

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ьный исследовательский университет*у* (МГТУ им. Н.Э. Баумана)

#### ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

## ОТЧЕТ

## по лабораторной работе № <u>2</u> Вариант 12

| Название:   | Три схеми   | ы включения | транзист | гора |
|-------------|-------------|-------------|----------|------|
|             | -           |             | •        | •    |
| Лиспиплина: | : Электроні | ика         |          |      |

| Студент       | ИУ6-43Б  |                 | В.К. Залыгин   |
|---------------|----------|-----------------|----------------|
|               | (Группа) | (Подпись, дата) | (И.О. Фамилия) |
|               |          |                 |                |
| Преподаватель |          |                 | Н.В. Аксенов   |
|               |          | (Подпись, дата) | (И.О. Фамилия) |

#### Цель работы

Изучить, как влияют различные способы включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада.

#### Задание

Подготовить к работе генератор стандартных сигналов (ГСС) и милливольтметр переменного тока с большим входным сопротивлением. Ознакомившись с назначением органов управления лабораторной установки и присоединив к ней измерительные приборы, подключить установку к сети переменного тока.

- 1) Подавая на вход схемы синусоидальный сигнал с частотой fc=2кГц (средняя частота для усилителя) и напряжением Ur = 35 мВ, для каждого из усилительных каскадов ОЭ, ОБ, ОК провести экспериментальную оценку малосигнальных параметров каскада Rвх, кі, ки, кр, Rвых различных сопротивлениях нагрузки RH. Построить зависимости параметров усилителя от RH.
- 1. Используя формулы таблицы, оценить те же параметры усилителя и вычислить относительное расхождение между экспериментальными и аналитическими результатами.
- 2. Пользуясь экспериментальными данными определить, какой каскад и при каких RH обладает наибольшим усилением по мощности. Объясните почему?
- 3. Дать заключение, как соотносятся между собой у различных каскадов кі, ки, Rвх, Rвых. Объясните полученные результаты.
- 4. Экспериментально определить верхнюю граничную частоту для каждогоиз каскадов ОЭ, ОБ и ОК при RH =R10 . Напряжение на выходе ГСС поддерживать неизменным на всех частотах и равным 35 мВ.
- 5. Рассчитать fв для каждого каскада и сопоставить расчетные и экспериментально полученные значения между собой.

## Параметры

Таблица 1 - параметры схемы

| N  | Ек | В   | Is | R1  | R2  | <b>Rк,</b> Rэ | Rг  | Сбэ | Сбк | fα  | C1,C2 | Сблок | Rн  |
|----|----|-----|----|-----|-----|---------------|-----|-----|-----|-----|-------|-------|-----|
|    | V  |     | A  | kOm | kOm | kOm           | kOm | pF  | pF  | MHz | μf    | μf    | kOm |
| 12 | 10 | 120 | Ge | 18  | 10  | 3             | 1   | 5   | 12  | 40  | 10    | 250   | 10  |

Is для 
$$Ge \rightarrow 10^{-9} A$$

EG для Ge 
$$ightarrow 0.7$$
 эВ

$$VJE = VJC = VJS = \frac{2}{3}EG = 0.47$$

$$TF = \frac{1}{2\pi f_{\alpha}} = \frac{1}{2 \cdot 3.14 \cdot 40 \cdot 10^{6}} = 3.98 \cdot 10^{-9} c$$

## Схема с общим эмиттером



Рисунок 1 - Схема с общим эмиттером



Рисунок 2 - Общий эмиттер. Оценка малосигнальных параметров



Рисунок 3 - Общий эмиттер. Частотный анализ



Рисунок 4 - Общий эмиттер. Определение напряжения холостого хода



Рисунок 5 - Общий эмиттер. Определение тока короткого замыкания Выходное сопротивление вычисляется следующим образом:

$$U_{xx}=2.36~\mathrm{B}$$
  $J_{\mathrm{k3}}=821.52\cdot 10^{-6}~\mathrm{A}$   $R_{\mathrm{Bbix}}=rac{U_{xx}}{J_{\mathrm{k3}}}=rac{2.36}{821.52\cdot 10^{-6}}=2.872\cdot 10^3~\mathrm{Om}$ 

