Examen VWO

2013

tijdvak 2 woensdag 19 juni 13.30 - 16.30 uur

wiskunde B (pilot)

Dit examen bestaat uit 17 vragen.

Voor dit examen zijn maximaal 76 punten te behalen.

Voor elk vraagnummer staat hoeveel punten met een goed antwoord behaald kunnen worden.

Als bij een vraag een verklaring, uitleg of berekening vereist is, worden aan het antwoord meestal geen punten toegekend als deze verklaring, uitleg of berekening ontbreekt.

Geef niet meer antwoorden (redenen, voorbeelden e.d.) dan er worden gevraagd. Als er bijvoorbeeld twee redenen worden gevraagd en je geeft meer dan twee redenen, dan worden alleen de eerste twee in de beoordeling meegeteld.

Formules

Goniometrie

$$\sin(t+u) = \sin t \cos u + \cos t \sin u$$

$$\sin(t-u) = \sin t \cos u - \cos t \sin u$$

$$\cos(t+u) = \cos t \cos u - \sin t \sin u$$

$$\cos(t-u) = \cos t \cos u + \sin t \sin u$$

$$\sin(2t) = 2\sin t \cos t$$

$$\cos(2t) = \cos^2 t - \sin^2 t = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

Eerste- en derdegraadsfunctie

De functies f en g zijn gegeven door $f(x) = (x^2 - 1)(x - 1\frac{1}{2})$ en $g(x) = -x + 1\frac{1}{2}$.

De grafieken van f en g snijden beide de y-as in het punt $A(0,1\frac{1}{2})$ en de x-as in het punt $B(1\frac{1}{2},0)$.

De grafiek van g raakt in punt A aan de grafiek van f.

4p 1 Toon dit aan met behulp van differentiëren.

In de figuur zijn de grafieken van f en g getekend.

figuur

De grafiek van f verdeelt driehoek OAB in twee delen.

Toon met een exacte berekening aan dat de oppervlakte van het linkerdeel twee keer zo groot is als de oppervlakte van het rechterdeel.

De functie h is gegeven door $h(x) = \frac{g(x)}{f(x)}$.

Bereken exact de coördinaten van de perforatie en stel vergelijkingen op van de asymptoten van de grafiek van h.

Verzadigingsgraad van hemoglobine

Zuurstof wordt in het menselijk lichaam getransporteerd door de hemoglobine in het bloed. De zuurstof wordt in de longen aan de hemoglobine gebonden en in de weefsels weer afgegeven. Het percentage van de hemoglobine dat zuurstof aan zich bindt, wordt de **verzadigingsgraad van hemoglobine** genoemd. Deze verzadigingsgraad hangt af van de **partiële zuurstofdruk**; dit is het deel van de totale luchtdruk in de longen dat veroorzaakt wordt door de zuurstof.

In 1910 heeft de fysioloog Hill gevonden dat onder bepaalde omstandigheden het verband tussen de partiële zuurstofdruk p en de verzadigingsgraad v van hemoglobine kan worden benaderd met de formule:

$$v = \frac{100p^3}{p^3 + 25000}$$

Hierin is:

v de verzadigingsgraad van hemoglobine in procenten en p de partiële zuurstofdruk in mmHg (millimeter kwik, de toen gebruikte eenheid voor druk).

Bereken de partiële zuurstofdruk als de verzadigingsgraad van hemoglobine 75% is. Rond je antwoord af op een geheel aantal mmHg.

In de figuur is de grafiek getekend van ν als functie van p volgens de benaderingsformule van Hill.

Bereken met behulp van de afgeleide functie van v voor welke waarde van p de grafiek het steilst is. Rond je antwoord af op een gehele waarde.

Hill vond zijn formule doordat hij ontdekte dat $\frac{v}{100-v}$ evenredig is met p^3 .

De evenredigheidsconstante is $4 \cdot 10^{-5}$. Dat wil zeggen:

$$\frac{v}{100-v} = 0,00004p^3$$

4p 6 Herleid de formule
$$\frac{v}{100-v} = 0,00004p^3$$
 tot de formule $v = \frac{100p^3}{p^3 + 25000}$.

Vermenigvuldigen in horizontale en verticale richting

De functie f is gegeven door $f(x) = \frac{1 + \ln x}{x}$.

Voor elke waarde van c is de functie g_c gegeven door $g_c(x) = \frac{c + \ln x}{x}$.

De grafiek van f wordt ten opzichte van de x-as vermenigvuldigd met e, het grondtal van de natuurlijke logaritme. Vervolgens wordt de zo verkregen grafiek ten opzichte van de y-as vermenigvuldigd met $\frac{1}{e}$.

Hierdoor ontstaat de grafiek van $\,g_c\,$ voor een waarde van c.

 $_{\rm 4p}$ 7 Bereken exact deze waarde van c.

In de figuur is de grafiek van g_3 getekend. Ook de grafiek van f is in de figuur getekend. W is het vlakdeel dat wordt ingesloten door de grafieken van f en g_3 en de lijnen met vergelijking x=1 en x=e.

4p **8** Bereken exact de oppervlakte van W.

