APPLICATION OF CHI-SQUARE DISTRIBUTION

Prepared by -

RISHI R
SUHASI GOHIL
MOHITA AHUJA

Guided by -

DR.SANTOSHA CD

Table of Contents

- Introduction to chi-square distribution
 - Chi-square distribution and its characteristics
 - Applications
 - Assumptions
 - Test procedure for chi-square test
 - 1. Goodness of fit
 - 2.Independence of attributes
- Overview of our project
 - Project details
 - Project timeline

Table of Contents

- Analysis of data
 - Independence of attributes
 - Goodness of fit
- Limitations and challenges
- Scope of further study
- Acknowledgement

— 03

(>

Chi-square distribution

Karl Pearson in 1990, developed a test known as χ2-test to test if the deviation between observation (experiment) and theory may be attributed to chance (fluctuations of sampling) or if it is really due to the inadequacy of the theory to fit the observed data.

The probability density function (pdf) of the chi-square distribution with k degrees of freedom is,

$$f(x) = \begin{cases} \frac{1}{2^{\frac{k}{2}}} \Gamma(\frac{k}{2}) & \text{for } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

where k is a positive integer denoting degrees of freedom

F = Gamma function

The probability density curve can be given as,

— 04

<u>Characteristics of chi-square distribution with k degrees of freedom</u>

- Cumulative distribution function: $\frac{\sqrt{2}, -2}{\sqrt{k}}$
- Moment generating function: $(1-2t)^{\frac{1}{2}}$, t < 1/2
- Mean: k
- Median: $k\left(1-\frac{2}{9k}\right)^3$
- Mode: max (k 2, 0)
- Variance: 2k
- Skewness: $\frac{\text{Mean-Mode}}{\text{S.D}} = \frac{\text{k-(k-2)}}{\sqrt{2\text{k}}} = \sqrt{\frac{2}{\text{k}}}$
- Kurtosis: $\frac{12}{k}$

POINTS
TO
REMEMBER

Applications of chi-square distribution

Chi-square test for goodness of fit

Chi-Square goodness of fit test is a non-parametric test that is used to find out how the observed value of a given phenomena is significantly different from the expected value. It establishes the discrepancy between the observed values and the expected values from a normal distribution case.

Chi-square test for independence

The Chi-square test of independence determines whether there is a statistically significant association between two categorical variables. This test utilizes a contingency table to analyze the data. A contingency table is an arrangement in which data is classified according to two categorical variables. Each cell reflects the total count of cases for a specific pair of categories.

Assumptions for applying chi-square test

- The data are randomly drawn from a population
- The values in the cells are considered adequate when expected counts are not < 5 and there are no cells with zero count
- The sample size is sufficiently large. The application of the chi-square test to a smaller sample could lead to type II error (i.e. accepting the null hypothesis when it is actually false).
- The variables under consideration must be mutually exclusive (independent). It means that each variable must only be counted once in a particular category and should not be allowed to appear in other category.

-03

Test procedure for chi-square test for goodness of fit

Null and Alternative hypothesis

Ha: Theoretical frequency distribution is a good fit to the observed frequency distribution Vs

H₁: Theoretical frequency distribution is not a good fit to the observed frequency distribution

Test statistic

The test statistic is given by, $\chi^2 = \sum_{f_0} \left[\frac{(f_0 - f_e)^2}{f_o} \right] \sim \chi^2$ distribution with (n - 1) degrees of freedom

in which fo = experimented frequency of the observed facts fe = expected frequency of occurrence on null hypothesis.

Critical region and Conclusion

At α level of significance, the critical value is $\chi^2_{\alpha}(n-1)$

Reject the null hypothesis if,
$$\chi^2_{cal} > \chi^2_{\alpha}(n-1)$$

Or reject the null hypothesis if,
$$P(\chi^2 > \chi_{cal}^2) \le \alpha$$

Test procedure for chi-square test for independence

Null and Alternative hypothesis

H : The two attributes are independent of each other

Vs

H₁: The two attributes are dependent on each other

— 03

• **Test statistic**The test statistic is given by, $\chi^2 = \sum_{s=0}^{\infty} \left[\frac{(f_0 - f_e)^2}{f_s} \right] \sim \chi^2$ distribution with (r-1)(c-1) degrees of freedom

where r = the number of rows and c = number of columnsalso, fo = experimented frequency of the observed facts fe = expected frequency of occurrence on null hypothesis.

