Mathématiques $I-TD_2$ 21-22 février 2022

Exercice 1

Montrer que

$$\forall x \in [-1, 1], \quad \sin\left(\arccos(x)\right) = \sqrt{1 - x^2} \quad \text{et} \quad \cos\left(\arcsin(x)\right) = \sqrt{1 - x^2}$$

On rappelle que les fonctions arccos: $[-1,1] \to [0,\pi]$ et arcsin: $[-1,1] \to \left[\frac{-\pi}{2},\frac{\pi}{2}\right]$ vérifient

$$\forall x \in [-1, 1], \quad \cos(\arccos(x)) = x \quad et \quad \sin(\arcsin(x)) = x$$

Dans cet exercice, il faut faire attention aux ensembles de départ et d'arrivée des fonctions.

— Soit $x \in [-1, 1]$. On a $1 - x^2 \ge 0$ donc $\sqrt{1 - x^2}$ est bien définie. On a, en utilisant le fait que $\cos(t)^2 + \sin(t)^2 = 1$ pour tout $t \in \mathbb{R}$,

$$\sqrt{1-x^2} = \sqrt{1-\cos\left(\arccos(x)\right)^2} = \sqrt{\sin\left(\arccos(x)\right)^2} = \left|\sin\left(\arccos(x)\right)\right|$$

Attention : $si\ t \in \mathbb{R}$, $\sqrt{t^2} \neq t$ en général mais $\sqrt{t^2} = |t|$. Par exemple, $\sqrt{(-1)^2} = \sqrt{1} = 1 \neq -1$.

On a $\arccos(x) \in [0, \pi]$. Comme $\sin(y) \ge 0$ pour tout $y \in [0, \pi]$, on a $|\sin(\arccos(x))| = \sin(\arccos(x))$.

Conclusion:

$$\forall x \in [-1, 1], \quad \sin(\arccos(x)) = \sqrt{1 - x^2}$$

— De même, on a

$$\sqrt{1-x^2} = \sqrt{1-\sin\left(\arcsin(x)\right)^2} = \sqrt{\cos\left(\arccos(x)\right)^2} = \left|\cos\left(\arccos(x)\right)\right|$$

On a $\arcsin(x) \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$. Comme $\cos(y) \ge 0$ pour tout $y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, on a $\left|\cos\left(\arcsin(x)\right)\right| = \cos\left(\arcsin(x)\right)$.

Conclusion:

$$\forall x \in [-1, 1], \quad \cos(\arcsin(x)) = \sqrt{1 - x^2}$$

Exercice 2

1. En utilisant la définition de la limite montrer que :

$$\frac{1}{x^2} \underset{x \to +\infty}{\longrightarrow} 0$$

On veut démontrer que

$$\forall \varepsilon > 0, \ \exists A > 0, \ \forall x > A, \quad \underbrace{\left| \frac{1}{x^2} - 0 \right|}_{=\frac{1}{x^2}} < \varepsilon$$

On commence donc par « soit $\varepsilon > 0$ ».

Pour trouver A, on peut faire un raisonnement par analyse-synthèse, avec l'étape d'analyse au brouillon : on veut

$$\frac{1}{x^2} < \varepsilon$$

par stricte décroissance de $x \mapsto \frac{1}{x^2}$, on a

$$\forall x > A, \quad \frac{1}{x^2} < \frac{1}{A^2}$$

Il suffit donc de vérifier

$$\frac{1}{A^2} = \varepsilon$$
 c'est-à-dire $A = \frac{1}{\sqrt{\varepsilon}}$

Soit $\varepsilon > 0$. Posons

$$A = \frac{1}{\sqrt{\varepsilon}} > 0$$

Comme $x \mapsto \frac{1}{x^2}$ est strictement décroissante sur $]0, +\infty[$, on a

$$\forall x > A, \quad 0 \leqslant \frac{1}{x^2} < \frac{1}{A^2} = \varepsilon$$

On a donc montré que

$$\forall \varepsilon > 0, \ \exists A > 0, \ \forall x > A, \quad \left| \frac{1}{x^2} - 0 \right| = \frac{1}{x^2} < \varepsilon$$

ce qui est la définition de

$$\boxed{ \frac{1}{x^2} \underset{x \to +\infty}{\longrightarrow} 0}$$

2. Montrer que la fonction sinus n'admet pas de limite en $+\infty$.

On a pour tout $x \in \mathbb{R}$:

$$\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$$
 et $\sin\left(x - \frac{\pi}{2}\right) = -\cos(x)$

Supposons que la fonction sinus admet une limite $\ell \in \mathbb{R}$ lorsque $x \to +\infty$.

