Bird's eye view of complexity theory.
Yes inetancec NP: let A be a decision problem.
NP: let A & a decision
problem.
A ∈ NP it:
For $n \in I_A$,
there is a short certificate which indicates n is a 'Yes' Instance.
Formal version: I a polytime versifier
V S.+ $x \in A$ iff y without $ y \le x $ Constant, $ y \le x $ S.+ $ y = x $
$ y \leq n ^{2}$ set $V(n,y)=1$.
l.g.1 3SAT = } Ø: Ø is a contiguent 3CNF3.

is a satisfying frath assignment.

egz IS = { (G, K): G has an IS of Give at least K}.

certificate of a Yes' instale:

S EV st all modes in so do not have an edge between PM.

Define $A = \{n : n \notin A\}$ decision problem.

all 'Yes' instrues of A

are exactly the 'No' hythun

CONP: All decision problems A sit

A is in NP.

e.g. TAUTOLOGY = {\$\phi\$: \$\phi\$ is a 3 LNF s.t every truth assignment satisfies \$\phi\$.

TAUTOLOGY = { \$\phi\$: \$\phi\$ is a 3CNF and 7 some assign.

Some assign.

Cherry, TAUTOLOGY ENP.

e.92 IS = \{G, K\}: The largest is of size atmost K-1 }.

Def Accord if 7 a polytime vorifier V sit $2 \in A$ iff
* y, y = x c, V(x,y)=1.
Can a decision problem A be in both NP and GNP?
(b) No.
Thm: PENPOONP.
Pf sketch. Let A be a decision problem in P. => A & P.
We know PCNP => A < NP, A < NP.
Thus, PS NP MONP.

It is not known if P is strictly contained in NP 10 co NP.

A problem in NPM coNP which we do not know to be in Pit:

FACTORING = $\{(n, k): n \text{ has a factor less} \}$ them kand more than 1 + 3.