Билеты по Матану, прости Господи

Илья Михеев

last upd 2 января 2021 г.

Часть І

Свёртки и приближение функций бесконено гладкими

1 Свёртка функций и её асоциативность. Дифференцирование свёртки

1.1 Определение

Свёрткой функции h(x) назовем такой интеграл:

$$h(x) = \int_{\mathbb{R}^n} f(x-t)g(t) dt = \int_{\mathbb{R}^n} f(t)g(x-t) dt$$
 (1)

или h = f * g.

1.2 Немного о существовании интеграла

Theorem 1. Если функции f и g имеют конечные интегралы, то f * g определена почти всюду и выполняется неравенство

$$\int_{\mathbb{R}^n} |f * g| \, dx \le \int_{\mathbb{R}^n} |f| \, dx \cdot \int_{\mathbb{R}^n} |g| \, dx \tag{2}$$

и равенство

$$\int_{\mathbb{R}^n} f * g \, dx = \int_{\mathbb{R}^n} f \, dx \cdot \int_{\mathbb{R}^n} g \, dx \tag{3}$$

Доказательство. Функция f(y)g(x) измерима по Лебегу и интеграл ее модуля равен произведению интегралов модулей f и g по теореме Фубини. Тогда выражение

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} |f(x-t)g(t)| dt dx \tag{4}$$

также равно произведению модулей f и g, так как различается от |f(y)g(x)| линейной заменой с ед. детерминантом. Отсюда можно понять, что интегралы в неравенстве

$$\left| \int_{\mathbb{R}^n} f(x-t)g(t) \, dt \right| \le \int_{\mathbb{R}^n} |f(x-t)g(t)| \, dt \tag{5}$$

определены почти для всех x и требуемое неравенство получается из интегрирования по x. Последнее равенство получается из теоремы Фубини линейной заменой x-t=y.

1.3 Ассоциативность

Theorem 2. Свёртка ассоциативна, то есть:

$$f * (g * h) = (f * g) * h$$
 (6)

Доказательство.

$$f*(g*h) = f* \int_{\mathbb{R}^n} g(x-t)h(t) dt = f*k = \int_{\mathbb{R}^n} f(x-u) \int_{\mathbb{R}^n} g(u-v)h(v) dv du$$
(7)
$$(f*g)*h = \int_{\mathbb{R}^n} f(x-t)g(t) dt*h = k*h = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x-u-v)g(v)h(u) dv du$$
(8)

Становится понятно, что первое равно второму после замены s=u+v во втором равенстве. Также надо в верхнем переставить второй интеграл в начало (имеем право). Ну сами попробуйте короче. \Box

1.4 Дифференцирование свёртки

Theorem 3. Если в свёртке функция д интегрируема с конечным интегралом, а f ограничена, также как и ее частная производная $\frac{\partial f}{\partial x_i}$. Тогда можем дифференцировать под знаком интеграла (по теореме из 20го сема, которая имеет буквально те условия, что описаны выше)

$$\frac{\partial (f * g)}{\partial x_i} = \int_{\mathbb{R}^n} \frac{\partial f(x - t)}{\partial x_i} g(t) dt = \frac{\partial f}{\partial x_i} * g$$
 (9)

Доказательство. Следует из теоремы, доказанной ранее (прошлый семестр), не уверен, что ее требуется передоказывать. \Box

2 Бесконечно гладкие функции с компактным носителем, примеры

Давайте для начала посмотрим на некоторую бесконечно гладкую функцию

$$f(x) = \begin{cases} 0, & x \le 0; \\ e^{-1/x}, & x > 0. \end{cases}$$
 (10)

Она бесконечно дифференцируема везде, кроме мб точки 0. Всякая производная справа от нуля у функции имеет вид $P(1/x)e^{(-1/x)}$, где P— многочлен. Отсюда следует, что предел ее производной в нуле справа равен нулю. Также имеет место (Лопиталь)

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x} = \frac{f^{(n+1)}(x)}{1} = 0$$
 (11)

Поэтому функция f бесконечно дифференцируема (бесконечно гладкая) на всей прямой. Тогда введем функцию $\varphi(x)$

$$\varphi(x) = f(x+1)f(x-1) \tag{12}$$

Которая будет бесконечно гладкой на всей прямой и будет отлична от нуля только на интервале (-1,1), на котором она будет положительна.

Lemma 4. Для всякого $\varepsilon > 0$ существует бесконечно гладкая функция $\varphi_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}^+$, отличная от нуля только в $U_{\varepsilon}(0)$ и такая, что

$$\int_{\mathbb{D}^n} \varphi_{\varepsilon}(x) \, dx = 1 \tag{13}$$

Для всяких $\varepsilon > \delta > 0$ существует бесконечно гладкая функция $\psi_{\varepsilon,\delta}$: $\mathbb{R}^n \to [0,1]$, отличная от нуля только в $U_{\varepsilon}(0)$ тождественно равная 1 в $U_{\delta}(0)$.

