PROBLÈME II (ESIM PC 2000)

Notations

Pour tout entier k>0 on notera u_k la fonction définie sur \mathbb{R}^+ par : $u_k(x)=(2k^2x^2-1)\mathrm{e}^{-k^2x^2}$.

Pour x > 0, la somme de la série $\sum_{k \ge 1} u_k(x)$ sera désignée par S(x) et la somme partielle de rang n,

$$\sum_{k\geqslant 1}^n u_k(x) \text{ sera notée } S_n(x).$$

On admettra que :
$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

Partie I

Dans cette partie, on établit que S est intégrable sur \mathbb{R}_+^*

- **1. a)** Justifier la convergence uniforme de la série $\sum_{k\geqslant 1}u_k(x)$ sur tout intervalle $[a,b]\subset\mathbb{R}_+^*$.
 - **b)** Montrer que la fonction S est continue sur \mathbb{R}_+^* .
- **2. a)** Prouver que pour tout entier non nul k, u_k est intégrable sur \mathbb{R}_+ .
 - **b)** Calculer $\int_0^{+\infty} u_k(t) dt$, et en déduire que la somme de la série $\sum_{k\geqslant 1} \int_0^{+\infty} u_k(t) dt$ est nulle. (Indication : On pourra intégrer par parties $\int_{\varepsilon}^A 2k^2t^2\mathrm{e}^{-k^2t^2} dt$.)
 - c) Étudier la nature de la série $\sum_{k\geqslant 1} \int_0^{+\infty} |u_k(t)| dt$.

 (Indication : On pourra remarquer que $\int_0^{+\infty} |u_k(t)| dt \geqslant \int_{\frac{1}{2}}^{+\infty} u_k(t) dt$.)
- **3.** Soit $a \ge 1$ et f une fonction continue et positive sur \mathbb{R}_+ , croissante sur [0,a] et décroissante sur $[a,+\infty[$.

On pose pour tout entier naturel k : $d_k(f) = f(k) - \int_k^{k+1} f(t) dt$.

- a) Démontrer que la série $\sum_{k\geqslant 0}d_k(f)$ est convergente. On notera D(f) sa somme.
- b) Déterminer un entier naturel p, indépendant de f et de a, tel que : $|D(f)| \le p f(a)$. (Indication : On pourra encadrer $d_k(f)$ en distinguant les différents cas : $k \ge a$, k < a 1 et $a > k \ge a 1$.)

On admettra dans la suite du problème que cette majoration est encore valable pour $a \ge 0$.

- **4.** On fixe x > 0. On considère les fonctions $f_1: t \longmapsto e^{-x^2t^2}$ et $f_2: t \longmapsto 2x^2t^2e^{-x^2t^2}$.
 - **a)** Prouver que : $\int_0^{+\infty} f_1(t) dt = \int_0^{+\infty} f_2(t) dt = \frac{\sqrt{\pi}}{2x}$.
 - **b)** En utilisant la question I.3.b appliquée aux fonctions f_1 et f_2 , démontrer les propositions suivantes :
 - i) S est bornée sur \mathbb{R}_{+}^{*} .
 - $ii) \quad \exists M_1 > 0, \ \forall x \in \mathbb{R}_+^*, \ \forall n \in \mathbb{N}^*, \ \left| \sum_{k=1}^n u_k(x) \right| \leqslant M_1 + \frac{\sqrt{\pi}}{2x}.$

- **5. a)** Établir l'inégalité suivante : $\forall w \in \mathbb{R}_+, w \leq 4e^{w/4}$.
 - **b)** En déduire que : $\forall x \geqslant 1$, $\forall k \in \mathbb{N}^*$, $0 \leqslant u_k(x) \leqslant 4e^{-k^2x^2/2} \leqslant 4e^{-kx^2/2}$.
 - c) Puis démontrer que : $\forall x \ge 1$, $\left(e^{x^2/2} 1\right) S(x) \le 4$.
- **6.** Déduire de ce qui précède que la fonction S est intégrable sur \mathbb{R}_+^* .

Partie II

L'objet de cette partie est le calcul de l'intégrale de S sur \mathbb{R}_+^*

1. Prouver qu'on peut définir deux fonctions Φ et Λ sur $]-1,+\infty[$ en posant :

$$\Phi(x) = \int_0^{+\infty} S(t) t^x dt$$

$$\Lambda(x) = \int_0^{+\infty} e^{-t} t^x dt$$

- 2. a) Montrer que les fonctions Φ et Λ sont continues sur $]-1,+\infty[$. [Ce résultat pourra être admis.]
 - **b)** Calculer $\Lambda\left(-\frac{1}{2}\right)$.
- **3.** Démontrer que pour tout x > 0 on a :

$$\int_0^{+\infty} u_k(x) t^x dt = \frac{x}{2 k^{x+1}} \Lambda\left(\frac{x-1}{2}\right)$$

- **4.** On pose alors, si cette série converge, $Z(x) = \sum_{k=1}^{+\infty} \frac{1}{2 k^{x+1}}$
 - a) Donner l'ensemble de définition de Z.
 - **b)** Calculer: $\lim_{x\to 0^+} xZ(x)$.

(Indication: On pourra appliquer la question I.3 à la fonction $t \mapsto \frac{1}{2(1+t)^{x+1}}$.)

- **5.** On considère deux réels fixés $\varepsilon > 0$ et x > 0.
 - a) Montrer qu'il existe un réel $\lambda \in]0,1[$ tel que : $\left| \int_0^{\lambda} [S(t) S_n(t)] t^x dt \right| < \frac{\varepsilon}{3}$. (Indication : On pourra utiliser la question I.4.)

Dans la suite de la question 5 on supposera λ choisi de cette façon.

- **b)** Montrer qu'il existe un entier naturel N_1 tel que : $\forall n \ge N_1$, $\left| \int_{\lambda}^{1} [S(t) S_n(t)] t^x dt \right| < \frac{\varepsilon}{3}$. (Indication : On pourra utiliser la question I.1.)
- c) Montrer qu'il existe un entier naturel N_2 tel que : $\forall n \ge N_2$, $\left| \int_1^{+\infty} [S(t) S_n(t)] t^x dt \right| < \frac{\varepsilon}{3}$. (Indication : On pourra utiliser la question I.5.b.)
- d) En déduire qu'il existe un entier naturel N tel que pour tout $n \ge N$:

$$\left| \Phi(x) - \sum_{k=1}^{n} \frac{x}{2k^{x+1}} \Lambda\left(\frac{x-1}{2}\right) \right| < \varepsilon.$$

6. Démontrer que pour tout x > 0:

$$\Phi(x) = x Z(x) \Lambda\left(\frac{x-1}{2}\right).$$

- 7. En utilisant les questions II.2 et II.4, calculer : $\int_0^{+\infty} S(t) dt$.
- 8. Comparer le résultat de la question II.7 à celui obtenu dans la question I.2.b. Que peut-on en conclure?