# 18.650 Statistics for Applications

Chapter 5: Parametric hypothesis testing

# Cherry Blossom run (1)

- ▶ The credit union Cherry Blossom Run is a 10 mile race that takes place every year in D.C.
- ▶ In 2009 there were 14974 participants
- Average running time was 103.5 minutes.

#### Were runners faster in 2012?

To answer this question, select n runners from the 2012 race at random and denote by  $X_1, \ldots, X_n$  their running time.

# Cherry Blossom run (2)

We can see from past data that the running time has Gaussian distribution.



The variance was 373.

### Cherry Blossom run (3)

- ▶ We are given i.i.d r.v  $X_1, \dots, X_n$  and we want to know if  $X_1 \sim \mathcal{N}(103.5, 373)$
- This is a hypothesis testing problem.
- ▶ There are many ways this could be false:
  - 1.  $\mathbb{E}[X_1] \neq 103.5$
  - 2.  $var[X_1] \neq 373$
  - 3.  $X_1$  may not even be Gaussian.
- We are interested in a very specific question: is  $\mathbb{E}[X_1] < 103.5$ ?

### Cherry Blossom run (4)

- We make the following assumptions:
  - 1.  $var[X_1] = 373$  (variance is the same between 2009 and 2012)
  - 2.  $X_1$  is Gaussian.
- ▶ The only thing that we did not fix is  $\mathbb{E}[X_1] = \mu$ .





- ▶ By making **modeling assumptions**, we have reduced the number of ways the hypothesis  $X_1 \sim \mathcal{N}(103.5, 373)$  may be rejected.
- ▶ The only way it can be rejected is if  $X_1 \sim \mathcal{N}(\mu, 373)$  for some  $\mu < 103.5$ .
- ▶ We compare an expected value to a fixed reference number (103.5).

# Cherry Blossom run (5)

Simple heuristic:

"If 
$$\bar{X}_n < 103.5$$
, then  $\mu < 103.5$ "

This could go wrong if I randomly pick only fast runners in my sample  $X_1, \ldots, X_n$ .

Better heuristic:

"If 
$$\bar{X}_n < 103.5-$$
 (something that  $\xrightarrow[n \to \infty]{} 0$ ), then  $\mu < 103.5$ "

To make this intuition more precise, we need to take the size of the random fluctuations of  $\bar{X}_n$  into account!

# Clinical trials (1)

- Pharmaceutical companies use hypothesis testing to test if a new drug is efficient.
- ► To do so, they administer a drug to a group of patients (test group) and a placebo to another group (control group).
- Assume that the drug is a cough syrup.
- Let  $\mu_{\rm control}$  denote the expected number of expectorations per hour after a patient has used the placebo.
- Let  $\mu_{drug}$  denote the expected number of expectorations per hour after a patient has used the syrup.
- We want to know if  $\mu_{\mathrm{drug}} < \mu_{\mathrm{control}}$
- ▶ We compare two expected values. No reference number.

# Clinical trials (2)

- Let  $X_1, \ldots, X_{n_{\mathrm{drug}}}$  denote  $n_{\mathrm{drug}}$  i.i.d r.v. with distribution  $\mathrm{Poiss}(\mu_{\mathrm{drug}})$
- Let  $Y_1,\ldots,Y_{n_{\rm control}}$  denote  $n_{\rm control}$  i.i.d r.v. with distribution  ${\sf Poiss}(\mu_{\rm control})$
- ▶ We want to test if  $\mu_{\rm drug} < \mu_{\rm control}$ .

#### Heuristic:

"If 
$$\bar{X}_{\mathrm{drug}} < \bar{X}_{\mathrm{control}}$$
—(something that  $\xrightarrow[n_{\mathrm{drug}} \to \infty]{n_{\mathrm{drug}} \to \infty} 0$ ), then conclude that  $\mu_{\mathrm{drug}} < \mu_{\mathrm{control}}$ "

# Heuristics (1)

**Example 1:** A coin is tossed 80 times, and Heads are obtained 54 times. Can we conclude that the coin is significantly unfair?

