IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Koji MORITA et al.

Serial No.: Currently unknown

Filing Date: Concurrently herewith

For: ELECTRONIC SUBSTRATE, POWER

MODULE AND MOTOR DRIVER

TRANSMITTAL OF PRIORITY DOCUMENTS

Mail Stop PATENT APPLICATION Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Enclosed herewith is a certified copy of each of Japanese Patent Application Nos. 2002-378553 filed December 26, 2002 and 2002-378579 filed December 26, 2002, from which priority is claimed under 35 U.S.C. 119 and Rule 55b. Acknowledgement of the priority document is respectfully requested to ensure that the subject information appears on the printed patent.

Respectfully submitted,

Date: December 17, 2003

Attorneys for Applicant(s)

Joseph R. Keating

Registration No. 37,368

Christopher A. Bennett Registration No. 46,710

KEATING & BENNETT LLP 10400 Eaton Place, Suite 312 Fairfax, VA 22030 Telephone: (703) 385-5200

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年12月26日

出 願 番 号 Application Number:

人

特願2002-378553

[ST. 10/C]:

[J P 2 0 0 2 - 3 7 8 5 5 3]

出 願
Applicant(s):

ヤマハ発動機株式会社

2003年10月28日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 PY50784JP0

【提出日】 平成14年12月26日

【あて先】 特許庁長官殿

【国際特許分類】 H01L 23/28

【発明の名称】 半導体装置

【請求項の数】 6

【発明者】

【住所又は居所】 静岡県磐田市新貝2500番地 ヤマハ発動機株式会社

内

【氏名】 森田 晃司

【発明者】

【住所又は居所】 静岡県磐田市新貝2500番地 ヤマハ発動機株式会社

内

【氏名】 吉川 孝夫

【発明者】

【住所又は居所】 静岡県磐田市新貝2500番地 ヤマハ発動機株式会社

内

【氏名】 村井 孝之

【特許出願人】

【識別番号】 000010076

【氏名又は名称】 ヤマハ発動機株式会社

【代表者】 長谷川 至

【代理人】

【識別番号】 100083806

【弁理士】

【氏名又は名称】 三好 秀和

【電話番号】 03-3504-3075

【選任した代理人】

【識別番号】 100068342

【弁理士】

【氏名又は名称】 三好 保男

【選任した代理人】

【識別番号】 100100712

【弁理士】

【氏名又は名称】 岩▲崎▼ 幸邦

【選任した代理人】・・

【識別番号】 100087365

【弁理士】

【氏名又は名称】 栗原 彰

【選任した代理人】

【識別番号】 100100929

【弁理士】

【氏名又は名称】 川又 澄雄

【選任した代理人】

【識別番号】 100095500

【弁理士】

【氏名又は名称】 伊藤 正和

【選任した代理人】

【識別番号】 100101247

【弁理士】

【氏名又は名称】 高橋 俊一

【選任した代理人】

【識別番号】 100098327

【弁理士】

【氏名又は名称】 高松 俊雄

【手数料の表示】

【予納台帳番号】 001982

【納付金額】

- 21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0114328

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 半導体装置

【特許請求の範囲】

【請求項1】 電源から電流の供給を受ける半導体素子を有する半導体装置であって、

前記半導体素子へ前記電流が供給される際に、正極と負極の内のいずれか一方 の電極として機能する第1の電流供給部と、

前記半導体素子が配置され、前記半導体素子へ前記電流が供給される際に、前 記正極と負極の内の他方の電極として機能する第2の電流供給部と、

絶縁層と

を有し、

前記第2の電流供給部は、前記絶縁層を介して前記第1の電流供給部の少なく とも一部分において重ねられている

ことを特徴とする半導体装置。

【請求項2】 前記第1の電流供給部は、銅箔パターンにより形成され、前記第2の電流供給部は、銅板により形成された

ことを特徴とする請求項1に記載の半導体装置。

【請求項3】 前記絶縁層は、シリコーンシート、ポリイミドフィルム、エポキシ樹脂及び空気層の内の少なくとも1種類の材料から形成され、

該絶縁層の厚みは、0.1mm以下である

ことを特徴とする請求項1又は2に記載の半導体装置。

【請求項4】 前記第1の電流供給部における電流の向きは、前記第2の電流供給部における電流の向きとは逆向きであることを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置。

