Discrete Math

		Contents		2 Interpretation	7
				§ 2.3 Quantiers with re-	
Part I	D	Discrete Math: Logic	1		8
Chapter I		Propositional Logic	1	then"	8
§	1.1	Connectives and Truth			
	As	ssingments	1	Part II Discrete Math: Set	
§	1.2	Consequence and		Theory	8
	Ec	quivalent	1		
	1	The definition of		Chapter III The definition of set	8
		consequence and		Chapter IV Relations	8
		logically equivalent	1	•	8
	2	Important properties	2		Ü
	3	Prove Logical		tions	9
		Equivalence	3		
	4	Relation among		tions	9
		tautologies, con-		§ 4.2 Relations and Sets	9
		tradictions, satis-		1 Equivalence	
		fiable assertions,		classes and Parti-	
		consequence re-		tions	9
		lations and logic		2 Transitive Clo-	
		equivalence	3	sures and Re-	
§	1.3	Normal Forms	4	flexive Transitive	
	**			Closures 1	0
_		First Order Logic,	•		
FO]			6		10
§		The syntax of first or-	-		10
e		r language	6		10
§		The semantics of first		1 Injection and Sur-	
	ore	der language	6	J	
	1	Structure	6	2 Equinumerous Sets 1	.2

CONTENTS II

	3	Countable Infin-		2	The Axioms of	
		ity and Uncount-			ZFC Set Theory .	15
		able Infinity	14	3	The Re-definition	
§	5.3	ZFC Set Theory	14		of Certain Con-	
	1	The Definition of			cepts with ZFC	16
		","	15			

Part I Discrete Math: Logic

Chapter I Propositional Logic

§ 1.1 Connectives and Truth Assingments

Define 1.1.1 (Truth table of Connectives) (Omitted)

Define 1.1.2 (Truth Assingments) Suppose Σ is the set of propositional variables. A mapping from Σ to $\{T, F\}$ called a truth assignment.

Define 1.1.3 Suppose Σ is the set of propositional variables and $\mathcal{J}:\Sigma\to\{\mathbf{T},\mathbf{F}\}$ is a truth assignment. The truth value of the compond proposition on \mathcal{J} ... (Omitted)

Define 1.1.4 (Tautology, contradiction) (Omitted)

Define 1.1.5 (Contingency, Satisfiable) A contingency is a compound proposition that is neither a tautology nor a contradiction.

A compound proposition is satisfiable if it is true under some truth assignment.

§ 1.2 Consequence and Equivalent

1 The definition of consequence and logically equivalent

Define 1.2.1 (Consequence) Suppose Φ is a set of propositions and ψ is one single proposition. We say that ψ is a consequence of Φ , written as $\Phi \models \psi$. if Φ 's being all true implies that ψ is also true.

In other words, $\Phi \models \psi$ if for any truth assignment $\mathcal{J}, \llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$ for any $\phi \in \Phi$

implies $\llbracket \psi \rrbracket_{\mathcal{J}} = \mathbf{T}$.

Define 1.2.2 (Logically Equivalent) ϕ is a logically equivalent to ψ , written as $\phi \equiv \psi$, if ϕ 's truth value and ψ 's truth value are the same under any situation. In other words, $\phi \equiv \psi$ if $[\![\phi]\!]_{\mathcal{J}} = [\![\psi]\!]_{\mathcal{J}}$ for any truth assignment \mathcal{J} .

Example 1.2.1
$$\Phi = \{ \}, \psi = p \lor \neg p, \Phi \models \psi \}$$

2 Important properties

Theorem 1.2.1

- $\phi \lor \neg \phi$ is an tautology
- $\phi \land \neg \phi$ is a contradiction
- $\phi, \psi \models \phi \land \psi$ (\land -Introduction)
 - $\phi \land \psi \models \phi \ (\land \text{-Elimination})$
 - $\phi \models \phi \lor \psi$ (\lor -Introduction)
 - If $\Phi, \phi_1 \models \psi, \Phi, \phi_2 \models \psi$, then $\Phi, \phi_1 \lor \phi_2 \models \psi$ (\lor -Elimination)

