### O que é o algoritmo K-means?

João Paulo de Carvalho Araújo - 202065564C Lucas Tassi Facciolla - 201935025

#### Resumo

Neste trabalho serão abordados os algoritmos k-means, tratando inicialmente do aprendizado não-supervisionado e pelas técnicas de clusterização para dar base ao conteúdo.

# Aprendizado não-supervisionados

Aprendizado não-supervisionado (ou aprendizado de máquina não-supervisionado) se utiliza de algoritmos para análise e agrupamento de dados não classificados. Estes algoritmos são capazes de encontrar tendências e agrupar dados sem intervenção externa, o que o torna a solução ideal para análise exploratória de dados, reconhecimento de imagem, segmentação de clientes, etc.

#### **Clusters**

Técnicas de clustering são amplamente utilizadas no âmbito de machine learning, data mining, image segmentation, exploração de dados, etc. Um cluster nada mais é do que um grupo de dados que possuem similaridade entre si, ou seja, coerência, podendo existir vários clusters por conjunto de dados. Abaixo um exemplo de cluster sobre um dataset aleatório:



Retirado em K-Means Data Clusterina

Existem diversos algoritmos de clusterização. Estes preenchem o grupo de métodos de aprendizado não-supervisionados, isto é, não possuem uma classe/label associada a cada exemplo. A seguir são apresentados 3 tipos diferentes de abordagens bastante populares

utilizadas para realizar agrupamento de dados: Clusterização baseada em centróide, clusterização hierárquica e clusterização baseada em densidade.

#### Métricas de similaridade

Para medir a proximidade entre os pontos de dados, são necessárias métricas capazes de avaliar o quão semelhantes diferentes pontos são entre si. Como na maioria dos casos utiliza-se distância euclidiana, apenas 2 serão apresentadas:

 Distância euclidiana: métrica mais utilizada, mede a distância entre dois pontos de dados. Toma como cálculo a norma entre a soma do quadrado entre os pontos de dados e o centro do cluster.

Euclidean distance:

$$d = \sqrt{\sum (X - Y)^2}$$

Retirado em A Similarity Measure for Clustering and Its Applications

- Similaridade de cossenos: diferente da distância euclidiana, a métrica de similaridade entre cossenos leva em conta a distância angular entre os 2 pontos de dados. Essa métrica é mais utilizada para documentos.

$$\text{cosine similarity} = S_C(A,B) := \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Retirado em Cosine similarity

### Clusterização baseada em centróide

A metodologia mais conhecida e que engloba o algoritmo K-means citado neste trabalho. Clusters são formados a partir de proximidade, calculado por alguma métrica, com um determinado centróide (que não necessariamente pertence ao conjunto de dados). No caso do K-means, são realizadas diversas iterações com objetivo de reposicionar os centróides. Para este tipo de abordagem, é necessário que o número de clusters seja especificado previamente.



Retirado em Clustering Algorithms | Clustering in Machine Learning | Google Developers

# • Clusterização hierárquica

Realiza a clusterização a partir de diversos clusters que são mesclados ao longo da execução. Existem duas abordagens presentes neste tipo de algoritmo:

- Método aglomerativo: inicialmente cada ponto de dado é um cluster e posteriormente passa-se a agrupar com outros clusters mais próximos. Essa abordagem é também conhecida como bottom-up.
- Método divisível: oposto ao aglomerativo (top-down). No início todos os pontos de dados englobam apenas um cluster que vai se separando em diversos clusters ao longo da execução.

