ER to Relational Mapping (Part II)

What We have Learned?

E/R diagram

Relational schema, e.g. account=(bname, acct_no, bal)

$$E = (a_1, ..., a_n)$$

Many-to-many relationship: R1= $(\underline{a_1}, \underline{b_1}, c_1, ..., c_k)$

More on relationships

1-many relationship:

- Could have: R1= $(a_1, \underline{b_1}, c_1, ..., c_k)$
- Usual strategy:
 - Don't construct a table for R1
 - Add a1, c1,, ck to E2 instead, i.e.
 - E2= $(\underline{b}_{\underline{1}},, b_{m}, a_{1}, c_{1}, ..., c_{k})$

E/R to Relational

Weak entity sets

E1 =
$$(\underline{a_1}, ..., a_n)$$

E2 =
$$(\underline{a_1}, \underline{b_1}, ..., \underline{b_m})$$

Review: ISA Hierarchies

- ❖As in C++, or other PLs, attributes are inherited.
- ❖If we declare A ISA B, every A entity is also considered to be a B entity.

Translating ISA Hierarchies to Relations

Method 1:
$$E = (\underline{a}_1, ..., a_n)$$

 $S1 = (\underline{a}_1, b_1, ..., b_m)$
 $S2 = (\underline{a}_1, c_1 ..., c_k)$

Method 2:

S1 =
$$(\underline{a}_1,..., a_n, b_1, ..., b_m)$$

S2 = $(\underline{a}_1, ..., a_n, c_1 ..., c_k)$

Q: When method 2 is wrong? (tip: think about the covering constraint)

Example: Translating ISA Hierarchies to Relations

- Approach 1:
 - 3 relations: Employees, Hourly_Emps and Contract_Emps.
- Approach 2: Just Hourly_Emps and Contract_Emps.

Review: Aggregation

Allows us to treat a relationship set as an entity set for purposes of participation in (other) relationships.

Describes relationship among relationships

Translating Aggregation to Relation

Aggregation

E1, R1, E2, E3 as before

R2 =
$$(\underline{c_1}, \underline{a_1}, \underline{b_1}, d_1, ..., d_j)$$

Foreign keys: \underline{a}_1 (reference table E1), \underline{b}_1 (reference table E2), \underline{c}_1 (reference table E3).

Example: Translating Aggregation to Relation

ER to Relational In-class Exercise (Hand-out)