Proof (Proof of the last one) Suppose $\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$, $\llbracket \phi_1 \lor \phi_2 \rrbracket_{\mathcal{J}} = \mathbf{T}$. Then at least one of the following holds: $\llbracket \phi_1 \rrbracket_{\mathcal{J}} = \mathbf{T}, \llbracket \phi_2 \rrbracket_{\mathcal{J}} = \mathbf{T}.$

Theorem 1.2.2 (Contrapositive) If $\Phi, \neg \phi \models \psi$, then $\Phi, \neg \psi \models \phi$

Theorem 1.2.3

- $\neg(\neg q) \equiv q$ (Double Negation)
 $\phi \land \phi \equiv \phi$, $\phi \lor \phi \equiv \phi$ (Idempotent Laws)
 $\phi \land \psi \equiv \psi \land \psi$, $\phi \lor \psi \equiv \psi \lor \psi$ (Commutative Laws)

- $\phi \lor (\psi \land \chi) \equiv (\phi \lor \psi) \land (\phi \lor \chi), \quad \phi \land (\psi \lor \chi) \equiv (\phi \land \psi) \lor (\phi \land \chi)$ (Distributive Laws)
- $\neg (q \land q) \equiv \neg p \lor \neg q$, $\neg (q \lor q) \equiv \neg p \land \neg q$ (De Morgan's Laws)
- $\phi \wedge (\neg \phi) \equiv \mathbf{F}, \quad \phi \vee (\neg \phi) \equiv \mathbf{T}$ (Negation Laws)
- $\phi \wedge \mathbf{T} \equiv \phi$, $\phi \vee \mathbf{F} \equiv \phi$, $\phi \wedge \mathbf{F} \equiv \mathbf{F}$, $\phi \vee \mathbf{T} \equiv \mathbf{T}$ (Laws of logical constants)
- $\phi \lor (\phi \land \psi) \equiv \phi$, $\phi \land (\phi \lor \psi) \equiv \phi$ (Absorption Laws)

3 Prove Logical Equivalence

Theorem 1.2.4 (Transitivity) If $\phi \equiv \psi$ and $\psi \equiv \chi$, then $\phi \equiv \chi$.

Theorem 1.2.5 (Congruence Property)

- If $\phi \equiv \psi$, then $\neg \phi \equiv \neg \psi$
- If $\phi_1 \equiv \phi_2$, $\psi_1 \equiv \psi_2$, then $\phi_1 \wedge \psi_1 \equiv \phi_2 \wedge \psi_2$
- If $\phi_1 \equiv \phi_2$, $\psi_1 \equiv \psi_2$, then $\phi_1 \vee \psi_1 \equiv \phi_2 \vee \psi_2$

Theorem 1.2.6 (Reflexivity) $\phi \equiv \phi$

4 Relation among tautologies, contradictions, satisfiable assertions, consequence relations and logic equivalence

Theorem 1.2.7

- $\phi_1, \phi_2, \dots \phi_n \models \psi$ iff. $\left(\bigwedge_{k=1}^n\right) \land \neg \psi$ is not satisfiable.
 - $\{\ \} \models \phi \text{ iff. } \phi \text{ is an tautology.}$

• $\phi \equiv \psi$ iff. $\phi \models \psi$ and $\psi \models \phi$.

Theorem 1.2.8 If $\phi \models \psi$ and $\psi \models \chi$, then $\phi \models \chi$.

§ 1.3 Normal Forms

Define 1.3.1 (Disjunctive Normal Form, DNF)

- A literal is a propositional variable or its negation.
- A conjunctive clause is a conjunctions of literals.
- A **compound proposition** is in disjunctive normal form if it is a disjunction of conjunctive clauses.

Define 1.3.2 (Conjunctive Normal Form, CNF)

(Similar as above)

Example 1.3.1

- literals $x, y, z, p, q, r, \neg q$
- conjunctive clauses $p, p \land q, \neg p \land q$
- DNF $p, p \lor (\neg q \land r), \neg p \lor (q \land p \land r)$

Theorem 1.3.1 Every compound proposition is logically equivalent to some compound proposition in DNF.

