29.11.06

Das latexki-Team

Stand: 14. Mai 2016

Beispiel 1.66 Integraloperatoren

Sei X = C([0,1]) und $k \in C([0,1]^2)$. Sei $f \in X$. Setze $(Tf)(t) = \int_0^1 k(t,s)f(s)ds$ für $t \in [0,1]$. Sei $t_n \to t$ in [0,1]. $|Tf(t_n) - Tf(t)| \le \int_0^1 |k(t_n,s) - k(t,s)||f(s)|ds \le \int_0^1 ||f||_{\infty} \sup_{s \in [0,1]} |k(t_n,s) - k(t,s)| \to 0 \ (n \to \infty)$. Da k glm stetig $\Rightarrow Tf \in X$. Klar: $T: X \to X$ ist linear

$$||Tf||_{\infty} \le \sup_{t \in [0,1]^2} \int_0^1 |k(t,s)| \mathrm{d}s ||f||_{\infty}$$
$$=: \kappa < ||k||_{\infty} < \infty$$

 $\Rightarrow T \in B(X), ||T|| \leq \kappa.$

Beh: $||T|| = \kappa$.

Bew: $\exists t_0 \in [0,1]$ mit $\kappa = \int_0^1 |k(t_0,s)| ds$. Setze $f_n(s) = \frac{\overline{k(t_0,s)}}{|k(t_0,s)| + \frac{1}{n}}$, $s \in [0,1]$ für $n \in \mathbb{N} \Rightarrow f_n \in X$, $||f_n||_{\infty} \le 1 \Rightarrow ||T|| \ge ||Tf_n||_{\infty} \ge |Tf(t_0)| = \int_0^1 \underbrace{\frac{|k(t_0,s)|}{|k(t_0,s)|}}_{\leq |k(t_0,s)|} ds \to \underbrace{\frac{|k(t_0,s)|}{|k(t_0,s)|}}_{\leq |k(t_0,s)|}$

 $\kappa \ (n \to \infty) \stackrel{\lim_{n \to \infty}}{\Longrightarrow} ||T|| \ge \kappa.$

Fast genau so zeigt man, dass $(Tf)(t) = \int_0^t k(t,s)f(s)ds$, $t \in [0,1]$, $f \in X$ einen Operator $T \in B(X)$ mit

$$||T|| = \sup_{t \in [0,1]} \int_0^t |k(t,s)| ds$$
 definiert.

Beispiel 1.67 Differentialoperatoren

a) $X=C^1([0,1])$ mit $||f||_{C^1}=||f||_{\infty}+||f'||_{\infty}$, Y=C([0,1]). Setze Df=f' für $f\in X\Rightarrow$ Klar: $D:X\to Y$ ist linear. Ferner: $||Df||_{\infty}=||f'||_{\infty}\leq ||f||_{C^1}\Rightarrow D\in B(X,Y)$ mit $||D||\leq 1$.

Beh: ||D|| = 1.

Bew: Wähle $f_n(t) = \frac{1}{n}\sin(n-1)t$, $n \geq 3, t \in [0,1] \Rightarrow f_n \in X, ||f_n||_{\infty} = \frac{1}{n}, ||f_n'||_{\infty} = 1 - \frac{1}{n} \Rightarrow ||f_n||_{C^1} = 1 \text{ und } ||D|| \geq ||Df_n||_{C^1} = 1 - \frac{1}{n} \stackrel{\sup_n}{\Rightarrow} ||D|| \geq 1.$

Beachte: $f_n \to 0$ bzgl $||\cdot||_{\infty}$ oder $||Df_n||_{\infty} \to 1$ $(n \to \infty)$, also: $D: (X, ||\cdot||_{\infty}) \to (Y, ||\cdot||_{\infty})$ ist unstetig.

b) Sei $X = C_b^2(\mathbb{R}^d) = \{ f \in C^2(\mathbb{R}^d) : ||f||_{C_b^2} = ||f||_{\infty} + \sum_{k=1}^d ||\partial_k f||_{\infty} + \sum_{k,l=1}^d ||\partial_k \partial_l f||_{\infty} < \infty \}$ (mit $\partial_k = \frac{\partial}{\partial x_k}$), $Y = C_b(\mathbb{R}^d)$.

