İşletim Sistemleri

Önerilen Kaynaklar ve Sınav Sistemi

KAYNAKLAR					
Ders Notu	Ders Slaytları ve Kaynaklar				
Diğer Kaynaklar	 A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts, 8th Edition, John Wiley & Sons. A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts with Java, ISV, 8th Edition, John Wiley & Sons 				

DEĞERLENDİRME SİSTEMİ				
Ara Sınav	1	%25		
Final	1	%35		
Proje	1	%40		

İletişim

- Ders notları ve slaytlara https://www.e-adys.com/adys/ adresinden ulaşabilirsiniz.
- rkorkmaz@nku.edu.tr

Bölüm 1: Giriş

İşletim Sistemi Nedir?

- Kullanıcı, bilgisayar ve bilgisayarın donanımı arasında aracı görevi gören bir programdır
- İşletim sisteminin hedefleri:
 - Kullanıcı programlarını yürütmek ve kullanıcı sorunlarını daha kolay çözmek
 - Bilgisayar sistemini kullanışlı hale getirmek
 - Bilgisayar donanımını etkin bir şekilde kullanmak

Bilgisayar Sistem Yapısı

- Bilgisayar sistemi dört bileşene ayrılabilir:
 - Donanım temel bilgi işlem kaynaklarını sağlar
 - CPU, Bellek, G/Ç aygıtları
 - İşletim Sistemi çeşitli uygulamalar ve kullanıcılar arasında donanımın kullanımını denetler ve koordine eder
 - Uygulama programları kullanıcıların hesaplama problemlerini çözmek için sistem kaynaklarının nasıl kullanılacağını ve paylaşılacağını tanımlar
 - Sözcük işlemciler, derleyiciler, web tarayıcıları, veritabanı sistemleri, video oyunları
 - Kullanıcılar
 - İnsanlar, makinalar veya diğer bilgisayarlar olabilir

Bilgisayar Sisteminin Dört Bileşeni

Kullanıcılar

Kullanıcı Bakışı ile İşletim Sistemleri

■ PC İşletim Sistemleri

- Kullanım kolaylığına verilen önem performansa ve kaynak paylaşımına verilmemiştir.
- Genelde tek kullanıcılı çalışmak için yaratılmışlardır

Anabilgisayar (mainframe) İşletim sistemleri

- Birçok kullanıcı kaynaklara aynı anda erişmeye çalıştığından dolayı sistem kaynaklarının (CPU zamanı, bellek ve G/Ç) verimli ve adil paylaştırılması önemlidir
- İş istasyonların (workstation) ve Sunuculardan (Server) oluşan sistemler
 - Kullanıcıların hem kendi kaynakları vardır, hem de sistemde paylaşılan kaynaklar mevuttur; dolayısıyla bireysel kullanımı ve kaynak paylaşımı arasında denge sağlayacak bir işletim sistemine ihtiyaç vardır
- El cihazları İşletim Sistemleri
 - Genelde kişisel kullanım performansını arttırmaya yönelik tasarlanmışlardır, ancak bunu yaparken pil ömrüne de dikkat edilmelidir.
- Gömülü Bilgisayarların İşletim Sistemleri
 - Kullanıcı arayüzleri hiç yoktur veya çok azdır (ışıklar, küçük LCD ekranlar)

Bilgisayar Bakışı ile İşletim Sistemleri

- Bilgisayar tarafından bakıldığında ise işletim sistemi donanımla en ilgili kısımdır.
- Bir kaynak tahsis edici (resource allocator) olarak tanımlanabilir.
- Bir bilgisayar sisteminde paylaşılacak birçok kaynak vardır:
 - CPU zamanı, bellek alanı, dosya depolama alanı, G/Ç aygıtları, vb.
- İşletim Sistemi bu kaynakların yöneticisidir.
- Birçok ve yüksek olasılıkla çakışan isteklere karşı işletim sistemi kaynakları verimli ve adil bir şekilde kullanıcı ve özel programlara paylaştırmalıdır.
- İşletim sistemi kullanıcı programlarını yöneterek hataları ve bilgisayarın yanlış kullanılmasını önleyen bir kontrol programıdır.

