Organização de Computadores II DCC007

Aula 12 – Como melhorar a previsão de desvios?

Prof. Omar Paranaiba Vilela Neto

Organização de Computadores II DCC007

Aula 12 – Previsão Dinâmica de Branches

Prof. Omar Paranaiba Vilela Neto

Previsão de Branches

- Vimos previsões estáticas
 - tomado;
 - Não-tomado;
 - Delayed branch.

Como podemos melhorar o desempenho?

Podemos fazer previsões dinâmicas?

- Desempenho = f(precisão, custo de previsão errada)
- Branch History Table é a mais simples
 - LSBs do endereço dado pelo PC endereça tabela de valores de 1 bit
 - Indica se branch naquela entrada da tabela foi tomado ou não
- Problema: em um loop, BHT de 1 bit causará duas previsões erradas:
 - Final do loop, quando o branch não é tomado
 - Primeira vez da iteração seguinte, quando o branch da última vez não foi tomado

Exemplo da Falha da Previsão do BHT

Código

Loop

add \$t0, \$t1, \$t2 add \$s0, \$s0, \$s1 sw \$t0, 100(\$a0) bne \$s0, \$a1, Loop Tabela de Previsão

Endereço do bne - 1

Exemplo da Falha da Previsão do BHT

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Primeira Passagem

Previsão Correta

Tabela de Previsão

Endereço do bne - 1

Exemplo da Falha da Previsão do BHT

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Próximas Passagens

Previsão Correta

Tabela de Previsão

Endereço do bne - 1

Exemplo da Falha da Previsão do BHT

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Última Passagem

Previsão Errada Muda Tabela Tabela de Previsão

Endereço do bne - 1

Exemplo da Falha da Previsão do BHT

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Primeira Passagem

Previsão Errada Muda Tabela Tabela de Previsão

Endereço do bne - 0

Exemplo da Falha da Previsão do BHT

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Próximas Passagens

Previsão Correta

Tabela de Previsão

Endereço do bne - 1

Exemplo da Falha da Previsão do BHT

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Última Passagem

Previsão Errada Muda Tabela Tabela de Previsão

Endereço do bne - 1

Exemplo da Falha da Previsão do BHT

Como melhorar o desempenho?

Solução: Utilização de 2-bits, onde mudança de previsão ocorre somente se previsão errada ocorre duas vezes:

Exemplo da Falha da Previsão do BHT – 2 bits

Código

Loop

add \$t0, \$t1, \$t2 add \$s0, \$s0, \$s1 sw \$t0, 100(\$a0) bne \$s0, \$a1, Loop Tabela de Previsão

Endereço do bne - 11

Exemplo da Falha da Previsão do BHT – 2 bits

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Primeira Passagem

Previsão Correta

Tabela de Previsão

Endereço do bne - 11

Exemplo da Falha da Previsão do BHT – 2 bits

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Próximas Passagens

Previsão Correta

Tabela de Previsão

Endereço do bne - 11

Exemplo da Falha da Previsão do BHT – 2 bits

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Última Passagem

Previsão Errada Muda Tabela Tabela de Previsão

Endereço do bne - 11

Exemplo da Falha da Previsão do BHT – 2 bits

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Primeira Passagem

Previsão Correta Muda Tabela Tabela de Previsão

Endereço do bne - 10

Exemplo da Falha da Previsão do BHT – 2 bits

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Próximas Passagens

Previsão Correta

Tabela de Previsão

Endereço do bne - 11

Exemplo da Falha da Previsão do BHT – 2 bits

Código

Loop

add \$t0, \$t1, \$t2

add \$s0, \$s0, \$s1

sw \$t0, 100(\$a0)

bne \$s0, \$a1, Loop

Última Passagem

Previsão Errada Muda Tabela Tabela de Previsão

Endereço do bne - 11

Precisão de BHT

Arquitetura IBM Power

© 2003 Elsevier Science (USA). All rights reserved.

