Theorem 8.17

For every integer $k \geq 1$, the complete graph K_{2k+1} is Hamiltonian-factorable.

Proof:

Since the theorem is true for $1 \le k \le 3$, we may assume that $k \ge 4$. Let $G = K_{2k+1}$ and $H = K_{2k}$, where $V(H) = \{v_1, v_2, \dots, v_{2k}\}$ and let $V(G) = V(H) \cup \{v_0\}$. Let the vertices of H be the vertices of a regular 2k-gon and let the edges of H be straight line segments. A Hamiltonian cycle C of G is now constructed from a Hamiltonian path P of H that begins with $v_1, v_2, v_{2k}, v_3, v_{2k-1}$ and then continues in this zig-zag pattern until arriving at the vertex v_{k+1} . The path P is a v_1 — v_{k+1} path where edges are those parallel to v_1v_2 or v_2v_{2k} . The cycle C in G is completed by placing v_0 at some convient location within the regular 2k-gon and joining v_0 to both v_1 and v_{k+1} .

Observe that the Hamiltonian cycle C of G just constructed consists of two edges labeled with each og the integers $0, 1, \ldots, k-1$ and one edge labeled k, By rotating the Hamiltonian path P of H clockwise through an angle of $\frac{\pi}{k}$ radians, a new Hamiltonian path P' of H is constructed that is edge-disjoint with P'. The path P' is a v_2-v_{k+2} path. By joining v_0 to v_2 and v_{k+2} , a new Hamiltonian cycle C' of G is obtained that is edge-disjoint with C. We continue until k Hamiltonian cycles G are obtained producing a Hamiltonian factorization of G. In general, for each i with $1 \le i \le k$, the i^{th} Hamiltonian cycle of G is

$$(v_0, v_i, v_{i+1}, v_{i-1}, v_{i+2}, v_{i-2}, \dots, v_{k+i+1}, v_{k+i-1}, v_{k+i}, v_0)$$

where the subscripts are expressed modulo 2k.