Твердотельное реле – полупроводниковый прибор, предназначенный для бесконтактной коммутации цепей постоянного и переменного тока по сигналу управления. Это новый тип бесконтактных электрических реле собранных по современным мировым стандартам и технологиям.

Преимущества твердотельных реле:

- Длительный срок службы
- Отсутствие дребезга контактов и искрения при переключениях
- Низкий уровень электромагнитных помех
- Высокое сопротивление изоляции между коммутируемой и управляющей цепью
- Отсутствие акустического шума
- Низкое энергопотребление
- Высокое быстродействие

Благодаря своим характеристикам твердотельные реле все чаще заменяют электромагнитные реле и контакторы. Твердотельные реле применяются в системах управления нагревом, освещением, электродвигателями, трансформаторами, электромагнитами и т.д.

Параметры для подбора твердотельного реле:

- Ток нагрузки (номинальный, пусковой ток)
- Характер нагрузки (индуктивная, резистивная, емкостная)
- Коммутируемое напряжение (постоянное, переменное)
- Тип управляющего сигнала

Структура обозначения:

- 1. **GDH** Вид твердотельного реле
 - **GDH** однофазное твердотельное реле (10 120A)
 - **GDM** однофазные твердотельные реле в корпусе промышленного исполнения (100 500A)
 - **GTH** трехфазные твердотельные реле (10 120A)
 - **GTR** реверсивные твердотельные реле (10 40A)
- **2. 40** рабочий ток 40A (от 10 до 500A)
- **3. 48** рабочее напряжение <u>24-480V AC</u>, **38** <u>24-380V AC</u>, **23** <u>5-220V DC</u>
- **4. ZD3** тип управляющего сигнала (способ коммутации)
 - VA переменный резистор <u>470-560кОм/2Вт</u> (фазовое управление)
 - LA аналоговый сигнал <u>4-20мА</u> (фазовое управление)
 - **VD** аналоговый сигнал 0-10V DC (фазовое управление)
 - **ZD** управление <u>10-30V DC</u> (коммутация при переходе через ноль)
 - **ZD3** управление 3-32V DC (коммутация при переходе через ноль)
 - **ZA2** управление <u>70-280V AC</u> (коммутация при переходе через ноль)
 - **DD3** управление <u>3-32V DC</u> (коммутация напряжения постоянного тока)

<u>твердотельные реле</u>

Способы коммутации твердотельных реле:

1. Управление с коммутаций при переходе тока через ноль.

Преимущества этого метода коммутации заключается в отсутствии помех создающихся при включении.

Недостатками являются прерывание выходного сигнала и невозможность использования на высокоиндуктивные нагрузки.

Основное применение данного вида коммутации подходит для резистивной нагрузки (системы контроля и управления нагревом). Так же применяют на емкостные и слабоиндуктивные нагрузки.

2. Фазовое управление

Преимущества фазового метода регулирования заключается в непрерывности и плавности регулирования. Этот метод позволяет регулировать величину напряжения на выходе (регулятор мощности).

Недостатком является наличие помех при переключении.

Применяется для резистивных (системы управления нагревом), переменная резистивная нагрузка (инфракрасные излучатели) и индуктивных нагрузок (трансформаторы).

Однофазные твердотельные реле с коммутацией при переходе тока через ноль

Особенности:

- Низкий уровень электромагнитных помех
- Управляющее напряжение 3-32V DC, 70-280V AC
- Отсутствие дребезга контактов и искрения при переключениях
- Отсутствие акустического шума
- Низкое энергопотребление
- Высокое быстродействие

Варианты исполнений:

Выходное	Управляющее	Номинальный коммутируемый ток			c
напряжение	напряжение	10A	25	5A	40A
480V AC	3-32V DC	GDH1048ZD3	GDH25	548ZD3	GDH4048ZD3
"перекл. в 0"	70-280V AC	GDH1048ZA2 GDH2548ZA2 GDH		GDH4048ZA2	
Выходное	Управляющее	Номинальный коммутируемый ток		¢	
напряжение	напряжение	60A	80A	100A	120A
480V AC	3-32V DC	GDH6048ZD3	GDH8048ZD3	GDH10048ZD3	GDH12048ZD3
"перекл. в 0"	70-280V AC	GDH6048ZA2	GDH8048ZA2	GDH10048ZA2	GDH12048ZA2

