ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR

Hüseyin Taştan¹

¹Yıldız Teknik Üniversitesi İktisat Bölümü

Ders Kitabı:
Introductory Econometrics: A Modern Approach (4th ed.)
J. Wooldridge

14 Mart 2013

3

Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular

- Zaman serilerinde örneklem hacmi genellikle sınırlı olmasına rağmen, başka çözüm olmadığı için büyük örneklem özelliklerinden sık sık yararlanacağız.
- Altbölüm 11.2'de bağımlı değişkenin gecikmeli halinin, y_{t-1} gibi, açıklayıcı değişken olarak kullanılmasının kesin dışsallık (strict exogeneity) varsayımını (TS.2) nasıl ihlal ettiğini göreceğiz.
- ► Kesitler-arası verilerde (CH 5) rassal örnekleme (random sampling) varsayımı OLS büyük örneklem özelliklerini türetmemizde çok yardımcı olmuştu.
- ► Zaman serilerinde ise gözlemler ileri ve geriye doğru zaman içerisinde ilişkili oldukları için işimiz çok daha zor olacaktır.
- Zaman serilerinde kritik nokta, değişkenlerin farklı dönemlere ait değerleri arasındaki korelasyonun yeterince hızlı sıfıra düşüp düşmediğidir.

2

Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular

- ▶ Bölüm 10'da zaman serileri için OLS'nin sonlu (finite) örneklem özelliklerini gördük.
- ▶ Oldukça katı TS.1-TS.6 varsayımları sağlandığında zaman serilerinden elde edilen OLS tahmin edicileri, kesitler-arası verilerden elde edilen OLS tahmin edicilerle aynı özelliklere sahip olacaklardır.
- Zaman serilerinde de kesitler-arasında olduğu gibi OLS'nin büyük örneklem (asimptotik) özelliklerini incelemekte yarar olacaktır.
- Örneğin, hata teriminin normal dağılmadığı durumda merkezi limit teoremine dayanarak OLS test istatistiklerini kullanabileceğiz.

4

Durağan (Stationary) ve Durağan Olmayan (Nonstationary) Zaman Serileri

- ▶ Bu bölümde regresyon analizinde geleneksel büyük örneklem yaklaştırımlarını(approximations) uygulayabilmemiz için bize gerekli olan anahtar kavramları göreceğiz.
- ► Zaman serileri analizinde "durağan süreç" (stationary process) kavramı tarihsel olarak çok büyük bir rol oynamıştır.
- ▶ Durağan süreç olasılık dağılımı zaman içinde kararlı (stable) olan süreçlere denir. Durağan süreçten alınacak herhangi bir rassal değişkenler dizisi ile $h \ge 1$ dönem sonra alınacak ikinci bir dizinin ortak (joint) dağılımları aynıdır.

Durağan ve Durağan Olmayan Süreçler

Tanım: Kesin Durağan Stokastik Süreç

 $\{x_t: t=1,2,...\}$ stokastik süreci, bütün $1 \leq t_1 \leq t_2 \leq ... \leq t_m$ zaman endeksleri kümesi için, $(x_{t1},x_{t2},....,x_{tm})$ 'in ortak dağılımı ile, her $h \geq 1$ için, $(x_{t1+h},x_{t2+h},....,x_{tm+h})$ 'ın ortak dağılımı aynıysa, (kesin) durağandır.

 Başka bir deyişle, zaman serisi dizisi özdeş (identically) dağılmıştır.

Tanım: Kovaryans Durağan Süreç

Sonlu ikinci momente ($\mathsf{E}(x_t^2) < \infty$) sahip, $\{x_t : t = 1, 2, ...\}$ stokastik süreci, şu üç şartı sağlıyorsa kovaryans durağandır:

- 1. $E(x_t)$ sabittir (zamandan bağımsız)
- 2. $Var(x_t)$ sabittir (zamandan bağımsız)
- 3. Her t dönemi ve $h \geq 1$ için, $\mathrm{Cov}(x_t, x_{t+h})$ h'ye bağlıdır ancak t'ye bağlı değildir.

7

Durağanlık Kavramı

- ▶ Regresyon analizinde durağanlığın işlevi çok önemlidir.
- ► Teorik olarak, durağanlık, "büyük sayılar yasası (the law of large numbers, LLN)" ve "merkezi limit teoremi (central limit theorem, CLT)" önermelerini basit hale getirir.
- ► Pratikte ise, iki değişken arasında regresyon ilişkisi tesis edebilmek için serilerin zaman içinde kararlılığı (stability) ile ilgili bazı varsayımlar yapmamız gerekir.
- Eğer x_t ve x_{t+h} değişkenleri zaman içinde keyfi olarak değişiyor ise, zaman serilerinde bu değişkenlerin sadece tek bir realizasyonları elimizde olduğu için, birbirlerine etkilerini sağlıklı olarak ölçemeyiz.
- Çoklu zaman serisi regresyonlarında β_j katsayılarının zaman içinde değişmemesi için belli bir durağanlık (stationarity) varsayımına ihtiyaç duymaktayız.
- Ayrıca, TS.4 ve TS.5 varsayımları, hata terimleri varyansının zaman içinde sabit olmasını ve zaman itibariyle ard arda gelen (adjacent) u'ların ilişkisiz olmasını gerektirir.