Precisão de BHT

Previsão de BHT

Precisão do BHT

- Previsão errada ocorre em dois casos:
 - Previsão errada para esse branch
 - Leu da tabela previsão para branch errado
- Tabela com 4096 entradas
 - Programas variam de 1% de erro (nasa7, tomcatv)
 para 18% (eqntott), com spice em 9% e gcc em 12%
- Tabela com 4096 entradas é tão boa quanto uma com um número infinito de entradas, mas esta última requer muito hardware
- Contador com 2 bits é tão bom quanto um contador com um número infinito de bits

Exemplo da Falha da Previsão do BHT

Como melhorar o desempenho?

 Idéia: tomado/não tomado dos branches executados recentemente está relacionado com o comportamento do branch (tão relacionado quanto o histórico deste branch)

Eqntott

```
if (aa == 2)
   aa = 0;
if (bb == 2)
   bb = 0;
if (aa != bb) {
   ...
}
```

```
if (d == 0)
d = 1;
if (d == 1)
```

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...
L2:
```

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

Possíveis Sequências

			Valor de d antes		
Valor inicial de d	d == 0?	b1	de b2	d == 1?	b2
0	sim	não-seguido	1	sim	não-seguido

Figura 3.10 Sequências de execução possíveis para um fragmento de código.

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

Possíveis Sequências

			Valor de d antes		
Valor inicial de d	d == 0?	b1	de b2	d == 1?	b2
0	sim	não-seguido	1	sim	não-seguido
. 1	não	seguido	1	sim	não-seguido

Figura 3.10 Sequências de execução possíveis para um fragmento de código.

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

Possíveis Sequências

			Valor de d antes		
Valor inicial de d	d == 0?	b1	de b2	d == 1?	b2
0	sim	não-seguido	1	sim	não-seguido
. 1	não	seguido	1	sim	não-seguido
2	não	seguido	2	não	seguido

Figura 3.10 Sequências de execução possíveis para um fragmento de código.

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

d = ?	Previsão de b1	Ação de b1	4.7	Nova previsão de b1	Previsão de b2	Ação de b2	Nova previsão de b2

Figura 3.11 Comportamento de um previsor de 1 bit inicializado como não-seguido. T significa seguido, NT quer dizer não-seguido.

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

			Nova previsão)		Nova previ
d = ?	Previsão de b1	Ação de b1	de b1	Previsão de b2	Ação de b2	de b2
2	NT	T	T	NT	T	· T

Figura 3.11 Comportamento de um previsor de 1 bit inicializado como não-seguido. T significa seguido, NT quer dizer não-seguido.

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

	Nova previsão Nova						
d = ?	Previsão de b1	Ação de b1	de b1	Previsão de b2	Ação de b2	de b2	
2	NT	T	T	NT	T	T	
0	T	NT	NT	T	NT	NT	

Figura 3.11 Comportamento de um previsor de 1 bit inicializado como não-seguido. T significa seguido, NT quer dizer não-seguido.

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

d = ?	Previsão de b1	Ação de b1	Nova previsão de b1	Previsão de b2	Ação de b2	Nova previsão de b2
2	NT	T	T	NT	T	• Т
0	T	NT	NT	T	NT	NT
2	NT	T	T	NT	T	Т

Figura 3.11 Comportamento de um previsor de 1 bit inicializado como não-seguido. T significa seguido, NT quer dizer não-seguido.

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

d = ?	Previsão de b1	Ação de b1	Nova previsão de b1	Previsão de b2	Ação de b2	Nova previsão de b2
2	NT	T	T	NT	T	· T
0	T	NT	NT	T	NT	NT
2	NT	T	T	NT	T	_ T
0	T	NT	NT	T	NT	NT

Figura 3.11 Comportamento de um previsor de 1 bit inicializado como não-seguido. T significa seguido, NT quer dizer não-seguido.

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...
L2:
```

Combinações – Desvios Correlacionados

Bits de previsão	Previsão se o último desvio não foi seguido	Previsão se o último desvio foi segui <mark>do</mark>
NT/NT	NT	NT
NT/T	NT	T
T/NT	Т	NT
T/T	T	T

Figura 3.12 Combinações e significado dos bits de previsão seguido/não-seguido (ou tomado/não-tomado). T representa seguido, NT não-seguido.

