"分子模拟的理论与算法"课程作业平台

"Molecular Simulation: Theory and Algorithms" Coursework Platform

使用指南

User Guide

平台登录 Accessing the Platform

登录网址 URL

https://hpc.westlake.edu.cn:7003/class-resource

用户账号 Account 用户密码 Password 西湖大学学/工号 Westlake University Identity and Access Management Platform UID 西湖大学学/工号密码 Westlake University Identity and Access Management Platform Password

登入平台后 when logged in,

- 1. 点击"分子模拟的理论与算法"课程, click on "分子模拟的理论与算法";
- 2. 点击 "打开环境" click on "打开环境";

- 3. 记录端口密码 copy the password;
- 4. 点击"网页访问" click on "网页访问"。

5. 输入端口密码并进入作业环境 enter the password and login the coursework environment。

如果用户登录遇到问题,请联系课程助教。

Consult your teaching assistant for login issues.

平台简介 Introducing the Platform

课程作业主要依托 JupyterLab 平台。界面左侧为文件管理器 (橙色), 右侧为工作区 (蓝色)。 The left part (orange region) is the File Explorer and the right part (blue region) is the workspace。

在文件管理器中

- 'class_data' 文件夹包含一些课程资料以及作业模板, 学员仅拥有只读权限 (学员不可直接编辑该文件夹中的文件/编辑后无法保存);
 - 'class_data/assignments' 文件夹包含每次课程作业的模板文件, 学员可将每次作业的对应模板复制到'data'文件夹下以进行编辑;
 - 'class_data/mdpy' 文件夹包含 MDPy 程序的源代码, 是基于 Python 实现的分子动力学模拟基础代码。学员可将该文件夹复制到'data'文件夹下以进行调用;
 - 'class_data/md_demo.ipynb' 文件是利用 MDPy 实现一个简单分子动力学模拟的 JupyterLab 示例 (JupyterLab 使用说明见 参考资料 References), 学员可自主运行各代码模块以查看模拟示例。
- 'data' 文件夹为学员的作业区, 学员拥有读写权限。

此外, 其他文件路径下的文件或数据均非持久化存储。

在退出平台或关闭端口之后,除了位于'data'和'class_data'下的其他数据或文件将在再次登陆时丢失。在退出平台或关闭端口之后,除了位于'data'和'class_data'下的其他数据或文件将在再次登陆时丢失。在退出平台或关闭端口之后,除了位于'data'和'class_data'下的其他数据或文件将在再次登陆时丢失。

学员应全程都在'data'文件夹下完成和测试作业代码。

以安全合理的方式保存研究数据是科学研究的基本技能, 我们不对学员因非持久化储存所导致的数据丢失负责。

作业准备 Preparing for the assignments

所有课程作业的内容围绕分子动力学模拟的算法实现开展。平台提供了用于简单模型体系分子动力学模拟的 MDPy 程序, 尽管学员无需了解其实现细节, 在每次作业中, 学员将在给出的作业样例的指导下利用 MDPy 的预设接口实现并测试分子动力学模拟算法。

以第一次作业为例, 学员应当进行如下准备工作:

- 1. 将 'class_data/mdpy' 文件夹整体复制到 'data' 文件夹下;
- 2. 将 'class_data/assignments' 文件夹下的当次作业的 '1_integrators.ipynb' 文件复制到 'data' 文件夹下;
- 3. 根据 'data/1_integrators.ipynb' 中的指示, 在其中完成第一次作业。其中 **1-3** 为作业内容介绍及 MDPY 程序说明, **4** 为作业示例。学员应在 **5. Your Answer** 部分根据作业要求完成作业, 具体包括 **5.1** 预备实现的积分器及其公式推导 (Markdown 语法)、**5.2** Python 代码实现及 **5.3** 积分器使用测试。学员应在代码中提供清晰的注释以说明实现细节。

作业提交 Submitting for the assignments

学员完成作业后,将作业文件 (例如 '1_integrators.ipynb') 保存在 'data' 中即可, 主讲教师能够查看学员账户中的 'data' 文件夹下的全部内容。

注意事项 Important notes

- 1. 如果学员保存了同一次作业的多个副本, 主讲教师将仅查看编辑时间最晚的作业副本。
- 2. 如果学员在当次作业的截止时间后修改了作业文件,则需要通知主讲教师,否则我们将仅查看截止时间前的作业文件。
- 3. 如果学员的实现涉及对 MDPy 源代码的修改,则需要给出详细的修改位置及原因,否则将被视为实现错误。
- 4. 如果学员在完成作业的过程中受益于他人的指导讨论,则需要在作业中明确致谢,这不会对作业评价产生负面影响。
- 5. 禁止共享账号或代替他人完成作业 Account sharing or proxy submissions are strictly prohibited。
- 6. 截止时间前请务必确认所有待提交作业内容已置于'data'目录下。

参考资料 References

- JupyterLab 使用指南
- JupyterLab 使用示例
- Markdown 教程, 或在 Jupyter Notebook 界面中点击 'Help' 下拉菜单中的 'Markdown Reference'
- SimpleTex, 可帮助将图片或照片中的公式转换为 Markdown 语法。
- Python 基础教程