1 Derivada numérica

Neste programa, criou-se funções FORTRAN para calcular derivadas numéricas da função matemática $f(x) = e^{2x} \sin x$. Cada função FORTRAN levava dois argumentos: x e h; e retornava o resultado de uma das fórmulas a seguir:

- Derivada frontal de 2 pontos: $f_f'(x) = \frac{f(x+h) f(x)}{h}$
- Derivada traseira de 2 pontos: $f_t'(x) = \frac{f(x) f(x-h)}{h}$
- \bullet Derivada simétrica de 3 pontos: $f_{3s}'(x) = \frac{f(x+h) f(x-h)}{2h}$
- Derivada simétrica de 5 pontos: $f_{5s}'(x) = \frac{-f(x+2h)+8f(x+h)-8f(x-h)+f(x-2h)}{12h}$
- Derivada segunda simétrica de 3 pontos: $f_{3s}''(x) = \frac{f(x+h)-2\,f(x)+f(x-h)}{h^2}$
- Derivada segunda simétrica de 5 pontos: $f_{5s}''(x) = \frac{-f(x-2h)+16f(x-h)-30f(x)+16f(x+h)-f(x+2h)}{12h^2}$

Todos as variáveis deste programa foram criadas com dupla precisão. Organizou-se os valores retornados pelas funções criadas, para x = 1 e diferentes valores de h, nas tabelas 1 e 2.

h	$f_f'(1)$	$f'_t(1)$	$f_{3s}'(1)$
0.500000000000000000	27.635092143524716	9.8289251653619445	18.732008654443330
0.100000000000000001	18.254821429815323	14.788246597336334	16.521534013575828
5.0000000000000003E-002	17.316982678805513	15.585322192658158	16.451152435731835
1.0000000000000000E-002	16.601729653493447	16.255502044667747	16.428615849080597
5.0000000000000001E-003	16.514467553466083	16.341355383107903	16.427911468286993
1.000000000000000E-003	16.444997229738689	16.410374900250879	16.427686064994784
5.0000000000000001E-004	16.436334602687452	16.419023439574687	16.427679021131070
1.000000000000000E-004	16.429407883356006	16.425945650837548	16.427676767096777
5.0000000000000002E-005	16.428542254836032	16.426811138519071	16.427676696677551
1.0000000000000001E-005	16.427849785838333	16.427503562344015	16.427676674091174
4.9999999999996E-006	16.427763229387438	16.427590117729096	16.427676673558267
9.9999999999995E-007	16.427693983800395	16.427659362605596	16.427676673202996
4.9999999999998E-007	16.427685331166231	16.427668015239760	16.427676673202996
9.9999999999995E-008	16.427678417585412	16.427674927044222	16.427676672314817
4.9999999999998E-008	16.427677511643424	16.427675806340858	16.427676658992141
1.000000000000000E-008	16.427676818864256	16.427676552410730	16.427676685637493

Table 1: Derivadas numéricas de f(x) no ponto x=1 por meio de diferentes aproximações em função do passo h.

h	$f_{5s}'(1)$	$f_{3s}''(1)$	$f_{5s}''(1)$
0.500000000000000000	16.701685316827678	35.612333956325536	35.079577038485837
0.100000000000000001	16.427925967929394	34.665748324789895	34.622942836424549
5.0000000000000003E-002	16.427691909783839	34.633209722947093	34.622363522332883
1.000000000000000E-002	16.427676697379990	34.622760882569992	34.622325192201018
5.0000000000000001E-003	16.427676674689096	34.622434071636121	34.622325134658162
1.000000000000000E-003	16.427676673177757	34.622329487810077	34.622325130924857
5.0000000000000001E-004	16.427676673176499	34.622326225530742	34.622325142249132
1.000000000000000E-004	16.427676673177828	34.622325184585634	34.622325199388605
5.0000000000000002E-005	16.427676673208914	34.622326339217580	34.622326812912732
1.0000000000000001E-005	16.427676673151183	34.622349431856485	34.622367935573564
4.9999999999996E-006	16.427676673439844	34.622331668288105	34.622355353045961
9.9999999999995E-007	16.427676673128982	34.621194799910882	34.621120785042571
4.9999999999998E-007	16.427676672758906	34.631852940947283	34.635701714099312
9.9999999999995E-008	16.427676672314817	34.905411894214929	35.068244604493280
4.9999999999998E-008	16.427676657511846	34.106051316484816	34.194869158454821
1.00000000000000E-008	16.427676700440465	26.645352591003753	23.684757858670004

Table 2: Derivadas numéricas de f(x) no ponto x = 1 por meio de diferentes aproximações em função do passo h.

Em seguida, por meio de métodos não computacionais, chegou-se à real fórmula para a derivada de f(x):

$$f'(x) = e^{2x}(2\sin x + \cos x)$$

$$f''(x) = e^{2x}(3\sin x + 4\cos x)$$

Criou-se, a partir dessas últimas duas fórmulas, funções em FORTRAN para calcular o real valor das derivadas de f(x), fazendo uso das funções nativas DEXP, DSIN e DCOS. Os valores reais das derivadas para x=1 e diferentes valores de h foram comparados com os retornados pelas funções numéricas, sendo suas diferenças absolutas $|\epsilon|$ apresentadas pelas tabelas 3 e 4.

