Are the following functions continuous or not continuous? Sketch an argument using the ϵ - δ definition of continuity and an argument using the open set definition of continuity.

(1)
$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}$$

(2)
$$g(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

(3) Prove or give a counterexample: Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function. Then whenever $U \subseteq \mathbb{R}$ is open, $f(U) \subseteq \mathbb{R}$ is open.

(4) Prove or give a counterexample: Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function. Then whenever $Z \subseteq \mathbb{R}$ is closed, $f(Z) \subseteq \mathbb{R}$ is closed.

We will show the following on homework:

Theorem 1. If $f_1: \mathbb{R}^n \to \mathbb{R}^{m_1}$ and $f_2: \mathbb{R}^n \to \mathbb{R}^{m_2}$ are continuous, then the function

$$f_1 \times f_2 : \mathbb{R}^n \to \mathbb{R}^{m_1 + m_2}$$

 $\mathbf{x} \mapsto (f_1(\mathbf{x}), f_2(\mathbf{x}))$

is continuous.

- (5) Let's show that subtraction is continuous without ϵ 's and δ 's.
 - (a) Show that the constant function $f : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto -1$ is continuous using the open sets definition of continuity.

(b) Show that the identity function $id_\mathbb{R}:\mathbb{R}\to\mathbb{R}$ is continuous using the open sets definition of continuity.

(c) Prove that

$$-: \mathbb{R}^2 \to \mathbb{R}$$
$$(x, y) \mapsto x - y$$

is continuous by writing it as a composition of continuous functions.

(d) Recall that the graph of a function $f: X \to Y$ is the subset $graph(f) = \{(x, y) \in X \times Y \mid f(x) = y\}.$

Is the graph of $id_{\mathbb{R}}$ is a closed subset of \mathbb{R}^2 ? Is it an open subset of \mathbb{R}^2 ?

(6) Prove that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous, then for each closed subset Z of \mathbb{R}^m , $f^{-1}(Z)$ is a closed subset of \mathbb{R}^n . (Hint: $f^{-1}(A-B)=f^{-1}(A)-f^{-1}(B)$.)

- (7) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. (a) Prove that the function $\mathbb{R}^2 \to \mathbb{R}$ given by $(x, y) \mapsto y f(x)$ is continuous.

(b) Use part (a) to show that the graph of f is a closed subset of \mathbb{R}^2 .

(8) Consider the function

$$g(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

again. We will show that the graph of g is not closed. (And therefore g is not continuous!)

(a) For each $y \in [-1, 1]$, show that (0, y) is a limit point of graph(g). (Hint: what are the x's so that $\sin(1/x) = y$?)