Convex Optimization

Sasank

April 27, 2015

1 Affine Sets, Convex Sets, Cones etc.

Affine Set contains the *line* through any two points in the set. Equivalently S is affine if $S = \{x \mid Ax = b\}$ for some matrix A. This can be proven by showing that $S - x_p$ is a vector space for some $x_p \in S$

Convex Set contains *line segment* between any two points in the set. Convex hull of a set is set of all convex combinations of points of the set.

Cone S is cone if $x \in S$ then $\theta x \in S$ for $\theta \ge 0$.

Convex Cone S is convex cone if $x_1, x_2 \in S$ then $\theta_1 x_1 + \theta_2 x_2 \in S$ for $\theta_1, \theta_2 \ge 0$.

Hyperplane Sets of the form $\{x \mid a^T x = b\}$. a is the normal vector.

Halfspace Sets of the form $\{x \mid a^T x \leq b\}$

Euclidean ball and Ellipsoid Ball is set of the form $B(x_c, r) = \{x \mid ||x - x_c|| \le r\}$. An ellipsoid is set of the form $\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$ with $P \in S_{++}^n$

Note that Affine sets, convex cones, hyperplanes, halfspaces, Euclidean balls and Ellipsoids are convex and hyperplanes are also affine.

Following are the definitions of some combinations of points x_1 and x_2 . Here $\theta_i \in R$.

Linear combination $\theta_1 x_1 + \theta_2 x_2$

Affine combination $\theta_1 x_1 + \theta_2 x_2$, where $\theta_1 + \theta_2 = 1$

Convex combination $\theta_1 x_1 + \theta_2 x_2$, where $\theta_1 + \theta_2 = 1$, $\theta_1, \theta_2 \ge 0$

Conic combination $\theta_1 x_1 + \theta_2 x_2$, where $\theta_1, \theta_2 \geq 0$

2 Some spaces

2.1 General Topological Spaces

General topological spaces have some sense of neighbourhood. Following are the definitions for such spaces.

Closure of a set $cl(S) = S \cup \{\lim x_i \text{ for convergent } \{x_i\} \subseteq S\}$

Closed set if cl(S) = S

Open set if S^c is closed

Interior(S) = $\bigcup_{S' \subset S \text{ open }} S'$

Boundary(S) = cl(S) - int(S)

2.2 Normed Vector Space

A function $\|.\|$ is called norm if it satisfies

- $||x|| \ge 0$; ||x|| = 0 iff x = 0
- ||tx|| = |t|||x|| for $t \in R$
- $||x + y|| \ge ||x|| + ||y||$

A vector space on which a norm is defined is called normed vector space. These are equivalent characterizations for sets defined before for normed vector spaces.

Closure(S) =
$$\{x \mid \forall \epsilon > 0, S \cap B(x, \epsilon) \neq \emptyset\}$$

Closed set if cl(S) = S

Open set
$$\forall x \in S, \exists \epsilon > 0 \text{ s.t. } B(x, \epsilon) \subseteq S$$

Interior(*S*) =
$$\{x \mid x \in S, B(x, \epsilon) \subseteq S \text{ for some } \epsilon > 0\}$$

Boundary(
$$S$$
) = $cl(S) - int(S)$

Norm ball is of the form $\{x \mid ||x - x_c|| \le r\}$ and norm cone is defined as $\{(x, t) \mid ||x|| \le t\}$.

2.3 Inner Product Space

Inner product space is a vector space with a inner product defined on it. Inner product needs to satisfy following properties:

Conjugate symmetry
$$\langle x,y\rangle=\overline{\langle y,x\rangle}$$

Linearity
$$\langle ax, y \rangle = a \langle x, y \rangle$$
, $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$

Positive definiteness $\langle x, x \rangle \geq 0$ with equality iff x = 0

An inner product induces a norm as follows $||x|| = \sqrt{\langle x, x \rangle}$. Thus every inner product space is a normed vector space. Note that not all norms are inner products. For example consider pnorm $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $x \in \mathbb{R}^n$. This is an inner product if and only if p = 2

2.4 Banach and Hilbert Spaces

A metric space is complete if every Cauchy sequence is convergent.

Banch space is a complete normed vector space

Hilbert space is a complete inner product space

2.5 Some Examples of Vector Spaces

Sequences Infinite sequences, sequences with finite non zero elements, l^p = sequences with bounded p-norm $||x||_p = (\sum_{i=1}^{\infty} |x_i|^p)^{1/p}$. l^p is a Banach space for $p \ge 1$ and a Hilbert space for p = 2.

Polynomials Polynomials, polynomials with degree $\leq n$, polynomials in multiple variables.

