Ra	fael Georg	getti Grossi		
Camanta Elátrica		C	NA.+ <i>ź</i>	1:
Corrente Elétrica	a nos	Conduto	res ivieta	IIICOS

Lista de ilustrações

Figura 1 –	Tensão por Comprimento	7
Figura $2 -$	Resistência por Comprimento	7

Lista de tabelas

Γabela 1 – Comprimento por Tensão	0	6
-----------------------------------	---	---

Sumário

1	INTRODUÇÃO	4
2	PARTE EXPERIMENTAL	5
2.1	Objetivos	5
2.2	Material Utilizado	5
2.3	Procedimentos	5
3	DESENVOLVIMENTO	6
4	CONCLUSÃO	8
	REFERÊNCIAS	g

1 Introdução

A resisência elétrica R é uma grandeza fisica que expressa a capacidade de um corpo de se opor à passagem de corrente elétrica quando existe uma diferença de potencial V aplicada. A resistência elétrica R entre dois pontos quaisqueres de um condutor é definido por :

$$R = \frac{V}{i} \tag{1.1}$$

A resistência é uma característica do fio como um todo, isto é, depende de seu comprimento, expessura e material. Por outro lado, a grandeza resistividade ρ é uma propriedade específica dos materias, ou seja, não se altera ao lidar com fios de diferentes tamanhos. Essa grandeza define a reposta do meio (objeto pelo qual a corrente atravessa) quando exposto a um campo elétrico E, matematicamente, têm-se:

$$\rho = \frac{E}{j} \tag{1.2}$$

No caso de um fio uniforme de comprimento L e seção reta de área A, tem-se:

$$E = \frac{V}{L} \tag{1.3}$$

$$j = \frac{i}{A} \tag{1.4}$$

Combinando as equações 1.3 e 1.4, têm-se:

$$R = \frac{\rho L}{A} \tag{1.5}$$

2 Parte Experimental

2.1 Objetivos

Analisar, através do experimento, o módulo do campo elétrico gerado e calcular a resistividade e a resistência. Montar dois gráficos, V x L e R x L.

2.2 Material Utilizado

- a) Um voltímetro;
- b) Um miliamperímetro;
- c) Uma ponte de fio de resistência;
- d) Uma fonte de corrente contínua;
- e) Cinco cabos de ligação;
- f) Um micrômetro;

2.3 Procedimentos

- a) Montar o circuito ligando propriamente o amperímetro;
- b) Realizar várias medidas variando o comprimento do fio em 10cm e anotar a Tensão V e corrente i em um tabela;
- c) Calcular a resistência através da equação 1.1;
- d) Utilizar o micrômetro para medir o raio do fio e em seguida calcular a área da secção reta;
- e) Criar dois gráficos, R x L e V x L;

3 Desenvolvimento

Inicialmente foi montado o circuito conforme relatado na apostila, em seguida iniciou-se o experimento. Primeiramente mediu-se a corrente elétrica i, então criou-se uma tabela Comprimento (L), em metros, e Tensão V, em volts, e utilizando-se de intervalos de 10 em 10 cm preencheu-se a tabela.

Tabela 1 – Comprimento por Tensão.

Tensão (V)	Comprimento (m)
0,1	0,075
0,2	0,130
0,3	0,192
0,4	0,251
0,5	0,310
0,6	0,383
0,7	0,433
0,8	0,488
0,9	0,559

Fonte: Autoria Própria.

Com os dados em mãos e utilizando a equação 1.1 calculou-se os valores da resistência R, em ohms, para todos os casos experimentados. Após isso, utilizando o SciDavis, plotou-se dois gráficos, um sendo Tensão por Comprimento ($V \times L$) em Volts e Metro respectivamente, e o outro Resistência por Comprimento ($R \times L$) em Ohms e Metro.

Figura 1 – Tensão por Comprimento

Fonte: Autoria Própria

Fonte: Autoria Própria

A partir do segundo gráfico foi possível calcular a resistividade do material, pois a regressão linear do gráfico fornece a seguinte equação:

$$a = \frac{\rho}{A} \tag{3.1}$$

Utilizando-se do micrômetro mede-se o raio do fio e calcula-se a área de secção reta, então utilizando-se a equação 3.1 chega-se no resultado de $0{,}418~\Omega m$

4 Conclusão

Com o experimento foi possível calcular a resistividade do material utilizado e embora possua uma margem de erro devido aos métodos de medidas adotados, ainda foi possível afirmar que o material é o Antimônio, com resistividade de 0,417 Ωm (o resultado encontrado foi de 0,418, muito semelhante). Através de uma tabela de resistivade foi possível perceber que o material utilizado possui alta resistividade e portanto é considerado um mal condutor.

Referências

HALLIDAY, D.; WALKER, J.; RESNICK, R. Fundamentals of physics. [S.l.]: John Wiley & Sons, 2013.

PUCMINAS, D. *Eletromagnetismo*. Belo Horizonte: Puc Minas - Instituto de Ciências Exatas e Informática, 2019. 79 p.