Derivatives.

(1) Find
$$\frac{dy}{dx}$$
 when $y = (2x+3)(5x+6)$.

(2) Find
$$\frac{dy}{dx}$$
 when $y = \left(x + \frac{1}{x}\right) \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$.

(3) Find
$$\frac{dy}{dx}$$
 when $y = (2x - 5)^2(3x - 4)^3$.

(4) Find
$$\frac{dy}{dx}$$
 when $y = \left(ex^2 + \frac{\pi}{x^3} + x^{7/2}\right)$.

(5) Find
$$\frac{dy}{dx}$$
 when $y = \left(\frac{x-3}{x-4}\right)^2$.

(6) Find
$$\frac{dy}{dx}$$
 when $y = \frac{3x+5}{4-x^2}$.

(7) Find
$$\frac{dy}{dx}$$
 when $y = \frac{x}{\sqrt{1-2x}}$.

(8) Find
$$\frac{dy}{dx}$$
 when $y = \frac{1+\sqrt{x}}{1-\sqrt{x}}$.

(9) Find
$$\frac{dy}{dx}$$
 when $y = \frac{2(x+1)}{x^2 + 2x - 3}$.

(10) Find
$$\frac{dy}{dx}$$
 when $y = \frac{\sqrt{a+x} - \sqrt{a-x}}{\sqrt{a+x} + \sqrt{a-x}}$.

(11) Find
$$\frac{dy}{dx}$$
 when $y = \frac{x^2 - 2}{x + 1}$.

(12) Find
$$\frac{dy}{dx}$$
 when $y = \frac{\sqrt{x}}{\sqrt{x-3}}$.

(13) Find
$$\frac{dy}{dx}$$
 when $y = \frac{x^n + 1}{x^n - 1}$.

(14) Find
$$\frac{dy}{dx}$$
 when $y = \frac{\sqrt{1+x^2}}{\sqrt{1-x^2}}$.

(15) Find
$$\frac{dy}{dx}$$
 when $y = \frac{2x^2 - 1}{x\sqrt{1 + x^2}}$

(16) Find
$$\frac{dy}{dx}$$
 when $y = u^n$.

(17) Find
$$\frac{dy}{dx}$$
 when $y = \sqrt{1 - x^2}$.

Derivatives with exponentials, logs and trig functions.

(1) Find
$$\frac{dy}{dx}$$
 when $y = a^{\cos 1}$.

(2) Find
$$\frac{dy}{dx}$$
 when $y = \ln \frac{\sin^m x}{\cos^n x}$.

(3) Find
$$\frac{dy}{dx}$$
 when $y = e^{ax} \sin bx$.

(4) Find
$$\frac{dy}{dx}$$
 when $y = \ln\left(\frac{1-\cos x}{1+\cos x}\right)$.

(5) Find
$$\frac{dy}{dx}$$
 when $y = \ln \sqrt{\frac{1 - \tan x}{1 + \tan x}}$.

(6) Find
$$\frac{dy}{dx}$$
 when $y = e^{ax} \cos(bx + c)$.

(7) Find
$$\frac{dy}{dx}$$
 when $y = \frac{\sqrt{x + \ln \tan x}}{xe^{2x}}$.

(8) Find
$$\frac{dy}{dx}$$
 when $y = \ln \frac{1 + x \sin x}{1 - x \sin x}$.

(9) Find
$$\frac{dy}{dx}$$
 when $y = \ln\left(\frac{1-\cos x}{1+\cos x}\right)^{1/2}$.

(10) Find
$$\frac{dy}{dx}$$
 when $y = \ln \sqrt{\frac{1 + \sin x}{1 - \sin x}}$.

(11) If
$$y = \ln(\sin x)$$
 show that $\frac{d^3y}{dx^3} = 2\csc^2 x \cot x$.

(12) If
$$y = e^{ax}\cos bx$$
 show that $\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$.

(13) If
$$y = a\cos(\ln x) + b\sin(\ln x)$$
 show that $x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$.

(14) If
$$y = Ae^{-kt}\cos(pt+c)$$
 show that $\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + n^2y = 0$, where $n^2 = p^2 + k^2$.

(15) If
$$y = e^{-x} \cos x$$
 prove that $\frac{d^4y}{dx^4} + 4y = 0$.

Derivatives at a point.

(1) Let
$$y = \tan 2x - 2\tan x + 2$$
. Find $\frac{dy}{dx}$ at $x = \pi/4$.

