

TOWER 0.18 micron, 1.8 Volt Super Compact Core I/O Pad Library TSL18CIO150

Version 1.0

October 2003

Copyright Notice and Proprietary Information

Copyright © 2003 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced. transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

'This document is duplicated with the permission of Sy	nopsys, Inc., for the exclusive use of	
	and its employees. This is copy number	."

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America, Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable requlations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Calaveras Algorithm, CoCentric, COSSAP, CSim, DelayMill, Design Compiler, DesignPower, DesignWare, Device Model Builder, Enterprise, EPIC, Formality, HSPICE, Hypermodel, I, InSpecs, in-Sync, LEDA, MAST, Meta, Meta-Software, ModelAccess, ModelExpress, ModelTools, PathBlazer, PathMill, Physical Compiler, PowerArc, PowerMill, PrimeTime, RailMill, Raphael, RapidScript, Saber, SmartLogic, SNUG, SolvNet, Stream Driven Simulator, Superlog, System Compiler, TestBench Manager, Testify, TetraMAX, TimeMill, TMA, VERA, and VeriasHDL are registered trademarks of Synopsys, Inc.

Trademarks (тм)

Active Parasitics, AFGen, Apollo, Apollo, II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-Xtalk, Aurora, AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, Cosmos SE, CosmosLE, Cosmos-Scope, Cyclelink, Davinci, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, DesignerHDL, DesignTime, DFM-Workbench, DFT Compiler SoCBIST, Direct RTL, Direct Silicon Access, DW8051, DWPCI, Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ, Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker, FormalVera, Foundry-Model, FPGA Compiler II, FPGA Express, Frame Compiler, Frameway, Gatran, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II, Hierarchical Optimization Technology, High Performance Option, HotPlace, HSPICE-Link, Integrator, Interactive Waveform Viewer, iQBus, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty, Libra-Passport, Library Compiler, Libra-Visa, LRC, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, NanoSim, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, OpenVera, Optimum Silicon, Orion ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA, Progen, Prospector, Proteus OPC, Protocol Compiler, PSMGen, Raphael-NES, RoadRunner, RTL Analyzer, Saber Co-Simulation, Saber for IC Design, SaberDesigner, SaberGuide, SaberRT, SaberScope, SaberSketch, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design, Star, Star-DC, Star-Hspice, Star-HspiceLink, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-Sim XT, Star-Time, Star-XP, SWIFT, Taurus, Taurus-Device, Taurus-Layout, Taurus-Lithography, Taurus-OPC, Taurus-Process, Taurus-Topography, Taurus-Visual, Taurus-Workbench, Test Compiler, TestGen, TetraMAX TenX, The Power in Semiconductors, TheHDL, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice, TSUPREM-4, TymeWare, VCS, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (sm)

DesignSphere, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license. All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A. Document Order Number:

Revision History

Document Version Number	Library Name	Date	Notes
1.0	TSL18CIO150	October 2003	Production Release

Table of Contents TOWER

Table of Contents

Preface	, V
About This Guide Overview of Contents. Associated Guides and Documentation Conventions	vi vi
Introduction	-1
Introduction to the TSL18CIO150 Pad Library	
1.0 General Information	-2
1.1 Library Performances	-2
1.2 Voltage Levels	-2
1.3 IO pitch	-2
1.4 Power and Ground Pads	-2
1.5 New Features	-2
2.0 I/O Cell Library - Product Specification	-5
2.1 1.8V I/O Operation	-5
2.2 I/O Performance Requirements	-6
3.0 Library Design Review	-7
3.1 Specification Review.1DC parameters:.1AC parameters:.1-	-7
3.2 Timing Measurement Conditions	20
3.3 Characterization Informations	20
3.4 Slope and Load variations - Look Up table	21
3.5 Propagation Delay Time1-2	21
3.6 Bond-pad metal layer implementation1-2	22
3.7 Oscillator pad Characteristics	22
4.0 Cells	23
4.1 Reading the Datasheet	

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Table of Contents

Cell Information Table
Pin Description Table
Waveforms
Propagation Delays for Sample Loads and Input Transitions 1-26
4.2 Decoding the Cell Name
I/O Naming Conventions:
Power Pads Naming Conventions:
5.0 System Design Considerations
5.1 Power Connection Types 1-30
5.2 Power Pad Combinations for the TSL18CIO150 Library 1-30
5.3 Frequently Asked Questions (FAQ)1-31
5.4 Cell Matrices
5.5 I/O Filler and Corner Pads List
5.6 Analog section I/O Filler and Corner Pads List
Characteristics
1.8V CMOS 3-State Output Pads 2-3 PC3T01 through PC3T05 2-3
1.8V CMOS 3-State Output Pads with Pull-down Resistor
1.8V CMOS 3-State Output Pads with Pull-up Resistor
1.8V CMOS 3-State I/O Pads 2-12 PC3B01 through PC3B05 2-12
1.8V CMOS 3-State I/O Pads with Pull-down Resistor
1.8V CMOS 3-State I/O Pads with Controllable Pull-down Resistor . 2-20
PC3B03ED2-20
1.8V CMOS 3-State I/O Pads with Pull-up Resistor
1.8V CMOS 3-State I/O Pads with Controllable Pull-up Resistor2-27
PC3B21EU, PC3B25EU
1.8V CMOS Output Pads

Copyright 2003, Synopsys, Inc., All rights reserved.

Table of Contents	TOWER
PC3O01 through PC3O05	. 2-30
1.8V CMOS Output Pads with High Voltage Input Pin	. 2-32
PC3O01HV	. 2-32
1.8V TTL 3-State Output Pads	
1.8V TTL 3-State Output Pads with Pull-down Resistor	
1.8V TTL 3-State Output Pads with Pull-up Resistor	
1.8V TTL 3-State I/O Pads	
1.8V TTL 3-State I/O Pads with Pull-down Resistor	
1.8V TTL 3-State I/O Pads with Pull-up Resistor	
1.8V TTL Output Pads	
1.8V Crystal Oscillator Pads	. 2-54 . 2-54
1.8V CMOS Non-Inverting Clock Buffer Pad	
1.8V Analog IO Pad	
1.8V CMOS Input Only Pad Supplied by Analog Power	
1.8V CMOS Input Only Pads	
1.8V CMOS Input Only Pads with Pull-down Resistor	
1.8V CMOS Input Only Pads with Pull-up Resistor	
1.8V CMOS Input Only Pads with Controllable Pull-up Resistor	. 2-72
PC3D21EU	. 2-72
VDD Pads	
Copyright 2003, Synopsys, Inc., All rights reserved. Synopsys Confidential /Proprietary Information	

TOWER	Table of Contents
AVDD Pads	
VSS PadsPV0I, PV0C, PV0A and PV0F	
AVSS Pads	
Derating Information	3-1
Timing Derating	
Pull-up and pull-down resistors	4-1
Index	

Copyright 2003, Synopsys, Inc., All rights reserved.

Preface TOWER

Preface

This guide is intended for use with Production Release of IO Library (TSL18CIO150), for the Tower 0.18 micron CMOS process (for DR2 0018SL) technology and characterized with Tower 0.18 micron Spice Models revision "Tower's spec DRS2 0018B Rev 2.4", "Tower's spec DRS2 0018BA Rev 3.1" and "Tower's spec DRS2 0018B5 Rev 3.1".

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Preface

About This Guide

Overview of Contents

This manual contains the following chapters:

Chapter 1, Introduction

Gives a general description of the functions and characteristics of the Super Compact Core I/O Pad Library.

Chapter 2, Characteristics

Includes the detailed characteristics tables of all the Super Compact Core I/O Pad Library pads.

Chapter 3, Derating Information

Describes the derating factors you should use to estimate delays under different operating conditions.

Chapter 4, Pull-up and pull-down resistors

Describes the pull-up and pull-down resistors applied in the I/O Pads.

Associated Guides and Documentation

Other publications you can consult for related information are:

TSL18CIO150, 0.18 micron, 1.8 volt, Super Compact Core I/O Pad Library (this datasheet)

TSL18FS120, 0.18 micron, 1.8 volt, Fast Silicon SC Library

Preface TOWER

Conventions

The following syntax conventions are used in this guide:

bold text	Is used for emphasis.
italic text	Indicates new terms and references to other sources of information.
italic text in blue	Indicates cross references that are also hypertext links.
courier text	Indicates commands that you enter directly, system responses, and file examples.
bold courier text	Indicates user input in examples of terminal sessions.
Helvetica italic text	Is used in syntax descriptions to indicate arguments where you should substitute a real value

Copyright 2003, Synopsys, Inc., All rights reserved.

Chapter 1 Introduction

Introduction to the TSL18CIO150 Pad Library

This manual is addressed to the design engineer who is doing a preliminary feasibility evaluation and wishes to make comparisons among the design technologies available in the pad libraries. Additionally, you can use this library manual while designing a chip to see which cells are available and to check the power consumption, critical timing values, propagation delay equations, and functions of a cell.

Contents of This Manual

This introduction contains the following sections:

- •The *General Information* section of this manual gives basic information about library performances, voltage levels, IO pitch, using power and ground pads.
- •The *I/O Cell Library Product Specification* section contain the recommended operating conditions and DC characteristics.
- •The *Library Design Review* section contain specification review, i.e. it describes the resulting DC and AC parameters under different conditions.
- •The *Cells* section describes the contents of the datasheets and how to interpret them, and explains how to decode the cells names.
- •The *System Design Considerations* section looks at the types of power connections and addresses commonly asked user design questions.

Following this introduction are the data sheets for the TSL18CIO150 pads.

The information contained in this document has been carefully checked and is believed to be reliable. However, Synopsys, Inc. makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon it. Synopsys, Inc. does not guarantee that the use of any information contained herein will not infringe upon the patent, trademark, copyright, mask work right or other rights of third parties, and no patent or other license is implied hereby.

Copyright 2003, Synopsys, Inc., All rights reserved.

1.0 General Information

1.1 Library Performances

The TSL18CIO150 library has been designed to be used at a frequency up to 130MHz, on a maximum external load capacitance of 40pF and for a pin package inductance up to 20nH.

1.2 Voltage Levels

The TSL18CIO150 library is made up exclusively of low voltage chip interface circuits powered by a voltage in the range of 1.65V to 1.95V. However, all cells are not 3.3 Volt tolerant, i.e. the corresponding pins can be connected to the buses which can only swing between 0V and 1.95V. The library is designed to be used with the TSL18OS120 1.8-volt Optimum Silicon SC and the TSL18FS120 1.8-volt Fast Silicon SC libraries.

1.3 IO pitch

These library uses a 3.15 mils pitch. The size of the IO is $65\mu m$ width and $162\mu m$ height without bonding pad. With bonding pad the height is $250\mu m$. Using the bonding cell provided with this library the I/Os can be abutted. Customer bonding cell can be used for the I/O. The usable filler cells are provided in this library.

1.4 Power and Ground Pads

There are two kinds of power pairs for the TSL18CIO150 library. These are "I/O" and "Core" power pairs. I/O power is used by the I/O to switch its external output from one state to the other. And This switching generates noise in the I/O power buses on the chip. Core power is used by the core. Refer to the "SSO Guidelines" and "I/O Usage Application note" for more information on the types of power pairs and the numbers of each required.

1.5 New Features

This library introduces new power pads named PVDC/PV0C that supply only the core of the chip with separated VDD and VSS. These power pads can be used to supply a chip with multiple power voltage (see "Multiple Power Flow" application note). Furthermore to be able to have multipower supplies for the IO power ring, two pads are also provided to cut properly the ring. These pads are named PVCF and PVCE. The first one PVCF cuts all power rings. The second one PVCE cuts all power rings, except VDD and VSS rings.

Copyright 2003, Synopsys, Inc., All rights reserved.

These pads can be used in the same way as the corner pad. They do not have icons. They do not appear in the netlist. Their placement with Apollo can be defined with a tdf file.

The following schematic gives an example of the PVCF and PVCE cells usage:

And because cells supplied by analog power are also provided in TSL18CIO150 library, two cut cells, apfeedendringl and apfeedendringr, are used to cut proper ring and seperate the cells supplied by analog power and other normal function cells. The first one apfeedendringl must be put at the left of the cells supplied by analog power. The second one apfeedendringr must be put at the right of the cells supplied by analog power. Both of these two cells cut all power rings except VSS ring.

Non-abutting the cut-cell at either side might introduce unwanted noise coupling between the normal I/O cells and cells supplied by analog power.

These two pads can be used in the same way as the corner pad. They do not have icons. They do not appear in the netlist. Their placement with Apollo can be defined with a tdf file.

The following schematic gives an example of the apfeedendringl and apfeedendringr cells usage :

Copyright 2003, Synopsys, Inc., All rights reserved.

Copyright 2003, Synopsys, Inc., All rights reserved.

2.0 I/O Cell Library - Product Specification

2.1 1.8V I/O Operation

TABLE 2.1. Recommended Operating Conditions

Parameter	Range
Storage Temperature	-40°C to +125°C
Core Supply Voltage (VDD)	-0.5V to +1.98V
I/O Supply Voltage (VDDO)	-0.5V to +1.95V

The following table is the DC characteristics for 1.8V operation:

TABLE 2.2. DC characteristics

Symbol	Parameter	Min	Тур	Max	Units	Conditions
VDDO	Ring Power Supply	1.65	1.8	1.95	Volts	1.8V power supply
VIL	Input Low Voltage	-0.3		0.35*VDDO	Volts	
VIH	Input High Voltage	0.65*VDDO		VDDO+0.3V	Volts	
VOL	Output Low Voltage			0.45	Volts	VDDO = min, IOL =-2mA
VOH	Output High Voltage	VDDO-0.45			Volts	VDDO = min, IOH =+2mA
VT+	Schmitt Input High Voltage	0.65*VDDO		VDDO+0.3V	Volts	
VT-	Schmitt Input Low Voltage	-0.3		0.35*VDDO	Volts	
VTH	Input Hysteresis Voltage		0.25		Volts	
IILPU	Input Low Current For Pull-up Pins			+200	μΑ	VIL=VSS
IIHPU	Input High Current For Pull-up Pins	-1	0	+1	μΑ	VIH=VDDO
IILPD	Input Low Current For Pull-down Pins	-1	0	+1	μΑ	VIL=VSS
IIHPD	Input High Current For Pull-down Pins	-200			μΑ	VIH=VDDO
IIL	Input Low Current	-1	0	+1	μΑ	VIL=VSS
IIH	Input High Current	-1	0	+1	μΑ	VIH=VDDO
CIN	Input Pin Capacitance		5		pF	
COUT	Output Pin Capacitance		5		pF	
CIO	Bidirectional Pin Capacitances		5		pF	

Copyright 2003, Synopsys, Inc., All rights reserved.

2.2 I/O Performance Requirements

Highest drive variant of each I/O is able to drive 40pF at 130MHz.

Copyright 2003, Synopsys, Inc., All rights reserved.

3.0 Library Design Review

3.1 Specification Review

3.1.1 DC parameters:

3.1.1.1 Voh Parameter:

Voh parameter is simulated using Hspice by tieding up the input I of the I/O cell and connecting a current source between VSS and PAD, sourcing the specified current from the PAD pin.

Results under different conditions are reported in the following table:

TABLE 3.1. Voh for 1.8V Process Option

	Specification		Worst Case Typical Case		Best Case	
Cell Name	Min	Тур	SS/1.65V/125degC	TT/1.8V/25degC	FF/1.95V/-40degC	Conditions
pc3b01	VDDO-0.45		1.2613	1.5929	1.8156	@Ioh = -2mA
pc3b02	VDDO-0.45		1.2613	1.5929	1.8156	@Ioh = -4mA
pc3b03	VDDO-0.45		1.2613	1.5929	1.8156	@Ioh = -6mA
pc3b04	VDDO-0.45		1.2613	1.5929	1.8156	@Ioh = -8mA
pc3b05	VDDO-0.45		1.2613	1.5929	1.8156	@Ioh = -10mA

3.1.1.2 Vol Parameter:

Vol parameter is simulated using Hspice by tieding down the input I of the I/O cell and connecting a current source between VDDO and PAD, sinking the specified current into the PAD pin.

Results under different conditions are reported in the following table:

TABLE 3.2. Vol for 1.8V Process Option

	Specification		Worst Case Typical Case		Best Case	
Cell Name	Тур	Max	SS/1.65V/125degC	TT/1.8V/25degC	FF/1.95V/-40degC	Conditions
pc3b01		0.45	0.2566	0.1226	0.0773	@Iol = 2mA
pc3b02		0.45	0.2566	0.1226	0.0773	@Iol = 4mA
pc3b03		0.45	0.2566	0.1226	0.0773	@Iol = 6mA
pc3b04		0.45	0.2566	0.1226	0.0773	@Iol = 8mA
pc3b05		0.45	0.2566	0.1226	0.0773	@Iol = 10mA

3.1.1.3 Vil Parameter:

Vil parameter is characterized with Hspice by doing a quasi-static transient simulation. The input pin PAD is varying very slowly from VSS to VDDO and back to VSS in 2μ S. Vil is obtained by measuring

Copyright 2003, Synopsys, Inc., All rights reserved.

the PAD voltage value which results in a CIN output level of 0.1xVDD. This is done for both rising and falling edge. As the circuit is the same for all bi-directional pads, what ever is the output drive capability, results are provided only for PC3B01 I/O.

Results under different conditions are reported in the following table which also includes the PAD voltage when CIN voltage is equal to VDD/2 (trip-point):

TABLE 3.3. Vil for 1.8V Process Option

	Spe	cification	Input	Input Rising		Falling
Conditions (process/vdd/vddo/temp)	Min	Max	@CIN=0.1xVDD	@ CIN=0.5xVDD	@CIN=0.1xVDD	@CIN=0.5xVDD
TT/1.8V/1.8V/25degC	-0.3	0.35*VDDO	0.8472	0.8523	0.8081	0.8116
TT/1.62V/1.65V/25degC	-0.3	0.35*VDDO	0.7966	0.8019	0.7462	0.7498
TT/1.98V/1.95V/25degC	-0.3	0.35*VDDO	0.8977	0.9031	0.8640	0.8675
SS/1.62V/1.65V/125degC	-0.3	0.35*VDDO	0.8307	0.8373	0.7510	0.7558
SS/1.8V/1.8V/125degC	-0.3	0.35*VDDO	0.8824	0.8887	0.8219	0.8266
SS/1.98V/1.95V/125degC	-0.3	0.35*VDDO	0.9362	0.9424	0.8848	0.8893
FF/1.98V/1.95V/-40degC	-0.3	0.35*VDDO	0.8596	0.8647	0.8370	0.8399
FF/1.8V/1.8V/-40degC	-0.3	0.35*VDDO	0.8117	0.8161	0.7864	0.7893
FF/1.62V/1.65V/-40degC	-0.3	0.35*VDDO	0.7636	0.7679	0.7336	0.7364
SF/1.62V/1.65V/25degC	-0.3	0.35*VDDO	0.8583	0.8637	0.8058	0.8094
SF/1.8V/1.8V/25degC	-0.3	0.35*VDDO	0.9108	.9157	0.8696	0.8730
SF/1.98V/1.95V/25degC	-0.3	0.35*VDDO	0.9631	0.9682	0.9276	0.9310
FS/1.98V/1.95V/25deg	-0.3	0.35*VDDO	0.8327	0.8379	0.7999	0.8034
FS/1.8V/1.8V/25degC	-0.3	0.35*VDDO	0.7838	0.7890	0.7459	0.7496
FS/1.62V/1.65V/25degC	-0.3	0.35*VDDO	0.7345	0.7398	0.6864	0.6899

Minimum values are obtained for FS/1.62V/1.65V/25degC.

Maximum values are obtained for SF/1.98V/1.95V/25degC.

