Ceng 302 Database Management Systems

Relational Database Design and Normalization

Prof. Dr. Adnan YAZICI

Department of Computer Engineering,
Middle East Technical University
(Fall 2021)

Design of Relational Databases

- What is relational database design?
 - The grouping of attributes to form **good** relation schemas
- Two levels of relation schemas
 - The logical **user view** level
 - The storage base relation level
- Design is concerned mainly with storage base relations
- What are the criteria for "good" base relations?

Design of Relational Databases

- We first discuss **informal guidelines** for *good* relational design
- Then we discuss formal concepts of functional dependencies and normal forms
 - 1NF (First Normal Form)
 - **2NF** (Second Normal Form)
 - **3NF** (Third Normal Form)
 - **BCNF** (Boyce-Codd Normal Form)

Informal Design Guidelines for Good Relation Schemas

- 1. Semantics of the attributes: it should be easy to explain the meaning of the schema. If a schema correspond to one entity type or one relationship type, its meaning tends to be clear.
- 2. Reducing the redundant values in tuples: no anomalies.
- 3. Reducing the null values in tuples: nulls in exceptional cases only.
- 4. Disallowing the possibility of generating spurious tuples.

Semantics of the Relation Attributes

- **GUIDELINE 1:** Informally, each **tuple** in a relation should represent **one entity** or **relationship instance**. (Applies to individual relations and their attributes).
- Attributes of different entities (EMPLOYEEs, DEPARTMENTs, PROJECTs) should not be mixed in the same relation.
- Only foreign keys should be used to refer to other entities.
- Entity and relationship attributes should be kept apart as much as possible.
- **Bottom Line:** Design a schema that can be explained easily relation by relation. The semantics of attributes should be easy to interpret.

CEng 302 - Fall 2021

A simplified COMPANY relational database schema

Figure 14.1 Simplified version of the COMPANY relational database schema.

Good Database Design wrt Consistency and Anomalies

- no redundancy of *FACT* (!)
- no inconsistency
- no insertion, deletion or update anomalies
- no information loss
- no dependency loss

Redundant Information in Tuples and Update Anomalies

GUIDELINE 2: Design a schema that does not suffer from the **insertion**, **deletion** and **update** anomalies. If there are any present, then note them so that applications can be made to take them into account.

- Mixing attributes of multiple entities may cause some problems.
- Information is stored redundantly wasting storage.
- Problems with update anomalies
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies

Bad Database Design- fact clutter

F	LIGHTS			
\bigcirc	flt#	date	airline	plane#
	DL242	10/23/00	Delta	k-yo-33297
	DL242	10/24/00	Delta	t-up-73356
	DL242	10/25/00	Delta	o-ge-98722
	AA121	10/24/00	American	p-rw-84663
	AA121	10/25/00	American	q-yg-98237
	AA411	10/22/00	American	h-fe-65748

- **insertion anomalies:** how do we represent that TK912 is flown by Turkish Airline without there being a date and a plane assigned.
- **deletion anomalies:** cancelling AA411 on 10/22/00 makes us lose that it is flown by American.
- update anomalies: if DL242 is flown by KLM, we must change it everywhere.

Example of an Update Anomaly

Consider the relation:

EMP_PROJ (Emp#, Proj#, Ename, Pname, No_hours)

• **Update Anomaly:** Changing the name of project number P1 from "Billing" to "Customer-Accounting" may cause this update to be made for all 1000 employees working on project P1.

Null Values in Tuples

GUIDELINE 3: Relations should be designed such that their tuples will have as few NULL values as possible

- Attributes that are NULL frequently could be placed in separate relations (with the primary key)
- Reasons for nulls:
 - attribute not applicable or invalid
 - attribute value unknown (may not exist)
 - value known to exist, but unavailable

Null Values

CUSTOMER

CUSTOMER#	NAME	MAIDEN NAME	DRAFT STATUS	Telephone
123-45-6789	Lisa Smith	Lisa Jones	inapplicable	unknown
234-56-7890	George Foreman	inapplicable	drafted	ni
345-67-8901	unknown	Mary Blake	inapplicable	Inapplicaple

- Null-value unknown (unk) reflects that the attribute does apply, but the value is currently unknown. That's ok!
- Null-value inapplicable (dne) indicates that the attribute does not apply.
- · Null-value **no-information (ni)** results from a no information and not good in database design.

