Chapter 1

Sets and Relations

1.1 Cantor's Concept of a Set

A set S is any collection of definite, distinguishable objects of our intuition or of our intellect to be conceived as a whole. The objects are called the **elements** or **members** of S.

1.2 The Basis of Intuitive Set Theory

Membership relation: $x \in A$ if the object x is a member of the set A. If x is not a member of A then $x \notin A$. $x_1, x_2, \ldots, x_n \in A$ is shorthand for $x_1 \in A \land x_2 \in A \land \cdots \land x_n \in A$.

The intuitive principle of extension: Two sets are equal iff they have the same members. Set equality: The equality of two sets X and Y will be denoted by X = Y and inequality of X and Y by $X \neq Y$. Among the basic properties of this relation are:

$$X = X,$$

$$X = Y \Rightarrow Y = X,$$

$$X = Y \land Y = Z \Rightarrow X = Z,$$

for all sets X, Y, and Z.

unit set: a set $\{x\}$ whose sole member is x.

collection of sets: a set whose members are sets.

The intuitive principle of abstraction: A formula P(x) defines a set A by the convention that the members of A are exactly those objects a such that P(a) is a true statement, denoted by $A = \{x \mid P(x)\}$.

Note: $\{x \in A \mid P(x)\} := \{x \mid x \in A \land P(x)\}$. For a property P and function f we can write $\{f(x) \mid P(x)\} := \{y \mid \exists x \colon P(x) \land y = f(x)\}$.

1.3 Inclusion

If A and B are sets, then A is **included in** B iff each member of A is a member of B. Symbolized: $A \subseteq B$. We also say that A is a **subset** of B. Equivalently, B **includes** A, symbolized by $B \supseteq A$.

The set A is **properly included in** B (A is a **proper subset** of B / B **properly includes** A) iff $A \subseteq B$ and $A \ne B$.

Among the basic properties of the inclusion relation are

$$\begin{split} X \subseteq X; \\ X \subseteq Y \land Y \subseteq Z \Rightarrow X \subseteq Z; \\ X \subseteq Y \land Y \subseteq X \Rightarrow X = Y. \end{split}$$

empty set: $\{x \in A \mid x \neq x\}$ for any set A is the set with no elements, symbolized by \emptyset . **power set**: the set of all subsets of a given set. $\mathcal{P}(A) = \{B \mid B \subseteq A\}$ for a given set A.

1.4 Operations for Sets

union: for sets A and B, the set of all objects which are members of either A or B. $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$. (sum/join)

intersection: for sets A and B, the set of all objects which are members of both A and B. $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$. (**product/meet**)

<u>Lemma</u>: For every pair of sets A and B the following inclusions hold:

$$\emptyset \subseteq A \cap B \subseteq A \subseteq A \cup B$$
.

<u>PROOF</u>: Take $x \in \emptyset$. Since this is false, we can conclude $x \in A \cap B$ and so $\emptyset \subseteq A \cap B$. Now take $x \in A \cap B$. Then $x \in \{y \mid y \in A \text{ and } y \in B\}$ and so $x \in \{y \mid y \in A\} = A$ and thus $A \cap B \subseteq A$. Now take $x \in A$. Then we must have $x \in \{y \mid y \in A \text{ or } y \in B\} = A \cup B$. Then $A \subseteq A \cup B$.

disjoint: $A \cap B = \emptyset$ for sets A and B.

intersect: $A \cap B \neq \emptyset$ for sets A and B.

disjoint collection: for a collection of sets, each distinct pair of its member sets is disjoint. **partition**: for a set X, a disjoint collection \mathcal{A} of nonempty and distinct subsets of X such that each member of X is a member of some (exactly one) member of \mathcal{A} .

absolute complement of A: $\overline{A} = \{x \mid x \notin A\}$, the set of all members which are not in A. **relative complement** of A with respect to X: $X - A = X \cap \overline{A} = \{x \in X \mid x \notin A\}$, the set of those members of X which are not members of A.

symmetric difference of A and B: $A + B = (A - B) \cup (B - A)$.

universal set: the set U such that all sets under consideration in a certain discussion are subsets of U.

1.5 The Algebra of Sets

identities: equations which are true whatever the universal set U and no matter what particular subsets the letters (other than U and \emptyset) represent.

<u>THEOREM 5.1</u>: For any subsets A, B, C of a set U the following equations are identities. Here \overline{A} is an abbreviation for U - A.

