([T_2]_{\beta}^{\gamma} \right)_{ij} & \text{(Proposition 2.27)} \\
&= \left(c[T_1]_{\beta}^{\gamma} + [T_2]_{\beta}^{\gamma} \right)_{ij} & \text{(Proposition 2.27)} \end{aligned}$$

for any $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$. To prove that Φ_{β}^{γ} is invertible, let

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

be an arbitrary matrix in $F^{m \times n}$. By Lemma 2.21, there exists a unique linear transformation $T: V \to W$ such that

$$T(x_j) = \sum_{i=1}^{n} a_{ij} y_j$$

for each $j \in \{1, ..., n\}$, and it follows that $[T]_{\beta}^{\gamma} = A$. Thus, there exists $(\Phi_{\beta}^{\gamma})^{-1}$: $F^{m \times n} \to \mathcal{L}(V, W)$ such that $(\Phi_{\beta}^{\gamma})^{-1}(A) = T$ with $[T]_{\beta}^{\gamma} = A$ for each $A \in F^{m \times n}$, which completes the proof.

Corollary 2.29. If V and W are finite-dimensional vector spaces over F with $\dim(V) = n$ and $\dim(W) = m$, then $\mathcal{L}(V, W)$ is finite-dimensional with $\dim(\mathcal{L}(V, W)) = mn$.

Proof. Straightforward from Theorem 2.22 and Theorem 2.28. \Box

2.5 Matrix Multiplication

Definition 2.30. Let F be a field and let $A \in F^{\ell \times m}$ and $B \in F^{m \times n}$ be matrices. The **product** of A and B, denoted by AB, is a matrix in $F^{\ell \times n}$ that satisfies

$$(AB)_{ik} = \sum_{j=1}^{m} A_{ij} B_{jk}$$

for $i \in \{1, ..., \ell\}$ and $k \in \{1, ..., n\}$.

Proposition 2.31. Let U, V, W be vector spaces over F. If $T_1: U \to V$ and $T_2: V \to W$ are linear, then so is T_2T_1 .

Proof. For $a \in F$ and $x, y \in U$, we have

$$(T_2T_1)(ax + y) = T_2(T_1(ax + y))$$
 (composition of T_1 and T_2)
 $= T_2(aT_1(x) + T_1(y))$ (linearity of T_1)
 $= aT_2(T_1(x)) + T_2(T_1(y))$ (linearity of T_2)
 $= a(T_2T_1)(x) + (T_2T_1)(y)$. (composition of T_1 and T_2)

Thus, T_2T_1 is linear.

Theorem 2.32. Let U, V, W be finite-dimensional vector spaces with ordered bases

$$\alpha = (x_1, \dots, x_n), \quad \beta = (y_1, \dots, y_m), \quad \text{and} \quad \gamma = (z_1, \dots, z_\ell),$$

respectively. If $T_1: U \to V$ and $T_2: V \to W$ are linear, then

$$[T_2T_1]^{\gamma}_{\alpha} = [T_2]^{\gamma}_{\beta}[T_1]^{\beta}_{\alpha}.$$

Proof. Let $A = [T_2]^{\gamma}_{\beta}$, $B = [T_1]^{\beta}_{\alpha}$ and $C = [T_2T_1]^{\gamma}_{\alpha}$. Then

$$T_2(y_j) = \sum_{i=1}^{\ell} A_{ij} z_i, \quad T_1(x_k) = \sum_{j=1}^{m} B_{jk} y_j, \quad \text{and} \quad (T_2 T_1)(x_k) = \sum_{i=1}^{\ell} C_{ik} z_i$$

hold for any $j \in \{1, ..., m\}$ and $k \in \{1, ..., n\}$. Since for each $k \in \{1, ..., n\}$,

$$\sum_{i=1}^{\ell} C_{ik} z_i = (T_2 T_1)(x_k)$$

$$= T_2(T_1(x_k))$$

$$= T_2 \left(\sum_{j=1}^m B_{jk} y_j \right)$$

$$= \sum_{j=1}^m B_{jk} T_2(y_j)$$

$$= \sum_{j=1}^m B_{jk} \sum_{i=1}^{\ell} A_{ij} z_i$$

$$= \sum_{i=1}^{\ell} \left(\sum_{j=1}^m A_{ij} B_{jk} \right) z_i,$$

we have

$$C_{ik} = \sum_{j=1}^{m} A_{ij} B_{jk}$$

for each $i \in \{1, ..., \ell\}$ and $k \in \{1, ..., n\}$. Thus, C = AB.

Corollary 2.33. Let V and W be finite-dimensional vector spaces with ordered bases β and γ over a field F, respectively. If $T:V\to W$ is linear, then

$$[T(x)]_{\gamma} = [T]_{\beta}^{\gamma}[x]_{\beta}$$

for each $x \in V$.

Proof. Let $\alpha = (1_F)$ be an ordered basis for F. For each $x \in V$, let $\varphi : F \to V$ be the linear transformation with $\varphi(c) = cx$ for each $c \in F$. By Definition 2.26, we have

$$[\varphi]_{\alpha}^{\beta} = [\varphi(1_F)]_{\beta}$$
 and $[T\varphi]_{\alpha}^{\gamma} = [(T\varphi)(1_F)]_{\gamma}$.

Thus, it follows that

$$[T(x)]_{\gamma} = [T(\varphi(1_F))]_{\gamma}$$

$$= [T\varphi)(1_F)]_{\gamma}$$

$$= [T\varphi]_{\alpha}^{\gamma}$$

$$= [T]_{\beta}^{\gamma}[\varphi]_{\alpha}^{\beta} \qquad (Theorem 2.32)$$

$$= [T]_{\beta}^{\gamma}[\varphi(1_F)]_{\beta}$$

$$= [T]_{\beta}^{\gamma}[x]_{\beta}.$$

2.6 Left-Multiplication Transformations

Definition 2.34. Let $A \in F^{m \times n}$ be a matrix. The **left-multiplication transformation** of A, denoted by L_A , is the transformation from F^n to F^m with

$$L_A(x) = Ax$$

for each $x \in F^n$.

Proposition 2.35. Let α , β and γ be standard ordered bases for F^n , F^m and F^{ℓ} , respectively. Then the following statements are true.

