

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: June 15, 2003, 02:58:27 ; Search time 256 Seconds
(without alignments)
9299.265 Million cell updates/sec

Title: US-09-998-284-1

Perfect score: 1644

Sequence: 1 atggctactttgccacaaaa.....ctaagcagactaaatagtag 1644

Scoring table: IDENTITY_NUC
GapOp 10.0 , GapExt 1.0

Searched: 1029858 seqs, 724030393 residues

Total number of hits satisfying chosen parameters: 2059716

Minimum DB seq length: 0

Maximum DB seq length.: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 45 summaries

Database : Published Applications NA: *

```
1: /cgn2_6/ptodata/1/pubpna/US07_PUBCOMB.seq:*
2: /cgn2_6/ptodata/1/pubpna/PCT_NEW_PUB.seq:*
3: /cgn2_6/ptodata/1/pubpna/US06_NEW_PUB.seq:*
4: /cgn2_6/ptodata/1/pubpna/US06_PUBCOMB.seq:*
5: /cgn2_6/ptodata/1/pubpna/US07_NEW_PUB.seq:*
6: /cgn2_6/ptodata/1/pubpna/PCTUS_PUBCOMB.seq:*
7: /cgn2_6/ptodata/1/pubpna/US08_NEW_PUB.seq:*
8: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:*
9: /cgn2_6/ptodata/1/pubpna/US09_NEW_PUB.seq:*
10: /cgn2_6/ptodata/1/pubpna/US09_PUBCOMB.seq:*
11: /cgn2_6/ptodata/1/pubpna/US10_NEW_PUB.seq:*
12: /cgn2_6/ptodata/1/pubpna/US10_PUBCOMB.seq:*
13: /cgn2_6/ptodata/1/pubpna/US60_NEW_PUB.seq:*
14: /cgn2_6/ptodata/1/pubpna/US60_PUBCOMB.seq:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	1644	100.0	1644	10	US-09-998-284-1
2	1279.2	77.8	1801	10	US-09-824-053-30
3	42.6	2.6	647	10	US-09-770-149-554
4	41.8	2.5	1584	9	US-09-938-842A-1942
5	41.8	2.5	2397	9	US-10-170-656-3
6	41.4	2.5	1620	9	US-09-938-842A-2266
7	40.2	2.4	1599	9	US-09-938-842A-281
8	39.2	2.4	1757	9	US-09-258-031B-70
9	38.6	2.3	1527	9	US-09-258-031B-72
10	38.6	2.3	1584	9	US-09-938-842A-1765
11	37.2	2.3	1599	9	US-09-938-842A-1762
12	36.4	2.2	861	10	US-09-801-368-187
13	36.4	2.2	1589	9	US-09-258-031B-19
14	36.4	2.2	1784	9	US-09-258-031B-15
15	35.8	2.2	941	9	US-10-123-155-464
16	35.8	2.2	7766	9	US-10-222-162-3
17	35.8	2.2	7766	9	US-10-143-024-3
18	35.4	2.2	513509	9	US-09-754-853A-4
19	35	2.1	1756	9	US-10-114-043-7

ALIGNMENTS

Line	C	20	35	2.1	2306	9	US-10-114-043-1	Sequence 1, Appli
	C	21	34.8	2.1	292	10	US-09-924-035A-19	Sequence 19, Appli
	C	22	34.4	2.1	604	10	US-09-770-149-927	Sequence 927, Appli
	C	23	34.2	2.1	261	9	US-09-258-031B-45	Sequence 45, Appli
	C	24	34.2	2.1	1830121	9	US-10-329-960-1	Sequence 1, Appli
	C	25	34	2.1	377	9	US-09-258-031B-42	Sequence 42, Appli
	C	26	34	2.1	377	9	US-09-258-031B-43	Sequence 43, Appli
	C	27	34	2.1	408	10	US-09-878-574-18	Sequence 18, Appli
	C	28	34	2.1	695	9	US-09-258-031B-24	Sequence 24, Appli
	C	29	34	2.1	7038	9	US-10-239-676-203	Sequence 203, Appli
	C	30	33.8	2.1	1981	9	US-09-258-031B-57	Sequence 57, Appli
	C	31	33.6	2.0	1593	9	US-09-938-842A-319	Sequence 319, Appli
	C	32	33.4	2.0	596	10	US-09-864-761-8758	Sequence 8758, Appli
	C	33	33.4	2.0	1887	9	US-09-738-626-2031	Sequence 2031, Appli
	C	34	33.4	2.0	3309400	9	US-09-738-626-1	Sequence 1, Appli
	C	35	33.2	2.0	1458	9	US-10-047-412A-3	Sequence 3, Appli
	C	36	33.2	2.0	1536	9	US-09-938-842A-222	Sequence 222, Appli
	C	37	33	2.0	490	12	US-10-071-751-41	Sequence 41, Appli
	C	38	33	2.0	3172	9	US-09-954-531-158	Sequence 158, Appli
	C	39	33	2.0	3172	9	US-09-954-531-580	Sequence 580, Appli
	C	40	32.8	2.0	416	9	US-09-764-868-173	Sequence 173, Appli
	C	41	32.8	2.0	716	9	US-10-123-155-512	Sequence 512, Appli
	C	42	32.8	2.0	993	9	US-09-738-626-1095	Sequence 1095, Appli
	C	43	32.8	2.0	3309400	9	US-09-738-626-1	Sequence 1, Appli
	C	44	32.6	2.0	1530	9	US-09-258-031B-74	Sequence 74, Appli
	C	45	32.6	2.0	1626	9	US-09-938-842A-2575	Sequence 2575, Appli

Qy 241 TACGAAGACTCGTTTCGACGAATGGTCAAGCTATTACAACGTTACTGGTTGGTT 300
Db 241 TAGAAGACTTCGTTTCGACGAATGGTCAAGCTATTACAACGTTACTGGTTGGTT 300
Qy 301 GAATCTGGTAGCAGCAGGATAGAGTTACTCTGTCTTCCGGTGACACCAACTGGCT 360
Db 301 GAATCTGGTAGCAGCAGGATAGAGTTACTCTGTCTTCCGGTGACACCAACTGGCT 360
Qy 361 TCCTCAAGACCTGTTAGAGACCACGGTAGAGTTACTCTGTCTTCCGGTGACACCAACTGGCT 360
Db 361 TCCTCAAGACCTGTTAGAGACCACGGTAGAGTTACTCTGTCTTCCGGTGACACCAACTGGCT 360
Qy 421 GTCGGTTGGGTGTCACATGTCGTTGGAGGTGACGGTATTGGCCAGATGCACGGT 480
Db 421 GTCGGTTGGGTGTCACATGTCGTTGGAGGTGACGGTATTGGCCAGATGCACGGT 480
Qy 481 TTGCCAGTCGATTGGTTATCCGGTTGAAGTGTGCTTAAGCCAGTCTGACGGAC 540
Db 481 TTGCCAGTCGATTGGTTATCCGGTTGAAGTGTGCTTAAGCCAGTCTGACGGAC 540
Qy 541 TCTGTTCTTAAGTACGTTACAAGGATCCGAAGGTAAACGGTGACTGTGTTGGCT 600
Db 541 TCTGTTCTTAAGTACGTTACAAGGATCCGAAGGTAAACGGTGACTGTGTTGGCT 600
Qy 601 CACACTGGAGGGGAACTCGGTATTACCAAACTACTTCAGGATTG 660
Db 601 CACACTGGAGGGTCACTCGGTATTACCAAACTACTTCAGGATTG 660
Qy 661 CCAATGTCCTCCAAGAGGTGTCACTCGCTCTAACCTACACTCTCTGGGACGGTTCACT 720
Db 661 CCAATGTCCTCCAAGAGGTGTCACTCGCTCTAACCTACACTCTCTGGGACGGTTCACT 720
Qy 721 AGAGATGCCTGCAAGATTGTGACTAAAGTACTTCAGTTGGCTAGATGTGATGGAG 780
Db 721 AGAGATGCCTGCAAGATTGTGACTAAAGTACTTCAGTTGGCTAGATGTGATGGAG 780
Qy 781 AATACTGTGCTTCAAGATTCTCAATCTCCACCAAGCAGCTGAAGAGTTGTACTTG 840
Db 781 AATACTGTGCTTCAAGATTCTCAATCTCCACCAAGCAGCTGAAGAGTTGTACTTG 840
Qy 841 TATACATCCTACTCTAACGCGCCAGAGAATTGCCAACAGACACTATCATTTG 900
Db 841 TATACATCCTACTCTAACGCGCCAGAGAATTGCCAACAGACACTATCATTTG 900
Qy 901 GAGGCTGACATTGAAACAGATCACAAACATGGGCTACCAAGCTCTGGTGTCA 960
Db 901 GAGGCTGACATTGAAACAGATCACAAACATGGGCTACCAAGCTCTGGTGTCA 960
Qy 961 GCTGGTTGGCTCCCTCTGTTAGACCTAGAAAGAACACATCCAAGACTT 1020
Db 961 GCTGGTTGGCTCCCTCTGTTAGACCTAGAAAGAACACATCCAAGACTT 1020
Qy 1021 ATGCATGACGAGACTATGGACTACCCCTCTACGCTTGACTGAGACTATCAACGGTCC 1080
Db 1021 ATGCATGACGAGACTATGGACTACCCCTCTACGCTTGACTGAGACTATCAACGGTCC 1080
Qy 1081 GGTCCTAATCAGAGGTTAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTC 1140
Db 1081 GGTCCTAATCAGAGGTTAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTC 1140
Qy 1141 CAGATTGATGTTACTGAGGTTCTGACGGTTGACTAGTGGCGAA 1200
Db 1141 CAGATTGATGTTACTGAGGTTCTGACGGTTGACTAGTGGCGAA 1200
Qy 1201 ATGAAGGGATGCTTCTCAGGTTGATATGTCGGTGTGAGATTCAAAGGTTTGG 1260
Db 1201 ATGAAGGGATGCTTCTCAGGTTGATATGTCGGTGTGAGATTCAAAGGTTTGG 1260
Qy 1261 GATGCTACTGCAAGAGGTTGCTCAGAGGTTGACTACCATCTGG 1320
Db 1261 GATGCTACTGCAAGAGGTTGCTCAGAGGTTGACTACCATCTGG 1320
Qy 1321 CAGGAAGACAAGGATCAGTTAATGAGACTTTACGGAGGATG 1380

Db 1321 CAGGAAGACAAGGATCAGTTAATGAGACTTTACGGAGGATG 1380
Qy 1381 TATGAGCCTATGGTGGTGTCCAGACCTAACACTCAGGTTGAGACTGGTAAGGTGTT 1440
Db 1381 TATGAGCCTATGGTGGTGTCCAGACCTAACACTCAGGTTGAGACTGGTAAGGTGTT 1440
Qy 1441 TTGAGGGATGCTACTTCACACTCCGTGACTTGAAACTGGAAGAACGGTAAG 1500
Db 1441 TTGAGGGATGCTACTTCACACTCCGTGACTTGAAACTGGAAGAACGGTAAG 1500
Qy 1501 TATGGTGCTTGTGACTTTGGTAACCTGAAAGATCAAGGCAAATGG 1560
Db 1501 TATGGTGCTTGTGACTTTGGTAACCTGAAAGATCAAGGCAAATGG 1560
Qy 1561 TTGIGGATCTAACAGATCTCAGAACAAACAGTCTATCCCTACTAAACCTCTTAAG 1620
Db 1561 TTGIGGATCTAACAGATCTCAGAACAAACAGTCTATCCCTACTAAACCTCTTAAG 1620
Qy 1621 GAGCCTAAGCAGACTAAATAGTAG 1644
Db 1621 GAGCCTAAGCAGACTAAATAGTAG 1644

RESULT 2
US-09-824-053-30
; Sequence 30, Application US/09824053
; Patent No. US20020106725A1
; GENERAL INFORMATION:
APPLICANT: Peter Stougaard
TITLE OF INVENTION: RECOMBINANT HEXOSE OXIDASE, A
NUMBER OF SEQUENCES: 34
METHOD OF PRODUCING SAME AND USE OF SUCH ENZYME
CORRESPONDENCE ADDRESS:
ADDRESSEE: Hunton & Williams
STREET: 1900 K Street, N.W.
CITY: Washington
STATE: D.C.
COUNTRY: U.S.A.
ZIP: 20006-1109
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: PatentIn Release #1.0, Version #1.25
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/09/824, 053
FILING DATE: 03-Apr-2001
CLASSIFICATION: <Unknown>
PRIOR APPLICATION DATA:
APPLICATION NUMBER: 08/669, 304
FILING DATE: <Unknown>
ATTORNEY/AGENT INFORMATION:
NAME: Stanislav Aksman
REGISTRATION NUMBER: 28, 562
REFERENCE/DOCKET NUMBER: <Unknown>
TELECOMMUNICATION INFORMATION:
TELEPHONE: (202) 955-1926
TELEFAX: (202) 778-2201
TELEX: No. US20020106725A1e
INFORMATION FOR SEQ ID NO: 30:
SEQUENCE CHARACTERISTICS:
LENGTH: 1801 base pairs
TYPE: nucleic acid
STRANDEDNESS: single
TOPOLogy: linear
MOLECULE TYPE: DNA (genomic)
FEATURE:
NAME/KEY: CDS
LOCATION: 84..1721
SEQUENCE DESCRIPTION: SEQ ID NO: 30:
US-09-824-053-30

Query Match	77.8%; Score 1279.2; DB 10; Length 1801;
Best Local Similarity	86.1%; Pred. No. 0;
Matches	1416; Conservative 0; Mismatches 228; Indels 0; Gaps 0;
Qy	1 ATGGCTACTTGCACAAAGGACCCAGGTACATTGTTATGACGTCACGCTTGACT 60
Db	84 ATGGCTACTTCTCAGAAAGACCCCGGTATATTGTAATTGTCACGGGCACC 143
Qy	61 CCAGACAAGCCTGACCAAGATGCCATGCCATGAGCAAGGTTAACAGAAGATGGATT 120
Db	144 GCGGACAAGCGGGACCCACGTCTCCCTCCATGAAGCAGGGCTCAACGCCGCTGGATT 203
Qy	121 GGTACCAACATCGATTGTTACGTGTTACACTCCACAAAGGTGCTGTACTGCTTG 180
Db	204 GGAACATAATCGATTGTTATGCTGGTACACTCTCAAGGTGCTGTACTGCACT 263
Qy	181 GACAGAGCTATGGAAAGTGTCTCCAGGTACCGTCAGAATCGTTCTGGTGTACTGT 240
Db	264 GACCGTGTCTATGGAAAGTGTCTCCCGGTACAGTCAGGATCGTCTGGGGCATGTC 323
Qy	241 TACCGAGACTTCGTTTCGACGAATGTCAGGCTATTACACGTACTGGTTGGTT 300
Db	324 TACCGAGACTTCGTTGACGAATCGTCAAGGCATCATCAAACGTGACTGGTCTCGTT 383
Qy	301 GAATCTGGTTACGACGACGATAGAGTTACTCTGTCCTCCGGTGACCCAACGGGT 360
Db	384 GAGAGTGGTTATGACGACGATAGGGGTACTTGTCAAGCAGTACAATTGGGC 443
Qy	361 TCCTTCAGACCTGTCAGAGACCAACGGTAGAGTTGCAAGGTACTCC 420
Db	444 TCCTTCAGACCTGTCAGAGACCAACGGTAGAGTTGCAAGGTACTCC 503
Qy	421 GTCCGGTTGGGTGTCACATTGTCGGGGTACGGGTAGGTTGCAAGGTACTCC 480
Db	504 GTCCGGCTCGGGGCCACATTGTCGGGGTACGGGTCTCCGGGGTCTCGATGGC 563
Qy	481 TTGGCAGITCGATTGTTATCCGGTGTGAAGTTGCAAGGTTACCGACGGTAGGAC 540
Db	564 CTCCCCGTCGATTCAGCTCAGGGGGAGGTGCGTTAACCGCAAGAC 623
Qy	541 TCTGTTCTTAAGTACGTTACAAGGTTACCGACGGTAGGTTGGGT 600
Db	624 TCGTTACTCAGTATGTCGACAAAGATTCCGAAAGCACGGGAGCTTTGGCA 683
Qy	601 CACACTGGGGAGGTAACITCGTTATTACCAAATACTTCAGGATTG 660
Db	684 CACACAGGGGGGTGGCGGAACCTTGAATCACCATACTTCAGGATTG 743
Qy	661 CCAATGTCCTCCAGGGGTGTCACTCGTTCTAACTTACACTCTGGACGGTTCACT 720
Db	744 CCCATGTCCTCCACGGGGGTCACTGCATCAAATTACACTTCAGCTGGACGGTTCACT 803
Qy	721 AGAGATGCCTGCAAGATTGTTGACTAAAGTACTTCAGTGGCTAGATGTGATTGGAAG 780
Db	804 AGAGATGCCTGCAAGATTGTTGACTAAAGTACTTCAGTGGCTAGATGTGATTGGAAG 863
Qy	781 AATACTGTTGGTAAGTCCAATCTCACCAGCAGCTGAGAGTTGTTATGACTTG 840
Db	924 AATACCGTTGCCAAGTTCAACTTCCATCAGGCCAGGGAGGTGTCATGACTTG 923
Qy	841 TATACATCCTACTCTAACGACGCCAGAGAGTTGCCCAGACACTATCATTG 900
Db	924 TATACATCCTACTCTAACGACGCCAGAGAGTTGCCCAGACCGTCACTATCATTG 983
Qy	901 GAGGCTGACATGAAACAGATCTACAAACATGCCAGCTTCTACGCTTGACTGAGACTATCACGGTTC 1020
Db	984 GAGGCTGACATGAAACAGATCTACAAACATGCCAGGCCACCAAGGCCCTGGGGCAT 1043
Qy	961 GCTGGTTGGGCTCTTCCCTGTTAGACCTAGAAAGAGACACACATCCAGACTTCTAT 1080
Db	1044 GCTGGTTGGGCGCTCCCGTGGGGCACACATCCAGACGCTCGTAT 1103

RESULT³
US-09-770-149-554/C
; Sequence 554, Application US/09770149
; Patent No. US20020059663A1
; GENERAL INFORMATION:
; APPLICANT: Gorlach, Jorn
; APPLICANT: An, Yong-Qiang
; APPLICANT: Hamilton, Carol M.
; APPLICANT: Price, Jennifer L.
; APPLICANT: Raines, Tracy M.
; APPLICANT: Yu, Yang
; APPLICANT: Rameka, Joshua G.
; APPLICANT: Page, Amy
; APPLICANT: Matthew, Abraham V.
; APPLICANT: Ledford, Brooke L.
; APPLICANT: Woessner, Jeffrey P.
; APPLICANT: Haas, William David
; APPLICANT: Garcia, Carlos A.
; APPLICANT: Kricker, Maja
; APPLICANT: Slader, Ted
; APPLICANT: Davis, Keith R.
; APPLICANT: Allen, Keith
; APPLICANT: Hoffman, Neil
; APPLICANT: Hurban, Patrick
; TITLE OF INVENTION: Expressed Sequences of Arabidopsis
; TITLE OF INVENTION: thaliana
; FILE REFERENCE: 2024 (PARA-013PRV)
; CURRENT APPLICATION NUMBER: US/09/770, 149

```

; CURRENT FILING DATE: 2001-01-26
; PRIOR APPLICATION NUMBER: 60/178,506
; NUMBER OF SEQ ID NOS: 999
; SEQ ID NO 554
; LENGTH: 647
; TYPE: DNA
; ORGANISM: Arabidopsis thaliana
; FEATURE:
; NAME/KEY: misc_feature
; LOCATION: (1)..(647)
; OTHER INFORMATION: n = A,T,C or G
; US-09-770-149-554

Query Match 2.6%; Score 42.6; DB 10; Length 647;
Best Local Similarity 62.9%; Pred. No. 0.0047; Matches 66; Conservative 0; Mismatches 39; Indels 0; Gaps 0;
Db 253 TATTCTGGGAAATTGAGATGTGATGGATCTAACGAG 1578
Qy 1519 TACTTTGGGTAACCTGAACAGATGATCAAGGCCAATGGTGTGGGATCCTAACGAG 1578
Db 193 TTCTCAAGAACAGCAGGATTCCTCGGTTCTGTAAGTAG 149

RESULT 4
US-09-938-842A-1942
; Sequence 1942, Application US/09938842A
; Patent No. US20020160378A1
; GENERAL INFORMATION:
; APPLICANT: Harper, Jeff
; APPLICANT: Kreps, Joel
; APPLICANT: Wang, Xun
; APPLICANT: Zhu, Tong
; TITLE OF INVENTION: STRESS-REGULATED GENES OF PLANTS, TRANSGENIC PLANTS CONTAINING
; FILE REFERENCE: SCRIP1300-3
; CURRENT APPLICATION NUMBER: US/09/938,842A
; CURRENT FILING DATE: 2001-08-24
; PRIOR APPLICATION NUMBER: US 60/227,866
; PRIOR FILING DATE: 2000-08-24
; PRIOR APPLICATION NUMBER: US 60/264,647
; PRIOR FILING DATE: 2001-01-16
; PRIOR APPLICATION NUMBER: US 60/300,111
; PRIOR FILING DATE: 2001-06-22
; NUMBER OF SEQ ID NOS: 5379
; SEQ ID NO 1942
; LENGTH: 1584
; TYPE: DNA
; ORGANISM: Arabidopsis thaliana
; US-09-938-842A-1942

Query Match 2.5%; Score 41.8; DB 9; Length 1584;
Best Local Similarity 50.2%; Pred. No. 0.016; Matches 103; Conservative 0; Mismatches 102; Indels 0; Gaps 0;
Db 417 CGAGAGAACGGCTGGGTGATTCGGTGTACCCCTCGGAGAGCTTACATAAGAATCTC 476
Qy 375 GTTCAGAGACCACGGTAGAGTTGCCAGGGTCTGTACTCCGTCGGTTGGGTG 434
Db 477 TGAGAAGAGCAATGTTCTGGATTCGGGGGTTGTCTACACATTGGCGTTGGTGG 536
Qy 435 TCACATGTCGGTGGAGGTATTGCCAGATGCCAGGTTGCCAGTCGATG 494
Db 537 ACACTTAGGGGGAGGATACGGTAATCTGATGAGAAAGTATGGTGTGGGATAA 596
Qy 495 GTTATCCGGTGTGAAGTGTGCGTT 519

RESULT 5
US-10-170-656-3
; Sequence 3, Application US/10170656
; Patent No. US20030028927A1
; GENERAL INFORMATION:
; APPLICANT: Lindquist, Susan K.
; APPLICANT: Queitsch, Christine
; APPLICANT: Sangster, Todd A.
; TITLE OF INVENTION: Methods and Compositions for Revealing Hidden Generic Variation in Current Application
; FILE REFERENCE: ARCD:377US1
; CURRENT APPLICATION NUMBER: US/10/170,656
; PRIOR APPLICATION NUMBER: US 60/298,211
; PRIOR FILING DATE: 2001-06-13
; PRIOR APPLICATION NUMBER: US 60/379,484
; PRIOR FILING DATE: 2002-05-10
; NUMBER OF SEQ ID NOS: 8
; SEQ ID NO 3
; LENGTH: 2397
; TYPE: DNA
; ORGANISM: Wheat
; US-10-170-656-3

Query Match 2.5%; Score 41.8; DB 9; Length 2397;
Best Local Similarity 52.6%; Pred. No. 0.022; Matches 91; Conservative 0; Mismatches 82; Indels 0; Gaps 0;
Db 768 CTGACCATGAGATGAGGATGAGAGAGGATACTGAGGGGCAAGTTGAGGAATTG 827
Qy 1469 ATGTTGACTTGACAACACTGGAAGAACGCTAAGTATGGGCCTTGGAACTTACTTTGG 1528
Db 828 ATGAAGAGAAGGAGAAAAGGAGAAGAAAAGAAGAGATCAAGGAGGTCTCACGAGT 887
Qy 1529 GTAACCTGAAACAGGATGATCAAGGCCAATGGTGTGGGATCCTAACGAGATC 1581
Db 888 GGAACCTGTACAACAGCAGAACGCCATCTGGATGAGGAAGCTGAGGAGATC 940

RESULT 6
US-09-938-842A-2266
; Sequence 2266, Application US/09938842A
; Patent No. US20020160378A1
; GENERAL INFORMATION:
; APPLICANT: Harper, Jeff
; APPLICANT: Kreps, Joel
; APPLICANT: Wang, Xun
; APPLICANT: Zhu, Tong
; TITLE OF INVENTION: STRESS-REGULATED GENES OF PLANTS, TRANSGENIC PLANTS CONTAINING
; FILE REFERENCE: SCRIP1300-3
; CURRENT APPLICATION NUMBER: US/09/938,842A
; CURRENT FILING DATE: 2001-08-24
; PRIOR APPLICATION NUMBER: US 60/227,866
; PRIOR FILING DATE: 2000-08-24
; PRIOR APPLICATION NUMBER: US 60/264,647
; PRIOR FILING DATE: 2001-01-16
; PRIOR APPLICATION NUMBER: US 60/300,111
; PRIOR FILING DATE: 2001-06-22
; NUMBER OF SEQ ID NOS: 5379
; SEQ ID NO 2266
; LENGTH: 1620
; TYPE: DNA
; ORGANISM: Arabidopsis thaliana
; US-09-938-842A-2266

Query Match 2.5%; Score 41.4; DB 9; Length 1620;
Best Local Similarity 53.4%; Pred. No. 0.022;

```

Matches 87; conservative 0; Mismatches 76; Indels 0; Gaps 0;
 US-09-938-842A-281
 ; Sequence 281, Application US/09938842A
 ; Patent No. US20020160378A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Harper, Jeff
 ; APPLICANT: Kreps, Joel
 ; APPLICANT: Wang, Xun
 ; APPLICANT: Zhu, Tong
 ; TITLE OF INVENTION: STRESS-REGULATED GENES OF PLANTS, TRANSGENIC PLANTS CONTAINING
 ; TITLE OF INVENTION: SAME, AND METHODS OF USE
 ; FILE REFERENCE: SCRIP1300-3
 ; CURRENT APPLICATION NUMBER: US/09/938, 842A
 ; CURRENT FILING DATE: 2001-08-24
 ; PRIOR APPLICATION NUMBER: US 60/227, 866
 ; PRIORITY FILING DATE: 2000-08-24
 ; PRIORITY APPLICATION NUMBER: US 60/264, 647
 ; PRIORITY FILING DATE: 2001-01-16
 ; PRIORITY APPLICATION NUMBER: US 60/300, 111
 ; PRIORITY FILING DATE: 2001-06-22
 ; NUMBER OF SEQ ID NOS: 5379
 ; SEQ ID NO: 281
 ; LENGTH: 1599
 ; TYPE: DNA
 ; ORGANISM: Arabidopsis thaliana
 ; US-09-938-842A-281

Query Match 2.4%; Score 40.2; DB 9; Length 1599;
 Best Local Similarity 57.6%; Pred. No. 0.055; Mismatches 53; Indels 0; Gaps 0;
 Matches 72; Conservative 0; Mismatches 53; Indels 0; Gaps 0;

QY 393 AGTTTGCCAGGGTTCCTGTACTCCGCGGTTGGTGCACATGTCGGTGGAGG 452
 Db 516 AGCGRRTCCGCCGGAGTTGCCCAACGTCGGTGGAGGACATTAGCCGGGG 575

QY 453 TGACGGTATTGGCCAGATGCCAGTGCACGGTTGCCAGTGGTATCCGGTGGAGT 512
 Db 576 ATACGGTACTTACTGAGAAACACGGTTAGCAGCTCACGTGATAGACCCACGTG 635

QY 513 TGTCTG 517
 Db 636 TGTCTG 640

RESULT 8
 US-09-258-031B-70
 ; Sequence 70, Application US/09258031B
 ; Patent No. US20020168735A1
 ; GENERAL INFORMATION:
 ; APPLICANT: STUIVER, Maarten Hendrik
 ; APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
 ; APPLICANT: SELA-BURLAGE, Marianne Beatrix
 ; APPLICANT: MELCHERS, Leo Sjoerd
 ; APPLICANT: VAN DEVENTER-TROOST, Johanna Pietermella
 ; APPLICANT: LAGEWEG, Wessel
 ; APPLICANT: PONSTEIN, Anne Silene
 ; APPLICANT: LAGEWEG, Wessel
 ; APPLICANT: PONSTEIN, Anne Silene
 ; APPLICANT: PONSTEIN, Anne Silene

Query Match 2.4%; Score 39.2; DB 9; Length 1757;
 Best Local Similarity 53.2%; Pred. No. 0.13; Mismatches 73; Indels 0; Gaps 0;
 Matches 83; Conservative 0; Mismatches 73; Indels 0; Gaps 0;

QY 393 AGTTTGCCAGGGTTCCTGTACTCCGCGGTTGGTGCACATGTCGGTGGAGG 452
 Db 438 AGCTTATCCGCCGAATTGTCGCCACGGTTGGTGGCCATATCAGTGGTGGAGG 497

QY 453 TGACGGTATTGGCCAGATGCCAGTGCACGGTTGCCAGTGGTATCCGGTGGAGT 512
 Db 498 TTACGGTAACATGATGAGAAATACGGTCTCACCGTAGATAATACCATCGATGCAAGAAT 557

QY 513 TGTCTGTAAGCCAGTCTGACCGAAGACTCTGTTCT 548
 Db 558 GGTCTGAGCTTAATGGTATAATTGATATCTCTATT 593

RESULT 9
 US-09-258-031B-72
 ; Sequence 72, Application US/09258031B
 ; Patent No. US20020168735A1
 ; GENERAL INFORMATION:
 ; APPLICANT: STUIVER, Maarten Hendrik
 ; APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
 ; APPLICANT: SELA-BURLAGE, Marianne Beatrix
 ; APPLICANT: MELCHERS, Leo Sjoerd
 ; APPLICANT: VAN DEVENTER-TROOST, Johanna Pietermella

APPLICANT: LAGEWEG, Wessel
 APPLICANT: PONSTEIN, Anne Silene
 APPLICANT: PONSTEIN, Anne Silene
 TITLE OF INVENTION: ANTI FUNGAL PROTEINS, DNA CODING
 TITLE OF INVENTION: THEREFOR, AND HOSTS INCORPORATING
 TITLE OF INVENTION: SAME.
 NUMBER OF SEQUENCES: 75
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: LADAS & PARRY
 STREET: 26 WEST 61 STREET
 CITY: NEW YORK
 STATE: NY
 COUNTRY: USA
 ZIP: 10023 - 7604
 COMPUTER READABLE FORM:
 MEDIUM TYPE: 3.25" Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: WINDOWS 95
 SOFTWARE: WORDPERFECT 8
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/09/258, 031B
 FILING DATE: 25-FEB-1999
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: PCT/EP97/04923
 FILING DATE: 04-SEP-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP97200831.2
 FILING DATE: 19-MAR-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP96202466.7
 FILING DATE: 04-SEP-1996
 INFORMATION FOR SEQ ID NO: 72:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 1527 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: cDNA to mRNA
 HYPOTHETICAL: NO
 ANTI-SENSE: NO
 ORIGINAL SOURCE:
 ORGANISM: Arabidopsis thaliana
 STRAIN: Colombia
 FEATURE:
 NAME/KEY: CDS
 LOCATION: 1..1524
 ; US-09-258-031B-72

RESULT 11
 US-09-938-842A-1762
 ; Sequence 1762, Application US/09938842A
 ; Patent No. US2002160378A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Harper, Jeff
 ; APPLICANT: Kreps, Joel
 ; APPLICANT: Wang, Xun
 ; APPLICANT: Zhu, Tong
 ; TITLE OF INVENTION: STRESS-REGULATED GENES OF PLANTS, TRANSGENIC PLANTS CONTAINING
 ; TITLE OF INVENTION: SAME, AND METHODS OF USE
 FILE REFERENCE: SCRIPT1300-3

CURRENT APPLICATION NUMBER: US/09/938, 842A
 CURRENT FILING DATE: 2001-08-24
 PRIOR APPLICATION NUMBER: US 60/227, 866
 PRIOR FILING DATE: 2000-08-24
 PRIOR APPLICATION NUMBER: US 60/264, 647
 PRIOR FILING DATE: 2001-01-16
 PRIOR APPLICATION NUMBER: US 60/300, 111
 PRIOR FILING DATE: 2001-06-22
 NUMBER OF SEQ ID NOS: 5379
 SEQ ID NO 1762
 LENGTH: 1599
 TYPE: DNA
 ORGANISM: Arabidopsis thaliana
 ; US-09-938-842A-1762

Query Match 2.3%; Score 38.6; DB 9; Length 1584;
 Best Local Similarity 56.8%; Pred. No. 0.18;
 Matches 71; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Anti-Sense: NO
 Original Source:
 Organism: Arabidopsis thaliana

Qy 393 AGTTTGCCAGGTGGTCTGTTACTCCGTCGGTTGGGGTCACATGTCGGTGGAGG 452
 Db 495 AGCTTATCCGCCGAATTGTCACCGGTTGGGGCCATATCAGTGGTGGAGG 554
 Qy 453 TGACGGTATTGGCCAGATGTCACGGTTGCCAGTGGATTCCGGTGTGAAGT 512
 Db 555 TTACGTAACATGATGAGAAATAACGGTCTCACCGTAGATAAACCATCGATGCAAGAAT 614
 Qy 513 TGTGCG 517
 Db 615 GGTGCG 619

Query Match 2.3%; Score 37.2; DB 9; Length 1599;
 Best Local Similarity 50.0%; Pred. No. 0.54;
 Matches 93; Conservative 0; Mismatches 93; Indels 0; Gaps 0;
 ; US-09-938-842A-1765
 ; Sequence 1765, Application US/09938842A
 ; Patent No. US2002160378A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Harper, Jeff

APPLICANT: Kreps, Joel
 APPLICANT: Wang, Xun
 APPLICANT: Zhu, Tong
 TITLE OF INVENTION: STRESS-REGULATED GENES OF PLANTS, TRANSGENIC PLANTS CONTAINING
 TITLE OF INVENTION: SAME, AND METHODS OF USE
 FILE REFERENCE: SCRIPT1300-3

CURRENT APPLICATION NUMBER: US/09/938, 842A
 CURRENT FILING DATE: 2001-08-24
 PRIOR APPLICATION NUMBER: US 60/227, 866
 PRIOR FILING DATE: 2000-08-24
 PRIOR APPLICATION NUMBER: US 60/264, 647
 PRIOR FILING DATE: 2001-01-16
 PRIOR APPLICATION NUMBER: US 60/300, 111
 PRIOR FILING DATE: 2001-06-22
 NUMBER OF SEQ ID NOS: 5379
 SEQ ID NO 1762
 LENGTH: 1599
 TYPE: DNA
 ORGANISM: Arabidopsis thaliana
 ; US-09-938-842A-1762

Query Match 2.3%; Score 37.2; DB 9; Length 1599;
 Best Local Similarity 50.0%; Pred. No. 0.54;
 Matches 93; Conservative 0; Mismatches 93; Indels 0; Gaps 0;
 ; Qy 297 GGTTGAATCTGGTACCGACGACGATAGAGTTACTCGTCTCTCCGGTACCAACTG 356
 ; Db 420 GGTTGACGTTGGACAGTAACAGTGCCTGGCTCATGGTCTACCATCGGAGA 479

QY 357 GGGTTCTTCAGAACCTTGTTCAGAGACCACCGTAGAGTTTGCCAGGGTGGTTCTGTTA 416
Db 480 GGTTTATTACAGGATCCAAGAGAAAGCCAAACCCATGGTTTCCGGCCGTTATGCTC 539

QY 417 CTCCGTCGGTTGGTGGTCACATGTCCGGGAGGTACGGTTTGCCAGATGCA 476
Db 540 AAGCCTTGGCATCGGTGCCACTTAGTCGGGGAGCGTACGGTTCCATGATGAGGAAGTT 599

QY 477 CGGT TT 482
Db 600 CGGTCT 605

RESULT 12
US-09-801-368-187/c
; Sequence 187, Application US/09801368
; Patent No. US20020128250A1
; GENERAL INFORMATION:
; APPLICANT: Busby, Robert
; APPLICANT: Cali, Brian
; APPLICANT: Hecht, Peter
; APPLICANT: Holtzman, Doug
; APPLICANT: Madden, Kevin
; APPLICANT: Maxon, Mary
; APPLICANT: Milne, Todd
; APPLICANT: Royer, John
; APPLICANT: Salama, Sofie
; APPLICANT: Sherman, Amir
; APPLICANT: Silva, Jeff
; APPLICANT: Summers, Eric
; TITLE OF INVENTION: Methods for Improving Secondary Metabolite Production in Fungi
; FILE REFERENCE: 109272.147
; CURRENT APPLICATION NUMBER: US/09/801,368
; PRIORITY APPLICATION NUMBER: US 09/487,558
; PRIORITY FILING DATE: 2000-01-19
; PRIORITY APPLICATION NUMBER: US 60/160,587
; PRIORITY FILING DATE: 1999-10-20
; NUMBER OF SEQ ID NOS: 440
; SOFTWARE: PatentIn version 3.0
; SEQ ID NO 187
; LENGTH: 861
; TYPE: DNA
; ORGANISM: Saccharomyces cerevisiae
; US-09-801-368-187

Query Match 2.2%; Score 36.4; DB 10; Length 861;
Best Local Similarity 54.5%; Pred. No. 0.64;
Matches 73; Conservative 0; Mismatches 61; Indels 0; Gaps 0;

QY 1143 GATTGATGTTATCTGGAATAACCTTACTGAGGTTCTGACGGTTGACTAGTGCCGAAT 1202
Db 668 GATTGTTGGGATGTTCTGCTGTTGGAGATGCTGGACATTGTTGCTGT 609

QY 1203 GAAGGGATGCTCTTCAGGTGATATGTTCCGGTGGAGATTCCAAAGGGTGGTGGGA 1262
Db 608 GACATTGCTGCTGGTTGGTGTGGTGTGGTGTGGTGTGGTGTGGTGTGA 549

QY 1263 TGCTACTGCGAGTTG 1276
Db 548 TGTGCTGCTGTTG 535

RESULT 13
US-09-258-031B-19
; Sequence 19, Application US/09258031B
; Patent No. US20020168735A1
; GENERAL INFORMATION:
; APPLICANT: STUIVER, Maarten Hendrik
; APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
; APPLICANT: SELA-BURLAGE, Marianne Beatrix
; APPLICANT: MELCHERS, Leo Sjoerd

QY 394 GTTTGCCAGGTGGTCCCTGTTACTCCGGTGGTTGGGTGGTCACATGTCGGTGGAGGT 453
Db 496 GGTTTCCGGCAGGGGTTGTCACACGGTTGGCTGGTGGCATTAGTGGTGGGG 555

QY 454 GACGGTATTGGCCAGATGCCACCGGTTGCCAGTCGATGGTTACCGGTGTAAGTT 513
Db 556 TATGGTAATTGATGAGAAATATGGTTGTCGGTTGATAATATGGTGTGCTCAATA 615

QY 514 GTCGTT 519
Db 616 ATAGAT 621

RESULT 14
US-09-258-031B-15
; Sequence 15, Application US/09258031B
; Patent No. US20020168735A1
; GENERAL INFORMATION:

US-10-123-155-464 ; Sequence 464, Application US/10123155
; Publication No. US20030068794A1
; GENERAL INFORMATION:
; APPLICANT: Baker, Kevin P.
; APPLICANT: Beresini, Maureen
; APPLICANT: Desnoyers, Luc
; APPLICANT: Filvaroff, Ellen
; APPLICANT: Gao, Wei-Qiang
; APPLICANT: Gerritsen, Mary E.
; APPLICANT: Goddard, Audrey
; APPLICANT: Godowski, Paul J.
; APPLICANT: Gurney, Austin L.
; APPLICANT: Sherwood, Steven
; APPLICANT: Smith, Victoria
; APPLICANT: Stewart, Timothy A.
; APPLICANT: Tumas, Daniel
; APPLICANT: Watanae, Colin K
; APPLICANT: Wood, William
; APPLICANT: Zhang, Zemin
; TITLE OF INVENTION: SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC
; TITLE OF INVENTION: ACIDS ENCODING THE SAME
; FILE REFERENCE: P3330R1C30
; CURRENT APPLICATION NUMBER: US/10/123, 155
; CURRENT FILING DATE: 2002-04-15
; Prior Application removed - See Palm or File wrapper
; NUMBER OF SEQ ID NOS: 550
; SEQ ID NO 464
; LENGTH: 941
; TYPE: PRT
; ORGANISM: Homo Sapien
; US-10-123-155-464

Query Match 2.2%; Score 35.8; DB 9; Length 941;
Best Local Similarity 8.4%; Pred. No. 1.1;
Matches 45; Conservative 156; Mismatches 336; Indels 0; Gaps 0;

QY 18 AAAGGACCCAGGTACATTGTTATTGACGTCAACGCGTGGTACTCCAGACAGACGCC 77
Db 351 VAHELAHQWFGNLVTEMWNNDLWLNEGFAKFMFVSVSUTHPFLKVGDDYFFGKCFDAMEV 410

QY 78 AAGATTCAGCCATCCATGAAGCAAGGTTAACAGAGATGGATGGTACCAACATGGATT 137
Db 411 DALNSHPVSTPVENPAQIREMFDVSYDKGACILNMLREYLSADAFKSGIVQYLOQHSY 470

QY 138 CGTTTACGTCTTACACTCCACAAGGTGCTGTACTGCTTGGACAGAGCTATGGAAA 197
Db 471 KNTKNEDLWDMSASICPTDGVKGMDFCSRSQHSSSSHHWHOEGVDVKTMNTWTLQRGF 530

QY 198 GTGTTCTCCAGGTACCGTCAGAAATCGTTCTGGTGTCACTGTTACGAAGACTTCGTTT 257
Db 531 PLITIVRGRNVFMKOEHYMKGSDGAPDTGYLWHVPLFITSKSNMVHREFLJKTVDLI 590

QY 258 CGACGAATGTTCAAGCTTATTCAACGTTACTGGTTGGTTGAATCTGGTTACGACGA 317
Db 591 LPEEVWIKPNVMNGYYIHYEDDGWDSLTLGLLKGTHTAVSNDRASLINNAFOLVSIG 650

QY 318 CGATAGAGGTACTTCGTCTCTCCGGTGACACCAACTCGGGTCTTCAGACCTTGT 377
Db 651 KLSIEKALDLSLYLKHETEIMPFVQGINELIPMYKLMEKRDMNEVETOFLAFLIRLRLD 710

QY 454 GACGGTATTGTTGCCAGATGCCACGGTTGCGATGGTTATCCGGTGTGAAGTT 513
Db 576 TAGGTTAATTGATGAGAAATATGTTGTCGTTGATAATATTGTTGATGCTCAA 635

QY 514 GTCGTT 519
Db 636 ATAGAT 641

RESULT 15

831 EFPQILTLIGRNPNVGYPLAWQFLRNWNKLVQKFELGSSSIAMVMGMTMQFSTRTR 887

Mon Jun 16 09:24:52 2003

us-09-998-284-1.rnpb

Search completed: June 15, 2003, 06:21:33
Job time : 260 secs

Page 1

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

DOM nucleic - nucleic search, using sw model

Run on: June 15, 2003, 01:27:17 ; Search time 76 Seconds
(without alignments)
6633.903 Million cell updates/sec

Title: US-09-998-284-1
Perfect score: 1644
Sequence: 1 atggctactttgcacaaaa.....cttaaggcagactaaatagtag 1644
Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 441362 seqs, 153338381 residues

Total number of hits satisfying chosen parameters: 882724

Minimum DB seq length: 0
Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

database : Issued Patents NA: *

1: /cgn2_6/ptodata/1/ina/5A_COMB.seq:*

2: /cgn2_6/ptodata/1/ina/5B_COMB.seq:*

3: /cgn2_6/ptodata/1/ina/6A_COMB.seq:*

4: /cgn2_6/ptodata/1/ina/6B_COMB.seq:*

5: /cgn2_6/ptodata/1/ina/PCTUS_COMB.seq:*

6: /cgn2_6/ptodata/1/ina/backfTlsl.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	1279.2	77.8	1801 4	US-08-669-304-30
C 2	60	3.6	80161 3	US-09-036-987A-1
C 3	60	3.6	80161 4	US-09-370-700-1
C 4	36.4	2.2	3680 4	US-09-647-390-15
C 5	35.8	2.2	7766 4	US-09-125-619-3
C 6	35	2.1	1632 1	US-08-155-906-1
C 7	33.8	2.1	1981 4	US-09-647-390-17
C 8	33.4	2.0	636 1	US-07-836-642-1
C 9	33.4	2.0	636 1	US-08-169-563-1
C 10	33.4	2.0	636 1	US-08-403-379A-5
C 11	33.4	2.0	636 2	US-08-929-414-5
C 12	33.4	2.0	1553 4	US-09-217-490-1
C 13	33.2	2.0	1458 4	US-09-480-921B-3
C 14	33.2	2.0	7218 1	US-08-232-463-14
C 15	33	2.0	490 2	US-08-630-822A-92
C 16	33	2.0	490 2	US-09-005-069-92
C 17	33	2.0	490 4	US-09-171-156A-41
C 18	32.6	2.0	1800 3	US-09-039-773A-1
C 19	32.2	2.0	6585 3	US-08-746-111-4
C 20	1.9	1749 4	US-08-481-190-17	
C 21	1.9	1749 5	PCT-US93-00869-17	
C 22	1.9	1764 4	US-08-481-190-14	
C 23	32	1.9	1764 5	PCT-US93-00869-14
C 24	32	1.9	2349 2	US-08-974-546-2
C 25	32	1.9	4597 4	US-09-221-017B-1093
C 26	31.8	1.9	1206 1	US-08-318-947A-1
C 27	31.8	1.9	1206 2	US-08-795-303-1

ALIGNMENTS

RESULT 1
US-08-669-304-30
; Sequence 30, Application US/08669304
; Patent No. 6251626
; GENERAL INFORMATION:
; APPLICANT: Peter Stougaard
; APPLICANT: Ole Cai Hansen
; TITLE OF INVENTION: RECOMBINANT HEXOSE OXIDASE, A
; TITLE OF INVENTION: METHOD OF PRODUCING SAME AND USE OF SUCH E.
; NUMBER OF SEQUENCES: 34
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Hunton & Williams
; STREET: 1900 K Street, N.W.
; CITY: Washington
; STATE: D.C.
; COUNTRY: U.S.A.
; ZIP: 20006-1109
; COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: IBM PC compatible
; OPERATING SYSTEM: PC-DOS/MS-DOS
; SOFTWARE: PatentIn Release #1.0, Version #1.25

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/08/669,304
FILING DATE: 12 July 1996
CLASSIFICATION: 435

PRIOR APPLICATION DATA:

APPLICATION NUMBER: 08/476,910
FILING DATE: 7 June 1995

ATTORNEY/AGENT INFORMATION:

NAME: Stanislaus Aksman
REGISTRATION NUMBER: 28,562
REFERENCE/DOCKET NUMBER: 320.000003

TELECOMMUNICATION INFORMATION:

TELEPHONE: (202) 955-1926
TELEFAX: (202) 778-2201
TELEX: No. 6251626e

INFORMATION FOR SEQ ID NO: 30:

SEQUENCE CHARACTERISTICS:
SEQUENCE LENGTH: 1801 base pairs
TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: DNA (genomic)
FEATURE:
NAME/KEY: CDS
LOCATION: 84..1721

Query Match 77.8%; Score 1279.2; DB 4; Length 1801;

	Best Local Similarity	Pred.	No.	0;	Mismatches	228;	Indels	0;	Gaps	0;
Matches	1416;	Conservative	0;							
Qy	1 ATGGCTACTTGCACAAAGGACCCAGGTACATTGTTATTGACGTCAACGCGTGGTACT	60								
Db	84 ATGGCTACTTCTCTCAGAAAGACCCCGGTTATATTGTAATTGATGTCACGGGGCACC	143								
Qy	61 CCAGACAAGCCGTGACCAAGATGCCATCCATGAAAGCAAGTTCAACAGAAGATGGATT	120								
Db	144 GCGGACAAGCGGGACCCACGTCTCCCTCCATGAAGCAGGGCTCAACGCCGCTGGATT	203								
Qy	121 GGTCACCAACATCGATTGTTACGTGTTACACTCCACAAAGGTCTTGACTAGTGGCAA	180								
Db	204 GGAACATAATCGATTGTTATGTCTGTGTACACTCTCTCAAGGTGCTACTGCACTT	263								
Qy	181 GACAGAGCTATGAAAGTGTCTCAGGTACCGTCAGAACAGTTCTGGTACTGT	240								
Db	264 GACCGTGTCTATGAAAGTGTCTCCCGGTACAGTCAGGTGCTCTGGCCATTGCACTT	323								
Qy	241 TACGAAGACTTCGTTGACGAATGTCAGGTTAACCTCAACGTTACTGGTTGGTT	300								
Db	324 TACGAGGACTTCGTTGACGAATGCGTCAGGCCATCATCACAACTGCACTGGTCTCGTT	383								
Qy	301 GAATCTGGTTACGACGACGATAGAGTTACTTCGTCCTTCCGGTGACACCAACTGGGT	360								
Db	384 GAGAGTGGTTATGACGACGATAGGGTTACTTCGTCAGGAGATAACAATTGGGC	443								
Qy	361 TCCTTCAGAACCTGTTGAGAGACCCACGGTAGAGRTTGTGCAAGGAGATAACAATTGGC	420								
Db	444 TCCTTCAGAACCTGTTGAGAGACCCACGGTAGAGCTTGTGCAAGGAGATAACTGCACTGG	503								
Qy	421 GTCGGTTGGGGTCACATTGTCGGGGTACGGTTACGGTTACGGTTACGGT	480								
Db	504 GTCGGGCTCGGACATTGTCGGGGAGGTGACGGCTTGGGCTTGATGGC	563								
Qy	481 TTGGCCAGTCGATGGTTATCCGGTGTGAAGTTGTCTTAAGCCAGTGTGACCGAGAC	540								
Db	564 CTCCCCGTCGATTGGCTCAAGGGGGTGTGCTTAAGCCAGTCCTCACCGGAAGAC	623								
Qy	541 TCTGTTCTAAGTACGTTACAGGATCCGAACAGGTCTCGAGGTTGGTTGGGCT	600								
Db	624 TCGGTACTCAAGTATGGTCGACAAAGATTCCGAACGACGGGGAGCTTTGGGCA	683								
Qy	601 CACACTGGTGAGGTGAGGTAACTCGGTATTATCACCACAACTTCAGGATTG	660								
Db	684 CACACAGGTGCGGGTGGGAAACTTGGAAATCATCACCACAACTTCAGGATTG	743								
Qy	661 CCAATGTCCTCAAGAGGTGTATCGTCTCTAACCTACACTCTCTGGGACGGTTCACT	720								
Db	744 CCCATGTCCTCACGGGGGTATCGATCAATTACACTTCAGCTGGGACGGTTCACT	803								
Qy	721 AGAGATGCGCTGCAAGATTTGTCAGTAAGTACCTCAAGTTGGCTAGATGTGATTGGAG	780								
Db	804 AGAGATGCGCTGCAAGATTTGTCAGATGTGATTGGAG	863								
Qy	781 AATACTGTTGAGTCCAATCTCACCACAGCAGCTGAGAGTTGTATGTGACTTG	840								
Db	864 AATACGGTTGCGCAAGTTCAATCTCCATCAGGCAGGGGAAGAGTTGTACTTG	923								
Qy	841 TATACATCCTACTCTAACGACAGACTAACATGGCGGAGAGGTTGCCCAGACAGACTATCATTTG	900								
Db	924 TATACATCCTACTCTAACATGGCGGAGAGGTTGCCCAGACAGACTATCATTTG	960								
Qy	901 GAGGCTGACATGAAACAGACTAACATGGCGGAGAGGTTGCCCAGACAGACTATCATTTG	983								
Db	984 GAGGCTGACATGAAACAGACTAACATGGCGGAGAGGTTGCCCAGACAGACTATCATTTG	1043								
Qy	961 GCTGGTTGGCTCTTCCTGTTAGACCTAGAAAGAGACACATCCAAGACTTAT	1020								
Db	1044 GCTGGGTGGGGCGGTTCCCGGTGCGGGGGCAAGAGGACACATCCAAGACGGTGTAT	1103								
Qy	1021 ATGCATGACGAGACTATGACTACCTTCTACGCTTGTGACTATCAACGGTTC	1080								

RESULT 2

US-09-036-987A-1/C

; Sequence 1, Application US/09036987A
; Patent No. 6143526

GENERAL INFORMATION:

APPLICANT: Baltz, Richard H.
APPLICANT: Broughton, Mary C.
APPLICANT: Crawford, Kathryn P.APPLICANT: Madduri, Krishnamurthy
APPLICANT: Merlo, Donald J.
APPLICANT: Treadway, Patti J.

APPLICANT: Turner, Jan R.

APPLICANT: Waldron, Clive

TITLE OF INVENTION: Biosynthetic Genes For Spinosyn Insecticide
TITLE OF INVENTION: Production

NUMBER OF SEQUENCES: 39

CORRESPONDENCE ADDRESS:

ADDRESSEE: Dow Agrosciences LLC Patent Department
STREET: 9330 Zionsville RoadCITY: Indianapolis
STATE: Indiana
COUNTRY: USA

ZIP: 46268

COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy diskCOMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: Patentin Release #1.0, Version #1.30
CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/09/036,987A

FILING DATE: 09-MAR-1998
 CLASSIFICATION: 435
 ATTORNEY/AGENT INFORMATION:
 NAME: Stuart, Donald R
 REGISTRATION NUMBER: 28,479
 REFERENCE/DOCKET NUMBER: 50,608
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (317)337-4816
 TELEFAX: (317)337-4847
 INFORMATION FOR SEQ ID NO: 1:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 80161 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)
 US-09-036-987A-1

Query Match 3.6%; Score 60; DB 3; Length 80161;
 Best Local Similarity 52.3%; Pred. No. 4.5e-08;
 Matches 157; Conservative 0; Mismatches 140; Indels 3; Gaps 1;

QY 341 CCGGTGACACCAACTGGGTTCTTCAGACCTGTTCAGAGACCACCGTAGAGTTGC 400
 Db 16033 CGGGCGCCCTGGGCAGGTGTACCGAACCCGTGTCAGAACTGGGGTGACGATCC 15974
 QY 401 CAGGTGTTCTGTACTCCGTGGTACCGAACCCGTGTCAGAACTGGGGTGACGTA 460
 Db 15973 CGACCGGCCATGTCGGGGTGGGGCACACCTCCTCGGGGGGATACGGCC 15914
 QY 461 TTTGGCCAGATTGCACGGTTGCGATTCAGTACGTTCAAGGCTCACAGGATCCGAAGGTAA 520
 Db 15913 CGCTGTGGCGCGATCGGTCGGTGTGACTACCTCAAGGCTGAGGTGTCGT-- 15856
 QY 521 AGCCAGTCTGACCGAAGACTCTGTCTTAAGTACGTTCAAGGATTCCGAAGGTAA 580
 Db 15855 -GGTCGACCGAGGGTGAAGTGCACATCGTCGAGGCCACTCCACGGGCCG 15797
 QY 581 ACGGTGAGTGTGTTGGGCTCACACTGGGAGGTAACTCGGTATTATCACCA 640
 Db 15796 GTCACTGTTGGGGCACACCGGTGGGGCAACTCGGGATCGTCACCA 15737

RESULT 3
 US-09-370-700-1/c
 ; Sequence 1, Application US/09370700
 ; Patent No. 6274350
 ; GENERAL INFORMATION:
 ; APPLICANT: Baltz, Richard H
 ; APPLICANT: Broughton, Mary C
 ; APPLICANT: Crawford, Kathryn P
 ; APPLICANT: Madduri, Krishnamurthy
 ; APPLICANT: Treadway, Patti J
 ; APPLICANT: Turner, Jan R
 ; APPLICANT: Waldron, Clive
 ; TITLE OF INVENTION: Biosynthetic Genes For Spinosyn Insecticide
 ; FILE REFERENCE: 50489 DIV1
 ; CURRENT FILING DATE: 1999-08-09
 ; EARLIER APPLICATION NUMBER: US 09/36987
 ; EARLIER FILING DATE: 1998-03-09
 ; NUMBER OF SEQ ID NOS: 39
 ; SOFTWARE: PatentIn Ver. 2.0
 ; SEQ ID NO 1
 ; LENGTH: 80161
 ; TYPE: DNA
 ; ORGANISM: Saccharopolyspora spinosa
 US-09-370-700-1

Query Match 3.6%; Score 60; DB 4; Length 80161;
 Best Local Similarity 52.3%; Pred. No. 4.5e-08;
 Matches 157; Conservative 0; Mismatches 140; Indels 3; Gaps 1;

RESULT 4
 US-09-647-390-15
 ; Sequence 15, Application US/09647390
 ; Patent No. 646536
 ; GENERAL INFORMATION:
 ; APPLICANT: Stuiver, Maarten
 ; APPLICANT: Custers, Jerome
 ; APPLICANT: Simons, Lambertus
 ; TITLE OF INVENTION: Pathogen-Inducible Promoter
 ; FILE REFERENCE: MOG 57707/UST
 ; CURRENT APPLICATION NUMBER: US/09/647,390
 ; CURRENT FILING DATE: 2000-09-29
 ; PRIOR APPLICATION NUMBER: EP 98201024.1
 ; PRIOR FILING DATE: 1998-04-01
 ; PRIOR APPLICATION NUMBER: PCT/EP99/02178
 ; PRIOR FILING DATE: 1999-03-25
 ; NUMBER OF SEQ ID NOS: 18
 ; SOFTWARE: PatentIn Ver. 2.1
 ; SEQ ID NO 15
 ; LENGTH: 3680
 ; TYPE: DNA
 ; ORGANISM: Helianthus annuus
 ; FEATURE:
 ; NAME/KEY: promoter
 ; LOCATION: (1)..(1889)
 ; NAME/KEY: CDS
 ; LOCATION: (1890)..(3503)
 US-09-647-390-15

Query Match 2.2%; Score 36.4; DB 4; Length 3680;
 Best Local Similarity 55.6%; Pred. No. 0.31; Mismatches 56; Indels 0; Gaps 0;
 Matches 70; Conservative 0; Mismatches 56; Indels 0; Gaps 0;

QY 394 GTTTCGACGGTGTCTGTACTCCGTGGTGGGGTACATGTGGTGGAGGT 453
 Db 2412 GGTTTCGGCAGGGTTGTCAAACGGTTGGCTGGGGCATTTAGTGGTGGGG 2471
 QY 454 GACGGTATTTGGCCAGATTGCACGGTTGCCAGTCGATGGTTATCCGGTGTGAAGTT 513
 Db 2472 TATGGTAATTGAGAAATAATGGTTGTGGTGATAATAATGGTGTGCTCAAATA 2531
 QY 514 GTCGTT 519
 Db 2532 ATAGAT 2537

RESULT 5
 US-09-125-619-3
 ; Sequence 3, Application US/09125619
 ; Patent No. 6437116
 ; GENERAL INFORMATION:
 ; APPLICANT: NORRIS, STEVEN J.

APPLICANT: JING-REN, ZHANG
 APPLICANT: HARDHAM, JOHN M.
 APPLICANT: HOWELL, JERRILYN K.
 APPLICANT: BARBOUR, ALAN G.
 APPLICANT: WEINSTOCK, GEORGE M.
 TITLE OF INVENTION: VMP-LIKE SEQUENCES OF PATHOGENIC BORRELIA
 FILE REFERENCE: US7H-234
 CURRENT APPLICATION NUMBER: US/09/125,619
 NUMBER OF SEQ ID NOS: 48
 SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 3
 LENGTH: 7766
 TYPE: DNA
 ORGANISM: *Borrelia burgdorferi*
 FEATURE: modified_base
 NAME/KEY: modified_base
 LOCATION: (127)
 OTHER INFORMATION: R = A OR G
 US-09-125-619-3

Query Match	2.2%	Score 35.8; DB 4; Length 7766;
Best Local Similarity	49.2%	Pred. No. 0.78; 0; Mismatches 88; Indels 0; Gaps 0;
Matches	94;	Conservative 0; Mismatches 97; Indels 0; Gaps 0;

QY 1190 CTAGTGCCTAATGAAGGATGCTCTTCAGGTGATATGTTGGTGGAGATCACA 1249
 Db 1883 CTGCTGCTATTGGAAAGGCTAATGCCGATGATCGTGCCTGGATGGATGAGA 1942
 QY 1250 AGGTGTTGGGATGCTACTGCAGTGCTCAGAGAGACTACATCAACTGCAGTAC 1309
 Db 1943 AGGATGATCAGATTGCTGCTATTGCTTGGGGGATGGCTAACATCAAGATGAAAGTTG 2002

Query Match

2.1%	Score 35; DB 1; Length 1632;
Best Local Similarity	49.4%
Matches	86;
Conservative	0;
Mismatches	88;
Indels	0;
Gaps	0;

Db 1573 AANNNTCAGCATCAACTCCACCGTTATGCTTACAATAAACCGAAAATAAT 1514
 QY 1445 AGGGATGCTACTTCAACTACCTGATGTTGACTTGACATGAACTGGAAACGGTAAGTATG 1504
 Db 1505 GTGCCTTGAACATTACTTTGGTAACTGTTGGCTTCTGGCCCAAATGGTTGT 1564
 QY 1513 TAACTTGAAAGTCTAAGTTATGCTTCTGGCCCAAATGGATCAAGGCCAAATGGTTGT 1454
 Db 1565 GGGATCCTAACGAGATCTTCAACAAACAAACAGTCTATCCCTACTAAACCTTA 1618
 QY 1453 AGAACAGTTAAAAATGTTAACCTGCAACAGACGAATCAAAGAACCGTTA 1400

RESULT 6

US-08-155-906-1/C

Sequence 1, Application US/08155906
 ; Patent No. 5405777

GENERAL INFORMATION:

APPLICANT: ICHIHARA, SHIGEYUKI
 APPLICANT: MIZUNO, TAKESHI
 TITLE OF INVENTION: ACETIC ACID ASSIMILATING GENE
 NUMBER OF SEQUENCES: 3

CORRESPONDENCE ADDRESS:
 ADDRESSEE: OBLON, SPIVAK, MCCLELLAND, MAIER & NEUSTADT,
 ADDRESSEE: P.C.
 STREET: 1755 Jefferson Davis Highway, Fourth Floor
 CITY: Arlington
 STATE: Virginia
 COUNTRY: U.S.A.
 ZIP: 22202

COMPUTER READABLE FORM:

MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: PatentIn Release #1.0, Version #1.25

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/08/155,906
 FILING DATE:
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 07/850,909
 FILING DATE: 13-MAR-1992
 ATTORNEY/AGENT INFORMATION:
 NAME: Oblon, No. 5405777man F.

REGISTRATION NUMBER: 24,618
 REFERENCE/DOCKET NUMBER: 10-552-0
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (703) 521-4500
 TELEFAX: (703) 486-2347
 TELEX: 248855 OPAT UR
 INFORMATION FOR SEQ ID NO: 1:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 1632 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: DNA (genomic)

US-08-155-906-1

Query Match

2.1%	Score 33.8; DB 4; Length 1981;
Best Local Similarity	52.5%; Pred. No. 1.4;

Query Match

2.1%	Score 33.8; DB 4; Length 1981;
Best Local Similarity	52.5%; Pred. No. 1.4;

US-09-647-390-17

Sequence 17, Application US/09647390
 ; Patent No. 6465636

GENERAL INFORMATION:

APPLICANT: Stuiver, Maarten
 APPLICANT: Simons, Lambertus
 TITLE OF INVENTION: Pathogen-Inducible Promoter
 FILE REFERENCE: MOG 57707/UST

CURRENT APPLICATION NUMBER: US/09/647,390
 CURRENT FILING DATE: 2000-09-29
 PRIOR APPLICATION NUMBER: EP 98201024.1
 PRIOR FILING DATE: 1998-04-01
 PRIOR APPLICATION NUMBER: PCT/EP99/02178
 PRIOR FILING DATE: 1999-03-25
 NUMBER OF SEQ ID NOS: 18
 SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 17
 LENGTH: 1981
 TYPE: DNA
 ORGANISM: *Lactuca sativa*
 FEATURE:
 NAME/KEY: CDS
 LOCATION: (7)..(1626)
 NAME/KEY: unsure
 LOCATION: (372)
 OTHER INFORMATION: replace (372, "g")
 NAME/KEY: unsure
 LOCATION: (379)
 OTHER INFORMATION: replace (379, "g")
 NAME/KEY: unsure
 LOCATION: (786)
 OTHER INFORMATION: replace (786, "t")
 NAME/KEY: unsure
 LOCATION: (1105)..(1106)
 OTHER INFORMATION: replace (1105..1106, "ga" or "gg" or "aa")
 US-09-647-390-17

Matches 74; Conservative 0; Mismatches 67; Indels 0; Gaps 0;
 Qy 379 AGAGACCACGGTAGAGTTGCCAGGTGGTCCCTGTTACTCCGTCGGTTGGGTGTCAC 438
 Db 511 AAAAGCAACAGTCATGCCTTCCGGCTGGGTTGCCTACTGTTGGATTGGCAT 570

Qy 439 ATTGCGGTGGAGGTGACGGTAATTGCCAGGTGGCAGTGCACGGTTGCCAGGTGGTA 498
 Db 571 TTAGTGGTGGTATGGTAACTTGATGGAAATAACGCCCTCTGTGACAATATT 630

RESULT 8
 US-07-836-642-1/c
 ; Sequence 1, Application US/07836642
 ; Patent No. 5304371
 ; GENERAL INFORMATION:
 ; APPLICANT: Reed, Steven G.
 ; TITLE OF INVENTION: Peptide for Diagnosing and Immunizing
 ; TITLE OF INVENTION: Against T. cruzi Infection
 ; NUMBER OF SEQUENCES: 4
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: Immunex Corporation
 ; STREET: 51 University street
 ; CITY: Seattle
 ; STATE: WA
 ; COUNTRY: USA
 ; ZIP: 98101
 ; COMPUTER READABLE FORM:
 ; MEDIUM TYPE: Floppy disk
 ; COMPUTER: IBM PC compatible
 ; OPERATING SYSTEM: PC-DOS/MS-DOS
 ; SOFTWARE: Patentin Release #1.0, Version #1.25
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/07/836,642
 FILING DATE: 14-FEB-1992
 CLASSIFICATION: 530
 ATTORNEY/AGENT INFORMATION:
 NAME: Perkins, Patricia A.
 REGISTRATION NUMBER: 34,693
 REFERENCE/DOCKET NUMBER: REED
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (206) 587-0430
 INFORMATION FOR SEQ ID NO: 1:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 636 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: cDNA to mRNA
 HYPOTHETICAL: NO
 ANTI-SENSE: NO
 ORIGINAL SOURCE:
 ORGANISM: Trypanosoma cruzi
 IMMEDIATE SOURCE:
 CLONE: TCD
 FEATURE:
 NAME/KEY: CDS
 LOCATION: 8..628
 ; US-07-836-642-1

Query Match 2.0%; Score 33.4; DB 1; Length 636;
 Best Local Similarity 51.0%; Pred. No. 0.93; Mismatches 79; Conservative 0; Indels 0; Gaps 0;
 Matches 79; Anti-sense: 0; Mismatches 76; Indels 0; Gaps 0;

Qy 208 GGTCACCGTCAGAATCGTTCTGGTGGTCACTGTTACGAGACTTCGTTTCGACGAATGT 267
 Db 555 GGCTCCGCTGATTTCGGCTCCGCTGGTTGGCTCCGCTGACTTCGGCTCCGCTGGTTA 496

Qy 268 GTCAAGGCTATTATCACGTTACTGGTTGGTGAATCTGGTACGACGAGATAGAGGT 327
 Db 495 GGGCCGCTGATTTCGGCTCCGCTGGTTGGCTCTGCTGATTTCGGCTCCGCTGGTTG 436

RESULT 9
 US-08-169-563-1/c
 ; Sequence 1, Application US/08169563
 ; Patent No. 5413912
 ; GENERAL INFORMATION:
 ; APPLICANT: Reed, Steven G.
 ; TITLE OF INVENTION: Peptide for Diagnosing and Immunizing
 ; TITLE OF INVENTION: Against T. cruzi Infection
 ; NUMBER OF SEQUENCES: 4
 ; CORRESPONDENCE ADDRESS:
 ; ADDRESSEE: Immunex Corporation
 ; STREET: 51 University street
 ; CITY: Seattle
 ; STATE: WA
 ; COUNTRY: USA
 ; ZIP: 98101
 ; COMPUTER READABLE FORM:
 ; MEDIUM TYPE: Floppy disk
 ; COMPUTER: Apple Macintosh
 ; OPERATING SYSTEM: Apple Operating System 7.1
 ; SOFTWARE: Microsoft Word For Apple, Version 5.1a
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/169,563
 FILING DATE: 17-DEC-1993
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: US 07/836,642
 FILING DATE: 14-FEB-1992
 CLASSIFICATION: 435
 ATTORNEY/AGENT INFORMATION:
 NAME: Perkins, Patricia A.
 REGISTRATION NUMBER: 34,693
 REFERENCE/DOCKET NUMBER: REED-A
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (206) 587-0430
 INFORMATION FOR SEQ ID NO: 1:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 636 base pairs
 TOPOLOGY: linear
 TYPE: nucleic acid
 STRANDEDNESS: single
 MOLECULE TYPE: cDNA to mRNA
 HYPOTHETICAL: NO
 ANTI-SENSE: NO
 ORIGINAL SOURCE:
 ORGANISM: Trypanosoma cruzi
 IMMEDIATE SOURCE:
 CLONE: TCD
 FEATURE:
 NAME/KEY: CDS
 LOCATION: 8..628
 ; US-08-169-563-1

Query Match 2.0%; Score 33.4; DB 1; Length 636;
 Best Local Similarity 51.0%; Pred. No. 0.93; Mismatches 79; Conservative 0; Indels 0; Gaps 0;

RESULT 10
US-08-403-379A-5/c
; Sequence 5, Application US/08403379A
; Patent No. 575662
; GENERAL INFORMATION:
; APPLICANT: Reed, Steven G.
; TITLE OF INVENTION: COMPOUNDS AND METHODS FOR THE DETECTION
; TITLE OR INVENTION: OF T. CRUZI INFECTON
; NUMBER OF SEQUENCES: 9
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: SEED and BERRY LLP
; STREET: 6300 Columbia Center, 701 Fifth Avenue
; CITY: Seattle
; STATE: Washington
; COUNTRY: USA
; ZIP: 98104-7092
; COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: IBM PC compatible
; OPERATING SYSTEM: PC-DOS/MS-DOS
; SOFTWARE: PatentIn Release #1.0, Version #1.30
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/08/403, 379A
; FILING DATE: 14-MAR-1995
; CLASSIFICATION: 435
; ATTORNEY/AGENT INFORMATION:
; NAME: Maki, David J.
; REGISTRATION NUMBER: 31,392
; REFERENCE/DOCKET NUMBER: 210121.406
; TELECOMMUNICATION INFORMATION:
; TELEPHONE: (206) 622-4900
; TELEFAX: (206) 682-6031
; INFORMATION FOR SEQ ID NO: 5:
; SEQUENCE CHARACTERISTICS:
; LENGTH: 636 base pairs
; TYPE: nucleic acid
; STRANDEDNESS: single
; TOPOLOGY: linear
; FEATURE:
; NAME/KEY: CDS
; LOCATION: 8..628
; ; US-08-929-414-5

Query Match 2.0%; Score 33.4; DB 1; Length 636;
Best Local Similarity 51.0%; Pred. No. 0.93;
Matches 79; Conservative 0; Mismatches 76; Indels 0; Gaps 0;
Db 555 GGCTCCGCTGATTGGCTCCGCTGACTTCGGCTCCGCTGGTTA 496

Qy 208 GTCAAGGCTATTATCACGTTACTGGTTGGTTGAATCTGGTACGTGTTACCGAAGACTTCGTTTCGACCGAATGT 267
Db 555 GGCTCCGCTGATTGGCTCCGCTGGTTTGCTCCGCTGACTTCGGCTCCGCTGGTTA 496

Qy 268 GTCAAGGCTATTATCACGTTACTGGTTGGTTGAATCTGGTACGTGTTACCGAAGACTTCGTTTCGACCGAATGT 267
Db 495 GGCCCCGCTGATTGGCTCCGCTGGTTGGCTCTGCTGACTTCGGCTCCGCTGGTTA 496

Qy 328 TACTTCGTCCTTCGGTGACACCAACTGGGTTC 362
Db 435 GGCTcccgctGATTGGCTCCGCTGGTTGGGCTC 401

RESULT 11
US-08-929-414-5/c
; Sequence 5, Application US/08929414
; Patent No. 5942403
; GENERAL INFORMATION:
; APPLICANT: Reed, Steven G.
; APPLICANT: Haughton, Raymond
; APPLICANT: Skeiky, Yasir A.W.
; TITLE OF INVENTION: Carbohydrate Oxidase And use Thereof In
; TITLE OF INVENTION: Baking
; FILE REFERENCE: 5421.200-US
; CURRENT APPLICATION NUMBER: US/09/217,490
; CURRENT FILING DATE: 1998-12-21
; EARLIER APPLICATION NUMBER: PA 1997 01505
; EARLIER FILING DATE: 1997-12-22
; EARLIER APPLICATION NUMBER: PA 1998 00763

Qy	328	TACTTCGGTC	336
Db	93	GACCGTAGTC	85

RESUL, 15
US-08-630-822A-92/C
; Sequence 92, Application US/08630822A
; Patent No. 5840695
GENERAL INFORMATION:
APPLICANT: FRANK, GLENN R.
APPLICANT: HUNTER, SHIRLEY WU
APPLICANT: WALLENFELS, LYNDA
TITLE OF INVENTION: NOVEL ECTOPARASITE SALIVA PROTEINS
TITLE OF INVENTION: AND APPARATUS TO COLLECT SUCH PROTEINS
NUMBER OF SEQUENCES: 107
CORRESPONDENCE ADDRESS:
ADDRESSEE: Sheridan Ross P.C.
STREET: 1700 Lincoln Street, Suite 3500
CITY: Denver
STATE: Colorado
COUNTRY: U.S.A.
ZIP: 80203
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: PatentIn Release #1.0, Version #1.25
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/630,822A
FILING DATE: 11-APR-1996
CLASSIFICATION: 435
ATTORNEY/AGENT INFORMATION:
NAME: CONNELL, GARY J.
REGISTRATION NUMBER: 32,020
REFERENCE/DOCKET NUMBER: 2618-17-C3
TELECOMMUNICATION INFORMATION:
TELEPHONE: (303) 863-9700
TELEFAX: (303) 863-0223
INFORMATION FOR SEQ ID NO: 92:
SEQUENCE CHARACTERISTICS:
LENGTH: 490 base pairs
TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: cDNA
US-08-630-822A-92

