Scilab Textbook Companion for Applied Physics-ii by H. J. Sawant¹

Created by
Ajinkya S. Khair
B.E
Others
Mumbai University
College Teacher
Ashwini Sawant
Cross-Checked by
Bhayani Jalkrish

February 28, 2015

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Applied Physics-ii

Author: H. J. Sawant

Publisher: Technical Publications, Pune

Edition: 1

Year: 2013

ISBN: 9789350388839

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	Interference of Light	8
2	Diffraction of Light	30
3	Fibre Optics	46
4	Lasers	62
5	Quantum Mechanics	65
6	Motion of Charged Particle in Electric and Magnetic Fields	93
7	Superconductivity	97

List of Scilab Codes

Exa 1.2.1	find the wavelength of light in the visible spectrum	8
Exa 1.2.2	find the wavelength of light in the visible spectrum	9
Exa 1.2.3	find the order of interference band	10
Exa 1.2.4	find the thickness of soap film	11
Exa 1.2.5	find the thickness of oil layer	12
Exa 1.2.6		13
Exa 1.2.7		14
Exa 1.2.8	find the refractive index of oil	14
Exa 1.2.9	find the wavelength of light in the visible region	15
Exa 1.3.1	find wavelength of monochromatic light	16
Exa 1.3.2	calculate the angle of wedge	17
Exa 1.3.3		18
Exa 1.3.4		18
Exa 1.3.5		19
Exa 1.3.6	find the separation between consecutive bright fringes	20
Exa 1.4.1	find the ring number	21
Exa 1.4.2	find radius of curvature and thickness of film	21
Exa 1.4.3	find the radius of curvature	22
Exa 1.4.4	find the wavelength of light	23
Exa 1.4.5	find the refractive index of liquid	23
Exa 1.4.6	find the diameter of dark ring	24
Exa 1.4.7	find the diameter of dark ring	25
Exa 1.4.8		25
Exa 1.4.11	find the diameter of ring	26
$\mathrm{Exa}\ 1.4.12$	calculate the wavelength of light	27
Exa 1.7.1		27
Exa 1.7.2	find the thickness of coating	28
Exa 2.2.1	calculate the width of slit	30

Exa	2.2.2	calculate the angular separation between first order min-
		ima
Exa	2.2.3	calculate wavelength of light
Exa	2.2.4	find half angular width of a principal maximum
Exa	2.2.5	find half angular width of central maximum
Exa	2.2.6	calculate the angle
Exa	2.3.1	calculate the missing orders
Exa	2.4.1	find the orders
Exa	2.4.2	find the number of lines per meter
Exa	2.4.3	calculate the wavelength of spectral line
Exa	2.4.4	find the angle of diffraction
Exa	2.4.5	calculate the number of lines per meter
Exa	2.4.6	find the longest wavelength
Exa	2.4.7	calculate the total number of lines
Exa	2.4.8	calculate total number of lines
Exa	2.4.9	calculate the highest order spectrum
Exa	2.4.10	find the order of absent spectra
Exa	2.4.11	calculate total number of lines
Exa	2.6.1	find angular separation and number of lines per meter
Exa	2.6.2	find the smallest wavelength interval
Exa	2.6.3	find the width of grating
Exa	2.6.4	find the resolving power of diffraction
Exa	2.6.5	calculate number of lines and the grating element
Exa	2.6.6	find the resolving power
Exa	3.3.1	find refractive index of cladding
Exa	3.3.2	find refractive index of core and acceptance angle
Exa	3.3.3	find the numerical aperture and acceptance angle
Exa	3.3.4	find the critical angle and angle of acceptance cone .
Exa	3.3.5	the refractive index of cladding
Exa	3.3.6	calculate the fractional index change
Exa	3.3.7	calculate the maximum refractive index of cladding
Exa	3.3.8	calculate the acceptance angle
Exa	3.4.1	calculate normalized frequency and number of modes.
	3.4.2	calculate the maximum radius for fibre
	3.4.3	find various parameters of fibre
	3.4.4	calculate various parameters of fibre
	3.4.5	calculate the number of modes
	3 4 6	calculate various parameters of fibre

Exa	3.6.1	calculate the fibre attenuation
Exa	3.6.2	calculate the output power
Exa	3.6.3	calculate the fractional initial intensity
Exa	3.6.4	find the loss specification in cable
Exa	4.6.1	find the number of emitted photons
Exa	4.6.2	find the ratio of population of two energy levels
Exa	4.6.3	calculate the wavelength of photons
Exa	5.3.1	calculate de Broglie wavelength and velocity and time
Exa	5.3.2	calculate the velocity
Exa	5.3.3	calculate kinetic energy of an electron
Exa	5.3.4	find the wavelength of a beam of neutron
Exa	5.3.5	find the de Broglie wavelength of an electron
Exa	5.3.6	calculate the velocity and kinetic energy of neutron
Exa	5.3.7	find the de Broglie wavelength
Exa	5.3.8	find the momentum and energy of an electron
Exa	5.3.9	find the parameters for an electron wave
Exa	5.3.10	calculate the de Broglie wavelength and momentum of
		an electron
Exa	5.3.11	calculate the ratio of de Broglie wavelengths
		calculate the velocity and de Broglie wavelength of an
		alpha particle
Exa	5.3.13	find the de Broglie wavelengths of photon and electron
		find the de Broglie wavelength of an electron
Exa	5.7.1	find the accuracy in position of an electron
Exa	5.7.2	calculate the percentage of uncertainty
Exa	5.7.3	find the accuracy in position of an electron
Exa	5.7.4	find the accuracy in position of an electron
Exa	5.7.5	calculate the minimum time spent by the electrons
Exa	5.7.6	calculate the uncertainty in energy
Exa	5.7.7	find the time spent by an atom in excited state
Exa	5.15.1	find the energy of an electron for different states
		find the ground state energy of an electron
		calculate the probability of finding the particle
		find the probability of finding the particle
		find the lowest energy states
		calculate the width of the well
		calculate the energy and wavelength of the emitted pho-
		ton

Exa 6.1.1	calculate radius of revolution and distance covered
Exa 6.1.2	calculate radius and pitch
Exa 6.1.3	find the input voltage
Exa 6.5.1	calculate phase change
Exa 7.3.1	calculate critical temperature of element
Exa 7.3.2	find the critical field
Exa 7.3.3	calculate the critical current
Exa 7 3 4	calculate the isotopic mass

Chapter 1

Interference of Light

Scilab code Exa 1.2.1 find the wavelength of light in the visible spectrum

```
1 / Chapter -1, Example 1_2_1, pg 1-11
                                          //angle of
3 i = 45
      incidence
5 u=1.2
      refractive index of soap film
7 t=4*10^-5
      thickness of soap film
9 r=asind(sind(i)/u)
                                                     //by
       Snell's law
10
11 // for dark band 2*u*t*cos(r) = n*lam
12
13 wavelength_1=(2*u*t*cosd(r)/1)*10^8
                                // for n=1
14
15 wavelength_2 = (2*u*t*cosd(r)/2)*10^8
                                // for n=2
```

```
16
17 wavelength_3=(2*u*t*cosd(r)/3)*10^8
                                  // for n=3
18
  // visible range of wavelengths is 4000 A. to
                                                       7000
      Α.
20
21 printf('\n for n=1 wavelength = \%.1 \text{ f A.} \ \text{n'},
      wavelength_1)
22
23 printf('\n for n=2
                         wavelength = \%.1 f A.\n',
      wavelength_2)
24
25 printf('\n for n=3 wavelength = \%.2 f A.\n',
      wavelength_3)
26
27 printf('\n hence, none of the wavelengths from the
      visible region are absent in reflected light ')
```

Scilab code Exa 1.2.2 find the wavelength of light in the visible spectrum

```
= (2*n-1)*wavelength/2
12
13 wavelength_1=(2*u*t*cos(r)*2/(2*1-1))*10^8
                     //for
                             n=1
14
15
  wavelength_2=(2*u*t*cos(r)*2/(2*2-1))*10^8
                     // for
                             n=2
16
17 wavelength_3=(2*u*t*cos(r)*2/(2*3-1))*10^8
                     // for
                             n=3
18
   wavelength_4 = (2*u*t*cos(r)*2/(2*4-1))*10^8
                     //for
                            n=4
20
  //visible range of wavelengths is 4000 A. to
21
                                                     7000
     Α.
22
  printf('\n for n=1)
                        wavelength = \%.1 f A.\n,
      wavelength_1)
24
25 printf('\n for n=2
                        wavelength = \%.1 f A.\n',
      wavelength_2)
26
27 printf('n for n=3
                        wavelength = \%.1 f A.\n',
      wavelength_3)
28
  printf(') n for n=4
                        wavelength = \%.1 f A.\n',
      wavelength_4)
30
31 printf('\n The wavelength will be reflected is
      wavelength = \%.1 f A.\n, wavelength_3)
```