Spurious Tuples

- GUIDELINE 4: The relations should be designed to satisfy the lossless join condition. No spurious tuples should be generated by doing a naturaljoin of any relations.
- Bad designs for a relational database may result in erroneous results (spurious tuples) for certain JOIN operations.
- The "lossless join" property is used to guarantee meaningful results for join operations.

Bad Database Design

• **information loss:** we polluted the database with false facts; we can't find the true facts.

FLIGHTS

flt#	date	airline	plane#
DL242	10/23/00	Delta	k-yo-33297
DL242	10/24/00	Delta	t-up-73356
DL242	10/25/00	Delta	o-ge-98722
AA121	10/24/00	American	p-rw-84663
AA121	10/25/00	American	q-yg-98237
AA411	10/22/00	American	h-fe-65748

FLIGHTS-AIRLINE

I DIGITIO I III (D			
flt#	airline		
DL242	Delta		
AA121	American		
AA411	American		

DATE-AIRLINE-PLANE

date	airline	plane#
10/23/00	Delta	k-yo-33297
10/24/00	Delta	t-up-73356
10/25/00	Delta	o-ge-98722
10/24/00	American	p-rw-84663
10/25/00	American	q-yg-98237
10/22/00	American	h-fe-65748

Bad Database Design- information loss

FLIGHTS-AIRLINE

flt#	airline
DL242	Delta
AA121	American
AA411	American

DATE-AIRLINE-PLANE

date	airline	plane#
10/23/00	Delta	k-yo-33297
10/24/00	Delta	t-up-73356
10/25/00	Delta	o-ge-98722
10/24/00	American	p-rw-84663
10/25/00	American	q-yg-98237
10/22/00	American	h-fe-65748

FLIGHTS

TEIGITIS				
flt#	date	airline	plane#	
DL242	10/23/00	Delta	k-yo-33297	
DL242	10/24/00	Delta	t-up-73356	
DL242	10/25/00	Delta	o-ge-98722	
AA121	10/24/00	American	p-rw-84663	
AA121	10/25/00	American	q-yg-98237	
AA211	10/22/00	American	h-fe-65748	
AA411	10/24/00	American	<i>p-rw-84663</i>	
AA411	10/25/00	American	q-yg-98237	
AA411	10/22/00	American	h-fe-65748	

Spurious Tuples (cont.)

- There are two important properties of decompositions:
 - (a) non-additive or **losslessness** of the corresponding join
 - (b) preservation of the functional dependencies.
- Note that property (a) is extremely important and cannot be sacrificed.
- Property (b) is less stringent and may be sacrificed.

Normalization

FLIGHT-SCHEDULE

FLIGHT#	AIRLINE	WEEKDAYS	PRICE
101	delta	mo,fr	156
545	american	mo cyc ,fr	110
912	scandinavian	fr	450

FLIGHT-SCHEDULE

FLIGHT#	AIRLINE	WEEKDAY	PRICE
101	delta	mo	156
545	american	mo	110
912	scandinavian	fr	450
101	delta	fr fr	an ₁₅₆
545	american	we	110
545	american	fr	110

FLIGHT-WEEKDAY

FLIGHT#	WEEKDAY
101	mo
545	mo
912	fr
101	fr
545	we
545	fr.

FLIGHT-SCHEDULE CALL

FLIGHT#	AIRLINE	PRICE
101	delta	156
545	american	110
912	scandinavian	450

Functional Dependencies

- Functional dependencies (FDs) are used to specify formal measures of the "goodness" of relational designs
- FDs and keys are used to define normal forms for relations
- FDs are constraints that are derived from the meaning and interrelationships of the data attributes
- A set of attributes X functionally determines a set of attributes Y if the value of X determines a unique value for Y

Functional Dependencies (cont.)