Par la composition de limites, comme $x + \frac{\pi}{2} \xrightarrow[x \to +\infty]{} + \infty$ alors on a : $\sin(x + \frac{\pi}{2}) \xrightarrow[x \to +\infty]{} \ell$, donc

Par unicité de la limite on déduit que $\ell=0.$

Cela veut dire d'après la définition de la limite que :

$$\forall \varepsilon > 0, \exists B > 0, \forall x > A, |\sin(x)| < \varepsilon$$

Soit $\varepsilon = \frac{1}{3} > 0$, alors il existe A > 0 tel que :

$$\forall x > A, |\sin(x)| < \frac{1}{3}$$

On pose $x_0 = 2\lfloor A\rfloor \pi + \frac{\pi}{2}$, on a $x_0 > A$ et $\sin(x_0) = 1 > \frac{1}{3}$, Cela contredit la définition de la limite, donc sinus ne peut pas avoir 0 comme limite en $+\infty$,

La fonction sinus n'admet pas de limite en $+\infty$

Exercice 3

On admet que:

$$\frac{\sin(x)}{x} \xrightarrow[x \to 0]{} 1$$

On va montrer ce résultat plus tard en utilisant la notion de dérivée (ou développement limité).

Étudier la limite des fonctions suivantes en 0 :

$$f \colon x \longmapsto \frac{x}{2 + \sin\left(\frac{1}{x}\right)} \qquad g \colon x \longmapsto \frac{\sqrt{1 + \sin(x)} - \sqrt{1 - \sin(x)}}{x}$$
$$h \colon x \longmapsto \frac{1 - \cos(x)}{x^2} \qquad i \colon x \longmapsto \frac{\sin\left(\sin(x)\right)}{\sin(5x)}$$

— Première fonction f. Pour tout $y \in \mathbb{R}$, on a $1 \leq 2 + \sin(y) \leq 3$ donc

$$\forall x \in \mathbb{R}^*, \quad \frac{|x|}{3} \leqslant \underbrace{\left| \frac{x}{2 + \sin(1/x)} \right|}_{= \frac{|x|}{2 + \sin(1/x)}} \leqslant |x|$$

Comme $\frac{|x|}{3} \to 0$ et $|x| \to 0$ quand $x \to 0,$ on en déduit par encadrement que

$$f(x) = \frac{x}{2 + \sin\left(\frac{1}{x}\right)} \xrightarrow[x \to 0]{} 0$$

Vérifions avec Sympy:

- 1 from sympy import *
 2 x = symbols('x')
 3 limit(x/(2+sin(1/x)),x,0)

 Résultat: 0
- $Deuxi\`eme fonction g.$

La présence de racines carrées fait penser aux quantités conjuguées. Si $a \ge 0$ et $b \ge 0$, alors $\sqrt{a} + \sqrt{b}$ et $\sqrt{a} - \sqrt{b}$ sont des quantités conjuguées :

$$\left(\sqrt{a} + \sqrt{b}\right)\left(\sqrt{a} - \sqrt{b}\right) = \left(\sqrt{a}\right)^2 - \sqrt{a}\sqrt{b} + \sqrt{b}\sqrt{a} - \left(\sqrt{b}\right)^2 = a - b$$

Soit $x \in \mathbb{R}^*$. On a

$$\frac{\sqrt{1+\sin(x)} - \sqrt{1-\sin(x)}}{x} = \frac{\left(\sqrt{1+\sin(x)} - \sqrt{1-\sin(x)}\right)\left(\sqrt{1+\sin(x)} + \sqrt{1-\sin(x)}\right)}{x\left(\sqrt{1+\sin(x)} + \sqrt{1-\sin(x)}\right)}$$
$$= \frac{\left(1+\sin(x)\right) - \left(1-\sin(x)\right)}{x\left(\sqrt{1+\sin(x)} + \sqrt{1-\sin(x)}\right)}$$
$$= 2 \times \frac{\sin(x)}{x} \times \frac{1}{\sqrt{1+\sin(x)} + \sqrt{1-\sin(x)}}$$

On sait que $\frac{\sin(x)}{x} \to 1$ quand $x \to 0$. De plus, $\sqrt{1 + \sin(x)} + \sqrt{1 - \sin(x)} \to 2 \neq 0$ quand $x \to 0$ donc

$$\frac{1}{\sqrt{1+\sin(x)} + \sqrt{1-\sin(x)}} \xrightarrow[x \to 0]{} \frac{1}{2}$$

Par opérations sur les limites, on a

$$g(x) = \frac{\sqrt{1 + \sin(x)} - \sqrt{1 - \sin(x)}}{x} \xrightarrow[x \to 0]{} 2 \times 1 \times \frac{1}{2} = 1$$

Vérifions avec Sympy:

Résultat: 1

Troisième fonction h.

