

CASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXV (LXIV) 1986 • ČÍSLO 7

V TOMTO SEŠITĚ

Náš interview	241
Z jednání 6. plenárního zase	dání
ÚV, ČÚV a SÚV Svazarmu	243
AR svazarmovským ZO	244
AD miádoží	246
R15	267
AR seznamuje (ERS 50)	
Ze XVII. Mezinárodního vele	
spotřebního zboží v Brně	
Logická sonda '85	
LUGICKE SOIRGE 65	255
Automatický semator	
Zajimavosti	257
Mikroelektronika	
integrované obvody ze zemí	RVHP (3)265
Automatický diaprojektor	
jako zkoušeci přistroj	267
Stereofonni zesllovač MINI	
(dokončeni)	269
Videomagnetotony se zvuko	vým .
 záznamem v kvalitě M-Fi 	
Digitální kazetový magnetofo	m?271
Nové směry v SSTV	272
AR branné výchově	273
Inzerce	275
Cetti isme	278

AMATÉRSKÉ RADIO ŘADA A

AMATÉRSKÉ RADIO ŘADA A

Vydává ÚV Svázarmu, Opletakova 29, 116 31

Praha 1, tel. 22 25 49, ve Vydavatelství NAŠE

VOJSKO, Vladislavova 26, 113 66 Praha 1, tel.
26 06 51-7. Šéfredaktor ing. Jan Klabal, OK1UKA,
zástupce Luboš Kalousek, OK1FAC. Redaktní rada: Předseda ing. J. T. Hyan, Čtenové: RNDr.
V. Brunhofer, OK1HAO, V. Brzák, OK1DOK,
K. Donát, OK1DY, ing. O. Filippi, V. Gazda,
K. Glanc, OK1GW, M. Háža, Ing. J. Hodifk, P. Horák, Z. Hradisky, J. Hudec, OK1RE, ing. J. Jaroš,
ing. J. Kotmer, ing. F. Králík, RNDr. L. Kryška,
CSc., J. Kroupa, V. Němec, ing. O. Petráček,
OK1NB, ing. Z. Prošek, ing. F. Smotlik, OK1ASF,
ing. E. Smutný, ppik, ing. F. Smetlik, OK1ASF,
ing. E. Smutný, ppik, ing. F. Smet, OK1FSI, ing.
M. Sredt, OK1NI., doc. ing. J. Vackář, CSc.,
laureát št. ceny KG, J. Vorlíček. Redaktoc Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7, ing.
Klabal I. 354, Kalousek, OK1FAC, ing. Engel, Hofhans I. 353, ing. Myslík, OK1AMY, Havliš,
OK1PFM, I. 349, sekretariár I. 355. Ročně vyjde
12 čísel. Cena výtisku 5 KCs, potdetní předplatné
30 KČs. Rozšířuje PNS. Informace o předplatném
podá a objednávky příjimá kadá administrace
PNS, pošta a donučovatel. Objednávky do zahraničí vyřízuje PNS – usřtechní expedice a dovoz

tistu Praha, závod 01. administrace vývozu tistu.
Kařkova 9, 160 00 Praha 6. V jednothách ozbrojených sil Vydavatelství NAŠE VOJSKO, draministrace, Vladislavova 26, 113 66 Praha 1. Tiskne NAŠE

VOJSKO, n. p. závod 8, 162 00 Praha 6 Fuzypře,
Vlastina 889/23, Inzerci přijímá Vydavatelství
vlaštína 289/23, Inzerci přijímá vydavatelství
vlaštína 889/23, Inzerci přijímá vydavatelství
vlaštína bude-i přípojena trankovaná obětku
se zpětnou adresou. Návštěvy v redakci a telefonické dotazy po 14. hodině.
Č. indeou 46 043.
Rutopěty odevzděny tlskárně 26, 6. 1988
Číslo má vyjří podře přámu 15, 7, 1988

Číslo má vyjří podře přámu 15, 7, 1988

Číslo má vyjít podle plánu 15. 7. 1986 O Vydavatelství NASE VOJSKO, Praha

NÁŠ INTERVIEW

s Paviem Mačejovským, náměstkem ředitele pro rozvoj podniku k. p. TESLA Stropkov.

> Co byste mohl říci našim čtenářům o vzniku a pracovní náplni vašeho podniku?

V roku 1985 v májových dňoch si celá naša verejnosť pripomenula 40. výročie národnooslobodzovacieho završeniaboja našich národov z pod fašistického útlaku. Do významu týchto slávnych dní zapadlo i naše milé jubileum 25. výročie započatia výroby v našom koncernovom podniku. Rozhodnutie o výstavbe elektrotechnického závodu v Stropkove padlo na nadriadených orgánoch v r. 1957 ako výsledok celoštátnej konferencie KSČ o spriemyselnení severovýchodnej časti Slovenska. Investičnou výstavbou závodu bol poverený n. p. TESLA Karlín, Základný kameň bol položený 29. 9. 1957. Po vzniku n. p. TESLA Liptovský Hrádok, ktorý sa osamostatnil z n. p. TESLA Karlín v apríli 1958, bol ďalšou investičnou výstavbou povereny práve novovzniknutý n. p. TESLA Liptovský Hrádok.

Nový závod v Stropkove s projektova-nou kapacitou 54 mil. Kčs výroby tovaru a s plánovaným počtom 1340 pracovníkov, bol slávnostne otvorený 9. mája 1960 a začlenený do n. p. TESLA Liptovský Hrádok. Výrobný program závodu sa vyčlenil z výrobného programu materského podniku.

V priebehu roku 1959 bol realizovaný nábor pracovníkov technických i robotníckych profesií, ktorí s prvými absolventami odborného učilišťa v Liptovskom Hrádku, určenými pre nový závod v Stropkove, a postupným nadobudnutím vyššieho technického vzdelania tvorili základný káder riadiacich pracovníkov závodu. Veľký význam vo výchove kádrov malo zriadenie vlastného odborného učilišťa v roku 1962. Príprava stredných riadiacich kádrov započala v novozriadenej Večernej priemyselnej škole strojníckej a elektrotechnickej, pozdejšie aj ekonomickej. Na týchto školách vyučovali prevážne odborníci z radov technikov závodu.

V prvom roku existencie závodu dosiahol 'počet zamestnancov 300 a objem výroby tovaru 3,1 mil. Kčs. Výrobný sortiment predstavovali bytové zvonky, zvonkové transformátory, rozvodné a rozpojovacie pásky, svorkovnice a húkačky. Postupne v ďalších rokoch sa zavádzali ďalšie výrobky, ako telefónne pristroje typu MB, T58, T65, T66, ako aj telefónne pristroje pre stažené prevádzkové pod-mienky v baniach a na lodiach.

Význámným medzníkom sa stáva rok 1965, keď sa začína výroba ATP T65 po prvýkrát systémom prúdovej pásovej montáže. Nový zložitejší sortiment výrobkov ako aj nové technológie priniesli so sebou vyššie požiadavky na odbornú aj organizačnú úroveň všetkých pracovníkov hlavnej výroby, ale i pomocných prevádzok údržby a nástrojárne. Za pomoci skúsenejších súdruhov z Liptovského Hrádku i niektorých českých podnikov TESLA, najmä však z podniku TESLA Karlín, sme novú problematiku pomerne rýchlo zvládli.

V tomto období sa začína formovať i jadro závodnej VVZ, ktorá s počiatočným

Pavel Mačejovský

stavom 18 pracovníkov a ročnými prírastkami okolo 5 pracovníkov začala riešiť prvé inovácie u výrobkov bytovej dorozumievacej techniky. V roku 1966 závod prekročil projektovanú kapacitu vo VT 54 mil. Kčs a o rok dosiahol temer dvojnásobok projektovanej kapacity.

Začiatkom sedemdesiatich rokov v závode nabieha výroba rotačnej číselnice, čím sa vytvárajú predpoklady pre výrobu kompletného automatického telefonneho prístroja v Stropkove a vytvára sa základ budúceho výrobného programu. V tomto období nastáva výraznejšie zvýšenie počtu pracovníkov, technikov i inženierov. Výsledkom vlastného vývoja je realizovaná výroba dispečerského zariadenia pre 10 účastníkov BETAVOX, obsluhovacie stoly pre MV, súpravy RMTSS, stavebnícový rád nevýbušných telefonnych prí-

strojov a ďalšie drobnejšie výrobky. V obdobiach 5. a 6. SRP ďalej stúpa tempo výroby, kvalitnie práca hospodárského vedenia za účinnej podpory CZV KSS a ZV ROH. V tomto období nastáva rozmach investičnej výstavby, ktorou je riešené skladové hospodárstvo, vybudovaním administratívnej budovy rozširujú sa výrobné priestory a nezabúda sa ani na sociálnu oblasť. Vybudovalo sa rekreačné stredisko Valkov na priehradnej nádrži Domaša a výrobná hala so sociálnymi zariadeniami

Historickým medzníkom vo vývoji podniku je rok 1980, kedy nastáva osamostatnenie a zo závodu sa stáva podník s počtom zamestnancov 2495 a s objemom výroby 325,9 mil. Kčs. V rámci reorganizácie FMVS a vytvorením ministerstva FMEP dochádza k reorganizácii nadriadeného orgánu a TESLA Stropkov je začlenená do VHJ TESLA-IE, koncern Praha, pričom od 1. 4. 1980 nadobúda štatút koncernového podniku. Osamostatnením a nadobudnutím štatútu koncernového podniku vznikajú vyššie nároky na organizáciu práce i riadiace kádry. Dovtedy zabezpečovaný rozvoj závodu zo strany podniku sa musi zabezpečovať v plnom rozsahu vlastnými silami, k čomu v počiatočnom období nie sú vytvorené podmienky. Z tohto dôvodu pristúpilo sa k rozčleneniu technického úseku a vytvoreniu úseku rozvoja ako aj k intenzívnemu budovaniu vlastnej VVZ. V období 7. SRP nastáva rýchly rozvoj

budovania vlastnej VVZ, čo sa odráža v prílive nových inžiniersko-technických kádrov do podniku a vo vybudovaní vlastnej budovy VVZ. V rámci investičnej vý-stavby v priebehu 7. 5RP sú zrealizované stavby výpočtového strediska, čím sa vytvorili podmienky pre novú organizáciu práce, vstupného areálu, do podniku sa zaviedol plyn, čo si vyžiadalo realizovať rekonštrukciu kotolne. V sociálnej oblasti bola vybudovaná nová materská školka a detské jasle s kapacitou 155 detí a spolu so staršími zariadeniami sme týmto uspokojili požiadavky zamestnaných matiek v podniku.

Zvýšujúce sa trendy v oblasti výroby tovaru sme zabezpečovali inováciou výrobného programu a delimitáciou výroby zo sesterských podnikov TLH, TESLA Karlín, TESLA Pardubice a TESLA Straš-

nice.

Jak široký je váš výrobní program a jaké máte konkrétní potíže?

Výrobný program podniku v súčasnosti je zameraný na štyri nosné výrobné obory, ku ktorým pribudli novo sa rozvíjajúce ďalšie štyri obory. V nich vyrábame 160 hlavných druhov výrobkov, z ktorých temer každý má ďalšie modifikácie. Na tieto výrobky si v podniku vyrábame cez 8 tisíc druhov súčiastok a MTZ zábezpečuje nákupom okolo 15 tisíc druhov súčiastok a materiálov. Z týchto údajov vidieť, že riadenie výrobného procesu v našom podniku nie je najjednoduchšie. Po celé 25ročné obdobie trvania nášho podniku sme sa vždy dokázali vyrovnať s plnením hospodárskych úloh. Svedčí to o kvalitatívnom raste nášho pracovného kolektivu, ale aj o dobrej masovopolitickej práci CZV KSS, ZV ROH a ďalších spoločenských organizácií, ktoré v ťažkých situáciách dokážú pomôcť zaktivizovať pracujúcich pre plnenie úloh mimoriadnym spôsobom.

A výrobné potiaže? Myslím si, že v dnešnej zložitej situácii ich má každý výrobný podnik. Denne zápasíme s nedostatkom výrobných ploch, moderných vysokoproduktívnych strojov a výrobných zariadení, meracej a testovacej techniky, ovšem najzraniteľnejším miestom je zladenie výrobného procesu vzhľadom na výrobný sortiment súčiastok a nakupovaných dielov a materiálov. Spolupracujeme s vyše stovkou naších subdodávateľov.

U nás se v poslední době staly velkou módou "jednoruční" tlačítkové telefonní přístroje s pamětí posledního čísla, případně s pamětí deseti předem nastavených čísel. Jsou houtně dováženy ze zahraničí a v rozporu s našími předpisy i používány. Lze tomu čelit tuzemskou výrobou?

Otázka je veľmi zložitá a z pohľadu výrobcu telefónnych prístrojov nemožno na ňu jednoznačne odpovedať. Pokusím sa však o to aj keď to nebude vyčerpávajúce a trefné.

Už v otázke hovoríte, že sú dovážané a používané v rozpore s našími predpismi. K tomu nie som kompetentný sa vyjadriť. A ako tomu čeliť? Ideálne by bolo vlastnou výrobou takýchto prístrojov, ale s parametrami, ktoré čsl. spoje pre pripojenie

Monika Bilá montuje mikrospínače pro telefonní přístroje T 82

do jednotnej telekomunikačnej sieti požadujú. Naším úsilím je vyrábať tlačidlové pristroje pre hromadné použitie s moderným designom, dobrými užitnými vlastnosťami a parametrami. V súčasnom čase, kedy sú značné problémy výrobcov súčiastok (ceny, technológie apod.) so zabezpečením vývoja a výroby tzv. zákazníckych integrovaných obvodov, by bolo snaď hazardné vybíjať sa v tak zvanej módnej línii, ktorú domnívam sa vytvára zopár jednotlivcov, podľa ktorých smery a vývoj nemožno orientovať. A k čomu by služili pristroje "módne", vyrobené z druhotných súčiastok s nevyhovujúcími parametrami tak, ako je to v zahraničí, kde ani tamojšie spoje ich neodsúhlasili do svojích národných sietí. Čitatelia AR iste si pozorne prečítali článok ing. Štefana VÚS Praha (AR A2/86), v ktorom sa okrem iného zaoberal aj týmto problémom, ale hlavne vysvetlil aj technické záležitosti so zavádzaním do jednotnejtelekomunikačnej siete telefónnych pristrojov novej generácie.

Jaké novinky připravujete pro budoucnost?

Z realizačných výstupov v r. 1986 rozbehneme sériové výroby výrobkov: domácí telefónny prístroj, sieťový napájač, elektrický vrátnik, banské telefónne prístroje, elektretový mikrofónny menič a telefónne prístroje radov D a E s použitím rotačnej, ale aj tlačidlovej číselnice impulznej a frekvenčnej. Chceme tiež v závere roka rozbehnúť aj výrobu telefónneho prístroja s impulznou tlačidlovou číselnicou s opakovačom posledne volaného čísla.

Intenzívne pracujeme na vývoji viacúčelových telefónnych prístrojov a základnom tlačidlovom telefónnom prístroji, ktorých realizačný výstup je plánovaný v roku 1988. Ukončujeme vývoj testerov TEVETA, ktoré budú nasadené v telekomunikačnej sieti ako "dozorné centra" pre sledovanie stavov verejných telefónnych aparátov v statickom a dynamickom režime. Výroba je plánovaná od apríla 1987.

Ďalej vyvíjame dispečerské zariadenia pre 30 až 60 účastníkov s plánovaným realizačným výstupom v r. 1989. Vo vývoji pracujeme tiež na inovácii telefónov MB, istiacich súpravách, sekretárskom zariadení a koncom päťročnice chceme vyvinúť aj telefónne prístroje s pamäťou pre 10 až 30 adries.

> Jste na komunikačně značně odlehlém místě. Nečiní vám to potíže v souvislosti se subdodavateli nebo s expedicí?

Nemáme to jednoduché, ak si uvedomíme, že máme okolo dvesto subdodávateľov a celú produkciu výrobenú v podniku expedujeme do najbližšej železničnej stanice Vranov nad Topľou vzdialenej 55 km automobilovou dopravou ČSAD. Rozhodujúce výlisky z umelých hmot dovážame z NLH Chuchelná v okrese Opava. Pritom denne vyrobíme cez 2000 kusov teletónnych prístrojov, takže napríklad medzi Chuchelnou a Stropkovom máme tzv. kývadlovú prepravu a v permanencii dva kamióny, ktoré denne prepravujú výlisky potrebné k výrobe teletónnych prístrojov i dalších našich výrobkov.

S odľahlosťou súvisia aj ďalšie odlišnosti netypické pre ostatné podniky súvisiace s cestovaním pre zabezpečenie plynulého chodu podniku. Bolo by možné uviesť ešte mnoho zaujímavého z tohoto pohľadu, ale nám to nepomôže; úlohy musíme zabezpečovať svedomito bez ohľadu na našo geografickú polohu. Kla-

Helena Bujdošová při montáži TP 20

die to zvýšené nároky na organizovanie a zabezpečovanie výrobného procesu. S potešením musím konštatovať, že za našej 25ročnej existencie sme sa vždy dokázali vyrovnať s plnením hospodárskych úloh podniku. Svedčí to o kvalitativnom raste nášho pracovného kolektivu, ale aj o dobrej masovopolitickej práci CZV KSS, ZV ROH a ďalších organizácií, ktoré v ťažkých podmienkach a situáciách dokážú pomôcť zaktivizovať pracujúcich pre plnenie úloh aj mimoriadnym spôsobom.

Jak pro svůj podnik zabezpečujete nový dorost?

Máme vlastné odborné učilište s trojročným učebným a štyrročným študijným oborom. Kapacita učilišťa je 350 žiakov. Vychovávame dorast pre vlastné potreby a pre sesterské podniky nášho koncernu umiestnené na uzemí Východoslovenské-ho kraja. Vlastnou výchovou pokrývame ročné prírastky pracovníkov podniku a tiež prirodzenú fluktuáciu. Pre odborné učilište zabezpečuje vedenie podniku spoločne s CZV KSS, odborovou i mládežníckou organizáciou optimálne podmienky pre výchovu i odborný rast študentov. Odbornému učilišťu je poskytovaná všestranná podpora a pomoc pri materiálnom vybavení i teoretickom a praktickom vyučovaní. Dobrá stárostlivosť sa vypláca, pretože podnik tak dostáva potom pracovníkov s dobrými teoretickými i praktickými základami, čo je prvým predpokladom pre úspešné zvladnutie náročných úloh podníku. Podník venuje maximálnu pozornosť získavaniu pracovníkov so stredoškolským a vysokoškolským vzdelaním. Študentom vysokých škol vybratých a pre podnik potrebných špecializácií poskytuje počas štúdia podnikové štípendia, čo sa odráža potom pri stabilizácii pracovníkov.

Co byste na závěr chtěl naším prostřednictvím sdělit čtenářům AR?

Tak ako mnohé iné výrobky sa sami od seba nevytvorili, tak aj naše neprišli na svet sami od seba: Vytvorili ich um a pracovitosť našich skromných ľudí. Možno niet človeka v našej vlasti, ktorý by neprišiel do styku s našími výrobkami denne či len sporadicky za určitý čas. Vidíme pritom, ako sa s telefónmi nešetrne zaobchádza a prípadné jeho zlyhanie sa potom zvaľuje na výrobcu a tým sa očiernuje dobré meno podniku i vynaložené úsilie stovák pracovitých rúk. Preto celý náš kolektiv takéto prípady veľmi mrzia.

Záverom len toľko, že celý náš pracovný kolektív vynaloží svoje úsilie na to, aby telefónne prístroje zo Stropkova boli kvalitné a slúžili užívateľom ku ich spokojnosti.

> Děkuji vám za rozhovor. Otázky připravil A. Hofhans

Z JEDNÁNÍ 6. plenárního zasedání ÚV, ČÚV a SÚV SVAZARMU

Jednání bylo zaměřeno k realizaci závěrů XVII. sjezdu KSČ do podmínek branné organizace a konalo se 5. června 1986 v Pardubicích.

Cílem plenárního zasedání ústředního výboru Svazarmu bylo reálně posoudit dosažené výsledky za období od XVI. sjezdu KSČ a současně stanovit způsoby řešení klíčových problémů v činnosti a životě organizace, které brání plnějšímu uskutečňování její politickovýchovné, branně výcvikové, branně sportovní a branně technické funkce.

Plenární zasedání konstatovalo, že současné a budoucí práce, veškeré branně výchovné a politické orientace spolehlivě určuje linie XVII. sjezdu KSČ. Programové záměry a cíle strany k všestrannému pozvédnutí společnosti na vyšší stupeň, založené především na urychlení sociálně ekonomického rozvoje vzaly za své všechny složky Národní-fronty a s nimi i branná organizace Svazarmu. Požadavky XVII. sjezdu strany na zvýšení úlohy společenských organizací při socialistické výstavbě, obraně a socialistické samosprávě vyžadují zrychlit tempo a krok ke zvyšování účinnosti a masovosti branně výchovného působení mezi pracujícími a mládeží, zbavit se staré byrokratické a administrativní zátěže, úřadování a formalismu v řídicí práci ústředních i nižších orgánů a hlavně jejich aparátů.

Jak upozornil ve zprávě předseda ÚV Svazarmu s. generál V. Horáček: "Proplnění nových, náročnějších úkolů a pozadavků linie XVII. sjezdu KSČ jsme si předchozí prací vytvořili dobré základy. Za období od XVI. sjezdu strany se prohloubil a rozšířil branně politický a výchovný vliv Svazarmu na veřejnosti. Dobrým výsledkem branně masové práce a zájmu mládeže o svazarmovskou činnost je i ten fakt, že v řadách více než milionové základny je přes 214 tisíc mladých ve věku 15–18 let, což je přes 21 % všech členů. Kladnou tendenci v práci s předvojenskou a braneckou mládeží potvrzují stabilně dobré výsledky, kterých dosahuje řada našich organizací.

Pozitivním rysem ve vývoji Svazarmu za uplynulé období je výrazný růst počtu vzorných základních i okresních organizací. Z počtu 2205 ZO, které byly v roce 1981 nositeli titulu vzorná, došlo v roce 1985 ke zvýšení na 3655, což je přes 32 % z celkového počtu 11 293 základních organizací. Také svazarmovský tisk, který je významným nástrojem politickovýchovné práce, svými vysokými náklady, které u 10 vydávaných titulů činí přes 800 tisíc výtisků, v širších souvislostech propaguje brannou výchovu a působí na branné vědomí a kladný vztah k ozbrojeným silám."

V přednesené zprávě byla dále vyzdvižena i úspěšná vystoupení svazarmovských sportovců na mistrovství světa a Evropy. Zvlášť příznivá byla poslední dvě léta, která se počtem medailí řadí-mezi nejúspěšnější v dosavadní 35 leté historii Svazarmu. Za uplynulých 5 let získali vrcholoví sportovci Svazarmu celkem 254 medailí z MS a ME. Z toho za rok 1984 62 medailí a za rok 1985 76 medailí. Největší podíl na tom mají modeláři, střelci, letečtí akrobaté, motoristi a radioamatéři.

Včetně zprávy o potřebě vyšší hospodárnosti a efektivního využívání vlastních a přidělených finančních a materiálových prostředků byl zdůrazněn požadavek na aktivnější spolupráci s dalšími složkami. Je třebá hledat nové materiální a finanční zdroje pro zájmovou činnost, pro provoz a účelné využívání svazarmovských a dalších zařízení, prostorů, kluboven a dílen k masovému rozvoji zájmové branné činnosti a branně výchovnému působení organizace. Byl rovněž položen důraz na konkrétnější obsahové zaměření politickovýchovné práce. Je třeba více vážit i vhodnost forem s durazem na politickou a názornou agitaci, využití filmů a audiovizuálních programů, knih i názorného příkladu, které by ovlivňovaly nejen rozum, ale i city členů, rozšiřovaly jejich vojenskopolitický rozhled a správné postoje k rozhodujícím otázkám války a míru. Do přípravy dobrovolného aktivu i vlastního provádění masové politické práce je nutné více zainteresovat vedoucí funkcionáře okresních, krajských a ústředních výborů. Větší pozornost si také žádá zlepšéní vědeckotechnické propagandy, což je podmíněno cílevědomým využitím odborníků v branně technických sportech

a technické zájmové činnosti vedoucí ke zvýšení zájmu o technické odbornosti. Vzrůst zájmu je patrný v odbornosti radioamatérství, zejména v radiovém orientačním běhu. Výrazného vzestupu zájmu v posledních létech zaznamenává odbornost elektroniky výpočetní techniky a tvorby audiovizuálních programů. Svazarmovskou elektroniku je třeba co nejrychleji rozvíjet a uvádět do života také proto, že je to v plném souladu se závěry XVII. sjezdu KSČ o nutnosti urychleného zavádění elektroniky do národního hospodářství.

V uplynulém období se rozšířila materiálně technická základna pro činnost většiny odborností, ve svazarmovské výrobě se zvýšil objem a vzrostla produktivita práce. V některých odbornostech jako je modelářství, radioamatérství, motorismus, letectví a střelectví chybí ale základní materiály stavebnic, finální výrobky i součástková základna. Aktuální a rozhodující součástí řízení je práce s kádry. Za minulá léta došlo v průměru k 25-30 % výměně vedoucích funkcionářů základních organizací a okresních výborů. Je třeba říci, že nástup mladých do funkcí předsedů i tajemníků ve více než čtyrtině okresních výborů se osvědčil. I základní organizace více než ve 28 % omladily své výbory a aktivy a do funkcí se dostalo více

Hlavním úkolem pro nastávající období zůstává zvládnutí podstaty sjezdových závěrů KSČ, K tomu přijal organizační sekretariát ÚV Svazarmu "Politickoorganizační postup orgánů a organizací Svazarmu při objasňování a rozpracování závěrů XVII. sjezdu KSČ dne 16.4. 1986. Půjde o to, aby při celkovém objasňování výsledků XVII. sjezdu KSČ byl především pochopen smysl vojenskopolitických závěrů, ideologické úkoly a nové nároky na aktivizací společenských organizací Národní fronty. To by mělo vytvořit příznivou atmosféru pro jednání plén krajských a okresních výborů a členské schůze základních organizací, které budou aplikovat úkoly sjezdu i 6. zasedání do svých podmínek

And Amatersky AD

amatérské radio svazarmovským zo

Předseda ÚV Svazarmu genpor PhDr. Václav Horáček blahopřeje k vynikajícím výsledkům a předává odměnu ing. Karlu Pavcovi. Uprostřed místopředseda ÚV Svazarmu plk. ing. Ján Kováč

Se standartou za nejlepší výsledky ve výcviku branců zleva předseda OV Svazarmu v Českém Krumlově M. Koehler, předseda jihočeského KV Svazarmu plk. F. Smejkal, ing. K. Pavec a J. Neřold, OK1DMV

Radioamatéři – cvičitelé branců

Před 15 lety, v roce 1971, schválilo předsednictvo ÚV KSČ novou dlouhodobou troncepci branné přípravy obyvatelstva pod názvem "Jednotný systém branné výchovy obyvatelstva v ČSSŘ" (JSBVO). Svazu pro spolupráci s armádou patří v JSBVO jedna z nejdůležitějších rolí, z níž část připadá na členy svazarmovských odborností elektroníka a radioamatérství, a to zejména při výchku branců pro ČSLA. Svazarmovští radioamatéři se podílejí hlavně na výcytku branců-radistů, který je rozdělen do dvou směrů: provozního (operátoři radiostanic) a technického (mechanici radiostanic).

Ve výcvikovém roce 1984/85 vyšlo z výcvikových středisek branců v celé ČSSR více než 3000 branců-spojařů. Jejich nejlepší cvičitelé byli pozvání společně s cvičiteli ostatních výcvikových středisek branců v prosinci minulého roku do Prahy, kde byla jejich práce za přítomnosti nejvyšších představitelů Svazarmu a zástupců ČSLA zhodnocena a odměněna.

Putovní zástavu v soutěži o nejlepší výsledky v přípravě branců získala jihočeská krajská organizace Svazarmu. Tím také zástava přestala být putovní, neboť jihočeští svazarmovci ji získali už po páté za sebou, čímž splnili podmínky, aby přešla do jejich trvalého držení (snímek vpravo). Podstatnou zásluhu na tomto úspěchu mají radioamatéři z Českého Krumlova. Předseda UV Svazarmu genpor. PhDr. Václav Horáček ve svém projevu při příležitosti vyhlášení nejlepších cvičitelů branců řekl: "Zkušenosti svazarmovců z Českého Krumlova, kde dosahují skutečně vzorných výsledků ve výcviku branců radistů, je třeba zobecnit a jimi se řídit."

Jak to tedy dělají ve výcvikovém středisku branců v Českém Krumlově? Vyčerpávající odpověd na tuto otázku by asi vyžadovala hodně místa. My však musíme být struční.

Výcvikové středisko branců v Českém Krumlově je umístěno v budově OV Svazarmu, kde také sídlí kolektivní stanice OK1KJP. Výcvik branců-spojařů provozního směru mají na starosti tři lidé: Jindřich Neřold mladší, OK1DMV (telegrafie a provoz), ing. Karel Pavec (radiotechni-

ka) a Jiří Převrátil (politická a vševojsková příprava). Jindra, OK1DMV, začínal také jako branec ve výcvikovém středisku, tehdy pod vedením svého otce Jindřicha Neřolda staršího, OK1CN. Deset let pracoval jako rádiový operátor (RO), od roku 1982 má Jindřich Neřold mladší vlastníkoncesi. K výcviku branců-spojařů Jindra, OK1DMV, říká:

"Je to dost komplikovaná záležitost. V našem okrese prakticky neexistuje elektrotechnický průmysl, proto mladí chlapci braneckém věku u nás nemohou být žádnými specialisty v oboru. Každoročně však musime vycvičit 20 branců-spojařů. Na to, abychom je naučíli chytat telegrafní rychlosti 30 znaků za minutu, máme 80 výcvikových hodin. To je málo. Dobrých výsledků dosahujeme jen díky tomu, že my instruktori i naši branci jsme ochotni dobrovolně věnovat výcviku více času, než je předepsáno, a že nám ochotně pomáhají také ostatní členové radioklubu. Snažíme se chlapce pro rádiový provoz skutečně získat. Nejprve je zavedeme do našeho radioklúbu OK1KJP, ukážeme jim, jak se navazuje spojení, jak vypadají QSL-lístky, radioamatérské diplomy atd. l když je to z historického hlediska obrácený postup, nejprve předvádíme spojení radiotelefonická a až potom radiotelegrafická. Tyto ukázky vždycky alespoň část nových branců zaujmou a to je začátek úspěchu.

Ing. Karel Pavec je samozřejmě také členem českokrumlovské ZO Svazarmu. Je zajímavé, že není členem ani radioklubu, ani hifiklubu, jak bychom v této souvislosti čekali, nýbrž je svazarmovským specialistou na potápění a parašutismus. Nicméně je profesí elektrotechnik a tu uplatňuje při výcviku branců. Aby je na-

učil základům radiotechniky, na to má předepsáno 26 hodin. "To samozřejmě nelze," říká ing. Pavec. "Proto se ve výkladu soustředujeme především na praktické a nejnutnější věci. Například šíření vln, využití a volba antén, bezpečnost práce s elektrickými zařízeními atd. Vysílače a přijímače můžeme vysvětlovat maximálně na úrovni blokových schémat."

O zkušenostech z výcviku branců-spojařů hovořil v Praze při slavnostním vyhodnocení nejlepších cvičitelů branců také předseda OV Svazarmu v Českém Krumlově Miroslav Koehler. Konstatoval, že úspěšný výsledek je podmíněn už výběrem branců a dobrou spoluprací OV Svazarmu s okresní vojenskou správou. Při samotném výcviku je pak rozhodující osobnost cvičitele a jeho pedagogické schopnosti. K výuce je třeba využívat veškeré dostupně technické i pedagogické pomůcky včetně nejmodernější audiovizuální techniky. A pokud se zjistí, že některý branec prostě nemá pro telegrafii a radiotechniku vlohy, je lépe jej po měsíci neúspěšného výcviku po dohodě s OVS přeřadit k jiné vojenské odbornosti.

Výsledky, kterých dosahuje výcvikové středisko branců v Českém Krumlově, dokazují, že i za těch 120 učebních hodin lze mnohému naučit a hlavně že je možné správným přístupem vypěstovat v mladých chlapcích skutečný zájem o nášobor. Po návratu z vojny se bývalí branci vracejí do mateřského radioklubu a stávají se z nich dobří operátoří kolektivky OKIKJP i cvičitelé nově přicházejících branců. Spokojení jsou všichní – radioamatéři cvičitelé; protože odvedli dobrou práci, i bývalí branci a vojáci-spojaři, protože díky vojenské službě našli svoje hobby – radiotechniku a radioamatérský sport. dva

KLÍNOVEC '86

Seminař západočeských radioamatérů pořádají radiokluby Svazarmů OK1KRO Ptreň Slovany a OK1KOJ LIAZ Holysov na Klinovci ve dnech 30. a 31. srpna 1986. Informace a přihlásky: ing Milan Gütter, OK1FM. p. s. 12. 317 62 Ptreň 17.

FORMULAUM KOSKARŮM

Letošní březen (měsíc knihy) byl k nám radioamatérům přízniv. V nakladatelství dopravy a spojů vyšla totiž kniha dr. ing. Josefa Daneše, OK1YG, s názvem "Za tajemstvím éteru". Naši čtenáři tuto knihu již léta "znají" z jejich drobných úryvků, které jsme v AR otiškovali s podlitulkem "Z materiálů ke knize Jiskry, lampy, rakety." Je to tedy kniha, v níž se dočtete o začátcích radiotelegrafie, o katastrofě Titaniku z pohledu jeho radiotelegrafistů, o vzniku Československého radioklubu, o prvních koncesích na amatérské vysílání, o podílu radioamatérů v protifašistickém odboji o pomoci radioamatérů poštám při dopravě telegramů po 2. světové válce. Kniha má bohatou obrazovou přílohu a bude vítaným přírůstkem v knihovničce každého radioamatéra. Vznik této knihy l její osudý během výroby byly natolik zajímavé a poučné, že vás s nimi seznámíme ústy jejího autora dr. ing. Daneše, OK1YG:

Nebyl to muj nápad. Dne 12, ledna 1972 poslal Ústřední radioklub Svazarmu několika starým pánům výzvu, aby zachytili své vzpomínky a napsali kroniku radioamatérského hnutí: Koncem šedesátých let učinil pokus v tom směru Otakar Halaš, ex OK2RR, nyní OK2BRR, a v Amatérském radiu vyšlo několik článků starých průkopníků pod titulem "Jak jsme začínali". Hovořilo se o tom i v Olomouci, ale skutečně činorodým způsobem se této věci ujali podplukovník Václav Brzák, OK1DDK, a Franta Ježek, OK1AAJ. Jejich idea: napsat "Kroniku" mne zaujala. Amatér je projektantem, konstruktérem i provozovatelem své stanice. Musí umět matematiku, fyziku, elektrotechniku, mechanickou technologii, učí se cizí řeči, zeměpis a dnes už se neobejde bez astronomie a meteorologie. Tato činnost mu zhltne každou minutu volného času a každou korunu kapesného. Potýká se s úřady, s manželkou, s OPBH, chodí do klubu, nabírá si funkce a ty ho táhnou dál a hlouběji do víru veřejného života. Když odejde, zůstane po něm jen několik řádků nekrologu, který se redaktoři snaží seškrtat na formu ještě stručnější než úmrtní oznámení pohřební služby. Fotbalisté, boxeři, zpěváci, herečky a v některých zemích dokonce i váleční zločinci mají bohatou memoárovou literaturu . . . A radioamatéři by si ji nezasloužili? Na výzvu URK jsem reagoval tak, že jsem vypraco- val osnovu, co by v té kronice mělo být od počátku jiskrové telegrafie za Rakousko-Uherska přes vznik rozhlasu, SKEC, KVAČ, ČAV, přes II. světovou válku, přes založení Svazarmu, pomoc radioamatérů při žňových pracech a živelných pohromách, význam radioamatérství pro brannou výchovu, přínos zlepšovatelskému hnutí a průmyslu, závody a soutěže, úspěchy na moři i ve vzduchu až po současný stav hnutí a perspektivy dalšího rozvoje. V ÚRK řekli stručně:

,Tak to tedy napiš!"

Představoval jsem si tu práci naivně. Vyzpovídám zakladatele a první průkopníky Motyčku, Peška, Weiraucha, Bollarda a další, prolistují staré časopisy a bude to. Ukázalo se že taková práce není zdaleka jednoduchá. Lidé nemají v paměťových obvodech všechno tak přesně a pohotově, jak by bylo potřeba. Vzpomínají si postupně a všechny informace je nutno neustále konfrontovat a doplňovat. Byly to hodiny a hodiny rozhovorů, kilometry magnetofonových pásků, hromady dopisů, staničních deníků a poznámek a stovky krabic, nabitých zaprášenými lejstry v archívech. Franta Ježek, OK 1AAJ, mně dal řadů dobrých typů, napří na Ožákavce, který byl 1. radiotelegrafistou na Petříně v r. 1919.

