```
And the same containing contendence between control and these group and the same
     fractions between control and RNase peak
641
     df_lm = data.frame(row.names = protein_names)
642
643
644
                                                                                 or which will compute the
     correlation_function = {\unction(x){\cor(x[1:25], x[26:50])}} #creating
     correlation between co
                                   * PNase of each protein
645
646
     corr_vector = apply()
                                                                               on on all proteins in the
     data frame
647
648
     df_lmScor = c(corr_ve
649
                                      Welcome back!
                                                                                    global peaks are added
650
     df_lmsshift = c(a)
     -> no negative val
651
                                                                                 maining 18% of rows
652
     #create two data frames
653
654
     n = nrow(df_lm) #number of >
655
     n_new = round(0.9 * n) #98% of ...
656
657
     train_df = df_lm[1:n_new, ] #create new data frame with 90% of the rows -> train the model
658
     predict_df = df_lm[4130:4588, ] #create new data frame with the remaining 10% of the rows -> test how
     well our model can predict
659
     linear_reg = lm(shift - cor, train_df) #linear model is created
661 summary(linear_reg) #control all available values
```

Steps of the project

Normalization

Rep-wise normalization

Normalization factor:

 $sum \times 3 / sum \times 1 = normalization factor \times 1$

sum \times 3 / sum \times 2 = normalization factor \times 2

sum \times 3 / sum \times 3 = normalization factor \times 3

Fraction-wise normalization

QX I = sum protein I / I00 fraction I rep I scaled = (fraction I rep I) / QX I

Scaling

sum of protein amounts after scaling

Smoothing

AHNK_HUMAN before smoothing

fraction_x_smoothed = mean(fraction_x-I, fraction_x, fraction_x+I)

Smoothing

 $fraction_x_smoothed = mean(fraction_x-1, fraction_x, fraction_x+1)$

Identification of global maxima

	Fraction 7	Fraction 8	Fraction 9
Protein amount	5	15	19

Fraction 10	Fraction 1
22	17

Max function:

Iterates trough each row comparing the values

Identification of local maxima

	Fraction 15	Fraction 16	Fraction 17	Fraction 18	Fraction 19
Protein amount	2.3	2.1	3	2.7	2.5

Fraction x is local peak if:

$$x > x - 1$$

$$x > x - 2$$

$$x > x + 1$$

$$x > x + 2$$

Identifying shifts

T-Test

amount of protein in global peak fraction

null hypothesis: difference between amount of protein is zero

T-Test

amount of protein in global peak fraction

null hypothesis: difference between amount of protein is zero

P-value:

K-means – elbow method

K-means

Linear regression

Linear Regression model

Linear Regression – compute data frame

Independent -> correlation

Dependent -> shifts

protein_name	correlation	shift
AHNK_HUMAN	0.443	2
PRKDC_HUMAN	0.902	0
ACTB_HUMAN	0.787	2
ACTG_HUMAN	0.787	2
ACTC_HUMAN	0.789	2
ACTS_HUMAN	0.789	2
ACTA_HUMAN	0.792	2
ACTH_HUMAN	0.792	2
CPSM_HUMAN	0.829	1
GRP78_HUMAN	0.801	1

Residuals

Prediction

Comparison to other databases

