5. The Logical Framework

- (a) Judgements.
- (b) Basic form of rules.
- (c) The non-dependent function type and product.
- (d) Structural rules. (Omitted 2008).
- (e) The dependent function set and ∀-quantification.
- (f) The dependent product and ∃-quantification.
- (g) Derivations vs. Agda code. (Omitted 2008).
- (h) Presuppositions (Omitted 2008).
- (i) The full logical framework

(a) Judgements

- In the λ-calculus, it is easy to determine the correctly formed types.
 In dependent type theory the type structure is richer and more complicated.
- Proof steps are required to conclude that something is a type.

Judgements

• Therefore we have not only the judgement as in the λ -calculus

a:A

but as well a typing judgement A is a type, written (as we have already seen)

 $A: \mathbf{Set}$

- ullet Before deriving a:A, we first have to show $A:\operatorname{Set}$.
 - So any derivation of a : A contains implicitly a derivation of A : Set.

Equality Judgements

- Agda will identify terms which have the same normal form.
 - E.g. $s := (\lambda x^A . x) r$ and r will be identified.
- If one needs at some place r, one can insert s instead of r and vice versa.
- In Agda this is done automatically, the user doesn't see such equalities.
 - There is not even a direct command available in Agda, which allows to check whether two terms are equal (this could probably be added easily).

Jump over example.

Example

```
postulate A: Set
postulate a:A
postulate P: A \to Set
g : A \to A
g a = a
a' : A
a' = g a
p : P a \rightarrow P a'
p x = \{! !\}
```

exampleSimpleEquality2.agda

Since a' = g a = a, we can solve the goal by using x.

Equality Judgements

- When using the simply typed λ-calculus, we could separate the derivation of λ-terms, from reductions.
- When using dependent type theory as in Agda, reductions and derivations have to be integrated.
- Traditionally, instead of introducing reductions, one introduces in dependent type theory equalities between terms.
- Written as

$$r = s : A$$

for r and s are equal elements of set A.

Example

• The rule expressing that $\pi_0(\langle a,b\rangle) \longrightarrow a$ reads in this style as follows:

$$\frac{a:A \quad b:B}{\pi_0(\langle a,b\rangle) = a:A} (\times - Eq_0)$$

= is not directed, so we have as well the rule

$$\frac{a = b : A}{b = a : A} (\operatorname{Sym}_{\operatorname{Elem}})$$

We can therefore derive:

$$\frac{a:A \quad b:B}{\pi_0(\langle a,b\rangle) = a:A} (\times \text{-Eq}_0)$$

$$a = \pi_0(\langle a,b\rangle) : A \quad (\text{Sym}_{\text{Elem}})$$

Equality of Types

We will have as well equality between types, written as

$$A = B : Set$$

- This is something novel in dependent type theory.
 - In simple type theory, there is only one way of writing a type.

Examples (Equality of Types)

• Assume $f: A \rightarrow \operatorname{Set}$. If a = a': A, then

$$f a = f a' : Set$$
.

- We used this in the example above:
 - There we had

and could by f a = f a' conclude

Jump over next examples.

Examples (Equality of Types)

More precisely this follows by the following derivation (the equality rule used here will be introduced in Subsect. (d)).

$$\begin{array}{ccc}
 & f: A \to A & a = a': A \\
x: f a & f a = f a': Set \\
\hline
x: f a'
\end{array}$$

Examples (Equality of Types)

• Above we have defined $o2 = o \rightarrow o$. As a judgement this reads:

$$o2 = o \rightarrow o : Set$$
.

Four Judgements

So we have the following 4 types of judgements:

```
A : Set "A is a type".
```

$$A = B : Set$$
 "A and B are equal types".

$$a:A$$
 "a is of type A".

$$a = b : A$$
 "a and b are equal elements of type A".

In Agda, only A : Set and a : A are explicit.

Dependent Judgements

- As for the simply typed λ -calculus, in dependent type theory, judgements might depend on a context.
- So we obtain judgements of the form

$$x_1: A_1, \dots, x_n: A_n \Rightarrow A: Set$$

 $x_1: A_1, \dots, x_n: A_n \Rightarrow A=B: Set$
 $x_1: A_1, \dots, x_n: A_n \Rightarrow a: A$
 $x_1: A_1, \dots, x_n: A_n \Rightarrow a=b: A$

Need for Context Judgements

$$x_1: A_1, \dots, x_n: A_n \Rightarrow A: Set$$

To derive such judgements requires that we know

$$A_1: \operatorname{Set}$$

$$x_1: A_1 \Rightarrow A_2: \operatorname{Set}$$

$$x_1: A_1, x_2: A_2 \Rightarrow A_3: \operatorname{Set}$$

$$\cdots$$

$$x_1: A_1, x_2: A_2, \dots, x_{n-1}: A_{n-1} \Rightarrow A_n: \operatorname{Set}$$

• (Later, when we introduce higher types, this requirement has to be replaced by A_1 : Type, $x_1:A_1\Rightarrow A_2:$ Type etc.)

Jump over next slide

Context Judgement

- Note that we didn't require derivations as above in the simply typed λ -calculus, since it was easy to verify whether something is a valid type.
- In case of dependent types A : Set requires a derivation.
- It can be as complicated to derive A : Set as it is to derive a judgement b : B:
 One can compute from a statement a : A (of which we don't know whether it is type correct) an expression B s.t.

a:A holds iff B: Set holds.

Context Judgement

- **●** In order to organise this in a better way we introduce an additional judgement $\Gamma \Rightarrow \text{Context}$ for " Γ is a valid context".
- **▶** That $x_1:A_1,\ldots,x_n:A_n\Rightarrow \text{Context}$ holds means exactly what we had above, i.e.:

$$A_1: Set$$

$$x_1: A_1 \implies A_2: Set$$

$$x_1: A_1, x_2: A_2 \implies A_3: Set$$

$$\dots$$

$$x_1: A_1, x_2: A_2, \dots, x_{n-1}: A_{n-1} \implies A_n: Set$$

Five Dependent Judgements

We have therefore 5 dependent judgements:

$$x_1: A_1, \dots, x_n: A_n \Rightarrow A: Set$$

 $x_1: A_1, \dots, x_n: A_n \Rightarrow A=B: Set$
 $x_1: A_1, \dots, x_n: A_n \Rightarrow a: A$
 $x_1: A_1, \dots, x_n: A_n \Rightarrow a=b: A$
 $x_1: A_1, \dots, x_n: A_n \Rightarrow Context$

Example

• The assumption rule, which in case of the simply typed λ -calculus read

$$\Gamma, x : \sigma, \Delta \Rightarrow x : \sigma$$
 (if $x : \tau$ does not occur in Δ for any τ)

reads in dependent type theory as follows (assuming that x : B does not occur in Δ for any B):

$$\frac{\Gamma, x : A, \Delta \Rightarrow \text{Context}}{\Gamma, x : A, \Delta \Rightarrow x : A} \text{ (Ass)}$$

Similarly we have to deal with the rule introducing constants.

Notations for Judgements, Contexts

- θ (pronounced "theta") will in the following denote an arbitrary non-dep. judgement, i.e. one of the following :
 - \bullet A: Set,
 - \bullet A = B : Set,
 - \bullet a:A,
 - a = b : A.
- ullet Γ , Δ will usually denote contexts.
- We have the same notations as before, i.e.
 - Γ, Δ is the result of concatenating contexts Γ, Δ ,
 - $\Gamma, x: A$ is the result of extending the context Γ by x: A,
 - ullet \emptyset is the empty context.
 - We write for $\emptyset \Rightarrow \theta$ usually simply θ .

Contexts in Agda

- In Agda, we have no explicit judgements depending on contexts.
 - Not needed, since we don't derive judgements using rules directly.

However, if we have the open judgement

$$\begin{array}{ccc} f & : & B \to A \\ f x & = & \{! & !\} \end{array}$$

- Then we can make use of x : B for refining the goal.
- ullet So we have to solve the goal in context x:B.
- This context can be shown using goal menu Context (environment).
- See exampleShowContext.agda.

Contexts in Agda

Jump over the next example.

Example: Derivation of double

(See exampleDoubleString2.agda.)

- We derive double := $\lambda x^{\text{String}}.\text{concat } x \ x : ((x : \text{String}) \to \text{String}) \text{ in Agda, assuming definitions of String and concat.}$
- We start with

```
double : String \rightarrow String double s = \{! !\}
```

We can insert into the goal concat:

```
double : String \rightarrow String double s = \{! \text{ concat } !\}
```

Example: Derivation of double

When using goal-menu refine, we obtain:

```
double : String \rightarrow String double s = \text{concat } \{! \ !\} \{! \ !\}
```

- We can check now using goal-menu Goal Type (or Goal Type (normalised)) that the two new goals require both type String.
- We can check using goal-menu Context (environment) that the context of both goals contain x : String.

Example: Derivation of double

We insert x into the first goal and refine:

```
double : String \rightarrow String double s = \operatorname{concat} x \{! !\}
```

Doing the same with the second goal gives:

```
double : String \rightarrow String double s = \operatorname{concat} x x
```

We are done.

double in Type Theory

A derivation of

double :=
$$\lambda x^{\text{String}}$$
.double $x x$

in Type Theory, assuming global constants

String: Set,

concat : $String \rightarrow String \rightarrow String$,

is as follows:

We first derive $x : String \Rightarrow Context$:

$$\frac{\emptyset : \text{Context} \qquad \text{String} : \text{Set}}{x : \text{String} \Rightarrow \text{Context}} \text{(Context}_1)$$

double in Type Theory

• We derive $x : String \Rightarrow x : String$ using the previous derivation:

$$\frac{x: \text{String} \Rightarrow \text{Context}}{x: \text{String} \Rightarrow x: \text{String}} \text{Ass}$$

We derive

$$x: String \Rightarrow concat: String \rightarrow String \rightarrow String$$

using $x : String \Rightarrow Context$ as follows:

$$\frac{\text{concat:String} \rightarrow \text{String} \rightarrow \text{String} \rightarrow \text{Context}}{x: \text{String} \Rightarrow \text{concat}: \text{String} \rightarrow \text{String} \rightarrow \text{String}} \text{(Weak)}$$

double in Type Theory

• We derive $x : String \Rightarrow concat \ x : String \rightarrow String$ using the previous derivations:

```
\frac{x: String \Rightarrow concat: String \rightarrow String}{x: String \Rightarrow concat} \frac{x: String \Rightarrow x: String}{x: String \Rightarrow concat} (\rightarrow \neg El)
```

The remaining derivation using the above derivations is as follows:

```
\frac{x: String \Rightarrow concat \ x: String \rightarrow String}{x: String \Rightarrow concat \ x \ x: String} \xrightarrow{(\rightarrow -\text{El})} \frac{x: String \Rightarrow concat \ x \ x: String}{\text{double:} = \lambda x^{String}.concat \ x \ x: String \rightarrow String}
```

(b) Basic Form of Rules

Four Kinds of Rules

- For each set or type construction we have usually 4 kinds of rules:
 - (1) Formation Rules.
 - (2) Introduction Rules.
 - (3) Elimination Rules.
 - (4) Equality Rules.
- Additionally there are equality versions of the formation, introduction and elimination rules.

(1) Formation Rules

- The formation rules introduce new sets or types.
- Each set and type construction has one such rule.
- The conclusion of such a rule will have the form:

$$C a_1 \cdots a_n : Set$$
.

- where C is a set-constructor,
- a_1, \ldots, a_n are its arguments.
- n=0 is possible.
- Later, we will introduce higher levels Type, Kind, Then we have formation rules with conclusion $C \ a_1 \ \cdots \ a_n : \text{Type}$ (or : Kind, etc.) and C is called a Type-constructor, Kind-constructor, etc.

Logical Framework

- Preliminarily, we will be using type theory without the full logical framework.
- For instance, below we will introduce

List A : Set

for any A : Set, the set of lists of elements of A.

Logical Framework

Until we have introduced the full logical framework, it doesn't make sense to talk about List itself, which would have type

$$List : Set \rightarrow Set$$
.

The problem is that $\operatorname{Set} \to \operatorname{Set}$ doesn't make sense without the logical framework.

- The full logical framework is conceptually more difficult, that's why we delay its introduction.
- When it is introduced, we can introduce

$$List : Set \rightarrow Set$$

similarly for all other set formation constructors.

Logical Framework

Agda has the logical framework built in, so in Agda List will be a function Set → Set, in Agda notation:

```
List : Set \rightarrow Set
List A = \{! !\}
```

Example 1: The Set of Lists

$$\frac{A : Set}{\textbf{List } A : Set}$$
(List-F)

- The set-constructor is List.
- List A is the set of lists of elements of A.
- The F in the label (List-F) stands for Formation rule.

Ex. 2: The Set of Natural Numbers

Formation rule for the set of natural numbers:

$$\mathbb{N} : Set \qquad (\mathbb{N}-F)$$

- The set-constructor is N.
 - Note that the formation rule for \mathbb{N} has 0 premises (therefore the fraction bar is omitted).

Jump over next example and Agda

Ex. 3: The Non-Dependent Product

Formation rule for the non-dependent product:

$$\frac{A : \text{Set}}{A \times B : \text{Set}} (\times \textbf{-F})$$

- $A \times B$ stands for $(\times) A B$.
- The set-constructor is (\times) .

Formation Rules in Agda

- The formation of a set is usually done by introducing a constant of a certain set.
- Example 1:

```
List : Set \rightarrow Set
List A = \{! !\}
```

Example 2: (\times)

Agda syntax for introducing the non-dependent product:

$$\underline{\hspace{0.1cm}} \times \underline{\hspace{0.1cm}} : \operatorname{Set} \to \operatorname{Set} \to \operatorname{Set}$$
 $A \times B = \{! \ !\}$

(2) Introduction Rules

- The introduction rule introduces elements of a set.
- The conclusion of such a rule will have the form

$$C a_1 \cdots a_n : A$$

where

- A is a set introduced by the corresponding formation rule,
- C is a constructor or term-constructor,
- a_1, \ldots, a_n are terms (can be elements of other sets, or sets or types themselves).

Introduction Rule, Example 1a

The set NatList of lists of natural numbers with formation rule

has two introduction rules:

```
[]: NatList 	 (NatList-I[])
\underline{n: \mathbb{N}} \quad \underline{l: NatList} \quad (NatList-I_{::-})
\underline{n:: l: NatList}
```

■ The I in the labels (NatList-I[]), (NatList-I_::_) stands for Introduction rule.

