# Finite Volume Methods for Hyperbolic Problems

# Dissipation, Dispersion, Modified Equations

- Upwind, Lax-Friedrichs
- Lax-Wendroff and Beam-Warming
- Numerical dissipation and dispersion
- Modified equations

# Symmetric methods

#### Centered in space, forward in time:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n)$$

Flux differencing with  $\mathcal{F}(Q_{i-1},Q_i)=\frac{1}{2}(AQ_{i-1}+AQ_i)$  for f(q)=Aq.

# Symmetric methods

#### Centered in space, forward in time:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n)$$

Flux differencing with  $\mathcal{F}(Q_{i-1},Q_i)=\frac{1}{2}(AQ_{i-1}+AQ_i)$  for f(q)=Aq.

 $\mathcal{O}(\Delta x^2)$  approximation to  $q_x$ , but unstable for any fixed  $\Delta t/\Delta x$ .

# Symmetric methods

#### Centered in space, forward in time:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n)$$

Flux differencing with  $\mathcal{F}(Q_{i-1},Q_i)=\frac{1}{2}(AQ_{i-1}+AQ_i)$  for f(q)=Aq.

 $\mathcal{O}(\Delta x^2)$  approximation to  $q_x$ , but unstable for any fixed  $\Delta t/\Delta x$ .

#### Lax-Friedrichs:

$$Q_i^{n+1} = \frac{1}{2}(Q_{i-1}^n + Q_{i+1}^n) - \frac{\Delta t}{2\Delta x}A(Q_{i+1}^n - Q_{i-1}^n)$$

This is stable if  $\left|\frac{\lambda^p \Delta t}{\Delta x}\right| \leq 1$  for all p.

# Numerical dissipation

#### Lax-Friedrichs:

$$Q_i^{n+1} = \frac{1}{2}(Q_{i-1}^n + Q_{i+1}^n) - \frac{\Delta t}{2\Delta x}A(Q_{i+1}^n - Q_{i-1}^n)$$

#### This can be rewritten as

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n) + \frac{1}{2} (Q_{i-1}^n - 2Q_i^n + Q_{i+1}^n)$$

# Numerical dissipation

#### Lax-Friedrichs:

$$Q_i^{n+1} = \frac{1}{2}(Q_{i-1}^n + Q_{i+1}^n) - \frac{\Delta t}{2\Delta x}A(Q_{i+1}^n - Q_{i-1}^n)$$

This can be rewritten as

$$\begin{split} Q_i^{n+1} &= Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n) + \frac{1}{2} (Q_{i-1}^n - 2Q_i^n + Q_{i+1}^n) \\ &= Q_i^n - \Delta t A\left(\frac{Q_{i+1}^n - Q_{i-1}^n}{2\Delta x}\right) + \Delta t \left(\frac{\Delta x^2}{2\Delta t}\right) \left(\frac{Q_{i-1}^n - 2Q_i^n + Q_{i+1}^n}{\Delta x^2}\right) \end{split}$$

# Numerical dissipation

#### Lax-Friedrichs:

$$Q_i^{n+1} = \frac{1}{2}(Q_{i-1}^n + Q_{i+1}^n) - \frac{\Delta t}{2\Delta x}A(Q_{i+1}^n - Q_{i-1}^n)$$

This can be rewritten as

$$\begin{split} Q_i^{n+1} &= Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n) + \frac{1}{2} (Q_{i-1}^n - 2Q_i^n + Q_{i+1}^n) \\ &= Q_i^n - \Delta t A\left(\frac{Q_{i+1}^n - Q_{i-1}^n}{2\Delta x}\right) + \Delta t \left(\frac{\Delta x^2}{2\Delta t}\right) \left(\frac{Q_{i-1}^n - 2Q_i^n + Q_{i+1}^n}{\Delta x^2}\right) \end{split}$$

The unstable method with the addition of artificial viscosity,

Approximates  $q_t + Aq_x = \epsilon q_{xx}$  (modified equation)

with 
$$\epsilon = \frac{\Delta x^2}{2\Delta t} = \mathcal{O}(\Delta x)$$
 if  $\Delta t/\Delta x$  is fixed as  $\Delta x \to 0$ .

