On the Optimal Design of Fiscal Policy

Axelle Ferriere

D1 PSE

November 2023

Income and wealth inequality have increased since 1950

Figure 5: Top 5% and top 10% income and wealth shares

■ Top-income and -wealth shares have increased (SCF+, United States) Kuhn, Schularick and Stein (2020)

Income and wealth inequality have increased since 1950

■ Household income has been flat for 5 decades at the bottom (CPS, United States)
Heathcote, Violante, Perri and Zhang (2022)

Rethinking fiscal policy

■ High levels of inequality

Piketty Saez (2003), Heathcote Perri Violante (2010), Kuhn, Schularick and Stein (2020), Saez and Zucman (2020, 2022), Heathcote, Violante, Perri and Zhang (2022), . . .

- New questions in the policy debate, on the role of the welfare state
 - Should we implement a Universal Basic Income?
 - Should we tax wealth?

Rethinking fiscal policy

■ High levels of inequality

Piketty Saez (2003), Heathcote Perri Violante (2010), Kuhn, Schularick and Stein (2020), Saez and Zucman (2020, 2022), Heathcote, Violante, Perri and Zhang (2022), . . .

- New questions in the policy debate, on the role of the welfare state
 - Should we implement a Universal Basic Income?
 - Should we tax wealth?
- This class: rethinking fiscal policy
 - Optimal taxes at the household level
 - Old classical theoretical literature, new quantitative macro literature

Lecture 1

Capital and Wealth Taxes

Lecture 2

Labor Taxes and Transfers

Should we tax capital?

■ A classic question in macro...

- A classic question in macro...
 - ... which came back in recent policy debate

- A classic question in macro...
 - ... which came back in recent policy debate
- Methodology
 - Ramsey plans
 - Quantitative heterogeneous-agent models

- A classic question in macro...
 - ... which came back in recent policy debate
- Methodology
 - Ramsey plans
 - Quantitative heterogeneous-agent models
- Deterministic, long-run, steady-state

- 1. Optimal fiscal policy in representative-agent models
 - Define Ramsey plans to compute optimal taxes

- 1. Optimal fiscal policy in representative-agent models
 - Define Ramsey plans to compute optimal taxes
 - Capital taxes should be zero

- 1. Optimal fiscal policy in representative-agent models
 - Define Ramsey plans to compute optimal taxes
 - Capital taxes should be zero
- 2. Optimal fiscal policy in a standard Aiyagari models
 - Insurance, redistribution, and life-cycle dynamics

- 1. Optimal fiscal policy in representative-agent models
 - Define Ramsey plans to compute optimal taxes
 - Capital taxes should be zero
- 2. Optimal fiscal policy in a standard Aiyagari models
 - Insurance, redistribution, and life-cycle dynamics
 - Capital taxes should be 34%

- 1. Optimal fiscal policy in representative-agent models
 - Define Ramsey plans to compute optimal taxes
 - Capital taxes should be zero
- 2. Optimal fiscal policy in a standard Aiyagari models
 - Insurance, redistribution, and life-cycle dynamics
 - Capital taxes should be 34%
- 3. Optimal fiscal policy with heterogeneous capital returns
 - New facts on capital returns

- 1. Optimal fiscal policy in representative-agent models
 - Define Ramsey plans to compute optimal taxes
 - Capital taxes should be zero
- 2. Optimal fiscal policy in a standard Aiyagari models
 - Insurance, redistribution, and life-cycle dynamics
 - Capital taxes should be 34%
- 3. Optimal fiscal policy with heterogeneous capital returns
 - New facts on capital returns
 - Capital taxes should be negative, wealth taxes should be positive

- On optimal fiscal policy in RA models and the latest controversies
 - Chamley (1986), Judd (1985), Straub and Werning (2020)
 - Chari, Christiano, and Kehoe (1994), Farhi (2010), ...

- On optimal fiscal policy in RA models and the latest controversies
 - Chamley (1986), Judd (1985), Straub and Werning (2020)
 - Chari, Christiano, and Kehoe (1994), Farhi (2010), ...
- On capital taxes with insurance, redistribution, and life-cycle motives
 - Conesa, Kitao, and Krueger (2009)
 - Aiyagari (1995), Domeij and Heathcote (2002), Garriga (2017), ...

- On optimal fiscal policy in RA models and the latest controversies
 - Chamley (1986), Judd (1985), Straub and Werning (2020)
 - Chari, Christiano, and Kehoe (1994), Farhi (2010), ...
- On capital taxes with insurance, redistribution, and life-cycle motives
 - Conesa, Kitao, and Krueger (2009)
 - Aiyagari (1995), Domeij and Heathcote (2002), Garriga (2017), ...
- On the new facts on capital returns
 - Fagereng, Guiso, Malacrino, and Pistaferri (2020)
 - Bach, Calvet, and Sodini (2020), Smith et al. (2019), Becker and Hvide (2022), ...

- On optimal fiscal policy in RA models and the latest controversies
 - Chamley (1986), Judd (1985), Straub and Werning (2020)
 - Chari, Christiano, and Kehoe (1994), Farhi (2010), ...
- On capital taxes with insurance, redistribution, and life-cycle motives
 - Conesa, Kitao, and Krueger (2009)
 - Aiyagari (1995), Domeij and Heathcote (2002), Garriga (2017), ...
- On the new facts on capital returns
 - Fagereng, Guiso, Malacrino, and Pistaferri (2020)
 - Bach, Calvet, and Sodini (2020), Smith et al. (2019), Becker and Hvide (2022), ...
- On models with entrepreneurs and heterogeneous capital returns
 - Guvenen et al. (2023)
 - Kitao (2008), Bhandari and McGrattan (2020), Boar and Knowles (2020), Gaillard and Wangner (2022), ...

Next week?

- Labor taxes, transfers and welfare programs
 - Labor taxes should be constant
 - Labor taxes should provide redistribution

Admin

- Requirements:
 - 1. Attend all sessions
 - 2. Present one paper (20mn) on Nov 14 / Nov 21

Admin

- Requirements:
 - 1. Attend all sessions
 - 2. Present one paper (20mn) on Nov 14 / Nov 21
 - Structure:
 - + Short intro (question, what they do, what they find)
 - + Detailed description of the model and main results
 - + Main intuition for main results
 - Notation: short sentences, clean notation, self-contained slides, etc.
 - One line per bullet!
 - Time management

Admin

- Requirements:
 - 1. Attend all sessions
 - 2. Present one paper (20mn) on Nov 14 / Nov 21
 - Structure:
 - + Short intro (question, what they do, what they find)
 - + Detailed description of the model and main results
 - + Main intuition for main results
 - Notation: short sentences, clean notation, self-contained slides, etc.
 - One line per bullet!
 - Time management
 - ☐ Send me an email to pick a paper in the list (first come...)

Admin Presentations Nov 14: On Capital Taxes

- a. Hubmer, Krusell, and Smith (2020). "Sources of U.S. Wealth Inequality: Past, Present, and Future", NBER Macroeconomics Annual: Vol 35.
- b. Ozkan, Hubmer, Salgado, and Halvorsen (2023). "Why Are the Wealthiest So Wealthy? A Longitudinal Empirical Investigation".
- c. Gaillard and Wangner (2022). "Wealth, Returns, and Taxation: A Tale of Two Dependencies".
- d. Xavier (2021). "Wealth Inequality in the US: the Role of Heterogeneous Returns."
- e. Gerritsen, Jacobs, Spiritus, Rusu (2022). "Optimal Taxation of Capital Income with Heterogeneous Rates of Return."

Admin Presentations Nov 21: On Labor Taxes and Transfers

On labor taxes and/or the welfare state

- f. Heathcote Storesletten Violante (2020), "Optimal Progressivity with Age-Dependent Taxation", Journal of Public Economics.
- g. Heathcote Storesletten Violante (2020), "How Should Tax Progressivity Respond to Rising Income Inequality?", JEEA.
- h. Holter, Krueger, Stepanchuk (2019), "How Do Tax Progressivity and Household Heterogeneity Affect Laffer Curves?", QE.
- i. Krueger & Ludwig (2022), "High Marginal Tax Rates on the Top 1%? Lessons from a Life Cycle Model with Idiosyncratic Income Risk", AEJ Macro.
- j. Daruich & Fernandez (2022). "Universal Basic Income: A Dynamic Assessment", AER.

Admin Presentations Nov 21: On Labor Taxes and Transfers

- k. Caroll, Luduvice & Young (2023), "Optimal Fiscal Reform with Many Taxes".
- I. Guner, Lopez-Daneri and Ventura (2023), "The Looming Fiscal Reckoning: Tax Distortions, Top Earners, and Revenues", RED.

On taxes and the couple

- m. Guner, Kaygusuz and Ventura (2020), "Child-Related Transfers, Household Labor Supply and Welfare", Review of Economic Studies
- n. Bick and Fuchs-Schuendeln (2018), "Taxation and Labor Supply of Married Couples across Countries: A Macroeconomic Analysis"
- o. Holter, Krueger, Stepanchuk (2023), "Until the IRS Do Us Part: Optimal Taxation of Families"

1. Optimal Taxes in a

Deterministic Growth Model

■ Optimal taxes in a competitive equilibrium

- Optimal taxes in a competitive equilibrium
 - Households' behaviors and prices

- Optimal taxes in a competitive equilibrium
 - Households' behaviors and prices

■ Taxes: functional forms

- Optimal taxes in a competitive equilibrium
 - Households' behaviors and prices

■ Taxes: functional forms

■ Commitment in time-zero

- Optimal taxes in a competitive equilibrium
 - Households' behaviors and prices

■ Taxes: functional forms

■ Commitment in time-zero

■ Outline: environment; equilibrium; Ramsey plan

Environment Preferences and resources

■ Preferences of the representative household:

$$\sum_{t=0}^{\infty} \beta^t u(c_t, l_t), \tag{1}$$

where c_t : consumption, l_t : leisure.

Environment Preferences and resources

■ Preferences of the representative household:

$$\sum_{t=0}^{\infty} \beta^t u(c_t, l_t), \tag{1}$$

where c_t : consumption, l_t : leisure.

■ The two resource constraints are given by

$$l_t + n_t = 1$$

where n_t : labor, and

Environment Preferences and resources

■ Preferences of the representative household:

$$\sum_{t=0}^{\infty} \beta^t u(c_t, l_t), \tag{1}$$

where c_t : consumption, l_t : leisure.

■ The two resource constraints are given by

$$l_t + n_t = 1$$

where n_t : labor, and

$$g_t + c_t + k_{t+1} = A_t F(k_t, n_t) + (1 - \delta) k_t, \tag{2}$$

where g_t : government expenditure, A_t : TFP, k_t : capital with k_0 is given.

Environment First-Best

■ Planner problem

Environment First-Best

■ Planner problem

■ Two efficiency conditions

$$u_{c,t}A_tF_{n,t} = u_{l,t} (3)$$

$$u_{c,t} = \beta u_{c,t+1} \left[A_{t+1} F_{k,t+1} + 1 - \delta \right] \tag{4}$$

Competitive Equilibrium with Taxes Three agents

■ Representative household

■ Representative firm

■ Government

Competitive Equilibrium with Taxes Government

- Government
 - Spending g_t
 - Public debt b_t , labor tax au_t^n , capital tax au_t^k , lump-sum taxes T_t
 - b_0 given

Competitive Equilibrium with Taxes Government

- Government
 - Spending g_t
 - Public debt b_t , labor tax τ_t^n , capital tax τ_t^k , lump-sum taxes T_t
 - b_0 given

■ Budget constraint:

$$g_t + b_t = \tau_t^k r_t k_t + \tau_t^n w_t n_t + b_{t+1} / R_t + T_t$$
 (5)

where r_t : renting price of capital, w_t : price of labor, R_t : gross rate of return on one-period bonds from t to t+1.

