Reliable communication and control for the Smart Grid

Utkarsh Upadhyay

Supervisor: Prof. Jean-Yves Le Boudec Advisor: Dan Cristian Tomozei

Lab: LCA2

February 14, 2012

Reliable communication and control

Utkarsh Upadhyay

IIILIOGUCEIC

Problem

Service Curves Generalization

Predictio

New algorithm

Implementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation

Festbed

sessment

Learning experience Assessment

Outline

Reliable communication and control

Utkarsh Upadhyay

Introduction

Problem

Verifying the contract

Predicting guaranteed signa

Implementation

Demo

Assessmen

Future work

Introduction

Problem

ontract

ervice Curves eneralization

Prediction

lew algorithm

nplementation

rchitecture ommunication 'UB-SUB model ontinuous time lata representatio eliable wrapper estbed

mo

sment

Learning experienc Assessment

The world today

- Energy producers are moving from traditional sources
- Renewables have high variability

Managing the difference

- ► Storage at source
- ► Fossil fuel backups
- Demand response
- ▶ ...

Smart grids enable Demand response

Reliable communication and control

Utkarsh Upadhyay

Introduction

Problem

Contract

Service Curves Generalization

Prediction

Implementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper

Demo

ccccmont

Learning experience

The world today

- Energy producers are moving from traditional sources
- Renewables have high variability

Managing the difference

- ► Storage at source
- ► Fossil fuel backups
- ► Demand response

Smart grids enable Demand response

Reliable communication and control

Utkarsh Upadhyay

Introduction

D 11

Contract

Service Curves Seneralization

Prediction

malamantation

Architecture Communication Pub-Sub model

Pus-Sub model Continuous time Data representatio Reliable wrapper

estbed

Demo

sessment

Learning experience Assessment

The world today

- Energy producers are moving from traditional sources
- Renewables have high variability

Managing the difference

- Storage at source
- ► Fossil fuel backups
- ► Demand response

Smart grids enable Demand response

Reliable communication and control

Utkarsh Upadhyay

Introduction

Dan Islama

Contrac

Service Curves Generalization

Prediction

mplementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper

Demo

ssessment

Learning experience

The Demand-Response problem

Reliable communication and

Utkarsh Upadhyay

Introduction

Droblom

Service Curves

Prediction

New algorith

Implementation

impiementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation

Reliable wr Testbed

, , , , , ,

sessment

Learning experience

utura work

Demand-Response is an mechanism to manage customer consumption of electricity (demand) in response to supply conditions.

Current approaches:

- 1. Dynamic Pricing
 - ▶ Interesting but has problems^a
- 2. Delayed supply
 - Promising but currently ad-hoc; deployed by Votalis, Peaksaver

Le Boudec et. al. formalize 2 via service curve contracts.

^aMay expose consumers to price volatility

Outline

Reliable communication and control

Utkarsh Upadhyay

Problem

Problem

Definition

Objectives

Intermediate goals

- ► A Communication protocol.
- ► Smart Home Controller (SHC) architecture

Design constraints

- Reliability and robustness.
- Computational feasibility

Reliable communication and control

Utkarsh Upadhyay

Introducti

Problem

Contract

Service Curves Generalization

l l l a l

mplementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper
Testbed

Demo

essment

Learning experience Assessment

Definition

Objectives

Intermediate goals

- A Communication protocol.
- ► Smart Home Controller (SHC) architecture.

Design constraints

- Reliability and robustness.
- Computational feasibility

Reliable communication and control

Utkarsh Upadhyay

Introducti

Problem

Contrac

Service Curve Generalization

Prediction

ivew algorithm

Implementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper
Testbed

Demo

essment

Learning experience Assessment

Definition

Objectives

Intermediate goals

- A Communication protocol.
- ► Smart Home Controller (SHC) architecture.

Design constraints

- ► Reliability and robustness.
- Computational feasibility.