Para realizar estas junções (no caso do aglomerativo) e separações (no caso do divisível) é necessário um critério de linkagem. Abaixo são apresentados três critérios bastante utilizados:



Single Link: Distância entre dois clusters é a distância entre os pontos mais próximos. Também chamado "agrupamento de vizinhos"

<u>Average Link</u>: Distância entre clusters é a distância entre os centróides





Complete Link: Distância entre clusters é a distância entre os pontos mais distantes

Retirado em Clustering (Agrupamento)

Este tipo de clusterização tem como característica gerar um dendrograma, por isso a natureza do nome "hierárquico". Para definir a quantidade de clusters, basta realizar um corte horizontal (eixo-y) neste diagrama. Veja abaixo:





Retirado em Clustering (Agrupamento)

### Clusterização baseada em densidade

Agrupa pontos de dados baseado em regiões na qual a quantidade de objetos de dados excede um determinado valor de referência. A maioria dos algoritmos que utilizam esta técnica requer dois parâmetros:

- ε: define o tamanho da vizinhança em torno de um ponto. Ou seja, o tamanho ou raio do cluster
- MinPts: número mínimo de vizinhos (pontos de dados) dentro do raio de ε.



Retirado em DBSCAN Clustering in ML | Density based clustering

### K-means

Como citado anteriormente, o algoritmo K-means preenche o grupo de algoritmos para clusterização baseados em centróides. Nesta seção será abordado mais aprofundadamente este método.

#### Abordagem

O algoritmo K-means busca clusterizar os pontos de dados por meio da minimização do valor de SSE (sum-of-squared-errors). Para um conjunto de pontos no espaço euclidiano, encontrar um conjunto C de k pontos tal que a soma do quadrado das distâncias dos pontos até o centro C mais próximo é mínima. Sendo assim, a função objetivo é:

$$cost(P, C) := \sum_{p \in P} \min_{c \in C} ||p - c||^2$$

### Retirado em <u>Theoretical Analysis of the k-Means Algorithm - A Survey</u>

No k-means, primeiramente é definido o número de clusters a serem formados (K), além do local onde serão localizados os centros iniciais. Existem diversas maneiras para definir estes parâmetros, as quais são discutidas posteriormente neste trabalho. Após isso, é realizado um processo iterativo até que não exista mais mudança na localização dos centróides ou que seja atingido um número de iterações pré-definido.

Quando não há mais mudanças na localização dos centróides diz-se que o algoritmo convergiu.

Os centróides correspondem a média aritmética dos pontos pertencentes ao respectivo cluster e cada ponto está mais próximo do centro do seu cluster do que de qualquer outro centro de cluster.

A maneira como o K-means atinge a solução é a seguinte:

- Defina alguns centros
- Repita até convergir ou atingir número máximo de iterações
  - E-Step: atualize pontos aos seus clusters mais próximos (baseado em métrica de distância).
  - M-Step: atualiza os centróides com base na média

Abaixo é apresentado seu pseudo-código, retirado em K-means:

```
K-MEANS(\{\vec{x}_1,\ldots,\vec{x}_N\},K)
   1 (\vec{s}_1, \vec{s}_2, \dots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \dots, \vec{x}_N\}, K)
   2 for k ← 1 to K
   3 do \vec{\mu}_k \leftarrow \vec{s}_k
  4 while stopping criterion has not been met
   5 do for k ← 1 to K
              do \omega_k \leftarrow \{\}
   6
              for n \leftarrow 1 to N
   7
              \mathbf{do}\ j \leftarrow \arg\min_{j'} |\vec{\mu}_{j'} - \vec{x}_n|
              \omega_j \leftarrow \omega_j \cup \{\vec{x}_n\} (reassignment of vectors) for k \leftarrow 1 to K
 10
              do \vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x} (recomputation of centroids)
 11
 12
        return \{\vec{\mu}_1,\ldots,\vec{\mu}_K\}
```

No final deste trabalho é apresentado tanto o código de uma implementação manual do K-means, assim como uma aplicação que utiliza a implementação disponível na popular biblioteca scikit-learn (ambos em Python).

