Devoir à la maison $n^{\circ}08$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 La linéarité de E_a est évidente. Ainsi E_a est un endomorphisme de K[X]. On vérifie aisément que $E_a \circ E_{-a} = E_{-a} \circ E_a = I$ donc E_a est un automorphisme de K[X] (d'inverse E_{-a}).

2 J est linéaire par linéarité de l'intégrale. De plus, $J(X^k) = \frac{1}{k+1}((X+1)^{k+1} - X^{k+1})$ pour tout $k \in \mathbb{N}$ donc J est bien à valeurs dans $\mathbb{K}[X]$. J est donc bien un endomorphisme de $\mathbb{K}[X]$.

 $\boxed{\mathbf{3}} \ \ \text{D'après la formule du binôme, } J(X^k) = X^k + R_k \ \text{où deg } R_k < k. \ \text{Tout d'abord } J(0) = 0 \ \text{donc deg } J(0) = \text{deg } 0 = -1.$ Soit $p \in \mathbb{R}[X]$ non nul de degré d. Alors $p = \sum_{k=0}^d a_k X^k$ avec $a_d \neq 0$. Ainsi

$$Jp = \sum_{k=0}^{d} a_k J(X^k) = a_d X^d + \sum_{k=0}^{d-1} a_k X^k + \sum_{k=0}^{d} R_k = a_d X^d + Q$$

où $\deg(Q) < d$. Ainsi $\deg Jp = \deg p = d$.

Puisque deg $J(X^k) = k$ pour tout $k \in \mathbb{N}$, $(J(X^k))_{k \in \mathbb{N}}$ est une base de $\mathbb{K}[X]$. Comme J envoie la base canonique de $\mathbb{K}[X]$ sur une base de $\mathbb{K}[X]$, J est un automorphisme de $\mathbb{K}[X]$.

Soit $k \in \mathbb{N}$. Alors $t \mapsto e^{-t}t^k$ est continue (par morceaux) sur \mathbb{R}_+ et $e^{-t}t^k = o(1/t^2)$ donc $t \mapsto e^{-t}t^k$ est intégrable sur \mathbb{R}_+ et $I_k = \int_0^{+\infty} e^{-t}t^k$ dt converge.

Soit $k \in \mathbb{N}^*$. Par intégration par parties

$$I_k = -[e^{-t}t^k]_0^{+\infty} + kI_{k-1} = kI_{k-1}$$

Par une récurrence évidente, $I_k = k!I_0 = k!$ pour tout $k \in \mathbb{N}$.

Par linéarité de l'intégration et de la dérivation, L est linéaire. Tout d'abordn L(1) = 0 donc L n'est pas inversible. Soit $k \in \mathbb{N}^*$. Pour tout $x \in \mathbb{K}$,

$$L(X^k)(x) = -k \int_0^{+\infty} e^{-t} (x+t)^{k-1} dt = -k \sum_{j=0}^{k-1} {k-1 \choose j} x^j I_{k-1-j}$$

Ainsi

$$L(X^{k}) = -k \sum_{j=0}^{k-1} {k-1 \choose j} I_{k-1-j} X^{j} \in \mathbb{K}[X]$$

Ainsi L est bien à valeurs dans $\mathbb{K}[X]$: c'est un endomorphisme de $\mathbb{K}[X]$.

REMARQUE. En vertu d'une relation classique sur les coefficients binomiaux, on peut écrire

$$\forall k \in \mathbb{N}, \ L(X^k) = \sum_{j=0}^{k-1} (j+1) \binom{k}{j+1} I_{k-1-j} X^j = \sum_{j=1}^k j \binom{k}{j} I_{k-j} X^{j-1}$$

6 Pour tout $a \in \mathbb{K}$, $E_a \circ I = I \circ E_a = E_a$ donc I est shift-invariant. De plus, $I(X) = X \notin \mathbb{K}^*$ donc I n'est pas un endomorphisme delta.

Pour tout $a \in \mathbb{K}$ et tout $p \in \mathbb{K}[X]$, $E_a \circ D(p) = D \circ E_a(p) = p'(X + a)$ donc $E_a \circ D = D \circ E_a$ et D est shift-invariant. De plus, $D(X) = 1 \in \mathbb{K}^*$ donc D est un endomorphisme delta.

Pour tout $(a, b) \in \mathbb{K}^2$, $E_a \circ E_b = E_b \circ E_a = E_{a+b}$ donc E_a est shift-invariant. De plus, $E_a(X) = X + a \notin \mathbb{K}^*$ donc E_a n'est pas un endomorphisme delta.

Soit $p \in \mathbb{K}[X]$. Alors pour tout $x \in \mathbb{K}$,

$$E_a \circ J(p)(x) = Jp(x+a) = \int_{x+a}^{x+a+1} p(t) dt = \int_{x}^{x+1} p(u+a) du = J(p(X+a))(x) = J \circ E_a(p)(x)$$

par le changement de variable t = u + a. Ainsi $E_a \circ J = J \circ E_a$ et J est shift-invariant. De plus, $J(X) = X + \frac{1}{2} \notin \mathbb{K}^*$ donc J n'est pas un endomorphisme delta.

Soit $p \in \mathbb{K}[X]$. Alors pour tout $x \in \mathbb{K}$,

$$E_a \circ L(p)(x) = Lp(x+a) = -\int_0^{+\infty} e^{-t} p'(x+a+t) dt = L(p(X+a))(x) = L \circ E_a(p)(x)$$

donc $E_a \circ L = L \circ E_a$ et L est shift-invariant. De plus, $L(X) = -1 \in \mathbb{K}^*$ donc L est un endomorphisme delta.

