Curso de Métodos Numéricos DEMAT, Universidad de Guanajuato

Clase 22: Solución numérica de EDO

- Método trapezoidal.
- Método implícito de Euler.
- Métodos basados en series de Taylor.
- Métodos de Runge-Kutta

MAT-251 Dr. Joaquín Peña Acevedo

CIMAT A.C.

e-mail: joaquin@cimat.mx

Repaso (I)

Una ecuación diferencial ordinaria (EDO) expresada de forma explícita tiene la forma

$$\frac{d^{n}y}{dx^{n}} = f(x, y(x), y'(x), ..., y^{(n-1)}(x))$$

Ejemplo. La ecuación logística, que describe el crecimiento de una población:

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{K}\right)$$

En particular, cuando

$$f(x, y(x), y'(x), ..., y^{(n-1)}(x)) = \sum_{i=0}^{n-1} a_i(x) y^{(i)} + b(x),$$

se dice que la ecuación es lineal.

Repaso (II)

Cuando no se puede "despejar" la derivada de mayor orden, tenemos una ecuación diferencial ordinaria implícita:

$$f(x, y(x), y'(x), ..., y^{(n-1)}(x), y^{(n)}(x)) = 0$$

Ejemplo. La ecuación del péndulo simple

$$m\frac{d^2(I\tan\theta)}{dt^2} + mg\sin\theta = 0$$

donde m es la masa que cuelga sobre una cuerda de longitud l y g es la aceleración debida a la gravedad.

Una ecuación diferencial de orden n se puede reescribir como un sistema de ecuaciones diferenciales ordinarias de primer orden.

Repaso (III)

$$\frac{d^{n}y}{dx^{n}} = f(x, y(x), y'(x), ..., y^{(n-1)}(x))$$

Se introducen la variables

$$y_1 = y$$
 $y'_1 = y_2$
 $y_2 = y'$ $y'_2 = y_3$
 $y_3 = y''$ \vdots
 \vdots $y'_{n-1} = y_n$
 $y'_n = f(x, y_1, y_2, ..., y_n)$
o por $\mathbf{y} : \mathbb{R} \to \mathbb{R}^n$, $\mathbf{y} \quad \mathbf{f} : \mathbb{R}^{n+1} \to \mathbb{R}^n$, $\mathbf{f} = (f_1, f_2, ..., f_n)^T$ podesistema de ecuaciones ordinarias de primer orden:

Denotando por $\mathbf{y}: \mathbb{R} \to \mathbb{R}^n$, $\mathbf{y} \quad \mathbf{f}: \mathbb{R}^{n+1} \to \mathbb{R}^n$, $\mathbf{f} = (f_1, f_2, ..., f_n)^{\mathsf{T}}$ podemos escribir un sistema de ecuaciones ordinarias de primer orden:

$$\frac{d\mathbf{y}}{dx} = \mathbf{f}(x, \mathbf{y}(x)), \quad \text{con} \quad \mathbf{y}(x) = (y_1(x), y_2(x), \dots, y_n(x))^{\mathsf{T}},$$

Repaso (IV)

Un *problema de valor inicial* (PVI), o problema de Cauchy, para una ecuación diferencial de primer orden:

$$\frac{d\mathbf{y}}{dx} = \mathbf{f}(x, \mathbf{y}(x)), \quad x \in [a, b]
\mathbf{y}(a) = \mathbf{y}_0.$$
(1)

Método de Euler (I)

$$y(x+h) \approx y(x) + h f(x, y(x))$$

Definimos el tamaño de paso $h = \frac{b-a}{n}$

Algorithm 1: Método de Euler

Data: El tamaño de paso h, n, x_0 , y_0 y f(x,y)

Result: La solución numérica $y_0, y_1, ..., y_n$ en los nodos $x_0, x_1, ..., x_n$

for i = 0, 1, ..., n-1 do

$$y_{i+1} = y_i + hf(x_i, y_i);$$

 $x_{i+1} = x_i + h;$

end

$$y_0 = y(x_0) \qquad y_1 \approx y(x_1) \qquad y_2 \approx y(x_2)$$

$$x_0 \qquad x_1 = x_0 + h \qquad x_2 = x_1 + h$$

Método de Euler (II)

Ejemplo 2. Considere el problema de valor inicial

$$\frac{dy}{dx} = \sqrt{y} \quad x \in [0, 2]$$
$$y(0) = 0$$

Tenemos dos soluciones:

$$y(x)=\frac{x^2}{4},$$

У

$$y(x) = 0.$$

Si aplicamos el método de Euler con n = 20, se tiene el siguiente resultado

Método de Euler (III)

Método de Euler (IV)

Ejemplo 3. Considere el problema de valor inicial

$$\frac{dy}{dx} = y\cos x \qquad x \in [0, 8\pi]$$
$$y(0) = 1$$

Método de Euler (V)

Isoclinas (I)

Se puede ver la ecuación diferencial y' = f(x, y) como un campo de direcciones, ya que f(x, y(x)) corresponde a la pendiente de la solución que pasa por el punto (x, y(x)), y a partir de este campo uno se puede dar una idea de las soluciones.