- $\bar{X}_n = 54/80 = .68$
- ▶ If it was true that p = .5: By CLT+Slutsky's theorem,

$$\sqrt{n} \frac{\bar{X}_n - .5}{\sqrt{.5(1 - .5)}} \approx \mathcal{N}(0, 1).$$

- ▶ Conclusion: It **seems quite** reasonable to reject the hypothesis p = .5.

### Heuristics (2)

**Example 2:** A coin is tossed 30 times, and Heads are obtained 13 times. Can we conclude that the coin is significantly unfair?

- $n = 30, X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Ber}(p);$
- $\bar{X}_n = 13/30 \approx .43$
- ▶ If it was true that p = .5: By CLT+Slutsky's theorem,

$$\sqrt{n} \frac{\bar{X}_n - .5}{\sqrt{.5(1 - .5)}} \approx \mathcal{N}(0, 1).$$

- ▶ Our data gives  $\sqrt{n} \frac{\bar{X}_n .5}{\sqrt{.5(1 .5)}} \approx -.77$
- ▶ The number .77 is a plausible realization of a random variable  $Z \sim \mathcal{N}(0,1)$ .
- Conclusion: our data does not suggest that the coin is unfair.

### Statistical formulation (1)

- ▶ Consider a sample  $X_1, \ldots, X_n$  of i.i.d. random variables and a statistical model  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ .
- ▶ Let  $\Theta_0$  and  $\Theta_1$  be disjoint subsets of  $\Theta$ .
- ► Consider the two hypotheses:  $\begin{cases} H_0: & \theta \in \Theta_0 \\ H_1: & \theta \in \Theta_1 \end{cases}$
- ▶  $H_0$  is the *null hypothesis*,  $H_1$  is the *alternative hypothesis*.
- ▶ If we believe that the true  $\theta$  is either in  $\Theta_0$  or in  $\Theta_1$ , we may want to test  $H_0$  against  $H_1$ .
- We want to decide whether to reject  $H_0$  (look for evidence against  $H_0$  in the data).

### Statistical formulation (2)

- $ightharpoonup H_0$  and  $H_1$  do not play a symmetric role: the data is is only used to try to disprove  $H_0$
- In particular lack of evidence, does not mean that  $H_0$  is true ("innocent until proven guilty")
- ▶ A *test* is a statistic  $\psi \in \{0,1\}$  such that:
  - If  $\psi = 0$ ,  $H_0$  is not rejected;
  - If  $\psi = 1$ ,  $H_0$  is rejected.
- ▶ Coin example:  $H_0$ : p = 1/2 vs.  $H_1$ : p = 1/2.
- $\psi = \mathbb{I}\Big\{ \Big| \sqrt{n} \frac{X_n .5}{\sqrt{.5(1 .5)}} \Big| > C \Big\}$ , for some C > 0.
- ► How to choose the *threshold C* ?



### Statistical formulation (3)

• Rejection region of a test  $\psi$ :

$$R_{\psi} = \{ x \in E^n : \psi(x) = 1 \}.$$

▶ Type 1 error of a test  $\psi$  (rejecting  $H_0$  when it is actually true):

$$\begin{array}{cccc} \alpha_{\psi} & : & \Theta_{0} & \rightarrow & \mathbb{R} \\ & \theta & \mapsto & \mathbb{P}_{\theta}[\psi = 1]. \end{array}$$

▶ Type 2 error of a test  $\psi$  (not rejecting  $H_0$  although  $H_1$  is actually true):

$$\beta_{\psi} : \Theta_1 \to \mathbb{R}$$
 $\theta \mapsto \mathbb{P}_{\theta}[\psi = 0].$ 

▶ Power of a test  $\psi$ :

$$\pi_{\psi} = \inf_{\theta \in \Theta_1} \left( 1 - \beta_{\psi}(\theta) \right).$$