6

Kovaryans Durağanlık Kavramı

- ► Kovaryans durağanlık (covariance stationarity), stokastik sürecin ilk iki momentinin,yani, ortalama ve varyansının, zaman içinde sabit olmasını gerektirir.
- Ayrıca x_t ve x_{t+h} arasındaki kovaryansın (ve dolayısıyla korelasyonunun) iki süreç arasındaki uzaklık olan h'ye bağlı olmasını ve t'ye bağlı olmamasını gerektirir.
- ► Kovaryans durağanlık zayıf durağanlık olarak da isimlendirilir.
- Kovaryans durağanlıktan daha katı koşullara sahip kesin durağanlık (strict stationarity) tanımı üzerinde durmayacağız.
- ▶ Durağanlık denince kovaryans-durağanlık tanımını anlayacağız.

8

Zayıf Bağımlı Zaman Serileri

Eğer aşağıdaki koşul sağlanıyorsa, x_t ve x_{t+h} durağan dizileri (sequences) asimptotik olarak ilişkisizdirler (asymptotically uncorrelated).

$$h \to \infty$$
 iken $Corr(x_t, x_{t+h}) \to 0$

- ► Pratikte,korelasyonların yeterince hızlı bir şekilde sıfıra gidip gitmediklerine bakılır.
- Zayıf Bağımlılık, büyük sayılar yasası (LLN) ve merkezi limit teoremi (CLT)'nin sağlanmalarında rassal örnekleme (random sampling) varsayımının üstlendiği görevi görmektedir.
- Zaman serileri verileriyle ilgili merkezi limit teoremi, durağanlık ve zayıf bağımlılığı bir önkoşul olarak getirmektedir. Dolayısıyla, bu tür seriler çoklu regresyon için ideal serilerdir.

q

Zayıf Bağımlı Zaman Serileri

- Zayıf bağımlı (weakly dependent) zaman serisine bir örnek i.i.d (independently and identically distributed) silsilesidir.
- Örneğin, normal dağılım tablosundan rasgele çekilmiş bir seri böyledir.
- Aşağıdaki grafikte standart normal dağılımdan çekilmiş 100 elemanlı bir zaman serileri dizisi gösterilmiştir.

11

Örnek: Hareketli Ortalama (Moving Average - MA) Süreci

► MA(1), birinci sıradan bir hareketli ortalama süreci aşağıdaki gibi tanımlanır:

$$x_t = e_t + \alpha_1 e_{t-1}, \quad t = 1, 2, \dots$$

 e_t iid pür rassal süreç (white noise) olarak tanımlıdır.

- ▶ Burada, x_t, e_t ve e_{t-1} 'in ağırlıklı toplamıdır.
- MA(1)'de komşu x terimleri ilişkilidir. Örneğin, yukarıdaki denklemi t+1 dönemi için yazarsak:

$$x_{t+1} = e_{t+1} + \alpha_1 e_t$$
 olur.

▶ Bu sürecin (koşulsuz) beklenen değeri alınırsa:

$$\mathsf{E}(x_t) = \mathsf{E}(e_t + \alpha_1 e_{t-1})$$

= $\mathsf{E}(e_t) + \alpha_1 \mathsf{E}(e_{t-1}) = 0 \equiv \mu$

10

Pür Rassal Süreç (White Noise Process)

• $\{e_t: t=1,2,\ldots\}$ ile gösterilen bir stokastik süreç aşağıdaki koşulları sağlıyorsa pür rassal süreç (white noise process) adı verilir:

$$\begin{aligned} \mathsf{E}[e_t] &= 0 \\ \mathsf{Var}(e_t) &= \sigma_e^2 \\ \mathsf{Cov}(e_t, e_s) &= 0, \ t \neq s \end{aligned}$$

Bu süreci kısaca $e_t \sim wn(0,\sigma_e^2)$ ile göstereceğiz.

Yukarıdaki koşullara ek olarak $\{e_t\}_{t=1}^T$ süreci ortalaması 0 ve varyansı σ_e^2 olan bir normal dağılıma uyuyorsa bu sürece Normal (Gaussian) Pür Rassal Süreç adı verilir ve $e_t \sim GWN(0,\sigma_e^2)$ ile gösterilir. Eğer türdeş ve bağımsız (iid) dağılıyorsa kısaca $e_t \sim iid\ N(0,\sigma_e^2)$ ile gösterilir.

12

MA(1) Süreci

► MA(1) sürecinin varyansı:

$$\begin{aligned} \mathsf{Var}(x_t) &= \mathsf{E}[(x_t - \mathsf{E}(x_t))^2] = \mathsf{E}(x_t^2) \\ &= \mathsf{E}((e_t + \alpha_1 e_{t-1})^2) \\ &= \mathsf{E}(e_t^2) + \alpha_1^2 \mathsf{E}(e_{t-1}^2) \\ &= \sigma_e^2 + \alpha_1^2 \sigma_e^2 = (1 + \alpha_1^2) \sigma_e^2 \end{aligned}$$

► Birinci otokovaryans:

$$\begin{aligned} \mathsf{Cov}(x_t, x_{t-1}) &=& \mathsf{E}[(x_t - \mu)(x_{t-1} - \mu)] \\ &=& \mathsf{E}[(e_t + \alpha_1 e_{t-1})(e_{t-1} + \alpha_1 e_{t-2})] \\ &=& \mathsf{E}[e_t e_{t-1} + \alpha_1 e_t e_{t-2} + \alpha_1 e_{t-1}^2 + \alpha_1^2 e_{t-1} e_{t-2}] \\ &=& \mathsf{E}(e_t e_{t-1}) + \alpha_1 \mathsf{E}(e_t e_{t-2}) + \alpha_1 \mathsf{E}(e_{t-1}^2) \\ &+& \alpha_1^2 \mathsf{E}(e_{t-1} e_{t-2}) \\ &=& 0 + 0 + \alpha_1 \mathsf{E}(e_{t-1}^2) + 0 \\ &=& \alpha_1 \sigma_e^2 \end{aligned}$$

MA(1) Süreci

► Birinci otokorelasyon:

$$\mathsf{Corr}(x_t, x_{t-1}) = \frac{\mathsf{Cov}(x_t, x_{t-1})}{\mathsf{Var}(x_t)} = \frac{\alpha_1}{1 + \alpha_1^2}$$

- ightharpoonup Birinci otokorelasyonun işareti α_1 katsayısının işaretine bağlıdır.
- ightharpoonup Örneğin, eğer $\alpha_1=0.5$ ise, $Cor[x_t,x_{t-1}]=0.40$ olacaktır.
- ho $lpha_1=1$ iken korelasyon MA(1) için en yüksek değerine, 0.5, ulaşacaktır.

