BLM312 Mikroişlemciler

8086 Microprocessor

Historical Background

The Mechanical Age

The Electrical Age

<u> 1946</u>

The first general purpose programmable electronic computer system - ENIAC (Electronics Numerical Integrator and Calculator) was developed

- •17,000 vacuum tubes
- •500 miles of wires
- •weighted over 30 tons
- •performed about 100,000 operations per second
- programmed by rewiring its circuits

1948 Development of the transistor (Bell Labs)

<u> 1958</u>

Invention of the integrated circuit (Texas Instruments)

The Microprocessor Age

http://www.computerhistory.org/exhibits/microprocessors/index.page November 15, 1971

First Advertisement for Microprocessor Appears.

Intel 4004 has 2,250 transistors, weighted less than an ounce, handling data in 4-bit chunks, 45 instructions, and could perform 50-60K instructions per second.

http://www.computerhistory.org/exhibits/microprocessors/index.page

memory

Data

name

Pentium 4

Year

2000

			-		
		size	size		
1971	4004	4	4096 4-bit	45	first microprocessor
1973	8008	8	16K bytes	48	1st 8-bit μP
1973	8080	8	64K bytes		10 times faster than 8008
1973	MC6800	8	64K bytes		1st Motorola μP
1977	8085	8	64K bytes	246	Intel's most successful 8-bit general- purpose µP due to its low cost
	Z80	8			Zilog's most successful microprocessor
1978	8086	8,16	1M bytes >	20,000	1st 16-bit μP
1979	8088	8,16	1M bytes		prefetch instruction using cache
1981	IBM dec	cided to u	se 8088 in i	ts pers	onal computer
1983	80286	8,16	16M		
1986	80386	8,16,32	4G		
1989	80486	8,16,32	4G		
1993	Pentium	8,16,32	4G		
1995	Pentium 1	Pro 64	64G		
1997	Pentium 1	II 64	64G		
1999	Pentium 1	III ?	?		

#instructions

CISC, RISC Mimarisi

CISC – Complex Instruction Set Computers

- Emirlerin/komutların sayısını ve karmaşıklığını kasteder
- Emirlerin icrası birkaç «clock» alır.
- İyileştirmeler: Multiply ve Divide
- The number of instruction increased from
 - 45 on 4004 to:
 - 246 on 8085
 - 20,000 on 8086 and 8088

RISC – Reduced Instruction Set Computer

• Her clock'ta bir emir icra edilir

Newer RISC - Superscaler Technology

• Her clock'ta birden fazla emir icra edilir.

CISC vs. RISC

CISC

- Önem donanıma verilmiştir (Emphasis on hardware)
- Birden fazla clock süren karmaşık emirler içerir (Includes multi-clock complex instructions)
- Memory-to-memory:
 "LOAD" ve"STORE"
 işlemleri emirlerin içine yerleştirilmiştir
 (incorporated in instructions)
- Kod boyutu küçük (Small code sizes, high cycles per second)
- Transistörler karmaşık emirler için kullanılır (Transistors used for storing complex instructions)

RISC

- Önem yazılıma verilmiştir (Emphasis on software)
- Bir clock süren emirler içerir, küçültülmüş emir kümesi (Single-clock, reduced instruction only)
- Register to register:
 "LOAD" ve"STORE"
 işlemleri bağımsız emirlerdir (are independent instructions)
- Kodun boyutu büyük (Low cycles per second, large code sizes)
- Bellek registerleri için daha fazla transistör harcar (Spends more transistors on memory registers)

8086 Mikroişlemci Özellikleri(Features)

- ☐ Popüler bir mikroişlemci serisine aittir.
 - > 8086, 80286, 80386, 80486, Pentium, vs...
- ☐ Intel 8086 mikroişlemcisini 1978 yılında üretmiştir.
- ☐ 16 bitlik uP.
 - > 16-bit Data Bus
 - Kelime boyu(Word Size) 16 bit
- □ 8086, 20 bitlik adres hattına sahiptir.
 - ➤ 20-bit Adress Bus
 - → 2²⁰ adres hücresi, yani 1MB
 - > Adresler 00000H FFFFFH

Özellikler(2)

- □ 6 tane emir(*instruction*) byte'ının bellekten önalımını(*prefetch*) yapabilir ve bunları kuyruklayabilir.
 - ➤ Emirlerin icrası hızlandırılmış olur.
- ☐ 5 voltluk gerilim ile beslenir.
- ☐ 40 uçlu dual-in-line package (DIP).