Reliable communication and control

Utkarsh Upadhyay

Introducti

Problem

Contrac

Service Curves Generalization

Prediction

ivew algorithm

Implementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper
Testbed

Demo

sessment

Learning experience Assessment

Tools of trade

- ► Machine running Linux
- Capable of communication
- UI/Algo module can be distributed

Fig: ZPlug from Cleode

- ZigBee SE profile compliant
- ► Passive monitoring devices
- Can turn devices ON/OFF

Reliable communication and control

Utkarsh Upadhyay

IIIEroductio

Problem

Contrac

Service Curves Generalization

Prediction

mplementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper
Testhed

Demo

essment

Learning experience Assessment

Reliable communication and control

Utkarsh Upadhyay

Contract

12 / 50

Outline

Verifying the contract

Service curve $\beta(\cdot)$

- Borrowed from Network Calculus
- ▶ Minimum energy in time $t = \beta(t)$.
- Usually made by repeating the derivative with period t'
- Are deterministic.
- Slight abuse of notation on slides.

Fig: Serv. cur. (period = 3)

What makes it feasible

Keeping just one period t' of $u(\cdot)$ is sufficient to verify the service curve constraint, for binary service curves and bounded $u(\cdot)$.

Reliable communication and

Utkarsh Upadhyay

ntroduction

Problem

Service Curves

Generalization

Prediction

Implementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper

Demo

coccmont

Learning experience Assessment

Service curve $\beta(\cdot)$

- Borrowed from Network Calculus
- ▶ Minimum energy in time $t = \beta(t)$.
- Usually made by repeating the derivative with period t'
- Are deterministic.
- Slight abuse of notation on slides.

Fig: Serv. cur. (period = 3)

What makes it feasible

Keeping just one period t' of $u(\cdot)$ is sufficient to verify the service curve constraint, for binary service curves and bounded $u(\cdot)$.

Reliable communication and

Utkarsh Upadhyay

Introductio

Problem

Contract Service Curves

Generalization

Prediction

Implementation

Implementation
Architecture
Communication
PUB-SUB model
Continuous time
Data representatio

Demo

occmont

Learning experience

Service curves constraint

Fig: Control signal constrained by the service curve

$$\forall t_1, t_2. \int_{t_1}^{t_2} u(\tau) d\tau \geq \beta(t_2 - t_1) \implies U(t_2) - U(t_1) \geq \beta(t_2 - t_1)$$

Reliable communication and control

Utkarsh Upadhyay

Service Curves

Service curve violation

Fig: Service curve violation

$$\exists t, s. \ U(t) - U(s) \leq \beta(t-s)$$

Reliable communication and control

Utkarsh Upadhyay

Introduct

Problem

Service Curves

Service Curves Generalization

Predictio

New algorithm

Implementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper
Testhed

mo

sment

Learning experience Assessment

uture work

s, t are not unique

Generalized the result

Theorem: Keeping just one period of $u(\cdot)$ is sufficient to verify service curve constraint.

Binary serv. cur.

Star shaped serv. cur.

Constr. dropped

- $u(\cdot)$ was bdd above by z_{max}
- $\triangleright \beta(\cdot)$ was a binary serv. cur.

Shortcomings

Computationally more complex Reliable communication and

Utkarsh Upadhyay

Introductio

Problem

Contract
Service Curves
Generalization

Prediction

.....

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper
Testbed

Demo

essment

Learning experience Assessment

Outline

Reliable communication and control

Utkarsh Upadhyay

Prediction

Predicting guaranteed signal

Minimum guaranteed signal

Fig: Minimum signal guaranteed

$$\hat{U}(t) \geq \sup_{s \in [0,T]} \left\{ U(s) + \beta(t-s) \right\}$$

Reliable communication and control

Utkarsh Upadhyay

Introduction

D.-. L.I.-...