1. $A \cup (B \cup C) = (A \cup B) \cup C$.

1'. $A \cap (B \cap C) = (A \cap B) \cap C$.

 $2. \ A \cup B = B \cup A.$

2'. $A \cap B = B \cap A$.

3. $A \cup (B \cap C) = (A \cup B) \cap (B \cup C)$.

3'. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

 $4. \ A \cup \emptyset = A.$

4'. $A \cap U = A$.

5. $A \cup \overline{A} = U$

5'. $A \cap \overline{A} = \emptyset$.

PROOF:

<u>Lemma</u>: Let X, Y be subsets of U. Then $X \subseteq X \cup Y$ and $X \subseteq Y \cup X$.

<u>Proof:</u> Assume $x \in X$ and $x \notin X \cup Y$. Then $x \notin \{z \mid z \in X \text{ or } z \in Y\} \Rightarrow x \notin \{z \mid z \in X\} = X$ which is a contradiction. Now assume $x \in X$ and $x \notin Y \cup X$. Then $x \notin \{z \mid z \in Y \text{ or } z \in X\} \Rightarrow x \notin \{z \mid z \in X\} = X$ which is a contradiction.

- 1. Assume $x \in A \cup (B \cup C)$. Then $x \in A$ or $x \in B \cup C$. If $x \in A$ then $x \in A \cup B$ and so $x \in (A \cup B) \cup C$. Otherwise if $x \in B \cup C$ then $x \in B$ or $x \in C$. If $x \in B$ then $x \in (A \cup B)$ and so $x \in (A \cup B) \cup C$. If $x \in C$ then $x \in (A \cup B) \cup C$. Therefore $A \cup (B \cup C) \subseteq (A \cup B) \cup C$.
 - Now assume $x \in (A \cup B) \cup C$. Then $x \in A \cup B$ or $x \in C$. If $x \in A \cup B$ then $x \in A$ or $x \in B$. If $x \in A$ then $x \in A \cup (B \cup C)$. If $x \in B$ then $x \in (B \cup C)$ and so $x \in A \cup (B \cup C)$. Otherwise if $x \in C$ then $x \in B \cup C$ and so $x \in A \cup (B \cup C)$. Therefore $(A \cup B) \cup C \subseteq A \cup (B \cup C)$. Hence $A \cup (B \cup C) = (A \cup B) \cup C$.
- 1'. Assume $x \in A \cap (B \cap C)$. Then $x \in A$ and $x \in B \cap C$. Since $x \in B \cap C$ we have $x \in B$ and $x \in C$. Then since $x \in A$ and $x \in B$ we have $x \in A \cap B$. Since $x \in C$ we have $x \in (A \cap B) \cap C$. Therefore $A \cap (B \cap C) \subseteq (A \cap B) \cap C$.

 Now assume $x \in (A \cap B) \cap C$. Then $x \in A \cap B$ and $x \in C$. Since $x \in A \cap B$ we have $x \in A$ and $x \in B$. Then since $x \in B$ and $x \in C$ we have $x \in B \cap C$. Since
 - have $x \in A$ and $x \in B$. Then since $x \in B$ and $x \in C$ we have $x \in B \cap C$. Since $x \in A$ we have $x \in A \cap (B \cap C)$. Therefore $(A \cap B) \cap C \subseteq A \cap (B \cap C)$. Hence $A \cap (B \cap C) = (A \cap B) \cap C$.
- 2. Assume $x \in A \cup B$. Then $x \in A$ or $x \in B$. In either case $x \in B \cup A$ and so $A \cup B \subseteq B \cup A$. Now assume $x \in B \cup A$. Then $x \in B$ or $x \in A$. In either case $x \in A \cup B$ and so $B \cup A \subseteq A \cup B$. Hence $A \cup B = B \cup A$.
- 2'. Assume $x \in A \cap B$. Then $x \in A$ and $x \in B$ and so $x \in B \cap A$. Therefore $A \cap B \subseteq B \cap A$. Now assume $x \in B \cap A$. Then $x \in B$ and $x \in A$ and so $x \in A \cap B$. Therefore $B \cap A \subseteq B \cap A$. Hence $A \cap B = B \cap A$.
- 3. Assume $x \in A \cup (B \cap C)$. Then $x \in A$ or $x \in B \cap C$. If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$ and so $x \in (A \cup B) \cap (A \cup C)$. Otherwise if $x \in B \cap C$ then $x \in B$ and

