

Modeling groups and Data Center Requirements. Session's Keynote.

Sébastien Denvil,

CNRS, Institut Pierre Simon Laplace (IPSL)

- Major constraints (requirements' DNA)
- Modeling center requirements/constraints
- Data center requirements/constraints
- Take home slide

A one slide guide to CMIP5 from a data perspective

Fifth
Climate
Model
Intercomparison
Project
(CMIP5)

World Climate
Research Programme
WCRP- WGCM
Involves all the
major climate
modelling centres.

Original Timing:
o(2) PB of requested
output from 20+
modelling centres
finished early 2010!
Actual Timing?
Years late.

101 experiments
61 model variants
59,000 datasets!
4.5 million files
2 PB in global archive.
Unknown PB locally!

PCMDI-led,
Community developed
(GO-ESSP)
s/w infrastructure for
data delivery:
Earth System Grid
Federation

Coupled Model Intercomparison Project - CMIP6

International community under **strong** pressure

CMIP6/AR6 cycle

- Major constraints (requirements' DNA)
- Modeling center requirements/constraints
- Data center requirements/constraints
- Take home slide

Next generation model performance

Dynamico: 32x32x10x39lvl Vs LMDZ 96x95x39

Courtesy Thomas Dubos LMD/IPSL and Yann Meurdesoif LSCE/IPSL

Measured

Extrapolated

To keep in mind

"the potential to interpret, compare and reuse climate information results is strongly related to the quality of their description"

But metadata alone won't get us there!

Computation useless if results cannot be stored/distributed/read

TGCC computers and file system in a nutshell

Hype .vs. Reality

Simon **L**aplace

is-enes

Why is it good to log « all around »?

THEN...

Log files

```
Sun Dec 21 09:17:09 2008]
[Sun Dec 21 10:04:53 2008]
[Sun Dec 21 10:45:50 2008] [error
Sun Dec 21 11:14:09 2008] [error
Sun Dec 21 12:26:04 2008] [error
Sun Dec 21 13:41:05 2008] [error
[Sun Dec 21 14:37:16 2008] [error]
[Sun Dec 21 15:19:39 2008] [error]
Sun Dec 21 15:26:05 2008] [error
Sun Dec 21 15:51:07 2008]
```

NOW...

Operational intelligence

Synthesis is so important here also

Metrics Garden

Metrics Garden User Web Interface

Test Glecker like metrics on CMIP5 version of IPSL models

			Result															
		Variable	cit		hfis		hfss		pr		psi		rids		ridscs		rlus	
		RegionName	Globe	NHEX	Globe	NH												
Model	Experiment	SimName																
IPSL-CM5A-LR	historical	r1i1p1	-0.092	-0.118	+0.071	-0.006	-0.044	-0.024	+0.230	+0.241	+0.040	-0.020	+0.092	+0.072	+0.192	+0.092	-0.101	-0.
		r2i1p1	-0.098	-0.135	+0.055	-0.020	-0.062	-0.033	+0.213	+0.083	+0.039	+0.095	+0.026	-0.001	+0.124	+0.029	-0.113	-0.
		r3i1p1	-0.094	-0.126	+0.109	+0.010	-0.047	-0.035	+0.316	+0.238	+0.035	-0.033	+0.198	+0.155	+0.363	+0.230	-0.058	+0.
		r4i1p1	-0.090	-0.117	+0.036	-0.007	-0.071	-0.021	+0.252	+0.242	+0.001	-0.013	+0.136	+0.121	+0.217	+0.122	-0.089	+0.
		r5i1p1	-0.094	-0.115	+0.045	-0.038	-0.105	-0.072	+0.283	+0.197	+0.031	-0.019	+0.113	+0.034	+0.224	+0.056	-0.181	-0.
		r6i1p1	-0.097	-0.115	+0.053	+0.001	-0.087	-0.051	+0.370	+0.251	-0.041	-0.002	+0.116	+0.059	+0.221	+0.091	-0.057	-0.
IPSL-CM5A-MR	historical	r1i1p1	-0.122	-0.070	-0.331	-0.235	-0.167	-0.197	-0.537	-0.519	-0.214	-0.250	-0.409	-0.354	-0.510	-0.413	-0.142	-0.
		r2i1p1	-0.095	-0.030	-0.299	-0.220	-0.125	-0.170	-0.630	-0.593	-0.285	-0.245	-0.406	-0.343	-0.576	-0.383	-0.028	-0.
		r3i1p1	-0.097	-0.040	-0.370	-0.242	-0.125	-0.199	-0.597	-0.547	-0.303	-0.257	-0.433	-0.371	-0.628	-0.411	-0.052	-0.
IPSL-CM5B-LR	historical	r1i1p1	+0.878	+0.865	+0.630	+0.758	+0.833	+0.801	+0.098	+0.407	+0.697	+0.743	+0.567	+0.629	+0.372	+0.587	+0.819	+0.

- Major constraints (requirements' DNA)
- Modeling center requirements/constraints
- Data center requirements/constraints
- Take home slide

Hype .vs. Reality

Simon **L**aplace

Earth Observations

Complexity

Resolution,

Ehanced computing resources produce **MORE DATA**

My/Your Data Environment

At your home institution, you:

- → Have (some) control over your software environment
 - Favourite packages, e.g. IDL
 - Familiar Linux
- → Can buy/arrange more storage / compute on varying time-scales ... can optimise ...
- → Are responsible for deleting / preserving your own data
- → Are likely to be duplicating data others have already downloaded *in* your own institution ... let alone within a larger collaboration.

We all like control!

We all like the (illusion?) that we can scale our resources as necessary.

We all lose/destroy/duplicate data.

Most of us do our HPC remotely. Some of us do our analysis remotely. Why not more of us?

High Performance Data (HPD) Analysis Environment

Mutualized

Jointly delivered by

→IPSL laboratories.

Joint *users* (initially):

→IPSL community

Joint users (target):

→ French Academic community

Analysis capabilities

Environmental Data

Compute Service

Web Service Provision for:

- →Climate Science
- →Earth Observation
- →Environmental studies

Access services to ESGF System

Synchro-data find, download, and keep up to date the data users need.

CMIP5, CORDEX Obs4MIPs And *MIP

. . .

Big DATA Platform

Collaboration Environment

- → Access to Curated Archive.
- → Large shared "Group Work Spaces"
- → climate analysis enabled system
- → + 1 PB of high performance disk coupled to hundreds of cores configured for analysis

- Major constraints (requirements' DNA)
- Modeling center requirements/constraints
- Data center requirements/constraints
- Take home slide

Take home slide

- Be ready for CMIP6 to streamline "production phase"!
- Be in a position to make good decision from torrent of data. Turn data into information. We need operational intelligence.
- Roadmap, timeline, minute, milestone, deliverable, responsabilities ... publicly available.
- The High Performance Data (HPD) Analysis Environment approach
 - We will need not only to move computation to data,
 but aggregate our data collections

Thank you for your attention

sebastien.denvil@ipsl.jussieu.fr