Доказательство. В первом случае пойдет функция вида

$$\varphi_{\varepsilon}(x_1, \dots, x_n) = A\varphi(\frac{\sqrt{n}x_1}{\varepsilon}) \dots \varphi(\frac{\sqrt{n}x_n}{\varepsilon})$$
 (14)

для уже известной функции φ и некоторой константы A. Способ построения функции указывает, что в пределе одного аргумента функция ненулевая при $x_i \leq \frac{\varepsilon}{\sqrt{n}}$.

Во втором случае сначала рассмотрим функцию одной переменной

$$\psi(x) = B \int_{-\infty}^{x} \varphi(t) dt, \qquad (15)$$

Где константу выбираем так, чтобы $\psi(x)\equiv 0$ при $x\leq -1$ и $\psi(x)\equiv 1$ при $x\geq 1.$ Тогда достаточно положить

$$\psi_{\varepsilon,\delta}(x) = \psi\left(\frac{\delta + \varepsilon - |x|}{\varepsilon - \delta}\right) \tag{16}$$

Такая вот прикольная псевдо-ступенька.

3 Приближение функций в \mathbb{R}^n (вместе с производными) бесконечно гладкими функциями

3.1 Простое приближение

Theorem 5. Пусть $\varphi: \mathbb{R}^n \to R$ — неотрицательная бесконечно гладкая функция, отличная от нуля только при $|x| \le 1$ и пусть $\int_{\mathbb{R}^n} \varphi(x) dx = 1$. Положим

$$\varphi_k(x) = k^n \varphi(kx), \tag{17}$$

эти функции тоже имеют единичные интегралы и φ_k отлична от нуля только при $|x| \leq 1/k$. (Попробуйте эту лабуду представить сначала без k^n , а потом поймите зачем k^n нужно). Теперь для непрерывной $f: \mathbb{R}^n \to \mathbb{R}$ определим свёртки

$$f_k(x) = \int_{\mathbb{R}^n} f(x-t)\varphi_k(t) dt = \int_{\mathbb{R}^n} f(t)\varphi_k(x-t) dt$$
 (18)

Функции f_k бесконечно дифференцируемые и $f_k \to f$ равномерно на компактных подмножествах \mathbb{R}^n .

Доказательство. Выпишем разность

$$f_k(x) - f(x) = \int_{\mathbb{D}_n} (f(x-t) - f(x))\varphi_k(t) dt$$
 (19)

Пусть f равномерно непрерывна в δ окрестности компакта $K \subset \mathbb{R}^n$ и пусть $|f(x)-f(y)|<\varepsilon$ при $|x-y|<\delta$ в этой окрестности. Выберем k

настолько большим, чтобы $1/k < \delta$. Тогда в интеграле $\varphi_k(t)$ отлична от нуля только при $|t| < \delta$, и тогда $|f(x-t) - f(x)| < \varepsilon$, при $x \in K$. Тогда при $x \in K$ верна оценка

$$|f_k(x) - f(x)| \le \varepsilon \int_{\mathbb{R}^n} \varphi_k(x) dx = \varepsilon$$
 (20)

Это показывает равномерную сходимость на компактах. Дифференцируемость можно доказать, используя дифференцирование интеграла

$$\int_{\mathbb{R}^n} f(t)\varphi_k(x-t) dt.$$
 (21)

по параметру по той же теореме из прошлого сема. Производная при $x \in K$ будет зависеть только от значения f в 1/k-окрестности K, то есть f можно считать интегрируемой при дифференцировании по параметру, что позволяет применить теорему.

Theorem 6. В условиях предыдущей теоремы, если исходная функция f имеет непрерывные производные до m-го порядка, то производные f_k до m-го порядка равномерно на компактах сходятся κ соответствующим производным f.

Доказательство. Давайте дифференцировать $f * \varphi_k$ по нескольким x_i точно также, как описано выше. Тогда получится

$$\frac{\partial^m (f * \varphi_k)}{\partial x_{i_1} \dots x_{i_n}} = \frac{\partial^m f}{\partial x_{i_1} \dots x_{i_n}} * \varphi_k$$
 (22)

Таким образом, последовательность производных свёртки является последовательностью свёрток производной f с теми же функциями φ_k . А значит для этой последовательности тоже имеет место верна равномерная сходимость к производной f.

3.2 Лебег!

Theorem 7. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ имеет конечный интеграл Лебега. Тогда свёртки $f * \varphi_k$ сколь угодно близко приближают f в среднем.