 $x \in C$. Since $x \in B$ we have $x \in A \cup B$. Since $x \in C$ we have $x \in A \cup C$. Then $x \in (A \cup B) \cap (A \cup C)$ and therefore $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Now assume $x \in (A \cup B) \cap (A \cup C)$. Then $x \in A \cup B$ and $x \in A \cup C$. Since $x \in A \cup B$ we have $x \in A$ or $x \in B$. If $x \in A$ then $x \in A \cup (B \cap C)$. Otherwise if $x \in B$ then $x \in A \cup B$. Since $x \in A \cup C$ we also have that $x \in A$ or $x \in C$. If $x \in A$ then $x \in A \cup (B \cap C)$. Otherwise if $x \in C$ then since $x \in B$ we have $x \in B \cap C$ and so $x \in A \cup (B \cap C)$. Therefore $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Hence $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

- 3'. Assume $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$. If $x \in B$ then since $x \in A$ we have $x \in A \cap B$ and so $x \in (A \cap B) \cup (A \cap C)$. Otherwise if $x \in C$ then since $x \in A$ we have $x \in A \cap C$ and so $x \in (A \cap B) \cup (A \cap C)$. Therefore $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Now assume $x \in (A \cap B) \cup (A \cap C)$. Then $x \in A \cap B$ or $x \in A \cap C$. If $x \in A \cap B$ then $x \in A$ and $x \in B$. Since $x \in B$ we have $x \in B \cup C$. Since we also have $x \in A$ then $x \in A \cap (B \cup C)$. Otherwise if $x \in A \cap C$ then $x \in A$ and $x \in C$. Since $x \in C$ we have $x \in B \cup C$. Since we also have $x \in A$ then $x \in A \cap (B \cup C)$. Therefore $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Hence $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 4. Assume $x \in A \cup \emptyset$. Then $x \in A$ or $x \in \emptyset$. Since $x \in \emptyset$ is impossible, we must have the $x \in A$ and so $A \cup \emptyset \subseteq A$. Now assume $x \in A$ then $x \in A \cup \emptyset$ and so $A \subseteq A \cup \emptyset$. Hence $A \cup \emptyset = A$.
- 4'. Assume $x \in A \cap U$. Then $x \in A$ and $x \in U$. Therefore $A \cap U \subseteq A$. Now assume $x \in A$. Then since $A \subseteq U$ we have $x \in U$ and so $x \in A \cap U$. Therefore $A \subseteq A \cap U$. Hence $A \cap U = A$.
- 5. Assume $x \in A \cup \overline{A}$. Then $x \in A$ or $x \in \overline{A}$. Since $A \subseteq U$ and $\overline{A} \subseteq U$ in either case we have $x \in U$ and so $A \cup \overline{A} \subseteq U$. Now assume $x \in U$. Then $x \in A$ or $X \notin A$ for any set A. Thus $x \in A$ or $x \in \overline{A}$ and so $x \in A \cup \overline{A}$. Therefore $U \subseteq A \cup \overline{A}$. Hence $A \cup \overline{A} = U$.
- 5'. Assume $x \in A \cap \overline{A}$. Then $x \in A$ and $x \in \overline{A}$. Since $x \in \overline{A}$ we have $x \notin A$. Since $x \in A$ and $x \notin A$ we have $x \in \emptyset$. Therefore $A \cap \overline{A} \subseteq \emptyset$. Since $\emptyset \subseteq X$ for any set X we have $\emptyset \subseteq A \cap \overline{A}$. Hence $A \cap \overline{A} = \emptyset$.

General associative law for set union: The sets obtainable from given sets A_1, A_2, \ldots, A_n in that order, by use of the operation of union are all equal to one another. The set defined by A_1, A_2, \ldots, A_n in this way will be written as

$$A_1 \cup A_2 \cup \cdots \cup A_n$$
.

General associative law for set intersection: The sets obtainable from given sets A_1, A_2, \ldots, A_n in that order, by use of the operation of intersection are all equal to one another. The set defined by A_1, A_2, \ldots, A_n in this way will be written as

$$A_1 \cap A_2 \cap \cdots \cap A_n$$
.

General commutative law for set union: If $1', 2', \ldots, n'$ are $1, 2, \ldots, n$ in any order, then

$$A_1 \cup A_2 \cup \cdots \cup A_n = A_{1'} \cup A_{2'} \cup \cdots \cup A_{n'}.$$

General commutative law for set intersection: If $1', 2', \ldots, n'$ are $1, 2, \ldots, n$ in any order, then

$$A_1 \cap A_2 \cap \cdots \cap A_n = A_{1'} \cap A_{2'} \cap \cdots \cap A_{n'}$$
.