Технические характеристики и условия эксплуатации:

техни неские марактеристика и условил эксплуатиции.			
Модификация твердотельного реле	GDHxxxxxZD3	GDHxxxxxZA2	
Коммутируемое напряжение	24-480V AC		
Управляющее напряжение	3-32V DC	70-280V AC	
Потребляемый ток в цепи управления	3-25mA	≤12mA	
Напряжение вкл./выкл.	3V DC/1V DC	70V AC/10V AC	
Максимальное пиковое напряжение	1000V AC		
Падение напряжения в цепи нагрузки	≤1,6V AC		
Ток утечки (выключенное состояние)	≤10mA		
Время переключения	10мс		
Светодиодная индикация	есть		
Напряжение пробоя	2500V AC в теч. 1 минуты		
Сопротивление изоляции	500МОм при 500V DC		
Температура окружающей среды	-30+75°C		
Относительная влажность	≤95° (без образования конденсата)		
Габаритные размеры	57,5x4	14х32мм	
Способ монтажа	Винтами на монт	ажную поверхность	
Macca	<u> </u>	135г	

Схемы подключения:

GDHxxxxxZD3

GDHxxxxxZA2

Однофазные твердотельные реле с фазовым методом управления

Особенности:

- Регулировка напряжения на выходе (регулятор мощности)
- Аналоговые управляющие сигналы: 4-20мA, 1-10V DC, перменный резистор 470-560кОм
- Отсутствие дребезга контактов и искрения при переключениях
- Отсутствие акустического шума
- Низкое энергопотребление
- Высокое быстродействие

Варианты исполнений:

Виришний и					
Выходное	Аналоговый	Номинальный коммутируемый ток			¢
напряжение	сигнал	10A	25A		40A
380V AC	4-20мА	GDH1038LA	GDH2	538LA	GDH4038LA
	0-10V DC	GDH1038VD	GDH2:	538VD	GDH4038VD
фазовое упр.	470-560кОм	GDH1038VA	GDH2:	538VA	GDH4038VA
Выходное	Аналоговый	Номинальный коммутируемый ток			¢
напряжение	сигнал	60A	80A	100A	120A
380V AC	4-20мА	GDH6038LA	GDH8038LA	GDH10038LA	GDH12038LA
	1-10V DC	GDH6038VD	GDH8038VD	GDH10038VD	GDH12038VD
фазовое упр.	470-560кОм	GDH6038VA	GDH8038VA	GDH10038VA	GDH12038VA

Технические характеристики и условия эксплуатации:

технические хириктеристики и условия эксплуитиции.				
Модификация твердотельного реле	GDHxxxxxLA	GDHxxxxxVD	GDHxxxxVA	
Коммутируемое напряжение	24-380V AC			
Управляющий сигнал	4-20мА	4-20мA 0-10V DC 470-560кОм/2		
Потребляемый ток в цепи управления	-	-	-	
Ток утечки (выключенное состояние)		≤5MA		
Максимальное пиковое напряжение	1000V AC			
Падение напряжения в цепи нагрузки		≤1,6V AC		
Время переключения		≤10мс		
Светодиодная индикация	отсутствует			
Напряжение пробоя	2:	2500V AC в теч. 1 минуты		
Сопротивление изоляции		500МОм при 500V I	OC .	
Температура окружающей среды		-30+75°C		
Относительная влажность	≤95° (≤95° (без образования конденсата)		
Габаритные размеры		57,5х44х32мм		
Способ монтажа	Винтам	ии на монтажную по	верхность	
Macca		≤135Γ		

Примечание: Выходные и входные клеммы твердотельных реле **GDHxxxxxVA** не изолированы друг от друга. Будьте внимательны при работе!

