# Komplexitet - lösningsförslag

## 1 Stora Ordo

I exemplen nedan har jag ibland ignorerat absoluttecknen. Det är okej bara om man är säker på att funktionen alltid är positiv, t.ex. för T(n) = 10n + 7 för n > 0. För enklare notation så skriver jag också T(n) utan index (t.ex. ej  $T_1(n)$ ) inom varje sektion då bara en T-funktion behandlas åt gången.

I exemplen så går jag igenom i detalj hur man visar t.ex. hur  $2^n$  växer snabbare än  $n^3$ . Ni behöver inte alltid göra det. Om ej annat sägs så är det okej att anta att det är bevisat att

$$\log n \ll n \ll n \log n \ll n^2 \ll n^3 \ll polynom av högre gradtal i n \ll 2^n \ll n! \ll n^n$$

 $f\ddot{o}r\ stora\ n$ .

1.1 
$$T_1(n) = 10n + 7$$

Bestäm c och  $n_0$  för g(n) = n och

$$T_1(n) = 10n + 7.$$

för 
$$g(n) = n$$
. Är  $T_1(n)$   $O(n)$ ?

## 1.1.1 Vi börjar med c

$$\begin{split} c &= \lim_{n \to \infty} \left(\frac{T(n)}{g(n)}\right) + 1 \\ &= \lim_{n \to \infty} \left(\frac{10n + 7}{n}\right) + 1 \\ &= \lim_{n \to \infty} \left(10 + \frac{7}{n}\right) + 1 = 11. \end{split}$$

### 1.1.2 Därefter $n_0$

Vi vet att följande ska gälla:

$$T(n) \le cg(n), \ \forall n \ge n_0.$$

Sök därför likhet och avrunda  $n_0$  uppåt. Alltså:

$$T(n) = cg(n),$$
 
$$10n + 7 = 11n,$$
 
$$7 = n. \text{ (Ingen avrundning behövdes.)}$$

Alltså bör T(n) vara uppåt begränsad av 11n för  $n \geq 7$ .



Figur 1: Funktionen T(n) = 10n + 7 är uppåt begränsad av 11n för  $n \ge 7$ .

### 1.1.3 Kontrollera

Funktionen

$$u(n) = cg(n) - T(n)$$

visar hur mycket cg(n) överskattar den faktiska tiden T(n). Om överskattningen är  $\geq 0$  för  $n_0$  och inte minskar för  $n > n_0$  så vet vi att  $cg(n) \geq T(n)$  för  $n \geq n_0$ , vilket krävs för att uppfylla ordo-definitionen. Vi behöver alltså kontrollera att

$$u(n_0) \ge 0$$
, (icke-negativ överskattning för  $n = n_0$ ), (1a)

$$u'(n) \ge 0, \forall n \ge n_0$$
. (överskattningen är konstant eller ökar för  $n \ge n_0$ ) (1b)

För vårt fall:

$$u(n) = 11n - (10n + 7) = n - 7, (2a)$$

$$u(n_0) = 7 - 7 = 0, (2b)$$

$$u'(n) = 1. (2c)$$

Resultat (2b) uppfyller (1a). Ekvation (2c) uppfyller (1b). Alltså är T(n) = 10n + 7 av O(n) med konstanterna c = 11,  $n_0 = 7$ . Se också figur 1.

1.2 
$$T_2(n) = 4n^3 - 2n^2 + n + 12$$

Bestäm c och  $n_0$  för

$$T_2(n) = 4n^3 - 2n^2 + n + 12.$$

och  $g_1(n) = n^2$ ,  $g_2(n) = n^3$ , samt  $g_3(n) = n^4$ .

# **1.2.1** $g_1(n) = n^2$

$$\begin{split} c &= \lim_{n \to \infty} \left(\frac{T(n)}{g(n)}\right) + 1 \\ &= \lim_{n \to \infty} \left(\frac{4n^3 - 2n^2 + n + 12}{n^2}\right) + 1 \\ &= \lim_{n \to \infty} \left(4n - 2 + \frac{1}{n} + \frac{12}{n^2}\right) + 1 \\ &= \lim_{n \to \infty} \left(4n - 1\right) = \infty. \end{split}$$

Då c är obegränsad så kan inte  $T_2(n)$  vara  $O(n^2)$ .



