MA 214: Introduction to Numerical Analysis, Spring 2014 Extra Problems

- 1. For $x \in \mathbb{R}^n$, prove the following inequalities.
 - (a) $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$.
 - (b) $||x||_{\infty} \le ||x||_1 \le n||x||_{\infty}$.
 - (c) $||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$.

Hence show that

$$||x_k - x||_1 \to 0 \Leftrightarrow ||x_k - x||_2 \to 0 \Leftrightarrow ||x_k - x||_\infty \to 0 \text{ as } k \to \infty.$$

2. Let A be a diagonal matrix with the ith diagonal entry equal to d_i . Find

$$||A||_1$$
, $||A||_{\infty}$ and $||A||_2$.

- 3. Find all the diagonal matrices of size $n \times n$ such that the condition number $\kappa_{\infty}(A) = 1$.
- 4. Let A be a real $n \times n$ matrix such that $\kappa_2(A) = 1$. Show that all the eigenvalues of $A^T A$ are equal.
- 5. Let A be an invertible matrix and B be a singular matrix. Prove the following inequality.

$$\frac{1}{\|A - B\|} \le \|A^{-1}\|.$$