14. Normalformen von Endomorphismen

In diesem Abschnitt sei dim $V < \infty$.

Ziel: Für ein $\phi \in \text{End}(V)$ finde man eine Basis B, so dass die Darstellungsmatrix $D_{BB}(\phi)$ eine einfache Form hat.

Erinnere: Falls eine Basis B aus Eigenvektoren existiert, so ist $D_{BB}(\phi)$ eine Diagonalmatrix – der Idealfall. Dies gilt genau dann, wenn

$$g_{\phi}(T) = \prod_{\lambda \in \operatorname{Spec}(\phi)} (T - \lambda)^{e_{\lambda}} \in K[T]$$

ein Produkt von Linearfaktoren ist (in C immer erfüllt) und

$$e_{\lambda} = \dim E_{\lambda}$$

Strategie: Ersetze die Eigenvektoren durch Vektoren mit schwächerer Eigenschaft.

Definition: Für $\phi \in \text{End}(V)$ und $\lambda \in K$ heißt

$$H(\phi, \lambda) := \bigcup_{k=0}^{\infty} \operatorname{Kern}\left((\phi - \lambda \operatorname{id}_{v})^{k}\right)$$

der **Hauptraum** von ϕ zu λ .

Bemerkung (1): $H(\phi, \lambda)$ ist ein ϕ -invarianter Untervektorraum von V, denn es gilt

$$\operatorname{Kern}\left((\phi - \lambda \operatorname{id}_v)^k\right) \subseteq \operatorname{Kern}\left((\phi - \lambda \operatorname{id}_v)^{k+1}\right)$$

und

$$(\phi - \lambda i d_v)^k x = 0$$
$$(\phi - \lambda i d_v)^k \phi(x) = 0$$

Bemerkung (2):

$$H(\phi, \lambda) \neq 0 \iff \lambda \in \operatorname{Spec}(\phi)$$

Beweis: \Leftarrow : Sei $\lambda \in \operatorname{Spec}(\phi)$. Dann:

$$0 \neq E_{\lambda}(\phi) \subseteq H(\phi, \lambda)$$

 \implies : Sei $x \neq 0$ in $H(\phi, \lambda)$. Dann existiert ein $k \geq 1$ mit $(\phi - \lambda \operatorname{id}_v)^k(x) = 0$.

Ohne Beschränkung der Allgemeinheit sei k minimal. Damit:

$$\underbrace{(\phi - \lambda \operatorname{id}_v)^{k-1}}_{=:y}(x) \neq 0 \quad \text{und } y \in E_{\lambda}(\phi)$$

Satz 1:

Sei das charakteristische Polynom

$$g_{\phi}(T) = \prod_{\lambda \in \operatorname{Spec}(\phi)} (T - \lambda)^{e_{\lambda}}$$

Dann gilt für jedes $\lambda \in \operatorname{Spec}(\phi)$:

- (1) $H(\phi, \lambda) = \operatorname{Kern} ((\phi \lambda \operatorname{id}_v)^{e_{\lambda}})$
- (2) dim $H(\phi, \lambda) = e_{\lambda}$

Beweis: Fixiere λ und $e = e_{\lambda}$. Schreibe $g_{\phi}(T) = (T - \lambda)^e \cdot h(T) - \text{in } h(T)$ werden die restlichen Linearfaktoren untergebracht. Setze $H := \text{Kern}((\phi - \lambda \operatorname{id}_v)^e)$ und $U := \text{Kern}(h(\phi))$.

Wegen ggT $((T - \lambda)^e, h(T)) = 1$ folgt mit der letzten Proposition

$$V = H \bigoplus U$$

mit ϕ -invarianten Teilräumen.