An FD X -> Y holds if whenever two tuples have the same value for X, they *must have* the same value for Y.

Defn: For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]

- X → Y in R specifies a constraint on all relation instances r(R)
- FDs are derived from the real-world constraints on the attributes

Examples of FD constraints (cont.)

 Social security number determines employee name

SSN -> ENAME

Project number determines project name and location

PNUMBER -> {PNAME, PLOCATION}

 Employee's ssn and project number determines the hours per week that the employee works on the project

{SSN, PNUMBER} -> HOURS

Examples of FD constraints (cont.)

- An FD is a property of the attributes in the schema R
- The constraint must hold on every relation instance r(R)
- If K is a key of R, then K functionally determines all attributes in R (since we never have two distinct tuples with t1[K] = t2[K])

Functional Dependencies and Keys

Definition: Suppose X and Y be sets of attributes subsets of R. A functional dependency between X and Y, denoted by $X \rightarrow Y$, specifies a constraint on the possible tuples that can form a relation state r of R.

The constraint is that, for any two tuples t_1 and t_2 in r, if $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$ must also hold.

- In another word, Y is functionally dependent on X in R iff for each $x \in R.X$ there is precisely one $y \in R.Y$.
- We use **keys** to enforce functional dependencies in relations.

- Armstrong's inference rules

Rules of the computation:

- reflexivity: if $Y \subseteq X$, then $X \rightarrow Y$
- Augmentation: if $X \rightarrow Y$, then $WX \rightarrow WY$
- Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Derived rules:

- Union: if $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Decomposition: if $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Pseudotransitivity: if $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

Armstrong's Axioms:

- sound (generate only functional dependencies that actually hold)
- complete (generate all functional dependencies that hold).

- Armstrong's inference rules

• **Proof of reflexivity**: if $Y \subseteq X$, then $X \rightarrow Y$.

Suppose $Y \subseteq X$ and two tuples t_1 and t_2 exist in some relation instance r of R such that $t_1[X] = t_2[X]$ (by defn.).

Then $t_1[Y] = t_2[Y]$ must be true, because $Y \subseteq X$;

• Hence, $X \rightarrow Y$ must hold in r.

- Armstrong's inference rules

Proof of Augmentation:

$${X \rightarrow Y} \Rightarrow WX \rightarrow WY$$

Suppose $X \rightarrow Y$ holds in a relation instance r of R, but $WX \rightarrow WY$ does not hold.

Then, there must exist two tuples t_1 and t_2 in r such that

(1)
$$t_1[X] = t_2[X]$$
,

(2)
$$t_1[Y] = t_2[Y]$$
,

(3)
$$t_1[WX] = t_2[WX]$$
, and

(4)
$$t_1[WY] \neq t_2[WY]$$
.

This is not possible, since we can deduce from (1) and (3) that

(5)
$$t_1[W] = t_2[W]$$
,

and from (2) and (5) we deduce

(6)
$$t_1[WY] = t_2[WY]$$
.

Contradicting (4). So, $\{X \rightarrow Y\} \Rightarrow WX \rightarrow WY$.

- Armstrong's inference rules

Proof of transitive rule:

$${X \rightarrow Y, Y \rightarrow Z} \Rightarrow X \rightarrow Z.$$

- Assume (1) $X \rightarrow Y$ and
 - (2) $Y \rightarrow Z$ both hold in a relation instance r of R.

Then, for any two tuples t_1 and t_2 in r such that $t_1[X] = t_2[X]$, we must have

(3)
$$t_1[Y] = t_2[Y]$$
 from assumption (1);

We must also have

(4)
$$t_1[Z] = t_2[Z]$$
 from (3) and assumption (2).

Hence $X \rightarrow Z$ must hold in r.