```

Query Match          2.0%; Score 33; DB 2; length 490;
Best Local Similarity 53.5%; Pred. No. 1.1;
Matches 69; Conservative 0; Mismatches 60; Indels 0; Gaps 0;
OY
208 GGTACCGTCAGAACGTTCTGGTCACTGTTACGAAGACTTCGTTCCGACGAATGT 267
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db 213 GGTATAGCCAGTGGTATCCAGTGGTACTGGTGCGGAAACTACGTTGGTACGTA 154

```

OY

268	GTCAAGGCTATTATCACCGTTACTGGTTGGTGAATCTGGTTACGACGACGATACAGGT	327
153	GTCATTGGCAAGATGTCGGTGGTATCCAGTAAGTGGAGTGGATACAACATGGTGGT	94

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: June 15, 2003, 02:43:57 ; Search time 2460 Seconds
(without alignments)
10823.325 Million cell updates/sec

Title: US-09-998-284-1

Perfect score: 1644

Sequence: 1 atggctactttgccacaaa.....ctaagcagactaaatagtag 1644

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched:

16154066 seqs, 8097743376 residues

Total number of hits satisfying chosen parameters: 32308132

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database :

EST:*
1: em_estba:
2: em_esthum:
3: em_estin:
4: em_estmu:
5: em_estov:
6: em_estpl:
7: em_estro:
8: em_htc:
9: gb_est1:
10: gb_est2:
11: gb_htc:
12: gb_est3:
13: gb_est4:
14: gb_est5:
15: em_estfun:
16: em_estom:
17: gb_gss:
18: em_gss_hum:
19: em_gss_inv:
20: em_gss_pln:
21: em_gss_vrt:
22: em_gss_fun:
23: em_gss_mam:
24: em_gss_mus:
25: em_gss_other:
26: em_gss_pro:
27: em_gss_rod:

ALIGNMENTS

RESULT 1
BH695306/c
LOCUS BH695306
DEFINITION BOMLJ48TR BO_2_3_KB Brassica oleracea genomic clone BOMLJ48, DNA sequence.
ACCESSION BH695306
VERSION 1
KEYWORDS GSS.
SOURCE
ORGANISM Brassica oleracea.
Bukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Rosidae; eurosids II; Brassicales; Brassicaceae; Brassica.
1 (bases 1 to 646)

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Length	DB ID	Description
C 1	42.8	2.6	646 17 BH695306	BH695306 BOMLJ48TR
C 2	42.8	2.6	709 17 BH667535	BH667535 BOHZJ13TR
C 3	42.8	2.6	847 17 BH432838	BH432838 BOGVZ24TF
C 4	42.6	2.6	420 17 BH813311	BH813311 SALK 0639
C 5	42.6	2.6	447 10 AV786257	AV786257 AV786257
C 6	42.6	2.6	640 10 AV784340	AV784340 AV784340

```

</organism="Brassica oleracea"
</strain="T01000DH3"
</db_xref="taxon:3712"
</clone="BOMLJ48"
</clone_lib="BO_2-3 KB"
</note="Vector: pHO51; Site 1: BstXI; 2-3 kb sheared genomic DNA inserted into pHO51 using BstXI linkers"
BASE COUNT 123 a 162 c 220 g 141 t
ORIGIN

Query Match 2.6%; Score 42.8; DB 17; Length 646;
Best Local Similarity 50.5%; Pred. No. 0.16; Mismatches 104; Conservative 0; Indels 0; Gaps 0;
Matches 104; Conservative 0; Mismatches 102; Indels 0; Gaps 0;
Db 331 CTGGAGATTCTCAAGAGCAACTACGTCAGAAACCAATCCCCAAAGAAGGT 272
Qy 1169 CTGAGGTTCTGACGGTTGACTAGTGCCGAATGAGGATGCTTCTTCAGGTTGATA 1228
Db 271 TGGAGAAAGCTTGGGGACAATGTTGAATCAAGAACGTTGTGGATGCCAGTGGAAACC 212
Qy 1229 TGTTCGGGTGTGAGATTCACAGGTTGGATAGGATTCCGGCACGGCCACGGCTTCCCTCACCGGAAG 152
Db 211 CTTACCGGGTGGCGTGTGGATAGGATTCCGGCACGGCCACGGCTTCCCTCACCGGAAG 152
Qy 1169 CTGAGGTTCTGACGGTTGACTAGTGCCGAATGAGGATGCTTCTTCAGGTTGATA 1228
Db 312 CGACGACGATAGAGGTTACTTCGTCCTCCGGTGACCAACTGGGTTCTCAAGAC 371
Qy 383 CGTCCGGAGTCCGCTTGGCTGGAGCCGGCACCTCGGGAGGTTACTACAGGAT 324
Db 372 CTGAGGTTCAGAGGACACGGTAGAGGTTTGCCAGGTGTTACTCCGTCGGTTGG 431
Db 323 ATGGGAAAAACAAAGCTCCACGGTTCCGGGAGTCTGCCCCACCGTTCGGAGCCGG 264
Qy 432 TGGTCACATGGCGGAGGTGACGGTATTGGCCAGATGCCACGGTTGCCAGTCGA 491
Db 263 AGGTACATCACAGGGGGGGTACGGTAACATGATCAGAAAGTACGGACTCTCCGTGA 204
Qy 492 TTGGTTATCCGGTGTGAAGTTGTCG 517
Db 203 CTACGTCAACCGACGCTAAGATCGTGTG 178

RESULT 2
BH667535/c
LOCUS BH432838 847 bp DNA linear GSS 12-DEC-2001
DEFINITION BOGVZ24TR BOGV Brassica oleracea genomic clone BOGVZ24, DNA sequence.
ACCESSION BH432838
VERSION BH432838.1 GI:17618559
KEYWORDS GSS.
SOURCE
ORGANISM Brassica oleracea.
Brassica oleracea.
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae; eurosids II; Brassicales; Brassicaceae; Brassica.
SEQUENCE BOHZJ13TR BO_2_3_KB Brassica oleracea genomic clone BOHZJ13, DNA sequence.
ACCESSION BH667535
VERSION BH667535.1 GI:18726845
KEYWORDS GSS.
SOURCE
ORGANISM Brassica oleracea.
Brassica oleracea.
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae; eurosids II; Brassicales; Brassicaceae; Brassica.
REFERENCE 1 (bases 1 to 847)
AUTHORS Town, C.D., Van Aken, S., Utterback, T. and Fraser, C.M.
TITLE Whole genome shotgun sequencing of Brassica oleracea
JOURNAL Unpublished (2001)
COMMENT Other GSSs: BOGVZ24TR
Contact: Chris Town
TIGR
9712 Medical Center Drive, Rockville, MD 20850, USA.
Tel: 301-838-3523
Fax: 301-838-0208
Email: cdtown@tigr.org
DNA is from a doubled haploid provided by Tom Osborn.
Seq primer: TR
Class: unpublished (2001)
Contact: Chris Town
TIGR
9712 Medical Center Drive, Rockville, MD 20850, USA.
Tel: 301-838-3523
Fax: 301-838-0208
Email: cdtown@tigr.org
DNA is from a doubled haploid provided by Tom Osborn.
Seq primer: TR
Class: sheared ends.
Location/Qualifiers
1. . 709
</organism="Brassica oleracea"
</strain="T01000DH3"
</db_xref="taxon:3712"
</clone="BOHZJ13"
</clone_lib="BO_2-3 KB"
</note="Vector: pHO51; Site 1: BstXI; 2-3 kb sheared genomic DNA inserted into pHO51 using BstXI linkers"
BASE COUNT 201 a 236 c 176 g 234 t
ORIGIN

Query Match 2.6%; Score 42.8; DB 17; Length 847;
Best Local Similarity 50.0%; Pred. No. 0.2; Mismatches 135; Conservative 0; Indels 3; Gaps 1;
Matches 135; Conservative 0; Mismatches 132; Indels 3; Gaps 1;
Db 1169 CTGAGGTTCTGACGGTTGACTAGTGCCGAATGAGGATGCTTCTTCAGGTTGATA 1228
Qy 1109 CTGAGGTTCTGACGGTTGACTAGTGCCGAATGAGGATGCTTCTTCAGGTTGATA 1168
Db 305 CTGGAGATTCTCAAGAGCAACTACGTCAGAAACCAATCCCCAAAGAAGGTA 246
Qy 1169 CTGAGGTTCTGACGGTTGACTAGTGCCGAATGAGGATGCTTCTTCAGGTTGATA 1228
Db 245 TGGAGAAAGCTTGGGGACAATGTTGAATCAAGAACGTTGTGGATGCCAGTGGAAACC 186
Qy 1229 TGTCGGTGTGAGATTCACAGGTTGGATGCTACTGCAAGAACGTTGTGGATGCCAGTGGAAACC 1228
Db 245 TGGAGAAAGCTTGGGGACAATGTTGAATCAAGAACGTTGTGGATGCCAGTGGAAACC 186

```

Db	185 CTTAGGTTGGCTGATGGATTCCGGCACCGCGTTCCTCACCGGAAG	126	Locus AV786257	Definition AV786257 RAFL6 Arabidopsis thaliana cDNA clone RAFL06-70-H12 3'
Qy	1286 AGTACATCATCAAATGCCAGTACCGAGACAAGGATGCCAGTTA	1345	Definition mRNA sequence.	mRNA sequence.
Db	125 GAACTGTCAAGATTCAGTACTTACATGGTGGACGCAAACAGAGCTA	66	Version AV786257	AV786257
Qy	1346 ACTTGAAGTGGATTAGAGACTTTACGAGG 1375		Accession AV786257.1	GI:19805047
Db	65 GCTTAAATGATGAGGGAGTTACGAGG 36		Keywords EST.	EST.
RESULT 4				
BH813311/c	BH813311	420 bp	DNA	Linear GSS 02-MAY-2002
LOCUS	SALK_063965			
DEFINITION	Arabidopsis thaliana TDNA insertion lines Arabidopsis thaliana genomic clone SALK_063965, DNA sequence.			
ACCESSION	BH813311			
VERSION	BH813311.1			
KEYWORDS	GSS.			
SOURCE	thale cress.			
ORGANISM	Arabidopsis thaliana			
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae; eurosids II; Brassicales; Brassicaceae; Arabidopsis.				
REFERENCE	1 (bases 1 to 447)			
AUTHORS	Seki,M., Narusaka,M., Ishida,J., Kamiya,A., Satou,M., Nakajima,M., Oono,Y., Sakurai,T., Carninci,P., Kawai,J., Itoh,M., Ishii,Y., Arakawa,T., Shibata,K., Shinagawa,A., Muramatsu,M., Hayashizaki,Y.			
TITLE	Large scale analysis of Arabidopsis full-length cDNA (2002b)			
JOURNAL	Unpublished (2002)			
COMMENT	Contact: Motoaki Seki			
COMMENT	RIKEN Genomic Sciences Research Group			
COMMENT	3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan			
COMMENT	Tel: 81-298-36-4359			
COMMENT	Fax: 81-298-36-9060			
COMMENT	Email: mseki@rtc.riken.go.jp			
FEATURES	An Arabidopsis full-length cDNA library was constructed essentially as reported previously (Seki et al., 1998). This clone is in a modified pBluescript vector as a SstI/XbaI insert. Please visit our web site (http://www.gsc.riken.go.jp/e/plant/index_e.html) for further details.			
FEATURES	Location/Qualifiers			
source	1. .420			
/organism="Arabidopsis thaliana"				
/db_xref="taxon:3702"				
/clone="RAFL06-70-H12"				
/clone_lib="RAFL6"				
/dev_stage="plants at various developmental stages from germination to mature seeds"				
/lab_host="DH10B"				
/note="Site_1: SstI; site_2: XbaI; subjected to dehydration_(1, 2, 5, 10, 24 hr) treatments" (1, 2, 5, 10, 24 hr)				
FEATURES	Class: TDNA tagged.			
source	Location/Qualifiers			
1. .420				
/organism="Arabidopsis thaliana"				
/strain="Columbia 0"				
/db_xref="taxon:3702"				
/clone="SALK_063965"				
/clone lib="Arabidopsis thaliana TDNA insertion lines"				
/note="PCR was performed on Arabidopsis thaliana lines each of which contains one or more TDNA insertion elements. The resultant fragment for each line was directly sequenced to determine the genomic sequence at the site of insertion. Details of the protocols used can be found at http://signal.salk.edu/tdna_protocols.html "				
BASE COUNT	150 a	89 c	69 g	139 t
ORIGIN				
Query Match	2.6%	Score 42.6;	DB 17;	Length 420;
Best Local Similarity	62.9%	Pred. No. 0.13;	Length 420;	
Matches	66;	Conservative 0;	Mismatches 39;	Indels 0;
				Gaps 0;
Query Match	2.6%	Score 42.6;	DB 10;	Length 447;
Best Local Similarity	62.9%	Pred. No. 0.14;	Length 447;	
Matches	66;	Conservative 0;	Mismatches 39;	Indels 0;
				Gaps 0;
Query Match	2.6%	Score 42.6;	DB 10;	Length 447;
Best Local Similarity	62.9%	Pred. No. 0.14;	Length 447;	
Matches	66;	Conservative 0;	Mismatches 39;	Indels 0;
				Gaps 0;
RESULT 6				
AV784340/c				
LOCUS	AV784340	640 bp	mRNA	Linear EST 28-MAR-2002
DEFINITION	AV784340 RAFL5 Arabidopsis thaliana cDNA clone RAFL05-18-J21 3', mRNA sequence.			
ACCESSION	AV784340			
VERSION	AV784340.1			
KEYWORDS	EST.			
SOURCE	thale cress.			
ORGANISM	Arabidopsis thaliana			
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae; eurosids II; Brassicales; Brassicaceae; Arabidopsis.				
REFERENCE	1 (bases 1 to 640)			
AUTHORS	Seki,M., Narusaka,M., Ishida,J., Kamiya,A., Satou,M., Nakajima,M., AV786257/c			
RESULT 5				

Oono, Y., Sakurai, T., Carninci, P., Kawai, J., Itoh, M., Ishii, Y., Arakawa, T., Shibata, K., Shinagawa, A., Muramatsu, M., Hayashizaki, Y., and Shinozaki, K.

Large scale analysis of *Arabidopsis* full-length cDNA (2002b)

Unpublished (2002)

Contact: Motoaki Seki

Plant Functional Genomics Research Group
RIKEN Genomic Sciences Center
3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
Tel: 81-298-36-4359
Fax: 81-298-36-9060
Email: mseki@rtc.riken.go.jp

An *Arabidopsis* full-length cDNA library was constructed essentially as reported previously (Seki et al., 1998). This clone is in a modified pBluescript vector as a SstI/XbaI insert. Please visit our web site (http://www.gsc.riken.go.jp/e/plant/index_e.html) for further details.

Location/Qualifiers

