2009 年长沙市初中毕业学业考试试卷

考生注意: 本试卷共 26 道小题, 时量 120 分钟, 满分 120 分.

一、填空题(本题共8个小题,每小题3分,满分24分)

- 2、因式分解: $2a^2 4a =$ 。
- 3、据报道,今年"五·一"期间我市旅游总收入同比增长超过两成,达到 563 000 000 元,用科学记数法表示为_____元。
- 4、如图, $AB \perp CD$ 于点 B, $BE \neq \angle ABD$ 的平分线,则 $\angle CBE$ 的度数为。

- 5、如图, AB 是 $\odot O$ 的直径, C 是 $\odot O$ 上一点, $\angle BOC = 44^{\circ}$, 则 $\angle A$ 的度数为
- 6、如图, 等腰 $\triangle ABC$ 中, AB = AC, AD 是底边上的高, 若 AB = 5cm, BC = 6cm,

则
$$AD = _____$$
 cm。

7、从某玉米种子中抽取 6 批,在同一条件下进行发芽试验,有关数据如下:

种子粒数	100	400	800	1 000	2 000	5 000
发芽种子粒数	85	398	652	793	1 604	4 005
发芽频率	0.850	0.745	0.851	0.793	0.802	0.801

根据以上数据可以估计,该玉米种子发芽的概率约为_____(精确到 0.1)。

8、已知关于x的不等式组 $\begin{cases} x-a \geq 0, \\ 5-2x > 1 \end{cases}$ 只有四个整数解,则实数a的取值范围是_____。

二、选择题(本题共8个小题,每小题3分,满分24分)

9、下列各式中,运算正确的是()

A.
$$a^6 \div a^3 = a^2$$

B.
$$(a^3)^2 = a^5$$

C.
$$2\sqrt{2} + 3\sqrt{3} = 5\sqrt{5}$$

D.
$$\sqrt{6} \div \sqrt{3} = \sqrt{2}$$

- 10、已知三角形的两边长分别为 3cm 和 8cm,则此三角形的第三边的长可能是(
 - A. 4cm
- B. 5cm
- C. 6cm
- D. 13cm
- 11、已知关于x的方程 $x^2 kx 6 = 0$ 的一个根为x = 3,则实数k的值为()
 - **A.** 1

- B. -1
- C. 2
- D. -2

- 12、分式 $\frac{1}{a+1} + \frac{1}{a(a+1)}$ 的计算结果是 ()

 - A. $\frac{1}{a+1}$ B. $\frac{a}{a+1}$ C. $\frac{1}{a}$
- 13、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分

别为
$$s_{\mathbb{H}}^2 = 0.56$$
 , $s_{\mathbb{Z}}^2 = 0.60$, $s_{\mathbb{H}}^2 = 0.50$, $s_{\mathbb{T}}^2 = 0.45$,则成绩最稳定的是(

- A. 甲
- B. 7.
- C. 丙

D. $4\sqrt{3}$

- 14、如图,矩形 ABCD 的两条对角线相交于点O, $\angle AOB = 60^{\circ}$, AB = 2,则矩形的对角 线 AC 的长是 ()

 - 第14题
- B. 4

C. $2\sqrt{3}$

- 15、如图,已知 $\bigcirc O$ 的半径 OA = 6, ∠ $AOB = 90^{\circ}$,则∠AOB 所对的弧 AB 的长为 (
 - A. 2π
- B. 3π
- C. 6π
- D. 12π
- 16、已知实数 a 在数轴上的位置如图所示,则化简 $|1-a|+\sqrt{a^2}$ 的结果为()
 - A. 1
- B. -1
- C. 1-2a
- D. 2a-1
- 三、解答题(本题共6个小题,每小题6分,满分36分)
- 17、计算: $(-2)^2 + 2 \times (-3) + \left(\frac{1}{3}\right)^{-1}$ 。

18、先化简,再求值: $(a+b)(a-b)+(a+b)^2-2a^2$,其中a=3, $b=-\frac{1}{3}$.