Схемы подключения:

GDHxxxxxLA, GDHxxxxxVD

GDHxxxxxVA

Однофазные твердотельные реле для коммутации цепей постоянного тока

Особенности:

- Коммутация цепей постоянного тока
- Управляющее напряжение 3-32V DC
- Длительный срок службы
- Отсутствие дребезга контактов и искрения при переключениях
- Отсутствие акустического шума
- Низкое энергопотребление
- Высокое быстродействие

Варианты исполнений:

Выходное	Управляющее	F	Іоминальный ко	ммутируемый то	ЭK
напряжение	напряжение	10A	25	A	40A
		GDH1023DD3	GDH25	23DD3	GDH4023DD3
220V DC	3-32V DC	60A		80)A
		GDH60	023DD3	GDH80)23DD3

Технические характеристики и условия эксплуатации:

технические характеристики и условия эксплуатации:		
Модификация твердотельного реле	GDHxxxxxDD3	
Коммутируемое напряжение	5-220V DC	
Управляющий сигнал	3-32V DC	
Потребляемый ток в цепи управления	5-25mA	
Ток утечки (выключенное состояние)	≤5mA	
Напряжение вкл./выкл.	3V DC/1V DC	
Максимальное пиковое напряжение	400V DC	
Падение напряжения в цепи нагрузки	≤1,2V DC	
Время переключения	≤10мс	
Светодиодная индикация	есть	
Напряжение пробоя	2000V AC в теч. 1 минуты	
Сопротивление изоляции	500МОм при 500V DC	
Температура окружающей среды	-30+75°C	
Относительная влажность	≤95° (без образования конденсата)	
Габаритные размеры	57,5х44х32мм	
Способ монтажа	Винтами на монтажную поверхность	
Macca	≤135r	

Примечание: При индуктивной нагрузке необходимо использовать шунтирующий диод, установленный параллельно нагрузке (в соответствии со схемой включения)

Схемы подключения:

GDHxxxxxDD3

Однофазные твердотельные реле в корпусе промышленного исполнения

Особенности:

- Низкий уровень электромагнитных помех
- Управляющее напряжение 3-32V DC, 70-280V AC
- Высокий диапазон коммутационных токов
- Отсутствие дребезга контактов и искрения при переключениях
- Отсутствие акустического шума
- Низкое энергопотребление
- Высокое быстродействие

Варианты исполнений:

Выходное	Управляющее	Номинальный коммутируемый ток			
напряжение	напряжение	100A	120A	150A	200A
480V AC	3-32V DC	GDM10048ZD3	GDM12048ZD3	GDM15048ZD3	GDM20048ZD3
"перекл. в 0"	80-280V AC	GDM10048ZA2	GDM12048ZA2	GDM15048ZA2	GDM20048ZA2
Выходное	Управляющее	Номинальный коммутируемый ток			
напряжение	напряжение	250A	290A	400A	500A
480V AC	3-32V DC	GDM25048ZD3	GDM29048ZD3	GDM40048ZD3	GDM50048ZD3
"перекл. в 0"	80-280V AC	GDM25048ZA2	GDM29048ZA2	GDM40048ZA2	GDM50048ZA2

Технические характеристики и условия эксплуатации:

1 схнические хириктеристики и условия эксплуитиции.			
Модификация твердотельного реле	GDHxxxxxZD3	GDHxxxxxZA2	
Коммутируемое напряжение	24-480V AC		
Управляющее напряжение	3-32V DC	80-280V AC	
Потребляемый ток в цепи управления	3-25mA	≤12mA	
Напряжение вкл./выкл.	3V DC/1,5V DC	80V AC/50V AC	
Максимальное пиковое напряжение	800	V AC	
Падение напряжения в цепи нагрузки	≤1,5V AC		
Ток утечки (выключенное состояние)	≤10mA		
Время переключения	10мс		
Светодиодная индикация	есть		
Напряжение пробоя	2500V AC B	в теч. 1 минуты	
Сопротивление изоляции	500МОм г	гри 500V DC	
Температура окружающей среды	-20	.+75°C	
Относительная влажность	≤95° (без образования конденсата)		
Γοδορματιμιο ποργοριμ	94х25х38мм (100А, 120А), 94х34х38мм (150-290А)		
Габаритные размеры	115х53х53мм (400А, 500А)		
Способ монтажа	Винтами на монт	ажную поверхность	
Macca	≤500г (зависит	от номинала тока)	