Jump to Example 2

Introduction Rule, Example 1b

- We generalise the previous example to lists of arbitrary set.
- Lists of elements in A have two introduction rules:

$$\frac{A:\operatorname{Set}}{[]_A:\operatorname{List} A}(\operatorname{List-I}[])$$

$$\frac{A:\operatorname{Set}}{a:A} \frac{a:A}{l:\operatorname{List} A}(\operatorname{List-I}_{:::_})$$

$$a:_A l:\operatorname{List} A$$

• Note that we need the premise A : Set in order to guarantee that we can form the set List A.

Conflicting Constructors

- ▶ We shouldn't use the same constructors for different sets. So if we want to use both NatList and List A, we have to choose a notation like natnil instead of []: NatList, similarly for _::_.
- We will usually ignore this distinction, if it doesn't cause confusion.

Example 2: Natural Numbers.

- The natural numbers N can be considered as being formed from two operations:
 - **●** 0,
 - S where S n stands for n+1.
- Using these two operations we can form 0, S 0 = 1, S 1 = 2, ... and therefore all natural numbers.
 - So the constructors of $\mathbb N$ are 0 and S.
- The introduction rules of N are:

$$0: \mathbb{N} \qquad (\mathbb{N}\text{-}\mathrm{I}_0)$$

$$\frac{n: \mathbb{N}}{\mathrm{S} n: \mathbb{N}} (\mathbb{N}\text{-}\mathrm{I}_{\mathrm{S}})$$

Canonical Elements

- Canonical elements of a set are those introduced by an introduction rule.
- Canonical elements therefore always start with a constructor.
- Examples:
 - 0, S(2+3) in case of \mathbb{N} .
 - ullet Here 2 stands for S(S(0)) and 3 for S(S(S(0))).
 - [], (1+1) :: (concat (0 :: []) []) in case of NatList.

Non-Canonical Elements

- Terms can usually be reduced further
 - Example:

$$2 + 3 = 2 + S 2 \longrightarrow S (2 + 2)$$
.

- The underlying reduction system is essentially a term rewriting system combined with the λ -calculus.
 - Therefore we can apply reductions to subterms.
- A term is a non-canonical element of a set, if it reduces to a canonical element of that set.
 - Each element of a set (depending on the empty context) in dependent type theory will either be a canonical or a non-canonical element of that set.
 - Consequence of the normalisation theorem.

Non-Canonical Elements

- E.g. 2+3 is a non-canonical element of \mathbb{N} , since S(2+2) is a canonical element of \mathbb{N} .
- However, we have

$$x: \mathbb{N} \Rightarrow x: \mathbb{N}$$

and x doesn't reduce to a canonical element of \mathbb{N} .

• However, if we substitute for x any closed element of \mathbb{N} , we get a canonical or non-canonical element of \mathbb{N} .

(3) Elimination Rules

- Elimination rules allow to take an element of a set and compute from it an element of another set.
- Example 1: The introduction rule for the non-dependent product is

$$\frac{a:A \qquad b:B}{\langle a,b\rangle:A\times B}(\times \mathbf{-} \mathrm{I})$$

The elimination rules (indicated by label E1) are the first and second projections:

$$\frac{c: A \times B}{\pi_0(c): A} (\times -\text{El}_0) \qquad \frac{c: A \times B}{\pi_1(c): B} (\times -\text{El}_1)$$

• The equality rules will express $\pi_0(\langle a,b\rangle)=a$, $\pi_1(\langle a,b\rangle)=b$.

Example 2: Addition in N

$$\frac{n:\mathbb{N} \quad m:\mathbb{N}}{n+m:\mathbb{N}} (\mathbb{N}\text{-}\mathrm{El}_+)$$

- Equality rules will express
 - n + 0 = n.
 - n + S m = S (n + m).
- The equality rules show that n is only a parameter, we are eliminating the second argument m.
- Proceeding like this would require one elimination rule for each function from N we want to define.
- Instead we will later introduce one generic elimination rule, which will allow to introduce all functions we expect to be definable, including all primitive-recursive ones.

Elimination in Agda

- Elimination for builtin sets has special notation.
- For user defined sets, i.e. those introduced using data, elimination is realized by pattern matching.
- Example: Definition of addition in N:

$$-+$$
 : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$
 $n + Z = n$
 $n + S m = S (n+m)$

(4) Equality Rules

- Equality rules will express what happens when we first introduce an element and then eliminate it.
- For instance if we first introduce $0 : \mathbb{N}$ and then eliminate it by using $(\mathbb{N}\text{-El}_+)$ we obtain n+0.
 - Now n+0 should reduce to n.
 - Since in dependent type theory we don't derive reductions but equalities, which is the transitive, symmetric and reflexive closure of \longrightarrow , we obtain $n + 0 = n : \mathbb{N}$ instead.
 - The equality rule (indicated by label Eq) expresses this:

$$\frac{n:\mathbb{N}}{n+0=n:\mathbb{N}} \left(\mathbb{N}\text{-}\mathrm{Eq}_{+,0}\right)$$

Equality Rules

- Similarly, if we introduce first $S m : \mathbb{N}$ and then eliminate it using $(\mathbb{N}\text{-El}_+)$ we obtain n + S m which should reduce to S (n + m).
 - The corresponding equality rule is therefore:

$$\frac{n: \mathbb{N} \quad m: \mathbb{N}}{n + \operatorname{S} m = \operatorname{S} (n + m): \mathbb{N}} (\mathbb{N}\text{-}\operatorname{Eq}_{+,\operatorname{S}})$$

Jump over next examples

Example (Equality Rule)

- A third example is if we first introduce an element $\langle a,b\rangle:A\times B$ and then eliminate it using $(\times\text{-El}_0)$ we obtain $\pi_0(\langle a,b\rangle)$ which reduces to a.
 - The corresponding equality rule is therefore:

$$\frac{a:A \quad b:B}{\pi_0(\langle a,b\rangle) = a:A} (\times - Eq_0)$$

Example (Equality Rule)

• The first equality rule for $A \times B$ is as follows:

$$\frac{a:A \quad b:B}{\pi_0(\langle a,b\rangle) = a:A} (\times - Eq_0)$$

• In the first judgement we can derive $\pi_0(\langle a,b\rangle):A$ as follows:

$$\frac{a:A \qquad b:B}{\langle a,b\rangle:A\times B}(\times -I)$$

$$\frac{\langle a,b\rangle:A\times B}{\pi_0(\langle a,b\rangle):A}(\times -El_0)$$

- So it is derived by first introducing $\langle a, b \rangle$ and then eliminating it immediately.
- The equality rule explains how to reduce that element (namely to a : A).

Example (Equality Rule, Cont)

ullet The second equality rule for \times is similar:

$$\frac{a:A \quad b:B}{\pi_1(\langle a,b\rangle) = b:B} (\times - \mathrm{Eq}_1)$$

Example 2 (Equality Rule)

The first equality rule for + is as follows:

$$\frac{n:\mathbb{N}}{n+0=n:\mathbb{N}} \left(\mathbb{N}\text{-}\mathrm{Eq}_{+,0}\right)$$

• $n+0:\mathbb{N}$ can be derived by first introducing

$$0:\mathbb{N}$$

(this is an introduction rule with no premises, i.e. an axiom)

and then by eliminating it using +, using the following derivation:

$$\frac{n:\mathbb{N} \quad 0:\mathbb{N}}{n+0:\mathbb{N}} \left(\mathbb{N}\text{-El}_{+}\right)$$

• The equality rule explain how to reduce n + 0.

Example 3 (Equality Rule)

The second equality rule for + is a s follows:

$$\frac{n: \mathbb{N} \quad m: \mathbb{N}}{n+S m=S (n+m): \mathbb{N}} (\mathbb{N}\text{-Eq}_{+,S})$$

• $n + S m : \mathbb{N}$ can be derived by first introducing $S m : \mathbb{N}$ and then by eliminating it using +:

$$\frac{m:\mathbb{N}}{S m:\mathbb{N}} \frac{(\mathbb{N}\text{-}I_{S})}{(\mathbb{N}\text{-}El_{+})}$$

$$n + S m:\mathbb{N}$$

Equality Rules in Agda

- Equality Rules in Agda are implicit.
- The notation for elimination however indicates already how the reductions take place.

$$-+$$
 : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$
 $n + \mathbb{Z} = n$
 $n + \mathbb{S} m = \mathbb{S} (n+m)$

 Functions corresponding to elimination are defined by telling how elimination operates.
 Jump over Reduction Strategy

Reduction Strategy

- The canonical element for an element, which is the result of an elimination, can always be computed as follows:
 - Reduce the element to be eliminated to canonical form.
 - Then make one reduction step (Red).
 - The result will be a canonical or non-canonical element of the target set.
 Reduce it to canonical form.
- For instance in case of $A \times B$, (Red) are the reductions
 - $\pi_0(\langle a,b\rangle) \longrightarrow a$.
 - $\pi_1(\langle a,b\rangle) \longrightarrow b$.

Reduction Strategy

- In case of (+), (Red) are the reductions
 - \bullet $n+0 \longrightarrow n$.
 - \bullet $n + S m \longrightarrow S (n + m)$.
 - Note that the second argument is the argument which we are "eliminating".

Example of the Reduction Strategy

- Consider for instance the term (1+1)+(1+0), where $1=S\ 0$.
- \blacksquare It is constructed by using the elimination constant (+).
- The argument we are eliminating using (+) is the second one (1+0).
- So we first reduce this argument to canonical form:

$$1+0\longrightarrow 1$$

and obtain

$$(1+1) + (1+0) \longrightarrow (1+1) + 1 \equiv (1+1) + S 0$$

Example of the Reduction Strategy

$$(1+1) + (1+0) \longrightarrow (1+1) + 1 \equiv (1+1) + S 0$$

Now the argument we are eliminating in is in canonical form, and we can use the reduction rule $x + S y \longrightarrow S (x + y)$ in order to reduce this term:

$$(1+1) + S 0 \longrightarrow S ((1+1) + 0)$$

- The result is in this case already in canonical form.
- If it were not, we would continue with our reduction.
- However, even if our example is in canonical form, it can be further reduced:

$$S((1+1)+0) \longrightarrow S(1+1) \equiv S(1+S(0)) \longrightarrow S(S(1)) = 3$$

Equality Versions of the Rules

- We have equality versions of the formation, introduction, and elimination rules.
- These express: if we replace the terms in the premises by equal ones, we obtain equal results.
- Example: Equality version of the formation rule for List:

$$\frac{A = B : Set}{\text{List } A = \text{List } B : Set} \text{ (List-F}^{=})$$

Example: Equality version of the formation rule for N (degenerated):

$$\mathbb{N} = \mathbb{N} : Set \quad (\mathbb{N} - \mathbb{F}^{=})$$

Equality Versions of Rules

Example: Equality version of the introduction rules for List:

$$\frac{A = A' : \operatorname{Set}}{[]_A = []_{A'} : \operatorname{List} A} (\operatorname{List-I}[]^{=})$$

$$\underline{A = A' : \operatorname{Set}} \quad a = a' : A \quad l = l' : \operatorname{List} A \quad (\operatorname{List-I}^{=}_{:::})$$

$$a ::_A l = a' ::_{A'} l' : \operatorname{List} A$$

• Example: Equality version of the elimination rule for (+), \mathbb{N} :

$$\frac{n = n' : \mathbb{N} \qquad m = m' : \mathbb{N}}{n + m = n' + m' : \mathbb{N}} (\mathbb{N} - \mathrm{El}_+^=)$$

Equality Versions of Rules

- The equality versions of the rules in questions can be formed in a straight-forward way, once one knows the non-equality version.
 - We will often not mention them.
- In Agda they are implicit (part of the reduction machinery).

Jump over Weakening Rule

Common Contexts

- The convention is that all rules can as well be weakened by a common context.
- This means that when introducing a rule

$$\frac{\Gamma_1 \Rightarrow \theta_1 \quad \cdots \quad \Gamma_n \Rightarrow \theta_n}{\Gamma \Rightarrow \theta}$$

we implicitly introduce as well the following rules

$$\Delta, \Gamma_1 \Rightarrow \theta_1 \quad \cdots \quad \Delta, \Gamma_n \Rightarrow \theta_n$$

$$\Delta, \Gamma \Rightarrow \theta$$

■ This convention will not apply to the context rules (Context₀) and (Context₁) (see later).

Example

ullet For instance, the formation rule of \times :

$$\frac{A : \text{Set}}{A \times B : \text{Set}} (\times \textbf{-F})$$

can be weakened as follows:

$$\frac{\Gamma \Rightarrow A : \text{Set} \qquad \Gamma \Rightarrow B : \text{Set}}{\Gamma \Rightarrow A \times B : \text{Set}} (\times \textbf{-F})$$

Example (Cont.)

• Consider the sample derivation (assuming A : Set):

$$\frac{x:A,y:A\Rightarrow y:A}{x:A\Rightarrow \lambda y^A.y:A\to A} (\to -\mathrm{I})$$

$$\frac{x:A\Rightarrow \lambda y^A.y:A\to A}{\lambda x^A.\lambda y^A.y:A\to A\to A} (\to -\mathrm{I})$$

- The first rule used is the rule for λ -introduction, weakened by the context x:A.
- The second rule used is the rule for λ -introduction without any weakening.

Weakening of Axioms

If we have an axiom

 θ

for any judgement θ

- e.g. $\theta \equiv N : \mathrm{Set} \ \mathsf{or} \ \theta \equiv 0 : \mathbb{N}$
- and we want to weaken it by context Γ , we need to make sure that $\Gamma \Rightarrow \text{Context}$ holds.
- So we need in the weakened form one additional premise:

$$\frac{\Gamma \Rightarrow \text{Context}}{\Gamma \Rightarrow \theta}$$

Example

The formation rule for N

$$\mathbb{N}: Set \qquad (\mathbb{N}-F)$$

will be weakened as follows:

$$\frac{\Gamma \Rightarrow Context}{\Gamma \Rightarrow \mathbb{N} : Set} (\mathbb{N} - F)$$

(c) Nondep. Funct. Type and Production

We introduce in the following non-dependent versions of the product and the function set.

