РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО

ЛАБОРАТОРНОЙ РАБОТЕ №3

ПО ТЕМЕ:

Введение в работу с Octave

дисциплина: Научное программирование

Студент: Хиссен Али Уэддей Группа: НПМмд-02-20 Ст. билет № 1032209306

Постановка задачи

Ознакомление с некоторыми операциями в Octave.

Ход работы

1. Простейшие операции

Включим журналирование сессии.

Листинг 1

Продемонстрируем, что Octave можно использовать как простейший калькулятор. Для этого вычислим выражение

$$>> 2*6 + (7-4)^2$$

ans = 21

Листинг 2

Зададим вектор

Зададим ковектор

Листинг 4

Зададим матрицу

Листинг 5

2. Операции с векторами

Зададим два вектор-столбца

Листинг 6

Выполним операции сложения векторов

Листинг 7

Скалярное умножение

Листинг 8

Векторное умножение

Листинг 9

Вычислим норму вектора

Листинг 10

3. Вычисление проектора

Введём два вектора-строки

Листинг 11

Вычисоим проекцию вектора и на вектор у

4.0943 1.1698

Листинг 12

4. Матричные операции

Введем матрицы Â и В.

>> B =
$$[1 2 3 4; 0 -2 -4 6; 1 -1 0 0]$$

B =

Листинг 13 Вычислим произведение матриц ÂВ́

Листинг 14

Вычислим произведение матриц $\hat{B}^T^\hat{A}$.

Листинг 15

Вычислим $2\hat{A} - 4\hat{I}$, где \hat{I} есть единичная матрица.

16 32 -12

>> eye(3) ans =

Diagonal Matrix

1 0 0 0 1 0 0 0 1

Листинг 16

Найдем определитель | Â |

Листинг 17

Найдем обратную матрицу Â^-1^

0.66667 -0.83333 2.00000 -0.33333 0.66667 -1.00000 -0.33333 0.16667 0.00000

Листинг 18

Найдем собственные значения матрицы

Листинг 19

Вычислим ранг матрицы

Листинг 20

5. Построение простейших графиков

Построим график функции $\sin x$ на интервале [0, 2π]. Создадим вектор значений x

$$>> x = linspace(0, 2*pi, 50);$$

Листинг 21

Зададим вектор $y = \sin x$

Листинг 22

Построим график

Листинг 23

Улучшим внешний вид графика. Сначала очистим получившийся график, заметим, что заданные вектора x и y сохранились.

Листинг 24

Зададим красный цвет для линии и сделаем её потолще

Листинг 25

Подгоним диапазон осей

Листинг 26

Нарисуем сетку

Листинг 27

Подпишем оси

Листинг 28

Сделаем заголовок графика и зададим легенду

Листинг 29

6. Два графика на одном чертеже

Начертим два графика на одном чертеже. Очистим память и рабочую область фигуры

Листинг 30

Зададим два вектора

Листинг 31

Начертим эти точки, используя кружочки как маркеры.

Листинг 32 Чтобы добавить к нашему текущему графику ещё один, нужно использовать команду hold on. Добавим график регрессии

Листинг 33 Зададим сетку, оси и легенду.

```
>> grid on;
>> axis ([0 5 0 6]);
>> legend ('data points' , 'regressionline');
```

Листинг 34

Листинг 35

7. График y=x^2^ sin x

Очистим память и рабочую область фигуры Зададим вектор х.

>> x = linspace(-10, 10, 100);

>> plot (x, x^2*sin(x))

error: for x^y , only square matrix arguments are permitted and one argument must be scalar. Use .^ for elementwise power.

Листинг 36

Листинг 37

Сохраним графики в виде файлов.

```
>> print graph2.png -dpng
>> print('graph2.pdf','-dpdf')
```

**8. Сравнение циклов и операций с векторами **

Сравним эффективность работы с циклами и операций с векторами. Для этого вычислим сумму:

$$\sum_{n}^{100000} \frac{1}{n^2}$$

Очистим память и рабочую область фигуры Вычислим сумму с помощью цикла, создадим файл loop_for.m, функции tic и toc служат для запуска и остановки таймера

Листинг 39

Запустим файл loop_for.m.

>> loop_for Elapsed time is 0.376648 seconds.

Листинг 40

Вычислим сумму с помощью операций с векторами. Создадим файл loop_vec.m, запустим его.

```
1   clear
2   tic
3   n = 1:1000000;
4   s = sum( 1./n.^2 );
5   tod
```

Листинг 41

```
>> loop_vec
Elapsed time is 0.00324607 seconds.
```

Листинг 42

Завершим запись в файл.

Листинг 43

Вывод

Таким образом, мы ознакомились с некоторыми простейшими операциями в Octave.