Für alle $k \geq 1$ gilt: $(\phi - \lambda \operatorname{id}_v)^k |_U$ ist injektiv, denn

$$1 = r \cdot (T - \lambda)^k + s \cdot h$$

mit $r, s \in K[T]$. Damit folgt:

$$id_v = r(\phi) \cdot (\phi - \lambda \operatorname{id}_v)^k + s(\phi) \cdot h(\phi)|_U$$
$$id_v = r(\phi)|_U \cdot (\phi - \lambda \operatorname{id}_v)^k|_U + 0$$

Damit folgt für alle $k \geq 1$:

$$\operatorname{Kern}\left((\phi - \lambda \operatorname{id}_v)^k\right) \subseteq H$$

also gilt (1).

Ferner gilt:

$$g_{\phi}(T) = g_{\phi|_H} \cdot g_{\phi|_U}$$

und $(T-\lambda)^e$ annulliert $\phi|_H$ (da $(\phi-\lambda\operatorname{id}_v)^e|_H=0$). Daraus folgt: das Minimalpolynom von $\phi|_H$ teilt $(T-\lambda)^e$, also ist $g_{\phi|_H}$ eine Potenz von $T-\lambda$.

Damit gilt: $g_{\phi|H} = (T - \lambda)^{\dim H}$ und dim $H \leq e$ (da $(T - \lambda)^e$ höchste Potenz in g_{ϕ} ist).

 $e>\dim H,$ also $T-\lambda|g_{\phi|_H},$ steht im Widerspruch zu gg
T $(T-\lambda,h)=1.$ Damit gilt: $e=\dim H.$

Erinnere: Summen von Eigenräumen sind direkt. Das Analogon für Haupträume gilt auch:

Satz 2:

Sind $\lambda_1, \ldots, \lambda_k \in K$ paarweise verschieden, so gilt

$$\sum_{i=1}^{k} H(\phi, \lambda_i) = \bigoplus_{i=1}^{k} H(\phi, \lambda_i)$$

Beweis: Schreibe kurz: $H_i := H(\phi, \lambda_i)$.

Führe eine vollständige Induktion nach k durch.

$$k=1$$
: \checkmark

 $k-1 \to k$: Zu zeigen: für $v_i \in H_i$ gilt:

$$\sum_{i=1}^{k} v_i = 0$$

d.h. alle $v_i = 0$.

 $v_k \in H_k$, d.h. es existiert e > 0 mit $(\phi - \lambda_k \operatorname{id}_v)^e(v_k) = 0$, also

$$0 = (\phi - \lambda_k \operatorname{id}_v)^e(0)$$

$$= (\phi - \lambda_k \operatorname{id}_v)^e \left(\sum_{i=1}^k v_i\right)$$

$$= \sum_{i=1}^k \underbrace{(\phi - \lambda_k \operatorname{id}_v)^e(v_i)}_{=0 \text{ für } i=k}$$

$$= \sum_{i=1}^{k-1} \underbrace{(\phi - \lambda_k \operatorname{id}_v)^e(v_i)}_{=:w_i \in H_i}$$

Mit der Induktionsvoraussetzung folgt $w_1 = \ldots = w_{k-1} = 0$.

Nun fixiere $i \in \{1, \dots, k-1\}$.

Analog zum Fall i = k:

$$\exists f > 0 : (\phi - \lambda_i \operatorname{id}_v)^f(v_i) = 0$$

Wegen $i \neq k$ ist $\lambda_i \neq \lambda_k$, also $ggT(T - \lambda_i, T - \lambda_k) = 1$, also existieren $g, h \in K[T]$ mit

$$1 = g(T - \lambda_i)^f + h(T - \lambda_k)^e$$

 ϕ einsetzen:

$$v_{i} = \mathrm{id}_{v}(v_{i})$$

$$= g(\phi) \circ \underbrace{(\phi - \lambda_{i} \mathrm{id}_{v})^{f}(v_{i})}_{0} + h(\phi) \circ \underbrace{(\phi - \lambda_{k} \mathrm{id}_{v})^{e}(v_{i})}_{=w_{i}=0}$$

$$= 0$$

Damit folgt: $v_i = 0$ für i = 1, ..., k - 1 und somit folgt wegen $\sum_{i=1}^k v_i = 0$ auch $v_k = 0$.

