Nama: Muhammad Fauzan Azhiima

NPM : 140810210041

UTS Kalkulus

1. periksa kekonvergenan baris berikut:

a)
$$a_n = \frac{3n^2 + 4n - 1}{4n - 2n^2 + 4}$$

jawab:

$$\lim_{n \to \infty} n \to \text{tak hingga } (a_n) = \lim_{n \to \infty} \frac{3n^2 + 4n - 1}{4n - 2n^2 + 4} \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{3 + \frac{4}{n} - \frac{1}{n^2}}{\frac{4}{n^2} - 2 + \frac{4}{n^2}}$$
$$= \frac{3}{n - 2}$$

Karena lim n \rightarrow tak hingga $(a_n) = -1.5$, maka $\frac{3n^2+4n-1}{4n-2n^2+4}$ konvergen ke -1.5

$$\mathbf{b)} \ \mathbf{a_n} = \frac{\sqrt{n}}{4n-5}$$

jawab:

$$\lim_{n \to \infty} \frac{1}{4n-5} * \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n}}}{4-\frac{5}{n}}$$
$$= \frac{0}{4} = 0$$

Karena lim n \rightarrow tak hingga $(a_n) = 0$, maka $\frac{\sqrt{n}}{4n-5}$ konvergen ke 0

2. selidiki kekonvergenan deret berikut :

$$\text{a)} \ \sum\nolimits_{n=1}^{\infty} \frac{2}{\sqrt{3n+1}}$$

Jawab:

$$a_n = \frac{2}{\sqrt{3n+1}}$$

$$\lim_{n \to \infty} (a_n) = \lim_{n \to \infty} \frac{2}{\sqrt{3n+1}} * \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{\frac{2}{\sqrt{n}}}{\sqrt{3+\frac{1}{n}}}$$

$$=\frac{0}{\sqrt{3}}=0$$

Karena lim n $\rightarrow \infty$ (a_n) = 0, maka deret $\sum_{n=0}^{\infty} \frac{2}{\sqrt{3n+1}}$ konvergen

b)
$$\sum_{n=2}^{\infty} \left(1 - \frac{1}{n}\right)^n$$

Jawab:

$$a_n = \left(1 - \frac{1}{n}\right)^n$$

$$a = \lim_{n \to \infty} (a_n)^{n/2} = \lim_{n \to \infty} (\left(1 - \frac{1}{n}\right)^n)^{\frac{1}{n}} = \lim_{n \to \infty} 1 - \frac{1}{n}$$

a = 1

karena a =1, maka tidak ada kesimpulan menggunakan uji akar.

$$\lim_{n\to\infty} (a_n) = \lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^n = \lim_{n\to\infty} e^{n \ln(1 - \frac{1}{n})}$$

karena e kontinu pada interval $[1, \infty)$, maka persamaan dapat ditulis ulang sebagai berikut :

$$= e^{\lim_{n \to \infty} n \cdot \ln(1 - \frac{1}{n})} = e^{\lim_{n \to \infty} \ln(1 - \frac{1}{n}) + n \cdot (\frac{1}{n(n-1)})} \text{ (l'hopital)}$$

$$= e^{\lim_{n \to \infty} \ln(1 - \frac{1}{n}) + \lim_{n \to \infty} \frac{1}{n-1}} = e^{0 + 0} = 1$$

Karena lim n
$$\rightarrow \infty$$
 (a_n) = 1 =/= 0, maka deret $\sum_{n=0}^{\infty} \left(1 - \frac{1}{n}\right)^n$ divergen

3. Selidiki kekonvergenan deret berikut dengan uji hasil bagi :

a)
$$\sum_{n=1}^{\infty} \frac{4^n + n}{n!}$$

Jawab:

misal
$$a_n = \frac{4^n + n}{n!}$$
 dan $a_{n+1} = \frac{4 * 4^n + n + 1}{(n+1)!}$

Sehingga

$$\rho = \lim_{n \to \infty} (a_{n+1})/(a_n)$$

$$= \lim_{n \to \infty} \frac{4 \cdot 4^n + n + 1}{(n+1)!} \cdot \frac{n!}{4^n + n} = \lim_{n \to \infty} \frac{4 \cdot 4^n + n + 1}{n+1} \cdot \frac{1}{4^n + n}$$
$$= \lim_{n \to \infty} ((4 \cdot 4^n + n + 1) / (n \cdot 4^n + n^2 + 4^n + n))$$

(penyebut memiliki pangkat n yang lebih tinggi daripada pembilang)

$$=0$$

Karena
$$\rho = 0 < 1$$
, maka $\sum_{n=1}^{\infty} \frac{4^n + n}{n!}$ konvergen

b)
$$\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}$$

misal
$$a_n = \frac{n^3}{(2n)!}$$
 Dan $a_{n+1} = \frac{(n+1)^3}{(2n+2)!}$

$$\rho = \lim_{n \to \infty} (a_{n+1})/(a_n)$$

$$= \lim_{n \to \infty} \frac{(n+1)^3}{(2n+2)!} * \frac{(2n)!}{n^3} = \lim_{n \to \infty} \frac{(n+1)^3}{(2n+2)(2n+1)} * \frac{1}{n^3}$$

(penyebut memiliki pangkat n yang lebih tinggi daripada pembilang)

$$= 0$$

Karena
$$\rho = 0 < 1$$
, maka $\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}$ Konvergen

