進捗報告

表 1: 実験の設定

model	VGG19				
Optim(w)	SGD(lr=0.01, momentum=0.9)				
$Optim(\alpha)$	Adam(lr=0.005, β =(0.5, 0.999))				
Loss	Cross Entropy Loss				
dataset	cifar10				
batch size	64				

1 問題

前回同様.

初期条件として探索をベースラインの VGG19 に相当する α から始めた.

2 実験

表1に探索時の実験設定を示した. 郵価段階では SCD の学習家を 均数

評価段階では、SGD の学習率を、指数スケジューラ $(\gamma = 0.9261 : \gamma^{30} = 0.1)$ で減衰させた.

- (a) descending α_j の上位から順に, round($\hat{\beta}_j$) 本の ショートカットを選んだグラフ,
- (b) threshold $\hat{\alpha}_{ij} >= 0.5$ となるショートカットを選んだグラフ,
- (c) baseline ショートカットをすべて破棄したグラフ,の3つで性能を評価した.

2.1 結果

図1にテスト精度を,表2に結果を示した. 図~ の四角が各ブロックの出力を示し,太線がVGGのレイヤー,点線がショートカットを表している.

3 今後の予定

- ショートカット関数の改善
- β周りの改良

図 1: 学習中のテスト精度

図 2: 探索後の隣接行列の重み â

4 ソースコード

github の notebook リポジトリ参照

表 2: 各条件の比較

	テスト精度	学習時間	計算時間	パラメータ数	データサイズ		
	(%)	(epoch)	(GPU-min)		train	valid	test
探索	87.24	50	120	26.30M	25000	25000	5000
(a) descending	92.14	100	120	20.85M	50000	0	10000
(b) threshold	91.83	100	120	20.27M	50000	0	10000
(c) baseline	91.79	100	120	20.04M	50000	0	10000