# Statistical formulation (4)

lacktriangle A test  $\psi$  has level  $\alpha$  if

$$\alpha_{\psi}(\theta) \leq \alpha, \quad \forall \theta \in \Theta_0.$$

ightharpoonup A test  $\psi$  has asymptotic level  $\alpha$  if

$$\lim_{n \to \infty} \alpha_{\psi}(\theta) \le \alpha, \quad \forall \theta \in \Theta_0.$$

In general, a test has the form

$$\psi = \mathbb{I}\{T_n > c\},\,$$

for some statistic  $T_n$  and threshold  $c \in \mathbb{R}$ .

▶  $T_n$  is called the *test statistic*. The rejection region is  $R_{\psi} = \{T_n > c\}.$ 

# Example (1)

- ▶ Let  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Ber}(p)$ , for some unknown  $p \in (0,1)$ .
- We want to test:

$$H_0$$
:  $p = 1/2$  vs.  $H_1$ :  $p = 1/2$ 

with asymptotic level  $\alpha \in (0,1)$ .

- Let  $T_n = \sqrt{n} \ \frac{\hat{p}_n 0.5}{\sqrt{.5(1 .5)}}$  , where  $\hat{p}_n$  is the MLE.
- ▶ If  $H_0$  is true, then by CLT and Slutsky's theorem,

$$\mathbb{P}[T_n > q_{\alpha/2}] \xrightarrow[n \to \infty]{} 0.05$$

 $\blacktriangleright \text{ Let } \psi_{\alpha} = \mathbb{I}\{T_n > q_{\alpha/2}\}.$ 

# Example (2)

Coming back to the two previous coin examples: For  $\alpha=5\%$ ,  $q_{\alpha/2}=1.96$ , so:

- In **Example 1**,  $H_0$  is rejected at the asymptotic level 5% by the test  $\psi_{5\%}$ ;
- ▶ In **Example 2**,  $H_0$  is not rejected at the asymptotic level 5% by the test  $\psi_{5\%}$ .

Question: In **Example 1**, for what level  $\alpha$  would  $\psi_{\alpha}$  not reject  $H_0$ ? And in **Example 2**, at which level  $\alpha$  would  $\psi_{\alpha}$  reject  $H_0$ ?

### p-value

#### Definition

The (asymptotic) *p-value* of a test  $\psi_{\alpha}$  is the smallest (asymptotic) level  $\alpha$  at which  $\psi_{\alpha}$  rejects  $H_0$ . It is random, it depends on the sample.

#### Golden rule

p-value  $\leq \alpha \iff H_0$  is rejected by  $\psi_{\alpha}$ , at the (asymptotic) level  $\alpha$ .

The smaller the p-value, the more confidently one can reject  $H_0$ .

- Example 1: p-value =  $\mathbb{P}[|Z| > 3.21] \ll .01$ .
- Example 2: p-value =  $\mathbb{P}[|Z| > .77] \approx .44$ .

### Neyman-Pearson's paradigm

**Idea:** For given hypotheses, among all tests of level/asymptotic level  $\alpha$ , is it possible to find one that has maximal power ?

**Example:** The trivial test  $\psi = \overline{\psi}$  that never rejects  $H_0$  has a perfect level  $(\alpha = 0)$  but poor power  $(\pi_{\psi} = 0)$ .

**Neyman-Pearson's theory** provides (the most) powerful tests with given level. In 18.650, we only study several cases.

### The $\chi^2$ distributions

#### Definition

For a positive integer d, the  $\chi^2$  (pronounced "Kai-squared") distribution with d degrees of freedom is the law of the random variable  $Z_1^2 + Z_2^2 + \ldots + Z_d^2$ , where  $Z_1, \ldots, Z_d \stackrel{iid}{\sim} \mathcal{N}(0,1)$ .