Functions $f: X \to V$ has dimension $|X| \dim(V)$. $L_p = \{f \mid \text{measurable f with } ||f||_p = (\int_{i=1}^{\infty} |f(x)|^p dx)^{1/p} < \infty\}$ is a Banach space for $p \ge 1$ and a Hilbert space for p = 2.

Matrices $m \times n$ matrices. Let N(x) be a vector norm. Then a matrix norm can be defined as

$$||A|| = \sup_{x \neq 0} \frac{N(Ax)}{N(x)}$$

Frobenius norm of matrices is defined as

$$||A|| = \sqrt{\sum_{i,j} a_{ij}} = \operatorname{trace}(A^T A)$$

and Frobenius inner product is defined as $\langle A, B \rangle = \operatorname{trace}(A^T B)$

3 Operators & Duals

3.1 Linear Operators

A linear operator T between vector spaces X and Y is $T: X \to Y$ such that $\forall x, x', \lambda, \mu$

$$T(\lambda x + \mu x') = \lambda T(x) + \mu T(x')$$

These are some properties and definitions of linear operators:

• If X & Y are normed vector spaces, we can define operator norm as

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||}$$

- T is called bounded if $\|T\| \le N$ for some $N \in R$. Equivalently if $\exists M$ such that $\|Tx\| \le M\|x\| \ \forall x \in X$
- *T* is continuous if and only if *T* is bounded
- Can generalize eigenfunctions and eigenvalues to operators.
- *X* and *Y* are called linearly isomorphic if *T* is bijection.
- Kernel of T = $\{x \in X \mid Tx = 0\}$. Range of T = $\{y \in Y \mid y = Tx \text{ for some } x \in X\}$
- If X is a normed v.s. and Y is Banach, then $T: X \to Y$ is Banach with respect to operator norm.
- $T^*: Y \to X$ is called adjoint linear map of $T: X \to Y$ if $\langle Tx, y \rangle_Y = \langle x, T^*y \rangle_X \ \forall x \in X, y \in Y$

3.2 Dual Spaces & Cones

Linear operator $T: X \to R$ is called a linear functional. We define the following

Algebraic dual $X^{\#} = \{T \mid T : X \to R\}$. i.e, set of all linear functionals. If X is fdvs, $X \cong X^{\#}$.

Topological dual $X^* = \{T \mid \text{continuous } T: X \to R\}$. i.e, set of all continuous/bounded linear functionals.

Algebraic dual cone $C^{\#} = \{T \in X^{\#} \mid T(x) \ge 0 \ \forall x \in C\}$. Note that C can be any subset of X.

Topological dual cone $C^* = \{T \in X^* \mid T(x) \ge 0 \ \forall x \in C\}$. It can be easily seen that C^* is always a convex cone irrespective of C.

If X is finite dimensional vector space with a norm, $X^{\#} = X^* \cong X$ and $C^{\#} = C^*$.

3.2.1 Riesz Representation Theorem

If X is a Hilbert space and T is a bounded linear functional, then there exists a *unique* $y \in X$ such that

$$T(x) = \langle y, x \rangle \ \forall x \in X$$

In fact $X^* = \{T_y(x) = \langle y, x \rangle \mid x \in X\}$. Furthermore $X \cong X^*$.

Therefore we can simplify our notion of (topological) dual cone as

$$C^* = \{ y \in X \mid \langle y, x \rangle \ge 0 \ \forall x \in C \}$$

.

Properties of dual cones

- C^* is closed because it is intersection of (closed) halfspaces. Thus C^* is closed convex cone for all $C \subseteq X$.
- $C_1 \subseteq C_2 \implies C_2^* \subseteq C_1^*$
- $\operatorname{int}(C^*) = \{ y \in X \mid \langle y, x \rangle > 0 \ \forall x \in X \}$
- If C is a cone and $\operatorname{int}(C) \neq \emptyset$, then C^* is pointed. i.e if $x \in C^*$ and $-x \in C^*$ then x = 0.
- If C is a closed convex cone, $C^{**}=(C)$. Prove this using strict separating hyperplane theorem.
- If C is a convex cone, $C^{**} = \operatorname{closure}(C)$
- If closure(C) is pointed then $int(C^*) \neq \emptyset$

3.3 Positive Semidefinite Cone

 S_+^n , set of all symmetric positive semidefinite matrices is a convex cone. On the other hand, S_{++}^n , set of all symmetric positive definite matrices is a convex set but not cone $(0 \notin S_{++}^n)$. Some notable properties of positive semidefinite cone:

- $(S_{+}^{n})^{*} = S_{+}^{n}$
- $int(S_{+}^{n}) = S_{++}^{n}$

4 Linear & Conic Programs and Weak Duality

4.1 Linear Program and Its Dual

Following optimization problem is called linear program:

We'll derive its dual. For all $\lambda \in \mathbb{R}^n_+$, we have $\lambda^T(-Ax+b) \leq 0$. Therefore for all $\lambda \in \mathbb{R}^n_+$ we have,

$$c^{T}x \ge c^{T}x + \lambda^{T}(-Ax + b)$$

$$= \lambda^{T}b + (c - A^{T}\lambda)^{T}x$$

$$\ge \min_{x} \lambda^{T}b + (c - A^{T}\lambda)^{T}x$$

$$= \begin{cases} \lambda^{T}b & A^{T}\lambda = c \\ -\infty & A^{T}\lambda \ne c \end{cases}$$

Thus we can write

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & c^T x \\ \text{subject to} & -Ax + b \leq 0 \end{array} \leq \begin{array}{ll} \underset{\lambda \geq 0}{\text{maximize}} & b^T \lambda \\ \text{subject to} & A^T \lambda = c \end{array}$$

We call the problem

as dual linear program. The property $LP \leq LD$ is called weak duality.

4.2 Conic Program and Its Dual

4.2.1 Generalized Inequality

Let K be a cone. We define $a \ge_K b$ if $a - b \in K$. This is a valid inequality iff K is a convex pointed cone. i.e, following properties need to be satisfied

Reflexivity $a \ge a$

Anti-symmetry If both $a \ge b$ and $b \ge a$, then a = b

Transitivity If both $a \ge b$ and $b \ge c$, then $a \ge c$

Compatible with linear operators:

Homogenity If
$$a \ge b$$
 and $\mu \in R_+$, then $\mu a \ge \mu b$
Additivity If $a \ge b$ and $c \ge d$, then $a + c \ge b + d$

A convex cone is called proper if it is closed, solid and pointed.

4.2.2 Conic Program & Weak Duality

Following optimization problem is called conic program:

To derive a weak dual of this, we need a set D such that $\forall \lambda \in D, \lambda^T (Ax - b) \geq 0$. Dual cone K^* satisfies this criterion. Therefore the following is the conic dual program:

We have $CP \leq CD$. Note that LP is a special case of CP where $K = \mathbb{R}^n$.

Following is the alternate standard notation and generalization for conic program and its dual.

where $A:V\to\mathbb{R}^n$ is a linear map. (If $K=S_n^+\subset V=S^n$, then CP is called semi-definite program.) Denote feasible set of CP by F_p . Then conic dual is

$$\begin{array}{ll} \text{maximize} & \langle b,\lambda\rangle_{\mathbb{R}^n} \\ \text{subject to} & c-A^*\lambda\in K^*,\lambda\in\mathbb{R}^n \end{array} \tag{CD}$$

where $A^* : \mathbb{R}^n \to V$ is adjoint of A. Denote feasible set of CD by F_d . In this notation we have $CP \ge CD$. Some definitions and properties:

- CP CD is called duality gap and is always ≥ 0
- If CP or CD is feasible but unbounded, then the other is infeasible or has no feasible solution
- If a pair of feasible solutions can be found to the both primal and dual problems with equal objective, then they are both optimal

5 Strong Duality

Theorem:

- 1. Let CP or CD be infeasible and let other be feasible and have an interior. Then the other is unbounded.
- 2. Let CP and CD be both feasible and let one of them have an interior. Then there is 0 duality gap.
- 3. Let CP and CD be both feasible and have an interior. Then both have optimal solutions with 0 duality gap.

To prove this we need to prove theorem of alternatives/Farkas' lemma.

5.1 Theorem of alternatives

- 1. Consider $\{x \mid Ax = b, x \in K\}$ for a proper cone $K \subseteq V$ and $A: V \to \mathbb{R}^n$. Suppose $\exists \lambda$ such that $-A^*\lambda \in \operatorname{int}(K^*)$.
 - Then $\{x \mid Ax = b, x \in K\}$ has a feasible solution x iff $\{\lambda \mid -A^*\lambda \in K^*, \langle b, \lambda \rangle > 0\}$ has no feasible solution.
- 2. Consider $\{(\lambda, s) \mid c A^*\lambda = s \in K\}$ for a proper cone $K \subseteq V$ and $A : V \to \mathbb{R}^n$. Suppose $\exists x \text{ such that } Ax = 0, x \in \text{int}(K^*)$.
 - Then, $\{(\lambda, s) \mid c A^*\lambda = s \in K\}$ has a feasible solution (λ, s) iff $\{x \mid Ax = 0, x \in K^*, \langle c, x \rangle < 0\}$ has no feasible solution.

