CS 726: Advanced Machine Learning, Fall 2020, Mid-Semester exam

Audit/Sit-through

Write all your answers in the space provided. Do not spend time/space giving irrelevant details or details not asked for. Use the marks as a guideline for the amount of time you should spend on a question. You are allowed to write elsewhere only under special circumstances like total cancellation of a previously written answer. Use the last sheet of this booklet in such cases. You are only allowed to refer your notes, no one else's notes or textbook.

1. Consider a QMR Bayesian network comprising of disease nodes D_1, \ldots, D_n and symptom nodes $S_1, \ldots S_k$. Each symptom node has an arbitrary subset of disease nodes as parents. There are no other edges. An example appears below.

- (a) State which of the following CIs will hold, with a brief justification. No marks without correct justification. You can use D-separation test or local-CI as justification.
 - i. $D_i \perp \!\!\!\perp D_j$...1 yes. By D-separation either they will be disconnected or will have a V-node between them in all paths.
 - ii. $S_i \perp \!\!\! \perp S_j | D_{pa(S_i)}$...1 True since S_j has to be non-descendant of S_i
 - iii. $S_i \perp \!\!\! \perp S_j | D_1 \dots D_n ... 1$ Yes since none of the D_i s are descendants of any S node, and all paths from S_i to S_j are through one of the disease nodes.
 - iv. $D_i \perp \!\!\!\perp D_j | S_k$ where S_k is not a child of D_i or D_j1 True. Any path from D_i to D_j will have a V-node between them. If that V-node is S_k then there must be some other V-node that will block the path.
 - v. $S_i \perp \!\!\! \perp S_j$ where S_i and S_j do not have a common parent. ...1 Yes. since then either they are disconnected or all paths between them will go through another symptom node that is a V-node.
- (b) Show an example QMR bayesian network where moralizing by adding an undirected edge between all disease pairs sharing a symptom leads to a non-chordal graph. You need to ignore the edge directions when checking the cycle. [Hint: one solution exists at n = K = 4.] ...2 Let n = 4, k = 4 connect D_1 to S_1 and S_4 and each other D_i to S_{i-1} and S_i . We have a cycle of length 4 over the disease nodes.
- 2. In a Bayesian network the potentials represent conditional probabilities. This eliminates the need for certain messages when we run sum-product message passing inference to compute single-variable marginals. For example, the marginal of a variable without any parents are already available as potentials and do not need to be computed via inference.

- (a) In a single chain Bayesian network $x_1 \to x_2 \to \dots x_n$ with only $x_{i-1} \to x_i$ edges, state the list of messages that do not need to be computed if our goal is to compute $P(x_i)$ for $i = 1 \dots n$ 2 The backward messages from $x_i x_{i+1}$ clique to $x_i x_{i-1}$ clique are redundant and can be shown to be one.
- (b) Now consider a general Bayesian network. For each variable x_i in a Bayesian network G, what are the variables in G whose potentials are not required to compute $P(x_i)$?

 ...3 Only ancestors of x_i are required. All others can be pruned.
- (c) In any junction tree, let C_i, C_j be two cliques and S_{ij} be the separator between them. Let V_j denote the variables in the C_j side of the tree away from C_i excluding S_{ij} . Likewise, define V_j . For example, in the junction tree below, if $C_i = x_1x_2x_3$ and $C_j = x_2x_3x_4$, then $V_j = x_4x_5x_6$, $V_i = x_1$, and $S_{ij} = x_2x_3$.

Show that the variables in V_i are independent of V_j given S_{ij} , that is $V_i \perp \!\!\! \perp V_j | S_{ij}$. The proof needs to be for a general JT, not just the above example. ...3 The potentials in the graphical model either belong $V_i \cup S_{ij}$ or $V_j \cup S_{ij}$. Thus $P(V_i, V_j, S_{ij}) = g(V_i \cup S_{ij})h(g(V_j \cup S_{ij})$ This implies our result.

- (d) For general Bayesian networks on which we have drawn a junction tree provide a simple test you can run to determine which set of messages are not required to be sent. [Of course, you need to determine these using only the graph structure and without actually computing those messages.] ...2 For each clique C_i is no variable in V_j contains an ancestor of C_i , we do not need the message from C_j to C_i . This is because
- 3. Assume we are trying to learn parameters of a simple chain of three variables represented as an undirected graphical model y_1-z-y_2 . Assume all variables are binary, and the potential $\psi_1(y_1,z)=\psi_2(z,y_2)$ is expressed as a table with four parameters: $\begin{bmatrix} \theta_{00} & \theta_{01} \\ \theta_{10} & \theta_{11} \end{bmatrix}$ which we jointly call θ . For example, $P(y_1=1,z=0,y_2=1)=\frac{\psi_1(1,0)\psi_2(01)}{Z}=\frac{\theta_{1,0}\theta_{01}}{Z}$ In training data only y_1,y_2 variables are observed in each example, and denoted as $(y_1^1,y_2^1),\ldots,(y_1^N,y_2^N)$. Let us denote the values of the parameter at time t as $\theta^t=\begin{bmatrix}2&3\\4&5\end{bmatrix}$. Fill in the following answers:
 - (a) Calculate the value of normalizer Z for the above graphical model at θ^t using sumproduct inference.

