6.7900 Machine Learning (Fall 2024)

Lecture 23: generative models — flows

A slice of the generative "landscape"

 We can transform simple latent randomization into a complex realization through a sequence of (always) invertible transformations

$$z \sim N(0, I)$$

$$x = f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1(z)$$

$$x = f(z; \theta)$$

 We can transform simple latent randomization into a complex realization through a sequence of (always) invertible transformations

$$z \sim N(0, I)$$

$$x = f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1(z)$$

This is advantageous since we can explicitly recover z and evaluate the log-likelihood of the observed x

$$z = g_1 \circ g_2 \circ \cdots \circ g_{L-1} \circ g_L(x), \ g_j = f_j^{-1}$$

randomize

 $z \sim N(0, I)$

$$x = f(z; \theta)$$

 We can transform simple latent randomization into a complex realization through a sequence of (always) invertible transformations

$$z \sim N(0, I)$$

$$x = f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1(z)$$

 This is advantageous since we can explicitly recover z and evaluate the log-likelihood of the observed x

$$z = g_{1} \circ g_{2} \circ \cdots \circ g_{L-1} \circ g_{L}(x), \quad g_{j} = f_{j}^{-1}$$

$$g_{L} \qquad g_{L-1} \qquad g_{1}$$

$$x = h_{L} \to h_{L-1} \to \dots \to h_{1} \to h_{0} = z$$

randomize

 $z \sim N(0, I)$

$$x = f(z; \theta)$$

 We can transform simple latent randomization into a complex realization through a sequence of (always) invertible transformations

$$z \sim N(0, I)$$

$$x = f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1(z)$$

 This is advantageous since we can explicitly recover z and evaluate the log-likelihood of the observed x

$$z = g_1 \circ g_2 \circ \cdots \circ g_{L-1} \circ g_L(x), \quad g_j = f_j^{-1}$$

$$g_L \quad g_{L-1} \quad g_1$$

$$x = h_L \to h_{L-1} \to \dots \to h_1 \to h_0 = z$$

$$P(x; \theta) = N(z(x) \mid 0, I) \prod_{j=1}^{L} \left| \frac{\partial h_{j-1}}{\partial h_j} \right|$$

$$x = f(z; \theta)$$

We can transform simple latent randomization into a complex realization through a sequence of (always) invertible transformations

$$z \sim N(0, I)$$

$$x = f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1(z)$$

This is advantageous since we can explicitly recover z and evaluate the log-likelihood of the observed x

$$z = g_1 \circ g_2 \circ \cdots \circ g_{L-1} \circ g_L(x), \quad g_j = f_j^{-1}$$

$$g_L \quad g_{L-1} \quad g_1$$

$$x = h_L \to h_{L-1} \to \dots \to h_1 \to h_0 = z$$

$$P(x; \theta) = N(z(x) \mid 0, I) \prod_{j=1}^{L} \left| \frac{\partial h_{j-1}}{\partial h_j} \right|$$

 $z \sim N(0, I)$ $0 \quad \cdots \quad 0 \quad \cdots \quad 0$ $g_1 \quad f_1$

randomize

But: challenging to realize complex models if each layer has to remain easily invertible!

Thinking about continuous flows

We are interested in modeling how samples from a simple distribution $p_0(x)$ can be transported into samples from a complex distribution $p_1(x)$ (data distribution)

Thinking about continuous flows

We are interested in modeling how samples from a simple distribution $p_0(x)$ can be transported into samples from a complex distribution $p_1(x)$ (data distribution)

simple distribution, e.g., $p_0(x) = N(x \mid 0,I)$

$$t = 0$$

t = 1

Thinking about continuous flows

- We are interested in modeling how samples from a simple distribution $p_0(x)$ can be transported into samples from a complex distribution $p_1(x)$ (data distribution)
- We learn a time dependent vector field $v_t(x)$ to specify how samples "flow"

Simple noise distribution N(0,I), clean data given by samples

$$p_0(x) = N(x \mid 0,I)$$

vector field $v_t(x) = ?$

Note: here $x \in \mathbb{R}^2$, hence $v_t(x) \in \mathbb{R}^2$ for all $x \in \mathbb{R}^2$, $t \in [0,1]$