Pak jsem ten balík rukopisů zanesi "na kopec" (tak se říká stanovišti Ustředního radioklubu). Brzákovi i Ježkovi se to líbilo, ale za několik dní jsem se dověděl, že jsou důležitější publikace, které se musí vydat, toto že by nikdo nekoupil a dokonce se prý někteří velmi podivovali, jak je to možné, že radioamatéři byli už po první světové válce. Zanesl jsem tedy rukopis jinam. "Je to zajímavé, ale je v tom mnoho techniky a málo beletrie". Napadlo mne jít s tím do Nadasu. Tam mně řekli: "Je v tom moc beletrie a málo techniky, ale něco na tom je. Nechte to tady."

Rukopis prošel několika komisemi a každa zasedá, myslím, jednou za rok nebo za dva. Především změnili název na "Jiskry, tampy, družice". Jednou jsem přišel k vedoucímu redaktorovi toho oddělení, kam až "Jiskry, tampy, družice"

dorazily, k Vladimíru Treterovi.

"Kdo vymyslel takový nemožný název? zeptal se mě.

"Já, pane šéfredaktore.

"To tak nemůže zůstat. To by každého odradilo. Nikdo by takovou knížku nevzal do ruky. Vymyslel jsém lepší název "Za tajemstvím éteru." Namítal jsem, že éter je kapalina bezbarvá, zápachu pronikavého a hlavně, že už vyšla knížka "Za tajemstvím vln" a každý řekne, že jsme nenápadití a titul jsme si vypůjčili.

dití a titul jsme si vypůjčili. "To je možné, že si to někdo bude myslet, ale já už jsem to tak nahlásil do edičního plánu." Nezbylo mně nic jiného, než napsat několik úvodních řádků o éteru a vzít věci tak, jak jsou. Horší to bylo s rozsahem knížky; dověděl jsem se, že lidé mají averzi vůči tlustým knihám, že není papír a o memoárovou literaturu že je malý zájem, takže původní rukopis byl trochu zkrácen. Soudruh Tretera však má zkušenosti a dal mně řadu dobrých rad. Především v koncepci celé knihy, která byla původně psaná chronologicky a na jeho doporučení byla látka shrnuta do tématických kapitol. V další fázi převzala knihu vedoucí redaktorka Vlasta Húšková. Má jemný, vytříbřený sloh a učesala mnohé moje nemotorné a neobratné slovní projevy. Neustále jsem s redaktory zuřivě bojoval a přitom jsem obdivoval jejich trpělivost i jejich porozumění pro téma tak odlehlé běžné praxi Nadasu. Jsem jim velmi vděčen za jejich velkou práci a péči, kterou knize věnovali

Uteklo nám několik tiskových chyb a také mne mrzí, že jsem zapomněl napsat, že vysílač na obálce je jiskrový vysílač, který byl prvním pojítkem Československa se zahraničím po první světové válce a že je možné jej in natúra vidět v Národním technickém muzeu v Praze.

Zprávy z oddělení elektroniky ÚV Svazarmu

- ◆ Ve dnech 4. až 6. dubna 1986 se uskutečnilo v Okruhovém domě armády v Trenčíně doškolení instruktorů kulturně ideové činnosti pro práci v odborných porotách festivalů audiovizuální tvorby (AVT). Více než 30 účastníků si rozšířilo kvalifikaci pro tuto činnost a výsledkem školení by mělo být zkvalitnění obsahu i forem politickovýchovné práce ve Svazarmu. Letošní celostátní festival AVT se uskuteční v Týdnu branné aktivity počátkem měsíce října v Praze.
- ÚV Svazarmu uspořádal ve dnech 25. a 26. dubna 1986 v Uničově odborný seminář, zaměřený na otázky kvalitní zvukové a obrazové reprodukce zejména CD přehrávačů a videomagnetofonů VHJ TESLA Spotřební elektronika.
- Svazarmovští elektronici a radioamatéři připravují v Prievidze 18. celostátní přehlídku technické tvořivosti ERA '86 na dny 23. až 31. října 1986. Pro svazarmovské konstruktéry i pro ostatní zájemce budou uspořádány tzv. oborové dny, a to 27. 10. na téma Elektronizace hornictví, 28. 10. Elektronika a mládež, 29. 10. Radiotechnický seminář, 30. 10. Konstruktérský den a 31. 10. Nové směry v hlítechnice a videotechnice. Zájemci se mohou v průběhu měsíce srpna přihlásit a získat další informace u svého krajského (městského) výborů Svazarmu. V. Gazda

Elektronický klíč CMOS

AMATÉRSKÉ RADIO MLÁDEŽI

Budoucí operátoři z radioklubu OK1KAK z Lomnice nad Lužnicí nacvičují fonický provoz

Slávek Svoboda, OK1DLH, při besedě o radioamatérské činnosti v pionýrském táboře Janka u Nežárky

Letní tábory mládeže

Skončil ďalší školní rok, nastává doba prázdnín a dovolených. V domech pionýrů a mládeže i v radioklubech jsme na několik týdnů přerušili činnost zájmových kroužků mládeže, abychom jejich činnost opět zahájili po prázdninách s novým školním rokem, protože každoročně v červenci a v srpnu nastává velké stěhování mládeže na pionýrské tábory a k příbuzným na venkov.

To však samozřejmě neznamená, že na několik týdnů končí také veškerá naše činnost v radioklubech a kolektivních stanicích a na dveře do radioklubů pověsíme tabulku s nápisem "dovolená" nebo "prázdniny". Mnohé radiokluby, které mají zájem o výchovu mladých operátorů a mají pro to vhodné podmínky, pořádají pro mladé zájemce o radioamatérský sport samostatné letní tábory. V těchto tematicky zaměřených táborech si mládež dopĺňuje vědomosti z radioamatérského provozu, mezinárodních radioamatérských zkratek a Q-kodů, nacvičuje zvyšování rychlosti v příjmu a vysílání znaků telegrafní abecedy a probírají jednotlivé otázky a odpovědi, potřebné k úspěšnému zvládnutí zkoušek operátorů. Některé letní tábory mládeže jsou zaměřeny na zdokonalování radiotechniky, rádiového orientačního běhu a moderního víceboje telegrafistů, podle toho, pro kterou činnost radioamatérů má příslušný radioklub nejlepší podmínky, potřebné prostředky a instruktory.

Mládež, která měla možnost se takových letních tematických táborů zúčastnit, vám sama řekne, jak je pobyt v takovém táboře prospěšný pro utužení kolektivu a pro budoucí úspěšnou činnost radioklubu. Jedním z kolektivů, které pro svoji mládež a budoucí operátory každoročně letní tábory pořádají, je kolektiv radioklubu OK1KAK z Lomnice nad Lužnicí (viz foto).

Dosud však nemáme ve všech radioklubech vhodné podmínky a prostředky k uspořádání vlastních letních táborů pro mladé radioamatéry. Přesto však v každém radioklubu a kolektivní stanici můžeme hodně udělat pro propagaci našeho

radioamatérského sportu a pro podchycení zájmu mládeže o radioamatérskou činnost. Navštivte proto během prázdnin letní pionýrské tábory ve svém okolí s ukázkami činnosti vašeho radioklubu a přibližte mládeži činnost radioamatérů. Pokud můžete, vezměte s sebou do tábora vaše zařízení pro krátkovinná pásma nebo alespoň menší zařízení pro provoz přes převáděče na VKV a předvedte mládeži praktickou ukázku navazování spojení s radioamatéry v Československu a případně i ve světě. Pro mládež to bůde příjemným zpestřením jejich pobytu na letním pionýrském táboře a jistě se někdo z nich po prázdninách přihlásí do vašeho radioklubu.

Na všechny radioamatéry se obracím se žádostí, aby radioamatérům, kteří vysílají z letních radioamatérských táborů, byli nápomocni tím, že je často zavolají a naváží s nimi spojení. Je totiž velice trapné pro operátora takové stanice volat dlouho a často zbytečně výzvu ke spojení a vysvětlovat okolním zájemcům, proč se nikoho nemůže dovolat.

Z vlastní zkušenosti z každoročních návštěv našeho radioklubu v letním pionýrském táboře Dyje ve Starém Hobzí vím, jak mládež sleduje naše vyprávění o čin-nosti radioamatérů a provoz kolektivní stanice OK2KMB s radostí a velikým zájmem, protože se na pionýrském táboře setkávají s činností radioamatérů většinou poprvé. Mládeži tak ukážeme další možnosti využití volného času v radioklubech a našemu kolektivu to po prázdninách usnadní práci při náboru nových zájemců o radioamatérský sport do zájmových kroužků.

Budu rád, když mi napíšete o vašich zkušenostech s ukázkami činnosti vaších radioklubů a kolektivních stanic v letních pionýrských táborech.

Z vaší čimmosti

V minulém ročníku OK-maratónu 1985 v kategorii YL zvítězila OK1-30571, Romana Brožovská z Příbrami. Dnes vás seznámím s dosavadní úspěšnou čínností této mladé posluchačky a operátorky kolektivní stanice OK1KPB.

Romana se s radioamatérskou činností setkávala v rodinném kruhu již od malička. Rodiče jsou oba koncesionáři OK, rozhodčí, treněři a cvičitelé moderního

víceboje telegrafistů, rádiového orientačního běhu a telegrafie, bratr je RO kolektivní stanice. Není tedy divu, že se již od mládí začala Romana o radioamatérský sport rovněž zajímat. Začínala s ROB, zalíbil se jí radioamatérský provoz a tak v listopadu 1984 začala poslouchat a rozesílat QSL lístky. Zúčastnila se soutěže MČSP, ve které obsadila 6. místo. V roce 1985 se zapojila do celoroční soutěže OK-maratón a po dovršení 10 roků složila zkoušky RO a stala se operátorkou kolektívní stanice OK1KPB v Příbrami. V loňském FM závodě zvítězila v kategorii kolektivních stanic.

Pod svým pracovním číslem RP obsadila 3. místo v OK-SSB závodě, 2. místo v Soutěži mládeže na počest 40. výročí osvobození naší vlasti a v kategorii YL zvítězila v OK-maratónu 1985.

Romana má již odposloucháno více než 200 různých zemí ze všech světadílů. Mezi nejzajímavějšími a nejvzácnějšími stanicemi, které odposlouchala, jsou 8R1BFR, 5T3FA, 5V3RW, BY0AA, XZ2HN, C6AAA, A35SA, 5W1FE, S92LB, XT2BS, ZM8OY, V85HF, T40PAZ, MH2CF, BT0MMN, TZ6WC a T30DZ. Dosud však nemá všechna tato odposlouchaná spojení potvrzena QSL lístky.

Romana poslouchá na přijímači R5 nebo na domácím zařízení rodičů. Vedle radioamatérského koníčka se ještě učí hrát na klavír a navštěvuje šachový kroužek, který také zabere určitou část jejího volného času.

Romana Brožovská, OK1-30571, u zařízení svých rodičů (OK1AHI a OK1VOZ)

Nezapomeňte, že . .

telegrafní část závodu WAEDC bude probíhat v sobotu 9. srpna 1986 od 00.00 UTC a v neděli 10. srpna 1986 do 24.00 UTC v pásmech 3,5 až 28 MHz. Závod je v kategoriích kolektivních stanic a jednotlivců započítáván do mistrovství CSSR v práci na KV pásmech.

druhá část FM contestu bude probíhat v sobotu 16. srpna 1986 v době od 14.00 do 20.00 UTC v pásmu 144,600 až 144,850 MHz a FM kanálech S8 až S23 (145,200 až 145,575 MHz). Všechna spojení z FM contestu si můžete započítat do OK-maratónu. Deníky, doplněné daty narození operátorů, je nutno zaslát do deseti dnů po závodě na adresu: Rada radioamatérství ČÚV Svazarmu, Vlnitá 33, 147 00 Praha 4-Braník.

... další kolo závodu TEST 160 m bude probíhat ve třech etapách v pátek dne 29. srpna 1986 v době od 20.00 do 21.00 UTC. Deníky musí být odeslány nejpozději ve středu následujícího týdne po závodě na adresu: OK2BHV, Milan Prokop, Nová 781, 685 01 Bučovice.

Přeji vám příjemné prožití dovolené a prázdnin a mnoho nadšených a pozorných posluchačů z řad mládeže při vašich návštěvách letních pionýrských táborů s ukázkami radioamatérské činnosti.

Těším se na vaše dopisy. Pište mi na adresu: OK2-4857, Josef Čech, Tyršova 735, 675 51 Jaroměřice nad Rokytnou.

73! Josef, OK2-4857

INTEGRA 86

Milí mladí čtenáři,

zveme Vás k účasti na 13. ročníku soutěže Integra, kterou pořádá pro mladé zájemce o elektroniku a mikroelektroniku k. p. TESLA Rožnov ve spolupráci s redakcí Amatérské radio.

Dnes vám předkládáme 30 testových otázek první části soutěže. Otázky byly vybrány s ohledem na vysokou úroveň vaších znalostí, prokázanou v minulých

ročnících soutěže.

Odpovědi na otázky zašlete tak, že u otázek s nabídnutými odpovědmi uvedte číslo otázky a písmeno vybrané odpovědi, u ostatních otázek uvedte v odpovědi podle možnosti také obecný vztah prořešení, teprve pak dosadte konkrétní údaje. Odpovědi zašlete nejpozději do konce září 1986 (platí datum poštovního razítka) na adresu:

Odbor výchovy vzdělávání pracujících k. p. TESLA Rožnov UI. 1. máje 1000

756 61 Rožnov pod Radhoštěm Současně uveďte také svou přesnou adresu a celé datum narození. Soutěže se mohou zúčastnit děvčata a chlapci ve věku od 9 do 15 let (tj. narození v letech 1971 až 1977).

Druhá čásť soutěže Integra 86 se uskuteční v listopadu 1986 jako součást oslav Měsíce ČSSP v rekreačním středisku Elektron k. p. TESLA Rožnov pro 35 účastníků. K této části soutěže budou pozvání písemně ti z vás, kteří pošlou nejlepší odpovědi na dnešních 30 otázek.

Otázky připravil ing. Jaroslav Svačina, k. p. TESLA Rožnov.

Testové otázky pro 1. kolo soutěže INTEGRA 86

- V kterém roce oslavil k. p. TESLA Roznov 35. výročí svého založení?
- a) 1980,
- b) 1982,
- c) 1984.
- Vyjmenuj alespoň 3 obvodové aplikace operačních zesilovačů!
- Jaký odpor R_x musí mít rezistor paralelně připojený k rezistoru R, aby výsledný odpor R_y byl

- Monolitický číslicově analogový převodník typu MDAC08, vyráběný v k. p. TESLA Roznov, převádí
- . a) číslo na napětí,
- b) číslo na proud,
- c) číslo na odpor.
- Vysvětlete alespoň dva z těchto cizojazyčných pojmů. Kde se tyto pojmy používají?

TELÉTEXT, DOUBLE DENSITY, FLOPPY DISC, SAMPLE AND HOLD, INTERRUPT REQUEST, FLOATING ZERO, PRIORITY LEVEL, VIDEO 2000, FINE TUNING, VERY LARGE SCALE INTEGRATION.

 Doplňte časový diagram výstupního signálu B v zapojení podle obrázku.

- 7. Navrhněte zapojení k získání logického signálu TTL ze střídavého napětí 10 V/50 Hz na sekundárním vinutí síťového transformátoru. Vytvořený signál TTL se použije např. při konstrukci časoměrných zařízení s menšími nároky na přesnost odměřování času.
- Napište úsek programu v jazyku BASIC, který vypočítá druhou mocninu přirozených čísel od 10 do 20 a vytiskne ji spolu s umocňovaným číslem vždy na nový řádek.
- V k. p. TESLA Rožnov se vyrábí analogový integrovaný obvod LSI typu MDA3530. Tento obvod obsahuje dekodér televizního signálu normy
 - a) NTSC,
 - b) PAL.
- c) SECAM.
- 10. V zahraničním rozhlasovém přijímačí se přepálila jedna ze sériově spojených žárovek 12 V/ /0,15 A pro osvětlení stupnice. Z tuzemských žárovek se žádná nehodí pro náhradu z důvodu mechanických rozměrů. Navrhněte typ a odpor rezistoru, nahrazujícího žárovku tak, aby poměry v "osvětlovací" větví zůstaly zachovány.

- 11. Při konstrukci mikropočítače s mikroprocesorem MHB8080 jsme se rozhodli sestavit operační paměť RAM z obvodů typu MHB2114. Kolik pouzder bude zapotřebí pro vytvoření pamětí s kapacitou 24 Kbyte?
- 12. Uveď alespoň 3 funkce osobního automobilu, o nichž si mysliš, že by je měla v moderním vozidle řídit nebo kontrolovat mikroelektronika v podobě palubního počítače.
- 13. Nejrozšířenějším mikropočítačem v ČSSR bez rozdílu třídy a účelu použití je
 - a) PMD-85
 - b) Sinclair ZX-Spectrum,
 - c) SAPI-1.
- Keramické pouzdro integrovaného obvodu má oproti pouzdru plastickému tuto výhodu:
 - a) hermetičnost.
 - b) menší váhu,
 - c) menší cenu.
- Máte k dispozici 1 dm³ mědi. Jak dlouhý bude vodič z ní vyrobený, má-li být jeho odpor R₀ = = 1 Ω? Průřez vodiče se předpokládá konstantní.
- Uveďte příklad, kdy zavedení mikroelektroniky do některého odvětví národního hospodářství ušetřilo pracovní síly.
- Na obrázku je zatěžovací charakteristika transtormátoru (závislost výstupního napětí na odebíraném proudu). Jedná se o transformátor:
 - a) se vzduchovou mezerou v jádru, 🛝
 - b) s tzv. jádrem C,
 - c) s feritovým jádrem.

- 18. Vyjmenujte alespoň 3 podniky v ČSSR, které mají mikroelektroniku. ve svém výrobním programu. Co se v nich vyrábí?
- Nakreslete tokový diagram programu pro natezení největšího ze 100 čísel, která vstupují do počítače po jednom vzdy na příkaz VSTUP.
- 20. Který materiál se kromě křemíku a germania používá jako základní (ne příměs) k výrobě polovodičových součástek?
 - a) fostor,
 - b) galium arzenid,
 - c) indium.
- Nakreslete (včetné barev) v dostatečném zvětšení uspořádání malého výseku obrazu na stinítku barevné obrazovky z k. p. TESLA Rožnov. Snímaná scéna je bílá.
- Nakreslete schéma zapojení logické sítě s obvody TTL, dostupnými podle katalogu TESLA, tak, aby při C = L platilo B = A a při C = H platilo B = A.

 Co je kód BCD a jak se liší vyjádření čísel v něm od vyjádření v binárním kódu? Zapište číslo 19 v kódu BCD a v binárním kódu.

- 24. Paměť ROM mikropočítače obsahuje a) okamžité hodnoty proměnných,
 - b) soubory dat získané při sběru z řízeného
- c) standardní obslužné programy mikropočítače 25. Kolik bitů je zapotřebí k rozlišení písmen velké abecedy? Nepřihlížejte k délce samohlásek a k měkkosti souhlásek.
- 26. Popište funkci varikapu.
- 27. Jaké úkoly bys řešil na osobním mikropočítači, pokud bys jej měl domá?
- Kolik odporových členů (alespoň) musí mít obvod podle obrázku, aby pro výsledný odpor Ro platilo Ro<0,4 Ω?

29. Doplňte zapojení podle obrázku tak, aby se dvojitým přepínačem Př ovládal směr otáčení stejnosměrného motorku s trvalým magnetem (směr otáčení závisí na polaritě přiloženého stejnosměrného napětí).

30. Živé svorky dvou napájecích zdrojů se společnou zemní svorkou (+10 V/+1 A a -5 V/-0,5 A) byly spojeny. Jaké napětí je na společné výstupní svorce a jaký proud protéká spojem? Zdroje jsou vybaveny pouze omezením odebíraného proudu při uvedených proudech a napětích, žádnou jinou ochranu vestavěnu nemají.

TO UZ TU PŘECE JEDNOU BYLO . .

Ano, to řekne mnohý z vás, hlavně starších, když najde v některém časopise návod na blikač, měnič napětí, nabíječ, sirénu . . . Opravdu je velmi obtížné, vymyslet něco skutečně původního, co tu ještě nebylo. A když se vám to podaří, zjistíte časem, že vaše konstrukce byla publikována již před padesáti-šedesáti lety – tenkrát s elektronkami – v časopise Radioamatér (nebo v jiném).

A přece: je velký rozdíl mezi tehdejší a dnešní konstrukcí. Projeví se především v rozměrech, počtu součástek, spotřebě elektrické energie, složitosti ovládání, možnosti připojení dalších zařízení zařízení i v (těžko srovnatelné) ceně. Proto se autoři znovu a znovu vracejí k námětům už známým. Řeší je však moderně, s využitím současných zkušeností, moderních součástek a možností sdělovacích prostředků.

To nás vedlo k myšlence, abychom po zveřejnění poslední lekce Tranzistorové štafety uvedli nový "seriál", v němž popíšeme zapojení, zpracovaná z uvedených důvodů. Vybrali jsme úmyslně taková, která už z rubriky Ř 15 znáte v tranzistorové či snad dokonce elektronkové verzi. Nebo ve verzi ne tak docela staré - např. s hradly TTL. V nových návodech však budou tato hradla nahrazena obvody CMOS, příp. jinými novými součástkami.

V rámci "seriálu" bude (v září) zařazen i Časový spínač jako námět nového ročníku soutěže o zadaný radiotechnický výrobek.

Obr. 1. Schéma zapojení senzorového tlačítka

Seznam součástek

tři šroubky s maticemi nebo nýtky objímka DIL 14 pro 10

Obr. 2. Deska s plošnými spoji U25

Ale vratme se k prvnímu námětu, který už tu přece jednou byl.

V Amatérském radiu č. 12/78 to bylo senzorové "tlačítko" ing. Vladimíra Valenty a rozšíření tohoto námětu nalezli čtenáři rubriky R 15 v AR A9/79. Tehdy byla tato konstrukce vyhlášena jako soutěžní pro soutěž o zadaný radiotechnický výrobek a tak se senzorových tlačítek sešla pěkná řádka. Různé funkce v nich zajišťovalo šest tranzistorů, příp. jeden tyristor, podle varianty (A, B, C), kterou soutěžící zvolil.

Při použití jednoho integrovaného obvodu MHB4011 je v zapojení jeden jediný tranzistor a ještě ušetříte dva rezistory. Aby tlačítko fungovalo i jako blikač, přibude však jeden keramický polštářkový kondenzátor.

Senzorové tlačítko

V zapojení na obr. 1 nahrazuje svítivá dioda D původně použitou žárovku. Chcete-li konstrukci použít jinak, než jako indikátor určitého stavu, můžete samozřejmě nahradit LED a R3 na výstupu žárovkou, tyristorem či relé s proudem vinutí do 300 mA (pro KSY21). Vinutí relé neopomeňte přemostit křemíkovou diodou k ochraně tranzistoru (katoda diody na kolektoru).

Obr. 3. Umístění součástek na desce

Obr. 4. Úprava zapojení (viz text)

Po zapojení součástek do desky s plošnými spoji (obr. 2, 3) a připojení zdroje 4,5 V bude svítivá dioda svítit trvale. Dotknete-li se plošek senzoru, dioda zhasne. Při propojení všech tří plošek dioda LED bliká

Do plošek senzoru můžete vyvrtat dírky a umístit do nich šroubky s maticemi nebo nýty, aby bylo dotykové pole na straně součástek.

Pozměníte-li toto dotykové pole tak, že budete mít možnost spojit plošky A a B s oběma logickými úrovněmi, můžete dosáhnout výsledného jevu podle tabulky (L - dotyk mezi ploškou vstupu hradla a 0 V, H - dotyk téže plošky s kladným pólem zdroje):

Α	÷	В	LED
L	~	L	svítí
Н	. •	L	svítí
L		Н	nesvít
Η		Hil	bliká

. Úprava dotykového pole (obr. 4, pohled ze strany součástek) spočívá ve vyvrtání několika děr a vynechání rezistorů R5 a R6. Do děr zasuňte neizolovaný vodič oØ1mm.

Literatura

-zh-

Redakce

Funkamateur č. 5/85, s. 223.

Pozori Na základě informace od pracovníků podniku TOMOS sdělujeme čtenářům, kteří si objednali podle oznámení v AR-A č. 4 a AR-B č. 2 desky na vazbu ročníků našeho časopisu, že tyto desky budou na základě došlých objednávek rozesílány od září tr., tj. po období prázdnin a dovolených. Do září tedy své objednávky neurgujte!

AMATÉRSKÉ RADIO SEZNAMUJE...

ELEKTRONICKY REGULOVATELNÁ PÁJERÍ SOUPRAVA ERS 50

Celkový popis

Elektronicky regulovatelnou pájecí soupravu ERS 50 vyrábí k. p. TESLA Liptovský Hrádok a v obchodní síti je prodávána za 400 Kčs. Kompletní výrobek obsahuje základní skříňku s elektronikou, pevně připojenou páječku s kabelem dlouhým asi 150 cm, dále je v ceně zahrnuto i příslušenství, které, kromě náhradních pojistek, tvoří i dva výměnné hroty a náhradní topné tělísko.

Na horní stěně skříňky je držák, do něhož lze páječku odkládat a vedle něho je místo pro navlhčenou houbu, o kterou otiráme v případě potřeby hrot páječky. Na čelní stěně je na levé straně sířový spínač a nad ním pojistka. Vpravo dole je knollík regulače teploty-hrotu a nad ním zeleně svítící dioda, která se rozsvěcuje vždy když elektronika zapojí proud do topného tělíska – za provozu se tedy rozsvěcuje a zhasíná v určitých intervalech. Z přední stěny je také vyveden přívodní kaběl k páječce, zatímco sířový přívod je vyveden ze zadní stěny.

-Technické údaje podle výrobce

Napájecí napětí:	220 V.
Napětí topného	
tělíska:	29 V.
Celkový příkon.	60 W.
Příkon topného	100
tělíska:	50 W.
Rozsah nastavitelné	3
teploty:	200 až 400
Doba náběhu	,
z 20 na 300 °C:	asi 60 s.
Přesnost regulace:	±3 %.
Hmotnost soupravy:	2,3 kg.
Hmotnost páječky:	65 g.

Funkce přístroje

Elektronika soupravy umožňuje nastavit teplotu hrotu v rozmezí 200 až 400 °C a nastavenou teplotu udržuje s přesností více než dostačující. V tomto směru nelze výrobku nic vytknout. Výhodné je i poměrně rychle ohřátí hrotu po zapnutí (díky značnému příkonu), což urychluje práci v těch případech, kdy jsme měli soupravu vypnutou.

Za drobný nedostatek lze však považovat to, že indikační dioda svítí jen po dobu kdy je tělísko ohříváno a pak zhasne. Rozsvítí se opět až když po ochlazení elektronika znovu zapne proud do tělíska. To je samozřejmě zcela v pořádku, ale pokud ukončíme práci v okamžiku, kdy se právě tělísko ochlazuje a dioda tedy nesvítí, snadno zapomeneme soupravu vypnout a ta zůstane v provozu.

Lze sice namítnout, že běžné žehličky s termostatem jsou řešeny obdobným způsobem, přesto se však domnívám, že by byla velmi výhodná ještě navíc indikace zapnutí soupravy. Snad by jedna dioda navíc výrobek neprodražila.

Druhým, pro mnohého rovněž spíše formálním nedostatkem je pevné připojení kabelu od páječky k řídicí skříňce. Pokud totiž páječku nepoužíváme, kabel na stole překáží a je nutno ho kolem něčeho omotávat, což se mi nejeví jako ideální řešení. Přiznám se, že mě to vadilo natolik, že jsem skříňku opatřil konektorovou zásuvkou a kabel páječky příslušnou zástrčkou, takže po ukončené práci zcela jednoduše kabel i s páječkou vytáhnu a zavěsím na zeď.

Za zmínku stojí i velmi jednoduchý způsob, jakým lze vyměňovat v případě potřeby hrot páječky.

Vnější provedení

Všechny ovládací prvky na skříňce jsou přehledné, přístupné a účelné. Dobře je vyřešeno i odkládání páječky a tak k vnějšímu provedení nelze mít žádné připomínky. Také úprava přední stěny, která je u novějších výrobků černě lakována (dříve šedě), plně vyhovuje i z estetické stránky.

Vnitřní provedení

Skříňku s elektronikou lze rozebrát povolením čtyř šroubků na spodní straně a dvou šroubků na čelní stěně. Vzhledem k rozměrnému chladiči je poněkud ztížen přístup k součástkám (například při jejich výměně), ale vše je zřejmě podřízeno jednoduché montáži a sestavě. Uzavření skříňky je však poněkud pracnější, protože v některých připadech musíme pracně hledat správnou polohu děr vůči závitu na skříňce, abychom nezašroubovali šroubky "přes závit". Zapojení elektronické části, je obvyklé a jednoduché a bude zřejmě i spolehlivé.

Závěr

Elektronicky regulovatelná pájecí souprava ERS 50 je výrobkem, na který náš trh již dlouho čekal. I přes několik vyslovených připomínek lze soupravu považovat za výborný výrobek a k zájmu o něj nepochybně přispěje i relativně velmi přijatelná cena 400 Kčs. V každém případě lze za toto účelné obohacení trhu vyslovit k. p. TESLA Liptovský Hrádok plné uznání.

ČTENÁŘI NÁM PÍŠÍ

Čtenář J. Mohelnický nás upozornil na dvě chyby na desce s plošnými spoji v článku Soumrakový spínač, který byl uveřejněn v AR A12/85 na stránce 454 a 455. Chybi spoje mezi IO3 vývod 3 a IO4 vývod 5 a spoj mezi IO3 vývod 11 a IO5 vývod 6. Prosíme zájemce, aby si oba spoje doplnili.

ZE XVII. MEZINÁRODNÍHO VELETRHU SPOTŘEBNÍHO ZBOŽÍ V RRNĚ

Obr. 5.

Letošního MVSZ Brno, který se konal v době od 23. do 29. dubna na 45 000 m² výstavní plochy brněnského výstaviště, se zúčastnilo téměř 900 vystavovatelů ze 33 zemí. Ze zahraničních účastníků měl již tradičně největší plochu Sovětský svaz, za ním následovaly Jugoslávia, Rakousko, NDR a NSR. Ze 44 zlatých medaili bylo 34 uděleno tuzemským výrobkům, deset jich získali zahraniční vystavovatelé. V oboru spotřební elektroniky byly "zlatou" odměněny čtyři exponáty: řada smě-šovacích pultů AZL (výrobce k. p. TESLA Vráble), osobní mikropočítač ONDRA, známý našim čtenářům z AR-A 3/1986 (TESLA Liberec, TESLA ELTOS,), stereofonní zesilovač AZS222 v kombinaci s přehrávačem CD MC 900 (výrobce k. p. TESLA Litovel) a autoreverzní stereofonní přehrávač (AIWA). Většina vyznamenanáých, ale i některé další zajímavé exponáty jsou na obrázcích v této naší krátké reportáží a na čtvrté straně obálky. K některým se ještě vrátíme v příštích číslech AR.

Svazarm

se na letošním veletrhu představil prostřednictvím expozice podniku ÚV Svazarmu Elektronika. Kromě již známého sortimentu přístrojů pro audiovizuální a výpočetní techniku mohli návštěvníci v tomto stánku vidět nový napájecí zdroj SN 085 s dvojnásobným výkonem oproti předchozímu modelu SN 080 a dvě verze směšovacího pultu, vzniklé z typu TM 120, vystavovaného v loňském roce. Nový TM 120 Junior vznikl zjednodušením výchoziho modelu. Má osm vstupů. Druhý, TM 140 Studio je naopak zdokonalený: má 12 vstupů, 2 vstupy pro gramofon, 2 vstupy pro magnetofon nebo efektové zařízení a bohatší možnosti využití. Na obr. 1 si tento výrobek, který účelně rozšířuje sortiment dostupné audiovizuální techniky, můžete prohlédnout.

Tuzemští výrobci

připravili pro letošní rok několik atraktivních novinek. Na obr. 2 je již zmíněná souprava osobního mikropočítače ONDRA. Na obr. 3 je přijímač do automobilu TESLA 1902B z k. p. TESLA Bratislava, zajímavý tím, že s ním spojený stereofonní přehrávač je v autoreverzním provedení. Přijímač klasické koncepce má čtyří vlnové rozsahy (DV, SV, KV 5,95 až 6,2 MHz a VKV 66 až 104 MHz), výstupní nf výkon je 2× 7 W/8 Ω. Přístroj byl přihlášen do soutěže o zlatou medaili.

Prozatím jsme postrádali z této kategorie výrobků přijímač, vybavený možností poslechu dopravního rozhlasu; doufejme, že ani ten nedá na sebe dlouho čekat.

Stereofonní přenosná kombinace K 304 Condor je příkladem úspěšné spolupráce výrobců dvou států RVHP, k. p. TESLA Pardubice a podníku UNITRA Lubartov z PLR. Obsahuje třimotorový stereofonní kazetový magnetofon s elektronickým ovládáním funkcí, odpojitelnou automatickou regulací úrovně zaznamenávaného signálu a s indikátorem úrovně ze svítivých diod; přijímač s pěti vlnovými rozsahy (2× VKV) je vybaven stereofonním dekodérem na principu AFS. O rozměrech a osazení přistroje reproduktory si můžete udělat představu podle obr. 4.

Gramofonové přístroje byly vystavovány – jak je již obvyklé – v širokém sortimentu. Mezi zajímavými výrobky byla novinka – zesilovač AZS222 se zaručovaným odstupem 88 dB (viz obr. na 4. straně obálky), jakostní gramofon NC 600 Q a další ukázky produkce k. p. TESLA Litovel. K. p. TESLA Holešovice předvedl na veletrhu mj. svoji novinku – jednopaticové zářivky DZ 7W, DZ 9W a DZ 11W.

Obr. 1

Obr. 2.

Obr. 9.

Ze zahraničních výrobků

zaujalo návštěvníky v expozici SSSR například zajímavé konstrukční řešení stereofonního stolního kazetového přístroje MP-201 z Rižského podniku Radiotechnika. Tento typ má mechanickou jednotku umístěnou ve výsuvném dílu, je vybaven číslicovým displejem pro odvinutou délku pásku a automatickým vyhledáváním požadované části záznamu. Také nový typ velkého přijímače BTV TEMP (obr. 5) budil zaslouženou pozornost

budíl zaslouženou pozornost.
V expozici NDR nás zaujal mezi jinými výrobky i bohatý sortiment automobilových antén (obr. 6) včetně elektronických variant.

Bohatá byla účast japonských firem, jejichž stánky jsou každoročně obklopeny zejména mladými návštěvníky. V expozici firmy SONY mohli letos spatřit např. "walkmany" nové generace – nejmenší provedení s přijímačem AM/FM typu WM-F30 je na obr. 7. Při vkládání kazety se povysunuje víko se zadní části přístroje asi o deset milimetrů dozadu, aby se vubec do přístroje kazeta vešla (přístroj sám má vnější rozměry asi jako pouzdro na kazetu). Nejmenší přístroj s dvojí mechanikou, umožňující kopírování záznamů, je na obr. 8.

Obr. 7.

Obr. 8.

Z oblasti videotechniky byla v expozici malá kamera pro Video 8 SONY. Objektiv Sonoptor s f = 15 mm se světelností 1:1,6 umožňuje jednoduché ostření ve třech stupních; hledáček je optický. O malých rozměřech se můžete přesvědčit na obr. 10; vedle kamery ležící kazeta odpovídá velikostí běžné kazetě CC pro magnetofony.

Zajímavé uspořádání mechanismu kazetového magnetofonu, výhodné z hlediska zmenšení celkové šířky přístrojů s dvojí mechanikou, je patrné na snímku kombinovaného přenosného přístroje z expozice firmy Sharp (obr. 9). Stereofonní přijímač má čtyři vlnové rozsahy – VKV 88 až 108 MHz, KV (6 až 16 MHz), DV a SV.

Mezi přístroje velmi dobré úrovně jak po stránce technické, tak co do vnějšího vzhledu patřily vystavované přístroje AIWA. Příkladem může být sestava bytového zařízení hiři série 7000 na obr. 11. V soupravě jsou shora: přehrávač CD DX-770, jednotka pro dálkové ovládání všech funkcí zařízení RC-77, výkonový nf stereofonní zesilovač BX-770 se sedmipásmovým "analyzátorem spektra" a výkonem 2× 100 W, stereofonní předzesilovač GX-770 se sedmipásmovým grafickým ekvalizérem, stereofonní tuner FM/AM TX-770 s krystalem řízeným syntezátorem a číslicovou indikací kmitočtu, a konečně kazetová magnětofonová jednotka s dvojitou mechanikou, zásobníkem na pět kazet s možností programovat jejich automatické přehrávání apod.