Zentrale Frage: Wann ist V die direkte Summe aller Haupträume?

Satz 3:

Sei V ein K-Vektorraum endlicher Dimension. Weiter sei $\phi \in \operatorname{End}(V)$ mit charakteristischem Polynom $g_{\phi}(T)$ und Minimalpolynom $f_{\phi}(T)$.

Folgende Aussagen sind äquivalent:

(1)
$$V = \bigoplus_{\lambda \in \operatorname{Spec}(\phi)} H(\phi, \lambda)$$

(2)
$$g_{\phi}(T) = \prod_{\lambda \in \text{Spec}(\phi)} (T - \lambda)^{\dim H(\phi, \lambda)}$$

- (3) $g_{\phi}(T)$ ist Produkt von Linearfaktoren
- (4) $f_{\phi}(T)$ ist Produkt von Linearfaktoren

Beweis: Der Beweis erfolgt durch Ringschluss:

(1) \Longrightarrow (2): Für $H_{\lambda} := H(\phi, \lambda)$ bekannt:

$$g_{\phi|_{H_{\lambda}}} = (T - \lambda)^{\dim H_{\lambda}}$$

Wegen $V = \bigoplus_{\lambda} H_{\lambda}$ folgt

$$g_{\phi} = \prod_{\lambda} g_{\phi|H_{\lambda}} = \prod_{\lambda} (T - \lambda)^{\dim H_{\lambda}}$$

- $(2) \implies (3): \checkmark$
- $(3) \implies (4)$: Wegen $f_{\phi}|g_{\phi}\checkmark$
- (4) \Longrightarrow (1): Vollständige Induktion nach r := #Nullstellen von f_{ϕ} .

r=0: f_{ϕ} hat keine Linearfaktoren, also $f_{\phi}=1 \quad (\leadsto V=0)$.

$$r=1$$
: $f_{\phi}=(T-\lambda)^e$ impliziert $V=\mathrm{Kern}(\underbrace{f_{\phi}(\phi)}_{=0})=H(\phi,\lambda)$

 $r\geq 2$: Sei λ eine Nullstelle von f_{ϕ} , dann existiert ein ϕ -invarianter Teilraum U: $V=H\bigoplus U$, wobei λ keine Nullstelle des Minimalpolynoms $f_{\phi|_U}$ ist. Wegen $f_{\phi}=f_{\phi|_U}\cdot f_{\phi|_{H_{\lambda}}}$ ist die Anzahl der Nullstellen von $f_{\phi|_U}$ r-1.

Mit der Induktionsvoraussetzung folgt

$$U = \bigoplus_{\lambda' \in \operatorname{Spec}(\phi|_U)} H(\phi|_U, \lambda')$$

Da Spec (ϕ) = Spec $(\phi|_U)$ $\dot{\cup}$ $\{\lambda\}$ und $H(\phi|_U, \lambda') = H(\phi, \lambda')$ für alle $\lambda' \neq \lambda$ folgt (1).

Ein wichtiger Spezialfall von Haupträumen ist der mit $\lambda = 0$.

Definition: Ein Endomorphismus heißt **nilpotent**, falls ein $n \in \mathbb{N}$ existiert mit $\phi^n = 0$.

Bemerkung (1): Für nilpotentes ϕ ist $\operatorname{Spec}(\phi) = \{0\}$ und $V = \operatorname{Kern}(\phi^n) = H(\phi, 0)$.

Beweis: Das Minimalpolynom ist von der Form: $f_{\phi} = T^m$ mit $m \in \mathbb{N}$.

Bemerkung (2): Für beliebiges $\phi \in \text{End}(V)$ und $\dim(V) < \infty$ ist $(\phi - \lambda \operatorname{id}_v)|_{H(\phi,\lambda)}$ nilpotent.

