

빅데이터 분석 결과 시각화

D3.js로 그래프 그리기

학습내용

- 막대 그래프 그리기
- 그래프 이벤트 만들기
- CSV 그래프 그리기

학습목표

- SVG의 'rect' 요소를 활용하여 막대 그래프를 그릴 수 있다.
- 마우스 이벤트에 대해 이해하고 그래프 이벤트를 만들 수 있다.
- CSV를 활용하여 그래프를 그릴 수 있다.

● 막대 그래프 그리기

1. SVG 〈rect〉 알아보기

◆ SVG와 CANVAS 비교

	Canvas	SVG
그래픽 시스템	픽셀 기반의 즉시 모드 그래픽 시스템	모양 기반의 유지 모드 그래픽 시스템
이미지 처리방식	Bitmap(해상도 의존적)	Vector(해상도 독립적)
DOM	존재하지 않음 (DOM Control 불가)	존재함 (Script로 Control 가능)
외부 이미지 편집	Bitmap image 편집 용이	Vector image 편집 용이
성능저하 요인	높은 해상도의 이미지를 사용할 경우	이미지가 복잡해질 경우
Animation	Animation API가 없으므로 Script의 Timer를 사용함	높은 수준의 Animation 지원
외부이미지로 저장	jpg, png등으로 저장가능	불가능
적합한 서비스	그래프 구현, 게임, 실시간 데이터 출력, 동영상 조작	그래프 구현, 매우 세밀한 해상도를 지원하는 UI 및 Application
적합하지 않은 서비스	Standalone Application UI	게임, 실시간 데이터 출력

● 막대 그래프 그리기

- 1. SVG 〈rect〉 알아보기
 - ◆ ⟨rect⟩ 여러 속성의 역할

속성	역할
width와 height	사각형의 높이와 폭을 정의함
style	사각형을 위한 CSS 속성을 정의함
CSS fill property	사각형의 채우기 색을 정의함
CSS stroke-width property	사각형의 테두리 폭을 정의함
CSS stroke property	사각형의 테두리 색을 정의함

● 〈rect〉 요소는 사각형과 사각형 모양의 변형을 만드는 데 사용됨

```
<svg width="400" height="400"

<rect width="210" height="200" style="fill:rgb(99,123,88);
stroke-width:10;stroke:rgb(12,33,66)"

</svg>
```

● 결과 화면

• 막대 그래프 그리기

1. SVG 〈rect〉 알아보기

◆ SVG 공통 프로퍼티 목록

● 직접 문서요소의 인라인 속성이나 CSS 스타일 규칙 둘 중에 하나의 방법을 적용함

종류	종류
fill	바탕색 값을 표현하며 RGB 값 외 색상을 나타냄
stroke	선의 색상값임
stroke-width	선의 두께로, 값은 숫자이고, 단위는 픽셀을 사용함
opacity	불투명도값으로 0 ~ 1 사이 값을 가짐

◆ CSS 형식 파일 분석하기

div.bar {

display: inline-block; //(블럭형태로 늘어서서 보여주기)

width: 50px; //(가로길이)

height: 150px; //(세로길이)

margin-right: 2px; //(바사이 간격)

background-color: #ccd889; //(배경색) }

• 막대 그래프 그리기

1. SVG <rect> 알아보기

- ◆ D3.js select API
 - D3.js에서는 조작하고자 하는 요소를 선택할 수 있는 select API를 제공함
 - select API
 - iquery의 select API와도 비슷함
 - D3에서는 selection 객체에 대해서 data()를 통해 특정 데이터를 바인드함
 - enter()와 exit()를 통해 데이터에 대응하는 객체를 다룰 수 있는 기능들을 제공함

```
      var dataset = [ 50, 100, 150, 200, 250 ];
      ← 데이터셋에 데이터를 입력함

      d3.select("body")
      ← body 요소를 선택함

      .selectAll("div")
      ← div요소를 전부 선택함
```

.data(dataset)← dataset을 미리 선택한 selection 객체에 바인드함.enter()← enter()를 통해서 새로운 selection을 반환받음.append("div")← 실제로 div 태그로 이루어진 문서 요소를 생성함.attr("class", "bar")← 이 새로운 div 요소에 bar 클래스라는 속성을 넣음

```
. .style("height", function(d) {
  return d + "px";
});
```

 막대그래프를 만들기 위해서는 관련 데이터 값을 막대 높이에 주는 함수를 써야 함

• 막대 그래프 그리기

- 2. 세로 막대 그리기
 - ◆ 세로 막대 그리기 실습 순서
 - ① CSS로 막대그래프 스타일 지정하기
 - ② D3.js 문법으로 데이터세트와 막대그래프 설정하기
 - ③ 결과 화면 확인하기

• 그래프 이벤트 만들기

1. 마우스 이벤트 정의

- ♦ 사용자 상호작용
 - JavaScript에서 사용하는 이벤트모델
 - 사용자 입력으로부터 어떤 사건이 일어나는 상태예) 키보드, 마우스, 터치스크린
 - P요소에 이벤트리스너 실행코드

```
D3.select("p")
.on("click", function(){
// 클릭 시 이벤트가 발생한다.
});
```

