EEE 310.2 – Circuit Theory II

COURSE PARTICULARS

Course Code: EEE 310.2

Course Title: Electric Circuit Theory II

No of Units: 3

Course Duration:

Status: Compulsory

Prerequisite: EEE 322.1, ENG 210

COURSE LECTURERS

Engr. A. A. Enughwure Dept. of Electrical Engineering Nigeria Maritime University, Okerenkoko, Nigeria akpofure.enughwure@nmu.edu.ng

Engr. Salihu Dept. of Electrical Engineering Nigeria Maritime University, Okerenkoko, Nigeria sasyalwa05@yahoo.com

Engr. Umar Sabo Dept. of Electrical Engineering Nigeria Maritime University, Okerenkoko, Nigeria umar.sabo@gmail.com

COURSE DESCRIPTION

This course is an exploratory, second advance course in circuit theory primarily designed for students in electrical and electronics engineering discipline. The focus of the course is to impart useful skills on the students in order to enhance their circuit synthesis capability since no electrical/electronics engineering graduate will be versatile in the field without a good knowledge of modern circuit analysis and synthesis methods. Hence, this course is design to provide fundamental knowledge on circuit analysis and network synthesis. Topics to be covered include: Advanced Circuit Analysis, Non Linear Circuit Analysis, Filter – design and operation and Active Network Synthesis using Foster and Cauer's forms.

COURSE OBJECTIVES

The objectives of this course are to:

- introduce students to different methods involves in realising network system from transfer functions;
- provide students with basic information involves on how to work with Fourier transforms, and using them to analyze circuits in frequency domain; and
- provide students with required knowledge on how to apply inverse Laplace transforms to obtain time-domain expressions from frequency domain.

COURSE LEARNING OUTCOMES / COMPETENCIES

Upon successful completion of this course, the student will be able to: (*Knowledge based*)

- synthesis network system from their transfer functions;
- analysis network systems using both initial-value and final-value theorems;
- design and develop basic filter networks

GRADING SYSTEM FOR THE COURSE

This course will be graded as follows:

TOTAL	100%
Final Examination	60%
Test(s)	20%
Assignments	10%
Practical	10%

SUPPORTING MATERIALS

We need to recommend at least four textbooks to the students.

Week	Topic	Lecturer	Remarks
1	Introduction and Course	Engr. A. A.	During the first class,
	General Overview	Enughwure	the expectation of the
			students from the
			course will also be
2 -5	Advanced Circuit Analysis	Engr, A. A.	documented When learning about
2-3	Advanced Circuit Aliarysis	Enughwure	application of Fourier
	Introduction, Definition,	Linugitwuic	transform to
	Properties and Inverse of		circuit analysis,
	Fourier Transform.		student will be
	Application of Circuit		taught on how to use
	Analysis		partial
			fractions expansion to
			deduce
			inverse Fourier
			transforms
6	Non-linear Circuit Analysis	Engr. A. A.	
	·	Enughwure	
7-10	Filter:	Engr. Salihu	Practical exercise will
	Understanding basic types of		involve
	filters sections such as low		different filters design
	pass, high pass, band-pass and		and
	band-stop filters		realisation using
	Learning how to design filters		components
	Understanding characteristic impedance and attenuation of		and MATLAB
	filter.		
	Butterworth, Chebychev		
	filters		
11-13	Network Synthesis:	Engr. Sabo Umar	
	Learning how to synthesis LC		
	Network using		

14	Foster Forms (Foster Form I and Foster Form II) and Cauer Forms (Foster Form I and Foster Form III) Learning how to synthesis RC and RL Networks using Foster Forms (Foster Form I and Foster Form II) and Cauer Forms (Foster Form I and Foster Form II) Revision	Engr. A. A. Enughwure	This is the week preceding the final examination. At this time, evaluation will be done to assess how far the students' expectations for the course have been met.
----	--	-----------------------	--