Introduction to FreeSurfer

http://surfer.nmr.mgh.harvard.edu

Allison Stevens

Bruce Fischl, Doug Greve, Nick Schmansky, Jenni Pacheco freesurfer@nmr.mgh.harvard.edu

Cortical Surface Reconstruction

FreeSurfer creates computerized models of the brain from MRI data.

Input:

- T1-weighted (MPRAGE,SPGR)
- 1mm³ resolution

Cortical Surface Reconstruction

- Finds white/gray boundary wm surface
- Finds pial/CSF boundary pial surface
- To "Find" uses:
 - Intensity information, spatial location, geometric structure
 - Tessellation, neighbors, talairach coordinates
- Subcortical Segmentation

Surface Model

- Mesh ("Finite Element")
- Vertex = point of 6 triangles
- XYZ at each vertex
- Triangles/Faces ~ 150,000
- Area, Distance
- Curvature, Thickness

Cortical Reconstruction Goals

- Geometrically Accurate surfaces
 - Accurately follow the boundaries seen on the scan for each of your individual subjects
- Topologically Correct surfaces
 - Each surface is a 2-D continuous, non selfintersecting sheet and can be inflated into a perfect sphere

• Surfaces are only as good as your scan.

MR Anatomy Caveats

- Dependent on data quality
 - Contrast to noise
 - Signal to noise
 - Voxel resolution
- MR Artifacts
 - MR susceptibility
 - MR distortions
- Variations in MR tissue parameters across regions of the brain are altered in different populations

FreeSurfer Output

- Volumes
- Surfaces
- Surface Overlays
- ROI Summaries

Volumes

T1.mgz

brainmask.mgz

wm.mgz

filled.mgz
Subcortical Mass

aseg.mgz

aparc+aseg.mgz

- \$SUBJECTS_DIR/bert/mri
- All "Conformed" 256³, 1mm

Volume Viewer: tkmedit

Surfaces

Surface Overlays

lh.aparc.annot on inflated

ROI Summaries

aseg.stats

• volumes of subcortical structures (mm³)

aparc.stats

- thickness of cortical parcellation structures (mm)
- total white matter volume (mm³)
- number of vertices in cortex
- surface area of cortex (mm²)

ROI Summaries: Make Your Own

yourROI.label

- Draw your own surface label
- use mris_anatomical_stats to get data

mris_volume

• Total volume within a surface you specify

mris_wm_volume

• Total volume within white surface ignoring nonwm voxels in aseg.mgz

Reconstruction Environment

- Installation directory: \$FREESURFER_HOME
- Set-up Environmental Variables
- Unix command-line (Linux, MacOSX)
- Directory structure, naming conventions
- File Formats

Set-up Environmental Variables

FreeSurfer Directory Tree

Each data set has its own unique SubjectId (eg, bert)

FreeSurfer Directory Tree

Directories used often are in green.

MGZ File Format

- mgz = compressed MGH file
- Can store 4D (like NIFTI)
- cols, rows, slices, frames
- Generic: volumes and surfaces
- Eg, Typical Anatomical volume: 256 x 256 x 128 x 1

lh.thickness.sm10.mgz

• FreeSurfer can read/write:
 NIFTI, Analyze, MINC
 Careful with NIFTI! (32k
 limit)

• FreeSurfer can read:
DICOM, Siemens
IMA, AFNI

Other FreeSurfer File Formats

Unique to FreeSurfer

•Surface: lh.white, lh.pial, lh.orig

• Curv: lh.curv, lh.sulc, lh.thickness

• Annotation: lh.aparc.annot

• <u>Label</u>: lh.pericalcarine.label

Starting the Reconstruction Process

Before running FreeSurfer, **must** set \$FREESURFER_HOME and \$SUBJECTS_DIR

recon-all -i /path/to/your/raw/data1 -i /path/to/your/raw/data2 -all -s subject_id

• This will create the subject directory 'subject_id' in your \$SUBJECTS_DIR and convert your 2 raw acquisitions to mgz and use them as input for the '-all' command.

