4.7.1 – Двойное лучепреломление.

Цель работы. Изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления в кристалле.

В работе используются: гелий-неоновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид.

Теоретическая часть. Двойное лучепреломления – явление, характерное для одноосных кристаллов, типичный пример неизотропной оптики. См. вывод для обычной и необычной волн. В нашем опыте мы измеряем характеристики кристалла, используя призму.

Эксперимент. По полученным данным (см. таблицы в .ipynb) строим графики n_o и n_e от $\cos^2\theta$ в Sigma Plot.

Рис. 1: Графики и главные показатели преломления.

Из графиков получаем значения

$$n_o = 1.675 \pm 0.017,$$

 $n_e = 1.489 \pm 0.013,$

что хорошо согласуется с табличными данными.

Рассчитаем средние значения углов наименьшего отклонения

$$\psi_{mo} = 26 \pm 1^{\circ},$$

 $\psi_{me} = 21 \pm 1^{\circ}.$

Расчёты показателей преломления с помощью универсальной зависимости дают

$$n_o = 1.67 \pm 0.03,$$

 $n_e = 1.5 \pm 0.04.$

Углы падения, соответствующие полному внутреннему отражению:

$$\varphi_{1o} = 2.5 \pm 0.5^{\circ},$$

$$\varphi_{1e} = 5.0 \pm 0.5^{\circ}.$$

Через углы наименьшего отклонения определяем

$$n_o = 1.65 \pm 0.07,$$

 $n_e = 1.48 \pm 0.06.$

Вывод. Изучив явление двойного лучепреломления, мы измерили главные показатели преломления тремя различными способами – и получили их взаимное согласие в пределах погрешностей.