19. 某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动. 如图,他们在河东岸边的A点测得河西岸边的标志物B在它的正西方向,然后从A点出发沿河岸向正北方向行进550米到点C处,测得B在点C的南偏西60°方向上,他们测得的湘江宽度是多少米?

(结果保留整数,参考数据: $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$)

20. 为了提高返乡农民工再就业能力,劳动和社会保障部门对 400 名返乡农民工进行了某项专业技能培训,为了解培训的效果,培训结束后随机抽取了部分参调人员进行技能测试,测试结果分成"不合格"、"合格"、"良好"、"优秀"四个等级,并绘制了如图所示的统计图,请根据统计图提供的信息,回答下列问题:

- (2)、从参加测试的人员中随机抽取一人进行技能展示,其测试结果为"优秀"的概率为_____;
- (3)、估计这 400 名参加培训的人员中,获得"优秀"的总人数大约是多少?

21、如图,E、F 是平行四边形 ABCD 对角线 AC 上两点,BE // DF ,求证: AF = CE 。

- 22、反比例函数 $y = \frac{2m-1}{x}$ 的图象如图所示, $A(-1, b_1)$, $B(-2, b_2)$ 是该图象上的两点.
- (1)、比较 b_1 与 b_2 的大小;
- (2)、求m的取值范围.

四、解答题(本题共2个小题,每小题8分,满分16分)

23. (本题满分8分)某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:

李老师: "平安客运公司有 60 座和 45 座两种型号的客车可供租用,60 座客车每辆每天的租金比 45 座的贵 200 元."

小芳: "我们学校八年级师生昨天在这个客运公司租了 4 辆 60 座和 2 辆 45 座的客车到韶山 参观,一天的租金共计 5000 元."

小明: "我们九年级师生租用 5 辆 60 座和 1 辆 45 座的客车正好坐满." 根据以上对话,解答下列问题:

- (1)、平安客运公司60座和45座的客车每辆每天的租金分别是多少元?
- (2)、按小明提出的租车方案, 九年级师生到该公司租车一天, 共需租金多少元?

- 24、(本题满分 8 分) 在 $Rt \triangle ABC$ 中, $\angle ACB = 90^\circ$, $D \not\in AB$ 边上一点,以BD 为直径的 $\odot O$ 与边 AC 相切于点 E ,连结 DE 并延长,与 BC 的延长线交于点 F .
- (1)、求证: BD = BF;
- (2)、若BC = 6,AD = 4,求 $\odot O$ 的面积.

- 五、解答题(本题共2个小题,每小题10分,满分20分)
- 25. (本题满分 10 分)为了扶持大学生自主创业,市政府提供了 80 万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款。已知该产品的生产成本为每件 40 元,员工每人每月的工资为 2500 元,公司每月需支付其它费用 15 万元。该产品每月销售量 y (万件)与销售单价 x (元)之间的函数关系如图所示。
- (1)、求月销售量y(万件)与销售单价x(元)之间的函数关系式;
- (2)、当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额一生产成本一员工工资一其它费用),该公司可安排员工多少人?
- (3)、若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?

26、(本题满分 10 分) 如图,二次函数 $y=ax^2+bx+c$ ($a\neq 0$)的图象与 x 轴交于 A、B 两点,与 y 轴相交于点 C . 连结 AC、BC,A、C 两点的坐标分别为 A(-3,0)、 $C(0,\sqrt{3})$,且当 x=-4 和 x=2 时二次函数的函数值 y 相等.

- (1)、求实数a, b, c 的值;
- (2)、若点M、N 同时从B 点出发,均以每秒 1 个单位长度的速度分别沿BA、BC 边运动,其中一个点到达终点时,另一点也随之停止运动。当运动时间为t 秒时,连结MN,将 $\triangle BMN$ 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;
- (3)、在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与 $\triangle ABC$ 相似?如果存在,请求出点Q的坐标,如果不存在,请说明理由.

