$1 \quad 2023$

1.1 Safety Stock

Theorem 1.1. Let the lead-time T be normally distributed, i.e. $T \sim N(\mu_{\ell}, \sigma_{\ell}^2)$ and denote the set of demand of period i as $\{D_i\}_{i=1}^T$ where $D_i \sim N(\mu_d, \sigma_d^2)$ for each $1 \leq i \leq T$. Then the safety stock level, SS satisfies the following equation

$$SS = z_{\alpha} \sqrt{\sigma_d^2 \mu_{\ell} + \mu_d^2 \sigma_{\ell}^2},$$

where z_{α} is the Z-value of a desired α which is chosen.

Proof. Denote the demand between within lead-time as $D(T) := \sum_{i=1}^{T} D_i$. The safety stock level is then set at

$$SS = z_{\alpha} \sqrt{Var(D(T))}.$$

Thus we need only to prove Var(D(T)).

From Towering-property, note that

$$\begin{split} \mathbb{E}[D(T)] &= \mathbb{E}\big[\mathbb{E}[D(T)|T]\big] \\ &= \mathbb{E}\big[T\mu_d\big] = \mu_d \mathbb{E}[T] = \mu_d \mu_\ell. \end{split}$$

Furthemore, again with Towering-property, we have

$$\begin{split} \mathbb{E}[D^2(T)] &= \mathbb{E}\big[\mathbb{E}[D^2(T)|T]\big] \\ &= \mathbb{E}\big[Var[D(T)|T] + \big(\mathbb{E}[D(T)|T]\big)^2\big] \\ &= \mathbb{E}\big[T\sigma_d^2 + \big(T\mu_d\big)^2\big] \\ &= \sigma_d^2\mathbb{E}[T] + \mu_d^2\mathbb{E}[T^2] \\ &= \sigma_d^2\mu_\ell + \mu_d^2\left(Var(T) + (\mathbb{E}[T])^2\right) \\ &= \sigma_d^2\mu_\ell + \mu_d^2\left(\sigma_\ell^2 + \mu_\ell^2\right). \end{split}$$

Finally,

$$Var(D(T)) = \mathbb{E}[D^2(T)] - (\mathbb{E}[D(T)])^2$$
$$= \sigma_d^2 \mu_\ell + \mu_d^2 (\sigma_\ell^2 + \mu_\ell^2) - (\mu_d \mu_\ell)^2$$
$$= \sigma_d^2 \mu_\ell + \mu_d^2 \sigma_\ell^2.$$

1.2 Binomal approx to Poisson

Theorem 1.2. For $\lambda = np$,

$$\lim_{n \to \infty} \binom{n}{k} p^k 1 - p^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

1.3 Gambler's Ruin

Let p is the probability of winning \$1 and q = 1 - p is the probability of losing \$1. Suppose that a person starts with i amount of money where 0 < i < N and i is the number he would want to walk away with. The probability of him winning from this starting position is given by the following equation:

$$a_k = \begin{cases} \frac{1 - \left(\frac{q}{p}\right)^i}{1 - \left(\frac{q}{p}\right)^N} & \text{where } p \neq q, \\ \frac{i}{N} & \text{where } p = q = \frac{1}{2}. \end{cases}$$

Proof. Note that

Then, we observe

$$a_{i} = pa_{i+1} + qa_{i-1}$$

$$\underbrace{(p+q)}_{=1} a_{i} = pa_{i+1} + qa_{i-1}$$

$$a_{i+1} - a_{i} = \frac{p}{q}(a_{i} - a_{i-1}).$$

Denote $b_j := a_i - a_{i-1}$ and note that $b_1 = a_1$ since $a_0 = 0$ is the absorption edge, we deduce by recursion that

$$b_{i+1} = \left(\frac{p}{q}\right)^{i+1} a_1.$$

Moreover, note that

$$a_{i+1} - a_1 = \sum_{i=1}^{k=1} a_{k+1} - a_k$$

$$= \sum_{k=1}^{i} \left(\frac{p}{q}\right)^k a_1.$$

$$\Rightarrow a_{i+1} = a_1 \left(1 + \sum_{k=1}^{i} \left(\frac{p}{q}\right)^k\right)$$

$$= a_1 \left(\sum_{k=0}^{i} \left(\frac{p}{q}\right)^k\right).$$

If $p \neq q$, by geometric series, we obtain

$$a_{i+1} = a_1 \frac{1 - \left(\frac{p}{q}\right)^{i+1}}{1 - \left(\frac{p}{q}\right)}.$$

If p = q = 0.5, then

$$a_{i+1} = a_1(i+1).$$

Now to solve for a_1 , observe that since at absorption point $a_N = 1$, then letting i + 1 = N, we get

$$1 = a_N = \begin{cases} \frac{1 - \left(\frac{q}{p}\right)^N}{1 - \left(\frac{q}{p}\right)} & \text{where } p \neq q, \\ a_1 N & \text{where } p = q = \frac{1}{2}, \end{cases}$$

which implies

$$a_1 = \begin{cases} \frac{1 - \left(\frac{q}{p}\right)}{1 - \left(\frac{q}{p}\right)^N} & \text{where } p \neq q, \\ \frac{1}{N} & \text{where } p = q = \frac{1}{2}. \end{cases}$$

Substituting this back, we obtained the desired equation.