The Non-Dependent Product

Formation Rule

$$\frac{A : \text{Set}}{A \times B : \text{Set}} (\times \textbf{-F})$$

Introduction Rule

$$\frac{a:A \qquad b:B}{\langle a,b\rangle:A\times B} (\times \mathbf{-} \mathrm{I})$$

Elimination Rules

$$\frac{c: A \times B}{\pi_0(c): A} \times (-\text{El}_0) \qquad \frac{c: A \times B}{\pi_1(c): B} \times (-\text{El}_1)$$

Equality Rules

$$\frac{a:A \quad b:B}{\pi_0(\langle a,b\rangle) = a:A} (\times - Eq_0)$$

$$\frac{a:A \quad b:B}{\pi_1(\langle a,b\rangle) = b:B} (\times - \mathrm{Eq}_1)$$

The η -Rule

The η -rule does not fit into the above schema:

$$\frac{c: A \times B}{c = \langle \pi_0(c), \pi_1(c) \rangle : A \times B} (\times -\eta)$$

Equality Versions of the ×-Rules

Equality Version of the Formation Rule

$$\frac{A = A' : \text{Set}}{A \times B = A' \times B' : \text{Set}} (\times -F^{=})$$

Equality Version of the Introduction Rule

$$\frac{a = a' : A \qquad b = b' : B}{\langle a, b \rangle = \langle a', b' \rangle : A \times B} (\times -I^{=})$$

Equality Versions of the Elimination Rules

$$\frac{c = c' : A \times B}{\pi_0(c) = \pi_0(c') : A} (\times -\text{El}_0^{=}) \qquad \frac{c = c' : A \times B}{\pi_1(c) = \pi_1(c') : B} (\times -\text{El}_1^{=})$$

The Non-Dependent Function Type

Formation Rule

$$\frac{A : \text{Set}}{A \to B : \text{Set}} (\to -F)$$

Introduction Rule

$$\frac{x:A\Rightarrow b:B}{(\lambda x:A.b):A\to B} (\to -I)$$

Elimination Rule

$$\frac{f:A \to B \qquad a:A}{f \ a:B} (\to -\text{El})$$

Equality Rule

$$\frac{x:A\Rightarrow b:B \quad a:A}{(\lambda x:A.b) \ a=b[x:=a]:B} \ (\rightarrow -\text{Eq})$$

As for the typed λ -calculus, $\lambda x^A.b$ is an abbreviation for

$$\lambda(x:A).b.$$

β -Reduction

- b[x := a] was as for the simply typed λ -calculus the result of substituting in b every occurrence of variable x by the term a (after renaming of bound variables as usual).
- The equality rule is a symmetric version of β -reduction

$$(\lambda x^A.b) \ a \longrightarrow b[x := a]$$

α -Equivalence

- As for the simply typed λ -calculus, terms which differ in the choice of bound variables (i.e. which are α -equivalent) are identified:
 - E.g. $\lambda x^A.x$ and $\lambda y^A.y$ are identified.
 - E.g. $\lambda x^{\mathbb{N}}.x + x$ and $\lambda y^{\mathbb{N}}.y + y$ are identified.
 - A similar rule applies to bound variables in types (see later).

The η -Rule

Again the η -rule does not fit into the above schema:

$$\frac{f:A\to B}{f=\lambda x^A.f\;x:A\to B} \left(\to -\eta\right)$$

Equality Versions of the →-Rules

Equality Version of the Formation Rule

$$\frac{A = A' : \operatorname{Set} \quad B = B' : \operatorname{Set}}{A \to B = A' \to B' : \operatorname{Set}} (\to -F^{=})$$

Equality Version of the Introduction Rule

$$\frac{x: A \Rightarrow b = b': B}{\lambda x^A.b = \lambda x^A.b': A \to B} (\to -I^=)$$

Equality Version of the Elimination Rule

$$\frac{f = f' : A \to B \qquad a = a' : A}{f \ a = f' \ a' : B} (\to -\text{El}^{=})$$

Jump over subsection on structural rules

(d) Structural Rules

Context Rules

The empty context

$$\emptyset \Rightarrow \text{Context}$$
 (Context₀)

Extending a context

$$\frac{\Gamma \Rightarrow A : \text{Set}}{\Gamma, x : A \Rightarrow \text{Context}} \text{(Context}_1)$$

■ The convention that rules can be weakened by a common context does not apply to the rules (Context₀) and (Context₁).

Example Derivation (Context Rules)

We assume the following formation rule for the set of natural numbers:

$$\mathbb{N}: Set \qquad (\mathbb{N}-F)$$

With this rule, following the convention on the previous slide we have as well introduced the rules

$$\frac{\Gamma \Rightarrow \operatorname{Context}}{\Gamma \Rightarrow \mathbb{N} : \operatorname{Set}} (\mathbb{N} \text{-} F)$$

Example Derivation (Context Rules)

• The following derives $x : \mathbb{N}, y : \mathbb{N}, z : \mathbb{N} \Rightarrow \text{Context}$ (Note that $\mathbb{N} : \text{Set}$ is the same as $\emptyset \Rightarrow \mathbb{N} : \text{Set}$):

```
\frac{\mathbb{N} : \operatorname{Set}}{x : \mathbb{N} \Rightarrow \operatorname{Context}} (\operatorname{Context}_{1})
\frac{x : \mathbb{N} \Rightarrow \mathbb{N} : \operatorname{Set}}{x : \mathbb{N}, y : \mathbb{N} \Rightarrow \operatorname{Context}} (\operatorname{Context}_{1})
\frac{x : \mathbb{N}, y : \mathbb{N} \Rightarrow \operatorname{Context}}{x : \mathbb{N}, y : \mathbb{N} \Rightarrow \mathbb{N} : \operatorname{Set}} (\operatorname{Context}_{1})
x : \mathbb{N}, y : \mathbb{N}, z : \mathbb{N} \Rightarrow \operatorname{Context}
```

Assumption Rule

$$\frac{\Gamma, x : A, \Delta \Rightarrow \text{Context}}{\Gamma, x : A, \Delta \Rightarrow x : A} \text{ (Ass)}$$

• Side condition \triangle must not bind x again:

 Δ must not be of the form $\Delta', x:B, \Delta''$ for some Δ', B, Δ'' .

- Otherwise the assumption x : B would override the assumption x : A.
- If x : B occurs in Δ , we can only conclude

$$\Gamma, x: A, \Delta \Rightarrow x: B'$$

only for the last occurrence of x : B' in Δ .

Example Deriv. (Assumpt. Rule)

We extend the derivation of

$$x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N} \Rightarrow \text{Context}$$

above to a derivation of $x : \mathbb{N}, y : \mathbb{N}, z : \mathbb{N} \Rightarrow y : \mathbb{N}$:

$$\frac{x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N} \Rightarrow \text{Context}}{x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N} \Rightarrow y: \mathbb{N}} \text{ (Ass)}$$

• Similarly we can derive $x : \mathbb{N}, y : \mathbb{N}, z : \mathbb{N} \Rightarrow z : \mathbb{N}$:

$$\frac{x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N} \Rightarrow \text{Context}}{x: \mathbb{N}, y: \mathbb{N}, z: \mathbb{N} \Rightarrow z: \mathbb{N}} \text{ (Ass)}$$

Example Deriv. (Assumpt. Rule)

The full derivation of first judgement on the previous slide is as follows:

$$\frac{\mathbb{N} : \text{Set}}{x : \mathbb{N} \Rightarrow \text{Context}} \text{(Context_1)} \\
\frac{x : \mathbb{N} \Rightarrow \mathbb{N} : \text{Set}}{x : \mathbb{N}, y : \mathbb{N} \Rightarrow \mathbb{N} : \text{Set}} \text{(Context_1)} \\
\frac{x : \mathbb{N}, y : \mathbb{N} \Rightarrow \text{Context}}{x : \mathbb{N}, y : \mathbb{N} \Rightarrow \mathbb{N} : \text{Set}} \text{(Context_1)} \\
\frac{x : \mathbb{N}, y : \mathbb{N}, z : \mathbb{N} \Rightarrow \mathbb{N} : \text{Set}}{x : \mathbb{N}, y : \mathbb{N}, z : \mathbb{N} \Rightarrow \text{Context}} \text{(Ass)} \\
x : \mathbb{N}, y : \mathbb{N}, z : \mathbb{N} \Rightarrow y : \mathbb{N}$$

Assumption Rule in Agda

When we define a function:

$$f : A \to B$$
$$f a = \{! !\}$$

we can make use of a:A when solving the goal $\{!\ !\}.$

• This is an application of the assumption rule: When solving {!!} we essentially define under the assumption a: A an element {!!}:B.

Assumption Rule in Agda (Cont.)

The above corresponds to a derivation

$$\frac{a:A\Rightarrow\{!\ !\}:B}{\lambda(a:A).\{!\ !\}:A\to B} \left(\to -\mathrm{I}\right)$$

If B is equal to A we can use the assumption rule directly

$$\frac{a:A\Rightarrow a:A}{\lambda(a:A).a:A\to A} (\to -I)$$

in order to solve this goal.

Assumption Rule in Agda (Cont.)

● More generally we might in the derivation of $a: A \Rightarrow \{! : B \text{ make anywhere use of } a: A$, as long as this is in the context.

$$\frac{a: A \Rightarrow a: A}{a: A \Rightarrow a: A} \text{(Ass)}$$

$$\frac{a: A \Rightarrow s: B}{\lambda(a: A).s: A \rightarrow B} \text{(\rightarrow -I)}$$

Assumption Rule in Agda (Cont.)

Similarly, when solving the goal

$$f : A \rightarrow B$$

= $\lambda(a : A) \rightarrow \{! \ !\}$

in $\{!\ !\}$ we can make use of a:A.

In fact when solving the above, we implicitly use the rule

$$\frac{a:A\Rightarrow\{!\ !\}:B}{\lambda(a:A).\{!\ !\}:A\to B} \left(\to -\mathrm{I}\right)$$

So we have to solve $a:A\Rightarrow\{!\ !\}:B$ in order to derive

$$\lambda(a:A).\{!\ !\}:A\to B$$

Weakening Rule

$$\frac{\Gamma, \Gamma' \Rightarrow \theta \qquad \Gamma, \Delta, \Gamma' \Rightarrow \text{Context}}{\Gamma, \Delta, \Gamma' \Rightarrow \theta} \text{ (Weak)}$$

- \bullet stands for an arbitrary non-dependent judgement.
- This rule allows to add an additional context piece (Δ) to the context of a judgement.
 - The judgement $\Gamma, \Gamma' \Rightarrow \theta$ is weakened by Δ .

Weakening Rule (Cont.)

- Remark: One can in fact show that the weakening rule can be weakly derived.
 - Weakly derived means: whenever the assumptions of the rule can be derived in the complete set of rules we provide, then as well the conclusion.
 - However, this can't be derived from the premise the conclusion directly.
- An exception is when we additionally assume some judgements for instance A : Set (corresponding to "postulate" in Agda).
 - Then $\Gamma \Rightarrow A : \operatorname{Set}$ doesn't follow without the weakening rule.

Example Deriv. (Weak. Rule)

• We derive $a:A,b:B\Rightarrow a:A$, under the global assumptions $A:\operatorname{Set},B:\operatorname{Set}$:

Example Deriv.2 (Weak. Rule)

• We derive $x:A \to (B \times C), y:A \Rightarrow x:A \to (B \times C),$ under the global assumptions A: Set, B: Set, C: Set:

$$\frac{A : \text{Set}}{B \times C : \text{Set}} (\times \text{-F})$$

$$\frac{A : \text{Set}}{A \to (B \times C) : \text{Set}} (\to \text{-F})$$

$$\frac{A : \text{Set}}{A \to (B \times C) : \text{Set}} (\text{Context}_1)$$

$$\frac{A : \text{Set}}{x : A \to (B \times C) \Rightarrow \text{Context}} (\text{Weak})$$

$$\frac{x : A \to (B \times C) \Rightarrow A : \text{Set}}{x : A \to (B \times C), y : A \Rightarrow \text{Context}} (\text{Context}_1)$$

$$\frac{x : A \to (B \times C), y : A \Rightarrow \text{Context}}{x : A \to (B \times C), y : A \Rightarrow x : A \to (B \times C)} (\text{Ass})$$

General Equality Rules

Reflexivity

$$\frac{A : \text{Set}}{A = A : \text{Set}} (\text{Refl}_{\text{Set}})$$

$$\frac{a : A}{a = a : A} (\text{Refl}_{\text{Elem}})$$

(Reflexivity can be weakly derived, except for global assumptions).

Symmetry

$$\frac{A = B : Set}{B = A : Set} (Sym_{Set})$$
$$\frac{a = b : A}{b = a : A} (Sym_{Elem})$$

General Equality Rules (Cont.)

Transitivity

$$\frac{A = B : \text{Set}}{A = C : \text{Set}} \text{ (Trans_{Set})}$$

$$\frac{a = b : A}{A} \quad b = c : A \text{ (Trans_{Elem})}$$

Transfer

$$a:A$$
 $A=B: Set$ (Transfer₀)
 $a:B$

$$\frac{a = b : A \qquad A = B : Set}{a = b : B}$$
 (Transfer₁)

Example Deriv. (Gen. Equal. Rules)

Example Deriv. (Gen. Equal. Rules)

In the previous derivation, the most complicated step was:

$$\frac{y: \mathbb{N}, x: \mathbb{N} \Rightarrow x: \mathbb{N} \qquad y: \mathbb{N} \Rightarrow y: \mathbb{N}}{y: \mathbb{N} \Rightarrow (\lambda x^{\mathbb{N}}.x) \ y = y: \mathbb{N}} (\rightarrow -\text{Eq})$$

This is an example of the equality rule for the non-dependent function set:

$$\frac{x:A\Rightarrow b:B \qquad a:A}{(\lambda x^A.b)\ a=b[x:=a]:B} (\rightarrow -\text{Eq})$$

with
$$A:=B:=\mathbb{N},\,b:=x,\,a:=y$$
. Therefore $b[x:=a]=y$.

• This instance of the rule was weakened by an additional context $y : \mathbb{N}$.

Example Deriv. (Gen. Equal. Rules)

Note that from the premises of that rule

$$\frac{y: \mathbb{N}, x: \mathbb{N} \Rightarrow x: \mathbb{N} \qquad y: \mathbb{N} \Rightarrow y: \mathbb{N}}{y: \mathbb{N} \Rightarrow (\lambda x^{\mathbb{N}}.x) \ y = y: \mathbb{N}} \ (\rightarrow \text{-Eq})$$

we can derive using the introduction and elimination rule

$$y: \mathbb{N} \Rightarrow (\lambda x^{\mathbb{N}}.x) \ y: \mathbb{N}$$

as follows:

$$\frac{y: \mathbb{N}, x: \mathbb{N} \Rightarrow x: \mathbb{N}}{y: \mathbb{N} \Rightarrow \lambda x^{\mathbb{N}}.x: \mathbb{N} \to \mathbb{N}} \xrightarrow{(\to -\mathbf{I})} y: \mathbb{N} \Rightarrow \lambda x^{\mathbb{N}}.x: \mathbb{N} \to \mathbb{N}} \xrightarrow{(\to -\mathbf{E}\mathbf{I})} y: \mathbb{N} \Rightarrow (\lambda x^{\mathbb{N}}.x) y: \mathbb{N}$$

Example Deriv. (Gen. Equ. Rules)

- The equality rule expresses how the function $\lambda x^{\mathbb{N}}.x$ applied to y is evaluated as follows:
 - We evaluate the body of the function (x) by setting for x the argument of the function (y).
 - This is the same as substituting in the body for x the argument of the function, i.e. y.
- This explains how the detour above of first introducing and then eliminating an expression can be reduced (namely to y or in general to b[x := a]).

