PROBABILISTIC MACHINE LEARNING LECTURE 14 LOGISTIC REGRESSION

Philipp Hennig 19 June 2023

UNIVERSITÄT TÜBINGEN

FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
CHAIR FOR THE METHODS OF MACHINE LEARNING

Algorithm 1 Iterative GP regression (Numerics Layer)

```
Input: sufficient statistics K = k_{XX} + \sigma^2 l, \bar{y} = y - \mu_X, initial guesses \alpha_0, C_{0i}
Output: defragmented statistics S, C_i, \alpha_i
    1 procedure Train(K, V, C_0 = 0, \alpha_0 = 0)
              for i \in \{1, \ldots, n\} do
                                                                                                                                                                                  /\!\!/ Action – load, \mathbf{s}_i \in \mathbb{R}^{N \times k_i}
                                                                                                                                                                    /\!\!/ Observation – compute, z_i \in \mathbb{R}^{N \times k_i}
                  d_i \leftarrow (I - C_{i-1}K)s_i = s_i - C_{i-1}z_i
                                                                                                                                                                                /\!\!/ low-rank update, \mathbf{d}_i \in \mathbb{R}^{N \times k_i}
          H_i \leftarrow \mathbf{S}_i^\mathsf{T} K d_i = \mathbf{Z}_i^\mathsf{T} d_i
C_i \leftarrow C_{i-1} + d_i H_i^{-1} d_i^\mathsf{T}
\alpha_i \leftarrow C_i y = \alpha_{i-1} + d_i H_i^{-1} d_i^\mathsf{T} \bar{y}
                                                                                                                                                                           /\!\!/ Schur complement, H_i \in \mathbb{R}^{k_i \times k_i}
                                                                                                                                                                                                   // Inverse estimate
                                                                                                                                                                                                  // Solution Estimate
              end for
              return S = [s_i]_{i < i}, \alpha_i, C_i
      end procedure
  12 procedure PREDICT(x, S, \alpha, C)
        k_{ve} \leftarrow k[\mathbf{x}, \mathbf{S}]
                                                                                                                                                                                   // Covariance to Observations
                                                                                                                                                                                                       // Point estimate
                                                                                                                                                                                                           // Uncertainty
```

16 end procedure

Computation and Inference

- ▶ In least-squares regression, "training" the algorithm reduces to a *linear algebra* computation
- ▶ We have now seen that the corresponding *numerical methods* essentially reduce to smartly loading *projections* of the data in the right order
 - \triangleright $s_i = e_{j(i)}$ yields the **pivoted** Cholesky decomposition, where j(i) is the pivoting policy
 - ▶ the Lanczos process, initialized with $s_0 = K\alpha_0 C_0 y$, yields the **preconditioned** conjugate gradient method, where C_0 is the preconditioner.
 - We can think of α_0 , C_0 as a **prior guess** for α , K^{-1} . Then our algorithm computes updated estimates of K^{-1} .
- Side note: It turns out there are Bayesian interpretations of these point estimates with associated uncertainty for α and K^{-1} [Hennig, 2015, Wenger & Hennig, 2021, Hennig, Osborne, Kersting, 2022]

Relationship to Gradient Descent

connection to previous lectur

Lecture 12: Jacobian/Sensitivity of minimizer

$$\alpha^* = \underset{\alpha \in \mathbb{R}^N}{\arg \min} f(\alpha) = \underset{\alpha \in \mathbb{R}^N}{\arg \min} \frac{1}{2} \alpha^{\mathsf{T}} (k_{XX} + \sigma^2 l_N) \alpha - (\underbrace{y - \mu_X})^{\mathsf{T}} \alpha$$

$$= (k_{XX} + \sigma^2 l_N)^{-1} (y - \mu_X)$$

$$\Rightarrow \qquad \frac{d\alpha^*}{dy} = (k_{XX} + \sigma^2 l_N)^{-1}$$

Compare to gradient descent:

$$\frac{\partial \boldsymbol{\alpha}^*}{\partial \mathbf{y}} = \frac{\partial \nabla_{\alpha} f(\alpha)}{\partial \mathbf{y}} = \eta I$$

Cholesky iteratively computes a *total* derivative (a matrix inverse), while GD computes a *partial* derivative. This is why gradient descent does not converge in finite time. We pay for reducing complexity to $\mathcal{O}(N)$ and below, by losing convergence, and uncertainty.