General distributive law for set union:

$$A \cup (B_1 \cap B_2 \cap \cdots \cap B_n) = (A \cup B_1) \cap (A \cup B_2) \cap \cdots \cap (A \cup B_n).$$

General distributive law for set intersection:

$$A \cap (B_1 \cup B_2 \cup \cdots \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_n).$$

dual: An equation, or an expression, or a statement within the framework of the algebra of sets obtained from another by interchanging \cup and \cap along with \emptyset and U.

principle of duality for the algebra of sets: If T is any theorem expressed in terms of \cup , \cap , and , then the dual of T is also a theorem.

THEOREM 5.2: For all subsets A and B of a set U, the following statements are valid. Here \overline{A} is an abbreviation for U-A.

6. If, for all $A, A \cup B = A$, then $B = \emptyset$.

6'. If, for all $A, A \cap B = A$ then B = U.

7,7'. If $A \cup B = U$ and $A \cap B = \emptyset$, then $B = \overline{A}$.

8.8'. $\overline{\overline{A}} = A$.

9. $\overline{\emptyset} = U$.

9'. $\overline{U} = \emptyset$.

10. $A \cup A = A$

10'. $A \cap A = A$.

11. $A \cup U = U$ 12. $A \cup (A \cap B) = A$. 11'. $A \cap \emptyset = \emptyset$.

12'. $A \cap (A \cup B) = A$.

13. $\overline{A \cup B} = \overline{A} \cap \overline{B}$

13'. $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Proof:

- 6. Assume $A \cup B = A$ for all A. Take $A = \emptyset$. Then $\emptyset \cup B = \emptyset$. Then if $x \in B$ we have $x \in \emptyset \cup B = \emptyset$ and so $B \subseteq \emptyset$. Since $\emptyset \subseteq B$ we have $B = \emptyset$.
- 6'. Assume $A \cap B = A$ for all A. Take A = U. Then $U \cap B = U$. Then if $x \in U$ we have $x \in U \cap B$ and so $x \in B$. Therefore $U \subseteq B$. Since $B \subseteq U$ we have B = U.
- 7,7'. Assume $A \cup B = U$ and $A \cap B = \emptyset$ for sets A and B. Take $x \in B$. Assume $x \in A$. Then $x \in A \cap B = \emptyset$. By contradiction we have $x \in A$. Then $B \subseteq A$. Now take $x \in A$. Then $x \notin A$. Assume $x \notin B$. Then $x \notin A \cup B = U$. By contradiction we have $x \in B$. Therefore $\overline{A} \subseteq B$ and so $B = \overline{A}$.