- Household
 - Save in b_t and k_t
 - b_0 and k_0 given

- Household
 - Save in b_t and k_t
 - b_0 and k_0 given

■ Maximizes utility given budget constraint:

$$c_t + k_{t+1} + b_{t+1}/R_t = (1 - \tau_t^n)w_t n_t + (1 - \tau_t^k)r_t k_t - T_t + (1 - \delta)k_t + b_t$$
(6)

■ Household's maximization problem

■ Household's maximization problem

■ Three first-order conditions

$$u_{l,t} = u_{c,t} w_t (1 - \tau_t^n) \tag{7}$$

$$u_{c,t} = \beta u_{c,t+1}[(1 - \tau_{t+1}^k)r_{t+1} + 1 - \delta]$$
(8)

$$R_t = (1 - \tau_{t+1}^k)r_{t+1} + 1 - \delta \tag{9}$$

Competitive Equilibrium with Taxes Firms

The representative firm is standard and maximizes its profit every period:

$$r_t = A_t F_{k,t} \tag{10}$$

$$w_t = A_t F_{n,t} \tag{11}$$

Let $x \equiv \{x_t\}_{t=0}^{\infty}$.

Definition

A **feasible allocation** is a sequence (k,c,n,g) such that the resource constraint (2) holds $\forall t \geq 0$.

Let $x \equiv \{x_t\}_{t=0}^{\infty}$.

Definition

A **feasible allocation** is a sequence (k,c,n,g) such that the resource constraint (2) holds $\forall t \geq 0$.

Definition

A **price system** is a non-negative bounded sequence (w, r, R).

Definition

A government policy system is a sequence $(g, \tau_k, \tau_n, T, b)$.

Definition

A competitive equilibrium is a feasible allocation, a price system, and a government policy, such that:

- a. Given the price system and the government policy, the allocation solves the firm's problem and the household's problem
- b. Given the allocation and the price system, the government policy satisfies the sequence of government budget constraints (5).

Definition

A **competitive equilibrium** is a **feasible** allocation, a price system, and a government policy, such that:

- a. Given the price system and the government policy, the allocation solves the firm's problem and the household's problem
- b. Given the allocation and the price system, the government policy satisfies the sequence of government budget constraints (5).

■ An infinity of CE! Why?

Claim

The first-best allocation requires capital and labor taxes to be zero.

Claim

The first-best allocation requires capital and labor taxes to be zero.

- Labor and capital taxes are said to be distortionary.
- What about τ_0^k ? What about lump-sum taxes?

Claim

The first-best allocation requires capital and labor taxes to be zero.

- Labor and capital taxes are said to be distortionary.
- What about τ_0^k ? What about lump-sum taxes?

Claim

The first-best can be implemented by lump-sum taxes and balanced budget.

Claim

The first-best allocation requires capital and labor taxes to be zero.

- Labor and capital taxes are said to be distortionary.
- What about τ_0^k ? What about lump-sum taxes?

Claim

The first-best can be implemented by lump-sum taxes and balanced budget.

Claim

Ricardian equivalence: the first-best allocation can be implemented by any path $\{b_t\}$ for debt, and $T_t = g_t + b_t - b_{t+1}/R_t$.

Government

- Choose sequences of tax rates at time-0
- Anticipate households' responses to tax plans
- Benevolent

Government

- Choose sequences of tax rates at time-0
- Anticipate households' responses to tax plans
- Benevolent

Definition

A Ramey problem is to choose a competitive equilibrium which maximizes (ex ante) consumer welfare.

Government

- Choose sequences of tax rates at time-0
- Anticipate households' responses to tax plans
- Benevolent

Definition

A Ramey problem is to choose a competitive equilibrium which maximizes (ex ante) consumer welfare.

lacksquare Rule-out lump-sum taxes and assume au_0^k is given. Why?

- A Ramsey plan is a complicated problem
 - Choose allocations, price system, and government policy
 - To maximize utility (1)
 - S.T. all equations holds: resource (2), gov BC (5), HH BC (6) & FOC (7), (8), (9), Firm FOC (10), (11)

- A Ramsey plan is a complicated problem
 - Choose allocations, price system, and government policy
 - To maximize utility (1)
 - S.T. all equations holds: resource (2), gov BC (5), HH BC (6) & FOC (7), (8), (9), Firm FOC (10), (11)

 \Rightarrow Goal: to simplify the Ramsey plan

■ First, we can ignore the household budget constraint

- First, we can ignore the household budget constraint
 - Euler theorem: $F(k,n) = F_k k + F_n n$

- First, we can ignore the household budget constraint
 - Euler theorem: $F(k,n) = F_k k + F_n n$
 - Resource constraint (2) + govt budget constraint

$$g_t + c_t + k_{t+1} = A_t F(k_t, n_t) + (1 - \delta)k_t$$
 (2)

$$g_t + b_t = \tau_t^k r_t k_t + \tau_t^n w_t n_t + b_{t+1} / R_t$$
 (5)

- Dual approach: use after-tax prices
 - $\tilde{r}_t \equiv (1 au_{kt}) F_{k,t}$ and $\tilde{w}_t \equiv (1 au_{nt}) F_{n,t}$
 - Solve for \tilde{r}_t and \tilde{w}_t instead of r_t and w_t

- Dual approach: use after-tax prices
 - $\tilde{r}_t \equiv (1- au_{kt})F_{k,t}$ and $\tilde{w}_t \equiv (1- au_{nt})F_{n,t}$
 - Solve for $ilde{r}_t$ and $ilde{w}_t$ instead of r_t and w_t
 - Get rid of two controls: τ^k_t and τ^n_t , and two FOC (firm)

- Dual approach: use after-tax prices
 - $\tilde{r}_t \equiv (1 au_{kt}) F_{k,t}$ and $\tilde{w}_t \equiv (1 au_{nt}) F_{n,t}$
 - Solve for $ilde{r}_t$ and $ilde{w}_t$ instead of r_t and w_t
 - Get rid of two controls: au_t^k and au_t^n , and two FOC (firm)
- Rewrite government's budget constraint

$$L = \sum_{t=0}^{\infty} \beta^t \left\{ u(c_t, 1 - n_t) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) \right\}$$

$$L = \sum_{t=0}^{\infty} \beta^{t} \begin{cases} u(c_{t}, 1 - n_{t}) + \\ + \Phi_{t} \left[A_{t}F(k_{t}, n_{t}) - \tilde{r}_{t}k_{t} - \tilde{w}_{t}n_{t} - g_{t} + b_{t+1}/R_{t} - b_{t} \right] + \\ L = \sum_{t=0}^{\infty} \beta^{t} \end{cases}$$

$$L = \sum_{t=0}^{\infty} \beta^{t} \begin{cases} u(c_{t}, 1 - n_{t}) + \\ + \Phi_{t} \left[A_{t} F(k_{t}, n_{t}) - \tilde{r}_{t} k_{t} - \tilde{w}_{t} n_{t} - g_{t} + b_{t+1} / R_{t} - b_{t} \right] + \\ + \lambda_{t} \left[A_{t} F(k_{t}, n_{t}) + (1 - \delta) k_{t} - k_{t+1} - c_{t} - g_{t} \right] + \end{cases}$$

$$L = \sum_{t=0}^{\infty} \beta^t \begin{cases} u(c_t, 1 - n_t) + \\ + \underbrace{\Phi_t \left[A_t F(k_t, n_t) - \tilde{r}_t k_t - \tilde{w}_t n_t - g_t + b_{t+1} / R_t - b_t \right] + \\ + \lambda_t \left[A_t F(k_t, n_t) + (1 - \delta) k_t - k_{t+1} - c_t - g_t \right] + \\ + \mu_{1t} \left[u_l(c_t, 1 - n_t) - u_c(c_t, 1 - n_t) \tilde{w}_t \right] + \\ + \mu_{2t} \left[u_c(c_t, 1 - n_t) - \beta u_c(c_{t+1}, 1 - n_{t+1}) \left(\tilde{r}_{t+1} + 1 - \delta \right) \right] \\ + \mu_{3t} \left[R_t - \tilde{r}_{t+1} + 1 - \delta \right] \end{cases}$$

$$L = \sum_{t=0}^{\infty} \beta^{t} \left\{ \begin{array}{c} u(c_{t}, 1 - n_{t}) + \\ + \Phi_{t} \left[A_{t} F(k_{t}, n_{t}) - \tilde{r}_{t} k_{t} - \tilde{w}_{t} n_{t} - g_{t} + b_{t+1} / R_{t} - b_{t} \right] + \\ + \lambda_{t} \left[A_{t} F(k_{t}, n_{t}) + (1 - \delta) k_{t} - k_{t+1} - c_{t} - g_{t} \right] + \\ + \mu_{1t} \left[u_{l}(c_{t}, 1 - n_{t}) - u_{c}(c_{t}, 1 - n_{t}) \tilde{w}_{t} \right] + \\ + \mu_{2t} \left[u_{c}(c_{t}, 1 - n_{t}) - \beta u_{c}(c_{t+1}, 1 - n_{t+1}) \left(\tilde{r}_{t+1} + 1 - \delta \right) \right] \\ + \mu_{3t} \left[R_{t} - \tilde{r}_{t+1} + 1 - \delta \right] \end{array} \right\}$$

- No more taxes!
- What do I chose?
 - Allocations $\{c_t, k_{t+1}, n_t\}$ and after-tax prices $\{\tilde{w}_t, \tilde{r}_t, R_t\}$

Ramsey Plan Lagrangian

$$L = \sum_{t=0}^{\infty} \beta^{t} \left\{ \begin{array}{c} u(c_{t}, 1 - n_{t}) + \\ + \Phi_{t} \left[A_{t} F(k_{t}, n_{t}) - \tilde{r}_{t} k_{t} - \tilde{w}_{t} n_{t} - g_{t} + b_{t+1} / R_{t} - b_{t} \right] + \\ + \lambda_{t} \left[A_{t} F(k_{t}, n_{t}) + (1 - \delta) k_{t} - k_{t+1} - c_{t} - g_{t} \right] + \\ + \mu_{1t} \left[u_{l}(c_{t}, 1 - n_{t}) - u_{c}(c_{t}, 1 - n_{t}) \tilde{w}_{t} \right] + \\ + \mu_{2t} \left[u_{c}(c_{t}, 1 - n_{t}) - \beta u_{c}(c_{t+1}, 1 - n_{t+1}) \left(\tilde{r}_{t+1} + 1 - \delta \right) \right] \\ + \mu_{3t} \left[R_{t} - \tilde{r}_{t+1} + 1 - \delta \right] \end{array} \right\}$$

- No more taxes!
- What do I chose?
 - Allocations $\{c_t, k_{t+1}, n_t\}$ and after-tax prices $\{\tilde{w}_t, \tilde{r}_t, R_t\}$
- Then I can compute taxes:

$$\tilde{r}_t = (1 - \tau_t^k) r_t = (1 - \tau_t^k) F_k(n_t, k_t)
\tilde{w}_t = (1 - \tau_t^n) w_t = (1 - \tau_t^n) F_n(n_t, k_t)$$

