Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 10

Nicolás Cagliero

June 23, 2025

Defina relativo al lenguaje S^{Σ}

- 1. "estado"
- 2. "descripción instantánea"
- $3. S_7$
- 4. "estado obtenido luego de t pasos, partiendo del estado $(\vec{s}, \vec{\sigma})$ "
- 5. " \mathcal{P} se detiene (luego de t pasos), partiendo del estado $(\overrightarrow{s}, \overrightarrow{\sigma})$ "

Respuestas:

- 1. Un estado es un par $(\vec{s}, \vec{\sigma}) = ((s_1, s_2, \dots), (\sigma_1, \sigma_2, \dots)) \in \omega^{[\mathbf{N}]} \times \Sigma^{*[\mathbf{N}]}$
- 2. Una descripción instantánea es una terna $(i,\vec{s},\vec{\sigma})$ tal que $(\vec{s},\vec{\sigma})$ es un estado e $i\in\omega$
- 3. $S_{\mathcal{P}}: \omega \times \omega^{[\mathbf{N}]} \times \Sigma^{*[\mathbf{N}]} \to \omega \times \omega^{[\mathbf{N}]} \times \Sigma^{*[\mathbf{N}]}$

 $S_{\mathcal{P}}(i, \overrightarrow{s}, \overrightarrow{\sigma}) =$ descripción instantánea que resulta luego de realizar $I_i^{\mathcal{P}}$, estando en estado $(\overrightarrow{s}, \overrightarrow{\sigma})$

4. Si

$$\overbrace{S_{\mathcal{P}}(\dots S_{\mathcal{P}}(S_{\mathcal{P}}(1, \vec{s}, \vec{\sigma}))\dots)}^{t \text{ veces}} = (j, \vec{u}, \vec{\eta})$$

diremos que $(\vec{u}, \vec{\eta})$ es el estado obtenido luego de t pasos, partiendo del estado $(\vec{s}, \vec{\sigma})$.

5. Cuando la primer coordenada de

$$\overbrace{S_{\mathcal{P}}(\dots S_{\mathcal{P}}(S_{\mathcal{P}}(1, \vec{s}, \vec{\sigma}))\dots)}^{t \text{ veces}}$$

sea igual a $n(\mathcal{P})+1$, diremos que \mathcal{P} se detiene (luego de t pasos), partiendo desde el estado $(\overrightarrow{s}, \overrightarrow{\sigma})$