Contra

Service Curves Generalization

Prediction

New algorithm

Implementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper
Testhed

emo

ssment

Learning experience Assessment

Minimum guaranteed signal

Fig: Minimum signal guaranteed

$$\hat{U}(t) \geq \sup_{s \in [t-t',T]} \left\{ U(s) + \beta(t-s) \right\}$$

- Naive algorithm (discrete Max-convolution)^b $\approx O(S^2)$
- ▶ Quota allocation policy algorithm (Binary service curve): $\approx O(S)$

Reliable communication and control

Utkarsh Upadhyay

Prediction

Issues with naive algorithm

- Worked in discrete time, limited accuracy
- ► Was computationally expensive (5 sec. for 24 hours ≈ 300 million ops./calc.)
- Efficient version was limited to binary service curves

Reliable communication and control

Utkarsh Upadhyay

New algorithm

Issues with naive algorithm

- Worked in discrete time, limited accuracy
- ▶ Was computationally expensive (5 sec. for 24 hours ≈ 300 million ops./calc.)
- Efficient version was limited to binary service curves

New algorithm

- ▶ Works in continuous time, has more accuracy.
- ► Has complexity^c O(N · K)
 - More efficient than naive version even if control signal changes each sampling time
 - Is equal to complexity of efficient algorithm for binary curves
- Non-trivial, but proved correct.
- Complexity depends on input

Design recommendation

► Control *N* and *K* while forming the contract

Reliable communication and control

Utkarsh Upadhyay

minouucu

Problem

ontract

rvice Curves neralization

New algorithm

New algorithm

-

Architecture

PUB-SUB model
Continuous time
Data representation

ata representa eliable wrappe estbed

emo

ssment

earning experience. Assessment

uture work

 $^{{}^{\}mathrm{c}}K=\#$ changes in $u(\cdot)$ in the last period, N= segments in Service Curve

Issues with naive algorithm

- Worked in discrete time, limited accuracy
- ▶ Was computationally expensive (5 sec. for 24 hours ≈ 300 million ops./calc.)
- ▶ Efficient version was limited to binary service curves

New algorithm

- Works in continuous time, has more accuracy.
- ▶ Has complexity^c O(N · K)
 - ▶ More efficient than naive version even if control signal changes each sampling time
 - Is equal to complexity of efficient algorithm for binary curves
- Non-trivial, but proved correct.
- Complexity depends on input

Reliable communication and control

Utkarsh Upadhyay

New algorithm

 $^{{}^{}c}K = \#$ changes in $u(\cdot)$ in the last period, N = segments in Service Curve

Issues with naive algorithm

- Worked in discrete time, limited accuracy
- ▶ Was computationally expensive (5 sec. for 24 hours ≈ 300 million ops./calc.)
- Efficient version was limited to binary service curves

New algorithm

- ▶ Works in continuous time, has more accuracy.
- ▶ Has complexity $O(N \cdot K)$
 - More efficient than naive version even if control signal changes each sampling time
 - Is equal to complexity of efficient algorithm for binary curves
- Non-trivial, but proved correct.
- Complexity depends on input

Design recommendation

► Control *N* and *K* while forming the contract.

Reliable communication and control

Utkarsh Upadhyay

Introducti

Problem

Contract

eneralization

New algorithm

New algorithm

mplementatio

Architecture Communication

PUB-SUB model
Continuous time
Data representation

eliable wrappe estbed

ssment

Learning experience Assessment

iture work

iture work

 $^{{}^{}c}K=\#$ changes in $u(\cdot)$ in the last period, N= segments in Service Curve

