

11 de março de 2020

Relatório do processo de calibração do raio da Bobina Girante do Sirius — SBG-3 e SBG-4

Laboratório Nacional de Luz Síncrotron, Campinas, Brasil

Grupo IMAS

Neste relatório são apresentados os resultados dos testes realizados para calibração do raio médio equivalente da Sirius Bobina Girante (SBG) modelo 3 e 4 cujo raio nominal é 13 mm. Para a realização do processo utilizou-se a bancada da bobina girante juntamente com seus subsistemas.

Relatório do processo de calibração do raio da Bobina Girante do Sirius — SBG-3 e SBG-4

Resumo: Baseando-se no artigo "*In-situ* calibration of rotating sensor coils for magnet testing - P. Arpaia, M. Buzio, G. Golluccio and L. Walckiers" definiremos o raio médio equivalente da bobina para medir o campo integrado a partir de um quadrupolo de calibração. O método é destinado a aumentar a exatidão da bobina girante quando o comprimento da bobina é maior que o comprimento do ímã, explorando diretamente medidas do campo magnético e do deslocamento mecânico. O teste consiste em, num campo quadrupolar, promover um deslocamento Δz entre o eixo magnético e o eixo de rotação da bobina que dará origem a um componente de dipolo na expansão em série do campo medido [1]. Se os termos dipolar, quadrupolar e o deslocamento Δz forem medidos, os parâmetros de calibração (raio equivalente ao longo do comprimento do ímã de medição) podem ser determinados analiticamente.

$$B(z) = \sum_{n=1}^{+\infty} C_n \left(\frac{z}{R_{ref}}\right)^{n-1}, \qquad C_n = A_n i + B_n$$
 [1], [2]

Assume-se, no campo magnético estático, o fluxo radial φ , interceptado pela bobina girante imersa no campo em função do ângulo de rotação θ da bobina. A análise de Fourier da distribuição de fluxo permite obter os parâmetros de campo expressos em termos dos coeficientes harmônicos [2]. O conteúdo harmônico de campo é proporcional a Transformada Discreta de Fourier (DFT) com coeficientes ψ_n do fluxo da amostra θ_k resultante da integração da tensão entre duas posições angulares durante a rotação da bobina, onde N é o número de pontos angulares por volta [3].

$$\Psi_n = \frac{1}{N} \sum_{k=1}^{N} \Phi_k e^{kin\frac{2\pi}{N}},$$
[3]

Mantendo o ímã na mesma posição, uma primeira rotação da bobina é realizada para avaliar o fluxo resultante dos componentes de quadrupolo e dipolo (ψ_2 e ψ_1 , respectivamente) na posição inicial X_0 . Então, um deslocamento é aplicado à bobina, a medição de fluxo é repetida e o $\Delta \Psi_1$ e ψ_2 são utilizados na expressão [4] para calcular os parâmetros de calibração R.

$$R=-rac{\Delta_x\Psi_2}{\Delta_{\Psi 1}}$$
 [4]

Método de calibração:

1. Variação longitudinal e transversal com quadrupolo de magneto permanente

Foram executados dois tipos de procedimentos para determinar o raio médio da bobina. Primeiramente, utilizou-se um quadrupolo de calibração de magneto permanente de 12 blocos (45.88 T/m segundo simulação 2D ≈ 2.7528 T), transladando-o longitudinalmente ao longo do comprimento do berço divido em 4 partes (-180 mm, -90 mm, 0 mm, 86 mm, 172 mm), onde a posição -180 mm representa a posição longitudinal do berço referente ao mancal do lado B e a posição longitudinal de 172 mm representa o mancal de lado A (vide Figura 1).

Para cada posição longitudinal, o eixo de giro da bobina foi deslocado transversalmente (Δz) em posições nominais de 3 mm, 5 mm, 7 mm e 10 mm ao longo do eixo X magnético. Os deslocamentos transversais Δz foram medidos através dos encoders lineares Heidenhain ND 780 de 0.1 μ m de resolução e as posições longitudinais foram estimadas dentro de um erro de \pm 0.5 mm. O erro angular e o alinhamento de centro foram pré-determinados (3.0e-5 rad, 20 μ m em X, -4 μ m em Y) e não afetam o procedimento de calibração.