3.1.1.4 Vih Parameter:

Vih parameter is characterized with Hspice by doing a quasi-static transient simulation. The input pin PAD is varying very slowly from VSS to VDDO and back to VSS in $2\mu S$. Vih is obtained by measuring the PAD voltage value which results in a CIN output level of 0.9xVDD. This is done for both rising and falling edge. As the circuit is the same for all bi-directional pads, what ever is the output drive capability, results are provided only for PC3B01 I/O.

Copyright 2003, Synopsys, Inc., All rights reserved.

Results under different conditions are reported in the following table which also includes the PAD voltage when CIN voltage is equal to VDD/2 (trip-point):

TABLE 3.4. Vih for 1.8V Process Option

	Specification		Input	Rising	Input I	Falling
Conditions (process/vdd/vddo/temp)	Min	Max	@CIN=0.9xVDD	@ CIN=0.5xVDD	@ CIN=0.9xVDD	@CIN=0.5xVDD
TT/1.8V/1.8V/25degC	0.65*VDDO	VDDO+0.3	0.8559	0.8523	0.8167	0.8116
TT/1.62V/1.65V/25degC	0.65*VDDO	VDDO+0.3	0.8056	0.8019	0.7551	0.7498
TT/1.98V/1.95V/25degC	0.65*VDDO	VDDO+0.3	0.9065	0.9031	0.8732	0.8675
SS/1.62V/1.65V/125degC	0.65*VDDO	VDDO+0.3	0.8418	0.8373	0.7629	0.7558
SS/1.8V/1.8V/125degC	0.65*VDDO	VDDO+0.3	0.8934	0.8887	0.8334	0.8266
SS/1.98V/1.95V/125degC	0.65*VDDO	VDDO+0.3	0.9469	0.9424	0.8959	0.8893
FF/1.98V/1.95V/-40degC	0.65*VDDO	VDDO+0.3	0.8681	0.8647	0.8450	0.8399
FF/1.8V/1.8V/-40degC	0.65*VDDO	VDDO+0.3	0.8194	0.8161	0.7938	0.7893
FF/1.62V/1.65V/-40degC	0.65*VDDO	VDDO+0.3	0.7712	0.7679	0.7409	0.7364
SF/1.62V/1.65V/25degC	0.65*VDDO	VDDO+0.3	0.8674	0.8637	0.8147	0.8094
SF/1.8V/1.8V/25degC	0.65*VDDO	VDDO+0.3	0.9194	0.9157	0.8781	0.8730
SF/1.98V/1.95V/25degC	0.65*VDDO	VDDO+0.3	0.9719	0.9682	0.9361	0.9310
FS/1.98V/1.95V/25degC	0.65*VDDO	VDDO+0.3	0.8417	0.8379	0.8091	0.8034
FS/1.8V/1.8V/25degC	0.65*VDDO	VDDO+0.3	0.7925	0.7890	0.7553	0.7496
FS/1.62V/1.65V/25degC	0.65*VDDO	VDDO+0.3	0.7438	0.7398	0.6957	0.6899

Minimum values are obtained for FS/1.62V/1.65V/25degC.

Maximum values are obtained for SF/1.98V/1.95V/25degC.

3.1.1.5 lil Parameter:

Iil parameter is characterized with Hspice by doing a DC simulation. The input pin PAD is set at VSS and the current through this voltage source is measured. Characterizations are done for the same operating conditions as Vil, however, only the minimum value and the maximum value over the various operating conditions are reported in the table below:

Copyright 2003, Synopsys, Inc., All rights reserved.

TABLE 3.5. Iil for 1.8V Process Option

	Speci	fication	DC Chara	cterization
Cell Name	Min	Max	Min	Max
pc3b01	-1e-06	+1e-06	4.987e-11	4.510e-08
pc3b01d	-1e-06	+1e-06	4.981e-11	4.509e-08
pc3b01u		+200e-06	9.899e-06	2.868e-05
pc3b02	-1e-06	+1e-06	4.987e-11	4.510e-08
pc3b03	-1e-06	+1e-06	4.987e-11	4.510e-08
pc3b04	-1e-06	+1e-06	4.987e-11	4.510e-08
pc3b05	-1e-06	+1e-06	4.987e-11	4.510e-08
pc3d21	-1e-06	+1e-06	4.987e-11	4.510e-08
pc3d21u		+200e-06	9.899e-06	2.868e-05
pc3d21d	-1e-06	+1e-06	4.981e-11	4.509e-08
pc3d31	-1e-06	+1e-06	4.987e-11	4.510e-08
pc3d31u		+200e-06	9.899e-06	2.868e-05
pc3d31d	-1e-06	+1e-06	4.981e-11	4.509e-08

3.1.1.6 lih Parameter:

Iih parameter is characterized with Hspice by doing a DC simulation. The input pin PAD is set at VDDO and the current through this voltage source is measured. Characterizations are done for the same operating conditions as Vih, however, only the minimum value and the maximum value over the various operating conditions are reported in the table below:

TABLE 3.6. lih for 1.8V Process Option

	Specif	ication	DC Charae	DC Characterization		
Cell Name	Min	Max	Min	Max		
pc3b01	-1e-06	+1e-06	-5.204e-11	-3.762e-08		
pc3b01d	-200e-06		-7.205e-06	-1.747e-05		
pc3b01u	-1e-06	+1e-06	-5.189e-11	-3.761e-08		

Copyright 2003, Synopsys, Inc., All rights reserved.

TABLE 3.6. lih for 1.8V Process Option

	Specif	ication	DC Chara	cterization
Cell Name	Min	Max	Min	Max
pc3b02	-1e-06	+1e-06	-5.204e-11	-3.762e-08
pc3b03	-1e-06	+1e-06	-5.204e-11	-3.762e-08
pc3b04	-1e-06	+1e-06	-5.204e-11	-3.762e-08
pc3b05	-1e-06	+1e-06	-5.204e-11	-3.762e-08
pc3d21	-1e-06	+1e-06	-5.204e-11	-3.762e-08
pc3d21u	-1e-06	+1e-06	-5.189e-11	-3.761e-08
pc3d21d	-200e-06		-7.205e-06	-1.747e-05
pc3d31	-1e-06	+1e-06	-5.204e-11	-3.762e-08
pc3d31u	-1e-06	+1e-06	-5.189e-11	-3.761e-08
pc3d31d	-200e-06		-7.205e-06	-1.747e-05

3.1.1.7 lol Parameter:

Iol parameter is characterized with Hspice by doing a DC simulation. The output pin PAD is forced to Vol (0.45V) via a voltage source and the current through this voltage source is measured. Due to the hierarchical building block strategy, this parameter is only dependent on the I/O output drive strength and is the same across output families (bidir, tristate, simple output).

Results under different conditions are reported in the following table:

TABLE 3.7. Iol for 1.8V Process Option

	Specification		Specification Worst Case		Best Case	
Cell Name	Min	Тур	SS/1.65V/125degC	TT/1.8V/25degC	FF/1.95V/-40degC	Conditions
pc3b01	2mA		2.970	5.782	9.254	@ Vol = 0.45V
pc3b02	4mA		5.940	11.56	18.51	@ Vol = 0.45V
pc3b03	6mA		8.910	17.34	27.76	@ Vol = 0.45V
pc3b04	8mA		11.88	23.13	37.02	@ Vol = 0.45V
pc3b05	10mA		14.85	28.91	46.27	@ Vol = 0.45V

Copyright 2003, Synopsys, Inc., All rights reserved.

3.1.1.8 loh Parameter:

Ioh parameter is characterized with Hspice by doing a DC simulation. The output pin PAD is forced to Voh (VDDO-0.45) via a voltage source and the current through this voltage source is measured. Due to the hierarchical building block strategy, this parameter is only dependent on the I/O output drive strength and is the same across output families (bidir, tristate, simple output).

Results under different conditions are reported in the following table:

TABLE 3.8. Ioh for 1.8V Process Option

	Specification		Worst Case	Typical Case	Best Case	
Cell Name	Min)	Тур	SS/1.65V/125degC	TT/1.8V/25degC	FF/1.95V/-40degC	Conditions
pc3b01	2mA		-2.188	-3.647	-5.560	@Voh = VDDO-0.45V
pc3b02	4mA		-4.376	-7.294	-11.12	@Voh = VDDO-0.45V
pc3b03	6mA		-6.565	-10.94	-16.68	@Voh = VDDO-0.45V
pc3b04	8mA		-8.754	-14.59	-22.24	@Voh = VDDO-0.45V
pc3b05	10mA		-10.94	-18.24	-27.80	@Voh = VDDO-0.45V

3.1.1.9 Schmitt Trigger DC Parameters:

VT- and VT+ parameters are characterized with Hspice by doing a quasi-static transient simulation, like the Vil and Vih parameters. VT- and VT+ are obtained by measuring the PAD voltage value which results in a CIN output level of 0.3xVDD, 0.5xVDD and 0.7xVDD. This is done for both rising and falling edge. VTH is obtained by calculating the hysteresis value. This value is calculated by using the following equations:

$$VTH_L = (VT+) - (VT-)$$
, for $CIN = 0.3xVDD$
 $VTH_H = (VT+) - (VT-)$, for $CIN = 0.7xVDD$

Copyright 2003, Synopsys, Inc., All rights reserved.

Results under different conditions are reported in the following tables (3.9 - 3.14):

TABLE 3.9. PC3D21 VT- for 1.8V Process Option

	Specification		Input Falling		
Conditions (process/vdd/vddo/temp)	Min	Max	@CIN=0.3xVDD	@ CIN=0.5xVDD	@CIN=0.7xVDD
TT/1.8V/1.8V/25degC	0.63	0.775	0.5886	0.5888	0.5891
TT/1.62V/1.65V/25degC	0.63	0.775	0.5208	0.5211	0.5214
TT/1.98V/1.95V/25degC	0.63	0.775	0.6567	0.6569	0.6572
SS/1.62V/1.65V/125degC	0.63	0.775	0.5176	0.5181	0.5186
SS/1.8V/1.8V/125degC	0.63	0.775	0.5918	0.5922	0.5927
SS/1.98V/1.95V/125degC	0.63	0.775	0.6581	0.6585	0.6589
FF/1.98V/1.95V/-40degC	0.63	0.775	0.6612	0.6613	0.6615
FF/1.8V/1.8V/-40degC	0.63	0.775	0.6013	0.6014	0.6016
FF/1.62V/1.65V/-40degC	0.63	0.775	0.5318	0.5320	0.5322

Copyright 2003, Synopsys, Inc., All rights reserved.

TABLE 3.9. PC3D21 VT- for 1.8V Process Option

	Specification		Input Falling		
Conditions (process/vdd/vddo/temp)	Min	Max	@CIN=0.3xVDD	@ CIN=0.5xVDD	@ CIN=0.7xVDD
SF/1.62V/1.65V/25degC	0.63	0.775	0.5489	0.5492	0.5495
SF/1.8V/1.8V/25degC	0.63	0.775	0.6222	0.6225	0.6227
SF/1.98V/1.95V/25degC	0.63	0.775	0.6933	0.6936	0.6938
FS/1.98V/1.95V/25degC	0.63	0.775	0.6202	0.6204	0.6207
FS/1.8V/1.8V/25degC	0.63	0.775	0.5567	0.5570	0.5573
FS/1.62V/1.65V/25degC	0.63	0.775	0.4866	0.4870	0.4873

TABLE 3.10. PC3D21 VT+ for 1.8V Process Option

	Specification		Input Rising		
Conditions (process/vdd/vddo/temp)	Min	Max	@ CIN=0.3xVDD	@CIN=0.5xVDD	@ CIN=0.7xVDD
TT/1.8V/1.8V/25degC	1.025	1.17	1.0425	1.0427	1.0428
TT/1.62V/1.65V/25degC	1.025	1.17	0.9881	0.9883	0.9885
TT/1.98V/1.95V/25degC	1.025	1.17	1.0972	1.0974	1.0976
SS/1.62V/1.65V/125degC	1.025	1.17	1.0174	1.0178	1.0181
SS/1.8V/1.8V/125degC	1.025	1.17	1.0739	1.0742	1.0745
SS/1.98V/1.95V/125degC	1.025	1.17	1.1322	1.1324	1.1327
FF/1.98V/1.95V/-40degC	1.025	1.17	1.0475	1.0476	1.0477
FF/1.8V/1.8V/-40degC	1.025	1.17	0.9984	0.9985	0.9986
FF/1.62V/1.65V/-40degC	1.025	1.17	0.9463	0.9465	0.9466
SF/1.62V/1.65V/25degC	1.025	1.17	1.0337	1.0339	1.0341
SF/1.8V/1.8V/25degC	1.025	1.17	1.0898	1.0900	1.0901
SF/1.98V/1.95V/25degC	1.025	1.17	1.1460	1.1462	1.1463
FS/1.98V/1.95V/25degC	1.025	1.17	1.0463	1.0465	1.0466
FS/1.8V/1.8V/25degC	1.025	1.17	0.9937	0.9939	0.9940

Copyright 2003, Synopsys, Inc., All rights reserved.

TABLE 3.10. PC3D21 VT+ for 1.8V Process Option

	Specifi	cation	Input Rising		
Conditions (process/vdd/vddo/temp)	Min	Max	@ CIN=0.3xVDD	@ CIN=0.5xVDD	@ CIN=0.7xVDD
FS/1.62V/1.65V/25degC	1.025	1.17	0.9401	0.9403	0.9404

Minimum values the VT+ and VT- are obtained for FS/1.62V/1.65V/25degC.

Maximum values the VT+ and VT- are obtained for SF/1.98V/1.95V/25degC.

TABLE 3.11. PC3D21 VTH for 1.8V Process Option

	Specification				
Conditions (process/vdd/vddo/temp)	Min	Тур	Max	VTH_L	VTH_H
TT/1.8V/1.8V/25degC		0.25		0.4539	0.4537
TT/1.62V/1.65V/25degC		0.25		0.4673	0.4671
TT/1.98V/1.95V/25degC		0.25		0.4405	0.4403
SS/1.62V/1.65V/125degC		0.25		0.4997	0.4995
SS/1.8V/1.8V/125degC		0.25		0.4821	0.4819
SS/1.98V/1.95V/125degC		0.25		0.4740	0.4738
FF/1.98V/1.95V/-40degC		0.25		0.3863	0.3862
FF/1.8V/1.8V/-40degC		0.25		0.3972	0.3970
FF/1.62V/1.65V/-40degC		0.25		0.4146	0.4144
SF/1.62V/1.65V/25degC		0.25		0.4848	0.4847
SF/1.8V/1.8V/25degC		0.25		0.4675	0.4674
SF/1.98V/1.95V/25degC		0.25		0.4526	0.4525
FS/1.98V/1.95V/25degC		0.25		0.4261	0.4259
FS/1.8V/1.8V/25degC		0.25		0.4370	0.4368
FS/1.62V/1.65V/25degC		0.25		0.4534	0.4531

Minimum values the VTH are obtained for FF/1.98V/1.95V/-40degC.

Maximum values the VTH are obtained for SS/1.62V/1.65V/125degC.

Copyright 2003, Synopsys, Inc., All rights reserved.

TABLE 3.12. PC3D31 VT- for 1.8V Process Option

	Specif	ication	Input Falling		
Conditions (process/vdd/vddo/temp)	Min	Max	@CIN=0.3xVDD	@ CIN=0.5xVDD	@ CIN=0.7xVDD
TT/1.8V/1.8V/25degC	0.63	0.775	0.5877	0.5877	0.5876
TT/1.62V/1.65V/25degC	0.63	0.775	0.5168	0.5167	0.5167
TT/1.98V/1.95V/25degC	0.63	0.775	0.6554	0.6554	0.6553
SS/1.62V/1.65V/125degC	0.63	0.775	0.5173	0.5171	0.5170
SS/1.8V/1.8V/125degC	0.63	0.775	0.5872	0.5871	0.5870
SS/1.98V/1.95V/125degC	0.63	0.775	0.6551	0.6550	0.6549
FF/1.98V/1.95V/-40degC	0.63	0.775	0.6631	0.6630	0.6630
FF/1.8V/1.8V/-40degC	0.63	0.775	0.5990	0.5990	0.5989
FF/1.62V/1.65V/-40degC	0.63	0.775	0.5316	0.5315	0.5315
SF/1.62V/1.65V/25degC	0.63	0.775	0.5446	0.5445	0.5445
SF/1.8V/1.8V/25degC	0.63	0.775	0.6196	0.6196	0.6195
SF/1.98V/1.95V/25degC	0.63	0.775	0.6916	0.6915	0.6915
FS/1.98V/1.95V/25degC	0.63	0.775	0.6196	0.6196	0.6195
FS/1.8V/1.8V/25degC	0.63	0.775	0.5560	0.5559	0.5559
FS/1.62V/1.65V/25degC	0.63	0.775	0.4877	0.4876	0.4875

TABLE 3.13. PC3D31 VT+ for 1.8V Process Option

	Specification		Input Rising			
Conditions (process/vdd/vddo/temp)	Min	Max	@ CIN=0.3xVDD	@CIN=0.5xVDD	@CIN=0.7xVDD	
TT/1.8V/1.8V/25degC	1.025	1.17	1.0440	1.0440	1.0439	
TT/1.62V/1.65V/25degC	1.025	1.17	0.9911	0.9910	0.9909	
TT/1.98V/1.95V/25degC	1.025	1.17	1.0997	1.0996	1.0995	
SS/1.62V/1.65V/125degC	1.025	1.17	1.0242	1.0240	1.0239	

Copyright 2003, Synopsys, Inc., All rights reserved.

TABLE 3.13. PC3D31 VT+ for 1.8V Process Option

	Specifi	cation	Input Rising				
Conditions (process/vdd/vddo/temp)	Min	Max	@CIN=0.3xVDD	@ CIN=0.5xVDD	@ CIN=0.7xVDD		
SS/1.8V/1.8V/125degC	1.025	1.17	1.0792	1.0790	1.0789		
SS/1.98V/1.95V/125degC	1.025	1.17	1.1359	1.1358	1.1356		
FF/1.98V/1.95V/-40degC	1.025	1.17	1.0496	1.0496	1.0495		
FF/1.8V/1.8V/-40degC	1.025	1.17	0.9996	0.9996	0.9995		
FF/1.62V/1.65V/-40degC	1.025	1.17	0.9496	0.9496	0.9495		
SF/1.62V/1.65V/25degC	1.025	1.17	1.0367	1.0366	1.0365		
SF/1.8V/1.8V/25degC	1.025	1.17	1.0931	1.0930	1.0929		
SF/1.98V/1.95V/25degC	1.025	1.17	1.1493	1.1493	1.1492		
FS/1.98V/1.95V/25degC	1.025	1.17	1.0499	1.0499	1.0498		
FS/1.8V/1.8V/25degC	1.025	1.17	0.9958	0.9957	0.9957		
FS/1.62V/1.65V/25degC	1.025	1.17	0.9431	0.9430	0.9429		

Minimum values the VT+ and VT- are obtained for FS/1.62V/1.65V/25degC.

Maximum values the VT+ and VT- are obtained for SF/1.98V/1.95V/25degC.

TABLE 3.14. PC3D31 VTH for 1.8V Process Option

	Specification				
Conditions (process/vdd/vddo/temp)	Min	Тур	Max	VTH_L	VTH_H
TT/1.8V/1.8V/25degC		0.25		0.4563	0.4563
TT/1.62V/1.65V/25degC		0.25		0.4743	0.4743
TT/1.98V/1.95V/25degC		0.25		0.4443	0.4442
SS/1.62V/1.65V/125degC		0.25		0.5069	0.5069
SS/1.8V/1.8V/125degC		0.25		0.4920	0.4919
SS/1.98V/1.95V/125degC		0.25		0.4808	0.4808
FF/1.98V/1.95V/-40degC		0.25		0.3866	0.3865

Copyright 2003, Synopsys, Inc., All rights reserved.

