第一章 矢丛上的联络和协变导数 (Connections and Covariant

Derivatives in a Vector Bundle)

与主丛 P 类似, 矢丛 Q 的任意点 q 的切空间 T_qQ 也天然存在竖直子空间 $V_q \subset T_qQ$, 定义为

$$V_q := \{ X \in T_q Q \mid \hat{\pi}_*(X) = 0 \}.$$

因为 $\hat{\pi}$ 是伴丛上天生就有的,但是要衡量水平子空间的话,我们要引入矢丛 Q 的联络. 矢丛上的每根 fiber $\hat{\pi}^{-1}[x]$ 是实 (复) 矢量空间,用实 (复) 数 c 对 $\hat{\pi}^{-1}[x]$ 任一点 q 的数乘结果仍是 $\hat{\pi}^{-1}[x]$ 的点. 定义映射 $\zeta_c:Q\to Q$ 为

$$\zeta_c := cq = p \cdot cf \quad \forall q \in Q.$$

不难得出 ζ 是同胚映射.

定义 1.1

矢丛 Q 上的一个**联络**是对每点 $q \in Q$ 指定一个水平子空间 $H_p \subset T_qQ$, 满足

- 1. $T_qQ = V_q \oplus H_q$
- 2. $\zeta_{c*}[H_q] = H_{\zeta_c(q)} = H_{cq}, \quad \forall q \in Q, c \in \mathbb{R}(\mathbb{C}), c \neq 0$
- 3. H_q 光滑地依赖于 q.

定理 1.1

设 Q 为矢丛, $q \in Q$, 以 X^V 代表 $X \in T_aQ$ 的竖直分量, 则

$$(c_1X_1 + c_2X_2)^V = c_1X_1^V + c_2X_2^V \quad \forall X_1, X_2 \in T_qQ, c_1, c_2 \in \mathbb{R}(\mathbb{C}).$$

证明 对任意 $X_1, X_2 \in T_q Q$ 及标量 c_1, c_2 ,考虑线性组合 $X = c_1 X_1 + c_2 X_2$ 的分解:由切空间分解定理,存在唯一的竖直分量 $X^V \in V_q Q$ 和水平分量 X^H 使得

$$X = X^V + X^H$$

同理对 X_1, X_2 分解为:

$$\begin{cases} X_1 = X_1^V + X_1^H \\ X_2 = X_2^V + X_2^H \end{cases}$$

代入线性组合得:

$$c_1X_1 + c_2X_2 = c_1(X_1^V + X_1^H) + c_2(X_2^V + X_2^H) = (c_1X_1^V + c_2X_2^V) + (c_1X_1^H + c_2X_2^H)$$

由于 V_qQ 是线性子空间, $c_1X_1^V+c_2X_2^V\in V_qQ$,而水平分量的线性组合仍属于水平子空间。根据分解的唯一性可得:

$$(c_1X_1 + c_2X_2)^V = c_1X_1^V + c_2X_2^V$$

定理 1.2

设 Q 是带联络的矢丛, $\eta:I\to M$ 是底流形上的曲线, $x_0\equiv\eta(0)$, 则 $\forall q\in\hat{\pi}^{-1}[x_0]\subset Q$, $\exists\eta(t)$ 的唯一水平提升曲线 $\hat{\eta}(t)$, 满足 $\hat{\eta}(0)=q$

证明 参考定理??的说明.

定理 1.3

主丛 P 上的任一联络在其伴矢丛 Q 上自然诱导一个联络

 \Diamond

证明 $\forall q \in Q, \exists p \in P, f \in F$ 给出 $q = p \cdot f,$ 每一个 f 一定可以生出一个映射 $\psi_f : P \to Q$ 定义为

$$\psi_f(p) := p \cdot f \in Q.$$

利用这一映射就可以借助 $p \in P$ 的水平子空间 H_p 定义 q 点的水平子空间为

$$H_q := \psi_{f*}[H_p].$$

但是 q 并不唯一对应于一个 p. 我们取轨道的另一个点 (p',f'), 则有 $q=\psi_{f'}(p')$. 我们依旧可以通过 $\psi_{f'}(p')$ 诱导出另一个水平子空间 $H'_q=\psi_{f'*}[H_{p'}]$. 好在 p,p' 是在同一根 fiber 上, 满足关系 p'=pg, 我们可以给出 ψ_f , 和 $\psi_{f'}$ 的关系

$$\psi_f(p) = p \cdot f = pg \cdot g^{-1}f = R_g(p) \cdot f' = \psi_{f'}(R_g(p)) = (\psi_{f'} \circ R_g)(p).$$

故

$$H_q' = \psi_{f'*}[H_{pg}] = \psi_{f'*}[R_{g*}H_p] = (\psi_{f'*} \circ R_{g*})[H_p] = (\psi_{f'} \circ R_g)_*[H_p] = \psi_{f*}[H_p] = H_q.$$

由此可见我们可以在 q 点诱导一个确定的水平子空间,接下来我们证明这个子空间构成联络,只需要验证满足定义??的三个条件即可.

筆记 可以按照相同的定义把联络的定义从主丛搬到更一般的纤维丛上.即也可以用到伴丛上.

1. $(T_qQ = V_q \oplus H_q)$: $\forall X \in T_qQ$, $\diamondsuit Y \equiv \hat{\pi}_*X$, 以 \tilde{Y} 代表 Y 在 p 的水平提升, $\diamondsuit X_2 \equiv \psi_{f*}\tilde{Y} \in H_q$, $\diamondsuit X_1 \equiv X - X_2$, 则

$$\hat{\pi}_* X_1 = \hat{\pi}_* X - \hat{\pi}_* X_2 = Y - (\hat{\pi}_* \circ \psi_{f*})(\tilde{Y}) = Y - (\hat{\pi} \circ \psi_f)_* \tilde{Y} = Y - \pi_* \tilde{Y} = Y - Y = 0.$$

分解的唯一性只需要我们验证 Y 是唯一的即可, 假设存在 $Y' \neq Y$, 但是 $Y' = \hat{\pi}_* X$, 因为推前映射是线性的故

$$Y - Y' = \hat{\pi}_* X - \hat{\pi}_* X = \hat{\pi}_* (X - X) = \hat{\pi}_* 0 = 0.$$

与假设矛盾,故分解的唯一性成立.

2. $(\zeta_{c*}[H_a] = H_{ca})$: 由 $q = p \cdot f$ 得到 $\zeta_c(q) = cq = p \cdot cf = \psi_{cf}(p)$, 又因为 $q = \psi_f(p)$, 所以

$$\psi_{cf}(p) = \zeta_c(q) = \zeta_c(\psi_f(p)) = (\zeta_c \circ \psi_f)(p).$$

即 $\psi_{cf} = \zeta_c \circ \psi_f$,那么

$$\zeta_{c*}[H_q] = \zeta_{c*}[\psi_{f*}[H_p]] = (\zeta_{c*} \circ \psi_{f*})[H_p] = (\zeta_c \circ \psi_f)_*[H_p] = \psi_{cf*}[H_p] = H_{p \cdot cf} = H_{cq}.$$

3. 由于 H_p 光滑地依赖于 p, ψ_f 是光滑映射由底流形保证, 故 H_q 光滑地依赖于 q.

定理 1.4

设伴矢丛 Q 的联络由主丛 P 的联络诱导而得, $\tilde{\eta}(t)$ 是曲线 $\eta(t)$ 在 P 上的水平提升曲线, 则

$$\hat{\eta}(t)$$
 是 $\eta(t)$ 在 Q 上的水平提升曲线 \Leftrightarrow 当且仅当 $f \in F$, $\hat{\eta}(t) = \tilde{\eta}(t) \cdot f$

 \mathbb{C}

证明

1. (⇐) 首先我们有

$$\hat{\eta}(t) = \tilde{\eta}(t) \cdot f = \psi_f(\tilde{\eta}(t)).$$

则

$$\frac{d}{dt}(\hat{\eta}(t)) = \frac{d}{dt}\psi_f(\tilde{\eta}(t)) = \psi_{f*}\frac{d}{dt}(\tilde{\eta}(t)).$$

设 $Y=\frac{d}{dt}(\tilde{\eta}(t))\in H_{\tilde{\eta}(t)}$, 则 $\psi_{f*}Y\in H_{\hat{\eta}(t)}$, 即我们验证 $\hat{\eta}(t)$ 是水平曲线, 我们还应该验证它是 $\eta(t)$ 的水平

提升.

$$\hat{\pi}(\hat{\eta}(t)) = \hat{\pi}(\tilde{\eta}(t) \cdot f) = (\hat{\pi} \circ \psi_f)(\tilde{\eta}(t)) = \pi(\tilde{\eta}(t)) = \eta(t).$$

导数第二个括号是因为我们在定义伴丛的时候,给出 $\hat{\pi}(q) := \pi(p)$,即

$$\pi(p) = \hat{\pi}(p \cdot f) = (\hat{\pi} \circ \psi_f)(p).$$

2. (\Rightarrow) 令 $q \equiv \hat{\eta}(0), p \equiv \tilde{\eta}(0), 则存在 <math>f \in F$ 满足

$$q = p \cdot f$$
.