Outline

Implementation

Reliable communication and control

Utkarsh Upadhyay

Implementation

25 / 50

Fig: The Architecture

Reliable communication and control

Utkarsh Upadhyay

Introducti

Problem

Contract

Service Curves

Prediction

Implementation

Architecture

Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper

Demo

essment

Learning experience Assessment

Fig: Actors

Reliable communication and control

Utkarsh Upadhyay

Introductio

Problem

Contract

Service Curves Generalization

Prediction

Implementation

Architecture

Communication
PUB-SUB model
Continuous time
Data representation

mo

sment

Learning experience Assessment

Fig: Actions

Reliable communication and control

Utkarsh Upadhyay

Introduction

Problem

Contract

Service Curves Generalization

Prediction

Implementation

Architecture

Communication
PUB-SUB model
Continuous time
Data representation

Demo

ssment

Learning experience Assessment

Fig: ZPlugs

Reliable communication and control

Utkarsh Upadhyay

introductio

Problem

Contract

Service Curves Generalization

Prediction

Implementation

Architecture

Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper

Demo

ssment

Learning experience Assessment

Fig: SHC architecture

Reliable communication and control

Utkarsh Upadhyay

Introducti

Problem

Contract

Service Curves

Prediction

Implementation

Architecture

Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper

Demo

essment

Learning experience Assessment

Fig: Messaging layer can manage overloading and grouping

- Communication happens via discrete messages
 - no continuous control
 - ► Data representation scheme is designed
- ▶ Pub-Sub model is employed instead of Req-Rep.

Reliable communication and control

Utkarsh Upadhyay

Introductio

roblem

~

ervice Curves ieneralization

rediction

mplementation

rchitecture

Communication

Continuous time
Data representation
Reliable wrapper

mo

essment

Learning experience Assessment

Fig: Messaging layer can manage overloading and grouping

Pub-Sub v/s Req-Rep

- Scalability
- ► Separation of concerns
 - Grouping subscribers

- Logging & Diagnostics
- Simplicity

Problem

- Newly started SHC
- Periodic broadcast

Reliable communication and control

Utkarsh Upadhyay

IIILIOGUCEI

Problem

Contract

ervice Curves eneralization

Prediction

mplementation

Architecture Communication

PUB-SUB model
Continuous time

Data representation Reliable wrapper Festbed

emo

essment

Learning experience Assessment

Fig: Messaging layer can manage overloading and grouping

Pub-Sub v/s Req-Rep

- Scalability
- ► Separation of concerns
 - Grouping subscribers

- Logging & Diagnostics
- Simplicity

Problem

- Newly started SHC
- Periodic broadcast

Reliable communication and control

Utkarsh Upadhyay

IIILIOGUCLI

roblem

Contract

ervice Curves eneralization

Prediction

plementation

Communication

Continuous time
Data representation

ata representatio eliable wrapper estbed

emo

essment

Learning experience Assessment

Fig: Messaging layer can manage overloading and grouping

Pub-Sub v/s Req-Rep

- Scalability
- Separation of concerns
 - Grouping subscribers

- Logging & Diagnostics
- Simplicity

Problem

- Newly started SHC
- ▶ Periodic broadcast

Reliable communication and control

Utkarsh Upadhyay

IIILIOGUCLI

Problem

Contract

ervice Curves eneralization

New algorithm

nplementation

Communication

Continuous time
Data representation

Reliable wrappe Festbed

....

essment

Learning experience Assessment

Discrete v/s continuous time

Discrete

- Ease of presentation
- Sampling period trade-off:
 - Accuracy
 - Scalability

Continuous

- Better accuracy
- One less parameter
- Makes prediction trickier

Reliable communication and

Utkarsh Upadhyay

IIIEIOGUCEIG

roblem

Contract

Service Curve Generalizatio

Prediction

Implementation

Architecture

Communication
PUB-SUB model
Continuous time

Reliable wrap

emo

essment

Learning experience Assessment

Discrete v/s continuous time

Discrete

- Ease of presentation
- Sampling period trade-off:
 - Accuracy
 - Scalability

Continuous

- Better accuracy
- One less parameter
- Makes prediction trickier

Reliable communication and

Utkarsh Upadhyay

Introductio

Problem

Contract

Service Curve

Prediction

ivew algorithm

Architecture

Communication
PUB-SUB model
Continuous time

Reliable wrap

emo

essment

Learning experience Assessment

Data representation

Reliable communication and control

Utkarsh Upadhyay

Data representation

Control signals

- ▶ Discrete signals ⇒ inform only of changes
- Cumulative energy is piecewise linear

Data representation

Control signals

- ▶ Discrete signals ⇒ inform only of changes
- ▶ Cumulative energy is piecewise linear

Service Curves

- ► As a piecewise linear function
- Can approximate any function
- Usually just binary

Piecewise linear continuous functions

Store end points of all segments.