TABLE 3.14. PC3D31 VTH for 1.8V Process Option

		Specificatio	n		
Conditions (process/vdd/vddo/temp)	Min	Тур	Max	VTH_L	VTH_H
FF/1.8V/1.8V/-40degC		0.25		0.4006	0.4006
FF/1.62V/1.65V/-40degC		0.25		0.4181	0.4180
SF/1.62V/1.65V/25degC		0.25		0.4921	0.4920
SF/1.8V/1.8V/25degC		0.25		0.4735	0.4734
SF/1.98V/1.95V/25degC		0.25		0.4577	0.4577
FS/1.98V/1.95V/25degC		0.25		0.4303	0.4303
FS/1.8V/1.8V/25degC		0.25		0.4398	0.4398
FS/1.62V/1.65V/25degC		0.25		0.4554	0.4554

Minimum values the VTH are obtained for FF/1.98V/1.95V/-40degC.

Maximum values the VTH are obtained for SS/1.62V/1.65V/125degC.

3.1.2 AC parameters:

3.1.2.1 Worst Case/Best Case Conditions for I->PAD Delay:

After proper sizing of level shifter, worst/best case timings are in-line with standard worst/best case conditions. The following table shows the I->PAD delay for PC3B01 under different input ramp and output load conditions for regular worst case conditions (Process = SS, temperature = 125degC, VDD=1.62V) with VDDO=1.65V and VDDO=1.95V

The following table shows the delay obtained for PC3B01 for various characterization conditions:

TABLE 3.15. Worst Case Characterization Delay for 1.8V Process Option

IR (S)	CLOAD (F)	I->PAD rising @VDDO=1.65V (S)	I->PAD rising @VDDO=1.95V (S)
2.000e-11	4.000e-13	3.801e-09	2.809e-09
2.400e-10	4.000e-13	3.855e-09	2.869e-09
6.000e-10	4.000e-13	3.935e-09	2.963e-09
1.200e-09	4.000e-13	4.055e-09	3.105e-09
3.000e-09	4.000e-13	4.372e-09	3.482e-09
2.000e-11	1.600e-12	4.165e-09	3.083e-09

Copyright 2003, Synopsys, Inc., All rights reserved.

TABLE 3.15. Worst Case Characterization Delay for 1.8V Process Option

IR (S)	CLOAD (F)	I->PAD rising @VDDO=1.65V (S)	I->PAD rising @VDDO=1.95V (S)
2.400e-10	1.600e-12	4.220e-09	3.143e-09
6.000e-10	1.600e-12	4.300e-09	3.237e-09
1.200e-09	1.600e-12	4.419e-09	3.379e-09
3.000e-09	1.600e-12	4.736e-09	3.756e-09
2.000e-11	8.000e-12	6.065e-09	4.515e-09
2.400e-10	8.000e-12	6.119e-09	4.575e-09
6.000e-10	8.000e-12	6.200e-09	4.669e-09
1.200e-09	8.000e-12	6.321e-09	4.811e-09
3.000e-09	8.000e-12	6.641e-09	5.188e-09

3.1.2.2 Duty Cycle Simulation Results for I->PAD delay:

The following table shows the rising and falling delays and output transition as well as the duty cycle obtained for PC3B05 for various characterization conditions:

TABLE 3.16. Worst Case Characterization Delay and Duty Cycle for 1.8V Process Option

IR	CLOAD	Delay Rising	Transition Rising	Delay Falling	Transition Falling	Duty Cycle Distortion (%)
2.000e-11	4.000e-13	3.913e-09	3.996e-10	2.772e-09	5.842e-10	-5.71
2.400e-10	4.000e-13	3.968e-09	3.994e-10	2.816e-09	5.840e-10	5.76
6.000e-10	4.000e-13	4.049e-09	3.996e-10	2.869e-09	5.837e-10	-5.90
1.200e-09	4.000e-13	4.166e-09	3.999e-10	2.919e-09	5.839e-10	-6.23
3.000e-09	4.000e-13	4.481e-09	3.991e-10	3.028e-09	5.842e-10	-7.26
2.000e-11	1.600e-12	4.040e-09	4.623e-10	2.969e-09	6.955e-10	-5.36
2.400e-10	1.600e-12	4.096e-09	4.622e-10	3.013e-09	6.951e-10	-5.42
6.000e-10	1.600e-12	4.176e-09	4.623e-10	3.066e-09	6.950e-10	-5.55
1.200e-09	1.600e-12	4.294e-09	4.623e-10	3.117e-09	6.951e-10	-5.89
3.000e-09	1.600e-12	4.609e-09	4.615e-10	3.225e-09	6.955e-10	-6.92
2.000e-11	8.000e-12	4.578e-09	7.645e-10	3.784e-09	1.034e-09	-3.97
2.400e-10	8.000e-12	4.633e-09	7.646e-10	3.827e-09	1.033e-09	-4.03

Copyright 2003, Synopsys, Inc., All rights reserved.

TABLE 3.16. Worst Case Characterization Delay and Duty Cycle for 1.8V Process Option

IR	CLOAD	Delay Rising	Transition Rising	Delay Falling	Transition Falling	Duty Cycle Distortion (%)
6.000e-10	8.000e-12	4.713e-09	7.645e-10	3.879e-09	1.031e-09	-4.17
1.200e-09	8.000e-12	4.831e-09	7.644e-10	3.930e-09	1.031e-09	-4.51
3.000e-09	8.000e-12	5.146e-09	7.639e-10	4.039e-09	1.031e-09	-5.54
2.000e-11	3.000e-11	6.011e-09	1.796e-09	5.340e-09	1.904e-09	-3.36
2.400e-10	3.000e-11	6.067e-09	1.796e-09	5.381e-09	1.903e-09	-3.43
6.000e-10	3.000e-11	6.148e-09	1.796e-09	5.429e-09	1.903e-09	-3.59
1.200e-09	3.000e-11	6.267e-09	1.796e-09	5.477e-09	1.904e-09	-3.95
3.000e-09	3.000e-11	6.584e-09	1.796e-09	5.573e-09	1.905e-09	-5.06
2.000e-11	5.000e-11	7.095e-09	2.779e-09	5.958e-09	2.853e-09	-5.68
2.400e-10	5.000e-11	7.153e-09	2.779e-09	5.994e-09	2.854e-09	-5.79
6.000e-10	5.000e-11	7.238e-09	2.779e-09	6.033e-09	2.855e-09	-6.03
1.200e-09	5.000e-11	7.368e-09	2.779e-09	6.056e-09	2.861e-09	-6.56
3.000e-09	5.000e-11	7.709e-09	2.778e-09	6.072e-09	2.882e-09	-8.18

3.2 Timing Measurement Conditions

Unless otherwise specified the values used in this data sheet are:

VDDO = 1.8V

VDD = 1.8V

Junction Temperature = 25 degreesC

Process = Typical

Low voltage input signal rising and falling edge switching time up to 3ns (core side) and up to 10ns (pad side).

3.3 Characterization Informations

The TSL18CIO150 library has been characterized using the following corner conditions:

	Core voltage (volts)	I/O voltage (Volts)	Temp (°C)	Process
Max	1.62	1.65	125	ss (slow-slow)
Тур	1.8	1.8	25	tt (typical)

Copyright 2003, Synopsys, Inc., All rights reserved.

	Core voltage (volts)	I/O voltage (Volts)	Temp (°C)	Process
Min	1.98	1.95	-40	ff (fast-fast)

3.4 Slope and Load variations - Look Up table

The characterization has been done using the following input slope and output load variations. Input slopes and output loads have the same values for all drives.

The Synopsys lookj-up table models 5x5 are derived from this characterization.

The thresholds for outputs transitions are measured from 30% to 70% and extrapolated to 0-100%

	Input slope variations					
core input slope variations (ns)	0.02 (1)	0.24	0.6	1.2	3 (2)	
pad input slope variations (ns)	0.07	0.8	2	4	10 ⁽³⁾	

	Output load variations					
core output load variations (pF)	$0.004^{(4)}$	0.016	0.08	0.4	0.8	
pad output load variations (pF)	0.4	1.6	8	40	80 ⁽⁵⁾	

Note:

- (1): this value match the minimum core input slope variation of the standard cell library.
- (2): this value match the maximum core input slope variation of the standard cell library.
- (3): this high value for pad input slope variation allow high simulation range without delay extrapolation.
- (4): this value is recommended first index of Look Up table.
- (5): this high value for pad output load allow high simulation range without delay extrapolation. This value does not specify the maximum load usable at the nominal frequency usage.

3.5 Propagation Delay Time

- •For CMOS I/Os in output mode, the delay is measured from the 50% point of the input to the 50% point of the output.
- •When CMOS I/Os are in input mode, the delay is measured from the 50% point of the input to the 50% point of the output.
- •For TTL I/Os in output mode, the delay is measured from the 50% point of the input to the 50% point of the output.
- •When TTL I/Os are in input mode, the delay is measured from the 50% point of the input to the 50% point of the output.

Copyright 2003, Synopsys, Inc., All rights reserved.

3.6 Bond-pad metal layer implementation

This library is based on a generic design of the bonding pad. After layer processing performed by the electronic Design Transfer Package (DTP), the resulting bond pad satisfies the foundry rules.

The Passport DRC and LVS are processed using an identical layer processing. It allows to check the design using the foundry rules.

3.7 Oscillator pad Characteristics.

The oscillator pads have been designed to insure a small startup oscillation time and to reduce the jitter effect.

This pad can be used as amplifier in a pierce oscillator type. For more information on the basics of amplifier design, please refer to any electronic textbook.

The AC gain of the three provided pads amplifier is constant, but their respective drive allow different frequency usage. The PC3X13 that allows higher frequency usage than the PC3X12 and PC3X11. The designer must take in account the noise produced by the switching of the clock pad, in this way the three oscillator pads provides different rising and falling ramps. The PC3X11 provide the larger timing ramp delay. The PC3X13 provide the smaller timing ramp delay. The di/dt can be then controlled by the designer to insure lower noise on VDD and VSS power rings.

Copyright 2003, Synopsys, Inc., All rights reserved.

4.0 Cells

4.1 Reading the Datasheet

The first sheet of a standard datasheet contains the following elements:

These elements are described in the sections that follow.

Header and Description

The cell header in the large font describes the cell type, such as 1.8V CMOS 3-State I/O Pads. Under the header is a list of the cells included in the category in a

Copyright 2003, Synopsys, Inc., All rights reserved.

smaller font. The text block following the headers gives a brief description of the cells included in this data sheet.

Function Table:

L = LOW level	X = Any level (Don't care)
L_r = Resistive LOW	Z = 3-state output
H = HIGH level	$Z_1 = {3-\text{state output, driven LOW from} \over \text{external source}}$
H _r = Resistive HIGH	$Z_h = {3-\text{state output, driven HIGH from} \atop \text{external source}}$

Cell Information Table

The cell information is listed under the icon and function table for the cell; not all categories will be included for all cell types and libraries:

Drive Capability

•AC Drive – The transient output response of a circuit when the input is switched. The value describes both the time delay and the output load drive capability. For example, a circuit with an AC drive capability value of 4 normally has a shorter time delay and can drive larger capacitive loads than a circuit with an AC drive capability value of 3. The AC drive capability value is only a factor and should not be interpreted as an analog AC performance value.

Pin Description Table

The pin description table gives:

- •The name of the pin
- •The total capacitance that a signal driving in to that pin will have to drive; this includes gate capacitance as well as interconnect capacitance within the cell. For outputs, only the maximum capacitance used in the characterization is specified.
- •A description of the pin's usage

Pin Power Table

The pin power table gives for each pin of the table a dissipated power from the Synopsys look-up table models.

Copyright 2003, Synopsys, Inc., All rights reserved.

This power is given for a standard load and a standard input transition.

The power data provided are the internal power for input pins when outputs doesn't switch, and the internal power for output pins.

The power data for output pins (*internalpower_out*) is according to synopsys power model:

 $internal power_out = total switching power - Cx(Vdd^2)/2 - input power$

In this equation, the *inputpower* is the internal power of the relative input that creates the switching of the output.

Due to the fact that C includes both the output pin load and the external load, the output pin internal power may be negative for some cells; this is effect of model.

The complete switching power when pin I makes the pin OUT switching is:

$$otalswitchingpower = internal power(OUT) + C(OUT) \times (Vdd^2)/2 + input power(OUT)$$

The internal power has been simulated for all outputs.

The internal power for the input pins of cells for which the input switching always creates an output switching (i.e. buffer) is not simulated. Therefore only the internal power of output pin for this type of cells appears in the datasheet and includes the internal power of the input pin.

In this case, the complete switching power when the input pin makes the output pin switching is:

$$totalswitchingpower = internal power + C(OUT) \times (Vdd^2)/2$$

Note1: Leakage power of pull-up I/O includes the power dissipated through the pull-up resistor when PAD is set at Vil.

Unit of this value is " μ W" for the following cells:

pc3t*u, pc3b*u, pt3t*u, pt3b*u and pc3d*u.

When PAD is set at Vih, Leakage power of pull-up I/O pc3t01u, pc3t02u,... pc3b01u,... are equal to the Leakage power of I/O pc3t01, pc3t02,... pc3b01,... correspondingly.

Note2: Pin Powers for output pins gives for RISE transition (rise_power) in this datasheet.

Copyright 2003, Synopsys, Inc., All rights reserved.

The second page of a standard datasheet contains the following information:

Waveforms

The waveforms graphically illustrate the critical timings in the Propagation Delays table.

Propagation Delays for Sample Loads and Input Transitions

The propagation delays for sample loads table uses look up table models. The delays for the chosen samples are interpolated using the 5x5 table points.

For I/Os in the input mode the propagation delay is given for sample core load (Core Load Fanout multiple at the Core Load Unit) and standard pad input transition in ns.

Copyright 2003, Synopsys, Inc., All rights reserved.

Introduction TOWER

For I/Os in the output mode the propagation delay is given for sample pad load in pF and standard core input transition in ns.

The RISE and FALL times represent the total delay time from the change of the input pin to the corresponding response on the output pin. Actual interconnect length and load cannot be determined until a design has completed placement and routing. When using these tables, you must estimate the interconnect load in units of standard loads and add that to the fanout. A rough rule of thumb is that, for every input load, there is a corresponding interconnect load approximately equal to it. For example, to estimate the delay of a PC3B01 pad driving a fanout of 2, use the column in the data sheet specifying 4 standard loads: 2 for fanout and 2 for the interconnect loading.

4.2 Decoding the Cell Name

This section describes the naming conventions for the pad library cells. Each cell name begins with a two-letter code that tells what type of cell it is. This section gives the detailed naming convention for pads.

Cells supplied by analog power start from '0' and other cells start from '1'.

I/O Naming Conventions:

```
(0)1234567
```

0 = A = cell supplied by analog power; not a variable (for I/O)

1 = P = Pad; not a variable (for I/O)

2 = The Input and/or Output level (standard) used for characterization:

C = CMOS

T = TTL

V = POWER (see POWER PADS NAMING CONVENTION below)

3 = Output signal level:

3 = mixed power voltage I/O library (VDDO=1.8V)

4 = Pad Function:

B = Bidirectional

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Introduction

T = Three-State Output

O= Output only

D = Input

C = Clock Input

X = Crystal Oscillator

5 = Pad-function-related options:

0 =Non-Inverting

1 = Inverting

2 = Schmitt Non-Inverting

3 = Schmitt Inverting

6 = Capability:

1 = 1X Drive

2 = 2X Drive

3 = 3X Drive

4 = 4X Drive

5 = 5X Drive

7 = Special Type:

D = Pulldown

ED = Controllable Pulldown

U = Pullup

EU = Controllable Pullup

HV = High Voltage Input Pin(Special for PC3O01HV)

Copyright 2003, Synopsys, Inc., All rights reserved.

Introduction TOWER

Power Pads Naming Conventions:

(0)12345

0 = A = cell supplied by analog power (for I/O)

1 = P = Pad; not a variable (for I/O)

2 = 3 = Voltage I/O = 1.8V

3 = V = V is for Power

4 = Output signal level:

0 = Low signal voltage

D = High signal voltage

C = Power ring cut cell

5 = Bus Structure:

A = I/O noisy

I = Internal (CORE) Power

F = All power buses shorted.

C = Core only power supply.

TOWER Introduction

5.0 System Design Considerations

5.1 Power Connection Types

These power pads include 4 powers buses (2 VDD and 2 VSS) in normal cell and 5 powers buses (2 AVDD, 2 AVSS and 1 VSS) in cells supplied by analog power that can be used in different ways.

The VDD and VSS buses can be splitted in 4 sets, the core buses (Vdd, Vss), the switching buses (Vddo, Vsso), the analog core bused (AVdd, AVss) and the analog switch buses (AVddo, AVsso).

The power pad cells that supply the power buses are describe in the following section.

5.2 Power Pad Combinations for the TSL18CIO150 Library

The following tables map the power cells to their respective sources. Details and recommendations on the optimum use of power buses is described in the *I/O usage application note & SSO guidelines*.

VSS Power Pad Combinations

	Power	buses		Library Cell Name	Us	age	
Vss	Vsso	AVss	AVsso	Name	(1)	(2)	(3)
•				PV0I	•		
	•			PV0A	•		
				PV0C	(•)	(•)	
•	•			PV0F		•	
		•		APV0I			•
			•	APV0A			•

Introduction TOWER

	Power buses			Library Cell Name	Usage			
Vdd	Vddo	AVdd	AVddo		(1)	(2)	(3)	
•				PVDI	•			
	•			PVDA	•			
				PVDC	(•)	(•)		
		•		APVDI			•	
				ADVDA				

VDD Power Pad Combinations

The previous tables give also the usage of the power pad in 3 configurations:

- (1): 2 power pads VSS and 2 power pads VDD are used, each of them supply on bus.
- (2): 1 power pad VSS is used, all types of ground buses are shorted.
- (3): 2 power pad AVSS ,1 power pad VSS and 2 power pads AVDD are used, each of them supply on bus.

Note1: The pads PVDC/PV0C can be used optionally with any combination of the other power pads (1), (2).

Note2: The combinations (2) are not available for VDD power pads in mixed power voltage I/O library.

5.3 Frequently Asked Questions (FAQ)

These are the types of questions that a system designer might ask:

•Should I use separate power busses?

Separate busses are recommended to reduce SSO noise.

- •My chip is very low performance and does not produce much noise. Is there a power pad I could use to reduce the number of power pads?
- •I want to supply two standard cell group by two different powers. One of the power is the same than the VDD used in the I/O. The other is used to supply only standard cells.

You have to use PVDI to supply the first group of standard cells plus the VDD I/O ring. You need also PVDC to supply the second group of standard cells with the independent power supply.

•I have two I/O groups whose one is very noisy and the other not. I want to sepa-

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Introduction

rate the power supply of these I/O.

Use the pad PVCF to cut the ring if VDD, VSS is not common to every I/O, you need then to supply each part of the ring with a PVDI, PV0I pads. Use the pad PVCE to cut the ring if VDD, VSS is common to every I/O.

5.4 Cell Matrices

This section gives a quick-reference guide to the TSL18CIO150 library pads.

TABLE 5.4.1. CMOS I/O Pads

CMOS Cell Name	3-State I/O	Output Only	3-State Output Only	Drive Strength	Pulldown Device	Pullup Device	Pad Sites Used
PC3B01	•			1x			1
PC3B02	•			2x			1
PC3B03	•			3x			1
PC3B04	•			4x			1
PC3B05	•			5x			1
PC3B01D	•			1x	•		1
PC3B02D	•			2x	•		1
PC3B03D	•			3x	•		1
PC3B03ED	•			3x	•		1
PC3B04D	•			4x	•		1
PC3B05D	•			5x	•		1
PC3B01U	•			1x		•	1
PC3B02U	•			2x		•	1
PC3B03U	•			3x		•	1
PC3B04U	•			4x		•	1
PC3B21EU	•			1x		•	1
PC3B25EU	•			5x		•	1
PC3B05U	•			5x		•	1
PC3O01		•		1x			1
PC3O01HV		•		1x			1
PC3O02		•		2x			1

Copyright 2003, Synopsys, Inc., All rights reserved.