Proof (Proof 1) Suppose that the compound proposition ϕ consists of the literals p_1, p_2, \dots, p_n .

For all $\mathcal J$ as a interpretation, we only need to prove that

$$\phi \equiv \bigvee_{\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}} \left(\bigwedge_{\mathcal{J}(p_i) = \mathbf{T}} p_i \wedge \bigwedge_{\mathcal{J}(p_i) = \mathbf{F}} \neg p_i \right) = \mathbf{T}$$

5

Consider a specific interpretation \mathcal{J}_0 , if $\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$, then

$$\left[\!\!\left[\bigvee_{\llbracket\phi\rrbracket_{\mathcal{J}}=\mathbf{T}}\left(\bigwedge_{\mathcal{J}(p_i)=\mathbf{T}}p_i\wedge\bigwedge_{\mathcal{J}(p_i)=\mathbf{F}}\neg p_i\right)\right]\!\!\right]_{\mathcal{J}_0}=\left[\!\!\left[\left(\bigwedge_{\mathcal{J}_0(p_i)=\mathbf{T}}p_i\wedge\bigwedge_{\mathcal{J}_0(p_i)=\mathbf{F}}\neg p_i\right)\right]\!\!\right]_{\mathcal{J}_0}$$

If $\mathcal{J}_0(p_i) = \mathbf{T}$, then $\llbracket p_i \rrbracket_{\mathcal{J}_i} = \mathbf{T}$,

if $\mathcal{J}_0(p_i) = \mathbf{F}$, then $\llbracket \neg p_i \rrbracket_{\mathcal{J}_i} = \mathbf{T}$.

So

$$\left[\left(\bigwedge_{\mathcal{J}_0(p_i) = \mathbf{T}} p_i \wedge \bigwedge_{\mathcal{J}_0(p_i) = \mathbf{F}} \neg p_i \right) \right]_{\mathcal{J}_0} = \mathbf{T}$$

Proof (Proof 2) Define $DNF(\phi)$ as follow and prove that $DNF(\phi) \equiv \phi$. **Define 1.3.3** • $DNF(\phi) \triangleq DNF_2(DNF_1(\phi))$

• $DNF_1(\neg\neg\phi) = DNF_1(\phi)$. (The De Morgan's law) $DNF_1(\phi \wedge \psi) = DNF_1(\phi) \wedge DNF_1(\psi) \quad (\forall \text{ is the same})$ $DNF_1(l) = l \quad l \text{ is a literal}.$

• $DNF_2(l)=l$ l is a literal, $DNF_2(\phi\vee\psi)=DNF_2(\phi)\vee DNF_2(\psi)$ If $\phi=\bigvee_{i=1}^n\phi_i,\psi=\bigvee_{j=1}^m\psi_j$, then

$$DNF_2(\phi \wedge \psi) = \bigvee_{i=1}^n \bigvee_{j=1}^m (\phi_i \wedge \psi_j)$$

Then it's obvious that $\phi \equiv DNF(\phi)$ and $DNF(\phi)$ is a DNF.

Theorem 1.3.2 Every compound proposition is logically equivalent to some compound proposition in CNF.

Proof (Similar as above)

Example 1.3.2 (*) The CDCL algorithm. (Suspended now)

Chapter II First Order Logic, FOL

§ 2.1 The syntax of first order language

Define 2.1.1

- Predicate Logic's Language
 - Variables x, y, z, \cdots
 - Constants c_1, c_2, \cdots
 - Prelicates P, Q, R, \cdots
 - Functions f, g, h, \cdots
 - Logic patterns $\exists, \forall, \land, \lor, \neg$
- Terms $x, y, c_1, c_2, f(x), g(x, y), \cdots$
- propositions $P(x), Q(f(x, g(x, y))), \exists x \forall y R(x, g(y)), \cdots$

§ 2.2 The semantics of first order language

1 Structure

Define 2.2.1 (*S*-structure)

Given a sumbol set S, an S-structure $\mathcal{A} = (A, \alpha)$ contains

- a domain A, which is a non-empty set.
- an interpretation of every predicate symbol.

