Absolute risk integration using penalized logistic regression

Jesse Islam

2/27/2020

 In disease etiology, we tend to make use of the proportional hazards hypothesis.

- In disease etiology, we tend to make use of the proportional hazards hypothesis.
 - Cox Regression

- In disease etiology, we tend to make use of the proportional hazards hypothesis.
 - Cox Regression
- When we want the absolute risk:

- In disease etiology, we tend to make use of the proportional hazards hypothesis.
 - Cox Regression
- When we want the absolute risk:
 - Breslow estimator

- In disease etiology, we tend to make use of the proportional hazards hypothesis.
 - Cox Regression
- When we want the absolute risk:
 - Breslow estimator
 - Parametric models

 Julien and Hanley found that survival analysis rarely produces prognostic functions, even though the software is widely available in cox regression packages. [1]

- Julien and Hanley found that survival analysis rarely produces prognostic functions, even though the software is widely available in cox regression packages. [1]
- They believe the stepwise nature is the reason, as it reduces interpretability. [1]

- Julien and Hanley found that survival analysis rarely produces prognostic functions, even though the software is widely available in cox regression packages. [1]
- They believe the stepwise nature is the reason, as it reduces interpretability. [1]
- Want to easily model non-proportional hazards. [1]

- Julien and Hanley found that survival analysis rarely produces prognostic functions, even though the software is widely available in cox regression packages. [1]
- They believe the stepwise nature is the reason, as it reduces interpretability. [1]
- Want to easily model non-proportional hazards. [1]
- A streamlined approach for reaching a smooth absolute risk curve. [1]

Dr. Cox's perspective

Reid: How do you feel about the cottage industry that's grown up around it [the Cox model]?

Cox: Don't know, really. In the light of some of the further results one knows since, I think I would normally want to tackle problems parametrically, so I would take the underlying hazard to be a Weibull or something. I'm not keen on nonparametric formulations usually.

Reid: So if you had a set of censored survival data today, you might rather fit a parametric model, even though there was a feeling among the medical statisticians that that wasn't quite right.

Cox: That's right, but since then various people have shown that the answers are very insensitive to the parametric formulation of the underlying distribution [see, e.g., Cox and Oakes, Analysis of Survival Data, Chapter 8.5]. And if you want to do things like predict the outcome for a particular patient, it's much more convenient to do that parametrically.

SUPPORT study

- SUPPORT study
- Casebase sampling

- SUPPORT study
- Casebase sampling
- Logistic regression on survival data

- SUPPORT study
- Casebase sampling
- Logistic regression on survival data
- Maximum likelihood with regularization

- SUPPORT study
- Casebase sampling
- Logistic regression on survival data
- Maximum likelihood with regularization
- Absolute risk comparison

- SUPPORT study
- Casebase sampling
- Logistic regression on survival data
- Maximum likelihood with regularization
- Absolute risk comparison
- Future work

- SUPPORT study
- Casebase sampling
- Logistic regression on survival data
- Maximum likelihood with regularization
- Absolute risk comparison
- Future work
- References

 Study to Understand Prognoses and Preferences for Outcomes and Risks Treatments

- Study to Understand Prognoses and Preferences for Outcomes and Risks Treatments
- Design: Prospective cohort study.

- Study to Understand Prognoses and Preferences for Outcomes and Risks Treatments
- Design: Prospective cohort study.
- Setting: 5 academic care centers in the United States.

- Study to Understand Prognoses and Preferences for Outcomes and Risks Treatments
- Design: Prospective cohort study.
- Setting: 5 academic care centers in the United States.
- Participants: 9105 hospitalized.

- Study to Understand Prognoses and Preferences for Outcomes and Risks Treatments
- Design: Prospective cohort study.
- Setting: 5 academic care centers in the United States.
- Participants: 9105 hospitalized.
- Follow-up-time: 5.56 years.

- Study to Understand Prognoses and Preferences for Outcomes and Risks Treatments
- Design: Prospective cohort study.
- Setting: 5 academic care centers in the United States.
- Participants: 9105 hospitalized.
- Follow-up-time: 5.56 years.
- 68% incidence rate.

SUPPORT manual imputation

Notorious for missing data

Baseline Variable	Normal Fill-in Value
Bilirubin	1.01
BUN	6.51
Creatinine	1.01
PaO2/FiO2 ratio (pafi)	333.3
Serum albumin	3.5
Urine output	2502
White blood count	9 (thousands)

 Table 1: Suggested imputation values. [Support site reference]

Mice imputation package (R)

- Mice imputation package (R)
- 1. PMM (Predictive Mean Matching) For numeric variables

- Mice imputation package (R)
- 1. PMM (Predictive Mean Matching) For numeric variables
- logreg(Logistic Regression) For Binary Variables (with 2 levels)

- Mice imputation package (R)
- 1. PMM (Predictive Mean Matching) For numeric variables
- logreg(Logistic Regression) For Binary Variables (with 2 levels)
- 3. polyreg(Bayesian polytomous regression) For Factor Variables (>= 2 levels)

Hospital Charges.