Beweis: Wir haben gesehen, dass gilt

$$H(\phi, \lambda) = \operatorname{Kern}\left((\phi - \lambda \operatorname{id}_v)^{\dim H(\phi, \lambda)}\right)$$

Hilfssatz 1:

Sei $\dim(V) < \infty$, $\phi \in \operatorname{End}(V)$ nilpotent mit Minimalpolynom $f_{\phi} = T^d$. Ferner sei $u \in V$ mit $\phi^{d-1}(u) \neq 0$.

Dann existiert ein ϕ -invarianter Teilraum W derart, dass gilt:

$$V = U \bigoplus W$$

für den zyklischen (ϕ -invarianten) Teilraum

$$U := \left\langle u, \phi(u), \phi^2(u), \dots, \phi^{d-1}(u) \right\rangle$$

Beachte: Ein solches u existiert stets, da andernfalls $\phi^{d-1}=0$. Dies wäre ein Widerspruch zu $f_{\phi}=T^{d}$.

Beweis: Es gilt dim U = d, da offenbar $U \leq V$ und

$$\dim U = \operatorname{Grad}(g_{\phi|_U}) \ge \operatorname{Grad}(f_{\phi|_U}) = d$$

 $f_{\phi|_U}|f_\phi=T^d$ und kein echter Teiler, da $\phi^{d-1}(u)\neq 0.$

Wähle ϕ -invarianten Teilraum W mit $U \cap W = 0$ und dim W maximal.

Behauptung: $V = U \bigoplus W$

Beweis: angenommen es gilt U > V, d.h. es existiert $\tilde{v} \in V \setminus (U \bigoplus W)$.

Wenn $\phi^d(\tilde{v}) = 0 \in U \bigoplus W$, dann existiert ein kleinstes $e \in \mathbb{N}$ mit $\phi^e(\tilde{v}) \in U \bigoplus W$.

Setze $v := \phi^{e-1}(\tilde{v})$, so dass also $v \notin U \bigoplus W$ und $\phi(v) \in U \bigoplus W$. Damit folgt:

$$\phi(v) = \sum_{i=0}^{d-1} a_i \phi^i(u) + w$$

14. Normalformen von Endomorphismen

mit geeignetem $a_i \in K$, $w \in W$. Wende ϕ^{d-1} an:

$$0 = \phi^{d}(v)$$

$$= a_{0} \cdot \underbrace{\phi^{d-1}(u)}_{\neq 0} + \phi^{d-1}(w)$$

Damit folgt $\phi^{d-1}(w) \in W \cap U = 0$, also $a_0 = 0$.

$$\phi(v) = \phi \underbrace{\left(\sum_{i=1}^{d-1} a_i \cdot \phi^{i-1}(u)\right)}_{=:\tilde{u} \in U} + w \iff \phi(v - \tilde{u}) = w$$

Nun betrachte den Teilraum $\tilde{W} := W + K \cdot (v - \tilde{u})$

- \tilde{W} ist ϕ -invariant
- $\tilde{W} \geq W$ (denn $v \tilde{u} \notin W$ wegen $v \notin U + W$)
- $\tilde{W} \cap U = 0$

Letzteres gilt, da für $u' = w' + \alpha(v - \tilde{u}) \in \tilde{W} \cap U$ folgt $(\alpha \tilde{u} + u') - w' = \alpha \cdot v \in U \bigoplus W$, also $\alpha = 0$.

Daraus folgt $u' = w' \in U \cap W = 0$.

Da $\dim \tilde{W} > \dim W$ folgt Widerspruch zur Maximalität von $\dim W$.

Folgerung: Für nilpotentes ϕ ist V direkte Summe von ϕ -zyklischen Teilräumen.

Beweis: Vollständige Induktion nach $n = \dim V$

n=0, 1: Klar \checkmark

 $n \geq 2$: $V = U \bigoplus W$ mit ϕ -zyklischem $U \neq 0$ nach Hilfssatz 1.

