1 Show that wk is the smallest topology on \mathscr{X} such that each x^* in \mathscr{X}^*

Must show that an arbitrary open set in wk can be generated by some collection of sets of the form $x^{*-1}(V)$.

Start with an arbitrary open set U. Since X with wk is a locally convex set, $\bigcap_{i=1}^n \{x \in \mathcal{X} : p_j(x-x_0) < \varepsilon_j\} \subseteq U$ for some finite list of ε and p, where $p_{x^*} = |\langle x, x^* \rangle|$.

 $p_{x^*} = |\langle x, x^* \rangle|.$ $\bigcap_{i=1}^n \{x \in \mathscr{X} : p_j(x - x_0) < \varepsilon_j\} \text{ is open and the intersection of pre-images of open sets from } \mathbb{F} \text{ (why?)}.$

Since U is generated by the subbase of preimages of the collection of x^* and U is arbitrary, all open sets of wk are generated in this way, thus is the smallest possible topology.

2 Show that wk* is the smallest topology on \mathscr{X}^* such that for each x in \mathscr{X} , $x^* \mapsto \langle x, x^* \rangle$

This purported topology σ is generated by open sets that are preimages of open sets of functions of the form $x^* \mapsto \langle x, x^* \rangle$. By continuity of composition, they are also the preimages of open sets of functions of the form $x^* \mapsto |\langle x, x^* \rangle|$. Open sets of $\mathbb R$ are generated by open balls, so the pre-images are generated by sets of the form $|\langle x, x^* \rangle| < \varepsilon$.

A set U of \mathscr{X}^* is weakly open if and only if for every x_0^* in U there is an ε and there are $x_1, ... x_n$ in \mathscr{X} such that

$$\bigcap_{i=1}^{n} \{x^* \in \mathscr{X}^* : |\langle x_k, x^* - x_0^* \rangle| < \varepsilon_j\} \subseteq U$$

Every such set U can be generated as part of σ and therefore is the smallest topology

3 Prove Theorem 1.3

Theorem 1.3 is proven in the text!

4 Let \mathscr{X} be a complex LCS and let $\mathscr{X}_{\mathbb{R}}^*$ denote the collection of all continous real linear functionals on \mathscr{X} . Use the elements of $\mathscr{X}_{\mathbb{R}}^*$ to define seminorms on \mathscr{X} and let $\sigma(\mathscr{X},\mathscr{X}_{\mathbb{R}}^*)$ be the corresponding topology. Show that $\sigma(\mathscr{X},\mathscr{X}^*)=\sigma(\mathscr{X},\mathscr{X}_{\mathbb{R}}^*)$

Take the function f

$$f: \mathbb{C} \mapsto \mathbb{R}$$
$$f(x) = |x|$$

f defines a function \hat{f} from \mathscr{X}^* to $\mathscr{X}^*_{\mathbb{R}}$ via composition. We will show that \hat{f} is a homeomorphism.

 \hat{f} is clearly continuous because it is the composition of two continuous functions.

Open sets around x_0^* in \mathscr{X}^* are generated by sets of the form $\bigcap_{i=1}^n \{x^* \in \mathscr{X}^* : |\langle x_k, x^* - x_0^* \rangle| < \varepsilon_j \}$ for some finite set of x_k and ε_j . The preimage of this set under \hat{f}^{-1} is ???, which is open, therefore \hat{f}^{-1} is continuous.

5 If $A \subseteq \mathscr{X}$...

5.1 A° is convex and balanced

 $A^{\circ} \equiv \{x^* \in \mathscr{X}^* : |\langle a, x^* \rangle| \le 1 \text{ for all } a \text{ in } A\}$

To show that A° is balanced, given x^{*} in A° and $|\alpha| \leq 1$, we have to show that αx^{*} is also in A° .

If $|\langle a, x^* \rangle| \leq 1$, then $|\langle a, \alpha x^* \rangle| = |\alpha| |\langle a, x^* \rangle| \leq 1$, hence αx^* is in A°

To show that A° is convex, we have to show that given arbitrary x_1^* and x_2^* , then all of $\{tx_1^* + (1-t)x_2^* : 0 \le t \le 1\}$ is in A° .

If $|\langle a, x_1^* \rangle| \leq 1$ and $|\langle a, x_2^* \rangle| \leq 1$, then $t |\langle a, x_1^* \rangle| \leq t$ and $(1-t) |\langle a, x_2^* \rangle| \leq 1-t$ as long as $0 \leq t \leq 1$ (to not flip the signs). Adding the inequalities we get $t |\langle a, x_1^* \rangle| + (1-t) |\langle a, x_2^* \rangle| \leq 1$.

6 If $A \subseteq \mathcal{X}$, show that A is weakly bounded if and only if A° is absorbing in \mathcal{X}^{*}

Assume A is weakly bounded.

Assume A° is absorbing in \mathscr{X}^{*}