参考答案及评分标准

一、填空题(本题共8个小题,每小题3分,满分24分)

1. 6 2. $2a(a-2)$ 3. 5.63×10^8 4. 135°
5. 22° 6. 4 7. 0.8 8. $-3 < a \le -2$
二、选择题(本题共8个小题,每小题3分,满分24分)
9. D 10. C 11. A 12. C 13. D 14. B 15. B 16. A
三、解答题(本题共6个小题,每小题6分,满分36分)
17. $\Re: (-2)^2 + 2 \times (-3) + \left(\frac{1}{3}\right)^{-1}$
$=4-6+3\cdots 3 \ \%$
=1. ······ 6 ½
18. $\Re: (a+b)(a-b)+(a+b)^2-2a^2$
$= a^2 - b^2 + a^2 + 2ab + b^2 - 2a^2$
$=2ab\cdots 5$
$\stackrel{\text{def}}{=} a = 3, b = -\frac{1}{3} \text{ ft}, 2ab = 2 \times 3 \times \left(-\frac{1}{3}\right)$
= -2 ······ 6 ½
19. 解: 由题意得: $\triangle ABC$ 中, $\angle BAC = 90^{\circ}$, $\angle ACB = 60^{\circ}$, $AC = 550$,
$AB = AC \cdot \tan \angle ACB$
$\approx 550\sqrt{3}$ ····································
pprox 952.6
\approx 953 (米).
答: 他们测得湘江宽度为 953 米 6 分
20. 解: (1) 40;
$(2) \frac{1}{4}; \qquad \qquad 4 $
(3) $400 \times \frac{1}{4} = 100$ (人)
21. 证明: 平行四边形 <i>ABCD</i> 中, <i>AD // BC</i> , <i>AD = BC</i> , ···································
$\therefore \angle ACB = \angle CAD.$

$\mathbb{Z} BE // DF$,

$$\therefore \angle BEC = \angle DFA$$
,

22. 解: (1) 由图知, y 随 x 增大而减小.

 $\mathbb{Z}-1>-2$,

四、解答题(本题共2个小题,每小题8分,满分16分)

23. 解: (1) 设平安公司 60 座和 45 座客车每天每辆的租金分别为
$$x$$
元, y 元. …… 1分

由题意,列方程组
$$\begin{cases} x-y=200, \\ 4x+2y=5000. \end{cases}$$
 5 分

解之得
$$\begin{cases} x = 900, \\ y = 700. \end{cases}$$
 7分

答:(略)

$$::AC$$
切 $\odot O$ 于 E ,

$$\therefore OE \perp AC$$
,

又
$$\angle ACB = 90^{\circ}$$
,即 $BC \perp AC$,

$$\mathbb{Z}OD = OE$$
,

$$\therefore \angle ODE = \angle OED$$
,

(2) 设 $\bigcirc O$ 半径为r, 由OE //BC 得 $\triangle AOE \hookrightarrow \triangle ABC$.

$$\therefore \frac{AO}{AB} = \frac{OE}{BC} , \quad \mathbb{Q} \frac{r+4}{2r+4} = \frac{r}{6} ,$$

$$\therefore r^2 - r - 12 = 0$$
,解之得 $r_1 = 4$, $r_2 = -3$ (舍). …… 7分

$$\therefore S_{\odot O} = \pi r^2 = 16\pi . \qquad 8 \, \text{ }$$

- 五、解答题(本题共2个小题,每小题10分,满分20分)
- 25. M: (1) $\leq 40 < x \leq 60 \text{ pt}$, $\Leftrightarrow y = kx + b$,

则
$$\begin{cases} 40k+b=4, \\ 60k+b=2 \end{cases}$$
 解得 $\begin{cases} k=-\frac{1}{10}, \\ b=8. \end{cases}$ $\therefore y=-\frac{1}{10}x+8.$

$$\therefore y = \begin{cases} -\frac{1}{10}x + 8, (40 < x \le 60) \\ -\frac{1}{20}x + 5(60 < x < 100) \end{cases}$$
 (直接写出这个函数式也记 4 分.)