15

1. Dereceden Otoregresif Süreç-AR(1) Süreci

$$y_t = \rho_1 y_{t-1} + e_t, \quad t = 1, 2, \dots$$

- Serinin başlangıç noktası y_0 'dır (t=0 iken). $e_t: t=1,2,...$ sıfır ortalamalı ve σ_e^2 varyanslı i.i.d bir seridir (white noise pür rassal süreç). Ayrıca e_t 'nin y_0 'dan bağımsız olduğunu ve y_0 'ın beklenen değerinin sıfır olduğunu varsayıyoruz, $E(y_0)=0$. Bu sürece, 1. dereceden otoregresif süreç denir [AR(1)].
- AR(1) sürecinde $|\rho_1| < 1$ koşulu, hem sürecin kararlılık (stability) hem de zayıf bağımlılık (weak dependence) koşuludur.
- ▶ Durağan bir AR(1) sürecinde (yani, $|\rho_1| < 1$ iken):

$$\sigma_y^2 = \sigma_e^2 / (1 - \rho_1^2)$$

14

MA(1) Süreci

- ▶ Komşu x_t ve x_{t+1} terimleri ilişkili çıkmasına rağmen birbirlerine daha uzak x terimleri ilişkisizdir.
- ▶ Örneğin, $x_{t+2} = e_{t+2} + \alpha_1 e_{t+1}$ değişkeni x_t değişkeni ile iliskisizdir.
- ightharpoonup Çünkü e_t zaman içinde kendi geçmiş ve gelecek değerleriyle iliskisizdir.
- Ayrıca e_t özdeş (identical) dağıldığı için MA(1) durağan bir süreçtir. Ortalama, varyans ve otokovaryanslar zamana bağlı değildir.
- **b** Bunun yanı sıra zayıf bağımlı (weakly dependent) bir süreçtir. Bu nedenle, x_t sürecine LLN ve CLT uygulanabilecektir.

16

AR(1) Süreci

 σ_y^2 hem y_t hem de y_{t+h} 'ın standart sapması olduğu için, $h \ge 1$ iken ikisi arasındaki korelasyon şöyle bulunabilir:

$$Corr(y_t, y_{t+h}) = Cov(y_t, y_{t+h}) / (\sigma_y \sigma_y) = \rho_1^h$$

- ▶ Buna göre, $Corr(y_t, y_{t+1}) = \rho_1$ serideki herhangi iki ardışık terim arasındaki korelasyon katsayısıdır.
- ▶ $Corr(y_t, y_{t+h})$ formülü, y_t ve y_{t+h} 'ın korelasyonlarının sıfır olmadığını ancak bu korelasyonun h büyüdükçe sıfıra doğru gittiğini gösterir.

$$|
ho_1| < 1$$
 olduğundan, $h o \infty$ iken $ho_1^h o 0$

- ightharpoonup Örneğin, $ho_1=0.9$ iken, $Corr(y_t,y_{t+20})=0.122$ olacaktır.
- ➤ Yani, durağan AR(1) modeli zayıf bağımlıdır (weakly dependent).

Trend-Durağan (Trend-Stationary) Süreç

- ► Trend içeren tüm seriler durağan-olmayan nitelikte seriler değillerdir.
- ▶ Bazı seriler belli bir trend etrafında durağandırlar.
- ► Yani, trendleri alınınca geriye kalan kısım durağandır.
- ▶ Bunlara trend-durağan (trend-stationary) seri denir. Bu seriler aynı zamanda zayıf-bağımlıdır.
- ▶ Deterministik doğrusal trend süreci:

$$y_t = \beta_0 + \beta_1 t + \epsilon_t, \quad \epsilon_t \sim wn(0, \sigma^2)$$

19

Zaman Serilerinde SEKK(OLS) Tahmin Edicilerin Asimptotik Özellikleri

- ► Ch.10'da bazı zaman serileri problemlerinde doğrusal klasik model varsayımlarının ihlal edildiğini gördük.
- ▶ Bu durumda yine OLS'nin büyük örneklem özelliklerine başvuracağız.
- ▶ Bazı varsayımları yumuşatarak OLS'nin tutarlı tahmin ediciler verdiğini göstereceğiz.

18

Örnek: Deterministik doğrusal trend süreci

$$y_t = \beta_0 + \beta_1 t + \epsilon_t, \quad \epsilon_t \sim wn(0, \sigma^2)$$

Şekil: Eğimleri farklı iki doğrusal trend serisi

20

TS.1' Doğrusallık ve Zayıf-Bağımlılık

- ▶ TS.1 varsayımı modelin β parametreleri bakımından doğrusal olduğunu söylüyordu.
- ▶ Eğer x değişkenleri arasında y_{t-1} , y_{t-2} vb. gibi gecikmeli bağımlı değişken varsa, TS.1 şöyle değişecektir:

Varsayım TS.1': Doğrusallık ve Zayıf-Bağımlılık

Varsayım TS.1', $\{(x_t,y_t):t=1,2,..\}$ 'in zayıf-bağımlı olduğunu ilave edersek TS.1 ile aynıdır. Başka bir deyişle, büyük sayılar yasası, LLN, ve merkezi limit teoremi, CLT, örneklem ortalamalarına uygulanabilir.