### Examples:

- ▶ If  $Z \sim \mathcal{N}_d(\mathbf{0}, I_d)$ , then  $\|Z\|_2^2 \sim \chi_d^2$ .
- ▶ Recall that the sample variance is given by

$$S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\bar{X}_n)^2$$

▶ Cochran's theorem implies that for  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ , if  $S_n$  is the sample variance, then

$$\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2.$$

 $\chi_2^2 = \text{Exp}(1/2).$ 

### Student's T distributions

#### Definition

For a positive integer d, the Student's T distribution with d degrees of freedom (denoted by  $t_d$ ) is the law of the random variable  $\frac{Z}{\sqrt{V/d}}$ , where  $Z \sim \mathcal{N}(0,1)$ ,  $V \sim \chi_d^2$  and  $Z \perp \!\!\! \perp V$  (Z is independent of V).

### Example:

Cochran's theorem implies that for  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ , if  $S_n$  is the sample variance, then

$$\sqrt{n-1} \ \frac{\bar{X}_n - \mu}{\sqrt{S_n}} \sim t_{n-1}.$$

### Wald's test (1)

- ▶ Consider an i.i.d. sample  $X_1, \ldots, X_n$  with statistical model  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ , where  $\Theta \subseteq \mathbb{R}^d$   $(d \ge 1)$  and let  $\theta_0 \in \Theta$  be fixed and given.
- Consider the following hypotheses:

$$\begin{cases} H_0: & \theta = \theta_0 \\ H_1: & \theta = \theta_0. \end{cases}$$

- Let  $\hat{\theta}^{MLE}$  be the MLE. Assume the MLE technical conditions are satisfied.
- ▶ If  $H_0$  is true, then

$$\sqrt{n} I(\hat{\theta}^{MLE})^{1/2} \left(\hat{\theta}^{MLE}_n - \theta_0\right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_d\left(0, I_d\right) \quad \text{w.r.t. } \mathbb{P}_{\theta_0}.$$



# Wald's test (2)



$$\underbrace{n \quad \hat{\theta}_n^{MLE} - \theta_0 \quad ^\top I(\hat{\theta}^{MLE}) \quad \hat{\theta}_n^{MLE} - \theta_0}_{T_n} \xrightarrow[n \to \infty]{} \underbrace{\chi_d^2 \quad \text{w.r.t. } \mathbb{P}_{\theta_0}.}$$

▶ Wald's test with asymptotic level  $\alpha \in (0,1)$ :

$$\psi = \mathbb{I}\{T_n > q_\alpha\},\,$$

where  $q_{\alpha}$  is the  $(1-\alpha)$ -quantile of  $\chi_d^2$  (see tables).

▶ Remark: Wald's test is also valid if  $H_1$  has the form " $\theta > \theta_0$ " or " $\theta < \theta_0$ " or " $\theta = \theta_1$ " ...

# Likelihood ratio test (1)

- ▶ Consider an i.i.d. sample  $X_1, \ldots, X_n$  with statistical model  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ , where  $\Theta \subseteq \mathbb{R}^d$   $(d \ge 1)$ .
- Suppose the null hypothesis has the form

$$H_0: (\theta_{r+1}, \dots, \theta_d) = (\theta_{r+1}^{(0)}, \dots, \theta_d^{(0)}),$$

for some fixed and given numbers  $\theta_{r+1}^{(0)}, \dots, \theta_d^{(0)}$ .

▶ Let

$$\hat{\theta}_n = \underset{\theta \in \Theta}{\operatorname{argmax}} \ \ell_n(\theta) \quad \text{(MLE)}$$

and

$$\hat{\theta}_n^c = \underset{\theta \in \Theta_0}{\operatorname{argmax}} \ \ell_n(\theta) \quad \text{("constrained MLE")}$$

# Likelihood ratio test (2)

▶ Test statistic:

$$T_n = 2 \ \ell_n(\hat{\theta}_n) - \ell_n(\hat{\theta}_n^c)$$
.

▶ Theorem

Assume  $H_0$  is true and the MLE technical conditions are satisfied. Then,

$$T_n \xrightarrow[n \to \infty]{(d)} \chi^2_{d-r}$$
 w.r.t.  $\mathbb{P}_{\theta}$ .