Scilab code Exa 1.2.3 find the order of interference band

```
1 / Chapter -1, Example 1_2_3, pg 1-12
```

```
2
3 u = 4/3
                                                  //
      refractive index of soap film
5 t=1.5*10^-4
                                                  //
      thickness of soap film
7 wavelength=5*10^-5
                                                          //
      wavelength of light
8
                                         //angle of
9 i = 45
      incidece
10
11 r=asind(sind(i)/u)
                                                     //by
      Snell's law
12
13 n=2*u*t*cosd(r)/wavelength
      //for nth dark band
14
15 printf("\n the order of an interference band is n =
     \%.0 \, f ",n)
```

Scilab code Exa 1.2.4 find the thickness of soap film

Scilab code Exa 1.2.5 find the thickness of oil layer

```
1 / Chapter -1, Example 1_2_5, pg 1-14
3 u=1.3
      refractive index of liquid
                                                //angle
5 r=0
      of refraction for normal incidence
  wavelength_1=7000
      wavelength of light
                                                //
9 wavelength_2=5000
      wavelength of light
10
11
  //for destructive interference
                                      '2*u*t*cos(r) =
      (2*n-1)*wavelength/2
12
  //'n' order for 'wavelength_1' and 'n+1' order for '
13
      wavelength_2'
14
15 //as LHS is same for both the wavelengths,
      therefore
```

Scilab code Exa 1.2.6 find the thickness of film

```
1 / Chapter -1, Example 1_2_6, pg 1-15
3 n=8
5 \text{ wavelength} = 5890 * 10^- 8
                                                    //
      wavelength of light
6
  u = 1.46
                                             //refractive
      index of oil
                                    //angle of incidence
9 i = 30
10
11 r=asind(sind(i)/u)
                                               //by Snell's
      law
12
13 t=n*wavelength/(2*u*cosd(r))
14
15 printf("\n the thickness of an oil film is t = \%.7 f
      cm",t)
```

Scilab code Exa 1.2.7 find the minimum thickness of film

```
1 / Chapter -1, Example 1_2_7, pg 1-15
                                           //refractive
3 u=1.5
      index of thin film
                                   //angle of refraction
5 r1 = 60
  wavelength=5890*10^-8
                                                  //
      wavelength of light
                                           //for minimum
9 n=1
      thickness
10
  t1=n*wavelength/(2*u*cosd(r1))
12
13 printf("\n the thickness of an oil film is t = \%.7 f
     cm",t1)
14
15 r2=0
                                           //for normal
      incidence
16
17 t2=n*wavelength/(2*u*cosd(r2))
18
19 printf("\n the thickness of an oil film is t = \%.7 f
     cm",t2)
```

Scilab code Exa 1.2.8 find the refractive index of oil

```
6
7 t=V/A
                                          //Thickness of
      oil film
9 r=0
                                          //for normal
      incidence
10
                                          //for 1st dark
11 \quad n=1
      band
12
13 wavelength=5.5*10^-5
                                                  //
      wavelength of light
14
15 u=n*wavelength/(2*t*cosd(r))
16
17 printf('\nrefractive index of oil is u = \%.3 f', u)
```

Scilab code Exa 1.2.9 find the wavelength of light in the visible region

```
1 / Chapter -1, Example 1_2_9, pg 1-17
                                            //refractive
3 u=1.2
     index of oil film
5 t=2*10^-7
                                            //thickness
      of oil film
6
7 r = 60
                                    //angle of refraction
9 // for destructive interference 2*u*t*cos(r) =
      (2*n-1)*wavelength/2
10
11 wavelength_1=(2*u*t*cosd(r)*2/(2*1-1))*10^10
                    // for
                             n=1
12
```

```
13 wavelength_2=(2*u*t*cosd(r)*2/(2*2-1))*10^10
                     //for
                             n=2
14
15 wavelength_3=(2*u*t*cosd(r)*2/(2*3-1))*10^10
                     // for
                             n=3
16
  //visible range of wavelengths is 4000*10^-10 m to
       7000*10^-10 m
18
  printf('\n for n=1
                        wavelength = \%. f A.\n',
19
      wavelength_1)
20
21
  printf('\n for n=2
                        wavelength = \%. f A.\n',
      wavelength_2)
22
  printf('\n for n=3)
                        wavelength = \%. f A.\n',
23
      wavelength_3)
24
  printf('\n The wavelength will be reflected is
25
      wavelength = \%. f A.\n', wavelength_1)
```

Scilab code Exa 1.3.1 find wavelength of monochromatic light

```
//Chapter -1, Example1_3_1, pg 1-21

N=10
    //no of dark fringes

d=1.2
    // distance between consecutive fringes

B_air=d/N
    fringe width in air
//
```

```
9 a=(40/3600)*(\%pi/180)
      //angle made by film in radians
10
11 wavelength=2*a*B_air
                                                  //as
      fringe width in air is
                                    'B_air = wavelength
      /(2*a),
12
13 printf("\nThe wavelength of monochromatic light is =
       \%.8\,\mathrm{f} cm\n", wavelength)
   Scilab code Exa 1.3.2 calculate the angle of wedge
1 / Chapter -1, Example 1_3_2, pg 1-22
3 \text{ wavelength} = 5893*10^-8
      //wavelength of light
5 B = 0.1
      //fringe width
7 u=1.52
      //refractive index of glass wedge
9 a=(wavelength/(2*u*B))*3600*(180/%pi)
                                            //as fringe
      spacing is
                      'B = wavelength/(2*a*u)'
```

11 printf("\nThe angle of wedge is a =%.2 f seconds \n"

10

,a)

```
Scilab code Exa 1.3.3 calculate the wavelength of light
```

Scilab code Exa 1.3.4 find the number of fringes

```
1 //Chapter -1, Example 1_3_4, pg 1-23
2
3 wavelength = 5.82*10^-5
    //wavelength of a monochromatic light
4
```

```
5 u=1.5
       //\operatorname{refractive} index of glass
7 a=(20/3600)*(\%pi/180)
                                                                  //
       angle made by glass film in radians
9 B=wavelength/(2*u*a)
       //The fringe width
10
11 N = 1/B
       //the number of fringes per cm
12
13 printf("\nThe number of fringes per cm = \%.f \n",N)
   Scilab code Exa 1.3.5 find the diameter of wire
1 \ // \, \mathrm{Chapter} -1 , \mathrm{Example} 1 \, ._3 \, ._5 \ , \mathrm{pg} \ 1 - 24
 3 \text{ wavelength} = 6*10^-5
       //wavelength of light
 5 B = 0.1
       //fringe width (as there are 10 fringes)
 6
 7 u = 1
       //refractive index of air wedge
 9 \text{ a=wavelength/}(2*u*B)
```

```
//as fringe spacing is {}^{\prime}B = wavelength/(2*a*u)
10
11 \text{ dist}=10
      //distance of plane of rectangular pieces from
      wire
12
13 d=a*dist
      //as for small angle 'tan(a) = a = d/dist'
14
15 printf("\nThe diameter of wire is d = \%.3 f \text{ cm} \text{n}",d)
   Scilab code Exa 1.3.6 find the separation between consecutive bright fringes
1 / Chapter -1, Example 1_3_6, pg 1-24
3 a=10^-4
      //as for small angle 'tan(a) = a'
5 \text{ wavelength} = 5900*10^-10
                                                        //
      wavelength of light in air
6
7 u = 1
      //refractive index of air
9 B=wavelength/(2*u*a)
```

fringe width

10

//The

Scilab code Exa 1.4.1 find the ring number

```
//Chapter -1, Example 1_4_1, pg 1-32
// let the diameter of nth dark ring be double the diameter of that of 40th ring
// as Dn^2 = 4*R*n*wavelength
// as Dn^2 = 4*R*n*wavelength
// 40 th dark ring
// as diameter is double
// as diameter is double
printf('\nThe ring number is n= %.f',n)
```

