15 poäng ger garanterat betyg E. Motivera alla lösningar noggrant. Obevisade deluppgifter kan användas.

- 1. (a) (1 poäng) Definera begreppen "nollrum" och "bildrum" av en linjär avbildning.
 - (b) (1 poäng) Låt $T:V\to W$ vara en linjär avbildning. Visa att nollrummet $\mathrm{N}(T)$ är ett delrum av V.
 - (c) (3 poäng) Låt $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ vara den linjära avbildningen som uppfyller

$$T(A) = \left(A + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

Visa att T är linjär, bestäm R(T) och hitta en bas till N(T).

- 2. (a) (1 poäng) Definiera begreppet "egenvektor av en linjär avbildning".
 - (b) (4 poäng) Betrakta den linjära avbildningen $T: P_2(\mathbb{C}) \to P_2(\mathbb{C})$ som uppfyller T(p) = (x+i)p'. Hitta en bas av egenvektorer av T till $P_2(\mathbb{C})$.
- 3. (a) (1 poäng) Definiera begreppen "ortogonal bas" och "ortonormal bas" av ett inre-produktrum.
 - (b) (4 poäng) Betrakta $M_2(\mathbb{R})$ med inre produkten

$$\langle A, B \rangle = \text{Tr}(AB^{t}) = (AB^{t})_{11} + (AB^{t})_{22}$$

där B^t är transponatet av matrisen B. För $\alpha \in \mathbb{R}$ definiera den linjära avbildningen $T_\alpha : M_2(\mathbb{R}) \to M_2(\mathbb{R})$ genom formeln

$$T_{\alpha}(A) = \alpha A + (1 - \alpha)A^{t}$$
.

Bestäm för vilka $\alpha \in \mathbb{R}$ är avbildingen T_{α} diagonaliserbar relativ till en ortonormal bas av $M_2(\mathbb{R})$. Man får använda utan bevis att Tr(AB) = Tr(BA) och $\text{Tr}(A^t) = \text{Tr}(A)$ gäller för alla matriser $A, B \in M_2(\mathbb{R})$.

- 4. (a) (1 poäng) Definiera begreppet "QR-uppdelning av en komplex matris".
 - (b) (4 poäng) Beräkna en QR-uppdelning för matrisen

$$A = \frac{1}{2} \begin{pmatrix} \sqrt{2} & \sqrt{2} & 0 & 0\\ 0 & 4 & 2 & 0\\ -1 & -1 & 2 & \sqrt{2} - 2\\ 1 & 1 & -2 & \sqrt{2} + 2 \end{pmatrix}.$$

- 5. (a) (1 poäng) Definiera begreppet "symmetrisk bilinjär form".
 - (b) (4 poäng) Beräkna rang och signaturen av den bilinjära form $K: \mathbb{R}^4 \to \mathbb{R}$ som uppfyller

$$K(v) = v_1 v_3 - v_2 v_4 .$$

- 6. (a) (2 poäng) Låt $T: V \to W$ vara en bijektiv linjär avbilding och låt $T^{-1}: W \to V$ vara inversen, som uppfyller $T^{-1}(T(v)) = v$ för alla $v \in V$. Bevisa att T^{-1} är linjär.
 - (b) (3 poäng) Låt $U \in M_n(\mathbb{C})$ vara en komplex matris. Bevisa att U är unitär om och endast om kolonnerna av U utgör en ortonormal bas till \mathbb{C}^n .

Rättningen av tentan kommer att vara färdig ungefär 2 veckor efter tentanskrivning. Därefter kan en elektronisk kopia av tentan beställas från studentexpeditionen genom länken https://survey.su.se/Survey/42570/sv.