SOME VC-DENSITY COMPUTATIONS IN SHELAH-SPENCER GRAPHS

ANTON BOBKOV

ABSTRACT. We compute vc-densities of minimal extension formulas in Shelah-Spencer random graphs.

We fix the density of the graph α .

Lemma 0.1. For any $A \in K_{\alpha}$ and $\epsilon > 0$ there exists an \mathcal{B} such that (A, \mathcal{B}) is minimal and $\delta(\mathcal{B}/A) < \epsilon$.

Proof. Let m be an integer such that $m\alpha < 1 < (m+1)\alpha$. Suppose \mathcal{A} has less than m+1 vertices. Make a construction $\mathcal{A}_0 = \mathcal{A}$ and \mathcal{A}_{i+1} is \mathcal{A}_i with one extra vertex connected to every single vertex of A_i . Stop when the total number of vertices is m+1. Proceed as in [1] 4.1. Resulting construction is still minimal.

Lemma 0.2. Let $A_1 \subset \mathcal{B}_1$ and $A_2 \subset \mathcal{B}_2$ be K_α structures with (A_2, \mathcal{B}_2) a minimal pair with $\epsilon = \delta(\mathcal{B}_2/\mathcal{A}_2)$. Let M be some ambient structure. Fix embeddings of A_1, \mathcal{B}_1, A_2 into M. Assume that it is not that case that $A_2 \subset \mathcal{B}_2$ and A_1 is disjoint from A_2 . Now consider all possible embeddings $f: \mathcal{B}_2 \to M$ over A_1 . Let $A = A_1 \cup A_2$ and $\mathcal{B}_f = \mathcal{B}_1 \cup f(\mathcal{B}_2)$ with $\delta_f = \delta(\mathcal{B}_f/A)$. Then δ_f is at most $\delta(\mathcal{B}_1 \cup A/A) + \epsilon$

Fix an embedding f. It induces the following substructure diagram in M. Denote

$$\begin{split} \mathcal{A} &= \mathcal{A}_1 \cup \mathcal{A}_2 \mathcal{B}_f^* \\ \mathcal{B}_1^* &= \mathcal{B}_1 \cup \mathcal{A} \\ \mathcal{B}_2^* &= f(\mathcal{B}_2) \cup \mathcal{A} \\ \mathcal{B}^* &= (\mathcal{B}_1 \cap f(\mathcal{B}_2)) \cup \mathcal{A} \end{split}$$

1

From the diagram we see that

$$\delta(\mathcal{B}_f/\mathcal{A}) \leq \delta(\mathcal{B}_1 \cup \mathcal{A}/\mathcal{A}) + \delta\left((f(\mathcal{B}_2) \cup \mathcal{A})/((\mathcal{B}_1 \cap f(\mathcal{B}_2)) \cup \mathcal{A})\right)$$

Thus all we need to do is to verify that

$$\delta\left((f(\mathcal{B}_2)\cup\mathcal{A})/((\mathcal{B}_1\cap f(\mathcal{B}_2))\cup\mathcal{A})\right)\leq \delta(\mathcal{B}_2/\mathcal{A}_2)$$

Let \mathcal{B}^* denote all the vertices in $f(\mathcal{B}_2)$ that are not in $\mathcal{B}_1 - \mathcal{A}_2$. Then $\delta(\mathcal{B}^*/A_2)$ has to be less than $\delta(\mathcal{B}_2/\mathcal{A}_2)$ by minimality of $(\mathcal{B}_2, \mathcal{A}_2)$. Relative dimension of the whole construction has to be even smaller. It is easy to show that this construction induces a proper subpair in $(\mathcal{A}_2, \mathcal{B}_2)$ which has to have smaller dimension.

Let $\phi(x,y)$ be a formula in a random graph with |x|=|y|=1 saying that there exists a minimal extension M over $\{x,y\}$ of relative dimension ϵ . Let n be such that $n\epsilon < 1 < (n+1)\epsilon$. Then we argue that $vc(\phi) = n$.

Fix a m-strong (for any m > |M|) set of non-connected vertices B. Fix some a. We investigate the trace of $\phi(x,a)$ on B. Suppose we have b_1,\ldots,b_k satisfying $\phi(b_i,a)$ as witnessed by M_j . Relative dimension of $M_1 \cup M_2 \cup \ldots \cup M_j \cup a$ is minimized when all M_j are disjoint (by minimality). Thus for that dimension to be positive we can have at most n extensions.

References

 Michael C. Laskowski, A simpler axiomatization of the Shelah-Spencer almost sure theories, Israel J. Math. 161 (2007), 157-186. MR MR2350161

E-mail address: bobkov@math.ucla.edu