On essaye de se ramener à des limites déjà connues.

On a (formule trigonométrique):

$$\forall x \in \mathbb{R}, \quad 1 - \cos(x) = 2\sin\left(\frac{x}{2}\right)^2$$

donc

$$\forall x \in \mathbb{R}^*, \quad \frac{1 - \cos(x)}{x^2} = \frac{2}{x^2} \sin\left(\frac{x}{2}\right)^2 = \frac{1}{2} \left(\frac{\sin(\frac{x}{2})}{\frac{x}{2}}\right)^2$$

On a $\frac{x}{2} \to 0$ quand $x \to 0$ et $\frac{\sin(y)}{y} \to 1$ quand $y \to 0$ donc par composée de limites, on a

$$\frac{\sin(\frac{x}{2})}{\frac{x}{2}} \xrightarrow[x \to 0]{} 1$$

Par opérations sur les limites, on a donc

$$h(x) = \frac{1 - \cos(x)}{x^2} \xrightarrow[x \to 0]{} \frac{1}{2} \times 1^2 = \frac{1}{2}$$

Vérifions avec Sympy:

limit((1-cos(x))/x**2,x,0)

Résultat : $\frac{1}{2}$

— Quatrième fonction i. On a

$$\forall x \in \mathbb{R}^*, \quad \frac{\sin\left(\sin(x)\right)}{\sin(5x)} = \frac{\sin\left(\sin(x)\right)}{\sin(x)} \times \frac{\sin(x)}{x} \times \frac{5x}{\sin(5x)} \times \frac{1}{5}$$

On sait que $\frac{\sin(y)}{y} \to 1$ quand $y \to 0$ (exercice précédent). Comme $\sin(x) \to 0$ et $5x \to 0$ quand $x \to 0$, par composée de limites, on a

$$\frac{\sin\left(\sin(x)\right)}{\sin(x)} \xrightarrow[x \to 0]{} 1 \quad \text{et} \quad \frac{\sin(5x)}{5x} \xrightarrow[x \to 0]{} 1 \neq 0$$

On a donc

$$\frac{5x}{\sin(5x)} = \frac{1}{\frac{\sin(5x)}{5x}} \xrightarrow[x \to 0]{} \frac{1}{1} = 1$$

Par opérations sur les limites, on a donc

$$i(x) = \frac{\sin(\sin(x))}{\sin(5x)} \xrightarrow[x \to 0]{} 1 \times 1 \times 1 \times \frac{1}{5} = \frac{1}{5}$$

Vérifions avec Sympy:

limit(sin(sin(x))/sin(5*x),x,0)

Résultat : $\frac{1}{5}$

Nous verrons plus tard une méthode plus efficace pour déterminer ces limites (développements limités).

Exercice 4

Soient I et J des intervalles non vides de $\mathbb R$ et soient $f\colon I\to\mathbb R$ et $g\colon J\to\mathbb R$ telles que $f(I)\subset J$. Soit $a\in I$. On suppose qu'il existe $\ell_1\in\mathbb R$ et $\ell_2\in\mathbb R$ tels que

$$f(x) \xrightarrow[x \to a]{} \ell_1$$
 et $g(x) \xrightarrow[x \to \ell_1]{} \ell_2$

Montrer que

$$(g \circ f)(x) \xrightarrow[x \to a]{} \ell_2$$

On veut montrer que

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| < \eta \implies |(g \circ f)(x) - \ell_2| < \varepsilon$$

On commence donc par « soit $\varepsilon > 0$ ».

Soit $\varepsilon > 0$. Puisque $g(x) \to \ell_2$ quand $x \to \ell_1$, il existe $\eta > 0$ tel que

$$\forall y \in J, \quad |y - \ell_1| < \eta \implies |g(y) - \ell_2| < \varepsilon \tag{*}$$

Comme $f(x) \to \ell_1$ quand $x \to a$, il existe $\eta' > 0$ tel que

$$\forall x \in I, \quad |x - a| < \eta' \implies |f(x) - \ell_1| < \eta'$$

Ici, on a utilisé le fait que $f(x) \to \ell_1$ quand $x \to a$, donc :

$$\forall \varepsilon' > 0, \ \exists \eta' > 0, \ \forall x \in I, \quad |x - a| < \eta' \implies |f(x) - \ell_1| < \varepsilon'$$

avec $\varepsilon' = \eta$. Attention, on ne peut pas utiliser les symboles ε et η car ils sont déjà utilisés!