# **Modified Equations**

The upwind method

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} u(Q_i^n - Q_{i-1}^n).$$

gives a first-order accurate approximation to  $q_t + uq_x = 0$ .

But it gives a second-order approximation to

$$q_t + uq_x = \frac{u\Delta x}{2} \left(1 - \frac{u\Delta t}{\Delta x}\right) q_{xx}.$$

This is an advection-diffusion equation.

Indicates that the numerical solution will diffuse.

Note: coefficient of diffusive term is  $O(\Delta x)$ .

# **Modified Equations**

The upwind method

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} u(Q_i^n - Q_{i-1}^n).$$

gives a first-order accurate approximation to  $q_t + uq_x = 0$ .

But it gives a second-order approximation to

$$q_t + uq_x = \frac{u\Delta x}{2} \left(1 - \frac{u\Delta t}{\Delta x}\right) q_{xx}.$$

This is an advection-diffusion equation.

Indicates that the numerical solution will diffuse.

Note: coefficient of diffusive term is  $O(\Delta x)$ .

Note: No diffusion if  $\frac{u\Delta t}{\Delta x}=1$   $(Q_i^{n+1}=Q_{i-1}^n \text{ exactly}).$ 

 $q_t+q_x=0$  with periodic BCs Solution at t=1 should agree with initial data.

Initial data with 200 cells:



 $q_t+q_x=0$  with periodic BCs Solution at t=1 should agree with initial data.

Upwind solution with 200 cells:



 $q_t+q_x=0$  with periodic BCs Solution at t=1 should agree with initial data.

Upwind solution with 400 cells:



## Lax-Wendroff

Second-order accuracy?

Taylor series:

$$q(x,t+\Delta t) = q(x,t) + \Delta t q_t(x,t) + \frac{1}{2} \Delta t^2 q_{tt}(x,t) + \cdots$$

From  $q_t = -Aq_x$  we find  $q_{tt} = A^2q_{xx}$ .

$$q(x,t+\Delta t) = q(x,t) - \Delta t A q_x(x,t) + \frac{1}{2} \Delta t^2 A^2 q_{xx}(x,t) + \cdots$$

Replace  $q_x$  and  $q_{xx}$  by centered differences:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n) + \frac{1}{2} \frac{\Delta t^2}{\Delta x^2} A^2(Q_{i-1}^n - 2Q_i^n + Q_{i+1}^n)$$

# Modified Equation for Lax-Wendroff

The Lax-Wendroff method

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(Q_{i+1}^n - Q_{i-1}^n) + \frac{1}{2} \frac{\Delta t^2}{\Delta x^2} A^2(Q_{i-1}^n - 2Q_i^n + Q_{i+1}^n)$$

gives a second-order accurate approximation to  $q_t + uq_x = 0$ .

But it gives a third-order approximation to

$$q_t + uq_x = -\frac{u\Delta x^2}{6} \left(1 - \left(\frac{u\Delta t}{\Delta x}\right)^2\right) q_{xxx}.$$

This has a dispersive term with  $O(\Delta x^2)$  coefficient.

Indicates that the numerical solution will become oscillatory.