Critical Region and Conclusion

At α level of significance, the critical value is $\chi^2_{\alpha}(r-1)(c-1)$

Reject the null hypothesis if, $\chi^2_{cal} > \chi^2_{\alpha}(r-1)(c-1)$

Or reject the null hypothesis if, $P(\chi^2 > \chi_{cal}^2) \le \alpha$

To illustrate the above mentioned applications, we undertook a team project.

PROJECT TITLE

TECH IN LOCK-DOWN

— 13

Overview of our project

- Objective
 - "To capture your mode of entertainment via technology in the wake of covid'19 outbreak"
- Domain

```
Gaming
OTT Platforms (Over The Top)
Social media
```

Overview of our project

Methodology

Data collection method – Primary data collected through an online questionnaire as Network sampling technique

Test used - Chi-square test for goodness of fit Chi-square test for independence

Sample description – Target group, respondents' age ranging from 15 – 42 300+ responses from various parts of India

(**>**

Project Timeline

Phase 02
Working out
the confined
domains and
sub-domains

Phase 04
Constructing
the
questionnaire
and
collecting
data

01

02

03

04

Phase 01

Deciding on the broader question Phase 03

Having clarity
on the
objective of
the study

05

Phase 05

Presentation preparation and Analysis of data.

— 08

Chi-square test for independence

Variables taken –

Type of OTT platform (i.e. Netflix, Amazon prime etc) and Occupation of the respondent

Null and Alternative hypothesis

 H_{\circ} : The choice of OTT platform and occupation are independent of each other Vs

H₁: The choice of OTT platform and occupation are dependent on each other

• R programme -

```
Tech_OTT<-read.csv("Tech_OTT.csv")
Tech_OTT
head(Tech_OTT)
str(Tech_OTT)
library(gmodels)
Tech_Table1<-CrossTable(Tech_OTT$OTT.Platforms,Tech_OTT$Occupation,chisq
= TRUE, expected = TRUE, prop.r = FALSE, prop.c = FALSE, prop.t = F, prop.chisq = F)
Tech_Count<-Tech_Table1$t
Tech_Count
barplot(Tech_Count,beside
=T,col=c("Turquoise","Cadetblue","Cornflowerblue","Darkblue"),ylab="Frequency",xla
b="Occupation",legend=T)
```

• R Output obtained -

Tech_OTT\$OTT.Platforms	Employed	Self Employed	Student	Row Total
Amazon Prime Video	14 8.667	6.167	24 31.167	46
Hotstar	6 4.899	* 4 3.486	16 17.616	26
Netflix	18 27.130	19.304	97.565	144
You tube	14 11.304	11 8.043	35 40.652	60
Column Total	52	37	187	276
Statistics for All Table				

• Contingency table -

		Occupation				χ ² ₍₆₎	
OTT Platforms	Frequency	Employed	nployed Self Employed Stude		Total	A (6)	p-value
Netflix	Observed Frequency	18 (34.62%)	14 (37.84%)	112 (59.89%)	144		0.019283
Nethix	Expected Frequency	27.13	19.304	97.565	144		
Amazon Prime	Observed Frequency	14 (26.92%)	08 (21.62%)	24 (12.83%)	46		
Video	Expected Frequency	8.67	6.167	31.167	40	15.13	
YouTube	Observed Frequency	14 (26.92%)	11 (29.73%)	35 (18.72%)	60		
TouTube	Expected Frequency	11.304	8.043	40.652	00		
Hototor	Observed Frequency	06 (11.54%)	04 (10.81%)	16 (8.56%)	26		
Hotstar	Expected Frequency	4.899	3.486	17.616	20		
	Total	52	37	187	276		

Table 1.1: Association between OTT platform and occupation of the respondent

Critical value and conclusion –

Under H_o , the obtained χ^2 value = 15.13 at 5% level of significance Here the critical value is, $\chi^2_{\alpha}(r-1)(c-1) = \chi^2_{0.05(6)} = 12.592$ Since, $\chi^2_{\alpha}(r-1)(c-1)$ we reject the null hypothesis Also,

