4.09.2023

Теорема 1 (Необходимое условие дифференцируемости). Если $f:\mathbb{R}^n\supseteq O\to\mathbb{R}^m$ дифференцируема в точке $a,\ mo\ \forall u\in\mathbb{R}^n\ \exists rac{\partial f}{\partial u}(a)\ (\partial a$ лее показано, что это эквивалентно для частных производных только по $x_i).$

Теорема 2 (Дифференциал композиции (билет 1)). Пусть $g: X \to Y, \ f: Y \to Z$. Тогда если g дифферениируема в точке a и f дифференцируема в точке g(a), то $f \circ g$ дифференцируема в точке a и $d_a(f \circ g) =$ $d_{q(a)}f \cdot d_a g$.

 \dot{M} ли, если рассматривать матрицу Якоби, $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$

Теорема 3 (Дифференцирование результата арифметических действий). Пусть $O \subseteq \mathbb{R}^n$, $a \in O$; $f, g : O \to \mathbb{R}^n$ \mathbb{R}^m , $\lambda: O \to R$; f, g, λ дифференцируемы в точке $a; A, B \in \mathbb{R}$. Тогда

- 1. Af + Bg дифференцируемо в точке a и $d_a(Af + Bg) = Ad_af + Bd_ag$
- 2. λf дифференцируемо в точке a и $d_a(\lambda f) = f(a) \cdot d_a \lambda + \lambda(a) \cdot d_a f$ Или на языке матриц: $(\lambda f)' = f(a) \cdot \lambda'(a) + \lambda(a) \cdot f'(a)$
- 3. $\langle f,g \rangle$ дифференцируемо в точке а и $d_a \langle f,g \rangle = (g(a))^T d_a f + (f(a))^T d_a g$ $(\langle f, q \rangle)' = (q(a))^T \cdot f'(a) + (f(a))^T \cdot q'(a)$
- 4. Если m=1 и $g(a)\neq 0$, то f/g дифференцируемо в точке a и $d_a(f/g)=\frac{g(a)d_af-f(a)d_ag}{\sigma^2(a)}$

если g дифференцируема в точке a и f дифференцируема в точке g(a), то $f \circ g$ дифференцируема в точке a $u d_a(f \circ g) = d_{q(a)} f \cdot d_a g.$

Или, если рассматривать матрицу Якоби, $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$

Теорема 4 (Теорема Лагранжа для отображений (билет 2)). Пусть $f: \mathbb{R}^n \supseteq O(om\kappa pumoe) \to \mathbb{R}^m, f$ дифференцируемо в O; $a, b \in O$, $\forall t \in (0,1)$ $a + t(b-a) \in O$.

Тогда $\exists \theta \in (0,1) : ||f(b) - f(a)|| \le ||f'(a + \theta(b-a))|| \cdot ||b-a||$

Следствие 1 (билет 2). Если $\forall \theta \in (0,1) ||f'(a+\theta(b-a))|| \leq M \in \mathbb{R}, mo ||f(b)-f(a)|| \leq M||(b-a)||$

Следствие 2 (билет 2). Если m=1 и $\forall u \in O \ \forall i=1..n \ || \frac{\partial f}{\partial x_i}(u)|| \leq M, \ mo \ ||f(b)-f(a)|| \leq M\sqrt{n}||(b-a)||$

Теорема 5 (Достаточное условие дифференцируемости (билет 3)). Пусть $f: \mathbb{R}^n \supseteq O(omкрытоe) \to \mathbb{R}^m$, $a \in O; \frac{\partial f}{\partial x_i} \ \forall i \in 1..n \ 1)$ определен в некоторой окрестности точки $a \ 2$) непрерывен в точке aТогда f дифференцируема в точке a.

Замечание. f дифференцируема в точке $a \Leftrightarrow f(a+h) - f(a) - f'(a) \cdot h = o(h)$ при $h \to 0$

Определение 1. Пусть $f: \mathbb{R}^n \supseteq O(omкpыmoe) \to \mathbb{R}, \ g(u) = \frac{\partial f}{\partial x_i}(u)$ для некоторого i определена в точке a $u \exists \frac{\partial g}{\partial x_i}(a)$ для некоторого j.

Torda $f_{x_ix_j}\coloneqq \frac{\partial^2 f}{\partial x_i\partial x_i}(a)\coloneqq \frac{\partial g}{\partial x_i}(a)$

Определение 2. $\frac{\partial^2 f}{\partial x_i^2} \coloneqq \frac{\partial^2 f}{\partial x_i \partial x_i}$ - чистая частная производная.