Introduction TOWER

TABLE 5.4.1. CMOS I/O Pads (Continued)

CMOS Cell Name	3-State I/O	Output Only	3-State Output Only	Drive Strength	Pulldown Device	Pullup Device	Pad Sites Used
PC3O03		•		3x			1
PC3O04		•		4x			1
PC3O05		•		5x			1
PC3T01			•	1x			1
PC3T02			•	2x			1
PC3T03			•	3x			1
PC3T04			•	4x			1
PC3T05			•	5x			1
PC3T01D			•	1x	•		1
PC3T02D			•	2x	•		1
PC3T03D			•	3x	•		1
PC3T04D			•	4x	•		1
PC3T05D			•	5x	•		1
PC3T01U			•	1x		•	1
PC3T02U			•	2x		•	1
PC3T03U			•	3x		•	1
PC3T04U			•	4x		•	1
PC3T05U			•	5x		•	1

TABLE 5.4.2. TTL I/O Pads

TTL Cell Name	3-State I/O	Output Only	3-State Output Only	Drive Strength	Pulldown Device	Pullup Device	Pad Sites Used
PT3B01	•			2mA			1
PT3B02	•			6mA			1
PT3B03	•			10mA			1
PT3B01D	•			2mA	•		1

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Introduction

TABLE 5.4.2. TTL I/O Pads (Continued)

PT3B02D	•			6mA	•		1
PT3B03D	•			10mA	•		1
PT3B01U	•			2mA		•	1
PT3B02U	•			6mA		•	1
PT3B03U	•			10mA		•	1
PT3O01		•		2mA			1
PT3O02		•		6mA			1
PT3O03		•		10mA			1
PT3T01			•	2mA			1
PT3T02			•	6mA			1
PT3T03			•	10mA			1
PT3T01D			•	2mA	•		1
PT3T02D			•	6mA	•		1
PT3T03D			•	10mA	•		1
PT3T01U			•	2mA		•	1
PT3T02U			•	6mA		•	1
PT3T03U			•	10mA		•	1

TABLE 5.4.3. Analog I/O Pads

CMOS Cell Name	Input Levels	Schmitt Input Level Shifter		Inverting	Pulldown Device	Pullup Device	Pad Sites Used
PC3D00	ANALOG		•				1

TABLE 5.4.4. CMOS Input Only Pads

CMOS Cell Name	Input Levels	Schmitt Input Level Shifter		Inverting	Pulldown Device	Pullup Device	Pad Sites Used
APC3D01	CMOS		•				1
PC3D01	CMOS		•				1

Copyright 2003, Synopsys, Inc., All rights reserved.

Introduction TOWER

TABLE 5.4.4. CMOS Input Only Pads (Continued)

PC3D01D	CMOS		•		•		1
PC3D01U	CMOS		•			•	1
PC3D11	CMOS			•			1
PC3D11D	CMOS			•	•		1
PC3D11U	CMOS			•		•	1
PC3D21	CMOS	•	•				1
PC3D21D	CMOS	•	•		•		1
PC3D21EU	CMOS	•	•			•	1
PC3D21U	CMOS	•	•			•	1
PC3D31	CMOS	•		•			1
PC3D31D	CMOS	•		•	•		1
PC3D31U	CMOS	•		•		•	1

TABLE 5.4.5. Crystal Oscillator Pads

Cell Name	Frequency Category	Maximum Operating Frequency	Pad Sites Used
PC3X11	Low	10MHz	2
PC3X12	Intermediate	40MHz	2
PC3X13	High	100MHz	2

TABLE 5.4.6. Core-Driven Clock Buffer Pad

Cell Name	Drive Strength	Non-Inverting	Inverting	Pad Sites Used
PC3C01	1x	•		1
PC3C02	2x	•		1
PC3C03	3x	•		1
PC3C04	4x	•		1

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Introduction

TABLE 5.4.7. Power Pads

			Power E	Bus Conr	nections	i			Pad
	vssi	VSSO	avssi	avsso	vddi	vddo	avddi	avddo	Sites Used
PV0I	•								1
PV0A		•							1
PV0C									1 (**)
PV0F	•	•							1
APV0I			•						1
APV0A				•					1
PVDI					•				1
PVDA						•			1
PVDC									1 (**)
APVDI							•		1
APVDA								•	1

^{**)} Note: PVDC/PV0C is used to supply VDD/VSS to core only then do not supply any I/O power ring.

TABLE 5.4.8. Cut Power Pads

		Cut Power Bus								
	vssi	vsso	avss	avsso	vddi	vddo	avdd	avddo		
PVCF		•	•	•	•	•	•	•		
PVCE	•	•	•	•		•	•	•		
APFEEDENDRINGL		•	•	•	•	•	•	•		
APFEEDENDRINGR		•	•	•	•	•	•	•		

Copyright 2003, Synopsys, Inc., All rights reserved.

Introduction TOWER

5.5 I/O Filler and Corner Pads List

I/O filler pads are used to fill gaps in the pad ring of chip. Corner pads are placed at corners of pad ring at different orientation.

Name	Width (um)
pfeed00010	0.01
pfeed00040	0.04
pfeed00120	0.12
pfeed00540	0.54
pfeed01000	1
pfeed02000	2
pfeed10000	10
pfeed30000	30
pfrelr	Corner Pad

5.6 Analog section I/O Filler and Corner Pads List

Analog section I/O filler pads are used to fill gaps in the cells supplied by analog power of chip.

Corner pads are placed at corners of cells supplied by analog power at different orientation.

Name	Width (um)
apfeed00010	0.01
apfeed00040	0.04
apfeed00120	0.12
apfeed00540	0.54
apfeed01000	1
apfeed02000	2
apfeed10000	10

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Introduction

Name	Width (um)			
apfeed30000	30			
apfrelr	Corner Pad			

Copyright 2003, Synopsys, Inc., All rights reserved.

Chapter 2 Characteristics

This chapter includes the characteristics tables for the following I/O Pads:

```
"1.8V CMOS 3-State Output Pads" on page 2-3
```

- "1.8V CMOS 3-State Output Pads with Pull-down Resistor" on page 2-6
- "1.8V CMOS 3-State Output Pads with Pull-up Resistor" on page 2-9
- "1.8 CMOS 3-State I/O Pads" on page 2-12
- "1.8V CMOS 3-State I/O Pads with Pull-down Resistor" on page 2-16
- "1.8V CMOS 3-State I/O Pad with Controllable Pull-down Resistor" on page 2-20
- "1.8V CMOS 3-State I/O Pads with Pull-up Resistor" on page 2-23
- "1.8V CMOS 3-State I/O Pads with Controllable Pull-up Resistor" on page 2-27
- "1.8V CMOS Output Pads" on page 2-30
- "1.8V CMOS Output Pad with High Voltage Input Pin" on page 2-32
- "1.8V TTL 3-State Output Pads" on page 2-34
- "1.8V TTL 3-State Output Pads with Pull-down Resistor" on page 2-37
- "1.8V TTL 3-State Output Pads with Pull-up Resistor" on page 2-40
- "1.8V TTL 3-State I/O Pads" on page 2-43
- "1.8V TTL 3-State I/O Pads with Pull-down Resistor" on page 2-46
- "1.8V TTL 3-State I/O Pads with Pull-up Resistor" on page 2-49
- "1.8V TTL Output Pads" on page 2-52
- "1.8V Crystal Oscillator Pads" on page 2-54
- "1.8V CMOS Non-Inverting Clock Buffer Pad" on page 2-58
- "1.8V Analog IO Pad" on page 2-60
- "1.8V CMOS Input Only Pad Supplied by Analog Power" on page 2-61

Copyright 2003, Synopsys, Inc., All rights reserved.

Synopsys Confidential/ Proprietary Information

Distributed only under License of Non-Disclosure Agreement

"1.8V CMOS Input Only Pads" on page 2-63

"1.8V CMOS Input Only Pads with Pull-down Resistor" on page 2-66

"1.8V CMOS Input Only Pads with Pull-up Resistor" on page 2-69

"1.8V CMOS Input Only Pad with Controllable Pull-up Resistor" on page 2-72

"VDD Pads" on page 2-74

"AVDD Pads" on page 2-76

"VSS Pads" on page 2-77

"AVSS Pads" on page 2-79

For a detailed description of each parameter, refer to "Introduction" on page 1-1.

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State Output Pads PC3T01 through PC3T05

PC3T01 through PC3T05 cells are three state CMOS output pads with AC drive capabilities ranging from 1x to 5x.

Function Table

INP	UT	OUTPUT
OEN	I	PAD
Н	X	Z
L	L	L
L	Н	Н

Cell Description

Macro Name:	PC3T01	PC3T02	PC3T03	PC3T04	PC3T05
Drive Capability:	1x	2x	3x	4x	5x
Leakage Power (pW)	2853.3	2788.6	2855.4	2855.4	2858.1

Pin Description

Name -		Description				
	PC3T01	PC3T02	PC3T03	PC3T04	PC3T05	Description
I	0.112	0.188	0.195	0.198	0.198	Input
OEN	0.11	0.11	0.11	0.11	0.11	Output Enable
PAD	3.185	3.182	3.188	3.188	3.188	3-StateOutput

Pin Powers for: Standard Pad Load = 10.0 pF, Standard Core Input Transition = 0.1 ns

Name	Pin Power (pW/Hz)							
PC3T01	PC3T01	PC3T02	PC3T03	PC3T04	PC3T05			
PAD	21	21.5	22.3	22.9	23.8			

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State Output Pads PC3T01 through PC3T05

Waveforms

Timing Numbers for PC3T01 through PC3T05:

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

		Pad Load								
Cell Name T	Type Delay	8 pF		16 pF		32 pF		64 pF		
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164	
PC3T01	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749	
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497	
	tCMOS	2.236	1.832	2.975	2.326	4.430	3.241	7.329	5.049	
PC3T02	tOEN	1.617	1.336	2.356	1.832	3.809	2.747	6.703	4.559	
	tOD	2.372	1.691	2.372	1.691	2.372	1.691	2.372	1.691	
	tCMOS	2.120	2.042	2.632	2.560	3.610	3.455	5.548	4.910	
PC3T03	tOEN	1.496	1.385	2.006	1.908	2.984	2.825	4.927	4.309	
	tOD	2.498	1.875	2.500	1.875	2.497	1.875	2.495	1.875	
	tCMOS	2.147	2.065	2.556	2.497	3.306	3.223	4.773	4.418	
PC3T04	tOEN	1.481	1.275	1.888	1.726	2.640	2.458	4.112	3.677	
	tOD	2.935	2.065	2.928	2.064	2.922	2.062	2.917	2.061	
	tCMOS	2.240	1.784	2.583	2.181	3.200	2.781	4.387	3.827	
PC3T05	tOEN	1.424	1.188	1.763	1.578	2.378	2.193	3.568	3.261	
	tOD	3.338	2.265	3.338	2.265	3.349	2.265	3.354	2.265	

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State Output Pads PC3T01 through PC3T05

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

		Core Input Transition								
Cell Name	Type Delay	0.1 ns		0.5 ns		2 ns		5 ns		
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135	
PC3T01	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676	
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821	
	tCMOS	2.975	2.326	3.023	2.374	3.136	2.493	3.322	2.707	
PC3T02	tOEN	2.356	1.832	2.395	1.874	2.501	1.974	2.693	2.158	
	tOD	2.372	1.691	2.446	1.746	2.563	1.860	2.763	2.010	
	tCMOS	2.632	2.560	2.680	2.601	2.797	2.712	3.000	2.909	
PC3T03	tOEN	2.006	1.908	2.044	1.950	2.152	2.039	2.335	2.239	
	tOD	2.500	1.875	2.549	1.922	2.664	2.062	2.831	2.267	
	tCMOS	2.556	2.497	2.598	2.548	2.714	2.659	2.899	2.857	
PC3T04	tOEN	1.888	1.726	1.928	1.766	2.030	1.863	2.227	2.032	
	tOD	2.928	2.064	2.958	2.104	3.070	2.223	3.294	2.423	
	tCMOS	2.583	2.181	2.625	2.229	2.748	2.339	2.948	2.523	
PC3T05	tOEN	1.763	1.578	1.796	1.608	1.905	1.705	2.089	1.890	
	tOD	3.338	2.265	3.382	2.333	3.496	2.424	3.598	2.591	

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State Output Pads with Pull-down Resistor PC3T01D through PC3T05D

PC3T01D through PC3T05D cells are three state CMOS output pads with pull-down and AC drive capabilities ranging from 1x to 5x.

I PAD VSS

Function Table

INP	UT	OUTPUT
OEN	I	PAD
Н	X	Lr
L	L	L
L	Н	Н

Lr = Resistive-Low Drive Strength

Cell Description

Macro Name:	PC3T01D	PC3T02D	PC3T03D	PC3T04D	PC3T05D
Drive Capability:	1x	2x	3x	4x	5x
Leakage Power (pW)	2853.3	2788.6	2855.4	2855.4	2858.1

Pin Description

Name		C	apacitance (p	F)		Description
	PC3T01D	PC3T02D	PC3T03D	PC3T04D	PC3T05D	Description
I	0.112	0.192	0.19	0.198	0.198	Input
OEN	0.11	0.11	0.11	0.11	0.11	Output Enable
PAD	3.185	3.172	3.178	3.18	3.18	3-StateOutput

Pin Powers for: Standard Pad Load = 10.0 pF, Standard Core Input Transition = 0.1 ns

Name	Pin Power (pW/Hz)							
Name	PC3T01D	PC3T02D	PC3T03D	PC3T04D	PC3T05D			
PAD	21	21.9	22.7	23.3	24.1			

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State Output Pads with Pull-down Resistor PC3T01D through PC3T05D

Waveforms

Timing Numbers for PC3T01D through PC3T05D:

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

					Pad 1	Load			
Cell Name	Type Delay	8 pF		16	pF	32	pF	64 pF	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164
PC3T01D	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497
PC3T02D	tCMOS	2.245	1.831	2.986	2.322	4.439	3.234	7.334	5.042
	tOEN	1.618	1.298	2.358	1.802	3.816	2.717	6.714	4.526
	tOD	2.371	1.687	2.370	1.687	2.367	1.687	2.365	1.687
	tCMOS	2.127	2.039	2.636	2.554	3.614	3.449	5.553	4.906
PC3T03D	tOEN	1.493	1.340	2.008	1.874	2.991	2.795	4.931	4.278
	tOD	2.499	1.875	2.501	1.875	2.501	1.875	2.501	1.875
	tCMOS	2.145	2.071	2.554	2.501	3.306	3.221	4.773	4.412
PC3T04D	tOEN	1.480	1.244	1.889	1.703	2.644	2.435	4.114	3.654
	tOD	2.935	2.055	2.932	2.055	2.928	2.055	2.925	2.055
	tCMOS	2.243	1.777	2.589	2.172	3.206	2.772	4.394	3.822
PC3T05D	tOEN	1.411	1.156	1.750	1.550	2.375	2.172	3.567	3.245
	tOD	3.336	2.282	3.328	2.282	3.341	2.282	3.351	2.279

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State Output Pads with Pull-down Resistor PC3T01D through PC3T05D

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

				C	ore Input	Transitio	n		
Cell Name	Type Delay	0.1	ns	0.5	5 ns 2		ns	5 ns	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135
PC3T01D	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821
	tCMOS	2.986	2.322	3.020	2.365	3.138	2.488	3.321	2.718
PC3T02D	tOEN	2.358	1.802	2.396	1.844	2.503	1.936	2.698	2.120
	tOD	2.370	1.687	2.455	1.737	2.568	1.860	2.784	2.010
	tCMOS	2.636	2.554	2.679	2.600	2.799	2.712	2.999	2.912
PC3T03D	tOEN	2.008	1.874	2.051	1.917	2.158	2.007	2.356	2.193
	tOD	2.501	1.875	2.542	1.922	2.674	2.049	2.843	2.263
	tCMOS	2.554	2.501	2.595	2.547	2.716	2.659	2.900	2.859
PC3T04D	tOEN	1.889	1.703	1.935	1.740	2.031	1.835	2.231	2.004
	tOD	2.932	2.055	2.975	2.102	3.068	2.222	3.284	2.422
	tCMOS	2.589	2.172	2.628	2.220	2.745	2.343	2.931	2.541
PC3T05D	tOEN	1.750	1.550	1.794	1.587	1.909	1.677	2.107	1.861
	tOD	3.328	2.282	3.374	2.342	3.491	2.436	3.606	2.569

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State Output Pads with Pull-up Resistor PC3T01U through PC3T05U

PC3T01U through PC3T05U cells are three state CMOS output pads with pullup and AC drive capabilities ranging from 1x to 5x

Function Table

INP	UT	OUTPUT
OEN	I	PAD
Н	X	Hr
L	L	L
L	Н	Н

Hr = Resistive-High Drive Strength

Cell Description

Macro Name:	PC3T01U	PC3T02U	PC3T03U	PC3T04U	PC3T05U
Drive Capability:	1x	2x	3x	4x	5x
Leakage Power (µW)	30.611	30.611	30.611	30.611	30.611

Pin Description

Name -		С	apacitance (p	F)		Description
	PC3T01U	PC3T02U	PC3T03U	PC3T04U	PC3T05U	Description
I	0.112	0.188	0.195	0.198	0.198	Input
OEN	0.11	0.11	0.11	0.11	0.11	Output Enable
PAD	3.185	3.168	3.172	3.175	3.172	3-StateOutput

Pin Powers for: Standard Pad Load = 10.0 pF, Standard Core Input Transition = 0.1 ns

Name	Pin Power (pW/Hz)							
Name	PC3T01U	PC3T02U	PC3T03U	PC3T04U	PC3T05U			
PAD	21	22	22.9	23.4	24.3			

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State Output Pads with Pull-up Resistor PC3T01U through PC3T05U

Waveforms

Timing Numbers for PC3T01U through PC3T05U:

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

					Pad 1	Load			
Cell Name	Type Delay	8 1	8 pF		pF	32	pF	64 pF	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164
PC3T01U	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497
	tCMOS	2.237	1.833	2.976	2.327	4.429	3.242	7.319	5.053
PC3T02U	tOEN	1.578	1.337	2.317	1.833	3.770	2.748	6.661	4.563
	tOD	2.372	1.685	2.372	1.685	2.372	1.685	2.372	1.685
	tCMOS	2.121	2.045	2.627	2.561	3.609	3.456	5.544	4.911
PC3T03U	tOEN	1.467	1.389	1.982	1.912	2.957	2.825	4.895	4.308
	tOD	2.501	1.881	2.501	1.881	2.501	1.881	2.501	1.881
	tCMOS	2.146	2.071	2.552	2.503	3.299	3.226	4.767	4.420
PC3T04U	tOEN	1.456	1.280	1.869	1.733	2.622	2.463	4.094	3.686
	tOD	2.922	2.065	2.911	2.065	2.911	2.065	2.911	2.063
	tCMOS	2.242	1.785	2.580	2.182	3.199	2.782	4.388	3.828
PC3T05U	tOEN	1.398	1.190	1.741	1.578	2.360	2.193	3.550	3.258
	tOD	3.336	2.275	3.337	2.275	3.345	2.275	3.348	2.279

Copyright 2003, Synopsys, Inc., All rights reserved.