7 Notons $\mathcal I$ l'ensemble des endomorphismes shift-invariants de $\mathbb K[X]$. On a déjà vu que $I \in \mathcal I$. Notons $\Psi_a : T \in \mathcal L(\mathbb K[X]) \mapsto \mathbb E_a \circ \mathbb T - \mathbb T \circ \mathbb E_a$. Alors Ψ_a est un endomorphisme de $\mathcal L(\mathbb K[X])$. On en déduit que $\mathcal I = \bigcap_{a \in \mathbb K} \operatorname{Ker} \Psi_a$ est un

sous-espace vectoriel de $\mathcal{L}(\mathbb{K}[X])$ en tant qu'intersection de sous-espaces vectoriels de $\mathcal{L}(\mathbb{K}[X])$. Enfin, soit $(S,T) \in \mathcal{I}^2$, alors pour tout $a \in \mathbb{K}$,

$$E_a \circ (S \circ T) = (E_a \circ S) \circ T = (S \circ E_a) \circ T = S \circ (E_a \circ T) = S \circ (T \circ E_a) = (S \circ T) \circ E_a$$

donc $S \circ T \in \mathcal{I}$. Ainsi \mathcal{I} est une sous-algèbre de $\mathcal{L}(\mathbb{K}[X])$.

Notons Δ l'ensemble des endomorphismes delta de $\mathbb{K}[X]$. Soit $T \in \Delta$. Alors $-T \in \Delta$ mais T + (-T) = 0 n'est évidemment pas un endomorphisme delta. Ainsi Δ n'est pas stable par addition. De plus, $D \in \Delta$ mais $D \circ D(X) = 0 \notin \mathbb{K}^*$ donc $D \circ D \notin \mathcal{I}$. Ainsi \mathcal{I} n'est pas stable par composition.

Pour $k > \deg p$, $D^k p = 0$ donc la somme $\sum_{k=0}^{+\infty} a_k D^k p$ ne comporte qu'un nombre fini de termes non nuls : cette somme est donc bien définie. De plus, cette somme est un polynôme de $\mathbb{K}[X]$ en tant que combinaison linéaire de tels polynômes.

9 Posons $U = \sum_{k=0}^{+\infty} a_k D^k$. Soient $p \in \mathbb{K}[X]$ et $d = \deg p$. Alors $Up = \sum_{k=0}^{d} a_k D^k p$. On sait que $D \in \mathcal{I}$ et que \mathcal{I} est une

sous-algèbre de $\mathcal{L}(\mathbb{K}[X])$. Ainsi $\sum_{k=0}^d a_k \mathrm{D}^k \in \mathcal{I}$. Par conséquent,

$$\forall a \in \mathbb{K}, \ \mathbf{E}_a \circ \mathbf{U}(p) = \mathbf{U} \circ \mathbf{E}_a(p)$$

Ceci étant vrai pour tout $p \in \mathbb{K}[X]$, $U \in \mathcal{I}$.

10 Pour $n \in \mathbb{N}$,

$$\left(\left(\sum_{k=0}^{n} a_k D^k\right) X^n\right)(0) = n! a_n$$

On en déduit immédiatement que si $\sum_{k=0}^{+\infty} a_k D^k = \sum_{k=0}^{+\infty} b_k D^k$, alors $a_n = b_n$ pour tout $n \in \mathbb{N}$.

11 Soient $n \in \mathbb{N}$ et $a \in \mathbb{K}$. Alors

$$q_n(X + a) = \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} a^{n-k} X^k = \sum_{k=0}^{n} \frac{a^{n-k}}{(n-k)!} q_k$$

Comme T est shift-invariant, $(Tq_n)(X + a) = T(q_n(X + a))$ donc, par linéarité de T,

$$(Tq_n)(X + a) = \sum_{k=0}^{n} \frac{a^{n-k}}{(n-k)!} Tq_k$$

puis, en évaluant en 0,

$$(\mathrm{T}q_n)(a) = \sum_{k=0}^n \frac{a^{n-k}}{(n-k)!} (\mathrm{T}q_k)(0)$$

L'égalité précédente est valable pour tout $a \in \mathbb{K}$ et \mathbb{K} est infini de sorte que

$$Tq_n = \sum_{k=0}^n \frac{X^{n-k}}{(n-k)!} (Tq_k)(0) = \sum_{k=0}^n (Tq_k)(0) D^k q_n = \sum_{k=0}^{+\infty} (Tq_k)(0) D^k q_n$$

car $D_k q_n = 0$ pour k > n. Comme $(q_n)_{n \in \mathbb{N}}$ est une base de $\mathbb{K}[X]$, les endomorphismes T et $\sum_{k=0}^{+\infty} (Tq_k)(0)D^k$ sont égaux.

Soient T et U deux endomorphismes shift-invariants de $\mathbb{K}[X]$. D'après la question précédente, il existe deux suites (a_n) et (b_n) d'éléments de \mathbb{K} tels que $T = \sum_{k=0}^{+\infty} a_k D^k$ et $U = \sum_{k=0}^{+\infty} b_k D^k$. On vérifie alors que

$$T \circ U = U \circ T = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) D^n$$

13 Il suffit d'appliquer la question 11 à l'endomorphisme E_a . On reconnaît la formule de Taylor.

REMARQUE. La formule de Taylor s'écrit plutôt

$$p(X + a) = \sum_{k=0}^{\deg p} \frac{p^{(k)}(a)}{k!} X^k$$

On intervertit en fait le rôle du scalaire a et de l'indéterminée X. Plus rigoureusement, on évalue la formule précédente en $b \in \mathbb{K}$:

$$p(b+a) = \sum_{k=0}^{\deg p} \frac{p^{(k)}(a)}{k!} b^k$$

Comme K est infini, on a alors:

$$p(b + X) = \sum_{k=0}^{\deg p} \frac{p^{(k)}(X)}{k!} b^k$$

Il suffit alors de renommer b en a.

14 Remarquons que pour tout $k \in \mathbb{N}$, $Jq_k = q_{k+1}(X+1) - q_{k+1}(X)$. D'après la question **11**

$$\forall p \in \mathbb{K}[X], \ Jp = \sum_{k=0}^{+\infty} (q_{k+1}(1) - q_{k+1}(0)) p^{(k)} = \sum_{k=0}^{\deg p} \frac{1}{(k+1)!} p^{(k)}$$

Posons $T = -\sum_{k=0}^{+\infty} D^k$. On vérifie que $(D-I) \circ T = T \circ (D-I) = I$ donc D-I est inversible et $(D-I)^{-1} = T$.