Laplace Operator

$$\Delta f = \partial_1^2 f + \dots + \partial_d^2 f \Rightarrow \Delta \in B(X,Y), ||\Delta|| \le 1.$$

Beispiel 1.68 Stetige Linearformen

- a) $X = C([0,1]), Y = \mathbb{K}, f \in X$
 - (i) $\varphi(f) = f(t_0)$ für ein festes $t_0 \in [0,1]$ (Punktauswertung). $\Rightarrow \varphi : X \to \mathbb{C}$ ist linear. $|\varphi(f)| \le ||f||_{\infty} \Rightarrow \varphi \in X^*$, $||\varphi||_{X^*} \le 1$. Ferner: $||\varphi|| \ge |\varphi(1)| = 1 \Rightarrow ||\varphi|| = 1$ ($||1||_{\infty} = 1$)
 - (ii) Sei $g \in L^1([0,1])$ fest gewählt. Setze $\varphi(f) = \int_0^1 f(t)g(t) dt$. Klar: $\varphi: X \to \mathbb{C}$ ist linear und $|\varphi(f)| \le ||f||_\infty \int_0^1 |g(t)| dt \Rightarrow \varphi \in X^*$ mit $||\varphi||_{X^*} \le ||g||_1$ wie in Bsp 1.65 sieht man, dass $||\varphi|| = ||g||_1$
- b) Sei $X = L^p(A)$, $1 \le p \le \infty$ für ein $A \in \mathcal{L}_d$. Sei $g \in L^{p'}(A)$ fest. Setze $\varphi(f) = \int_A f(x)g(x) dx$ Hölder: $\varphi(f) \le ||f||_p ||g||_p \Rightarrow \varphi(f) \in \mathbb{C}$ für alle $f \in X$ und $\varphi \in X^*$ mit $||\varphi|| \le ||g||_{p'}$. Später: $||\varphi|| = ||g||_{p'}$

Beispiel 1.69 Folgenräume

Sei $T \in B(X,Y)$ mit $X \in \{c_0, l^p, 1 \leq p < \infty\}$ und $Y \in \{c_0, l^p, 1 \leq p \leq \infty\}$. Setze $a_{k,l} = (Te_l)_k$ für $k,l \in \mathbb{N} \Rightarrow a_{k,l} \in \mathbb{C}$, bilde $A = [a_{k,l}]_{k,l \in \mathbb{N}}$. Sei $x \in X$. Setze $v_n = (x_1, x_2, \ldots, x_n, 0, 0, \ldots) \in c_{\infty}$ für $n \in \mathbb{N} \Rightarrow v_n \to x$ in X $(n \to \infty)$, da $p < \infty$ (Satz 1.27)

 $(Tv_n)_k = (\sum_{j=1}^n T(x_j e_j))_k = \sum_{j=1}^n a_{k,l} x_j = (Av_n)_k$ (Matrizenmultiplikation) T stetig $\Rightarrow Tv_n \to Tx$ in $Y \Rightarrow (Tx)_k = \lim_{n\to\infty} (Tv_n)_k = \sum_{l=1}^\infty a_{k,l} x_l$ (*) insbesondere existiert die Reihe. Umbekehrt: Sei T durch (*) gegeben. Unter welchen Bed ist $T \in B(X,Y)$ wobei nun $X,Y \in \{c_0,c,l^p,1\leq p<\infty\}$?

a) Sei $X = Y = l^1$, $a_{kl} \in \mathbb{C}$ $(k, l \in \mathbb{N})$ mit $\alpha := \sup_{l \in \mathbb{N}} \sum_{k=1}^{\infty} |a_{kl}| < \infty$ (Spalten-summennorm)

