NeuroMET Virtual MR Spectroscopy Workshop

L2: Localization Methods

Layla Tabea Riemann, M.Sc.

Physikalisch-Technische Bundesanstalt, AG «In-vivo MRT»

How do we get there?

Content

1. SVS Localization Methods

1.1 PRESS

1.2 STEAM

1.3 ISIS \rightarrow ³¹P MRS

1.4 (s)LASER

1.5 SPECIAL

2. Further Methods

2.2 MRSI/CSI

1. Localisation by gradients

in each direction a gradient field defines one slice \rightarrow the intersection of these slices is the selected volume of interest

1. Sequence diagram

1.1 Spin Echo Selection

1.1 Spin Echo Selection

Method of choice for 1H spectroscopy

1.1 PRESS

Point RESolved Spectroscopy

- Double spin echo sequence: 90° 180°
 180° echo acquisition
- Spoiler/crusher gradients: eliminate unwanted echo signals from outside the selected volume

1.1 PRESS

Advantages:

- Good localization and strong suppression of signals outside the selected volume in one measurement → widely used for ¹H spectroscopy
- Less motion sensitive than STEAM (in a minute ©)
- Twice as much signal as with STEAM

Disadvantages:

- Minimal echo time: 19 ms (1.5T) / 31 ms (3T)
- 3T, 7T: large chemial shift displacement (CSD)

Chemical Shift Displacement (CSD)

Öz et al., NRM in Biomedicine, 2020

1.2 Stimulated Echo

1.2 Stimulated Echo

1.2 STEAM

Stimulated Echo Acquisition Mode

- Selective excitation
- Uses 3 slice selective 90° pulses forming a stimulated echo after TE + TM

1.2 STEAM

Advantages:

- Allows shorter echo times than PRESS (down to 5 ms)
- Less CSD due to using only 90° pulses

Disadvantages:

Signal intensities are only half of those obtained with PRESS

How do we get a signal if the FID is gone?

- T₂* occurs from macroscopic, reversible loss of phase coherence in addition to T₂ relaxation
- T₂ occurs from microscopic, irreversible loss of phase coherence
- $T_2 >> T_2^*$

→ We have to compensate for T2* relaxation

1.3 ISIS

https://www.mriquestions.com/isis.html

Image Selected In vivo Spectroscopy (oldest SVS technique)

equals

minus

1.3 ISIS

https://www.mriquestions.com/isis.html

- Image Selected In vivo Spectroscopy (oldest SVS technique)
- Method of choice for ³¹P, ¹⁹F MRS
- 2D needs 4 experiments, 3D needs 8

1.3 ISIS

Advantages:

- FID acquisition starts immediately after excitation → no T₂-loss, no J-modulation → primarily used for ³¹P MRS because of short T₂ relaxation times
- Easily adjustuable for 2 or 4 volumes with linear time increase
- The 8 needed phase cycles hardly increase the measurement time, as in vivo ³¹P spectroscopy needs multiple signal acquisitions

Disadvantages:

Large signals are subtracted from each other → sensible to instrumental instabilities, motion, T₁ saturation
 →Not used for ¹H spectroscopy anymore

1.4.1 Adiabatic Pulses

Advantages:

- Insensitive to B₁ inhomogeneities
- Smaller CSD
- Larger bandwidth → insensitive to B₀ inhomogeneities

Disadvantages:

- Increased specific absorption rate (SAR)
- Long pulse duration

Youtube: Robin de Graaf, ,Basics of in vivo NMR'

Öz et al., NRM in Biomedicine, 2020

1.4.1 LASER

Localization by Adiabatic Selective Refocusing

- Non-selective excitation
- Uses 3 slice selective 180° pulse pairs for slice selection

Landheer et al., Journal of MRI, 2019

1.4.1 LASER

Advantages:

- Reduced CSD compared to PRESS
- Reduced B₁ sensitivity

Disadvantages:

- Nonlinear phase profile of adiabatic pulse → paired pulses
 → increased TE compared to PRESS
- Higher SAR due to three refocussing pulse pairs

1.4.2 sLASER

Semi Localization by Adiabatic Selective Refocusing

sLASER

 Uses one slice-selective excitation pulse, followed by two pairs of adiabatic refocussing pulses (three pulses replaced from LASER: one non-selective excitation and two slice-selective refocussing)

1.4.2 sLASER

Advantages:

- Smaller TE than LASER (7 T: 24 ms) → good for editing (section 2...stay thrilled)
- Lower SAR than LASER

Disadvantages:

 Excitation pulse sensitive to B₁ inhomogeneities and lower bandwidth because no adiabatic pulse

1.5 SPECIAL

SPin ECho, full Intensity Acquired Localized

Combination of

and

 Uses an on/off selective adiabatic inversion pulse, a 90° excitation and a 180° refocussing pulse

1.5 SPECIAL

Advantages:

Very short TEs (3 T/7 T < 6/10 ms) due to 1D ISIS before excitation

Disadvantages:

- Strong CSD in refocussing dimension → SPECIAL-sLASER
- two-cycle schemes → systematic variations between cycles manifest in their difference spectrum
- strong lipid contamination → lipid suppression techniques necessary

1. Conclusion

1. Conclusion

PRESS

Spin echo → longer TE_{min}
best SNR
more CSD

→ 'standard' MRS sequence

STEAM

stimulated echo → shortest TE only half the signal of PRESS less CSD

,classical' MRSsequences→ No adiabaticpulses

Historically oldest MRS sequence
Add/Subtract scheme

→ 31P MR spectroscopy

1. Conclusion

sLASER

Slice-selective excitation + LASER Smaller SAR and TE than LASER

LASER

Non-selective excitation with adiabatic refocusing pulses Lowest CSD

SPECIAL

1D ISIS (adiabatic pulse) + PRESS Very short TEs

→ TE_{SPECIAL} < TE_{SLASER} < TE_{LASER} most of the latest technical developments

,modern' MRS sequences

→ adiabatic pulses

2.1 MEGA

MEsher and GArwood (first and last author of first publication about this topic)

Necessary to quantify single metabolites out of overlapping peaks

→ glutamate, GABA, glutamine

2.1 MEGA

2.1 MEGA

 two frequency-selective pulses designed to invert and, with the use of crushers, dephase unwanted resonances while not affecting desired resonances

2.2 MRSI

Magnetic Resonance Spectroscopic Imaging or Chemical Shift Imaging (CSI, old)

https://www.mriquestions.com/csi.html

Hnilivocá et al., NMR in Biomedicine, 2016

2.2 MRSI

2D-PRESS MRSI sequence with sliceselective excitation pulses in three planes with stepped phase-encoding gradients along 2 axes → ¹H brain

https://www.mriquestions.com/csi.html

2.2 MRSI

Advantages:

Spatial distribution of measured signal

Disadvantages:

- Larger point spread function → increased signal bleeding
- B₀ Shim not optimized
- Long measurement time

It is QUIZ time

https://www.menti.com/95vrtaxcce

Menti.com, Code: 2800 3789

Take Home Messages

- ,classical' SVS MRS sequences without adiabatic pulses
- ,modern' ones with adiabatic pulses and combination with ,classical' sequences

and TE/measurement time

- MEGA technique → increasing metabolic specificity J-Difference editing
- MRSI if spatial distribution of the metabolite signal required, while SVS easier to acquire and easier to correctly quantify

Thank you!

Layla.riemann@ptb.de

https://www.dreamstime.com/illustration/cartoon-questions.html

More adiabatic pulses (yippie @)

- Continuous RF-excitation swept over a range of frequencies from far below to far above the resonance frequency
- Provided the B₁-field was strong enough and applied slowly enough (the adiabatic condition), the net magnetization (M) could be nutated with a complete inversion by the end of the sweep

A closer look on stimulated echos

