Ontologie-Management Kapitel 4: Erstellung von Ontologien

Dr. Michael Hartung Wintersemester 2012/13

Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de

Inhalt

- Methoden des Ontologieentwurfs
 - Allgemeines Vorgehen
 - Methode von Uschold und King
 - Ontology Development 101
 - Weitere Methoden
- Ontology Learning
 - Prinzipielles Vorgehen
 - Ontology Learning im Entwurfsprozess

Methoden des Ontologieentwurfs

Definition

Eine Methodologie des Ontologie-Entwurfs beschreibt alle Aktivitäten die zur Konstruktion einer Ontologie notwendig sind

- Warum benötigt man eine formale Methodologie?
 - Entwicklung von konsistenten Ontologien
 - Effiziente Entwicklung komplexer Ontologien
 - Verteilte Entwicklung von Ontologien
- Unterscheidungen (nach Fernandez-Lopez et. al., 1997)
 - Ontology management activities
 - Ontology development oriented activities
 - Ontology support activities

Ontology Management Activities

Scheduling

- Identifikation der durchzuführenden Aufgaben
- Arrangement/Planung der durchzuführenden Aufgaben
- Identifikation der benötigten Ressourcen (Zeit, Speicherplatz, etc...)

Control

 Garantiert korrekte Abwicklung der durchzuführenden Aufgaben

Quality Assurance

 Qualitätssicherung aller im Entwicklungsprozess anfallender Produkte (Ontologien, Software, Dokumentation)

Ontology Development Oriented Activities

Genereller Ablauf

Pre-Development

Environment Study

- Auf welchen Plattformen soll die Ontologie laufen?
- Für welche Anwendungen ist die Ontologie bestimmt?

Feasibility Study

- Kann die Ontologie tatsächlich erstellt werden?
- Ist es überhaupt sinnvoll, die geplante Ontologie zu erstellen?

Development

Specification

Warum wird die Ontologie erstellt, was ist der beabsichtigte Nutzen und wer sind die End-Anwender?

Conceptualization

Strukturiert Domain-Wissen in konzeptuellem Modell

Formalization

 Formalisiert konzeptuelles Modell in semiberechenbarem Modell

Implementation

 □ Konstruktion eines berechenbaren Modells in einer Ontologiesprache → Kapitel 2

Post-Development

Maintenance

- Update und Korrektur der Ontologie (falls nötig)
 - → Kapitel 6: Dynamik in Ontologien

Use / Reuse

- Einsatz der Ontologie in den geplanten Anwendungen
 - → Kapitel 3
- Verwendung in anderen Ontologien

Ontology Support Activities

Knowledge Acquisition

 Wissen von Experten (semi-)automatisch gewinnen (Ontology Learning)

Evaluation

 Technische Überprüfung der Ontologien in jeder Stufe der Entwicklung

Integration

 Wiederverwendung bereits existierender Ontologien (Ontology Reuse)

Merging

□ Konstruktion einer neuen Ontologie aus bereits existierenden innerhalb einer bestimmten Domain → Kapitel 7

Ontology Support Activities (II)

Matching / Alignment

□ Mapping zwischen den beteiligten Ontologien → Kapitel 5

Documentation

 Jede Stufe der Ontologie-Entwicklung wird akkurat dokumentiert

Configuration Management

 □ Verwaltet alle Versionen der Dokumentation und der entwickelten Ontologie → Kapitel 6

Überblick über Aktivitäten

Methode nach Uschold und King

Prozessbasierte Entwicklung

M. Uschold, M. King: Towards a Methodology for Building Ontologies, 1995.

Identify Purpose

Identifiziere Zweck und Anwendungsgebiet

- Warum wird Ontologie benötigt?
- Vorgesehene Verwendung / Applikation
 - Simple use, reuse, share, Teil einer Wissensbasis, ...
- Identifikation relevanter Begriffe

Beispiel: Reise-Ontologie

- Aufbau eines gemeinsamen Wissensmodell über das Wissensgebiet Reisen, das in Reisebüros genutzt werden soll
- Ontologie könnte auch für andere Anwendungsgebiete genutzt werden, z.B. um einen Katalog für Unterkünfte oder Transportmöglichkeiten zu entwickeln
- relevante Begriffe z.B.: Orte, Typen von Orten, Unterkünfte, Arten von Unterkünften (Hotel / Motel / Camping / ...), Bahn, Busse, U-Bahn, ...