Proof of decomposition (or projection) rule:

$${X \rightarrow YZ} \Rightarrow X \rightarrow Y \text{ and } X \rightarrow Z$$

- 1. $X \rightarrow YZ$ (given)
- 2. $YZ \rightarrow Y$ (using reflex. rule, $Y \subseteq YZ$)
- 3. $X \rightarrow Y$ (using transitivity rule)

- Armstrong's inference rules

- **Proof of union rule:** if $X \rightarrow Y$ and $X \rightarrow Z$, the $X \rightarrow YZ$
 - 1. $X \rightarrow Y$ (given)
 - 2. $X \rightarrow Z$ (given)
 - 3. $X\rightarrow XY$ (usig (1) and augmentation rule, notice that XX=X)
 - 4. $XY \rightarrow ZY$ (using (2) and augmentation with Y)
 - 5. $X \rightarrow YZ$ (use (3) and (4) and transitivity rule.)

- Armstrong's inference rules

Proof of pseudotransitive rule:

$${X \rightarrow Y, WY \rightarrow Z} \Rightarrow WX \rightarrow Z$$

- 1. $X \rightarrow Y$ (given)
- 2. $WY \rightarrow Z$ (given)
- 3. $WX \rightarrow WY$ (usig (1) and augmentating W)
- 4. $WX \rightarrow Z$ (trans. on (3) and (2))

Inference Rules for FDs

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Closure of a set of attributes X with respect to F is the set X + of all attributes that are functionally determined by X

Example:

```
FD: a \rightarrow b; c \rightarrow \{d,e\}; \{a,c\} \rightarrow \{f\}

\{a\}^+ = \{a,b\}

\{c\}^+ = \{c,d,e\}

\{a,c\}^+ = \{a,c,f,b,d,e\}
```

when do sets of FDs mean the same?

```
Algorithm: Determining X<sup>+</sup>, the closure of X under F
     X^+ = X;
     Repeat
         Old X^{+} = X^{+}
         For each FD, Y \rightarrow Z in F do
          If X^+ \supset Y, Then X^+ = X^+ \cup Z;
     Until (X^+ = \text{old } X^+)^{\dagger}
Example: \{Ssn \rightarrow Ename, \}
    Pnumber \rightarrow {Pname, Plocation}, {Ssn,Pnumber} \rightarrow Hours}
           \{Ssn\}^+ = \{Ssn,Ename\}
           {Pnumber}<sup>+</sup> = {Pnumber, Pname, Plocation}
           {Ssn,Pnumber} + = {Ssn, Pnumber, Ename, Pname, Plocation, Hours}
```

Equivalence of Sets of FDs

- Two sets of FDs F and G are equivalent if:
 - every FD in F can be inferred from G, and
 - every FD in G can be inferred from F
- Hence, F and G are equivalent if F + = G +
- F covers G if every FD in G can be inferred from F (i.e., if G + <u>subset-of</u> F +)
- F and G are equivalent if F covers G and G covers F.

Equivalence of Sets of FDs

 We can determine whether F covers E by calculating X⁺ with respect to F for each FD X→ Y in E; then checking whether this X⁺ includes the attributes in Y.

If this is the case for every FD in E, then F covers E.

Equivalence of Sets of FDs

Example:

Given: $F=\{a \rightarrow b; c \rightarrow \{d,e\}; \{a,c\} \rightarrow \{f\}\}$

check if F covers $E=\{\{a,c\}\rightarrow \{d\}\}\}$

 $\{a,c\}^+ = \{a,c,f,b,d,e,f\} \supseteq \{a,c,d\},$ then F covers E

Finding a Key for a Relation

Algorithm: Finding a Key K for R, given a set of FDs

For each attribute A in K {
 Compute (K-A)⁺ wrt F;
 If (K-A)⁺ contains all the attributes in R,
 Then set K = K - {A}
 };

Set K = R.

1.

