

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963 A

AEDC-TSR-79-V51

70

~

STATIC FORCE TESTS OF THE AEDC-VKF STANDARD
5 DEGREE CONE IN TUNNEL A AT
MACH NUMBERS 1.5 TO 4.0

J. T. Best ARO, Inc.

September 1979

A

Final Report for Period April 30 to August 1, 1979

Approved for public release, distribution unlimited.

ARNOLD ENGINEERING DEVELOPMENT CENTER
ARNOLD AIR FORCE STATION, TENNESSEE
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

80 12 17 037

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

References to named commerical products in this report are not to be considered in any sense as an indorsement of the product by the United States Air Force or the Government.

APPROVAL STATEMENT

This report has been reviewed and approved.

ERVIN P. JASKOLSKI, Capt. USAF Test Director, VKF Division Directorate of Test Operations

Approved for publication:

FOR THE COMMANDER

JAMES D. SANDERS, Colonel, USAF

Director of Test Operations

Deputy for Operations

9/Final rept. 30 Ap 1-1/140 1/6/ UNCLASSIFIED

	REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	Y. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
14	AEDC-TSR-79-V51	AD-A092975	•
	4. TITLE (and Subliffe)	The second secon	5. TYPE OF REPORT & PERIOD COVERED
,	Static Force Tests of the AEDC-VKF	Standard 5	Final Report.
	Degree Cone in Tunnel A at Mach Nur	bers 1.5 to	Apr 🗱 30 to August 1, 1979
	4.0		6. PERFORMING ORG. REPORT NUMBER
- 1			S CONTRACT OR CRANT NUMBERON
	7. AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(*)
0	J. T./Best ARO, Inc., a Sverdrup (Company	Corporation	12 45
ı	9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
I	Arnold Engineering Development Cent	er/DOOV	
I	Air Force Systems Command	•	Program Element 65807F
l	Arnold Air Force Station, TN 37389		
l	11. CONTROLLING OFFICE NAME AND ADDRESS	(1)	12. REPORT DATE
l	Arnold Engineering Development Cent	er/DOS [J]	Sept. 379
ı	Air Force Systems Command Arnold Air Force Station, TN 37389		13. NUMBER OF PAGES 41
ŀ	14. MONITORING AGENCY NAME & ADDRESS(II dilleren	I from Controlling Office)	15. SECURITY CLASS. (of this report)
ı	•	,	
I			UNCLASSIFIED
	•		15a. DECLASSIFICATION DOWNGRADING SCHEDULE N/A
Ì	16. DISTRIBUTION STATEMENT (of this Report)		
	Approved for public release; distri		
	18. SUPPLEMENTARY NOTES		,
ļ	IS. SUPPLEMENTARY NOTES		•
	Available in Defense Technical Info	rmation Center (DTIC)
h	19. KEY WORDS (Continue on reverse side if necessary and	i identify by block number)	
	aerodynamic forces boundary standard 5 deg cone Reynolds base pressures supersonic flow	layer trips number	
Į.	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	Ideally by Mark and a	
I	Static stability and base presented in the stability and base presented in the stability and base presented in the standard force cone. The tests were 3.75, 3.25, 3.0, 2.75, 2.5, 2.25, 2. Reynolds numbers ranging from 0.6 x angle-of-attack and angle-of-sides.	sure tests were (C) von Kármán Gas e performed at no .0, 1.75, 1.63, a 10 ⁶ per foot to ip ranges were f	s Dynamics Facility (VKF) ominal Mach numbers of 4.0, and 1.5 at free-stream unit 3.7 x 10 ⁶ per foot. The rom -11 to 11 deg. Con-
ı	figuration variables were nose blun	tness and fins.	The effects on static force

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

04255

UNCLASSIFIED

20. ABSTRACT (Continued)

data of the following were obtained: tunnel-nozzle jack setting errors, tunnel-flow humidity, and tunnel-sidewall misalignment.

APS Tonn

CONTENTS

	•	Page
1.0	NOMENCLATURE	2 5
3.0	2.1 Test Facility	5 6 6
4.0	3.1 Test Conditions and Procedures 3.1.1 General	6 8 8 9 9
	APPENDIXES	
ı.	ILLUSTRATIONS	
Figu	<u>re</u> .	
1. 2. 3. 4. 5.	Tunnel A	11 12 14 16 18
II.	TABLES	
1. 2. 3. 4.	Standard 5-deg Cone Data Bank Summary (Tunnels A/B/C) Model Configuration Designation Estimated Uncertainties	20 21 22 28
111.	SAMPLE TABULATED DATA	
1.	Sample Tabulated Data	38

NOMENCLATURE

Reference area, 28,274 in.² Base area, 28,274 in.² AB A.C. Aerodynamic center location, body axes, inches from model nose, XMRP-(CLM-A · L/CN-A) A.C.P Aerodynamic center location, missile axes, inches from model nose, XMRP-(CLMP-A · L/CNP-A) **ALPHA** Angle of attack, deg ALPI Indicated sector pitch angle, deg **ALPP** Total angle of attack, missile axes, deg **BETA** Sideslip angle, deg CA Forebody axial-force coefficient, body axes, CAB Base axial-force coefficient, body axes, $-AB(PBA-P)/Q \cdot A$ CAP Forebody axial-force coefficient, missile axes CAT Total axial-force coefficient, body axes, total axial force/Q · A CLL Rolling-moment coefficient, body axes, rolling moment/Q · A · L **CLLP** Rolling-moment coefficient, missile axes Forebody pitching-moment coefficient, body axes, CLM pitching-moment/Q · A · L CLM-A Slope of CLM versus ALPHA curve, deg-1 **CLMO** Value of CLM at CN = 0CLMP Forebody pitching-moment coefficient, missile axes **CLMPO** Value of CLMP at CNP = 0 Slope of CLMP versus ALPP curve, deg-1 CLMP-A

CLN Yawing-moment coefficient, body axes, yawing-

moment, Q · A · L

CLNO Value of CLN at CY = 0

CLNP Yawing-moment coefficient, missile axes

CLNPO Value of CLNP at CYP = 0

CN Normal-force coefficient, body axes, normal

force/Q · A

CN-A Slope of CN versus ALPHA curve, deg⁻¹

CNP Normal-force coefficient, missile axes

CNP-A Slope of CNP versus ALPP curve, deg-1

CODE Model configuration number

CONFIG Model configuration designation

CY Side-force coefficient, body axes, side force/Q · A

CYP Side-force coefficient, missile axes

L Reference length, 34.29 in.

LM Model length, 34.29 in.

M Free-stream Mach number

NCP Normal-force center-of-pressure location, body axes,

inches from model nose, XMRP - (CLM - CLMO) · L/CN

NCPP Normal-force center-of-pressure location, missile

axes, inches from model nose, XMRP - (CLMP-CLMPO) · L/CNP

P Free-stream static pressure, psia

PBA Average base pressure, psia

PBD Fast response base pressure, psia

PB1-PB4 Base pressure, psia

PHI Roll angle, deg

PHII Indicated roll angle, deg

PN Data point number

PT Tunnel stilling chamber pressure, psia

Q Free-stream dynamic pressure, psia Model base radius, 3.00 in. RB Free-stream unit Reynolds number, ft-1 RE RN Model nose radius, in. Data set identification number RUN Free-stream static temperature, OR T Dew point temperature as measured by Cambridge TDPC Instrument, OF Dew point temperature as measured by Dupont TDPD Instrument, oF TT Tunnel stilling chamber temperature, OR Tunnel axial location of model nose (see Fig. 4), in. TXL XMRP Distance from model moment reference point to model nose, in. YCP Side-force center-of-pressure location, body axes, inches from model nose, XMRP - (CLN -CLNO) · L/CY

Side-force center-of-pressure location, missile

axes, inches from model nose, XMRP - (CLNP -CLNPO) · L/CYP

YCPP

1.0 INTRODUCTION

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 65807F, Control Number 9T03-00-9. The results were obtained by ARO, Inc., AEDC Group (a Sverdrup Corporation Company), operating contractor for the AEDC, AFSC, Arnold Air Force Station, Tennessee. The test was conducted in the von Kármán Gas Dynamics Facility (VKF), Tunnel A during the period of April 30, 1979 through August 1, 1979 under ARO Project No. V41A-07.

One objective of this test was to provide data for the "high quality" data bank of the VKF standard 5-deg cone in Tunnels A, B, and C. The standard cone model (and data bank) will be used for defining test section flow nonuniformity effects and evaluating the performance of the total system (balance-support hardware, model dynamics, data acquisition systems, data reduction techniques, etc.) on a routine and systematic basis using "selected" test installations. Table 1 shows the proposed data bank with the data obtained in previous tests* and also including the results of this test. Another objective of the test was to determine the effects on static force data of the following: tunnel-nozzle jack setting errors, tunnel-flow humidity, and tunnel-sidewall misalignment.

The test was conducted in two phases: The finless configurations were tested in Phase I, and the finned configurations in Phase II.

Static stability, axial force, and base pressure data were obtained at $M_{\odot} = 1.5$ through 4.0 in Tunnel A for Reynolds numbers from 0.6 x $10^6/\mathrm{ft}$ to 3.7 x $10^6/\mathrm{ft}$. The angle-of-attack and angle-of-sideslip range was -11 to 11 deg and the roll angle ranged from -180 deg to 180 deg. Model flow-field photographs were obtained on all configurations at selected model attitudes and test conditions.

Inquiries to obtain copies of the test data should be directed to AEDC/DOOV, Arnold Air Force Station, Tennessee 37389. A microfilm record has been retained in the VKF at AEDC.

2.0 APPARATUS

2.1 TEST FACILITY

Tunnel A (Fig. 1) is a continuous, closed-circuit, variable density wind tunnel with an automatically driven flexible-plate-type nozzle and a 40- by 40-in. test section. The tunnel can be operated at Mach numbers from 1.5 to 6 at maximum stagnation pressures from 29 to 200 psia, respectively, and stagnation temperatures up to 750°R at Mach number 6. Minimum operating pressures range from about one-tenth to one-twentieth of the maximum at each Mach number. The tunnel is equipped with a model injection system that allows removal of the model from the test section

^{*}Jenke, Leroy M. "Static Force Tests of the AEDC-VKF Standard 5-Deg Cone in Tunnels A (M_{∞} = 3.0 to 5.5) and B (M_{∞} = 6)." AEDC-TSR-78-V20, August 1978.

while the tunnel remains in operation. A description of the tunnel and airflow calibration information may be found in the <u>Test Facilities</u> Handbook*.

2.2 TEST ARTICLE

The standard cone model (Fig. 2) is a 5-deg, half-angle cone with a 6-in. base diameter fabricated from stainless steel. There are two basic interchangeable nose sections: sharp (0.002-in. spherical radius), and 12.5 percent blunt $(R_N/R_B=0.125)$. The virtual length of the sharp cone is 34.290 inches and the model wall thickness is typically 0.25 in. Boundary layer trips (Fig. 3) were used to ensure a fully turbulent boundary layer over most of the model surface. These trips were machined on the sharp nose configurations and consisted of grit applied on the blunt nose configurations. A cylindrical section with four rectangular fins was also provided (Fig. 2). A wide range of balance adapters exist to fit the model to most VKF balances (normal load range from 80 to 1000 lbs). The model components designation is presented in Table 2. The model installations in the tunnel for Phase I and Phase II are shown in Figure 4.

