Predicting the Weather (without physics)

Mark Fruman

Capstone Project for Certificate in Data Analytics, Big Data, and Predictive Analytics Ryerson University, Toronto, ON, Canada

Advisor: Dr. Bora Çağlayan

Numerical Weather Prediction

http://www.metoffice.gov.uk/

$$\frac{Du}{Dt} - fv = -\frac{\partial \phi}{\partial x}$$
$$\frac{Dv}{Dt} + fu = -\frac{\partial \phi}{\partial y}$$

$$0 = -\frac{\partial \phi}{\partial p} - \frac{RT}{p}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial \omega}{\partial p} = 0$$

Perhaps some day in the dim future it will be possible to advance the computations faster than the weather advances and at a cost less than the saving to mankind due to the information gained. But that is a dream.

"Primitive Equations"

Ryerson University

- Operational forecast models solve systems of coupled equations for wind velocity, temperature, barometric pressure, density, gas concentrations (e.g. water vapour), etc at each of tens of millions of points on a three-dimensional grid covering the forecast domain
- □ Data from worldwide network of **ground stations**, **satellites**, and **balloons** are used to initialize and constrain models ("data assimilation")
- ☐ The equations are **sensitive to initial conditions** and highly **tuned** to produce realistic predictions (at the expense of physical rigour if necessary)
- RMSE of between one and two degrees Celsius for forecast of next-day daily maximum temperature (e.g. Silver 2012)

How well can plain linear regression do?

Dataset

- → Source: www.wunderground.com
- Hourly values of
 - Temperature, Dew Point Temperature
 - Relative Humidity
 - Sea Level Pressure
 - Visibility
 - Wind Speed and Direction, Wind Gust Speed
 - Precipitation
 - Events, Conditions

- ☐ Data from 29 stations
- 8 years of data
 - Training: 2005-2010
 - Testing: 2011-2012
- Use daily summary statistics
 - Min/Max/Mean
 - Binary statistics

Ryerson University

Methodology

Multiple Linear Regression

• Assume dependent variable Y on the forecast day depends linearly on the values of the N features X_i on the prediction day (and/or earlier):

$$Y_{FD} = \beta_0 + \sum_{i=1}^{N} \beta_i X_i + \epsilon$$

• Use values of X_i and Y in **training data** to find the N+1 coefficients β_0 , β_i that minimize error ϵ

Variations

- X includes only features from the prediction day at target station
- ... add features from days prior to the prediction day ("Taylor" model)
- ... add features from other stations on prediction day and prior days
- Replace features with component blown towards target station ("Advection" model)
- Transform each feature at all stations into a truncated set of principal components
- Apply k-means clustering to training data and train a separate regression model for each cluster

K-Means Clustering

- Compute clusters based on values of the third PC of TempMax and third PC of PressMax in training data
- Train separate regression models for each cluster
- Classify test points before making prediction using the appropriate model

Results: Conditions at CYYZ

- Apply stepwise feature selection starting with
 2 days of 5 PC of each available variable
- For more than 20 features, out-of-sample
 RMSE stops decreasing (overfitting?)

Features for best-20 model for TempMax at CYYZ

intercept	13.20		
TempMean_PC4	2.87	TempMin_PC0_D	0.61
TempMean_PC0	2.71	TempMin_PC1	0.58
TempMax_PC2	1.22	TempMax_PC3	-0.56
TempMin_PC4	1.19	PressMin_PC2_D	-0.41
TempMax_PC4	-1.17	dailyPressRange_PC3	-0.38
TempMin_PC0	-1.01	TempMax_PC0	0.38
TempMin_PC3	0.98	WindMeanY_PC1	-0.35
TempMean_PC4_D	-0.69	dailyTempRange_PC4	-0.35
PressMax_PC2_D	0.66	dailyTempRange_PC0_D	0.33
PressMean_PC2_D	-0 63	isMorningMinTemp_PC3	-0.10

scaled regression coefficients

N.B. quite a bit of multicollinearity

Results: Conditions at CYYZ

acc. 77%	Pred Colder	Pred Warmer
Colder	276	108
Warmer	58	286

Event (num)	RMS change	RMSE (% better)
0-sigma (460)	2.39 C	2.11 C (64.1%)
1-sigma (151)	6.13 C	3.07 C (96.7%)
2-sigma (31)	10.15 C	3.80 C (100%)
3-sigma (11)	14.05 C	5.89 C (100%)

Results: Conditions at CYYZ

acc. 81%	Pred Fall	Pred Rise
Fall	292	75
Rise	62	299

Event (num)	RMS change	RMSE (% better)
0-sigma (427)	2.18 hPa	2.47 hPa (50.4%)
1-sigma (189)	6.10 hPa	3.47 hPa (94.7%)
2-sigma (68)	10.64 hPa	4.47 hPa (100%)
3-sigma (19)	14.94 hPa	5.89 hPa (100%)
4+-sigma (13)	19.80 hPa	8.55 hPa (100%)

Results: Predictability vs. Station Location

 RMSE for TempMax predictions with 3-PC regression model

Conclusion

- Operational models report RMSE of between one and two degrees Celsius for forecast of next-day daily max. temperature (cf. "3-degree guarantee")
- Best regression model (20 PC features) has RMSE for Toronto of 2.51 degC
- Software implemented in Python:
 - ✓ Automatically harvests and archives data in JSON format
 - ✓ Computes and stores daily summary statistics in CSV format
 - ✓ Predicts future value of any daily summary statistic for any station using any combination of features from any number of stations with or without using PCA and k-means clustering
 - ✓ Can be applied to any set of multivariate time-series data
 - ✓ Available at github.com/majorgowan/wpwp

Perhaps some day in the dim future it will be possible to advance the computations faster than the weather advances and at a cost less than the saving to mankind due to the information gained. But that is a dream.

— Lewis Fry Richardson —

(1922)

Model Accuracy vs Number of Features

Model Accuracy vs Lead Time

November 11-23, 2015

Perhaps some day in the dim future it will be possible to advance the computations faster than the weather advances and at a cost less than the saving to mankind due to the information gained. But that is a dream.

— Lewis Fry Richardson —

$$Y_{FD} = \beta_0 + \sum_{i=1}^{N} \beta_i X_i + \epsilon$$

 β_0, β_i

 ϵ

- 1. problem definition
- 2. techniques used in the literature
- 3. dataset description
- 4. methodology
- 5. results and discussion
- 6. results and discussion
- 7. results and discussion
- 8. conclusion

$$\frac{Du}{Dt} - fv = -\frac{\partial \phi}{\partial x}$$

$$\frac{Dv}{Dt} + fu = -\frac{\partial \phi}{\partial y}$$

$$0 = -\frac{\partial \phi}{\partial p} - \frac{RT}{p}$$

$$+\frac{\partial v}{\partial y} + \frac{\partial \omega}{\partial p} = 0$$

$$\partial T = RT - J$$

$$\left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + \omega \left(\frac{\partial T}{\partial p} - \frac{RT}{pc_p}\right) = \frac{J}{c_p}$$