Example 2.2.1 if P is a symbol of binary predicate, then $\alpha(P)$ is a mapping from $A \times A$ to $\{\mathbf{T}, \mathbf{F}\}$.

• an interpretation of every function symbol.

Example 2.2.2 if f is a symbol of unary function, then $\alpha(f)$ is a mapping from A to A.

• an interpretation of every constant symbol.

Example 2.2.3 if s is a constant symbol, $\alpha(c)$ is an element in domain A.

With a structure, we can determine the truth of an closed proposition.

2 Interpretation

Define 2.2.2 (S-interpretation)

Given a symbol set S, a S-interpretation $\mathcal{J} = (\mathcal{A}, \beta)$ is

- a S-structure $\mathcal{A} = (A, \alpha)$
- a S-assignment β : a mapping from variables to elements in the domain A

For $\mathcal{J}=(\mathcal{A},\beta)$ and $\mathcal{A}=(A,\alpha)$, we usually use $\mathcal{J}(P)$ and $\mathcal{A}(P)$ to represent $\alpha(P)$, use $\mathcal{J}(f)$ and $\mathcal{A}(f)$ to represent $\alpha(f)$, use $\mathcal{J}(c)$ and $\mathcal{A}(c)$ to represent $\alpha(c)$, and use $\mathcal{J}(x)$ to represent $\beta(x)$.

Define 2.2.3 (Terms' denotation)

For S-interpretation \mathcal{J} and a S-term t,

- $\bullet \ [\![x]\!]_{\mathcal{J}} = \mathcal{J}(x)$
- $\llbracket c \rrbracket_{\mathcal{J}} = \mathcal{J}(c)$
- $\llbracket f(t_1, t_2, \dots, t_n) \rrbracket_{\mathcal{J}} = \mathcal{J}(f) (\llbracket t_1 \rrbracket_{\mathcal{J}}, \llbracket t_2 \rrbracket_{\mathcal{J}}, \dots, \llbracket t_n \rrbracket_{\mathcal{J}})$

Define 2.2.4 (Propositions' truth)

For S-interpretation $\mathcal J$ and a S-proposition t,

•
$$\llbracket P(t_1, t_2, \dots, t_n) \rrbracket_{\mathcal{J}} = \mathcal{J}(P) (\llbracket t_1 \rrbracket_{\mathcal{J}}, \llbracket t_2 \rrbracket_{\mathcal{J}}, \dots, \llbracket t_n \rrbracket_{\mathcal{J}})$$

- $[\varphi \land \psi]_{\mathcal{J}} = [\![\land]\!] ([\![\varphi]\!]_{\mathcal{J}}, [\![\psi]\!]_{\mathcal{J}})$
- $\bullet \ \llbracket \neg \varphi \rrbracket_{\mathcal{J}} = \llbracket \neg \rrbracket \big(\llbracket \varphi \rrbracket_{\mathcal{J}} \big)$
- $[\![\forall x \varphi]\!]_{\mathcal{J}} = \mathbf{T}$ if and only if for every a in \mathcal{A} 's domain, $[\![\varphi]\!]_{\mathcal{J}[x \mapsto a]} = \mathbf{T}$
- $[\![\exists x\varphi]\!]_{\mathcal{J}} = \mathbf{T}$ if and only if for at least one a in \mathcal{A} 's domain, $[\![\varphi]\!]_{\mathcal{J}[x\mapsto a]} = \mathbf{T}$

where $\mathcal{J}[x \mapsto a]$ is a S-interpretation which keeps all other interpretations in \mathcal{J} and interprets x by a.

