

$$\frac{1}{2\times10^{11}} \left[ -4N\times10^{2} + 0.33(6\times10^{8}) \right] \\
= \frac{1}{2\times10^{11}} \left[ -4N\times10^{2} + 0.33(6\times10^{8}) \right] \\
= \frac{1}{109} \left[ -2N + (0.99\times10^{6}) \right] \times 10^{-9} - 4$$

$$= \left[ -2N + (0.99\times10^{6}) \right] \times 10^{-9} \times 10^{-9} - 4$$

$$= \left[ -2N + (0.99\times10^{6}) \right] \times 10^{-9} \times (2000\times10^{-3}) \\
= \left[ -4N + 1.98\times10^{6} \right] \times 10^{-9} \times (2000\times10^{-3}) \\
= \left[ -4N + 1.98\times10^{6} \right] \times 10^{-9} \times (2000\times10^{-3}) \\
= \frac{F}{K} = \frac{F}{5\times10^{6}} = 2F\times10^{-7} - (3)$$
Now we know,
$$\Delta L - \delta = 1\times10^{-3} - (4)$$
Substitute (2)  $L(3)$  in (4)
$$(-4N + 1.98\times10^{6}) \times 10^{-9} - 2F\times10^{-7} = 10^{-3}$$

 $08 - 4N \times 10^{-6} - 2F \times 10^{-4} = -0.98 - .60$ 

$$\begin{aligned} & \cdot \cdot \cdot G_{X} = \frac{1}{2 \times 10^{11}} \left[ -4 \times 10^{2} + 0.33 (G \times 10^{8}) \right] \\ & = \frac{1}{2 \times 10^{11}} \left[ -4 \times 10^{2} + 0.33 (G \times 10^{8}) \right] \\ & = \frac{1}{109} \left[ -2 \times 10^{2} + (0.99 \times 10^{6}) \right] \times 10^{-9} \\ & = \left[ -2 \times 10^{2} + (0.99 \times 10^{6}) \right] \times 10^{-9} \times 10^{-9} \\ & = \left[ -2 \times 10^{2} + (0.99 \times 10^{6}) \right] \times 10^{-9} \times (2000 \times 10^{-3}) \\ & = \left[ -4 \times 1.98 \times 10^{6} \right] \times 10^{-9} \times (2000 \times 10^{-3}) \\ & = \left[ -4 \times 1.98 \times 10^{6} \right] \times 10^{-9} \times (2000 \times 10^{-3}) \\ & = \frac{F}{K} = \frac{F}{5 \times 10^{6}} = 2 \times 10^{-7} - (3) \end{aligned}$$
Now we know,
$$\Delta L - \delta = 1 \times 10^{-3} - - (4)$$
Substitute (2)  $L(3)$  in (4)
$$\left( -4 \times 1.98 \times 10^{6} \right) \times 10^{7} - 25 \times 10^{7} = 10^{-3} \end{aligned}$$

 $08 - 4N \times 10^{-6} - 2F \times 10^{-4} = -0.98 - ...(5)$ 

Solving 
$$=$$
 (3. (1)  $6$  (5), we get  $-4N \times 10^6 - 2(2N \times 10^2) \times 10^4 = -0.98$  or  $-4N - 4N = -0.98 \times 10^6$  or  $-4N - 4N = -0.98 \times 10^6$  or  $N = 0.1225 \times 10^6$  [N = 1.225 × 10<sup>5</sup> N] — (2) Therefore  $F = 2N \times 10^{-2}$  N [F = 2.45 × 10<sup>3</sup> N] — (4) On writs/wrong units  $\Rightarrow$  zero marks for that part (2)  $E_{x} = \frac{1}{E} (E_{x} - Y(E_{y} + E_{z}))$  If parceded with  $E_{x} = 0$  then no marks since assumed  $E_{x} = 0 \Rightarrow F_{x} = 0 \Rightarrow no$  force in springs  $E_{y} = 0$ ,  $E_{x} = 0$ ,  $E_{x} = 0$  then  $E_{y} = 0$  and  $E_{y} = 0$  force in springs  $E_{y} = 0$ ,  $E_{x} = 0$ ,  $E_{x} = 0$  then  $E_{y} = 0$  force in  $E_{y} = 0$ . This is wrong since assumption:  $E_{y} = 0$  force  $E_{y} = 0$ .

in x- Lirection.