```

1. . 640
  /organism="Arabidopsis thaliana"
  /db_xref="taxon:3702"
  /clone="RAFL05-18-J21"
  /clone_lib="RAFL5"
  /dev_stage="rosette plants"
  /lab_host="SOLR"
  /note="Site_1: SstI; Site_2: XbaI; subjected to
dehydration-treated(1,2,5,10,24 hr)"

```

190 a	142 c	106 g	202 t
-------	-------	-------	-------

AV811765 400 bp mRNA linear EST 29-MAR-2002

AV811765 RAFL9 *Arabidopsis thaliana* cDNA clone RAFL09-69-123 3', mRNA sequence.

AV811765

AV811765.1 GI:19845750

EST.

thale cress.

Arabidopsis thaliana

Eukaryota; Viriplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae; eurosids II; Brassicales; Brassicaceae; *Arabidopsis*.
1 (bases 1 to 400)
Seki, M., Narusaka, M., Ishida, J., Kamiya, A., Satou, M., Nakajima, M., Oono, Y., Sakurai, T., Carninci, P., Kawai, J., Itoh, M., Ishii, Y., Arakawa, T., Shibata, K., Shinagawa, A., Muramatsu, M., Hayashizaki, Y., and Shinozaki, K.

Large scale analysis of *Arabidopsis* full-length cDNA (2002b)

Unpublished (2002)

Contact: Motoaki Seki

Plant Functional Genomics Research Group
RIKEN Genomic Sciences Center
3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
Tel: 81-298-36-4359
Fax: 81-298-36-9060
Email: mseki@rtc.riken.go.jp

An *Arabidopsis* full-length cDNA library was constructed essentially as reported previously (Seki et al., 1998). cDNA cleaved with BamHI and XbaI was ligated to modified Lambda FLC-1 vector (Carninci et

al., submitted for publication) digested with BamHI and Sall. This clone is in a modified pBluescript vector. Please visit our web site (http://www.gsc.riken.go.jp/e/plant/index_e.html) for further details.

germination to mature seeds"
/lab_host="DH10B"
/note="Site_1: BamHI; Site_2: Sall; subjected to
dehydration_(1, 2, 5, 10, 24 hr) and cold (1, 2, 5, 10, 24
hr) treatments"

BASE COUNT	ORIGIN	Score	DB	Length	Matches	Pred.	No.	Mismatches	Indels	Gaps
130	a	96	c	68	g	146	t	0	0	0

Query Match 2.6%; Score 42; DB 10; Length 440;
Best Local Similarity 66.7%; Pred. No. 0.21; Matches 60; Conservative 0; Mismatches 30; Indels 0; Gaps 0;

BASE COUNT 129

ORIGIN a

Score 2.6%; Score 42; DB 10; Length 442;
Best Local Similarity 66.7%; Pred. No. 0.21; Matches 60; Conservative 0; Mismatches 30; Indels 0; Gaps 0;

RESULT 9
AV798159/c

LOCUS AV798159 RAFL9 Arabidopsis thaliana mRNA 442 bp linear EST 29-MAR-2002

DEFINITION mRNA sequence.

ACCESSION AV798159

VERSION AV798159.1 GI:19832142

KEYWORDS EST.

SOURCE Organism

Arabidopsis thaliana

Eukaryota; Viridiplanteae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; Embryophyta; Tracheophyta; Rosidae; eurosids II; Brassicales; Brassicaceae; Arabidopsis. 1 (bases 1 to 442)

REFERENCE Akhunov,E., Anderson,O.D., Chao,S., Crossman,C., Devorak,J., Lazo ,G.R., Pham,J., Rausch,C.J., Wilson,C. and Woo,J.

AUTHORS Seki,M., Narusaka,M., Ishida,J., Kamiya,A., Satou,M., Nakajima,M., Oono,Y., Sakurai,T., Carninci,P., Kawai,J., Itoh,M., Ishii,Y., Arakawa,T., Shibata,K., Shinagawa,A., Muramatsu,M., Hayashizaki,Y. and Shinozaki,K.

TITLE Large scale analysis of Arabidopsis full-length cDNA (2002b)

JOURNAL Unpublished (2002)

COMMENT Contact: Motoaki Seki

Plant Functional Genomics Research Group

RIKEN Genomic Sciences Center

3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan

Tel: 81-298-36-4359

Fax: 81-298-36-9050

Email: mseki@rtc.riken.go.jp

An Arabidopsis full-length cDNA library was constructed essentially as reported previously (Seki et al., 1998). cDNA cleaved with BamHI and XbaI was ligated to modified Lambda FLC-1 vector (Carninci et al., submitted for publication) digested with BamHI and Sall. This clone is in a modified pBluescript vector. Please visit our web site (http://www.gsc.riken.go.jp/e/plant/index_e.html) for further details.

FEATURES source

1. .748

/organism="Aegilops speltoides"
/cultivar="F2 from 2-12-4-8-1-1-1-(1) x PI36909-12-811-(1)"
/db_xref="taxon:4573"
/clone="WHE4211_F11_L20"
/clone_lib="Aegilops speltoides pre-meiotic anther cDNA library"
/tissue_type="Anther"
/dev_stage="Pre-meiotic anthers"
/lab_host="E. coli SOLR"
/note="Vector: Lambda Uni-ZAP XR, excised phagemid; Site_1: EcoRI; Site_2: XbaI; Plants were grown in a growth chamber at the University of California, Davis (Akhunov in Devorak's lab). Pre-meiotic anthers were harvested, total RNA and poly(A) RNA were prepared, a cDNA library was made , and the cDNA clones were in vivo excised to give pBluescript phagemids at the University of California, Davis (Akhunov in Devorak's lab). Plasmid DNA preparations and DNA sequencing were performed in the OD Anderson lab (all other authors)."

BASE COUNT 216

ORIGIN a

Score 2.5%; Score 41.8; DB 14; Length 748;
Best Local Similarity 52.6%; Pred. No. 0.37; Matches 91; Conservative 0; Mismatches 82; Indels 0; Gaps 0;

QY 1519 TACTTTGGGTAACTGAAACAGATTGATCAAGGCCAATGGTGTGGATCCTAACGAG 1578

Db 267 TATTCCTGGGAATTGAGAGATGGATGTTAAAGCTAAGAGTGATCTGAGAAT 208

QY 1579 ATCTTCACAACAAACAGCTATCCCTACT 1608

Db 207 TTCTTCAAAAACGAAACAGAGTATTCCCCCT 178

RESULT 10
BQ841497

LOCUS BQ841497 748 bp mRNA linear EST 12-AUG-2002

DEFINITION WHE4211_F11_L20ZS Aegilops speltoides pre-meiotic anther cDNA library_Aegilops speltoides cDNA clone WHE4211_F11_L20, mRNA sequence.

ACCESSION BQ841497

VERSION BQ841497.1 GI:22210906

KEYWORDS EST.

SOURCE Aegilops

ORGANISM Aegilops speltoides

Eukaryota; Viridiplanteae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Pooideae ; Triticeae; Aegilops.

.1 (bases 1 to 748)

REFERENCE Akhunov,E., Anderson,O.D., Chao,S., Crossman,C., Devorak,J., Lazo ,G.R., Pham,J., Rausch,C.J., Wilson,C. and Woo,J.

TITLE The structure and function of the expressed portion of the wheat genomes - Pre-meiotic anther cDNA library from Aegilops speltoides

COMMENT Unpublished (2002)

Contact: Olin Anderson

US Department of Agriculture, Agriculture Research Service, Pacific West Area, Western Regional Research Center
800 Buchanan Street, Albany, CA 94710, USA

Tel: 5105595773

Fax: 5105595818

Email: oandersn@pw.usda.gov

Sequences have been trimmed to remove vector sequence and low quality sequence with phred score less than 20

Seq primer: SK primer.

Location/Qualifiers

FEATURES source

1. .748

/organism="Aegilops speltoides"
/cultivar="F2 from 2-12-4-8-1-1-1-(1) x PI36909-12-811-(1)"
/db_xref="taxon:4573"
/clone="WHE4211_F11_L20"
/clone_lib="Aegilops speltoides pre-meiotic anther cDNA library"
/tissue_type="Anther"
/dev_stage="Pre-meiotic anthers"
/lab_host="E. coli SOLR"
/note="Vector: Lambda Uni-ZAP XR, excised phagemid; Site_1: EcoRI; Site_2: XbaI; Plants were grown in a growth chamber at the University of California, Davis (Akhunov in Devorak's lab). Pre-meiotic anthers were harvested, total RNA and poly(A) RNA were prepared, a cDNA library was made , and the cDNA clones were in vivo excised to give pBluescript phagemids at the University of California, Davis (Akhunov in Devorak's lab). Plasmid DNA preparations and DNA sequencing were performed in the OD Anderson lab (all other authors)."

BASE COUNT 206

ORIGIN g

Score 2.5%; Score 41.8; DB 14; Length 748;
Best Local Similarity 52.6%; Pred. No. 0.37; Matches 91; Conservative 0; Mismatches 82; Indels 0; Gaps 0;

QY 1409 CTAACACTCAGGTGAGAGTGGTAAAGGTGTTGAGGATGCTACTCAACTACCTG 1468

Db 200 CTGAGGATGAGGATGAGAAGGATACTGAGGAGGCGAAGGTTGAGGAATTG 259

	ACCESSION	VERSION
LOCUS	BQ060219	AL068607.1 GI:4958689
DEFINITION	Ts1168 Thellungiella salsuginea ZAP cDNA library Thellungiella salsuginea cDNA similar to reticuline oxidase - like protein, mRNA sequence.	GSS.
ACCESSION	BQ060219	Drosophila melanogaster.
VERSION	BQ060219.1 GI:19855168	Drosophila melanogaster.
KEYWORDS	EST.	Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Ephydriidae; Drosophila.
SOURCE	Thellungiella salsuginea.	Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Ephydriidae; Drosophila.
ORGANISM	Thellungiella salsuginea.	1 (bases 1 to 1101)
REFERENCE	Genoscope.	
AUTHORS	Direct Submission	
TITLE	Submitted (02-JUN-1999) Genoscope - Centre National de Sequencage : BP 191 91006 EVRY cedex - FRANCE (E-mail : seqref@genoscope.cns.fr)	
JOURNAL	- Web : www.genoscope.cns.fr	
COMMENT	Determination of this BAC-end sequence was carried out as part of a collaboration with the Berkeley Drosophila Genome Project (BDGP). The BDGP is constructing a physical map of the Drosophila melanogaster genome using these BACs. For further information please see http://www.fruitfly.org The BDGP Drosophila Aaron Mammoser in Pieter de Jong's laboratory in the Department of Cancer Genetics at the Roswell Park Cancer Institute in Buffalo, NY. The library is named RPCI-98 and was constructed by partial EcoRI digestion of Drosophila DNA provided by the BDGP from the isogenic strain Y2; cn bw sp, the same strain used for the BDGP's p1 and EST libraries. A more detailed description of the library and how to order individual BAC clones, the entire library, or filters for hybridization from the BACPAC Resource Center can be found at http://bacpac.med.buffalo.edu/drosophila_bac.htm.	
JOURNAL	Contact: Hui Zhang	
COMMENT	Key Laboratory of Plant Stress Research The Biology Department of Shandong Normal University No.88, Wenhua East Road, Jinan, Shandong Province, 250014, PRC	
COMMENT	Tel: (86)531-2960864 Fax: (86)531-2966954	
COMMENT	Email: zhangh@sdnu.edu.cn.	
FEATURES	Location/Qualifiers	
source	1. .409 /organism="Thellungiella salsuginea" /db_xref="taxon:72664" /clone_lib="Thellungiella salsuginea ZAP cDNA library" /dev_stage="seedling" /note="Organ: aerial part tissue; Vector: lambda zap; Site_1: EcoRI; Site_2: XhoI; total RNA extraction from NaCl(200mM) treated Thellungiella salsuginea by RNAgent kit(Promega); mRNA isolation by MESSAGE MAKER kit (GTBCO BRL); directional cDNA synthesis (ECORI XHOI) by cDNA synthesis kit (STRATAGEN); the ZAP express library by Gigapack III Gold Cloning kit (STRATAGENE)"	
FEATURES	Location/Qualifiers	
source	1. .1101 /organism="Drosophila melanogaster" /db_xref="taxon:7227" /clone_lib="BACR32D23" /clone_lib="RPCI-98" /note="end : TET3"	
FEATURES	Location/Qualifiers	
source	1. .166 /organism="Drosophila melanogaster" /db_xref="taxon:7227" /clone_lib="BACR32D23" /clone_lib="RPCI-98" /note="end : TET3"	
BASE COUNT	155 a 166 c 7 9 284 t 489 others	
ORIGIN		
Query Match	2.5%; Score 41.4; DB 14; Length 409;	
Best Local Similarity	53.4%; Pred. No. 0.3;	
Matches	87; Conservative 0; Mismatches 76; Indels 0; Gaps 0;	
Db		
Qy	357 GGGTTCTCAAGACCTGTTCAGAGACCACGGTAGAGTTGCCAGGTATTGGCTCCCTGTA 416	
Db	205 GGTTTACTACCGAATCTGGGAGAAAGCAAATCCATGGATTCCCCGGAGTTGC 264	
Qy	417 CTCCCGTCGGTTGGTGTACATGTCGGGGAGGTATTGGCTCACATTGGATTGGCTCC 476	
Db	265 GACGGTCGGTGTGGAGGTCAATTAAAGGGGGGGTACGGTAATATGCTGAGGAAGTT 324	
Qy	477 CGGTGTGCCAGTCGATTGGTTATCCGGTGTGAAGTTGTCGTT 519	
Db	325 CGGATGTCGATAACTTGATCCGATGCCAAGAGATCGTCG 367	
BASE COUNT	92 a 110 c 108 g 99 t	
ORIGIN		
Query Match	2.5%; Score 41.4; DB 17; Length 1101;	
Best Local Similarity	16.4%; Pred. No. 0.67;	
Matches	68; Conservative 161; Mismatches 186; Indels 0; Gaps 0;	
Db		
Qy	421 GTCGGTTGGCTCACATTGTCGGCTGAGGTATTGGCCAGATTGCACGGT 480	
Db	1014 DTTKGAKTKITKKGKTNWTKTKCKKTGKRKGDAKKAAAADDKKTDKARAKKKKGR 955	
Qy	481 TTGCCAGTCGATTGGTATCCGGTGTGAAGTTGTCGTTAACGCCAGTCGTGACCGAAC 540	
Db	954 KWKKGGKKKKTKDGTKKKKTTGKWDWDDAWWDWADWDWKAGGGGGKGDWDTDW 895	
Qy	541 TCTGTTCTTAAGTACGTTACAAGGATCCGAAGGTAACCGACGGTAGGTGTTGGCT 600	
Db	894 KDAWKKGDKKDTKKKKKKGGTRKAGDTKKKGRKKRKTGKKTGKTTGK 835	
Qy	601 CACACTGGGGAGGTAACTCGTATTATCACAATACTACTTCAGGATTG 660	
Db	834 GGGWGRKGKGRGKKGKGDWTGKWKDTKTKKGKKTGKWTWAAWK 775	
Qy	661 CCAATGTCCTCAAGAGGTGTCACTCGCTCTAACCTACACTTCAGGATTG 720	
Db	774 TKTGKKKKKGKKKGKGDWTGKWKDTKTKKGKKTGKWTWAAWK 715	
Qy	721 AGAGATGCCCTGCAAGAGATTGTTGACTAAGTCAAGTTGGCTAGATGTTGGAAG 780	
Db	714 AKTKKTTKKKGKGTAKTADKTKKKKKKGKTTGKWWGKDTRTKDKKKKA 655	
RESULT	12	
CNS00L00/c	CNS00L00	1101 bp DNA linear GSS 03-JUN-1999
DEFINITION	Drosophila melanogaster genome survey sequence TET3 end of BAC: BACR32D23 of RPCI-98 library from Drosophila melanogaster (fruit	

FIELD	DATA
RESULT	13 AV805562/c
LOCUS	AV805562 406 bp mRNA linear EST 29-MAR-2002
DEFINITION	mRNA sequence.
ACCESSION	AV805562
VERSION	EST.
KEYWORDS	thale cress.
SOURCE	Arabidopsis thaliana
ORGANISM	Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Pooideae; Triticeae; Triticum.
AUTHORS	1 (bases 1 to 416) Anderson,O.D., Chao,S., Choi,D.W., Close,T.J., Fenton,R.D., Han ,P.S., Hsia,C.C., Kang,Y., Lazo,G.R., Miller,R., Rausch,C.J., Seaton,C.L. and Tong,J.C.
TITLE	The structure and function of the expressed portion of the wheat genomes - Pre-anthesis spike cDNA library
JOURNAL	Unpublished (2000)
COMMENT	Contact: Olin Anderson US Department of Agriculture, Agriculture Research Service, Pacific West Area, Western Regional Research Center 800 Buchanan Street, Albany, CA 94710, USA Tel: 5105595773 Fax: 5105595818 Email: oandersn@pw.usda.gov
FEATURES	sequence have been trimmed to remove vector sequence and low quality sequence with phred score less than 20 Seq primer: Stratagene SK primer.
source	Location/Qualifiers
	1. .416 /organism="Triticum aestivum" /cultivar="Chinese Spring" /db_xref="taxon:4565" /clone="WHE177_C01_F01" /clone_lib="Wheat pre-anthesis spike cDNA library" /tissue_type="Spike before anthesis" /dev_stages="Adult plant" /lab_host="E. coli SOLR" /note="Vector: Lambda Uni-ZAP XR, excised phagemid; Site 1: BCOPI; Site 2: XbaI; Plants were grown in the greenhouse. Whole spike with awns trimmed, white, green and yellow anther were collected and total RNA, and poly(A) RNA were prepared, a cDNA library was made, and the cDNA clones were in vivo excised to give pBluescript phagemids in the TJ Close lab (Choi, Close, Fenton) at the University of California, Riverside. Plasmid DNA preparations and DNA sequencing were performed in the OD Anderson lab (all other authors)."
FEATURES	Location/Qualifiers
source	1. .406 /organism="Arabidopsis thaliana" /db_xref="taxon:3702" /clone="RAFL09-43-G11" /clone_lib="RAFL9" /dev_stage="plants at various developmental stages from germination to mature seeds" /lab_host="DH10B" /note="Site_1: BamHI; Site_2: SalI; subjected to dehydration (1, 2, 5, 10, 24 hr) and cold (1, 2, 5, 10, 24 hr) treatments" /clone="RAFL9"
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 65; Conservative 0; Mismatches 40; Indels 0; Gaps 0;
BASE COUNT	131 a 78 c 125 g 82 t
ORIGIN	Query Match 2.5%; Score 41; DB 12; Length 416; Best Local Similarity 52.0%; Pred. No. 0.41; Mismatches 0; Gaps 0; Matches 92; Conservative 0; Mismatches 85; Indels 0; Gaps 0;
BASE COUNT	122 a 99 c 64 g 121 t
ORIGIN	Query Match 2.5%; Score 41; DB 10; Length 406; Best Local Similarity 52.0%; Pred. No. 0.41; Mism

REFERENCE 1 (bases 1 to 569)
 AUTHORS Kozik,A., Michelmore,R.W., Knapp,S., Matvienko,M., Rieseberg,L.,
 Lin,H., van Damme,M., Lavelle,D., Chevalier,P., Ziegler,J., Ellison
 ,P., Kolkman,J., Slabaugh,M.S., Livingston,K., Zhou,Y., Lai,Z.,
 Church,S., Jackson,L. and Bradford,K.
 TITLE Lettuce and Sunflower ESTs from the Compositae Genome Project
 http://compgenomics.ucdavis.edu/
 JOURNAL Unpublished (2002)
 COMMENT Contact: Alexander Kozik [R.W.Michelmore]
 Department of Vegetable Crops, R.W.Michelmore Lab
 University of California at Davis (UCD)
 Agumondson Hall, UCD, Davis, CA 95616, USA
 Tel: 1-(530)-742-1742
 Fax: 1-(530)-752-9659
 Email: akozik@atgc.org [michelmore@vegmaill.ucdavis.edu]
 belongs to contig QG_CA_Contig4252, see <http://cgpdb.ucdavis.edu/>
 for details.
 Plate: QGJ3 row: O column: 15.

FEATURES Location/Qualifiers

source

1. .569

/organism="Lactuca sativa"
 /cultivar="L.serriola"
 /db_xref="taxon:4236"
 /clone="QGJ3015"
 /clone_lib="QG_ERGHJ lettuce serriola"
 /lab_host="E.coli"
 /note="Vector: pBRCDNAF1AB: The library was constructed
 from 10 different sources of RNA from a single genotype.
 Separate cDNAs were generated using primers that
 incorporated unique 5' and 3' tags to distinguish each
 source of RNA. cDNAs were then pooled, size-fractionated,
 directionally cloned into a custom medium-copy vector and
 transformations made with four size classes to minimize
 size bias. Details of each source of RNA and library
 construction can be obtained at <http://cgpdb.ucdavis.edu/>
 TAG_LIB=QG_ERGHJ lettuce serriola
 TAG_TISSUE=flowers pre-fertilized
 TAG_SEQ=GCTTGACGGG"

BASE COUNT 166 a 81 c 131 g 191 t

ORIGIN

Query Match 2.5%; Score 41; DB 14; Length 569;
 Best Local Similarity 60.2%; Pred. No. 0.52;
 Matches 68; Conservative 0; Mismatches 45; Indels 0; Gaps 0;

Qy	1302	GCAGTACCAAGACATACTGGCAGGAAGAACAGAACAGGATGCAGTTAAGTGCGATTAG	1361
Db	51	GAATATCAGACACACTTCTGAATACATAAGGCTGGAGTGAAGCAGACAGCATG	110
Qy	1362	AGACTTTACGAGGAGATGTATGAGCCTATGGTGGTCCAGACCTAACAA	1414
Db	111	AGGGCTCACAGAAGGTCATGCAGCTATGGCTGATCCAACCCCTAAGA	163

Search completed: June 15, 2003, 03:39:35
 Job time : 2465 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: June 15, 2003, 00:41:27 ; Search time 388 Seconds
(without alignments)
9541.972 Million cell updates/sec

Title: US-09-998-284-1
Perfect score: 1644
Sequence: 1 atggctactttgccacaaa.....ctaagcagactaaatagtag 1644

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 2185239 seqs, 1125999159 residues

Total number of hits satisfying chosen parameters: 4370478

Minimum DB seq length: 0
Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 45 summaries

Database : N_Geneseq_101002:*

1: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1980.DAT:*
2: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1981.DAT:*
3: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1982.DAT:*
4: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1983.DAT:*
5: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1984.DAT:*
6: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1985.DAT:*
7: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1986.DAT:*
8: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1987.DAT:*
9: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1988.DAT:*
10: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1989.DAT:*
11: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1990.DAT:*
12: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1991.DAT:*
13: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1992.DAT:*
14: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1993.DAT:*
15: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1994.DAT:*
16: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1995.DAT:*
17: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1996.DAT:*
18: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1997.DAT:*
19: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1998.DAT:*
20: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA1999.DAT:*
21: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA2000.DAT:*
22: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA2001A.DAT:*
23: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA2001B.DAT:*
24: /SIDS2/gcgdata/geneseq/geneseqn-emb1/NA2002.DAT:*

ALIGNMENTS

RESULT 1

AAS06173
ID AAS06173 standard; DNA; 1644 BP.
XX
AC AAS06173;
XX DT 12-SEP-2001 (first entry)
DE Hexose oxidase (HOX) synthetic gene sequence.
XX KW HOX; seaweed; hexose oxidase; interleukin 1 receptor antagonist; IL-1ra; food manufacturing; beverage; detergent; baking; dough improving agent; D-hexose:O2-oxidoreductase; ds.
XX OS Chondrus crispus.
OS Synthetic.

SUMMARIES

Result No.	Score	Query	Match	Length	DB	ID	Description
1	1644	100.0	1644	22	AAS06173		Hexose oxidase (HO
2	1644	100.0	1644	22	AAF23590		Chondrus crispus he
3	1632.8	99.3	1644	21	AAZ94039		Synthetic hexose o
4	1279.2	77.8	1801	18	AAT76552		DNA encoding hexos
C 5	126	7.7	126	21	AAZ94026		Primer hox16 used
C 6	126	7.7	126	22	AAS06168		PCR primer 6 used
C 7	120	7.3	120	21	AAZ94015		Primer hox5 used i
C 8	120	7.3	120	21	AAZ94024		Primer hox14 used
C 9	120	7.3	120	22	AAS06157		PCR primer hox5a u

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

PCR primer 4 used
Primer hox9 used i
PCR primer hox9a u
Primer hox19 used
PCR primer 9 used
PCR primer hox10b
Primer hox8 used i
PCR primer hox8b u
Primer hox10 used
PCR primer hox18 used
PCR primer 8 used
Primer hox6 used i
Primer hox7 used i
PCR primer hox6b u
Primer BglI-NsiI
PCR primer 5 used
PCR primer 7 used
Primer hox15 used
PCR primer hox2B u
Primer hox1A u
PCR primer hox3a u
PCR primer hox4b u
Primer hox4 used i
Primer hox11 used
PCR primer 2 used
Primer BglI-NsiI
Primer hox12 used
Primer hox3 used i
Primer hox11 used
PCR primer 1 used
Primer hox13 used
PCR primer 3 used
Primer -SKL-sense
Primer -SKL-antisense

XX
PI Johansen CL, Kjaerulff S, Madrid SM, Pedersen H, Poulsen CH;
PI Zargahi MR;
XX
DR WPI; 2001-367695/38.
P-PSDB; AAU02192.

XX
PT Releasing soluble or membrane associated intracellular protein from a cell for manufacturing food, comprises contacting the cell with a membrane extracting composition and causing the protein to be released in soluble form -

XX
PS Claim 17; Fig 6; 108pp; English.

XX
CC The sequence represents the coding sequence of synthetic hexose oxidase (D-hexose:O2-oxireductase, EC 1.1.3.5), also referred to as HOX, gene.
CC The native HOX gene was altered using site-directed mutagenesis in order to match the codon usage to known codon preferences of biotechnologically relevant yeasts, such as *Pichia* sp., to facilitate high level production in these organisms. The invention involves a method for releasing a soluble or membrane associated intracellular protein of interest (POI) from a cell involving contacting a cell comprising a soluble or membrane associated intracellular POI with a membrane extracting composition (I) and causing the POI to be released from the cell in a soluble form. The method is useful for releasing POI, such as an interleukin I receptor antagonist (IL-1ra) which involves contacting a transformed cell comprising IL-1ra with (I) and causing IL-1ra to be released from the transformed cell, in a soluble form. The method is also useful for screening mutated cells or transformed cells producing elevated levels of intracellular POI. The method is used to release a POI for manufacturing food products, such as beverages, preparation of detergents, and in baking as a dough improving agent. The method obtains a fast, specific and economically efficient extraction of a soluble or membrane associated intracellular POI without the use of conventional cell disruption techniques. The resulting cell extract contains less contaminating intracellular DNA and is relatively free of cell wall fragments. The intracellular POI can be recovered from a eukaryotic host organism such as yeast, before glycosylation takes place. The method can be used to prevent contact of intracellular POI with the extracellular growth medium.

XX
SQ Sequence 1644 BP; 430 A; 337 C; 404 G; 473 T; 0 other;

Query Match 100.0%; Score 1644; DB 22; Length 1644;
Best Local Similarity 100.0%; Pred. No. 0;
Matches 1644; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 ATGGCTACTTGCACAAAGGACCAGGTACATGTTATTGACGTCACGCTGGTACT 60
1 ATGGCTACTTGCACAAAGGACCAGGTACATGTTATTGACGTCACGCTGGTACT 60

QY 61 CCAGACAAGCCTGACCCAGATGCCATCCATGAAGCAAGGTTCAACAGAAGATGGATT 120
61 CCAGACAAGCCTGACCCAGATGCCATCCATGAAGCAAGGTTCAACAGAAGATGGATT 120

QY 121 GGTACCAACATCGATTGTTACCTCCACCAAGGTGTACTGTT 180
121 GGTACCAACATCGATTGTTACCTCCACCAAGGTGTACTGTT 180

QY 181 GACAGAGCTATGAAAAGTGTCTCAGGTCAAATCGTTCTGGTT 240
181 GACAGAGCTATGAAAAGTGTCTCAGGTCAAATCGTTCTGGTT 240

QY 241 TACGAAGACTTCGTTGACGAATGTTCTCAGGTCAAATCGTTCTGGTT 240
241 TACGAAGACTTCGTTGACGAATGTTCTCAGGTCAAATCGTTCTGGTT 240

QY 301 GAATCTGGTACGACGACGATAGAGGTACTTCGTCCTCCGGTGACACCAACTGGGT 300
301 GAATCTGGTACGACGACGATAGAGGTACTTCGTCCTCCGGTGACACCAACTGGGT 300

QY 361 TCCTTCAGACCTGTTGACAGACACGGTAGAGTTCTGGTCTTCCGGTGACACCAACTGGGT 360
361 TCCTTCAGACCTGTTGACAGACACGGTAGAGTTCTGGTCTTCCGGTGACACCAACTGGGT 360

Db 361 TCCTTCAGACCTGTTGACAGACACGGTAGAGTTCTGGTCTTCCGGTGACACCAACTGGGT 420
QY 421 GTCGGTTGGGTGTCACATTGTCGGTGAGGTGACGGTATTGGCCAGATGCAAGGT 480
421 GTCGGTTGGGTGTCACATTGTCGGTGAGGTGACGGTATTGGCCAGATGCAAGGT 480

Db 481 TTGCCAGTCGATGGTATCCGGTGTGAGTTGCTGTTAACCCAGCTTGACCGAAC 540
481 TTGCCAGTCGATGGTATCCGGTGTGAGTTGCTGTTAACCCAGCTTGACCGAAC 540

Db 541 TCTGTTCTTAAGTACGTTACAAGGATCCGAAGGTAACGACGGTGAGTTGGCT 600
541 TCTGTTCTTAAGTACGTTACAAGGATCCGAAGGTAACGACGGTGAGTTGGCT 600

Db 601 CACACTGGAGGGTAACTCGGTATTACCAAATACTTCAAGGATTG 660
601 CACACTGGAGGGTAACTCGGTATTACCAAATACTTCAAGGATTG 660

Db 661 CCAATGTCCTCAAGAGGTTGTCATCGCTTCTAACTTACACTTCTGGACGGTTCACT 720
661 CCAATGTCCTCAAGAGGTTGTCATCGCTTCTAACTTACACTTCTGGACGGTTCACT 720

Db 721 AGAGATGCCTGCAAGATTGTTGACTAATCTCAAGTTGCTAGATGGATGGAG 780
721 AGAGATGCCTGCAAGATTGTTGACTAATCTCAAGTTGCTAGATGGATGGAG 780

Db 781 AATACTGTTGTAAGTCCAATCTCCACCAAGGCTGTAAGGTTGTATGACTTG 840
781 AATACTGTTGTAAGTCCAATCTCCACCAAGGCTGTAAGGAGTTGTATGACTTG 840

Db 841 TATACATCTACTCTAACGACGCCAGAGTTGACTAAGTGGCTAGATGGATGGAG 900
841 TATACATCTACTCTAACGACGCCAGAGTTGACTAAGTGGCTAGATGGATGGAG 900

QY 901 GAGGCTGACATGAACTACGACGAGCTCTTCCCCTGTTAGACCTAGAAAGAGACACATCCAGACTATCATTTG 960
901 GAGGCTGACATGAACTACGACGAGCTCTTCCCCTGTTAGACCTAGAAAGAGACACATCCAGACTATCATTTG 960

Db 961 GCTGGTGGCTCTTCCCTGTTAGACCTAGAAAGAGACACATCCAGACTCTTAT 1020
961 GCTGGTGGCTCTTCCCTGTTAGACCTAGAAAGAGACACACACATCCAGACTCTTAT 1020

Db 1021 ATGCATGACGAGACTATGGACTACCCCTCTACGGCTTGACTGAGACTATCACGGTCC 1080
1021 ATGCATGACGAGACTATGGACTACCCCTCTACGGCTTGACTGAGACTATCACGGTCC 1080

Db 1081 GGTCCCTAAATCAGAGGAGTAAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTTC 1140
1081 GGTCCCTAAATCAGAGGAGTAAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTTC 1140

QY 1141 CAGATGATGTTATCTGGAAATACCTTACTGAGGTCTCTGAGGTTGACTAGTGGCAA 1200
1141 CAGATGATGTTATCTGGAAATACCTTACTGAGGTCTCTGAGGTTGACTAGTGGCAA 1200

QY 1201 ATGAAGGATGCTTCTTCAGGTGATATGTCGGTGGTGGAGATTCAAAGGTTGTTGG 1260
1201 ATGAAGGATGCTTCTTCAGGTGATATGTCGGTGGTGGAGATTCAAAGGTTGTTGG 1260

Db 1201 ATGAAGGATGCTTCTTCAGGTGATATGTCGGTGGTGGAGATTCAAAGGTTGTTGG 1260
1201 ATGAAGGATGCTTCTTCAGGTGATATGTCGGTGGTGGAGATTCAAAGGTTGTTGG 1260

Db 1261 GATGCTACTGCAAGTGTCTCAGAGAGACTCATCAAATGCACTTACGGAGACATACTGG 1320
1261 GATGCTACTGCAAGTGTCTCAGAGAGACTCATCAAATGCACTTACGGAGACATACTGG 1320

Db 1321 CAGGAAGAACAGGATGCAAGTGTCTCAGAGAGACTCATCAAATGCACTTACGGAGACATACTGG 1380
1321 CAGGAAGAACAGGATGCAAGTGTCTCAGAGAGACTCATCAAATGCACTTACGGAGACATACTGG 1380

Db 1381 TATGAGCCTATGGTGGTCCAGACCCAACTCAGGTGAGGTGGTAAGGGTT 1440
1381 TATGAGCCTATGGTGGTCCAGACCCAACTCAGGTGAGGTGGTAAGGGTT 1440

Db 1441 TTGAGGGATGCTACTCAACTACCTGATGTTGACTGAAACACTGGAAACGGTAG 1500
1441 TTGAGGGATGCTACTCAACTACCTGATGTTGACTGAAACACTGGAAACGGTAG 1500

QY	1501	TATGGTGCTTGGAACTTTACTTTGGTAACCTGACAGATTGATAAGGCCAATGG	1560	Db	121	GGTACCAACATCGATTTCGTTACGTGCTTACCTCCACAAGGTGCTGTACTGCTTG	180
Db	1501	TATGGTGCTTGGAACTTTACTTTGGTAACCTGACAGATTGATAAGGCCAATGG	1560	QY	181	GACAGGCTATGGAAAGTGTCTCCAGGTCAGAATCGTTCTGGGGTCACTGT	240
QY	1561	TTGTGGGATCTAACGAGATCTCACAAACAAACAGTCTATCCCTACTAACCTCTTAAG	1620	Db	181	GACAGGCTATGGAAAGTGTCTCCAGGTCAGAATCGTTCTGGGGTCACTGT	240
Db	1561	TTGTGGGATCTAACGAGATCTCACAAACAAACAGTCTATCCCTACTAACCTCTTAAG	1620	QY	241	TACGAAGACTTCGTTTGACGAATGTCAAGGTTATTACACGTTACTTGGTT	300
QY	1621	GAGCCTAACGAGACTAAATAGTAG 1644		Db	241	TACGAAGACTTCGTTTGACGAATGTCAAGGTTATTACACGTTACTTGGTT	300
Db	1621	GAGCCTAACGAGACTAAATAGTAG 1644		QY	301	GAATCTGGTTACGGACGACGATAGAGGTTACTTCGTTCTCCGGTACACCAACTGGGT	360
QY				Db	301	GAATCTGGTTACGGACGACGATAGAGGTTACTTCGTTCTCCGGTACACCAACTGGGT	360
RESULT 2				QY	361	TCTTCAAGACCTGTTAGAGGTTTGCCAGGGTTCTGTACTCC	420
AAF23590				Db	361	TCTTCAAGACCTGTTAGAGGTTTGCCAGGGTTCTGTACTCC	420
ID	AAF23590	standard; DNA; 1644 BP.		QY	421	GTCGGTTGGGTGTCACATRGTCGGTGAGGTGACGGTATTGGCCAGGTCTGCACGGT	480
XX				Db	421	GTCGGTTGGGTGTCACATRGTCGGTGAGGTGACGGTATTGGCCAGGTCTGCACGGT	480
AC				QY	481	TTGCCAGTCGATTGGTTATCCGGTGTGAAGTGTGCTTAAGCGACTGGTACCGGT	540
XX				Db	481	TTGCCAGTCGATTGGTTATCCGGTGTGAAGTGTGCTTAAGCGACTGGTACCGGT	540
DT		23-MAR-2001 (first entry)		QY	541	TCTGTTCTTAAGTACGTTACAGAGACCACGGTAGAGTTGCCAGGGTTCTGTACTCC	420
XX				Db	541	TCTGTTCTTAAGTACGTTACAGAGACCACGGTAGAGTTGCCAGGGTTCTGTACTCC	420
DE		Chondrus crispus hexose oxidase enzyme DNA.		QY	601	CACACTGGGAGGTGTAACAGGGTACAGTTGGTACAGGATTCCGAAGGTTACGACGGT	600
XX				Db	601	CACACTGGGAGGTGTAACAGGGTACAGGATTCCGAAGGTTACGACGGT	600
KW		Hexose oxidase; marine alga; anti-fouling; ds.		QY	661	CCAATGTCCTCAAAGGGTCTCATCGCTTCAACTTACACTCTTGGGACGGTTACT	720
XX				Db	661	CCAATGTCCTCAAAGGGTCTCATCGCTTCAACTTACACTCTTGGGACGGTTACT	720
OS		Chondrus crispus.		QY	721	AGAGATGCTGCAGATTGGTACTAGTCTCAAGTTGGCTAGATGGATGGAG	780
XX				Db	721	AGAGATGCTGCAGATTGGTACTAGTCTCAAGTTGGCTAGATGGATGGAG	780
PD		14-DEC-2000.		QY	781	AATACTGTTGGTAAAGTTCAGTTCCAAATCTTCCACCAAGCAGCTGAAGAGTTGTACTTG	840
XX				Db	781	AATACTGTTGGTAAAGTTCAGTTCCAAATCTTCCACCAAGCAGCTGAAGAGTTGTACTTG	840
PF		02-JUN-2000; 2000WO-1B00829.		QY	841	TATACATCCTACTTAAAGGCCAGGAACTTCGTTATTACCAAAACTACTTCAAGGATTG	900
XX				Db	841	TATACATCCTACTTAAAGGCCAGGAACTTCGTTATTACCAAAACTACTTCAAGGATTG	900
PR		04-JUN-1999; 99GB-0013050.		QY	901	GAGGCTGACATGAAAGATCTACAAACATGCGGCTTACCAAGGCTCTGGGGTCA	960
XX				Db	901	GAGGCTGACATGAAAGATCTACAAACATGCGGCTTACCAAGGCTCTGGGGTCA	960
PA	(DANI-)	DANISCO AS.		QY	961	GCTGGTGGCTCTTCCGAGATGTTAGACTTCAAGTGGCTAGATGGATGGAG	1020
XX				Db	961	GCTGGTGGCTCTTCCGAGATGTTAGACTTCAAGTGGCTAGATGGATGGAG	1020
PI	Poulsen CH,	Kragh KM;		QY	961	GCTGGTGGCTCTTCCGAGATGTTAGACTTCAAGTGGCTAGATGGATGGAG	1020
XX				Db	961	GCTGGTGGCTCTTCCGAGATGTTAGACTTCAAGTGGCTAGATGGATGGAG	1020
DR		WPI; 2001-112148/12.		QY	961	GCTGGTGGCTCTTCCGAGATGTTAGACTTCAAGTGGCTAGATGGATGGAG	1020
XX		New anti-fouling composition, useful as a coating for treating different surfaces, e.g. outdoor woodwork, external surface of a central heating system, or a hull of a marine vessel -		Db	1021	ATGCATGACGAGCTATGGACTACCCCTCTACGCTTCTACGCTTCTACGCTT	1080
PT				Db	1021	ATGCATGACGAGCTATGGACTACCCCTCTACGCTTCTACGCTTCTACGCTT	1080
PT				QY	1081	GGTCCTAATCAGAGGGTAAGTACAAGCTGCTTACGCTTCTACGCTTCTACGCTT	1140
XX				Db	1081	GGTCCTAATCAGAGGGTAAGTACAAGCTGCTTACGCTTCTACGCTTCTACGCTT	1140
PS		Claim 5; Page 35-36; 36pp; English.		QY	1141	CAGATGTTGAGGTTACCTTACGCTTCTACGCTTCTACGCTTCTACGCTT	1200
XX				Db	1141	CAGATGTTGAGGTTACCTTACGCTTCTACGCTTCTACGCTTCTACGCTT	1200
CC		The present invention relates to a new anti-fouling composition. The composition involves a surface coating material, a hexose oxidase enzyme obtained from a marine organism and a substrate for the enzyme. The anti-fouling composition is useful as a coating formulated for treating a surface, e.g. outdoor wood work, external surface of a central heating system, or a hull of a marine vessel. It is also useful as an anti-fouling agent for marine structures exposed to seawater flora and fauna.		QY	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
XX				Db	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
SQ		Sequence 1644 BP; 430 A; 337 C; 404 G; 473 T; 0 other;		QY	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
Query Match		100.0%; Score 1644; DB 22; Length 1644;		Db	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
Best Local Similarity		100.0%; Pred. No. 0;		QY	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
Matches 1644; Conservative 0; Mismatches 0; Indels 0; Gaps 0;				Db	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
QY	1	ATGGCTACTTGGCCACAAAGGACCGGTTACATGTTATGACGTCACGCTGTGACT	60	QY	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
Db	1	ATGGCTACTTGGCCACAAAGGACCGGTTACATGTTATGACGTCACGCTGTGACT	60	Db	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
QY	61	CCAGACAAGCCTGACCAAGATGCCATCATGAGCAAGGTTCAACAGAAGATGGATT	120	QY	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
Db	61	CCAGACAAGCCTGACCAAGATGCCATCATGAGCAAGGTTCAACAGAAGATGGATT	120	Db	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260
QY	121	GGTACCAACATCGATTTCGTTACGTGCTTACCTCCACAAGGTGCTGTACTGCTTG	180	Db	1201	ATGAAAGATGCTTCTTCAGGTGATATGTCGGGGTACAGGTTGACTGCTT	1260

QY 1261 GATGCTACTGCAGTTGCTAGAGAGACTACATCAACTGCAGTACCGACATACTGG 1320
Db 1261 GATGCTACTGCAGTTGCTAGAGAGACTACATCAACTGCAGTACCGACATACTGG 1320
QY 1321 CAGGAAGAACAAAGGATGCAAGTAACGTGAAAGGGATTAGAGACTTTACGAGGAGATG 1380
Db 1321 CAGGAAGAACAAAGGATGCAAGTAACGTGAAAGGGATTAGAGACTTTACGAGGAGATG 1380
QY 1381 TATGAGCCTATGGGGTCCAGACCTAACACTCAGGTTGAGAGTGTTAAGGTGTT 1440
Db 1381 TATGAGCCTATGGGGTCCAGACCTAACACTCAGGTTGAGAGTGTTAAGGTGTT 1440
QY 1441 TTGAGGGATGCTACTTCAACTACCCGTGACTGAAACAATGGAAAGAACGTTAAG 1500
Db 1441 TTGAGGGATGCTACTTCAACTACCCGTGACTGAAACAATGGAAAGAACGTTAAG 1500
QY 1501 TATGGTGCCTTGAACAGTCTTACCTTGGTAACCTGAACAGATTGATCAAGGCCAAATGG 1560
Db 1501 TATGGTGCCTTGAACAGTCTTACCTTGGTAACCTGAACAGATTGATCAAGGCCAAATGG 1560
QY 1561 TTGGGGATCCTAACGAGATCTTACCTTGGTAACCTGAACAGATTGATCAAGGCCAAATGG 1620
Db 1561 TTGGGGATCCTAACGAGATCTTACCTTGGTAACCTGAACAGATTGATCAAGGCCAAATGG 1620
QY 1621 GAGCCTAAGCAGACTAAATAGTAG 1644
Db 1621 GAGCCTAAGCAGACTAAATAGTAG 1644

RESULT 3

ID AAZ94039 standard; DNA; 1644 BP.

XX AAZ94039;

AC XX

DT 29-AUG-2000 (first entry)

DE Synthetic hexose oxidase gene.

KW Hexose oxidase; production; fermentation; synthetic; modification; prokaryote; eukaryote; ss.

XX Synthetic.

XX Key Location/Qualifiers

FT CDS 1.:1641 /*tag= a /product= Hexose oxidase

FT EP1008651-A2.

PD 14-JUN-2000.

XX 01-DEC-1999; 99EP-0204068.

PR 09-DEC-1998; 98DK-0001630.

PA (BIOT-) BIOTEKNOLOGISK INST.

XX Stougaard P, Pedersen LH, Wolff AM, Poulsen U, Hansen OC;

XX WPI; 2000-389309/34.

DR P-PSDB; AAY83619.

PT Nucleic acid fragment useful for producing large amounts of hexose oxidase comprises nucleotide sequence encoding hexose oxidase that is modified by at least one codon

XX Claim 1; Page 25-27; 42pp; English.

PS Wild type hexose oxidase can be produced by isolating a nucleotide sequence coding for hexose oxidase naturally produced by an organism

CC and modifying the sequence so that the modified sequence is expressed, under identical conditions, at a level at least 10⁸ higher than the non-modified sequence. The method is useful for producing hexose oxidase in prokaryotic and eukaryotic cells. Previous methods of producing hexose oxidase were to isolate the enzyme from a source that naturally produces the enzyme, using host organisms which produce a relatively low level of expression. Therefore, industrial production of the enzyme is not feasible using this method. This is a much improved method which produces at least 250 mg enzyme per liter of fermentation medium.

CC Sequence 1644 BP; 430 A; 344 C; 401 G; 469 T; 0 other;

CC Query Match 99.3%; Score 1632.8; DB 21; Length 1644;

CC Best Local Similarity 99.6%; Pred. No. 0;

CC Matches 1637; Conservative 0; Mismatches 7; Indels 0; Gaps 0;

QY 1 ATGGCTACTTTGCCACAAAGGACCCAGGTACATGGTATTGACGTCACAGGCTGGTACT 60
Db 1 ATGGCTACTTTGCCACAAAGGACCCAGGTACATGGTATTGACGTCACAGGCTGGTACT 60
QY 61 CCAGACAAAGCCTGGACCCAAAGATGCCATCATGAAGCAAGGTTAACAGGAGATGGATT 120
Db 61 CCAGACAAAGCCTGGACCCAAAGATGCCATCATGAAGCAAGGTTAACAGGAGATGGATT 120
QY 121 GGTACCAACATCGATTCTGGTTACACTCCACAAAGGTGCTGTACTGCTT 180
Db 121 GGTACCAACATCGATTCTGGTTACGTGCTTACACTCCACAAAGGTGCTGTACTGCTT 180
QY 181 GACAGAGCTATGGAAAGTGTCTCCAGGTACCGTCAGAATCGTTCTGGGGTCACTGT 240
Db 181 GACAGAGCTATGGAAAGTGTCTCCAGGTACCGTCAGAATCGTTCTGGGGTCACTGT 240
QY 241 TAGGAGACTTGGTTTGCACGAAATGTCAGGCTTACAGGTACTGGTT 300
Db 241 TAGGAGACTTGGTTTGCACGAAATGTCAGGCTTACAGGTACTGGTT 300
QY 301 GAATCTGGTTACGACCGACGATAGAGGTACTTCGTTCTCCGGTGACACCAAATGGGT 360
Db 301 GAATCTGGTTACGACCGACGATAGAGGTACTTCGTTCTCCGGTGACACCAAATGGGT 360
QY 361 TCCTTCAAGACCTGTGTCAGAGACCAACGGTAGAGTTGCCAGGGTTCTGTACTCC 420
Db 361 TCCTTCAAGACCTGTGTCAGAGACCAACGGTAGAGTTGCCAGGGTTCTGTACTCC 420
QY 421 GTCGGTTGGGTGTCACATGTCGGTGGAGGTGACGGTATTGGCCAGATGGCACGGT 480
Db 421 GTCGGTTGGGTGTCACATGTCGGTGGAGGTGACGGTATTGGCCAGATGGCACGGT 480
QY 481 TTGCCAGTCGATTGTTATCCGGTGTCAAGTGTGTTAAGCGAGTCTTGACCGAAC 540
Db 481 TTGCCAGTCGATTGTTATCCGGTGTCAAGTGTGTTAAGCGAGTCTTGACCGAAC 540
QY 541 TCTGTTCTTAAGTACGTTCACAGGTTTACCGTGTGAGTTGGGCT 600
Db 541 TCTGTTCTTAAGTACGTTCACAGGTTTACCGTGTGAGTTGGGCT 600
QY 601 CACACTGGGAGGTGAGGTAACCTGGTATTACCAATACTACTTCAGGAATTG 660
Db 601 CACACTGGGAGGTGAGGTAACCTGGTATTACCAATACTACTTCAGGAATTG 660
QY 661 CCAATGCTCCAAGAGGTGTCATCGCTTCAACTTACCTCTGGACGGTTCACT 720
Db 661 CCAATGCTCCAAGAGGTGTCATCGCTTCACTTACCTCTGGACGGTTCACT 720
QY 721 AGAGATGCTGCAAGAGGTGTCATCGCTTCACTTACCTCTGGACGGTTCACT 780
Db 721 AGAGATGCTGCAAGAGGTGTCATCGCTTCACTTACCTCTGGACGGTTCACT 780
QY 781 AATACTGGTGTAGTCCAATCTCCACCAAGAGGTGTCAGAGGTGTTGTTACTTG 840
Db 781 AATACTGGTGTAGTCCAATCTCCACCAAGAGGTGTCAGAGGTGTTGTTACTTG 840
CC 781 AATACTGGTGTAGTCCAATCTCCACCAAGAGGTGTCAGAGGTGTTGTTACTTG 840

QY	841 TATACATCCTACTCTAACGACGCCGGAGAGAGAAGTGCCTAACAGACAGACACTATCATTTG 900	XX	FH	Key	Location/Qualifiers
Db	841 TATACATCCTACTCTAACGACGCCGGAGAGAGAAGTGCCTAACAGACAGACACTATCATTTG 900	FT	CDS	84..1724	
QY	901 GAGGCTGACATTGAAACAGATCTACAAACATGGGCTTACCAAGCTCTGGTGGTCAT 960	XX	FT		
Db	901 GAGGCTGACATTGAAACAGATCTACAAACATGGGCTTACCAAGCTCTGGTGGTCAT 960	PN		W09640935-A1.	
QY	961 GCTGCGTGGGCTCCTTCCTGTAGACCTAGAAAGAGACACATCCAGACTCTTAT 1020	XX	PD	19-DEC-1996.	
Db	961 GCTGCGTGGGCTCCTTCCTGTAGACCTAGAAAGAGACACATCCAGACTCTTAT 1020	PR		04-JUN-1996;	96WO-DK00238.
QY	1021 ATGCATGACGGACTATGACTACCCCTTACGCTTGACTGAGACTATCACCGTTCC 1080	XX	PA	(BIOT-)	BIOTEKNOLOGISK INST.
Db	1021 ATGCATGACGGACTATGACTACCCCTTACGCTTGACTGAGACTATCACCGTTCC 1080	XX	PI	Hansen OC,	Stougaard P;
QY	1081 GGTCTTAATCAGAGAGGTAAGTACAAGTCTGCTACATGATCAAGGACTTCCAGACTC 1140	XX	XX	WPI;	1997-052332/05.
Db	1081 GGTCTTAATCAGAGAGGTAAGTACAAGTCTGCTACATGATCAAGGACTTCCAGACTC 1140	DR		P-PSDB;	AAW20076.
QY	1141 CAGATTGATGTTATCTGGAATACTTACTGTGAGTTCTGACGGTTGACTAGTGGCGAA 1200	XX	PT	Recombinant production of polypeptide having hexose oxidase activity	- used in food preparations as antibacterial and antioxidant agent
Db	1141 CAGATTGATGTTATCTGGAATACTTACTGTGAGTTCTGACGGTTGACTAGTGGCGAA 1200	XX	PT	Claim 28;	Page 103-104; 124pp; English.
QY	1201 ATGAGGATGCTCTCAGGTGATGTTGAGTTCTGGGGTAGTTCAAAGGTTGG 1260	XX	PS	AAT76552 encodes hexose oxidase (HO) of the marine algae species Chondrus crispus. HO is useful in the production of food products, e.g. dairy products, starch-containing food products (dough) and non-dairy beverages. HO and active peptide fragments have antimicrobial and antioxidant properties and act by removing all the oxygen in a food packaging. HO and peptides of HO can also be used in an animal feed, especially silage. Further uses are to reduce, or analyse, the sugar content in a food, in the production of cosmetics, tooth care products or a pharmaceutical product and in lactone production. HO can be recombinantly produced in industrially appropriate quantities, and at a quality and purity level which renders the polypeptide suitable for industrial purposes.	
Db	1201 ATGAGGATGCTCTCAGGTGATGTTGAGTTCTGGGGTAGTTCAAAGGTTGG 1260	CC			
QY	1261 GATGCTACTGCAAGTGTCTAGAGAGGTACATCTCAACTGCACTTCTGG 1320	CC			
Db	1261 GATGCTACTGCAAGTGTCTAGAGAGGTACATCTCAACTGCACTTCTGG 1320	CC			
QY	1321 CAGGAAGAACAGGATGCAAGTTACTTACGAGGATG 1380	CC			
Db	1321 CAGGAAGAACAGGATGCAAGGATGCTAACCTGCACTTACGAGGATG 1380	CC			
QY	1381 TATGACCTTATGGTGTGTTCCAGACCTAACACTCAGGTGAGAGTGGTAAGGTGT 1440	CC			
Db	1381 TATGACCTTATGGTGTGTTCCAGACCTAACACTCAGGTGAGAGTGGTAAGGTGT 1440	XX			
QY	1441 TTGAGGGATGCTACTTCAACTACCCGTGACTTGAACTGGAAACCGTAAG 1500	SO		Sequence 1801 BP; 441 A; 448 C; 492 G; 420 T; 0 other;	
Db	1441 TTGAGGGATGCTACTTCAACTACCCGTGACTTGAACTGGAAACCGCTAAAG 1500				
QY	1501 TATGGTGCCTTGGAACTTACTTTGGTAACCTGAAACAGATTGATCAAGGCCAAATGG 1560	QY	1	ATGGCTACTTTGCCACAAAGGACCCAGGTTACATGTTATTGACGTCAACGGCTGGTACT 60	
Db	1501 TATGGTGCCTTGGAACTTACTTTGGTAACCTGAAACAGATTGATCAAGGCCAAATGG 1560	Db	84	ATGGCTACTTTCTCTCAGAAAGGACCCGGTTATGTTAATTGATGTCACGGGGCACC 143	
QY	1561 TTGGGGATCCTAACGAGATCTTCACAAACAAACAGTCTTACACTCTCTTAAG 1620	QY	61	CCAGACAAAGCCTGACCCAAAGATGCCATCCATGAAGCAAGGTTCAACAGAATGGATT 120	
Db	1561 TTGGGGATCCTAACGAGATCTTCACAAACAAACAGTCTTACACTCTCTTAAG 1620	Db	144	GCGGACAAAGCCGGACCCACGTTCTCCCTCCATGAAGCAGGGCTCAACCGGGCTGGATT 203	
QY	1621 GAGCCTAACGAGACTAAATAGTAG 1644	QY	121	GGTACCAACATCGATTGTTACGTGTTACACTCCACAAAGGTGCTGTACTGCTTG 180	
Db	1621 GAGCCTAACGAGACTAAATAGTAG 1644	Db	204	GGAACATAATCGATTGTTATGTCGGTACACTCCTCAAGGTGCTGTACTGCACTT 263	
RESULT 4		QY	181	GACAGAGCTATGGAAAAGTGTCTCCAGGTACCGTCAGAATGRRCTCTGGTGGTCACTGT 240	
AAT76552	AAT76552 standard; DNA; 1801 BP.	Db	264	GACCGTGTATGGAAAGTGTCTCCGGTACAGTCAGGTCACTGGTCTCTGGGGCATTTGC 323	
ID		QY	241	TACGAAAGACTTCCGTTTCCAGGAAATGGTCAAGGCTATTATCACGTTACTGGTTGGTT 300	
AC		Db	324	TACGAGGACTTCGTTATGACGAATGCGTCAGGCATCATCACGTCACTGGTCTCGTT 383	
XX		QY	301	GAATCTGGTTACGAGGATAGGGTACTTCGTTCTCCGGTACACCAACTGGGGT 360	
DT	12-SEP-1997 (first entry)	Db	384	GAGAGTGGTTATGACGAGGATAGGGTTACTTCGTCAGCAGTGGAGATAACAAATTGGGC 443	
DE	DNA encoding hexose oxidase, an antimicrobial/antioxidant agent.				
XX	Hexose oxidase; Chondrus crispus; marine algae; recombinant; antimicrobial; antioxidant; food preparation; dairy product; starch; beverage; animal feed; silage; sugar reduction; cosmetics; dental; toothpaste; dough; lactone production; ss.				
KW	Chondrus crispus.				
OS		QY	421	GTCGGTTGGTGTACATGTCGGTGGAGGTGACGGTATTGGCCAGATTGCAAGGT 480	

Db	66 GCAGTGTCTCAGAGAGTACATCATCAAAC TGCGTACCCAGACATACTGGCAGGAAGAA 7	SQ	Sequence 126 BP; 33 A; 35 C; 23 G; 35 T; 0 other;
Qy	1330 GACAAG 1335 6 GACAAG 1	Query Match	7.7%; Score 126; DB 22; Length 126;
Db		Best Local Similarity	100.0%; Pred. No. 8.5e-28;
		Matches	126; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
RESULT 6			
AAS06168/C		Qy	1210 GCTCTCTTCAGGTTGATATGTCGGTGGAGATCACAAGGTTGGATGCTACT 1269
ID AAS06168 standard; DNA; 126 BP.		Db	126 GCTCTCTTCAGGTTGATATGTCGGTGGAGATCACAAGGTTGGATGCTACT 67
XX		Qy	1270 GCAGTGTCTCAGAGAGTACATCATCAAAC TGCGTACCCAGACATACTGGCAGGAAGAA 1329
AC		Db	66 GCAGTGTCTCAGAGAGTACATCATCAAAC TGCGTACCCAGACATACTGGCAGGAAGAA 7
XX		Qy	1330 GACAAG 1335 6 GACAAG 1
DT	12-SEP-2001 (first entry)	Db	
XX	PCR primer 6 used to clone synthetic HOX gene.	Qy	
DE		XX	HOX; seaweed; hexose oxidase; interleukin I receptor antagonist; IL-1ra; food manufacturing; beverage; detergent; baking; dough improving agent; D-hexose:O2-oxireductase; EC 1.1.3.5; PCR primer; ss.
XX		XX	Chondrus crispus.
OS		XX	Synthetic.
XX		PN	WO200138544-A1.
XX		XX	31-MAY-2001.
PD		XX	24-NOV-2000; 2000WO-1B01886.
XX		PF	24-NOV-1999; 99GB-0027801.
PR		XX	(DANI-) DANISCO AS.
XX		XX	Johansen CL, Kjaerulff S, Madrid SM, Pedersen H, Poulsen CH;
PI		PI	Zargahi MR;
XX		DR	WPI; 2001-367695/38.
XX	The sequence represents the PCR primer 6 used to clone synthetic hexose oxidase (D-hexose:O2-oxireductase, EC 1.1.3.5), (also referred to as HOX), gene. The native HOX gene was altered using site-directed mutagenesis in order to match the codon usage to known codon preferences of biotechnologically relevant yeasts, such as <i>Pichia</i> sp., to facilitate high level production in these organisms. The invention involves a method for releasing a soluble or membrane associated intracellular protein of interest (POI) from a cell involving contacting a cell comprising a soluble or membrane associated intracellular POI with a membrane extracting composition (I) and causing the POI to be released from the cell in a soluble form. The method is useful for releasing POI, such as an interleukin I receptor antagonist (IL-1ra) which involves contacting a transformed cell comprising IL-1ra with (I) and causing IL-1ra to be released from the transformed cell, in a soluble form. The method is also useful for screening mutated cells or transformed cells producing elevated levels of intracellular POI. The method is used to release a POI for manufacturing food products, such as beverages, preparation of detergents, and in baking as a dough improving agent. The method obtains a fast, specific and economically efficient extraction of a soluble or membrane associated intracellular POI without the use of conventional cell disruption techniques. The resulting cell extract contains less contaminating intracellular DNA and is relatively free of cell wall fragments. The intracellular POI can be recovered from a eukaryotic host organism such as yeast, before glycosylation takes place. The method can be used to prevent contact of intracellular POI with the extracellular growth medium.		
PS	Claim 19; Fig 5; 108pp; English.	XX	
XX		XX	Releasing soluble or membrane associated intracellular protein from a cell for manufacturing food, comprises contacting the cell with a membrane extracting composition and causing the protein to be released in soluble form -
PS		XX	WPI; 2001-367695/38.
XX		XX	PT
PT		XX	PT
PT		XX	PR
PT		XX	09-DEC-1998; 98DK-0001630.
PT		PA	(BIOT-) BIOTEKNOLOGISK INST.
XX		XX	PS
PS		XX	Stougaard P, Pedersen LH, Wolff AM, Poulsen U, Hansen OC;
XX		XX	DR
DR		XX	WPI; 2000-389309/34.
XX		XX	PT
PT		XX	Nucleic acid fragment useful for producing large amounts of hexose oxidase comprises nucleotide sequence encoding hexose oxidase that is modified by at least one codon
PT		XX	Example 2; Page 20; 42pp; English.
PS		XX	
XX		CC	Wild type hexose oxidase can be produced by isolating a nucleotide sequence coding for hexose oxidase naturally produced by an organism and modifying the sequence so that the modified sequence is expressed, under identical conditions, at a level at least 10% higher than the non-modified sequence. The method is useful for producing hexose oxidase in prokaryotic and eukaryotic cells. Previous methods of producing hexose oxidase were to isolate the enzyme from a source that naturally produces the enzyme, using host organisms which produce a relatively low level of expression. Therefore, industrial production of the enzyme is not feasible using this method. This is a much improved method which produces at least 250 mg enzyme per liter of fermentation medium. Twenty-eight primers (See AZ94011-Z94038) with codon usage possibly optimised for expression in <i>P. pastoris</i> were used to produce the synthetic hexose oxidase gene (See AAZ94039).
SQ	Sequence 120 BP; 26 A; 26 C; 31 G; 37 T; 0 other;	XX	
Query Match	7.7%; Score 126; DB 21; Length 120;	Best Local Similarity	100.0%; Pred. No. 5.4e-26;

Qy	280 ATCAACGTTACTCGTTGGTTGAATCTGGTTACCGACGGATAGAGGTTACTTCGTCTC 339	Matches 120; Conservative 0; Mismatches 0; Indels 0; Gaps 0;	Db	60 AATCAGAGAGGTAAGTACAAGTCTCCAGACTCCAGATT 1146
Db	1 ATCAACGTTACTCGTTGGTTGAATCTGGTTACCGACGGATAGAGGTTACTTCGTCTC 60	RESULT 9	AAS06157	AAS06157 standard; DNA; 120 BP.
Qy	340 TCCGGTGCACACCAACTGGGTTCTTCAAGACCTGTCTAGAGACCACGGTAGAGTTTG 399	AC	AAS06157;	
Db	61 TCCGGTGCACACCAACTGGGTTCTTCAAGACCTGTCTAGAGACCACGGTAGAGTTTG 120	DT	12-SEP-2001 (first entry)	
RESULT 8	AAZ94024/C	DE	PCR primer hox5a used to clone synthetic HOX gene.	
ID	AAZ94024 standard; DNA; 120 BP.	XX	HOX; seaweed; hexose oxidase; interleukin I receptor antagonist; IL-1ra; food manufacturing; beverage; detergent; baking; dough improving agent; D-hexose:O2-oxireductase; EC 1.1.3.5; PCR primer; hox5a; ss.	
XX	AAZ94024;	XX	Chondrus crispus.	
AC		OS	Synthetic.	
XX		XX	WO200138544-A1.	
DE	29-AUG-2000 (first entry)	PN		
XX	Primer hox14 used in production of synthetic hexose oxidase gene.	XX		
KW	Hexose oxidase; production; fermentation; synthetic; modification;	XX		
KW	prokaryote; eukaryote; ss.	XX		
OS	Synthetic.	PD		
XX	EP1008651-A2.	XX		
PN		XX	31-MAY-2001.	
XX	14-JUN-2000.	PF		
PD		XX	24-NOV-2000; 2000WO-1B01886.	
XX		PR		
XX	01-DEC-1999; 99EP-0204068.	XX	24-NOV-1999; 99GB-0027801.	
PF		PA		
XX	09-DEC-1998; 98DK-0001630.	XX	(DANI-) DANISCO AS.	
PR		PA		
XX	(BIOT-) BIOTEKNOLOGISK INST.	XX	Johansen CL, Kjaerulff S, Madrid SM, Pedersen H, Poulsen CH;	
PA		PI	Zargahi MR;	
XX		XX	WPI; 2001-367695/38.	
PT	Nucleic acid fragment useful for producing large amounts of hexose oxidase comprises nucleotide sequence encoding hexose oxidase that is modified by at least one codon	XX	Releasing soluble or membrane associated intracellular protein from a cell for manufacturing food, comprises contacting the cell with a membrane extracting composition and causing the protein to be released in soluble form -	
PT		PS	Claim 19; Fig 5; 108pp; English.	
PT		XX	The sequence represents the PCR primer hox5a used to clone synthetic hexose oxidase (D-hexose:O2-oxireductase, EC 1.1.3.5), (also referred to as HOX), gene. The native HOX gene was altered using site-directed mutagenesis in order to match the codon usage to known codon preferences of biotechnologically relevant yeasts, such as <i>Pichia</i> sp., to facilitate high level production in these organisms. The invention involves a method for releasing a soluble or membrane associated intracellular protein of interest (POI) from a cell involving contacting a cell comprising a soluble or membrane associated intracellular POI with a membrane extracting composition (I) and causing the POI to be released from the cell in a soluble form. The method is useful for releasing POI, such as an interleukin I receptor antagonist (IL-Ira) which involves contacting a transformed cell comprising IL-Ira with (I) and causing IL-Ira to be released from the transformed cell, in a soluble form. The method is also useful for screening mutated cells or transformed cells producing elevated levels of intracellular POI. The method is used to release a POI for manufacturing food products, such as beverages, preparation of detergents, and in baking as a dough improving agent. The method obtains a fast, specific and economically efficient extraction of a soluble or membrane associated intracellular POI without the use of conventional cell disruption techniques. The resulting cell extract contains less contaminating intracellular DNA and is relatively free of cell wall fragments. The intracellular POI can be recovered from a eukaryotic host organism such as yeast, before glycosylation takes place. The method can be used to prevent contact of intracellular POI with the extracellular growth medium.	
PT		SQ	Sequence 120 BP; 26 A; 26 C; 31 G; 37 T; 0 other;	
PT	Query Match 7.3%; Score 120; DB 21; Length 120;			
PT	Best Local Similarity 100.0%; Pred. No. 5.4e-26;			
PT	Matches 120; Conservative 0; Mismatches 0; Indels 0; Gaps 0;			
Qy	1027 GACGGAGACTATGGACTACCCCTTACGCTTGAATGAGACTATCACGGTTCCGGTCTC 1086	CC		
Db	120 GACGGAGACTATGGACTACCCCTTACGCTTGAATGAGACTATCACGGTTCCGGTCTC 61	CC		
Qy	1087 AATCAGAGAGGTAAGTACAAGTCTCCAGACTCCAGATT 1146	CC		

Query Match 7.3%; Score 120; DB 22; Length 120;
 Best Local Similarity 100.0%; Pred. No. 5.4e-26;
 Matches 120; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY	1027	GACGGAGACTATGGACTACCCCTTACCGCTTGACTGAGACTATCAACGGTTCCGGTCCT	1086
Db	120	GACGGAGACTATGGACTACCCCTTACCGCTTGACTGAGACTATCAACGGTTCCGGTCCT	61
QY	1087	AATCAGAGAGGTAAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTCCAGATT	1146
Db	60	AATCAGAGAGGTAAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTCCAGATT	1

RESULT 11
 AAZ94019
 ID AAZ94019 standard; DNA; 118 BP.
 XX
 AC AAZ94019;
 XX
 DT 29-AUG-2000 (first entry)
 XX
 DE Primer box9 used in production of synthetic hexose oxidase gene.
 XX
 KW Hexose oxidase; production; fermentation; synthetic; modification;
 XX
 KW prokaryote; eukaryote; ss.
 XX
 OS Synthetic.
 XX
 PN EP1008651-A2.
 XX
 PD 14-JUN-2000.
 XX
 PF 01-DEC-1999; 99EP-0204068.
 XX
 PR 09-DEC-1998; 98DK-0001630.
 XX
 PA (BIOT-) BIOTEKNOLOGISK INST.
 XX
 PI Stougaard P, Pedersen LH, Wolff AM, Poulsen U, Hansen OC;
 XX
 DR WPI; 2000-389309/34.

XX
 PT Nucleic acid fragment useful for producing large amounts of hexose
 PT oxidase comprises nucleotide sequence encoding hexose oxidase that is
 PT modified by at least one codon
 XX
 PS Example 2; Page 21; 42pp; English.

XX
 CC Wild type hexose oxidase can be produced by isolating a nucleotide
 CC sequence coding for hexose oxidase naturally produced by an organism
 CC and modifying the sequence so that the modified sequence is
 CC expressed, under identical conditions, at a level at least 10% higher
 CC than the non-modified sequence. The method is useful for producing
 CC hexose oxidase in prokaryotic and eukaryotic cells. Previous methods
 CC of producing hexose oxidase were to isolate the enzyme from a source
 CC that naturally produces the enzyme, using host organisms which
 CC produce a relatively low level of expression. Therefore, industrial
 CC production of the enzyme is not feasible using this method. This is a
 CC much improved method which produces at least 250 mg enzyme per liter
 CC of fermentation medium. Twenty-eight primers (See AAZ94011-294038)
 CC with codon usage possibly optimised for expression in *P. pastoris*
 CC were used to produce the synthetic hexose oxidase gene (See AAZ94039).
 XX
 SQ Sequence 120 BP; 33 A; 25 C; 29 G; 33 T; 0 other;

Query Match 7.2%; Score 118; DB 21; Length 118;
 Best Local Similarity 100.0%; Pred. No. 2.1e-25;

Matches 118; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 639 CAAATCACTTCAAGGATTGCCAATGTCCTCAAAGGGTGTATCGCTTCAACTTACA 698
 1 CAAATCACTTCAAGGATTGCCAATGTCCTCAAAGGGTGTATCGCTTCAACTTACA 60
 Db 61 CTTCTCTGGACGGTTCACTAGAGATGCCTGCAAGATTGTTGACTAAGTACTC 118
 RESULT 12
 AAS06161
 ID AAS06161 standard; DNA; 118 BP.
 XX AAS06161;
 AC
 DT 12-SEP-2001 (first entry)
 XX
 DE PCR primer hox9a used to clone synthetic HOX gene.
 XX
 KW HOX; seaweed; hexose oxidase; interleukin I receptor antagonist; IL-1ra;
 KW food manufacturing; beverage; detergent; baking; dough improving agent;
 KW D-hexose:O2-oxireductase; EC 1.1.3.5.; PCR primer; hox9a; ss.
 XX
 OS Chondrus crispus.
 OS Synthetic.
 PN WO200138544-A1.
 XX
 PD 31-MAY-2001.
 XX
 PR 24-NOV-1999; 99GB-0027801.
 XX
 PA (DANI-) DANISCO AS.
 XX
 PI Johansen CL, Kjaerulff S, Madrid SM, Pedersen H, Poulsen CH;
 PI Zarghani MR;
 XX
 DR WPI; 2001-367695/38.
 XX
 PT Releasing soluble or membrane associated intracellular protein from a
 PT cell for manufacturing food, comprises contacting the cell with a
 PT membrane extracting composition and causing the protein to be released
 PT in soluble form -
 XX
 PS Claim 19; Fig 5; 108pp; English.
 XX
 CC The sequence represents the PCR primer hox9a used to clone synthetic
 CC hexose oxidase (D-hexose:O2-oxireductase, EC 1.1.3.5), (also referred to
 CC as HOX), gene. The native HOX gene was altered using site-directed
 CC mutagenesis in order to match the codon usage to known codon preferences
 CC of biotechnologically relevant yeasts, such as *Pichia* sp., to facilitate
 CC high level production in these organisms. The invention involves a method
 CC for releasing a soluble or membrane associated intracellular protein of
 CC interest (POI) from a cell involving contacting a cell comprising a
 CC soluble or membrane associated intracellular POI with a membrane
 CC extracting composition (I) and causing the POI to be released from the
 CC cell in a soluble form. The method is useful for releasing POI, such as
 CC an interleukin 1 receptor antagonist (IL-1ra) which involves contacting a
 CC transformed cell comprising IL-1ra with (I) and causing IL-1ra to be
 CC released from the transformed cell, in a soluble form. The method is also
 CC useful for screening mutated cells or transformed cells producing
 CC elevated levels of intracellular POI. The method is used to release a POI
 CC for manufacturing food products, such as beverages, preparation of
 CC detergents, and in baking as a dough improving agent. The method obtains
 CC a fast, specific and economically efficient extraction of a soluble or
 CC membrane associated intracellular POI without the use of conventional
 CC cell disruption techniques. The resulting cell extract contains less
 CC contaminating intracellular DNA and is relatively free of cell wall
 fragments. The intracellular POI can be recovered from a eukaryotic host

CC organism such as yeast, before glycosylation takes place. The method can
 CC be used to prevent contact of intracellular POI with the extracellular
 CC growth medium.
 XX Sequence 118 BP; 30 A; 27 C; 22 G; 39 T; 0 other;
 SQ Query Match Best Local Similarity 100.0%; Pred. No. 2.1e-25;
 Matches 118; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 639 CAAATCACTTCAAGGATTGCCAATGTCCTCAAAGGGTGTATCGCTTCAACTTACA 698
 1 CAAATCACTTCAAGGATTGCCAATGTCCTCAAAGGGTGTATCGCTTCAACTTACA 60
 Db 61 CTTCTCTGGACGGTTCACTAGAGATGCCTGCAAGATTGTTGACTAAGTACTC 118
 RESULT 13
 AAZ94029
 ID AAZ94029 standard; DNA; 117 BP.
 XX
 AC AAZ94029;
 XX
 DE 29-AUG-2000 (first entry)
 XX
 Primer hox19 used in production of synthetic hexose oxidase gene.
 XX
 KW Hexose oxidase; production; fermentation; synthetic; modification;
 KW prokaryote; eukaryote; ss.
 XX
 OS Synthetic.
 XX
 PN EP1008651-A2.
 XX
 PD 14-JUN-2000.
 XX
 PR 01-DEC-1999; 99EP-0204068.
 XX
 PR 09-DEC-1998; 98DK-0001630.
 XX
 PA (BIOT-) BIOTEKNOLOGISK INST.
 XX
 PT Stougaard P, Pedersen LH, Wolff AM, Poulsen U, Hansen OC;
 PT
 DR WPI; 2000-389309/34.
 XX
 PT Nucleic acid fragment useful for producing large amounts of hexose
 PT oxidase comprises nucleotide sequence encoding hexose oxidase that is
 PT modified by at least one codon
 XX
 PS Example 2; Page 23; 42pp; English.
 XX
 CC Wild type hexose oxidase can be produced by isolating a nucleotide
 CC sequence coding for hexose oxidase naturally produced by an organism
 CC and modifying the sequence so that the modified sequence is
 CC expressed, under identical conditions, at a level at least 10% higher
 CC than the non-modified sequence. The method is useful for producing
 CC hexose oxidase in prokaryotic and eukaryotic cells. Previous methods
 CC of producing hexose oxidase were to isolate the enzyme from a source
 CC that naturally produces the enzyme, using host organisms which
 CC produce a relatively low level of expression. Therefore, industrial
 CC production of the enzyme is not feasible using this method. This is a
 CC much improved method which produces at least 250 mg enzyme per liter
 CC of fermentation medium. Twenty-eight primers (See AAZ94011-294038)
 CC with codon usage possibly optimised for expression in *P. pastoris*
 CC were used to produce the synthetic hexose oxidase gene (See AAZ94039).
 XX
 SQ Sequence 117 BP; 36 A; 23 C; 26 G; 32 T; 0 other;
 Query Match Best Local Similarity 7.1%; Score 117; DB 21; Length 117;

Matches 117; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Query 1489 AAGAACGCTAAGTATGGTCGCCTGGAACTTTGGGTAACCTGAAAGATTGATC 1548
 ID 1 AAGAACGCTAAGTATGGTCGCCTGGGTAACCTGAAAGATTGATC 60
 Sequence 117 BP; 36 A; 23 C; 26 G; 32 T; 0 other;
 SQ

Query Match 7.1%; Score 117; DB 22; Length 117;
 Best Local Similarity 100.0%; Pred. No. 4.3e-25;
 Matches 117; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

RESULT 14
 AAS06171
 ID AAS06171 standard; DNA; 117 BP.

Query 1549 AAGGCCAAATGGTTGGGATCTTACAGAGATCTCACAAACAGCTATCCCT 1605
 ID 61 AAGGCCAAATGGTTGGGATCTTACAGAGATCTCACAAACAGCTATCCCT 117
 AC
 XX
 DT 12-SEP-2001 (first entry)

DE PCR primer 9 used to clone synthetic HOX gene.

XX HOX; seaweed; hexose oxidase; interleukin I receptor antagonist; IL-1ra;
 KW food manufacturing; beverage; detergent; baking; dough improving agent;
 KW D-hexose:O2-oxireductase; EC 1.1.3.5; PCR primer; ss.

XX OS Chondrus crispus.

PN OS Synthetic.

XX WO200138544-A1.

PN PD 31-MAY-2001.

XX PF 24-NOV-2000; 2000WO-1B01886.

XX PR 24-NOV-1999; 99GB-0027801.

PA (DANI-) DANISCO AS.

XX PI Johansen CL, Kjaerulff S, Madrid SM, Pedersen H, Poulsen CH;

XX PI Zargahi MR;

XX DR WPI; 2001-367695/38.

XX PT Releasing soluble or membrane associated intracellular protein from a
 PT cell for manufacturing food, comprises contacting the cell with a
 PT membrane extracting composition and causing the protein to be released
 in soluble form -

XX PT Claim 19; Fig 5; 108pp; English.

CC The sequence represents the PCR primer 9 used to clone synthetic
 CC hexose oxidase (D-hexose:O2-oxireductase, EC 1.1.3.5), (also referred to
 CC as HOX), gene. The native HOX gene was altered using site-directed
 CC mutagenesis in order to match the codon usage to known codon preferences
 CC of biotechnologically relevant yeasts, such as *Pichia* sp., to facilitate
 CC high level production in these organisms. The invention involves a method
 CC for releasing a soluble or membrane associated intracellular protein of
 CC interest (POI) from a cell involving contacting a cell comprising a
 CC soluble or membrane associated intracellular POI with a membrane
 CC extracting composition (I) and causing the POI to be released from the
 CC cell in a soluble form. The method is useful for releasing POI, such as
 CC an interleukin I receptor antagonist (IL-1ra) which involves contacting a
 CC transformed cell comprising IL-1ra with (I) and causing IL-1ra to be
 CC released from the transformed cell, in a soluble form. The method is also
 CC useful for screening mutated cells or transformed cells producing
 CC elevated levels of intracellular POI. The method is used to release a POI
 CC for manufacturing food products, such as beverages, preparation of
 CC detergents, and in baking as a dough improving agent. The method obtains
 CC a fast, specific and economically efficient extraction of a soluble or
 CC membrane associated intracellular POI without the use of conventional
 CC cell disruption techniques. The resulting cell extract contains less
 CC contaminating intracellular DNA and is relatively free of cell wall
 CC fragments. The intracellular POI can be recovered from a eukaryotic host

RESULT 15
 AAS06162/C
 ID AAS06162 standard; DNA; 118 BP.

XX AC AAS06162;

XX DE PCR primer hox10b used to clone synthetic HOX gene.

XX KW HOX; seaweed; hexose oxidase; interleukin I receptor antagonist; IL-1ra;
 KW food manufacturing; beverage; detergent; baking; dough improving agent;
 KW D-hexose:O2-oxireductase; EC 1.1.3.5; PCR primer; hox10b; ss.

XX OS Chondrus crispus.

PN OS Synthetic.

XX PN WO200138544-A1.

PN PD 31-MAY-2001.

XX PF 24-NOV-2000; 2000WO-1B01886.

XX PR 24-NOV-1999; 99GB-0027801.

PA (DANI-) DANISCO AS.

XX PI Johansen CL, Kjaerulff S, Madrid SM, Pedersen H, Poulsen CH;

XX PI Zargahi MR;

XX DR WPI; 2001-367695/38.

XX PT Releasing soluble or membrane associated intracellular protein from a
 PT cell for manufacturing food, comprises contacting the cell with a
 PT membrane extracting composition and causing the protein to be released
 PT in soluble form -

XX PT Claim 19; Fig 5; 108pp; English.

CC The sequence represents the PCR primer hox10b used to clone synthetic
 CC hexose oxidase (D-hexose:O2-oxireductase, EC 1.1.3.5), (also referred to
 CC as HOX), gene. The native HOX gene was altered using site-directed
 CC mutagenesis in order to match the codon usage to known codon preferences
 CC of biotechnologically relevant yeasts, such as *Pichia* sp., to facilitate
 CC high level production in these organisms. The invention involves a method
 CC for releasing a soluble or membrane associated intracellular protein of
 CC interest (POI) from a cell involving contacting a cell comprising a
 CC soluble or membrane associated intracellular POI with a membrane
 CC extracting composition (I) and causing the POI to be released from the
 CC cell in a soluble form. The method is useful for releasing POI, such as
 CC an interleukin I receptor antagonist (IL-1ra) which involves contacting a
 CC transformed cell comprising IL-1ra with (I) and causing IL-1ra to be
 CC released from the transformed cell, in a soluble form. The method is also
 CC useful for screening mutated cells or transformed cells producing

elevated levels of intracellular POI. The method is used to release a POI for manufacturing food products, such as beverages, preparation of detergents, and in baking as a dough improving agent. The method obtains a fast, specific and economically efficient extraction of a soluble or membrane associated intracellular POI without the use of conventional cell disruption techniques. The resulting cell extract contains less contaminating intracellular DNA and is relatively free of cell wall fragments. The intracellular POI can be recovered from a eukaryotic host organism such as yeast, before glycosylation takes place. The method can be used to prevent contact of intracellular POI with the extracellular growth medium.

SQ Sequence 118 BP; 39 A; 26 C; 20 G; 33 T; 0 other;

Query Match 7.1%; Score 116.4; DB 22; Length 118;
Best Local Similarity 99.2%; Pred. No. 6.5e-25;
Matches 117; Conservative 0; Mismatches 1; Indels 0; Gaps 0

Db
118 GCAAGATTTGTTGACTAAGTACTTCAGTTGGCTAGATGTGATTGGAAGAACTGTGG 59

Search completed: June 15, 2003, 02:56:53
Job time : 389 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

score greater than or equal to the score of the result being printed,
and is derived by analysis of the total score distribution.

SUMMARIES

Run on:	June 15, 2003, 02:45:32 ; Search time 4309 Seconds (without alignments) 11103.507 Million cell updates/sec				
Title:	US-09-998-284-1				
perfect score:	1644				
Sequence:	1 atggctactttgccacaaaa.....ctaaagcagactaaatagtag 1644				
Scoring table:	IDENTITY_NUC				
	Gapop 10.0 , Gapext 1.0				
Searched:	2054640 seqs, 14551402878 residues				
Total number of hits satisfying chosen parameters:	4109280				
Minimum DB seq length:	0				
Maximum DB seq length:	200000000				
Post-processing:	Minimum Match 0% Maximum Match 100% Listing first 45 summaries				
Database :	GenEmbl: * 1: gb_ba: * 2: gb_htg: * 3: gb_in: * 4: gb_om: * 5: gb_ov: * 6: gb_pat: * 7: gb_ph: * 8: gb_pl: * 9: gb_pr: * 10: gb_ro: * 11: gb_sts: * 12: gb_sy: * 13: gb_un: * 14: gb_vl: * 15: em_ba: * 16: em_fun: * 17: em_hum: * 18: em_in: * 19: em_mu: * 20: em_om: * 21: em_or: * 22: em_cv: * 23: em_pat: * 24: em_ph: * 25: em_pl: * 26: em_ro: * 27: em_sts: * 28: em_un: * 29: em_vl: * 30: em_htg_hum: * 31: em_htg_inv: * 32: em_htg_other: * 33: em_htg_mus: * 34: em_htg_pln: * 35: em_htg_rod: * 36: em_htg_mam: * 37: em_htg_vrt: * 38: em_sy: * 39: em_htgo_hum: * 40: em_htgo_mus: * 41: em_htgo_other: *				
Result No.	Score	Query Match %	Length	DB ID	Description
1	1644	100.0	1644	6 AX155104	AX155104 Sequence
2	1638	99.6	1638	12 SCO294935	AJ294935 Synthetic
3	1280.8	77.9	1881	8 CCU89770	U89770 Chondrus cr
4	1279.2	77.8	1801	6 AR159722	AR159722 Sequence
5	1279.2	77.8	1801	6 AX030569	AX030569 Sequence
6	126	7.7	126	6 AX155099	AX155099 Sequence
7	120	7.3	120	6 AX155088	AX155088 Sequence
8	120	7.3	120	6 AX155097	AX155097 Sequence
9	118	7.2	118	6 AX155092	AX155092 Sequence
10	117	7.1	117	6 AX155102	AX155102 Sequence
11	116.4	7.1	118	6 AX155093	AX155093 Sequence
12	116	7.1	116	6 AX155091	AX155091 Sequence
13	111	6.8	111	6 AX155101	AX155101 Sequence
14	109	6.6	109	6 AX155089	AX155089 Sequence
15	109	6.6	109	6 AX155090	AX155090 Sequence
16	108	6.6	108	6 AX155098	AX155098 Sequence
17	108	6.6	108	6 AX155100	AX155100 Sequence
18	107	6.5	107	6 AX155085	AX155085 Sequence
19	106	6.4	106	6 AX155086	AX155086 Sequence
20	106	6.4	106	6 AX155087	AX155087 Sequence
21	102	6.2	102	6 AX155095	AX155095 Sequence
22	92.8	5.6	96	6 AX155094	AX155094 Sequence
23	85.4	5.2	10668	1 AE013658	AE013658 Yersinia
24	85.4	5.2	214050	1 AJ414142	AJ414142 Yersinia
25	85.2	5.2	90	6 AX155096	AX155096 Sequence
26	81.8	5.0	24225	1 SC2C4	AL1512902 Streptomy
27	79.6	4.8	215050	1 AL646057	AL646057 Ralstonia
28	77.2	4.7	25883	1 AB008466	AB008466 Streptomy
29	69.2	4.2	26195	1 SC1G7	AL591083 Streptomy
30	63	3.8	78	6 AX155103	AX155103 Sequence
31	60	3.6	1620	6 AX089430	AX089430 Sequence
32	60	3.6	45624	6 AX089419	AX089419 Sequence
33	60	3.6	50000	6 AX089416	AX089416 Sequence
34	60	3.6	80161	1 AY07564	AY07564 Saccharop
35	60	3.6	80161	6 AR165018	AR165018 Sequence
36	56.8	3.5	2088	1 SPU80222	U80222 Streptomyce
37	56	3.4	61	6 AX155084	AX155084 Sequence
38	43.6	2.7	1141	6 AX083744	AX083744 Sequence
39	42.6	2.6	1738	8 AY051000	AY051000 Arabidops
40	42.6	2.6	89473	8 T1K7	AC013427 Sequence
41	42	2.6	1639	8 AY113892	AY113892 Arabidops
42	42	2.6	1785	8 AF360332	AF360332 Arabidops
43	42	2.6	51939	9 AC099341	AC099341 Homo sapi
44	42	2.6	91566	8 F25C20	AC007296 Arabidops
45	41.8	2.5	1584	6 AX412693	AX412693 Sequence

ALIGNMENTS

RESULT 1
AX155104
LOCUS AX155104
DEFINITION Sequence 22 from Patent WO0138544.
ACCESSION AX155104
VERSION AX155104.1 GI:14536652
KEYWORDS SOURCE synthetic construct.
ORGANISM artificial sequences.
REFERENCE 1 (bases 1 to 1644)
AUTHORS Johansen,C.L., kj Rulfet,S.R., Madrid,S.M., Pedersen,H., Poulsen,C.H. and zargahi,M.R.
TITLE Method for purifying proteins
JOURNAL Patent: WO 0138544-A 22 31-MAY-2001;

FEATURES	DANISCO A/S (DK)
source	Location/Qualifiers
QY	1. . 1644
	/organism="synthetic construct"
	/db_xref="taxon:32630"
	/note="Nucleotide sequence"
BASE COUNT	430 a 337 c 404 g 473 t
ORIGIN	
Query Match	100.0%; Score 1644; DB 6; Length 1644;
Best Local Similarity	100.0%; Pred. No. 0;
Matches 1644; Conservative	0; Mismatches 0; Indels 0; Gaps 0;
Db	1 ATGGCTACTTGCACAAAGGACCCAGGTACATTTGACGTCAACGCTGGTACT
Db	1 ATGGCTACTTGCACAAAGGACCCAGGTACATTTGACGTCAACGCTGGTACT 60
QY	61 CCAGACAAGCCTGACCCAAAGGACCCAGGTACATTTGACGTCAACGCTGGTACT
Db	61 CCAGACAAGCCTGACCCAAAGGACCCAGGTACATTTGACGTCAACGCTGGTACT 120
QY	121 GGTACCAACATCGATTCTCGTTACACTCCACAAAGGTCACAGAAGATGGATT
Db	121 GGTACCAACATCGATTCTCGTTACACTCCACAAAGGTCACAGAAGATGGATT 180
QY	181 GACAGAGCTATGAAAGTGTCTCAGGTACCGTCAAGAATCGTTCTGGTCACGT
Db	181 GACAGAGCTATGAAAGTGTCTCAGGTACCGTCAAGAATCGTTCTGGTCACGT 240
QY	241 TACGAAGACTTCGTTTGACCGAATGTTCAAGGTTATTACAGTTACTGGTTGGT
Db	241 TACGAAGACTTCGTTTGACCGAATGTTCAAGGTTATTACAGTTACTGGTTGGT 300
QY	301 GAATCTGGTTACGACCGATAGAGGTTACTTCGTCCTCCGGTGACACCAACTGGGT
Db	301 GAATCTGGTTACGACCGATAGAGGTTACTTCGTCCTCCGGTGACACCAACTGGGT 360
QY	361 TCCTTCAAGACCTGTTACGACCGATAGAGGTTACTTCGTCCTCCGGTGACACCAACTGGGT
Db	361 TCCTTCAAGACCTGTTACGACCGATAGAGGTTACTTCGTCCTCCGGTGACACCAACTGGGT 420
QY	421 GTCGGTTGGGGTCACATGTCGGGGTACCGGTATTGCCAGACCTAACACTCAGGGT
Db	421 GTCGGTTGGGGTCACATGTCGGGGTACCGGTATTGCCAGACCTAACACTCAGGGT 480
QY	481 TTGCGCACTTCGTTGGGTGACAGACCCACGGTAGAGTTGGCCAGGTTCCTGTACTCC
Db	481 TTGCGCACTTCGTTGGGTGACAGACCCACGGTAGAGTTGGCCAGGTTCCTGTACTCC 540
QY	541 TCTGTTCTTAAGTACGTTCACAGGATCCGAAAGTAAACGCGGTGAGTTGGGT
Db	541 TCTGTTCTTAAGTACGTTCACAGGATCCGAAAGTAAACGCGGTGAGTTGGGT 600
QY	601 CACACTGGGGAGGTAACTTCGGTATTACCAATACTTCAGGATTG
Db	601 CACACTGGGGAGGTAACTTCGGTATTACCAATACTTCAGGATTG 660
QY	661 CCAATGTCCTCAAAGAGGGTCACTCGCTCTAACTTACACTCTGGACGGTTCACT
Db	661 CCAATGTCCTCAAAGAGGGTCACTCGCTCTAACTTACACTCTGGACGGTTCACT 720
QY	721 AGAGATGCCTTGCAAGATTGGTAGATGTGATGGAG
Db	721 AGAGATGCCTTGCAAGATTGGTAGATGTGATGGAG 780
QY	781 AATACTGTTGTAAGTCCAATTCACCAAGGACAGACTATCATTTG
Db	781 AATACTGTTGTAAGTCCAATTCACCAAGGACAGACTATCATTTG 840
Db	781 AATACTGTTGTAAGTCCAATTCACCAAGGACAGACTATCATTTG 840
QY	841 TATACATCCTACTCTAACGACGCCAGAGGAAGTGGCCAAAGACAGACTATCATTTG
Db	841 TATACATCCTACTCTAACGACGCCAGAGGAAGTGGCCAAAGACAGACTATCATTTG 900
QY	901 GAGGCTGACATGACAGATCTACAAACATGGCAGCCTACCAAAGCTCTGGGGTCAT
Db	901 GAGGCTGACATGACAGATCTACAAACATGGCAGCCTACCAAAGCTCTGGGGTCAT 960
QY	961 GCTGGTTGGCTCCCTTCCCTGTAGACCTAGAAAGAGACACACATCCAAGACTCTTAT
Db	961 GCTGGTTGGCTCCCTTCCCTGTAGACCTAGAAAGAGACACACATCCAAGACTCTTAT 1020
QY	1021 ATGCATGACGAGACTATGGACTACCCCTTCTACGCTTGACTGAGACTATCAACGGTTCC
Db	1021 ATGCATGACGAGACTATGGACTACCCCTTCTACGCTTGACTGAGACTATCAACGGTTCC 1080
QY	1081 GGTCTTAATCAGAGAGGTAAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTTC
Db	1081 GGTCTTAATCAGAGAGGTAAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTTC 1140
QY	1141 CAGATTGATGTTACTGGAATACTTACTGAGGTTCTGACGGTTGACTAGTGCCTTC
Db	1141 CAGATTGATGTTACTGGAATACTTACTGAGGTTCTGACGGTTGACTAGTGCCTTC 1200
QY	1201 ATGAAGGATGCTCTTCAGGTGATATGTTGGTGGAGATCCACAAAGGTTGTTGG
Db	1201 ATGAAGGATGCTCTTCAGGTGATATGTTGGTGGAGATCCACAAAGGTTGTTGG 1260
QY	1261 GATGCTACTGCAGTTGCTCAGAGAGAGTACATCATCAAACTGCAGTACCGAGACATACTGG
Db	1261 GATGCTACTGCAGTTGCTCAGAGAGAGTACATCATCAAACTGCAGTACCGAGACATACTGG 1320
QY	1321 CAGGAAGAACAGGATGCAAGTTACTGAAAGTGGATTAGAGACTTTACGAGGAGATG
Db	1321 CAGGAAGAACAGGATGCAAGTTACTGAAAGTGGATTAGAGACTTTACGAGGAGATG 1380
QY	1381 TATGAGCCTTATGGTGGTTCAGACCTAACACTCAGGGTGGAGAGTGGTAAGGTGT
Db	1381 TATGAGCCTTATGGTGGTTCAGACCTAACACTCAGGGTGGAGAGTGGTAAGGTGT 1440
QY	1441 TTGAGGATGCTACTCAACTACCCCTGATGTTGACTTGACAACACTCAGGGTGGAGAGTGGT
Db	1441 TTGAGGATGCTACTCAACTACCCCTGATGTTGACTTGACAACACTCAGGGTGGAGAGTGGT 1500
QY	1501 TATGGTGCCTTGGAACTTTGGTAACCTGAAACAGATTGATCAAGGCCAAATGG
Db	1501 TATGGTGCCTTGGAACTTTGGTAACCTGAAACAGATTGATCAAGGCCAAATGG 1560
QY	1561 TTGTTGGATCCTAACGAGACTTCAACAAACAAACAGTCTACCCACTAACCTCTAAG
Db	1561 TTGTTGGATCCTAACGAGACTTCAACAAACAAACAGTCTACCCACTAACCTCTAAG 1620
QY	1621 GAGCCTAAGCAGACTAAATGAG
Db	1621 GAGCCTAAGCAGACTAAATGAG 1644
QY	1621 GAGCCTAAGCAGACTAAATGAG 1644
RESULT 2	
SC0294935	
LOCUS	SC0294935
DEFINITION	Synthetic construct partial shox gene for hexose oxidase.
ACCESSION	AJ294935
VERSION	AJ294935.1 GI:10798685
KEYWORDS	hexose oxidase; SHOX gene.
SOURCE	
ORGANISM	synthetic construct.
	synthetic construct.
	artificial sequences.
REFERENCE	
AUTHORS	1 (bases 1 to 1638)
TITLE	Recombinant production of hexose oxidase from the red alga Chondrus crispus
JOURNAL	Unpublished
REFERENCE	2 (bases 1 to 1638)
AUTHORS	Stougaard, P.
TITLE	Direct Submission
JOURNAL	Submitted (03-OCT-2000) Stougaard, P., Enzyme Technology, 2000, 20, 207-211

FEATURES source	DENMARK	Location/Qualifiers
gene	1. .1638	/organism="synthetic construct" /db_xref="taxon:32630" /note="Chondrus crispus sequence with codon usage optimized to <i>Pichia pastoris</i> " 1. .1638 /gene="SHOX"
CDS	1. .>1638	/gene="SHOX" /EC_number="1.1.3.5" /note="86% sequence homology to native gene; 100% identity with native aa sequence" /codon_start=1 /evidence=experimental /transl_table=11 /product="hexose oxidase" /protein_id="CAC12830.1" /db_xref="GI:10798686"
ORIGIN	428 a 337 c 402 g 471 t	/translation="MATLQKDPGYIVIDVNAGTPDKPDPRLLPSMKQGFNRWRIGNTI DFVYVWVYTPOGACTALDRAMEKCSPTGTVRIVSGGHCHYDFVFDECVKAIINVGLVES GYDDDRGYFVSGDTNWGSFKTLFRDHGRVLPGSCYSVGLGGHITVGGDGLARHG LPWDWLISGVVEVVKPVLTDLSVLKYVHKDSEGNGELFWAHTGGGGNFGITKYYFK DLPMSPRGVIASNLHFSWDGFTRDALQDLQIYKTCEPTKALRGHWAFFPVRPRKH VMYLTSYSNDAEREVAQDRHYLEADIEQIYKTCEPTKALRGHWAFFPVRPRKH TSKTSMHDETMDFYPAI-TETTINGSPNQRGKSYAMIKDFPDPFOIDVIVKYLTE PDGLTSAEMKDALLOQDMFPGGEIHKVUVDATAVAYOREYIILQOQTYWQEEKDAWNLF KWIRDFYEEMYEYGGVPDNTQVESGKGVFEGCYFNYPDVLDNNWKNGKYGALEYF LGNLNRLIKAKWLWDPNEIFTNKOSIPTKPLKEPKQT"
BASE COUNT		
Query Match		99.6%; Score 1638; DB 12; Length 1638;
Best Local Similarity		100.0%; Pred. No. 0;
Matches	1638;	Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Qy	1	ATGGCTACTTTGCCACAAAAGGACCCAGGTACATTGTTATTGACGTCAACGGCTGGTACT 60
Db	1	ATGGCTACTTTGCCACAAAAGGACCCAGGTACATTGTTATTGACGTCAACGGCTGGTACT 60
Qy	61	CCAGACAAGCCCAAGATTGCCATCCATGGAGCAAGGTTCAACAGAAGATGGATT 120
Db	61	CCAGACAAGCCCAAGATTGCCATCCATGGAGCAAGGTTCAACAGAAGATGGATT 120
Qy	121	GGTACCAACATCGATTCTGTTACGTCTGACTCCACAGGTCTGTTCAACAGAAGATGGATT 120
Db	121	GGTACCAACATCGATTCTGTTACGTCTGACTCCACAGGTCTGTTCAACAGAAGATGGATT 120
Qy	181	GACAGAGCTATGGAAAGTGTCTCCAGGTACCGTCAGAATCGTTCTGGTGTACTGT 240
Db	181	GACAGAGCTATGGAAAGTGTCTCCAGGTACCGTCAGAATCGTTCTGGTGTACTGT 240
Qy	241	TACGAAGACTTCGTTGCACGAATGTTCAAGCTTATTAACGTTACTGGTTGGTT 300
Db	241	TACGAAGACTTCGTTGCACGAATGTTCAAGCTTATTAACGTTACTGGTTGGTT 300
Qy	301	GAATCTGGTTACGACGACGATAGAGGTACTTGGTCTCTCCGGTGACACCAACTGGGT 360
Db	301	GAATCTGGTTACGACGACGATAGAGGTACTTGGTCTCTCCGGTGACACCAACTGGGT 360
Qy	361	TCCTTCAGACACTTGTTCAGAGACCAACGGTAGAGTTGCCAGGTGGTCTCTGTACTCC 420
Db	361	TCCTTCAGACACTTGTTCAGAGACCAACGGTAGAGTTGCCAGGTGGTCTCTGTACTCC 420
Qy	421	GTCGGTTGGGGTCACTATGTCGGGTGAGGTTCAGGGTACGGTTGCACGGT 480
Db	421	GTCGGTTGGGGTCACTATGTCGGGTGAGGTTCAGGGTACGGTTGCACGGT 480
Qy	481	TGCGCAGTCGATTGGTTACCGGTGAGTTGACCGGAGAC 540
Db	481	TGCGCAGTCGATTGGTTACCGGTGAGTTGACCGGAGAC 540
Qy	1621	GAGCCTAACGAGCTAA 1638

Db	1621	GAGCCTAAGCAGACTAA	1638		Qy	301	GAATCTGGTTACGACGACGATAGAGGTACTTCGTCCTTCCGGTAGACACCAACTGGGT	360
RESULT	3				Db	465	GAGAGTGGTTATGACGACGATAGGGTTACTTCGTCAGCAGTGAGATAACAAATTGGGC	524
CCU89770					Qy	361	TCCTTCAGAACCTTGTTCAGAGACCACGGTAGAGTTGCCAGGTCTCTGTACTCC	420
DEFINITION	Chondrus crispus hexose oxidase mRNA, complete cds.				Db	525	TCCCTCAAGACCTTGTTCAGAGACCACGGTAGAGTTGCCAGGTCTCTGTACTCC	584
ACCESSION	U89770				Qy	421	GTCCGRTTGGGTGTCACATGTGCGGTGAGGTACGGTATTGCCAGATGACCGGT	480
VERSION	U89770.1				Db	585	GTCCGGCTCGGTGCCACATGTGCGGGAGGTGACGGCATTTGGCCGCTTGATGCC	644
KEYWORDS								
SOURCE	Chondrus crispus							
ORGANISM	Chondrus crispus							
Eukaryota; Rhodophyta; Florideophyceae; Gigartinales;								
Gigartinaceae; Chondrus.								
REFERENCE								
AUTHORS	Hansen,O.C. and Stougaard,P.							
TITLE	Hexose oxidase from the red alga Chondrus crispus. Purification, molecular cloning, and expression in <i>Pichia pastoris</i>							
JOURNAL	J. Biol. Chem. 272 (17), 11581-11587 (1997)							
MEDLINE	97269074							
PUBMED	9111074							
REFERENCE								
AUTHORS	Stougaard, P. and Hansen, O.C.							
TITLE	Submitted (17-FEB-1997) Biotechnological Institute, Koglevej 2, Hoersholm, DK-2970, Denmark							
FEATURES	Location/Qualifiers							
source	1..1881							
/organism="Chondrus crispus"								
/db_xref="GI:2769"								
CDS	165 ..1805							
/codon_start=1								
/product="hexose oxidase"								
/protein_id="AAB49376.1"								
/db_xref="GI:187752"								
/translation="MATLPOKDPGYIVIDVNAGTPDKPDPLPSMKQGFNRWRWIGNTI								
DFVYVVYITPOGACTALDRAMEKCSPTGTVRIVSGGHYCEDFVFDCKVKAIIINVGLVES								
GYDDDRGYFVSGDTNWGSFKTLFRDHGRVLPGSCSYVGIGGHIVGGDGILARLHG								
LPVDSLGVENVVKPVLTEDSVLKVTYHKDSENGDSELFWAHTGGGGNFGITKYVF								
DLPMSPRGVIAISNLHFSDWFTRDAQLDLTKYFKLARCWDWKNTVGKFIFHOAEEF								
VMVLYTSYSNDAEREVAQDRHYHLEADIEQIYKTCEPTKALGGHAGWAPPVRPRKRH								
TSKTSYMHDETMDFYFLATETTINGSPNQRGKSYAMIKDFPDFOILDVWKILTEV								
PDGJTSAEKMDALLQDMFGEIHKVWDAVAQREYI1KLQYQTYWQEDDKAVNL								
KWTRFYEEVMYEPGVPPRNPNTQVESKGKVFEQYFNYPDVLDNNWNKNGKYGALEYLF								
LGNLNRLIKAKWLWDPEIIFTNKOSIPTKPLKEPKQT"								
BASE COUNT	459 a 485 c 500 g 437 t							
ORIGIN								
Query Match	77.9%	Score	1280.8	DB	8	Length	1881	
Best Local Similarity	86.2%	Pred. No.	0					
Matches	1417; Conservative	0; Mismatches	227; Indels	0; Gaps	0;			
Qy	1 ATGGCTACTTGGCCACAAAGGACCAAGGTACATTGTTATGACGTCAACGGCTGGTACT	60						
Db	165 ATGCTACTCTTCCCAGGAAGACCCGGTTATATTGTAATTGTCACGGCAGC 224							
Qy	61 CCAGACAAGCCTGACCAAGATGCCATCCATGAGCAAGGTTCAACAGAAGATGGATT	120						
Db	225 CCGGACAAGCCGGACCCACGTCCTCCCTCCATGAGCAGGCTTCACCGCCGCTGGATT	284						
Qy	121 GGTAACCAACATCGATTGTTACGTGTTAACCTCCACAGGTGCTTACTGCTTG	180						
Db	285 GGAACATAATCGATTGCTTATGTCGTGTACACTCCTCAAGGTGCTGTACTGCACTT	344						
Qy	181 GACAGAGCTATGGAAAAGGTTCTCAGGTACAGTCAAGGTGCTTACTGCTTG	1420						
Db	345 GACCGTGCTTATGGAAGAAGTGTCTCCCGGTACAGTCAGGATGCTCTGGGGCATG 404							
Qy	241 TACGAAGACTCTGTTGAGGAATGTTGTCACAGCTATTCAACGTTACTGGTTGGTT	300						
Db	405 TAGGAGACTTCGTTATGACGAATGCGTCAGGCCATCATCAACGGTCACTGGTCTCGTT	464						
Qy	1381 TATGAGCCTTATGGTGTCCAGACCCAACACTCAGGTGAGACTGGTAAGGTT	1440						

RESULT 4

AR159722 LOCUS AR159722 DEFINITION Sequence 30 from patent US 6251626. ACCESSION AR159722 VERSN 1. KEYWORDS Unknown. SOURCE Unclassified.

REFERENCE 1 (bases 1 to 1801)

AUTHORS Stougaard,P. and Hansen,O.Cai.

TITLE Recombinant hexose oxidase, a method of producing same and use of such enzyme

JOURNAL Patent: US 6251626-A 30 26-JUN-2001; FEATURES source 1. .1801 /organism="unknown"

BASE COUNT 441 a 448 c 492 g 420 t ORIGIN

Query Match 77.8%; Score 1279.2; DB 6; Length 1801; Best Local Similarity 86.1%; Pred. No. 0; Mismatches 228; Indels 0; Gaps 0; Matches 1416; Conservative 0;

QY 1 ATGGCTACTTGCACAAAGGACCCAGGTACATTGTTATTGACGTCAACGCTGTA 60 Db 84 ATGGCTACTCTCCTCAGAAAGACCCCGGTATATTGATGTCAACGGCACC 143 Qy 61 CCAGACAAGCTGACCAAGATGCCATCCATGAAGCAAGGTTAACAGAAGATGGATT 120 Db 144 GCGGACAAGGCCAACGTCTCCCTCCATGAAGCAGGGCTCAACGCCGTCGATT 203 Qy 121 GGTACCAACATCGATTGTTACGTGTTACACTCCACAGGTGCTGTACTGCTTG 180 Db 204 GGAACTAATATCGATTCTTATGTGTACTCTCAAGGTGCTGTACTGACTT 263 Qy 181 GACAGAGCTATGAAAGTGTCTCCAGGTACGGTACGTTAACGTTAACAGGTT 240 Db 264 GACCGTGTATGAAAGTGTCTCCGGTACAGTCAGGATCGTCTCGGGCCATGTC 323 Qy 241 TACGAAAGACTTCGTTGCAGAATGTGTCAAGCTTACCGTTACTGGTTGGTT 300 Db 324 TACGAGGACTTCGTATGGACCATGCCATCATCAACGTCACTGGTCTCGTT 383 Qy 301 GAATCTGGTTACGACGAGATAGGGTTACTCGTCTCTCCGGTGACCAACTGGGT 360 Db 384 GAGAGTGGTTATGACGACGATAGGGTTACTCGTCAGCAAGGCTACGGGCA 443 Qy 361 TCCTCAAGACCTTGTAGGACGACCCGGTAGGTTGGCAGGGTTCTCTGTACTCC 420 Db 444 TCCTCAAGACCTGTCAGAGACGACCCGGTAGGTTGGCAGGGTTCTCTGTACTCC 503

QY 421 GTCGGTTGGGTGTCACATGTCGGTGAGGTGACGGTATTGGCCAGATGCAACGGT 480 Db 504 GTCGGCCTCGGTGCCACATGTCGGGGAGGTGACGGCATTGGCCCGCTGCAATGGC 563 Qy 481 TTGCCAGTCGATTGGTTATCCGGTGTGACTGTTAAGCTGTCGTTAAGCCAGTCTTGACCGAAG 540 Db 564 CTCCCCGTCGATTGGCTCAGGGGGTGGAGGTCTGTTAAGCCAGTCCTCACCGAAAGAC 623 Qy 541 TCTGTTCTTAAGTACGTTTCAGAAGGTAACGACCGTGTGAGTTGGTTGGSCT 600 Db 624 TCGGTACTCAAGTATGTGCACAAAGATTCGGAAGGCAACGAGGGAGCTTITGGCA 683 Qy 601 CACACTGGAGGTGAGGTAACTTCGGTATTACCAAATACTACTTCAAGGATTG 660 Db 684 CACACAGTGGGGGGAAACTTGGAAATCATCACCAAAACTACTTCAAGGATTG 743 Qy 661 CCAATGTCCTCAAAGGGTGTACTGCTTAACTTACACTCTCTGGACGGTTACT 720 Db 744 CCCATGTCCTCACGGGGGTCATCGCATCAAATTACACTTCAGCTGGACGGTTCAAG 803

QY 721 AGAGATGCCTGCAAGATTTGTTGACTAAGTACTTCAGTTGCTAGATGTGATTGGAG 780 Db 804 AGAGATGCCTTGAGGATTGTTGACAALAGTACTTCAACTTCCAGATGTGATGGAG 863 Qy 781 AATACTGTTGTAAGTCCAAATCTCCACCAAGGAGCTGAAGAGTTGTATGACTTG 840 Db 864 AATACGTTGGCAAGTTCAATCTCCATCAGGCAAGGGAGAGTTGTATGACTTG 923 Qy 841 TATACATCCTACTTAAAGACGCCAGAGAGAAGTGTGCCAAAGACAGACATATCATRG 900 Db 924 TATACATCCTACTCGAACGACGCCAGGGCAAGTGGCCACTATCATRTG 983 Qy 901 GAGGCTGACATGAAAGATCTACAAACATGGAGCCTACCAAAGCTCTGGTGTCT 960 Db 984 GAGGCTGACATAGAACAGATCTACAAACATGGAGCCCACCAAGGCTTGGGGCAT 1043 Qy 961 GCTGGTTGGCTCTTCCCTGTTAGACCTAGAAAGAGACACACATCCAAGACTTAT 1020 Db 1044 GCTGGGGGGGCCGCGTCCCCGGCGCAAGAGGCACACATCCAAGACGTGTAT 1103

Qy 1021 ATGCATGACGGACTATGGACTACCCCTTCTACGCTTGTACTGAGACTATCAACGGTCC 1080 Db 1104 ATGCATGACGGAGCATGGACTACCCCTCTACGGCTCACTGAGACATCAACGGCTC 1163

Qy 1081 GGTCTTATCAGAGGTAAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTC 1140 Db 1164 GGGCCGATCAGCGGGCAAGTACAAGTCTGCTTACATGATCAAGGATTCCGGATTC 1223

Qy 1141 CAGATTGATGTTACTCGGAATAACCTACTGAGGTCTCTGACGGTTGACTAGTGGCAA 1200 Db 1224 CAGATCGACGTGATCTGGAAATAACCTACGGAGTCCCGGACGGCTTGACTAGTGGCAA 1283

Qy 1201 ATGAAGGATGCTCTTCAGGTGATAATGTTGGGTGAGATTACAGGTTGGTTGG 1260 Db 1284 ATGAAGGATGCTTACTCCAGGTGGACATGTTGGTGGAGATTACAGGTTGGTGG 1343

Qy 1261 GATGCTACTGCAGTTGCTCAGAGAGGTACATCATCAAACGTTACCGAGACATACTGG 1320 Db 1344 GATGCCACGGCAGTCGGCAGCGCAGTACATCATCAAACGTTACCGAGACATACTGG 1403

Qy 1321 CAGGAGAAAGACAAGGATGCCAGTTACTGAACTGGATTAGACACTTACGGAGAG 1380 Db 1404 CAGGAGAAAGACAAGGATGCCAGTGAACCTCAAGTGGATTAGAGACTTACGGAGATG 1463

Qy 1381 TATGAGCCTATGGGGTCCAGACCTAACACTCAGGTGAGAGTTGAGGTAAAGGT 1440 Db 1464 TATGACCGTATGGGGGTTCCAGGCCAACACGGCAGGTGGAGAGTTGGTTAACGGT 1523

Qy 1441 TTGAGGGATGCTACTTCAACTACCCGTGTTGACTGAAACAACGTTGAGAGTGGTAAG 1500 Db 1524 TTGAGGGATGCTACTTCAACTACCCGGATGTTGACTGAAACAACGTTGAGAGTGGCAAG 1583

Qy 1501 TATGGCTTGGAACTTACTTTGGTAACCTGAAACAGATGATCAAGGCCAAATGG 1560

Db	1584	TATGGTGCCTCGAACTTACTTTGGTAACCTGAAAGGCCAATGG	Qy	301	GAATCTGGTACGACGAGTAGAGGTACTTCGTCCTTCGGTGACACAACGGGT	360
Qy	1561	TGTGGGATCCTAACGAGATCTCACAAACAAACAGTCTACCTAACTCTTAAG	Db	384	GAGAGTGGTATGACGAGCATAGGGTTACTTCGTCAGCAGTGGAGATAACAAATTGGGC	443
Db	1644	TGTGGGATCCAAACGAGATCTCACAAACAAACAGAGCATCCACTAACTCTTAAG	Qy	361	TCCTCAAGACCTGTTCAGAGACCACCGTAGAGTTGGCCAGGTGGTCTCGTTACTCC	420
Qy	1621	GAGCCTAAGCAGACTAAATAGTAG 1644	Db	444	TCCTCAAGACCTGTTCAGAGACCACGGAGACTCTCCGGGGTCTCGTACTCC	503
Db	1704	GAGCCCAGAGACAAATAGTAG 1727	Qy	421	GTCGGTTGGGTTCACATGTGGTGGAGGTACGGTATTGGCCAGATGACGGT	480
			Db	504	GTCGGCTCGGTGCCACATGTGGGGAGGTGACGGCATTGGCCGCTTCGCAATGGC	563
			Qy	481	TTGCCAGTCGATTGGTATCCGGTGTGAAGTGTGTTAACCGAGCTTGACGGAGAC	540
			Db	564	CTCCCCGTGATGGCTCAGGGGTGGAGGTCTGGTTAACCGAGCTTGACGGAGAC	623
			Qy	541	TCTGTTCTTAAGTACGGTCACAGGATTCCGAAGGTAACGACGGTGAGTTGGCT	600
			Db	624	TGGTACTCAAGTATGTGACCAAAGATTCCAAGGAAACGGAGCTTGGCA	683
			Qy	601	CACACTGGAGGTGGAGCTACTTCGGTATTATCACAATACTACTTCAAGGATTG	660
			Qy	661	CCAATGTCCTCAAGAGGTGTCATCGCTTCAACTTACACTTCTTGGACGGTTCACT	720
			Db	684	CACAGGGGGGGGGAAACTTGGAAATCATCACCAAATACTACTTCAAGGATTG	743
			Qy	721	AGAGATGCCTGAAAGTTGTTGACTAAGTACTTCAAGTGGCTAGATGGTATGGAG	780
			Db	744	CCCATGTCCTCCACGGGGGTCATCGCATAATTACACTTCAGCTGGACGGTTCAAG	803
			Qy	804	AGAGATGCCTTGAGGATTGTTGACAATGACTTCAACTTGGCAGATGGTATGGAG	863
			Qy	781	AATACTGGTGTAACTTCCACCAAGGAGCTGAAGAGTTGTTATGTACTTG	840
			Db	864	AATAACGGTTGCAAGTTCAAACTTCCATCAGGACGGGAAGAGTTGTCATGTTA	923
			Qy	841	TATACATCCTACTTAAAGACGCCAGAGAGAAGTGGCCAAAGACAGACATCATTTG	900
			Db	924	TATACATCCTACTTCAAGACGCCAGAGGGGAAAGTGGCCAAAGACAGACATCATTTG	983
			Qy	901	GAGGCTGACATGAAAGAGATCTACAAACATGGAGGCTTACCAAGGCTCTGGTGT	960
			Db	984	GAGGCTGACATAGAACAGATCTACAAACATGGAGGCCACCAAGGCTTGGGGCAT	1043
			Qy	961	GCTGGTTGGCTCTTCCCTGTAGACCTAGAAAGAGACACACATCCAAGACTCTTAT	1020
			Db	1044	GCTGGTGGGCCGTTCCCCGTGCGGCCAGAGGCACACATCCAAGACGTGTTAT	1103
			Qy	1021	ATGCATGCGGAGACTATGGACTACCCTTCTACGGTTGACTGAGCTAACGGTTCC	1080
			Db	1104	ATGCATGCGGAGACTACCCCTCTACGGTTGACTGAGCTAACGGTTCC	1163
			Qy	1081	GGTCCTAATCAGAGGGTAACTACAAGTCTGCTTACATGATCAAGGACTTCCAGACTTC	1140
			Db	1164	GGGGCGGAAATCAGGGGCAAGTACAAGTCTGCTTACATGATCAAGGATTCCGGATTC	1223
			Qy	1141	CAGATGATGTTATCTGGAAATACCTTACTGAGGTCTCTGACGGTTGACTAGTGGCAA	1200
			Db	1224	CAGATGCGGTGATCTGGAAATACCTTACGGAGTCCGGACGGCTTGACTAGTGGCAA	1283
			Qy	1201	ATGAAGGATGCTCTTCAGGTGATATGTCGGTGGAGATTACAGGTTGTTGG	1260
			Db	1284	ATGAAGGATGCCTTACTCCAGGTGGACATGTTGGTGGAGATTACAGGTTGCTCGG	1343
			Qy	1261	GATGCTACTGCAAGTGTCTCAGAGAGTACATCATCAACTGAGTACAGACATCTGG	1320
			Db	1344	GATGCCAGGCCAGTCGGCAGCCGGAGTACATCATCAACTGAGTACAGACATCTGG	1403
			Qy	1321	CAGGAGAACAGGATGCAAGTAACTGAGGTTAGAGACCTTACGAGGAGAT	1380
			Db	1404	CAGGAGAACAGGATGCAACCTCAAGTCAAGTGGTCTCGGTT	1463

QY 1381 TATGAGCCTATGGGGTTCAGACCTAACACTCAGGTGAGAGTGGTAAGGGTT 1440
Db 1464 TATGAGCCGTATGGGGGTTCCAGACCCAAACACCGCAGGTGGAGAGTGGTAAGGGTTG 1523
QY 1441 TTTGAGGGATGCTACTTCACACTACCCGTGATGTTGACTTGAACTGGAGAACGTAAG 1500
Db 1524 TTGAGGGATGCTACTTCACACTACCCGTGACTTGAACTGGAGAACGCAAG 1583
FEATURES source
1. .120
QY 1501 TATGGTGCCTGGAACTTACTTTGGTAACCTGAAACAGATGACTGAACTGGAGAACGCCAAG 1560
Db 1584 TATGGTGCCTGGAACTTACTTTGGTAACCTGAAACAGATGACTGAACTGGAGAACGCCAAG 1643
BASE COUNT 26 a 26 c 31 g 37 t
ORIGIN
Query Match 7.3%; Score 120; DB 6; Length 120;
Best Local Similarity 100.0%; Pred. No. 5.1e-21;
Matches 120; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
Db 1 ATCAACGTTACTGTTGGT"GAATCTGGTTACGGACGAGTAGGTTACCTCGnCTCT 60
QY 1561 TTGGGGATCCCTAACGAGATCTCACAAACAAACAGTCTATCCCTACTAAACCTCTTAAG 1620
Db 1644 TTGGGGATCCCAACGAGATCTCACAAACAAACAGAGCATCCCTACTAAACCTCTTAAG 1703
QY 1621 GAGCCTAACGAGACTAAATAGTAG 1644
Db 1704 GAGCCCAAGCAGCAAATGG 1727
RESULT 6
AX155099/c AX155099 Sequence 17 from Patent WO0138544. 126 bp DNA linear PAT 22-JUN-2001
DEFINITION AX155099
ACCESSION AX155099.1 GI:14536647
KEYWORDS . synthetic construct.
SOURCE artificial sequences.
REFERENCE 1 (bases 1 to 126)
AUTHORS Johansen,C.L., kj Rulff,S.R., Madrid,S.M., Pedersen,H., Poulsen,C.H. and Zargahi,M.R.
TITLE Method for purifying proteins
JOURNAL Patent: WO 0138544-A 17 31-MAY-2001;
DANISCO A/S (DK)
FEATURES Location/Qualifiers
source
1. .126
/organism="synthetic construct"
/db_xref="taxon:32630"
/not="Synthetic oligonucleotide"
BASE COUNT 33 a 35 c 23 g 35 t
ORIGIN
Query Match 7.7%; Score 126; DB 6; Length 126;
Best Local Similarity 100.0%; Pred. No. 1.2e-22; Matches 126; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
QY 1210 GCTCTTCAGGTGATATGTCGGGGTGGATGCTACT 1269
Db 126 GCTCTTCAGGTGATATGTCGGGGTGGATGCTACT 67
QY 1270 GCAGGTGCTCAGAGAGAGTACATCATCAACTGCGATTGAGACATACTGGCAGGAAGAA 1329
Db 66 GCAGGTGCTCAGAGAGTACATCATCAACTGCGATTGAGACATACTGGCAGGAAGAA 7
QY 1330 GACAG 1335
Db 6 GACAG 1
RESULT 7
AX155088 AX155088 Sequence 6 from Patent WO0138544. 120 bp DNA linear PAT 22-JUN-2001
DEFINITION AX155088
ACCESSION AX155088.1 GI:14536636
VERSION KEYWORDS . synthetic construct.
SOURCE synthetic construct.
ORGANISM synthetic construct.
ARTIFICIAL artificial sequences.
REFERENCE 1 (bases 1 to 120)
RESULT 7
AX155088 AX155088 Sequence 6 from Patent WO0138544. 120 bp DNA linear PAT 22-JUN-2001
DEFINITION AX155088
ACCESSION AX155088.1 GI:14536636
VERSION KEYWORDS . synthetic construct.
SOURCE synthetic construct.
ORGANISM synthetic construct.
ARTIFICIAL artificial sequences.
REFERENCE 1 (bases 1 to 120)
RESULT 8
AX155097/c AX155097 Sequence 15 from Patent WO0138544. 120 bp DNA linear PAT 22-JUN-2001
DEFINITION AX155097
ACCESSION AX155097.1 GI:14536645
KEYWORDS . synthetic construct.
SOURCE synthetic construct.
REFERENCE 1 (bases 1 to 120)
AUTHORS Johansen,C.L., kj Rulff,S.R., Madrid,S.M., Pedersen,H., Poulsen,C.H. and Zargahi,M.R.
TITLE Method for purifying proteins
JOURNAL Patent: WO 0138544-A 15 31-MAY-2001;
DANISCO A/S (DK)
FEATURES Location/Qualifiers
source
1. .120
/organism="synthetic construct"
/db_xref="taxon:32630"
/not="Synthetic oligonucleotide"
BASE COUNT 33 a 25 c 29 g 33 t
ORIGIN
Query Match 7.3%; Score 120; DB 6; Length 120;
Best Local Similarity 100.0%; Pred. No. 5.1e-21; Matches 120; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
QY 1027 GACGAGACTATGGACTACCCCTCTACGCTTGACTGAGACTATCAACGGTTCCGGTCT 1086
Db 120 GACGAGACTATGGACTACCCCTCTACGCTTGACTGAGACTATCAACGGTTCCGGTCT 61
QY 1087 AATCAGAGAGGTTAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGCTCCAGATT 1146
Db 60 AATCAGAGAGGTTAGTACAAGTCTGCTTACATGATCAAGGACTTCCAGCTCCAGATT 1
RESULT 9
AX155092 AX155092 Sequence 10 from Patent WO0138544. 118 bp DNA linear PAT 22-JUN-2001
DEFINITION AX155092
ACCESSION AX155092.1 GI:14536640
VERSION KEYWORDS . synthetic construct.
SOURCE synthetic construct.
ORGANISM synthetic construct.
ARTIFICIAL artificial sequences.

REFERENCE 1 (bases 1 to 118)
 AUTHORS Johansen,C.L., kj Rulff,S.R., Madrid,S.M., Pedersen,H.,
 Poulsen,C.H. and Zargahi,M.R.
 TITLE Method for purifying proteins
 JOURNAL Patent: WO 0138544-A 10 31-MAY-2001;
 DANISCO A/S (DK)

FEATURES Location/Qualifiers
 source 1. .118
 /organism="synthetic construct"
 /db_xref="taxon:32630"
 /note="Synthetic oligonucleotide"

BASE COUNT 30 a 27 c 22 g 39 t
 ORIGIN

Query Match 7.2%; Score 118; DB 6; Length 118;
 Best Local Similarity 100.0%; Pred. No. 1.8e-20;
 Matches 118; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

LOCUS AX155102 117 bp DNA linear PAT 22-JUN-2001
 DEFINITION Sequence 20 from Patent WO0138544.
 ACCESSION AX155102
 VERSION AX155102.1 GI:14536650

KEYWORDS SOURCE synthetic construct.
 ORGANISM artificial sequences.

REFERENCE AUTHORS 1 (bases 1 to 117)
 Johansen,C.L., kj Rulff,S.R., Madrid,S.M., Pedersen,H.,
 Poulsen,C.H. and Zargahi,M.R.
 TITLE Method for purifying proteins
 JOURNAL Patent: WO 0138544-A 20 31-MAY-2001;
 DANISCO A/S (DK)

FEATURES Location/Qualifiers
 source 1. .117
 /organism="synthetic construct"
 /db_xref="taxon:32630"
 /note="Synthetic oligonucleotide"

BASE COUNT 36 a 23 c 26 g 32 t
 ORIGIN

Query Match 7.1%; Score 117; DB 6; Length 117;
 Best Local Similarity 100.0%; Pred. No. 3.3e-20;
 Matches 117; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

LOCUS AX155091/c 116 bp DNA linear PAT 22-JUN-2001
 DEFINITION Sequence 9 from Patent WO0138544.
 ACCESSION AX155091
 VERSION AX155091.1 GI:14536639

KEYWORDS SOURCE synthetic construct.
 ORGANISM artificial sequences.

REFERENCE AUTHORS 1 (bases 1 to 116)
 Johansen,C.L., kj Rulff,S.R., Madrid,S.M., Pedersen,H.,
 Poulsen,C.H. and Zargahi,M.R.
 TITLE Method for purifying proteins
 JOURNAL Patent: WO 0138544-A 9 31-MAY-2001;
 DANISCO A/S (DK)

FEATURES Location/Qualifiers
 source 1. .116
 /organism="synthetic construct"
 /db_xref="taxon:32630"
 /note="Synthetic oligonucleotide"

BASE COUNT 33 a 31 c 22 g 30 t
 ORIGIN

Query Match 7.1%; Score 116; DB 6; Length 116;
 Best Local Similarity 100.0%; Pred. No. 6.1e-20;
 Matches 116; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

LOCUS AX155091 111 bp DNA linear PAT 22-JUN-2001
 DEFINITION Sequence 19 from Patent WO0138544.
 ACCESSION AX155091
 VERSION AX155091.1 GI:14536649

KEYWORDS SOURCE synthetic construct.

ORGANISM synthetic construct.

RESULT 11

AX155093/c AX155093 118 bp DNA linear PAT 22-JUN-2001

DEFINITION Sequence 11 from Patent WO0138544.
 ACCESSION AX155093
 VERSION AX155093.1 GI:14536641

KEYWORDS SOURCE synthetic construct.

ORGANISM synthetic construct.

RESULT 12

AX155091/c AX155091 116 bp DNA linear PAT 22-JUN-2001

DEFINITION Sequence 9 from Patent WO0138544.
 ACCESSION AX155091
 VERSION AX155091.1 GI:14536639

KEYWORDS SOURCE synthetic construct.
 ORGANISM synthetic construct.

REFERENCE AUTHORS 1 (bases 1 to 116)
 Johansen,C.L., kj Rulff,S.R., Madrid,S.M., Pedersen,H.,
 Poulsen,C.H. and Zargahi,M.R.
 TITLE Method for purifying proteins
 JOURNAL Patent: WO 0138544-A 9 31-MAY-2001;
 DANISCO A/S (DK)

FEATURES Location/Qualifiers
 source 1. .116
 /organism="synthetic construct"
 /db_xref="taxon:32630"
 /note="Synthetic oligonucleotide"

BASE COUNT 33 a 31 c 22 g 30 t
 ORIGIN

Query Match 7.1%; Score 116; DB 6; Length 116;
 Best Local Similarity 100.0%; Pred. No. 6.1e-20;
 Matches 116; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

LOCUS AX155101/c 111 bp DNA linear PAT 22-JUN-2001
 DEFINITION Sequence 19 from Patent WO0138544.
 ACCESSION AX155101
 VERSION AX155101.1 GI:14536649

KEYWORDS SOURCE synthetic construct.

ORGANISM synthetic construct.

RESULT 13

AX155101/c AX155101 111 bp DNA linear PAT 22-JUN-2001

DEFINITION Sequence 19 from Patent WO0138544.
 ACCESSION AX155101
 VERSION AX155101.1 GI:14536649

KEYWORDS SOURCE synthetic construct.

REFERENCE		ORGANISM	
AUTHORS	Johansen,C.L., kj Rulff,S.R., Madrid,S.M., Pedersen,H., Poulsen,C.H. and Zargahi,M.R.	SYNTHETIC CONSTRUCT	synthetic construct
TITLE	Method for purifying proteins	ARTIFICIAL SEQUENCES	artificial sequences
JOURNAL	Patent: WO 0138544-A 19 31-MAY-2001; DANISCO A/S (DK)	LOCATION/QUALIFIERS	Location/Qualifiers
FEATURES		1. .111 /organism="synthetic construct" /db_xref="taxon:32630" /note="Synthetic oligonucleotide"	
BASE COUNT	30 a	30 c 21 g 30 t	
ORIGIN			
RESULT 14			
AX155089/c			
LOCUS	AX155089	6.8%; Score 111; DB 6; Length 111;	
DEFINITION	Best Local Similarity 100.0%; Pred. No. 1.4e-18;		
ACCESION	Matches 111; Conservative 0; Mismatches 0; Indels 0; Gaps 0;		
VERSION	QY 1399 GTTCCAGACCCCTAACACTCAGGTTGAGAGTGTAAGGTGTTTGAGGGATGCTACTTC 1458		
KEYWORDS	Db 111 GTTCAGACCCCTAACACTCAGGTTGAGAGTGTAAGGTGTTTGAGGGATGCTACTTC 52		
SOURCE	QY 1459 AACTACCCCTGATGTTGACTTGAAACAATGGAAGAACCGTAAGTATGGTGC 1509		
ORGANISM	Db 51 AACTACCCCTGATGTTGACTTGAAACAATGGAAGAACCGTAAGTATGGTGC 1		
REFERENCE			
AUTHORS	1 (bases 1 to 109)		
VERSION	Johansen,C.L., kj Rulff,S.R., Madrid,S.M., Pedersen,H., Poulsen,C.H. and Zargahi,M.R.		
KEYWORDS	Method for purifying proteins		
TITLE	Patent: WO 0138544-A 7 31-MAY-2001;		
JOURNAL	DANISCO A/S (DK)		
FEATURES			
SOURCE	1. .109 /organism="synthetic construct" /db_xref="taxon:32630" /note="Synthetic oligonucleotide"		
BASE COUNT	35 a	38 c 20 g 16 t	
ORIGIN			
RESULT 15			
AX155090			
LOCUS	AX155090	6.6%; Score 109; DB 6; Length 109;	
DEFINITION	Best Local Similarity 100.0%; Pred. No. 4.8e-18;		
ACCESION	Matches 109; Conservative 0; Mismatches 0; Indels 0; Gaps 0;		
VERSION	QY 375 GTTCAGAGACCAACGGTAGAGTTGCCAGGTGGTCCCTGTACTCCGTCGGTTGGTGG 434		
KEYWORDS	Db 109 GTTCAGAGACCAACGGTAGAGTTGCCAGGTGGTCCCTGTACTCCGTCGGTTGGTGG 50		
SOURCE	QY 435 TCACATTGTCGGTGGAGGTGACCGGTATTGCCAGATTGCCAGTTGGTGG 483		
ORGANISM	Db 49 TCACATTGTCGGTGGAGGTGACCGGTATTGCCAGATTGCCAGTTGGTGG 1		
RESULT 15			
AX155090			
LOCUS	AX155090	109 bp	DNA
DEFINITION	Sequence 8 from Patent WO0138544.		linear
ACCESION	AX155090		PAT 22-JUN-2001
VERSION	AX155090.1		
KEYWORDS	.		

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

OM protein - protein search, using sw model

Run on: June 10, 2003, 10:00:02 ; Search time 25 Seconds
(without alignments)
2254.767 Million cell updates/sec

Title: US-09-998-284-2
Perfect score: 2997
Sequence: 1 MATLPQKDPGYIVIDVNAGT IFTNKOSIPTKPLKEPKQTK 546

Scoring table: BIOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 392085 seqs, 103240269 residues

Total number of hits satisfying chosen parameters: 392085

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 45 summaries

Database : Published Applications AA: *