Se llaman isoclinas a las curvas sobre las cuales las soluciones de la ecuación diferencial pasan con la misma pendiente, es decir, los puntos sobre una isoclina satisfacen la ecuación

$$f(x, y) = m$$
.

Ejemplo. y' = 1 + x - y. Las isoclinas son de la forma

$$1+x-y=m$$

Isoclinas (II)

Interpretación geométrica del método de Euler

En el método de Euler explícito se da un paso de tamaño h en dirección de la tangente:

$$y' = -\sin x, \qquad y(0) = 1$$

Campo de direcciones

Interpretación geométrica

En el método de Euler explícito se da un paso de tamaño h en dirección de la tangente:

$$y' = -\sin x, \qquad y(0) = 1$$

Campo de direcciones

Método trapezoidal (I)

Regresando a la relación entre resolver ecuaciones diferenciales ordinarias e integrales:

$$y(t+h) = y(t) + \int_{t}^{t+h} f(x, y(x)) dx$$

Si aproximamos la integral por la regla del trapecio, obtenemos un *método implícito*:

$$y_{i+1} = y_i + \frac{1}{2}h[f(x_i, y_i) + f(x_{i+1}, y_{i+1})]$$

En este caso es un método implícito de un paso. Esto nos conduce a un sistema de ecuaciones.

Comparación con el método trapezoidal (I)

Considere el problema de valor inicial

$$\frac{dy}{dx} = y \cos x \qquad x \in [0, 8\pi]$$
$$y(0) = 1$$

Tenemos que la solución del problema es

$$y(x) = e^{\sin x}$$
.

Comparación con el método trapezoidal (II)

Comparación con el método trapezoidal (III)

Método de Euler implícito

Desde el punto de vista de integración,

$$y(x_{k+1}) = y(x_k) + \int_{x_k}^{x_{k+1}} f(x, y) dx,$$

podemos aproximar la integral usando ahora el rectángulo con altura $f(x_{k+1}, y_{k+1})$, y obtenemos el método de Euler implícito:

$$y_{k+1} = y_k + hf(x_{k+1}, y_{k+1})$$

Ejemplo del método de Euler implícito

$$\frac{dy}{dx} = y \cos x \qquad x \in [0, 8\pi]$$
$$y(0) = 1$$

Métodos basados en series de Taylor (I)

$$\frac{dy}{dx} = f(x, y(x)), \quad x \in (a, b]$$

$$y(a) = y_0.$$
(2)

Suponemos que y(x) tiene una expansión en series de Taylor:

$$y(x+h) = y(x) + hy'(x) + \frac{h^2}{2}y''(x) + \dots + \frac{h^m}{m!}y^{(m)}(x) + \dots$$

- Lo usual es truncar la serie después de cierta cantidad de términos.
- Si truncamos después de m+1 términos, decimos que obtenemos un método basado en series de Taylor de orden m.

Métodos basados en series de Taylor (II)

Para obtener un método basado en series de Taylor podemos simplemente derivar la función f(x, y).

Ejemplo.

$$\frac{dy}{dx} = \frac{x}{y+1} \qquad x \in (0,4]$$
$$y(0) = 0$$

Puesto que $y' = \frac{x}{y+1}$, entonces

$$y'' = \frac{1}{y+1} - \frac{xy'}{(y+1)^2}$$

$$y''' = -\frac{y'}{(y+1)^2} - \frac{(y+1)(y'+xy'') - 2x(y')^2}{(y+1)^4}$$

Así, podemos obtener un método de tercer orden:

Métodos basados en series de Taylor (III)

- Tenemos el valor y_i en x_i .
- **3** Calculamos $y_i'' = \frac{1}{y_i + 1} \frac{x_i y_i'}{(y_i + 1)^2}$
- **a** Calculamos $y_i''' = -\frac{y_i'}{(y_i+1)^2} \frac{(y_i+1)(y_i'+x_iy_i'')-2x_i(y_i')^2}{(y_i+1)^3}$
- **S** Calculamos $y_{i+1} = y_i + hy'_i + \frac{h^2}{2}y''_i + \frac{h^3}{6}y'''_i$.

Comparamos este método con Euler explícito y la solución analítica, la cual es $y = \sqrt{x^2 + 1} - 1$.

Métodos basados en series de Taylor (IV)

Métodos de Runge-Kutta

- Los métodos tipo Runge-Kutta tratan de imitar a los métodos basados en series de Taylor, que tienen la desventaja de requerir el cálculo de derivadas de orden superior (y", y"", ...).
- Los métodos tipo Runge-Kutta sólo usan la función f del PVI.

