LOGICA

URI - UNIVERSIDADE REGIONAL INTEGRADA DO ALTO
URUGUAI E DAS MISSÕES

CURSO DE CIÊNCIA DA COMPUTAÇÃO

PROF. CARLA CASTANHO

ÁRVORES DE REFUTAÇÃO

- SÃO UMA OUTRA MANEIRA DE GARANTIR A DECIDIBILIDADE DA LÓGICA PROPOSICIONAL.
- REGRAS PARA ÁRVORE DE REFUTAÇÃO
 - 1. INICIA-SE COLOCANDO-SE AS PREMISSAS E A NEGAÇÃO DA CONCLUSÃO.

 (A IDÉIA É ENCONTRAR CONTRADIÇÕES DE MODO A PODER CONCLUIR A VALIDADE DA CONCLUSÃO.)
 - 2. APLICA-SE REPETIDAMENTE UMA DAS REGRAS A SEGUIR:
 - 2.1. NEGAÇÃO (¬): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA E SUA NEGAÇÃO, COLOCA-SE UM "X" NO FINAL DO RAMO, DE MODO A REPRESENTAR UM RAMO FECHADO.
 - (UM RAMO TERMINA SE ELE SE FECHA OU SE AS FÓRMULAS QUE ELE CONTÉM SÃO APENAS FÓRMULAS-ATÔMICAS OU SUAS NEGAÇÕES, TAL QUE MAIS NENHUMA REGRA SE APLICA ÀS SUAS FÓRMULAS. DESTA FORMA TEM-SE UM RAMO FECHADO, QUE É INDICADO POR UM X, ENQUANTO O RAMO ABERTO NÃO É REPRESENTADO POR UM X.)

ÁRVORES DE REFUTAÇÃO

2.2. NEGAÇÃO NEGADA (77): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA NÃO TICADA DA FORMA - - Ø, TICA-SE - - Ø E ESCREVE-SE Ø NO FINAL DE CADA RAMO ABERTO QUE CONTÉM - - Ø TICADA.

2.3. CONJUNÇÃO (1): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA NÃO TICADA DA FORMA Ø 1 B, TICA-SE, Ø1B E ESCREVE-SE Ø EB NO FINAL DE CADA RAMO ABERTO QUE CONTÉM Ø 1 B TICADA.

A ÁRVORE DE REFUTAÇÃO ESTÁ COMPLETA, ISTO É, COM TODOS OS RAMOS FECHADOS, LOGO, A BUSCA DE UMA REFUTAÇÃO PARA O **ARGUMENTO DE NEGAR A CONCLUSÃO** FALHOU,

POIS SÓ ENCONTROU CONTRADIÇÕES, E PORTANTO, A FORMA É VÁLIDA.

ÁRVORES DE REFUTAÇÃO

2.4. CONJUNÇÃO NEGADA (¬ 1): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA NÃO TICADA DA FORMA ¬ (Ø18), TICA-SE, ¬ (Ø18) E BIFURCA-SE O O FINAL DE CADA RAMO ABERTO QUE CONTÉM ¬ (Ø18) TICADA, NO FINAL DO PRIMEIRO RAMO SE ESCREVE ¬ Ø E NO FINAL DO SEGUNDO RAMO SE ESCREVE ¬ B.

O EXEMPLO ACIMA NOS MOSTRA QUE HÁ DOIS RAMOS ABERTOS, CONSEQÜENTEMENTE A FÓRMULA É INVÁLIDA, O QUE SIGNIFICA QUE ESTES RAMOS SÃO CONTRA-EXEMPLOS.

ÁRVORES DE REFUTAÇÃO

2.5. DISJUNÇÃO (V): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA NÃO TICADA DA FORMA ØVB, TICA-SE, ØVB E BIFURCA-SE O O FINAL DE CADA RAMO ABERTO QUE CONTÉM Ø VB TICADA, NO FINAL DO PRIMEIRO RAMO SE ESCREVE Ø E NO FINAL DO SEGUNDO RAMO SE ESCREVE B.