TS.2' Sıfır Koşullu Ortalama

 $ightharpoonup u_t$ ile x'in tüm geçmiş, şimdiki ve gelecek değerlerinin ilişkili olmasını yasaklayan TS.2 varsayımı yerine daha yumuşak olan şu varsayımı yapacağız.

Varsayım TS.2': Sıfır Koşullu Ortalama

Her t zamanı için, $E(u_t|x_t) = 0$.

➤ Yani, hata terimleriyle x değişkenleri sadece cari dönem, t, itibariyle ilişkilidir.

$$E(u_t) = 0$$
, $Cov(x_{ti}, u_t) = 0$, $j = 1, ..., k$.

23

OLS tahmin edicilerinin tutarlılığı

- ▶ Bölüm 10'da gördüğümüz Teorem 10.1 ile Teorem 11.1 arasında önemli farklılıklar vardır.
- ▶ Teorem 11.1'de tutarlılık sağlanmaktadır, sapmasızlık değil.
- ► Teorem 11.1'de x'ler kesin dışsal değil sadece dışsaldırlar (exogenous).
- Bu yumuşatmayı değişkenlerin weak dependent olduğunu varsayarak yapabildik.

22

TS.3' Tam Çoklu-Doğrusallığın Olmaması

► Bu varsayım aynıdır

Varsayım TS.3': Tam Çoklu-Doğrusallığın Olmaması

Varsayım TS.3 ile aynıdır.

Bu üç varsayım sağlanıyorsa OLS tahmin edicileri tutarlıdır:

Teorem 11.1 (OLS'nin Tutarlılığı

TS.1', TS.2' ve TS.3' altında OLS tahmin edicileri tutarlıdır: $\text{plim } \hat{\beta}_i = \beta_i$, j=0,1,...,k.

24

Örnek

lacktriangle Aşağıdaki örnekte z_{t1} , para arzı aylık büyüme hızı; y_t enflasyon oranıdır.

$$y_t = \beta_0 + \beta_1 z_{t1} + \beta_2 z_{t2} + u_t$$

 $E(u_t | z_{t1}, z_{t2}) = 0.$

► Geçen ayın enflasyon oranı bu ayın para arzı artış oranını etkilesin.

$$z_{t1} = \delta_0 + \delta_1 y_{t-1} + v_t$$

▶ Buna rağmen z_{t1} 'i açıklayıcı değişken olarak kullanabileceğiz.

Örnek (devam)

▶ Önceki modelde OLS'nin tutarlı olması için şu varsayım şarttır:

$$E(u_t|z_{t1}, z_{t2}) = 0.$$

- ▶ Bu varsayım, u_t 'de yer alan göz ardı edilen faktörlerin z_{t1} ve z_{t2} ile ilişkili olmasına izin vermemektedir.
- ▶ Buna karşın, hata teriminin gecikme değerleri ile açıklayıcı değişkenler, örneğin u_{t-1} ile z_{t1} , ilişkili olabilir.
- ► Kesit-veri analizinde olduğu gibi yanlış fonksiyon kalıbı seçimi, açıklayıcı değişkenlerdeki ölçme hataları bu varsayımın geçersiz olmasına neden olur.

27

Example 11.3: AR(1) Modeli

► Aşağıdaki AR(1) modelini göz önünde bulunduralım:

$$y_t = \beta_0 + \beta_1 y_{t-1} + u_t$$

▶ Burada hata terimi u_t 'nin, y'nin tüm geçmiş değerlerine koşullu beklenen değeri:

$$E(u_t|y_{t-1}, y_{t-2}, ...) = 0$$

▶ İki eşitliği birleştirirsek

$$E(y_t|y_{t-1}, y_{t-2}, ...) = E(y_t|y_{t-1}) = \beta_0 + \beta_1 y_{t-1}$$

26

Example 11.2: Sonlu Dağıtılmış Gecikme Modeli

► Sonlu dağıtılmış gecikme modeli (finite distributed lag model):

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t$$

 $ightharpoonup u_t$ 'nin beklenen değerinin, z'nin şimdiki, ve geçmiş değerlerine koşullu olarak 0 olduğunu varsayıyoruz:

$$E(u_t|z_t, z_{t-1}, z_{t-2}, z_{t-3}, ...) = 0$$

- ▶ Buna göre, z_t, z_{t-1} ve z_{t-2} modele eklendiğinde, z'nin daha sonraki gecikmeleri $E(u_t|z_t, z_{t-1}, z_{t-2}, z_{t-3}, ...)$ 'yi etkilemez; eğer etkiliyor olsaydı modele daha ileri gecikmeleri eklememiz gerekirdi.
- $X_t = (z_t, z_{t-1}, z_{t-2})$ dersek, TS.2' varsayımı sağlanmış olur, böylece OLS tutarlı olacaktır.

28

AR(1) Süreci

- AR(1) modelinde u_t ile açıklayıcı değişken y_{t-1} ilişkisiz, buna karşılık u_t ile y_t ilişkiliydi.
- Dolayısıyla, kesin dışsallık (strict exogeneity) burada sağlanamaz.
- ► Zayıf bağımlılık (weak dependence) sağlandığı için AR(1)'den tutarlı tahmin ediciler elde ediyoruz, ancak bunlar sapmalıdır.
- ightharpoonup Örnek hacmi küçükken ya da ho_1 bire yakınken bu sapma ciddi boyuta ulaşır.

