

Team Number: 9

Theme background and motivation

Variational Quantum Eigensolver, VQE

Hybrid Quantum-Classical

Quantum subroutine

- Parameterized Quantum Circuit (PQC)
- measures the Hamiltonian

Classical optimized

• Updates the circuit parameters iteratively

Proximal Policy Optimization PPO-based optimizer

Project Strategy — VQE with PPO

- 1. reinforcement learning (DRL): Apply DRL algorithms for quantum circuit design
- 2.Design efficient variational quantum circuits:

Optimize quantum circuits for better performance and resource efficiency

3. Apply to molecular ground state problems:

Use the optimized circuits to accurately estimate the ground state energy of molecular systems

Quantum subroutine

- Parameterized Quantum Circuit
- Measures the Hamiltonian

Classical optimized

PPO-based optimizer

Reward from Energy

• Updates the circuit parameters iteratively

PQC parameters

Execute PQC

Measur
Hamiltonian

Critic evaluates value
Compute Advantage

Actor
Updates Policy

Renew PQC parameter (based on updated policy)

Molecular and Quantum Chemistry Settings

```
[MOL]
mol_name = LiH
atoms = ["Li", "H"]
coordinates = ([0.0, 0.0, 0.0], [0.0, 0.0, 1.571274961436279])
multiplicity = 1
charge = 0
num_electrons = 4
num_spatial_orbitals = 6
num_particles = (2, 2)
num_qubits = 12
fci_energy = _-7.88266974664723
```

DPO Configuration Settings

```
[DP0]
use_dpo = True
dpo_beta = 0.1
dpo_loss_weight = 0.5
reference_update_freq = 5
preference_buffer_size = 1000
```

Reinforcement Learning Training Parameters

```
[TRAIN]
learning_rate = 0.0003
gamma = 0.99
gae_lambda = 0.95
policy_clip = 0.2
batch_size = 64
num_episodes = 1000
num_steps = 20
num_epochs = 10
max_circuit_depth = 50
conv_tol = 1e-5
optimizer_option = "Adam"
```

System Parameters / Experimental Setup

Parameterized Quantum Circuit

$$\begin{bmatrix} & \cdots \\ \vdots & \ddots & \vdots \\ & \cdots & \end{bmatrix}_{50X17}$$

- gate_type_one_hot(12 gate)
- target_qubit
- control_qubit
- angle
- position
- connectivity_flag

gate_type	gate_type_one_hot
Н	10000000000
Χ	01000000000
Υ	00100000000
Z	000100000000
Сх	000010000000
Cz	000001000000
Rx	
Ry	•
Rz	•
T	
S	
SX	

Gate type

d ibm_brisbane

Items per page: 10 ∨ 1-6 of 6 items

ibm_pittsburgh

A You do not have access to this system in this account. Switch accou

```
# Supported gate types and their indices
gate_types = ['h', 'x', 'y', 'z', 'cx', 'cz', 'rx', 'ry', 'rz', 't', 's', 'sx']
num_gate_types = len(gate_types)
```

☐ ibm_pittsburgh	us-east 1	L56 Status	Region
∄ ibm_kingston	us-east 1	• Online	Washington DC (us-east)
∆ ibm_fez	us-east 1	Basis gates cz, id, rx, rz, rzz, sx, x	Total pending jobs 46
∆ ibm_marrakesh	us-east 1	Median readout error 4.15t-3	Median T1 317.91 us
∆ ibm_torino	us-east 1	133	
		Calibration data	

Map view

Graph view

Table view

Expand

Reward function

compute_reward

$$\begin{split} \Delta E &= |E - E_{FCI}| \\ reward &= accuracy_reward - complexity_penalty + convergence_bonus \\ &= -100000 \ \Delta E - 0.01(\#CNOT + \text{depth} + \#\text{gates}) + 10[\Delta E < conv_tol] \end{split}$$

- Encourage accuracy → Get close to target energy
- Discourage waste → Keep the circuit simple
- Reward completion → Extra bonus for early convergence
- Punish invalid actions → Avoid wasted moves

Check termination:
convergence / depth / max steps

Return new state & reward

Categorical Activation Function

Purpose

- decision-making processes for **discrete** action spaces
- Suitable for multi-class classification problems.

Principle

The final layer produces **logits** (raw scores).

Logits are converted into a probability distribution using the softmax function.

Each class/action corresponds to one probability value.