Nakonec ještě zmínka o stánku, k němuž směřovaly každé ráno ihned po otevření bran veletrhu první kroky mladých návštěvníků, kteří si chtěli zajistit místo na "počítačových" pracovištích v pavilónu G. Ve stánku ATARI (obr. 12) tam byly k dispozici pro zájemce počítače (na snímku ATARI 800 XL s kapacitou 64 K RAM + 24 K ROM – do-konalejší ATARI 130 XE má kapacitu 128 K RAM + 24 K ROM s možností rozšíření externí paměti a bohatšími funkčními možnostmi). Ve spojení s barevnými monitory a dalšími částmi technického vybavení byly pro mladé nadšence trvalým zdrojem zábavy poučení během celého období veletrhu. Potěšitelné pro naše čtenáře je, že tyto počítače s dalším technickým vybavením (disketovou jednotkou a disketami, kazetovou programovou jednotkou, tiskárnou a snad i grafickou tabulkou) by měly být u nás dostupné prozatím ve druhém pololetí tr. prostřednictvím objed-návkové služby PZO Tuzex, později velmi pravděpodobně i v běžné maloobchodní síti. Po počítačích Sinclair a SORD se tedy zájemcům nabízí nová příležitost získat zajímavý osobní mikročítač, navíc s dalším, u nás dosud nedostupným technickým vybavením. Připojíme-li k tomu ještě tuzemský typ ONDRA, bude tedy již možno mluvit o určitém sortimentu a výběru toho žádaného (a žádoucího) zboží na našem trhu.

K některým dalším zajímavým výrobkům z MSVB se pravděpodobně ještě vrátíme alespoň stručnými informacemi v příštích číslech AR.

Obr. 10.

Obr. 11.

Obr. 12.

Logická sonda 85

Ing. Marián Vrábel

Na stránkách AR i ST bolo v minulosti uverejnených veľa rôznych konštrukcií logických sond vlac či menej zodpovedajúcich dnešným požiadavkám, ktoré boli zhrnuté v článku "Logická sonda a co s ní" v ST 1/81. Logická sonda 85 spĺňa až na bod 7 všetky požiadavky kladené v uvedenom článku na súčasnú sondu. Bod 4 týkajúci sa vyhodnocovania výstupných úrovní je rozšírený o vyhodnocovanie vstupných úrovní. (Bod 7 sa týka indikácie takého impulzu, ktorý zasahuje do zakázaného pásma ale nedosiahne hranicu druhej úrovne.)

Technické údaje

Napájacie napätie: 5V, ±5 %. Odoberaný průd zo zdroja:

 $\begin{array}{cccc} & 400~\text{až}~500~\text{mA}.\\ \textit{Vstupný odpor}: & 5~\text{k}\Omega.\\ \textit{Max. vstupné napätie:} & +30, -10~\text{V}.\\ \textit{Hmotnosť:} & 200~\text{g}.\\ \textit{Rozmery:} & 200~\times~33~\times~32~\text{mm}.\\ \textit{Sonda:} \end{array}$

Napäťové úrovne a spôsob indikácie logických stavov je v tab. 1. Presnosť vyhodnotenia logických úrovní je lepšia ako 1 %. Na indikáciu je použitá segmentovka LQ410. Čltač:

Modul čítača je 16 (znaky 0 až F). Minimálna šírka impulzu ktorý je čítač schopný zachytiť je 7 ns. Aktívna je záverná hrana impulzu. Indikácia pretečenia (bodkou na segmentovke). Na indikáciu je použitá druhá segmentovka LQ410.

Indikácia vstupného napätia mimo rozsah logických úrovní:
Pri U_{vst} <0,6 V sa indikuje <0 V.
Pri U_{vst} >5,4 V sa indikuje >5 V.
Na indikáciu sú použité dve LED diódy LQ110.

Bloková schéma

Činnosť logickej sondy 85 (ďalej len LS 85) je vysvetlená na blokovej schéme obr. 1.

Zo zdroja referenčného napätia je U_{ref} privedené na odporový delič kde sa vytvárajú napätia na rozhraní medzi logickými úrovňami, 0,4; 0,8; 2,0 a 2,4 V ako i napätie – 0,1 V pre dolnú hranicu log. 0. Takto vytvorené napätia sa porovnávajú v komparátoroch so vstupným napätím Uvst. Komparátory priradia danej veľkosti vstupného napätia príslušný kód, ktorý sa dekóduje v dekodéri a zobrazí segmentovkou logických stavov. Pre rozlíšenie nepripojeného vstupu sondy od logických úrovní je na vstup pripojené záporné napätie zo zdroja -U cez rezistor R1. Na segmentovke pre zobrazovanie logických stavov sa zobrazuje i zmena logického stavu, prechod z log. 0 na log. 1 i naopak z log. 1 na log. 0. Zmena sa indikuje znakom P. Táto zmena sa vyhodnocuje v MKO generujúcom po zmene stavu asi

200 ms dlhý impulz, ktorý je privádzaný do dekodéra. Počas trvania tohoto impulzu sa zobrazuje znak P bez ohľadu na stav na výstupoch komparátorov.

Čítač i MKO je na vstup pripojený cez oddelovací zosilňovač, ktorého úlohou je zväčšenie vstupného

Výstup čítača je privedený na dekodér a odtiaľ na segmentovku čítača. Signál pretečenia je privedený z památi pretečenia priamo na segmentovku čítača. Čítač i pamäť pretečenia sa nuluje tlačidlom NUL.

Tlačidlom ZAP a VYP sa cez klopný obvod R-S zapína a vypína indikácia stavu čítača. Pri zapnutí indikácie stavu čítača sa potláča impulz z MKO. Teda pri zapnutom čítači sa pri zmene logického stavu symbol P na segmentovke logických stavov neobjaví.

Priamo na vstup sondy je pripojený i obvod indukujúci vstupné napätie mimo rozsah logických úrovní.

Pre činnosť sondy je potrebné záporné napätie. Pretože je nepohodlné prívádzať k sonde dve napájacie napätia obsahuje sonda i zdroj záporného napätia.

Popis zapojenia

Celá LS 85 je na dvoch doskách s plošnými spojmi umiestnených nad sebou. Dosky sú spojené dvoma ko-

VYBRALI JSME NA OBÁLKU

nektormi KA a KB, ktoré sú vytvorené z dutiniek a kolíčkov z konektorov FRB. Schéma zapojenia je preto rozdelené na dve časti a je na obr. 2 a 3. (Konektor KC je 5kolíkový nf konektor, ktorým sa sonda pripája na napájacie napätie.)

Zdroj referenčného napätia pozostáva zo zdroja konštantného prúdu s tranzistorom p-n-p T1. V kolektore tranzistora je referenčná dióda D3.

Tab. 1. Napäťové úrovne a spôsob indikácie logických stavov

Logic	cká úroveň	Napáťový rozsah	Indikovaný znak
log. 0	výstupná úroveň	0-0.4 V	L
	vstupná úroveň	0,4-0,8 V	Ĺ
Zaka	zaná oblasť	0,8-2,0 V	÷
log. 1	vstupná úroveň	2,0-2,4 V,	н
109. 1	výstupná úroveň	viac ako 2,4 V	• н.
Zmer	a stavu L H,H L		P
Nepri	pojený vstup	-0,3 V ••	-

* - dolná hranica pre log. 0 je asi -0,1 V

 pre rozlíšenie nepripojeného vstupu od logických úrovní je na vstupe naprázdno napätie asi -0,3 V

KB/4 ø 1/274574 1/2 74574 1/2 74 74 74188 C16 KB/5 ø^Ā 10Qu:I 2xKC148 KZ141 1010/A 8×390 0 05 C R55 560 390 1k8 KB/3 ø NUL TL1 - NUL 752 700 1/2 7474 8342-2 R53 10₀ C15 74188 LQ410 KB/7 ø VYP R32 56k J*390* R34 1k8 470 D17 K4/500 KB/1 & +U KAV4 ØD R49 47k KA/3ØC KB/8 Ø-KAJ2ØD 2xLQHO KA/1 ØE KB/6 Ø BC178 KC148 KA/60 KA/7 05/3

zo spodnej dosky cez skrutku M3 Dióda KZ140 nie je príliš vhodný typ pre takýto účel z dôvodu teplotnej stability. Pre presnosť 1 % je však postačujúca. Zdroj referenčného napätia je doplnený sledovačom IO3/B, ktorý zvyšuje jeho zaťažiteľnosť.

Odporový delič pozostáva zo šiestich rovnakých rezistorov R6 až R9. Na zhode odporu týchto rezistorov závisí presnosť nastavenia napätí na rozhraní logických úrovní. Pokiaľ nebudú použité presné odpory z rady TR 191 treba ich z rady TR 151 vyberať. Na mieste R7 sú zapojené tri rezistory kvôli jednoduchšiemu výberu. Pre presné nastavenie napätia 2,4 V je delič doplněný rezistorom R4 a trimrom R5.

Aby bolo možné rozlíšiť nepripojený vstup sondy od logických úrovní musí byť napätie na vstupe sondy pri vstupe naprázdno mimo rozsah logických úrovní. Preto je na vstup sondy pripojené napätie – U cez rezistor R1. Odpor rezistora R1 je volený tak, aby napätie na vstupe sondy naprázdno bolo asi –0,3 V.

Dolná hranica log. 0 bola nastavená na -0,1 V odporovým deličom R10 a R11 z toho dôvodu, aby pri uzemnení vstupu sondy bolo napätie na invertujúcom vstupe komparátora IO3/A zaručene väčšie ako na neinvertujúcom, čím sa zabráni prípadnému kmitaniu výstupu komparátora IO3/A.

Napätia na rozhraní logických úrovní z odporového deliča sú pripojené
na neinvertujúce vstupy komparátorov cez rezistory R14, R16, R18, R20
a R22. Vstupné napätie je cez rezistor
R12 a cez rezistory R13, 15, 17, 19, 21
pripojené na invertujúcie vstupy. Dióda D4 chráni vstupy komparátorov
pred napätím väčším ako 5 V a menším ako -0,7 V. Diódy D5 až D9 a rezistory R36 až R40 upravujú výstupné
urovne komparátorov na úrovne TTL.
Rezistory R36 až R40 ako i ďalej
popisovaný dekodér a zobrazovač logických stavov sú na hornej doske.

Výstupy z komparátorov 101/A, B a 102/A, B sú pripojené na vstupy A, B, C, D dekodéra 108. Na vstup E je privedený signál z MKO indikujúci zmenu stavu. Programovacia tabuľka pamäti PROM 74188, ktorá je použitá ako dekodér, je v tab. 2.

Výstup komparátora IO3/A blokuje dekodér pri vstupnom napätí menšom ako je dolná hranica log. 0, i pri vstupe naprázdno. Cez hradlo IO6/A sa priamo rozsvieti segment G segmentovky logických stavov Z1.

Vo vstupnom zosilňovači, ktorý je tiež na hornej doske je použitý tranzistor 8342-2 (T4). Pri použití dostup nejšieho tranzistora KSY71 nebol zistený prakticky žiaden rozdiel v rýchlosti zosilňovača.

Za vstupným zosilňovačom a oddelovacím invertorom IO4/A (už na dolnej doske) nasleduje obvod pozostávajúci z troch invertorov IO4/B, F, E a členu AND-NOR IO5/A, ktorý vytvára pri každej zmene logickej úrovne záporný impulz asi 15 ns. Tento impulz sa predĺži v MKO, ktorý pozostáva z IO7/B, IO6/B, C, rezistorov R23, R24 a kondenzátora C3. Pre potláačenie impulzu z MKO pri zapnutom čítači je na nastavovací vstup IO7/B pripojený výstup Q klopného obvodu R-S IO4/C, D cez hradlo IO6/D.

Ďalej je na spodnej doske prvý bit čítača 107/A. Je použitý rýchly J-K klopný obvod 74S112.

Všetky číslicové integrované obvody na spodnej doske okrem IO6 sú Schottkyho logické obvody.

Napokon je na spodnej doske ešte zdroj záporného napätia, ktorý je potrebný, okrem už vyššie uvedených dôvodov i na napájanie komparátorov. Zdroj bol s malými úpravami prevzatý z [2]. Na mieste C6, C7 a C8 sú z rozmerových dôvodov použité tantalové kondenzátory. Napätie na výstupe zdroja je stabilizované Zenerovou diódou D14 na -3 V. Zdroj je podľa doporučenia v [2] tienený.

Pri odbere 400 až 500 mA vzniká na prívodnom vodiči k sonde i na prechodových odporoch konektora KC úbytok napätia asi 20 mV, čo by pri napätí 0,4 V tvoriacom hranicu medzi vstupnou a výstupnou úrovňou log. 0 spôsobilo chybu 5 %. Preto sú k sonde privedené dve "zeme": analógová a číslicová. Obvody pripojené na analógovú "zem" sú označené písmenom A. Analógová "zem" je vyvedená i na zadnej strane sondy. Obidve "zeme" sú spojené rezistorom R30.

Na hornej doske sú okrem už vyše popísaných obvodov zvyšné tri bity čítača IO11/A, B a IO10/B i pamäť preplnenia IO10/A. Tá sa nahadzuje prechodom čítača zo stavu F do stavu 0. Jej výstup Q priamo budí segment H segmentovky čítača Z2. Ako dekodér je opäť použítá pamäť PROM 74188. Programovacia tabuľka je vtab. 3. Pretože je využítá iba polovica pamäti, prepojkou PR1 sa dá zvoliť, ktorá polovica bude využívaná.

Tlačidlamí ZAP a VYP sa neblokuje vstup čítača, ale iba indikácia jeho stavu a preto je ovládací signál z klopného obvodu R-S privedený na blokovací vstup dekodéra.

Napokon sú na hornej doske obvody pre indikáciu vstupného napätia mimo rozsah logických úrovní.

(Dokončení příště)

Tab. 2. Programovacia tabuľka dekódera logických stavov

Vstup Výstup (seg							egmen	it) 🦠	•			
A	В	С	D	Ε	Y.1 (a)	Y ₂ (f)	Y ₃ (b)	Y ₄ (g)	Y ₅ (c)	Y ₆ (d)	Y ₇ (e)	Y ₈ (h)
Н	Н	Н	Н	L	н	L	н	Ĥ	н	L	L	Н
L	Н	Н	Н	L	Н	L	Н	. Н .	н	L	L	L.
L	L	Н	Н	Ļ	Н	- Н	н	Ĥ	н	H.	Н	L
L	L	L	Н	L	н	L	L	L	L	Н	L	L'
L	L	L	L	Ł	Н	· L	·L	L	Ŀ	Н	. L	н
н	Н	Н	Н	Н	Ļ	L	L	٠٢.	H	Н	L	н
Ĺ	Н	Н	Н	Н	L	L	L	i L	Ή·	H	L	,H.
L	L	Н	Н	Н	L	L	L	L	н	н	L	Н
L	L	L	Н	Н	L	Ŀ	L	L,	Н	Ħ	L	н
L	Ĺ	L	L	Н	L	Ł	L	L	н	н	L	Н

Pozn: ostatné adresy sa nevyužívajú

Tab. 3. Programovacia tabuľka dekódera čítača

Vstup

Výstup (segment)

Vstup	Výstup (segment)								
ABCDE	Y ₁ (a)	Y ₂ (f)	Y ₃ (b)	Y ₄ (g)	Y ₅ (c)	Y ₆ (d)	Y ₇ (e)	Y ₈ (h)	
LLLL	L	L	L	Н,	L	·L	L		
HLLL	Н	Н	. L	Н	L	н	н		
LHLL.	L	Н	L	L	н	L	L		
HHLL	L	Н	L.	L	'L	L	Н		
LLHL	н	L	L	L	L	Ħ,	Н		
HLHL	· L	L	н	L	L	L	Н	·	
LHHL	·L	L	Н	L	ı.L	L	L		
нннг	L	Ξ	L	H	L	,H	Н		
LLLH	L	ı.	· L	L	L	۳	٦,		
HLLH	L	٦	L	L	L	L	Н	;; •	
LHLH.	, L	اد	L	L	L	н	L	٠.	
H H,F H,	Ξ.	L	н	Ł	L.	L	L		
LLHH	٦	٦	Н	н	•н •	L	L		
нінн	Н	H	L	L	L	L,	L	-	
і н н н	L	Ļ	Н	L	Н	L	L		
нинн	L	L	H	, L	Н	"Н.,	L		

AUTOMATICKÝ SEMAFOR

Tomáš Macek

Toto zařízení jsem zkonstruoval tak, aby umožňovalo modelovat situaci na křižovatce a to jak na jejím modelu, tak i v případě nutnosti na skutečné křižovatce. Prohlédl jsem řadu materiálů, ale žádný z nich plně nevyhověl mým požadavkům. Tak například zapojení z AR A3 a 4/81 sice umožňuje předvést základní činnost semaforu, ale nedodržuje potřebné vzájemné časové vztahy. Proto jsem navrhl zapojení, které tyto zásady plně respektuje.

Křižovatka může být řízena především čtyřmi semafory pro silniční provoz, dále jsou na ni řízeny dva přechody pro chodce s vlastní světelnou signalizací a konečně umožňuje přepínat světelná návěstí nejen ve stanoveném pořadí, ale situaci na křižovatce navíc kdykoli zastavit či přepnout na ruční provoz.

Schéma celého zařízení je na obr. 1. Z časové posloupnosti -jednotlivých výstupních signálů vyplývá nutnost zajistit řídicí signály pouze pro dva semafory (obr. 2). Ostatní průběhy pak ize z těchto signálů odvodit. V časovém průběhu, který ize rozdělit na čtyři základní části, se objevují dva stavy (T₃ a T₁), které mají delší dobu trvání. Proto jsem pro generování celého průběhu nenavrhl jen jeden čítač jak je u sekvenčních automatů obvyklé.

Základem celého obvodu je čítač stavů. Každému stavu odpovídá příslušná část časového průběhu. Čítač je časován hodinovým kmitočtem, který zajišťuje postupné změny na křižovatce. Tento signál lze na potřebnou dobu odpojit a prodloužit tak dobu trvání určitého taktu. Stav čítače se vyhodnocuje dekodérem a zobrazuje prostřednictvím indikátorů zabudovaných do semaforů na křižovatce. V taktech T₁ a T₃ spouští dekodér zpožďovací obvod, který na potřebnou dobu zastaví hodinový kmitočet čítače.

Jako generátor hodinového kmitočtu jsem použil nejjednodušší zapojení se dvěma hradly. Doba trvání jednoho taktu je asi 1 až-2 sekundy a ize ji nastavit odporovým trimrem. Protože hradla v generátoru pracují v lineárním řežimu, mohly by mít (s ohledem na nízký kmitočet generátoru) hrany nedostatečnou strmost. Proto je vhodné užít na tomto místě integrované obvody prvé jakosti, nebo ještě lépe Schmittovy klopné obvody 74132 PC, které lze použít bez změny v zapojení.

Čítač taktů je navržen s ohledem na cenu a počet pouzder s jedním obvodem 7474 (dva klopné obvody D), je vzestupný asynchronní a reaguje na vzestupnou hranu hodinového signálu. Binární tvar informace o taktu je vhodným způsobem převáděn hradly IO4 do tvaru potřebného pro ovládání semaforů.

Zpožďovací obvod je tvořen čítačem 7493 a umožňuje prodloužení o nejvýše

Obr. 2. Časové průběhy

15 základních taktů (doba svitu oranžové). V okamžiku T₁ nebo T₃ přestane být čítač asynchronně nulován. Zároveň se připojí výstup vyhodnocovacího obvodu čítače (čtyřvstupové hradlo NAND) k blokovacímu hradlu hodinových impulsů. Dokud není na výstupu 2a log. 0, to znamená na vstupu 2b log. 1, setrvává čítač ve stavu T₁ případně T₃. Až načítá lO 7493 do (1000)₂, objeví se na vstupu 2b log. 1 a při dalším impulsů se čítač stavů přepne do T₂, případně T₄. V tomto okamžíků je nulován čítač 7493 a současně je zablokováno ovládání hodinového kmitočtu, které je znovu odblokováno až k taktu T₃ nebo T₁.

Mezi generátor impulsů a čítač stavů je kromě hradla 2b zařazen ještě spínač, který umožňuje zastavit situaci na křižovatce. Spínač S2 slouží k přepnutí křižovatky na neřízený provoz (bliká oranžová). V základní poloze přepínače je přiváděno napájecí napětí pro IO čítače a dekodéru. Při jeho přepnutí se napájecí napětí odpo-

Rezistory (TF	3 212)	Polovodičové součástky				
R1 až R6 R7 až R12 R13 R14 P	50 Ω 1 kΩ 1,8 kΩ 1 kΩ 2,2 kΩ, trimr	T1 až T6 IO1 IO2 IO3	KF507 MH7474 MH7440 (7420) MH7493			
Kondenzátor C1 a C2	ν 500 μF, TE 982	104 105	MH7400 MH7400 (74132PC)			

Obr. 1. Schéma zapojení

Obr. 3b. Obrazce plošných spojů na desce U26

jí od IO 7474 a 7400 a signál hodinového kmitočtu se současně připojí na spínače oranžové.

Protože jsou na modelu křižovatky použity nejméně čtyři svítivé diody pro shodnou funkci, jsou na desce s plošnými spoji (obr. 3) zapojeny příslušné tranzistorové spínače. Pokud bychom na křižovatce nepoužili všechny semafory (například kdybychom vynechali semafory pro chodce) bylo by nutno odpory rezistorů v kolektorech příslušných tranzistorů zvětšit.

Obr. 4. Úprava pro indikaci žárovkami

Kdybychom chtěli popsaným zařízením ovládať velkou křižovatku, byla by indikace svítivými diodami nedostačující. V takovém případě bychom mohli použít žárovky zapojené do obvodu tyristorů podle obr. 4. Připomínám důrazně, že žárovky musí být napájeny bezpečným napětím, nejlépe střídavým napětím 24 V. Pokud bychom chtěli použít síťové napájení žárovek, bylo by nutno zapojit k oddělení vhodná řelé.

Před zapnutím napájení zvolíme nejprve délku prodlevy zpožďovacího obvodu. Při nepropojených propojkách na desce s plošnými spoji je zpoždění nulové, při spojení všech je 15T, přičemž T je perioda generátoru taktů. Po připojení napájecího napětí by měl obvod začít ihned pracovat. Nestane-li se tak, je třeba nejprve zkon-trolovat generátor. Nastavení celého systému spočívá pouze v seřízení doby svitu oranžové trimrem P, případně nastavením prodlevy zelené a červené drátovými propojkami.

Celé zařízení bylo postaveno a vyzkoušeno v MěDPM v Hradci Králové a má sloužit především k výuce dětí na dětských dopravních hřištích.

● ZAJÍMAVOSTI ● ZE SVĚTA ● Z DOMOVA ●ZAJÍMAVOSTI ● ZE SVĚTA ● Z DOMOVA ❷

- PÁJEČKA BEZ ELEKTRICKÉHO **ZDROJE**

Nový typ pistolové páječky byl uveden na trh známým výrobcem Ersa. Je určen k práci v místech, kde není k dispozici síťové napětí, ani jiný vhodný elektrický zdroj. Teplo k ohřívání hrotu se získává katalytickým spalováním (bez otevřeného plamene) plynu. Teplota hrotu je regulovatelná v mezích 300 až 520 °C. Jedna plynová náplň vydrží až na dvě hodiny práce. Obnovení vypotřebované náplně je velmi jednoduché.

Páječka se dodává jako souprava v plochém transportním pouzdru společně s jedním zásobníkem plynu, dávkou 100 g pájky (drát o průměru 1,5 mm) a čisticím kartáčkem. Kromě malé váhy má páječka výhodu v tom, že při práci s moderními

citlivými mikroelektronickými součástkami nehrozí jejich poškození statickým napětím nebo napětím, které by mohlo proniknout z elektrického napájecího

Elektronikschau č. 3/1986

KAPESNÍ PŘIJÍMAČE BTV

V Japonsku byly již před několika lety zkonstruovány malé přenosné (kapesní) televizní přijímače, v nichž nahrazovalo obrazovku ploché stinítko, složené z prvků LCD. Letos se objevily i na evropském trhu (v NSR) první ploché barevné televizní přijímače firmy Panasonic s délkou úhlopříčky obrazu 7,6 cm (tři palce). Stinítko, na němž má být jakost obrazu srovnatelná s obrazem běžné vakuové obrazovky, se skládá asi z 90 000 obrazových prvků (bodů). Ke zlepšení jakosti obrazu jsou použity speciální barevné filtry. Aby bylo možno pozorovat obraz na stinítku z tekutých krystalů i ve tmě, je Funk č. 4/1986

barevný TVP, nabízený pod typovým oz-načením Panasonic CT-301, vybaven fluorescenční výbojkou. Stinítko lze odklopit z horní stěny skříňky do polohy, optimální pro pozorování. -lec

mikroelektronika

JEDNOČIPOVÉ MIKROPOČÍTAČE ŘADY 8048

Ing. Vojtěch Horák

Rozvoj výroby integrovaných obvodů s velmi vysokým stupněm integrace umožňuje zlepšování jejich kvalitativních i kvantitativních parametrů. Ve druhé polovině sedmdesátých let se objevily na světovém trhu jednočipové (monolitické) mikropočítače, univerzální integrované obvody, které lze výměnou řídicího programu volně přizpůsobit nejrůznějším aplikačním požadavkům. V dnešní době je produkuje většina výrobců mikropočítačů pro nasazení v aplikacích, kde by mikropočítačový systém byl příliš složitý, drahý a navíc nevyužitý. Světovým standardem se stala řada MCS-48, vyvinutá firmou INTEL v r. 1976. Přebled blavních představitelů řady je uveden v tah 1

Přehled hlavních představitelů řady je uveden v tab. 1.

Na našem trhu se v průběhu roku 1985 objevily prvky této řady (MHB 8048, MHB 8035, MHB 8748) z produkce TESLA Piešťany. Tyto obvody vyrobené technologií NMOS (stručnou charakteristiku uvádí literatura [2]) mají podstatnou většinu vlastností shodnou s dováženými obvody, vyráběnými technologií HMOS nebo CMOS. Dále uvedené základní informace o architektuře obvodu, významu a zapojení vývodů a instrukčním souboru bylo proto možno převzít z popisu dovážených obvodů (viz lit. [5], [6]). Statické a dynamické charakteristiky (úrovně, zatížitelnost a časování signálů) udává vždy výrobce ke svým obvodům v technických podmínkách.

Základní charakteristika mikropočítače 8048

Mikropočítače řady 8048 mají na jednom čipu integrován osmibitový procesor, paměť pro uložení programu, vnitřní paměť pro data, vstupní/výstupní obvody, logiku přerušení, čítač/časovač aj. S blokovým schématem obvodu seznamuje obr. 1, logické schéma mikropočítače 8048 je na obr. 2a. Obr. 2b a tab. 2 popisují rozmístění a význam jednotlivých vývodů obvodu 8048.

Základní jednotka

Instrukční dekodér (řadič) generuje na základě operačního kódu instrukce řídicí signály, potřebné k provedení žádané operace.

Aritmeticko-logická jednotka (ALU) je tvořena kombinačními logickými obvody, které jsou aktivovány řadičem. ALU zajišťuje zpracování osmibitových dat z jednoho nebo dvou operandů těmito funkcemi:

 aritmetický součet (prostý, nebo se zahrnutím přenosového bitu),

				*54
Tob	4	Charakteristické		:
i au.	,	Charakteristicke	viasinosti	Jeanocipo-
wich	-	ikropošítašů žadi	2010	

<i>l ab.</i> √ých	mikr	opoč	ítačů	řady	8048	10511	jeun	očipo
8048	8748	8035	8049	8039	8021	8022	8041	8741
Ce	ntrální j	ednotk	a (8 bitů)				
Pa	měť pro	gramu						
ROM 1k×8	EPROM 1k×8	vně	ROM 2k×8	vně	ROM 1k×8	ROM 2k×8	ROM 1k×8	EPROM 1k×8
Pa	měť dat		L		_		L	
64×8	64×8	64×8	128×8	128×8	64×8	64×8	64×8	64×8
1/() linky					-		·
27	27	27	27 '	27	21	28	18	18
Po	čet vývo	odů (ko	mpatibi	ní pro v	erze R(M×EP	ROM)	·
40	40	40	40	40	28	40	40	40
. Př	erušova	cí logik	a	L				
÷	+	+	+	+	-	+	+	. +
A/	D převo	dník (8	bit)		-			
-	-	-	-	-	-	+	-	-
Ins	trukční	cyklus	2,5 až 1	0 ins	·			
Ins	strukce (délce	1 nebo	2 bajty				
čít	ač/časo	vač (8 i	bit)					
ge	nerátor	časový	ch impu	lsů				
nu	lovací o	bvody						
jec	diné nap	ájecí n	apětí + 5	5 V		-		
	žim sníž	_						

Tab. 2 Význam jednotlivých vývodů mikropočítače řady 8048

označení	číslo	funkce
/ _{SS}	20	Potenciál země, napájení 0 V.
V _{DO}	26	Programovací napájení: +25 V při programování a čtení paměti ROM/EPROM, +5 V při běžné činnosti mikropočítače, +5 V v případě výpadku napájení V _{CC} .
Vcc	40	Napájecí napětí +5 V.
PROG	25	Programovaci impuls +23 V při programování 8748. Řídící signál pro I/O expander 8243.
P10-P17 Port 1	27 až 34	Osmibitový port obousměrný s omezením.
P20-P27	21 až 24	Osmibitový port obousměrný s omezením.
Port 2	35 až 38	
DBO až DB7 BUS	12 až 19	Obousměrná osmibitová sběrnice může být použita jako vstup/ /výstup (strobed input/latched output) nebo multiplexovaná adresní/ /datová sběrnice, řízená signály ALE, PSEN, RD, WR v systému s vnější pamětí programu a dat.
TO	1-	Vstupní linka přímo testovatelná instrukcemi JTO, JNTO. Instrukci ENTO CLK ji lze nastavit pro výstup hodinového kmitočtu. Linka T0 se též využívá při programování obvodu 8748.
T1	39	Vstupní linka přímo testovatelná instrukcemi JT1, JNT1. Může být též použíta jako vstup pro vnitřní čítač (instrukcí STRT CNT).

INT	6	Vstup vnějšího přerušení. Pro vyvolání obsluhy musí být povo- leno instrukcí EN I. Vstup INT může být přímo testován instrukcí JNI.
RO	8	Výstupní signál generovaný při čtení sběrnice BUS. Využívá se při čtení vnější datové paměti.
WR ,	10	Výstupní signál generovaný při zápisu na sběrnici BUS. Využívá se při zápisu do vnější paměti dat.
RESET	4	Vstup pro nastavení výchozího stavu mikropočítače, používá se též při programování vnitřní paměti EPROM (nemá úroveň TTL).
ALE	11	Periodický signál, je vydáván jednou během každého cyklu, používá se jako hodinový výstup a především pro zápis adresy vnější paměti programu nebo dat do vyrovnávacího registru závěrnou hranou (Adress Latch Enable).
PSEN	9	Řídicí signál přenosu z vnější paměti programu (Program Storage Enable).
SS	5	Vstup, umožňující ve spojení se signálem ALE, krokování programu po jednotlivých instrukcích (Single Step).
EA	7	Vstup, umożňující odpojit inter- ní paměť programu, mapuje celý adresový prostor do vnější pa- měti programu. Používá se při diagnostice a ladění programu (External Access). Dále je vyu- žit při čtení a programování vnitřní paměti ROM/EPROM. Při změně napětí na vývodu EA musí být signál RESET na 0 V.
XTAL1 XTAL2	2 3	Vstupy pro připojení krystalu, členu LC nebo vnějších hodin na řízení interního oscilátoru (nemají úroveň TTL).

- logický součet, součin, vylučovací nebo,

zvětšení/zmenšení o 1,

- rotace bitů vpravo, vlevo

 výměna nižší a vyšší poloviny osmibitového slova ~ dekadická úprava.

Jestliže výsledek aritmetického sčítání přesáhne rozsah osmi bitů, je nastaven přenosový příznak ve stavovém slově programu.

Střádač (A) je jedním z nejdůležitějších registrů procesoru. Je vždy jedním z operandů pro aritmetické a logické operace, často bývá i příjemcem jejich výsledku. Dále je použit při přenosech dat z/na porty a vnější paměť dat.

Stavové slovo programu (PSW) je registr, obsahující informace o stavu programu a výsledcích některých předchozích operací. Význam jednotlivých bitů stavového slova je následující (viz obr. 3):

ukazatel ukládáno do zásobníku zásobníku									
7	6	5	4	3	2	1	0	bity	
CY	AC	F0	BS	1	S2	S ₁	S ₀		

CY přenos AC pomoci

AC pomocný přenos F0 uživatelský přízr

F0 uživatelský příznak 0 BS výběr sady registrů S₀ až S₂ ukazatel zásobníku

Obr. 3. Stavové slovo programu

Bity 0 až 2: ukazatel zásobníkové paměti (S_0 , S_1 , S_2);

Bit 3: není využit (trvale ve stavu "†"); výběr současné sady registrů (BS):

0 = sada 0, 1 = sada 1;

Bit 5: uživatelský příznak 0 (F0), může být nulován, negován a testován;

Bit 6: příznak pomocného přenosu (AC), je nastavován instrukcemi ADD a ADDC při přenosu z nižší poloviny osmibitového slova, využívá se při dekadické úpravě (instrukce DA A);

Bit 7: přenosový příznak (CY), indikující, že výsledek předcházejícího sečítání převýšil rozsah osmibitového čísla. Může být ovlivněn i některými dalšími

instrukcemi.

Paměťové prostory

Jednočipové mikropočítače řady 8048 jsou harwardského typu a mají tedy oddělenou paměť pro program a pro data. Z technického hlediska mohou být tyto paměti integrovány na čipu, nebo umístěny vně pouzdra mikropočítače (viz tab. 1). Připojení vnější paměti omezuje možnost využití vstupních a výstupních linek, neboť se na 12 z nich vytváří vnější časově multiplexovaná adresní a datová sběrnice.

Obr. 4. Paměť programu

Paměť programu (obr. 4) slouží k uložení programu a konstant. Obvody řady 8048 pracují s dvanáctibitovou adresou, mohou tedy přímo adresovat 4 kB paměti programu. Tató paměť je po technické stránce realizována jako paměť ROM/EPROM. U některých mikropočítačů je integrována přímo na čípu (8048 – 1 kB ROM, 8748 – 1 kB EPROM), zbývající prostor do adresovatelných 4 kB může být připojen vně mikropočítáče. Signál PSEN je generován pouze při výběru instrukce z adresy vyšší než 1 kB (tj. 400-FFF H). S využitím signálu EA (připojení na +5 V) lze mapovat celou paměť programu vně mikropočítače. V tomto případě je signál PSEN generován pro výběr instrukce v celém adresovém prostoru (tj. 0 až FFFH). Ve speciálních případech lze připojit k mikropočítači i vnější paměť (např. typu R/W), přístupnou jako paměť programu

Z programátorského hlediska je paměť programu rozdělena na dva bloky: *MEMORY BANK 0* (0-7FFH) a *MEMORY BANK 1* (800-FFFH). Tři adresy paměti programu mají předem přiřazen specifický význam:

000 - start programu po skončení signálu RESET.

003 – počátek podprogramu pro obsluhu vnějšího přerušení.

007 – počátek podprogramu pro obsluhu přerušení vyvolaného přetečením vnitřního čítače/časovače.

Obr. 5. Paměť dat a zásobník

Vnitřní paměť dat (označená též jako paměť registrů, je vždy umístěna na čipu) reprezentuje 64 bajtů paměti R/W integrovaných přímo na čipu (obr. 5). V ní jsou umístěny dvě sady registrů R0 až R7 a R0' až R7 (adresy 0 až 7 a 18H až 1FH) označované jako banky registrů (Register Bank) 0 a 1. Vybraná sada registrů je přímo adresovatelná některými instrukcemi. Výběr se provádí změnou stavu klopného obvodu BS (Register Bank Swich), ovládaného instrukcemi ŠEL RB0 a SEL RB1. Část interní paměti dat (adresy 8 až 17H) je vyhrazena na zásobník mikropočítače. Celý paměťový rozsah lze nepřímo adresovat přes adresu v registrech R0 nebo R1, popř. nebo R1'. Pro mikropočítače 8048, 8035 a 8748 se tato adresa bere jako šestibitová, tj. modulo 64

Vnější paměť dat se využívá v případech nepostačující kapacity vnitřní paměti dat. Přenosy dat jsou zajišťovány instrukcemi MOVX a probíhají mezi akumulátorem a slabikou paměti adresovanou nepřímo obsahem registru R0 nebo R1, resp. R0' nebo R1'. Takto Ize adresovat 256 bajtů (tj. jednu stránku) vnější datové paměti. U většího paměťového prostoru je nutno aktivovat jednotlivé stránky programově prostřednictvím výstupních linek.

Vstupy a výstupy

Mikropočítač 8048 má 27 linek použitelných pro komunikaci s vnějším prostředím. Tyto linky lze rozdělit na 3 osmibitové porty BUS, P1, P2, označované též kanály či brány a tři testovatelné vstupy pro větvení programu.

Sběrnicová brána je obousměrný osmibitový port, s možností přechodu do stavu velké impedance. Pokud není využit pro vytvoření vnější sběrnice (při použití vnější paměti programu a dat), může být celý použit jako Obr. 6. Struktura linky portů P1, P2

statický vstup (instrukcí INS) nebo výstup s pamětí (instrukce OUTL).

