拓扑空间

- 1. 拓扑: 对于点集 $X,\tau = \{U_i | i \in I\}$ 是由 X 中的一系列子集构成的集合,若 (X,τ) 是一个拓扑空间 $(\tau$ 定义了 X 的一个拓扑),则下列条件得到满足:
 - (a) $X, \phi \in \tau$;
 - (b) 若 $J \subseteq I$ 是指标集 I 的任意子集, 则 $\cup_{i \in J} U_i \in \tau$;
 - (c) 若 $K \subseteq I$ 是 I 的任意有限子集, 则 $\bigcap_{k \in K} U_k \in \tau$;
- 2. 常用拓扑:
 - (a) 平庸拓扑: $\tau' = \{\phi, X\}$;
 - (b) 离散拓扑: $\tau'' = \{U | \forall U \subseteq X\};$
- 3. 连续: 设 X 和 Y 都是拓扑空间, 如果 Y 中每个开集 U 的原像 $f^{-1}(U)$ 都是 X 中的一个开集, 则映射 $f: X \to Y$ 称为连续的;
 - (a) 映射 $f: X \to Y$ 在 $x_0 \in X$ 处连续的定义为: $(\forall \varepsilon, \exists \delta, f(U_\delta(x_0))) \subset U_\varepsilon(f(x_0))$ 使得 $\forall U_\varepsilon(f(x_0)), \exists U_\delta(x_0), x \in U_\delta(x_0) \Rightarrow f(x) \in U_\varepsilon(f(x_0))$ 成立;
- 4. 同胚: 对于映射 $f: X \to Y$, 若 f, f^{-1} 都是连续映射, 则拓扑空间 X 与 Y 是同胚的;
- 5. 拓扑的强弱: 设 $\tau_{1,2}$ 是 X 上定义的两个拓扑, 当 $\tau_1 \subset \tau_2$ 时称拓扑 τ_1 强于拓扑 τ_2 ;
- 6. Hausdorff 空间: 空间中任意两个不同的点有不相交的开邻域, 即: $\forall x \neq x' \in X, \exists$ 邻域 $O: x \in O, x' \in O',$ 满足 $O \cap O' = \phi;$
- 7. 覆盖及开覆盖: 设 (X,τ) 是拓扑空间, 其子集族 $\{A_i|i \in I\}$ 或开集族 $\{U_i|i \in I\} \subseteq \tau$ 构成 X 的覆盖或开覆盖, 若 $\bigcup_{i \in I} A_i = X$ 或 $\bigcup_{i \in I} U_i = X$;
 - (a) 紧致性: X(或其子集 A) 的任一开覆盖中都存在有限的子覆盖 $\{U_i|j\in J\subseteq I, |J|<\infty\}$, 称 $X(\mathfrak{g}A)$ 紧致;
- 8. 连通性: 拓扑空间 X 称为连通的, 当且仅当该空间不能写成 $X = X_1 \cup X_2$ 的形式, 这里 X_1 和 X_2 是两个不相交的非空开集 $X_1 \cap X_2 = \varphi$;

- (a) 不连通的拓扑空间可以用其各个连通分支的并表示;
- (b) 道路连通: $\forall x, y \in X, \exists f : [0,1] \to X$ 使得 f(0) = x, f(1) = y;
- (c) 回路: $f:[0,1] \to X$ 使得 f(0) = f(1);
- (d) 单连通: 若 X 中的任一条回路都可以连续地形变收缩成一点, 就 称 X 是单连通的;