1ère Année LMD Mathématique et Informatique

Algèbre 2

Cours sur : Les Matrices (PARTIE I)

Soit \mathbb{K} un corps (\mathbb{R} ou \mathbb{C}).

1 Définitions générales

Définition .1 On appelle matrice de type (n, p), ou bien matrice à n lignes et p colonnes, un tableau à éléments de \mathbb{K} rangés en n lignes et p colonnes comme suit :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix} = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Dans ce cas, la matrice A est de taille $n \times p$. L'ensemble des matrices de type (n, p) est noté $\mathcal{M}_{n,p}(\mathbb{K})$.

Remarque .1

1. Si
$$p=1$$
 alors $A=\begin{pmatrix} a_1\\a_2\\.\\.\\a_n \end{pmatrix}$ est dite matrice colonne.

- 2. Si n = 1 alors $A = (a_1, a_2, ..., a_n)$ est dite matrice ligne.
- 3. Si p=n alors A est dite matrice carrée d'ordre n. Les éléments $a_{11},a_{22},...,a_{nn}$ forment la diagonale principale de la matrice.

L'ensemble des matrices carrées est noté $\mathcal{M}_{n,n}(\mathbb{K}) = \mathcal{M}_n(\mathbb{K})$.

Définition .2 Deux matrices $A = (a_{i,j})$ et $B = (b_{i,j})$ sont dite égales si et seulement si A et B sont de même type (n,p) et $a_{i,j} = b_{i,j}$, pour tout $1 \le i \le n$ et $1 \le j \le p$.

1.1 Matrice associée à une application linéaire

Soient E et F deux espaces vectoriels donnés, tels que $\dim E = p$ et $\dim F = n$, et soit $f: E \longrightarrow F$ une application linéaire.

Si $\mathcal{B}_1 = \{v_1, v_2, ..., v_p\}$ une base de E, et $\mathcal{B}_2 = \{w_1, w_2, ..., w_n\}$ une base de F, avec,

pour tout
$$i = 1, ..., p$$
, $f(v_i) = a_{1i}w_1 + a_{2i}w_2 + ... + a_{ni}w_n$.

alors on appelle matrice associée à f par rapport aux bases \mathcal{B}_1 et \mathcal{B}_2 notée $M(f, \mathcal{B}_1, \mathcal{B}_2)$ la matrice (n, p) dont les colonnes sont les coefficient a_{ij}

$$M(f, \mathcal{B}_1, \mathcal{B}_2) = egin{pmatrix} f(v_1) & f(v_2) & \dots & f(v_p) \\ a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} egin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

Inversement, si on a une matrice A, comment déterminer l'application linéaire associée? Soit $x \in E$, il s'écrit sous la forme $x = \sum_{i=1}^{p} x_i v_i$. Donc :

$$f(x) = f(\sum_{i=1}^{p} x_i v_i) = \sum_{i=1}^{p} x_i f(v_i) = \sum_{i=1}^{p} x_i (a_{1i}w_1 + a_{2i}w_2 + \dots + a_{ni}w_n) = \sum_{i=1}^{p} x_i \sum_{k=1}^{n} a_{ki}w_k.$$

On obtient

$$f(x) = \sum_{k=1}^{n} \left(\sum_{i=1}^{p} a_{ki} x_i \right) w_k,$$

or f(x) est un élément de F donc $f(x) = \sum_{k=1}^{n} y_k w_k$, ce qui nous donne

$$y_k = \sum_{i=1}^p a_{ki} x_i.$$

1.2 Rang d'une matrice

Définition .3 On appelle rang d'une matrice $A \in \mathcal{M}_p(\mathbb{K})$ le rang de l'application linéaire associée à cette matrice.

Corollaire .1 Le rang d'une matrice A est le nombre de vecteurs colonnes linéairement indépendants.

Exemple .1 Calculons le rang de la matrice :

$$A = \begin{pmatrix} -1 & 0 & 0 & 1\\ 0 & -1 & 0 & 1\\ 0 & 1 & -1 & 0\\ 0 & 0 & 2 & -2 \end{pmatrix}.$$

Notons les vecteurs colonnes de A par $v_1 = (-1, 0, 0, 0), v_2 = (0, -1, 1, 0), v_3 = (0, 0, -1, 2)$ et $v_4 = (1, 1, 0, -2).$

Question 1: est-ce-que $\{v_1, v_2, v_3, v_4\}$ est libre?

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \alpha_4 v_4 = 0 \Rightarrow \begin{cases} -\alpha_1 + \alpha_4 = 0\\ -\alpha_2 + \alpha_4 = 0\\ \alpha_2 - \alpha_3 = 0\\ 2\alpha_3 - 2\alpha_4 = 0 \end{cases} \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 \Rightarrow rgA < 4.$$

Question 2: est-ce-que $\{v_1, v_2, v_3\}$ est libre? Réponse: OUI, donc le rgA = 3.

1.3 Opérations sur les matrices

1.3.1 Addition de matrices

Soit $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ et $B = (b_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ deux matrices de même type (de mêmes dimensions) (n,p). La somme A+B est aussi une matrice (n,p), définie par $A+B=(a_{ij}+b_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}}$.