Brány P1 a P2 jsou osmibitové obousměrné s omezením (kvasi-bidirectional ports) a nelze zásobníku je uvést do stavu velké impedance. Omezení je dáno tím, že každou z linek lze používat současně jako vstupní a výstupní, ale úroveň "0" zapsaná do výstupní vyrovnávací paměti

Obr. 7. Propojení 8048 a 8243

P50-1 24 - Vcc P40-2 23 - P51 P41-3 22 - P52 P42-4 21 - P53 P43-5 8243 20 - P60 C3-6 8243 19 - P61 PR0G-7 18 - P62 P23-8 17 - P63 P22-9 16 - P70 P21-10 15 - P71 P20-11 14 - P72 GND-12 13 - P73
--

Obr. 8. Zapojení vývodů 8243

vstupní. Proto je nutno zapsat "1" na linku, která má být právě čtena. Signál RESET nastavuje všechny linky do stavu "1". Vstupy, jejíchž strukturu znázorňuje obr. 6, jsou plně TTL kompatibilní a umožňují připojit jednu zátěž TTL. Samostatné nastavování jednotlivých linek se provádí instrukcemi ANL a ORL.

Testovatelné vstupy T0, T1 a vstup vnějšího přerušení INT isou tři vstupy přímo testova-

Testovatelné vstupy T0, T1 a vstup vnějšiho přerušení INT jsou tři vstupy přímo testovatelné podmíněnými skoky: Mohou mít i jiný význam, jak bude uvedeno dále.

Rozšíření vstupních a výstupních linek

Jelikož se často nedostává potřebný počet vstupů/výstupů, byla řada 8048 doplněna o specializovaný obvod 8243 (expander). Tento obvod obsahuje 4 čtyřbitové obousměrné statické porty s výstupní vyrovnávací pamětí, označované jako P4 až P7. Komunikace mezi obvody 8048 a 8243 je vedena přes linky P20 až P23 portu P2 a výstupní signál PROG mikropočítače (obr. 7). Pro práci s expanderem jsou určeny instrukce MOVD pro přesun dat a ORLD. ANLD pro nastavování jednotlivých linek portů P4 až P7.

Zapojení vývodů obvodu 8243 v pouzdru DIL se 24 vývody je na obr. 8.

K rozšíření vstupních/výstupních linek je možno použít i periferní obvody řady 8080/ 8085, např. 8255, 8155, 8755, 8253, 8251, nebo přepínače-multiplexery (viz **obr. 9**).

(Pokračování)

P10÷13 (4) 74154

Obr. 9. Možnosti rozšíření vstupních/výstupních linek

PŘIPOJOVÁNÍ PERIFERNÍCH OBVODŮ KE SBĚRNICI (e) STD P. Horský

(Pokračování)

Režim 0 však předpokládá použití řadiče systému přerušení (obvody řady Z 80 nemohou generovat tříbajtovou instrukci CALL, ani instrukci RST, protože její operační kód má bit 0 jedničkový), a to přináší potíže ve spojení se sběrnicí @ STD. Definice sběrnice sotva umožňuje, aby řadič systému přerušení zpracoval požadavek na přerušení generovaný periferním obvodem umístěným na jiné desce, než řadič. Další problém by se vyskytl při použití řadiče 8259. Procesor totiž čte pomocí signálu INTA (=IORQ.M1) pouze první bajt instrukce; je-li instrukce vícebajtová, další bajty čte normálními strojovými cykly čtení z paměti. Proto by bylo nutno jednak vytvořit další dva impulsy INTA pro obvod 8259, jednak v příslušných strojových cyklech blokovat vybavení paměti.

Zbyvá nám tedy režim 2 (nastavený instrukcí IM 2), který je plně přizpůsoben přerušovacímu systému obvodů řady Z 80 a také nejlépe vyhovuje definici sběrnice ® STD. V režimu 2 periferní zařízení vyšle na datovou sběrnici bajt, který procesor spojí s obsahem svého registru I, a vytvoří tak adresu položky v tabulce adres obslužných podprogramů. Tuto položku pak procesor přečte a vyvolá příslušný podprogram [3], [7].

zapojen do vstupu IEI obvodu s následující nižší prioritou; vstup IEI obvodu s nejvyšší prioritou je trvale připojen na úroveň H. Z toho vyplývá, že (na rozdíl od použití řadiče přerušení 8259) vzájemná priorita periferních obvodů je vždy pevná, daná zapojením.

Periferní obvod smí požádat o přerušení, je-li jeho vstup IEI v úrovni H. Přitom výstup IEO každého periferního obvodu přejde do úrovně L v případě, že jeho vstup IEI je v úrovni L, nebo že obvod žádá o přerušení; jinak zůstává v úrovni H. (Je tedy patrné, že o přerušení může současně žádat několik obvodů, jejichž požadavky přicházely s postupně roskteré oddálí sestupnou hranu signálu IORQ, nebo přídavnými obvody urychlit šíření signálu IEO v prioritním řetězci. Obr. 5 ukazuje příklad prioritního řetězce, využívajícího pro urychlení přenosu hradla AND.

Z obrázku je patrné, že z výstupu IEO kteréhokoli periferního obvodu se signál dostane na výstup PCO desky, na které je obvod umístěn, průchodem skrz nejvýše jeden další periferní obvod (a dvě hradla AND). Na deskách 2 a 3 se naopak signál dostane ze vstupu PCI na kterýkoliv vstup IEI průchodem skrz nejvýše jeden periferní obvod. (Na vstup IEI obvodu P3 průchodem skrz periferní obvody P1 a P2, což by nevyhovovalo v případě, že by deska 1 nebyla zapojena na začátku prioritní-ho řetězce). Bude-li tedy prioritní řetězec zapojen vždy s jedním hradlem AND na každé dva periferní obvody (jak tomu je na deskách 2 a 3), z výstupu kteréhokoli periferního obvodu projde signál IEO na vstup kteréhokoli jiného obvodu s nižší prioritou skrz nejvýše dva další periferní obvody, což je - zanedbáme-li zpoždění v hradlech AND - ekvivalentní prioritnímu řetězci se čtyřmi periferními obvody

Nejvyšší přípustné zpoždění v hradlech AND a tím i maximální počet periferních obvodů,

Obr. 4. Strojový cyklus požadavku/potvrzení přerušení.

Obr. 5. Prioritní řetězec s urychlením přenosu hradly AND.

3.2 Prioritní řetězec

Komunikaci s procesorem při vyvolání přerušení ve složitějších mikroprocesorových systémech obvykle zprostředkovává řadič přerušení v podobě speciálního periferního obvodu, do jehož vstupů jsou zavedeny výstupy požadavku na přerušení dalších obvodů. Řadič přerušení také vyhodnocuje vzájemnou prioritu požadavků v situaci, kdy žádá o přerušení více periferních obvodů současně.

Oproti tomu každý z periferních obvodů řady Z 80 zahrnuje kompletní řadič přerušení, schopný samostatné činnosti. Výstupy požadavku na přerušení INT všech periferních obvodů mohou být prostě spojeny (wired OR) a zavedeny do vstupu INT procesoru. K vhodnocení vzájemné priority požadavků na přerušení přitom slouží prioritní řetězec, do kterého jsou periferní obvody začleněny pomocí svých vývodů IEI (interrupt enable in) a IEO (interrupt enable out). Výstup IEO každého obvodu je

toucí prioritou.) Ve strojovém cyklu potvrzení přerušení pak vyšle na datovou sběrnici svůj bajt adresy vektoru ten z periferních obvodů žádajících o přerušení, jehož vstup IEI je v úrovni H.

Protože periferní obvody potřebují jistý čas k přenosu signálu ze svého vstupu IEI na výstup IEO, je nutno vyloučit situaci, kdy by s příchodem signálu INTA mělo vstup IEI v úrovni H více obvodů žádajících o přerušení. Z toho důvodu nesmí periferní obvod požádat o přerušení v době, kdy je signál M1 v úrovni L. Ve strojovém cyklu potvrzení přerušení (viz obr. 4) pak má prioritní řetězec pro vyhodnocení priority k dispozici dobu od sestupné hrany signálu M1 do sestupné hrany signálu IORQ, během které se musí logická úroveň na vstupech IEI všech periferních obvodů ustálit.

Vzhledem k hodnotám dynamických parametrů periferních obvodů řady Z 80, souvisejícich s šířením signálu IEO, je lze bez přídavné logiky zapojit do prioritního řetězce nejvýše čtyři [8]. Potřebujeme-li použít více periferních obvodů, máme dvě možnosti. Buď můžeme dobu pro vyhodnocení priority prodloužit pomocí signálu WAIT vložením čekacích taktů,

který může být popsaným způsobem zapojen v prioritním-řetězci, závisí-na hodnotách dynamických parametrů jednotlivých periferních obvodů. Ty jsou kritické zejména u řady Z80A. Dynamické parametry periferních obvodů řady Z80 ponechávají na zpoždění v hradlech AND v nejnepříznivějším případě alespoň 90 ns (zanedbáno rozdílové zpoždění řídicích signálů M1 a IORQ), což dovoluje zařadit do prioritniho řetězce 3 hradla 74LS08 nebo 7408, takže ten může obsahovat až 8 periferních obvodů.

V případě potřeby můžeme zapojit jedno hradlo AND na každý periferní obvod nebo použít nějakou složitější strukturu z hradel AND [8]. Můžeme také využít obvod pro urychlení přenosu 74S182 [3]. Vzhledem k definici sběrnice (a) STO mohou ovšem taková zapojení kromě vstupu PCI zpracovávat výstupy IEO pouze periferních obvodů na té desce, na které jsou sama umístěna.

3.3 Instrukce RETI

Přerušovací systém řady Z80 nejen dovoluje vyhodnotit vzájemnou prioritu požadavků na

přerušení, ale poskytuje také prostředky pro implementaci vnořených přerušení (nested interrupts). Obslužný podprogram periferního obvodu smí být – vykonáme-li v něm instrukci El – přerušen periferním obvodem s vyšší prioritou, zatímco generování požadavku na přerušení periferními obvody s nižší prioritou je blokováno. V souvislosti s tím je pro návrat z obslužného podprogramu používána instrukce RETI s dvoubajtovým operačním kódem ED-4D, která znovu povolí generování požadavku na přerušení periferním obvodům s nižší prioritou.

Periferní obvody řady Z80 monitorují datovou sběrnici a s užitím signálů M1 a RD detekují jednotlivé operační kódy čtené procesorem. Výstup IEO periferního obvodu, na kterém se objevila úroveň L v okamžiku, kdy žádal o přerušení, není uveden zpět do úrovně H signálem INTA, potvrzujícím přerušení (jako výstup INT), ale až dekódováním instrukce RETI, provádějící návrat z jeho obslužného podprogramu. Periferní obvod musí být schopen nějak rozpoznat, že se instrukce RETI vztahuje právě k němu. Určí to z toho, že v okamžiku dekódování druhého bajtu operačního kódu instrukce RETI je jeho vstup IEV úrovni H a jeho výstup IEO (díky vnitřnímu klopnému obvodu) v úrovni L. Takovou situaci ukazuje obr. 6.

Přerušovací systém však musí ještě umět odlišit případ, kdy v době dekódování instrukce RETI žádá o přerušení periferní obvod s vyšší prioritou. Periferní obvody žádající o přerušení proto po dekódování ED jako prvního bajtu operačního kódu vrátí – až do okamžku, kdy je dekódován další bajt operačního kódu – svůj výstup IEO do úrovně H [8]. Na obr. 6 tomu odpovídá čárkované vyznačený průběh signálu IEI.

3.4 Náhrada řadiče přerušení

Potřebujeme-li generovat požadavek na přerušení nestandardním periferním obvodem a současně bez omezení využívat přerušovací systém řady Z80, máme dvě možnosti. Nejjednodušší, přestože ze systémového hlediska málo elegantní, je zavést výstup požadavku na přerušení nestandardního periferního obvodu do vhodného nevyužitého vstupu periferního obvodu řady Z80. (Může to být vstup CLK/TRG nevyužitého kanálu obvodu Z80-CTC naprogramovaného do režimu čítače, nevyužitý vstup kanálu A nebo B v řídicím režimu obvodu Z80-PlO nebo dokonce vstup ČTS či DCD obvodu Z80-SlO). Tento požadavek na přerušení ovšem nemůže být přenášen vodiči sběrnice @ STD, takže oba obvody musí být na téže desce.

Druhá možnost představuje vytvoření řadiče přerušení z obvodů řady TTL. Obr. 7 ukazuje
zapojení řadiče přerušení pro jeden nestandardní obvod, převzaté z manuálu výrobce [8].
Zapojení je pouze převedeno na běžnější
součástky (74LS32 a 74LS02 místo 74LS27)
a rozšířeno o možnost programové zapisovat
bajt adresy vektoru přerušení. Slouží zde hlavně jako důkaz toho, jak je přerušovací systém
řady Z80 složitý z hlediska realizace; k jeho
sestavení z obvodů TTL bychom potřebovalí
více než 8 pouzden. Stručným popisem jeho
funkce však můžeme zrekapitulovat obsah
odstavců 3.1 až 3.3.

Ve výchozím stavu (po signálu RESET) jsou oba klopné obvody 74LS74 i registr 74LS175 vynulovány. Vzestupná hrana signálu HELP, kterým nestandardní periferní obvod žádá o přerušení, nastaví první klopný obvod (indikující požadavek na přerušení). Je-li vstup IEI řadiče v úrovni H, aktivuje výstup prvního klopného obvodu výstup INT a – není-li posledním dekódovaným bajtem operačního kódu ED – uvede výstup IEO do úrovně L. Jakmile je vyvolán strojový cyklus potvrzení přerušení, požadovaného řadičem, signál INTA přepíše stav výstupu prvního klopného

Obr. 6. Dekódování instrukce RETI.

obvodu do druhého (indikujícího obsluhu přerušení) a první klopný obvod vynuluje (signál IEO zůstává v úrovni L). Po dobu platnosti signálu INTA je vysílán na datovou sběrnici bait uložený ve střádačí 8282

bajt, uložený ve střádači 8282.

Paměť PROM 74S287 a čtyřbitový registr 74LS175 dekódují instrukci RETI. Signál ED z jeho výstupu QT slouží k uvedení výstupu IEO do úrovně H v době, kdy řadič žádá o přerušení a byl dekódován kód ED jako první bajt operačního kódu. Je-li další bajt operačního kódu 4D (byla dekódována instrukce RETI), jsou výstupy Q2 a Q3 registru 74LS175 v úrovni H a je-li navíc vstup IEI v úrovni H (instrukce RETI se vztahuje k řadiči), je vytvořen signál RETI, který vynuluje druhý klopný obvod, takže je řadič navrácen do výchozího stavu. Signál CB na výstupu paměti PROM a výstup Q4 registru 74LS175 umožňují odlišit operační kód instrukce RETI od sekvence instrukcí SET 5, L (operační kód CB-ED) a LD C,L (operační kód 4D):

Zápis do střádače 8282 je prováděn pomocí signálu ČS z výstupu adresového dekodéru.
Pro správnou činnost řadiče by ještě měl být

Pro správnou činnost řadiče by ještě měl být signál HELP synchronizován sestupnou hranou signálu M1.

4. Oddělovače sběrnic

Ve sběrnicově orientovaných mikroprocesorových systémech bývají vývody datové, adresové a řídicí sběrnice procesoru a datové sběrnice paměťových a periferních obvodů obvykle připojeny k systémové sběrnici prostřednictvím bipolárních oddělovačů. Jejich použití ovšem zvětšuje obvodovou složitost systému. Mají-li oddělovače pracovat jako obousměrné, může navíc návrh obvodů pro jejich řízení (zejména v otevřeném systému) přinášet určité problémy.

4.1. Potřebujeme oddělovače?

Výstupy obvodů MOS mají zatížitelnost omezenou jak proudově, tak kapacitně. Proudová zatížitelnost obvykle bývá o něco větší než jedna standardní zátěž TTL. Kapacitní zatížitelnost datové sběrnice procesoru Z80-CPU je 200 pF [3], dynamické parametry periferních obvodů řady 82XX jsou udávány pro zátěž 100 nebo 150 pF. Přitom maximální kapacita vývodů datové sběrnice je u obvodů řady 82XX zpravidla 20 pF [4], [5]. Předpokládáme-li systém s osmi deskami a zatížitelnost datové sběrnice 200 pF, smí jedna deska zatížit datovou sběrnici maximálně 25 pF, což zřejmě je nereálně malá hodnota. I kdyby byl na desce jediný periferní obvod, zbývajících 5 pF bude sotva stačit na kapacitu spojů.

Chceme-li tedy zachovat koncepci sběrnice (e) STD otevřenou, je nevyhnutelné použít na každé desce oddělovače datové sběrnice. Zatižitelnost lokálních datových sběrnic na jed-

Obr. 7. Řadič přerušení z obvodů řady TTL

notlivých deskách pak lze bez větších potíží dodržet.

U adresové a řídicí sběrníce procesoru je kromě kapacitní zatížitelnosti kritická ještě proudová, takže i zde je použití oddělovačů nezbytné. Nebývá však nutné na deskách, kde jsou signály těchto sběrnic využity pouze jako vstupní; většinou se omezuje na procesorovou desku.

4.2. Řízení oddělovačů datové sběrnice

Řízení oddělovačů datové sběrnice zahrnuje několik požadavků. Je především nutno (1 vyhnout se kolizi na systémové datové sběrnici, tj. zabránit tomu, aby na dvou deskách zároveň byly oddělovače aktivovány jako vý-stupní a (2) kolizi na lokální datové sběrnici, kdy je na desce oddělovač aktivován jako vstupní a současně jsou aktivovány výstupní budiče některého periferního obvodu (tato situace může nastať na konci operace čtení). Při použití oddělovačů MHB 8286 navíc není žádoucí obracet jejich směr v době, kdy jsou aktivovány, což předpokládá dodržet (3) předstih TTVEL a(4) přesah TEHTV signálu T vzhledem k signálu OE [9]. Nesplnění uvedených požadavků může nepříznivě ovlivnit životnost oddělovačů, resp. v případě požadavku (2) životnost periferního obvodu. Kolize na datové sběrnici nebo obrácení směru aktivovaného oddělovače navíc znamená špičkový odběr napájecího proudu, který může přes rozvod napájecího napětí narušit činnost dalších, jinak nesouvisejících obvodů.

Z těch důvodů není příliš vhodné řešení, obvykle užívané v systémech s mikroprocesorem Z80-CPU, kdy jsou oddělovače aktivovány trvale a jejich směr je kombinační logikou určován z řídicích signálů procesoru a výštupů adresových dekodérů. Abychom však pochopili, proč toto řešení bývá tak často voleno, je třeba porovnat mikroprocesory Z80-CPU a třeba 8085A. Procesor Z80-CPU ovládá komunikaci na datové sběrníci prostřednictvím šesti řídicích signálů M1, MREQ, IORQ, RD, WR a RFSH. Protože však Z80-CPU nemá žádné stavové výstupy, nelze, dokud není některý z uvedených řídicích signálů aktivován, žádným rozumným způsobem poznat, který strojový cyklus probíhá a tedy které oddělovače mají být aktivovány a jakým směrem. Oproti tomu procesor 8085A má kromě tří řídicích signálů RD, WR a INTA tři stavové signály IO/M, So a S1, jejichž časování je shodné s časováním adresové sběrnice, takže stavové signály řídicí signály předstihují i přesahují. Signál IO/M přitom rozlišuje adresu paměti od adresy periferního obvodu, zatímco S₁ ještě před aktivováním příslušného řídicího signálu určuje, zda procesor bude data číst nebo zapisovat. S využitím stavových signálů procesoru 8085A tak Ize jednoduchou kombinační logikou řídit oddělovače datové sběrnice bez jakýchkoli problémů.

4.3. Oddělovač na procesorové desce

Chceme-li splnit čtyři požadavky z úvodu odstavce 4.2, nevystačíme při řízení oddělovače datové sběrnice na procesorové desce s kombinační logikou. Tento oddělovač však může být řízen jednoduchým sekvenčním obvodem [10], jehož funkci nyní stručně popíši.

Oddělovač datové sběrníce na procesorové desce je normálně aktivován jako výstupní. Jakmile je kombinačním obvodem vydekódován z řídicích signálů procesoru a výstupů adresových dekodérů požadavek na čtení dat ze systémové sběrnice, oddělovač se okamžitě, tj. asynchronně deaktivuje a s příští (sestup-

Obr. 8. Řízení oddělovačů datové sběrnice ve strojovém cyklu vstupu.

nou nebo vzestupnou) hranou systémových hodin je obrácen jeho směr. S další (vzestupnou nebo sestupnou) hranou systémových hodin je oddělovač aktivován jako vstupní. Po zániku požadavku na čtení dat je oddělovač analogickým procesem aktivován znovu jako výstupní.

Časování jednotlivých strojových cyklů zaručuje, že se oddělovač stačí ve všech případech aktivovat jako vstupní včas, takže procesor přečte platná data. Oddělovač je naopak aktivován jako výstupní vždy, kdy je požadavek na čtení dat ze systémové sběrnice neplatný, s výjimkou intervalu na jeho konci kratšího než 1 perioda systémových hodin. Tak defensivní řešení je nezbytné například v situaci, kdy procesor čte operační kód instrukce z paměti umístěné na procesorové desce. Kdyby oddělovač nebyl v té době aktivován jako výstupní, nebyly by periferní obvody řady Z80 umístěné mimo procesorovou desku schopny dekódovat instrukci RETI (viz odst. 3.3).

Řízení oddělovačů datové sběrnice ilustruje obr. 8, který ukazuje průběhy jednotlivých signálů ve strojovém cyklu vstupu. Požadavek na čtení dat ze systémové sběrnice je zde tvořen součinem řídicích signálů procesoru IORQ a RD v negativní logice a výstupem EA2₍₁₎ adresového dekodéru periferních obvodů na procesorové desce (předpokládáme, že jsou na ní nějaké umístěny) indikujícím, že adresovaný periferní obvod je mimo procesorovou desku. Oddělovač <u>na</u> procesorové desce je aktivován signálem $\overline{OE}_{(1)}$ a jeho směr určován signálem $T_{(1)}$.

4.4. Oddělovač na desce s periferními obvody

Oddělovače datové sběrnice na ostatních deskách systému by mohly být řízeny zapojením analogickým sekvenčnímu obvodu z odstavce 4.3. Dokud však jsme při jeho realizaci odkázáni na obvody řady TTL, je jeho aplikace na všechny desky neúnosně součástkově náročná; mimo procesorovou desku tím spíše, že by pro něj bylo nutno znovu vytvořit hodinové impulsy, jejichž vzestupné hrany odpovídají vzestupným a sestupným hranám systémových hodin.

Oddělovač pro periferní obvody řady 82XX stačí aktivovat ve strojových cyklech vstupu a výstupu; oddělovač pro periferní obvody řady Z80 navíc ve strojových cyklech potvrzení přerušení a čtení operačního kódu instrukce (viz tab. 2). Ukazuje se, že zejména v prvním případě může být řízení oddělovače vyřešeno velmi jednoduše (viz obr. 10a).

Oddělovač je aktivován signálem $\overline{OE}_{(2)}$ pouze ve strojových cyklech vstupu a výstupu, jestliže výstup adresového dekodéru BS určuje, že adresovaný periferní obvod je na desce. Tím je splněn požadavek (2) z úvodu odst. 4.2. Signál T₍₂₎ pro řízení směru oddělo-

Tab. 2. Přenos dat oddělovačem na desce s periferními obvody

o pomorniji obvody				
Strojový cyklus	Aktivované řídicí signály	Podmínka pro aktivování oddělovače	Směr oddělovače	
vstup	ioro, RD	adresový dekodér: BS = H	výstup	
výstup	IORQ, WR	adresový dekodér: BS = H	vstup	
potvrzení přerušení	MT, IORQ	prioritní řetězec: PCI = H, PCO = L	výstup	
čtení instrukce	M1, RD (MREQ)	vždy	vstup	

vače je vytvářen klopným obvodem typu RS, nastavovaným a nulovaným řídicími signály RD a WR. Použitím klopného obvodu je ovšem splněn požadavek (4) a vnesením rozdílového zpoždění lze splnit požadavek (3). V zapojení na obr. 10a je předstih signálu T₍₂₎ tvořen zpožděním signálu dvěma hradly OR. (Vzhledem k tomu, že použitá hradla AND jsou součástí téhož pouzdra, lze u nich předpokládat stejnou hodnotu zpoždění.)

Zbývá splnit požadavek (1). Je-li oddělovač datové sběrnice na procesorové desce řízen sekvenčním obvodem z odst. 4.3, stačí zaručit, že ve strojovém cyklu vstupu bude deaktivován dříve, než se stačí oddělovač na desce s periferními obvody aktivovat. Opačný případ není kritický (viz **obr. 8**). Čtyři hradla, kterými řídicí signály procházejí na vstup OE₍₂₎ oddělovače na desce s periferními obvody, však zřejmě stačí vytvořit dostatečné zpoždění. Je-li oddělovač na procesorové desce řízen kombinační logikou, kolize ovšem vzniká. Netrvá ale podstatně děle než v případě, že by i oddělovač na desce s periferními obvody byl řízen obvyklou kombinační logikou.

Ve strojovém cyklu výstupu jsou data přítomna na vstupech periferního obvodu až po aktivování řídicích signálů. Parametr t_{DW} (viz odst. 2.2) je zde proto třeba porovnat s šířkou impulsů IORQ a WR. Tab. 1 však ukazuje, že rezerva je v případě procesorů Z80-CPU i Z80A-CPU dostatečná.

Řízení oddělovače datové sběrnice pro periferní obvody řady Z80, založené na stejném principu, je podstatně složitější (viz obr. 10b). Oddělovač je řízen výstupem multiplexeru 74LS151 (IO 1). Do jeho adresových vstupů jsou zavedeny signály indikující jednotlivé strojové cykly (viz druhý sloupec tab. 2) a do datových vstupů příslušné podmínky pro aktivování oddělovače (třetí sloupec).

(Pokračování)

PROGRAMY ZE SOUTĚŽE MIKROPROG 85

PROGRAM AMTY

Martin Lhoták

Program AMTY slouží k "dešifrování" akordových značek. Program vám vyjmenuje všechny tóny obsažené v jakémkoli akordu a dovede i nakreslit jejich hmaty na kytaře.

Návod k obsluze

Program nahrajeme pomocí příkazu LOAD" "nebo LOAD "AMTY". Po nahrání program vypíše:

nabídka: 1 - akord → tóny 2 - program

Nyní si můžete zvolit MOD 1 nebo MOD 2. Zvolíte-li si MOD 1, program vypíše zprávu: ZADEJ AKORD. Akord je nutno zadat podle následující syntaxe:

TÓN: C, C#, D, D#, E, F, F#, G, G#, A, B, H.

mi, dur, dim

DRUH: 4,4sus, 5-, 5+, 6,6sus, 7,7-, 7maj, 9,9mi, 9+, add9, 11,11+, 11sus, 13,13mi, 13sus

potom akord zapíšeme ve tvaru:

(TON) (TYP) (DRUH) (DRUH) (DRUH) ...

Přičemž mezi všemi položkami musí být nejméně jedna mezera.

Příklad: C dur 9 7maj . . správně B mi9 7maj . . špatně, mezi mi a 9 není mezera

Když zadáme akord, počítač jej zpracovává a v případě, že jsme udělali chybu, vypíše zprávu: NEROZUMÍM!

Avšak pokračuje dál s tím, že neznámý řetězec ignoruje. Po zpracování program vypíše tóny, které jsou v akordu obsaženy. Potom se zeptá, zda-li chceme akord nakreslit. Odpovíme-li "A", nakreslí akord tak, jako bychom jej drželi na hmatníku kytary a jeho obraz viděli v zrcadle, které je na místě obrazovky. Potom se program zeptá zda chceme akord zahrát, odpovíme-li "A" program hraje akord tak dlouho, dokud jej nezrušíme jakoukoli klávesou. Potom se dostaneme k základní nabídce.

Zvolíme-li MOD 2, je program připraven hrát akordy po sobě tak, jak je naprogramujeme. MOD 2 se nás neidříve zeptá, kolik taktů bude mít skladba, potom se nás postupně ptá. co se má v daném taktu hrát za akord. Nakonec se nás ještě zeptá, kolik sekund má trvat jeden takt. Začne hrát celou skladbu a vypisuje takt, ve kterém právě je. Po skončení začíná od začátku. Přerušit jej můžeme libovolnou klávesou.

Vystoupit z programu můžeme klávesou BREAK nebo vypnutím počítače.

Komentář k programu

řádky:	význam (funkce)
0001-0025	
0050-0080	volba MODU a skok do MODU
0100-0130	čtení akordu a vyhledání jeho tóniny
0190-0400	postupně se "rozsekává" zadaný řetězec a přiřazují se k jednotli- vým zkratkám tóny. Vyskytla-li se neznámá zkratka, vypíše se "nerozumím".
0500-0530	Program se ptá, má-li nakreslit akord

Grafické schéma programu AMTY

0540-0555	do vektoru.Y se dosadí
	numerické hodnoty tónu
0556-0557	nemá-li se akord kreslit,
	idi prvč
0560-0650	hledání polohy prstu
0300-0030	
	a kreslení akordu
0700-0755	hraní akordu
0760	skok na základní nabídku
0999	nemá žádný význam
1000-1010	vypočítá pozici tónu podle
	tóniny
1020	provede skok na začátek
1020	
1010 1050	"sekání" řetězce
1040-1050	využívá se při hledání další
	zkratky
1060-1070	prohledává zbytek řetězce,
	je-li tam podobná zkratka
1500-1590	čtení hodnot a po přečtení
	akordu se provede i jeho
4700 4700	"překlad"
1700-1760	hraje postupně všechny ak
	při přerušení skočí na

základní nabídku

Literatura

Šolc, M.: Tajemství akordových značek **EDITIO SUPRAPHON 1984.**

Výpis programu AMTY

1 RE	&&&& M	YTMA	&&& &	
5 DI	M H×(6)	2)	•	
10 LE	T A×=″C	C#D D#6	E F Γ‡G	G≑A
B H "				
13 LE	T M=0			
15 LE	T S=25:	RESTOR	ES	
20 DI	M H(6):	FOR F=	1 TO 6:	REA
D XX: L	ET H(F):	-VAL XX	: NEXT	F
25 DA	TA "4",	~11 <i>~,</i> ~7	","2","	9~,~
4"				
50 IN	IFUT "NAT	BIDKA:	1 -	AKOR
D -> TO	MY		2 -	PROG
RAM	TV	JE VOLI	0A=";S	
60 IF	S=1 TH	EN GO TO	100	
70 IF	S=2 THI	IN LET I	4=1: GO	70
1500				
80 GO	TO 50			
100 RE	iA Mi	(ORD)	rony	
110 IN	PUT "ZAI	DEJ AKOF	RD ″•X×	
115 LE	T Qx=Xx	LET X	>=X>+"	": L
ET PR=0	: LET S	≪=X¤(1 ⁻	ro 2):	LET
P0C=1				

PROGRAMY ZE SOUTĚŽE MIKROPROG 85

120 IF SX()AX(POC TO POC+1) THE GO SUB 1060: LET F=3: GO TO 102 ": GO TO 650 630 FOR P=0 TO VAL H*(F)-2: PRI N LET POC=POC+2: GO 10 120 NT "-"; NEXT P 130 LET STUP=INT (POC/2) 370 IF Sx="11" THEN LET Cx="9": 640 FRINT " 190 LET P=3: LET Y×="": LET F=0 GO SUB 1060: LET F=5: GO TO 102 650 NEXT F : GO TO 1020 200 LET Sx="": IF P)LEN Xx THEN HRANI AKORDU 700 REM 380 IF Sx="11+" THEN LET Cx="9" GO TO 500 : GO SUB 1060: LET F=6: GO TO 10 710 INPUT "CHCES JEJ ZAHRAT? (A 210 IF X×(P)=" " THEN LET P=P+1 /N) ";X× 20 : GO SUB 1040: GO TO 210 220 IF X*(P)()" " THEN LET S*=S 390 IF Sx="13" THEN LET Cx="11" 720 IF X*()"A" THEN GO TO 1 : GO SUB 1040: LET F=9: GO TO 10 730 PRINT #0;"TAK POSLOUCHEJ ! (KONEC=ENTER) " **X*(P): LET P=P+1: IF P(=LEN X* 740 RESTORE 755: FOR F=1 TO 12: THEN GO TO 220 395 IF Sx="48US" THEN LET F=5: READ S*: BEEP .1+.1*(S*)"4").Y(GO SUB 1000: LET Yx(3 TO 4)=Yx(L 230 IF Sx="7" THEN LET F=10: GO VAL Sx)-24*(Sx)"4") 750 IF INKEYx="" THEN NEXT F: P TO 1020 EN Yx-1 TO LEN Yx): LET Yx=Yx(1 235 IF Sx="MI" THEN LET Cx="5": TO LEN Yx-2): GO TO 200 GO SUB 1060: LET F=3: GO TO 102 396 IF Sx="6SUS" THEN LET F=9: AUSE 10: GO TO 740 GO SUB 1000: LET Yx(5 TO 6)=Yx(L 755 DATA "5", "3", "2", "1", "2", "4 ',"6","3","2","1","2","4" 240 IF Sx="7MAJ" THEN LET F=11: EN Yx-1 TO LEN Yx): LET Yx=Yx(1 GO TO 1020 TO LEN Yx-2): GO TO 200 760 GO TO 1 245 IF Sx="DUR" THEN LET Cx="5" 400 PRINT " NEROZUMIM 999 STOP ":Sx: G 1000 LET F=1+2*(F+STUP): IF F)24 : GO SUD 1060: LET F=4: GO TO 10 0 TO 200 THEN LET F=F-24 500 IF M=1 THEN GO TO 540 20 250>IF S×="4" THEN LET Γ=5: GO 510 PRINT "AKORD "FQX*"SE SKLAD 1005 LET Yx=Yx+Ax(F T0 F+1) A Z TECHTO TONU: "'YX 1010 RETURN TO 1020 1020 GO SUB 1000: GO TO 200 520 INPUT "PREJES SI JEJ NAKRES 255 IF Sx="DIM" THEN LET Cx="7-": GO SUB 1060: LET PR=1: LET F= LIT? (A/N)";X× 1040 IF POLEN XX THEN GO TO 500 3: GO SUB 1000: LET F=6: GO TO 1 KRESLENI AKORDU 1050 RETURN 540 REM 1060 IF PR=1 THEN RETURN 543 DIM Y(6): LET S=0: FOR F=1 020 260 IF Sx="6" THEN LET F=9: GO TO LEN YX STEP 2 1065 FOR F=3 TO LCN X×-1: LCT W× =X×(F TO F-1+LEN C*): IF ₩×=C* T TO 1020 545 FOR F=1 TO LEN AX STEP 2 270 IF Sx="5-" THEN LET F=6: GO HEN RETURN 550 IF YX(P TO P+1)=AX(F 10 F+1 1070 NEXT F: LET XX=XX(1 TO P)+" TO 1020) THEN LCT S=S+1: FOR R=S TO 6: "+C×+" "+X×(P+1 TO): RETURN 275 IF Sx="5" THEN LET F=7: GO LET Y(R)=INT (F/2): NEXT R 1500 INPUT "KOLIK TAKTU CHCES NA TO 1020 555 NEXT F: NEXT P PROGRAMOVAT?"FPO 280 IF Sx="5+" THEN LET F=8: GO 556 IF M=1 THEN GO TO 1570 1510 DIM T(PO,6) 557) IF XX()"A" OR LEN YX)13 THE TO 1020 290 IF Sx="7-" THEN LET F=9: GO 1520 FUR C=1 TO PO N GO TO 700 1550 INPUL "V "F(C);". TAKTU BUD TO 1020 560 FOR F=1 TO 6 300 IF Sx="9MI" THEN LET Cx="7" 565 LET MMIN=90 E ZNIT AKORD "; X × 1560 GO TO 115 : GO SUB 1060: LET F=1: GO TO 10 570 FOR F=1 TO 6 1570 FOR X=1 TO 6: LET T(C:X)=Y(20 573 LET MIN=Y(P)+12*(Y(P)(H(F)) X): NEXT X: NEXT C 310 IG Sx="ADD9" THEN LET F=2: --H(F) 1580 INPUT "DOBA JEDNOHO TAKTU E GO TO 1020 575 IF MIN(MMIN THEN LET MMIN=M 320 IF Sx="11SUS" THEN LET F=5: ST ="#R IN: LET HX(F)=SIRX MMIN 1590 LET R=R/14 GO TO 1020 580 NEXT P 1700 CLS : PRINT #0;"ZACAYEK !!! 330 IF Sx="13MI" THEN LET Cx="1 590 NEXT F 1": GO SUB 1060: LET F=8: GO TO 600 PRINT "A VYPADA TAKTO:" (ENTER=KONEC)": PRINT AT 20,00" ": FOR P=1 TO PO: PRI TAKT 1020 620 FOR F=6 TO 1 STEP -1 340 IF S×="13SUS" THEN LET Γ=9: NT AT 20,5;P 623 READ S× 1740 RESTORE 755: FOR F=1 TO 12: 624 DATA "E": "A", "D", "G", "H", "E GO TO 1020 350 IF Sx="9" THEN LET Cx="7": READ SX: BEEP R+R*(Sx)"4"),T(P, GO SUB 1060: LET F=2: GO TO 1020 625 PRINT SWF" N"; (VAL SX))-24*(SX)"4") 1750 IF INKEY*()"" THEN GO TO 1 360 IF Sx="9+" THEN LET Cx="7": 627 IF VAL HX(F)=0 THEN PRINT"

AMSTRAD SINCLAIRA

V dubnu tohoto roku překvapila počítačovou veřejnost zpráva, podle níž známý C. Sinclair (autor a výrobce populárních mikro-počítačů ZX-81 a ZX Spectrum) prodal za pět miliónů liber tu část své firmy, která se zabýva-la vývojem a výrobou domácích počítačů. Koupil ji jiný populární výrobce domácích a osobních mikropočítačů – anglická firma Amstrad (též Schneider). Pokles poptávky po domácích počítačích, projevující se poklesem prodeje počítačů prakticky všech značek, tak postihl i nejpopulárnější anglickou firmu na tomto poli – Sinclair Research Ltd. Již v létě 1985 referoval anglický tisk o tom, ža majitel firmy Clive Sinclair byl nucen pro finanční

obtíže odprodat 3/4 akcií, aby měl čím vyplatit neodbytné věřitele. Tehdy však, díky dalším půjčkám, nakonec z prodeje sešlo.

