Líneas de Comunicación

Las líneas de comunicación son los canales físicos o lógicos a través de los cuales la información viaja de un punto a otro. Su **objetivo principal** es facilitar el intercambio de datos entre dispositivos, permitiendo la comunicación efectiva en redes y sistemas. Sus **funciones** incluyen:

- Transmisión de datos: Mover la información de origen a destino.
- Sincronización: Asegurar que el emisor y el receptor estén en el mismo "ritmo" para interpretar correctamente los datos.
- Control de flujo: Regular la cantidad de datos transmitidos para evitar la saturación del receptor.
- Detección y corrección de errores: Identificar y, en lo posible, reparar los errores que puedan ocurrir durante la transmisión.

Se clasifican de varias formas:

- Conmutadas: Establecen una conexión temporal entre dos puntos solo cuando es necesario (ej. una llamada telefónica tradicional).
- Dedicadas: Mantienen una conexión permanente y exclusiva entre dos puntos (ej. una línea arrendada entre dos sucursales).
- Punto a punto: Conectan directamente dos dispositivos o nodos.
- Multipunto: Permiten que un dispositivo se comunique con varios otros simultáneamente a través de un mismo canal compartido.
- Digitales: Transmiten información en formato digital (bits), lo que ofrece mayor velocidad, eficiencia y resistencia al ruido en comparación con las analógicas.

Medios de Conexión de Redes

Los medios de conexión de redes son los soportes físicos por los cuales se transmiten los datos en una red. Su **objetivo** es proporcionar la infraestructura necesaria para que la información fluya entre los diferentes componentes de la red.

Sus **funciones** incluyen:

- Transporte de señales: Conducir las señales eléctricas, ópticas o electromagnéticas que representan los datos.
- Interconexión de dispositivos: Enlazar computadoras, servidores, impresoras y otros dispositivos de red.
- Determinación del ancho de banda: Influir en la velocidad máxima a la que los datos pueden ser transmitidos.

Tipos de Medios

Los principales tipos de medios utilizados en las redes son:

- Cobre:
 - Cables de par trenzado (Twisted Pair): Son los más comunes. Consisten en pares de hilos de cobre trenzados para reducir la interferencia electromagnética.
 - UTP (Unshielded Twisted Pair Par Trenzado No Apantallado): No tienen un blindaje adicional. Son económicos y ampliamente usados en redes locales.

- STP (Shielded Twisted Pair Par Trenzado Apantallado): Incorporan un blindaje metálico alrededor de los pares trenzados o individualmente, ofreciendo mayor protección contra el ruido e interferencia, pero son más costosos y rígidos.
- **Fibra Óptica:** Transmite datos mediante pulsos de luz a través de finos hilos de vidrio o plástico. Ofrece velocidades extremadamente altas, gran ancho de banda y es inmune a la interferencia electromagnética, ideal para largas distancias y entornos de alta demanda.
- Inalámbrica: Utiliza ondas de radio, microondas o infrarrojos para la transmisión de datos sin necesidad de cables. Proporciona flexibilidad y movilidad, pero puede ser susceptible a interferencias y tener un alcance limitado dependiendo de la tecnología.

Conectores

Para interconectar los cables a los dispositivos de red, se utilizan conectores específicos:

- **Jack:** Generalmente se refiere a los conectores hembra en dispositivos de red, como los puertos Ethernet en computadoras o switches, donde se inserta el conector RJ45.
- **RJ45 (Registered Jack 45):** Es el conector más común para cables de red Ethernet de par trenzado. Tiene 8 pines y se utiliza para conectar dispositivos como computadoras, routers, switches y módems.

Implementación del Cableado con RJ45: Directos y Cruzados

El cableado de red con conectores RJ45 sigue estándares para asegurar la compatibilidad y el correcto funcionamiento. Los más comunes son los **estándares EIA/TIA 568A y 568B**, que especifican el orden de los hilos dentro del conector.

- Cable Directo (Straight-Through): Se utiliza para conectar dispositivos de diferente tipo
 (ej. una computadora a un switch o router). En un cable directo, ambos extremos del
 cable (ambos conectores RJ45) están cableados con el mismo estándar (o 568A en
 ambos lados, o 568B en ambos lados). El orden de los colores de los hilos es idéntico en
 ambos extremos.
 - Estándar EIA/TIA 568B (más común):
 - 1. Blanco/Naranja
 - 2. Naranja
 - 3. Blanco/Verde
 - 4. Azul
 - 5. Blanco/Azul
 - 6. Verde
 - 7. Blanco/Marrón
 - 8. Marrón
- Cable Cruzado (Crossover): Se utiliza para conectar dispositivos del mismo tipo (ej. dos computadoras directamente, o dos switches). En un cable cruzado, un extremo está cableado con el estándar 568A y el otro extremo con el estándar 568B. Esto "cruza" los hilos de transmisión y recepción, permitiendo que un dispositivo transmita y el otro reciba correctamente.

Extremo 1 (568A):

- 1. Blanco/Verde
- 2. Verde
- 3. Blanco/Naranja
- 4. Azul
- 5. Blanco/Azul
- 6. Naranja
- 7. Blanco/Marrón
- 8. Marrón

Extremo 2 (568B):

- 1. Blanco/Naranja
- 2. Naranja
- 3. Blanco/Verde
- 4. Azul
- 5. Blanco/Azul
- 6. Verde
- 7. Blanco/Marrón
- 8. Marrón

Especificaciones de Cables

Las especificaciones de los cables de red son cruciales para el rendimiento y la fiabilidad de la comunicación:

 Velocidad: Es la capacidad del cable para transmitir datos en un determinado período, generalmente medida en megabits por segundo (Mbps) o gigabits por segundo (Gbps).
 La velocidad soportada depende de la categoría del cable (ej. Cat 5e, Cat 6, Cat 6a, Cat 7), su construcción y la tecnología de red utilizada.

Problemas Inherentes:

- Ruidos (Noise): Son señales eléctricas no deseadas que pueden interferir con la señal de datos, distorsionándola y causando errores. Pueden ser generados por motores, líneas eléctricas o dispositivos electrónicos cercanos.
- Atenuación (Attenuation): Es la pérdida de fuerza de la señal a medida que viaja a través del cable. Cuanto mayor es la distancia, mayor es la atenuación, lo que puede limitar el alcance efectivo del cable.
- Diafonía (Crosstalk): Es la interferencia causada por las señales de un par de hilos adyacentes en un cable de par trenzado que se "filtran" a otro par. Reduce la integridad de la señal y es mitigada eficazmente por el trenzado de los hilos y el blindaje (en cables STP).