Shor's algorithm

Dilhan Manawadu

February 15, 2024

Factoring large numbers

- A prime number is a natural number greater than 1 that is divisible by only 1 and itself.
- By multiplying two prime numbers, we can generate composite numbers with two prime factors. For example 21 = 3 × 7.
- Given a large composite number, can one devise an algorithm to find its prime factors?
- Shor's algorithm is a quantum algorithm proposed to solve this problem.

Factoring large numbers

• The periodic function f(x) is defined by

$$f(x) = a^x \mod N \tag{1}$$

where $\mod N$ stands for division modulo N. For example,

$$11 = 3 \mod 4$$

since $11 \div 4$ returns 3 as the remainder.

- The period of function f(x) is defined as the smallest non-zero integer r such that $f(r) = a^r \mod N = 1$.
- A unique r > 0 exists as long as a < N, and a and N do not have common factors, i.e., gcd(a, N) = 1

Shor's unitary operator

Let's define the operator *U* by

$$U|y\rangle = |ay \mod N\rangle \tag{2}$$

• For example, U for the periodic function $f(x) = 7^x \mod 15$ is given by,

$$U|y\rangle = |7y \mod 15\rangle$$

• Starting with y = 1, we get

$$U|1\rangle = |7 \mod 15\rangle = |7\rangle$$

 $U^2|1\rangle = U|7\rangle = |49 \mod 15\rangle = |4\rangle$
 $U^3|1\rangle = U|4\rangle = |28 \mod 15\rangle = |13\rangle$
 $U^4|1\rangle = U|13\rangle = |91 \mod 7\rangle = |1\rangle$

- Since $U^4 |1\rangle = |1\rangle$, *U* is a unitary operator.
- $\{|7\rangle, |4\rangle, |13\rangle, |1\rangle\}$ forms a basis for U.

Eigenstates of U

• Let's define as $|u_0\rangle$ the state created by symmetric superposition of these basis states.

$$|u_0\rangle = \frac{1}{2}(|1\rangle + |7\rangle + |4\rangle + |13\rangle)$$

$$U|u_0\rangle = \frac{1}{2}(U|1\rangle + U|7\rangle + U|4\rangle + U|13\rangle)$$

$$U|u_0\rangle = \frac{1}{2}(|7\rangle + |4\rangle + |13\rangle + |1\rangle)$$

$$U|u_0\rangle = |u_0\rangle$$

 $|u_0\rangle$ is an eigenstate of operator U.

Eigenstates of U

• Any state $|u_s\rangle$ defined for s < r by

$$|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp\left\{\left(-\frac{2\pi i s k}{r}\right)\right\} U^k |1\rangle$$
 (3)

is an eigenstate of the operator U,

$$U|u_s\rangle = \exp\left\{\left(\frac{2\pi is}{r}\right)\right\}|u_s\rangle \tag{4}$$

- If we can prepare the state $|u_s\rangle$ on a quantum computer, we can approximate the value of r using the quantum phase estimation (QPE) algorithm.
- We cannot prepare the state $|u_s\rangle$ without knowing r!

Initial state for QPE

• If we sum over states $|u_s\rangle$ for values $0 \le s < r$, the phases cancel to give

$$\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|u_s\rangle=|1\rangle\tag{5}$$

- Therefore we can use the easy-to-prepare state |1> as the initial target state for QPE.
- As $|1\rangle$ is a symmetric superposition of states $|u_s\rangle$, QPE will measure a phase $\phi = \frac{s}{r}$ where s will be a random integer between 0 and r-1 drawn from a uniform distribution.

Example : Finding r of $a^r \mod 15$ using QPE

Register Output (binary)	Decimal	Phase	Fraction
00000000	0	$\frac{0}{256} = 0.00$	0
01000000	64	$\frac{64}{256} = 0.25$	1/4
10000000	128	$\frac{128}{256} = 0.50$	1/2
11000000	192	$\frac{192}{256} = 0.75$	3/ 4

- We find the correct period r = 4 with 50% accuracy.
- This is a consequence of using |1⟩ instead of |u_s⟩ to initialise the target registry.

Factoring

• Since r = 4 is even, we can write

$$a^r \mod N = 1$$

 $a^r - 1 = xN$
 $(a^{r/2} - 1)(a^{r/2} + 1) = xN$

- we can see that $a^{r/2} \pm 1$ is highly likely to share a factor with N.
- Therefore, we can guess the greatest common dividers of these two integers with N to be a factor of N.
- If r is odd, we choose a different value for a and perform QPE until an even r is found.