- Hospital Charges.
- Patient ratio of costs to charges.

- Hospital Charges.
- Patient ratio of costs to charges.
- Patient Micro-costs.

- Hospital Charges.
- Patient ratio of costs to charges.
- Patient Micro-costs.
- functional disability (ordinal).

- Hospital Charges.
- Patient ratio of costs to charges.
- Patient Micro-costs.
- functional disability (ordinal).
- Income (ordinal).

Variable overview

• Age, sex, race, education, follow-up time, death. (6)

Variable overview

- Age, sex, race, education, follow-up time, death. (6)
- Disease group/class, Number of comorbidities. (3)

- Age, sex, race, education, follow-up time, death. (6)
- Disease group/class, Number of comorbidities. (3)
- Income, costs. (4)

- Age, sex, race, education, follow-up time, death. (6)
- Disease group/class, Number of comorbidities. (3)
- Income, costs. (4)
- Coma score, average Therapeutic Intervention Scoring System
 (2)

- Age, sex, race, education, follow-up time, death. (6)
- Disease group/class, Number of comorbidities. (3)
- Income, costs. (4)
 - Coma score, average Therapeutic Intervention Scoring System (2)
- Physiological variables. (11)

- Age, sex, race, education, follow-up time, death. (6)
- Disease group/class, Number of comorbidities. (3)
- Income, costs. (4)
 - Coma score, average Therapeutic Intervention Scoring System (2)
- Physiological variables. (11)
- Activities of daily living. (3)

- Age, sex, race, education, follow-up time, death. (6)
- Disease group/class, Number of comorbidities. (3)
- Income, costs. (4)
- Coma score, average Therapeutic Intervention Scoring System
 (2)
- Physiological variables. (11)
- Activities of daily living. (3)
- Previous model findings. (8)

Determined SUPPORT prognostic model on phase I (4301 individuals).

- Determined SUPPORT prognostic model on phase I (4301 individuals).
- Tested on Phase II (4028 individuals).

- Determined SUPPORT prognostic model on phase I (4301 individuals).
- Tested on Phase II (4028 individuals).
- Both on the scale of 180 days.

• Write out complicated model?????

• image of SPS vs APS ???????

SUPPORT question

• How does their model perform over 5.56 years?

SUPPORT question

- How does their model perform over 5.56 years?
- Absolute Risk comparison.

1. Impute

- 1. Impute
- 2. Compare SPS and APS over ~ 5.56 years using absolute risk curves.

- 1. Impute
- 2. Compare SPS and APS over \sim 5.56 years using absolute risk curves.
- 3. Compare to Kaplan-Meier curve

- 1. Impute
- 2. Compare SPS and APS over ~ 5.56 years using absolute risk curves.
- 3. Compare to Kaplan-Meier curve
- 4. Compare to full model (excluding SPS and APS)

- 1. Impute
- 2. Compare SPS and APS over \sim 5.56 years using absolute risk curves.
- 3. Compare to Kaplan-Meier curve
- 4. Compare to full model (excluding SPS and APS)
- All models is trained on 80% of the observations.

- 1. Impute
- 2. Compare SPS and APS over \sim 5.56 years using absolute risk curves.
- 3. Compare to Kaplan-Meier curve
- 4. Compare to full model (excluding SPS and APS)
- All models is trained on 80% of the observations.
- Remaining observations are used to generate comparative absolute risk curves.

SPS vs APS

SPS vs. Kaplan-Meier

All covariates vs. physiology scores vs unadjusted

Chosen absolute risk comparisons

Conclusion:

• Linear associations without physiology scores perform similarly

1. Clever sampling.

- 1. Clever sampling.
- 2. Implicitly deals with censoring.

- 1. Clever sampling.
- 2. Implicitly deals with censoring.
- 3. Allows a parametric fit using *logistic regression*.

- 1. Clever sampling.
- 2. Implicitly deals with censoring.
- 3. Allows a parametric fit using *logistic regression*.
- Casebase is parametric, and allows different parametric fits by incorporation of the time component.

- 1. Clever sampling.
- 2. Implicitly deals with censoring.
- 3. Allows a parametric fit using *logistic regression*.
 - Casebase is parametric, and allows different parametric fits by incorporation of the time component.
- Package contains an implementation for generating population-time plots.

$$e^{L} = \frac{Pr(Y = 1|x, t)}{Pr(Y = 0|x, t)} = \frac{h(x, t) * B(x, t)}{b[B(x, t)/B]} = \frac{h(x, t) * B}{b}$$

* $L = \beta X$ * b = base-series. * B = Base. * B(x,t) = Risk-set for survival time t.