Soit $x \in I$ tel que $|x - a| < \eta'$. Alors $|f(x) - \ell_1| < \eta$ donc, d'après (*) avec y = f(x), on a

$$|q(f(x)) - \ell_2| < \varepsilon$$

On a donc montré que

$$\forall \varepsilon > 0, \ \exists \eta' > 0, \ \forall x \in I, \quad |x - a| < \eta' \implies |(gof)(x) - \ell_2| < \varepsilon$$

c'est-à-dire que :

$$(g \circ f)(x) \xrightarrow[x \to a]{} \ell_2$$

Exercice 5

Soient I un intervalle non vide de \mathbb{R} , $f: I \to \mathbb{R}$, $a \in I$ et $\ell \in \mathbb{R}$.

1. Montrer que

$$f(x) \xrightarrow[x \to a]{} \ell \iff \left(\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| \leqslant \eta \implies |f(x) - \ell| \leqslant \varepsilon \right)$$

Commentaire : on peut donc choisir des inégalités larges ou des inégalités strictes dans la définition de la limite.

2. Soit C > 0. Montrer que

$$f(x) \xrightarrow[x \to a]{} \ell \iff \left(\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| < \eta \implies |f(x) - \ell| < C \varepsilon \right)$$

Commentaire : lorsqu'on veut démontrer une limite, on peut donc conclure si on obtient $\ll < C \varepsilon$ » à la fin de la démonstration. Attention, C ne doit PAS dépendre de η . Par exemple, si on obtient $\ll < \eta \varepsilon$ », on ne peut pas conclure car η dépend de ε .

Dans ces définitions, ε , η , x, etc. sont des variables MUETTES. Cela veut dire que leur nom n'est pas important! Par exemple,

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| \leqslant \eta \implies |f(x) - \ell| \leqslant \varepsilon$$

peut aussi s'écrire

$$\forall \varnothing > 0, \ \exists \varnothing > 0, \ \forall \Theta \in I, \quad |\Theta - a| \leqslant \varnothing \implies |f(\Theta) - \ell| \leqslant \varnothing$$

1. • Supposons que $f(x) \to \ell$ quand $x \to a$. Soit $\varepsilon > 0$, il existe $\eta > 0$ tel que

$$\forall x \in I, \quad |x - a| < \eta \implies |f(x) - \ell| < \varepsilon$$

Posons $\eta' = \frac{\eta}{2} > 0$. Soit $x \in I$ tel que $|x-a| \le \eta'$. On a alors $|x-a| < \eta$ donc $|f(x) - \ell| < \varepsilon$ d'où $|f(x) - \ell| \le \varepsilon$.

Finalement, on a montré que

$$\forall \varepsilon > 0, \ \exists \eta' > 0, \ \forall x \in I, \quad |x - a| \leqslant \eta' \implies |f(x) - \ell| \leqslant \varepsilon$$

• Supposons que

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ |x - a| \leqslant \eta \implies |f(x) - \ell| \leqslant \varepsilon$$

En fixant $\varepsilon > 0$, un veut obtenir « $|f(x) - \ell| < \varepsilon$ » à la fin. On va donc appliquer l'hypothèse pour un $\varepsilon' > 0$ tel que $\varepsilon' < \varepsilon$, par exemple $\varepsilon' = \frac{\varepsilon}{2}$.

Soit $\varepsilon > 0$. Comme $\frac{\varepsilon}{2} > 0$, par hypothèse il existe $\eta > 0$ tel que

$$\forall x \in I, \quad |x - a| \leqslant \eta \implies |f(x) - \ell| \leqslant \frac{\varepsilon}{2}$$

Soit $x \in I$ tel que $|x - a| < \eta$. Alors $|x - a| \le \eta$ donc

$$|f(x) - \ell| \leqslant \frac{\varepsilon}{2} < \varepsilon$$

Finalement, on a montré que

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| < \eta \implies |f(x) - \ell| < \varepsilon$$

c'est-à-dire que $f(x) \to \ell$ quand $x \to a$.

Conclusion:

$$f(x) \underset{x \to a}{\longrightarrow} \ell \iff \left(\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| \leqslant \eta \implies |f(x) - \ell| \leqslant \varepsilon \right)$$

2. • Supposons que $f(x) \to \ell$ quand $x \to a$.

