ESC195 Midterm Review

QiLin Xue

February 10, 2021

Contents

1	L'hopital's Rule			
2	Integrals			
	2.1 Improper Integrals			
	2.2 Applications			
3	Parametric Equations			
	3.1 Graphing			
	3.1 Graphing			
4	Polar Curves			
	4.1 Graphing			
	4.2 Common Polar Curves			

1 L'hopital's Rule

When the limit of a function takes the form of $\frac{0}{0}$ or $\frac{\infty}{\infty}$, we can use L'hopital's rule:

$$\lim_{x \to a} \frac{f(x)}{g(x)} \qquad \qquad \text{indeterminate} \tag{1}$$

$$= \lim_{x \to a} \frac{f'(x)}{g'(x)} \tag{2}$$

Not all indeterminate forms take this form however. Below is a list of indeterminate forms and how we can transform it to the one we're familiar with:

Indeterminate form	Conditions	Transformation to $0/0$	Transformation to ∞/∞
0 0	$\lim_{x o c}f(x)=0,\ \lim_{x o c}g(x)=0$	_	$\lim_{x o c}rac{f(x)}{g(x)}=\lim_{x o c}rac{1/g(x)}{1/f(x)}$
$\frac{\infty}{\infty}$	$\lim_{x \to c} f(x) = \infty, \ \lim_{x \to c} g(x) = \infty$	$\lim_{x o c}rac{f(x)}{g(x)}=\lim_{x o c}rac{1/g(x)}{1/f(x)}$	_
$0\cdot\infty$	$\lim_{x o c}f(x)=0,\lim_{x o c}g(x)=\infty$	$\lim_{x o c}f(x)g(x)=\lim_{x o c}rac{f(x)}{1/g(x)}$	$\lim_{x o c}f(x)g(x)=\lim_{x o c}rac{g(x)}{1/f(x)}$
$\infty - \infty$	$\lim_{x o c}f(x)=\infty,\ \lim_{x o c}g(x)=\infty$	$\lim_{x o c}(f(x)-g(x))=\lim_{x o c}rac{1/g(x)-1/f(x)}{1/(f(x)g(x))}$	$\lim_{x o c}(f(x)-g(x))=\ln\lim_{x o c}rac{e^{f(x)}}{e^{g(x)}}$
00	$\lim_{x \to c} f(x) = 0^+, \lim_{x \to c} g(x) = 0$	$\lim_{x o c}f(x)^{g(x)}=\exp\lim_{x o c}rac{g(x)}{1/\ln f(x)}$	$\lim_{x o c}f(x)^{g(x)}=\exp\lim_{x o c}rac{\ln f(x)}{1/g(x)}$
1^{∞}	$\lim_{x o c}f(x)=1,\lim_{x o c}g(x)=\infty$	$\lim_{x o c}f(x)^{g(x)}=\exp\lim_{x o c}rac{\ln f(x)}{1/g(x)}$	$\lim_{x \to c} f(x)^{g(x)} = \exp \lim_{x \to c} \frac{g(x)}{1/\ln f(x)}$
∞^0	$\lim_{x o c} f(x) = \infty, \ \lim_{x o c} g(x) = 0$	$\lim_{x o c}f(x)^{g(x)}=\exp\lim_{x o c}rac{g(x)}{1/\ln f(x)}$	$\lim_{x o c}f(x)^{g(x)}= \exp\lim_{x o c}rac{\ln f(x)}{1/g(x)}$

2 Integrals

A high level overview of steps that one should take when solving any integral is given in the flowchart. Here are a few more tips:

- Look for symmetry. If the function is odd or even, that may come into handy!
- For rational functions, try adding and subtracting the same term to the numerator.
- You can sometimes remove rationals (i.e. square roots) with the substitution $x=u^2$.

2.1Improper Integrals

An improper integral is defined as:

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$
 (3)

And from $-\infty$ to ∞ , we have:

$$\int_{-\infty}^{\infty} = \int_{-\infty}^{a} f(x) \, \mathrm{d}x + \int_{a}^{\infty} f(x) \, \mathrm{d}x \tag{4}$$

Here is an important theorem to determine when an integral converges to diverges:

Theorem: Comparison Test: Let f, g be continuous functions and $0 \le f(x) \le g(x)$ where $x \in [a, \infty)$,.

- If $\int_{a}^{\infty} g \, dx$ converges, so does $\int_{a}^{\infty} f(x) \, dx$. If $\int_{a}^{\infty} f \, dx$ diverges, so does $\int_{a}^{\infty} g(x) \, dx$.

2.2**Applications**

Here are some things you can do with integrals:

• The arclength of a curve is:

$$s = \int_{a}^{b} \sqrt{1 + f'(x)^2} \, \mathrm{d}x \tag{5}$$

• The surface area of a surface of revolution is:

$$A = \int_{a}^{b} 2\pi f(x)\sqrt{1 + f'(x)^{2}} \,dx \tag{6}$$

• The force a fluid exerts on the flat wall of a container is:

$$F = \int_{a}^{b} \rho gxw(y) \,\mathrm{d}y \tag{7}$$

where w(y) is the width as a function of height y.

• The centroid of a curve is given by:

$$\bar{x} = \frac{\int_a^b x f(x) \, \mathrm{d}x}{\int_a^b f(x) \, \mathrm{d}x} \tag{8}$$

and

$$\bar{y} = \frac{\int_{a}^{b} f(x)^{2} dx}{2 \int_{a}^{b} f(x) dx}$$
 (9)

• Pappus's Centroid theorem can be used to easily find the volume of revolution:

$$V = 2\pi RA \tag{10}$$

where R is the distance from the centroid to the axis of rotation and A is the area of the rotated regoin.