Определение 3. $f_{x_ix_j}$, где $i \neq j$, - смешанная производная.

Теорема 6. Пусть $f: \mathbb{R}^n \supseteq O(omкpыmoe) \to \mathbb{R}, \ i \neq j; \ \frac{\partial^2 f}{\partial x_i \partial x_i} \ u \ \frac{\partial^2 f}{\partial x_i \partial x_j} \ onpedenentu u непрерывны в окрест$ ности точка а. Тогда $\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_j}(a)$

Определение 4. Если $f:\mathbb{R}^n\supseteq O\to\mathbb{R},\ h\in\mathbb{R}^n,\ mo\ d_a^2f(h)\coloneqq d(d_af(h))(h)$

11.09.2023

Определение 1 (билет 4). $r \in \mathbb{Z}_+$, $O-omкpытое в <math>\mathbb{R}^n$ Тогда $C^r(O) \coloneqq \{f \colon O \to R : \forall i_1 \dots i_r \ \frac{\partial^r f}{\partial x_{i_r} \dots \partial x_{i_1}} \in C(O)\}$

Определение 2. $C^{\infty}(O) := \bigcap_{r \in \mathbb{Z}_+} C^r(O)$

Теорема 1 (О линейном пространстве $C^r(O)$). $C^r(O)$ - линейное пространство. Замкнуто относительно произведения: $f, g \in C^r : f \cdot g \in C^r$

Определение 3. $C^r(O \to \mathbb{R}^m) := \{f : f_1, \dots f_m \in C^r(O)\}$

Теорема 2 (Композиция $C^r(O)$). Пусть $\varphi \in C^r(O \to \tilde{O})$, $f \in C^r(\tilde{O})$. $Tor\partial a \ f \circ \varphi \in C^r(O)$

Теорема 3 (О равенстве смешанных производных в классе C^r (билет 4)). Если $f \in C^r(O)$, $O-omkpumoe\ e\ \mathbb{R}^n$, $r \in \mathbb{Z}_+; (i_1, i_2, \dots i_l) \in 2^{\{1,\dots,r\}}, \ l \leq r, \ (j_1, \dots, j_l) - nepecmanos \kappa a(i_1, \dots i_l)$ Тогда $\frac{\partial^l f}{\partial x_{i_l} \dots \partial x_{i_1}} = \frac{\partial^l f}{\partial x_{j_l} \dots \partial x_{j_1}}$

Определение 4 (билет 5). *Мультииндекс* - элемент \mathbb{Z}_+^n

$$|j| = j_1 + j_2 + \dots + j_n$$

$$j! = j_1! \cdot j_2! \cdot \dots \cdot j_n!$$

$$h \in \mathbb{R}^n, h^j = h_1^{j_1} \cdot \dots \cdot h_n^{j_n}$$

$$f(j)(a) = \frac{\partial^{|j|} f}{\partial x_n^{j_n} \dots \partial x_1^{j_1}}(a)$$

Лемма 1. Пусть $f \in C^r(O)$, $O-omкрытое в <math>\mathbb{R}^n$, $[a,a+h] \subset O$, g(t)=f(a+th). Тогда $\forall l=0,\ldots,r: g^{(l)}(t)=\sum_{j\in\mathbb{Z}_+^n,|j|=l} \frac{l!}{i!} f^{(j)}(a+th)\cdot h^j$

Теорема 4 (Глобальная формула Тейлора(-Лагранжа) для функции нескольких переменных (билет 6)).

Если
$$f \in C^{r+1}(O)$$
, $O-omкpытое \ B^n$, $r \in \mathbb{Z}_+$; $[a,a+h] \subset O$.

Тогда $\exists \theta \in (0,1): f(a+h) = \sum_{j \in \mathbb{Z}_+^n, |j| \le r} \frac{f^{(j)}(a)}{j!} h^j + \sum_{j \in \mathbb{Z}_+^n, |j| = r+1} \frac{f^{(j)}(a+\theta h)}{j!} h^j$

Следствие 1 (Формула Тейлора-Пеано, локальный вариант формулы Тейлора (билет 7)). Пусть $f \in C^r(O)$, $O-открытое \ в \mathbb{R}^n, \ a \in O.$

Тогда
$$f(a+h) = \sum_{j \in \mathbb{Z}_+^n, |j| \le r} \frac{f^{(j)}(a)}{j!} h^j + o(||h||^j) \ npu \ h \to 0$$

Следствие 2 (Теорема Лагранжа о среднем для скалярно-значных отображений (билет 7)). Пусть $f \in$ $C^1(O),\ O-omк$ рытое в $\mathbb{R}^n;\ a,h:a+th\in O \forall t\in [0,1].$ Тогда $f(a+h)-f(a)=\sum_{i=1}^n rac{\partial f}{\partial x_i}(a+\theta h)\cdot h_i=\langle \nabla_{a+\theta h}f,h\rangle$ (частный случай Тейлора для r=0).

