Conjuntos de Instruções: MIPS, Registradores,	
Palavras e tipos de instruções	
Yuri Kaszubowski Lopes	
UDESC	
YKL (UDESC) Conjuntos de Instruções 1/19	
Instruções de Máquina	Anotações
 Para nos comunicar com o processador precisamos "falar a sua língua" Alguns exemplos: O seu computador pessoal: 	
★ x86, AMD64 (x64) O seu Smartphone:	
 ★ ARM Microcontroladores: ★ PIC instruction SET, AVR32 (Atmel) 	
MIPS O Conjunto de instruções está diretamente relacionado com o hardware:	
 Como o hardware interpreta as instruções O quão complexa é a interpretação A quantidade de instruções disponíveis 	
 A qualitadae de instruções disponíveis Como as instruções são armazenadas e requisitadas da memória 	
YKL (UDESC) Conjuntos de Instruções 2/19	
MIPS	Anotações
 Focamos no MIPS de 32 bits (MIPS32) Discutido em Patterson e Henessy (2014) Microprocessor without Interlocked Pipeline Stages 	
 Desenvolvido por, entre outros pesquisadores, Patterson e Henessy Turing Award de 2017 	
 Ideias do MIPS da década de 80 possibilitaram a criação de processadores extremamente eficientes, como os do seu smartphone Diversos processadores de hoje que utilizam a arquitetura MIPS atual 	
 Conjunto de instruções relativamente simples Aprenda um conjunto/arquitetura e migrar para outro conjunto de 	
instruções será (quase) fácil	

Anotações

Conjuntos de Instruções

3/19

Registradores

- A vasta maioria das arquiteturas atuais (x86-64, MIPS, ARM) operam somente na CPU
- Precisamos carregar os dados para os registradores da CPU
 - Porções de memória na CPU as quais podemos utilizar para realizar
- Os registradores são visíveis ao programador
 - Ao menos quando programamos em baixo nível
 Existem registradores não visíveis

Anotações		

Registradores

• Registradores geralmente são construídos com flip-flops

Registradores

- Registradores são os dispositivos de memória mais rápidos disponíveis no computador
- Enquanto temos uma abundância relativa de memória principal, os registradores são escassos
 - ▶ No MIPS, por exemplo, temos 32 registradores de 32 bits cada
- Quantos registradores seu processador x86 possui?
 - ▶ O seu processador x86 tem apenas 8 registradores que usamos em nossos
 - programas 16 registradores no x86-64
 - Os microcontroladores PIC 16F62... possuem apenas um registrador geral
- Cada registrador precisa ter um endereço. Quantos bits são necessários para endereçar todos os registradores do MIPS?

Anotações			

Registradores

São necessários 5 bits para endereçar os registradores do MIPS (2⁵ =

Número (Decimal)	Nome Registrador	Descrição
0	\$zero,\$r0	Sempre contém zero
1	\$at	Utilizado para o assembler (montador)
2 e 3	\$v0 e \$v1	Valores de retorno
4,,7	\$a0,\$a3	Argumentos de função
8,,15	\$t0,,\$t7	Para cálculos temporários (não salvos)
16,,23	\$s0,,\$s7	Registradores salvos (entre chamadas de função)
24 e 25	\$t8 e \$t9	Mais registradores temporários
26 e 27	\$k0 e \$k1	Reservados para o Kernel (S.O.)
28	\$gp	Apontador de memória global
29	\$sp	Ponteiro de pilha
30	\$fp	Ponteiro de quadro
31	\$ra	Endereço de retorno

Anotações		
-		

Registradores

- Focamos inicialmente nos registradores gerais 8 a 15 (não salvos), e 16 a 23 (salvos)
- A máquina entende somente zeros e uns (Linguagem de Máquina)
 - ▶ Difícil enxergar que o valor 10001₂ em uma instrução se referencia ao

 - Por essa razão programamos em linguagem de montagem Assembly
 Nos referenciamos aos registradores (e operações) por seus nomes
- Os nomes dos registradores em assembly do MIPS começam com \$
 - ▶ e.g., o registrador \$s0 é o registrador 16₁0 ou 10000₂
 - O montador (Assembler) simplesmente traduz de \$s0 para 100002 em linguagem de máquina

Anotaçoes		

Anotações

Tamanho da palavra – Word size

- O tamanho "natural" dos dados que um processador lida é denominado word (palavra)
- O tamanho da palavra (word) do MIPS32 é de 32 bits
- No MIPS32, os registradores suportam 32 bits, e as operações geralmente lidam com 32 bits
- Processadores diferentes possuem palavras de tamanhos diferentes
 x86-64 possui uma palavra de 16 bits
 - - Mesmo que a arquitetura suporte registradores de 32-bits (x86) e 64-bits (x64);
 - sua palavra de dados remete ao tamanho original de 16-bits * byte, word (16-bits), dword (32-bits), qword (64-bits)
 - Os PICs da família 16F62x possuem uma palavra de 8 bits

