Análisis Matemático II - Tarea 4

Fecha límite: domingo 24 de octubre a las 23:59 horas Andrés Casillas García de Presno

- 1. Un **cubo** es un rectángulo $[a_1, b_1] \times \cdots \times [a_n, b_n]$ tal que $b_i a_i = b_1 a_1 \neq 0$ para todo $i = 2, \ldots, n$.
 - (a) Prueba que todo subconjunto abierto Ω de \mathbb{R}^n es la unión de una familia numerable de cubos Q_k , $k \in \mathbb{N}$, tales que $\operatorname{int}(Q_j) \cap \operatorname{int}(Q_k) = \emptyset$ si $j \neq k$.

Solución

Sea

$$\mathbb{Z}_2^n = \{(z_1, \dots, z_n) : z_k = \frac{1}{2}z \quad p.a.z \in \mathbb{Z}, k \in \{1, \dots, n\}\}$$

el conjunto que resulta de bisetcar a \mathbb{Z}^n .

Análogamente, defino para cada $j \in \mathbb{Z}^+, j \geq 2$

$$\mathbb{Z}_{2^j}^n = \{(z_1, \dots, z_n) : z_k = \frac{1}{2^j} z \quad p.a.z \in \mathbb{Z}, k \in \{1, \dots, n\}\}$$

el conjunto que resulta de bisectar a $\mathbb{Z}_{2^{j-1}}^n$.

Notemos que, para cada $j \in \mathbb{Z}^+, j \geq 2$, $\mathbb{Z}^n_{2^j}$ es numerable, pues la función $g: \mathbb{Z}^n_{2^j} \to \mathbb{Z}^n$ dada por $g(z) = 2^j z$ es una biyección.

Como un primer paso, consideramos los cubos con vértices en $\Omega \cap \mathbb{Z}^n$ cuyos lados son de longitud 1 tales que están completamente contenidos en Ω . Por construcción, la intersección de los interiores de dichos cubos es vacía (si son distintos). Sea Q_1 el conjunto de dichos cubos. Podemos formar la biyección que a cada cubo $Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$ le asocia el vértice $(a_1, a_2, \cdots, a_n) \in \mathbb{Z}^n$. Por la biyección establecida es claro que Q_1 es a lo más numerable.

Ahora bien, consideremos los cubos con vértices en $\Omega \cap \mathbb{Z}_2^n$ cuyos lados son de longitud $\frac{1}{2}$ tales que están completamente contenidos en $\Omega \setminus$

 Q_1 . Por construcción, la intersección de los interiores de dichos cubos es vacía (si son distintos) Sea Q_2 dicho conjunto. Por un argumento análogo, Q_2 es a lo más numerable.

Procediendo inductivamente, considerando los cubos con vértices en $\Omega \cap \mathbb{Z}_{2^j}^n$ cuyos lados son de longitud $\frac{1}{2^j}$ tales que están completamente contenidos en $\Omega \setminus \bigcup_{k=1}^{j-1} Q_k$ y llamándole Q_j a dicho conjunto numerable, tendremos la siguiente

Afirmación:

$$\Omega = \bigcup_{k=1}^{\infty} Q_k$$

Por construcción, para cualesquiera cubos $Q_{k_j}, Q_{k_i} \in \bigcup_{k=1}^{\infty} Q_k$ tenemos que $int(Q_{k_j}) \cap int(Q_{k_i}) = \emptyset$ si $j \neq i$. Además, como cada familia Q_k es numerable, entonces $\bigcup_{k=1}^{\infty} Q_k$ es numerable. También cabe recalcar que como Ω es abierto, cada Q_{k_j} en efecto es un cubo.

Ahora sí, procedamos con la demostración de la afirmación

- \leftarrow) Sea $Q_{k_j} \in \bigcup_{k=1}^{\infty} Q_k$. Entonces $Q_{k_j} \in Q_k$ p.a. $k \in \mathbb{N}$. Por construcción de Q_k tenemos que $Q_{k_j} \in \Omega$.
- \rightarrow) Sea $\omega \in \Omega$. Como Ω es abierto, $V_r^{\infty}(\omega) \subset \Omega$ p.a. $r \in \mathbb{R}$ donde $V_r^{\infty}(\omega)$ denota la vecindad con norma infinito. Así, $V_r^{\infty}(\omega)$ es un cubo abierto de radio 2r contenido en ω . Sea $j \in \mathbb{N}$ tal que $\frac{1}{2^j} < 2r$. Por construcción tenemos entonces que existe $Q_{k'_j} \in Q'_j$ para alguna j' > j tal que $\omega \in Q_{k'_j}$. Así, $\omega \in \bigcup_{k=1}^{\infty} Q_k$.
 - (b) Sean Ω un subconjunto abierto de \mathbb{R}^n y $Z \subset \Omega$. Prueba que Z es un subconjunto nulo de \mathbb{R}^n si y sólo si para cada $\varepsilon > 0$ existe una familia numerable de cubos Q_k , $k \in \mathbb{N}$, tales que

