Table of Contents

Creating simulated data

Setting up initial samples

```
theta = 0; % first parameter
alpha T = y./2; % mean value of the Kalman filter output
```

Sampling *\text{\theta}* using Hamiltonian Monte Carlo

```
tic
launch_stan
time_stan = toc

Stan succeeded.

time_stan =
36.0408
```


Sampling (θ, α_t) using Hamiltonian Monte Carlo

tic
launch_stan_full
time_stan_full = toc

Stan succeeded.

time_stan_full =
 36.7566

Sampling (θ, α_t) using T-factors Auxiliary Gibbs sampler

```
tic
T_factors_Gibbs
time_Gibbs = toc

time_Gibbs =
159.8191
```


Sampling θ using adaptive Metropolis sampler

tic
launch_am
time_am = toc

 $time_am =$

7.9208

Cleaning up working folder

delete *.stan *.hpp *.mat *.csv *.R

Published with MATLAB® R2015b