- 1. Write an algorithm to determine whether a number is a prime number. The algorithm should iterate through possible divisors and determine if the number has any divisors other than 1 and itself.
 - Take a number as an input from the user
 - Initialize a variable named a as 2
 - Initialize a variable named Result as prime
 - Iterate a While loop that will be iterated when a <= number/2
 - Calculate the remainder (rem) by rem = number MOD a/2
 - If the rem is not equal to zero, increment the value of a by +1
 - If the rem is equal to zero, Change the value of the variable Result to not prime
 - Output the Result
- 2. Create an algorithm that asks the user for a day number (1-365) and outputs the corresponding day of the week, assuming that January 1st is a Monday.
 - Ask the user to enter a day number
 - Remainder = day number MOD 7
 - Calculate Remainder
 - Remainder = 0 Sunday
 - Remainder = 1 Monday
 - Remainder = 2 Tuesday
 - Remainder = 3 Wednesday
 - Remainder = 4 Thursday
 - Remainder = 5 Friday
 - Remainder = 6 Saturday
 - Output corresponding Day from Remainder
- 3. Develop an algorithm for a program that takes two numbers as input and finds the Greatest Common Divisor (GCD) of the two numbers using the Euclidean algorithm.
 - Let two numbers be num1 and num2, where num1>=num2
 - While num2 not equal to 0
 - Compute the remainder of num1 divided by num2. This can be expressed as remainder= num1%num2
 - Replace num1 with num2 and num2 with the remainder.
 - When num2 becomes 0, num1 will be the GCD of the original two numbers.