Introduction to Machine Learning

Giovanni Colavizza

Text Mining Amsterdam University College

February 5, 2021

Announcements

• TBD.

Overview

- Machine Learning
- 2 Linear Regression
- 3 Logistic Regression
- 4 Extras

Machine Learning

What is Machine Learning?

- What does it mean to learn? Given historical data, we are interested in **predicting** the unseen future.
- What does it mean to learn? Given unstructured data, we are interested in uncovering structure (patterns).
- What does it mean to learn? Given an environment and a goal, we are interested in acting to reach the goal.
- Memorization is not learning, generalization is what matters.
- We usually achieve this using an inductive approach: by seeing known examples (train dataset), we attempt to distill the signal and filter out the noise, in order to predict future examples. We use a left-out slice of the data (test dataset) to simulate the future.

Types of ML

- Supervised learning: we are given a labelled dataset $\{X,Y\}$, with labels for every data point. Our goal is to learn to **predict** labels for future data points. Examples: regression, classification.
- **Unsupervised learning**: we are given an unlabelled dataset $\{X\}$. Our goal is to learn to **structure** data points in some meaningful way. Examples: clustering, distribution fitting.
- Reinforcement learning: we are given an environment and some
 agents acting in it, which have access to a notion of reward. Agents
 seek to take actions in the environment, maximizing the reward.
 Usually, actions (or sequences thereof) are linked to rewards.
- More: Semi-supervised, Multi-task, Transfer, etc.

Reminder: Components of a probabilistic ML classifier

- A dataset and its feature representation.
- A classification function, or model. This model specifies a relationship between inputs and outputs, using parameters (to be learned) and hyperparameters (given by us).
- A **loss function** (also called objective or cost function): something we want to minimize as a proxy for "learning". This function encapsulates what it means to learn for us.
- An algorithm for **optimization**: a way to find good model parameters which minimize the loss function.

Example: Perceptron

- The very beginnings (Rosenblatt 1958), still at the core for the neural model of learning.
- We have a **dataset** $\{X, Y\}$, so that $\mathbf{x} = \langle x_1, x_2, \dots, x_d \rangle, y \in \{-1, +1\}, \ \forall (\mathbf{x}, y) \in \{X, Y\}$. We thus have a binary classification problem.
- The **perceptron model** is defined by a linear combination of weights $\langle w_1, w_2, \dots, w_d \rangle$ and features, plus an optional bias term:

$$a = \left[\sum_{d=1}^{D} w_d x_d\right] + b$$

When b = 0, the prediction is sign(a) (positive or negative).
 Conversely, the bias shifts the decision threshold. In any case, sign is our classification function.

Example: Perceptron loss

• We can use the so-called **0/1 loss**.

$$l^{0/1} = \min_{\boldsymbol{w},b} \sum_{n} \mathbf{1}[y_n(\boldsymbol{w} \cdot \boldsymbol{x}_n + b) < 0]$$

- Equivalently, to simplify: $l^{0/1} = \min \sum_{n} \mathbf{1}[y_n \hat{y} < 0]$
- When the data are linearly separable, the minimum can be zero.
 Why?

Example: Perceptron optimization

• How does the perceptron learn?

$$a = \left[\sum_{d=1}^{D} w_d x_d\right] + b$$

• **Optimization**: it is an online (1 data point at the time) and error-driven algorithm (we want to make no errors). Given a datapoint in the train dataset, if the perceptron's prediction is correct, do nothing, else:

$$w_d^t \leftarrow w_d^{t-1} + yx_d$$
$$b^t \leftarrow b^{t-1} + y$$

Example: Perceptron

Exercise: Training a perceptron

Your dataset is the following:

$$\{(2,1;-1),(1,2;+1),(3,1;-1),(3,2;-1),(1,3;+1),(2,3;+1)\}$$
. Assume we use a perceptron without bias term. Also assume we start with random weights: $w_1^{(0)}=1/2,w_2^{(0)}=-1/2.$

- The first iteration goes as follows:
 - **1** $a_1 = w_1^{(0)} x_{11} + w_2^{(0)} x_{12} = 1 1/2 = 1/2$. sign(1/2) = +, thus we have an error and we need to update weights.
 - Weight update at iteration 1:

$$w_1^{(1)} \leftarrow w_1^{(0)} + y_1 x_{11} = 1/2 - 2 = -3/2$$

 $w_2^{(1)} \leftarrow w_2^{(0)} + y_1 x_{12} = -1/2 - 1 = -3/2$

3 Proceed to do the same for w_2 and the following data points. Does your perceptron converge to a boundary after one pass on the data? If so, can you draw the boundary?

