Travaux dirigées(Corrigées): Techniques Multimédias

Outils de traitement d'images Proposées par : Houcemeddine HERMASSI

Exercice 1 : (morphologie de l'image)

Différents prétraitements ont été appliqués à l'image I_1 . Les résultats de ces traitements sont montrés sur la Figure 2 tandis que les histogrammes sont donnés dans la Figure 3 mais dans le désordre.

- 1) Associez les histogrammes de la Figure 3 aux images de la Figure 2.
- 2) En vous aidant des histogrammes associés, déterminez quel prétraitement a permis de passer de l'image I_1 à chacune des images de la Figure 1.

Figure 1: image I_1 d'une roue d'engrenage et son histogramme H_1 .

Figure 2 : Images I_2 à I_{11} en sortie de différents prétraitements de l'image I_1 .

Figure 3 : dans le désordre, histogrammes H_2 à H_{11} des images I_2 à I_{10} .

Exercice 2 : (Filtrage)

L'image de la Figure 4 est une image à niveaux de gris de taille 10×10 pixels dont les valeurs des niveaux de gris sont codées sur <u>4 bits</u>. Cette image représente un cercle sur un fond sombre.

Figure 4 : image I₁₁ d'un cercle et valeurs des pixels de l'image en fonction de leurs coordonnées.

Un bruit de type impulsionnel est ajouté à cette image tel que : $I_{11}(1,1)=I_{11}(3,6)=I_{11}(4,4)=I_{11}(4,8)=0$ et $I_{11}(5,1)=I_{11}(5,5)=I_{11}(6,3)=I_{11}(8,8)=15$.

Figure 5 : image I_{12} après ajout d'un bruit impulsionnel sur l'image I_{11} .

- 1) Quel est le paramètre du bruit ?
- 2) Appliquer un <u>filtre moyenneur</u> de taille 3×3 sur les pixels de I_{12} de coordonnées (1,1), (3,6), (4,4), (4,8), (5,1), (5,5), (6,3), (8,8), (1,4), (1,8), (8,2), (8,5). Quelle est l'erreur quadratique moyenne sur ces pixels ?

Exemple filtrage de pixel (1,1) avec un filtre moyenneur

Pixel (1,1) de voisinage
$$3x3 = \begin{bmatrix} 6 & 5 & 4 \\ 5 & \mathbf{0} & 3 \\ 4 & 3 & 2 \end{bmatrix}$$

Superposé au filtre moyenneur

1	1	1
1	1	1
1	1	1

Nouvelle valeur du pixel (1,1)=[1/9 (1x6+1x5+1x4+1x5+1x3+1x4+1x3+1x2+0x1)]=4

6	5	4
5	4 (nouvelle valeur après correction)	3
4	3	2

3) Appliquer <u>un filtre médian</u> de taille 3×3 sur les pixels de I_{12} de coordonnées (1,1), (6,3), (4,4), (8,4), (1,5), (5,5), (3,6), (8,8), (4,1), (8,1), (2,8), (5,8). Quelle est l'erreur quadratique moyenne sur ces pixels

Exemple filtrage médiane du pixel (6,3) avec filtre médianede taille 3 x3

Pixel (6,3) de voisinage 3x3=

14	12	8
1	14	12
2	1	14

La liste des valeurs de l'image référence : 1,12,14 → valeur médiane 12

Exercice 3 : (binarisation)

L'image de la Figure 6 est une image à niveaux de gris de taille 10×10 pixels dont les valeurs des niveaux de gris sont codées sur <u>4 bits</u>. Cette image représente une forme rectangulaire et une forme en losange sur un fond non uniforme.

0	1	2	3.	4	5.	6	7	8	
8	9	8	6	8	9	8	9	8	9
7	8	7	4	7	8	10	8	15	В
8	6	4	5	4	9	8	9	8	7
7	4	5	2	3	4	7	8	10	3
8	9	4	3	4	6	8	6	8	9
7	8	7	4	9	8	7	8	6	8
8	0	8	6	8	12	11	12	13	7
7	8	7	8	8	13	12	10	12	8
8	5	8	0	8	12	14	12	11	9
5	8	6	8	7	8	9	8	7	8

Figure 6 : image /₁₃ d'un rectangle et d'un losange et valeurs des pixels de l'image en fonction de leurs coordonnées.

1) Tracer l'histogramme de l'image?

2) Choisir les seuils optimaux d'après l'histogramme pour binariser l'image et retrouver les deux formes recherchées.