Следствие 3 (Полиномиальная формула (билет 7)). $(x_1+\cdots+x_n)^r=\sum_{i\in\mathbb{Z}_+^n,|i|=r}\frac{r!}{i!}(x_1,\ldots,x_n)^j,\ npu\ r\in\mathbb{Z}_+$

Замечание. $d_a^0 f = f(a)$ $d_a^1 f = d_a f$ $d_a^{1}f(h) = d_af(h)$ $d_a^{l+1}f(h) = d_a(d_a^{l}f(h))(h)$

Лемма 2. Пусть $f \in C^r(O)$, $O-om\kappa pытое в <math>\mathbb{R}^n$; $a,h:a+th \in O \ \forall t \in [0,1]$. Тогда $\forall l=0,\ldots,r:d_{a+th}^lf(h)=g^{(l)}(t)$, где g(t)=f(a+th)

Теорема 5 (Формула Тейлора в дифференциалах в условиях теоремы Тейлора-Лагранжа (билет 8)). f(a + $h) = \sum_{l=0}^{r} \frac{1}{l!} d_a^l f(h) + \frac{d_{a+\theta h}^{l+1} f}{(l+1)!} (h)$

Определение 5. $f: E \to \mathbb{R}, E \subseteq \mathbb{R}^n, a \in E$.

а называется точкой максимума для f, если существует окрестность $U(a): f(x) \leq f(a) \ \forall x \in U(a) \cap E$

Теорема 6 (Необходимое условие экстремума (билет 9)). $f: E \to \mathbb{R}, \ a \in IntE, \ a$ - точка экстремума $f, \ f$ дифференцируема в точке $a \Rightarrow d_a f = 0 \Leftrightarrow \nabla_a f = 0 \Leftrightarrow \forall i \in 1, \ldots, n: \frac{\partial f}{\partial x_i}(a) = 0$

Теорема 7. a - точка максимума $f,\ \varphi$ непрерывна в точке $\alpha,\ \varphi(\alpha)=a.$

Tогда α - mочка максимума $f \circ \varphi$

Замечание. $\sum_{1 \leq i,j \leq n} a_{i,j} h_i h_j$ - $\kappa ea \partial pamuчная форма.$

 $d_a^2f(h)$ - квадратичная форма переменных h_1,\ldots,h_n

 $d_a^lf(h)$ - однородная функция степени $l\colon d_a^lf(Ch)=C^ld_a^lf(h).$

 Φ орма Q(h) бывает положительно определенной, отрицательно определенной, неопределенной (бывает и положительной, и отрицательной).

Теорема 8 (Достаточное условие экстремума). $f: \mathbb{R}^n \supseteq E \to \mathbb{R}, \ a \in IntE$, в точке а выполняется необходимое условие экстремума $u \; \exists d_a^2 f$.

 $Q(h) := d_a^2 f(h)$. Тогда, если Q > 0, то a - точка минимума, если Q < 0, то a - точка максимума, если Q неопределенная, то a - не точка экстремума.

3-я неделя (нет записи)

18.09.2023

Теорема 1 (Теорема о локальной обратимости (по скрину из 6-ой недели)). *Skipped*

Теорема 2 (Теорема о среднем). *Skipped*

25.09.2023

Билет 11 (Теорема о непрерывности функции, заданной неявно). Пусть $X \subseteq \mathbb{R}^n$, $I = [a,b] \subseteq R$, $X \times I \subseteq O$; $F:O \to R$ непрерывно $u \ \forall x \in X: F(x,a) \cdot F(x,b) < 0, \ F(x,y) = \varphi_x(y)$ строго монотонна на [a,b]. Тогда $\exists ! f: x \mapsto y, f: X \to I$ такая, что

- 1. $\forall x \in X : F(x, f(x)) = 0$
- 2. $g(X) \times I(X) = 0 \Leftrightarrow y = f(X)$
- 3. $f \in C(X)$

