Introduction to Machine Learning Homework 3

Lu Hongyu Student ID: 2023202269 2025.4.30

Question 1

Answer

Algorithm

Motivated by Robust Principal Component Analysis (RPCA), I turn the original optimal function for *Robust NMF* into this form:

$$\min_{U,V,S} \ \frac{1}{2} \left\| X_{\text{noisy}} - UV^{\top} - S \right\|_F^2,$$

s.t.
$$||S||_0 \le ND\rho_{\text{nz}}, \ U \in [0, \infty)^{N \times r}, \ V \in [0, \infty)^{D \times r},$$

The problem is tackled by alternating between a classical multiplicative-update NMF subproblem (fixing S) and a hard-thresholding step that refines S (fixing U, V). The complete procedure is summarised below.

Algorithm 1 Non-negative Matrix Factorisation (NMF)

Require: non-negative matrix $X \in \mathbb{R}^{N \times D}$; target rank r; iteration number num_iter; seed; small constant $\varepsilon > 0$

Ensure: $U \in \mathbb{R}_{\geq 0}^{N \times r}$, $V \in \mathbb{R}_{\geq 0}^{D \times r}$, low-rank estimate $\hat{L} = UV^{\top}$

- 1: Initialise U, V with i.i.d. non-negative random numbers using seed.
- 2: for t = 1 to num_iter do

3:
$$V \leftarrow V \odot \frac{X^{\top}U}{V(U^{\top}U) + \varepsilon}$$
4: $U \leftarrow U \odot \frac{XV}{U(V^{\top}V) + \varepsilon}$

4:
$$U \leftarrow U \odot \frac{XV}{U(V^{\top}V) + \varepsilon}$$

- 5: end for
- 6: **return** $U, V, \hat{L} = UV^{\top}$

Algorithm 2 Robust Non-negative Matrix Factorisation (Robust NMF)

Require: matrix $X \in \mathbb{R}^{N \times D}$; rank r; inner NMF iterations num_iter; outer alternations n_alt; sparsity ratio ρ_{nz} ; seed; $\varepsilon > 0$

Ensure: U, V, low-rank part \hat{L} , sparse part \hat{S}

- 1: Initialise $S \leftarrow 0$
- 2: $(U, V, \hat{L}) \leftarrow \text{NMF}(\max(X, 0), r, \text{num_iter}, seed, \varepsilon)$
- 3: for k = 1 to n_alt do
- 4: $X_{\text{target}} \leftarrow X S$
- 5: $(U, V, \hat{L}) \leftarrow \text{NMF}(X_{\text{target}}, r, \text{num_iter}, seed + k, \varepsilon)$
- 6: $R \leftarrow X \hat{L}$

▷ current residual

- 7: $S \leftarrow \text{HARDTHRESHOLD}(R, \rho_{\text{nz}})$
- 8: end for
- 9: **return** $U, V, \hat{L}, \hat{S} = S$

Explanation

- Low-rank step (Lines 3-6). With the current sparse estimate fixed, we perform standard NMF (Alg. 1) on the residue X − S, yielding an updated non-negative low-rank factorisation UV[⊤].
- Sparse step (Lines 7–8). The new residue $R = X UV^{\top}$ is hard-thresholded: only the largest magnitude entries whose count does not exceed $\rho_{nz}ND$ are kept, producing an updated sparse matrix S. This step is equivalent to an ℓ_0 projection and is inexpensive.
- Alternation. Repeating these two steps refines U, V and S simultaneously.

Question 2

Answer

• ISOMAP

$$\Phi = -\frac{1}{2}C(D^{\text{geo}} \circ D^{\text{geo}})C, \quad \Omega = \{Z \mid Z^{\top}Z = I\},\$$

where D^{geo} is the matrix of graph-based geodesic distances and $C = I - \frac{1}{N} \mathbf{1} \mathbf{1}^{\top}$ is the centering matrix.

Proof: ISOMAP minimizes the classical MDS loss:

$$||ZZ^{\top} - K||_F^2$$
, with $K = -\frac{1}{2}C(D^{\text{geo}} \circ D^{\text{geo}})C$.

Expanding gives:

$$\operatorname{tr}(ZZ^{\top}ZZ^{\top}) - 2\operatorname{tr}(Z^{\top}KZ) + \operatorname{tr}(K^2),$$

and minimizing reduces to minimizing $\operatorname{tr}(Z^{\top}(-K)Z)$, since the first and last terms are constants under the orthonormality constraint.

• Locally Linear Embedding (LLE)

$$\boldsymbol{\Phi} = (\boldsymbol{I} - \boldsymbol{W})^{\top} (\boldsymbol{I} - \boldsymbol{W}), \quad \boldsymbol{\Omega} = \{\boldsymbol{Z} \mid \boldsymbol{Z}^{\top} \boldsymbol{Z} = \boldsymbol{I}, \, \boldsymbol{Z}^{\top} \mathbf{1} = \boldsymbol{0}\},$$

where W is the sparse weight matrix learned from local linear reconstruction.

Proof: The objective function is:

$$||Z - WZ||_F^2 = \text{tr}[(Z - WZ)^\top (Z - WZ)] = \text{tr}(Z^\top (I - W)^\top (I - W)Z).$$

The constraint $Z^{\top} \mathbf{1} = 0$ removes the trivial translation mode.

• Kernel PCA

$$\Phi = -K, \quad \Omega = \{ Z \mid Z^{\top}Z = I \},$$

where K is the centered Gram matrix in the RKHS induced by the kernel.

Proof: Kernel PCA maximizes variance in feature space:

$$\max_{Z^{\top}Z=I}\operatorname{tr}(Z^{\top}KZ) \quad \Longleftrightarrow \quad \min_{Z^{\top}Z=I}\operatorname{tr}(Z^{\top}(-K)Z).$$

Hence, it fits the trace-minimization framework with $\Phi = -K$.

• Laplacian Eigenmap

$$\Phi = L = D - A, \quad \Omega = \{ Z \mid Z^{\top} D Z = I, Z^{\top} D \mathbf{1} = 0 \},$$

where A is the adjacency matrix and D = diag(A1) is the degree matrix.

Proof: The objective function is:

$$\sum_{i,j} A_{ij} ||z_i - z_j||^2 = \operatorname{tr}(Z^{\top} L Z),$$

because:

$$\sum_{i,j} A_{ij} \|z_i - z_j\|^2 = \sum_{i,j} A_{ij} (z_i^\top z_i - 2z_i^\top z_j + z_j^\top z_j) = 2 \operatorname{tr}(Z^\top L Z).$$

The generalized constraints avoid degenerate solutions and enforce orthogonality in the graph metric.