İşletim Sistemi Tanımı

- İşletim Sistemi (OS) bir kaynak tahsis edicidir (resource allocator)
 - Tüm kaynakları yönetir
 - Çakışan istekler arasında verimli ve adil kaynak kullanımı için karar verir.
- OS bir kontrol programıdır
 - Bilgisayarın yanlış kullanımı ve hataların önlenmesi için programların çalışmasını kontrol eder.

İşletim Sistemi Tanımı

- Genel olarak kabul edilmiş bir tanımı yok
- "Bir işletim sistemi sipariş ettiğinizde üreticinin size gönderdiği herşey" iyi bir yaklaşımdır ☺
 - Ama çok fazla değişiklik gösterir
- "Bilgisayarda her zaman çalışan tek program" ise çekirdektir (kernel). Bunun dışında kalan herşey ya bir sistem programıdır (işletim sistemi ile beraber yer alır) ya da bir uygulama programıdır.

Bilgisayar Sistemi Organizasyonu

- Bilgisayar sistemi çalışması
 - Bir veya daha fazla CPU (Merkezi İşlem Birimi Central Processing Unit) ve aygıt kontrolörleri, ortak veriyolu (common bus) aracılığıyla paylaşılan belleğe erişim sağlayacak şekilde bağlanmışlardır.
 - CPU ve aygıtlar daha fazla bellek çevrimi için koşutzamanlı (concurrent) olarak çalıştırılırlar

Bilgisayarın Başlaması

- Bootstrap programı bilgisayar açıldığında ya da yeniden başlatıldığında yüklenir.
 - Genellikle ROM veya EEPROM üzerinde kayıtlıdır ve genelde firmware olarak adlandırılır.
 - Sistemin tüm parçalarını başlatır.
 - İşletim sistemi çekirdeğini yükler ve çalıştırmaya başlar.

Bilgisayar Sisteminin Çalışması

- Giriş/Çıkış (I/O) aygıtları ve CPU koşutzamanlı olarak çalıştırılabilir
- Her aygıt denetçisi belirli bir aygıt tipi ile görevlendirilmiştir
- Her aygıt denetçisinin yerel bir tampon belleği (buffer) vardır.
- CPU veriyi ana bellekten yerel tampon belleklere ve yerel tampon belleklerden ana belleğe taşır
- G/Ç ise aygıttan denetçisinin yerel tampon belleğine doğrudur
- Aygıt denetçisi CPU'ya çalışmasının bittiğini bir kesmeye (interrupt) sebep olarak bildirir.

Kesmelerin Ortak Fonksiyonları

- Kesme (interrupt), tüm servis rutinleri adreslerini içeren kesme vektörü (interrupt vector) aracılığıyla genellikle kontrolü kesme servis rutinine (interrupt service routine) aktarır.
- Bir kesme işletilirken kayıp kesme durumu oluşmaması için diğer gelen kesmeler devre dışı bırakılır.
- Kapan (trap), bir hata veya kullanıcı isteği sonucu yazılım tarafından ortaya çıkan bir kesmedir.
- İşletim sistemleri kesmeler tarafından yönlendirilir.

Kesme İşleme (Interrupt Handling)

- İşletim Sistemi, kayıtçıları (register) ve program sayacını kaydederek CPU'nun son durumunu muhafaza eder
- Daha sonra hangi tip kesmenin oluştuğuna karar verir:
 - Toplayici (polling)
 - Yönlendirici (vectored) kesme sistemi
- Her bir kesme tipi için kodun ayrı parçaları hangi eylemlerin yapılacağına karar verir.

