STAT 448 - Final Project Report Team 2 - Kashyap Ava, Sunny Chen

Introduction

Our project aims to predict whether an individual's annual income exceeds \$50,000 based on 11 socio-economic and salary-related features. The original dataset from the UCI Machine Learning Repository (Barry Becker did an extraction from the 1994 Census database) has almost 50,000 observations and 14 features. Still, after sampling a portion of this dataset and preprocessing the data, we are left with 917 observations and 11 features along with our response variable, salary. Throughout this report, we will address the following questions: First, we will present a general descriptive summary of the socio-economic and salary-related features considered in this study, including interesting descriptive analyses, tables, and plots for both continuous and categorical variables to provide a clear overview of the data, while considering the removal of records associated with categorical variables that have few observations for certain levels. Second, we will conduct an appropriate statistical analysis to test the potential association between salary categories and each predictor, whether categorical (nominal/ordinal) or continuous, and draw main conclusions from these preliminary analyses.

Descriptive Analysis & Potential Associations:

The dataset we are working with has been preprocessed to have 11 socio-economic and salary-related features, and our response is salary. We will dive into an interesting descriptive analysis of each feature and create tables and plots for each feature. There are three continuous variables: Age, Ednum and Hpw. The remaining predictors are categorical variables out of which only Education is the only ordinal variable, and the rest are nominal.

We identified an observation with WC as "Without-pay" and removed it as it is obvious that the salary is less than 50k. Then, we regrouped the Education variable with groups "Pre-school", "1st-4th", "5th-6th", "7th-8th", "9th", "10th", "11th" and "12th" into a new group called "School" and then the groups of "Assoc-acdm" and "Assoc-voc" into a new group and named it "Associate". This was done to ensure they affect both the categories of the target variable salary so that any model can capture the effect appropriately. Similarly, we grouped the MS variable with groups "Married-AF-spouse", "Married-civ-spouse" and "Married-spouse-absent" into one group called "Married". Additionally, the Race variable with groups "Amer-Indian-Eskimo" and "Asian-Pac-Islander" into a new group called "Eskimo-Islander". These regrouping were done to ensure that the groups do not belong to a single pure class but have values in both the classes to potentially extract the effect of the categorical variable. We observed that there were three observations with NCountry value being "South". These were removed as the native country information is ambiguous from the label "South". The NCountry was then regrouped into "US" and "Non-US" categories as most of the observations are from the US, we thought it would be a better inference to look at it from that perspective. The following discussion entails the descriptive analysis of the variables and their association with the target variable salary. We used the Likelihood ratio chi-squared tests for association between the nominal categorical variables and salary, Mantel-Haenszel chi-squared test for association between Education (ordinal categorical variable) and Wilcoxon rank sum tests

for the association between the continuous variables and salary. The chi-squared tests were used instead of the Fischer's exact test because the cell counts are large, and the Wilcoxon rank sum test was used instead of the t-test as the normality assumptions were not met by the continuous predictors.

Age

Inference: The age variable is not normally distributed and hence Wilcoxon Rank sum test was used. The test concludes that there is a clear difference between the levels of salary based on age and hence can be interpreted as a significant predictor for the target salary.

Ednum

Inference: The Ednum variable is not normally distributed and hence Wilcoxon Rank sum test was used. The test concludes that there is a clear difference between the levels of salary based on Ednum and hence can be interpreted as a significant predictor for the target salary.

Hpw

Inference: The Hpw variable is not normally distributed and hence Wilcoxon Rank sum test was used. The test concludes that there is a clear difference between the levels of salary based on Hpw and hence can be interpreted as a significant predictor (may not be strongly) for the target salary.

Education new

			Cumulative	Cumulative
ucation_new	Frequency	Percent	Frequency	Percent
ssociate	57	6.24	57	6.24
achelors	160	17.52	217	23.77
octorate	7	0.77	224	24.53
IS-grad	313	34.28	537	58.82
lasters	50	5.48	587	64.29
rof-schoo	18	1.97	605	66.27
chool	109	11.94	714	78.20
ome-colle	199	21.80	913	100.00
Desc	cripti	ve S	tatist	ics

Inference: The Education_new is somewhat evenly distributed amongst the levels and has 8 levels. The Mantel-Haenszel chi-squared test (preferred as high cell counts and ordinal) concludes that there is a significant association between the target salary and Education_new variable and hence can be interpreted as a significant predictor for the target salary.

WC

			Cumulative	Cumulative	Table	of WC by S	Salary		Statistic		DF	Value	
wc	Frequency	Percent	Frequency	Percent			Salary						
Federal-gov	34	3.72	34	3.72	wc	<=50K	>50K	Total	Chi-Square		5	18.6202	0.0
Local-gov	68	7.45	102	11.17	Federal-gov	20 25.1	14 8.9003	34	Likelihood	Ratio Chi-Square	5	16.6065	0.0
Private	659	72.18	761	83.35	Local-gov	47	21 17.801	68	Mantel-Hae	nszel Chi-Square	1	0.7091	0.3
Self-emp-inc	27	2.96	788	86.31		50.199		050	Phi Coeffic	lant		0.1428	
Self-emp-not-inc	82	8.98	870	95.29	Private	500 486.49	159 172.51	659	Pili Coeffic	ent		0.1420	
State-gov	43	4.71	913	100.00	Self-emp-inc	12 19.932	15 7.0679	27	Contingend	y Coefficient		0.1414	
					Self-emp-not-inc		19 21.465	82	Cramer's V			0.1428	
					State-gov	32 31.744	11 11.256	43					
					Total	674	239	913					
Des	cripti	ve S	tatisti	cs	Table of V	VC	by	Sal	Te	sts for As	soc	ciation	1

Inference: The WC is dominated by "Private" class and has 6 levels. The likelihood ratio chi-squared test (preferred as high cell counts) concludes that there is a significant association between the target salary and WC variable and hence can be interpreted as a significant predictor for the target salary.

