Дискретная математика

Сидоров Дмитрий

Группа БПМИ 219

February 26, 2022

№1

Числа Фибоначчи задаются правилами $F_0=1; F_1=1; F_{n+2}=F_{n+1}+F_n$ для всех $n\geq 2$. Докажите, что для любого n числа F_n и F_{n+1} взаимно просты.

Доказательство:

Докажем, что F_n и F_{n+1} взаимно просты, используя принцип мат индукции.

- 1) База. Для $n=0: F_0=1, \ F_1=1 \Rightarrow \mathrm{HOД}(F_0;F_1)=1 \Rightarrow F_0$ и F_1 взаимно просты.
- 2) Пусть F_k и F_{k+1} взаимно просты. Тогда НОД $(F_k; F_{k+1}) = 1$.
- 3) Пусть n=k+1. Тогда НОД $(F_{k+1}; F_{k+2}) = \text{НОД}(F_{k+1}; F_k + F_{k+1}) = \text{НОД}(F_{k+1}; F_k) = 1$ по предположению индукции $\Rightarrow F_n$ и F_{n+1} взаимно просты по принципу мат индукции.

N_2

Решите систему сравнений

 $x \equiv 3 \pmod{15} (1)$

 $x \equiv 4 \pmod{21}$ (2)

 $x \equiv 5 \pmod{35}$ (3)

Решение:

Из (1) следует, что $x=3+15k,\ k\in\mathbb{Z}$. Из (2) следует, что $x=4+21d,\ d\in\mathbb{Z}$. Тогда $3+15k=4+21d\Rightarrow 15k=1+21d$. Заметим, что левая часть уравнения делится на 3, а правая при делении на 3 даёт остаток 1, а значит уравнение не умеет решений \Rightarrow система сравнений не имеет решений.

Ответ: решений нет

№3

Известно, что $a^{12}+b^{12}+c^{12}+d^{12}+e^{12}+f^{12}$ делится на 13. Докажите, что abcdef делится на 13 6 . Здесь a,b,c,d,e,f — целые числа.

Доказательство:

По малой теореме Ферма, тк 13 - простое число, $x^{12} \equiv 1 \pmod{13} \ \forall x$, не делящемся на p (и $x^{12} \equiv 0 \pmod{13} \ \forall x$, делящемся на p). Таким образом, остаток при делении $a^{12} + b^{12} + c^{12} + d^{12} + e^{12} + f^{12}$ на 13 - это целое число от 0 до 6, и равен 0 только в том случае, когда остаток при делении каждого слагамого на 13 равен 0. Значит, тк $a^{12} + b^{12} + c^{12} + d^{12} + e^{12} + f^{12}$ делится на 13 по условию, то статок при делении каждого слагамого на 13 равен 0, значит a, b, c, d, e, f делятся на 13, и тогда abcdef делится на 13^6 , тк каждый множитель делится на 13.

№4

Вычислите остаток от деления $1^5 + 2^5 + \cdots + 2022^5$ на 11.

Решение:

Каждое число x от 1 до 2022 можно представить в виде $x=11k+r,\ k,r\in\mathbb{Z}$, где k - целая часть при делении x на 11, r - остаток. Тогда каждое слагаемое можно представить в виде $x^5=(11k+r)^5$ и по биному Ньютона $x^5=(11k+r)^5=(11k)^5+5(11k^4)r+10(11k)^3r^2+10(11k)^2r^3+5(11k)r^4+r^5$, те остаток при делении x^5 на 11 равен остатку при делении r^5 на 11, и остаток не зависит от k (1). При этом, тк $1\equiv -10, 2\equiv -9, 3\equiv -8, 4\equiv -7, 5\equiv -6\pmod{11}$ и числа вида $(11d)^5$ делятся на 11, то сумма $1^5+2^5+\cdots+10^5+11^5$ делится на 11 (тк остаток будет 0), и с учётом (1) сумма $1^5+2^5+\cdots+2013^5$ делится на 11 (2013 делится на 11). Значит остаток от деления $1^5+2^5+\cdots+2022^5$ на 11 совпадает с остатком от деления $2014^5+2015^5+\cdots+2022^5$ на 11. Заметим, что остаток от деления $2014^5+2015^5+\cdots+2022^5$ на 11 равен 0 (тк 2024 делится на 11), а значит остаток от деления $2014^5+2015^5+\cdots+2022^5$ на 11 равен 0 - (остаток от деления 2023^5+2024^5 на 11). 2024^5 делится на 11, а $2023^5=(183\cdot11+10)^5\Rightarrow 2023^5\equiv 10^5\equiv (-1)^5=-1\pmod{11}\Rightarrow$ остаток от деления $2014^5+2015^5+\cdots+2022^5$ на 11 равен 0 - (остаток от деления $2014^5+2015^5+\cdots+2022^5$ на 11 равен 0 - (-1) = $1\Rightarrow$ искомый остаток равен 1.