Scilab code Exa 1.4.2 find radius of curvature and thickness of film

Scilab code Exa 1.4.3 find the radius of curvature

```
1 / Chapter -1, Example 1_4_3, pg 1-33
2
                                                          //5 \,\mathrm{th}
3 n_1=5
      ring
5 n_2=15
                                                          //15 \,\mathrm{th}
      ring
6
                                                           //
7 p=n_2-n_1
       difference between rings
9 Dn_1=0.336
                                                  //diameter of
      5th ring
10
11 Dn_2=0.59
                                                  //diameter of
       15th ring
12
13 \text{ wavelength} = 5890 * 10^-8
                                                                //
       wavelength of light
14
15 R=(Dn_2^2-Dn_1^2)/(4*p*wavelength)
```

Scilab code Exa 1.4.4 find the wavelength of light

```
1 / Chapter -1, Example 1_4_4, pg 1-33
3 //as n1 = nth ring n2 = (n+8)th ring
4
                                                 //
5 p=8
      difference between rings
                                           //diameter of 5
7 \quad Dn_1 = 0.42
      th ring
  Dn_2 = 0.7
                                           //diameter of
      15th ring
10
                                                   //
11 R=200
      radius of curvature
12
  wavelength = (Dn_2^2-Dn_1^2)/(4*p*R)
      //wavelength of light
14
15 printf('\nThe wavelength of light is
                                           wavelength =
     \%.6 f cm n', wavelength)
```

Scilab code Exa 1.4.5 find the refractive index of liquid

```
\frac{1}{2} //chapter -1, Example 1_4_5, pg 1-34
```

```
3 Dn_1=0.218
                                           //Diameter of
      nth ring
4
                                           //Diameter of (
5 Dn_2=0.451
      n+10) th ring
                                                      //
7 wavelength=5893*10^-8
      wavelength of light
9 R = 90
                                         //Radius of
      curvature
10
11 p = 10
12
                                                         //
13 u=(4*p*wavelength*R)/(Dn_2^2-Dn_1^2)
      Refractive index of liquid
14
15 printf('\nRefractive index of liquid is u = \%.3 f', u
```

Scilab code Exa 1.4.6 find the diameter of dark ring

Scilab code Exa 1.4.7 find the diameter of dark ring

```
1 / Chapter -1, Example 1_4_7, pg 1-35
2
3 R = 200
     //radius of curvature
5 wavelength_1=6000*10^-8
                                            //wavelength
      of light for nth dark ring
7 wavelength_2=5000*10^-8
                                            //wavelength
      of light for (n+1)th dark ring
  //as nth ring due to wavelength_1= 6000*10^--8 cm
      is coincide with (n+1)th ring
      wavelength_2 = 5000*10^- - 8 cm
10
  // therefore 6*n = 5*(n+1)
11
12
13 n=5
14
15 Dn=sqrt (4*R*n*wavelength_1)
16
  printf('\nDiameter of nth dark ring due to
17
      wavelength 6000 A. is
                             Dn = \%.4 f cm n', Dn
18
  //wrong ans in textbook
```

Scilab code Exa 1.4.8 find the refractive index of liquid

Scilab code Exa 1.4.11 find the diameter of ring

```
1 / Chapter -1, Example 1_4_11, pg 1-37
3 D_4 = 0.4
                                                  //diameter
      of 4th dark ring
4
5 D<sub>12</sub>=0.7
                                                  //diameter
      of 12th dark ring
7 \text{ const} = D_4^2/(4*4)
      assume (R*wavelength = const) for 4th dark ring
9 D_20 = sqrt (4*20*const)
                                                            //
      For 20th dark ring
10
11 printf('\nDiameter of 20th dark ring is D20 = \%.3 f
       cm n', D_20
```

Scilab code Exa 1.4.12 calculate the wavelength of light

```
// Chapter -1, Example 1_4_12, pg 1-38
                                                      //5 \,\mathrm{th}
3 n_1=5
      ring
                                                       //15 \,\mathrm{th}
5 n_2=15
      ring
                                                        //
  p=n_2-n_1
      difference between rings
                                               //diameter of
9 Dn_1=0.336
      5th ring
10
                                               //diameter of
11
  Dn_2 = 0.59
      15th ring
12
                                                        //
13 R=100
      Radius of curvature
14
15 wavelength=(Dn_2^2-Dn_1^2)/(4*p*R)*10^8
                          //wavelength of light
16
17 printf('\nwavelength of light is = \%.f A.',
      wavelength)
```

Scilab code Exa 1.7.1 find the thickness of coating

```
\begin{array}{ll} 1 & //\operatorname{Chapter} -1, \operatorname{Example1\_7\_1} \ , \operatorname{pg} \ 1-42 \\ 2 & \end{array}
```

```
3 wavelength=560
     //wavelength of light in air
5 u=2.0
     //refractive index of silicon monoxide material
  //The wavelength of 'wavelength_1' in a medium of
      refractive index 'u' is
  wavelength_1=wavelength/u
10
11 t=wavelength_1/4
     //thickness of the film
12
13 printf("\nThe thickness of the film is = \%.f nm\n",t
   Scilab code Exa 1.7.2 find the thickness of coating
1 / Chapter -1, Example 1_7_2, pg 1-42
3 wavelength=6000
     //wavelength of light in air
5 u=1.2
     //refractive index of transparant material
7 wavelength_1=wavelength/u
     //The wavelength of wavelength_1 in a medium of
```

```
refractive index 'u'
8
9 t=wavelength_1/4
    //thickness of coating
10
11 printf("\nThe thickness of coating to eliminate reflection is t = %.f A.\n",t)
```

Chapter 2

Diffraction of Light

Scilab code Exa 2.2.1 calculate the width of slit

Scilab code Exa 2.2.2 calculate the angular separation between first order minima

```
1 / Chapter -2, Example 2_2_2, pg 2-10
                                              //width of
3 a=6*10^-6
      slit
4
5 n=1
                                              //for first
      minimum
7 wavelength=6000*10^-10
                                                     //
      wavelength of light
8
  angle=2*asind(n*wavelength/a)
                                                //angular
      seperation
10
11 printf('\nThe angular seperation between first order
       minima is angle = \%.4 \, f degree \ n', angle)
```

Scilab code Exa 2.2.3 calculate wavelength of light

```
//Chapter -2, Example 2_2_3, pg 2-11
// Chapter -2, Example 2_2_3, pg 2-11
// for second order minima
// for third order minima
wavelength_3 = 4000 // wavelength of light for third order minima
// as second order minima is coincide with third order minima, n2*wavelength = n3*wavelength_3
// wavelength_2 = n3*wavelength_3/n2
```

```
13 printf("\nwavelength of light for second order minima is = \%. f A.", wavelength_2)
```

Scilab code Exa 2.2.4 find half angular width of a principal maximum

```
1 / Chapter -2, Example 2_2_4, pg 2-11
                                                 //width of
3 a=0.16*10^{-3}
       slit
                                              //for first
5 n=1
      minimum
7 wavelength=5600*10^-10
                                                     //
      wavelength of light
8
                                             //angular
9 angle=asind(n*wavelength/a)
      seperation
10
11 printf('\nThe half angular width of a principal
      maximum is angle = \%.4 \, f degrees \n', angle)
```

Scilab code Exa 2.2.5 find half angular width of central maximum

Scilab code Exa 2.2.6 calculate the angle

```
1 / Chapter -2, Example 2_2_6, pg 2-12
3 a=2*10^-6
                                                 //width of
       slit
5 n=1
                                                 // for
      first minimum
  wavelength=6500*10^-10
                                                 //
      wavelength of light
8
  angle=asind(n*wavelength/a)
                                                //angular
      seperation
10
11 printf('\nThe half angular width of a principal
      maximum is
                  angle =\%.2 \, f degrees \n', angle)
```

Scilab code Exa 2.3.1 calculate the missing orders

Scilab code Exa 2.4.1 find the orders

```
1 / Chapter -2, Example 2_4_1, pg 2-24
3 wavelength_1=5000
      //wavelength of light
  wavelength_2=7000
      //wavelength of light
7 N = 4000
      //number of lines per cm
9 \text{ m_1=1/((wavelength_1*10^-8)*N)}
                                        //for wavelength=
      5000 A.
10
11 m_2=1/((wavelength_2*10^-8)*N)
                                         //for wavelength=
      7000 A.
12
13 printf('\nnumber of orders visible for 7000*10^{-10}
      meter are \%.2 \text{ f} \text{ n}, m_2)
14
```

```
15 printf('\nnumber of orders visible for 5000*10^-10 meter are \%.1 \, f \ n', m_1)
```