2. Variação longitudinal com dipolo de magneto permanente

Um dipolo de calibração de magneto permanente de 12 blocos (1.045 T segundo simulação 2D ≈ 0.0627 T.m) foi transladado longitudinalmente ao longo do comprimento do berço a fim de estimar a dependência do raio da bobina com a longitudinal.

3. Variação transversal da bobina na abertura do quadrupolo do Booster (@r = 17.5 mm)

De posse de um quadrupolo BQF do Booster, foi executado o mesmo procedimento do item 1, dessa vez utilizando um quadrupolo com melhor design mecânico, multipolos conhecidos, campo integrado e raio de abertura conveniente.

Resultados:

1. Variação longitudinal com quadrupolo de magneto permanente e variação transversal da bobina sob o eixo X

SBG-4:

Tabela 1: Raio calculado a partir das posições transversais para cada posição longitudinal.

Longitudinal Position [mm]	Nominal Horizontal Shift [mm]	Encoder Reading A [mm]	Encoder Reading B [mm]	Average Horizontal shift [mm]	Calculated Radius [mm]
	3.0000	3.0634	3.1045	3.0840	12.9253
190,000	5.0000	5.0623	5.1026	5.0825	12.9259
-180.0000	7.0000	7.0635	7.1068	7.0852	12.9370
	10.0000	10.0037	10.0054	10.0046	12.9389
	3.0000	3.0636	3.1054	3.0845	12.9200
00 0000	5.0000	5.0641	5.1041	5.0841	12.9366
-90.0000	7.0000	7.0632	7.1064	7.0848	12.9391
	10.0000	10.0101	10.0088	10.0095	12.9320
	3.0000	3.0648	3.1074	3.0861	12.9637
0.0000	5.0000	5.0636	5.1082	5.0859	12.9636
0.0000	7.0000	7.0641	7.1073	7.0857	12.9651
	10.0000	10.0008	10.0029	10.0019	12.9583
	3.0000	3.0633	3.0985	3.0809	13.0116
86.0000	5.0000	5.0632	5.0982	5.0807	12.9957
86.0000	7.0000	7.0624	7.0978	7.0801	12.9975
	10.0000	10.0074	10.0070	10.0072	12.9693
	3.0000	3.0626	3.0959	3.0793	13.0413
172 0000	5.0000	5.0622	5.0968	5.0795	13.0201
172.0000	7.0000	7.0649	7.0967	7.0808	13.0121
	10.0000	10.0011	10.0018	10.0015	12.9836

Tabela 2: Média por deslocamento.

Avg. Shift	D	
[mm]	R mean [mm]	std [mm]
10.0041	12.956434	0.021252
7.0696	12.970172	0.033903
5.0688	12.968377	0.039571
3.0693	12.972382	0.053213

Tabela 3: Média para posição longitudinal.

Nominal Longitudinal Position [mm]	R mean [mm]	std [mm]
0.00	12.962667	0.002985
-90.00	12.931935	0.008457
172.00	13.014297	0.023897
-180.00	12.931791	0.007195
86.00	12.993515	0.017652

Conclusão: Nota-se que há uma dependência do valor calculado do raio com o deslocamento da bobina no quadrupolo de magneto permanente. Não obstante, a precisão na determinação do deslocamento transversal também tem relevância no resultado do cálculo. Para verificação, no método 3, refez-se o teste adotando o quadruplo do Booster para a calibração e realizando ajustes mais precisos na posição dos mancais A e B com auxílio do encoder ND 780.

Figura 1: Esquema 3D da bancada da bobina girante com seus eixos de movimentação e mancais lado A e lado B.

Portanto, para este ensaio, o raio médio calculado para o SBG-4 foi de **12.967 mm ± 0.006 mm** usando o quadrupolo de magneto permanente.

2. Variação longitudinal com dipolo de magneto permanente - SBG-4:

O termo de dipolo é diretamente proporcional ao raio da bobina, logo a variação dR com relação ao raio nominal R, que está ligada à parte integral no comprimento do dipolo pode ser determinada pela expressão:

$$dR = \frac{(I_m - I_r)R}{I_r}$$

Onde I_r é campo integrado da componente normal e corresponde à média sobre todas as posições longitudinais, I_m o campo integrado normal e R o raio nominal.

Figura 2: Variação do raio da bobina medida através do campo dipolar em função da posição longitudinal do dipolo sobre o berço.

Tabela 4: Dipolo Normal Integrado e variação dR.

