21-484 Notes JD Nir jnir@andrew.cmu.edu April 25, 2012

\rightarrow K empe:

Heawood

<u>Def:</u> (p. 267)

Let G be a plane graph. The <u>dual</u> of G, denoted G^* , is a plane multigraph. From each region of G we pick one inner point to be a vertex of G^* . For every edge of G we add a curve connecting the vertices of G^* corresponding to the regions incident with e, such that this curve intersects e once and does not intersect anything else (including itself).

Example:

- \rightarrow The name "dual" is justified.
- \rightarrow We also talk about the dual of a planar graph, which is not unique.

 \Rightarrow The dual of a planar graph depends on the embedding.

Thm: "Every map can be colored in 4 colors."

- \rightarrow Taking the dual of a map gives a planar graph.
- \rightarrow Every planar graph is 4-colorable

About the proof:

- \rightarrow reducible configurations.
- \rightarrow unavoidable set of reducible configurations.

5-color thm

$$\begin{array}{c} 1 \text{ vertex of deg 0} \\ 1 \text{ vertex of deg 1} \\ \vdots \\ 1 \text{ vertex of deg 5} \end{array} \right\} \text{ unavoidable}$$

$$\rightarrow \text{Triangulation:}$$

2e = 3r

Ramsey Theory

<u>Def:</u> (p. 299)

The ramsey number $r(F_1, F_2)$ is the minimal number r such that in every red-blue coloring of the edges of K_r there is either a red copy of F_1 or a blur copy of F_2 .

$$\rightarrow r(n,m)$$
 is $r(K_n,K_m)$

$$\rightarrow r(n) = r(n, n)$$

Thm (Ramsey): r(n, m) is finite.

Proof: by double induction.

$$r(1,n) = r(m,1) = 1$$

 \rightarrow Assume that r(n', m') is finite for all pairs n', m' < n, m.

$$\rightarrow$$
 Let $r = r(n-1, m) + r(n, m-1)$

- \rightarrow Fix a vertex v.
- \rightarrow Let $N_{\rm red}$ be the set of vertices adjacent to v via a red edge.
- $\rightarrow N_{\rm blue}$.
- \rightarrow If both $|N_{\text{red}} < r(n-1,m)$ and $|N_{\text{blue}}| < r(n,m-1)$ 4

$$r = |N_{\text{red}}| + |N_{\text{blue}}| + 1 < r(n-1, m) + r(n, m-1) + 1$$

 \rightarrow One of them is large enough and we can finish