Nom: TMATHS GROUPE 1

Devoir surveillé nº9B : autour du ln

Exercice 1 — 15 minutes —

/3

Résoudre les équations suivantes après avoir trouvé l'intervalle de validité des calculs :

1.
$$\ln(x+2) + \ln(x+3) = \ln(x+6)$$

2.
$$\ln(x^2 + 5x + 6) = \ln(x + 6)$$

Exercice 2 — 15 minutes —

/3

1.
$$-2(\ln x)^2 + 9 \ln x + 11 = 0$$

2.
$$-2e^{2x} + 9e^x + 11 = 0$$

Exercice 3 — 5 minutes — /2

Déterminer, par le calcul, le plus entier naturel n tel que $5 + 24 \times 1, 6^n \ge 10\,000$.

Exercice 4-10 minutes - /2

Faire le tableau de signes de la fonction f définie sur $]0; +\infty[$ par :

$$f(x) = \frac{4 - 5\ln(x)}{x^2}.$$

Exercice 5 — 55 minutes —

/10

Pour tout entier naturel n, on considère la fonction f_n définie sur]0; $+\infty[$ par :

$$f_n(x) = -nx - x \ln x.$$

On note (C_n) la courbe représentative de la fonction f_n , dans un repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j})$. Les courbes (C_0) , (C_1) et (C_2) représentatives des fonctions f_0 , f_1 et f_2 sont données en ci-contre.

Partie A : Étude de la fonction f_0 définie sur]0; $+\infty[$ par $f_0(x) = -x \ln x$.

- 1. Déterminer la limite de f_0 en $+\infty$.
- **2.** Étudier les variations de la fonction f_0 sur]0; $+\infty[$.

Partie B : Étude de certaines propriétés de la fonction f_n , n entier naturel.

Soit n un entier naturel.

- 1. Démontrer que pour $x \in]0$; $+\infty[$, $f'_n(x) = -n-1-\ln x$ où f'_n désigne la fonction dérivée de f_n .
- 2. a. Démontrer que la courbe (C_n) admet en un unique point A_n d'abscisse e^{-n-1} une tangente parallèle à l'axe des abscisses.

- **b.** Prouver que le point A_n appartient à la droite Δ d'équation y = x.
- **c.** Placer sur la figure les points A_0 , A_1 , A_2 .
- 3. a. Démontrer que la courbe (C_n) coupe l'axe des abscisses en un unique point, noté B_n , dont l'abscisse est e^{-n} .
 - **b.** Démontrer que la tangente à (C_n) au point B_n a un coefficient directeur indépendant de l'entier n.
 - **c.** Placer sur la figure les points B_0 , B_1 , B_2 .