Alternative: Add Your Data

- cd \$SUBJECTS_DIR
- mkdir –p bert/mri/orig
- mri_convert yourdicom.dcm bert/mri/orig/001.mgz
- mri_convert yourdicom.dcm bert/mri/orig/002.mgz
- recon-all –all –s bert

Individual Steps

Volumetric Processing Stages (subjid/mri):

- 1. Motion Cor, Avg, Conform (<u>orig.mgz</u>)
- 2. Non-uniform inorm (<u>nu.mgz</u>)
- 3. <u>Talairach transform computation</u> (talairach/talairach.xfm)
- 4. <u>Intensity Normalization 1</u> (<u>T1.mgz</u>)
- 5. <u>Skull Strip</u> (<u>brainmask.mgz</u>)
- 6. EM Register (linear volumetric registration)
- 7. CA Intensity Normalization (norm.mgz)
- 8. CA Non-linear Volumetric Registration
- 9. CA Label (Volumetric Labeling) (aseg.mgz)
- 10. Intensity Normalization 2 (<u>T1.mgz</u>)
- 11. White matter segmentation (wm.mgz)
- 12. Edit WM With ASeg
- 13. Fill and cut (filled.mgz)

Blue = Manual Intervention

Surface Processing Stages (subjid/surf):

- 14. Tessellate (?h.orig.nofix)
- 15. Smooth 1
- 16. Inflate1
- 17. QSphere (?h.qsqhere)
- 18. Automatic Topology Fixer (?h.orig)
- 19. Final Surfs (?h.white ?h.pial ?.thickness)
- 20. Smooth2 (?h.smoothwm)
- 21. Inflate2 (?h.inflated)
- 22. Aseg Statistics (stats/aseg.stats)
- 23. Cortical Ribbon Mask (?h.ribbon.mgz)
- 24. Spherical Morph
- 25. Spherical Registration (?h.sphere.reg)
- 26. Map average curvature to subject
- 27. Cortical Parcellation (Labeling)
- 28. Cortical Parcellation Statistics
- 29. Cortical Parcellation mapped to Aseg
- 30. White Matter Parcellation (wmparc.mgz)

recon-all -help

Note: ?h.orig means lh.orig or rh.orig

Reconstrution Stages

recon-all is broken into three stages

- autorecon 1
- autorecon2
- -autorecon3

-autorecon1

Volumetric Processing Stages (subjid/mri):

- 1. Motion Cor, Avg, Conform (<u>orig.mgz</u>)
- 2. Non-uniform inorm (<u>nu.mgz</u>)
- 3. <u>Talairach transform computation</u> (talairach/talairach.xfm)
- 4. <u>Intensity Normalization 1</u> (<u>T1.mgz</u>)
- 5. <u>Skull Strip</u> (<u>brainmask.mgz</u>)
- 6. EM Register (linear volumetric registration)
- 7. CA Intensity Normalization (norm.mgz)
- 8. CA Non-linear Volumetric Registration
- 9. CA Label (Volumetric Labeling) (aseg.mgz)
- 10. Intensity Normalization 2 (T1.mgz)
- 11. White matter segmentation (wm.mgz)
- 12. Edit WM With ASeg
- 13. Fill and cut (filled.mgz)

<u>Surface Processing Stages (subjid/surf):</u>

- 14. Tessellate (?h.orig.nofix)
- 15. Smooth 1
- 16. Inflate1
- 17. QSphere (?h.qsqhere)
- 18. Automatic Topology Fixer (?h.orig)
- 19. Final Surfs (?h.white ?h.pial ?.thickness)
- 20. Smooth2 (?h.smoothwm)
- 21. Inflate2 (?h.inflated)
- 22. Aseg Statistics (stats/aseg.stats)
- 23. Cortical Ribbon Mask (?h.ribbon.mgz)
- 24. Spherical Morph
- 25. Spherical Registration (?h.sphere.reg)
- 26. Map average curvature to subject
- 27. Cortical Parcellation (Labeling)
- 28. Cortical Parcellation Statistics
- 29. Cortical Parcellation mapped to Aseg
- 30. White Matter Parcellation (wmparc.mgz)

recon-all -help

-motioncor -autorecon1

Motion Correction and Averaging

mri_motion_correct.fsl

-motioncor -autorecon1

Conform

Changes to 256³, 1mm³ All volumes will be conformed.

orig Volume

Non-Uniform Intensity Correction

- Uses MNI tool
- Removes B1 bias field

nu Volume

Talairach Transform

- Computes 12 DOF transform matrix
- Does NOT resample
- MNI305 template
- Used to help find structures (eg, CC)
- Can also be used to localize functional activation
- mri/transforms/talairach.xfm

transforms talairach.xfm

mri

Intensity Normalization

- Presegmentation (T1.mgz)
 - All WM = 110 intensity
 - Pre- and Post-SkullStrip

-skullstrip -autorecon1

Skull Strip

- Removes all non-brain
 - Skull, Eyes, Neck, Dura
- brainmask.mgz

FreeSurfer Directory Tree

Each data set has its own unique SubjectId (eg, bert)

