- Producto escalar (interior) y norma (longitud). Ortogonalidad.
- II. Conjuntos ortogonales.
- III. Proyecciones ortogonales.
- IV. El proceso de Gram-Schmidt.

I. PRODUCTO ESCALAR Y NORMA.

1. **Definición (Producto escalar usual en** \mathbb{R}^n).- "Sean $x, y \in \mathbb{R}^n$, escritos en forma matricial:

$$x = [x_1 \ x_2 \cdots x_n]^T$$
, $y = [y_1 \ y_2 \cdots y_n]^T$

Se define su producto escalar, y se escribe x y o bien $\langle x, y \rangle$, al escalar:

$$x \cdot y = x^T y = \sum_{i=1}^n x_i y_i$$

2. **Definición (Producto escalar usual en** \mathbb{C}^n).- "Sean $x, y \in \mathbb{C}^n$, escritos en forma matricial:

$$x = [x_1 \ x_2 \cdots x_n]^T$$
, $y = [y_1 \ y_2 \cdots y_n]^T$

Se define su producto escalar, y se escribe $x^{\cdot}y$ o bien $\langle x, y \rangle$, al escalar:

$$x \cdot y = x^H y = \sum_{i=1}^n \overline{x_i} y_i$$
"

3. Propiedades del producto escalar.

En
$$\mathbb{R}^n$$
: $\forall x, y, z \in \mathbb{R}^n$, $\forall \alpha \in \mathbb{R}$

1.
$$x \cdot y = y \cdot x$$

2.
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

3.
$$x \cdot (\alpha y) = \alpha (x \cdot y)$$

4.
$$(\alpha x) \cdot y = \alpha (x \cdot y)$$

5.
$$x \cdot x \ge 0$$
, además: $x \cdot x = 0 \Leftrightarrow x = 0$

En
$$\mathbb{C}^n$$
: $\forall x, y, z \in \mathbb{C}^n$, $\forall \alpha \in \mathbb{C}$

1.
$$x \cdot y = y \cdot x$$

2.
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

3.
$$x \cdot (\alpha y) = \alpha (x \cdot y)$$

4.
$$(\alpha x) \cdot y = \overline{\alpha} (x \cdot y)$$

5.
$$x \cdot x \ge 0$$
, además: $x \cdot x = 0 \Leftrightarrow x = 0$

4. **Definición (Norma en** \mathbb{R}^n).- "Sea $x \in \mathbb{R}^n$, escrito en forma matricial:

$$x = \left[x_1 \ x_2 \cdots x_n \right]^T$$

Se define norma de x, y se escribe ||x||, al escalar:

$$||x|| = +\sqrt{x^T x} = +\sqrt{\sum_{i=1}^n |x_i|^2}$$
,

5. **Definición (Norma en** \mathbb{C}^n).- "Sea $x \in \mathbb{C}^n$, escrito en forma matricial:

$$x = \left[x_1 \ x_2 \cdots x_n \right]^T$$

Se define norma de x, y se escribe ||x||, al escalar:

$$||x|| = +\sqrt{x^H x} = +\sqrt{\sum_{i=1}^n |x_i|^2}$$
,,

6. Propiedades de la norma.

En K^n : $\forall x, y \in K^n$, $\forall \alpha \in K$

1.
$$||x|| \ge 0$$
, $||x|| = 0 \Leftrightarrow x = 0$

2.
$$\|\alpha x\| = \|\alpha\| \|x\|$$

3.
$$|x \cdot y| \le ||x|| ||y||$$

4.
$$||x + y|| \le ||x|| + ||y||$$

- 7. **Definición** (Vectores unitarios).- "Si $x \in K^n$, se dice que x es unitario, si verifica ||x|| = 1".
- 8. **Definición** (Distancia entre vectores).- "Si $x, y \in K^n$, se define distancia entre x e y, al escalar d(x, y) = ||x y||".

- 9. **Definición** (Vectores ortogonales).- "Si $x, y \in K^n$, se dice que x e y son ortogonales, si verifican $x \cdot y = 0$ ".
- 10. **Teorema de Pitágoras**.- "Dos vectores $x, y \in K^n$, son ortogonales si y sólo si $||x + y||^2 = ||x||^2 + ||y||^2$ ".
- 11. **Definición** (Complemento ortogonal).- "Sea V un subespacio vectorial de K^n , se define complemento ortogonal de V, se escribe V^{\perp} , al conjunto de vectores $V^{\perp} = \{ x \in K^n : x \cdot y = 0, \forall y \in V \}$ ".
- 12. **Teorema**.- "El complemento ortogonal de un s.e.v. es un subespacio vectorial".
- 13. **Teorema**.- "Sea A una matriz mxn. Entonces el complemento ortogonal del espacio de filas de A es el espacio nulo de A, y el complemento ortogonal del espacio de la columnas es el espacio nulo de A^T ; $(FilA)^{\perp} = NulA$, $(ColA)^{\perp} = NulA^{T}$ ".