O EXEMPLO ACIMA NOS MOSTRA QUE HÁ DOIS RAMOS ABERTOS, CONSEQÜENTEMENTE A FÓRMULA É INVÁLIDA, O QUE SIGNIFICA QUE ESTES RAMOS SÃO CONTRA-EXEMPLOS.

ÁRVORES DE REFUTAÇÃO

2.6. CONDICIONAL (→): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA NÃO TICADA DA FORMA $\phi \to b$, TICA-SE, $\phi \to b$ E BIFURCA-SE O O FINAL DE CADA RAMO ABERTO QUE CONTÉM $\phi \to b$ TICADA, NO FINAL DO PRIMEIRO RAMO SE ESCREVE $\neg \phi$ E NO FINAL DO SEGUNDO RAMO SE ESCREVE b.

$$P \rightarrow Q, Q \rightarrow R, P \vdash R$$

1.	$P \rightarrow Q$	COMO A ÁRVORE COMPLETA ESTÁ FECHADA, A REFUTAÇÃO
2.	$Q \rightarrow R$	EMPREENDIDA FALHA E A FORMA É VÁLIDA.
3.	Р	
4.	¬ R	
5. ¬ P (1 →)	Q	
6. X (3,5 ¬)		
7.	¬ Q (2 →)	R (2 →)
8.	X (5,7 ¬)	X (4,7 ¬)

ÁRVORES DE REFUTAÇÃO

2.7. DISJUNÇÃO NEGADA (¬ V): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA NÃO TICADA DA FORMA ¬ (\emptyset Vb), TICA-SE, ¬ (\emptyset Vb) E ESCREVE-SE ¬ \emptyset E ¬ B NO FINAL DE CADA RAMO ABERTO QUE CONTÉM ¬ (\emptyset Vb) TICADA.

O RAMO ABERTO INDICA QUE A FORMA É INVÁLIDA

ÁRVORES DE REFUTAÇÃO

2.8. CONDICIONAL NEGADO ($\neg \rightarrow$): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA NÃO TICADA DA FORMA $\neg (\phi \rightarrow b)$, TICA-SE, $\neg (\phi \rightarrow b)$ E ESCREVE-SE ϕ E \neg b NO FINAL DE CADA RAMO ABERTO QUE CONTÉM $\neg (\phi \rightarrow b)$ TICADA.

OS RAMOS ABERTOS INDICA QUE A FORMA É INVÁLIDA

ÁRVORES DE REFUTAÇÃO

2.9. BICONDICIONAL (\leftrightarrow): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA NÃO TICADA DA FORMA $\emptyset \leftrightarrow \emptyset$, TICA-SE, $\emptyset \leftrightarrow \emptyset$ E BIFURCA-SE O O FINAL DE CADA RAMO ABERTO QUE CONTÉM $\emptyset \leftrightarrow \emptyset$ TICADA, NO FINAL DO PRIMEIRO RAMO SE ESCREVE \emptyset E \emptyset E NO FINAL DO SEGUNDO RAMO SE ESCREVE \emptyset \emptyset E \emptyset \emptyset \emptyset \emptyset

$$P \leftrightarrow Q_{\prime\prime} \rightarrow Q$$

ÁRVORES DE REFUTAÇÃO

2.10. BICONDICIONAL NEGADO ($\neg \leftrightarrow$): SE UM RAMO ABERTO CONTÉM UMA FÓRMULA NÃO TICADA DA FORMA $\neg (\phi \leftrightarrow b)$, TICA-SE, $\neg (\phi \leftrightarrow b)$ E BIFURCA-SE O O FINAL DE CADA RAMO ABERTO QUE CONTÉM $\neg (\phi \leftrightarrow b)$ TICADA, NO FINAL DO PRIMEIRO RAMO SE ESCREVE $\phi \in \neg b \in \neg$

$$P, P \rightarrow Q$$
 $P \leftrightarrow Q$