Lect1-Quadratic Fuctions

AMC-12

September 26, 2021

- Intensive Lecture
 - Outline
 - Quadratics
- Exercise
- Review

- Intensive Lecture
 - Outline
 - Quadratics
- 2 Exercise
- Review

Outline

Outline of Algebra:

- Functions:
 - Linear functions;
 - Quadratics and Polynomials;
 - Exponents and Logarithms;
 - **...**
- Inequalities;
- Sequences and Series;
- Trigonometric Functions;
- Complex Number;
- ...

Three Forms of Quadratic Function

Expanded form

$$f(x) = ax^2 + bx + c \ (a \neq 0)$$

Factored form

$$f(x) = a(x - x_1)(x - x_2) \ (a \neq 0)$$

Vertex form

$$f(x) = a(x - h)^2 + k \ (a \neq 0)$$

Properties of Quadratic Functions

Symmetric Axis and Vertex

The symmetric axis of a quadratic function $f(x) = ax^2 + bx + c$ is

$$x = -\frac{b}{2a},$$

and its vertex is

$$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$$
.

Properties of Quadratic Functions

Discriminant and Roots

The discriminant of a quadratic function $f(x) = ax^2 + bx + c$ is $\Delta = b^2 - 4ac$, if $\Delta \ge 0$, the two real solutions of f(x) = 0 are

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}.$$

Quadratic Inequalities

- Parameters a, b, c and function's graph;
 - ▶ Discriminant Δ and roots;
 - Equations and inequalities.
- Solution of $ax^2 + bx + c > 0$ (a > 0), discriminant $\Delta = b^2 4ac$,

$$\Delta>0,\ x<\frac{-b-\sqrt{\Delta}}{2a}\ \text{or}\ x>\frac{-b+\sqrt{\Delta}}{2a};$$

$$\Delta=0,\ x\neq\frac{-b}{2a};$$

$$\Delta<0,\ x\in\mathbb{R}.$$

- Solution of $ax^2 + bx + c < 0 (a > 0)$, discriminant $\Delta = b^2 4ac$,
 - $\Delta > 0, \ \frac{-b \sqrt{\Delta}}{2a} < x < \frac{-b + \sqrt{\Delta}}{2a};$ $\Delta \leq 0, \ x \in \emptyset.$

Examples of Quadratic Inequalities

- Example 1: $x^2 + 4x 21 \ge 0$
- Example 2: $x^2 3x 1 < 0$
- Example 3: $x^2 5|x| + 6 > 0$

Vieta's Theorem

Vieta's Theorem for Quadratic

If x_1 and x_2 are two roots of the quadratic equation $f(x) = ax^2 + bx + c = 0$, then

$$x_1 + x_2 = -\frac{b}{a}, \quad x_1 x_2 = \frac{c}{a}.$$

Examples of Vieta's Theorem

- Example 1: Let r and s be the roots of the polynomial $x^2 + x + 1 = 0$. What is $r^2 + s^2 + r + s + rs$?
- Example 2: If the sum of two squares of the real roots for the quadratic equation $2x^2 + ax 2a + 1$ is $\frac{29}{4}$. What is the value of a?

- 1 Intensive Lecture
 - Outline
 - Quadratics
- 2 Exercise
- Review

 $x,y\in\mathbb{R}$ and $x^2+xy+y^2=3$, what is the possible maximum of x-y?

Assume a, b are two roots of the equation $2x^2 + x - 7$. Find

- $a^2 + b^2$;
- 2 $\frac{1}{a} + \frac{1}{b}$; 3 $a^3 + b^3$.

For what values of k do the quadratics $x^2 + kx + 1$ and $kx^2 + x + 1$ share exactly one root?

Suppose that the equation $x^2 - bx + a$ has roots a - b and a + b, for non-zero real numbers a, b. Find a.

Find the unique positive integer n for which n^2+7n is a perfect square.

- 1 Intensive Lecture
 - Outline
 - Quadratics
- 2 Exercise
- Review

A Short Review

- Three forms of quadratic function;
- Geometric properties of quadratic functions;
- Roots of quadratic functions;
- Quadratic inequalities;
- Vieta's theorem.