▶ Likelihood ratio test with asymptotic level  $\alpha \in (0,1)$ :

$$\psi = \mathbb{I}\{T_n > q_\alpha\},\,$$

where  $q_{\alpha}$  is the  $(1-\alpha)$ -quantile of  $\chi^2_{d-r}$  (see tables).

# Testing implicit hypotheses (1)

- Let  $X_1, \ldots, X_n$  be i.i.d. random variables and let  $\theta \in \mathbb{R}^d$  be a parameter associated with the distribution of  $X_1$  (e.g. a moment, the parameter of a statistical model, etc...)
- Let  $g: \mathbb{R}^d o \mathbb{R}^k$  be continuously differentiable (with k < d).
- Consider the following hypotheses:

$$\begin{cases} H_0: & g(\theta) = 0 \\ H_1: & g(\theta) = 0. \end{cases}$$

▶ E.g.  $g(\theta) = (\theta_1, \theta_2)$  (k = 2), or  $g(\theta) = \theta_1 - \theta_2$  (k = 1), or...

# Testing implicit hypotheses (2)

▶ Suppose an asymptotically normal estimator  $\hat{\theta}_n$  is available:

$$\sqrt{n} \quad \hat{\theta}_n - \theta \quad \xrightarrow[n \to \infty]{(d)} \mathcal{N}_d(0, \Sigma(\theta)).$$

▶ Delta method:

$$\sqrt{n} g(\hat{\theta}_n) - g(\theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_k(0, \Gamma(\theta)),$$

where 
$$\Gamma(\theta) = \nabla g(\theta)^{\top} \Sigma(\theta) \nabla g(\theta) \in \mathbb{R}^{k \times k}$$
.

▶ Assume  $\Sigma(\theta)$  is invertible and  $\nabla g(\theta)$  has rank k. So,  $\Gamma(\theta)$  is invertible and

$$\sqrt{n} \Gamma(\theta)^{-1/2} g(\hat{\theta}_n) - g(\theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_k(0, I_k).$$

### Testing implicit hypotheses (3)

▶ Then, by Slutsky's theorem, if  $\Gamma(\theta)$  is continuous in  $\theta$ ,

$$\sqrt{n} \Gamma(\hat{\theta}_n)^{-1/2} g(\hat{\theta}_n) - g(\theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_k(0, I_k).$$

► (Hence, if  $H_0$  is true, i.e.,  $g(\theta) = 0$ ,

$$\underbrace{ng(\hat{\theta}_n)^{\top}\Gamma^{-1}(\hat{\theta}_n)g(\hat{\theta}_n)}_{T_n}\underbrace{\stackrel{(d)}{n\to\infty}}_{n\to\infty}\chi_k^2.$$

▶ Test with asymptotic level  $\alpha$ :

$$\psi = \mathbb{I}\{T_n > q_\alpha\},\,$$

where  $q_{\alpha}$  is the  $(1-\alpha)$ -quantile of  $\chi_k^2$  (see tables).

# The multinomial case: $\chi^2$ test (1)

Let  $E = \{a_1, \dots, a_K\}$  be a finite space and  $(\mathbb{P}_{\mathbf{p}})_{\mathbf{p} \in \Delta_K}$  be the family of all probability distributions on E:

$$\Delta_K = \left\{ \mathbf{p} = (p_1, \dots, p_K) \in (0, 1)^K : \sum_{j=1}^K p_j = 1 \right\}.$$

▶ For  $\mathbf{p} \in \Delta_K$  and  $X \sim \mathbb{P}_{\mathbf{p}}$ ,

$$\mathbb{P}_{\mathbf{p}}[X = a_j] = p_j, \quad j = 1, \dots, K.$$

# The multinomial case: $\chi^2$ test (2)

- Let  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathbb{P}_{\mathbf{p}}$ , for some unknown  $\mathbf{p} \in \Delta_K$ , and let  $\mathbf{p}^0 \in \Delta_K$  be fixed.
- We want to test:

$$H_0$$
:  $\mathbf{p} = \mathbf{p}^0$  vs.  $H_1$ :  $\mathbf{p} = \mathbf{p}^0$ 

with asymptotic level  $\alpha \in (0,1)$ .