(2) Let
$$y = \frac{\sin^2 x + \cos x}{1 + x^2}$$
. Find $\frac{dy}{dx}\Big|_{x=0}$ and $\frac{dy}{dx}\Big|_{x=\pi/2}$.

(3) Let
$$y = \cot x + \sec^2 x + 5$$
. Find $\frac{dy}{dx}$ at $x = \pi/6$.

(4) Let
$$y = \cos(\sin x^2)$$
. Find $\frac{dy}{dx}\Big|_{x=\pi/3}$.

(5) Let
$$y = (\cot \sqrt{x} + 5\sin^2 \sqrt{x})^2$$
. Find $\frac{dy}{dx}$ at $x = \pi^2/16$.

(6) Let
$$y = \frac{1 - \sin x}{1 + \cos x}$$
. Find $\frac{dy}{dx}$ at $x = \pi/2$.

(7) Let
$$y = x^2 \sin x + 2x \cos x - 2x$$
. Find $\frac{dy}{dx}$ at $x = 0$ and $x = \pi/2$.

(8) Let
$$y = \frac{\sin x^2}{\sqrt{1+x^2}}$$
. Find $\frac{dy}{dx}\Big|_{x=0}$ and $\frac{dy}{dx}\Big|_{x=\sqrt{\pi/2}}$.

(9) Let
$$y = (\csc x + \sin x + \tan x)^3$$
. Find $\frac{dy}{dx}$ at $x = \pi/4$.

Differential equations.

(1) If
$$y = x + \tan x$$
 show that $\cos^2 x \cdot \frac{d^2y}{dx^2} - 2y + 2x = 0$.

(2) If
$$y = A\cos nx + B\sin nx$$
 show that $\frac{d^2y}{dx^2} + n^2y = 0$.

(3) If
$$y = 2\sin x + 3\cos x$$
 show that $y + \frac{d^2y}{dx^2} = 0$.

(4) If
$$y = a \sin x + b \cos x$$
 show that $\frac{d^2y}{dx^2} + y = 0$.

(5) If
$$y = \sin(\sin x)$$
 show that $\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0$.

(6) If
$$y = a \sin x + b \cos x$$
 prove that $y^2 + \left(\frac{dy}{dx}\right)^2 = a^2 + b^2$.

(7) If
$$y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \sqrt{\cdots}}}}$$
 show that $(2y - 1)\frac{dy}{dx} = \cos x$.

Parametric equations.

(1) Find
$$\frac{dy}{dx}$$
 when $x = a\cos\theta$ and $y = b\sin\theta$.

(2) Find
$$\frac{dy}{dx}$$
 when $x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$.

(3) Find
$$\frac{dy}{dx}$$
 when $x = a \sec^2 \theta$ and $y = b \tan^3 \theta$.

(4) Find
$$\frac{dy}{dx}$$
 when $x = b \sin^3 \phi$ and $y = b \cos^3 \phi$.

(5) If
$$x = a(t - \sin t)$$
 and $y = a(1 - \cos t)$ find $\frac{d^2y}{dx^2}$.

(6) If
$$x = a(\theta + \sin \theta)$$
 and $y = a(1 - \cos \theta)$ find $\frac{d^2y}{dx^2}$ at $\theta = \pi/2$.

(7) If
$$x = 2\cos\theta - \cos 2\theta$$
 and $y = 2\sin\theta - \sin 2\theta$ find $\frac{d^2y}{dx^2}$ at $\theta = \pi/2$.

(8) If
$$x = \sin t$$
 and $y = \sin mt$ prove that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + m^2y = 0$.

Implicit differentiation.

(1) Find
$$\frac{dy}{dx}$$
 when $y^2 \sin x + y \tan x + (1+x^2) \cos x = 0$.

(2) Find
$$\frac{dy}{dx}$$
 when $\sin(xy) + \frac{x}{y} = x^2 - y$.

(3) Find
$$\frac{dy}{dx}$$
 when $2y^2 + \frac{y}{1+x^2} + \tan^2 x + \sin y = 0$.

(4) Find
$$\frac{dy}{dx}$$
 when $\tan(x+y) + \tan(x-y) = 1$.

(5) Find
$$\frac{dy}{dx}$$
 when $a\sin(xy) + b\cos(x/y) = 0$.

(6) If
$$x = \ln(\tan(y/x))$$
 find $\frac{dy}{dx}$.

Derivatives with inverse trig functions.

