Gravity disturbance or gravity anomaly?

Vanderlei C. Oliveira $Jr^{1\star}$, Valéria C. F. Barbosa¹ and Leonardo Uieda²

¹ Department of Geophysics, Observatório Nacional, Rio de Janeiro, Brazil

Received 2018 Month XX; in original form 2018 Month XX

SUMMARY

Gravity anomalies have long been used by geophysicists for the purpose of determining density distributions in subsurface.

However, gravity anomalies

In this paper, we discuss the fundamental concepts

URGENTE: (Marussi et al. 1974), (Torge & Müller 2012), section 4.2.1

Key words: potential fields – gravity disturbance – gravity anomaly – gravity modeling.

1 INTRODUCTION

The resultant of gravitational force and centrifugal force acting on a body at rest on the Earth's surface is called gravity vector and its intensity is called simply gravity (Heiskanen & Moritz 1967; Hofmann-Wellenhof & Moritz 2005). In the case of gravimetry on moving platforms (e.g., airplanes, helicopters, marine vessels), there are additional non-gravitational accelerations due to the vehicle motion, such as Coriolis acceleration and high-frequency vibrations (Glennie et al. 2000; Nabighian et al. 2005; Baumann et al. 2012). Geophysicists use gravity for estimating the Earth's internal density distribution whereas geodesists use gravity to estimate the geoid (Li & Götze 2001). Hence, geophysicists are usually interested in the gravitational component of the observed gravity, which is produced by the Earth's internal density distribution. The first step of the procedure for isolating this gravitational component consists in removing the non-gravitational effects due to the vehicle motion and also the time variations such as Earth tides, instrumental drift and barometric pressure changes, for example. If these effects are properly removed, the resultant gravity data can be considered as the sum of a centrifugal component due to the Earth's rotation and a gravitational component produced by the whole Earth's internal density distribution. The isolation of this particular gravitational component and its subsequent use for estimating density distributions related to geological structures in subsurface are the main goals in applied geophysics (Blakely 1996).

Based on well-established concepts of the literature, we present a discussion aiming at bringing some light to the following question: in geophysical applications, should we use the gravity disturbance or gravity anomaly? It seems that this theoretical issue has been debated within the scientific community from a more geodetic than geophysical point of view (LaFehr 1991; Chapin 1996; Li & Götze 2001; Fairhead et al. 2003; Hackney & Featherstone 2003; Hinze et al. 2005). Our reasoning suggests that the

gravity disturbance is more appropriated than gravity anomalies for approximating the gravitational effect produced by the Earth's internal density distribution.

2 NORMAL EARTH AND NORMAL GRAVITY

Traditionally, the Earth's gravity field is approximated by the gravity field produced by a geocentric and rigid ellipsoid of revolution, which has the minor axis b coincident with the mean rotating axis of the Earth Z, the same total mass (including the atmosphere) and also the same angular velocity of the Earth (Heiskanen & Moritz 1967; Vaníček & Krakiwsky 1987; Hofmann-Wellenhof & Moritz 2005; Torge & Müller 2012). Another characteristic of this model is that its limiting surface coincides with a particular equipotential of its own gravity field. Here, we follow (Torge & Müller 2012) and call this model as $normal\ Earth$.

Similarly to the gravity vector and gravity, the resultant of the virtual gravitational and centrifugal forces exerted by the normal Earth on a body at rest at a point *P* is called *normal gravity vector* and its intensity is called simply *normal gravity*. In geodesy, any model used to represent the normal gravity field can be arbitrarily defined for the only purpose of keeping the difference from the actual gravity field as small as possible (Vaníček & Krakiwsky 1987).

It is worth noting that, although the normal Earth has the same total mass (including the atmosphere) of the Earth, its internal density distribution is unknown. The search for physically meaningful mass distributions that generate a required normal gravity field has geophysical rather than geodetic motives (Marussi et al. 1974). The only condition imposed on its internal density distribution is that it produces a gravity field having a particular equipotential which coincides with its limiting surface. For convenience, we denote any density distribution satisfying this condition as a *normal density distribution*.