Depolama Yapısı

- Ana Bellek CPU'nun direk olarak erişebildiği tek büyük depolama ortamıdır.
- İkincil depolama kalıcı büyük depolama kapasitesi sağlayan ana bellek uzantısıdır.
- Manyetik diskler manyetik kayıt materyali ile kaplı katı metal veya cam plakalar.
 - Disk yüzeyi mantıksal olarak sektörlere (sector) ayrılmış izlere (track) bölünmüştür.
 - Disk denetçisi aygıt ile bilgisayar arasındaki mantıksal etkileşimin nasıl olacağına karar vermektedir.

Depolama Hiyerarşisi

- Depolama sistemleri hiyerarşik olarak düzenlenmektedir:
 - Hız
 - Maliyet
 - Kalıcılık
- Önbellekleme (Caching) bilginin daha hızlı bir depolama sistemine kopyalanması. Örneğin ana belleğe ikincil bellek için bir önbellek olarak bakılabilir.

Depolama Aygıtları Hiyerarşisi

G/Ç Yapısı

- G/Ç başladıktan sonra kontrol kullanıcı programına sadece G/Ç'ın bitmesinden sonra döner
 - Bekle komutu CPU'yu bir sonraki kesmeye kadar boşaltır.
 - Bekleme Döngüsü (bellek erişimi için mücadele)
 - Bir zamanda en fazla bir tane G/Ç isteği yerine getirilir, eş zamanlı G/Ç işleme yoktur.
- G/Ç başladıktan sonra kontrol kullanıcı programına G/Ç'ın bitmesini beklemeden döner
 - Sistem Çağrısı (System call) işletim sistemine kullanıcının G/Ç işleminin bitmesini beklemesine izin vermesi isteğidir
 - Aygıt-durum tablosu (Device-status table) her bir G/Ç aracının tipi, adresi ve durumu hakkında kayıtları tutar.
 - İşletim sistemi aygıt durumlarını ve kesmelere göre oluşacak tablo kayıt değişikliklerini G/Ç aygıt tablosunda indeksler.

Direk Bellek Erişimi Yapısı (Direct Memory Access (DMA))

- Bellek hızına yakın hızlarda bilgi iletebilen yüksek hızlı G/Ç aygıtları için kullanılmaktadır.
- Aygıt denetçisi CPU müdahalesi olmadan veri bloklarını tampon depolamadan (buffer storage) direk olarak ana belleğe iletir.
- Her byte için bir kesme yerine, her bir blok için sadece tek bir kesme yaratılmaktadır.

Bilgisayar Sistem Mimarisi

- Çoğu sistem tek bir genel amaçlı işlemci kullanır (PDA'lar anabilgisayarlar (mainframe) aracılığıyla)
 - Birçok sistemin ayrıca özel amaçlı işlemcileri de vardır.
- Çokişlemcili sistemlerin (Multiprocessors systems) kullanımı ve önemi de gittikçe artmaktadır
 - Paralel sistemler ve sıkı bağlı sistemler (tightly-coupled systems) olarak da bilinirler
 - Avantajları arasında:
 - Yüksek verimlilik
 - 2. Ekonomik Ölçeklilik
 - Yüksek güvenilirlik yavaş eskime veya hata düzeltme (fault tolerance)
 - İki tipi vardır:
 - 1. Asimetrik çoklu işleme (Asymmetric Multiprocessing)
 - 2. Simetrik çoklu işleme (Symmetric Multiprocessing)

Modern Bir Bilgisayar Nasıl Çalışır

Simetrik Çokişlemcili Mimari

Çift Çekirdekli Tasarım

Kümeli Sistemler (Clustered Systems)

- Çok işlemcili sistemler gibidir, ancak çoklu sistemler beraber çalışmaktadır
 - Genellikle depolama işlemi, depolama alanı ağı (storage-area network (SAN)) tarafından paylaşılır
 - Hatalara dayanıklı bir yüksek varolma (high-availability) servisi sunmaktadır
 - Asimetrik Kümeleme (Asymmetric clustering) sıcak bekleme modunda (hot-standby mode) bir makinaya sahiptir
 - Simetrik Kümelemede (Symmetric clustering) uygulamaları çalıştıran ve birbirini görüntüleyen bir çok uç vardır
 - Bazı kümeler yüksek performanslı işleme (high-performance computing (HPC)) içindir.
 - Uygulamalar paralelleştirilmek (parallelization) amacıyla geliştirilirler.

