

Comparação Avançada de Algoritmos de Otimização Evolutiva com Penalizações Adaptativas

Igor Muniz Nascimento <igor.muniz@estudante.ufjf.br>
06 de Outubro de 2024

Resumo

Este relatório técnico apresenta uma análise comparativa entre dois algoritmos de otimização evolutiva amplamente utilizados, o Evolutionary Programming (EP) e o Cuckoo Search Algorithm (CSA). O foco principal é a avaliação do impacto de estratégias de penalização adaptativa na robustez e eficácia desses algoritmos. Utilizando funções de benchmark, como F5, F9 e F11, além de um problema de minimização de redutores de velocidade, comparamos os resultados obtidos com os estudos anteriores [3], onde ambos os algoritmos foram testados sem penalizações adaptativas. A implementação das penalizações seguiu a metodologia de Deb (2000) [2], resultando em uma melhora significativa para o EP, enquanto o CSA demonstrou variações no comportamento.

1 Introdução

A utilização de algoritmos de otimização evolutiva é um campo crescente em problemas complexos de engenharia, graças à sua habilidade de explorar grandes espaços de busca de maneira eficiente. No estudo realizado por Nascimento (2024) [3], os algoritmos **EP** e **CSA** foram comparados sem a aplicação de penalizações adaptativas, resultando em um conjunto de dados que serve como base para este trabalho.

Este estudo introduz penalizações adaptativas, com base no trabalho de Deb (2000) [2], que visa melhorar a robustez dos algoritmos ao lidar com restrições. A principal contribuição deste relatório é comparar os resultados com e sem penalizações, utilizando tanto funções de benchmark quanto problemas de engenharia reais, como a minimização de redutores de velocidade.

2 Metodologia

O experimento foi dividido em três etapas principais: avaliação dos algoritmos sem penalização, implementação da penalização adaptativa, e comparação dos resultados obtidos com as duas abordagens.

2.1 Descrição dos Algoritmos

O **EP** (Evolutionary Programming) utiliza um mecanismo de mutação gaussiana, o que o torna particularmente eficiente em problemas contínuos e complexos. Já o **CSA** (Cuckoo Search Algorithm) é baseado na estratégia de parasitismo reprodutivo, inspirado pelo comportamento das aves cuco. Ambos os algoritmos foram testados com e sem penalizações adaptativas.

2.2 Penalizações Adaptativas

As penalizações adaptativas foram implementadas utilizando o método de Deb (2000) [2] estratégia de penalização definida na Eq. (4) da Seção 3. Esse método ajusta as penalidades de acordo com o comportamento da solução em relação às restrições impostas, aumentando ou reduzindo as penalidades dinamicamente conforme o algoritmo evolui. Essa abordagem é particularmente eficaz em problemas de engenharia com múltiplas restrições.

2.3 Configurações do Experimento

Os algoritmos foram configurados com uma população de 100 indivíduos, e executados por 50 gerações. As funções de benchmark utilizadas foram F5, F9 e F11, conhecidas pela presença de *shift* nas funções objetivo, tornando a otimização mais complexa.

3 Resultados e Discussão

3.1 Comparação dos Melhores Valores de V

A Tabela 1 exibe os melhores valores de V para os algoritmos EP e CSA, comparando os resultados obtidos anteriormente com os obtidos após a introdução das penalizações adaptativas.

3.2 Razão entre Funções com e sem Shift

A Tabela 2 exibe as razões entre os resultados obtidos nas funções F5, F9 e F11 com e sem *shift*, comparando os resultados anteriores e atuais.

Tabela 1 – Melhor Valor de V comparado entre resultados anteriores e atuais

Algoritmo	Penalização	Antigo	Atual
EP	APM	2842.27	2883.84
\mathbf{EP}	APM_Med_3	1571.37	1573.71
\mathbf{EP}	APM_Worst	1567.60	1477.53
\mathbf{EP}	APM_Spor_Mono	1500.72	1514.97
CSA	APM	2990.12	3034.07
\mathbf{CSA}	APM_Med_3	1473.56	1473.56
\mathbf{CSA}	APM_Worst	1473.56	1473.56
CSA	APM_Spor_Mono	1473.56	1473.56

Tabela 2 – Comparação das Razões entre Funções com e sem Shift

Função	Algoritmo	Razão (Antigo)	Razão (Atual)
F5	EP	0.918	1.06
F5	CSA	0.975	0.192
F9	EP	1.05	1.01
F9	CSA	0.994	0.969
F11	EP	1.24	1.13
F11	CSA	0.965	1.00

3.3 Gráficos Comparativos

Para melhor visualização, colocamos os gráficos comparativos lado a lado.

Figura 1 — Resultados Anteriores - Funções

Figura 2 — Resultados Atuais - Funções

3000 Voltiante APM_Med_3 APM_Worst APM_Stor_Monc 1500 EP CSA

Figura 4 – Resultados Atuais - Melhor V

3.4 Discussão dos Resultados

Os resultados obtidos demonstram que a adição de penalizações adaptativas proporcionou uma melhoria significativa no desempenho do **EP**, especialmente nas variantes APM e APM_Spor_Mono, com uma redução expressiva nos valores de V nas funções F5 e F11. O **CSA**, embora tenha demonstrado boa performance em alguns casos, apresentou maior variabilidade, sugerindo que é menos robusto quando submetido a penalizações adaptativas, especialmente na função F5, que apresenta um desvio notável no valor de *shift*.

A implementação da metodologia de Deb (2000) [2] se mostrou eficaz, especialmente no caso do **EP**, onde as penalizações adaptativas permitiram uma maior estabilidade nos resultados, mesmo em cenários com restrições severas e *shift*. Essa abordagem adaptativa demonstrou sua eficácia em problemas de engenharia complexos e com múltiplas restrições, como o problema de minimização de redutores de velocidade.

4 Conclusão

Este relatório técnico apresentou uma análise comparativa detalhada entre os algoritmos **EP** e **CSA**, com foco na implementação de penalizações adaptativas. Os resultados demonstram que a penalização adaptativa trouxe melhorias significativas para o **EP**, que se mostrou mais robusto em cenários de otimização com *shift* nas funções objetivo. Já o **CSA** apresentou uma maior variabilidade em seus resultados, o que sugere que penalizações adaptativas podem não ser tão eficazes para esse algoritmo específico.

Para trabalhos futuros, sugere-se a aplicação dessas técnicas a outros problemas de engenharia, como otimização multiobjetivo, e a investigação de outras variantes de penalização adaptativa para o **CSA**, visando melhorar sua robustez em problemas com restrições severas.

Referências

Kalyanmoy Deb. An efficient constraint handling method for genetic algorithms. Computers & Structures, 186:311–338, 2000. 1, 2, 4

Igor Muniz Nascimento. Análise comparativa de algoritmos de otimização evolutiva aplicados a problemas de engenharia. pages 1–16, 2024. Acesso em: 06/09/2024 github. 1