Longitudinal position [mm]	Dipolo integrado avg.L.N _n (T/m ⁿ⁻²)	dR [mm]
-180.0	5.802E-02	5.559E-03
-90.0	5.803E-02	7.906E-03
0.0	5.799E-02	1.372E-03
86.0	5.798E-02	-2.912E-03
172.0	5.794E-02	-1.193E-02

Conclusão: A regressão linear dos pontos de variação indica uma tendência regressiva na mudança do raio do sentido do mancal B para o A de 0.13% ou \approx 18 μ m.

3. Variação longitudinal com quadrupolo de magneto permanente e variação transversal da bobina sob o eixo X

SBG-3:
Tabela 5: Valores de raio equivalente para SBG-3.

Longitudinal Position [mm]	Nominal Horizontal Shift [mm]	Encoder Reading A [mm]	Encoder Reading B [mm]	Average Horizontal shift [mm]	Calculated Radius [mm]
	3.0000	3.0009	3.0006	3.0008	12.9576
180 0000	5.0000	5.0003	5.0003	5.0003	12.9532
-180.0000	7.0000	7.0008	7.0007	7.0008	12.9497
	10.0000	10.0002	10.0004	10.0003	12.9504
	3.0000	3.0004	3.0005	3.0005	12.9604
00 0000	5.0000	5.0008	5.0014	5.0011	12.9606
-90.0000	7.0000	7.0012	7.0018	7.0015	12.9568
	10.0000	10.0011	10.0015	10.0013	12.9610
	3.0000	3.0014	3.0015	3.0015	12.9729
0.0000	5.0000	5.0007	5.0002	5.0005	12.9715
0.0000	7.0000	7.0003	7.0015	7.0009	12.9676
	10.0000	10.0009	10.001	10.0010	12.9676
	3.0000	2.9998	2.9997	2.9998	12.9779
86.0000	5.0000	5.001	5.0014	5.0012	12.9733
86.0000	7.0000	7.0005	6.9998	7.0002	12.9722
	10.0000	10.0004	10.0002	10.0003	12.9718
	3.0000	3.0007	3.0001	3.0004	12.9768
172 0000	5.0000	5.0004	5.0019	5.0012	12.9789
172.0000	7.0000	6.9999	7.0000	7.0000	12.9769
	10.0000	10.0002	10.0005	10.0004	12.9754

Tabela 6: Raio médio por deslocamento.

Shift [mm]	R mean [mm]	std [mm]
10.0060	12.96525	0.00989
7.0007	12.96462	0.01119
5.0008	12.96752	0.01036
3.0006	12.96910	0.00946

Tabela 7: Raio médio para cada posição longitudinal.

Shift [mm]	R mean [mm]	std [mm]
0.00	12.969892	0.002724
-90.00	12.959722	0.001978
172.00	12.976979	0.001418
-180.00	12.952711	0.003579
86.00	12.973795	0.002794

Conclusão: Portanto, com maior rigor no posicionamento transversal, o raio médio calculado para o SBG-3 é de **12.966 mm ± 0.001 mm** usando o quadrupolo de magneto permanente.

4. Variação longitudinal com dipolo de magneto permanente:

SBG-3

Figura 3: Variação de dR em função da posição longitudinal do dipolo sobre o berço.

Tabela 8: Dipolo Normal Integrado e variação dR para SBG-3.

Longitudinal position [mm]	Dipolo integrado avg.L.N _n (T/m ⁿ⁻²)	dR [mm]
-180.0	5.79066E-02	-1.874E-03
-90.0	5.79279E-02	-1.475E-02
0.0	5.79128E-02	-1.813E-02
86.0	5.79208E-02	-1.635E-02
172.0	5.79067E-02	-1.950E-02

Conclusão: A regressão linear dos pontos de variação indica uma tendência regressiva na mudança do raio do sentido do mancal B para o A, variação entre máximo e mínimo de 0.04% ou $\approx 5.2~\mu m$.

Figura 4: Comparativo da variação dR entre as duas bobinas SBG-3 E SBG-4.

5. Variação transversal da bobina na abertura do quadrupolo do Booster (@r = 17.5 mm):

SBG-4

Com o quadrupolo do Booster (BQF), executou-se apenas o processo de deslocamento transversal da bobina ao longo do eixo X com os seguintes resultados:

Figura 5: Quadrupolo do Booster na bancada da bobina girante.

