Unit 5: Exponential and Logarithmic Functions 5.1 The Exponential Function and its Inverse

In this section, you will be investigating the exponential function $f(x) = b^x$. Since you will be drawing several curves on each grid, remember to label each curve with its equation.

1. Use your graphing calculator to draw the graphs of $y = 2^x$, $y = 5^x$ and $y = 10^x$. Sketch the curves on the grid below. Be sure to label the y-intercept and any asymptotes.

	y = 2 [×]	$y = 5^{\times}$	y = 10 [×]
Domain			
Range			
y-intercept			
Asymptotes			
Increasing/decreasing			

What are the common characteristics of these curves?

2. Use your graphing calculator to draw the graphs of $y = \left(\frac{1}{3}\right)^x$, $y = \left(\frac{1}{5}\right)^x$ and $y = \left(\frac{1}{10}\right)^x$. Note that we can express these functions as $y = 3^{-x}$, $y = 5^{-x}$, and $y = 10^{-x}$. Sketch the curves on the grid below, labeling fully.

	$y = 3^{-x}$	$y = 5^{-x}$	y = 10 ^{-x}
Domain			
Range			
y-intercept			
Asymptotes			
Increasing/decreasing			

What are the common characteristics of these curves?

3. Graph $y = 3^x$, $y = \left(\frac{1}{3}\right)^x$ and $y = -3^x$. Sketch, labeling the functions carefully.

- (a) What transformation on $y = 3^x$ will give $y = \left(\frac{1}{3}\right)^x$ as its image?
- (b) What transformation on $y = 3^x$ will give $y = -3^x$ as its image?
- (c) The inverse of a function is obtained by _____
- (d) The inverse of y = 2^x is ______.(e) The graph of the inverse is obtained______.
- Ex. 1: Graph $y = 2^x$ and its inverse, on the same set of axes.

$y = 2^x$	
Х	У
-1	
0	
1	
2	
3	

Ex. 2: Graph $y = \left(\frac{1}{2}\right)^x$ and its inverse, on the same set of axes.

$$y = \left(\frac{1}{2}\right)^x$$

((2)
Х	у
-3	
-2	
-1	
0	
1	
2	

inverse

X	У

Ex. 3: Write an equation to fit the data in the table of values.

Х	у		
-3	1		
	$\frac{1}{64}$		
-2	$\frac{1}{16}$		
	16		
-1	$\frac{1}{4}$		
	4		
0	1		
1	4		
2	16		
3	64		

Logarithmic Functions

Logarithms were first introduced by John Napier in the 17th century for the purpose of simplifying calculations. This was accomplished with the development of logarithmic tables and, soon after, with logarithmic scales on a slide rule. With the introduction of the scientific calculator in the mid-1970s, this application of logarithms for computations became somewhat obsolete; however, logarithms are still used today in many areas such as

- scientific formulas and scales (the pH scale in chemistry and the Richter scale for measuring and comparing the intensity of earthquakes),
- > astronomy (order of magnitude calculations comparing relative size of massive bodies),
- modelling and solving problems involving exponential growth and decay, and many areas of calculus

Introduction

We will begin our study of logarithms by introducing and exploring the **logarithmic function**. The logarithmic function is simply the inverse of the exponential function.

Exponential Form
$$\longleftrightarrow$$
 Logarithmic Form $y = \log_b x \ (b > 0 \text{ and } b \neq 1)$

The logarithm of a number x with a given base is the exponent to which that base must be raised to yield x.

What is a Logarithm?

Logarithms can be set to any base. The LOG key on your calculator represents log_{10} . Record the results in the space provide. The first example is done for you.

Logarithm	Value
log 100 = 2	$10^2 = 100$
log 10	
log 1000	
log 0.01 =	
log 0.0001 =	
log √10 =	
$\log \sqrt{10000} =$	
log o	
log(-3)	
$\log_3(81)$	
$\log_2(16)$	
$\log_6(216)$	
$\log_{25}\left(\frac{1}{625}\right)$ $\log_4(64)$	
$\log_4(64)$	

Ex. 1: Change to exponential form.

a.
$$\log_2 8 = 3$$

b.
$$\log_2 32 = 5$$

Ex. 2: Change to logarithmic form.

a.
$$4^3 = 64$$

b.
$$\left(\frac{1}{2}\right)^{-4} = 16$$

Ex. 3: Evaluate the following.

c.
$$\log_2\left(\frac{1}{4}\right)$$

d.
$$\log_{\frac{1}{3}} 27$$

e.
$$\log_2\left(\frac{1}{4}\right) + \log_{\frac{1}{2}} 4$$
 f. $\log_3\left(27 \times \sqrt{27}\right)$

f.
$$\log_3(27 \times \sqrt{27})$$

Ex. 4: For each function, y=g(x), determine the equation of $y=g^{-1}(x)$.

a.
$$g(x) = 3^{2(x-1)} + 5$$

b.
$$g(x) = 2\log_5(x+4)-1$$

c.
$$g(x) = -\log_3\left(\frac{1}{2}(x-3)\right) + 4$$

To conclude...

- 1. An exponential function of the form $y = b^x$, b > 0, $b \ne 1$, has
 - o a repeating pattern of finite differences
 - o a rate of change that is increasing proportional to the function for b > 1
 - o a rate of change that is decreasing proportional to the function of 0 < b < 1
 - o has domain $\{x \mid x \in R\}$
 - o has range $\{y \mid y > 0, y \in R\}$
 - has y-intercept 1
 - o has horizontal asymptote with equation y = 0
- 2. The inverse of $y = b^x$ is a function that can be written as $x = b^y$. This function
 - o has domain $\{x \mid x > 0, x \in R\}$
 - o has range $\{y \mid y \in R\}$
 - o has x-intercept 1
 - o has vertical asymptote at x = 0
 - o is a reflection of $y = b^x$ about the line y = x

Practice

Part A - Multiple Choice.

__1. The range of the function $f(x) = 4(2)^x + 1$ is:

A.
$$y \in K$$

B.
$$y > 4$$
, $y \in R$

C.
$$y < 1, y \in R$$

C.
$$y < 1, y \in R$$
 D. $y > 1, y \in R$

____2. Another way to write
$$2^{-3} = \frac{1}{8}$$
 is

A.
$$\log_2(-3) = 8$$

B.
$$\log_2(-3) = \frac{1}{8}$$

C.
$$\log_{\frac{1}{8}}(2) = -3$$

B.
$$\log_2(-3) = \frac{1}{8}$$
 C. $\log_{\frac{1}{8}}(2) = -3$ D. $\log_2(\frac{1}{8}) = -3$

_3. The domain of the logarithmic function is:

A.
$$x \in R$$

B.
$$x < 0, x \in R$$

C.
$$x > 0$$
, $x \in R$

C.
$$x > 0, x \in R$$
 D. $x > 1, x \in R$

____4. The graph of
$$y = 5 \log_2(3x + 12) - 5$$
 has a vertical asymptote at

A.
$$x = -5$$

B.
$$x = -12$$

C.
$$x = 4$$

D.
$$x = -4$$

Part B - Short Answer

1. Find the value(s) of x such that $\log_x (19x - 30) = 3$.

2. Find the inverse of the following functions:

a)
$$f(x) = \frac{2^x}{1-2^x}$$

b)
$$f(x) = -2\log_3\left(\frac{2}{3}(x+1)\right) - 2$$