2.3 TEST INSTRUMENTATION

The measuring devices, recording devices, and calibration methods used for all measured parameters are listed in Table 3 along with the estimated measurement uncertainties. The fast-response base pressure measurement (PBD) taken during continuous-sweep runs was made with a low-volume transducer. This transducer was used to measure the base pressure trend from a static value obtained by averaging PB1-PB4.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS AND PROCEDURES

3.1.1 General

A summary of the nominal test conditions at each Mach number is given below.

<u> M</u>	PT, psia	TT, °R	Q, psia	P, psia	$RE \times 10^{-6}/ft$
4.0	46.9	600	3.46	0.31	3.7
3.75	41.2	600	3.75	0.38	1
3.25	30.2	580	4.20	0.57	
3.0	26.4	.1	4.53	0.72	∀
3.0	11.4	}	1.96	0.31	1.6
2.75	23.2		4.89	0.93	3.7
2.5	20.3	1	5.20	1.19	•
2.5	8.8	•	2.25	0.52	1.6
2.25	17.9	Ψ	5.49	1.55	3.7
2.0	14.6	545	5.23	1.87	₩
2.0	13.8	1 .	4.94	1.76	3.5
2.0	6.3		2.25	0.81	1.6
1.75	13.2		5.32	2.48	3.7
1.62	12.7		5.33	2.90	1
1.5	12.3	1	5.28	3.35	*
1.5	5.3	V	2.27	1.44	1.6

^{*}Test Facilities Handbook (Eleventh Edition). "von Karman Gas Dynamics Facility Vol. 3" Arnold Engineering Development Center, June 1979.

At some test conditions, particularly at subatmospheric stagnation pressures, the humidity level of the tunnel flow affects the test section Mach number. The Tunnel A sidewall Mach number probe is used periodically when testing at these conditions to monitor deviations from the standard calibrated Mach numbers. When a deviation is measured, the free-stream conditions are corrected and the actual Mach number is printed on the data tabulations.

A test summary showing all configurations tested and the variables for each is presented in Table 4.

In the VKF continuous-flow wind tunnels (A, B, C), the model is mounted on a sting support mechanism in an installation tank directly underneath the tunnel test section. The tank is separated from the tunnel by a pair of fairing doors and a safety door. When closed, the fairing doors, except for a slot for the pitch sector, cover the opening to the tank and the safety door seals the tunnel from the tank area. After the model is prepared for a data run, the personnel access door to the installation tank is closed, the tank is vented to the tunnel flow, the safety and fairing doors are opened, the model is injected into the airstream, and the fairing doors are closed. After the data are obtained, the model is retracted into the tank and the sequence is reversed with the tank vented to atmosphere to allow access to the model in preparation for the next run. The sequence is repeated for each configuration change.

Model attitude positioning and data recording were accomplished with the point-pause and sweep modes of operation, using the VKF Model Attitude Control System (MACS). Model pitch and yaw requirements were entered into the controlling computer prior to the test. Model positioning and data recording operations were performed automatically during the test by selecting the list of desired model attitudes and initiating the system.

The effects on static force data of tunnel-nozzle jack setting errors, tunnel-flow humidity and tunnel-sidewall misalignment were studied as follows. Tunnel-nozzle jack setting errors were simulated by driving specific jacks off their nulled position 0.050 or 0.075 inches toward the tunnel centerline. The test summary, Table 4, denotes which jacks were driven and the amount. Figure 5 shows a view of the Tunnel A nozzle with the identification and location of the nozzle jacks. Tunnel-flow humidity effects were obtained by opening atmospheric intake valve (007) and bypassing the driers normally in the tunnel circuit. Data were obtained periodically as the dew point temperature increased. The effects of tunnel-sidewall misalignment were simulated by placing a strip of aluminum tape 0.005 inches thick on the non-operating sidewall from the top to the bottom of the tunnel. A 0.010-inch step was simulated by using two strips of tape. The location of the leading edge of the tape is shown in Fig. 4b.

3.1.2 Data Acquisition

Data were recorded in either the point-pause or sweep mode of operation, using the MACS. The mode for each data group is identified in the test summary (Table 4).

The point-pause data were obtained for finite values of ALPHA, PHI, and/or BETA with a delay before each data point to allow the base pressures to stabilize. Each data point for this mode of operation represents the resultant of a Kaiser-Bessel digital filter utilizing 16 samples taken over a time span of 0.0208 sec. For the retract data, a data point was automatically taken every 2 seconds as the model was retracted from the tunnel to obtain a data point approximately every inch in TXL.

The continuous-sweep data were obtained for a fixed value of PHI with a sweep (ALPHA) rate of 0.5 deg/sec or a fixed value of ALPHA with a roll (PHI) rate of 3.0 deg/sec. A data sample was recorded every 0.0208 sec, and 16 samples were applied to a Kaiser-Bessel digital filter to produce a data point every 0.156 and 0.936 deg in pitch and roll, respectively. The data were then interpolated to obtain the data at the desired model attitudes.

3.2 DATA REDUCTION

The cone static force data were obtained by utilizing the tunnel data acquisition system as described in Section 3.1.2. The force and moment measurements were reduced to coefficient form by using the digitally filtered data points and correcting the first- and second-order balance interaction effects. The coefficients were also corrected for model tare weight and balance-sting deflections. Model attitude, tunnel stilling chamber pressure, and fast-response base pressure were also calculated from digitally filtered values.

The aerodynamic force and moment coefficients are presented in the body and nonrolling body (missile) axis systems. For the missile axis system, the normal-force direction is always in the pitch plane of the tunnel and normal to the longitudinal axis of the model. In the body axis system, the pitching and yawing moment coefficients are referenced to two points on the model centerline which were (1/2) LM and (2/3) LM from the model nose. The missile axis data were calculated from the body axis data referenced to the (2/3) LM moment reference point. Model length (34.290 in.) and base area (28.274 in.²) were used as the reference length and area for the aerodynamic coefficients.

For selected runs, the body-axis data which were referenced to the (2/3) LM moment reference point were corrected for small tunnel-flow nonuniformities. The corrected data were then used to evaluate center of pressure locations. Those runs whose data were corrected are identified in the Test Summary, Table 4.

3.3 UNCERTAINTY OF MEASUREMENTS

П

In general, instrumentation calibrations and data uncertainty estimates were made by using methods recognized by the National Bureau of Standards (NBS).* Measurement uncertainty is a combination of bias and precision errors defined as:

$$v = \pm (B + t_{95}S)$$

where B is the bias limit, S is the sample standard deviation, and t95 is the 95th percentile point for the two-tailed Student's "t" distribution, (95-percent confidence interval) which for sample sizes greater than 30 is taken equal to 2.

Estimates of the measured data uncertainties for this test are given in Table 3a. With the exception of the force and moment balance, data uncertainties are determined from in-place calibrations through the data recording system and data reduction program. Static load hangings on the balance simulate the range of loads and center-of-pressure locations anticipated during the test, and measurement errors are based on differences between applied loads and corresponding values calculated from the balance equations used in the data reduction. Load hangings to verify the balance calibration are made in-place on the assembled model.

Propagation of the bias and precision errors of measured data through the calculated data was made in accordance with the reference noted below, and the results are given in Table 3b.

4.0 DATA PACKAGE PRESENTATION

The data package contains tabulated model aerodynamic force and moment data presented in the body and missile axis systems. Sample tabulations of the data found in the data package are given in Appendix III.

The body axis data about the (2/3) LM moment reference point are presented twice for some runs. These data are presented both corrected and uncorrected for tunnel-flow nonuniformities. For the runs in which tunnel-flow humidity effects were being studied, these data are presented both corrected and uncorrected for the tunnel-flow humidity effects on M and PT. The corrected data for these cases are marked accordingly.

One copy of the data package was given to AEDC/DOOV, Arnold AFS, Tennessee 37389. A microfilm copy was retained in the VKF at AEDC. Copies of the photographic data and installation/configuration photographs were also retained at the VKF.

^{*}Thompson, J. W. and Abernethy, R. B. et al. "Handbook Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5 (AD755356), February 1973.

APPENDIX I

ILLUSTRATIONS

a. Tunnel assembly

b. Tunnel test section Fig. 1 Tunnel A

12.5-percent Blunt Nose Section

a. Model External Geometry (Basic Cone)
Fig. 2 Model Details

b. Fin Extension

Fig. 2 Concluded

Trips are not drawn to scale.

All Dimensions in Inches Unless Noted hmax -60 deg ~ Typ.

001.0-4 4-0.100 T-hmax 1.000 hmin —

90	7
Number of Pyramids around the Circumference	33
hmin	0.019
hmax	0.030

a. Trips for sharp nose configurations, T30C Fig. 3 Boundary Layer Trip Details

All Dimensions in Inches

b. Trip for blunt nose configuration, T06R Fig. 3 Concluded

S N ig

a. Phase I

Fig. 4 Installation Sketches

b. Phase II

Fig. 4 Concluded

Only Top Plate Shown

Bottom Plate Jack Locations are Identical to Top

Bottom Plate Jack Identification is Top + 40 (e.g., 19 on Top, 59 on Bottom)

* Fig. 5 Tunnel A Nozzle Jack Identification and Location

APPENDIX II

TABLES

TABLE I

Standard 5-Deg Cone Data Bank Summary (Tunnels A/B/C)

								4										3
Config. RE x106/ft 1.50 1.75 2.00	1.75 2.00	2.00		2.25	2.50	2.75	3.00	3.28	3.50	3.75	4.00	4.50	5.00	5.50	6.00	6.00	8.00	10.00
							×									×	۰	•
×	×	×					×		×		•	•	•	٥.		_	•	×
						_										×		٥
×				×	×	×	×	×	H,	×	×	×	×	×		×	×	
					 -				•							×		
•	•	•			•		•		•		•							
									•				•					
		-		-1-	1	1			1						1,	*	,	,
×	×	×			×		×		0		•	•	0	•	•	•	. *	< ×
·-					:		:								•			
×	×		×	•	×	•	×	×	×	×	×	×	×	×		×	ĸ	
											•		•			×		•
0	•	•			•	-	•		•		•							•
				-	,						•							
	_	_		_	_	_	_			_					_	_		

• Primary Reynolds Number = 3.7 x 10⁶/ft o Planned x Accompliabed

TABLE 2

MODEL CONFIGURATION DESIGNATION

Nose Designation (NXX.X)

N00.0 sharp nose

N12.5 spherically blunted nose(RN/RB = 0.125)

Boundary-Layer Trip Designation (TXXX)

T30C machined trips, $h_{max} = 0.030$ in.

T06R grit trips, $h_{max} = 0.006$ in.