- (a) L_A is linear for each $A \in F^{m \times n}$.
- (b) $[L_A]^{\beta}_{\alpha} = A$ for each $A \in F^{m \times n}$.
- (c) $L_{cA+B} = cL_A + L_B$ for each $c \in F$ and $A, B \in F^{m \times n}$.
- (d) $L_{AB} = L_A L_B$ for each $A \in F^{\ell \times m}$ and $B \in F^{m \times n}$.
- (e) $L_{I_n} = I_{F^n}$.

Proof.

(a) L_A is linear since for any $c \in F$ and $x, y \in F^n$,

$$\begin{aligned} \left[L_A(cx+y) \right]_i &= \left[A(cx+y) \right]_i \\ &= \sum_{j=1}^n A_{ij} \left[cx+y \right]_j \\ &= \sum_{j=1}^n A_{ij} (cx_j + y_j) \\ &= c \sum_{j=1}^n A_{ij} x_j + \sum_{j=1}^n A_{ij} y_j \\ &= c \left[Ax \right]_i + \left[Ay \right]_i \\ &= \left[cAx + Ay \right]_i \\ &= \left[cL_A(x) + L_A(y) \right]_i \end{aligned}$$

holds for each $i \in \{1, \ldots, m\}$.

(b) Let $T \in \mathcal{L}(V, W)$ be the transformation with $[T]^{\beta}_{\alpha} = A$. Then we have

$$T(x) = [T(x)]_{\beta} = [T]_{\alpha}^{\beta}[x]_{\alpha} = Ax$$

for each $x \in F^n$ since α and β are standard ordered bases. Thus, $T = L_A$.

(c) It is proved by

$$[L_{cA+B}]_{\alpha}^{\beta} = cA + B = c[L_A]_{\alpha}^{\beta} + [L_B]_{\alpha}^{\beta} = [cL_A + L_B]_{\alpha}^{\beta}.$$

(d) It is proved by

$$[L_{AB}]^{\gamma}_{\alpha} = AB = [L_A]^{\gamma}_{\beta} [L_B]^{\beta}_{\alpha} = [L_A L_B]^{\gamma}_{\alpha}.$$

(e) Since

$$L_{I_n}(x) = I_n x = x = I_{F^n}(x)$$

holds for each $x \in F^n$, $L_{I_n} = I_{F^n}$.

Lemma 2.36. Let U, V, W, X be vector spaces. Let

$$T_1, T_1' \in \mathcal{L}(U, V), \quad T_2, T_2' \in \mathcal{L}(V, W), \quad \text{and} \quad T_3 \in \mathcal{L}(W, X)$$

be linear transformations and let $c \in F$ be a scalar. Then the following statements are true.

- (a) $T_1I_U = T_1 = I_VT_1$.
- (b) $T_2(T_1 + T_1') = T_2T_1 + T_2T_1'$.
- (c) $(T_2 + T_2')T_1 = T_2T_1 + T_2'T_1$.
- (d) $c(T_2T_1) = (cT_2)T_1 = T_2(cT_1)$.
- (e) $T_3(T_2T_1) = (T_3T_2)T_1$.

Proof.

(a) Since

$$(T_1I_U)(x) = T_1(I_U(x)) = T_1(x) = I_V(T_1(x)) = (I_VT_1)(x)$$

holds for each $x \in U$, we have $T_1I_U = T_1 = I_VT_1$.

(b) Since

$$(T_2(T_1 + T_1'))(x) = T_2((T_1 + T_1')(x))$$
 (composition)
 $= T_2(T_1(x) + T_1'(x))$ (addition)
 $= T_2(T_1(x)) + T_2(T_1'(x))$ (linearity)
 $= (T_2T_1)(x) + (T_2T_1')(x)$ (composition)
 $= (T_2T_1 + T_2T_1')(x)$ (addition)

holds for each $x \in U$, we have $T_2(T_1 + T_1') = T_2T_1 + T_2T_1'$.

(c) Since

$$((T_2 + T_2')T_1)(x) = (T_2 + T_2')(T_1(x))$$
 (composition)

$$= T_2(T_1(x)) + T_2'(T_1(x))$$
 (addition)

$$= (T_2T_1)(x) + (T_2'T_1)(x)$$
 (composition)

$$= (T_2T_1 + T_2'T_1)(x)$$
 (addition)

holds for each $x \in U$, we have $(T_2 + T_2')T_1 = T_2T_1 + T_2'T_1$.

(d) Since

$$(c(T_2T_1))(x) = c(T_2T_1)(x) = cT_2(T_1(x))$$

$$((cT_2)T_1)(x) = (cT_2)(T_1(x)) = cT_2(T_1(x))$$

$$(T_2(cT_1))(x) = T_2(cT_1(x)) = cT_2(T_1(x))$$

hold for each $x \in U$, we have $c(T_2T_1) = (cT_2)T_1 = T_2(cT_1)$.

(e) Since

$$(T_3(T_2T_1))(x) = T_3((T_2T_1)(x))$$
 (composition of T_3 and T_2T_1)
 $= T_3(T_2(T_1(x)))$ (composition of T_2 and T_1)
 $= (T_3T_2)(T_1(x))$ (composition of T_3 and T_2)
 $= ((T_3T_2)T_1)(x)$ (composition of T_3T_2 and T_1)

holds for each $x \in U$, we have $T_3(T_2T_1) = (T_3T_2)T_1$.

Theorem 2.37. Let $A, A' \in F^{k \times \ell}$, $B, B' \in F^{\ell \times m}$ and $C \in F^{m \times n}$ be matrices and let $c \in F$ be a scalar. Then the following statements are true.

- (a) $AI_{\ell} = A = I_k A$.
- (b) A(B + B') = AB + AB'.
- (c) (A + A')B = AB + A'B.
- (d) c(AB) = (cA)B = A(cB).
- (e) A(BC) = (AB)C.

Proof. Straightforward from Lemma 2.36.

2.7 Invertible Matrices

Definition 2.38. A matrix $A \in F^{n \times n}$ is **invertible** if L_A is invertible. If A is invertible, then it has an **inverse**, denoted by A^{-1} , which is the matrix in $F^{n \times n}$ such that

$$L_{A^{-1}} = (L_A)^{-1}$$
.