Ramsey Plan Lagrangian

$$L = \sum_{t=0}^{\infty} \beta^{t} \left\{ \begin{array}{c} u(c_{t}, 1 - n_{t}) + \\ +\Phi_{t} \left[A_{t}F(k_{t}, n_{t}) - \tilde{r}_{t}k_{t} - \tilde{w}_{t}n_{t} - g_{t} + b_{t+1}/R_{t} - b_{t} \right] + \\ +\lambda_{t} \left[A_{t}F(k_{t}, n_{t}) + (1 - \delta)k_{t} - k_{t+1} - c_{t} - g_{t} \right] + \\ +\mu_{1t} \left[u_{t}(c_{t}, 1 - n_{t}) - u_{c}(c_{t}, 1 - n_{t})\tilde{w}_{t} \right] + \\ +\mu_{2t} \left[u_{c}(c_{t}, 1 - n_{t}) - \beta u_{c}(c_{t+1}, 1 - n_{t+1}) \left(\tilde{r}_{t+1} + 1 - \delta \right) \right] \\ +\mu_{3t} \left[R_{t} - \tilde{r}_{t+1} + 1 - \delta \right] \end{array} \right\}$$

■ FOC w.r.t. k_{t+1}

$$\lambda_t = \beta \left[\Phi_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) - \tilde{r}_{t+1} \right) + \lambda_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) + 1 - \delta \right) \right]$$

■ FOC w.r.t. k_{t+1}

$$\lambda_t = \beta \left[\Phi_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) - \tilde{r}_{t+1} \right) + \lambda_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) + 1 - \delta \right) \right]$$

■ Long-run non-stochastic steady-state: $g_t = g$, $A_t = A$, assuming the steady-state converges

$$\lambda = \beta \left[\Phi \left(r - \tilde{r} \right) + \lambda (r + 1 - \delta) \right]$$

■ FOC w.r.t. k_{t+1}

$$\lambda_t = \beta \left[\Phi_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) - \tilde{r}_{t+1} \right) + \lambda_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) + 1 - \delta \right) \right]$$

■ Long-run non-stochastic steady-state: $g_t = g$, $A_t = A$, assuming the steady-state converges

$$\lambda = \beta \left[\Phi \left(r - \tilde{r} \right) + \lambda (r + 1 - \delta) \right]$$

■ Households' Euler equation (8) in steady-state

$$1 = \beta \left((1 - \delta) + \tilde{r} \right)$$

■ FOC w.r.t. k_{t+1}

$$\lambda_t = \beta \left[\Phi_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) - \tilde{r}_{t+1} \right) + \lambda_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) + 1 - \delta \right) \right]$$

■ Long-run non-stochastic steady-state: $g_t = g$, $A_t = A$, assuming the steady-state converges

$$\lambda = \beta \left[\Phi \left(r - \tilde{r} \right) + \lambda (r + 1 - \delta) \right]$$

■ Households' Euler equation (8) in steady-state

$$1 = \beta \left((1 - \delta) + \tilde{r} \right)$$

Combining these equations

$$(\lambda + \Phi)(r - \tilde{r}) = 0$$

■ FOC w.r.t. k_{t+1}

$$\lambda_t = \beta \left[\Phi_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) - \tilde{r}_{t+1} \right) + \lambda_{t+1} \left(A_{t+1} F_k(k_{t+1}, n_{t+1}) + 1 - \delta \right) \right]$$

■ Long-run non-stochastic steady-state: $g_t = g$, $A_t = A$, assuming the steady-state converges

$$\lambda = \beta \left[\Phi \left(r - \tilde{r} \right) + \lambda (r + 1 - \delta) \right]$$

■ Households' Euler equation (8) in steady-state

$$1 = \beta \left((1 - \delta) + \tilde{r} \right)$$

Combining these equations

$$(\lambda + \Phi)(r - \tilde{r}) = 0$$

■ Under some conditions, $\lambda + \Phi > 0 => r = \tilde{r} => \tau_k = 0$

Ramsey Plan Capital taxes should be zero...

■ Capital should not be taxed in the long run!

Ramsey Plan Capital taxes should be zero...

- Capital should not be taxed in the long run!
 - How to finance g in the long-run? With labor taxes! (or assets?)

Ramsey Plan Capital taxes should be zero...

- Capital should not be taxed in the long run!
 - How to finance g in the long-run? With labor taxes! (or assets?)
 - An **efficiency** argument

Ramsey Plan Capital taxes should be zero... or one!

- Capital should not be taxed in the long run!
 - How to finance g in the long-run? With labor taxes! (or assets?)
 - An efficiency argument
- lacksquare But in the short run... $au_0^k = ar{ au}!$
 - Terrible time-consistency problem

■ Straub and Werning (2020)

- Straub and Werning (2020)
- Key argument: $au_k < ar{ au}$ in the long-un and an interior steady-state exists

- Straub and Werning (2020)
- Key argument: $au_k < ar{ au}$ in the long-un and an interior steady-state exists
- Writing the constraint explicitly...
 - One more constraint in the Lagrangian:

$$\tilde{r_t} = (1 - \tau_t^k) F_k(k_t, n_t) \ge (1 - \bar{\tau}) F_k(k_t, n_t)$$

- One more multiplier...

- Straub and Werning (2020)
- Key argument: $\tau_k < \bar{\tau}$ in the long-un and an interior steady-state exists
- Writing the constraint explicitly...
 - One more constraint in the Lagrangian:

$$\tilde{r_t} = (1 - \tau_t^k) F_k(k_t, n_t) \ge (1 - \bar{\tau}) F_k(k_t, n_t)$$

- One more multiplier...

- Is there an interior steady-state? Where all multipliers converge?
 - Depends on the intertemporal elasticity of substitution!

- Straub and Werning (2020)
- Key argument: $\tau_k < \bar{\tau}$ in the long-un and an interior steady-state exists
- Writing the constraint explicitly...
 - One more constraint in the Lagrangian:

$$\tilde{r_t} = (1 - \tau_t^k) F_k(k_t, n_t) \ge (1 - \bar{\tau}) F_k(k_t, n_t)$$

- One more multiplier...

- Is there an interior steady-state? Where all multipliers converge?
 - Depends on the intertemporal elasticity of substitution!
- ⇒ Not as general as we thought it was...

Optimal Fiscal Policy in RBC Model Taking stock

- Capital taxes should be zero...
- ...in the long-run, and under some conditions

2. Optimal Fiscal Policy in

Standard Aiyagari Models

- Optimal taxes with heterogeneity
 - Redistribution/insurance concerns

- Optimal taxes with heterogeneity
 - Redistribution/insurance concerns
- Heterogeneous-agent model a la Aiyagari (1995)
 - Idiosyncratic income risk
 - Incomplete markets and borrowing constraints

- Optimal taxes with heterogeneity
 - Redistribution/insurance concerns
- Heterogeneous-agent model a la Aiyagari (1995)
 - Idiosyncratic income risk
 - Incomplete markets and borrowing constraints
- Quantitative exercise
 - Calibration
 - Optimization on some parameters of the tax function

- Optimal taxes with heterogeneity
 - Redistribution/insurance concerns
- Heterogeneous-agent model a la Aiyagari (1995)
 - Idiosyncratic income risk
 - Incomplete markets and borrowing constraints
- Quantitative exercise
 - Calibration
 - Optimization on some parameters of the tax function
- Environment; equilibrium; optimal policy

- lacksquare J generations of households
 - Work until age J_r , then retired
 - Probability of survival ψ_{j} with $\psi_{J}=0$

- lacksquare J generations of households
 - Work until age J_r , then retired
 - Probability of survival ψ_j with $\psi_J=0$
 - Unintended bequests redistributed lump-sum ${\it Tr}$
 - Born with zero wealth (but bequests)

- lacksquare J generations of households
 - Work until age J_r , then retired
 - Probability of survival ψ_j with $\psi_J=0$
 - Unintended bequests redistributed lump-sum ${\it Tr}$
 - Born with zero wealth (but bequests)
- Value consumption and labor:

$$\mathbb{E}\sum_{j=1}^{J}\beta^{j-1}u(c_j,n_j)$$

- lacksquare Idiosyncratic productivity of agent with type i and age j: $arepsilon_j lpha_i \eta$
- Heterogeneity in several dimensions
 - Age j: $arepsilon_j$ captures the age-profile productivity, with $arepsilon_j=0 \ orall \ j>J_r$
 - Type i: α_i distributed with probability p_i
 - Idiosyncratic shocks: η follows an AR(1) with probability Π

- lacksquare Idiosyncratic productivity of agent with type i and age j: $arepsilon_j lpha_i \eta$
- Heterogeneity in several dimensions
 - Age $j\colon arepsilon_j$ captures the age-profile productivity, with $arepsilon_j=0 \ orall \ j>J_r$
 - Type i: α_i distributed with probability p_i
 - Idiosyncratic shocks: η follows an AR(1) with probability Π
- lacksquare Households can trade risk-free bonds a up to \underline{a}

- Idiosyncratic productivity of agent with type i and age j: $\varepsilon_j \alpha_i \eta$
- Heterogeneity in several dimensions
 - Age j: $arepsilon_j$ captures the age-profile productivity, with $arepsilon_j=0~orall~j>J_r$
 - Type i: α_i distributed with probability p_i
 - Idiosyncratic shocks: η follows an AR(1) with probability Π
- lacksquare Households can trade risk-free bonds a up to \underline{a}
- Household state: (a, η, i, j)

Environment Technology

■ Technology

$$G_t + C_t + K_{t+1} - (1 - \delta)K_t = K_t^{\alpha} N_t^{1 - \alpha}$$
(12)

- Aggregate stationary steady-state
 - Aggregates are constant... but not idiosyncratic variables!

Environment Government

- Social Security
 - Lump-sum SS_t distributed to all retired households
 - A tax on labor income τ_{ss} up to a cap \overline{y}

Environment Government

- Social Security
 - Lump-sum SS_t distributed to all retired households
 - A tax on labor income au_{ss} up to a cap \overline{y}
- lacktriangle Exogenous spending G_t financed by
 - A linear tax τ_k on capital income $r_t(A_t + Tr_t)$
 - A linear tax au_c on consumption c
 - A progressive tax T(.) on taxable labor income $y_L \tau_{ss}min\{y_L,\overline{y}\}$ where $y_L = w\varepsilon_j\alpha_i\eta$

A stationary recursive competitive equilibrium (RCE) is:

- a policy $\{G, \tau_c, \tau_k, T, \tau_{ss}, \overline{y}, SS\}$
- a policy for the firm $\{N, K\}$
- value and policy functions for the household $\{\nu(a,\eta,i,j),c(a,\eta,i,j),a'(a,\eta,i,j),n(a,\eta,i,j)\}$ and bequests (Tr)
- prices $\{w,r\}$ and a distribution $\Phi(a,\eta,i,j)$

s.t.:

A stationary recursive competitive equilibrium (RCE) is:

- a policy $\{G, \tau_c, \tau_k, T, \tau_{ss}, \overline{y}, SS\}$
- a policy for the firm $\{N, K\}$

a' > a

- value and policy functions for the household $\{\nu(a,\eta,i,j),c(a,\eta,i,j),a'(a,\eta,i,j),n(a,\eta,i,j)\}$ and beguests (Tr)
- prices $\{w,r\}$ and a distribution $\Phi(a,\eta,i,j)$

s.t.:

1. Given prices and policies, the household behaves optimally:

$$\begin{split} \nu(a,\eta,i,j) &= \max_{c,a',n} u(c,n) + \beta \psi_j \int_{\eta'|\eta} \nu(a',\eta',i,j+1) \pi(\eta'|\eta) \text{ s.t.} \\ (1+\tau_c)c + a' &= y_L - \tau_{ss} min\{y_L,\overline{y}\} - T(y_L^T) + [1+r(1-\tau_k)](a+Tr) \text{ if } j < J_r, \text{ where } y_L = w\varepsilon_j \alpha_i \eta n \\ (1+\tau_c)c + a' &= ss + [1+r(1-\tau_k)](a+\operatorname{Tr}) \text{ if } j \geq J_r \end{split}$$