$\textbf{1.8V CMOS 3-State Output Pads with Pull-up Resistor} \\ \textbf{PC3T01U through PC3T05U}$

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

				C	ore Input	Transitio	n		
Cell Name	Type Delay	0.1 ns		0.5	5 ns 2		ns	5 ns	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135
PC3T01U	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821
	tCMOS	2.976	2.327	3.017	2.375	3.136	2.493	3.322	2.708
PC3T02U	tOEN	2.317	1.833	2.355	1.875	2.457	1.971	2.635	2.141
	tOD	2.372	1.685	2.446	1.732	2.563	1.864	2.763	2.031
	tCMOS	2.627	2.561	2.674	2.609	2.798	2.713	2.998	2.913
PC3T03U	tOEN	1.982	1.912	2.021	1.948	2.124	2.045	2.305	2.228
	tOD	2.501	1.881	2.547	1.936	2.664	2.062	2.831	2.267
	tCMOS	2.552	2.503	2.589	2.549	2.710	2.660	2.910	2.857
PC3T04U	tOEN	1.869	1.733	1.906	1.770	2.010	1.859	2.208	2.042
	tOD	2.911	2.065	2.952	2.104	3.081	2.223	3.348	2.423
	tCMOS	2.580	2.182	2.623	2.230	2.745	2.340	2.931	2.523
PC3T05U	tOEN	1.741	1.578	1.775	1.609	1.886	1.705	2.069	1.891
	tOD	3.337	2.275	3.381	2.342	3.457	2.424	3.671	2.591

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads PC3B01 through PC3B05

PC3B01 through PC3B05 cells are three state CMOS input/output pads with AC drive capabilities ranging from 1x to 5x.

Function Table

INP	UT	OUTPUTS			
OEN	I	PAD	CIN		
Н	X	Zl	L		
Н	X	Zh	Н		
L	L	L	L		
L	Н	Н	Н		

Cell Description

Macro Name:	PC3B01	PC3B02	PC3B03	PC3B04	PC3B05
Drive Capability	1x	2x	3x	4x	5x
Leakage Power (pW):	2853.3	3051.6	3118.4	3118.4	3121.1

Pin Description

Name		Ca	pacitance (pF	7)		Description	
Name	PC3B01	PC3B02	PC3B03	PC3B04	PC3B05	Description	
I	0.112	0.18	Input				
OEN	0.11	0.11	0.11	0.11	Output Enable		
PAD	3.185	3.182	3.188	3.188	3.188	3-StateOutput	
CIN	0.8	0.8	0.8	0.8	0.8	Output	

Pin Powers for: Standard Pad load = 10.0 pF, Standard Core Input Transition = 0.1 ns Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name		F	Pin Power (pW/Hz	z)	
Name	PC3B01	PC3B02	PC3B03	PC3B04	PC3B05
PAD	21	21.5	22.4	23	23.9
CIN	5.6	5.6	5.6	5.6	5.4

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads PC3B01 through PC3B05

Waveforms

Timing Numbers for PC3B01 through PC3B05:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

		Core Load Fanout										
Cell Name	2		4		8		16		32			
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
PC3B01	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142		
PC3B02	0.541	0.879	0.553	0.897	0.578	0.933	0.619	0.999	0.700	1.130		
PC3B03	0.541	0.880	0.553	0.899	0.578	0.935	0.621	1.000	0.706	1.130		
PC3B04	0.541	0.880	0.553	0.899	0.578	0.935	0.621	1.000	0.706	1.130		
PC3B05	0.541	0.880	0.553	0.899	0.578	0.935	0.621	1.000	0.706	1.130		

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

		Pad Input Transition										
Cell Name	1 ns		2 ns		5 ns		10 ns		15 ns			
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
PC3B01	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974		
PC3B02	0.619	0.999	0.763	1.218	0.960	1.717	1.135	2.340	1.310	2.963		
PC3B03	0.621	1.000	0.763	1.225	0.960	1.717	1.135	2.338	1.310	2.958		
PC3B04	0.621	1.000	0.763	1.225	0.960	1.717	1.135	2.338	1.310	2.958		
PC3B05	0.621	1.000	0.763	1.225	0.960	1.717	1.135	2.338	1.310	2.958		

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads PC3B01 through PC3B05

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

					Pad 1	Load			
Cell Name	Type Delay	8 1	pF	16	pF	32	pF	64	pF
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164
PC3B01	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497
	tCMOS	2.241	1.832	2.978	2.326	4.428	3.241	7.322	5.049
PC3B02	tOEN	1.619	1.334	2.359	1.838	3.810	2.753	6.703	4.560
	tOD	2.378	1.691	2.378	1.691	2.378	1.691	2.378	1.691
	tCMOS	2.127	2.044	2.635	2.559	3.612	3.451	5.555	4.910
PC3B03	tOEN	1.493	1.377	2.005	1.902	2.980	2.818	4.923	4.306
	tOD	2.501	1.887	2.501	1.887	2.503	1.887	2.505	1.887
	tCMOS	2.145	2.069	2.553	2.503	3.305	3.228	4.771	4.421
PC3B04	tOEN	1.478	1.272	1.887	1.725	2.637	2.454	4.109	3.674
	tOD	2.920	2.094	2.913	2.094	2.908	2.094	2.905	2.094
	tCMOS	2.240	1.780	2.583	2.176	3.200	2.781	4.394	3.829
PC3B05	tOEN	1.416	1.180	1.755	1.570	2.375	2.192	3.563	3.263
	tOD	3.315	2.268	3.314	2.268	3.317	2.268	3.339	2.268

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads PC3B01 through PC3B05

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

				C	ore Input	Transitio	n		
Cell Name	Type Delay	0.1 ns		0.5	0.5 ns		2 ns		ns
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135
PC3B01	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821
	tCMOS	2.978	2.326	3.024	2.374	3.136	2.493	3.319	2.710
PC3B02	tOEN	2.359	1.838	2.396	1.868	2.501	1.968	2.693	2.166
	tOD	2.378	1.691	2.461	1.732	2.556	1.864	2.747	2.031
	tCMOS	2.635	2.559	2.676	2.601	2.797	2.712	3.000	2.909
PC3B03	tOEN	2.005	1.902	2.050	1.943	2.153	2.044	2.334	2.227
	tOD	2.501	1.887	2.549	1.922	2.673	2.035	2.873	2.204
	tCMOS	2.553	2.503	2.596	2.550	2.715	2.659	2.901	2.862
PC3B04	tOEN	1.887	1.725	1.933	1.760	2.036	1.862	2.219	2.060
	tOD	2.913	2.094	2.967	2.114	3.108	2.223	3.286	2.423
	tCMOS	2.583	2.176	2.625	2.223	2.745	2.344	2.929	2.544
PC3B05	tOEN	1.755	1.570	1.794	1.612	1.905	1.705	2.089	1.890
	tOD	3.314	2.268	3.354	2.314	3.505	2.442	3.641	2.711

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Pull-down Resistor PC3B01D through PC3B05D

PC3B01D through PC3B05D cells are three state CMOS input/output pads with pulldown and with AC drive capabilities ranging from 1x to 5x.

Function Table

INP	UT	OUTPUTS				
OEN	I	PAD	CIN			
Н	X	Lr	L			
L	L	L	L			
L	Н	Н	Н			

Lr = Resistive-Low Drive Strength

Cell Description

Macro Name:	PC3B01D	PC3B02D	PC3B03D	PC3B04D	PC3B05D
Drive Capability	1x	2x	3x	4x	5x
Leakage Power (pW):	2853.3	3051.6	3118.4	3118.4	3121.1

Pin Description

Name		Са	pacitance (pF	7)		Description		
Name	PC3B01D	PC3B02D	PC3B03D	PC3B04D	PC3B05D	Description		
I	0.112	0.2	0.18	Input				
OEN	0.11	0.11	0.11 0.11 0.1			Output Enable		
PAD	3.185	3.17	3.178	3.18	3.18	3-StateOutput		
CIN	0.8	Maximum capacitance 0.8 0.8 0.8 0.8						

Pin Powers for: Standard Pad load = 10.0 pF, Standard Core Input Transition = 0.1 ns Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name		Pin Power (pW/Hz)							
Name	PC3B01D PC3B02D		PC3B03D	PC3B04D	PC3B05D				
PAD	21	21.9	22.8	23.3	24.2				
CIN	5.6	5.5	5.5	5.6	5.5				

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Pull-down Resistor PC3B01D through PC3B05D

Waveforms I OEN PAD CIN

Timing Numbers for PC3B01D through PC3B05D:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

		Core Load Fanout											
Cell Name	2		4		8		16		32				
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
PC3B01D	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142			
PC3B02D	0.553	0.889	0.565	0.908	0.590	0.947	0.632	1.013	0.716	1.145			
PC3B03D	0.553	0.890	0.565	0.908	0.590	0.943	0.632	1.008	0.716	1.138			
PC3B04D	0.553	0.890	0.565	0.909	0.590	0.945	0.632	1.008	0.716	1.133			
PC3B05D	0.553	0.890	0.565	0.908	0.590	0.943	0.630	1.010	0.710	1.145			

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

		Pad Input Transition										
Cell Name	1 ns		2 ns		5 ns		10 ns		15 ns			
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
PC3B01D	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974		
PC3B02D	0.632	1.013	0.780	1.240	0.996	1.707	1.203	2.305	1.409	2.903		
PC3B03D	0.632	1.008	0.780	1.225	0.995	1.710	1.195	2.308	1.395	2.905		
PC3B04D	0.632	1.008	0.780	1.233	0.995	1.709	1.195	2.305	1.395	2.901		
PC3B05D	0.630	1.010	0.780	1.225	0.995	1.707	1.195	2.293	1.395	2.878		

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Pull-down Resistor PC3B01D through PC3B05D

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

		Pad Load							
Cell Name	Type Delay	8 pF		16	16 pF		32 pF		pF
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164
PC3B01D	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497
	tCMOS	2.245	1.828	2.987	2.317	4.442	3.232	7.344	5.043
PC3B02D	tOEN	1.616	1.299	2.354	1.803	3.807	2.718	6.705	4.528
	tOD	2.374	1.691	2.374	1.691	2.374	1.691	2.374	1.691
	tCMOS	2.127	2.039	2.636	2.555	3.616	3.453	5.559	4.909
PC3B03D	tOEN	1.493	1.338	2.006	1.874	2.983	2.794	4.928	4.283
	tOD	2.503	1.887	2.502	1.887	2.506	1.887	2.508	1.887
	tCMOS	2.148	2.069	2.554	2.501	3.306	3.221	4.776	4.415
PC3B04D	tOEN	1.478	1.244	1.889	1.703	2.642	2.433	4.117	3.653
	tOD	2.939	2.068	2.931	2.068	2.921	2.068	2.915	2.068
	tCMOS	2.243	1.784	2.585	2.181	3.206	2.778	4.396	3.824
PC3B05D	tOEN	1.416	1.153	1.756	1.545	2.377	2.170	3.567	3.250
	tOD	3.306	2.262	3.298	2.262	3.309	2.262	3.316	2.259

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Pull-down Resistor PC3B01D through PC3B05D

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

				C	ore Input	Transitio	n					
Cell Name	Type Delay	0.1	ns	0.5	ns	2	ns	5 ns				
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135			
PC3B01D	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676			
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821			
PC3B02D	tCMOS	2.987	2.317	3.028	2.365	3.137	2.488	3.323	2.719			
	tOEN	2.354	1.803	2.399	1.846	2.507	1.940	2.688	2.112			
	tOD	2.374	1.691	2.445	1.732	2.566	1.853	2.728	2.024			
	tCMOS	2.636	2.555	2.684	2.600	2.799	2.712	2.999	2.915			
PC3B03D	tOEN	2.006	1.874	2.051	1.922	2.163	2.012	2.346	2.204			
	tOD	2.502	1.887	2.549	1.922	2.673	2.034	2.873	2.201			
	tCMOS	2.554	2.501	2.602	2.549	2.711	2.660	2.911	2.857			
PC3B04D	tOEN	1.889	1.703	1.933	1.738	2.036	1.834	2.220	2.032			
	tOD	2.931	2.068	2.976	2.107	3.098	2.223	3.238	2.420			
	tCMOS	2.585	2.181	2.626	2.222	2.749	2.339	2.947	2.520			
PC3B05D	tOEN	1.756	1.545	1.801	1.587	1.909	1.677	2.107	1.861			
	tOD	3.298	2.262	3.373	2.307	3.496	2.422	3.626	2.615			

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pad with Controllable Pull-down Resistor PC3B03ED

PC3B03ED cell is three state CMOS input/output pad with controllable pulldown resistor, and with AC drive capabilities ranging 3x.

Function Table

	INP	UT	OUTPUT			
RENB	OEN	I	PAD	CIN		
X	Н	X	L	L		
X	Н	X	Н	Н		
L	Н	X	Lr	L		
Н	Н	X	Z	X		
X	L	L	L	L		
X	L	Н	Н	Н		

Cell Description

Macro Name:	PC3B03ED
Drive Capability	3x
Leakage Power (pW):	2855.4

Pin Description

- .								
Name	Capacitance (pF)	Description						
Name	PC3B03ED	Description						
I	0.195	Input						
RENB	0.11	Input						
OEN	0.11	Output Enable						
PAD	3.188	3-StateOutput						
Maximum capacitance								
CIN	0.8	Output						

Pin Powers for:

Standard Pad load = 10.0 pF, Standard Core Input Transition = 0.1 ns Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name	Pin Power (pW/Hz)
Name	PC3B03ED
PAD	22.3
CIN	9.9

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pad with Controllable Pull-down Resistor PC3B03ED

Timing Numbers for PC3B03ED:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

Cell Name					Core Loa	d Fanout				
	2	2	4	4	8	3	1	6	3	32 RISE FALL 0.613 0.530
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PC3B03ED	0.455	0.410	0.465	0.420	0.485	0.438	0.528	0.469	0.613	0.530

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

	Pad Input Transition									
Cell Name	1	ns	2	ns	5	ns	10	ns	ns 15	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PC3B03ED	0.528	0.469	0.553	0.613	0.574	0.927	0.530	1.385	0.486	1.843

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pad with Controllable Pull-down Resistor PC3B03ED

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

Cell Name					Pad l	Load						
	Type Delay	8 1	pF	16	pF	32	pF	64	pF			
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
	tCMOS	2.120	2.042	2.632	2.560	3.610	3.455	5.548	4.910			
PC3B03ED	tOEN	1.496	1.385	2.006	1.908	2.984	2.825	4.927	4.309			
-	tOD	2.498	1.875	2.500	1.875	2.497	1.875	2.495	1.875			

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

Cell Name				С	ore Input	Transitio	n					
	Type Delay	0.1	ns	0.5	ns	2	ns	5	3.000 2.909 2.335 2.239			
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
PC3B03ED	tCMOS	2.632	2.560	2.680	2.601	2.797	2.712	3.000	2.909			
	tOEN	2.006	1.908	2.044	1.950	2.152	2.039	2.335	2.239			
	tOD	2.500	1.875	2.549	1.922	2.664	2.062	2.831	2.267			

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Pull-up Resistor PC3B01U through PC3B05U

PC3B01U through PC3B05U cells are three state CMOS input/output pads with pullup and with AC drive capabilities ranging from 1x to 5x.

Function Table

INP	UT	OUTPUTS				
OEN	I	PAD	CIN			
Н	X	Hr	Н			
L	L	L	L			
L	Н	Н	Н			

Hr = Resistive-High Drive Strength

Cell Description

Macro Name:	PC3B01U	PC3B02U	PC3B03U	PC3B04U	PC3B05U
Drive Capability	1x	2x	3x	4x	5x
Leakage Power (µW):	30.611	30.611	30.611	30.611	30.611

Pin Description

Name		Description							
	PC3B01U	PC3B02U	PC3B03U	PC3B04U	PC3B05U	Description			
I	0.112	0.195	0.18	0.18	0.18	Input			
OEN	0.11	0.11	0.11	0.11	0.11	Output Enable			
PAD	3.185	3.168	3.172	3.178	3.172	3-StateOutput			
Maximum capacitance									
CIN	0.8	0.8	0.8	0.8	0.8	Output			

Pin Powers for: Standard Pad load = 10.0 pF, Standard Core Input Transition = 0.1 ns Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name	Pin Power (pW/Hz)									
	PC3B01U	PC3B02U	PC3B03U	PC3B04U	PC3B05U					
PAD	21	22	22.9	23.4	24.3					
CIN	5.6	5.8	5.6	5.7	5.6					

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Pull-up Resistor PC3B01U through PC3B05U

Timing Numbers for PC3B01U through PC3B05U:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

Cell Name	Core Load Fanout										
	2		4		8		16		32		
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
PC3B01U	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142	
PC3B02U	0.539	0.883	0.552	0.903	0.578	0.945	0.620	1.010	0.705	1.140	
PC3B03U	0.541	0.883	0.553	0.903	0.578	0.945	0.621	1.010	0.706	1.140	
PC3B04U	0.541	0.883	0.553	0.904	0.578	0.947	0.621	1.011	0.706	1.140	
PC3B05U	0.541	0.890	0.553	0.905	0.578	0.937	0.621	1.002	0.706	1.132	

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

Cell Name	Pad Input Transition										
	1 ns		2 ns		5 ns		10 ns		15 ns		
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
PC3B01U	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974	
PC3B02U	0.620	1.010	0.760	1.235	0.937	1.740	1.095	2.388	1.253	3.035	
PC3B03U	0.621	1.010	0.763	1.235	0.937	1.744	1.095	2.378	1.253	3.011	
PC3B04U	0.621	1.011	0.763	1.243	0.937	1.738	1.095	2.378	1.253	3.017	
PC3B05U	0.621	1.002	0.763	1.235	0.937	1.746	1.095	2.390	1.253	3.034	

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Pull-up Resistor PC3B01U through PC3B05U

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

		Pad Load									
Cell Name	Type Delay	8 1	8 pF		16 pF		32 pF		64 pF		
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164		
PC3B01U	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749		
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497		
	tCMOS	2.239	1.833	2.977	2.327	4.422	3.242	7.309	5.055		
PC3B02U	tOEN	1.580	1.337	2.320	1.834	3.771	2.752	6.661	4.563		
	tOD	2.385	1.697	2.385	1.697	2.385	1.697	2.385	1.694		
	tCMOS	2.123	2.045	2.632	2.560	3.609	3.452	5.549	4.911		
PC3B03U	tOEN	1.464	1.382	1.976	1.909	2.951	2.824	4.897	4.300		
	tOD	2.498	1.881	2.495	1.881	2.497	1.881	2.498	1.881		
	tCMOS	2.142	2.071	2.548	2.503	3.303	3.228	4.770	4.422		
PC3B04U	tOEN	1.453	1.276	1.865	1.726	2.617	2.456	4.089	3.678		
	tOD	2.906	2.075	2.906	2.075	2.913	2.075	2.917	2.075		
	tCMOS	2.240	1.778	2.580	2.173	3.199	2.776	4.388	3.822		
PC3B05U	tOEN	1.393	1.184	1.739	1.571	2.359	2.194	3.547	3.266		
	tOD	3.312	2.268	3.329	2.268	3.342	2.268	3.351	2.268		

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Pull-up Resistor PC3B01U through PC3B05U

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

				C	ore Input	Transitio	n		
Cell Name	Type Delay	0.1	ns	0.5 ns		2 ns		5 ns	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135
PC3B01U	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821
	tCMOS	2.977	2.327	3.018	2.375	3.136	2.494	3.322	2.711
PC3B02U	tOEN	2.320	1.834	2.357	1.876	2.462	1.975	2.626	2.159
	tOD	2.385	1.697	2.446	1.746	2.556	1.869	2.749	2.022
	tCMOS	2.632	2.560	2.674	2.602	2.789	2.713	2.989	2.910
PC3B03U	tOEN	1.976	1.909	2.021	1.944	2.129	2.041	2.295	2.236
	tOD	2.495	1.881	2.557	1.929	2.663	2.039	2.863	2.222
	tCMOS	2.548	2.503	2.595	2.556	2.715	2.660	2.898	2.860
PC3B04U	tOEN	1.865	1.726	1.911	1.761	2.015	1.864	2.198	2.062
	tOD	2.906	2.075	2.965	2.136	3.097	2.223	3.278	2.423
	tCMOS	2.580	2.173	2.623	2.220	2.745	2.341	2.931	2.526
PC3B05U	tOEN	1.739	1.571	1.778	1.613	1.881	1.706	2.079	1.889
	tOD	3.329	2.268	3.356	2.329	3.495	2.442	3.626	2.711

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Controllable Pull-up Resistor PC3B21EU PC3B25EU

PC3B21EU PC3B25EU cells are three state CMOS Schmitt non inverting input/output pads with controllable pullup resistor, AC drive capabilities ranging 1x, 5x.

