MATH 136: Linear Algebra I

Charles Shen

Winter 2015, University of Waterloo Quick reference sheet.

Contents

1	Mat	trices
	1.1	Elementary Row Operations
	1.2	Reduced Row Echelon Form
	1.3	System Rank Theorem
		ntities Transpose
3	Inve	erses
	3.1	Inverse of a 2-by-2 Matrix
	3.2	Invertible Matrix Theorem

1 Matrices

Definition. An augmented matrix has the form $\left[A\mid \vec{b}\;\right]$

Definition. A homogeneous matrix has the form $\begin{bmatrix} A \mid \vec{0} \end{bmatrix}$

A homogeneous system is always consistent, $\vec{x} = \vec{0}$ is always a solution.

1.1 Elementary Row Operations

- 1. Add a multiple of one row to another: $R_i + cR_j$
- 2. Multiple a row by a non-zero constant: cR_i
- 3. Exchange two rows: $R_i \leftrightarrow R_j$

1.2 Reduced Row Echelon Form

Definition. A matrix R is said to be in **Reduced Row Echelon Form** (RREF) if:

- 1. All rows containing a non-zero entry are above rows which only contains zeros
- The first non-zero entry in each non-zero row is 1, called a leading one (or a pivot)
- 3. The leading one in each non-zero row is to the right of the leading one in any row above it
- 4. A leading one is the only non-zero entry in its column

Definition. The rank of a matrix A is the number of leading ones in the RREF of the matrix.

1.3 System Rank Theorem

Theorem. Let A be the coefficient matrix of a system of m linear equations in n unknowns $\begin{bmatrix} A \mid \vec{b} \end{bmatrix}$

1. If the rank of A is less than the rank of the augmented matrix $\begin{bmatrix} A \mid \vec{b} \end{bmatrix}$, then the system is inconsistent

- 2. If the system $\left[A\mid\vec{b}\;\right]$ is consistent, then the system contains (n-rank(A)) free variables
- 3. rank(A) = m iff the system $\left[A \mid \vec{b} \;\right]$ is consistent for every $\vec{b} \in \mathbb{R}^m$

2 Identities

2.1 Transpose

Definition. The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} whose ij-th entry is the ji-th entry of A; that is:

$$(A^{\mathsf{T}})_{ij} = (A)_{ji}$$

Theorem. If A and B are $m \times n$ matrices and $c \in \mathbb{R}$, then:

- 1. $(A^{\dagger})^{\dagger} = A$
- 2. $(A+B)^{T} = A^{T} + B^{T}$
- 3. $(cA)^{\intercal} = cA^{\intercal}$
- $\mathbf{4.} \ (AB)^\intercal = B^\intercal A^\intercal$

3 Inverses

3.1 Inverse of a 2-by-2 Matrix

Suppose
$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 Then $A^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

3.2 Invertible Matrix Theorem

Theorem. For any $n \times n$ matrix A, the following are equivalent:

- 1. A is invertible
- 2. rank(A) = n

- 3. RREF of A = I
- 4. $A \vec{x} = \vec{b}$ is consistent for all $\vec{b} \in \mathbb{R}^n$
- 5. The columns of A terms are a linearly independent set
- 6. The columns of A spans \mathbb{R}^n
- 7. The columns of A forms a basis for \mathbb{R}^n
- 8. The rows of A forms a basis for \mathbb{R}^n
- 9. $Col(A) = \mathbb{R}^n$
- 10. $Null(A) = {\vec{0}}$
- 11. A^{T} is invertible
- 12. $Row(A) = \mathbb{R}^n$
- 13. $Null(A^{\intercal}) = {\vec{0}}$