29

TS.4' Sabit Varyans Varsayımı ve TS.5' Otokorelasyon Olmaması Varsayımı

Varsayım TS.4': Sabit Varyans

Her t zamanı için, $Var(u_t|X_t) = \sigma^2$.

Varsayım TS.5': Otokorelasyon olmaması

Her $t \neq s$ için, $E(u_t u_s | X_t, X_s) = 0$.

- ► TS.4'de sadece cari,t, dönem x değerlerine göre koşullandırma yapılmıştır, tüm t dönemlerine göre değil.
- ► TS.5'de de u_t ve u_s ile çakışan x değerleri bakımından koşullandırma (conditioning) yapılmıştır.

31

Example 11.4: Etkin Piyasa Hipotezi

▶ Etkin piyasa hipotezinin (Efficient Market Hypothesis) katı bir formuna göre t haftası öncesindeki gözlenen bilgiler t haftasındaki getiriyi tahmin etmekte fayda sağlamamalıdır. Eğer sadece y'nin geçmiş değerlerini kullanıyorsak, etkin piyasa hipotezi şöyle ifade edilebilir:

$$E(y_t|y_{t-1}, y_{t-2}, ...) = E(y_t)$$

► Eğer bu ifade yanlışsa, bugünkü getiriyi tahmin etmede geçmişteki haftalık getirilerle ilgili bilgiyi kullanabiliriz.Etkin piyasa hipotezine göre, bu yatırım fırsatlarının farkına varılacak ve bu fırsatlar anlık olarak ortadan kalkacaklardır.

$$\widehat{\text{return}} = 0.180 + 0.059 \, return_{t-1}$$

$$n = 689 \quad R^2 = 0.0035 \, \bar{R}^2 = 0.0020$$

30

OLS'nin Asimptotik Normalliği

Teorem 11.2: OLS'nin Asimptotik Normalliği

TS.1'-TS.5' varsayımları altında, OLS tahmin edicileri asimptotik olarak normal dağılırlar. Buna ilaveten, OLS standart hataları, t istatistikleri, F istatistikleri ve LM istatistikleri asimptotik olarak geçerlidir.

- ► TS.1'-TS.5' varsayımları altında kesitler-arası verideki ile hemen hemen aynı bir asimptotik sonuç türettik.
- ▶ Doğrusal klasik model varsayımları ihlal edildiğinde eğer örnek hacmimiz büyük ise ve yukarıdaki yeni varsayım kümesi sağlanıyor ise, OLS tutarlıdır ve hipotez testleri (inference) yapılabilir.
- ▶ Devamında, zayıf bağımlılık (weak dependence) varsayımının ihlalini, Ch.12'de de ardışık bağımlılık (serial correlation) ve değişen varyansı (heteroscedasticity) ele alacağız.

32

Etkin Piyasa Hipotezi: AR(2) Modeli

▶ Borsa getirileri için aşağıdaki AR(2) modeli kurulmuş olsun:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + u_t$$
$$E(u_t | y_{t-1}, y_{t-2}, \dots) = 0$$

 $ightharpoonup eta_1$ ve eta_2 'nin birlikte anlamlı olup olmadığını test etmek için boş hipotezimiz:

$$H_0: \beta_1 = \beta_2 = 0$$

- Sabit varyans varsayımını da eklersek, $Var(u_t|y_{t-1},y_{t-2})=\sigma^2$, boş hipotezi test etmek için standart F istatistiğini kullanabiliriz. Boş hipotezin reddedilememesi Etkin Piyasa Hipotezinin geçerli olduğu yönünde kanıt sağlayacaktır.
- ▶ Modelin tahmini sonucu, F istatistiği yaklaşık olarak F=1.65, karşılık gelen p değeri ise yaklaşım 0.193 çıkmaktadır. Buna göre boş hipotezi %15 anlamlılık düzeyinde bile reddedemiyoruz.

Example 11.5: Beklentilerle Genişletilmiş Phillips Eğrisi

▶ Beklentilerle genişletilmiş Phillips eğrisinin (expectations augmented Phillips curve) doğrusal bir versiyonu aşağıdaki gibi yazılabilir:

$$inf_t - inf_t^e = \beta_1(unem_t - \mu_0) + e_t$$

▶ Bu denklemde, μ_0 doğal işsizlik oranını, inf_t^e ise beklenen enflasyon oranını ifade etmektedir. Beklenen enflasyon oranının bir önceki yılın enflasyon oranına eşit olduğunu varsayarsak model aşağıdaki gibi yazılabilir:

$$inf_t - inf_{t-1} = \beta_0 + \beta_1 unem_t + e_t$$

sol tarafı enflasyon oranının değişimi olarak ifade edersek:

$$\Delta inf_t = \beta_0 + \beta_1 unem_t + e_t$$

▶ Burada, $\Delta inf_t = inf_t - inf_{t-1}$ ve $\beta_0 = -\beta_1 \mu_0$ 'dır. Yani, adaptif beklentiler altında, beklentilerle genişletilmiş Phillips eğrisi, enflasyon oranındaki değişim ile işsizlik oranı ve e_t ile ifade edilen bir arz şoku arasındaki ilişkiyi gösterir.

35

Güçlü Bağımlı Zaman Serileri

- ➤ Zaman serileri zayıf bağımlı olduğu zaman OLS çıkarsama prensiplerinin klasik varsayımlardan daha zayıf varsayımlar altında geçerli olduklarını gördük.
- Ancak bir çok iktisadi zaman serileri zayıf bağımlı olmaktan ziyade güçlü-bağımlı olarak sınıflandırılır.
- Yani, zaman serileri geçmiş değerleriyle yüksek dereceden ilişkilidir (highly persistent, strongly dependent).
- Bu alt bölümde, bu türden zaman serileri örneklerini inceleyeceğiz.