Para aproximar

$$y' = f(x, y)$$

en el punto x_i se puede usar la aproximación

$$\frac{y_{i+1} - y_i}{h} = w_1 f(x_i, y_i) + w_2 f(x_i + \alpha h, y_i + \delta h)$$

= $w_1 K_1 + w_2 K_2$

Métodos de Runge-Kutta

El desarrollo de Taylor para f(x, y) es

$$f(x+h,y+l) = \sum_{i=0}^{\infty} \frac{1}{i!} \left(h \frac{\partial}{\partial x} + l \frac{\partial}{\partial y} \right)^{i} f(x,y)$$

donde

$$\left(h\frac{\partial}{\partial x} + l\frac{\partial}{\partial y}\right)^{0} f = f$$

$$\left(h\frac{\partial}{\partial x} + l\frac{\partial}{\partial y}\right)^{1} f = h\frac{\partial f}{\partial x} + l\frac{\partial f}{\partial y}$$

$$\left(h\frac{\partial}{\partial x} + l\frac{\partial}{\partial y}\right)^{2} f = h^{2}\frac{\partial^{2} f}{\partial x^{2}} + 2hl\frac{\partial^{2} f}{\partial x \partial y} + l^{2}\frac{\partial^{2} f}{\partial y^{2}}$$

Método de Runge-Kutta de 2o. orden (I)

Este método requiere la evalación de dos funciones

$$K_1 = f(x, y)$$

 $K_2 = f(x + \alpha h, y + \beta h K_1)$

para calcular el valor de y en x+h mediante una combinación lineal de estos valores:

$$y(x+h) = y(x) + h[w_1K_1 + w_2K_2].$$

El objetivo es determinar los valores de α , β , w_1 , w_2 que hacen que la ecuación anterior se cumpla de la manera más precisa posible. Reescribiendo la expresión anterior:

$$y(x+h) = y(x) + w_1 hf(x, y) + w_2 hf(x + \alpha h, y + \beta hf(x, y))$$

Tenemos que

Método de Runge-Kutta de 2o. orden (II)

$$f(x + \alpha h, y + \beta h f(x, y)) = f(x, y) + \left(\alpha h \frac{\partial}{\partial x} + \beta h f \frac{\partial}{\partial y}\right) f + O(h^2)$$
$$= f + \alpha h f_x + \beta h f f_y + O(h^2)$$

Entonces

$$y(x+h) = y + (w_1 + w_2)hf + \alpha w_2h^2f_x + \beta w_2h^2ff_y + O(h^3)$$

Por otra parte, como $y'' = \frac{dy'}{dx} = \frac{df(x,y)}{dx} = f_x + f_y y' = f_x + f_y f$, entonces

$$y(x+h) = y(x) + hy'(x) + \frac{1}{2}h^2y''(x) + O(h^3) = y + hf + \frac{1}{2}h^2(f_x + ff_y) + O(h^3).$$

Comparando las expresiones, debemos tener que

$$w_1 + w_2 = 1$$
, $\alpha w_2 = \frac{1}{2}$, $\beta w_2 = \frac{1}{2}$

Método de Runge-Kutta de 20. orden (III)

Una solución puede ser

$$w_1 = \frac{1}{2}$$
, $w_2 = \frac{1}{2}$, $\alpha = 1$, $\beta = 1$.

Entonces, el método de Runge-Kutta de segundo orden es

$$y_{k+1} = y_k + \frac{h}{2}f(x_k, y_k) + \frac{h}{2}f(x_{k+1}, y_k + hf(x_k, y_k)) = y(x) + \frac{h}{2}(K_1 + K_2)$$

donde

$$K_1 = f(x, y)$$

$$K_2 = f(x + h, y + hK_1)$$

Así, hay que evaluar la función f dos veces en cada paso.

Podemos escoger otros valores para los coeficientes. Por ejemplo, α puede ser arbitrario, y en ese caso

Método de Runge-Kutta de 20. orden (IV)

$$\beta = \alpha$$
, $w_1 = 1 - \frac{1}{2\alpha}$, $w_2 = \frac{1}{2\alpha}$.

Se puede ver que el error del método de Runge-Kutta de orden 2 es

$$\frac{h^3}{4} \left(\frac{2}{3} - \alpha\right) \left(\frac{\partial}{\partial x} + f\frac{\partial}{\partial y}\right)^2 f + \frac{h^3}{6} f_y \left(\frac{\partial}{\partial x} + f\frac{\partial}{\partial y}\right) f.$$

Podemos elegir $\alpha = 2/3$.

Método de Runge-Kutta de 4o. orden

En este caso la fórmula es

$$y_{k+1} = y_k + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

donde

$$K_1 = hf(x, y)$$

 $K_2 = hf(x+h/2, y+K_1/2)$
 $K_3 = hf(x+h/2, y+K_2/2)$
 $K_4 = hf(x+h, y+K_3)$

Para obtener esta fórmula, hay que comparar con el desarrollo de Taylor de y(x+h) que incluye al término h^4 . Así, se espera que el error sea $O(h^5)$. Se consigue mayor precisión pero en cada paso hay que evaluar la función f cuatro veces.

Ejemplo (I)

Consideremos el PVI en el intervalo [1, 2.5]:

$$y' = 2 + (y - x - 1)^2$$
, $x(1) = 2$.

La solución analítica es $y(x) = 1 + x + \tan(x - 1)$ y se compara con las soluciones numéricas que dan RK2 y RK4. En este caso, n = 10.

Ejemplo (II)

