1

NCERT Physics 12.7 Q19

EE23BTECH11212 - MANUGUNTA MEGHANA SAI*

Question: Suppose the circuit in Exercise 7.18 (in Figure Fig. 1)has a resistance of 15 Ω . Obtain the average power transferred to each element of the circuit, and the total power absorbed.

Fig. 1. LCR Circuit

Solution: In Fig. 1 the following information is provided:

Symbol	Value	Description
L	80m H	Inductance
С	$60 \mu F$	Capacitance
R	15Ω	Resistance
V	230 V	Voltage
f	50 Hz	Frequency
ω	$2\pi f = 100\pi$	Angular Frequency
P	?	Instantaneous power
φ	?	Phase difference between current and voltage
$I_{\rm rms}$?	rms value of current

TABLE I GIVEN PARAMETERS

Applying Kirchoff's Voltage Law in the Fig. 2

Fig. 2. s domain circuit

$$V(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$
 (1)

$$=I(s)\left(R+Ls+\frac{1}{sC}\right) \tag{2}$$

$$I(s) = \frac{V(s)}{\left(R + Ls + \frac{1}{sC}\right)} \tag{3}$$

$$H(s) = \frac{V(s)}{I(s)} \tag{4}$$

$$H(s) = R + sL + \frac{1}{sC} \tag{5}$$

Substituting s with 1ω

$$H(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$
 (6)

$$\Rightarrow |H(j\omega)| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 (7)

Average power transferred to an element in the circuit is given by:

$$P = VIcos(\phi) \tag{8}$$

a) Average power transferred to the capacitor, P_C : For a capacitor the phase angle is:

$$\phi = \frac{\pi}{2} \tag{9}$$

$$\cos(\phi) = 0 \tag{10}$$

$$P_C = 0 \tag{11}$$

b) Average power transferred to the inductor, P_L : For an inductor the phase angle is:

$$\phi = -\frac{\pi}{2} \tag{12}$$

$$\cos(\phi) = 0 \tag{13}$$

$$P_L = 0 \tag{14}$$

c) Average Power transferred to the resistor, P_R : $|H(j\omega)|$ is obtained by sustituting the numerical values from the Table I in equation (7):

$$|H(j\omega)| = 31.728 \ \Omega \tag{15}$$

$$I_{rms} = \frac{V_{rms}}{H(j\omega)} = \frac{230}{31.728} = 7.25A$$
 (16)

$$P_R = (I_{rms})^2 R = 788.44W (17)$$

d)Total power absorbed by circuit:

$$= P_R + P_C + P_L \tag{18}$$

$$= 788.44 + 0 + 0 \tag{19}$$

$$= 788.44 W$$
 (20)

Total power absorbed by circuit is 788.44W

Fig. 3. |H(j/omega)| vs ω