Twee vierkanten tegen een driehoek

Voor positieve waarden van p en q is gegeven de driehoek OAB met O(0,0), A(p,q) en B(2,0). Tegen de zijden OA en AB liggen de vierkanten OAEF en ABCD. Deze vierkanten liggen buiten driehoek OAB. Het midden van lijnstuk OB is punt M. In de figuur is een mogelijke situatie weergegeven.

figuur

Er geldt:
$$\overrightarrow{OD} = \begin{pmatrix} p+q \\ 2-p+q \end{pmatrix}$$
.

зр **9** Toon dit aan.

Verder geldt:
$$\overrightarrow{OE} = \begin{pmatrix} p-q \\ p+q \end{pmatrix}$$
.

4p **10** Toon aan dat lijn MA loodrecht staat op lijn ED.

Een hartvormige kromme

Voor $0 \le t \le 2\pi$ wordt de beweging van een punt P beschreven door de bewegingsvergelijkingen

$$\begin{cases} x(t) = 2\cos t - \cos(2t) \\ y(t) = 2\sin t - \sin(2t) \end{cases}$$

In figuur 1 is de baan van P getekend. Voor t=0 en $t=2\pi$ bevindt P zich in (1,0) .

 $_{\rm 6p}$ 11 Bereken exact de maximale snelheid van P.

De lijn met vergelijking x = 1 snijdt de baan van P behalve in het punt (1, 0) ook in de punten (1, a) en (1, -a), met a > 0. Zie figuur 2.

6p **12** Bereken exact de waarde van a.

figuur 1

figuur 2

De leeftijd van ons zonnestelsel

Volgens sterrenkundigen zijn de meteorieten die op aarde terechtkomen tegelijk met ons zonnestelsel ontstaan.

Meteorieten bestaan onder andere uit de stoffen rubidium-87 (Rb-87), strontium-87 (Sr-87) en strontium-86 (Sr-86).

Het radioactieve Rb-87 vervalt tot Sr-87. De boeveelbeid Sr-86 verande

Het radioactieve Rb-87 vervalt tot Sr-87. De hoeveelheid Sr-86 verandert niet.

Om de leeftijd t (in jaren) van een meteoriet te bepalen gebruikt men onder andere de verhouding:

$$a(t) = \frac{\text{hoeveelheid Rb-87}}{\text{hoeveelheid Sr-86}} \text{ op tijdstip } t$$

Deze verhouding verandert voortdurend vanaf het ontstaan van een meteoriet. Er geldt:

$$a(t) = a(0) \cdot e^{-\lambda t}$$

Hierin is λ de vervalconstante van Rb-87. Die is $1,42\cdot 10^{-11}$ per jaar. De constante a(0) is de verhouding tussen de hoeveelheden Rb-87 en Sr-86 op t=0.

Bereken op algebraïsche wijze in hoeveel tijd de waarde van a gehalveerd wordt. Geef je antwoord in miljarden jaren nauwkeurig.

De waarde a(0) is onbekend en verschilt per meteoriet. Daarom kunnen we de leeftijd van een meteoriet niet bepalen op grond van de gemeten waarde a(t) alleen. Leeftijdsbepaling is wel mogelijk door naast a(t) ook gebruik te maken van een tweede verhouding:

$$b(t) = \frac{\text{hoeveelheid Sr-87}}{\text{hoeveelheid Sr-86}} \text{ op tijdstip } t$$

Omdat Rb-87 vervalt tot Sr-87 en Sr-87 zelf niet vervalt, verandert de waarde van de **som** van a(t) en b(t) voor een bepaalde meteoriet niet in de loop der tijd. Dit betekent dat a(t) + b(t) = a(0) + b(0) voor elke $t \ge 0$.

Uit
$$a(t) + b(t) = a(0) + b(0)$$
 en $a(t) = a(0) \cdot e^{-\lambda t}$ volgt: $b(t) + (1 - e^{\lambda t})a(t) = b(0)$

3p 14 Toon dit aan.

Van twee even oude meteorieten, M_1 en M_2 , zijn de waarden a(t) en b(t) bepaald, waarbij t de leeftijd van deze meteorieten is. Zie de tabel.

tabel

meteoriet	a(t)	b(t)
M_1	0,60	0,739
M_2	0,20	0,713

Door gebruik te maken van:

- $b(t) + (1 e^{\lambda t})a(t) = b(0)$, met $\lambda = 1,42 \cdot 10^{-11}$ per jaar,
- de aanname dat b(0) voor elke meteoriet hetzelfde is en
- de gegevens uit de tabel

kan de leeftijd van de meteorieten (en volgens sterrenkundigen dus ook die van ons zonnestelsel) worden berekend.

^{4p} **15** Bereken deze leeftijd. Rond je antwoord af op miljarden jaren.

Let op: de laatste vragen van dit examen staan op de volgende pagina.

Gegeven zijn de cirkel c_1 met vergelijking $x^2+y^2=9$ en de cirkel c_2 met vergelijking $(x-15)^2+y^2=144$. In de figuur zijn c_1 en c_2 getekend.

figuur

Cirkel c_3 met middelpunt op de positieve y-as raakt de beide cirkels c_1 en $c_2\,.$

 $_{\mathrm{6p}}$ 16 Stel een vergelijking op van c_{3} .

De cirkels c_1 en c_2 hebben drie gemeenschappelijke raaklijnen.

8p 17 Stel van elk van deze gemeenschappelijke raaklijnen een vergelijking op.