PARTIE I - OBSERVER

ONDES et PARTICULES

	NA	ECA	Α	AR EP
Connaître des sources de rayonnement radio, infrarouge et ultraviolet.				
Extraire et exploiter des informations sur l'absorption de rayonnements par l'atmosphère terrestre et ses conséquences sur l'observation des sources de rayonnements dans l'Univers.				
Extraire et exploiter des informations sur les manifestations des ondes mécaniques dans la matière.				
Connaître et exploiter la relation liant le niveau d'intensité sonore à l'intensité sonore.				
Extraire et exploiter des informations sur des sources d'ondes et de particules et leurs utilisations.				
Extraire et exploiter des informations sur un dispositif de détection.				
Pratiquer une démarche expérimentale mettant en œuvre un capteur ou un dispositif de détection.				

CARACTÉRISTIQUES des ONDES

	NA	ECA	Α	AR EP
Définir une onde progressive à une dimension.				
Connaître et exploiter la relation entre retard, distance et vitesse de propagation (célérité).				
Pratiquer une démarche expérimentale visant à étudier qualitativement et quantitativement un phénomène de propagation d'une onde.				
Définir, pour une onde progressive sinusoïdale, la période, la fréquence et la longueur d'onde.				
Connaître et exploiter la relation entre la période ou la fréquence, la longueur d'onde et la célérité.				
Pratiquer une démarche expérimentale pour déterminer la période, la fréquence, la longueur d'onde et la célérité d'une onde progressive sinusoïdale.				
Réaliser l'analyse spectrale d'un son musical et l'exploiter pour en caractériser la hauteur et le timbre.				

PROPRIÉTÉS des ONDES

	NA	ECA	Α	AR EP
Savoir que l'importance du phénomène de diffraction est liée au rapport de la longueur d'onde aux dimensions de l'ouverture ou de l'obstacle.				
Connaître et exploiter la relation $\theta = \lambda / a$.				
Identifier les situations physiques où il est pertinent de prendre en compte le phénomène de diffraction.				
Pratiquer une démarche expérimentale visant à étudier ou utiliser le phénomène de diffraction dans le cas des ondes lumineuses.				
Connaître et exploiter les conditions d'interférences constructives et destructives pour des ondes monochromatiques.				
Pratiquer une démarche expérimentale visant à étudier quantitativement le phénomène d'interférence dans le cas des ondes lumineuses.				
Mettre en œuvre une démarche expérimentale pour mesurer une vitesse en utilisant l'effet Doppler.				
Exploiter l'expression du décalage Doppler de la fréquence dans le cas des faibles vitesses.				
Utiliser des données spectrales et un logiciel de traitement d'images pour illustrer l'utilisation de l'effet Doppler comme moyen d'investigation en astrophysique.				

ANALYSE SPECTRALE

	NA	ECA	Α	AR EP
Mettre en œuvre un protocole expérimental pour caractériser une espèce colorée.				
Exploiter des spectres UV-visible.				
Exploiter un spectre IR pour déterminer des groupes caractéristiques à l'aide de tables de données ou de logiciels.				
Associer un groupe caractéristique à une fonction dans le cas des alcool, aldéhyde, cétone, acide carboxylique, ester, amine, amide.				
Connaître les règles de nomenclature de ces composés ainsi que celles des alcanes et des alcènes.				
Relier un spectre RMN simple à une molécule organique donnée, à l'aide de tables de données ou de logiciels.				
Identifier les protons équivalents. Relier la multiplicité du signal au nombre de voisins.				
Extraire et exploiter des informations sur différents types de spectres et sur leurs utilisations.				

REPRÉSENTATION SPATIALE DES MOLÉCULES

	. •			
	NA	ECA	A	AR EP
Reconnaître des espèces chirales à partir de leur représentation.				
Utiliser la représentation de Cram.				
Identifier les atomes de carbone asymétrique d'une molécule donnée.				
À partir d'un modèle moléculaire ou d'une représentation, reconnaître si des molécules sont identiques, énantiomères ou diastéréoisomères.				
Pratiquer une démarche expérimentale pour mettre en évidence des propriétés différentes de diastéréoisomères.				
Visualiser, à partir d'un modèle moléculaire ou d'un logiciel de simulation, les différentes conformations d'une molécule.				
Utiliser la représentation topologique des molécules organiques.				
Extraire et exploiter des informations sur les propriétés biologiques de stéréoisomères				
Extraire et exploiter des informations sur les conformations de molécules biologiques, pour mettre en évidence l'importance de la stéréoisomérie dans la nature.				

TRANSFORMATION EN CHIMIE ORGANIQUE

	NA	ECA	Α	AR EP
Reconnaître les groupes caractéristiques dans les alcool, aldéhyde, cétone, acide carboxylique, ester, amine, amide.				
Utiliser le nom systématique d'une espèce chimique organique pour en déterminer les groupes caractéristiques et la chaîne carbonée.				
Distinguer une modification de chaîne d'une modification de groupe caractéristique.				
Déterminer la catégorie d'une réaction (substitution, addition, élimination) à partir de l'examen de la nature des réactifs et des produits.				
Déterminer la polarisation des liaisons en lien avec l'électronégativité (table fournie).				
Identifier un site donneur, un site accepteur de doublet d'électrons.				
Pour une ou plusieurs étapes d'un mécanisme réactionnel donné, relier par une flèche courbe les sites donneur et accepteur en vue d'expliquer la formation ou la rupture de liaisons.				

RÉACTION CHIMIQUE PAR ÉCHANGE DE PROTON

	NA	ECA	A	AR EP
Mesurer le pH d'une solution aqueuse.				
Reconnaître un acide, une base dans la théorie de Brönsted.				
Utiliser les symbolismes →, ← et ⇒ dans l'écriture des réactions chimiques pour rendre compte des situations observées.				
Identifier l'espèce prédominante d'un couple acide-base connaissant le pH du milieu et le pKa du couple.				
Mettre en oeuvre une démarche expérimentale pour déterminer une constante d'acidité.				
Calculer le pH d'une solution aqueuse d'acide fort ou de base forte de concentration usuelle.				
Mettre en évidence l'influence des quantités de matière mises en jeu sur l'élévation de température observée.				
Extraire et exploiter des informations pour montrer l'importance du contrôle du pH dans un milieu biologique.				

NOTES