§ 2.3 Quantiers with restricted domains

1 The truth of "if-then"

Theorem 2.3.1

- $\phi \to (\psi \to \phi) \equiv \mathbf{T}$.
- $(\phi \to \psi \to \chi) \to (\phi \to \psi) \to (\phi \to \chi) \equiv \mathbf{T}$.
- $\phi \to \psi \equiv \neg \phi \lor \psi$

PartII Discrete Math: Set Theory

Chapter III The definition of set

(Omitted)

Chapter IV Relations

§ 4.1 Relations

1 Properties of relations

Define 4.1.1 Given R, a relation on A,

- **Reflexive** on A if it holds that $\forall a \in A, (aRa) \Leftrightarrow I_A \subseteq R$
- Symmetric on A if it holds that $\forall a, b \in A$ if aRb, then $bRa \Leftrightarrow R^{-1} = R$
- Transitive on A if it holds that $\forall a,b,c\in A$ if aRb,bRc, then $aRc\Leftrightarrow R\circ R\subseteq R$
- Antisymmetric on A if it holds that $\forall a,b \in A$ if aRb,bRa, then $a=b \Leftrightarrow R \cap R^{-1} = I_A$

2 Equivalence relations

Define 4.1.2 If $R \subseteq A \times A$ is reflexive, symmetric and transitive, then R is called a **equivalence relation** on A

§ 4.2 Relations and Sets

1 Equivalence classes and Partitions

Define 4.2.1 R is an equivalence relation on A, $a \in A$, then we define the equivalence class $[a]_R$ of A by

$$[a]_R = \{b \in A | bRa\}$$

Theorem 4.2.1 aRb iff. $[a]_R = [b]_R$

2 Transitive Closures and Reflexive Transitive Closures

Define 4.2.2 (Transitive Closures) Suppose R is a relation on A, R' is a transitive closure of R if

- $R \subseteq R'$
- R' is transitive
- $\forall T, T$ is transitive, $R \subseteq T$, then $R' \subseteq T$.

Define 4.2.3 (Another definition) $R^+ = \bigcup_{n=1}^{\infty} R^n$ is the transitive closure

Proof Let's prove that the two definitions are equivalent.

- $R \subseteq R^+$
- If aR^+b , bR^+c , then there exists m, n, aR^mb , bR^nc , then $aR^{m+n}c$, R^+ is transitive.
- If $R \subseteq T$ and T is transitive, if $R^n \subseteq T$, then $R^{n+1} = R^n \circ R \subseteq T \circ T \subseteq T$, so $R^+ = \bigcup_{n=1}^{\infty} R^n \subseteq T$.

So such R^+ is a transitive closure.

Chapter V Functions

§ 5.1 Functions

§ 5.2 Funcions and Sets

1 Injection and Surjection

Define 5.2.1

 $F: A \to B$,

- **Injection**(one-to-one map): $\forall a, a' \in A$, if F(a) = F(a'), then a = a'.
- Surjection(onto map): $\forall b \in B, \exists a \in A, F(a) = b.$
- **Bijection**(one-to-one correspondence): both one-to-one and onto.

Theorem 5.2.1

- If F, G are both injections, then $F \circ G$ is also an injection.
- If F, G are both surjection, then $F \circ G$ is also a surjection.
- If $F \circ G$ is an injection, then G is also an injection.
- If F is an bijection, then F^{-1} is also a bijection.

Theorem 5.2.2 (Berstern's Theorem) If there exist an injection from A to B and an injection from B to A, then there exists a bijection between A and B

Proof Suppose F is an one-to-one function from A to B, G is an one-to-one function from B to A.

Then we can construct a sequence of set as follow:

$$C_0 = \{a \in A | \forall b \in B, G(b) \neq a\} = A \setminus \{a | \exists b \in B, G(b) = a\},\$$

 $D_0 = \{F(a) | a \in C_0\} = B \setminus \{b \in B | \exists a \in A \setminus C_0, b = F(a)\}$

 $\forall n \geqslant 1$,

$$C_n = \left\{ a \in A | \forall b \in B \setminus \bigcup_{i=0}^{n-1} D_i, G(b) \neq a \right\}$$
$$D_n = \{ F(a) | a \in C_n \}$$

Now we define a function H, where

$$H(a) = \begin{cases} F(a), & a \in \bigcup_{\substack{n=0 \\ \infty}}^{\infty} C_n \\ b \ (a = G(b)), & a \notin \bigcup_{n=0}^{\infty} C_n \end{cases}$$

Let
$$C = A \setminus \bigcup_{n=0}^{\infty} C_n$$
, $D = B \setminus \bigcup_{n=0}^{\infty} D_n$

Now we prove that H is well-defined and is a bijection.