构造曲线 $\mu(t) \equiv \tilde{\eta}(t) \cdot f$, 仿照左方向的证明, 可以给出 $\mu(t)$ 是一条水平曲线, 我们应该验证 $\mu(t)$ 和 $\hat{\eta}(t)$ 重合. 因为

$$\mu(0) = \tilde{\eta}(0) \cdot f = p \cdot f = q = \hat{\eta}(0).$$

由此可见 $\mu(t)$ 和 $\hat{\eta}(t)$ 均是过 q 点的水平提升曲线. 根据定理??给出两条曲线重合. 证明结束.

假设有一个流形 M, ∇_a 是 M 上的导数算符, v^a 是开集 $U \subset M$ 上的矢量场, 则 v^a 在任一 $x_0 \in U$ 沿着 $T^a \in T_{x_0}M$ 的协变导数 $T^b\nabla_b v^a$ 有意义. 用数学的语言是, 设 I 是 \mathbb{R} 的开区间, $\eta:I \to U$ 是曲线, $x_0 \equiv (0)$, $T \equiv \frac{d\eta(t)}{dt}\Big|_{t=0}$, 则 $T^b\nabla_b v^a(\nabla_T v^a)$ 可以表示为

$$\nabla_T v^a \equiv T^b \nabla_b v^a = \lim_{s \to 0} \frac{1}{s} (\tilde{v}^a|_{\eta(s)} - v^a|_{x_0}).$$

定理 1.5

设 FM 上的 $\tilde{\omega}$ 在 M 上生出 ∇_a , 在 TM 上生出 $q\mapsto H_q$, 则 $\eta(t)\subset M$ 在 Q 上的水平提升曲线 $\hat{\eta}(t)$ 是 $\eta(t)$ 上的平移矢量场.

证明 令 $x_0 = \eta(0), p = (x_0, e_\mu),$ 我们可以在底流形上平移标架得到标架场 \bar{e}_μ ,满足

$$Y^b \nabla_b (\overline{e}_\mu)^a = 0 \quad Y = \frac{d}{dt} (\eta(t)).$$

所以我们可以给出在主从上的水平提升曲线是

$$\tilde{\eta}(t) = (\eta(t), \overline{e}_{\mu}|_{\eta(t)}).$$

而根据定理1.4. 可以给出在 Q 上的水平提升曲线为 $\hat{\eta}(t) = \tilde{\eta}(t) \cdot f$, 即

$$\hat{\eta}(t) = (\eta(t), \overline{e}_{\mu}|_{\eta(t)}) \cdot f^{\mu}.$$

仿照例??我们给出矢量场是

$$\overline{v}^a|_{n(t)} = (\overline{e}_\mu)^a|_{n(t)} f^\mu.$$

也就是说我们认为 $\hat{\eta}(t)$ 上的一个点就是一个矢量. 接下来我们需要证明这个矢量场是沿着 $\eta(t)$ 平移的.

$$Y^b \nabla_b \overline{v}^a = Y^b \nabla_b (f^\mu (\overline{e}_\mu)^a) = f^\mu Y_b (\overline{e}_\mu)^a = 0.$$

由此我们说明了底流形上的导数算符,和由 $\tilde{\omega}$ 生成的Q上的联络是互恰的. 互恰的形式由定理1.5表述.

定义 1.2 (截面场的协变导数)

设 Q 是带联络的矢丛, $\hat{\sigma}: U \to Q$ 是局域截面. 为定义 $\hat{\sigma}$ 沿点 $X_0 \in U$ 的矢量 $T \in T_{x_0}U$ 的协变导数 $\nabla_T \hat{\sigma}$, 取曲线 $\eta: I \to U$ 使得 $x_0 \equiv \eta(0), T \equiv \left. \frac{d\eta(t)}{dt} \right|_{t=0}$, 把 $\eta(t)$ 过点 $\hat{\sigma}(\eta(s))$ 的水平提升记作 $\hat{\eta}_s(t)$ 则

$$\nabla_T \hat{\sigma} := \lim_{s \to 0} \frac{1}{s} [\hat{\eta}_s(0) - \hat{\eta}_0(0)].$$

 $\stackrel{\circ}{\mathbf{Y}}$ 笔记 书上 P1150 图反应了协变导数的关系, 这里叙述一下理解: 在 Q 上的局域截面, 不一定是水平截面, 也就给 区域 U 选定了一个矢量场, 为了定义一个区域的协变导数, 我们需要知道求哪个方向的导数, 这就是 T 所反映的, 当确定方向后, 为了能够使得矢量进行运算, 我们需要将其放进一个矢量空间中, 平移确保了矢量在转换空间时没

有变形, 而根据定理1.5, 我们只需要选择 $\eta(t)$ 过 $\hat{\sigma}(\eta(s))$ 点的水平提升曲线 $\hat{\eta}_s(t)$, 这一曲线反应的是沿着 $\eta(t)$ 方向对 $\eta(s)$ 点的矢量进行平移. 根据我们的要求, 只需要取 t=0, 就将矢量平移到 x_0 点, 随后我们可以进行矢量的导数求解.

接下来我们厘清一些概念: 设 $V \in \mathbb{R}$ 维矢量空间, $\{e_{\mu}\}$ 是 V 选定的基底, 每一个 $v \in V$ 均可以按照基矢进行分解得到, $\{v^{\mu}\}$. 但是矢量空间本质上是定义在流形上的一点的切空间, 而我们常说 V 是一个流形, 我们接下来说明二者之间的联系. v 在基矢的分解写为

$$v = e_{\mu}v^{\mu}$$
.

原因是我们可以把 v^{μ} 看作一个坐标, 这样 V 就可以认为是 \mathbb{R}^n , 因此矢量空间就构成了一个平凡的流形, 为了更清楚表述, 我们将 v 改成

$$v = e_{\mu}x^{\mu}$$
.

我们在流形 V 上选定一点 v_0 , 则流形 V 可以看作是 v_0 的切空间, 原因是因为整个 V 的坐标是 x^μ , 我们可以生成 v_0 坐标基矢场 $\frac{\partial}{\partial x^\mu}|_{v_0}$, 则有

$$\vec{v} \equiv \frac{\partial}{\partial x^{\mu}}|_{v_0} x^{\mu} \in T_{v_0} V.$$

我们把 $\{e_{\mu}\}$ 和 $\frac{\partial}{\partial x^{\mu}}|_{v_0}$ 认同,则我们在矢量空间选定一点 v_0 ,则整个矢量空间可以看作是 v_0 的切空间. 这一概念 其实我们经常使用. 也就是说 v_0 点的切空间是一个流形. 为此我们也有一个结论,设在流形 V 上有一个曲线 $\gamma(t)$,若其坐标的参数式给出,我们有

$$\left.\frac{d}{dt}\right|_{t=0}\gamma(t) = \left.\frac{\partial}{\partial x^{\mu}}\right|_{\gamma(0)} \left.\frac{dx^{\mu}(t)}{dt}\right|_{t=0}.$$

我们令 $v_0 = \gamma(0)$, 我们还可以给出另一个等式

$$\begin{aligned} \frac{d}{dt} \Big|_{t=0} \gamma(t) &\equiv \lim_{t \to 0} \frac{1}{t} [\gamma(t) - \gamma(0)] \\ &= \lim_{t \to 0} \frac{1}{t} [e_{\mu} x^{\mu}(t) - e_{\mu} x^{\mu}(0)] \\ &= e_{\mu} \lim_{t \to 0} \frac{1}{t} [x^{\mu}(t) - x^{\mu}(0)] \\ &= e_{\mu} \left. \frac{dx^{\mu}(t)}{dt} \right|_{t=0} \end{aligned}$$

我们把 e_{μ} 和 $\frac{\partial}{\partial x^{\mu}}$ 认同, 所以在矢量空间下 $\frac{d}{dt}$ 即可以理解为求切矢, 也可以理解为求导. 也就是说协变导数给出了 v_0 的切空间的一个竖直矢量.

