VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Dokumentace k projektu do předmětu ISA

POP3 server

19. listopadu 2017

Autor: Filip Března, xbrezn00@stud.fit.vutbr.cz

Fakulta informačních technologií v Brně

Vysoké Učení Technické v Brně

Obsah

1	Úvo	vod				
2	Důl	Důležité pojmy				
	2.1	TCP protokol	. 3			
	2.2	BSD sockety	. 3			
	2.3	POP (Post Office Protocol)	. 4			
3	Náv	rh programu	. 5			
4	Imp	lementace	. 5			
	4.1	POP3 server	. 5			
	4.2	Rozšíření	. 6			
	4.3	Šifrování přihlášení pomocí MD5 hashe	. 6			
	4.4	Použité knihovny	. 6			
5	Záv	ěr	. 7			

1 Úvod

Tato dokumentace, která vznikla k projektu do předmětu Síťové aplikace a správa sítí, pojednává o základních principech a implementaci POP3 serveru. Zaměřuje se nejen na popis této poštovní služby, ale především na protokol, který tato služba využívá. V závěru jsou shrnuty dosažené výsledky projektové implementace.

2 Důležité pojmy

Je třeba vysvětlit některé důležité pojmy, bez jejichž pochopení není možné navrhnout kýžený POP3 server. Následuje tedy krátký popis protokolu TCP a BSD schránek, jelikož byly využity při implementaci projektu. A následně již podrobnější obecná charakteristika přímo pro mailový Post Office Protocol.

2.1 TCP protokol

TCP (Transmission Control Protocol) pracuje na transportní vrstvě TCP/IP modelu, kde vzniká logické spojení mezi procesy. Načítá data z vrstvy aplikační a skládá je do jednotlivých paketů, které se dají chápat jako transportní moduly. TCP nepatří mezi nejrychlejší protokoly svého druhu, ale jeho velkou výhodou a důvodem využívání je schopnost zajistit spolehlivý přenos dat. To je docíleno vytvářením a rušením spojení a opakovaným přenosem ztracených, nedoručených paketů. [3]

2.2 BSD sockety

BSD sockety, často nazývané jako BSD schránky, jsou datová struktura typu *záznam*, která nám umožňuje komunikaci po síti bez nutnosti vytváření nového transportního protokolu. Schránky jsou jednoznačně a unikátně identifikovány čtveřicí (*zdrojový port, zdrojová IP adresa, cílový port, cílová IP adresa*). Je možné je vidět jako přechodovou složku mezi vrstvou aplikační a transportní. Vytváří se a zároveň nastavují funkcí socket () . [3]

2.3 POP (Post Office Protocol)

I přestože je elektronická pošta ústupu, který zapříčinil tzv. *instant messaging*, může být označena za jednu z nejrozšířenějších internetových služeb, bez níž si mnozí nedokáží síťovou komunikaci představit. Také nelze popřít, že je jedním z důvodů, který odstartoval celosvětové rozšíření internetu.

Post Office Protocol s poslední nejrozšířenější verzí 3 označován jako POP3, slouží ke stahování e-mailových zpráv ze serveru na klienta. Standardně pracuje na TCP portu 110. Nevýhodou POP3 je, že značnou režii musí provádět sám klient, podstatná část práce a změn se tedy neděje přímo na straně serveru jako je tomu u protokolu IMAP. Jedná se však v některých situacích o dostačující jednodušší protokol, který umožňuje zabezpečení přihlášení pomocí MD5 hashe s využitím příkazu APOP.

Obrázek 1: Konečný automat protokolu POP3. Zdroj: http://docplayer.cz/1025735-Protokoly-aplikacni-vrstvy-dns-smtp-http-leos-bohac.html

3 Návrh programu

POP3 server pracuje ve třech režimech, které popisuje konečný automat v obrázku 1. Prvním režimem je autorizace, která přijímá příkazy USER následovaný příkazem PASS pro nešifrovanou komunikaci a nebo příkaz APOP pro komunikaci šifrovanou. Pokud autentizace proběhne v pořádku, přechází se do stavu s názvem transakční, ten slouží pro řadu příkazů jako například RETR, RSET, UIDL, DELE, STAT atd. definovaných v RFC.[1] Proces končí pokud klient zadá příkaz QUIT, tehdy se přechází do stavu update, kde dojde k smazání zpráv označených značkou pro smazání a odpojení klienta.

