190905

praat

헤르츠: 1초를 44100개로 쪼개서(44100분의 1초)

숙제: 녹음하고 저장하기 WAV 파일

show pitch: 파란선 나옴, 목소리 높낮이, 여자가 높음

intensity: 세기, 노란선 나옴(폭이 넓으면 값이 높고 폭이 좁으면 값이 낮음)

wave 밑에 흑백: 소리의 spectrum(높은게 고주파, 낮은게 저주파)

190917

English consonants & vowels 철자와 소리는 다름-g/a/p

y/j/는 자음-> year라고 쓰면 자음으로 소리가 시작됨(모음으로 시작하는 ear에 자음 y가 붙은 것)

voiced/voiceless

모음: monophthongs(단모음) / diphthongs(복모음)

phonology: 소리가 어떻게 grouping되는지, 머릿속에서 일어나는 일, 머릿속의 인지 과정, study on sound 'system'

phonetics: 더 물리학적, 늘 차이가 생김, physical(가를 똑같이 열 번 얘기한다고 머릿속으로는 생각하지만, 실제로는 미묘한 차이가 생겨남), study on speech

speech: 사람이 하는 모든 말

'아'에서 '이'로 소리가 바뀌는 이유? 입모양 때문(입모양 속에 혀의 위치, 턱 등 포함-주된 요인은 아님)

한국어는 음절이 반복, 영어는 stress가 반복 한국어는 턱을 많이 쓰는 언어, 영어는 혀를 많이 쓰는 언어

articulatory: 말의 시작, 소리를 만들어내는 사람의 원리

acoustic: 공기와 소리가 어떻게 조화되는가, 사람과 관계없이 완전 물리적 특성 auditory: 어떻게 듣는가, 사람이 수반된 매커니즘, 고막이 움직이는 것 고려(물리학)

성대(larynx): 후두

인강(pharynx): 목젖부터 후두까지 긴 관

구개(palate): hard / soft(velum)

alveolar: 아주 중요한 부분

목젖(uvula)

upper structure는 그대로 있고 lower structure가 움직임(e.g. lip, tongue tip, tongue, epiglottis- 기도로 가는 길을 막음) 말할 때 식도는 이용하지 않고 기도를 이용

입말고 코로 가는 tract도 있음

비음을 뺀 모든 자음(nasal)은 velum이 raised된 상태에서 소리가 남(nasal은 lowered) 코로 숨을 쉴 때: velum은 lowered된 상태

larynx: 막히면 진동, 유성음/무성음 나눔

phonation process in larynx

articulation: 성대에서 유성/무성 구분, velum에서 lowered/raised되는 것

190919

유튜브에 남호성 교수님 강의 올라옴

조음, 음향(acoustic): 말하는게 어떻게 공기를 타고 가는가, 청각(auditory): 우리 뒤로 들어 가는 과정

조음: 크게 세 가지 요소(ppt에 세 동그라미) 제일 중요한 부분: 혀를 중심으로

숨을 쉴 때: velum은 내려옴-> 코로 가는 길이 생김 velum이 lowered 되면 m. n, ng 등 소리가 남

lip, tongue tip, tounge body 모두 constrictor(협착을 만드는 주체) constriction location: 앞뒤 조절 constriction degree: 상하 조절 constriction location과 constriction degree에 의해 자세히 조정됨

lip이 앞으로 가면 b, 뒤로 오면 v tongue body가 앞으로 오면 j tongue tip: 윗니(th), alveolar(d, t, n), ...

constriction location 관점에서 lip, tongue body는 2개, tongue tip은 네 개 정도로 미세 조정됨

constriction degree: stops, fricatives, approximants(영어에서 네 개- r, l, w, j), vowels

!!시험

velum raised, glottis(larynx의 틈) open, constrictor tongue tip, CL alveolar, CD stop 소리는? /t/

모든 모음은 constrictor로서 tongue body만 씀(tongue tip과 lips는 안 씀)

모음과 같은 constrictor를 쓰는 자음의 예시 중 velum lowered? /ng/- glottis closed(진동 일어남-유성음)

phoneme: 개별된 소리

모음과 자음 specify하는거 시험

pitch: 파란 곡선, 높다가 낮아지는 그래프(ppt), 소리의 높낮이(Hz), 여성의 목소리인지 남성의 목소리인지에 따라 setting-range를 다르게 해줘야함

intensity: 소리가 큰지 작은지 (같은 도라도 약하거나 세게 말할 수 있음)(dB)

spectrum: frequency 관점에서 분석

formant: 흑백의 띠, 모음이 뭔지 결정, formant 값에 따라 이 모음은 뭐라고 말할 수 있음

190924

어떻게 자음과 모음을 발성하는가?

세 가지 중요한 과정- larynx, velum, 입

p: lips-> location- bilabial, degree- stop, velum raised, larynx open

b: p에서 larynx만 closed로 바뀌면 됨

d: tongue tip-> location- alveolar, degree- stop

z: tongue tip-> location- alveolar, degree- fricative

n: tongue tip-> location- alveolar, degree- stop, velum lowered, larynx closed

praat 시험에 나올 수 있음

Hz: measure의 단위

1초에 sine wave가 몇 번 나오느냐에 따라 주파수를 얘기할 수 있음

frequency: 1초에 몇 번 반복되는지

magnitude: sine wave의 크기

vocal fold의 vibration에 의해 repeat이 일어남

sine wave를 결정짓는 것은 frequency와 magnitude 이 세상에 존재하는 모든 signal은 여러 다르게 생긴 sine wave의 결합으로 표현됨 모든 신호는 조금씩 다른 sine wave의 합

