Student: Huseyin Kerem Mican Instructor: Taylan Sengul Course: Linear Algebra Assignment: Section 4.6 Homework

1. Assume that the matrix A is row equivalent to B. Without calculations, list rank A and dim Nul A. Then find bases for Col A. Row A. and Nul A.

$$A = \begin{bmatrix} 1 & -4 & 8 & -3 \\ -1 & 2 & -3 & -1 \\ 6 & -8 & 8 & 14 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -2 & 5 \\ 0 & -2 & 5 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A basis for Col A is
$$\left\{ \begin{bmatrix} 1\\-1\\6 \end{bmatrix}, \begin{bmatrix} -4\\2\\-8 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

A basis for Row A is
$$\left\{ \begin{bmatrix} 1\\0\\-2\\5 \end{bmatrix}, \begin{bmatrix} 0\\2\\-5\\4 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

A basis for Nul A is
$$\left\{ \begin{bmatrix} 2 \\ \frac{5}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

2. Assume that the matrix A is row equivalent to B. Without calculations, list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A.

$$A = \begin{bmatrix} 1 & -2 & -2 & 1 & 2 \\ -2 & 4 & 6 & 0 & -14 \\ -3 & 6 & 2 & -7 & 6 \\ 2 & -4 & -10 & -4 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & -2 & -2 & 1 & 2 \\ 0 & 0 & 1 & 1 & -3 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

A basis for Col A is
$$\left\{ \begin{bmatrix} 1\\-2\\-3\\2 \end{bmatrix}, \begin{bmatrix} -2\\6\\2\\-10 \end{bmatrix}, \begin{bmatrix} 2\\-14\\6\\0 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

A basis for Row A is
$$\left\{ \begin{bmatrix} 1\\-2\\0\\3\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1\\1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

A basis for Nul A is
$$\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -3 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

3. If a 7×6 matrix A has rank 2, find dim Nul A, dim Row A, and rank A^T .

4. Suppose a 7×9 matrix A has six pivot columns. What is dim Nul A? Is Col A = \mathbb{R}^6 ? Why or why not?

Is Col A = \mathbb{R}^6 ? Why or why not?

- \bigcirc **A.** No, because Col A is a subspace of \mathbb{R}^9 .
- **B.** No, because Col A is a subspace of \mathbb{R}^7 .
- Oc. Yes, because the number of pivot positions in A is 6.
- D. Yes, because dim Col A = rank A = 6.

5.	If the null space of a 9 × 12 matrix A is 6-dimensional, what is the dimension of the column space of A?	
	dim Co	ol A =6 (Simplify your answer.)
6.	If the null space of a 3×9 matrix A is 7-dimensional, what is the dimension of the row space of A?	
	dim Ro	ow A =2
7.	If A is a 6×5 matrix, what is the largest possible rank of A? If A is a 5×6 matrix, what is the largest possible rank of A? Explain your answers.	
	Select the correct choice below and fill in the answer box(es) to complete your choice.	
	A .	The rank of A is equal to the number of non-pivot columns in A. Since there are more rows than columns in a 6×5 matrix, the rank of a 6×5 matrix must be equal to Since there are 5 rows in a 5×6 matrix, there are a maximum of 5 pivot positions in A. Thus, there is 1 non-pivot column. Therefore, the largest possible rank of a 5×6 matrix is
	∛ B.	The rank of A is equal to the number of pivot positions in A. Since there are only 5 columns in a 6×5 matrix, and there are only 5 rows in a 5×6 matrix, there can be at most
	○ c .	The rank of A is equal to the number of columns of A. Since there are 5 columns in a 6×5 matrix, the largest possible rank of a 6×5 matrix is . Since there are 6
		columns in a 5×6 matrix, the largest possible rank of a 5×6 matrix is
8.	Is it possible that all solutions of a homogeneous system of fourteen linear equations in seventeen variables are multiples of one fixed nonzero solution? Discuss.	
	Consid	ler the system as $A\mathbf{x} = 0$, where A is a 14×17 matrix. Choose the correct answer below.
	O A.	No. Since A has 14 pivot positions, rank $A = 14$. By the Rank Theorem, dim Nul $A = 14$ – rank $A = 0$. Since Nul $A = 0$, it is impossible to find a single vector in Nul A that spans Nul A.
	○ В.	Yes. Since A has at most 14 pivot positions, rank $A \le 14$. By the Rank Theorem, dim Nul $A = 17$ – rank $A \ge 3$. Since there is at least one free variable in the system, all solutions are multiples of one fixed nonzero solution.
	O C.	Yes. Since A has 14 pivot positions, rank $A = 14$. By the Rank Theorem, dim Nul $A = 14 - rank$ $A = 0$. Thus, all solutions are multiples of one fixed nonzero solution.
	ℰ D.	No. Since A has at most 14 pivot positions, rank $A \le 14$. By the Rank Theorem, dim Nul $A = 17$ – rank $A \ge 3$. Thus, it is impossible to find a single vector in Nul A that spans Nul A.