```
1: /cgn2_6/ptodata/2/pubpaa/US08 NEW PUB.pep:*
2: /cgn2_6/ptodata/2/pubpaa/PCT NEW PUB.pep:*
3: /cgn2_6/ptodata/2/pubpaa/US06 NEW PUB.pep:*
4: /cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*
5: /cgn2_6/ptodata/2/pubpaa/US07 NEW PUB.pep:*
6: /cgn2_6/ptodata/2/pubpaa/PUS07_PUBCOMB.pep:*
7: /cgn2_6/ptodata/2/pubpaa/PCTUS_PUBCOMB.pep:*
8: /cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep:*
9: /cgn2_6/ptodata/2/pubpaa/US09 NEW PUB.pep:*
10: /cgn2_6/ptodata/2/pubpaa/US09_PUBCOMB.pep:*
11: /cgn2_6/ptodata/2/pubpaa/US10 NEW PUB.pep:*
12: /cgn2_6/ptodata/2/pubpaa/US10_PUBCOMB.pep:*
13: /cgn2_6/ptodata/2/pubpaa/US60 NEW PUB.pep:*
14: /cgn2_6/ptodata/2/pubpaa/US60_PUBCOMB.pep:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	2997	100.0	546	10	US-09-998-284-2
2	2989	99.7	546	10	US-09-824-053-31
3	292.5	9.8	509	9	US-09-258-031B-75
4	277	9.2	508	9	US-09-258-031B-73
5	275	9.2	529	9	US-09-258-031B-16
6	272	9.1	529	9	US-09-258-031B-20
7	266	8.9	540	9	US-09-258-031B-58
8	263	8.8	508	9	US-09-258-031B-71
9	107	3.6	19	10	US-09-932-923-1
10	96.5	3.2	254	9	US-09-880-748-1466
11	95	3.2	622	9	US-10-124-880-4
12	95	3.2	657	10	US-09-815-242-12135
13	94	3.1	600	9	US-10-234-026-13
14	94	3.1	657	10	US-09-815-242-13013
15	92	3.1	584	10	US-09-815-242-5013
16	92	3.1	589	10	US-09-815-242-10878
17	91.5	3.1	413	9	US-09-910-186A-22
18	91.5	3.1	550	9	US-09-738-626-5417
19	91.5	3.1	852	9	US-10-011-588-25

ALIGNMENTS

RESULT 1
US-09-998-284-2
; sequence 2, Application US/09998284
; Patent No. US2002106361A1
; GENERAL INFORMATION:
; APPLICANT: POULSEN, et al.
; TITLE OF INVENTION: COMPOSITION
; FILE REFERENCE: 674509-2035
; CURRENT APPLICATION NUMBER: US/09/998, 284
; CURRENT FILING DATE: 2001-11-30
; PRIORITY APPLICATION NUMBER: PCT/IB00/00829
; PRIORITY FILING DATE: 2000-06-02
; PRIORITY APPLICATION NUMBER: GB 9913050.2
; PRIORITY FILLING DATE: 1999-06-04
; NUMBER OF SEQ ID NOS: 2
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO: 2
; LENGTH: 546
; TYPE: PRT
; ORGANISM: Chondrus crispus
US-09-998-284-2

Query Match 100.0%; Score 2997; DB 10; Length 546;
Best Local Similarity 100.0%; Pred. No. 3.6e-262;
Matches 546; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY	1	MATLPQKDPGYIVIDVNAGT PDKPDPRIPLPSMKQGFNRWRIGTNIDFVYVYTPOGACTAL 60
Db	1	MATLPQKDPGYIVIDVNAGT PDKPDPRIPLPSMKQGFNRWRIGTNIDFVYVYTPOGACTAL 60
QY	61	DRAMEKCSPGTIVRIVSGGGCYEDFVFDECVKAIINVTLGILVESGYDDRGYFVSSGDTNWG 120
Db	61	DRAMEKCSPGTIVRIVSGGGCYEDFVFDECVKAIINVTLGILVESGYDDRGYFVSSGDTNWG 120
QY	121	SFKTLFRDHGRVLPGGSCYSVGLGGHIVVGGGDGILARLHLGLPVDWLSGVVVVKPVLTD 180
Db	121	SFKTLFRDHGRVLPGGSCYSVGLGGHIVVGGGDGILARLHLGLPVDWLSGVVVVKPVLTD 180
QY	181	SVLVVHKDSEGNIDGELFWAHTGGGGNFGIITKYFKDLPMSPRGVIASNLHFSDGFT 240
Db	181	SVLVVHKDSEGNIDGELFWAHTGGGGNFGIITKYFKDLPMSPRGVIASNLHFSDGFT 240

Qy 241 RDALQDLITKYFLKARCDWKNTVGKFQIFHQAEFFVMLYTSYNSDAEREAQDRHYHL 300
Db 241 RDALQDLITKYFLKARCDWKNTVGKFQIFHQAEFFVMLYTSYNSDAEREAQDRHYHL 300
Qy 301 EADIEQIYKTCEPTKALGCHAGWAPPVRPRKRHTSKTSYMHDETMDFYFYALTETINGS 360
Db 301 EADIEQIYKTCEPTKALGCHAGWAPPVRPRKRHTSKTSYMHDETMDFYFYALTETINGS 360
Qy 361 GPNQRGKYSAYMIKDFPDFQIDVWKYLTEVPDGLTSAAEMKDALLQVDMFGGEIHKKVVW 420
Db 361 GPNQRGKYSAYMIKDFPDFQIDVWKYLTEVPDGLTSAAEMKDALLQVDMFGGEIHKKVVW 420
Qy 421 DATAVAOREYIKLQYQTYWQEEEDKDAVNLKWIRDFYEEMYPEYGVPDPNTQVESGKGV 480
Db 421 DATAVAOREYIKLQYQTYWQEEEDKDAVNLKWIRDFYEEMYPEYGVPDPNTQVESGKGV 480
Qy 481 FEGCYFNYPDVLDNNWKNKGKYGALEYFLGNLNRLIKAKWLWDPNEIFTNKQSIPTKPLK 540
Db 481 FEGCYFNYPDVLDNNWKNKGKYGALEYFLGNLNRLIKAKWLWDPNEIFTNKQSIPTKPLK 540
Db 541 EPKQTK 546
Db 541 EPKQTK 546

RESULT 2
US-09-824-053-31
; Sequence 31, Application US/09824053
; Patent No. US20020106725A1

GENERAL INFORMATION:
APPLICANT: Peter Stougaard
Ole Cai Hansen

TITLE OF INVENTION: RECOMBINANT HEXOSE OXIDASE, A
NUMBER OF SEQUENCES: 34
METHOD OF PRODUCING SAME AND USE OF SUCH ENZYME

CORRESPONDENCE ADDRESS:
ADDRESSEE: Hunton & Williams
STREET: 1900 K Street, N.W.
CITY: Washington
STATE: D.C.
COUNTRY: U.S.A.
ZIP: 20006-1109

COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: Patentin Release #1.0, Version #1.25

CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/09/824, 053
FILING DATE: 03-Apr-2001
CLASSIFICATION: <Unknown>

PRIOR APPLICATION DATA:
APPLICATION NUMBER: 08/669, 304
FILING DATE: <Unknown>
ATTORNEY/AGENT INFORMATION:
NAME: Stanislaus Aksman
REGISTRATION NUMBER: 28, 562
REFERENCE/DOCKET NUMBER: <Unknown>

TELECOMMUNICATION INFORMATION:
TELEPHONE: (202) 955-1926
TELEFAX: (202) 778-2201
TELEX: NO. US20020106725A1e

INFORMATION FOR SEQ ID NO: 31:
SEQUENCE CHARACTERISTICS:
LENGTH: 546 amino acids
TYPE: amino acid
TOPOLOGY: linear
MOLECULE TYPE: protein
SEQUENCE DESCRIPTION: SEQ ID NO: 31:
US-09-824-053-31

Matches 545; Conservative 0; Mismatches 1; Indels 0; Gaps 0;

Qy 1 MATLPQDKDPGYIVIDVNAGTPDKDPDPLPSMKQGRNRRWIGTNIDFVYVYTPQACTAL 60
Db 1 MATLPQDKDPGYIVIDVNAGTADKPDPDPLPSMKQGRNRRWIGTNIDFVYVYTPQACTAL 60
Qy 61 DRAMEKCSPGTIVRISGGHICYDFVDECVKAINVIGLIVESGYDDDRGFVSSGDTNWG 120
Db 61 DRAMEKCSPGTIVRISGGHICYDFVDECVKAINVIGLIVESGYDDDRGFVSSGDTNWG 120
Qy 121 SFKTLFRDHGRVLPGGSCYSVGLGGHVGGGDGILLARLHGLPVVDWLSGVEVVVKPVITED 180
Db 121 SFKTLFRDHGRVLPGGSCYSVGLGGHVGGGDGILLARLHGLPVVDWLSGVEVVVKPVITED 180
Qy 181 SVLKVKHKDSEGNDGELFWAHTGGGGNGFIITKYYFKOLPMSPRGVIASNLHFSWDGFT 240
Db 181 SVLKVKHKDSEGNDGELFWAHTGGGGNGFIITKYYFKOLPMSPRGVIASNLHFSWDGFT 240
Qy 241 RDALQDLITKYFLKARCDWKNTVGKFQIFHQAEFFVMLYTSYNSDAEREAQDRHYHL 300
Db 241 RDALQDLITKYFLKARCDWKNTVGKFQIFHQAEFFVMLYTSYNSDAEREAQDRHYHL 300
Qy 301 EADIEQIYKTCEPTKALGCHAGWAPPVRPRKRHTSKTSYMHDETMDFYFYALTETINGS 360
Db 301 EADIEQIYKTCEPTKALGCHAGWAPPVRPRKRHTSKTSYMHDETMDFYFYALTETINGS 360
Qy 361 GPNQRGKYSAYMIKDFPDFQIDVWKYLTEVPDGLTSAAEMKDALLQVDMFGGEIHKKVVW 420
Db 361 GPNQRGKYSAYMIKDFPDFQIDVWKYLTEVPDGLTSAAEMKDALLQVDMFGGEIHKKVVW 420
Qy 421 DATAVAOREYIKLQYQTYWQEEEDKDAVNLKWIRDFYEEMYPEYGVPDPNTQVESGKGV 480
Db 421 DATAVAOREYIKLQYQTYWQEEEDKDAVNLKWIRDFYEEMYPEYGVPDPNTQVESGKGV 480
Qy 481 FEGCYFNYPDVLDNNWKNKGKYGALEYFLGNLNRLIKAKWLWDPNEIFTNKQSIPTKPLK 540
Db 481 FEGCYFNYPDVLDNNWKNKGKYGALEYFLGNLNRLIKAKWLWDPNEIFTNKQSIPTKPLK 540
Db 541 EPKQTK 546
Db 541 EPKQTK 546

RESULT 3
US-09-258-031B-75
; Sequence 75, Application US/09258031B
; Patent No. US20020168735A1

GENERAL INFORMATION:
APPLICANT: STUIVER, Maarten Hendrik
APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
APPLICANT: SELA-BURLAGE, Marianne Beatrix
APPLICANT: MELCHERS, Leo Sjoerd
APPLICANT: VAN DEVENTER-TROOST, Johanna Pieterella
APPLICANT: LAGEWEG, Wessel
APPLICANT: PONSTEIN, Anne Silene
APPLICANT: LAGEWEG, Wessel
APPLICANT: PONSTEIN, Anne Silene
TITLE OF INVENTION: ANTIFUNGAL PROTEINS, DNA CODING
TITLE OF INVENTION: THEREFOR, AND HOSTS INCORPORATING
TITLE OF INVENTION: SAME.

