Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

2021/22

Folha 1: Séries de Potências — Fórmula de Taylor — Série de Taylor

1. Determine o domínio de convergência das seguintes séries de potências, indicando os pontos onde a convergência é simples ou absoluta.

(a)
$$\sum_{n=1}^{\infty} n(n+1)x^n$$
;

(b)
$$\sum_{n=1}^{\infty} \frac{(2x)^n}{(n-1)!}$$
;

(a)
$$\sum_{n=1}^{\infty} n(n+1)x^n$$
; (b) $\sum_{n=1}^{\infty} \frac{(2x)^n}{(n-1)!}$; (c) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$;

(d)
$$\sum_{1}^{\infty} \frac{(2x-3)^n}{2n+4}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!} x^n ;$$

(d)
$$\sum_{n=1}^{\infty} \frac{(2x-3)^n}{2n+4}$$
; (e) $\sum_{n=1}^{\infty} \frac{n^2}{n!} x^n$; (f) $\sum_{n=2}^{\infty} \frac{n!(x-2)^n}{n-1}$;

(g)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n} (x+2)^n$$
; (h) $\sum_{n=0}^{\infty} \frac{3^n}{2+n^3} x^n$; (i) $\sum_{n=2}^{\infty} \frac{x^{3n}}{\ln n}$;

(h)
$$\sum_{n=0}^{\infty} \frac{3^n}{2+n^3} x^n$$
;

(i)
$$\sum_{n=2}^{\infty} \frac{x^{3n}}{\ln n} ;$$

(g)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n} (x+2)^n$$
; (h) $\sum_{n=0}^{\infty} \frac{3^n}{2+n^3} x^n$; (i) $\sum_{n=2}^{\infty} \frac{x^{3n}}{\ln n}$; (j) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n6^n} (3x-2)^n$; (k) $\sum_{n=0}^{\infty} \frac{n+1}{2^n} (x-2)^n$; (l) $\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{2n+1}} x^n$.

(k)
$$\sum_{n=0}^{\infty} \frac{n+1}{2^n} (x-2)^n$$

(1)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{2n+1}} x^n$$

2. Mostre que:

(a) se $\sum_{n=0}^{\infty} a_n x^n$ é absolutamente convergente num dos extremos do seu domínio de convergência, então também é absolutamente convergente no outro extremo;

- (b) se o domínio de convergência de $\sum_{n=0}^{\infty} a_n x^n$ é]-r,r], então a série é simplesmente convergente em x = r.
- 3. Determine os polinómios de Taylor seguintes:

(a)
$$T_0^3(x^3 + 2x + 1)$$
;

(b)
$$T_{\pi}^{3}(\cos x);$$

(c)
$$T_1^3(xe^x)$$
;

(d)
$$T_0^5(\sin x)$$
;

(e)
$$T_0^6(\sin x)$$
;

(f)
$$T_1^n(\ln x) \quad (n \in \mathbb{N}).$$

- 4. Considere $f(x) = e^x$.
 - (a) Escreva a fórmula de MacLaurin de ordem n da função f.
 - (b) Mostre que o polinómio de MacLaurin de ordem n permite aproximar e^x no intervalo] – 1,0[, com erro inferior a $\frac{1}{(n+1)!}$.
 - (c) Escolha um dos polinómios de Machaurin de f e use-o para obter uma aproximação de $\frac{1}{\sqrt{e}}$, indicando uma estimativa para o erro cometido nessa aproximação.
- 5. Usando o resto de Lagrange, determine um majorante para o erro cometido na aproximação de sen(3) quando se usa o polinómio de Taylor de ordem 5 em torno do ponto $a = \pi$.