Calculation:

Softmax formula:

$$P(y=i) = \frac{e^{Zi}}{\sum_{i=1}^{K} e^{Zj}}$$

 ${\it Zi}\,$ is the logit of the i-th class and K is the total number of classes

Common Application:

In policy networks, outputs the action probability distribution. The agent selects actions based on these probabilities.

State Space & Action Space in RL

State Space The complete set of all possible observations the agent can perceive from the environment. In this proj:

- Gate type (one-hot encoding)
- Target qubit
- Control qubit
- Rotation angle
- Gate position
- Connectivity flag

Where am I now?

A state is the current quantum circuit represented as an encoded matrix/vector

Action Space The complete set of possible moves the agent can take in each state.

In this proj:

- Discrete actions for modifying the quantum circuit:
 - Select gate type (e.g., Rx, Ry, Rz, H, CNOT, CZ...)
 - Assign target qubit
 - Assign control qubit (if required)
 - Set rotation parameters

Chosen using a categorical activation function to model the action distribution

What can I do next?

Simulation Environments

Noiseless Simulator

Provides an ideal, noise-free quantum environment to evaluate the baseline performance of quantum circuits.

```
Saving models...
Saved models at episode 990
Episode 991/1000: Energy = -7.698950 Ha, Reward = -202.79, Steps = 20
Episode 992/1000: Energy = -7.698950 Ha, Reward = -202.79, Steps = 20
Episode 993/1000: Energy = -7.698950 Ha, Reward = -385.60, Steps = 20
Episode 994/1000: Energy = -7.698950 Ha, Reward = -202.79, Steps = 20
Episode 995/1000: Energy = -7.698950 Ha, Reward = -202.79, Steps = 20
Episode 996/1000: Energy = -7.698950 Ha, Reward = -385.60, Steps = 20
Episode 997/1000: Energy = -7.698950 Ha, Reward = -202.79, Steps = 20
Episode 998/1000: Energy = -7.698950 Ha, Reward = -202.79, Steps = 20
Episode 999/1000: Energy = -7.698950 Ha, Reward = -202.79, Steps = 20
Episode 1000/1000: Energy = -7.698950 Ha, Reward = -202.79, Steps = 20
Saving models...
Saved models at episode 1000
Saving models...
Training completed Saving final models.
Best energy achieved: -7.02134868 Ha
FCI energy: -7.88266975 Ha
Difference: 1.32e-03 Ha
choi@choseog-won-ui-MacBookAr qiskithackathon2025_Zang %
```



```
Saving models...
Saved models at episode 990
Episode 991/1000: Energy = -8.318402 Ha, Reward = -13248025.78, Steps = 20
Episode 992/1000: Energy = -8.724493 Ha, Reward = -16819894.03, Steps = 20
Episode 993/1000: Energy = -6.322824 Ha, Reward = -28020560.29, Steps = 20
Episode 994/1000: Energy = -8.110727 Ha, Reward = -9156738.12, Steps = 20
Episode 995/1000: Energy = -7.890614 Ha, Reward = -6749203.27, Steps = 20
Episode 996/1000: Energy = -8.791054 Ha, Reward = -17505185.47, Steps = 20
Episode 997/1000: Energy = -7.640257 Ha, Reward = -8241610.29, Steps = 20
Episode 998/1000: Energy = -8.851197 Ha, Reward = -19370544.31, Steps = 20
Episode 999/1000: Energy = -7.701273 Ha, Reward = -5721349.03, Steps = 20
Episode 1000/1000: Energy = -8.573532 Ha, Reward = -13876148.85, Steps = 20
Saving models...
Saved models at episode 1000
Saving models...
Training completed. Saving final models.
Best energy achieved: -7.82265880 Ha
FCI energy: -7.88266975 Ha
Difference: 1.09e-05 Ha
choi@cheseog-won-ui-MacBookAir qiskithackathon2025_Zang % [
```


Experimental Results

- LiH fci energy: -7.8827 Ha
- Converged at 780 episodes
- Final energy estimate
 - -7.9953 Ha

Experimental Results – Circuit

8 layers, 42 gates

optimized to 5 layers, 25 gates

Experimental Results – Real Hardware

IBM Strasbourg (Eagle r3)

FCI Estimate: -7.6129 Ha

IBM Aachen (Heron r2)

FCI Estimate: -7.8894 Ha

Actual LiH FCI: -7.8827 Ha