Схемы подключения:

GDMxxxxxZD3

GDMxxxxxZA2

Трехфазные твердотельные реле

Особенности:

- Длительный срок службы
- Управление с коммутацией при переходе тока через ноль
- Управляющее напряжение 3-32V DC, 70-280V AC
- Коммутация по 3-м фазам
- Отсутствие дребезга контактов и искрения при переключениях
- Низкий уровень электромагнитных помех
- Высокое сопротивление изоляции между коммутируемой и управляющей цепью
- Отсутствие акустического шума
- Высокое быстродействие

Варианты исполнений:

Выходное	Управляющее	Номинальный коммутируемый ток			
напряжение	напряжение	10A	25	SA	40A
480V AC	3-32V DC	GTH1048ZD3	GTH25	548ZD3	GTH4048ZD3
"перек. в 0"	70-280V AC	GTH1048ZA2	GTH25	548ZA2	GTH4048ZA2
Выходное	Управляющее	Номинальный коммутируемый ток			
	0 11pm20111101110	,			_
напряжение	напряжение	60A	80A	100A	120A
	•				

Технические характеристики и условия эксплуатации:

технические характеристики и условия эксплуатиции.			
Модификация твердотельного реле	GTHxxxxxZD3	GTHxxxxZA2	
Коммутируемое напряжение	24-480V AC 47-63Гц		
Управляющее напряжение	3-32V DC	70-280V AC	
Потребляемый ток в цепи управления	10-68mA	≤12mA	
Напряжение вкл./выкл.	3V DC/1V DC	70V AC/10V AC	
Максимальное пиковое напряжение	1000V AC		
Падение напряжения в цепи нагрузки	≤1,6V AC		
Ток утечки (выключенное состояние)	≤10mA		
Время переключения	10мс		
Светодиодная индикация	есть		
Напряжение пробоя	2500V AC в теч. 1 минуты		
Сопротивление изоляции	500МОм при 500V DC		
Температура окружающей среды	-30+75°C		
Относительная влажность	≤95° (без образования конденсата)		
Габаритные размеры	105x7	74х33мм	
Способ монтажа	Винтами на монт	ажную поверхность	
Macca	<u><</u>	450г	

Схемы подключения:

Трехфазные реверсивные реле

Особенности:

- Длительный срок службы
- Управляющее напряжение 10-30V DC
- Коммутация по 3-м фазам
- Отсутствие дребезга контактов и искрения при переключениях
- Высокое сопротивление изоляции между коммутируемой и управляющей цепью
- Встроенная RC-цепь и защита от одновременного включения
- Светодиодная индикация направления вращения

Варианты исполнений:

Выходное	Управляющее	Номинальный коммутируемый ток		
напряжение	напряжение	10A	25A	40A
480V AC "перек. В 0"	10-30V DC	GTR1048ZD	GTR2548ZD	GTR4048ZD

Технические характеристики и условия эксплуатации:

технические характеристики и условия эксплуатации:			
Модификация твердотельного реле	GTRxxxxZD		
Коммутируемое напряжение	48-480V AC 47-63Гц		
Управляющее напряжение	10-30V DC		
Потребляемый ток в цепи управления	≤40mA		
Напряжение вкл./выкл.	8V DC/5V DC		
Максимальное пиковое напряжение	1000V AC		
Максимальный пиковый ток	10А:100А, 25А:250А, 40:400А в течении 10мс		
Падение напряжения в цепи нагрузки	≤1,6V AC		
Ток утечки (выключенное состояние)	≤10 _M A		
Время переключения	½ цикла		
Светодиодная индикация	Зеленый -прямое вращение Красный – обратное вращение		
Напряжение пробоя	2500V AC в теч. 1 минуты		
Сопротивление изоляции	500МОм при 500V DC		
Температура окружающей среды	-30+75°C		
Относительная влажность	≤80° (без образования конденсата)		
Габаритные размеры	105х74х33мм		
Способ монтажа	Винтами на монтажную поверхность		
Macca	≤450Γ		

Примечание: 1. Реле подбирается с учетом пускового тока двигателя.