On calcule sans peine $(Lq_0)(0) = 0$ et $(Lq_k)(0) = -\int_0^{+\infty} e^{-t}q_{k-1}(t) dt = -1$. D'après la question 11

$$L = -\sum_{k=1}^{+\infty} D^k = I + T = I + (D - I)^{-1}$$

Comme T est non nul, la suite $((Tq_k)(0))_{k \in \mathbb{N}}$ n'est pas constamment nulle d'après les questions 10 et 11. On peut alors poser $n(T) = \min\{k \in \mathbb{N}, (Tq_k)(0) \neq 0\}$. Soit $p \in \mathbb{K}[X]$. Alors

$$Tp = \sum_{k=n(T)}^{+\infty} (Tq_k)(0)p^{(k)}$$

- Si n(T) > deg p, Tp = 0 et deg Tp = -1.
- Si $n(T) \le \deg p$, alors $Tp = \sum_{k=n(T)}^{\deg p} (Tq_k)(0)p^{(k)}$. Comme $(Tq_{n(T)})(0) \ne 0$, $\deg Tp = \deg p^{(n(T))} = \deg p n(T)$.

On en déduit bien que deg $Tp = \max\{-1, \deg p - n(T)\}$.

17 D'après la question précédente, Tp = 0 i.e. deg Tp = -1 si et seulement si deg $p - n(T) \le -1$. On en déduit que $\overline{\operatorname{Ker}} T = \mathbb{K}_{n(T)-1}[X].$

18 | Supposons T inversible. Alors Ker T = $\{0\}$. D'après la question précédente, ceci signifie que n(T) = 0. Par définition de n(T), on a donc $(Tq_0)(0) \neq 0$ et donc $T1 \neq 0$.

Supposons T1 \neq 0. D'après la question 11, T1 = $(Tq_0)(0)$ donc $(Tq_0)(0) \neq 0$. Par définition, on a donc n(T) = 0. D'après la question 16, deg $Tp = \max\{-1, \deg p\}$ pour tout $p \in \mathbb{K}[X]$. On en déduit immédiatement que deg $Tp = \deg p$ pour tout $p \in \mathbb{K}[X].$

Supposons que deg $Tp = \deg p$ pour tout $p \in \mathbb{K}[X]$. L'image de la base canonique de $\mathbb{K}[X]$ est alors une base de $\mathbb{K}[X]$, ce qui prouve que T est inversible.

Soit $a \in \mathbb{K}$. Alors $E_a \circ T = T \circ E_a$ puis $T^{-1} \circ (E_a \circ T) \circ T^{-1} = T^{-1} \circ (T \circ E_a) \circ T^{-1}$ ou encore $T^{-1} \circ E_a = E_a \circ T^{-1}$ $\overline{\text{de sorte}}$ que T^{-1} est shift-invariant.

20 En posant $\alpha_k = (\mathrm{T}q_k)(0)$ pour $k \in \mathbb{N}$, la question **11** montre que $\mathrm{T} = \sum_{k=0}^{+\infty} \alpha_k \mathrm{D}^k$.

De plus, $TX = \alpha_0 X + \alpha_1 \in \mathbb{K}^*$ car T est shift-invariant donc $\alpha_0 = 0$ et $\alpha_1 \neq 0$.

Posons $U = \sum_{k=1}^{+\infty} \alpha_k D^{k-1}$. Alors U est shift-invariant d'après la question $\mathbf{9}$ et $D \circ U = T$. Supposons qu'il existe un endomorphisme V shift-invariant tel que $T = D \circ V$. D'après la question $\mathbf{11}$, il existe une suite

$$(\beta_k)_{k\in\mathbb{N}^*}$$
 de scalaires telle que $V=\sum_{k=1}^{+\infty}\beta_kD^{k-1}$. Comme $D\circ U=D\circ V=T$, $\sum_{k=1}^{+\infty}\alpha_kD^k=\sum_{k=1}^{+\infty}\beta_kD^k$. La question 10 montre que $\alpha_k=\beta_k$ pour tout $k\in\mathbb{N}^*$ de sorte que $U=V$.

Dans le cas T = D, on a évidemment U = I. On rappelle que L = $I + (D - I)^{-1} = (D - I + I) \circ (D - I)^{-1} = D \circ (D - I)^{-1}$ donc $U = (D - I)^{-1}$ dans le cas T = L.

| 22 | Puisque $\alpha_0 = 0$ et $\alpha_1 \neq 0$, $n(T) = \min\{k \in \mathbb{N}, \alpha_k \neq 0\} = -1$. On en déduit avec la question 16 que deg Tp = -1deg p − 1 pour tout $p \in \mathbb{K}[X]$ non nul

La question 17 montre que Ker $T = \mathbb{K}_0[X] = \mathbb{K}$.

Soit p un éventuel vecteur propre de T. Il existe $\lambda \in \mathbb{K}$ tel que $Tp = \lambda p$. Puisque deg $Tp = \deg p - 1$, on a nécessairement $\lambda = 0$. Puisque $Ker(T) \neq \{0\}$, 0 est bien valeur propre de T. Ainsi $Sp(T) = \{0\}$.

23 La question précédente montre que $\mathbb{K}_n[X]$ est stable par T donc T_n est bien un endomorphisme de $\mathbb{K}_n[X]$. Comme $\overline{\operatorname{Sp}}(T_n) = \{0\}, T_n \text{ est diagonalisable si et seulement si dim } \operatorname{Ker}(T_n) = \dim \mathbb{K}_n[X] \text{ i.e. } 1 = n+1 \text{ i.e. } n = 0.$

D'après la question 22, $\operatorname{Im} T_n \subset \mathbb{K}_{n-1}[X]$. Mais comme dim $\operatorname{Ker} T_n = 1$, $\operatorname{rg} T_n = n = \dim \mathbb{K}_{n-1}[X]$ d'après le théorème du rang. Ainsi $\operatorname{Im} T_n = \mathbb{K}_{n-1}[X]$. Alors

$$\operatorname{Im} T = T(\mathbb{K}[X]) = T\left(\bigcup_{n \in \mathbb{N}} \mathbb{K}_n[X]\right) = \bigcup_{n \in \mathbb{N}} T(\mathbb{K}_n[X]) = \bigcup_{n \in \mathbb{N}} \operatorname{Im} T_n = \bigcup_{n \in \mathbb{N}} \mathbb{K}_{n-1}[X] = \mathbb{K}[X]$$

Ainsi T est surjectif.

