

N-Channel JFETs

2N4391 PN4391 SST4391 2N4392 PN4392 SST4392 2N4393 PN4393 SST4393

PRODUCT SUMMARY									
Part Number	V _{GS(off)} (V)	$r_{DS(on)}$ Max (Ω)	I _{D(off)} Typ (pA)	t _{ON} Typ (ns)					
2N/PN/SST4391	–4 to −10	30	5	4					
2N/PN/SST4392	−2 to −5	60	5	4					
2N/PN/SST4393	−0.5 to −3	100	5	4					

FEATURES

Low On-Resistance: 4391<30 Ω

Fast Switching—t_{ON}: 4 ns

 High Off-Isolation: I_{D(off)} with Low Leakage

Low Capacitance: < 3.5 pF

Low Insertion Loss

BENEFITS

- Low Error Voltage
- High-Speed Analog Circuit Performance
- Negligible "Off-Error," Excellent Accuracy
- Good Frequency Response, Low Glitches
- Eliminates Additional Buffering

APPLICATIONS

- Analog Switches
- Choppers
- Sample-and-Hold
- Normally "On" Switches
- Current Limiters
- Commutators

DESCRIPTION

The 2N/PN/SST4391 series features many of the superior characteristics of JFETs which make it a good choice for demanding analog switching applications and for specialized amplifier circuits.

The 2N series hermetically-sealed TO-206AA (TO-18) can is available with processing per MIL-S-19500 (see Military Information). Both the PN, TO-226AA (TO-92), and SST, TO-236 (SOT-23), series are available in tape-and-reel for automated assembly (see Packaging Information). For similar dual products, see the 2N5564/5565/5566 data sheet.

SST4391 (CA)* SST4392 (CB)* SST4393 (CC)*

*Marking Code for TO-236

For applications information see AN104 and AN106

.

2N/PN/SST4391 Series

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

 Gate-Drain, Gate-Source Voltage:
 (2N/PN Prefixes)
 -40 V

 (SST Prefix)
 -35 V

 Gate Current
 50 mA

 Lead Temperature
 300 °C

 Storage Temperature:
 (2N Prefix)
 -65 to 200 °C

 (PN/SST Prefixes)
 -55 to 150 °C

Operating Junction Temperature :

Notes

a. Derate 10 mW/°C above 25°C
b. Derate 2.8 mW/°C above 25°C

						Limits							
		Test Conditions				4	391	4	4392 43		393	1	
Parameter	Symbol			Тура	Min	Max	Min	Max	Min	Max	Unit		
Static													
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = −1	μΑ, V _{DS} = 0 V	,	-55	-40		-40		-40			
Gate-Source	V	V _{DS} = 20 V	2N/PN: $I_D = 1 \text{ nA}$ SST: $I_D = 10 \text{ nA}$			-4	-10	-2	- 5	0.5	-3	٧	
Cutoff Voltage	V _{GS(off)}	V _{DS} = 15 V				-4		-2		-0.5	-3		
Caturation Drain				2N		50	150	25	75	5	30		
Saturation Drain Current ^b	IDSS	$V_{DS} = 20 \text{ V}, \text{ V}$	$'_{GS} = 0 \text{ V}$	PN		50	150	25	100	5	60	mA	
				SST		50		25		5			
		$V_{GS} = -2$ $V_{DS} = 0$	20 V	2N/SST	- 5		-100		-100		-100	pА	
		V _{DS} = 0		PN	-5 40		-1000		-1000		-1000		
Gate Reverse Current	lgss		2N: $T_A = 150^{\circ}C$ PN: $T_A = 100^{\circ}C$ SST: $T_A = 125^{\circ}C$		−13 −1		-200 -200		-200 -200		-200 -200	nA	
							-200		-200		-200		
Cata Operating Current		\/ 41			-3 -5				<u> </u>				
Gate Operating Current	I _G	V _{DG} = 1:	5 V, $I_D = 10 \text{ mA}$ $2\text{N: } V_{GS} = -5 \text{ V}$ $2\text{N: } V_{GS} = -7 \text{ V}$ $2\text{N: } V_{GS} = -12 \text{ V}$		_5						100	pA	
					5				100		100		
		V _{DS} = 20 V			5		100		100				
			PN: $V_{GS} = -5 \text{ V}$		0.005						1	nA	
			PN: V _{GS} = -7 V		0.005				1				
			PN: V _{GS} = -12 V		0.005		1						
		SST V _{DS} = 10 V, V _{GS} = -10 V		5		100		100		100	pА		
Drain Cutoff Current	I _{D(off)}	V _{DS} = 20 V T _A = 150°C	2N: V _{GS}	= -5 V	13						200	+	
			2N: V _{GS} = -7 V		13				200			nA	
			2N: V _{GS} = -12 V		13		200						
		V _{DS} = 20 V T _A = 100°C	PN: V _{GS} = -5 V		1						200		
			PN: V _{GS} = -7 V		1				200				
			PN: V _{GS} = -12 V		1		200						
		$V_{DS} = 10 \text{ V}$ $T_A = 125^{\circ}\text{C}$	SST: $V_{GS} = -10 \text{ V}$		3								
Drain-Source On-Voltage		V _{GS} = 0 V	$I_D = 3 \text{ mA}$		0.25						0.4		
	V _{DS(on)}		I _D =	6 mA	0.3				0.4			V	
			I _D = 12 mA		0.35		0.4						
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0$	0 V, I _D = 1 mA				30		60		100	Ω	
Gate-Source		IG = I IIIA		2N	0.7		1		1		1		
Forward Voltage	V _{GS(F)}			PN/SST	0.7							V	

