Indian Institute of Information Technology, Design and Manufacturing Kancheepuram MA1002 Linear Algebra

 Date: 28/11/2024
 End Semester Examination

 Time: 14.00 - 17.00
 Marks: 50

 CS23I1027

1, 1. Express the matrix A as a product of elementary matrices where (5)

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

7.2. Prove that the set, W, of all $n \times n$ matrices having trace equal to zero is a subspace of $M_{n\times n}(F) = F^{n\times n}$. Find a basis for W. What is the dimension of W? (Note that trace is the sum of diagonal entries). (5)

1. Z. Let

$$\alpha_1 = (1, -1), \quad \beta_1 = (1, 0)
\alpha_2 = (2, -1), \quad \beta_2 = (0, 1)
\alpha_3 = (-3, 2), \quad \beta_3 = (1, 1)$$

Does there exist a linear transformation T from R^2 to R^2 such that $T\alpha_i = \beta_i$ for i = 1, 2 and 3? Justify your answer. (5)

7 A. Let $T: \mathbb{R}^{2\times 1} \longrightarrow \mathbb{R}^{2\times 1}$ be a linear transforation defined as (5) $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+3y \\ x+y \end{pmatrix}$. Let $\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ and $\mathcal{B}_2 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ be two ordered bases of $\mathbb{R}^{2\times 1}$. (a) Compute $[T]_{\mathcal{B}_1}$ and $[T]_{\mathcal{B}_2}$. (b) Find an invertible matrix Q such that $[T]_{\mathcal{B}_2} = Q^{-1}[T]_{\mathcal{B}_1}Q$. Justify your answer.

7 5. Let
$$T: \mathbb{R}^{3 \times 1} \longrightarrow \mathbb{R}^{3 \times 1}$$
 is given by (4)

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Find a basis of (a) the null space of T and (b) the range of T.

- 7% Find the eigen values and eigen spaces of $A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix}$. Prove or disprove that A is diagonlizable. (6)
- 7.4. State and prove rank-nullity-dimension theorem. (3)
- Let \mathcal{V} be a vector space and let W_1 , W_2 be subspaces of \mathcal{V} . Suppose that $\dim \mathcal{V} = 10$, $\dim W_1 = 8$ and $\dim W_2 = 9$. What are the possible values of $\dim(W_1 \cap W_2)$? Justify your answer. (4)
- Q.9. Let $\lambda_1, \lambda_2, \lambda_3$ be distinct eigenvalues of the same matrix A with corresponding eigen vectors v_1, v_2, v_3 . Prove or disprove that (i) the determinant of the matrix $\begin{pmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{pmatrix}$ is zero and (ii) $\{v_1, v_2, v_3\}$ is a linearly independent set.
- Show that if \mathcal{V} is a real inner product space and $x,y\in\mathcal{V}$, such that $\|x\|=\|y\|$, then $\langle x+y,x-y\rangle=0$. Interpret this result in \mathbb{R}^2 . (3)
- ! W. Use the Gram-Schmidt orthonormalisation process to find an orthonormal basis for the subspace of R^4 generated by (6)

$$\{(1, 1, 0, 1), (1, -2, 0, 0), (1, 0, -1, 2)\}.$$