2. Firms behave optimally:

$$r = \alpha \bigg(\frac{N}{K}\bigg)^{1-\alpha} - \delta, \text{ and } w = (1-\alpha)\bigg(\frac{K}{N}\bigg)^{\alpha}$$

2. Firms behave optimally:

$$r = \alpha \bigg(\frac{N}{K}\bigg)^{1-\alpha} - \delta, \text{ and } w = (1-\alpha)\bigg(\frac{K}{N}\bigg)^{\alpha}$$

3. Social Security system is balanced:

$$\tau_{ss} \int \min\{w\alpha_i \varepsilon_j \eta n(a, \eta, i, j), \overline{y}\} \Phi(a, \eta, i, j) = SS \int \Phi(a, \eta, i, j \ge J_r)$$

2. Firms behave optimally:

$$r = \alpha \bigg(\frac{N}{K}\bigg)^{1-\alpha} - \delta, \text{ and } w = (1-\alpha)\bigg(\frac{K}{N}\bigg)^{\alpha}$$

3. Social Security system is balanced:

$$\tau_{ss} \int \min\{w\alpha_i \varepsilon_j \eta n(a, \eta, i, j), \overline{y}\} \Phi(a, \eta, i, j) = SS \int \Phi(a, \eta, i, j \ge J_r)$$

4. Transfers solve:

$$Tr \int \Phi'(a, \eta, i, j) = \int (1 - \psi_j) a'(a, \eta, i, j) \Phi(a, \eta, i, j)$$

Competitive Equilibrium Definition

2. Firms behave optimally:

$$r = \alpha \left(\frac{N}{K}\right)^{1-\alpha} - \delta$$
, and $w = (1-\alpha)\left(\frac{K}{N}\right)^{\alpha}$

3. Social Security system is balanced:

$$\tau_{ss} \int \min\{w\alpha_i \varepsilon_j \eta n(a, \eta, i, j), \overline{y}\} \Phi(a, \eta, i, j) = SS \int \Phi(a, \eta, i, j \ge J_r)$$

4. Transfers solve:

$$Tr \int \Phi'(a,\eta,i,j) = \int (1-\psi_j)a'(a,\eta,i,j)\Phi(a,\eta,i,j)$$

5. The government's budget constraint holds:

$$G = \int \tau_k r(a + Tr) \Phi(a, \eta, i, j) + \int T(y_L^T(\eta, i, j)) \Phi(a, \eta, i, j) \cdots$$
$$+ \int \tau_c c(a, \eta, i, j) \Phi(a, \eta, i, j)$$

Competitive Equilibrium Definition

6. Markets clear:

$$K = \int a\Phi(a, \eta, i, j)$$

$$N = \int \varepsilon_j \alpha_i \eta n(a, \eta, i, j) \Phi(a, \eta, i, j)$$

Competitive Equilibrium Definition

6. Markets clear:

$$K = \int a\Phi(a, \eta, i, j)$$

$$N = \int \varepsilon_j \alpha_i \eta n(a, \eta, i, j) \Phi(a, \eta, i, j)$$

7. The measure is stationary: $\forall \mathcal{J}$ s.t. 1 non in \mathcal{J} ,

$$\Phi(A \times E \times \mathcal{I} \times \mathcal{J}) = \int Q((a, \eta, i, j); A \times E \times \mathcal{I} \times \mathcal{J}) \Phi(a, \varepsilon, i, j)$$

where

$$Q(a, \eta, i, j; A \times E \times \mathcal{I} \times \mathcal{J}) = \cdots$$

$$\psi_j \int \mathbf{1}_{(a'(a, \eta, i, j) \in A) \times (i \in \mathcal{I}) \times (j+1) \in \mathcal{J})} \sum_{\eta'} P(\eta' \in E | \eta) \Phi(a, \eta, i, j)$$

- Demographics
 - Agents born at age 20, retire at age 65, die w.p.1 at age 100
 - Survival probabilities: actuarial data

- Demographics
 - Agents born at age 20, retire at age 65, die w.p.1 at age 100
 - Survival probabilities: actuarial data
- Preferences: $u(c,n) = (c^{\gamma}(1-n)^{1-\gamma})^{(1-\sigma)}/(1-\sigma)$
 - $\sigma=4$, (β,γ) s.t. K/Y=2.7 and $\int n=1/3$

- Demographics
 - Agents born at age 20, retire at age 65, die w.p.1 at age 100
 - Survival probabilities: actuarial data
- \blacksquare Preferences: : $u(c,n)=(c^{\gamma}(1-n)^{1-\gamma})^{(1-\sigma)}/(1-\sigma)$
 - $\sigma=4$, (β,γ) s.t. K/Y=2.7 and $\int n=1/3$
- Technology: $\alpha=0.36$, δ s.t. $\frac{I}{Y}=25\%$

- Demographics
 - Agents born at age 20, retire at age 65, die w.p.1 at age 100
 - Survival probabilities: actuarial data
- Preferences: $u(c,n) = (c^{\gamma}(1-n)^{1-\gamma})^{(1-\sigma)}/(1-\sigma)$
 - $\sigma=4$, (β,γ) s.t. K/Y=2.7 and $\int n=1/3$
- Technology: $\alpha = 0.36$, δ s.t. $\frac{I}{V} = 25\%$
- Heterogeneity
 - Age-profile productivities $\{\epsilon_j\}$ follow Hansen (93)
 - Two types $\{\alpha_i\}$
 - Productivity $\{\eta\}$ follows Storesletten, Telmer, Yaron (04)

- Social Security
 - $au_{ss}=12.4\%$, $\overline{y}:2.5$ of the average income
 - SS to balance the budget constraint

- Social Security
 - $au_{ss}=12.4\%$, $\overline{y}:2.5$ of the average income
 - SS to balance the budget constraint
- Government
 - G s.t. G/Y = 0.17
 - $\tau_c = 5\%$
 - Total income (including capital) taxed a la Gouveia and Strauss (94)

$$T(y) = \kappa_0 \left(y - \left(y^{-\kappa_1} + \kappa_2 \right)^{-\frac{1}{\kappa_1}} \right)$$

where κ_0 captures the average tax rate (26%), κ_1 level of progressivity (0.76), κ_2 solves the budget constraint

Calibration A comment on tax functions

 \blacksquare Often, capital income is taxed linearly at $\approx 30\%$

Calibration A comment on tax functions

- \blacksquare Often, capital income is taxed linearly at $\approx 30\%$
 - Short-run capital gains are taxed differently in the U.S.
 - Real estate is taxed linearly
 - Corporate profits are taxed linearly
 - Measurement issues...

Results Optimal plan

- Main experiment: optimize on $\tau_k, \kappa_0, \kappa_1$
 - Find κ_2 s.t. the government's budget constraint holds

Results Optimal plan

- Main experiment: optimize on $\tau_k, \kappa_0, \kappa_1$
 - Find κ_2 s.t. the government's budget constraint holds
- Optimal parameters
 - Progressive labor tax: $\kappa_0=0.23,~\kappa_1\approx 7$ i.e. flat tax rate of 23% with a deduction of about 15% of mean income

Results Optimal plan

- Main experiment: optimize on $\tau_k, \kappa_0, \kappa_1$
 - Find κ_2 s.t. the government's budget constraint holds
- Optimal parameters
 - Progressive labor tax: $\kappa_0=0.23, \ \kappa_1\approx 7$ i.e. flat tax rate of 23% with a deduction of about 15% of mean income
 - Positive capital tax: $\tau_k = 36\%$

■ Life cycle motives

- Life cycle motives
 - OLG: households may work too much at early age
 - $+\;$ To accumulate wealth and finance retirement

■ Life cycle motives

- OLG: households may work too much at early age
 - + To accumulate wealth and finance retirement
- Optimal labor tax is age-dependent
 - $\,+\,$ Typically, high for the young, low for the old

Life cycle motives

- OLG: households may work too much at early age
 - + To accumulate wealth and finance retirement
- Optimal labor tax is age-dependent
 - + Typically, high for the young, low for the old
- Restrictions: no age-dependent taxes
 - $+\,\,$ Progressive labor taxes and positive capital taxes

■ Life cycle motives

- OLG: households may work too much at early age
 - + To accumulate wealth and finance retirement
- Optimal labor tax is age-dependent
 - + Typically, high for the young, low for the old
- Restrictions: no age-dependent taxes
 - $+\,\,$ Progressive labor taxes and positive capital taxes
- Insurance motives

■ Life cycle motives

- OLG: households may work too much at early age
 - + To accumulate wealth and finance retirement
- Optimal labor tax is age-dependent
 - + Typically, high for the young, low for the old
- Restrictions: no age-dependent taxes
 - + Progressive labor taxes and positive capital taxes

■ Insurance motives

- Incomplete markets generates overaccumulation of capital

■ Life cycle motives

- OLG: households may work too much at early age
 - + To accumulate wealth and finance retirement
- Optimal labor tax is age-dependent
 - $+\,\,$ Typically, high for the young, low for the old
- Restrictions: no age-dependent taxes
 - + Progressive labor taxes and positive capital taxes

■ Insurance motives

- Incomplete markets generates overaccumulation of capital
- Redistribution motives
 - Tax capital to lower labor taxes

- Evaluate life-cycle components
 - Drop $\eta\text{-shocks}$ and $\alpha\text{-types},$ retain $\epsilon\text{-profiles}$ and social security
 - Recalibrate the model

- Evaluate life-cycle components
 - Drop $\eta\text{-shocks}$ and $\alpha\text{-types},$ retain $\epsilon\text{-profiles}$ and social security
 - Recalibrate the model
 - Optimize on au_k and κ_0 (assuming flat labor tax)

- Evaluate life-cycle components
 - Drop $\eta\text{-shocks}$ and $\alpha\text{-types},$ retain $\epsilon\text{-profiles}$ and social security
 - Recalibrate the model
 - Optimize on au_k and κ_0 (assuming flat labor tax) $\Rightarrow au_k = 34\%$

- Evaluate life-cycle components
 - Drop η -shocks and α -types, retain ϵ -profiles and social security
 - Recalibrate the model
 - Optimize on au_k and κ_0 (assuming flat labor tax) $\Rightarrow au_k = 34\%$
- Add redistribution purposes
 - Add α -types and **recalibrate**
 - Optimize on au_k , κ_0 and κ_1

- Evaluate life-cycle components
 - Drop η -shocks and α -types, retain ϵ -profiles and social security
 - Recalibrate the model
 - Optimize on au_k and κ_0 (assuming flat labor tax) $\Rightarrow au_k = 34\%$
- Add redistribution purposes
 - Add lpha-types and ${f recalibrate}$
 - Optimize on au_k , κ_0 and $\kappa_1 \Rightarrow au_k = 32\%$

- Evaluate life-cycle components
 - Drop η -shocks and α -types, retain ϵ -profiles and social security
 - Recalibrate the model
 - Optimize on au_k and κ_0 (assuming flat labor tax) $\Rightarrow au_k = 34\%$
- Add redistribution purposes
 - Add lpha-types and ${f recalibrate}$
 - Optimize on au_k , κ_0 and $\kappa_1 \Rightarrow au_k = 32\%$
- Add insurance purposes
 - Add η -shock and \underline{a} and $\operatorname{recalibrate}$

- Evaluate life-cycle components
 - Drop η -shocks and α -types, retain ϵ -profiles and social security
 - Recalibrate the model
 - Optimize on au_k and κ_0 (assuming flat labor tax) $\Rightarrow au_k = 34\%$
- Add redistribution purposes
 - Add α -types and **recalibrate**
 - Optimize on au_k , κ_0 and $\kappa_1 \Rightarrow au_k = 32\%$
- Add insurance purposes
 - Add η -shock and \underline{a} and $\operatorname{recalibrate} \Rightarrow \tau_k = 36\%$

Figure 1: Life Cycle Profiles of Assets, Labor Supply, Consumption and Tayos

■ It's all about life-cycle motives!