On applique la définition de la limite avec $C \varepsilon$.

Soit $\varepsilon > 0$. Comme $C \varepsilon > 0$, par définition de la limite, il existe $\eta > 0$ tel que

$$\forall x \in I, \quad |x - a| < \eta \implies |f(x) - \ell| < C \varepsilon$$

• Supposons que

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ |x - a| < \eta \implies |f(x) - \ell| < C \varepsilon$$

Soit $\varepsilon > 0$. Comme $\frac{\varepsilon}{C} > 0$, il existe $\eta > 0$ tel que

$$\forall x \in I, \quad |x - a| < \eta \implies |f(x) - \ell| < C \frac{\varepsilon}{C} = \varepsilon$$

On a donc montré que

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| < \eta \implies |f(x) - \ell| < \varepsilon$$

c'est-à-dire que $f(x) \to \ell$ quand $x \to a$.

Conclusion:

$$f(x) \underset{x \to a}{\longrightarrow} \ell \iff \left(\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| < \eta \implies |f(x) - \ell| < C \, \varepsilon \right)$$

Exercice 6

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ croissante telle que

$$f(x+1) - f(x) \xrightarrow[x \to +\infty]{} 0$$

Montrer que

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} 0$$

Donner un contre-exemple lorsque f n'est pas croissante.

Soit $\varepsilon > 0$. Il existe A > 0 tel que

$$\forall x > A, \quad |f(x+1) - f(x)| < \varepsilon$$

Soit x > A, l'ensemble $\{n \in \mathbb{N}, x-n > A\}$ est non vide (il contient n = 0) et est majoré (par exemple par |x| + 1). En particulier, il admet un maximum donc on peut poser :

$$n_x = \max\{n \in \mathbb{N}, \ x - n > A\} \in \mathbb{N}$$

On a, par téléscopage,

$$\frac{f(x)}{x} = \frac{\sum_{k=1}^{n_x} \left(f(x-k+1) - f(x-k) \right)}{x} + \frac{f(x-n_x)}{x}$$
 (1)

Pour tout $k \in \{1, ..., n_x\}$, on a $x - k \ge x - n_x \ge A$ donc

$$\forall k \in \{1,\ldots,n_x\}, \quad |f(x-k+1)-f(x-k)| < \varepsilon$$

donc (1) devient:

$$\left| \frac{f(x)}{x} \right| \leqslant \frac{n_x}{x} \varepsilon + \left| \frac{f(x - n_x)}{x} \right| \tag{2}$$

Par définition de n_x , on a $n_x < x$ et $x - (n_x + 1) < A$. Comme f est positive et croissante, l'inégalité (2) devient :

$$\left| \frac{f(x)}{x} \right| \leqslant \varepsilon + \frac{f(A+1)}{x} \tag{3}$$

On pose

$$M = \max\left(\frac{f(A+1)}{\varepsilon}, A\right) > 0$$

Si x > M, l'inégalité (3) devient :

$$\left| \frac{f(x)}{x} \right| \le (1 + f(A+1)) \varepsilon$$

On a montré que

$$\forall \varepsilon > 0, \ \exists M > 0, \forall x \in \mathbb{R}, \quad x > M \implies \left| \frac{f(x)}{x} \right| < \underbrace{\left(1 + f(A+1)\right)}_{>0} \varepsilon$$

Conclusion

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 0$$

Pour le contre-exemple où f n'est pas croissante, posons

$$f: \left\{ \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & \left\{ \begin{array}{ccc} \frac{1}{x - \lfloor x \rfloor} & \text{si } x \notin \mathbb{N} \\ 0 & \text{si } x \in \mathbb{N} \end{array} \right. \right.$$

Alors f est positive et n'est pas croissante. Pour tout $x \ge 0$, f(x+1)-f(x)=0 (donc $f(x+1)-f(x) \to 0$ quand $x \to +\infty$) et

$$\forall n \in \mathbb{N}^*, \ \forall y \in]0,1[\,, \quad \frac{f(n+y)}{n+y} = \frac{1}{(n+y)(n+y-\lfloor n+y \rfloor)} \geqslant \frac{1}{2\,n\,y} \xrightarrow[y \to 0]{} +\infty$$

donc $\frac{f(x)}{x}$ ne tend pas vers 0 quand $x \to +\infty$.

Exercice 7

Soient A et B deux parties non vides de \mathbb{R} .