Amstrad se proslavil počítači řady CPC a PCW, které v německy mluvících zemích prodává pod značkou Schneider. Koupí Sinprodava pod znackou Schneider. Koupi Sin-claira zvýšil Amstrad svůj podíl na trhu domá-cích počítačů z 20 na 60 %. Výroba počítačů ZX Spectrum+ a ZX Spectrum 128, i nadále pod názvem Sinclair, bude snad pokra-čovat i pod novým vedením, a pokryje trh v oblasti laciných počítačů určených především pro hry. Amstradovy dosavadní modely budou určeny pro náročnější domácí aplikace a pro profesionální uživatele. Připravuje se nový model slučitelný s IBM PC. Zcela zastavena byla výroba obchodně nepříliš úspěšného počítače QL. Sinclairovu vnější paměť Microdrive v budoucnu zřejmě nahradí Amstradov pružné disky 3", zabudované přímo v počítači. Sinclair sám zůstává v čele pětičlenné firmy,

zaměřené na vývojovou projekci. V současné době se mimo jiné zabývá vývojem přenosné verze počítače Spectrum – pracovní název je Pandora. Na trhu se má objevit v roce 1987 s operačním systémem CP/M a cenou nepře-vyšující 400 liber. Pokud Amstrad nebude chtít Pandoru vyrábět, může hledat Sinclair jiného výrobce; ale jeho jméno v tom případě již neponese, protože Amstrad koupil i právo užívat v budoucnosti jméno Sinclair jako obchodní značku.

1760 NEXT F: NEXT P: GO TO 1700

Spojení progresivní technologie dodané Sinclairem a obchodnické předvídavosti firmy Amstrad by mohlo přinést zajímavé výsledky.

[1] Amstrad buy Sinclair. ZX Computing Monthly, 5/86 str. 5.

[2] Amstrad axes QL in Sinclair sell out. Sinclair User, 5/86, str. 7.

Integrované obvody ze zemí RVHP

Typ NDA	Funkce	Ekvivalent	Výrabce
UB8821M	mikropočítač – vývojový syst.	Z8602	Zil
UB8830D	mikropočítač s BASIC interpr.	· ·	1.
UB8831D	mikropočítač s BASIC interpr.		
UB8840M	μC vývoj syst. 4 kB ROM	Z8612	Zil
UB8841M	μC vývoj syst. 4 kB ROM	Z8612	Zil
V4001D	4× 2vst. NOR-CH/OS	CD4001BE	RCA
V4007D	dva tranzistorové páry a inv.	CD4007UBE	RCA
V4011D	4× 2vst. NAND	, CD4011BE	RCA
V4012D .	2x 4vst. NAND	CD40128E	RCA
V4013D	dva klopné obvody D	CD4013BE	RCA
V4015D	2x 4bit, posuvný registr	CD4015BE	RCA
V4017D	dekadický čítač s 10 výst.	CD4017BE	RCA.
V4019D	čtyří hradla AND/OR	C04019BE	RCA
V4023D	3×3 NAND	C04023BE	RCA
V4027D	dva klopné obvody J-K	C04027BE	RCA
V4028D	dekoder BCD-dekad.	CD4028BE	RCA
V40290	přednast, revers. 4 bit. čítač	CD40298E	RCA
V4030D	4× 2vst, EXKLUSIVE-OR	CD40308E	RCA `
V4034D	8stupň, obosměr, budič sběr,	CD4034BE	RCA
V4035D	4bit, posuvný registr	CD40358E	RCA
V4042D	4bit, střadač	CD4042BE	RCA '
V4044D .	čtyří klopné obvody NAND	CD4044BE	RCA
V4846D	obyod PLL	CD4046BE	RCA
V4048D	mnohofunkční hradio	CD4048BE	RCA
V4050D	šest neinvertujících budičů	CD4050BE	RCA
V4051D	8kanál, analog, multiplexer	CD4051BE	RCA
V4066D /	čtvři obousměrné spínače	CD4066BE .	RCA
V4093D	4x 2vst. Schmitt. NAND	C04093BE	RCA
V4520D	dva 4bitové binární čítače	CD4520BE	RCA
V4531D	13bit, kontrolér parity	MC14531BCP	Mo
V4538D	dva monostab, multivib.	CD4538BE	. RCA
V4585D	4bit, komparátor veličin	CD45858E	RCA
V40098BPC	šest invert, budiču tristav.	F40098BPC	Fa
V40511D	dekodér BCD na 7 segm.	(CD4511)	RCA .

Ekvivalenty uvedené v závorce jsou pouze přibližné

Typ PLR	Funkce	Ekvivalent	Výrobce
MC1024N	vysílač dálkového ovládání	SAA1024	m
MC1025N	přijímač dálkového ovládání	SAA1025	-l π
MC1201N	stolní hodiny s LED	5230	Sanyo
MC1202N	stolní hodiny s LCD	5514	OKI
MC1203NA, NB	programovatelné hodiny s LCD		1
MC1204N, NA	stolní hodiny pro TV s LED		1
MC1205N	program, průmyslové hodiny		1 -
MC1206N	program, hodiny s LCD, LED		1
MC1208N .	obyod pro budík	•	
MC1210N /	analogové hodiny	3100	ıπ·
MC1212N	obvod analogového budíku		1
MC1211N	analogové hodiny		
MC14005/74005N	kalkulátor s pěti LED	- 1, -] `
MC14007/74007N	kalkulátor s osmi LED	7541-007	Mos. T
MC14008N, NA, NB	inženýrský kalkulátor	7529-017	Mos. T
MC14009N, NA, NB	programovatelný kalk.	7529-216	Mos. T
MC14010N	paměř kalkulátoru	7544	- Mos. T
MC1401BN	kalkulátor s LCD	uPD888	NEC
MC14011N	program kalkulátoru	7543-001	Mos. T
MC1930N	obvod pro telefon	1.0000	1800,
MC7804	4bit. mikroprocesor		
MCX7510N	10bit, registr a budič	UCN4810	Sprague
MCY6161N	16384× 1bit DRAM		1
MCY6851N	USART:	1	1 .
MCY6855N	program, obvod vstup/výst.		,
MCY6880N	8bit, CPU		
MCY71CO1NA, B, C	256× 4bit RAM CMOS	5101	Ha
MCY71C03N	1024× 1bit RAM CMOS	i	.
MCY7102N	1024× 1bit RAM	2102A	ln i
MCY7114N, NB, NC	1024× 4bity RAM	2114	ln.
MCY7161N	16384× 1bit DRAM	2118	in
MCY7304NAA	512x 8bitu ROM	1	"
MCY7316NXX	2048× 8bitů ROM	2316E	tn
MCY74000N	2x 3vst NOR a invertor	CD4000B	RCA
MCY74001N	4x 2vst NOR	CD4001B	RCA

Typ PLR	Funkce	Ekvivalent	Ууговсе
MCY74002N	2× 4vst NOR	CD40028	RCA
MCY74007N	dva komplement. páry + inv.:	CD4007B	RCA
MCY74008N	4bit, úplná sčítačka	CD4008B	RCA
MCY74011N	4× 2vsl NAND	CD4011B	RCA .
MC74012N	2x 4vst. NAND	CD4012B.	RCA
MC74013N	dva klopné obvody D	CD4013B	RCA
MCY74016N	4x obousměrný spínač	CD40168	RCA
MCY74017N	Sbit, binámi čitač	CD4017B CD4019B	RCA RCA
MCY74019N -MCY74022N	4x AND-OR-SELECT	CD407228	RCA
MCY74023N	4stupňový čítač 3x 3vst-NAND	CD40238	RCA
MCY74025N	3× 3vst. NOR	CD40258	RCA
MCY74027N	dva klopné obvody J-K	CD4027B	RCA -
MCY74028N	dekodér BCD-10	CD4028B	RCA
MCY74029N	sync, univerz. 4bit, čítač	CD4029B	RCA
MCY74030N	4x 2vst EXKLUSIVE-OR	CD4030B	RCA
MCY74035N	4bit, univerz, posuv. reg.	CD4035B	RCA
MCY74040N	12bit. sync. čítač	CD4040B	RCA -
MCY74046N	PLL	CD4046B	RCA
MCY74047N	monostab, multivibr.	CD4047B -	RCA :
MCY74049N	6x výkonový invertor	CD4049B	RCA
MCY74050N	6x výkonový budič	CD4050B	RCA -
MCY74051N	8kanál, analog, multipl.	CD4051B	RCA .
MCY75059N `	program, dělič kmitočtu	CD40598	RCA
MCY74066N -	4x obousměrný spínač	CD40668	RCA
MCY74069N	6x invertor	CD4069B	RCA
MCY74071N	4x 2vst. OR	CD4071B	RCA
MCY74072N	2x 4vst. OR	CD4072B	RCA
MCY74073N	3× 3vst. AND	CD40738	RCA
MCY74075N	3x 3vst. OR	CD4075B	RCA
MCY74077N	4x 2vst, Exklusive-OR	CD4077B	RCA .
MCY74081N	4× 2vst. AND	CD4081B	RCA
MCY74082N	2x 4vst. AND	CD4082B	- RCA
MCY74093N	4× 2vst. Schmitt. NAND	CD4093B	RCA
MCY74094N	8bit, posuv. reg.	CD40948	RCA
MCY740102N	2dekádový reverz. čítač	CD401028	RCA
MCY740103N MCY740114N	8bit. reverz. bin. čítač	CD40103B CD40114B	RCA .
MCY74511N	16x 4bit. RAM	CD4511B	RCA
MCY74511N	dekodér BCD – 7segm. dva čítače BCD	CD4518B	RCA
MC174510N MCY74520N	dva 4bit, bin. čítače	CD45208	RCA.
MCY74541N	program, časovač	MC14541 -	Mo.
MCY74724N	8bit. adres. střadač	CD4724B	RCA
MCY7501N	2x 1024bit, dynam, reg.	2401	Gi
MCY7505NA, NB	1× 1024bit, dynam, req.	2405	Gi
MCY7506N	2× 100 bit. dynam. reg.	1506	G
MCY7614N	UART	AY-3-1015	G
MCY7620N	program dělič kmit.	1	· ¯
MCY7704N	512× 8bit. EPROM		1
MCY7716N	2048× 8bit EPROM		
MCY7814	UART		
MCY7835N .	Sbit, mikropočítač	8035	ln i
MCY7841N	8bit. perifer. mikropoč.	8041	tn
MCY7843N	expandér	8243	la l
MCY7848N	8bit mikropočítač	8048	ln -
MCY7851N	USART	8251	1n
MCY7855N	program, obvod vstup/výst.	8255	in ,
MCY7880N	8bit CPU	8080A	in
MCY7906N	DVM 31/2 mista	ICL7106 ·	ls
MRY7906N	DVM 31/2 mista	ICL7106	ls
MCY8161NXX	16384× 1bit DRAM		ļ
UCY1000N	4× vysil./přijím, UNIBUS		
UCY1001N	dekodér adres UNIBUS		
UCY1002N	kontrolér přerušení UNIBUS		1_ '
UCY7400N	4x 2vst, NAND	SN7400	11
UCY7401N	4x 2vst. NAND s OK	SN7401	П
UCY7402N	4× 2vst. NOR	SN7402	T
UCY7403N	4x 2vst, NAND s OK	SN7403	Π
UCY7404N	6x invertor	SN7404	Π .
	6x invertor s OK-30V	SN7406	. TI
UCY7406N		A	
UCY7408N UCY7407N UCY7408N	6x budić s OK-30V 4x 2vst. AND	SN7407 SN7408	ון ח

Typ PLR	Funkce	Ekvivalent	Výrobče
UCY7409N	4× 2vst, AND s OK	SN7409	TI
UCY7410N	3x 3vst. NAND	SN7410	The second
UCY7411N UCY7415N	3x 3vst, AND 3x 3vst, AND s OK	SN7411 SN7415	l "i
JCY7416N	6× invertor s OK-15V	SN7416	Ti ·
JCY7417N -	6× budić s OK-15V	SN7417	TI
ICY7420N	2x 4vst, NAND	SN7420	T) -
ICY7422N	2x 4vst, NAND s OK	SN7422	T
ICY7427N ICY7430N	3x 3yst NOR 1x 8yst NAND	SN7427 SN7430	. TT
ICY7432N	4x 2vst, OR	SN7432	/π
JCY7437N	4× 2vst. výkon. NAND	SN7437N	TI
JCY7438N	4× 2vst. výkon. NAND s OK	SN7438N	TI
UCY7440N \	2× 4vst. výkon. NAND	SN7440N	III .
UCY7442N	dekodér BCD-10	SN7442	וד רד
UCY7447N " UCY7450N	dekoder BCD - 7segm. dve 2x 2vst. rozs. AND-OR-INV.	SN7447 SN7450	
UCY7451N	dve 2x 2vst, AND-OR-INVERT	SN7451	l ii 🐪
JCY7453N	4× 2vst. rozs. AND-OR-INVERT	SN7453	П
JCY7454N	4x 2vst. AND-OR-INVERT	SN7454	Π
JCY7460N	2x 4vst. expandér	SN7460	<u>I</u> I
JCY7472N	klopný obvod J-K	SN7472	ŢŢ
JCY7473N	2× klopný obvod J-K 2× klopný obvod D	SN7473 SN7474	TI TI
JCY7474N JCY7475N	2× klopný obvod D 4bit, střádač	SN7474	71
JCY7475N	2x klopný obvod J-K	SN7476	i lii
JCY7483N	4bit. sčítačka	SN7483	π
JCY7485N	4bit. komparátor	SN7485	TI
JCY7486N	4× 2vst. EXKLUSIVE-OR	SN7486	TI .
JCY7490N	dekadický čítač dělič 1:12	SN7490	TI TI
UCY7492N UCY7493N	4bit, binární čítač	SN7492 - SN7493	T)
UCY7495N	4bit, posuv. req.	SN7495	1 "
JCY74107N	2x klopný obvod J-K	SN74107	Π̈
CY74109N	2x klopný obvod J-K	SN74109.	TI
JCY74121N	monostab. klop. obv.	SN74121	TI
JCY74123N	2× monostab, klop, obv.	SN74123	TI :
JCY74132N JCY74145N	4× 2vst. Schmitt. NAND dekodér BCD-10 s OK	SN74132 SN74145	TI TI
JCY74150N	16vst. multiplexer	SN74150	Ti Ti
JCY74151N	8vst. multiplexer	SN74151	π
JCY74154N	demultiplexer 4-16	SN75154	ŢŢ,
JCY74153N	2× 4vst. multiplexer	SN74153	Ţ,
JCY74155N	2x demultiplexer 2-4	SN74155 SN74157	ת ה
JCY74157N JCY74158N	4x 2vst. multiplexer 4x 2vst. multiplexer	SN74158	i ii
ICY74164N	8bit. sync. posuv. reg.	SN74164	l ii
JCY74165N	8bit. sync. posuv. reg.	SN74165	n
CY74174N	6× klopný obvod D	SN74174	П
JCY74175N	4× klopný obvod D	SN74175	11
JCY74180N	8bit generator parity	SN74180	TI
ICY74181N	4bit ALU	SN74181	Ti ·
JCY74182N JCY74192N	generator přenosu dekad, reverz, sync. čítač	SN74182 SN74192	Ti.
JCY74192N	bin. reverz. sync. čítač	SN74193	n i
JCY74192N	4bit, posuv. reg.	SN74194	T ,
JCY74198N	8bit. posuv. reg.	SN74198	TI
JCY74547N	dekodér indik, kalkul.	ļ , ,	
UCY74548N	dekodér indik, kalkul.		, .
UCY74549N UCY74H00N	dekodér indik, kalkul. 4x 2vst, NAND	SN74H00	Ti
UCY74HION	3x 3vst, NAND	SN74H10	'n
UCY74H40N -	-2× 4vst, výkon, NAND	SN74H40	Π̈́,
UCY74H50N	dvé 2× 2vst. rozš. AND-OR-INVERT	SN74H50	η
UCY74H53N .	4× 2vst. rozš. AND-OR-INVERT	SN74H53	TI.
UCY74H72N	klopný obvod J-K	SN74H72	TI Ti
UCY74H74N UCY74LS00N	dva klopné obvody D 4× 2vst. NAND	SN74H74) "i
UCY74LSOIN	4× 2vst. NAND s OX	SN74LS01	- #
UCY74LS02N	4× 2vst. NOR	SN74LS02	ΤÏ
UCY74LS03N	4× 2vst. NAND s OK	SN74LS03	n
UCY74LS04N	6× invertor	SN74LS04	Ţ <u>n</u>
UCY74LS05N	6× invertor s OK	SN74LS05	, Ti
UCY74LS08N	4x 2vst AND	SN74LS08	TI TI
UCY74LS09N UCY74LS10N	4x 2vst. AND s OK 3x 3vst. NAND	SN74LS09 SN74LS10	n
UCY74LS1IN	3x 3vst, AND	SN74LS11	Ti
UCY74LS14N	6x Schmitt. invertor	SN74LS14	Π
UCY74LS15N	3× 3vst. AND	SN74LS15	TI
UCY74LS20N	2x 4vst, NAND	SN74LS20	.11

Typ PLR	Funkce	Ekvivalent	Výrobce
UCY74LS21N	2× 4vst, AND	SN74LS21	TI
UCY74LS22N	2× 4vst, NAND s OX	SN74LS22	TI
UCY74LS26N UCY74LS27N	4× 2vst. NAND 3× 3vst. NOR	SN74LS26 SN74LS27	T)
UCY74LS30N	1x 8vst. NAND	SN74LS30	'n
UCY74LS32N	4x 2vst, OR-	SN74LS32	TI
UCY74LS51N	dvě 2× 2vst. AND-OR-INVERT	SN74LS51	Th: ·
UCY74LS54N	4× 2vst. AND-OR-INVERT	SN74LS53	ŢĮ ·
UCY74LS74N UCY74LS86N	dva klopné obvody D 4x 2vst. EXKLUSIVE-OR	SN74LS74 SN74LS86	TI
UCY74LS90N	dekadický čítač	SN74LS90	Ti I
UCY74LS93N	4bit. bin. čítač	SN74LS93	TI.
UCY74LS109N	dva klopné obvody J-K	SN74LS109	Ti
UCY74LS112N UCY74LS132N	dva klopné obvody J-K 4× 2vst. Schmitt, NAND	SN74LS112 SN74LS132	TI.
UCY74LS132N	2x demultiplexer 1-4	SN74LS132 SN74LS139	
UCY74LS155N	2x demultiplexer 2-4	SN74LS155	TI
UCY74LS156N	2× demultiplexer 2-4	SN74LS156	TI
UCY74LS157N	4× 2vst. multiplexer	SN74LS157	TI .
UCY74LS158N UCY74LS174N	4× 2vst. multiplexer 6× klopný obvod D	SN74LS158 . SN74LS174	in l
UCY74LS175N	4× klopný obvod D	SN74LS175	'n
UCY74S00N ·	4× 2vst. NAND	SN74S00	TI
UCY74S03N	4× 2vst. NAND s OK	SN74S03	71
UCY74S10N UCY74S11N	3x 3vst. NAND 3x 3vst. AND	SN74S10 - SN74S11	TI I
UCY74S15N	3x 3yst and 3x 3yst and	SN74S15	n
UCY74S20N	2× 4vst. NAND	SN74S20	Π
UCY74S22N	2× 4vst. NAND s OK	SN73S22	TI.
UCY74S132N .	4× 2vst. Schmitt. NAND	SN74S132	l Ti
UCY74S135N UCY74S158N	4x 2vst. EXKLUSIVE-OR/NOR 4x multiplexer 2-1	SN74S135- SN74S158	TI
UCY74S174N	6x klopný obvod D	SN74S174	(ii)
UCY74S175N	4× klopný obvod D	SN74S175	n
UCY74S274N	4× 4bity násobička	SN74S274	11 -
UCY74S275N /	4X 7bit násobička	SN74S275 SN74S287	TI /
UCY74S287N UCY74S289N	256× 4 bity PROM tristay. 256× 4 bity PROM s OK	SN74S289	"
UCY74S387N	256× 4 bity PROM	SN74S387	Π̈́
UCY74S405N	bin. dekodér 1 z 8	8205	ln l
UCY74S412N-	8bit. port vstup/výstup	8212	ln -
UCY74S414N UCY74S416N	kontrolér priority přeruš. 4bit, přij/vys. BUS	8214 8216	ln In
UCY74S418N	kontroler spernice	8218	in
UCY74S419N	kontrolér sběrnice	8219	ln l
UCY74S424N -	gen. hod. impulsii	8224	ln .
UCY74S426N UCY74S428	4bit. přij./vys. BUS kontrolér systému	8226 8228	l ta
UCY74S438N	kontroler systemu	8238	ln ln
ÚCY74S474N	,	8274	in
UCY74S482	8× jednosměrný budič	8282	ln i
UCY74S483N UCY74S484N	8× jednosměrný budič	8283 8284	lin In
UCY74S486N	8× obousměrný budič	8286	in in
UCY74S487N -	8× obousměrný budič	8287	in
UCY74S545N	řidicí obvod LED		
UCY74S546N UCY7507N	řídicí obvod LED dva linkové přijímače	SN75107	п
UCY75108N	dva linkové přijímače	SN75107	Ti I
UCY75110N -	dva linkové vysilače	SN75110	Ti
UCY7540N	2× 2vst, NAND + 2tranz.	SN75450	n
UCY7541N °	2x-2vst, NAND	SN75451	TI
UCY75452N UCY780101	2x 2vst. NAND 64x 1 bit ram	SN75452 SFC80101AE	Sesco
UL1000L/ULA1000L UL1042N	kruhový modulátor dvojitý balanč, směš.	TAB101 S042P	Ph Sie
UL1101N	2x difer, zesilovač	CA3054	RCA
UL1101/ULA6102N	2x difer. zesilovač	CA3054	RCA
UL1111/ULA6111N	difer, zes. +3tranz.	CA3048	RCA
UL1121N UL1200N	4x tranz. mf zesilovać	(LB8021) LA1230	Sanyo Sanyo
UL1201N	mi zes. FM	CA3011	RCA
-UL1202L	mf zes.	LA1221	Sanyo
UL1203N	AM přijímač	TCA440	Sie
UL1204N UL1211N	AM přijímač s detekt. ml zes. AM/FM	TDA1046	Sie Sanyo
UL1211N	mizes. AM/FM	TBA690	SGS
UL1213N	mi zes. AM/FM	TBA700	Ph
UL1220N	AM/FM přijímač /	TDA1220	SGS
UL1221N UL1231N	mf zes. s klíč. AVC mf zes. s klíč. AVC	MC1352 MC1353	Mo Mo
UL1231N UL1241N	mizes, skiic, avc	CA3042	RCA
UL1242N	mf zes, s det. FM	TBA120S	Sie
		1	

KONSTRUKTÉŘI SVAZARMU

AUTOMATICKÝ DIAPROJEKTOR JAKO ZKOUŠECÍ PŘÍSTROJ

Kamil Hutař

V AR A1/79 jsem popsal obdobný přístroj vhodný pro školy i jiná učiliště, pomocí něhož lze bez jakéhokoli zásahu do diaprojektoru automaticky vyhodnocovat zkušební otázky promítané z diapozitivů. Přístroj však obsahoval větší množství reléových obvodů, které jsem nyní nahradil logickými obvody s polovodiči, čímž se zvětšila spolehlivost zařízení a podstatně se zmenšila velikost i proudová spotřeba.

Činnost celého zařízení vyjadřuje logická funkce $Y = (A_1 \oplus B_1) \cdot (A_2 \oplus B_2) \cdot (A_3 \oplus B_3) \cdot (A_4 \oplus B_4)$. Za cenu většího počtu (avšak dostupnějších) integrovaných obvodů než je dovážený UCY7486N, tze hradla exkluzívních

(což je po stránce počtu běžně vyráběných integrovaných obvodů výhodnější) funkcemi Y = AB . AB, jak plyne z DeMorganových zákonů.

AVON Gottwaldov vyrábí obdobný zkoušecí přístroj pro autoškoly pod

součtů nahradit podle zákonů algebry logiky funkcemi Y = ÂB + AB, případně

AVON Gottwaldov vyrábí obdobný zkoušecí přístroj pro autoškoly pod názvem "Zpětnovazební komunikátor MOD 275 A" v ceně asi 47 000 Kčs. Jeho nevýhodou je nutnost trvalé přítomnosti zkoušejícího, který po zadání otázky musí stisknout tlačítko správné odpovědi. Popisované zařízení tuto nevýhodu nemá a je přitom podstatně jednodušší i levnější.

Zařízení je určeno ke zkoušení jedné osoby, ize ho však snadno rozšířit tak, aby jim bylo možno zkoušet i větší počet osob. Zkoušená osoba stiskne ovládací tlačítko a uvede do činnosti zařízení pro výměnu diapozitivů. Tím se mu promítne otázka se čtyřmi odpověďmi, z nichž pouze jedlná je správná. Čtyři tlačítka (označená například a, b, c, d) slouží k volbě správné odpovědi. Stiskne-li zkoušený tlačítko správné odpovědi, započítá mu počítadlo jeden bod. Pokud by si chtěl počet bodů zvětšit tím, že by toto tlačítko stiskl podruhé, nebude už počítadlo reagovat. V případě že stiskne tlačítko ne-

správné odpovědi, počítadlo nezapočítá 'žádný bod ani když následně stiskne jakékoli jiné tlačítko, tedy třeba i tlačítko správné odpovědi. Stiskem ovládacího tlačítka se vymění diapozitiv a zkoušený může řešit další otázku: Celkový počet otázek je dán kapacitou zásobníku diaprojektoru.

Diapozitivy získáme ofotografováním předloh, přičemž se na dolním okraji předloh vyznačí kód správné odpovědi tak, že se vymezí pás široký asi jednu desetinu obrazového pole, který se rozdělí na čtyři stejná políčka, z nichž to, které přísluší správné odpovědi musí být průhledné a ostatní začerněná. Diaprojektor se obvyklým způsobem upraví pro zadní projekci, přičemž je nutné, aby plocha s kódovacím pásem byla na průmětně začerněna tak, aby se její obraz promítal jen na vnitřní plochu průmětny. Tam se pak umístí čtyři fotorezistory tak, aby každý byl přibližně uprostřed jednotlivých čtvrtin. Tyto fotorezistory jsou vyvedeny na konektor K1' a plní funkci čidel, které kód předávají k dalšímu zpracování. Uspořádání vyplývá z obr. 1.

Přes konektor K1 přichází kódová informace na spínací tranzistory OC77 (obr. 2), které vytvářejí napěťové úrovně L a H pro logické obvody. Napěťové úrovně se při promítaných diapozitivech nastaví tak, aby výstupní napětí splnacích obvodů odpovídající osvětienému fotorezistoru mělo úroveň L a neosvětlenému úroveň H. K seřízení slouží trimry 15 kΩ. Napěťové úrovně jsou přivedeny na vstupy B čtyř hradel EXOR (exkluzívní součet $Y = A \oplus B$) in-UCY7486N. tegrovaného obvodu Vstupy A jsou připojeny k jednoduchým paměřovým obvodům s tyristory KT504 a ve výchozím stavu jsou všechny na napěťové úrovni l

Po stisknutí některého z tlačítek a, b, c, d, která jsou zapojena v řídicích elektrodách tyristorů, se na druhý vstup příslušného hradla dostane logická úroveň H, která i po uvolnění tlačítka trvá. Tato paměř se vymaže přerušením napájecího napětí dvojitým tlačítkem, které zároveň slouží jako ovládací tlačítko pro výměnu diapozitivů.

Pravdivostní tabulka 1 ukazuje situaci na výstupech jednotlivých hradel EXOR v případě, že správná odpověď je "a" a bylo stisknuto tlačítko, které jí přísluší. Tabulka 2 ukazuje stav, kdy bylo stisknuto nesprávné tlačítko "c". Tabulka 3 pak ukazuje stav, kdy bylo ještě následně stisknuto (po "c") ještě tlačítko správné odpovědi "a".

Obr. 1.

Tab. 1.

Hradio	Α	В	Y = A ⊕ B
1 2 3 4	H L L	Н Н Н	Н Н Н

Tab. 2.

Hradio	Α	В	Y⇒A⊙B
1 2	L, L	. H	L H
3 4	H	H -	. L

Tab. 3.

Hradlo	A	В	Y = A ⊙ B
1 2 3 4	± ±	L H H	H H L

Z uvedených tabulek je zřejmé, že jedině v případě, že bude ihned napoprvé stisknuto tlačítko správné odpovědi, bude na všech výstupech logická úroveň H.

Výstupy hradel integrovaného obvodu UCY7486N jsou přivedeny na čtyřvstupové hradlo NAND integrovaného obvodu MH5420, jehož výstup je připojen na vstup druhého hradla téhož IO, sloužícího jako invertor. Pak následuje splnací obvod s tranzistory KC148 a KF506 v Darlingtonově zapojení, jehož výstup ovládá telefonní počítací relé s odporem 150 Ω. Tento obvod vyžaduje vyšší napájecí napětí 9 V. Nepoužijeme-li síťový zdroj, postačí dvě ploché baterie v sérii s odbočkou na 6 V. Pak je vhodné stav baterií kontrolovat.

Protože u většiny automatických diaprojektorů je během výměny diapozitivů obrazové pole zatemněno, mohlo by se stát, že zkoušený uvolní tlačítko Tlještě před dokončením výměny diapozitivu a tím znovu zapojí napájení přístroje. V tom případě by dosud zatemněné fotorezistory způsobily, že by na vstupech B všech hradel EXOR byly úrovně H, zatímco na vstupech A by byly úrovně L. To by způsobilo, že by se na výstupech objevily úrovně H a počítací relé by nesprávně započítalo bod. Proto se napájecí napětí zapojuje až v okamžíku volby odpovědí a tlačítka a, b, c, d mají, další kontakt, který slouží k přivedení kladného impulsu na řídicí elektrodu tyristoru KT506, zapojeného do záporné větve napájení. Napájení se tedy zapojí až při odpovědi.

Konstrukční provedení je natolik jednoduché, že ho není třeba zvlášť popisovat. Připomínám, že zařízení má ještě tu výhodu, že během uvažování zkoušeného neodebírá žádný proud. Druhá připomínka se týká zapojení konektoru-K1, kterým se zařízení připojuje k projektoru a které může záviset na typu použitého projektoru. Na schématu je zapojení pro projektory Pentacon.

> NEZAPOMEŇTE dodržet termín odeslání Vašich přispěvků pro letošní KONKURS AR/ČSVTS (5. září 1986)

STEREOFONNÍ ZESILOVAČ MINI

Bohuslav Gaš, Jiří Zuska

(Dokončení)

Mechanická konstrukce

Při návrhu mechanické konstrukce zesilovače jsme pamatovali na to, aby byla co nejjednodušší. Konstrukční nákresy všech mechanických dílů jsou na obrázcích 13a až 13l, další informace lze odvodit ze snímků.

K základní desce (obr. 13a) jsou připevněny všechny desky s plošnými spoji kromě desky indikátorů úrovně. Desky jsou na jedné straně přišroubovány na rozpěrný hranolek 6 × 6 mm (obr. 13d) a na druhé straně pomocí distančních trubiček (obr. 13f) navlečených na šroubky. Použité šroubky M3 × 15 mm se zapuštěnou hlavou mají hlavy ze strany základové desky, díry pro ně (Ø3,2 mm) mají na obrázku označení A. Základová deska je zespodu překryta obdélníkovým plechem tloušťky 0,5 mm (obr. 13k), který je k ní připevněn čtyřmi nožkami se šroubky M3 × 8 mm. Pro nožky jsou základové desce čtyři otvory se závitem M3 (označeny B).

Hranolky (obr. 13d) slouží též k upevnění čelního (obr. 13b) a zadního (obr. 13c) panelu. Horní části panelů jsou spojeny rozpěrnými tyčkami (obr. 13e) z kulatiny o Ø 5 mm. Rozpěrné hranolky i tyčky mají z oboustran v ose závity M 2,5 do hloubky 8 mm. Panely jsou z důralu tloušíky 2 mm a v rozích mají otvory o průměru 2,6 mm. Na čelním panelu je přišroubován potenciometr hlasitosti P1, ostatní ovládací prvky otvory v panelu pouze procházejí. Na zadním panelu jsou konektory a otvor pro sítový kabel. Díry pro konektory mají průměr 15 mm.

"Deska s obvody indikace úrovně je umístěna rovnoběžně s čelním panelem a má tři otvory o průměru 10,5 mm. Jejich prostřednictvím je upevněna přímo na potenciometrech P2 až P4. To zajišťuje nejen její pevné spojení s deskou zesilovačů, ale zároveň upevňuje potenciometry, které jsou zapájeny do desky zesilovačů.

Výkonové regulační tranzistory zdroje T3 a T6 jsou chlazeny chladiči (obr. 13g), zhotovenými z hliníkového plechu tloušíky 1,5 až 2 mm. Do chladičů vyvrtáme otvory o průměru 4,2 mm pro upevnění tranzistorů. Izolační průchodky (obr. 13h) k izolovanému upevnění IO5, IO6 vyrobíme z nevodivého materiálu, který však nesmí být termoplastický.

Díly na obr. 13i a 13j jsou tlačítka pro přepínač Isostat. Díry uvnitř tlačítek mají takový průměr, že po nasunutí na přepínače drží i bez lepení. Díry vrtáme na soustruhu nejprve vrtákem o průměru 3,8 mm a pak teprve (na jedno projetí) vrtákem o průměru 4,4 mm. Lze samozřejmě použít i originální tlačítka, které lze občas zakoupit.

Plášť zesilovače tvaru U (obr. 13I) je z ocelového plechu tloušťky 0,5 mm. Je přišroubován z boku do dolních rozpěrných hranolků dvěma šroubky M3 × 6 mm z každé strany.

Povrchovou úpravu i popisy panelů ponecháváme na možnostech i vkusu konstruktérů. Přesto alespoň naznačíme možnost případného postupu. Nejprve rovnoměrně osmirkujeme plátnem č. 150 jedním směrem panel za občasného smáčení vodou. Po dosažení matného lesku po celé ploše panel opláchneme a necháme oschnout. Pak jej lze nejen popisovat obtisky Propisot, ale můžeme na něj rýsovat tuší trubičkovými pery. Hotový popis zafixujeme několika vrstvami lesklého laku na nábytek ve spreji nebo lakem Pragosorb.

Závěrem připomínáme, že je vhodné vyvrtat díry pro závity v rozpěrných hranolcích podle příslušných otvorů v plášti zesilovače až po jeho nasazení na smontovanou skříňku.

Poznámky ke stavbě

Skalní zastánci Hi-Fi, kteří ostatně tvrdí, že dnešní norma DIN 45 500 je příliš shovívavá, věnují velkou pozornost především šumovým vlastnostem aktivních prvků, které zpracovávají signál ze zdrojů s malou napětovou úrovní, například z magnetodynamické přenosky. Proto i nás zajímalo, iak z tohoto hlediska budou vyhovodvojité operační zesilovače vat MA1458. Proměřili jsme proto několik desitek kusů tak, že zesilovač byl v zapojení se zesílením 100 s uzemněnými vstupy a na výstup byl zapojen osciloskop. Zjistili jsme, že asi dvě třetiny zkoušených obvodů měly šumové vlastnosti výborné a v popsaném měřicím zapojení bylo mezivrcholové šumové napětí přepočtené na vstup asi 10 uV. Zbývající třetina obvodů jevila výstřelový šum, v indikátorovém zesilovači je však můžeme použít. Na základě těchto skutečností doporučujeme čtenářům, aby si buď vytvořili obdobné měřicí zapojení, anebo na místě IO1 a IO2 použili pro integrované obvody objímky a pak, třeba podle sluchu, vybrali obvody s nejmenším šúmem.

