PREZIME I IME:	

BROJ INDEKSA:

TEORIJA

	1.	Nacrtati	4-regularni	graf sa 4	l čvora.
--	----	----------	-------------	-----------	----------

2.	Koliko ima	a neizomorfnih	grafova	čiji su	nizovi	stepena	čvorova	(0.	. 0.	0.	0) ?

- 3. Da li su tri boje dovoljne da se pravilno po čvorovima oboji proizvoljni kompletan graf?
- 4. Kako izgleda graf kome su u Priferovom nizu svi elementi isti?
- 5. Nacrtati proizvoljni točak koji ima savršeni mečing.
- 6. Nacrtati proizvoljan turnir i u njemu označiti kinga.
- 7. Da li moze graf da bude istovremeno Hamiltonov, Ojlerov, bipartitan i 3-obojiv?
- 8. Koliko iznose hromatski broj i hromatski indeks praznog grafa?
- 9. Nacrtati minimalno pokrivajuće stablo za težinsko stablo sa slike.

2	1	
4	5	2
3	2	

10. Šta je veće u proizvoljnom digrafu D: suma skorova svih čvorova ili broj (svih) grana?

Z A D A C I

- 1. G je graf sa n čvorova i e grana. Dokazati da važi $\delta(G) \leq \frac{2e}{n} \leq \Delta(G)$.
- $2.\,$ Koliko ima neizomorfnih 2-regularnih grafova sa $10\,$ čvorova?
- 3. Dva nesusedna čvora grafa G su stepena 3, a svi ostali stepena najviše 2. Dokazati da G nije Hamiltonov.
- 4. Ako je ${\cal G}$ kritičan k-hromatski,dokazati da je on povezan.
- 5. Nacrtati proizvoljan turnir sa bar 5 čvorova u kome je svaki čvor king.

PREZIME I IME:		
	BROJ INDEKSA:	

$T \to O R I J A$	
1. Koliko ima osmocifrenih brojeva napisanih samo dvojkama i nulama, takvih da im susedne cifre nisu iste?	
2. Napisati proizvoljan broj koji ima tačno 5 različitih delilaca.	
3. Na koliko načina se u niz mogu poređati tri Španca, tri Kamerunca i tri Australijanca?	
4. Da li je u razvoju $(1-x+2x^2)^{2014}$ veći koeficijent uz član najvećeg stepena, ili uz slobodan član?	
5. Da li je veće D_n ili $n!$?	
6. Izračunati $S(3,2)$.	
7. Koliko ima rešenja jednačina $x+y+z=5$ u skupu prirodnih brojeva?	
8. Ako je n paran, da li je D_n deljiv sa 4?	
9. Napisati karakterističnu jednačinu za rekurentnu relaciju $a_n = 2a_{n-3} - a_{n-2}$.	
10. Koliko negativnih elemenata ima niz d_n , zadat rekurektnom relacijom $d_n = d_{n-1} - d_{n-2}$, gde je $d_0 = 0$ i $d_1 = 1$?	

- 1. Dokazati: $\sum_{k=0}^{n} {n+1 \choose k+1} = 2^{n+1} 1.$
- 2. Dokazati da je \mathcal{D}_n paran broj ako i samo ako je n neparan.
- 3. Na koliko načina se od dva matematičara i 7 ekonomista može sastaviti stručna komisija od 6 članova u kojoj je bar jedan matematičar?
- 4. Na koliko načina se traka $2 \times n$ može popločati "pločicama" 1×2 i "L-pločicama" sa tri polja?
- 5. Odrediti broj celobrojnih rešenja jednačine x+y+z=14, ako je pritom $2\leq x\leq 7,\, 3\leq y\leq 4$ i $1\leq z\leq 4$.