1.3.2 Multiplication par un scalaire

Soit $A = (a_{ij})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$ et soit λ un nombre réel (ou complexe) donné, alors $\lambda A = (\lambda a_{ij})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$. On peut maintenant énoncer le résultat suivant :

Corollaire .2 $(\mathcal{M}_{n,p}(\mathbb{K}),+,.)$ est un \mathbb{K} -espace vectoriel.

1.3.3 Produit de matrices

Soit $A = (a_{ik})_{\substack{1 \le i \le n \\ 1 \le k \le p}}$ une matrice (n, p), et soit $B = (b_{kj})_{\substack{1 \le k \le p \\ 1 \le j \le m}}$ une matrice (p, m), alors le produit C = AB est une matrice (n, m), définie par $C = (c_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ où

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}.$$

Remarque .2 Pour que le produit de deux matrices existe, il est nécessaire que le nombre de colonnes de la première soit égal au nombre de lignes de la seconde.

Remarque .3 Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications linéaires, alors on a la relation

$$M\left(\left(g\circ f\right),\mathcal{B}_{1},\mathcal{B}_{3}\right)=M\left(f,\mathcal{B}_{1},\mathcal{B}_{2}\right)M\left(g,\mathcal{B}_{2},\mathcal{B}_{3}\right)$$

ainsi la matrice associée à la composée de deux applications est égale au produit des matrices associées a chacune des deux applications.

1.3.4 Matrice transposée

Soit $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ une matrice (n,p) donnée, on appelle matrice transposée de A, ou plus simplement transposée de A, la matrice (p,n) notée tA définie par ${}^tA = (a_{ji})_{\substack{1 \le j \le p \\ 1 \le i \le n}}$.

On a les propriétés suivantes :

1.
$${}^{t}(A+B) = {}^{t}A + {}^{t}B$$
.

$$2. \ ^t(\alpha A) = \alpha . ^t A.$$

3.
$$t(^{t}A) = A$$
.

4.
$${}^{t}(A.B) = {}^{t}B.{}^{t}A.$$

Exemple .2
$$A = \begin{pmatrix} 1 & -6 \\ 3 & -4 \\ 0 & 2 \end{pmatrix}$$
 alors ${}^{t}A = \begin{pmatrix} 1 & 3 & 0 \\ -6 & -4 & 2 \end{pmatrix}$

Remarque .4 Une matrice (carrée) qui vérifie ${}^{t}A = A$, est dite matrice symétrique.

1.3.5 Matrices carrées particulières

Soit $A = (a_{i,j})$ une matrice carrée d'ordre n.

1. A est dite Matrice carrée diagonale si et seulement si $a_{i,j} = 0$ pour tout $i \neq j$:

$$A = \begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \ddots & \vdots & 0 \\ 0 & \vdots & \vdots & \vdots & 0 \end{pmatrix}$$

2. Si A est une matrice diagonale telle que $a_{i,i}=1$ pour tout $1 \le i \le n$ alors elle est dite matrice identité. On note $A=I_n$:

3. A est dite Matrice carrée triangulaire supérieure si et seulement si $a_{i,j}=0$ pour tout i>j :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \dots & a_{2,n} \\ \vdots & 0 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & a_{n,n} \end{pmatrix}$$

4. A est dite Matrice carrée triangulaire inférieure si et seulement si $a_{i,j}=0$ pour tout i < j:

$$A = \begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & \vdots & a_{n,n} \end{pmatrix}$$

- 5. A est dite Matrice carrée symétrique si et seulement si $a_{i,j} = a_{j,i}$.
- 6. A est dite Matrice carrée anti-symétrique si et seulement si $a_{i,j} = -a_{j,i}$.
- 7. A est dite inversible si et seulement si $\exists B \in \mathcal{M}_n(\mathbb{K})$ telle que $A.B = B.A = I_n$. On note $B = A^{-1}$.

Remarque .5 Si f est l'application linéaire associée à A alors A^{-1} est associée à f^{-1} .

On a les propriétés suivantes :

- 1. $({}^{t}A)^{-1} = {}^{t}(A^{-1}).$
- 2. $(A^{-1})^{-1} = A$.
- 3. $(A.B)^{-1} = B^{-1}.A^{-1}$.

Références

- 1. Algèbre, Cours de Mathématiques pour la première année, site web: http://exo7.emath.fr/
- 2. Algèbre linéaire, 5e édition, de Joseph Grifone.
- 3. Le succès en algèbre en fiches-méthodes : 1re année, de Abdelaziz El Kaabouchi.

Auteur

M. Mamchaoui

Laboratoire de Statistiques et Modélisation Aléatoires (LSMA). Faculté des Sciences. Département de Mathématiques. Université Abou Bakr Belkaïd, Tlemcen, BP 119, 13000 Tlemcen, Algérie.

E-mail: mohamed.mamchaoui@univ-tlemcen.dz

Site-web:

https://sites.google.com/view/mamcha/enseignements/l1-mathématiques-informatique