Calcul de seuils par la méthode d'Otsu (2-3)

L'histogramme de l'image se compose de deux zones différentes [0-7] et [8-15], donc deux seuils à déterminer S1 relatif à la première zone et S2 relatif à la deuxième zone.

niveaux de																
gris	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Nombre	2	0	1	2	8	3	8	14	36	10	3	2	6	2	1	1

 $\label{eq:moy(S1)=[(2x0)+(0x1)+(2x1)+(2x3)+(4x8)+(5x3)+(6x8)+(14x7)+(36x8)+(9x10)]/84=6.87} \\ Moy(S2)=[(36x8)+(10x9)+(3x10)+(2x11)+(6x12)+(2x13)+(1x14)+(1x15)]/61=8.57 \\ Cad, seuil(S1)=5.28 \ et \ seuil(S2)=8.57 \\$

Binarisation

S1: Si x >= 6.87 & x<=7---- X \leftarrow 255 et si x>=0 & x <=6.87 then x \leftarrow 0

S2: Si x >= 8.57 then X \leftarrow 255 et si x> 7 & x <= 8.57 then x \leftarrow 0

Matrice résultante

0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	0
0	1	1	1	1	1	0	0	0	0
0	0	1	1	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	0
0	0	0	0	0	1	1	1	1	0
0	0	0	0	0	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0

3) Détaillez et expliquez le plus précisément et le plus rigoureusement possible les traitements à réaliser pour obtenir l'image résultat I_{14} de la Figure 7. Pour illustrer chacun de ces traitements, il est demandé de représenter l'image résultat correspondante et de donner les éventuels filtres, opérateurs, éléments structurants, seuils,...utilisés.

Figure 7 : image I_{14} idéale du rectangle et losange recherchés et valeurs des pixels de l'image en fonction de leurs coordonnées.

Exercice 4:

L'image de la Figure 8 est une image à niveaux de gris de taille 8×8 pixels dont les valeurs des niveaux de gris sont codées sur <u>4 bits</u>. Cette image représente deux formes en croix.

Figure 8 : image I₁₅ de deux croix et valeurs des pixels de l'image en fonction de leurs coordonnées.

Figure 9 : image I_{16} idéale des deux croix recherchées et valeurs des pixels de l'image en fonction de leurs coordonnées.

1) Sur l'image I_{15} de la Figure 8, on distingue deux croix. On souhaite appliquer une série de prétraitements afin d'obtenir l'image I_{16} de la Figure 9. En utilisant des opérations de binarisation, des filtrages morphologiques et des opérateurs logiques, expliquer le plus précisément possible la chaîne de traitement à mettre en oeuvre afin d'obtenir l'image résultat I_{16} de la Figure 9. Pour illustrer chacun de ces traitements, il est demandé de représenter l'image résultat correspondante et de donner les opérateurs, éléments structurants, et seuils utilisés.

On applique le même process de l'exercice 3 : 1-détermination de l'histogramme puis 2-détermination des seuils d'otsu 3- affection binaire des bits.

Exercice 5 : (érosion, dilatation, squelettisation)

L'image couleur I_{17} de la Figure 10 représente la plaque d'immatriculation d'un véhicule automobile. Afin de lire le contenu de cette plaque, on souhaite analyser cette image. Pour cela, une première opération est effectuée à partir de l'image I_{17} de la Figure 10. Les résultats sont représentés sur les images de la Figure 11 ainsi que leurs histogrammes respectifs.

Figure 10: image I₁₇ d'une plaque d'immatriculation.

Figure 11 : images résultats de prétraitements de l'image l_{17} et histogrammes associés.

1) Quel prétraitement a permis d'obtenir les images de la Figure 11 ? Expliquer à quelles zones de l'image correspondent les différents pics de chacun des histogrammes respectifs. Dans le cadre de la lecture de la plaque d'immatriculation, expliquer pourquoi la dernière image, notée par la suite *I*₁₈, de la Figure 11 est la plus adéquate à exploiter.

Conversion en niveau de gris

La première est obtenue par une conversion classique, G=(R+V+B)/3

La deuxième est obtenue selon la recommandation 709, qui concerne les couleurs « vraies » ou naturelles :

Formule : *Gris = 0.2125 Rouge + 0.7154 Vert + 0.0721 Bleu*

La troisième est obtenue selon la recommandation 601 pour les couleurs non-linéaires, c'està-dire avec correction du gamma (image vue à partir d'un écran vidéo) :

Gris = 0.299 Rouge + 0.587 Vert + 0.114 Bleu

8454WWN77	8454WWN77	8454WWN77
8454WWN77	8454WWN77	8454WWN77

Figure 12 : images résultats de prétraitements de l'image I_{18} .

2) Différents traitements sont ensuite appliqués à partir de l'image I_{18} de la Figure 11. Les résultats de ces traitements sont représentés sur les images de la Figure 12. Déterminer le plus précisément possible les traitements effectués sur les images de la Figure 12 en justifiant, pour chaque image, votre réponse.

Image \rightarrow inversion d'histogramme \rightarrow érosion \rightarrow squelettisation