Reliable communication and control

Utkarsh Upadhyay

Introduction

Problem

Contract

Service Curves Generalization

Prediction

New algorithm

mplementation

Communication Pub-Sub model

Data representation

Testbed

....

sessment

Learning experience Assessment

Data representation

Reliable communication and control

Utkarsh Upadhyay

Introduction

Problem

Contract

Service Curves Generalization

Prediction

New algorithm

mpiementation

Communication PUB-SUB mode

Continuous time
Data representation

Reliable wrappe

Demo

sessment

Learning experience Assessment

uture work

Control signals

- ightharpoonup Discrete signals \implies inform only of changes
- Cumulative energy is piecewise linear

Service Curves

- As a piecewise linear function
- Can approximate any function
- Usually just binary

Piecewise linear continuous functions

Store end points of all segments.

Reliability

Primary problems

- ► Crashes: Application or a dependency might crash
- ▶ Live-locks: Operations might start taking too long or freeze
- ▶ Byzantine faults: Nonsensical output (hopefully)

Reliable communication and control

Utkarsh Upadhyay

Introductio

robiem

Contract

Service Curve Generalization

Prediction

New algorithm

Implementation

Architecture

PUB-SUB model

Data representation Reliable wrapper

Testbed

mo

occmont

Learning experience

uture work

Reliability

Primary problems

- Crashes: Application or a dependency might crash
- ▶ Live-locks: Operations might start taking too long or freeze
- Byzantine faults: Nonsensical output (hopefully)

Fig: Wrapper design

Reliable communication and control

Utkarsh Upadhyay

Introductio

Problem

ontract

ervice Curves

Prediction

New algorithm

mplementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper

Testbed

ssment

Learning experience Assessment

uture work

Hosted at: https://github.com/musically-ut/pyoolproof

Reliability

Primary problems

- Crashes: Check for error codes, restart application, persist data
- ▶ Live-locks: Listen to heartbeats, kill and restart if too slow
- Byzantine faults: Kill on request (STONITH)

Fig: Wrapper design

Reliable communication and control

Utkarsh Upadhyay

Introductio

Problem

ontract

ervice Curves eneralization

Prediction

lew algorithm

mplementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper

Reliable wrap; Festbed

Demo

ssment

Learning experience Assessment

uture work

Hosted at: https://github.com/musically-ut/pyoolproof

Implementation

Language Lines of code Comments Component Python 4,300 1,300 UI, Test harness C++220 ZPlug wrapper 800 Ocaml SHC 2,000 460 Total 7,100 2,080

Tbl: Details about the code in the implementation

- ▶ Battery of unit tests
- ► Good documentation and examples

Reliable communication and control

Utkarsh Upadhyay

.....

Problem

Contract

ervice Curves eneralization

Prediction

New algorithm

Architecture
Communication
PUB-SUB model
Continuous time
Data representation

Testbed

mo

ssment

Learning experience

Reliable communication and control

Utkarsh Upadhyay

Introduction

Problem

Verifying the contract

Predicting guaranteed signa

Implementation

Demo

Assessmen

Future work

Introducti

roblem

ervice Curves eneralization

Prediction

ew algorithm

nplementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representation
Reliable wrapper

Demo

ssment

Learning experience Assessment

uture work

Reliable communication and control

Utkarsh Upadhyay

Introduction

Problem

Verifying the contract

Predicting guaranteed signa

Implementation

Demo

Assessment

Future work

5 11

robiem

ontract

ervice Curves eneralization

Prediction

ew algorithm

nplementation

rchitecture ommunication 'UB-SUB model ontinuous time l'ata representatio eliable wrapper esthed

no

Assessment

Learning experience

uture work

Skills acquired

Demand-response using Service Curves

- Network Calculus fundamentals
- Demand response

Robust software design

- ▶ Ocaml: Functional + OO paradigm
- Modular design: Separating points of failures

Tools

- ZeroMQ: TCP sockets on steroids
- **SQLite:** Embedded reliable persistence.
- Also learned about ZigBee and ZPlugs.