定理 1.6

$$\nabla_T \hat{\sigma} = (\hat{\sigma}_* T)^V.$$

证明 设 $\eta(s): I \to U$ 是含 x_0 的开集 $U \subset M$ 中的曲线, $I \subset \mathbb{R}$,满足 $\eta(0) = x_0, \frac{d\eta(t)}{dt}\Big|_{t=0} = T$. 定义映射 $\phi: I \times I (\subset \mathbb{R}^2) \to \hat{\pi}^{-1}[U]$ 为

$$\phi(t,s) := \hat{\eta}_s(t), \quad \forall (t,s) \in I \times I.$$

其中 $\hat{\eta}_s(t)$ 是一条水平提升曲线,t 是水平提升曲线的参数, 当 s=t 时, 此水平提升曲线和 $\hat{\sigma}(\eta(s))$ 相交. 令 $\lambda(t)=(t,t)$ 代表区域 $I\times I$ 的对角线, 则

$$\phi(\lambda(t)) = \phi(t,t) = \hat{\eta}_t(t) = \hat{\sigma}(\eta(t)).$$

我们研究的是截面场的导数,可以写为

$$\frac{d}{dt}\bigg|_{t=0}\phi(\lambda(t)) = \frac{d}{dt}\bigg|_{t=0}\hat{\sigma}(\eta(t)) = \hat{\sigma}_* \frac{d}{dt}\bigg|_{t=0}(\eta(t)) = \hat{\sigma}_* T.$$

另一方面

$$\frac{d}{dt}\Big|_{t=0} \phi(\lambda(t)) = \frac{d}{dt}\Big|_{t=0} \phi(t,t) = \frac{d}{dt}\Big|_{t=0} \phi(t,0) + \frac{d}{ds}\Big|_{s=0} \phi(0,s)
= \frac{d}{dt}\Big|_{t=0} \hat{\eta}_0(t) + \frac{d}{ds}\Big|_{s=0} \hat{\eta}_s(0)$$

我们逐项来看

$$\frac{d}{dt}\Big|_{t=0}\hat{\eta}_0(t) \in H_{\hat{\sigma}(0)}.$$

$$\frac{d}{ds}\bigg|_{s=0} \hat{\eta}_s(0) = \lim_{s \to 0} \frac{1}{s} [\hat{\eta}_s(0) - \hat{\eta}_0(0)] = \nabla_T \hat{\sigma} \in V_{\hat{\sigma}(0)}.$$

故

$$\nabla_T \hat{\sigma} = \left(\left. \frac{d}{dt} \right|_{t=0} \phi(\lambda(t)) \right)^V = (\hat{\sigma}_* T)^V.$$

定理 1.7

设 Q 是带联络的矢丛, $\eta: I \to M$ 是曲线, $x_1 \equiv \eta(t_1), x_2 \equiv \eta(t_2)$, 则矢量空间 $\hat{\pi}^{-1}[x_1]$ 与 $\hat{\pi}^{-1}[x_2]$ 之间存在 同构映射 $\beta_{12}: \hat{\pi}^{-1}[x_1] \to \hat{\pi}^{-1}[x_2]$, 定义如下:

$$\forall q \in \hat{\pi}^{-1}[x_1]$$
, 以 $\hat{\eta}(t)$ 代表 $\eta(t)$ 满足 $\hat{\eta}(t_1) = q$ 的水平提升, 则 $\beta_{12}(q) := \hat{\eta}(t_2)$

证明

1. (线性性): 在 $\hat{\pi}^{-1}[x_1]$ 任取两点 $q, q' \in \hat{\pi}^{-1}[x_1]$ 对于标量给出 $a, b \in \mathbb{R}(\mathbb{C})$, 构造曲线

$$\gamma(t) \equiv a\hat{\eta}(t) + b\hat{\eta}'(t).$$

其中 $\hat{\eta}(t_1) = q$, $\hat{\eta}'(t_1) = q'$. 不难验证 $\gamma(t)$ 是过 aq + aq' 的水平提升曲线. 则根据 β_{12} 的定义给出

$$\beta_{12}(aq + aq') = \gamma(t_2) = a\hat{\eta}(t_2) + b\hat{\eta}'(t_2) = a\beta_{12}(q) + b\beta_{12}(q').$$

线性性成立

2. (一一到上): 一一: 若 $\beta_{12}(q) = \beta_{12}(q')$, 则 $\hat{\eta}(t_2) = \hat{\eta}'(t_2)$, 根据定理**??**给出, $\hat{\eta} = \hat{\eta}'$, 则有 $\hat{\eta}(t_1) = \hat{\eta}'(t_1)$, 即 q = q'.

一一性成立.

到上: 到上要求像空间每点都有逆元, 这要求我们给出逆映射 β_{21} , 我们可以仿照定义给出

$$\forall q \in \hat{\pi}^{-1}[x_2]$$
, 以 $\hat{\eta}'(t)$ 代表 $\eta(t)$ 满足 $\hat{\eta}'(t_2) = q$ 的水平提升, 则 $\beta_{12}^{-1}(q) := \hat{\eta}'(t_1)$

我们需要验证我们给出的定义是满足逆映射的要求,首先给定一点 q_2 我们总可以找到对应的像 $\hat{\eta}'(t_1)$,由于水平提升曲线是唯一的,我们给出

$$\hat{\eta}_1 = \hat{\eta}_2.$$

为了使得叙述更清楚, 我们使得 $\hat{\eta}$ 带上指标 1, 2, 反应出 x_1, x_2 的水平提升曲线. 两个曲线相等也就意味着

$$\beta_{12}(\hat{\eta}_2(t_1)) = \beta_{12}(\hat{\eta}_1(t_1)) = \hat{\eta}_1(t_2) = \hat{\eta}_2(t_2).$$

即

$$\beta_{12} \circ \beta_{12}^{-1} = I.$$

同理, 可以验证 $\beta_{12}^{-1} \circ \beta_{12} = I$. 我们给出逆映射, 也就意味这到上性成立.

一一到上的线性矢量空间就是同构的.

设 $Y \in U \subset M$ 上的矢量场,可以定义截面 $\hat{\sigma}$ 沿着 Y 的协变导数 $\nabla_Y \hat{\sigma}$,根据定理1.6, $\nabla_Y \hat{\sigma}$ 也是矢量,故 $\nabla_Y \hat{\sigma}$ 也是一个截面,含义是 $(\nabla_Y \hat{\sigma})(x) \equiv \nabla_T \hat{\sigma}$, $x \in U, T \equiv Y|_x$; 更进一步的说,令 $\hat{\sigma}: U \to Q$ 和 $\hat{\sigma}': U \to Q$ 都是截面, $\lambda \in U$ 上的函数,我们可以给出 $\hat{\sigma} + \hat{\sigma}'$ 和 $\lambda \hat{\sigma}$ 的定义,使得它们的结果也是 U 上的截面.

- $(\hat{\sigma} + \hat{\sigma}')(x) := \hat{\sigma}(x) + \hat{\sigma}'(x)$, $\forall x \in U$, 右面的加法是矢量空间的加法.
- $(\lambda \hat{\sigma})(x) := \lambda(x)\hat{\sigma}(x)$, $\forall x \in U$, 右面的数乘是矢量空间的数乘.

