Interpretación gráfica

Sitio: <u>Agencia de Habilidades para el Futuro</u>

Curso: Elementos de Analisis Matematico 1° D

Libro: Interpretación gráfica

Imprimido por: RODRIGO PINTO

Día: martes, 26 de noviembre de 2024, 06:55

Tabla de contenidos

- 1. Relación con el problema 2
- 2. ¡Punto de partida!
- 3. Recuperando saberes
- 4. Método gráfico
- 5. A modo de cierre

1. Relación con el problema 2

Relación con el problema 2: "Ingresos y costos totales"

Del problema 2: "Ingresos y costos totales", podemos establecer algunas conclusiones que nos van a servir para el desarrollo de esta segunda parte de sistemas de ecuaciones lineales 2×2 :

- Una ecuación lineal con dos incógnitas representa un recta en el plano cartesiano. Como en este tipo de sistemas tenemos dos ecuaciones, vamos a ver graficadas dos rectas.
- El punto de intersección entre las dos rectas (si es que existe), está relacionado con la solución al sistema de ecuaciones en cuestión.

Te invitamos a leer este segundo libro y completar el trabajo sobre los sistemas de dos ecuaciones lineales con dos incógnitas.

¿Te acordás el problema 2?

Hacé clic en el botón para releerlo.

2. iPunto de partida!

Antes de comenzar a desarrollar los contenidos de esta parte, te proponemos:

1. Resolver los siguientes sistemas de ecuaciones aplicando alguno de los métodos analíticos trabajados en el libro anterior.

a)
$$\begin{cases} 3x - 7y = -15 \\ 7x + 5y = -35 \end{cases}$$
 b) $\begin{cases} 2x - 9y = 1 \\ 6x - 27y = 3 \end{cases}$ c) $\begin{cases} 10x + 2y = 26 \\ 5x + y = -10 \end{cases}$

- 2. Graficar cada una de las ecuaciones lineales en el GeoGebra (siempre de a dos como lo indica el sistema).
- 3. Analizar qué sucede con las dos rectas en cada caso y qué relación encuentran con la solución obtenida manera analítica en el punto 1.

3. Recuperando saberes

En el libro anterior estudiamos métodos para hallar analíticamente las soluciones de un sistema de dos ecuaciones lineales con dos incógnitas, el cual es uno de la forma

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$

donde a_1, a_2, b_1, b_2, c_1 y c_2 son números reales, y las incógnitas son x e y.

Aprendimos a resolver este tipo de sistemas por sustitución, igualación y regla de Cramer, y prometimos justificar en este libro la afirmación sobre la cantidad de soluciones del mismo. Habíamos afirmado que solamente puede ocurrir una y solo una de las siguientes opciones:

- Tiene una solución única (sistema compatible determinado).
- Tiene infinitas soluciones (sistema compatible indeterminado).
- No tiene solución (sistema incompatible).

Recordemos que una solución al sistema son valores para x e y que satisfacen ambas igualdades a la vez. Reescribiendo las ecuaciones del sistema obtenemos:

$$\left\{egin{array}{l} y = -rac{a_1}{b_1}x + rac{c_1}{b_1} \ y = -rac{a_2}{b_2}x + rac{c_2}{b_2} \end{array}
ight.$$

Siempre que b_1 y b_2 sean distintos de cero. Entonces se puede observar que cada ecuación de un sistema de dos ecuaciones lineales, corresponde a la de una recta. Un punto (x,y) será solución del sistema si satisface ambas ecuaciones a la vez, lo que significa que debe pertenecer a ambas rectas.

Gráficamente hay solo tres posibilidades para dos rectas en el plano:

- Que se intersequen en un único punto (son secantes): solución única.
- Que sean la misma recta (son coincidentes): infinitas soluciones.
- Que no se intersequen (son paralelas): sin solución.

Ilustramos a continuación estas posibilidades con los tres sistemas del ¡punto de partida!

4. Método gráfico

Vamos a explicar cómo resolver sistemas de ecuaciones lineales aplicando este método, con y sin GeoGebra.

Sin GeoGebra:

- 1. Despejar de ambas ecuaciones la incógnita y. Esto hará que sea más fácil graficar.
- 2. Representar gráficamente ambas ecuaciones lineales (como ya se explicó en el recorrido 2).
- 3. Analizar lo que sucede con las rectas:
 - Si son secantes, el punto de intersección es la solución al sistema.
 - Si son paralelas, el sistema no tiene solución.
 - Si son coincidentes, el sistema tiene infinitas soluciones.

Ejemplo

Vamos a resolver el siguiente sistema de ecuaciones aplicando el método gráfico:

$$\begin{cases} y - x = 7 \\ -4x + 2y = 22 \end{cases}$$

Paso 1: despejamos de ambas ecuaciones la incógnita y.

Ecuación 1:
$$y = 7 + x$$
 Ecuación 2: $y = 11 + 2x$

Paso 2: armamos una tabla de valores para cada ecuación, ubicamos los puntos en un sistema de ejes coordenados y trazamos las dos rectas.

x	y = 7 + x	
-6	1	
0	7	
1	8	

х	y=11+2x	
- 5	1	
-3	5	
-2	7	

Paso 3: analizamos las rectas.

Como las rectas son secantes, el sistema tiene una única solución y es S = (-4, 3). Pueden verificar y comprobar que efectivamente este par ordenado es la solución.

Con GeoGebra:

- 1. Abrimos GeoGebra 2D. Podés hacer clic aquí.
- 2. En entrada colocamos las dos ecuaciones lineales. GeoGebra le asigna como nombre ec1, ec2.
- 3. Introducimos como entrada el siguiente comando: "Interseca(ec1, ec2)". Esto lo haremos cuando veamos que las rectas son secantes. En la vista gráfica se mostrará el punto de intersección y en la vista algebraica, sus coordenadas. Esta será la solución al sistema.

Te invitamos a resolver el sistema del ejemplo anterior utilizando GeoGebra para comprobar que

llegamos a la misma solución.

5. A modo de cierre

A continuación, presentamos un cuadro comparativo que muestra lo que sucede en cada

método de resolución según el tipo de sistemas de ecuaciones que tengamos:

	Compatible determinado	Compatible indeterminado	Incompatible
Tipo de solución	solo par de números que	El sistema tiene infinitas soluciones, existen infinitos pares de números	El sistema no tiene solución, es decir, no existe ningún par de
	verifican el sistema.	que lo verifican.	valores que lo verifique.
Método gráfico	Las rectas son secantes. El punto (x,y) de corte es la solución al sistema.	Las rectas son coincidentes.	Las rectas son paralelas.