TRABALHO 1

March 9, 2020

Análise Numérica (M2018)

Francisco Gonçalves 201604505

Departamento de Ciência de Computadores Faculdade de Ciências de Universide do Porto

0.1 Primeiro Exercício

0.1.1 Erro absoluto 1

Escrevam um programa que permita calcular um valor aproximado de

$$S = 18 \sum_{k=1}^{\infty} \frac{k!^2}{k^2 (2k)!}$$
 (1)

com erro absoluto inferior a ϵ dado. O vosso programa deve imprimir o número n de termos somados na série e o valor aproximado de S. Usem o vosso programa para calcular valores aproximados de S com erro absoluto inferior a $\epsilon = 10^{-8}, 10^{-9}, ..., 10^{-15}$.

Listing 1: Programa (PYTHON)

```
import math
for i in range (-8, -16, -1):
   count = 0
   k = 1
   sum = 0
   while (True):
       x = abs(math.factorial(k)**2 / (k**2 * math.factorial(2 * k)))
       if (x >= 10**i):
           sum += x
           count = count + 1
           k = k + 1
       else:
           break
   y = 18 * sum
   print('Erro =', 10**i, '| Numero de termos somados da serie:', count, '| Valor
       aproximado de S = ', '\%.16f' \% y)
```

O programa calcula o valor de k de forma a que o erro absoluto não ultrapasse o valor de ϵ

O valor da variável x representa cada valor da expressão $\frac{k!^2}{k^2(2k)!}$ desde k=1 até o valor encontrado. O ciclo pára quando o valor de x for inferior ao erro, ou seja, 10^i , sendo que $i \in [-15,8]$ e vai percorrendo esse intervalo por cada interação do ciclo.

Posteriormente, basta multiplicar o valor do somatório que está representado através da variável sum por 18 e imprimir a resposta desejada.

O número de termos somados da série em cada iteração é contado através de variável count que é incrementada sempre que, após um cálculo de x não é inferior ao erro especificado.

0.1.2 Resultados

 $\underline{\wedge}$ NOTA: precisão usada neste exercício foi de 16 casas decimais

Erro	Número de termos somados	Valor aproximado de S
10^{-8}	11	9.869604342
10^{-9}	12	9.8696043878
10^{-10}	14	9.86960440042
10^{-11}	15	9.869604400938
10^{-12}	17	9.8696044010814
10^{-13}	18	9.86960440108752
10^{-14}	20	9.869604401089258
10^{-15}	21	9.8696044010893349

0.2 SEGUNDO EXERCÍCIO

0.2.1 Erro absoluto 2

Escrevam um programa que permita calcular um valor aproximado de

$$S = 12 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^2}$$
 (2)

com erro absoluto inferior a ϵ dado. O vosso programa deve imprimir o número n de termos somados na série e o valor aproximado de S. Usem o vosso programa para calcular valores aproximados de S com erro absoluto inferior a $\epsilon = 10^{-8}, 10^{-9}, ..., 10^{-15}$.

Listing 2: Programa (PYTHON)

```
import math
for i in range (-8, -16, -1):
   count = 0
   k = 1
   sum = 0
   while (True):
       x = ((-1)**(k-1)) / (k**2)
       sum = sum + x
       if (abs(x) >= 10**i):
           count = count + 1
           k = k + 1
       else:
           break
   y = 12 * sum
   print('Erro =', 10**i, '| Numero de termos somados da serie:', count, '| Valor
       aproximado de S = ', '\%.32f' \% y)
```

Tal como no exercício anterior, o programa calcula o valor de k de forma a que o erro absoluto não ultrapasse o valor de ϵ em causa.

O valor da variável x representa cada valor da expressão $\frac{(-1)^{k-1}}{k^2}$ desde k=1 até o valor encontrado. O ciclo pára quando o valor de x for inferior ao erro, ou seja, 10^i , sendo que $i \in [-15,8]$ e vai percorrendo esse intervalo por cada interação do ciclo.

Posteriormente, volta-se a multiplicar o valor do somatório que está representado através da variável sum por 12 desta vez e imprime-se a resposta desejada.

Tal como na implementação do exercício anterior, a variável count representa o número de termos somados da série.