Proof of 1: Let $\bar{\lambda}$ be such that $-A^*\bar{\lambda} \in K^*$ and let $\{x \mid Ax = b, x \in K\}$ has a feasible solution \bar{x} . Then

$$-\langle \bar{\lambda}, b \rangle = -\langle \bar{\lambda}, A\bar{x} \rangle = \langle -A^*\bar{\lambda}, \bar{x} \rangle \ge 0$$

Thus $\{\lambda \mid -A^*\lambda \in K^*, \langle b, \lambda \rangle > 0\}$ has no solution, i.e. empty.

 $C = \{y \mid y = Ax, x \in K\}$ is a closed convex set. Let $\{x \mid Ax = b, x \in K\}$ be empty. i.e $b \notin C$. By strict separating hyperplane theorem, $\exists \lambda \in \mathbb{R}^n$ such that

$$\langle \lambda, b \rangle > \langle \lambda, y \rangle \ \forall y \in C$$

Using the definition of C, we have

$$\langle \lambda, b \rangle > \langle \lambda, Ax \rangle = \langle A^*\lambda, x \rangle \ \forall x \in K$$

Thus $\langle A^*\lambda, x \rangle$ is bounded above $\forall x \in K$. Additionally $\langle A^*\lambda, x \rangle \leq 0$ as otherwise $\langle A^*\lambda, \alpha x \rangle$ can made as large as needed contradicting previous statement. Since $0 \in K$, $\langle \lambda, b \rangle > 0$. Thus the set $\{\lambda \mid -A^*\lambda \in K^*, \langle b, \lambda \rangle > 0\}$ is non empty. \square

Proof of 2: Let $\{(\lambda, s) \mid c - A^*\lambda = s \in K\}$ has a feasible solution $(\bar{\lambda}, \bar{s})$ and $\bar{x} \in K^*$ be such that $A\bar{x} = 0$. Then

$$\langle \bar{s}, \bar{x} \rangle = \langle c - A^* \bar{\lambda}, \bar{x} \rangle = \langle c, \bar{x} \rangle - \langle A^* \bar{\lambda}, \bar{x} \rangle = \langle c, \bar{x} \rangle - \langle \bar{\lambda}, A\bar{x} \rangle = \langle c, \bar{x} \rangle \ge 0$$

Thus $\{x \mid Ax = 0, x \in K^*, \langle c, x \rangle < 0\}$ has no feasible solution.

 $C'=\{t\mid t=A^*\lambda+s,\lambda\in\mathbb{R}^n,s\in K\}$ is a closed convex set. Let $\{(\lambda,s)\mid c-A^*\lambda=s\in K\}$ has no feasible solution. i.e $c\notin C'$. By strict separating hyperplane theorem, $\exists x\in V$ such that

$$\langle x, c \rangle < \langle x, t \rangle \ \forall t \in C'$$

Using the definition of C', we have

$$\langle x, c \rangle < \langle x, s + A^* \lambda \rangle = \langle x, s \rangle + \langle x, A^* \lambda \rangle = \langle x, s \rangle + \langle Ax, \lambda \rangle \ \forall \lambda \in \mathbb{R}^n, s \in K$$

Thus $\langle x, s + A^* \lambda \rangle$ is bounded below $\forall \lambda \in \mathbb{R}^n, s \in K$. Additionally $\langle x, s + A^* \lambda \rangle \geq 0$ as otherwise $\langle x, \alpha s + \alpha A^* \lambda \rangle$ can made as small as needed contradicting previous statement. Since $0 \in K$, $\langle x, c \rangle < 0$.

Also, $\langle x, A^*\lambda \rangle = 0$ as otherwise $\langle x, s + A^*\lambda \rangle$ can be made negative. Therefore $\langle x, A^*\lambda \rangle = \langle Ax, \lambda \rangle = 0$. Thus Ax = 0 and $\langle x, s \rangle \geq 0 \ \forall s \in K$ or equivalently $x \in K^*$. This proves that $\{x \mid Ax = 0, x \in K^*, \langle c, x \rangle < 0\}$ is non empty. \square

5.2 Proof of Strong Duality

We will now apply Farkas' lemma to prove strong duality theorem. Nope.

A Appendix

A.1 Characterizations of positive definite matrices

If $A \in S^n$, the following are equivalent

- 1. $x^T A x > 0$ for all $x \in \mathbb{R}^n \setminus 0$ i.e $A \in S^n_+$
- 2. All *n* eigenvalues $\lambda > 0$
- 3. $A = LL^T$ where L is lower triangular with positive diagonal elements
- 4. $A = Q\Lambda Q^T$ where Q is orthonormal matrix and Λ is a positive diagonal matrix
- 5. $x^T A y$ is a inner product