34

Example 11.5: Beklentilerle Genişletilmiş Phillips Eğrisi

$$\widehat{\Delta \inf}_{t} = 3.03 - 0.543 \ unem_{t}$$

$$n = 48 \quad R^{2} = 0.108 \ \overline{R}^{2} = 0.088$$

- ➤ Çevrimsel (cyclical) işsizlik ile beklenilmeyen enflasyon arasındaki ödünleşme (trade off) regresyon ile tahmin edilmiştir: unem'deki bir puanlık artış beklenmeyen enflasyonu yaklaşık yarım puan azaltmaktadır. Etki istatistiki olarak anlamlıdır (çift taraflı p değeri yaklaşık 0.023).
- ▶ Doğal işsizlik oranının, $\mu_0 = \beta_0/(-\beta_1)$, bir tahminini bu regresyon yardımıyla elde edebiliriz: $\hat{\mu}_0 = \hat{\beta}_0/(-\hat{\beta}_1) = 3.03/0.543 = 5.58$
- Doğal işsizlik oranı yaklaşık 5.6 olarak hesaplanmıştır ki bu makroekomi literatüründe kabul edilenle örtüşmektedir (yaklaşık %5-6)

36

Güçlü Bağımlı Zaman Serileri

- ► Pek çok ekonomik zaman serisi "Kuvvetli şekilde bağımlı" (strongly dependent) ya da başka deyişle "kuvvetlice yapışkan" (highly persistent) serilerdir. Örnek, enflasyon oranı, bütçe açıkları vb.
- ► Ch.10'daki CLM varsayımları sağlanıyorsa **strongly dependent** serilerin regresyonda kullanımı sorun çıkarmaz. Ancak, veri, **weakly dependent** değilse bu varsayımlarda ufak bir bozulma LLN ve CLT'in uygulanmasını imkansız kılacaktır.
- AR(1) modelinde ρ_1 katsayısı 1'e doğru gittikçe serinin yapışkanlığı artmaktadır.
- $\rho_1=1$ olduğunda AR(1) süreci **rassal yürüyüş** (random walk) süreci adını alır.

Rassal Yürüyüş (Random Walk)

• $\rho_1 = 1$ iken AR(1) modeli aşağıdaki gibi yazılabilir:

$$y_t = y_{t-1} + e_t, t = 1, 2, \dots$$

- $\{e_t: t=1,2,...\}$ sıfır ortalamalı ve σ_e^2 varyanslı i.i.d bir seridir. Başlangıç değerinin, y_0 , her $t\geq 1$ için e_t 'den bağımsız olduğunu varsayalım.
- $ightharpoonup y_t$ 'nin beklenen değerini yinelemeli yerine koyma (repeated substitution) yöntemi ile bulabiliriz:

$$y_t = e_t + e_{t-1} + e_{t-2} + \dots + e_1 + y_0$$

► Her iki tarafın beklenen değerini alalım:

$$E(y_t) = E(e_t) + E(e_{t-1}) + E(e_{t-2}) + \dots + E(e_1) + E(y_0)$$
$$E(y_t) = E(y_0)$$

Random walk sürecinin beklenen değeri t'ye bağımlı değildir (zamandan bağımsız). Eğer başlangıç değeri $y_0 = 0$ varsayılırsa, her $t \ge 1$ için $E(y_t) = 0$ olacaktır.

39

Rassal Yürüyüş (Random Walk)

► Random Walk sürecinin beklenen değeri sıfır olduğu halde varyansı t ile birlikte (t'nin bir fonksiyonu olarak) artmaktadır.

$$Var(y_t) = Var(e_t) + Var(e_{t-1}) + ... + Var(e_1) = \sigma_e^2 t$$

► Random Walk süreci güçlü derecede yapışkanlık (high persistence) gösterir, öyle ki, bugünkü y, uzak gelecekteki (h dönem sonraki) y değerini belirlemede önem arz etmektedir. h dönem sonrasını ele alalım:

$$y_{t+h} = e_{t+h} + e_{t+h-1} + \dots + e_{t+1} + y_t$$

▶ t döneminde, y_t değerine koşullu olarak y_{t+h} 'ın beklenen değerini bulalım. e_{t+j} 'nin beklenen değeri, y_t veri iken, her $j \geq 1$ için sıfır olduğundan, her $h \geq 1$ için:

$$E(y_{t+h}|y_t) = y_t$$

38

Yinelemeli Yerine Koyma Yöntemi (Repeated Substitution): $y_t = y_{t-1} + e_t$

- $y_1 = y_0 + e_1$
- $y_2 = y_1 + e_2 = y_0 + e_1 + e_2$
- $y_3 = y_2 + e_3 = y_0 + e_1 + e_2 + e_3$
- **>**
- $y_t = y_0 + e_1 + e_2 + \dots + e_{t-1} + e_t = y_0 + \sum_{t=1}^t e_t$

40

Rassal Yürüyüş (Random Walk)

- ▶ Demek ki, random walk'de bizim gelecekle, y_{t+h} , ilgili yapabileceğimiz en iyi tahmin bugünkü, y_t , değerdir.
- ▶ Oysa, bu tahmin, kararlı AR(1) sürecinde, yani $|\rho_1| < 1$ iken, $h \to \infty$ giderken sıfıra gidiyordu:

$$E(y_{t+h}|y_t) = \rho_1^h y_t$$
, her $h \ge 1$ icin.