(1) Find
$$\frac{dy}{dx}$$
 when $y = \sin^{-1} x^3$.

(2) Find
$$\frac{dy}{dx}$$
 when $y = \sin^{-1} x^4$.

(3) Find
$$\frac{dy}{dx}$$
 when $y = \tan^{-1} \sqrt{x}$.

(4) Find
$$\frac{dy}{dx}$$
 when $y = \sin^{-1} 3x$.

(5) Find
$$\frac{dy}{dx}$$
 when $y = \tan^{-1} 5x$.

(6) Find
$$\frac{dy}{dx}$$
 when $y = \sec^{-1} x^2$.

(7) Find
$$\frac{dy}{dx}$$
 when $y = \csc^{-1} x^2$.

(8) Find
$$\frac{dy}{dx}$$
 when $y = \cos^{-1} \sqrt{x}$.

(9) Find
$$\frac{dy}{dx}$$
 when $y = \sin^{-1} 2x^2$.

(10) Find
$$\frac{dy}{dx}$$
 when $y = \csc^{-1}(\sin x)$.

(11) Find
$$\frac{dy}{dx}$$
 when $y = \tan^{-1} \sqrt{x-1}$.

(12) Find
$$\frac{dy}{dx}$$
 when $y = \sin(\tan^{-1} x)$.

(13) Find
$$\frac{dy}{dx}$$
 when $y = x \cos^{-1} x$.

(14) Find
$$\frac{dy}{dx}$$
 when $y = x \sin^{-1} x$.

(15) Find
$$\frac{dy}{dx}$$
 when $y = x \tan^{-1} x$.

(16) Find
$$\frac{dy}{dx}$$
 when $y = \tan^{-1} \sqrt{x} - \tan^{-1} x$.

(17) Find
$$\frac{dy}{dx}$$
 when $y = (1 + x^2) \tan^{-1} x$.

(18) Find
$$\frac{dy}{dx}$$
 when $y = \tan x \cos^{-1} x$.

(19) Find
$$\frac{dy}{dx}$$
 when $y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) + \tan^{-1} x$.

(20) Find
$$\frac{dy}{dx}$$
 when $y = (1 - x^2)\cos^{-1} x$.

(21) Find
$$\frac{dy}{dx}$$
 when $y = \tan x \cdot \tan^{-1} x$.

(22) Find
$$\frac{dy}{dx}$$
 when $y = \sec^{-1} x + \csc^{-1} x$.

(23) Find
$$\frac{dy}{dx}$$
 when $y = \tan^{-1}(a/x) \cdot \cot^{-1}(x/a)$.

(24) Find
$$\frac{dy}{dx}$$
 when $y = (\tan^{-1} 2x)^3$.

(25) Find
$$\frac{dy}{dx}$$
 when $y = \cos^{-1}(\tan x^2)$.

(26) Find
$$\frac{dy}{dx}$$
 when $y = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$.

(27) Find
$$\frac{dy}{dx}$$
 when $y = \sec^{-1}\left(\frac{1-x^2}{1+x^2}\right)$.

(28) Find
$$\frac{dy}{dx}$$
 when $y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$.

(29) Find
$$\frac{dy}{dx}$$
 when $y = \tan^{-1}\left(\frac{1+x^2}{1-x^2}\right)$.

(30) Find
$$\frac{dy}{dx}$$
 when $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$.

(31) Find
$$\frac{dy}{dx}$$
 when $y = \cot^{-1} \left(\frac{1 + \cos x}{1 - \cos x} \right)^{1/2}$.

(32) Find
$$\frac{dy}{dx}$$
 when $y = \cot^{-1}\left(\frac{1+\cos 3x}{1-\cos 3x}\right)^{1/2}$.

(33) Find
$$\frac{dy}{dx}$$
 when $y = \sin^{-1}\left(\frac{a + b\cos x}{b + a\cos x}\right)$.

(34) Find
$$\frac{dy}{dx}$$
 when $y = \cos^{-1}\left(\frac{1+2\cos x}{2+\cos x}\right)$.

(35) Find
$$\frac{dy}{dx}$$
 when $y = \tan^{-1}\left(\frac{1-\cos x}{\sin x}\right)$.

(36) Differentiate
$$\sin^{-1}\left(\frac{x^2-1}{1+x^2}\right)$$
 with respect to $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$.

(37) If
$$y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$$
 prove that $(1 - x^2) \frac{dy}{dx} - xy = 1$.