### Complexidade de tempo

Considerando d como o tempo para cálculo de distância, n o número de pontos de dados e k como o número de clusters, a complexidade de tempo do K-means pode ser escrita, para apenas uma iteração, como:

# $\Theta(ndk)$

### Aplicações

A quantidade de aplicações que utilizam clusterização e algoritmos de clusterização é infinita. Abaixo são citados alguns destes exemplos:

### - Compressão de cores:

Uma aplicação interessante do algoritmo K-means é a compressão de cores em imagens. Dentro de uma imagem existem muitos pixels (dependendo da resolução). No entanto, muitos pixels são bastante similares e a visualização destes passa a ser dificilmente distinguível. Sendo assim, é possível separar estes pixels bastante semelhantes e produzir uma imagem eficiente utilizando menos bytes:



Retirado em <u>Image Compression using K-Means Clustering | by Satyam Kumar |</u>
<u>Towards Data Science</u>

# - Agrupamento de documentos:

É possível separar grupos de documentos baseado nos seus tópicos, tags e o conteúdo dos mesmos utilizando o algoritmo k-means. Pelo fato do k-means necessitar de dados numéricos, utiliza-se alguma técnica para cálculo de features, como frequência de termos, score TF-IDF, etc.

### - Segmentação de consumidores:

Segmentação de consumidores corresponde à divisão em grupos de clientes que compartilham características similares. Com base nestes grupos é possível determinar ações relacionadas a estes resultados, como identificar consumidores insatisfeitos, descobrir tendências e interesses, aplicar bonificações, etc. Veja um exemplo abaixo:



Retirado em Compare K-Means & Hierarchical Clustering In Customer Segmentation

Nesta imagem, os grupos são constituídos baseados em features de poder aquisitivo e gasto realizado. Por exemplo, clientes com baixo poder aquisitivo e alta quantidade de gastos são separados no grupo "Clientes descuidados".

# **Desvantagens do K-means**

Apesar do k-means ser bastante útil, como todo algoritmo, ele possui suas desvantagens. Abaixo são apresentadas algumas delas:

### Dependência de centróides iniciais

O local onde os centróides são iniciados possuem um impacto significante nos resultados obtidos. Este panorama é melhor discutido na seção seguinte, sobre métodos de inicialização.

A figura abaixo mostra a diferença entre duas execuções diferentes. Esse exemplo demonstra como a posição de início dos centróides é importante para determinar a melhor representação dos clusters. Veja como a figura 1.2 apresenta melhores resultados comparado a figura 1.1 (isto porque a figura 1.2 possui melhores valores da função objetivo):



Fig. 1: Initial centroid effects on K-means result.

Retirado em <u>DIMK-means "Distance-based Initialization Method for K-means Clustering</u>

Algorithm"

# • Necessidade de especificar K

O valor de K é um parâmetro necessário para a execução do K-means e afeta diretamente o desempenho do algoritmo. No entanto, tal abordagem não é capaz de aprender o número de clusters a partir dos dados. Como consequência disto, existem diversas heurísticas que buscam encontrar o valor ideal.

Determinar o valor de K automaticamente vem sendo um dos assuntos mais complicados em clusterização. Na maioria dos casos, o algoritmo é executado diversas vezes com valores de K diferentes e o melhor resultado é escolhido baseado em um critério previamente estabelecido. Alguns desses métodos são abordados e aprofundados na seção "Escolha de K".

# • Conjunto de dados não-convexo

Por natureza o K-means tem como tendência formar clusters esféricos ao redor de um centróide. Portanto, para conjunto de dados não-convexos, o agrupamento gerado pelo algoritmo pode não ser o ideal. Veja abaixo um exemplo deste comportamento, retirado em Non-convex sets with k-means and hierarchical clustering | pafnuty.blog:





No entanto, outras formas de clusterização, como baseada em hierarquia, são capazes de performar melhor neste tipo de cenário:



# Outliers

Outliers são dados que possuem valores muito distintos do conjunto de dados que compõem, destoando dos demais. Muitas vezes são dados gerados incorretamente durante a etapa de construção do dataset.

Durante o processo de agrupamento dos dados, o k-means utiliza diversas vezes o cálculo de média (que é influenciado por extremos) para centróides, buscando clusterizar todos os pontos de dados possíveis. Devido a isto, o resultado produzido pode estar distorcido em decorrência dos outliers presentes. Veja abaixo um exemplo deste comportamento:



Retirado em <u>k -means clustering with outlier removal</u>

Uma solução para este problema seria submeter o dataset a um pré-processamento, com o intuito de remover estes outliers.