BNEZ R1,L1 ;

; BRANCH b1 (d != 0)

- 4 OKTING 0 -- 6 • 1# 00 10 IIIOOKO

Continua sendo um Branch Hystory Table (BHT) de 1 bit

- Obs.: Agora eu tenho 1 BHT para cada condição do último Branch (2 previsores)
 - Tomado
 - Não Tomado

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

Previsor Correlacionado de 1 Bit (1,1)

	Nova previsão					
= ?	Previsão de b1	Ação de b1	de b1	Previsão de b2	Ação de b2	de b2

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

Previsor Correlacionado de 1 Bit (1,1)

Det		Nova previsão				
= ?	Previsão de b1	Ação de b1	de b1	Previsão de b2	Ação de b2	de b2
2	NT/NT	T	T/NT	NT/NT	T	NT/T

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

Previsor Correlacionado de 1 Bit (1,1)

= ?	Previsão de b1	Ação de b1	Nova previsão de b1	Previsão de b2	Ação de b 2	Nova previsão de b 2
2	NT/NT	T	T/NT	NT/NT	T	NT/T
Ü	T/NT	NT	T/NT	NT/T	NT	NT/I

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

Previsor Correlacionado de 1 Bit (1,1)

De		Nova previsão				
= ?	Previsão de b1	Ação de b1	de b1	Previsão de b2	Ação de b2	de b2
2	NT/NT	T	T/NT	NT/NT	T	NT/T
Ü	T/NT	NT	T/NT	NT/T	NT	NT/T
2	T/NT	T	T/NT	NT/T	T	NT/T

```
BNEZ R1,L1 ; BRANCH b1 (d != 0)

DADDIU R1,R0,#1 ; d == 0, ENTAO d = 1

L1: DADDIU R3,R1,#-1

BNEZ R3,L2 ; BRANCH b2 (d != 1)

...

L2:
```

Previsor Correlacionado de 1 Bit (1,1)

= ?	Previsão de b1	Ação de b1	Nova previsão de b1	Previsão de b2	Ação de b2	Nova previsão de b2
2	NT/NT	T	T/NT	NT/NT	T	NT/T
Ü	T/NT	NT	T/NT	NT/T	NT	NT/I
2	T/NT	T	T/NT	NT/T	T	NT/T
0	T/NT	NT	T/NT	NT/T	NT	NT/T

Posso ter um Branch Hystory Table (BHT) de 2 bit

- Obs.: Continua 1 BHT para cada condição do último Branch (2 previsores)
 - Tomado
 - Não Tomado

Posso ter um Branch Hystory Table (BHT) de 2 bit, mas olhar para os 2 últimos Branches

- Obs.: Continua 1 BHT para cada condição dos últimos Branches (4 previsores)
 - Tomado / Tomado
 - Tomado / Não Tomado
 - Não Tomado / Tomado
 - Não Tomado / Não Tomado

Precisão dos Esquemas Diferentes

Previsão por Torneio

 Mistura informação global com informação local dos branches

Multi-nível

 Alcança melhor resultado para BHTs de tamanhos médios (8K-32K bits) e utiliza melhor um número maior de bits de correlação

Previsão por Torneio

Previsão por Torneio

Conditional branch misprediction rate

MIPS Precisa do Endereço ao Mesmo Tempo que Previsão

- Branch Target Buffer (BTB): Endereço do índice de branch busca previsão E endereço (se branch for tomado) ao mesmo tempo
 - Nota: Precisamos checar agora se o branch é realmente aquele na tabela, porque não podemos usar o endereço errado. Portanto, precisamos checar o endereço

Branch Target Buffers

PC should be used as the next PC

MIPS Precisa do Endereço ao Mesmo Tempo que Previsão

O que acontece com endereços indiretos, por exemplo, em retorno de procedimentos com BTB?

 Usa-se um pequeno buffer de endereços de retorno operando como uma pilha.

Resumo do Momento

Objetivo: Redução de custos de desvios

Métodos:

- Buffer de previsão de desvios 2 bits
- Previsores de desvio com correlacionamento
- Previsores por torneio
- Buffers de destino de desvio