-autorecon2

Volumetric Processing Stages (subjid/mri):

- 1. Motion Cor, Avg, Conform (orig.mgz)
- 2. Non-uniform inorm (<u>nu.mgz</u>)
- 3. <u>Talairach transform computation</u> (talairach/talairach.xfm)
- 4. <u>Intensity Normalization 1</u> (<u>T1.mgz</u>)
- 5. <u>Skull Strip</u> (<u>brainmask.mgz</u>)
- 6. EM Register (linear volumetric registration)
- 7. CA Intensity Normalization (norm.mgz)
- 8. CA Non-linear Volumetric Registration
- 9. CA Label (Volumetric Labeling) (<u>aseg.mgz</u>)
- 10. Intensity Normalization 2 (<u>T1.mgz</u>)
- 11. White matter segmentation (wm.mgz)
- 12. Edit WM With ASeg
- 13. Fill and cut (filled.mgz)

Surface Processing Stages (subjid/surf):

- 14. Tessellate (?h.orig.nofix)
- 15. Smooth 1
- 16. Inflate1
- 17. QSphere (?h.qsqhere)
- 18. Automatic Topology Fixer (?h.orig)
- 19. Final Surfs (?h.white ?h.pial ?.thickness)
- 20. Smooth2 (?h.smoothwm)
- 21. Inflate2 (?h.inflated)
- 22. Aseg Statistics (stats/aseg.stats)
- 23. Cortical Ribbon Mask (?h.ribbon.mgz)
- 24. Spherical Morph
- 25. Spherical Registration (?h.sphere.reg)
- 26. Map average curvature to subject
- 27. Cortical Parcellation (Labeling)
- 28. Cortical Parcellation Statistics
- 29. Cortical Parcellation mapped to Aseg
- 30. White Matter Parcellation (wmparc.mgz)

recon-all -help

Note: lh processed completely first, then rh.

-subcortseg -autorecon2

Automatic Volume Labeling

ASeg Volume

- Used to determine volumes of subcortical structures
- •Used to fill in subcortical structures for creating subcortical mass
- •aseg.mgz

-subcortseg -autorecon2

Volume-based Labeling

Labeling is determined by location and intensity.

Validation of Volume Labeling *

Manual labeling done by Center for Morphometric Analysis (CMA)

*Thanks to Drs Larry Seidman and Jill Goldstein for providing this data.

Find "Subcortical Mass"

- All White Matter
- All Subcortical Structures
- Ventricles
- Excludes brain stem and cerebellum
- Hemispheres separated
- Completely connected (no islands)
- Many Stages ... More Later ...

White Matter Segmentation

- Separates white matter from everything else
- "Fills in" subcortical structures
- Cerebellum removed, brain stem still there

mri_segment
mri_edit_wm_with_aseg
mri_pretess

Fill and Cut (Subcortical Mass)

- Fills in any voids
- Removes any islands
- Removes brain stem
- Separates hemispheres (each hemi has different value)
- filled.mgz = "Subcortical Mass"

FreeSurfer Directory Tree

Each data set has its own unique SubjectId (eg, bert)

-tessellation -autorecon2

Tessellation

orig surface surf/lh.orig surf/rh.orig

- Mosaic of triangles ("tessellation")
- Errors: Donut holes, handles
 - Subsequently fixed by the automatic topology fixer

-inflate -autorecon2

Inflation: Visualization

Dale and Sereno, 1993; Dale et al., Dale et al., 1999; Fischl et al., 1999; Fischl et al., 2000; Fischl et al., 2001

-fix -autorecon2

Automatic Topology Fixer

White Matter Surface

- Nudge orig surface
- Follow T1 intensity gradients
- Smoothness constraint
- Vertex Identity stays constant

Pial Surface

- Nudge white surface
- Follow T1 intensity gradients
- Vertex Identity Stays

Optimal Surface Placement

Gray-White Boundary

Outer Cortical Surface

Gray/CSF Deformation

Dale and Sereno, 1993; Dale et al., Dale et al., 1999; Fischl et al., 1999; Fischl et al., 2000; Fischl et al., 2001

