Data Structures

Andrew Rosen

Contents

1	Intr 1.1	oduction5To The Instructor5
2	List 2.1 2.2 2.3 2.4 2.5	S 7 What is a list? 7 ArrayLists 8 2.2.1 Building an ArrayList 8 Big O 8 2.3.1 Cost 8 2.3.2 Space Complexity 8 2.3.3 Formal Mathematics 8 LinkedLists 8 2.4.1 Building a LinkedList 8 Analysis 8
3	Stac 3.1 3.2	Building a Stack
4	Que 4.1	Discrete Finite Automata
5	Rec 5.1 5.2	ursion13Recursive Mathematics13Recursive Problem Solving135.2.1 Recursive Backtracking135.2.2 Recursive Combinations13
6	Tree	es 15
7	7.1 7.2 7.3 7.4 7.5	sing 17 Quadratic-Time Algorithms 17 Insertion Sort 17 Bubble Sort 17 Recursive Sorting Algorithms 17 Unique Sorting Algorithms 17 7.5.1 Shell Sort 17 7.5.2 Radix Sort 17 State of the Art Sorting Algorithms 17

4	CONTENTS
8 Sets and Maps	19
9 Graphs	21
10 Other Data Structures	23

Introduction

Education in Computer Science is based around three core topics: how to solve problems, how to organize data the for solving problems, and how to formulate solutions for problems in a way that a computer can understand.

Data Structures is all about defining the different ways we can organize data.

1.1 To The Instructor

Lists

The first data structure we will be studying is the list. The list is by far the most relateable data structure, as humans deal with lists on a regular basis

2.1 What is a list?

When you get right down to it, lists are defined by order.

```
public static <E> boolean isPermutation(List<E> listA, List<E> listB) {
        if(listA.size() != listB.size()) {
                return false;
        for(int i = 0; i < listA.size(); i++){</pre>
                E item = listA.get(i);
                int countA = 0;
                int countB = 0;
                for (E element : listA) {
                        if(item.equals(element)){
                                countA++;
                }
                for (E element : listB) {
                        if(item.equals(element)){
                                countB++;
                        }
                if(countA != countB) {
                        return false;
                }
        return true;
}
```

- 2.2 ArrayLists
- 2.2.1 Building an ArrayList
- 2.3 Big O
- 2.3.1 Cost
- 2.3.2 Space Complexity
- 2.3.3 Formal Mathematics
- 2.4 LinkedLists
- 2.4.1 Building a LinkedList
- 2.5 Analysis

Stacks

- 3.1 Building a Stack
- 3.2 Mazes

Queues

4.1 Discrete Finite Automata

Recursion

- 5.1 Recursive Mathematics
- 5.2 Recursive Problem Solving
- 5.2.1 Recursive Backtracking
- 5.2.2 Recursive Combinations

Trees

Sorting

- 7.1 Quadratic-Time Algorithms
- 7.2 Insertion Sort
- 7.3 Bubble Sort
- 7.4 Recursive Sorting Algorithms
- 7.5 Unique Sorting Algorithms
- 7.5.1 Shell Sort
- 7.5.2 Radix Sort
- 7.6 State of the Art Sorting Algorithms

Sets and Maps

Graphs

Other Data Structures