- 6. Mostre que o polinómio de MacLaurin de ordem 7 da função seno permite aproximar os valores desta função, no intervalo [-1,1], com erro inferior a $\frac{1}{2} \times 10^{-4}$.
- 7. (a) Obtenha o polinómio de Taylor de ordem $n \in \mathbb{N}$ da função $f(x) = \frac{1}{x}$ no ponto c=1.
 - (b) Determine um valor de n para o qual se garanta que o polinómio $T_1^n\left(\frac{1}{x}\right)$, obtido na alínea anterior, aproxime $\frac{1}{x}$ no intervalo [0.9, 1.1], com erro inferior a 10^{-3} .
- 8. Determine o menor valor de n tal que o polinómio de MacLaurin de ordem n da função $f(x) = e^x$ aproxime f(1) com erro inferior a 10^{-3} .
- 9. Mostre, usando a fórmula de Taylor, que $\ln(1+x) \le x$, para todo x > -1.
- 10. Partindo da representação

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad -1 < x < 1,$$

determine uma representação em série de potências para cada uma das seguintes funções, indicando o intervalo onde tal representação é válida:

(a)
$$\frac{1}{1-3x}$$
; (b) $\frac{2}{2+x}$; (c) $\frac{1}{x}$.

11. Desenvolva a função $f(x) = \frac{1}{x+1}$ em série de potências de x-3, indicando o maior intervalo onde o desenvolvimento é válido.

2021/22

Cálculo II - Agrupamento 4

Folha 1: Soluções

- 1. (a)]-1,1[, sendo absolutamente convergente em todos os pontos desse intervalo.
 - (b) \mathbb{R} , sendo absolutamente convergente em todos os pontos desse intervalo.
 - (c)]-1,1], sendo simplesmente convergente em x=1 e absolutamente convergente nos restantes pontos.
 - (d) [1, 2[, sendo simplesmente convergente em x = 1 e absolutamente convergente nos restantes pontos.
 - (e) \mathbb{R} , sendo absolutamente convergente em todos os pontos desse intervalo.
 - (f) {2}, sendo absolutamente convergente nesse ponto.
 - (g) [-3, -1[, sendo simplesmente convergente em x = -3 e absolutamente convergente nos restantes pontos.
 - (h) $\left[-\frac{1}{3},\frac{1}{3}\right]$, sendo absolutamente convergente em todos os pontos desse intervalo.
 - (i) [-1,1[, sendo simplesmente convergente em x=-1 e absolutamente convergente nos restantes pontos.
 - (j) $]-\frac{4}{3},\frac{8}{3}]$, sendo simplesmente convergente em $x=\frac{8}{3}$ e absolutamente convergente nos restantes pontos.
 - (k) [0,4], sendo absolutamente convergente em todos os pontos desse intervalo.
 - (l) $]-\frac{1}{2},\frac{1}{2}]$, sendo simplesmente convergente em $x=\frac{1}{2}$ e absolutamente convergente nos restantes pontos.
- 2. —
- 3. (a) $T_0^3(x^3 + 2x + 1) = x^3 + 2x + 1$
 - (b) $T_{\pi}^{3}(\cos x) = -1 + \frac{(x-\pi)^{2}}{2}$
 - (c) $T_1^3(xe^x) = e + 2e(x-1) + \frac{3}{2}e(x-1)^2 + \frac{2}{3}e(x-1)^3$
 - (d) $T_0^5(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
 - (e) $T_0^6(\operatorname{sen} x) = x \frac{x^3}{3!} + \frac{x^5}{5!}$
 - (f) $T_1^n(\ln x) = (x-1) \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + \dots + \frac{(-1)^{n-1}}{n}(x-1)^n$
- 4. (a) $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta}}{(n+1)!} x^{n+1}$, para algum θ entre 0 e x.
 - (b) —
 - (c) Por exemplo, $\frac{1}{\sqrt{e}} \simeq T_0^2 f(-\frac{1}{2}) = 1 \frac{1}{2} + \frac{1}{8} = \frac{5}{8} = 0.625$, com erro inferior a $\frac{1}{6}$.
- 5. $|R_5(3)| \leq \frac{(3-\pi)^6}{6!}$
- 6. —
- 7. (a) $T_1^n\left(\frac{1}{x}\right) = 1 (x-1) + (x-1)^2 + \dots + (-1)^n(x-1)^n$, $n \in \mathbb{N}$.
 - (b) n = 3 (ou outro superior a este).

8.
$$n = 6$$
.

10. (a)
$$\sum_{n=0}^{\infty} 3^n x^n$$
, para $-\frac{1}{3} < x < \frac{1}{3}$;

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} x^n$$
, para $-2 < x < 2$;

(c)
$$\sum_{n=0}^{\infty} (-1)^n (x-1)^n$$
, para $0 < x < 2$.