8086 Mimarisi (Internal Architecture)

- □ 8086 paralel processing kullanır.
- 8086, aynı anda çalışan iki birimden oluşur:
 - Bus Interface Unit (BIU)
 - Execution Unit (EU)

Bus Interface Unit (BIU)

- □ Bus'lar üzerindeki tüm veri ve adres hareketlerini EU için halleder.
- □ BIU
 - > emirleri getirme (instruction fetching),
 - > operandların adreslerini hesaplama,
 - belleğe operand yazma/bellekten operand okuma,
 - > emir byte'larını emir kuyruğuna (instruction queue) transfer etme,
 - gibi tüm bus işlemlerini yapar

Execution Unit (EU)

☐ Emirleri veya verileri hangi adreslerden getireceğini BIU birimine söyler.

- ☐ Emirlerin kodunu çözer / Emirleri icra eder
 - ☐ (decodes &executes instructions)

Yapılacak işi BIU ve EU'ya paylaştırmak processing'i hızlandırır.

8086 Mimarisinin diyagramı

Execution Unit

- □ Ana bileşenleri
 - Instruction decoder
 - Control system
 - Arithmetic Logic Unit(ALU)
 - General Purpose Registers
 - Flag Register
 - Pointer & Index registers

Instruction Decoder

☐ Bellekten getirilen emirleri, icra birimi tarafından yerine getirilen bir dizi harekete dönüştürür.

Control System

- ☐ İşlemcinin iç operasyonlarını gerçekleştirmesi için zamanlama ve kontrol sinyallerini üretir.
 - ☐ Generates timing and control signals

ALU

- ☐ EU, 16-bitlik bir ALU ya sahiptir.
 - > ADD
 - > SUBTRACT
 - > AND
 - > OR
 - > Increment
 - > Decrement
 - > Complement
 - > Shift

gibi işlemleri gerçekleştirir.

General Purpose Registers

- □ EU, 8 tane genel amaçlı register'a sahiptir.
- □ 8-bitlik verileri saklamak için başlı başına kullanılabilir.
- □ AL register'i Akümülatör olarak anılır.
- ☐ İki register'ın birleşimi ile 16bitlik register'lar oluşur.
- ☐ Geçerli register çiftleri:

	AX	BX	CX,	DX
_	/ 1/1,	D/N	O/1	

АН	AL
ВН	BL
СН	CL
DH	DL

AH	AL	AX
ВН	BL	вх
СН	CL	СХ
DH	DL	DX

Register	Purpose
AX	Word multiply, word divide, word I /O
AL	Byte multiply, byte divide, byte I/O, decimal arithmetic
АН	Byte multiply, byte divide
BX	Store address information
CX	String operation, loops
CL	Variable shift and rotate
DX	Word multiply, word divide, indirect I/O (Used to hold I/O address during I/O instructions. If the result is more than 16-bits, the lower order 16-bits are stored in accumulator and higher order 16-bits are stored in DX register)

Registers

Flag(Bayrak) Register

- 8086 16-bitlik bayrak register'ına sahiptir.
- 9 tane aktif bayrak içerir. Kalan 7 bit tanımlanmamıştır.
- 8086'da iki tip bayrak vardır:
 - Conditional flags
 - > 6 adet
 - Bazı aritmetik işlemlerin sonuçlarına göre EU tarafından setlenir/resetlenir.
 - Control flags
 - > 3 adet
 - > İşlemcinin belirli operasyonlarını kontrol etmek için kullanılır

Flag(Bayrak) Register

A flag is a flip flop which indicates some conditions produced by the execution of an instruction or controls certain operations of the EU.