 \bullet Firstly we prove that such b exists.

 $\forall a \in C, a \notin C_0$, so $\exists b \in B, G(b) = a$. If $b \in D_n$, then $a = G(b) \in C_{n+1}$, contradictive! So $b \in D$. Due to G is an injection, such b is unique.

• Then we prove that H is an injection.

 $\forall a \in \bigcup_{n=0}^{\infty} C_n, F(a) \in \bigcup_{n=0}^{\infty} D_n$, and due to F is an injection on $\bigcup_{n=0}^{\infty} C_n$, H is an injection.

 $\forall a \in C, \exists b \in D, a = G(b), \text{ due to } G \text{ is an injection on } C, H \text{ is an injection.}$

• Finallty we prove that H is a surjection.

 $\forall b \in \bigcup_{n=0}^{\infty} D_n$ according to the define.

 $\forall b \in D, \exists a \in A, G(b) = a, \text{ so } a \notin C_0. \text{ If } a \in C_n (n \geqslant 1), \text{ then } b \in D_{n-1},$ contradictive! So $a \in C$.

2 Equinumerous Sets

Define 5.2.2

- If there exists an injection from A to B, then we write $A \preceq B$.
- If there exists a bijection between A, B, then we call A, B are equinumerous,

i.e.
$$A \approx B$$

Define 5.2.3 Denote the set of function (or its cardinality) $\{F \mid F : A \rightarrow B\}$ by B^A

Theorem 5.2.3 $\mathcal{P}(A) \approx \{F \mid F : A \to \{0, 1\}\}$

 $\begin{aligned} & \textbf{Proof} \quad \text{Let function } H: \ \mathcal{P}(A) \to \{F \mid F: \ A \to \{0,1\}\}, \\ & \forall X \in \mathcal{P}(A), H(X)(a) = 1 \text{ iff. } a \in X. \\ & \text{For any } F \in \{F \mid F: \ A \to \{0,1\}\}, \ X = \{a \mid F(a) = 1\} \in \mathcal{P}(A), H(X) = F. \\ & \text{If } H(X_1) = H(X_2) = F, \text{ then } X_1 = X_2 = \{a \mid F(a) = 1\}. \end{aligned}$

Theorem 5.2.4 If $A_1 \approx A_2, B_1 \approx B_2$, then $(A_1 \to B_1) \approx (A_2 \to B_2)$, i.e. $B_1^{A_1} \approx B_2^{A_2}$

Proof There exist $f \in (A_1 \to A_2), g \in (B_1 \to B_2), f, g$ are both bijections. Then let $H : (A_1 \to B_1) \to (A_2 \to B_2),$ for any $F : A_1 \to B_1, H(F) = g \circ F \circ f^{-1}$ $H(F_1) = H(F_2) \Rightarrow g \circ F_1 \circ f^{-1} = g \circ F_2 \circ f^{-1} \Rightarrow F_1 \circ f^{-1} = F_2 \circ f^{-1}.$ According to $\forall b \in A_2, \exists a \in A_1, f(a) = b.$ So $F_1 \circ f^{-1} = F_2 \circ f^{-1} \Rightarrow \forall b \in A_2, F_1 \circ f^{-1}(b) = F_2 \circ f^{-1}(b) \Rightarrow F_1(a) = F_2(a) \Rightarrow F_1 = F_2.$ ∀ $F_2 \in (A_2 \to B_2),$ let $F_1 = g^{-1} \circ F_2 \circ f.$ □

Theorem 5.2.5 $(A \times B \to C) \approx (A \to (B \to C))$, i.e. $C^{A \times B} \approx (C^B)^A$

Proof Let $H: (A \times B \to C) \to (A \to (B \to C)), H(F)(a)(b) = F(a, b).$ Omit the following proof.