Scilab code Exa 2.4.2 find the number of lines per meter

```
1 / Chapter -2, Example 2_4_2, pg 2-24
3 //as a mth order of wavelength 5400 A. is
      superimposed on (m+1)th order of wavelength
      Α.
                                                  //angle
5 \text{ angle=30}
      of diffraction
  wavelength_1=5400
      for mth order
  wavelength_2=4050
      for (m+1)th order
10
11 m=wavelength_2/(wavelength_1-wavelength_2)
12
13 N=(sind(angle)/(m*wavelength_1))*10^8
                                     //Number of lines
      per cm
14
15 printf('\nNumber of lines per cm N=\%.2\,\mathrm{f}',N)
```

Scilab code Exa 2.4.3 calculate the wavelength of spectral line

```
\frac{1}{2} //Chapter -2, Example 2-4-3, pg 2-25
```

```
3 //as 3rd order line of wavelength lam is coincide
    with 4th order wavelength 4992 A.
4
5 m_1=3
    //3rd order
6
7 m_2=4
    //for 4th order
8
9 wavelength_2=4992
    order
10
11 wavelength_1=m_2*wavelength_2/m_1
12
13 printf('\nwavelength of light is = %.0 f A.',
    wavelength_1)
```

Scilab code Exa 2.4.4 find the angle of diffraction

```
10
11 angle_1=asind(N*m1*wavelength)
12
13 angle_2=asind(N*m2*wavelength)
14
15 printf('\nangle of diaffraction for 1st order minima is ang1 = %.2f degrees',angle_1)
16
17 printf('\nangle of diaffraction for 2nd order minima is ang2 = %.2f degrees',angle_2)
```

Scilab code Exa 2.4.5 calculate the number of lines per meter

Scilab code Exa 2.4.6 find the longest wavelength

```
\begin{array}{cc} 1 & //\operatorname{Chapter} -2, \operatorname{Example2\_4\_6}, \operatorname{pg} & 2{-}26 \\ 2 & \end{array}
```

Scilab code Exa 2.4.7 calculate the total number of lines

Scilab code Exa 2.4.8 calculate total number of lines

```
1 / Chapter -2, Example 2_4_8, pg 2-27
4 \quad m=1
      // first ordr spectrum
6 \text{ wavelength=} 6.56*10^-5
                                         //wavelength of
      light
8 angle=18.23333333
                                               //angle of
      diffraction
10 N=2*sind(angle)/(m*wavelength)
11
12 printf('\nNumber of lines per 2 cm is N = \%.2 f', N)
   Scilab code Exa 2.4.9 calculate the highest order spectrum
1 / Chapter -2, Example 2_4_9, pg 2-27
3 N = 5000
                                                  //Number of
       lines per meter
4
                                                           //
  wavelength=6*10^-5
      wavelength of light
7 m_max=1/(N*wavelength)
9 printf('\nThe highest order spectrum is m=\%.0\,\mathrm{f}',
```

 $m_max)$

Scilab code Exa 2.4.10 find the order of absent spectra

```
// \text{Chapter} -2, \text{Example } 2\_4\_10, \text{pg} 2-28
3 N=5000*10^2
                                                          //
      Number of lines per meter
   wavelength=6000*10^-10
                                          //wavelength of
      light
6
7 m_max=1/(N*wavelength)
  //for absent spectra
10
11 n = [1 2 3]
12
                                                          //as b
13 m = 3 * n
                       and m = ((a+b)/a)*n
       = 2a
14
15 printf('\n The order of absent spectra is m = \%.0 \, f'
       ,m_max)
```

Scilab code Exa 2.4.11 calculate total number of lines

Scilab code Exa 2.6.1 find angular separation and number of lines per meter

```
1 / Chapter -2, Example 2_6_1, pg 2-31
3 wavelength_1=5893*10^-10
                                          //wavelength of
       light
5 wavelength_2=5896*10^-10
                                          //wavelength of
       light
6
7 m=2
     //for second order
  N1 = 3000 * 10^2 / 0.5
      //Number of lines per meter
10
11 angle_1=asind(m*wavelength_1*N1)
                            //for wavelength_1
12
13 angle_2=asind(m*wavelength_2*N1)
```

```
//for wavelength_2
14
15
  angle_sep=angle_2-angle_1
16
17 printf('\nangular seperation is %.4f degrees \n',
      angle_sep)
18
19 \quad d_{wavelength} = 3*10^-10
20
21 N=wavelength_1/(m*d_wavelength)
22
23 printf('\n The number of lines per meter is N = \%.0
      f \setminus n ', N)
   Scilab code Exa 2.6.2 find the smallest wavelength interval
1 / Chapter -2, Example 2_6_2, pg 2-32
3 wavelength=481
      wavelength of light
5 m=3
                                                         //for
      third order
  N = 620 * 5.05
                                                         //
      number of lines per meter
  d_wavelength=wavelength/(m*N)
9
10
11 printf('\n The smallest wavelength interval is
      d_{\text{wavelength}} = \%.4 \text{ f nm/n',d_wavelength}
```

Scilab code Exa 2.6.3 find the width of grating

```
1 / Chapter -2, Example 2_6_3, pg 2-33
3 \text{ wavelength} = 5890*10^-10
                                                //wavelength
      of light
5 \text{ d_wavelength=}6*10^-10
7 m=2
      //for second order
  N=wavelength/(d_wavelength*m)
10
                                                             //
11 W = N / 500
      as there are 500 \, \text{lines/cm}
12
13 printf('\n The width of grating is W = \%.3 f \text{ cm',W})
   Scilab code Exa 2.6.4 find the resolving power of diffraction
1 / Chapter -2, Example 2_6_4, pg 2-33
3 N = 3 * 5000
      number of lines
5 n_1=5000*10^2
      number of lines per meter
7 wavelength=5890*10^-10
                                             //wavelength of
      light
9 m_max=1/(n_l*wavelength)
11 R_P_max = (m_max) * N
```

Scilab code Exa 2.6.5 calculate number of lines and the grating element

```
1 / Chapter -2, Example 2_6_5, pg 2-34
3 \text{ wavelength} = 5890 * 10^-10
                                                  //wavelength
       of light
5 \quad d_{\text{wavelength}} = 6 * 10^{-10}
7 \quad m=2
      //for second order
9 N=wavelength/(d_wavelength*m)
10
                                                                //
11 W = 3
       width of grating
12
13 \text{ width=W/N}
14
15 printf('\nNumber of lines is N = \%.0 f \ n',N)
16
17 printf('\n The grating element(width of line) is
                                                                 a+
      b = \%.7 f cm', width)
```

Scilab code Exa 2.6.6 find the resolving power

```
\frac{1}{2} // Chapter -2, Example 2-6-6, pg 2-34
```

Chapter 3

Fibre Optics

Scilab code Exa 3.3.1 find refractive index of cladding

```
//Chapter -3, Example3_3_1, pg 3-6

NA=0.5

//Numerical aperture

n1=1.54

refractive index of core

n2=sqrt(n1^2-NA^2)

//Numerical
aperture is 'NA^2 = n1^2 - n2^2'

printf("\nThe refractive index of cladding is n2 = %.3 f\n",n2)
```

Scilab code Exa 3.3.2 find refractive index of core and acceptance angle

```
1 / Chapter -3, Example 3_3_2, pg 3-6
3 NA = 0.2
      //Numerical aperture
5 n2=1.59
                                                           //
      refractive index of cladding
7 n1 = sqrt(n2^2 - NA^2)
                                              //Numerical
      aperture is NA^2 = n1^2 - n2^2
  printf("\nThe refractive index of core is n1 = \%.1 f\
      n", n1)
10
11 \quad n0 = 1.33
                                                           //
      refractive index of medium
12
13 angle_0=asind(NA/n0)
      //For medium numerical aperture is 'NA=n0*sin(
      angle_0)'
14
15 printf("\nThe acceptance angle is angle_0 = \%.2 \,\mathrm{f}
      Degree \n", angle_0)
```

Scilab code Exa 3.3.3 find the numerical aperture and acceptance angle

```
1 //Chapter -3, Example 3_3_3, pg 3-6
2
3 n1=1.49
    //refractive index f core
```

```
// refractive index of cladding

NA=sqrt(n1^2 - n2^2)
// Numerical
aperture is 'NA^2 = n1^2 - n2^2'

printf("\nThe Numerical aperture is N.A. = %.5 f\n",
NA)

angle_0=asind(NA)
// for air numerical aperture is 'NA=sin(angle_0)'

printf("\nThe acceptance angle is angle_0 = %.1 f
Degree\n",angle_0)
```

