Binary Arithmetic Operations: Division and Multiplication

1 Binary Division Example: Restoring Division

Goal

Divide a binary number (dividend) by another (divisor) using the restoring division algorithm.

1.1 Sequential Division

Division Hardware

Concept

- Initialize the remainder with the dividend.
- Subtract the divisor from the remainder.
- If the result is negative, restore the previous remainder and shift quotient bit as 0.

- If the result is non-negative, keep it and shift quotient bit as 1.
- Repeat with right-shifted divisor.

Example: $7 \div 2$

Dividend
$$(7) = 0000 \ 0111$$

Divisor $(2) = 0010 \ 0000$ (initially left-shifted)

Iteration	Quotient	Divisor Remainder	
0 (Init)	0000	0010 0000	0000 0111
1	0000	0001 0000	0000 0111 (Restored)
2	0000	0000 1000	0000 0111 (Restored)
3	0000	0000 0100	0000 0111 (Restored)
4	0001	0000 0010	0000 0011
5	0011	0000 0001	0000 0001

Result:

- Quotient = 0011 (3 in decimal)
- Remainder = $0000\ 0001\ (1\ in\ decimal)$

$$7 \div 2 = 3 \text{ remainder } 1$$

2 Binary Multiplication Example: Sequential Shift-and-Add

Goal

Multiply two binary numbers using shift-and-add sequential multiplication.

2.1 Sequential Multiplication

Sequential Multiplication Hardware

Refined Version of Multiplication Hardware

Concept

 \bullet If LSB of multiplier = 1, add multiplicand to product.

• Shift multiplicand left (multiply by 2).

• Shift multiplier right (divide by 2).

• Repeat for number of bits in multiplier.

Example: 2×3

Multiplicand
$$(2) = 0000 0010$$

Multiplier
$$(3) = 0011$$

Product (Init) =
$$0000 \ 0000$$

Iteration	Multiplier	Multiplicand	Product
0 (Init)	0011	0000 0010	0000 0000
1	0001	0000 0100	0000 0010
2	0000	0000 1000	0000 0110
3	0000	0001 0000	0000 0110
4	0000	0010 0000	0000 0110

Result:

$$2 \times 3 = 6$$