25 D'après la question 22, Ker $Q = \mathbb{K}_0[X]$. On vérifie alors aisément que $X\mathbb{K}[X]$ est un supplémentaire de Ker Q $\overline{\text{dans}}$ $\mathbb{K}[X]$. On sait alors que Q induit un isomorphisme \tilde{Q} de $X\mathbb{K}[X]$ sur $\text{Im } Q = \mathbb{K}[X]$. On peut alors poser $q_0 = 1$ et $q_n = \tilde{Q}^{-1}q_{n-1}$ pour tout $n \in \mathbb{N}^*$. On alors bien $Qq_n = q_{n-1}$ pour tout $n \in \mathbb{N}^*$ et $q_n(0) = 0$ pour tout $n \in \mathbb{N}^*$ puisque $q_n \in X\mathbb{K}[X]$. D'après la question 22, $\deg q_{n-1} = \deg Qq_n = \deg q_n - 1$ pour tout $n \in \mathbb{N}^*$. Comme $\deg q_0 = 0$, $\deg q_n = n$ pour tout $n \in \mathbb{N}$.

Si l'on suppose qu'il existe une suite (r_n) de polynômes vérifiant les mêmes conditions que (q_n) , les deux dernières conditions montrent que $r_n = \tilde{Q}^{-1}r_{n-1}$ pour tout $n \in \mathbb{N}^*$. Puisque $q_0 = r_0 = 1$, une récurrence évidente montre que $q_n = r_n$ pour tout $n \in \mathbb{N}$.

26 Fixons $x \in \mathbb{K}$. Notons \mathcal{P}_n l'assertion

$$q_n(x + X) = \sum_{k=0}^{n} q_k(x)q_{n-k}$$

Puisque $q_0 = 1$, \mathcal{P}_0 est trivialement vraie. Supposons \mathcal{P}_{n-1} vraie pour un certain $n \in \mathbb{N}^*$. Puisque Q est shift-invariant,

$$\mathbf{Q}(q_n(x+\mathbf{X})) = (\mathbf{Q}q_n)(x+\mathbf{X}) = q_{n-1}(x+\mathbf{X}) = \sum_{k=0}^{n-1} q_k(x)q_{n-1-k} = \sum_{k=0}^{n-1} q_k(x)\mathbf{Q}q_{n-k} = \mathbf{Q}\left(\sum_{k=0}^{n-1} q_k(x)q_{n-k}\right)$$

Comme Ker $Q = \mathbb{K}$, il existe une constante $C_n \in \mathbb{K}$ telle que

$$q_n(x + X) = C_n + \sum_{k=0}^{n-1} q_k(x)q_{n-k}$$

En évaluant en 0, on obtient $C_n=q_n(x)$ car $q_j(0)=0$ pour $j\in\mathbb{N}^*$. Finalement, comme $q_0=1$,

$$q_n(x+X) = q_n(x) + \sum_{k=0}^{n-1} q_k(x)q_{n-k} = \sum_{k=0}^{n} q_k(x)q_{n-k}$$

Par récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$. Il suffit alors d'évaluer l'égalité \mathcal{P}_n en $y \in \mathbb{K}$ pour obtenir le résultat voulu.

27 deg $q_0 = 0$ donc $q_0 \in \mathbb{K}^*$. En évaluant la relation pour x = y = 0, on obtient $q_0(0) = q_0(0)^2$ donc $q_0(0) = 1$ puis $q_0 = 1$.

En prenant n=1 et x=y=0, on obtient $q_1(0)=2q_0(0)q_1(0)=2q_1(0)$ donc $q_1(0)=0$. Supposons que $q_1(0)=\cdots=q_{n-1}(0)=0$ pour un certain entier $n\geq 2$. Alors

$$q_n(0) = q_n(0+0) = \sum_{k=0}^{n} q_k(0)q_{n-k}(0) = 2q_0(0)q_n(0) = 2q_n(0)$$

donc $q_n(0) = 0$. Par récurrence forte, $q_n(0) = 0$ pour tout $n \in \mathbb{N}^*$.

Comme deg $q_n = n$ pour tout $n \in \mathbb{N}$, (q_n) est une base de $\mathbb{K}[X]$. Il existe alors un unique endomorphisme Q tel que $Qq_0 = 0$ (nécessairement, Ker $Q = \mathbb{K}$ si Q est un endomorphisme delta) et $Qq_n = q_{n-1}$ pour tout $n \in \mathbb{N}^*$. Vérifions que Q est alors bien un endomorphisme delta. Tout d'abord, deg $q_1 = 1$ donc il existe $(\alpha, \beta) \in \mathbb{K}^* \times \mathbb{K}$ tel que $q_1 = \alpha X + \beta$. Alors

$$1 = q_0 = Qq_1 = \alpha QX + \beta Q1 = \alpha QX$$

Ainsi QX = $1/\alpha \in \mathbb{K}^*$. Fixons $y \in \mathbb{K}$. Comme \mathbb{K} est infini

$$\forall n \in \mathbb{N}, \ q_n(X+y) = \sum_{k=0}^n q_{n-k}(y)q_k$$

Ainsi

$$\forall n \in \mathbb{N}, \ Q \circ E_{y}(q_{n}) = Q(q_{n}(X + y)) = \sum_{k=0}^{n} q_{n-k}(y)Qq_{k} = \sum_{k=1}^{n} q_{n-k}(y)q_{k-1} = \sum_{k=0}^{n} q_{n-1-k}(y)q_{k}$$

Par ailleurs,

$$\forall n \in \mathbb{N}, \ E_y \circ Q(q_n) = q_{n-1}(X + y) = \sum_{k=0}^{n-1} q_{n-1-k}(y)q_k$$

Par conséquent, $Q \circ E_y(q_n) = E_y \circ Q(q_n)$ pour tout $n \in \mathbb{N}$. Comme (q_n) est une base de $\mathbb{K}[X]$, $Q \circ E_y = E_y \circ Q$. Ainsi Q est shift-invariant. Finalement, Q est bien un endomorphisme delta.