The obtained p value = 0.019283 at 5% level of significance Since, p value < 0.05, we reject the null hypothesis

i.e. the choice of OTT platform and occupation of the respondent are dependent on each other

• Clustered bar chart -

• Test with other socio-demographical variables -

Associated

PVALUE = 0.003

Chi-square test for independence

Variables taken –

PUBG players and age of the respondent

Null and Alternative hypothesis

 H_{\circ} : The choice to play PUBG and age are independent of each other Vs

H₁: The choice to play PUBG and age are dependent on each other

• R programme -

```
Tech_Gaming<-read.csv("Tech_Gaming.csv")
Tech_Gaming
table(Tech_Gaming$Call.Of.Duty.Players)
head(Tech_Gaming)
str(Tech_Gaming)
library(gmodels)
Tech_Table3<-CrossTable(Tech_Gaming$PUBG.Players,Tech_Gaming$Age,chisq
= TRUE, expected = TRUE, prop.r = FALSE, prop.c = FALSE, prop.t = F, prop.chisq = F)
Tech Table3
Tech_Count<-Tech_Table3$t
Tech_Count
barplot(Tech_Count,beside=T,col=c("Maroon","Yellow"),ylab="Frequency",xlab="Age",legen
d=T,width = 15, xlim = c(0,120)
```

• R Output obtained -

	Tech_Gaming\$	_	
ech_Gaming\$PUBG.Players	25 or more	Under 25	Row Total
Non-player	26	58.820	78
Players	10.820	40 33.180	44
Column Total	30	» 92 I	122
tatistics for All Table F	Factors		

• Contingency table -

PUBG	Frequency	Age (Group	Total	v ²	p-value
ГОВО	rrequency	Under 25	25 or more	TOtal	$\chi^{2}_{(1)}$	p-value
Players	Observed Frequency	40 (43.48%)	4 (13.33%)	44		
	Expected Frequency	33.18	10.82		8.92	0.002827
Non Blovere	Observed Frequency	52 (56.52%)	26 (86.67%)	70		
Non-Players	Expected Frequency	58.82	19.18	78		
	Total	92	30	122		

Table 1.2: Association between PUBG players and age of the respondent

Critical value and conclusion –

Under H_o , the obtained χ^2 value = 8.92 at 5% level of significance Here the critical value is, $\chi^2_a(r-1)(c-1) = \chi^2_{0.05(1)} = 3.841$ Since, $\chi^2_a(r-1)(c-1)$ we reject the null hypothesis Also,

The obtained p value = 0.002827 at 5% level of significance Since, p value < 0.05, we reject the null hypothesis

i.e. the choice to play PUBG and age of the respondent are dependent on each other

• Clustered bar chart -

• Test with other socio-demographical variables -

Associated

PVALUE = 0.020

Chi-square test for independence

Variables taken –

Whatsapp users and occupation of the respondent

Null and Alternative hypothesis

 $H_{\rm o}$: The usage of whatsapp and occupation are independent of each other Vs

H₁: The usage of whatsapp and occupation are dependent on each other

• R programme -

```
Tech_SocialMedia<-read.csv("Tech_SocialMedia.csv")
Tech SocialMedia
head(Tech_SocialMedia)
str(Tech_SocialMedia)
library(gmodels)
Tech Table2<-
CrossTable(Tech_SocialMedia$Whatsapp.User,Tech_SocialMedia$Occupation,chisq
= TRUE, expected = TRUE, prop.r = FALSE, prop.c = FALSE, prop.t = F, prop.chisq = F)
Tech Table2
```

• R Output obtained -

0			
		Student	Row Total
4 15.893	10 13.668	75 59.439	89
46 34.107	33 29.332	112	191
50	43	187	280
	Tech_SocialMedi Employed 4 15.893 46 34.107 50	Tech_SocialMedia\$Occupation	Tech_SocialMedia\$Occupation

• Contingency table -

Whatsapp	Frequency	Occupation				2	
		Self Employed	Employed	Student	Total	χ ² ₍₂₎	p-value
Users	Observed Frequency	33 (76.74%)	46 (92%)	112 (59.89%)	191	20.46	0.001
	Expected Frequency	29.33	34.11	127.56			
Non-users	Observed Frequency	10 (23.26%)	04 (8%)	75 (40.11%)	89		
	Expected Frequency	13.67	15.89	59.44			
	Total	43	50	187	280		