Damit folgt: $\dim W < n$.

Induktionsvoraussetzung: W ist direkte Summe ϕ -zyklischer Teilräume.

Erinnere: Die Darstellungsmatrix von $\phi|_U$ bezüglich der Basis $B = \{u, \phi(u), \phi^2(u), \dots, \phi^{d-1}(u)\}$ lautet für jedes nilpotente ϕ mit Minimalpolynom $f_{\phi} = T^d$

$$D_{BB}(\phi) = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ 0 & & 1 & 0 \end{pmatrix} =: J_d(0)$$

 $J_d(0)$ heißt Jordankästchen der Länge d zum Eigenwert 0.

Für e = 0, 1, ..., d gilt: $\operatorname{rg}(J_d(0)^e) = d - e$ und $J_d(0)^e = 0$ für $e \ge d$.

Satz 4 (Jordannormalform für nilpotente Matrizen):

Sei $A \in K^{n \times n}$ nilpotent. Dann gibt es eine Partition (Summenzerlegung) $n = \sum_{i=1}^k d_i$ mit eindeutig bestimmenten $k, d_i \in \mathbb{N}$ mit $d_1 \geq d_2 \geq \ldots \geq d_k \geq 1$, so dass A ähnlich ist zu der Blockdiagonalmatrix

$$\tilde{A} = \begin{pmatrix} J_{d_1}(0) & & & 0 \\ & J_{d_2}(0) & & \\ & & \ddots & \\ 0 & & & J_{d_k}(0) \end{pmatrix}$$

Beweis: Bereits bekannt:

$$K^n = V = \bigoplus_{i=1}^k U_i$$

mit ϕ -zyklischem U_i zu $\phi = \phi_A$, wobei für $d_i := \dim U_i$ ohne Beschränkung der Allgemeinheit $d_1 \geq d_2 \geq \ldots \geq d_k$ und $n = \sum_{i=1}^k d_i$ gilt. Ferner ist bezüglich der Basis $B_i = \{u_i, \phi(u_i), \ldots, \phi^{d-1}(u_i)\}$

$$D_{B_iB_i}\left(\phi|_{U_i}\right) = J_{d_i}(0)$$

Dies zeigt die Existenz von \tilde{A} .

Eindeutigkeit: Zu zeigen: Für $d \in \mathbb{N}$ ist die Anzahl m_d von Jordankästchen $J_d(0)$ der Länge d eindeutig durch A bestimmt.

Nach der Rangformel (→Übung!) gilt:

$$r_e := \operatorname{rg}(A^e)$$

$$= \operatorname{rg}(\tilde{A}^e)$$

$$= \sum_{i=1}^k \underbrace{\operatorname{rg}(J_{d_i}(0)^e)}_{(\alpha_i - e)}$$

$$= \sum_{d=e}^n (d - e) \cdot m_d \qquad (e = 0, 1, \dots, n - 1)$$

Dies ist ein lineares Gleichungssystem:

$$\underbrace{\begin{pmatrix} 1 & 2 & \cdots & n \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 2 \\ 0 & \cdots & 0 & 1 \end{pmatrix}}_{=M} \cdot \begin{pmatrix} m_1 \\ \vdots \\ \vdots \\ m_n \end{pmatrix} = \begin{pmatrix} r_0 \\ \vdots \\ \vdots \\ r_{n-1} \end{pmatrix}$$

Es ist det(M) = 1, insbesondere ist M invertierbar, so dass (m_1, \ldots, m_n) eindeutig durch A bestimmt ist.

Beachte:

$$M^{-1} = \begin{pmatrix} 1 & -2 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & 1 \\ \vdots & & & \ddots & \ddots & -2 \\ 0 & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Insbesondere gilt:

$$m_d = r_{d-1} - 2r_d + r_{d+1} (14.1)$$

Definition: Für $\lambda \in K$ und $d \in \mathbb{N}$ heißt die Matrix

$$J_d(\lambda) = \begin{pmatrix} \lambda & & & 0 \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ 0 & & 1 & \lambda \end{pmatrix} = J_d(0) + \lambda \cdot I_d$$

ein Jordankästchen der Länge d zum Eigenwert λ .

Satz 5 (Jordannormalform):

Sei V ein K-Vektorraum, dim $V<\infty$ und $\phi\in \mathrm{End}(V)$, so dass das charakteristische Polynom g_ϕ in Linearfaktoren zerfällt, d.h.

$$g_{\phi}(T) = \prod_{\lambda \in \text{Spec}(\phi)} (T - \lambda)^{\mu_a(\lambda)}$$

Dabei sei $\operatorname{Spec}(\phi) = \{\lambda_1, \lambda_2, \dots, \lambda_l\}$ für $l := |\operatorname{Spec}(\phi)|$.

Dann gibt es zu jedem λ_i eindeutig bestimmte natürliche Zahlen k_i und $d_{1,i} \geq d_{2,i} \geq \ldots \geq d_{k_i,i} \geq 1$, sodass bezüglich einer geeigneten Basis B von V die Darstellungsmatrix von ϕ die folgende Blockdiagonalform hat:

$$D_{BB}(\phi) = \begin{pmatrix} D_1 & 0 \\ & \ddots & \\ 0 & D_l \end{pmatrix} \text{ mit } D_i := \begin{pmatrix} J_{d_{1,i}}(\lambda_i) & 0 \\ & \ddots & \\ 0 & J_{d_{k_i,i}}(\lambda_i) \end{pmatrix}$$

Dabei ist $D_i = D_{B_iB_i} \left(\phi |_{H(\phi,\lambda_i)} \right)$ die Darstellungsmatrix der Einschränkung von ϕ auf den Hauptraum $H(\phi,\lambda_i)$ bezüglich einer Basis B_i dieses Raumes.

Bezeichnet $m_d(\lambda)$ die Anzahl der Jordankästchen der Länge d zum Eigenwert λ , so gilt für alle $d \in \mathbb{N}$:

$$m_d(\lambda) = \operatorname{rg}\left((\phi - \lambda \operatorname{id})^{d-1}\right) - 2\operatorname{rg}\left((\phi - \lambda \operatorname{id})^d\right) + \operatorname{rg}\left((\phi - \lambda \operatorname{id})^{d+1}\right)$$

Diese Jordannormalform $D_{BB}(\phi) =: JNF(\phi)$ ist, bis auf die Reihenfolge der Jordanblöcke D_i , eindeutig bestimmt.

Beweis: Wegen der Voraussetzung an g_{ϕ} ist $V = \bigoplus_{\lambda} H(\phi, \lambda)$ mit $H(\phi, \lambda) = \text{Kern} ((\phi - \lambda \text{id})^{\mu_a(\lambda)})$. Es ist bereits bekannt, dass

$$\Psi_i := (\phi - \lambda \operatorname{id})|_{H(\phi, \lambda_i)}$$

nilpotent ist.

Nach Satz 4 existiert also eine Basis B_i von $H(\phi, \lambda_i)$ mit

$$D_{B_i B_i}(\Psi_i) = \begin{pmatrix} J_{d_{1,i}}(0) & & \\ & \ddots & \\ & & J_{d_{k_i,i}}(0) \end{pmatrix}$$

Also gilt für $\phi|_{H(\phi,\lambda_i)} = \Psi_i + \lambda_i \cdot id$

$$D_{B_iB_i}(\phi|_H(\phi,\lambda_i)) = D_{B_iB_i}(\Psi_i) + \lambda_i I_{\mu_a(\lambda_i)} = D_i$$

(wegen $J_d(\lambda) = J_d(0) + \lambda I_d$)

Nehme also Basis für $V: B := B_1 \cup B_2 \cup \ldots \cup B_l$ so dass $D_{BB}(\phi)$ die gewünschte Form hat. Die Formel für $m_d(\lambda)$ kennen wir schon (Gleichung (14.1)), ebenso die Eindeutigkeit aus dem Spezialfall nilpotenter Matrizen.