0.2.2 Resultados

 $\underline{\wedge} \text{NOTA} \text{:}$ precisão usada neste exercício foi de 32 casas decimais

Erro	Número de termos somados	Valor aproximado de S
10^{-8}	10000	9.8696044610
10^{-9}	31622	9.86960440708
10^{-10}	100000	9.869604401689
10^{-11}	316227	9.8696044010292
10^{-12}	1000000	9.86960440109500
10^{-13}	3162277	9.869604401088312
10^{-14}	10000000	9.8696044010890009
10^{-15}	31622776	9.86960440108894765

0.3 TERCEIRO EXERCÍCIO

0.3.1 Erro cometido 1

Sabendo que nos dois exercícios anteriores $S=\pi^2$, alterem os programas para imprimirem também o erro absoluto efetivamente cometido no cálculo de π^2 , $E=|\pi^2-S|$. Comparem, interpretem e justifiquem os resultados.

Listing 3: Programa do exercício 1 (PYTHON)

```
import math
for i in range (-8, -16, -1):
   count = 0
   k = 1
   sum = 0
   while (True):
       x = abs(math.factorial(k)**2 / (k**2 * math.factorial(2 * k)))
       sum += x
       y = 18 * sum
       if (abs(math.pi**2 - y) >= 10**i):
           count = count + 1
          k = k + 1
       else:
           break
   z = abs(math.pi**2 - y)
   print('Erro =', 10**i, '| Numero de termos somados da serie:', count, '| Valor
       aproximado de S =', '%.16f' % z)
```

Após as modificações pedidas no exercício 3, o programa compara o valor da série para cada valor de k e verifica se o valor do erro absoluto é menor que o ϵ escolhido, que corresponde a $|\pi^2 - y|$, visto que a variável y corresponde ao valor de S até ao valor de k da iteração atual.

Caso essa condição se verifique, o ciclo termina e imprime o erro absoluto calculado assim como o número de termos somados da série.

0.3.2 Resultados

 $\underline{\wedge}\,\mathrm{NOTA} \colon \mathrm{precis\tilde{a}o}$ usada neste exercício foi de 16 casas decimais

Erro	Número de termos somados	Valor aproximado de S
10^{-8}	12	0.00000003
10^{-9}	13	0.000000007
10^{-10}	15	0.0000000003
10^{-11}	16	0.00000000008
10^{-12}	18	0.000000000004
10^{-13}	19	0.0000000000010
10^{-14}	21	0.00000000000005
10^{-15}	-	_

Não foi possível obter resultados para um erro de $\epsilon=10^{-15}$ devido a restrições de tempo ao correr o programa.

0.3.3 Erro cometido 2

Listing 4: Programa do exercício 2 (PYTHON)

```
import math
for i in range (-8, -16, -1):
   count = 0
   k = 1
   sum = 0
   while (True):
       x = ((-1)**(k-1)) / (k**2)
       sum = sum + x
       y = 12 * sum
       if (abs(math.pi**2 - abs(y)) >= 10**i):
          count = count + 1
          k = k + 1
       else:
          break
   z = abs(math.pi**2 - y)
   print('Erro =', 10**i, '| Numero de termos somados da serie:', count, '| Valor
       aproximado de S =', \%.16f' % z)
```

O programa para o exercício 2 sofreu exatamente as mesmas modificações que o exercício anterior logo a explicação é a mesma.

0.3.4 Resultados

 $\underline{\wedge} \text{NOTA} \text{:}$ precisão usada neste exercício foi de 16 casas decimais

Erro	Número de termos somados	Valor aproximado de S
10^{-8}	24494	0.00000010
10^{-9}	77450	0.000000010
10^{-10}	244692	0.0000000010
10^{-11}	760944	0.00000000010
10^{-12}	2039462	0.000000000010
10^{-13}	3323402	0.0000000000010
10^{-14}	3690030	0.00000000000009
10^{-15}	3718242	0.00000000000000

Os programas aqui exibidos assim como os reusltados obtidos podem ser consultados em detalhe aqui: https://github.com/1Skkar1/Numerical-Analysis/tree/master/Trabalho1