1. Montrer que si $A \subset B$, alors

$$\sup(A) \leqslant \sup(B)$$
 et $\inf(A) \geqslant \inf(B)$

Distinguons les cas.

- Si B n'est pas majoré, alors $\sup(B) = +\infty$ donc on a bien $\sup(A) \leq \sup(B)$ car $\sup(A) \in \mathbb{R} \cup \{+\infty\}$.
- Si B est majoré, alors $\sup(B) \in \mathbb{R}$. Pour tout $a \in A$, on a $a \in B$ donc $a \leq \sup(B)$. On en déduit que $\sup(B)$ est un majorant de A. On a donc $\sup(A) \leq \sup(B)$.

De même:

- Si B n'est pas minoré, alors $\inf(B) = -\infty$ donc on a bien $\inf(B) \leq \inf(A)$ car $\inf(A) \in \mathbb{R} \cup \{-\infty\}$.
- Si B est minorée, alors $\inf(B) \in \mathbb{R}$. Pour tout $a \in A$, on a $a \in B$ donc $a \ge \inf(B)$. On en déduit que $\inf(B)$ est un minorant de A. On a donc $\inf(A) \ge \inf(B)$.

Dans tous les cas, on a montré que

$$\sup(A) \leqslant \sup(B) \text{ et } \inf(A) \geqslant \inf(B)$$

On suppose à partir de maintenant que A et B sont deux parties non vides et bornées de \mathbb{R} .

Puisqu'à partir de maintenant A et B sont deux parties non vides et bornées de \mathbb{R} , les bornes supérieures et inférieures de A et B sont donc finies.

2. Montrer que $A \cup B$ est borné et que

$$\sup(A \cup B) = \max(\sup(A), \sup(B))$$
 et $\inf(A \cup B) = \min(\inf(A), \inf(B))$

— Pour tout $x \in A \cup B$, on a $x \in A$ ou $x \in B$ d'où

$$\inf(A) \leqslant x \leqslant \sup(A)$$
 ou $\inf(B) \leqslant x \leqslant \sup(B)$,

et donc

$$\min\left(\inf(A),\inf(B)\right) \leqslant x \leqslant \max\left(\sup(A),\sup(B)\right)$$

Page 9/12

On en déduit que $A \cup B$ est borné et que

$$\min(\inf(A), \inf(B)) \leq \inf(A \cup B)$$
 et $\sup(A \cup B) \leq \max(\sup(A), \sup(B))$

- On a $A \subset A \cup B$ donc $\sup(A) \leq \sup(A \cup B)$ (question 1). De même, on a $B \subset A \cup B$ dont $\sup(B) \leq \sup(A \cup B)$. On en déduit que $\max(\sup(A), \sup(B)) \leq \sup(A \cup B)$. On conclut donc par double inégalité que $\sup(A \cup B) = \max(\sup(A), \sup(B))$.
- On a $A \subset A \cup B$ et $B \subset A \cup B$ donc $\inf(A) \leqslant \inf(A \cup B)$ et $\inf(B) \leqslant \inf(A \cup B)$ (question 1). On en déduit que $\min(\inf(A), \inf(B)) \geqslant \inf(A \cup B)$. On conclut donc par double inégalité que $\inf(A \cup B) = \min(\inf(A), \inf(B))$.

Conclusion:

$$A \cup B$$
 est borné, $\sup(A \cup B) = \max \left(\sup(A), \sup(B)\right)$ et $\inf(A \cup B) = \min \left(\inf(A), \inf(B)\right)$

Application : donner les bornes supérieure et inférieure de l'ensemble

$$E = \left\{ (-1)^n + \frac{1}{n}, n \in \mathbb{N}^* \right\}$$

On considère les deux ensembles non vides suivants :

$$E_p = \left\{ 1 + \frac{1}{2n}, n \in \mathbb{N}^* \right\} \text{ et } E_i = \left\{ -1 + \frac{1}{2n+1}, n \in \mathbb{N} \right\}$$

On remarque que $E = E_p \cup E_i$. De plus, on a :

- $E_p \subset E$ et E est borné donc E_p est borné. $\frac{3}{2} \in E_p$ donc $E_p \neq \emptyset$, d'où $\sup(E_p)$ et $\inf(E_p)$ existent dans \mathbb{R} .
- Pour tout $n \in \mathbb{N}^*$ on a $1 + \frac{1}{2n} \leqslant \frac{3}{2}$ avec égalité pour n = 1, donc :

$$\sup(E_p) = \max(E_p) = \frac{3}{2}$$

La borne supérieure de E_p est atteinte.

