

PROBLEMS

9.1 The concrete roof of a house of thickness 20 cm has an area 200 m². The temperature inside the house is 15⁰ C and outside is 35⁰ C. find the rate at which thermal energy conducted through the roof. The value of k for concrete is 0.65 Wm⁻¹K⁻¹.

Given Data

Thickness of the roof =
$$L = 20 \text{ cm} = 0.2 \text{ m}$$

Area of the
$$roof = A = 200 \text{ m}^2$$

Temperature outside the house =
$$T_1 = 35^{\circ}$$
 C = $(35 + 273)$ K = 308 K

Temperature inside the house =
$$T_2 = 15^0 \text{ C} = (15 + 273) \text{ K} = 288 \text{ K}$$

Coefficient of thermal conductivity =
$$k = 0.65 \text{ Wm}^{-1}\text{K}^{-1}$$

Required

Rate of conduction of energy through the roof = Q/t = ?

Solution

As we know that

Rate of flow of heat =
$$\frac{Q}{t} = \frac{kA(T_1 - T_2)}{L_t}$$

By putting the values, we have

Rate of flow of heat =
$$\frac{Q}{t} = \frac{0.65 \times 200 \times (308 - 288)}{0.2}$$

Rate of flow of heat =
$$\frac{Q}{t} = \frac{130 \times 20}{0.2}$$

Rate of flow of heat =
$$\frac{Q}{t} = \frac{2600}{0.2}$$

Rate of flow of heat =
$$\frac{Q}{t}$$
 = 13000 Js⁻¹

Result

Rate of conduction of energy through the roof = $Q/t = 13000 \text{ Js}^{-1}$

9.2 How much heat is lost in an hour through a glass window measuring 2.0 m by 2.5 m when inside temperature is 25° C and that of outside is 5° C, the thickness of glass is 0.8 cm and the value of k for glass is 0.8 Wm⁻¹k⁻¹?

Given Data

Area of the window = $A = 2.0 \text{ m} \times 2.5 \text{ m} = 5.0 \text{ m}^2$

Thickness of the glass = 0.8 cm = 0.0008 m

Temperature inside the window = $T_1 = 25^{\circ}$ C

Temperature outside the window = $T_2 = 5^{\circ}$ C

Coefficient of thermal conductivity = $k = 0.8 \text{ Wm}^{-1}\text{K}^{-1}$

Required

Heat lost through the glass = Q = ?

Solution

As know that

$$Q = \frac{kA(T_1 - T_2)t}{L}$$

By putting the values, we have

$$Q = \frac{0.8 \times 5 \times (298 - 278) \times 3600}{0.008}$$

$$Q = \frac{4 \times 20 \times 3600}{0.008}$$

$$Q = \frac{288000}{0.008}$$

$$Q = 36000000 J$$

$$Q = 3.6 \times 10^7 \text{ J}$$

Result

Heat lost through the glass = $Q = 3.6 \times 10^7 \text{ J}$

FOR MORE

ESSAYS, NUMERICAL PROBLEMS, MCQs, SHORT Q, LONG Q, PAST PAPERS, ASSESSMENT SCHEMES

VISIT: WWW.FREETLM.CO.

CONTACT US : SUPPORT@FREEILM.COM or FREEILM786@GMAIL.COM

Created by demo-version of Universal Document Convertor. Full version doesn't add this
WWW.PRINT-DRIVER.COM

WEBSITE : HTTP://FREEILM.COM/][CONTACT : SUPPORT@FREEILM.COM & FREEILM786@GMAIL.COM]