■ It's all about life-cycle motives!

- Extensive robustness checks
 - Less elastic labor supply decreases au_k

■ It's all about life-cycle motives!

- Extensive robustness checks
 - Less elastic labor supply decreases au_k
 - Robustness w.r.t.: $IES,\,D/GDP$, social welfare function, $U,\,\dots$
 - No transitions (!!!)

3. Heterogeneous Capital Returns

Taxing capital? An ongoing debate

- Wealth inequality is very large in the data
 - Top-10% owns 65% of wealth, top-1% owns 34% (SCF 2004)

Taxing capital? An ongoing debate

- Wealth inequality is very large in the data
 - Top-10% owns 65% of wealth, top-1% owns 34% (SCF 2004)
 - (Depends on the exact definition of wealth, depends on the years, depends on how you impute wealth to the top-1%...)
 - Saez Zucman: the top 0.1% holds 20% of the economy's net worth

Taxing capital? An ongoing debate

- Wealth inequality is very large in the data
 - Top-10% owns 65% of wealth, top-1% owns 34% (SCF 2004)
 - (Depends on the exact definition of wealth, depends on the years, depends on how you impute wealth to the top-1%...)
 - Saez Zucman: the top 0.1% holds 20% of the economy's net worth
 - Wealth distribution is **much more** skewed than income distribution

Taxing capital? An ongoing debate

- Wealth inequality is very large in the data
 - Top-10% owns 65% of wealth, top-1% owns 34% (SCF 2004)
 - (Depends on the exact definition of wealth, depends on the years, depends on how you impute wealth to the top-1%...)
 - Saez Zucman: the top 0.1% holds 20% of the economy's net worth
 - Wealth distribution is **much more** skewed than income distribution

■ Policy: Taxing capital to redistribute?

- Basic Aiyagari model fails to generate realistic wealth distributions
 - Standard log-AR(1) process (Floden and Lindé 2001) & preferences

	Q1	Q2	Q3	Q4	Q5	Top 10%	Top 1%
Data (04)	-0%	1%	4%	12%	83%	65%	34%
Model	0%	4%	12%	25%	58%	37%	6%

· An example: Ferriere, Grübener, Navarro, and Vardishvili (2023)

- Basic Aiyagari model fails to generate realistic wealth distributions
 - Standard log-AR(1) process (Floden and Lindé 2001) & preferences

	Q1	Q2	Q3	Q4	Q5	Top 10%	Top 1%
Data (04)	-0%	1%	4%	12%	83%	65%	34%
Model	0%	4%	12%	25%	58%	37%	6%

- · An example: Ferriere, Grübener, Navarro, and Vardishvili (2023)
- Why do some households save so much?
 - Exact mechanisms matter for taxation purposes

- Basic Aiyagari model fails to generate realistic wealth distributions
 - Standard log-AR(1) process (Floden and Lindé 2001) & preferences

	Q1	Q2	Q3	Q4	Q5	Top 10%	Top 1%
Data (04)	-0%	1%	4%	12%	83%	65%	34%
Model	0%	4%	12%	25%	58%	37%	6%

- · An example: Ferriere, Grübener, Navarro, and Vardishvili (2023)
- Why do some households save so much?
 - Exact mechanisms matter for taxation purposes
 - · De Nardi and Fella (2017)
 - + Earnings,

- Basic Aiyagari model fails to generate realistic wealth distributions
 - Standard log-AR(1) process (Floden and Lindé 2001) & preferences

	Q1	Q2	Q3	Q4	Q5	Top 10%	Top 1%
Data (04)	-0%	1%	4%	12%	83%	65%	34%
Model	0%	4%	12%	25%	58%	37%	6%

- · An example: Ferriere, Grübener, Navarro, and Vardishvili (2023)
- Why do some households save so much?
 - Exact mechanisms matter for taxation purposes
 - · De Nardi and Fella (2017)
 - + Earnings, bequests,

- Basic Aiyagari model fails to generate realistic wealth distributions
 - Standard log-AR(1) process (Floden and Lindé 2001) & preferences

	Q1	Q2	Q3	Q4	Q5	Top 10%	Top 1%
Data (04)	-0%	1%	4%	12%	83%	65%	34%
Model	0%	4%	12%	25%	58%	37%	6%

- · An example: Ferriere, Grübener, Navarro, and Vardishvili (2023)
- Why do some households save so much?
 - Exact mechanisms matter for taxation purposes
 - · De Nardi and Fella (2017)
 - + Earnings, bequests, discount rates,

- Basic Aiyagari model fails to generate realistic wealth distributions
 - Standard log-AR(1) process (Floden and Lindé 2001) & preferences

	Q1	Q2	Q3	Q4	Q5	Top 10%	Top 1%
Data (04)	-0%	1%	4%	12%	83%	65%	34%
Model	0%	4%	12%	25%	58%	37%	6%

- · An example: Ferriere, Grübener, Navarro, and Vardishvili (2023)
- Why do some households save so much?
 - Exact mechanisms matter for taxation purposes
 - · De Nardi and Fella (2017)
 - + Earnings, bequests, discount rates, health shocks...

- Basic Aiyagari model fails to generate realistic wealth distributions
 - Standard log-AR(1) process (Floden and Lindé 2001) & preferences

	Q1	Q2	Q3	Q4	Q5	Top 10%	Top 1%
Data (04)	-0%	1%	4%	12%	83%	65%	34%
Model	0%	4%	12%	25%	58%	37%	6%

- · An example: Ferriere, Grübener, Navarro, and Vardishvili (2023)
- Why do some households save so much?
 - Exact mechanisms matter for taxation purposes
 - · De Nardi and Fella (2017)
 - + Earnings, bequests, discount rates, health shocks...
 - + Entrepreneurship,

- Basic Aiyagari model fails to generate realistic wealth distributions
 - Standard log-AR(1) process (Floden and Lindé 2001) & preferences

	Q1	Q2	Q3	Q4	Q5	Top 10%	Top 1%
Data (04)	-0%	1%	4%	12%	83%	65%	34%
Model	0%	4%	12%	25%	58%	37%	6%

- · An example: Ferriere, Grübener, Navarro, and Vardishvili (2023)
- Why do some households save so much?
 - Exact mechanisms matter for taxation purposes
 - · De Nardi and Fella (2017)
 - + Earnings, bequests, discount rates, health shocks...
 - + Entrepreneurship, and more generally, heterogeneous capital returns

- Heterogeneous capital returns: most promising theoretical avenue
 - Can generate fat tails in wealth distribution
 - · Benhabib, Bisin, and Zhu (2011), Benhabib, Bisin, and Luo (2019)
 - · Gabaix, Lasry, Lions, and Moll (2016)

- Heterogeneous capital returns: most promising theoretical avenue
 - Can generate fat tails in wealth distribution
 - · Benhabib, Bisin, and Zhu (2011), Benhabib, Bisin, and Luo (2019)
 - · Gabaix, Lasry, Lions, and Moll (2016)
- Needed ingredients
 - Persistent idiosyncratic returns (even across generations)
 - + "Type dependence"

- Heterogeneous capital returns: most promising theoretical avenue
 - Can generate fat tails in wealth distribution
 - · Benhabib, Bisin, and Zhu (2011), Benhabib, Bisin, and Luo (2019)
 - · Gabaix, Lasry, Lions, and Moll (2016)
- Needed ingredients
 - Persistent idiosyncratic returns (even across generations)
 - + "Type dependence"
 - Correlation of wealth and returns
 - + "Scale dependence"

- Heterogeneous capital returns: most promising theoretical avenue
 - Can generate fat tails in wealth distribution
 - · Benhabib, Bisin, and Zhu (2011), Benhabib, Bisin, and Luo (2019)
 - · Gabaix, Lasry, Lions, and Moll (2016)
- Needed ingredients
 - Persistent idiosyncratic returns (even across generations)
 - + "Type dependence"
 - Correlation of wealth and returns
 - + "Scale dependence"
- Plausible in the data?

Fagereng, Guiso, Malacrino, and Pistaferri (2020)

- Norwegian administrative data
 - Individual tax records 2004-2015
 - + Labor and capital income
 - + Asset holdings and liabilities

Fagereng, Guiso, Malacrino, and Pistaferri (2020)

- Norwegian administrative data
 - Individual tax records 2004-2015
 - + Labor and capital income
 - + Asset holdings and liabilities
 - Private business balance sheet
 - Housing transactions registry
 - Data on deposits and loans
- Compute individual returns to wealth

- Very heterogeneous returns on wealth
 - Large heterogeneity: standard deviation 22.1%
 - Large scale dependence: from net worth- $10\mathrm{th}$ to $90\mathrm{th}$, returns $+18\mathrm{pp}$
 - Strong persistence across generations

- Very heterogeneous returns on wealth
 - Large heterogeneity: standard deviation 22.1%
 - Large scale dependence: from net worth- $10\mathrm{th}$ to $90\mathrm{th}$, returns $+18\mathrm{pp}$
 - Strong persistence across generations
- Where does heterogeneity come from?
 - Portfolio: exposure to risk (Swedish data...)
 - Type: heterogeneity within narrow classes of assets

- Very heterogeneous returns on wealth
 - Large heterogeneity: standard deviation 22.1%
 - Large scale dependence: from net worth- $10\mathrm{th}$ to $90\mathrm{th}$, returns $+18\mathrm{pp}$
 - Strong persistence across generations
- Where does heterogeneity come from?
 - Portfolio: exposure to risk (Swedish data...)
 - Type: heterogeneity within narrow classes of assets
- ⇒ Implications for taxation?

Implications for taxation

■ Under homogenous returns, taxing capital = taxing wealth

$$(1 + r(1 - \tau_k))a_i = (1 - \tau_a)(1 + r)a_i$$

- au_k is a tax on capital income
- au_a is a tax on the stock of capital (wealth)

Implications for taxation

■ Under homogenous returns, taxing capital = taxing wealth

$$(1 + r(1 - \tau_k))a_i = (1 - \tau_a)(1 + r)a_i$$

- au_k is a tax on capital income
- au_a is a tax on the stock of capital (wealth)
 - +~ Equivalent as long as $\tau_a = \tau_k r/(1+r)$

Implications for taxation

■ Under homogenous returns, taxing capital = taxing wealth

$$(1 + r(1 - \tau_k))a_i = (1 - \tau_a)(1 + r)a_i$$

- au_k is a tax on capital income
- au_a is a tax on the stock of capital (wealth)
 - +~ Equivalent as long as $\tau_a = \tau_k r/(1+r)$
- What if returns are heterogeneous?

$$(1+r_i(1-\tau_k))a_i$$
 vs. $(1-\tau_a)(1+r_i)a_i$

· Guvenen et al. (2023)

- lacktriangle Assume two agents, a and b
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$

- \blacksquare Assume two agents, a and b
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$
- Policy 1: $\tau^k = 10\%$ on capital income
 - Agent a pays no taxes
 - Agent *b* pays $10\% \times 20\% \times 1000 = \20

- \blacksquare Assume two agents, a and b
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$
- Policy 1: $\tau^k = 10\%$ on capital income
 - Agent a pays no taxes
 - Agent *b* pays $10\% \times 20\% \times 1000 = \20
- (Revenue-neutral) policy 2: $\tau^a = 0.91\%$ tax rate on wealth
 - Agent a pays $0.91\% \times 1000 = \$9.10$
 - Agent b pays $0.91\% \times (1000 + 200) = \10.90
- A wealth tax shifts the tax burden away from the more productive hh

- lacktriangle Assume two agents, a and b
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$
- Policy 1: $\tau^k = 10\%$ on capital income
 - Agent a pays no taxes
 - Agent *b* pays $10\% \times 20\% \times 1000 = \20
- (Revenue-neutral) policy 2: $\tau^a = 0.91\%$ tax rate on wealth
 - Agent a pays $0.91\% \times 1000 = \$9.10$
 - Agent b pays $0.91\% \times (1000 + 200) = \10.90
- A wealth tax shifts the tax burden away from the more productive hh
 - Good for efficiency

- \blacksquare Assume two agents, a and b
 - Same wealth k = \$1000; but different returns: $r^a = 0 < r^b = 0.2$
- Policy 1: $\tau^k = 10\%$ on capital income
 - Agent a pays no taxes
 - Agent *b* pays $10\% \times 20\% \times 1000 = \20
- (Revenue-neutral) policy 2: $\tau^a = 0.91\%$ tax rate on wealth
 - Agent a pays $0.91\% \times 1000 = \$9.10$
 - Agent b pays $0.91\% \times (1000 + 200) = \10.90
- A wealth tax shifts the tax burden **away** from the more productive hh
 - Good for efficiency, bad for redistribution?