MS new

Inference: The MS_new is somewhat evenly distributed amongst the levels and has 5 levels. The likelihood ratio chi-squared test (preferred as high cell counts) concludes that there is a significant association between the target salary and MS_new variable and hence can be interpreted as a significant predictor for the target salary.

	_		Cumulative	Cumulative		Table of	f MS_new	by Salar	у		Statistic	DF	Value	Prob
MS_new	Frequency	Percent	Frequency	Percent				Salary			Chi-Square	4	179.3990	<.0001
Divorced	122	13.36	122 575	13.36		MS_new	<=50K	>50K	Total		Likelihood Ratio Chi-Square	4	200.2206	<.0001
Married Never-marr	453 292	49.62 31.98	867	62.98 94.96		Divorced	108 90.064	14 31.936	122		Mantel-Haenszel Chi-Square	1	36.8110	<.0001
Separated	21	2.30	888	97.26		Married	246	207	453		Phi Coefficient		0.4433	
Widowed	25	2.74	913	100.00		Married	334.42	118.58	455		Contingency Coefficient		0.4052	
						Never-marr	276 215.56	16 76.438	292		Cramer's V		0.4433	
						Separated	21 15.503	0 5.4973	21					
					,	Widowed	23 18.456	2 6.5444	25					
						Total	674	239	913					
Do	ecrin	tive (Statist	ice	Table	e of M	S ne	axy h	v S a	lary	Tests for As	cco	ciatio	n

Occupation

			Cumulative	Cumulative	Table of Occ	cupation b	y Salary		Statistic	DF	Value	Ī
Occupation	Frequency	Percent	Frequency	Percent			Salary					H
Adm-clerical	109	11.94	109	11.94	Occupation	<=50K	>50K	Total	Chi-Square	12	119.5567	ŀ
Craft-repair	138	15.12	247	27.05	Adm-clerical	97 80.467	12 28.533	109	Likelihood Ratio Chi-Square	12	129.8515	Ţ.
Exec-managerial	118	12.92	365	39.98	Craft-repair	103	35	138			0.7504	Н
Farming-fishing	30	3.29	395	43.26		101.88	36.125		Mantel-Haenszel Chi-Square	1	9.7584	1
Handlers-cleaners	45	4.93	440	48.19	Exec-managerial	63 87.111	55 30.889	118	Phi Coefficient		0.3619	
Machine-op-inspct	53	5.81	493	54.00	Farming-fishing	27 22.147	7.8532	30	Contingency Coefficient		0.3403	Г
Other-service Priv-house-serv	107	11.72 0.55	600 605	65.72 66.27	Handlers-cleaners	40 33.22	5 11.78	45	Cramer's V		0.3619	\vdash
Prof-specialty	123	13.47	728	79.74	Machine-op-inspct	46	7	53	Oranier 3 V		0.3019	
Protective-serv	20	2.19	748	81.93	Other-service	39.126 103	13.874	107				
Sales	111	12.16	859	94.09		78.99	28.01	107				
Tech-support	25	2.74	884	96.82	Priv-house-serv	3.6911	1.3089	5				
Transport-moving	29	3.18	913	100.00	Prof-specialty	70 90.802	53 32.198	123				
					Protective-serv	11 14.765	9 5.2355	20				
					Sales	78 81.943	33 29.057	111				
					Tech-support	10 18.456	15 6.5444	25				
					Transport-moving	21 21.409	8 7.5915	29				
					Total	674	239	913				
Desc	riptiv	e S	tatisti	cs	ole of Occu				Tests for A	SSO)	ciatio

Inference: The Occupation is somewhat evenly distributed amongst the levels and has 13 levels. The likelihood ratio chi-squared test (preferred as high cell counts) concludes that there is a significant association between the target salary and Occupation variable and hence can be interpreted as a significant predictor for the target salary.

Relationship

Inference: The Relationship is dominated by three classes "Husband", "Not-in-family" and "Own-child" and has 6 levels in total. The likelihood ratio chi-squared test (preferred as high cell counts) concludes that there is a significant association between the target salary and Relationship variable and hence can be interpreted as a significant predictor for the target salary.