4. Selidiki kekonvergenanderet berikut dengan uji akar:

a)
$$\sum\nolimits_{n=1}^{\infty} \left(\frac{3n+5}{n-1}\right)^n$$

Jawab:

$$\mathbf{a}_{\mathbf{n}} = \left(\frac{3n+5}{n-1}\right)^n$$

$$a = \lim_{n \to \infty} (a_n)^{n/2} = \lim_{n \to \infty} \left(\left(\frac{3n+5}{n-1} \right)^n \right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{3n+5}{n-1} * \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{3+\frac{5}{n}}{1-\frac{1}{n}}$$

$$a = 3$$

Karena a = 3 > 1, maka
$$\sum_{n=1}^{\infty} \left(\frac{3n+5}{n-1}\right)^n$$
 divergen

$$b) \sum_{n=1}^{\infty} \left(\frac{2n}{5n+3}\right)^n$$

Jawab:

$$a_n = \left(\frac{2n}{5n+3}\right)^n$$

$$a = \lim_{n \to \infty} (a_n)^{n/2} = \lim_{n \to \infty} \left(\left(\frac{2n}{5n+3} \right)^n \right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{2n}{5n+3} * \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{2}{5 + \frac{3}{n}}$$

$$a = \frac{2}{5}$$

Karena a = $\frac{2}{5}$ < 1, maka deret konvergen

5. Perihal kekonvergenan deret ganti tanda berikut :

a)
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n(n+4)}$$

• Apakah a_n monoton turun?

 a_n monoton turun apabila f'(x) < 0, dimana $f(x) = a_n$

$$f(x) = (n^2 + 4n)^{-1}$$

$$f'(x) = (-1)(n^2 + 4n)^{-2}(2n + 4) = -\left(\frac{2n+4}{(n^2+4n)^2}\right) = 0$$

$$n = -2$$

$$n = 0$$

menggunakan uji titik, diketahui bahwa f'(x) < 0 di $(-\infty, -2)$ V $(0, \infty)$. deret a_n berada di interval $[1, \infty)$

oleh karena itu, an monoton turun.

• Lim
$$n \to \infty$$
 $(a_n) = \lim_{n \to \infty} \frac{1}{n^2 + 4n} * \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1 + \frac{4}{n}}$
$$= \frac{0}{1} = 0$$

Karena a_n monoton turun DAN Lim $n \rightarrow \infty$ $(a_n) = 0 < 1$, maka

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n(n+4)}$$
 deret konvergen

$$b) \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{\ln n}{\sqrt{n}}$$

Apakah a_n monoton turun?

 a_n monoton turun apabila f'(x) < 0, dimana $f(x) = a_n$

$$f(x) = \frac{\ln n}{\sqrt{n}}$$

$$f'(x) = \frac{\frac{1}{\sqrt{n}} - \frac{\ln n}{2\sqrt{n}}}{n} = \frac{2 - \ln n}{2n\sqrt{n}} = 0$$

$$n = 0$$

$$n = e^2 (7,389...)$$

menggunakan uji titik, diketahui bahwa f'(x) < 0 di $(-\infty, 0)$ V (e^2, ∞) . Deret a_n berada di interval $[1, \infty)$.

Karena a_n tidak selalu turun di interval $[1, \infty)$, deret $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{\ln n}{\sqrt{n}}$ divergen.

6. Selidiki apakah ferret konvergen mutlak, bersyarat atau divergen :

a)
$$\sum_{n=1}^{\infty} (-1)^n \cdot (\frac{n}{4^n})$$

Dari soal kita dapatkan $U_n = (-1)^n$. $(\frac{n}{4^n})$ dan $|U_n| = \frac{n}{4^n}$.

Sehingga dengan uji hasil bagi.

$$|\mathbf{U}_{n+1}| = \frac{n+1}{4*4^n}$$

$$\rho = \lim_{n \to \infty} \left(\left| U_{n+1} \right| / \left| U_{n} \right| \right)$$

$$= \lim_{n \to \infty} \frac{n+1}{4*4^n} * \frac{4^n}{n} = \lim_{n \to \infty} \frac{n+1}{4n} * \frac{\frac{1}{n}}{\frac{1}{n}}$$

$$=\lim_{n\to\infty}\frac{1+\frac{1}{n}}{4}=\frac{1}{4}$$

Karena $\rho = \frac{1}{4} < 1$, maka deret $\sum_{n=1}^{\infty} (-1)^n \cdot (\frac{n}{4^n})$ Konvergen mutlak

b)
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{5n+1}$$

Dari soal kita dapatkan $U_n = (-1)^n \cdot \frac{1}{5n+1} \operatorname{dan} |U_n| = \frac{1}{5n+1}$

Sehingga dengan uji banding limit

Misal,
$$a = |U_n| dan b = \frac{1}{n}$$

$$L = \lim_{n \to \infty} \frac{a}{b} = \lim_{n \to \infty} \frac{n}{5n+1} * \frac{\frac{1}{n}}{\frac{1}{n}}$$

$$=\lim_{n\to\infty} \frac{1}{5+\frac{1}{n}} = \frac{1}{5}$$

Karena L = $\frac{1}{5}$, maka deret $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{5n+1}$ konvergen mutlak