Project Report: Bank Customer Churn Prediction and Retention Offer Generator

Objective

The goal of this project is to predict whether a customer will churn (leave the bank) based on their profile and transactional behavior. The project also provides personalized retention offers to help the bank retain its customers.

Dataset Overview

The primary dataset used is 'Churn_Modelling.csv,' containing 10,000 rows and 14 columns. Key columns include:

- RowNumber: Index of the row
- CustomerId: Unique identifier for each customer
- Surname: Customer's last name
- CreditScore: Customer's credit score
- Geography: Customer's country of residence (France, Spain, Germany)
- Gender: Customer's gender
- Age: Customer's age
- Tenure: Years of banking relationship
- Balance: Account balance
- NumOfProducts: Number of bank products used
- HasCrCard: Ownership of a credit card (1 = Yes, 0 = No)
- IsActiveMember: Active membership status (1 = Yes, 0 = No)
- EstimatedSalary: Customer's estimated salary
- Exited: Whether the customer churned (1 = Yes, 0 = No)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

Role of Data Mining

Data mining played a crucial role in this project by enabling the extraction of meaningful patterns from raw customer data. Core tasks included:

- Data Exploration: Analyzing customer feature distributions and relationships to churn.
- Data Preprocessing: Handling missing values, encoding categorical variables, and balancing the dataset using SMOTE.
- Feature Selection: Identifying key features influencing churn.
- Pattern Identification: Detecting behavioral patterns among customers.
- Predictive Modeling: Building and fine-tuning models to predict churn.
- Knowledge Discovery: Deriving actionable strategies to reduce churn rates.

Data Preprocessing

The dataset was imbalanced, with a higher proportion of non-churned customers. To address this:

• Balancing: SMOTE (Synthetic Minority Over-sampling Technique) was applied.

• Feature Scaling: StandardScaler was used to normalize features for model compatibility.

Models Used

Several classification models were trained, including:

- Random Forest
- Decision Tree
- Support Vector Machine (SVM)
- Logistic Regression

Model	Accuracy	F1 Score
Logistic Regression	0.71	0.50
Decision Tree	0.75	0.45
SVM	0.78	0.57
Random Forest	0.84	0.59

Best Model: Random Forest

Why Random Forest?

- Ensemble Learning: Combines multiple decision trees for robustness and reduced overfitting.
- Handles Complexity: Effectively manages high-dimensional and imbalanced data.
- Feature Importance: Identifies the most influential factors in churn prediction.
- Non-linear Relationships: Captures intricate relationships within the data.
- Hyperparameter Optimization: Fine-tuned using Random Search for optimal performance.

Streamlit App

A user-friendly Streamlit web app was developed, offering:

- Churn Prediction: Predicts customer churn likelihood and probability.
- Retention Offers: Personalized strategies to retain customers based on key attributes.

Retention Offer Examples:

- Youth Advantage Savings Account: For young customers.
- Family Benefit Program: For customers aged 30-50.
- Platinum Membership: For high-balance customers.
- Cross-sell Offers: For customers with fewer products.
- Credit Improvement Assistance: For customers with low credit scores.
- Loyalty Rewards: For active members or customers with high credit scores.

Power BI Dashboard

A Power BI dashboard ('Churn_Analysis.pbix') was created to analyze customer churn visually. Key insights include:

- Relationships between features (e.g., age, balance, and credit score) and churn rates.
- Patterns in customer behavior, aiding strategic decision-making.

Conclusion

This project integrates machine learning and business analytics to address customer churn.

- Predictive Model: The Random Forest classifier ensures accurate predictions.
- Retention Offers: Personalized strategies enhance customer satisfaction and retention.
- Business Value: The Power BI dashboard and Streamlit app empower decision-makers with actionable insights.

By combining data mining techniques, predictive analytics, and targeted offers, the project provides a robust solution to reduce churn and improve customer retention for banks.