Fin Designation (FX)

FO no fins or body extension

F2 two fins (horizontal plane)

F4 four fins

Base Plate Designation (BX)

BO no base plate

TABLE 3. ESTIMATED UNCERTAINTIES a. Basic Measurements

-		STEAL	Y-STA	TE ESTIMA	STEADY-STATE ESTIMATED MEASUREMENT	REMENT					
	Precision (5)	sion Index (S)		Bing (B)	(B)	Uncer ±(B 4	Uncertainty 1(B + t958)				Method of
Parageter Designation	fineaned to gaibsef	Valt of Measure- ment	lo serged mobes13	Percent to Reading	To the of section of the section of	Percent of Reading	Valt of Measure-	K G G	Meseuring Device	Recording Device	System . Calibration
PT, pala		±0.002 ±0.003 ±0.007	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	±0.2	110.01	±(0.2%+0.004) ±(0.2%+0.014)		0 to 3.5 5.5 to 15 15 to 60	Bell and Howell Variable Capacitance	Digital Data Acquist- tion System Analog to Digital Converter	In Place Air Dead Weight Calibration
т,°r		±1.5	230		•0		£3	o to 300	tantan 10	Doric Temperature Instrument/Digital	Thermocouple Verification of NBS Conformity/Voltage Substitution Calibration
ALPI, deg		±0.025 ±0.073	×30		• •		±0.05 ±0.15	±15 ±180	Potentioneter	Digital Data Acquist- tion System Analog to Distral Conventer	Precision Inclisons- ter Gage Reading
Normal Force, 1b Pitching Noment, is1b Side Force, 1b Faring Noment, is1b Anial Force, 1b		10.253 11.350 10.368 11.826 10.062	888888		#0.082 #0.110 #0.110 #0.012			98	Six-Component Strain Gage Balance 4.01-Y-36-043		Static Loading
Past Response Base Pressure, pala PBl-PB4, pala	±0.04 ±0.073	±0.001\$	š šš		,	±0.08 ±0.18	10.003	115 0 to 2 2 to 15	Druck (variable Resistance) Trams- ducer Bell and Howell Variable Capaci-		In Place Air Deed Veight Calibration
Longitudinal Moment Transfer Distance, in		±0.0025	90		•		£0.00\$		Factor Haght Gree and Mero-		Calibrated in the Standards Labors-
Thousen, J. V. and Abernethy, * Annued to be sero. vp.16 (5/79)	bernethy,		# #	nadbook Ur	icertalaty	1	rbine Ken	uresents	AEDC-TR-73-8 (AD 75	R. B. of al. "Handbook Uncertainty in Gas Turbine Messurements." AEDC-TR-73-5 (AD 755356), Pebruary 1973.	4

Sverdrep | 1 1 1 - 1

TABLE 3. Continued b. Calculated Parameters

President Pres					71	TED MEASUR	FRENT						Γ
		Precio	1-			8 (8)	Uncert ±(B +				50 000	Method of	
0.0051 0.0051 0.0013 0.0113 3.75/3.7 0.0052 0.0013 0.0013 3.75/3.7 0.0052 0.0013 0.0013 3.75/3.7 0.0052 0.0013 0.0013 3.75/3.7 0.0052 0.0013 0.0013 0.0052 0.0052 0.0052 0.0014 0.0052 0.0052 0.0052 0.0014 0.0052 0.0052 0.0014 0.0052 0.0052 0.0014 0.0052 0.0052 0.0014 0.0052 0.0052 0.0014 0.0052 0.0052 0.0014 0.0052 0	Paraeter Designation		Measure-	Treedom	10	Measure-	30	Messure	W/REx10-6	Measuring Device	Recording Device	System Calibration	
0.0015 0.0029 0.0018 0.0039 0.0018 0.0039 0.0018 0.0039 0.0018 0.0039 0.0018 0.0039	5		0.0047	-		0.0013		0.0107	3.75/3.7				\Box
0.0029 0.0029 0.0011 0.0029 0.0012 0.0029 0.0011 0.0029 0.0011 0.0029 0.0012 0.0021 0.0022 0.0023			0.0059			0.0017		0.0135	3.0/3.7				
0.0029 0.0012 0.0012 2.5/1.6 0.0029 0.0011 0.0059 2.25/3.7 0.0011 0.0059 2.25/3.7 0.0011 0.0059 2.25/3.7 0.0011 0.0059 2.25/3.7 0.0012 0.0011 0.0059 2.25/3.7 0.0012 0.001			0.0059	_		0.0018		9800.0	2.75/3.7				_
0.0029 0.0029 0.0011 0.0069 2.253.7.7 0.0042 0.0012			0.0029			0.0012		90000	2.5/3.7		-		
0.0042 0.0018 0.0102 2.0/1.6 0.0025 0.0016 0.0053 1.75/3.7 0.0026 0.0016 0.0053 1.75/3.7 0.0026 0.0018 0.0047 1.5/3.7 0.0027 0.0018 0.0047 1.5/3.7 0.0029 0.0019 4.0/3.7 0.0004 0.0002 0.0010 3.75/3.7 0.0004 0.0001 0.0019 3.75/3.7 0.0004 0.0001 0.0019 3.75/3.7 0.0003 0.0001 0.0019 3.75/3.7 0.0003 0.0001 0.0017 2.5/3.7 0.0003 0.0001 0.0007 2.5/3.7 0.0003 0.0001 0.0007 2.5/3.7 0.0003 0.0001 0.0007 2.5/3.7 0.0003 0.0001 0.0007 2.5/3.7 0.0003 0.0001 0.0007 2.5/3.7 0.0003 0.0001 0.0007 2.5/3.7 0.0003 0.0001 0.0004 <			0.0029			1100.0		0.0063	2.25/3.7			•	
0.0021 0.0011 0.0053 1.573.7 0.0026 0.0016 0.0044 1.6273.7 0.0026 0.0016 0.0044 1.573.7 0.0024 0.0001 0.0010 3.757.7 0.0004 0.0002 0.0010 3.757.7 0.0004 0.0001 0.0010 3.757.7 0.0004 0.0001 0.0019 3.757.7 0.0004 0.0001 0.0019 3.757.7 0.0004 0.0001 0.0019 3.757.7 0.0003 0.0001 0.0019 3.757.7 0.0003 0.0001 0.0017 2.51.8 0.0003 0.0001 0.0017 2.51.3 0.0003 0.0004 0.0007 2.51.3 0.0003 0.0004 0.0007 2.53.3 0.0003 0.0004 0.0007 1.52.3 0.0003 0.0004 0.0007 1.53.3 0.0003 0.0004 0.0007 1.53.3 0.0003 0.0004 0.0007 <th></th> <td></td> <td>0.0042</td> <td></td> <td></td> <td>9.00.0</td> <td></td> <td>0.0102</td> <td>2.0/3.5</td> <td></td> <td>-</td> <td></td> <td></td>			0.0042			9.00.0		0.0102	2.0/3.5		-		
0.0001 0.0011 0.0014 1.5/3.7 0.0004 0.0002 0.0010 3.7/3.7 0.0004 0.0002 0.0010 3.7/3.7 0.0004 0.0003 0.0010 3.7/3.7 0.0008 0.0003 0.0019 2.7/3.7 0.0003 0.0003 0.0007 2.5/3.7 0.0003 0.0003 0.0007 2.5/3.7 0.0003 0.0003 0.0007 2.5/3.7 0.0003 0.0003 0.0004 0.0007 2.5/3.7 0.0003 0.0003 0.0004 0.0007 2.5/3.7 0.0003 0.0003 0.0004 0.0007 2.5/3.7 0.0003 0.0003 0.0004 0.0007 1.5/3.7 0.0003 0.0003 0.0004 0.0007 1.5/3.7 0.0003 0.0003 0.0004 0.0007 1.5/3.7 0.0003 0.0003 0.0004 0.0007 1.5/3.7 0.0003 0.0003 0.0009 0.0009 1.5/3.7 0.0003 0.0003 0.0009 0.0009 1.5/3.7 0.0003 0.0009 0.0008 0.0009 1.5/3.7 0.0003 0.0009 0.0009 0.0009 1.5/3.7 0.0003 0.0009 0.0009 0.0009 1.5/3.7 0.0003 0.0009 0.0009 0.0009 1.5/3.7 0.0003 0.0009 0.0009 0.0009 1.5/3.7 0.0004 0.0009 0.0009 0.0009 1.5/3.7 0.0009 0.0009 0.0009 0.0009 1.5/3.7 0.0009 0.0009 0.0009 1.5/3.7 0.0009 0.0009 0.0009 0.0009 1.5/3.7			0.0021			0.0011		0.0053	1.75/3.7		-	•	
0.0004 0.0002 0.0010 4.0/3.7 0.0004 0.0002 0.0010 3.75/3.7 0.0001 0.0003 0.0003 3.75/3.7 0.0003 0.0003 0.0003 3.0/3.7 0.0003 0.0003 0.0004 2.5/3.7 0.0003 0.0003 0.0004 2.5/3.7 0.0003 0.0003 0.0004 2.5/3.7 0.0003 0.0004 0.0007 2.5/3.7 0.0003 0.0004 0.0007 2.5/3.7 0.0003 0.0004 0.0007 2.0/3.4 0.0003 0.0004 0.0007 1.75/3.7 0.0003 0.0004 0.0007 1.5/3.7 0.0003 0.0004 0.0007 1.5/3.7 0.0003 0.0009 0.0008 0.0008 1.5/3.7 0.0003 0.0009 0.0008 0.0008 0.0007 2.5/3.7 0.0003 0.0009 0.0008 0.0008 0.0007 2.5/3.7 0.0003 0.0009 0.0009 0.0009 0.0009 2.75/3.7 0.0009 0.0009 0.0009 0.0009 2.75/3.7 0.0009 0.0009 0.0009 0.0009 2.75/3.7 0.0009 0.0009 0.0009 0.0009 2.75/3.7 0.0009 0.0009 0.0009 2.75/3.7 0.0009 0.0009 0.0009 2.75/3.7			0.0018			0.0011		0.0047	1.5/3.7				
0.0004 0.0001 0.0008 3.25/3.7 0.0000 0.0009 0.0009 3.0.25/3.7 0.0000 0.00001 0.0009 3.0.019 3.0.016 0.00001 0.00001 0.00007 2.75/3.7 0.00001 0.00001 0.00007 2.25/3.7 0.00001 0.00001 0.00007 2.25/3.7 0.00001 0.00001 0.00007 2.25/3.7 0.00001 0.00001 0.00007 2.25/3.7 0.00001 0.00001 0.00007 2.25/3.7 0.00001 0.00001 0.00007 1.25/3.7 0.00001 0.00001 0.00007 1.25/3.7 0.00001 0.00001 0.00007 1.25/3.7 0.00001 0.00001 0.00007 1.25/3.7 0.00001 0.00001 0.00007 1.25/3.7 0.00001	75		0.0004	Γ		0.0002		0.0010	4.0/3.7				
0.00010 0.0003 0.0003 3.07.15 0.0003 0.0003 0.0003 3.07.15 0.0003	_		0.0004			0.0001		0.000	3.25/3.7	-			
0.0003 0.0001 0.0007 2.75.3.7 0.0001 0.0001 2.57.3.7 0.0003 0.0001 0.0007 2.57.3.7 0.0003 0.0001 0.0007 2.57.3.7 0.0003 0.0003 0.0007 2.0.3.3 0.0003 0.0003 0.0007 2.0.3.3 0.0003 0.0003 0.0007 1.57.3.7 0.0003 0.0003 0.0007 1.57.3.7 0.0003 0.0003 0.0007 1.57.3.7 0.0003 0.0003 0.0007 1.57.3.7 0.0003 0.0003 0.0007 1.57.3.7 0.0003 0.0003 0.0004 1.57.16 0.0003 0.0003 0.0004 2.57.3.7 0.0003 0.0003 0.0004 2.57.3.7 0.0003 0.0003 0.0003 0.0003 2.57.3.7 0.0003 0.0003 0.0003 0.0003 2.57.3.7 0.0003 0.0003 0.0003 0.0003 2.57.3.7 0.0003 0.0003 0.0003 0.0003 2.57.3.7 0.0003 0.0003 0.0003 2.57.3.7			0.000.0			0.0003		0.0023	3.0/3.7				
0.0007 0.0008 0.0016 2.5/1.6 0.0003 0.0001 0.0007 2.25/3.7 0.0003 0.0003 0.0007 2.25/3.7 0.0003 0.0003 0.0007 2.0/3.5 0.0003 0.0003 0.0007 1.5/3.7 0.0003 0.0003 0.0007 1.5/3.7 0.0003 0.0003 0.0007 1.5/3.7 0.0003 0.0003 0.0004 1.5/1.6 0.0003 0.0003 0.0004 1.5/1.6 0.0003 0.0003 0.0004 1.5/1.6 0.0003 0.0003 0.0004 1.5/1.6 0.0003 0.0003 0.0004 1.5/1.7 0.0003 0.0003 0.0004 1.5/1.7 0.0003 0.0004 1.5/1.7 0.0003 0.0004 1.5/1.7 0.0003 0.0004 1.5/1.7 0.0003 0.0004 1.5/1.7 0.0003 0.0004 1.5/1.7 0.0009 0.0007 1.5/1.7			0.0003			10000		0.0007	2.75/3.7				
0.0003 0.0001 0.0007 2.253.7.7 0.0009 0.0007 2.253.7.7 0.0009 0.0007 0.0000 0.0007 2.253.7.7 0.0003 0.0003 0.0007 0.0007 2.073.5 0.0003 0.0003 0.0007 1.573.7 0.0003 0.0003 0.0007 1.573.7 0.0003 0.0003 0.0007 1.573.7 0.0003 0.0003 0.0009 0.0007 1.573.7 0.0003 0.0003 0.0009 0.0007 1.573.7 0.0003 0.0009 0.0007 1.573.7 0.0003 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0007 1.573.7 0.0009 0.0009 0.0007 1.573.7 0.0009 0.0009 1.573.7 0.0009 0.0009 1.573.7 0.0009 0.0009 1.573.7 0.0009 0.0009 1.573.7 0.0009 0.0009 1.573.7 0.0009 0.0009 1.573.7 0.0009 0.0009 1.573.7 0.0009 0.0009 0.0009 1.573.7 0.0009 0.0009 0.0009 1.573.7 0.0009 0			0.0007			0.0003		0.0016	2.5/1.6	•			
0.0009 0.0004 0.0020 2.0.3.5 0.0007 0.0003 0.0007 1.75/3.7 0.0003 0.0007 1.75/3.7 0.0003 0.0007 1.55/3.7 0.0003 0.0004 1.55/3.7 0.0003 0.0004 1.55/3.7 0.0003 0.0008 1.5/1.6 0.0004 0.0008 0.0008 2.75/3.7 0.0009 0.0008 2.75/3.7 0.0009 0.0008 2.75/3.7 0.0009 0.0008 2.75/3.7 0.0009 0.0008 2.75/3.7 0.0009 0.0008 2.75/3.7 0.0009 0.0008 2.75/3.7 0.0009 0.0008 2.75/3.7			0000			1000.0		7000.0	2.25/3.7				
0.0003 0.0003 0.0003 0.0003 0.0003 0.0001 0.0003 0.0011 0.0001 0.0003 0.0011 0.0001 0.0011 0.0009 0.0013 0.0009 0.0013 0.0009 0.0013 0.0009 0.0013 0.0009 0.0013 0.0009 0.0013 0.0013 0.0013		•	0.000			0.0004		0.0020	2.0/3.5				
0.0007 0.0001 0.0001 1.5/3.7 0.0007 0.0007 1.5/3.7 0.0007 0.0003 0.0001 0.0008 1.5/1.6 0.0003 0.0008 0.0008 1.5/3.7 0.0009 0.0009 0.0007 0.0007 0.0009 0.0007 0.0009 0.0008 0.000			0000			0.0001		0.0007	1.75/3.7				
0.0038 0.0011 0.0087 4.0/3.7 6.0038 0.0010 0.0080 3.75/3.7 6.0031 0.0099 0.0071 3.25/3.7 6.0039 0.0087 3.0/3.7 6.0037 0.0087 0.0087 3.0/3.7 6.0037 0.0088 2.75/3.7 6.0038 0.0081 2.75/3.7 6.0038 0.0081 2.5/3.7 6.0038 0.0081 2.5/3.7 6.0038 0.0038 2.5/1.6 6.0038 6.0033 2.5/1.6 6.0038 6.0033			0.0003			0.0001		0.0007	1.5/3.7				
0.0034 (0.0010 0.0080 3.75/3.7 0.0031 (0.0099 0.0071 3.25/3.7 0.0037 (0.0030 0.0154 3.0/1.4 0.0037 (0.0038 0.00154 2.75/3.7 0.0034 (0.0017 0.0013 2.5/3.7	5		0.0038			1100.0		0.0087	4.0/3.7				
0.0003 0.0020 0.0020 0.0020 0.0028 0.0013 0.0013 0.0017 0.013			0.003\$	_		0.0010		0.0000	3.75/3.7				
0.0020 0.0154 3.071.6 0.0013 0.0082 2.57.3.7 0.0017 0.0133 2.57.6			0.0029			6000.0		0.0067	3.0/3.7				
0.0013 0.0081 2.5/2.7			0.0067			0.0020		0.0154	3.0/1.6				
2000			903			0.00		0.0081	2.5/3.7				
			-			3		2010	D: 4 /C: 4	-			٦
- 1474										-			