Cortical Thickness

Thickness Maps

- Red regions are thinner
- Yellow regions are thicker

Histological Validation

Courtesy of Diana Rosas, MGH (Rosas, et al., 2002, Neurology)

FreeSurfer Directory Tree

Each data set has its own unique SubjectId (eg, bert)

-autorecon3

Volumetric Processing Stages (subjid/mri):

- 1. Motion Cor, Avg, Conform (orig.mgz)
- 2. Non-uniform inorm (<u>nu.mgz</u>)
- 3. <u>Talairach transform computation</u> (talairach/talairach.xfm)
- 4. <u>Intensity Normalization 1</u> (<u>T1.mgz</u>)
- 5. <u>Skull Strip</u> (<u>brainmask.mgz</u>)
- 6. EM Register (linear volumetric registration)
- 7. CA Intensity Normalization (norm.mgz)
- 8. CA Non-linear Volumetric Registration
- 9. CA Label (Volumetric Labeling) (aseg.mgz)
- 10. Intensity Normalization 2 (<u>T1.mgz</u>)
- 11. White matter segmentation (wm.mgz)
- 12. Edit WM With ASeg
- 13. Fill and cut (filled.mgz)

Surface Processing Stages (subjid/surf):

- 14. Tessellate (?h.orig.nofix)
- 15. Smooth1
- 16. Inflate1
- 17. QSphere (?h.qsqhere)
- 18. Automatic Topology Fixer (?h.orig)
- 19. Final Surfs (?h.white ?h.pial ?.thickness)
- 20. Smooth2 (?h.smoothwm)
- 21. Inflate2 (?h.inflated)
- 22. Aseg Statistics (stats/aseg.stats)
- 23. Cortical Ribbon Mask (?h.ribbon.mgz)
- 24. Spherical Morph
- 25. Spherical Registration (?h.sphere.reg)
- 26. Map average curvature to subject
- 27. Cortical Parcellation (Labeling)
- 28. Cortical Parcellation Statistics
- 29. Cortical Parcellation mapped to Aseg
- 30. White Matter Parcellation (wmparc.mgz)

recon-all -help

Note: lh processed completely first, then rh.

Surface-Based Spherical Coord System

"Spherical" Registration

Sulcal Map

Spherical Inflation

High-Dimensional Registration to Spherical Template

Template: average.curvature.filled.buckner.40.tiff

-sphere -autorecon3

Spherical Inflation

Inflated Surface

Transformed Surface

-surfreg -autorecon3

Spherical Registration to Atlas

Individual Subject

Atlas (Target)

-cortparc -autorecon3

Cortical Parcellation

Spherical Template based on Manual Parcellation

Map to Individual Thru Spherical Reg

Fine-tune based on individual anatomy

Atlases: curvature.buckner40filled.desikan_killiany, atlas_2005_simple

-cortparc2 -autorecon3

Cortical Parcellation: 2

Atlases: curvature.buckner40filled.desikan_killiany, atlas_2005_simple Thanks to Christophe Destrieux for this slide.

FreeSurfer Directory Tree

Each data set has its own unique SubjectId (eg, bert)

FreeSurfer Directory Tree

Each data set has its own unique SubjectId (eg, bert)

Actual Workflow: version 1

- 1. recon-all –all (Stages 1-20) ~30 hours
- 2. Check talairach transform, skull strip, normalization
- 3. Check surfaces
 - 1. Add control points: recon-all –autorecon2-cp –autorecon3 (Stages 10-29)
 - 2. Edit wm.mgz: recon-all –autorecon2-wm –autorecon3 (Stages 13-29)
 - 3. Edit brain.mgz: recon-all –autorecon2-pial (Stage 19-22)

Note: all stages can be run individually

Actual Workflow: version 2

- 1. recon-all –autorecon1 (Stages 1-5) ~45 min
- 2. Check talairach transform, skull strip, normalization
- 3. recon-all –autorecon2 (Stages 6-22) ~20 hours
- 4. Check surfaces
 - 1. Add control points: recon-all –autorecon2-cp (Stages 10-22)
 - 2. Edit wm.mgz: recon-all –autorecon2-wm (Stages 13-22)
 - 3. Edit brain.mgz: recon-all –autorecon2-pial (Stage 19-22)
- 5. recon-all –autorecon3 (Stages 23-29) ~6 hours

Note: all stages can be run individually

Tutorials

https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial

On Linux Machines:

- setenv FREESURFER_HOME /usr/pubsw/freesurfer
- source \$FREESURFER_HOME/SetUpFreeSurfer.csh
- setenv SUBJECTS_DIR /ircuser/FSWorkshop/buckner_data/tutorial_subjs

On Macs:

- setenv FREESURFER_HOME /Applications/freesurfer
- source \$FREESURFER_HOME/SetUpFreeSurfer.csh
- setenv SUBJECTS_DIR /FSWorkshop/buckner_data/tutorial_subjs

• Use the volume and surface viewing tools to look at correct output from all steps.