II. CONJUNTOS ORTOGONALES.

1. **Definición**.- "Sea $S = \{v_1, v_2, ..., v_p\} \subset K^n$, se dice que S es un conjunto ortogonal si cada par de vectores distintos en el conjunto es ortogonal, es

decir, $v_i \cdot v_j = 0 \quad \forall \ i \neq j$. Si además S es una base, entonces se denominará base ortogonal".

- 2. **Definición**.- "Sea $R = \{u_1, u_2, ..., u_p\} \subset K^n$, se dice que R es un conjunto ortonornal si es ortogonal y todos sus vectores unitarios. Si además R es una base, entonces se denominará base ortonornal"
- 3. **Definición.** "Sea $A = [a_1 \ a_2 \dots a_n] \in K^{m \times n}$ una matriz, se dice que A tiene las columnas ortogonales (u ortonormales) si el conjunto de vectores columna de K^m forman un conjunto ortogonal (ortonormal)".
- 4. **Definición.-** "Sea Q una matriz cuadrada de orden n, se dice que Q es **ortogonal** (si está construida sobre \mathbb{R}) o **unitaria** (si está construida sobre \mathbb{C}) si sus vectores columna forman un conjunto ortonornal, es decir, se verifica $Q^TQ = I_n$ sobre \mathbb{R} , o bien $Q^HQ = I_n$ sobre \mathbb{C} ".
- 5. **Teorema**.- "Si Q es una matriz con columnas ortonormales, y x, $y \in K^n$ dos vectores. Entonces se verifican las siguientes propiedades:
 - a) ||Qx|| = ||x||.
 - b) (Qx).(Qy) = x.y
 - c) $(Qx).(Qy) = 0 \Leftrightarrow x.y = 0$ ".

- 6. **Teorema**.- "Si $S = \{v_1, v_2, ..., v_p\} \subset K^n$ es un conjunto ortogonal de vectores no nulos, entonces S es un sistema libre, y por lo tanto es una base del subespacio generado por S".
- 7. **Teorema.** "Sea $B = \{u_1, u_2, ..., u_p\} \subset K^n$ una base ortogonal de un subespacio W. Entonces todo vector $x \in W$ puede escribirse:

$$x = \left(\frac{x.u_1}{u_1.u_1}\right)u_1 + \left(\frac{x.u_2}{u_2.u_2}\right)u_2 + \dots + \left(\frac{x.u_p}{u_p.u_p}\right)u_p = \sum_{i=1}^p \left(\frac{x.u_i}{u_i.u_i}\right)u_i$$

En el caso en que la base sea ortonormal esa expresión queda reducida a:

$$x = \sum_{i=1}^{p} (x.u_i) u_i$$
".

III. PROYECCIONES ORTOGONALES.

1. **Definición**.- "Sea W un subespacio de K^n , $B = \{u_1, u_2, ..., u_p\} \subset K^n$ una base ortogonal de W y $x \in K^n$ un vector cualquiera, entonces, se define:

$$x_{W} = proy_{W}(x) = \sum_{i=1}^{p} \left(\frac{u_{i}.x}{u_{i}.u_{i}}\right) u_{i} = \sum_{i=1}^{p} proy_{u_{i}}(x)$$

como la proyección ortogonal del vector x sobre el subespacio W, y cada sumando de la expresión es la proyección ortogonal del vector x sobre los subespacios generados por cada vector de la base.

Si la base es ortonormal, esa expresión queda reducida a:

$$x_W = proy_W(x) = \sum_{i=1}^{p} (u_i.x) u_i = \sum_{i=1}^{p} proy_{u_i}(x)$$
".

2. Teorema de la descomposición ortogonal.-

"Sea W un subespacio de K^n , $B = \{u_1, u_2, ..., u_p\} \subset K^n$ una base ortogonal de W y $x \in K^n$ un vector cualquiera, entonces, se puede escribir de forma única:

$$x = x_w + y$$
, siendo

$$x_{W} = proy_{W}(x) = \sum_{i=1}^{p} \left(\frac{u_{i}.x}{u_{i}.u_{i}}\right) u_{i} = \sum_{i=1}^{p} proy_{u_{i}}(x)$$

e $y = x - x_W$ es un vector del complemento ortogonal de W"