b. Calculated Parameters

TABLE 3. Continued

		STEAN		T. PSTINA	STEADY-STATE ESTIMATED MEASUREMENT	MENT						Γ
•	Prects	ecision Index (S)		Bias (B)	189 (B)	Uncer ±(8 +	Uncertainty ±(8 + tg58)	-		2	Method of	
Paraetar Designation	Percent 10 Zaibaez	Unit of Measure-	Degree of	Percent of Reading	Unit of Measure-	Resqrut Ol Belceut	Unit of Measure	W/REX10	Ket	Recording Device	System	
č		0.0024 0.0033 0.0026			0.0007		0.0055 0.0078 0.0060	2.25/3.7 2.0/3.7 2.0/3.5				
		0.0025 0.0024 0.0025			0.0007		0.0055 0.0055 0.0055	1.75/3.7				
r c		0.000.0 0.000.0 0.000.0 0.000.0			0.0002 0.0003 0.0001 0.0001		0.0014 0.0012 0.0011 0.0011	4.0/3.7 3.75/3.7 3.25/3.7 3.0/3.7				
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-	666666666666666666666666666666666666666	25.573.7 25.573.7 25.573.7 25.073.7 25.73.7				·
70		0.0000	-		0.00000		0.0009	1.62/3.7				
		0.00002			000000000000000000000000000000000000000		000000000000000000000000000000000000000	2.25/3.7 3.07/3.7 2.07/3.6 2.07/3.6 2.5/3.7			·	
	•	000000000000000000000000000000000000000			000000000000000000000000000000000000000		000000000000000000000000000000000000000	2.25/3.7 2.00/3.3 2.00/3.3 2.00/3.5 1.75/3.6 1.65/3.3 1.65/3.3				
		0.00004	_		0.00001		0.0000	1.5/1.6				٦

Thouseon, J. H. and Abernethy, R. B. et al. "Madbook Uncertainty in Gas Turbine Messuresents." AMC-TR-73-5 (AD 755356), Pebruary 1873.

19-16 (6/79)

TABLE 3. Continued

Parameters
lated F
Calcu

Printed Prin			STEAD	Y-STA	TE ESTIMA	STEADY-STATE ESTIMATED MEASUREMENT	ENENT					
	,	Precti	aton Index (S)		ä	8.8 B)	Uncer ±(8 •		•		2	Method of
0.0019 0.0020 0.0020 0.00030 0.00031 0.00017 0.00017 0.00018 0.00018 0.00018 0.00019 0	Paracter Designation	Percent of Reading	一色よりませる男	lo sersed mobsers	10	Messure-	Percent to Reading	ment Nessole-	M/ REX 10	Measuring Device	Recording Device	System Calibration
0.0023 0.0004 0.	CAT		0.0019			0.0003		0.0041	3.75/3.7			
0.0013 0.0015			0.0023			0.0004	•	0.0050	3.25/3.7			
0.0025 0.0016 0.00018	٠		0.0031			9000		0.0066	3.0/1.6		•	
0.0016 0.0017 0.0018			0.0028			0.0003		0.0035	2.5/3.7			
0.0021 0.0011 0.0023			9.00.0	_		9000	•	0.0038	2.0/3.7			
0.0013 0.0004 0.0003 0.0004 0.0003 0.			0.0027			9000		0.0060	2.0/3:5			
0.0023 0.0007 0.0005 0.0023 0.0003 0.0003 0.0023 0.0003 0.0004 0.0023 0.0003 0.0004 0.0024 0.0003 0.0004 0.0025 0.0003 0.0004 0.0027 0.0003 0.0004 0.0028 0.0004 0.0004 0.0029 0.0004 0.0004 0.0029 0.0007 0.0006 0.0029 0.0007 0.0006 0.0029 0.0007 0.0007 0.0029 0.0007 0.0007 0.0029 0.0007 0.0007 0.0029 0.0009 0.0007 0.0029 0.0009 0.0007 0.0029 0.0009 0.0007 0.0029 0.0009 0.0007 0.0029 0.0009 0.0029 0.0009 0.0029 0.0009 0.0029 0.0009 0.0029 0.0009 0.0029 0.0009 0.0029 0.0009 0.0029 0.0009 0.0029 0.0009 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009 0.0020 0.0009			0.0013			0.0006		0.003	1.75/3.7			
0.0023 0.0003 0.0004 0.0004 0.0004 0.0005 0.			0.0011			0.0007		0.0029	1.5/3.7			•
0.0033 0.00034	3		0.0023	H		0.0003		0.0049	4.0/3.7			
0.0031 0.0003 0.0029 0.0003 0.0003 0.0027 0.0003 0.0003 0.0037 0.0003 0.0003 0.0039 0.0003 0.0003 0.0039 0.0003 0.0003 0.0030 0.0003 0.0003 0.0010 0.0011 0.0011 0.0014 0.0013 0.0010 0.0014 0.0013 0.0010 0.0014 0.0013 0.0010 0.0014 0.0013 0.0010 0.0014 0.0013 0.0010 0.0014 0.0013 0.0010 0.0013 0.0014 0.0013 0.0010 0.0014 0.0013 0.0010 0.0014 0.0013			0.0035			0.0003	_	0.0053	3.75/3.7			
0.0029 0.0056 0.0037 0.0006 0.0038 0.0006 0.0006 0.0039 0.0007 0.0007 0.0034 0.0009 0.0117 0.0019 0.0017 0.0019 0.0014 0.0119 0.0014 0.0109 0.0018 0.0008 0.0018 0.0008 0.0018 0.0008 0.0018 0.0008 0.0018 0.0008 0.0018			0.0031			0.000	-	0.0067	3.0/3.7			
0.0035 0.0005 0.0003 0.0038 0.0007 0.0003 0.0032 0.0007 0.0003 0.0034 0.0009 0.0117 0.0017 0.0017 0.0117 0.0018 0.0018 0.0117 0.0119 0.0018 0.0018 0.000 0.0009 0.0018 0.000 0.0009 0.0018 0.000 0.0000 0.0018			0.0029			0.000		0.0063	2.75/3.7			
0.0049 0.0009 0.			0.0038			0.000		0.0076	2.5/1.6			
0.0052 0.0010 0.0057 0.00010 0.0112 0.0075 0.0001 0.0125 0.0017 0.0014 0.0101 0.0014 0.0253 0.009 0.0018 0.000 0.0018 0.000 0.0000 0.0000 0.0018 0.0000 0.0018 0.0000 0.0018 0.0000 0.0018			0.0049			6000		0.0083	2.25/3.7	•		
0.0057 0.0011 0.0125 0.0075 0.0001 0.0125 0.0117 0.0014 0.0253 0.009 0** 0.0253 0.013 0.005 0.005 0** 0.025 0.005 0** 0.025			0.0052			0100.0	•	0.0112	2.0/3.5			
0.0014 0.0014 0.0044 0.0044 0.0044 0.0044 0.0044 0.00533 0.0000 0		•	0.0057		-	0.0011		0.0125	1.75/3.7			
0.009 0.010 0.010 0.0083 0.0088 0.0088 0.0088 0.008 0.008 0.008 0.008 0.008 0.008 0.008			0.0117	_		0.0014		0.0248	1.5/3.7	•		
0.020			0.00	t^{-}	Ī			0.018	4.0/3.7			
00000 00000 000000			0.010			::		0.020	3.75/3.7			
0000			0.0085		-	::		0.017	3.0/3.7			
0.012	-		0.00					0.016	2.75/3.7		•	
			900					0.012	2.5/3.7	_	_	