(2) 设公司可安排员工a人, 定价50元时,

由
$$5 = (-\frac{1}{10}x + 8)(x - 40) - 15 - 0.25a$$
 得

30-15-0.25a=5,

(3) 当
$$40 < x \le 60$$
 时,利润 $w_1 = (-\frac{1}{10}x + 8)(x - 40) - 15 - 0.25a$
$$= -\frac{1}{10}(x - 60)^2 + 5.$$

$$\therefore x = 60$$
 时, $w_{\text{max}} = 5$ (万元); …… 8 分

当
$$60 < x < 100$$
 时,利润 $w_2 = (-\frac{1}{20}x + 5)(x - 40) - 15 - 0.25a$
$$= -\frac{1}{20}(x - 70)^2 + 10.$$

∴要尽早还清贷款,只有当单价 x=70 元时,获得最大月利润 10 万元.

设该公司n个月后还清贷款,则 $10n \ge 80$.

26、(1) 由题意,得
$$\begin{cases} 9a-3b+c=0,\\ 16a-4b+c=4a+2b+c,\\ c=\sqrt{3}. \end{cases}$$

解之得
$$\begin{cases} a = -\frac{\sqrt{3}}{3}, \\ b = -\frac{2\sqrt{3}}{3}, \\ c = \sqrt{3}. \end{cases}$$
 3 分

(2) 由 (1) 得
$$y = -\frac{\sqrt{3}}{3}x^2 - \frac{2\sqrt{3}}{3}x + \sqrt{3}$$
, 当 $y=0$ 时, $x=-3$ 或 1.

:
$$B(1, 0), A(-3, 0), C(0, \sqrt{3}).$$

$$\therefore$$
 $OA=3$, $OB=1$, $OC=\sqrt{3}$. 易求得 $AC=2\sqrt{3}$, $BC=2$, $AB=4$.

∴ $\triangle ABC$ 为 Rt \triangle ,且 $\angle ACB$ =90°, $\angle A$ =30°, $\angle B$ =60°.

又由 BM = BN = PN = PM 知四边形 PMBN 为菱形,

 $\therefore PN//AB$,

$$\therefore \frac{PN}{AB} = \frac{CN}{CB} \; , \; \; \ \, \mathbb{P} \frac{t}{4} = \frac{2-t}{2} \; .$$

$$\therefore t = \frac{4}{3}.$$

过P作 $PE \perp AB$ 于E,

在 Rt $\triangle PEM$ 中, $\angle PME = \angle B = 60^{\circ}$, $PM = \frac{4}{3}$.

$$\therefore PE = PM \cdot \sin 60^\circ = \frac{4}{3} \times \frac{\sqrt{3}}{2} = \frac{2}{3}\sqrt{3} .$$

$$ME = \frac{PE}{\tan 60^{\circ}} = \frac{2}{3}.$$

$$\therefore P(-1,\frac{2}{3}\sqrt{3}). \qquad \qquad 7 \,$$

(3) 由 (1)、(2) 知拋物线
$$y = -\frac{\sqrt{3}}{3}x^2 - \frac{2\sqrt{3}}{3}x + \sqrt{3}$$
 的对称轴为直线 $x = -1$,

且∠*ACB*=90°.

①、若*∠BQN*=90°,

∵BN 的中点到对称轴的距离大于 1,

$$\overline{m} \frac{1}{2}BM = \frac{2}{3} < 1,$$

∴以 BN 为直径的圆不与对称轴相交,

∴ ∠*BQN*≠90°,

即此时不存在符合条件的Q点.

②、若 *ZBNQ*=90°,

当 $\angle NBQ=60^{\circ}$,则Q、E重合,此时 $\angle BNQ \neq 90^{\circ}$;

当 $\angle NBQ=30^{\circ}$,则Q、P重合,此时 $\angle BNQ \neq 90^{\circ}$.

即此时不存在符合条件的Q点.

③、若 $\angle QBN$ =90°时,延长NM交对称轴于点Q,

此时,Q为P关于x轴的对称点.