Date to control			Cumulative	Cumulative	Tab	e of Relations	hip by Sa	lary		Statistic	DF	Value	Prob
Relationship	Frequency	Percent	Frequency	Percent			Salary			Chi-Square	5	189.7779	<.0001
Husband	405	44.36	405	44.36	Relatio	ship <=50h	>50K	Total			-		
Not-in-family	230	25.19	635	69.55	Husban			405		Likelihood Ratio Chi-Square	5	207.9753	<.0001
Other-relativ	28	3.07	663	72.62		298.9				Mantel-Haenszel Chi-Square	1	73.9833	<.0001
Own-child	125	13.69	788	86.31	Not-in-f	amily 210 169.7		230					10001
Unmarried	94	10.30	882	96.60	Other-n			28	-	Phi Coefficient		0.4559	
Wife	31	3.40	913	100.00	Other-ri	20.6				Contingency Coefficient		0.4148	
					Own-ch	ild 12 92.27		125		Cramer's V		0.4559	
					Unmarr	ed 89.393		94					
					Wife	22.88		31					
					Total	67-	239	913]				
Des	script	ive S	Statist	ics	Table of Re	elation	shir	by	Salary	Tests for As	sso	ciatio	n

Race new

			Cumulative	Cumulative	Table o	f Race_ne	w by Sala	ary		Statistic	DF	Value	Pro
Race_new	Frequency	Percent	Frequency	Percent			Salary						
Black	93	10.19	93	10.19	Race new	<=50K	>50K	Total		Chi-Square	3	4.6740	0.197
Eskimo-Isl	35	3.83	128	14.02	Black	75	18	93		Likelihood Ratio Chi-Square	3	5.1885	0.158
Other	11	1.20	139	15.22		68.655	24.345			Mantel-Haenszel Chi-Square	1	1.8156	0.177
White	774	84.78	913	100.00	Eskimo-Isl	24 25.838	11 9.1621	35		Phi Coefficient		0.0716	
					Other	10 8.1205	1 2.8795	11		Contingency Coefficient		0.0714	
					White	565 571.39	209 202.61	774		Cramer's V		0.0716	
					Total	674	239	913					
D	escrin	tive S	Statisti	CS	Table of Ra	ce n	ew 1	ov S	lalary	Tests for Ass	SOC	iatio	n

Inference: The Race_new is dominated by "White" class and has 4 levels. The likelihood ratio chi-squared test (preferred as high cell counts) concludes that there is no significant association between the target salary and Race_new variable and hence can be interpreted as an insignificant predictor for the target salary.

Sex

_			Cumulative	Cumulative		Tal	ble of Sex	by Salar	у	Stat	tistic	DF	Value	Pro
Sex	Frequency	Percent	Frequency	Percent				Salary		Chi-	-Square	1	63.2817	<.000
Female	282	30.89	282	30.89		Sex	<=50K	>50K	Total	Like	elihood Ratio Chi-Square	1	72.6409	<.000
Male	631	69.11	913	100.00		Female	257	25	282	Con	ntinuity Adj. Chi-Square	1	61.9921	<.000
							208.18	73.82		Man	ntel-Haenszel Chi-Square	1	63.2124	<.000
						Male	417 465.82	214 165.18	631	Phi	Coefficient		0.2633	
						Total	674	239	913	Con	ntingency Coefficient		0.2546	
						Iotai	0/4	239	913	Cra	mer's V		0.2633	
	Descri	ptive	Statisti	cs	Т	able o	of Sex	k by	Sala	ry	Tests for As	soc	ciation	1

Inference: The Sex is dominated by the "Male" class observations and has 2 levels. The likelihood ratio chi-squared test (preferred as high cell counts) concludes that there is a significant association between the target salary and MS_new variable and hence can be interpreted as a significant predictor for the target salary.

NCountry_new

			Cumulative	Cumulative		Table of NCo	untry_ne	w by Sala	ary		8	Statistic	DF	Value	Prob
NCountry_new	Frequency	Percent	Frequency	Percent				Salary			(Chi-Square	1	0.0158	0.9000
Non-US	86	9.42	86	9.42		NCtm	<=50K	>50K	Total		L	Likelihood Ratio Chi-Square	1	0.0157	0.9002
110	007	00.50	040	400.00		NCountry_new	<=50K	>50K	Iotai		(Continuity Adj. Chi-Square	1	0.0000	1.0000
US	827	90.58	913	100.00		Non-US	63 63.487	23 22.513	86		N	Mantel-Haenszel Chi-Square	1	0.0158	0.9001
											F	Phi Coefficient		-0.0042	
						US	611 610.51	216 216.49	827		C	Contingency Coefficient		0.0042	
											(Cramer's V		-0.0042	
						Total	674	239	913						
Des	scripti	ve S	tatisti	cs	Tabl	e of NCou	ntry_	new	by S	alary		Tests for As	so	ciatio	n

Inference: The NCountry_new is dominated by the "US" class observations and has 2 levels. The likelihood ratio chi-squared test (preferred as high cell counts) concludes that they are independent and hence can be interpreted as an insignificant predictor for the target salary.

So, the preliminary analysis emphasized the significance of the almost all the predictors except Race_new and NCountry_new. This may be speculated as a new regrouping can make it significant and hence will be investigated in the final report. Let's try to answer the question of if the insignificance is due to the grouping or if they are independent. For that we will use the original race and NCountry variable associations with salary.

