

Home

Manual

FAQ

CCB » Software » StringTie

StringTie1+2 RNA-seq assembly methods

Chanhee Lee

Resources that you might want to revist after class

Publications

Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M Transcriptome assembly from long-read RNA-seq alignments with StringTie2, *Genome Biology* 20, 278 (2019), doi:10.1186/s13059-019-1910-1

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown, *Nature Protocols* 11, 1650-1667 (2016), doi:10.1038/nprot.2016.095

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT & Salzberg SL. **StringTie enables improved reconstruction of a transcriptome from RNA-seq reads** *Nature Biotechnology* 2015, doi:10.1038/nbt.3122

Youtube videp from Salzberg: https://www.youtube.com/watch?v=2qGiw4MRK3c&t=2501s

What you will learn after the presentation

- Why do we perfrom RNA-seq analysis?
- What are the challenges in RNA-seq analyis?
- What main idea did StringTie use to solve the problems?
- How much better is StringTie compared to other methods?

Why do we perform RNA-seq analysis?

- For DNA-seq analysis, we are usually interested in variant! (GATK pipeline)
- DNA doesn't change much
 => SNP, INDEL, PRS, GWAS ...

- For RNA-seq analysis, what are we interested in?
- Transcription varies significantly across different conditions!
- Compare gene(transcripts) expresseion between case vs control => DEG!

Why do we perform RNA-seq analysis?

1) Who are being expressed? Identification

+

2) How much are they being expressed?

Quantification

- => Comparison between conditions!
- => What caused that difference?
- => How does it affect translation?

RNA-seq analysis pipeline

: new tuxedo protocol

- Alignment of the reads to the genome; (HISAT)
- Assembly of the alignments into full-length transcripts; (StringTie)
- Quantification of the expression levels of each gene and transcript; (StringTie)
- Calculation of the differences in expression for all genes among the different experimental conditions; (Ballgown)

RNA-seq analysis pipeline

: new tuxedo protocol

- Alignment of the reads to the genome;
 (HISAT)
- Assembly of the alignments into fulllength transcripts; (StringTie)
- 3. Quantification of the expression levels of each gene and transcript; (StringTie)
- Calculation of the differences in expression for all genes among the different experimental conditions; (Ballgown)

RNA-seq analysis pipeline

: new tuxedo protocol

1. Alignment of the reads to the genome; (HISAT)

RNA-seq analysis pipeline : new tuxedo protocol

- 2. Assembly of the alignments into full-length transcripts; (StringTie)
- 3. Quantification of the expression levels of each gene and transcript; (StringTie)

RNA-seq analysis pipeline : new tuxedo protocol

4. Calculation of the differences in expression for all genes among the different experimental conditions; (Ballgown)

What are the challenges in RNA-seq analysis?

A single gene may be transcribed into several distinct mRNA variants called isoforms

High variable sequence coverage for different transcripts

- Alternative transcripts from the same locus can share exons
- Determining the quantities is also challenging, even if we assume that the transcript structures are known.

What are the challenges in RNA-seq analysis?

transcript identification problem + expression quantification problem

How to solve the challenges: Previous solution

- Transcript identification problem : Trinity, Oases
- Expression quantification problem : RSEM, eXpress
- Solve both: IsoInfer, Scripture, Cufflinks, SLIDE, IsoLasso, iReckon, Traph

Still, much work remains to produce consistent, highly accurate solutions

How to solve the challenges : StringTie

- StringTie uses a genome-guided transcriptome assembly approach along with concepts from *de novo* genome assembly to improve transcript assembly.
- StringTie is RNA-seq assembly method that tackles identification and quantification simultaneously.
- StringTie correctly identified 36–60% more transcripts than the next best assembler (Cufflinks) on multiple real and simulated data sets!!

Main idea used in StringTie

- StringTie assembles transcripts and estimates their expression levels simultaneously.
- 1. StringTie first groups the reads into clusters, (by gene locus)
- 2. creates a **splice graph** from which it identifies transcripts,
- 3. creates a separate **flow network** to estimate its expression level using a maximum flow algorithm.