Simple noise distribution N(0,I), clean data given by samples

• Note: here $x \in \mathbb{R}^2$, hence $v_t(x) \in \mathbb{R}^2$ for all x, t

Simple noise distribution N(0,I), clean data given by samples

• Note: here $x \in \mathbb{R}^2$, hence $v_t(x) \in \mathbb{R}^2$ for all x, t

Simple noise distribution N(0,I), clean data given by samples

• Note: here $x \in \mathbb{R}^2$, hence $v_t(x) \in \mathbb{R}^2$ for all x, t

- We are interested in how samples from a simple distribution $p_0(x)$ flow to samples from a complex distribution $p_1(x)$ as a function of time
- This is analogous to a problem, e.g., in fluid dynamics where the fluid density evolves over time depending on the fluid velocity (field)
- In our case, samples evolve according to a vector field and the distribution of samples at any intermediate time is governed by the continuity equation:

intermediate time is governed by the continuity equation:
$$\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x))$$
 " rate of change of density at x = $\frac{d}{dt}$ and $\frac{d}{dt}$ are coming in $\frac{d}{dt}$ are continuity equation:
$$\frac{d}{dt}x_t = \dot{x}_t = v_t(x_t)$$

We can think about modeling the flow of particles as initial samples from a simple distribution $p_0(x) = N(x \mid 0,I)$ to samples from $p_1(x)$ in three different ways

(1)
$$p_t(x)$$

$$\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x)) \quad x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0,t]$$
 specify probability flow solve/learn the vector field sample using the vector field

- here we would specify how we wish the probability distribution to change from $p_0(x)$ to $p_1(x)$ as a function of time, e.g., $p_t(x) = (1-t)p_0(x) + tp_1(x)$

We can think about modeling the flow of particles as initial samples from a simple distribution $p_0(x) = N(x \mid 0,I)$ to samples from $p_1(x)$ in three different ways

(1)
$$p_t(x)$$

$$\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x)) \quad x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0,t]$$
 specify probability flow solve/learn the vector field sample using the vector field

- here we would specify how we wish the probability distribution to change from $p_0(x)$ to $p_1(x)$ as a function of time, e.g., $p_t(x) = (1-t)p_0(x) + tp_1(x)$
- finding the vector field that would support this density evolution is not easy!! (nor unique)

We can think about modeling the flow of particles as initial samples from a simple distribution $p_0(x) = N(x \mid 0,I)$ to samples from $p_1(x)$ in three different ways

(1)
$$p_t(x)$$
 $\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x))$ $x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0,t]$ specify probability flow solve/learn the vector field sample using the vector field

(2)
$$v_t(x)$$
 $x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0,t]$ $\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x))$ sample using the vector field calculate probability flow

- we could instead start by specifying the vector field itself, then everything else is easy

We can think about modeling the flow of particles as initial samples from a simple distribution $p_0(x) = N(x \mid 0,I)$ to samples from $p_1(x)$ in three different ways

(1)
$$p_t(x)$$

$$\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x)) \quad x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0,t]$$
 specify probability flow solve/learn the vector field sample using the vector field

(2)
$$v_t(x)$$
 $x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0,t]$ $\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x))$ sample using the vector field calculate probability flow

- we could instead start by specifying the vector field itself, then everything else is easy

- but finding the vector field that gives us $p_1(x)$ at the other end (t=1) is challenging!!

 We can think about modeling the flow of particles as initial samples from a simple distribution $p_0(x) = N(x \mid 0,I)$ to samples from $p_1(x)$ in three different ways

(1)
$$p_t(x)$$
 specify probability flow

$$\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x)) \qquad x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0,t]$$
 solve/learn the vector field

$$x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0,t]$$
 sample using the vector field

$$(2) v_t(x)$$

$$x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0, t]$$

sample using the vector field

$$\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x))$$
calculate probability flow

(3)
$$x_t = x_0 + t(x_1 - x_0)$$
$$x_0 \sim p_0(x), \ x_1 \sim p_1(x)$$

specify simple interpolating trajectories between source and target samples

$$v_t(x)$$

learn the vector field from such guidance

$$x_0 \sim p_0(x), \quad \dot{x}_t = v_t(x_t), \quad t \in (0,t]$$

sample using the vector field

Flow matching

- We can think about turning noise into clean samples along simple (linear) interpolating trajectories and learn a model to do so
- This is more straightforward than diffusion (also appears to work better)

Flow matching: a simple setting

 We can think about turning noise into clean samples along simple (linear) interpolating trajectories and learn a model to do so

