Senzori Mobilne aplikacije

Stevan Gostojić

Fakultet tehničkih nauka, Novi Sad

13. decembar 2022.

Pregled sadržaja

Fizičke veličine

- Fizičke veličine opisuju svojstva materije i fizičkih pojava
- One mogu biti skalarne (temperatura vazduha, vlažnost vazduha, vazdušni pritisak), vektorske (pozicija, brzina, ubrzanje), itd.

Merenje

Figure 1: Merenje.

- Merenje je proces upoređivanje nepoznate fizičke veličine sa poznatom fizičkom veličinom
- Postoji standardna merna jedinica za svaku fizičku veličinu
- Postoje osnovne merne jedinice (dužina, masa, vreme, električna struja, temperatura, količina supstance i jačina svetlosti) i izvedene merne jedinice

SI sistem

Simbol	lme	Veličina
kg	kilogram	masa
S	sekunda	vreme
m	metar	dužina
A	Amper	električna struja
K	Kelvin	temperatura
mol	mol	količina supstance
cd	kandel	jačina svetlosti

Table 1: SI jedinice.

Tačnost i preciznost

Figure 2: Tačnost i preciznost.

- Tačnost je odstupanje srednje vrednosti merenja od tačne vrednosti
- Preciznost je stepen u kome merenja ponovljena pod nepromenjenim uslovima daju iste rezultate

• Senzor je uređaj koji pretvara jednu fizičku veličinu u drugu fizičku veličinu koju čovek može neposredno da opazi (ili koju računar može da očita)

Digitalizacija

Figure 3: Digitalizacija.

- uzorkovanje (očitavanje vrednosti analognog signala (obično sa konstantnom frekvencijom)
- kvantizacija (aproksimacija očitane vrednosti sa vrednostima iz konačnog skupa)

Senzorski koordinatni sistem

Figure 4: Senzorski koordinatni sistem.

- x osa (horizontalna, od levo prema desno)
- y osa (vertikalna, od dole prema gore)
- z osa (od uređaja)

Tip	Opis
ACCELEROMETER	Meri ubrzanje uređaja (sa g)
AMBIENT_TEMPERATURE	Meri temperaturu vazduha
GRAVITY	Meri g
GYROSCOPE	Meri ugaonu brzinu uređaja
LIGHT	Meri jačinu svetlosti
LINEAR_ACCELERATION	Meri uprzanje uređaja (bez g)

Table 2: Tipovi senzora.

Tip	Opis	
MAGNETIC_FIELD	Meri jačinu magnetnog polja	
PRESSURE	Meri vazdušni pritisak	
PROXIMITY	Meri udaljenost objekta od	
	ekrana	
RELATIVE_HUMIDITY	Meri relativnu vlažnost vazduha	
ROTATION_VECTOR	Meri orijantaciju uređaja	

Table 3: Tipovi senzora.

Tipovi senzora

- Senzori pozicije: MAGNETIC_FIELD, PROXIMITY
- Senzori pokreta: ACCELEROMETER, GRAVITY, GYROSCOPE, LINEAR_ACCELERATION, ROTATION_VECTOR
- Senzori okruženja: AMBIENT_TEMPERATURE, LIGHT, PRESSURE, RELATIVE_HUMIDITY

Tipovi senzora

- Hardverski senzori: ACCELEROMETER, AMBIENT_TEMPERATURE, GYROSCOPE, LIGHT, MAGNETIC_FIELD, PRESSURE, PROXIMITY, RELATIVE_HUMIDITY
- Softverski ili hardverski senzori: GRAVITY, LINEAR_ACCELERATION, ROTATION_VECTOR

Klasa/Interfejs	Opis
SensorManager	Omogućava pristup senzorima
Sensor	Sadrži informacije o svojstvima određenog senzora
SensorEvent	Događaj koji sadrži informacije o određenom merenju
SensorEventListener	Sadrži obrađivače SensorEvent događaja

Table 4: Sensors API.

- Zatražiti prava pristupa (statički ili dinamički)
- Odrediti koji senzori su dostupni na uređaju
- Odrediti mogućnosti dostupnih senzora
- Napisati obrađivače događaja koji reaguju na promenu fizičke veličine ili tačnosti merenja
- Segistrovati i odregistrovati obrađivače događaja

ExampleActivity.java

```
1 public class ExampleActivity extends Activity, implements
      SensorEventListener {
    private SensorManager sensorManager:
    public onCreate() {
      // ...
      sensorManager = (SensorManager) getSystemService(Context.
8
      SENSOR SERVICE);
      // Lists all sensors on a device
      List < Sensor > sensors = sensorManager.getSensorList(Sensor.
      TYPE ALL);
      // Lists all sensors of a given type
      List < Sensor > sensors = sensorManager.getSensorList(Sensor.
14
      TYPE MAGNETIC FIELD);
      // Determines whether a specific type of sensor exists
16
      if (sensorManager.getDefaultSensor(Sensor.TYPE MAGNETIC FIELD
      ) != null) {
        // Success! There's a magnetometer.
18
      } else {
19
        // Failure! No magnetometer.
20
23
24
25
26 }
```

Metoda	Opis
<pre>float getMaximumRange()</pre>	maksimalan domet senzora
int getMinDelay()	minimalan period između dva merenja
float getResolution()	rezolucija senzora
float getPower()	potrošnja

Table 5: Metode klase Sensor.

Metoda	Opis
String getName()	ime senzora
<pre>int getType()</pre>	generički tip senzora
String getVendor()	proizvođač senzora
<pre>int getVersion()</pre>	verzija senzora

Table 6: Metode klase Sensor.

ExampleActivity.java

```
1 public class ExampleActivity extends Activity, implements
      SensorEventListener {
2
    private final SensorManager sensorManager;
3
    private Sensor sensor;
    // ...
    public void onAccuracyChanged(Sensor sensor, int accuracy) {
8
      // Called when the accuracy of a sensor has changed.
11
    public void onSensorChanged(SensorEvent event) {
12
      // Called when sensor values have changed.
13
14
15 }
16
```

Metoda	Opis		
onSensorChanged(SensorEven event)	t Obađuje veličine	promenu	fizičke
onAccuracyChanged(Sensor sensor, int accuracy)	Obrađuje merenja	promenu	tačnosti

Table 7: Metode interfejsa SensorEventListener.

Atribut	Opis
float[] values	izmerena vrednost (skalar ili
	vektor)
long timestamp	vreme merenja [ns]
int accuracy	tačnost merenja
Sensor sensor	korišćen senzor

Table 8: Atributi klase SensorEvent.

ExampleActivity.java

```
1 public class ExampleActivity extends Activity, implements
      SensorEventListener {
    private final SensorManager sensorManager;
3
    private Sensor sensor;
5
    // ...
6
    protected void onResume() {
8
      super.onResume():
Q
      sensorManager.registerListener(
        this, sensor, SensorManager.SENSOR DELAY NORMAL);
13
    protected void onPause() {
14
      super.onPause();
15
      sensorManager.unregisterListener(this);
16
18
    // ...
19
20 }
```

Parametar	Opis
listener	obrađivač događaja
sensor	senzor
samplingPeriodUs	period uzorkovanja

Table 9: Parametri metode registerListener.

Dobra praksa

- Koristiti Google Play filtere za izbor uređaja sa odgovarajućim tipovima senzora ili detektovati senzore u toku izvršavanja aplikacije i po potrebi o(ne)mogućiti određene funkcije
- Odregistrovati obrađivač događaja kada senzor više nije potreban (štedi struju)

All images copyrighted by Android Open Source Project (CC BY)