Solutions for Homework Assignment #1

Answer to Question 1.

a.

b. Let \vec{v} be a column vector of length $n=2^k$ for some $k \geq 1$. We want to compute the product $M_k \vec{v}$. Note that the length $n=2^k$ of \vec{v} tell us which DeSica matrix M_k must be multiplied by \vec{v} . So we don't need M_k as part of our input, getting \vec{v} as the input suffices.

Let \vec{v}_1 and \vec{v}_2 be the first and second half of \vec{v} , respectively. (So, each of \vec{v}_1 and \vec{v}_2 has length $n/2 = 2^{k-1}$.) Then, by the definition of M_k we have:

$$M_k \vec{v} = \begin{bmatrix} M_{k-1} & M_{k-1} \\ M_{k-1} & -M_{k-1} \end{bmatrix} \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} M_{k-1} \vec{v}_1 + M_k & \vec{v}_2 \\ M_{k-1} \vec{v}_1 - M_{k-1} \vec{v}_2 \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \\ \vec{u}_2 \end{bmatrix}$$

So, we can compute $M_k \vec{v}$ by computing $M_{k-1} \vec{v}_1$ and $M_{k-1} \vec{v}_2$ (recursively) and doing a linear number of scalar additions or subtraction. In other words, we can multiply the $n \times n$ DeSica matrix by a n-vector \vec{v} , by performing two multiplications of the $n/2 \times n/2$ DeSica matrix by n/2-vectors (\vec{v}_1 and \vec{v}_2) and n scalar additions or subtractions.

DS-Mult (\vec{v})

- {* assumes that \vec{v} is a column vector of length $n = 2^k$ for some $k \geq 0$ and recursively computes $M_k \vec{v}$ *}
- $2 \quad n := |\vec{v}|$
- 3 if n=1 then return \vec{v}
- 4 $\vec{v}_1 := \text{the first } n/2 \text{ elements of } \vec{v}; \ \vec{v}_2 := \text{the last } n/2 \text{ elements of } \vec{v}$
- 5 {* recursively compute $\vec{w}_1 = M_{k-1}\vec{v}_1$ and $\vec{w}_2 = M_{k-1}\vec{v}_2$ *}
- 6 $\vec{w}_1 := \text{DS-Mult}(\vec{v}_1); \vec{w}_2 := \text{DS-Mult}(\vec{v}_2)$
- $7 \quad \vec{u}_1 := \vec{w}_1 + \vec{w}_2; \ \vec{u}_2 := \vec{w}_1 \vec{w}_2$
- 8 $\vec{u} := \begin{vmatrix} \vec{u}_1 \\ \vec{v}_2 \end{vmatrix}$
- 9 return \bar{u}
- **c.** Since dividing and combining the solutions of the two subproblems of size n/2 takes O(n) time (see lines 4, 7 and 8), the recurrence for the running time of the algorithm is:

$$T(n) = \begin{cases} 2T(n/2) + cn, & \text{if } n > 1\\ c, & \text{if } n = 1 \end{cases}$$

for some constant c. By the Master Theorem (where a = 2, b = 2 and d = 1, so $a = b^d$):

$$T(n) = O(n \log n)$$

^{© 2022} by Sam Toueg. This document may not be posted on the internet without the express written permission of the copyright owner.