BACCALAUREAT GENERAL

MATHEMATIQUES

Série S

Enseignement de Spécialité

Durée de l'épreuve : 4 heures

Coefficient: 9

Ce sujet comporte 9 pages numérotées de 1 à 9

Du papier millimétré est mis à la disposition des candidats.

L'utilisation d'une calculatrice est autorisée.

Le candidat doit traiter tous les exercices.

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (5 points)

(Commun à tous les candidats)

Un protocole de traitement d'une maladie, chez l'enfant, comporte une perfusion longue durée d'un médicament adapté. La concentration dans le sang du médicament au cours du temps est modélisée par la fonction C définie sur l'intervalle $[0; +\infty[$ par :

$$C(t) = \frac{d}{a} \left(1 - e^{-\frac{a}{80}t} \right)$$

où

C désigne la concentration du médicament dans le sang, exprimée en micromole par litre,

t le temps écoulé depuis le début de la perfusion, exprimé en heure,

d le débit de la perfusion, exprimé en micromole par heure,

a un paramètre réel strictement positif, appelé clairance, exprimé en litre par heure.

Le paramètre a est spécifique à chaque patient.

En médecine, on appelle « plateau » la limite en $+\infty$ de la fonction C.

Partie A: étude d'un cas particulier

La clairance a d'un certain patient vaut 7, et on choisit un débit d égal à 84. Dans cette partie, la fonction C est donc définie sur $[0; +\infty[$ par :

$$C(t) = 12\left(1 - e^{-\frac{7}{80}t}\right).$$

- 1) Étudier le sens de variation de la fonction C sur $[0; +\infty[$.
- 2) Pour être efficace, le plateau doit être égal à 15. Le traitement de ce patient est-il efficace?

Partie B : étude de fonctions

1) Soit f la fonction définie sur]0; $+\infty[$ par :

$$f(x) = \frac{105}{x} \left(1 - e^{-\frac{3}{40}x} \right).$$

Démontrer que, pour tout réel x de]0; $+\infty[$, $f'(x)=\frac{105g(x)}{x^2}$, ou g est la fonction définie sur $[0; +\infty[$ par :

$$g(x) = \frac{3x}{40}e^{-\frac{3}{40}x} + e^{-\frac{3}{40}x} - 1.$$

2) On donne le tableau de variation de la fonction q:

En déduire le sens de variation de la fonction f. On ne demande pas les limites de la fonction f.

3) Montrer que l'équation f(x) = 5, 9 admet une unique solution sur l'intervalle [1; 80]. En déduire que cette équation admet une unique solution sur l'intervalle $]0; +\infty[$. Donner une valeur approchée de cette solution au dixième près.

Partie C: détermination d'un traitement adéquat

Le but de cette partie est de déterminer, pour un patient donné, la valeur du débit de la perfusion qui permette au traitement d'être efficace, c'est-à-dire au plateau d'être égal à 15.

Au préalable, il faut pouvoir déterminer la clairance a de ce patient. À cette fin, on règle provisoirement le débit d à 105, avant de calculer le débit qui rende le traitement efficace.

On rappelle que la fonction C est définie sur l'intervalle $[0; +\infty[$ par :

$$C(t) = \frac{d}{a} \left(1 - e^{-\frac{a}{80}t} \right).$$

- 1) On cherche à déterminer la clairance a d'un patient. Le débit est provisoirement réglé à 105.
 - a) Exprimer en fonction de a la concentration du médicament 6 heures après le début de la perfusion.
 - **b**) Au bout de 6 heures, des analyses permettent de connaître la concentration du médicament dans le sang; elle est égale à 5,9 micromoles par litre.
 - Déterminer une valeur approchée, au dixième de litre par heure, de la clairance de ce patient.
- 2) Déterminer la valeur du débit d de la perfusion garantissant l'efficacité du traitement.

EXERCICE 2 (3 points)

(Commun à tous les candidats)

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 1 & \text{et, pour tout entier naturel } n, \\ u_{n+1} = \left(\frac{n+1}{2n+4}\right) u_n. \end{cases}$$

On définit la suite (v_n) par : pour tout entier naturel n, $v_n = (n+1)u_n$.

1) La feuille de calcul ci-contre présente les valeurs des premiers termes des suites (u_n) et (v_n) , arrondies au cent-millième.

Quelle formule, étirée ensuite vers le bas, peut-on écrire dans la cellule B3 de la feuille de calcul pour obtenir les termes successifs de (u_n) ?

- 2) a) Conjecturer l'expression de v_n en fonction de n.
 - b) Démontrer cette conjecture.
- 3) Déterminer la limite de la suite (u_n) .

	A	В	С
1	n	u_n	v_n
2	0	1,000 00	1,000 00
3	1	0,250 00	0,500 00
4	2	0,083 33	0,250 00
5	3	0,031 25	0,125 00
6	4	0,012 50	0,062 50
7	5	0,005 21	0,031 25
8	6	0,002 23	0,015 63
9	7	0,000 98	0,007 81
10	8	0,000 43	0,003 91
11	9	0,000 20	0,001 95

EXERCICE 3 (4 points)

(Commun à tous les candidats)

Pour chacune des quatre affirmations suivantes, indiquer si elle est vraie ou fausse, en justifiant la réponse.

Il est attribué un point par réponse exacte correctement justifiée.

Une réponse non justifiée n'est pas prise en compte.

Une absence de réponse n'est pas pénalisée.

1) On dispose de deux dés, identiques d'aspect, dont l'un est truqué de sorte que le 6 apparait avec la probabilité $\frac{1}{2}$. On prend un des deux dés au hasard, on le lance, et on obtient 6.

Affirmation 1: la probabilité que le dé lancé soit le dé truqué est égale à $\frac{2}{3}$.

2) Dans le plan complexe, on considère les points M et N d'affixes respectives $z_M=2e^{-i\frac{\pi}{3}}$ et $z_N=\frac{3-i}{2+i}$.

Affirmation 2 : la droite (MN) est parallèle à l'axe des ordonnées.

Dans les questions 3) et 4), on se place dans un repère orthonormé $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ de l'espace et l'on considère la droite d dont une représentation paramétrique est : $\left\{ \begin{array}{l} x=1+t\\ y=2\\ z=3+2t \end{array} \right., t\in\mathbb{R}.$

3) On considère les points A, B et C avec A(-2; 2; 3), B(0; 1; 2) et C(4; 2; 0). On admet que les points A, B et C ne sont pas alignés.

Affirmation 3: la droite d est orthogonale au plan (ABC).

Affirmation 4: la droite d et la droite Δ ne sont pas coplanaires.

EXERCICE 4 (3 points)

(Commun à tous les candidats)

L'objet du problème est l'étude des intégrales I et J définies par :

$$I = \int_0^1 \frac{1}{1+x} dx$$
 et $J = \int_0^1 \frac{1}{1+x^2} dx$.

Partie A : valeur exacte de l'intégrale I

- 1) Donner une interprétation géométrique de l'intégrale I.
- **2)** Calculer la valeur exacte de I.

Partie B: estimation de la valeur J

Soit g la fonction définie sur l'intervalle [0;1] par $g(x)=\frac{1}{1+x^2}$. On note \mathscr{C}_g sa courbe représentative dans un repère orthonormé du plan.

On a donc :
$$J = \int_0^1 g(x) dx$$
.

Le but de cette partie est d'évaluer l'intégrale J à l'aide de la méthode probabiliste décrite ci-après.

On choisit au hasard un point M(x; y) en tirant de façon indépendante ses coordonnées x et y au hasard selon la loi uniforme sur [0; 1].

On admet que la probabilité p qu'un point tiré de cette manière soit situé sous la courbe \mathscr{C}_q est égale à l'intégrale J.

En pratique, on initialise un compteur $c \ge 0$, on fixe un entier naturel n et on répète n fois le processus suivant:

- on choisit au hasard et indépendamment deux nombres x et y, selon la loi uniforme sur [0; 1];
- si M(x; y) est au-dessous de la courbe \mathscr{C}_g on incrémente le compteur c de 1.

On admet que $f = \frac{c}{n}$ est une valeur approchée de J. C'est le principe de la méthode dite de Monte-Carlo.

La figure ci-contre illustre la méthode présentée pour n = 100.

100 points ont été placés aléatoirement dans le carré.

Les disques noirs correspondent aux points sous la courbe, les disques blancs aux points au-dessus de la courbe.

Le rapport du nombre de disques noirs par le nombre total de disques donne une estimation de l'aire sous la courbe.

1) Recopier et compléter l'algorithme ci-après pour qu'il affiche une valeur approchée de J.

Variables	n, c, f, i, x, y sont des nombres			
Traitement	Lire la valeur de n c prend la valeur Pour i allant de 1 à faire x prend une valeur aléatoire entre 0 et 1 y prend Si alors prend la valeur Fin si Fin pour f prend la valeur			
Sortie	Afficher f			

- 2) Pour $n=1\ 000$, l'algorithme ci-dessus a donné pour résultat : f=0,781. Donner un intervalle de confiance, au niveau de confiance de 95 %, de la valeur exacte de J.
- 3) Quelle doit-être, au minimum, la valeur de n pour que l'intervalle de confiance, au niveau de confiance de 95 %, ait une amplitude inférieure ou égale à 0,02?

EXERCICE 5 (5 points)

(Candidats ayant suivi l'enseignement de spécialité)

Les deux parties sont indépendantes

Un bit est un symbole informatique élémentaire valant soit 0, soit 1.