2N/PN/SST4391 Series

Vishay Siliconix

						Limits							
						4:	391	4:	392	43	393		
Parameter	Test (Test Conditions		Тура	Min	Max	Min	Max	Min	Max	Unit		
Dynamic													
Common-Source Forward Transconductance	9 _{fs}	$V_{DS} = 20 \text{ V}, I_D = 1 \text{ mA}, f = 1 \text{ kHz}$		1 レロマ	6							mS	
Common-Source Output Conductance	gos			I KI IZ	25							μS	
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 \text{ V}, I_I$	$V_{GS} = 0 \text{ V}, I_D = 0 \text{ mA}, f = 1 \text{ kHz}$				30		60		100	Ω	
Common-Source		V _{DS} = 20 V, V _{GS} = 0 V f = 1 MHz		2N	12		14		14		14		
Input Capacitance	C _{iss}			PN	12		16		16		16		
				SST	13								
			2N: V _{GS}		3.3						3.5	_	
		V _{DS} = 0 V f = 1 MHz	2N: V _{GS}		3.2				3.5			4	
			2N: V _{GS} :		2.8		3.5					pF	
Common-Source			PN: V _{GS}		3.5				-		5	4	
Reverse Transfer Capacitance	C _{rss}		PN: V _{GS}		3.4		5		5			-	
			SST: V _{GS}		3.6		5					-	
			SST: V _{GS}		3.5							1	
			SST: V _{GS}		3.1							1	
Equivalent Input Noise Voltage	e n	V _{DS} = 10 V, I _D = 10 mA f = 1 kHz		3							nV⁄ √Hz		
Switching												1	
Turn-On Time	t _d (on)			2N/PN	2		15		15		15	Π	
				SST	2							1	
				2N/PN	2		5		5		5	1	
		$V_{DD} = 10 \text{ V}$		SST	2							٦ ,,,	
Turn-Off Time	t	V _{GS(H)} = See Switching	g Circuit	2N/PN	6		20		35		50	- ns	
	t _{d(off)}			SST	6								
	t _f			2N/PN	13		15		20		30		
	ч			SST	13							1	

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW $\leq 300~\mu s$ duty cycle $\leq 3\%.$

NCB

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

SWITCHING TIME TEST CIRCUIT								
	4391	4392	4393					
$V_{GS(L)}$	–12 V	–7 V	–5 V					
R _L *	800 Ω	1600 Ω	3000 Ω					
I _{D(on)}	12 mA	6 mA	3 mA					

*Non-inductive

INPUT PULSE

SAMPLING SCOPE

Rise Time < 1 ns Fall Time < 1 ns Pulse Width 100 ns PRF 1 MHz Rise Time 0.4 ns Input Resistance 10 $\mathrm{M}\Omega$ Input Capacitance 1.5 pF

See Typical Characteristics curves for changes.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08