Statistic	DF	Value	Prob	Statistic	DF	Value	Prob
				Chi-Square	27	35.7151	0.1217
Chi-Square	4	9.9747	0.0409	Likelihood Ratio Chi-Square	27	39.9914	0.0513
ikelihood Ratio Chi-Square	4	12.2639	0.0155	Mantel-Haenszel Chi-Square	1	0.8033	0.3701
Mantel-Haenszel Chi-Square	1	0.9906	0.3196	Phi Coefficient		0.1978	
Phi Coefficient		0.1045		Contingency Coefficient		0.1940	
Contingency Coefficient		0.1040		Cramer's V		0.1978	
Cramer's V		0.1045		WARNING: 93% of the cells ha than 5. Chi-Square may			

The NCountry variable is clearly insignificant in the prediction of salary. But surprisingly the Race variable from the original dataset can be concluded significant but the categories of Race variable have pure class observations which won't be able to explain much of the target variable salary and the chi-square tests won't be valid for those cell counts. Let's re-evaluate the race-new variable with regrouping "Amer-Indian-Eskimo", "Asian-Pac-Islander" and "Other" into a new group called "Other_new" to make sure the categories of the new variable have relatively high cell counts for the chi-square tests to be valid.

Table of R	ace_new	1 by Sala	ary	Statistics for Table of Race	e_nev	v_1 by Sa	liary
		Salary		Statistic	DF	Value	Prob
Race_new_1	<=50K	>50K	Total	Chi-Square	2	2.5130	0.2846
Black	75 68.655	18 24.345	93	Likelihood Ratio Chi-Square	2	2.6598	0.2645
Other_new	34 33.958	12 12.042	46	Mantel-Haenszel Chi-Square Phi Coefficient	1	2.3336 0.0525	0.1266
White	565 571.39	209 202.61	774	Contingency Coefficient		0.0524	
Total	674	239	913	Cramer's V		0.0525	

The tests show that Race_new_1 is not significant predictor for Salary. This regrouping was done to ensure there were no rows which belong to only one class so that chi-square tests are valid tests and so we proceed with the conclusion that NCountry_new and Race_new are indeed insignificant predictors for salary. Now, we look at the correlations between the continuous predictors. As shown below, the continuous predictors Age, Ednum and Hpw are not correlated with each other.

	Correlation rob > r und				rob > r und		
	Age	Ednum	hpw		Age	Ednum	hpw
Age	1.00000	0.06396 0.0534	0.00230 0.9448	Age	1.00000	0.10376 0.0017	0.04199 0.2050
Ednum	0.06396	1.00000	0.17485	Ednum	0.10376 0.0017	1.00000	0.20537 <.0001
hpw	0.00230 0.9448	0.17485 <.0001	1.00000	hpw	0.04199 0.2050	0.20537 <.0001	1.00000

Based on the preliminary analysis, we can conclude that:

- Age, Ednum and Hpw are the significant continuous variables and there also no issues of multicollinearity. They can be directly used as the predictor variables in the models.
- Education_new, WC, MS_new, Occupation, Relationship and Sex are the significant categorical variables. They can be directly used as the predictor variables in the models.

Model Selection and Interpretation for Predicting Salary:

In this project, we aim to develop and evaluate predictive models to classify whether individuals earn a salary above or below USD 50,000. The target variable, Salary, is binary, indicating whether an income of an individual exceeds the amount of US\$50,000. To achieve this, we employed several modeling techniques, including logistic regression, generalized linear models with a probit link, and decision trees.

Logistic regression is a widely used statistical method for binary classification problems. It estimates the probability that a given input point belongs to a certain class by fitting a logistic function to the data. This model serves as a robust baseline due to its interpretability and simplicity. The generalized linear model with a probit link function is another approach we used. The probit model, like the logistic model, is used for binary response variables but assumes a normal cumulative distribution function. This method allows us to compare its performance against logistic regression and understand any potential improvements it offers. By comparing these models, we aim to identify the most effective approach for accurately predicting the salary category. Our analysis involves evaluating model performance using metrics such as the confusion matrix, the misclassification error and ROC curve, providing a comprehensive understanding of each model's predictive capabilities.

We will use "proc logistic" on our dataset Salary_S1_6, changing our 6 categorical variables to their respective reference levels (WC, Education_new, MS_new, Occupation, Relationship, Sex), adding on our 3 numerical variables (Age, Ednum, Hpw), and utilizing stepwise selection at sle = 0.05 and sls = 0.05 thresholds. The stepwise selection process runs through 6 iterations and selects 6 variables at the end. The summary of the stepwise selection and the parameter estimates for the final iteration are depicted below. The analysis of maximum likelihood estimates output gives us the coefficients and significance of our predictors. Note that this logistic regression model predicts the probability of belonging to the class of salary with less than 50000 USD.

