

Approximate quantum circuit compilation for proton-transfer kinetics on quantum processors

Dilhan Manawadu, Edoardo Altamura, Stefano Mensa

The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom

Quantum effects of proton transfer

- Accurate description of proton transfer processes requires a quantum description of kinetic nuclei that captures quantum tunnelling and zero-point energy.
- Several theoretical approaches, such as ring polymer molecular dynamics [1] and multi-configuration time-dependent Hartree [2] have been developed to accurately model proton transfer.
- However, these methods exhibit prohibitive scaling with system size.

Nuclear-Electronic Orbital (NEO) Theory

• The dynamics of a quantum system is fully described by the Time-Dependent Schrödinger Equation (TDSE)

$$i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = \left[\hat{T}_p + \hat{V}(t)\right] |\Psi(t)\rangle, \tag{1}$$

where \hat{T}_p is the kinetic energy operator for the proton, and $\hat{V}(t)$ is a time-dependent potential.

 NEO approach solves the mixed nuclear-electronic TDSE by constructing a mixed nuclear-electronic wavefunction [3] with nuclear and electronic components $|\Phi_{\nu}^{n}\rangle$ and $|\Phi_{\mathfrak{u}}^e\rangle$ respectively as,

$$\left|\Psi[\vec{C}(t)]\right\rangle = \sum_{\mu\nu} C_{\mu\nu}(t) \left|\Phi_{\mu}^{e}\right\rangle \left|\Phi_{\nu}^{n}\right\rangle .$$
 (2)

• This leads to an equation of motion for the CI coefficients $\vec{C}(t)$

$$\vec{H}(t)\vec{C}(t) = i\frac{\partial}{\partial t}\vec{C}(t), \qquad (3)$$

where the matrix elements of $\vec{H}(t)$ are defined by

$$H_{\kappa\lambda,\mu\nu}(t) = \langle \Phi_{\kappa}^{e} | \langle \Phi_{\lambda}^{n} | \hat{T}_{p} + \hat{V}(t) | \Phi_{\mu}^{e} \rangle | \Phi_{\nu}^{n} \rangle . \tag{4}$$

• We approximate the time-dependent energy and wavefunction in the adiabatic regime variationally along points on reaction pathway by minimising

$$E(t) = \min_{\vec{C}(t)} \frac{\left\langle \Psi[\vec{C}(t)] \middle| \hat{T}_p + \hat{V}(t) \middle| \Psi[\vec{C}(t)] \right\rangle}{\left\langle \Psi[\vec{C}(t)] \middle| \Psi[\vec{C}(t)] \right\rangle}.$$
 (5)

Proton-transfer in malonaldehyde

- Kovyrshin et al. explored the dynamics of proton transfer in malonaldehyde using NEO Complete Active Space Configuration Interaction (NEOCASCI)[4] via Suzuki-Trotter decomposition. However, this method yields circuits too deep for current quantum computers.
- In this work, we extend the NEO framework for modelling proton transfer to be compatible with current near-term and early fault tolerant quantum hardware.
- First, we enhance the chemical model by employing larger basis sets, Frozen Natural orbital (FNO) approximation, and scaffold relaxation.

Figure 1: Chemical structure of malonaldehyde. Left and Middle refer to starting and middle stationary points along the trajectory of the mobile proton. $\Delta E = E_{Middle} - E_{Left}$

Method	ΔΕ	ΔE Entanglement entropy					
	(mHa)	Left/Right	Middle				
NEO-CASCI*	5.1	0.00200	0.0038				
FNO-NEO-CASCI	11.9	0.00240	0.0066				
Semi-empirical model ⁵	11.2						
Experimental ⁶	13.5						

Table 1: NEO reference energies and their comparison with semiempirical and experimental values. FNO is able to capture more electronic-nuclear correlations compared to vanilla NEO method.

Quantum resource reduction

- Nykänen et al. extended Adaptive Derivative-Assembled Pseudo-Trotter Ansatz Variational Quantum Eigensolver (ADAPT-VQE) method for FNO framework [7, 8].
- We utilise this method, called FNO-NEO-ADAPT-VQE, to construct two sets of high fidelity quantum circuits while adhering to current hardware restrictions.
- * ADAPT-VQE (deep), retaining > 99.8% fidelity with FNO-NEO-CASCI reference
- * ADAPT-VQE (shallow), retaining > 97% fidelity with FNO-NEO-CASCI reference
- Further, we employ Adaptive Approximate Circuit Compilation (ADAPT-AQC), an adaptive algorithm based on approximate circuit compiling [9] to further compress ADAPT-VQE (shallow) circuits quantum circuits. We construct two sets of circuits:
 - * ADAPT-AQC (high), maintaining > 99% fidelity with ADAPT-VQE (shallow)
- * ADAPT-AQC (low), within 97% fidelity with ADAPT-VQE (shallow) and within ~ 50 two-qubit entangling gate depth

