Heuristic Optimization Methods

Lecture 03 – Simulated Annealing

Simulated Annealing

- A metaheuristic inspired by statistical thermodynamics
 - Based on an analogy with the cooling of material in a heat bath
- Used in optimization for 20 years
- Very simple to implement
- A lot of literature
- Converges to the global optimum under weak assumptions (- usually slowly)

Simulated Annealing - SA

- Metropolis' algorithm (1953)
 - Algorithm to simulate energy changes in physical systems when cooling
- Kirkpatrick, Gelatt and Vecchi (1983)
 - Suggested to use the same type of simulation to look for good solutions in a COP

SA - Analogy

Thermodynamics

- 1. Configuration of particles
- 2. System state
- 3. Energy
- 4. State change
- 5. Temperature
- 6. Final state

Discrete optimization

1. Solution

- 2. Feasible solution
- 3. Objective Function
- 4. Move to neighboring solution
- 5. Control Parameter
- 6. Final Solution

Simulated Annealing

- Can be interpreted as a modified random descent in the space of solutions
 - Choose a random neighbor
 - Improving moves are always accepted
 - Deteriorating moves are accepted with a probability that depends on the amount of the deterioration and on the *temperature* (a parameter that decreases with time)
- Can escape local optima

Move Acceptance in SA

- We assume a minimization problem
- Set $\Delta = \text{Obj}(\text{random neighbor}) \text{Obj}(\text{current solution})$
- If $\Delta < 0 \rightarrow$ accept (we have an improving move)
- Else accept if

$$Random(0,1) < e^{-\frac{\Delta}{t}}$$

• If the move is not accepted: try another random neighbor

SA - Structure

- Initial temperature t_0 high
 - (if $\infty \rightarrow$ random walk)
- Reduce *t* regularly
 - need a cooling schedule
 - if too fast \rightarrow stop in some local optimum too early
 - if too slow \rightarrow too slow convergence
- Might restart
- Choice of neighborhood structure is important

SA

- Statistical guarantee that SA finds the global optimum
- In practice this requires exponential (or ∞) running time
- The cooling schedule is vitally important
 - Much research on this
 - Static schedules: specified in advance
 - Adaptive schedules: react to information from the search

Simulated Annealing

```
1: input: starting solution, s_0
 2: input: neighborhood operator, N
 3: input: evaluation function, f
 4: input: the cooling schedule, t_k
 5: input: the number of iterations for each temperature, M_k
 6: current \Leftarrow s_0
 7: k \Leftarrow 0
 8: while stopping criterion not met do
       m \Leftarrow 0
 9:
       while m < M_k do
10:
         s \Leftarrow \text{randomly selected solution from } N(current)
11:
         if f(s) \leq f(current) then
12:
            current \Leftarrow s
13:
         else
14:
            \Delta \Leftarrow f(s) - f(current)
15:
            \xi \Leftarrow a random number, uniformly drawn from [0, 1]
16:
            if \xi \leq e^{-\Delta/t_k} then
17:
               current \Leftarrow s
18:
            end if
19:
         end if
20:
         m \Leftarrow m + 1
21:
       end while
22:
       k \Leftarrow k + 1
23:
24: end while
```


Choice of Move in SA

- Modified "Random Descent"
- Select a random solution in the neighborhood
- Accept this
 - Unconditionally if better than current
 - With a certain, finite probability if worse than current
- The probability is controlled by a parameter called the *temperature*
- Can escape from local optima

SA - Cooling

SA – Overall Structure

- Set the initial value of the control variable t (t₀) to a high value
- Do a certain number of iterations with the same temperature
- Then reduce the temperature $t_{i+1} = \alpha(t_i)$
- Need a "cooling schedule"
- Stopping criterion e.g. "minimum temperature"
 - Repetition is possible
- Solution quality and speed are dependent on the choices made
- Choice of neighborhood structure is important

Statistical Analysis of SA

- Model: State transitions in the search space
- Transition probabilities [p_{ii}] (i,j are solutions)
- Only dependent on i and j: homogenous Markov chain
- If all the transition probabilities are finite, then the SA search will converge towards a stationary distribution, independent of the starting solution.
 - When the temperature approaches zero, this distribution will approach a uniform distribution over the global optima
- Statistical guarantee that SA finds a global optimum
- But: exponential (or infinite) search time to guarantee finding the optimum

SA in Practice (1)

- Heuristic algorithm
- Behaviour strongly dependent on the cooling schedule
- Theory:
 - An exponential number of iterations at each temperature
- Practice:
 - A large number of iterations at each temperature, few temperatures
 - A small number of iterations at each temperature, many temperatures

SA in Practice (2)

• Geometric chain

$$-t_{i+1} = \alpha t_i, i = 0,...,K$$
$$-\alpha < 1 (0.8 - 0.99)$$

- Number of repetitions can be varied
- Adaptivity:
 - Variable number of moves before the temperature reduction
- Necessary to experiment

SA – General Decisions

- Cooling Schedule
 - Based on maximum difference in the objective function value of solutions, given a neighborhood
 - Number of repetitions at each temperature
 - Reduction rate, α
- Adaptive number of repetitions
 - more repetitions at lower temperatures
 - number of accepted moves, but a maximum limit
- Very low temperatures are not necessary
- Cooling rate most important

SA – Problem Specific Decisons

- Important goals
 - Response time
 - Quality of the solution
- Important choices
 - Search space
 - Infeasible solutions should they be included?
 - Neighborhood structure
 - Move evaluation function
 - Use of penalty for violated constraints
 - Approximation if expensive to evaluate
 - Cooling schedule

SA – Choice of Neighborhood

- Size
- Variation in size
- Topologi
 - Symmetry
 - Connectivity
 - Every solution can be reached from all the others
- Topography
 - Spikes, Plateaus, Deep local optima
- Move evaluation function
 - How expensive is it to calculate ?

SA - Speed

- Random choice of neighbor
 - Reduction of the neighborhood
 - Does not search through all the neighbors
- Cost of new candidate solution
 - Difference without full evaluation
 - Approximation (using surrogate functions)
- Move acceptance criterion
 - Simplify

SA – Example: TSP

- Search space (n-1)!/2
- Neighborhood size:
 - 2-opt: n(n-1)/2
- Connected
- Simple representation of moves
- Natural cost function
- Difference in cost between solutions is easy to calculate
- Generalization: k-Opt

SA – Fine Tuning

- Test problems
- Test bench
- Visualization of solutions
- Values for
 - cost / penalties
 - temperature
 - number / proportion of accepted move
 - iterations / CPU time
- Depencies between the SA-parameters
- The danger of overfitting

SA – Summary

- Inspired by statistical mechanics cooling
- Metaheuristic
 - Local search
 - Random descent
 - Use randomness to escape local optima
- Simple and robust method
 - Easy to get started
- Proof for convergence to the global optimum
 - Worse than complete search
- In practise:
 - Computationally expensive
 - Fine tuning can give good results
 - SA can be good where robust heuristics based on problem structure are difficult to make

