

实验报告

数字逻辑实验(七)、实验(八)

姓名 邓语苏 董梅 董芸均

学号1 22920212204066

学号2 36720212204617

学号3 22920212204072

日期 2023年6月9日

学院 信息学院

课程名称 数字逻辑

实验七 汽车方向灯控制电路

一、实验目的

学习简单时序电路的设计。

二、实验设备和器件

数字逻辑实验箱		1 台
2 输入四与非门	(74LS00)	3 片
双 D 触发器	(74LS74)	1 片

三、实验内容

设计一个汽车尾方向灯控制电路。用四个发光二极管模拟四个尾灯(左右各两个)用两个开关提供转弯信号,一个用于左转弯,一个用于右转弯。平时方向灯不亮; 左转弯时左边的灯按图 7.1 所示周期地亮或暗, 右边灯不亮; 右转弯时右边的灯按图 7.1 所示周期地亮或暗, 左边灯不亮。如果驾驶员不慎将左右两个转弯开关都按下,则两侧的灯都同样周期性亮暗。

图 7.1

再用一个开关模拟脚踩制动器,按下该开关时,如果转弯开关未按下,四个灯全亮。如果有一个转弯开关按下,对应的灯周期性亮暗,另两个灯连续亮。如果两个转弯开关都按下,四个灯全亮。

四、设计方法

1. 欲使车灯能按图 7.1 周期性亮暗,必须设计一个由二级触发器组成的四状态计数电路。由于车灯的亮暗频率很低(即计数频率低)用异步计数器完全可以满足要求。今用两个 D 触发器组成异步二进制计数器,如图 7.2 所示,由它提供灯的亮暗条件信号。

2. 今以 K 左、K 右、K 制分别代表左右转弯开关和制动开关, 开关合上时为"1"。用 LA、LB、L'A 和 L'B 分别代表左、右四个灯。

先考虑制动开关未按下时的情况,若 K 左合上,左侧灯 LA、LB 周期亮暗的条件是 F1A=K $左 \cdot A$,F1B=K $左 \cdot B$ 。

再考虑制动开关按下时的情况,如果转弯开关未按下,四个灯全亮。如果有一个转弯开关按下,对应的灯周期性亮暗,另两个灯连续亮。如果两个转弯开关都按下,四个灯全亮。可列出真值表(表 7.1),并作卡诺图如图 7.3 所示。

K左	K 右	F2 灯
0	0	1
0	1	1
1	0	0
1	1	1
	表	
	7.1	

由卡诺图可得: $F2 = \overline{K} \pm \overline{K} \pm$

故制动时灯常亮的条件是: K 制·F2=K 制 (\overline{K} 左 + K 右) 综合可得: LA=K 左·A+K 制 (\overline{K} 左 + K 右)

右)同理可得:

$$L'A = K 右 \cdot A + K 制 (K 左 + \overline{K} 右)$$

 $L'B = K 右 \cdot B + K 制 (K 左 + \overline{K} 右)$

五、实验步骤

1. 根据上述逻辑函数表达式,转换成用三输入与非门和二输入与非门实现的逻辑表达式。

$$LA = \overline{K_L A} \overline{K_S K_L \overline{K_R}}$$

$$LB = \overline{K_L b} \overline{K_S K_L \overline{K_R}}$$

$$L'A = \overline{K_R A} \overline{K_S \overline{K_R \overline{K_L}}}$$

$$L'B = \overline{K_R b} \overline{K_S \overline{K_R \overline{K_L}}}$$

2. 根据转换后的逻辑表达式画出电路图, 标上引脚标号。

3. 连接电路,检查电路无误后接通电源。根据实验结果填写下表。

<u> </u>	, 他旦七时儿队们及起七///。					
K左	K 右	K 制	LA	LB	L'A	L'B
0	0	0	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	0	0101	0011
0	1	1	1	1	0101	0011
1	0	0	0101	0011	0	0
1	0	1	0101	0011	1	1
1	1	0	0101	0011	0101	0011
1	1	1	1	1	1	1