Example: Perceptron

- Some properties of the perceptron include:
 - **1** It always converges if the data points are linearly separable.
 - 2 It is unable to distinguish among decision boundaries.
 - **3** The linear model it embeds computes **a projection of every feature** x_d onto the vector \boldsymbol{w} . This means that we basically order the projected features on a line, sum them up and check if they are above or below a threshold!
 - It is unable to go beyond linearly separable data (infamous XOR problem). Extensions include: 'stacking up' perceptrons (neural networks) and doing feature maps (kernel methods).
 - See HD, ch. 4 for more.

Some key concepts: Generalization

- We have a loss function l and a dataset $\{X,Y\}$. We take a probabilistic view and state that we assume the existence of a data generating distribution $\mathcal D$ over data pairs (x,y), giving probabilities to pairs of data points. We then learn a function f that minimizes the loss for our data points, in view of generalizing to new data points under $\mathcal D$.
- We would like to learn to minimize the **expected loss** ϵ over \mathcal{D} :

$$\epsilon := \mathbb{E}_{(x,y) \sim \mathcal{D}} \Big[l(y, f(x)) \Big] = \sum_{(x,y)} \mathcal{D}(x,y) l(y, f(x))$$

- But we do not know $\mathcal{D}!$
- ullet Instead, we compute the **training error** $\hat{\epsilon}$ assuming it approximates ϵ :

$$\hat{\epsilon} := \frac{1}{N} \sum_{n=1}^{N} l(y_n, f(x_n))$$

• Which means we assume $\mathcal D$ to be uniform over our training examples and zero anywhere else. That is: **independent, uniformly and identically distributed**.

Some key concepts: Underfitting and overfitting

• **Underfitting**: "you had an opportunity to learn something but did not". **Overfitting**: "you pay too much attention to the idiosyncracies of the data, and are not able to generalize well." HD, ch. 2.

Some key concepts: Underfitting and overfitting

• **Underfitting**: "you had an opportunity to learn something but did not". **Overfitting**: "you pay too much attention to the idiosyncracies of the data, and are not able to generalize well." HD, ch. 2.

Some key concepts: Underfitting and overfitting

- Also referred to as Bias-variance trade-off.
- Note: this theory seems not to apply to deep learning! Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal. 2019.
 "Reconciling Modern Machine-Learning Practice and the Classical Bias-Variance Trade-Off." Proceedings of the National Academy of Sciences 116 (32): 15849-54.

https://doi.org/10.1073/pnas.1903070116.

Some key concepts: Optimization

- Every parametric model expresses a set of parameters, which we need to tune during learning. E.g., our probability distributions in Naïve Bayes.
- Non-parametric models instead, use the whole dataset as parameters. E.g., k-NN (nearest neighbours), as we will see later on.
- **Regularization**: adding constraints to parameters to avoid overfitting.
- Hyperparameters: not learned with the model/optimization. We can still use the data to find good values. E.g., cross-validation: train different models over a range of hyperparameter combinations, and pick the best. We use a third slide of the dataset for this: the development set.