【請求項5】 前記半導体素子は、直流電流を交流電流に変換するための電界効果トランジスタ素子であることを特徴とする請求項1乃至4のいずれか1項に記載の半導体装置。

【請求項6】 前記電界効果トランジスタ素子は、3相交流モータに交流電流を供給するためのものであることを特徴とする請求項1乃至5のいずれか1項

に記載の半導体装置。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、モータ等に電流を供給するための半導体装置に関する。

[0002]

【従来の技術】

半導体装置は、基板と、これに搭載された半導体素子を有し、モータへの電流 供給等に用いられている(例えば、特許文献 1 参照)。

図4は、上記のような半導体装置の断面図である。

従来の半導体装置100は、ベース板101とその上面にコーティングされた 絶縁層102から成る金属基板103上にパッド104がパターン形成され、そ の上に電力用の半導体チップ105が接合され、半導体チップ105は、パッド 104上にハンダ106のみを介して直接接合されている。この半導体チップ1 05はボンディングワイヤ108を介して、金属基板103上に形成された銅箔 パターン107に接続されている。

[0003]

このような半導体装置100を、例えば3相交流モータに電流を供給するために用いる場合は、半導体チップ105として複数個の電界効果トランジスタ素子 (以下、"FET素子"とする)を搭載し、銅箔パターン107を5箇所設け、この5箇所の銅箔パターン107の内の2つを2本の電源ラインとして図示しない電源に接続し、残りの3つを3本の出力ラインとして図示しない3相交流モータに接続する。

[0004]

また、半導体装置には、ベース板と、ベース板上に積層された2層の絶縁層と、絶縁層上に形成された2層の銅箔パターンとで構成された2層金属基板(例えば、特許文献2参照)が用いられる場合もある。

[0005]

図5は、上記のような2層金属基板の断面図である。

従来の2層金属基板109は、熱伝導性を考慮したものであり、ベース板110と、ベース板110上に積層された2層の絶縁層111と、絶縁層111上に形成された2層の銅箔パターン112とを有する。

[0006]

【特許文献1】

特開2002-184907号公報(第2頁、第1図)

[0007]

【特許文献2】

特開平9-139580公報(第3頁、第6図)

[0008]

【発明が解決しようとする課題】

しかしながら、図4に例示したような半導体装置には以下の解決すべき課題が 存在する。

3相交流電流を供給するためにはFET素子のスイッチングを行う必要があるが、その速度を速くすると、FET素子のターンオフ、ターンオン時の電流変化率 di/dtは非常に高くなる。また、半導体装置の電源ラインには、寄生インダクタンスしが存在するため、ターンオフ時にはLdi/dtにて過電圧が発生し、その大きさによってはFET素子が損傷する可能性がある。この損傷からFET素子を保護するには、ラインインダクタンスを低減するか、あるいは電流変化率 di/dtを下げることが必要となる。しかし、電流変化率 di/dtを下げることはスイッチング時間の増加並びにスイッチング損失の増大につながり、高速スイッチング性能を低下させる要因となる。

[0009]

このため、半導体装置には、寄生インダクタンスの低いライン構造が望まれる。一般的にインダクタンスを低減する方法としては、電流が逆方向に流れる2つの導体を対向させ、其々の電流により発生する磁束を互いに減少させる方法が用いられている。この場合、逆方向の電流の大きさは同程度が効果的であり、対向する導体間の距離が短く、対向面積が大きいほど低減効果は大きくなる。

[0010]

また、大電流電源ラインでは2本の電源ラインを互いに近づけることには限界があり、インダクタンス低減効果も十分でなく、これにも限界がある。そして、各FET素子と銅箔パターンとを結ぶボンディングワイヤも長くなり、このボンディングワイヤ自体のインダクタンスも増加し、さらに装置全体のインダクタンスも増加してしまう問題がある。その結果、電力用半導体装置としての機能を確保する為に、各FET素子の定格を増大させる必要が生じる他、過電圧対策部品を追加する必要も生じ、コストを上昇させる要因となっている。