h	$f_f'(1)$	$f'_t(1)$	$f_{3s}'(1)$
0.500000000000000000	11.207415470347506	6.5987515078152654	2.3043319812661203
0.100000000000000001	1.8271447566381127	1.6394300758408757	9.3857340398617595E-002
5.0000000000000003E-002	0.88930600562830264	0.84235448051905237	2.3475762554625135E-002
1.000000000000000E-002	0.17405298031623673	0.17217462850946319	9.3917590338676860E-004
5.000000000000001E-003	8.6790880288873495E-002	8.6321290069307111E-002	2.3479510978319240E-004
1.00000000000000E-003	1.7320556561479350E-002	1.7301772926330727E-002	9.3918175743112897E-006
5.000000000000001E-004	8.6579295102424680E-003	8.6532336025229029E-003	2.3479538597825922E-006
1.000000000000000E-004	1.7312101787965162E-003	1.7310223396620472E-003	9.3919567234479473E-008
5.0000000000000002E-005	8.6558165882166804E-004	8.6553465813921093E-004	2.3500341228555044E-008
1.0000000000000001E-005	1.7311266112329804E-004	1.7311083319526688E-004	9.1396401558085927E-010
4.9999999999996E-006	8.6556210227684005E-005	8.6555448113756484E-005	3.8105696376078413E-010
9.9999999999995E-007	1.7310623185551322E-005	1.7310571614359560E-005	2.5785595880734036E-011
4.9999999999998E-007	8.6579890208327015E-006	8.6579374496409400E-006	2.5785595880734036E-011
9.999999999995E-008	1.7444082018869267E-006	1.7461329875345655E-006	8.6239282381939120E-010
4.9999999999998E-008	8.3846621379279895E-007	8.6683635203144149E-007	1.4185069119321270E-008
1.000000000000000E-008	1.4568704642670127E-007	1.2076647948333630E-007	1.2460283471682487E-008

Table 3: Valor absoluto dos desvios em relação aos resultados exatos das derivadas numéricas de f(x) no ponto x = 1 obtidas por meio de diferentes aproximações em função do passo h.

h	$f_{5s}'(1)$	$f_{3s}''(1)$	$f_{5s}''(1)$
0.500000000000000000	0.27400864365046829	0.99000882545654179	0.45725190761684331
0.100000000000000001	2.4929475218371522E-004	4.3423193920901326E-002	6.1770555555540341E-004
5.0000000000000003E-002	1.5236606628832305E-005	1.0884592078099331E-002	3.8391463888842736E-005
1.000000000000000E-002	2.4202780224413800E-008	4.3575170099785510E-004	6.1332023904014932E-008
5.000000000000001E-003	1.5118857277229836E-009	1.0894076712730794E-004	3.7891680904067471E-009
1.000000000000000E-003	5.4711790653527714E-013	4.3569410834720657E-006	5.5862869885459077E-011
5.000000000000001E-004	7.1054273576010019E-013	1.0946617479135057E-006	1.1380137721062056E-008
1.000000000000000E-004	6.1817218011128716E-013	5.3716640024958906E-008	6.8519611318151874E-008
5.0000000000000002E-005	3.1704416869615670E-011	1.2083485856351217E-006	1.6820437380715703E-006
1.000000000000001E-005	2.6027180410892470E-011	2.4300987490732950E-005	4.2804704570187369E-005
4.9999999999996E-006	2.6263435870532703E-010	6.5374191109413005E-006	3.0222176967242831E-005
9.9999999999995E-007	4.8228088189716800E-011	1.1303309581123244E-003	1.2043458264230367E-003
4.9999999999998E-007	4.1830361396932858E-010	9.5278100782891784E-003	1.3376583230318317E-002
9.9999999999995E-008	8.6239282381939120E-010	0.28308676334593486	0.44591947362428641
4.9999999999998E-008	1.5665364117012359E-008	0.51627381438417785	0.42745597241417244
1.000000000000000E-008	2.7263254764875455E-008	7.9769725398652405	10.937567272198990

Table 4: Valor absoluto dos desvios em relação aos resultados exatos das derivadas numéricas de f(x) no ponto x = 1 obtidas por meio de diferentes aproximações em função do passo h.

Observa-se inicialmente que, conforme se diminui h, a precisão da aproximação aumenta: os valores das duas primeiras tabelas tendem aos valores esperados para f'(1), 16.427676673177210, e f''(1), 34.622325130868994; ao passo que $|\epsilon|$ mostra-se cada vez menor nas tabelas 3 e 4.

Contudo, após atingir máxima precisão em algum valor de h diferente em cada caso, vê-se que acuidade dos valores começa a se perder, fato que se torna claro pelo posterior aumento de $|\epsilon|$ nas duas últimas tabelas apresentadas. A célula que porta os valores ótimos de f'(1) ou f''(1) em cada coluna destaca-se em amarelo, bem como os menores valores de $|\epsilon|$.

Os valores ótimos de h, que geraram menor desvio das aproximações, então são:

- f'_f e f'_t : Como o posterior aumento de $|\epsilon|$ após queda inicial não foi observado nesses casos, não é possível saber ao certo se o valor de h que gerou o mínimo desvio é, de fato, o valor ótimo. Operações com h menores devem ser realizadas para se determinar isso.
- f'_{3s} : 9.999999999995E-007 e 4.999999999998E-007 geraram ambos o mesmo valor de $|\epsilon|$, o menor obtido.
- f'_{5s} : 1.0000000000000000E-003

- $f_{3s}^{"}$:1.00000000000000000E-004
- $f_{5s}^{"}$:1.00000000000000000E-003

O comportamento constatado de $|\epsilon|$ é facilmente observado ao plotar-se $\log 10 |\epsilon|$ em função do