Linear Regression

Linear models for regression

- We have a **dataset** $\{X, Y\}$, so that $\mathbf{x} = \langle x_1, x_2, \dots, x_d \rangle, y \in \mathbb{R}$, $\forall (\mathbf{x}, y) \in \{X, Y\}$. We thus have a regression problem.
- Examples: predict house prices, predict height of persons.
- The model is a linear, weighted combination of the inputs. In general:

$$\hat{y} = b + \sum_{d=1}^{D} w_d x_d + \epsilon$$

- The ϵ s are model estimation errors ($\epsilon = y \hat{y}$). y is the true value, \hat{y} is the predicted value of our dependent variable.
- I will put the intercept b in the summation as w_0 by adding an $x_0 = 1$, and imply ϵ :

$$\hat{y} = \sum_{d=0}^{D} w_d x_d; \hat{\boldsymbol{y}} = \boldsymbol{X} \boldsymbol{w}$$

Loss functions: Convexity

- With the perceptron, we used the so-called 0/1 loss. $l^{0/1} = \min_{\mathbf{w}, b} \sum_{n} \mathbf{1}[y_n(\mathbf{w} \cdot \mathbf{x}_n + b) < 0]$
- Equivalently, to simplify: $l^{0/1} = \min \sum_{n} \mathbf{1}[y_n \hat{y} < 0]$
- Unfortunately, the perceptron's learning algorithm is feasible only if the data points are linearly separable, i.e. if the minimum of $l^{0/1}$ is zero. This is rarely the case in practice. Exercise: what happens if we use the perceptron on a dataset which is not linearly separable?
- A popular alternative is to choose less exact but easier to work with loss functions. In particular, we pick from convex functions, so that we can use techniques from calculus.

Convexity

• A function is convex if, equivalently: its second derivative is always positive or any chord of the function lies above it.

Figure 7.3: plot of convex and nonconvex functions with two chords each

Credit: HD, ch. 7.

Loss functions for linear regression

- There is a variety of loss functions which are convex or semi-convex. There are several options for linear regression. For example:
 - **1** Mean Squared Error (MSE): $l^{MSE} = \min \sum_{n} (y_n \hat{y})^2$
 - 2 Mean Absolute Error (MAE): $l^{MAE} = \min \sum_{n} |y_n \hat{y}|$
 - **3** Hinge: $l^{hin} = \min \sum_{n} \max\{0, 1 y_n \hat{y}\}$
- They vary on how they deal with erroneous predictions (e.g., super-linear "reaction" for MSE) and with confident correct predictions (e.g., ignore them with Hinge).
- They are differentiable or semi-differentiable.

Closed-form solution for MSE Linear regression

- Let us pick MSE. In this particular case, we can derive a closed-form solution via calculus.
- What we have, in matrix notation:

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$$

$$\mathcal{L} = \frac{1}{2}||\hat{\mathbf{y}} - \mathbf{y}||^2$$

Credit: HD, ch. 7.

Closed-form solution for MSE Linear regression

We can express the loss as follows:

$$\min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}) = \frac{1}{2} ||\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}||^2$$

We use calculus to minimize the loss by setting its derivative to zero:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y}) = 0$$

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• This is an exact, but costly solution. Complexity: $\mathcal{O}\left(D^3 + D^2N\right)$, with D number of features and N number of data points.

Regularization

- Left unconstrained, MSE can easily lead to a case of overfitting, e.g. by paying too much attention to outliers (why?).
- Regularization is a way to compensate for this, by constraining weights to be small. It puts a premium on learning simple functions, by moving the model towards being more biased (why?).
- Examples of regularizers:
 - L_2 -norm (Ridge): $\lambda ||\mathbf{w}||^2$
 - L_1 -norm (Lasso): $\lambda |\mathbf{w}|$
- ullet λ is a hyperparameter to control the intensity of the regularization.

Closed-form solution with regularization

We can express the loss as follows:

$$\min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}) = \frac{1}{2} ||\boldsymbol{X}\boldsymbol{w} - \hat{\boldsymbol{y}}||^2 + \frac{\lambda}{2} ||\boldsymbol{w}||^2$$

We use calculus to minimize the loss by setting its derivative to zero:

$$\nabla_{\mathbf{w}} | \mathcal{L}(\mathbf{w}) = \mathbf{X}^{T} (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda \mathbf{w} = 0$$
$$\mathbf{w} = (\mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I}_{D})^{-1} \mathbf{X}^{T} \mathbf{y}$$

• This is an exact, but costly solution. Complexity: $\mathcal{O}\left(D^3 + D^2N\right)$, with D number of features and N number of data points.

