ФИО	Группа	1	2	3	4	5	6	Σ	Оценка	Подпись

Вариант 1

Контрольный вопрос: Основная теорема вычислительной математики.

1. (2) Для поиска корня нелинейного уравнения

$$x^3 + 2x^2 - x + 0.1 = 0$$
,

принадлежащего отрезку [0.2, 0.8], предложить сходящийся метод простой итерации. Оценить его скорость сходимости.

2. (3) Функция задана таблицей:

x	1	2	3	4	
f(x)	e	2e	2e	e	

Известно, что f'(2) = -e и f'(3) = e. Построить для f(x) интерполяционный полином в форме Ньютона.

3. (2) Выписать формулы для вы тислення по формуле трапеций с погрешностью $\epsilon=10^{-3}$: $\int_0^1 \frac{\arctan x}{x\sqrt{x}} dx$. 3. (2) Выписать формулы для вычисления несобственного интеграла и указать шаг интегрирова-

4. (2) В таблице даны значения функции $y = \sqrt{1-x^2}$, задающей часть окружности радиуса 1, находящуюся в первой четверти декартовой системы координат. Используя формулу Симпсона, вычислить число π . Оценить погрешность метода при помощи правила Рунге. Какова ошибка округления, если значения функции даны с абсолютной погрешностью 0.005?

x	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875	1.000
f(x)	1.00	0.99	0.97	0.93	0.87	0.78	0.66	0.48	0.00

5. (5) Линейная система ОДУ:

$$\begin{cases} \dot{x} = 2y, \\ \dot{y} = -2x. \end{cases}$$

5. (5) Линейная система ОДУ: $\begin{cases} \dot{x}=2y,\\ \dot{y}=-2x, \end{cases}$ с начальными условиями $x(0)=1,\ y(0)=1$ решается методом «предиктор-корректор»:

$$\widetilde{u} = u^n + \frac{\tau}{2}f(u^n, t_n), \quad u^{n+1} = u^n + \tau f(\widetilde{u}, t_n + \frac{\tau}{2}),$$

с начальными условиями $x^0=1,\,y^0=1.$ Доказать, что решение разностной задачи сходится к решению дифференциальной задачи.

6. (3) Система уравнений «Брюсселятор»:
$$\begin{cases} \dot{u} = A + u^2 v - (B+1)v, \quad u(0) = 1, \\ \dot{v} = Bu - u^2 v, \quad v(0) = 1, \end{cases}$$

Решается с помощью следующего численного метода

$$k_{21} = A + \left(u^{n} + \frac{3 - \sqrt{3}}{6}\tau\left(A + (u^{n})^{2}v^{n} - (B + 1)v^{n}\right)\right)^{2} \cdot \left(v^{n} + \frac{3 - \sqrt{3}}{6}\tau\left(Bu^{n} - (u^{n})^{2}v^{n}\right)\right) - (B + 1)\left(v^{n} + \frac{3 - \sqrt{3}}{6}\tau\left(Bu^{n} - (u^{n})^{2}v^{n}\right)\right),$$

$$k_{22} = B\left(u^{n} + \frac{3 - \sqrt{3}}{6}\tau\left(A + (u^{n})^{2}v^{n} - (B + 1)v^{n}\right)\right) - \left(u^{n} + \frac{3 - \sqrt{3}}{6}\tau\left(A + (u^{n})^{2}v^{n} - (B + 1)v^{n}\right)\right)^{2} \cdot \left(v^{n} + \frac{3 - \sqrt{3}}{6}\tau\left(Bu^{n} - (u^{n})^{2}v^{n}\right)\right),$$

$$k_{31} = A + \left(u^{n} + \frac{3 + \sqrt{3}}{6}\tau k_{21}\right)^{2} \cdot \left(v^{n} + \frac{3 + \sqrt{3}}{6}\tau k_{22}\right) - (B + 1)\left(v^{n} + \frac{3 + \sqrt{3}}{6}\tau k_{22}\right),$$

$$k_{32} = B\left(u^{n} + \frac{3 + \sqrt{3}}{6}\tau k_{21}\right) - \left(u^{n} + \frac{3 + \sqrt{3}}{6}\tau k_{21}\right)^{2} \cdot \left(v^{n} + \frac{3 + \sqrt{3}}{6}\tau k_{22}\right),$$

$$\frac{u^{n+1} - u^{n}}{\tau} = \frac{k_{21} + k_{31}}{2}, \quad \frac{v^{n+1} - v^{n}}{\tau} = \frac{k_{22} + k_{32}}{2}.$$

Показать, что метод относится к классу явных методов Рунге-Кутты. Записать его таблицу Бутчера. Исследовать метод на аппроксимацию.

ФИО	Группа	1	2	3	4	5	6	Σ	Оценка	Подпись

Вариант 2

Контрольный вопрос: Определение устойчивости разностной схемы.