The normal Earth gives rise to the *geodetic coordinate system* (Heiskanen & Moritz 1967; Soler 1976; Torge & Müller 2012;

² Department of Geology and Geophysics, University of Hawaii, Manoa, USA

Bouman et al. 2013). In this coordinate system, the position of a point P is defined by the geometric height h, geodetic latitude φ and *longitude* λ (Figure A1). Geodetic coordinates (h, φ, λ) can be easily converted into geocentric Cartesian coordinates (X, Y, Z)(Figure A1). The plane containing the point P, the axis Z and the origin O of this geocentric Cartesian coordinate system is called meridian plane (gray plane in Figure A1). At a given point (h, φ, λ) , there are three unit vectors (Figure A1) given by (Soler 1976):

$$\hat{\boldsymbol{u}} = \begin{bmatrix} \cos \varphi \cos \lambda \\ \cos \varphi \sin \lambda \\ \sin \varphi \end{bmatrix}
\hat{\boldsymbol{v}} = \begin{bmatrix} -\sin \varphi \cos \lambda \\ -\sin \varphi \sin \lambda \\ \cos \varphi \end{bmatrix}, \qquad (1)$$

$$\hat{\boldsymbol{w}} = \begin{bmatrix} -\sin \lambda \\ \cos \lambda \\ 0 \end{bmatrix}$$

Notice that these unit vectors are mutually orthogonal and that the normal gravity vector γ_P at a point P is opposite to the unit vector $\hat{\boldsymbol{u}}_P$ at P.

3 GRAVITY DISTURBANCE

It is worth noting that, by definition, the centrifugal component of the normal gravity field is equal to the centrifugal component of the Earth's gravity field if they are evaluated at the same point. Then, the differences between the gravity vector (corrected from non-gravitational effects) and the normal gravity vector, at the same point, represents a purely gravitational and consequently harmonic disturbing field. This gravitational disturbance is caused by contrasts between the actual internal density distribution of the Earth and the internal density distribution of the normal Earth. In applied geophysics, these density differences are generally called anomalous masses (e.g., Hammer, 1945; LaFehr, 1965), density anomalies (e.g., Forsberg, 1984) or gravity sources (e.g., Blakely, 1996). Here, we opted for using the last term.

The difference between the observed gravity and the normal gravity, at the same point, is called gravity disturbance (Heiskanen & Moritz 1967; Hofmann-Wellenhof & Moritz 2005). Notice that the gravity disturbance is not equivalent to the magnitude of the difference between the gravity vector and the normal gravity vector at the same point (Barthelmes 2013; Sansò & Sideris 2013). As properly pointed out by Hackney & Featherstone (2003), the gravity disturbance is a very-well established quantity in geodesy, but appears to be less well known in geophysics.

The gravity anomaly is the commonly used quantity in applied geophysics. It is defined as the difference between the gravity on the geoid and the normal gravity on the ellipsoid, both at the same geodetic latitude and longitude. Notice that, by definition, the gravity anomaly depends on longitude and latitude only and is not a function in space (Barthelmes 2013). Different gravity anomalies can be calculated, depending on the corrections applied to them (Blakely 1996; Hofmann-Wellenhof & Moritz 2005). These corrections are usually called gravity reductions. For example, the Freeair anomaly is an approximation of the gravity disturbance whereas the Bouguer anomaly is an approximation of the terrain corrected gravity disturbance. The last one is commonly used by geophysicists as the gravitational effect produced by the gravity sources. Although this approximation is valid for most practical applications,

it is important to bear in mind not only the terminology changes, but also the conceptual assumptions.

There was a certain lack of comprehension regarding the geophysical meaning of gravity anomalies until the mid 90's. As properly pointed out by Chapin (1996) at that time, "although the corrections which bring about a Bouguer gravity anomaly are well established, the reasons for doing them are not well understood. One cause of this common misunderstanding is that the subject has been poorly presented in many of the basic texts". In his seminal book, Blakely (1996) brought some light on the geophysical meaning of gravity anomalies from the perspective of applied geophysics. Blakely (1996) correctly defined gravity sources as density contrasts between the actual internal density distribution of the Earth and the internal density distribution of the normal Earth. However, he did not stress that, by removing the normal gravity evaluated on the ellipsoid from the gravity measured on the Earth's surface, the remaining disturbing field will reflect not only the effect produced by the gravity sources, but also a small combination of gravitational and centrifugal effects. This additional, non-harmonic and undesired effect is simply due to the calculation of the normal gravity at a point other than that were the gravity is measured.