11.
$$\frac{1}{x+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x-3)^n$$
, $x \in]-1,7[$.

 $1 - a) = \lim_{n \to +\infty} \frac{|m(m+1)|}{|(m+1)(m+2)|} = \lim_{m \to +\infty} \frac{m}{m+2} = 4$ I.C = JO-1, O+1[=]-1,1[Jara x = 1: $\sum_{m=1}^{\infty} m(m+1) \rightarrow \lim_{m\to 1} m(m+1) = +\infty \rightarrow \text{Logo diverge um } x=1$ Sara x = -1: 5 m(m+1)(-1) n -> sirie alternada Elo cativio de Leilniz lim m(m+1) = +00, logo a rivie é divor gente em x =-1. D. C = 3-1,1 [, convergincia disduta um todo o intervodo $b) \sum_{n=1}^{4m} \frac{(2x)^m}{(m-1)!} = \sum_{n=1}^{4m} \frac{2^m}{(m-1)!} x^m$ $R = \lim_{m \to \infty} \frac{2^m}{(m-i)!} = \lim_{m \to \infty} \frac{2^m \times m!}{2^{m+i}} = \lim_{m \to \infty} \frac{m(m-i)!}{2(m-i)!} = \lim_{m \to \infty} \frac{m}{2} = +\infty$ D.C = IR, convergincia diduta um todo o intervodo I.C=J0-1,0+1C=J-1,1C $R = \lim_{m \to +\infty} \frac{\left| \frac{(-1)^m}{m+1} \right|}{\left| \frac{(-1)^{m+1}}{m+1} \right|} = \lim_{m \to +\infty} \frac{m+2}{m+1} = 1$ Sara x = -1: $\sum_{m=1}^{+\infty} \frac{(-4)^{\frac{m}{2}m+1}}{m+1} = \sum_{m=1}^{+\infty} \frac{-4}{m+1}$ 5 -1 = 5 1 mai mai Selo criticio de limite e b m = 1: L= lim m+1 = lim m = = n>+0 m+1 Concluindo como $L=1 \in \mathbb{R}^+$, as duas eixes term a mesma natureza e como $\stackrel{*}{>}^ b_m$ e" uma sèrcie de Dirichlet com $\alpha=1$, esta é divergente, logo para x=-1 a rives é divergente."

JORG X = 1: \$\frac{(-1)^m}{m+1} \rightarrow rivie albertada E (-1) = E 1 -> Tomo verificado cama, ela sirie e divergente Elo vilixio de Leibniz: lim 1 = 0 am >0, VM EIN $a_{m+1} - a_m = \frac{1}{m+2} - \frac{1}{(m+2)(m+1)} - \frac{1}{(m+2)(m+1)} = \frac{-1}{(m+2)(m+1)} < 0, \forall m \in \mathbb{N}, a \text{ uncertain in the summations}$ Concluimed que a rixie é convegente em x=1. D. C = J-1, 1], convergincia rimplet em x=1 e convergincia abduta ma restantes fontes do intervalo d) $\leq \frac{(2x-3)^m}{2m+4} = \sum_{m=1}^{4} \frac{1}{2m+4} \times (2(x-3))^m = \sum_{m=1}^{4} \frac{2^m}{2m+4} (x-3)^m$ T. (=] 3-1, 3+1 =]1,2[Sara x=1: 5 (-1) M 2m+4 $\sum_{m=1}^{4-6} \frac{(-1)^m}{2m+6} = \sum_{m=1}^{4-6} \frac{1}{2m+6}$ Elo critimo do limite e bm = 1 : Tomo L=1 E1R+ as duas sixues têm a mesmo natureja e como É b n é umo série de dissirchet com a=1, esta é dissorgente, logo a série principal é dissirgente também

```
Selo vilières de Leibniz:
                                                                                                                                           01m 1 = 0
                                                                                                                                            am >0, Yme IN
                                                                                                                                          a_{m+1} - a_m = \frac{1}{2m+6} - \frac{1}{2m+6} = \frac{2m+6}{(2m+6)(2m+6)} = \frac{-2}{(2m+6)(2m+6)} < 0, \forall m \in [N], a successor é mondonc
                                                                                                                                              Concluirma que a sixie é convergente em x=1.
                                  Jara x = 2:
                                                                              5 1
2 1
                                                                                     Silo viterio do limite e b_m = 1:
                                                                                                                                           - lim 2m+4 = lim m = 1
                                                                                                                                            Fonduirma que como L=\frac{1}{2}\in\mathbb{R}^+ as duas révier tim a mesma natureza e como \mathbb{D}_m=\frac{1}{2} e uma révie de dixichlet com \alpha^2=1, esta é divergente, logo a révie princifal também é divergente.
                                D. C = [1,2[, convorgència rèmples em x = 1 e convergencia abduta mo restante enternala
2) n = \lim_{m \to \infty} \frac{|m|}{|m|} = \lim_{m \to \infty} \frac{m^2(m+1)!}{(m+1)^2} = \lim_{m \to \infty} \frac{m^2(m+1)!}{(m+1)^2} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m + 2m + 1} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m + 2m + 2m + 2m} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m + 2m + 2m} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m} = \lim_{m \to \infty} \frac{m^3 + 2m}{m^3 + 2m} = \lim_{m \to \infty} \frac{m
                                D. C = 1B, convergencia abduta em 1B.
    D. C= {2}, convoigincia deduta em x=2.
9) R = \lim_{m \to \infty} \frac{|\ln(m)|}{m} = \lim_{m \to \infty} (m+1) \ln(m) = \lim_{m \to \infty} \frac{\ln(m+1)}{m} = \lim_{m \to \infty} \frac{1}{m} = \lim_{m
                              I. (= ]-2-1, -2+1[=]-3,-1[
                                 Sana x = -3:
                                                                              100 (m) (-1) m
                                                                                 \sum_{n=1}^{\infty} \left| \frac{\ln(n)}{n} \left( -\epsilon \right)^{n} \right| = \sum_{n=1}^{\infty} \frac{\ln(n)}{n}
```

Solo viterio do limite e bm = 1: $\frac{1}{1} = \lim_{m \to +\infty} \frac{\ln(m)}{m} = \lim_{m \to +\infty} \ln(m) = +\infty$ Tomo L=+0 e a rivie lon é divergente, Joir é sumo rivie de dividlet com α=1, a rivie principal tambim é divorgente. alo critizio de Luibnig: $\lim_{m \to +\infty} \lim_{m \to +\infty} \lim_{m \to +\infty} \frac{1}{m} = \lim_{m \to +\infty} \frac{1}{m} = 0$ am >0, YMEIN $a_{m+1} - a_m = lm(m+1) - lm(m) -> lm(m+1) < lm(m) -> a vuceuce e monatona m+1 m derveranta$ Concluima que a rêstie e convorgente em x=-3. Jana x = -1: \(\lambda_{m}(m) \) Tomo contuima anteriormento, a récie também é divergente em x =-1. D.C=[-3,-1] [, converginces simples on x=-3 e convergincia abduta no xutante intervolo h) $R = \lim_{m \to +\infty} \frac{3^m}{2+m^3} = \lim_{m \to +\infty} \frac{3^m(2+(m+1)^2)}{3^{m+1}} = 1 \times \lim_{m \to +\infty} \frac{m^2}{3} = 1 \times 1 = 1$ $\lim_{m \to +\infty} \frac{3^m}{2+(m+1)^3} = \lim_{m \to +\infty} \frac{3^m(2+(m+1)^2)}{3^{m+1}} = 1 \times \lim_{m \to +\infty} \frac{m^2}{3} = 1 \times 1 = 1$ $\lim_{m \to +\infty} \frac{3^m}{2+(m+1)^3} = \lim_{m \to +\infty} \frac{3^m(2+(m+1)^2)}{3^{m+1}} = 1 \times \lim_{m \to +\infty} \frac{m^2}{3} = 1 \times 1 = 1$ $\lim_{m \to +\infty} \frac{3^m}{2+(m+1)^3} = \lim_{m \to +\infty} \frac{3^m(2+(m+1)^2)}{3^{m+1}} = 1 \times \lim_{m \to +\infty} \frac{m^2}{3} = 1 \times 1 = 1$ $\lim_{m \to +\infty} \frac{3^m}{2+(m+1)^3} = \lim_{m \to +\infty} \frac{3^m(2+(m+1)^2)}{3^{m+1}} = 1 \times \lim_{m \to +\infty} \frac{m^2}{3} = 1 \times 1 = 1$ Sara x = -1: 5 | (C-4) m = 5 | Edo critizio do limite e bm = 1 : Tomo L=1 € 18th, as duch rivier tim a merma noturya e como a rivie € bon e umo rivie de Dixidalet com a = 3, esta é convergente. logo a rixir principal também é convergente.

Some
$$x = \frac{1}{3}$$
:

Tomo concluima anteriormente, a rèxi é convergente em x=1.

D. C= [-1, 1], convorgincia alidura em todo o internolo.

i)
$$R = \lim_{m \to +\infty} \frac{\left|\frac{1}{2m(n+1)}\right|}{\left|\frac{1}{2m(n+1)}\right|} = \lim_{m \to +\infty} \frac{1}{2m(m)} = \lim_{m \to +\infty$$

Sana x = -1:

$$\sum_{p_1 \in J} \left| \frac{(-1)^m}{y_1(p_1)} \right| = \sum_{p_1 \in J} \frac{1}{y_1(p_1)}$$

Belo vilizio do limito e ly = 1:

Tomo L= +-> e a rivue b m é divergente, poir é umo révue de dixible com a=1, entré a rivie principal também é divergente.

Elo cultirio de Lailny:

Concluimal que a rixer i convorgente em x=-1.

Sare x = 1:

Ermo concluido anteriormente a rixie é divergente um x21.

D-C=[-1,1[, convergimeic simples em x=-1 e convergimeic absoluta mo sestante internado.

					(-1) ^M	1																														
	R =	lin	n	1-	n 2 m	pops (=	lin m->1	M	(m	m :	2 m	11	G	2 ×	lis m-s	+ 100 YM	M F	1 =	2>	12	2				I	C=	$\left]\frac{2}{3}\right]$	- 2	, 2	3 + 3)[=]	3	, 3	. [
	Sara	×	-	3	•																															
			\$-∞ S h=1	6 m6	M =	No.	1																													
			d ,	نتن	ź (مدا	rgun	و دا	Mo	γ -	- <u>4</u>		cill	4	LUM	ио ,	Sixi	a d	e d)Lzc? (NA	COM	o or	21.												
	රිනැ	×	-	3																																
		0	مدم <u>></u> ۱:۱	(-6)	M	S Mc		-1) ^M M																												
			F=1	(-1) ** }	= <	2	M		->	L	xi.e	di	(1)(1)	gu	de.	, (0	ĈL.	ě N	Me	M	io c	le	Du	ù A	let o	O m	or ·	٠١.							
			31	o C	xili	Xic	d	9 0	Lei	lv	y:	9																								
					li m->	M)	1	11	C	,																										
					a	_n >	0	, A	jn (<u>:</u> 11)																									
					a	n I-1	- (A po	1	mr		M	-	M	(m	<u>(1-1)</u>	-	w (1	1	= -	- M	MH	1)	< 0	,	ш	Cella	ا ور	mom	o f	MC	d	o Cre	y CO	nte	
					To	nW	ulm	cl	qu	u (2 /	رف	وی) _1	e (Cay	טאו	gu	nte	LY	n ?	(=	800	, .												
	D. C	· =]-	3	3]	, (m	רשט	gin	ncia	2 ,	uir	nyl	lei	e	100	χ =	- P		2 (1	JN L	ng	èm(ic	al	ld	Wa	M	0	Xe	ut a	nto	ķ	nte	w
(17 =	Qi m-	m >+~	1	2 m	2	=	lir m->	m	Cı	n (1)) 2'	m+ 1	_	2 (2 >	lin	M	MH	1 -	: 2	×1 *	- 2					I	C= .] 2.	-2,	2+;	2	- 3	0,4	C
	ටිගැ	2)	2	o:																																
			M 2 ((m	F1) (-1) ^M																														
			SD	0 0	نفلن	uìo (10	Lei	ln	y:																										
					Ri	√n t-⇔	(m	-1) =	-	ර																										

```
Some x = 4:
        5 m+1 -> lim (m+1) = +-0
         Concluima que a rixie é dinargente em x=4
   D. C= JO, 4 C, convergincia abduta em todo o intervola
Sazo x = -1:
        5 1
m=1 \(\sigma_2\text{mi1}\)
         Sdo cultirio do limite e b = 1
              1 - lipm John - lipm Jm - Jum m - J.
               Como L= J± ∈ 1B+, a dua rixiel tim a mermo naturga e como € bm é umo rixie de discillet
               com \alpha = \frac{1}{2} eta é divergente, logo a principal tambim é divergente
   Garo x = 1:
        5 (-1) M
        50 | (-1) 1 = 5 1 - Live divergente como vieto anteriormente.
         Selo culticio de Leibney:
              lim 1 = 0
              am >0, Vm Elly
              ami - am = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 20001 - 20001 - 20001 - 20001
              Concluima que o lexe é convergente em x=1
   D.C=7-1.17, convorgimeia simple em x=1 e convergimeia abduta mo xutanti intervola.
```