NUMBER OF SEQUENCES: 75
CORRESPONDENCE ADDRESS:
ADDRESSEE: LADAS & PARRY
STREET: 26 WEST 61 STREET
CITY: NEW YORK
STATE: NY
COUNTRY: USA
ZIP: 10023 - 7604

COMPUTER READABLE FORM:
MEDIUM TYPE: 3.25" Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: WINDOWS 95
SOFTWARE: WORDPERFECT 8

Query Match 99.7%; Score 2989; DB 10; Length 546;
Best Local Similarity 99.8%; Pred. No. 1.9e-261;

CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/09/258, 031B
 FILING DATE: 25-FEB-1999
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: PCT/EP97/04923
 FILING DATE: 04-SEP-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP97200831.2
 FILING DATE: 19-MAR-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP96202466.7
 FILING DATE: 04-SEP-1996
 INFORMATION FOR SEQ ID NO: 75:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 509 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 US-09-258-031B-75

Query Match 9.8%; Score 292.5; DB 9; Length 509;

Best Local Similarity 24.9%; Pred. No. 6.4e-18;
 Matches 125; Conservative 68; Mismatches 197; Indels 113; Gaps 23;

Qy 73 RIVGGHCYEDFVDECVK---AIIVTGLVESGYD-DDRGYFVSSGDTNWGSFKTLFRD 128
 Db 82 RVRSGGHDFEALISYVSRIEKPFILLJLSKLQINVTDIESNSAWVQPGAT-LGELYYRIA 140
 Qy 129 HGRV-LPGGSCYSVGLGHIIVGGGDGILARLHGLPVDWLSGVEVWVKPVLTEDSVLK 186
 Db 141 KSKIHGFAGLCTS VSGIGGYMTGGYGLAGDNVLDVKMV-----DANGKLL 193
 Qy 187 HKDSEGNDELFWAHTGGGGNFGITTKYFFKDLPLMSPRGTASNLHFSWDGFTRDALQD 246
 Db 194 DRAAMGED-LFWAIRGGGASFGIVLAWKIKLVPU-PKTVTVFTV-----TKTLEQD 243
 Qy 247 LITKYKFLARCDWKNTVGKF-QIFHQAAEEF-VMLYLYTSYNSDAEREVAYAQRDRHYHLEADI 304
 Db 244 ARLK-----TISKWQOISSKIEEHIRVVLRAAGNDGNKTVWTYLQGQLGEK 292
 Qy 305 EQIYKTC--PTKAL-----GGHAGWAPFPVRPRKRHTSKTSYMHD 344
 Db 293 GTLKVMEKAPELGLTQKDCTEMSWTEAALFHGGFPTGSPPIETLJQSPLGKDYF--- 349
 Qy 345 TMDYPFYALTETINGSGPQNORGKYSAYMIKDPDFQIDVWKLTEVPDGLTSAEMKDA 404
 Db 350 -----KATSDFVKEPIPVIGFKGIFKRLE---GNTT---- 378
 Qy 405 LLQVDMFGGEIHKVVWDATAVAORE-YIILQYQTYWQEEDK-DAVNLIKWIRDYFEEYE 462
 Db 379 FLNWTYPGGMNSKIPESAIPFPHRNGTFLKILYYANWLENKDTSSRKINWIKEIYNM-A 437
 Qy 463 PYGGVPDPNTQVESGKGVFEGCYFNYPDVDL-NWKNKGKYGAELEL-----YFLGNLNRL 515
 Db 438 PY-----VSSNP---RQAIVNVRDIDFQCONKNAKVNIEAKINGPKYFKNFDR 485
 Qy 516 IKAKWLWDPNEITFNKQSIPTKP 538
 Db 486 VKIKTKVDPENFRRHEQSIIPPMP 508
 US-09-258-031B-75

Query Match 9.2%; Score 277; DB 9; Length 508;

Best Local Similarity 23.6%; Pred. No. 1.6e-16;
 Matches 120; Conservative 67; Mismatches 199; Indels 122; Gaps 20;

Qy 72 VRIVGGHCYED-----FVDECVKAIINV-----TGLVESGYDDDRGYFVSSG 115
 Db 82 MKIRSGGHDYDGLSVYTYSGKPFVLDMFNLRSVTDVWASKTAWVQWTGAILGEVYYI-- 139
 Qy 116 DTNWGSFKTLFRDHGRVLPGSCYSVGLGHIIVGGGDGILARLHGLPVDWLSGVEVWVKP 175
 Db 140 -----WEKSCTL-----AYPAGICPTVGWGGHISGGGYGNMRKYGILTVDNTIDARMV-- 187
 Qy 176 VLTEDSVLKVKHDKSEGNDGELFWAHTGGGGNFGITTKYFFKDLPLMSPRGTASNLHFS 235
 Db 188 -----DVNGKILDRLKLMGD-----LYWAINGGGGSYGVLAYKI-NLVEVPEVENTVFRISRT 240
 Qy 236 WDGFTRDALQDLLTKYKFLARCDWKNTVGKF-QIFHQAAEEF-VMLYLYTSYNSDAEREVAYAQRDRHYHLEADI 293
 Db 241 LEQNATDIH-----RWOQVAPKLPLDEFIRTVIDVVNGTVSSQKTVRTTFIA 288
 Qy 294 Q-----DRHYLHEADIEQIYKTCPTKALGGHAGWAPFPVRPRKRHTSKSYM 341
 Db 289 MFLGDTTTLISIINRRF---PELGLVRSRSDCTETSWIQLQSVLFWTNIQVGSS----- 336
 US-09-258-031B-73
 Sequence 73, Application US/09258031B
 Patent No. US200168735A1
 GENERAL INFORMATION:
 APPLICANT: STUIVER, Maarten Hendrik
 APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
 APPLICANT: SELA-BURLAJE, Marianne Beatrix
 APPLICANT: MELCHERS, Leo Sjoerd
 APPLICANT: VAN DEVENTER-TROOST, Johanna Pietermella
 APPLICANT: LAGEWEG, Wessel

APPLICANT: PONSTEIN, Anne Silene
 APPLICANT: LAGEWEG, Wessel
 APPLICANT: PONSTEIN, Anne Silene
 TITLE OF INVENTION: ANTIFUNGAL PROTEINS, DNA CODING
 TITLE OF INVENTION: THEREFOR, AND HOSTS INCORPORATING
 TITLE OF INVENTION: SAME.
 NUMBER OF SEQUENCES: 75
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: LADAS & PARRY
 STREET: 26 WEST 61 STREET
 CITY: NEW YORK
 STATE: NY
 COUNTRY: USA
 ZIP: 10023 - 7604
 COMPUTER READABLE FORM:
 MEDIUM TYPE: 3.25" Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: WINDOWS 95
 SOFTWARE: WORDPERFECT 8
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/09/258, 031B
 FILING DATE: 25-FEB-1999
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: PCT/EP97/04923
 FILING DATE: 04-SEP-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP97200831.2
 FILING DATE: 19-MAR-1997
 INFORMATION FOR SEQ ID NO: 73:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 508 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 US-09-258-031B-73

Query Match 9.2%; Score 277; DB 9; Length 508;

Best Local Similarity 23.6%; Pred. No. 1.6e-16;
 Matches 120; Conservative 67; Mismatches 199; Indels 122; Gaps 20;

Qy 72 VRIVGGHCYED-----FVDECVKAIINV-----TGLVESGYDDDRGYFVSSG 115
 Db 82 MKIRSGGHDYDGLSVYTYSGKPFVLDMFNLRSVTDVWASKTAWVQWTGAILGEVYYI-- 139
 Qy 116 DTNWGSFKTLFRDHGRVLPGSCYSVGLGHIIVGGGDGILARLHGLPVDWLSGVEVWVKP 175
 Db 140 -----WEKSCTL-----AYPAGICPTVGWGGHISGGGYGNMRKYGILTVDNTIDARMV-- 187
 Qy 176 VLTEDSVLKVKHDKSEGNDGELFWAHTGGGGNFGITTKYFFKDLPLMSPRGTASNLHFS 235
 Db 188 -----DVNGKILDRLKLMGD-----LYWAINGGGGSYGVLAYKI-NLVEVPEVENTVFRISRT 240
 Qy 236 WDGFTRDALQDLLTKYKFLARCDWKNTVGKF-QIFHQAAEEF-VMLYLYTSYNSDAEREVAYAQRDRHYHLEADI 293
 Db 241 LEQNATDIH-----RWOQVAPKLPLDEFIRTVIDVVNGTVSSQKTVRTTFIA 288
 Qy 294 Q-----DRHYLHEADIEQIYKTCPTKALGGHAGWAPFPVRPRKRHTSKSYM 341
 Db 289 MFLGDTTTLISIINRRF---PELGLVRSRSDCTETSWIQLQSVLFWTNIQVGSS----- 336
 Qy 342 HDETMYPFYALTETINGSGPQNORGKYSAYMIKDPDFQIDVWKLTEVPDGLTSAEM 401
 Db 337 -----TLLQRNQPVNVLKRKSDYVREPISRGTGLESIWKKM-----TEL 375
 Qy 402 KDALLQDMFGGEIHKVVWDATAVAORE-YIILQYQTYWQEDKDAVNLIKWIRDYFEE 460
 Db 376 EIPTMAFNPyGGMGRISSTVTPFPYRAGNLWIKQYGANWRDETLDRYMELTRKLYQFM 435
 Qy 461 YEPYGVDPNTQVESGKGVFEGCYFNYPDVDLN-NWKNKG-----YGALEYFLG 510

Db 436 -TPFVFS-KNPROS-----:||||| | ||| | | :||| :||| 480
 Qy 511 NLRLIKAKWJMDPNEIFINKOSIPTKP 538
 Db 481 NFERLVKIKTRVDSGNFRNEQSIPLVLP 508

RESULT 5
 US-09-258-031B-16
 Sequence 16, Application US/09258031B
 Patent No. US2002168735A1

GENERAL INFORMATION:

APPLICANT: STUIVER, Maarten Hendrik
 APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
 APPLICANT: SELA-BURLAJE, Marianne Beatrix
 APPLICANT: MELCHERS, Leo Sjoerd
 APPLICANT: VAN DEVENTER-TROOST, Johanna Pieterella
 APPLICANT: LAGEWEG, Wessel
 APPLICANT: PONSTEIN, Anne Silene
 APPLICANT: LAGEWEG, Wessel Silene
 APPLICANT: PONSTEIN, Anne Silene

TITLE OF INVENTION: ANTIFUNGAL PROTEINS, DNA CODING
 TITLE OF INVENTION: THEREFOR, AND HOSTS INCORPORATING
 TITLE OF INVENTION: SAME.

NUMBER OF SEQUENCES: 75

CORRESPONDENCE ADDRESS:
 ADDRESSEE: LADAS & PARRY
 STREET: 26 WEST 61 STREET
 CITY: NEW YORK
 STATE: NY
 COUNTRY: USA
 ZIP: 10023 - 7604

COMPUTER READABLE FORM:
 MEDIUM TYPE: 3.25" Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: WINDOWS 95
 SOFTWARE: WORDPERFECT 8

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/09/258, 031B
 FILING DATE: 25-FEB-1999
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: PCT/EP97/04923
 FILING DATE: 04-SEP-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP97200831.2
 FILING DATE: 19-MAR-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP96202466.7
 FILING DATE: 04-SEP-1996

INFORMATION FOR SEQ ID NO: 16:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 529 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 US-09-258-031B-16

Query Match 9.2%; Score 275; DB 9; Length 529;
 Best Local Similarity 23.9%; Pred. No. 2.6e-16; Mismatches 144; Conservative 64; Indels 198; Gaps 26; Matches 144;

Db 147 AGATLGEVYVRIAESN---KIG--FPAGVCPTVGVGHFSGGGYGNLMRKYGL 195
 Qy 162 PWDWLGSVEVWVKPVLTEDSVLKVKYVHKDSEGNDGELFWAHTGGGGNFGILITKYKFDLP 221
 Db 196 SVDNIVDAQII----DNGKLDRKSMGED-LFWAITGGGVSPGVVLAYKIK-LV 245
 Qy 222 MSPRGVIASNLRHESWDGFTRDALQDLITKYKFLARCDMWKNTVKGFOIFHQAEFFVMLY 281
 Db 246 RVPEVVTV-----FTIEREEON----- 263

RESULT 6
 US-09-258-031B-20
 Sequence 20, Application US/09258031B
 Patent No. US2002168735A1

GENERAL INFORMATION:

APPLICANT: STUIVER, Maarten Hendrik
 APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
 APPLICANT: SELA-BURLAJE, Marianne Beatrix
 APPLICANT: MELCHERS, Leo Sjoerd
 APPLICANT: VAN DEVENTER-TROOST, Johanna Pieterella
 APPLICANT: LAGEWEG, Wessel
 APPLICANT: PONSTEIN, Anne Silene
 APPLICANT: LAGEWEG, Wessel Silene
 APPLICANT: PONSTEIN, Anne Silene

TITLE OF INVENTION: ANTIFUNGAL PROTEINS, DNA CODING
 TITLE OF INVENTION: THEREFOR, AND HOSTS INCORPORATING
 TITLE OF INVENTION: SAME.

NUMBER OF SEQUENCES: 75

CORRESPONDENCE ADDRESS:
 ADDRESSEE: LADAS & PARRY
 STREET: 26 WEST 61 STREET
 CITY: NEW YORK
 STATE: NY
 COUNTRY: USA
 ZIP: 10023 - 7604

COMPUTER READABLE FORM:
 MEDIUM TYPE: 3.25" Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: WINDOWS 95
 SOFTWARE: WORDPERFECT 8

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/09/258, 031B
 FILING DATE: 25-FEB-1999
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: PCT/EP97/04923
 FILING DATE: 04-SEP-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP97200831.2
 FILING DATE: 19-MAR-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP96202466.7
 FILING DATE: 04-SEP-1996

INFORMATION FOR SEQ ID NO: 16:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 529 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 US-09-258-031B-16

Query Match 9.2%; Score 275; DB 9; Length 529;
 Best Local Similarity 23.9%; Pred. No. 2.6e-16; Mismatches 144; Conservative 64; Indels 198; Gaps 26; Matches 144;

Db 22 DKPDP-----RLPSMKQGF--NRRWIGTNIDFVYVYTPQG-----AC 57
 Qy 34 DRADPSFPITGEVYTPGNSSFPTVLONYIRNLRFNETTPPKPFLITAEHVSHIQAAVVC 93
 Db 58 TALDRAMEKCSPGTIVRISGGHCYED-----FVFDECVKAINV----TGLVE 101
 Qy 94 GKQNRLILKTR-----SGGHDYEGLSYLNTNTNQPFPIVDMFNLRSTINVDEQETAWVQ 146
 Qy 102 SGYDDDRGYFVSSGDTNWGSFKTLFRDHGRVLPGGSCYSVGLGGHIVGGGDGILARLHGL 161

Query Match 9.2%; Score 275; DB 9; Length 529;
 Best Local Similarity 23.9%; Pred. No. 2.6e-16; Mismatches 144; Conservative 64; Indels 198; Gaps 26; Matches 144;

APPLICATION NUMBER: EP97200831.2
 FILING DATE: 19-MAR-1997
 PRIORITY APPLICATION DATA:
 APPLICATION NUMBER: EP96202466.7
 FILING DATE: 04-SEP-1996
 INFORMATION FOR SEQ ID NO: 20:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 529 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 US-09-258-031B-20

Query Match 9.1%; Score 272; DB 9; Length 529;
 Best Local Similarity 23.5%; Pred. No. 4.8e-16;
 Matches 142; Conservative 65; Mismatches 198; Indels 198; Gaps 25;
 QY 22 DKPDP-----RLPSMKQGF--NRRWIGTNIDFVYVYTPQG----AC 57
 Db 34 DRADPSFPITGPETYTPGNSSFPTVLQNYIRNLRFNETTTPKPEFLITAEHVSHIQAAVVC 93
 QY 58 TALDRAMEKCSPGTIVRIVSGGHCYED-----FVFDECVKAINV----TGLVE 101
 Db 94 GKQNRLKLKTR-----SGGHDYEGILSYLNTNTQNPFFIVDMENLRSINVIEQETAWQ 146
 QY 102 SGYDDDRGYFVSSGDTNWGSFKTLFRDHGRVLPGGSCYSVGLGGHIVGGDGILARLHGL 161
 Db 147 AGATLGEVYVYRIAEKSN-----KHG--FPAVGVCPTVGVGGHFSGGGYGNLMRKYGL 195
 QY 162 PVDWLGSVVEVVVKPVLTEDSLKVYHKGSEGNDELFWAHTGGGGNFGLITKYKFKDLP 221
 Db 196 SVDNIVDAQII-----DVNGKLLDRKSMGED--LFWAITGGGVSVFGVVLAYKIK-LV 245
 QY 222 MSPPRGVIAASNLHFSWDGFTRDALQDLITKVFKLARCWDWKNTVKGQIFHQAAEEFVWLY 281
 Db 246 RVPEVVTV-----FTIERREEQN----- 263
 Qy 282 TSYSNDAER--EVAQ--DRHYHLEADIEQIYKTCERTKALGGHAGWARFPVRPRKRHTSK 337
 Db 264 --LSTIAERWVQVADKLDRDLFLRMTFSVINDT-----NGGKTVRAIFP----- 305
 QY 338 TSYMDE-----TMDYPFYALTE-----TINGSGPNQR- 365
 Db 306 TLYIGNSRNLTWLINKDFEPGLQESDCTEMWSWESVLYYTGFPSGTTALLSRTPQRL 365
 QY 366 --GKVKSAWMKDFPDFQIDVIWKYLTEVPDGLTSAAEMKDALLQVDMRGGIEHKVVWDAT 423
 Db 366 NPFKTKSDVQNPISKROFEFIFERM-----KELENQMLAFNPYGRMSEI-SEFAK 416
 QY 424 AVAQRE-YIILKQYQTYWQEEKDAWN--LKWIRDYFEEWYEPYGGVDPNTQVESGKGV 480
 Db 417 PFPHRSGNIAKIQYEVNWEDISDEAENRYLNFTRLMDYMTPFVSKNP----- 464
 QY 481 FEGCYFNYPDVLDINNNWKNKGKYGALEYFLG-----NLNRLIKAKWLDPNEIFTNKQS 533
 Db 465 -REAFLNRYRDDIGINSHGMRNAYTEGMVGHKFETINVKRLVSVKTKVDPDNFFRNEQS 523
 QY 534 IPT 536
 Db 524 IPT 526
 US-09-258-031B-58

Query Match 8.9%; Score 266; DB 9; Length 540;
 Best Local Similarity 23.5%; Pred. No. 1.7e-15;
 Matches 140; Conservative 72; Mismatches 187; Indels 198; Gaps 30;
 QY 20 TPDKPDPRLPSMKQGFNRRWIGTNIDFVYVYTPQG--ACTALD---RAMEKCSPGTIVR 73
 Db 56 TPD--NSSFPSVLAQYIR-----NLRFNEST-TPKPLIITAHVSHIQAAVCAK-THR 106
 QY 74 IV---SGGHCYED-----FVFDECVKAINVTLGIVESGYDDDRGYFVSSGDTN 118
 Db 107 LLMKTRSGGHDYEGLSYVTSNSNQFFVVDMFNLRSINVS-----IEDETAWVQAGATLG 160
 QY 119 WGSFKTLFRDHGRVLPGGSCYSVGLGGHIVGGDGILARLHGLPVDWLSGVVEVVVKPVL 178
 Db 161 EVYVYRIAEKSNSHAPPAGVCPTVGVGGHFSGGGYGNLMRKYGLSVDNIVDAQLI----- 214
 QY 179 EDSVLKVKHKGSEGNDELFWAHTGGGGNFGLITKYKFKDLPMSPRGVIAASNLHFSWDG 238
 Db 215 -DVNGKLLNRKSMGED--LFWAITGGGVSVFGVVAVYKIK-LVRVPTTVVFNVQ----- 265
 QY 239 FTRDALQDLITKVFKLARCWDWKNTVKGQIFHQAAEEFVWLYTSYNSDAEREVAQDRHY 298
 Db 266 --RTSSEQNLSTIAHR-----W-----1OVADEKLDNDLFLRMTFENVINNTGE----- 305
 QY 299 HLEADIEQIYKTCERTKALGGHAGWARFPVRPRKRHTSKSYMHDETMYPFYALTEIN 358
 Db 306 -----KTIRG-----LFP-----TLYLGNST-----ALVALLN 328
 QY 359 GSGENQRGKYKSAWMKDFPDFQIDV-----IW---KYLTEVPDGL-TSA----- 399
 Db 329 -----KDFPELGVEISCDIEMSWEISVLFYTFNPPIGTPPTALLSRTPQRL 372
 QY 400 -----EMKDALLQVDMFGGIEHKVVWDATAVAQRE-Y 430

RESULT 7
 US-09-258-031B-58
 Sequence 58, Application US/09258031B
 Patent No. US20020168735A1
 GENERAL INFORMATION:
 APPLICANT: STUIVER, Maarten Hendrik
 APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
 APPLICANT: SELA-BURLAGE, Marianne Beatrix
 APPLICANT: MELCHERS, Leo Sjoerd
 APPLICANT: VAN DEVENTER-TROOST, Johanna Pietermella
 APPLICANT: LAGEWEG, Wessel

APPLICANT: PONSTEIN, Anne Silene
 APPLICANT: LAGEWEG, Wessel
 APPLICANT: PONSTEIN, Anne Silene
 TITLE OF INVENTION: ANTIFUNGAL PROTEINS, DNA CODING
 TITLE OF INVENTION: THEREFOR, AND HOSTS INCORPORATING
 TITLE OF INVENTION: SAME.
 NUMBER OF SEQUENCES: 75
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: LADAS & PARRY
 STREET: 26 WEST 61 STREET
 CITY: NEW YORK
 STATE: NY
 COUNTRY: USA
 ZIP: 10023 - 7604
 COMPUTER READABLE FORM:
 MEDIUM TYPE: 3.25" Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: WINDOWS 95
 SOFTWARE: WORDPERFECT 8
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/09/258, 031B
 FILING DATE: 25-FEB-1999
 CLASSIFICATION: 435
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: PCT/EP97/04923
 FILING DATE: 04-SEP-1997
 PRIOR APPLICATION DATA:
 APPLICATION NUMBER: EP96202466.7
 FILING DATE: 04-SEP-1996
 INFORMATION FOR SEQ ID NO: 58:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 540 amino acids
 TYPE: amino acid
 TOPOLOGY: linear
 MOLECULE TYPE: protein
 US-09-258-031B-58

RESULT 8
US-09-258-031B-71
; Sequence 71, Application US/09258031B
; Patent No. US20020168735A1
GENERAL INFORMATION:
APPLICANT: STUIVER, Maarten Hendrik
APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
APPLICANT: SELA-BURLAJE, Marianne Beatrix
APPLICANT: MELCHERS, Leo Sjoerd
APPLICANT: VAN DEVENTER-TROOST, Johanna Pieterella
APPLICANT: LAGEWEG, Wessel
APPLICANT: PONSTEIN, Anne Silene
APPLICANT: PONSTEIN, Anne Silene
TITLE OF INVENTION: ANTIFUNGAL PROTEINS, DNA CODING
TITLE OF INVENTION: THEREFOR, AND HOSTS INCORPORATING
TITLE OF INVENTION: SAME.
NUMBER OF SEQUENCES: 75
CORRESPONDENCE ADDRESS:
ADDRESSEE: LADAS & PARRY
STREET: 26 WEST 61 STREET
CITY: NEW YORK
STATE: NY
COUNTRY: USA
ZIP: 10023 - 7604
COMPUTER READABLE FORM:
MEDIUM TYPE: 3.25" Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: WINDOWS 95
SOFTWARE: WORDPERFECT 8
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/09/258, 031B
FILING DATE: 25-FEB-1999
CLASSIFICATION: 435
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: EP97200831.2
FILING DATE: 19-MAR-1997
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: EP96202466.7
FILING DATE: 04-SEP-1996
INFORMATION FOR SEQ ID NO: 71:
SEQUENCE CHARACTERISTICS:
LENGTH: 508 amino acids
TYPE: amino acid
TOPOLOGY: linear
MOLECULE TYPE: protein
US-09-258-031B-71

Query Match 8.8%; Score 263; DB 9; Length 508;
Best Local Similarity 23.2%; Pred. No. 3e-15;
Matches 118; Conservative 67; Mismatches 201; Indels 122; Gaps 20;

QY 72 VRIVSGGHCYED-----FVFDCEVKAINV----TGLVESGYDDDRGYFVSSG 115
Db 82 MKIRSGGHHDYGLSYVTYSGKPFVFLDMFNLRSDVDVASKTAWVQTGAILGEVYYI-- 139

QY 116 DTNWGSFKTLFRDHGRVLPGGSCYSVGLGGHIVGGGDGILARLHGLPVDWLGLSGVEVVVKP 175

RESULT 8
US-09-258-031B-71
; Sequence 71, Application US/09258031B
; Patent No. US20020168735A1
GENERAL INFORMATION:
APPLICANT: STUIVER, Maarten Hendrik
APPLICANT: CUSTERS, Jerome Humbertina Henricus Victor
APPLICANT: SELA-BURLAJE, Marianne Beatrix
APPLICANT: MELCHERS, Leo Sjoerd
APPLICANT: VAN DEVENTER-TROOST, Johanna Pieterella
APPLICANT: LAGEWEG, Wessel
APPLICANT: PONSTEIN, Anne Silene
APPLICANT: PONSTEIN, Anne Silene
TITLE OF INVENTION: ANTIFUNGAL PROTEINS, DNA CODING
TITLE OF INVENTION: THEREFOR, AND HOSTS INCORPORATING
TITLE OF INVENTION: SAME.
NUMBER OF SEQUENCES: 75
CORRESPONDENCE ADDRESS:
ADDRESSEE: LADAS & PARRY
STREET: 26 WEST 61 STREET
CITY: NEW YORK
STATE: NY
COUNTRY: USA
ZIP: 10023 - 7604
COMPUTER READABLE FORM:
MEDIUM TYPE: 3.25" Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: WINDOWS 95
SOFTWARE: WORDPERFECT 8
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/09/258, 031B
FILING DATE: 25-FEB-1999
CLASSIFICATION: 435
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: EP97200831.2
FILING DATE: 19-MAR-1997
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: EP96202466.7
FILING DATE: 04-SEP-1996
INFORMATION FOR SEQ ID NO: 71:
SEQUENCE CHARACTERISTICS:
LENGTH: 508 amino acids
TYPE: amino acid
TOPOLOGY: linear
MOLECULE TYPE: protein
US-09-258-031B-71

Query Match 3.6%; Score 107; DB 10; Length 19;
Best Local Similarity 100.0%; Pred. No. 0.0033;
Matches 19; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 8 DPGYIVIDVNAGTPDKPD 26
Db 1 DPGYIVIDVNAGTPDKPD 19

RESULT 9
US-09-932-923-1
; Sequence 1, Application US/09932923
; Patent No. US20020064577A1
GENERAL INFORMATION:
APPLICANT: SOE, JORN B.
APPLICANT: POULSEN, CHARLOTTE H.
APPLICANT: HOSTRUP, PERNILLE B.
TITLE OF INVENTION: A METHOD OF IMPROVING THE PROPERTIES OF A FLOUR DOUGH,
TITLE OF INVENTION: A FLOUR DOUGH IMPROVING COMPOSITION AND IMPROVED FOOD
TITLE OF INVENTION: PRODUCTS
FILE REFERENCE: 59191-000003
CURRENT APPLICATION NUMBER: US/09/932, 923
CURRENT FILING DATE: 2001-08-21
PRIORITY APPLICATION NUMBER: 08/676, 186
PRIORITY FILING DATE: 1996-07-12
PRIORITY APPLICATION NUMBER: 08/483, 870
PRIORITY FILING DATE: 1995-06-07
PRIORITY APPLICATION NUMBER: PCT/DK96/00239
PRIORITY FILING DATE: 1996-06-04
NUMBER OF SEQ ID NOS: 1
SOFTWARE: PatentIn Ver. 2.1
SEQ ID NO 1
LENGTH: 19
TYPE: PRT
ORGANISM: Chondrus Crispus
FEATURE:
OTHER INFORMATION: Description of Sequence: peptide
US-09-932-923-1

Query Match 3.6%; Score 107; DB 10; Length 19;
Best Local Similarity 100.0%; Pred. No. 0.0033;
Matches 19; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 8 DPGYIVIDVNAGTPDKPD 26
Db 1 DPGYIVIDVNAGTPDKPD 19

RESULT 10
US-09-880-748-1466
; Sequence 1466, Application US/09880748

; Publication No. US20030059937A1
; GENERAL INFORMATION:
; APPLICANT: Ruben et al.
; TITLE OF INVENTION: Antibodies that Immunospecifically Bind BLyS
; FILE REFERENCE: PF523
; CURRENT APPLICATION NUMBER: US/09/880,748
; CURRENT FILING DATE: 2001-06-15
; PRIOR APPLICATION NUMBER: 60/212,210
; PRIOR FILING DATE: 2000-06-15
; PRIOR APPLICATION NUMBER: 60/240,816
; PRIOR FILING DATE: 2000-10-17
; PRIOR APPLICATION NUMBER: 60/276,248
; PRIOR FILING DATE: 2001-03-16
; PRIOR APPLICATION NUMBER: 60/277,379
; PRIOR FILING DATE: 2001-03-21
; PRIOR APPLICATION NUMBER: 60/293,499
; PRIOR FILING DATE: 2001-05-25
; NUMBER OF SEQ ID NOS: 3239
; SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 1466
; LENGTH: 254
; TYPE: PRT
; ORGANISM: Homo sapiens
; US-09-880-748-1466

Query Match 3.2%; Score 95; DB 9; Length 622;
Best Local Similarity 20.4%; Pred. No. 5.9; 212; Indels 152; Gaps 33;
Matches 114; Conservative 81; Mismatches 212; Gaps 33;

Qy 31 MKQGFNRRW---IGTNIDFVYVV--YTPO---GACTALDRAMEKCSPTGVRIVSGH 80
Db 1 MKKG-KKRWKNLAASSLILITLVTGPSEQAEADGRTAAQARQMESLNRLGVAVKTGNGV 59

Qy 81 YEDF--VFDECVKATTINV---TGLIVESGYDDDRGYFVSSGDTNWGSFKTLFRDHGRVL 134
Db 60 FVSWRLLGTEPSSVSLSNVYRNGKKLNGSPITSSTNYDAGGDLN----- 103

Qy 135 GGSCCYSVGLGGHIIVGGGD----GILARLH-GLPVDWLSGVENVVKPVLTEDSLKV 186
Db 104 --AVIQVRA---VLNGREQAPSESVGVLINKQYKSVPLQPKAGK----TPDGV-SYT 150

Qy 187 HKDSEGNDELFWAHTGGGNFGIITKYYFKDLPLMSPRGVIAASNLHFWSWDGFTRDALQD 246
Db 151 YSANDASLGLDV----GDAQEYIFLKW-----DP----SNSKDNDSDQGVTGDLVID 193

Qy 247 LLTKYFKL-ARCDWKNTVGKFQIFHQAAEEFVMLYTSYNSDAEREVAODRHYLEADIE 305
Db 194 A----YKLDTMMWRINLCK--NIRAGAHYTOFLVYDFDCDGKAELM----- 235

Qy 306 QIYKTCPEPK-ALGGHAGWAPPVVR-PRKRHTSKTSYM-----HDETMYP---- 349
Db 236 --KTDAGTKDGKGVIGNANADYRNAQQRILSGPEYLTVFKGDTGAELTIVNEYPARGN 292

Qy 350 -----FYLALTETINGSGPN--ORGKYSAYMIK-DFPDFQOIDVTKYLTE 391
Db 293 VADWGDSYGNRVRDLAGVAYLDGERPSFVMARGYTYTRTVLVIYNFRGGKLTKLWTFDSD 352

Qy 392 VP-DGLTSAEMKDALLQVDMFFGEIHKVWDATAVAQREYITKLOYQTYWQED-KDAVN 449
Db 353 APGNGAYAGQGNHSLSVADVDGDGKDEIYGAMAV--DHDGKGLYSTGWGHGDAMHTGN 409

Qy 450 LKWIR-----DFYEENVEPYG-GVRDPNT-----QVESGKGVFEGCYFNYPDVD---- 492
Db 410 LDPSRPGLEVFQWHENSNSPGLSFRDAKIGKIIWGVHAGKDVGRCM--AADIDPRYEG 466

Qy 493 LNNWKNGKYGALEYFLGN 511
Db 467 AEWANGSLYTAKGVKIGN 485

RESULT 11

US-10-124-880-4
; Sequence 4, Application US/10124880
; Publication No. US20030026810A1
; GENERAL INFORMATION:
; APPLICANT: Jorgensen, Per Lina
; APPLICANT: Schnorr, Kirk
; APPLICANT: Andersen, Lene No. US20030026810A1boe
; APPLICANT: Schulein, Martin
; APPLICANT: Outtrup, Helle
; TITLE OF INVENTION: No. US20030026810A1 Rhamnogalacturonan Hydrolases
; CURRENT FILING DATE: 5572-204-US
; CURRENT APPLICATION NUMBER: US/10/124,880
; CURRENT FILING DATE: 2002-04-19
; PRIOR APPLICATION NUMBER: US/09/311,626B
; PRIOR FILING DATE: 1999-05-13
; PRIOR APPLICATION NUMBER: 0608/98
; PRIOR FILING DATE: 1998-05-01
; PRIOR APPLICATION NUMBER: 60/084,358
; PRIOR FILING DATE: 1998-05-05
; NUMBER OF SEQ ID NOS: 61
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 4
; LENGTH: 622
; TYPE: PRT
; ORGANISM: Bacillus licheniformis
; US-10-124-880-4

RESULT 12

US-09-815-242-12135
; Sequence 12135, Application US/09815242
; Patent No. US20020061569A1
; GENERAL INFORMATION:
; APPLICANT: Haselbeck, Robert
; APPLICANT: Ohlsen, Kari L.
; APPLICANT: Zyskind, Judith W.
; APPLICANT: Wall, Daniel
; APPLICANT: Trawick, John D.
; APPLICANT: Carr, Grant J.
; APPLICANT: Yamamoto, Robert T.
; APPLICANT: Xu, H. Howard
; TITLE OF INVENTION: Identification of Essential Genes in Prokaryotes
; FILE REFERENCE: ELITRA.011A
; CURRENT APPLICATION NUMBER: US/09/815,242
; CURRENT FILING DATE: 2001-03-21
; PRIOR APPLICATION NUMBER: 60/191,078
; PRIOR FILING DATE: 2000-03-21
; PRIOR APPLICATION NUMBER: 60/206,848
; PRIOR FILING DATE: 2000-05-23
; PRIOR APPLICATION NUMBER: 60/207,727
; PRIOR FILING DATE: 2000-05-26
; PRIOR APPLICATION NUMBER: 60/242,578
; PRIOR FILING DATE: 2000-10-23
; PRIOR APPLICATION NUMBER: 60/253,625

PRIOR FILING DATE: 2000-11-27
PRIOR APPLICATION NUMBER: 60/257,931
PRIORITY NUMBER: 60/269,308
PRIOR FILING DATE: 2001-02-16
NUMBER OF SEQ ID NOS: 14110
SEQ ID NO 12135
LENGTH: 657
TYPE: PRT
ORGANISM: *Staphylococcus aureus*
US-09-815-242-12135

Query Match 3.2%; Score 95; DB 10; Length 657;
Best Local Similarity 19.1%; Pred. No. 6.4;
Matches 75; Conservative 55; Mismatches 128; Indels 160; Gaps 18;
Matches 79; Conservative 51; Mismatches 139; Indels 144; Gaps 21;

Qy 209 FGIITKYYFKDLPLMSPRGVIASNLHFSWDGFTRDALQDILTKYFKLARCDWKNTVG--- 264
Db 6 FYITTPPIYY----PSG----NLHIGHAYST--VAGDVIAKYKRMQGYDVRLTGTDEH 53

Qy 265 --KFQIIFHQAA-----EBFV----MYLYTSYSNDAEREVAQDRHYHLEADIEQIYK 309
Db 54 GOKIQEKAQKAGKTEIEYLDEMIAIGKQLWAKLEISNDDFIRTTEERHKHV--VEQVFE 110

Qy 310 TC-EPTKALGGHAGWAPPVRPRKRHTSKTSYMHDETMYPFYALTETINGSGPNQRK 367
Db 111 RLKQGDIVLGEYEYGWYSVP-----DETYTESQLVD-PQYENGKIIKGKSPDSGHE 161

Qy 368 YKSAYMIKDFPDF----QIDVWKYLTEVPDGLTSAMKDALLQ-----VDM----- 410
Db 162 VE--LVKEESEYYFNISKYTDRLLEFYDQNPDFTOPPSRKNEMINNFTKPGGLADLAWSRT 218

Qy 411 -FGGEIH-----KVWMDATAVAOREYIKLQIOTWQEEKDQAVNLKWI RDY---- 457
Db 219 SFNWGVHVPSNPKHVWVYIWIDALV--NYISALGYLS---DDESLFNKWPADILHMAK 271

Qy 458 -----EEMYEPYGGVPDPNTQVE---- 475
Db 272 EIVRFHSIIWPILLMALDPLPKKVFAGHWILMKMSKSKGNVWDPNLLIDRYGLDAT 331

Qy 476 -----SGKGVF----EGCYFNYPDVDLNNWKNGKYGALEYFLGNL 512
Db 332 RYLMRELPPFGSDGVFTPBAFVERTNFDLAN-DLGNLVNRTISMINKYFDGEL 383

RESULT 13
US-10-234-026-13
Sequence 13, Application US/10234026
; Publication No. US20030097679A1
; GENERAL INFORMATION:
; APPLICANT: Vlaams Interuniversitair Instituut voor Biotechnol
; TITLE OF INVENTION: PRODUCTION OF ASCORBIC ACID IN PLANTS
; FILE REFERENCE: DECLES.001C1
; CURRENT APPLICATION NUMBER: US/10/234,026
; CURRENT FILING DATE: 2000-08-29
; PRIOR APPLICATION NUMBER: NL 1006000
; PRIOR FILING DATE: 1997-05-07
; CURRENT APPLICATION NUMBER: US/10/234,026
; CURRENT FILING DATE: 2000-08-29
; PRIOR APPLICATION NUMBER: 60/191,078
; PRIOR FILING DATE: 2000-03-21
; PRIOR APPLICATION NUMBER: 60/206,848
; PRIOR FILING DATE: 2000-05-23
; PRIOR APPLICATION NUMBER: 60/207,727
; PRIOR FILING DATE: 2000-05-26
; PRIOR APPLICATION NUMBER: 60/242,578
; PRIOR FILING DATE: 2000-10-23
; PRIOR APPLICATION NUMBER: 60/253,625
; PRIOR FILING DATE: 2000-11-27
; PRIOR APPLICATION NUMBER: 60/257,931
; PRIOR FILING DATE: 2000-12-22
; PRIOR APPLICATION NUMBER: 60/269,308
; PRIOR FILING DATE: 2001-02-16
; NUMBER OF SEQ ID NOS: 14110
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 13
; LENGTH: 650
; TYPE: PRT
; ORGANISM: *Brassica oleracea*
US-10-234-026-13

Query Match 3.1%; Score 94; DB 9; Length 600;
Best Local Similarity 17.9%; Pred. No. 6.9;
Matches 75; Conservative 55; Mismatches 128; Indels 160; Gaps 18;
Matches 75; Conservative 55; Mismatches 128; Indels 160; Gaps 18;

Qy 143 LGGHIVGGGDGILARLHGLPVDWLGSVENVKPVLTEDSVLKVKHDSEGNDGEFLWAHT 202
Db 210 IGGIIQVGAHTGARLP--PID---EQVIGMKLVTPAKGTIELSKD---NDPELFHLARCDWKNT 260

Qy 203 GGGGGNFGIITKYYFKDLPLMSPRGVIASNLHFSWDGFTRDALQDILTKYFKLARCDWKNT 262
Db 261 CGLGG-LGVVAEV--TLQCVVERQELLEHTVVS-----TLEEIKKNHKKL----- 302

Qy 263 VGKFOIFHQAAEEFVMLYTSYSNDAEREVAQDRHYHLEADIEQIYKCTPTKALGGHAG 322
Db 303 -----STNKHVVKLYIIPYTDV-----VVVTCPVSKWMSG--- 332

Qy 323 WAPFPVPRKRHTSKTSYMHDETMYPFYALTETINGSGPNQRK 382
Db 333 -----APKDKPKYTTEEALKHVRDLYR 354

Qy 383 DVIWKVLT-----VPDG-----LTSAEMKDALLQVDMFG---GEIHKVWDATAVA 426
Db 355 ESIVKVRVQDSSKKTPDSREPDINELSFTELRDKLIALDPLNDVHVGVNQ-----A 406

Qy 427 QREYIILQ-YQTWQEE--DKDAVNLKWI RDYFYEEMYEPYGGVPDPNTQVESGKGVFEG 483
Db 407 EAFFWWKSEGYRGWSDEILGFDCGGQQWV---SETCFPAGTLAKPSMK----- 452

Qy 484 CYFNYPDVDLNNWKNGKYGALEYFLGNLNRLRIKAKWLDPNEI--FTNKQSIPTKP 538
Db 453 -----DLEYIEQKELIQKEAIAPAPSPIEQRWTGGRSKSPMS 489

RESULT 14
US-09-815-242-13013
Sequence 13, Application US/09815242
; Patent No. US20020061569A1
; GENERAL INFORMATION:
; APPLICANT: Haselbeck, Robert
; APPLICANT: Ohlsen, Kari L.
; APPLICANT: Zyskind, Judith W.
; APPLICANT: Wall, Daniel
; APPLICANT: Trawick, John D.
; APPLICANT: Carr, Grant J.
; APPLICANT: Yamamoto, Robert T.
; APPLICANT: Xu, H. Howard
; TITLE OF INVENTION: Identification of Essential Genes in
; TITLE OF INVENTION: Prokaryotes
; FILE REFERENCE: ELITRA.011A
; CURRENT APPLICATION NUMBER: US/09/815,242
; CURRENT FILING DATE: 2001-03-21
; PRIOR APPLICATION NUMBER: 60/191,078
; PRIOR FILING DATE: 2000-03-21
; PRIOR APPLICATION NUMBER: 60/206,848
; PRIOR FILING DATE: 2000-05-23
; PRIOR APPLICATION NUMBER: 60/207,727
; PRIOR FILING DATE: 2000-05-26
; PRIOR APPLICATION NUMBER: 60/242,578
; PRIOR FILING DATE: 2000-10-23
; PRIOR APPLICATION NUMBER: 60/253,625
; PRIOR FILING DATE: 2000-11-27
; PRIOR APPLICATION NUMBER: 60/257,931
; PRIOR FILING DATE: 2000-12-22
; PRIOR APPLICATION NUMBER: 60/269,308
; PRIOR FILING DATE: 2001-02-16
; NUMBER OF SEQ ID NOS: 14110
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 13013
; LENGTH: 657
; TYPE: PRT
; ORGANISM: *Staphylococcus aureus*
US-09-815-242-13013

Query Match 3.1%; Score 94; DB 10; Length 657;
 Best Local Similarity 19.1%; Pred. No. 7.9; Mismatches 139; Indels 144; Gaps 21;
 Matches 79; Conservative 51; Mismatches 139; Indels 144; Gaps 21;

```

QY      209 FGIITKYYFKDLPMSPRGVIASNLLHFSWDGFTRDALQDILTKYFKLARCDWKNTV3---- 264
Db      6 FYITTPIYY-----PSG---NLHIGHAYST--VAGDVIAARYKRMQGYDVRYLGTGDEH 53
QY      265 --KFFQIFHOAA-----EEFV----MYLYTYSNDAEREVAQDRHYHLEADIEQIYK 309
Db      54 GOKIQEKAQKAGKTEIYLDENIAGIKQLWAKLEISNDDFIRTEERHKH----VEQVFE 110
QY      310 TC--EPTKALGGHAGWAPFPVPRKRHTSKTSYMHDETMYPFYALTETINGSGPNQRK 367
Db      111 RLIKQGDIVLGEYEGWISVP-----DETYVITESQVLVD-POYENGKLIIGKSPGSHE 161
QY      368 YKSAYMIKDFPDF----QIDVIWKLTEVPDGLTSAEMKDALLO-----VDM----- 410
Db      162 VE--LVKEEESYFFNISKYTDRLLFYDONDPDFIOPPSRKNEMINNFIKPGIADLAWSRT 218
QY      411 -FGGBIH-----KVWNDATAVAQREYIJKLQYQTYWQEEDKAVNLKWRDFY---- 457
Db      219 SFNWGVHVPSNPKHVVYVNTDALV--NYISALGYLS---DDESLENKYWPADIHLMAK 271
QY      458 -----EEMYEPYGGVPDPNTQVE---- 475
Db      272 EIVRFHSITIWPLLMALDILPLKKVFAHGWLMLKGKMSKSKGNVVDPNILDRYGLDAT 331
QY      476 -----SGKGVF----EGCYFNYPDVLDNNWNKGKYGCALELYFLGNL 512
Db      332 RYIIMRELPGSDGVFTPEAFVERTNFDLAN-DLGNLVNRTISMVNKYFDGEL 383

```

RESULT 15
 US-09-815-242-5013
 ; Sequence 5013, Application US/09815242
 ; Patent No. US20020061569A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Haselbeck, Robert
 ; APPLICANT: Ohlsen, Kari L.
 ; APPLICANT: Zyskind, Judith W.
 ; APPLICANT: Wall, Daniel
 ; APPLICANT: Trawick, John D.
 ; APPLICANT: Carr, Grant J.
 ; APPLICANT: Yamamoto, Robert T.
 ; APPLICANT: Xu, H. Howard
 ; TITLE OF INVENTION: Identification of Essential Genes in
 ; CURRENT APPLICATION NUMBER: US/09/815,242
 ; CURRENT FILING DATE: 2001-03-21
 ; PRIOR APPLICATION NUMBER: 60/191,078
 ; PRIOR FILING DATE: 2000-03-21
 ; PRIOR APPLICATION NUMBER: 60/206,848
 ; PRIOR FILING DATE: 2000-05-23
 ; PRIOR APPLICATION NUMBER: 60/207,727
 ; PRIOR FILING DATE: 2000-05-26
 ; PRIOR APPLICATION NUMBER: 60/242,578
 ; PRIOR FILING DATE: 2000-10-23
 ; PRIOR APPLICATION NUMBER: 60/253,625
 ; PRIOR FILING DATE: 2000-11-27
 ; PRIOR APPLICATION NUMBER: 60/257,931
 ; PRIOR FILING DATE: 2000-12-22
 ; PRIOR APPLICATION NUMBER: 60/269,308
 ; PRIOR FILING DATE: 2001-02-16
 ; NUMBER OF SEQ ID NOS: 14110
 ; SOFTWARE: FastSEQ for Windows Version 4.0
 ; SEQ ID NO 5013
 ; LENGTH: 584
 ; TYPE: PRT
 ; ORGANISM: Enterococcus faecalis
 ; US-09-815-242-5013

Search completed: June 10, 2003, 10:07:16
 Job time : 27 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

OM protein - protein search, using sw model

Run on: June 10, 2003, 09:58:02 ; Search time 18 Seconds
(without alignments)
892.495 Million cell updates/sec

Title: US-09-998-284-2
Perfect score: 2997
Sequence: 1 MATLPQKDPGIVIDVNAGT.....IFTNKOSIPTKPLKEPKOTK 546
Scoring table: BIOSUM62
Gapop 10.0 , Gapext 0.5
Searched: 262574 seqs, 29422922 residues

Total number of hits satisfying chosen parameters: 262574

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 45 summaries

Database : Issued_Patents_AA:*

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep: *
2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep: *
3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep: *
4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep: *
5: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep: *
6: /cgn2_6/ptodata/1/iaa/backffiles1.pep: *

pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	2989	99.7	546	4	US-08-669-304-31
2	635.5	21.2	539	4	US-09-036-987A-11
3	635.5	21.2	539	4	US-09-370-700-11
4	323	10.8	397	4	US-09-433-248A-2
5	304	10.1	529	4	US-09-433-248A-6
6	275	9.2	538	4	US-09-647-390-16
7	266	8.9	540	4	US-09-647-390-18
8	255	8.5	495	4	US-09-217-490-2
9	117	3.9	129	4	US-09-433-248A-8
10	107	3.6	19	4	US-08-676-186-1
11	95	3.2	622	4	US-09-311-626B-4
12	94	3.1	600	4	US-09-423-468A-13
13	92	3.1	466	3	US-08-704-711A-17
14	92	3.1	466	4	US-09-521-220-17
15	92	3.1	944	4	US-08-652-877-12
16	92	3.1	4655	4	US-08-652-877-84
17	91.5	3.1	858	4	US-09-255-829-22
18	91.5	3.1	858	4	US-09-255-829-29
19	91.5	3.1	1169	4	US-09-255-829-20
20	91	3.0	1861	2	US-08-790-912-4
21	90.5	3.0	603	4	US-09-134-001C-5226
22	90	3.0	715	4	US-08-620-412C-329
23	90	3.0	23	4	US-08-669-304-2
24	90	3.0	23	4	US-08-669-304-9
25	90	3.0	4655	4	US-08-652-877-90
26	89.5	3.0	444	1	US-09-178-002-2
27	89.5	3.0	467	1	US-09-178-002-4

ALIGNMENTS

RESULT 1
US-08-669-304-31
; Sequence 31, Application US/08669304
; Patent No. 6251626
; GENERAL INFORMATION:
; APPLICANT: Peter Stougaard
APPLICANT: Ole Cai Hansen
TITLE OF INVENTION: RECOMBINANT HEXOSE OXIDASE, A METHOD OF PRODUCING SAME AND USE OF SUCH ENZYME
NUMBER OF SEQUENCES: 34
CORRESPONDENCE ADDRESS:
ADDRESSEE: Hunton & Williams
STREET: 1900 K Street, N.W.
CITY: Washington
STATE: D.C.
COUNTRY: U.S.A.
ZIP: 20006-1109
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: PatentIn Release #1.0, Version #1.25
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/669,304
FILING DATE: 12 July 1996
CLASSIFICATION: 435
PRIOR APPLICATION DATA:
APPLICATION NUMBER: 08/476,910
FILING DATE: 7 June 1995
ATTORNEY/AGENT INFORMATION:
NAME: Stanislaus Aksman
REGISTRATION NUMBER: 28,562
REFERENCE/DOCKET NUMBER: 320,000003
TELECOMMUNICATION INFORMATION:
TELEPHONE: (202) 955-1926
TELEFAX: (202) 778-2201
TELEX: NO. 6251626
INFORMATION FOR SEQ ID NO: 31:
SEQUENCE CHARACTERISTICS:
LENGTH: 546 amino acids
TYPE: amino acid
TOPOLOGY: linear
MOLECULE TYPE: protein
; US-08-669-304-31

Query Match 99.7%; Score 2989; DB 4; Length 546;
Best Local Similarity 99.8%; Pred. No. 3.1e-296;
Matches 545; Conservative 0; Mismatches 1; Indels 0; Gaps 0;

QY 1 MATLPQKDPGIVIDVNAGTPDKDPRLPSMKQGFNRWIGTNIDFVTVWYTPQGACTAL 60

Db	1	MATLPQKDPGYIVIDVNAGTADKPDPRLPSMKQGFNRWIGTNIDFVYVWYTPQGACTAL	60
Qy	61	DRAIMEK CSPGTIVRIVSGGHCYEDFVFDECVKAIINVTLGLVESGYDDDRGYFVSSGDTNWG	120
Db	61	DRAIMEK CSPGTIVRIVSGGHCYEDFVFDECVKAIINVTLGLVESGYDDDRGYFVSSGDTNWG	120
Qy	121	SFKTLFRDHGRVLPGGSCYSVGLGGHIVGGGDGILARLHGLPVDWLSGVEVWKPVLTED	180
Db	121	SFKTLFRDHGRVLPGGSCYSVGLGGHIVGGGDGILARLHGLPVDWLSGVEVWKPVLTED	180

NAME: Stuart, Donald R
REGISTRATION NUMBER: 28,479
REFERENCE/DOCKET NUMBER: 50,608
TELECOMMUNICATION INFORMATION:
TELEPHONE: (317) 337-4816
TELEFAX: (317) 337-4847
INFORMATION FOR SEQ ID NO: 11:
SEQUENCE CHARACTERISTICS:
LENGTH: 539 amino acids
TYPE: amino acid

QY 241 RDALQDLITKYFKLARCDWKNTVGKFOIFHQAAEFVMYLYTSYNSDAEREAQDRHYHL 300
Db 241 RDALQDLITKYFKLARCDWKNTVGKFOIFHQAAEFVMYLYTSYNSDAEREAQDRHYHL 300
QY 301 EADIEQIYKTCEPTKALGGHAGWAPPVRPRKRHTSKTSYMHDETMYPFYALTETINGS 360
Db 301 EADIEQIYKTCEPTKALGGHAGWAPPVRPRKRHTSKTSYMHDETMYPFYALTETINGS 360
QY 361 GPNORGKYSAYMIKDFPDFQIDVIWKYLTEVPDGLTSAEMKDALLQVDMFGGEIHKVW 420
Db 361 GPNORGKYSAYMIKDFPDFQIDVIWKYLTEVPDGLTSAEMKDALLQVDMFGGEIHKVW 420
QY 421 DATAVAQREYIJKLOYQTYWQEDDAVLKWIRDFYEEMYEPYGGVDPNTQVESGRGV 4800
Db 421 DATAVAQREYIJKLOYQTYWQEDDAVLKWIRDFYEEMYEPYGGVDPNTQVESGRGV 4800
QY 481 FEGCYFNYPDVDLNNWKGKYGAKWLWDPNEIFTNKQSIPTKPLK 5400
Db 481 FEGCYFNYPDVDLNNWKGKYGAKWLWDPNEIFTNKQSIPTKPLK 5400
QY 541 EPKQTK 546
Db 541 EPKQTK 546

RESULT 2
US-09-036-987A-11
; Sequence 11, Application US/09036987A
; Patent No. 6143526
; GENERAL INFORMATION:
; APPLICANT: Baltz, Richard H.
; APPLICANT: Broughton, Mary C.
; APPLICANT: Crawford, Kathryn P.
; APPLICANT: Madduri, Krishnamurthy
; APPLICANT: Merlo, Donald J.
; APPLICANT: Readway, Patti J.
; APPLICANT: Turner, Jan R.
; APPLICANT: Waldron, Clive
TITLE OF INVENTION: Biosynthetic Genes For Spinosyn Insecticide
TITLE OF INVENTION: Production
NUMBER OF SEQUENCES: 39
CORRESPONDENCE ADDRESS:
ADDRESSEE: Dow AgroSciences LLC Patent Department
STREET: 9330 Zionsville Road
CITY: Indianapolis
STATE: Indiana
COUNTRY: USA
ZIP: 46268
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
SOFTWARE: PatentIn Release #1.0, Version #1.30
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/09/036, 987A
FILING DATE: 09-MAR-1998
CLASSIFICATION: 435
ATTORNEY/AGENT INFORMATION:

CURRENT APPLICATION NUMBER: US/09/370,700
; CURRENT FILING DATE: 1999-08-09
; EARLIER APPLICATION NUMBER: US 09/36987
; EARLIER FILING DATE: 1998-03-09
; NUMBER OF SEQ ID NOS: 39
; SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 11
; LENGTH: 539
; TYPE: PRT
; ORGANISM: Saccharopolyspora spinosa
; US-09-370-700-11