$$Z \subset \bigcup_{k \in \mathbb{N}} Q_k \subset \Omega$$
 y $\sum_{k=1}^{\infty} |Q_k| < \varepsilon$.

Solución

Lema: Si Q_j, Q_k son cubos tales $a_i, b_i \in \mathbb{R}$ para toda $i \in \{1, \dots, n\}$ y $int(Q_j) \cap int(Q_k) = \emptyset$ si $j \neq k$, entonces $|Q_j \cap Q_k| = 0$.

Demostración

Sean $j,k \in \mathbb{N}$. Sabemos que $int(Q_j) = (a_1,b_1) \times \cdots \times (a_n,b_n)$. Por el ejemplo 12.21 tenemos que $|int(Q_j)| = \prod_{i=1}^n (b_i - a_i)$ y $|Q_j| = \prod_{i=1}^n (b_i - a_i)$. Por otro lado, como Q_j es cerrado $int(Q_j) = Q_j \setminus \partial Q_j$. Como ∂Q_j es compacto (cerrado y acotado en \mathbb{R}^n) y $int(Q_j) = \emptyset$ entonces ambos son integrables y se cumple que $|int(Q_j)| = |Q_j| - |Q_j \cap \partial Q_j| = |Q_j| - |\partial Q_j|$ de forma que $\prod_{i=1}^n (b_i - a_i) = \prod_{i=1}^n (b_i - a_i) - |\partial Q_j|$ i.e. $|\partial Q_j| = 0$. Como $int(Q_j) \cap int(Q_k) = \emptyset$ entonces $Q_j \cap Q_k \subset \partial Q_j$ y como ∂Q_j es nulo, por la proposición 13.4 tenemos que $|Q_j \cap Q_k| = 0$.

 \rightarrow) Supongamos Z un subconjunto nulo de \mathbb{R}^n y sea $\epsilon > 0$. Por la proposición 13.8. sabemos que existe un subconjunto abierto Ω' de \mathbb{R}^n tal que $Z \subset \Omega'$ y $|\Omega'| < \epsilon$. Sea $U = \Omega \cap \Omega'$ un conjunto abierto (pues es intersección finita de abiertos) contenido en \mathbb{R}^n . Como $Z \subset \Omega$ y $Z \subset \Omega'$ entonces $Z \subset U$. Por el inciso (a) sabemos que $U = \bigcup_{k \in \mathbb{N}} Q_k$ donde Q_k son cubos tales que $int(Q_j) \cap int(Q_k) = \emptyset$ si $j \neq k$. Tenemos entonces que

$$Z \subset \bigcup_{k \in \mathbb{N}} Q_k \subset U \subset \Omega$$

Por la Proposición 12.20 sabemos que, como tanto U como Ω' son abiertos y $U \subset \Omega'$, entonces $vol_n(U) \leq vol_n(\Omega') < \epsilon$.

Como $vol_n(U) < \epsilon$ entonces $Q_k = [a_1, b_1] \times \cdots \times [a_n, b_n]$ con $a_i, b_i \in \mathbb{R}$ para toda $i \in \{1, \dots, n\}$ para toda $k \in \mathbb{N}$. Así, Q_k cumple las hipótesis del lema para toda $k \in \mathbb{N}$, de forma que

$$vol_n(U) = |\bigcup_{k \in \mathbb{N}} Q_k| = \sum_{k=1}^{\infty} |Q_k|$$

por lo que

$$\sum_{k=1}^{\infty} |Q_k| \le vol_n(\Omega') < \epsilon$$

que es lo que se quería demostrar.

