1 Class-Conditional Densities for Binary Data

Problem A

Let us use the chain rule of probability to factorize p(x|y). Let $\theta_{xjc} = p(x_j|x_{1,...,j-1}, y = c)$ (such that $\theta_{x1c} = p(x_1|y=c)$).

$$\begin{split} p(x|y=c) &= p(x_1, x_2, ..., x_D|y=c) \\ &= p(x_2, x_3, ..., x_D|x_1, y=c) \cdot p(x_1|y=c) \\ &= p(x_3, x_4, ..., x_D|x_1, x_2, y=c) \cdot p(x_2|x_1, y=c) \cdot p(x_1|y=c) \\ &= p(x_4, x_5, ..., x_D|x_1, x_2, x_3, y=c) \cdot p(x_3|x_1, x_2, y=c) \cdot p(x_2|x_1, y=c) \cdot p(x_1|y=c) \\ &\qquad ... \\ &= \theta_{xDc} \cdot \theta_{x(D-1)c} \cdot \theta_{x(D-2)c} \cdot ... \cdot \theta_{x1c} \\ &= \Pi_{j=1}^D \theta_{xjc} \end{split}$$

Assuming we store each θ_{xjc} , the number of parameters needed to represent this factorization can be expressed by $O(2^D \cdot C)$. This is because we are working with binary features, so for a single class, we have to consider permutations that scale to 2^D . Thus, for C classes, we consider $O(2^D \cdot C)$ parameters for this factorization.

Problem B

Let us consider if we just used the joint probability p(x|y=c) with arbitrary x (length D) and c (C total classes). For the input x, there are 2^D possibilities since each x_j is binary. So, for all c, the number of parameters needed to be estimated for this computation is expressed by $O(2^D \cdot C)$ which is the same as problem A.

Problem C

Let us assume that the number of features D is fixed and let there be N training cases. If the sample size N is very small, the Naive Bayes model is likely to give lower test set error because the full model is likely to overfit with small N since it has more parameters. In other words, the full model would likely have lower training error and higher testing error in this case.

Problem D

For large sample size N, the full model is likely to give lower test set error because it is less likely that it will overfit in this case, thus the full model is more likely to have a more accurate performance on the test set relative to the Naive Bayes model considering the difference in the number of parameters and the fully dependent features of the full model. In this case, it is also more likely that the Naive Bayes model would underfit the data.

Problem E

2 Sequence Prediction

Question 2 Code

Problem A

File #0:	
Emission Sequence	Max Probability State Sequence
##########################	<i>*************************************</i>
25421	31033
01232367534	22222100310
5452674261527433	1031003103222222
7226213164512267255	1310331000033100310
0247120602352051010255241	222222222222222222222
0217120002332031010233211	
File #1:	
Emission Sequence	Max Probability State Sequence

77550	**************************************
7224523677	2222221000
505767442426747	22210000
72134131645536112267	10310310000310333100
4733667771450051060253041	2221000003222223103222223
File #2:	
Emission Sequence	Max Probability State Sequence
####################################	<i>`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
60622	11111
4687981156	2100202111
815833657775062	02101111111111
21310222515963505015	0202011111111111021
6503199452571274006320025	1110202111111102021110211
File #3:	
Emission Sequence	Max Probability State Sequence
######################################	<i>*************************************</i>
13661	00021
2102213421	3131310213
166066262165133	1333331331300
53164662112162634156	20000021313131002133
1523541005123230226306256	1310021333133133133133
File #4:	
Emission Sequence	Max Probability State Sequence
23664	01124
3630535602	0111201112
350201162150142	0111244012441112
00214005402015146362	11201112412444011112
2111266524665143562534450	201201242412440111124
2111200324003143302334430	2012012424124011112411124
File #5:	
	New Backshilita Chata Common
Emission Sequence	Max Probability State Sequence
######################################	· · · · · · · · · · · · · · · · · · ·
	10111
4546566636	1111111111
4546566636 638436858181213	110111010000011
4546566636 638436858181213 13240338308444514688	110111010000011 00010000000111111100
4546566636 638436858181213	110111010000011