Query Match 21.2%; Score 635.5; DB 4; Length 539;
Best Local Similarity 30.2%; Pred. No. 5e-56;
Matches 174; Conservative 91; Mismatches 216; Indels 95; Gaps 16;

QY 2 ATLPQKDPGYIVIDVNAGTPDKPDRPLPSMKQGFNRRWIGTNIDFVYVVTPOGACTALD 61
Db 25 APMNRRTPGTEI-----TVEPDDPRYPLVGHNPRTG-KPERIHIASSAEDVHAVA 77

QY 62 RAMEKCSPGTIVRIVSGGHCYEDFVDECVKAIINVTLGLVESGYDDDRGYF-VSSGDTNWG 120
Db 78 DAVR--TGRRVGVRSGGHCFENLVADPAIRVLVLDSELNRVYVDSTRGAFAIEAGAALGQ 135

QY 121 SFKTLFRDHGRVLPGGSCYSVGLGGHIVGDDGILARLHGLPVWDLSGVENVVKPVLTED 180
Db 136 VYRTLFLKNWGVTIPTGACPGVGVAGGHLGGGYGPLSRRFGSVVVDYLQGVENVVVDQAGEV 195

QY 181 SVLKVVHKDSEGNDGELFWAHTGGGGNFGIITKYYFKD-----LPMSPRGVIA 229
Db 196 HIVE-ADRNSTGAGHDLWHAHTGGGGNFGIVTRFWLRTPDVUSTDAEELLPRPATVLL 254

QY 230 SNLHFSDWGFTRDALQDLITKYPKLARCDCWKNTVGKFQIFHOAAEEFVWMLYTSY---- 284
Db 255 RSFHWPWHELTEQSFAVLLQNF----GNWYEQHSAPESTQLGLFSTLVCAHR 302

QY 285 -----SNDAREVAQDRHYHLEADIEQIYKTCPTKALGGHAGWAPFPVR 330
Db 303 QAGYVTLNVHLDGTDPAERTLAE---HLSAINAQVGVT--PAEGLRETLPWL---- 350

QY 331 RKRHTSKTSYMHDETMDFYFVALTETINGSGPNQRGKYSAYMIKDFPDFQIDVWKYL 390
Db 351 --RSTQVAG----ATE--GGEPEGMQRTKVKAAYLRTGLSEAQLATVYRRLT 394

QY 391 EVPDGILTSAMKDALLQWDMFGGEIHKVVWDATAVAQREYITKLOYQTYWQEEQEDKAVNL 450
Db 395 ----VYGDNDPAAALLLILGGYGGMANAVAPSATALAQRSVLAQKFVNWSEPAEDEERHL 449

QY 451 KWIRDFYEEEMYEPYGGVPDPNTQVESGKGVFEGCYFNYPDVDLNN--WKNGKYGALEYF 508
Db 450 TWIRGFFYREMYAETGGVVPVPGTRV----DGSYINYPPDTDLADPLWNTSGVAWHDLYY 502

QY 509 LGNLNRLIKAKWLWDPNEIFTNKQSIPTKPLKEPKQ 544
Db 503 KDNYFRLQRAKARWDPONIFOHGLSIKKPPLSPGQ 538

RESULT 4
US-09-433-248A-2
; Sequence 2, Application US/09433248A
; Patent No. 6355462
; GENERAL INFORMATION:
; APPLICANT: Falco, S. Carl
; APPLICANT: Ramodu, Omolayo O.
; APPLICANT: Han, Feng
; APPLICANT: Rafalski, J. Antoni
; TITLE OF INVENTION: Disease Resistance Factors
; CURRENT APPLICATION NUMBER: US/09/433,248A
; CURRENT FILING DATE: 1999-11-04
; PRIOR APPLICATION NUMBER: 60/107,242
; CURRENT FILING DATE: 1999-11-04
; CURRENT APPLICATION NUMBER: US/09/433,248A
; PRIOR APPLICATION NUMBER: 60/107,242
; PRIOR FILING DATE: 1998-11-05
; NUMBER OF SEQ ID NOS: 8
; SOFTWARE: Microsoft Office 97
; SEQ ID NO 6
; LENGTH: 529
; TYPE: PRT
; ORGANISM: Glycine max
; US-09-433-248A-6

Query Match 10.1%; Score 304; DB 4; Length 529;
Best Local Similarity 23.6%; Pred. No. 3.4e-22;
Matches 129; Conservative 77; Mismatches 205; Indels 136; Gaps 26;

QY 36 NRRWIGTNIDFVYVVTPOGACTALDRAMEKCSPEG---TVRIVSGGHCYEDFV 86

CURRENT APPLICATION NUMBER: US/09/370,700
; CURRENT FILING DATE: 1999-08-09
; NUMBER OF SEQ ID NOS: 8
; SOFTWARE: Microsoft Office 97
; SEQ ID NO 2
; LENGTH: 397
; TYPE: PRT
; ORGANISM: Zea mays
; US-09-433-248A-2

Query Match 10.8%; Score 323; DB 4; Length 397;
Best Local Similarity 27.9%; Pred. No. 2.4e-24;
Matches 120; Conservative 55; Mismatches 155; Indels 100; Gaps 21;

QY 131 RVL--PGGSCYSVGLGGHIVGDDGILARLHGLPVWDLSGVENVVKPVLTEDSVLKVKH 188
Db 41 RVLAFFPAGICPPTVGVGGHLSGGGFGTLMERRYGLAAD-----NVIDAVLV-DADGRLLNR 93

QY 189 DSEGNDGELFWAHTGGGGNFGIITKYYFKDLPMSPRGVIASNLHFSWDGFTRDALQDLL 248
Db 94 TMGED--LFWAIRGGGESFGVVLWSKLR-LVRVPETVTVRRS----INQASHLI 146

QY 249 TKYFKLARCDWKNTVGKFQIFHOAAEEFVWMLYTSYNSDAEREVAQDRHYHLEADIEQIY 308
Db 147 TKWQAIAPALPSDLILRVAVRSQHARFEALFL----GRCSRILLEHMRVHFPLGVTO-- 199

QY 309 KTCEPTKALGGHAGWAPFPVRRKRHTSKTSYMHDETMDFYFVA---LTETINGSGPNQ 364
Db 200 SDCE-----EISWI-----QSTVYFAFYSSSKPLELLDRSRGETP 234

QY 365 R-GKYKSAYMIKDFPDFQIDVWKYLTEVPDGLTSAMKDALLQVDMFGEIHKVVWDAT 423
Db 235 RYVKAKSVDYVQEPPIPRHVWERTWSWL-EKPDAD-----GLLILDPYGGRMGSISPSAT 285

QY 424 AVAQRE-YIKLQYQTYWQEEDKDAV--NLKWIRDFYEEEMYEPYGGVPPDNTQVESGKGV 480
Db 286 PFPHRKGNLYNLQOYSSWFENGTAALEKRMswvrglyeem-EPYVS-KNPRTG---- 336

QY 481 FEGCYFNYPDVDLNN-----WKNGKYGALEYFLGNLNRLIKAKWLWDPN 525
Db 337 ---YNYRDLIDGTELENDNTSYVARARIWG----EKYFKGNFERLAAVKAMADPN 385

QY 526 EIFTNKQSIIP 535
Db 386 DFFRNQSIIP 395

RESULT 10
US-08-676-186-1
; Sequence 1, Application US/08676186
; Patent No. 6358543
GENERAL INFORMATION:
; APPLICANT: SOE, Jorn B.
; POUTSEN, Charlotte H.
; HOSTRUP, Pernille B.
TITLE OF INVENTION: A method of improving the properties of a flour dough, a flour dough improving composition and improved food products

NUMBER OF SEQUENCES: 1
CORRESPONDENCE ADDRESS:
; ADDRESSEE: McDermott, Will & Emery
; STREET: 1850 K Street N.W., Suite 450
; CITY: Washington
; STATE: DC
; COUNTRY: USA
ZIP: 20006-2296
COMPUTER READABLE FORM:
; MEDIUM TYPE: Diskette
; COMPUTER: IBM Compatible
OPERATING SYSTEM: Windows 95
CURRENT APPLICATION DATA:
; SOFTWARE: FastSEQ for Windows Version 2.0
APPLICATION NUMBER: US/08/676, 186
FILING DATE: 12-Sep-1996
CLASSIFICATION: <Unknown>
PRIOR APPLICATION DATA:
APPLICATION NUMBER: 08/483, 870; PCT/DK96/00239
FILING DATE: 07-JUN-95; 04-JUN-96
ATTORNEY/AGENT INFORMATION:
; NAME: Aksman, Stanislaus
REGISTRATION NUMBER: 28, 562
REFERENCE/DOCKET NUMBER: 44648/013
TELECOMMUNICATION INFORMATION:
; TELEPHONE: 202-778-8300
TELEFAX: 202-778-8335
TELEX: <Unknown>
INFORMATION FOR SEQ ID NO: 1:
SEQUENCE CHARACTERISTICS:
LENGTH: 19 amino acids
TYPE: amino acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: peptide
SEQUENCE DESCRIPTION: SEQ ID NO: 1:
US-08-676-186-1

Query Match 3.2%; Score 95; DB 4; Length 622;
Best Local Similarity 20.4%; Pred. No. 0.94; Matches 114; Conservative 81; Mismatches 212; Indels 152; Gaps 33;
Matches 19; Conservatve 0; Mismatches 0; Indels 0; Gaps 0;

Qy 31 MRQGFNRRW---IGTNIDFVYVV--YTPO---GACTALDRAMEKCSPGTVRIVSGHC 80
Db 1 MKKG-KKRWNLLAASSLLITLVGFSEQAEADGRATAAQARQMESLNRLGLVAVKTGNGV 59
Qy 81 YEDF--VFDECVKAINV---TGLVESGYDDDRGYFVSSGDTNWGSFCTLFRDGRVLP 134
Db 60 FVSWRLLGTEPSSVSLNVYRNGKLLNGSPITSSTNYQDAGGDLN----- 103
Qy 135 GGCSCYSVGLGGHTVGGD---GILARLH-GLPVDWLSGVENVVKPVLTEDSVLKVV 186
Db 104 --AVVYQVRA---VLNNGREQAPSESVGVLINKQYKSVPLQKPGAK-----TPDGV-SYT 150
Qy 187 HKDSEGNDELEWAHTTGGGGNFGIITKYYFKDLPLMSPRGVIASNLHFSWDGFTTDALQD 246
Db 151 YSANDASLGLDV-----GDAQEYIFLKW-----DP----SNSKDONSQDGTYGDVLID 193
Qy 247 LLTKYFKL-ARCDWKNTVGKFQIFHQAAEFVMLYLTSYSNDAEREVAQDRHYHLEADIE 305
Db 194 A----YKLDGTMMWRINLGK---NIRAGAHYTOFLVYDFDGDKAEIAM----- 235
Qy 306 QIYKTCEPTK-ALGGAGWAPPFPVR-PRKRHTSKTSYM-----HDETMDYP----- 349
Db 236 ---KTADGTTDGKGKVIGNANADYRNAQGRILSGPEYLTVFKGDTGAELTTVNYPEARGN 292
Qy 350 -----FVALTETINGSGPN---ORGKYSAYMIK-DFFPDFQIDVWIKYLIE 391
Db 293 VADWGDSDYGNRVRDRFLAGVAYLDGERPSFVMARGYVTRTVLWAVNFRRGKLTKLWTFDSD 352
Qy 392 VP-DGLTSAEMKDALLQVDMEGGEIHKVWDATAVAQREYILIKLOQYOTWQEEED-KDAVN 449
Db 353 APGNGAYAGQGNHSLSVADVDGDKDEIIYGAMAV---DHDKGLYSTGWGHGDAMHTGN 409
Qy 450 LKWIR-----DFYEEMVYPG-GVPPDNT-----OVSCKGVFEGCYFNYPDVD---- 492
Db 410 LDPSRPGLEVFOVHENNSNSPYGLSFRDAKTGKLIWGVHAGKDVGRCM---AADIDPRYEG 466
Qy 493 LNWKWNGKYGALEYFLGN 511
Db 467 AEVWANGSLYTAKGVKIGN 485
Db 1 DPGYIVIDVNAGTPDKPDP 19

RESULT 11
US-09-311-626B-4
; Sequence 4, Application US/09311626B
; Patent No. 6399347
GENERAL INFORMATION:
; APPLICANT: Jorgensen, Per Lina
; APPLICANT: Schnorr, Kirk
; APPLICANT: Andersen, Lene No. 6399347boe
; APPLICANT: Schulein, Martin
; APPLICANT: Outrup, Helle
TITLE OF INVENTION: No. 6399347el Rhamnogalacturonan Hydrolases
FILE REFERENCE: 5572.204-US
CURRENT APPLICATION NUMBER: US/09/311,626B

RESULT 12
US-09-423-468A-13
; Sequence 13, Application US/09423468A
; Patent No. 6469149
GENERAL INFORMATION:
; APPLICANT: Vlaams Interuniversitair Instituut voor Biotechnol
; APPLICANT: Guy Jerome Corneel Bauw
; APPLICANT: Mark William Davey
; APPLICANT: Jens Ostergaard
; APPLICANT: Marc Charles Ernest Van Montagu
TITLE OF INVENTION: PRODUCTION OF ASCORBIC ACID IN PLANTS
FILE REFERENCE: DECLES.001APC
CURRENT APPLICATION NUMBER: US/09/423, 468A
CURRENT FILING DATE: 2000-02-15
PRIORITY APPLICATION NUMBER: NL 1006000

PRIOR FILING DATE: 1997-05-07
NUMBER OF SEQ ID NOS: 15
SOFTWARE: FastSEQ for Windows Version 4.0
SEQ ID NO 13
LENGTH: 600
TYPE: PRT
ORGANISM: *Brassica oleracea*
3-09-423-468A-13

FILING DATE: 21-OCT-1994
PRIORITY APPLICATION DATA:
APPLICATION NUMBER: DE 4409663.1
FILING DATE: 17-MAR-1994
ATTORNEY/AGENT INFORMATION:
NAME: GRANADOS, Patricia D.
REGISTRATION NUMBER: 33,683
REFERENCE/DOCKET NUMBER: 26083/124
TELECOMMUNICATION INFORMATION:
TELEPHONE: (202) 672-5300
TELEFAX: (202) 672-5399
TELEX: 904136
INFORMATION FOR SEQ ID NO: 17:
SEQUENCE CHARACTERISTICS:
LENGTH: 466 amino acids
TYPE: amino acid
STRANDEDNESS: single
TOPOLOGY: linear

Sequence 17, Application US/08704711A
Patent No. 6114159
GENERAL INFORMATION:
APPLICANT: WILL, Horst
APPLICANT: HINZMANN, Bernd
TITLE OF INVENTION: DNA SEQUENCES FOR MATRIX METALLOPROTEASES, THEIR PRODUCTION AND USE
NUMBER OF SEQUENCES: 22
CORRESPONDENCE ADDRESS:
ADDRESSEE: Foley & Lardner
STREET: 3000 K Street, N.W., Suite 500
CITY: Washington
STATE: D.C.
COUNTRY: USA
ZIP: 20007-5109
COMPUTER READABLE FORM:
MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS
CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/704,711A
FILING DATE: 20-NOV-1996
CLASSIFICATION: 435
PRIOR APPLICATION DATA:
APPLICATION NUMBER: WO PCT/DE95/00357
FILING DATE: 17-MAR-1995
PRIOR APPLICATION DATA:
APPLICATION NUMBER: DE 4438838.1

QY 359 GSGPNQRGK---YKSAYMIKDFPDFQ---IDVVIWKYLTEVPDGLTSA-EMKDALLQV 408
Db 290 ---TLRGEILFFKDRYFWRRHPQLQRMNFISLFWPSL---PTGIQAAVEDFDRL-I 341
QY 409 DMFGGEIHKVV--WD-----ATAVAQREYIIKLQYOTYWQEEKDQAVNLKW 452
Db 342 FLFKGNQYWALSGYDILQGYPKDISNYGPSSVQAIDAAVFIRSKTYFPVNDQ----FW 396
QY 453 IRDFYEEEMYEP-----YGGVPDFPNTQVESGKGVFEGCYF-----NYPDVDL---- 493
Db 397 RYDNQRQFMEPGYPKSISGAFPG----IESKDAVFQEHFFHVFSGPRYYAFDLDIAQRVT 452
QY 494 -----NNWKNGKYG 502
Db 453 RVARGNKKWLNCRYG 466

RESULT 14
US-09-521-220-17
; Sequence 17, Application US/09521220
; Patent No. 6399348
; GENERAL INFORMATION:
; APPLICANT: WILL, Horst
; HINZMANN, Bernd
TITLE OF INVENTION: DNA SEQUENCES FOR MATRIX METALLOPROTEASES, THEIR PRODUCTION AND USE
NUMBER OF SEQUENCES: 22
CORRESPONDENCE ADDRESS:
ADDRESSEE: Foley & Lardner

Mon Jun 16 09:24:54 2003

us-09-998-284-2.rai

Page 9

Db 407 AYI---PNFESGRNNLVQEVDLKLKLYVMQ-PDGIAVDWVGRHIYWSDVKNKRIVAKLD 461
Qy 413 GETHKVWN-----DATAVAQREYIILKLOQYOTWQEEEDKDAVNWKWIRDFYEEMYEPYGG 466
Db 462 GRYRK--WLISSTDLDOPAIAAVNPKLGIMFWTDWGKEPK--IESAWMNG----- 506
Qy 467 VRDPNTQVESGKGVFEGCVNYRDVLINNWKGKYIGALELYFLGNLNRLIKAKWLMDP 524
Db 507 -EDRNILVFEDLGWPTGLSIDYLNNDRTYWSDFEDVIETIKYDGTDRRVIAKEAMNP 563

Search completed: June 10, 2003, 10:00:51
Job time : 20 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

OM protein - protein search, using sw model

Run on: June 10, 2003, 09:54:36 ; Search time 35 Seconds
(without alignments)
3214.335 Million cell updates/sec

Title: US-09-998-284-2

Perfect score: 2997

Sequence: 1 MATLPQKDPGIVIDVNAGT.....IFTNKQSIPTKPLKEPKQTK 546

Scoring table: BloSUM62

Gapop 10.0 , Gapext 0.5

Searched: 671580 seqs, 206047115 residues

Total number of hits satisfying chosen parameters: 671580

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 45 summaries

Database :

SPTREMBL 21:
1: sp_archea:
2: sp_bacteria:
3: sp_fungi:
4: sp_human:
5: sp_invertebrate:
6: sp_mammal:
7: sp_mhc:
8: sp_organelle:
9: sp_phage:
10: sp_plant:
11: sp_rrodent:
12: sp_virus:
13: sp_vertebrate:
14: sp_unclassified:
15: sp_rvirus:
16: sp_bacteriap:
17: sp_archeap:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query %	Match Length	DB ID	Description
1	2997	100.0	546	10 P93762	P93762 chondrus cr
2	771.5	25.7	508	16 Q8Y3D0	Q8y3d0 ralstonia s
3	736.5	24.6	685	16 Q8ZJ22	Q8zj22 yersinia pe
4	674.5	22.5	550	16 Q9EX55	Q9ex55 streptomyce
5	635.5	21.2	539	2 Q9ALN1	Q9aln1 saccharopol
6	633.5	21.1	545	16 Q93S08	Q93s08 streptomyce
7	590.5	19.7	489	2 Q8VWA5	Q8vwa5 streptomyce
8	440.5	14.7	485	2 Q9ZAR8	Q9zar8 streptomyce
9	399	13.3	480	16 P71091	P71091 bacillus su
10	368.5	12.3	530	10 Q9FZC5	Q9fzc5 arabidopsis
11	368.5	12.3	530	10 Q949N1	Q949n1 arabidopsis
12	347.5	11.6	539	10 Q9SVG3	Q9svg3 arabidopsis
13	346	11.5	528	10 Q9SVG7	Q9svg7 arabidopsis
14	346	11.5	535	10 Q9AYMA	Q9ayma vigna ungu
15	333.5	11.1	529	10 Q9FZC8	Q9fzc8 arabidopsis
16	328.5	11.0	535	10 Q9FZC4	Q9fzc4 arabidopsis

ALIGNMENTS

RESULT 1
P93762 PRELIMINARY; PRT; 546 AA.
ID P93762; AC P93762;
DT 01-MAY-1997 (TREMBLrel. 03, Created)
DT 01-MAY-1997 (TREMBLrel. 03, Last sequence update)
DT 01-JUN-2002 (TREMBLrel. 21, Last annotation update)
DE Hexose oxidase.
OS Chondrus crispus (Carragheen).
OC Eukaryota; Rhodophyta; Florideophyceae; Gigartinales; Gigartinaceae;
OC Chondrus.
OX NCBI_TaxID=2769;
RN [1]
RP SEQUENCE FROM N.A.
RX MEDLINE=97269074; PubMed=9111074;
RA Hansen O.C., Stougaard P.;
RT "Hexose oxidase from the red alga Chondrus crispus. Purification, molecular cloning, and expression in *Pichia pastoris*.";
RL J. Biol. Chem. 272:11581-11587(1997).
DR EMBL; U89770; AAB49376.1; -;
DR InterPro; IPR001575; Oxid_FAD_bind.
DR Pfam; PF01565; FAD_binding_4_1.
DR SEQUENCE 546 AA; 61899 MW; 8DDEA46D53C870B1 CRC64;

Query Match 100.0%; Score 2997; DB 10; Length 546;
Best Local Similarity 100.0%; Pred. No. 1.1e-222;
Matches 546; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 MATLPQKDPGIVIDVNAGTPDKPDPRLPSMKQGFNRWIGTNIDFVYVWYTPOGACTAL 60

Db 1 MATLPQKDPGIVIDVNAGTPDKPDPRLPSMKQGFNRWIGTNIDFVYVWYTPOGACTAL 60

Qy 61 DRAEMEKCSPGTVRIVSGGHCCYEDFVDECVKAIINVTLGVESGYDDDRGYFVSSGDTNWG 120

Db 61 DRAEMEKCSPGTVRIVSGGHCCYEDFVDECVKAIINVTLGVESGYDDDRGYFVSSGDTNWG 120

Qy 121 SFKTLFRDHGRVLPGGSCYSVGLGGHIVGGGDGILARLHLGLPVDWLSGVENVVKPVLTD 180

Db 121 SFKTLFRDHGRVLPGGSCYSVGLGGHIVGGGDGILARLHLGLPVDWLSGVENVVKPVLTD 180

RESULT 9

P71091 PRELIMINARY; PRT; 480 AA.

ID P71091; PRELIMINARY; PRT; 480 AA.

AC P71091;

DT 01-FEB-1997 (TREMBLrel. 02, Created)

DT 01-FEB-1997 (TREMBLrel. 02, Last sequence update)

DT 01-MAR-2002 (TREMBLrel. 20, Last annotation update)

DE HYPothetical 54.4 kDa protein (YGAK protein).

GN YGAK.

OS Bacillus subtilis.

OC Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus.

OC NCBI_TaxID=1423;

RN [1]

RP SEQUENCE FROM N.A.

RC STRAIN=168;

RX Cummings N.J., Connerton I.F.; Submitted (NOV-1996) to the EMBL/GenBank/DDBJ databases.

RN [2]

SEQUENCE OF 114-480 FROM N.A.

RC MEDLINE=98044033; PubMed=9384377;

RA Kunst F., Ogasawara N., Moszter I., Albertini A.M., Alloni G., Azevedo V., Bertero M.G., Bessieres P., Bolotin A., Borchart S., Borris R., Boursier L., Brans A., Braun M., Brignell S.C., Bron S., Brouillet S., Bruschi C.V., Caldwell B., Capuano V., Carter N.M., Choi S.K., Codani J.J., Connerton I.F., Cummings N.J., Daniel R.A., Denizot F., Devine K.M., Dusterhoff A., Ehrlich S.D., Emmerson P.T., Entian K.D., Errington J., Fabret C., Ferrari E., Foulger D., Fritz C., Fujita M., Fujita Y., Fuma S., Galizzi A., Galleron N., Ghim S.Y., Glaser P., Goffeau A., Golightly E.J., Grandi G., Guiseppi G., Guy B.J., Haga K., Hailech J., Harwood C.R., Henaut A., Hilbert H., Holsappel S., Hosono S., Hull M.F., Itaya M., Jones L., Joris B., Karakata D., Kasahara Y., Klaerr-Blanchard M., Klein C., Kobayashi Y., Koetter P., Konigstein G., Krogh S., Kumano M., Kurita K., Lapidus A., Lardinois S., Lauber J., Lazarevic V., Lee S.M., Levine A., Liu H., Masuda S., Mauel C., Medigue C., Medina N., Mellado R.P., Mizuno M., Moestl D., Nakai S., Noback M., Noone D., O'Reilly M., Ogawa K., Ogiwara A., Oudega B., Park S.H., Parro V., Pohl T.M., Portetelle D., Porwollik S., Prescott A.M., Presecan E., Pujoic P., Purnelle B., Rapoport G., Rey M., Reynolds S., Rieger M., Rivolta C., Rocha E., Roche B., Rose M., Sadale Y., Sato T., Scanlan E., Schleich S., Schroeter R., Scoffone F., Sekiguchi J., Sekowska A., Seror S.J., Serror P., Shin B.S., Soldo B., Sorokin A., Tacconi E., Takagi T., Takahashi H., Takemaru K., Takeuchi M., Tamakoshi A., Tanaka T., Terpstra P., Tognoni A., Tosato V., Uchiyama S., Vandenbos M., Vanneri F., Vassarotti A., Viari A., Wambutt R., Wedler E., Weitzenerger T., Winters P., Wipat A., Yamamoto H., Yamane K., Yata K., Yoshida K., Yoshioka H.F., Zumstein E., Yoshioka H., Danchin A.; RT subtilis.";

RL Nature 390:249-256(1997).

RN [3]

RP SEQUENCE OF 114-480 FROM N.A.

RC STRAIN=168;

RA Kunst F., Ogasawara N., Yoshioka H., Danchin A.;

RL Submitted (NOV-1997) to the EMBL/GenBank/DDBJ databases.

DR EMBL; Z82044; CAB04812.1; -.

DR EMBL; Z99108; CAB12708.1; -.

DR InterPro; IPR001575; Oxid_FAD_bind.

DR Pfam; PF01565; FAD_binding_4; 1.

KW Complete proteome.

SQ SEQUENCE 480 AA; 54477 MW; B43CD118F7FE4C8B CRC64;

Query Match 13.3%; Score 399; DB 16; Length 480; Best Local Similarity 26.0%; Pred. No. 2e-22; Matches 144; Conservative 66; Mismatches 192; Indels 152; Gaps 21;

QY 20 TPDKPDPRLPSMKQGFNRWIGTNI-----DFVYVVYTPOGACTALDRAMEKCSPTGTVR 73

41 TRDDPD-----YNBARTNINLSLERYPDTIVFCQNKQDALNALKWARENRVP--FR 89

QY 74 IVSGGHCYEDF-----VFD--ECVKAIINVTLGLVESGYDDDRGYFVSSGDTNWGSFKT 124

Db 90 IRGGRHHSYENFSLNNGLVIDLSEMKKITVN-----QDKKLAYIEAGAELEVIRT 140

QY 125 LFRDHGRVLPGGSCYSVGLGGHTVGGGDGILARLHGLPVDWLISGVVVVKPVLTEDSVLK 184

Db 141 LWQ-YGUTLPGATTANVGLTGLTGGGIGLITRAAGLTCDSLVOLEMVA----- 189

QY 185 YVHKDSEG-----NDGELFWAHTGGGGNFGLITKYVFKDLPLMSPRGVIASNLHS 235

Db 190 --DEKEGADLITVCSNHPDLFWASQGGGGNFGLITVTSMTFKAVPISQVSIF--SITWG 244

Db 236 WDGFTRDALQLLTKYFKLARDWKNITVGKFQIFHQAAEFPVMVLYTSYNSDAEREVAQD 295

Db 245 WDDFEE-----VNNTWQN-----WPPYTD----- 264

QY 296 RHYHLEADIEQIYKTCEPTKALGGHAGWADFP-----VRPRKRHTSKTSYMHDETMYD 348

Db 315 PFTIEAVTFNNSPGNQPKMKRSGSFIEKPLSERAITIKHFLEHAPN-----QNASV 314

Db 407 QVDMFGGEIHKVWWDATAVAQREYIJKLMNOPQKMRSGSFIEKPLSERAITIKHFLEHAPN-----QNASV 367

Db 368 WQQALGGAAGRVAQDQTAFYRDAIAQEQYLTNWTSPGEKRQNRVWIEGLRTSKE-- 424

QY 467 VPDPNTOVESGKGVFEGCYFFNPVDLNWKNGKYGCALEYFLGNLNRLIKAKMLWDPNE 526

Db 425 -----TMGDYVNWPDIEIRNWPRTYYE-----NVERLRRVKTYYDPEN 463

QY 527 IFTNKQSIPTKPLK 540

Db 464 VRFEQSIP--PLR 475

RESULT 10

Q9FZC5 PRELIMINARY; PRT; 530 AA.

ID Q9FZC5; PRELIMINARY; PRT; 530 AA.

AC Q9FZC5;

DT 01-MAR-2001 (TREMBLrel. 16, Created)

DT 01-MAR-2001 (TREMBLrel. 16, Last sequence update)

DT 01-JUN-2001 (TREMBLrel. 17, Last annotation update)

DE T1K7.23 protein.

GN T1K7.23.

OS Arabidopsis thaliana (Mouse-ear cress).

OC Eukaryota; Viridiplantae; Streptophyta; Tracheophyta;

OC Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;

OC eurosidae II; Brassicales; Brassicaceae; Arabidopsis.

OC NCBI_TaxID=3702;

RN [1]

RP SEQUENCE FROM N.A.

RC STRAIN=CV. COLUMBIA;

RA Sakano H., Liu S.X., Yu G., Lee J.M., Lenz C., Pham P., Toriumi M., Chin C., Chiou J., Choi E., Chung M., Gonzalez A., Howng B., Liu A., Vaysberg M., Altafi H., Brooks S., Buehler E., Chao Q., Conn L., Conway A.B., Hansen N.F., Johnson-Hopson C., Khan S., Kim C., Lam B., Miranda M., Nguyen M., Palm C.J., Shim P., Southwick A., Davis R.W., RA Ecker J.R., Fedderspiel N.A., Theologis A.; RT "The sequence of BAC T1K7 from Arabidopsis thaliana chromosome 1."; RL Submitted (AUG-2000) to the EMBL/GenBank/DDBJ databases.

DR EMBL; AC013427; AAF98577.1; -.

DR InterPro; IPR01575; Oxid_FAD_bind.

DR Pfam; PF01565; FAD_binding_4; 1.

DR InterPro; IPR01575; Oxid_FAD_bind.

DR Pfam; PF01565; FAD_binding_4; 1.

SQ SEQUENCE 530 AA; 58947 MW; 116C6CA06BE4C322 CRC64;

Query Match 12.3%; Score 368.5; DB 10; Length 530; Best Local Similarity 27.0%; Pred. No. 5.3e-20; Matches 134; Conservative 76; Mismatches 180; Indels 107; Gaps 23;

QY 72 VRTVGGHCYEDFVDECVKAII-----NVTGLIVESGYDDDRGYFVSSGDTNWGSFKT 124

Db 103 LRIRSGGHDPYEGLSYMSVFPVILDMDNLRISITVDVSS---KKAWIQAAT-LGELYT 156
 Qy 125 LFRDHGRVL--PGGSCYSVGLGGHIVGGDGILARLHLGLPVWDWLSGVEVVVKPVLTECSV 182
 Db 157 NVNDVSQTLAFAVGVCATVGAGGHHISGGGYGNLMRKYGITVDHVIDAQII-----DVN 209
 Qy 183 LKYVHKDSEGNDGEFLWAHTGGGGNFGIIT--KYYFKDLPLMSPRGVIASNLLHFSDWDF 240
 Db 210 GKLLN RATMGED--LFWAIRGGGGSFGVILSWKINLVDPKIVT-VFKVNKTLEQGG-- 264
 Qy 241 RDALQDLITKVFKLARCWDWKNTVGKE--QIFHQAAEE-----FVMLYTSYNSD 287
 Db 265 ----TDVLYK-----WOLVASKFPESLFVRAMPQVANGTKRGERTITVVFYAOFLGR 312
 Qy 288 AEREVAQDRHYHLADIEQIYKTCPTKALGGHAGWAPFFVRPRKRHTSKTSYMHDETM 347
 Db 313 TDALMAIMNQNWPELGLK--HEDCQEMSWLNSTLFWADYPA-----GTPTSIL---LD 360
 Qy 348 YPFYALTTETINGSGPNORGKYSAYMIKDFPDFQIDVWKLTEVPDGLTSAEMKDALLQ 407
 Db 361 RP-----SSPGDFFKSKSDYVKKPKIPKEGLEKLWKTMLKFNNNI-----VWMQ 403
 Qy 408 VDMFGEIHKVWVDATAVAQRE-YIKLQYQTYWQEEKDADVNWKWIRDFYEEMYEPYGG 466
 Db 404 FNPYGGVMDRIPATATAFPHRKGNLFKIQFTTFWNANATMSSLQMKELY-EVAEPY-- 460
 Qy 467 VPDPTQVESGKGVFEGCCYFNYPDVDLNWKNGK-----YGALEYFLGNLNRLIKA 518
 Db 461 -----VSSNP---REAFFNYRDIDVGSNPSGETNVDEAKIYGS--KYFLGNLKRLMDV 508
 Qy 519 KWLWDPNEIFTNKQSIP 535
 Db 509 KAKYDPDNFFKNEQSIP 525

RESULT 11

Q949N1 PRELIMINARY; PRT; 530 AA.
 ID Q949N1; AC ;
 DT 01-DEC-2001 (TREMBLrel. 19, Created)
 DT 01-MAR-2002 (TREMBLrel. 20, Last annotation update)
 DE Hypothetical 58.9 kDa protein.
 OS T1K7.23.
 OS Arabidopsis thaliana (Mouse-ear cress).
 OC Eukaryota; Viridiplantae; Streptophyta; Tracheophyta;
 OC Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
 OC eurosids II; Brassicales; Brassicaceae; Arabidopsis.
 OX NCBI_TAXID=3702;
 RN [1]
 RP SEQUENCE FROM N.A.
 RA Yamada K., Liu S.X., Pham P.K., Banh J., Banno F., Dale J.M.,
 RA Goldsmith A.D., Jiang P.X., Lee J.M., Onodera C.S., Quach H.L.,
 RA Tang C., Toriumi M., Yamamura Y., Yu G., Yu S., Bowser L., Jones T.,
 RA Carninci P., Chen H., Cheuk R., Hayashizaki Y., Ishida J., Jones T.,
 RA Kamiya A., Karlin-Neumann G., Kawai J., Kim C., Koescema E., Lam B.,
 RA Lin J., Meyers M.C., Miranda M., Narusaka M., Nguyen M., Palm C.J.,
 RA Sakurai T., Satou M., Seki M., Shim P., Southwick A., Tracy S.E.,
 RA Shinozaki K., Davis R.W., Ecker J.R., Theologis A.;
 RT "Full Length cDNA of gene T1K7.23 (GI:9797759)";
 RL Submitted (AUG-2001) to the EMBL/GenBank/DDBJ databases.
 DR EMBL; AY051000; AAK93677.1; -.
 DR InterPro; IPR001575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 KW Hypothetical protein.
 SEQUENCE 530 AA; 58947 MW; 1BC6C456BDE9A3F4 CRC64;

Query Match 12.3%; Score 368.5; DB 10; Length 530;

Best Local Similarity 27.0%; Pred. No. 5.3e-20;
 Matches 134; Conservative 76; Mismatches 180; Indels 107; Gaps 23;

Db 103 LRIRSGGHDPYEGLSYMSVFPVILDMDNLRISITVDVSS---KKAWIQAAT-LGELYT 156
 Qy 125 LFRDHGRVL--PGGSCYSVGLGGHIVGGDGILARLHLGLPVWDWLSGVEVVVKPVLTECSV 182
 Db 157 NVNDVSQTLAFAVGVCATVGAGGHHISGGGYGNLMRKYGITVDHVIDAQII-----DVN 209
 Qy 183 LKYVHKDSEGNDGEFLWAHTGGGGNFGIIT--KYYFKDLPLMSPRGVIASNLLHFSDWDF 240
 Db 210 GKLLN RATMGED--LFWAIRGGGGSFGVILSWKINLVDPKIVT-VFKVNKTLEQGG-- 264
 Qy 241 RDALQDLITKVFKLARCWDWKNTVGKE--QIFHQAAEE-----FVMLYTSYNSD 287
 Db 265 ----TDVLYK-----WOLVASKFPESLFVRAMPQVANGTKRGERTITVVFYAOFLGR 312
 Qy 288 AEREVAQDRHYHLADIEQIYKTCPTKALGGHAGWAPFFVRPRKRHTSKTSYMHDETM 347
 Db 313 TDALMAIMNQNWP ELGLK--HEDCQEMSWLNSTLFWADYPA-----GTPTSIL---LD 360
 Qy 348 YPFYALTTETINGSGPNORGKYSAYMIKDFPDFQIDVWKLTEVPDGLTSAEMKDALLQ 407
 Db 361 RP-----SSPGDFFKSKSDYVKKPKIPKEGLEKLWKTMLKFNNNI-----VWMQ 403
 Qy 408 VDMFGEIHKVWVDATAVAQRE-YIKLQYQTYWQEEKDADVNWKWIRDFYEEMYEPYGG 466
 Db 404 FNPYGGVMDRIPATATAFPHRKGNLFKIQFTTFWNANATMSSLQMKELY-EVAEPY-- 460
 Qy 467 VPDPTQVESGKGVFEGCCYFNYPDVDLNWKNGK-----YGALEYFLGNLNRLIKA 518
 Db 461 -----VSSNP---REAFFNYRDIDVGSNPSGETNVDEAKIYGS--KYFLGNLKRLMDV 508
 Qy 519 KWLWDPNEIFTNKQSIP 535
 Db 509 KAKYDPDNFFKNEQSIP 525

RESULT 12

Q9SVG3 PRELIMINARY; PRT; 539 AA.
 ID Q9SVG3; AC ;
 DT 01-MAY-2000 (TREMBLrel. 13, Created)
 DT 01-JUN-2001 (TREMBLrel. 17, Last annotation update)
 DE Reticuline oxidase-like protein.
 GN F21C20.190 OR AT4G20840.
 OS Arabidopsis thaliana (Mouse-ear cress).
 OC Eukaryota; Viridiplantae; Streptophyta; Tracheophyta;
 OC Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
 OC eurosids II; Brassicales; Brassicaceae; Arabidopsis.
 OX NCBI_TAXID=3702;
 RN [1]
 RP SEQUENCE FROM N.A.
 RA Bevan M., Pohl T., Weizenegger T., Bancroft I., Mewes H.W.,
 RA Mayer K.F.X., Lemcke K., Schueler C.;
 RL Submitted (JUN-1999) to the EMBL/GenBank/DDBJ databases.
 RN [2]
 RP SEQUENCE FROM N.A.
 RA EU Arabidopsis sequencing project;
 RL Submitted (JUN-1999) to the EMBL/GenBank/DDBJ databases.
 RN [3]
 RP SEQUENCE FROM N.A.
 RA Pohl T., Weizenegger T., Mewes H.W., Lemcke K., Mayer K.F.X.;
 RL Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases.
 RN [4]
 RP SEQUENCE FROM N.A.
 RA EU Arabidopsis sequencing project;
 RL Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases.
 DR EMBL; AL080254; CAB45850.1; -.
 DR InterPro; IPR001575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 SEQUENCE 539 AA; 60143 MW; 6645E9376E216426 CRC64;

Query Match 11.6%; Score 347.5; DB 10; Length 539;
 Best Local Similarity 26.2%; Pred. No. 2.3e-18;
 Matches 141; Conservative 76; Mismatches 181; Indels 141; Gaps 28;

DR EMBL; AL161553; CAB79080.1; -.
 DR InterPro; IPR001575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 KW Hypothetical protein.

Query Match 11.5%; Score 346; DB 10; Length 528;
 Best Local Similarity 27.0%; Pred. No. 2.9e-18;
 Matches 134; Conservative 68; Mismatches 187; Indels 108; Gaps 23;

DR SEQUENCE 528 AA; 58846 MW; D70E7667AAE3E7D CRC64;

DR EMBL; AB056448; BAB33033.1; -.
 DR InterPro; IPR001575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 DR SEQUENCE FROM N.A.

Query Match 11.5%; Score 346; DB 10; Length 528;
 Best Local Similarity 27.0%; Pred. No. 2.9e-18;
 Matches 134; Conservative 68; Mismatches 187; Indels 108; Gaps 23;

DR SEQUENCE 528 AA; 58846 MW; D70E7667AAE3E7D CRC64;

DR EMBL; AB056448; BAB33033.1; -.
 DR InterPro; IPR001575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 DR SEQUENCE FROM N.A.

Query Match 11.5%; Score 346; DB 10; Length 535;
 Best Local Similarity 26.2%; Pred. No. 2.9e-18;

DR EMBL; AL080254; CAB45846.1; -.

Query Match 11.6%; Score 347.5; DB 10; Length 539;
 Best Local Similarity 26.2%; Pred. No. 2.3e-18;
 Matches 141; Conservative 76; Mismatches 181; Indels 141; Gaps 28;

DR EMBL; AL161553; CAB79080.1; -.
 DR InterPro; IPR001575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 KW Hypothetical protein.

Query Match 11.5%; Score 346; DB 10; Length 528;
 Best Local Similarity 27.0%; Pred. No. 2.9e-18;
 Matches 134; Conservative 68; Mismatches 187; Indels 108; Gaps 23;

DR SEQUENCE 528 AA; 58846 MW; D70E7667AAE3E7D CRC64;

DR EMBL; AB056448; BAB33033.1; -.
 DR InterPro; IPR001575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 DR SEQUENCE FROM N.A.

Query Match 11.5%; Score 346; DB 10; Length 528;
 Best Local Similarity 27.0%; Pred. No. 2.9e-18;
 Matches 134; Conservative 68; Mismatches 187; Indels 108; Gaps 23;

DR SEQUENCE 528 AA; 58846 MW; D70E7667AAE3E7D CRC64;

DR EMBL; AB056448; BAB33033.1; -.
 DR InterPro; IPR001575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 DR SEQUENCE FROM N.A.

Query Match 11.5%; Score 346; DB 10; Length 535;
 Best Local Similarity 26.2%; Pred. No. 2.9e-18;

DR EMBL; AL080254; CAB45846.1; -.

Matches 138; Conservative 70; Mismatches 207; Indels 112; Gaps 24;

Query 49 WYVTPQGACTALDRAMEKCSPG---TVRIVSGGHCYEDFVFDECVK-AIINVTGLIVESGY 104
 Db 78 VIVTPQ-VVSHIQATIKCSQRHGLQIRTRSGGDYEGLSYVARVPFVILDLNRFREIKV 135

Query 105 D-DDRGYFVSSGDTNWGSFKTLFRDHGRV-LPGSCYSVGLGGHIVGGDGILARLHGLP 162
 Db 136 DVENRTAWVQVGATLGELYYTISQASKTILGFPAAGCYSVGAGGHISGGGYGFLMRKGIA 195

Query 163 VDWLGSVEVVVKPVLTEDSVLKVKHDSEGN-----DGELFWAHTGGGGNFNGITKY 215
 Db 196 ADNVTIDAHTI-----DWNGNLLDRKAMGEDLFWAIRGGGGASFGVIVSW 239

Query 216 YFKDLPLMSPRGVI-----ASNLMHFSDWGFTRDALQDLTKYFKLARCWDWKNTVGK 265
 Db 240 KIKLVLPVPSTVTFNVERILEENATEIEKWQ-LVANKLDERIFLRLMDLARAN-SSQHGK 297

Query 266 FQI-----FHQAEEFFVMYLTSYNSDAEREVAQDRHYHLEADIEQIYKTCPTKALG 318
 Db 298 LALQANFVAMFQGGVEELIPLMOKNFP-----ELGLKR-----KOCTETSWIG 340

Query 319 GHACWAPEPVPRKRHTSKTSYMHDETMDFYFVALTETINGSGPNQRGKYSAYMIKDFP 378
 Db 341 S----AVF-----TNGALIGSSGHEAPEVLNRTQIRSG--KYGKRSDYVRKPIP 384

Query 379 DFQIDVWIKYLTTEVPDGLTSAEKM DAL QVDMFGEIHKVW DATAVAQRE-YIILQOQ 437
 Db 385 VDGIRGLWRWLND-----DKVOYSOLOFAPYGGKMDNISESEIPFAHRSGYIFFIHYV 437

Query 438 TYWQEEKDQAV--NLKWI RDYF EEMYE PYGGVPDPNTQVESGKGVPFGCYFNYPDVDLNN 495
 Db 438 VVWQEEGDEATQRHVNWIRRKYM-EPY-----VSNSP---RAAYVNRYRDL DIGV 484

Query 496 WKNG - KYGAEL---YFLGNLNRLIKAKWLWDPNEIFTNKQSIPT 536
 Db 485 NNNCYTSYHQASIWLKYFSNNFKRLATVTKVDPHNFFRNEQSIPT 531

RESULT 15

Q9FZC8 PRELIMINARY; PRT; 529 AA.

ID Q9FZC8; AC Q9FZC8; DT 01-MAR-2001 (TREMBLrel. 16, Created)
 DT 01-JUN-2001 (TREMBLrel. 17, Last annotation update)
 DE T1K7.20 protein.
 GN T1K7.20.

OS Arabidopsis thaliana (Mouse-ear cress).
 OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
 OC Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
 OC eurosids II; Brassicales; Brassicaceae; Arabidopsis.
 OX NCBI_TAXID=3702;
 RN [1]

RP SEQUENCE FROM N.A.

RC STRAIN=CV. COLUMBIA;

RA Sakano H., Liu S.X., Yu G., Lee J.M., Lenz C., Pham P., Toriumi M.,
 RA Chin C., Chiou J., Choi E., Chung M., Gonzalez A., Howng B., Liu A.,
 RA Vaysberg M., Altafi H., Brooks S., Buehler E., Chao Q., Conn L.,
 RA Conway A.B., Hansen N.F., Johnson-Hopson C., Khan S., Kim C., Lam B.,
 RA Miranda M., Nguyen M., Palm C.J., Shinn P., Southwick A., Davis R.W.,
 RA Becker J.R., Federspiel N.A., Theologis A.;
 RT "The sequence of BAC T1K7 from Arabidopsis thaliana chromosome 1."
 RL Submitted (AUG-2000) to the EMBL/GenBank/DDBJ databases.
 DR EMBL; AC013427; AAF98574.1;
 DR InterPro; IPR001575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 SQ SEQUENCE 529 AA; 59217 MW; 0DC786AA3CB0590D CRC64;

Query Match 11.1%; Score 333.5; DB 10; Length 529;
 Best Local Similarity 25.8%; Pred. No. 2.6e-17;
 Matches 128; Conservative 77; Mismatches 184; Indels 107; Gaps 22;

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

OM protein - protein search, using sw model

Run on: June 10, 2003, 09:49:56 ; Search time 24 Seconds
(without alignments)
943.586 Million cell updates/sec

Title: US-09-998-284-2
Perfect score: 2997
Sequence: 1 MATLPQKDPGTYIVIDVNAGT.....IPTNKOSIPTKPLKEPKOTK 546

Scoring table: BL0SUM62

Gapop 10.0 , Gapext 0.5

Searched: 112892 seqs, 41476328 residues

Total number of hits satisfying chosen parameters: 112892

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 45 summaries

Database : SwissProt_40:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	#	Match Length	DB ID	Description
1	290.5	9.7	535	1	RETO_PAPSO	P93479 papaver somniferum
2	286.5	9.6	538	1	RETO_ESCCA	P30986 eschscholzia
3	154.5	5.2	447	1	MCRA_STRLA	P43485 streptomyce
4	118.5	4.0	769	1	DIVL_CAUCR	Q9rqg9 caulobacter
5	116	3.9	478	1	MM03_RABIT	P28863 oryctolagus
6	111	3.7	1009	1	YE68_METJA	Q58863 methanococcus
7	109.5	3.7	496	1	DLD3 YEAST	P33973 saccharomyces
8	104	3.5	661	1	YJCS_ECOLI	P32717 escherichia
9	103	3.4	634	1	ELM1_ASPPU	P46074 aspergillus
10	102	3.4	634	1	ELM2_ASPPU	P46075 aspergillus
11	102	3.4	702	1	AMYG_CLOSP	P29761 clostridium
12	101.5	3.4	969	1	DPOM_NEUNIN	P33538 neurospora
13	97.5	3.3	836	1	MCEL_SFVKA	P25950 shope fibro
14	97	3.2	469	1	MM01_BOVIN	P28053 bovis taurus
15	97	3.2	955	1	AGAB_VIBST	P48840 vibrio sp.
16	95.5	3.2	530	1	AIR2 YEAST	P46624 saccharomyces
17	95	3.2	847	1	AGUA_TRIRE	Q99024 trichoderma
18	94.5	3.2	359	1	RF2_BORBU	Q51101 borrelia burgdorferi
19	94.5	3.2	494	1	K1CL_HUMAN	Q99456 homo sapien
20	94.5	3.2	1301	1	PTP9_DROME	P35832 drosophila
21	94	3.1	280	1	SPEE_AQUAE	Q66473 aquifex aeolicus
22	94	3.1	388	1	CWF2_SCHPO	P87126 schizosaccharomyces pombe
23	93.5	3.1	562	1	EST1_CAEEL	Q04457 caenorhabditis elegans
24	92.5	3.1	290	1	HTRL_ECOLI	P25666 escherichia coli
25	92.5	3.1	450	1	DCOR_CHICK	P27118 gallus gallus
26	92	3.1	1287	1	RPO1_FOWPV	Q9J593 fowlpox virus
27	92	3.1	4655	1	LRP2_HUMAN	P98164 homo sapiens
28	91.5	3.1	397	1	PAPS_BACSU	P42977 bacillus subtilis
29	91.5	3.1	458	1	HDNO_ARTOX	P08159 arthropods
30	91.5	3.1	663	1	MM02_CHICK	Q90611 gallus gallus
31	91.5	3.1	1290	1	BXB_CLOBO	P10844 clostridium botulinum
32	91	3.0	787	1	K6PF_DROME	P52034 drosophila melanogaster
33	90.5	477	1	MM03_MOUSE	P28862 mus musculus	

ALIGNMENTS

34	90.5	3.0	534	1	FMO2_HUMAN	Q99518 homo sapiens
35	90.5	3.0	559	1	HUTU_BACHID	P9kb5 bacillus haloduricus
36	90.5	3.0	1263	1	RPOB_THEMEA	P29398 thermotoga maritima
37	90	3.0	477	1	NIFD_METMP	P71526 methanococcus
38	90	3.0	946	1	K6P2_CANAL	O94200 candida albicans
39	90	3.0	990	1	K6P1_PICFA	Q92448 pichia pastorianus
40	89.5	3.0	467	1	MM08_HUMAN	P22894 homo sapiens
41	89.5	3.0	514	1	SYS_METMB	O30520 methanococcus
42	89.5	3.0	1006	1	BGAL ASPNG	P29853 aspergillus niger
43	89.5	3.0	2366	1	TOXB_CLODI	P18177 clostridium difficile
44	89	3.0	680	1	GAOA_DACDE	Q01745 dactylizium
45	89	3.0	987	1	K6P1_YEAST	P16861 saccharomyces cerevisiae

Query Match 9.7%; Score 290.5; DB 1; Length 535;
 Best Local Similarity 23.8%; Pred. No. 7.5e-15;
 Matches 123; Conservative 87; Mismatches 160; Indels 147; Gaps 28;

QY 71 TVRIVSGGHCYE-----DFVFDCEVK-----IINVTGLIVESGYDDDRGYFVSSGD 116
 |:|:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 |:|:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 Db 100 TIRLRSGGHSYEGLSYTADTPFVIVDMMNLRISIDVLSETAWVESGATLGELYAYAQS 159
 |:|:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 Qy 117 TNWGSFKTTLFRDHGRVLPGGSCYSVGLGGHTVCGGDGILARLHGLPVVDWLSGVEVVKPV 176
 |:|:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 Db 160 TDTLGF-----TAGWCPTVGSGGHISGGGGMMSRKYGLAAD-----NVDAI 202
 |:|:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 Qy 177 LTEDSVLKVKVHKDSEGNDCELFWAHTGGGGNFGIITKYYFKDLPLMSPRGV----- 228
 |:|:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 Db 203 LI-DSNGAifLDREKGDD--VFWAIRGGGGVWGAIVAWKIKLIPVPEKLTFRVTKNVG 259
 |:|:|||:|||:|||:|||:|||:|||:|||:|||:
 Qy 229 ---ASNLHFSMDGFTRDALQDLITKYFKLARCDWKNTVGKFQIFHQAAEFFVMYLTSYS 285
 |:|:|||:|||:|||:|||:|||:|||:|||:
 Db 260 IEDASSLLHKWQ-YVADELDDEDFT-----VSVLGGV---NGNDAWLMFLGLHLG 304
 |:|:|||:|||:|||:|||:|||:|||:
 Qy 286 -NDAEREVAQDRHYHL--EADIEQIYKTCPTKALGGHAGWAPFPVRKRHTSKTSYM 341
 |:|:|||:|||:|||:|||:|||:|||:
 Db 305 RKDAAKTIIDEKEFPELGLIVDKEFOEM-----SWG----- 333
 |:|:|||:|||:|||:|||:|||:
 Qy 342 HDETMDFYPPVALETINGSGPNQRGKY-KSAYMIK-DFFDFQIDV-IWKLYTEVPGLTS 398
 |:|:|||:|||:|||:|||:|||:
 Db 334 --ESM--AFSLGLDTISELN-NRFLKDERRAFKTVKVSPLNFRHALEM----L 383
 |:|:|||:|||:|||:|||:
 Qy 399 AEMKDALLQVDMFGGEIHKVWDATAVAQR-----EYI IKLQYOTWQEEKDIAVN-- 449
 |:|:|||:|||:|||:|||:
 Db 384 SEQPGGFIALNGFGKGMSEIISTDFTPFPHRKGTKLMEFYI IA-----WNQDEEKSIGEF 437
 |:|:|||:|||:|||:|||:
 Qy 450 LKWIRDIFYEEMYEPYGGVPDPNTQVESGKGVFEGCYFNYPDVDLN--NWKN--GRYGALE 505
 |:|:|||:|||:|||:|||:
 Db 438 SEWLAKFYDYL-----EPFVSKERPRVG---YVNHDLDIGGIWRNKSSTNAVE 484
 |:|:|||:|||:|||:
 Qy 506 L-----YFLGNLNRLIKAKWLWDPNEIFTNKQSI P 535
 |:|:|||:|||:
 Db 485 IARNWGERYFSSNYERLVIKAETLIDPNVNFnHPQSI P 521
 |:|:|||:|||:

RESULT 2

RETO_ESCCA ID RETO_ESCCA STANDARD; PRT; 538 AA.

AC P30986; DT 01-JUL-1993 (Rel. 26, Created)
 DT 01-JUL-1993 (Rel. 26, Last sequence update)
 DT 15-JUN-2002 (Rel. 41, Last annotation update)
 DE Reticuline oxidase precursor (EC 1.5.3.9) (Berberine-bridge-forming enzyme) (BBE) (Tetrahydroprotoberberine synthase).
 GN BBE1.
 OS Eschscholzia californica (California poppy).
 OC Eukaryota; Viridiplantae; Streptophyta; Tracheophyta;
 OC Spermatophyta; Magnoliophyta; eudicotyledons; Ranunculales;
 OC Papaveraceae; Eschscholzioideae; Eschscholzia.
 NCBI_TaxID=3467;
 [1]

RN SEQUENCE FROM N.A., AND PARTIAL SEQUENCE.
 RP MEDLINE=92052284; PubMed=1946465;

RA Dittrich H., Kutchan T.M.;
 RT "Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack.";
 RT Proc. Natl. Acad. Sci. U.S.A. 88:9669-9973 (1991).
 RN [2]

RP SEQUENCE FROM N.A.
 RX MEDLINE=98145481; PubMed=9484487;
 RA Hauschild K., Pauli H.H., Kutchan T.M.;
 RT "Isolation and analysis of a gene bbel encoding the berberine bridge enzyme from the California poppy Eschscholzia californica.";
 RL Plant Mol. Biol. 36:473-478(1998).
 CC "-!- FUNCTION: Essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack."

CC Catalyzes the stereospecific conversion of the N-methyl moiety of (S)-reticuline into the berberine bridge carbon of (S)-scoulerine.
 CC H(2)O(2).
 CC CATALYTIC ACTIVITY: (S)-reticuline + O(2) = (S)-scoulerine +
 CC COFACTOR: FAD AND METAL ION.
 CC PATHWAY: Benzophenanthridine alkaloids biosynthesis.
 CC SUBCELLULAR LOCATION: VESICULAR.
 CC SIMILARITY: Belongs to the oxygen-dependent FAD-linked oxidoreductase family.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

CC DR EMBL; S65550; AAB20352.1; - .
 DR EMBL; AF005655; AAC39358.1; - .
 DR PIR; A41533; A41533.
 DR InterPro; IPR01575; Oxid_FAD_bind.
 DR Pfam; PF01565; FAD_binding_4; 1.
 DR PROSITE; PS00862; OX2_COVAL_FAD; 1.
 KW Oxidoreductase; Signal; Glycoprotein; Flavoprotein; FAD; Alkaloid metabolism.