- General-purpose method to find a minimum of differentiable functions. Bread and butter of deep learning!
- The gradient of a function $\nabla_w f$ is the vector consisting of the partial derivatives of this function w.r.t. each input coordinate:

$$\nabla_{w} f = \left\langle \frac{\partial f}{\partial w_{1}}, \frac{\partial f}{\partial w_{1}}, \dots, \frac{\partial f}{\partial w_{D}} \right\rangle$$

 SGD defined an iterative approach to reach a minimum of a function by gradual update steps:

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \eta \bigtriangledown_{\mathbf{w}} f$$

• η (eta) is called the **learning rate**. We refer to **stochastic** GD when we use one data point at the time.

 SGD defined an iterative approach to reach a minimum of a function by gradual update steps:

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \eta \bigtriangledown_{w} f$$
$$w_{1}^{(t)} \leftarrow w_{1}^{(t-1)} - \eta \frac{\partial f}{\partial w_{1}}$$

```
Algorithm 21 Gradient Descent (\mathcal{F}, K, \eta_1, ...)
```

```
1: z^{(0)} \leftarrow \langle o, o, \ldots, o \rangle // initialize variable we are optimizing

2: for k = 1 \ldots K do

3: g^{(k)} \leftarrow \nabla_z \mathcal{F}|_{z^{(k-1)}} // compute gradient at current location

4: z^{(k)} \leftarrow z^{(k-1)} - \eta^{(k)} g^{(k)} // take a step down the gradient

5: end for

6: return z^{(K)}
```

Credit: HD, ch. 7.

 SGD defined an iterative approach to reach a minimum of a function by gradual update steps:

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \eta \bigtriangledown_{\mathbf{w}} f$$

Figure 5.3 The first step in iteratively finding the minimum of this loss function, by moving w in the reverse direction from the slope of the function. Since the slope is negative, we need to move w in a positive direction, to the right. Here superscripts are used for learning steps, so w^1 means the initial value of w (which is 0), w^2 at the second step, and so on.

Credit: J&M. ch. 5.

 SGD defined an iterative approach to reach a minimum of a function by gradual update steps:

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \eta \bigtriangledown_{\mathbf{w}} f$$

Credit: J&M, ch. 5.

 SGD defined an iterative approach to reach a minimum of a function by gradual update steps:

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \eta \bigtriangledown_{\mathbf{w}} f$$

• η (eta) is called the **learning rate**: this is crucial for convergence.

Figure 7.7: good and bad step sizes

Regularization and SGD

Note:
$$||\mathbf{w}||_p = (\sum_d |\mathbf{w}_d|^p)^{\frac{1}{p}}$$
. I have implied so far: $||\mathbf{w}||^2 = ||\mathbf{w}||_2^2$ and $|\mathbf{w}| = ||\mathbf{w}||_1$.

http://rasbt.github.io/mlxtend/user_guide/general_concepts/regularization-linear.

• SGD:

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \eta \bigtriangledown_{\mathbf{w}} f$$

• Loss for linear regression with MAE and L_2 :

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2}||\mathbf{X}\mathbf{w} - \hat{\mathbf{y}}||^2 + \frac{\lambda}{2}||\mathbf{w}||^2$$

• Regularized SGD for linear regression with MAE and L_2 :

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \eta \bigtriangledown_{\mathbf{w}} \mathcal{L}$$

• Same, for datapoint x_z and for weight w_1 :

$$w_1^{(t)} \leftarrow w_1^{(t-1)} - \eta \frac{x_{z1}y_z}{x_{z1}^2 + \lambda}$$

 Often, we feed data to SGD in batches (e.g., a few hundred data points at the time). Logistic Regression (optional)

Logistic regression (reminder)

• Reminder: our goal is, given a document x and every possible class $c \in \mathcal{Y}$, to learn a classifier discriminating the right class for x:

$$\hat{p}(y=c|\mathbf{x})$$

- ullet Let us start with a binary classifier and two classes, thus $\mathcal{Y}=\{0,1\}.$
- We need to estimate $\hat{p}(y=1|x)$, and $\hat{p}(y=0|x)=1-\hat{p}(y=1|x)$ will follow suit.
- Logistic regression uses two components for this: a linear model of the inputs and the Sigmoid (or logistic) function. So, it is like the perceptron but with a different classification function!