Problem B

1 TODICIN D						
File #0:		File #0:				
Emission Sequence	Probability of Emitting Sequence	Emission Sequence	Probability of Emitting Sequence			
	"#####################################	######################################				
25421	4.537e-05	25421	4.537e-05			
01232367534	1.620e-11	01232367534	1.620e-11			
5452674261527433	4.348e=15	5452674261527433	4.348e-15			
7226213164512267255	4.739e-18	7226213164512267255	4.739e-18			
0247120602352051010255241	9.365e=24	0247120602352051010255241	9.365e-24			
021/120002552051010253211).303C-24					
File #1:		File #1:				
Emission Sequence	Probability of Emitting Sequence	Emission Sequence	Probability of Emitting Sequence			
	**************************************	<i>*************************************</i>				
77550	1.181e-04	77550	1.181e-04			
7224523677	2.033e-09	7224523677	2.033e-09			
505767442426747	2.477e-13	505767442426747	2.477e-13			
72134131645536112267	8.871e-20	72134131645536112267	8.871e-20			
4733667771450051060253041	3.740e-24	4733667771450051060253041	3.740e-24			
File #2:		File #2:				
Emission Sequence	Probability of Emitting Sequence	Emission Sequence	Probability of Emitting Sequence			
######################################	***************************************	<i>#####################################</i>	<i>;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>			
60622	2.088e-05	60622	2.088e-05			
4687981156	5.181e-11	4687981156	5.181e-11			
815833657775062	3.315e-15	815833657775062	3.315e-15			
21310222515963505015	5.126e-20	21310222515963505015	5.126e-20			
6503199452571274006320025	1.297e-25	6503199452571274006320025	1.297e-25			
File #3:		File #3:				
Emission Sequence	Probability of Emitting Sequence	Emission Sequence Probability of Emitting Sequence				
	**************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
13661	1.732e-04	13661	1.732e-04			
2102213421	8.285e-09	2102213421	8.285e-09			
166066262165133	1.642e-12	166066262165133	1.642e-12			
53164662112162634156	1.063e-16	53164662112162634156	1.063e-16			
1523541005123230226306256	4.535e-22	1523541005123230226306256	4.535e-22			
File #4:		File #4:				
File #4: Emission Sequence	Probability of Emitting Sequence		Bookshilito of Boitting Common			
	Probability of Emitting Sequence	Emission Sequence Probability of Emitting Sequence				
23664	1.141e-04	23664	1.141e-04			
3630535602	4.326e-09	3630535602	1.141e-04 4.326e-09			
350201162150142	9.793e-14	350201162150142	4.326e-09 9.793e-14			
00214005402015146362	4.740e-18	00214005402015146362	9.793e-14 4.740e-18			
2111266524665143562534450	5.618e-22	2111266524665143562534450	4.740E-18 5.618E-22			
2222200221003113302331130	310200 22	2111200324003143302334430	J.0106-22			
File #5:		File #5:				
Emission Sequence	Probability of Emitting Sequence	Emission Sequence	Probability of Emitting Sequence			
	**************************************		######################################			
68535	1.322e-05	68535	1.322e-05			
4546566636	2.867e-09	4546566636	2.867e-09			
638436858181213	4.323e-14	638436858181213	4.323e-14			
13240338308444514688	4.629e-18	13240338308444514688	4.629e-18			
0111664434441382533632626	1.440e-22	0111664434441382533632626	1.440e-22			
		0111004434441302333032020	1.1100-22			

Problem C

Transition	Matrix:									

2.830e-01	4.670e-01	1.344e-01	1.156e-01							
2.336e-01	3.803e-01	2.934e-01	9.266e-02							
1.051e-01	9.873e-02	3.678e-01	4.283e-01							
1.887e-01	9.839e-02	3.032e-01	4.097e-01							
Observation	Matrix:									
<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>										
1.486e-01	2.288e-01	1.533e-01	1.179e-01	4.717e-02	5.189e-02	2.830e-02	1.297e-01	9.198e-02	2.358e-03	
1.062e-01	9.653e-03	1.931e-02	3.089e-02	1.699e-01	4.633e-02	1.409e-01	2.394e-01	1.371e-01	1.004e-01	
1.194e-01	4.299e-02	6.529e-02	9.076e-02	1.768e-01	2.022e-01	4.618e-02	5.096e-02	7.803e-02	1.274e-01	
1.694e-01	3.871e-02	1.468e-01	1.823e-01	4.839e-02	6.290e-02	9.032e-02	2.581e-02	2.161e-01	1.935e-02	