"Use it or lose it!" Three channels

In a dynamic general-equilibrium model

- 1. "Use-it-or-lose-it" channel
 - Capital reallocates toward more productive entrepreneurs

"Use it or lose it!" Three channels

In a dynamic general-equilibrium model

- 1. "Use-it-or-lose-it" channel
 - Capital reallocates toward more productive entrepreneurs
- 2. "Behavior response" channel
 - More productive entrepreneurs will save more

"Use it or lose it!" Three channels

In a dynamic general-equilibrium model

- 1. "Use-it-or-lose-it" channel
 - Capital reallocates toward more productive entrepreneurs
- 2. "Behavior response" channel
 - More productive entrepreneurs will save more
- 3. "Price" channel
 - Wages and interest rates will adjust

- Overlapping generations (OLG) model
 - Age h, live up to H years
 - Wealth inheritance (no bequests motives)

- Overlapping generations (OLG) model
 - Age h, live up to H years
 - Wealth inheritance (no bequests motives)
- Households make three decisions
 - Endogenous labor until retirement ${\cal R}$

- Overlapping generations (OLG) model
 - Age h, live up to H years
 - Wealth inheritance (no bequests motives)
- Households make three decisions
 - Endogenous labor until retirement ${\cal R}$
 - Consumption-savings decision

- Overlapping generations (OLG) model
 - Age h, live up to H years
 - Wealth inheritance (no bequests motives)
- Households make three decisions
 - Endogenous labor until retirement ${\cal R}$
 - Consumption-savings decision
 - Portfolio choice
 - + Choose how much to invest in own technology ("entrepreneurship")

Environment Households

■ Labor productivity w_{ih} s.t. $\log w_{ih} = \kappa_i + g(h) + e_{ih}$

Environment Households

- Labor productivity w_{ih} s.t. $\log w_{ih} = \kappa_i + g(h) + e_{ih}$
 - Type: κ_i imperfectly inherited from parents
 - Age-profile g(h)
 - Idiosyncratic shock: e_{ih} follows an AR(1)

Environment Households

- Labor productivity w_{ih} s.t. $\log w_{ih} = \kappa_i + g(h) + e_{ih}$
 - Type: κ_i imperfectly inherited from parents
 - Age-profile g(h)
 - Idiosyncratic shock: e_{ih} follows an AR(1)
- Social security: $y^R(\kappa,e) = \phi(\kappa,e)\bar{E}$ when h > R

Environment Households

- Labor productivity w_{ih} s.t. $\log w_{ih} = \kappa_i + g(h) + e_{ih}$
 - Type: κ_i imperfectly inherited from parents
 - Age-profile g(h)
 - Idiosyncratic shock: e_{ih} follows an AR(1)
- \blacksquare Social security: $y^R(\kappa,e)=\phi(\kappa,e)\bar{E}$ when h>R
- Entrepreneurial ability z_{ih}
 - Type: $ar{z}_i$ imperfectly inherited from parents

Environment Households

- Labor productivity w_{ih} s.t. $\log w_{ih} = \kappa_i + g(h) + e_{ih}$
 - Type: κ_i imperfectly inherited from parents
 - Age-profile g(h)
 - Idiosyncratic shock: e_{ih} follows an AR(1)
- Social security: $y^R(\kappa,e) = \phi(\kappa,e)\bar{E}$ when h > R
- Entrepreneurial ability z_{ih}
 - Type: \bar{z}_i imperfectly inherited from parents
 - Stochastic process $\mathbb{I}_{ih} \in \{\mathcal{H}, \mathcal{L}, 0\}$

$$z_{ih} = \left\{ \begin{array}{ll} (\bar{z}_i)^{\lambda} & \text{if } \mathbb{I}_{ih} = \mathcal{H} \\ \bar{z}_i & \text{if } \mathbb{I}_{ih} = \mathcal{L} \\ 0 & \text{if } \mathbb{I}_{ih} = 0 \end{array} \right. \text{ with } \lambda > 1: \text{ "fast-lane}" \text{ entrepreneurs}$$

Environment Households

- Labor productivity w_{ih} s.t. $\log w_{ih} = \kappa_i + g(h) + e_{ih}$
 - Type: κ_i imperfectly inherited from parents
 - Age-profile g(h)
 - Idiosyncratic shock: e_{ih} follows an AR(1)
- Social security: $y^R(\kappa,e) = \phi(\kappa,e)\bar{E}$ when h > R
- Entrepreneurial ability z_{ih}
 - Type: \bar{z}_i imperfectly inherited from parents
 - Stochastic process $\mathbb{I}_{ih} \in \{\mathcal{H}, \mathcal{L}, 0\}$

$$z_{ih} = \left\{ \begin{array}{ll} \left(\bar{z}_i\right)^{\lambda} & \text{if } \mathbb{I}_{ih} = \mathcal{H} \\ \bar{z}_i & \text{if } \mathbb{I}_{ih} = \mathcal{L} \\ 0 & \text{if } \mathbb{I}_{ih} = 0 \end{array} \right. \text{ with } \lambda > 1: \text{ "fast-lane" entrepreneurs}$$

- Stochastic transition downwards

Environment Production

- Final good: $Y = Q^{\alpha}L^{1-\alpha}$
 - Aggregate labor L, with $\alpha=0.4$
 - Intermediates: $Q=\left(\int x_{ih}^{\mu}\right)^{\frac{1}{\mu}}$, with $\mu=0.9$
 - Competitive sector
- Intermediate goods: $x_{ih} = z_{ih}k_{ih}$
 - Price $p_{ih}=\alpha x_{ih}^{\mu-1}Q^{\alpha-\mu}L^{1-\alpha}$

1. Choose capital to max profits

$$\pi(a, z) = \max_{k \le \nu(z)a} p(zk)zk - (r + \delta)k$$

- Financial friction which generates misallocation
- Invests more if z is higher and if a is higher

1. Choose capital to max profits

$$\pi(a, z) = \max_{k \le \nu(z)a} p(zk)zk - (r + \delta)k$$

- Financial friction which generates misallocation
- Invests more if z is higher and if a is higher
- 2. Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E}\left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa)\right]$$

1. Choose capital to max profits

$$\pi(a, z) = \max_{k \le \nu(z)a} p(zk)zk - (r + \delta)k$$

- Financial friction which generates misallocation
- Invests more if z is higher and if a is higher
- 2. Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E} \left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa) \right]$$

$$(1 + \tau_c)c + a' = (1 - \tau_\ell)\bar{w}w(\kappa, e)n + a + (1 - \tau_k)(\pi(a, z(\bar{z}, \mathcal{I})) + ra)$$

1. Choose capital to max profits

$$\pi(a, z) = \max_{k \le \nu(z)a} p(zk)zk - (r + \delta)k$$

- Financial friction which generates misallocation
- Invests more if z is higher and if a is higher
- 2. Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E}\left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa)\right]$$

$$(1 + \tau_c)c + a' = (1 - \tau_\ell)\bar{w}w(\kappa, e)n + a + (1 - \tau_k)(\pi(a, z(\bar{z}, \mathcal{I})) + ra)$$
$$\cdots + (1 - \tau_a)(a + (\pi(a, z(\bar{z}, \mathcal{I})) + ra))$$

1. Choose capital to max profits

$$\pi(a, z) = \max_{k \le \nu(z)a} p(zk)zk - (r + \delta)k$$

- Financial friction which generates misallocation
- Invests more if z is higher and if a is higher
- 2. Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E}\left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa)\right]$$

$$(1+\tau_c)c+a'=(1-\tau_\ell)\bar{w}w(\kappa,e)n+a+(1-\tau_k)(\pi(a,z(\bar{z},\mathcal{I}))+ra)$$
$$\cdots+(1-\tau_a)(a+(\pi(a,z(\bar{z},\mathcal{I}))+ra))$$
$$a'\geq a$$

1. Choose capital to max profits

$$\pi(a, z) = \max_{k \le \nu(z)a} p(zk)zk - (r + \delta)k$$

- Financial friction which generates misallocation
- Invests more if z is higher and if a is higher
- 2. Choose how much to work (when $h \leq R$), consume, and save in assets

$$V_h(a, \bar{z}, \mathcal{I}, e, \kappa) = \max_{c, n, a'} u(c, n) + \beta s_{h+1} \mathbb{E}\left[V_{h+1}(a', \bar{z}, \mathcal{I}', e', \kappa)\right]$$

$$(1 + \tau_c)c + a' = (1 - \tau_\ell)\bar{w}w(\kappa, e)n + a + (1 - \tau_k)(\pi(a, z(\bar{z}, \mathcal{I})) + ra)$$
$$\cdots + (1 - \tau_a)(a + (\pi(a, z(\bar{z}, \mathcal{I})) + ra))$$
$$a' \ge a$$

Equilibrium:
$$\int a = \int k$$

Calibration

- Dynamics of entrepreneurship to match fast wealth growth of super wealthy (Forbes 400)
- Standard earnings risk
- Taxes: $\tau_k = 25\%$, $\tau_\ell = 22.4\%$, $\tau_c = 7.5\%$

Calibration

- Dynamics of entrepreneurship to match fast wealth growth of super wealthy (Forbes 400)
- Standard earnings risk

■ Taxes:
$$\tau_k = 25\%$$
, $\tau_\ell = 22.4\%$, $\tau_c = 7.5\%$

⇒ Generates high wealth inequality!

	top-50	top-10	top-1	top-0.5	top-0.1
Data Model	0.99 0.97	$0.75 \\ 0.66$	$0.36 \\ 0.36$	$0.27 \\ 0.31$	0.14 0.23

- Data: SCF+Forbes 2010

- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a = 1.13\%$

- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a = 1.13\%$
- New economy features
 - Larger K: $+20\% \rightarrow$ agents save more

- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a = 1.13\%$
- New economy features
 - Larger K: $+20\% \rightarrow$ agents save more
 - Larger $Q: +25\% \rightarrow \text{less misallocation}$

- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a=1.13\%$
- New economy features
 - Larger K: $+20\% \rightarrow$ agents save more
 - Larger $Q\colon\ +25\% \to {\sf less}$ misallocation
 - Larger Y and C: +10%

- Set $\tau_k = 0$, balance budget with a wealth tax
 - Wealth tax $\tau_a = 1.13\%$
- New economy features
 - Larger K: $+20\% \rightarrow$ agents save more
 - Larger $Q: +25\% \rightarrow \text{less misallocation}$
 - Larger Y and C: +10%
 - Higher wages, smaller net interest rates on the risk-free rate
 - Large welfare gains: +7.4%!