Substitution Rules

The following rules can be weakly derived:

Substitution 1

$$\frac{\Gamma, x : A, \Gamma' \Rightarrow \theta \qquad \Gamma \Rightarrow a : A}{\Gamma, \Gamma'[x := a] \Rightarrow \theta[x := a]}$$
(Subst₁)

($\Gamma'[x := a]$ is the result of substituting in Γ' all occurrences of x by a).

Substitution 2

$$\frac{\Gamma, x : A, \Gamma' \Rightarrow B : \text{Set} \qquad \Gamma \Rightarrow a = a' : A}{\Gamma, \Gamma'[x := a] \Rightarrow B[x := a] = B[x := a'] : \text{Set}} \text{(Subst_2)}$$

Substitution Rules

Substitution 3

$$\frac{\Gamma, x : A, \Gamma' \Rightarrow b : B \qquad \Gamma \Rightarrow a = a' : A}{\Gamma, \Gamma'[x := a] \Rightarrow b[x := a] = b[x := a'] : B[x := a]}$$
(Subst₃)

Example Deriv. (Substitution)

$$\frac{x:\mathbb{N},y:\mathbb{N}\Rightarrow x:\mathbb{N}}{x:\mathbb{N},y:\mathbb{N}\Rightarrow x:\mathbb{N}} \xrightarrow{(Ass)} \frac{x:\mathbb{N},y:\mathbb{N}\Rightarrow y:\mathbb{N}}{x:\mathbb{N},y:\mathbb{N}\Rightarrow x+y:\mathbb{N}} \xrightarrow{(\mathbb{N}^{-}I_{+})} 0:\mathbb{N}} \xrightarrow{(Subst_{1})} \frac{y:\mathbb{N}\Rightarrow 0+y:\mathbb{N}}{\lambda y^{\mathbb{N}}.0+y:\mathbb{N}\to\mathbb{N}} \xrightarrow{(\to^{-}I)}$$

Example Deriv. 2 (Substitution)

$$\frac{N:\operatorname{Set}}{z:\mathbb{N}\Rightarrow\operatorname{Context}} (\operatorname{Context_1})$$

$$\frac{z:\mathbb{N}\Rightarrow\operatorname{Context}}{z:\mathbb{N}\Rightarrow\mathbb{N}:\operatorname{Set}} (\operatorname{Context_1})$$

$$\frac{z:\mathbb{N}\Rightarrow\operatorname{N}:\operatorname{Set}}{z:\mathbb{N},u:\mathbb{N}\Rightarrow\operatorname{Context}} (\operatorname{Context_1})$$

$$\frac{z:\mathbb{N},u:\mathbb{N}\Rightarrow\operatorname{Context}}{z:\mathbb{N},u:\mathbb{N}\Rightarrow\operatorname{U:\mathbb{N}}} (\operatorname{Ass})$$

$$\frac{z:\mathbb{N},u:\mathbb{N}\Rightarrow\operatorname{U:\mathbb{N}}}{z:\mathbb{N},u:\mathbb{N}\Rightarrow\operatorname{S}} (\operatorname{N-Is})$$

$$\frac{z:\mathbb{N}\Rightarrow z:\mathbb{N}\Rightarrow z:\mathbb{N}}{z:\mathbb{N}\Rightarrow z+0=z:\mathbb{N}} (\operatorname{Subst_1})$$

$$\frac{z:\mathbb{N},y:\mathbb{N}\Rightarrow x+y:\mathbb{N}}{z:\mathbb{N}\Rightarrow\operatorname{S}} (z+0)=\operatorname{S}z:\mathbb{N}$$

$$\frac{z:\mathbb{N},y:\mathbb{N}\Rightarrow(\operatorname{S}z+0)+y=\operatorname{S}z+y:\mathbb{N}}{z:\mathbb{N}\Rightarrow\operatorname{S}z+y:\mathbb{N}\to\mathbb{N}} (\to^{-\operatorname{I}=})$$

$$\frac{z:\mathbb{N}\Rightarrow\lambda y^{\mathbb{N}}.(\operatorname{S}z+0)+y=\lambda y^{\mathbb{N}}.\operatorname{S}z+y:\mathbb{N}\to\mathbb{N}\to\mathbb{N}}{z:\mathbb{N}\Rightarrow\operatorname{S}z+y:\mathbb{N}\to\mathbb{N}\to\mathbb{N}}$$

(e) The Depend. Function Set and \forall

- **●** The dependent function set is similar to the non-dependent function set (e.g. $A \rightarrow B$), except that we allow that the second set to depend on an element of the first set.
- Notation: $(x : A) \rightarrow B$, for the set of functions f which map an element a : A to an element of B[x := a].
- In set-theoretic notation this is:

$$\{f \mid f \text{ function} \\ \land \text{dom}(f) = A \\ \land \forall a \in A. f(a) \in B[x := a]\}$$

Let Gender be the set of genders, informally written

```
Gender = \{female, male\}.
```

■ In Agda, Gender would be defined by

data Gender: Set where

female: Gender

male : Gender

• Let for g: Gender the set

Name g

be the collection of names of that gender, e.g. informally written

- Name female = $\{jill, sara\}$,
- Name male = $\{tom, jim\}$.

More formally, Name can be defined in Agda as follows:

```
data MaleName : Set where
```

```
tom : MaleName
```

data FemaleName: Set where

```
jill : FemaleName
```

sara : FemaleName

```
Name : Gender \rightarrow Set
```

Name female = FemaleName

Define

```
select : (g : Gender) \rightarrow Name g

select female = jill

select male = tom
```

- select selects for every gender a name.
- select female will be an element of Name female = $(Name \ g)[g := female]$.
- It wouldn't make sense to say (select female) : Name g, without knowing what g is.

An attempt to define select s.t. select male is not in maleName, e.g.

select male = jill

or that select female is not in femaleName, e.g.

select female = tom

will result in a type error.

Note that for instance we don't have

$$\lambda g^{\text{Gender}}.\text{tom}: (g:\text{Gender}) \to \text{Name } g$$

since we don't have

```
(\lambda g^{\text{Gender}}.\text{tom}) female : Name female
```

Rules of the Dep. Funct. Set

Formation Rule

$$\frac{A : \operatorname{Set} \quad x : A \Rightarrow B : \operatorname{Set}}{(x : A) \to B : \operatorname{Set}} (\to -F)$$

Introduction Rule

$$\frac{x:A\Rightarrow b:B}{\lambda x^A.b:(x:A)\to B} (\to -I)$$

Rules of the Dep. Funct. Set

Elimination Rule

$$\frac{f:(x:A)\to B \quad a:A}{f\ a:B[x:=a]} (\to -\text{El})$$

Equality Rule

$$\frac{x:A\Rightarrow b:B \qquad a:A}{(\lambda x^A.b)\ a=b[x:=a]:B[x:=a]} (\rightarrow -\text{Eq})$$

The η -Rule

The η -rule has a special status:

 η -Rule

$$\frac{f:(x:A)\to B}{f=\lambda x^A.f\;x:(x:A)\to B} (\to -\eta)$$

- The η -rule cannot be derived, if the element in question is a variable.

Equality Versions of the above

Equality Version of the Formation Rule

$$\frac{A = A' : \text{Set} \quad x : A \Rightarrow B = B' : \text{Set}}{(x : A) \to B = (x : A') \to B' : \text{Set}} (\to -F^{=})$$

Equality Version of the Introduction Rule

$$\frac{x: A \Rightarrow b = b': B}{\lambda x^A \cdot b = \lambda x^A \cdot b': (x:A) \to B} (\to -\mathbf{I}^{=})$$

Equality Version of the Elimination Rule

$$\frac{f = f' : (x : A) \to B \qquad a = a' : A}{f \ a = f' \ a' : B[x := a]} (\to -\text{El}^{=})$$

Non-Dep. Funct. Set as an Abbrev.

The non-dependent function set

$$A \to B$$

can be regarded as an **abbreviation** for the **dependent function set**

$$(x:A) \to B$$
,

where B does not depend on x.

As for the product one can see that the rules for the non-dependent function set are special cases of the rules for the dependent function set.

- We have seen that the non-dependent function set is written as A → B in Agda.
- The notation for the dependent function set is (x: A) → B.

- Elements of $(x : A) \rightarrow B$ are introduced as before by using
 - either λ -abstraction, i.e. we can define

$$f : (x : A) \to B$$
$$f = \lambda(x : A) \to b$$

or shorter (if Agda – as in most cases – can work the type A of x)

$$f : (x : A) \to B$$
$$f = \lambda x \to b$$

- Requires that b:B depending on x:A.
- Note that the type B of b depends on x:A.

or by writing

$$\begin{array}{ccc} f & : & (x:A) \to B \\ f x & = & b \end{array}$$

depfunctionset.agda

- Elimination is application using the same notation as before.
 - E.g., if $f:(x:A)\to B$ and a:A, then f:a:B[x:=a].

Abbreviations

We can write

$$(n \ m: \mathbb{N}) \to A$$

instead of

$$(n:\mathbb{N}) \to (m:\mathbb{N}) \to A$$

$$(x:A) \rightarrow \cdots$$
 vs. $\lambda(x:A) \rightarrow \cdots$

- Sometimes users of Agda (including the lecturer himself) confuse $(x : A) \rightarrow \cdots$ and $\lambda(x : A) \rightarrow \cdots$.
- Happens probably because of the similarity of both notions.
 - $(x:A) \rightarrow B$ is a set (or type).
 - the set/type of functions, mapping x:A to an element of type B.
 - Therefore it makes sense to talk about $s:((x:A) \rightarrow B)$.

$$(x:A) \longrightarrow \cdots$$
 vs. $\lambda(x:A) \longrightarrow \cdots$

- $\lambda(x:A) \to t$ is a term.
 - the function, mapping an element x:A to the element t.
 - It does not make sense to say s is an element of a function.
 - Correspondingly it does not make sense to talk about $s:(\lambda(x:A) \to t)$.
- $(\lambda(x:A) \to t)$ never occurs in a position where a set/type is required.
 - It therefore never occurs on the right hand side of:.
 - It does however make sense to talk about $(\lambda(x:A) \rightarrow t): B$ for some set (or type) B.

- We have already seen how to represent the propositional connectives and decidable atomic formulae in Agda and therefore as well in dependent type theory:
 - Implication

$$A \to B$$

is represented as the nondependent function set

$$A \rightarrow B$$

Conjunction

$$A \wedge B$$

is represented as one of the two versions of the product of A and B.

- Disjunction will be introduced later (as the disjoint union).
- ullet $\neg A$ has been introduced as $A \to \bot$.
- If $f: A_1 \to \cdots \to A_n \to \text{Bool}$ is a function, we can represent the predicate " $f \ a_1 \ \cdots \ a_n$ is true" as

Atom
$$(f a_1 \cdots a_n)$$

Jump over next slide

- **▶** The definitions of $\neg A$, Atom rely on the rules for \bot , \top , Bool and Atom.
- They have been only introduced in the λ -calculus (and the rules for Atom have not been introduced at all), but not yet in the context of dependent type theory.
- They will be introduced in detail later.
- In this Subsect. we will deal mainly with the predicate calculus in Agda.
- Therefore an understanding of the rules as they occur in the λ -calculus (or in case of Atom an understanding of how to use it in Agda) suffices.
 - The rules of the typed λ -calculus can easily be translated into type theory.

- We will investigate, how to represent universal and (in the next section) existential quantification in dependent type theory.
- Since we have many types, we have to write when using quantifiers explicitly the type, the bound variable is ranging over:

We write therefore

- $\forall \mathbf{x} : \mathbf{A}.\mathbf{B}$ or $\forall \mathbf{x}^{\mathbf{A}}.\mathbf{B}$ for "for all x of type A, B holds" (where B usually depends on x);
- $\exists \mathbf{x} : \mathbf{A}.\mathbf{B}$ or $\exists \mathbf{x}^{\mathbf{A}}.\mathbf{B}$ for "there exists an x of type A, s.t. B holds" (again B usually depends on x).

Universal Quantification

- $\forall x^A.B$ is true iff, for all x:A there exists a proof of B (with that x).
- Therefore a proof of $\forall x^A.B$ is a function, which takes an x:A and computes an element of B.
- Therefore the set of proofs of $\forall x^A.B$ is the set of functions, mapping an element x:A to an element of B.
- This set is just the dependent function set $(x:A) \rightarrow B$.
- **●** Therefore we can identify $\forall x^A.B$ with $(x : A) \rightarrow B$.

∀ in Agda

- $\forall x^A.B$ is represented by $(x:A) \to B$ in Agda.
 - Remember that $\forall x:A.B$ is another notation for $\forall x^A.B$.
- As an example,
 - we define a <-operation on Bool using ff < tt is true and b < b' is false, otherwise.
 - Then we show $\forall x^{\text{Bool}}. \neg (x < x)$.
- See exampleLessBool.agda.

First we define a Boolean valued less-than relation on Bool as follows:

$$_
ff $tt $$$$$

■ This means that <Bool has the following truth table:</p>

- Explanation of this definition:
 - If we identify ff with the number 0, tt with 1, then $b < \operatorname{Bool} b'$ means that for the corresponding numbers we have b < b'.
 - Especially we have:
 - if a is false, then a is less than b iff b is true, so the truth value of $a < \operatorname{Bool} b$ is the same as b.
 - ullet if a is true, then a is never less than b.

<Boollong

```
\_<Bool\_: Bool \rightarrow Bool \rightarrow Bool
ff <Bool b = b
tt <Bool \_ = ff
```

The above defines the same function as the following long version:

```
_<Boollong_: Bool → Bool → Bool

ff <Boollong ff = ff

ff <Boollong tt = tt

tt <Boollong ff = ff

tt <Boollong tt = ff
```

<Boollong

- ▶ Proving properties for <Boollong is more complicated since the proof usually requires the same more complicated splitting up into cases.
- It is usually easier to proof properties for versions of functions, in which the number of case distinctions is reduced to a minimum.

Now we define < as follows</p>

$$_{<}$$
: Bool \rightarrow Bool \rightarrow Set $b < b' = \text{Atom } (b < \text{Bool } b')$

Example (\forall , Cont.)