Figur 2: Funktionen  $T(n)=4n^3-2n^2+n+12$  är uppåt begränsad av  $5n^3$  för  $n\geq 2$ .

## **1.2.2** $g_2(n) = n^3$

$$c = \lim_{n \to \infty} \left( \frac{T(n)}{g(n)} \right) + 1$$

$$= \lim_{n \to \infty} \left( \frac{4n^3 - 2n^2 + n + 12}{n^3} \right) + 1$$

$$= \lim_{n \to \infty} \left( 4 - \frac{2}{n} + \frac{1}{n^2} + \frac{12}{n^3} \right) + 1 = 5.$$

Vi provar med att söka likhet:

$$T(n) = cg(n),$$
  

$$4n^3 - 2n^2 + n + 12 = 5n^3,$$
  

$$-n^3 - 2n^2 + n + 12 = 0.$$

Hmm...lite komplicerat. Vi vill egentligen att  $cg(n) \ge T(n)$ . Vi provar oss fram:

| n | $5n^3$ | T(n) |
|---|--------|------|
| 1 | 5      | 15   |
| 2 | 40     | 38   |
| 3 | 135    | 105  |
| 4 | 320    | 240  |
| 5 | 625    | 467  |

Alltså bör T(n) vara uppåt begränsad av  $5n^3$  för  $n \ge 2$ . Vi kollar med överskattningen:

$$u(n) = cg(n) - T(n),$$

$$= 5n^3 - (4n^3 - 2n^2 + n + 12) = n^3 + 2n^2 - n - 12.$$

$$u(n_0) = u(2) = 2.$$

$$u'(n) = 3n^2 + 4n - 1.$$

$$u'(n_0) = u'(2) = 19.$$

 $u'(n_0)$  är alltså positiv och då både  $3n^2$  och 4n växer med n så kommer u'(n) aldrig att bli negativ för  $n \ge n_0$ . Alltså är  $T_2(n) = 4n^3 - 2n^2 + n + 12$  av  $O(n^3)$  med konstanterna c = 5,  $n_0 = 2$ . Se också figur 2.



Figur 3: Funktionen  $T(n) = 4n^3 - 2n^2 + n + 12$  är uppåt begränsad av  $n^4$  för  $n \ge 4$ .

## **1.2.3** $g_3(n) = n^4$

$$\begin{split} c &= \lim_{n \to \infty} \left( \frac{T(n)}{g(n)} \right) + 1 \\ &= \lim_{n \to \infty} \left( \frac{4n^3 - 2n^2 + n + 12}{n^4} \right) + 1 \\ &= \lim_{n \to \infty} \left( \frac{4}{n} - \frac{2}{n^2} + \frac{1}{n^3} + \frac{12}{n^4} \right) + 1 = 1. \end{split}$$

Vi provar med att söka likhet:

$$T(n) = cg(n),$$
  

$$4n^3 - 2n^2 + n + 12 = n^4,$$
  

$$-n^4 - 4n^3 - 2n^2 + n + 12 = 0.$$

Nja, vi provar oss fram i stället:

$$\begin{array}{c|cccc} n & n^4 & T(n) \\ \hline 1 & 1 & 15 \\ 2 & 16 & 38 \\ 3 & 81 & 105 \\ 4 & 256 & 240 \\ 5 & 625 & 467 \\ \hline \end{array}$$

Alltså bör T(n) vara uppåt begränsad av  $n^4$  för  $n \ge 4$ . Vi kollar med överskattningen:

$$u(n) = cg(n) - T(n),$$

$$= n^4 - (4n^3 - 2n^2 + n + 12) = n^4 - 4n^3 + 2n^2 - n - 12.$$

$$u(n_0) = u(4) = 16.$$

$$u'(n) = 4n^3 - 12n^2 + 4n - 1,$$

$$u'(n_0) = u'(4) = 79.$$

 $u'(n_0)$  är alltså positiv och då  $4n^3$  växer fortare än  $12n^2$  så kommer u'(n) aldrig att bli negativ för  $n \ge n_0$ . Alltså är  $T_2(n) = 4n^3 - 2n^2 + n + 12$  av  $O(n^4)$  med konstanterna c = 1,  $n_0 = 4$ . Se också figur 3.

