

BIRLA INSTITUTE OF TECHONOLOGY AND SCIENCE, PILANIPilani Campus

INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout Part-II

Date: 3/8/2016

In addition to part -I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CE G551

Course Title : DYNAMICS OF STRUCTURES

Instructor-in-charge: D. BHUNIA

Scope and Objective of the Course:

Natural phenomena and human activities impose forces of time-dependent variability on various civil engineering structures. This course deals with analysis and design of structures subjected to dynamic loads which involve consideration of time-dependent forces.

Therefore, this course is necessary for students desirous of joining design offices/ industry related to buildings, industrial plants, bridges, tanks, offshore structure, tall chimneys etc. At the end of the course work students will be able to determine the behavious of structures under dynamic loading and design a structure which is resistant to dynamic loading such as seismic, wind, seawave, vehicle induced vibration force etc.

Text Book (T):

T1. Anil K. Chopra, "Dynamics of Structures: Theory and applications to earthquake engineering", Prentice Hall India Ltd., 2007.

Reference Books (R):

- R1. R.W. Clough and J. Penzien, "Dynamics of Structures", McGraw Hill International edition, 1993.
- R2. Mukhopadhyay, M., "Structural Dynamics: Vibrations & Systems" Ane Books Pvt. Ltd., 2006.
- R3. Paz, M., "Structural Dynamics: Theory & Computation" CBS Publishers & Distributors, 2001.

Course Plan (Total of 42 lectures)

Lec.	Learning Objective	Topics to be covered				
No.			Ch			
1	Importance of the course	Introduction and Scope of dynamic analysis of structures; origins of				
		vibration theory and experiment; review of earlier concepts:				
		d'Alembert's principle, equations of motion.				
2-5	Fundamentals of Dynamics	Elements of a structural system: springs, dashpot, mass; Springs in				
	of Structures	parallel and series; methods to formulate equations of motion:	R2,R3			
6-10	Free vibration analysis of	Formulation (equation of motion) and solution of undamped and damped				
	S.D.O.F system	free vibration analysis of S.D.O.F system.	R2,R3			
11-14	Forced vibration analysis of	Formulation (equation of motion) and solution of undamped and damped				
	S.D.O.F system	forced vibration analysis of S.D.O.F system.	R2,R3			
15-18	Forced vibration analysis	Forced vibration under harmonic, periodic, impulse, step, ramp, general	T1-4,			
	(evaluation of response to	dynamic forces (time and frequency domain analysis) and response	6,7,			
	general dynamic loading)	spectrum load, support excited vibration, seismic pickups.	R2,R3			
19-24	Numerical methods for free	Numerical techniques for evaluation of dynamic response of SDOF	T1-5,			
	and forced vibration	system; time domain analysis; direct integration techniques; finite	R2,R3			
	analysis (evaluation of	difference method (Central Difference method); Newmark beta method;				

BIRLA INSTITUTE OF TECHONOLOGY AND SCIENCE, PILANI Pilani Campus

	dynamic response)	average and linear acceleration method.	
25-27	Analysis of two degree of	Development of equation of motion and solution for two degree of	T1-9,
	freedom	freedom systems.	11,
			R2,R3
28-31	Free vibration (Eigen	Free vibration analysis of MDOF systems; frequencies; mode shapes and	R1-
	value) analysis of lumped	response; orthogonality condition of mode shapes;	11,13,
	MDOF systems		R2,R3
32-37	Method of solving Eigen	Approximate methods for obtaining natural frequencies and mode	R1-13,
	value problems	shapes; Holzer method; Stodola's method; Rayleigh's method; Rayleigh-	R2,R3
	_	Ritz method; Inverse iteration method; Vector iteration method;	
		Rayleigh's Quotient iteration method; Matrix iteration method.	
38-42	Forced vibration analysis of	Generation of damping matrix for MDOF; dynamic properties; modal	R1-12,
	MDOF systems	damping; classical damping; damped response with Rayleigh and	R2,R3
	-	Caughey damping.Mode superposition method; mode acceleration	
		method; modal combination rules using absolute sum, SRSS and CQC	
		method. Response Spectrum, continuous system.	

Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Remarks
Mid-semester	90 min	40%	<test_1></test_1>	СВ
Take Home Assignments, Projects including Seminar	-	5%+10%	Continuous	ОВ
Comprehensive Examination	3 hrs	45%	<test_c></test_c>	OB

Chamber Consultation Hour: To be announced in the class.

Notices: Notices will be displayed on the Civil Engineering Dept. Notice Board only.

❖ Make-up Policy: Make-up will be granted on a case by case basis only on genuine reasons.

Instructor-in-charge