U	U	U	U	OF	DF	IF	TF	SF	ZF	U	AF	U	PF	U	CF	
---	---	---	---	----	----	----	----	----	----	---	----	---	----	---	----	--

1.	CF	CARRY FLAG	Conditional Flags
2.	PF	PARITY FLAG	(Compatible with 8085,
3.	AF	AUXILIARY CARRY	except OF)
4.	ZF	ZERO FLAG	except Oi)
5.	SF	SIGN FLAG	
6.	OF	OVERFLOW FLAG	
7.	TF	TRAP FLAG	Control Flags
8.	IF	INTERRUPT FLAG	
9.	DF	DIRECTION FLAG	

Flag Register

Flag	Purpose
Carry (CF)	Holds the carry after addition or the borrow after subtraction. Also indicates some error conditions, as dictated by some programs and procedures.
Parity (PF)	PF=0;odd parity, PF=1;even parity.
Auxiliary (AF)	Holds the carry (half – carry) after addition or borrow after subtraction between bit positions 3 and 4 of the result (for example, in BCD addition or subtraction.)
Zero (ZF)	Shows the result of the arithmetic or logic operation. Z=1; result is zero. Z=0; The result is not 0
Sign (SF)	Holds the sign of the result after an arithmetic/logic instruction execution. S=1; negative, S=0; positive

Flag Register

Flag	Purpose
Overflow (OF)	Overflow occurs when signed numbers are added or subtracted. An overflow indicates the result has exceeded the capacity of the Machine
Trap (TF)	A control flag. Enables the trapping through an on-chip debugging feature.
Interrupt (IF)	A control flag. Controls the operation of the INTR (interrupt request) I=0; INTR pin disabled. I=1; INTR pin enabled.
Direction (DF)	A control flag. It selects either the increment or decrement mode for DI and /or SI registers during the string instructions.

Flag(Bayrak) Register

- ☐ Bayrakların 6 tanesi durum göstergesidir.
 - En son icra edilen aritmetik veya lojik emirin özelliklerini yansıtır.
- ☐ Örneğin, AL=7Fh iken ADD AL, 1 emiri icra edilirse aşağıdakiler olur.
 - ✓ AL=80h
 - ✓ CF=0 // 7.bitin dışına taşan bir elde yoktur
 - ✓ PF=0 // 80h sayısında tek sayıda değeri lojik-1 olan bit vardır
 - ✓ AF=1 // 3. bitten 4.bit'e bir elde geçişi vardır.

Flag(Bayrak) Register

- ✓ ZF=0 // işlem sonucu sıfır değildir.
- ✓ **SF=1** // 7.bit *lojik* 1'dir.
- ✓ OF=1 // işaret bitinde değişiklik olmuştur

Bus Interface Unit

- □ Ana bileşenleri
 - Instruction Queue(Q)
 - Segment Registers (CS, DS, ES, SS)
 - Instruction Pointer (IP)
 - The Address Summing block(Σ)

Instruction Queue

- 8086 paralel processing kullanır.
- □ BIU, emir akım kuyruğu olarak bilinen bir mekanizma kullanarak **pipeline** mimarisini yerine getirir.
- ☐ Bellekten 6 byte'lık emir kodlarının ön-alımına (*pre-fetch*) imkan tanır.
- □ BIU'daki emir kuyruğu tamamen dolu değilse, iki byte'lık daha yer varsa ve aynı zamanda EU birimi de bellekten operand okuma/yazma için talepte <u>bulunmuyorsa</u>
 - ✓ BIU icra edilen programda ileriye bakarak sonraki emirin ön alımını yapabilir.

Instruction Queue (devam)

- ☐ Ön alımı yapılan emirler FIFO mantığıyla çalışan bir kuyrukta tutulur.
 - ➤ 16-bitlik veri yoluna sahip olduğundan BIU, tek bir memory cycle'ında 2 emir byte'ını getirir.
- □ EU, o anki emirin kodunu çözmekle veya icrasıyla meşgulken 8086'nın *bus* ları kullanımda olmayabilir
 - Bu esnada BIU, bus ları kullanarak müteakip emirlerden
 6 emir byte'ına kadarını getirebilir.
- □ EU birimi sıradaki emirin icrası için hazır olduğunda kolayca BIU'daki bu kuyruktan sıradaki emiri okur.

Pipelining

- ☐ CPU'nun bilgiyi daha hızlı işlemesi için iki yol var:
 - Çalışma frekansını arttırmak teknoljiye bağlı
 - CPU'nun iç mimarisini değiştirmek
- ☐ **Pipelining**, CPU'nun aynı anda *fetch* ve *execute* yapmasına izin verir.