 \leftarrow

Veamos primero que $\bigcup_{k\in\mathbb{N}} Q_k$ es integrable. Para $i\in\mathbb{Z}^+$ defino

$$X_k = \bigcup_{i=1}^k Q_i$$

y sean $X = \bigcup_{i=1}^{\infty} X_i = \bigcup_{i=1}^{\infty} Q_i$, $1_X : X \to \mathbb{R}$ una función tal que $1_X|_{X_k}$ es integrable. Esto es el caso pues $1_X|_{X_k} = 1_{X_k}$ y la unión finita de cubos siempre es integrable, pues cada cubo es integrable (proposición 12.38).

Es claro que

$$X_1 \subset X_2 \subset \cdots \subset X_k \subset \ldots$$

Además veamos que

$$\lim_{k\to\infty} \int_{X_k} |f| = \lim_{k\to\infty} |\bigcup_{i=1}^k Q_i|$$

Como sabemos que

$$|\bigcup_{k\in\mathbb{N}}Q_k|\leq \sum_{k=1}^{\infty}|Q_k|$$

pues $|Q_j \cap Q_k| \ge 0$ para cualesquiera $j, k \in \mathbb{N}$, entonces

$$\lim_{k\to\infty} |\bigcup_{i=1}^k Q_i| \le \lim_{k\to\infty} \sum_{i=1}^k |Q_i| = \sum_{i=1}^\infty |Q_i| < \epsilon$$

Así, se cumplen las hipótesis del corolario 13.27, por lo que sabemos que 1_X es integrable i.e. $\bigcup_{i=1}^{\infty} Q_i$ es integrable.

Sea $\epsilon > 0$. Como $Z \subset \bigcup_{i=1}^{\infty} Q_i$ entonces

$$0 \le \int^* 1_Z \le \int^* 1_{\bigcup_{i=1}^{\infty} Q_i} = \int_{\mathbb{R}^n} 1_{\bigcup_{i=1}^{\infty} Q_i} = |\bigcup_{i=1}^{\infty} Q_i| \le \sum_{i=1}^{\infty} |Q_i| < \epsilon$$

de forma que

$$0 \le \int^* 1_Z < \epsilon$$

lo cual implica que Z es integrable y nulo.

2. Considera la familia numerable de intervalos cerrados

$$[0,\frac{1}{2}], [\frac{1}{2},1], [0,\frac{1}{3}], [\frac{1}{3},\frac{2}{3}], [\frac{2}{3},1], [0,\frac{1}{4}], [\frac{1}{4},\frac{1}{2}], [\frac{1}{2},\frac{3}{4}], [\frac{3}{4},1], \dots$$

Sea f_k la función característica del k-ésimo intervalo de la lista.

(a) Prueba que

$$\lim_{k \to \infty} \int_{\mathbb{R}} |f_k| = 0.$$

Solución

Es claro que

$$\{ \int_{\mathbb{R}} |f_k| \}_{k \in \mathbb{N}}$$

es una sucesión no creciente y acotada inferiormente (por monotonía de la integral), por lo que converge.

Así, basta con ver a dónde converge una subsucesión suya.

Para $j\geq 2$ consideremos la subsucesión formada por los $k_j\in\mathbb{N}$ donde $k_j=\sum_{i=2}^j i$. Por definición de la lista tenemos que

$$\int_{\mathbb{R}} |f_{k_j}| = \frac{1}{n+1}$$

donde n es el número que ocupa cada k_j en la subsucesión (la preimagen de k_j bajo la función $f: \mathbb{N} \to \mathbb{R}$ que define a la subsucesión). Cuando $k_j \to \infty$, $n \to \infty$.

Así,

$$\lim_{k_j \to \infty} \int_{\mathbb{R}} |f_{k_j}| = 0$$

de forma que

$$\lim_{k\to\infty} \int_{\mathbb{R}} |f_k| = 0$$

(b) Prueba que $(f_k(x))$ no converge para ningún $x \in [0, 1]$. Solución

Sean $x \in [0, 1], k_0 \in \mathbb{N}$.

Consideremos

$$n = max\{m \ge 2 : \sum_{i=2}^{m} i \le k_0\}$$

Si $k_0 = 1$ defino n := 2.

Por definición de la lista, para algún intervalo -digamos el j_1 -ésimo - tal que

$$j_1 \in [\sum_{i=2}^n i, \sum_{i=2}^{n+1} i]$$

tenemos que $f_{j_1}(x) = 1$. Pero además también es cierto para

$$j_2 \in [\sum_{i=2}^{n+1} i, \sum_{i=2}^{n+2} i]$$

$$j_3 \in [\sum_{i=2}^{n+2} i, \sum_{i=2}^{n+3} i]$$

:

$$j_{l+1} \in [\sum_{i=2}^{n+l} i, \sum_{i=2}^{n+(l+1)} i]$$

:

de forma que $(f_{j_k}(x))_{k\in\mathbb{N}} = (1)_{k\in\mathbb{N}}$ es una subsucesion de $(f_k(x))$ que converge a 1. Nótese además que $k_0 \leq j_i$ para toda $i \in \mathbb{N}$.