$$Z = \sum_{y_1 z y_2} \theta_{y_1, z} \theta_{z, y_2} = \sum_{y_1 z} \theta_{y_1, z} \sum_{y_2} \theta_{z, y_2} = \sum_{y_1 z} \theta_{y_1, z} [5, 9]$$

$$= \sum_{y_1 z} \begin{bmatrix} 2*5 & 3*9 \\ 4*5 & 5*9 \end{bmatrix} = 2*5 + 3*9 + 4*5 + 5*9$$

- (b) The values calculated in the E-step for the *i*th instance for which $(y_1^i, y_2^i) = (0, 1)$ [Give your answer as absolute numbers, but show the steps.] ...2 $P(z = 0|\mathbf{y}^i, \theta^t) = \theta_{00}\theta_{01}/(\theta_{00}\theta_{01} + \theta_{01}\theta_{11}) = 2*3/(2*3+3*5)$
- (c) If in the training data N_{uv} denotes the number of instances for which the $y_1 = u$ and $y_2 = v$ for binary values u, v. Let q_{uv}^t denote $P(z = 1|y_1 = u, y_2 = v, \theta^t)$. Write the

M-step objective purely in terms of N_{uv} and q_{uv}^t3 $P(z=1|y_1=u,y_2=v)=\theta_{u1}\theta_{1v}/(\theta_{u1}\theta_{1v}+\theta_{u0}\theta_{0v})=q_{uv}^t$ The M-step is then $\sum_{uv}n_{uv}q_{uv}^t\log(\theta_{u1}\theta_{1v})+(1-q_{uv}^t)\log(\theta_{u0}\theta_{0v})-N\log(\sum_{uv}\theta_{u1}\theta_{1v}+\theta_{u0}\theta_{0v})$

- (d) Assume $N_{11} = N$ and all other $N_{uv} = 0$. For what value of θ is the data likelihood globally maximized? If there are multiple optimal solutions state those too. [Justify briefly] ...2 $\theta_{11} = 1$ all other theta-s 0.
- 4. Consider training a CRF $P(\mathbf{y}|\mathbf{x},\theta) = \frac{\exp(\sum_{c} F_{\theta}(\mathbf{y}_{c},c,\mathbf{x}))}{Z_{\theta}(\mathbf{x})}$ where the potentials $F_{\theta}(\mathbf{y}_{c},c,\mathbf{x})$ are computed using a neural network (NN). The neural network takes $\mathbf{y}_{c},c,\mathbf{x}$ as input, all its parameters are jointly called θ , and outputs a real score which we call $F_{\theta}(\mathbf{y}_{c},c,\mathbf{x})$. Fiven training sample $D = \{(\mathbf{x}^{i},\mathbf{y}^{i}) : i = 1,\ldots,N\}$, we will train the parameters θ of NN by maximizing following likelihood.

$$LL(\theta, D) = \sum_{i=1}^{N} \log \Pr(\mathbf{y}^{i} | \mathbf{x}^{i}, \theta) = \sum_{i} \sum_{c} F_{\theta}(\mathbf{y}_{c}^{i}, c, \mathbf{x}^{i}) - \log Z_{\theta}(\mathbf{x}^{i})$$

where an undirected graph H defines the cliques c

(a) If we use gradient ascent training, write down the gradient of the above at θ^t . Your answer should be in terms of appropriate marginals and gradients of F_{θ}3

$$\nabla LL(\boldsymbol{\theta}) = \sum_{i} \sum_{c} \nabla F_{\theta}(\mathbf{y}_{c}^{i}, c, \mathbf{x}^{i}) - \sum_{i} \sum_{c} \sum_{\mathbf{y}_{c}} \mu^{t}(\mathbf{y}_{c}, c, \mathbf{x}^{i}) \nabla F_{\theta}(\mathbf{y}_{c}^{i}, c, \mathbf{x}^{i})$$

- (b) If an instance \mathbf{x}^i has C cliques, each of size 2 and each y_j takes m possible values, how many times do we need to backprop on the NN to calculate the above gradient for that instance \mathbf{x}^i .

 ... m^2C
- (c) What trick can you suggest to reduce the number backprop steps down to a constant (like 1 or 2) per clique? ...2 Feed only \mathbf{x}^i , c as input, and a softmax layer on top to capture dependence on \mathbf{y}_c .
- 5. In class we showed a construction for proving that marginal inference is NP-hard on a Bayesian network by reduction from 3-SAT over n literals and k clauses.
 - $\bullet \ C_i = l_{i1} \lor l_{i2} \lor l_{i3}$
 - $l_{jp} = x_i$ or $\bar{x_i}$ for some $i \in [1, n], p = 1, 2, 3$
 - $S_j = S_{j-1} \wedge C_j$ for $j = 2 \dots k$ and $S_1 = C_1$

Now suppose our goal is to count the number of satisfying assignments in 3-SAT problem. In other words out of all 2^n possible assignments of the x_1, \ldots, x_n variables, we wish to find the number of those for which $S_k = 1$. For example, when we have only one clause $C_1 = x_1 \vee x_2 \vee x_3$ and n = 3 we know that $2^3 - 1 = 7$ assignments of x_i variables satisfy C_1 . Show how you can find such an answers using the result of a graphical model inference.

..3 Run sum-product inference on the Bayesian network discussed in class with $P(x_i) = [0.5, 0.5]$. $2^n P(S_k = 1)$ gives the number of satisfying assignments.

Total: 35