 $28 (q_0, ..., q_n)$ est une famille à degrés échelonnés de $\mathbb{K}_n[X]$ donc c'est bien une famille libre. De plus, elle comporte n+1 éléments et dim $\mathbb{K}_n[X] = n+1$ donc c'est une base de $\mathbb{K}_n[X]$.

29 La matrice de
$$Q_n$$
 dans la base (q_0, \dots, q_n) est
$$\begin{pmatrix} 0 & 1 & \cdots & 1 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 \\ 0 & \cdots & \cdots & 0 \end{pmatrix}.$$
 On en déduit que $\operatorname{tr}(Q_n) = \operatorname{det}(Q_n) = 0$ et $\chi_{Q_n} = X^{n+1}$.

- 30 On vérifie sans peine que
 - $q_0 = 1$;
 - $\forall n \in \mathbb{N}, \deg q_n = n;$
 - $\forall n \in \mathbb{N}^*, q_n(0) = 0$;
 - $\forall n \in \mathbb{N}^*$, $\mathrm{D}q_n = q_{n-1}$.

Donc (q_n) est bien la suite de polynômes associée à D.

- **31** Quitte à poser $q_0 = 1$, on vérifie à nouveau que
 - $q_0 = 1$;

- $\forall n \in \mathbb{N}, \deg q_n = n$;
- $\forall n \in \mathbb{N}^*, \ q_n(0) = 0;$
- $\forall n \in \mathbb{N}^*$, $Dq_n = q_{n-1}$.

Notamment, pour $n \in \mathbb{N}^*$,

$$\begin{split} (\mathbf{E}_1 - \mathbf{I})q_n &= q_n(\mathbf{X} + 1) - q_n(\mathbf{X}) \\ &= \frac{1}{n!} \left[\prod_{k=0}^{n-1} (\mathbf{X} + 1 - k) - \prod_{k=0}^{n-1} (\mathbf{X} - k) \right] \\ &= \frac{1}{n!} \left[\prod_{k=-1}^{n-2} (\mathbf{X} - k) - \prod_{k=0}^{n-1} (\mathbf{X} - k) \right] \\ &= \frac{1}{n!} \left[(\mathbf{X} + 1) - (\mathbf{X} - (n-1)) \right] \prod_{k=0}^{n-2} (\mathbf{X} - k) \\ &= \frac{1}{(n-1)!} \prod_{k=0}^{n-2} (\mathbf{X} - k) = q_{n-1} \end{split}$$

Donc (q_n) est bien la suite de polynômes associée à $E_1 - I$.

Comme Q est un endomorphisme delta, deg $Qp = \deg p - 1$ pour tout polynôme p non nul. On en déduit que pour $k > \deg p$, $Q^k p = 0$. La somme $\sum_{k=0}^{+\infty} (Q^k p)(0)q_k$ ne comporte donc qu'un nombre fini de termes non nuls : elle est donc bien définie. C'est un polynôme de $\mathbb{K}[X]$ en tant que combinaison linéaire de tels polynômes.

33 Pour la même raison qu'à la question 8, l'application $U = \sum_{k=0}^{+\infty} (Tq_k)(0)Q^k$ est bien définie et c'est un endomorphisme de $\mathbb{K}[X]$. Soit $n \in \mathbb{N}$. Alors

$$\begin{aligned} &\operatorname{U}q_n = \sum_{k=0}^{+\infty} (\operatorname{T}q_k)(0) \operatorname{Q}^k q_n \\ &= \sum_{k=0}^n (\operatorname{T}q_k)(0) \operatorname{Q}^k q_n \qquad \operatorname{car} \operatorname{Q}^k q_n = 0 \text{ pour } k > n = \deg q_n \\ &= \sum_{k=0}^n (\operatorname{T}q_k)(0) q_{n-k} \\ &= \sum_{k=0}^n (\operatorname{T}q_{n-k})(0) q_k \qquad \operatorname{par changement d'indice} \\ &= \sum_{k=0}^n (\operatorname{T} \circ \operatorname{Q}^k(q_n))(0) q_k \\ &= \sum_{k=0}^n (\operatorname{Q}^k \circ \operatorname{T}(q_n))(0) q_k \qquad \operatorname{d'après la question } \mathbf{12} \\ &= \operatorname{T}q_n \qquad \operatorname{d'après la question précédente appliquée à } p = \operatorname{T}q_n \end{aligned}$$

Les endomorphismes T et U coïncident sur la base $(q_n)_{n\in\mathbb{N}}$: ils sont égaux.

34 On prend $Q = E_1 - I$ et T = D. Ainsi, pour $p \in \mathbb{K}[X]$,

$$\begin{split} p'(\mathbf{X}) &= \mathbf{D}p = \sum_{k=0}^{+\infty} (\mathbf{D}q_k)(0)\mathbf{Q}^k p \\ &= \sum_{k=0}^{\deg p} q_k'(0)(\mathbf{E}_1 - \mathbf{I})^k p \qquad \text{car } \mathbf{Q}^k p = 0 \text{ pour } k > \deg p \\ &= \sum_{k=0}^{+\infty} q_k'(0) \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} \mathbf{E}_1^j p \text{d'après la formule du binôme } (\mathbf{E}_1 \text{ et } \mathbf{I} \text{ commutent}) \\ &= \sum_{k=0}^{+\infty} q_k'(0) \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} \mathbf{E}_j p \\ &= \sum_{k=0}^{+\infty} q_k'(0) \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} p (\mathbf{X} + j) \end{split}$$

Or d'après la question 31, $q_k = \frac{1}{k!} \prod_{i=0}^{k-1} (X-i)$. Notamment $q_0 = 1$ donc $q_0' = 0$ et, a fortiori, $q_0'(0) = 0$. Pour $k \in \mathbb{N}^*$, $q_k = Xr_k$ avec $r_k = \frac{1}{k!} \prod_{i=1}^{k-1} (X-i)$ donc $q_k' = r_k + Xr_k'$ puis $q_k'(0) = r_k(0) = \frac{(-1)^{k-1}(k-1)!}{k!} = \frac{(-1)^{k-1}}{k}$. On en déduit alors le résultat voulu.