• 그래프 이벤트 만들기

1. 마우스 이벤트 정의

- ◆ 호버(Hover)로 강조하기
 - 마우스 오버 효과를 낼 수 있는 호버(Hover)는 CSS 만으로도 효과를 낼 수 있음
 - 마우스 호버 시 회색으로 색상 변경

```
rect:hover {
fill:gray;
}
```

```
〈!DOCTYPE html〉
〈html〉
〈head〉
〈meta charset="utf-8"〉
〈title〉마우스 호버 이펙트〈/title〉
〈script src="//D3.js.org/d3.v3.min.js"
〈style type="text/CSS"〉
rect:hover {
fill: gray;
}
〈/style〉
〈/head〉
〈body〉 ...
```

• CSV 그래프 그리기

1. CSV 데이터 준비

- ◆ CSV 데이터 준비 순서
 - ① 10월 쇼핑리스트 시각화하기
 - ② CSS 파일 좌표 및 막대그래프 색 설정하기
 - ③ CSS 파일 툴팁 설정하기
 - ④ CSS 파일 작은 삼각형 만들기
 - ⑤ CSV 파일 로딩하기

• CSV 그래프 그리기

2. CSV 그래프 그리기 실습

- ◆ rangeBands 다루기
 - 치역에는 반올림한 대역폭을 사용
 - 치역을 지정할 때, 모든 값을 직접 지정해야 하는 range()를 사용하거나 균등하게 알아서 분할해 주는 rangeBand()를 사용할 수도 있음
 - rangeBand()
 - 치역의 양 끝 점을 전달인자로 받아 균등하게 대역을 분할해 줌

```
예) rangeBands ([0,w])
```

- → 0에서 시작해서 w로 끝나는 대역을 계산해서 그 조각들을 치역으로 지정함
- rangeRoundBands()
 - 대역사이의 간격을 같이 지정할 때 사용

```
예) .rangeRoundBands([0,w],0.05);
```

→ 대역 간 간격을 5%로 줄임, 막대 사이 간격이 깔끔해짐

◆ CSV 그래프 그리기 실습 순서

- ① rangeBands 다루기
- ② JavaScript 파일 최적화 하기
- ③ CSS 파일 최적화 하기
- ④ 결과 화면 확인하기

핵심요약

1. 막대 그래프 그리기

■ SVG 〈rect〉 알아보기

- width 와 height 속성 : 사각형의 높이와 폭 정의
- style 속성: 사각형을 위한 CSS 속성 정의
- CSS fill property : 사각형의 채우기 색 정의
- CSS stroke-width property : 사각형의 테두리의 폭 정의
- CSS stroke property : 사각형의 테두리 색 정의

■ SVG 공통 속성 목록

- 직접 문서요소의 인라인 속성이나 CSS 스타일 규칙 둘 중에 하나의 방법을 적용함
- fill: 바탕색 값을 표현하며 RGB 값 외 색상을 나타냄
- stroke : 선의 색상값
- stroke-width : 선의 두께로, 값은 숫자, 단위는 픽셀을 사용함
- opacity : 불투명도값으로 0 ~ 1 사이값을 가짐

■ D3.js select API

- D3.js에서는 조작하고자 하는 요소를 선택할 수 있는 select API를 제공함
- select API는 jquery의 select API와도 비슷하지만, D3에서는 selection 객체에 대해서 data()를 통해 특정 데이터를 바인드하고, enter()와 exit()를 통해 데이터에 대응하는 객체를 다룰 수 있는 기능들을 제공함
- data(dataset) : dataset을 미리 선택한 selection 객체에 바인드함
- .enter(): enter()를 통해서 새로운 selection을 반환받음
- .append("div") : 실제로 div 태그로 이루어진 문서 요소를 생성함
- .attr("class", "bar") : 이 새로운 div 요소에 bar 클래스라는 속성을 넣음

핵심요약

2. 그래프 이벤트 만들기

- 마우스 이벤트 정의
 - 사용자 상호작용
 - JavaScript에서 사용하는 이벤트모델: 키보드, 마우스, 터치스크린처럼 사용자 입력으로부터 어떤 사건이 일어나는 상태를 말함
- 호버(hover)로 강조하기
 - 마우스 오버 효과를 낼 수 있는 호버(hover)는 CSS 만으로도 효과를 낼 수 있음

핵심요약

3. CSV 그래프 그리기

- .rangeBands 다루기 실습 시 유의사항 작성
 - 치역에는 반올림한 대역폭을 사용함
 - 치역을 지정할 때, 모든 값을 직접 지정해야 하는 range()를 사용하거나 균등하게 알아서 분할해 주는 rangeBand()를 사용할 수도 있음
 - rangeBand()는 치역의 양 끝 점을 전달인자로 받음