Scilab code Exa 3.3.4 find the critical angle and angle of acceptance cone

```
//Chapter -3, Example3_3_4, pg 3-7

n1=1.6
//refractive index f core

n2=1.3
//refractive index of cladding

angle_c=asind(n2/n1)
//Critical angle

printf("\nThe critical angle is angle_c = %.2 f Degree\n", angle_c)
```

Scilab code Exa 3.3.5 the refractive index of cladding

Scilab code Exa 3.3.6 calculate the fractional index change

```
//Chapter -3, Example3_3_6, pg 3-8

n1=1.563

//refractive index f core

n2=1.498

//refractive index of cladding

delta=(n1-n2)/n1

fractional index change

printf("\nThe fractional index change is Delta = % .4 f \n", delta)
```

Scilab code Exa 3.3.7 calculate the maximum refractive index of cladding

```
is n2 = \%.4 f n, n2)
```

Scilab code Exa 3.3.8 calculate the acceptance angle

```
// \text{Chapter} -3, \text{Example } 3\_3\_8, \text{pg} 3-8
3 //In air
5 \text{ angle_0_air=30}
      //acceptance angle of an optical fibre
7 NA=sind(angle_0_air)
                                              //Numerical
      aperture is 'NA^2 = n1^2 - n2^2'
                                             also numerical
       aperture is 'NA=sin(angle)'
9 n0=1.33
      //refractive index of medium
10
11 angle_0=asind(NA/n0)
                                                    //For
      medium numerical aperture is 'NA=n0*sin(angle_0)'
12
13 printf("\nThe acceptance angle in medium is angle_0
      = \%.2 f Degree \n",angle_0)
```

Scilab code Exa 3.4.1 calculate normalized frequency and number of modes

```
\frac{1}{2} // Chapter -3, Example \frac{3}{4} 1, pg \frac{3}{10}
```

```
3 d=29*10^-6
      //diameter of core of step index fibre
5 \text{ wavelength=} 1.3*10^-6
      //wavelength of light
7 n1=1.52
      //refractive index of core
9 n2=1.5189
      //refractive index of cladding
10
11 V=%pi*d*sqrt(n1^2-n2^2)/wavelength
                                              //Normalized
      frequency of the fibre
12
13 printf("\nThe normalised frequency of fibre is V =
     \%.3 \text{ f} \text{ n}", V)
14
15 \ N=V^2/2
      //The number of modes
16
17 printf("\nThe number of modes = \%. f\n", N)
```

Scilab code Exa 3.4.2 calculate the maximum radius for fibre

```
1 //Chapter -3, Example 3_4_2, pg 3-10 2 3 //For single mode fibre, V < 2.405
```

```
5 V = 2.405
      //normalized frequency of fibre
7 n1=1.47
      //refractive index of core
9 n2=1.46
      //refractive index of cladding
10
11
  wavelength=1.3
      //wavelength
12
13 d=V*wavelength/(%pi*sqrt(n1^2-n2^2))
                                           //diameter of
      core
14
15 r = (d/2)
16
17 printf("\nThe maximum radius for fibre = \%.3 \, f \, um \ n",
      r)
   Scilab code Exa 3.4.3 find various parameters of fibre
1 / Chapter -3, Example 3_4_3, pg 3-11
3 \text{ wavelength} = 1*10^-6
      //wavelength of light
5 r=50*10^-6
```

```
//radius of core
6
7 delta=0.055
      //relative refractive index of fibre
9 n1=1.48
      //refractive index of core
10
11 n2=n1*(1-delta)
      //as
               'delta = (n1-n2)/n1'
12
13 printf("\nThe refractive index of cladding n2 = \%.4
      f \setminus n", n2)
14
15 NA = sqrt(n1^2-n2^2)
                                                        //
      numerical aperture
16
17 printf("\nThe numerical aperture N.A. = \%.3 \, f \ \n", NA)
18
19 angle_0=asind(NA)
                                                      // as
         N.A. = \sin(angle_0)
20
21 printf("\nThe acceptance angle is angle_0 = \%.2 \,\mathrm{f}
      Degree \n", angle_0)
22
23 d = 2 * r
24
25 V=%pi*d*NA/wavelength
                                                             //
      Normalized frequency of the fibre
26
27 printf("\nThe normalised frequency of fibre is V =
      \%.2 \text{ f} \text{ n}", V)
```

```
28
29 N = V^2/2
      //The number of modes
30
31 printf("\nThe number of modes = \%. f \n", N)
   Scilab code Exa 3.4.4 calculate various parameters of fibre
1 / Chapter -3, Example 3_4_4, pg 3-12
3 \text{ wavelength} = 1*10^-6
      //wavelength of light
5 d=6*10^-6
      //diameter of core
7 n1=1.45
      //refractive index of core
9 n2=1.448
      //refractive index of cladding
10
11 angle_c=asind(n2/n1)
      critical angle is \sin(angle_c) = n2/n1,
12
13 printf("\nThe critical angle is angle_c = \%. f
      Degree \n", angle_c)
14
15 NA = sqrt(n1^2-n2^2)
```

Scilab code Exa 3.4.5 calculate the number of modes

```
//Chapter -3, Example 3_4_5, pg 3-12
wavelength=1*10^-6
//wavelength of light

r=50*10^-6
//radius of core

n1=1.50
//refractive index of core

n2=1.48
//refractive index of cladding
```

Scilab code Exa 3.4.6 calculate various parameters of fibre

```
//Chapter -3, Example 3_4_6, pg 3-13
wavelength=1.4*10^-6
//wavelength of light

d=40*10^-6
//diameter of core

n1=1.55
//refractive index of core

n2=1.50
//refractive index of cladding
```

```
10
11 NA=sqrt(n1^2-n2^2)
      //numerical aperture
12
13
   printf("\nThe numerical aperture N.A. = \%.4 \, \text{f} \, \text{n}", NA)
14
15 \text{ delta}=(n1-n2)/n1
      //Fractional index change
16
17 printf("\nThe fractional index change Delta = \%.5 f\n
      ",delta)
18
19 V=%pi*d*NA/wavelength
      //Normalized frequency of the fibre
20
21 printf("\nthe V-number is V = \%.2 f \n", V)
   Scilab code Exa 3.6.1 calculate the fibre attenuation
1 / Chapter -3, Example 3_6_1, pg 3-17
3 Pin=1
      //Input power in mW
5 Pout = 0.3
      //output power in mW
7 Pl=(-10)*log10(Pout/Pin)
                                                //Power loss
```

or attenuation

```
9 L = 0.1
      //Length of cable in km
10
11 a=P1/L
      //fibre attenuation
12
13 printf("\nThe fibre attenuation is a = \%.2 f dB/km\n"
      ,a)
   Scilab code Exa 3.6.2 calculate the output power
1 / Chapter -3, Example 3_6_2, pg 3-18
3 L=3
      //length of fibre in km
5 a=1.5
      // \, Loss \ specification \ in \ dB/km
7 Pin=9.0
      //input power in uW
9 Pl=a*L
      //Power loss
10
11 Pout=Pin*10^(-P1/10)
      Power loss or attenuation is Pl=(-10)*log10 (
```

```
Pout/Pin)
12
13 printf("\nThe output power Pout = %.3f uW\n",Pout)
```

Scilab code Exa 3.6.3 calculate the fractional initial intensity

```
1 / Chapter -3, Example 3_6_3, pg 3-18
3 a=2.2
5 //ratio= Pout/Pin
  //For a length of L=2 km
9 P11=a*2
10
11 ratio_1=10^(-Pl1/10)
     as Power loss or attenuation is Pl=(-10)*log10
     Pout/Pin)
12
13 printf("\nThe fractional initial intensity after 2
     km is \%.3 f \n",ratio_1)
14
  //For a length of L=6 km
15
16
17 Pl2=a*6
18
19 ratio_2=10^(-P12/10)
                                       Pl = (-10) * log 10
     as Power loss or attenuation is
     Pout/Pin)
20
21 printf("\nThe fractional initial intensity after 6
     km is \%.3 f \n", ratio_2)
```

Scilab code Exa 3.6.4 find the loss specification in cable

```
1 / Chapter -3, Example 3_6_4, pg 3-19
3 Pin=8.6
      //Input power in mW
5 \text{ Pout} = 7.5
      //output power in mW
7 Pl=(-10)*log10(Pout/Pin)
                                             //Power loss
      or attenuation
9 L = 0.5
      //Length of cable in km
10
11 a=P1/L
      //Loss secification
12
13 printf("\nThe loss specification in cable is a = \%
      .3 f dB/km\n",a)
```

