

Synthesis & Constraints

Vasudev Murthy

Synthesis Process

- Synthesis is a 3 step process
 - The first where the code gets translated
 - The second where the translated code gets bound by the library
 - The third where the netlist is optimized

Synthesis Process

Translate:

- A process where RTL is converted to equation format
- A basic boolean optimization is carried out to reduce the literals
- An completely independent code is made tool dependent

Map

- The obtained equations from step above are directly mapped to the technology library
- Hence the name technology / library binding
- Now design is bound to particular tool as well as technology

Synthesis Process

Optimize

- The design obtained after map is now optimized according to the specifications
- Various timing algorithms and architectures are involved in making the design meeting the spec
- Most of the times the design is primarily optimized to meet timing specifications

Design Objects

Design

- o It corresponds to the circuit description that performs some logical function
- o The design may be stand-alone or may include other sub-designs

Port

- These are the primary inputs, outputs or inouts of the design
- o In other words the interfaces of a design

Cell

o It is the instantiated name of the sub-design in the design

Design Objects

Reference

o This is the definition of the original design to which the cell or instance refers

□ Pin

o It corresponds to the inputs, outputs or IO 's of the cells in the design

□ Net

• The wires that hook up the design together by connecting ports to pins and/or pins to each other

Design Objects

Clock

• The port or pin through which the clock signal propagates in the design

Timing Paths

- Synthesis process can be considered as a 'timing' based selection of gates to meet a particular function
- 'Timing' refers to the time taken by data to travel from one point to the other
- □ The point at which data is expected to commence / originate is considered a 'start point'
 - Input Port
 - Clock Pin of sequential elements
- □ The location at which data terminates is considered as the stop point
 - Output Port
 - Data Pin of sequential elements

Propagation Delay

- Delay of a cell depends on many factors such as
 - Operating Conditions
 - Functionality of the cell
 - Type of Inputs
- ■Based on the factors above a cell can propagate data either quickly or slowly
- Depending on the kind of analysis being done at any point of time one needs to consider either minimum delays or maximum delays

Violations

- When the setup and hold time requirements are not met the design is said to fail the timing specifications
- □This can happen due to various reasons such as

	Causes for setup violations	Remedies
Data	Slow	Fast
Launch Clock	Slow	Fast
Capture Clock	Fast	Slow

- Contamination delay t_{CD} is the lower bound between invalid inputs and invalid outputs
- □ Propagation delay t_{PD} is the upper bound between new valid inputs and new valid outputs