Por otro lado, para algunos intervalos -digamos los h_1, h_2, \dots -ésimos - tales que

$$h_1 \in [\sum_{i=2}^n i, \sum_{i=2}^{n+1} i]$$

$$h_2 \in [\sum_{i=2}^{n+1} i, \sum_{i=2}^{n+2} i]$$

$$h_{l+1} \in [\sum_{i=2}^{n+l} i, \sum_{i=2}^{n+(l+1)} i]$$

se cumple que $f_{h_k}(x) = 0$ para toda $k \in \mathbb{N}$. Así $(f_{h_k}(x))_{k \in \mathbb{N}} = (0)_{k \in \mathbb{N}}$ es una subsucesion de $(f_k(x))$ que converge a 0. Nótese además que $k_0 \leq h_i$ para toda $i \in \mathbb{N}$.

Así, $(f_k(x))$ no converge.

(c) Exhibe una subsucesión (f_{k_i}) que converge a 0 c.d. en \mathbb{R} .

Solución

Para $j \geq 2$ consideremos la subsucesión (f_{k_j}) formada por los $k_j \in \mathbb{N}$ donde $k_j = \sum_{i=2}^{j} i$. Veamos que el k_j -ésimo intervalo es de la forma

$$\left[\frac{n}{n+1},1\right]$$

donde n es el número que ocupa cada k_j en la subsucesión (la preimagen de k_j bajo la función $f: \mathbb{N} \to \mathbb{R}$ que define a la subsucesión). Notemos tambien que $f_{k_j} \geq f_{k_{j+1}}$ para toda $j \in \mathbb{N}$.

Afirmo que (f_{k_j}) converge a 0 para toda $x \in \mathbb{R} \setminus \{1\}$.

Sea $\epsilon > 0$ y sea $x \in \mathbb{R} \setminus \{1\}$. Por la propiedad arquimideana sabemos que existe $n+1 \in \mathbb{N}$ tal que $\frac{1}{n+1} < |1-x|$ de forma que $x \notin [\frac{n}{n+1}, 1]$. Por la forma de la subsucesión existe un $k_{j_0} = f(n+1)$ tal que el k_{j_0} -ésimo intervalo es $[\frac{n}{n+1}, 1]$. Por lo tanto $f_{k_{j_0}}(x) = 0$ y así, para toda $k_j > k_{j_0}$, se tiene que

$$|f_{k_j}(x) - 0| = |0 - 0| < \epsilon$$

lo cual demuestra el resultado.

Como $\{1\}$ es un conjunto nulo, pues es un conjunto a lo más numerable de \mathbb{R} , tenemos que (f_{k_i}) converge a 0 c.d. en \mathbb{R} .

3. Considera la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) := \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & \text{si } (x,y) \in (0,1) \times (0,1), \\ 0 & \text{si } (x,y) \in \mathbb{R}^2 \setminus (0,1) \times (0,1). \end{cases}$$

(a) Prueba que la función $x \mapsto f(x,y)$ es integrable en \mathbb{R} para todo $y \in \mathbb{R}$, que la función $y \mapsto f(x,y)$ es integrable en \mathbb{R} para todo $x \in \mathbb{R}$, y que las integrales

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dx \right) dy, \qquad \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dy \right) dx,$$

existen y son distintas.

Solución

Para cada $y \in \mathbb{R}$ sea $h_y : \mathbb{R} \to \mathbb{R}$, $h_y(x) = f(x, y)$. Veamos que, para toda y, h_y es integrable en \mathbb{R} .

Caso 1: $y \notin (0,1)$

En dado caso, $(x,y) \notin (0,1) \times (0,1)$ para toda $x \in \mathbb{R}$, de forma que $h_y(x) = 0$ para toda $x \in \mathbb{R}$ i.e. $h_y = 0$. En este caso es claro que h_y es integrable.