İşletim Sistemi Yapısı

- Çoklu Programlamaya (Multiprogramming), verimlilik sebebiyle ihtiyaç duyulmaktadır
 - Tek bir kullanıcı CPU ve G/Ç aygıtlarını sürekli meşgul durumda tutamaz
 - Çoklu programlama yapılacak işleri (jobs) (kod ve veri), CPU sürekli bir tanesini çalıştıracak şekilde organize eder.
 - Sistemdeki tüm işlerin bir altkümesi bellekte tutulur.
 - Bir işin seçilmesi ve yürütülmesi iş programlaması (job scheduling) aracılığıyla yapılmaktadır.
 - Beklenmesi gerekilen durumlarda (örneğin G/Ç) işletim sistemi başka bir işe geçer.
- Mantıksal bir uzantı olan Zaman Paylaşma (Timesharing (multitasking)) sayesinde CPU işleri o kadar sık değiştirir ki, kullanıcılar her işle çalıştırıldığı sırada etkileşimde bulunabilerek interaktif çalıştırma ortamı ortaya çıkar.
 - Tepki süresi (Response time) <1 saniye olmalıdır.
 - Her kullanıcı bellekte çalışan en az bir programa sahiptir ⇒ süreç (process)
 - Eğer faklı işler aynı zamanda koşturulmaya hazır ise ⇒ CPU iş programlaması (CPU scheduling)
 - Eğer süreçler belleğe sığmazlarsa, değiş-tokuş (swapping) işlemi bunları çalıştırmak için getirir ve götürür.
 - Sanal Bellek (Virtual memory) süreçlerin tamamının bellekte tutulmadan çalıştırılmasına olanak sağlar.

1.27

Çokprogramlı Bir Sistem İçin Bellek Düzeni

İşletim Sistemi İş 1 İş 2 İş 3 İş 4 512M

İşletim Sistemi Operasyonları

- Kesmeler, donanım tarafından yönlendirilir
- Yazılım hataları ve istekleri istisna (exception) veya tuzak (trap) yaratırlar
 - 0'a bölme, işletim sistemi servisi istemi
- Diğer süreç problemleri arasında sonsuz döngü, birbirini veya işletim sistemini değiştiren süreçler vardır
- Çift modlu (Dual-mode) operasyon, işletim sisteminin kendisini ve diğer sistem bileşenlerini korumasına izin verir
 - Kullanıcı modu (User mode) ve çekirdek modu (kernel mode)
 - Mod biti (Mode bit) donanım tarafından sağlanır
 - Sistemin işletilen kodun kullanıcı kodu mu yoksa çekirdek kodu mu ayırt etmesine olanak verir
 - Bazı komutlar ayrıcalıklı (privileged) olarak tasarlanmışlardır, bunlar sadece çekirdek modunda çalıştırılabilirler.
 - Sistem çağrısı, kernel moduna geçilmesine sebep olur, çağrıdan geri dönülmesi tekrar kullanıcı moduna geri dönülmesine sebep olur.

Kullanıcı Modundan Çekirdek Moduna Gecis

- Sonsuz döngüyü önlemek için zamanlayıcı / kaynakları kendine saklayan süreç kullanılır
 - Belirli bir süre sonra kesme oluşturur
 - İşletim sistemi sayacı azaltır
 - Sayaç sıfıra ulaşırsa kesme yaratılır
 - Zaman sıralaması sürecinin kontrolü tekrar ele geçirilecek şekilde ayarlanır veya tahsis edilen zamanı geçen program sonlandırılır