- 2. Для защиты реле от перенапряжения применяйте варисторы установленные параллельно цепи нагрузки.
- 3. Для эффективного отвода тепла обязательно использовать радиаторы (и возможно вентилятор).

<u>Твердотельные реле</u>

Схемы подключения и коммутации:

Рекомендации по выбору и особенности эксплуатации:

Ток и характер нагрузки. Одним из важнейших параметров для выбора реле является ток нагрузки. Для надежной и длительной эксплуатации необходимо выбирать реле с запасом по току, но при этом надо учитывать и пусковые токи, т.к. реле способно выдерживать 10-ти кратную перегрузку по току только в течение короткого времени (10мс). Так при работе на активную нагрузку (нагреватель) номинальный ток реле должен быть на 30-40% больше номинального тока нагрузки, а при работе на индуктивную нагрузку(электродвигатель) необходимо учитывать пусковой ток и запас по току должен быть увеличен в 6-10раз.

Примеры запаса по току для различных типов нагрузки:

- активная нагрузка (ТЭНы) запас 30-40%.
- асинхронные электродвигатели 6...10 кратный запас по току.
- лампы накаливания 8...12 кратный запас по току.
- катушки электромагнитных реле 4...10кратный запас по току

Расчет тока реле при активной нагрузке:

Однофазная нагрузка

 $I_{
m pene}=P_{
m Harp}/U$ $P_{
m Harp}=5\kappa B_T,\,U=220B$ $I_{
m pene}=5000/220=22,7A$ Учитывая необходимый запас по току выбираем реле на 40A.

Іреле=Рнагр/(U х 1,732) Рнагр=27кВт, U=380В Іреле=27000/(380 х 1,732)=41,02А С учетом запаса по току выбираем реле на 60А.

Охлаждение. Еще одним немаловажным фактором для надежной работы твердотельных реле является его рабочая температура. При работе твердотельного реле на силовых элементах выделяется большое количество тепла, которое необходимо отводить с помощью радиаторов охлаждения. Выделение тепла вызвано электрическими потерями на силовых элементах реле. Заявленный номинальный ток реле способны коммутировать при его температуре не более 40°С. При увеличении температуры реле снижается его пропускная способность из расчета 20-25% на каждые 10°С. При температуре ≈80°С его пропускная способность по току сводится к нулю и как следствие реле выходит из строя. На температурный режим реле могут влиять многие факторы: место установки, температура окружающей среды, циркуляция воздуха, нагрузка на твердотельном реле и др. При использовании на «тяжелые» нагрузки (пуск асинхронного двигателя) необходимо применять дополнительные меры по усилению отвода тепла: устанавливать на радиатор большего размера, сделать принудительное охлаждение (установить вентилятор).

Защита.

- Твердотельные реле имеют встроенную RCцепь для защиты от ложного включения при использовании на индуктивной нагрузке.
- Для защиты от кратковременного перенапряжения со стороны нагрузки необходимо использовать варисторы. Они подбираются исходя из величины коммутируемого напряжения U_{вар}=1,6 2U_{ком}.
- Для защиты от перегрузки по току необходимо использовать быстродействующие полупроводниковые предохранители.
 Подбираются с учетом величины номинального тока реле Inp=1 1,3Іном. реле.
 Это самый эффективный способ защитить реле от перегрузки по току. Т.к. реле способно выдерживать только кратковременную (10мс) перегрузку, то использование автоматов защиты их не спасет от выхода из строя.

• Для корректной работы твердотельного реле на маленькие токи нагрузки необходимо устанавливать шунтирующее сопротивление параллельно нагрузке.

Примеры применения.