Найдём граничную частоту:

$$U_{max} = 62.556 \,\mathrm{B}$$

$$\dfrac{U_{max}}{\sqrt{2}}=44.106~\mathrm{B}$$
  $f_{\mathrm{B}}=1.339~\mathrm{M}\Gamma$ ц

Таблица 2 - Общий эмиттер

|   | Rn Om  | <b>U</b> вх В | IBX A     | <b>Ивых</b> В | Івых А     | <b>R</b> вх Ом | Ki    | Ku    | Kp      |
|---|--------|---------------|-----------|---------------|------------|----------------|-------|-------|---------|
| 1 | 200    | 24.583e-3     | 10.556e-6 | 154.035e-3    | 770.173e-6 | 2328.82        | 72.96 | 6.26  | 456.73  |
| 2 | 1000   | 24.583e-3     | 10.556e-6 | 616.118e-3    | 616.176e-6 | 2328.82        | 58.37 | 25.07 | 1463.34 |
| 3 | 10000  | 24.583e-3     | 10.556e-6 | 1.896         | 189.507e-6 | 2328.82        | 17.95 | 77.12 | 1384.3  |
| 4 | 250000 | 24.583e-3     | 10.556e-6 | 2.341         | 9.35e-6    | 2328.82        | 0.89  | 95.22 | 847.53  |

## Схема с общей базой



Рисунок 6 - Схема с общей базой



Рисунок 7 - Общая база. Оценка малосигнальных параметров



Рисунок 8 - Общая база. Частотный анализ



Рисунок 9 - Общая база. Определение тока короткого замыкания



Рисунок 10 - Общая база. Определение напряжения холостого хода

Выходное сопротивление ищется следующим образом:

$$U_{xx}=100.806\cdot 10^{-3}~\mathrm{B}$$
  $J_{\mathrm{K3}}=33.607\cdot 10^{-6}~\mathrm{A}$   $R_{\mathrm{Bhix}}=rac{U_{xx}}{J_{\mathrm{K3}}}=rac{100.806\cdot 10^{-3}}{33.607\cdot 10^{-6}}=2999.55~\mathrm{Om}$ 

Тогда граничную частоту можно найти так:

$$U_{max} = 2.2165 \text{ B}$$
  $\frac{U_{max}}{\sqrt{2}} = 1.5648 \text{ B}$   $f_{\scriptscriptstyle B} = 3.0844 \text{ M}$ Гц

Таблица 3 - Общая база

|   | Rn Om  | Uвх B      | Івх А     | <b>Ивых</b> В | Івых А    | <b>R</b> вх Ом | Ki    | Ku      | Kp     |
|---|--------|------------|-----------|---------------|-----------|----------------|-------|---------|--------|
| 1 | 200    | 876.618e-6 | 34.165e-6 | 6.301e-3      | 31.507e-6 | 25.658         | 0.922 | 7.188   | 6.627  |
| 2 | 1000   | 876.618e-6 | 34.165e-6 | 25.203e-3     | 25.205e-6 | 25.658         | 0.738 | 28.75   | 21.212 |
| 3 | 10000  | 876.618e-6 | 34.165e-6 | 77.567e-3     | 7.75e-6   | 25.658         | 0.227 | 88.484  | 20.086 |
| 4 | 250000 | 876.618e-6 | 34.165e-6 | 99.631e-3     | 398.02e-9 | 25.658         | 0.012 | 113.654 | 1.364  |

## Схема с общим коллектором



Рисунок 11 - Схема с общим коллектором



Рисунок 12 - Общий коллектор. Оценка малосигнальных параметров



Рисунок 13 - Общий коллектор. Частотный анализ



Рисунок 14 - Общий коллектор. Определение тока короткого замыкания



Рисунок 15 - Общий коллектор. Определение напряжения холостого хода Найдём выходное сопротивление:

$$U_{xx} = 29.97 \cdot 10^{-3} \text{ B}$$
  $J_{\text{кз}} = 811.558 \cdot 10^{-6} \text{ A}$   $R_{\text{вых}} = \frac{U_{xx}}{J_{\text{кз}}} = \frac{29.97 \cdot 10^{-3}}{811.558 \cdot 10^{-6}} = 26.93 \text{ Ом}$ 