Problem D

```
Transition Matrix:
5.075e-01 4.596e-01
                    6.533e-09
                              3.292e-02
3.127e-03
         2.107e-04
                    9.964e-01
                              2.733e-04
1.195e-09
         6.886e-02
                   9.686e-16
                              9.311e-01
6.203e-01
         3.796e-01
                    1.555e-05
                              1.579e-04
Observation Matrix:
1.117e-01 1.525e-01 7.740e-02 1.975e-02 1.594e-01 4.574e-13 1.205e-01 2.548e-15 1.103e-01 1.751e-01 3.656e-04 2.190e-01
                                                             3.556e-16
                                                                       2.475e-01
                                                                                 1.139e-01
                                                                                           8.053e-02
                    1.103e-01
                                                             1.002e-01
                                                                       6.178e-02
                                                                                 1.323e-01
1.276e-01 2.665e-02
                  5.788e-02
                              1.682e-01
                                        1.700e-01
                                                  6.969e-02
                                                             1.254e-01
                                                                       3.940e-02
                                                                                 1.627e-01
                                                                                           5.244e-02
1.918e-01 8.206e-02 1.376e-01
                             8.725e-02
                                        1.152e-01
                                                  1.209e-01
                                                             1.033e-01
                                                                       3.101e-02
                                                                                 1.308e-01
                                                                                           5.847e-38
```

Problem E

For the transition matrices, it seems like the results from 2C are consistent and larger than the values we see from 2D. More specifically, we see that the smallest order of magnitude in the 2C transition matrix is -2 compared to -16 in the 2D transition matrix. Overall, the transition matrices are quite different from each other considering the greater range of values and and significantly smaller numbers in the matrix from 2D. Furthermore, these trends generally for the observation matrices as well, but it seems like the values are slightly more similar besides the outliers (in 2D) with orders of magnitude as small as -15, -16, -38. Considering these differences, it seems like 2C provides a more accurate representation of Ron's moods and how they affect his moods especially knowing that supervised learning was performed in 2C. This makes sense when we consider that 2C technically uses better data in this sense which seems to help explain the greater consistency and behavior with the resulting matrices.

Problem F

```
Generated Emission
                                        Generated Emission
                                        25457577435433345774
                                       01566233364032432166
45252137727277572171
                                       64605506453443660046
46452565155154041065
                                       10161512266111622505
                                       05331016212162656646
Generated Emission
                                       Generated Emission
60757142001354034547
                                       55206544666053110442
51670575502721512114
                                       10656664216663131045
24300021407445445277
                                       45502113533263163446
File #2:
                                       File #5:
                                        Generated Emission
Generated Emission
98269462219799733991
                                        70333516061334180842
78031952085091265614
                                       48316363206346316403
```

Problem G

Considering the sparsity of the trained A and O matrices, we see a large majority of values very close to zero (dark purple) for both matrices. With a deeper comparison, we might say that O is more sparse than A since A has a higher concentration of values around .4 (lightish blue). However, both matrices are similar in that that there are only a handful of tiles/states are not values close to zero (not purple). This sparsity would determine the probabilities of transitioning from a certain state to another such that most of the states essentially have probabilities of 0 for transitioning to the next state. On the other hand, we can clearly see the entries that have a high probability of transitioning as indicated by the brighter colorings. Considering the observation behavior, this sparsity would similarly tell us the probability of observing a particular emission such that there is limited behavior as there is a small subset of emissions that are likely to be observed. Overall, the strong sparsity with the trained A and O matrices essentially shows us the limited behaviors for each state.

Problem H

It seems that as the number of hidden states increases, the emission sentences make more sense (grammatically and logically) and sound more like sentences from the constitution. With 1 hidden state, it seems like the words are basically random and the sentence does not really make any sense. This corresponds to what we know about the transition and observation matrices in this case which basically results in randomly selected words independent from each other. This further explains the trend we see since with more hidden states, we are increasing the likelihood of the training data.

Problem I

The state I found semantically meaningful was state 2. Its wordcloud contains several meaningful nouns that are core terms in the constitution such as united, congress, state, president, senate, and even constitution itself. To me, this state represents the core subjects/nouns of the sentences in the constitution, generally. This state differs from others such that other states do not appear to contain a lot of nouns and other meaningful political words. To note, state 6 seems to be similar to state 2 in this sense.