Proposition 2.39. The following statements are true for matrices $A, B \in F^{n \times n}$.

- (a) If A is invertible, then $AA^{-1} = I_n = A^{-1}A$.
- (b) If $AB = I_n$, then A and B are invertible. Furthermore, $A = B^{-1}$ and $B = A^{-1}$.

 Proof.
 - (a) We have

$$L_{AA^{-1}} = L_A L_{A^{-1}} = L_A (L_A)^{-1} = I_{F^n} = L_{I_n}$$

and

$$L_{A^{-1}A} = L_{A^{-1}}L_A = (L_A)^{-1}L_A = I_{F^n} = L_{I_n},$$

implying $AA^{-1} = I_n = A^{-1}A$.

(b) Since AB is invertible, $L_{AB} = L_A L_B$ is injective and surjective. Thus, $L_A : F^n \to F^n$ is injective and $L_B : F^n \to F^n$ is surjective. It follows that L_A and L_B are bijective by Lemma 2.20, and thus are invertible, implying A and B are invertible. By Proposition 2.18 (c), we have $L_A = (L_B)^{-1}$ and $L_B = (L_A)^{-1}$. Thus, we have $A = B^{-1}$ and $B = A^{-1}$.

Chapter 3

Systems of Linear Equations

3.1 Elementary Matrices

Definition 3.1. Any one of the following three operations on matrices is called an **elementary row operation**.

- (Type 1) Exchanging two different rows.
- (Type 2) Multiplying a row by a nonzero scalar.
- (Type 3) Adding a scalar multiple of a row to another row.

Similarly, any one of the following three operations on matrices is called an **elementary column operation**.

- (Type 1) Exchanging two different columns.
- (Type 2) Multiplying a column by a nonzero scalar.
- (Type 3) Adding a scalar multiple of a column to another column.

Furthermore, an **elementary operation** is either an elementary row operation or an elementary column operation.

Definition 3.2. A matrix $X \in F^{n \times n}$ is **elementary** if it can be obtained from I_n by applying an elementary operation. We say that an elementary matrix is of type 1, 2, or 3 if its corresponding elementary operation is a type 1, 2, or 3 operation, respectively.

Proposition 3.3. Let $X \in F^{m \times m}$ and $Y \in F^{n \times n}$ be elementary matrices. Then the following statements hold for any matrix $A \in F^{m \times n}$.

- (a) XA is the matrix obtained from A by applying the elementary row operation corresponding to X.
- (b) AY is the matrix obtained from A by applying the elementary column operation corresponding to Y.

Proof. We will prove (a), and the proof of (b) is similar to that of (a) so that we omit it.

Let $\gamma = (e_1, e_2, \dots, e_m)$ be the standard basis for F^m . Also, let

$$row(X) = (x_1, x_2, \dots, x_m)$$
 and $col(A) = (c_1, c_2, \dots, c_n)$.

Then we have

$$(XA)_{ij} = \sum_{k=1}^{m} X_{ik} A_{kj} = \sum_{k=1}^{m} (x_i)_k (c_j)_k$$

for each $1 \le i \le m$ and $1 \le j \le n$.

First, suppose that X is of type 1, obtained from I_m by exchanging the p-th row and the q-th row. It follows that $x_p = e_q$, $x_q = e_p$, and $x_i = e_i$ for each $i \in \{1, ..., m\} \setminus \{p, q\}$. Thus,

$$(XA)_{pj} = \sum_{k=1}^{m} (e_q)_k (c_j)_k = (c_j)_q = A_{qj}$$

$$(XA)_{qj} = \sum_{k=1}^{m} (e_p)_k (c_j)_k = (c_j)_p = A_{pj}$$

$$(XA)_{ij} = \sum_{k=1}^{m} (e_i)_k (c_j)_k = (c_j)_i = A_{ij} \text{ for } i \in \{1, \dots, m\} \setminus \{p, q\}$$

hold for any $j \in \{1, ..., n\}$, implying XA is the matrix obtained from A by exchanging the p-th row and the q-th row.

Secondly, suppose that X is of type 2, obtained from I_m by multiplying the p-th row by a scalar a. It follows that $x_p = ae_p$ and $x_i = e_i$ for $i \in \{1, ..., m\} \setminus \{p\}$. Thus,

$$(XA)_{pj} = \sum_{k=1}^{m} (ae_p)_k (c_j)_k = a(c_j)_p = aA_{pj}$$

$$(XA)_{ij} = \sum_{k=1}^{m} (e_i)_k (c_j)_k = (c_j)_i = A_{ij} \text{ for } i \in \{1, \dots, m\} \setminus \{p\}$$

hold for any $j \in \{1, ..., n\}$, implying XA is the matrix obtained from A by multiplying the p-th row by a scalar a.

Finally, suppose that X is of type 3, obtained from I_m by adding the p-th row multiplied by a to the q-th row. It follows that $x_q = ae_p + e_q$ and $x_i = e_i$ for each $i \in \{1, \ldots, m\} \setminus \{q\}$. Thus,

$$(XA)_{qj} = \sum_{k=1}^{m} (ae_p + e_q)_k(c_j)_k = a(c_j)_p + (c_j)_q = aA_{pj} + A_{qj}$$

$$(XA)_{ij} = \sum_{k=1}^{m} (e_i)_k(c_j)_k = (c_j)_i = A_{ij} \quad \text{for } i \in \{1, \dots, m\} \setminus \{q\}$$

hold for any $j \in \{1, ..., n\}$, implying XA is the matrix obtained from A by adding the p-th row multiplied by a to the q-th row.

Proposition 3.4. Let $X \in F^{n \times n}$ be an elementary matrix. Then X is invertible, and X^{-1} is also an elementary matrix.

Proof. There exists an elementary matrix $Y \in F^{n \times n}$ with $YX = I_n$ as follows.

• If X is of type 1 obtained from I_n by exchanging the p-th row and the q-th row, then Y is also of type 1 obtained from I_n by exchanging the p-th row and the q-th row.