Chapter 4

Lasers

Scilab code Exa 4.6.1 find the number of emitted photons

```
1 / Chapter -4, Example 4_6_1, pg 4-7
                                                  //output
3 P=3.147*10^{-3}
      power
4
5 t = 60
                                                  //time
                                                          //
7 wavelength=632.8*10^-9
      wavelength of He-Ne laser
                                                  //Plancks
9 h=6.63*10^{-34}
       constant
10
11 c = 3 * 10^8
      velocity of light in air
12
                                                          //
13 N=P*t*wavelength/(h*c)
      No. of photons emitted
14
  printf("\nNo. of photons emitted each minute\n")
15
16
```

```
17 \text{ disp}(N)
```

Scilab code Exa 4.6.2 find the ratio of population of two energy levels

```
1 / Chapter -4, Example 4_6_2, pg 4-7
3 wavelength=694.3*10^-9
                                                         //
      wavelength of He-Ne laser
4
5 h=6.63*10^{-34}
                                                 //Plancks
       constant
6
7 c = 3 * 10^8
      velocity of light in air
9 k=1.38*10^-23
      Boltzmann constant
10
                                                 //ambient
11 T=300
       temperature in kelvin
12
13 ratio=%e^-(h*c/(wavelength*k*T))
      ratio of population of two energy level in laser
14
15 printf("\nRatio of population of two energy level in
       laser N2/N1 is n")
16
17 disp(ratio)
```

Scilab code Exa 4.6.3 calculate the wavelength of photons

```
\begin{array}{cc} 1 & //\operatorname{Chapter} -4, \operatorname{Example4\_6\_3} , \operatorname{pg} \ 4-8 \\ 2 & \end{array}
```

```
//
3 P=100*10^3
      avrage power per pulse
5 t=20*10^-9
      time duration
7 h=6.63*10^{-34}
      Plancks constant
9 c = 3*10^8
      velocity of light in air
10
                                                       //
11 N=6.981*10^15
     No. of photons per pulse
12
13 wavelength=N*h*c/(P*t)*10^10
14
15 printf("\nWavelength of photons = %.f A.\n",
     wavelength)
```

Chapter 5

Quantum Mechanics

Scilab code Exa 5.3.1 calculate de Broglie wavelength and velocity and time

```
1 / Chapter -5, Example 5_3_1, pg 5-5
3 h=6.63*10^{-34}
                                                         //
      Plancks constant
5 m = 10^{-2}
      mass of an moving object
7 v1 = 1
      velocity of that object
9 wavelength_1=h/(m*v1)
10
11 printf("\nThe de Broglie Wavelength is\n")
12
13 disp(wavelength_1)
14
15 printf ("meter \n")
16
17 wavelength_2=10^-10
```

```
//new de
      Broglie wavelength
18
19 v2=h/(m*wavelength_2)
                                             //new velocity
       of an object
20
21 printf("\nThe new velocity of an object is\n")
22
23 disp(v2)
24
25 printf ("meter/sec\n")
26
                                                         //
27 d=10^{-3}
      Distance travelled with speed v2
28
29 t=(d/v2)/(365*24*60*60)
                                                    //time
      required to travel distance
30
31 printf("\nTime required to travel distance is\n")
32
33 disp(t)
34
35 printf("years\n")
36
37 //mistake in textbook
   Scilab code Exa 5.3.2 calculate the velocity
1 / Chapter -5, Example 5_3_2, pg 5-6
3 h=6.63*10^{-34}
                                                    //
      Plancks constant
```

Scilab code Exa 5.3.3 calculate kinetic energy of an electron

```
1 / Chapter -5, Example 5_3_3, pg 5-6
3 h=6.63*10^{-34}
                                                   //
      Plancks constant
5 m=9.1*10^-31
                                                   //mass
      of an electron
7 wavelength=5000*10^-10
      //de Broglie wavelength of an electron
9 e=1.6*10^-19
      charge on electron
10
11 E=h^2/(2*m*wavelength^2*e)
      //Kinetic energy of an electron
12
13 printf("\nKinetic energy of an electron is E = \%.9 f
       eV \ n", E)
```

Scilab code Exa 5.3.4 find the wavelength of a beam of neutron

```
1 / Chapter -5, Example 5_3_4, pg 5-7
3 E=0.025
                                                   //
      energy of neutron
5 h=6.63*10^{-34}
      Plancks constant
  m=1.676*10^-27
                                                   //mass
      of a neutron
9 e=1.6*10^-19
      charge on electron
10
  wavelength=h/sqrt(2*m*E*e)
11
      //The Wavelength of a beam of neutron
12
13 printf("\nThe Wavelength of a beam of neutron is\n")
14
15 disp(wavelength)
16
17 printf("meter\n")
```

Scilab code Exa 5.3.5 find the de Broglie wavelength of an electron

```
1 //Chapter -5, Example5_3_5, pg 5-7
2
3 E=120  //
    kinetic energy of an electron
4
```

```
5 h=6.63*10^{-34}
                                                   //
      Plancks constant
7 m=9.1*10^-31
                                                   //mass
      of an electron
9 e=1.6*10^-19
      charge on electron
10
11 wavelength=h/sqrt(2*m*E*e)
      //The de Broglie Wavelength of an electron
12
13 printf("\nThe de Broglie Wavelength of an electron
      is \n")
14
15 disp(wavelength)
16
17 printf ("meter \n")
```

Scilab code Exa 5.3.6 calculate the velocity and kinetic energy of neutron

```
v=h/(m*wavelength)
    //velocity of a neutron

printf("\nThe velocity of a neutron is v= %.f m/s\n
    ",v)

E=h^2/(2*m*wavelength^2*e)
    //Kinetic energy of a neutron

printf("\nKinetic energy of a neutron is E= %.5f eV\n",E)
```

Scilab code Exa 5.3.7 find the de Broglie wavelength

```
1 / Chapter -5, Example 5_3_7, pg 5-8
3 / (1)
4 V=182
                                                   //
      Potential difference
6 wavelength_1=12.27*10^-10/sqrt(V)
                          //The de Broglie wavelength of
       an electron accelerated through a potential diff
      . of 'V'
7
8
9 printf("\nThe de Broglie wavelength of an electron
      accelerated through a potential diff. of V is \n")
10
11 disp(wavelength_1)
12
13 printf ("meter \n")
14
15 //(2)
16 h=6.63*10^{-34}
```

Plancks constant 17 18 m=1 19 20 v=1 21 22 wavelength_2=h/(m*v) 23 24 printf("\nThe de Broglie wavelength of an object is\n") 25 26 disp(wavelength_2) 27 28 printf("meter\n")

Scilab code Exa 5.3.8 find the momentum and energy of an electron

```
1 / Chapter -5, Example 5_3_8, pg 5-9
3 h=6.63*10^{-34}
                                                     //
      Plancks constant
5 m=9.1*10^-31
                                                     //mass
      of an electron
7 e=1.6*10^-19
                                                     //
      charge on electron
9 \text{ wavelength=} 10^-14
      //The de Broglie wavelength of an electron
10
11 p=h/wavelength
      //as the de Broglie wavelength of an electron is
      (lam=h/p)
12
```

```
printf("\nThe momentum of an electron is\n")

disp(p)

printf("kg-meter/sec\n")

E=p^2/(2*m*e)*10^-6
    //energy corresponds to momentum

printf("\nenergy of an electron is E = %.2 f MeV\n", E)
```

Scilab code Exa 5.3.9 find the parameters for an electron wave

```
1 / Chapter -5, Example 5_3_9, pg 5-10
3 V = 3000
                                                      //
      Potential difference
5 wavelength=12.27/sqrt(V)
     The de Broglie wavelength of an electron
      accelerated through a potential diff. of 'V'
7 printf("\nThe de Broglie wavelength of an electron
      accelerated through a potential diff. of V is %
      .3 f A. \ n", wavelength)
                                                      //
9 h=6.63*10^{-34}
      Plancks constant
10
11 p=h/(wavelength*10^-10)
                                          //as the de
      Broglie wavelength of an electron is (wavelength=
     h/p)
12
```

```
13 printf("\nThe momentum of an electron is\n")
14
15 disp(p)
16
17 printf ("kg-meter/sec\n")
18
19 wave_no=1/(wavelength*10^-10)
                                              //wave
      number
20
21 printf("\nThe wave number = \%. f/m\n", wave_no)
22
                                                        //
23 d=2.04
      distance between planes
24
25 \quad n=1
                                                        //
      For first ordet reflection
26
  angle=asind(n*wavelength/(2*d))
                                                          //
27
      By Bragg's law '2 dsin(angle)=n*wavelength'
28
29 printf("\nThe Bragg angle = \%.3 f Degree\n", angle)
```