Classification

eberhard karls UNIVERSITÄT TUBINGEN

 $\verb|https://github.com/zalandoresearch/fashion-mnist|\\$

Classification vs. Regression

Two types of supervised learning problems

Regression:

Given supervised data (special case d = 1: univariate regression)

$$(X,Y) := (x_i,y_i)_{i=1,\ldots,n}$$
 with $x_i \in \mathbb{X}, y_i \in \mathbb{R}^d$

find function $f: \mathbb{X} \to \mathbb{R}^d$ such that f "models" $Y \approx f(X)$.

Classification:

Given supervised data (special case d = 2: binary classification)

$$(X, Y) := (x_i, c_i)_{i=1,...,n}$$
 with $x_i \in \mathbb{X}, c_i \in \{1,...,d\}$

find probability $\pi: \mathbb{X} \to U^d$ ($U^d = \{p \in [0,1]^d: \sum_{i=1}^d p_i = 1\}$) such that π "models" $y_i \sim \pi_{x_i}$.

Regression predicts a function, classification predicts a probability.

Until further notice, consider only discriminative binary classification:

$$y \in \{-1; +1\} \qquad x \to \pi(x) =: \pi_x \in [0, 1]$$
$$p(y \mid x) = \begin{cases} \pi(x) & \text{if } y = 1\\ 1 - \pi(x) & \text{if } y = -1 \end{cases}$$

$$y \in \{-1; +1\} \qquad x \to \pi(x) =: \pi_x \in [0, 1]$$
$$p(y \mid x) = \begin{cases} \pi(x) & \text{if } y = 1\\ 1 - \pi(x) & \text{if } y = -1 \end{cases}$$

Discriminative learning phrased probabilistically:

- ▶ We would like to *learn* $\pi_x(y) = p(y \mid x)$
- ► This is almost like regression: $p(y \mid x) = \mathcal{N}(y; f_x, \sigma^2) = \pi_x(y)$
- ▶ only the *domain* is wrong: $y \in \{-1, 1\}$ vs. $y \in \mathbb{R}$.

Link Functions

DEMO

- ▶ git clone https://github.com/philipphennig/ProbML_Apps.git
- ► cd ProbML_Apps/14
- ▶ pip install -r requirements.txt
- ► streamlit run Lecture_14.py

A Gaussian Process model for Classification

$$p(f) = \mathcal{GP}(f; m, k)$$

$$p(y \mid f_x) = \sigma(yf_x) = \begin{cases} \sigma(f) & \text{if } y = 1\\ 1 - \sigma(f) & \text{if } y = -1 \end{cases} \quad \text{using } \sigma(x) = 1 - \sigma(-x).$$

using
$$\sigma(x) = 1 - \sigma(-x)$$

Logistic Regression

A Gaussian Process model for Classification

Logistic Regression

$$p(f) = \mathcal{GP}(f; m, k)$$

$$p(y \mid f_x) = \sigma(yf_x) = \begin{cases} \sigma(f) & \text{if } y = 1\\ 1 - \sigma(f) & \text{if } y = -1 \end{cases} \quad \text{using } \sigma(x) = 1 - \sigma(-x).$$

The problem: The posterior is not Gaussian!

$$p(f_X \mid Y) = \frac{p(Y \mid f_X)p(f_X)}{p(Y)} = \frac{\mathcal{N}(f_X; m, k) \prod_{i=1}^n \sigma(y_i f_{x_i})}{\int \mathcal{N}(f_X; m, k) \prod_{i=1}^n \sigma(y_i f_{x_i}) df_X}$$
$$\log p(f_X \mid Y) = -\frac{1}{2} f_X^\mathsf{T} k_{XX}^{-1} f_X + \sum_{i=1}^n \log \sigma(y_i f_{x_i}) + \text{const.}$$