■ We introduce ¬:

$$\neg : \mathbf{Set} \to \mathbf{Set}$$
$$\neg A = A \to \bot$$

The statement that < is antireflexive is</p>

$$\forall a^{\text{Bool}}. \neg (a < a)$$

which is represented in Agda as follows:

Lemma4 : Set
=
$$(a : Bool) \rightarrow \neg (a < a)$$

Example (\forall , Cont.)

```
Lemma4 : Set
= (a : Bool) \rightarrow \neg (a < a)
```

• Since $\neg (a < a) = (a < a) \rightarrow \bot$, we have

Lemma4 =
$$(a : Bool) \rightarrow \neg (a < a)$$

= $(a : Bool) \rightarrow (a < a) \rightarrow \bot$

Lemma4 =
$$(a : Bool) \rightarrow (a < a) \rightarrow \bot$$

- We want to prove Lemma4.
 - A proof of Lemma4 will be an element lemma4 : Lemma4.
- So we have to solve the following goal:

$$\begin{array}{rcl}
\text{lemma4} & : & \text{Lemma4} \\
\text{lemma4} & = & \{! & !\}
\end{array}$$

The type of the goal is

Lemma4 =
$$(a : Bool) \rightarrow (a < a) \rightarrow \bot$$

```
lemma4 : Lemma4 lemma4 = \{!\ !\} Type of goal is Lemma4 = (a:Bool) \to (a < a) \to \bot.
```

▶ An element lemma4 : $(a : Bool) \rightarrow (a < a) \rightarrow \bot$ can be introduced by applying it to a : A and aa : a < a:

```
lemma4 : Lemma4 lemma4 a aa = \{! !\}
```

● The type of goal is now the conclusion of $(a : Bool) \rightarrow (a < a) \rightarrow \bot$, namely \bot .

```
lemma4 : Lemma4 lemma4 a aa = \{! \ !\} Type of goal is \bot.
```

- We need to make use of our assumptions, namely a : Bool and aa : a < a.
 - a < b is defined by case disjunction on a and b.
 - Unless we know that a = tt or a = ff, we don't know much about a < a.
 - So it seems to be a good step to make pattern matching using the cases a = tt and a = ff.

```
lemma4 : Lemma4 lemma4 iff aa = \{! !\} lemma4 tt aa = \{! !\}
```

■ The type of both goals is the same as before, namely \bot , since it didn't depend on a.

```
lemma4 : Lemma4
lemma4 iff aa = \{! !\}
lemma4 tt aa = \{! !\}
```

- However, we know now more about the assumptions aa: a < a.
 - In case of $a = \mathrm{ff}$, we have $aa : (a < a) = (\mathrm{ff} < \mathrm{ff}) = \bot$
 - So there is no case for $aa : \bot$, and we can solve this case by
 - lemma4 ff ()

```
lemma4 : Lemma4 lemma4 iff () lemma4 tt aa = \{! !\}
```

- In case of a = tt, we have $aa : (a < a) = (tt < tt) = \bot$
 - Again we can solve this case by

lemma4 tt ()

We obtain the code

```
lemma4: Lemma4 lemma4 ff () lemma4 tt ()
```

Example (\forall , Cont.)

- In the previous example,
 - the type of goal was \perp ,
 - and $aa: \bot$.
- So, instead of using case distinction on aa we could have as well inserted aa in those goals:

```
lemma4 : Lemma4 lemma4 	 ff 	 aa = aa lemma4 	 tt 	 aa = aa
```

(f) The Dependent Product and \exists

- ▶ The dependent product is similar as the non-dependent product (e.g. $A \times B$), except that we allow that the second set to depend on an element of the first set.
- The type theoretic notation is

$$(a:A)\times B$$

• Elements of $(a:A) \times B$ are pairs

$$\langle a', b' \rangle$$

s.t.

- \bullet a':A
- b': B[a := a'].

Example 1 (Dep. Products)

- One example for its use are the set of sorted lists:
 - Sorted l is a predicate on NatList expressing that l is sorted.
 - An element of

```
SortedList := (l : NatList) \times Sorted l
```

is a pair

$$\langle l, p \rangle$$

s.t.

- \bullet l: NatList,
- p : Sorted l, i.e. p is a proof that l is sorted.
- So elements of SortedList are lists l together with a proof that l is sorted.

Example 2 (Dep. Products)

- Remember the Gender-example as in the last section:
 - Gender = $\{female, male\}$.
 - For g: Gender

Name g

is a collection of names of that gender, e.g. informally written

- Name male = $\{tom, jim\}$.
- **●** The set of names with their gender is the set of pairs $\langle g, n \rangle$ s.t. g is a Gender and n : Name g.
- This set is written as

NameWithGender := $(g : Gender) \times Name g$

Rules of the Dependent Product

Formation Rule

$$\frac{A : \text{Set} \quad x : A \Rightarrow B : \text{Set}}{(x : A) \times B : \text{Set}} (\times \textbf{-F})$$

Introduction Rule

$$\frac{x:A\Rightarrow B: \mathrm{Set} \quad a:A \quad b:B[x:=a]}{\langle a,b\rangle: (x:A)\times B}(\times -\mathrm{I})$$

Extra Premise in the Introd. Rule

- In the last introduction rule, an extra premise $x:A\Rightarrow B: \mathrm{Set}$ was required.
 - This is required in order to guarantee that we can form the set $(x : A) \times B$.
 - In case of the non-dependent product, this premise was not necessary:
 - a:A and b:B indirectly implies that we know $A:\mathrm{Set}$ and $B:\mathrm{Set}$, from which it follows $A\times B:\mathrm{Set}$.

● Assuming we have defined the set of genders Gender : Set and the set of names $g : Gender \Rightarrow Name g : Set$, we can introduce the set

NameWithGender := $(g : Gender) \times Name g : Set$

by using the formation rule:

$$\frac{\text{Gender} : \text{Set} \quad g : \text{Gender} \Rightarrow \text{Name } g : \text{Set}}{(g : \text{Gender}) \times \text{Name } g : \text{Set}} (\times -\text{I})$$

Furthermore we can introduce

$$\langle \text{male}, \text{tom} \rangle : \text{NameWithGender}$$

as follows:

g:Gender⇒Name g:Set male:Gender tom:Name male
$$(x-I)$$
 $(x-I)$ $(x-I)$

Note that we need the premise

$$g: \text{Gender} \Rightarrow \text{Name } g: \text{Set}$$

Otherwise we only know that Name male: Set, but not that Name female: Set.

Jump to the elimination rules for the product.

Note that we don't have

 $\langle \text{female}, \text{tom} \rangle : \text{NameWithGender}$

since we don't have

tom: Name female

So here dependent types prevent errors. In an ordinary programming language without dependent types, we can't define a corresponding type NameWithGender which allows at compile time to define

 $\langle \text{male}, \text{tom} \rangle : \text{NameWithGender}$

but not

 $\langle \text{female}, \text{tom} \rangle : \text{NameWithGender}$

Rules of the Dependent Product

Elimination Rules

$$\frac{c : (x : A) \times B}{\pi_0(c) : A} (\times -\text{El}_0) \qquad \frac{c : (x : A) \times B}{\pi_1(c) : B[x := \pi_0(c)]} (\times -\text{El}_1)$$

Equality Rules

$$\frac{x:A\Rightarrow B: \mathrm{Set} \quad a:A \quad b:B[x:=a]}{\pi_0(\langle a,b\rangle) = a:A} (\times - \mathrm{Eq}_0)$$

$$\frac{x: A \Rightarrow B: \text{Set} \quad a: A \quad b: B[x:=a]}{\pi_1(\langle a, b \rangle) = b: B[x:=a]} (\times -\text{Eq}_1)$$

Note that the last two rules require the extra premise $x:A\Rightarrow$

 $B: \mathbf{Set}$ (which is not implied by the other premises).

• In the "Name"-example we have that, if a: NameWithGender, then $\pi_0(a): \text{Gender}$ and $\pi_1(a): \text{Name } \pi_0(a)$:

$$\frac{a:(g:\text{Gender})\times\text{Name }g}{\pi_0(a):\text{Gender}}(\times\text{-El}_0)$$

$$\frac{a:(g:\text{Gender})\times \text{Name }g}{\pi_1(a):\text{Name }\pi_0(a)}(\times -\text{El}_1)$$

Furthermore

```
\pi_0(\langle \mathrm{male}, \mathrm{tom} \rangle) = \mathrm{male} : \mathrm{Gender}

therefore

Name \pi_0(\langle \mathrm{male}, \mathrm{tom} \rangle) = \mathrm{Name} \; \mathrm{male}

\pi_1(\langle \mathrm{male}, \mathrm{tom} \rangle) = \mathrm{tom} : \mathrm{Name} \; \pi_0(\langle \mathrm{male}, \mathrm{tom} \rangle)

therefore as well

\pi_1(\langle \mathrm{male}, \mathrm{tom} \rangle) = \mathrm{tom} : \mathrm{Name} \; \mathrm{male}
```

Rules of the Dependent Product

We have the following η -rule:

$$\frac{c:(x:A)\times B}{c=\langle \pi_0(c), \pi_1(c)\rangle:(x:A)\times C}(\times -\eta)$$

- As before, the η -rule expresses that every element of $(x:A) \times B$ is of the form $\langle \operatorname{something}_0, \operatorname{something}_1 \rangle$.
- The η -rule cannot be derived, if the element in question is a variable.

Equality Versions of the above

Equality Version of the Formation Rule

$$\frac{A = A' : \text{Set} \quad x : A \Rightarrow B = B' : \text{Set}}{(x : A) \times B = (x : A') \times B' : \text{Set}} (\times -F^{=})$$

Equality Version of the Introduction Rule

$$\frac{x:A\Rightarrow B:\text{Set}\qquad a=a':A\qquad b=b':B[x:=a]}{\langle a,b\rangle = \langle a',b'\rangle:(x:A)\times B}(\times -\text{I}^{=})$$

Equality Versions of the Elimination Rules

$$\frac{c = c' : (x : A) \times B}{\pi_0(c) = \pi_0(c') : A} (\times - \text{El}_0^{=}) \qquad \frac{c = c' : (x : A) \times B}{\pi_1(c) = \pi_1(c') : B[x := \pi_0(c)]} (\times - \text{El}_1^{=})$$

The Non-Dep. Product as an Abbrev

- The non-dependent product $A \times B$ can now be seen as an abbreviation for $(x:A) \times B$ for some fresh variable x.
- Taking $A \times B$ as an abbreviation, we can see that the rules for the non-dependent product are special cases of the rules for the dependent product.

Jump to the dependent product in Agda.

The Non-Dep. Product as an Abbrev

- More precisely this can be seen as follows:
 - From $A : \operatorname{Set}$ and $B : \operatorname{Set}$ we can derive $x : A \Rightarrow B : \operatorname{Set}$ using the weakening rule.
 - Therefore the premises of the formation rule for the non-dependent product imply those of the formation rule for the non-dependent product.
 - From a derivation of a:A we can derive $A:\operatorname{Set}$ (we need the concept of presupposition for that, as introduced later).
 - Therefore the premises of the introduction rule for the non-dependent product imply those of the dependent product.
 - Similarly for the elimination, equality and η -rule.

- In Agda, the record type allows already dependencies of later sets on previous ones:
 - Assume A : Set, and B : Set, possibly depending on a : A.
 - Then we can form

```
record AB : Set where
```

field

a : A

b : B

record AB : Set where field a : A

• Elements of AB can be introduced in the same way as before, i.e. if a':A and b':B[a:=a'] then we can form

record
$$\{a : A = a'; b : B = b'\} : AB$$
.

- Note that b': B[a:=a'], so the type of b' depends on a'.
- ullet Furthermore, if ab : AB, then

 $AB.a \ ab: A$, $AB.b \ ab: B[a:=AB.a \ ab]$. **dependentProduct1.agda**

- The same applies to the dependent product using data.
 - Assume A : Set, and B : Set, possibly depending on a : A.
 - Then we can form

data AB : Set where
$$\operatorname{prod}: (a':A) \to B[a:=a'] \to AB$$

• Elements of this set can be introduced in the same way as before, i.e. if a':A and b':B[a:=a'] then we can form

$$\operatorname{prod} a' b' : AB$$
.

• Note that b': B[a:=a'], so the type of b' depends on a'.

Furthermore, we can define the projections:

$$\pi_0$$
: AB \rightarrow A
 π_0 (p a b) = a
 π_1 : (ab: AB) \rightarrow B[a := π_0 ab]
 π_1 (p a b) = b

dependentProduct1.agda

Remember:

data Gender: Set where

female: Gender

male : Gender

data FemaleName : Set where

jill : FemaleName

sara : FemaleName

data MaleName : Set where

tom : MaleName

jim : MaleName

data MaleName : Set where

tom : MaleName

jim : MaleName

data FemaleName: Set where

jill : FemaleName

sara : FemaleName

Name : Gender \rightarrow Set

Name male = MaleName

Name female = FemaleName

Now we define

```
record NameWithGender : Set where field
```

gender : Gender

name : Name gender

See exampleAllNames.agda.

Note that we have

```
record \{gender = male; name = tom\} : NameWithGender
```

whereas we don't have

```
record \{gender = male; name = jill\} : NameWithGender
```

This is different from the dependent record type which occurs for instance in Pascal or Ada, where the second example doesn't result in a type error.

Existential Quantification

- $\exists x^A.B$ is true iff there exists an a:A such that B[x:=a] is true.
- Therefore a proof of $\exists x^A.B$ is a pair $\langle \mathbf{a}, \mathbf{p} \rangle$ consisting of an element $\mathbf{a} : \mathbf{A}$ and a proof \mathbf{p} of $\mathbf{B}[\mathbf{x} := \mathbf{a}]$.
- Therefore the set of proofs of $\exists x^A.B$ is the dependent product $(\mathbf{x} : \mathbf{A}) \times \mathbf{B}$.
- We can identify $\exists x^A B$ with $(x : A) \times B$.

∃ in Agda

● $∃<math>x^A.B$ is represented therefore in Agda by one of the two dependent products in Agda:

```
record Version1 : Set where field a : A b : B[x := a]
```

data Version2 : Set where exists : $(a:A) \rightarrow B[x:=a] \rightarrow \text{Version2}$

ullet Here B[x:=a] is the result of substituting in B for x the variable a.

∃ in Agda

▶ A generic version, depending on A : Set and $B : A \to Set$ can be defined as follows (The symbol \exists can be obtained by typing in "\exists"):

```
record \exists r \ (A : Set) \ (B : A \rightarrow Set) : Set where field a : A
```

b : B a

data
$$\exists d \ (A : Set) \ (B : A \to Set) : Set \text{ where}$$

exists : $(a : A) \to B \ a \to \exists d \ A \ B$

existentialQuantification.agda

Example (∃)

- As an example,
 - we define negation $\neg Bool$ on Bool,
 - define an equality == on Bool,
 - and show $\forall a^{\text{Bool}}.\exists b^{\text{Bool}}.a == \neg \text{Bool } b$.
- See exampleproofproplogic11.agda.

