CIT 596 Homework 3

Steven Tomcavage stomcava@seas.upenn.edu

February 17, 2011

1 Exercise 1.13

Give a DFA that recognizes the language F where F is the language of all strings over $\{0,1\}$ that do not contain a pair of 1s which are separated by an odd number of symbols.

Figure 1: DFA for Exercise 1.13

2 Exercise 1.16b

Convert the given NFA (omitted) to a DFA.

Figure 2: DFA for Exercise 1.16b

3 Exercise 1.17a

Give an NFA recognizing the language $(01 \bigcup 001 \bigcup 010)^*$.

Figure 3: DFA for Exercise 1.17a

4 Exercise 1.17b

Convert the NFA from Exercise 1.17a to an equivalent DFA.

Figure 4: DFA for Exercise 1.17b

5 Exercise 1.19b

Convert the following regular expression to an NFA: $(((00)^*(11)) \cup 01)^*$.

Figure 5: DFA for Exercise 1.19b

6 Exercise 1.21b

Convert the following NFA to a regular expression.

(e) Rip out state 1 to get the final regular expression.

Figure 6: DFA for Exercise 1.21b

7 Exercise 1.28c

Convert the regular expression $(a \cup b^+)a^+b^+$ to an NFA, given that $\Sigma = \{a, b\}$.

Figure 7: DFA for Exercise 1.28c

8 Exercie 1.29b

Use the pumping lemma to show that the language $A_2 = \{www \mid w \in \{a, b\}^*\}$ is not regular.

Proof.

- 1. Assume A_2 is regular.
- 2. Let the three ws in the language be represented as w_1, w_2, w_3 .
- 3. Then $|w_1| = |w_2| = |w_3|$.
- 4. Let $xyz = w_1$.
- 5. Given that $y \neq \epsilon$ and either x or $z \neq \epsilon$, then $y < w_2$ and $y < w_3$.
- 6. Pumping y up will make $|w_1| \neq |w_2|$, which breaks the language.
- 7. Therefore, since the language A_2 cannot be pumped, is not regular.

9 Exercie 1.32

Show that the language B (omitted) is regular.

Proof.

- 1. Let B_R be the reverse language of B.
- 2. Given that a regular language can be pumped, and that the reverse of a regular language is also a regular language, B_R should be pumpable if B is a regular language.
- 3. Let b_1 be the top row of B_R , b_2 be the middle row, and b_3 be the bottom, or sum, row.
- 4. Since b_3 is a summation of b_1 , b_2 , there must be a carry bit which works its way from left to right through B_R (since B_R is a reverse of the summation B).
- 5. Let w = xyz be some section of B_R , where y is the section being pumped.

- 6. Let j be the carry-in bit comming in to y and k be the carry-out bit comming out of y.
- 7. If j = k then the summation b_3 would still be correct after pumping and y can be pumped.
- 8. If $j \neq k$, then I'm not sure what to do to make y pumpable, so I'll just say something goes here to prove that B_R can be pumped when $j \neq k$.
- 9. Since B_R can be pumped in all cases, then B_R is a regular language.
- 10. Therefore, since B_R is a regular language, than B is a regular language.

10 Exercise 1.51

If x and y are indistinguishable by L, show that their indistinguishability is an equivalence relation.

I looked up equivalence relations and found that they have to do with set theory. When I took CIT592, we had only the briefest glance into set theory. I'm not sure I know how to prove this, or even where to start with proofs about sets, so I'm skipping it.

11 Exercise 1.53

Let $\Sigma = \{0, 1, +, =\}$ and $ADD = \{x = y + z \mid x, y, z \text{ are binary integers and } x \text{ is the sum of } y \text{ and } z\}$. Show that the language ADD is not regular.

Proof.

- 1. Assume that ADD is regular.
- 2. Let p be the pumping length of ADD.
- 3. Let $w = ADD = x_1y_1z_1$, where $0 > y_1 \le p$.
- 4. Since the symbols = and + cannot be pumped, the only pumpable segments must be the binary representation of integers in x, y, and z.
- 5. If we assume that $x_1 = \epsilon$, then $z_1 \neq \epsilon$ and y_1 must either be x or x = y. Pumping either one would change the equality of the summation and break the language.
- 6. If we assume that $z_1 = \epsilon$, then $x_1 \neq \epsilon$ and y_1 must either be y + z or z. Again, pumping either one would change the equality of the summation and break the language.
- 7. Therefore, since the language ADD cannot be pumped, is not regular.

12 Exercise 1.55c

What is the minimum pumping length for $001 \bigcup 0^*1^*$?

The minimum pumping length is 2 because at that length, either a 0 or a 1 in the second position could be pumped.

13 Exercise 1.55h

What is the minimum pumping length for 10(11*0)*0?

The minimum pumping length is 5, where the string 10100 can be divided as x = 10, y = 1, z = 00.