# Métodos de inicialização

Como visto anteriormente, o algoritmo K-means para clusterização sofre de efeitos diretos proporcionados por condições iniciais. Dependendo da forma como os clusters são iniciados na primeira iteração, o desempenho pode ser diferente a cada execução, influenciando o resultado final observado. Sendo assim, é necessário conhecer algumas das abordagens utilizadas para iniciar clusters.

Serão apresentados 3 métodos bastante populares: partição randômica, forgy e kmeans++. Todos estes pertencem ao grupo de métodos que requerem complexidade linear para serem executados. Posteriormente é apresentado a comparação dos resultados empíricos obtidos pelos MI disponibilizados em [1].

### Inicialização Forgy

O método de inicialização Forgy, primeiramente introduzido por Edward Forgy, é bastante simples e rápido. Nele, são escolhidos K pontos aleatórios de dados do dataset. O benefício deste método é claro: escolher pontos de dados como centroide inicial geralmente garante proximidade com os outros dados. Em contrapartida, em alguns casos, a escolha randômica de centróides pode causar grande demora para convergir ou então convergir para uma configuração ruim.

Abaixo é apresentado 10 inicializações diferentes utilizando Forgy:



Retirado em <u>kMeans: Initialization Strategies- kmeans++, Forgy, Random Partition | Analytics</u>
Vidhya

É possível observar que as inicializações 1, 7 e 8 possuem uma boa distribuição de clusters dentro do conjunto de dados. No entanto, o mesmo não acontece para as demais

inicializações, sendo encontrados centróides muito próximos. Nestes casos, existe uma grande possibilidade de que os resultados finais sofreram consequências negativas destas escolhas de começo.

### Inicialização por partição randômica

Neste caso, inicialmente os pontos de dados são associados aleatoriamente a grupos de clusters (partições). Posteriormente, obtém-se a média dos dados de cada partição formada e então tem-se os valores de centróides iniciais. Este método tem como tendência localizar os centróides próximos ao centro global dos dados.



Retirado em <u>kMeans: Initialization Strategies- kmeans++, Forgy, Random Partition | Analytics Vidhya</u>

Como ponto negativo, se houver um centro inatingível, a quantidade de clusters tende a cair. Veja por exemplo a estrela azul no exemplo abaixo:



Retirado em K-Means Clustering Part 2

#### K-means++

O método de inicialização K-means++ segue um pouco da ideia apresentada na abordagem de Forgy. No entanto, K-means++ prioriza a seleção de pontos de dados mais distantes dos centróides selecionados, ou seja, uma distribuição mais espalhada dos centros de clusters. Toda essa abordagem é feita baseada na distribuição de probabilidade dos dados em relação aos centróides mais próximos.

Seja D(x) o valor que denota a menor distância de um ponto de dado ao seu centróide mais próximo já escolhido e X o conjunto de dados, tem-se o seguinte passo-a-passo:

- 1a. Tome um centro c1 escolhido aleatoriamente de X
- 1b. Tome um novo centro ci, escolhido a partir de X com probabilidade
- 1c. Repita 1b até ter K centros obtidos

$$\frac{D(x)^2}{\sum_{x \in \mathcal{X}} D(x)^2}$$



Retirado em <u>kMeans: Initialization Strategies- kmeans++, Forgy, Random Partition | Analytics Vidhya</u>

Este é o método mais recomendado, encontrado como padrão nas mais populares implementações do K-means, como na biblioteca <u>scikit-learn</u>.

# Comparação entre os 3 MI

Com base no experimento demonstrado em <u>K-Means Clustering Part 2</u>, onde foi executado 100 diferentes inicializações para cada método, o autor obteve os seguintes resultados:



Pode-se observar que o método de inicialização K-means++, como esperado, possui a menor quantidade de passos para ser executado (ou seja, converge mais rapidamente) devido a sua abordagem de distribuição inicial de centróides. Além disso, independente do método, todos obtiveram o valor mínimo de Within Cluster Variance, sugerindo a necessidade de execução repetida para qualquer panorama de MI escolhido.

