Advanced Integrated Circuit Design Lab

Project Description BGR

Overview of the Design Task

Bandgap Reference based Voltage Reference (BGR)

Voltage references are used to produce constant voltages for other circuits in a system. In case of the audio amplifier IC which we are considering in this lab, the voltage reference is used to produce a common-mode reference voltage (V_{REF}) for the 8-Bit Successive-Approximation-Register-ADC (SAR-ADC) and the programmable gain amplifier (PGA).

BGR - Architecture

- The BGR circuit uses a Brokaw cell implementation to generate a reference voltage that is less sensitive to supply voltage, temperature and process variations.
- The circuit is based on the bandgap voltage of silicon to generate
 1.205 V.
- This bandgap voltage can then be scaled to generate the reference voltage required for PGA and SAR_ADC.

The internal structure is depicted on the next slide.

Brokaw Cell Voltage Reference

 Use a Brokaw cell configuration to generate the bandgap reference voltage and from that in turn generate the 0.9 V reference voltage required for the PGA and SAR-ADC.

Brokaw Cell - Principle

- Temperature compensation
 - V_{BE} of a BJT decreases with temperature → Complementary to absolute temperature (CTAT).
 - $\Delta V_{BE} = V_{BE2} V_{BE1}$ increases with temperature \rightarrow Proportional to absolute temperature (PTAT).
 - The PTAT and CTAT characteristics are combined to compensate the temperature dependence of V_{REF} .
- Dimensioning
 - Emitter area's of Q₁ and Q₂ have a ratio of k:1.
 - The value of k was 8 for the originally proposed Brokaw cell [AD580 from Analog Devices].
 - The k needs to be adjusted for the technology being used → use simulations to find the k value for umc65// technology with which you will be working in this lab.

Brokaw Cell – Generate V_{BG}

- V_{BG}
 - $V_{BG} = 1.205 \text{ V}.$
 - > Silicon bandgap voltage.
 - Generated by compensating CTAT and PTAT behaviours.

Brokaw Cell – Generate V_{REF}

- V_{REF}
 - Add a resistive divider to generate V_{REF} from V_{BG} .
 - A decoupling capacitor C_L is used to stabilize V_{REF}.
 - Choose $C_L \approx 250 \text{ fF}$

Brokaw Cell – Startup

Startup-circuit

- Intended operating point $V_{BG} \approx 1.205 \text{ V}$
- There can be another stable operating point:

$$V_{BG} \approx 0$$
 and $I_{C1} = I_{C2} \approx 0$

→ Add a circuit to avoid the undesired operating point

BGR - Specifications

The below specifications have to be met for all corners (based on post-layout simulations):

Parameter	Unit	Specification
Reference Voltage (V _{REF})	V	0.9
Tolerance	%	< 3
Temperature Coefficient (TC) *	ppm/°C	< 100
DC Power Consumption	uW	< 1100
Power Supply Rejection Ratio (PSRR)	dB	> 40

^{*} here defined as: $TC = \left| \frac{V_{max} - V_{min}}{T_{max} - T_{min}} \right|$ for the temperature range $T_{min} = 20^{\circ}C$ to $T_{max} = 40^{\circ}C$

• The Monte-Carlo simulations (no. of runs = 500) should satisfy the following (based on post-layout simulations):

Parameter Parame	Unit	Specification
Standard Deviation for V _{REF}	%	< 1
Standard Deviation for TC	ppm/°C	< 50

BGR – Essential Information I

- Supply voltage
 - The single supply voltage is $V_{DD} = 1.8 \text{ V}$. Use vdc components from the analogLib library in simulations. In the hierarchical modules use components vdd and gnd to specify the global supply nets (see Cadence_Virtuoso_Tutorial.pdf).
- Corner analysis
 - The following corners need to be considered:

Corners		Range
Supply [V]		1.62, 1.98
	mos	ff, fs, sf, ss
Process Corners	res	ff, ss
	сар	ff, ss
	bjt	ff, ss
Temperature [°C]		0, 85

BGR – Essential Information II

 V_{REF}

Voltage

Reference

Simulations

- Use DC analysis for $V_{\text{REF}},$ TC, Tolerance and DC Power Consumption measurements. $$V_{\text{DD}}$$
- Use XF analysis for PSRR measurement.
- $V_{DD} = 1.8 \text{ V}.$

Start-up Verification

- A start-up circuit should be implemented to ensure that the circuit behaves as expected after power on.
- Use transient analysis for start-up verification.
- Use a ramped supply with a rise time of 10 ms for the simulation.
 - Use Vpulse component from analogLib for this ramped supply.

Implementation Tips

Use RNHR_LL resistors. Avoid excessive resistance, keep it well below $< 1M\Omega$

Temperature coefficient can be optimized for operation at room temperature.

Your startup circuit should have a minimal influence during normal operation ($V_{BG} \approx 1.205 \text{ V}$), but prevent the undesired operating point effectively.

Instructions for the testbench can be found in moodle.