PHYS 474 - Quantum Mechanics

Winter 2024

Homework #3

- 1. A particle is trapped in an infinite square well with a width of a. We know that at t=0, it is equally probable for the particle to be found anywhere on the left-side of the well and impossible for it to be found on the right-side of the well.
 - (a) What is the normalized wavefunction, $\Psi(x,0)$ that represents this initial state? Note that you'll have to break one of our fundamental rules about wavefunctions for you to construct this state.
 - (b) What is the probability that you would measure an energy of $E = \frac{4\pi^2 \hbar^2}{2ma^2}$ at t = 0?
- 2. Consider the standard infinite square well with width a. The stationary state solutions are $\psi_n(x)$.
 - (a) Compute $\langle x \rangle$ and $\langle x^2 \rangle$ for $\psi_n(x)$.
 - (b) Compute $\langle p \rangle$ and $\langle p^2 \rangle$ for $\psi_n(x)$.
 - (c) Compute σ_x and σ_p and confirm that the uncertainty principle is satisfied for any allowed value of n.
- 3. A particle in an infinite square well with width a is initially observed in a quantum state described by the wavefunction,

$$\Psi(x,0) = A \left[\psi_1(x) + \psi_3(x) \right].$$

where A is a positive, real constant and $\psi_1(x)$ and $\psi_3(x)$ are solutions to the time-independent Schrödinger equation for n=1 and n=3, respectively.

- (a) Normalize $\Psi(x,0)$ assuming that $\psi_1(x)$ and $\psi_3(x)$ are both separately normalized.
- (b) Compute $|\Psi(x,t)|^2$ and simplify as much as possible.
- (c) If you measured the particle's energy, what value(s) might you possibly obtain and what is the probability of measuring them?