FT SIGNAL 1 23
 FT CHAIN 24 538 RETICULINE OXIDASE.
 FT BINDING 104 104 FAD (COVALENT) (BY SIMILARITY).
 FT CARBOHYD 38 38 N-LINKED (GLCNAC. . .) (POTENTIAL).
 FT CARBOHYD 423 423 N-LINKED (GLCNAC. . .) (POTENTIAL).
 FT CARBOHYD 471 471 N-LINKED (GLCNAC. . .) (POTENTIAL).
 SQ SEQUENCE 538 AA; 59958 MW; 1A505F86A06CDB24 CRC64;

Query Match 9.6%; Score 286.5; DB 1; Length 538;
 Best Local Similarity 24.8%; Pred. No. 1.5e-14;
 Matches 128; Conservative 72; Mismatches 170; Indels 147; Gaps 27;

Qy 71 TVRIVSGGHCYEDFVF-DECVKAIINVTGLIVESGYD-DDRGYFVSSGDTMWSFKTLF RD 128
 |:|:|||:|||:|||:|||:|||:|||:|||:|||:|||:|||:
 Db 96 TIRLRSGGHSYEGLSYTSDFTEFLIDMLNLRVSIDLESETAWVESGSTIGELYAYTES 155
 |:|:|||:|||:|||:|||:|||:
 Qy 129 HGRV-LPGGSCYSVGLGGHVGGDGILLARLHGLPVVDWLSGVEVVKPVTE--DSVLY 185
 |:|:|||:|||:|||:|||:|||:|||:|||:|||:
 Db 156 SSKLGFATAGWCPTVGTCGGHSIGGGFGMMSRKYGLAAD-----NVDAIILIDANGAIL-- 207
 |:|:|||:|||:|||:|||:|||:|||:
 Qy 186 VHKDSEGNDGELFWAHTGGGGNFGIITKYYFKDLPLMSPRGV-----ASNLHF 234
 |:|:|||:|||:|||:|||:|||:|||:
 Db 208 --DROQAMGEDVFWAIRGGGGVWGAIVAWKIKLIPVPEKLTFRVTKNAIDEATSLH 264
 |:|:|||:|||:|||:|||:
 Qy 235 SWDGFTRDALQDLITKYFKLARCD---WKNTVG-KFOIFHQAAEFFVM----- 278
 |:|:|||:|||:|||:|||:|||:
 Db 265 KWQ-FVAEELEEDFT-LSVLGGADEKQWLTMGLFHGLKTVAKSTFDLIFPELGLVEED 322
 |:|:|||:|||:|||:|||:
 Qy 279 YLYTYSNSD---AEREVAQDRHYHLEADIEQIYKT-CEPTKALGGHAGWAPFPVRPRK 332
 |:|:|||:|||:|||:|||:
 Db 323 YLEMWSGESPAYLAGLETVSQLNRFKFD-ERAFTKTVDLTK-----EPLPSK--- 370
 |:|:|||:|||:|||:
 Qy 333 RHTSKTSYMHDETMDFYPPVALETINGSGPNQRGKYKSAAMYMIKDFPDFQIDVWKLYTEV 392
 |:|:|||:|||:
 Db 371 -----AFYGLLER-----LSKE 382
 |:|:|||:
 Qy 393 PDGLTSAEMKDALLQVDMFGGEIHKVWDATAVAQREYI-IKLOQYOTW--QEEDIAVN 449
 |:|:|||:
 Db 383 PNG-----FIALNGFGQGMISKISSDFTPFPHRSGTRLMVEYIWAWNQSEQKKTF 433
 |:|:|||:
 Qy 450 LKWIRDIFYEEMYEPYGGVPDPNTQVESGKGVFEGCYFNYPDVDLN--NWKNQKY--GALE 505
 |:|:|||:
 Db 434 LDWLEKVYEFM-KPF--VSKNPRLG-----YVNHDLDIGGIWRNKSSTNAVE 480
 |:|:|||:
 Qy 506 L-----YFLGNLNRLIKAKWLWDPNEIFTNKQSI P 535
 |:|:|||:
 Db 481 ISRSGESEYFLSNVERLIRAKTLIDPNVNFnHPQSI P 517
 |:|:|||:

Query Match 4.0%; Score 118.5; DB 1; Length 769;
 Best Local Similarity 22.4%; Pred. No. 0.23; Mismatches 69; Indels 117; Gaps 30;
 Matches 109; Conservative 69; Mismatches 192; Indels 117; Gaps 30;
 RT sequence analysis.";

Qy 59 ALDRAMEKCSPTGTVRIVSGGGCYEDFVDECVKAI---INVTLVSGYDDDRGYFFVSSG 115
 Qy 58 AFDTAVIATEGGGRANLVAAGG--EGLI--ACAKALGADAEVSAVAA-----LSDA 103
 Db 116 DTNWGSFKTLFRDHGRVLPGGSCYSVGLGGH---IVGGGDGILARLHGLPVDWL-SGVE 170
 Db 104 DPNYAQKLTLALFERGE----PCWFEARGPHGLVSVEGRAAGALAWRLAPIDRADSLGP 158
 Qy 171 VVVKPVLTEDSVLK--YVHKDSEGNDGELFWAH-----TGGGGNFGITKYYFKDLM 222
 Qy 159 TAARFAAFVDSVVEPCWI---AGADGQAIWGNAFAVRAVGAASAQAPALAGKSF---- 209
 Qy 223 SPRGVVIASNLHFSDWGFTRDALQDLTKYFKLARCWDWKNTVGKFQIFHOAAEFF---VMY 279
 Db 210 -DRGADAVVVEAAGKGGERREALR-----WINVEGRRRAFRLSAQPLDGGVG 255
 DR 280 LYTSYSNDAERREVAQDRHYHLEADIEQIYKTC-----PTKALGGHAG----WAPFPV 328
 DR 256 VFCADVTEIE-DVRDAFKKHVEAHDETLNHIAEAVATFSQTRRLSYHNTAFAELWGLEPA 314
 DR 329 RPRKRHTSKTSYMHDETMID--YFYALTETINGSGPNQRGKYKASYMIKDFPDF--QIDV 384
 Qy 315 WLADRPT-----HGEVLDRLRQRRLPETIDYAG-----WKAELAR-YEDLGPOADD 361
 Db 385 IWKYLITEVPDGLTSAEMKDALLQVDMFEGEI---HKVWMDATAVAQREYIKLQYQTYWQ 441
 Qy 362 LW---DLPDGRTLKVR---QPHPLGGMILLIYSDITGELRLKAQYNALIQVQQATLDK 413
 Db 442 EEDKDAV----NLKWIRDYEEMYE PYGGVPDPNTQVESG--KGVFEGCYFNYPDV-DL 493
 Qy 414 LNDNAVAVFGSDGRLR---LHN EAFETFWNV-TPHALEAAGDFEGVVELC---VPRLLHD 465
 Qy 494 NNWKNGK 500
 Db 466 SFWRELK 472

RESULT 5

ID	RABIT	STANDARD	PRT	478 AA.
AC	P28863;			
DT	01-DEC-1992 (Rel. 24, Created)			
DT	01-DEC-1992 (Rel. 24, Last sequence update)			
DT	15-JUN-2002 (Rel. 41, Last annotation update)			
DE	Stromelysin-1 precursor (EC 3.4.24.17) (Matrix metalloproteinase-3) (MMP-3) (Transin-1) (SL-1).			
GN	MMP3.			
OS	Oryctolagus cuniculus (Rabbit).			
OC	Eukaryota; Metazoa; Chordata; Craniata; vertebrata; Buteleostomi;			
OX	Mammalia; Eutheria; Lagomorpha; Leporidae; Oryctolagus.			
RN	[1]			
RP	SEQUENCE FROM N.A.			
RX	MEDLINE=88077214; PubMed=2825726;			
RA	Fini M.E., Karmilowicz M.J., Ruby P.L., Beeman A.M., Borges K.A.,			
RA	Brinckerhoff C.E.;			
RT	"Cloning of a complementary DNA for rabbit proactivator. A homology with stromelysin and transin, and is coordinately regulated with collagenase.";			
RL	Arthritis Rheum. 30:1254-1264(1987).			

Query Match 3.9%; Score 116; DB 1; Length 478;
 Best Local Similarity 20.7%; Pred. No. 0.19; Mismatches 101; Conservative 59; Mismatches 145; Indels 182; Gaps 24;
 Matches 101; Conservative 59; Mismatches 145; Indels 182; Gaps 24;

Qy 38 RWIGTNIDFVWVVTPOGACTALDRAMEKCSPTGTVRIVSGGGCYEDFVDECVKAIINT 97
 Qy 109 KWTKTHLTYRIVNTPDLPRDAVAAIEK-----ALKVWEVT 146

RN 157 RLHGLPVDWLSGVENVVKPVLTEDSVLKVKYVHKDSEGNDGELFWAHTGGGGNFGITKYY 216
 Db 175 -----FDGPGN--VLAHAYAPGPG----- 191

QY 217 FKDLRMSPRGVIAASNLLHFSWD-GFTRDALQDQLTKYFKLARCDWKNTVGKFOIFHQAEE 275
 FT DOMAIN 213 247 PKD 1.
 Db 192 -----INGDAHFDDDEQWTKDTTG---TNLFLVAAHELGHSLG---LFHSANPE 234
 FT DOMAIN 436 503 PKD 2.
 QY 276 FVMY-LYTSYSNDAEREVAQDRHYHLEADIEQIYKTCEPTKALGGHAGWAPFPVRPRKRH 334
 FT DOMAIN 724 806 PKD 3.
 Db 235 ALMYPVNAFTDLARFRLSQD-----DVDGQSILYGPAPASPDNSGVPMEPVPP--- 283
 FT DOMAIN 822 886 PKD 4.
 QY 335 TSKTSYMHDETMDFYFVALTETINGSGPNQRGKY---KSAYMIKDFPDFQ-IDVWKYL 390
 FT DOMAIN 925 962 PKD 5.
 Db 284 GSGTPVMCDP--DLSFDALIS-TLRGEILFFKDRYFWRKSRLILE--PEFHLLISSFWPSLP 338
 FT DOMAIN 293 298 POLY-ASN.
 QY 391 EVPDGLTSAEMKDALLQVDMFGG-----EIKVWMDAT-----AVAQ 427
 Db 339 SAVDAAYEVISRDT--VFIFKGTOFWAIRGNEVQAGYPRSIHTLGFPSTIRKIDAAISD 395
 QY 428 REYIQLQYQTYWQEEKDQAVNLKWIRDFYEEMYEP-----YGGVDPNTQVESGKGVF 481
 Db 396 KE----RKTYFFVEDK-----YWRFDEKROSLEPGFPRHTAEDFPGINPKIDA--VF 442
 QY 482 EGCYFN 488
 Db 443 EAFCFFY 449

RESULT 6

ID YE68_METJA	STANDARD;	PRT; 1009 AA.
AC Q58863;		
DT 16-OCT-2001 (Rel. 40, Created)		
DT 16-OCT-2001 (Rel. 40, Last sequence update)		
DT 15-JUN-2002 (Rel. 41, Last annotation update)		
DE Hypothetical protein MJ1468.		
GN MJ1468.		
OS Methanococcus jannaschii.		
OC Archaea; Eurarchaeota; Methanococci; Methanococcales;		
OC Methanocaldococcaceae; Methanocaldococcus.		
OX NCBI_TaxID=2190;		
RN [1]		

SEQUENCE FROM N.A.

RESTRAIN=JAL-1 / DSM 2661 / ATCC 43067;
 MEDLINE=96337999; PubMed=8688087;

Bult C.J., White O., Olsen G.J., Zhou L., Fleischmann R.D.,
 Sutton G.G., Blake J.A., FitzGerald L.M., Clayton R.A., Gocayne J.D.,
 Kerlavage A.R., Dougherty B.A., Tomb J.-F., Adams M.D., Reich C.I.,
 Overbeek R., Kirkness E.F., Weinstock K.G., Merrick J.M., Glodek A.,
 Scott J.L., Geoghegan N.S.M., Weidman J.R., Nguyen D.,
 Utterback T.R., Kelley J.M., Peterson J.D., Sadow P.W., Hanna M.C.,
 Cotton M.D., Roberts K.M., Hurst M.A., Kaine B.P., Borodovsky M.,
 Klenk H.-P., Fraser C.M., Smith H.O., Woese C.R., Venter J.C.;
 RT "Complete genome sequence of the methanogenic archaeon, Methanococcus
 RT jannaschii";
 SCIENCE 273:1058-1073(1996);
 CC -!- SUBCELLULAR LOCATION: Integral membrane protein (Potential).
 CC -!- SIMILARITY: CONTAINS 5 PKD DOMAINS.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

RESULT 7

ID DLD3_YEAST	STANDARD;	PRT; 496 AA.
AC P39976;		
DT 01-FEB-1995 (Rel. 31, Created)		
DT 01-FEB-1995 (Rel. 31, Last sequence update)		
DT 16-OCT-2001 (Rel. 40, Last annotation update)		
DE Probable D-lactate dehydrogenase [cytochrome] (EC 1.1.2.4) (D-lactate DE ferricytochrome C oxidoreductase) (D-LCR).		
DE DLD3 OR YEL071W.		
OS Saccharomyces cerevisiae (Baker's yeast).		
OS Saccharomyctales; Ascomycota; Saccharomycetes;		
OC Saccharomyctales; Saccharomycetaceae; Saccharomyces.		
NCBI_TaxID=4932;		
[1]		

SEQUENCE FROM N.A.

FT DOMAIN 213 247 PKD 1.
 FT DOMAIN 436 503 PKD 2.
 FT DOMAIN 724 806 PKD 3.
 FT DOMAIN 822 886 PKD 4.
 FT DOMAIN 925 962 PKD 5.
 FT DOMAIN 293 298 POLY-ASN.
 QY 69 PGTVRIVSGGHCV-----EDFVDECVKAIINVTLGLVESGYDDDRGF 111
 Db 28 PNTWNITNSGGVNTDPNIIAYNVNDTITFEALAPDSVAQDILD-NGVVVKWDFGD---- 81
 QY 112 VSSGDTNWGSFKTLFRDHGRVLPGGSCSYVGLGGHVGGGDGILARLHGLPVWLGSDEV 171
 Db 82 --LTETDYGNYRTTHTYTFPF-----YPVAWCGYLNNTGYS----KALTYNWL---- 125
 QY 172 VVKPVLTEDSVLKVKHDKSEGN--DGELFWAHTGGGGNFNGITKYY-----FKDL 220
 Db 126 ----VKGDVANTKVVFNGSPINSKTSWEVYNT----NNTVIKYSETPVDRFENG 176
 QY 221 PMSPRGVIAASNLLHFSWDGFTDAL--QDLITKVKLAR---CDWKNTVGKFOIFHQAEE 275
 Db 177 SVDTTSVTN----VSRDEIVEGDTVKFNFSVSRNIIFCVWSFGDGTFSF----E 223
 QY 275 EFVMYLYTSYSNDAEREVAQDRHYHLEADIEQIYKTCEPTKALGGHAGWAPFPVRPRKRH 334
 Db 224 KFPEHTTYTKSGLYYPRLVVDGSRVM--VGYLDEGIEVKRARGGYIWWTGP---- 274
 QY 335 TSKTSYMHDETMDFYFVALTETINGSGPNQRGKYKASYMIKDFPDFQIDVW-KYL--- 389
 Db 275 ----SHYDGEAYTYVYNNSSGDDNNNNNGNAYTDPYKITYKVNDT1KFEMSGAWGEYNKWF 330
 QY 390 ---TRVPDGGLTSAEMKDALLQVDMFGGEIHK-----V 418
 Db 331 GDGTETPYTKS-----YFTPSYHQYKFPFMWPFWNSYWGGSWWKSDTLNFTV 379
 QY 419 VWDATAVAQREYIQLQYQTYWQEE-----DKDAVLKLW-----IRDFY---- 457
 Db 380 VDDVENTRYNFYPPSSAHDKTYDYEYNKENHTVNLYYSDVISTPKENVKLRDGYYIDIT 439
 QY 458 -----EEMYEPYGGVDP 469
 Db 440 ATADKTQVSVNENVRDCSPYGNPIFIMCFCGDTCSPEKSPTHRYSSGLYYPHVFVID 499
 QY 470 PNTQVESG--KGVEFGCYFNTYPDFVLDNNWKNKGKYGALEL--YFLGNLNRLRIKAKWLDP 524
 Db 500 DNGNIEVGIPPIGGYSSYPOI-----YASPTIAPTYPINITIVEPASWTWY 550
 QY 525 NEI-FTNKQSIPTKLKEP 542
 Db 551 HHIVFGDGGSVWIKPKKSP 569

AC P25950; 01-MAY-1992 (Rel. 22, Created)
 OC DT DT 01-MAY-1992 (Rel. 22, Last sequence update)
 OC RX DT DT 16-OCT-2001 (Rel. 40, Last annotation update)
 OC RA DE mRNA capping enzyme large subunit [Includes: Polynucleotide 5'-
 OC NCBI_TaxID=5142; triphosphatase (EC 3.1.3.33) (mRNA 5'-triphosphatase) (TPase); mRNA
 OC RN DE triphosphatase (EC 2.7.7.50) (GTP--RNA guanylyltransferase)
 OC RL DE (GrTase)].
 OC CC DE D3R.
 OC CC OS Shope fibroma virus (strain Kasza) (SFV).
 OC CC OC Viruses; dsDNA viruses, no RNA stage; Poxviridae; Chordopoxvirinae;
 OC CC OC Leporipoxvirus.
 OC CC RN NCBITaxID=10272;
 OC CC [1] SEQUENCE FROM N.A.
 OC CC MEDLINE=91306463; PubMed=1649507;
 OC CC RA Upton C.; Stuart D.; McFadden G.;
 OC CC RT "Identification and DNA sequence of the large subunit of the capping
 OC CC RT enzyme from Shope fibroma virus.";
 OC CC RL Virology 183:773-777(1991).
 OC CC CC -!- FUNCTION: CATALYZES THE FIRST TWO REACTIONS IN THE mRNA CAP
 OC CC FORMATION PATHWAY.
 OC CC CC -!- CATALYTIC ACTIVITY: 5'-phosphopolynucleotide + H(2)O =
 OC CC CC polynucleotide + phosphate.
 OC CC CC -!- CATALYTIC ACTIVITY: GTP + (5') PP-pur-mRNA = diphosphate +
 OC CC CC G(5') PPP-pur-mRNA.
 OC CC DR -!- SUBUNIT: HETERODIMER OF A LARGE AND A SMALL SUBUNIT.
 OC CC DR -!- SIMILARITY: BELONGS TO THE VIRAL GTASE FAMILY.
 OC CC This SWISS-PROT entry is copyright. It is produced through a collaboration
 OC CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
 OC CC the European Bioinformatics Institute. There are no restrictions on its
 OC CC use by non-profit institutions as long as its content is in no way
 OC CC modified and this statement is not removed. Usage by and for commercial/
 OC CC entities requires a license agreement (See <http://www.isb-sib.ch/announce/>)
 OC CC or send an email to license@isb-sib.ch).
 OC CC
 OC CC DR EMBL; X52106; CAA36327.1; ALT_SEQ.
 OC CC DR PIR; S17909; S17909.
 OC CC DR InterPro; IPR002064; DNA_pol_B.
 OC CC DR Pfam; PF03175; DNA_pol_B_2.
 OC CC DR PRNTS; PR00106; DNAPOLB.
 OC CC DR SMART; SM00486; POLBC; 1.
 OC CC DR PROSITE; PS00116; DNA_Polymerase_B; 1.
 OC CC DR KW Transferase; DNA-directed DNA polymerase; DNA replication;
 OC CC KW DNA-binding; Plasmid; Mitochondrion.
 OC CC SQ SEQUENCE 969 AA; 112829 MW; 6048B993814F668P CRC64;
 OC CC
 OC CC Query Match 3.4%; Score 101.5; DB 1; Length 969;
 OC CC Best Local Similarity 20.0%; Pred. No. 6.3;
 OC CC Matches 76; Conservative 50; Mismatches 151; Indels 103; Gaps 16;
 OC CC DR EMBL; M63902; AAA47224.1; -.
 OC CC DR PIR; A40478; Q0VZRA.
 OC CC DR InterPro; IPR004971; Pox_MCEL.
 OC CC DR Pfam; PF03291; Pox_MCEL_1.
 OC CC KW Transferase; Nucleotidyltransferase; Hydrolase; mRNA processing;
 OC CC KW mRNA capping; Multifunctional enzyme.
 OC CC FT ACT_SITE 256 256 GUANYLYLATION SITE (POTENTIAL).
 OC CC SQ SEQUENCE 836 AA; 97018 MW; 7375FDA548AE1730 CRC64;
 OC CC
 OC CC Query Match 3.3%; Score 97.5; DB 1; Length 836;
 OC CC Best Local Similarity 18.3%; Pred. No. 11;
 OC CC Matches 86; Conservative 75; Mismatches 169; Indels 141; Gaps 21;
 OC CC DR EMBL; M63902; AAA47224.1; -.
 OC CC DR LPSMKQGFNRWRIGTNIDFVYVWYTPQACTALDRAMEKCSPGTVRIVSGGHCYEDFVFD 87
 OC CC DB 365 LPSQPEG--WLFYSDQRNQPDYKIKLDNTDHMINIIYRYSSEPVIFG 412
 OC CC DR E-----NSTFLEYKKFSSDKGF-----PKDYGTKMLTDNVRYLNNIYCIAFTNVYED 412
 OC CC DR 413 E-----NVTGLVESGYDDDRGYFVSSGDTNWGSFKTLFRDHGRVLPGSCYS----- 140
 OC CC DR 88 ECVKAIINVTVLGNLNGVYQTYWQEEEDKDAVNWKWIRDYEEMYEPYGGVPDPNT 472
 OC CC DR 255 ITINKYNETITVLLNNTPIFKIKDEKIMSEDDLSSFKRTITENEQDKVY----- 303
 OC CC DR 473 QVESGKGVF--EGCYFNY---PDVDLNNWKNGKYGALEYELGNLNRLLIKAKWLWDPNE 526
 OC CC DR 304 VFENGEMVFFSENVKTSEFIKKITROQLINFENPKITIDL----- 343
 OC CC DR 527 IFTNKQSIPTKPLKEPKQT 546
 OC CC DR 344 --ETRSVPIHPIKEGKDCK 360
 OC CC
 OC CC Query Match 3.3%; Score 97.5; DB 1; Length 836;
 OC CC Best Local Similarity 18.3%; Pred. No. 11;
 OC CC Matches 86; Conservative 75; Mismatches 169; Indels 141; Gaps 21;
 OC CC DR E-----NVTGLVESGYDDDRGYFVSSGDTNWGSFKTLFRDHGRVLPGSCYS----- 140
 OC CC DR 413 E-----NVTGLVESGYDDDRGYFVSSGDTNWGSFKTLFRDHGRVLPGSCYS----- 140
 OC CC DR 141 VGLGHTVGGGDGTLARLHGLPVDWLSGEV---VVKPVLTEDSVLKVVKDSEGNDGEL 197
 OC CC DR 462 VGIKNVTV-----PIKFISEFFSATGELIKPRI-DKTEFKVLYKEYYGNQYQI 506
 OC CC DR 413 E-----NVTGLVESGYDDDRGYFVSSGDTNWGSFKTLFRDHGRVLPGSCYS----- 140
 OC CC DR 198 FWAHTGGGGNFG-IIKYFKDLPMSPRGVIASNLHFSDGFTRDALQDLTKYFKLAR 256
 OC CC DR 507 VWAHIRDQNLIKGDVLDEDKLSDV-----GOHYANDKYRLNPDVSYFTN----- 550
 OC CC DR 551 ---KTRGPGLGILSNVTKLLISLYCSKTFLDNSNKRKVLAIDFGNGADLEKYFYGEISS 607
 OC CC DR 307 IYKTCEPTKALGGAGWAPFPVPRKRHTSKTSYMDETMDYFPFYALTEING---SGP 362
 OC CC DR 608 LVATDPDKEAIG-----RCIERYNSLNSGI-KSKYKFDYIQTIRSVTVSSV 655
 OC CC
 OC CC RESULT 13
 OC CC MCEL_SFVKA STANDARD; PRT; ` 836 AA.

DR	EMBL; D21202; BAA04744.1;	-
KW	Hydrolase; Glycosidase;	Multigene family.
SQ	SEQUENCE	955 AA; 1.05976 MW; 6E54555DDA8BD215 CRC64;
Query Match	3.2% ; Score 97;	DB 1; Length 955;
Best Local Similarity	20.5% ; Pred. No. 34;	
Matches	56; Conservative 46; Mismatches 97; Indels 74; Gaps 16	
Qy	104 YDDDRGYFVSSGDTNWGSFKTLFRDHGRVLPGGSCYSVGLGGHIVGGGDGILARLHGLPV	163
: : ::	: :	:
Db	629 YDNKKVAYVANG---W-----IFGDHARISTGNDYW-----	GPIHD-PP 663
Qy	164 D--WLSGVENVKPVLTEDSVLKVKVHDSEGN-----DGELFWAHTGGGGNFGIITKVV	216
: :: : :	: :	: : :
Db	664 DPEFVNNSVKAMTKKLMT-----VDKNDPWWMGVFVDNEISWGNTKNDANHYGLVNAL	717
Qy	217 FKDLPMSP-RGVIASNLFHS-WDGFTRDALQDLITKVFKLARCWDWKNTVGKFQIFHQAAE	274
: :	:	: :
Db	718 SYDMKKSPAKAAFTEHLKEKYW-----AIEDLNT-----SWGVKVVASWAEEFKSFD	763
Qy	275 EFVMYLYTYSNDAEREVAQDRIHYHLEADIEQIYKT--CEPTKALGGH---AGWAPFPV	328
: : : :		
Db	764 -----HRSRLSKNMKKDYAEMLEMLSAYFSTVRaelKKVLPNHLYLGLPFA DWGV	814
Qy	329 RPRKRHTSKTSYMHDETMDYPFYALTETINGSG	361
: :		
Db	815 TP---EIKA GAAPYV DVM SYNLYA--EDLNSKG	842

Search completed: June 10, 2003, 09:59:16
Job time : 27 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

OM protein - protein search, using sw model

Run on: June 10, 2003, 09:56:56 ; Search time 22 Seconds
(without alignments)
2385.882 Million cell updates/sec

Title: US-09-998-284-2
Perfect score: 2997
Sequence: 1 MATLPQKDPGIVIDVNAGT.....IFTNKQSIPTKPLKEPKOTK 546

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283224 seqs, 96134422 residues

Total number of hits satisfying chosen parameters: 283224

Minimum DB seq length: 0
Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : PIR_73:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	736.5	24.6	685	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
2	368.5	12.3	530	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
3	360.5	12.0	367	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
4	347.5	11.6	539	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
5	346	11.5	528	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
6	333.5	11.1	529	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
7	328.5	11.0	535	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
8	324.5	10.8	541	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
9	322	10.7	540	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
10	302.5	10.1	552	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
11	300.5	10.0	532	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
12	300	10.0	532	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
13	298.5	10.0	527	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
14	296	9.9	536	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
15	290.5	9.7	535	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
16	286.5	9.6	538	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
17	278.5	9.3	447	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
18	278	9.3	533	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
19	277.5	9.3	526	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
20	277	9.2	527	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
21	272.5	9.1	530	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
22	252	8.4	531	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
23	249.5	8.3	540	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
24	242.5	8.1	466	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
25	240	8.0	527	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
26	238.5	8.0	461	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
27	207.5	6.9	479	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
28	203.5	6.8	479	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)
29	190.5	6.4	805	probable oxidoreductase YPO0308 [imported] - <i>Yersinia pestis</i> (strain C092)

hypothetical protein
probable oxidoreductase
mcrA protein - Strhypothetical prote
glycolate oxidase
6-HYDROXY-D-NICOTItyrosine kinase Di
stromelysin 1 (ECsulfur oxidation p
hypothetical prote
probable secreted
hypothetical prote
potassium channel
glucosyltransferas
uncharacterized protein
endo-1,4-beta-xyla

Qy 385 IWKYLTEVPDGLTSAEMKDALLQVDMFGEIHKVUVWDATAVAQREYIKLQYQTYWQEEED 444
Db 392 CHALLTHLTATADKRFNQSLVQIDSYGGAINSRIGATAVSQRNSLIIKAQYQTYWTNEA 451
Qy 445 KDAVNLIKWIRDYEEEMYEPYGGVDPNTQVESGKGVFEGCYFNYPDVQLN-----N 495
Db 452 DDQTHLTWIRNIYAAV---HNGKPAPE-----FEGCYINPDDIMKYTDSEEDPN 500
Qy 496 WKNKGKYGCALELYFLGNLNRLIKAKWLWDPNEIFTNKQSIP 535
Db 501 WLNLYYG---WDTQLIKRLIAALKARIIDPNNIFHHELSIP 536

RESULT 2

F86390 hypothetical protein T1K7.23 - Arabidopsis thaliana
C;Species: Arabidopsis thaliana (mouse-ear cress)
C;Date: 02-Mar-2001 #sequence_revision 02-Mar-2001 #text_change 31-Dec-2001
C;Accession: F86390
R;Authors: A.; Ecker, J.R.; Palm, C.J.; Federspiel, N.A.; Kaul, S.; White, O.; Alonso, C.; Chin, C.W.; Chung, M.K.; Conn, L.; Conway, A.B.; Conway, A.R.; Creasy, T.H.; Dewar, K.; Hansen, N.F.; Hughes, B.; Huizar, L.
Nature 408, 816-820, 2000
A;Authors: Hunter, J.L.; Jenkins, J.; Johnson-Hopson, C.; Khan, S.; Khaykin, E.; Kim, C.; Li, J.H.; Li, Y.; Lin, X.; Liu, Z.A.; Luos, J.S.; Maiti, R.; Marziali, A.; Rizzo, M.; Rooney, T.; Rowley, D.; Sakano, H.
A;Authors: Salzberg, S.L.; Schwartz, J.R.; Shinn, P.; Southwick, A.M.; Sun, H.; Tallon, M.; Wu, D.; Yu, G.; Fraser, C.M.; Venter, J.C.; Davis, R.W.
A;Title: Sequence and analysis of chromosome 1 of the plant Arabidopsis.
A;Reference number: A86141; MUID:21016719; PMID:11130712
A;Accession: F86390
A;Status: preliminary
A;Molecule type: DNA
A;Residues: 1-530 <STO>
A;Cross-references: GB:AE005172; NID:99797759; PIDN:AAF98577.1; GSPDB:GN00141
C;Genetics:
A;Map position: 1
C;Superfamily: poppy reticuline oxidase

Query Match 12.3%; Score 368.5; DB 2; Length 530;
Best Local Similarity 27.0%; Pred. No. 3.1e-20; •
Matches 134; Conservative 76; Mismatches 180; Indels 107; Gaps 23;

Qy 72 VRIVSGGHCVYDFVFDCKAI-----NVTGLVESGYDDDRGYFWSSGDTNWGSFPT 124
Db 103 LRIRSGGHDYEGLSYMSVSPFVILDMYLNRSITVDVSS----KKAWIQQAGAT-LGELYT 156
Qy 125 LFRDHGRVL--PGGSCSYVGLGGHIVGGGDGILARLHLGLPVDWLSGVEVVVKPVLTEDSV 182
Db 157 NVNDVSQTIAFPAGVCATVGAGGGHSIGGGYGNLMRKYGITVDHVIDAQI-----DVN 209
Qy 183 LKVVKDSEGNDFELFWAHTGGGGNFGLIT--KYYFKDLPLMSPRGVVIASNHLFWSWDGFT 240
Db 210 GKLNRAWTMGED--LFWAIRGGGGGSFGVILSWKINLVDPVKIVT-VFKVNKTLEQGG- 264
Qy 241 RDALQDLITKVKLARCDDWKONTVGKF--QIFHQAAEE-----FWMLYTYSND 287
Db 265 ----TDVLYK-----WOLVASKFPESELVFRAMPQVANGTKRGERITTVFYAQFLGR 312
Qy 288 AEREVAQDPRHYXLEADIEQIYKTCPTKALGGHAGWAPFPVRKRHTSKTSYMHDETM 347
Db 313 TDALMAIMQNQNWPELGLK--HEDCQEWSWLNSTFWADYPA-----GTPTSL---LD 360
Qy 348 YPFYALTINGSPNQRGKYKSAYMIKDPDFQIDVWIKLITEVPDGLTSAEMKDALLQ 347
Db 361 RP-----SSPGDFEFSKSKSDVKKP1PKEGLEKLWMLKFNNI-----VWMQ 403
Qy 408 VDMFGGEIHKVUVWDATAVAORE-YIKLQYQTYWQEEDKDAVNLIKWIRDYEEEMYEPYGG 466
Db 404 FNPyGGMDRIPATATAFPHRKGNLFKIQYFTTWFNANATMSSLSQMELY-EVAEPY-- 460
Qy 467 VPDPNTQVESGKGVFEGCYFNYPDVQLNWNKNGK------YGALEYFLGNLNRLIIKA 518

Db 461 -----VSSNP--REAFFNYRDIDVGSNPSGETNVDEAKIYGS--KYFLGNLKRLMDV 508
Qy 519 KWLWDPNEIFTNKQSIP 535
Db 509 KAKYDPDNFFKNEQSIP 525

RESULT 3

F69816 reticuline oxidase homolog ygak - Bacillus subtilis
C;Species: Bacillus subtilis
C;Accession: F69816
R;Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Berterci, C.; Bron, S.; Brouillet, S.; Bruschi, C.V.; Caldwell, B.; Capuano, V.; Carter, N.M.; Choi, A.; Ehrlich, S.D.; Emmerson, P.T.; Errington, J.; Fabret, C.; Ferrari, E.; Foulger, D.; Fritz, C.; Fujita, M.; Fujita, Y.; Fumia, S.; Galizzi, A.; Galler, C.; Henaut, A.; Hilbert, H.; Holsappel, S.; Hoso, S.; Hullo, M.P.; Koetter, P.; Koningstein, G.; Krogh, S.; Kumano, M.; Kurita, K.; Lardinois, A.; Lardinois, Y.; M.; Ogawa, K.; Ogiwara, A.; Oudega, B.; Park, S.H.; Parro, V.; Pohl, T.M.; Portetelle, D.; Rieger, M.; Rivolta, C.; Rocha, E.; Roche, B.; Rose, M.; Sadaie, Y.; Sato, T.; Scanlon, A.; Authors: Schleicher, S.; Schroeter, R.; Scuffone, F.; Sekiguchi, J.; Sekowska, A.; Serr, Akeuchi, M.; Tamakoshi, A.; Tanaka, T.; Terpstra, P.; Tognoni, A.; Tosato, V.; Uchiyama, T.; Winters, P.; Wipat, A.; Yamamoto, H.; Yamane, K.; Yasumoto, K.; Yata, K.; Yoshida, K.
A;Authors: Yoshikawa, H.F.; Zumstein, E.; Yoshikawa, H.; Danchin, A.
A;Title: The complete genome sequence of the Gram-positive bacterium Bacillus subtilis.
A;Reference number: A69580; MUID:98044033; PMID:9384377
A;Accession: F69816
A;Status: preliminary
A;Molecule type: DNA
A;Residues: 1-367 <KUN>
A;Cross-references: GB:Z99108; GB:AL009126; NID:92633055; PIDN:CAB12708.1; PID:e1182869;
A;Experimental source: strain 168
C;Genetics:
A;Gene: ygak

Query Match 12.0%; Score 360.5; DB 2; Length 367;
Best Local Similarity 26.0%; Pred. No. 7.5e-20;
Matches 118; Conservative 61; Mismatches 157; Indels 117; Gaps 15;

Qy 106 DDRGFVSSGDTNWGSFPTLFRDHGRVLPGGSCYSVGLGGHIVGGGDGILARLHLGLPVDW 165
Db 9 DKKLAAYIEGAELGEVYRTLWQ-YGLTLPAGTIANVGLTGLTGGGIGLLTRAAGLTCDS 67
Qy 166 LSGVVEVVVKPVLTEDSVLKYVHKDSEG-----NDGEFLWAHTGGGGGNFGIITKYY 216
Db 68 LVQLEMIVA-----DEKEGADLITVSCSNHPLFWASQGGGGGNFGIVTSMT 114
Qy 217 FKDLPLMSPRGVVIASNHLFWSWDGFTRDALQDLITKVKLARCDDWKNTVGKFFQIFHQAAEF 276
Db 115 FKAVPISQVSIF--SITWGWDFFEE-----VINTWQN----- 144
Qy 277 VMLYLTYSNSDAERREVAQDRHYLEADIEQIYKTCPTKALGGHAGWAPF-----VR 329
Db 145 -----WPPYTDD-----RLTSSIEFWPKEVNRIEALQFVG-----PKTELKKLK 185
Qy 330 PRKRHTSKTSYMHDETMDFYFVALTINGSPNQRGKY--SAYMIKDPDFQIDVWIK 387
Db 186 PLLKAGSPTSGMVKTT--PFEATVFFNPSGGNQPOQKMRSFSIEKPLSERAIISTIKH 242
Qy 388 VLTEVPDGLTSAEMKDALLQVDMFGEIHKVUVWDATAVAOREYIKLQYQTYWQEEDKDA 447
Db 243 FLEHAIP-----QNA SVWQQA RGPVADQTAFYRDAIIAQEYLTJNWTSPGEKR 295
Qy 448 VNLKWI RDYEEEMYEPYGGVDPNTQVESGKGVFEGCYFNYPDVQLNWNKNGK------ 507
Db 296 QNVRWIEGLRTSLSKE-----TMGDYVNWPDIETRNWMPRTYYGE--- 334
Qy 508 FLGNLNRLIIKA KWLWDPNEIFTNKQSIPKPLK 540
Db 335 ---NVERLRRVKTIVDOPENVFRFEQSIP--PLR 362

RESULT 4

T10626 reticuline oxidase homolog F21C20.190 - Arabidopsis thaliana
 C;Species: Arabidopsis thaliana (mouse-ear cress)
 C;Date: 16-Jul-1999 #sequence_revision 16-Jul-1999 #text_change 15-Jun-2001
 C;Accession: T10626 R;Bevan, M.; Pohl, T.; Weizenecker, T.; Bancroft, I.; Mewes, H.W.; Mayer, K.F.X.; Lemcke A;Reference number: Z16991 A;Accession: T10626 A;Molecule type: DNA
 A;Residues: 1-539 <BEV>
 A;Cross-references: EMBL:AL080254; GSPDB:GN00062; ATSP:F21C20.190
 C;Genetics:
 A;Gene: ATSP:F21C20.150
 A;Map position: 4
 C;Superfamily: poppy reticuline oxidase

Query	Match	Score	DB	Length
QY	52 TPQGACTALDR-----AMEKCSPG---TVRIVSGGHCYE--DFVFDECVK-AIINVIGLVESEGYDDDRGY-FVSSGDTNWGSFKTLFRDH	347.5	2	539
Db	83 TPKPAAITVTPRSIDHVSAAVTCSKSLNFLLKIRSGGDYEGLSYISDKPF-FILDMSNLR	26.28	1.3e-18	181
QY	101 RSGVD-DDRGYFVSSGDT-----NWGSFKTLFRDHGRVLPGGSCYSVGLGGHIVGGD	152		141
Db	142 DVSVDIADQSAWISAGATLGEVVYRIWEKSKV---HG--FPAGVCPTVGVGHTGGGY	195		161
QY	153 GILARLHGLPVDWLISGVVVVKPVLTEDSVLKVVKDSEGNDELFWAHTGGGGNGFGII	212		206
Db	196 GNMLRKFGGLSVNDLIDAKIV----DVNGQILDRKSWMED--LFWAISGGGASFGW	246		206
QY	213 TKYVFKLPMSPRGV-----ASNLFHSWDG-----FTRDALQDLITKYFK 253			247 LGYKVKLVLPVFPETVTVFRVEKYMDSGAVDMVHKWQSVGPKTDRLNLLRMLIOPVTTRKKV
Db	254 LARCDWKNTVGKFQIFHQAAEEFVMLYTSYNSDAEREVAQDRHYHLEADIEQIYKTCPE	313		306
QY	307 TVRA----TV--VALFLGRAEEVALLGKEFP-----ELSLLK--ENCSE	343		
QY	314 TKALGGHAGW---APFPVPRKRHTSKTSYMHDETMDYPFYALTTINGSGPNQRGKYK	369		
Db	344 MTWFQOSALWWNDNRVNPTQIDPK-----VFLDRNLDRANF-----GKRK	381		
QY	370 SAYMIKDFPDFRQIDVIWKYLTEVPD-GLTSAEMKDALLQVDMFGGEIHKVWMDATAVAQR	428		
Db	382 SDYVASEIPRKGIESLFKMTELGKIGLV-----FNPYGGKMAEVTVNATPFPHR	431		
QY	429 BYIKLQYQTYWQEEEDKDAVLKWIRDIFYEE--MVEPYGGVPDPNTQVESGKGVFEGCY	485		
Db	432 SKLFKIQYQSVTWOE--NSVEIE--KGFLNOANVLYSEMGTGFVSKNPR-----NAY	477		
QY	486 FNYPDVDSL-----NNWKNGK-YGALEYFLGLGNLNRLIKAKWLWDPNEIFTNKOSIPT	536		
Db	478 LNYRDVVDIGVNDHGTNSYEEGEGVIG--RKYFGDNFDRLVKVKAADPDNFFRNEQSIPT	534		

RESULT 5

T10622 hypothetical protein F21C20.150 - Arabidopsis thaliana
 C;Species: Arabidopsis thaliana (mouse-ear cress)
 C;Date: 16-Jul-1999 #sequence_revision 16-Jul-1999 #text_change 15-Jun-2001
 C;Accession: T10622 R;Bevan, M.; Pohl, T.; Weizenecker, T.; Bancroft, I.; Mewes, H.W.; Mayer, K.F.X.; Lemcke submitted to the Protein Sequence Database, June 1999
 A;Reference number: Z16991 A;Accession: T10622 A;Molecule type: DNA
 A;Residues: 1-529 <STO>
 A;Cross-references: GB:AE005172; NID:99797756; PIDN:AAF98574.1; GSPDB:GN00141
 C;Genetics:
 A;Map position: 1

RESULT 6

A86391 hypothetical protein T1K7.20 - Arabidopsis thaliana
 C;Species: Arabidopsis thaliana (mouse-ear cress)
 C;Date: 02-Mar-2001 #sequence_revision 02-Mar-2001 #text_change 31-Dec-2001
 C;Accession: A86391 R;Theologis, A.; Ecker, J.R.; Palm, C.J.; Federspiel, N.A.; Kaul, S.; White, O.; Alonso, C.H.; Chung, M.K.; Conn, L.; Conway, A.B.; Conway, A.R.; Creasy, T.H.; Dewar, K.; Chin, C.W.; Hughes, B.; Huizar, L. Nature 408, 816-820, 2000
 A;Authors: Hunter, J.L.; Jenkins, J.; Johnson-Hopson, C.; Khan, S.; Khaykin, E.; Kim, C.A.; Li, J.H.; Li, Y.; Lin, X.; Liu, S.X.; Liu, Z.A.; Luos, J.S.; Maiti, R.; Marziali, Rizzo, M.; Rooney, T.; Rowley, D.; Sakano, H. A;Authors: Salzberg, S.L.; Schwartz, J.R.; Shinn, P.; Southwick, A.M.; Sun, H.; Tallon, I. A;Title: Sequence of chromosomes 1 of the plant Arabidopsis. A;Reference number: A86141; MUID:21016719; PMID:11130712 A;Accession: A86391 A;Status: preliminary A;Molecule type: DNA
 A;Residues: 1-529 <STO>
 A;Cross-references: GB:AE005172; NID:99797756; PIDN:AAF98574.1; GSPDB:GN00141
 C;Genetics:
 A;Map position: 1

Db	165 QSSKT---HGTHGFPAGVCPTVGAGGHISSGGYGNMIRKYGLSVDYVTDKIV-----	214	Qy	343 -----DETMIDYPFYALTTINGSGPNQRGKYKSAYMIKDFPDFQIDVIWKLTEVPD-GL	396
Qy	179 EDSVLKVVKDKDSEGDGEFLWAHTGGGGNFGIITKYYFKDLPMSPRGV-----	228	Db	354 WDNRLNATQVDPKVFLDRNLDT---SFCKRKSDVATAIPKKGIESLFKKMIELGKIGL	410
Db	215 -DVNGRILDRKSMGED--LFWAIGGGGASFGVILSFKLKVPLVPPRVTVFRVEKTLVEN	271	Qy	397 TSAEMKDALLQVDMFGGETIKVVKVWDATAVAQREYITIKLQYQTYWQEE---DKDAVNWKW	452
Qy	229 ASNIAHFSW-----DGFTRDALQDLITKFKLARCDWKNTVKGFOIFHQAAEERFVMY	279	Db	411 V-----FNPYGGKMAEVAVNAKPFPHRNKLFKIQYSVNWKNSAEIEKGYLNQAK	460
Db	272 ALDMVHKWQFVAPKTPSPDLMQVPT-----RNTT-----QTVRASVVA	313	Qy	453 IRDFYEEMYEPYGGVPDPNTQVESGKGVFEGCYENYPDVDL-----NNWKNGK-YGAL	504
Qy	280 LYTSYSNDAEREVADIEQIYKTCPTKALGGHAGWA---PPFVVRPR---K	332	Db	461 V-----LYSFMGTFVSKNPR-----SSYFNYRDVDIGNDHGANSYKEGEVY--	503
Db	314 LFLGKQSDLMSLLTKE--FPELGLKP--ENCTEMWTIQSVMMWWANNDNATVIKPEILLD	368	Qy	505 ELYFLGLNLNRLIKAKWLWDPNEIFTNKQSIPTKPLK	536
Qy	333 RHTSKTSYMHDETMDYPFYALTTINGSGPNQRGKYKSAYMIKDFPDFQIDVIWKLTEV	392	Db	504 RKYFGENFDRLVKIKTAVDPENFRDEOSIPTLPTK	535
Db	369 RNPDSASFL-----KRKSDYVEKEISKDGLDFLCKKLMEA	403	Qy	393 PD-GLTSAEMKDALLQVDMFGGETIKVVKVWDATAVAQREYITIKLQYQTYWQEEKDQAVN--	449
Db	404 GKLGLV-----FNPYGGKMSEVATTATPPFPHRKRLFKVOHSMNNWKDPGTDVESSP	453	Qy	450 LKWIRDFYBEMYEPMYEPYGGVPDPNTQVESGKGVFEGCYENYPDVDL-----NNWKNGK-Y	501
Qy	454 MEKTRFSFYSYM-ADPVTKNPRHT-----YLNYRDLDIGINSHGPNSYREAEVY	500	Db	454 MEKTRFSFYSYM-ADPVTKNPRHT-----YLNYRDLDIGINSHGPNSYREAEVY	500
C;Accession:	H86390		C;Accession:	H86390	
R;Theologis, A.; Ecker, J.R.; Palm, C.J.; Federspiel, N.A.; Kaul, S.; White, O.; Alonso, C.W.; Chung, M.K.; Conn, L.; Conway, A.B.; Conway, A.R.; Creasy, T.H.; Dewar, K.; Chin, C.W.; Hughes, B.; Huizar, L.			R;Theologis, A.; Ecker, J.R.; Palm, C.J.; Federspiel, N.A.; Kaul, S.; White, O.; Alonso, C.W.; Chung, M.K.; Conn, L.; Conway, A.B.; Conway, A.R.; Creasy, T.H.; Dewar, K.; Chin, C.W.; Hughes, B.; Huizar, L.		
Qy	502 GALELYFLGNLNRLIKAKWLWDPNEIFTNKQSIPTKPLK	540	Db	501 G--RKYFGENFDRLVKIKTAVDPENFRDEOSIPTLPTK	537
T10625	reticuline oxidase homolog F21C20.180 - Arabidopsis thaliana (mouse-ear cress)		RESULT 9	T10625	
C;Species:	Arabidopsis thaliana (mouse-ear cress)		T10625	reticuline oxidase homolog F21C20.180 - Arabidopsis thaliana	
C;Date:	16-Jul-1999 #sequence_revision 16-Jul-1999 #text_change 15-Jun-2001		T10625	C;Species: Arabidopsis thaliana (mouse-ear cress)	
C;Accession:	T10625		C;Accession:	T10625	
R;Bevan, M.; Pohl, T.; Weizenegger, T.; Bancroft, I.; Mewes, H.W.; Mayer, K.F.X.; Lemcke submitted to the Protein Sequence Database, June 1999			R;Bevan, M.; Pohl, T.; Wezenegger, T.; Bancroft, I.; Mewes, H.W.; Mayer, K.F.X.; Lemcke submitted to the Protein Sequence Database, June 1999		
A;Reference number:	216991		A;Reference number:	216991	
A;Accession:	T10625		A;Accession:	H86390	
A;Molecule type:	DNA		A;Molecule type:	DNA	
A;Residues:	1-540 <STO>		A;Residues:	1-552 <STO>	
A;Cross-references:	GB:AE0005172; NID:9979757; PIDN:AAF98575.1; GSPDB:GN00141		A;Cross-references:	GB:AE0005172; NID:9979757; PIDN:AAF98575.1; GSPDB:GN00141	
C;Genetics:			C;Genetics:		
A;Map position:	4		A;Map position:	1	
C;Superfamily:	poppy reticuline oxidase		C;Superfamily:	poppy reticuline oxidase	
Query Match	10.7%; Score 322; DB 2; Length 540;		Query Match	10.1%; Score 302.5; DB 2; Length 552;	
Best Local Similarity	24.4%; Pred. No. 1.1e-16;		Best Local Similarity	25.3%; Pred. No. 3.6e-15;	
Matches	125; Conservative 79; Mismatches 172; Indels 136; Gaps 22;		Matches	128; Conservative 72; Mismatches 190; Indels 115; Gaps 24;	
Db	113 LKIRSGGGHDYDGLSYISDKPF-FILDMSNIRDVSDIASNAWISAGATLGELYKINEA	171	Db	127 LKIRSGGGHDNEGFSYMSVFPVFLDMHNLSIDVNLRSRKNAWQAGAT-LGELYKINEA	185
Qy	72 VRIVSGGGHCYE--DFVFDDEVCKVAKAINVTGLVESGYD-DDRGYFVSSGDTNWGSFKTLF--	126	Qy	72 VRIVSGGGHCYE--DFVFDDEVCKVAKAINVTGLVESGYD-DDRGYFVSSGDTNWGSFKTLF--	129
Db	127 -RDHGRVLPGGSCYSGVGLGGHIVGGGDGILARLHGLPVDWLSGVEVVVKPVLTEDSVLKVVH	187	Db	130 GRVL--PGGSCYSGVGLGGHIVGGGDGILARLHGLPVDWLSGVEVVVKPVLTEDSVLKVVH	187
Qy	127 -RDHGRVLPGGSCYSGVGLGGHIVGGGDGILARLHGLPVDWLSGVEVVVKPVLTEDSVLKVVH	185	Qy	188 VRIVSGGGHCYE--DFVFDDEVCKVAKAINVTGLVESGYD-DDRGYFVSSGDTNWGSFKTLF--	235
Db	172 SRVHGC--FPGAVCPVGVGGHLGGGGYGNMVRKFGLSVDYEDAKIV-----DVNGRV	222	Db	186 SQTIAFPAGVCPTVGAGGHSISGGGFGNIMRKFGITVDHVIDAQII-----DVNGKL	238
Qy	186 VHKDSEGNDGEFLFWAHTGGGGNFGLITKYYFKDLPMSPRGV-----ASNLHFS	235	Qy	236 WDGFTRDALQDLITKFKLARCDWKNTVKGFOIFHQAAEERFVMYLYTSYNSDAER	290
Db	223 LDRKAMGED--LFWAITGGGGSYGVVLYKVKLWVPSVNTVFRVEQYMDGAVDMVK	280	Db	294 WQ-LVANKLKPDSL---FITA---WPRTVNGPKPGERTV-----AVVFEYAQFLGPTDKL	340
Qy	236 WDG-----FTRDALQDLITKFKLARCDWKNTVKGFOIFHQAAEERFVMYLYTSYNS	286	Qy	291 EVAQDRHYHLEADIEQIYKTCPTKALGGHAGWAPFPVRKRHTSKTSYMH-----HTSKTSYMH	344
Db	281 WQSUGPKTDPLNLFMRMLIOPVTRKKVTVR-----ASVALFLGRADEVALLSKEF--	332	Db	341 EIMDQSFPFLGGLRED----CHEMSWLNTLFWANYPAGTPKSKILLDRPPTNSVSF--	392
Qy	287 DAEREVAQDRHYHLEADIEQIYKTCPTKALGGHAGWAPFPVRKRHTSKTSYMH-----	342	Qy	345 TMDYPFYALTTINGSGPNQRGKYKSAYMIKDFPDFQIDVIWKLTEVPDGILTSAMDKA	404
Db	333 -----KKENCEMTWFQOSALW	353	Db	393 -----KSKSDFVKKPIPKGLEKLWKTMFKNSSVS-----	423
Qy	405 LLQVDMFGGEIHVKVWDATAVAQRE-YIKLQYQTYWQEEKDQAVNLKWRDFYEEMYEP	463	Qy	405 LLQVDMFGGEIHVKVWDATAVAQRE-YIKLQYQTYWQEEKDQAVNLKWRDFYEEMYEP	463

RESULT 11

T00461 probable berberine bridge enzyme [imported] - *Arabidopsis thaliana*
 N;Alternate names: hypothetical protein F1913.2
 C;Species: *Arabidopsis thaliana* (mouse-ear cress)
 C;Date: 12-Feb-1999 #sequence_revision 12-Feb-1999 #text_change 15-Jun-2001
 C;Accession: T00461; H84760
 R;Rounsley, S.D.; Lin, X.; Ketchum, K.A.; Crosby, M.L.; Brandon, R.C.; Sykes, S.M.; Kaul, submitted to the EMBL Data Library, April 1998
 A;Description: *Arabidopsis thaliana* chromosome II BAC F1913 genomic sequence.
 A;Reference number: Z14160
 A;Accession: T00461
 A;Status: translated from GB/EMBL/DBJ
 A;Molecule type: DNA
 A;Residues: 1-532 <ROU>
 A;Cross-references: EMBL:AC004238; NID:g3033373; PID:g3033375
 A;Experimental source: cultivar Columbia
 R;Lin, X.; Kaul, S.; Rounsley, S.D.; Shea, T.P.; Benito, M.I.; Town, C.D.; Fujii, C.Y.; M.; Koo, H.; Moffat, K.S.; Cronin, L.A.; Shen, M.; Vanaken, S.E.; Umayam, L.; Tallon, L.; euss, D.; Nierman, W.C.; White, O.; Eisen, J.A.; Salzberg, S.L.; Fraser, C.M.; Venter, J. Nature 402, 761-768, 1999
 A;Title: sequence and analysis of chromosome 2 of the plant *Arabidopsis thaliana*.
 A;Reference number: A84420; MUID:20083487; PMID:10617197
 A;Accession: H84760
 A;Status: preliminary
 A;Molecule type: DNA
 A;Residues: 1-532 <STO>
 A;Cross-references: GB:AE002093; NID:g3033375; PIDN: AAC12819.1; GSPDB:GN00139
 C;Genetics:
 A;Gene: F1913.2; At2g34790
 A;Map position: 2
 A;Introns: 164/2; 326/3
 C;Superfamily: poppy reticuline oxidase

Query Match 10.0%; Score 300; DB 2; Length 532;
 Best Local Similarity 23.5%; Pred. No. 5.3e-15;
 Matches 129; Conservative 78; Mismatches 196; Indels 146; Gaps 24;

QY 424 -LQFNPYGGVNDRIPATATAFPHRKGKGNLFKVQYSTMWF DANATESSLLAMMNELF-EVAEP 481
 Db 464 YGGNPDPNTQVESGKGVFEGCYFNYPDVDLNNWKNKGK------YGALEYFLGNLNRL 515
 QY 482 Y-----VSSNP---REAFFENFRDIDIGSNPSGETNVDEAKIYGs--KYFLGNLKRL 527
 QY 516 IKAKWLWDPNEIFTNKOSIPTKPLK 540
 Db 528 MDVKAKYDPPDNFFKNEQSIPPVRVK 552

RESULT 12

T10624 reticuline oxidase homolog F21C20.170 - *Arabidopsis thaliana*
 C;Species: *Arabidopsis thaliana* (mouse-ear cress)
 C;Date: 16-Jul-1999 #sequence_revision 16-Jul-1999 #text_change 15-Jun-2001
 C;Accession: T10624
 R;Bevan, M.; Pohl, T.; Weizenegger, T.; Bancroft, I.; Mewes, H.W.; Mayer, K.F.X.; Lemcke, submitted to the Protein Sequence Database, June 1999
 A;Reference number: Z16991
 A;Accession: T10624
 A;Molecule type: DNA
 A;Residues: 1-532 <BEV>
 A;Cross-references: EMBL:AL080254; GSPDB:CN00062; ATSP:F21C20.170
 A;Experimental source: cultivar Columbia; BAC clone F21C20
 C;Genetics:
 A;Gene: ATSP:F21C20.170
 A;Map position: 4
 C;Superfamily: poppy reticuline oxidase

Query Match 10.0%; Score 300; DB 2; Length 532;
 Best Local Similarity 23.5%; Pred. No. 5.3e-15;
 Matches 129; Conservative 78; Mismatches 196; Indels 146; Gaps 24;

