数据格式说明与作业帮助

整个第二阶段的作业是第一阶段的作业相反的一个过程,需要各位同学根据PMT的输出波形信息,推断得到事例的粒子类型。

数据说明

我们将数据储存在HDF5文件中,其中有三个表: ParticleTruth每个事例中粒子的粒子种类; Waveform 保存波形信息。每个表都有对应的事例编号或通道编号,如下所示。

Waveform

EventID(int16)	ChannelID(int16)	Waveform(int16[1029])
1	0	
1	1	
1	2	

PEGuess

EventID(unit32)	ChannellD(uint32)	PETime(unit16)	Weight(float64)
0	0	365	0.5000
0	0	393	0.6000
0	1	296	0.7000

提供的训练集数据还会在提供ParticleTruth以及PETruth的表以供使用。其中,PETime描述的是光电子引起波形的起始时间,Weight是基于波形分析算法中Lucy迭代器得出的一个估计,是对 PETime 的补充,补充说明在该PETime下,波形信号由多少个光电子叠加得到。例如Weight=1 表示 PETime 处有 1个光电子,因此 可以把训练集的 PETruth 表看成有一列省略的 Weight=1 的列。Weight=2 就表示该 PETime 处有 2 个光电子重叠。进一步推广,如果分析算法认为在 PETime 处有 50% 的几率有 1 个光电子,则 可以把该行的 Weight 写为 0.5。

生成的原始数据集中Weight是float型的,而训练数据集中的Weight是uint8型的,这会丢失掉一些迭代信息,为了保证测试数据集的准确性(当然,这前后的数据类型变化体现了我们教学团队的认识变化),我们保持了原始生成数据类型的float型,而来源于 Ghost Hunter2020 的训练数据集不做改变,继续使用uint8型;而最终的测试数据集给同学们提供了原始的float的Weight,你可以根据需要决定是否需要将其在使用时转化为uint8型。

ParticleTruth

EventID(int64)	Alpha(int16)	E(single)	x(single)	y(single)	z(single)
1	1	0.5692	344.63010	-217.0379	444.1518
1	1	15.1537	-74.691422	-413.0363	421.1786
1	1	1.9479	-70.241890	-62.0475	-48.8988

PETruth

EventID(int64)	Channel(int16)	PETime(int16)	PEType(int8)
0	0	245	1
0	0	277	1
0	1	248	1

其中,PEType表征了该Channel接收到的光子的类型是切伦科夫光子还是闪烁光光子。

使用HDFView可以打开数据文件,查看文件的大致结构。

提交文件

大作业提交HDF5格式的文件,在文件中写入一个简单的表格,一列为EventID,一列为alpha粒子的概率,

EventID(int16)	alpha (float32)
1	0.0
2	0.5
3	1.0

alpha列表示在你的鉴别结果中,有多大的概率认为该Event为alpha粒子,如alpha=0.5,则你的结果认为该Event有50%的概率为alpha粒子。

训练与测试用的数据可以从 <u>清华云盘</u>下载,其中 train.h5 是训练数据(摘自Ghost Hunter2020训练数据集),problem.h5 是最终测试数据,需要提交结果到CrowdAl进行排位评分。example.h5 是输出样例。评测数据是使用与训练数据相同的参数生成的。PMT_Position.txt 提供了光电倍增管的位置信息,可根据需要自行选用。

train.h5 数据集摘自 Ghost Hunter2020 的训练数据集。同学们如有需要,可登陆 CrowdAI 数据平台后,前往 Ghost Hunter2020决塞的dataset下,下载测试集以训练使用。

作业帮助

对于数据分析过程需要进一步学习的同学,可以到 <u>Ghost Hunter2020赛事主页</u>找到一些可能有帮助的 文档或者视频。