Random walk sürecinde y_t ile y_{t+h} arasındaki korelasyon büyük t'ler için 1'e yakındır ve şu formülden hesaplanır: Eğer $Var(y_0) = 0$ ise,

$$Corr(y_t, y_{t+h}) = \sqrt{t/(t+h)}$$

Dolayısıyla, bir random walk süreci durağan-olmayan (nonstationary) bir süreçtir.

Figure 11.1

Two realizations of the random walk $y_t = y_{t-1} + e_t$, with $y_0 = 0$, $e_t \sim \text{Normal}(0,1)$, and n = 50.

43

Yönlü Rassal Yürüyüş (Random Walk with Drift)

► Bir sabit terim (intercept) içeren rassal yürüyüşe, "yönlü rassal yürüyüş" (random walk with drift) denir.

$$y_t = \alpha_0 + y_{t-1} + e_t, t = 1, 2, \dots$$

- ▶ $\{e_t: t=1,2,...\}$ ve y_0 , pür rassal yürüyüş (pure random walk) modelindeki özellikleri taşımaktadır. Yeni eklenen α_0 parametresine "sürükleme terimi" (drift term) denilmektedir.
- $ightharpoonup y_t$ 'nin beklenen değerinin doğrusal zaman trendi takip ettiğini yinelemeli yerine koyma yöntemi ile görmekteyiz:

$$y_t = \alpha_0 t + e_t + e_{t-1} + \dots + e_1 + y_0$$

42

Rassal Yürüyüş (Random Walk)

- ▶ Random walk süreci birim kök sürecinin (unit root process) özel bir halidir. AR(1)'de $\rho_1 = 1$ olduğu için süreç birim kök içermektedir.
- ▶ Çeşitli e_t süreçleri tanımlanarak pek çok değişik unit root süreci türetilebilir. Örneğin, e_t , MA(1) ya da kararlı AR(1) süreci izleyen zayıf bağımlı (weakly dependent) seriler olabilir.
- ► Ekonomik serilerin yüksek yapışkanlık gösterip göstermediğinin bilinmesi politika perspektifi açısından önemlidir. Yapışkan serilerde ciddi bir değişikliğe yol açan herhangi bir politikanın etkileri çok uzun süre devam edecektir.
- ➤ Yani, şoklar random walk süreçlerinde çok uzun ömre sahiptir, etkinin sıfıra gitmesi çok yavaş olur.

44

Yönlü Rassal Yürüyüş (Random Walk with Drift)

- ▶ $y_0 = 0$ ise $E(y_t) = \alpha_0 t$: y_t 'nin beklenen değeri t'nin bir fonksiyonudur, eğer $\alpha_0 > 0$ ise y_t zamanla birlikte artmakta, $\alpha_0 < 0$ ise zamanla birlikte azalmaktadır.
- ▶ Pür rassal yürüyüş modeli ile benzer yol takip edersek:

$$E(y_{t+h}|y_t) = \alpha_0 h + y_t$$

▶ Buna göre t döneminde y_{t+h} 'ın en iyi tahmini, $\alpha_0 h$ büyüklüğünde bir sürükleme terimi ile y_t olacaktır. y_t 'nin varyansı pür rassal yürüyüş süreci ile aynıdır.

Figure 11.2

47

Kuvvetlice Yapışkan Zaman Serilerinin Dönüştürülmesi

- ▶ Birim kök (unit root) süreci izleyen, dolayısıyla da çok güçlü yapışkanlık (strong persistence) gösteren zaman serilerinin regresyonda kullanılması, bizi, CLM varsayımlarının ihlal edilmesi durumunda çok yanıltıcı sonuçlara götürebilir.
- ▶ Buna sahte (**spurious**) regresyon sorunu denir. Bu konu Ch.18'de ayrıntılı biçimde işlenmektedir.
- ▶ Bu nedenle, birim kök (unit root) süreçlerini önce zayıf bağımlı (weakly dependent) hale dönüştürecek, sonra regresyonda kullanacağız.
- ▶ Weakly dependent süreçlere "sıfırıncı dereceden entegre" (integrated of order zero) seri denir ve I(0) diye gösterilir. Bu serileri doğrudan regresyonda kullanabiliriz. Bu serilerin ortalamaları standart merkezi limit teoremlerini sağlar.

46

Yönlü Rassal Yürüyüş (Random Walk with Drift)

Figure 11.3

A realization of the random walk with drift, $y_t = 2 + y_{t-1} + e_t$, with $y_0 = 0$, $e_t \sim Normal(0,9)$, and n = 50. The dashed line is the expected value of y_t , $E(y_t) = 2t$.

48

Kuvvetlice Yapışkan Zaman Serilerinin Dönüştürülmesi

- ► Rassal yürüyüş (random walk) gibi birim kök süreçleri "birinci dereceden entegre" dirler ve I(1) diye gösterilirler. Bu serilerin 1. farkı (first difference) "sıfırıncı dereceden entegre" seridir, I(0).
- $y_t = y_{t-1} + e_t$, RW sürecini ele alalım. Eşitliğin her iki tarafından y_{t-1} 'i çıkarırsak serinin 1. farkını buluruz:

$$\Delta y_t = y_t - y_{t-1} = e_t, t = 2, 3, \dots$$

- ▶ Bu bir I(0) seridir.
- ▶ Pek çok ekonomik zaman serileri kesin pozitif (strictly positive) ve logaritmik olarak 1. dereceden entegrelerdir, I(1). Bu tür serilerin 1. farklarını regresyonda kullanacağız:

$$\Delta \log y_t = \log y_t - \log y_{t-1}$$

➤ Yani, logaritmik hali I(1) olan değişkenlerin büyüme hızları I(0)'dır ve regresyonda bunları kullanacağız.