- 8,8'. Take $x \in \overline{\overline{A}}$ for a set A. Then $x \notin \overline{A}$ and so $x \in A$. Therefore $\overline{\overline{A}} \subseteq A$. Now take $x \in A$. Then $x \notin \overline{A}$ and so $x \in \overline{\overline{A}}$. Therefore $A \subseteq \overline{\overline{A}}$ and so $\overline{\overline{A}} = A$.
 - 9. Take $x \in \overline{\emptyset}$. Then $x \in U \cap \overline{\emptyset}$ and so $x \in U$. Then $\overline{\emptyset} \subseteq U$. Now take $x \in U$. Then $x \notin \emptyset$ and so $x \in U \cap \overline{\emptyset} = U \emptyset = \overline{\emptyset}$. Therefore $U \subseteq \overline{\emptyset}$ and so $\overline{\emptyset} = U$.
 - 9'. Take $x \in \overline{U}$. Then $x \in U \cap \overline{U}$ so $x \in U$ and $x \notin U$. By contradiction $x \in \emptyset$ and so $\overline{U} \subseteq \emptyset$. Now take $x \in \emptyset$. Then $x \notin U$ and so $x \in \overline{U}$. Therefore $\emptyset \subseteq \overline{U}$ and so $\overline{U} = \emptyset$.
 - 10. Take $x \in A \cup A$. Then $x \in A$ or $x \in A$ and so $x \in A$. Thus $A \cup A \subseteq A$. Now take $x \in A$. Then $x \in A \cup A$ and so $A \subseteq A \cup A$. Therefore $A \cup A = A$.
- 10'. Take $x \in A \cap A$. Then $x \in A$ and so $A \cap A \subseteq A$. Now take $x \in A$. Then $x \in A \cap A$ and so $A \subseteq A \cap A$. Therefore $A \cap A = A$.
- 11. Take $x \in A \cup U$. Then $x \in A$ or $x \in U$. If $x \in A$ then $x \in U$ since $A \subseteq U$. Therefore $A \cup U \subseteq U$. Now take $x \in U$. Then $x \in A \cup U$ and so $U \subseteq A \cup U$. Therefore $A \cup U = U$.
- 11'. Take $x \in A \cap \emptyset$. Then $x \in \emptyset$ and so $A \cap \emptyset \subseteq \emptyset$. Now take $x \in \emptyset$. Then $x \in A$ (ex falso quodlibet). Thus $x \in A \cap \emptyset$ and so $\emptyset \subseteq A \cap \emptyset$. Therefore $A \cap \emptyset = \emptyset$.
- 12. Take $x \in A \cup (A \cap B)$. Then $x \in A$ or $x \in A \cap B$. If $x \in A \cap B$ then $x \in A$. Therefore $A \cup (A \cap B) \subseteq A$. Now take $x \in A$. Then $x \in A \cup (A \cap B)$. Thus $A \subseteq A \cup (A \cap B)$ and so $A \cup (A \cap B) = A$.
- 12'. Take $x \in A \cap (A \cup B)$. Then $x \in A$ and so $A \cap (A \cup B) \subseteq A$. Now take $x \in A$. Then $x \in A \cup B$ and so $x \in A \cap (A \cup B)$. Therefore $A \subseteq A \cap (A \cup B)$ and so $A \cap (A \cup B) = A$.
- 13. Take $x \in \overline{A \cup B}$. Then $x \notin A \cup B$ and so $x \notin A$ and $x \notin B$. Then $x \in \overline{A}$ and $x \in \overline{B}$ and so $x \in \overline{A} \cap \overline{B}$. Therefore $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$. Now take $x \in \overline{A} \cap \overline{B}$. Then $x \in \overline{A}$ and $x \in \overline{B}$ and so $x \notin A$ and $x \notin B$. Then $x \notin A \cup B$ and so $x \in \overline{A \cup B}$. Therefore $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ and so $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- 13'. Take $x \in \overline{A \cap B}$. Then $x \notin A \cap B$. Then $x \notin A$ or $x \notin B$. Then $x \in \overline{A}$ or $x \in \overline{B}$ and so $x \in \overline{A} \cup \overline{B}$. Therefore $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$. Now take $x \in \overline{A} \cup \overline{B}$. Then $x \in \overline{A}$ or $x \in \overline{B}$ and so $x \notin A$ or $x \notin B$. Then $x \notin A \cap B$ and so $x \notin \overline{A} \cap B = \overline{A} \cup \overline{B}$.

THEOREM 5.3: The following statements about sets A and B are equivalent to one another.

- (I) $A \subseteq B$
- (II) $A \cap B = A$
- (III) $A \cup B = B$

Proof:

- (I) implies (II). Assume $A \subseteq B$. Since, for all A and B, $A \cap B \subseteq A$, it is sufficient to prove that $A \subseteq A \cap B$. But if $x \in A$, then $x \in B$ and, hence, $x \in A \cap B$. Hence $A \subseteq A \cap B$.
- (II) implies (III). Assume $A \cap B = A$. Then $A \cup B = (A \cap B) \cup B = (A \cup B) \cap (B \cup B) = (A \cup B) \cap B = B$.
- (III) implies (I). Assume $A \cup B = B$. Then this and the identity $A \subseteq A \cup B$ imply $A \subseteq B$.

<u>NOTE</u>: The principle of duality does not apply directly to expressions in which - or \subseteq appears. Replace A - B with $A \cap \overline{B}$. Replace $A \subseteq B$ with $A \cap B = A$ or $A \cup B = B$. The dual of $A \cap B = A$ is $A \cup B = A \Leftrightarrow A \supseteq B$. So we can extend the principle of duality to include the inclusion symbol: swap \subseteq with \supseteq (inclusion signs are reversed).

THEORY OF EQUATIONS FOR THE ALGEBRA OF SETS: For an equation formed using \cup , \cap , and $\overline{}$ on symbols A_1, A_2, \ldots, A_n and X where the A's denote fixed subsets of some universal set U and X denotes a subset of U which is constrained only by the equation in which it appears, determine under what conditions such an equation has a solution and then, assuming these are satisfied, obtain all solutions.