→ Bool is defined as follows:

```
\neg Bool : Bool \rightarrow Bool
\neg Bool : tt = ff
\neg Bool : ff = tt
```

Example (∃)

▲ Boolean valued equality on Bool is defined as follows:

$$_==Bool_: Bool \rightarrow Bool \rightarrow Bool$$
tt $==Bool \ b = b$
ff $==Bool \ b = \neg Bool \ b$

This corresponds to the following truth table:

Example (∃)

Then we define

$$_==_: \operatorname{Bool} \to \operatorname{Bool} \to \operatorname{Set}$$
 $b == b' = \operatorname{Atom} (b == \operatorname{Bool} b')$

• In order to introduce the statement mentioned above, we introduce first the formula $\exists b^{\text{Bool}}.a == \neg \text{Bool}\ b$ depending on a: Bool:

```
record Lemma5aux (a : Bool) : Set where field b : Bool ab : a == \neg Bool b
```

● The statement $\forall a^{\text{Bool}}.\exists b^{\text{Bool}}.a == \neg \text{Bool } b \text{ is now as follows:}$

```
Lemma5 : Set
Lemma5 = (a : Bool) \rightarrow Lemma5aux a
```

A proof of Lemma5 is an element

lemma5 : Lemma5

and we get the goal

```
\begin{array}{lll} lemma5 & : & Lemma5 \\ lemma5 & = & \{! \ !\} \end{array}
```

The type of goal is

```
Lemma5 = (a : Bool) \rightarrow Lemma5aux a
```

● This goal is solved by applying lemma5 to a : Bool.

```
Lemma5 : Set
Lemma5 = (a : Bool) \rightarrow Lemma5aux a
```

We get

```
\begin{array}{rcl}
\operatorname{lemma5} & : & \operatorname{Lemma5} \\
\operatorname{lemma5} a & = & \{! \ !\}
\end{array}
```

The type of the goal is (in pseudo Agda syntax)

```
Lemma5aux a = \text{record } \{b : \text{Bool}; ab : a == \neg \text{Bool } b\}
```

```
record \{b : Bool; ab : a == \neg Bool b\}
```

- We cannot show this goal universally for all a directly.
 - We have to provide a different b depending on whether a = tt or a = ff.
 - So we introduce pattern matching on whether a = tt or a = ff.

We get

```
lemma5 : Lemma5 lemma5 : ff = \{! !\} lemma5 : tt = \{! !\}
```

```
\begin{array}{lll} lemma5 : Lemma5 \\ lemma5 & ff & = \{! \ !\} \\ lemma5 & tt & = \{! \ !\} \end{array}
```

• In case of a = ff, the type of goal is

```
Lemma5aux ff = record { b : Bool; ab : ff == \negBool b}
```

This goal can be solved as follows

lemma5 ff = record
$$\{b=\text{tt}; ab=\text{true}\}$$

(Note that (ff == $\neg \text{Bool tt}$) = \top , so
true : (ff == $\neg \text{Bool tt}$).

The second goal can be solved as follows

lemma5 tt = record
$$\{b = ff; ab = true\}$$

So we get the complete proof:

```
lemma5 : Lemma5 lemma5 : ff = record \{b = tt; ab = true\} lemma5 : tt = record \{b = ff; ab = true\}
```

Complex Example

ullet We assume A,B: Set and equality relations on A,B:

```
postulate A : Set

postulate \_==A\_ : A \rightarrow A \rightarrow Set

postulate B : Set

postulate \_==B\_ : B \rightarrow B \rightarrow Set
```

- We will introduce
 - the product AB of A and B
 - an equality ==AB on AB
 - and show that if ==A and ==B are symmetric, so is ==AB.
- See exampleProductEqual.agda.

Equality Sets

- \blacksquare ==A (and ==B) could be decidable equalities,
 - i.e. $==A = \lambda(a, b : A) \rightarrow \text{Atom (eqboolA } a \ b)$, where eqboolA : $A \rightarrow A \rightarrow \text{Bool}$,
- Or an undecidable equality.
 - E.g. the equality on $\mathbb{N} \to \mathbb{N}$ is in standard logic

$$f = g : \Leftrightarrow \forall n^{\mathbb{N}}. f(n) = g(n)$$

which reads in Agda as follows:

$$\underline{} = \mathbb{N} \rightarrow \underline{} : (f \ g : \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \operatorname{Set}$$
 $f = \mathbb{N} \rightarrow g = (n : \mathbb{N}) \rightarrow f \ n == g \ n$

where == is the equality on \mathbb{N} .

Undecidable Equalities

■ The last equality is undecidable, since in order to check whether $f == \mathbb{N} \rightarrow g$ holds we have to check for all $n : \mathbb{N}$ whether f n = q n holds

Complex Example (Cont.)

• The formation of $AB = A \times B$ is straightforward:

data
$$_\times _(A \ B : Set) : Set where$$

p: $A \to B \to A \times B$

$$AB = A \times B$$

Complex Example (Cont.)

- We define the equality ==AB on $A \times B$ as follows:
 - Assume $ab, ab': A \times B$.
 - ab and ab' are equal, if there first projections are equal w.r.t. ==A and their second projections are equal w.r.t. ==B.
 - So we get

$$_==AB_:AB \rightarrow AB \rightarrow Set$$

(p a b) $==AB$ (p a' b') $=(a$ $==A$ a') \land (b $==B$ b')

Complex Example (Cont.)

- We introduce the formulae expressing that an equality on a set is symmetric.
- We define this generically depending on an arbitrary set A and an arbitrary equality $_==_$ on A.
- It is the formula

$$\forall a, a' : A.a == a' \rightarrow a' == a$$

The Agda code is as follows:

Sym:
$$(A : Set) \rightarrow (A \rightarrow A \rightarrow Set) \rightarrow Set$$

Sym: $A = = = = (a \ a' : A) \rightarrow a = = a' \rightarrow a' = = a$

Specialisation of Sym

● We create instances of Sym for symmetry on A, B, AB:

```
SymA : Set
```

$$SymA = Sym A = ==A$$

$$SymB = Sym B = ==B$$

$$SymAB = Sym AB _==AB_$$

Formulae vs. Proofs

- Note that SymA is the statement expressing that ==A is symmetric.
 - It is not a proof that ==A is symmetric.
 - We can define SymA independently of whether ==A is symmetric or not.
 - A proof that ==A is symmetric is an element of SymA, i.e a term symA s.t.

symA : SymA

- Note that we don't have to show that SymA holds.
 - We have to show that if SymA and SymB hold, then SymAB holds as well.

- What we want to show is that SymA and SymB implies SymAB.
- So we need to solve

```
symAB : SymA \rightarrow SymB \rightarrow SymABsymAB = \{! !\}
```

• We apply symAB to elements symA : SymA, symB : SymB and obtain

```
symAB : SymA \rightarrow SymB \rightarrow SymABsymAB symA symB = \{! !\}
```

```
symAB : SymA \rightarrow SymB \rightarrow SymABsymAB symA symB = \{! !\}
```

■ The type of the goal is SymAB which is

$$(ab \ ab' : AB) \rightarrow ab ==AB \ ab' \rightarrow ab' ==AB \ ab$$

• In order to solve the goal we apply $\operatorname{symAB} symA \otimes symB$ to ab, ab' and $abab' : ab == \operatorname{AB} ab'$. We obtain

```
symAB : SymA \rightarrow SymB \rightarrow SymAB

symAB \ symA \ symB \ ab \ ab' \ abab' = \{! \ !\}
```

```
symAB : SymA \rightarrow SymB \rightarrow SymAB

symAB \ symA \ symB \ ab \ ab' \ abab' = \{! \ !\}
```

- The type of the goal is now $ab' == AB \ ab$.
- ab' = AB ab is defined by pattern matching on ab and ab'. In order to show it we use the same pattern matching:

```
symAB : SymA \rightarrow SymB \rightarrow SymAB symAB symAB (p \ a \ b) (p \ a' \ b') abab' = \{! \ !\}
```

```
\operatorname{symAB}: \operatorname{SymA} \to \operatorname{SymB} \to \operatorname{SymAB}
\operatorname{symAB} \operatorname{symA} \operatorname{symB} (\operatorname{p} a b) (\operatorname{p} a' b') \operatorname{abab'} = \{! \ !\}
```

- $abab': a ===A \ a' \land b ===B \ b'.$ In order to obtain the two components $aa': a ===A \ a'$ and $bb': b ===B \ b'$, we apply pattern matching to abab' as well.
- We obtain

```
symAB : SymA \rightarrow SymB \rightarrow SymAB symAB symA symB (p a b) (p a' b') (and aa' bb') = {! !}
```

```
symAB : SymA \rightarrow SymB \rightarrow SymAB
symAB symA \ symB (p a \ b) (p a' \ b') (and aa' \ bb') = {! !}
```

The Type of the goal is

$$(a' === A \ a) \land (b' === B \ b)$$

- Elements of it are of the form $p \ ab \ ab'$ with $a'a:a'==A \ a$ and $b'b:b'==B \ b$.
- So we insert into the goal p and use intro.
 We obtain

$$symAB : SymA \rightarrow SymB \rightarrow SymAB$$

$$symAB symA symB (p a b) (p a' b') (and aa' bb')$$

$$= p \{! !\} \{! !\}$$

```
symAB : SymA \rightarrow SymB \rightarrow SymAB
symAB symA symB (p a b) (p a' b') (and aa' bb')
= p \{! !\} \{! !\}
```

- The type of the first goal is $a' == A \ a$.
- We have $aa': a == A \ a'$ and $symA: (a \ a': A) \rightarrow a == A \ a' \rightarrow a' == A \ a.$
- So

$$symA \ a \ a' \ aa' : a' ===A \ a$$

and this term can be used in order to solve the first goal:

```
symAB: SymA \rightarrow SymB \rightarrow SymAB
symAB symA symB (p a b) (p a' b') (and aa' bb')
= p (symA \ a \ a' \ aa') {! !}
```

```
symAB : SymA \rightarrow SymB \rightarrow SymAB
symAB symA symB (p a b) (p a' b') (and aa' bb')
= p (symA \ a \ a' \ aa') {! !}
```

- The type of the second goal is $b' == B \ b$ which can be solved by $symB \ b \ b' \ bb'$.
- We obtain

```
symAB: SymA \rightarrow SymB \rightarrow SymAB
symAB symA \ symB \ (p \ a \ b) \ (p \ a' \ b') \ (and \ aa' \ bb')
= p (symA \ a \ a' \ aa') \ (symB \ b \ b' \ bb')
```

Jump over next 2 sections:
Derivations vs. Agda Code and Presuppositions

(g) Derivations vs. Agda Code

- In this subsection we look at the relationship between Agda code and the corresponding derivations.
 - We consider various examples.
 - First we will go through the development of the Agda code.
 - Then we will look at, how the corresponding derivations are developed, following each step in the development of the Agda code.

Example 1

We want to derive in Agda

$$\lambda(\mathbf{a}:\mathbf{A}).\mathbf{a}:\mathbf{A}\to\mathbf{A}$$

(See example file exampleIdentity.agda)

- Step 1:
 - We need to introduce the type A first.
 - Since we want to to have the definition for an arbitrary type A, we postulate (i.e. assume) one type A:

postulate A: Set

Step 2: We state our goal:

$$f: A \to A$$
$$f = \{! \ !\}$$

Step 3:

- We want to derive an element of function type $A \rightarrow A$.
- Elements of the function type $A \rightarrow A$ are introduced by using λ -terms.
- If introduced as a λ -term, the term in question will be of the form $\lambda(a:A) \to \mathbf{something}$.
- So we insert into the goal $\lambda(a:A) \rightarrow \{!\ !\}$, use agda-give and obtain

$$f: A \to A$$
$$f = \lambda(a:A) \to \{! \ !\}$$

(The precise Agda code uses \setminus instead of λ , and -> instead of \rightarrow).

Step 4:

- In order for $\lambda(a:A) \to \{!\ !\}$ to be of type $A \to A$, $\{!\ !\}$ must be of type A.
 - Then this λ -term computes an element of type A depending on some a of type A, which means it is a function of type $A \rightarrow A$.
 - ullet So the type of the goal is A.
 - This can be inspected by using the goal menu Goal type
 - which shows the type of the current goal.
 - Has to be executed while the cursor is inside one goal.
 - It shows A.

- Step 4 (Cont.)
 - We can inspect the context.
 - The context contains as only element a:A.
 - Since we are defining a an element of type A depending on a:A, we can use a.

Step 4 (Cont.)

- Now everything with result type A (i.e. which has at the right side of the arrow A) can be used in order to solve the goal.
 - f would result in black-hole recursion.
 - So we take a.
- We type in a into the goal and then use the command Refine
- We obtain:

$$f: A \to A$$
$$= \lambda(a:A) \to a$$

and are done.

derivationsagdacode1.agda

- In Agda step 1 we postulated A : Set.
 This corresponds to having the global assumption A : Set.
- In Agda step 2 we stated our goal:

$$f: A \to A$$
$$= \{! \ !\}$$

In terms of rules this means that we want to derive something of type $A \rightarrow A$.

We write for this something d_0 and get as conclusion of our derivation:

$$d_0:A\to A$$

Example 1, Using Rules (Cont.)

● In Agda step 3 we replaced $\{!\ !\}$ by $\lambda(a:A) \rightarrow \{!\ !\}$:

$$f: A \to A$$
$$= \lambda(a:A) \to \{! \ !\}$$

In terms of rules this means that we replace d_0 by $\lambda a^A.d_1$ which is derived by an introduction rule

$$\frac{a:A\Rightarrow d_1:A}{\lambda a^A.d_1:A\to A} (\to -I)$$

Example 1, Using Rules (Cont.)

● In Agda step 4 we replaced $\{!\ !\}$ in $\lambda(a:A) \rightarrow \{!\ !\}$ by a:

$$f: A \to A$$
$$f = \lambda(a:A) \to a$$

In terms of rules this means that we replace d_1 by a. $a:A\Rightarrow a:A$ follows by an assumption rule:

$$\frac{a:A\Rightarrow a:A}{\lambda a^A.a:A\to A} (\to -I)$$

- The assumption rule will be discussed later.
 - Essentially it allows to derive if x : B occurs in the context that x : B holds.