Scilab code Exa 5.3.10 calculate the de Broglie wavelength and momentum of an electron

```
7 printf("\nThe de Broglie wavelength of an electron
      accelerated through a potential difference of V
      is = \%.4 f A. \ n", wavelength)
  h=6.63*10^{-34}
                                                   //
      Plancks constant
10
11 p=h/(wavelength*10^-10)
                                             //The
     momentum of an electron
12
13 printf("\nThe momentum of an electron\n")
14
15 disp(p)
16
17 printf ("kg-meter/sec\n")
```

Scilab code Exa 5.3.11 calculate the ratio of de Broglie wavelengths

```
//Chapter -5, Example5_3_11, pg 5-11
// a proton and alpha particle are accelerated by the same potential difference

m_p=1.67*10^-27
// mass of proton

m_a=4*m_p
mass of alpha particle (assume mass of alpha particle to be 4 times the mass of proton)

e=1.6*10^-19
//
```

```
charge of proton
10
11 e_a=2*e
     //charge of an alpha particle
12
13 h=6.63*10^{-34}
                                                  //
      plancks constant
14
15 wavelength_p=h/sqrt(2*m_p*e)
                                           //wavelength
      of proton
16
17 wavelength_a=h/sqrt(2*m_a*e_a)
                                          //wavelength of
       an alpha particle
18
19 ratio=wavelength_p/wavelength_a
                                               //ratio of
       the de Broglie wavelengths associated with
      proton and alpha particle
20
21 printf("\nthe ratio of wavelengths associated with
      proton and alpha particle = \%.3 \, f \, m, ratio)
```

Scilab code Exa 5.3.12 calculate the velocity and de Broglie wavelength of an alpha particle

```
5 m=6.68*10^-27
     //mass of alpha particle
7 E=1.6*10^-16
     //energy asociated with alpha particle
  wavelength=h/sqrt(2*m*E)
10
11 printf("\nThe de Broglie wavelength of an alpha
      particle \n")
12
13
  disp(wavelength)
14
  printf("meter\n")
15
16
17 v=h/(m*wavelength)
     //velocity of an alpha particle
18
19 printf("\nThe velocity of an alpha particle v = \%.2
      f m/s n, v)
```

Scilab code Exa 5.3.13 find the de Broglie wavelengths of photon and electron

```
//velocity of light in air
6
7 E=1.6*10^-19
      //energy of photon
  wavelength_ph=h*c/E
      //The energy of photon is E=h*c/lamph
10
  printf("\nThe de Broglie wavelength of a photon\n")
12
13
  disp(wavelength_ph)
14
15 printf("meter\n")
16
17 m = 9.1 * 10^{-31}
      //mass of an electron
18
19
  wavelength_e=h/sqrt(2*m*E)
20
21
  printf("\nThe de Broglie wavelength of an electron\n
23
24 disp(wavelength_e)
25
26 printf("meter\n")
```

Scilab code Exa 5.3.14 find the de Broglie wavelength of an electron

```
1 //Chapter -5, Example 5_3_14, pg 5-13
2
3 h=6.63*10^-34
```

```
//Plancks constant
5 m_0=9.1*10^-31
     //rest mass of electron
7 c = 3 * 10^8
     //velocity of light in air
9 E=m_0*c^2
     //kinetic energy associated with
10
  wavelength=h/sqrt(2*m_0*E)
                                                   //The
      de broglie wavelength of an electron
12
13 printf("\nThe de Broglie wavelength of an electron\n
14
  disp(wavelength)
15
16
17 printf("meter\n")
```

Scilab code Exa 5.7.1 find the accuracy in position of an electron

```
//mass of
       an electron
7 h=6.63*10^{-34}
                                                  //Plancks
      constant
9 v = 400
      speed of an electron
10
11 delta_v=unc*v
      error in measurement of speed
12
13 delta_x=h/(4*\%pi*m*delta_v)
                                             //By
      Heisenberg's uncertainty priciple
14
15 printf("\nThe accuracy in position of an electron
      Delta_x = \%.5 f m/n, delta_x)
   Scilab code Exa 5.7.2 calculate the percentage of uncertainty
1 / Chapter -5, Example 5_7_2, pg 5-27
3 \text{ delta_x=10*10^--9}
      position is located within this distance
5 h=6.63*10^{-34}
                                                    //
      plancks constant
7 delta_px=h/(4*%pi*delta_x)
```

```
//By
      Heisenberg's uncertainty priciple
9 E=1.6*10^-16
                                                   //
      Energy associated with an electron
10
11 m=9.1*10^-31
                                                   //mass
      of an electron
12
13 p=sqrt(2*m*E)
     momentum of an electron
14
15 percentage=delta_px*100/p
      percentage uncertainty in momentum
16
17 printf("\npercentage uncertainty in momentum of an
      electron = \%.4 \, f \ \ n", percentage)
```

Scilab code Exa 5.7.3 find the accuracy in position of an electron

```
8 h=6.63*10^{-34}
                                                    //Plancks
      constant
10 v = 4 * 10^5
      speed of an electron
11
12 delta_v=uncertainty*v
      error in measurement of speed
13
14 delta_x=h/(4*%pi*m*delta_v)
                                               //By
      Heisenberg's uncertainty priciple
15
16 printf("\nThe accuracy in position of an electron
      D\,elt\,a_-x~=~\%.\,8\,f~m\backslash n" ,delta_x)
   Scilab code Exa 5.7.4 find the accuracy in position of an electron
1 / Chapter -5, Example 5_7_4, pg 5-27
3 \quad uncertainty=1*10^-2
                                                      //as
      uncertainty is 1%
5 m=9.1*10^-31
                                                     //mass of
       an electron
```

//Plancks

 $7 h=6.63*10^{-34}$

constant

```
9 v=1.88*10^6
                                                  //speed
      of an electron
10
11 delta_v=uncertainty*v
                                                     //
      error in measurement of speed
12
13 delta_x=h/(4*%pi*m*delta_v)
                                           //By
      Heisenberg's uncertainty priciple
14
15
  printf("\nThe accuracy in position of an electron
      Delta_x = n"
16
17 disp(delta_x)
18
19 printf ("meter \n")
```

Scilab code Exa 5.7.5 calculate the minimum time spent by the electrons

```
//Chapter -5, Example 5_7_5, pg 5-28
//By Heisenberg's uncertainty principle
// (delta_E*delta_t)>=h/(4*%pi)
// therefore (h*c*delta_wavelength*delta_t/wavelength^2) >= h/(4*%pi)
wavelength^2) >= h/(4*%pi)
// wavelength of spectral line
// c=3*10^8
```

```
//velocity of light in air
12
13 delta_wavelength=8*10^-15
      //width of spectral line
14
   delta_t=wavelength^2/(4*%pi*c*delta_wavelength)
15
16
  printf("\nThe minimum time required by the electrons
17
       in upper energy state
                               Delta_t = n")
18
19 disp(delta_t)
20
21 printf("sec n")
```

Scilab code Exa 5.7.6 calculate the uncertainty in energy

```
//Chapter -5, Example5_7_6, pg 5-29

h=6.63*10^-34

//Plancks constant

e=1.6*10^-19

//charge of an electron

delta_t=1.4*10^-10

//time spent in excited state

delta_E=h/(4*%pi*delta_t*e)

//By Heisenberg's uncertainty principle (delta_E*
```

Scilab code Exa 5.7.7 find the time spent by an atom in excited state

```
// \text{Chapter} -5, \text{Example } 5\_7\_7, \text{pg} 5-29
3 //By Heisenberg's uncertainty principle
5 //(delta_E*delta_t) >= h/(4*\%pi)
7 //therefore
                      (h*c*delta_wavelength*delta_t/
      wavelength^2) >= h/(4*\%pi)
9 wavelength=546*10^-9
      //wavelength of spectral line
10
11 c = 3 * 10^8
      //velocity of light in air
12
  delta_wavelength=10^-14
13
      //width of spectral line
14
  delta_t=wavelength^2/(4*%pi*c*delta_wavelength)
15
16
  printf("\nThe time spent by an atom in the excited
17
      state \n")
18
  disp(delta_t)
19
20
```

```
21 printf("sec n")
```