Caso 2: $y \in (0, 1)$

En dado caso,

$$h_y(x) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & x \in (0, 1) \\ 0 & x \notin (0, 1) \end{cases}$$

Nótese que, como y > 0, $h_y(x)$ está bien definida para toda $x \in \mathbb{R}$. Consideremos la función

$$g_y:[0,1]\to\mathbb{R}$$

$$g_y(x) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

Claramente g_y es continua en [0,1] y como dicho conjunto es compacto entonces, por la proposición 12.42, tenemos que g_y es integrable. En consecuencia, por definición de integrabilidad en subconjuntos de \mathbb{R}^n (def. 12.41) tenemos que \bar{g}_y es integrable. Ahora bien veamos que

$$\bar{g_y} = h_y \quad \forall x \in \mathbb{R} \setminus \{0, 1\}$$

donde $\{0,1\}$ es un conjunto nulo de \mathbb{R} pues es a lo más numerable (ejemplo 13.5). Por la proposición 13.10 tenemos que h_y es integrable.

(El caso para ver que la función $y \mapsto f(x, y)$ es totalmente análogo; basta con intercambiar y con x, como lo hago a continuación).

Para cada $x \in \mathbb{R}$ definimos la función $h_x : \mathbb{R} \to \mathbb{R}$, $h_x(y) = f(x, y)$. veamos que, para toda x, h_x es integrable.

Caso 1: $x \notin (0,1)$

En dado caso, $(x, y) \notin (0, 1) \times (0, 1)$ para toda $y \in \mathbb{R}$, de forma que $h_x(y) = 0$ para toda $y \in \mathbb{R}$ i.e. $h_x = 0$. En este caso es claro que h_y es integrable.

Caso 2: $x \in (0, 1)$

En dado caso,

$$h_x(y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & y \in (0, 1) \\ 0 & y \notin (0, 1) \end{cases}$$

Nótese que, como x > 0, $h_x(y)$ está bien definida para toda $y \in \mathbb{R}$. Consideremos la función

$$g_x:[0,1]\to\mathbb{R}$$

$$g_x(y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

Claramente g_x es continua en [0, 1] y como dicho conjunto es compacto entonces, por la proposición 12.42, tenemos que g_x es integrable. En consecuencia, por definición de integrabilidad en subconjuntos de \mathbb{R}^n (def. 12.41) tenemos que $\bar{g_x}$ es integrable. Ahora bien veamos que

$$\bar{g}_x = h_x \quad \forall y \in \mathbb{R} \setminus \{0, 1\}$$

donde $\{0,1\}$ es un subconjunto nulo de \mathbb{R} pues es a lo más numerable (ejemplo 13.5). Por la proposición 13.10 tenemos que h_x es integrable.

También por la proposición 13.10 tenemos que

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dx \right) dy = \int_{0}^{1} \left(\int_{0}^{1} f(x, y) dx \right) dy$$

y que

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dy \right) dx = \int_{0}^{1} \left(\int_{0}^{1} f(x, y) dy \right) dx$$

por definición de f y porque $\{0,1\}$ es nulo en \mathbb{R} . Así,

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dx \right) dy = \int_{0}^{1} \left(\int_{0}^{1} \frac{x^{2} - y^{2}}{\left(x^{2} + y^{2}\right)^{2}} dx \right) dy = \int_{0}^{1} \frac{-x}{x^{2} + y^{2}} \Big|_{0}^{1} dy$$

$$= \int_0^1 -\frac{dy}{1+y^2} = -\arctan(y) \Big|_0^1 = -\frac{\pi}{4}$$

por lo que existe dicha integral existe.

Por otro lado

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dy \right) dx = \int_{0}^{1} \left(\int_{0}^{1} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} dy \right) dx = \int_{0}^{1} \frac{y}{x^{2} + y^{2}} \Big|_{0}^{1} dx$$
$$= \int_{0}^{1} \frac{dx}{1 + x^{2}} = \arctan(x) \Big|_{0}^{1} = \frac{\pi}{4}$$

por lo que dich aintegral existe.

Clarmente son distintas.

(b) ¿Es f una función integrable en \mathbb{R}^2 ? NO.

Supongamos por contradicción que f es integrable.