Logistic Regression is not analytic

eberhard karls UNIVERSITAT TUBINGEN

We'll have to break out the toolbox

Logistic Regression is not analytic

We'll have to break out the toolbox

Logistic Regression is not analytic

We'll have to break out the toolbox

The Laplace Approximation

erre Simon M. de Laplace, 1814

- Consider a probability distribution $p(\theta)$ (may be a posterior $p(\theta \mid D)$ or something else)
- ▶ find a (local) maximum of $p(\theta)$ or (equivalently) $\log p(\theta)$

$$\hat{\theta} = \arg\max\log p(\theta) \qquad \Rightarrow \qquad \nabla\log p(\hat{\theta}) = 0$$

lacktriangle perform **second order Taylor expansion** around $heta=\hat{ heta}+\delta$ in log space

$$\log p(\delta) = \log p(\hat{\theta}) + \frac{1}{2} \delta^{\mathsf{T}} \left(\underbrace{\nabla \nabla^{\mathsf{T}} \log p(\hat{\theta})}_{=:\Psi} \right) \delta + \mathcal{O}(\delta^{3})$$

define the Laplace approximation q to p

$$q(\theta) = \mathcal{N}(\theta; \hat{\theta}, -\Psi^{-1})$$

The Laplace Approximation for GP Classification

Find maximum posterior probability for **latent** *f* at **training points**

$$\hat{\mathbf{f}} = \arg \max \log p(\mathbf{f}_X \mid y)$$

Assign approximate Gaussian posterior at training points

$$q(f_X) = \mathcal{N}(f_X; \hat{\mathbf{f}}, -(\nabla \nabla^{\mathsf{T}} \log p(f_X \mid y)|_{f_Y = \hat{\mathbf{f}}})^{-1}) =: \mathcal{N}(f_X; \hat{\mathbf{f}}, \hat{\Sigma})$$

approximate posterior **predictions** at f_x for **latent function**

$$q(f_X \mid y) = \int p(f_X \mid f_X) q(f_X) df_X = \int \mathcal{N}(f_X; m_X + k_{XX} K_{XX}^{-1} (f_X - m_X), k_{XX} - k_{XX} K_{XX}^{-1} k_{XX}) q(f_X) df_X$$

$$= \mathcal{N}(f_X; m_X + k_{XX} K_{XX}^{-1} (\hat{\mathbf{f}} - m_X), k_{XX} - k_{XX} K_{XX}^{-1} k_{XX} + k_{XX} K_{XX}^{-1} \hat{\Sigma} K_{XX}^{-1} k_{XX})$$

Compare with exact predictions

$$\mathbb{E}_{p(f_{x},f_{X}|y)}(f_{X}) = \int (\mathbb{E}_{p(f_{X}|f_{X})}(f_{X}))p(f_{X}|y) df_{X} = m_{X} + k_{XX}K_{XX}^{-1}(\mathbb{E}_{p(f_{X}|y)}(f_{X}) - m_{X}) =: \bar{f}_{X}$$

Recall: $p(x) = \mathcal{N}(x; m, V), p(z \mid x) = \mathcal{N}(z; Ax, B) \Rightarrow p(z) = \int p(z \mid x)p(x) dx = \mathcal{N}(z; Am, AVA^{\mathsf{T}} + B).$

conceptual step (implementation details coming up

Find maximum posterior probability for **latent** *f* at **training points**

$$\hat{\mathbf{f}} = \arg\max\log p(\mathbf{f}_X \mid y)$$

Assign approximate Gaussian posterior at training points

$$q(f_X) = \mathcal{N}(f_X; \hat{\mathbf{f}}, -(\nabla \nabla^{\mathsf{T}} \log p(f_X \mid y)|_{f_X = \hat{\mathbf{f}}})^{-1}) =: \mathcal{N}(f_X; \hat{\mathbf{f}}, \hat{\Sigma})$$

 \triangleright approximate posterior **predictions** at f_x for **latent function**

$$q(f_X \mid y) = \int p(f_X \mid f_X) q(f_X) df_X = \int \mathcal{N}(f_X; m_X + k_{XX} K_{XX}^{-1} (f_X - m_X), k_{XX} - k_{XX} K_{XX}^{-1} k_{XX}) q(f_X) df_X$$

$$= \mathcal{N}(f_X; m_X + k_{XX} K_{XX}^{-1} (\hat{\mathbf{f}} - m_X), k_{XX} - k_{XX} K_{XX}^{-1} k_{XX} + k_{XX} K_{XX}^{-1} \hat{\Sigma} K_{XX}^{-1} k_{XX})$$

Compare with exact predictions

$$\operatorname{var}_{p(f_{x},f_{X}\mid y)}(f_{x}) = \int (f_{x} - \bar{f}_{x})^{2} dp(f_{x}\mid f_{x}) dp(f_{x}) = k_{xx} - k_{xx}K_{xx}^{-1}k_{xx} + k_{xx}K_{xx}^{-1}\operatorname{var}_{p(f_{x}\mid y)}(f_{x})K_{xx}^{-1}k_{xx}$$