### Escolha de K

A escolha do número de clusters a serem formados está diretamente ligado ao desempenho dos algoritmos de clusterização. Neste caso, para o K-means, existem diversos métodos que auxiliam na busca de um valor de K que proporcione melhor eficiência no agrupamento dos dados. Neste documento serão apresentados duas abordagens bastante populares, o Método do Cotovelo (Elbow Method) e o Método da Silhueta (Silhouette Method):

#### Método do Cotovelo

Este método utiliza o parâmetro WCSS (*Within Cluster Sums of Squares*) ou SSE(Sum-of-squared-errors) como referência. O valor de WCSS é estimado pela soma do quadrado da distância de cada ponto em relação ao seu respectivo cluster, ou seja, a soma das distâncias euclidianas entre os centróides e os pontos de dados disponíveis, ou se preferir, a soma dos valores de SSE para cada dado:

$$C_i$$
 = Cluster,  $N_c$  = # clusters,  $\overline{\boldsymbol{x}}_{c_i}$  = Cluster centroid,

• Within Cluster Sums of Squares : 
$$WSS = \sum_{i=1}^{N_C} \sum_{x \in C_i} d(\mathbf{x}, \bar{\mathbf{x}}_{C_i})^2$$

Retirado em Who is your Golden Goose?: Cohort Analysis - KDnuggets

Naturalmente, com o aumento do número de clusters, o valor de WCSS tende a 0. Isto é, quando o número de K é o mesmo que o comprimento do dataset. Sendo assim, este método está interessado em selecionar o valor de K específico onde a variação de WCSS passa a ser pequena, ou seja, quando a mudança de K não impacta significativamente o modelo. Veja abaixo um exemplo de gráfico WCSS versus K para um dataset aleatório:



Retirado em In-depth Intuition of K-Means Clustering Algorithm in Machine Learning

É possível observar que a partir de (K = 5) existe uma redução na variação brusca do valor de WCSS, sendo assim, formando uma espécie de cotovelo (origem do nome). Portanto, representando o melhor número de clusters a serem formados.

Além disso, é válido comentar que este ponto K, onde ocorre a presença deste "cotovelo", está localizado graficamente no ponto de maior distância em relação a uma reta que liga as extremidades do gráfico. Sendo assim, o valor de K ótimo pode ser encontrado pelo maior valor encontrado na fórmula matemática abaixo quando executada para todos os valores de K:

distance(
$$P_0, P_1, (x, y)$$
) = 
$$\frac{|(y_1 - y_0)x - (x_1 - x_0)y + x_1y_0 - y_1x_0|}{\sqrt{(y_1 - y_0)^2 + (x_1 - x_0)^2}}$$

Retirado em Como definir o número de clusters para o seu KMeans | by Jessica Temporal | pizzadedados | Medium

No entanto, nem sempre o método do cotovelo pode ser utilizado para encontrar o valor de K. Observe o exemplo abaixo de do gráfico (WCSSxK) para um dataset aleatório:



Retirado em <u>How to Determine the Optimal K for K-Means? | by Khyati Mahendru | Analytics Vidhya | Medium</u>

Neste caso, existe uma ambiguidade presente no gráfico que não possibilita distinguir o ponto específico da variação. Sendo assim, decorrente deste comportamento, o método da silhueta pode ser utilizado para solucionar este tipo de ocasião. A seguir é apresentado esta metodologia.