# Dispersion relation

Consider a single Fourier mode:

$$q(x,0) = e^{i\xi x} \implies q(x,t) = e^{i(\xi x - \omega t)}$$

Determine  $\omega(\xi)$  based on the PDE (dispersion relation)

$$q_t = -i\omega q, \quad q_x = i\xi q,$$

$$q_t + uq_x = 0 \implies \omega(\xi) = u\xi, \qquad q(x,t) = e^{i\xi(x-ut)}$$
 (translates at speed  $u$  for all  $\xi$ )

# Dispersion relation

Consider a single Fourier mode:

$$q(x,0) = e^{i\xi x} \implies q(x,t) = e^{i(\xi x - \omega t)}$$

Determine  $\omega(\xi)$  based on the PDE (dispersion relation)

$$q_t = -i\omega q$$
,  $q_x = i\xi q$ ,  $q_{xx} = -\xi^2 q$ ,

$$q_t + uq_x = 0 \implies \omega(\xi) = u\xi, \qquad q(x,t) = e^{i\xi(x-ut)}$$
 (translates at speed  $u$  for all  $\xi$ )

$$q_t + uq_x = \epsilon q_{xx} \implies q(x,t) = e^{-\epsilon \xi^2 t} e^{i\xi(x-ut)}$$
 (decays)

# Dispersion relation

Consider a single Fourier mode:

$$q(x,0) = e^{i\xi x} \implies q(x,t) = e^{i(\xi x - \omega t)}$$

Determine  $\omega(\xi)$  based on the PDE (dispersion relation)

$$q_t = -i\omega q, \quad q_x = i\xi q, \quad q_{xx} = -\xi^2 q, \quad q_{xxx} = -i\xi^3 q, \dots$$

$$q_t + uq_x = 0 \implies \omega(\xi) = u\xi, \qquad q(x,t) = e^{i\xi(x-ut)}$$
 (translates at speed  $u$  for all  $\xi$ )

$$q_t + uq_x = \epsilon q_{xx} \implies q(x,t) = e^{-\epsilon \xi^2 t} e^{i\xi(x-ut)}$$
 (decays)

$$q_t + uq_x = \beta q_{xxx} \implies q(x,t) = e^{i\xi(x-(u+\beta\xi^2)t)}$$
 (translates at speed  $u + \beta\xi^2$  that depends on wave number!)

 $q_t+q_x=0$  with periodic BCs Solution at t=1 should agree with initial data.

Initial data with 200 cells:



 $q_t+q_x=0$  with periodic BCs Solution at t=1 should agree with initial data.

Lax-Wendroff solution with 200 cells:



 $q_t+q_x=0$  with periodic BCs Solution at t=1 should agree with initial data.

Lax-Wendroff solution with 400 cells:



# Beam-Warming method

Taylor series for second order accuracy:

$$q(x,t+\Delta t) = q(x,t) - \Delta t A q_x(x,t) + \frac{1}{2} \Delta t^2 A^2 q_{xx}(x,t) + \cdots$$

Replace  $q_x$  and  $q_{xx}$  by one-sided differences:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(3Q_i^n - 4Q_{i-1}^n + Q_{i-2}^n) + \frac{1}{2} \frac{\Delta t^2}{\Delta x^2} A^2 (Q_i^n - 2Q_{i-1}^n + Q_{i-2}^n)$$

# Beam-Warming method

Taylor series for second order accuracy:

$$q(x,t+\Delta t) = q(x,t) - \Delta t A q_x(x,t) + \frac{1}{2} \Delta t^2 A^2 q_{xx}(x,t) + \cdots$$

Replace  $q_x$  and  $q_{xx}$  by one-sided differences:

$$Q_i^{n+1} = Q_i^n - \frac{\Delta t}{2\Delta x} A(3Q_i^n - 4Q_{i-1}^n + Q_{i-2}^n) + \frac{1}{2} \frac{\Delta t^2}{\Delta x^2} A^2 (Q_i^n - 2Q_{i-1}^n + Q_{i-2}^n)$$

CFL condition:  $0 \le \frac{\lambda^p \Delta t}{\Delta x} \le 2$  for all eigenvalues.

This is also the stability limit (von Neumann analysis).

 $q_t+q_x=0$  with periodic BCs Solution at t=1 should agree with initial data.

Beam-Warming solution with 200 cells:



 $q_t+q_x=0$  with periodic BCs Solution at t=1 should agree with initial data.

Beam-Warming solution with 400 cells:

