# Dispersión Caótica

# Proyecto Final Física Computacional I

Valentina Bedoya Aristizábal. Andrés David Gómez Villegas. Lina María Montoya Zuluaga.

Diciembre 2019

#### Introducción

Los fenómenos de dispersión son de gran interés en física. Con ellos podemos estudiar la naturaleza de las interacciones fundamentales de la Física Teórica y describir una infinidad de fenómenos que toman lugar en las ciencias aplicadas.



## Descripción del problema.

El objetivo de este proyecto será entonces el estudio computacional de la dispersión por un potencial V(x,y) que exhibe un comportamiento caótico.

#### Específicamente:

- Modelar Computacionalmente la dinámica del sistema.
- Estudiar el régimen caótico del sistema.





#### Marco teórico.

La descripción física del problema de dispersión de una partícula por un potencial se puede escribir matemáticamente por la ecuación diferencial:

$$\frac{\mathrm{d}^2 \mathbf{x}}{\mathrm{d}t^2} = -\nabla V(\mathbf{x})$$

cuya solución arroja como resultado una dependencia funcional entre:

$$\phi = f(b)$$



### Metodología

Para el estudio computacional del fenómeno de dispersión se desarrolló un código que llevará a cabo las siguientes tareas:

- Integración de las ecuaciones de Movimiento (por medio de un algoritmo RK4)
- Sensibilidad a las condiciones iniciales
- Graficación de los retratos de fase
- ullet Dependencia funcional  $\phi=f(b)$





# Solución del sistema por RK4 y sus ecuaciones de movimiento.

$$V(x,y) = x^2 y^2 e^{-(x^2 + y^2)}$$
  $\frac{\mathrm{d}x}{\mathrm{d}t} = v_x$   $m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 2y^2 x (1 - x^2) e^{-(x^2 + y^2)}$   $m \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = 2x^2 y (1 - y^2) e^{-(x^2 + y^2)}$   $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{2}{m} y^2 x (1 - x^2) e^{-(x^2 + y^2)}$   $\frac{\mathrm{d}v_x}{\mathrm{d}t} = \frac{2}{m} x^2 y (1 - y^2) e^{-(x^2 + y^2)}$ 

### Análisis y Resultados

Para analizar la física del sistema es esencial contar con la dependencia funcional de las variables dinámicas con el tiempo para así poder construir:



# Análisis y Resultados



### ¿cuál es el régimen caótico de nuestro sistema?



### ¿cuál es el régimen caótico de nuestro sistema?







### ¿cuál es el régimen caótico de nuestro sistema?

Algunas de las características que encontramos en nuestro sistema en el régimen caótico son:

- Sensibilidad a la condiciones iniciales
- Discontinuidades en  $\phi = f(b)$
- La condición que determina el estado de caos dentro del sistema está determinado por la relación entre la energía del problema en particular E y la energía máxima del sistema asociada al potencial Em



#### Conclusiones

- En presencia de caos, como es de esperarse, se evidencia una alta sensibilidad a las condiciones iniciales, plasmada también en una variación discontinua y con cambios abruptos en la descripción cualitativa de la variación del ángulo de dispersión, conforme se muestra un espectro del parámetro de impacto.
- La implementación computacional permite evidenciar la naturaleza caótica de nuestro sistema.
- A pesar de los cambios en las trayectorias, se sigue presentando determinismo.

#### **Anexos**

