ELEC 402 CMOS Fabrication

Lecture 16

Reza Molavi
Dept. of ECE
University of British Columbia
reza@ece.ubc.ca

Slides Courtesy: Dr. Sudip Shekhar (UBC)

Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Schottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- > Transistors and wires are defined by *masks*
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Fab & Cadence Nomenclature

CMOS Features	CMOS Mask Layers	Cadence Layers
n-well	n-well,psub	Nwell,PWdummy

FOX	active	Oxide drw

n+ S/D regions	n+ doping	Nimp

n+ S/D regions	n+ doning	Pimn

Poly

Active/Poly contact	Contact	Cont
rictive, i oily contact	Contact	CO.1

via	via	VIA

Metal 2 Metal 2 Metal 2

Gate

Fabricating an Inverter

- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

- ➤ Grow SiO₂ on top of Si wafer
 - 900 1200 C with H₂O or O₂ in oxidation furnace

Photoresist

- > Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Lithography

- > Expose photoresist through n-well mask
- > Strip off exposed photoresist

Etch

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- > Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- > Ion Implantation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

n well p substrate

Polysilicon (Polycrystalline Silicon)

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

Use same lithography process to pattern polysilicon

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- ➤ N-diffusion forms nMOS source, drain, and n-well contact

n-diffusion

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

n-diffusion contd.

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

n-diffusion contd.

> Strip off oxide to complete patterning step

p-diffusion

Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metallization

- > Sputter on aluminum over whole wafer
- > Pattern to remove excess metal, leaving wires