— Pour tout $n \in \mathbb{N}^*$ on a $1 + \frac{1}{2n} > 1$, 1 est donc un minorant de E_p . On va montrer que $\inf(E_p) = 1$.

Soit $\varepsilon > 0$. On pose

$$n_{\varepsilon} = \left\lfloor \frac{1}{2\varepsilon} \right\rfloor + 1 \in \mathbb{N}^*$$

Alors $n_{\varepsilon} > \frac{1}{2\varepsilon}$ d'où :

$$1 + \varepsilon > 1 + \frac{1}{2n_{\varepsilon}} > 1$$

On a montré que :

- 1 est un minorant de E_p ,
- $-- \ \forall \varepsilon > 0, \exists n_\varepsilon \in \mathbb{N}^*, 1+\varepsilon > 1 + \frac{1}{2n_\varepsilon} > 1$

Cela veut dire que :

$$\inf(E_p)=1$$

— De la même manière, on peut montrer que E_i est borné et non vide, et que :

$$\sup(E_i) = \max(E_i) = 0$$
 et $\inf(E_i) = -1$

Ainsi, on obtient:

$$\sup(E) = \max(0, \frac{3}{2}) = \frac{3}{2} \text{ et } \inf(E) = \min(1, -1) = -1$$

3. Montrer que si $A \cap B \neq \emptyset$, alors

$$\sup(A \cap B) \leq \min(\sup(A), \sup(B))$$
 et $\inf(A \cap B) \geq \max(\inf(A), \inf(B))$

Y-a-t-il égalité?

- Pour tout $x \in A \cap B$, on a $x \leq \sup(A)$ et $x \leq \sup(B)$ donc $x \leq \min(\sup(A), \sup(B))$, c'est-à-dire que $\min(\sup(A), \sup(B))$ est un majorant de $A \cap B$. On a donc $\sup(A \cap B) \leq \min(\sup(A), \sup(B))$
- Pour tout $x \in A \cap B$, on a $x \ge \inf(A)$ et $x \ge \inf(B)$ donc $x \ge \max(\inf(A), \inf(B))$, c'est-à-dire que $\max(\inf(A), \inf(B))$ est un minorant de $A \cap B$. On a donc $\inf(A \cap B) \ge \max(\inf(A), \inf(B))$
- En prenant

$$A = \left\{1 - \frac{1}{2^n}, \ n \in \mathbb{N}\right\} \quad \text{et} \quad B = \left\{1 - \frac{1}{3^n}, \ n \in \mathbb{N}\right\}$$

on a $\sup(A)=\sup(B)=1$ donc $\min\left(\sup(A),\,\sup(B)\right)=1.$ Mais $A\cap B=\{0\}$ donc $\sup(A\cap B)=0.$ Il n'y a donc pas égalité.

Conclusion:

$$\sup(A\cap B)\leqslant \min\big(\sup(A),\sup(B)\big), \inf(A\cap B)\geqslant \max\big(\inf(A),\inf(B)\big) \text{ et il n'y a pas \'egalit\'e}$$

4. On pose

$$A + B = \{a + b, a \in A \text{ et } b \in B\}$$

Montrer que A + B est borné et que

$$\sup(A+B) = \sup(A) + \sup(B)$$
 et $\inf(A+B) = \inf(A) + \inf(B)$

— Soit $x \in A + B$. On a x = a + b avec $a \in A$ et $b \in B$. Comme $\inf(A) \leq a \leq \sup(A)$ et $\inf(B) \leq b \leq \sup(B)$, on en déduit que