Pipelining

- ☐ Intel; 8088/8086'nın iç yapısını eşzamanlı olarak çalışabilen iki bölüme ayırarak pipelining konseptini gerçekleştirmiştir.
 - > Execution Unit (EU)-önceden getirilmiş emirleri icra eder
 - > Bus Interface Unit (BIU)- bellek ve çevre birimlere erişim yapar

- 8086'nın icra birimi (EU) sıradaki emir byte'ının bellekten getirilmesi için BIU'yu beklemek zorunda kalmaz.
- ☐ Yani 8086'da bir emir kuyruğunun varlığı işlemeyi hızlandırır.
- Şimdiki emirin icrası esnasında sıradaki emirin getirilmesi
 - pipeling

8088/8086 Mimarisi

00000

FFFFF

- □ 8086/8088 dayalı bir sistemde bellek,
 - segmentli bellek olarak organize edilmiştir.
- □ 8086 CPU, **20-bit**lik address bus
 - 1MB'lık belleği adresleyebilir.
- □ Tüm fiziksel bellek 4 adet mantıksal segmente bölünebilir
 - 8086 ,1MB'lık bu alanda <u>aynı anda</u> sadece 4 tane 64KB'lık segment ile çalışabilir
 - CS, SS, DS, ES

Code segment (64KB)

Data segment (64KB)

Extra segment (64KB)

Stack segment (64KB)

32

Segmented Memory(devam)

Segmented Memory(devam)

☐ Code Segment

- BIU'nun (icra edilen programdaki) emir byte'larını getirdiği bellek kısmı
- Emirlerin tutulduğu bellek bölgesi

□ Stack Segment

- Bir alt programın icra edilirken dönüş adreslerini ve dataları saklamak için ayrılan bellek kısmı
- Yığın bellek olarak kullanılır ve dönüş adreslerini tutar

□ Data Segment & Extra Segment

☐ Programda kullanılacak dataları saklamak için kullanılır

Segmented Memory(devam)

Segment Registers

- ☐ Segmentin başlangıç adresinin üst 16-bitini tutar
 - ☐ Upper 16-bits of the starting address
- 8086 daki 4 tane segment registeri
 - ☐ CS (Code Segment register)
 - □ DS (Data Segment register)
 - ☐ SS (Stack Segment register)
 - ☐ ES (ExtraSegment register)

Segment Registers

☐ Bir segmentin başlangıç adresi **20-***bit* uzunluğundadır ☐ Bir segment register'ı bu adresin sadece **üst 16-bit**ini tutar. ☐ BIU her zaman 20-bitlik bu adresin en alt 4 biti için lojik-0 ekler. ☐ Mesela, eğer CS=348AH ise, code segment bloğu **348A0H** adresinden başlayacaktır. ☐ 64-KB'lık bir segment, bellekte son 4-biti lojik-0 olan herhangi bir yere oturabilir.

Instruction Pointer (IP) Register

- ☐ 16-bitlik register
- ☐ Code segmentteki sıradaki emirin 16-bitlik *offset*'ini tutar.
 - ☐ Sıradaki icra edilecek olan emirin 16-bitlik offset adresini içerir
- □ BIU; IP ve CS registerlerini kullanarak bellekten getirilecek emirin 20-bitlik adresini üretir.
- ☐ Her emirin icrasından sonra IP'nin içeriği arttırılır.

The Address Summing block(Σ)

☐ Bir sonraki emirin 20-bitlik adresini oluşturmak için IP registerinde bulunan 16 bitlik adres ile CS registerinden alınıp 4 bit sola kaydırılarak elde edilen adres ile toplanır.

Stack Segment (SS) Register Stack Pointer (SP) Register

- ☐ Yığın belleğin başlangıç adresinin üst 16-bitli **SS** registerinde saklanır.
- □ SS registeri BIU'dadır.
- ☐ SP registeri; yığın belleğin başlangıcından yığının tepe noktasına olan 16 bitlik offseti tutar.
- ☐ SP registeri ise EU'dadır.

Other Pointer & Index Registers

- ☐ Base Pointer (**BP**) register
- ☐ Source Index (SI) regisgter
- ☐ Destination Index (DI) register
- ☐ Gecici veri tutma alanı olarak kullanılabilir
- ☐ Ana kullanımı, segmentlerdeki data wordunun 16-bitlik offsetini tutmaktır.

Segment and Address register çiftleri

CS:IP

SS:SP SS:BP

DS:BX DS:SI

DS:DI (for other than string operations)

ES:DI (for string operations)