[0011]

また、半導体装置で用いられる一般的な基板としては、図5に例示した2層金属基板の他に、1層(片面)金属基板にガラスエポキシ樹脂基板を貼り付けた2層基板あるいは部分2層基板等が挙げられるが、これらはいずれも銅箔パターンを厚くすることができないため、大電流が流せないという問題や、絶縁層の熱伝導率が低いことや絶縁層が2層分で厚くなることにより放熱効率が悪くなり、これに付随して、銅箔パターン上に搭載したFET素子の温度が上昇することにより、素子の性能の低下あるいは素子の損傷が起こるという問題がある。

$[0\ 0\ 1\ 2]$

また、上記のような2層基板を製作するにあたっては、工程が複雑になりコストが上昇するという問題もある。

[0 0 1 3]

このような事情に鑑み、本発明は、低コスト化が実現され、インダクタンスを 低減するとともに半導体素子の損傷を防止し、さらに放熱効率が改善された信頼 性の高い半導体装置を提供することを目的とする。

$[0\ 0\ 1\ 4]$

【課題を解決するための手段】

請求項1に記載の本発明は、電源から電流の供給を受ける半導体素子を有する 半導体装置であって、半導体素子へ電流が供給される際に、正極と負極の内のい ずれか一方の電極として機能する第1の電流供給部と、半導体素子が配置され、 半導体素子へ電流が供給される際に、正極と負極の内の他方の電極として機能す る第2の電流供給部と、絶縁層とを有し、第2の電流供給部は、絶縁層を介して 第1の電流供給部の少なくとも一部分において重ねられていることを要旨とする。

[0015]

請求項1に記載の本発明にあっては、第2の電流供給部が第1の電流供給部に 重ねられていることによりボンディングワイヤを短縮することができ、これによ りボンディングワイヤ自体が有するインダクタンスを低減でき、装置全体のイン ダクタンスも低減することが可能となる。また、第1の電流供給部と第2の電流 供給部とが重なっている部分を大きくすることにより両者の対向面積を大きくす ることが可能であり、これにより電流供給部が有するインダクタンスをさらに低 減できる。したがって、インダクタンスに起因して発生する過電圧を低減でき、 各半導体素子の損傷を防止することが可能となり、さらに半導体素子の定格の減 少や過電圧対策部品数の削減が可能となることからコストの低減も可能となる。

[0016]

請求項2に記載の本発明は、請求項1に記載の発明において、第1の電流供給 部は、銅箔パターンにより形成され、第2の電流供給部は、銅板により形成され たことを要旨とする。

[0017]

請求項3に記載の本発明は、請求項1又は2に記載の発明において、絶縁層は、シリコーンシート、ポリイミドフィルム、エポキシ樹脂及び空気層の内の少なくとも1種類の材料から形成され、絶縁層の厚みは、0.1mm以下であることを要旨とする。

[0018]

請求項3に記載の本発明にあっては、絶縁層は薄く、この絶縁層に用いられるシリコーンシート、ポリイミドフィルム及びエポキシ樹脂は、特に絶縁性と熱伝導性に優れていることから、従来の2層金属基板と比較して放熱性に優れ、温度上昇による半導体素子の信頼性低下を防止することが可能となる。また、第1の電流供給部と第2の電流供給部との間には僅かな厚みの絶縁層しか存在せず、両者が非常に接近した状態で配置されていることから、電流供給部が有するインダクタンスを低減できる。したがって、各半導体素子をスイッチングさせる際に2

本の電流供給部が有するインダクタンスに起因して発生する過電圧を低減でき、 各半導体素子の損傷を防止することが可能となり、さらに半導体素子の定格の減 少や過電圧対策部品数の削減が可能となることからコストの低減も可能となる。

[0019]

請求項4に記載の本発明は、請求項1乃至3のいずれか1項に記載の発明において、第1の電流供給部における電流の向きは、第2の電流供給部における電流の向きとは逆向きであることを要旨とする。

