Fachhochschule Braunschweig/Wolfenbüttel Institut für Angewandte Informatik Prof. Dr. F. Seutter

(c)

$Theoretische\ Informatik-Einsendeaufgaben\ I$

Name:	
Vorname:	Punkte:
MatrNr.:	Note:
Ihre Lösungen: Bitte tragen Sie an den dafür vorgesehenen Stellen Ihre Lösungen handschriftlich ein. Sie geben nur diese Bögen ab. Ihre Vorüberlegungen und Nebenrechnungen verbleiben bei Ihnen.	
1. (a) Sei $\Sigma = \{+, \&, \#\}$ ein Alphabet, auf dem eine lineare Ordnung wie folgt definiert ist:	
$\# \preceq_{\Sigma} \& \preceq_{\Sigma} +.$	
Bestimmen Sie die Sprache $\Sigma^0 \cup \Sigma^1 \cup \Sigma^2$ und listen Sie die darin enthaltenen Wörter in Wortordnung auf.	
(b) Es sei $L = \{0^{2i+1} \mid i \in \mathbb{N}_0\}$ eine Sprache über dem Alphabet $\Sigma = \{0\}$. Bestimmen Sie $\Sigma^+ \setminus L$.	
(c) Es seien Σ ein Alphabet mit $ \Sigma = 5$ und $k \in \mathbb{N}_0$. Bestimmen Sie $ \Sigma^k $.	
	(2+2+1 Punkte)
Lösung:	
(a)	
(b)	

2. Es ist ein deterministischer endlicher Automat E zu konstruierten, der genau diejenigen Wörter über dem Alphabet $\{0,1\}$ einer ganzzahlig durch 4 teilbaren Länge akzeptiert, in denen in jedem Block von 4 aufeinander folgenden Zeichen mindestens eine 0 auftritt. Dabei bilden die Zeichen 1 bis 4 den ersten Block, die Zeichen 5 bis 8 den zweiten Block, usw..

Spezifizieren Sie E als Zustandsgraph.

(5 Punkte)

Lösung:

Zustandsgraph E:

3. Gegeben sei ein nicht-deterministischer endlicher Automat $N=(\{A,B,C\},\{0,1\},\delta,A,\{C\})$ mit

Konstruieren Sie nach dem in der Vorlesung gegebenen Verfahren einen äquivalenten deterministischen endlichen Automaten E. Stellen Sie E als Zustandsgraph dar. Vereinfachen Sie diesen Automaten nicht (z. B. keine Entfernung nicht erreichbarer Zustände, keine Umbenennung der Zustände).

(5 Punkte)

Lösung:

Zustandsgraph des deterministischen endlichen Automaten E:

4. Gegeben sei ein nicht-deterministischer endlicher Automat $N=(\{0,1,2\},\{a,b\},\delta,0,\{0\})$ mit

- (a) $abaa \in L(N)$?
- (b) $bbbbb \in L(N)$?

Falls das Wort von N akzeptiert wird, geben Sie einen akzeptierenden Berechnungspfad an. Falls das Wort nicht von N akzeptiert wird, geben Sie alle verwerfenden (nicht akzeptierenden) Berechnungspfade an. Stellen Sie die Berechnungspfade graphisch dar.

(c) Bestimmen Sie L(N).

(2+2+1 Punkte)

Lösung: