$$\frac{1}{Z_{\pi \cup C}} \exp \left\{ -f_{\boldsymbol{\xi}^{\pi} \leftarrow \sigma} \operatorname{corr}_{\boldsymbol{\eta}} \left[\operatorname{corr}_{t} \left[\mathbb{E}_{|\boldsymbol{\xi}^{\sigma\pi}| \in \sigma} B^{\pi}(\boldsymbol{\xi}^{\sigma\pi}, t), B^{\pi}(\boldsymbol{\eta}^{\pi}, t) \right], \right. \right.$$

$$\tanh \mathbb{E}_{\gamma \in C} \tanh^{-1} \operatorname{corr}_{t} \left[\mathbb{E}_{|\boldsymbol{\xi}^{\sigma\gamma}| \in \sigma} B^{\gamma}(\boldsymbol{\xi}^{\sigma\gamma}, t), B^{\gamma}(\boldsymbol{\eta}^{\gamma}, t) \right] \right] \right\}$$

 $\Pr(\pi, \boldsymbol{\xi}^{\pi}) =$

is the probability that the functional connectivity of patient or subject π , at parenchymal voxels positions $\boldsymbol{\xi}^{\pi}$, is dissimilar from the functional connectivity of a control cohort C.

For patient or subject π , the BOLD times-series for parenchymal voxels, $\boldsymbol{\xi}$, enclosed by sphere $\sigma \in \text{set } S$, which spans the parenchyma, is $B^{\pi}(\boldsymbol{\xi}^{\sigma\pi}, t)$. The expectation over those σ voxels, $\mathbb{E}_{|\boldsymbol{\xi}^{\sigma\pi}|\in\sigma}$, aims to provide nonlocal aggregation of functional information. The BOLD time-series for cortical voxels, $\boldsymbol{\eta}$, is $B^{\pi}(\boldsymbol{\eta}^{\pi}, t)$. The correlation matrix contracted over times, t, has size $|S| \times |\boldsymbol{\eta}^{\pi}|$

Similarly, for each subject $\gamma \in \text{control cohort } C$, the BOLD times-series for the expectation of parenchymal voxels enclosed by sphere σ is $\mathbb{E}_{|\boldsymbol{\xi}^{\sigma\gamma}|\in\sigma}B^{\gamma}(\boldsymbol{\xi}^{\sigma\gamma},t)$, and the BOLD time-series for cortical voxels is $B^{\gamma}(\boldsymbol{\eta}^{\gamma},t)$. The averaging over the control cohort is denoted by the innermost tanh $\mathbb{E}_{\gamma\in C}$ tanh⁻¹, producing a correlation matrix of size $|S|\times|\boldsymbol{\eta}^{\gamma}|$.

The outermost $\operatorname{corr}_{\eta}$ contracts over all cortical voxels η^{π} for the single subject with all cortical voxels η^{γ} which have already been averaged over the control cohort, producing a correlation vector of length |S|.

The outermost $f_{\sigma \to \xi^{\pi}}$ surjectively maps all spheres back to parenchymal voxels positions, thereby producing for each parenchymal ξ^{π} a measure of similarity of the FC of patient or subject π with all subjects from the control cohort C. Low or negative similarity increases the softmax probability of dissimilarity over the ensemble of $\pi \cup C$.