Sigmoid (or logistic) function

• Let us consider the set of features x_1, x_2, \ldots, x_d we used to represent our input document x. We add $x_0 = 1$ to model the intercept, and create a linear model with them:

$$z = \sum_{j=0}^{d} w_j x_j = \boldsymbol{w} \cdot \boldsymbol{x}$$

• To create a probability distribution, we pass z through the Sigmoid $\sigma(z)$:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

• The Sigmoid squeezes z within 0 and 1 and is always positive.

Sigmoid (or logistic) function

Figure 5.1 The sigmoid function $y = \frac{1}{1+e^{-z}}$ takes a real value and maps it to the range [0,1]. Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier values toward 0 or 1.

Credit: M&J, Ch. 5.

Logistic regression (reminder)

Applied to our binary classification task, we have that:

$$\hat{\rho}(y=1|\mathbf{x}) = \sigma(z_{\mathbf{x}}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

$$\hat{\rho}(y=0|\mathbf{x}) = 1 - \sigma(z_{\mathbf{x}}) = \frac{e^{-\mathbf{w} \cdot \mathbf{x}}}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

 Then, we just need to use a decision boundary to assign the class given the estimated probabilities:

$$\hat{y} = \begin{cases} 1 \text{ if } \hat{p}(y=1|\mathbf{x}) > 0.5\\ 0 \text{ otherwise} \end{cases}$$

• So, we have defined out data and task, and have a model. What do we miss?

Logistic regression: Cross-entropy

- We need a loss function. Let us use MLE to find one.
- We have that p(y|x) follows a Bernoulli distribution given that we only have two discrete outcomes (0,1), hence:

$$p(y|\mathbf{x}) = \hat{y}^{y}(1-\hat{y})^{1-y}$$

• As usual, let us move to log space and add a minus to switch to a minimization problem (note we work with a single data point (x, y) for now):

$$-logp(y|\mathbf{x}) = -log[\hat{y}^y(1-\hat{y})^{1-y}]$$

=
$$-[ylog\hat{y} + (1-y)log(1-\hat{y})]$$

Let us now plug-in the Sigmoid and call it the loss:

$$\mathcal{L}_{\mathbf{x}}(\mathbf{w}) = -[ylog\sigma(\mathbf{wx}) + (1-y)log(1-\sigma(\mathbf{wx}))]$$

Logistic regression: Cross-entropy

Let us now plug-in the Sigmoid and call it the loss:

$$\mathcal{L}_{\mathbf{x}}(\mathbf{w}) = -\big[ylog\,\sigma(\mathbf{w}\mathbf{x}) + (1-y)log(1-\sigma(\mathbf{w}\mathbf{x}))\big]$$

• The loss on the whole dataset is going to be (note we are already in log space thus we can sum):

$$\mathcal{L}(\mathbf{w}) = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i log \sigma(\mathbf{w} \mathbf{x}_i) + (1 - y_i) log (1 - \sigma(\mathbf{w} \mathbf{x}_i)) \right]$$

• To this we can, as usual, attach regularization:

$$\mathcal{L}_{L_2}(\mathbf{w}) = \mathcal{L}(\mathbf{w}) + \frac{\lambda}{2}||\mathbf{w}||^2$$

Logistic regression: Optimization via SGD

- The last bit missing is how to find good parameters w: we can use SGD.
- It turns out that the derivative for one data point x is (w.o. regularization):

$$\frac{\partial \mathcal{L}_{\mathbf{x}}(\mathbf{w})}{\partial \mathbf{w}_{j}} = \left[\sigma(\mathbf{w}\mathbf{x}) - y\right]\mathbf{x}_{j}$$

• For multiple data points, we just sum (w.o. regularization), and with this we are good to go for SGD:

$$\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}_j} = \sum_{i=1}^{N} \left[\sigma(\mathbf{w} \mathbf{x}_i) - y_i \right] \mathbf{x}_{ij}$$

- Full derivation as an extra, below.
- In a future class, we will see the extension to multiple classes.

