2. Modèle relationnel

2.1. Introduction

Le modèle relationnel est une façon de modéliser les données contenues dans une base de données qui repose sur des principes mathématiques mis en avant par Codd en 1970 [9].

2.2. Concepts de bases

2.2.1. Attribut

Définition : Un attribut est un identificateur (un nom) décrivant une donnée enregistrée dans une base.

Exemple:

Le numéro d'inscription et le nom d'un étudiant sont des attributs.

2.2.2. Domaine

Définition : Le domaine d'un attribut est l'ensemble, fini ou infini, de ses valeurs possibles.

Exemple:

L'attribut numéro d'inscription a pour domaine l'ensemble des combinaisons de cinq chiffres et nom a pour domaine l'ensemble des combinaisons de lettres (chaîne de caractères).

2.2.3. Schéma de relation

Définition: Un schéma de relation R, indiqué R(A1:D1, A2:D2, ..., An:Dn) est un groupe d'attributs. Chaque attribut Ai est le nom d'un rôle joué par son domaine Di dans le schéma de relation R.

Un schéma de relation R est utilisé pour décrire une relation.

Exemple:

Etudiant (num_insc : Entier, nom : Chaîne, prénom : Chaîne). On peut aussi écrire le schéma comme suit : Etudiant (num_insc, nom, prénom).

2.2.4. Relation

Définition : Une relation est un sous-ensemble du produit cartésien de n domaines d'attribut (n > 0).

Une relation est représentée sous la forme d'un tableau à deux dimensions dans lequel les n attributs figurent les titres des n colonnes. Voici un exemple de relation avec trois attributs :

num_insc	nom	prénom
00001	Sid Ali	sakina
00011	Ben Mohamad	Fatima zahra
00012	Ben ali	Zine alabidine
00003	Ali	houssine

Etudiant (num_insc : Entier, nom : Chaîne, prénom : Chaîne).

2.2.5. Degré

Définition : Le degré d'une relation est son nombre d'attributs, par exemple le degré la relation étudiant est 3.

2.2.6. Occurrence

Définition : Une occurrence est un élément de l'ensemble figuré par une relation.

Autrement dit, une occurrence est une ligne du tableau. Par exemple le triplet (00003, Ali, houssine).

2.2.7. Cardinalité

Définition : La cardinalité d'une relation est son nombre d'occurrences. Par exemple la cardinalité de la relation étudiant est 4.

2.2.8. Clé candidate

Définition : Une clé candidate d'une relation est un ensemble minimal des attributs de la relation qui permet d'indexer chaque ligne de manière différenciée.

- La valeur d'une clé candidate est donc distincte pour toutes les occurrences.
- Les clés candidates d'une relation n'ont pas forcément le même nombre d'attributs.
- > Une clé candidate peut être formée d'un attribut arbitraire, utilisé à cette seule fin.

2.2.9. Clé primaire

Définition : La clé primaire d'une relation est l'une de ses clés candidates.

- La clé primaire peut être choisie d'une façon aléatoire mais le contexte aide souvent à déterminer laquelle des clés candidates doit être considérée comme clé primaire.
- > Généralement, on souligne les attributs qui forment la clé primaire.

Exemple:

Etudiant (Code_per, Nom, Prenom, Adresse, Date_nais, Lieu_nais, Num_ASS)

Déterminer toutes les clés candidates ? Quelle est la clé primaire qu'on peut choisir ?

2.2.10. Clé étrangère

Définition : Une clé étrangère d'une relation est formée d'un ou plusieurs de ses attributs qui constituent une clé dans une autre relation.

Exemple:

Etudiant(N°étud, nom, prénom, âge);

Cours(NomC, horaire, prof);

Suit(#N°étud, #NomC).

2.3. Modèle relationnel

2.3.1. Traduction du modèle conceptuel en modèle relationnel

Les entités et les associations sont traduites par des relations [2].

2.3.1.1. Règles de passages des objets de MC aux relations du MR

- 1. Tout objet du MC se transforme en relation dans le MR;
- 2. Toutes les propriétés de l'objet deviennent les attributs de la relation ;
- 3. L'identifiant de l'objet devient la clé de la relation.

2.3.1.2. Règles de passage des associations du MC aux relations du MR

Cas 1 : cardinalité de type (x,1), (x,n) dans une association binaire.

Objet 1	(X,1)	Association	(X,N)	Objet 2
	(0,1) OU		(0,N) OU	
	(1,1)		(1,N)	

- 1. L'objet 1 devient la relation R1
- 2. L'objet 2 devient la relation R2
- 3. L'identifiant de l'objet 2 devient un attribut de la relation R1, elle sera appelée clé étrangère.
- 4. Les propriétés de l'association deviennent des attributs de R.

Exemple:

Client (Num cl, Nom, Prénom, Adr),

Commande (Num_c, Date_c, #Num_cl).

Cas 2 : cardinalité de type (X, N), (X, N) dans association de degré quelconque.

- 1. Tous les objets deviennent des relations,
- 2. L'association devient une relation,
- 3. L'identifiant de l'association le clé de la relation,
- 4. Les propriétés de l'association deviennent des attributs de la relation.

Exemple:

Commande (Num_c, Date_c),

Produit (<u>Code_P</u>, Des_p),

Contient (#Num_c, #Code_P, Qte_c).

Cas particuliers:

(X, 1), (X, 1):

Id 1 devient clé étrangère dans la relation associée à O2;

Id 2 devient clé étrangère dans la relation associée à O1

A) Cas de l'association réflexive :

 $R1(\underline{ID_1}, \# ID_1).$

Exemple:

Pièce	(1,1)	Composer
Num p Des	(1,N)	

Pièce (Num_p, Des, #Num_P_Cible).