定理 1.8

设 $\hat{\sigma}: U \to Q$ 和 $\hat{\sigma}': U \to Q$ 都是截面, $\lambda \in U$ 上的函数,Y和Y'都是U上的矢量场,则

- 1. $\nabla_{Y+Y'}\hat{\sigma} = \nabla_Y\hat{\sigma} + \nabla_{Y'}\hat{\sigma}$;
- 2. $\nabla_Y(\hat{\sigma} + \hat{\sigma}') = \nabla_Y\hat{\sigma} + \nabla_Y\hat{\sigma}'$;
- 3. $\nabla_{\lambda Y} \hat{\sigma} = \lambda \nabla_{Y} \hat{\sigma}$;
- 4. $\nabla_{Y}(\lambda \hat{\sigma}) = \lambda \nabla_{Y} \hat{\sigma} + Y(\lambda) \hat{\sigma}, Y(\lambda)$ 是 Y 作用在 λ 给出的函数.

 \Diamond

证明

1. 根据定理1.6, 我们有

$$\nabla_{Y+Y'}\hat{\sigma} = (\hat{\sigma}_*(Y+Y'))^V$$
$$= (\hat{\sigma}_*Y)^V + (\hat{\sigma}_*Y')^V \quad 定理1.1$$
$$= \nabla_Y \hat{\sigma} + \nabla_{Y'} \hat{\sigma}.$$

2. 对于任一点 $x\in U$,有 $\frac{d}{dt}\big|_{t=0}\eta(t)=T=Y|_x,\eta(t)$ 是矢量场 Y 满足 $\eta(0)=x$ 的积分曲线. 我们可以给出

$$[\nabla_{Y}(\hat{\sigma} + \hat{\sigma}')](x) = \nabla_{T}[(\hat{\sigma} + \hat{\sigma}')] = ((\hat{\sigma} + \hat{\sigma}')_{*}T)^{V} \quad \text{ Ξ \sharp 1.6}$$

$$= \left((\hat{\sigma} + \hat{\sigma}')_{*} \frac{d}{dt}\Big|_{t=0} \eta(t)\right)^{V}$$

$$= \left(\frac{d}{dt}\Big|_{t=0} (\hat{\sigma} + \hat{\sigma}')(\eta(t))\right)^{V}$$

$$= \left(\frac{d}{dt}\Big|_{t=0} (\hat{\sigma}(\eta(t)) + \hat{\sigma}'(\eta(t)))\right)^{V}$$

$$= \left(\frac{d}{dt}\Big|_{t=0} \hat{\sigma}(\eta(t)) + \frac{d}{dt}\Big|_{t=0} \hat{\sigma}'(\eta(t))\right)^{V}$$

$$= (\hat{\sigma}_{*}T + \hat{\sigma}'_{*}T)^{V} = (\hat{\sigma}_{*}T)^{V} + (\hat{\sigma}'_{*}T)^{V}$$

$$= \nabla_{T}\hat{\sigma} + \nabla_{T}\hat{\sigma}' = \nabla_{Y}\hat{\sigma}(x) + \nabla_{Y}\hat{\sigma}'(x)$$

$$= [\nabla_{Y}\hat{\sigma} + \nabla_{Y}\hat{\sigma}'](x).$$

故等式成立.

3. 这一条和第一条原理相同

$$\nabla_{\lambda Y}\hat{\sigma} = (\hat{\sigma}_*(\lambda Y))^V$$

$$= (\lambda \hat{\sigma}_*)^V \quad \text{推前映射线性性}$$

$$= \lambda (\hat{\sigma}_*)^V \quad \text{定理1.1}$$

$$= \lambda \nabla_Y \hat{\sigma}.$$

4. 第四条和第二条类似,由于第二条足够详细,这里我们列出关键步骤.

$$\nabla_{Y}(\lambda \hat{\sigma})(x) = \left(\frac{d}{dt}\Big|_{t=0} (\lambda \hat{\sigma})(\eta(t))\right)^{V} = \left(\frac{d}{dt}\Big|_{t=0} \lambda(\eta(t))\hat{\sigma}(\eta(t))\right)^{V}$$
$$= \left(\left(\frac{d}{dt}\Big|_{t=0} \lambda(\eta(t))\right)\hat{\sigma}(x) + \lambda(x)\left(\frac{d}{dt}\Big|_{t=0} \hat{\sigma}(\eta(t))\right)\right)^{V}$$
$$= (Y(\lambda))\hat{\sigma}(x) + \nabla_{Y}(\hat{\sigma})(x).$$

故

$$\nabla_Y(\lambda \hat{\sigma}) = (Y(\lambda))\hat{\sigma}(x) + \nabla_Y(\hat{\sigma})(x).$$

 $\frac{d}{dt}\Big|_{t=0} \lambda(\eta(t)) = Y(\lambda)$, 就是我们对 $\frac{d}{dt}$ 的不同理解给出的结论.

协变导数 $\nabla_T \hat{\sigma}$ 还可以表示为更便于计算的形式. 给定带联络的伴丛, 我们完全可以找到带联络的主丛 $(P, \tilde{\omega})$, 主丛和伴丛上的联络是融洽的. 给定定义域 $U \subset M$, 我们有截面映射 $\hat{\sigma}: U \to Q, \sigma: U \to P$, 则 $\forall x \in U$, 我们可以给出 $\hat{\sigma}(x), \sigma(x)$, 如此可唯一确定一个 $f: U \to F$ 满足

$$\hat{\sigma}(x) = \sigma(x) \cdot f(x), \quad \forall x \in U.$$

仍旧在底流形上选取曲线 $\eta:I\to U, \forall s\in I,$ 以 $\tilde{\eta}(s)$ 代表 $\eta(t)$ 过点 $\sigma(s)\equiv\sigma(\eta(s))$ 的水平提升曲线, 我们后面均 把 $\eta(s)$ 简记为 s. 则我们给出

$$\hat{\sigma}(s) = \sigma(s) \cdot f(s) \quad \forall s \in I.$$

我们根据如上讨论, 确定了 f(s), 我们构造 $\mu_s(t)$ 为

$$\mu_s(t) \equiv \tilde{\eta}_s(t) \cdot f(s).$$

定理1.4保证 $\mu_s(t)$ 是 $\eta(t)$ 在 Q 的水平提升曲线, 又因为

$$\mu_s(s) = \tilde{\eta}_s(s) \cdot f(s) = \sigma(s) \cdot f(s) = \hat{\sigma}(s).$$

即 $\mu_s(t)$ 过点 $\hat{\sigma}(s)$, 也就是说 $\mu_s(t)$ 是 $\eta(t)$ 过点 $\hat{\sigma}(s)$ 的水平提升曲线. 最后我们给出

$$\hat{\eta}_s(t) = \mu_s(t) = \tilde{\eta}_s(t) \cdot f(s).$$

当 t=0 时, $\hat{\eta}_s(0)=\mu_s(0)=\tilde{\eta}_s(0)\cdot f(s)$, 而 $\tilde{\eta}_s(0)$ 与 $\sigma(0)$ 同 fiber, 也就是我们给出一个映射 $g:I\to G$ 使得

$$\tilde{\eta}_s(0) = \sigma(0)g(s) = \tilde{\eta}_0(0)g(s), \quad \forall s \in I.$$

当 s=0 时,不难看出 g(0)=e;对于伴丛上的水平提升 $\hat{\eta}_s(0)$,我们可以给出

$$\hat{\eta}_s(0) = \tilde{\eta}_0(0)g(s) \cdot f(s) = \tilde{\eta}_0(0) \cdot g(s)f(s) = \sigma(0) \cdot g(s)f(s).$$

有了这个式子, 我们就可以计算 $\nabla_T \hat{\sigma}$, 结果是

$$\nabla_{T}\hat{\sigma} = \lim_{s \to 0} \frac{1}{s} [\hat{\eta}_{s}(0) - \hat{\eta}_{0}(0)]$$

$$= \lim_{s \to 0} \frac{1}{s} [\sigma(0) \cdot g(s) f(s) - \sigma(0) \cdot g(0) f(0)]$$

$$= \sigma(0) \cdot \lim_{s \to 0} \frac{1}{s} [g(s) f(s) - g(0) f(0)]$$

$$= \sigma(0) \cdot \frac{d}{ds} \Big|_{s=0} g(s) f(s).$$

修改指标s为t则

$$\nabla_T \hat{\sigma} = \sigma(0) \cdot \frac{d}{dt} \Big|_{t=0} g(t) f(t)$$
$$= \sigma(0) \cdot \frac{d}{dt} \Big|_{t=0} \chi_{g(t)} f(t).$$

 $\chi_q(t)$ 是伴丛上的左作用.