Ответ: 1

№5

Решите уравнение $\varphi(x) = x/4$

Решение:

Пусть $x=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots\cdot p_n^{\alpha_n},\ \alpha_i>0,$ p_i - различные простые. Тогда $\varphi(x)=x\prod_{i=1}^n\left(1-\frac{1}{p_i}\right)=\frac{x}{4}$. Тогда $\prod_{i=1}^n\left(1-\frac{1}{p_i}\right)=\frac{1}{p_i}$ = $\frac{(p_1-1)(p_2-1)\dots(p_n-1)}{p_1p_2\dots p_n}$. Заметим, что знаменатель этой дроби либо нечет, либо степень 2 в знаменателе этой дроби не больше 1 (тк 2 - единственное чётное простое число, может входить, может не входить, может входить и сократиться). Таким образом, $\frac{(p_1-1)(p_2-1)\dots(p_n-1)}{p_1p_2\dots p_n}$ не может равняться $\frac{1}{4}$ при любых p, а значит уравнение $\varphi(x)=x/4$ не имеет решений.

Ответ: решений нет

№6

Функция f из множества целых чисел в множество целых чисел сопоставляет числу x наименьшее простое число, которое больше x^2 . Докажите, что если множество целых чисел X конечное, то и полный прообраз этого множества $f^{-1}(X)$ конечен.

Доказательство:

Пусть функция сопоставляет числу x наименьшее простое число p, которое больше x^2 . Рассмотрим прообраз p. Прообраз p состоит из таких x, для которых $f(x) = x^2 < p$. Значит прообраз p состоит из таких x, для которых выполняется $|x| < \sqrt{p}$. Тк p - простое число, то неравенству $|x| < \sqrt{p}$ удовлетворяет конечное число целых чисел, а значит прообраз p конечен. Таким образом, для любого простого p количество элементов в прообразове p конечно, а значит полный прообраз множества $f^{-1}(X)$ конечен.

№7

Докажите, что для всякого n существует такая арифметическая прогрессия $a_i = a_0 + id, 0 \le i < n$, что числа a_0, \ldots, a_{n-1} попарно взаимно просты.

Доказательство:

Будем считать, что n>2, тк для n=1 и n=2 условие выполняется (в первом случае последовательность состоит из одного числа, т е, например, последовательность 1 удовлетворяет условию, во втором случае, например, подходит последовательность 1, 2). Пусть $a_0=1$, а d равняется произведению n различных простых чисел $2\cdot 3\cdot 5\cdot 7\cdot \ldots$. Докажем, что в последовательности $1,1+d,\ldots,1+(n-1)d$ числа a_0,\ldots,a_{n-1} попарно взаимно просты. Заметим, что все члены прогрессии при делении на простое число, которое является множителем d, дают остаток 1, те не делятся на него, значит нет пары членов последовательности, в которой оба члена делились бы на простое число из разложения d. При этом каждое $0 \le i < n$ либо является простым, либо раскладывает на простые множители, и тк d равняется произведению n различных простых чисел, то в любом из двух случаях все простые множители i входят в разложение d (наибольший множитель-простое число в d не меньше n-1), а значит все члены последовательности являются простыми (кроме $a_0=1$), те все члены последовательности попарно взаимно просты.