Süreç Yönetimi

- Süreç işletimdeki bir programdır. Sistemdeki bir iş parçasıdır. Program pasiftir, süreç ise aktiftir.
- Süreç görevini (task) tamamlamak için kaynaklara ihtiyaç duyar
 - CPU, bellek, G/Ç, dosyalar
 - Başlangıç verisi
- Sürecin bitirilmesi yeniden kullanılabilir kaynakların serbest bırakılmasına ihtiyaç duyar
- Tek işparçalı süreçler bir sonra işletilecek komutun yerini belirten bir program sayacına (program counter) sahiptir
 - Süreç, bitinceye kadar tüm komutları sırayla çalıştırır
- Çok işparçalı süreçler her bir iş parçası için ayrı bir program sayacına sahiptir
- Genelde sistem bazıları kullanıcı, bazıları da işletim sistemine ait ve bir veya daha fazla CPU üzerinde koşutzamanlı olarak çalışan birçok sürece sahiptir.
 - CPU'ları süreç ve işparçaları arasında tutarlı bir şekilde paylaştırmalıdır

Süreç Yönetim Etkinlikleri

İşletim sistemi süreç yönetimi ile beraber aşağıdaki etkinliklerden sorumludur:

- Kullanıcı ve sistem süreçlerinin yaratılması ve silinmesi
- Süreçleri dondurma ve devam ettirmek
- Süreç senkronizasyonu için mekanizmalar sağlamak
- Süreç haberleşmesi için mekanizmalar sağlamak
- Kilitlenmelerin (deadlock) çözülmesi için mekanizmalar sağlamak

Bellek Yönetimi

- İşlemin önce ve sonrasında tüm veri bellektedir
- İşletilmek için tüm komutlar bellektedir
- Bellek yönetimi neyin, ne zaman bellekte olacağına karar verir
 - CPU kullanımı ve bilgisayarın kullanıcılara tepkisini optimize eder
 - Belleğin hangi parçalarının kim tarafından ve nasıl kullanıldığını izler
 - Hangi süreçlerin (ya da parçalarının) belleğe taşınıp uzaklaştırılacağına karar verir
 - Gerektiğinde bellek alanını tahsis eder ve serbest bırakır

Depolama Yönetimi

- OS, bilgi depolama alanının düzgün ve mantıksal bir görüntüsünü ortaya koyar
 - Mantıksal depolama biriminin fiziksel özelliklerini özetler dosya (file)
 - Her ortam aygıtlar tarafından kontrol edilir (ör., Disk sürücüsü, teyp sürücüsü)
 - Farklı aygıtların değişen özellikleri arasında erişim hızı, kapasite, veri transfer oranı ve erişim metodu (sıralı veya rastgele) vardır
- Dosya Sistemi Yönetimi
 - Dosyalar genellikle klasörler içerisinde organize edilir
 - Birçok sistem üzerinde kimin erişebileceğine karar verilmesini sağlayan erişim kontrolü bulunmaktadır.
 - OS etkinlikleri arasında
 - Dosya ve klasörlerin yaratılma ve silinmesi
 - Dosya ve klasörlerin değiştirilmesi için temel işlemler
 - İkincil depolama üzerinde dosyaların haritalandırılması
 - Dosyaların stabil depolama ortamlarında yedeklenmesi

Yığın Depolama (Mass-Storage) Yönetimi

- Genellikle diskler ana belleğe sığmayan ya da uzun süre saklanması gereken verilerin depolanması için kullanılır
- Disklerin uygun şekilde yönetilmesi büyük öneme sahiptir
- Bilgisayarın çalışma hızı, disk altsistemi ve algoritmalarına bağlıdır.
- İşletim Sistemi etkinlikleri
 - Boş alan yönetimi
 - Depolama alanı tahsis etme (Storage allocation)
 - Disk iş planlaması (Disk scheduling)
- Bazı depolama birimlerinin hızlı olması gerekmektedir:
 - Üçüncül depolama birimleri arasında optik depolama, manyetik teyp yer alır.
 - Sistem performansı için kritik öneme sahip değillerdir ancak yönetilmeleri gerekmektedir
 - Ortamlar, Bir Kere Yaz Birçok Kere Oku (WORM (write-once, read-many-times)) ve Okuma-Yazma (RW (read-write)) olarak değişmektedir

