Task 2: Data Cleansing and Transformation

Instructions:

- 1. Acquire a real-world dataset requiring data cleaning and transformation.
- 2. Address data quality issues (missing values, inconsistent formats, outliers).
- 3. Develop a cleaning strategy (imputation, outlier detection, normalization).
- 4. Implement necessary transformation steps (feature engineering, aggregation).
- 5. Validate the cleaned and transformed dataset for integrity and usability.
- 6. Document the steps taken and provide clear explanations.
- 7. Present the cleaned and transformed dataset for further analysis.

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('ggplot')
In [2]: data = pd.read csv("Datasets/california housing/housing.csv")
```

1. Acquired Real-world dataset

Dataset details

- Description: The dataset is California Housing Prices dataset.
- Columns: [longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, median_house_value, ocean_proximity]

```
In [3]: # data.head()
data.info()
```

```
# data['longitude'].isnull().value counts()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
    Column
                        Non-Null Count Dtype
    longitude
                        20640 non-null float64
    latitude
                        20640 non-null float64
 1
    housing median age 20640 non-null float64
    total rooms
                        20640 non-null float64
 3
    total bedrooms
                        20433 non-null float64
 4
    population
                        20640 non-null float64
    households
                        20640 non-null float64
    median income
                        20640 non-null float64
    median house value 20640 non-null float64
    ocean proximity
                        20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
```

Only one categorical data Ocean_Proximity

```
data['ocean proximity'].value counts()
In [4]:
        <1H OCEAN
                       9136
Out[4]:
        INLAND
                       6551
        NEAR OCEAN
                       2658
        NEAR BAY
                       2290
        ISLAND
                          5
        Name: ocean proximity, dtype: int64
        data.describe()
In [5]:
```

```
longitude
                          latitude housing median age
                                                          total rooms total bedrooms
                                                                                          population
                                                                                                        households median income n
count 20640.000000
                                                         20640.000000
                                                                                        20640.000000
                                                                                                                       20640.000000
                     20640.000000
                                           20640.000000
                                                                          20433.000000
                                                                                                      20640.000000
        -119.569704
                                                          2635.763081
                        35.631861
                                              28.639486
                                                                            537.870553
                                                                                         1425.476744
                                                                                                         499.539680
                                                                                                                            3.870671
mean
           2.003532
                         2.135952
                                              12.585558
                                                          2181.615252
                                                                            421.385070
                                                                                         1132.462122
                                                                                                         382.329753
                                                                                                                            1.899822
  std
        -124.350000
                         32.540000
                                               1.000000
                                                             2.000000
                                                                              1.000000
                                                                                            3.000000
                                                                                                           1.000000
                                                                                                                            0.499900
 min
        -121.800000
 25%
                         33.930000
                                              18.000000
                                                          1447.750000
                                                                            296.000000
                                                                                          787.000000
                                                                                                         280.000000
                                                                                                                            2.563400
 50%
        -118.490000
                        34.260000
                                              29.000000
                                                          2127.000000
                                                                            435.000000
                                                                                         1166.000000
                                                                                                         409.000000
                                                                                                                            3.534800
                         37.710000
                                                                                                                            4.743250
 75%
        -118.010000
                                              37.000000
                                                          3148.000000
                                                                            647.000000
                                                                                         1725.000000
                                                                                                         605.000000
        -114.310000
                        41.950000
                                              52.000000
                                                         39320.000000
                                                                                        35682.000000
                                                                                                        6082.000000
                                                                                                                          15.000100
 max
                                                                           6445.000000
```

Out[5]:

2. Data quality and 3. Data cleaning

Pre-processing

- For this task, the data in not normally distributed. Using Stratified sampling technique to prepare the test dataset.
- Creating a new feature income_label which is income category and used if for sampling.

