ঢাকা বিশ্ববিদ্যালয়

দ্বিদা বর্ষ প্রথম মেফিটার পরীক্ষা, ২০২০

বিষয় শফেটওয়ার ইন্দ্রিম্মির্র্বিল কোল বং (১৮-৪০)
কেন্দ্র 11 (প্রান্মার্থন) রোল নম্ম্র 1122

ঢাকা কিরবিদ্যালয় রেজিঃ নম্ম <u>২০১৪২২5587</u> শিক্ষাবর্ষ <u>২০18-19</u>
তারিখ <u>০</u>9.০৪-২০২1

3

Les of <1,0.0,1.0,1.0,1> and <0,1.0,1,1.0,1,1.0)

Lets define les [i][j] - as the langest common

Subsequence till index i of first string and

i of second string,

dp[i][j]=dp[i-1][j-1]+1 [if si[i]=s2[i]]

else, dp[i][j]= max (dp[i-1][j], dp[i][j-1]);

for the given strings:

LCS is length 7.

and string is: ososot, 100110

2

Amount of money C with minimum number of coin: Given $V_1 < V_2 < V_3 ... < V_n$ [coin values]

include <od bits/stde++h>

using namespace std;
int minimum Coin (int 17), int, int)
int main 0}

int coins[]= of VI, VI.... Vn];

int n= smpe of o(V size of (coins))/size of (int);

int V= C; // C is target value,

int ru= minimum Coin (coins, n, V);

cout<< ras</p>

(P. T. O)

```
int minimum Coin ( int coins ( ], int m, int target)
     int of [targetH];
     dp[0]=0;
     for (int 1=1; ix=target; i+1)
          CP[i]= INT_MAX;
     for (int 1=1; i <= target; i+1)}
          for (int 1=0; j<m+j++){
                if (coins[j] <= 1)}
                   dp[i]= min(dp[i-cons[s]]+1,
                                     طورز]);
      3
      return de [target];
```

<u>4(a)</u>.

Sources (S1,S2,S3) and Sinks (+1,+2)

It can be convented into a maximum flow problem if we make a SUPER SINK. with the capacity of the total capacity of the sinks and a "super source" following the same for all sources.

4(b)

residual Notwork of the great:

Its already in maximum flows since, there is no path augmenting from source to sink.

We, know, from the rule of flow conservation & rule, that for each vertex,

the impost or office summation of incoming flow and the summation of outgoing flow should be aqual.

Jourgoing a & fair, very u. & fair = & f(v,u), incoming a & f(v,u) very u.

But from the given graph.: 4/4.

3/2.

3/2.

3/2.

7/2.

7/2.

7/2.

7/2.

7/9.

in (a), the incoming thou is = 8

outgoing thow is = 2

which contradicts with the property of

flow conservation,

The minimum cut is: - 4/4 B 2/2.

Here, we pop from stack for non-right move.

host we push, A, T, 11 to stack.

+ ther, &, right move, push.

* F makes left move, pop G, again make left, pop, H, puh F.

at. E makes right move, push.

at. D 1, left move, pip, E . pust D.

at. C 11 11 D, push.

A B 11 11 11 C, push, B

* . & makes left move, pust. B.

Sr. convex hull, (A, I, F,B)

5(6)

i) Polynomial time Problemsia

The problems which have cen algorithm to be solved in polynomial time are called Polynomial problems,

Here complexity should be, O(nk) kis a constant.

ii). Np Hard:

A ptoblem B 'U NP hard 'if.

for all NP-complete Problems A, A can
be reduced to B.

ABS, B [BENPC]

(ii) NP. Completenes:

A problema is NP-Complete "t:-

ind has no polynomial time of the solution.

thus, BENP. AND,

ii) for all problems AEND, A can be reduced to B.

ASPB.

Ha problem follows both prosperity, its
NP complete

1(a)

Givon, LPP,

Maximite, 2 = 54-2x2.

224+32255 24,27,0

Introducing sumples variables, S. S. 20.

Maximize 2= 5x-2x+0.5,+0.52.

Standard of form. $-2+x_1-s_1=-2$. $22x_1+3x_2-s_2=5$ $2x_1x_2, s_1, s_2>0$.

Associated dual is,

Minimize $t = -2\omega_1 + 5\omega_2$. $-\omega_1 + 2\omega_2 \leq 5$ $\omega_1 + 3\omega_2 \leq -2$. $\omega_1, \omega_1 \neq 0$

1(P)

let, let, sectorofro.

Number of employee,

Sent from lettle roock to astrona = x_1 In in to detroit = x_2 Unbana. to $a_1 = x_2$

11 u " to to detroit = xq

Cost is if=40024 + 20022 + 10023 + 20024 + 280 EminimizeT

Constrainty: 24+2456.

23+2456.

23+2456.

24+2456.

24+2456.

24+2456.

24+2456.

24+2456.

24+2456.

24+2456.

24+2456.

24+2456.

24+2456.

24+2456.

24+2456.

24+2456.