Билет 12 (Теорема о гладкости функции, заданной неявно). Пусть $X \subseteq \mathbb{R}^n$, $I = [a,b] \subseteq R$, $X \times I \subseteq O$; $F:O \to R$, $F \in C^1(O)$; $(x*,y*) - pewenue\ F(x,y) = 0\ u\ \frac{\partial F}{\partial y}(x*,y*) \neq 0$. Тогда \exists окрестность $U_{x*} \subseteq \mathbb{R}^n$, окрестность $V_{y*}\ u\ f:U_{x*} \to V_{y*}(x \mapsto y)$ такие что:

- 1. $e U_{x*} \times V_{y*} F(x,y) = 0 \Leftrightarrow y = f(x)$
- 2. $f \in C^1(U_{x*})$
- 3. $f'_{x_i}(x) = -\frac{F'_{x_i}}{F'_y}(x, y)$

Билет 13 (Теорема об открытом отображении в случае равенства размерностей образов и прообразов). $\Pi y cm b \Phi : \mathbb{R}^n \supseteq O \to \mathbb{R}^n, \Phi'$ обратима всюду в O.

Тогда Φ - открытое отображение (то есть $\forall U$ открытого в O $\Phi(O)$ открыто).

Билет 13 (Лемма об оценке снизу приращения отображения с обратимым дифференциалом). Пусть $F: \mathbb{R}^n \supseteq O \to \mathbb{R}^n, \ F \ \partial u \phi \phi$ еренцируема в а $u \ F'(a)$ обратима.

Тогда $\exists \delta > 0, c > 0 : \forall x \in U_{\delta}(a) \ ||F(x) - F(a)|| \ge c||x - a||$ (или чуть проще: $\exists \text{окрестность } U_a, c > 0 : \forall x \in U_a \ ||F(x) - F(a)|| \ge c||x - a||$).

Билет 14 (Теорема об открытом отображении в общем случае). Пусть $\Phi : \mathbb{R}^n \supseteq O \to \mathbb{R}^m$, $m \le n$, $rang\Phi'$ максимален всюду в $O \ (= m)$.

Тогда Φ - открытое отображение.

Билет 25. *Поточечная и равномерная сходимость функциональных последовательностей и рядов. Элементарны* свойства равномерной сходимости

Билет 25 (Характеристика равномерной сходимости посредством чебышевской нормы). $f: X \to \mathbb{R}$ (или \mathbb{C}), $||f|| = \sup_{x \in X} |f(x)|$. Если f ограничена на X, то $||f|| < +\infty$. При $t \ge 0$ $||tf|| = \sup_{x \in X} |t||f(x)|$. $\forall x \in X|f(x) + g(x)| \le ||f(x)| + ||g(x)| \le ||f|| + ||g|| \Rightarrow ||f + g|| = \sup_{x \in X} |f(x) + g(x)| \le ||f|| + ||g||$.

Tаким образом, $||\cdot||$ является нормой на совокупности функций на X.

Пусть $f_k, f: E \to \mathbb{C}$. Тогда $f_k \rightrightarrows f \Leftrightarrow ||f_k - f|| \to 0$ при $k \to +\infty$.

Билет 25 (Критерий Коши равномерной сходимости для последовательностей). Пусть $f_k, f: E \to \mathbb{C}$. Тогда $f_k \rightrightarrows f$ на $E \Leftrightarrow \forall \varepsilon > 0 \; \exists N = N(\varepsilon) : \forall n, m \geq N \; \forall x \in E \; |f_n(x) - f_m(x)| < \varepsilon$.

Билет 25 (Критерий Коши равномерной сходимости для рядов). Пусть $f_k: E \to \mathbb{C}$. Тогда $\sum_{k=1}^{\infty} f_k(x)$ сходится равномерно на $E \Leftrightarrow \forall \varepsilon > 0 \ \exists N: \forall n \geq N \ \forall p \in \mathbb{Z}_+ \ \forall x \in E \ |\Sigma_{k=n}^{n+p} f_k(x)| < \varepsilon$.

Билет 25 (Необходимое условие равномерной сходимости). Следствие из критерия. $\Sigma_{k=1}^{\infty} f_k(x)$ сходится равномерно на $E \Rightarrow f_k(x) \Rightarrow 0$ на E.

Билет 26 (Равномерная сходимость при действиях над множествами. Признак Вейерштрасса равномерной сходимости ряда). *Пусть* $f_n: E \to \mathbb{C}$.

Тогда $\Sigma_{n=1}^{\infty}||f_n||_{\mathfrak{q}}$ сходится $\Rightarrow \Sigma_{n=1}^{\infty}f_n(x)$ сходится равномерно на E.

