Towards the Use of Layer-to-Layer Stability Patterns for Early Accuracy Estimation in Question Answering

Minjoon Choi

Seoul National University, Seoul, South Korea minjoonchoi08@snu.ac.kr

□ Summary

The similarity between consecutive hidden representations across Large Language Model (LLM) transformer layers follows a consistent trajectory: the similarity is low (unstable) in early layers, rises to a peak (stable) around the 70-80th percentile layers, and then drops sharply at the final layers. But similarity alone weakly predicts accuracy in LLM question answering (QA) tasks.

☐ Why is early estimation in QA beneficial?

	Natural Questions	TriviaQA	GOOAQ
Generating	1.18 iter / sec	1.30 iter / sec	1.19 iter / sec
Probing Hidden States Before Generating	61.21 iter / sec	61.08 iter/sec	63.98 iter / sec
	Model: meta-llama/N	leta-Llama-3-8B	

	Natural Questions	TriviaQA	GOOAQ	
Generating	0.16 iter / sec	0.18 iter / sec	0.16 iter / sec	
Probing Hidden States Before Generating	24.20 iter / sec	23.93 iter/sec	26.10 iter / sec	
Model: meta-llama/Meta-Llama-3-70B				

☐ Why should we look at mid-to-late-layer hidden representations?

- Can evaluate how knowledgeable an LLM is about a
 given subject entity by only considering how it processes
 the name of that entity, before generating tokens
 (Gottesman et al., 2024)¹.
- Intermediate layers often surpass the final layer by up to 16% in downstream task accuracy (Skean et al., 2025)².
- While middle layers capture essential reasoning information, it may not be fully utilized or maintained by the later layers, potentially impacting the model's reasoning performance (Xie et al., 2024)³.
- The attributes rate at the last-subject position is substantially high in the intermediate-upper layers (Geva et al., 2023)⁴.

□ Datasets

- Natural Questions (Kwiatkowski et al., 2019)⁵
- TriviaQA (Joshi et al., 2017)⁶
- GOOAQ (Khashabi et al., 2021)⁷

☐ Models

- Llama: Meta-Llama-3-8B, Meta-Llama-3-70B
- Mistral: Mistral-7B-v0.3, Mistral-Nemo-Base-2407
 (12B), Mistral-Small-24B-Base-2501
- Qwen: Qwen3-8B, Qwen3-14B, Qwen3-32B

☐ Hidden Representation Probing Method

- For each layer $l \in \{1, 2, ..., L\}$, probe the raw hidden state h_l
 - Obtain the hidden state of the last token of input sequence, following previous works^{4,8-9}
- $\forall l \in \{1, 2, ..., L\}$, apply standardization on h_l vectors along with h_l vectors probed from other examples \rightarrow Obtain standardized hidden state \widetilde{h}_l

☐ Computing Layer-by-Layer Hidden Representation Similarities

- $\forall l \in \{1, 2, ..., L-1\}$, compute $sim(\widetilde{h_l}, \widetilde{h_{l+1}})$
- $sim(\widetilde{h_l}, \widetilde{h_{l+1}})$: cosine similarity between consecutive layers

☐ Can these layer-to-layer stability patterns be used to predict QA accuracy?

- To check the ability of hidden representation similarities to predict QA accuracy,
- $\forall l \in \{1, 2, ..., L-1\}$, we compute the correlation between
 - 1) $sim(\widetilde{h_l}, \widetilde{h_{l+1}})$
 - 2) Closed-book QA Accuracy
 - Possible Metrics: Hard Exact Match (EM), Soft
 EM, 1-gram (word-level) F1 Score

Model: Mistral-7B-v0.3 Dataset: TriviaQA

Model: Meta-Llama-3-8B Dataset: TriviaQA

- We trained Logistic Regression models that predict the Hard/Soft Exact Match label of a question example, given the observed layer-to-layer pair similarities.
- Performance of trained regression models

Each cell corresponds to:

("when predicting Hard EM" / "when predicting Soft EM")

□ Conclusions

- Across Llama, Mistral, and Qwen3 model families on commonsense knowledge-intensive benchmarks such as Natural Questions, TriviaQA, and GOOAQ, the layer-to-layer hidden representation similarities exhibit a consistent pattern: low similarity values are observed in early layers, these values peak around 70-80th percentile layers, and drop sharply at the final layers. The observation where hidden representations exhibit solid stability around midto-late-layers aligns with previous works²⁻⁴ that claim the significance of these layers.
- Consecutive layer similarities do not have
 significant correlation with accuracy in QA tasks.
 Regression models that were trained with a purpose
 of estimating QA accuracy before generation also
 underperformed. These results indicate that while
 layer-to-layer stability is an easy-to-access and fastto-compute signal, it is insufficient on its own for
 reliable early accuracy estimation.

☐ Acknowledgements

This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (Ministry of Education) (P0025681-G02P22450002201-10054408, Semiconductor-Specialized University)

□ References

NeurIPS 2022

[1] Gottesman et al., Estimating Knowledge in Large Language Models Without Generating a Single Token, EMNLP 2024 [2] Skean et al., Layer by Layer: Uncovering Hidden Representations in Language Models, ICML 2025 [3] Xie et al., Calibrating Reasoning in Language Models with Internal Consistency, NeurIPS 2024 [4] Geva et al., Dissecting Recall of Factual Associations in Auto-Regressive Language Models, EMNLP 2023 [5] Kwiatkowski et al., Natural Questions: A Benchmark for Question Answering Research, TACL 2019 [6] Joshi et al., TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension, ACL 2017 [7] Khashabi et al., GOOAQ : Open Question Answering with Diverse Answer Types, EMNLP Findings 2021 [8] Goloviznina et al., I've got the "Answer"! Interpretation of LLMs Hidden States in Question Answering, NLDB 2024

[9] Meng et al., Locating and Editing Factual Associations in GPT,