Найдём граничную частоту:

$$U_{max} = 785.0478 \cdot 10^{-3} \text{ B}$$
  $\frac{U_{max}}{\sqrt{2}} = 553.9973 \cdot 10^{-3} \text{ B}$   $f_{\text{B}} = 3.5331 \text{ M}\Gamma\text{ц}$ 

Таблица 4 - Общий коллектор

|   | Rn Om  | <b>U</b> вх В | Івх А    | <b>Ивых</b> В | Івых А     | <b>R</b> вх Ом | Ki   | Ku   | Kp     |
|---|--------|---------------|----------|---------------|------------|----------------|------|------|--------|
| 1 | 200    | 29.301e-3     | 5.697e-6 | 25.865e-3     | 129.326e-6 | 5143.23        | 22.7 | 0.88 | 19.976 |
| 2 | 1000   | 30.01e-3      | 4.988e-6 | 29.056e-3     | 29.029e-6  | 6016.44        | 5.82 | 0.97 | 5.6454 |
| 3 | 10000  | 30.195e-3     | 4.804e-6 | 29.876e-3     | 2.985e-6   | 6285.39        | 0.62 | 0.99 | 0.6138 |
| 4 | 250000 | 30.215e-3     | 4.784e-6 | 29.966e-3     | 119.314e-9 | 6311.89        | 0.02 | 0.99 | 0.0198 |

#### Аналитический расчёт

#### Схема с общим эмиттером



Рисунок 16 - Общий эмиттер. Определение тока эмиттера

Ток эмиттера:

$$I_{\rm 9A} = 1.055 \cdot 10^{-3} \,\mathrm{A}$$

Вычислим входное сопротивление:

$$R_6 = \frac{R_1 R_2}{R_1 + R_2} = 6.42857 \cdot 10^3 \text{ Ом}$$
 
$$R_{\text{вх тр оэ}} = r_{\text{баз}} + r_{\text{эм}} (1+B) = \frac{26}{1000 I_{\text{ЭА}}} (1+B) = 2.98199 \cdot 10^3 \text{ Ом}$$
 
$$R_{\text{вх тр оэ}} = \frac{R_{\text{вх тр оэ}} R_6}{R_{\text{вх тр оэ}} + R_6} = 2.03707 \cdot 10^3 \text{ Ом}$$

Выходное сопротивление:

$$R_{\scriptscriptstyle 
m BЫX} pprox R_k pprox 3000$$
 Ом

Коэффициент передачи по току:

$$K_i = \frac{R_6}{R_6 + R_{\text{BX TP 03}}} B \frac{R_k}{R_k + R_n} = 120 \frac{6.42857 \cdot 10^3}{6.42857 \cdot 10^3 + 2.98199 \cdot 10^3} \frac{3000}{3000 + R_n}$$

Коэффициент передачи по напряжению:

$$R_{kn} = \frac{R_k R_n}{R_k + R_n} = \frac{3000 R_n}{3000 + R_n}$$
$$K_U = \frac{B R_{kn}}{R_{\text{BX TD 09}}} = \frac{120 R_{kn}}{2.98199 \cdot 10^3}$$

Коэффициент мощности:

$$K_p = K_i K_U$$

Коэффициент G:

$$r_6 \approx 0$$
  ${
m R'}_{\scriptscriptstyle \Gamma} = rac{{
m R}_{\scriptscriptstyle \Gamma} R_6}{{
m R}_{\scriptscriptstyle \Gamma} + R_6} = 1604.278 \, {
m Om}$   ${
m G} = rac{{
m R'}_{\scriptscriptstyle \Gamma} + r_6 + r_9}{{
m R'}_{\scriptscriptstyle \Gamma} + R_{\scriptscriptstyle 
m BX \, TP \, O9}} = 8.4$ 