- 3. Teorema (propiedades de las proyecciones ortogonales).-
 - (1) $proy_W(x) = x \Leftrightarrow x \in W$
 - (2) Linealidad: $proy_w(\alpha x + \beta y) = \alpha proy_w(x) + \beta proy_w(y)$
 - (3) $proy_{W^{\perp}}(x) = x proy_{W}(x)$
- 4. Teorema (propiedades del complemento ortogonal).-

(1)
$$\dim W + \dim W^{\perp} = n$$

$$(2) \quad \left(W^{\perp}\right)^{\perp} = W$$

(3)
$$B = B_W \cup B_{W^{\perp}}$$
 es base de K^n

5. Teorema (Matriz canónica de la proyección ortogonal).-

"Sea W un subespacio de K^n , $B = \{u_1, u_2, ..., u_p\} \subset K^n$ una base ortonormal de $Wy \ x \in K^n$ un vector cualquiera, entonces: $proy_W(x) = QQ^Tx$, siendo

$$proy_{W}(x) = QQ^{T}x$$
, siendo
$$Q = \left[u_{1} u_{2} ... u_{p}\right] \in K^{n \times p} \text{ que verifica } Q^{T}Q = I_{p}$$
"

6. Teorema de la aproximación óptima.-

"Sea W un subespacio de K^n , $y \ x \in K^n$ un vector cualquiera, entonces:

$$||x - proy_w(x)|| \le ||x - y|| \quad \forall y \in W.$$

La desigualdad es estricta si $y \neq proy_W(x)$ "

III. EL PROCESO DE GRAM-SCHMIDT.

1. Teorema de Gram-Schmidt.-

"Sea $B = \{v_1, v_2, \dots, v_p\}$ base de W subespacio vectorial de K^n , definiendo la serie de vectores:

$$w_{1} = v_{1}$$

$$w_{2} = v_{2} - \frac{w_{1} \cdot v_{2}}{w_{1} \cdot w_{1}} w_{1}$$

$$w_{3} = v_{3} - \frac{w_{1} \cdot v_{3}}{w_{1} \cdot w_{1}} w_{1} - \frac{w_{2} \cdot v_{3}}{w_{2} \cdot w_{2}} w_{2}$$

$$\vdots$$

$$w_{p} = v_{p} - \sum_{i=1}^{p-1} \frac{w_{i} v_{p}}{w_{i} \cdot w_{i}} w_{i}$$

$$w_{i} = v_{j} - \sum_{i=1}^{j-1} \frac{w_{i} \cdot v_{j}}{w_{i} \cdot w_{i}} w_{i}$$

$$\vdots$$

- a) El sistema $\{w_1, w_2, \dots, w_p\}$ es una base ortogonal de W.
- b) $Gen\{w_1, w_2, \dots, w_j\} = Gen\{v_1, v_2, \dots, v_j\} \ para \ j = 1, \dots, p$ "

Demostración.-

a) La construcción de los vectores asegura que w_j es ortogonal a $Gen\{w_1, w_2, \dots, w_{j-1}\}$, razonando por inducción se llega a que $\{w_1, w_2, \dots, w_p\}$ es base ortogonal de W.

Veamos como se realiza la inducción:

El hecho de que $\{v_1, v_2, \dots, v_p\}$ sea base, asegura independencia lineal y no nulos.

Para j=1 y 2, $w_1 = v_1$ y $w_2 = v_2 - proy_{w_1}(v_2)$ y v_2 no pertenece a Gen $\{w_1\}$, entonces w_2 pertenece al complemento ortogonal de Gen $\{w_1\}$, luego es ortogonal a w_1 .

Supongámoslo cierto para $\mathbf{j} = \mathbf{k}$, entonces para $\mathbf{j} = \mathbf{k+1}$, $w_{k+1} = v_{k+1} - proy_{W_k}(v_{k+1})$ y $v_{k+1} \notin Gen\{w_1, w_2, ..., w_k\}$, entonces w_{k+1} pertenece al complemento ortogonal de $Gen\{w_1, w_2, ..., w_k\}$, luego es ortogonal a todo $w_1, w_2, ..., w_k$.

q. e. d.

b) INDUCCIÓN:

Claramente cierto para j = 1 ya que $w_1 = v_1$. Supongamos que es cierto para j = k, entonces $Gen\{w_1, w_2, \dots, w_k\} = Gen\{v_1, v_2, \dots, v_k\} = W_k$.

Como $w_{k+1} = v_{k+1} - proy_{W_k}(v_{k+1})$, y además $\begin{cases} v_{k+1} \notin W_k \\ v_{k+1} \neq 0 \end{cases}$ ya

que es linealmente independiente a los anteriores, por lo tanto, por el teorema de la base se puede sustituir v_{k+1} por w_{k+1} .

ORTOGONALIDAD