Classical Field Theory Notes

Bruno Bucciotti 19 agosto 2018

Sommario

Note intente a rendere più esplicita la notazione e contenere definizioni e alcune computazioni inerenti la teoria classica dei campi. Si seguono le note a questo link. Non useremo in maniera sostanziale geometria differenziale, ma conoscere l'idea di flusso di un campo vettoriale può aiutare.

Introduzione

Spazio tempo, campi e jet space

Supponiamo uno spazio tempo 4 dimensionale piatto \mathbb{R}^4 . Su di esso definisco dei campi, per ora solo scalari, $\phi: \mathbb{R}^4 \to \mathbb{R}$, le cui derivate indico $\phi, \alpha, \phi, \alpha\beta, \ldots$. Vorrò definire una lagrangiana funzione delle derivate k-esime dei campi e del punto in \mathbb{R}^4 , a tal fine introduco il k-esimo $Jet\ space\ \mathcal{J}^k$, cioè uno spazio \mathbb{R}^n in cui ho 4 dimensioni associate allo spazio tempo, una associata al campo, 4 associate alle 4 derivate prime del campo, altre 10 associate alle derivate seconde (ricordando Schwarz non sono 16 indipendenti), fino alle derivate k-esime. Dato un campo ϕ posso computare tutte le derivate in funzione del punto e rappresentare il campo come superficie (sezione) del jet space. Viceversa una generica superficie nel jet non è detto che sia un campo, ad esempio potrei fissare che per ogni punto $x \in \mathbb{R}^4$ vi sia un punto nel jet con le prime 4 coordinate date da x, la quinta (il campo) e le successive 4 (tutte le derivate prime) valgano 1, cosa impossibile. L'idea è che nel jet tutte queste funzioni sono indipendenti fra loro e i vincoli vengono successivamente.

Lagrangiana

Il jet space serve a definire la lagrangiana $\mathcal{L}: \mathcal{J}^k \to \mathbb{R}$, ad esempio la lagrangiana di Klein Gordon è $\mathcal{L}(x,\phi,\phi_{,\alpha}) = \frac{1}{2}(\phi_{,t}^2 - (\nabla\phi)^2 - m^2\phi^2)$. Notare che qui ϕ è solo una coordinata nel jet space, dunque un numero. Dati 9 numeri posso calcolare il valore della lagrangiana.

Due operatori utili

Derivata totale E' un operatore che data una funzione $F: \mathcal{J}^k \to \mathbb{R}$ restituisce una funzione $D_{\alpha}F: \mathcal{J}^{k+1} \to \mathbb{R}$, dove α si riferisce a una delle 4 coordinate spazio-temporali.

$$(D_{\alpha}F)(x,\phi,\phi_{\alpha},..,\partial^{k+1}\phi) = \frac{\partial F}{\partial x^{\alpha}} + \frac{\partial F}{\partial \phi}\phi_{,\alpha} + \frac{\partial F}{\partial \phi_{,\beta}}\phi_{,\alpha\beta} + ... + \frac{\partial F}{\partial \phi_{\alpha_{1}..\alpha_{k}}}\phi_{,\alpha\alpha_{1}..\alpha_{k}}$$

L'utilità della derivata totale si vede in questo esempio: fissiamo un campo ϕ e mettiamolo dentro la lagrangiana \mathcal{L} . Otteniamo una funzione dello spazio-tempo che possiamo derivare normalmente in x^{α} .

$$\frac{\partial \mathcal{L}(*,\phi(*),\phi_{,\alpha}(*))}{\partial x^{\alpha}}(x) = \frac{\partial \mathcal{L}}{\partial x^{\alpha}}(x,\phi(x),..) + \frac{\partial \mathcal{L}}{\partial \phi}(x,\phi(x),..)\phi_{,\alpha}(x) + ... = (D_{\alpha}\mathcal{L})(x,\phi(x),..)$$

Variazione Un operatore che, stavolta fissando a priori un campo ϕ , data una funzione $F: \mathcal{J}^k \to \mathbb{R}$ restituisce una funzione $\delta F: \mathcal{J}^k \to \mathbb{R}$ in cui le coordinate cambiano nome perchè avranno ruoli diversi nel seguito.

$$(\delta F)(x,\delta\phi,\delta\phi_{,\alpha},..) = \frac{\partial \mathcal{L}}{\partial \phi}(x,\phi(x),..)\delta\phi + \frac{\partial \mathcal{L}}{\partial \phi_{,\alpha}}(x,\phi(x),..)\delta\phi_{,\alpha} + ...$$

Enfatizzo che il jet non contiene le coordinate ϕ e che tale campo compare sempre valutato in x. L'utilità di questo operatore viene mostrata nella prossima sezione.