笔记 $\sigma(0)$ 是人为选择的截面,是否会因此导致结果不同,一方面我们是出自定义1.2,故不会导致不同,另一方面,主丛的一条 fiber,对应与伴丛上的一个点,选择截面更具体一点就是选择某个坐标系,不会导致结果不变.因为 g 在主丛上的自由性缩成了一个点.

现在的 Q 是伴矢丛, 全体 χ_q 的集合, 就是某个群作用于矢量空间的映射, 就是 G 的表示, 也就是说

$$\hat{G} \equiv \{ \chi_g : F \to F \mid \forall g \in G \}.$$

也就是说 χ_q 可以写为群的表示, 即

$$\chi_q = \rho(g)$$
.

则我们有

$$\nabla_T \hat{\sigma} = \sigma(0) \cdot \left. \frac{d}{dt} \right|_{t=0} \rho(g(t)) f(t).$$

 $\rho(g(t))$ 是 $N \times N$ 方阵, f(t) 是列阵, 我们再次简化上面式子为

$$\begin{split} \nabla_T \hat{\sigma} &= \sigma(0) \cdot \left. \frac{d}{dt} \right|_{t=0} \rho(g(t)) f(t) \\ &= \sigma(0) \cdot \left[\rho(g(0)) \left. \frac{d}{dt} \right|_{t=0} f(t) + \left[\left. \frac{d}{dt} \right|_{t=0} \rho(g(t)) \right] f(t) \right] \\ &= \sigma(0) \cdot \left[\hat{e} \left. \frac{d}{dt} \right|_{t=0} f(t) + \left[\left. \frac{d}{dt} \right|_{t=0} \rho(g(t)) \right] f(t) \right]. \end{split}$$

g(0) = e 是前文推出的.

我们再度选择一个截面 $\sigma': U \to P$ 满足

$$\sigma'(\eta(t)) := \tilde{\eta}_0(t).$$

两个截面会把主丛上的联络拉成不同的底流形上的联络,参考??.

$$\omega \equiv \sigma^* \tilde{\omega} \quad \omega' \equiv \sigma'^* \tilde{\omega}.$$

两个联络之间应该满足关系

$$\boldsymbol{\omega}'(Y) = \mathscr{A}d_{g_{UV^{-1}}}\boldsymbol{\omega}(Y) + L_{g_{UV^{-1}}*}g_{UV*}(Y).$$

根据式??, 可以确定 g_{UV} , 故

$$\tilde{\eta}_s(0) = \sigma(0)g(s) = \tilde{\eta}_0(0)g(s) \Rightarrow \sigma = \sigma'g(s).$$

由于我们修改过指标,不难确定, $g_{UV}(\eta(t)) = g(\eta(t))^{-1}$ (在不造成混淆的情况下,省略 η), 而此时的 Y, 就是曲线 $\eta(t)$ 在 t 的切矢量 T. 故我们给出的两个联络应该满足

$$\boldsymbol{\omega}'(T) = \mathcal{A}d_{g(t)}\boldsymbol{\omega}(T) + L_{g(t)*}g_*^{-1}(T).$$

\$

笔记 注意 g(t) 是群元, 而 g^{-1} 是一个底流形到李群的映射.

而

$$\omega'(T) = \sigma'^* \tilde{\omega}'(T) = \tilde{\omega}'(\sigma'_*(T)) = 0.$$

原因是因为 $\tilde{\eta}_0(t)$ 是水平提升曲线. 由于关于'的联络为 0, 我们就得到不带'的联络与 g(t) 的关系,

$$\mathcal{A}d_{q(t)}\omega(T) = -L_{q(t)*}g(t)_*^{-1}(T).$$

从 ∇_T 来看, 上面关于 $\mathscr G$ 的等式需要在两边加上 ρ_* 映射. 我们分开来看

$$\rho_* \left[\mathscr{A} d_{g(t)} \boldsymbol{\omega}(T) \right] = \rho_* \frac{d}{dm} \bigg|_{m=0} \exp\left(m \mathscr{A} d_{g(t)} \boldsymbol{\omega}(T) \right) \\
= \rho_* \frac{d}{dm} \bigg|_{m=0} I_{g(t)} \exp\left(m \boldsymbol{\omega}(T) \right) \quad$$

$$= \frac{d}{dm} \bigg|_{m=0} \rho \left[I_{g(t)} \exp\left(m \boldsymbol{\omega}(T) \right) \right] \\
= \frac{d}{dm} \bigg|_{m=0} \rho (I_{g(t)}) \rho \exp\left(m \boldsymbol{\omega}(T) \right) \\
= I_{\rho(g(t))*} \rho_* [\boldsymbol{\omega}(T)] \\
= \mathscr{A} d_{\rho(g(t))} \left[\rho_* [\boldsymbol{\omega}(T)] \right]. \\
\rho_* \left[L_{g(t)*} g(t)_*^{-1}(T) \right] = \rho_* \circ L_{g(t)*} \circ g_*^{-1} \frac{d}{ds} \bigg|_{s=0} \eta(t+s) \\
= \frac{d}{ds} \bigg|_{s=0} \rho (L_{g(t)} g^{-1} \eta(s+t)).$$

为了避免和参数 t 混淆, 这里我们把代表曲线在 t 的切矢量写为 $\frac{d}{ds}\Big|_{s=0}\eta(s+t)$ 我们代入计算得到

$$\rho_*[L_{g(t)*}g(t)_*^{-1}(T)] = \frac{d}{ds} \Big|_{s=0} \rho(g(t))\rho(g(t+s)^{-1})$$

$$= \rho(g(t)) \frac{d}{ds} \Big|_{s=0} \rho(g(t+s)^{-1})$$

$$= \rho(g(t)) \frac{d}{dt} \Big|_{t} \rho(g(t)^{-1})$$

章记 最后一个括号比较费解, 我们可以从两个角度理解它: 一种是纯代数角度, 采用换元法, 令 t' = s + t, 得到 $\frac{d}{dt'}|_{t'=t} \rho(g(t')^{-1})$, 由于 t 本身也是 $\eta(t)$ 的参数, 其实质意义 t' 一致. 故可以把 t' 写成 t; 另一种就是考虑符号代表的意义了, $\frac{d}{ds}|_{s=0} \rho(g(t+s)^{-1})$ 可以理解为 $\rho_* \circ g_*^{-1}$ 把 $\eta(t)$ 在 t 处的切矢量, 映射到李代数元的表示空间中, 也就是曲线在群表示空间的切矢.

综上讨论,给出

$$\rho(g(t)) \frac{d}{dt} \bigg|_{t} \rho(g(t)^{-1}) = -\mathcal{A}d_{\rho(g(t))} \left[\rho_{*} \boldsymbol{\omega}(T) \right] = -\rho(g(t)) \left[\rho_{*} [\boldsymbol{\omega}(T)] \rho(g(t))^{-1} \right].$$

最后一个等号是利用了矩阵群的性质, 可以对定理**??**两边求导, 令 t=0 给出. 我们对上式最最后的整理以复合我们需要使用的形式

$$\frac{d}{dt}\Big|_{t} \rho(g(t)^{-1}) = -\left[\rho_{*}\omega(T)\right] \rho(g(t))^{-1}.$$

当 t=0 时

$$\frac{d}{dt}\Big|_{t=0}\rho(g(t)^{-1}) = -\left[\rho_*\boldsymbol{\omega}(T)\right]\rho(g(0))^{-1} = -\left[\rho_*\boldsymbol{\omega}(T)\right]\rho\left(e\right)^{-1} = -\left[\rho_*\boldsymbol{\omega}(T)\right].$$

因为 $\rho(g(t)^{-1})\rho(g(t)) = I$, 故

$$\frac{d}{dt}\bigg|_{t=0}\rho(g(t)) = -\left.\frac{d}{dt}\right|_{t=0}\rho(g(t)^{-1}) = \left[\rho_*\boldsymbol{\omega}(T)\right].$$

代入到 $\nabla_T \hat{\sigma}$, 得到

$$\nabla_T \hat{\sigma} = \sigma(0) \cdot \left\{ \left. \frac{d}{dt} \right|_{t=0} f(t) + \left[\rho_* \boldsymbol{\omega}(T) \right] f(0) \right\}. \tag{1.1}$$

有了以上屠龙宝刀,下面就让我们开始打 boss 吧.