Постоянная времени в области верхних частот:

$$C_{\text{кэ}} = C_{6\text{к}}(B+1) = 1.452 \cdot 10^9 \, \Phi$$
 
$$\tau_{\text{B}} = \frac{B+1}{2\pi f_{\alpha}} = 4.81444 \cdot 10^{-7} \, \text{сек}$$
 
$$\tau_{\text{B}} = G(\tau_{\text{B}} + C_{\text{кэ}}R_{kn}) + C_{\text{H}}R_{kn} = 8.86522 \cdot 10^{-7} \, \text{сек}$$

Верхняя граничная частота:

$$f_{\scriptscriptstyle\rm B} = \frac{1}{2\pi\tau_{\scriptscriptstyle\rm B}} = 1,79527 \cdot 10^5 \, \Gamma \text{ц}$$

Таблица 5 - Общий эмиттер

|   | Rn Om  | R BX Om | R вых Om | Ki     | Ku      | Kp      | Δki   | Δku    | Δkp     | бki   | бku    | бкр    |
|---|--------|---------|----------|--------|---------|---------|-------|--------|---------|-------|--------|--------|
| 1 | 200    |         |          | 76.827 | 7.581   | 582.401 | 3.867 | 1.321  | 125.672 | 5.031 | 17.421 | 21.578 |
| 2 | 1000   | 2037.07 | 3000     | 61.466 | 30.204  | 1856.5  | 3.096 | 5.134  | 393.163 | 5.036 | 16.997 | 21.178 |
| 3 | 10000  | 2037.07 | 3000     | 18.917 | 92.865  | 1756.75 | 0.967 | 15.745 | 372.45  | 5.113 | 16.955 | 21.201 |
| 4 | 250000 |         |          | 0.972  | 119.293 | 115.956 | 0.082 | 24.013 | 31.157  | 8.438 | 20.13  | 26.87  |

#### Схема с общей базой



Рисунок 17 - Общая база. Определение тока эмиттера

Ток эмиттера:

$$I_{\rm 3A} = 1.052 \cdot 10^{-3} \,\mathrm{A}$$

Входное сопротивление:

$$R_{ ext{BX}} = rac{rac{R_{ ext{BX TP 06}}}{B+1}R_{ ext{9}}}{rac{R_{ ext{BX TP 06}}}{B+1}+R_{ ext{9}}} = 24.51 ext{ Om}$$

Коэффициент передачи по току:

$$K_{i} = \frac{R_{\text{9}} \frac{B}{B+1} R_{\text{K}}}{R_{\text{9}} + \frac{R_{\text{BX TP 06}}}{B+1} (R_{\text{K}} + R_{\text{H}})}$$

Коэффициент G:

$$G = \frac{R'_{r} + r_{6} + r_{9}}{R'_{r}(B+1) + R_{BX TP O6}} = \frac{\frac{R_{r}R_{6}}{R_{r} + R_{6}} + r_{9}}{\frac{R_{r}R_{6}}{R_{r} + R_{6}}(B+1) + R_{BX TP O6}} = 8.26446 \cdot 10^{-3}$$

Постоянная времени в области верхних частот:

$$C_{\text{кэ}} = C_{6\text{к}}(B+1) = 1.452 \cdot 10^{-9} \, \Phi$$
 $au_{\text{B}} = G( au_{\text{B}} + C_{\text{кэ}}R_{kn}) = 3.16712 \cdot 10^{-8} \, \text{сек}$ 

## Верхняя граничная частота:

$$f_{\scriptscriptstyle 
m B} = rac{1}{2\pi au_{\scriptscriptstyle 
m B}} = 5.02523\cdot 10^6 \; \Gamma$$
ц

Таблица 6 - Общая база

|   | Rn Om  | R вх От | R вых Om   | Ki      | Ku     | Kp     | Δki   | Δku   | Δkp    | бki    | бku    | бкр    |
|---|--------|---------|------------|---------|--------|--------|-------|-------|--------|--------|--------|--------|
| 1 | 200    |         |            | 1.087   | 7.524  | 8.181  | 0.165 | 0.336 | 1.554  | 15.205 | 4.464  | 18.99  |
| 2 | 1000   | 24.513  | 4.513 3000 | 0.876   | 30.095 | 26.372 | 0.138 | 1.345 | 5.154  | 15.779 | 4.47   | 19.544 |
| 3 | 10000  | 24.515  |            | 0.275   | 92.601 | 25.487 | 0.048 | 4.117 | 5.401  | 17.525 | 4.446  | 21.192 |
| 4 | 250000 |         | 0.014      | 118.954 | 1.697  | 0.002  | 5.3   | 0.333 | 15.894 | 4.455  | 19.641 |        |