■ Why does capital increase? Three channels

- Why does capital increase? Three channels
 - "Use-it-or-loose-it" [fixing prices & decision rules to benchmark] $K \uparrow$

- Why does capital increase? Three channels
 - "Use-it-or-loose-it" [fixing prices & decision rules to benchmark] $K \uparrow$
 - GE effects [with prices of new equilibrium] $K\downarrow$
 - Behavioral responses [with new decision rules] $K \uparrow$
- Three effects of comparable magnitude

■ Who wins from the reform?

■ Who wins from the reform? Welfare gains by age and entrepreneurial ability

Table IX - Welfare Gain/Loss by Age Group and Entrepreneurial Ability

	Entrepreneurial Ability Groups (\overline{z}_i Percentiles)							
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+		
groups:	s: RN Reform							
20	7.0	7.3	7.9	8.9	10.6	11.7		
21 – 34	6.5	6.3	6.3	6.6	7.0	6.8		
35 - 49	5.1	4.4	3.9	3.3	1.7	0.1		
50 - 64	2.3	1.8	1.4	0.8	-0.6	-1.8		
65+	-0.2	-0.3	-0.4	-0.6	-1.2	-1.8		

- The high-wealth/low-z (= the old) lose
- The young **benefit**...
- + From $\tau_k = 0$ (high z)
- + From higher w (low a)

Optimal taxation

Optimize steady-state fiscal system

■ Optimal capital tax

-
$$\tau_k = -34\%$$
 (!), $\tau_\ell = 36\%$

Optimal taxation

Optimize steady-state fiscal system

■ Optimal capital tax

-
$$\tau_k = -34\%$$
 (!), $\tau_\ell = 36\%$

- Optimal wealth tax:
 - $\tau_a = 3\%$, $\tau_\ell = 14\%$, much larger welfare gains

Optimal taxation

Optimize steady-state fiscal system

■ Optimal capital tax

-
$$\tau_k = -34\%$$
 (!), $\tau_\ell = 36\%$

- Optimal wealth tax:
 - $au_a=3\%$, $au_\ell=14\%$, much larger welfare gains
- Transitions

- With heterogeneous capital returns, positive wealth tax
 - Mostly for efficiency reasons!

- With heterogeneous capital returns, positive wealth tax
 - Mostly for efficiency reasons!
- What about redistribution?

- With heterogeneous capital returns, positive wealth tax
 - Mostly for efficiency reasons!
- What about redistribution?

- A very active research field overall
 - · Boar and Knowles (2020), Bhandari and McGrattan (2020), MacNamara, Pidkuyko, and Rossi (2021), etc.

- With heterogeneous capital returns, positive wealth tax
 - Mostly for efficiency reasons!
- What about redistribution?

- A very active research field overall
 - Boar and Knowles (2020), Bhandari and McGrattan (2020), MacNamara, Pidkuyko, and Rossi (2021), etc.
 - Gaillard and Wangner (2023) , Ferey, Lockwood, Taubinsky (2023), , Guvenen et al. (2023b), etc.!

Taxing capital? Gaillard and Wangner (2023)

- On taxation and heterogeneous returns
 - Productivity or rents?
 - Scale or type dependency?
- ⇒ Capital income or wealth taxation?

Lecture 2

Labor Taxes and Transfers

- 1. Optimal fiscal policy in representative-agent models
 - Linear labor taxes to finance $\textbf{spending}\ G.$. .

- 1. Optimal fiscal policy in representative-agent models
 - Linear labor taxes to finance spending G...
 - ... but not to absorb shocks: "smooth distortions!"
 - · Lucas Jr. and Stokey (1983), Aiyagari, Marcet, Sargent, and Seppälä (2002)

- 1. Optimal fiscal policy in representative-agent models
 - Linear labor taxes to finance spending G...
 - ... but not to absorb shocks: "smooth distortions!"
 - · Lucas Jr. and Stokey (1983), Aiyagari, Marcet, Sargent, and Seppälä (2002)
- 2. Optimal fiscal policy in Aiyagari models with redistribution motives
 - Linear (distortionary) labor taxes to finance transfers T!
 - · Floden and Lindé (2001)

- 1. Optimal fiscal policy in representative-agent models
 - Linear labor taxes to finance spending G...
 - ... but not to absorb shocks: "smooth distortions!"
 - · Lucas Jr. and Stokey (1983), Aiyagari, Marcet, Sargent, and Seppälä (2002)
- 2. Optimal fiscal policy in Aiyagari models with redistribution motives
 - Linear (distortionary) labor taxes to finance transfers T!
 - · Floden and Lindé (2001)
 - Going further: **Progressive** taxes?

■ Multiple trade-offs associated with progressivity

- Multiple trade-offs associated with progressivity
 - Welfare gains
 - + Insurance, redistribution, etc.

- Multiple trade-offs associated with progressivity
 - Welfare gains
 - + Insurance, redistribution, etc.
 - Welfare costs
 - + Labor supply, investment in skills, etc.

- Multiple trade-offs associated with progressivity
 - Welfare gains
 - + Insurance, redistribution, etc.
 - Welfare costs
 - + Labor supply, investment in skills, etc.
 - General equilibrium effects

- Multiple trade-offs associated with progressivity
 - Welfare gains
 - + Insurance, redistribution, etc.
 - Welfare costs
 - + Labor supply, investment in skills, etc.
 - General equilibrium effects
- Hard to analyze?
 - A highly multi-dimensional object
 - Computational?

- Personal income taxes
 - Progressive taxes (brackets) on labor and capital income taxes

- Personal income taxes
 - Progressive taxes (brackets) on labor and capital income taxes
 - + Deductions
 - + Long-run capital gains are partly exempted

- Personal income taxes
 - Progressive taxes (brackets) on labor and capital income taxes
 - + Deductions
 - + Long-run capital gains are partly exempted
- Fiscal rebates
 - Tax credits: EITC, CTC, ...

- Personal income taxes
 - Progressive taxes (brackets) on labor and capital income taxes
 - + Deductions
 - + Long-run capital gains are partly exempted
- Fiscal rebates
 - Tax credits: EITC, CTC, ... partially refundable

- Personal income taxes
 - Progressive taxes (brackets) on labor and capital income taxes
 - + Deductions
 - + Long-run capital gains are partly exempted
- Fiscal rebates
 - Tax credits: EITC, CTC, ... partially refundable
 - Transfers: SNAP, TANF, ...

- Personal income taxes
 - Progressive taxes (brackets) on labor and capital income taxes
 - + Deductions
 - + Long-run capital gains are partly exempted
- Fiscal rebates
 - Tax credits: EITC, CTC, ... partially refundable
 - Transfers: SNAP, TANF, ... means-tested

- Personal income taxes
 - Progressive taxes (brackets) on labor and capital income taxes
 - + Deductions
 - + Long-run capital gains are partly exempted
- Fiscal rebates
 - Tax credits: EITC, CTC, ... partially refundable
 - Transfers: SNAP, TANF, ... means-tested
- Non-monetary transfers: spending on education, etc.

- Public finance: Mirrlees
 - Fully flexible tax-and-transfer function
 - Difficult to bring into rich quantitative models?

- Public finance: Mirrlees
 - Fully flexible tax-and-transfer function
 - Difficult to bring into rich quantitative models?
- Macroeconomics: Ramsey
 - Quantitatively realistic model
 - But simple tax functions?

- Public finance: Mirrlees
 - Fully flexible tax-and-transfer function
 - Difficult to bring into rich quantitative models?
- Macroeconomics: Ramsey
 - Quantitatively realistic model
 - But simple tax functions?
- "New" approach: a rich Ramsey approach
 - · Heathcote, Storesletten, and Violante (2014), Heathcote, Storesletten, and Violante (2017)
 - · Ferriere, Grübener, Navarro, and Vardishvili (2023)

1. Optimal Progressivity With

Loglinear Income Taxes

Loglinear tax function

- A loglinear tax scheme: $\mathcal{T}(y) = y \lambda y^{1-\tau}$
- \blacksquare Tax progressivity is captured by au
 - If $\tau = 0$: flat average (and marginal) tax rate $\mathcal{T}(y) = (1 \lambda)y$
 - If $\tau > 0$: progressive tax
 - If $\tau = 1$: full redistribution $y \mathcal{T}(y) = \lambda \ \forall y$

- CPS 2013, working-age population
 - Total pre-tax income
 - Minus personal federal and state income taxes; payroll taxes
 - Minus payroll taxes (including employer share)
 - Plus tax credits
 - Plus SNAP and Housing Assistance (CBO imputation); Welfare IPUMS CPS

Imputation of transfers following CBO Habib (2018)

Log-linear tax function

- Linear estimate on log income: $\log(y^{at}) = \log(\lambda) + (1-\tau)\log(y)$
- Estimated progressivity au=0.18

Log-linear tax function

Figure 12: U.S. Federal Income Tax Progressivity

- A crude estimate over time Ferriere and Navarro (2023)

A tractable environment HSV (2017), FGNV (2023)

■ No capital, representative **firm** with linear production function

A tractable environment HSV (2017), FGNV (2023)

- No capital, representative **firm** with linear production function
- Utilitarian government
 - Budget: $G = \int y_{it} di \lambda \int y_{it}^{1- au} di$

A tractable environment HSV (2017), FGNV (2023)

- No capital, representative **firm** with linear production function
- Utilitarian government
 - Budget: $G = \int y_{it} di \lambda \int y_{it}^{1- au} di$
- A continuum of workers
 - Heterogenous wages: log-normal distribution with variance v_{ω}
 - Separable utility function: $\log c_{it} B \frac{n_{it}^{1+arphi}}{1+arphi}$
 - Hand-to-mouth workers: $c_{it} = \lambda (z_{it} n_{it})^{1- au}$

■ Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$

- \blacksquare Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$
- Compute Y, λ and c_{it} and obtain welfare in closed-form

- Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$
- Compute Y, λ and c_{it} and obtain welfare in closed-form

$$\mathcal{W}(\tau) = \underbrace{\log \left(n_0(\tau) - G\right)}_{\text{Size}} \underbrace{-\frac{1 - \tau}{1 + \varphi}}_{\text{Labor disutility}} \underbrace{-(1 - \tau)^2 \frac{v_\omega}{2}}_{\text{Efficiency}}$$

- Two efficiency terms
 - Size term \downarrow with τ ; Labor disutility term \uparrow with τ

- Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$
- Compute Y, λ and c_{it} and obtain welfare in closed-form

$$\mathcal{W}(\tau) = \underbrace{\log \left(n_0(\tau) - G\right)}_{\text{Size}} \underbrace{-\frac{1 - \tau}{1 + \varphi}}_{\text{Labor disutility}} \underbrace{-(1 - \tau)^2 \frac{v_\omega}{2}}_{\text{Efficiency}}$$

- Two efficiency terms
 - Size term \downarrow with τ ; Labor disutility term \uparrow with τ
- Redistribution term \uparrow with τ

- Policy function for labor is $n_{it} = [(1-\tau)/B]^{\frac{1}{1+\varphi}} \equiv n_0(\tau)$
- Compute Y, λ and c_{it} and obtain welfare in closed-form

