Introduction to Linear Algebra

Wigner Summer Camp Data and Compute Intensive Sciences Research Group

> Balázs, Paszkál, Vince, Levente, Antal Éva, Hajni

> > 7-11 July 2025

Introduction

Linear algebra deals with:

- ► Vectors.
- ▶ Matrices. (The linear transformations of vector spaces.)

It is used in many places:

- ▶ Physics (velocity, force, ...).
- ► Artificial intelligence neural networks.
- ► Adaptive Law-Based Transformation (ALT).
- **.**..

What is a Vector?

- ▶ Mathematician's view: A set that satisfies the 8 axiom.
- ▶ Physicist's view: An arrow in space with direction and magnitude.
- ► Computer Scientist's view: A 1D array or list of numbers.

$$\vec{v} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \quad \mathbf{w} = \langle 4, 0, -5 \rangle, \quad \vec{u} = (1, 2, 3).$$
 (1)

- ► Notation:
 - ▶ Boldface: v (common in CS and mathematical books)
 - ightharpoonup Arrow: \vec{v} (common in physics)
 - ► Angled brackets or parentheses

Example 1 (Vectors)

$$\vec{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \vec{c} = \begin{bmatrix} -3 \\ 2 \\ 5 \end{bmatrix}, \quad \vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
 (2)

What is the Dot Product?

▶ The dot product of two vectors \vec{a} and \vec{b} is:

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$$
 (3)

▶ It can be shown that:

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| \cdot ||\vec{b}|| \cos(\angle(\vec{a}, \vec{b})).$$
 (4)

Example 2 (Dot product)

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -1 \end{bmatrix} = 2 \cdot 4 + 3 \cdot (-1) = 8 - 3 = 5.$$
 (5)

Dot Product - Practice Exercises

► Calculate the dot product of the following vector pairs:

$$1. \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix}.$$

$$2. \begin{bmatrix} 2 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Dot Product – Solutions

▶ Solution to (a):

$$1 \cdot 4 + (-2) \cdot 0 + 3 \cdot (-1) = 4 + 0 - 3 = \boxed{1}.$$

▶ Solution to (b):

$$2 \cdot (-1) + 5 \cdot 1 = -2 + 5 = \boxed{3}.$$

- ► Interpretation:
 - ightharpoonup (a) Zero \Rightarrow the vectors are perpendicular.
 - ightharpoonup (b) Positive \Rightarrow angle between the vectors is acute.

What is a Matrix?

▶ A 2D array of numbers arranged in rows and columns:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix},\tag{6}$$

where A is a 2×3 matrix.

- ► Types:
 - Square: same number of rows and columns (e.g., 2×2 , 3×3). Mathematicians like them.
 - Non-square: different number of rows and columns (e.g., 2×3 , 3×2).

Vector-Matrix Multiplication

► Each row of the matrix is dotted with the vector:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \tag{7}$$

► Multiplication:

$$A\vec{v} = \begin{bmatrix} 1 \cdot 2 + 2 \cdot 1 \\ 3 \cdot 2 + 4 \cdot 1 \\ 5 \cdot 2 + 6 \cdot 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 16 \end{bmatrix}. \tag{8}$$

Vector-Matrix Multiplication – Exercises

- ▶ Multiply the vector \vec{v} with matrix M in the following examples:
 - 1. General case:

$$\vec{v} = \begin{bmatrix} 1\\2 \end{bmatrix}, \quad M = \begin{bmatrix} 3 & 0 & 1\\ 1 & 4 & 2 \end{bmatrix}. \tag{9}$$

2. Interesting effect:

$$\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad M_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad M_2 = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}.$$
 (10)

3. Even more interesting effect:

$$\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad M_3 = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}, \quad M_4 = \begin{bmatrix} 5 & -5 \\ -3 & 3 \end{bmatrix}.$$
 (11)

► Try to interpret the geometric meaning of each result.

Vector-Matrix Multiplication – Solutions

1. General case:

$$\vec{v} \cdot M = \begin{bmatrix} 1\\2 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 & 1\\1 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 5\\8\\5 \end{bmatrix}. \tag{12}$$

2. Stretching cases:

$$\vec{v} \cdot M_1 = \begin{bmatrix} 2\\2 \end{bmatrix} = 2\vec{v}, \quad \vec{v} \cdot M_2 = \begin{bmatrix} -4\\-4 \end{bmatrix} = -4\vec{v}.$$
 (13)

3. Nearly null output:

$$\vec{v} \cdot M_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0\vec{v}, \quad \vec{v} \cdot M_4 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0\vec{v}.$$
 (14)

Matrices as linear transformation

- ▶ Each matrix denotes a transformation $\vec{v} \mapsto M\vec{v}$. It's always linear.
- ▶ It can be proven that all linear transformation can be described with a matrix.