Основное применение твердотельные реле находят в системах управления нагревом. Твердотельные реле ZD3, VD, LA чаще всего применяют в технологических процессах где требуется поддержание температуры с большой точностью (ПИД, Fuzzy режим). При этом реле VD, LA будут обеспечивать плавную регулировку за счет фазового метода управления.

<u> Твердотельные реле</u>

Твердотельные реле ZA2 чаще применяют в системах где не требуется высока точность поддержания температуры (двухпозиционный режим).

Твердотельные реле VA (управление потенциометром) применяют для ручной регулировки мощности на нагрузке. Таким реле можно отрегулировать мощность ТЭНа или ИК-излучателя, отрегулировать яркость свечения лампы накаливания.

Соблюдая определенный ряд условий твердотельные реле можно использовать для пуска асинхронных двигателей. Необходимо учитывать пусковые токи двигателя и реле подбирать с многократным запасом по току. Применять меры по дополнительному отводу тепла. Для защиты реле от кратковременных перенапряжений использовать варисторы, а для защиты от перегрузки по току быстродействующие предохранители.

<u> Твердотельные реле</u>

Можно организовать управление группой реле от одного источника питания. В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле. При этом можно оставить возможность включения- выключения отдельного реле для управления требуемой зоной.

Радиаторы охлаждения

Радиаторы охлаждения предназначены для отвода тепла выделяемого при работе полупроводниковых приборов, в данном случае твердотельных реле.

Радиаторы охлаждения необходимо использовать при постоянной нагрузке более 5A. В противном случае возможен выход из строя твердотельного реле. Заявленный номинальный ток реле способно коммутировать при температуре не более 40° С. При увеличении температуры реле снижается его пропускная способность из расчета 20-25% на каждые 10° С. При температуре $\approx 80^{\circ}$ С его пропускная способность по току сводится к нулю и как следствие выход из строя. Что бы избежать перегрева реле его необходимо устанавливать на радиатор охлаждения.

При подборе радиатора охлаждения надо учитывать факторы влияющие на охлаждение, такие как: место установки, температура окружающей среды, циркуляция воздушных потоков, нагрузка на твердотельном реле. В некоторых случаях для более эффективного охлаждения (нагрузка с высокими пусковыми токами) нужно устанавливать вентилятор для принудительного отвода тепла.

Радиаторы надо устанавливать с вертикальным расположением ребер, так что бы ничего не мешало естественной циркуляции воздуха вдоль радиатора. Использование теплопроводящей пасты улучшает теплопередачу на радиатор, но при том условии, что она нанесена очень тонким слоем для заполнения трещин и воздушных зазоров (теплопроводность металл-металл гораздо выше, чем теплопроводность металл-термопаста-металл).

Радиатор охлаждения SSR-1

Модель	SSR-1
Применение	для однофазных реле
Макс. Ток	≤20A
Размеры	75х52х44мм
Bec	110гр

Габаритные и крепежные размеры:

Радиатор охлаждения SSR-14

Модель	SSR-14
Применение	для однофазных реле
Макс. Ток	≤40A
Размеры	127х71х50мм
Bec	230гр

Габаритные и крепежные размеры:

Радиатор охлаждения SSR-16

Модель	SSR-16
Применение	для однофазных реле
Макс. Ток	≤60A
Размеры	127х109х50мм
Bec	380гр

Габаритные и крепежные размеры:

Paduamop охлаждения SSR-3

Модель	SSR-3
Применение	для одно/трехфазных реле
Макс. Ток	≤40A
Размеры	105х100х80мм
Bec	550гр
Возможно крепление вентилятора	

<u> Твердотельные реле</u>

Габаритные и крепежные размеры:

Радиатор охлаждения SSR-310

Модель	SSR-310
Применение	для трехфазных реле
Макс. Ток	≤100A
Размеры	150х100х80мм
Bec	2300гр
Возможно крепление вентилятора	

Габаритные и крепежные размеры:

Компания «Приборы Урала» 620073, г. Екатеринбург, ул. Крестинского, 46-А, оф. 607 тел/факс (343) 345-03-03, 220-10-53, моб. 8-902-26-02-962, эл. почта uralpribor@pm.convex.ru