· E.g., for a single clean image we can easily map noise samples back to the

image via straight path

$$\frac{d}{dt}x_t = (x_1 - x_0)$$

 $x_t = (1 - t)x_0 + tx_1$

$$t = 0$$

$$t = 1$$

Here the target is just a single example

Flow matching: a simple setting

 We can think about turning noise into clean samples along simple (linear) interpolating trajectories and learn a model to do so

· E.g., for a single clean image we can easily map noise samples back to the

image via straight path

Here the target is just a single example

Flow matching: a simple setting

 We can think about turning noise into clean samples along simple (linear) interpolating trajectories and learn a model to do so

· E.g., for a single clean image we can easily map noise samples back to the

image via straight path

Here the target is just a single example

Probability flow in a simple setting

• If we sample $x_0 \sim N(0,I)$ and set $x_t = (1-t)x_0 + tx_1$ then $p_t(x_t)$ is also Gaussian with mean tx_1 and variance $(1-t)^2$... so we know the probability flow!

• **Exercise**: show that with these choices (in 1d): $\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x))$

Probability flow in a simple setting

• If we sample $x_0 \sim N(0,I)$ and set $x_t = (1-t)x_0 + tx_1$ then $p_t(x_t)$ is also Gaussian with mean tx_1 and variance $(1-t)^2$... so we know the probability flow!

• **Exercise**: show that with these choices (in 1d): $\frac{d}{dt}p_t(x) = -\nabla_x \cdot (p_t(x)v_t(x))$

Flow matching

- Given t and x_t , there are multiple pairs of x_0 and x_1 whose linear interpolation at time t would result in x_t ; each of them suggest going in a different direction
- The vector field we want is a (conditional) expectation of these suggestions

Flow matching

- Given t and x_t , there are multiple pairs of x_0 and x_1 whose linear interpolation at time t would result in x_t ; each of them suggest going in a different direction
- The vector field we want is a (conditional) expectation of these suggestions

Flow matching: algorithms

Training algorithm:

sample
$$x_0 \sim N(0,I)$$

sample $x_1 \sim q(x_1)$ (data distribution)
sample $t \sim U(0,1)$
 $x_t = (1-t)x_0 + tx_1$

take a gradient step to min

$$\left\| \frac{(x_1 - x_t)}{1 - t} - v_{\theta}(x_t, t) \right\|^2$$
vector field

Flow matching: algorithms

Training algorithm:

sample
$$x_0 \sim N(0,I)$$

sample $x_1 \sim q(x_1)$ (data distribution)
sample $t \sim U(0,1)$
 $x_t = (1-t)x_0 + tx_1$

take a gradient step to min

$$\left\| \frac{(x_1 - x_t)}{1 - t} - v_{\theta}(x_t, t) \right\|^2$$
vector field

$$\Rightarrow v_{\hat{\theta}}(x_t, t) \approx E\left\{\frac{(x_1 - x_t)}{1 - t} \mid x_t, t\right\}$$

optimal MSE estimate is conditional expectation

Flow matching: algorithms

Training algorithm:

sample
$$x_0 \sim N(0,I)$$

sample $x_1 \sim q(x_1)$ (data distribution)
sample $t \sim U(0,1)$
 $x_t = (1-t)x_0 + tx_1$

take a gradient step to min

$$\Rightarrow v_{\hat{\theta}}(x_t, t) \approx E\left\{\frac{(x_1 - x_t)}{1 - t} \mid x_t, t\right\}$$

optimal MSE estimate is conditional expectation

Sampling algorithm

sample
$$x_0 \sim N(0,I)$$

$$\frac{d}{dt}x_t = v_{\theta}(x_t, t) \quad \text{from } t = 0 \text{ to } t = 1$$

- We wish to show that the conditional expectation gives us a vector field that transports $p_0(x)$ to q(x) (data).
- In a single target example case, we can easily obtain the vector field that transports all noise samples x_0 to that single \hat{x}_1

$$x_{0} \sim p_{0}(x) \qquad v(x_{t}, t | \hat{x}_{1}) = \frac{\hat{x}_{1} - x_{t}}{1 - t} \qquad \frac{d}{dt} p_{t}(x | \hat{x}_{1}) = -\nabla_{x} \cdot (p_{t}(x | \hat{x}_{1})v(x | t, \hat{x}_{1}))$$

$$p_{t}(x | \hat{x}_{1}) = N(x | t\hat{x}_{1}, (1 - t)^{2}I)$$

- We wish to show that the conditional expectation gives us a vector field that transports $p_0(x)$ to q(x) (data).
- In a single target example case, we can easily obtain the vector field that transports all noise samples x_0 to that single \hat{x}_1