Билет 27 (Признак Дирихле равномерной сходимости рядов). Пусть $f_n: E \to \mathbb{C}, g_n: E \to \mathbb{R}$. Если

- 1. $\Sigma_{k=1}^{\infty} f_k(x)$ относительно $x \in E$ равномерно ограничен на E $(\exists C : \forall n \in N \ \forall x \in E \ |\Sigma_{k=1}^{\infty} f_k(x)| \leq C)$
- 2. $\forall x \in E \ g_n(x)$ монотонная
- $3. g_n \Longrightarrow 0$ на E

Тогда $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ сходится равномерно на E.

Билет 27 (Признак Абеля равномерной сходимости рядов). Пусть $f_n: E \to \mathbb{C}, \ g_n: E \to \mathbb{R}.$ Если

- 1. $\Sigma_{n=1}^{\infty}f_{n}(x)$ сходится равномерно на E
- 2. $\forall x \in E \ g_n(x)$ монотонная
- 3. $g_n(x)$ равномерно по x ограничено на E.

Тогда $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ сходится равномерно на E.

Билет 27 ((с леммой) (взято у Кости Баца)). *Если* $b_k(x)$ монотонно зависит от k при любом x, то $|\sum_{k=n}^m a_k(x)b_k(x)| \leqslant 4 \cdot \max_{k=n:m} |A_k(x)| \cdot \max\{|b_n(x)|, |b_m(x)|\}.$

2.10.2023

Билет 15 (Теорема о дифференцируемости обратного отображения). Пусть $E \subseteq \mathbb{R}^n$, $a \in IntE$, $\Phi : E \to \mathbb{R}^n$, $\Phi(a) = b \in Int\Phi(E)$, Φ дифференцируема в a, $\Phi'(a)$ обратима $(\det \Phi'(a) \neq 0)$. Тогда Φ^{-1} дифференцируема в b и $(\Phi^{-1})'(b) = (\Phi'(a))^{-1}$

Билет 16 (Теорема о гладкости обратного отображения (достаточное условие диффеоморфности)). O, \tilde{O} открытые, $\Phi: O \to \tilde{O}$ - диффеоморфизм на $C^r \stackrel{def}{\Longrightarrow} \Phi$ обратима $u \Phi \in C^r(O \to \tilde{O}), \Phi^{-1} \in C^r(\tilde{O} \to O).$ Если O - открытое, $O \subseteq \mathbb{R}^n, \Phi \in C^r(O \to \mathbb{R}^n), \Phi$ обратимо (как отображение на свой образ) $u \det \Phi'(x) \neq 0$

Тогда $\Phi^{-1} \in C^r(\Phi(O) \to O)$ ($\forall x \in O(\Phi^{-1})(\Phi(x)) = (\Phi'(x))^{-1}$)

Билет 17 (Теорема о локальной обратимости регулярного отображения). $\Phi: \mathbb{R}^n \supseteq O \to \mathbb{R}^n$, O открытое; Φ регулярное $\stackrel{def}{\Longrightarrow} \Phi \in C^1(O \to \mathbb{R}^n)$, $rank\Phi'(x)$ максимальной в каждой точке O. Пусть $\mathbb{R}^n \supseteq O$ открытое, $\Phi \in C^r(O \to \mathbb{R}^n)$, Φ регулярно в O. Тогда $\forall a \in O$ \exists окрестность $U_a: \Phi|_{U_a}$ - диффеоморфизм класса C^r , в частности обратимо.

Билет 18 (Теорема о неявном отображении). *Пусть* $m, n, r \in \mathbb{N}$, $\mathbb{R}^{n+m} \supseteq O$ открытое, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $x^0 \in \mathbb{R}^n$, $y^0 \in \mathbb{R}^m$, $F \in C^r(O \to \mathbb{R}^m)$ и F' обратима.

Тогда $\exists oкpecmнocmu\ U_{x^0}, U_{y^0}\ u\ f: U_{x^0} \to U_{y^0}\ makue,\ что:$

- 1. $F(x,y) = 0 \Leftrightarrow y = f(x) \in U_{x^0} \times U_{y^0}$
- 2. $f \in C^r(U_{x^0} \to U_{y^0})$
- 3. $f'(x) = -(F'_y(x, f(x)))^{-1} \cdot F'_x(x, f(x))$

Билет 27 ((с леммой) (версия по лекции)). $\sum_{k=1}^{\infty} f_k(x)$ равномерно сходится на $E, \varphi(x)$ ограничен на $E \Rightarrow \sum_{k=1}^{\infty} \varphi(x) f_k(x)$ равномерно сходится на E

Билет 28 (Примеры исследования рядов на равномерную сходимость).

