Spis treści

1	Mat	tematyka	2
	1.1	Koordynaty	2
		1.1.1 Kartezjańskie	2
		1.1.2 Biegunowe (2D)	2
		1.1.3 Sferyczne (3D)	2
	1.2	Operacje na punktach	2
		1.2.1 Skalowanie	2
		1.2.2 Obroty	2
2	Atr	ybuty	2
	2.1	Na klasę	3
	2.2	Na pole	3

1 Matematyka

- skalar α - liczba - punk \bar{p} - pozycja - wektor \vec{v} - kierunek i długość

1.1 Koordynaty

1.1.1 Kartezjańskie

1.1.2 Biegunowe (2D)

$$P(r, \alpha)P(x, y) = P(r * \cos \alpha, r * \sin \alpha)$$

1.1.3 Sferyczne (3D)

$$P(r, \alpha, \beta)P(x, y, z) = P(r * \cos \alpha * \cos \beta, r * \sin \alpha, r * \cos \alpha \sin \beta)$$

1.2 Operacje na punktach

1.2.1 Skalowanie

p = (x, y, z, 1) Punkt 3ds = [sx, sy, sz] wektor skalip' = (x * sx, y * sy, z * sz) Punkt przeskalowany

Macierze:

$$[x', y', z', 1] = [x, y, z, 1] \begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.2.2 Obroty

Wokół X:

$$p' = (x, y * \cos \alpha - z * \sin \alpha, y * \sin \alpha - z \cos \alpha)$$

Macierz:

$$[x', y', z', 1] = [x, y, z, 1] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha & 0 \\ 0 & -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Wokół Y

$$p' = (z \sin \alpha + x \cos \alpha yz \cos \alpha - x \sin \alpha)$$

Macierz

$$[x', y', z', 1] = [x, y, z, 1] \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ \sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Wokół Z

$$p' = (x\cos\alpha - y\sin\alpha, x\sin\alpha + y\cos\alpha, z)$$

Macierz

$$[x', y', z', 1] = [x, y, z, 1] \begin{bmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2 Atrybuty

[Attribute(Params)]
public class Class {}

2.1 Na klasę

- AddComponentMenu("menu/name")

2.2 Na pole

- Range(float from, float to)