Thospoon, J. V. and Abernethy, R. B. et al. "Handbook Uncertainty in Gas Turbine Heasurements." AEC-TR-73-5 (AD 755556), Pebruary 1873.
The 18 (8/79)

TABLE 3. Continued

b. Calculated Parameters

	Preci	recision Index	ndex)		Blas	Įğ.	Uncertainty					
		3	7		a	B)	+ (955)			Type of	Method of	
Designation	Percent to Salbasa	To linit of west	Degree of	Percent of Reading	Valt of Jack	Percent of Reading	Unit of	WARK10-0	Koseu	Becording Device	dystes Calibration	
*		0.0075	-		***		0.015	2.25/3.7				1
		900.0					910.0	200				
•		0.0075					0.015	1.75/3.7				
		0.009			::		0.018	1.62/3.7				
.		0.0125	7		5		0.025	1.5/1.6	•			
P.peta		0.0037			9000		0.0080	4.0/3.7			•	
		0.0108			0.0011		0.0227	3.25/3.7				•
		0.0000	_		0.0014		9610.0	3.0/3.7				
		0.0113			0.0018		0.0244	2.75/3.7				
	-	0.0011	_		0.0024		0.0246	2.5/3.7				
		0.0182			0.0031		0.0395	2.25/3.7				
		0.0232			0.0034		0.0501	2.0/3.7				
		0.0100	_		0.0017		0.0217	2.0/1.6				
		0.0389	_		9,000		0.0615	1.75/3.7				
		0.0607			0.0068		0.1282	1.5/3.7				
		0.0261	7		0.0030		0.0552	1.5/1.6	_			
12:	_	0.0260			0.0069		0.0589	4.0/3.7				•
	_	0.0462			0.0083		0.1007	3.25/3.7				
		0.0139		_	0.0039		0.0733	3.0/3.7				
		0.0315			7600.0		0.0727	2.75/3.7				
		0.0236	_		0.0105		0.0577	2.5/3.7				
		0.0279	_		0.0110		0.0668	2.25/3.7				
		0.0232	_		0.0104		0.0568	2.0/3.7				
		0.0100	_		0.0047	_	0.0247	2.0/3.5				
		0.0150			0.0103		0.0405	1.75/3.7				
		0.0076	_		2000		0.0304	1.62/3.7	_			
		0.0034	_		0.0047		0.0115	1.5/1.6				

TABLE 3. Concluded b. Calculated Parameters

Marking Mark	Precision Index Bias University (8) (8)	PEADY-STATE ESTIMATER B1	ATE ESTIM		MATED MEASURE Blas (B)	Uncer ±(8 +	Uncertainty ±(8 + tqsS)				Nethod of	
0.0514 4.0/3.7 0.0548 3.25/3.7 0.0510 3.073.7 0.0510 3.073.7 0.0459 2.57/3.7 0.0459 2.57/3.7 0.0459 2.57/3.7 0.0459 2.073.7 0.0413 2.57/3.7 0.0413 2.57/3.7 0.0413 2.57/3.7 0.0413 2.57/3.7 0.0413 2.57/3.7 0.0413 2.57/3.7 0.0413 2.57/3.7 0.0413 1.57/1.6 0.0413 1.57/1.6 0.0414 1.57/1.6 0.0415 1.57/1.6 0.0416 1.57/1.6 0.0417 1.57/3.7 0.0418 2.57/3.7 0.0419 2.57/3.7	Unit of Measure- ment Degree of Treedon	Degree of		Percent to Saibaes	Jo 11nU Messure-			N/REN10-6	Measuring Device	Type of Recording Device	Spries Calibration	
0.0030 0.0031 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.00	0.0220				0.0074		0.0514	3.75/3.7				
0.0494 2.75/3.7 0.0435 2.5/3.7 0.0458 2.25/3.7 0.0458 2.25/3.7 0.0458 2.25/3.7 0.0458 2.25/3.7 0.0458 2.25/3.7 0.0419 2.0/3.5 0.0419 1.75/3.7 0.0419 1.75/3.7 0.0419 1.75/3.7 0.0419 1.75/3.7 0.0419 1.75/3.7 0.0419 1.75/3.7 0.0419 1.75/3.7 0.0419 1.75/3.7 0.0410 2.5/1.6 0.0410 2.5/1.6	0.0218				0.0074		0.0510	3.0/3.7				
0.01658 2.25,7.6 0.0458 2.25,7.7 0.0433 2.073.7 0.0433 2.073.5 0.0434 1.75/3.7 0.0344 1.62/3.7 0.0164 1.5/7.6 0.10 All 1.5/7.6 0.0030 2.72/3.7 0.0030 2.72/3.7 0.0030 2.25/3.7 0.0030 2.25/3.7	0.0210				0.0074		0.0433		_			_
0.0433 2.073.5 0.0196 2.071.6 0.0134 1.62/3.7 0.0354 1.63/3.7 0.0354 1.571.6 0.10 All 1.62/3.7 0.0030 4.0/3.7 0.0030 2.07.7 0.0030 2.07.7 0.0030 2.07.3 0.0030 1.56/3.7 0.0030 1.56/3.7	0.0078				0.0033		0.0149	2.25/3.7	-			_
0.0413 1.75/3.7 0.0342 1.35/1.6 0.10 All 1 0.0030 1.5/1.6 0.0030 2.55/3.7 0.0030 2.5/3.7 0.0030 2.5/3.7 0.0030 2.5/3.7 0.0030 2.5/3.7 0.0030 2.5/1.6 0.0030 2.5/1.6 0.0030 2.5/1.6 0.0030 2.0/3.7 0.0030 2.0/3.7 0.0030 1.56/3.7 0.0031 1.5/3.7 0.0032 1.5/3.7 0.0032 1.5/3.7	0.0181				0.0071		0.0433	20,00				
0.0032 1.5/1.6 0.10 A11 0.10 A11 0.0030 3.78/3.7 0.0030 3.28/3.7 0.0030 3.07.3 0.0030 2.28/3.7 0.0030 2.5/1.6 0.0030 2.5/1.6 0.0030 2.0/3.7 0.0030 2.0/3.7 0.0030 2.0/3.7 0.0030 2.0/3.7 0.0031 1.5/3.7 0.0032 1.5/3.7 0.0033 1.5/3.7	0.0170				0.0073		0.0413	1.75/3.7				
0.10 A11 0.10 A11 0.0030 3.73,7 0.0030 3.73,7 0.0030 3.25,3.7 0.0030 3.25,3.7 0.0030 2.56,3.7 0.0030 2.57,3.7 0.0030 2.57,3.7 0.0030 2.57,3.7 0.0030 2.0,3.7 0.0030 2.0,3.7 0.0030 2.0,3.7 0.0030 1.75,3.7 0.0030 1.75,3.7 0.0030 1.5,1.6	0.0172				0.0000		0.0352	1.5/3.7				
0 .10 0 .0030 0 .0030	0.05			_	+0		0.10	114	•			_
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.05				+0		01.0	All				_
0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030	•	•	000	000	****		0.0030 0.0030 0.0030	4.0/3.7 3.75/3.7 3.25/3.7			•	
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				000			0.0030	3.0/3.7	-			
0 0 0030 0 0 0030 0 0 0030 0 0 0032 0 0 0034 0 0 0034				000			0000	2.5/3.7				
0.0032 0.0032 0.0038 0.0038 0.0038							0.0030	2.0/3.7			٠	
2000 0000 0000 0000 0000 0000 0000 000				300	•••		0000	2.07				_
	0.0019			000	•••		0.0034	1.62/3.7				
				1								

27

Table 4. Test Summary

٠.								RUN	Num	OERS	
	W	DATA TYPE POLAR	PHI	ALPHA	TXL	C.R.	RE × 10-6	N00.0	N12.5 TOGR FO BO	NOD. 0	
4	.0	ALPHA	0	0*	47	18.0	3.7		500		
				V*					501		
	L	<u> </u>		V+					502		
	L		*	V-					503		
Ŀ	<u> </u>	♦	180	<u>v</u>					504		
3.	75	ALPHA	0_	0*					505		
	1	1_1_		V +					506	<u>[</u>	
			₩	<u> </u>					×507		
L	<u> </u>	1	180	V-					×508	<u> </u>	
	<u> </u>	PHI	V-	0					*509		
3.	25	ALPHA	0	0*					510		
				_Y*					511		
			V	γ-					×512		
		V	180	γ.					513		
L	¥ _	PHI	γ-	0					*514		
3.	0	ALPHA	0	0*				690	515	811	
				γ*					516		
				٧+				691 699	517	812	
			₩	ν-				692 700	518	×813	
			180	γ-				693 701	519	× 814	
Ц			0	0*				4590			TDP ~ +24°
Н				V+	4			4591			
Н			٧	V-	Y		-	4592			
Н		TXL	0	0	V*			694		818	
		PHI	V-	<u> </u>	47	_ _				× 815	
Щ		\vdash	Υ*	5	$\rightarrow \downarrow$		44			816	
H		<u> </u>	ν-	-5	44					817	
\square		PHI	_Y-	0						× 835	after hand nalling nozzle
\vdash	\sqcup	TXL	0	0	Y*		\dashv			836	<u> </u>
H		PHI	ν-	0	47	1	-1.1			×837	after RMAC nulling nozzle
	1.	TXL	0	0			<u> </u>			838	