4 Implementace

Program byl vytvořen v jazyce C++ se standardem C++14. Aplikace je vytvořena a cílena na operační systém Linux, na kterém byla i testována. Testy proběhly na školním serveru Merlin, který byl v zadání uveden jako referenční stroj, ale také na Ubuntu verze 14.04.5.

4.1 POP3 server

Běh programu začíná typicky ve funkci main(), následuje kontrola vstupních argumentů, ta se provádí ve funkci checkArguments(). Pokud je vše v pořádku, provede se instanciace třídy pop3_server, umístěné v hlavičkovém souboru popser_class.h. Tím vytvoříme objekt, s kterým budeme následně pracovat. Nyní následuje kontrola zda byl zadán parametr -r, pokud ano, zavolá se funkce resetParameter(), jejíž definice, stejně jako definice téměř každé následující funkce je uvedena v třídě pop3_server. V případě, že byl parametr -r zadán samostatně, program končí. V opačném případě se volá funkce newToCur(), která přesune mailové zprávy ze složky new do složky cur, umístěné v mailovém adresáři. Poté se vytvoří BSD schránky a je provedena režie kolem nich a čeká se na připojení klienta, které je provázeno odesláním uvítací hlášky s časovým razítkem a vytvářením vlákna jeho obsluhou ve funkci clientCommunicationHandler(), která řeší komunikaci mezi serverem a volá si k tomu pomocné funkce definované třídě pop3_server.

V případě, že se klient odpojí, dojde k uzavření schránek, s kterými pracoval a vlákno, které využíval také končí. V případě ukončení serveru signálem *SIGINT*, dojde k zavření všech otevřených socketů a vláken, stará se o to funkce SIGINT_handler().

4.2 Rozšíření

Nepovinné rozšíření ve formě příkazu *TOP* bylo implementováno, a tedy může být součástí hodnocení. Tento příkaz umožňuje zasílání pouze hlavičky zprávy určené klientovi. Dalším parametrem příkazu je pak počet řádků obsahu, které chce klient také obdržet. V případě volby většího počtu řádků než je jejich maximální počet, pošle se celá zpráva.

4.3 Šifrování přihlášení pomocí MD5 hashe

Tvorba hashovacího algoritmu nebyla součástí požadované práce a MD5 hash byl převzat z veřejně dostupného zdroje od Franka Thila, za který jsem mu velmi vděčný. Prohlašuji tedy, že nejsem autorem této části práce a zdroj čerpání bude uveden v referencích v závěrečné kapitole.[2]

4.4 Použité knihovny

#include	<stdint.h></stdint.h>	#include	<locale></locale>
#include	<string.h></string.h>	#include	<iostream></iostream>
#include	<dirent.h></dirent.h>	#include	<unistd.h></unistd.h>
#include	<mutex></mutex>	#include	<sys socket.h=""></sys>
#include	<vector></vector>	#include	<arpa inet.h=""></arpa>
#include	<iostream></iostream>	#include	<netinet in.h=""></netinet>
#include	<stdio.h></stdio.h>	#include	<signal.h></signal.h>
#include	<stdlib.h></stdlib.h>	#include	<time.h></time.h>
#include	<sys stat.h=""></sys>	#include	<thread></thread>
#include	<sys types.h=""></sys>	#include	<fcntl.h></fcntl.h>
#include	<algorithm></algorithm>		

5 Závěr

POP3 server byl implementován včetně rozšíření a úspěšně přeložen i otestován na referenčním stroji Merlin. Program splňuje požadavky pro komunikaci s klientem a může být tedy za tímto účelem využíván.

Metriky kódu

Počet souborů: 6

Počet řádků zdrojového textu pro POP3 server (vyjma MD5 hashe): 1853

Velikost spustitelného souboru: 495129 Bytů

Reference

[1] MYERS, J. Post Office Protocol - Version 3. [Online]

Dostupné z: https://tools.ietf.org/html/rfc1939.

[2] **THILO, Frank.** C++ md5 function. [Online]

Dostupné z: http://www.zedwood.com/article/cpp-md5-function.

[3] MATOUŠEK, Petr. Studijní opora předmětu Síťové aplikace a správa sítí

Kapitola 2 Programování sítí TCP/IP [Online] Dostupné z: https://wis.fit.vutbr.cz/FIT/st/course-

files-st.php?file=%2Fcourse%2FISA-IT%2Ftexts%2Fkapitola2.pdf&cid=12191