Calculate the magnetic field of bending magnet

Zhen Wang

Wednesday 5th November, 2014*

According to

$$Bqv = \frac{mv^2}{r} \tag{1}$$

$$E_k = \frac{1}{2}mv^2 = Uq \tag{2}$$

we can deduce

$$B = \begin{cases} \frac{\sqrt{2}}{r} \sqrt{\frac{m}{q}} \sqrt{U} & q > 0\\ -\frac{\sqrt{2}}{r} \sqrt{-\frac{m}{q}} \sqrt{-U} & q < 0 \end{cases}$$
 (3)

If units are given:

$$U : [kV],$$
 $1 kV = 10^3 V$ (4)

$$m : [\text{amu}], \qquad 1 \text{ amu} = 1.67 \times 10^{-27} \text{ kg}$$
 (5)

$$q : [e],$$
 $1 e = 1.6 \times 10^{-19} C$ (6)

$$r : [cm],$$
 $1 cm = 10^{-2} m$ (7)

$$B = \begin{cases} \frac{\sqrt{2}}{r[\text{cm}]10^{-2}} \sqrt{\frac{m[\text{amu}]}{q[\text{e}]}} \sqrt{\frac{1.67 \times 10^{-27}}{1.6 \times 10^{-19}}} \sqrt{U[\text{kV}]} 10^{\frac{3}{2}} & \text{q} > 0\\ -\frac{\sqrt{2}}{r[\text{cm}]10^{-2}} \sqrt{-\frac{m[\text{amu}]}{q[\text{e}]}} \sqrt{\frac{1.67 \times 10^{-27}}{1.6 \times 10^{-19}}} \sqrt{-U[\text{kV}]} 10^{\frac{3}{2}} & \text{q} < 0 \end{cases}$$
(8)

$$= \begin{cases} \frac{0.457}{r[\text{cm}]} \sqrt{\frac{m[\text{amu}]}{q[\text{e}]}} \sqrt{U[\text{kV}]}[\text{T}] & \text{q} > 0\\ -\frac{0.457}{r[\text{cm}]} \sqrt{-\frac{m[\text{amu}]}{q[\text{e}]}} \sqrt{-U[\text{kV}]}[\text{T}] & \text{q} < 0 \end{cases}$$
(9)

^{*}Created: 20141103

Ion	$\frac{m}{q}$	r[cm]	U[kV]	B[T]
H_2^{2+}	1	57	7	0.021
H_2^+	2	57	7	0.030
O^{2-}	-8	57	-7	-0.060
Ne ⁺	20	57	7	0.095
N_2^+	28	57	7	0.112
O_2^+	32	57	7	0.120
Ar ⁺	40	57	7	0.134