Ontologie Aufbau

 Identifiziere Schlüsselkonzepte (Klassen) und Beziehungen (Relationen) des betreffenden Wissensgebiets und gebe diese in textueller Form an

Beispiel: Reise-Ontologie

- Transportmittel ist eine Klasse. Jeder Transport besitzt einen Startpunkt
- Bus ist eine Klasse. Bus ist ein bestimmtes Transportmittel.
- Stadtbus ist eine Klasse. Ein Stadtbus ist ein Bus, dessen Start- und Zielpunkt sowie dessen Zwischenstopps in derselben Stadt liegen.
 - Identifikation der Ontologiekonzepte
 - Bottom-Up / Top-Down / Middle-Out

Bottom-Up Identifikation von Ontologiekonzepten

- Erhöhter Gesamtaufwand
- Schwierige Findung von Gemeinsamkeiten zwischen verwandten Konzepten
- □ Erhöhtes Risiko von Inkonsistenzen → erfordert wiederum Überarbeitung (steigender Aufwand)

Beispiel: *Reise-Ontologie*

•Transportmittel sollen in einer Bottom-Up Strategie konzeptualisiert werden

Bottom-Up Identifikation von Ontologiekonzepten

Top-Down Identifikation von Ontologiekonzepten

- bessere Kontrolle des Detaillierungsgrades
- möglicherweise werden aber abstrakte Kategorien gar nicht benötigt
- □ geringere Stabilität des Modells → dann Überarbeitung notwendig (mehr Aufwand)

Beispiel: *Reise-Ontologie*

• Transportmittel sollen in einer Top-Down Strategie konzeptualisiert werden

Top-Down Identifikation von Ontologiekonzepten

Middle-Out Identifikation von Ontologiekonzepten

- Starte mit Kern / Grundbegriffe, dann Spezialisierung / Generalisierung
- ausbalanciert (bzgl. Detaillierungs-/Abstraktionsgrad)
- stabiler als die beiden vorherigen Verfahren

Beispiel: *Reise-Ontologie*

• Transportmittel sollen in einer Middle-Out Strategie konzeptualisiert werden

Middle-Out Identifikation von Ontologiekonzepten

Evaluation & Documentation

Evaluation

 Technische Überprüfung der Ontologien und der damit assoziierten Software in jeder Stufe der Entwicklung

Documentation

 Einrichten der eventuell unterschiedlichen Dokumentationsrichtlinien

Ontology Development 101

Beispiel: Ontologie für Weinbau und Nahrungsmittel

N.F. Noy, D. McGuinness: Ontology Development 101: A Guide to Creating Your First Ontology. Stanford Knowledge Systems Laboratory, 2001.

Ontology Development 101

Beispiel: Ontologie für Weinbau und Nahrungsmittel

N.F. Noy, D. McGuinness: Ontology Development 101: A Guide to Creating Your First Ontology. Stanford Knowledge Systems Laboratory, 2001.

Ontology Development Process

- in der Praxis iterativer Prozess, der sich beständig wiederholt und die Ontologie verbessert
- es gibt immer unterschiedliche Vorgehensweisen bei der Modellierung einer Ontologie
- in der Praxis entscheidet immer die angestrebte
 Anwendung über das Vorgehen bei der Modellierung

"There is no one correct way to model a domain there are always viable alternatives."

Beurteile Fachgebiet und Fokus

determine consider enumerate define define define create classes properties constraints instances

- Welches Fachgebiet soll die Ontologie abdecken?
- Wozu soll die Ontologie genutzt werden?
- Welche Arten von Fragen sollen die in der Ontologie repräsentierten Informationen beantworten können?
- Wer wird die Ontologie pflegen und nutzen?
- Formulierung von Kompetenzfragen

Im Laufe des Lebenszyklus einer Ontologie können sich diese Fragen auch ändern ! (Evolution)

Beurteile Fachgebiet und Fokus

determine consider enumerate define define define create classes properties constraints instances

Kompetenzfragen zur Wine Ontology

- Welche Eigenschaften des Weins sollen bei der Modellierung berücksichtigt werden?
- •Ist ein Bordeaux ein Weißwein oder ein Rotwein?
- Passt Cabernet Sauvignon gut zu Fischgerichten?
- Welcher Wein passt am besten zu gegrilltem Fleisch?
- Welche Eigenschaften eines Weins beeinflussen seine Eignung zu einem bestimmten Gericht?
- Andert sich das Bouquet eines Weins mit unterschiedlichen Jahrgängen?