Example: R = Ssn, Pnumber, Ename, Pname, Plocation, Hours
F = {Ssn → Ename, Pnumber → {Pname, Plocation}, {Ssn,Pnumber} → Hours}

```
The Key is {Ssn,Pnumber},
Since
{Ssn,Pnumber}+ = {Ssn, Pnumber, Ename, Pname, Plocation, Hours}
```

Examples:

- R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- $(AG)^+$
 - 1. result = AG
 - 2. $result = ABCG (A \rightarrow B \text{ and } A \rightarrow C)$
 - 3. $result = ABCGH \ (CG \rightarrow H \text{ and } CG \subseteq ABCG)$
 - 4. $result = ABCGHI(CG \rightarrow I \text{ and } CG \subseteq ABCGH)$
- Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Does $AG \rightarrow R$? == Is $(AG)^+ \supseteq R$
 - 2. Is any subset of AG a superkey?
 - 1. Does $A \rightarrow R$? == Is $(A)^+ \supseteq R$
 - 2. Does $G \rightarrow R$? == Is $(G)^+ \supseteq R$

Use of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - Is a simple and cheap test, and very useful.
- Computing closure of F, that is F⁺
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a FD $\gamma \to S$.

How to Compute Meaning

-the meaning of a set of FDs, F+

- The set of all FDs implied by a given set F of FDs is called the closure of F, F+.
- Given the ribs of an umbrella, the FDs, what does the whole umbrella, F⁺, look like this.

• Determine each set of attributes, X, that appears on a left-hand side of a FD. Determine the set, X⁺, the closure of X under F.

Procedure for Computing F⁺

• To compute the closure of a set of FDs F:

```
Algorithm: Computing F^+
F^+ = F
repeat
for each FD f in F^+ apply reflexivity and augmentation rules on f, add the resulting FDs to F^+
for each pair of FDs f_1 and f_2 in F^+
if f_1 and f_2 can be combined using transitivity then add the resulting FDs to F^+
until F^+ does not change any further
```

Example: Find F^+ , If $F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow E\}$

$$F = \frac{1}{AB \to C}$$

$$union AB \to BCD$$

$$A \to D \stackrel{aug}{=} AB \to BD$$

$$trans AB \to BCDE, AB \to CDE$$

$$decomp$$

$$D \to E \stackrel{aug}{=} BCD \to BCDE$$

Thus,
$$\{AB \rightarrow BD, AB \rightarrow BCD, AB \rightarrow BCDE, AB \rightarrow CDE \} \in F+$$

$$F+=\{F, AB \rightarrow BD, AB \rightarrow BCD, AB \rightarrow BCDE, AB \rightarrow CDE, trivial FDs\}$$
CEng 302 - Fall 2021

Example: Closure, F+

Example: Contracts (contractid, supplierid, projid, deptid, partid, qty, value).

- We denote the schema for Contracts as CSJDPQV. The meaning of a tuple is that the contract with contractid C is an aggrement that supplier S (supplierid) will suply Q items of part P (partid) to project J (projectid) associated with department D (deptid); the value V of this contract id equal to value.
- The following ICs are known to hold:

$$F = \{C \rightarrow CSJDPQV, JP \rightarrow C, SD \rightarrow P\}$$

How to Compute Meaning

- minimal cover of a set of FDs

Is there a minimal set of ribs that will hold the umbrella open?

F is minimal if:

- 1. every dependency in F has a single attribute as right-hand side.
- 2. we can't replace any dependency $X \rightarrow A$ in F with a dependency $Y \rightarrow A$ where $Y \subset X$ and still have a set of dependencies equivalent with F. This ensures that there are no redundancies by having redundant attributes on the **left-hand side** of a dependency.
- 3. we can't remove any dependency from F and still have a set of dependencies equivalent with F. This ensures that there are no redundancies by having dependency that can be inferred from the remaining FDs in F.

Algorithm: Finding Minimal Cover F for a set of FDs.

- 1. Put the FDs in a standard Form: Obtain a collection G of equivalent FDs with a single attribute on the right side (using the decomposition axiom)
- That is; replace each FD X \rightarrow {A₁,..., A_n} in F by the FDs, such as X \rightarrow A₁, X \rightarrow A₂,..., X \rightarrow A_n.
- 2. Minimize the left side of each FD: For each FD, check each attribute in the left side to see if it can be deleted while preserving equivalence to F.