Extras (optional)

Extra: Dot products

- Suppose ||u|| = 1, i.e. we have a unit vector (of length one, this makes the point easier to see).
- We can think of \mathbf{v} as the sum of two components, one parallel (b) and another perpendicular (a) to \mathbf{u} .
- The dot product $\mathbf{u} \cdot \mathbf{v}$ gives you b, the projection of \mathbf{v} onto \mathbf{u} over all their dimensions.

Extra: Dot products in the perceptron model

Figure 4.6: picture of data points with hyperplane and weight vector

Figure 4.7: The same picture as before, but with projections onto weight vector; then, below, those points along a one-dimensional axis with zero marked.

Credit: HD, ch. 4.

Extra: Full derivation for linear regression

• Closed-form, with MSE loss and L₂ regularization:

$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{2}||\boldsymbol{X}\boldsymbol{w} - \hat{\boldsymbol{y}}||^2 + \frac{\lambda}{2}||\boldsymbol{w}||^2$$

$$\nabla_{\boldsymbol{w}}\mathcal{L}(\boldsymbol{w}) = \boldsymbol{X}^T \left(\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\right) + \lambda \boldsymbol{w}$$
(put equal to zero) $\rightarrow \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} + \lambda \boldsymbol{w} = \boldsymbol{X}^T \boldsymbol{y}$

$$\left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}\right) \boldsymbol{w} = \boldsymbol{X}^T \boldsymbol{y}$$

$$\boldsymbol{w} = \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Extra: Full derivation for logistic regression

• First, we need some notable derivatives:

$$\begin{split} \frac{\partial log(x)}{\partial x} &= \frac{1}{x} \\ \frac{\partial \sigma(x)}{\partial x} &= \sigma(x)(1 - \sigma(x)) \\ \frac{\partial f(g(x))}{\partial x} &= \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x} \to \text{chain rule} \end{split}$$

Extra: Full derivation for logistic regression

Then:

$$\begin{split} \frac{\partial \mathcal{L}_{\mathbf{x}}(\mathbf{w})}{\partial w_{j}} &= -\partial \big[y log \sigma(\mathbf{w}\mathbf{x}) + (1-y) log (1-\sigma(\mathbf{w}\mathbf{x})) \big] \\ &= - \big[\partial y log \sigma(\mathbf{w}\mathbf{x}) + \partial (1-y) log (1-\sigma(\mathbf{w}\mathbf{x})) \big] \\ &= -\frac{y}{\sigma(\mathbf{w}\mathbf{x})} \partial \sigma(\mathbf{w}\mathbf{x}) - \frac{1-y}{1-\sigma(\mathbf{w}\mathbf{x})} \partial (1-\sigma(\mathbf{w}\mathbf{x})) \to \text{chain rule} \\ &= - \Big[\frac{y}{\sigma(\mathbf{w}\mathbf{x})} - \frac{1-y}{1-\sigma(\mathbf{w}\mathbf{x})} \Big] \partial \sigma(\mathbf{w}\mathbf{x}) \to \text{re-arrange} \end{split}$$

• Exercise: plug-in the derivative of the Sigmoid and re-arrange yourself to reach:

$$... = \left[\sigma(\mathbf{wx} - y)\right] x_j$$

Extra: Full derivation for logistic regression

• In case you were wondering:

$$\frac{\partial \sigma(x)}{\partial x} = \partial \frac{1}{1 + e^{-x}}$$

$$= \partial [1 + e^{-x}]^{-1}$$

$$= \frac{e^{-x}}{1 + e^{-x}} \frac{1}{1 + e^{-x}}$$

$$= \frac{(1 + e^{-x}) - 1}{1 + e^{-x}} \sigma(x)$$

$$= \sigma(x)(1 - \sigma(x))$$

• Exercise, derive:

$$\frac{\partial \log \sigma(x)}{\partial x} = \sigma(-x)$$

Extra: Why MSE and cross-entropy?

- It turns out that, given some stuff and assumptions on our models, using those two losses corresponds to doing Maximum Likelihood Estimation. See https:
 - //www.expunctis.com/2019/01/27/Loss-functions.html.
- If you are curious about the information theory underpinning cross-entropy, read this: http:
 - //colah.github.io/posts/2015-09-Visual-Information.