		Sum	mary	of Stepwis	e Selection		
	Effe	ct		Number	Score	Wald	
Step	Entered	Removed	DF	In	Chi-Square	Chi-Square	Pr > ChiSq
1	Relationship		5	1	189.7779		<.0001
2	Ednum		1	2	99.3194		<.0001
3	hpw		1	3	12.6743		0.0004
4	Age		1	4	11.4244		0.0007
5	Occupation		12	5	32.2488		0.0013
6	Sex		1	6	8.8716		0.0029

Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	7.9284	1.0396	58.1590	<.0001
Occupation	Craft-repair	1	-0.2752	0.4380	0.3948	0.5298
Occupation	Exec-managerial	1	-0.7102	0.4398	2.6072	0.1064
Occupation	Farming-fishing	1	1.5698	0.7704	4.1524	0.0416
Occupation	Handlers-cleaners	1	0.4569	0.6386	0.5119	0.4743
Occupation	Machine-op-inspct	1	0.4267	0.5856	0.5310	0.4662
Occupation	Other-service	1	0.7224	0.6527	1.2250	0.2684
Occupation	Priv-house-serv	1	9.9229	591.0	0.0003	0.9866
Occupation	Prof-specialty	1	-0.7414	0.4512	2.6996	0.1004
Occupation	Protective-serv	1	-0.6104	0.6446	0.8966	0.3437
Occupation	Sales	1	-0.3101	0.4509	0.4728	0.4917
Occupation	Tech-support	1	-1.7916	0.6342	7.9806	0.0047
Occupation	Transport-moving	1	-0.2748	0.5982	0.2111	0.6459
Relationship	Not-in-family	1	1.9845	0.3210	38.2211	<.0001
Relationship	Other-relativ	1	2.6108	1.2002	4.7324	0.0296
Relationship	Own-child	1	2.0244	0.5836	12.0334	0.0005
Relationship	Unmarried	1	1.4788	0.4673	10.0163	0.0016
Relationship	Wife	1	-1.5486	0.6296	6.0502	0.0139
Sex	Male	1	-1.2126	0.4187	8.3872	0.0038
Age		1	-0.0310	0.00887	12.1799	0.0005
Ednum		1	-0.3162	0.0533	35.1937	<.0001
hpw		1	-0.0389	0.00985	15.6134	<.0001

Effect	Point Estimate	95% Wald Confidence Limits		
Occupation Craft-repair vs Adm-clerical	0.759	0.322	1.792	
Occupation Exec-managerial vs Adm-clerical	0.492	0.208	1.164	
Occupation Farming-fishing vs Adm-clerical	4.806	1.062	21.753	
Occupation Handlers-cleaners vs Adm-clerical	1.579	0.452	5.521	
Occupation Machine-op-inspct vs Adm-clerical	1.532	0.486	4.829	
Occupation Other-service vs Adm-clerical	2.059	0.573	7.402	
Occupation Priv-house-serv vs Adm-clerical	>999.999	<0.001	>999.999	
Occupation Prof-specialty vs Adm-clerical	0.476	0.197	1.154	
Occupation Protective-serv vs Adm-clerical	0.543	0.154	1.921	
Occupation Sales vs Adm-clerical	0.733	0.303	1.775	
Occupation Tech-support vs Adm-clerical	0.167	0.048	0.578	
Occupation Transport-moving vs Adm-clerical	0.760	0.235	2.454	
Relationship Not-in-family vs Husband	7.276	3.878	13.649	
Relationship Other-relativ vs Husband	13.610	1.295	143.038	
Relationship Own-child vs Husband	7.571	2.412	23.764	
Relationship Unmarried vs Husband	4.388	1.756	10.964	
Relationship Wife vs Husband	0.213	0.062	0.730	
Sex Male vs Female	0.297	0.131	0.676	
Age	0.970	0.953	0.987	
Ednum	0.729	0.657	0.809	
hpw	0.962	0.943	0.981	

Before going to interpret the variables, let's look at the goodness of fit tests for the logistic regression model. Since the given data is not of the event/ trial syntax, we use the Hosmer-Lemeshow goodness of fit test. The result of the Hosmer-Lemeshow goodness of fit is given below.

Hosmer and Lemeshow Goodness-of-Fit Test					
Pr > ChiSq	DF	Chi-Square			
0.0964	8	13.4805			

Since the p-value of the Hosmer and Lemeshow goodness of fit test is 0.0964, which is greater than 0.05. This implies that we can reject the null hypothesis and conclude that the logistic regression model fits the data well. Given that we have a logistic regression model that fits the data well, let's look at the odds ratio and coefficient interpretation of the predictor variables. As aforementioned, 6 variables were chosen: 3 categorical, and all 3 numerical variables.

Occupation: It has 13 categories, and the model chose "Adm-clerical" as the reference category. Only the "Farming-fishing" and "Tech-support" categories are significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The same can also be inferred from the odds ratios as their confidence intervals do not contain 1. The odds of having a salary less than 50K USD for the occupation "Farming-fishing" is 4.806 times than the occupation "Adm-clerical". The odds of having a salary less than 50K USD for the occupation "Tech-support" is 0.167 times than the occupation "Adm-clerical". "Farming-fishing" occupation increases the odds of having a salary less than 50K USD while the "Tech-support" decreases the odds of having a salary less than 50K USD.

- <u>Interpretation:</u> Occupation "Farming-fishing" will typically result in a salary less than 50K USD, while the other occupation "Tech-support" will be more likely to have a salary greater than 50K USD.
- Relationship: It has 6 categories, and the model chose "Husband" as the reference category. All the categories are significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The same can also be inferred from the odds ratios as their confidence intervals do not contain 1. The odds of having a salary less than 50K USD for the relationship "Not-in-family" is 7.276 times than the relationship "Other-Relatives" is 13.61 times than the relationship "Husband". The odds of having a salary less than 50K USD for the relationship "Own-child" is 7.571 times than the relationship "Husband". The odds of having a salary less than 50K USD for the relationship "Husband".