Summary of compressed circuits

, , , , , , , , , , , , , , , , , , , ,						
Method	State	2Q-count	2Q-depth	Fidelity	E [mHa]	Δ E [mHa]
FNO-NEO-CASCI	Left	_	_	_	-600.666	
	Middle	_	_	_	-588.809	11.857
HF-product	Left	0	0	0.888	-552.090	
	Middle	0	0	0.936	-549.241	2.850
ADAPT-VQE (deep)	Left	1844	1362	0.998	-599.268	
	Middle	940	662	0.999	-587.497	11.771
ADAPT-VQE (shallow)	Left	551	411	0.971	-591.237	
	Middle	271	211	0.976	-579.609	11.628
ADAPT-AQC (high)	Left	81	51	0.961	-578.785	
	Middle	405	90	0.967	-565.358	13.427
ADAPT-AQC (low)	Left	81	51	0.961	-578.785	
	Middle	85	12	0.953	-551.645	27.140
ADAPT-AQC (low+ZNE)	Left	_	_	_	-548 ± 7	
	Middle	_	_	_	-524 ± 10	24 ± 12
ADAPT-AQC (low+ZNE)	diff	_	_	_	_	18 ± 3

Table 2: Summary of ADAPT-VQE and ADAPT-AQC circuits, along with energies and proton transfer barriers computed via statevector simulations. ADAPT-AQC (low+ZNE) incorporates noise models. Two-qubit gate depths and counts refer to circuits transpiled for IBM Heron r2 processors. Circuit fidelities are given with respect to the FNO-NEO-CASCI wavefunction. A constant offset of 265 Ha is added to reported absolute energies.

- * ADAPT-VQE circuits are within chemical accuracy. However, due to quantum resource requirement they are only compatible with error-corrected devices.
- * AQC-high circuits approximate the proton transfer energy barrier within 2 mHa with less than 100 entangling gate depth, compatible with early fault tolerant devices.
- * AQC-low circuits are compatible with current noisy devices, but they overestimate the energy barrier by $\approx 60\%$.

Energy barrier and rate constant of proton transfer

Figure 2: Left: energy difference of the potential barrier (in mHa) for the VQE-shallow circuits, AQChigh and -low (noiseless, pink hatched), and the noisy AQC-low circuits with ZNE using two extrapolation methods ('fit first' and 'diff first', yellow hatched). The ZNE-based bars indicate the median value sampled from 100 randomised gate-folded circuits. Right: proton transfer rate constants, k(T), as a function of temperature, T, computed using quantum-corrected transition state theory rate expression.

- * Direct Zero Noise Extrapolation (ZNE) on barrier heights recovered 18-24 mHa values, demonstrating that energy differences may be more amenable to error mitigation than absolute state energies.
- * While the AQC-high circuits are within 10% of reference energy, they underestimate the rate constants at 120K by 60%.

Acknowledgements

This work was supported by the Hartree National Centre for Digital Innovation, a UK Government-funded collaboration between STFC and IBM. This poster is based on a recent publication. Scan the QR code in the banner to access the full paper.

References

- [1] Habershon, S.; Manolopoulos, D. E.; Markland, T. E.; Miller III, T. F. Annual Review of Physical Chemistry 2013, 64, 387–413.
- [2] Beck, M. H.; Jäckle, A.; Worth, G. A.; Meyer, H.-D. *Physics Reports* **2000**, *324*, 1–105.
- [3] Webb, S. P.; Iordanov, T.; Hammes-Schiffer, S. Journal of Chemical Physics 2002, 117, 4106–4118.
- [4] Kovyrshin, A.; Skogh, M.; Tornberg, L.; Broo, A.; Mensa, S.; Sahin, E.; Symons, B. C. B.; Crain, J.; Tavernelli, I. Journal of Physical Chemistry Letters 2023, 14, 7065-7072.
- [5] Fillaux, F.; Nicolaï, B. Chemical Physics Letters 2005, 415, 357–361.
- [6] Smith, Z.; Wilson, E.; Duerst, R. W. Spectrochimica Acta Part A: Molecular Spectroscopy 1983, 39, 1117–1129.
- [7] Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. Nature communications 2019, 10, 1–9.
- [8] Nykänen, A.; Miller, A.; Talarico, W.; Knecht, S.; Kovyrshin, A.; Skogh, M.; Tornberg, L.; Broo, A.; Mensa, S.; Symons, B. C. B.; Sahin, E.; Crain, J.; Tavernelli, I.; Pavoševíc, F. Journal of Chemical Theory and Computation 2023, 19, 9269–9277.
- [9] Jaderberg, B.; Pennington, G.; Marshall, K. V.; Anderson, L. W.; Agarwal, A.; Lindoy, L. P.; Rungger, I.; Mensa, S.; Crain, J. 2025, arXiv:2503.09683 [quant-ph].