Example: If  $\mathbf{p}^0 = (1/K, 1/K, \dots, 1/K)$ , we are testing whether  $\mathbb{P}_{\mathbf{p}}$  is the uniform distribution on E.

# The multinomial case: $\chi^2$ test (3)

Likelihood of the model:

$$L_n(X_1,\dots,X_n,\mathbf{p})=p_1^{N_1}p_2^{N_2}\dots p_K^{N_K},$$
 where  $N_j=\#\{i=1,\dots,n:X_i=a_j\}.$ 

▶ Let  $\hat{\mathbf{p}}$  be the MLE:

$$\hat{\mathbf{p}}_j = \frac{N_j}{n}, \quad j = 1, \dots, K.$$

igwedge maximizes  $\log L_n(X_1,\ldots,X_n,\mathbf{p})$  under the constraint

$$\sum_{j=1}^{K} p_j = 1.$$

# The multinomial case: $\chi^2$ test (4)

▶ If  $H_0$  is true, then  $\sqrt{n}(\hat{\mathbf{p}} - \mathbf{p}^0)$  is asymptotically normal, and the following holds.

### **Theorem**



$$n \sum_{j=1}^{K} \frac{\hat{\mathbf{p}}_{j} - \mathbf{p}_{j}^{0}}{\mathbf{p}_{j}^{0}} \xrightarrow[n \to \infty]{2} \frac{(d)}{n \to \infty} \chi_{K-1}^{2}.$$

- ▶  $\chi^2$  test with asymptotic level  $\alpha$ :  $\psi_{\alpha} = \mathbb{I}\{T_n > q_{\alpha}\}$ , where  $q_{\alpha}$  is the  $(1 \alpha)$ -quantile of  $\chi^2_{K-1}$ .
- Asymptotic p-value of this test: p value =  $\mathbb{P}\left[Z > T_n | T_n\right]$ , where  $Z \sim \chi^2_{K-1}$  and  $Z \perp \!\!\! \perp T_n$ .

# The Gaussian case: Student's test (1)

- Let  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ , for some unknown  $\mu \in \mathbb{R}, \sigma^2 > 0$  and let  $\mu_0 \in \mathbb{R}$  be fixed, given.
- We want to test:

$$H_0$$
:  $\mu=\mu_0$  vs.  $H_1$ :  $\mu=\mu_0$ 

with asymptotic level  $\alpha \in (0,1)$ .

▶ If  $\sigma^2$  is known: Let  $T_n = \sqrt{n} \ \frac{\bar{X}_n - \mu_0}{\sigma}$ . Then,  $T_n \sim \mathcal{N}(0,1)$  and

$$\psi_{\alpha} = \mathbb{I}\{|T_n| > q_{\alpha/2}\}$$

is a test with (non asymptotic) level  $\alpha$ .

# The Gaussian case: Student's test (2)

### If $\sigma^2$ is unknown:

▶ Let  $\widetilde{T_n} = \sqrt{n-1} \ \frac{\bar{X}_n - \mu_0}{\sqrt{S_n}}$ , where  $S_n$  is the sample variance.



- Cochran's theorem:
  - $ightharpoonup \bar{X}_n \perp \!\!\! \perp S_n;$
- ▶ Hence,  $\widetilde{T_n} \sim t_{n-1}$ : Student's distribution with n-1 degrees of freedom.

### The Gaussian case: Student's test (3)

▶ Student's test with (non asymptotic) level  $\alpha \in (0,1)$ :

$$\psi_{\alpha} = \mathbb{I}\{|\widetilde{T_n}| > q_{\alpha/2}\},\$$

where  $q_{\alpha/2}$  is the  $(1-\alpha/2)$ -quantile of  $t_{n-1}$ .