QY 36 NRRWIGTNIDFWVVVYVTPQGACTALDRAMEKCSPG---TVRINSGGHCYE-----DF 84
 Db 73 NRQFSAPDVPKPVULITPVQPSDV--QSAVKCARRFGIHIRTRSGGHDYECLSYVTHKP 130
 QY 85 VFDECVKAIINVTLGLVESGYD-DDRGYFVSSGDTNWGSFKTLFRDHGR-----VLPGGSC 138
 Db 131 V-----ILDLRNLSITVDVDNRSVWQTGAT---IGELYVEIGKKNRTLAFPAGVC 179
 QY 125 LFRDHGRVLPGGSCYSVGLGGHTIVGGGDGILARLHGLPVDWLSGVEVVVKPVLTEDSVLK 184
 Db 168 KSQTHG--FPAGLCSSLGIGHLVGAYGSMRMRKFGGLGADNVLDARIV-----DANGO 218
 QY 185 YVHKDSEGNDELFWAHTGGGGNFGLITKYYFKDLPMSPRGVIASNLHFS-----WDFGTRDALQD 244
 Db 108 LRLRSGGGHDYEGLSFVAEDETPFVIVDLSKLQVVDLSDNSAWAHAGATIGEVYRIQE 167
 QY 199 WAHTGGGGNFGLITKYYFKDLPMSPRGVIASNLHFS-----WDFGTRDALQD 246
 Db 231 WAIRGGGSSFCVVLWSWKIGLINVPSTVTFVNTRKFSEOSALKIILRWQ-FVADKVSDL 289
 QY 247 ---LTLYKFLARCDWMKNTVGKFQIFHQAAEEFVWMLYTYSNDAEREVAQDRHYLEA 302
 Db 290 PTVGVGGHPSGGGYGTLLRKHGlaADHVIDARV-----DARGRILERREMGED--FF 230
 QY 180 PTVGVGGHPSGGGYGTLLRKHGlaADHVIDARV-----DARGRILERREMGED--FF 230
 Db 199 WAHTGGGGNFGLITKYYFKDLPMSPRGVIASNLHFS-----WDFGTRDALQD 246
 Db 231 WAIRGGGSSFCVVLWSWKIGLINVPSTVTFVNTRKFSEOSALKIILRWQ-FVADKVSDL 289
 QY 247 ---LTLYKFLARCDWMKNTVGKFQIFHQAAEEFVWMLYTYSNDAEREVAQDRHYLEA 302
 Db 290 PTVGVGGHPSGGGYGTLLRKHGlaADHVIDARV-----DARGRILERREMGED--FF 230
 QY 303 D-----IEQIYKTEPTKALGGHAGWAPPVRRKRHTSKTSYNSDAEREVAQDRHYLEA 355
 Db 333 DDCTEMSWIESVIAFEE----LG-----LYL-GSVKNLLKVNKEFPGLEE 332
 QY 303 D-----IEQIYKTEPTKALGGHAGWAPPVRRKRHTSKTSYNSDAEREVAQDRHYLEA 355
 Db 333 DDCTEMSWIESVIAFEE----LG-----LYL-GSVKNLLKVNKEFPGLEE 332
 QY 356 TINGSGPNQRGKYKSAYMIKDFPDFQIDVIWKLTEVPDGLTSAEMKDALLQVDMFGEET 415
 Db 361 RTRAS---LAFKAKSDFVQEMPMPKTAISKLWRLQE-----PEAEHAOLIFTPFGGKM 410
 QY 416 HKVWVDATAVAORE-YIKLQYQTYWQEEKDAVNLKWIRDFFYEMEPYGGVPDPNTQV 474
 Db 411 SEIADYETPFPFRKGNIYEIQQLNLYWKGDVKEKY-MRWVERVYDDMSEFVAKSP---- 463
 QY 475 ESGKGVFEGCYFNYPDVDL-----NNWRNGKYGALEYFLGNLNRLIKAKWLWDPNE 526
 Db 464 -----RGAYINLRDLDLGMVGVKRSKYEGKSGWVY-KFNNFERLVRVKTSPDSD 515

Qy	Db
527 IFINNKOSIP 535	519 QSI 521
516 FFCDEQSIP 524	
	RESULT 14
G86390	F86251
T1K.22 protein - Arabidopsis thaliana (mouse-ear cress)	hypothetical protein [imported] - Arabidopsis thaliana
C;Species: Arabidopsis thaliana (mouse-ear cress)	C;Species: Arabidopsis thaliana (mouse-ear cress)
C;Date: 02-Mar-2001 #sequence_revision 02-Mar-2001 #text_change 09-Nov-2001	C;Date: 02-Mar-2001 #sequence_revision 02-Mar-2001 #text_change 15-Jun-2001
C;Accession: G86390	C;Accession: F86251
R;Theologis, A.; Ecker, J.R.; Palm, C.J.; Federspiel, N.A.; Kaul, S.; White, O.; Alonso, C.; Chin, C.W.; Chung, M.K.; Conn, L.; Conway, A.B.; Conway, A.R.; Creasy, T.H.; Dewar, K.; ansen, N.F.; Hughes, B.; Huizar, L.	R;Theologis, A.; Ecker, J.R.; Palm, C.J.; Federspiel, N.A.; Kaul, S.; White, O.; Alonso, C.; Chin, C.W.; Chung, M.K.; Conn, L.; Conway, A.B.; Conway, A.R.; Creasy, T.H.; Dewar, K.; ansen, N.F.; Hughes, B.; Huizar, L.
Nature 408, 816-820, 2000	Nature 408, 816-820, 2000
A;Authors: Hunter, J.L.; Jenkins, J.; Johnson-Hopson, C.; Khan, S.; Khaykin, E.; Kim, C.; Li, J.H.; Li, Y.; Lin, X.; Liu, S.X.; Liu, Z.A.; Luos, J.S.; Maiti, R.; Marziali, C.A.; Rizzo, M.; Rooney, T.; Rowley, D.; Sakano, H.	A;Authors: Hunter, J.L.; Jenkins, J.; Johnson-Hopson, C.; Khan, S.; Khaykin, E.; Kim, C.; Lin, X.; Liu, S.X.; Liu, Z.A.; Luos, J.S.; Maiti, R.; Marziali, C.A.; Rizzo, M.; Rooney, T.; Rowley, D.; Sakano, H.
A;Authors: Salzberg, S.L.; Schwartz, J.R.; Shinn, P.; Southwick, A.M.; Sun, H.; Tallon, M.; Wu, D.; Yu, G.; Fraser, C.M.; Venter, J.C.; Davis, R.W.	A;Authors: Salzberg, S.L.; Schwartz, J.R.; Shinn, P.; Southwick, A.M.; Sun, H.; Tallon, M.; Wu, D.; Yu, G.; Fraser, C.M.; Venter, J.C.; Davis, R.W.
A;Title: Sequence and analysis of chromosome 1 of the plant Arabidopsis.	A;Title: Sequence and analysis of chromosome 1 of the plant Arabidopsis.
A;Reference number: A86141; MUID:21016719; PMID:11130712	A;Reference number: A86141; MUID:21016719; PMID:11130712
A;Accession: G86390	A;Accession: F86251
A;Status: preliminary	A;Status: preliminary
A;Molecule type: DNA	A;Molecule type: DNA
A;Residues: 1-527 <STO>	A;Residues: 1-536 <STO>
A;Cross-references: GB:AE005172; NID:g9797758; PIDN:AAF98576.1; GSPDB:GN00141	A;Cross-references: GB:AE005172; NID:g94835780; PIDN:AAD30246.1; GSPDB:GN00141
C;Genetics:	C;Genetics:
A;Map position: 1	A;Map position: 1
C;Superfamily: poppy reticuline oxidase	C;Superfamily: poppy reticuline oxidase
Query Match	Query Match
Best Local Similarity	9.9%; Score 296; DB 2; Length 536;
Matches 138; Conservative	Best Local Similarity 24.2%; Pred. No. 1.1e-14;
Local Similarity 25.4%; Pred. No. 6.9e-15;	Matches 125; Conservative 65; Mismatches 190; Indels 136; Gaps 20;
Mismatches 200; Indels 137; Gaps 27;	Mismatches 125; Conservative 65; Mismatches 190; Indels 136; Gaps 20;
Matches 138; Conservative	Matches 125; Conservative
Local Similarity 25.4%; Pred. No. 6.9e-15;	Local Similarity 24.2%; Pred. No. 1.1e-14;
Indels 137; Gaps 27;	Indels 136; Gaps 20;
Qy	Qy
48 YVVTPOGACTALD-----RAMEKCSPT--VRIVSGGHCYEDFVFDE 88	76 SGGRHYED-----FVFEDECVKAINVIGLVESEGYDDDRGYFVSSGDTNWGSFKTLF 126
60 YVSXTKNKRYSILNYQKLVAIAVAKHVKHSHVQATWVCAKANGIQLRIRSGGHDYEGLSYTS 119	110 SGGRHYEVGSYVISHVPPFVULDSMSLNRLNTVDPATESAW-----VGAGATLGEVYRIW 162
Qy	Qy
89 CVKAI-----NVTGLIVESGYDDDRGYFVSSGDTNWGSFKTLF 139	127 --RDIGRVLPGGSCYSVGGLGGHIVGGGCGILARLHGLPVDMWSGVVVVKPVLTEDSVL 183
120 SVPFVILDMYNLRSLITVDVSS-----KKAQWQAGAT-LGELYTKINEASQTLAEPAGVCP 173	163 ETKKSHG--FPAGVCPTVGAGGHSISGGYGNMIRKYGLSVDVTDAKIVD---VNGQVL 216
Qy	Qy
140 SVGLGGHIVGGGDGILARLHGLPVDWLSGVEVV-KVPVLTEDSVLKVKHDKSEGNDGELF 198	184 KYVHKOSEGNDGELFWAHTGGGGNFQGITKYYFKDLPMSPRGVI-----ASNLH 233
174 TVGVGGHITGGFGNLMRKFGITVDHVIDAQLINGVNGKLLDRATM-----GED--LF 223	217 -----DRKGGMEDMFWAINGGGASFGVILAFKIKLVPVPPPTVFRVEKLNVENATEMV 271
Db	Db
199 WAHTGGGGNFQGITKYYFKDLPMSPRGVI-----ASNLH 233	234 FSWDG-----FTRDALQDLITKYYFKLARCDWKNTVGFQIFHQAAEEMYLYTSY 284
Db	Db
224 WAIRGGGGASFGVILSWKINLVLPVKILTUVFKVSKTLEQG--GTDVLYKWOLVATKVPE 281	272 HKWQFVAPKTDPGLFMRLLLQPVTRNKNQTVRAS-----WALFLGD 313
Qy	Qy
247 L-----LTKYFKLARCDWKNTVGFQIFHQAAEEMYLYTSYNSDAEREVAQDRHYH 299	314 QNTVMSMLTKE-----FPELGLKKKENCTEMTWQS 343
282 LFIRAWPOIVKGTKLG---ERTIG--VVF-----FAQFLGPT---DKLMEIMSQSLPE 326	340 YMHDETMDYPFYALLETINGSGPNQR--GKYKSAYMIKDFPDFQIDVWKLTEVFD-GL 396
Qy	Qy
300 LEADIEQIYKTCPTKALGGHAGWAPFPVRPRKRHTSKTSYMHDETMDYPFYALLETING 359	344 VMWWANNDNATOQIKPBEILLDRNPDMATEGRKSDFVEKEITKOGIDFLFKMIEVGKIGL 403
Db	Db
327 LGRRRED---CHEMSWFNTTLFWANYPGVGPTR-----VLLDRP----- 362	397 TSAEMKDALLQVDMFGGEIHKW 419
Qy	Qy
360 SGPNQRGKYKSAYMIKDFPDFQIDVWKLTEVFDGLTSAEMKDALLQVDMFGGEIHKW 419	404 V-----FNPYGGIMSTVATKTPPHRKKLKYIQHSMNWKDPGTBAETSFLQAK 453
Db	Db
363 STPGEFFFSKSKDNNIKKPKIPEGLEKTIW 413	455 DFYEEMVEPYGGVPDPNTQESGKGKVFFGCCYFNYPDVDL--NNWKNGKYGAL---LYF 508
Qy	Qy
420 WDATAVAQRE-YIILQOYTQWOBEDKDAVNWKWIRDFYEEMVEPYGGVPDPNTQESGK 478	454 SFYSYM-APFVTKNPRHT-----YINYRDLDIGVNTPGPSNSYRVAEVFGRMYF 500
Db	Db
414 ATATAFPHRKGNLFLNQYSTIWLDAKETENKLTMKELY-EVAGPY-----VSSNP 463	509 LGNLNLRIKAKWLMWDNEIFTNKQSOIPTKPLKEPKQ 544
Qy	Qy
479 GVFFGCYFNYPDVDLN----NWKNGK-YGABLYFLGNLNRLIKAKWLMWDNEIFTNK 531	501 GENFDRLVKVKTAVDQNPFFRDEQSIPTLPGKPARR 536
Db	Db
464 ---REALFNFRDDIGINPSGLNVDEAKIYG--YKYFLGNLKRLMDVKCDDPNFFKNE 518	RESULT 15
Qy	T07969
532 QSI 534	probable reticuline oxidase (EC 1.5.3.9) - opium poppy

N;Alternate names: berberine bridge enzyme
 C;Species: Papaver somniferum (Opium poppy)
 C;Date: 21-May-1999 #sequence_revision 21-May-1999 #text_change 15-Jun-2001
 C;Accession: T07969
 R;Facchini, P.J.; Penzes, C.; Johnson, A.G.; Bull, D.
 Plant Physiol. 112, 1669-1677, 1996
 A;Title: Molecular characterization of berberine bridge enzyme genes from opium poppy.
 A;Reference number: Z16255; MUID:97127853; PMID:8972604
 A;Accession: T07969
 A;Status: preliminary; translated from GB/EMBL/DDBJ
 A;Molecule type: DNA
 A;Residues: 1-535 <FAC>
 A;Cross-references: EMBL:AF025430; NID:g3282516; PIDN: AAC61839.1; PID:g3282517
 C;Genetics:
 A;Gene: bbel
 C;Superfamily: poppy reticuline oxidase
 C;Keywords: oxidoreductase

Query Match 9.7%; Score 290.5; DB 2; Length 535;
 Best Local Similarity 23.8%; Pred. No. 2.9e-14;
 Matches 123; Conservative 87; Mismatches 160; Indels 147; Gaps 28;
 Matches 123; Conservative 87; Mismatches 160; Indels 147; Gaps 28;

Qy 71 TVRIVSGGHCYE-----DFVFDECVKA-----IINVGLVESGYDDDRGYFVSSGD 116
 Db 100 TIRLRSGGHSVEGLSYTADTPFPVIVDMMNLRISIDVLSETAWESGATLGELYYIAQS 159
 Qy 117 TNWGSFKTLFRDHGRVLPGGSCYSVGLGGHIVCGCGDTLARLHGLPVDWLSGEVVVVKPV 176
 Db 160 TDTLGF-----TAGWCPTVGSGGHISGGFGMMMSRKYGLAAD-----NNVDAI 202
 Qy 177 LTEDSVLKVKYHKDSEGNDGELFWAHTGGGGGNFGIITKYYFKDLPLMSPRGV----- 228
 Db 203 LI-DSNGATIJDREKGMD--VFWAIRRGGGGGVWNGAYAWKIKLIPPEKLTVFRWTKNVG 259
 Qy 229 --ASNLHFSDWGFTRDALQDLITKYFKLARCDWKNTVGKFQIFHQAAEEFWMLYTSYS 285
 Db 260 IEDASSLLHKNQ-YVADELDDEDFT-----VSVLGGV----NGNDAWLMFLGLHLG 304
 Qy 286 -NDAEREVAQDRHYHL--EADIEQIYKTCEPTKALGGHAGWAPPPVRPRKRHTSKTSYM 341
 Db 305 RKDAAKTIIDEKFPELGLVUDKEFOEM-----SWG----- 333
 Qy 342 HDETMDFYFYALTETINGSGPNORGK-YSAVMIK-DFFDFQIDV-IWKYLTEVFDGLTS 398
 Db 334 --ESM--AFLSGLDTISELN-NRFLKFDERAFKTKVDFTKVSPLNVFRHALEM----L 383
 Qy 399 AEMKDALLQVDMFGGEIHKVWMDATAVAQR-----EYIJKLQYQTYWQEEDKDAVN-- 449
 Db 384 SEQPGGFIALNGFGGKMSBISTDFTPFPHRKGTKLMEYIIA-----WNQDEEKSIGEF 437
 Qy 450 LKWIRDYEEEMYEPYGGVPDPNTQVESGKVFFEGCYFNYPDVLN--NWKN--GKYGALE 505
 Db 438 SEWLAKFYDYL-----EPFVSKEPRVG----YVNHDLDIGGIWRNKSSTINAVE 484
 Qy 506 L-----YFLGNLNRLIKAKWLDPNEIFTNKQSI P 535
 Db 485 IARNWGERYFSSNYERLVRAKTLIDPNNVFNHQSIP 521

Search completed: June 10, 2003, 10:00:28
 Job time : 25 sec

GenCore version 5.1.6
Copyright (c) 1993 - 2003 Compugen Ltd.

OM protein - protein search, using sw model

Run on: June 10, 2003, 09:49:11 ; Search time 43 Seconds
(without alignments)
1691.973 Million cell updates/sec

Title: US-09-998-284-2

Perfect score: 2997

Sequence: 1 MATLHQKDPGYIVIDVNAGT.....IFTNKOSIPTKPLKEPKOTK 546

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 908470 seqs, 133250620 residues

Total number of hits satisfying chosen parameters: 908470

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : A_Geneseq_101002:
1: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1980.DAT:*

2: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1981.DAT:*

3: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1982.DAT:*

4: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1983.DAT:*

5: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1984.DAT:*

6: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1985.DAT:*

7: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1986.DAT:*

8: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1987.DAT:*

9: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1988.DAT:*

10: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1989.DAT:*

11: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1990.DAT:*

12: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1991.DAT:*

13: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1992.DAT:*

14: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1993.DAT:*

15: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1994.DAT:*

16: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1995.DAT:*

17: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1996.DAT:*

18: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1997.DAT:*

19: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1998.DAT:*

20: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA1999.DAT:*

21: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:*

22: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA2001.DAT:*

23: /SIDS2/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:*

ALIGNMENTS

RESULT 1
AAU02192
ID AAU02192 standard; Protein; 546 AA.

AC AAU02192;

XX DT 12-SEP-2001 (first entry)

XX DE Synthetic hexose oxidase (HOX) amino acid sequence.

XX KW HOX; seaweed; hexose oxidase; interleukin I receptor antagonist; IL-1ra; food manufacturing; beverage; detergent; baking; dough improving agent; D-hexose:O2-oxireductase; EC 1.1.3.5.

XX OS Chondrus crispus.

OS Synthetic.

XX PN WO200138544-A1.

XX PD 31-MAY-2001.

XX PF 24-NOV-2000; 2000WO-1B01886.

XX PR 24-NOV-1999; 99GB-0027801.

XX PA (DANI-) DANISCO AS.

XX PI Johansen CL, Kjaerulf S, Madrid SM, Pedersen H, Poulsen CH;

PI Zargahi MR;

XX DR WPI; 2001-367695/38.

DR N-PSDB; AAS06173.

Herbicidally activ
Herbicidally activ
Tetrahydrocannabinol
Herbicidally activ
Herbicidally activ
Herbicidally activ
Herbicidally activ
Arabidopsis thaliana
Arabidopsis thaliana
Arabidopsis thaliana
Arabidopsis thaliana
Opium poppy reticulata
California poppy
Herbicidally activ
Herbicidally activ
Arabidopsis antifu
Arabidopsis antifu
Arabidopsis thaliana
Arabidopsis thaliana
Sunflower leaf ant
Sunflower carbohyd
Lettuce antifungal
Cannabidiolic acid
Arabidopsis thalia
Arabidopsis thalia
Arabidopsis thalia
Arabidopsis thalia
Arabidopsis thalia
Arabidopsis thalia

11	324.5	10.8	541	23	ABB90805
12	322	10.7	540	23	ABB93021
13	306.5	10.2	545	21	AAY88391
14	302.5	10.1	552	23	ABB91137
15	300	10.0	532	23	ABB93020
16	298.5	10.0	527	23	ABB91136
17	296	9.9	536	23	ABB90968
18	294.5	9.8	458	21	AAG41845
19	294.5	9.8	541	21	AAG41844
20	294.5	9.8	556	21	AAG41843
21	292.5	9.8	509	19	AAW55062
22	290.5	9.7	535	22	AAB61789
23	286.5	9.6	538	22	AAB61790
24	278	9.3	533	23	AAB91198
25	277.5	9.3	526	23	ABB91197
26	277	9.2	508	19	AAW55061
27	277	9.2	527	23	ABB91194
28	275	9.2	529	19	AAW55054
29	274	9.1	529	22	AAB61788
30	274	9.1	525	21	AAG43378
31	272.5	9.1	530	21	AAG43377
32	272.5	9.1	530	21	AAG43377
33	272	9.1	529	19	AAW55054
34	266	8.9	540	19	AAW55059
35	265.5	8.9	544	22	AAB81081
36	264.5	8.8	421	21	AAG43379
37	263	8.8	508	19	AAW55060
38	255	8.5	495	20	AAY24919
39	252	8.4	531	23	ABB91195
40	249.5	8.3	474	21	AAG29445
41	249.5	8.3	540	21	AAG29444
42	249.5	8.3	551	21	AAG29443
43	240	8.0	527	21	ABB91196
44	240	8.0	527	23	AAB91196
45	240	8.0	534	21	AAG42978

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	2997	100.0	546 22 AAU02192	Synthetic hexose o
2	2997	100.0	546 22 AAB59205	Chondrus crispus he
3	2989	99.7	546 18 AAW2076	Hexose oxidase, an
4	2985	99.6	546 21 AAY83619	Synthetic hexose o
5	635.5	21.2	539 20 AY39306	SpnJ protein invol
6	635.5	21.2	539 22 AAB70952	S. spinosa protein
7	368.5	12.3	530 23 ABB91135	Herbicidally activ
8	347.5	11.6	539 23 ABB93022	Herbicidally activ
9	333.5	11.1	529 23 ABB91138	Herbicidally activ
10	328.5	11.0	535 23 ABB91134	Herbicidally activ

QY	241 RDALQDLITKYFKLARCDWKNTVGKFQIFHOAEEFVWLYTYSNDAEREVAQDRHYHL	300	CC	industrial purposes.	
Db	241 RDALQDLITKYFKLARCDWKNTVGKFQIFHOAEEFVWLYTYSNDAEREVAQDRHYHL	300	XX		
QY	301 EADIEQIYKTCPTKALGGHAGWAPFPVRPRKRHTSKTSYMHDETMYPFYALTETINGS	360	SQ	Sequence 546 AA;	
Db	301 EADIEQIYKTCPTKALGGHAGWAPFPVRPRKRHTSKTSYMHDETMYPFYALTETINGS	360			
QY	361 GPNQRGKYKSAYMICKDFPDFOIDVIWKLYTEVPDGLTSAMKDALLQVDMFGGEIHKVVW	420			
Db	361 GPNQRGKYKSAYMICKDFPDFOIDVIWKLYTEVPDGLTSAMKDALLQVDMFGGEIHKVVW	420			
QY	421 DATAVAQREYIILQOYTYWQEEDKDAVLNLKWRDYEEMYPEYGGVPDPNTQVESGKGV	480	QY	1 MATLPQKDPGYIVIDVNAGTAKPDPPLPSMKQGFNRWRIGTNIDFVYVYTPQGACTAL	60
Db	421 DATAVAQREYIILQOYTYWQEEDKDAVLNLKWRDYEEMYPEYGGVPDPNTQVESGKGV	480	Db	1 MATLPQKDPGYIVIDVNAGTAKPDPPLPSMKQGFNRWRIGTNIDFVYVYTPQGACTAL	60
QY	481 FEGCYFNYPDVLDNNWKNGKGALYFLGNLNRLIKAKWLWDPEIFTNQSIPTKPLK	540	QY	61 DRAMEKCSPGTVRIVSGGHCVYEDFVFDCEVKAIINTVGLIVESCYDDDRGYFVSSGDTNWG	120
Db	481 FEGCYFNYPDVLDNNWKNGKGALYFLGNLNRLIKAKWLWDPEIFTNQSIPTKPLK	540	Db	61 DRAMEKCSPGTVRIVSGGHCVYEDFVFDCEVKAIINTVGLIVESCYDDDRGYFVSSGDTNWG	120
QY	541 EPKQTK 546		QY	181 SFKTLFRDHGRVLPGGSCYSVGLGGHIVGGDGILARLHGLPVDWLSGVENVWPULTE	180
Db	541 EPKQTK 546		Db	181 SVLKYYHKDSEGNDGELFWAHTGGGGNFGIITKYFKDLPLMSPRGVIASNLHFSDGFT	240
XX	AAW20076; standard; Protein: 546 AA.		QY	241 RDALQDLITKYFKLARCDWKNTVGKFQIFHOAEEFVWLYTYSNDAEREVAQDRHYHL	300
AG	AAW20076;		Db	241 RDALQDLITKYFKLARCDWKNTVGKFQIFHOAEEFVWLYTYSNDAEREVAQDRHYHL	300
XX	AAW20076; standard; Protein: 546 AA.		QY	301 EADIEQIYKTCPTKALGGHAGWAPFPVRPRKRHTSKTSYMHDETMYPFYALTETINGS	360
DT	12-SEP-1997 (First entry)		Db	301 EADIEQIYKTCPTKALGGHAGWAPFPVRPRKRHTSKTSYMHDETMYPFYALTETINGS	360
XX	Hexose oxidase, an antimicrobial/antioxidant agent.		QY	361 GPNQRGKYKSAYMICKDFPDFOIDVIWKLYTEVPDGLTSAMKDALLQVDMFGGEIHKVVW	420
DE	Hexose oxidase; Chondrus crispus; marine algae; recombinant;		Db	361 GPNQRGKYKSAYMICKDFPDFOIDVIWKLYTEVPDGLTSAMKDALLQVDMFGGEIHKVVW	420
KW	antimicrobial; food preparation; dairy product; starch;		QY	421 DATAVAQREYIILQOYTYWQEEDKDAVLNLKWRDYEEMYPEYGGVPDPNTQVESGKGV	480
KW	beverage; animal feed; silage; sugar reduction; cosmetics; dental;		Db	421 DATAVAQREYIILQOYTYWQEEDKDAVLNLKWRDYEEMYPEYGGVPDPNTQVESGKGV	480
KW	toothpaste; dough; lactone production.		QY	481 FEGCYFNYPDVLDNNWKNGKGALYFLGNLNRLIKAKWLWDPEIFTNQSIPTKPLK	540
OS	Chondrus crispus.		Db	481 FEGCYFNYPDVLDNNWKNGKGALYFLGNLNRLIKAKWLWDPEIFTNQSIPTKPLK	540
XX	EN WO9640935-A1.		QY	541 EPKQTK 546	
XX	19-DEC-1996.		Db	541 EPKQTK 546	
PF	04-JUN-1996; 96WO-DK00238.		QY	541 EPKQTK 546	
XX	07-JUN-1995; 95US-0476910.		Db	541 EPKQTK 546	
XX	(BIOT-) BIOTEKNOLOGISK INST.		QY	541 EPKQTK 546	
PA	Hansen OC, Stougaard P;		Db	541 EPKQTK 546	
XX	WPI; 1997-052332/05.		QY	541 EPKQTK 546	
DR	N-PSDB; AAT76552.		Db	541 EPKQTK 546	
XX	Recombinant production of polypeptide having hexose oxidase activity		RESULT 4		
PT	- used in food preparations as antibacterial and antioxidant agent		AY83619		
XX	Example 3.5; Page 95-97; 124pp; English.		ID AAY83619 standard; Protein: 546 AA.		
PS	AAW20076 shows the hexose oxidase (HO) enzyme of the marine alga Chondrus crispus. HO is useful in the production of food products, e.g. dairy products, starch-containing food products (dough) and non-dairy beverages. HO and active peptide fragments have antimicrobial and antioxidant properties and act by removing all the oxygen in a food packaging. HO and peptides of HO can also be used in an animal feed, especially silage. Further uses are to reduce, or analyse, the sugar content in a food, in the production of cosmetics, tooth care products or a pharmaceutical product and in lactone production. HO can be recombinantly produced in industrially appropriate quantities, and at a quality and purity level which renders the polypeptide suitable for		XX		
CC	CC	CC	XX	OS Synthetic.	
CC	CC	CC	XX	PN EP1008651-A2.	
CC	CC	CC	XX	PD 14-JUN-2000.	
CC	CC	CC	XX	PF 01-DEC-1999; 99EP-0204068.	
CC	CC	CC	XX	PR 09-DEC-1998; 98DK-0001630.	
CC	CC	CC	PA	(BIOT-) BIOTEKNOLOGISK INST.	

XX	PT	Stougaard P, Pedersen LH, Wolff AM, Poulsen U, Hansen OC;
DR	WPI; 2000-389309/34.	
XX	N-PSDB; AA294011.	
PT	Nucleic acid fragment useful for producing large amounts of hexose oxidase comprises nucleotide sequence encoding hexose oxidase that is modified by at least one codon	
PT	Disclosure; Page 28-29; 42pp; English.	
XX	Wild type hexose oxidase can be produced by isolating a nucleotide sequence coding for hexose oxidase naturally produced by an organism and modifying the sequence so that the modified sequence is expressed, under identical conditions, at a level at least 10% higher than the non-modified sequence. The method is useful for producing hexose oxidase in prokaryotic and eukaryotic cells. Previous methods of producing hexose oxidase were to isolate the enzyme from a source that naturally produces the enzyme, using host organisms which produce a relatively low level of expression. Therefore, industrial production of the enzyme is not feasible using this method. This is a much improved method which produces at least 250 mg enzyme per liter of fermentation medium.	
PS	Sequence 546 AA;	
XX	Query Match 99.6%; Score 2985; DB 21; Length 546;	
CC	Best Local Similarity 99.5%; Pred. No. 5.7e-280;	
CC	Matches 543; Conservative 2; Mismatches 1; Indels 0; Gaps 0	
CC	SQ	
QY	1 MATLPOKDPGYIVIDVNAGTPDKPDPRLPSMKQGFNRWRIGTNIDFVYVWYTPOGACTAL 60	
Db	1 MATLPOKDPGYIVIDVNAGTPDKPDPRLPSMKQGFNRWRIGTNIDFVYVWYTPOGACTAL 60	
QY	61 DRAMEKCS'PGTVRIVSGGHCYEDFVFDECVKAIINVTRGLVESGYDDDRGYFVSSGDTNWG 120	
Db	61 DRAMEKCS'PGTVRIVSGGHCYEDFVFDECVKAIINVTRGLVESGYDDDRGYFVSSGDTNWG 120	
QY	121 SFKTLFRDHGRVLPGGSCYSVGLGGHIVGGGPGILARLHGLPVDWLSGVENVVKPVTED 180	
Db	121 SFKTLFRDHGRVLPGGSCYSVGLGGHIVGGGPGILARLHGLPVDWLSGVENVVKPVTED 180	
QY	181 SVLKIVHKDSEGNDGELFWAHTGGGNFGIITKYYFKDLPLMSPRGVIASNLHFSDWGF 2400	
Db	181 SVLKIVHKDSEGNDGELFWAHTGGGNFGIITKYYFKDLPLMSPRGVIASNLHFSDWGF 2400	
QY	241 RDALQDILTKYFKLARDCWKNTVGKFQIFHQAAEEFVMYLYTSYNSDAERAEVAQDRHYHL 3000	
Db	241 RDALQDILTKYFKLARDCWKNTVGKFQIFHQAAEEFVMYLYTSYNSDAERAEVAQDRHYHL 3000	
QY	301 EADIEQIYKTCEPTKALGGHAGWAPFPVRPRKRHTSKTSYMHDETMDFYFYALTETINGS 3600	
Db	301 EADIEQIYKTCEPTKALGGHAGWAPFPVRPRKRHTSKTSYMHDETMDFYFYALTETINGS 3600	
QY	361 GPNQRGKYKSAYMIKDFPDFQOIDVIWKYLTEVPDGLTSAEMKDALLQVDMFGGEIHKVW 4200	
Db	361 GPNQRGKYKSAYMIKDFPDFQOIDVIWKYLTEVPDGLTAAEMKDALLQVDMFGGEIHKVW 4200	
QY	421 DATAVAQREYIILKQYQTYWQEEDKDAVNWKWIRDFYEEMYEPYGGVPDPNTQVESGKV 4800	
Db	421 DATAVAQREYIILKQYQTYWQEEDKDAVNWKWIRDFYEEMYEPYGGVPDPNTQVESGKV 4800	
QY	481 FEGCYFNYPDVDLNNWKNGKYGALELYFLGNLNRLIKAKWLWDNPEIFTNKOSIPTKPLK 5400	
Db	481 FEGCYFNYPDVDLNNWKNGKYGALELYFLGNLNRLIKAKWLWDNPEIFTNKOSIPTKPLK 5400	

Db 541 EPKQTK 546

Query Match 11.1%; Score 333.5; DB 23; Length 529;
 Best Local Similarity 25.8%; Pred. No. 4.4e-23;
 Matches 128; Conservative 77; Mismatches 184; Indels 107; Gaps 22;

Matches 128; Conservative 77; Mismatches 184; Indels 107; Gaps 22;

QY 213 TKYYFKDLPMSPRGVI-----ASNLHFSWDG-----FTRDALQDLITKYFK 253
 247 LGYKVKLVPVETVTVERVEKYMDSGAIVDMVHKWQSVGPKTDRLFLRMLIQPVTRKKVK 306

QY 254 LARCDWKNTVGKFQIFHQAAEFVNUMLYTSYNSDAEREVAQDRHYHLEADIEQIYKTCEP 313
 307 TVRA----TV--VALFLGRAEEVALLGKEFP-----EISIKK--ENCSE 343

QY 314 TKALGGHAGW---APFPVPRKRHTSKTSYMHDETMDYPPFYALTTINGSGPNQRGKYK 369
 344 MTWFQSAWMWDNRVNPTQIDPK-----VFLDRNLDRANF-----GKRK 381

QY 370 SAYMTKDFPDFQIDVTKYLTEVFD-GLTSAEMKDALLQVDMFGGETHKVWNTAVQAQR 428
 382 SDYVASEIPRDIIESLFLKRMTELKGKIGLV-----FNPYGGKMAEVTVNATPPFHR 431

QY 429 EYIKLQYQTYWQEEDKDAVNWKWIRDFYEE--MYEPYGGVDPNRTQVESGKGVFEGCY 485
 432 SKLFKIQYSVTWQE--NSVEIE--KGFLNQANVLYSFMTGFVSKNPR-----NAY 477

QY 486 FNYPDVDSL-----NNWKNGK-YGALEYFLGNLNRLTIKAKWLWDPNEIFTNKQSIPT 536
 478 LNYRDVDIGVNDHGNTNSYEEGEVYG--RKYFGDNFDFRLVUKVTAADPDNFRRNEQSIPT 534

RESULT 9

ID ABB91138 standard; Protein: 529 AA.

XX ABB91138;

XX DT 31-MAY-2002 (first entry)

XX DE Herbicidally active polypeptide SEQ ID NO 349.

XX KW Herbicidal; plant; agriculture; herbicide.

XX OS Arabidopsis thaliana.

XX PN WO200210210-A2.

XX PD 07-FEB-2002.

XX PF 28-AUG-2001; 2001WO-EP09892.

XX PR 28-AUG-2001; 2001WO-EP09892.

PA (FARB) BAYER AG.

XX PT Tietjen K, Weidler M;

XX DR WPI; 2002-269010/31.

XX Identifying plant target proteins for herbicidally active compounds, comprising aligning and comparing nucleic acid or amino acid sequences from plant with nucleic acid or amino acid sequences from non-plant organisms -

XX PS Claim 5; SEQ ID NO 349; 261PP + Sequence Listing; English.

CC (ABB90790-ABB94016) for herbicidally active compounds, comprising aligning and comparing nucleic acid or amino acid sequences from plant with nucleic acid or amino acid sequences from non-plant organisms using suitable search parameters, where plant sequences having an E-value greater by a factor of 3 than the E-value of most similar non-plant sequences are selected. The polypeptides or nucleic acids encoding them are useful for identifying modulators. The identified modulators are useful as herbicides.

XX Sequence 529 AA;

Query Match 11.1%; Score 333.5; DB 23; Length 529;
 Best Local Similarity 25.8%; Pred. No. 4.4e-23;
 Matches 128; Conservative 77; Mismatches 184; Indels 107; Gaps 22;

Matches 128; Conservative 77; Mismatches 184; Indels 107; Gaps 22;

QY 72 VRIVSGGHCYEDFFVDECVKAI-----NVTLGLVESGYDDDRGYFVSSGDTNWGSFKT 124
 103 LRIRSGGDLEGLSYRSSVPFVILDMFNRSITVNVL-----KAWVQAGAT-LGELIV 156

QY 125 LFRDHGRVL--PGGSCYSVGLGGHIVGCGDGTALARHGLPVDWLSGVENVVKPVLTESV 182
 157 KINEASQTLAAPPAGVCPTEVGHHISGGGYGNLMRKFGITVDHVSDAQLI-----DVN 209

QY 183 LKVVKHDSEGNDGELFWAHTGGGGNFGIITKYYFKDLPMSPR--GVIASNLHFSWDGFT 240
 210 GKLLNRAASMGED--LFWAIRGGGASFGVILSWKI-NLVVKPKILTUVFKNKTLQGG-- 264

QY 241 RDALQDLITKYFKLARCDWKNTVGKF--QIFHQAAEFV-----MYLYTYSND 287
 265 -----TOVLYK-----WOLVATKFPEDLFMRAWPQIINGAERGRTIAVVFYAQFLGP 312

QY 288 AEREVAQDRHYHLEADIEQIYKTCEPTKALGGHAGWAPPVPRKRHTSKTSYMHDETMD 347
 313 ADKLLAIMNQLPPELGRR--EDCHEMSWENTTLFWADYPACTPK-----SVILDRPTN 364

QY 348 YPFYALTTINGSGPNQRGKYKASYMTKDFPDFQIDVTKYLTEVFDGLTSAEMKDAL-L 406
 365 PGFP-----KSKSDYVKKPKIPEGLEKLWK-----TMPKFNINVM 400

QY 407 QVDMFGGEIHKVWNTAVAQRE-YIILQYQTYWQEEDKDAVNWKWIRDFYEEMYEPYG 465
 401 QFNPYGGVMDQIOPSTATAFPHRKGMNMFKVQYSTTWLAANATEISLSMMKELY-KVAEPY- 458

QY 466 GVPDPNTQVESGKGVFEGCYFNYPDVDSLNNWKNGKYGAELEL-----YFLGNLNRLIKAK 519
 459 -----VSSNP---REAFFNYRDidGNSNPSDETNVDEAKIYGYKYFLGNLKRLMQVK 507

QY 520 WLWDPNEIFTNKQSIPT 535
 508 AKYDPENFFKNEQSIPT 523

RESULT 10

ID ABB91134 standard; Protein: 535 AA.

XX ABB91134;

XX DT 31-MAY-2002 (First entry)

XX DE Herbicidally active polypeptide SEQ ID NO 345.

XX KW Herbicidal; plant; agriculture; herbicide.

XX OS Arabidopsis thaliana.

XX PN WO200210210-A2.

XX PD 07-FEB-2002.

XX PF 28-AUG-2001; 2001WO-EP09892.

CC (ABB90790-ABB94016) for herbicidally active compounds, comprising aligning and comparing nucleic acid or amino acid sequences from plant with nucleic acid or amino acid sequences from non-plant organisms using suitable search parameters, where plant sequences having an E-value greater by a factor of 3 than the E-value of most similar non-plant sequences are selected. The polypeptides or nucleic acids encoding them are useful for identifying modulators. The identified modulators are useful as herbicides.

XX Sequence 529 AA;

Query Match 11.1%; Score 333.5; DB 23; Length 529;
 Best Local Similarity 25.8%; Pred. No. 4.4e-23;
 Matches 128; Conservative 77; Mismatches 184; Indels 107; Gaps 22;

Matches 128; Conservative 77; Mismatches 184; Indels 107; Gaps 22;

QY 72 VRIVSGGHCYEDFFVDECVKAI-----NVTLGLVESGYDDDRGYFVSSGDTNWGSFKT 124
 103 LRIRSGGDLEGLSYRSSVPFVILDMFNRSITVNVL-----KAWVQAGAT-LGELIV 156

QY 125 LFRDHGRVL--PGGSCYSVGLGGHIVGCGDGTALARHGLPVDWLSGVENVVKPVLTESV 182
 157 KINEASQTLAAPPAGVCPTEVGHHISGGGYGNLMRKFGITVDHVSDAQLI-----DVN 209

QY 183 LKVVKHDSEGNDGELFWAHTGGGGNFGIITKYYFKDLPMSPR--GVIASNLHFSWDGFT 240
 210 GKLLNRAASMGED--LFWAIRGGGASFGVILSWKI-NLVVKPKILTUVFKNKTLQGG-- 264

QY 241 RDALQDLITKYFKLARCDWKNTVGKF--QIFHQAAEFV-----MYLYTYSND 287
 265 -----TOVLYK-----WOLVATKFPEDLFMRAWPQIINGAERGRTIAVVFYAQFLGP 312

QY 288 AEREVAQDRHYHLEADIEQIYKTCEPTKALGGHAGWAPPVPRKRHTSKTSYMHDETMD 347
 313 ADKLLAIMNQLPPELGRR--EDCHEMSWENTTLFWADYPACTPK-----SVILDRPTN 364

QY 348 YPFYALTTINGSGPNQRGKYKASYMTKDFPDFQIDVTKYLTEVFDGLTSAEMKDAL-L 406
 365 PGFP-----KSKSDYVKKPKIPEGLEKLWK-----TMPKFNINVM 400

QY 407 QVDMFGGEIHKVWNTAVAQRE-YIILQYQTYWQEEDKDAVNWKWIRDFYEEMYEPYG 465
 401 QFNPYGGVMDQIOPSTATAFPHRKGMNMFKVQYSTTWLAANATEISLSMMKELY-KVAEPY- 458

QY 466 GVPDPNTQVESGKGVFEGCYFNYPDVDSLNNWKNGKYGAELEL-----YFLGNLNRLIKAK 519
 459 -----VSSNP---REAFFNYRDidGNSNPSDETNVDEAKIYGYKYFLGNLKRLMQVK 507

QY 520 WLWDPNEIFTNKQSIPT 535
 508 AKYDPENFFKNEQSIPT 523

XX
PS Claim 5; SEQ ID NO 345; 261pp + Sequence Listing; English.
XX
CC The invention relates to identifying target proteins
(ABB90790-ABB94016) for herbicidally active compounds, comprising
aligning and comparing nucleic acid or amino acid sequences from plant
with nucleic acid or amino acid sequences from non-plant organisms using
suitable search parameters, where plant sequences having an E-value
greater by a factor of 3 than the E-value of most similar non-plant
sequences are selected. The polypeptides or nucleic acids encoding them
are useful for identifying modulators. The identified modulators are
useful as herbicides.
XX
CC Sequence 535 AA;

Query	Match	11.0%	Score	328.5	DB	23	Length	535;
Best	Local Similarity	27.5%	Pred.	No.	1.4e-22;			
Matches	138;	Conservative	66;	Mismatches	180;	Indels	117;	Gaps 25;

QY 72 VRIIVSGGHCYEDFVFVDFBCKVKAII-----NVTGLVESGYDDDRGYFWSSGDTNWGSFKT 124
Db 103 IIRISGGHDNEGLSYVSSVPFVILDMHKLRLDITVDVSS----KKAWQAGAT-LGELYV 156
QY 125 LFRDHGRVL-PGGSCYSVGLGGHIVVGGGDGILARLHLGLPVDWLSGVENVVKPVLTEDSV 182
Db 157 KIDEASQTLAFAFPAGICATVGAGGHSIGGGYGNLMRKFGTTVDHVDAELV-----DVN 209
QY 183 LKVVKDSEGNDGELFWAHTGGGGNGFLITKYYFKDLPMSPR--GVVIASNHLFSSWDGFT 240
Db 210 GKLLNRSTMGED--LFWAIRGGGGASFGVILSWKI-NLVEVPKIFTVFQVNKTLEQGG-- 264
QY 241 RDALQDLITKYFKLARCCKWCKNTVGKF-QIFHQAAEEFVWMLYTYSNSDAEREVA----- 293
Db 265 ---TDVVIK-----WOLVANKFPDNLFRLAMPQVV-----NGTKHGERTIALIVFWA 307
QY 294 --QDRHYHLEADIEQIY-----KTCPEPTKALGGHAGWAPPVRKRHTSKTSYMHDE 344
Db 308 QFLGRTDELMEIMNQSFPPELGLRREDCQEMSWLNNTLFWAMLP-----GTPKTVLIGRP 362
QY 345 TMDYPFYALTETINGSGPNQRGKYSAYMIKDFPDFQIDVWKYLTEVPDGLTSAEMKDA 404
Db 363 T-DPVFF-----KSXSDYVKKPITKEGLEKIKW-----TMLKFNNI 397
QY 405 L-LQVDMFEGGEIHKVWVWDATAVAORE-YIQLQKQTYWQEDKDAVNWKWIRDIFYEMYE 462
Db 398 VWLHFNPYGGMMDRIPSNTAFPHRKGNLFLKVQYTTWLDPNATESNLSIMKELY-EVAE 456
QY 463 PYGGVPDENTQVESGKGVFEGCYFNYPDVLDLNWKNGK-----YGALEYLFIGNLNR 514
Db 457 PY-----VSSNP--REAFFNYRDIDIGSNPSGETDVEAKIYG--YKYFLGNLKR 502
QY 515 LIKAKWLWDPNEIFTNKQOSIP 535
Db 503 LMDVKAKSDPENFFKNEQOSIP 523
RESULT 11
ABB90805
ID ABB90805 standard; Protein; 541 AA.
XX
AC ABB90805;
XX
DT 31-MAY-2002 (first entry)
DE Herbicidally active polypeptide SEQ ID NO 16.
XX
KW Herbicidal; plant; agriculture; herbicide.
OS Arabidopsis thaliana.
XX
PN WO200210210-A2.
XX
PD 07-FEB-2002.

XX
PS Claim 5; SEQ ID NO 16; 261pp + Sequence Listing; English.
XX
CC The invention relates to identifying target proteins
(ABB90790-ABB94016) for herbicidally active compounds, comprising
aligning and comparing nucleic acid or amino acid sequences from plant
with nucleic acid or amino acid sequences from non-plant organisms using
suitable search parameters, where plant sequences having an E-value
greater by a factor of 3 than the E-value of most similar non-plant
sequences are selected. The polypeptides or nucleic acids encoding them
are useful for identifying modulators. The identified modulators are
useful as herbicides.
XX
CC Sequence 541 AA;

Query	Match	10.8%	Score	324.5	DB	23	Length	541;
Best	Local Similarity	25.4%	Pred.	No.	3.4e-22;			
Matches	132;	Conservative	73;	Mismatches	169;	Indels	145;	Gaps 26;

QY 76 SGHCYED-----FVFDECVKAINVTGLVESGYDDDRGYFWSSGDT-----NW 119
Db 110 SGHDYDGVSYISNRPFVLD--MSYLRNIT--VDMs-DDGGSAWVGAGATLGEVYNNIW 164
QY 120 GSFKTLFRDHG-RVLPGGSCYSVGLGGHIVVGGGDGILARLHLGLPVDWLSGVENVVKPVLT 178
Db 165 QSSKT---HGTHGFPAVGCVPTVGAGGHSIGGGYGNMIRKYGLSVDYVTDAKIV----- 214
QY 179 EDSVLKIVHKDSEGNDGELFWAHTGGGGNGFLITKYYFKDLPMSPRGV----- 228
Db 215 -DVNGRILDRLRKSMD--LFWAIGGGGASFGVILSKIKLVPPRVTVERVEKTLVEN 271
QY 229 ASNLFHFSW-----DGFTRDALQDLITKYFKLARCCKWCKNTVGKFQIIFHQAAEEFVMY 279
Db 272 ALDMVHKWQFVAPKTSPDLMRMLQPV-----RNNT-----QTVRASVVA 313
QY 280 LYTSYSNDAEREVAQDRHYHLEADIEQIYKTCPEPTKALGGHAGWA-----PFPVPRR--K 332
Db 314 LFLGKQSDLMSLLTKE--FPELGLKP--ENCTEMWIQSVMMWWANNDNATVIKPEILLD 368
QY 333 RHTSKTSYMHDETMDYPFYALTETINGSGPNQRGKYSAYMIKDFPDFQIDVWKYLTEV 392
Db 369 RNPDSASFL-----KRKSDXVEKEISKDGLDFLCKKLMEA 403
QY 393 PD-GLTSAEMKDALLQVDMFEGGEIHKVWVWDATAVAOREYIQLQKQTYWQEDKDAVN-- 449
Db 404 GKGUGLV-----FNPYGGKMSEVATTATPFFHRKRLFKVQHSMNWKPGTDVESSF 453
QY 450 LKWIRDIFYEMYEYGGVPDNTQVESGKGVFEGCYFNYPDV-----NNWKNG-K-Y 501
Db 454 MEKTRSFYSYM-APPVTKNPRHT-----YLYNRYLDIGINSHGPNSYREAEVY 500
QY 502 GALELYFLGNLNRLLIKAKWLWDPNEIFTNKQOSIP 540
Db 501 G--RKYFGENFDRLVKVTAVDOPENFERDEQSIPLPTK 537
RESULT 12
ABB93021

ID ABB93021 standard; Protein; 540 AA.
 XX
 AC ABB93021;
 XX
 DT 31-MAY-2002 (first entry)
 XX
 DE Herbicidally active polypeptide SEQ ID NO 2232.
 XX
 KW Herbicidal; plant; agriculture; herbicide.
 XX
 OS Arabidopsis thaliana.
 XX
 PN WO200210210-A2.
 XX
 PD 07-FEB-2002.
 XX
 PF 28-AUG-2001; 2001WO-EP09892.
 XX
 PR 28-AUG-2001; 2001WO-EP09892.
 XX
 PA (FARB) BAYER AG.
 XX
 PI Tietjen K, Weidler M;
 DR WPI; 2002-269010/31.
 XX
 PT Identifying plant target proteins for herbicidally active compounds, comprising aligning and comparing nucleic acid or amino acid sequences from plant with nucleic acid or amino acid sequences from non-plant organisms -
 XX
 PS Claim 5; SEQ ID NO 2232; 261pp + Sequence Listing; English.
 CC The invention relates to identifying target proteins (ABB90790-ABB94016) for herbicidally active compounds, comprising aligning and comparing nucleic acid or amino acid sequences from plant with nucleic acid or amino acid sequences from non-plant organisms, where plant sequences having an E-value greater by a factor of 3 than the E-value of most similar non-plant sequences are selected. The polypeptides or nucleic acids encoding them are useful for identifying modulators. The identified modulators are useful as herbicides.
 XX
 SQ Sequence 540 AA;

Query Match Best Local Similarity 10.7%; Score 322; DB 23; Length 540; Matches 125; Conservative 79; Mismatches 172; Indels 136; Gaps 22; CC

QY 72 VRIVSGGHCYE--DFVFDDECVKAIINVIGLVESGYD--DDRGYFVSSGDTNWGSFKTLF-- 126
 Db 113 LKIRSGGGHDYDGLSYISDKPF-FILDMSNIRDVSVDIASNSAWIISAGATLGEVYRIWEK 171
 QY 127 -RDHGRVLPGGSCYSVGLGGHIVGGGDGILARLHGLPVDWLSGVEVVVKPVLTEDSLVLKY 185
 Db 172 SRVHG--FPAAGCPTVGVGGHLSGGGYGVNMRKEGLSVDYVEDAKIV-----DVNGRV 222
 QY 186 VHKDSEGNDGELFWAHTGGGGNFGITKYYFKDLPMSPRGVI-----ASNLFHFS 235
 Db 223 LDRKAMGED--LFWAITGGGGSYGVVLGYKVKLVPVPSVTVFRVEQYMDSGAVDMVHK 280
 QY 236 WDG-----FTRDALQDLTKYFKLARCDWKNNTVGKFQIFHQAAEEFVMYLYTSYN 286
 Db 281 WQSVGPKTDPLNLFMRMLIQPVTRKKVTVR-----ASVVALFLGRADEVALLSKEF-- 332
 QY 287 DAEREGAQDRHYHLEADIEQIYKTCPTKALGGHAGWAPFPVRPRKRHTSKTSMH---- 342
 Db 333 -----DETMDFPFYALTETINGSGPQNQRGKYKSAWMKDFPDFQIDVWKYLTEVPD-GL 396
 QY 343 -----DETMDFPFYALTETINGSGPQNQRGKYKSAWMKDFPDFQIDVWKYLTEVPD-GL 342
 Db 354 WDNRLNATQVDPKVFLDRNLDT---SFGKRSKDYVATAIPKKGIESLFFKOMIELGKIGL 410

QY 397 TSAEMKDALLQVDMFGGEIHKVVWDATAVAOREYIJKLOYOTWQEE---DKDAVNWKW 452
 Db 411 V-----FNPYGGKMAEVAVNAKPFPHRNKLFKIQYSVNUKNSAEIEKGYLNQAK 460
 QY 453 IRDFYEEEMYEPYGGVPDPNTQVESGKGVFEGCYFNYPDVDL-----NNWKNKG-YGAL 504
 Db 461 V-----LYSPMTGFVSKNPR-----SSYFNRYRDVGDHGANSYKEGEVIG-- 503
 QY 505 ELYFLGNLNRLIKAKWLDPNEIFTNKQSIPT 536
 Db 504 RKYFGENFDRLVKIKAVIDPGNFFRNEQSIPT 535

RESULT 13
 AAY88391
 ID AAY88391 standard; Protein; 545 AA.
 XX
 AC AAY88391;
 XX
 DT 27-JUL-2000 (first entry)
 XX
 DE Tetrahydrocannabinolic acid synthase amino acid sequence.
 XX
 KW Tetrahydrocannabinolic acid synthase; THCA; anaesthesia; pain-killer; intraocular pressure lowering; anti-inflammatory treatment.
 XX
 OS Cannabis sativa.
 XX
 PN JP2000078979-A.
 XX
 PD 21-MAR-2000.
 XX
 PR 04-SEP-1998; 98JP-0251667.
 XX
 PA (TAIS) TAISHO PHARM CO LTD.
 XX
 DR WPI; 2000-285930/25.
 DR N-PSDB; AAA13340, AAA13341.
 XX
 PT New tetrahydrocannabinolic acid synthase gene -
 XX
 PS Claim 2; Page 8-10; 17pp; Japanese.

CC This sequence represents the Cannabis sativa tetrahydrocannabinolic acid (THCA) synthase amino acid sequence. The THCA gene sequence can be used to produce an expression vector containing the gene. Cells can be transformed using the vector, so that they produce a protein with THCA synthase activity. THCA can be used for anaesthesia, pain-killing, intraocular pressure lowering and anti-inflammatory treatment.
 XX
 SQ Sequence 545 AA;

Query Match Best Local Similarity 10.2%; Score 306.5; DB 21; Length 545; Matches 139; Conservative 65; Mismatches 207; Indels 153; Gaps 25; CC

QY 36 NRRWIGTNIDFVYVYTPOGACTALDRAMEKCSPGT---VRIVSGGHCYEDDFVDECVKA 92
 Db 70 NLRFISDTTPKPLVIVTPSN--NSHIQATILCSKKVGLQIRTRSGGHDAEGMSYISQVPF 127
 QY 93 II-----NVTGLVESGYDDDRGYFVSSGDTNWGSFKTLFRDHGRVLPGGSC 138
 Db 128 WWDLIRNHSIKIDVHSQTAWVEAGATLGEVY-----WINEK---NENLSPFGYC 176
 QY 139 YSVGIGGHIVGGGDGILARLHGLPVDWLSGVEVVVKPVLTEDSVLKVVHKDSECNDGELF 198
 Db 177 PTVGVGGHFSGGGYGAJMRNGLAAD---NIIDAHLVNVDG--KVLDRKSMGED-LF 227
 QY 199 WAHTGGGGNFGITKYYFKLPMSPRGVIAS-----NLHESWDGFTRDALQL 247
 Db 228 WAIRGGGENFGIIIAWKIKJVAVPSKSTIFSVKKNMEIHGLWLFNKWNQIAYKDKL 287

XX
 PS Claim 5; SEQ ID NO 2231; 261pp + Sequence listing; English.
 XX
 CC The invention relates to identifying target proteins
 CC (ABB90790-ABB94016) for herbicidally active compounds, comprising
 CC aligning and comparing nucleic acid or amino acid sequences from plant
 CC sequences or amino acid sequences from non-plant organisms using
 CC suitable search parameters, where plant sequences having an E-value
 CC greater by a factor of 3 than the E-value of most similar non-plant
 CC sequences are selected. The polypeptides or nucleic acids encoding them
 CC are useful for identifying modulators. The identified modulators are
 CC useful as herbicides.
 XX
 SQ Sequence 532 AA;

	Query Match	Score	DB	Length
QY	Best Local Similarity	10.0%	23	532;
Db	Matches	23.5%	Pred. No.	7.9e-20;
QY	36 NRRWIGTNIDFVIVVYTPQACTALDRAMEKCSSPG--TVRIVSGGHCHYE-----DF	84	Mismatches	196;
Db	73 NORFFSAPDVPKPVLLTPVQPSDV--QSAVKCARRFGIHIRTRSGGHDYEGLSYVTHKPF	130	Indels	146;
QY	85 VFDECVKAIINVTGLVESGYD-DDRGYFVSSGDTNWGSFKTLFRDHGR-----VLPGGSC	138	Gaps	24;
Db	131 V-----ILDLRNRSITVDVNRSVWVQGT-----IGELYYEIGKKORTLAFPAGVC	179		
QY	139 YSVGVLGGHTVGGDGTLARLHGLPVTWLSGVENVVVKPVLTEDSVLKVKYVHKDSEGNDGELF	198		
Db	180 PTVGVGGHFSGGGYGTLLRKHGLAADDHVIDARVV-----DARGRRIERREMGED--FF	230		
QY	199 WAHTGGGGNFGLITKYYFKDLPLMSPRGVIASNLHFS-----WDGFTRDALQD--	246		
Db	231 WAIRGGGGSSFCVULSWKLIGLINVSTVTFVNTKFSEOSALKIIRHQ-FVADKVSDLL	289		
QY	247 -----LLTKYFLKARCDWKNTVGKFQIFHQAAEEFVWMLYTYSNDAEREVAQDRHYHEA	302		
Db	290 FIRVMQLQRYNMVRASFPG-----LYL-GSVKNLLKMWNUKEPELGLEE	332		
QY	303 D-----IEQIYKTEPTKALGGHAGWAPFPVPRKRHTSKTSYMDHETMDYPFYALTE	355		
Db	333 DDCTEMSWIESVIWFAE-----LG-----	360		
QY	356 TINGSGPNQRGKYKASYMIKDFFPDFOIDVWKYLTVPDGLTSAEMKDALQVDMFFGEI	415		
Db	361 RTRAS---LAFKAKSDFVQEPMPKTAISKWLRRLOE-----PEAEHQALIFTPFGGKM	410		
QY	416 HKVWNTDATAVAORE-YTIKLOYQTYWQEEKDAVNLKWRDIFYEEMYEPYGGVPDPNTQV	474		
Db	411 SEIADYETPFPFRKGNIYEIQYLNYWRGDVKEXY-MRWVERVYDDMSEFVAKSP-----	463		
QY	475 ESGRKGVPEGCYFNYPDVDL-----NNWKNGKYGALELYFLGNLNRLIKAKWLDPE	526		
Db	464 -----RGAYINLRDLIDLGMIVGVKRSKVEEGKSWGVK-YFKNNFERLVRVKTSDPSD	515		
QY	527 IFTNKQSTIP	535		
Db	516 FFCDEQSIP	524		

Search completed: June, 10, 2003, 09:58:44
 Job time : 45 secs