Tabela 8: Valores para as posições de deslocamento da bobina e o valor médio.

Linear	Transversal Positions [mm]				
Stages	3.0000	5.0000	7.0000	10.0000	
А	3.0003	5.0025	7.0004	10.0016	
В	2.9993	4.9974	6.9998	9.9983	
Média	2.9998	5.0000	7.0001	10.0000	

Tabela 9: Valor de raio médio da bobina para cada posição horizontal.

Longitudinal position	l Horizontal shift [mm]			
[mm]	5.0008	7.0007	3.0006	10.006
0	12.94994	12.94649	12.95003	12.94839

Conclusão: O raio médio calculado para o SBG-4 utilizando o quadrupolo do Booster para o procedimento é de **12.948 mm ± 0.001 mm**.

6. Variação transversal da bobina na abertura do quadrupolo do Booster (@r = 17.5 mm):

SBG-3

Com o quadrupolo do Booster (BQF), executou-se apenas o processo de deslocamento transversal da bobina ao longo do eixo X com os seguintes resultados:

Tabela 10: Valores para as posições de deslocamento da bobina e o valor médio.

Linear	Transversal Positions [mm]				
Stages	3.0000	5.0000	7.0000	10.0000	
Α	3.0007	5.0002	7.0008	10.001	
В	2.9996	5.0008	7.0008	10.0015	
Média	3.0002	5.0005	7.0008	10.0014	

Tabela 11: Valor de raio médio para cada posição horizontal da bobina.

Longitudinal position		Horizontal shift [mr		
[mm]	5.0008	7.0007	3.0006	10.006
0	12.94761	12.945707	12.944763	12.942598

Conclusão: O raio médio calculado para o SBG-3 utilizando o quadrupolo do Booster para o procedimento é de **12.945mm ± 0.001 mm**.

Comparativo dos Residuais Normal e Skew para o BQF-002 @100A entre SBG-3 e SBG-4

Figura 6: Comparativo do Residual Normal Normalizado entre SBG-3 e SBG-4

Figura 7: Comparativo do Residual Skew Normalizado entre SBG-3 e SBG-4.

Conclusão:

A partir da análise do comportamento do fluxo resultante dos componentes de quadrupolo e dipolo (ψ_2 e ψ_1 , respectivamente), nota-se a dependência do deslocamento como fator que governa a incerteza na precisão do raio equivalente da bobina. O uso de quadrupolo com harmônicos conhecidos também se mostrou importante para os testes. Por esse motivo, optouse por fazer o mesmo procedimento alterando quadrupolo de magneto permanente por um quadrupolo eletromagnético cujo raio de abertura fosse suficiente para o processo de deslocamento de centro da bobina (método 1). Um quadro resumo dos valores calculados é apresentado abaixo:

Tabela 5: Raios equivalentes calculados para as bobinas nos quadrupolos medidos.

	Raio Equivalente Calculado			
	Quadrupolo Magneto Permanente		Quadrupolo Eletromagnético Booster	
	R [mm]	±σ [mm]	R [mm]	±σ [mm]
SBG-3	12.966	0.001	12.945	0.001
SBG-4	12.967	0.006	12.948	0.001

A diferença de raio médio com relação aos quadrupolos testados ficou na ordem de 20 µm.

Tabela 6: Diferença de raio da bobina entre os quadrupolos testados.

	ΔR [mm]
SBG-3	0.021
SBG-4	0.019

Portanto, os raios equivalentes médios para as bobinas SBG-3 e SBG-4 estão mostrados na tabela abaixo:

Tabela 7: Valores médios para o raio equivalente.

Média Raio Equivalente				
	R [mm]	±σ [mm]		
SBG-3	12.9555	0.0010		
SBG-4	12.9575	0.0040		

Anexo I

Projeto dipolo e quadrupolo de magneto permanente usado para método 1.

Anexo II

Desenho do berço do anel Sirius para bancada bobina girante com cotas de largura e comprimento.

Anexo IIIDesenho da bobina girante com cotas de comprimento e raio nominal.

Referências

ARPAIA, P.; BUZIO, M.; GOLLUCCIO, G.; WALCKIERS, L. *In-situ* calibration of rotating sensor coils for magnet testing. *Review of Scientific Instruments* **83**, 013306 (2012); doi: 10.1063/1.3675578