Step I. Two sets are equal iff their symmetric difference is equal to \emptyset . Hence, an equation in X is equivalent to one whose righthand side is \emptyset .

Step II. An equation in X with righthand side \emptyset is equivalent to one of the form

$$(A \cap X) \cup (B \cap \overline{X}) = \emptyset,$$

where A and B are free of X.

Step III. The union of two sets is equal to \emptyset iff each set is equal to \emptyset . Hence the equation in Step II is equivalent to the pair of simultaneous equations

$$A \cap X = \emptyset, B \cap \overline{X} = \emptyset.$$

Step IV. The above pair of equations, and hence the original equation, has a solution iff $B \subseteq \overline{A}$. In this event, any X, such that $B \subseteq X \subseteq \overline{A}$, is a solution. [See exercise 5.7]

1.6 Relations

ordered pair: $\langle x, y \rangle = \{\{x\}, \{x, y\}\}.$

<u>THEOREM 6.1</u>: The ordered pair of x and y is uniquely determined by x and y. Moreover, if $\langle x, y \rangle = \langle u, v \rangle$ then x = u and y = v.

Proof:

That x and y uniquely determine $\langle x, y \rangle$ follows from our assumption that a set is uniquely determined by its members. Now assume $\langle x, y \rangle = \langle u, v \rangle$.

(Case I) u = v: Then $\langle u, v \rangle = \{\{u\}, \{u, v\}\} = \{\{u\}\}\}$. Hence $\{\{x\}, \{x, y\}\} = \{\{u\}\}\} \Rightarrow \{x\} = \{\{x, y\}\} = \{u\}$ and so x = u and y = v.

```
Then \{x,y\} \neq \{u\} and so x \neq y and y \neq u. Therefore y = v.
first coordinate: x in \langle x, y \rangle.
second coordinate: y in \langle x, y \rangle.
ordered triple: \langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle.
ordered n-tuple: \langle x_1, x_2, \dots, x_n \rangle = \langle \langle x_1, x_2, \dots, x_{n-1} \rangle, x_n \rangle.
binary relation: a set of ordered pairs. Given relation \rho and \langle x,y\rangle \in \rho we write x\rho y.
\rho-related: x is \rho-related to y iff x \rho y.
n-ary relation: a set of ordered n-tuples.
domain: D_{\rho} = \{x \mid \text{for some } y, \langle x, y \rangle \in \rho\}.
range: R_{\rho} = \{ y \mid \text{ for some } x, \langle x, y \rangle \in \rho \}.
cartesian product: X \times Y = \{ \langle x, y \rangle \mid x \in X \land y \in Y \}.
relation from X to Y: \rho \subseteq X \times Y.
relation in Z: \rho \subseteq Z \times Z.
universal relation in X: \rho = X \times X.
void relation in X: \rho = \emptyset.
identity relation in X: \iota_X = \{\langle x, x \rangle \mid x \in X\}.
\rho-relatives of A: \rho[A] = \{y \mid x \rho y \text{ for some } x \in A\}. Then we have \rho(D_{\rho}) = R_{\rho}, and, for
any set A, \rho[A] \subseteq R_{\rho}.
```

(Case II) $u \neq v$: Then $\{u\} \neq \{\{u\}, \{u, v\}\}\}$ and $\{x\} \neq \{\{u\}, \{u, v\}\}\}$. Then $\{x\} \in \{\{u\}, \{u, v\}\}\} \Rightarrow \{x\} = \{u\} \Rightarrow x = u$ and $\{x, y\} \in \{\{u\}, \{u, v\}\}\} \Rightarrow \{x, y\} = \{u, v\}$.

1.7 Equivalence Relations

reflexive: a relation ρ in a set X is reflexive (in X) iff $x\rho x$ for each $x \in X$.

symmetric: a relation ρ is symmetric if $x\rho y \Rightarrow y\rho x$.

transitive: a relation ρ is transitive iff $x\rho y \wedge y\rho z \Rightarrow x\rho z$.

equivalence relation: a relation which is reflexive, symmetric, and transitive. Any equivalence relation in X is an equivalence relation on X since $D_{\rho} = X$ for any equivalence relation ρ in X.

equivalence class: if ρ is an equivalence relation on X, then $A \subseteq X$ is an equivalence class (ρ -equivalence class) iff there is some $x \in A$ such that $A = \{y \mid x\rho y\}$ iff there is some $x \in X$ such that $A = \rho[\{x\}]$. The equivalence class generated by x is denoted [x]. Two basic properties follow from this definition: (I) $x \in [x]$ and (II) if $x\rho y$, then [x] = [y].