```
data['income label']=np.ceil(data['median income']/1.5)
 In [7]:
         data['income label'].where(data['income label']<5,5.0,inplace=True)</pre>
         from sklearn.model selection import StratifiedShuffleSplit
 In [8]:
         split = StratifiedShuffleSplit(n splits=1,test size=0.2,random state=42)
         for train index,test index in split.split(data,data['income label']):
              strat train set=data.loc[train index]
              strat test set=data.loc[test index]
         strat train set.drop('income label',axis=1,inplace=True)
 In [9]:
         strat test set.drop('income label',axis=1,inplace=True)
         strat train set.to csv("Datasets/california housing/strat train set.csv",index=False)
         strat test set.to csv("Datasets/california housing/strat test set.csv",index=False)
         data=pd.read csv('Datasets/california housing/strat train set.csv')
In [24]:
         # data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 16512 entries, 0 to 16511
         Data columns (total 10 columns):
              Column
                                  Non-Null Count Dtype
             longitude
                                  16512 non-null float64
              latitude
                                  16512 non-null float64
          1
              housing median age 16512 non-null float64
              total_rooms
                                  16512 non-null float64
              total bedrooms
                                  16354 non-null float64
          4
              population
                                  16512 non-null float64
              households
          6
                                  16512 non-null float64
          7
              median income
                                  16512 non-null float64
              median house value 16512 non-null float64
              ocean proximity
                                  16512 non-null object
         dtypes: float64(9), object(1)
         memory usage: 1.3+ MB
```

• Carrying out various visualization on train dataset for realising patterns, correlations and getting the sense of the data

```
In [11]: plt.figure(figsize=(10,6))
   plt.scatter(x=data['longitude'],y=data['latitude'])
   plt.title("Distribution of households",size=16)
```

Out[11]: Text(0.5, 1.0, 'Distribution of households')

Distribution of households


```
In [12]: plt.figure(figsize=(12,12))
    img=plt.imread('Datasets/california_housing/california.png')
    plt.imshow(img,zorder=0,extent=[-124.35,-114.2,32.54,41.95])

plt.scatter(x=data['longitude'],y=data['latitude'],alpha=0.5,s=data['population']/30,c=data['median_house_value']
    plt.colorbar()
    plt.title("Distribution of households",size=16)
    plt.legend()
```

C:\Users\MAHAVIR\AppData\Local\Temp\ipykernel_5504\1422664156.py:6: MatplotlibDeprecationWarning: Auto-removal of
grids by pcolor() and pcolormesh() is deprecated since 3.5 and will be removed two minor releases later; please c
all grid(False) first.
 plt.colorbar()

Out[12]:

<matplotlib.legend.Legend at 0x1fad86b2c70>

Distribution of households

- 400000

- 300000

- 200000

- 100000

Inights from Visualization

- Housing prices are much related to location and population density.
- Housing prices near ocean are higher except in northern california.
- Now, see the correlation of 'medial house value' with other columns. This is Pearson's correlation coefficient.

```
corr matrix=data.corr()
In [13]:
         corr matrix['median house value'].sort values(ascending=False)
         median house value
                               1.000000
Out[13]:
         median income
                               0.687151
         total rooms
                               0.135140
         housing median age
                               0.114146
         households
                               0.064590
         total bedrooms
                               0.047781
         population
                              -0.026882
         longitude
                               -0.047466
         latitude
                              -0.142673
         Name: median house value, dtype: float64
         sns.pairplot(data[['median_house_value','median_income','total_rooms','housing_median_age']])
In [14]:
         <seaborn.axisgrid.PairGrid at 0x1fad7374400>
Out[14]:
```


0 200000 400000 0 5 10 15 0 20000 40000 0 20 40 median_house_value median_income total_rooms housing_median_age

• Median Income is the most promising attribute to get Median Hosung Price

```
In [15]: plt.figure(figsize=(10,6))
  plt.scatter(y=data['median_house_value'],x=data['median_income'],alpha=0.3)
```

Out[15]: <matplotlib.collections.PathCollection at 0x1fadb55e8e0>

• A clear line can be seen at 500k at which the data is capped. Similar lines can be seen around 450k,350k. This kind of data may degrade the performance of model.

4. Feature Engineering

Creating new features:

- rooms per household
- bedrooms per room
- population per household