Önbellekleme (Caching)

- Bir bilgisayarın birçok seviyesinde (donanım, işletim sistemi, yazılım) kullanılan önemli bir prensiptir.
- Kullanımdaki bilgi geçici olarak yavaş depolama ortamından hızlı depolama ortamına kopyalanır.
- Bir bilgiye ihtiyaç duyduğumuzda öncelikle önbellek (cache)
 bilginin orada olup olmadığının anlaşılması için kontrol edilir.
 - Eğer oradaysa bilgi direk olarak önbellekten (cache) kullanılır.
 - Değilse veri önce önbelleğe kopyalanır sonra orada kullanılır.
- Depolama alanından daha küçük olan veriler önbelleklenebilir
 - Önbellek yönetimi önemli bir tasarım problemidir.
 - Önbellek boyutu ve değişim politikasının dikkatli bir şekilde yönetilmesi ile büyük performans artışı elde edilebilir.

Değişik Seviyelerdeki Depolama Birimlerinin Performansı

Farklı depolama seviyelerindeki performans

Seviye	1	2	3	4
İsim	Kayıtçılar	Önbellek	Ana Bellek	Disk Depolama
Tipik Boyut	< 1 KB	< 16 MB	< 16 GB	> 100 GB
Uygulama Teknolojisi	Birçok porta sahip bellek, CMOS	Yongadaki ve yongada olmayan CMOS SRAM	CMOS DRAM	Manyetik disk
Erişim süresi (ns)	0.25-0.5	0.5-25	80-250	5,000,000
Bant genişliği (MB/sn)	20,000- 100,000	5,000-10,000	1,000-5,000	20-150
Tarafından yönetilir	Derleyici	Donanım	İşletim Sistemi	İşletim Sistemi
Tarafından yedeklenir	Önbellek	Ana Bellek	Disk	DVD, CD veya Teyp

A Integer'inin Disk'ten Kayıtçı'ya Taşınması

 Çokgörevli (Multitasking) ortamlarda depolama hiyerarşisinin neresinde saklanıyorsa saklansın en güncel değer kullanılmalıdır

- Çokişlemcili ortamlarda bütün CPU'ların önbelleklerinde en güncel değerler taşınacak şekilde donanımla önbellek uyumluluğu sağlamalıdır
- Dağıtık ortamlarda ise durum daha karmaşıktır
 - Bir verinin birçok kopyası varolabilir
 - Diğer çözümler ileride anlatılacaktır

G/Ç Altsistemi

- İşletim Sistemlerinin amaçlarından bir tanesi de donanım aygıtlarının özelliklerinin kullanıcıdan saklanmasıdır
- G/Ç altsistemi aşağıdaki bileşenlere sahiptir
 - Aşağıdakilerden sorumu bir bellek yönetimi bileşeni:
 - Tamponlama (Buffering) (transfer edildiği sırada verinin kaydedilmesi),
 - Önbellekleme (caching) (performans açısından verinin parçalarının geçici olarak hızlı depolama aygıtlarında saklanması),
 - Kuyruğa atma (spooling) (bir işin çıktısının diğerlerinin girdileri ile üst üste bindirilmesi) gibi G/Ç bellek yönetim işlemleri
 - Genel aygıt-sürücüsü arayüzü
 - Özel donanım aygıtları için sürücüler