表 7.2

经检验,实验结果与表7.2一致。

实验八 异步时序电路

一、实验目的

- 1. 掌握异步二进制计数器、十进制计数器结构及工作原理。
- 2. 掌握脉冲异步时序电路分析与测试。

二、实验设备和器件

数字逻辑实验箱		1 台
4 输入二与非门	(74LS20)	1 片
双 D 触发器	(74LS74)	2 片

三、实验内容和步骤

1. 分析图 8.1 电路。写出激励函数、状态表,画出和状态图。

图 8.1

状态表:

现态 L ₄ L ₃ L ₂ L ₁	次态 L ₄ ⁿ⁺¹ L ₃ ⁿ⁺¹ L ₁ ⁿ⁺¹
0 0 0 0	0 0 0 1
0 0 0 1	0 0 1 0
0 0 1 0	0 0 1 1
0 0 1 1	0 1 0 0
0 1 0 0	0 1 0 1
0 1 0 1	0 1 1 0
0 1 1 0	0 1 1 1

0 1 1 1	1	0	0	0
1 0 0 0	1	0	0	1
1 0 0 1	1	0	1	0
1 0 1 0	1	0	1	1
1 0 1 1	1	1	0	0
1 1 0 0	1	1	0	1
1 1 0 1	1	1	1	0
1 1 1 0	1	1	1	1
1 1 1 1	0	0	0	0

激励函数:

$$egin{aligned} D_4 &= \overline{L_4} \ C_4 &= \overline{L_3} \ \ D_3 &= \overline{L_2} \ C_2 &= \overline{L_1} \ \ D_1 &= \overline{L_1} \ C_1 &= K1 \end{aligned}$$

状态表:

这是一个16进制计数器。

2. 连接电路, K1 用单脉冲发生器, L1、L2、L3 和 L4 连接到 LED 指示灯。先用 K2 开关把计数器清零, 然后记录按 16 次单脉冲按钮的实验结果, 并说明实验结果是否正确。

经检验,实验结果与状态表一致。

3. K1 改用逻辑电平开关。先用 K2 开关把计数器清零, 然后上下拨动开关一次, 记录实验结果。按此操作步骤反复进行 10 次。分析实验结果说明什么。实验结果如下:

拨动开关n次	L_4 L_3 L_2 L_1
0	0 0 0 0
1	0 0 0 1
2	0 0 1 0
3	0 0 1 1
4	0 1 0 0
5	0 1 0 1
6	0 1 1 0
7	0 1 1 1
8	1 0 0 0
9	1 0 0 1
10	1 0 1 0

实验结果说明此时是二进制编码计数。

4. 分析图 8.2 十进制异步计数器电路。写出激励函数、状态表,画出和状态图,说明工作原理。

状态表:

现态	次态
$X_4 X_3 X_2 X_1$	$X_4^{n+1} X_3^{n+1} X_2^{n+1} X_1^{n+1}$
0 0 0 0	0 0 0 1
0 0 0 1	0 0 1 0
0 0 1 0	0 0 1 1
0 0 1 1	0 1 0 0
0 1 0 0	0 1 0 1
0 1 0 1	0 1 1 0
0 1 1 0	0 1 1 1
0 1 1 1	1 0 0 0
1 0 0 0	1 0 0 1
1 0 0 1	0 0 0 0

激励函数:

$$egin{aligned} D_4 &= \overline{X_4} \ C_4 &= \overline{X_3} \ \ D_3 &= \overline{X_3} \ C_3 &= \overline{X_2} \ \ D_2 &= \overline{X_2} \ C_2 &= \overline{X_1} \ \ D_1 &= \overline{X_1} \ C_1 &= CP \end{aligned}$$

状态表:

这是一个十进制计数器。

5. 连接电路, CP 接单脉冲发生器, X1、X2、X3 和 X4 连接到 LED 指示灯。然后记录按 16 次单脉冲按钮的实验结果, 并说明实验结果是否正确。 经检验, 实验结果与状态表一致。