Sei $x \in l^1$. Dann existiert (*) da $|a_{kl}| \leq \alpha < \infty \ \forall k, l \in \mathbb{N}$. Sei $N \in \mathbb{N}$. Dann: $\sum_{k=1}^N |(Tx)_k| \leq \sum_{k=1}^N \sum_{l=1}^\infty |a_{kl}| |x_l| = \sum_{l=1}^\infty (\sum_{k=1}^N |a_{kl}|) |x_l| \leq \alpha \sum_{l=1}^\infty |x_l| = \alpha ||x||_1$ wobei T durch (*) gegeben ist. Mit \sup_N folgt $Tx \in l^1$. Klar: $T: l^1 \to l^1$ ist linear, und $||T|| \leq \alpha$, also $T \in B(l^1)$.

Beh: $||T|| = \alpha$

Bew: Klar: $\alpha = 0$. Wenn $\alpha > 0$, dann wähle $\varepsilon \in (0, \alpha)$. Dann ex $j \in \mathbb{N}$ mit: $\sum_{k=1}^{\infty} |a_{kl}| \geq \alpha - \varepsilon$. Ferner: $||T|| \geq ||Te_j||_1 = \sum_{k=1}^{\infty} |a_{kl}| \geq \alpha - \varepsilon$ mit $\varepsilon \to 0$ folgt Beh.

b) Für $x \in X \in \{c_0, c, l^p, 1 \le p < \infty\}$ setze $Rx = (0, x_1, x_2, \dots), Lx = (x_2, x_3, \dots)$. Klar: $Rx, Lx \in X, R: X \to X, L: X \to X$ sind linear. Ferner. $||Rx||_p = ||x||_p (1 \le p \le \infty) ||Lx||_p \le ||x_p||, Le_2 = e_1 \Rightarrow R, L \in B(X)$ mit Norm = 1. Beachte: $LRx = x, RLx = (0, x_2, x_3, \dots) \Rightarrow R$ ist injektiv, nicht surjektiv, L ist surjektiv, nicht injektiv. Matrizendarstellung:

$$R \equiv \left[\begin{array}{cccc} 0 & 0 & 0 & \dots \\ 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right]$$

$$L \equiv \left[\begin{array}{cccc} 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right]$$

Definition 1.70 Seien X, Y nVr. Eine injektive stetige lineare $Abb\ T: X \to Y$ heißt **Einbettung**. Man schreibt dann $X \hookrightarrow Y$. Wenn $T \in B(X,y)$ bijektiv und $T^{-1}: Y \to X$ stetig, dann heißt T **Isomorphismus** und man schreibt $X \cong Y$. Eine lineare $Abbildung\ T: X \to Y$ mit ||Tx|| = ||x||, heißt **Isometrie**.

Bemerkung 1.71 Wenn T eine Isometrie ist, so ist T stetig und injektiv. Ferner ist T^{-1} auf $R(T) = TX = \{y = Tx, x \in X\}$ eine Isometrie.

Beh.Wenn Xein BR ist, dann ist R(T)abgeschlossen.

Bew:

Sei $y_n = Tx_n \to y$ in $Y(n \to \infty) \Rightarrow ||y_n - y_m|| = ||Tx_n - Tx_m|| \to 0 (n, m \to \infty)$ $\exists x = \lim_{n \to \infty} x_n \in X$. Da T stetig: Tx = y

Beispiel 1.72 a) Sei $Y \subseteq X$ ein UVR. Seien $||\cdot||_Y$ Norm auf Y und $||\cdot||_X$ Norm auf X. Dann: $I: (Y, ||\cdot||_Y) \to (X, ||\cdot||_X)$ ist stetig (d.h. eine Einbettung) $\iff ||y||_X \le c||y||_Y \ \forall y \in Y$. Dann heißt $||\cdot||_Y$ feiner als $||\cdot||_X$ und $||\cdot||_X$ gröber als $||\cdot||_Y$.