1.3 
$$T_3(n) = 4n \log n + 3n^3$$

Om

$$T(n) = 4n\log n + 3n^3,$$

är 
$$T(n)$$
  $O(n^3)$ ? Är  $T(n)$   $O(n \log n)$ ?

**1.3.1**  $g_1 = n^3$ 

$$c = \lim_{n \to \infty} \left( \frac{T(n)}{g(n)} \right) + 1$$

$$= \lim_{n \to \infty} \left( \frac{4n \log n + 3n^3}{n^3} \right) + 1$$

$$= \lim_{n \to \infty} \left( \frac{4n \log n}{n^3} + 3 \right) + 1$$

$$= \lim_{n \to \infty} \left( \frac{4 \log n}{n^2} \right) + 4.$$

Frågan här är vilken av täljaren  $a(n) = 4 \log n$  och nämnaren  $b(n) = n^2$  som dominerar för stora n. För täljaren gäller att ( $\log n$  är den naturliga logaritmen  $\ln n$  om ingen bas anges)

$$a'(n) = \frac{4}{n}.$$

Alltså kommer ökningstakten för täljaren att avstanna för stora n. För nämnaren gäller att

$$b'(n) = 2n$$
.

Ökningstakten för nämnaren kommer alltså att  $\ddot{o}ka$  för stora n. Alltså växer nämnaren fortare än täljaren, bråket går mot noll och

$$c = \lim_{n \to \infty} \left( \frac{4 \log n}{n^2} \right) + 4 = 4.$$

Vi testar för att hitta  $n_0$ :

$$\begin{array}{c|cccc} n & 4n^3 & T(n) \\ \hline 1 & 4 & 3 \\ 2 & 32 & 30 \\ 3 & 108 & 94 \end{array}$$

Alltså bör T(n) vara uppåt begränsad av  $4n^3$  redan för  $n \ge 1$ . Vi kollar med överskattningen:

$$u(n) = cg(n) - T(n),$$

$$= 4n^3 - (4n\log n + 3n^3) = n^3 - 4n\log n.$$

$$u(n_0) = u(1) = 1.$$

$$u'(n) = 3n^2 - 4(1 \cdot \log n + n \cdot \frac{1}{n}) = 3n^2 - 4\log n - 4.$$

$$u'(n_0) = u'(1) = -1.$$

(Derivatan av  $n \log n$  fås från produktregeln:  $(fg)' = f'g + fg' \mod f = n$ ,  $g = \log n$ .) För n = 1 så minskar alltså överskottet. Vi skulle kunna söka var överskottet är som minst (sätta u'(n) = 0), men då vi redan vet att u(2) är positiv provar vi med  $n_0 = 2$  i stället.

$$u'(n_0) = u'(2) = 5.23.$$

 $u'(n_0)$  är alltså positiv och då vi redan visat att  $n^2$  växer fortare än  $\log n$  så vet vi att ökningstakten kommer aldrig att bli negativ för  $n \ge 2$ . Alltså är  $T_3(n) = 4n \log n + 3n^3$  av  $O(n^3)$  med konstanterna c = 4,  $n_0 = 2$ . (Noggrannare kontroll skulle också visat att  $n_0 = 1$  duger.) Se också figur 4.



Figur 4: Funktionen  $T(n) = 4n \log n + 3n^3$  är uppåt begränsad av  $4n^3$  för  $n \ge 1$ .