Soit $p \in \mathbb{K}[X]$. D'après la formule de Leibniz, pour tout $k \in \mathbb{N}^*$, $D^k(Xp) = Xp^{(k)} + \binom{k}{1}p^{(k-1)} = Xp^{(k)} + kp^{(k-1)}$. Ainsi

$$T(Xp) = a_0 Xp + \sum_{k=1}^{+\infty} a_k \left(Xp^{(k)} + kp^{(k-1)} \right) = \sum_{k=0}^{+\infty} a_k Xp^{(k)} + \sum_{k=1}^{+\infty} ka_k p^{k-1} = XT(p) + \sum_{k=1}^{+\infty} ka_k D^{k-1} p$$

Par conséquent,

$$\mathbf{T}' = \sum_{k=1}^{+\infty} k a_k \mathbf{D}^{k-1}$$

36 Conséquence directe des questions 11 et 9.

37 D'après la question 20, il existe une suite $(\alpha_k)_{k \in \mathbb{N}^*}$ de scalaires telle que $\alpha_1 \neq 0$ et $T = \sum_{k=1}^{+\infty} \alpha_k D^k$. D'après la question 35, $T' = \sum_{k=1} k \alpha_k D^{k-1}$. Ainsi $T'1 = \alpha_1 \neq 0$ donc T' est inversible d'après la question 18.

| 38 | Soit $p \in \mathbb{K}[X]$. Alors

$$\begin{split} \mathbf{S}' \circ \mathbf{T}(p) + \mathbf{S} \circ \mathbf{T}'(p) &= \mathbf{S}(\mathbf{X}\mathbf{T}(p)) - \mathbf{X}\mathbf{S}(\mathbf{T}(p)) + \mathbf{S}(\mathbf{T}(\mathbf{X}p) - \mathbf{X}\mathbf{T}(p)) \\ &= \mathbf{S}(\mathbf{X}\mathbf{T}(p)) - \mathbf{X}\mathbf{S}(\mathbf{T}(p)) + \mathbf{S}(\mathbf{T}(\mathbf{X}p)) - \mathbf{S}(\mathbf{X}\mathbf{T}(p)) \\ &= \mathbf{S} \circ \mathbf{T}(\mathbf{X}p) - \mathbf{X}\mathbf{S} \circ \mathbf{T}(p) \\ &= (\mathbf{S} \circ \mathbf{T})'(p) \end{split}$$

Finalement, $(S \circ T)' = S' \circ T + S \circ T'$.

39 D'après la question précédente,

$$O' \circ U^{-n-1} = (D' \circ U + D \circ U') \circ U^{-n-1} = D' \circ U^{-n} + D \circ U' \circ U^{-n-1}$$

Pour $p \in \mathbb{K}[X]$,

$$\mathrm{D}'(p) = \mathrm{D}(\mathrm{X}p) - \mathrm{X}\mathrm{D}(p) = \mathrm{X}p' + p - \mathrm{X}p' = p$$

donc D' = I de sorte que

$$O' \circ U^{-n-1} = U^{-n} + D \circ U' \circ U^{-n-1}$$

Or \mathcal{I} est une sous-algèbre commutative de $\mathcal{L}(\mathbb{K}[X])$ donc

$$O' \circ U^{-n-1} = U^{-n} + U^{-n-1} \circ U' \circ D$$

puis

$$Q' \circ U^{-n-1}(X^n) = U^{-n}(X^n) + U^{-n-1} \circ U' \circ D(X^n)$$
$$= U^{-n}(X^n) + U^{-n-1} \circ U'(nX^{n-1})$$
$$= U^{-n}(X^n) + nU^{-n-1} \circ U'(X^{n-1})$$

A l'aide de la question précédente, on prouve par une récurrence (laissée au lecteur) que $(U^n)' = nU^{n-1} \circ U'$. Puisque $U^{-n} \circ U^n = I$, $(U^{-n} \circ U^n)' = I' = 0$ puis $(U^{-n})' \circ U^n + U^{-n} \circ (U^n)' = 0$ et enfin

$$(U^{-n})' = -U^{-n} \circ (U^n)' \circ U^{-n} = -nU^{-n-1} \circ U'$$

Finalement,

$$Q' \circ U^{-n-1}(X^n) = U^{-n}(X^n) - (U^{-n})'(X^{n-1}) = U^{-n}(X^n) - (U^{-n}(X^n) - XU^{-n}(X^{n-1})) = XU^{-n}(X^{n-1})$$

40 On va utiliser l'unicité de la suite (q_n) associée à Q. Posons $r_n = \frac{1}{n!} (Q' \circ U^{-n-1})(X^n)$. Tout d'abord, $r_0 = (Q' \circ U^{-1})(1)$. Or

$$O' \circ U^{-1} = (D \circ U)' \circ U^{-1} = (D' \circ U + D \circ U') \circ U = (I \circ U + D \circ U') \circ U^{-1} = I + U' \circ U^{-1} \circ D$$

car \mathcal{I} est une sous-algèbre *commutative* de $\mathcal{L}(\mathbb{K}[X])$. Finalement,

$$r_0 = (Q' \circ U^{-1})(1) = 1 + U' \circ U^{-1} \circ D(1) = 1 + U' \circ U^{-1}(0) = 1$$

par linéarité de $U' \circ U^{-1}$.

D'après la question 37, Q' est inversible. Comme U l'est aussi, Q' \circ U⁻ⁿ⁻¹ l'est également. D'après la question 18, deg $r_n = \deg X^n = n$ pour tout $n \in \mathbb{N}$.

D'après la question précédente, $r_n = XU^{-n}(X^n)$ pour tout $n \in \mathbb{N}^*$ donc $r_n(0) = 0$. Enfin, pour $n \in \mathbb{N}^*$.

$$Qr_n = \frac{1}{n!}Q \circ Q' \circ U^{-n-1}(X^n) = \frac{1}{n!}D \circ U \circ Q' \circ U^{-n-1}(X^n) = \frac{1}{n!}Q' \circ U^{-n-1} \circ U \circ D(X^n) = \frac{1}{n!}Q' \circ U^{-n}(nX^{n-1}) = r_{n-1}(X^n) = r_{n-1}($$

On en déduit donc que $q_n = r_n$ pour tout $n \in \mathbb{N}$ puis que $n!q_n(X) = XU^{-n}(X^{n-1})$ pour tout $n \in \mathbb{N}^*$ avec la question précédente.

