Dokumentacja techniczna – Tetris

Przygotował: Kacper Szczerba Gr.7 nr. indeksu 135192

1. Wprowadzenie

Gra Tetris jest klasyczną grą logiczną, w której celem gracza jest układanie spadających klocków w taki sposób, aby tworzyć pełne poziome linie. Gra kończy się, gdy klocki dotkną górnej krawędzi planszy. Stworzona przez Aleksieja Pażytnowa i jego współpracowników, Dimitrija Pawłowskiego i Wadima Geriasimowa. Pojawiła się na rynku po raz pierwszy 6 czerwca 1984 roku w Związku Radzieckim.

Oryginalna wersja powstała podczas pracy zespołu Pażytnowa w Akademii Nauk ZSRR w Moskwie na komputerze Elektronika 60. Jest to jedna z najbardziej znanych gier komputerowych, posiadająca dużą liczbę różnorodnych wariacji i wariantów.

Gra rozpoczyna się na prostokątnej planszy (początkowo pustej) zwanej tetrionem lub matriksem, ułożonej krótszym bokiem w poziomie. Tetrion ma wymiary 20 wierszy na 10 kolumn. W trakcie gry, pośrodku górnej krawędzi planszy, pojawiają się pojedynczo klocki złożone z czterech małych kwadratów nazywanych też blokami. Klocki te (określane mianem "tetrimino") przemieszczają się w kierunku dolnej krawędzi w miarę możliwości. Kiedy jedno tetrimino opadnie na samo dno, zostaje unieruchomione, a następne ukazuje się u góry planszy. Gra trwa aż do momentu, w którym klocek nie będzie mógł pojawić się na planszy.

Zadaniem gracza jest układanie tetrimino na planszy (poprzez wykorzystanie rotacji i przesuwanie klocków w poziomie) w taki sposób, aby kwadraty składające się na nie utworzyły wiersz na całej szerokości prostokąta. W takiej sytuacji wiersz ten zostaje usunięty, a pozostałe klocki opadają w kierunku dna, tworząc więcej przestrzeni dla następnych elementów. Po usunięciu określonej liczby wierszy prędkość gry wzrasta o pół sekundy, co utrudnia tym samym precyzyjne sterowanie kolejnymi tetrimino. Możliwe jest jednoczesne usunięcie maksymalnie 4 wierszy – umożliwia to tetrimino "I". Sytuacja taka nosi nazwę identyczną jak gra, czyli "tetris".

2. Architektura aplikacji

Aplikacje stworzyłem w programie Visual Studio 2022 przy użyciu języka C# oraz aplikacji WPF.

Aplikacja Tetris składa się z kilku głównych komponentów:

MainWindow - główne okno gry, które wyświetla planszę i obsługuje logikę gry.

GameGrid- klasa reprezentująca plansze gry.

GameState - klasa odpowiadająca za aktualny stan gry.

BlockQueue - klasa odpowiedzialna za zarządzanie kolejką klocków.

Position - klasa przechowująca wiersze i kolumny w grze(Potrzebna do określenia pozycji klocków i ich poruszania się).

Block – klasa obsługująca pojawianie się klocków, ich rotację oraz poruszanie się.

Oraz klas bloków które się zawierają w grze Tetris: IBlock, JBlock, LBlock, OBlock, SBlock, TBlock, ZBlock.

3. Klasa MainWindow

Klasa GameWindow jest głównym oknem gry i dziedziczy po klasie Window z biblioteki WPF. Odpowiada za inicjalizację i wyświetlanie planszy gry oraz obsługę logiki gry.

Posiada ona ładowanie tekstur bloków oraz ich kolorów. Kolejność ich wprowadzania nie jest przypadkowa. Odpowiada ona indeksowaniu, czyli kolory i kształty klocków zgadzają się z id przypisanym danym klockom.

Przechowuje podwójną tabele

Metody jakie się w niej znajduą to:

SetupGameCanvas() – pozwala na ustawienie imageControls bezpośrednio w canvie. Canva została ustawiona na szerokość 250px i wysokość 500px, co daje nam wielkość kratki 25px. Dwa wiersze zostały ukryte, w celu umożliwienia pojawienia się bloków.

DrawGrid()- przechodzi przez wszystkie pozycje. Dla każdej pozycji mamy id i ustawa źródło obrazu na tę pozycję poprzez jego id.

DrawBlock()- przechodzi przez TilePosition i aktualizuje źródła obrazu tak jak w poprzedniej metodzie.

DrawNextBlock()-sprawia, że w oknie pokazuje nam który klocek pojawi się jako następny.

DrawHeldBlock()- sprawia, że po lewej stornie w oknie pokazuje nam czy trzymamy jakiś klocek i jaki klocek trzymamy.

DrawGhostBlock()- sprawia, że możemy zobaczyć gdzie klocek wyladuje.

Draw()- rysuje grida i aktualny klocek w użyciu.

GameLoop()-sprawia, że blok się porusza w dół. Zawiera w sobie menu GameOver

Window_KeyDown()- sprawia, że po zakończeniu gry wciśnięcie dowolnego przycisku nic nie zrobi. Przechowuje w switch casie klawisze, za pomocą których poruszamy klockami.

GameCanvas_Loaded()- ładuje canve do gry.

PlayAgain_Click()- jak sama nazwa wskazuje metoda tworzy nowy przycisk, którego zadaniem będzie zrestartowanie gry po naciśnięciu przycisku.

4. Klasa GameGrid

Klasa GameGrid reprezentuje plansze gry. Przechowuje ona Dwuwymiarową prostokątną tablice. Pierwszym wymiarem jest wiersz, a drugim kolumny. Definiuje również indeksowanie.

