

Machine Learning(IS ZC464)
Session 3: Uncertainty Handling in
Real World using Probability Theory

Uncertainty in real world

- Uncertainty in reaching New Delhi Airport in 5 hours from Pilani
 - Cab engine may or may not work at any moment
 - The route is diverted due to a procession on the way
 - The road condition is bad unexpectedly
 - The tire needs replacement
 Etc.
- A person having stomach ache can be told that he is suffering from ulcer, while in actual it may be gastritis or overeating

example

A person has pneumonia
Then

has fever
is pale
has cough
white blood cells count is low

Certainty exists in obtaining symptoms if the disease is confirmed

Disease → symptoms

If

 For converse, it is uncertain that if a person has fever, and has cough, then has pneumonia, but if all symptoms are known then the disease can be inferred

Fever(p) Λ pale (p) Λ cough(p) Λ WBC(p) \rightarrow pneumonia(p)

Types of uncertainty

- Symptoms

 disease
 these symptoms may be common in other diseases as well,

[but if <u>all possible</u> symptoms can be observed and are same for all patients, then more definiteness can be inroduced]

Real world scenario

- It is impossible to list all relevant components of the real world
- Many of the components behave with some uncertainty
- Due to system hardware limitation, representing all components of any real world situation may not be possible

Class assignment

- Analyze the weather on a day
 - It is cloudy (How much?)
 - Depends on individual belief
 - Belief can be based on experience
 - Experience may count on favorable situations
 - The day is humid
 - Is it the sufficient humidity that may cause rains
 - Is it certain that the clouds will rain.
 - The clouds may rain if certain other parameters are favourable.

Conventional reasoning

- Based on three assumptions
 - Predicate descriptions must be sufficient with respect to the application domain
 - The information base is consistent.
 - Through the inference rules, the known information grows monotonically
- Conventional methods follow closed world assumptions

Closed World Assumptions

- The closed world assumptions are based on the minimal model of the world.
- Any predicate not existing is false.
 - Example: whether two cities are connected by a plane fight.
 - Check the list, if there is no direct flight, then we may infer that the cities are not connected.
- Exactly those predicates that are necessary for a solution are created.
- The closed world assumption affects the semantics of negation in reasoning.

Example: conventional reasoning

- Human(p) \rightarrow mammal(p) Λ intelligent(p) Λ kind(p) Λ legs(p) Λ eyes(p) Λ
- mammal(John) Λ legs(John) Λ kind(John) Λ eyes(John)
- What can be said about John's intelligence?
- Is John Intelligent?
- Is he not?
- Does lack of knowledge mean whether we are not sure that John is intelligent or we are sure that John is not intelligent

Uncertainty in First Order Logic

- \forall x Bird(x) \rightarrow Fly(x)
- Penguin is a bird. Does it fly?
- The above rule does not hold good for all birds (minimal world assumption)
- How can we generalize the rule?
- There can be a large number of predicates that can be constructed to represent a larger world
- \forall x (Bird(x) \land \neg Abnormal(x) \rightarrow Fly(x))
- Uncertainty lies in the predicate abnormal.

Conventional reasoning

- Conventional logic is monotonic
- A set of predicates constitutes the knowledge base.
- The size of the KB keeps increasing if a new knowledge is added
- Pure methods of reasoning cannot handle KB with incomplete or uncertain knowledge

Nonmonotonic reasoning systems

- Addresses the problem of changing beliefs.
- Makes most reasonable assumptions in light of uncertain information.

Handling uncertain information using probability theory

- Probability theory deals with the degree of belief.
- Assigns numerical degree of belief between 0 and 1
- Handles the uncertainty that comes from laziness and ignorance
- The belief could be derived from
 - Statistical data
 - General rules
 - Combination of evidence sources

Example:

- ∀ p Symptom(p, toothache) ⇒ Disease(p, cavity)
- The above for example can be said to carry a belief that 8 out of 10 patients have cavity when they had toothache.
- The probability associated with the above is 0.8.
- The belief may change if some more patients reach with pain and have different diseases.
- A probability of 0.8 does not mean that it is "80% true" but it is 80% degree of belief
- Degree of belief is different from degree of truth

Evidences

- The probability that a "patient has a cavity" is 0.8, depends on the agent's belief and not on the world.
- These beliefs depend on the percepts the agent has received so far
- These percepts constitute the evidence on which probability assertions are based.
- As new evidences add on, the probability changes.
- This is known as conditional probability.