- If X is of type 2 obtained from I_n by multiplying the p-th row by a scalar a, then Y is also of type 2 obtained from I_n by multiplying the p-th row by (1/a).
- If X is of type 3 obtained from I_n by adding the p-th row multiplied by a scalar a to the q-th row, then Y is also of type 3 obtained from I_n by adding the p-th row multiplied by (-a) to the q-th row.

Thus, by Proposition 2.39 (b) we can conclude that X is invertible and $Y = X^{-1}$, which completes the proof.

3.2 Rank and Nullity of Matrices

Definition 3.5. The rank and nullity of a matrix $A \in F^{m \times n}$, denoted by rank(A) and nullity(A), respectively, are defined by

$$rank(A) = rank(L_A)$$

 $rank(L_A) = rank(L_A)$.

Theorem 3.6. The following statements are true for any matrix $A \in F^{m \times n}$.

- (a) $\mathcal{R}(L_A) = \operatorname{span}(\operatorname{col}(A)).$
- (b) rank(A) = dim(span(col(A))).

Proof.

(a) Let $\beta = (x_1, \dots, x_n)$ and $\gamma = (y_1, \dots, y_m)$ be the standard ordered basis for F^n and F^m , respectively. Then we have

$$Ax_i = [L_A(x_i)]_{\gamma},$$

which is the *i*th column of $[L_A]^{\gamma}_{\beta} = A$. Thus, we have $L_A(\beta) = \operatorname{col}(A)$, and it follows that

$$\mathcal{R}(L_A) = L_A(F^n) = L_A(\operatorname{span}(\beta)) = \operatorname{span}(L_A(\beta)) = \operatorname{span}(\operatorname{col}(A)).$$

(b) By (a), we have

$$\operatorname{rank}(A) = \operatorname{rank}(L_A) = \dim(\mathcal{R}(L_A)) = \dim(\operatorname{span}(\operatorname{col}(A))). \quad \Box$$

Theorem 3.7. If $A \in F^{n \times n}$, then A is invertible if and only if rank(A) = n.

Proof. (\Rightarrow) Suppose that A is invertible. It follows that $L_A: F^n \to F^n$ is also invertible, and thus is bijective. Therefore,

$$rank(A) = rank(L_A) = dim(\mathcal{R}(L_A)) = dim(F^n) = n.$$

 (\Leftarrow) Suppose that rank(A) = n. Then we can conclude that $\mathcal{R}(L_A) = F^n$ since $\mathcal{R}(L_A)$ is a subspace of F^n with

$$\dim(\mathcal{R}(L_A)) = \operatorname{rank}(L_A) = \operatorname{rank}(A) = n = \dim(F^n).$$

Thus, L_A is surjective. It follows that L_A is bijective by Lemma 2.20, and thus L_A is invertible. Therefore, A is invertible.

Lemma 3.8. Let V and W be vector spaces and let $T: V \to W$ be linear. Let U be a subspace of V.

- (a) $\dim(T(U)) \leq \dim(U)$.
- (b) If T is injective, then $\dim(T(U)) = \dim(U)$.

Proof. Let S be a basis for U. Then we have $T(U) = T(\operatorname{span}(S)) = \operatorname{span}(T(S))$.

(a) Let Q be a basis for T(U). By replacement theorem (Theorem 1.24),

$$\dim(T(U)) = |Q| \le |T(S)| \le |S| = \dim(U).$$

(b) If T is injective, then T(S) is linearly independent. Thus, T(S) is a basis for T(U), implying

$$\dim(T(U)) = |T(S)| = |S| = \dim(U).$$

Theorem 3.9. The following statements hold for any matrix $A \in F^{m \times n}$.

- (a) If $X \in F^{m \times m}$ is invertible, then rank(XA) = rank(A).
- (b) If $Y \in F^{n \times n}$ is invertible, then rank(AY) = rank(A).

Proof.

(a) Since X is invertible, L_X is invertible, and thus is bijective. It follows that $\dim(L_X(U)) = \dim(U)$ for any subspace U of F^n since L_X is injective. Thus,

$$\operatorname{rank}(XA) = \operatorname{rank}(L_{XA})$$

$$= \dim(L_X(L_A(F^n)))$$

$$= \dim(L_A(F^n))$$

$$= \operatorname{rank}(L_A)$$

$$= \operatorname{rank}(A).$$

(b) Since Y is invertible, L_Y is invertible, and thus is bijective. It follows that $L_Y(F^n) = F^n$ since L_Y is surjective. Thus,

$$\operatorname{rank}(AY) = \operatorname{rank}(L_{AY})$$

$$= \dim(L_A(L_Y(F^n)))$$

$$= \dim(L_A(F^n))$$

$$= \operatorname{rank}(L_A)$$

$$= \operatorname{rank}(A).$$

Theorem 3.10. Let V and W be finite-dimensional vector spaces with bases β and γ , respectively. If $T:V\to W$ is linear, then

$$\operatorname{rank}(T) = \operatorname{rank}\left([T]_{\beta}^{\gamma}\right).$$

Proof. Let $A = [T]^{\gamma}_{\beta}$. Since $[T(x)]_{\gamma} = [T]^{\gamma}_{\beta}[x]_{\beta}$ holds for any $x \in V$, we have

$$\phi_{\gamma}T = L_A \phi_{\beta}.$$

Thus, since ϕ_{β} and ϕ_{γ} are invertible, we have

$$\operatorname{rank}(T) = \operatorname{rank}(\phi_{\gamma}T) = \operatorname{rank}(L_A\phi_{\beta}) = \operatorname{rank}(L_A) = \operatorname{rank}(A). \quad \Box$$

Theorem 3.11. Let $A \in F^{m \times n}$ and let r be a nonnegative integer. Then $\operatorname{rank}(A) = r$ if and only if A can be transformed into

$$D = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}$$

by performing a finite number of elementary operations.