Scilab code Exa 5.15.1 find the energy of an electron for different states

```
1 / Chapter -5, Example 5_15_1, pg 5-41
3 / En = (n^2 * h^2) / (8 * m * e * L^2)  n = 1, 2, 3, ...
5 e=1.6*10^-19
      //charge of an electron
7 h=6.63*10^{-34}
                                                           //
      Plancks constant
9 m = 9.1 * 10^{-31}
      //mass of an electron
10
11 L=2*10^-10
      //width
12
13 E1=h^2/(8*m*e*L^2)
                                                     //For
      ground state n=1
14
15 printf("\nThe energy of an electron in ground state
       E1 = \%.2 f eV n, E1)
16
17 \quad E2 = 4 * E1
      //For first excited state n=2
18
```

Scilab code Exa 5.15.2 find the ground state energy of an electron

Scilab code Exa 5.15.3 calculate the probability of finding the particle

```
1 / Chapter -5, Example 5_15_3, pg 5_42
```

```
3 //for box of width a , the normalised eigen
     functions are
       sci = sqrt(2/a) * sin(n*\%pi*x/a)
       sci_c = sqrt(2/a) * sin(n*\%pi*x/a), complex
       conjugate
9 //for first excitation
10
11 n=2
12
                                              P =
13 //probability of finding the particle is
     integral a/4 to 3a/4 of sci * sci_c
14
15 //as 'a' is constant width
16 //assume
17 a=1
18
19 function y=f(x), y= (2/a)*(sin(n*%pi*x/a))^2,
                        // y = sci * sci_c
20 endfunction
21
22 P = intg(a/4, 3*a/4, f)
23
24 printf('\nThe probability of finding the particle is
       P = \%.1 \, f', P)
```

Scilab code Exa 5.15.4 find the probability of finding the particle

```
1 //Chapter -5, Example5_15_4, pg 5_43
2
3 //probability of finding the particle is P =
   integral x1 to x2 of sci * sci_c
```

```
5 //interval is (0,1/2)
7 x1 = 0
9 x2=1/2
10
11 // sci = x * sqrt(3)
12
13 //complex conjugate is sci_c = x*sqtr(3)
14
  function y=f(x), y=(x*sqrt(3))^2,
      // y = sci * sci_c
  endfunction
16
17
18 P=intg(x1,x2,f)
19
20 printf('\nThe probability of finding the particle is
        P = \%.3 f',P)
```

Scilab code Exa 5.15.5 find the lowest energy states

```
//Plank
11 h=6.63*10^{-34}
     's constant
12
13 //the energy level are given by En = n^2 *h^2/(8*m)
     *L^2
14
15 Ee1=(1^2)*(h^2)/(8*m_e*e*(L^2))
                                 // for n = 1
16
17 Ee2=(2^2)*(h^2)/(8*m_e*e*(L^2))
                                 // for n = 2
18
19 Ee3=(3^2)*(h^2)/(8*m_e*e*(L^2))
                                //for
                                      n = 3
20
              FOR AN ELECTRON')
21 printf('\n
22 printf('\n
               the lowest three energy states are
     obtained ')
for n = 3   Ee3 = \%.4 f \text{ eV}', Ee3)
25 printf('\n
26
27
28 // for the grain of dust
29
30 m = 10^{-9}
                                             //mass of
     grain of dust
31
32 1 = 10^{-4}
                                             //width of
      well
33
34 E1=(1^2)*(h^2)/(8*m*e*(1^2))
                                 // for n = 1
35
36 \quad E2=(2^2)*(h^2)/(8*m*e*(1^2))
                                 // for n = 2
37
38 E3=(3^2)*(h^2)/(8*m*e*(1^2))
```

```
// for n = 3
39
40 printf('\nn FOR THE GRAIN OF DUST')
41 printf('\n the lowest three energy states are
     obtained ')
42 printf(^{,}\n
              for n = 1
                          E1 = ')
43 disp(E1)
44 printf(' eV')
45 printf('\n for n = 2
                          E2 = ')
46 disp(E2)
47 printf(' \mathrm{eV}')
48 printf('\n for n = 3
                         E3 = ')
49 disp(E3)
50 printf(' eV')
```

Scilab code Exa 5.15.6 calculate the width of the well

Scilab code Exa 5.15.7 calculate the energy and wavelength of the emitted photon

```
^2)/(8*m*e*L^2)
12
13 L=5*10^-10
      //width of potential well
14
15 //as electron makes a transittion from its n=2 to n
      =1 energy level
16
17 E1=(1*h^2)/(8*m*e*L^2)
                                                         //
      for n=1
18
19 E2=(4*h^2)/(8*m*e*L^2)
      for n=2
20
21 E=E2-E1
      //The energy of emitted photon
22
23 printf("\nThe energy of emitted photon is E2-E1 = \%
      .2 \text{ f eV} \text{ n}", E)
24
  //The energy of photon in terms of wavelength is (h*
25
      c)/lam
26
27 wavelength=(h*c)/(E*e)
29 printf("\nThe wavelength of emitted photon is = \%.9 \, \mathrm{f}
       m \ n", wavelength)
```

Chapter 6

Motion of Charged Particle in Electric and Magnetic Fields

Scilab code Exa 6.1.1 calculate radius of revolution and distance covered

```
1 / Chapter - 6, Example 6_1_1, pg 6-6
                                                         //
3 m=9.1*10^-31
      mass of an electron in kg
5 v=2.5*10^6
                                                         //
      velocity of an electron
7 B=0.94*10^-4
                                                         //
      strength of uniform magnetic field
                                                         //
9 e=1.6*10^-19
      charge of an electron
10
11 \text{ angle=} 30
      //angle between velocity vector and field
      direction
12
13 r=m*v*sind(angle)/(B*e)*10^3
                                                   //radius
```

```
of revolution

14

15 printf("\nradius of revolution r = %.2 f mm \n",r)

16

17 l=5*v*cosd(angle)*2*%pi*m/(B*e) //
distance coverd in five revolutions

18

19 printf("distance coverd in five revolutions 51 =%.3 f m",1)
```

Scilab code Exa 6.1.2 calculate radius and pitch

```
1 / Chapter - 6, Example 6_1_2, pg 6-7
2
3 m=9.1*10^-31
      mass of an electron in kg
5 v = 3 * 10^7
      velocity of an electron
6
7 B = 0.23
      strength of uniform magnetic field
  e=1.6*10^-19
                                                         //
      charge of an electron
10
11 \text{ angle} = 45
      angle between velocity vector and field direction
12
                                                    //radius
13 r=m*v*sind(angle)/(B*e)*10^3
       of revolution
14
15 printf("\nradius of revolution r = \%.3 f mm \ r",r)
16
17 l=v*cosd(angle)*2*%pi*m/(B*e)*10^3
                                                    //pitch
```

Scilab code Exa 6.1.3 find the input voltage

```
1 / Chapter - 6, Example 6 - 1 - 3, pg 6 - 7
3 y = 1.5
                                                 //deflection
      in the beam
                                                 //distance
5 d=0.42
      between two plates
7 D = 28
                                                 //distance of
       screen from center of plates
                                                 //length of
9 1=1.8
      plates
10
                                                 //anode
  Va=1.6*10<sup>3</sup>
      voltage
12
13 V=2*y*d*Va/(D*1)
14
                                                 //as
15 \text{ Vin=V/6}
      amplifier gain is 60
16
17 printf("\napplied voltage is Vin = \%.2 f V n", Vin)
```

Scilab code Exa 6.5.1 calculate phase change

```
1 / Chapter -6, Example 6_5_1, pg 6-16
```

Chapter 7

Superconductivity

Scilab code Exa 7.3.1 calculate critical temperature of element

Scilab code Exa 7.3.2 find the critical field

Scilab code Exa 7.3.3 calculate the critical current

```
1 / Chapter -7, Example 7_3_3, pg 7-7
3 Ho=6.5*10^4
                                                       //
      critical field at absolute zero
4
5 \text{ Tc} = 7.18
      critical temperature
7 T = 4.2
      temperature
9 r=0.5*10^-3
                                                        //
      radius of lead wire
10
11 Hc=Ho*(1-(T/Tc)^2)
12
13 Ic=2*%pi*r*Hc
14
```

```
15 printf("\ncritical current for wire Ic = \%.2\,\mathrm{f} Amperes\n",Ic)
```

Scilab code Exa 7.3.4 calculate the isotopic mass

```
1 / Chapter -7, Example 7_3_4, pg 7-8
                                             //critical
3 \text{ Tc1}=4.185
      temperature 1
4
                                             //critical
  Tc2=4.133
      temperature 2
                                             //isotopic mass
7 M1 = 199.5
       of a metal at temperature T1
8
9 a = 0.5
10
11 M2=(Tc1*sqrt(M1)/Tc2)^2
12
13 printf("\nisotopic mass is M2 = \%.2 f", M2)
```