Referenční napětí *U*_{ref max} pro integrované obvody A277D se přivádí (obr. 3) na vývod 3 tohoto obvodu. V katalogu TESLA i RFT je připouštěno mezní napětí 6,2 V, zatímco v [4] je řečeno, že se toto referenční napětí může rovnat až napájecímu napětí. Prostudujeme-li si vnitřní zapojení obvodu, zdá se, že skutečně není důvod, proč by mez referenčního napětí měla být jen 6,2 V. Proto jsme s úspěchem vyzkoušeli obvod indikace úrovně pozměnit tak; že jsme vypustili diody D26 a D27 a změnili odpor rezistorů R71 a R79 na 56 kΩ.

A ještě k jedné otázce. Elektrolytické kondenzátory C1 a C31 (obdobně i v pravém kanálu) pracují v zapojení neinvertujícího zesilovače bez stejnosměrného předpětí. Toto zapojení se běžně používá a nikdo se nad tím vážněji nepozastavil. Jen v některých pramenech jsme zde nalezli dva kondenzátory v sérii vzájemně opačně pólované. To však, vzhledem k velmí malému stejnosměrnému i střídavému napětí, není řešením. Zdá se nám proto užitečné tyto kondenzátory (C1, C4, C31 a C35) před zapájením zformovat, to znamená připojit je na stejnosměrné napětí (blízké udanému maximálnímu) asi na 20 minut. Doufáme, že bude mít jednou někdo tu trpělivost a ověří vlastnosti elektrolytických kondenzátorů po dlouhodobém provozu bez stejnosměrného předpětí.

Vraťme se ke stavbě. Do desek je třeba vyvrtat otvory, jejichž průměr pro většinu součástek jè 0,8 mm. Pro elektrolytické kondenzátory 500 µF, C52, D32 až D35 a koncové IO vrtáme vrtákem o průměru 1 mm. Pro přepínače Isostat a narážení použijeme vrták o průměru 1,2 mm, pro snazšívkládání přepínačů do desky je vhodné ze strany součástek otvory zapustit vrtákem o průměru 2,5 mm. Pro diody D28 až D31 vrtáme otvory o průměru 1,4 mm, u výkonových tranzistorů

ve zdroji a u 107 vrtáme upevňovací otvory o průměru 4,2 mm (pro šroubky M4) a-o průměru 2 mm pro zapájení vývodů. Průměr 2 mm mají také otvory pro zapájení potenciometrů. Otvory pro upevnění desek mají průměr 3,2 mm a pro upevněpotenciometrů 10,5 mm. Podlouhlé otvory pro upevnění transformátoru a pojistky vytvoříme nejlépe vrtákem 1 mm, kterým vyvrtáme těsně vedle sebe tři otvory a pak je opatrně týmž vrtákem "profrézujeme". Síťový transformátor musíme zbavit přečnívajících částí upevňovacího plechu. Neiprve odstranime upevňovací závlačky a sejmeme upevňovací plech. Pak jeho zahnuté části odřízneme a zbylým rámečkem znovu transformátor stáhneme šrouby M4 × 35 mm.

Osazujeme nejdříve narážecí pájecí očka a to do těch propojovacích bodů, které jsou na deskách označeny kolečky s čísly 1 až 22. Nemáme-li narážecí očka, použijeme nějakou improvizovanou náhradu. Pro desku indikátorů úrovně narážíme očka ze strany spojů, případně je zde nepoužijeme vůbec. Pak osadíme lehčí součástky - rezistory, diody, kondenzátory, integrované obvody apod. Koncové zesilovače IO5 a IO6 musíme před zapájením trochu upravit. Nejprve musíme zvětšit otvor v jejich kovové části na průměr 4 mm. Pracujeme velmi opatrně, obvod uchytíme do svěráčku za jeho kovovou část a dbáme. aby se nám vrták "nezakous!". Vývody nejprve pinzetou narovnáme a pak je opatrně vytvarujeme podle obr. 14. Do desky s plošnými spoji je vkládáme a pájíme ze strany spojů! Dbáme též na to, aby po upevnění desek otvory v pouzdrech integrovaných obvodů přesně lícovaly s otvory v základní desce. Výkonové tranzistory zdroje T3 a T6 nejprve sešroubujeme s chladičem šroubky M4 × 12 mm s maticemi. Teprve pak tuto sestavu vložíme do desky a přišroubujeme maticemi M4. Pak ze strany spojů odštípneme přívody báze a emitoru na potřebnou délku a zapájíme. Obdobně postupujeme i u 107 s tím, že tento obvod nepotřebuje chlazení. Použijeme šrouby $M4 \times 10$ mm.

Přepínače Isostat před zapájením zasuneme do desky tak, aby mezi přepínačem a deskou zůstala mezera asi 1 mm. Přepínač Př5 je se síťovým spínačem S1 mechanicky propojen pomocí lišty, takže síťový spínač záro-

veň upevňuje.

Svítivé diody na desce indikace úrovně pájíme pečlivě tak, aby byly v jedné rovině a dbáme na to, aby vrchlíky diod byly od desky ve vzdátenosti 12 mm.

U potenciometru P1 zkrátíme hřídel na 8 mm, u potenciometrů P2 až P4 na 16 mm. Potenciometry P2 až P4 a sítový transformátor zapájíme až nakonec.

Jsou-li všechny součástky zapájeny, zkontrolujeme nejprve napájecí zdroj. Přivedeme-li napájecí napětí, musíme naměřit následující napětí naprázdno vůči bodu 21. bod 16 +17 V, bod 15 -17 V, bod 17 +26 V. Jestliže by se napětí v bodech 15 a 16 lišilo o více než 0,5 V od 17 V, museli bychom je nastavit změnou R83 nebo R84, případně R87 nebo R88.

Je-li vše v pořádku, můžeme začít s mechanickou sestavou zesilovače. Při montáži desky zesilovačů však musíme dát pozor na to, že kovová část IO5 a IO6 je galvanicky spojena s vývodem 3 a proto musí být tyto obvody izolovány od základové desky slídovými podložkami. Ty získáme například rozstřižením slídových podložek pro výkonové tranzistory v pouzdru TO-3. Odizolovány musí být i upevňovací šrouby M3 a k tomu slouží

Obr. 14. Tvarování vývodů IO A2030

Obr. 15. Celkové uspořádání a propojení desek

průchodky (obr. 13h). Před upevněním potřeme obě strany slídové podložky silikonovou vazelínou. Po upevnění těchto obvodů je třeba bezpodmínečně zkontrolovat, zda není zkrat mezi kovovou částí obvodů a základovou deskou!

Aby potenciometry P2 až P4 nezkratovaly spoje na desce indikátorů, je mezi ně a desky vložena podložka

tl. asi 1 až 1,5 mm.

Upevněné desky vzájemně propojíme podle obr. 15. Všechny propojovací body (obr. 1 až 4) jsou očíslovány tak, že jsou-li dva body stejného čísla na různých deskách, je třeba je vždy vzájemně propojit. K propojení bodů 15, 16 a 21 mezi deskou zesilovačů a deskou zdroje je třeba použít vodič o průřezu alespoň 0,5 mm².

Ke konektorům K1 až K4 na zadní stěně vedeme stíněné kabely. Na straně konektorů spojíme stínění vždy s kolíkem 2 a na desce zesilovačů všechna stínění vzájemně propojíme a vše připojíme na jediné pájecí očko propojovacího bodu 2.

Propojení nám usnadní následující přehled

Pájecí bod	' Konektor	Kolík
3	K1	3
14	K1	5
1	K2	3
13	K2	3 5
7	I кз	3
8	ŀ K 3	3 5
9	· K4	3
10	K4	l š
111	K4	1
12	K4	4
23	K5	1, 3, 4
21	K5	2
26	K6	1, 3, 4
21	K6	.2
24	K7	3 (přes R63)
27	K7	1 (přes R64)
21	K7	2

U konektoru K1 pro magnetodynamickou přenosku propojíme ještě kolík 2 s pláštěm konektoru. Kostra zesilovače je spojena s elektrickou zemí pouze v tomto jediném bodě.

Rezistory R63 a R64 můžeme umístit buď přímo u konektoru pro sluchátka, anebo můžeme využít volné kolíky Př5

Síťovou šňůru zajistíme proti vytažení (například uzlem).

Uvedení do provozu a nastavení

Po zapnutí zesilovače zkontrolujeme znovu napětí v bodech 15 a 16 (-17 a +17 V) a na vývodech 8 lO3 a lO4 (+15 V). Na výstupu koncových zesilovačů, tedy na bodech 22 a 25 smíme naměřit jen několik milivoltů. Teprve pak můžeme připojit zátěž i zdroj signálu a kontrolovat či změřit celý zesilovač.

Citlivost indikátorů úrovně je nastavena tak, že při efektivním napětí 0,5 V na vstupech tuneru nebo magnetofonu jsou rozsvíceny všechny svítivé diody. Bude-li si někdo přát změnit citlivost indikátorů (vzhledem ke zdrojům signálu, které používá), může tak učinit změnou R68 a R76. Indikátor lze též použít jako wattmetr a zapojit ho na výstup koncových zesilovačů na body 22 a 25, případně na vývody 5 a 3 lO3. Pak je třeba nastavit citlivost tak, aby se těsně před počátkem limitace koncových zesilovačů rozsvítila devátá dioda.

Všem zájemcům o stavbu zesilovače přejeme úspěch a též to, aby se nenechali odradit potížemi při nákupu součástek. Zároveň bychom chtěli poděkovat ing. Jiřímu Kondelíkovi za jeho přínos, spočívající ve vytvoření vnějšího vzhledu přístroje.

OVĚŘENO V REDAKCI AR

Zesílovač byl postaven v redakci ve dvou provedeních přesně podle popisu v článku. Při stavbě se nevyskytly žádné problémy. Jednotlivé díly byly oživeny (kromě předzesílovače) každý samostatně to doporučujeme. Při oživování zdroje zajistíme souměrné výstupní napětí bud výběrem Zenerových diod (stejně Uz), nebo změnou odporů rezistorů v bázích T1 a T4. Stejnou citlivost indikátorů zajistíme změnou zesílení IO8, tj. změnou odporu rezistorů R68, popř. R76, větší odpor – větší zesílení, Budou-li zapojeny indikátory podle schématu, je si třeba uvědomit, že některé zdroje ní signálu dávají napětí až 1 V, v tomto připadě budou svítit všechn y diody.

Ke stavbě jsme použili transformátor 2PN66201 (viz text). S tímto transformátorem jsme dosáhli výstupního výkonu asi 10 W/4Ω, a to při zachování všech ostatních uvedených parametrů. Neseženěteli C26, C29 s kapacitou 8,2 nF, Ize použít 10 nF. Jako D5 a D6 Ize použít diody KA501, popř. i jiné.

videomagnetofony se zvukovým záznamem v kvalitě hi-fi

Doprovodný zvuk u videomagnetofonů činil již od samého začátku konstruktérům určité potíže. Především proto, že rychlost posuvu u těchto přístrojů je asi 2,5 cm/s, což je přibližně polovina posuvné rychlosti běžných kazetových magnetofonů. Vezmeme-li navíc v úvahu ty přístroje, které umožňují provoz "long play", pak se rychlost posuvu ještě zmenší na polovinu a činí tedy jen něco málo přes 1 cm/s.

Pravdou zůstává, že v běžném provozu, tedy při nahrávkách z televize či při přepisu filmů, parametry podélného zvukového záznamu plně postačují. U většiny videomagnetofonů při použití standardní rychlosti posuvu pásku zaručují výrobci následující hlavní parametry.

Kmitočtový rozsah: 40 až 10 000 Hz. Kolísání rych. posuvu: ± 0,3 %. Odstup ruš. napětí: 50 dB.

Tyto parametry jsou ve většině případů lepší, než nám poskytuje například přepis filmů z jiného přístroje, anebo intercarrierový způsob zpracování zvukového doprovodu televizních pořadů. To se týká především odstupu rušivých napětí.

Přesto dnes všechny firmy, vyrábějící videomagnetofony, nabízejí svým zákazníkům i přístroje umožňující zvukový záznam v kvalitě Hi-Fi.

Tento záznam nelze pochopitelně pořizovat na podélné stopě, ale je třeba využít rotujících hlav. Záznam rotujícími hlavami zajišťuje především mimořádně velkou relativní rychlost záznamového materiálu vůči hlavám (několik metrů za sekundu) a kromě toho umožňuje tento princip též podstatným způsobem zmenšit kolísání relativní rychlosti posuvu, neboť to je určováno především setrvačnou hmotou rotuiícího bubnu, což při 1500 otáčkách za minutu je více než postačující. Velká relativní rychlost pohybu hlav vůči pásku pak umožňuje nesrovnatelně větší hustotu informací. To vše poskytuje jakost zvukového záznamu v takové kvalitě, která se prakticky rovná záznamu na digitálních deskách a která je běžnými magnetofony pochopitelně nedosaži-

Výrobci těchto přístrojů běžně zaručují tyto parametry.

Kmitočtová charakteristika: 20 až 20 000 Hz. Kolisání rych. posuvu: ± 0,05 % Odstup ruš. napětí: 80 dB.

Způsob, jakým se tento záznam v praxi realizuje, si popíšeme na videomagnetofonu nové koncepce Grundig VS 380

Na rotujícím bubnu jsou, kromě hlav pro záznam obrazového signálu, umístěny ještě dvě hlavy pro záznam zvukového signálu. Jsou umístěny mezi obrazovými tak, že jejich spojinice se spojinicí obrazových hlav svírá úhel 90°. Je známo, že štěrbiny obrazových hlav jsou u videomagnetofonů systému VHS vzájemně proti sobě natočeny o ±6° (pro potlačení přeslechu jasového signálu ze sousedních stop) a štěrbiny zvukových hlav jsou natočeny o ∓30°; proti sobě mají tedy vzájemný odklon 36°. Toto opatření má za úkol co nejvíce potlačit vzájemné ovlivňování signálů obrazové a zvukové stopy.

Hlavy pro obrazový záznam mají šířku 66 μm. Tato zvětšená šířka je využívána při reprodukci stojícího obrazu a zpomaleného obrazu, ale při záznamu je výsledná šířka zaznamenávané stopy vždy předepsaných 49 μm, protože každá následující stopa překrývá část předešlé. Hlavy pro záznam zvuku mají šířku 34 μm, jsou tedy o něco užší než obrazové. Pouze pro informaci uvádím šířky štěrbin hlav: obrazové mají štěrbinu širokou 0,3 μm, zvukové 0,9 μm.

Pro záznam rotujícími hlavami je nf signálem nejprve kmitočtově modulován nosič. Pro každý kanál je samostatný nosič; kmitočet nosiče levého kanálu je 1,4 MHz, pravého kanálu pak 1,8 MHz. Kmitočtový zdvih modulace je 50 kHz.

Při nahrávce je zvukový záznam zaznamenáván o 10 ms (čtvrtotáčka bubnu) dříve než záznam obrazu, takže obrazový záznam je vlastně zapisován do již hotového zvukového záznamu. Protože nosná obrazového záznamu má asl třikrát vyšší kmítočet než nosné kmitočtově modulovaného zvukového signálu, je zvukovou složkou záznamomateriál magnetizován do větší hloubky, zatímco obrazovou složkou je magnetizován jen povrchově. Při zvukovém záznamu je třeba navíc zajistit, aby při reprodukci měly signály obou kanálů shodnou úroveň. Protože nosná pravého kanálu má kmitočet 1,8 MHz a levého jen 1,4 MHz, je následným obrazovým záznamem více odmazávána složka s vyšším kmitočtem, tedy pravého kanálu. Je proto nutné jíž při záznamu zajistit u pravého kanálu úroveň asi o 9 dB větší než u kanálu levého.

Ve zvukovém záznamu rotujícími hlavami je třeba ještě několik úprav. Aby bylo dosaženo požadované dynamiky 80 dB, je zvukový signál před záznamem v celém pásmu komprimován a při reprodukci opět expandován.

Zpočátku dělalo výrobcům velké problémy pravidelné lupání s kmitočtem 50 Hz, které bylo důsledkem přepínání hlav. Stejný jev se objevuje samo-zřejmě i při záznamu obrazu, tam to však nikterak nevadí, protože hlavy se přepínají každou půlotáčku bubnu vždy v době trvání zatemňovacích impulsů. Okamžiky přepnutí proto nejsou na obraze viditelné. Zvukový záznam však probíhá spojitě a okamžiky přepínání hlav jsou proto sluchem více či méně pozorovatelné jako lupání v rytmu 50 Hz. Některé videomagnetofony jsou bohužel tímto jevem nepříznivě po-znamenány. U VS 380 byla tato nežádoucí vlastnost dobře vyřešena pomocí obvodu Sample and Hold, který okamžicích přepínání "podrží" po dobu asi 16 us okamžitou napěťovou úroveň a nahradí jí přepínací impuls. Lze jen potvrdit, že okamžiky přepínání hlav u tohoto přístroje nelze sluchem ziistit.

Drobných úprav i pomocných obvodů je při záznamu zvuku rotujícími hlavami ještě více. Účelem tohoto příspěvku však bylo ujasnit jen základní principy tohoto záznamu. Zbývá snad jen doplnit, že všechny videomagnetofony, používající zvukový záznam rotujícími hlavami, zaznamenávají zvukový doprovod také na běžnou podélnou stopu. To je nutné proto, aby nahrávky byly kompatibilní a aby je tedy bylo možno reprodukovat i na strojích, které mají pouze podélnou zvukovou stopu.

Tyto přístroje mají též velkou výhodu v případě dabingu. Můžeme totiž doda-

tečně ozvučit podélnou stopu, přičemž zvukový záznam na stopách nahraný kmitočtovou modulací zůstane beze změny. —Ms—

<mark>digitá</mark>lní K**azetový mag**netofom?

Je tomu již více než tři roky, kdy se na světových trzích objevily digitální přehrávače kompaktních desek. Dodnes však neexistuje žádný magnetofon, který by umožňoval přepis desek takovým způsobem, aby jejich kvalitativní parametry zů-

staly v plné míře zachovány.

Přítom se již před několíka lety objevily prototypy pozoruhodných přístrojů, například na výstavě v Důsseldorfu byl v roce 1982 veřejnosti představen přístroj s názvem "PCM Digital Audio Compact Cassette Deck" typ RT – X5 firmy Sharp – Optronica. Tento digitalní magnetofon používal konvenční podélný záznam s pevnými hlavami a digitalizovaná informace byla nahrávána na 18 stopách při rychlosti posuvu 9,5 cm/s.

Pak bylo v těchto otázkách určitou dobu poměrně ticho a zřejmě bylo nadále uvažováno o šikmém záznamu rotujícími hlavami. Tento systém se nakonec objevil i u videomagnetofonů, kde měl být původně zaveden firmou GRUNDIG u strojů systému VIDEO 2000 Hi-Fi. Vzhledem k tomu, že výroba videomagnetofonů pracujících v tomto systému byla zastavena, nepodařilo se již tento záměr realizovat a digitální záznam PCM převzala až špičková verze systému VIDEO 8 firmy SONY. V této souvislosti připomínám, že systémy VHS a BETA používají pro své přístroje se zvukem Hi-Fi kmitočtovou modulaci a nikoli digitální záznam!

Přesto se však zdá, že kazety systému VIDEO 8 se patrně nestanou standardem pro akustický digitální záznam. Některé zprávy totiž svědčí o tom, že v novém digitálním standardu sice zůstane zachován záznamový a reprodukční princip šikmého záznamu rotujícími hlavami, že však šířka použitého pásku bude zceta shodná jako u běžných zvukových kazet, tedy 3,81 mm. Kazeta tohoto standardu má být asi o polovinu menší než dnešní běžné kazety a má zajišťovat dvě hodiny nepřetržitého záznamu.

Podle informace firmy Mitsubishi byl již v Japonsku navržen standard R-DAT (Rotary Digital Audio Tape), který obsahuje

následující hlavní znaky.

Průměr bubnu hlav: 30 mm.
Otáčky bubnu: 2000 ot/min.
Úhel opásání bubnu: 90°.
Rychlost posuvu: 7,2 mm/s.
Dělka jedné stopy: 23,505 mm.
Úhel stopy: 6°22".

Šiřka pásku: 3,81 mm. *Rozměry kazety:* 73 × 53 × 10,5 mm. *Počet kapálů:* 2

Vzorkovací kmitočet: 48 kHz. Kvantizace: 16 bitů.

S kvantizací 16 bitů a se vzorkovacím kmitočtem 48 kHz lze při kmitočtovém rozsahu 5 až 20 000 Hz zajistit zkreslení asi 0,002 % a dynamiku 90 dB. Jestliže by však vzorkovací kmitočet zůstal skutečné 48 kHz, pak by digitální přepis z kompaktních desek, které používají vzorkovací kmitočet 44,1 kHz byl přinejmenším velmi ztižen. Zlí jazykové k tomu dodávají, že prý patrně záměrně.

NOVÉ SMĚRY V SSTV

Systém amatérské televize s pomalým rozkladem – SSTV – byl propracován koncem padesátých a v průběhu šedesátých let. Vývoj vyvrcholil v roce 1968 přijetím mezinárodně uznané normy. Krátce na to se s SSTV mohli seznámit také čtenáři AR [1]. Po několika letech značného zájmu zaznamenáváme u nás spíše stagnaci. Přenos obrazu - být prakticky jenom statického - představuje skutečně novou dimenzi radioamatérského provozu. Představuje ale také potřebu vyřešit nejeden technický problém, což v amatérských podmínkách znamená takřka vždy kompromis. Takovým kompromisem byla dlouhou dobu reprodukce přijatého obrazu obrazovkou s velmi dlouhým dosvitem, což v praxi znamenalo, že na stínítku byl viditelný plným jasem pouze poměrně úzký pruh luminoforu za právě vykreslovaným řádkem, jas již vykreslených částí obrazu rychle klesal. Takto reprodukovaný obraz měl k dobré kvalitě opravdu dost daleko. V minulosti však nebylo možno sledovat.7-8 sekund vykreslovaný obraz způsobem, který by byl v amatérských podmínkách snáze realizovatelný a ekonomicky přístupnější, než právě tento.

Pronikavý nástup mikroelektroniky spojený s rychlým poklesem cen součástek umožnil konstrukci převodníků SSTV na standardní TV normu s přijatelnými náklady. Tato skutečnost podstatně ovlivnila nejen opětné oživení zájmů o SSTV v zahraničí, ale podnítila i celou řadu experimentů směřujících k dalšímu zkvalitňování obrazu, zejména směrem k přenosu obrazu barevného a směrem k zvyšování rozlišovací schopnosti. Číslicová technika současně umožnila řešení celé řady technických otázek, a to i při tvorbě signálu. A podobně jako v případě RTTY, také SSTV je vděčným předmětem praktického využití osobního mikropočítače. coż nejen radioamatérům zpřístupňuje tento zajímavý druh provozu, ale přivádí také přátele mikropočítačů mezi radioamatéry

Mikroelektronika se rozhodně nevyhýbá ani nám; mikropočítačú u nás není právě málo, a také moderní součástky se postupně stěhují ze stránek katalogu na pulty prodejen. Radioamatérské časopisy v poslední době mnoho příspěvků o SSTV od konstruktérů nedostávají a zatím jedi-ná kniha [2] se o informaci čtenářů o nových trendech v SSTV ani nepokusila. Myslíme proto, že nastal čas opět čtenářům připomenout základní principy SSTV a také je seznámit se současným stavem a směry rozvoje. Rádi bychom tak podnítili nejen oživení pásem signály našich stanic, ale také práci konstruktérů a programátorů, aby i v případě tohoto nesporně perspektivního druhu provozu byla značka OK dobrým reprezentantem našeho sportu v zahraničí.

1. Základní norma SSTV

Podrobné informace o této normě najde zájemce v [1] nebo [2]. Ve stručnosti jen základní údaje: obraz dle normy SSTV se skládá ze 120 řádků, poměr stran je 1:1, směr rozkladu shora dolů a zteva doprava; řádkový synchronizační kmitočet je 16,6 Hz při šířce synchronizačního impulsu 5 ms, snímkový synchronizační kmitočet je 0,1388 Hz při šířce impulsu 30-50 ms; doba přenosu je tedy 7,2 sekundy (tyto údaje odpovídají evropské normě, norma v USA se poněkud odlišuje, což je dáno jiným kmitočtem sítě). Obrazová informace je vysílána prakticky kmitočto-vou modulací, přičemž kmitočtu 1500 Hz odpovídá černá, kmitočtu 2300 Hz bílá, kmitočtům uvnitř tohoto intervalu jednotlivé stupně šedi. Synchronizační impulsy jsou vysílány kmitočtem 1200 Hz. Již tyto základní údaje jsou vysvětlením, proč SSTV umožňuje přenášet obraz pouze statický. Prvotním požadavkem je ovšem možnost přenosu obrazové informace při zachování šíře pásma, kterou dovolují předpisy pro amatérské vysílání, tedy v zásadě v rámci nf hovorového spektra. Z tohoto základního požadavku musí také vycházet jakékoli úpravy této základní normy. Výhodou samozřejmě je možnost vysílat signál SSTV běžným radioamatérským zařízením SSB si NBFM, zaznamenat obraz na magnetofon a ze záznamu také vysílat.

2. Digitalizace SSTV

Sledování obrazu na monitorech s obrazovkou s dlouhým dosvitem bylo hlavním kvalitativním nedostatkem SSTV. Od poloviny sedmdesátých let však byly takové monitory v zahraničí vytlačeny číslicovými převodníky SSTV na standardní televizní normu, tedy normu s "rychlým" rozkladem – FSTV. Tyto převodníky umožňují sledovat obraz na běžném TV přijímači nebo monitoru.

Převodník SSTV/FSTV obvykle pracuje tak, že přijímaný detekovaný obrazový signál je periodicky vzorkován, převáděn na čísticovou formu, a jako (zpravidla čtyřbitový) bajt ukládán do paměti RAM. Adresování paměti je při zápisu synchronizováno detekovanými synchronizačními impulsy z přijímaného signálu. Současně je obsah RAM také čten a převáděn opět na analogový signál, jímž je řízen modulátor FSTV. Adresování RAM při čtení je řízeno tak, aby byla zajištěna synchronizace obrazu FSTV a také správná reprodukce původního obrazu SSTV. Obvykle je zpracovávaný SSTV signál vzorkován 128× během přenosu jednoho řádku, a číslicové systémy SSTV přacují většinou s přenosem 128 řádků. Převodník pak vyžaduje kapacitu RAM 16 384 bajtů. Některé pozdější systémy se snaží zvýšit kvalitu obrazu zpřesněním ukládané obrazové informace rozšířením bajtu na 6 bitů, což dovoluje reprodukovat místo 16 hned 64 stupňů šedi. Paměť převodníku lze tedy sestavit ze 4-6 dynamických RAM typu 4116, které - byť ne snadno - Ize za přístupnou cenu koupit i u nás. Převodníky pracující na tomto principu jsou vyráběny i profesionálně, např. model 400 fy Robor Research [3] představuje v tomto oboru světový standard. Při amatérské stavbě se mohou zájemci seznámit s podrobným zapoje-nim například v [4], knize, kterou bylo možno u nas zakoupit v KIS NDR.

S ohledem na stále ještě probíhající vývoj SSTV se však jeví výhodnější k reprodukci a tvorbě obrazu užití osobního

mikropočítače. Pro tento účel je vhodná celá řada přístrojů (včetně obou nejznámějších a u nás velmi rozšířených počítačů ty Sinclair). Otevírá se skutečné velmi široké pole pro práci experimentátoru při aplikaci československých mikropočítačů, které se v současnosti dostávají také do organizací Svazarmu.

Zpravidla pouhou změnou programu lze přizpůsobit počítač případně se objevujícím změnám normy SSTV, navíc je snazší další zpracování obrazu včetně tisku (obr. 1) vhodnou tiskárnou (což samo o sobě obohacuje paletu možností SSTV), rychlý záznam a reprodukce obrazu na disketu apod.

Obr. 1. Obraz SSTV vytištěný tiskárnou mikropočítače

3. Nové trendy

Digitalizacé SSTV umožnila další zkvalitnění obsahu obrazové informace, zejména přenos barevného obrazu a zvýšení rozlišovací schopnosti. Je ovšem nutné znovu připomenout, že základním požadavkem, ze kterého SSTV vychází, aby mohla být skutečně amatérskou, tedy slučitelnou s provozem na KV i VKV radioamatérských pásmech, je možnost přenosu signálu běžným radioamatérským zařízením, čímž je maximální modulační kmitočet omezen na asi 3 kHz. Zvětšení objemu přenášených informací (a ohled na udržení potřebné odolnosti systému vůči rušení) tedy vždy znamená prodloužení doby přenosu.

3.1. Barevná SSTV

Prvé pokusy s barevnou SSTV vycházely z postupného přenosu úplných tří snímků ve standardní SSTV normě, z nichž každý obsahoval informaci o jedné ze tří základních složek vytvářejících barevný obraz v FSTV normě, tj. červené, zelené a modré. Při vysílání byla barevná předloha snímána černobílou SSTV kamerou postupně přes jeden ze tří filtrů příslušné barvy. Na straně příjmu pak byl demodu-lovaný a digitalizovaný signál zaznamenáván v náležitém pořadí do jedné ze tří pamětí RAM, jejichž obsah byl současně čten a řídil modulátor FSTV barevného modulátoru. Úplný barevný obraz se tedý na monitoru objevil až po přenosu všech tří snímků, tedy nejdříve za téměř půl minuty. Jednotlivé snímky byly vysílány obvykle v pořadí červená-zelená-modrá, avšak po dohodě korespondujících stran bylo možno pořadí zaměnit, případně vysítat snímky opakovaně. Prvý červený snímek byl obvykle ukládán do všech tři pamětí RAM přijímacího převodníku současně, aby byl vymazán jejich starý obsah.

amatérské radio branné výchově

Přebor mládeže v Praze 9

Dne 19. 2. 1986 se konala, tak jako v celé Praze, i v devátém pražském obvodu v Domě pionýrů a mládeže obvodní technická soutěž mládeže v elektronice a radioamatérství. Uvedená soutěž má v tomto obvodu již tradičně vysokou úroveň a velkou účast. Soutěž uspořádala rada radioamatérství při OV Svazarmu v Praze 9 a na její přípravě se podílely všechny příslušející radiokluby. Průběh soutěže organizovali členové radioklubů OKIKRF, OKIKEO, OKIKTL, OKIKMD a OKIKLL.

Z přihlášených 34 účastníků ve věku 8 až 18 let se z důvodu chřipkové epidemie dostavilo jen 19, ale tato skutečnost nikomu soutěžní náladu nepokazila. Při prezentaci každý předložil vlastnoručné zhotovený výrobek. Bylo možno zde spatřit mimo jiné též tranzistorovou zkoušečku, generátor funkcí, různé měřicí přistroje, blikače, přídavnou paměť k počítači a další.

Po zahájení a slavnostním slibu všech účastníků nastalo soutěžní zápolení. Všichni nejprve, podle věkových katego-

Osmiletá Danuška Drexlerová se umístila ve své kategorii na 3. místě

Vítěz kategorie B1 Josef Smítka

Jeho bratr Jiří Smítka zvítězil v kategorii

rií, byli podrobeni teoretickým testům ze znalostí radiotechniky. V další části soutěže každý zhotovil v daném časovém limitu soutěžní výrobek. Podle kategorií účastníci sestavovali buďto měřič kapacity, signální generátor, multivibrátor nebo přerušovač s nastavitelným cyklem. Každý měl k dispozici příslušné schéma zapojení, desku s plošnými spoji a potřebné součástky. Vzhledem k tomu, že soutěž byla pořadateli velmi dobře připravena, nedocházelo ke komplikacím a soutěžící neztráceli dobrou náladu. Během soutěže účastníci rovněž započali s plněním podmínek získání odznaku branné připravenosti. Jedna z nich byla splněna o přestávce soutěže, kdy se všichni zúčastnili besedy se členem Švazu protifašistických bo-

Rozhodčí komise po zhodnocení jednotlivých částí soutěže a pohovoru s každym účastníkem rozhodla o konečném umístění takto:

V kategorii C1 (10 až 12 let) zvítězil Jiří Smítka (5400 b.), v kategorii C2 (13 až 14 let) Stanislav Svoboda (5555 b.), v kategorii B1 (15 až 16 let) Josef Smítka (5350 b.), v kategorii B2 (17 až 18 let) Martin Argay (5660 b.).

14 účastníků získalo III. VT, 8 účastníků postoupilo do městského kola.

OK1DFE

EMV

Měníme pravidla MÝT

Všem radioamatérům je známé, že základem všech radiokomunikačních služeb včetně radioamatérské je telegrafie. Proto naším úkolem je rozvinout zručnost telegrafistů a rozšířit jejich základnu, hlavně mezi mládeží. Moderní víceboj telegrafistů rozvíjí a motivuje činnost telegrafistů ve spojení s jinými disciplínami. Tak to bylo vždy. Některé disciplíny jsou (nebo byly) méně zajímavé, jiné zaujmou více. Stejně je tomu i s náročností jednotlivých disciplín.

Komise MVT RR ÚV Svazarmu tyto okolnosti pro další rozvoj členské základny důkladně zvážila a předložila ke schvá-

lení pravidla s upravenými disciplínami. Návrh pravidel předložený v září byl členy ústřední, české a slovenské komise MVT doplněn na doškolení v Rajnochovicích (25. až 28. 11. 1985) a schválen organizačním sekretariátem ÚV Svazarmu 8. 1. 1986.

Předkládáme vám část pravidel jednotlivých disciplín a jejich bodnocení.

Úvodem připomínáme, že střelba a hod granátem nejsou z MVT vyřazeny, ale že se-pořádají podle možnosti pořadatele a hodnotí se odděleně od disciplín MVT, tj.;1) klíčování, příjem; 2) telegrafní provoz; 3) orientační běh.

Soutěžní řád zůstává v podstatě stejný. Je zavedena nová sportovní kategorie C2 žáci a žákyně do 12 let. Stupně soutěží jsou zachovány. Organizace soutěží a účast na soutěžích se nemění. Náborové soutěže fonická a telegrafní jsou také beze změn.

Soutěže III. stupně

Jsou určeny pro závodníky-telegrafisty bez výkonnostní třídy (VT) a pro závodníky III. VT.

Soutěží se v discipliná	ch	 ٠	max	bod.hodnocení
1. Vysílání písmen				50 bodů
2. Vysílání číslic .	_			50 bodů
3. Příjem písmen	-			50 bodů
4. Příjem čístic			•	50 bodů
5. Orientační běh				. 100 bodů

Soutěže II. stupně

Soutěží se v disciplinách	1	max. bod. hodnoceni
1. Telegrafní provoz		100 bodů
2. Příjem písmen + číslic		100 bodů
		(50 + 50 b.)
3. Orientační běh		100 bodů

Soutěže I. stupně

Soutěže jsou určeny pro závodníky II. a I. VT a MT a vítěze krajských přeborů. Jsou řízeny RR ČÚV, SÚV nebo ÚV Svazarmu. Pořádají se jako přebor ČSR, SSR a mistrovství a přebor ČSSR. Mohou být pořádány též jako kvalifikační nebo mezinárodní soutěže.

Soutěží se v disciplínách	max. bod. hodnocení				
1. Telegrafní provoz	100 bodů				
2. Příjem pismen	50 bodů				
3. Příjem číslic	50 bodů				
4. Orientační běh	100 bodů				

Vysílání telegrafních znaků

Závodníci vysílají ručními telegrafními klíči, u nichž nesmějí být žádné elektrické ani mechanické prvky, které by mohly vysílání ovlivnit

vysílání ovlivnit.
V soutěži III. stupně vysílají závodníci jednotlivé texty vždy po dobu 1 minuty. Celé vysílání, včetně technické přípravy a odpočinku mezi jed notlivými texty může trvat u soutěže III. stupně nejvýše 5 minut. Tato doba se měří od příchodu závodníka na vysílací pracoviště.

Pro hodnocení kvality vysílání telegrafnim klíčem jsou stanoveny koeficienty základní, srážkové a výsledný.

Výsledný koeficient se získá odečtením srážkových koeficientů od základního a dosazuje se do vzorce pro výpočet bodové hodnoty:

Body =
$$\frac{100 \cdot K \cdot X}{L}$$

kde: 100 = konstanta

K = výsledný koeficient;

X = skutečně vyslané průměrné minutové tempo, hodnocéného závodníka;

L = nejvyšší klasifikované minutové tempo v kategorii (nejlepší závodník).

Disciplína je zařazena jen v soutěžích III. stupně.

Příjem

Přijímají se dva druhy textů:

a) 3 písmenové texty; obsahující rovno-měrně všech 26 znaků latinské abecedy; b) 3 číslicové texty, obsahující rovnoměrně číslice 0 až 9.

V obou soutěžích je každý text složen z 20 pětimístných skupin. V jedné skupině mohou být maximálně dva stejné znaky. Císlice 0 je vysílána jako 5 čárek. Závodníci zapisují rukou.