Recall: $p(x) = \mathcal{N}(x; m, V), p(z \mid x) = \mathcal{N}(z; Ax, B) \ \Rightarrow \ p(z) = \int p(z \mid x)p(x) \, dx = \mathcal{N}(z; Am, AVA^\mathsf{T} + B).$

Find maximum posterior probability for **latent** *f* at **training points**

$$\hat{\mathbf{f}} = \arg\max\log p(\mathbf{f}_X \mid y)$$

Assign approximate Gaussian posterior at training points

$$q(f_X) = \mathcal{N}(f_X; \hat{\mathbf{f}}, -(\nabla \nabla^{\mathsf{T}} \log p(f_X \mid y)|_{f_X = \hat{\mathbf{f}}})^{-1}) =: \mathcal{N}(f_X; \hat{\mathbf{f}}, \hat{\Sigma})$$

 \triangleright approximate posterior **predictions** at f_x for **latent function**

$$q(f_X \mid y) = \int p(f_X \mid f_X)q(f_X) df_X = \int \mathcal{N}(f_X; m_X + k_{XX}K_{XX}^{-1}(f_X - m_X), k_{XX} - k_{XX}K_{XX}^{-1}k_{XX})q(f_X) df_X$$

= $\mathcal{N}(f_X; m_X + k_{XX}K_{XX}^{-1}(\hat{f} - m_X), k_{XX} - k_{XX}K_{XX}^{-1}k_{XX} + k_{XX}K_{XX}^{-1}\hat{\Sigma}K_{XX}^{-1}k_{XX})$

compute predictions for label probabilities:

$$\mathbb{E}_{\rho(f|y)}[\pi_{\mathsf{X}}] \approx \mathbb{E}_q[\pi_{\mathsf{X}}] = \int \sigma(f_{\mathsf{X}}) q(f_{\mathsf{X}} \mid \mathsf{y}) \, df_{\mathsf{X}} \quad \text{or (not the same!)} \quad \hat{\pi}_{\mathsf{X}} = \sigma(\mathbb{E}_q(f_{\mathsf{X}}))$$

- the Laplace approximation is only very roughly motivated (see above)
- it can be **arbitrarily wrong**, since it is a **local** approximation
- but it is still better than a point estimate!
- and it is typically the most computationally efficient thing to try, because it uses only auto-diff and linear algebra
- for logistic regression, it tends to work relatively well, because
 - ▶ the log posterior is concave (see below)
 - ▶ the algebraic structure of the link function yields "almost" a Gaussian posterior (cf. picture above)

Today, we will only implement the mode-finding, and leave the Hessian/uncertainty for next time

$$p(f) = \mathcal{GP}(f, m, k) \qquad p(\mathbf{y} \mid f_X) = \prod_{i=1}^n \sigma(y_i f_{x_i}) \qquad \sigma(z) = \frac{1}{1 + e^{-x}}$$

$$\log p(f_X \mid \mathbf{y}) = \log p(\mathbf{y} \mid f_X) + \log p(f_X) - \log p(\mathbf{y}) \quad \text{with} \quad \log \sigma(y_i f_{x_i}) = -\log(1 + e^{-y_i f_{x_i}})$$

$$= \sum_{i=1}^n \log \sigma(y_i f_{x_i}) - \frac{1}{2} (f_X - m_X)^\mathsf{T} K_{XX}^{-1} (f_X - m_X) + \text{const.}$$

$$\nabla \log p(f_X \mid \mathbf{y}) = \sum_{i=1}^n \nabla \log \sigma(y_i f_{x_i}) - K_{XX}^{-1} (f_X - m_X) \quad \text{with} \quad \frac{\partial \log \sigma(y_i f_{x_i})}{\partial f_{x_i}} = \delta_{ij} \left(\frac{y_i + 1}{2} - \sigma(f_{x_i}) \right)$$

Gaussian Process Classification — (Probabilistic) Logistic Regression:

- Supervised classification phrased in a discriminative model with probabilistic interpretation
- model binary outputs as a transformation of a latent function with a Gaussian process prior
- ▶ due to non-Gaussian likelihood, the posterior is non-Gaussian; exact inference intractable
- ► Laplace approximation: Find MAP estimator, second order expansion for Gaussian approximation

Please cite this course, as