Proof. (\Leftarrow) Since A can be transformed into D by a finite number of elementary operations, there exist elementary matrices $X_1, \ldots, X_p \in F^{m \times m}$ and $Y_1, \ldots, Y_q \in F^{n \times n}$ such that

$$X_p \cdots X_1 A Y_1 \cdots Y_q = D.$$

Since elementary matrices are invertible,

$$rank(A) = rank(X_p \cdots X_1 A Y_1 \cdots Y_q) = rank(D) = r.$$

 (\Rightarrow) If A is the zero matrix, then we have r=0, and thus the theorem holds in this case with D=A. Now suppose that A is not the zero matrix. The proof is by induction on $k=\min(m,n)$.

First, we show that A can be transformed into some matrix B by a finite number of elementary operations as follows, where $B_{11} = 1$, $B_{1j} = 0$ and $B_{i1} = 0$ for $2 \le i \le m$ and $2 \le j \le n$.

- 1. First, we turn the (1,1)-entry into a nonzero number by performing type 1 elementary operations.
 - a. If the first row contains only zeros, perform a type 1 row operation by exchanging the first row and a nonzero row.
 - b. If the (1,1)-entry is zero, perform a type 1 column operation by exchanging the first column and a column whose first entry is not zero.
- 2. Then we turn the (1,1)-entry into 1 by performing a type 2 operation.
- 3. Finally, we eliminate all nonzero entries in the first row and the first column except the (1,1)-entry by performing type 3 operations.
 - a. For $2 \le i \le m$, if the (i, 1)-entry is nonzero, perform a type 3 row operation by adding a multiple of the first row to the *i*th row such that the (i, 1)-entry becomes zero.
 - b. For $2 \leq j \leq n$, if the (1, j)-entry is nonzero, perform a type 3 column operation by adding a multiple of the first column to the jth column such that the (1, j)-entry becomes zero.

By Theorem 3.9, rank(B) = rank(A) = r since B can be obtained from A by performing a finite number of elementary operations.

Now we prove the theorem by induction on $\min(m, n)$. For the induction basis, assume that m = 1 or n = 1 holds. Then $\operatorname{rank}(A) = 1$ since A is not the zero matrix, and thus the theorem holds with D = B.

Now assume that the theorem holds for $\min(m, n) = k$ with $k \ge 1$, and we prove that the theorem also holds for $\min(m, n) = k + 1$. Since $\min(m, n) \ge 2$, we have

$$B = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \hline 0 & & & \\ \vdots & & B' & \\ 0 & & & \end{pmatrix},$$

where B' is an $(m-1) \times (n-1)$ matrix. Note that $\operatorname{rank}(B') = \operatorname{rank}(B) - 1 = r - 1$. By induction hypothesis, B' can be transformed into

$$D' = \begin{pmatrix} I_{r-1} & O_1 \\ O_2 & O_3 \end{pmatrix}$$

by a finite number of elementary row and column operations. It follows that

$$D = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \hline 0 & & & \\ \vdots & & D' & \\ 0 & & & \end{pmatrix}$$

is obtained from B by performing these operations. Thus, A can be transformed into D by a finite number of elementary operations, which completes the proof.

Corollary 3.12. Let $A \in F^{m \times n}$ and let r be a nonnegative integer. Then $\operatorname{rank}(A) = r$ if and only if there exist invertible $X \in F^{m \times m}$ and $Y \in F^{n \times n}$ such that

$$XAY = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}.$$

Proof. (\Leftarrow) It is proved by

$$rank(A) = rank(XAY) = r.$$

 (\Rightarrow) By Theorem 3.11, there exist elementary matrices $X_1, \ldots, X_p \in F^{m \times m}$ and $Y_1, \ldots, Y_q \in F^{n \times n}$ such that

$$X_p \cdots X_1 A Y_1 \cdots Y_q = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3 \end{pmatrix}.$$

Thus, the theorem holds by assigning $X = X_p \cdots X_1$ and $Y = Y_1 \cdots Y_q$.

Theorem 3.13. For any $A \in F^{m \times n}$, rank $(A^t) = \text{rank}(A)$.

Proof. Let r = rank(A). By Corollary 3.12, there exist invertible matrices $X \in F^{m \times m}$ and $Y \in F^{n \times n}$ such that

$$XAY = D = \begin{pmatrix} I_r & O_1 \\ O_2 & O_3, \end{pmatrix}$$

implying

$$Y^t A^t X^t = D^t$$

Thus,

$$rank(A^t) = rank(Y^t A^t X^t) = rank(D^t) = r.$$

Theorem 3.14.

(a) Let U, V, W be finite-dimensional vector spaces over F. For any linear transformations $T_1: U \to V$ and $T_2: V \to W$, we have

$$\operatorname{rank}(T_2T_1) \leq \operatorname{rank}(T_1)$$
 and $\operatorname{rank}(T_2T_1) \leq \operatorname{rank}(T_2)$.

(b) For any matrices $A \in F^{\ell \times m}$ and $B \in F^{m \times n}$, we have

$$rank(AB) \le rank(A)$$
 and $rank(AB) \le rank(B)$.

Proof.

(a) By Lemma 3.8, we have

$$\operatorname{rank}(T_2T_1) = \dim(T_2(T_1(U))) \leq \dim(T_1(U)) = \operatorname{rank}(T_1).$$
 Furthermore, since $T_1(U) \subseteq V$, we have $T_2(T_1(U)) \subseteq T_2(V)$. Thus,

$$\operatorname{rank}(T_2T_1) = \dim(T_2(T_1(U))) \le \dim(T_2(V)) = \operatorname{rank}(T_2).$$

(b) By (a), we can conclude that

$$\operatorname{rank}(AB) = \operatorname{rank}(L_{AB}) = \operatorname{rank}(L_A L_B) \le \operatorname{rank}(L_A) = \operatorname{rank}(A)$$

 $\operatorname{rank}(AB) = \operatorname{rank}(L_{AB}) = \operatorname{rank}(L_A L_B) \le \operatorname{rank}(L_B) = \operatorname{rank}(B).$

3.3 Matrix Inverses

Theorem 3.15. Every invertible matrix is a product of elementary matrices.

Proof. Suppose A is an invertible $n \times n$ matrix. Since $\operatorname{rank}(A) = n$, there exist elementary matrices $X_1, \dots, X_p, Y_1, \dots, Y_q \in F^{n \times n}$ such that

$$X_p \cdots X_1 A Y_1 \cdots Y_q = I_n,$$

implying

$$A = X_1^{-1} \cdots X_p^{-1} Y_q^{-1} \cdots Y_1^{-1}.$$

Since the inverses of elementary matrices are elementary matrices, we can conclude that A is a product of elementary matrices.