Kuvvetlice Yapışkan Zaman Serilerinin Dönüştürülmesi

▶ l(1) serinin regresyonda kullanmadan önce farkının alınması serideki zaman trendini de bertaraf eder. Örneğin, trend içeren şu seriyi ele alalım:

$$y_t = \gamma_0 + \gamma_1 t + v_t$$

ightharpoonup Bu seriyi t-1 dönemi için yazalım

$$y_{t-1} = \gamma_0 + \gamma_1(t-1) + v_{t-1}$$

İkisinin farkını alalım:

$$\Delta y_t = y_t - y_{t-1} = \gamma_1 + \Delta v_t$$

▶ Bu son ifadenin beklenen değerini alalım:

$$E[\Delta y_t] = \gamma_1 + E[\Delta v_t] = \gamma_1$$

Yani, $E[\Delta y_t]$ bir sabite eşittir. Demek ki, trend içeren serinin 1. farkının ortalaması sabite eşittir ve biz bu durağan seriyi artık regresyonda kullanabiliriz.

51

Bir Serinin I(1) ya da I(0) Olduğuna Nasıl Karar Veririz?

- ▶ Bilinmeyen ρ_1 için örnek değerlerinden bir güven aralığı tesis edip bu aralığın 1'i içerip içermediğine bakabiliriz.
- Ancak sorun şudur: Bilinmeyen kitle parametresi ρ_1 'in 1'e yakın değerler alması durumunda $\hat{\rho}_1$ 'ın örnek dağılımı oldukça farklı çıkmakta ve $\hat{\rho}_1$ aşağı doğru büyük bir sapma göstermektedir.
- Pratikte çoğu kez $\hat{\rho}_1$ 'ın 0.90 ve üzerinde çıkması serinin birincil farkının alınması için yeterli bir sebep olarak görülür. Bazıları bu oranı 0.8'e kadar indirebilmektedirler.
- Seride trend varsa önce bu trendi alıp $\hat{\rho}_1$ 'i daha sonra tahmin etmek gerekir. Trend $\hat{\rho}_1$ 'in olduğundan yüksek (overestimated) çıkmasına sebep olur.

50

Bir Serinin I(1) ya da I(0) Olduğuna Nasıl Karar Veririz?

- ▶ Bunun için **birim kök testleri** geliştirilmiştir. Bunlar Ch.18'de ele alınacaktır.
- ▶ Bu testlerin dışında bir çok informal yöntemler bulunmaktadır. Örneğin, AR(1) sürecinde ρ_1 katsayısı mutlak olarak 1'den küçükse süreç I(0), bire eşitse I(1) olacaktır.
- $\rho_1 = corr(y_t, y_{t-1})$ olduğu için y_t ve y_{t-1} serileri arasındaki örnek korelasyonundan ρ_1 tahmin edilir ve karar verilir. $corr(y_t, y_{t-1}), y_t$ serisinin, "1. sıra otokorelasyonu" dur (first order autocorrelation).
- $ho_1 | \rho_1 | < 1$ iken, $\hat{\rho}_1$, kitle parametresi ρ_1 'in tutarlı ancak sapmalı bir tahmin edicisidir.

52

Example 11.6: Doğurganlık Modeli

- ▶ gfr: doğurganlık oranı, pe: vergi muafiyeti miktarı. Bu serilerin 1. sıradan otokorelasyonları hayli büyüktür, gfr için $\hat{\rho_1}=0.977$ ve pe için $\hat{\rho_1}=0.964$. Bunlar birim kök sürecini işaret etmektedir ve OLS t istatistiklerinin kullanımı konusunda soru işareti yaratmaktadırlar.
- ▶ Modelleri, serilerin 1. farklarını alarak tahmin edelim:

$$\widehat{\Delta gfr_t} = -0.785 - 0.043 \, \Delta pe_t$$

$$n = 71 \quad R^2 = 0.032 \, \bar{R}^2 = 0.018$$

$$\widehat{\Delta gfr_t} = -0.964 - 0.036 \, \Delta p e_t - 0.014 \, \Delta p e_{t-1} + 0.110 \, \Delta p e_{t-2}$$

$$n = 69 \quad R^2 = 0.233 \, \bar{R}^2 = 0.197$$

Example 11.7: Ücretler ve Üretkenlik

► Saatlik ücretin, saatlik üretim miktarına esnekliğini bulmak amacıyla aşağıdaki model kurulmuştur:

$$\log(hrwage_t) = \beta_0 + \beta_1 \log(outphr_t) + \beta_2 t + u_t$$

► Modelde, hrwage ortalama saatlik ücret, outphr saatlik üretim miktarı, t ise zaman trendidir. Modelin tahmini aşağıda verilmektedir:

$$\widehat{\text{log(hrwage}_{\text{t}})} = -5.33 + 1.64 \log(outphr_{t}) - 0.018 \text{ t}$$

$$n = 41 \quad R^{2} = 0.971 \ \bar{R}^{2} = 0.970$$

54

Example 11.7: Ücretler ve Üretkenlik

Regresyon sonuçlarına dikkatle yaklaşılmalıdır. $\log(hrwage)$ doğrusal trendden arındırıldıktan sonra bile, 1. sıradan otokorelasyonu 0.967'dir, trendden arındırılmış $\log(outphr)$ 'nin ise $\hat{\rho_1}=0.945$. Bunlar, iki serinin birim kök içerdiğini öne sürmektedir, 1. farklarla tekrar tahmin yapalım (artık zaman trendine ihtiyacımız kalmadı):

$$\Delta \log(\widehat{\text{hrwage}_{\text{t}}}) = -0.0036 + 0.809 \Delta \log(outphr_t)$$

 $n = 40 \quad R^2 = 0.364 \ \bar{R}^2 = 0.348$