The odds of having a salary less than 50K USD for the relationship "Wife" is 0.231 times than the relationship "Husband". All relationships increase odds of having a salary less than 50K USD except for the relationship "Wife", which decreases odds of having a salary less than 50K USD.

- <u>Interpretation:</u> Relationships "Not-in-family", "Other-Relatives", "Own-child" and "Unmarried" will typically result in a salary less than 50K USD, while the relationship "Wife" is more likely to have a salary greater than 50K USD.
- <u>Sex:</u> It has two categories and "Female" was the reference level. The sex "Male" is significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The same can also be inferred from the odds ratios as their confidence intervals do not contain 1. The odds of having a salary less than 50K USD for the sex "Male" is 0.297 times than the sex "Female".
 - <u>Interpretation:</u> Females are more likely to have a salary less than 50K USD than males according to this dataset.
- Age: This continuous variable is significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The odds of having a salary less than 50K USD increases 0.97 times with a unit increase in age.
 - <u>Interpretation:</u> As age increases, the salaries will more likely be greater than 50K according to this dataset.
- Ednum: This continuous variable is significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The odds of having a salary less than 50K USD increases 0.729 times with a unit increase in Ednum.
 - <u>Interpretation:</u> As Ednum increases, the salaries will more likely be greater than 50K according to this dataset.

- <u>Hpw:</u> This continuous variable is significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The odds of having a salary less than 50K USD increases 0.962 times with a unit increase in Hpw.
 - <u>Interpretation:</u> As Hpw increases, the salaries will more likely be greater than 50K according to this dataset.

Below given are the model evaluation results of the logistic regression model.

The generalized linear model framework, as implemented in the GENMOD procedure in SAS, extends traditional linear modeling to accommodate response variables that follow various distributions, including the normal, binomial, Poisson, and others. This flexibility allows the modeling of data that exhibit non-normal behavior, which is common in real-world scenarios. One of the key features of GENMOD is its ability to use different link functions to relate the mean of the response variable to the linear predictor. We observed that using the logit link function and the binomial distribution, we were getting the same results as the logistic regression model fitted using proc logistic. Then, we utilized the probit link function, which is particularly useful for binary outcome variables. The probit link models the probability of the outcome occurring as a function of the normal cumulative distribution function (CDF). This approach assumes that the latent variable underlying the binary outcome follows a normal distribution, providing an alternative to the commonly used logit link function. The probit model can offer better fit and interpretation in cases where the data exhibit characteristics more aligned with the normal distribution. By using the GENMOD procedure with the probit link, we aimed to improve the predictive accuracy and interpretability of our model, particularly in comparison to logistic regression. The generalized linear model was fitted with probit link and all the significant predictors from the initial exploratory analysis. The results showed slight improvements in model performance metrics such as the ROC curve, indicating that the probit link was a suitable choice for our binary salary prediction task.

Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq
Intercept		1	6.9609	2.2986	2.4558	11.4660	9.17	0.0025
WC	I and any	1	0.4533	0.3645	-0.2611	1.1677	1.55	0.0028
WC	Local-gov Private	1	0.4533	0.3049	-0.3139	0.8695	0.85	0.2130
WC	Self-emp-inc	1	0.1491	0.4130	-0.5139	0.9586	0.65	0.3378
WC	•							
	Self-emp-not-inc	1	0.6423	0.3459	-0.0357	1.3203	3.45	0.0633
WC	State-gov	1	0.4915	0.4156	-0.3230	1.3060	1.40	0.2370
Education_new	Bachelors	1	0.4307	0.3669	-0.2884	1.1498	1.38	0.2404
Education_new	Doctorate	1	0.2205	1.0372	-1.8124	2.2533	0.05	0.8317
Education_new	HS-grad	1	-0.5793	0.5418	-1.6412	0.4826	1.14	0.2849
Education_new	Masters	1	0.1226	0.5481	-0.9517	1.1969	0.05	0.8230
Education_new	Prof-schoo	1	0.4786	0.7746	-1.0395	1.9968	0.38	0.5366
Education_new	School	1	-0.9825	1.0544	-3.0490	1.0841	0.87	0.3514
Education_new	Some-colle	1	-0.4980	0.3926	-1.2676	0.2715	1.61	0.2046
MS_new	Married	1	-0.3774	0.5420	-1.4398	0.6849	0.48	0.4862
MS_new	Never-marr	1	-0.0234	0.2668	-0.5464	0.4996	0.01	0.9300
MS_new	Separated	1	5.4299	7609.730	-14909.4	14920.23	0.00	0.9994
MS_new	Widowed	1	-0.2576	0.5264	-1.2894	0.7741	0.24	0.6245
Occupation	Craft-repair	1	-0.2163	0.2641	-0.7339	0.3014	0.67	0.4129
Occupation	Exec-managerial	1	-0.5332	0.2680	-1.0586	-0.0078	3.96	0.0467
Occupation	Farming-fishing	1	0.5335	0.4159	-0.2817	1.3487	1.65	0.1996
Occupation	Handlers-cleaners	1	0.2970	0.3704	-0.4290	1.0229	0.64	0.4227
Occupation	Machine-op-inspct	1	0.2162	0.3481	-0.4660	0.8984	0.39	0.5345
Occupation	Other-service	1	0.3611	0.3645	-0.3534	1.0756	0.98	0.3220
Occupation	Priv-house-serv	1	4.3561	15510.11	-30394.9	30403.62	0.00	0.9998
Occupation	Prof-specialty	1	-0.5332	0.2732	-1.0687	0.0023	3.81	0.0510
Occupation	Protective-serv	1	-0.5740	0.4109	-1.3793	0.2313	1.95	0.1624
Occupation	Sales	1	-0.2890	0.2727	-0.8234	0.2455	1.12	0.2893
Occupation	Tech-support	1	-1.1798	0.3763	-1.9173	-0.4423	9.83	0.0017
Occupation	Transport-moving	1	-0.1987	0.3618	-0.9078	0.5105	0.30	0.5829
Relationship	Not-in-family	1	0.7033	0.5635	-0.4011	1.8077	1.56	0.2120
Relationship	Other-relativ	1	0.8315	0.6994	-0.5393	2.2022	1.41	0.2345
Relationship	Own-child	1	0.7460	0.6244	-0.4778	1.9698	1.43	0.2322
Relationship	Unmarried	1	0.5117	0.5423	-0.5513	1.5746	0.89	0.3454
Relationship	Wife	1	-0.9842	0.3628	-1.6952	-0.2732	7.36	0.0067
Sex	Male	1	-0.7592	0.2391	-1.2279	-0.2905	10.08	0.0015
Age		1	-0.0175	0.0054	-0.0280	-0.0070	10.67	0.0011
Ednum		1	-0.3696	0.1853	-0.7328	-0.0064	3.98	0.0461
hpw		1	-0.0212	0.0056	-0.0322	-0.0103	14.38	0.0001
Scale		0	1.0000	0.0000	1.0000	1.0000	14.30	0.0001