Table 1.3: Association between Whatsapp users and occupation of the respondent

Critical value and conclusion –

Under H_o , the obtained χ^2 value = 20.46 at 5% level of significance Here the critical value is, $\chi^2_a(r-1)(c-1) = \chi^2_{0.05(2)} = 5.991$ Since, χ^2 value > $\chi^2_a(r-1)(c-1)$ we reject the null hypothesis Also,

The obtained p value = 0.001 at 5% level of significance Since, p value < 0.05, we reject the null hypothesis

i.e. The choice to use whatsapp and occupation of the respondent are dependent on each other

• Clustered bar chart -

• Test with other socio-demographical variables -

Associated

PVALUE = 0.001

Chi-square test for goodness of fit

Variables taken –

Various online applications used for video calling

Null and Alternative hypothesis

H_o: The usage of video call application is equally distributed in the data Vs

H₁: The usage of video call application is not equally distributed in the data

R programme -

```
Vcall < -c(68,69,71,72)
names(Vcall)<-c("Google Meet","Google Duo","Zoom","Social Media Apps")
Vcall
Vcall/sum(Vcall)
Probability<-c(0.25,0.25,0.25,0.25)
#Ho:Proportion of usage of applications for video calls is 0.25
#Ha:Proportion of usage of applications for video calls is not same
chisq.test(Vcall,p=Probability)
```

R output obtained

```
> #Test of Goodness of Fit
> Vcall<-c(68,69,71,72)
> names(Vcall)<-c("Google Meet", "Google Duo", "Zoom", "Social Media Apps")
> Vcall
     Google Meet Google Duo
                                            Zoom Social Media Apps
> Vcall/sum(Vcall)
                Google Duo Zoom Social Media Apps
    Google Meet
       0.2428571
                 0.2464286
                                                          0.2571429
                                       0.2535714
> Probability<-c(0.25,0.25,0.25,0.25)
> #Ho:Proportion of usage of applications for video calls is 0.25
> #Ha:Proportion of usage of applications for video calls is not same
> chisq.test(Vcall,p=Probability)
       Chi-squared test for given probabilities
data: Vcall
X-squared = 0.14286, df = 3, p-value = 0.9862
```

• Frequency table -

Video call Apps	Observed Frequency	Expected Frequency	χ ² (3)	p-value
Google Duo	69(24.29%)	70		0.9862
Google Meet	68 (24.64%)	70	0.14	
Zoom	71 (25.36%)	70		
Social Media Apps	72 (25.71%)	70		
Total	280			

Table 2.0: Frequency distribution of usage of video call applications

Critical value and conclusion –

Under H_o , the obtained χ^2 value = 0.14 at 5% level of significance Here the critical value is, $\chi^2_{\alpha}(n-1)=\chi^2_{0.05(3)}=7.815$ Since, χ^2 value < $\chi^2_{\alpha}(n-1)$ we accept the null hypothesis Also,

The obtained p value = 0.9862 at 5% level of significance Since, p value > 0.05, we accept the null hypothesis

i.e The usage of video call application is equally distributed in the data

• Bar chart -

Limitations and challenges

- The target for the number of responses being 400, was not achieved
- Analysis was entirely based on the number and kind of responses we receive
- As the project was time bound, we faced time constraints
- Questionnaire was accessible to only those who had internet connection

Scope of further study

On account of the pandemic and also it's consequences, technology in it's various forms has influenced the lives of human beings of all age groups.

It is thus evident that technology has played a vital role not only in entertainment but also in the health regime and to enhance our abilities in various fields of interest as well.

Acknowledgement

We would like to express our special thanks of gratitude to Prof. Kavya S and Prof. Preeti Ravikiran for their able guidance and support

We would also like to extend our gratitude to our guide Dr. Santosha C D and Dr. Namrata P for their constant advice and encouragement

- The following books were referred for the completion of this project
 - Fundamentals of Statistics by S.C Gupta

THANK YOU FOR WATCHIGI