Point Pause

⁻ Continuous Sweep (-) to (+) + Continuous Sweep (+) to (-)

x Runs presented corrected and uncorrected for nonuniformities

A Runs presented corrected and uncorrected for humidity

Table 4. Continued

									•		
								RUN		BERS	2
W	DATA TYPE POLAR		ALPHA	TXL	c.	R.	RE*	N00.0			
3.0	PHI	ν-	0	47	18	.0	3.7			×839	no mulling of notele
1	TXL	0	0	Y*						840	•
T	PHI	ν-	0	47						×841	after RMAC nulling nozel
	TXL	0	0	V*						842	V
	ALPHA	0	0*	47						827	Jack 35 at 4= +.05
			V +							828	
		V	٧-				Ц_		<u> </u>	829	
	Y	180	γ-	V						830	
	TXL	0	0	Y *						834	
	PHI	ν-	0	47					<u></u>	831	
		۷+	5							832	
	V	γ-	-5					<u> </u>	<u> </u>	833	<u> </u>
T	ALPHA	0	0*							819	Jack 27 at 0= +.05
			γ+			٠				820	
		7	ν-							821	
	V	180	٧-	V						822	
	TXL	٥	0	V*						826	
	PHI	y-	0	47						823	
		γ+	5							824	
	V	٧-	-5				<u> </u>			825	Ψ
	ALPHA	0	0*				1.6		520		
			γ+				1		521		
		Y	٧-						522		
V		180	ν-				¥		523		
.75		0	0*				3.7	685			
			V ⁺				1:	686			
		<u> </u>	γ-					687			
V	V	180	V-*	V	¥		٧	688			

- * Point Pause
 Continuous Sweep (-) to (+)
 + Continuous Sweep (+) to (-)
- x Runs presented corrected and uncorrected for nonuniformities
- Δ Runs presented corrected and uncorrected for humidity

Table 4. Continued

•									RUN	Num EACH		3
	N	77	TA PE LAR	PHI	ALPHA	TXL	C.R.	RE"	N00.0 T 30C FO BO	N12.5 TOGR FO BO	NO 0.0 T3 o C F4 B0	REMARKS
2.	75	7	XL	0	0	٨×	18.0	3.7	689			
2.	5	AL	PHA	0	0*	47			672	528		•
					٧*				673			
					٧+				674	529		
				¥	٧-				*675	530		
				180	٧-				*676	531		
				-90	V-				*677			<u> </u>
				90	٧-			$\sqcup \!\!\! \perp$	678			
		١		0	ν-				679			
		P	ΗI	ν-	0				×680			·
		,	•	7	10		Ψ		*68 1			
		ALP	HA	0	γ-		0.8		682			
			,	180	٧-	V	₩		683		·	
		77	(L	0	0	>*	18.0		684			
Г		AL	PHA		γ+	42				532		
	П			Y	٧٠					533		
Γ				180	٧-	٧		Ý		534		
				0	04	47		1.6		524		
					٧+					525		
				V	V-					526		
	1			180	γ-			Y		527		
2.	25		·	0	0*			3.7	668	535		
					V+				669	536		
				_₩	ν-				670	537		
		_\		180	V-	Ψ				538		
		7	<u>(L</u>	0	0	V*			671			
2.	0	AL	2HA	0	O*	47			568	539		
•	,	1		. ₩	V*	*	*	Y		540	i	

Point Pause Continuous Sweep (-) to (+) Continuous Sweep (+) to (-)

x Runs presented corrected and uncorrected for nonuniformities Δ Runs presented corrected and uncorrected for humidity

Table 4. Continued

												_	
									RUN		BERS	1	
_									FOR	EACH	CONFIG	 	4
_	٨	DAT TYP POL	E	PHI	ALPIA	TXL	C.R.	RE × 10 ⁻⁶	N00.0 T 30C FO BO	N12.5 T06R F0 B0	NOO.0 T30C F4 B0	f	REMARKS
2	.0	ALP	HA	0_	V +	47	18.0	3.7	569	541			
П	1	ı		+	γ-		<u> </u>		570 ×608	542	<u> </u>	<u> </u>	·
		¥		180	V-	~			571	543	l	<u> </u>	·
		TX	L	0	0	V*			613	544 548		<u> </u>	
		ALP	HA	-90	γ-	47			*609				
Г		PH	\neg	ν-	0				*610				
		1		V.*	10		V		611				
		ALP	HA	0	V-		0,8	V	612		·		
		П		0	0*		18.0	1.6	635	549			
		П		1	۷+			L	636	550			
		П		V	ν-				637	551			
		V		180	٧-	Y			658	552			
		ΤX	L	0	0	٧*			640				
		ALP	HA	Q	0*	47			587			TDP	~ +24°
				·1	V+				⁴ 588				1
				Y	٧-			Ý	4589				Y
				0	0*			3.7	[^] 572		4 762	TOP	v - 6°
Г					γ+				⁴ 573		⁴ 763		<u> </u>
		Y		V	V				4574				<u> </u>
		PH	I	٧-	0	V					4764		
		TΧ	2	0	0	\ *					⁴ 765	`	Y
		ALP	HA	٥	V+	4.7					°766	TDP	~ o*
		PH:	r	ν-	0	V					4767		
		TX	١	0	0	Y *					⁴ 768		
		ALPI	11	0	0*	47	<u> </u>		² 575			TDP	~+3°

- Point Pause Continuous Sweep (-) to (+) Continuous Sweep (+) to (-)

- x Runs presented corrected and uncorrected for nonuniformities Δ Runs presented corrected and uncorrected for humidity

Table 4. Continued

•								RUN		BERS CONFIG	5
	M	DATA TYPE POLAR	PHI	ALPHA	TXL	C.R.	RE × 10-6	N00.0	N12.5 TOGR FO BO	NOD. 0	
2	.0	ALPHA	0	y+	47	18.0	3.7	4576		4769	TDP ~ +3°
	1	₩_	1	V-		1		4577			
	L	PHI	ν-	0	<u> </u>			<u> </u>		4770	
L	L	TXL	0	0	y *					4771	Y
L	1_	ALPHE	0	0*	47			⁴ 578			TDP ~ +10°
				V+	<u> </u>			579			
	L		ot	<u> y-</u>			$\sqcup \! \! \! \! \! \perp$	⁴ 580			<u> </u>
L	L			0*				581			TDP ~ +16°
L	L			V+				582		^772	
		V	<u> </u>	<u>v</u> -	\Box			583			
		PHI	ν-	0	V					4773	
	上	TXL	0	0	V*			<u> </u>		4774	<u> </u>
L		ALPHA	0	0*	47			584	ŀ		TDP ~ + 24°
		1		γ+				⁴ 585		¹ 775	
				V-		,	¥	4586			Y
				0*			3.5			746	·
				V ⁺						747	
			V	V-				616		*748 776	•
		V	180	ν-				617		749	
		PHI	ν-	0				614		* 749 793 794 750,*867	*808
			V +	10				615			
			V +	5						751	
		Y	V-	-5	Y					752	
		TXL	0	0	V *			626,633 629		753,809	
		ALPHA	0	٧-	42			620]	×754	·
		4	180	ν-	\Box			621			
		PHI	ν-	0				618	I	×755	
			ν+	10				619			
\Box			ν+	5		\Box				756	
1	Y	Y	v -	-5	Y	__	<u> </u>			757	

^{*} Point Pause
- Continuous Sweep (-) to (+)
+ Continuous Sweep (+) to (-)

Runs presented corrected and uncorrected for nonuniformities
 Runs presented corrected and uncorrected for humidity

Table 4. Continued

•								RUN	NUM	BERS	
\ \	N	DATA TYPE POLAR		ALPHA	TXL	C.R.	RE × 10-6	N00.0		NOD. 0	
2.	.0	ALPHA	0	V-	38	18.0	3.5			×758	
	L	PHI	٧-	0						×759	
			V+	5						760	
L	L	1	v-	-5	1					761	
	L	ALPHA	0	<u>v-</u>	37			624	L		
<u> </u>	L	14	180	<u>y-</u>			$\sqcup \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	625			
	L	PHI	V-	0				622			
<u></u>	_	14	<u>Y</u> *	10	1			623		<u> </u>	
	L	ALPH A	0	<u>v</u> -	47			628			Jack 31 at A= +.050"
L		TXL	0	0	V*			627	545		V
	L	TXL	0	0	47			632			Jack 31 at 1=+.075"
<u> </u>	L	ALPHA	0	0*						779	Jack 36 at 1=+.050"
	L	11.	L	ν+						780	
	_			ν-				631		781	
		₩	180	V-		_ _				782	
L	_	PHI	V-	0		-				783 792	
	_		Vt	5						784	
	_	<u> </u>	<u>v-</u>	-5	V	_	_			785	
	_	TXL	0	0	V*			650	546	786	· V
	<u>_</u>	TXL	0	0	47	_ _		634			Jack 36 at 1=+,075"
	_	ALPH4		<u> </u>	42					787	Jack 36 at A=+.050"
	_	PHI	V-	0			_}_			788	
_	<u> </u>		V ⁺	5	-1-1		- -			789	
_	Щ,	<u></u> ,	ν-	-5	¥	_ -				790	Ψ
	_	ALPHA	0	0*	4.7	-4-4				795	Jack 38 at A=+. 050"
	Н	-		_V+	-+-		_ _			796	<u> </u>
	Ш	-		V-						797	
		<u> </u>	180	V-	-	_ _				798	
		PHI	V-	_0	_ _	_ _				799	
			V+	5	_}_		_ _			800	
Ý		<u> </u>	V-	~5	_ <u>V</u> _ L	_\V	W _	1		801	₩

Point Pause

Continuous Sweep (-) to (+) Continuous Sweep (+) to (-)

x Runs presented corrected and uncorrected for nonuniformities

Δ Runs presented corrected and uncorrected for humidity

Table 4. Continued

		٠					RUN	Num]			7
M	DATA TYPE POLAR		ALPHA	٦xL	C.R.	RE × 10 ⁻⁶	N00.0 T 30C FO BO	NIZ.5 TOGR FO BO			MAR	K.S	
2.0	TXL	0	0	V*	18.0	3.5			802	Jack	38	at	∆ = +.050"
	ALPHA	0	٧-	38					803				
	PHI	v-	0	1			<u> </u>		8C4	<u></u>		<u> </u>	
		V+	5						805				
	*	٧-	-5	V					806		,		
	ALPHA	0	0*	47					702	TAPE	= .0	o5 "	
	1		V+						703	1			
			V*						704	,			
			٧٠						705				
		180	٧-						706				
	PHI	ν-	0						707				
		V+	5						711				
		V ⁺	10						708				
		٧-	-10	Y					709				
	TXL	0	0	V*					710		<u> </u>		
		0	0						728	TAPE	ه. ه	10 ",	F2 not F4
	4	90	0	¥					729				
	ALPHA	0	0*	4-7					730				
			٧+						731				
			<u>v-</u>						732				
	<u>\</u>	180	V-						733				
	PHI	ν-	0						734				·····
		γ+	5						735				
	V	ν-	-5	V					736				
	TXL	0	0	ν*					737				
	ALPHA	0	ν-	42					738				
	PHI	V-	0		\bot				739				
		γ+	5						740				
4	Y	V-	-5	*					741	<u></u>	<u>'</u>		·