Sαπα x = - π:

Considerand que a rivie é disdestamente convogente em x=-x.

Sana x = n:

Tondeima avinn que se esta sixie i abdutamente convergente num extremo do domineo de convergencia, entre fambim e

D) Same x = x:

Sare x = -71:

Condesima arim que esta rivie de dominio de convergência 7-2, 27, 2 simplemente convergente em x = 2.

(3) - a)
$$T_0^3(x^3+2x+1) = x^3+2x+1$$

$$\begin{array}{c} \text{C)} \ \ T_{1}^{3} \ \ (xe^{y}) = \underbrace{\frac{3}{5}}_{n \neq 0} \frac{(xe^{y})^{(n)}(1)}{(1)} \ \ (x-1)^{n} = \underbrace{1e^{1} \ (x-1)^{0} + \frac{e^{1} + 1e^{1}}{1!} (x-1)^{1} + \frac{2e^{1} + 1e^{1}}{2!} (x-1)^{2} + \frac{3e^{1} + 1e^{1}}{5!} (x-1)^{3} = e + 3e(x-1) + \frac{3e(y-1)^{2} + 3e(y-1)^{2} + 2e(x-1)^{3}}{3!} \\ \end{array}$$

$$\frac{d}{2} \int_{0}^{2} \left(y_{1} y_{1} (x) \right) = \sum_{n=0}^{2} \frac{y_{1} y_{1}(x)}{n!} (x) (x-0)^{n} = y_{1} y_{1}(x) (x-0)^{n} + \frac{y_{1} y_{2}(x)}{n!} (x-0)^{n} + \frac{y_{2} y_{3}(x)}{n!} (x-0)^{n} + \frac{y_{3} y_{3}(x)}{n!$$

2)
$$T_0^6$$
 (MM (x)) = T_0^6 (MM (x)) + $\sum_{n=6}^6 \frac{100^{(n)}(n)}{n!} (x-0)^n = \frac{x-x^2+x^5}{6} + \frac{100}{20} (0) x^6 = \frac{x-x^3+x^5}{6} + \frac{100}{100} (0) x^6 = \frac{x-x^3+x^5}{6} + \frac{x-x^5}{6} + \frac{x-x^$

$$()m(y))^2 = 1/x$$

 $(1/y)^2 = -1/y^2$
 $(-1/y^2)^2 = 2/y^3$

$$\int_{(w)} (x) = \begin{cases} \int_{(w)} (x)^{-1} & \text{if } w > 0 \\ \int_{(w)} (x)^{-1} & \text{if } w = 0 \end{cases}$$