After alignment... we have reads mapped to the reference genome

- Splice variant1 : 2=>3=>5=>6
- Splice variant2 : 2=>3=>5=>7=>8
- Splice variant3 : 1=>2=>3=>5=>7

Using Splice Graph, we can represent all the combinations of different isoforms.(s=>t)

- * Node: exon or part of exon
- * Edge : possible path

From the splice graph, we must figure out which isoforms the reads were from - Identification problem

Cufflinks: Most parsimonious methods

- generates the minimal number of transcripts that will explain all reads in the graph
- Can't explain right example.
- Does not account for expression level in identification of isoforms

Main idea used in StringTie (Splice Graph)

Heaviest path: 2=>3=>5=>7=>8

=> Isoform is identified, using coverage information

Identifying a transcript in the splice graph

A greedy method is used to identify a source-to-sink path through the splice graph which is compatible with the highest number of alignments: starting at a node of maximal read coverage in the graph a path is extended towards the source and sink such that it maximizes the number of alignments compatible with path. An example of an extension to sink is given below:

Main idea used in StringTie (Maxflow algorithm)

Maxflow Network(Quantification)

- Assume 1=>2=>3=>4 is the isoform we found using heaviest path
- Edge is generated at where reads start and ends, +1 to the edge (first read : starts at 1, ends at 4)

Main idea used in StringTie (Maxflow algorithm)

Maxflow algorithm(Quantification)

- What is the maximum number of water that can flow through the pipe
- What is the maximum number of the isoform that can be built from the reads
 - 1) a
 - 2) b, c, d
 - 3) e, j
 - 4) g, k

=> max fragments : 4 (Quantification)

Main idea used in StringTie

- StringTie first groups the reads into clusters,(by gene locus)
- splice graph for each cluster is create and identifies transcripts(heaviest path)
- then for each transcript it creates a separate flow network to estimate its expression level using a maximum flow algorithm.

How accurate is StringTie? (Experiment settings)

Simulation1

 using the exact parameters specified for a directional human RNA-seq protocol provided on the Flux Simulator web page

Simulation2

• we replaced the empirical fragment size distribution from Sim-I with a parameterized normal N(250,20) distribution, because some transcriptome assemblers 13 assume a normal distribution.

How accurate is StringTie? (Experiment settings)

Real Data (ENCODE Project from UCSC genome browser + Own data)

- whole B cells in blood: 90 million 76-bp paired-end reads
- Cytosol of fetal lung fibroblasts: 145 million 101-bp paired-end reads
- CD14-positive monocytes: 120 million 76-bp paired-end

• Kidney cell line (own): 180 million 100-bp paired-end reads

How accurate is StringTie? (Identification)

12/10/21 25

How accurate is StringTie? (Quantification)

Table 1 Transcriptome assemblers' performances on simulated and real data

Data set	Measure	StringTie+SR	StringTie	Cufflinks	Traph	Scripture	IsoLasso
Sim-I	ρ _{all}	0.648	0.646	0.551	0.080	-0.361	0.162
	Ppredicted	0.871	0.878	0.826	0.432	-0.228	0.500
Sim-II	ρ_{all}	0.799	0.787	0.720	0.310	-0.435	0.000
	Ppredicted	0.913	0.907	0.883	0.524	-0.301	0.258
Kidney	Genes	10,773	10,659	7,774	n/a	7,813	2,785
	Transcripts	13,900	13,720	9,245	n/a	13,833	3,191
Blood	Genes	9,198	8,938	6,073	n/a	6,533	3,526
	Transcripts	11,489	10,990	7,187	n/a	11,213	4,124
Lung	Genes	10,913	10,779	8,566	n/a	7,070	3,590
	Transcripts	14,055	13,706	10,370	n/a	12,559	4,187
Monocytes	Genes	9,005	8,859	6,351	n/a	6,244	3,020
	Transcripts	11,059	10,748	7,502	n/a	1,1046	3,528

FPKM => f1, f2, f3 => pred_rank1, pred_rank2, pred_rank3 => compare it with real rank => spearman correlation

Is it computationally better method?

- On the four real data sets used here, the maximum memory used by
 - StringTie : 1.6 12 GB.
 - Cufflinks, IsoLasso and Scripture: 6.4 26.6 GB
- Computation time comparison on four real data sets
 - StringTie required from 35–76 min
 - StringTie was more than three times faster than the fastest of the other four programs, and in some cases over 50 times faster

Why StringTie is good?

- Analyzed the genes that were found by StringTie but not by Cufflinks, and vice versa, on all four of the real data sets
- StringTie was better at reconstructing at least three types of genes:
- (i) those at low abundance;
- (ii) those with more exons and
- (iii) those with multiple isoforms.

Summary: StringTie

StringTie is a RNA-seq assembly methods that

- 1) applies a network flow algorithm,
- 2) together with optional de novo assembly, to assemble these complex data sets into transcripts.
- more complete and accurate reconstructions of genes
- better estimates of expression levels
- faster on all data sets tested to date

What about StringTie2?: updated version

The new StringTie2 focuses on extending StringTie1's capacity to handle long-read data

- Implements much more efficient data structures that overall lead to faster run times and much lower memory usage
- To handle the high error rates in the long reads,
 - 1. Correct potentially wrong splice sites by checking all the splice sites present in the alignment of a read with a high-error alignment rate
 - 2. Designed and implemented a pruning algorithm that reduces the size of the splicing graph to a more realistic size

Q & A