Theorem 5.2.6 (Cantor's Theorem) $\mathcal{P}(A)$'s cardinality is bigger than A's.

Proof Prove by contradiction.

Assume that exists $A, \mathcal{P}(A) \approx A$, then there exists an bijection θ from A to $\mathcal{P}(A)$.

14

Let
$$X = \{x \in A \mid x \in \theta(x)\} \subseteq A$$
.

Consider $x = \theta^{-1}(X)$.

- If $x \in \theta(x) = X$, then according to the definition of $X, x \notin X$, impossiable!
- If $x \notin \theta(x) = X$, then according to the definition of $X, x \in X$, impossiable!

3 Countable Infinity and Uncountable Infinity

Example 5.2.1

- \mathbb{N} , $\mathbb{N} \times \mathbb{N}$, $\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{n \text{ times}}$ is countable.
- The set of all finit sequence of $\mathbb N$ is countable.

(equal to
$$\bigcup_{n=1}^{+\infty} \underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{n \text{ times}}$$
)

• \mathbb{Q} is countable.

$$\mathbb{Q} \preccurlyeq \mathbb{Z}^+ \times \mathbb{Z} \approx \mathbb{N} \times \mathbb{N} \approx \mathbb{N}, \mathbb{N} \preccurlyeq \mathbb{Q}$$

Example 5.2.2 • $2^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$

- $\mathbb{R} \approx 2^{\mathbb{N}}$ $\mathbb{R}^{\mathbb{R}} \approx 2^{\mathbb{R}} \approx \mathcal{P}(\mathbb{R})$

5.3 ZFC Set Theory

1 The Definition of "="

Define 5.3.1 Assembling a prelicate.

- (Axiom of reflexivity) $\forall x(x=x)$
- (Axiom of symmetry) (Omitted)
- (Axiom of transitivity) (Omitted)
- (Axiom of substitution) $\forall a \forall b (a = b \to (\phi[x \mapsto a] \to \phi[x \mapsto b]))$

2 The Axioms of ZFC Set Theory

Theorem 5.3.1

- (Axiom of Extension) $\forall A \forall B (A = B \Leftrightarrow \forall x (x \in A \leftrightarrow x \in B))$
- (Axiom of Union) $\forall \mathcal{A} \exists B \forall x (x \in B \leftrightarrow \exists C (C \in \mathcal{A} \land x \in C))$, we denote B as $\bigcup \mathcal{A}$
- (Axiom of Power Set) $\forall A \exists \mathcal{B} \forall C (C \in \mathcal{B} \leftrightarrow C \subseteq A)$, we denote \mathcal{B} as $\mathcal{P}(A)$
- (Axiom of Empty Set) $\exists X \forall x (\neg x \in X)$, we denote such X as \varnothing
- (Axiom of Infinity) $\exists X (\varnothing \in X \land \forall y (y \in X \to y \cup \{y\} \in X))$, we call such X inducive set.
- (Axiom Schema of Specification) $\forall A \exists B \forall x (x \in B \leftrightarrow (x \in A \land \phi(x)))$, we denote such B as $\{x \in A \mid \phi(x)\}$
- (Axiom of Regularity) $\forall A \exists y (y \in A \land y \cap A = \varnothing) \Leftrightarrow \forall A \exists y (y \in A \land \forall x (x \in A \rightarrow \neg x \in y))$

3 The Re-definition of Certain Concepts with ZFC

Define 5.3.2 (The definition of nature numbers)

 $0: \varnothing$

 $1 : 0 \cup \{0\}$

 $2 : 1 \cup \{1\}$

. . .

We define \mathbb{N} as the smallest inducive set, i.e. for any inducive set $T, \mathbb{N} \subseteq T$. Obviously all the numbers we defined above is the elements of \mathbb{N} .

Define 5.3.3 (The definition of ordered pairs)

We define (a, b) as $\{\{a\}, \{a, b\}\}.$

Define 5.3.4 (The options of nature numbers)