<u>THEOREM 7.1</u>: Let ρ be an equivalence relation on X. Then the collection of distinct ρ equivalence classes is a partition of X. Conversely, if \mathcal{P} is a partition of X, and a relation ρ defined by $a\rho b$ iff there exists A in \mathcal{P} such that $a, b \in A$, then ρ is an equivalence relation on X. Moreover, if an equivalence relation ρ determines the partition \mathcal{P} of X, then the equivalence relation defined by \mathcal{P} is equal to ρ . Conversely, if a partition \mathcal{P} of X determines the equivalence relation ρ , then the partition of X defined by ρ is equal to \mathcal{P} .

PROOF: From (II) above, we have that two equivalence classes are either disjoint or equal,

since $z \in [x]$ and $z \in [y]$ then [x] = [z] and [y] = [z] and so [x] = [y]. Therefore the collection of distinct ρ -equivalence classes determines a partition \mathcal{P} of X. To show the converse, let \mathcal{P} be a partition of X and let relation ρ on X be defined such that $a\rho b$ iff there exists $A \in \mathcal{P}$ such that $a, b \in A$. Then ρ is symmetric by its definition. For all $a \in X$, there exists some $A \in \mathcal{P}$ such that $a \in A$ and so ρ is reflexive. To show the transitivity of ρ , assume $a\rho b$ and $b\rho c$. Then there exist $A \in \mathcal{P}$ such that $a, b \in A$ and $B \in \mathcal{P}$ such that $b, c \in B$. Then $b \in A$ and $b \in B$ but since \mathcal{P} is a partition, we must have that A = B, which means $c \in A$ and so $a\rho c$. Therefore ρ is an equivalence relation on X.

Now assume that an equivalence relation ρ on X is given, that it determines the partition \mathcal{P} of X and that \mathcal{P} determines the equivalence relation ρ^* . We show $\rho = \rho^*$. Assume $\langle x, y \rangle \in \rho$. Then $x, y \in [x]$ and $[x] \in \mathcal{P}$. By the definition of ρ^* it follows that $x\rho^*y$ or $\langle x, y \rangle \in \rho^*$. Conversely, given $\langle x, y \rangle \in \rho^*$, there exists A in \mathcal{P} with $x, y \in A$. But A is a ρ -equivalence class, and hence $x\rho y$ or $\langle x, y \rangle \in \rho$. Thus $\rho = \rho^*$.

For the converse, assume that \mathcal{P} is a partition of X, that it determines the equivalence relation ρ on X, and that ρ determines the partition \mathcal{P}^* of X. We will show $\mathcal{P} = \mathcal{P}^*$. Take any $A \in \mathcal{P}$. Then for any $x, y \in A$ we have $\langle x, y \rangle \in \rho$ and so A = [x] = [y]. Then, since ρ determines the partition \mathcal{P}^* , we must have $A \in \mathcal{P}^*$. Conversely, take any $A^* \in \mathcal{P}^*$. Then for any $x, y \in A^*$ we have $\langle x, y \rangle \in \rho$ since \mathcal{P}^* is determined by ρ and thus $A^* = [x]$. Then we must have $A^* \in \mathcal{P}$ since ρ is determined by \mathcal{P} . Therefore $\mathcal{P} = \mathcal{P}^*$.

congruence mod n in \mathbb{Z} : x is congruent to y mod n in \mathbb{Z} , symbolized $x \equiv y \pmod{n}$, iff n divides x - y for some nonzero $n \in \mathbb{Z}$.

residue class modulo n: congruence class mod n - [a] consists of all numbers a + kn for $k \in \mathbb{Z}$. The residue class mod n are $[0], [1], \ldots, [n-1]$. The collection of residue classes mod n is denoted \mathbb{Z}_n .

quotient set of X **by** ρ : the partition of X induced by an equivalence relation ρ on X, denoted by X/ρ .

