m.	T · · · · · · · · · · · · · · · · · · ·		D I III			
l m M m	Imię i nazwisko:	Rok: III				
Wydział:	Konrad Kaczmarczyk	Blok: B				
EAIiIB	Jakub Cios					
AGH	Damian Krakowiecki	Grupa: 1				
	Dawid Blajer	orupu. 1				
	Jakub Kiepas					
	Maksymilian Jura					
Data wykonania:	LABORATORIUM MASZYN ELEKTRYCZNYCH					
06.11.23	Ćw. T1 Transformator trójfazowy - pomiary parametr					
Zaliczenie:	Podpis	Uwagi:				
	prowadzącego:					

Wstęp

Celem danego ćwiczenia było sprawdzenie działania transformatora w praktyce. Badania przeprowadzaliśmy na transformatorze trójfazowym 380/240V, 11,4/18,1A o mocy 7,5kVA i układzie połączeń Yy0 co oznacza, że strona górna oraz dolna jest połączona w gwiazdę, a napięcie wejściowe w stosunku do wyjściowego jest przesunięte o 0st.

Pomiary

Stan jałowy

Podłączyliśmy transformator do zasilania o napięciu 240V. Ustawiliśmy przekładnie przekładników prądowych na 5/5A. Korzystając z miernika N10, dokonaliśmy pomiaru średnich wartości napięć, prądów, mocy czynnej oraz mocy pozornej i cosφ. Zmienialiśmy napięcie zasilania zgodnie z instrukcjami, zaczynając od wartości maksymalnej i stopniowo zmniejszając. Przeprowadziliśmy jeden z pomiarów przy nominalnej wartości napięcia w celu określenia przekładni napięciowej.

Grafika 1 Układ połączeń do pomiarów w stanie jałowym

U1 [V]	U2 [V]	Io [A]	Po [W]	So [AV]	cos fi [-]
248,3	419,7	1,077	120,35	462,50	0,260
240,5	406,7	0,972	112,55	407,30	0,276
195,9	331,6	0,571	75,36	194,60	0,389
153,2	259,1	0,370	48,52	98,15	0,496
124,6	210,7	0,287	34,00	62,08	0,549
103,0	174,0	0,239	24,60	42,62	0,576
74,1	124,8	0,184	13,86	23,62	0,589
50,2	84,6	0,144	7,07	12,55	0,567

Przekładnia napięciowa obliczona kolejno z wartości nominalnych oraz przeprowadzonych pomiarów.

$$\vartheta = \frac{U_{N2}}{U_{N1}} = \frac{380}{240} \approx 1,58$$

$$\vartheta = \frac{U_2}{U_1} = \frac{406,7}{240,5} \approx 1,69$$

Jak można zauważyć obliczona przez nas przekładnia wyszła większa.

Grafika 2 Zależność prądu biegu jałowego od napięcia

Związek między prądem jałowym a napięciem w przypadku wyższych wartości napięcia znacznie odbiega od liniowego przebiegu. W tym zakresie, przybliżenie tego związku za pomocą funkcji kwadratowej generuje mniejsze odchyłki w porównaniu do funkcji liniowej. Szybszy wzrost prądu niż w przypadku linii wynika z nasycenia się żelaza rdzenia przy większych wartościach indukcji. W rezultacie efektywna impedancja gałęzi magnesującej schematu zastępczego maleje.

Grafika 3 Zależność mocy na biegu jałowym od napięcia

Wzrost strat mocy P0 jest dobrze przybliżony funkcją kwadratową. Taki kształt charakterystyki znajduje uzasadnienie w kwadratowej zależności strat w żelazie od indukcji magnetycznej. Straty mocy w uzwojeniu są niewielkie podczas pracy bez obciążenia.

Grafika 4 Zależność współczynnika cosφ na biegu jałowym od napięcia

W miarę zwiększania głównie składowej biernej prądu, obserwujemy równoczesny spadek współczynnika mocy cosφ.

Stan zwarcia

W tej konfiguracji zasilaliśmy stronę wysokiego napięcia transformatora, podczas gdy strona 240V była zwarciem. Ustawiliśmy przekładniki prądowe na 20/5. Zaciski prądowe, tj. U1, V1, W1, zostały połączone zgodnie z poniższym schematem, natomiast zaciski U2, V2, W2 zostały spięte. W celu podwyższenia napięcia, zaciski napięciowe U, V, W zostały połączone za pomocą przekładników napięciowych o przekładni 30/150. Otrzymane średnie wartości napięć, prądów, mocy czynnej oraz mocy pozornej i cosφ, odczytane z miernika N10, zostały następnie pomnożone przez mnożniki określone przez przekładniki, aby uzyskać wartości rzeczywiste.

