Non-regular languages

(Pumping Lemma)
Week-08-Lecture-02

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages
$$a*b \qquad b*c+a$$

$$b+c(a+b)*$$

etc...

How can we prove that a language L is not regular?

Prove that there is no DFA or NFA or RE that accepts \boldsymbol{L}

Difficulty: this is not easy to prove (since there is an infinite number of them)

Solution: use the Pumping Lemma!!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

The Pigeonhole Principle

n pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

Consider a DFA with 4 states

Consider the walk of a "long" string: aaaab (length at least 4)

A state is repeated in the walk of aaaab

The state is repeated as a result of the pigeonhole principle

Consider the walk of a "long" string: aabb (length at least 4)

Due to the pigeonhole principle: A state is repeated in the walk of aabb

The state is repeated as a result of the pigeonhole principle:

In General: If $|w| \ge \#$ states of DFA, by the pigeonhole principle, a state is repeated in the walk w

$$|w| \ge \#$$
states of DFA = m

Number of states in walk is at least m+1

Hafiz Tayyeb Javed

The Pumping Lemma

Take an infinite regular language L(contains an infinite number of strings)

There exists a DFA that accepts L

Take string
$$w \in L$$
 with $|w| \ge m$ (number of states of DFA)

then, at least one state is repeated in the walk of $\ w$

There could be many states repeated

Take q to be the first state repeated

One dimensional projection of walk w:

We can write w = xyz

One dimensional projection of walk w:

In DFA:
$$w = x y z$$

Where y corresponds to substring between first and second occurrence of q

Hafiz Tayyeb Javed

Observation:

 $|ength| |x|y| \le m \text{ number}$ of states of DFA

Observation:

length $|y| \ge 1$

Since there is at least one transition in loop

We do not care about the form of string z.

z. may actually overlap with the paths of x and y

25

Additional string:

The string xz is accepted

Do not follow loop

Hafiz Tayyeb Javed

Additional string:

The string x y y zis accepted

Additional string:

The string x y y y z is accepted

In General:

The string $x y^{l} z$ is accepted i = 0, 1, 2, ...

Hafiz Tayyeb Javed

Therefore:

$$x y^i z \in L$$

 $i = 0, 1, 2, \dots$

Language accepted by the DFA

In other words, we described:

The Pumping Lemma!!!

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m (critical length)
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^l z \in L$ i = 0, 1, 2, ...

In the book:

Critical length m = Pumping length p

Applications

of

the Pumping Lemma

Observation:

Every language of finite size has to be regular

(we can easily construct an NFA that accepts every string in the language)

Therefore, every non-regular language has to be of infinite size (contains an infinite number of strings)

Suppose you want to prove that an infinite language $\,L\,$ is not regular

- 1. Assume the opposite: L is regular
- 2. The pumping lemma should hold for $\,L\,$
- 3. Use the pumping lemma to obtain a contradiction
- 4. Therefore, L is not regular

Explanation of Step 3: How to get a contradiction

- 1. Let m be the critical length for L
- 2. Choose a particular string $w \in L$ which satisfies the length condition $|w| \ge m$
- 3. Write w = xyz
- 4. Show that $w' = xy^i z \notin L$ for some $i \neq 1$
- 5. This gives a contradiction, since from pumping lemma $w' = xy^iz \in L$

Note:

It suffices to show that only one string $w \in L$ gives a contradiction

You don't need to obtain contradiction for every $w \in L$

Example of Pumping Lemma application

Theorem: The language
$$L = \{a^nb^n : n \ge 0\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the critical length for L

Pick a string w such that: $w \in L$

and length $|w| \ge m$

We pick
$$w = a^m b^m$$

From the Pumping Lemma:

we can write
$$w = a^m b^m = x y z$$

with lengths $|x y| \le m, |y| \ge 1$

$$\mathbf{w} = xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{m}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^m b^m$$

$$y = a^k$$
, $1 \le k \le m$

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m$$
 $y = a^k$, $1 \le k \le m$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

Hafiz Tayyeb Javed

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

END OF PROOF

Non-regular language $\{a^nb^n: n \ge 0\}$

$$\{a^nb^n: n\geq 0\}$$

$$L(a^*b^*)$$