- Two efficiency terms
 - Size term \downarrow with τ ; Labor disutility term \uparrow with τ
- Redistribution term \uparrow with τ
- Calibration: $\tau = 0.18$, $\varphi = 2.5$, G/Y = 0.223, v_{ω} to match $\mathbb{V}[\log c] = 0.18$

Welfare Optimal τ

- Optimal income-tax progressivity:
 - No spending, no heterogeneity: au=0

Welfare Optimal τ

- Optimal income-tax progressivity:
 - No spending, no heterogeneity: au=0
 - Spending, no heterogeneity: au < 0

Welfare Optimal τ

- Optimal income-tax progressivity:
 - No spending, no heterogeneity: au=0
 - Spending, no heterogeneity: $\tau < 0$
 - Spending, with heterogeneity: $\tau > 0$

Adding savings HSV (2014)

- A richer model with hand-to-mouth households in equilibrium
 - Richer structure of stochastic process

$$\log w_t = \alpha_t + \varepsilon_t$$

where

$$\alpha_t = \alpha_{t-1} + w_t, \ \varepsilon_t = \theta_t$$

with w_t and θ_t normally i.i.d. (+ stochastic death)

Adding savings HSV (2014)

- A richer model with hand-to-mouth households in equilibrium
 - Richer structure of stochastic process

$$\log w_t = \alpha_t + \varepsilon_t$$

where

$$\alpha_t = \alpha_{t-1} + w_t, \ \varepsilon_t = \theta_t$$

with w_t and θ_t normally i.i.d. (+ stochastic death)

- When $v_{\theta}=0$, no-trade theorem
 - + Permanent uninsurable shock & homothetic framework
 - \Rightarrow No savings in equilibrium

Adding savings HSV (2014)

- A richer model with hand-to-mouth households in equilibrium
 - Richer structure of stochastic process

$$\log w_t = \alpha_t + \varepsilon_t$$

where

$$\alpha_t = \alpha_{t-1} + w_t, \ \varepsilon_t = \theta_t$$

with w_t and θ_t normally i.i.d. (+ stochastic death)

- When $v_{\theta}=0$, no-trade theorem
 - + Permanent uninsurable shock & homothetic framework
 - ⇒ No savings in equilibrium
- Fully insurable $arepsilon_t$ -shock: alters labor supply but still closed-form

Adding savings HSV (2014)

- A richer model with hand-to-mouth households in equilibrium
 - Richer structure of stochastic process

$$\log w_t = \alpha_t + \varepsilon_t$$

where

$$\alpha_t = \alpha_{t-1} + w_t, \ \varepsilon_t = \theta_t$$

with w_t and θ_t normally i.i.d. (+ stochastic death)

- When $v_{\theta} = 0$, no-trade theorem
 - + Permanent uninsurable shock & homothetic framework
 - ⇒ No savings in equilibrium
- Fully insurable ε_t -shock: alters labor supply but still closed-form
- ⇒ "Partial-insurance" framework
 - $v_{\omega} + v_{\theta}$ to capture variance of log income
 - v_{ω} to capture variance of log consumption

Optimal income-tax progressivity HSV (2017)

- A richer model with many more features
 - 1. Endogenous spending
 - 2. Distribution over preference parameters

$$u_i(c_{it}, h_{it}, G) = \log c_{it} - \frac{B_i}{1 + \varphi} \frac{n_{it}^{1+\varphi}}{1 + \varphi} + \chi \log G$$

where $\log B_i \sim \mathcal{N}(\frac{v_B}{2}, v_B)$

Optimal income-tax progressivity HSV (2017)

- A richer model with many more features
 - 1. Endogenous spending
 - 2. Distribution over preference parameters

$$u_i(c_{it},h_{it},G) = \log c_{it} - \frac{B_i}{1+arphi} \frac{n_{it}^{1+arphi}}{1+arphi} + \frac{\chi}{\chi} \log G$$
 where $\log B_i \sim \mathcal{N}(\frac{v_B}{\Delta},v_B)$

3. Investment in education

$$U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{t=0}^{\infty} (\beta \delta)^t u_i(c_{it}, n_{it}, G)$$

where
$$v_i(s_i)=rac{1}{\kappa_i^{1/\psi}}rac{s_i^{1+1/\psi}}{1+1/\psi}$$
 , where $\kappa_i\sim exp(1)$

Optimal income-tax progressivity HSV (2017)

- A richer model with many more features
 - 1. Endogenous spending
 - 2. Distribution over preference parameters

$$u_i(c_{it},h_{it},G) = \log c_{it} - \frac{B_i}{1+arphi} \frac{n_{it}^{1+arphi}}{1+arphi} + \frac{\chi}{\chi} \log G$$
 where $\log B_i \sim \mathcal{N}(\frac{v_B}{\Delta},v_B)$

3. Investment in education

$$U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{t=0}^{\infty} (\beta \delta)^t u_i(c_{it}, n_{it}, G)$$
 where $v_i(s_i) = \frac{1}{\kappa^{1/\psi}} \frac{s_i^{1+1/\psi}}{1+1/\psi}$, where $\kappa_i \sim exp(1)$

4. [Insurable shocks] ε

 \blacksquare Representative-agent, $\chi>0$

■ With heterogeneity in skills

■ With heterogeneity in labor disutility

■ With uninsurable shocks

■ With insurable shocks

Taking stock HSV (2017)

- Taxes should be progressive
 - Optimal progressivity should be lower than in the U.S. . . .

Taking stock HSV (2017)

- Taxes should be progressive
 - Optimal progressivity should be lower than in the U.S. . . .

- A great framework to think about optimal progressivity!
- Going further [1]: age-dependent taxes, progressivity over time (see references)

Taking stock HSV (2017)

- Taxes should be progressive
 - Optimal progressivity should be lower than in the U.S. . . .

- A great framework to think about optimal progressivity!
- Going further [1]: age-dependent taxes, progressivity over time (see references)

- Going further [2]: adding an intercept?
 - Mirrlees typical findings: a quick overview
 - Revisiting the data

Adding Transfers

- Tax and transfer functions
 - Progressive income taxes: $T(y) = y \lambda y^{1-\tau}$
 - A lump-sum transfer T

Adding Transfers

- Tax and transfer functions
 - Progressive income taxes: $T(y) = y \lambda y^{1-\tau}$
 - A lump-sum transfer T
- Utilitarian government
 - Budget: $G + \mathbf{T} = \int y_{it} di \lambda \int y_{it}^{1-\tau} di$
- A continuum of workers
 - Hand-to-mouth workers: $c_{it} = \lambda (z_{it} n_{it})^{1- au} + T$

Loglinear tax function No transfer (HSV)

- Linear estimate on log income: $\log(y^{at}) = \log(\lambda) + (1-\tau)\log(y)$
- Estimated progressivity au=0.18

Loglinear tax function No transfer (HSV)

- Linear estimate on log income: $\log(y^{at}) = \log(\lambda) + (1-\tau)\log(y)$
- Estimated progressivity au=0.18

Loglinear tax function No transfer (HSV)

- Linear estimate on log income: $\log(y^{at}) = \log(\lambda) + (1-\tau)\log(y)$
- Estimated progressivity au=0.18

Loglinear tax function No transfer

- Non-linear estimate on income in levels: $y^{at} = \lambda y^{1-\tau}$
- Estimated progressivity: au=0.09

Loglinear tax function No transfer

- Non-linear estimate on income in levels: $y^{at} = \lambda y^{1- au}$
- Estimated progressivity: au=0.09

Empirical fit Loglinear tax function with a transfer

- Non-linear estimate on income in levels: $y^{at} = \lambda y^{1-\tau} + T$
- Estimated progressivity $\tau = 0.06$, transfer $T \approx \$5,400$

Empirical fit Loglinear tax function with a transfer

- Non-linear estimate on income in levels: $y^{at} = \lambda y^{1-\tau} + T$
- Estimated progressivity au=0.06, transfer $T \approx \$5,400$

Transfers Heterogeneous agents

■ Implicit function theorem: approximation of the FOC around T=0:

$$\hat{n}_{it} \approx n_0(\tau) - \frac{T}{1+\varphi} \frac{n_0(\tau)}{n_0(\tau) - G} \exp(-\tau (1-\tau)v_\omega) z_{it}^{-(1-\tau)}$$

Transfers Heterogeneous agents

■ Implicit function theorem: approximation of the FOC around T=0:

$$\hat{n}_{it} \approx n_0(\tau) - \frac{T}{1+\varphi} \frac{n_0(\tau)}{n_0(\tau) - G} \exp(-\tau(1-\tau)v_\omega) z_{it}^{-(1-\tau)}$$

lacktriangle Approximated formula with heterogeneity $v_\omega>0$

$$W(\tau, T) = W(\tau, 0) + T \left[\Omega_e(\tau, v_\omega) + \Omega_r(\tau, v_\omega) \right],$$

where the two terms capture

- Efficiency concerns
- Redistribution concerns ($\Omega_r(\tau,v_\omega)=0$ when $v_\omega=0$)

Transfers Welfare: Efficiency

■ Efficiency with a representative agent $(v_{\omega} = 0)$:

$$\Omega_{e}(\tau,0) \equiv \underbrace{U_{c}(C_{0}(\tau)) \left. \frac{\partial Y^{ra}(\tau,T)}{\partial T} \right|_{T=0}}_{\text{Size } < \mathbf{0}} \underbrace{+U_{n}(n_{0}(\tau)) \left. \frac{\partial n^{ra}(\tau,T)}{\partial T} \right|_{T=0}}_{\text{Labor disutility } > \mathbf{0}}$$

- Claim: Ω_e decreases with au
 - + Offset the effects of progressivity on labor supply incentives
- lacktriangle With heterogeneity, efficiency Ω_e numerically decreases with au
- \Rightarrow Efficiency gains of T are decreasing in τ

Transfers Welfare: Redistribution

■ Redistribution $\Omega_r(\tau, v_\omega)$

$$\Omega_r(\tau, v_\omega) \equiv \mathbb{E}\left[U_c(c_0(\tau))\right] - U_c(C_0(\tau)) = (1 - \tau)^2 \frac{1}{n_0(\tau) - G} v_\omega$$

- Positive as long as $v_{\omega}>0$ and decreases with τ
- \Rightarrow **Redistribution** gains of T are **decreasing** in au
- \Rightarrow Overall **negative** optimal relationship between T and au
- Use formula to evaluate local welfare gains of transfers:

$$W(\tau, T) = W(\tau, 0) + T \left[\Omega^{e}(\tau, v_{\omega}) + \Omega^{r}(\tau, v_{\omega}) \right]$$

- At calibrated v_{ω} and τ : -0.54 + 0.78 > 0

Transfers Heterogeneous agents

lacktriangle A **negative** relationship between au and T

- Formula: a good approximation
- Optimal transfers are large, with regressive income taxes

Optimal plan with transfers Global static solution

■ Generous transfers: T/Y=23%, regressive income taxes: $\tau=-0.09$

- Average taxes are increasing, marginal taxes are decreasing
 - Transfers to disentangle average from marginal t&T rates

Optimal plan with transfers Global static solution

■ Generous transfers: T/Y = 23%, regressive income taxes: $\tau = -0.09$

- Average taxes are increasing, marginal taxes are decreasing
 - Transfers to disentangle average from marginal t&T rates

Optimal plan with transfers Comparison to second-best

■ Welfare in CE terms: HSV: +0.14%, HSV+T: +0.90%

■ Close to welfare gains of the Mirrlees/second-best allocation: +0.93%

Taking stock

- Loglinear taxes plus a transfer
 - Is still simple and tractable
 - Fits the data better
- Welfare gains from allowing for transfers
 - Break the link between average and marginal t&T rates
 - Systematically close to the second-best!