Así, $f:\mathbb{R}^2\to\mathbb{R}$ es integrable. El teorema de Fubini nos dice entonces que existe un subconjunto nulo Z de \mathbb{R} tal que, para todo $y\in\mathbb{R}\setminus Z$, la función $h_y:\mathbb{R}\to\mathbb{R}$ dada por

$$h_y(x) = f(x, y)$$

es integrable; que la función $H: \mathbb{R} \to \mathbb{R}$ dada por

$$H(y) = \begin{cases} \int_{\mathbb{R}} h_y & y \in \mathbb{R} \setminus Z \\ 0 & y \in Z \end{cases}$$

es integrable y que

$$\int_{\mathbb{R}} H(y) = \int_{\mathbb{R}^2} f$$

Como vale el cambio lineal de variable para funciones Lebesgueintegrables, entonces tomando

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in GL_2(\mathbb{R})$$

la matriz que permuta las entradas tenemos que

$$\int_{\mathbb{R}^2} f(x, y) = \int_{\mathbb{R}^2} f(y, x)$$

entonces podemos aplicar el teorema de Fubini tanto a la función f(x,y) como a la función f(y,x) y su integral será la misma.

De forma que el teorema nos asegura que

$$h_x: \mathbb{R} \to \mathbb{R}$$

$$h_x(y) = f(y, x)$$

es integrable, que

$$H(x) = \begin{cases} \int_{\mathbb{R}} h_x & x \in \mathbb{R} \setminus Z \\ 0 & x \in Z \end{cases}$$

es integrable y que

$$\int_{\mathbb{R}} H(x) = \int_{\mathbb{R}^2} f$$

En particular, dice que

$$\int_{\mathbb{R}} H(y) = \int_{\mathbb{R}^2} f = \int_{\mathbb{R}} H(x)$$

Para el caso particular de la f en cuestión tendríamos que $Z=\emptyset$ y que

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dx \right) dy, = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dy \right) dx$$

lo cual es una contradicción con lo anteriormente probado. Por lo tanto, f no es integrable en \mathbb{R}^2 .

4. Prueba que, si $f: \mathbb{R}^n \to \mathbb{R}$ es integrable, entonces

$$\lim_{k \to \infty} \int_{\mathbb{R}^n \setminus B^n(0,k)} f = 0.$$

Solución

Como f es integrable

$$\left| \int_{\mathbb{R}^n \setminus B^n(0,k)} f \right| \le \int_{\mathbb{R}^n \setminus B^n(0,k)} |f| \quad \forall k \in \mathbb{R}$$

Demostremos entonces que

$$\lim_{k\to\infty}\int_{\mathbb{R}^n\smallsetminus B^n(0,k)}|f|=0$$

Como $|f| \ge 0$ y $\mathbb{R}^n \setminus B^n(0,k+r) \subset \mathbb{R}^n \setminus B^n(0,k)$ para cualquier r>0 entonces la sucesión

$$\left\{ \int_{\mathbb{R}^n \setminus B^n(0,k)} |f| \right\}$$

es no creciente. Como además es acotada inferiormente por 0 (por monotonía de la integral) entonces converge, es decir, su límite existe.

Además, como |f| es integrable (ya que f lo es), entonces $\int_{\mathbb{R}^n} |f| = I \in \mathbb{R}$ Sabemos que

$$\int_{\mathbb{R}^n} |f| = \int_{B^n(0,k)} |f| + \int_{\mathbb{R}^n \setminus B^n(0,k)} |f|$$

y por la existencia de límites

$$\lim_{k\to\infty} \int_{\mathbb{R}^n} |f| = \lim_{k\to\infty} \int_{B^n(0,k)} |f| + \lim_{k\to\infty} \int_{\mathbb{R}^n \setminus B^n(0,k)} |f|$$

Como $\lim_{k\to\infty}\int_{B^n(0,k)}|f|=\lim_{k\to\infty}\int_{\mathbb{R}^n}|f|=\int_{\mathbb{R}^n}|f|=I$ tenemos que

$$I = I + \lim_{k \to \infty} \int_{\mathbb{R}^n \setminus B^n(0,k)} |f|$$

de forma que

$$\lim_{k \to \infty} \int_{\mathbb{R}^n \setminus B^n(0,k)} |f| = 0$$

Así, como

$$0 \le \lim_{k \to \infty} \left| \int_{\mathbb{R}^n \setminus B^n(0,k)} f \right| \le \lim_{k \to \infty} \int_{\mathbb{R}^n \setminus B^n(0,k)} |f| = 0$$

entonces

$$\lim_{k \to \infty} \left| \int_{\mathbb{R}^n \setminus B^n(0,k)} f \right| = 0$$

y, como es una sucesión de números reales, entonces

$$\lim_{k \to \infty} \int_{\mathbb{R}^n \setminus B^n(0,k)} f = 0$$