Partie A: ligne de transmission

Une ligne de transmission transporte des bits de données selon le modèle suivant :

- elle transmet le bit de façon correcte avec une probabilité p;
- elle transmet le bit de façon erronée (en changeant le 1 en 0 ou le 0 en 1) avec une probabilité 1-p.

On assemble bout à bout plusieurs lignes de ce type, et on suppose qu'elles introduisent des erreurs de façon indépendante les unes des autres.

On étudie la transmission d'un seul bit, ayant pour valeur 1 au début de la transmission. Après avoir traversé n lignes de transmission, on note :

- p_n la probabilité que le bit reçu ait pour valeur 1;
- q_n la probabilité que le bit reçu ait pour valeur 0.

On a donc $p_0 = 1$ et $q_0 = 0$. On définit les matrices suivantes :

$$A = \begin{pmatrix} p & 1-p \\ 1-p & p \end{pmatrix} \quad X_n = \begin{pmatrix} p_n \\ q_n \end{pmatrix} \quad P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

On admet que, pour tout entier n, on a : $X_{n+1} = AX_n$ et donc, $X_n = A^nX_0$.

- 1) a) Montrer que P est inversible et déterminer P^{-1} .
 - **b**) On pose : $D = \begin{pmatrix} 1 & 0 \\ 0 & 2p-1 \end{pmatrix}$. Vérifier que : $A = PDP^{-1}$.
 - c) Montrer que, pour tout entier $n \ge 1$,

$$A^n = PD^nP^{-1}.$$

d) En vous appuyant sur la copie d'écran d'un logiciel de calcul formel donnée ci-dessous, déterminer l'expression de q_n en fonction de n.

1	<i>X</i> 0 : = [[1], [0]]				
	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	M			
2	P := [[1, 1], [1, -1]]				
	$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	M			
3	D := [[1, 0], [0, 2 * p - 1]]				
	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 2*p-1 \end{array}\right]$	M			
4	$P * (D^n) * P(-1) * X0$				
	$\left[\begin{array}{c} \frac{(2*p-1)^n+1}{2} \\ -(2*p-1)^n+1 \\ 2 \end{array}\right]$	M			

2) On suppose dans cette question que p vaut 0, 98. On rappelle que le bit avant transmission a pour valeur 1. On souhaite que la probabilité que le bit reçu ait pour valeur 0 soit inférieure ou égale à 0, 25. Combien peut-on, au maximum, aligner de telles lignes de transmission?

Partie B: étude d'un code correcteur, le code de Hamming (7, 4)

On rappelle qu'un **bit** est un symbole informatique élémentaire valant soit 0, soit 1.

On considère un « mot » formé de 4 bits que l'on note b_1 , b_2 , b_3 et b_4 .

Par exemple, pour le mot « 1101 », on a $b_1 = 1$, $b_2 = 1$, $b_3 = 0$ et $b_4 = 1$.

On ajoute à cette liste une *clé de contrôle* $c_1c_2c_3$ formée de trois bits :

- c_1 est le reste de la division euclidienne de $b_2 + b_3 + b_4$ par 2;
- c_2 est le reste de la division euclidienne de $b_1 + b_3 + b_4$ par 2;
- c_3 est le reste de la di vision euclidienne de $b_1 + b_2 + b_4$ par 2.

On appelle alors « message » la suite de 7 bits formée des 4 bits du mot et des 3 bits de contrôle.

- 1) Préliminaires
 - a) Justifier que c_1 , c_2 et c_3 ne peuvent prendre comme valeurs que 0 ou 1.
 - **b)** Calculer la clé de contrôle associée au mot 1001.
- 2) Soit $b_1b_2b_3b_4$ un mot de 4 bits et $c_1c_2c_3$ la clé associée.

Démontrer que si on change la valeur de b_1 et que l'on recalcule la clé, alors :

- la valeur de c_1 est inchangée;
- la valeur de c_2 est modifiée;
- la valeur de c_3 est modifiée.
- 3) On suppose que, durant la transmission du message, au plus un des 7 bits a été transmis de façon erronée. À partir des quatre premiers bits du message reçu, on recalcule les 3 bits de contrôle, et on les compare avec les bits de contrôle reçus.

Sans justification, recopier et compléter le tableau ci-dessous. La lettre F signifie que le bit de contrôle reçu ne correspond pas au bit de contrôle calculé, et J que ces deux bits sont égaux.

Bit erroné Bit de contrôle calculé	b_1	b_2	b_3	b_4	c_1	c_2	c_3	Aucun
c_1	J							
c_2	F							
c_3	F							

- 4) Justifier rapidement, en vous appuyant sur le tableau, que si un seul bit reçu est erroné, on peut dans tous les cas déterminer lequel, et corriger l'erreur.
- 5) Voici deux messages de 7 bits :

$$A = 0100010$$
 et $B = 1101001$.

On admet que chacun d'eux comporte au plus une erreur de transmission.

Dire s'ils comportent une erreur, et la corriger le cas échéant.