Beispiel: $l^p \hookrightarrow l^q, \ 1 \leq p \leq q \leq \infty.C^{\alpha}([0,1]) \hookrightarrow C([0,1]), \ \alpha \in (0,1)$

b) Sei $U \subseteq \mathbb{R}^d$ offen und beschränkt. Setze $K = \overline{U}$. Sei $1 \leq p < \infty$. Definiere $J: C(K) \to l^p(K)$ durch $Jf = f + N_K$. Beachte: f ist messbar, da stetig und $||f + N_k||_p = ||f||_p \leq (\lambda(k))^{\frac{1}{p}} ||f||_{\infty} \Rightarrow Jf \in L^p(K)$. Beh: J ist injektiv.

Bew: Sei Jf = 0, also \exists NM N mit f(x) = 0 für $x \in K \setminus N$. Da $\lambda(B(x, \varepsilon)) > 0$ für $\varepsilon > 0$ folgt, dass N^0 leer ist, also ist $K \setminus N$ dicht in K und somit f = 0, da f stetig.

Folgerung: Sei $\hat{f} = f + N_K \in L^p(A)$. Nach Satz 1.44 gibt es $f_n \in C(K)$ mit $f_n \to f$ bzgl $||\cdot||_p$. Wie in Bsp 1.55 erhält man Polynom g_n mit $||g_n - f_n||_{\infty} \le \frac{1}{n} \Rightarrow ||g_n - f_n||_p \le \frac{c}{n} \Rightarrow g_n \to f$ in $\mathcal{L}^p(K) \Rightarrow Jg_n \to \hat{f}$ in $L^p(K)$ $(n \to \infty) \Rightarrow L^p(K)$, $1 \le p < \infty$ ist seperabel. $(L(K) \hookrightarrow L^p(K))$ gilt für $p \in [1, \infty]$

- c) Sei $X = C^1[0,1], T = C[0,1]$, dann hat $D \in B(X,Y)$, Df = f' die Inverse $D^{-1}g(t) = g(0) + \int_0^t g'(s) \mathrm{d}s$ wobei $D^{-1} \in B(Y,X)$, also $X \cong Y \Rightarrow \mathrm{BR}$ Struktur ist gleich. Aber D kann andere Strukturen verändern. z.B. $f \leq g \not\Rightarrow f' \leq g'$.
- d) $Beh: c \cong c_0$ $Bew: \text{Sei } l(x) := \lim_{n \to \infty} x_n, \ x \in c. \ \text{Üb: } l \in c^*. \ 1.68 \ \text{b}) \Rightarrow R \in B(c), L \in B(c_0). \text{ Setze } Tx := Rx - l(x) \cdot 1 = (-l(x), x_1 - l(x), \dots) \text{ für } x \in c \Longrightarrow T \in B(c, c_0). \ Sx := Lx - x_1 \cdot 1 = (x_2 - x_1, x_3 - x_1, \dots) \text{ für } x \in c_0. \ S \in B(c_0, c).$ Einsetzen: $ST = I_c, \ TS = I_{c_0}$

Bem: T ist keine Isometrie. Betrachte $x=(2,1,1,\dots)\Rightarrow x\in c\ ||x||_{\infty}=2;\ Tx=(-1,1,0,0,\dots)\Rightarrow ||Tx||_{\infty}=1.$

e) Beh:Alle endlichdimensionalen nVR $(d < \infty)$ sind isomorph zu $(\mathbb{K}^d, ||\cdot||_2)$. Bew: Wähle eine feste Basis B von X. Sei $\overline{x} \in \mathbb{K}^d$ der eindeutig bestimmte Koeffizientenvektor von x bzgl. B. Setze $T: X \to \mathbb{K}^d, \ x \to \overline{x} \Longrightarrow T$ ist linear und bijektiv. T ist Isometrie bzgl. $|||v||| = ||T^{-1}v||_X, \ v \in \mathbb{K}^d \Longrightarrow T^{-1}$ ist Isometrie (Bem 1.70). Nach Satz 1.22 ist $|||\cdot|||$ äquivalent zu $||\cdot||_2$, also sind T und T^{-1} bzgl. $||\cdot||_X, ||\cdot||_2$ stetig.