[0020]

請求項4に記載の本発明にあっては、第1の電流供給部と第2の電流供給部とは、重ねられていることにより対向して配置されており、電流の方向が逆であることから、電流供給部が有するインダクタンスを低減できる。したがって、各半導体素子をスイッチングさせる際に2本の電流供給部が有するインダクタンスに起因して発生する過電圧を低減でき、各半導体素子の損傷を防止することが可能となり、さらに半導体素子の定格の減少や過電圧対策部品数の削減が可能となることからコストの低減も可能となる。

[0021]

請求項5に記載の本発明は、請求項1乃至4のいずれか1項に記載の発明において、半導体素子は、直流電流を交流電流に変換するための電界効果トランジスタ素子であることを要旨とする。

[0022]

請求項6に記載の本発明は、請求項1乃至5のいずれか1項に記載の発明において、電界効果トランジスタ素子は、3相交流モータに交流電流を供給するためのものであることを要旨とする。

[0023]

【発明の実施の形態】

以下、図面を参照しつつ本発明の半導体装置についての説明を行う。

なお、以下の実施の形態は、あくまでも本発明の説明のためのものであり、本 発明の範囲を制限するものではない。したがって、当業者であれば、これらの各 要素又は全要素を含んだ各種の実施の形態を採用することが可能であるが、これ らの実施の形態も本発明の範囲に含まれる。

また、実施の形態を説明するための全図において、同一要素のものは同一符号を付与し、これに関する反復説明は省略する。

[0024]

図1 (a) は、本発明の一実施の形態にかかる半導体装置1の平面図であり、図1 (b) は、図1 (a) のA-B切断面に沿った断面図である。また、図2は、図1 (a) の円Cに囲まれた部分の拡大図である。

本発明の半導体装置1は、図2に示すとおり、アルミニウム、銅等の内、少なくとも1種類の材料が用いられた厚さが約2mmから約3mmのベース板23と、これに積層された絶縁層24と、絶縁層24上に密着して形成された銅箔パターン12とで構成された約30mmから約150mm角の金属基板11と、FET素子19を有する。

[0025]

また、図1(a)左側の銅箔パターン12は、図示しない電源に接続される第 1の電源ライン14として機能し、この第1の電源ライン14は、図示しない電 源から電流の供給を受けるための第1の電流供給部27を形成する。

[0026]

また、その他の銅箔パターン12は其々、出力ライン16、17及び18として機能し、これらの出力ラインは、図示しない3相交流モータに接続される。

[0027]

また、複数のFET素子19が出力ライン16、17及び18上にハンダ付け されている。

[0028]

また、銅板13は、図示しない電源に接続される第2の電源ライン15として機能し、この電源ライン15は、図示しない電源から電流の供給をうけるための第2の電流供給部28を形成する。また、図2に示すとおり、上記の第2の電流供給部28は、絶縁層25を介して第1の電流供給部27に重ねられており、第2の電源ライン15と銅箔パターン12とはハンダ22により接合されている。

[0029]

また、上記の絶縁層25は、絶縁性と放熱性とに優れたシリコーンシート、ポリイミドフィルム及びエポキシ樹脂の内、少なくとも1種類の材料から成り、その厚みは、0.1mm以下である。

なお、上記の絶縁層25は、空気層であっても良い。

[0030]

また、上記の第2の電流供給部28の上部にもFET素子19が搭載され、ハンダ21により固定されている。

[0031]

また、図1 (a) に示すとおり、第2の電流供給部28上に配置されたFET素子19と出力ライン16、17及び18は、アルミニウム等が用いられたボンディングワイヤ20により接続され、出力ライン16、17及び18上に配置されたFET素子19と第2の電流供給部28もボンディングワイヤ20により接続されている。

[0032]

このような半導体装置1は、図示しない電源からの直流電流を交流電流に変換し、図示しない3相交流モータに供給するためのものである。

より具体的には、各FET素子19をスイッチングさせ、電源から供給される 直流電流を交流電流に変換し、これを出力ライン16、17及び18を介して3 相交流モータに供給する。