Konstruktor będzie brał liczę kolumn i wierszy, a następnie traktował je jako parametry. Pozwoli to na tworzenie nieregularnych i różnych wersji Tetrisa.

Metody jakie się w tej klasie znajdują:

IsInside()- sprawdza, czy podany wiersz i kolumna znajdują się w gridzie czy też nie.

IsEmpty()- sprawdza czy podana kratka jest pusta czy też nie.

IsRowFull()- sprawdza czy cały wiersz jest pełny

IsRowEmpty()- sprawdza, czy cały wiersz jest pusty.

ClearRow()- jeśli wiersz jest pełny to wyczyści go.

MoveRowDown()- jeśli wiersz został wyczyszczony, reszta wierszy zostanie przeniesiona niżej o liczbę wierszy, które zostały wyczyszczone.

ClearFullRows()- sprawdza, czy wiersz jest pełny, a następnie usuwa pełne wiersze od dołu do góry i pozostałe przenosi na sam dół.

5.Klasa GameState

Klasa GameState odpowiada za aktualny stan gry.

Posiada ona właściwość z tylnym polem bieżącego bloku. Kiedy aktualizujemy currentBlock, reset jest wywoływany i klocek jest ustawiany w dobrej pozycji.

Posiada deklaracje tablicy gry na 22 wiersze i 10 kolumn(normalna plansza Tetrisa jest 20 na 10. Dwa dodatkowe wiersze pozostaną ukryte i pozwolą na generowanie nowych klocków) W konstruktorze GameState() przechowywane są właściwości aktualnej gry.

Metody jakie się w tej klasie znajdują:

BlockFits()- sprawdza, czy klocek jest w dozwolonej pozycji, czy też nie.

HoldBlock()- pozwala na przetrzymanie bloku, który właśnie pojawił się na planszy na później.

RotateBlockCW()- pozwala na obrócenie klocka o 90 stopni zgodnie z ruchem wskazówek zegara. Jeśli po wykonaniu obrotu klocek będzie w pozycji niedozwolonej, to powróci on do stanu przed obróceniem.

RotateBlockCCW()- pozwala na obrócenie klocka o 90 stopni przeciwnie do ruchu wskazówek zegara. Jeśli po wykonaniu obrotu klocek będzie w pozycji niedozwolonej, to powróci on do stanu przed obróceniem.

MoveBlockLeft()- pozwala na przesunięcie bloku w lewo w wierszu.

MoveBlockRight()- pozwala na przesunięcie bloku w prawo w wierszu.

IsGameOver()- sprawdza, czy górne wiersze są puste. Jeśli są one puste, gra się nie zakończy.

PlaceBlock()- sprawdza czy aktualny klocek nie może być już przesunięty w dół. Następnie sprawdza poprzez metodę IsGameOver() czy gra się zakończyła, czy też nie. Pokazuje również wynik, który jest ilością zapełnionych wierszy.

MoveBlockDown()- pozwala na przesunięcie bloku w dół jeżeli nic nie stoi na przeszkodzie.

TileDropDistance()- bierze pozycje i zmienia ilość pustych wierszy poniżej tego klocka na najniższy możliwy.

BlockDropDistance()- bierze pozycje i z metody TileDropDistance() bierze minimum i o tyle zrzuca klocek.

DropBlock()- pozwala na zrzucenie kocka na sam dół planszy i wstawia go do grida.

6. Klasa BlockQueue

Klasa BLockQueue jest odpowiedzialna za zarządzanie kolejką klocków.

Metody jakie się w tej klasie znajdują:

Blocks – definiuje nową tablice.

Blockqueue()-konstruktor, który pozwala na losowanie za każdym razem innego klocka.

RandomBlock()-zwraca następny klocek.

GetAndUpdate()- zwraca następny blok i aktualizuje właściwość. Będzie wybierał klocki tak, aby się nie powtarzały jeden za drugim.

7. Klasa Position

Klasa Position przechowuje wiersze i kolumny w grze(Potrzebna do określenia pozycji klocków i ich poruszania się).

Posiada jedynie konstruktor Position zawierający wiersze i kolumny.

8. Klasa Block

Klasa Block przechowuje pozycje, gdzie klocki się pojawią, zidentyfikuje rodzaj klocka po id jaki został nałożony na niego oraz odpowiada za ruchy klockiem.

Metody jakie się w tej klasie znajdują:

TilePositions()- zwraca nam pozycje grida okupowanego przez klocek, uwzględniając rotację i offseta.

RotateCW()- pozwala na obrócenie klocka o 90 stopni zgodnie z ruchem wskazówek zegara.

RotateCCW()- pozwala na obrócenie klocka o 90 stopni przeciwnie do ruchu wskazówek zegara.

Move()- pozwala na przesunięcie klocka o dany numer wierszy i kolumn.

Reset()- Jak sama nazwa wskazuje pozwala na zresetowanie rotacji i pozycji klocka.

9.Klasy IBlock, JBlock itd.

Klasy IBlock, JBlock, LBlock, OBlock, SBlock, TBlock, ZBlock zawierają w sobie 4 pozycje na różne stopnie rotacji klocka. Posiadają przypisane do nich id oraz pozycje w której zaczną spadać na planszy.

Wyjątkową klasą jest OBlock, której klocek jest kwadratem i jego rotacji nie widać. Dlatego przechowuje ona tylko 1 pozycje do rotacji.

10.Prezentacja okienka Gry

Przedstawiam kilka zdjęć z ekranu gry oraz jak ona na obecną chwilę wygląda.

