Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 11 settembre 2023

Il parametro b è uguale a:

(il resto della divisione del proprio numero di matricola per 4)+1.

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (6 punti)

Sia $L: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare associata alla guente matrice, rispetto alle basi canoniche di dominio e codominio:

$$A = \begin{pmatrix} 3 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 3 & 1 & 1 & 0 \end{pmatrix}.$$

- a) Si calcoli la preimmagine $U = L^{-1}(\mathbf{e}_2 + \mathbf{e}_3)$.
- b) Si stabilisca se U è chiuso rispetto alla somma e al prodotto per scalari.
- c) Si determini, se possibile, un sottospazio di \mathbb{R}^4 di dimensione 1 contenuto in U.[non esiste]
- d) Si determini, se possibile, un sottospazio di \mathbb{R}^4 di dimensione 3 che contiene U. $[\langle \mathbf{e}_2, \mathbf{e}_1 3\mathbf{e}_3, \mathbf{e}_1 3\mathbf{e}_2 3\mathbf{e}_4 \rangle]$

Esercizio 2. (10 punti)

Si considerino le applicazioni lineari $F_k : \mathbb{R}^4 \to \mathbb{R}^3$ definite da:

$$F_k(\mathbf{e}_1) = k\mathbf{e}_1 + \mathbf{e}_2 + 4k\mathbf{e}_3, F_k(\mathbf{e}_2) = 5\mathbf{e}_1 + k\mathbf{e}_2 - 2k\mathbf{e}_3,$$

 $F_k(\mathbf{e}_3) = \mathbf{e}_1 + \mathbf{e}_2 - 2\mathbf{e}_3, F_k(\mathbf{e}_4) = -3\mathbf{e}_1 - 3\mathbf{e}_2 + 6\mathbf{e}_3,$

al variare di $k \in \mathbb{R}$.

- a) Si determini per quali valori di k si ha che F_k è suriettiva. $[k \neq 5, -1/2]$
- b) Si stabilisca per quale valore di k si ha che $\mathbf{v} = \mathbf{e}_2 2\mathbf{e}_3 + \mathbf{e}_4$ appartiene a Ker (F_k) e per tale valore s di k si trovino una base \mathcal{B} di Ker (F_s) e le coordinate di \mathbf{v} rispetto a \mathcal{B} . [k=5]
- c) Si scrivano delle equazioni cartesiane di Ker (F_k) , al variare di $k \in \mathbb{R}$.

Esercizio 3. (11 punti) Siano $\mathbf{u}_1 = (1, 1, 0, 0), \ \mathbf{u}_2 = (0, 0, 1, 1), \ \mathbf{w}_1 = (1, -1, 0, 0), \ \mathbf{w}_2 = (0, 0, 1, -1) \in \mathbb{R}^4$ e siano $U = \langle \mathbf{u}_1, \mathbf{u}_2 \rangle, \ W = \langle \mathbf{w}_1, \mathbf{w}_2 \rangle.$

a) Si mostri che esiste un'unica applicazione lineare $F: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $F(\mathbf{u}) = \mathbf{0}$ per ogni $\mathbf{u} \in U$ e $F(\mathbf{w}) = \mathbf{w}$ per ogni $\mathbf{w} \in W$ e si scriva la matrice associata ad F rispetto alla base canonica.

$$\begin{bmatrix}
1/2 & -1/2 & 0 & 0 \\
-1/2 & 1/2 & 0 & 0 \\
0 & 0 & 1/2 & -1/2 \\
0 & 0 & -1/2 & 1/2
\end{bmatrix}$$

- b) Si mostri che $F \circ F = F$.
- c) Si stabilisca se F è diagonalizzabile. [si, perché $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{w}_1, \mathbf{w}_2\}$ è base di autovett.]
- d) Si determini, se possibile, una applicazione lineare non nulla $G : \mathbb{R}^4 \to \mathbb{R}^4$ tale che $G \circ F$ e $F \circ G$ siano entrambe l'applicazione nulla (cioè $\mathbf{v} \mapsto \mathbf{0}$ per ogni $\mathbf{v} \in \mathbb{R}^4$.)

Esercizio 4. (4 punti)

- a) Si stabilisca se $[8]_{75}$ è invertibile in Z_{75} . [si]
- b) Si dimostri che se $[a]_{75}$ è invertibile in Z_{75} allora $[a]_{15}$ è invertibile in Z_{15} .