1. Première partie

Calculer l'intégrale
$$\int_0^1 x e^x dx$$
.

2. Deuxième partie

La figure ci-dessous représente une cible rectangulaire OIMN telle que, dans le repère orthonormal $(O; \overrightarrow{OI}, \overrightarrow{OJ})$, la ligne courbe $\mathscr C$ reliant le point O au point M est une partie de la courbe représentative de la fonction f définie sur $\mathbb R$ par $f(x) = x e^x$. Cette courbe partage la cible OIMN en deux parties A et B comme l'indique la figure ci-dessous.

Un jeu consiste à lancer une fléchette qui atteint soit l'extérieur de la cible, soit l'une des parties A ou B. On admet que la fléchette ne peut atteindre aucune des frontières de la cible, ni la courbe \mathscr{C} .

Une étude statistique a montré que la fléchette tombe à l'extérieur de la cible avec une probabilité de $\frac{1}{2}$ et que les probabilités d'atteindre les parties A et B sont proportionnelles à leurs aires respectives.

- 1. Démontrer que la probabilité d'atteindre la partie A est égale à $\frac{1}{2e}$. Quelle est la probabilité d'atteindre la partie B?
- 2. On lance de manière indépendante trois fléchettes.
 - **a.** Soit *X* la variable aléatoire qui est égale au nombre de fléchettes ayant atteint la partie A. Définir la loi de probabilité de *X*. En déduire la valeur exacte de son espérance mathématique.
 - **b.** Soit E l'évènement : « Exactement deux fléchettes atteignent la partie A ». Calculer une valeur approchée au millième de la probabilité de E.

c. Soit F l'évènement : « les trois fléchettes atteignent la partie B ». Calculer la probabilité de F (on donnera la valeur exacte).

Sachant qu'aucune fléchette n'a atteint l'extérieur de la cible, quelle est la probabilité que toutes les trois se trouvent dans la partie B?

- **3.** On lance cette fois de manière indépendante n fléchettes.
 - **a.** Déterminer en fonction de n la probabilité p_n pour qu'au moins une des fléchettes atteigne la partie A.
 - **b.** Déterminer le plus petit naturel n tel que $p_n \ge 0.99$.