[0033]

この際、第1の電流供給部27(第1の電源ライン14)は、直流電流の供給を受け、この直流電流をFET素子19に供給するにあたっての負極として機能し、一方、第2の電流供給部28(第2の電源ライン15)は、直流電流の供給を受け、この直流電流をFET素子19に供給するにあたっての正極として機能する。すなわち、第1の電流供給部27における電流の向きは、第2の電流供給部28における電流の向きとは逆であり、インダクタンスを減少させることができ、さらに第1の電流供給部27と第2の電流供給部28の面積はほぼ同程度であり、重なっている部分も大きいことから両者の対向面積が大きく、また、第1の電流供給部27と第2の電流供給部28との間には僅かな厚みの絶縁層25し

か存在せず、2つの電流供給部が非常に接近した状態で配置されていることから、インダクタンスの低減効果は非常に大きく、従来の半導体装置のラインインダクタンスが約50nHから約100nHであったのに対して、本発明の半導体装置1のラインインダクタンスは約10nHから約20nHに減少している。

[0034]

なお、本実施の形態においては、第1の電流供給部27は、直流電流の供給を受け、この直流電流をFET素子19に供給するにあたっての負極として機能し、第2の第2の電流供給部28は、直流電流の供給を受け、この直流電流をFET素子19に供給するにあたっての正極として機能する場合を示したが、これに限定されず、第1の電流供給部27が正極として機能し、第2の電流供給部28が負極として機能する構成とすることもできる。

[0035]

また、従来の半導体装置は、1本のボンディングワイヤの長さは約15mmであったが、本発明の半導体装置1においては、前述のとおり、第2の電流供給部28を第第1の電流供給部27に重ねることによりボンディングワイヤ20の長さが約5mmから約7mmに短縮されている。

[0036]

また、ボンディングワイヤ20の短縮化に伴い、これ自体が有するインダクタンスも減少し、前述のラインインダクタンスの減少とあわせて、半導体装置1全体のインダクタンスも減少される。

[0037]

上記の点から、各FET素子19をスイッチングさせる際に、第1の電流供給部27及び第2の電流供給部28が有するインダクタンスに起因して発生する過電圧を低減でき、各FET素子19の損傷を防止可能となる。さらに各FET素子19の定格の減少や過電圧対策部品数の削減が可能となり、コストが低減されるとともに半導体装置1自体の信頼性も向上する。

[0038]

また、前述の絶縁層25には、前述の放熱性に優れた材料が用いられており、 その厚みも僅かであることから、熱によるFET素子19の性能低下、損傷を防 止することができ、半導体装置1自体の信頼性も向上する。

[0039]

なお、本実施の形態においては、第2の電流供給部28が第1の電流供給部27の大部分と重なっている場合を示したが、これに限定されず、第2の電流供給部28が第1の電流供給部27の一部分と重なっている構成とすることもできる

[0040]

次に、上記のような3相交流モータ用の半導体装置1を、例えば図3に示すような電動車両30に搭載した場合について説明する。

この電動車両30は、ゴルフ場等においてゴルフバッグ等の荷物や人を搬送するために用いられるものである。

[0041]

電動車両30は、通常の手動操作による手動走行の他、自動走行が可能であり、走行駆動用モータ31を有し、この走行駆動用モータ31からの駆動力が駆動輪である後輪32にトランスミッション(図示せず)を介して伝達されるとともに、前輪34がハンドル35の手動操作、或いは自動操作により操舵される。

[0042]

また、前側シート36及び後側シート37が前後に並設されており、この前側シート36の下方に、充電用コントローラ38及びブレーキモータ39が設けられており、後側シート37の下方に、後輪32を駆動させる走行駆動用モータ31の電源となる走行駆動用バッテリ装置40が設けられている。

[0043]

また、走行駆動用モータ31の上側には、この走行駆動用モータ31等のコントロールを行う走行制御用コントローラ43が設けられ、この走行制御用コントローラ43と走行駆動用モータ31とが、左右2個の後輪32の間に設けられている。

[0044]

