SİNYALLER VE SİSTEMLER FİNAL SINAVI SORULARI

04.01.2012 Süre: 80 dakika

3. ve 4. sorular zorunludur. Diğer sorulardan istediğiniz 3 tanesini çözünüz.

1) a) a bir tamsayı olmak üzere $x[n]*\delta[n-a] = x[n-a]$ olduğunu, konvolüsyon toplamı formülünü kullanarak ispatlayınız. (10 puan)

b) Birim darbe tepkisi aşağıdaki h(t) olan doğrusal zamanla değişmez (DZD) sistem bellekli midir, nedensel midir, kararlı mıdır? Her birini DZD sistemlere özel kuralını uygulayarak belirtiniz. (3+3+4=10 puan)

3) Birim darbe tepkisi h[n] yanda verilen DZD sistemin girişine $x[n] = (-1)^n \quad \forall n$ sinyali uygulanırsa çıkış fonksiyonu ne olur? (Çizim beklenmemektedir.) (25 **puan**)

4) Primerine AC gerilim uygulanan yüksüz bir trafonun primer akımı şekildeki gibidir. Bu akımın gerçel ve karmaşık Fourier serileri

$$i_{10}(t) = \frac{a_0}{2} + \sum_{k=1}^{+\infty} \left(a_k \cos(k\omega t) + b_k \sin(k\omega t) \right) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega t}$$

biçimlerinde düşünüldüğünde buradaki katsayıların hangilerinin sıfır olduğu söylenebilir? (15 puan)

(" a_0 ", " c_0 ", " $a_k \forall k$ ", " $b_k \forall k$ ", "tek k'lar için hem a_k hem b_k hem c_k ", "çift k'lar için hem a_k hem b_k hem c_k ", "tüm negatif k'lar için c_k ", "tüm pozitif k'lar için c_k " seçeneklerinden sıfır olanların hepsini seçiniz.)

5) Giriş(x)-çıkış(y) ilişkisi aşağıda verilen nedensel sistemin transfer fonksiyonunu (6 **puan**) ve birim darbe tepkisini (14 **puan**) bulunuz.

$$2\ddot{y}(t) + 8\dot{y}(t) + 6y(t) = 12\dot{x}(t) + 4x(t)$$

6) Giriş(*x*)-çıkış(*y*) ilişkisi

$$2y[n+1] - y[n] = x[n+1] + x[n]$$

ile verilen nedensel sistemin transfer fonksiyonunu (**5 puan**) ve x[n] = u[n] girişi için enerjisiz başlangıçlı çıkışını (**15 puan**) Z ve/veya Z^{-1} dönüşümleriyle bulunuz.

7) Kaydedilmiş bir ses sinyalinin (x(t)) genlik spektrumu $|X(\omega)|$ aşağıdaki gibidir. Bu sinyali kazanç spektrumu $|H(\omega)|$ aşağıdaki gibi olan ideal bir alçak geçiren süzgeçten geçirerek y(t) sinyali elde edilecektir. y(t) sinyalinin enerjisinin, x(t) sinyalinin enerjisinin yarısı olması isteniyorsa alt kesim frekansı ω_c ne olmalıdır? (20 puan)

BAŞARILAR ...

Yard. Doç. Dr. Ata SEVİNÇ

SİNYALLER VE SİSTEMLER FİNAL SINAVI CEVAP ANAHTARI 04.01.2012

- 1) a) $x[n] * \delta[n-a] = \sum_{k=-\infty}^{+\infty} x[n-k] \cdot \delta[k-a]$ Darbe k=a dışında sıfır olduğu için x[n-k]'da k=a yazılır ve bu x[n-a] sabit (k'ya göre) olduğu için toplamın dışına çıkar: $x[n] * \delta[n-a] = \sum_{k=-\infty}^{+\infty} x[n-a] \cdot \delta[k-a] = x[n-a] \sum_{k=-\infty}^{+\infty} \delta[k-a] = x[n-a]$ olur.
 - **b**) $h(t) = 0 \quad \forall t < 0$ olduğundan dolayı DZD sistem nedenseldir.

 $h(t) \neq K\delta(t)$ olduğundan (yani h(t) ötelenmemiş birim darbe cinsinden yazılamayacağı için) sistem belleklidir. Daha basitçesi: Bazı $t \neq 0$ için $h(t) \neq 0$ olduğu için.

$$\int_{-\infty}^{+\infty} |h(t)| dt = 2 \times 1 = 2 < \infty \text{ olduğundan sistem kararlıdır.}$$

2) x(t) = u(t) - u(t-2) olduğundan y(t) = s(t) - s(t-2) olur, burada s(t) sistemin birim basamak tepkisi olup $s(t) = \int_{\tau=-\infty}^{t} h(\tau)d\tau$ biçiminde hesaplanır. Yani t anındaki değeri t fonksiyonu grafiğinde t 'nin sol tarafında biriken alandır. Buna göre s(t) ile -s(t-2) aşağıda soldaki şekildeki gibi olur. Bu iki bileşenin toplamıyla da y(t) aşağıda sağdaki gibi bulunur.

