WHAT IS CLAIMED IS:

2	1. A back-up detecting device with a distance reset capability for a
3	large vehicle with a chassis and a rear end, the back-up detecting device
4	comprising:
5	a controller (10) having multiple inputs, multiple outputs, an intensity
6	analysis program and a distance reset capability;
7	multiple signal conversion circuits (11) connected to inputs of the
8.	controller (10);
9	multiple ultrasonic transceivers (14) are mounted on the chassis
. 10	underneath a vehicle (20) near the rear end (21), transmit ultrasonic sound
. 11	waves, receive reflected sound waves, respectively have an output and are
12	connected respectively to signal conversion circuits (11) through which the
. 13	controller (10) controls the emission of ultrasonic pulses;
14	a reset button (12) connected to an input of the controller (10) and
15.	initiates the distance reset function when the button (12) is depressed;
. 16	a memory device (13) connected to the controller (10) and storing a
17	distance pad D _o ; and
18	an alarm unit (15) connected to an output of the controller (10).
19	2. The back-up detecting device according to claim 1, wherein the
20	alarm unit (15) has an alarm (151).
21	3. The back-up detecting device according to claim 1, wherein the
22	alarm unit (15) has a monitor (152).
23	4. The back-up detecting device according to claim 1, wherein the
24	alarm unit (15) has an alarm (151) and a monitor (152).

1	5. The back-up detecting device according to claim 1, wherein the
2	distance reset function comprises the steps of:
3	placing a solid block (30) vertically in front of a detector (14) flush
4	with the rear end (21) of the vehicle (20);
5	activating the range reset function by pressing the reset button (12);
6	emitting ultrasonic pulses from the ultrasonic transceiver (14);
7	receiving echoed ultrasonic pulses reflected from the solid block (30);
8	calculating the distance to the solid block (30); and
. 9	storing the distance to the solid block (30) in memory as the distance
10	pad (D _o).
11 .	6. The back-up detecting device according to claim 1, wherein the
12	intensity analysis program comprises the steps of:
13	emitting ultrasonic pulses from the ultrasonic transceiver (14);
14	receiving echoed ultrasonic pulses echoed back from an object;
15.	calculating a distance D _x from the ultrasonic transceiver (14);
16	retrieving a distance pad (D _o) from memory (13); and
17	applying the distance pad D_o to the measured distance D_x to obtain an
18	actual distance D from the vehicle body to the object by subtracting the
19	distance pad D _o from the measured value D _x .