ある集合 X と関数 $\rho: X \times X \to [0,\infty)$ が次を満たすとき (X,ρ) を距離空間という.

- $x = y \iff \rho(x,y) = 0 \text{ for all } x,y \in X$
- $\rho(x,y) = \rho(y,x)$ for all $x,y \in X$
- $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ for all $x,y,z \in X$

 $\left(X,
ho
ight)$ を距離空間とする. 各 $x\in X$, $r\in\left[0,\infty\right)$ について開球 $C_r(x)\subset X$ を

$$C_r(x) = \left\{ y \mid \rho(x, y) < r \right\} \tag{1}$$

で定義し,

$$C = \left\{ C_r(x) \mid x \in X, r \in [0, \infty) \right\} \tag{2}$$

$$\tau = \left\{ \bigcup_{c \in C'} c \mid C' \subset C \right\} \tag{3}$$

とする.

 $V_1,...,V_n \in \tau$ について $V = \bigcap_{i=1}^n V_i$ が $V \in \tau$ を満たすことを証明する. τ の定義より,各 i=1,...,n についてある $C_i \subset C$ が存在して $V_i = \bigcup_{c \in C_i} c$ である。 任意の $x \in V$ と i=1,...,n について, $x \in V_i$ よりある開球 $C_r(y) \in C_i$ が存在して $x \in C_r(y)$ である。 このとき, 実数 r_i を $0 < r_i \leq r - \rho(x,y)$ となるようにとると, $C_{r_i}(x) \subset C_r(y)$ より $C_{r_i}(x) \subset V_i$ となる。 $r_1,...,r_n$ の最小値を r_x とすると, $C_{r_x}(x) \subset V_i$, $\forall i=1,...,n$ より $C_{r_x}(x) \subset V$ であり,また $r_x > 0$ より $x \in C_{r_x}(x)$ である。 ここで $C' = \left\{ C_{r_x}(x) \mid x \in V \right\}$, $V' = \bigcup_{c \in C'} c$ とすると, $C_{r_x}(x) \subset V$ より $V' \subset V$, $x \in C_{r_x}(x)$ ($\forall x \in V$) より $V \subset V'$ であるから $V \in V'$. よって $V \in \tau$.