CATENA PROGRAMMATIVA

Linguaggi:

Linguaggio macchina:

- Scritto in binario
- Direttamente comprensibile dal calcolatore
- Attività di programmazione più lunga
- Facile commettere errori

Linguaggio assembler:

- Scritto in Assembly
- E' una rappresentazione del linguaggio macchina
- Più comprensibile per l'utente rispetto a linguaggio macchina grazie all'utilizzo di simboli e non sequenze di bit
- Tradotto dall'assemblatore in linguaggio macchina

Linguaggi ad alto livello:

- Tradotti dal compilatore in Assembler
- Più comprensibile per l'utente rispetto ad assembler e di conseguenza del macchina Indipendenti dalle caratteristiche dell'architettura su cui il programma sarà eseguito (portabilità)
- Permettono utilizzo di librerie di funzionalità già scritte (riusabilità del codice) Step Catena Programmativa:

1. Compilatore

Un programma ad alto livello viene tradotto nel linguaggio assembly utilizzando il compilatore.

2. Assemblatore

Dopo la fase di compilazione, il programma scritto in linguaggio assembly (definibile come file sorgente) viene tradotto in linguaggio macchina (definibile come file oggetto) dall'assemblatore.

Dunque l'Assemblatore gestisce:

- Etichette
- pseudoistruzioni
- Numeri in base diverse

Ogni lettura del programma sorgente è chiamata **passo** e l'assemblatore è chiamato a tradurre **due** passi.

Questo è dovuto alle etichette di salto che generano il problema dei riferimenti in avanti, ossia, riferimenti ad etichette successive o contenute in altri file.

Le etichette esterne a un modulo rimangono non risolte, perchè di queste se ne occuperà il linker.

3. Linker

Inserisce in memoria in modo simbolico il linguaggio macchina e i moduli dati:
Determina gli indirizzi dei dati e delle etichette che compaiono nelle istruzioni
Corregge i riferimenti interni ed esterni

- Risolve i riferimenti in sospeso, ovvero alle etichette esterne Genera il file eseguibile.

4. Loader

- 1. Leggendo l'intestazione del file eseguibile determina la lunghezza del segmento di testo (istruzioni) e del segmento dati (variabili).
- 2. Crea lo Spazio.
- 3. Copia le istruzioni e dati dal file eseguibile in memoria.
 - 4. Copia nello stack degli eventuali parametri passati al programma principale.
- 5. Inizializza i registri e imposta lo **stack pointer** affinché punti alla prima locazione libera.
- 6. Passa al main la quale copia i parametri nei registri argomento e chiama la procedura principale del programma.
- 7. Quando Il main restituisce il controllo, la procedura di startup **termina** il

programma con una chiamata alla funzione di sistema exit.