Troubleshooting

- Skull Strip Errors
- Intensity Normalization
- Segmentation Errors
- Pial Surface
- Talairach Errors

FreeSurfer Directory Tree

Each data set has its own unique SubjectId (eg, bert)

Actual Workflow

- 1. recon-all –autorecon1 (Stages 1-5)
- 2. Check talairach transform, skull strip, normalization
- 3. recon-all –autorecon2 (Stages 6-22)
- 4. Check surfaces
 - 1. Add control points: recon-all –autorecon2-cp (Stages 10-22)
 - 2. Edit wm.mgz: recon-all –autorecon2-wm (Stages 13-22)
 - 3. Edit brain.mgz: recon-all –autorecon2-pial (Stage 19-22)
- 5. recon-all –autorecon3 (Stages 23-29)

Note: all stages can be run individually

Troubleshooting: Skull Strip

brainmask.mgz

Troubleshooting: Intensity Normalization

Intensity Normalization Failure.
All WM in T1 volume (T1.mgz) should be 110.
Can fix by adding "Control Points". Beware partial voluming!

Actual Workflow

- 1. recon-all –autorecon1 (Stages 1-5)
- 2. Check talairach transform, skull strip, normalization
- 3. recon-all –autorecon2 (Stages 6-22)
- 4. Check surfaces
 - 1. Add control points: recon-all –autorecon2-cp (Stages 10-22)
 - 2. Edit wm.mgz: recon-all –autorecon2-wm (Stages 13-22)
 - 3. Edit brain.mgz: recon-all –autorecon2-pial (Stage 19-22)
- 5. recon-all –autorecon3 (Stages 23-29)

Note: all stages can be run individually

Actual Workflow

- 1. recon-all –autorecon1 (Stages 1-5)
- 2. Check talairach transform, skull strip, normalization
- 3. recon-all –autorecon2 (Stages 6-22)
- 4. Check surfaces
 - 1. Add control points: recon-all –autorecon2-cp (Stages 10-22)
 - 2. Edit wm.mgz: recon-all –autorecon2-wm (Stages 13-22)
 - 3. Edit brain.mgz: recon-all –autorecon2-pial (Stage 19-22)
- 5. recon-all –autorecon3 (Stages 23-29)

Note: all stages can be run individually

Troubleshooting: Segmentation Error

Eye Socket classified as WM. Skull Strip Failure.

Troubleshooting: Segmentation Error

"Hypo-Intensities"
White Matter Lesions

Actual Workflow

- 1. recon-all –autorecon1 (Stages 1-5)
- 2. Check talairach transform, skull strip, normalization
- 3. recon-all –autorecon2 (Stages 6-22)
- 4. Check surfaces
 - 1. Add control points: recon-all –autorecon2-cp (Stages 10-22)
 - 2. Edit wm.mgz: recon-all –autorecon2-wm (Stages 13-22)
 - 3. Edit brain.mgz: recon-all –autorecon2-pial (Stage 19-22)
- 5. recon-all –autorecon3 (Stages 23-29)

Note: all stages can be run individually

Troubleshooting: Pial Surface Error

White/Gray OK, but Pial Inaccurate

Actual Workflow

- 1. recon-all –autorecon1 (Stages 1-5)
- 2. Check talairach transform, skull strip, normalization
- 3. recon-all –autorecon2 (Stages 6-22)
- 4. Check surfaces
 - 1. Add control points: recon-all –autorecon2-cp (Stages 10-22)
 - 2. Edit wm.mgz: recon-all –autorecon2-wm (Stages 13-22)
 - 3. Edit brain.mgz: recon-all –autorecon2-pial (Stage 19-22)
- 5. recon-all –autorecon3 (Stages 23-29)

Note: all stages can be run individually

The End!

Feedback: astevens@nmr.mgh.harvard.edu