Function Table

	INPUT	OUTPUT			
RENB	OEN	I	PAD	CIN	
X	Н	X	L	L	
X	Н	X	Н	Н	
L	Н	X	Hr	Н	
Н	Н	X	Z	X	
X	L	L	L	L	
X	L	Н	Н	Н	

Cell Description

Macro Name:	PC3B21EU	PC3B25EU
Drive Capability	1x	5x
Leakage Power (µW):	30.611	30.611

Pin Description

Name	Capacita	nce (pF)	Description						
Name	PC3B21EU	PC3B25EU	Description						
I	0.112 0.18		Input						
RENB	0.11	0.11	Input						
OEN	0.11	0.11	Output Enable						
PAD	3.185	3.172	3-StateOutput						
Maximum capacitance									
CIN	0.8	0.8	Output						

Pin Powers for:

Standard Pad load = 10.0 pF, Standard Core Input Transition = 0.1 ns Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name	Pin Power (pW/Hz)					
Name	PC3B21EU	PC3B25EU				
PAD	21	24.3				
CIN	5.6	5.6				

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Controllable Pull-up Resistor PC3B21EU PC3B25EU

Timing Numbers for PC3B21EU PC3B25EU:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

Cell Name		Core Load Fanout										
	2		4		8		16		32			
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
PC3B21EU	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142		
PC3B25EU	0.541	0.890	0.553	0.905	0.578	0.937	0.621	1.002	0.706	1.132		

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

Cell Name		Pad Input Transition										
	1 ns		2 ns		5 ns		10 ns		15 ns			
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
PC3B21EU	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974		
PC3B25EU	0.621	1.002	0.763	1.235	0.937	1.746	1.095	2.390	1.253	3.034		

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS 3-State I/O Pads with Controllable Pull-up Resistor PC3B21EU PC3B25EU

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

Cell Name		Pad Load										
	Type Delay	8 pF		16 pF		32 pF		64 pF				
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164			
PC3B21EU	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749			
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497			
	tCMOS	2.240	1.778	2.580	2.173	3.199	2.776	4.388	3.822			
PC3B25EU	tOEN	1.393	1.184	1.739	1.571	2.359	2.194	3.547	3.266			
	tOD	3.312	2.268	3.329	2.268	3.342	2.268	3.351	2.268			

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

		Core Input Transition									
Cell Name	Type Delay	0.1 ns		0.5 ns		2 ns		5 ns			
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135		
PC3B21EU	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676		
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821		
	tCMOS	2.580	2.173	2.623	2.220	2.745	2.341	2.931	2.526		
PC3B25EU	tOEN	1.739	1.571	1.778	1.613	1.881	1.706	2.079	1.889		
	tOD	3.329	2.268	3.356	2.329	3.495	2.442	3.626	2.711		

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Output Pads PC3O01 through PC3O05

PC3O01 through PC3O05 cells are CMOS output pads with AC drive capabilities ranging from 1x to 5x.

Function Table

INPUT	OUTPUT
I	PAD
L	L
Н	Н

Cell Description

Macro Name:	PC3O01	PC3O02	PC3O03	PC3O04	PC3O05
Drive Capability	1x	2x	3x	4x	5x
Leakage Power (pW)	2853.3	1804.1	1873.6	1873.6	1873.6

Pin Description

Name	Name Capacitance (pF)								
Name	PC3O01	PC3O02	PC3O03	PC3O04	PC3O05	Description			
I	0.112	0.178	0.188	0.188	0.175	Input			
	Maximum capacitance								
PAD	80	80	80	80	80	Output			

Pin Powers for: Standard Pad load = 10.0 pF, Standard Core Input Transition = 0.1 ns

Name	Pin Power (pW/Hz)								
Name	PC3O01	PC3O02 PC3O03		PC3O04	PC3O05				
PAD	21	27.8	29	29.7	30.8				

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Output Pads PC3O01 through PC3O05

Waveforms

Timing Numbers for PC3O01 through PC3O05:

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

					Pad l	Load			
Cell Name	Type Delay	8 pF		16 pF		32 pF		64 pF	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PC3O01	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164
PC3O02	tCMOS	2.295	1.935	3.034	2.395	4.513	3.317	7.456	5.154
PC3O03	tCMOS	2.174	1.961	2.665	2.413	3.646	3.318	5.593	4.739
PC3O04	tCMOS	2.121	1.931	2.494	2.291	3.240	3.011	4.722	4.187
PC3O05	tCMOS	2.141	1.965	2.448	2.270	3.061	2.882	4.253	3.907

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

		Core Input Transition								
Cell Name	Type Delay	0.1 ns		0.5 ns		2 ns		5 ns		
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
PC3O01	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135	
PC3O02	tCMOS	3.034	2.395	3.081	2.446	3.195	2.562	3.391	2.774	
PC3O03	tCMOS	2.665	2.413	2.700	2.460	2.814	2.581	3.019	2.773	
PC3O04	tCMOS	2.494	2.291	2.539	2.337	2.664	2.453	2.855	2.653	
PC3O05	tCMOS	2.448	2.270	2.485	2.316	2.606	2.434	2.798	2.617	

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Output Pad with High Voltage Input Pin PC3001HV

PC3O01HV cell is CMOS output pad with AC drive capabilities ranging 1x. Its input pin I can be connected to the buses which can swing between 0V and 1.95V.

Function Table

INPUT	OUTPUT
I	PAD
L	L
Н	Н

Cell Description

Macro Name:	PC3O01HV
Drive Capability	1x
Leakage Power (pW)	2853.3

Pin Description

Name	Capacitance (pF)	Description						
	PC3O01HV	1						
I	0.112	Input						
,	Maximum capacitance							
PAD	3.185	Output						

Pin Powers for: Standard Pad load = 10.0 pF, Standard Core Input Transition = 0.1 ns

Name	Pin Power (pW/ Hz)			
	PC3O01HV			
PAD	21			

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Output Pad with High Voltage Input Pin PC3O01HV

Waveforms

Timing Numbers for PC3O01HV:

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

			Pad Load							
Cell Name	Type Delay	8 pF		16 pF		32 pF		64 pF		
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
PC3O01HV	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164	

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

			Core Input Transition							
Cell Name	Type Delay	0.1	ns	0.5 ns		2 ns		5 ns		
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
PC3O01HV	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135	

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State Output Pads PT3T01 through PT3T03

PT3T01 through PT3T03 cells are three state TTL output pads with AC drive capabilities of 2mA, 6mA, 10mA respectively.

Function Table

INP	UT	OUTPUT	
OEN	I	PAD	
Н	X	Z	
L	L	L	
L	Н	Н	

Cell Description

Macro Name:	PT3T01	PT3T02	PT3T03
Drive Capability:	1x	2x	3x
Leakage Power (pW)	2853.3	2855.4	2858.1

Pin Description

Name	(Capacitance (pF)				
Ivanic	PT3T01	PT3T02 PT3T0		Description		
I	0.112	0.195	0.198	Input		
OEN	0.11	0.11	0.11	Output Enable		
PAD	3.185	3.188	3.188	3-StateOutput		

Pin Powers for: Standard Pad Load = 10.0 pF, Standard Core Input Transition = 0.1 ns

Name	Pin Power (pW/Hz)							
Ivanie	PT3T01	PT3T02	PT3T03					
PAD	21	22.3	23.8					

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State Output Pads PT3T01 through PT3T03

Timing Numbers for PT3T01 through PT3T03:

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

		Pad Load								
Cell Name	Type Delay	8 pF		16 pF		32 pF		64 pF		
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164	
PT3T01	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749	
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497	
	tCMOS	2.120	2.042	2.632	2.560	3.610	3.455	5.548	4.910	
PT3T02	tOEN	1.496	1.385	2.006	1.908	2.984	2.825	4.927	4.309	
	tOD	2.498	1.875	2.500	1.875	2.497	1.875	2.495	1.875	
PT3T03	tCMOS	2.240	1.784	2.583	2.181	3.200	2.781	4.387	3.827	
	tOEN	1.424	1.188	1.763	1.578	2.378	2.193	3.568	3.261	
	tOD	3.338	2.265	3.338	2.265	3.349	2.265	3.354	2.265	

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State Output Pads PT3T01 through PT3T03

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

	Core Input Transition								
Cell Name	Type Delay	0.1	0.1 ns		0.5 ns		2 ns		ns
	Type Belay	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135
PT3T01	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821
	tCMOS	2.632	2.560	2.680	2.601	2.797	2.712	3.000	2.909
PT3T02	tOEN	2.006	1.908	2.044	1.950	2.152	2.039	2.335	2.239
	tOD	2.500	1.875	2.549	1.922	2.664	2.062	2.831	2.267
	tCMOS	2.583	2.181	2.625	2.229	2.748	2.339	2.948	2.523
PT3T03	tOEN	1.763	1.578	1.796	1.608	1.905	1.705	2.089	1.890
	tOD	3.338	2.265	3.382	2.333	3.496	2.424	3.598	2.591

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State Output Pads with Pull-down Resistor PT3T01D through PT3T03D

PT3T01D through PT3T03D cells are three state TTL output pads with pulldown and with AC drive capabilities of 2mA, 6mA, 10mA respectively.

Function Table

INP	UT	OUTPUT
OEN	I	PAD
Н	X	Lr
L	L	L
L	Н	Н

Lr = Resistive-Low Drive Strength

Cell Description

Macro Name:	PT3T01D	PT3T02D	PT3T03D
Drive Capability:	1x	2x	3x
Leakage Power (pW)	2853.3	2855.4	2858.1

Pin Description

Name	(Capacitance (pF	Description		
Name	PT3T01D	PT3T02D	PT3T03D	Description	
I	0.112	0.19	0.198	Input	
OEN	0.11	0.11 0.11		Output Enable	
PAD	3.185	3.178	3.18	3-StateOutput	

Pin Powers for: Standard Pad Load = 10.0 pF, Standard Core Input Transition = 0.1 ns

Name	Pin Power (pW/Hz)							
Name	PT3T01D	PT3T02D	PT3T03D					
PAD	21	22.7	24.1					

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State Output Pads with Pull-down Resistor PT3T01D through PT3T03D

Timing Numbers for PT3T01D through PT3T03D:

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

		Pad Load							
Cell Name	Type Delay	8 pF		16 pF		32 pF		64 pF	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164
PT3T01D	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497
	tCMOS	2.127	2.039	2.636	2.554	3.614	3.449	5.553	4.906
PT3T02D	tOEN	1.493	1.340	2.008	1.874	2.991	2.795	4.931	4.278
	tOD	2.499	1.875	2.501	1.875	2.501	1.875	2.501	1.875
PT3T03D	tCMOS	2.243	1.777	2.589	2.172	3.206	2.772	4.394	3.822
	tOEN	1.411	1.156	1.750	1.550	2.375	2.172	3.567	3.245
	tOD	3.336	2.282	3.328	2.282	3.341	2.282	3.351	2.279

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State Output Pads with Pull-down Resistor PT3T01D through PT3T03D

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

	Core Input Transition								
Cell Name	Type Delay	0.1	ns	0.5	0.5 ns		2 ns		ns
	Type Belay	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135
PT3T01D	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821
	tCMOS	2.636	2.554	2.679	2.600	2.799	2.712	2.999	2.912
PT3T02D	tOEN	2.008	1.874	2.051	1.917	2.158	2.007	2.356	2.193
	tOD	2.501	1.875	2.542	1.922	2.674	2.049	2.843	2.263
	tCMOS	2.589	2.172	2.628	2.220	2.745	2.343	2.931	2.541
PT3T03D	tOEN	1.750	1.550	1.794	1.587	1.909	1.677	2.107	1.861
	tOD	3.328	2.282	3.374	2.342	3.491	2.436	3.606	2.569

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State Output Pads with Pull-up Resistor PT3T01U through PT3T03U

PT3T01U through PT3T03U cells are three state TTL output pads with pullup and with AC drive capabilities of 2mA, 6mA, 10mA respectively

Function Table

INP	UT	OUTPUT
OEN	I	PAD
Н	X	Hr
L	L	L
L	Н	Н

Hr = Resistive-High Drive Strength

Cell Description

Macro Name:	PT3T01U	PT3T02U	PT3T03U
Drive Capability:	1x	2x	3x
Leakage Power (µW)	30.611	30.611	30.611

Pin Description

Name		Capacitance (pF)		Description
Ivaille	PT3T01U	PT3T02U	PT3T03U	Description
I	0.112	0.195	0.198	Input
OEN	0.11	0.11	0.11	Output Enable
PAD	3.185	3.172	3.172	3-StateOutput

Pin Powers for: Standard Pad Load = 10.0 pF, Standard Core Input Transition = 0.1 ns

Name	Pin Power (pW/Hz)							
	PT3T01U	PT3T02U	PT3T03U					
PAD	21	22.9	24.3					

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State Output Pads with Pull-up Resistor PT3T01U through PT3T03U

Timing Numbers for PT3T01U through PT3T03U:

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

			Pad Load									
Cell Name	Type Delay	8]	8 pF		16 pF		32 pF		pF			
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
PT3T01U	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164			
	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749			
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497			
	tCMOS	2.121	2.045	2.627	2.561	3.609	3.456	5.544	4.911			
PT3T02U	tOEN	1.467	1.389	1.982	1.912	2.957	2.825	4.895	4.308			
	tOD	2.501	1.881	2.501	1.881	2.501	1.881	2.501	1.881			
	tCMOS	2.242	1.785	2.580	2.182	3.199	2.782	4.388	3.828			
PT3T03U	tOEN	1.398	1.190	1.741	1.578	2.360	2.193	3.550	3.258			
	tOD	3.336	2.275	3.337	2.275	3.345	2.275	3.348	2.279			

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State Output Pads with Pull-up Resistor PT3T01U through PT3T03U

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

	Core Input Transition											
Cell Name	Type Delay	0.1 ns		0.5 ns		2 ns		5 ns				
	Type Belay	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
PT3T01U	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135			
	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676			
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821			
	tCMOS	2.627	2.561	2.674	2.609	2.798	2.713	2.998	2.913			
PT3T02U	tOEN	1.982	1.912	2.021	1.948	2.124	2.045	2.305	2.228			
	tOD	2.501	1.881	2.547	1.936	2.664	2.062	2.831	2.267			
	tCMOS	2.580	2.182	2.623	2.230	2.745	2.340	2.931	2.523			
PT3T03U	tOEN	1.741	1.578	1.775	1.609	1.886	1.705	2.069	1.891			
	tOD	3.337	2.275	3.381	2.342	3.457	2.424	3.671	2.591			

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State I/O Pads PT3B01 through PT3B03

PT3B01 through PT3B03 cells are three state TTL input/output pads with AC drive capabilities of 2mA, 6mA, 10mA respectively.

Function Table

INP	UT	OUTPUTS				
OEN	I	PAD	CIN			
Н	X	Zl	L			
Н	X	Zh	Н			
L	L	L	L			
L	Н	Н	Н			

Cell Description

Macro Name:	PT3B01	PT3B02	PT3B03
Drive Capability	1x	2x	3x
Leakage Power (pW):	2853.3	3118.4	3121.1

Pin Description

Name		Capacitance (pF)		Description						
Name	PT3B01	PT3B02	PT3B03	Description						
I	0.112	0.18	0.18	Input						
OEN	0.11	0.11	0.11	Output Enable						
PAD	3.185	3.188	3.188	3-StateOutput						
	Maximum capacitance									
CIN	0.8	0.8	0.8	Output						

Pin Powers for:

Standard Pad Load = 10.0 pF, Standard Core Input Transition = 0.1 ns Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name	Pin Power (pW/Hz)							
	PT3B01	PT3B02	PT3B03					
PAD	21	22.4	23.9					
CIN	5.6	5.6	5.4					

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State I/O Pads PT3B01 through PT3B03

Waveforms

Timing Numbers for PT3B01 through PT3B03:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

Cell Name		Core Load Fanout												
	2		4		8		16		32					
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL				
PT3B01	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142				
PT3B02	0.541	0.880	0.553	0.899	0.578	0.935	0.621	1.000	0.706	1.130				
PT3B03	0.541	0.880	0.553	0.899	0.578	0.935	0.621	1.000	0.706	1.130				

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

		Pad Input Transition												
Cell Name	1 ns		2 ns		5 ns		10 ns		15 ns					
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL				
PT3B01	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974				
PT3B02	0.621	1.000	0.763	1.225	0.960	1.717	1.135	2.338	1.310	2.958				
PT3B03	0.621	1.000	0.763	1.225	0.960	1.717	1.135	2.338	1.310	2.958				

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State I/O Pads PT3B01 through PT3B03

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

			Pad Load									
Cell Name	Type Delay	8]	8 pF		16 pF		32 pF		pF			
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
PT3B01	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164			
	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749			
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497			
	tCMOS	2.127	2.044	2.635	2.559	3.612	3.451	5.555	4.910			
PT3B02	tOEN	1.493	1.377	2.005	1.902	2.980	2.818	4.923	4.306			
	tOD	2.501	1.887	2.501	1.887	2.503	1.887	2.505	1.887			
	tCMOS	2.240	1.780	2.583	2.176	3.200	2.781	4.394	3.829			
PT3B03	tOEN	1.416	1.180	1.755	1.570	2.375	2.192	3.563	3.263			
	tOD	3.315	2.268	3.314	2.268	3.317	2.268	3.339	2.268			

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

		Core Input Transition									
Cell Name	Type Delay	0.1	0.1 ns		0.5 ns		2 ns		ns		
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
PT3B01	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135		
	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676		
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821		
	tCMOS	2.635	2.559	2.676	2.601	2.797	2.712	3.000	2.909		
PT3B02	tOEN	2.005	1.902	2.050	1.943	2.153	2.044	2.334	2.227		
	tOD	2.501	1.887	2.549	1.922	2.673	2.035	2.873	2.204		
	tCMOS	2.583	2.176	2.625	2.223	2.745	2.344	2.929	2.544		
PT3B03	tOEN	1.755	1.570	1.794	1.612	1.905	1.705	2.089	1.890		
	tOD	3.314	2.268	3.354	2.314	3.505	2.442	3.641	2.711		

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State I/O Pads with Pull-down Resistor PT3B01D through PT3B03D

PT3B01D through PT3B03D cells are three state TTL input/output pads with pull-down and with AC drive capabilities of 2mA, 6mA, 10mA respectively.