Koruma ve Güvenlik

- Koruma (Protection) Süreçlerin ve kullanıcıların kaynaklara erişimlerini kontrol etmek için tüm mekanizmalar işletim sistemi tarafından tanımlanır
- Güvenlik (Security) sistem iç ve dış saldırılara karşı savunulması
 - Tehditler, hizmet dışı bırakma (denial-of-service), solucanlar (worm), virüsler (virus), kimlik çalınması (identity theft), servis çalınması (theft of service) gibi çok büyük bir alana yayılmıştır
- Sistemler genellikle öncelikle kullanıcıların hangilerinin ne yapabileceğine karar verir
 - Kullanıcı kimlikleri (User identities (user IDs, security IDs)) isim ve ilişkili numaraları (şifreler gibi) her kullanıcıya birer tane olacak şekilde tutulur.
 - Bu kullanıcı kimliği (User ID) erişim kontrolünü sağlamak amacıyla daha sonra o kullanıcının erişebileceği tüm dosyalar ve süreçlerle ilişkilendirilir
 - Grup kimliği (Group identifier (group ID)) bir kullanıcılar kümesi oluşturulmasını ve bu grubun erişebileceği süreç ve dosyalar tanımlanabilmesine olanak sağlar
 - Yetki yükseltme (Privilege escalation) kullanıcıları daha fazla hak sahibi yapacak şekilde kimliğinin değiştirilmesine olanak sağlar

Hesaplama Ortamları

- Geleneksel bilgisayar
 - Zamanla azalmaktadır
 - Ofis ortamı
 - Bir ağa bağlı PC'ler, ana bilgisayara bağlı terminaller veya komut listesi (batch) ve süre paylaşımı sunan minibilgisayarlar
 - Günümüzde portallar, ağa bağlı ve uzak sistemlerin aynı kaynaklara erişmesine izin vermektedir
 - Ev ağları
 - ▶ Tek bir sistem ve sonra modemler olarak kullanılır
 - Günümüzde güvenli duvarına sahip ve ağa bağlı da olabilirler

Hesaplama Ortamları (Devam)

- İstemci/sunucu hesaplama (Client-Server Computing)
 - Akıllı PC'lerin yerini aldığı Aptal terminaller (Dumb terminal)
 - Birçok sistemde sunucular (server) istemcilerden (client) gelen isteklere cevap verirler
 - Hesaplama sunucusu (Compute-server) istemcilerin (client) servis (ör., veritabanı) istemesi için bir arayüz sunar
 - Dosya sunucusu (File-server) istemcilerin dosya kaydedip alması için bir arayüz sağlar

Uç Uca İşleme (Peer-to-Peer)

- Dağıtık sistemlerin diğer bir modeli
- P2P'de istemci ve sunucular arasında ayrım yoktur
 - Bunu yerine bütün hepsi uç olarak düşünülür
 - Herbiri istemci, sunucu veya her ikisi birden olabilir.
 - Ucun P2P ağına katılması zorunludur
 - Her biri kendi servisini ağdaki merkezi ziyaret servisine (central lookup service) kaydeder veya
 - Buluş protokolü (discovery protocol) aracılığıyla servis isteği yayınlar ve servis isteklerine yanıt verir
 - Örneğin Napster ve Gnutella

Web-Tabanlı Hesaplama

- Web artık çok yaygın olarak kullanılmakta
- PC'ler çok yaygın olarak kullanılmakta
- Web erişimine izin veren birçok farklı araç mevcut
- Benzer sunucular arasındaki we trafiğini kontrol etmek için yeni bir araç kategorisi mevcut: yük dengeleyiciler (load balancers)
- Daha önce istemci tarafında bulunan Windows 95 ve 98 gibi işletim sistemleri günümüzde Linux ve Windows XP/7 gibi hem istemci hem de sunucu hizmeti verebilen işletim sistemlerine dönüştü

Açık Kaynak İşletim Sistemleri

- İşletim sistemleri sadece ikili kapalı kaynak format yerine açık kaynak kodlu olarak da bulunmaktadır
- Kopya koruması (copy protection) ve Dijital Haklar Yönetimine (Digital Rights Management (DRM)) tepki olarak
- Bu hareket GNU Public License (GPL)'ı yaratıp telif haklarını bırakan Özgür Yazılım Kuruluşu (Free Software Foundation (FSF)) tarafından başlatılmıştır
- Örneğin, GNU/Linux, BSD UNIX (Mac OS X çekirdeği de dahil olarak) ve Sun Solaris

Bölüm 1 Son