例 1.1 P = FM, $Q_1 = TM$, G = GL(n), $F_1 = \mathbb{R}^n$, $\chi : G \times F_1 \to F_1$, χ 是伴丛上的左作用, 定义为

$$(\chi_q(f))^{\mu} := g^{\mu}{}_{\nu} f^{\nu}.$$

因此 $\hat{G} = \{g^{\mu}_{\nu} | g \in G\} = G$, 即存在 $\rho_1 : G \to \hat{G}, \rho_1$ 在本例子中是恒等映射. 设 $U \subset M$, 试着求 $\hat{\sigma} : U \to Q$ 选择辅助截面 $\sigma : U \to P$ 满足

$$\sigma(x) = (x, \frac{\partial}{\partial x^{\mu}}\Big|_{x}), \quad x \in U.$$

其中 $,\frac{\partial}{\partial r^{\mu}}|_{x}$ 某个坐标系的坐标基底. 我们接下来使用式1.1(具体到本例)

$$\nabla_T \hat{\sigma} = \sigma(0) \cdot \left\{ \left. \frac{d}{dt} \right|_{t=0} f^{\mu}(t) + \left[\rho_{1*} \boldsymbol{\omega}(T) \right]^{\mu}_{\nu} f^{\mu}(0) \right\}.$$

对于 $\omega(T)$, 我们也写成带指标的形式给出

$$\omega(T) = \omega_{\sigma}(x_0)T^{\sigma}.$$

其中 $\omega_{\sigma}(x_0) = \omega(\frac{\partial}{\partial x^{\sigma}}\big|_{x_0}) \in \mathscr{G} \quad T^{\sigma} = (dx^{\sigma})(T) \in \mathbb{R},$ 则

$$[\rho_{1*}\omega(T)]^{\mu}_{\ \nu} = [\omega(T)]^{\mu}_{\ \nu} = (\omega_{\sigma}(x_0)T^{\sigma})^{\mu}_{\ \nu} = T^{\sigma}(\omega_{\sigma}(x_0))^{\mu}_{\ \nu} \equiv T^{\sigma}\omega^{\mu}_{\ \nu\sigma}.$$

最后一步只是符号的简单记法.

注意 $\hat{\sigma}$ 的集合意义就是底流形上的一个矢量场, 可以记为 v^a , 则 $f^\mu = v^\mu$, 故我们有

$$T^{b}\nabla_{b}v^{a} \equiv \nabla_{T}v^{a} = (x_{0}, \frac{\partial}{\partial x^{\mu}}\Big|_{x_{0}}) \cdot \left\{ \frac{d}{dt}\Big|_{t=0} v^{\mu}(t) + T^{\sigma}\omega^{\mu}{}_{\nu\sigma}v^{\nu}(0) \right\}$$
$$= \left[\left(\frac{\partial}{\partial x^{\mu}} \right)^{a} \left(\frac{dv^{\mu}(t)}{dt} + T^{\sigma}\omega^{\mu}{}_{\nu\sigma}v^{\nu} \right) \right]_{x_{0}}.$$

第二个等号只是切丛作为矢量的记号的转变.

这和我们以前定义导数算符时给出的克氏符一致, 结合 T_a, v^a 的任意性给出. $\omega^{\mu}_{\nu\sigma} = \Gamma^{\mu}_{\nu\sigma}$, 由此可见, 主丛 FM 的联络 $\tilde{\omega}$ 经过 $\sigma: U \to P$ 在 U 上诱导的联络 ω 就是我们熟知的克氏符. 我们可以消去曲线 t, 给出任意性

$$\left. \frac{dv^{\mu}(t)}{dt} \right|_{x_0} = \left. \frac{dv^{\mu}(x(t))}{dt} \right|_{x_0} = \left. \frac{\partial v^{\mu}}{\partial x^{\sigma}} \right|_{x_0} \left. \frac{dx^{\sigma}(t)}{dt} \right|_{t=0} = \left. \frac{\partial v^{\mu}}{\partial x^{\sigma}} \right|_{x_0} T^{\sigma}.$$

故

$$T^b \nabla_b v^a = T^\sigma \left[\left(\frac{\partial}{\partial x^\mu} \right)^a \left(\frac{\partial v^\mu}{\partial x^\sigma} + \omega^\mu{}_{\nu\sigma} v^\nu \right) \right]_{\tau_0}.$$

当选择另一个截面时 σ' 时, 上式只写为

$$T^{b}\nabla_{b}v^{a} = T'^{\sigma} \left[\left(\frac{\partial}{\partial x'^{\mu}} \right)^{a} \left(\frac{\partial v'^{\mu}}{\partial x'^{\sigma}} + \omega'^{\mu}{}_{\nu\sigma}v'^{\nu} \right) \right]_{x_{0}}.$$

这也是协变的意思.

例 1.2 例1.1讨论矢量场 v 在 x_0 点沿着矢量 T 的协变导数, 本例我们探讨 $U \subset M$ 上的任一标架场 $\{e_a\}$ (不一定 是坐标基底场) 的第 μ 基矢场 e_μ 在 x_0 点沿着第 τ 基矢 $e_{\tau}|_x 0$ 的协变导数, 也就是说作为例1.1的特例, 本例满足

$$v|_{U} = e_{\mu}|_{U}$$
$$T|_{x_{0}} = e_{\tau}|_{x_{0}}$$

也就是说, 我们要求 $(\nabla_{e_{\tau}}e_{\mu})|_{x_0}$, 我们同样使用式1.1, 我们来看 f(t), 如何确定 f(t) 需要给出 $\sigma(\eta(t))$, $\hat{\sigma}((\eta(t))$, 其中 $\eta(t)$ 满足两点: 过 x_0 点, 在 x_0 处的切矢是 e_{τ} . 而 σ 是选择的一个辅助截面, $\hat{\sigma}$ 是底流形上面的基矢场, 则

$$\hat{\sigma}(\eta(t)) = \sigma(\eta(t)) \cdot f(t) = (\eta(t), e_{\lambda}|_{\eta(t)}) \cdot f^{\lambda}(\eta(t)) = [e_{\lambda}f^{\lambda}]_{\eta(t)}.$$

而 $\hat{\sigma}(\eta(t)) = e_{\mu}|_{\eta(t)}$,不难给出 $f(\eta(t)) = \delta^{\lambda}{}_{\mu}$.

 $\hat{\mathbf{v}}$ 笔记 注意选择辅助截面 $\sigma(\eta(t))$ 的同时, 我们才确定了 $\hat{\sigma}(\eta(t))$, 这一特点只有本例有, 例1.1有绝对的矢量 v^a , 也就选择了某一截面 $\hat{\sigma}$. 在本例我们天然的使得 v 和标架场对应, 也就是说我们需要给出标架场才能, 确定 v, 由于二者的联系, 把 f(t) 限制到了一个常数. 当然 $\sigma(\eta(t))$ 不一定是水平的, 也就意味着 $\hat{\sigma}(\eta(t))$ 与 $\sigma(\eta(t))$ 一致.

则
$$\frac{d}{dt}\Big|_{t=0} f(t) = 0$$
, 我们来看 $[\rho_{1*}\boldsymbol{\omega}(T)]^{\nu}_{\lambda} f^{\lambda}(0)$

$$[\rho_{1*}\omega(T)]^{\nu}{}_{\lambda}f^{\lambda}(0) = [\omega(e_{\tau}|_{x_0})]^{\nu}{}_{\lambda}\delta^{\lambda}{}_{\mu} = \omega(e_{\tau}|_{x_0})^{\nu}{}_{\mu} = \omega^{\nu}{}_{\mu\tau}(x_0).$$

这里没有遵守指标平衡,注意分辨实际意义. 故

$$(e_{\tau})^{b}|_{x_{0}}\nabla_{b}(e_{\mu})^{a} = (\nabla_{e_{\tau}}e_{\mu})|_{x_{0}} = (x_{0}, e_{\nu}|_{x_{0}}) \cdot \omega^{\nu}{}_{\mu\tau}(x_{0}) = [(e_{\nu})^{a}\omega^{\nu}{}_{\mu\tau}]_{x_{0}}.$$

 e_{ν} 实质意义上是作为标架场的基底. 不过这里都是标架场, 容易混淆, 可以对比1.1理解. 我们省去计算给出

$$(e_{\tau})^{b}|_{x_{0}}\nabla_{b}(e_{\mu})^{a} = [(e_{\nu})^{a}\omega^{\nu}{}_{\mu\tau}]_{x_{0}}$$
(1.2)

有了以上讨论, 我们假设 $(FM, \tilde{\omega})$, 其中 $\tilde{\omega} \mapsto \omega^{\nu}_{\mu\tau}$ 有两种途径

1.
$$\tilde{\boldsymbol{\omega}} \xrightarrow{\sigma^*} {\boldsymbol{\omega}} \xrightarrow{\{e_{\mu}\}} {\boldsymbol{\omega}^{\nu}}_{\mu\tau}$$

2.
$$\tilde{\omega} \xrightarrow{\text{\mathcal{E}} \mathcal{E}} \nabla_a, e(\tau)^b \nabla_b(e_\mu)^a = (e_\nu)^a \gamma^{\nu}{}_{\mu\tau} \ (\vec{\chi}??), \omega(\nabla)^{\nu}{}_{\mu\tau} \equiv \gamma^{\nu}{}_{\mu\tau}$$

以上两种途径的等价性, 在前文证明过, 结论是式??. 我们列举已知的殊途同归. 但是在这里又有一个全新的途径: $\tilde{\omega}$ 在 TM 上有 $q \to H_q, H_q$ 又在 M 上给出了联络 ∇ , 定义是1.2, 例1.2(具体是式1.2) 证明了该途径和上面途径 2 殊途同归. 我们给出了三种联络的殊途同归. 途径 1 和途径 3 由定理1.5给出了互恰的形式.

例 1.3 P = FM, $Q_2 = T^*M$, $F_2 = \mathbb{R}^n = \mathcal{I}_{\mathbb{R}^n}(0,1)$, 结构群 G 仍然是 GL(n), 左作用 χ_g 定义为

$$(\chi_g f)_{\mu} := (g^{-1})^{\nu}{}_{\mu} f_{\nu}, \quad \forall f_{\nu} \in F_2.$$

表示的映射为

$$\rho_2: G \to \hat{G}_2 = \{(g^{-1})^{\nu}{}_{\mu} | g \in GL(n)\}.$$

我们利用式1.1给出

$$\nabla_T \hat{\sigma} = \sigma(0) \cdot \left\{ \left. \frac{d}{dt} \right|_{t=0} f_{\mu}(t) + \left[\rho_{2*}(\boldsymbol{\omega}(T)) \right]_{\mu}{}^{\nu} f_{\nu}(t) \right\}.$$

选择辅助截面为 $\sigma: U \to P, \sigma(x) := (x, \frac{\partial}{\partial x^{\mu}}|_{x})$

为了求 ρ_{2*} , 我们补充定理

定理 1.9

 $ho_1:G o\hat{G}$ 是矢量空间的群的表示, $ho_2:G o\hat{G}$ 是对偶矢量空间群的表示,两者满足

$$\rho_2(g) = [\rho_1(g^{-1})]^T.$$

二者相互作用的前提是被作用的 f_{μ} 摆成列阵.

证明 我们把左作用写为方阵乘以列阵

$$(\chi_g f)_{\mu} = (g^{-1})^{\nu}{}_{\mu} f_{\nu} = ((g^{-1})^T)_{\mu}{}^{\nu} f_{\nu}.$$

则

$$(\rho_2 g) \times f = [(g^{-1})^T] \times f = [(\rho_1 g^{-1})]^T \times f.$$

第二个等号利用 ρ_1 是恒等映射.

笔记 上面这个定理, 本质上起源于矢量是逆变的, 而对偶矢量是协变的, 协变和逆变主要看转换矩阵是否与坐标基底变换矩阵是否相同, 相同是协变的, 不相同需要差一个逆. 再结合上对偶矢量是行阵, 这里写成列阵计算, 为了保证结果, 需要添加一个转置. 本质上是一个群元作用在矢量上.

$$\diamondsuit B = \omega(T)$$
, 则

$$\rho_{2*}B = \rho_{2*} \frac{d}{ds} \bigg|_{s=0} \exp(sB) = \frac{d}{ds} \bigg|_{s=0} \rho_2(\exp(sB)) = \frac{d}{ds} \bigg|_{s=0} \left[\rho_1(\exp(-sB)) \right]^T.$$

由于转置和求导并不矛盾,故

$$\rho_{2*}B = \left[\frac{d}{ds}\Big|_{s=0} \rho_1(\exp(-sB))\right]^T = -(\rho_{1*}B)^T.$$

则

$$\begin{split} \nabla_{T}\hat{\sigma} &= \sigma(0) \cdot \left\{ \left. \frac{d}{dt} \right|_{t=0} f_{\mu}(t) + \left[\rho_{2*}(\boldsymbol{\omega}(T)) \right]_{\mu}^{\nu} f_{\nu}(t) \right\} \\ &= \sigma(0) \cdot \left\{ \left. \frac{d}{dt} \right|_{t=0} f_{\mu}(t) - \left[\rho_{1*} \boldsymbol{\omega}(T) \right]_{\mu}^{\nu} f_{\nu}(0) \right\} \\ &= \left(x_{0}, \left. \frac{\partial}{\partial x^{\mu}} \right|_{x_{0}} \right) \cdot \left\{ \left. \frac{d}{dt} \right|_{t=0} f_{\mu}(t) - T^{\sigma} \boldsymbol{\omega}_{\mu\sigma}^{\nu} f_{\nu}(0) \right\} \\ &= \left[\left(dx^{\mu} \right)_{a} \left(\frac{df_{\mu}(t)}{dt} - \boldsymbol{\omega}_{\mu\sigma}^{\nu} T^{\sigma} f_{\nu} \right) \right]_{x_{0}} \end{split}$$

例 1.4 P = FM, $Q_3 = (1,1)$ 张量丛, $F_3 = \mathcal{I}_{\mathbb{R}^n}(1,1)$, 左作用 χ_q 定义为

$$(\chi_g(f))^{\mu}_{\nu} := g^{\mu}_{\alpha}(g^{-1})^{\beta}_{\nu} f^{\alpha}_{\beta}.$$

表示群 \hat{G}_3 为

$$\hat{G}_3 = \{ g^{\mu}{}_{\alpha} (g^{-1})^{\beta}{}_{\nu} | g \in GL(n) \}.$$

此时 F_3 是矢量空间的——型张量, 以 ρ_1 , ρ_2 , ρ_3 , 代表 G 到 \hat{G}_1 , \hat{G}_2 , \hat{G}_3 的映射, $\rho_3(g) \in \hat{G}_3$ 作用于 F_3 , 而 F_3 内的元素是 n^2 维矢量空间. 则 f 应该看作 $n^2 \times 1$ 的列阵, 而 $\rho_3(g)$ 可以看作是 $n^2 \times n^2$ 的矩阵. 按照 $\rho_3(g)f$ 应该看

作 $n^2 \times n^2$ 的方阵与 $n^2 \times 1$ 的矩阵相乘. μ, ν 代表 $2^2 \times 2^2$ 的指标, 具体而言作为 2×2 分块矩阵的指标, f 以作为分块矩阵并以 $\hat{g}^{\mu}{}_{\nu\alpha}{}^{\beta}f^{\alpha}{}_{\beta} = g^{\mu}{}_{\alpha}(g^{-1})_{\nu}{}^{\beta}f^{\alpha}{}_{\beta}$ 作为参考.

$$f = \begin{bmatrix} f^1{}_1 \\ f^1{}_2 \\ f^2{}_1 \\ f^2{}_2 \end{bmatrix} \quad \rho_3(g) \equiv \hat{g} = \begin{bmatrix} \hat{g}^1{}_{11}{}^1 & \hat{g}^1{}_{11}{}^2 & \hat{g}^1{}_{12}{}^1 & \hat{g}^1{}_{12}{}^2 \\ \hat{g}^1{}_{21}{}^1 & \hat{g}^1{}_{21}{}^2 & \hat{g}^1{}_{22}{}^1 & \hat{g}^1{}_{22}{}^2 \\ \hat{g}^2{}_{11}{}^1 & \hat{g}^2{}_{11}{}^2 & \hat{g}^2{}_{12}{}^1 & \hat{g}^2{}_{12}{}^2 \\ \hat{g}^2{}_{21}{}^1 & \hat{g}^2{}_{21}{}^2 & \hat{g}^2{}_{22}{}^1 & \hat{g}^2{}_{22}{}^2 \end{bmatrix}.$$

 $\stackrel{ extstyle extstyle$

定义 1.3

P和Q代表两个同阶的方阵则

$$(P \otimes Q)^{\mu}{}_{\nu\alpha}{}^{\beta} = P^{\mu}{}_{\alpha}Q_{\nu}{}^{\beta}.$$

定理 1.10

 ρ_1, ρ_2 分别是例1.1和例1.3给出的表示映射.

$$\rho_3(g) = \rho_1(g) \otimes \rho_2(g).$$

证明 根据定义1.3验证即可.

