

Det skapende universitet

TDT4258 Energieffektive Datamaskinsystemer

Introduksjon og motivasjon

Magnus Jahre (koordinator)

Plan

Praktisk informasjon om kurset

Motivasjon

Veien videre

Asbjørn tar over...

Praktisk informasjon

Energieffektive Datamaskinsystemer

- Mål: Gi en introduksjon til mikrokontrollere, programvare, programmerbar logikk og periferienheter
- Maskinvarenær programmering
- Grensesnitt og periferienheter
- Energieffektiv programmering

Praktisk fokus!

Foreløpig pensum

Lærebok

 Computers as Components: Principles of Embedded Computer System Design, Marilyn Wolf. Hele boken (kap. 1-9) er pensum. Alle eksempler er orienteringsstoff.

Øvingshefte og øvingene generelt

 Øvingsheftet og kunnskap som kreves for å gjøre øvingene er pensum. Det inkluderer forståelse av C og assembler.

Forelesningene

De utlagte lysark fra forelesningene er pensum.

Anbefaling

I tillegg anbefaler vi innkjøp av en bok om C. Vår anbefaling er Brian W.
 Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall Software Series, 2nd edition, 1988.

Øvinger

- Tellende laboratorieøvinger
- Bruk av mikrokontroller
 - Dataspillinspirert øvingsoppgave
 - STK 1000 med AVR32 MCU/DSP
- Læringsmål
 - Assemblyprogrammering
 - C-programmering (uten operativsystem)
 - C-programmering med operativsystem (GNU/Linux)

- Stefano gir en grundig innføring i øvingsopplegget fredag i neste uke
 - Send kortnummer og brukernavn til Stefano (nichele@idi.ntnu.no) ASAP for tilgang til lab

Vurdering

- 3 øvinger
 - Øving 1 teller 10%
 - Øving 2 teller 20%
 - Øving 3 teller 20%
- Eksamen
 - Teller 50%
- Summen av poengene oppnådd på øvingene og prøvene gir sluttkarakteren

Øving 1

Øving 2

Øving 3

Eksamen

Fagstab

- Forelesere
 - Magnus Jahre (koordinator)
 - Asbjørn Djupdal
 - Gunnar Tufte

- Øvingsstab
 - Vit. ass. Stefano Nichele
 - Und. ass Rune Holmgren

Tid og sted

- Forelesninger
 - Torsdager 0815 1000 i F6
- Øvingsforelesninger
 - Fredager 1215 1500 i R40
 - Husk: Øving 1 presenteres neste uke!
- Lab
 - Vi bruker ITV-458
 - Laben er tilgjengelig hele døgnet
 - Men kun de respektive gruppene kan være der i studasstimene
 - Laben er operativ etter første øvingsforelesning

Foreløpig semesterplan

 Ligger på fagets eksterne hjemmesider og ble vist i forelesningen

Motivasjon

Motivasjon?

Mestring

Autonomi

Mening

D. Pink; Drive: The Surprising Truth About What Motivates Us; 2009

Green ICT

Improving computing technology

Improving energy-intensive processes

Big potential impact

Massive potential impact

Focus of energy efficient computing systems

Environmental Motivation

Energy consumption of consumer electronics is significant and growing

Common optimization target is 10% improvement on average

10% gives 80 TWh saved with 2010 numbers

If used to turn off coal power plants this saves around 80M metric tones of CO²

Source: Gadgets and Gigawatts - Policies for Energy Efficient Electronics, International Energy Agency, 2009

The History of Computer Performance

- Significant performance improvement for each generation
- The high-performance processor industry economy relies on these trends
- Enabled by
 - Transistor speed scaling
 - Core microarchitecture techniques
 - Cache memory architecture

Business as usual?

Business-as-usual scenario:
Add more cores and increase clock
frequency

Practical server limit (about 100W)
Practical desktop limit (about 65W)

Market expects 30x performance improvement over the next decade

Computing Systems and Energy/Power

Er det et potensiale for energieffektivisering?

- Viser utdrag av Saman Amarasinghes keynote på HiPEAC 2011
 - http://hipeac.ac.upc.edu/seminars/?q=node/112

 Amarasinghe er professor ved MIT og jobber primært med kompilatorteknologi

Solution 1: Energy Efficient Programming

- Trick: Exploit that the system is not fully loaded at all times
- Sleep modes (application)
 - Turn off the parts of the system that you don't need
 - Retain data vs. not retaining data
 - Very useful in embedded systems
- Dynamic Voltage and Frequency Scaling (DVFS) (system software)
 - Match the performance to the tasks at hand
 - Very useful for desktops/servers

Sleep Modes in EFM 32

Demo

Energy Micros energyAware Profiler

Project Example: SHMAC

- Horizontal approach:
 - Software innovations on old hardware
 - Hardware innovations with old software
- Vertical approach requires the ability to investigate hardware and software issues concurrently
- SHMAC = Single-ISA Heterogeneous Multi-core Architecture
 - Instantiate heterogeneous architectures from high-level building blocks in an FPGA
 - 40 core prototype running in the lab
 - 2MNOK AVIT infrastructure investment

Vil du lære mer?

TDT4295 Computer Design Project

- Assignment: Build exotic computer system
- Tasks:
 - PCB design
 - Custom processor in an FPGA
 - AVR for I/O
- One group of roughly 10 students
- Duration: 12 weeks

TDT4255 Computer Design

- Teaches scalar processor core design
- Exam counts 50%, exercises count 50%
- Students design, implement and verify 2 different processor designs

Xilinx Spartan6 Lx16 Evaluation Kit

TDT4260 Computer Architecture

- Teaches how high-level building blocks are assembled to a complete computer system
- Exam counts 80%, exercises count 20%
- Hands-on experience with simulator-based architecture analysis
 - GEM5 simulator (C++, cycle accurate)
 - Task: Build the best possible prefetcher
 - Continuous evaluation of the best student prefetcher

Computer Architecture and Design Group (CARD)