Example 2

We consider a derivation of

$$\lambda(a-a-a:(A \to A) \to A).a-a-a \ (\lambda(a:A) \to a)$$
$$: ((A \to A) \to A) \to A$$

(See example exampleSampleDerivation2.agda).

- Step 1:
 - We postulate A:

postulate
$$A$$
: Set

We state our goal:

$$f: ((A \to A) \to A) \to A$$
$$f = \{! \ !\}$$

Step 2:

- The type of the goal is a function type. We therefore insert into the goal $\lambda(a-a-a:(A\to A)\to A)\to \{!\ !\}$, use goal command Refine and obtain
- We obtain

$$f: ((A \to A) \to A) \to A$$

$$f = \lambda(a - a - a : (A \to A) \to A) \to \{! !\}$$

Step 3:

- The type of the new goal is A, which is the result type of the function we are defining.
- The context contains $a-a-a:(A\to A)\to A$.
- We can as well use f (for recursive definitions) and A for solving the goal.
- a-a-a is a function of result type A. Applying it to its argument would have as result an element of the type of the goal in question.

Step 3 (Cont):

- Therefore we type into the goal a-a-a and use goal command Refine.
 - Agda will then apply a-a-a to as many goals as needed in order to obtain an element of the desired type.
 - In our case it is one (of type $A \rightarrow A$).
 - We obtain

$$f: ((A \to A) \to A) \to A$$

$$f = \lambda(a-a-a: (A \to A) \to A) \to a-a-a \{! !\}$$

Step 4:

- The type of the new goal is $A \rightarrow A$.
 - This is since $a-a-a:(A\to A)\to A$ needs to be applied to an element of type $A\to A$ in order to obtain an element of type A.
 - An element of type $A \to A$ can be introduced by a λ -expression $\lambda(a:A) \to \{!\ !\}$.
 - We type this into the goal and use Refine and obtain:

$$f: ((A \to A) \to A) \to A$$

$$f = \lambda(a-a-a: (A \to A) \to A) \to a-a-a \ (\lambda(a:A) \to \{!\}$$

Step 5

- The new goal has type A.
 - The complete expression $\lambda(a:A) \rightarrow \{!\ !\}$ should have type $A \rightarrow A$, so $\{!\ !\}$ must have type A.
- The context contains a-a-a and a; we can use as well f, A.
 - Both a-a-a and a have the correct result type A.
 - There is usually more than one solution for proceeding in Agda.
 - This means that we sometimes have to backtrack and try a different solution.

Step 5 (Cont.)

• We try a: A. After inserting it and using Refine we obtain the following and are done.

$$f: ((A \to A) \to A) \to A$$

$$f = \lambda(a-a-a: (A \to A) \to A) \to a-a-a \ (\lambda(a:A) \to a)$$

- Postulating A : Set corresponds to that we make a global assumption A : Set.
- Stating the goal means that we have as last line of the derivation:

$$d_0: ((A \to A) \to A) \to A$$

• We will in the following use aaa instead of a-a-a in order to save space in derivations.

The next step in the Agda-derivation was to replace the goal by

$$\lambda(aaa:(A\to A)\to A)\to \{!\ !\}.$$

● This corresponds to replacing d_0 by $\lambda(aaa:(A \rightarrow A) \rightarrow A).d_1$ and having as last step an introduction rule:

$$\frac{aaa:(A \to A) \to A \Rightarrow d_1:A}{\lambda aaa^{((A \to A) \to A)}.d_1:((A \to A) \to A) \to A} (\to -I)$$

- The next step in the Agda-derivation used refine.
 {! !} was replaced by aaa {! !}.
- This corresponds to replacing d_1 by $aaa d_2$, and using one elimination rule in order to derive it:

$$\frac{aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa:(A \rightarrow A) \rightarrow A}{aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa \ d_2:A} (\rightarrow -\text{El})} \frac{aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa \ d_2:A}{\lambda aaa^{(A \rightarrow A) \rightarrow A}.aaa \ d_2:((A \rightarrow A) \rightarrow A) \rightarrow A} (\rightarrow -\text{I})}$$

The left top judgement can be derived by an assumption rule (more about this later).

- We then used intro on the goal which was then replaced by $\lambda(a:A) \rightarrow \{!\ !\}$.
- This corresponds to replacing d_2 by $\lambda a^A.d_3$ which can be introduced by an introduction rule:

$$\frac{aaa:(A \rightarrow A) \rightarrow A, a:A \Rightarrow d_3:A}{aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa:(A \rightarrow A) \rightarrow A} (\rightarrow \neg I)$$

$$\frac{aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa$$

- Finally we used refine with a, which replaced the goal by a.
- This corresponds to replacing d_3 by a.

$$\frac{aaa:(A \rightarrow A) \rightarrow A, a:A \Rightarrow a:A}{aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa:(A \rightarrow A) \rightarrow A} (\rightarrow \neg I)$$

$$\frac{aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa}{(aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa} (\lambda a^A.a):A} (\rightarrow \neg El)$$

$$\frac{aaa:(A \rightarrow A) \rightarrow A \Rightarrow aaa}{(\lambda aaa^{(A \rightarrow A) \rightarrow A}.aaa)} (\lambda a^A.a):((A \rightarrow A) \rightarrow A) \rightarrow A} (\rightarrow \neg I)$$

The right hand derivation can again be derived by an assumption rule (more about this later).

Example 3

We derive an element of type

$$A \to B \to A \times B$$

(See exampleProductIntro.agda).

- Step 1:
 - We postulate types A, B:

```
postulate A: Set
```

postulate B : Set

We introduce the product type:

```
record \_\times\_ (A B : Set) : Set where field
```

first : A

second: B

- Step 2:
 - Our goal is:

$$f: A \to B \to A \times B$$
$$f = \{! \ !\}$$

Step 3:

• An element of $A \to B \to A \times B$ will be of the form

$$\lambda(a:A) \to \lambda(b:B) \to \{!\ !\}$$

 We insert this into our goal and use Refine and obtain

$$f: A \to B \to A \times B$$
$$f = \lambda(a:A) \to \lambda(b:B) \to \{!\ !\}$$

Step 4:

- The new goal is of type $A \times B$ which is a record type. An element of it can be introduced by an introduction rule.
- Elements of type $A \times B$ introduced by the introduction principle will have the form

```
record {first = {! !};
second = {! !}}
```

- Step 4 (Cont):
 - We insert this into the goal and obtain:

$$f: A \to B \to A \times B$$

= $\lambda(a:A) \to \lambda(b:B) \to \text{record } \{\text{first} = \{! !\}; \text{second} = \{! !\}\}$

- Step 5:
 - The first goal has as context:
 - \bullet a:A,
 - \bullet b:B
 - We could use as well
 - ullet $A,B:\mathrm{Set}$,
 - $A \times B : Set$,
 - $f: A \to B \to A \times B$.

- Step 5 (Cont)
 - We insert a, use refine and solve the first goal:

$$f: A \to B \to A \times B$$

 $f = \lambda(a:A) \to \lambda(b:B) \to \text{record } \{\text{first} = a; \\ \text{second} = \{! !\}\}$

- Step 6:
 - Similarly we can solve the second one:

$$f: A \to B \to A \times B$$

 $f = \lambda(a:A) \to \lambda(b:B) \to \text{record } \{\text{first} = a; \text{second} = b\}$

Example 3, Using Rules

• $A \times B$ is formed as follows (assuming the global assumptions A : Set, B : Set):

$$\frac{A : \text{Set}}{A \times B : \text{Set}} (\times -F)$$

We won't use this however, since it is required for the assumption rules only, the treatment of which will be delayed until later.

Example 3, Using Rules (Cont.)

Stating the goal corresponds to having as last line of the derivation:

$$d_0:A\to B\to (A\times B)$$

• Using λ -abstraction means that we replace d_0 by $\lambda a^A.\lambda b^B.d_1$ which is introduced by two introduction rules:

$$\frac{a:A,b:B\Rightarrow d_1:A\times B}{a:A\Rightarrow \lambda b^B.d_1:B\to (A\times B)}(\to -\mathrm{I})$$

$$\frac{a:A\Rightarrow \lambda b^B.d_1:B\to (A\times B)}{\lambda a^A.\lambda b^B.d_1:A\to B\to (A\times B)}(\to -\mathrm{I})$$

Example 3, Using Rules (Cont.)

• The use of record is reflected by replacing d_1 by $\langle d_2, d_3 \rangle$, which can be introduced by an introduction rule:

$$\frac{a:A,b:B\Rightarrow d_2:A}{a:A,b:B\Rightarrow \langle d_2,d_3\rangle:A\times B}(\times -\mathrm{I})$$

$$\frac{a:A,b:B\Rightarrow \langle d_2,d_3\rangle:A\times B}{a:A\Rightarrow \lambda b^B.\langle d_2,d_3\rangle:B\rightarrow (A\times B)}(\rightarrow -\mathrm{I})$$

$$\frac{a:A\Rightarrow \lambda b^B.\langle d_2,d_3\rangle:A\rightarrow B\rightarrow (A\times B)}{\lambda a^A.\lambda b^B.\langle d_2,d_3\rangle:A\rightarrow B\rightarrow (A\times B)}$$

Example 3, Using Rules (Cont.)

• Solving the goals by refining them with a, b means that we replace d_2 by b, d_3 by c:

$$\frac{a:A,b:B\Rightarrow a:A}{a:A,b:B\Rightarrow \langle a,b\rangle:A\times B}\Rightarrow b:B}(\times - I)$$

$$\frac{a:A,b:B\Rightarrow \langle a,b\rangle:A\times B}{a:A\Rightarrow \lambda b^B.\langle a,b\rangle:B\rightarrow (A\times B)}(\rightarrow - I)$$

$$\frac{a:A\Rightarrow \lambda b^B.\langle a,b\rangle:B\rightarrow (A\times B)}{\lambda a^A.\lambda b:B.\langle a,b\rangle:A\rightarrow B\rightarrow (A\times B)}$$

• The premises require an assumption rule (which will use the derivation of $A \times B$), see later for details.

Example 4

We derive an element of type

$$(A \to B \times C) \to A \to B$$

(See exampleProductElim.agda).

- Step 1:
 - We postulate types A, B, C:

```
postulate A: Set
```

postulate B : Set

postulate C: Set

The product is introduced as before:

```
record \_\times\_ (A B : Set) : Set where field
```

first : A

second: B

- Step 2:
 - Our goal is:

$$f: (A \to B \times C) \to A \to B$$
$$f = \{! \ !\}$$

Step 3:

• We insert a λ -expression into the goal, refine, and obtain:

$$f: (A \to B \times C) \to A \to B$$

$$f = \lambda(a - bc: A \to B \times C) \to \lambda(a:A) \to \{!\ !\}$$

Step 4:

- The context has no element with result type B.
- ▶ However, a-bc has function type with result type $B \times C$, which can be projected to B.
- We introduce first an element of type $B \times C$ by a let-expression, and then derive from it the desired element of type B:

Step 4 (Cont):

We insert before the goal a let-expression and obtain:

$$f: (A \to B \times C) \to A \to B$$

$$f = \lambda(a - bc: A \to B \times C)$$

$$\to \lambda(a:A)$$

$$\to \text{let } bc: B \times C$$

$$bc = \{! !\}$$

$$\text{in } \{! !\}$$

Step 5:

• For solving the first goal (definition of bc) we can refine a-bc, which has as result type $B \times C$.

$$f: (A \to B \times C) \to A \to B$$

$$f = \lambda(a - bc : A \to B \times C)$$

$$\to \lambda(a : A)$$

$$\to \text{let } bc : B \times C$$

$$bc = a - bc \{! !\}$$

$$\text{in } \{! !\}$$

Step 6:

The new goal can be solved by refining it with variable a:

$$f: (A \to B \times C) \to A \to B$$

$$f = \lambda(a - bc : A \to B \times C)$$

$$\to \lambda(a : A)$$

$$\to \text{let } bc : B \times C$$

$$bc = a - bc \ a$$

$$\text{in } \{! \ !\}$$

Step 7:

- The type of the new goal is B.
- We obtain from bc an element of this type, by applying the first projection to it.
 - This projection is _x_.first.
- We obtain

$$f: (A \to B \times C) \to A \to B$$

$$f = \lambda(a - bc : A \to B \times C)$$

$$\to \lambda(a : A)$$

$$\to \text{let } bc : B \times C$$

$$bc = a - bc \ a$$

$$\text{in } _\times_. \text{first } bc$$

- In our rule calculus we don't introduce a let construction (we could add this).
- In order to get close to the derivations, we omit in the Agda derivation the let expression, and replace in the body of it bc by its definition $(a-bc\ a)$.
- We get

$$f: (A \to B \times C) \to A \to B$$

$$f = \lambda(a - bc: A \to B \times C)$$

$$\to \lambda(a:A)$$

$$\to \underline{\quad} \times \underline{\quad} \text{.first } (a - bc \ a)$$

Example 4, Using Rules

- Using rules we make the global assumptions
 - A : Set, B : Set, C : Set.
- Then we start with our goal

$$d_0: (A \to (B \times C)) \to A \to B$$

Example 4, Using Rules (Cont.)

• The use of a λ -expression amounts to replacing d_0 by

$$\lambda a - bc^{A \to (B \times C)} . \lambda a^A . d_1$$

introduced by two applications of an introduction rule:

$$\frac{a-bc:A\to(B\times C),a:A\Rightarrow d_1:A}{a-bc:A\to(B\times C)\Rightarrow\lambda a^A.d_1:A\to B}(\to \text{-I})$$

$$\frac{a-bc:A\to(B\times C)\Rightarrow\lambda a^A.d_1:A\to B}{\lambda a-bc^{A\to(B\times C)}.\lambda a^A.d_1:(A\to(B\times C))\to A\to B}$$

Example 4, Using Rules (Cont.)

- In Agda, we then replace the goal corresponding to d_1 by _×_.first $(a-bc\ a)$.
- In our rule calculus, this reads $\pi_0(a-bc\ a)$.
- This can be introduced by two applications of elimination rules:

The two initial judgements can be introduced by assumption rules.

(h) Presuppositions

- In order to derive $x:A,y:B\Rightarrow C: Set$ we need to show:
 - \bullet A: Set.
 - $\bullet x: A \Rightarrow B: Set$
- So the judgement

$$x:A,y:B\Rightarrow C:\mathrm{Set}$$

implicitly contains the judgements

$$A: Set$$
,

$$x: A \Rightarrow B: Set$$
.

Presuppositions (Cont.)

• $A : Set \text{ and } x : A \Rightarrow B : Set \text{ are presuppositions of the judgement}$

$$x: A, y: B \Rightarrow C: Set$$
.

Presuppositions (Cont.)