MATHEMATICAL DESCRIPTION OF THE GRAVITY DISTURBANCE IN A LOCAL COORDINATE SYSTEM

In a local- or regional-gravity study, geophysicists commonly use a topocentric Cartesian coordinate system with origin at a point Pand axes x, y and z defined by the unit vectors $\hat{\boldsymbol{v}}_P$, $\hat{\boldsymbol{w}}_P$ and $-\hat{\boldsymbol{u}}_P$ (equation 1), respectively (Figures A1 and A2). In this coordinate system, the observed gravity vector \mathbf{g}_i , at a point (x_i, y_i, z_i) , i =1, ..., N, can be represented by

$$\boldsymbol{g}_i = \boldsymbol{\gamma}_i + \Delta \boldsymbol{g}_i \,, \tag{2}$$

where γ_i and Δg_i are, respectively, the normal gravity vector and a disturbing gravitational attraction produced by the anomalous masses at the point (x_i, y_i, z_i) .

For each point (x_i, y_i, z_i) in the topocentric Cartesian coordinate system (Figure A2b), there is a corresponding point $(h_i, \varphi_i, \lambda_i)$ in the geodetic coordinate system (Figure A1). Here, we opted for omitting the equations to convert a point (x_i, y_i, z_i) into a point $(h_i, \varphi_i, \lambda_i)$ and vice versa. These equations, however, may be easily found in the literature (e.g., Heiskanen & Moritz 1967; Soler 1976; Torge & Müller 2012; Bouman et al. 2013).

By definition, the gravity disturbance δg_i , at the point (x_i, y_i, z_i) , is given by (Heiskanen & Moritz 1967; Hofmann-Wellenhof & Moritz 2005):

$$\delta g_i = g_i - \gamma_i \,, \tag{3}$$

where $g_i = \|\boldsymbol{g}_i\|$ and $\gamma_i = \|\boldsymbol{\gamma}_i\|$ are, respectively, the observed gravity and the normal gravity at the point (x_i, y_i, z_i) . Fortunately, the condition $\gamma_i \gg \|\Delta \mathbf{g}_i\|$ is met at all points located above or on the Earth's surface. By combining this condition and the definition of observed gravity vector (equation 2), we can approximate the observed gravity q_i by a first order Taylor's expansion as follows (Sansò & Sideris 2013):

$$g_i \approx \gamma_i + \hat{\boldsymbol{\gamma}}_i^{\top} \Delta \boldsymbol{g}_i , \qquad (4)$$

where $^{ op}$ denotes transposition, $\hat{m{\gamma}}_i = -\hat{m{u}}_i$ is a unit vector with the same direction as the normal gravity vector γ_i at the point (x_i, y_i, z_i) , in the topocentric Cartesian coordinate system (Figure A2b), and \hat{u}_i is the unit vector \hat{u} (equation 1) evaluated at the corresponding point $(h_i, \varphi_i, \lambda_i)$ in the geodetic coordinate system (Figure A1).

This approximation, which is known in geodesy (e.g., Sansò & Sideris 2013), is largely used in applied geophysics for representing total-field anomalies (e.g., Blakely 1996). Notice that, in local-or regional-gravity studies, the unit vector $\hat{\gamma}_i$ (equation 4) may be considered constant throughout the study area and parallel to the z axis of the topocentric Cartesian coordinate system (Figure A2b). Consequently, by using the approximation defined in equation 4, the gravity disturbance (equation 3) can be rewritten as follows

$$\delta g_i \approx \hat{\boldsymbol{\gamma}}_P^{\top} \Delta \boldsymbol{g}_i \,, \tag{5}$$

where $\hat{\gamma}_P$ represents the unit vector with the same direction as the normal gravity vector γ_P at the origin P of the topocentric Cartesian coordinate system (Figure A2). This equation shows that the gravity disturbance δg_i (equation 3) is different from the magnitude of the disturbing gravitational attraction Δg_i produced by the gravity sources. Rather, it represents the component of the Δg_i on the direction of the normal gravity vector. In the topocentric Cartesian coordinate system, the gravity disturbance δg_i (equation 5) can be defined as the vertical component of the gravitational attraction exerted by the gravity sources at the point (x_i, y_i, z_i) . As a consequence, the gravity disturbance produced by a homogeneous gravity source with density contrast $\Delta \rho$ (in kg/m^3) can be represented by the following harmonic function:

$$d_i = k_q G \Delta \rho \, \partial_z \phi_i \,, \tag{6}$$

where G is the Newtonian constant of gravitation (in $m^3/(kg\,s^2)$), $k_g=10^5$ is a constant factor transforming from m/s^2 to milligal (mGal), and $\partial_z\phi_i$ is a harmonic function representing the first derivative, evaluated at the observation point (x_i,y_i,z_i) , i=1,...,N, of the function

$$\phi(x,y,z) = \int \int_{v} \int \frac{1}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}} dv$$
(7

with respect to the variable z. The integral is conducted over the coordinates x', y' and z' within the volume v of the gravity source. This equation can be easily generalized for the case of multiple gravity sources.

Practically all the literature about gravity modeling use the quantity d_i (equation 6) to represent the gravity anomaly produced by gravity sources (e.g., Blakely 1996). Consequently, almost all the geophysicists use the gravity anomaly as an approximation of the gravity disturbance produced by the gravity sources. Notice that d_i (equation 6) does not depend on the geoidal surface. Rather, it depends on the relative position of the observation points (x_i, y_i, z_i) with respect to the gravity sources in a topocentric Cartesian coordinate system (Figure A2b).

5 CONCLUSIONS

We debate the conceptual differences between the gravity disturbance and the gravity anomaly. Our reasoning suggest that the gravity disturbance is the more appropriated quantity for representing the gravity effect produced by the gravity sources. In summary, we point out that:

(i) Almost all interpretation techniques assume, implicitly or directly, that the gravity data is harmonic (e.g., upward/downward

continuation, data processing with equivalent layer, conversions between gravity and magnetic data, computation of vertical derivatives via Fourier and Hilbert transforms). As a consequence, they implicitly or directly assume that the gravity data approximates the gravitational disturbance.

- (ii) Almost all forward modeling techniques compute the vertical component of the gravitational attraction exerted by the geological bodies at the observation points. Notice that the gravity anomaly requires the computation of gravity on the Geoid, which is generally within the topographic masses. Hence, almost all geophysicists implicitly compute the gravity disturbance.
- (iii) The gravity anomaly is defined as the difference between the gravity on the Geoid and the normal gravity on the reference ellipsoid, both at the same geodetic latitude and longitude. Consequently, the gravity anomaly is a function of the geodetic latitude and longitude only and cannot be calculated at arbitrary heights. On the other hand, the gravity disturbance can be computed at arbitrary points outside the sources.

The principal theoretical implication of this study is that is that, although the gravity anomaly may be used as a good approximation of the gravity effect produced by the sources for most practical applications, the more appropriated quantity for gravity modeling is the gravity disturbance. We stress that, more important than the the terminology changes, the geophysicist must bear in mind the conceptual assumptions used in gravity modeling.

ACKNOWLEDGMENTS

The authors would like to thank the editor and all the reviewers for their criticisms and corrections.

REFERENCES

Barthelmes, F., 2013. Definition of functionals of the geopotential and their calculation from spherical harmonic models.

Baumann, H., Klingelé, E., & Marson, I., 2012. Absolute airborne gravimetry: a feasibility study, *Geophysical Prospecting*, **60**(2), 361–372

Blakely, R. J., 1996. Potential Theory in Gravity and Magnetic Applications, Cambridge University Press.

Bouman, J., Ebbing, J., & Fuchs, M., 2013. Reference frame transformation of satellite gravity gradients and topographic mass reduction, *Journal of Geophysical Research: Solid Earth*, **118**(2), 759–774.

Chapin, D. A., 1996. The theory of the bouguer gravity anomaly: A tutorial, *The Leading Edge*, **15**(5), 361–363.

Fairhead, J. D., Green, C. M., & Blitzkow, D., 2003. The use of gps in gravity surveys, *The Leading Edge*, **22**(10), 954–959.

Forsberg, R., 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, Tech. rep., DTIC Document.

Glennie, C. L., Schwarz, K. P., Bruton, A. M., Forsberg, R., Olesen, A. V., & Keller, K., 2000. A comparison of stable platform and strapdown airborne gravity, *Journal of Geodesy*, 74(5), 383–389.

Hackney, R. I. & Featherstone, W. E., 2003. Geodetic versus geophysical perspectives of the gravity anomaly, *Geophysical Journal International*, 154(1), 35–43.