3.4 Systems of Linear Equations

Definition 3.16. The system E of equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m,$$

where a_{ij} and b_i are scalars in a field F and x_1, x_2, \ldots, x_n are n variables that take values in F, is called a system of m linear equations in n unknowns over the field F. Furthremore, it can be rewritten as a matrix equation

$$E:Ax=b$$

with

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \text{and} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix},$$

and the matrices

$$A \in F^{m \times n}$$
 and $(A \mid b) \in F^{m \times (n+1)}$

are called the **coefficient matrix** and the **augmented matrix** of E, respectively.

Definition 3.17. For any system E : Ax = b of linear equations with $A \in F^{m \times n}$, the solution set of E, denoted by S(E), is defined by

$$S(E) = \{ s \in F^n : As = b \}.$$

Each element of S(E) is called a **solution** to E.

Theorem 3.18. If E: Ax = b is a system of linear equations, then S(E) is nonempty if and only if $rank(A) = rank(A \mid b)$.

Proof. It is proved by

$$S(E) \neq \emptyset \Leftrightarrow Ax = b \text{ for some } x \in F^n$$

 $\Leftrightarrow b \in \mathcal{R}(L_A)$
 $\Leftrightarrow b \in \operatorname{span}(\operatorname{col}(A))$
 $\Leftrightarrow \operatorname{span}(\operatorname{col}(A)) = \operatorname{span}(\operatorname{col}(A \mid b))$
 $\Leftrightarrow \operatorname{rank}(A) = \operatorname{rank}(A \mid b).$

Definition 3.19. A system E: Ax = b of linear equations with $A \in F^{m \times n}$ is said to be **homogeneous** if $b = 0_{F^m}$.

Proposition 3.20. The following statements are true for any homogeneous system $E: Ax = 0_{F^m}$ of linear equations with $A \in F^{m \times n}$.

(a)
$$S(E) = \mathcal{N}(L_A)$$
.

(b) S(E) is a subspace of A with $\dim(S(E)) = \text{nullity}(A)$.

Proof. Straightforward.

Definition 3.21. For any system

$$E: Ax = b$$

of linear equations with $A \in F^{m \times n}$, the system

$$E_H: Ax = 0_{F^m}$$

of linear equations is called the **homogeneous system** corresponding to E.

Proposition 3.22. For any system E: Ax = b of linear equations with $A \in F^{m \times n}$,

$$S(E) = \{s\} + S(E_H)$$

holds for any solution $s \in S(E)$.

Proof. For any $r \in F^n$, we have

$$r \in S(E) \Leftrightarrow Ar = b$$

 $\Leftrightarrow A(r - s) = 0_{F^m}$
 $\Leftrightarrow r - s \in S(E_H)$
 $\Leftrightarrow r \in \{s\} + S(E_H).$

Theorem 3.23. Let E: Ax = b be a system of linear equations with $A \in F^{n \times n}$. Then A is invertible if and only if E has exactly one solution.

Proof. (\Rightarrow) Suppose that $s \in F^n$ is a solution to E. Then we have As = b, implying $s = A^{-1}b$. Thus, $S(E) = \{A^{-1}b\}$.

 (\Leftarrow) Let $s \in F^n$ be the unique solution to E. Since $S(E) = \{s\} + S(E_H)$, we can conclude that $S(E_H) = \{0_{F^n}\}$, implying

$$rank(A) = n - nullity(A) = n - dim(S(E_H)) = n - 0 = n.$$

Thus, A is invertible.

Theorem 3.24. Let E: Ax = b and E': A'x = b' be systems of linear equations with $A, A' \in F^{m \times n}$. If there is an invertible matrix $X \in F^{m \times m}$ with

$$X(A \mid b) = (A' \mid b'),$$

then S(E) = S(E').

Proof. For any $s \in F^n$, we have

$$s \in S(E) \Leftrightarrow As = b$$

 $\Leftrightarrow X(As) = Xb$
 $\Leftrightarrow A's = b'$
 $\Leftrightarrow s \in S(E').$

Definition 3.25. A matrix is said to be in **reduced row echelon form** if it satisfies the following conditions.

- (a) Any nonzero rows are above rows with all zeros.
- (b) The first nonzero entry in each row is 1_F and it occurs to the right of the the first nonzero entry above it.
- (c) The first nonzero entry in each row is the only nonzero entry in its column.

Theorem 3.26. Any matrix can be transformed into a matrix in reduced row echelon form by a finite number of elementary row operations.

Proof. One can repeat the following steps until all rows are processed or all nonzero columns are processed. At first, all rows and all columns has not been processed.

- 1. Find i such that the ith row is the first row that has not been processed, and find j such that the jth column is the first nonzero column that has not been processed.
- 2. If (i, j)-entry is zero, perform a type 1 row operation such that the (i, j)-entry becomes nonzero.
- 3. Perform a type 2 row operation to turn the (i, j)-entry into 1_F .
- 4. Perform type 3 row operations such that the (i, j)-entry becomes the only nonzero entry in the jth column.
- 5. Mark the *i*th row and the *j*th column as processed.

After the process above, any matrix should be transformed into a matrix in reduced row echelon form. \Box

Remark. The algorithm in the proof above is called Gaussian-Jordan elimination.

Chapter 4

Determinants

4.1 Characterization of the Determinant

Definition 4.1. A function $\delta: F^{n \times n} \to F$ is *n***-linear** if

$$\delta(A) = k\delta(B) + \delta(C)$$

holds for any matrices $A, B, C \in F^{n \times n}$ satisfying the following properties for any $i \in \{1, ..., n\}$ and for any $k \in F$.

- The jth rows of A, B and C are identical for each $j \in \{1, ..., n\} \setminus \{i\}$.
- The *i*th row of A is the sum of the *i*th row of B multiplied by k and the *i*th row of C.

Definition 4.2. An *n*-linear function $\delta: F^{n \times n} \to F$ is alternating if

$$\delta(A) = 0_F$$

holds for any matrix $A \in F^{n \times n}$ that has two identical rows.