$$\inf(A) + \inf(B) \leqslant x = a + b \leqslant \sup(A) + \sup(B)$$

donc A + B est borné et

$$\inf(A) + \inf(B) \le \inf(A+B)$$
 et $\sup(A+B) \le \sup(A) + \sup(B)$

- Soit $(a,b) \in A \times B$. On a $a+b \in A+B$ donc $a+b \leq \sup(A+B)$ et donc $a \leq \sup(A+B)-b$. Par passage à la borne supérieure sur $a \in A$, $\sup(A) \leq \sup(A+B)-b$. On a donc $b \leq \sup(A+B)-\sup(A)$ donc, par passage à la borne supérieure sur $b \in B$, $\sup(B) \leq \sup(A+B)-\sup(A)$, c'est-à-dire, $\sup(A)+\sup(B) \leq \sup(A+B)$. On conclut donc par double inégalité que $\sup(A+B)=\sup(A)+\sup(B)$.
- Soit $(a,b) \in A \times B$. On a $a+b \in A+B$ donc $a+b \geqslant \inf(A+B)$ et donc $a \geqslant \inf(A+B)-b$. Par passage à la borne inférieure sur $a \in A$, $\inf(A) \leqslant \inf(A+B)-b$. On a donc $b \geqslant \inf(A+B)-\inf(A)$ donc, par passage à la borne inférieur sur $b \in B$, $\inf(B) \geqslant \inf(A+B)-\inf(A)$, c'est-à-dire, $\inf(A)+\inf(B) \geqslant \inf(A+B)$. On conclut donc par double inégalité que $\inf(A+B)=\inf(A)+\inf(B)$.

Conclusion:

$$\sup(A+B) = \sup(A) + \sup(B) \text{ et } \inf(A+B) = \inf(A) + \inf(B)$$

5. On pose

$$AB = \{ab, a \in A \text{ et } b \in B\}$$

Montrer que si $A \subset \mathbb{R}_+^*$ et $B \subset \mathbb{R}_+^*$, alors AB est borné et

$$\sup(A B) = \sup(A) \sup(B)$$
 et $\inf(A B) = \inf(A) \inf(B)$

Est-ce encore vrai dans le cas général $A \subset \mathbb{R}$ et $B \subset \mathbb{R}$?

Comme $A \subset \mathbb{R}_+^*$ et $A \neq \emptyset$, on a $\sup(A) > 0$ et $\inf(A) \geqslant \inf(\mathbb{R}_+^*) = 0$. De même, $\sup(B) > 0$ et $\inf(B) \geqslant 0$.

— Soit $x \in A \times B$. On a x = a + b avec $a \in A$ et $b \in B$. Comme $0 \le \inf(A) \le a \le \sup(A)$ et $0 \le \inf(B) \le b \le \sup(B)$, on a

$$\inf(A)\inf(B) \leqslant xy \leqslant \sup(A)\sup(B)$$

On en déduit que AB est borné et que

$$\inf(A)\inf(B) \leqslant \inf(AB)$$
 et $\sup(AB) \leqslant \sup(A)\sup(B)$

- Soit $(a,b) \in A \times B$. On a $ab \in AB$ donc $ab \leqslant \sup(AB)$. Comme b > 0, on a $a \leqslant \frac{\sup(AB)}{b}$. Par passage à la borne supérieure sur $a \in A$, $\sup(A) \leqslant \frac{\sup(AB)}{b}$ donc $b \leqslant \frac{\sup(AB)}{\sup(A)}$ car $\sup(A) > 0$. Par passage à la borne supérieure sur $b \in B$, $\sup(B) \leqslant \frac{\sup(AB)}{\sup(A)}$ d'où $\sup(A) \sup(B) \leqslant \sup(AB)$.
 - On conclut donc par double inégalité que $\sup(A) \sup(B) = \sup(A B)$.
- Soit $(a,b) \in A \times B$. On a $ab \in AB$ donc $ab \geqslant \inf(AB)$. Comme b > 0, on a $a \geqslant \frac{\inf(AB)}{b}$. Par passage à la borne inférieure sur $a \in A$, $\inf(A) \geqslant \frac{\inf(AB)}{b}$. Si $\inf(A) = 0$, on a bien $\inf(A)\inf(B) = 0 \leqslant \inf(AB)$ car $AB \subset \mathbb{R}_+^*$. Si $\inf(A) > 0$, on a $b \geqslant \frac{\inf(AB)}{\inf(A)}$. Par passage à la borne supérieure sur $b \in B$, $\sup(B) \leqslant \frac{\sup(AB)}{\sup(A)}$ d'où $\sup(A)\sup(B) \leqslant \sup(AB)$. Dans les deux cas, on conclut par double inégalité que $\inf(A)\inf(B) = \inf(AB)$.
- Ce n'est pas vrai dans le cas général. Si on prend A = B =]-1,0[, alors $\sup(A) = \sup(B) = 0$, d'où $\sup(A) \times \sup(B) = 0$. Cependant, AB =]0,1[donc $\sup(AB) = 1$.

Conclusion:

Si $A \subset \mathbb{R}_+^*$ et $B \subset \mathbb{R}_+^*$, alors AB est borné, $\sup(AB) = \sup(A) \sup(B)$ et $\inf(AB) = \inf(A) \inf(B)$ mais ce n'est plus vrai dans le cas général $A \subset \mathbb{R}$ et $B \subset \mathbb{R}$