Доказательство. Возьмём $\varepsilon > 0$ и представим по теореме из 20го сема (о приближении ступенчатой в среднем)

$$f = g + h \tag{23}$$

где q — элементарно ступенчатая и

$$\int_{\mathbb{R}^n} |h(x)| \, dx < \varepsilon \tag{24}$$

Тогда по теореме 1

$$\int_{\mathbb{R}^n} |h * \varphi_k| \, dx < \varepsilon \tag{25}$$

Что значит, что если будет так, что

$$\int_{\mathbb{R}^n} |g - g * \varphi_k| \, dx < \varepsilon \tag{26}$$

То будет выполняться

$$\int_{\mathbb{R}^n} |f - f * \varphi_k| \, dx \le \int_{\mathbb{R}^n} |h(x)| \, dx + \int_{\mathbb{R}^n} |h * \varphi_k| \, dx + \int_{\mathbb{R}^n} |g - g * \varphi_k| \, dx < 3\varepsilon$$
(27)

Таким образом, достаточно доказать утверждение для элементарно ступенчатой g. Раскладывая g в сумму характеристических функций параллелепипеда с некоторыми коэффициентами, можно видеть, что достаточно доказать утверждение для одной характеристической функции параллелепипеда χ_P . Но разность $\chi_P - \chi_P * \varphi_k$ будет отлична от нуля только в 1/k-окрестности ∂P и будет там по модулю не более 1, то естьпосле интегрирования модуля разности мы получим не более $\mu(U_{1/k}(\partial P))$. Прямым вычислением можно убедиться, что эта мера стремится к нулю при $k \to \infty$

Если говорить проще, то мы смотрим на одну ступеньку и говорим, что ее характеристическая функция отлично приближается свертками. Причем мера точности приближения будет обратно пропорциональна $k \to$ всё по кайфу.

Часть II

Дифференцируемые отображения и криволинейные системы координат

4 Дифференцируемые отображения и производная композиции отображений

4.1 Дифференцируемые отображения

Definition 4.1 (Дифференцируемое отображение). Отображение $f:U\to \mathbb{R}^m$, где $U\subset \mathbb{R}^n$ и открытое, называется дифференцируемым, если представимо как

$$f(x) = f(x_0) + Df_{x_0}(x - x_0) + o(|x - x_0|)$$
(28)

при $x \to x_0$

где $Df_{x_0}: \mathbb{R}^n \to \mathbb{R}^m$ — линейное отображение, называемое производной в точке $x_0 \in U$.

[Непрерывно дифференцируемое отображение]

Definition 4.2. $f: U \to \mathbb{R}^m$ называется Непрерывно дифференцируемым, если $\forall x_0 \in U \,\exists D f_{x_0}$, которое непрерывно и непрерывно зависит от $x_0 \in U$.

Вот эта вот D де-факто — матрица $m \times n$, в которой каждая ячейка выглядит как $\left(\frac{\partial f_i}{\partial x_j}\right)$, и для проверки последнего определения достаточно проверить все эти ячейки на непрерывность.

4.2 Норма матрицы

Докажем существование "нормы" у матриц линейных отображений:

Lemma 8. \forall линейного $A: \mathbb{R}^n \to \mathbb{R}^m \exists ||A|| \in \mathbb{R}$ т.ч. $\forall x \in \mathbb{R}^n$

$$|Ax| \le ||A|| \cdot |x| \tag{29}$$

Доказательство. Ах непрерывно зависит от x. Рассмотрим n-1-мерную сферу $S^{n-1} = \{x \in \mathbb{R}^n \mid |x| = 1\}$

 S^{n-1} компактно $\to |Ax|$ достигает максимума на S^{n-1} .

Пусть $\max_{|x|=1} |Ax| = ||A|| \in \mathbb{R}.$

 $|Ax| \le ||A|| \cdot |x|$ верно при |x| = 1 . При x = 0 всё так же очевидно, при y = tx всё будет очевидно после вынесение t за скобки везде.

4.3 Производная композиции

Theorem 9. Пусть у нас есть $f: U \to \mathbb{R}^m$ и $g: V \to \mathbb{R}^k$, где $U \in \mathbb{R}^n$, а $V \in \mathbb{R}^m$. Обозначим также $f(x_0) = y_0 \in V$, $x_0 \in U$

Пусть также f дифференцируема в x_0 и g дифференцируема в y_0 . Тогда $g \circ f$ дифференцируемо в x_0 и $D(g \circ f)_{x_0} = Dg_{y_0} \circ Df_{x_0}$

 \mathcal{A} оказательство. Обозначим $A=Df_{x_0}$ и $B=Dg_{x_0}$. Тогда

$$f(x) = f(x_0) + A(x - x_0) + o(|x - x_0|)$$

$$g(x) = g(y_0) + B(y - y_0) + o(|y - y_0|)$$

$$g(f(x)) = g(f(x_0)) + B(A(x - x_0) + o(|x - x_0|)) + o(A(|x - x_0|) + o(|x - x_0|))$$
(30)

это же выражение равно

$$g(f(x)) = g \circ f(x_0) + B \cdot A(x - x_0) + Bo(|x - x_0|) + o(A|x - x_0|)$$
 (31)

которое используя тот факт, что Co(x) = o(Cx) = o(x) преобразовывается как:

$$g(f(x)) = g \circ f(x_0) + B \cdot A(x - x_0) + o(|x - x_0|) \tag{32}$$