Advanced Mathematics Question Paper

Class: VIII

Time: 1 Hour 30 Minutes Max Marks: 40

Topic: Rational Numbers, Powers & Exponents, Square Numbers

Section A: Challenging Multiple Choice Questions (1 Mark Each)

Total: $5 \times 1 = 5$ Marks

- 1. If $\left(\frac{a}{b}\right)^{x-2} = \left(\frac{b}{a}\right)^{x-4}$, then the value of x is:
 - a) 0
 - b) 1
 - c) 2
 - d) 3
- 2. The value of $\left(\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}}\right)$ is:
 - a) 0
 - b) 1
 - c) $\sqrt{4} 1$
 - d) $1 \sqrt{4}$
- 3. If n is a positive integer, which of the following cannot be a perfect square?
 - a) $5n^2$
 - b) $9n^2$
 - c) $16n^2$
 - d) $20n^2$
- 4. The rationalizing factor of $\frac{1}{\sqrt[3]{5}-\sqrt[3]{2}}$ is:
 - a) $\sqrt[3]{5} + \sqrt[3]{2}$
 - b) $\sqrt[3]{25} + \sqrt[3]{10} + \sqrt[3]{4}$
 - c) $\sqrt[3]{5} \sqrt[3]{2}$

d)
$$\sqrt[3]{25} - \sqrt[3]{10} + \sqrt[3]{4}$$

5. If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, then $x^2 + y^2$ is:

- a) 10
- b) 49
- c) 98
- d) 100

Section B: Short Answer Questions (2 Marks Each)

Total: $5 \times 2 = 10$ Marks

- 6. Find the value of $\left(\frac{64}{125}\right)^{-2/3} + \left(\frac{256}{625}\right)^{-1/4}$.
- 7. If $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}$, find the values of a and b.
- 8. Prove that $\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a} = 1$.
- 9. Find the smallest rationalizing factor of $\sqrt[4]{8}$.
- 10. If $a = 2 + \sqrt{3}$, find $a^2 + \frac{1}{a^2}$.

Section C: Long Answer Questions (3 Marks Each)

Total: $5 \times 3 = 15$ Marks

11. Solve for x:

$$2^{2x} - 6 \times 2^x + 8 = 0$$

12. If
$$x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$$
 and $y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$, find $x^2 + xy + y^2$.

- 13. Prove that $\sqrt{5}$ is irrational by contradiction.
- 14. Find the value of $\sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}$.
- 15. If $a = 9 + 4\sqrt{5}$, find $\sqrt{a} \frac{1}{\sqrt{a}}$.

Section D: Application-Based Problem (5 Marks)

Total: $1 \times 5 = 5$ Marks

- 16. A right-angled triangle has legs of lengths $\sqrt{2}$ and $\sqrt{3}$.
 - (a) Find the exact length of the hypotenuse.
 - (b) If a square has the same area as this triangle, find the side length of the square.

2

(c) Compare the perimeter of the triangle and the square.

Marking Scheme (Sample Answers)

Section A

- 1. d) 3 (Hint: Equate exponents after expressing both sides with the same base.)
- 2. c) $\sqrt{4}-1$ (Rationalize each term and observe telescoping cancellation.)
- 3. d) $20n^2$ (20 is not a perfect square, so $20n^2$ can't be a perfect square.)
- 4. b) $\sqrt[3]{25} + \sqrt[3]{10} + \sqrt[3]{4}$ (Use $a^3 b^3 = (a b)(a^2 + ab + b^2)$.)
- 5. c) 98 (Compute x + y = 10 and xy = 1, then use $x^2 + y^2 = (x + y)^2 2xy$.)

Section B

- 6. $\frac{25}{16} + \frac{5}{4} = \frac{45}{16}$ (Simplify exponents and evaluate.)
- 7. a = 11, b = -6 (Rationalize the denominator and compare terms.)
- 8. **Proof:** Combine exponents and simplify to 1.
- 9. $\sqrt[4]{2}$ (Multiply by $\sqrt[4]{8} \times \sqrt[4]{2} = \sqrt[4]{16} = 2$.)
- 10. 14 (Compute $a^2 = 7 + 4\sqrt{3}$ and $\frac{1}{a^2} = 7 4\sqrt{3}$.)

Section C

- 11. x = 1, 2 (Let $2^x = t$, solve quadratic $t^2 6t + 8 = 0$.)
- 12. 49 (Compute x + y = 8 and xy = 1, then $x^2 + xy + y^2 = (x + y)^2 xy$.)
- 13. **Proof by contradiction:** Assume $\sqrt{5} = \frac{p}{q}$ in lowest terms, derive contradiction.
- 14. 3 (Let $x = \sqrt{6+x}$, solve $x^2 x 6 = 0$.)
- 15. 4 (Let $\sqrt{a} = \sqrt{5} + 2$, then compute $\sqrt{a} \frac{1}{\sqrt{a}}$.)

Section D

- 16. (a) Hypotenuse = $\sqrt{(\sqrt{2})^2 + (\sqrt{3})^2} = \sqrt{5}$.
 - (b) Area of triangle = $\frac{1}{2} \times \sqrt{2} \times \sqrt{3} = \frac{\sqrt{6}}{2}$. Side of square = $\sqrt{\frac{\sqrt{6}}{2}}$.
 - (c) Perimeter of triangle = $\sqrt{2} + \sqrt{3} + \sqrt{5}$. Perimeter of square = $4 \times \sqrt{\frac{\sqrt{6}}{2}}$.