Soit $n \in \mathbb{N}^*$. D'après ce qui précède, $q_{n-1} = \frac{1}{(n-1)!} (Q' \circ U^{-n})(X^{n-1})$ pour tout $n \in \mathbb{N}^*$ donc

$$X(Q')^{-1}(q_{n-1}) = \frac{1}{(n-1)!}XU^{-n}(X^{n-1}) = \frac{n!}{(n-1)!}q_n(X) = nq_n(X)$$

41 On a vu à la question 15 que $L = I + (D - I)^{-1}$, ou encore $(D - I) \circ L = D$. En appliquant à ℓ_n , on trouve bien $\ell'_{n-1} - \ell_{n-1} = \ell'_n$. On a $L = (D - I)^{-1} \circ D$. On a a montré plus haut que pour un endomorphisme T inversible, $(T^n)' = nT^{n-1} \circ T'$ pour tout

On a L = $(D - I)^{-1} \circ D$. On a a montré plus haut que pour un endomorphisme T inversible, $(T^n)' = nT^{n-1} \circ T'$ pour tout $n \in \mathbb{Z}$. On en déduit que

$$\begin{split} \mathbf{L}' &= ((\mathbf{D} - \mathbf{I})^{-1})' \circ \mathbf{D} + (\mathbf{D} - \mathbf{I})^{-1} \circ \mathbf{D}' \\ &= -(\mathbf{D} - \mathbf{I})^{-2} \circ (\mathbf{D} - \mathbf{I})' \circ \mathbf{D} + (\mathbf{D} - \mathbf{I})^{-1} \circ \mathbf{I} \\ &= -(\mathbf{D} - \mathbf{I})^{-2} \circ \mathbf{I} \circ \mathbf{D} + (\mathbf{D} - \mathbf{I})^{-1} \circ \mathbf{I} \\ &= (\mathbf{D} - \mathbf{I})^{-2} \circ (-\mathbf{D} + \mathbf{D} - \mathbf{I}) = -(\mathbf{D} - \mathbf{I})^{-2} \end{split}$$

On en déduit que

$$(L')^{-1} = -(D-I)^2 = -D^2 + 2D - I$$

D'après la question précédente,

$$n\ell_n = X(-D^2 + 2D - I)\ell_{n-1} = X(-\ell''_{n-1} + 2\ell'_{n-1} - \ell_{n-1}) = X((\ell'_{n-1} - \ell_{n-1}) - (\ell'_{n-1} - \ell_{n-1})') = X(\ell'_n - \ell''_n)$$

puis

$$X\ell_n'' - X\ell_n' + n\ell_n = 0$$

Avec les notations de la question précédente, $U = (D - I)^{-1}$. Ainsi

$$\begin{split} q_n &= \frac{X}{n!} \mathbf{U}^{-n} (\mathbf{X}^{n-1}) \\ &= \frac{X}{n!} \mathbf{X} (\mathbf{D} - \mathbf{I})^n (\mathbf{X}^{n-1}) \\ &= \frac{X}{n!} \sum_{k=0}^n (-1)^k \binom{n}{k} \mathbf{D}^{n-k} (\mathbf{X}^{n-1}) \mathbf{d}' \text{ après la formule du binôme} \\ &= \frac{X}{n!} \sum_{k=1}^n (-1)^k \binom{n}{k} \mathbf{D}^{n-k} (\mathbf{X}^{n-1}) \text{car } \mathbf{D}^n (\mathbf{X}^{n-1}) = 0 \\ &= \frac{X}{n!} \sum_{k=1}^n (-1)^k \binom{n}{k} \frac{(n-1)!}{(k-1)!} \mathbf{X}^{k-1} \\ &= \sum_{k=1}^n (-1)^k \frac{1}{n} \binom{n}{k} \frac{\mathbf{X}^k}{(k-1)!} \\ &= \sum_{k=1}^n (-1)^k \binom{n-1}{k-1} \frac{\mathbf{X}^k}{k!} \end{split}$$

42 Comme (q_n) est une base de $\mathbb{K}[X]$, il existe un unique endomorphisme T tel que $Tq_n = \frac{X^n}{n!}$ pour tout $n \in \mathbb{N}$. Comme $(X^n/n!)$ est également une base de $\mathbb{K}[X]$, T est inversible.

43 Par définition de T, pour tout $n \in \mathbb{N}^*$,

$$D \circ T(q_n) = \frac{X^{n-1}}{(n-1)!} = Tq_{n-1} = T \circ Q(q_n)$$

De plus, Q est un endomorphisme delta donc on a vu précédemment que Q1 = 0. Comme $q_0 = 1$, on a donc $T \circ Q(q_0) = 0$. De plus, $D \circ T(q_0) = D1 = 0$. Finalement, $D \circ T(q_n) = T \circ Q(q_n)$ pour tout $n \in \mathbb{N}$. Comme (q_n) est une base de $\mathbb{K}[X]$, $D \circ T = T \circ Q$ puis $D = T \circ Q \circ T^{-1}$.

44 En posant V: $\begin{cases} \mathbb{K}[X] \longrightarrow \mathbb{K}[X] \\ p \longmapsto p(x/\alpha) \end{cases}$, on a $W \circ V = V \circ W = Id_{\mathbb{K}[X]}$ donc W est inversible : c'est bien un automorphisme de $\mathbb{K}[X]$ et $W^{-1} = V$.