#### **1.3.2** $g_2 = n \log n$

$$c = \lim_{n \to \infty} \left( \frac{T(n)}{g(n)} \right) + 1$$

$$= \lim_{n \to \infty} \left( \frac{4n \log n + 3n^3}{n \log n} \right) + 1$$

$$= \lim_{n \to \infty} \left( 4 + \frac{3n^3}{n \log n} \right) + 1$$

$$= \lim_{n \to \infty} \left( \frac{3n^2}{\log n} \right) + 5.$$

Som vi tidigare visat så växer  $n^2$  fortare än  $\log n$ . Alltså blir

$$c = \lim_{n \to \infty} \left( \frac{3n^2}{\log n} \right) + 5 = \infty.$$

 $T(n) = 4n \log n + 3n^3$  är alltså inte av  $O(n \log n)$ .

1.4 
$$T(n) = 4 \cdot 2^n + 3n^3$$

Om

$$T(n) = 4 \cdot 2^n + 3n^3,$$

är T(n)  $O(n^3)$ ? Är T(n)  $O(2^n)$ ?

Frågan här är om  $a(n)=2^n$  växer fortare än  $b(n)=n^3$ . Då  $2^n=e^{\log 2\cdot n}$  blir

$$a(n) = 2^n = (e^{\log 2})^n = e^{n \log 2},$$
  
 $a'(n) = \log 2 \cdot e^{n \log 2}.$   
 $b(n) = n^3,$   
 $b'(n) = 3n^2.$ 

Det är svårt att säga något baserat på förstaderivatorna, men för de högre derivatorna får vi

$$b'(n) = 3n^{2},$$

$$b''(n) = 6n,$$

$$b'''(n) = 6.$$

$$a'(n) = \log 2 \cdot e^{n \log 2},$$

$$a''(n) = (\log 2)^{2} \cdot e^{n \log 2},$$

$$a'''(n) = (\log 2)^{3} \cdot e^{n \log 2}.$$

Vi ser alltså att alla derivator av  $e^n$  kommer att vara ökande medan tredjederivatan av  $n^3$  är konstant. Alltså kommer  $2^n$  att dominera över  $n^3$  för stora n.



Figur 5: Funktionen  $T(n) = 4n \log n + 3n^3$  är uppåt begränsad av  $4n^3$  för  $n \ge 1$ .

# **1.4.1** $g_1(n) = n^3$

$$\begin{split} c &= \lim_{n \to \infty} \left( \frac{T(n)}{g(n)} \right) + 1 \\ &= \lim_{n \to \infty} \left( \frac{4 \cdot 2^n + 3n^3}{n^3} \right) + 1 \\ &= \lim_{n \to \infty} \left( \frac{4 \cdot 2^n}{n^3} + 3 \right) + 1 \\ &= \lim_{n \to \infty} \left( \frac{4 \cdot 2^n}{n^3} \right) + 4 = \infty, \end{split}$$

då vi visat att  $2^n$  växer snabbare än  $n^3$ .  $T(n) = 4 \cdot 2^n + 3n^3$  är alltså inte  $O(n^3)$ .

## **1.4.2** $g_2(n) = 2^n$

$$c = \lim_{n \to \infty} \left(\frac{T(n)}{g(n)}\right) + 1$$

$$= \lim_{n \to \infty} \left(\frac{4 \cdot 2^n + 3n^3}{2^n}\right) + 1$$

$$= \lim_{n \to \infty} \left(\frac{4 \cdot 2^n}{2^n} + \frac{3n^3}{2^n}\right) + 1$$

$$= \lim_{n \to \infty} \left(4 + 0\right) + 1 = 5.$$

Vi testar för att hitta  $n_0$ :

$$\begin{array}{c|cccc} n & 5 \cdot 2^n & T(n) \\ \hline 1 & 10 & 11 \\ 5 & 160 & 503 \\ 10 & 5120 & 7096 \\ 15 & 163840 & 141197 \\ \hline \end{array}$$

Alltså bör T(n) vara uppåt begränsad av  $5\cdot 2^n$  för  $n\geq 15$ . Enligt figur 5 gäller det redan för  $n_0=13$ .