IIC2343 - Arquitectura de Computadores (II/2020)

Ayudantía 7 - Jerarquía de memoria y Memoria Caché

2 de Noviembre de 2020

1. Funciones de Correspondencia

(a) Un programa presenta los siguientes accesos a memoria:

4 20 3 17 20 27 20

Asuma que tiene una caché de **8 líneas**, de **2 palabras** cada una. Muestre el estado final de la caché con:

- Función de correspondencia Directly Mapped.
- Función de correspondencia 4-Way Associative.
- (b) Explique las principales diferencias que se podrían haber encontrado si hubiésemos tenido una caché *fully assosiative* en vez de una 4-way associative.

2. Políticas de reemplazo

[EX 2020 - 1]Dada una memoria caché fully associative de 4 lineas y 2 palabras cada una. Si la memoria principal es de 32 bytes, determine qué política de reemplazo se está utilizando (FIFO, LFU, LRU o random). Considere los siguientes accesos a memoria:

0, 1, 2, 3, 4, 14, 15, 28, 29, 4, 15, 5, 4, 3, 2, 1.

Y el estado de la caché tras cada acceso:

N° Fila	Dirección	Binario	Línea 0		Línea 1		Línea		Línea 3		
1	0	00000	0	1	-	-	-	-	-	-	Miss
2	1	00001	0	1	-	-	-	-	_	-	Hit
3	2	00010	0	1	2	3	-	-	_	-	Miss
4	3	00011	0	1	2	3	-	-	-	-	Hit
5	4	00100	0	1	2	3	4	5	-	-	Miss
6	14	01110	0	1	2	3	4	5	14	15	Miss
7	15	01111	0	1	2	3	4	5	14	15	Hit
8	28	11100	0	1	2	3	28	29	14	15	Miss
9	29	11101	0	1	2	3	28	29	14	15	Hit
10	4	00100	0	1	2	3	28	29	4	5	Miss
11	15	01111	0	1	2	3	14	15	4	5	Miss
12	5	00101	0	1	2	3	14	15	4	5	Hit
13	4	00100	0	1	2	3	14	15	4	5	Hit
14	3	00011	0	1	2	3	14	15	4	5	Hit
15	2	00010	0	1	2	3	14	15	4	5	Hit
16	1	00001	0	1	2	3	14	15	4	5	Hit

3. Políticas de Escritura

 $[{f I3~2014~-~2}]$ Describa dos posibles soluciones para el problema de consistencia de memoria que se genera al tener un esquema de escritura de caché write-back.