Machine Learning on Spark

He Yunlong

SSG/DRD/PRC

Agenda

Machine Learning in Today

Introduction to Spark

Machine Learning on Spark

Large Scale Neural Network

Optimization

Q & A

Machine Learning in Today

Old Time: Before Mobile Internet Booming Era: Data Scale is small:

- Shallow analysis is enough, no need complex algorithm
- Limited data set could not get precise training model.
- Computing Capability is limited by technology

Today: Big Data laid a foundation of Machine Learning:

The widespread of smart phones and the development of IoT provides comprehensive data sources for **Big data**.

In the past couple of decades, **Computing Power** is growing exponentially by following the Moore's Law

With the rapid development of science and technology, more **Complex Models** are extracted, built-up and deployed in industry

More and more **Efficient Algorithms** of Machine
Learning are researched
and developed by scientists
and domain experts

Data are the Greatest Strategic Resources for Internet Companies

ML: Big data + Computing Power + Complex Model + Efficient Algorithm

- **Create user experiences**
- Create commercial values

Machine learning Phase - 1

Model small

Dataset small

Training minutes ~ **time** hours

Tools Matlab, R, Python

...

Services Junk Detect, Association

Machine learning Phase - 2

Model Small

Dataset big

Training minutes ~ time days

Tools Mahout, Mllib,

...

Services CTR,

Doc Classify

Machine learning Phase - 3

Model big

Dataset huge

Training minutes ~ **time** days

Tools ParamServer,

DistBelief

• • •

Services Speech Recog,

Image Search

About Spark

- Fast In-Memory data analytics cluster computing framework
- Originally developed in the AMPLab, became an Apache Top-Level Project in February 2014
- Suitable for Iterative tasks
- Proven scalability to 2000 nodes in the research lab on EC2 and 1000 nodes in production.

Spark - Program Model: RDD

- General task graphs
- Automatically pipelines functions
- Data locality aware
- Partitioning aware to avoid shuffles

Spark - Program Model: RDD

```
Base RDD
                                                Transformed RDD
                                                                                   Worker
                                                                      results
lines = spark.textFile("hdfs://...")
                                                                           tasks
errors = lines.filter(_.startsWith("ERROR"))
                                                                                Block 1
                                                                   Driver
messages = errors.map(_.split('\t')(2))
cachedMsgs = messages.cache()
                                     Cached RDD
                                                                                  Worker
cachedMsgs.filter(_.contains("foo")).count
cachedMsgs.filter(_.contains("bar")).count
                                                                               Block 2
                                                               Worker
                                    Parallel operation
                                                               Block 3
```


Mllib: Machine Learning on Spark

Classification

 logistic regression, linear support vector machine(SVM), naive Bayes, classification tree

Regression

generalized linear models (GLMs), regression tree

Collaborative filtering

alternating least squares (ALS)

Clustering

k-means

Decomposition

 singular value decomposition (SVD), principal component analysis (PCA)

Mllib - Regression

Mllib - Collaboration Filter


```
// Load and parse the data
val data = sc. textFile("mllib/data/als/test. data")
val ratings = data.map(.split(',') match {
case Array (user, item, rate) =>
Rating (user. toInt, item. toInt, rate. toDouble)
// Build the recommendation model using ALS
val numIterations = 20
val model = ALS. train(ratings, 1, 20, 0.01)
// Evaluate the model on rating data
val usersProducts = ratings.map { case Rating(user, product,
rate) = >
(user, product)
val predictions = model.predict(usersProducts)
```


Mllib - Dimension reduction+ k-means


```
// compute principal components
val points: RDD[Vector] = ...
val mat = RowMatrix(points)
val pc = mat.computePrincipalComponents(20)

// project points to a low-dimensional space
val projected = mat.multiply(pc).rows

// train a k-means model on the projected data
val model = KMeans.train(projected, 10)
```


Mllib - Performance

- Fixed Dataset: 50K images, 160K dense features.
- MLlib exhibits better scaling properties.
- MLlib is faster than VW with 16 and 32 machines.

Mllib 1.1?

Model selection!

- training multiple models in parallel
- separating problem/algorithm/parameters/model

Learning algorithms!

- Latent Dirichlet allocation (LDA)
- Random Forests
- Online updates with Spark Streaming

Optimization algorithms!

- Alternating direction method of multipliers (ADMM)
- Accelerated gradient descent

Neural Network?

New Challenge: Deep Learning

- Challenges
 - Very big model
 - Huge training data
- Spark Limitation
 - Only local model supported
 - RDD is read-only, expensive for neural network parameters
 - Broadcast is not feasible for big model
- We need
 - Distributed model
 - High-performance training process

Distributed Neural Network on Spark

- Distributed parameters
- Configurable server/worker nodes
- Multiple training workers

- Parallel fetching/training/pushing in each worker
- Adaptive learning rate

Example - Word2Vec

This tool provides an efficient implementation of the continuous bag-of-words and skip-gram architectures for computing vector representations of words. These representations can be subsequently used in many natural language processing applications and for further research

- dog => [0.792 -0.177 0.98 -0.9]
- cat => [0.76 0.12 -0.54 0.9 0.65]

In some cases, word2vec can be used to modelling non-wording services, which makes its model very large

Distributed parameter servers helps to scaling the model size linearly

Word	Cosine distance
France,	0.729900
Italy	0.720465
MORZINE,	0.681200
Germany	0.680331
Spain	0.673912
Russia	0.666366
Poland	0.652955
Spain,	0.648663
France.	0.646427
Germany,	0.642493

Test Result

Extensibility

- Linear extendable model size
- Huge dataset supported

Accuracy

- Tradeoff between accuracy and performance, small batch size can raise accuracy, but hurt performance
- Adaptive learning rate help to raise accuracy, but enlarge parameters too.

Performance

- Network is bottleneck, 10GbE is preferred
- Multi-worker can obviously speed-up training
- Optimization with MKL can speed up
 by nearly 50%

Q&A

