组合数学作业 第6次

刘士祺 2017K8009929046

1. (2分)证明: 正整数 p 是素数当且仅当

$$(p-1)! \equiv -1 \pmod{p}$$

解: 必要性: 对于素数 p, 存在集合 $\mathbb{S} = \{2, 3, 4, \dots, p-2\}$, 有 $\forall x \in \mathbb{S}$, $\exists y \in \mathbb{S}$, $xy \equiv 1 \pmod{p}$ 。 若 $\exists y_1, y_2, xy_1 \equiv xy_2 \equiv 1 \pmod{p}$, 则 $y_1 \equiv y_2 \pmod{p}$,矛盾。故 $(p-1)! \equiv 1(p-1) \equiv -1 \pmod{p}$ 充分性: 设 p = ab, a|(p-1)!, 且 b|(p-1)!, 故若 $a \neq b$, p|(p-1)!, 矛盾。否则, $p = a^2$, $gcd((p-1)!, p) \neq 1$, 矛盾,故 p 为素数。

- 2. $(2 \, \beta)$ 证明: 若 a,b 是正整数, p 是素数, 则 $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$ 解: 由欧拉判别法, $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$, 则有 $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \equiv a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv \left(ab\right)^{\frac{p-1}{2}} \equiv \left(\frac{ab}{p}\right) \pmod{p}$, 故 $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$
- 3. $(2 \ \beta) \ m(\ge n+1)$ 个球放在 n 个盒子 B_1, B_2, \ldots, B_n 当中。现在把这 m 个球拿出来,重新放入另外 n+1 个新的盒子 $B_1^*, B_2^*, \ldots, B_{(n+1)}^*$ 当中,且每个新的盒子中至少有一个球。证明,存在两个球,每个都满足如下性质: 其所在的新盒子比其所在的旧盒子放入的球的个数更少。

解: 设 $m \ge n$, 有 $a^m - 1 = (a^{m-n} - 1)(a^n - 1) + (a^{m-n} - 1) + (a^n - 1)$, 设 $gcd(a^m - 1, a^n - 1) = i$, $i|a^{m-n} - 1$, 设 $gcd(a^n - 1, a^{m-n} - 1) = ki$, 故 $ki|a^m - 1$, 故 $gcd(a^m - 1, a^n - 1) = ki$, 故 k = 1. 故 $gcd(a^m - 1, a^n - 1) = gcd(a^n - 1, a^{m-n} - 1)$, 该式可看作对 m, n 辗转相减, 故 $gcd(a^m - 1, a^n - 1) = gcd(0, a^{gcd(m,n)} - 1) = a^{gcd(m,n)}$.

4. (2 分) 已知 $\{F_n\}_{n=1}^{\infty}$ 是 Fibonacci 数列, 证明 $\forall m,n\in\mathbb{N}, gcd(F_m,F_n)=F_{gcd(m,n)}$ 。

解: 由于 $F_{m+n} = F_m F_{n+1} + F_{m+1} F_n$,带入 m = m - n, n = n,故 $F_m = F_{m-n} F_{n+1} + F_m - n + 1F_n$,设 $gcd(F_m, F_n) = i$, $i|F_{m-n}$ (由 $gcd(F_{n+1}, F_n) = 1$),故 $i = gcd(F_{m-n}, F_n)$ (否则,若 $ki = gcd(F_{m-n}, F_n)$,k > 1, $ki|F_m$,矛盾。

故
$$gcd(F_m, F_n) = gcd(F_{m-n}, F_n)$$
, 同理可证, $gcd(F_m, F_n) = F_{gcd(m,n)}$ 。

5. (1 分)证明: 对于素数 p > 2, $\binom{2p}{p} \equiv 2 \pmod{p}$

解: 由卢卡斯定理

$$\binom{2p}{p} \equiv \binom{2}{1} + \binom{0}{0} \equiv 2 (mod\ p)$$

6. (2 分) 对于素数 p 定义 $h_p(n)$ 为 n! 中素数因子 p 的个数, 求证 $h_p(2n) \ge 2h_p(n)$ 。

解: 由

$$h_p(n) = \sum_{i=1}^{\infty} \lfloor \frac{n}{ip} \rfloor$$

和

$$h_p(2n) = \sum_{i=1}^{\infty} \lfloor \frac{2n}{ip} \rfloor$$

又有设 $n = pk + r, 0 \le r < k$, 有 $p = \lfloor \frac{n}{k} \rfloor$, 又 2n = 2pk + 2r, 故 $\lfloor \frac{2n}{k} \rfloor = 2p$ 或 $2p + 1 \ge 2p$ 。故

$$\sum_{i=1}^{\infty} \lfloor \frac{2n}{ip} \rfloor \ge 2 \sum_{i=1}^{\infty} \lfloor \frac{n}{ip} \rfloor$$

7. (2 分) 证明: 任给 $m, n \in \mathbb{N}$, 都有 m!n!(m+n)!|(2m)!(2n)!。

解: 设
$$S(m,n) = \frac{(2m)!(2n)!}{m!n!(m+n)!}$$
,有

$$S(m, n + 1) + S(m + 1, n)$$

$$= S(m, n) \frac{2(2n + 1)}{(m + n + 1)} + S(m, n) \frac{2(2m + 1)}{(m + n + 1)}$$

$$= 4S(m, n)$$

故 S(m,n+1)=4S(m,n)-S(m+1,n), 又 $S(m,0)=\frac{(2m)!}{m!}\in\mathbb{Z}$, 故 $\forall m,n,S(m,n)\in\mathbb{Z}$, 故 m!n!(m+n)!|(2m)!(2n)!。

8. 设集合 $A, B \in \mathbb{Z}$, 定义集合 $A + B = \{a + b | a \in A, b \in B\}$ 。证明: $|A + B| \ge |A| + |B| - 1$ 解: 67 是素数故 $(\frac{20}{67}) \equiv 20^{\frac{67-1}{2}} \equiv -1 \pmod{67}$