故我们有

$$\nabla_T \hat{\sigma} = \sigma(0) \cdot \left\{ \left. \frac{d}{dt} \right|_{t=0} f^{\mu}_{\nu}(t) + \left[\rho_{3*} \boldsymbol{\omega}(T) \right]^{\mu}_{\nu\alpha}{}^{\beta} f^{\alpha}{}_{\beta}(0) \right\}.$$

只考虑 $[\rho_{3*}\omega(T)]$, 令 $B=\omega(T)$ 给出

$$\rho_{3*}\boldsymbol{\omega}(T) = \rho_{3*} \frac{d}{ds} \Big|_{s=0} \exp(sB)$$

$$= \frac{d}{ds} \Big|_{s=0} \rho_3 \exp(sB)$$

$$= \frac{d}{ds} \Big|_{s=0} \rho_1(\exp(sB)) \otimes \rho_2(\exp(sB))$$

$$= \rho_1(e) \otimes \frac{d}{ds} \Big|_{s=0} \rho_2(\exp(sB)) + \frac{d}{ds} \Big|_{s=0} \rho_1(\exp(sB)) \otimes \rho_2(e)$$

$$= \rho_1(e) \otimes \rho_{2*}(B) + \rho_{1*}(B) \otimes \rho_2(e).$$

笔记 但凡是线性的,本质上都应该满足菜布尼兹律. 则

$$[\rho_{3*}B]^{\mu}{}_{\nu\alpha}{}^{\beta} = \rho_1(e)^{\mu}{}_{\alpha}\rho_{2*}(B)_{\nu}{}^{\beta} + \rho_{1*}(B)^{\mu}{}_{\alpha}\rho_2(e)_{\nu}{}^{\beta}$$
$$= -\delta^{\mu}{}_{\alpha}\rho_{1*}(B)^{\beta}{}_{\nu} + \rho_{1*}(B)^{\mu}{}_{\alpha}\delta_{\nu}{}^{\beta}.$$

 $\rho_2 \rightarrow \rho_1$ 的转变参考例1.3, 故

$$\nabla_{T}\hat{\sigma} = \sigma(0) \cdot \left\{ \frac{d}{dt} \Big|_{t=0} f^{\mu}_{\nu}(t) + [\rho_{3*}\omega(T)]^{\mu}_{\nu\alpha}{}^{\beta}f^{\alpha}{}_{\beta}(0) \right\}$$

$$= \sigma(0) \cdot \left\{ \frac{d}{dt} \Big|_{t=0} f^{\mu}_{\nu}(t) + (-\delta^{\mu}{}_{\alpha}\rho_{1*}(B)^{\beta}{}_{\nu} + \rho_{1*}(B)^{\mu}{}_{\alpha}\delta_{\nu}{}^{\beta}) f^{\alpha}{}_{\beta}(0) \right\}$$

$$= \sigma(0) \cdot \left\{ \frac{d}{dt} \Big|_{t=0} f^{\mu}_{\nu}(t) - \rho_{1*}(B)^{\beta}{}_{\nu}f^{\mu}{}_{\beta} + \rho_{1*}(B)^{\mu}{}_{\alpha}f^{\alpha}{}_{\nu}(0) \right\}$$

$$= (x_{0}, \frac{\partial}{\partial x^{\mu}} \Big|_{x_{0}}) \cdot \left\{ \frac{d}{dt} \Big|_{t=0} f^{\mu}_{\nu}(t) - \rho_{1*}(B)^{\beta}{}_{\nu}f^{\mu}{}_{\beta}(0) + \rho_{1*}(B)^{\mu}{}_{\alpha}f^{\alpha}{}_{\nu}(0) \right\}.$$

我们修改记法,不难给出上式是(1,1)型张量丛的协变导数.

$$\nabla_T \hat{\sigma} = \left(\frac{\partial}{\partial x^{\mu}}\right)^a (dx^{\mu})_b \left[\frac{df^{\mu}_{\ \nu}}{dt} + T^{\sigma} \omega^{\mu}_{\ \alpha\sigma} f^{\alpha}_{\ \nu} - T^{\sigma} \omega^{\beta}_{\ \nu\sigma} f^{\mu}_{\ \beta} \right]_{x_0}.$$

例 1.5 在平凡主丛 $P=\mathbb{R}^4\times U(1)$ 上指定联络 $\tilde{\omega}$, 令 $F=\mathbb{C}$, 在 F 上定义左作用 $\chi:U(1)\times F\to F$ 为

$$\chi_q(\phi) := e^{-iq\theta}\phi, \quad \forall g = e^{-i\theta} \in U(1), \phi \in F.$$

为了计算截面 $\hat{\sigma}: \mathbb{R}^4 \to Q$, 可以任意选择辅助截面 $\sigma: \mathbb{R}^4 \to P$, 它们之间满足

$$\hat{\sigma}(x) = \sigma(x) \cdot \phi(x), \quad \forall x \in \mathbb{R}^4.$$

根据其物理意义, $\hat{\sigma}(x)$ 是物理上一个绝对的场 $\Phi(x)$, $\phi(x)$ 则是在选定 $\sigma(x)$ 后, $\Phi(x)$ 的分量. 在这里, 式1.1写为

$$\nabla_T \Phi = \sigma(0) \cdot \left\{ \left. \frac{d}{dt} \right|_{t=0} \phi(t) + [\rho_*(\boldsymbol{\omega}(T))] \phi(0) \right\}.$$

选定洛伦兹惯性坐标系 $\{x^{\mu}\}$, 则

$$\begin{split} \frac{d}{dt}\bigg|_{t=0} \phi(t) &= \left.\frac{d}{dt}\right|_{t=0} \phi(x^{\mu}(t)) \\ &= \left.\frac{\partial \phi}{\partial x^{\mu}}\right|_{x_0} \left.\frac{dx^{\mu}(t)}{dt}\right|_{t=0} \\ &= \left.\frac{\partial \phi}{\partial x^{\mu}}\right|_{x_0} T^{\mu} = T^{\mu}(\partial_{\mu}\phi). \end{split}$$

对于 $\rho_*(\omega(T))$ 我们有

$$\begin{split} \rho_*(\pmb{\omega}(T)) &= \rho_*(\omega_\mu(x_0)T^\mu) = T^\mu \rho_*(\omega_\mu(x_0)) \\ &= T^\mu \rho_*(ke_r A^r_\mu(x_0)) \\ &= T^\mu k A^r_\mu(x_0) \rho_*(e_r) \\ &= T^\mu (-ikL_r A^r_\mu(x_0)). \end{split}$$

对于 U(1) 群而言 $k=e, L_r A_\mu^r=L_1 A_\mu^1=q A_\mu(x_0)$, 我们代回到 $\nabla_T \Phi$

$$\nabla_T \Phi = \sigma(0) \cdot T^{\mu} [\partial_{\mu} \phi - i e q A_{\mu} \phi]_{x_0} = \sigma(0) \cdot T^{\mu} (D_{\mu} \phi)_{x_0}.$$

这就是前面给出的协变导数.

例 1.6 仿照1.5, 我们也可以计算 $\overline{\delta}$ 场的协变导数算符.