МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №1.1.1

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Пилюгин Л. С. Б02-212 15 сентября 2022 г.

1 Аннотация

Цель работы: измерить удельное сопротивление тонкой проволоки круглого сечения, изготовленной из нихромового сплава.

Оборудование: линейка, штангенциркуль, микрометр, кусок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, потенциометр, ключ.

Способы определения сопротивления:

- 1. наклон графика U(I)
- 2. использование моста

2 Теоритические сведения

Удельное сопротивление проволоки круглого сечения:

$$\rho = R_0 \frac{\pi d^2}{4l},$$

 R_0 — сопротивление проволоки, d — её диаметр, l — длина.

По закону Ома напряжение U и ток I в образце связаны соотношением

$$U = RI$$

Для измерения тока и напряжения используется схема, изображённая на рисунке.

Вольтметр неидеален, поэтому надо учесть поправку на его конечное сопротивление R_V .

Показания амперметра I_A и вольтметра U_V связаны соотношением

$$V_V = R'I_A$$

 R^\prime — сопротивление параллельно соединённых вольтметра и проволоки.

$$R_0 = \frac{R_V R'}{R_V + R'} \approx R' \left(1 + \frac{R'}{R_V} \right)$$

График $U_V(I_A)$ — прямая с наклоном R'.

Линейка: $\Delta_{\pi} = \pm 0.5 \, \text{мм}$

Штангенциркуль: $\Delta_{\text{шт}} = \pm 0.05 \, \text{мм}$

Микрометр: $\Delta_{\mathrm{m}}=\pm0,\!005\,\mathrm{mm}$

Вольтметр:

Система	Цифровая
Класс точности	0,5
Цена деления	0,1 мВ
Внутреннее сопростивление	10 МОм
Погрешность	0,1 мВ

Амперметр:

Система	Магнито-электрическая
Класс точности	0,5
Предел измерений	750 мА
Число делений	150
Цена деления	5 mA
Чувствительность	30
Внутреннее сопростивление	37 мОм
Погрешность	1 мА

Мост постоянного тока Р4833:

Класс точности	0,1
Разрядность магазина сопротивлений	5 ед.
Исследуемый диапозон измерений	10^{-4} – 10 , Ом (для множителя $N=10^{-2}$)
Погрешность измерений в исследуемом диапозоне	±10 мОм

В диапозоне R_0 от 1 до 10 Ом относительная поправка к сопротивлению (отлличие R' от R) состоавляет около 10^{-6} ($R_0 = 10$ Ом), чем можно пренебречь и считать, что $R' \approx R$.

4 Результаты измерений

4.1 Измерение диаметра d проволоки

Измерения проводились штангенциркулем и микрометром для N=10 различных участков проволоки.

Таблица 1. Измерение диаметра проволоки штангенциркулем

Номер измерения	1	2	3	4	5	6	7	8	9	10
d_{mit} , mm	0,4	0,4	0,3	0,4	0,3	0,4	0,4	0,4	0,4	0,4

$$\begin{split} d_{\text{IIIT}} &= 0.38 \pm 0.05 \text{ мм} \\ \varepsilon_d &= 0.13 \end{split}$$

Таблица 2. Измерение диаметра проволоки микрометром

Номер измерения	1	2	3	4	5	6	7	8	9	10
d_{M} , mm	0,36	0,37	0,37	0,35	0,37	0,36	0,36	0,37	0,37	0,35

$$d_{\mathrm{m}}=0.364\pm0.005\,\mathrm{mm}$$
 $arepsilon_{d}=0.013$

Измерения микрометром точнее, поэтому далее будут использоваться они.

$$S=\pi \frac{d^2}{4}=0.104\pm 0.003\,\mathrm{mm}^2$$

Таблица 3. Показания амперметра и вольтметра

	$l=20\mathrm{cm}$											
U_V , мВ	106,1	297,8	474	614,3	819,5	1001,7	1187,8	1309,7	1693,3	2051,6	2436	
I_A , MA	45	135	215	285	380	460	545	600	745	930	1099	
$l=30\mathrm{cm}$												
U_V , мВ	151,3	360,3	441	501,5	613	838,8	1009,5	1207,4	1504	1967	2314,5	
I_A , MA	40	105	130	150	180	250	300	360	450	585	590	
	$l=50\mathrm{cm}$											
U_V , мВ	347,3	8636	1127,5	1417,3	1797,4	1966,5	2420,5	2769	3175	3579,5	3895	
I_A , MA	55	160	205	225	325	355	440	505	575	650	705	

4.2 Измерение сопротивления

Показания амперметра и вольтметра для разных длин проволоки приведены в таблице, графики изображены на рисунке.

По МНК находим наилуцшие значения для R_0 :

$$\overline{R_0} = \frac{\langle U_V I_A \rangle}{\langle I_A^2 \rangle}$$

Систематическая погрешность измерений будет порядка $R \frac{\Delta_{I_A}}{I_A} \sim 10^{-2}$, что на порядок меньше случайной погрешности, поэтому систематической погрешностью можно пренебречь.

Итого:

$$\begin{split} R_{20} &= 2{,}20 \pm 0{,}12\,\mathrm{Om}\ \varepsilon_{R_{20}} = 0{,}05\\ R_{30} &= 3{,}52 \pm 0{,}12\,\mathrm{Om}\ \varepsilon_{R_{20}} = 0{,}03\\ R_{50} &= 5{,}53 \pm 0{,}15\,\mathrm{Om}\ \varepsilon_{R_{20}} = 0{,}03 \end{split}$$

Измерения при помощи моста дают следующие результаты:

$$R_{20}=2{,}169\pm0{,}01\,{
m Om}\ \ arepsilon_{R_{20}}=0{,}005$$
 $R_{30}=3{,}305\pm0{,}01\,{
m Om}\ \ arepsilon_{R_{20}}=0{,}003$ $R_{50}=5{,}4301\pm0{,}01\,{
m Om}\ \ arepsilon_{R_{20}}=0{,}002$

Значения R_{20} и R_{50} , измеренные при помощи графика, отличаются от соответствующих значений для моста, но лежат в пределах погрешностей. А вот R_{30} довольно сильно отличается от значения, данного мостом. Это может быть связано с выбросным последним измерением. если его не учитывать, то $R_{30}=3.36\pm0.11\,\mathrm{Om}$, что совпадает со значением моста в пределах погрешности.

Далее будут использоваться значения R_0 для моста, т.к. они дают меньшую погрешность.

$$\rho_{20} = (1.13 \pm 0.03) \cdot 10^{-6} \, \mathrm{Om} \cdot \mathrm{m}$$

$$\rho_{30} = (1.15 \pm 0.03) \cdot 10^{-6} \, \mathrm{Om} \cdot \mathrm{m}$$

$$\rho_{50} = (1.13 \pm 0.03) \cdot 10^{-6} \, \mathrm{Om} \cdot \mathrm{m}$$

Окончательно $\rho = (1.14 \pm 0.03) \cdot 10^{-6} \, \text{Ом} \cdot \text{м}$ лежит в пределах допустимых значений.

Измерения l дают относительную погрешность $\varepsilon_l=10^{-3}$. При достигнутых точностях измерений l и d сопротивление можно измерять с точностью не более, чем $2 \cdot \varepsilon_d/2 \approx 0.01$.

5 Вывод

Значения ρ лежат в пределах допустимых (от 1,05 до 14 Ом·м), точность измерений довольно высока (порядка 1 %). Наибольший вклад в погрешность вносит точность измерения диаметра проволоки.