International Rectifier

IRG4PC40W

INSULATED GATE BIPOLAR TRANSISTOR

Features

- Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications
- Industry-benchmark switching losses improve efficiency of all power supply topologies
- 50% reduction of Eoff parameter
- Low IGBT conduction losses
- Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability

Benefits

- Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode)
- Of particular benefit to single-ended converters and boost PFC topologies 150W and higher
- Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz)

Absolute Maximum Ratings

	Parameter	Max.	Units V	
V _{CES}	Collector-to-Emitter Breakdown Voltage	600		
I _C @ T _C = 25°C	Continuous Collector Current	40		
I _C @ T _C = 100°C	Continuous Collector Current	20	Α	
I _{CM}	Pulsed Collector Current ①	160		
I _{LM}	Clamped Inductive Load Current ②	160		
V_{GE}	Gate-to-Emitter Voltage	± 20	V	
E _{ARV}	Reverse Voltage Avalanche Energy 3	160	mJ	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	160	w	
P _D @ T _C = 100°C	Maximum Power Dissipation	65		
TJ	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		℃	
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)	1	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.77	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount		40	
VVt	Weight	6 (0.21)		g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600	_	_	٧	$V_{GE} = 0V, I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage 4	18	_	_	V	$V_{GE} = 0V, I_{C} = 1.0A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.44	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$	
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	_	2.05	2.5	V	I _C = 20A	$V_{GE} = 15V$
		_	2.36	_		I _C = 40A	See Fig.2, 5
		_	1.90	_		I _C = 20A , T _J = 150°C	
$V_{GE(th)}$	Gate Threshold Voltage	3.0	—	6.0		$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
$\Delta V_{GE(th)}/\Delta T_{J}$	Temperature Coeff. of Threshold Voltage	_	13	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
9 _{fe}	Forward Transconductance ©	18	28	_	S	$V_{CE} = 100 \text{ V}, I_{C} = 20 \text{A}$	
ICES	Zero Gate Voltage Collector Current	_	_	250	μA	$V_{GE} = 0V, V_{CE} = 600V$	
		_	_	2.0		$V_{GE} = 0V, V_{CE} = 10V, T$	J = 25°C
		_	—	2500		$V_{GE} = 0V, V_{CE} = 600V,$	T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

		- (-		
	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	_	98	147		I _C = 20A
Q _{ge}	Gate - Emitter Charge (turn-on)	_	12	18	nC	V _{CC} = 400V See Fig.8
Q _{gc}	Gate - Collector Charge (turn-on)	-	36	54		$V_{GE} = 15V$
t _{d(on)}	Turn-On Delay Time	-	27	—		
t _r	RiseTime	_	22	_	ns	$T_J = 25$ °C
t _{d(off)}	Turn-Off Delay Time	_	100	150	113	$I_C = 20A$, $V_{CC} = 480V$
t _f	FallTime	_	74	110		$V_{GE} = 15V$, $R_G = 10\Omega$
E _{on}	Turn-On Switching Loss	_	0.11	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss	-	0.23	_	mJ	See Fig. 9,10, 14
E _{ts}	Total Switching Loss	-	0.34	0.45		
t _{d(on)}	Turn-On Delay Time	-	25	_		$T_J = 150^{\circ}C$,
t _r	RiseTime	_	23	_	ns	$I_C = 20A, V_{CC} = 480V$
t _{d(off)}	Turn-Off Delay Time	_	170	_	113	$V_{GE} = 15V$, $R_G = 10\Omega$
t _f	FallTime	—	124	_		Energy losses include "tail"
E _{ts}	Total Switching Loss	-	0.85	—	mЛ	See Fig.10,11, 14
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package
Cies	Input Capacitance	—	1900	_		$V_{GE} = 0V$
Coes	Output Capacitance	-	140	_	рF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance	_	35	—		f = 1.0MHz

Notes:

- 1 Repetitive rating; $V_{GE} = 20V$, pulse width limited by max. junction temperature. (See fig. 13b)
- $\begin{tabular}{ll} \mathbb{Q} & $V_{CC}=80\%(V_{CES}),\ V_{GE}=20V,\ L=10\mu H,\ R_G=10\Omega,\\ & (See\ fig.\ 13a) \end{tabular}$
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- 4 Pulse width \leq 80µs; duty factor \leq 0.1%.
- ⑤ Pulse width 5.0µs, single shot.

2

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

T_J = 150 °C

T_J = 150 °C $V_{CC} = 50V$ V_{C

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate www.irf.com

Resistance

Fig. 10 - Typical Switching Losses vs. Junction Temperature

International
TOR Rectifier

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

* Driver same type as D.U.T.; Vc = 80% of Vce(max)

* Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated ld.

 $R_{L} = \frac{480V}{4 \times I_{C}@25^{\circ}C}$

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

Fig. 14a - Switching Loss Test Circuit

* Driver same type as D.U.T., VC = 480V

Fig. 14b - Switching Loss Waveforms

Case Outline and Dimensions — TO-247AC

NOTES:

- 1 DIMENSIONS & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIONS ARE SHOWN
- MILLIMETERS (INCHES).
- 4 CONFORMS TO JEDEC OUTLINE TO-247AC.

LEAD ASSIGNMENTS

- 1 GATE
- 2 COLLECTOR
- 3 EMITTER 4 COLLECTOR
- * LONGER LEADED (20mm) VERSION AVAILABLE (TO-247AD) TO ORDER ADD "-E" SUFFIX TO PART NUMBER

CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)

Dimensions in Millimeters and (Inches)

International IOR Rectifier

Data and specifications subject to change without notice. 4/00

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936