1. (2) Для поиска корня нелинейного уравнения

$$x = 4e^{2x} - \ln(2e),$$

такого, что x < -1, предложить сходящийся метод простой итерации и оценить его скорость сходимости.

2. (3) Функция f(x) задана таблицей:

$$\begin{array}{c|cccc} x & 0 & 1 & 2 \\ \hline f(x) & 0 & 1 & 4 \\ \hline \end{array}$$

Известно, что $f'(0) = +\infty$. С помощью интерполяции, найти значение x, при котором $f(x) = \sqrt{\frac{24}{7}}$. 3. (2) Выписать формулы для вычисления несобственного интеграла и указать шаг интегрирования по формуле трапеций с погрешностью $\epsilon = 10^{-3}$: $\int_0^{10} \frac{\ln(11-x)}{(10-x)^{3/2}} dx.$

4. (2) В таблице даны значения функции $f(x)=xe^x/(x+1)^2$ на отрезке [0,1]. Используя формулу Симпсона, вычислить число e, если известно, что $\int_0^1 f(x)dx=e/2-1$. Уточнить результат при помощи экстраполяции Ричардсона. Какова ошибка округления, если значения функции даны с абсолютной погрешностью 0.0005?

x	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875	1.000
f(x)	0.000	0.112	0.205	0.289	0.366	0.442	0.518	0.597	0.680

5. (5) Линейная система ОДУ:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -4x \end{cases}$$

 $\dot{y} = -4x$ с начальными условиями x(0) = 1, y(0) = 1 решается неявным методом Эйлера

$$u^{n+1} = u^n + \tau f(u^{n+1}, t_n + \frac{\tau}{2})$$

с начальными условиями $x^0=1,\ y^0=1.$ Доказать, что решение разностной задачи сходится к решению дифференциальной задачи.

6. (3) Уравнение Ван-дер-Поля в представлении Льенара записывается как система двух ОДУ:

$$\begin{cases} \dot{z} = -y, \\ \dot{y} = z - e\left(\frac{y^3}{3} - y\right); \quad e > 0, \end{cases}$$

с начальными условиями $y(0)=2,\,z(0)=0.$ Для ее решения использован метод Рунге-Кутты:

$$\begin{array}{c|cccc}
0 & & \\
\hline
\sqrt{2} & \sqrt{2} & \\
\hline
& \frac{2\sqrt{2}-1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}}
\end{array}$$

Выписать расчетные формулы для решения задачи. Исследовать метод на аппроксимацию.

ФИО	Группа	1	2	3	4	5	6	Σ	Оценка	Подпись

Вариант 3

Контрольный вопрос: Определение аппроксимации разностной схемы.

1. (2) Для нахождения корня нелинейного уравнения

$$x = 5x^2e^{-x}.$$

лежащего на отрезке [0.2, 0.4], предложить сходящийся метод простой итерации и оценить его скорость сходимости.

2. (3) Функция f(x) задана таблицей:

Найти значение x_0 , при котором f(x) = 2. Указание: Использовать интерполяционный полином в форме Лагранжа.

3. (2) Выписать формулы для вычисления несобственного интеграла и указать шаг интегрирования по формуле прямоугольников с погрешностью $\epsilon = 10^{-3}$: $\int_0^{10} \frac{\sin x \ln(1+x)}{x^2 \sqrt{x}} dx.$

4. (2) Используя формулу трапеции, оценить интеграл под кривой распределения Гаусса, заданной таблично. Распределение симметрично и задается формулой $p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$, математическое ожидание $\mu=1$, дисперсия $\sigma=1$. Какова ошибка округления, если значения функции даны с абсолютной погрешностью 0.0005?

x	0.0	0.4	0.8	1.2	1.6	2.0	3.0	4.0
f(x)	0.399	0.368	0.290	0.194	0.111	0.054	0.004	0.000

5. (5) Линейная система ОДУ:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = 4x \end{cases}$$

с начальными условиями x(0) = 1, y(0) = 1 решается методом трапеций

$$\frac{u^{n+1} + u^n}{\tau} = \frac{f(u^n, t_n) + f(u^{n+1}, t_{n+1})}{2}$$

с начальными условиями $x^0=1,\ y^0=1.$ Доказать, что решение разностной задачи сходится к решению дифференциальной задачи.

6. (3) Для неавтономного уравнения второго порядка ставится задача Коши:

$$\begin{cases} \frac{d^2x}{dt^2} + \frac{10}{t}\frac{dx}{dt} - \frac{100x}{t^2} = 0, \\ x(1) = 1, \ \dot{x}(1) = 0. \end{cases}$$

Для численного решения используется метод Рунге-Кутты:

$$\begin{array}{c|cccc}
0 & & & \\
\hline
2/3 & 2/3 & & \\
\hline
& 1/4 & 3/4 & \\
\end{array}$$

Выписать расчетные формулы метода для решения задачи. Исследовать метод на аппроксимацию.