■ A : Set and B : Set are presuppositions of the judgement

$$A \to B : Set$$
.

and of the judgement

$$A \times B : Set$$
.

The next slide shows the presuppositions of judgements.

Judgement	Presuppositions
$\Gamma, x: A \Rightarrow \text{Context}$	$\Gamma \Rightarrow A : \mathrm{Set}.$
$\Gamma \Rightarrow A : \mathbf{Set}$	$\Gamma \Rightarrow \text{Context}$
$\Gamma \Rightarrow A = B : Set$	$\Gamma\Rightarrow A: \mathrm{Set}$, $\Gamma\Rightarrow B: \mathrm{Set}$.

Judgement	Presuppositions
$\Gamma \Rightarrow a:A$	$\Gamma \Rightarrow A : \mathrm{Set}$.
$\Gamma \Rightarrow a = b : A$	$\Gamma\Rightarrow a:A$, $\Gamma\Rightarrow b:A$.

Judgement	Presuppositions
$\Gamma \Rightarrow (x:A) \to B: \mathrm{Set}$	$\Gamma, x: A \Rightarrow B: \mathbf{Set}.$
$\Gamma \Rightarrow (x:A) \times B: \mathrm{Set}$	$\Gamma, x: A \Rightarrow B: \mathbf{Set}.$

Furthermore, presuppositions of presuppositions of

$$\Gamma \Rightarrow \theta$$

are as well presuppositions of

$$\Gamma \Rightarrow \theta$$
.

Example of Presuppositions

- \bullet $x:A,y:B\Rightarrow a=b:(z:C)\times D$ presupposes:
 - $\emptyset \Rightarrow \text{Context}$,
 - A : Set,
 - $x:A\Rightarrow \text{Context}$,
 - $x:A\Rightarrow B:\mathrm{Set}$,
 - $x:A,y:B\Rightarrow \text{Context}$,
 - $x:A,y:B\Rightarrow C:\mathrm{Set}$,
 - $x:A,y:B,z:C\Rightarrow \text{Context}$,
 - $x:A,y:B,z:C\Rightarrow D:\mathrm{Set}$,
 - $x:A,y:B\Rightarrow (z:C)\times D:\mathrm{Set}$,
 - $x:A,y:B\Rightarrow a:(z:C)\times D$,
 - $x:A,y:B\Rightarrow b:(z:C)\times D$.

Remark on $A \rightarrow B$, $A \times B$

- Note that $A \to B$ is an abbreviation for $(x : A) \to B$ for some fresh x.
- Similarly $A \times B$ is an abbreviation for $(x : A) \times B$ for some fresh x.
- Therefore the presupposition of $A \rightarrow B : Set$ (which abbreviates $\emptyset \Rightarrow A \rightarrow B : Set$) are:
 - $\emptyset \Rightarrow \text{Context}$,
 - \bullet A: Set,
 - $x: A \Rightarrow \text{Context}$,
 - $x:A\Rightarrow B: Set.$

(i) The Full Logical Framework

We would like to add operations on types, such as

$$\operatorname{prod}:\operatorname{Set}\to\operatorname{Set}\to\operatorname{Set}$$

which should take two sets and form the product of it.

The problem is that for this we need

$$Set \rightarrow Set \rightarrow Set : Set$$

and our rules allow this only if we had

Set

Adding

Set: Set

as a rule results however in an inconsistent theory:

using this rule we can prove everything, especially false formulas.

The corresponding paradox is called **Girard's paradox**.

Jean-Yves Girard

Set (Cont.)

- Instead we introduce a new level on top of Set called Type.
 - So besides judgements A : Set we have as well judgements of the form

One rule will especially express

Elements of Type are types, elements of Set are small types.

Set (Cont.)

- We add rules asserting that if A: Set then A: Type.
- Further we add rules asserting that Type is closed under the dependent function type and product.
- Since Set: Type we get therefore (by closure under the function type)

$$Set \rightarrow Set \rightarrow Set : Type$$

and we can assign to prod above the type

$$\operatorname{prod}:\operatorname{Set}\to\operatorname{Set}\to\operatorname{Set}$$

(The definition of prod will be given later.)

Set and Type

Set (Cont.)

However, we cannot use prod in order to form the product of two sets, ie. we cannot introduce

prod Set Set: Set,

since Set : Set does not hold.

Rules for Set (as an El. of Type)

Formation Rule for Set

Set: Type (SetIsType)

Every Set is a Type

$$\frac{A : Set}{A : Type} (Set2Type)$$

Closure of Type

■ Further we add rules stating that Type is closed under the dependent function type and the dependent product:

Closure of Type under the dependent product

$$\frac{A : \text{Type} \quad x : A \Rightarrow B : \text{Type}}{(x : A) \times B : \text{Type}} (\times -F^{\text{Type}})$$

Closure of Type under the dependent function type

$$\frac{A : \text{Type} \qquad x : A \Rightarrow B : \text{Type}}{(x : A) \rightarrow B : \text{Type}} (\rightarrow \textbf{-}F^{\text{Type}})$$

Nondependent Case

A special case of the above rule is the closure under the non-dependent function type and product. This rule can be derived (e.g. from the premises one can derive using the other rules the conclusion).

Closure of Type under the non-dependent product

$$\frac{A : \text{Type}}{A \times B : \text{Type}} (\times -F^{\text{Type}})$$

Closure of Type under the non-dependent function type

$$\frac{A : \text{Type}}{A \to B : \text{Type}} \xrightarrow{A : \text{Type}} (\to -F^{\text{Type}})$$

Equality Versions of the Rules

Formation Rule for Set

$$Set = Set : Type$$
 $(SetIsType^{=})$

Every Set is a Type

$$\frac{A = B : Set}{A = B : Type} (Set2Type^{=})$$

Equality Versions of the Rules

Closure of Type under the dependent product

$$\frac{A = A' : \text{Type} \qquad x : A \Rightarrow B = B' : \text{Type}}{(x : A) \times B = (x : A') \times B' : \text{Type}} (\times -F^{=,\text{Type}})$$

Closure of Type under the dependent function type

$$\frac{A = A' : \text{Type} \qquad x : A \Rightarrow B = B' : \text{Type}}{(x : A) \to B = (x : A') \to B' : \text{Type}} (\to -F^{=,\text{Type}})$$

Similarly for the non-dependent versions of the above.

Definition of prod

- ullet Now Set o Set o Set : Type.
- And we can derive

$$\operatorname{prod} := \lambda(X, Y : \operatorname{Set}).X \times Y$$
$$: \operatorname{Set} \to \operatorname{Set} \to \operatorname{Set}$$

We jump over the details. Jump over the details.

Context Rules

- The types in the contexts, which were before only elements of Set, can now be as well elements of Type.
- Therefore we need an additional context rule

$$\frac{\Gamma \Rightarrow A : \text{Type}}{\Gamma, x : A \Rightarrow \text{Context}} \left(\text{Context}_{1}^{\text{Type}} \right)$$

Example: prod

We can now introduce $\operatorname{prod}:\operatorname{Set}\to\operatorname{Set}\to\operatorname{Set}:$ First we derive $X:\operatorname{Set},Y:\operatorname{Set}\Rightarrow X:\operatorname{Set}:$

$$\frac{Set : Type}{X : Set \Rightarrow Context} (Context_1)$$

$$X : Set \Rightarrow Set : Type$$

$$X : Set, Y : Set \Rightarrow Context$$

$$X : Set, Y : Set \Rightarrow Context$$

$$X : Set, Y : Set \Rightarrow X : Set$$

$$X : Set, Y : Set \Rightarrow X : Set$$

Similarly we derive $X : Set, Y : Set \Rightarrow Y : Set$.

Example: prod (Cont.)

Now we can derive our desired judgement:

$$\begin{array}{c} X: \operatorname{Set}, Y: \operatorname{Set} \Rightarrow X: \operatorname{Set} & X: \operatorname{Set}, Y: \operatorname{Set} \Rightarrow Y: \operatorname{Set} \\ \hline X: \operatorname{Set}, Y: \operatorname{Set} \Rightarrow X \times Y: \operatorname{Set} \\ \hline X: \operatorname{Set} \Rightarrow \lambda Y^{\operatorname{Set}}. X \times Y: \operatorname{Set} \rightarrow \operatorname{Set} \\ \hline \lambda(X, Y: \operatorname{Set}). X \times Y: \operatorname{Set} \rightarrow \operatorname{Set} \rightarrow \operatorname{Set} \\ \hline \lambda(X, Y: \operatorname{Set}). X \times Y: \operatorname{Set} \rightarrow \operatorname{Set} \rightarrow \operatorname{Set} \\ \end{array}$$

and define

$$\operatorname{prod} := \lambda(X, Y : \operatorname{Set}).X \times Y$$
$$: \operatorname{Set} \to \operatorname{Set} \to \operatorname{Set}$$

Set vs. Type in Agda

- In Agda Type will be written as Set1.
- Set can be written as well as Set0.
- In Agda, we don't have that if A : Set then A : Set 1.
 - Idea is that from A we can derive an (up to β -reduction) unique B s.t. A:B
- However we have in Agda.
 - Assume A : Set or A : Set 1.
 - Assume $x:A\Rightarrow B: \mathrm{Set}\ \mathbf{or}\ x:A\Rightarrow B: \mathrm{Set}1$.
 - Assume that we have at least one of A : Set1 or $x : A \Rightarrow B : Set1$.
 - Then $(x:A) \to B$, $(x:A) \times B : Set1$.
- So $(x:A) \rightarrow B$ and $(x:A) \times B$ belongs to the maximum type level of A and B.

Hierarchies of Types

If one wants to form

$$\operatorname{prod}' : \operatorname{Type} \to \operatorname{Type} \to \operatorname{Type}$$
,

one needs to have a further level Kind above Type, s.t.

Then

Type
$$\rightarrow$$
 Type \rightarrow Type : Kind.

• In Agda Kind is written as Set2.

Hierarchy of Types (Set, Type, Kind)

Rules for Type as a Kind

Type is a Kind

Type: Kind

Every Type is a Kind

 $\frac{A: \text{Type}}{A: \text{Kind}} \text{(Type2Kind)}$

Closure of Kind

Closure of Kind under the dependent product

$$\frac{A : \text{Kind}}{(x : A) \times B : \text{Kind}} (\times - F^{\text{Kind}})$$

Closure of Kind under the dependent function type

$$\frac{A : \text{Kind}}{(x : A) \to B : \text{Kind}} (\to -F^{\text{Kind}})$$

$$(x : A) \to B : \text{Kind}$$

Plus equality versions of the above rules.

Jump over Context Rule.

Context Rules

Again, the context rules have to be expanded:

$$\frac{\Gamma \Rightarrow A : \text{Kind}}{\Gamma, x : A \Rightarrow \text{Context}} \left(\text{Context}_{1}^{\text{Kind}} \right)$$

Definition of prod

Now we can define

$$\operatorname{prod}' := \lambda(X, Y : \operatorname{Type}).X \times Y$$

: $\operatorname{Type} \to \operatorname{Type} \to \operatorname{Type}$

Hierarchies of Types (Cont.)

■ This can be iterated further, forming
Type = Type₁, Kind = Type₂, Type₃, Type₄ ····

So we have

- Set : Type,
- Set: Type₂, Type = Type₁: Type₂,
- Set: Type₃, Type = Type₁: Type₃, Type₂: Type₃,
- Set: Type₄, Type = Type₁: Type₄, Type₂: Type₄, Type₃: Type₄,
- etc.

Hierarchies of Types (Cont.)

- Agda has a hierarchy of types built in, written as Set0 (which is Set), Set1 (which is Type), Set2 (in the rule calculus called Kind), Set3 etc.
- \blacksquare Again we don't have for instance $Set : Set_2$.
- But $(x:A) \rightarrow B$, $(x:A) \times B$ belong to the maximum type level of A and B.

Hierarchy of Types (Set0, Set1, Set2

Changes To Presuppositions

- If we have the two type levels Set and Type, the presuppositions change.
- E.g. the presupposition of $\Gamma \Rightarrow a : A$ is no longer $A : \operatorname{Set}$ but $A : \operatorname{Type}$.
 - It might be that the derivation derives actually A : Set, but that implies A : Type.
 - But it might be that we can only derive $A: \mathrm{Type}$.
- Therefore the presuppositions have to be changed as in the following table.

Judgement	Presuppositions
$\Gamma, x: A \Rightarrow \text{Context}$	$\Gamma \Rightarrow A : \text{Type.}$
$\Gamma \Rightarrow A : \mathbf{Set}$	$\Gamma \Rightarrow A : \text{Type.}$
$\Gamma \Rightarrow A : \text{Type}$	$\Gamma \Rightarrow \text{Context.}$

Judgement	Presuppositions
$\Gamma \Rightarrow A = B : Set$	$\Gamma\Rightarrow A: \mathrm{Set},$ $\Gamma\Rightarrow B: \mathrm{Set},$ $\Gamma\Rightarrow A=B: \mathrm{Type}.$
$\Gamma \Rightarrow A = B : \text{Type}$	$\Gamma \Rightarrow A : \text{Type,}$ $\Gamma \Rightarrow B : \text{Type.}$
$\Gamma \Rightarrow a:A$	$\Gamma \Rightarrow A : \mathrm{Type}.$

Judgement	Presuppositions
$\Gamma \Rightarrow a = b : A$	$\Gamma\Rightarrow a:A$, $\Gamma\Rightarrow b:A$.
$\Gamma \Rightarrow (x:A) \times B: \mathrm{Set}$	$\Gamma \Rightarrow A : \mathrm{Set},$ $\Gamma, x : A \Rightarrow B : \mathrm{Set}.$
$\Gamma \Rightarrow (x:A) \times B: \mathrm{Type}$	$\Gamma, x: A \Rightarrow B: \text{Type.}$

Judgement	Presuppositions
$\Gamma \Rightarrow (x:A) \to B: \mathrm{Set}$	$\Gamma \Rightarrow A : \mathrm{Set},$ $\Gamma, x : A \Rightarrow B : \mathrm{Set}.$
$\Gamma \Rightarrow (x:A) \rightarrow B: \text{Type}$	$\Gamma, x : A \Rightarrow B : \text{Type.}$

Changes To Presuppositions

- If we have more levels (Kind or Seti), then the presuppositions have to be changed again.
 - E.g., if we have levels Set, Type, Kind, the presupposition
 - of $\Gamma \Rightarrow A : \text{Set is } \Gamma \Rightarrow A : \text{Type}$,
 - of $\Gamma \Rightarrow A : \text{Type is } \Gamma \Rightarrow A : \text{Kind}$,
 - of $\Gamma \Rightarrow A : \text{Kind is } \Gamma \Rightarrow \text{Context.}$