Hammer, S., 1945. Estimating ore masses in gravity prospecting, Geophysics, 10(1), 50–62.

Heiskanen, W. A. & Moritz, H., 1967. Physical Geodesy, W.H. Freeman and Company.

Hinze, W. J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., Forsberg, R., Hildenbrand, T., Keller, G. R., Kellogg, J., Kucks, R., Li, X., Mainville, A., Morin, R., Pilkington, M., Plouff, D., Ravat,

4 Oliveira Jr, Barbosa and Uieda

Figure A1. Schematic representation of the geodetic coordinate system defined by an oblate ellipsoid with semi-minor axis b, coincident with the mean Earth's rotation axis, and a semi-major axis a. In this coordinate system, the position of a point is determined by the geometric height h, the geodetic latitude φ and longitude λ . The Earth's center of mass is represented by O, P represents a point (h, φ, λ) and P' represents the projection of P on the plane XY (Equatorial plane). The plane containing O, P and P' is represented by the gray triangle in (a) and (b). The unit vectors $\hat{\boldsymbol{u}}_P$, $\hat{\boldsymbol{v}}_P$ and $\hat{\boldsymbol{w}}_P$ define three mutually orthogonal directions at each point P. In (b), the point P represents the projection of P on the ellipsoid surface, at the same latitude φ and longitude λ .

D., Roman, D., Urrutia-Fucugauchi, J., Véronneau, M., Webring, M., & Winester, D., 2005. New standards for reducing gravity data: The north american gravity database, *Geophysics*, **70**(4), J25–J32.

Hofmann-Wellenhof, B. & Moritz, H., 2005. *Physical Geodesy*, Springer. LaFehr, T. R., 1965. The estimation of the total amount of anomalous mass by gauss's theorem, *Journal of Geophysical Research*, **70**(8), 1911–1919.

LaFehr, T. R., 1991. Standardization in gravity reduction, *Geophysics*, **56**(8), 1170–1178.

Li, X. & Götze, H.-J., 2001. Ellipsoid, geoid, gravity, geodesy, and geophysics, *Geophysics*, **66**(6), 1660–1668.

Marussi, A., Moritz, H., Rapp, R. H., & Vicente, R. O., 1974. Ellipsoidal density models and hydrostatic equilibrium: Interim report, *Physics of the Earth and Planetary Interiors*, **9**(1), 4–6.

Nabighian, M. N., Ander, M. E., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Pearson, W. C., Peirce, J. W., Phillips, J. D., & Ruder, M. E., 2005. Historical development of the gravity method in exploration, *GEOPHYSICS*, **70**(6), 63ND–89ND.

eds Sansò, F. & Sideris, M. G., 2013. *Geoid Determination*, vol. 110 of **Lecture Notes in Earth System Sciences**, Springer Berlin Heidelberg, Berlin, Heidelberg.

Soler, T., 1976. On differential transformations between cartesian and curvilinear (geodetic) coordinates, Tech. rep., Ohio State University.

Torge, W. & Müller, J., 2012. Geodesy, de Gruyter, 4th edn.

Vaníček, P. & Krakiwsky, E. J., 1987. Geodesy: The Concepts, Second Edition, Elsevier Science.

Figure A2. (a) Schematic representation of the gravity vector \mathbf{g}_P , normal gravity vector $\mathbf{\gamma}_P$, disturbing gravitational attraction $\Delta \mathbf{g}_P$ (equation 2) and the unit vector $\hat{\mathbf{u}}_P$ (equation 1) at the point P and also the normal gravity vector $\mathbf{\gamma}_Q$ at the point Q on the reference ellipsoid. At the point P the normal gravity vector $\mathbf{\gamma}_P$ is opposite to the unit vector $\hat{\mathbf{u}}_P$ and the normal gravity $\mathbf{\gamma}_Q$ at the point Q is opposite the another unit vector $\hat{\mathbf{u}}_Q$, which is close to $\hat{\mathbf{u}}_P$. (b) Schematic representation of a topocentric Cartesian coordinate system with origin at a point P and x, y and z axes defined by the unit vectors $\hat{\mathbf{v}}_P$, $\hat{\mathbf{w}}_P$ and $-\hat{\mathbf{u}}_P$ (Figure A1), respectively.