1) Consider a read A) This reaction of B) This reaction of C) This reaction of D) This reaction of E) It is not possible.	will be spontaned will be spontaned will be nonsponta will be nonsponta	ous only at high ous at all temp nneous at all temp nneous only a	gh temperature peratures. temperatures. at high tempera	S.	ne following s	tatements is TRU	JE?
2) For a given co A) solid > gas > 1 B) liquid > solid C) gas > liquid > D) gas > solid > 1 E) solid > liquid	iquid > gas solid iquid	decreasing or	rder of entropy	for a liquid, so	olid, and gas		
3) Identify the sta A) The entropy of B) Entropy gener C) Free atoms ha D) Entropy incre E) For noble gas	f a gas is greater ally increases wive greater entrop ases with dissolu	than the entr th increasing by than molec- tion.	molecular concules. F	Tnplexity.T			
4) Calculate ΔS	rxn for the follow	wing reaction	n. The S° for ea	ach species is	shown below	the reaction.	
	2H ₂ (g) + H ₂ (g) 00.9 130.7				0 1200	1) = -112	3 J/KA
A) +112.3 J/K B) +550.9 J/K C) -112.3 J/K D) +337.1 J/K E) -550.9 J/K			(219,3)	- (200	9 + 130,		
5) Calculate ΔH	for the reaction:	$C_{2}H_{4}(g) + I$	$H_2(g) \rightarrow C_2H_6$	(g), from the f	ollowing data		
C ₂ H ₄ (g)	$+3 O_2(g) \rightarrow 24$ $+3 H_2 O_2(g) \rightarrow 24$	$2O_2(g) + 2 - F$	$H_2O(1)$	Δ	AH = -1411. kJ		
C ₂ H ₆ (g)	$+3\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac$	$2 \text{ CO}_2(g) + 3$	$H_2O(1)$	Δ	AH = + 1560. kJ		
6) A reaction t	$\frac{1}{2}O_2(g) \rightarrow H_2O_1$ $+ H_2$ hat is not spontar	(1) Celto neous at low	temperature ca	A		136,6 KJ	
is $\underline{\hspace{1cm}}$ and ΔS is		-	C) +, -	D) -,	+	E)+,0	

							-	
be_and	ction to be sponta	ly.	ndard cond	itions at al	D) -, -		of ΔH and ΔS +, 0	Smust
A) +,	+ B)) +, -	(C), +		<i>D)</i> ,	_/	,	
8) Given th	e following table	of thermodynan	mic data,					
Substance	TiCl4 (g) -7 TiCl4 (l) -8	Hf (kJ/mol) Δ S(J/m 63.2 354 04.2 221	9	Tic	Huce)	-> Ti (2-(-80	04.2)=
A) spontand B) spontand C) nonspon D) nonspon E) not enough	e following senter eous at all temper eous at low temper taneous at all ten attaneous at low te agh information	nce. The vaporize ratures erature and nons aperatures emperature and segiven to draw a	zation of Ti spontaneous spontaneou conclusion	Cl4 is	- AS=	354.9.	-221.9	gaba. Iggita-
9) For whi	ch one of the follo	owing is the heat	t of formati	on equal t	o zero?			
heat excharges rearest	of ice is added to nge with the surro ches equilibrium? ergy mains constant mains constant mains constant creases	Entropy	nas happene	ed to the to $H_a O_{AS}$	otal energy ar	H20ce)	s no the
11)Which	of the following s	statements are tru	ue for the re	eaction I ₂ ($(g) \rightarrow 2 I(g)$			
I. Δ H is por II. Δ H is por III. Δ S is por IV. Δ S is por IV. Δ S is portion and III. Δ	egative egative cositive negative action is spontane ly I IV III nly	ous at any tempe	surature /	15 15 there for	>1 m	Invol	ntare recau posci g pr	tions roducts
△G= +	AH - AS	T		2 /	15 = + 16 = +			

A. In a spontaneous process, DG has a positive value F B. Exothermic reactions are always spontaneous C. For a process to be spontaneous, the number of moles of product must exceed the number of moles of reactant F D. A system at constant temperature cannot experience entropy changes F E. The entropy of the universe is increasing 13) For which of the following processes would ΔS° be expected to be most positive? A) $C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(g) + 1 let 5 0 mole of gase$ B. $Na^{+}(aq) + Cl^{-}(aq) \rightarrow NaCl(s)$ C. $CO_2(g) \rightarrow CO_2(s)$ D. $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$ E. $Cl_2(g) + H_2(g) \rightarrow 2 HCl(g) +$ 14) Which of the following liquids is likely to have the highest value for S°? A. Hg B. H2O 2 complexity D. C₂H₅OH & E. CH₃OH & 15) It is determined that for a particular process, $\Delta H = +185$ kJ and $\Delta S = +1.80$ J/K. At what temperature does the reaction become spontaneous? 0 = 185 +,00/80 t A. 333 K B. 0.00973 K -185 = ,60180t C. 376 D 1.03 X 10⁵ K E 187 K 1.02777

12) Which of the following statements is true?

16) The equilibrium position corresponds to which letter on the graph of G vs f (course of reaction) below?

