- Introduction à la complexité
 - en place mémoire utilisée
 - en temps de calcul

Complexité en place mémoire utilisée

En simplifiant

- pour un booléen, caractère, nombre borné : 1
- pour un tableau ou un ensemble :

nombre d'éléments x taille d'un élément

- Introduction à la complexité
 - en temps de calcul
 - en place utilisée

Complexité en temps de calcul

pour simplifier

La complexité **théorique** d'un algorithme est le nombre d'opérations élémentaires exécutées par l'algorithme en fonction de la taille de la donnée et dans le plus mauvais des cas.

Opération élémentaire

Opération dont le temps d'exécution est borné par une constante (ce temps est indépendant de la donnée)

Exemples

- Affectation de variables simples
- Accès à un élément de tableau, à un attribut
- Opérations booléennes, comparaisons
- Opérations arithmétiques ordinaires

Exemple d'un calcul de moyenne

```
public static double moyenne(double a, double b){
    double somme = a+b;
    return somme/2;
}
```

Evaluation de la complexité : constante

- 4 opérations élémentaires
 1 affectation, 2 opérations arithmétiques, 1 opération "retourner"
- 4 emplacements mémoire de la taille d'un double

Exemple d'une recherche dans un tableau de taille n

Evaluation de la complexité : linéaire par rapport à n

- opérations élémentaires : au plus 5n+1
 < n affectations de valeurs à i, < n comparaisons de i avec tab.length,
 < n incrémentations de i, < n accès à tab, < n comparaisons,
 1 opération "retourner"
- memplacements mémoire de la taille d'un int : n+2 et 1 booléen

Exemple de recherche dans un tableau trié de taille n (par dichotomie)

```
public static boolean rechercheDicho(int [] t, int v) {
  boolean stop=false, res=false;
  int indi=0, indf=t.length-1; int indm, valm;
  while ( stop == false ) {
     if ( indi > indf ) stop = true;
     else {
           indm = (indi+indf)/2;
           valm = t[indm];
           if (valm == v) {stop = true; res = true; } // on a trouvé!
           else
            if ( v < valm ) indf = indm-1; // chercher à gauche
            else indi = indm+1; } } // chercher à droite
   return res;
```

Evaluation de la complexité : de l'ordre de log₂(n)

Exemple de recherche dans un tableau **trié** de taille n (par dichotomie)

Recherche dans [2, 5, 8, 9, 11, 16, 21, 32]

$$n = 2^h$$
 $h = \log_2(n)$

Dans un arbre binaire complet de hauteur h nombre de nœuds = $floor(2^{h+1}-1)$

On descend dans le pire des cas sur une branche de la profondeur de l'arbre

Evaluation de la complexité : de l'ordre de log₂(n)

Exemple du tri par sélection d'un tableau de taille n

```
public static void triSelection(int []arr){
 int indiceDuMin = 0;
 for(int i = 0; i < arr.length; i++) {
    indiceDuMin = i;
    for(int j = i + 1; j < arr.length; j++)
       if(arr[j] < arr[indiceDuMin])</pre>
         indiceDuMin = j;
    int temp = arr[i]; arr[i] = arr[indiceDuMin]; arr[indiceDuMin] = temp;
Evaluation de la complexité : de l'ordre de n<sup>2</sup>, quadratique par rapport à n
Examen des comparaisons :
i=0 : n-1 comparaisons de arr[j] et de arr[indiceDuMin]
i=1: n-2 comparaisons de arr[j] et de arr[indiceDuMin]
..... environ n(n+1)/2 comparaisons
```


- Des courbes, on tire que ce qui est important pour l'évaluation et la comparaison des algorithmes est la tendance quand la taille de la donnée augmente
- Pour g(n), O(g(n)) est l'ensemble des fonctions f(n) telles qu'il existe un réel c > 0 et un entier k > 0 tel que pour tout n > k, $f(n) < c \times g(n)$.

- - **7** Recherche séquentielle **O**(n)
 - **Recherche dichotomique** $O(log_2(n))$
 - 7 Tri par sélection O(n²)
- On peut faire aussi des analyses
 - en moyenne (ex. coût moyen d'une recherche)
 - amorties (ex. coût de l'ajout de n éléments)