

Algoritmos Forward y Backward 1

Albert Sanchis Alfons Juan Jorge Civera

Departament de Sistemes Informàtics i Computació

¹Para una correcta visualización, se requiere Acrobat Reader v. 7.0 o superior

Objetivos formativos

- Explicar la dificultad de calcular la probabilidad de una cadena con un modelo de Markov oculto (HMM)
- Calcular la prob. de una cadena con el algoritmo Forward
- Calcular la prob. de una cadena con el algoritmo Backward

Índice

1	Probabilidad de una cadena	3
2	Algoritmo Forward	2
3	Algoritmo Backward	Ę

1. Probabilidad de una cadena

La probabilidad que un HMM M asigna a $x = x_1x_2 \cdots x_T$ es:

$$P_M(x) = \sum_{\boldsymbol{q} = q_1 q_2 \cdots q_T \in Q^T} P_M(x, \boldsymbol{q})$$

donde

$$P_M(x, \mathbf{q}) = \left[\pi_{q_1} B_{q_1, x_1}\right] \cdot \left[A_{q_1, q_2} B_{q_2, x_2}\right] \cdot \ldots \cdot \left[A_{q_{T-1}, q_T} B_{q_T, x_T}\right] \cdot A_{q_T, F}$$

El cálculo directo de $P_M(x)$ requiere considerar $|Q|^T$ caminos!

Ejemplo: x = aba

$$a: \frac{1/2}{b}: \frac{1/2}{1/2} \frac{1/2}{1/2}$$
 $(1)^{-1} \cdot (1)^{-1/2} \underbrace{2^{1/2}}_{1/2}$

$$P(x) = P(x, 111) + P(x, 112)$$

$$+ P(x, 121) + P(x, 122)$$

$$+ P(x, 211) + P(x, 212)$$

$$+ P(x, 221) + P(x, 222) = 1/32$$

Algoritmo Forward

Si $\alpha_{q,t} \triangleq P(q_t = q, x_1 \cdots x_t)$, entonces:

$$\alpha_{q,t} = \begin{cases} \pi_q \, B_{q,x_1} & \text{si } t = 1 \\ \sum_{q'} \alpha_{q',t-1} \, A_{q',q} \, B_{q,x_t} & \text{si } t > 1 \end{cases} \quad \mathbf{y} \quad P(x) = \sum_{q} \alpha_{q,T} \, A_{q,F}$$

Ejemplo: x = aba

$$P(x) = \frac{1}{16} \cdot \frac{1}{2} = \frac{1}{32}$$

3. Algoritmo Backward

Si $\beta_{q,t} \triangleq P(x_{t+1} \cdots x_T \mid q_t = q)$, entonces:

$$\beta_{q,t} = \begin{cases} A_{q,F} & \text{si } t = T \\ \sum_{q'} B_{q',x_{t+1}} A_{q,q'} \beta_{q',t+1} & \text{si } t < T \end{cases} \quad \mathbf{y} \quad P(x) = \sum_{q} \pi_q \, B_{q,x_1} \beta_{q1}$$

Ejemplo: x = aba

$\beta_{q,t}$	1	2	3
1	1/16	1/8	0
2	1/32	1/8	1/2

$$P(x) = 1 \cdot \frac{1}{2} \cdot \frac{1}{16} = \frac{1}{32}$$

Conclusiones

- El cálculo directo de la probabilidad de una cadena con un HMM es muy costoso
- Este cálculo se puede hacer eficientemente con:
 - El algoritmo Forward o
 - el algoritmo Backward