THEOREM 7.2: A relation ρ is an equivalence relation iff there exists a disjoint collection \mathcal{P} of nonempty sets such that

$$\rho = \{ \langle x, y \rangle \mid \text{for some } C \in \mathcal{P}, \langle x, y \rangle \in C \times C \}.$$

<u>Proof</u>: Let $R = \{\langle x, y \rangle \mid \text{ for some } C \in \mathcal{P}, \langle x, y \rangle \in C \times C\}.$

(⇒) Assume that ρ is an equivalence relation on X. Then the collection of distinct ρ equivalence classes is disjoint, and we contend that with this choice for \mathcal{P} , ρ has the structure
described in the theorem. Assume $\langle x, y \rangle \in R$. Then there exists an equivalence class [z] with $x, y \in [z]$. Then $z \rho x$ and $z \rho y$ and so $x \rho y$ and thus $\langle x, y \rangle \in \rho$. Therefore $R \subseteq \rho$. Now assume $\langle x, y \rangle \in \rho$. Then $x, y \in [x]$ and so $\langle x, y \rangle \in [x] \times [x]$. Therefore $D \rho \subseteq R$ and hence $\rho = R$.
(⇐) Assume ρ is a relation and that there exists a disjoint collection \mathcal{P} of nonempty sets
such that $\rho = R$. Then we must show that ρ is an equivalence relation. ρ is reflexive: given
any $C \in \mathcal{P}$, for all $x \in C$ we have $\langle x, x \rangle \in C \times C$ and so $\langle x, x \rangle \in \rho$. ρ is symmetric: assume

 $x \rho y$. Then we have $\langle x, y \rangle \in C \times C$ and so $x, y \in C$. Then $\langle y, x \rangle \in C \times C$ and therefore

 $\langle y, x \rangle \in \rho$. ρ is transitive: assume $x\rho y$ and $y\rho z$ then $\langle x, y \rangle \in C \times C$ for some $C \in \mathcal{P}$ and $\langle y, z \rangle \in D \times D$ for some $D \in \mathcal{P}$. Then we have $x, y \in C$ and $y, z \in D$. But since \mathcal{P} is a partition and $y \in C$ and $y \in D$ we must have that C = D. Therefore $z \in C$ and so $\langle x, z \rangle \in C \times C$ and hence $x\rho z$.

1.8 Functions

function: a relation such that no two distinct members have the same first coordinate. f is a function $\Leftrightarrow f \subseteq A \times B \land \langle x, y \rangle, \langle x, z \rangle \in f \Rightarrow y = z$.

synonyms for **function**: transformation, map, mapping, correspondence, operator.

If f is a function and $\langle x, y \rangle \in f$, so that xfy, then x is an **argument** of f. y is the **value** of f at x, the **image** of x under f, the element into which f carries x. Symbols for y: xf, f(x), fx, x^f .

f(x) is the name for the sole member of $f[\{x\}]$, the set of f-relatives of x.

The characteristic feature of a function among relations is that each member of the domain of a function has a single relative.

into: f is into $Y \Leftrightarrow R_f \subseteq Y$.

onto: f is onto $Y \Leftrightarrow R_f = Y$.

on: f is on $X \Leftrightarrow D_f = X$.

 $f: X \to Y$ or $X \xrightarrow{f} Y$: f is a function on the set X into the set Y.

 Y^X : the set of all functions on X into Y. $Y^X \subseteq \mathcal{P}(X \times Y)$. $Y^\emptyset = \{\emptyset\}$ and $\emptyset^X = \emptyset$ if $X \neq \emptyset$.

restriction of f **to** A: $f \cap (A \times Y)$ where $f : X \to Y$ and $A \subseteq X$. Denoted f|A. $f|A:A \to Y$ such that (f|A)(a) = f(a) for $a \in A$. We have $(f|A) \subseteq f$.

extension of g to $f: g \subseteq f$.

identity map on X: $i_X(x) = x$ for all $x \in X$.

injection mapping on A into X: $i_X|A=i_A$.

one-to-one: f maps distinct elements onto distinct elements. f is one-to-one $\Leftrightarrow x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) \Leftrightarrow f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

one-to-one correspondence between X and Y: f is a one-to-one function on X onto Y.

 n^X : The set of all functions on X into a set of n elements.

characteristic function of A: $\chi_A(x) = 1$ if $x \in A$ else $\chi_A(x) = 0$ for $A \subseteq X$. $\chi_A \in 2^X$. $\mathcal{P}(X)$ is in one-to-one correspondence with 2^X via the function $f : \mathcal{P}(X) \to 2^X$ by $f(A \subseteq X) = \chi_A$.

n-ary operation in X: a function f such that $D_f = X^n$ and $R_f \subseteq X$ where X^n is the set of all n-tuples $\langle x_1, x_2, \ldots, x_n \rangle$ for $x_i \in X$. This is a function of n variables.