DIGITAL DESIGN

CS/ECE/EEE/INSTR F215

Sarang Dhongdi

DECODER___

Decoder

- \cdot n inputs \rightarrow (max) 2^n unique output lines
- n-to-m line decoder $(m \le 2^n)$
- Generates minterms of n input variables
- · General decoders
- · 2 to 4 line decoder
- 3 to 8 line decoder
- 4 to 16 line decoder

Three-to-Eight line decoder

Inputs		Outputs								
Χ	Υ	Z	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Encoders

- · Inverse operation of that of Decoders
- \cdot 2ⁿ input lines \rightarrow n output lines
- · Output is binary code of the input

Octal-to-Binary Encoder - Assumption - only one i/p has value 1 at any given time. Outputs Z =D1+D3+D5+D7 D0 D1 D2 D3 D4 D5 D6 D7 Χ Y = D2+D3+D6+D70 0 0 0 0 0 0 0 0 X = D4+D5+D6+D7 0 0 1 0 0 0 0 0 0 0 Issues -0 0 0 1 0 0 · When 2 i/ps are 1 0 0 0 0 0 0 0 0 1 simultaneously 1. 0 1 1 0 · When none of the i/p is 1, o/p is 0 1 1 1 0 0 0 0 0 1

Priority Encoder

• If two or more inputs are equal to 1 at the same time, the input having highest priority will take precedence.

Inputs							
D0	D1	D2	D3				
0	0	0	0				
1	0	0	0				
X	1	0	0				
X	X	1	0				
X	X	X	1				

Outputs						
В	V					
Χ	0					
0	1					
1	1					
0	1					
1	1					
	B X 0 1					

Maps for Priority Encoders D2D3 11 10 01 D0D1 1 1 01 1 1 1 1 1 11 1 1 1 10

Maps for Priority Encoders								
\D:	2D3 00	01	• A :	= D2+D3 10				
D0D1 \ 00		01	11	10				
00	Х	1	1	1				
01		1	1	1				
11		1	1	1				
10		1	1	1				

Maps for Priority Encoders								
• B = ?		,						
D0D1	2D3 00	01	11	10	1			
00	Х	1	1					
01	1	1	1					
11	1	1	1					
10		1	1					

Maps for Priority Encoders								
D0D1	2D3 00	01	• B =	D3+D1D2'				
00	Х	1	1					
01	1	1	1					
11	1	1	1					
10		1	1					

Multiplexer

- $\,{}^\circ$ Selects 'binary' information from one of the many i/p lines and connects it to a single o/p line.
- 2ⁿ i/p lines, n selection lines
- Combination of select lines determines which i/p is selected.
- · Also known as "Data selector"

Three-State Gates

- Third-state is high-impedance state -
- A) logic behaves like an open ckt, i.e. o/p is disconnected
- B) Ckt has no logic significance
- C) Ckt connected to the output of the three-state gate is not affected by the inputs.