Sor indução motimatico:

$$e(m) = e^{(m)}(x) = e^{(m)}(x), \text{ le } m = 0$$

$$e^{(m)}(x) = e^{(m)}(m-1)!, \text{ le } m > 0$$

$$C(1) = (\sqrt{10} (10))' = \frac{1}{x}$$

$$C(1) = (-1)^{4+1} (1-1)! = \frac{1}{x}$$

Zooo
$$\leq M \frac{(b-a)^{M+1}}{(m+1)!} = (\times \frac{(o-b-1)^{m+1}}{(m+1)!} = \frac{1}{(m+1)!}$$

c) Tonsidurando m = 2:

$$\int \left(-\frac{1}{2}\right) \simeq \left(-\frac{1}{2}\right) = \sum_{m=0}^{2} \int \frac{m}{m!} \left(0\right) \left(-\frac{1}{2}\right)^{m} = \left(-\frac{1}{2}\right)^{0} + \left(-\frac{1}{2}\right)^{1} + \left(-\frac{1}{2}\right)^{2} = 1 + \left(-\frac{1}{2}\right) + \frac{1}{2} = \frac{5}{8}$$

There
$$\leq \frac{1}{(m+1)!} = \frac{1}{(2+1)!} = \frac{1}{3!} = \frac{1}{6}$$

(3)
$$- \frac{1}{2} \frac{1}{2$$

		٠,	14 -			a (prot	١,, ١		1	<i>(</i> ,)	m t1 fe	\1	1_	•	17.	\	1	- (1.1							
		b)	M.	اللا) 96	JA 2.9,1.1	1	(I) (ر - 0 و (0 ه	up	(-1)	× Wr3	ne()!	90	(0.9,1.	13	× ml3	-	= 2	0,9 M):							
			7		C M	()	Jun	2	[00.11	\\ (11.0	a Smi		0.0	gas 1												
			000	RO ·	· rı	(M+1)	!		0,9	0113	(MFI)	(4) ^m	-	0,9	n 1-2												
			Se	m =	3:	ממבל	2 5	0	24	<i>→</i> >	>	10-3															
								G,	94																		
			Le	M =	4:	w	0 5	٠ 0.	25	<i>→</i>	۷۱	0-3															
			0					O _t	9,5																		
(8)	_	N ?	> \n	J ((100	¹⁾ (e)	-	ruh	10	0	= e																
)			96[0,1]	٧		Θ	€ (0,1	3 '																		
		ไบเ	0 <	: N	12-	clmi	1 <	e	11-0	5 M	_ <	(m	-														
					(No	1) [(Mrl)!		(M	FI) !														
		L	W -	5:	w	o &	e	_	> >	10	3																
		Je	M = 6	6: 7	2000	٤	e	<i>→</i>	<1	o 3																	
							7!																				
0	_	a)	N.	(3 x)	M	<u> 3</u>	h M	, -	3	<_	3																
			-1	< 3	y: < 1	(= >	-1	< :	× <	3																	
		۸ ۱	1-00		. No		b	h-																			-
		<i>ኤ)</i>	5	(- <u>y</u>)	2 5	(-l) / 7: 87	m,	-2	<i>د ې د</i>	2															
			2+):	2	2 (11%))	14.	<u>x</u>	1-	(-2)																
											,																
			-1	< 2	2 < 1	(=)	- 2	< %	< 2																		
		۵)	- P	۲	/ M _	10	C 12	w ("	√ W	_		10															
		۲,	N=0	(-	*) ~	W=0	(-1)	()-	1/	, 0	C /c	< 2															
			,	2	,	_	,																				
			×	ī	+ (k-1	= (-	· (1-12)																				
			-1	< 1	- ×	< 1	(4)	-26	- y	< 0	(=)	27	× > C	3													
(1)	_	Т	>	(-× 1-	3) M	- 1	5	(-x	43) ^M	<u>-</u> \$	(-	1) M	(x-3)	m	-1<	×	< 7										
)		4	Wro	4	/	4	H=0	4	pn	61,4	0 4	pot-I		-													
		(x	٠ ـ ا	1	2_	1	-	_1				= 4-	6.0.65	-	1	0.13	- 1	×	4	-							
		*		70 + f	,	+3-3	Fl	(1-3	1+4	4+((8-3)	4 -	(* * * * *)	4 (1- (->1		- 4	r t	(-p)	-)							
		- 1	<	- x	13	< 1	(=)	-4<	(- x	+3	< 4	(=>)	-7<	~ ye	< 1	۷=>	7	7 %	7 - 4	(
				4																							