$$x_{0} \sim p_{0}(x) \qquad v(x_{t}, t | \hat{x}_{1}) = \frac{\hat{x}_{1} - x_{t}}{1 - t} \qquad \frac{d}{dt} p_{t}(x | \hat{x}_{1}) = -\nabla_{x} \cdot (p_{t}(x | \hat{x}_{1})v(x | t, \hat{x}_{1}))$$

$$p_{t}(x | \hat{x}_{1}) = N(x | t\hat{x}_{1}, (1 - t)^{2}I)$$

. A vector field corresponding to a probability flow $p_t(x) = \int p_t(x|x_1)q(x_1)dx_1$ would give us the right target distribution since at t=1 $p_1(x|x_1) = \delta(x-x_1)$ and

$$p_1(x) = \int p_1(x \mid x_1) q(x_1) dx_1 = \int \delta(x - x_1) q(x_1) dx_1 = q(x)$$

Let's take the single point continuity equation and integrate both sides over x_1 with respect to the data distribution q(x)

$$\int q(x_1) \frac{d}{dt} p_t(x \,|\, x_1) dx_1 = -\int q(x_1) \, \nabla_x \cdot (p_t(x \,|\, x_1) v(x \,|\, t, x_1)) dx_1$$

Let's take the single point continuity equation and integrate both sides over x_1 with respect to the data distribution q(x)

$$\int q(x_1) \frac{d}{dt} p_t(x | x_1) dx_1 = -\int q(x_1) \nabla_x \cdot (p_t(x | x_1) v(x | t, x_1)) dx_1$$

$$\frac{d}{dt} \left[q(x_1) p_t(x | x_1) dx_1 = -\nabla_x \cdot \left(\int q(x_1) p_t(x | x_1) v(x | t, x_1) dx_1 \right) \right]$$

Let's take the single point continuity equation and integrate both sides over x_1 with respect to the data distribution q(x)

$$\int q(x_1) \frac{d}{dt} p_t(x | x_1) dx_1 = -\int q(x_1) \nabla_x \cdot (p_t(x | x_1) v(x | t, x_1)) dx_1$$

$$\frac{d}{dt} \int q(x_1) p_t(x | x_1) dx_1 = -\nabla_x \cdot \left(\int q(x_1) p_t(x | x_1) v(x | t, x_1) dx_1 \right)$$

$$\frac{d}{dt} p_t(x) = -\nabla_x \cdot \left(p_t(x) \int \frac{q(x_1) p_t(x | x_1)}{p_t(x)} v(x | t, x_1) dx_1 \right)$$

Let's take the single point continuity equation and integrate both sides over x_1 with respect to the data distribution q(x)

$$\int q(x_1) \frac{d}{dt} p_t(x | x_1) dx_1 = -\int q(x_1) \nabla_x \cdot (p_t(x | x_1) v(x | t, x_1)) dx_1$$

$$\frac{d}{dt} \int q(x_1) p_t(x | x_1) dx_1 = -\nabla_x \cdot \left(\int q(x_1) p_t(x | x_1) v(x | t, x_1) dx_1 \right)$$

$$\frac{d}{dt} p_t(x) = -\nabla_x \cdot \left(p_t(x) \int \frac{q(x_1) p_t(x | x_1)}{p_t(x)} v(x | t, x_1) dx_1 \right)$$

• The vector field that gives the right probability flow is the conditional expectation:

$$v(x,t) = \int p_t(x_1 \mid x)v(x \mid t, x_1)dx_1 = E\left\{v(x \mid x_1, t) \mid x, t\right\} = E\left\{\frac{(x_1 - x)}{1 - t} \mid x, t\right\}$$

Example: Motif-scaffolding training

1. Take PDB structure.

2. Select motif with cropping strategy

3. Noise scaffold.

4. Train FrameFlow to denoise

Diffusion vs Flow

• Example: molecular motif scaffolding

diffusion SDE

flow

Additional (optional) reading

- Bishop et al. "Deep Learning", chapter 18
- Lipmann et al., "Flow Matching for Generative Modeling", https://arxiv.org/pdf/2210.02747
- Albergo et al., "Stochastic Interpolants: A Unifying Framework for Flows and Diffusions", https://arxiv.org/abs/2303.08797

•