Computer Limitations and Representation

- Recall the Universal Computer
 - There is a limited tape size to perform calculation
- Recall the von Neumann and Harvard architecture
 - There is a predefined width to registers and memory
- Abstract representations with limited sizes for:
 - Natural Numbers & Zero: unsigned char, unsigned int
 - Integers:
 - Rational/Real:
 - Fix Point
 - Floating Point

short int, int, long int

float, double

An encoding of each will include one or more of the following:

sign	whole	fractional	expon sign	exponent
------	-------	------------	------------	----------

Scientific Notation

- All numbers represented as: m x 10^N
- Simplifies operations on large and small numbers.
 - o Distance between sun and earth: $92,000,000 = 9.2 \times 10^7$
 - Distance between sun and mars: $143,000,000 = 1.43 \times 10^{8}$
- Floating point representation
 - a representation of scientific notation
 - introduces the notion of infinity, and NaN (0 / 0 = ?, 0 x infinity = ?)
- Representation of: -1.00101 x 2 -1001
 - Assume a size of 16
 - Note the whole part is alway "1", so I left it out!

 14.3×10^{7} 9.2×10^{7} 5.1×10^{7}

always 1: so we don't store it

Original number: 2# - 0.000100101

Recall Scientific Notation: -1.00101 x 2 -100 (4)

- Components to Encode
 - sign: negative
 - o significant or the mantissa: 00101
 - exponent: 100 ←
 - Issue: negative exponents
 - Solution: store values with a bias
- Bias:
 - Shift all numbers along the number line by N
 - Typically it is half the range:
 - 3 bits ->

011 == 3

- 5 bits ->
 - 0 1111 == 15
- 8 bits ->
- 0111 1111 == 127
- 11 bits -> 011 1111 1111 == 1023

Symbol	Encoding	
+	0	
-	1	

Number		Encoding (Bias: 4)
-4		000
-3		001
-2		010
-1		011
0	000	100
1	001	101
2	010	110
3	011	111

https://en.wikipedia.org/wiki/Single-precision floating-point format

Recall Scientific Notation: - 1.00101 x 2 - 100 (-4)

- Formats:

binary 16 (half):
$$1 + 5 + 10 = 16$$
, $0 = 1111 = 15$

m

S

е

е

е е

m

m

m

m

m

m

m

binary32 (single): 1 + 8 + 23 = 32, 0111 1111 = 127

- - binary64 (double): 1 + 11 + 52 = 64, 01 1111 1111 = 1023

Recall Scientific Notation: - 1.00101 x 2 -100 (4)

- Consider a new format: c122f8 (quarter)
 - \circ c122f8 (quarter): 1 + 3 + 4 = 8, 011 = 3
- Components
 - o sign: 1
 - o mantissa: 0010010; Drop the extra bits.
 - \circ expon: -4 + 3 = -1 Opps, number is two small.
 - 1 e e e 0 0 1 0

Recall Scientific Notation: - 1.00101 x 2 -100 (-4)

Half Precision

```
float 16 (half): 1 + 5 + 10 = 16, 0 = 1111 = 15
```

Components

```
o sign: 1
```

```
o mantissa: 0010100; fill in least significant bits with zero (0)
```

```
\circ expon: -4 + 15 = 11 \rightarrow 1011
```

```
0
0
                                         0
                                               0
```

Recall Scientific Notation: - 1.00101 x 2 -100 (-4)

Single Precision

```
\circ float32 (single): 1 + 8 + 23 = 32, 0111 1111 = 127
```

Components

```
sign: 1mantissa: 010010; fill in least significant bits with zero (0)
```

```
\circ expon: -4 + 127 = 123 \rightarrow 0111 \ 1011
```