Representing uncertain knowledge using probability

- Probability theory uses a language that is more expressive than the propositional logic
- The basic element of the language is the random variable.
- This random variable represents the real world whose status is initially known.
- The proposition asserts that a random variable has a particular value drawn from its domain

Types of random variables

Boolean

- domain is {true, false}
- Example :
 - Cavity = true

Discrete

- domain is any set of integer values
- Example
 - From domain { sunny, cloudy, rainy, snow} the variable may take whether = snow

Continuous

domain takes values from real numbers

Atomic Events

 An atomic event is the complete specification of the state of the real world about which the agent is uncertain.

Example:

- Let the boolean random variables cavity and toothache constitute the real world then there are 4 atomic events
- i. (Cavity = true) Λ (toothache= true)
- ii. (Cavity = true) Λ (toothache= false)
- iii. (Cavity = false) Λ (toothache= true)
- iv. (Cavity = false) Λ (toothache= false)

Atomic events

- Mutually exclusive
- Set of all possible events is exhaustive (disjunction is true)
- Any proposition is logically equivalent to the disjunction of all atomic events that entail the truth of the proposition

Prior probability

- The prior probability associated with proposition is the degree of belief in absence of any other information
- Example
 - P(cavity = true) = 0.1
 - P(cavity) = 0.1 [this is estimated based on the available information]
 - As some more information is available, the concept of conditional probability will be used to determine the P value

Computing Probability

- A bag contains 8 balls of which 6 are orange and 2 are green.
- A ball is chosen randomly from the bag.
- What is the probability that the ball is of green color? Answer = 2/8
- What is the probability that the ball is of orange color? Answer = 6/8

Probability Theory

Apples and Oranges kept in two bags of different colors

Computing Probability

- If a ball is to be chosen randomly from a bag, and a bag is chosen randomly, then how likely it is to select red bag? – Computed through experiments and multiple trials or is known apriori
- What is the probability that the ball selected from red bag is of green color?
- What is the probability that the ball selected from blue bag is of orange color?

Examples

1. Rolling a die – outcomes

$$S = \{ \bullet, \bullet, \bullet, \bullet, \bullet, \bullet, \bullet \}$$

$$= \{ 1, 2, 3, 4, 5, 6 \}$$

E = the event that an even number is rolled

$$= \{2, 4, 6\}$$

$$=\{ [\bullet], [\bullet \bullet], [\bullet \bullet] \}$$

Joint Probability

- This finds out how likely it is for two or more events to happen at the same time.
- Example
 - A patient has both cavity and toothache.
 - The joint probability is represented as
 P(cavity Λ toothache) or
 P(cavity, toothache)

Prior Probability Distribution

- Assume a discrete variable 'weather'
 - P(weather = sunny) = 0.4
 - P(weather = rainy) = 0.1
 - P(weather = cloudy) = 0.1
 - P(weather = snow) = 0.2
- The distribution is
 - $P(weather) = \{ 0.4, 0.1, 0.1, 0.2 \}$

Joint probability distribution

- P(weather, cavity) has 4x2 (=8) atomic events
- P(cavity, toothache, weather) has 2x2x4 (=16)
- Any probabilistic query can be answered using joint probability

Conditional Probability

- The intelligent agent may get new information about the random variables that make the domain
- The probabilities are recomputed
- Example
 - A bag/urn has 12 red colored balls and 8 blue balls.
 - The first trial, the probability of getting a red ball = 12/20
 - Second trial, the probability of getting red ball = 11/19

Conditional Probability

- Represented as P(a|b)
- $P(a|b) = P(a \land b) / P(b)$ for P(b) > 0
- Also

$$P(a \land b) = P(a \mid b) P(b)$$

(Product Rule)

Axioms of Probability (Kolmogorov's Axioms)