▶ If  $H_1$  is  $\mu > \mu_0$ , Student's test with level  $\alpha \in (0,1)$  is:

$$\psi_{\alpha}' = \mathbb{I}\{\widetilde{T_n} > q_{\alpha}\},\,$$

where  $q_{\alpha}$  is the  $(1-\alpha)$ -quantile of  $t_{n-1}$ .

- Advantage of Student's test:
  - Non asymptotic
  - Can be run on small samples
- ▶ Drawback of Student's test: It relies on the assumption that the sample is Gaussian.

### Two-sample test: large sample case (1)

▶ Consider two samples:  $X_1, \ldots, X_n$  and  $Y_1, \ldots, Y_m$ , of independent random variables such that

$$\mathbb{E}[X_1] = \dots = \mathbb{E}[X_n] = \mu_X$$

, and

$$\mathbb{E}[Y_1] = \dots = \mathbb{E}[Y_m] = \mu_Y$$

 Assume that the variances of are known so assume (without loss of generality) that

$$\operatorname{var}(X_1) = \cdots = \operatorname{var}(X_n) = \operatorname{var}(Y_1) = \cdots = \operatorname{var}(Y_m) = 1$$

▶ We want to test:

$$H_0$$
:  $\mu_X = \mu_Y$  vs.  $H_1$ :  $\mu_X = \mu_Y$ 

with asymptotic level  $\alpha \in (0,1)$ .

### Two-sample test: large sample case (2)

From CLT:

$$\sqrt{n}(\bar{X}_n - \mu_X) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0,1)$$

and

$$\sqrt{m}(\bar{Y}_m - \mu_Y) \xrightarrow[m \to \infty]{(d)} \mathcal{N}(0,1) \quad \Rightarrow \quad \sqrt{n}(\bar{Y}_m - \mu_Y) \xrightarrow[m \to \infty]{(d)} \mathcal{N}(0,\gamma)$$

Moreover, the two samples are independent so

$$\sqrt{n}(\bar{X}_n - \bar{Y}_m) + \sqrt{n}(\mu_X - \mu_Y) \xrightarrow[\substack{m \to \infty \\ \frac{m}{m} \to \gamma}]{(d)} \mathcal{N}(0, 1 + \gamma)$$

Under  $H_0: \mu_X = \mu_Y$ :

$$\sqrt{n} \frac{\bar{X}_n - \bar{Y}_m}{\sqrt{1 + m/n}} \xrightarrow[\substack{m \to \infty \\ \frac{m}{n} \to \gamma}]{(d)} \mathcal{N}(0, 1)$$

Test:  $\psi_{\alpha} = \mathbb{I}\left\{ \sqrt{n} \frac{X_n - Y_m}{\sqrt{1 + m/n}} > q_{\alpha/2} \right\}$ 

### Two-sample T-test

- ▶ If the variances are unknown but we know that  $X_i \sim \mathcal{N}(\mu_X, \sigma_X^2), \ Y_i \sim \mathcal{N}(\mu_Y, \sigma_Y^2).$
- ▶ Then

$$\bar{X}_n - \bar{Y}_m \sim \mathcal{N}\left(\mu_X - \mu_Y, \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right)$$

▶ Under  $H_0$ :

$$\frac{\bar{X}_n - \bar{Y}_m}{\sqrt{\sigma_X^2/n + \sigma_Y^2/m}} \sim \mathcal{N}(0, 1)$$

For unknown variance:

$$\frac{\bar{X}_n - \bar{Y}_m}{\sqrt{S_X^2/n + S_Y^2/m}} \sim t_N$$

where

$$N = \frac{\left(S_X^2/n + S_Y^2/m\right)^2}{\frac{S_X^4}{n^2(n-1)} + \frac{S_Y^4}{m^2(m-1)}}$$

MIT OpenCourseWare http://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications Fall 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.