ANSC 446 Formula sheet for Exam 2

Verify answers using unit square

Hardy Weinberg principle: for two alleles A_1 with frequency p, and A_2 with frequency q, genotypes A_1A_1 , A_1A_2 , A_2A_2 have frequencies p^2 , 2pq, q^2 respectively, or P, H, Q, respectively.

$$P + H + Q = 1$$

 $p^{2} + 2pq + q^{2} = 1$
 $p + q = 1$

FITNESS AND SELECTION:

Fitness values may be standardized with ω_{12} set equal to 1.0

Mean fitness:

$$\omega$$
-bar = $p^2\omega_{11} + 2pq\omega_{12} + q^2\omega_{22}$

DIRECTIONAL PURIFYING SELECTION:

Allele frequency change, where s is selection coefficient and h is level of dominance (h is zero for a recessive allele; 0.5 for an additive allele; 1 for a dominant allele)

$$q_1 = \underline{q_0 [1-s(hp_0 + q_0)]} \\ 1 - 2hsp_0q_0 - sq_0^2$$

$$\Delta q = q_1 - q_0 = -\frac{\text{spq}[h - ((2h - 1)q)]}{1 - 2\text{hspq} - \text{sq}^2}$$

Lethal recessive:

$$q_1 = q_0 / 1 + q_0$$

 $q_t = q_0 / 1 + tq_0$

Generations, n, for a change to occur in the frequency of a lethal recessive allele: $n = (1/q_n) - (1/q_0)$

HETEROZYGOTE ADVANTAGE OR DISADVANTAGE:

Equilibrium frequency $q_e = s_1 / (s_1 + s_2)$

Genetic load at equilibrium: $[s_1s_2 / (s_1 + s_2)]$

INBREEDING:

With self incompatibility, $q_e = 1/n$ where n is number of alleles

For an inbred population, where f is the inbreeding coefficient, $Q = q^2 + fpq$ and $P = p^2 + fpq$ and H = 2pq - 2fpq

Estimate of inbreeding coefficient:

$$f = 1 - (H/2pq)$$

Self-fertilization equilibrium heterozygosity: $H_e = (4pq(1-S)) / (2-S)$ where S is proportion self-fertilizing, T is proportion out-crossing, and S+T=1

Self fertilization: at equilibrium, $Q = q - (H_e/2)$

Self fertilization: $f_e = S / (2-S)$

Self fertilization $H_{t+1} = 0.5 \text{ X } H_t$

Full-sib mating: $H_{t+2} = (0.5 \text{ X } H_{t+1}) + (0.25 \text{ X } H_t)$

Chain counting technique for estimation of inbreeding: $\mathbf{f} = (0.5)^{N}$ where N excludes the actual inbred individual of interest. If more than one common ancestor: $\mathbf{f} = \Sigma (0.5)^{N}$

r = 2f, where r is coefficient of relationship (or "relatedness") between two individuals and f is the inbreeding coefficient of their offspring

Kinship coefficient is half the relatedness

The frequency of an altruistic allele increases when r > c/b, where r is coefficient of relatedness (0.5 for full sibs or parent-child); c, cost in fitness to the altruist; b, benefit in fitness to the recipient

TABLE 3.5 The fitness values for the different fitness relationships examined.

	Genotype		
	A_1A_1	A_1A_2	A_2A_2
General fitnesses	w_{11}	w_{12}	w_{22}
(a) Recessive lethal	1	1	0
(b) Detrimental alleles (1) Recessive (2) Additive (3) Dominant	1 1 1	$1\\1-s/2\\1-s$	1 - s $1 - s$ $1 - s$
(c) General dominance (1) Purifying selection (2) Adaptive Darwinian selection	$1 \\ 1+s$	$egin{array}{l} 1-hs \ 1+hs \end{array}$	1-s
(d) Heterozygote advantage	$1 - s_1$	1	$1 - s_2$
(e) Heterozygote disadvantage	$1 + s_1$	1	$1 + s_2$