Теорема (Признак Лейбница равномерной сходимости). Skipped

Теорема (Признак равномерной сходимости для монотонных последовательностей). Skipped

Билет 29 (Перестановка пределов для последовательностей). Пусть $E \in \mathbb{R}^n$, $x_0 \in E$, $f_n : E \to \mathbb{C}$, $f_n(x)$ равномерно сходится на E, $\forall k \in N \ \exists \lim_{x \to x_0} f_k(x) \in \mathbb{R}$.

Тогда $\lim_{x\to x_0} \lim_{k\to\infty} f_k(x) = \lim_{k\to\infty} \lim_{x\to x_0} f_k(x)$, оба предела существуют в \mathbb{R} .

Следствие 1. Skipped

9.10.2023

Билет 29 (Перестановка пределов для рядов). Пусть $f_n : E \to \mathbb{C}$, $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на E $u \ \forall k \in \mathbb{N} \ \exists \lim_{x \to x_0} f_k(x)$.

Тогда существуют оба и верно $\lim_{x\to x_0}\sum_{n=1}^\infty f_n(x)=\sum_{n=1}^\infty \lim_{x\to x_0} f_n(x)$

Билет 30. Следствия теоремы о перестановке пределов, связанные с непрерывностью (взято у Кости Баца, убрано доказательство)

Теорема (Непрерывность в точке для последовательностей). $\Box D \subseteq X$ – м.п., $\{f_n\}, f: D \to \mathbb{C}, f_n \rightrightarrows f$ на D.

 $Ecлu \{f_n\}$ непрерывны в точке x_0 , то u f непрерывна в x_0 .

Теорема (Непрерывность в точке для рядов). Пусть X – м.п., $D \subset X, x_0 \in D, f_k : D \to \mathbb{R}(u \wedge u \mathbb{C})$ и выполнены следующие условия:

- 1. ряд $\sum_{k=1}^{\infty}$ равномерно сходится на D к сумме S;
- 2. все функции f_k непрерывны в точке x_0 .

Тогда функция S непрерывна в точке x_0 .

Теорема (теорема Стокса-Зейделя). $D \subseteq X$, $f_n, f: D \to \mathbb{C}$ $f_n \rightrightarrows f$ на D при $n \to \infty$ и $f_n \in C(D) \Longrightarrow f \in C(D)$, то есть равномерный предел последовательности непрерывных функций **непрерывен**.

Теорема (Аналог теоремы Стокса-Зейделя для рядов). $\Box D \subseteq X$ – м.п., $x_0 \in D', \{f_n\}_{n=1}^{\infty}, f: D \to \mathbb{C}$ и $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на D.

Eсли $\forall n$ $f_n(x)$ непрерывна в точке x_0 , то и $\sum_{n=1}^{\infty} f_n(x)$ непрерывно в x_0 .

Билет 32 (Предельный переход под знаком интеграла для последовательностей). *Если* $f_n \in C[a,b], f_n \Rightarrow f$ на $[a,b], mo \int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$.

Билет 32 (Предельный переход под знаком интеграла для рядов). Если $f_n \in C[a,b], \sum_{n=1}^{\infty} f_n$ сходится равномерно на [a,b], то $\int_a^b \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \int_a^b f_n(x),$ ряд в правой части сходится.

Билет 33 (Предельный переход под знаком производной для последовательностей). Пусть $f \in C^1([a,b] \to \mathbb{R})$, $\exists x^0 \in [a,b] : \{f_n(x^0)\}$ сходится при $n \to \infty$, $\{f'_n(x)\}$ равномерно сходится на [a,b].

Тогда $\lim_{n\to\infty} f_n(x)$ дифференцируема на [a,b] и $\forall x\in [a,b]$ $(\lim_{n\to\infty} f_n(x))'=\lim_{n\to\infty} f_n'(x)$.

Билет 33 (Предельный переход под знаком производной для рядов). Пусть $f \in C^1([a,b] \to \mathbb{R}), \exists x^0 \in [a,b]: \sum_{n=1}^{\infty} f_n(x^0)$ сходится, $\sum_{n=1}^{\infty} f'_n(x)$ равномерно сходится на [a,b]. Тогда $\sum_{n=1}^{\infty} f_n(x)$ дифференцируема на [a,b] и $\forall x \in [a,b]$ ($\sum_{n=1}^{\infty} f_n(x)$)' = $\sum_{n=1}^{\infty} f'_n(x)$.