Out of these predictors, only occupation "Exec-managerial", occupation "Tech-support", relationship "Wife", sex "Male", age, Ednum and Hpw are significant in predicting the probability of having the salary less than 50K USD. The reference categories chosen were "federal-government" for WC, "Associate" for Education_new, "Divorced" for MS_new, "Adm-clerical" for occupation, "Husband" for relationship, and "Female" for sex.

Before going to interpret the variables, let's look at the goodness of fit tests for the generalized linear model. Since the given data is not of the event/ trial syntax, we use the Hosmer-Lemeshow goodness of fit test. The result of the Hosmer-Lemeshow goodness of fit is given below.

Hosmer and Lemeshow Goodness-of-Fit Test						
Chi-Square	DF	Pr > ChiSq				
14.1394	8	0.0782				

Since the p-value of the Hosmer and Lemeshow goodness of fit test is 0.0782, which is greater than 0.05. This implies that we can reject the null hypothesis and conclude that the generalized linear model fits the data well. Given that we have a generalized linear model that fits the data well, let's look at the coefficient interpretation of the predictor variables. As aforementioned, 6 variables were chosen: 6 categorical, and all 3 numerical variables.

- <u>WC:</u> It has 6 categories, and the model chose "Federal-government" as the reference category. None of the categories are significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. All the coefficients are positive indicating that they increase the likelihood of the event that it belongs to the class with salary less than USD 50K.
 - <u>Interpretation:</u> WC may not be able to explain if the salary is less or greater than USD 50K as none of the categories are significant. Overall, all the categories almost indicate that they increase the likelihood of the event that it belongs to the class with salary less than USD 50K.
- Education new: It has 8 categories, and the model chose "Associate" as the reference category. None of the categories are significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The coefficients of the categories "Bachelors", "Doctorate", "Masters", and "Professional school" are positive indicating that they increase the likelihood of the event that it belongs to the class with salary less than USD 50K. The rest of the coefficients are negative indicating that they decrease the likelihood of the event that it belongs to the class with salary less than USD 50K.
 - <u>Interpretation:</u> Education_new may not be able to explain if the salary is less or greater than USD 50K as none of the categories are significant. Overall, some of the categories indicate that they increase the likelihood of the event that it belongs to the class with salary less than USD 50K while the others indicate they decrease the likelihood of the event that it belongs to the class with salary less than USD 50K.
- MS new: It has 5 categories, and the model chose "Divorced" as the reference category. None of the categories are significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. All the coefficients are negative except "Separated" indicating that they decrease the likelihood of the event that it belongs to the class with salary less than USD 50K.
 - <u>Interpretation:</u> MS_new may not be able to explain if the salary is less or greater than USD 50K as none of the categories are significant. Overall, all the categories except "Separated" indicate that they decrease the likelihood of the event that it belongs to the class with salary less than USD 50K while the "Separated" category increase the likelihood of the event that it belongs to the class with salary less than USD 50K.