Function Table

INP	UT	OUTPUTS		
OEN	I	PAD	CIN	
Н	X	Lr	L	
L	L	L	L	
L	Н	Н	Н	

Lr = Resistive-Low Drive Strength

Cell Description

Macro Name:	PT3B01D	PT3B02D	PT3B03D
Drive Capability	1x	2x	3x
Leakage Power (pW):	2853.3	3118.4	3121.1

Pin Description

Name		Capacitance (pF)	Description	
Name	PT3B01D	PT3B02D	PT3B03D	Description
I	0.112	0.18	0.18	Input
OEN	0.11	0.11	0.11	Output Enable
PAD	3.185	3.178	3.18	3-StateOutput
CIN	0.8	0.8	0.8	Output

Pin Powers for:

Standard Pad Load = 10.0 pF, Standard Core Input Transition = 0.1 ns Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name		Pin Power (pW/Hz)	
Name	PT3B01D	PT3B02D	PT3B03D
PAD	21	22.8	24.2
CIN	5.6	5.5	5.5

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State I/O Pads with Pull-down Resistor PT3B01D through PT3B03D

I CMOS OEN PAD CIN

Timing Numbers for PT3B01D through PT3B03D:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

					Core Loa	d Fanout				
Cell Name	2	2	4	4	8	3	1	6	3	2
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PT3B01D	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142
PT3B02D	0.553	0.890	0.565	0.908	0.590	0.943	0.630	1.008	0.710	1.138
PT3B03D	0.553	0.890	0.565	0.908	0.590	0.943	0.630	1.010	0.710	1.145

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

		Pad Input Transition								
Cell Name	1 ns		2 ns		5 ns		10 ns		15 ns	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PT3B01D	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974
PT3B02D	0.630	1.008	0.780	1.225	0.995	1.710	1.195	2.308	1.395	2.905
PT3B03D	0.630	1.010	0.780	1.225	0.995	1.707	1.195	2.293	1.395	2.878

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State I/O Pads with Pull-down Resistor PT3B01D through PT3B03D

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

		Pad Load							
Cell Name	Type Delay	8 1	pF	16	pF	32	pF	64	pF
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164
PT3B01D	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497
	tCMOS	2.127	2.039	2.636	2.553	3.616	3.445	5.559	4.902
PT3B02D	tOEN	1.500	1.338	2.013	1.873	2.989	2.789	4.928	4.273
	tOD	2.503	1.881	2.503	1.882	2.510	1.885	2.515	1.887
	tCMOS	2.243	1.784	2.585	2.181	3.206	2.778	4.396	3.824
PT3B03D	tOEN	1.416	1.153	1.756	1.545	2.377	2.170	3.567	3.250
	tOD	3.306	2.262	3.298	2.262	3.309	2.262	3.316	2.259

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

		Core Input Transition							
Cell Name	Type Delay	0.1	ns	0.5 ns		2 ns		5 ns	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135
PT3B01D	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821
	tCMOS	2.636	2.553	2.683	2.600	2.799	2.712	2.999	2.915
PT3B02D	tOEN	2.013	1.873	2.053	1.916	2.163	2.012	2.346	2.204
	tOD	2.503	1.882	2.557	1.914	2.673	2.034	2.873	2.201
	tCMOS	2.585	2.181	2.626	2.222	2.749	2.339	2.947	2.520
PT3B03D	tOEN	1.756	1.545	1.801	1.587	1.909	1.677	2.107	1.861
	tOD	3.298	2.262	3.373	2.307	3.496	2.422	3.626	2.615

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State I/O Pads with Pull-up Resistor PT3B01U through PT3B03U

PT3B01U through PT3B03U cells are three state TTL input/output pads with pullup and with AC drive capabilities of 2mA, 6mA, 10mA respectively.

Function Table

INP	UT	OUTPUTS		
OEN	I	PAD	CIN	
Н	X	Hr	Н	
L	L	L	L	
L	Н	Н	Н	

Hr = Resistive-High Drive Strength

Cell Description

Macro Name:	PT3B01U	PT3B02U	PT3B03U
Drive Capability	1x	2x	3x
Leakage Power (µW):	30.611	30.611	30.611

Pin Description

Name		Capacitance (pF)	Description	
Name	PT3B01U	PT3B02U	PT3B03U	Description
I	0.112	0.18	0.18	Input
OEN	0.11	0.11	0.11	Output Enable
PAD	3.185	3.172	3.172	3-StateOutput
CIN	0.8	0.8	0.8	Output

Pin Powers for: Standard Pad Load = 10.0 pF, Standard Core Input Transition = 0.1 Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name		Pin Power (pW/Hz)	
Name	PT3B01U	PT3B02U	PT3B03U
PAD	21	22.9	24.3
CIN	5.6	5.6	5.6

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State I/O Pads with Pull-up Resistor PT3B01U through PT3B03U

Waveforms

Timing Numbers for PT3B01U through PT3B03U:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

Core Load Fanout										
Cell Name	2	2	2	4	8	3	1	6	3	2
	RISE	FALL								
PT3B01U	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142
PT3B02U	0.541	0.883	0.553	0.903	0.578	0.945	0.621	1.010	0.706	1.140
PT3B03U	0.541	0.890	0.553	0.905	0.578	0.937	0.621	1.002	0.706	1.132

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

				F	Pad Input	Transitio	n								
Cell Name	1	ns	2	ns	5	ns	10	ns	15	ns					
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL					
PT3B01U	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974					
PT3B02U	0.621	1.010	0.763	1.235	0.937	1.744	1.095	2.378	1.253	3.011					
PT3B03U	0.621	1.002	0.763	1.235	0.937	1.746	1.095	2.390	1.253	3.034					

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL 3-State I/O Pads with Pull-up Resistor PT3B01U through PT3B03U

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

		Pad Load							
Cell Name	Type Delay	8 pF		16 pF		32 pF		64 pF	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164
PT3B01U	tOEN	2.196	1.449	3.648	2.358	6.540	4.156	12.313	7.749
	tOD	1.001	1.497	1.001	1.497	1.001	1.497	1.001	1.497
	tCMOS	2.123	2.045	2.632	2.560	3.609	3.452	5.549	4.911
PT3B02U	tOEN	1.464	1.382	1.976	1.909	2.951	2.824	4.897	4.300
	tOD	2.498	1.881	2.495	1.881	2.497	1.881	2.498	1.881
	tCMOS	2.240	1.778	2.580	2.173	3.199	2.776	4.388	3.822
PT3B03U	tOEN	1.393	1.184	1.739	1.571	2.359	2.194	3.547	3.266
	tOD	3.312	2.268	3.329	2.268	3.342	2.268	3.351	2.268

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

		Core Input Transition							
Cell Name	Type Delay	0.1 ns		0.5 ns		2 ns		5 ns	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135
PT3B01U	tOEN	3.648	2.358	3.687	2.400	3.797	2.490	3.956	2.676
	tOD	1.001	1.497	1.042	1.539	1.168	1.654	1.384	1.821
	tCMOS	2.632	2.560	2.674	2.602	2.789	2.713	2.989	2.910
PT3B02U	tOEN	1.976	1.909	2.021	1.944	2.129	2.041	2.295	2.236
	tOD	2.495	1.881	2.557	1.929	2.663	2.039	2.863	2.222
	tCMOS	2.580	2.173	2.623	2.220	2.745	2.341	2.931	2.526
PT3B03U	tOEN	1.739	1.571	1.778	1.613	1.881	1.706	2.079	1.889
	tOD	3.329	2.268	3.356	2.329	3.495	2.442	3.626	2.711

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL Output Pads PT3O01 through PT3O03

PT3O01 through PT3O03 cells are TTL output pads with AC drive capabilities of 2mA, 6mA, 10mA respectively.

Function Table

INPUT	OUTPUT
I	PAD
L	L
Н	Н

Cell Description

Macro Name:	PT3O01	PT3O02	PT3O03
Drive Capability	1x	2x	3x
Leakage Power (pW)	2853.3	1873.6	1873.6

Pin Description

Name	C	apacitance (pl	F)	Description					
Name	PT3O01	PT3O02	PT3O03	Description					
I	0.112 0.188 0.175		Input						
	Maximum capacitance								
PAD	80	80	Output						

Pin Powers for: Standard Pad load = 10.0 pF, Standard Core Input Transition = 0.1 ns

Name		Pin Power (pW/Hz)	
Name	PT3O01	PT3O02	PT3O03
PAD	21	29	30.8

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V TTL Output Pads PT3O01 through PT3O03

Timing Numbers for PT3O01 through PT3O03:

Propagation Delays (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

					Pad	Load			pF FALL	
Cell Name	ell Name Type Delay		pF	16	pF	32	pF	64 pF		
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
PT3O01	tCMOS	2.799	1.858	4.250	2.773	7.138	4.573	12.923	8.164	
PT3O02	tCMOS	2.174	1.961	2.665	2.413	3.646	3.318	5.593	4.739	
PT3O03	tCMOS	2.141	1.965	2.448	2.270	3.061	2.882	4.253	3.907	

Propagation Delays (ns) for Sample Core Input Transitions: Standard Pad Load = 16 pF

				C	ore Input	Transitio	on		
Cell Name	Name Type Delay		ns	0.5	ns	2	ns	5 ns	
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PT3O01	tCMOS	4.250	2.773	4.285	2.821	4.404	2.935	4.606	3.135
PT3O02	tCMOS	2.665	2.413	2.700	2.460	2.814	2.581	3.019	2.773
PT3O03	tCMOS	2.448	2.270	2.485	2.316	2.606	2.434	2.798	2.617

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V Crystal Oscillator Pads PC3X11, PC3X12 and PC3X13

PC3X11, PC3X12 and PC3X13 are crystal oscillator macros with low, medium and high frequency capabilities. The crystal connects across the XIN and XOUT pads. When this macros is placed, the input pad appears at one die pad number higher than the output pad. Z is the buffered clock input to the chip's core. In his regular behaviour, the PC3X11 generate between XIN and XOUT a sinusoidal oscillation. The pins XIN and XOUT of the cells PC3X11, PC3X12 and PC3X13 are only 1.8V (VDD core, 1.62 v up to 1.98 v) tolerant.

Function Table

INP	UTS	OUTPUTS			
EN	XIN	XOUT	Z		
1	X	Z	1		
0	1	0	1		
0	0	1	0		

Cell Description

Macro Name:	PC3X11	PC3X12	PC3X13
Drive Capability	1x	2x	3x
Leakage Power (pW)	2853.3	6408.0	3379.9

Pin Description

Name	(Capacitance (pF))	Description		
Name	PC3X11	PC3X12	PC3X13	Description		
EN	0.135	0.16	0.16	Data Input		
XIN	3.642	3.15	3.235	Data Input		
XOUT	3.462	3.305	3.388	Data Output		
		Maximum	capacitance			
Z	0.8	0.8	0.8	Data Output		

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V Crystal Oscillator Pads PC3X11, PC3X12 and PC3X13

 $\begin{array}{c} Pin\ Powers\ for:\\ Standard\ Pad\ Load=10.0\ pF,\ Standard\ Core\ Input\ Transition=0.1\ ns\\ Standard\ Core\ Load=0.16\ pF,\ Standard\ Pad\ Input\ Transition=0.5\ ns\\ \end{array}$

Name	Pin Power (pW/Hz)								
Name	PC3X11	PC3X12	PC3X13						
XOUT	20.9	19.2	18.8						
Z	5.7	6	5						

Waveforms

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V Crystal Oscillator Pads PC3X11, PC3X12 and PC3X13

Timing Numbers for PC3X11 through PC3X13:

Propagation Delays XIN -> Z (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

		Core Load Fanout											
Cell Name	2		4		8		16		32				
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
PC3X11	1.662	3.031	1.665	3.037	1.672	3.048	1.687	3.064	1.718	3.095			
PC3X12	1.816	1.953	1.823	1.959	1.837	1.972	1.852	1.987	1.882	2.017			
PC3X13	1.898	1.937	1.907	1.940	1.923	1.947	1.939	1.964	1.970	1.998			

Propagation Delays XIN -> Z (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

Cell Name		Pad Input Transition											
	1 ns		2 ns		5 ns		10 ns		15 ns				
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL			
PC3X11	1.687	3.064	1.848	3.208	2.272	3.836	2.795	4.893	3.318	5.949			
PC3X12	1.852	1.987	1.985	2.145	2.394	2.625	2.925	3.275	3.456	3.925			
PC3X13	1.939	1.964	2.058	2.095	2.430	2.518	2.908	3.085	3.385	3.652			

Propagation Delays to XOUT (ns) for Sample Pad Loads: Standard Core Input Transition = 0.1 ns

					Pad	Load			
Cell Name	Type Delay	8 pF		16	16 pF		32 pF		pF
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
	tDOUT	4.478	1.555	8.340	2.803	15.985	5.278	31.269	10.209
PC3X11	tEN	4.377	1.438	8.235	2.675	15.887	5.147	31.169	10.080
	tDIS	0.161	0.527	0.161	0.527	0.161	0.527	0.161	0.527
	tDOUT	2.122	1.707	3.365	2.603	5.770	4.318	10.548	7.728
PC3X12	tEN	2.000	1.244	3.223	2.120	5.620	3.833	10.394	7.242
	tDIS	0.224	0.667	0.227	0.667	0.227	0.667	0.227	0.667
	tDOUT	1.932	1.711	2.764	2.361	4.309	3.551	7.336	5.867
PC3X13	tEN	1.787	1.055	2.600	1.674	4.136	2.842	7.147	5.137
	tDIS	0.257	0.844	0.257	0.844	0.257	0.844	0.257	0.844

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V Crystal Oscillator Pads PC3X11, PC3X12 and PC3X13

Propagation Delays to XOUT (ns) for Sample Core Input Transitions: Standard Pad Load = 16~pF

Cell Name			Core Input Transition										
	Type Delay	0.1 ns		0.5	0.5 ns		2 ns		ns				
		RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL				
	tDOUT	8.340	2.803	8.357	2.820	8.480	2.999	8.960	3.509				
PC3X11	tEN	8.235	2.675	8.312	2.733	8.524	2.958	8.876	3.325				
	tDIS	0.161	0.527	0.209	0.583	0.321	0.714	0.438	0.881				
	tDOUT	3.365	2.603	3.355	2.597	3.520	2.715	4.026	3.198				
PC3X12	tEN	3.223	2.120	3.290	2.182	3.532	2.432	3.934	2.846				
	tDIS	0.227	0.667	0.283	0.723	0.419	0.906	0.602	1.189				
	tDOUT	2.764	2.361	2.748	2.329	2.871	2.441	3.360	2.892				
PC3X13	tEN	2.600	1.674	2.662	1.730	2.910	1.997	3.358	2.444				
	tDIS	0.257	0.844	0.321	0.900	0.498	1.114	0.714	1.431				

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Non-Inverting Clock Buffer Pad PC3C01 through PC3C04

PC3C01 cell is non-inverting clock buffer. The current usage of this pad is the clock tree buffering. This pad is powered with the core power supply. However, PC3D00 cell can be used to provide an off-chip input signal to this cell.

Function Table

INPUT	OUTPUT
CCLK	СР
L	L
Н	Н

Cell Description

Macro Name:	PC3C01	PC3C02	PC3C03	PC3C04
Drive Capability	1x	2x	3x	4x
Leakage Power (pW):	2853.3	13347.3	26694.5	53389.1

Pin Description

Name			Description		
Name	PC3C01	PC3C02	PC3C03	PC3C04	Description
CCLK	0.152	0.32	0.598	1.172	Input
		Maximum	capacitance		
CP	3.185	88.125	176.25	352.5	Output

Pin Powers for: Standard Core Load = 32 pF, Standard Core Input Transition = 0.1 ns

Name	Pin Power (pW/Hz)							
	PC3C01	PC3C02	PC3C03	PC3C04				
СР	66.4	82.3	120.1	204.9				

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Non-Inverting Clock Buffer Pad PC3C01 through PC3C04

Waveforms

Timing Numbers for PC3C01 through PC3C04:

Propagation Delays tCP (ns) for Sample Core Output Loads: Standard Core Input Transition = 0.1 ns

Cell Name		Core Load										
	8 pF		16 pF		32 pF		64	pF	96 pF			
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
PC3C01	0.445	0.500	0.679	0.724	1.153	1.168	2.104	2.051	3.054	2.934		
PC3C02	0.325	0.384	0.444	0.498	0.680	0.721	1.152	1.166	1.624	1.611		
PC3C03	0.259	0.316	0.325	0.384	0.444	0.498	0.680	0.721	0.916	0.943		
PC3C04	0.226	0.282	0.259	0.316	0.325	0.384	0.444	0.498	0.562	0.609		

Propagation Delays tCP (ns) for Sample Core Input Transitions: Standard Core Load = 32 pF

Cell Name		Core Input Transition										
	0.1 ns		0.5 ns		1 ns		3	ns	5 ns			
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL		
PC3C01	1.153	1.168	1.256	1.267	1.368	1.392	1.686	1.742	1.992	2.076		
PC3C02	0.680	0.721	0.777	0.825	0.895	0.946	1.212	1.302	1.512	1.647		
PC3C03	0.444	0.498	0.541	0.602	0.659	0.723	0.976	1.080	1.276	1.424		
PC3C04	0.325	0.384	0.422	0.488	0.540	0.610	0.855	0.964	1.154	1.306		

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V Analog IO Pad PC3D00

PC3D00 cell is a direct input/output pad, without buffer, suitable for bringing analog signals or reference voltages onto the chip. The current function of this pad is to provide to the core an external chip signal without any gain. In this usage it is mandatory not apply to this pad greater voltage than allowed by the core cell connected to this pad.

Function Table

INPUT	OUTPUT
PAD	PADR
L	L
Н	Н

Cell Description

Macro Name:	PC3D00
Leakage Power (pW)	2853.3

Pin Description

Name	Capacitance (pF)	Description	
Name	PC3D00	Description	
PAD	3.185	Input	
PADR	3.185	Output	

Pin Powers for:

Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name	Pin Power (pW/Hz)
	PC3D00
PADR	0
PAD	0

Waveforms

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Input Only Pad Supplied by Analog Power APC3D01

APC3D01 cell is input pad supplied by analog power. APC3D01 is CMOS non inverting.

Function Table

INPUT	OUTPUT
PAD	CIN
L	L
Н	Н

Cell Description

Macro Name:	APC3D01
Leakage Power (pW)	2853.3

Pin Description

Name	Capacitanc e (pF)	Description	
	APC3D01		
PAD	3.185	Input	
N	laximum ca	pacitance	
CIN	0.8	Output	

Pin Powers for: Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name	Pin Power (pW/Hz)	Description
	APC3D01	
CIN	5.6	Output

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Characteristics

1.8V CMOS Input Only Pad Supplied by Analog Power

Timing Numbers for APC3D01:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

Cell Name	Core Load Fanout									
	2		4		8		16		32	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
APC3D01	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

Cell Name	Pad Input Transition									
	1 ns		2 ns		5 ns		10 ns		15 ns	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
APC3D01	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Input Only Pads PC3D01, PC3D11, PC3D21 and PC3D31

PC3D01, PC3D11, PC3D21 and PC3D31 cells are inputs pads. PC3D01 is CMOS non inverting, PC3D11 is CMOS inverting, PC3D21 is CMOS Schmitt non inverting, and PC3D31 is a CMOS Schmitt inverting input pad.