For each FD, $X \rightarrow A$ in F

For each attribute $B \in X$,

If
$$((F - \{X \rightarrow A\}) \cup \{(X - \{B\}) \rightarrow A\}) \equiv F$$

Then replace $X \rightarrow A$ with $(X - \{B\}) \rightarrow A$ in F.

- **Ex:** If GCD \rightarrow A and G \rightarrow C in F, Then ((F-{GCD} \rightarrow A}) \cup {(GCD-C) \rightarrow A}) \equiv F, Then replace GCD \rightarrow A with GD \rightarrow A. That is, C is redundant.
- 3. Delete redundant FDs: That is; for each remaining FD, $X \rightarrow A$ in F If $(F \{X \rightarrow A\}) \equiv F$, then remove $X \rightarrow A$ from F.

How to Compute Meaning

- minimal cover of a set of FDs

Example: Finding Minimal Cover F for a set of FDs.

$$F = \{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow G, EF \rightarrow H, ACDF \rightarrow EG\}.$$

• Let us rewrite $ACDF \rightarrow EG$ so that every right side is a single attribute:

 $ACDF \rightarrow E \text{ and } ACDF \rightarrow G.$ (rule 1)

• Next consider $ACDF \rightarrow G$. $ACDF \rightarrow G$ dependency is implied by the following FDs: $\{A \rightarrow B, ABCD \rightarrow E, and EF \rightarrow G.\}$

 $A \rightarrow B$, $ABCD \rightarrow E \Rightarrow ACD \rightarrow E \Rightarrow ACDF \rightarrow EF$, $EF \rightarrow G \Rightarrow ACDF \rightarrow G$ Therefore, we can delete $ACDF \rightarrow G$. (rule 2)

• Similarly, we can delete $ACDF \rightarrow E$.

 $A \rightarrow B$, ABCD $\rightarrow E \Rightarrow ACD \rightarrow E \Rightarrow ACDF \rightarrow E$

Therefore, we can delete ACDF \rightarrow E.

• Next consider ABCD→E.

Since $A \rightarrow B$, $ABCD \rightarrow E \Rightarrow ACD \rightarrow E$.

Therefore, we can also delete ABCD \rightarrow E.

• A this point one can verify that each remaining FD is minimal and required. Thus, a minimal cover for F is the set:

$$F_{min} = \{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G, EF \rightarrow H\}.$$

Normal Forms Based on Primary Keys

- Normalization of Relations
- Practical Use of Normal Forms
- Definitions
- First Normal Form
- Second Normal Form
- Third Normal Form
- BCNF

Normalization of Relations

- Normalization: The process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations
- Normal form: Condition using keys and FDs of a relation to certify whether a relation schema is in a particular normal form
- 1NF, 2NF, 3NF, BCNF, 4NF, 5NF

Practical Use of Normal Forms

- Normalization is carried out in practice so that the resulting designs are of high quality and meet the desirable properties.
- The practical utility of these normal forms becomes questionable when the constraints on which they are based are hard to understand or to detect.
- The database designers need not normalize to the highest possible normal form (usually normalize up to 3NF, BCNF or 4NF).
- Denormalization: the process of storing the join of higher normal form relations as a base relation which is in a lower normal form.

Definitions

A **superkey** of a relation schema $R = \{A_1, A_2,, A_n\}$ is a set of attributes S subset-of R with the property that no two tuples t_1 and t_2 in any legal relation state r of R will have $t_1[S] = t_2[S]$

$$S^+ = R$$

A key K is a superkey with the additional property that removal of any attribute from K will cause K not to be a superkey any more.

Definitions

- If a relation schema has more than one key, each is called a candidate key. One of the candidate keys is arbitrarily designated to be the primary key, and the others are called secondary keys.
- A Prime attribute must be a member of some candidate key.
- A Nonprime attribute is not a prime attribute—
 that is, it is not a member of any candidate key.