45 On a clairement $D \circ W = \alpha W \circ D$. On rappelle que $L = D \circ (D - I)^{-1}$ d'après la question 15. Ainsi

$$\begin{split} \mathbf{P} &= \mathbf{W} \circ \mathbf{L} \circ \mathbf{W}^{-1} \\ &= \mathbf{W} \circ \mathbf{D} \circ (\mathbf{D} - \mathbf{I})^{-1} \circ \mathbf{W}^{-1} \\ &= \frac{1}{\alpha} \mathbf{D} \circ \mathbf{W} \circ (\mathbf{W} \circ (\mathbf{D} - \mathbf{I}))^{-1} \\ &= \frac{1}{\alpha} \mathbf{D} \circ \mathbf{W} \circ \left(\frac{1}{\alpha} \mathbf{D} \circ \mathbf{W} - \mathbf{W}\right)^{-1} \\ &= \frac{1}{\alpha} \mathbf{D} \circ \mathbf{W} \circ \left(\left(\frac{1}{\alpha} \mathbf{D} - \mathbf{I}\right) \circ \mathbf{W}\right)^{-1} \\ &= \frac{1}{\alpha} \mathbf{D} \circ \mathbf{W} \circ \mathbf{W}^{-1} \circ \left(\frac{1}{\alpha} \mathbf{D} - \mathbf{I}\right)^{-1} \\ &= \frac{1}{\alpha} \mathbf{D} \circ \left(\frac{1}{\alpha} \mathbf{D} - \mathbf{I}\right)^{-1} \end{split}$$

46 On utilise à nouveau l'unicité de la suite (p_n) .

- $\ell_0(\alpha X) = 1$.
- Comme $\alpha \neq 0$, $\deg \ell_n(\alpha X) = \deg \ell_n = n$.
- Pour tout $n \in \mathbb{N}^*$, $\ell_n(\alpha \cdot 0) = \ell_n(0) = 0$.
- Pour tout $n \in \mathbb{N}^*$,

$$P(\ell_n(\alpha X)) = W \circ L \circ W^{-1}(\ell_n(\alpha X)) == W \circ L(\ell_n) = W(\ell_{n-1}) = \ell_{n-1}(\alpha X)$$

On en déduit que $p_n = \ell_n(\alpha X)$ pour tout $n \in \mathbb{N}$.

47 On rappelle que $(D - I) \circ L = D$ donc $D \circ L - L = D$ puis $D \circ (L - I) = L$ et enfin, $D = L \circ (L - I)^1$. En reportant dans l'expression trouvée à la question 45, on obtient

$$\begin{split} P &= \frac{1}{\alpha} L \circ (L-I)^{-1} \circ \left(\frac{1}{\alpha} L \circ (L-I)^{-1} - I\right)^{-1} \\ &= L \circ \left(\alpha \left(\frac{1}{\alpha} L \circ (L-I)^{-1} - I\right) \circ (L-I)\right)^{-1} \\ &= L \circ \left(\left(L \circ (L-I)^{-1} - \alpha I\right) \circ (L-I)\right)^{-1} \\ &= L \circ \left(L - \alpha (L-I)\right)^{-1} \\ &= L \circ (\alpha I + (1-\alpha)L)^{-1} \end{split}$$

48 D'après la question **43** que $D = T \circ L \circ T^{-1}$ ou encore $T \circ L = D \circ T$. Ainsi

$$\begin{split} Q &= T \circ P \circ T^{-1} \\ &= T \circ L \circ (\alpha I + (1 - \alpha)L)^{-1} \circ T^{-1} \\ &= D \circ T \circ (\alpha I + (1 - \alpha)L)^{-1} \circ T^{-1} \\ &= D \circ (T \circ (\alpha I + (1 - \alpha)L) \circ T^{-1})^{-1} \\ &= D \circ (\alpha I + (1 - \alpha)D)^{-1} \end{split}$$

Comme \mathcal{I} est une sous-algèbre de $\mathcal{L}(\mathbb{K}[X])$ dont les éléments inversibles ont encore leurs inverses dans \mathcal{I} , Q est bien shift-invariant. Comme $(\alpha I + (1-\alpha)D)^{-1}$ est inversible, $deg(\alpha I + (1-\alpha)D)^{-1}X = deg X = 1$ puis deg QX = 0 i.e. $QX \in \mathbb{K}^*$. On en déduit que Q est bien un endomorphisme delta.

On applique ensuite la question 40 avec $U = (\alpha I + (1 - \alpha)D)^{-1}$. On a donc pour $n \in \mathbb{N}^*$,

$$\begin{split} r_n &= \frac{X}{n!} \mathbf{U}^{-n} (\mathbf{X}^{n-1}) \\ &= \frac{X}{n!} (\alpha \mathbf{I} + (1 - \alpha) \mathbf{D})^n (\mathbf{X}^{n-1}) \\ &= \frac{X}{n!} \sum_{k=0}^n \binom{n}{k} \alpha^k (1 - \alpha)^{n-k} \mathbf{D}^{n-k} (\mathbf{X}^{n-1}) \\ &= \sum_{k=1}^n (-1)^k \frac{1}{n} \binom{n}{k} \alpha^k (1 - \alpha)^{n-k} \frac{X^k}{(k-1)!} \\ &= \sum_{k=1}^n (-1)^k \binom{n-1}{k-1} \alpha^k (1 - \alpha)^{n-k} \frac{X^k}{k!} \end{split}$$

49 Par linéarité de T^{-1} ,

$$\mathbf{T}^{-1}r_n = \sum_{k=1}^n (-1)^k \binom{n-1}{k-1} \alpha^k (1-\alpha)^{n-k} \mathbf{T}^{-1} \left(\frac{\mathbf{X}^k}{k!}\right) = \sum_{k=1}^n (-1)^k \binom{n-1}{k-1} \alpha^k (1-\alpha)^{n-k} \ell_k(\mathbf{X})$$

Montrons ensuite que $T^{-1}r_n = p_n$ pour tout $n \in \mathbb{N}$.

- Tout d'abord, $T^{-1}r_0 = T^{-1}1 = T^{-1}(X^0/0!) = \ell_0 = 1$.
- Comme T⁻¹ est inversible, deg T⁻¹ $r_n = \deg r_n = n$ pour tout $n \in \mathbb{N}$.
- D'après le calcul précédent, $(T^{-1}r_n)(0) = 0$ pour tout $n \in \mathbb{N}^*$ car $\ell_k(0) = 0$ pour tout $k \in \mathbb{N}^*$.
- Pour tout $n \in \mathbb{N}^*$,

$$P(T^{-1}r_n) = (P \circ T^{-1})(r_n) = (T^{-1} \circ Q)(r_n) = T^{-1}(Qr_n) = T^{-1}r_{n-1}$$

Par unicité de la suite (p_n) associé à P, $T^{-1}r_n = p_n = \ell_n(\alpha X)$ pour tout $n \in \mathbb{N}$, ce qui conclut.