Function Table

INPUT	OUTPUT
PAD	CIN
L	L
Н	Н

Function Table for PC3D11 & PC3D31

INPUT	OUTPUT
PAD	CIN
L	Н
Н	L

Cell Description

Macro Name:	PC3D01	PC3D11	PC3D21	PC3D31	
Leakage Power (pW)	2853.3	1410.7	1652.9	1588.2	

Pin Description

Name -		Description							
	PC3D01	PC3D11	PC3D21	PC3D31	Description				
PAD	3.185 3.158		3.158 3.148 3.148		Input				
	Maximum capacitance								
CIN	0.8	0.8	0.8	0.8	Output				

Pin Powers for: Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Nama		Description			
Name P	PC3D01	PC3D11	PC3D21	PC3D31	Description
CIN	5.6	5.7	5.3	5.8	Output

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Characteristics

1.8V CMOS Input Only Pads PC3D01, PC3D11, PC3D21 and PC3D31

Timing Numbers for PC3D01, PC3D11, PC3D21 and PC3D31:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

Cell Name					Core Lo	ad Fanou	t			
	2		4		8		16		32	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PC3D01	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142
PC3D11	0.960	0.735	0.970	0.754	0.988	0.792	1.028	0.850	1.108	0.965
PC3D21	0.711	1.373	0.724	1.405	0.750	1.468	0.790	1.569	0.870	1.770
PC3D31	1.399	1.015	1.409	1.039	1.428	1.088	1.464	1.176	1.536	1.352

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

		Pad Input Transition								
Cell Name	1	ns	2 1	ns	5	ns	10	ns	15	ns
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PC3D01	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974
PC3D11	1.028	0.850	1.270	1.010	1.790	1.232	2.440	1.440	3.090	1.648
PC3D21	0.790	1.569	1.040	1.863	1.570	2.783	2.305	4.183	3.040	5.583
PC3D31	1.464	1.176	1.760	1.420	2.669	1.989	4.138	2.773	5.606	3.556

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Input Only Pads PC3D01, PC3D11, PC3D21 and PC3D31

Schmitt Trigger Input Thresholds for 1.8V Process Option

Cell Name	VT+		VT-			Hysteresis			
Cen Name	Min.	Max.	Typical	Min.	Max.	Typical	Min.	Max.	Typical
PC3D21	0.9401V	1.1460V	1.0425V	0.4866V	0.6933V	0.5886V	0.3862V	0.4995V	0.4537V
PC3D31	0.9431V	1.1493V	1.0792V	0.4877V	0.6916V	0.5877V	0.3863V	0.4997V	0.4539V

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Input Only Pads with Pull-down Resistor PC3D01D, PC3D11D, PC3D21D and PC3D31D

PC3D01D, PC3D11D, PC3D21D and PC3D31D cells are inputs pads with pull-down. PC3D01D is CMOS non inverting, PC3D11D is CMOS inverting, PC3D21D is CMOS Schmitt non inverting, and PC3D31D is a CMOS Schmitt inverting input pads.

Function Table

INPU	OUTPUT					
PAD(n-1)	PAD(n)	CIN				
L	L	L				
Н	Н Н					
X	L					
r = resistive drive strength						

Function Table

INPU	OUTPUT				
PAD(n-1)	PAD(n)	CIN			
L	L L				
Н	Н Н				
X	Н				
r = resistive drive strength					

Cell Description

Macro Name:	PC3D01D	PC3D11D	PC3D21D	PC3D31D
Leakage Power (pW)	2853.3	1410.7	1652.9	1588.2

Pin Description

Name		Description					
Name	PC3D01D	PC3D11D	PC3D21D	PC3D31D	Description		
PAD	3.185	Input					
Maximum capacitance							
CIN	0.8	0.8	0.8	0.8	Output		

Pin Powers for:

Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name		Description				
Name	PC3D01D	PC3D01D PC3D11D PC3D21D PC3D31D				
CIN	5.6	5.9	5.3	5.9	Output	

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Characteritics

1.8V CMOS Input Only Pads with Pull-down Resistor PC3D01D, PC3D11D, PC3D21D and PC3D31D

Timing Numbers for PC3D01D, PC3D11D, PC3D21D and PC3D31D:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

	Core Load Fanout										
Cell Name	2	2		2 4		8		16		32	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
PC3D01D	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142	
PC3D11D	0.971	0.755	0.983	0.770	1.007	0.802	1.047	0.862	1.127	0.982	
PC3D21D	0.723	1.396	0.735	1.427	0.760	1.488	0.802	1.588	0.886	1.788	
PC3D31D	1.420	1.024	1.430	1.047	1.448	1.092	1.483	1.183	1.553	1.367	

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

		Pad Input Transition								
Cell Name	1 ns		2 ns		5 ns		10 ns		15 ns	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PC3D01D	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974
PC3D11D	1.047	0.862	1.280	1.020	1.779	1.258	2.410	1.498	3.041	1.737
PC3D21D	0.802	1.588	1.050	1.880	1.595	2.774	2.318	4.130	3.040	5.486
PC3D31D	1.483	1.183	1.775	1.438	2.688	2.013	4.090	2.790	5.492	3.567

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Input Only Pads with Pull-down Resistor PC3D01D, PC3D11D, PC3D21D and PC3D31D

Schmitt Trigger Input Thresholds for 1.8V Process Option

Cell Name	VT+			VT-			Hysteresis		
Cen Name	Min.	Max.	Typical	Min.	Max.	Typical	Min.	Max.	Typical
PC3D21D	0.9401V	1.1460V	1.0425V	0.4866V	0.6933V	0.5886V	0.3862V	0.4995V	0.4537V
PC3D31D	0.9431V	1.1493V	1.0792V	0.4877V	0.6916V	0.5877V	0.3863V	0.4997V	0.4539V

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Input Only Pads with Pull-up Resistor PC3D01U, PC3D11U, PC3D21U and PC3D31U

PC3D01U, PC3D11U, PC3D21U and PC3D31U cells are inputs pads with pull-up. PC3D01U is CMOS non inverting, PC3D11U is CMOS inverting, PC3D21U is CMOS Schmitt non inverting, and PC3D31U is a CMOS Schmitt inverting input pad.

Function Table

INPU	OUTPUT						
PAD(n-1)	PAD(n)	CIN					
L	L	L					
Н	Н Н						
X	Н						
r = res	r = resistive drive strength						

Function Table

INPU	INPUT						
PAD(n-1)	PAD(n-1) PAD(n)						
L	L	Н					
Н	Н Н						
X	L						
r = resi	r = resistive drive strength						

Cell Description

Macro Name:	PC3D01U	PC3D11U	PC3D21U	PC3D31U
Leakage Power (µW)	30.610	30.609	30.610	30.610

Pin Description

Name		Capacita	nce (pF)		Description					
	PC3D01U	PC3D11U	PC3D21U	PC3D31U	Description					
PAD	3.185	3.142	3.135	3.135	Input					
	Maximum capacitance									
CIN	0.8	0.8	0.8	0.8	Output					

Pin Powers for: Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name		Description			
Ivaille	PC3D01U	PC3D11U	PC3D21U	PC3D31U	Description
CIN	5.6	5.9	5.5	6	Output

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Characteritics

1.8V CMOS Input Only Pads with Pull-up Resistor PC3D01U, PC3D11U, PC3D21U and PC3D31U

Timing Numbers for PC3D01U, PC3D11U, PC3D21U and PC3D31U:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

Cell Name		Core Load Fanout									
	2			4	8	3	10	6	32	2	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
PC3D01U	0.553	0.897	0.565	0.913	0.590	0.947	0.632	1.012	0.715	1.142	
PC3D11U	0.971	0.743	0.983	0.759	1.007	0.790	1.045	0.848	1.122	0.964	
PC3D21U	0.711	1.395	0.726	1.426	0.757	1.490	0.796	1.588	0.875	1.784	
PC3D31U	1.422	1.015	1.431	1.040	1.450	1.090	1.485	1.178	1.556	1.353	

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

Cell Name		Pad Input Transition									
	1 ns		2 1	ıs	5	5 ns		10 ns		15 ns	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	
PC3D01U	0.632	1.012	0.778	1.245	0.979	1.736	1.163	2.355	1.346	2.974	
PC3D11U	1.045	0.848	1.283	1.000	1.813	1.208	2.480	1.400	3.147	1.592	
PC3D21U	0.796	1.588	1.028	1.890	1.556	2.809	2.288	4.303	3.019	5.796	
PC3D31U	1.485	1.178	1.788	1.428	2.702	1.983	4.185	2.760	5.668	3.537	

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Input Only Pads with Pull-up Resistor PC3D01U, PC3D11U, PC3D21U and PC3D31U

Schmitt Trigger Input Thresholds for 1.8V Process Option

Cell Name		VT+			VT-		Hysteresis			
	Min.	Max.	Typical	Min.	Max.	Typical	Min.	Max.	Typical	
PC3D21U	0.9401V	1.1460V	1.0425V	0.4866V	0.6933V	0.5886V	0.3862V	0.4995V	0.4537V	
PC3D31U	0.9431V	1.1493V	1.0792V	0.4877V	0.6916V	0.5877V	0.3863V	0.4997V	0.4539V	

Copyright 2003, Synopsys, Inc., All rights reserved.

1.8V CMOS Input Only Pad with Controllable Pull-up Resistor PC3D21EU

PC3D21EU cell is CMOS Schmitt non inverting input pad with controllable pull-up resistor.

Function Table

	INPUT		OUTPUT					
RENB	PAD(n-1)	PAD(n)	CIN					
X	L	L	L					
X	Н	Н	Н					
L	Hr	Hr	Н					
Н	Z	Z	X					
	r = resistive drive strength							

Cell Description

Macro Name:	PC3D21EU		
Leakage Power (µW)	30.610		

Pin Description

Name	Capacitance (pF)	Description						
Name	PC3D21EU	Description						
PAD	3.135	Input						
RENB	0.11	Input						
	Maximum capacitance							
CIN	0.8	Output						

Pin Powers for: Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns

Name	Pin Power (pW/Hz)	Description
Name	PC3D21EU	Description
CIN	5.5	Output

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Characteritics

1.8V CMOS Input Only Pad with Controllable Pull-up Resistor PC3D21EU

Timing Numbers for PC3D21EU:

Propagation Delays tCD (ns) for Sample Core Loads: Standard Pad Input Transition = 1 ns, Core Load Unit = 0.01 pF

Cell Name		Core Load Fanout								
	2		2	4	8		16		32	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PC3D21EU	0.711	1.395	0.726	1.426	0.757	1.490	0.796	1.588	0.875	1.784

Propagation Delays tCD (ns) for Sample Pad Input Transitions: Standard Core Load = 0.16 pF

	Pad Input Transition									
Cell Name	1 ns		2 ns		5	ns	10	ns	15 ns	
	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL	RISE	FALL
PC3D21EU	0.796	1.588	1.028	1.890	1.556	2.809	2.288	4.303	3.019	5.796

Schmitt Trigger Input Thresholds for 1.8V Process Option

Cell Name	VT+			VT-		Hysteresis			
Cell Name	Min.	Max.	Typical	Min.	Max.	Typical	Min.	Max.	Typical
PC3D21EU	0.9401V	1.1460V	1.0425V	0.4866V	0.6933V	0.5886V	0.3862V	0.4995V	0.4537V

Copyright 2003, Synopsys, Inc., All rights reserved.

VDD Pads PVDI, PVDA, PVDC and PVCF/PVCE.

PVDI is a power pad that supplies VDD to the core and IO predriver circuitry.

Pad Site Required:	1
Pin Power (pW/Hz) of pin PAD for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

PVDA is a power pad that supplies VDDO to the AC section of the I/O buffer circuitry.

Pad Site Required:	1
Pin Power (pW/Hz) of pin VDDO for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Characteristics

VDD Pads PVDI, PVDA, PVDC and PVCF/PVCE

PVDC is a power pad that supplies VDD to core only.

Pad Site Required:	1
Pin Power (pW/Hz) of pin VDDC for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

PVCF, PVCE:

There is no icon for these two cells.

For more details on these cells See "New Features" on page 1-2.

Copyright 2003, Synopsys, Inc., All rights reserved.

AVDD Pads APVDI and APVDA.

APVDI is a power pad that supplies AVDD to analog core and the predrive of cells supplied by analog power .

Pad Site Required:	1
Pin Power (pW/Hz) of pin AVDD for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

APVDA is a power pad that supplies AVDDO to the AC section of the cell supplied by analog power I/O buffer circuitry.

Pad Site Required:	1
Pin Power (pW/Hz) of pin AVDDO for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

Copyright 2003, Synopsys, Inc., All rights reserved.

VSS Pads PV0I, PV0A, PV0C and PV0F.

PV0I is a power pad that supplies VSS to the core and IO predriver circuitry.

Pad Site Required:	1
Pin Power (pW/Hz) of pin VSS for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

PV0A is a power pad that supplies VSSO to the AC section of the I/O buffer circuitry.

Pad Site Required:	1
Pin Power (pW/Hz) of pin VSSO for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Characteristics

VSS Pads PV0I, PV0A, PV0C and PV0F

PV0C is a power pad that supplies VSS to core only.

Pad Site Required:	1
Pin Power (pW/Hz) of pin VSS for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

PV0F is a power pad that shorts all VSS and VSSO power busses together.

Pad Site Required:	1
Pin Power (pW/Hz) of pin VSS for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

Copyright 2003, Synopsys, Inc., All rights reserved.

AVSS Pads APV0I and APV0A.

APV0I is a power pad that supplies AVSS to the core.

Pad Site Required:	1
Pin Power (pW/Hz) of pin AVSS for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

APV0A is a power pad that supplies AVSSO to the AC section of the cells supplied by analog power I/O circuitry .

Pad Site Required:	1
Pin Power (pW/Hz) of pin AVSSO for Standard Core Load = 0.16 pF, Standard Pad Input Transition = 0.5 ns	0.0

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Derating information

Chapter 3 Derating Information

The propagation delay and power values apply only to the specified operating conditions of VDD = 1.8 volt, VDDO = 1.8 volt, junction temperature = 25 degrees C, and typical-case process. You can estimate the delay and power under different conditions by using tables in this chapter. The sections in this chapter provide information on the following:

Timing Derating, page 3-2

Power Derating, page 3-4

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER Derating information

Timing Derating

To calculate the delay under different conditions you can use the following timing constraint equations:

The timing coefficients of the delay propagation are shown in the following tables:

k_voltage

Transition	Delay propagation
Rise	-0.8895
Fall	-0.8527

k_temperature

Transition	Delay propagation
Rise	0.0012
Fall	0.0013

$k_process$

Transition	Delay propagation
Rise	1.3072
Fall	1.2549

The process bias index are shown in the following table:

Process	Index (P)
Slow	1.2
Typical	1.0
Fast	0.8

Copyright 2003, Synopsys, Inc., All rights reserved.

Derating information TOWER

Timing Derating Example.

The following example shows a delay propagation assessment in the below conditions:

 $Junction \ Temperature = 80 \ degrees \ C$

VDD = 1.3 Volts

Process = slow

 $tDelay_Rise (datasheet, PC3T01) = 2.799 ns$

tDelay_Rise (new) = tDelay (datasheet, PC3T01) * Ev_rise * Et_rise * Ep_rise

where:

 $Ev_rise = 1 + (1.3 - 1.8) * (-0.8895) = 1.4448$

 $Et_rise = 1 + (80 - 25) * 0.0012 = 1.0660$

 $Ep_rise = 1 + (1.2 - 1.0) * 1.3072 = 1.2614$

 $tDelay_Rise (new) = 2.799 * 1.4448 * 1.0660 * 1.2614 = 5.437 ns$

TOWER Derating information

Power Derating

To calculate leakage power or internal power under different conditions you can use the following power constraint equations:

Leakage power (new) = Leakage power (datasheet) * Ev_leakPwr * Et_leakPwr *Ep_leakPwr

Internal power (new) = Internal power (datasheet) * Ev_intrnPwr *
Et_intrnPwr * Ep_intrnPwr

where:

```
Ev_leakPwr = 1 + (VDDnew - VDD) * k_voltage_Leakage_power

Et_leakPwr = 1 + (T_new - T) * k_temperature_Leakage_power

Ep_leakPwr= 1 + (P_new - P) * k_process_Leakage_power
```

The power coefficients are shown in the following tables:

k_voltage

Leakage_power	Internal_power
0.0000	0.0000

k_temperature

Leakage_power	Internal_power
0.0000	0.0000

k process

Leakage_power	Internal_power
0.0000	0.0000

Derating Leakage Power Example.

The following example shows a Leakage Power assessment in the below conditions:

Copyright 2003, Synopsys, Inc., All rights reserved.

Derating information TOWER

```
Junction Temperature = 80 degrees C

VDD = 1.3 Volts

Process = slow

Leakage Power (datasheet, PC3T01) = 2853.3 pW

Leakage Power (new) = Leakage Power (datasheet, PC3T01) * Ev_leakPwr * Et_leakPwr * Ep_leakPwr

where:

Ev_leakPwr = 1 + (1.3 - 1.8) * (0.0000) = 1.0000

Et_leakPwr = 1 + (80 - 25) * 0.0000 = 1.0000

Ep_leakPwr = 1 + (1.2 - 1.0) * 0.0000 = 1.0000
```

Leakage Power (new) = 2853.3 * 1.0000 * 1.0000 * 1.0000 = 2853.3 pW

Derating Internal Power Example.

The following example shows an Internal Power assessment in the below conditions:

```
Junction Temperature = 80 degrees C VDD = 1.3 \text{ Volts} Process = slow Internal Power (datasheet, PC3T01) = 21 \text{ pW/Hz} Internal Power (new) = Internal Power (datasheet, PC3T01) * Ev_intrnPwr * Et_intrnPwr * Ep_intrnPwr where: Ev_intrnPwr = 1 + (1.3 - 1.8) * (0.0000) = 1.0000 Et_intrnPwr = 1 + (80 - 25) * 0.0000 = 1.0000 Ep_intrnPwr = 1 + (1.2 - 1.0) * 0.0000 = 1.0000
```

Copyright 2003, Synopsys, Inc., All rights reserved.

Synopsys Confidential/ Proprietary Information
Distributed only under License of Non-Disclosure Agreement

Internal Power (new) = 21 * 1.0000 * 1.0000 * 1.0000 = 21.015 pW/Hz

Chapter 4

Pull-up and pull-down resistors

The pull-up/pull-down function is realized by the resistance of the active devices. The internal pull-up/pull-down resistance must be defined due to the nonlinear nature of the active devices. The internal pull-up resistance is defined by the value when the input pad is at its low level, while the internal pull-down resistance is defined when the pad is at its high level. The following table is used for the max, typ, and min cases:

	I/O voltage (Volts)	Temp (°C)	Process
Max	1.65	125	SS
Тур	1.8	25	tt
Min	1.95	-40	ff

The resistance value of the pull-up device is showed below (when the pad voltage is at 0):

The resistance of the pull-down device is showed below (when the pad voltage is at VDDO):

	Max	Typ	Min
Pull-down Resistance	152K	88K	46K
pc3b03ed Pull-down Resistance	199K	122K	70K

Note: Synopsys, Inc. recommends that the pull-up/pull-down cells are used if the pull-up/pull-down function is needed. If this implementation is impossible, an external resistor with value of no greater than 19K Ohms is recommended.

Copyright 2003, Synopsys, Inc., All rights reserved.

TOWER

Index

APC3D01	2-61
APV0A	2-79
APV0I	2-79
APVDA	2-76
APVDI	2-76
PC3B01 through PC3B05	2-12
PC3B01D through PC3B05D	2-16
PC3B03ED	2-20
PC3B01U through PC3B05U	2-23
PC3B21EU PC3B25EU	2-23
PC3C01 through PC3C04	2-58
PC3D00	2-60
PC3D01, PC3D11, PC3D21 and PC3D31	2-63
PC3D01D, PC3D11D, PC3D21D and PC3D31D	2-66
PC3D01U, PC3D11U, PC3D21U and PC3D31U	2-69
PC3D21EU	2-72
PC3O01 through PC3O05	2-30
PC3O01HV	2-32
PC3T01 through PC3T05	. 2-3
PC3T01D through PC3T05D	. 2-6
PC3T01U through PC3T05U	. 2-9
PC3X11, PC3X12 and PC3X13	2-54
PT3B01 through PT3B03	2-43
PT3B01D through PT3B03D	2-46
PT3B01U through PT3B03U	2-49
PT3O01 through PT3O03	2-52
PT3T01 through PT3T03	2-34
PT3T01D through PT3T03D	2-37
PT3T01U through PT3T03U	2-40
PV0A	2-77
PV0C	2-77
PV0F	2-77
PV0I	2-77
PVCE, PVCF	2-74
PVDA	2-74
PVDC	2-74
PVDI	2-74

Copyright 2003, Synopsys, Inc., All rights reserved.