파란 그래프: frequency가 상대적으로 높음(첫 번째 빨간 것보다 3배 빠름) magnitude는 두 번째 초록색이 제일 작음 여러 sine wave의 합은 sine wave가 아닌 복잡한 소리로 만들어짐 복잡한 소리는 다양한 sine wave의 합으로 표현됨 합(complex tone): 1초에 100번 반복됨(빨간 wave와 같이) sine wave에서 x축: 시간, y축: 단순한 숫자값, value(voltage) time-value의 그래프를 frequency-amplitude 그래프(spectrum)로 변환시킬 줄 알아야함

spectrum이 어떻게 이루어져있는가? 우리 주변에서 보는 소리는 복잡한 형태 spectrogram- spectrum을 time으로 visualize함(spectrum은 time의 개념이 없음)

아 라고 녹음하고 spectrum slice를 확인했더니 130Hz 간격으로 반복됨 여러 다른 simplex tone의 합으로 녹음됨 vocal folds의 떨림이 1초에 몇 번 떨리는지와 일치(뭐가? 동영상 보기)

진동수- frequency, 1초에 몇 번 반복되는지, 단위는 Hz

source에서 filter가 어떻게 바뀌는지에 따라 ㅏ 소리도, ㅣ 소리도 만들 수 있음

graph가 decreasing- 모든 사람의 목소리의 패턴 제일 처음에 나오는 F0(fundamental frequency)이 이후 곱하기되어서 나옴(115->230->...)harmonics(배음)

speech의 source는 sine wave의 합처럼 저렇게 생김, 점점 amplitude가 작아짐 여자면 첫 시작이 남자보다 높을 것-> graph 모양이 더 듬성듬성인 모양일 것

head 소리의 graph- 배음의 구조가 안 깨짐(그대로 유지) amplitude가 깨짐- smoothly decreased-> 제멋대로

spectrogram- 위로 갈수록 옅어짐, 진한게 amplitude가 큼 low frequency 쪽에서 energy가 크고, high frequency에서 에너지가 약해짐 (까맣게 생긴 것이 에너지가 큼)

190926

모든 소리: simplex sound의 합 sine wave: 다양하게 패턴 바꿈 wave form: x축이 시간, y축은 그냥 value

v축은 frequency(!시험)

sine wave에 F0가 정해지고, 그것의 배음으로 목소리의 source가 정해짐 목소리의 pitch는 첫 번째 frequency와 일치-F0 (단위는 Hz) 저주파에선 에너지가 높고, 고주파로 가면 약해짐

입모양이 filter 역할 harmonics가 gradually decreased되지 않음 위의 source와 마찬가지로 harmonics가 일정 간격 유지

source: peak가 없음, gradually 낮아지기 때문

누가 /아/라고 말하든 산맥은 똑같은 패턴으로 나타남 산맥- formants

fundamental frequency: 220Hz (guitar) 기타는 complex tone

100Hz부터 1000Hz까지 combined mono된 소리: 인지심리학적으로 100Hz(F0)의 소리와 비슷하다고 느껴짐

F0: 첫 번째 나오는 것의 frequency(Hz)

F1: 처음 나오는 peak

F2: 두 번째로 나오는 peak

영어와 한국어의 /아/: 영어가 더 back, low한 소리

191001

컴퓨터 언어는 여러 종류가 있음(java, python 등)

다 다르지만 공통점 있음- 모든 language는 단어(정보가 들어 있음, 정보를 담는 그릇)와 문법(단어를 어떻게 combine?)이 존재

변수(variable): 단어에 해당, 정보를 담는 그릇의 역할 (정보의 종류는 많지 않음- 숫자와 글 자 두 가지)

기계의 문법은 생각만큼 어렵지 않음

컴퓨터 문법: 변수라고 하는 그릇에 정보를 담음, conditioning(if문법), 여러 번 반복 (for-loop?), 함수를 배움(입력-출력)(제일 중요)

디렉토리: 컴퓨터에서 어디에 위치해있는지

=: 오른쪽에 있는 정보를 왼쪽의 variable로 assemble하는 것 의미 (1이라는 정보를 a라는 변수에 넣음)

python의 모든 함수는 누가 만들어놨던걸 수도 있고, 내가 만들 수도 있고

print라는 함수의 입력: a 입력을 표시해주는 것: 괄호()

셀을 초록색에서 파란색으로 바꾼 후 b라고 치면 below에 셀을 만들어줌 x를 치면 없어짐 print(a)라고 쳤을 때 1이 나오는 것은 새로운 셀이 아니라 결과값 문자를 입력하고 싶을 땐 반드시 quote를 넣어줘야 함(e.g. b = 'love') run의 단축키: shift+enter

love = 2 b = love (b = 'love'였던 아까와는 다름) 라고 한 후 print(b)=> 2라는 결과값이 나옴

[]: 여러 숫자를 한 번에 넣을 수 있음(e.g. a = [1, 2, 3, 5])

type의 종류: int, float, str, list, tuple, dict... (type 종류 묻는 거 시험에 나올 수 있음)

list- 반드시 숫자일 필요는 없음(e.g. a = [1, 2, 3, 5, 'love']) list와 tupe은 완전 똑같음- list는 대괄호 사용, tuple은 그냥 괄호 사용 tuple이 보안에 더 강함

a = {'a': 'apple', 'b': 'banana'} - dictionary에 2개를 넣은 것 (콤마로 인해 2개가 들어와 있음, 중괄호를 씀- 중괄호를 써야 dictionary, 몇 개를 넣을지는 콤마로 표현, 설명의 쌍은 콜론으로 표현, 콜론 안에 string만 들어갈 필요는 없음)