- Point Pause Continuous Sweep (-) to (+) Continuous Sweep (+) to (-)

- x Runs presented corrected and uncorrected for nonuniformities
 Δ Runs presented corrected and uncorrected for humidity

Table 4. Continued

•					•		RUN	NUM EACH]	8
W	DATA TYPE POLAR	PHI	ALPHA	TXL	C.R.	RE × 10-	N00.0].	NO0.0	REMARKS	
2.0	ALPHA	0	у-	38	18.0	3.5			742	TAPE= .010"	
	PHI	ν-	0	_1_	1				743		
		V+	5						744		
Y	Y	γ-	-5	¥		V	1		745	V	
1.75	ALPH4	0	0*	47		3.7	664	555			
			γ+				665	556			
		٧	V-				666	557			
	Y	180	ν-	4				558			
1	TXL	0	o	V*			667				
1.62	ALPHA	0	0*	47			660				
<u></u>			ν+	_1_			661				
	Y	*	٧-	4			662				
LY.	TXL	0	0	V *		$\perp \perp$	663				
1.5	ALPHA	0	0*	47			647	559			
		1	V*				648				
			V+				649	560			
		<u> </u>	ν-				×650	561			
		180	ν-				651	562			
		-90	ν-				×652				
		+90	ν-				653				
	Y	0	V-	\perp			654				
\Box	PHI	ν-	0				<u>855</u>				
	*	V*	10	44	V		656			···	
	АСРНА	0	<u>v-</u>		<u>0,8</u>		657				$ ight oxedsymbol{\perp}$
	4.	180	_v-	Ý.	0.8	- -	658			·	╝
	TXL	0	0	_V*	18.0	-	659				_
	ALPHA	0	0*	47	_}_	11	593			TDP~ +24°	_
Y	V	0	V*	47	<u> </u>	L V	594				1

- Point Pause Continuous Sweep (-) to (+) Continuous Sweep (+) to (-)
- x Runs presented corrected and uncorrected for nominiformities
- Δ Runs presented corrected and uncorrected for humidity

Table 4 Concluded

							RUN FOR	Num	nbers Confib	9
M	DATA TYPE POLAR	PHI	ALPHA	TXL	C.R.	RE × 10-6	N00.0 T 30C FO BO		NOD. 0 T3 OC F4 BO	
1.5	ALPHA	0	ν-	47	18.0	3.7	4595			TDP ~ +24°
			0*			1.6	641	563		
			V*				642			
	<u> </u>		ν+	<u> </u>	<u> </u>	11		564		
	 	V	V-	↓ '	 '	 		565		<u> </u>
	V	180			 	1-1		566	 '	
<u> </u>	TXL	0	0	\ \ V *	¥	V	646	 	 '	
 	 '	 	 '	 '	 '	 '	 	 '	 '	ļi
 	 '	 '	 '	 	 	 	 '	<u> </u>	 	
	 	 '	 	1		 '	 '	 '	 '	
 		 	 	1	 	 '	 	 	 	
	 	 			 	 '	 '	 	 !	ļ
	 -!	 '		1	 	 '	 '	 /	 	
 	 	 		1		 	 '	 	 	
├ ──┤	 	 '	1			 '	 	 	 	
 		 J				 '	 '			
 		 				 '	 '			
 		 		+		 	 -		 	
						 	 			
 		 		+			 			
· ——						ــــا	 			
	 	 								l
										
						,				
									·	
					·			 	<u></u>	
						<u> </u>	,		, 	
										·

Point Pause Continuous Sweep (-) to (+) Continuous Sweep (+) to (-)

x Runs presented corrected and uncorrected for nonuniformities

Δ Runs presented corrected and uncorrected for humidity

APPENDIX III

SAMPLE TABULATED DATA

ARO, THE AETC DIVISION ONPAY TOWN RANAM GAS DYNAMICS FACILITY THURCH AND FORCE STATION, TENNESSEE STANDAM FORCE COME (\$ DEG)	CORPORA GAS DYX TORCE S	TTION CONT ANTCS PAC TATION, '	PANY Fility Tennesser)						•			44646	DATE COMPUTED 31-AUG-79 TIME COMPUTED 11-O4153 TIME RECORDED 30-APR-79 TIME RECORDED 20-25-31 PROJECT MUMBER V41A-07	UTED 31- UTED 11 POED 30- UNDER 20	AUG-79 104:53 APR-79 125:31 1A-67
RUN C005	* °°	r:	595.7	3.408	9.301	141.7	AE 0.367E+07	20.274		REF LERGINS (CLM, CLM, CLL) 34,290 34,290 34,290	14.290				
COMFIG #12,5-T064-F0-80	-6-6-														
		•			BODY AX	IS-XHRP	BODY AXIS-XHRP = (2/3) LM	5							
PR ALPHA	BETA	Ind	ŧ	5	t	·	ž		CAT	CAB				A.C.	111
	20.0	0.03	0.5261	-0.0091	-0.0038		22	0.000	0.1478	0.0794	0.0685	0.6821	0.6956	0.6817 4	46.6388
10.00		0.0	0.4756	-0.006	0000				0.1431	0.0791				0.6823	46,6350
•	0.0	0.0	0.3667	-0.0056	-0.002	_			0.1410	0.0785	0.0625	0. PK 34			6.6364
	0.0	9.0	0.3122	0,00	-0.0030				0.1394	0.0781	0.0613		0.6989	0.6823	16.6354
	8	.0.	0.2160	-0.0033	-0.0020				0.1378	0.0774	0.060		0.7038		46.6344
	0.0	0.03	0.1751	-0.0027	-0.0018				0.1367	0.0765	0.0602		0.7269	0.6807	6.6330
	9.0	6.6	0.1355	-0.0022	60016		, coo.		0.1352	0.0756	0.0596	0.6833	7309	0.64.0	46.6331
	9		0.0459	-0.0011	-0.0010				0.1321	0.0740			0.7337		46.6325
	-0.00	0.0	0.0496	-0.000	-0.0013				0.1316	0.0735			7117		46.6355
	0.0	5.0	0.0336	9000	-0.0010				0.1316	0.0733			0.7144	0.6855	46.6315
	0.00	0.05	0.0176	-0.003	-0.0012				0.1314	0.0731	0.0504		0.7006		46.6316
	0.0	5.0	0.0091	-0.0002	-0.0013		0.0002		0.1315	0.0731	0.0584		0.7157		46.6332
	9.00	0.0	-0.0053	0.000	6000				0.1315	0.0734	0.0582		0.7179		46.6318
	-0.00	00.0	-0.0125	0.0003	-0.000				0.1315	0.0734	0.0580		0.7171		46.6337
	0.00		-0.0213	0.000	0.000				0.1316	0.0734	0.0582	0.6879	0.7116	0.6872	46.6335
	8		-0.0451	60000	0.00				0.1319	0.0733	0.0506		0.6729		46.6343
	-0.00		-0.0623	0.0012	-0.000				0.1324	0.0739	0.0585		0.7400		46.6323
	0.0	8 6	-0.0965	0.0017	5000		0.0002		0.1338	0.0747	0.0591	0.6836	0.70	0.6706	46.6329
	-0.0	0	-0.1701	0.0026	\$000.0-				0.1365	0.0765			0.6881		46.6316
		00.00	-0.2114	0.0031	000			0000	0.1376	0.0773			0,7051		46.6320
		8.6	-0.2554	0.0037	50000000000000000000000000000000000000		2000	0000	0.1383	0.0777	9090	0.080.0	6551	, 4878.0 , 4878.0	46.6331
	0.0		-0.3592	0.0049	-0.000				0.1402	0.0784	0.0618				11(9.9)
			-0-4171	0.0057	-0.000				0.1424	0.0190	0.0634			0.6805	16.6317
22.1.2			1164.0	00.0	0.000		0.0002	0000	0.1459	0.0795	0.0650	0.6803	0.4501	6013.0	

SVERD SVERD WOLD ANDAN	THC. TORON OF THE AND TORON OF THE AND TORON OF THE AND TORON OF THE AND THE A	AEDC DI ORPORAT IRS DYNA ORCE ST CE CONE	IVISION FICH CONT INTES FAC FATION, 1	D, INC AEDC DIVISION SVERDBUP CORPORATION COMPANY N KARMAN GAS DYNAMICS FACILITY TOLD AIR FORCE STATION, PENWESSEE GE 2							DATE COMPUTED 111 SIME COMPUTED 111 DATE RECORDED 30-A TIME RECORDED 200- PROJECT MUMBER V61
5 6	2000	# .	£.95	599.7	3.40	0.301	141.7	PE 0.367E+07	28.274	UN CODE N PT 17 G P T RE A REFLENCEMACEMACEMACEMACEMACEMACEMACEMACEMACEMA	^*
	CDMF1G 2.5-106R-F0-80	08-0									