Instruções

- Todas instruções no MIPS ocupam 32 bits
- A consistência facilita o projeto
- x86 por exemplo possui instruções de tamanhos variados
 - Mais flexível, mas o hardware se torna muito mais complexo (e muitas vezes

Exemplo de uma instrução no MIPS

$\underline{00000010001100100}\underline{100000000100000}$

32 bits

- Um tanto difícil interpretar e criar um programa utilizando diretamente as instruções de máquina
 - ► Esse é um dos motivos de programarmos em Assembly
 - O montador (assembler) consegue traduzir diretamente de Assembly para a linguagem de máquina, e vice-versa
 - Diferente de um compilador, que precisa fazer uma "reinterpretação do código" para transformá-lo em linguagem de máquina

Instruções

• No assembly, utilizamos mnemônicos ao invés dos bits diretamente para representar uma instrução

> 000000 10001 10010 01000 00000 100000 ← **Linguagem de Máquina** 32 ► Não usado nessa instrução.
> Problema de toda instrução
> ter o mesmo tamanho!
> #somar \$\$1 com \$\$2 e armazenar o resultado em \$\$10

assembly → add \$t0, \$s1, \$s2

- Para entender como a CPU interpreta a instrução, e como podemos transformar de assembly para linguagem de máquina (e vice-versa), vamos começar a entender a arquitetura MIPS
- A instrução MIPS possui campos com larguras pré-definidas
 - Quais campos são utilizados em quais instruções depende do formato da instrução

Anotações

Anotações

Instruções (Tipo-R)

- op: código básico da instrução, tradicionalmente chamado de opcode
- rs: registrador do primeiro operando (fonte)
- rt: registrador do segundo operando (fonte)
- rd: registrador destino
- shamt: Shift Ammount (quantidade de deslocamento)
- funct: variante da operação

4	32 bits						
	ор	rs	rt	rd	shamt	funct	1
	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	_

Anotações			

Instruções (Tipo-R)

- Qual seria o problema no MIPS se tivéssemos mais de 32 registradores?

 - Os campos rs, rt e rd precisariam de mais bits
 Sacrificaríamos outros campos, ou então ocuparíamos mais bits com as instruções

YKL (UDESC) Conjuntos de Instruções	
TRE (ODESC) Conjuntos de instruções	13/19

Instruções (Tipo-R) - exemplo

- add reg1, reg2, reg3
 - ► Some reg2 + reg3 e armazene o resultado em reg1

add \$t0, \$s1, \$s2

Instruções (Tipo-R vs Tipo-I)

- Instruções do tipo-R são fundamentais para lidarmos diretamente com registradores
- Mas e se precisarmos carregar um valor "fixo" para dentro de um registrador?

 - e.g., colocar o valor 2855₁₀ em \$s0

 Poderíamos utilizar um opcode diferente para especificar que rs ou rt se referem ao valor a ser carregado, e não o endereço do registrador Qual o problema?
 - - * Temos apenas 5 bits nesses campos

 * A maior constante que podemos especificar seria 32₁₀

 * Se considerarmos valores com sinal em complemento a 2, nosso intervalo é entre -16 e +15

Anotações			

Anotações

Anotações		

Instruções (Tipo-I)

 Instruções do tipo-l servem para (dentre outras coisas) carregar constantes, denominadas valores imediatos, e para acessar a memória Anotações

- ► tipo-Imediato
- Não temos os campos rd, shamt e func
 - Esses campos viram um único campo de 16 bits, onde colocamos o imediato
 - Agora podemos inserir constantes de +/-2¹⁵ (complemento a dois)
- op e rs possuem os mesmos significados do tipo-R
- No tipo-I, o campo rt especifica o destino ou a fonte, dependendo da instrução

YKL (UDESC) Conjuntos de Instruções 16/19

Instruções (Tipo-I) – exemplo

- addi reg1, reg2, imediato
 - ► Some reg2 + imediato e armazene o resultado em reg1

addi \$s1, \$s2, 100

/KL (UDESC) Conjuntos de Instruções 17/

Referências

- D. Patterson; J. Henessy. Organização e Projeto de Computadores: Interface Hardware/Software. 5a Edição. Elsevier Brasil, 2017.
- Andrew S. Tanenbaum. Organização estruturada de computadores.
 5. ed. São Paulo: Pearson, 2007.
- Harris, D. and Harris, S. Digital Design and Computer Architecture. 2a ed. 2012.
- courses.missouristate.edu/KenVollmar/mars/

Anotações		
7 ii lotagooo		
Anotações		
Anotações		

Conjuntos de Instruções: MIPS, Registradores, Palavras e tipos de instruções

Yuri Kaszubowski Lopes

UDESC

Anotações	
Anotações	

Anotações