• . . .

Berücksichtigung von Wiederverwendung

determine consider enumerate define define define create scope reuse terms classes properties constraints instances

- Warum Wiederverwendung?
 - Einsparung von Aufwand
 - Reuse von Werkzeugen die mit anderen Ontologien arbeiten für die Eigene
 - Wiederverwendung von erfolgreich validierten Ontologien

Wenn keine passende Ontologie existiert oder der Aufwand zur Anpassung zu groß wird, dann erschaffe eine Neue!

Terminologie entwickeln

determine consider enumerate define define create classes properties constraints instances

- Von welchen Begriffen soll die Rede sein?
- Welche Eigenschaften haben diese Begriffe?
- Was wollen wir über diese Begriffe aussagen?

Beispiel: Wine Ontology

- •wine, grape, winery, location,...
- •a wine's color, body, flavor, sugar content,...
- •subtypes of wine: white wine, red wine, Bordeaux wine,...
- •types of food: seafood, fish, meat, vegetables, cheese,...

• . . .

Klassen und Klassenhierarchien definieren

- Klassen sind Konzepte in der betreffenden Domäne
 - Klasse der Weine
 - Klasse der Weinbaubetriebe
 - Klasse der Rotweine
- Klassen sind Sammlungen von Objekten mit gleichartigen Eigenschaften
- Wähle Top-Down / Bottom-Up / Middle-Out Ansatz zur Modellierung der Klassenhierarchien

Definiere Properties

- Properties in einer Klassendefinition beschreiben Attribute von Instanzen
 - Jeder Wein hat eine Farbe, Restzuckergehalt, Produzent, ...

Definiere Beschränkungen auf Properties

determine consider enumerate define define create classes properties constraints instances

- Property constraints (Restriktionen) beschreiben bzw. beschränken die Menge der möglichen Property-Werte
 - Der Name eines Weines ist ein String

"produces" in "Winery" kann Instanzen der Klasse "Wine" als

Value aufweisen

Definition von Klasseninstanzen

determine consider enumerate define define define create classes properties constraints instances

- Erzeuge die Instanzen der Klassen
- Jede Klasse wird zum direkten Typen für ihre Instanzen
- Jede Superklasse eines direkten Typs ist Typ der Instanz
- Zuweisung von Property-Werten für Instanzen entsprechend Constraints

"das Glas spanischen Rotweins, das xy gestern Abend zum Abendessen getrunken hat"

Methode nach Grüninger und Fox

- Formaler Ansatz des Ontologie-Entwurfs
- Inspiriert durch den Entwurf wissensbasierter Systeme (Prädikatenlogik)

Motivating Scenarios Informal Competency Questions Formal Competency Questions Formal Competency Questions Competency Questions Theorems

- Identifikation des Hauptanwendungsszenarios
- 2. Kompetenzfragen, um Spielraum/Fachgebiet der Ontologie festzulegen
- 3. Extraktion der Terminologie/Konzepte/Relationen, ...
- 4. Formale Kompetenzfragen (mit eigens entwickelter Terminologie)
- 5. Bestimmung der wichtigsten Axiome
- 6. Überprüfung der Vollständigkeit

M. Grüninger, M. Fox: Methodology for the Design and Evaluation of Ontologies, 1995.

METHONTOLOGY

 Lebenszyklus-Modell basierend auf entwickelten Prototypen

Y. Sure, S. Staab, R. Studer: Methodology for Development and Employment of Ontology based Knowledge Management Applications. Sigmod Record 31(4), 2002.