Transformation examples

- Stretching: $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.
- Rotation: $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
- $\blacktriangleright \text{ Reflection: } \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$
- ▶ Projection (flattening onto a line or plane) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Matrix-Matrix Multiplication

Procedure is the same as the Vector-Matrix multiplication. If an $n \times m$ matrix is multiplied by an $m \times k$, the result is an $n \times k$ matrix.

▶ The number of columns in the first matrix must be equal to the number of rows in the second matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$
 (15)

$$A \cdot B = \begin{bmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} & a_{11} \cdot b_{12} + a_{12} \cdot b_{22} \\ a_{21} \cdot b_{11} + a_{22} \cdot b_{21} & a_{21} \cdot b_{12} + a_{22} \cdot b_{22} \end{bmatrix}$$
(16)

Example 3

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} \Rightarrow A \cdot B = \begin{bmatrix} 4 & 4 \\ 10 & 8 \end{bmatrix}$$
 (17)

Other examples

Example 4

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \Rightarrow A \cdot B = \begin{bmatrix} 4 & 5 \\ 10 & 11 \end{bmatrix}$$
 (18)

Example 5

$$A = \begin{bmatrix} 8 & 4 & 11 & 5 \\ 4 & 4 & 21 & 6 \\ 6 & 9 & 11 & 8 \end{bmatrix}, B = \begin{bmatrix} 3 & 2 \\ 4 & 6 \\ 1 & 4 \\ 7 & 2 \end{bmatrix} \Rightarrow A \cdot B = \begin{bmatrix} 86 & 94 \\ 91 & 128 \\ 121 & 126 \end{bmatrix}$$
 (19)

Eigenvalues and Eigenvectors

► Notice that

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \tag{20}$$

ightharpoonup Generally for a square matrix A if

$$A\vec{v} = \lambda \vec{v},\tag{21}$$

then:

- \vec{v} is an eigenvector and
- \triangleright λ is the corresponding eigenvalue.
- \triangleright These vectors don't change direction when multiplied by A.

Eigenvalues and Eigenvectors – Properties

- ▶ If $A\vec{v} = \lambda \vec{v}$, then \vec{v} is an eigenvector of A with eigenvalue λ .
- Eigenvectors are defined up to a scalar: if \vec{v} is an eigenvector, so is $c\vec{v}$ for any $c \neq 0$.
- ► The set of all eigenvectors corresponding to a single eigenvalue forms a vector subspace.
- A square matrix of size $n \times n$ has at most n eigenvalues (including complex ones and multiplicities).
- ▶ If all eigenvalues of a matrix are positive, the matrix is positive definite.
- ▶ Diagonal matrices (matrixes where for all $a_{ij} = 0$ where $i \neg j$) have their diagonal elements as eigenvalues, and the standard basis vectors as eigenvectors.
- ► The eigenvalues of a complex Hermitian or real symmetric matrix are real.

Finding eigenvalues

Using a computer:

```
import torch
A = torch.tensor([[2., 0.], [0., 2.]])
eigenvalues, eigenvectors = torch.linalg.eigh(A)
print("Eigenvalues:", eigenvalues)
print("Eigenvectors:\n", eigenvectors)
```

Revision

In this presentation you learned about:

- ► Vectors.
- ► Matrices.
- ▶ Dot products.
- ▶ Vector-Matrix and Matrix-Matrix multiplication.
- ► Eigen-decomposition.

Extra: Matrix's determinant

Mathematical definition:

ightharpoonup The determinant is a scalar-valued function of the entries of a square matrix A.

The determinant encodes:

- ightharpoonup A is invertibe if $det(A) \neq 0$
- ightharpoonup Absolute value equals the volume change under the linear transformation of A.

Formula:

• for
$$2 \times 2$$
 case: $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$

 \triangleright for 3×3 case:

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - ceg - bdi - ahf.$$

Use in AI:

- ► Checking invertibility.
- ► Eigenvalue Problem.

Extra: Eigenvalue Problem (detailed)

- ► Step 1: Start with $A\vec{v} = \lambda \vec{v}$.
- ▶ Step 2: Rewrite as $(A \lambda I)\vec{v} = 0$.
- ▶ Step 3: Solve $det(A \lambda I) = 0$ (this gives a polynomial).
- ▶ Step 4: Find the roots (eigenvalues), then solve the nullspace for each to get eigenvectors.

Example 6

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \Rightarrow \det \left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \right) = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3.$$
(22)

- ightharpoonup Roots: $\lambda = 1, 3$.
- For $\lambda = 3$: $(A 3I)\vec{v} = 0 \Rightarrow \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

For $\lambda = 1$: $(A - I)\vec{v} = 0 \Rightarrow \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