Grafika 5 Układ połączeń do pomiarów w stanie zwarcia

U [V]	C ∪ [-]	Uz [V]	I [A]	Cı [-]	Iz [A]	P [W]	Cp [-]	Pz [W]	S [VA]	Cs [-]	Sz [VA]	cos fi [-]
63,8	0,2	12,76	2,94	4	11,76	276,4	0,8	221,12	326,3	0,8	261,04	0,846
55,6	0,2	11,12	2,56	4	10,24	209,6	0,8	167,68	246,5	0,8	197,2	0,846
47,4	0,2	9,48	2,16	4	8,64	151,34	0,8	121,072	179,2	0,8	143,36	0,846
39,5	0,2	7,9	1,82	4	7,28	104,8	0,8	83,84	123,6	0,8	98,88	0,845
33,1	0,2	6,62	1,52	4	6,08	73,2	0,8	58,56	86,7	0,8	69,36	0,845
25	0,2	5	1,15	4	4,6	42,7	0,8	34,16	51,3	0,8	41,04	0,843
8,4	0,2	1,68	0,92	4	3,68	10,6	0,8	8,48	12,6	0,8	10,08	-
7,7	0,2	1,54	0,84	4	3,36	8,9	0,8	7,12	10,7	0,8	8,56	-

Grafika 6 Zależność prądu biegu zwarciowego od napięcia

Prąd zmienia się niemalże liniowo wraz z napięciem. Ten efekt wynika z braku nasycenia rdzenia, gdyż prąd zwartego uzwojenia drugiej strony działa odmagnesowująco.

Grafika 7 Zależność mocy zwarciowej od napięcia

Dobrze oddając charakterystykę, moc została przybliżona funkcją kwadratową ze względu na to, że straty mocy głównie występują w uzwojeniu i są zatem proporcjonalne do kwadratu prądu.

Grafika 8 Zależność współczynnika cosφ od napięcia podczas zwarcia

Z uwagi na to, że parametry są niezależne od napięcia, współczynnik mocy cosφ pozostaje praktycznie stały.

Schemat zastępczy transformatora

Grafika 9 Schemat zastępczy transformatora

Dla uproszczenia obliczeń wartości schematu zastępczego przyjmujemy, iż transformator jest jednofazowy. Widok parametrów obliczamy od strony wysokiego napięcia, pamiętając o tym iż zwarcie było dla zasilania strony wysokiego napięcia, a stan jałowy dla zasilania strony niskiego napięcia.

Stan jałowy: U₁₀=240,5V, I₀=0,972A, P₀=112,55

Stan zwarcia: U_{1k}=12,76V, I_{1k}=11,76A, P_k=221,12W

$$Z_k = \frac{U_{1k}}{I_{1k}} = \frac{12,76}{\sqrt{3} * 11,76} \approx 0,63 [\Omega]$$

$$R_k = \frac{P_k}{3 * I_{1k}^2} = \frac{221,12}{3 * 11,76^2} \approx 0,53 \ [\Omega]$$

$$X_k = \sqrt{{Z_k}^2 - {R_k}^2} = \sqrt{0.63^2 - 0.53^2} \approx 0.34 \, [\Omega]$$

$$R_1 = R_2' = \frac{R_k}{2} = \frac{0.53}{2} \approx 0.27 [\Omega]$$

$$X_1 = X_2' = \frac{X_k}{2} = \frac{0.34}{2} = 0.17 [\Omega]$$

$$R_2 = \frac{{R_2}'}{{k_y}^2} = \frac{0.27}{1.69^2} \approx 0.09 \, [\Omega]$$

$$P_{0Fe} = P_0 - 3 * R_2 * {I_0}^2 = 112,55 - 3 * 0,09 * 0,972^2 \approx 112,29 [W]$$

$$R_{Fe} = \frac{3 * \left(\frac{U_{10}}{\sqrt{3}}\right)^2}{P_{0Fe}} = \frac{240.5^2}{112.29} \approx 515.10 [\Omega]$$

$$I_{Fe} = \frac{U_{10}}{\sqrt{3} * R_{Fe}} = \frac{240.5}{\sqrt{3} * 515.10} \approx 0.27 [A]$$

$$I_{\mu} = \sqrt{{I_0}^2 - {I_{Fe}}^2} = \sqrt{0.972^2 - 0.16^2} \approx 0.93 [A]$$

$$X_{\mu} = \frac{U_{10}}{\sqrt{3} * I_{\mu}} = \frac{240,5}{\sqrt{3} * 0,93} \approx 149,30 \ [\Omega]$$

Zatem ostateczne wartości przyjętego schematu zastępczego są następujące:

$$R_1=R_2'=0,27 \Omega$$

$$X_1 = X_2' = 0.17 \Omega$$

$$R_{Fe} = 1469,61 \Omega$$

$$X_{\mu} = 244,85 \Omega$$