$$e^{L} = \frac{Pr(Y=1|x,t)}{Pr(Y=0|x,t)} = \frac{h(x,t)*B(x,t)}{b[B(x,t)/B]} = \frac{h(x,t)*B}{b}$$

log-odds = log hazard

$$e^{L} = \frac{h(x, t) * B}{b}$$
$$\frac{b * e^{L}}{B} = \hat{h}(x, t)$$
$$log(\hat{h}(x, t)) = L + log(\frac{b}{B})$$

Maximum log-likelihood, with regularization

$$I(\beta) = \sum_{i=1}^{N} \left(\sum_{k=0}^{K} x_{ik} \beta_k \right) - n_i log \left(1 + e^{\sum_{k=0}^{K} x_{ik} \beta_k} \right)$$

Maximum log-likelihood, with offset

$$I(\beta) = \sum_{i=1}^{N} \left(\sum_{k=0}^{K} x_{ik} \beta_k + \frac{b}{B} \right) - n_i \log \left(1 + e^{\sum_{k=0}^{K} x_{ik} \beta_k + \frac{b}{B}} \right)$$

Maximum log-likelihood, with offset and lasso

$$I(\beta) = \sum_{i=1}^{N} \left(\sum_{k=0}^{K} x_{ik} \beta_k + \frac{b}{B} \right) - n_i \log \left(1 + e^{\sum_{k=0}^{K} x_{ik} \beta_k + \frac{b}{B}} \right) - \lambda ||\beta||$$

Casebase: Parametric families

• We can now fit models of the form:

$$log(h(t;\alpha,\beta)) = g(t;\alpha) + \beta X$$

Casebase: Parametric families

• We can now fit models of the form:

$$log(h(t; \alpha, \beta)) = g(t; \alpha) + \beta X$$

• By changing the function $g(t; \alpha)$, we can model different parametric families easily:

Casebase: Parametric models

Exponential: $g(t; \alpha)$ is equal to a constant

casebase::fitSmoothHazard(status ~ X1 + X2)

Gompertz: $g(t; \alpha) = \alpha t$

casebase::fitSmoothHazard(status ~ time + X1 + X2)

Weibull: $g(t; \alpha) = \alpha log(t)$

casebase::fitSmoothHazard(status ~ log(time) + X1 + X2)

• We have a bunch of different parametric hazard models now.

- We have a bunch of different parametric hazard models now.
- To get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

- We have a bunch of different parametric hazard models now.
- To get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

• CI(x,t)= Cumulative Incidence (Absolute Risk)

- We have a bunch of different parametric hazard models now.
- To get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

- CI(x,t)= Cumulative Incidence (Absolute Risk)
- h(x,u)= Hazard function

- We have a bunch of different parametric hazard models now.
- To get the absolute risk, we need to evaluate the following equation in relation to the hazard:

$$CI(x,t) = 1 - e^{-\int_0^t h(x,u)du}$$

- CI(x,t)= Cumulative Incidence (Absolute Risk)
- h(x,u)= Hazard function
- Lets use the weibull hazard

casebase surv weibull-> LASSO

- casebase surv weibull-> LASSO
- cox surv

- casebase surv weibull-> LASSO
- cox surv
- cox surve -> LASSO

- casebase surv weibull-> LASSO
- cox surv
- cox surve -> LASSO
- Kaplan-meier

Survival comparison

Brier score equation

- Brier score equation
- Calibration and discrimination

- Brier score equation
- Calibration and discrimination
- IPA score equation

- Brier score equation
- Calibration and discrimination
- IPA score equation
- In progress

Future work

Survival GWAS

References 1

- 1. Hanley, James A, and Olli S Miettinen. 2009. "Fitting Smooth-in-Time Prognostic Risk Functions via Logistic Regression." The International Journal of Biostatistics 5 (1).
- 2.Saarela, Olli, and Elja Arjas. 2015. "Non-Parametric Bayesian Hazard Regression for Chronic Disease Risk Assessment." Scandinavian Journal of Statistics 42 (2). Wiley Online Library: 609–26.
- 3.Saarela, Olli. 2015. "A Case-Base Sampling Method for Estimating Recurrent Event Intensities." *Lifetime Data Analysis*. Springer, 1–17

References 2

4. REFFERENCE TO SUPPORT DATASET????.

5. Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for clinicians. *Bone Marrow Transplant*. 2007 Aug; 40(4):381-7. doi: 10.1038/sj.bmt.1705727.

6. Turgeon, M. (2017, June 10). Retrieved May 05, 2019, from https://www.maxturgeon.ca/slides/MTurgeon-2017-Student-Conference.pdf

Czepiel, S. A. (2002). Maximum likelihood estimation of logistic regression models: theory and implementation. Available at czep. net/stat/mlelr. pdf, 1825252548-1564645290. ????

Tutorial and Slides

```
\begin{center} Tutorial:
http://sahirbhatnagar.com/casebase/
Slides:
https://github.com/Jesse-
Islam/ATGC_survival_presentation_Feb.27.2020
Questions? \end{center}
```