

ECE 554: Digital Engineering Laboratory Course Introduction

Department of Electrical and Computer Engineering
University of Wisconsin – Madison

Course Project

- Design, simulate, synthesize, test, download and demonstrate a nontrivial computer with an original instruction set architecture (ISA)
- Four key requirements
 - It must be an original ISA (somewhat negotiable)
 - It must be non-trivial (a significant step above 552 ISA)
 - It must be tractable everything takes <u>at least</u> twice as long as you expect
 - It must interface through the serial port with the terminal emulator (negotiable, but recommended for debug)
- Utilizes FPGA board interfaces in significant way
- Has significant firmware component (code running on your ISA)
- Might have software component if interfaces with host
- Encouraged to include research or novel component

Ideas for ECE554 Designs (1)

- A pipelined general-purpose computer with
 - A conventional ISA
 - Must support at least 14 general purpose registers.
 - Must support signed and unsigned MUL, and PUSH/POP
 - Must create an assembler for your ISA
 - If Harvard architecture, it must support a MOVC instruction
 - A gimmick that makes the machine non-trivial
 - Examples of gimmicks include
 - Superscalar (on your own...we can't help you)
 - VLIW or SIMD
 - Multithreading
 - Dynamic branch prediction
 - Floating point support
 - Interrupt support (vectored interrupts) + specialized peripheral
 - Non-trivial specialized instructions (multi-cycle)
 - Coprocessor/accelerator support
 - Fault tolerance support

Ideas for ECE554 Designs (2)

- A <u>programmable</u> special-purpose processor
 - Graphics Processor (can't help you much with this)
 - Binary Coded Decimal (BCD) Processor
 - String Processor
 - Neural Network processor
 - Tensor processor
- Make sure your processor can be implemented on the board, but don't let quirks of the system limit your creativity

Ideas for ECE554 Designs (3)

- Processor design relevant to current research projects,
 - Your own research
 - Bioinformatics Processor (BlastN, RNASeq, Denovo Sequencing)
 - Network Coding Accelerator, Viterbi Decoder
 - https://github.com/byeongkeun-kang/FingerspellingRecognition
 - https://devmesh.intel.com/groups/680/#projects
 - https://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/
 - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=53776
 05

Hardware Additions

- Do you want to add some custom hardware to the system?
 - User interface
 - Joystick, push buttons, slide potentiometers
 - Inertial Sensor
 - Bluetooth transceiver
 - ???
 - If doing custom periph board get on it right away:
 - Must have board files submitted for fabrication by spring break

Software Component

- Projects should also have significant software components. For example,
 - Assembler for your processor
 - Simple compiler for your processor would be a bonus
 - Software simulator for your processor?
 - Demonstration and testing software
- Software on an external host PC that your project interacts with?

Incorporating I/O Interfaces

- The interfaces may be useful in implementing or demonstrating your project
 - VGA for displaying graphics
 - Camera (will see this in 2nd capability exploration)
 - USB/UART interface
 - PS/2 interface for mouse/keyboard
 - Ethernet interface to network
 - Audio in/out codec for music, speech recognition, etc.
 - IR rx/tx
 - Custom from board you design
- Become familiar with the board and its features early to know strengths/limitations.

Project Milestones

- Several major milestones
 - Project team selection
 - Project proposal presentation
 - Architecture document due
 - Interface document due
 - Weekly progress reviews
 - Down scoping (if necessary 3 weeks prior to demo)
 - Testing and demo review presentation
 - Project demonstrations
 - Project report due
- Will discuss these in more detail later

Start Thinking

- Whole team has to agree to any presented idea
 - Give it some thought
 - Can think about ISA details without necessarily knowing exact project

Spart databus (bi-directional)

Example of inferring a tri-state:

assign bus = (enable) ? mm wdata : 16'hzzzz;

HelloWorld.asm (more of a pain in the butt than you might think)

- Clear screen and Center text using VT100 escape codes
- Printing any string with pathetic instruction set is difficult
- Need to poll status register to know when can send next character
- Need to poll status register to know if char of name available
- Need to compare char typed to 0x0D
- Need to echo chars of typed name
- Need to store off chars of typed name into memory
- Need to read from memory and print chars of name.