また、前記の走行駆動用バッテリ装置40は、直列に接続された計6個(片側の3個のみを図示している)のバッテリ41を備え、これらのバッテリ41は、

隙間が設けられた状態で、受座42上に載置されている。

[0045]

また、走行制御用コントローラ43は、走行駆動用バッテリ装置40、走行駆動用モータ31、ブレーキモータ39及び操舵モータ44に接続されている。

[0046]

本発明の半導体装置1(図1)は、前述の走行制御用コントローラ43内部に設置され、バッテリ40から直流電流の供給を受け、これを交流に変換し、変換された交流電流を走行駆動用モータ31、ブレーキモータ39及び操舵モータ44に供給する。

[0047]

このように、上記の効果を奏する信頼性の高い半導体装置1を電動車両に搭載することにより電動車両自体の信頼性を向上させることができる。

[0048]

なお、上記の実施の形態においては、本発明の半導体装置がFET素子を有し、3相交流モータへ電流を供給する場合を示したが、これに限定されず、例えば、電流増幅用の半導体素子等を有する構成や直流電流を高周波電流に変換する構成の他、2相交流モータへ電流供給を行う構成とすることも可能である。なお、この場合は、2本の出力ラインが設けられる。

$[0\ 0\ 4\ 9]$

【発明の効果】

以上説明したとおり、本発明によれば、低コスト化が実現され、インダクタンスを低減するとともに半導体素子の損傷を防止し、さらに放熱効率が改善された 信頼性の高い半導体装置を提供することが可能となる。

【図面の簡単な説明】

【図1】

- (a) は、本発明の半導体装置の平面図である。
- (b)は、(a)のA-B切断面に沿った断面図である。

【図2】

図1(b)の部分拡大図である。

【図3】

図1の半導体装置を搭載可能な電動車両の側面図である。

【図4】

従来の半導体装置の断面図である。

【図5】

従来の2層金属基板の断面図である。

【符号の説明】

- 1 半導体装置
- 11 金属基板
- 12 銅箔パターン
- 13 銅板
- 14 第1の電源ライン
- 15 第2の電源ライン
- 16、17、18 出力ライン
- 19 電界効果トランジスタ素子
- 20 ボンディングワイヤ
- 21、22 ハンダ
- 23 ベース板
- 24、25 絶縁層
- 27 第1の電流供給部
- 28 第2の電流供給部
- 30 電動車両
- 31 走行駆動用モータ
- 32 後輪
- 3 4 前輪
- 35 ハンドル
- 3.6 前側シート
- 37 後側シート
- 38 充電用コントローラ

- 39 ブレーキモータ
- 40 走行駆動用バッテリ装置
- 41 バッテリ
- 4 2 受座
- 43 走行制御用コントローラ
- 4.4 操舵モータ
- 100 従来例における半導体装置
- 101、110 従来例におけるベース板
- 102、111 従来例における絶縁層
- 103 従来例における金属基板
- 104 従来例におけるパッド
- 105 従来例における半導体チップ
- 106 従来例におけるハンダ
- 107、112 従来例における銅箔パターン
- 108 従来例におけるボンディングワイヤ
- 109 従来例における2層金属基板

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【書類名】 要約書

【要約】

【課題】 低コスト化が実現され、インダクタンスを低減するとともに半導体素子の損傷を防止し、さらに放熱効率が改善された信頼性の高い半導体装置を提供する。

【解決手段】 電界効果トランジスタ素子19へ電流が供給される際に、正極と 負極の内のいずれか一方の電極として機能する第1の電流供給部27と、電界効果トランジスタ素子19が配置され、電界効果トランジスタ素子19へ電流が供 給される際に、前述の正極と負極の内の他方の電極として機能する第2の電流供 給部28とを設け、第2の電流供給部28を第1の電流供給部27の少なくとも 一部分において重ねて配置する。

【選択図】 図1

特願2002-378553

出願人履歴情報

識別番号

[000010076]

1. 変更年月日 [変更理由] 住 所 1990年 8月29日

理由] 新規登録

静岡県磐田市新貝2500番地

氏 名 ヤマハ発動機株式会社