Reliable communication and control

Utkarsh Upadhyay

Introductio

Problem

Contract

Service Curve Generalization

Prediction

New algorithn

mplementation

Architecture
Communication
PUB-SUB model
Continuous time
Data representatio
Reliable wrapper

emo

essment

Learning experience

Assessificite

Assessment

Reliable communication and control

Utkarsh Upadhyay

Assessment

State of testbed

- Currently fully functional
- Easy to extend

Self assessment

- Stress testing
- Deployment
- ▶ Theoretical results were time consuming

Reliable communication and control

Utkarsh Upadhyay

Future work

Future work

Reliable communication and control

Utkarsh Upadhyay

Future work

Testbed

Systematic stress testing.

Formal verification.

Prediction and Optimization

Making the algorithm incremental

Design

Security

Reliable communication and control

Utkarsh Upadhyay

Future work

Thank you

Utkarsh Upadhyay

mail@utkarshu.in

Reliable communication and control

Utkarsh Upadhyay

Appendix

Prediction algorithm Theorems

${\sf Appendix}$

10: **end for** 11: **return** $\hat{V}_K(\cdot)$

```
Input: \beta(\cdot) = [(s_1, \beta(s_1)), \dots, (s_N, \beta(s_N))],
U(\cdot) = [(t_1, U(t_1)), \dots, (t_K, U(t_K))]
Output: predicted segments/function

1: \hat{V}_1 = [(t_K + s_i, U(t_K) + \beta(s_i)) \text{ for } s_i \text{ in } \mathbf{T}_{\beta}]
2: scTip = (t_K, \beta(s_N) + U(t_K))
3: for \ j = K - 1 \text{ to } 1 \text{ do}
4: t_j = \mathbf{T}_U[j]
5: C = [(t_j + s_i, U(t) + \beta(s_i)) \text{ for } s_i \text{ in } \mathbf{T}_{\beta}]
6: C.add(scTip)
7: \hat{V}_{(K-j+1)} = \max Cover(\hat{V}_{(K-j)}, C)
8: \hat{V}_{(K-j+1)}.limitTime(t_K, t_K + s_N)
9: scTip = (t_j + s_N, U(t_j) + \beta(s_N))
```


Binary serv. cur.

Star shaped serv. cur.

u(t) is control signal defined up to some time horizon T.

Theorem: If $u(t) \le z_{max}$ for all $t \le T$, then these are equivalent:

- 1. $\int_{s}^{t} u(\tau) d\tau \ge \beta(t-s)$ for all $s < t \le T$,
- 2. $\forall \tau \leq T$. $u(\tau) \geq z_{min}$ and $\int_t^{t+t'} u(\tau) d\tau \geq \beta(t')$, $\forall t$ such that $t+t' \leq T$.

where $\beta(\cdot)$ is a binary service curve.

Binary serv. cur.

Star shaped serv. cur.

u(t) is control signal defined up to some time horizon T. **Theorem:** If control signal $u(\cdot)$ violates service curve $\beta(\cdot)$ for the first time at time T, then

$$\exists t \in [T - t', T). \ U(t) + \beta(T - t) > U(T)$$

Theorems

Previous result: If $u(t) < z_{max}$ for all t < T, then these are equivalent:

- 1. $\int_{s}^{t} u(\tau) d\tau \geq \beta(t-s)$ for all $s < t \leq T$,
- 2. $\forall \tau \leq T$. $u(\tau) \geq z_{min}$ and $\int_{t}^{t+t'} u(\tau) d\tau \geq \beta(t')$, $\forall t$ such that t+t' < T

where $\beta(\cdot)$ is a binary service curve.

New result: If control signal $u(\cdot)$ violates service curve $\beta(\cdot)$ for the first time at time T. then:

$$\exists t \in [T-t',T).\ U(t)+\beta(T-t)>U(T)$$

Constr. dropped

- $\triangleright u(\cdot)$ was bdd above by z_{max}
- $\triangleright \beta(\cdot)$ was binary serv. cur.

Restrictions

Max-plus convolution