BODY AXIS-XHRP = (1/2) LH

																		•														
777	46.636	46.6350	46.6364	46,6385	46.6354	46.6346	46.6330	46.4331	46.6320	46,6328	46.6355	46.6324	46,6315	46.6316	46.6332	46,6326	46.6318	46.6337	46.6335	46.6327	46.6343	46.6323	46.6329	46.6351	46.6316	46,6320	46.6331	46,6328	46.6311	46.6317	46.6303	46.6330
A.C.	0.6119	0.6823	0.6124	0.6123	0.6815	0.6810	0.6807	0.6810	0.6815	0.6829	0.6643	0.6655	0.6849	0.6855	0.6857	0.6862	0.6876	0.6079	0.6872	0.6456	0.6830	0.6820	0.6906	0.6794	0.6790	0.6788	0.6719	0.6793	0.6798	6.6805	0.6109	0.6809
1CP/LA	0.7033	0.6997	0.7020	0.7068	6969.0	0.7038	0.7269	0.7293	0.7309	0.7337	0.7177	0.7144	0.7138	0.7006	0.7157	0.7146	9.11.0	0.7171	0.7116	0.7132	0.6729	0.7400	0,7085	0,6895	0,6683	0.7051	0.7154	0.4551	0.0130	0.6195	1.3129	0.4501
0.6821	0.6822	0.6823	0.6820	0.6820	0.6820	0.6622	0.6826	0,6833	0.6839	0.6848	0.6860	0,6857	0.6857	0.6864	0.6887	0.6817	0.6842	0.6856	0.6879	0,6679	0.4652	0.6852	0,6136	0.6426	0.6816	0.6812	0.6808	0.6804	0.6802	0.6803	0.6803	0.6803
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0664	0.0640	0.0625	0.0613	0.0609	0.0604	0.0602	0.0596	0.0589	0.0581	0.0503	0.0503	0.0583	0.0584	0.0584	0.0584	0.05#2	0.0580	0.0582	0.0586	0.0586	0.0585	0.0591	0.0596	0.0601	0.0603	0.0606	0.0410	0.0618	0.0634	0.0654	0.0660
0.078	0.0794	0.0791	0,0785	0.0761	0.0777	0.0774	0.0765	0.0756	0.0748	0.0740	0.0735	0.0733	0.0731	0.0731	0.0731	0.0732	0.0734	0.0734	0.0734	0.0732	0.0733	0.0739	0.0747	0.0756	0.0765	0.0773	0.0777	0.0761	0.0784	0.0190	0.0795	0.0795
0 147 0 147	.0.1457	0.1431	0,1410	0.1394	0.1347	0.1378	0.1367	0,1352	0.1336	0,1321	0.1318	0.1316	0.1314	0.1314	0.1315	0.1316	0.1315	0.1315	0.1316	0.1310	0.1319	0.1324	0.1338	0.1352	0.1365	0.1376	0,1383	0.1391	0.1402	0.1424	0.1449	0.1455
9,000	00000	00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000.0	0.000	000000	0.0000	000000	0.0000	000000	00000	0.000	0.0000	0.000	0.0000	0.0000	0.0000	00000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000
8000 0000 0000	6000	0.000	0.0007	0.000	0.0007	9000-0	900000	0.000\$	0.000\$	0.0004	0.0004	0.0004	0.0004	0.0004	0.000	0.0004	0.0004	0.0004	0.0003	0.000	0.000	0.0003	6.0003	0.003	6.0003	0.0002	0.0002	0.0003	0.0002	0.0002	0.0002	0.0002
-0.003#	-0.0037	-0.0033	-0.0029	-0.0030	-0.0024	-0.0020	-0.0018	-0.0016	-0.0015	-0.0010	-0.0013	-0.0010	-0.0011	-0.0012	-0.0013	-0.0010	6000.0-	-0.0009	-0.000	-0.0010	*0000*0	-0.000\$	5000°0-	-0.0006	-0.0005	-0.000	-0.0003	-0.000	-0.000	-0.0002	0.000	0.000
10.05	-0.0986	-0.0775	-0.0647	-0.0568	-0.0478	-0.0393	-0.0319	-0.0250	-0.0184	-0.0121	-0.003	-0.0962	-0.00¢8	-0.0032	-0.0017	-0.0003	0.00.0	0.0054	0.0045	0.0055	\$ #CO. 0	0.0116	0.0178	0.0242	0.0304	0.0383	0.0462	0.0551	9190.0	0.0753	0.0964	0.0116
6,5261	0.4863	0.4256	0.3667	0.3122	0.2629	0.2160	0.1751	0.1365	0.1004	0.0659	0.0496	0.0336	0.0261	0.0176	1600.0	0.0029	-0.003	-0.0125	-0.0213	-0.0289	-0.0451	-0.0623	-0.0965	-0.1323	-0.1701	-0.2114	-0.2554	-0.3052	-0.3592	-0.4171	-0.4788	-0.4911
P#1	0.0	0.02	00.0	0.0	0.03	0.0	0.02	0.00	0.02	0.01	0.01	10.0	0.02	0.02	10.0	0.0	0.01	00.0	0.01	0.0	0.0	0.00	0.0	0.0	0.00	90.0	0.00	0.0	0.03	0.0	90.9	00.00
10.0																																
1 11.60	2 11.00	3 10.00	• •	5 E.00	6 7.00	7 6.00	2.00	• •	10 3.00	11 2.00	12 1.50	13 1.00	14 0.75	15 0.50	16 0.25	17 0.00	18 -0.75	19 -0.50	20 -0.75	21 -1.00	22 -1.50	23 -2.00	24 -3.00	25 -4.00	26 -5.00	27 -6.00	28 -7.00	29 -1.00	30 -1.00	31-10.00	32-11.00	33-11.21

ARD, INC. A SVERDRI YOU KAPHI ARNOLU AL STANDARD PAGE 3	ARD, INC AEDC DIVISION A SVERDRUP COPPUBLICA VON KAPHA CAS DYNANICS FACILIT ABROLD AIR FORCE STATION, TENNESSEE STANDARD FORCE COME (5 DEG)	NIVISION NTION COM NAMICS PA NTATION, IE (5 DEC	Pany Cility Tennesse ()	u									DATE CON TIME CON TIME REC PROJECT	DATE COMPUTED 31-AUG TIME COMPUTED 3110- DATE RECOMBED 30-AP- TIME RECOMBED 30-131 PROJECT MUMBER V411-
RUM CODE 502 4	0K 4.02	46.94 8.94	599.7	3.40	0.301	141.7	0.367E+07	28.274	34.290	PEP LENGTHS (CLM, CLM, CLL) 34,290 34,290 34,290	J.CLW.CLE	28		
COMFIG #12.5-T06R-	COMFIG H12.5-T06R-F0-B0													
					MISSIL	HISSILE AXIS-XHPP = (2/3) LM	HP = (2,	3 (5)						
PH ALPHA		144	ALPP	GND	CLMP						NCPP/LM	YCPP/LH	A.C.	Tre
9::-	0.0	0.02	11.60	0.5261	-0.00	-0.0036		0.0003	0.000		0.6821	0.6965	0.6617	46.6385
10.0		0.00	10.00	0.4256	9900			•	0000	0.1437	0.6823	0.7003	0.6123	46.6350
•			6.00	0.3667	-0.0056		•		0000	0:14:0	0.6820	0.7021	0.6026	46.6364
		0.00	00.0	0.3122	-0.0041			_	0000	0.1394	0.6820	0.706	0.6823	46.6305
		20.0	0 0	0.2424	0.00	6.00.03		2000	0000	0.1317	0.6820	0.6996	0.6615	46.6354
Ó		0.02	90.0	6.1751	-0.002				0000	0.1367	0.6826	0.7280	0.6807	46.6330
•		0.0	00.4	0.1365	-0.0022				0.0000	0.1352	0.6833	0.7296	0.6810	46.6331
10		0.02	3.00	0.1004	-0.00				0.000	0.1336	0.6839	0.7320	0.6815	46.6320
2.0			2.00	0.0659					00000	0.1321	0.6848	0.7344	0.6829	46.6325
7			200	0.040	900	-0.0012		7000	0000	0.1314	0,6860	7176	64.0	46.6338
14 0.7		0.03		0.0261	000				0000	0.1314	0.6857	0.7140	0.6849	46.6315
15 0.5		0.03	0.50	0.0176	-0.000			0.0002	00000	0.1314	0.6864	0.7007	0.6855	46.6316
16				0.0091	000			-	0.000	0.1315	0.6887	0.7157	0.6857	46.6332
200				0.0020	0.000	0.0010		_	00000	0.1316	0.6817	0.7146	0.6862	46.6326
				10.003				7000		6.1315	7589.0	0.717	6.64	46.633
20				-0.0213	0.000	-0.000 B			0000	0.1316	0.6879	0.7115	0.6872	46.6335
				-0.0289	0.0001			•	0.000.0	0.1316	0.4179	0.7132	0.6856	46.6327
			-1.50	-0.0451	0000	•			0.000.0	0.1319	0.6852	0.6730	0.6830	46.6343
			-2.00	-0.0623	0.0012	•			0.0000	0.1324	0.6852	0.7395	0.6820	46.6323
			-3.00	-0.0965	0.001				0000	0.1338	0.6836	0.7082	9089.0	46.6329
			00.	-0.1323	200.0				0000	0.1352	0.6976	0.6894	0.6794	46.635
27 40.00				20.1701	2000	10000		2000	0000	0.1365	0.6830	0.5783	0.6740	46.6316
28 -7.0			-7.00	-0.2554	0.0031				0000	0.1383	0.6808	0.7134	0.6789	46.6331
23 -1.0		0.01		-0.3052	0.0042				00000		0.6804	0.6572	0.6793	46.6320
30 -9.00	•	0.03	-9.00	-0.3592	0.0049	-0.0001	•		.0000	0.1402	0.6802	0.7237	0.6798	116.6311
0.05- 1E		00.0	00.00	-0.4171	0.0057	•	_	_	0000	0.1424	0.6803	0.6282	0.6805	16.6317
D		00.01	9.5	-0.4788	9900	0.000	•	0.0002	0.000	0.149	0.6803	1,2655	0.6600	46.6303
*******			17.71	*0.4711	0.00				0000	0.1455	6.690	*****	40.0	46.6338

C

STANDAPE PAGE 4	VOIS KAPAN GAS DIMBRICK FACILITY ARNOLD AIR FORCE STATION, TERNES STANDARD FORCE CONE (S DEG) PAGE 4	STATION, NE (S DEC	FORCE STATION, TENNESSEE RCE CONE (S DEG)										DATE RECORDED 30-APR-70 TIME RECORDED 20:25:31 PROJECT NUMBER V41A-07
NON CO 203	CODE H	15	## *.	3.40	0.301	141.7	RE 0.367E+07	28.274		REF LENGTHS (CLR.CLL) 34.290 34.290 34.290	K.CLK.C	EE.)	
CONFIG M12.5-TOGR-	CONFIG -1068-F0-R0										•		
PH ALPY			ŧ	•	•	473	4/484	P81/P	P82/P	9379	4/10	950/P	
2 10.51		46.98	599.7	7.69	9-301	0.0794	0.1022					0.1022	
8.6		•	599.7	3.403	100	0.0791	0.1020					0.1020	
7		•	599.7	3.411		0.0785	0.1119					0.1119	
		\$	599.7	3.406		0.0761	0.1163					0.1163	
		•	599.7	100	100.0	41.00	0.1203					0.1205	
		•	599.7	3.406	0.301	0.0765	0.1343					0.1341	
		•	509.7	3.410	0,303	0.0756.	0.1445.					0.1445	
		46.94	599.7	904.0	202	0.0748	0.1544					0.1544	
12 1.25	3	•	549.7	304.0	0,301	0.0735	0.1654					0.1634	
		•	599.7	3.409	0.301	0.0733	0.1713					0.1711	
		•	509.7	3.409	0.301	0.0731	0.1729			,		0.1729	•
		66.93	549.7	3.406	5	0.0731	0.1736					0.1736	•
17 -0.22		• •	6.00	100		0.0731	0.1732					0.1732	
		•	549.7	3.407		0.0734	0-1700					700	
	•	•	599.7	3,410		0.0734	0.1695					0.1695	
			599.7	3,406	. 301	0.0734	0.1702		•			0.1702	
		96.94	500	7.40	200	0.0732	0.1721					0.1721	
	00.00	•	599.7	3.403	0.301	0.0739	0.1642					0.1707	
		•	549.7	3.408	0.301	0.0747	0.1554					0.1554	
25.55		47.02	599.7	=:	0.302	0.0756	0.1452			•		0.1452	
		•	546.7		1000	6 6 7 7 2 8	0.1349					0.1349	
		47.00	299.7	3.409	0.30	0.0777	0.1206					0.1259	
	10.01	•	599.7	3.410	0.301	0.0781	0.1166					0.1168	
		•	599.7	3.409	0.301	0.0784	0.1131					0.1131	
	• '	•	599.7	3.408	0.301	0.0100	0,1065					0.1065	
33 -11.16		16.93	599.7	3.40¢	0.301	0.0795	0.1007					0.1007	
												0.1005	