Proposition 4.3. Let $\delta: F^{n \times n} \to F$ be an alternating *n*-linear function and let $A \in F^{n \times n}$. Then the following statements are true.

- (a) If $E_1 \in F^{n \times n}$ is an elementary matrix of type 1, then $\delta(E_1 A) = -\delta(A)$.
- (b) If $E_2 \in F^{n \times n}$ is an elementary matrix of type 2 obtained by multiplying one row of I_n by scalar $k \in F$, then $\delta(E_2 A) = k \delta(A)$.
- (c) If $E_3 \in F^{n \times n}$ is an elementary matrix of type 3, then $\delta(E_3 A) = \delta(A)$.

Proof. Let $row(A) = (x_1, \ldots, x_n)$.

(a) Let E_1 be obtained from I_n by interchanging the pth row and the qth row with

p < q. Then we have

$$0_{F} = \delta \begin{pmatrix} x_{1} \\ \vdots \\ x_{p} + x_{q} \\ \vdots \\ x_{p} + x_{q} \\ \vdots \\ x_{n} \end{pmatrix} = \delta \begin{pmatrix} x_{1} \\ \vdots \\ x_{p} \\ \vdots \\ x_{n} \end{pmatrix} + \delta \begin{pmatrix} x_{1} \\ \vdots \\ x_{q} \\ \vdots \\ x_{n} \end{pmatrix} + \delta \begin{pmatrix} x_{1} \\ \vdots \\ x_{p} + x_{q} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$= \delta \begin{pmatrix} x_{1} \\ \vdots \\ x_{p} \\ \vdots \\ x_{p} \\ \vdots \\ x_{n} \end{pmatrix} + \delta \begin{pmatrix} x_{1} \\ \vdots \\ x_{q} \\ \vdots \\ x_{q} \\ \vdots \\ x_{n} \end{pmatrix} + \delta \begin{pmatrix} x_{1} \\ \vdots \\ x_{q} \\ \vdots \\ x_{q} \\ \vdots \\ x_{n} \end{pmatrix} + \delta \begin{pmatrix} x_{1} \\ \vdots \\ x_{q} \\ \vdots \\ x_{q} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$= 0_{F} + \delta(A) + \delta(E_{1}A) + 0_{F}.$$

Thus, $\delta(E_1A) = -\delta(A)$.

(b) Let E_2 be obtained from I_n by multiplying the pth row by some scalar k. Then we have

$$\delta(E_2 A) = \delta \begin{pmatrix} x_1 \\ \vdots \\ k x_p \\ \vdots \\ x_n \end{pmatrix} = k \delta \begin{pmatrix} x_1 \\ \vdots \\ x_p \\ \vdots \\ x_n \end{pmatrix} = k \delta(A).$$

(c) Let E_3 be obtained from I_n by adding the pth row multiplied by some scalar k to the qth row. If p < q, then we have

$$\delta(E_3A) = \delta \begin{pmatrix} x_1 \\ \vdots \\ x_p \\ \vdots \\ kx_p + x_q \\ \vdots \\ x_n \end{pmatrix} = k\delta \begin{pmatrix} x_1 \\ \vdots \\ x_p \\ \vdots \\ x_p \\ \vdots \\ x_n \end{pmatrix} + \delta \begin{pmatrix} x_1 \\ \vdots \\ x_p \\ \vdots \\ x_q \\ \vdots \\ x_n \end{pmatrix} = k0_F + \delta(A) = \delta(A).$$

The case that q < p can be proved similarly.

Theorem 4.4. Let $\delta: F^{n \times n} \to F$ be an alternating *n*-linear function and let $A \in F^{n \times n}$. If rank(A) < n, then $\delta(A) = 0_F$.

Proof. Since

$$\dim(\operatorname{span}(\operatorname{row}(A))) = \operatorname{rank}(A^t) = \operatorname{rank}(A) < n,$$

the rows of A is not a spanning set of F^n , and thus is linearly dependent, implying that there exists a row which is a linear combination of the other rows.

Therefore, A can be transformed into a matrix B that has two identical rows by a finite number of elementary row operations. It follows that

$$\delta(A) = \delta(E_p \cdots E_1 A) = \delta(B) = 0_F,$$

where $E_1, \ldots, E_p \in F^{n \times n}$ are elementary matrices.

Theorem 4.5. Let $\delta: F^{n \times n} \to F$ be an alternating *n*-linear function such that $\delta(I_n) = 1_F$. Then for any $A, B \in F^{m \times n}$, we have

$$\delta(AB) = \delta(A)\delta(B).$$

Proof. First, suppose that rank(A) < n. Then we have rank(AB) < n. Thus,

$$\delta(AB) = 0_F = \delta(A)\delta(B).$$

Now suppose that $\operatorname{rank}(A) = n$. That is, A is invertible, and thus $A = E_k \cdots E_1$ for some elementary matrices $E_1, \ldots, E_k \in F^{n \times n}$. Then we have

$$\delta(AB) = \delta(E_k \cdots E_1 B)$$

$$= \delta(E_k) \cdots \delta(E_1) \delta(B)$$

$$= \delta(E_k) \cdots \delta(E_1) \delta(I_n) \delta(B)$$

$$= \delta(E_k \cdots E_1 I_n) \delta(B)$$

$$= \delta(A) \delta(B).$$

$$(\delta(I_n) = 1_F)$$

П

Theorem 4.6. There exists a unique alternating *n*-linear function $\delta: F^{n \times n} \to F$ with $\delta(I_n) = 1_F$.

Proof. Suppose that $\delta, \delta': F^{n \times n} \to F$ are alternating *n*-linear functions with $\delta(I_n) = 1_F = \delta'(I_n)$. We prove that $\delta(A) = \delta(A')$ for any $A \in F^{n \times n}$. If $\operatorname{rank}(A) < n$, then

$$\delta(A) = 0_F = \delta'(A).$$

If rank(A) = n, then A is invertible, and thus

$$A = E_p \cdots E_1$$

for some elementary matrices $E_1, \ldots, E_p \in F^{n \times n}$. It follows that

$$\delta(A) = \delta(E_p \cdots E_1 I_n)$$

$$= \delta(E_p) \cdots \delta(E_1) \delta(I_n)$$

$$= \delta'(E_p) \cdots \delta'(E_1) \delta(I_n)$$

$$= \delta'(E_p \cdots E_1 I_n)$$

$$= \delta'(A).$$

Definition 4.7. The determinant of $A \in F^{n \times n}$ is

$$\det(A) = \delta(A),$$

where $\delta: F^{n \times n} \to F$ is the alternating *n*-linear function with $\delta(I_n) = 1_F$.