#### Método da Silhueta

O método da silhueta representa outra metodologia disponível para encontrar valores ótimos para a quantidade de clusters. A abordagem da silhueta busca descobrir o quanto similar um determinado dado é em relação ao seu cluster (coesão) comparado a outros clusters (separação) a partir de um valor, chamado silhueta (s), variando de [-1, 1]. Com isso, podemos ter as seguintes conclusões para alguns valores de s associados a K:



Retirado em <u>Silhouette Method — Better than Elbow Method to find Optimal Clusters | by</u>
Satyam Kumar | Towards Data Science

- +1: Clusters são perfeitamente distinguíveis
- 0: Clusters são neutros e não distinguíveis
- -1: Clusters estão organizados erroneamente

Portanto, quanto mais perto do valor numérico 1, melhor será a escolha para o valor de K. Sendo assim, estamos interessados no maior valor numérico de silhueta encontrado.

O método da silhueta utiliza a seguinte fórmula para medir o quão bem um ponto de dado está associado ao seu respectivo cluster:

Para cada ponto de dado  $i \in C_I$  (dado i no cluster CI),

$$a(i) = rac{1}{|C_I|-1} \sum_{j \in C_I, i 
eq j} d(i,j)$$

Retirado em Silhouette (clustering) - Wikipedia

Onde a(i) representa a distância média entre o ponto e os seus vizinhos pertencentes a seu cluster. Em vista disso, d(i, j) pode ser encontrado utilizando qualquer métrica de distância, como por exemplo euclidiana, | CI | equivale ao número de pontos no cluster e quanto menor o valor de a(i), melhor foi o agrupamento encontrado pelo algoritmo de clusterização (neste caso, k-mean).

Além disso, é necessário encontrar a dissimilaridade do ponto em relação aos outros clusters. Portanto, utiliza-se o resultado mínimo entre a média da distância de i para todos os pontos em Cj, onde Cj equivale a um outro cluster disponível:

$$b(i) = \min_{J 
eq I} rac{1}{|C_J|} \sum_{i \in C_I} d(i,j)$$

Retirado em Silhouette (clustering) - Wikipedia

Com este resultado é possível encontrar o cluster mais próximo do cluster de um determinado ponto. Partindo destes valores em mãos, basta calcular o valor s(i) de silhueta:

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

Retirado em Silhouette (clustering) - Wikipedia

Como exemplo para concretizar a ideia, observe o seguinte gráfico (Score Silhouette x K):



Retirado em <u>Silhouette Method — Better than Elbow Method to find Optimal Clusters | by</u>
<u>Satvam Kumar | Towards Data Science</u>

Neste caso, o valor de K ótimo seria (K = 4), onde ocorre o pico dos scores de silhueta encontrados.

# Implementação K-means

https://colab.research.google.com/drive/1U Bwv0aq54luStvnHWZkh1OjhjTl5Xpi?usp=sharing

# **Aplicação**

 $\frac{https://colab.research.google.com/drive/1ZBfJ\ iRbMEEODlvDSRLZm1N2DjL0Hsay?usp=sharin}{\underline{g}}$ 

# **Bibliografia**

Data Mining na Prática: Algoritmo K-Means (devmedia.com.br)

K-means: o que é, como funciona, aplicações e exemplo em Python | by Bruno Anastacio

| Programadores | Medium

k-means clustering - Wikipedia

Visualizing K-Means algorithm with D3.js - TECH-NI Blog

Como definir o número de clusters para o seu KMeans | by Jessica Temporal |

pizzadedados | Medium

Silhouette (clustering) - Wikipedia

https://arxiv.org/pdf/1209.1960.pdf

http://www.salientiastuff.com/k-means-clustering-part-2.html

http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf

https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html

What is Unsupervised Learning? | IBM

Resumo k-means apresentação

Aprendizado não-supervisionado

- Abordagem
- Exemplo

# Clusters

- Abordagem
- Exemplo

# K-mean

- Abordagem
- Detalhes e fórmulas
  - SSE
- Métodos de inicialização
  - Random Partition
  - Kmeans++
  - Forgy
- Escolha de K
  - Elbow Method
  - Silhouette Method
- Desvantagens do K-means (spherical forms, outliers, etc)
- Aplicações
- Implementação (código)
- Exemplo com dataset/scikit-learn/matplotlib