For any proposition a

$$- 0 <= P(a) <= 1$$

- True propositions have probability 1 and false propositions have value 0
 - P(true)=1 , P(false)=0
- $P(a \lor b) = P(a) + P(b) P(a \land b)$

$$P(\neg a) = 1 - P(a)$$

Proof

$$a \land \neg a = false$$

 $a \lor \neg a = true$

Using the third axiom of probability

$$P(a \ V \ \neg a) = P(a) + P(\neg a) - P(a \ \Lambda \ \neg a)$$

$$==> P(true) = P(a) + P(\neg a) - P(false)$$

$$==> P(\neg a) = 1 - P(a)$$

Proposition

- The probability of a proposition is equal to the sum of the probabilities of the atomic events in which it holds.
 - $P(a) = \sum P(ei)$ over all atomic events

Inference using Full Joint Distributions

- Joint distribution constructs the complete knowledge base
- Example
 - Let there be 2 random boolean variables representing the real world, say they are cavity and toothache

	toothache	⊣toothache	
Cavity	0.25	0.15	
¬Cavity	0.10	0.50	

$$P(cavity) = 0.25 + 0.15 = 0.4$$

 $P(toothache) = 0.25 + 0.10 = 0.35$

Marginal Probability

- $P(Y) = \sum P(Y,z)$ (sum over all joint probabilities of Y with z) [Marginalization Rule]
- P(Y) is the distribution over Y obtained by summing out all the other variables from any joint distribution containing Y.
- Example:

```
P(cavity) = P(cavity, toothache) + P(cavity, ¬ toothache)= 0.25 + 0.15= 0.4
```


Conditioning

•
$$P(Y) = \sum P(Y,z)$$

= $\sum P(Y|z) P(z)$ (using product rule)

 Marginalization and Conditioning are useful rules for handling probability expressions

Computing conditional probabilities (only 2 random variables)

P(Cavity | Toothache)
 = P(cavity Λ toothache) / P(toothache)
 = 0.25 / 0.35 = 0.7142

```
    P(¬Cavity | toothache)
    = P(¬Cavity Λ Toothache) / P(toothache)
    = 0.1 / 0.35 = 0.2857
```


Normalization Constant

- Normalization constant ensures that the conditional probabilities of events add up to 1.
- Example
 - P(cavity | toothache) = 0.999999 = 1
- Let α denote the normalization constant
 - Then the conditional probability

$$P(a|b) = P(a \land b) / P(b)$$
 for $P(b) > 0$

Becomes

$$P(a|b) = \alpha P(a \wedge b)$$

Inference using Full Joint Distributions

- Let there be 3 random boolean variables representing the real world, say they are cavity, toothache and catch.
- We may still represent the joint probabilities as a table, shown below, but if we have more random variables, we simply use the propositions and their probabilities

Probability expressions

- P(cavity, toothache, catch) = 0.06
- P(cavity, toothache, ¬catch) = 0.19
- P(cavity, \neg toothache, catch) = 0.05
- P(cavity, \neg toothache, \neg catch) = 0.10
- $P(\neg cavity, toothache, catch) = 0.09$
- $P(\neg cavity, toothache, \neg catch) = 0.01$
- $P(\neg cavity, \neg toothache, catch) = 0.22$
- $P(\neg cavity, \neg toothache, \neg catch) = 0.28$

Compute P(cavity)
P(cavity,toothache)
P(toothache)

	toothache		¬toothache	
	Catch	–catch	Catch	⊸catch
Cavity	0.06	0.19	0.05	0.10
¬Cavity	0.09	0.01	0.22	0.28

Advantage of normalization constant

- Can help in generalizing the inference procedure
- $P(X \mid e) = \alpha P(X,e)$ = $\alpha (P(X,e,y1) + P(X,e,y2))$
 - Example: P(cavity | toothache) =
 P(cavity,toothache)/P(toothache)
 - = (P(cavity,toothache,catch) + P(cavity,toothache, ¬catch))/
 P(toothache)

Probabilistic queries using joint probability distribution

- These queries are answered using the joint probability distribution.
- The joint probability distribution is the knowledge base for inference using uncertain real world
- With n random variables, the size of the table becomes 2ⁿ.
- Time to answer a query = O(2ⁿ)
- When n is large, the method becomes almost impractical to work with.