- 3) Çıkış: $y[n] = h[n] * x[n] = \sum_{k=-\infty}^{+\infty} h[k] \cdot x[n-k] = h[0] \cdot x[n] + h[1] \cdot x[n-1] + h[2] \cdot x[n-2]$ $y[n] = x[n] + x[n-1] + x[n-2] = (-1)^n + (-1)^{n-1} + (-1)^{n-2} = y[n] = (-1)^n \quad \forall n$
- 4) Sinyalin ortalaması sıfırdır ($c_0 = a_0/2 = 0$). Tek sinyal değildir (orijinle sağdaki ilk tepe arasında büküm var, soldaki ilk tepe arasında yok). Çift sinyal hiç değildir (orijinin hemen sağı pozitif, hemen solu negatif). Yani her a_k veya her b_k 'nın sıfır olduğu söylenemez.

Sinyalin bir yarı periyodu, diğer yarı periyodunun negatifi değerlidir ($x(t + \frac{T_0}{2}) = -x(t)$), yani tek harmonik simetrisi vardır. Sonuçta sıfır olanlar:

" a_0 ", " c_0 ", "çift k'lar için hem a_k hem b_k hem c_k "

Son iki seçenek ise sıfır sinyal hariç gerçel sinyallerde olmaz. Çünkü gerçel sinyallerde $c_{-k}=c_k^*$ olduğundan herhangi bir k için c_k sıfır olsa c_{-k} da sıfır olurdu.

5) Transfer fonksiyon:
$$\frac{12(j\omega)+4}{2(j\omega)^2+8(j\omega)+6} = \left[H(\omega) = \frac{6(j\omega)+2}{(j\omega+1)(j\omega+3)}\right] = \frac{A}{(j\omega+1)} + \frac{B}{(j\omega+3)}$$

$$A = \frac{6(j\omega) + 2}{(j\omega + 3)} \Big|_{j\omega \leftarrow -1} = \frac{-6 + 2}{-1 + 3} = -2 \qquad B = \frac{6(j\omega) + 2}{(j\omega + 1)} \Big|_{j\omega \leftarrow -3} = \frac{-18 + 2}{-3 + 1} = 8$$

$$h(t) = \int_{-\infty}^{-\infty} \left\{ \frac{-2}{(j\omega + 1)} + \frac{8}{(j\omega + 3)} \right\} = -2e^{-t}u(t) + 8e^{-3t}u(t) = h(t) = \left[\frac{1}{8}e^{-3t} - 2e^{-t} \right]u(t)$$

6) Transfer fonksiyon:
$$\frac{z+1}{2z-1} = H(z) = \frac{1}{2} \cdot \frac{z+1}{z-(1/2)}$$
; $|z| > 1/2$

$$x[n] = u[n] = 1^n u[n] \implies X(z) = \frac{z}{z-1} ; |z| > 1$$

$$Y(z) = X(z)H(z) = \frac{1}{2} \cdot \frac{z(z+1)}{(z-1)(z-1/2)}$$
; $|z| > 1$

$$\frac{Y(z)}{z} = \frac{1}{2} \cdot \frac{(z+1)}{(z-1)(z-1/2)} = \frac{A}{z-1} + \frac{B}{z-1/2} \qquad A = \frac{1}{2} \cdot \frac{z+1}{(z-1/2)} \Big|_{z=1} = \frac{1}{2} \times \frac{1+1}{1-1/2} = 2 = A$$

$$B = \frac{1}{2} \frac{z+1}{(z-1)} \bigg|_{z=1/2} = \frac{1}{2} \times \frac{1/2+1}{1/2-1} = -3/2 = B \qquad Y(z) = 2 \frac{z}{z-1} - \frac{3}{2} \cdot \frac{z}{z-1/2} \quad ; \quad |z| > 1$$

7)
$$x(t)$$
 sinyalinin enerjisi: $E_x = \int_{t=-\infty}^{+\infty} |x(t)|^2 dt$ (Sinyalin bir ses çıkış elemanı üzerine

bırakacağı enerjinin bununla orantılı olduğu anlamına gelir. Akım veya gerilim sinyalinin direnç üzerinde bıraktığı enerji gibi.) Parseval eşitliğine göre:

$$\int_{t=-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{\omega=-\infty}^{+\infty} |X(\omega)|^2 d\omega = E_x \quad \text{ve}$$

$$\int_{t=-\infty}^{+\infty} |y(t)|^2 dt = \frac{1}{2\pi} \int_{\omega=-\infty}^{+\infty} |Y(\omega)|^2 d\omega = E_y$$

$$Y(\omega) = X(\omega)H(\omega) \quad \to \quad |Y(\omega)|^2 = |X(\omega)|^2 |H(\omega)|^2$$

 $|H(\omega)|^2$ grafiği $|H(\omega)|$ 'nınkiyle aynı olduğundan çarpımın grafiği yanda gösterildiği gibi olur. y(t) sinyalinin enerjisi:

$$E_{y} = \frac{1}{2\pi} \int_{\omega=-\omega}^{0} (a+\omega)d\omega + \frac{1}{2\pi} \int_{\omega=0}^{\omega} (a-\omega)d\omega$$

$$= \frac{1}{4\pi} (a+\omega)^2 \Big|_{-\omega_c}^0 - \frac{1}{4\pi} (a-\omega)^2 \Big|_{0}^{\omega_c} = \frac{a^2 - (a-\omega_c)^2 - (a-\omega_c)^2 - (-a^2)}{4\pi} = \frac{a^2 - (a-\omega_c)^2}{2\pi} = E_y$$

 E_x integralinin bundan tek farkı ω_c yerine de a yazılması olduğu için $E_x = \frac{a^2}{2\pi}$ bulunur.

$$\rightarrow$$
 $a - \omega_c = a/\sqrt{2}$ \rightarrow $\omega_c = (1 - 1/\sqrt{2}) \cdot a \approx 0.29a$