```
In [16]:
         data copy = data.copy()
         data copy['rooms per household']=data copy['total rooms']/data copy['households']
In [17]:
         data copy['bedrooms per room']=data copy['total bedrooms']/data copy['total rooms']
         data copy['population per household']=data copy['population']/data copy['households']
         # data copy.head()
         corr matrix=data copy.corr()
In [18]:
         corr matrix['median house value'].sort values(ascending=False)
         median house value
                                      1,000000
Out[18]:
         median income
                                      0.687151
         rooms per household
                                      0.146255
         total rooms
                                      0.135140
         housing median age
                                      0.114146
         households
                                      0.064590
         total bedrooms
                                      0.047781
         population per household
                                     -0.021991
         population
                                     -0.026882
         longitude
                                     -0.047466
         latitude
                                     -0.142673
         bedrooms per room
                                     -0.259952
         Name: median house value, dtype: float64
```

5. Validation of new features and data

- It is clear that rooms_per_household and bedrooms_per_room have better correlation with median_house_value than total rooms and total bedrooms.
- Later Feature adder class needs to be created later during testing.(tranforming the data to have new features)

```
data.isnull().value counts()
In [19]:
         longitude latitude housing median age total rooms total bedrooms population households median income
                                                                                                                     medi
Out[19]:
         an house value ocean proximity
                    False
         False
                              False
                                                  False
                                                               False
                                                                               False
                                                                                           False
                                                                                                       False
                                                                                                                      Fals
                         False
                                            16354
         e
                                                                               False
                                                                                           False
                                                                                                       False
                                                               True
                                                                                                                      Fals
                         False
                                              158
         dtype: int64
```

In [20]: data_copy.hist(column='total_bedrooms',bins=30)
 data_copy.hist(column='bedrooms_per_room',bins=30)

Out[20]: array([[<AxesSubplot:title={'center':'bedrooms_per_room'}>]], dtype=object)

Cleaning the data

• Removing Outliers realised through boxplots


```
In [22]: from sklearn.base import BaseEstimator,TransformerMixin

class RemoveOutliers(BaseEstimator,TransformerMixin):
    """This class removes outliers from data.
    Note: Outlier values are hard coded
    """

    def fit (self,X,y=None):
        return self

    def transform(self,X,y=None):
        X=X[(X['median_house_value']!=500001) | (X['median_income']>=2)].reset_index(drop=True)
        X=X[X['median_income']<=11].reset_index(drop=True)
        X=X[(X['median_house_value']!=350000) | (X['median_income']>=1.5)].reset_index(drop=True)
        X=X[(X['median_house_value']!=450000) | (X['median_income']>=2)].reset_index(drop=True)
        X=X[(X['median_house_value']>=350000) | (X['median_income']>=9.5)].reset_index(drop=True)
        X=X[X['population']<=9000]</pre>
```

```
X=X[(X['population per household']>=1.15) & (X['population per household']<=6.5)]
                 X=X[X['rooms per household']<20]</pre>
                 X=X[X['bedrooms per room']<0.5].reset index(drop=True)</pre>
                  return X
         data copy=RemoveOutliers().fit transform(data copy)
         data labels=data copy['median house value']
         data copy=data copy.drop('median house value',axis=1)
In [23]:
         # data copy.head()
         # data copy.isnull().value counts()
         data copy.info()
         data copy.hist(bins=50,figsize=(15,12))
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 16005 entries, 0 to 16004
         Data columns (total 12 columns):
              Column
                                         Non-Null Count Dtype
              longitude
                                         16005 non-null float64
              latitude
                                         16005 non-null float64
          1
              housing median age
                                         16005 non-null float64
          2
                                         16005 non-null float64
              total rooms
              total bedrooms
                                         16005 non-null float64
          4
              population
          5
                                         16005 non-null float64
              households
                                         16005 non-null float64
          6
          7
              median income
                                         16005 non-null float64
              ocean proximity
                                         16005 non-null object
          8
              rooms per household
                                         16005 non-null float64
              bedrooms per room
                                         16005 non-null float64
          11 population per household
                                        16005 non-null float64
         dtypes: float64(11), object(1)
         memory usage: 1.5+ MB
```


6. Summary of steps taken

Steps undertaken for pre-processing the data:

- Data has been cleaned with no null values and outliers.
- We have further converted the categorical feature to numeric and scaled the data. #### Further Analysis steps to be done:
- Remove skewness
- Can also use Get dummies to convert categorical feature of 'ocean_proximity'
- Check for Multi colinearity and scale the features further.