Aspectos Teóricos da Computação

Prof. Rodrigo Martins rodrigo.martins@francomontoro.com.br

Cronograma da Aula

Autômatos Finitos Determinísticos (AFD)

Exemplos

Exercícios

O que são Autômatos Finitos Determinísticos (AFD)?

- É um modelo matemático usado na teoria da computação e linguagens formais para representar sistemas lógicos com um número finito de estados.
- É uma das formas mais simples de máquinas de estados, mas com uma ampla gama de aplicações.

O que são Autômatos Finitos Determinísticos (AFD)?

Modelo Matemático:

- Um AFD consiste em um conjunto finito de estados e uma função de transição que determina como se passa de um estado para outro, baseado na entrada.
- Ele tem um estado inicial e um ou mais estados finais ou de aceitação.

O que são Autômatos Finitos Determinísticos (AFD)?

• Determinístico:

- A característica "determinística" significa que, para cada estado e entrada, a função de transição aponta para no máximo um próximo estado.
- Isso implica que, dada uma string de entrada e um estado inicial, o AFD seguirá um único caminho possível através de seus estados.

AFD – Autômato Finito Determinístico

Autômato Finito Determinístico (AFD)

- Um Autômato Finito Determinístico é uma quíntupla:
- M = (S, I, t, si, F)
- S é o conjunto de estados do controle finito.
- I é o alfabeto de entrada
- si é o estado inicial, pertencente a S
- F é o estados final
- t representa as funções de transição, regras que definem os próximos estados.
- Exemplo: $M = (\{q0, q1\}, \{a, b\}, t, q0, \{q1\})$

Exemplo 1

- Exemplo: $M = (\{q0,q1\}, \{a,b\}, t, q0, \{q1\})$
- E a função t, que define próximos estados, ela pode ser definida por:
 - uma tabela ou um grafo com arcos direcionados

Estado Atual	Próximo Estado	
	Entrada Atual	
	а	b
q0	q0	q1
q1	q1	q0

Exemplo 1

• A função t na forma de grafo de estados ou diagrama de estados é a forma mais fácil de visualizar a função de transição do autômato finito:

Vamos verificar se a string aabba faz parte da linguagem definida pelo autômato M.

Portanto, o autômato M reconhece a cadeia aabba MAS NÃO ATINGE O ESTADO FINAL DO AUTOMATO APÓS ENTRADAS...

Vamos verificar se a string aabba faz parte da linguagem definida pelo autômato M.

(q0,aabbab)	⊢M	(q0, <mark>a</mark> abbab)	(consumiu o símbolo a)
,	⊢M	(q0, <mark>a</mark> bbab)	(consumiu o símbolo a)
 	⊢M	(q0, <mark>b</mark> bab)	(consumiu o símbolo b)
	⊢M	(q1, <mark>b</mark> ab)	(consumiu o símbolo b)
	⊢M	(q0, <mark>a</mark> b)	(consumiu o símbolo a)
	⊢M	(q0, <mark>b</mark>)	(consumiu o símbolo b)
	⊢M	(q1, ε) (consumiu o símbolo b,	
restan	idoˈa cad	deia vazia ε)	

Portanto, o autômato M reconhece a cadeia aabba E ATINGE O ESTADO FINAL DO AUTOMATO APÓS ENTRADAS...

NÃO RECONHECENDO A STRING DE ENTRADA.

Vamos verificar se a string aabca faz parte da linguagem definida pelo autômato M.

Portanto, o autômato M NÃO reconhece a cadeia aabca.

Exemplo 2

 Vamos especificar formalmente em AFD que aceita todos e somente os strings de 0's e 1's que tem a sequência 01 em algum lugar no string. Podemos escrever essa linguagem L como:

{w | w é da forma x01y para alguns strings x e y que consistem somente em 0's e 1's}

 Outra descrição equivalente, usando parâmetros x e y à esquerda da barra vertical é,

{x01y | x e y são quaisquer strings de 0's e 1's}

Exemplo 2 – cont...

- Os exemplos de strings na linguagem incluem 01, 11010, e 100011. Os exemplos de strings que não estão na linguagem incluem ε , 0 e 111000.
- A especificação completa do autômato A que aceita a linguagem L de strings que tem como substring 01, é

$$A = (\{q0, q1, q2\}, \{0,1\}, t, q0, \{q1\})$$

Tabela de transições

- Uma tabela de transições é uma representação convencional e tabular de uma função como t que recebe dois argumentos e retorna um valor.
- As linhas da tabela correspondem aos estados, e as colunas correspondem às entradas.

Exemplo 3

- Vamos projetar um AFD para aceitar a linguagem
- ◆ L = {w | w tem ao mesmo tempo um número par de 0's e um número par de 1's}
- Teremos quatro estados, que podem ter as seguintes interpretações.
 - q0: O número de 0's vistos até agora e o número de 1's vistos até agora são ambos pares.
 - q1: O número de 0's vistos até agora é par, mas o número de 1's vistos até agora é ímpar.
 - q2: O número de 1's vistos até agora é par, mas número de 0's vistos até agora é ímpar.
 - q3: O número de 0's vistos até agora e o número de 1's vistos até agora são ambos ímpares.

Exemplo 3 – cont...

A especificação completa do autômato A que aceita a linguagem L é:
A = ({q0, q1, q2, q3},{0, 1}, t, q0, {q0})

Nesta aula vimos...

- Apresentou como um modelo matemático usado na teoria da computação e linguagens formais para representar sistemas lógicos com um número finito de estados, destacou sua simplicidade e ampla gama de aplicações.
- Mostrou que um AFD é definido como uma quíntupla, incluindo o conjunto de estados, alfabeto de entrada, estado inicial, estados finais e as funções de transição.
- Apresentou como os estados transitam com base em entradas específicas, usando tabelas e grafos para representar as funções de transição

- Faça o AFD para reconhecer uma cadeia com entrada 11
- Criar o grafo e a tabela de estados
- Testar a máquina para a entrada 10111100101.

- Faça o AFD para reconhecer a cadeia de entrada 0110.
 - Criar o grafo e a tabela de estados
 - Testar a máquina para a entrada 0110.

Com base no grafo:

 Verifique se o autômato chega ao estado final ao receber como entrada a palavra baba

- Forneça os autômatos finitos determinísticos que aceitam as seguintes linguagens sobre o alfabeto {0,1}.
- a) O conjunto de todos os strings que terminam em 00
- b) O Conjunto de todos os strings com três 0's consecutivos (não necessariamente no final)
- c) O conjunto de strings que tem 011 como um substring.

Referência desta aula

• HOPCROFT, John E.; MOTWANI, Rajeey; ULLMAN, Jeffrey D. Introdução a teoria de autômatos, linguagens e computação. Rio de Janeiro: Campus, 2002.

FIM Obrigado