Билет 34 (Теорема о круге сходимости степенного ряда). $a, \{c_n\}_{n=0}^{\infty} \in \mathbb{C}, \sum_{n=0}^{\infty} c_n (z-a)^n$ называется степенным рядом с коэффициентами $\{c_n\}$ и центром a.

 $B_r(a)$ называется кругом сходимости этого степенного ряда, если $\forall z \in B_r(a)$ ряд сходится и $\forall z \notin \overline{B}_r(a)$ ряд расходится. r называют радиусом сходимости.

 $Teopema\ Kouu-A\, дamapa.\ r=rac{1}{\lim_{n o\infty} \sqrt[n]{|c_n|}}.\ Tor дa\ r$ - $paduyc\ cxodumocmu\ dля\ cmenenhoro\ pядa.$

Точнее:

- 1. $\forall компакта \ K : K \subseteq B_r(a)$ ряд сходится равномерно на K
- 2. $\forall z \notin \overline{B}_r(a)$ ряд расходится в точке z

 $\Pi pu \ r = \frac{1}{0}$ считаем $r = +\infty$, $npu \ r = \frac{1}{+\infty}$, r = 0 (то есть круг сходимости содержит только центр).

Билет 34 (Формулы для радиуса сходимости). *Кажеется*, одна из формул в целом и является предыдущей теоремой. Вот другая формула: $\lim_{n\to\infty}\frac{|c_n|}{|c_{n+1}|}$ (в случае существования).

Билет 19 (Параметризации поверхностей, гладкие поверхности уровня, гладкие обобщенные графики). $M \subseteq \mathbb{R}^{n+m}$, $a \in M$, M допускает параметризацию класса C^r размерности n в окрестности a, если \exists окрестность U_a , гомеоморфизм $\Phi \in C^r(\mathbb{R}^n \supseteq O \to U_a \cap M)$, Φ регулярное.

 $M \subseteq \mathbb{R}^{n+m}$, $a \in M$, M есть множество уровня класса C^r размерности n в окрестности a, если \exists окрестность $U_a, F \in C^r(U_a \to \mathbb{R}^m)$, F регулярно, $M \cap U_a = \{x \in U_a : F(x) = 0\}$.

 $M\subseteq\mathbb{R}^{n+m}$, $a\in M$, M есть обобщенный r-гладкий график размерности n в окрестности a, если \exists окрестность $U_a,f\in C^r(\mathbb{R}^n\supseteq O\to\mathbb{R}^m):U_a\cap M=\Gamma_f$ с точностью до перестановки координат.

Билет 19 (Теорема о способах задания k-мерной поверхности). Пусть $m, n \in \mathbb{N}, M \subseteq \mathbb{R}^{n+m}, a \in M$. Тогда следующие утверждения равносильны:

- 1. В окрестности а M n-мерный C^r -гладкий обобщенный график
- 2. В окрестности а M n-мерное C^r -гладкое множество уровня
- 3. В окрестности а M допускает n-мерную C^r -гладкую параметризацию

16.10.2023

Билет 34 ((с леммой о верхнем пределе произведения)). $x_n, y_n \in \mathbb{R}, x_n \to x, x > 0$. $Torda \ \overline{\lim}_{n \to \infty} x_n y_n = x \overline{\lim}_{n \to \infty} y_n$.

Следствие 1 (Сумма степенного ряда непрерывна в круге сходимости). *skipped*

Билет 35 (Теорема Абеля). R - $paduyc\ cxodumocmu\ \sum_{n=0}^{\infty} c_n x^n,\ R>0.$ Torda

- 1. Если ряд сходится в точке R, то он сходится равномерно на [0,R]
- 2. Если ряд сходится в точке -R, то он сходится равномерно на [-R,0]

Билет 35 (Интегрирование степенных рядов). $[\alpha, \beta] \subset (a-r, a+r)$, r - радиус сходимости степенного ряда $\sum_{n=0}^{\infty} c_n (z-a)^n$.

Тогда $\int_{\alpha}^{\beta} \sum_{n=0}^{\infty} c_n (x-a)^n dx = \sum_{n=0}^{\infty} c_n \int_{\alpha}^{\beta} (x-a)^n dx$, то есть ряд допускает почленное интегрирование.

Билет 35 (Дифференцирование степенных рядов). Степенной ряд $\sum_{n=0}^{\infty} c_n(z-a)^n \in C^{\infty}(B_r(a))$, где r -радиус сходимости.