L'azione

Definizione L'azione S è un funzionale della lagrangiana: fissato ϕ ho $S[\phi] = \int \mathcal{L}(x,\phi(x),..)d^4x$. Nel seguito supponiamo il campo fissato ai tempi t_1 e t_2 , e di volerlo trovare nell'intervallo (t_1,t_2) . Il campo decade sempre abbastanza rapidamente a infinito. Un fatto fisico fondamentale è che l'azione è estremata per le traiettorie fisiche.

Punti critici Questo si precisa, dato un campo ϕ , definendo molti campi e parametrizzandoli con $s \in (-\epsilon, \epsilon)$, cioè $\psi(s, x)$ funzione di $(-\epsilon, \epsilon) \times \mathbb{R}^4$ liscia tale che fissato s si abbia un campo sullo spazio tempo, per s=0 si recuperi ϕ , mentre $\forall s$ con x sul bordo $\psi(s, x) = \phi(x)$. ϕ è un punto critico del funzionale S se $\forall \psi$ nelle ipotesi sopra si ha $\frac{d}{ds}|_{s=0}S[\psi(s,*)]=0$. Intuitivamente ϕ fissato è punto critico se, comunque sia scelta la variazione, S con cambia. Deriviamo ora le equazioni di Eulero Lagrange.

Euler Lagrange equations Per cercare punti critici cerco un'equazione che ϕ debba soddisfare per essere punto critico. Lo faccio nel caso particolare in cui $\mathcal{L} = \mathcal{L}(x, \phi, \phi_{,\alpha})$, rimandando il caso generale all'appendice. Per procedere scelgo un tipo particolare di $\psi(s, x) = \phi(x) + s\delta\phi(x)$ con $\delta\phi$ qualunque.

$$\frac{d}{ds}|_{s=0} \int_{\mathcal{V}} \mathcal{L}(x, (\phi + s\delta\phi)(x), (\phi + s\delta\phi)_{,\alpha}(x)) d^{4}x =$$

$$\int_{\mathcal{V}} \frac{d}{ds}|_{s=0} \mathcal{L}(x, (\phi + s\delta\phi)(x), (\phi + s\delta\phi)_{,\alpha}(x)) d^{4}x =$$

$$\int_{\mathcal{V}} \frac{\partial \mathcal{L}}{\partial \phi}(x, \phi(x), \phi_{,\alpha}(x)) \delta\phi(x) + \frac{\partial \mathcal{L}}{\partial \phi_{,\alpha}}(x, \phi(x), \phi_{,\alpha}(x)) \delta\phi_{,\alpha}(x) d^{4}x =$$

$$\int_{\mathcal{V}} \delta \mathcal{L}(x, \delta\phi(x), \delta\phi_{,\alpha}(x)) d^{4}x$$

Il fatto che compaia $\delta \mathcal{L}$ è del tutto generale, così come il fatto che, integrando per parti, si possa portare l'integrale nella forma

$$\int_{\mathcal{V}} (\mathcal{E}(\mathcal{L})) \delta \phi + D_{\alpha} V^{\alpha} d^4 x$$

dove $\mathcal{E}(\mathcal{L})$ sono le equazioni di Eulero Lagrange per ϕ (in cui non compare mai $\delta\phi$) e V^{α} è un campo vettoriale di cui si prende la divergenza. Dunque

$$\delta \mathcal{L}(x, \delta \phi, ..) = \mathcal{E}(\mathcal{L})(x)\delta \phi + D_{\alpha}V^{\alpha} \tag{1}$$

Con le condizioni al bordo e il teorema di Gauss il secondo termine si cancella, mentre il primo, poichè $\delta\phi$ è arbitrario, impone che $\mathcal{E}(\mathcal{L})=0$. Si può dimostrare che, viceversa, se ϕ rispetta le E.L. allora comunque sia scelto ψ come sopra l'azione risulterà stazionaria, cioè le EL sono condizione necessaria e sufficiente perchè ϕ sia punto critico.

Simmetrie

Definizioni

Variational symmetry Dato un campo qualsiasi ϕ una trasformazione F (con $F(\phi)$ un nuovo campo) è detta simmetria variazionale se $\mathcal{L}(x,\phi,..) = \mathcal{L}(x,F(\phi),..)$.

Discreta Non vi è un parametro a descrivere varie trasformazioni. Ad esempio $\phi \to -\phi$.

Continua Viene definita, per ogni campo ϕ , una famiglia di campi parametrizzati da λ , cioè ϕ_{λ} con $\phi_0 = \phi$ e, $\forall \lambda$

$$\mathcal{L}(x,\phi_{\lambda}(x),\phi_{\lambda,\alpha}(x),..) = \mathcal{L}(x,\phi(x),\phi_{,\alpha}(x),..)$$

Enfatizzo che, mentre per i punti critici dell'azione si fissa un campo e si guardano tutte le variazioni possibili, qui per ogni campo si definisce una famiglia di variazioni. Altro parlando di simmetrie infinitesime.