• Similarly, we can also extend this to the centroid, which tells us that the surface area of a surface of revolution is:

$$A = 2\pi Rd\tag{11}$$

where d is the arclength of the curve.

3 Parametric Equations

Parametric equations are parametrized by x(t) and y(t). As a result, they form a plane curve.

• The derivative of the function at time t is given by:

$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} \tag{12}$$

• The area of a parametric curve is given by:

$$A = \int_{t_1}^{t_2} y(t)x'(t) dt$$
 (13)

• For a closed loop, the area can be represented in two ways:

$$A = -\int_{t_1}^{t_2} y(t)x'(t) dt = \int_{t_1}^{t_2} x(t)y'(t) dt$$
(14)

where t_1 and t_2 correspond to the same location. By convention, the curve has positive area when traversed counterclockwise.

• The arclength can be written as:

$$s = \int_{\alpha}^{\beta} \sqrt{1 + f'(x)^2} \, \mathrm{d}x \tag{15}$$

• The surface area when the curve is revolved is given by:

$$A = \int_{t_1}^{t_2} 2\pi y(t) \sqrt{x'(t)^2 + y'(t)^2} \,dt$$
 (16)

3.1 Graphing

If possible (and if it is easy), convert the parametric equations to a cartesian equation and plot it normally. If the above will make the problem significantly harder, here is a checklist to plot a parametric function:

- Check for potential vertical tangents by setting x'(t) = 0.
- Check for potential horizontal tangents by setting y'(t) = 0.
- Find x and y intercepts by setting x(t) = 0 and y(t) = 0.
- Look for periodicity in either x, y, or both.
- Find the coordinate and the slope $\frac{dy}{dx}$ at t=0 and at the endpoint $t=t_f$.
- Is x(t) a 1 1 function? If not, you'll get a graph where some points are directly above others.

3.2 Common Parametric Curves

Here is a list of common parametric curves:

• A circle centered at (x_0, y_0) with radius r:

$$(x_0 + r\cos(\pm\omega t), y_0 + r\sin(\pm\omega t)) \tag{17}$$

where $\omega \in \mathbb{R}$.

• An ellipse centered at (x_0, y_0) with a horizontal length a and vertical length b:

$$(x_0 + a\cos(\pm\omega t), y_0 + b\sin(\pm\omega t)) \tag{18}$$

where $\omega \in \mathbb{R}$.

• A straight line with slope m passing through (x_0, y_0) :

$$(x_0 + at, y_0 + amt) \tag{19}$$

where $a \in \mathbb{R}$.

• A cycloid (e.g. the curve traced by a point on a rolling circle with radius a with angular frequency ω) is given by:

$$(a\omega t - a\sin\omega t, a - a\cos\omega t) \tag{20}$$

which is seen in the below diagram:

• An **astroid** is given by:

$$(a\cos^3\omega t, a\sin^3\omega t) \tag{21}$$

which represents the curve traced out by a point on a rolling circle with radius a/4 rolling inside a circle of radius a.

4 Polar Curves

Polar curves are another type of plane curve defined using polar coordinates $[r, \theta]$. We can convert between cartesian and polar coordinates using the following transformations:

$$x = r\cos\theta\tag{22}$$

$$y = r\sin\theta\tag{23}$$

$$r = \sqrt{x^2 + y^2} \tag{24}$$

$$\theta = \arctan\left(\frac{y}{x}\right) \tag{25}$$

Calculus related results are summarized below:

• The derivative is given by:

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$
 (26)

• The area is given by:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r(\theta)^2 \, \mathrm{d}\theta \tag{27}$$

• The arclength is given by:

$$s = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, \mathrm{d}\theta \tag{28}$$

4.1 Graphing

Here is a checklist for plotting polar graphs:

- Check for symmetry:
 - Symmetry about x axis: $r(\theta) = r(-\theta)$
 - Symmetry about y axis: $r(\pi \theta) = r(\theta)$
 - Symmetry about origin: $r(\theta) = r(\theta + \pi)$
- Check the domain
- Find when r = 0
- \bullet Find local max and min values of r and where they are located, and break it up into intervals.
- It isn't always necessary but it may help to calculate $\frac{dy}{dx}$ at important locations.

4.2 Common Polar Curves

Note that the orientation of the below curves are not always fixed. It is possible to flip and rotate them by shifting the argument θ or using negative numbers. They just represent the general class of functions.

- Straight lines:
 - Straight lines y = mx: can be represented by $\theta = \arctan(m)$.
 - Vertical lines x = a: can be represented by $r = a \sec \theta$.
 - Horizontal lines y = b: can be represented by $r = b \csc \theta$.
- Circles:

$$r = -2\cos\theta\tag{29}$$

• Cardioids:

$$r = a + a\cos\theta \tag{30}$$

• Limacons:

$$r = a + b\sin\theta\tag{31}$$

There are two types, for a > b:

For a < b:

• Leminiscates. Again, there are two types. For:

and:

$$r^2 = a\cos(2\theta) \tag{33}$$

• Petal curves:

$$r = a\sin(n\theta) \tag{34}$$

$$r = a\cos(n\theta) \tag{35}$$

where n is an integer. There are n petals if n is odd and 2n petals if n is even. For example, the following is: $r = 2\cos 3\theta$:

and for $r = 2\sin(4\theta)$:

