Please check the examination details bel	ow before ente	ering your candidate info	ormation
Candidate surname		Other names	
Centre Number Candidate Nu	ımber		
Pearson Edexcel Inter	nation	al Advance	ed Level
Time 1 hour 30 minutes	Paper reference	WME	1/01
Mathematics			0 0
International Advanced Su Mechanics M1	ubsidiar	y/Advanced I	-evel
You must have: Mathematical Formulae and Statistica	ıl Tables (Ye	llow), calculator	Total Marks

Candidates may use any calculator permitted by Pearson regulations.

Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m\,s^{-2}}$, and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1.

Figure 1

A particle P of weight $5\,\mathrm{N}$ is attached to one end of a light inextensible string. The other end of the string is attached to a fixed point O. The particle P is held in equilibrium by a force of magnitude F newtons. The direction of this force is perpendicular to the string and OP makes an angle of 60° with the vertical, as shown in Figure 1.

Find

(a) the value of F

(3)

(b) the tension in the string.

(3)

Question 1 continued	Leave
Question I continued	
	01
	Q1
(Total 6 marks)	

2.	A particle P has mass km and a particle Q has mass m . The particles are moving towards each other in opposite directions along the same straight line when they collide directly.		
	Immediately before the collision, P has speed $3u$ and Q has speed u .		
	As a result of the collision, the direction of motion of each particle is reversed and speed of each particle is halved.		
	(a) Find the value of k .		
	(4)		
	(b) Find, in terms of m and u , the magnitude of the impulse exerted on Q in the collision. (3)		

Question 2 continued	blank
	Q2
(Total 7 marks)	

3.

Figure 2

A beam ADCB has length 5 m. The beam lies on a horizontal step with the end A on the step and the end B projecting over the edge of the step. The edge of the step is at the point D where DB = 1.3 m, as shown in Figure 2.

When a small boy of mass 30 kg stands on the beam at C, where CB = 0.5 m, the beam is on the point of tilting.

The boy is modelled as a particle and the beam is modelled as a uniform rod.

(a) Find the mass of the beam.

(3)

A block of mass X kg is now placed on the beam at A.

The block is modelled as a particle.

(b) Find the smallest value of *X* that will enable the boy to stand on the beam at *B* without the beam tilting.

(3)

(c) State how you have used the modelling assumption that the block is a particle in your calculations.

(1)

	Le
uestion 3 continued	bl

	Lo
Question 3 continued	bl

Question 3 continued	Leave
Question 5 continued	
	Q3
(Total 7 marks)	

4.	At time $t = 0$, a small ball is projected vertically upwards from a point A which is
	$24.5 \mathrm{m}$ above the ground. The ball first comes to instantaneous rest at the point B ,
	where $AB = 19.6 \mathrm{m}$ and first hits the ground at time $t = T$ seconds.

The ball is modelled as a particle moving freely under gravity.

(a) Find the value of T.

(6)

(b) Sketch a speed-time graph for the motion of the ball from t = 0 to t = T seconds.

(No further calculations are needed in order to draw this sketch.)

(2)

	Lo
estion 4 continued	
	1

Leave blank

Question 4 continued	blank
	Q4
Γ)	Total 8 marks)

5.

Figure 3

A particle of mass m rests in equilibrium on a fixed rough plane under the action of a force of magnitude X. The force acts up a line of greatest slope of the plane, as shown in Figure 3.

The plane is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{3}{4}$

The coefficient of friction between the particle and the plane is μ .

- When X = 2P, the particle is on the point of sliding up the plane.
- When X = P, the particle is on the point of sliding down the plane.

Find the value of μ .	(8
	(6

	Lo bl
uestion 5 continued	

Leave blank

Question 5 continued	blank
	Q5
(Total 8 marks)	

6. [In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors.]

A particle P of mass 2kg moves under the action of two forces, (pi + qj)N and $(2q\mathbf{i} + p\mathbf{j})$ N, where p and q are constants.

Given that the acceleration of P is $(\mathbf{i} - \mathbf{j})$ m s⁻²

(a) find the value of p and the value of q.

(5)

(b) Find the size of the angle between the direction of the acceleration and the vector **j**. **(2)**

At time t = 0, the velocity of P is $(3\mathbf{i} - 4\mathbf{j})$ m s⁻¹

At t = T seconds, P is moving in the direction of the vector $(11\mathbf{i} - 13\mathbf{j})$.

(c) Find the value of T.

(5)

	Leave
Question 6 continued	blank
Question o continueu	

Leave blank

Question 6 continued		

Question 6 continued	blank
	Q6
(Total 12 marks)	

(1)

(1)

7.

Figure 4

A particle P of mass 4m lies on the surface of a fixed rough inclined plane.

The plane is inclined to the horizontal at an angle α where $\tan \alpha = \frac{3}{4}$

The particle *P* is attached to one end of a light inextensible string.

The string passes over a small smooth pulley that is fixed at the top of the plane. The other end of the string is attached to a particle Q of mass m which lies on a smooth horizontal plane.

The string lies along the horizontal plane and in the vertical plane that contains the pulley and a line of greatest slope of the inclined plane.

The system is released from rest with the string taut, as shown in Figure 4, and P moves down the plane.

The coefficient of friction between P and the plane is $\frac{1}{A}$

For the motion before *Q* reaches the pulley

(a) write down an equation of motion for Q,

(b) find, in terms of m and g, the tension in the string, **(7)**

(c) find the magnitude of the force exerted on the pulley by the string. **(4)**

(d) State where in your working you have used the information that the string is light.

	Leave
	blank
Question 7 continued	

Question 7 continued	Leave blank
	_
	_
	_
	_
	_
	-
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
	_
	-
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
	_
	1

	Leave
Question 7 continued	
	Q7
(Total 13 marks)	
(- " ")	

8. [In this question **i** and **j** are horizontal unit vectors directed due east and due north respectively and position vectors are given relative to a fixed origin.]

A ship A moves with constant velocity $(3\mathbf{i} - 10\mathbf{j})$ km h⁻¹

At time t hours, the position vector of A is \mathbf{r} km.

At time t = 0, A is at the point with position vector (13i + 5j)km.

(a) Find \mathbf{r} in terms of t.

(2)

Another ship B moves with constant velocity (15i + 14j)km h⁻¹

At time t = 0, B is at the point with position vector $(3\mathbf{i} - 5\mathbf{j})$ km.

(b) Show that, at time *t* hours,

$$\overrightarrow{AB} = \left[(12t - 10)\mathbf{i} + (24t - 10)\mathbf{j} \right] \text{km}$$

(4)

Given that the two ships do not change course,

(c) find the shortest distance between the two ships,

(6)

(d) find the bearing of ship B from ship A when the ships are closest.

(2)

	Leave
Question 8 continued	blank
Question o continueu	

TOTAL FOR PAPER: 75 MARKS

END

Question 8 continued