and if

$$0 < \alpha < -2\langle u, z \rangle / \|z\|^2,$$

then $2\alpha \langle u, z \rangle + \alpha^2 \|z\|^2 < 0$, so $\|z' - b\|^2 < \|u\|^2 = \|z - b\|^2$, a contradiction as above.

Therefore $\langle u, z \rangle = 0$. We have

$$\langle u, u \rangle = \langle u, z - b \rangle = \langle u, z \rangle - \langle u, b \rangle = -\langle u, b \rangle,$$

and since $u \neq 0$, we have $\langle u, u \rangle > 0$, so $\langle u, u \rangle = -\langle u, b \rangle$ implies that

$$\langle u, b \rangle < 0. \tag{*}_2$$

It remains to prove that $\langle u, a_i \rangle \geq 0$ for i = 1, ..., m. Pick any $x \in C$ such that $x \neq z$. We claim that

$$\langle b - z, x - z \rangle \le 0. \tag{*3}$$

Otherwise $\langle b-z, x-z \rangle > 0$, that is, $\langle z-b, x-z \rangle < 0$, and we show that we can find some point $z' \in C$ on the line segment [z,x] closer to b than z is.

For any α such that $0 \le \alpha \le 1$, we have $z' = (1 - \alpha)z + \alpha x = z + \alpha(x - z) \in C$, and since $z' - b = z - b + \alpha(x - z)$ we have

$$||z' - b||^2 = ||z - b + \alpha(x - z)||^2 = ||z - b||^2 + 2\alpha\langle z - b, x - z \rangle + \alpha^2 ||x - z||^2$$

so for any $\alpha > 0$ such that

$$\alpha < -2\langle z - b, x - z \rangle / \|x - z\|^2,$$

we have $2\alpha \langle z - b, x - z \rangle + \alpha^2 \|x - z\|^2 < 0$, which implies that $\|z' - b\|^2 < \|z - b\|^2$, contradicting that z is a point of C closest to b.

Since $\langle b-z, x-z \rangle \leq 0$, u=z-b, and by $(*_1)$, $\langle u, z \rangle = 0$, we have

$$0 \geq \langle b-z, x-z \rangle = \langle -u, x-z \rangle = -\langle u, x \rangle + \langle u, z \rangle = -\langle u, x \rangle,$$

which means that

$$\langle u, x \rangle \ge 0 \quad \text{for all } x \in C,$$
 (*3)

as claimed. In particular,

$$\langle u, a_i \rangle \ge 0 \quad \text{for } i = 1, \dots, m.$$
 (*4)

Then by $(*_2)$ and $(*_4)$, the linear form defined by $y = u^{\top}$ satisfies the properties yb < 0 and $ya_i \ge 0$ for i = 1, ..., m, which proves the Farkas–Minkowski proposition.

There are other ways of proving the Farkas–Minkowski proposition, for instance using minimally infeasible systems or Fourier–Motzkin elimination; see Matousek and Gardner [123] (Chapter 6, Sections 6.6 and 6.7).