## Схема с общим коллектором



Рисунок 18 - Общий коллектор. Определение тока эмиттера

Ток эмиттера:

$$I_{\rm 3A} = 1.053 \cdot 10^{-3} \,\mathrm{A}$$

Входное сопротивление:

$$R_{\rm BX} = \frac{R_{\rm BX \; TP \; OK} + (B+1)R_{\rm 9H}R_{\rm 6}}{R_{\rm BX \; TP \; OK} + (B+1)R_{\rm 9H} + R_{\rm 6}},$$
 
$$R_{\rm 9H} = \frac{R_{\rm 9}R_{\rm H}}{R_{\rm 9} + R_{\rm H}}$$

Выходное сопротивление:

$$R_{\text{вых}} = \frac{R_{\text{9}} \left( r_{\text{9M}} + \frac{R'_{\text{F}}}{B+1} \right)}{R_{\text{9}} + r_{\text{9M}} + \frac{R'_{\text{F}}}{B+1}},$$
$$R'_{\text{F}} = \frac{R_{\text{F}} R_{\text{6}}}{R_{\text{F}} + R_{\text{6}}}$$

Коэффициент передачи по току:

$$K_i = \frac{R_6(B+1)R_9}{R_6 + R_{\text{BX TP OK}} + (B+1)R_{9H}(R_9 + R_H)}$$

Коэффициент передачи по напряжению:

$$K_U = \frac{(B+1)R_{\text{9H}}}{R_{\text{BX TD OK}} + (B+1)R_{\text{9H}}}$$

Коэффициент G:

$$G = \frac{R'_{\Gamma} + R_{9} + R_{9H}}{R'_{\Gamma} + R_{BXTDOK} + (B+1)R_{9H}} = 1.1209 \cdot 10^{-2}$$

Постоянная времени в области верхних частот:

$$\mathcal{C}_{\text{кэ}} = \mathcal{C}_{\text{бк}}(B+1) = 1.452 \cdot 10^{-9} \, \Phi$$
  $au_{\text{B}} = \mathcal{G}( au_{\text{B}} + \mathcal{C}_{\text{кэ}} R_{kn}) = 4.29551 \cdot 10^{-8} \, \text{сек}$ 

Верхняя граничная частота:

$$f_{\rm B} = \frac{1}{2\pi\tau_{\rm B}} = 3.70514 \cdot 10^6 \, \Gamma \text{ц}$$

Таблица 7 - Общий коллектор

|   | Rn Om  | R вх От | R вых Om | Ki     | Ku    | Kp    | Δki    | Δku    | Δkp    | бki   | бku   | бкр   |
|---|--------|---------|----------|--------|-------|-------|--------|--------|--------|-------|-------|-------|
| 1 | 200    | 5145.54 |          | 22.633 | 0.884 | 20.01 | 0.067  | 0.004  | 0.034  | 0.296 | 4.656 | 0.171 |
| 2 | 1000   | 6016.27 | 31.509   | 5.819  | 0.968 | 5.634 | 0.0012 | 0.001  | 0.012  | 0.02  | 1.91  | 0.211 |
| 3 | 10000  | 6285.4  | 31.50)   | 6.219  | 0.989 | 0.615 | 0.0019 | 0.0005 | 0.0015 | 0.303 | 5.926 | 0.244 |
| 4 | 250000 | 6316.31 |          | 0.025  | 0.992 | 0.025 | 0.0051 | 0.002  | 0.005  | 20.18 | 1.754 | 20.32 |

#### Вывод

Изучено, как различные способы включения биполярного транзистора и величина сопротивления нагрузки влияют на свойства усилительного каскада.