Rychlosti

Každý závodník si zvolí před soutěží 3 po sobě jdoucí tempa písmen a číslic zvlášť v rozsahu vysílaných rychlostí, podle stupně soutěže. Tato oznámí pořadateli při prezenci. Na základě požadavků závodníků na přijímaná tempa vypracuje pořadatel časový plán pro příjem. Závodník přijímá 3 po sobě jdoucí texty. Přepisuje a odevzdává 2 texty. Do hodnocení se počítá bodově výhodnější text. V každém textu se smí závodník v soutěži I. a II. stupně dopustit nejvýše 3 chyb. Text s více chybami se nehodnotí. V soutěži III. stupně může mít závodník neomezený počet chyb. Za každou chybu se rychlost snižuje o 3 znaky/min. Např. tempo 100 se 3 chybami dává výsledné tempo 91 zn/ min. Na přepis je stanoven čas 10 min. Každý závodník přepisuje 2 texty písmen a 2 texty číslic. Rozsah přijímaných rychlostí je podle stupně soutěže. III. stupeň: 30–90 zn/min, II. stupeň: 40–120 zn/min, I. stupeň: 50–150 zn/min.

Hodnocení příjmu

Pro hodnocení příjmu je použito následuiícího vzorce:

Body za příjem =

"tempo hodnoceného závodníka

nejvyšší přijaté tempo v kategorii

(Dokončení příště)

VKV

Závod vítězství VKV 41

Závod probíhá od 14.00 UTC 26. července do 10.00 UTC 27. července 1986 a má dvě etapy po deseti hodinách. První etapa je od 14.00 do 24.00 UTC a druhá od 00.00 do' 10.00 UTC. Soutěží se pouze

z přechodných QTH v pásmech 145 a 433 MHz v těchto kategoriich:

I. - 145 MHz - stanice jednotlivců;

II. - 145 MHz - kolektivní stanice;

III. – 145 MHz – posluchači; IV. – 433 MHz – stanice jednotlivců; V. - 433 MHz - kolektivní stanice;

VI. – 433 MHz – posluchači; VII. – 145 a 433 MHz – kolektivní stanice. Výkon koncového stupně vysílače soutěžící stanice smí být maximálně 10 wattů. Soutěží se provozem A1, A3J, A3 a F3. V každé etapě lze v každém pásmu s každou stanicí navázat jedno platné soutěžní spojení. Při spojení se předává kód sestávající z RS nebo RST, pořadového čísla spojení od 001 a lokátoru, a to v každém pásmu zvláší. Závodu se mohou zúčastnit i stanice, které nesoutěží a pracující ze stálých stanovišť. I tyto stanice však musí během závodu soutěžícím stanicím předávat kompletní soutěžní kód včetně po-řadového čísla spojení od 001. Těmto stanicím, pracujícím ze svých stálých QTH, se doporučuje, aby během závodu nevolaly výzvu a tak minimálně rušily soutěžící stanice. Výzva do závodu je "CQ 41" při CW a "Výzva VKV 41" při provozu fone. Výzvu do závodu volají pouze soutěžící stanice. Do závodu ne-

a MS Bodování: Za spojení se stanicí ve vlastním velkém čtverci lokátoru se počítá jeden bod. Za spojení se stanicemi v sousedních velkých čtvercích jsou 2 body a v dalším pásmu velkých čtverců 3 body. Za spojení se stanicemi v dalších pás-mech velkých čtverců se body počítají podle níže uvedené tabulky. Výsledek závodu je dán součtem bodů za spojení v obou etapách. V kategorii VII. je dán vý-sledek součtem umístění z pásem 145 a 433 MHz. Deníky ze závodu vyplněné ve všech rubrikách se všemi náležitostmi formulářů "VKV soutěžní deník" se posi-lají do deseti dnů po závodě na adresu URK ČSSR, Vlnitá 33, 147 00 Praha 4-Braník. Jinak platí "Všeobecné podmínky pro VKV soutěže a závody". Rozhodnutí soutěžní komise je konečné.

platí spojení navázaná přes pozemní či kosmické převáděče a dále spojení EME

Tabulka pro výpočet bodů v závodě VKV 41 (horní část)

													•	. "						
1	13	12	12	12	11	11	-11	10	10	10	10	10	11	11	11	12	12	12	13	
																			12	
																			12	
1	12	11	.10	9	8	8	8	7	7	7	7	7	8	8	8	9	10	11	12	
1	2	10	· 9	8	7	7	7	6	6	6	. 6	6	7	7	7	. 8	9	10	12	
																			12	
																			12	
1	2	10	9	8	6	5	4	3	3	3	3	3	4	` 5	6	8	9	10	12	
1	2	10	9	8	6	5	4	3	2	2	2	3	4	5	6	8	9	10	12	
1	2	10	9	8	6	5	4	3	2	1	2	3	4	5	- 6	. 8	9	10	12	

Dolní část tabulky je zrcadlovým obrazem části horní.

Číslo 1 = vlastní velký čtverec lokátorů. . OK1MG

Kalendář závodů na KV na červenec a srpen

12 13 7 IABII Radiosport Championship 12 00 12 00

12.~13, /.	INTO DEGLOSPOIT CHRIIISIOUSHID	12.00-12.00
1920.7.	HK DX contest	00.00-24.00
1920.7.	SEANET, část CW	00.00-24.00
1920.7.	QRP Summer contest	15.00-15.00
25.7.	TEST 160 m	20.00-21.00
2627.7.	YV DX contest, část CW	00.00-24.00
23. 8.	YO DX contest	20.00-16.00
910.8.	WAEDC, část CW	00.00-24.00
1617. 8.	SEANET, část SSB	00.00-24.00
1617, 8,	SARTG RTTY	
1617. 8.	Japan CW contest	12.00-12.00
2324. 8.	All Asian DX contest, CW	00.00-24.00
29. 8.	Zavod SNP	-19.00-21.00
29 8"	TEST 160 m	20.00-21.00

Podmínky závodů IARU Championship viz AR 6/86, SEANET AR 6/83, All Asian AR 6/85, YO DX contest AR 7/83, YV DX AR 6/86.

Stručné podmínky HK DX contestu

Závod se koná každoročně k oslavě výročí získání nezávislosti Kolumbie. Mohou se zúčastnit všichni radioamatéři provozem v pásmech 1,8 až 28 MHz pro-vozem SSB i CW. Klasifikace bude v kategoriích a) jeden op. – jedno pásmo, b) jeden op. – všechna pásma, c) klubové stanice – jeden vysílač, d) klubové stanice – více vysílačů. Vyměňuje se kód složený z RS či RST a pořádového čísla spojení počínaje 001. Stanice HK předávalí zporá počínaje 001. Stanice HK předávají report a počet let samostatnosti Kolumbie (1986-176). Spojení se stanicemi HK se hodnotí 10 body, s jinými stanicemi 3 body a se stanicemi vlastní země 1 bodem. Násobiči jsou země DXCC v každém pásmu zvlášť... Stanice, která naváže alespoň 100 spojení, může získat diplom za umístění v zemi či na kontinentě. Deníky do 30. 8. na: LCRA, Contest Manager, Apartado 584, Bogota, Colombia, South America, nebo přes ÚRK. OK2QX

Z čs. závodů

Čs. YL-OM závod 1985: Kategorie YL-SSB: 1. OK3KFV 4992 b., 2. OK3KBM 4914, 3. OK2BVN 4800. Kat. YL-CW: 1. OK2BBI 2860, 2. OK1DDL 2444, 3. OK2UA 1932. Kat. OM: 1. OK1IQ 888, 2. OK3EK 864, 3. OK3EY 840. Vyhodnotii RK ОКЗКЕХ.

Závod k: SNP 1985; Kat. A = 1 op. pásma: 1. OK3BRK 3474, 2. OK2BPU 2576, 3. OK3YX 2224. Kat. B - 1 op. -3.5 MHz: 1. OK3JW 1274, 2. OK2ABU 1248, 3. OK3EK 1176. Kat. C - 1 op. - 1.8 MHz: 1. OK3CZA 1386, 2. OK3CTQ 1224, 3. OK2QX 1116. Kat. D - OL: 1. OL8CQS 1260, 2. OL8CQF 1206, 3. OL9CGS 1116. Kat. E. Folderick OL9CPG 1116. Kat. E - kol. stanice: 1. OK1KMP 2520, 2. OK3RJB 2235, 3. OK3KFV 2016. Kat. F - RP: 1. OK1-11861 2679, 2. OK3-26694 2208, 3. OK2-19144 2091. Celkem hodnoceno 86 stanic. Vyhodnotili OK3YX a OK3YL.

Hanácký pohár 1985 (X. ročník): Kat. MIX: 1. OK3KII 84, 2. OK3FON 79, 3. OK3KXT 74. Kat. CW: 1. OK1FBH 59, 2. OK1DRQ 58, 3. OK2BPU 52. Kat. RP: 1. OK1-11861 77, 2. OK3-27707 71, 3. OK2-3439 70. Celkem hodnoceno 100 stanic. Vyhodnotil RK OK2KYJ.

Čs. YL-OM závod 1986: *Kat. YL-SSB:* 1. OK3KSQ 3726, 2. OK2XL 3484, 3. OK2UA 3366. *Kat. YL-CW:* 1. OK2UA 2784, 2. OK3RRF 2548, 3. OK2KGV 2499 Kat. OM: 1. OK1SZ 625, 2.-4. OK1TJ, OK1VD a OK2PEM 576. Celkem hodnoceno 91 stanic. Vyhodnotil RK OK3KEX.

Závod k XVII. sjezdu KSČ: Kat. jednotlivci – obě pásma: 1. OK2ABU. 40 700, 2. OK2SLS 29 665, 3. OK1AQH/p 40 / 100, 2. UKZSLS 29 605, 3. UKTAQH/P. 25 203. Kat. B – jednotlivci – jedno pásmo: 1. OK1TA 33 573, 2. OK3LZ 23 144, 3. OK2RU 22 355. Kat. B – YL.: 1. OK3YL 6615, 2. OK1DVA 6490, 3. OK2UA 1260. Kat. B – QRPP: 1. OK1DAV 2870, 2. OK2PAZ 1870, 3. OK1DKR 1305. Kat. C – OL: 1. OL1BIC 8008, 2. OĽ8COS/p 7668, 3. OL9CTG 6096. Kat. D – Kolektivní stanice: 1. OK3RMB 56 814 2. OK3KFF 53 800. 3 1. OK3RMB 56 814, 2. OK3KFF 53 800, 3. OK1KSO 53 018. Kat. E — RP: 1. OK1-19973 60 564, 2. OK1-11861 46 400, 3. OK1-30823 36 816. Celkem hodnoceno 408 stanic. Vyhodnotil OK1MP.

Předpověď podmínek šíření KV na srpen 1986

Nízká a dále klesající úroveň sluneční aktivity by v nás měla na první pohled probouzet pesimismus, naštěstí v tomto případě jen částečně oprávněný. Během první poloviny srpna budou sice podmínky šíření KV většinou nevalné a hlavní příčinou oživení bude sporadická vrstva E. Poté se ale začne situace měnit a s výrazným přispěním sezónních vlivů se bude podstatně zvyšovat použitelnost KV pro spojení DX

Příznivé kombinace krátko- i dlouhodobých vlivů se objevují dostatečně často na to, aby mělo smysl o nich psát, o čemž jsme se přesvědčili například během letošního března, hlavně v jeho první polovině, kdy vzrostla sluneční aktivita a na klidný příznivý vývoj navazovaly kladné fáze poruch – největší 6. 3., po níž ovšem násladovalo výrazné zhoršení ve fázi záporné s maximem 7. 3. Díky dostatečné sluneční radiaci bylo vše rychle napraveno a příznivá byla i celá druhá dekáda, ale po poruše 24.–25. 3. již naděje na zlepšení nezxistovala. Ilustrativní jsou jako obvykte měření slunečního toku: 86, 89, 92, 93, 92, 92, 89, 86, 86, 83, 80, 78, 75, 74, 71, 70, 70, 70, 70, 69,

69, 69, 70, 70, 70, 70, 71, 70, 71, 71, 72 a 71 s měsíčním průměrem 77,1 v kombinaci s indexy aktivity magnetického pole Země A t: 20, 12, 13, 14, 12, 39, 36, 26, 4, 2, 3, 7, 20, 10, 14, 6, 7, 9, 10, 4, 17, 22, 13, 26, 32, 15, 16, 18, 9, 7 a 7. Výše zmíněná porucha 6.-8. 3. byla následkem slunečních erupci 3, 3, a 5, 3, naopak zcela beze skvrn byl sluneční disk 13.-19. 3., 21. 3., 27. 3. a 31. 3., průměrné relativní číslo slunečních skyrn za březen 15,7 posloužilo k výpočtu vyhlazeného R₁₂ za září 1985 – 17,1 a jeho předpovědi na měsíce červenec až září 1986 – 7, 6 a 5. Kupodivu v tomto případě nejde o tiskovou chybu, skutečně v SIDC v Bruselu již osmý měsíc vydávají tatáž čísla coby předpověď na příští měsíce, ilustrujíce tak ohraničenost našich současných možností porozumět alespoň zhruba jevům v kosmu. Kombinací určité sumy zkušeností a částečného pochopení některých fakt se tedy dostáváme k následujícímu popisu toho, co nás může čekat:

TOP borsá nás potěší hlavně v poslední dekádě možností QSO se Severní Amerikou po 01.00 a před 03.30 UTC, šance na QSO se ZL nastává okolo 04.30 a 19.00 UTC, vytvoří-li se dostatečně dlouhé ionosférické vlnovody značných rozměřů, což pravděpodobnost spojení snižuje – zejména ráno průchodem

magneticky narušenějšími oblastmi a večer zřejmě naopak turbulencí po západu Slunce. Stanice DX z východních směrů lze čekat již po 18.00, signály z jiho- až severozápadu do 05.00.

Oscadosátka se otevře na východ již okolo 16.00, na jih okolo 18.00, na jihozápad okolo 21.00 a na severozápad o hodinu později, kdy již budou východní směry alespoň hodinu uzzvřeny, postední stanice z jiných kontinentů vymizí okolo 07.00.

Ctyficiúm nebude vhodná pro blizká spojení vzhledem k pásmu ticha nad 700 km po většinu dne (a až 1500 km po 03.00 UTC). Zato se na ní mohou téměř kdykoli (s minimem v poledne) vyskytnout stanice z jiných kontinentů.

Dvzcíúzí bude především pásmem DX s mrtvou zónou nad 2000 km. Většinou již před půlnocí utichne a opět se probudí až okolo východu Slunce, prakticky do všech směrů ji co do parametrů šíření předčí třicítka s pásmem ticha o 500 km kratším.

Potroccas bude díky E_o velmi proměnlivá, pravidelnější výskyt signálů DX lze čekat od jihu a jihozápadu odpoledne. Pásmo ticha nad 3000 km může opět jen E_o zkrátit až o řád.

Desítita se může otevřít na jih a zejména jihovýchod během večera, výjimečně i dopoledne, což neplatí pro shortskip. OKIMM

Inzerci přijímá osobně a poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce AR), Vladislavova 26, 113 65 Praha 1, tel. 26 05 51–9, linka 294. Uzávěrka tohoto čísla byla dne 27. 3. 1986, dokdy jsme museli obdržet úhradu za inzerát. Neopoměte uvést prodejní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ.

Oscilosko C 1-94 (4000), IFK-120 (100). P. Urbanec, Ruská 487, 417 01 Dubí I.

Flonger (3800), Box Celestion 75 W (2900), Wah-Wah (1100), stojany (à 615), NF milivoltmetr (960), NF generátor (650), Drum Mixputt (1200). Kvalita, Ing. Z. Zmrzlík, Leningradská 359, 503 11 Hradec Králové

Ledit ktenvertor pro TV II. progr. (výr. SSSR 400), pi. spoje + zákl. souč. + dokum. na stavbu čítače do 120 MHz (400). Ing. J. Frydecký, nám. Vít. února 1239, 535 01 Přelouč.

Stránkový dátnapis Lorenz (350), a koupím Torn Eb v dobrém mechanickém stavu (i bez elektronek). M. Polák, Zápotockého 2457, 276 01 Mělník.

Tovární osciloskop (1600), ní gener.k 0,1 % (520), ss zdroj s MP 40 (580), digit. multimetr (900), kalkulačku Tl (250), Končím. Odpověď na známku. F. Gargoš ml., Komenského 11, 664 64 Dolní Kounice.

Kozetový Tape Deck PIONEER CT-F 850 (10 500), 3 sendust hlavy, 2 motory, Dolby B. J. Rejchrt, V. Noska 826, 518 01 Dobruška.

Color comp. VTL-VZ 200, Mikrosoft Basic V1.1 16 k ROM, 16 k RAM, zvuk, perf. klávesnice, něm. manuál (6800), 10 ks BFT 66 vcelku (1200). Jen osobně. L. Hubka, J. Beneše 415, 551 02 Jaroměř, tel. 2105.

tel. 2105. Stretepásmový ant. zesilovač s BFR. Jednoduchá montáž (550), tovární 3 1/2 místný LCD multimetr (1100), novou symetr. osc. obrazovku Philips Ø 10 cm (800). J. Ticháček, Leninova 542, 344 01 Domážlice

Stereofóny tuner 3606 A triedy Hi-Fi (4000), nový v záručnej lehote. M. Plichtová, 049 72 Dobšinská Maša 38.

Repetver AIWA AX-7550 a tape deck AIWA F-220 (7500, 6500) v perfektním stavu nebo vyměním za lepší Walkman + doplatek, J. Gáži, Ostrov 2290, 438 01 Žatec.

Obž. TRX – 27 MHz 3–5 W SSB, dokumentacia, el. zdroj, antena (3000). Nové el. spinacie hod. KRIŽÍK 0–24 hod. (900). J. Šarossy, Prešovská 25, 082 21 Velký Šáriš.

TW 120 nové (1000), bar. hudbu + had 24 V, (pouze ovlád. bez hadice) vše v jedné skříňce + 4 ks minireflektorů (1050) ploš. spoje TW 120 (30), TW 40 (50), tuner VKV – Klabal (50). M. Mareš, Zelenobranská 69, 530 02 Pardubice.

TECHMICS cas. deck M235X, Dolby B + C, dbx, 100% stav (8900), špič. zos. SU-V 505 (8800), servisné návody na kaz. M 45, zos. SU-V 4 a tun. ST-S 7 (a 100), prenosku SHURE M 44 (300), náhr. držiak na prenosku (200), lampu na osvetlenie grama LENCO (450). L. Svoboda, Palisády 15, 811 03 Bratislava.

Ki-fi Tuner 3606 A DV, SV, KV 1, KV 2, VKV 1, VKV 2 (3200). Zosilňovač TW 40, Stereo (1000), Zosilňovač TW 120 Mono (1000), Zosilňovač TW 60 Stereo (1400). D. Kollár, 922 08 Dubovany č. 313.

Radio Panasonic RF2600, CW, SSB, DV, SV, KV 1,6 až 18,5 MHz, CCIR, digit. stupnice (7400), upravený UKWeE 25-31 MHz s konvertorem 145 MHz elektronkový (750), osciloskop TESLA BM 370 (1300), časové relé RT s. 61 na 220 V/5 A s objímkou nastavitelného 0,3 s – 60 hod. (600), relé LUN 24 V 2621.4/503, 4 kusy. E. Vlček, Lidových milicí 1140, 293 01 Mladá Boleslav.

Cassette DECN AlWA F 220, Dolby B, C, Dx – hlava, normál, CrO_2 , metal, 20 – 18000 Hz (6000), Recevier Mercury Hi-fi, všetky rozsahy, senzorová predvolba, pseudo-guadro, 2 × 20 W (3500), reprobedne ARS 1018, 8 Ω , 20 W sin, nové 2 kusy (1400), gramošasi NC 470 (1500). J. Gancarčík, Uherova 2910/13, 058 01 Poprad-Juh III.

Bekéder SECAM, blok UM 2-2-1, M 2-5-1 pre BTVP Rubín C 202 (400). I. Lietava, SNP 85, 962 01 Zvol. Slatina.

Civkový mag. Philips N-4420, – 3 hlavy, motory a rychl., DNL (12 500), kaz. deck SONY TC 160 – stol. provedení – vstupy s FETy (3700) a konc. zesil. TW 140 – 2 × 50 W (2000) – vše výborný stav. V. Zavřel, Skupova 31, 320 04 Pizeň.

Kvalitní amat. čítač do 115 MHz (2000). ing. J. Hecht, Smrkova 24, 312 04 Plzeň.

SMIROVA 24, 312 04 FIZEII.

STVP Elektronika C 401 (3800), 2 ks nepoužité
reproduktory ARM 6608 (à80), P. Ježík, Marxova 2/D,
920 01 Hlohovec.

TV hry s AY-3-8500 (700), ICL 7016 (400), elektronika z B-116 (1000), osc. obrazovka B 1335 (600), moduly z TV – Dukla, RAM, DRAM, EPROM, UART a další. Informace proti známce. M. Kostomlatský, Hruboňova 17, 034 00 Ružomberok.

Eliniot. reté 12 V, 24 V, (40), 220 (50), pomocné reté 12 V - 40 A (60), čas. reté 3 s 60 h. (300), DHR 8 (100), L. Steiner, Polská 1263 562 06 Ústí nad Orlicí.

BFS33 (100), širokopásmový zosilňovač 45 až 800 MHz osadený tranzistormi Telefunken $2\times$ BFR91, zisk 22 dB, 75/75 Ω (470), predzosilňovač VKV CCIR s tranzistorom MOSFE BF963, zisk 23,5 dB, $F\leq$ 1,8 dB 300/75 Ω montovatelný do ant. krabice (260). F. Ridarčík, Karpatská 1, 040 01 Košice.

Kryst. filtr 10,7 MHz, BF961, A277D (35, 80, 50). L. Kolář, ul. Nová 753, 342 01 Sušice II.

Commedore VC-20 + 16 kB rozšiřující paměť (6000), repro AlWA SX-9 2 × 40 W hud (3000), universální měřicí přístroj (1000). Ing. Marek, TLM 10.750 00 Přerov.

©P231, 983, BFR90, 91, KF173 (60, 80, 80, 80, 10), tape deck AKAI 4000 DS Mk II, 100% stav (6600), rözne IO za 2/3 MOC. Ing. J. Čičel, L. Svobodu 6, 010 08 Žilina.

DGS dle RZ 6/81 (2000), osaz. desky osciloskopu dle AR A 3/80 (1000), trapy pro W 3DZZ, obr. DG7-123 (200), SO42P (130), KT904A. (100), BF981 (80), BFRS0, 91 (70), SFE, SFW 10,7 (60), odsávačku cínu, relé 15 N 599 13, LUN 24 V (50), MA7805, 12, 15, 24 (20), KD501 (10), KU601, 603, 611, KF506 – 508, GA301 (5), digitrony ZM 1080, 1082 (15), ZM1020 (25), KZ141 (3), elky E8BCC, E83CC, PCC88, PC88, EL83, ECH81, STR85/10, EA52, EF806 S, 6F36, 6F32, 6AC7, EY51 (à 5), J. Buček, Opálkova 7, 635 00 Brno. Dřady 200 A – 4 ks (500), staré typy elektronek – seznam zašlu. Koupím BFR90, BFR91, kuprextit, přesné R, C – 1 % 0,5 %, NE555, D147C, jaz. kontakty, starší osciloskop nebo osc. obrazovku. M. Selvička, ČSA 373, 357 01 Rotava.

Trafa vel. i mal. – os. odb. – levně. Neož. AUDALGON IV. na pl. so. dle AR 1–2/85 (600), fáz. jedn. dle AR/A9/80 bezv. design. (800), DHR 5/200 μΑ (120), – FXJ 10 Khz typ "F" (250), AR/A-78-82 jednotl. (â 3) – ECC82, 83 (â 5), ELB4, 86 (a 10), EBL21, ECH21 (à 10). A. Šimunek, Revoluční 1277, 543 01 Vrchlabí I.

TI-57 LCD, osobní počítač CASIO PB 110. Ant. Vaněk, Mánesova 14, 678 01 Blansko.

Megnatotan B 113 Hi-fi, nový (4900). S. Koleják, 027 12 Liesek 202.

TI 59 C (3500). RNDr. P. Brezina, Havraní 310, 725 29 Ostrava I.

Veps deck NEC K-311 E DOLBY NR; Hi-fi zesilovač TRANSIWATT-44, 2 × 25 W, 2 ks 3 pásm. repro RS 334 – 50 W (11 000). Jiří Bárta, Lučice 180, 582 35 Havlíčkův Brod.

TI-59C v perfektním stavu, programy, český a něm. manuál (3700). ing. L. Grundi, sídi. ČSP 11, 690 02 Břeclav, tel. (0527) 226 48.

Basic - F, EM-5 na Sord M 5 (1850, 1750) v záruke, aj samostatne. Ing. M. Macko, CIII - 1096/86/63/7, 018 41 Dubnica n./V.

Nový sterestonní Hi-fi zesilovač 2× 20 W/4, profesionální vzhled, nová verze zes. ZETAWATT (1600), výkonný stroboskop s výbojkou z NSR – 350 Ws, volitelná frekvence a síla záblesku, vhodné pro disko aj. (1450), repro ARV 3608 4 ks (à 100). Ing. L. Novák, Kostánica 105, 533, 03 Dešice

Kostěnice 106, 533 03 Dašice. Egroca Monitor PMI80 (120). Bohuš Matuš, tř. Přátelství 1960, 397 01 Pisek. BTV Elektronika C-430, závada napáj. části, s orig. náhr. díly: IO: K174GF1; K174UN4A, tranzist. KT809A (2x), KT805A (2x), tyristor, 6 druhů tranzistorů (vše 1700), TV Orion AT 650, obrazovka Philips, se sadou náhr. elektronek (500), TV TESLA Mimosa (100), M. Bloudek, Šelmberská 2134, 390 01 Tábor.

Osaz. desky přijímač FM AR/77 vst. jedn. (350), mf (180), dekod. (170), umlč. šumu (110), TV hry s AY-3-18610 (800), Hi-fi zesil. s aktiv. výhyb. indik. LED 4× konc. stup. TW 40 (1600), mix pult Hi-Fi 4 vst. filtry dozvuk s konc. zes. 2 × 70 W (3900), ARN 664 2× (180), 2× ARO 6604 (90). S. Košek, Hovorčovice 128, 250 64 Měšice.

Hrot do gramotonových vložek SHURE typů M 91, M 93 apod. (500), nepoužitý. J. Kodera, Hůrka 1058, 278 01 Kralupy nad. Vít.

Stereo tuner Technics ST-7 300, FM/AM (3800), repro boxy JVC S-88, 3 kanály bass reflex, 8 Q 60 W (DIN) (7600). P. Hradečný, U pivovarské zahrady 691/26, 400 07 Ústí n. L.

Tape deck UNIVERSUM 6600 Hi-fiz NSR, nepoužitý, čierny, dvojmotorový. Dolby, logický časový kontrolný systém, pamäť, digitálny, normál, FeCr, CrO₂ – kazety (5500). Ing. J. Roman, Odbojárov 33, 060 01 Kežmarok.

Piośné spoje T 68 (15, 50), T 0, 1, 2, 3 (40), S10 (47), S11 (27), R13 (18), S54 (23), Tr BFR90 (90), Filtr MURATA SFE 10, 7MS2 (60), V. Česal, Dénešova 21, 040 01 Košice.

Stereo Cassette tape deck HITACHI, model D-22 s (3000), normál (30 až 13 000 Hz), CrO₂ (30 až 14 000 Hz), FeCr – detto, dolby NR, a stereográmorádio EUROPHÓN RDG 6000 s reproboxami (2500), rádio – DV, SV, KV, VKV-OIRT, zosilňovač 2× 10 W. P. Kobza, Pod sokolicami 30, 911 00 Trenčín.

RMG PHILIPS (4500), tyrist. nablječka (800), trafo 220/12 V 50 V A (150). V. Koucký, 252 16 Nučice 306. Tuner 3606 A (4000). M. Teplanová, Warynského 3/22, 851 01 Bratislava.

Technics - Cassette deck RS-M 263, 2330 TK (10 600), 400 ks IO-MH-7400, 7474, 7453, 7440, 7450-30-20, dále KSY, tantaly, vcelku 50 % ceny (3200). L: Němeček, Sladovní 460, 752 01 Kojetín.

SO42P, LF357, (140, 80), BFT66, BFR90, 91, (130, 90), BF900, 960, 961 (90), BFY90, 2N918 (90), objimky DIL všetkých druhov (20 až 40), rôzné tantalové kondenzátory (à 15), gramof. vložku AKAI PC 100 (1000) úplne nová. L. Szilágyi, Jánošikova 4, 940 01 Nové Zámky.

Antenne zlučovače róznych typov z NDR (100–200), koaxiál TV nízkoútlm. (10/1 m), koncovky a protikoncovky 75 Ω (9), sym. členy a iné. lng. Lettrich P., Fučíkova 14, 972 01 Bojnice, tel. 348 62.

SINCLAIR ZX-81 + 16 kB RAM (3000). J. Nyki, Zahradni 1738, 470 01 Česká Lipa.

Kazetový deck SONY TC-FX45 Dolby B-C nový (10 500), AIWA F 220 dolby B-C v záruke (6900). N. Németh, kpt. Jaroša 19/7, 945 01 Komárno.

AY-3-8710 (800). M. Burian, Sportovní 7, 664 91 Ivančice.

Reproduktor ARO 814, ART 481 (350, 250). L. Bekárek Kosmonautů 10, 400 01 Ústí n. L.

ZK 246 (2500), SP201 (2700). Koupim IO SO42P, SN, MH, ICL, ICM. Dáis LED, 7 seg., OZ, FET, T. J. Bracek, 696 32 Zdánice 751.

Sinclair ZX Spectrum 48 kB (9500), VFR90 (90), čítačka mikrofilmu 16 mm Meoflex S1 (800), Mikroma (550), teleobjektiv Sonnar 4/135 pre Exa, Exacta bajonet (950). Ing. I. Domaniza, Trávna 4, 940 01 Nové Zámky.

Mgf. GRUNDIG CN 510 + zesil. + skříň (3500), DMM 1000 (1100), gener. tvar. kmitů (650), V - Np metr (350), mikropásku (50), TW 120 (1300), Japan meziřr. (100), překlad ZX Spectrum (150), WP 43 bez krystalů (400), gramošasi (1500), zesilovač 2× 12 W, 2× 20 W (600, 1000), a koupím IO NSM 3915, MAC156. J. Šál, 277 42 Obřiství 196:

Čítač dle AR 9, 10/82, osaz. oživ. desky + zdroj, trafo, přep. fci (1600), nf. gen. (300), milivoltmetr (300), ing. Z. Hort, Vodova 92, 612 00 Brno.

TV trry s AY-3-8500 + fotopistole (1200), osazenou desku s AY-3-8500 + potenciometry (500), mełodický zvoneček (200), stroboskop (150), světelný had + 10 m hadice (850), akustické pípátko (30), krysta-

tovou přenosku VK 4204 (30), reproduktor 3 W 4Q (50), ručkový indikátor (30), fotoodpor WK 650 36 (10), zkoušeč tranzistorů a OZ (50), automatiku pro naf. hořáky OLA 122 (200), kalkulačku MBO Concorde IV jap. výroby na součástky (50), tranzistorý KT601A, BC413B, BC148 (5, 5, 5), OC1016, 2SB26, OC26 (10, 10, 10), KD601 (15), 2SA12, 2SA203, TF702, OC170, GT322, GF126, AF106, AF201E (a 5), IO – CM4072, (25), UCY74121 (30), UL1498 (30), MH7405, MAA501. MAA741 (15, 10, 15, 15, 20), MH84154 (35), elektronky EF86, 6BA6, ECC83, 6BE6, ECC85, EM84, PL504, EL34 (a 10), různé diody (hlavně typu KA...), potenciometry, kondenzátory; relé a jiné součástky. Můžu navinout na zákázku různé transformátory. Koupím MDA2020, LQ410 – 4 ks. L01132 – 30 ks, ARN8604 – 2 ks. P. Čech, 086 22 Klušov 193.

Progr. kal. CASIO FX 4000 P: 550 kroků, 26 až 94-PAM, štatistika, interpolácie, počítanie v dec, bin, oct, hex, v záruke (3000), JVC tuner T-10 XL: FM, MW, LW (4600). RNDr. J. Národa, Lúčna. 6, 984 01 Lučenec.

Časové relé RTs-61 rozsah od 0,1 s do 60 h nepoužité s objimkou (800), časové relé TM 12 rozsah od 3 s do 60 h nepoužité (500), součástky z rozeb, televizoru Marcela, seznam zašlu. Koupím pouzdro tranz. přijím. Dolly. B. Walczysková, Bystřice 688, 739 95 Bystřice n. Olší 1.

Vst. diel AR A 2/77 zladený (450), vst. diel CCIR-OIRT (200), PU-120 (750), UNI 11-e vstup. R 10 MΩ (1500), diódy 250 A/1000 V 4 ks + chlad. (à 250), IO LM725 (120), BFW30 (100), BFR34 (100), KF552 (25), KF630S (70), MAS562 (20), čas. relé RTS 61 0,3 s-60 h + obj. (1000). M. Mračna, 908 79 Borský Jur 496. Repro ARN 86 08 8 Ω/50 W nové nepoužité 2 ks (1200), ARZ 4608 8 Ω/20 W - 2 ks (240), 2 ks repro boxy Hifi 2pásm. 2× 25 W (1000), (4 Ω), 2 ks jednor. šibenice (200). M. Štulajter, 976 52 Čer. Balog 124. Stereo Hifi zosilňovač TW 40 junior - výkon 2× 20 W (1900), a novú pumpičku na odsávanie cín. pájky (1900). P. Amena, Limbova 20, 831 01 Bratislava.

Cassette deck TECHNICS RS 45 M, metal 20 až 20 000 Hz, špičkový dvoumotorový, Dolby NR (9000), A. Bělohubá, Železničářská 60, 312 17 Plzeň, tel. 602 24 (20.00–22.00 hod.).

Nahraté kotúč. pásy AGFA Ø 15 (200), MAXELL, BASF, AGFA Ø 18 (350), kor. predzosilňovač signálu mag. dyn. prenosky (200). lng. K. Sokyra, Štúrova 38, 066 01 Humenné.

ZX 81 s příslušenstvím, německý manuál (4500), 16 kB RAM (2000). O. Musil, Krausova 12, 618 00 Brno.

Reproboxy JVC BA-33, 30 W 8 Q, 3pásmové (3500), amatérský zosilňovač 2× 15 W 4 Q (1100). I. Kaplocký Fučikova 6 963 01 Krupina.

ky, Fučíkova 6, 963 01 Krupina. Čísl. multimetr s ICL7106 = ~U, I, R, osazené desky + displej + mechanika (1500), progm. kalkulátor TI-57C (1200). M. Drkal, Podlesi 14, 624 00 Brno.

Ant. štrokopásmový zesilovač + zdroj, odděleně v klimaticky těsné krabici s tranzistory BFR91, zisk 23 dB, šum 4 dB, vhodné zapojit přímo k anténě (600), digitrony 2570 (25), mag. B-113 s LED indikátory + aut. vyp. motoru (3700) gramo NC 430 se špičkovým předzesilovačem (2000), 2 ks amat. reprosoustavy 40/80 W (à 1000). B. Gatner, V zahradách 554. 790 84 Mikulovice u Jes.

7QR20 (200) - X-taly 100 kHz 468 kHz - 500 kHz - 1 MHz (300-100), teleg. klíč (100), AR r. 60 až 80 (à 50), RK r. 65 až 75 (à 20), ročenky ST (à 20), různou literaturu elektrorádio-foto 1/2 až 1/3 ceny pro sběratele, RA r. 34 až 60, KV r. 46 až 51, ST rok 53 až 72, velmi levně. Možná i výměna den písemně. M. Františ Val. Senice 75, 756 14 Fr. Lhota.

X-tal 9 MHz 4Q/2,5 kHz (480), MC1648P, MC4044P (180, 180), Reviox A76-79 díly, TM556 (250), AR, ST, zahr. lit. a další T, IO, seznam. J. Mašek, 5. května 1460, 440 01 Louny.

VKV tuner neposkiad. (CCIR, OIRT) AR 2/77 v celku so zosil. 2x 20 W AR 1/80 (plošák, trafo, 8kanál, senzor. predv., predný dural. panel + 95 % súčiastok – chýba niekoľko kondz.) (1800), pripadne na súčiastky, Ing. V. Sucháč, Alexyho 15/66, Košúty 2, 036 01 Martin.

MHB 8708C, MHB2102A/4, MHB8255A, MHB7001 (350, 100, 140, 200), MHB2114, 4116, 1012 (200, 180, 190), itrony IV-6 (24), M. Kimlička, 1. mája 83, 901 01 Málacky. Součástky + mech. díly na generátors XR 2206 – ST 4/79 a měřič kmitočtu – AR 1/85 (1700), modul stereozvuku 5,5–6,5 MHz Grundig (800). V. Šrámek, Tučkova 15, 602 00 Brno.