(Beachte hierbei: $(\phi - \lambda \operatorname{id})^d \big|_{H(\phi,\lambda')}$ ist invertierbar für $\lambda \neq \lambda'$.)

Korollar:

(1) Die Länge des Jordanblockes D_i zum Eigenwert λ_i ist

$$|B_i| = \dim (H(\phi, \lambda_i)) = \mu_a(\lambda_i)$$

(2) Die Anzahl der Jordankästchen zum Eigenwert λ_i ist

$$k_i = \dim E_{\lambda_i} = \mu_g(\lambda_i)$$
 (Dimension des Eigenraumes)

(3) Die Vielfachheit e_i eines Linearfaktors $T - \lambda_i$ im Minimalpolynom

$$f_{\phi}(T) = \prod_{i=1}^{e} (T - \lambda_i)^{e_i}$$

ist die größte Länge der Jordankästchen zum Eigenwert λ_i , also

$$e_i = d_{1,i} = \min \left\{ e \ge 0 \mid \operatorname{rg} ((\phi - \lambda_i \operatorname{id})^e) = \operatorname{rg} ((\phi - \lambda_i \operatorname{id})^{e+1}) \right\}$$

Beweis: (1) Bekannt!

(2) **Erinnere:** Mit $\Psi_{\lambda} := (\phi - \lambda \operatorname{id})|_{H(\phi,\lambda)}$ gilt:

$$E_{\lambda} = \operatorname{Kern} \Psi_{\lambda} \leq \operatorname{Kern} \Psi_{\lambda}^{\mu_{a}(\lambda)} = H(\phi, \lambda)$$

14. Normalformen von Endomorphismen

$$\operatorname{mit} \operatorname{JNF}(\Psi_{\lambda}) = \begin{pmatrix} J_{d_1}(0) & & \\ & \ddots & \\ & & J_{d_k}(0) \end{pmatrix}$$

Wegen $\operatorname{rg}(J_d(0)) = d - 1 \operatorname{folgt}$

$$\operatorname{rg}(\Psi_{\lambda}) = (d_1 + \ldots + d_k) - k = \dim H(\phi - \lambda) - k$$

also

$$\dim E_{\lambda} = \dim \operatorname{Kern} \Psi_{\lambda} = \dim H(\phi, \lambda) - \operatorname{rg}(\Psi_{\lambda}) = k$$

(3) Wir haben

$$JNF(\phi) = \begin{pmatrix} D_1 & & \\ & \ddots & \\ & & D_l \end{pmatrix}$$

Betrachte annullierende Polynome von ϕ (also von JNF (ϕ)) der Form

$$f(T) = \prod_{i=1}^{l} (T - \lambda_i)^{f_i}$$

Setze $JNF(\phi)$ ein:

$$0 = f(\mathrm{JNF}(\phi)) = \begin{pmatrix} f(D_1) & & \\ & \ddots & \\ & & f(D_l) \end{pmatrix} \Longleftrightarrow \forall j : \prod_{i=1}^{l} (D_j - \lambda_i I)^{f_i} = 0$$

Wegen $D_j - \lambda_i I$ invertierbar für $i \neq j$ besagt dies:

$$\iff \forall j: \ (\underbrace{D_j - \lambda_j I}_{\text{JNF}(\Psi_{\lambda_j})})^{f_j} = 0$$

Also wegen $\left[\operatorname{rg}\left(J_d(0)^f\right)=0\Longleftrightarrow f\geq d\right]$ genau dann, wenn für alle j gilt:

$$f_i \ge d_{1,i} (\ge d_{2,i} \ge \dots)$$

also überall min $f_j = e_j = d_{1,j}$.