Этот ряд допускает т-кратное дифференцирование почленно $\forall m \in \mathbb{Z}_+\ u\ (\sum_{n=0}^\infty c_n(z-a)^n)^{(m)} = \sum_{n=m}^\infty n(n-1)\dots(n-m+1)c_n(z-a)^{n-m},\ z \in B_r(a)$

Следствие 1. Пусть $[\alpha,\beta]\subset (a-r,a+r),\ {\it rde}\ r=\frac{1}{\overline{\lim}_{n\to\infty}\sqrt[q]{|c_n|}}$

Тогда $\int_{\alpha}^{\beta} \sum_{n=0}^{\infty} c_n (x-a)^n dx = \sum_{n=0}^{\infty} c_n \int_{\alpha}^{\beta} (x-a)^n dx$, то есть ряд допускает почленное дифференцирование на $[\alpha, \beta]$.

Если ряд сходится в точке a+r (или a-r), то утверждение верно и для $[\alpha,\beta]\subseteq (a-r,a+r]$ (или $[\alpha,\beta]\subseteq [a-r,a+r)$)

Определение 1 (Комплексная дифференцируемость). $f: \mathbb{C} \supseteq O \to \mathbb{C}, \ a \in O$ $f'(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a}$ - производная f в точке a (если предел существует).

Теорема. Степенной ряд $\sum_{n=0}^{\infty} c_n(z-a)^n \in C^{\infty}(B_r(a))$, где r - радиус сходимости. Этот ряд допускает m-кратное дифференцирование почленно $\forall m \in \mathbb{Z}_+$ и $(\sum_{n=0}^{\infty} c_n(z-a)^n)^{(m)} = \sum_{n=m}^{\infty} n(n-1)\dots(n-m+1)c_n(z-a)^{n-m}$, $z \in B_r(a)$

Билет 21 (Необходимое условие условного экстремума (геометрическая формулировка)). $m, N \in \mathbb{N}, m < N$, $\mathbb{R}^n \supseteq O$ открытое, $F_1, \ldots, F_m, f \in C^1(O)$ и $F = (F_1, \ldots, F_m)$, F регулярно в O; $a \in O$, a - точка условного экстремума f при условие F(x) = 0.

Тогда $\nabla_a f$ есть линейная комбинация $\nabla_a F_1, \dots, \nabla_a F_m$, то есть $\exists \lambda_1, \dots, \lambda_m : \nabla_a f = \sum_{k=1}^m \lambda_k \cdot \nabla_a F_k$.

Билет 21 (Необходимое условие условного экстремума (формулировка, использующая функцию Лагранжа)). $\mathcal{L}(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=f(x_1,\ldots,x_n)-\sum_{k=1}^m\lambda_kF_k(x_1,\ldots,x_n)$ - функция Лагранжа, отвечающая функции f и системе связи $F_i(x)=0$.

Пусть выполнено условие формулировки выше.

Тогда $\exists \lambda \in \mathbb{R}^m : d_{(a,\lambda)}\mathcal{L} = 0.$

Билет 20 (Линейное касательное пространство к k-мерной поверхности — определение и свойства). $\mathcal{M} \subseteq \mathbb{R}^n$, $p \in \mathcal{M}$, $\tau \in \mathbb{R}^N$, τ называется касательным вектором к \mathcal{M} в точке p ($p \in T_p\mathcal{M}$), если \exists гладкое отображение $\gamma : (a,b) \to \mathcal{M}$ и $\exists c \in (a,b) : \gamma(c) = p, \gamma'(c) = \tau$.

Билет 20 (Канонические базисы линейного касательного пространства). *М допускает (в окрестности*

точки p) гладкую параметризацию $\Phi: \mathbb{R}^n \supseteq U \to \mathbb{R}^N, \ \Phi(U) = \mathcal{M}; \ a \in U, \ \Phi(a) = p.$ Тогда $\frac{\partial \Phi}{\partial x_1}(a), \dots, \frac{\partial \Phi}{\partial x_n}(a)$ называются каноническими касательными векторами. Если Φ регулярно в точке a, они линейно независимы.

Билет 20 (и его ортогонального дополнения). По теореме о способах задания гладких многообразий $\exists F$: $\mathbb{R}^n \supseteq O \ (om\kappa p \cup moe) \rightarrow \mathbb{R}^m, \ m+n=N, \ \mathcal{M} \cap O = \{x : F(x)=0\}.$

Тогда $\forall au \in T_p\mathcal{M} \ \forall j=1,\ldots,m \ au \perp \nabla_p F_j \ u \ \{\nabla_p F_j\}_{j=1}^m$ является каноническим базисом ортогонального дополнения линейного касательного пространства: $T_p\mathcal{M} = (span(\nabla_p F_1, \dots, \nabla_p F_m))^{\perp}$.