Ontology Learning

- Ontologie-Entwurf ist sehr aufwändig bzgl. Zeit und Ressourcen
 - kann das Verfahren (teil-)automatisiert werden?
- Ontologien können (automatisch) "gelernt" werden

Ontology Learning definiert Methoden und Techniken

- zum grundlegenden Aufbau einer neuen Ontologie
- zur Erweiterung oder Anpassung einer bereits existierenden Ontologie
- in einer (teil-)automatisierten Weise aus unterschiedlichen Ressourcen
- Automatisierung basiert u.a. auf
 - Natural Language Processing (NLP)
 - Data Mining, Text Mining
 - Machine Learning Techniken (ML)

Datenquellen für Ontology Learning

Welche Datenquellen können für Ontology Learning verwendet werden?

- Strukturierte Daten (Datenbanken, Wissensbasen, ...)
 - Data Mining, Machine Learning
- Semi-strukturierte Daten (XML Dokumente, ...)
 - Data Mining, Natural Language Processing, Machine Learning
- Unstrukturierte Daten (Texte in natürlicher Sprache)
 - Text Mining, Natural Language Processing, Machine Learning

Ontology Learning – Prinzipielles Vorgehen

Semiautomatischer Prozess

Ontology Learning – NLP

Natural Language Processing

- 1.Tokensizer / Sentence Splitter
- 2. Morphologische Analyse
 - Stemming (Grundform) / Lemmatizer
- 3.POS-Tagger
 - Syntaktische Kategorien(Verb, Hauptwort, Präposition, ...)
- 4. Regular Expression Matching
- 5.Chunks
 - Erfassung größerer zusammenhängender Gebilde in Sätzen
- 6. Syntactic Parser

Ontology Learning Tasks

Welche Aufgaben im Rahmen des Ontologieentwurfs können (teil-)automatisert werden?

- 1.Ontology creation
- 2. Ontology schema extraction
- 3. Extraction of ontology instances
- 4. Ontology integration and navigation
- 5. Ontology update
- 6.Ontology enrichement

Ontology Learning Tasks (2)

Ontology creation

- Entwurf von Grund auf (from the scratch) durch einen Experten
- Maschinelles Lernen (ML) unterstützt den Experten beim
 - Entwurf durch Vorschlag von geeigneten Relationen zwischen den Konzepten
 - Überprüfung der Integrität/Konsistenz der entworfenen Ontologie

Ontology schema extraction

- Extraktion von Schemata aus Web-Dokumenten / Texten
- ML benutzt Eingabedaten und Meta-Ontologien, um fertige Domain-Ontologien (ggf. mit Hilfe des Experten) zu erzeugen

Ontology Learning Tasks (3)

Extraction of ontology instances

- Extraktion von Objekten aus semi-strukturierten und unstrukturierten Daten, um vorgegebene Ontologie-Schemata mit Instanzen zu füllen
- nutzt Techniken aus den Bereichen Information Retrieval und Data Mining

Ontology integration and navigation

- Umbau (Rekonstruktion) von existierenden Wissensbasen und Navigation in vorhandenen Wissensbasen
- z.B. Übersetzung einer Wissensbasis aus FOL nach OWL
- (Teil-)automatisiertes Mapping/Merging zum Zusammenführen mehrerer Ontologien

Ontology Learning Tasks (4)

Ontology update

- Erweiterung, Umbau und Veränderung von bereits bestehenden Ontologien, z.B. zur Anpassung an veränderte Domain
- betrifft Teilbereiche von Ontologien, die speziell so angelegt wurden, dass diese verändert werden können

Ontology enrichment

- (auch Ontology tuning) betrifft automatische Aktualisierung kleinerer Teilbereiche bereits existierender Ontologien
- verändert nicht wichtige (bedeutende) Konzepte und Relationen, sondern präzisiert diese

Zusammenfassung

Methodologie des Ontologieentwurfs

- Alle Aktivitäten die zur Konstruktion einer Ontologie notwendig sind
- Warum: Konsistente und komplexe Ontologien, verteilte Entwicklung
- Unterschiedliche Methoden
 - Uschold und King
 - Ontology Development 101
 - **...**

Ontology Learning

- (teil-)automatisierte Unterstützung des Ontologieentwurfs
- Nutzung vers. Techniken
 - Data Mining, Natural Language Processing, Machine Learning