Divergence symmetry Se la lagrangiana, invece di essere invariante, cambia per una divergenza $D_{\alpha}V^{\alpha}$. Notare che l'aggiunta di una divergenza non cambia le equazioni di Eulero Lagrange.

Noether theorem

Infinitesimal symmetry

Introduzione Data una simmetria variazionale continua ho $\delta\phi=\left(\frac{\partial\phi_\lambda}{\partial\lambda}\right)|_{\lambda=0},$ un campo scalare sullo spazio tempo costruito a partire da ϕ e le sue derivate. Ricordo che l'equazione differenziale che definisce $\delta\phi$ è sufficiente, noto $\delta\phi$, a determinare almeno localmente ϕ , risolvendo una ODE del primo ordine. Può essere utile nel seguito pensare ϕ come un punto nello spazio dei campi, ϕ_λ come una curva in tale spazio e $\delta\phi$ come il vettore tangente alla curva in un punto. ϕ_λ al variare di λ e x è il flusso del campo $\delta\phi$. Ricordo inoltre che questo $\delta\phi$ non c'entra con quello delle variazioni e dei punti critici, almeno per ora.

Una equivalenza Considero una lagrangiana \mathcal{L} che ha simmetria variazionale continua $\phi \to \phi_{\lambda}$. Allora ho che

$$\frac{\partial \mathcal{L}(x, \phi_{\lambda}(x), ..)}{\partial \lambda} |_{\lambda=0} = 0$$
 (2)

e viceversa se vale (2) $\forall x$ ho che $\phi \to \phi_{\lambda}$ è simmetria variazionale. Intuitivamente questo è perchè, seppure la derivata è calcolata in $\lambda = 0$, la (2) vale per qualunque campo. Formalmente

$$\frac{\partial \mathcal{L}(x, \phi_s(x), ...)}{\partial s} = \lim_{\lambda \to 0} \frac{\mathcal{L}(x, \phi_{s+\lambda}(x), ...) - \mathcal{L}(x, \phi_s(x), ...)}{\lambda} = \frac{\partial \mathcal{L}(x, \phi_{s+\lambda}, ...)}{\partial \lambda} |_{\lambda = 0} = 0$$

dove nell'ultimo passaggio applico (2) a ϕ_s .

 $\delta \mathcal{L} = 0$ Ho anche che, fissato ϕ ,

$$\begin{split} \frac{\partial \mathcal{L}(x,\phi_{\lambda}(x),..)}{\partial \lambda}|_{\lambda=0} &= \frac{\partial \mathcal{L}}{\partial \phi}(x,\phi(x),..) \left(\frac{\partial \phi_{\lambda}}{\partial \lambda}\right)|_{\lambda=0}(x) + \frac{\partial \mathcal{L}}{\partial \phi,\alpha}(x,\phi(x),..) \left(\frac{\partial \phi_{\lambda,\alpha}}{\partial \lambda}\right)|_{\lambda=0}(x).. \\ &= \frac{\partial \mathcal{L}}{\partial \phi}(x,\phi(x))\delta\phi(x) + \frac{\partial \mathcal{L}}{\partial \phi,\alpha}(x,\phi(x))\delta\phi_{,\alpha}(x) + ... = \delta \mathcal{L}(x,\delta\phi(x),..) = 0 \end{split}$$

che mi ricollega alla notazione precedente per $\delta\phi$ riguardo i punti critici. Se si valuta $\delta\mathcal{L}$ nel campo $\delta\phi$ e le sue derivate si ottiene 0.

$$\delta \mathcal{L}(x, \delta \phi(x), ..) = 0 \tag{3}$$

Conclusione Sia \mathcal{L} lagrangiana con simmetria $\phi \to \phi_{\lambda}$. Scelgo ϕ che soddisfi le equazioni del moto. Definisco per tale campo ϕ il campo $\delta\phi$ come sopra. Allora ho, valutando la (1) in $\delta\phi$ e usando la (3)

$$D_{\alpha}V^{\alpha}=0$$

cioè V^{α} è una corrente conservata. Noto che questa quantità dipende dalla lagrangiana e dalla simmetria (poichè compare $\delta\phi$).

Osservo che se la simmetria non fosse una simmetria variazionale esatta ma solo a meno di una divergenza avrei che $\delta \mathcal{L}$ sarebbe una divergenza $D_{\alpha}W^{\alpha}$ (invece che 0) e a conservarsi sarebbe quindi $V^{\alpha} - W^{\alpha}$.