4.2 Permutations

Definition 4.8.

- A function $\sigma: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ is a **permutation** over $\{1, 2, ..., n\}$ if σ is bijective. The set of all permutations over $\{1, 2, ..., n\}$ is denoted by S_n .
- An inversion of $\sigma \in S_n$ is a pair (i, j) with $1 \le i < j \le n$ and $\sigma(i) > \sigma(j)$. The number of inversions of σ is denoted by $\rho(\sigma)$.
- The sign of $\sigma \in S_n$ is defined by

$$\operatorname{sgn}(\sigma) = (-1)^{\rho(\sigma)}.$$

Theorem 4.9. For any matrix $A \in F^{n \times n}$,

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma(i)}.$$

Proof. Let $\delta: F^{n \times n} \to F$ be the function

$$\delta(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma(i)}.$$

We prove that δ is an alternating *n*-linear function with $\delta(I_n) = 1_F$.

First, we show that δ is *n*-linear. Suppose that $A, B, C \in F^{n \times n}$ are matrices satisfying the following properties for any $p \in \{1, \ldots, n\}$ and for any $k \in F$.

- The *i*th rows of A, B and C are identical for each $i \in \{1, ..., n\} \setminus \{p\}$.
- The pth row of A is the sum of the pth row of B multiplied by k and the pth row of C.

Then we have

$$\begin{split} \delta(A) &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{p,\sigma(p)} \prod_{\substack{1 \le i \le n \\ i \ne p}} A_{i,\sigma(i)} \\ &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) (k B_{p,\sigma(p)} + C_{p,\sigma(p)}) \prod_{\substack{1 \le i \le n \\ i \ne p}} A_{i,\sigma(i)} \\ &= k \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) B_{p,\sigma(p)} \prod_{\substack{1 \le i \le n \\ i \ne p}} A_{i,\sigma(i)} + \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) C_{p,\sigma(p)} \prod_{\substack{1 \le i \le n \\ i \ne p}} A_{i,\sigma(i)} \\ &= k \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) B_{p,\sigma(p)} \prod_{\substack{1 \le i \le n \\ i \ne p}} B_{i,\sigma(i)} + \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) C_{p,\sigma(p)} \prod_{\substack{1 \le i \le n \\ i \ne p}} C_{i,\sigma(i)} \\ &= k \delta(B) + \delta(C). \end{split}$$

Now we show that δ is alternating. Suppose that $D \in F^{n \times n}$ is a matrix whose pth row and qth row are identical with $p \neq q$. For each $\sigma \in S_n$, let $\sigma' \in S_n$ be the permutation that satisfies the following properties.

- $\sigma'(p) = \sigma(q)$ and $\sigma'(q) = \sigma(p)$.
- $\sigma'(i) = \sigma(i)$ for each $i \in \{1, \dots, n\} \setminus \{p, q\}$.

Then we have

$$\begin{split} \delta(D) &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{1 \leq i \leq n} D_{i,\sigma(i)} \\ &= \sum_{\substack{\sigma \in S_n \\ \sigma(p) < \sigma(q)}} \operatorname{sgn}(\sigma) \prod_{1 \leq i \leq n} D_{i,\sigma(i)} + \sum_{\substack{\sigma \in S_n \\ \sigma(p) > \sigma(q)}} \operatorname{sgn}(\sigma) \prod_{1 \leq i \leq n} D_{i,\sigma(i)} \\ &= \sum_{\substack{\sigma \in S_n \\ \sigma(p) < \sigma(q)}} \operatorname{sgn}(\sigma) \prod_{1 \leq i \leq n} D_{i,\sigma(i)} + \sum_{\substack{\sigma \in S_n \\ \sigma(p) < \sigma(q)}} \operatorname{sgn}(\sigma') \prod_{1 \leq i \leq n} D_{i,\sigma'(i)} \\ &= \sum_{\substack{\sigma \in S_n \\ \sigma(p) < \sigma(q)}} (\operatorname{sgn}(\sigma) + \operatorname{sgn}(\sigma')) \prod_{1 \leq i \leq n} D_{i,\sigma(i)} \\ &= 0_F. \end{split}$$

Finally, we have

$$\delta(I_n) = \operatorname{sgn}(\sigma_0) = 1_F,$$

where σ_0 is the identity permutation. Therefore, δ is an alternating *n*-linear function with $\delta(I_n) = 1_F$, and by Theorem 4.6 we can conclude that it is exactly the determinant function.

Chapter 5

Diagonalization

5.1 Eigenvalues and Eigenvectors

Definition 5.1. Let $T: V \to V$ be a linear operator on a vector space V over a field F. If

$$T(x) = \lambda x$$

holds for some scalar $\lambda \in F$ and some vector $x \in V \setminus \{0_V\}$, then (λ, x) is called an **eigenpair** of T, with λ and x called an **eigenvalue** and an **eigenvector** of T, respectively.

Definition 5.2. Let V be a vector space over a field F with $\dim(V) = n$. Let $T \in \mathcal{L}(V)$. An **eigenbasis** of V for T is an ordered basis of V in which every vector is an eigenvector of T.

5.2 Characteristic Polynomials and Eigenspaces

Definition 5.3. The characteristic polynomial of $A \in F^{n \times n}$ is the polynomial $f_A \in \mathcal{P}(F)$ with

$$f_A(t) = \det(A - tI_n).$$

Definition 5.4. Let V be a vector space over a field F. Let $T:V\to V$ be linear and let λ be an eigenvalue of T. Then

$$E_T(\lambda) = \mathcal{N}(T - \lambda I_V).$$

is called the **eigenspace** of T with respect to λ .