ATARI 800 XL 64 kB nové, mgfn. ATARI 1010, modul ATARI BASIC, manuál (11 000). J. Stejskal, Zahradní 281, 417 02 Dubí 2.

Computer - COMMODORE VC-20 (16 barev) + paměľ 16 kbyte + COMMODORE nahrávač + JOYS-TICK + 8 kázet programů + množství literatury (22 000) J. Junek, Budějovická 147, 373 11 Ledenice

EUROPHON – trojkombinaci model CC 380 RK + repro 2× 15 W, 100% stav (5400), stereofonní přijímač VKV podle přílohy AR/83, CCIR + O;RT, vězové provedení skříňky (1850), X-taly 27,120 + 27,580 MHz (210), 13,560 MHz (160), MHB8080A,-1902, 8255A (260, 120, 180). Koupím AY-3-8610 a AY-3-8710. S. Lichorobiec, Marxova 1007, 735 14 Orlová 4.

Vstupní VKV jednotku, novou (500), Ing. Z. Hůlka, Náplavní 543, 252 30 Řevnice.

Součástky T, D, C, R na deskách (3), měřicí přístroje BM 388E, 425, 386, 366, 224E BP 4452, 12XG 014, Lambda, zapisovač Vareg (à 400 až 1200), trafo různé (10 až 100), DHR měřidla (50), relé kulaté (3), jazýčkové (10), RP 20 stabilizovaný zdroj 500MH74 (5), 1 Eušík 252 08 Slapy o Utlawou.

(5). J. Fučík, 252 08 Slapy n. Vltavou. 4116 (120), CA3189 (150), 74LS157 (80), 74LS74 (70), 74C74 (80), SFW 10,7 MA + SFE (100, 50), vstupníjedn. AR 2/77 (600). A. Bětík, Pod Klaudiánkou 1017, 147 00 Praha.4

JOYSTICKY (knipty) s přesným ovládáním – 4 + 2 kontakty bez interface kus (195). M. Vaniš, Gottwaldova 114, 466 01 Jablonec n. Nisou.

Čas. relé TU 60 – AKC i BKC (3 s až 70 min) (à 1000), KU605 (à 25), a jiný polovodičový a radiotechnický materiál. Ing. J. Kaliba, Weberova 211, 150 00 Praha 5.

Viožky STA-TESA s VKV-CCIR (900) a konv. 59./12. k. (600). Ing. J. Vajsejti, Kuninova 9/1723, 149 00 Praha 4.

Sony TC 378 kotoučový magn. (6900), ECHO Technics, digit. typ SH-8040, model 1986 (7000), anténní převáděč CCIR-OIRT Sony (500). R. Bártů, A. Sochora 2077, 288 00 Nymburk.

Nový ZX Spectrum 48 kB (10 000), B 73 (2900), nahrané pásky Ø 18, 15 (200, 150). J. Švec, Žežická 47, 400 07 Ústí nad Labem.

Program. kalk. TI-56 s napáječem, českým návodem a programy (1200). Luděk Tenkrát, Osmuchinova 20, 169 00 Praha 6.

Stereo receiwer Aiwa AX 7550 - stříbrný (7000), Transiwatt 140 - 2× 50 W (2500), čas. relé TV 60 -3 s-60 h (600). M. Kulhavý, 539 44 Proseč u Skutče 29, tel. 921 225.

ZX Spectrum s vylepšenou pamaťou ROM, odstranené chyby uverejnené v AR, s tlačítkom NMI skok do zabudovaného monitora, tlačítkom RES sa vykoná Reset, nezmaže sa obsah RAM, vylepšený editor a iné (8500), samostatná vylepšená pamať ROM (1500), paralelný interface možnosť pripojíť lubovolnú tlačiareň alebo dierovač (700), 20 nahraných pások aj hry (à 150), a rôznu odbornú literatúru. Bližšie informácie oproti známke. Stanislav Breja, Svätoplukova 20, 821 08 Bratislava.

Programy pro ZX Spectrum Soft hry, system (à 10). Seznam zašlu proti známce. Tasilo Prnka, Martinů 805, 708 00 Ostrava 8,

R. P. Opera 57 (240), Bohema 72 (480), Orbita 69 (80), VM2101 (150), VM2102 (300), Jen písemně, L. Fouček, Bořivojova 48, 130 00 Praha 3.

Ant. předzesií. přeladovací pro 21.–60. k. 2× MOS-FET, zisk min 20 dB (690), širokopásmový VFR90, 91 zisk 24 dB (490), VKV zesil. CCIR do anten. krabice. MOSFET, zisk 25 dB (290). J. Krupka, Lnářská 776. Uhříněves, 251 61 Praha 10.

ZX Spectrum 48 kB, 100 her, český manuál, české programování ve strojním kódu. Řádně procleno (9200). Pouze písemně. P. Jelinek, poste restante, Jindřišská 14, 110 00 Praha 1.

2 ks výbojky IFK 120 (à 65), měřicí přistroj C4324 (600). B. Hynek, Slezská 98, 130 00 Praha 3.

Mechaniku na el. varhany 5 okt. (1200). Petr Novák, Dr. Janského 972, 252 28 Černošice II.

ZX Spectrum 48 kB (10000), Walkeman jap. (1200), kaz. Sony. HF 90 nehr. (à 80), telefon s tlac. čls. v mikrotel. s opak. volby (750). J. Lehký, Leninova 95, 160 00 Praha 6.

amatérsée AD 10 86

MALÉ TRANSFORMÁTORY

o výkonech od 5 do 200 VA

Umožňují napájení přenosných radiopřijímačů, kapesních kalkulaček, nabíječek autobaterií, "barevné hudby" elektrických hraček apod.

Nabízíme vám komplety dílů,

ze kterých si můžete transformátorek potřebného výkonu vyrobit: trafoplechy; čela, čelní a boční stěny kostřičky (též s otvory pro pájecí očka); podložka pod čelní stěnu; pájecí očka; izolace vinutí. Drát na primární vinutí není součástí kompletu. Před koupí si můžete u nás vyžádat instrukční prospekt, obsahující přehled kompletů v 11 typových velikostech a příslušné parametry.

Cena kompletů od 17 do 135 Kčs podle vybraného

Vyrábí ZPA Dukla Prešov. Obdržite v prodejnách TESLA ELTOS.

Mgf. 85, B41 4stopý., ní zesilovač 2 × 20 W, 10 – D146 a A277D (450, 350, 950, 100, 50). Jiří Jasný, Jateční 21, 170 00 Praha 7.

Jateční 21, 170 00 Praha 7. 10 Eprom 2764 (1800). K. Valach, Zahradnícka 17, 953 01 Zlaté Móravce, tel. 2518.

Bedny Akai, 3 pásm., 55 W, nové (4500), Commodore 16. J. Bredár, Kusá 2, 160 00 Praha 6, tel. 35 44 59. Pro ZX Spectrum 8 pamětí 4164 – 150 ns k rozšíření pamětí RAM na 80 kB, včetně návodu (1400), různé Eprom. P. Bláha, Jasmínová 2696, 106 00 Praha 10. ZX Spectrum 16 kB, zdroj, prop. kabely, uváděcí kazeta – asi půl roku starý, málo používaný, orig. balení (7500). Vladimír Qrest, Jeronýmova 1094, 580 01 Havlíčkův Brod.

Učebnice programování ve strojovém kódu/assembleru Z 80 v češtině. Ucelená, velmi podrobně a srozumitelně rozvedená teorie prokládaná množstvím komentovaných praktických ukázek; vychází z řady odborných zahraničních pramenů i vlastní dlouholeté praxe; pro začátečníky i pokročilejší. 200 stran standardního textů A4, tabulky, kresby (140). L. Zajíček, Všehrdova 10, 118 00 Praha 1, tel. 53 37 26 (10–18 hod.).

Commodore plus 4, 64 kB RAM, 121 barev, help tlacitko, cursor, bohaty software, 2 knihy Commodore – software + basic (15 000). M. Samcová, Zeyerova alej 30/1388, 162 00 Praha 6-Petřiny, tel. 36 18 51 – večer.

KOUPĚ

World Radio TV Handbook (85, 86), Vit. V. – Kočí. J.: Televizní příjem ve IV. a V. pásmu, katalogy přijímací a vysílací techniky, BFR14A (B). S. Dobrota, A. Krbce

3036, 702 00 Ostrava-Fifejdy.

Obrazovku novou nebo málo použ. 32LK1C-1 do
BTV ELEKTRONIKA C-401, do 1000 Kčs. J. Čadil, I.

Olbrachta 1905, 288 02 Nymburk. SN, MH 7447, 74192, 7490, 7475, NE555, A2440, děličky ECL a jiné IO. T. OZ, číslice LED 8 – 13 mm, krystaly. 100 kHz, 1 MHz, tantaly. paměti 2101–1 (450 ns). J. Buček, Opálkova 7, 635 00 Brno.

Radiopřijímač vyrobený v dvacátých létech. F. Ambrož, Považská 67, 911 00 Trenčín.

ZX 81, ZX Spectrum + příslušenství + programy. M. Záběhlík, 394 46 Červená Řečice 58. DMM, NF milivoltmetr a tov. osciloskop. R. Vencour, B. Engelse 1059/13, 277 11 Neratovice.

Anténu CCIR, rotátor, předzesilovač CCIR a TV II. program; poškozené i nehrající magnetofony – Thompson, Marconi, Unitra ZK 240, ZK246, Unitra M2403S a podobné, vše PLR. Jiří Knébl, Rychnovská 339, 468 01 Jablonec n./Nisou.

Větší množství KC – 2. a 3. jak. (147–9, 507–9), dále BF245, SPF455B6, SFD455B, TBA120. J. Drexler, CSA137, 571 01 Mor. Třebová.

Sešít stav. návodu Sig. gen. SG-50, pár výk. tranz. 3NU74 a OC30 a duté nýtky Ø 3 mm s křidélky. L. Douhraya 257:47 Nahoguhy

Doubrava, 257 47 Nahoruby. AR-B 3/85, konektor WK 465 80, MHB4503, 7432. Z. Kučera, Jiráskova 325/13, 418 01 Bílina.

PCIM 176, 220 i jiné, CA3140, MAA741, 1458, SO42P, BF245. I. Janda, Výpočet. stř. telekomunikací, Tř. míru 2239, 370 21 České Budějovice.

Sinclair ZX Spectrum, AY-3-8610, nabídněte, cena. M. Pavlik, Svobodné Dvory 453, 503 11 Hradec Králové.

Sadu jap. mf. traf 7 × 7 mm. J. Fikart, 270 24 Zbečno, Sýkořice 112.

ZX Spectrum 48 kB + paměť 16 kB pro ZX-81. P. Bečvář, J. Švermy 6, 431 91 Vejprty.

Digitátní nebo anologový měřič tepové frekvence i amatérský, anebo návod na zhotovení. Popis, cena. J. Renner, Zápotockého 1103, 708 00 Ostrava 4.

AY-3-8610. Petr Kypta, Tylova 1575, 258 01 Vlašim. AR-A a B roč. 1981, 82, 83, 84, 85 kompl., kuprextit 1,5-2 mm, prodám autorádio Blaupunkt 6/12 V, mg Lux 444SL (500, 1000) ponúknite. V. Jurík, Meteorová 1, 040 20 Košice IV.

Anténový predzosilovač 49. kanál – kvalitný, AR A 4/76, 5/77, 1/86. M. Kriak, 976 51 Horná Lehota 57. 1 tis repro RS 20 – hifi club. Sdělte cenu. Jiří Kotek, 1. máje 1526, 432 01 Kadaň.

TDA 1022, TL62, TL64 (2 ks), osc. OML-2M, repro ARN 6604 (2 ks) i jiné souč. M. Kroupa, Stavbarů 210, 386 02 Strakonice 2.

LED, A277D. A. Hlavinka, Na Letné 35, 772 00

Transformátorové plechy typu C 20004, alebo celý transformátor na zesilovač Zetawatt 1420. Slob. Peter Bielopotocký, VU 6179, 767.01 Kroměříž. Čídlo plynu TGS 813C (příp. TGS 813. TGS 812),

 $2 \times \text{KD338}$. A. Kozmon, Zrzavého 20, 796 00 Prostějov.

Sord £15, nový, nepoužitý, ponúknite. Ing. M. Macko, CIII – 1096/86/63/7, 018 41 Dubnica n./V.

Přenosný BTV Elektronika C430 na součástky. F. Štanci, Dukelská 984, 570 01 Litomyši.

Servis návody na far. TV Color 110 ST I – II., Mánes Color, č. b. TV. Aurora, Saturn, Merkur, Pluto, stereo rad. 816, miniveža 710 A, 820 A, 1039 (638 A), magnetofony B 370, K 10, B115 (B113), Safír, (Diamant), tech. dok. osc. BM 370, T 565 A, N 313, mil. volt. m. 384 BM. Gustav Németh, 932 01 Čalovo, Komárňanská 52.

ZX Spectrum 48 kB, kvalitní kazetový Tape deck, kvalitní gramošasi IO MAC155 – 156, MAB355 – 357, MA1458, A277, A110D, MAC160 (360), 7690, 7693, 76192, 7402, 74574, 4011, 4046, 4066, 4049, 8804, 4116, 2114, KC239F, KC309F, KC810, KD337, KD338, KS4391, MC10131, IO pro digit, stupnici WK 16402 – 1, 2, 3, 4, různé LED LQ410, 440, 470, velké množství ker, a jiných kondenzátorů, odporů a třimrů. B. Gatner, V zahrádce. 554, 790 84 Mikulovice u Jes., tel. 8217.

Sharp PC 1401 se zárukou za rozumnou cenu. Nabídněte K. Konrád, V – TRA odb. VM/256, 537 13 Chrudim

Walkman s FM-CCIR, i s poškoz. přehrávačem. J. Krajina, M. Beranov 39, 586 03 Jihlava III.

AY-3-8610. Zdeněk Hanuš, Podboří 237, 686 04 Uh. Hradiště-Mikovice.

ZX Spectrum 48 kB + český překlad manuálu. I jednotlivě. V. Jopek, Rodinná 26/1056, 736 01 Havířov-Bludovice.

Obvody Dolby B, C, High-Com, DBX, IO pro dig. stupnici přijímačů, příp. dig. stupnici, LED indik. vybuzení, LED č., z., ží., IO CD, T BFR, BFT, BF apod. V. Hrabec, PS 11/P, 341 01 Horažďovice.

Stínicí kryt na B10S401 a objímku TGL 200 – 3620. L. Bekárek, Kosmonautů 10, 400 01 Ústí n. Labem. Osciloskop. Milan Burian, Sportovní 7, 664 91 Ivan-

AT (Acratorste) (1) (1)

DŮM OBCHODNÍCH SLUŽEB SVAZARMU VALAŠSKÉ MEZIŘÍČ

Pospíšilova 11/14, telefon 217 53, 219 20, 222 73, 218 04, telex 52 662

DOSS – Dům obchodních služeb Svazarmu má opět v prodeji elektrostoly v inovovaném provedení, avšak za původní cenu 1740 Kčs.

Elektrostoly jsou nezbytné pro vybavení elektrotechnických pracovišť, školních dílen, odborných učilišť apod.

Objednávejte pod katalogovým číslem: 75 000 90.

Objednávky zasílejte na adresu:

DOSS - odd. odbytu Pospíšilova ul. č. 14 757 01 Valašské Meziříčí (tel. 217 53, 219 20)

nebo

ZZ 01 DOSS Mezi lany 22 158 00 Praha-Jinonice (tel. 52 28 58)

Klešťový ampérmetr do 1200 A a BFT66. L. Adamec, 🗇 Zábraní 1369, 763 61 Napajedla.

AY-3-8500, 8550, 8610, 8710 nebo vyměním za časové relé 6 s až 60 h. S. Hůlek, ul. V. I. Lenina, bl. 626/484, 434 00 Most.

M 531S. Ladislav Volek, SNP 861, 500 03 Hradec Králové.

Obrazovku B10S401 a obrazovku 14LK9B, nebo podobnou s vychyl. cívkami. P. Kratochvíl, Rudoarmějců 769, 383 01 Prachatice.

Kryštál 100 kHz do ploš. spojov 3 kusy, relé LUN 12 V, AR - A kde je opis digitálnych hodín s 10 MM5316. Ivan Petrek, Leninova 527/19, 033 01 Lipt. Hrádok. Kompl. roč. AR-A 75 až 78, jedn. čís. ARA 1/73, 9/74, ST 8/75, 9/76, AR 5/71, IO CD4011, 4030, ICM7225, 7216B, 7226B, 7207-08, ICL7106-07, AY-3-8610, LM3914, MM5312, UA170, GE130-134, infra diodu. Jožef Franek, Údernická 1408/4, 020 01 Púchov. Konvertor s předzesilovačem na VKV pro příjem

záp. normy na rádiu Stereo Proxima (NDR). Olga Křížová, Pod rozhlednou 1823, 760 01 Gottwaldov.

10 AY-3-8500, AY-3-8550, potenciometry TP 283 nebo TP 289 - 2 ks 50 + 50 k lin., 1 ks 25 + 25 k log. s odbočkou. Ing. Milan Hovězák, Jemelkova 30, 625 00 Brno.

Mikroprocesor MHB8085 1 ks. V. Fořt, Zádušní 2926, 276 01 Mělník.

A277D větší množství, výbojku 400 Ws. František Vereš, VVLS SNP1/2, 041 21 Košice.

Soupravu Mars, krystal 27,12 MHz, fotoodpor WK 650 37, 3 ks přepínače a síf. spínač Isostat, přepínač WK 533 16, RP 100 24 V, KF 520, 3 ks OC 76, TP 195 3k3, KZ 713, KZ 721, cívk, těl. 4 PA260 17, krvt 4 PA G 8706, desku 4 PF 816 22. R. Zwilling, Zahradni 5157, 430 04 Chomutov.

X 10 MHz, 469 kHz, obrazovku 7QR20 sokl. tienenie, tranzistory BF245, KSY82, prepinače WK53339, WK53352, 10, 24, 08, izostaty, segmentovky LQ410, šasi z TVP Pluto, filtre 2XSFE 10,7 MHz diody 950/80, KY 940/80, konektor BNC, FRB vidlica TY 5133011, zásuvka TX5143015, odpory TR161. Ján Tvarožek, Lud. Milicii 1416, 020 01 Púchov.

Pokazený videomagnetofón Philips N 1502 systém VCR, videokazety systém VCR i staršie, predám náhradné súčiastky do videomagnetofóna sov. výroby Spektr 203, nové nepoužité videokazety VHS 240 (à 480). L. Straňák, Pionierska 415/5, 018 41 Dubnica AY-3-8500, nebo 8550. Milan Drda, Okrůžní 754, 360 17 Stará Role - Karl. Vary.

Dálnopis, 10 - MHB4030, 10 - UM3482, 10 - ICL7106. Pavel Koudelka, Fučíkova 853, 504 01 Nový Bydžov. Event. za odměnu vypůjčím čís. 7, 8 roč. 85 Amatérské radio červené. J. Jarešová, Teplická 273, 190 00 Praha 9.

MC3520 - 10, nutně potřebují. T. Bednařík, B. Pažoutové 10, 624 00 Brno. Mikropočítač Sord M5. V. Friedrich, Mládežnická

40, 350 02 Cheb.

RŮZNÉ

Hledám majitele mikropočítače Sony-MSX Basic k vzájemné výměně programů a informací. R. Kaška, Vančurova 462, 563 01 Lanškroun.

Kdo přehraje za úhradu černobílou i barevnou normální osmičku (asi 2 hod) na VHS. Stany Paal, Křivenická 443, 181 00 Praha 8-Čimice.

Pro Commodore 116 hry a jiné progr. na software modulech nebo kazetách kdo zapůjčí, prodá nebo vymění. Ing. L. Jindra, Baráškova 1569, 149 00 Praha 4.

Hladám majitefa Sord M5 + Basic - G. Výmena programov a skuseností. T. Kováč, 946 34 Vojnice 352

TCVR 2 m Kentauł CW-SSB 5 W za osobní mikropočítač, přip. prodám. Petr Sklenář, PS 12, 500 09 Hradec Králové 9.

Různé programy pro ZX Spectrum a PMD85 za programy z oborů stavebního, strojního a elektro pro tytéž počítače, Ing. Mirka Urbánková, Hlavní 1570, 688 01 Uherský Brod.

ZX Spectrum 48 kB, 16 kB za programy her. Zdeněk Luňáček, Vícov 71, 796 02 Prostějov.

Gramo NC 420, mikroton AMD210, 2 pásky 15 cm a různé součástky dám za st. fotoaparáty Leica Contax, dřevěné nebo za fotoliteraturu, Drtikol, Sudek, Funke, Šmok a podobné nebo prodám – koupím. Petr Maňák, Obora 667, 757 01 Valašské

JSME

Szántó, L.: AUTOMATIZÁCIA PROJEK-TOVANIA INTEGROVANÝCH OBVODOV. Alfa: Bratislava 1985. 264 stran, 124 obr., 20 tabulek, 1 příloha. Cena váz. 24 Kčs.

Autor, přední československý odborník, známý svou bohatou publikační činností, si vybral za námět své knihy automatizací návrhu integrovaných obvodů, která představuje nový, kvalitativní skok v této technologické oblasti. Stále se stupňující množství elementárních operací, které je nutno vykonat při návrhu integrovaných obvodů se stále větší hustotou integrace (a přitom bez jediné chyby), způsobilo, že i v oblasti projektování 10 se nelze obejít bez nejmodernějších prostředků a metod výpočetní techniky. V daném rozsahu knihy nelze vyčerpat daný námět až do podrobností; faktem zůstává, že publikace je prvním souborným zpracováním této problematiky u nás a jednou z mála v celosvětovém rámci.

V předmluvě se autor stručně zabývá právě stavem literatury, koncepcí knihy a vysvětluje některé speciální pojmy. První kapitola obsahuje podrobnější zdůvodnění přechodu k automatizaci návrhů 10 a uvádí přehled základních programových systémů automatizace. Ve druhé kapitole jsou základní informace o bance dat strukturového projektování a o dvou jazycích - CIFM a JASO. Další kapitola je věnována logickým simulátorům, kterými se ověřuje

TESLA — Vakuová technika, k. p.

Praha 9 -Hloubětín, Nademlejnská 600

přijme pro své provozy v Praze 6-Jenerálka 55, Praze 9-Hloubětín, Praze 10-Vršovice pracovníky těchto profesí:

kategorie D:

elektromechaniky, instalatéra, zámečníky, mechaniky, pracovníka (ci) na mikrosíťky, vak. dělníky, čerpače, vrtaře, soustružníky, brusiče, lisaře (ky), frézaře, galvanizéry, nástrojaře, skladové a manipulační dělníky, pracovníky na příjem zboží, skladníka kovů, topiče (pevná paliva, mazut), provozního chemika, mechanika NC strojů, strážné, kontrolní dělníky, pomocného dělníka, tech. skláře, provozní elektromontéry, obráběče kovů, brusiče skla,

kategorie T:

sam. technology, normovače, tech. kontrolory, konstruktéry, sam. výrobní dispečery, prac. do TOR (ÚSO stroj., elektro., ekonom.), fakturantky, účetní, vedoucího normování, absolventy stř. a vys. škol — stroj., elektro., ekonomického zaměření, plánovače, referenty VZN, chemiky, absolventy stř. školy i gymnázia na pracoviště mikrosítěk, sam. ref. zásobování, mzdové účetní, sam. vývoj. pracovníky, ref. OTŘ.

Za výhodných platových a pracovních podmínek, zajištěno závodní stravování, lékarská péče, tuzemská a zahraniční rekreace.

Bližší informace zájemcům podá osobní odd. podniku na telefon č. 86 23 41—5, 86 25 40—5, linka 356.

Náborová oblast Praha.

správnost výsledku i zadání návrhu. Ve čtvrté kapitole se popisují algoritmy logických operací pro detaily
masek, pátá je věnována problematice rozmístění
prvků na čipu. Šestá kapitola s názvem Algoritmy
prepojenia pojednává o algoritmech rozmístění prvků v souvislosti s optimalizací propojovacích spojů
(co do počtu křížení, celkové délky apod.); což
nepřímo vede i ke zlepšení funkčních vlastností IO.
V poslední – sedmé kapitole je vysvětlena metoda
návrhu SIPR (Simultánní Projektování a Rozmístění).

Ve stručném závěru autor shrnuje dosavadní vývoj a naznačuje perspektivu v této oblasti elektroniky. Připojený- obsáhlý seznam literatury (asi 7 stran) umožňuje zájemcům hlubší studium speciálnich problémů do větší hloubky. Kniha je určena inženýrům, odborným a technickým pracovníkům v oblasti výzkumu a vývoje technického a programového vybavení počítačů, návrhářům integrovaných obvodů, konstruktérům počítačů a studentům denního i postgraduálního studia vysokých škol technických.

Conrad, W.: ELEKTROTECHNIKA STŘE-DEM ZÁJMU (OD ELEKTRÁREN K MI-KROELEKTRONICE). Z německého originálu Elektrizität im Blickpunkt vydaného nakladateistvím VEB Fachbuchverlag Leipzig v roce 1981 přeložil Ing. Milan Dufek, CSc. SNTL: Praha 1985. 208 stran, 101 obr., 1 tabulka. Cena váz. 20 Kčs, brož 15 Kčs.

Elektrotechnika je jedním z významných oborů především proto, že její pokrok urychluje rozvoj všech ostatních odvětví národního hospodářství a její popularizace v nejširších vrstvách obyvatelstva, zejména mezi mládeží, má tedy nesporné velký celospolečenský význam. Je proto kladným poči-

nem elektrotechnické redakce SNTL, že do svého edičního plánu zařadila i popularizační publikaci z tohoto oboru.

Překlad knihy autora z NDR Waltera Conrada se vyznačuje jednoduchým srozumitelným jazykem, výklad je poutavý a logický; autor zvolil vhodný tematický průřez oborem tak, že každý čtenář bude většinou partií knihy plně zaujat.

Obsah, podávaný formou volného vyprávění, je rozčleněn do kapitol s atraktivními tituly:

Megawatty a gigawatty (z oblasti velkých zdrojů energie), Řídicí pult pro 160 miliónů kilowattů (rozvod energie), Elektrický proud ze střechy domu a z petrolejové lampy (malé zdroje elektrické energie), Vodiče bez odporu (otázky energetických ztrát ve vodičích). Všestranné užitečný elektronový papr-sek (využití řízených svazků elektronů v praxi), Informace řídí výkon (měření, obsluha, řízení), Malý, menší, nejmenší (vývoj elektroniky k mikroelektronice), Od telefonu k přenosu optickým kabelem (modemí způsoby přenosu informací). Do všech koutů země (komunikace s využitím družic), Před reproduktorem a obrazovkou (rozhlas, televize), Vlny z kosmického prostoru (radioastronomie), Na silnicích a na kolejich (elektrifikace dopravy a moderní způsoby jejího řízení), ENIAC, mikroprocesor – a co bude dále? (výpočetní technika). Text knihy uzavírá věcný rejstřík

Kniha je určena širokému okruhu čtenářů, všem, kdo se zajímají o pokroky energetiky, sdělovací, řídicí a výpočetní techniky a jiných oblastí elektroniky a elektrotechniky, i když nejsou odborníky v žádném z jmenovaných oborů – potud cítát z anotace knihy. Lze k němu jen dodat, že kniha je velmi vhodná zvláště pro mládež, nelze pochybovat o tom, že žádný že zájemců, kterému se ještě podaří tuto knížku zakoupit, nebude zklamán. –Ba

TESLA Strašnice k. p.

Praha 3-Žižkov, U nákladového nádraží 6

přijme

sam. vývojové pracovníky sam. konstruktéry (konstrukce přenos. zař., měř. přístrojů)

sam. normovače sam. technology

sam. odb. ekonomy vedoucího odb. techn. ref

Platové zařazení podle vzdělání a praxe podle ZEÚMS II. Nábor povolen na území ČSSR s výjimkou vymezeného území. Svobodným zajistíme ubytování v podnikových ubytovnách.

Zájemci hlaste se na osobním oddělení závodu nebo telefonicky na č. 77 63 40

Radio (SSSR), č. 3/1986

Technická inovace spojů – Pásmo 160 m: kdo kde pracuje – Krátce o nových výrobcích – Princip činnosti barevné obrazovky – Exponáty na 32. všesvazové výstavě radioamatérských konstrukcí – Mí filtr k transceiveru – Foton 234, blok přijímače a rozkladů – Automatické zálohování signálnich světel – Programování v jazyce BASIC – Potřebujeme moderní magnetické pásky! – Zkoušečka, indikátor napěti – Zlepšení výkonového ní zesilovače – Možnosti akustických systémů a reproduktorů – Regulovatelná analogie diaku – Impulsový osciograf – Stabilizátor napěti s komparátorem – Přepínač světelných efektů – Grafické symboly součástek – Blok "odbíjení" k elektronickým hodinám – Tranzistorové optrony – Univerzální ekvivalentní zatěžovací oddor.

Radioelektronik (PLR), č. 3/1986

Z domova a ze zahraničí – Perkusní syntezátor MGW-532-A (2) – Základy mikroprocesorové techniky (8) – Amiga, nový osobní mikropočítač Commodore – Poplašné zařízení s obvody CMOS do automobilu – Grafické korektory Radmor 5470 a 5471 – Číslicový elektronický zámek (2) – Číslicový budík s IO MC1206N – Nomogram pro návrh plošných cívek – Slovníček techníky hífi a stereo (23) – Údaje polovodičových součástek CEMI: IO série MCY74 . . N – Zvonek se dvěma melodiemi.

Rádiótechnika (MLR), č. 4/1986

Speciální IO, budiče LED – Mikroperitérie (7)

-Osvědčená zapojení: Ladička s IO, Jednoduché světelné varhany – SSTV (16) – Vyhodnocování soutěží s použitím počítače Commodore 64 – Transceiver DUNA-40 (9) – Schéma zapojení počítače Commodore 16 a 116 – Amatérská zapojení: Přenosná anténa pro pásmo 2 m., Bzučák, pro výuku Morseových značek s IO 555 – Měření ČSV pro QRP – Dolní propust k vysílačí KV – Videotechníka (29) – Širokopásmová anténa VKV – Přijímač Signál 304 – Programovatelný generátor rytmů – Jednoduché skříňky na přístroje – Učme se BASIC na Commodore 16 (4) – Měnič 12/220 V, 180 W.

Funkamateur (NDR), č. 3/1986

Nové výrobky z VEB Kombinat Mikroelektronik – Malá zkoušečka – Mikroelektronika se stavebnicí Polytronic-ABC (3) – Rozšíření UFT 420/422 pro mobilní provoz (2) – Informace o transceiveru Teltow 215D (3) – Anténní rotátor ATV-1 – Výkonný anténní vazební člen – Jednoduchý BFO pro příjem SSB a telegrafie – Řídicí jednotka pro elektronické bicí nástroje – Koncepce řízení školního zvonku – Časovací zařízení pro soutěže – Krystalová stabilizace pro hodinový ľO MM53108N – Zlepšení indikace 00,0 až 09,9 u ľO CS20D – Dynamická sonda TTL – Program RTTY pro amatérský počítač AC1 (2) – Programování v jazyce BASIC (10).

Radioelektronik (PLR), č. 4/1986

Z domova a ze zahraničí – Společný kanál pro hloubky při stereofonním poslechu – Základy mikro-procesorové techniky (9), IO 8257 – Čislicový zámek s obvody CMOS – Minitransceiver QRP-CW pro pásmo 2 m – Rozhlasový přijímač Sabina R610 – Využítí počítače pro výuku Morseovy abecedy – Údaje integrovaných obvodů CEMI (24), IO série MCY74 ... N – Číslicový měřič R, C, f – Číslicové zapojení k měření odvinutěho pásku v kazetovém magnetofonu – Automatika v rozhlasovém přijímači.

Radio-amater (Jug.), č. 4/1986

KV transceiver SSB CW (2) – Generátor funkci MINI – UHF televizní modulátor – Doplněk k popisu antény pro pásmo 2 m, který byl uveřejněn v Radioamater č. 4/1984 – HS-C² MOS, nová skupina obvodů CMOS – Videomágnetofony U-matic – Dva programy pro ZX Spectrum – Radioamatérské rubriky.

Funkamateur (NDR), č. 4/1986

Mikroelektronika v NDR – Mikroelektronika se stavebnici Polytronic-ABC (4) – Prakticka zapojení pro měření a zkoušení: Voltmetr bez měřidla; Linearní ohmmetr – Informace o transceiveru Teltow (4) – Přijímač s přímým směšováním pro začínající amatéry – Jednoduchý konvertor pro pásmo 1,8 MHz – Jednoduchý generátor AFSK – Kombinovaný vysílač Dessau 84 pro ROB v pásmech 3,5 a 144 MHz – Zápojení omezovače šumu DNL s operačními zesilovačí BiFET – Optoelektronická střelnice – Analogový měřič kmitočtu s rozsahem do 100 kHz – Učinnost 85 % u spinacího regulátoru pro 5 V a 10 A – Málý stroboskop – Programování v jazyce BASIC (11) – Zvonek s mnoha melodiemi s mikroprocesorem U880D.

Radio, Fernsehen, Elektronik (NDR), č. 4/1986

Interferenční rušení způsobené mimořádným dosahem vysílačů – Přenos jakostních zvukových signálů v obrazovém signálu – Nové přístroje pro televizní studia – Hodiny s jednočipovým mikropočítačem, řízené časovým signálem – Mágnetofon B 115 s páskem ORWO 123LH – Rozhlasový přijímač RMU 2, Sound Clock – Zkušenosti s přijímačem BTV RC 6052 – Snímací elektronky pro velké rozlišení – Přenos impulsů – Přechodné jevy při zapnutí neinvertujících operačních zesilovačů – BASIC pro anafýzy obvodů (4) – Pro servis – Informace o polovodičových součástkách – IO C 500, systém převodníků A/D (2) – Malý termostal a úsporný indikátor s luminiscenčními diodami – Regulátor teploty pro optiku spektrometru – Přenosný programátor pamětí – Přípojka SIF 1000 pro digitální přehrávače kazet – Jednoducký šestnáctibítový učící se systém – Tester Autotestelectric – Z výstavy EAA 85 v ČSSR – Optická permanentní pamět pro malé počítače.

Elektronikschau (Rak.), č. 4/1986

Aktuality v elektronice – Rychlé IO CMOS – Jsou rychlé obvody HCMOS lepší než obvody LS TTL? – Programovatelné logické IO EPLD firmy INTEL usnadňují návrh a realizaci zapojení s vyzitím počítače – Technologie povrchové montáže součástek – Laser nahrazuje vizuální kontrolu pájených míst – Analogová simulace regulačních systémů (3) – Üčinné odvádění tepla z polovodičových součástek – Spektrální analyzátor Marconi 2380/2382 – Programovatelné ní měřicí pracoviště Amber 5500 – Zajímavá zapojení – Rychlý 10bitový konvertor A/D Precision Monolithics Inc. typu ADC-910 – Nové součástky a přístroje.

Śrait, P.: OD KRYSTALKY K MODELÛM S TRANZISTORY. SNTL: Praha 1985. 280 stran, 311 obr., 31 tabulek. Cena váz. 24 Kčs.

Kniha, určená předěvším začinajícím amatérům v oboru elektroníky, vyšla jíž ve třetím, upraveném vydání. Řada čtenářů AR se pravděpodobně s tímto titulem seznámila při jeho minutých vydáních. Pro nové zájemce alespoň stručná informace:

V knížce má čtenář k dispozici řadu stavebních návodů z různých oblastí elektroniky – od kdysi nejpopulárnější přijímací techniky (víz dodnes vžitý termín radioamatér) přes různe zkoušečky, jednoduché měřící přístroje, nabíječky, signalizační a dorozumívací zařízení, nř zesilovače apod., až po hračky a modely s elektrickým pohonem či s élektronickým řízením. Závěrečná kapitola je věnována podrobnějšímu seznámení s nejjednoduššími teoretickými základy elektrotechniky, se součástkami a prameny jejich nákupu, se základními údaji polovodičových součástek, umožňujícími zvolit ekvivalent k typu, který není k dispozicí. Knížka je psána srozumitelně, přehledně, a stejně jako předchozí dvě vydání ani toto jistě nebude v prodejnách knih dlouho.

Knižnich publikaci pro začinajíci zajemce o amatérskou elektroniku nevychází u nás příliš mnoho. Bylo by žádoucí, aby byly podobné tituly nejen v nových vydáních upravovány, ale aby byly "inovovány" od základů – rychlý technologický pokrok v elektronice vyžaduje uvádět nové návody, jejichž amatérskou realizaci moderní součástky umožňují, popř. obměňovat "klasická" zapojení s novými součástkami, které stavbu zjednoduší nebo zlepší parametry zařízení, a samozřejmě umožní amatérům držet krok s moderní techníkou.

držet krok s moderní technikou.

I tak je třetí vydání Šraitovy knížky v dnešní době rozmachu elektroniky u nás přinosem pro podchycení zájmu nejmladší části obyvatelstva o perspektivní obor elektroniky.

Ba