- Occupation: It has 13 categories, and the model chose "Adm-clerical" as the reference category. Only the "Exec-managerial" and "Tech-support" categories are significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The coefficients of both "Exec-managerial" and "Tech-support" categories are negative indicating that they decrease the likelihood of the event that it belongs to the class with salary less than USD 50K.
 - <u>Interpretation:</u> Occupations "Exec-managerial" and "Tech-support" categories will typically result in a salary greater than 50K USD.
- Relationship: It has 6 categories, and the model chose "Husband" as the reference category. Only the "Wife" category is significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The coefficient of the "Wife" category is negative indicating that it decreases the likelihood of the event that it belongs to the class with salary less than USD 50K.
 - <u>Interpretation:</u> Relationship "Wife" typically result in a salary greater than 50K USD.
- <u>Sex:</u> It has two categories and "Female" was the reference level. The sex "Male" is significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The coefficient of the "Male" category is negative indicating that it decreases the likelihood of the event that it belongs to the class with salary less than USD 50K.
 - <u>Interpretation:</u> Males are more likely to have a salary greater than 50K USD than females according to this dataset.
- Age: This continuous variable is significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The coefficient of age is negative indicating that it decreases the likelihood of the event that it belongs to the class with salary less than USD 50K.
 - <u>Interpretation:</u> As age increases, the salaries will more likely be greater than 50K according to this dataset.

Ednum: This continuous variable is significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The coefficient of Ednum is negative indicating that it decreases the likelihood of the event that it belongs to the class with salary less than USD 50K.

• <u>Interpretation:</u> As Ednum increases, the salaries will more likely be greater than 50K according to this dataset.

Hpw: This continuous variable is significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The coefficient of Hpw is negative indicating that it decreases the likelihood of the event that it belongs to the class with salary less than USD 50K.

• <u>Interpretation:</u> As Hpw increases, the salaries will more likely be greater than 50K according to this dataset.

Below given are the model evaluation results of the generalized linear model.

Comparing the results of both the logistic regression and generalized linear model are given below.

N/ 4 *	Model				
Metric	Logistic Regression	GLM with Probit Link			
<= 50 K Misclassifications	62	67			
>= 50 K Misclassifications	101	92			
Misclassification Error	17.85%	17.41%			
F1Score	62.86%	64.85%			
AUC	88.76%	89.41%			

The above table suggests that the generalized linear model with probit link performs marginally better than the logistic regression model. But this improved performance comes at the cost of the ease of interpretation. So, considering the ease of feature selection and interpretation in logistic regression, we will be using the logistic regression for inferences and conclusions.

Conclusions

The logistic regression model with stepwise selection has selected six predictors: Occupation, Relationship, Sex, Age, Ednum and Hpw. The validation of their significance was observed

through the p-values of the parameter estimates of the generalized linear model with probit link on the full model with all the predictors. Although occupation is significant but only two of its categories "Farming-fishing" and "Tech-support" are significant at the level 0.05 in predicting if the given observation belongs to the class with salary less than USD 50K. The conclusions are that occupation "Farming-fishing" will result in a salary less than 50K USD as the odds of having a salary less than 50K USD for the occupation "Farming-fishing" is 4.806 times than the occupation "Adm-clerical", while the other occupation "Tech-support" will be more likely to have a salary greater than 50K USD as the odds of having a salary greater than 50K USD for the occupation "Tech-support" is 5.988 times than the occupation "Adm-clerical". The conclusions are that relationships "Not-in-family", "Other-Relatives", "Own-child" and "Unmarried" will result in a salary less than 50K USD as the odds of having a salary less than 50K USD are at least 4 times than the relationship "Husband", while the relationship "Wife" will result in a salary greater than 50K USD as the odds of having a salary greater than 50K USD for the relationship "Wife" is 4.694 times than the relationship "Husband". The conclusions based on sex are that females are more likely to have a salary less than 50K USD compared to males as the odds of having a salary less than 50K USD for the sex "Female" is 3.367 times than the sex "Male". For a unit increase in age, the salaries will more likely be greater than 50K as the odds of having a salary greater than 50K USD increases 1.03 times according to this dataset. For a unit increase in number of years of education, the salaries will more likely be greater than 50K as the odds of having a salary greater than 50K USD increases 1.37 times according to this dataset. For a unit increase in hours per week, the salaries will more likely be greater than 50K as the odds of having a salary greater than 50K USD increases 1.04 times according to this dataset.

In summary, the logistic regression model with stepwise selection has identified key predictors of salary, providing valuable insights into the factors that influence whether an individual's salary is above or below 50K USD. The significance of predictors such as occupation, relationship status, sex, age, education level, and hours worked per week underscores the complex interplay of demographic and socio-economic variables in determining income levels. The analysis highlights specific occupational categories, relationship statuses, and demographic factors that significantly impact salary expectations. These findings can inform targeted policy interventions, career counseling, and individual career planning to address income disparities and enhance economic outcomes for various demographic groups. By understanding the significant predictors and their effects on salary, stakeholders can develop strategies to support higher income potential, particularly for groups identified as having higher odds of earning less than 50K USD.

Contributions:

Both of us contributed equally to the modeling and exploratory analysis of the project. We collaboratively worked on data preprocessing, exploring key trends and relationships in the dataset. In the modeling phase, we both participated in selecting and fitting the appropriate models, including logistic regression with stepwise selection, as well as interpreting the significance of the predictors. Our joint efforts were integral in validating the models and analyzing the results, ensuring that the final report accurately reflected our findings and insights.