基于字的三元模型的拼音输入法

熊泽恩 计24

2024年5月30日

目录

1	<i>~</i> . ⊢	输入法	2
	1.1	简介	2
	1.2	输入输出格式	2
2	基于	字的三元模型	2
	2.1	基本思路	2
	2.2	公式推导	2
	2.3	图论建模	3
	2.4	动态规划求解	4
3	3 实验结果		
4	总结		4

1 拼音输入法

1.1 简介

拼音输入法已经成了我们日常生活中不可分割的一部分。为了简化问题,我们只考虑全拼,即每个汉字对应的拼音串是合法的、完整的汉语拼音。现在的任务是,给定一个由全拼组成的拼音串,需要找到一个汉字串,使得这个汉字串的拼音是给定的拼音串,同时该串在语料库中出现的概率最大。概率越大,说明这个汉字串越有可能是用户想要输入的内容。

我们可以使用在《概率论与数理统计》这门课中学到的"条件概率"相关知识来解决这个问题。

1.2 输入输出格式

- ◆ 输入数据由多行拼音串构成,每行一个拼音串。拼音串中每个拼音之间用空格隔开。不含标点符号、阿拉伯数字等内容。
- 输出数据由多行汉字串构成,每行一个汉字串。汉字串中每个汉字之间没有空格。

输入(input.txt)	输出(output.txt)
gai lv lun yu shu li tong ji	概率论与数理统计
pin yin shu ru fa	拼音输入法
zhe shi yi ge ce shi	这是一个测试
ni hao ma	你好吗

表 1: 样例输入输出

2 基于字的三元模型

2.1 基本思路

设 $\mathcal F$ 为所有合法拼音构成的集合, $\mathcal G$ 为所有合法汉字构成的集合。从合法拼音的集合到合法汉字的集合的映射关系为 $\sigma:\mathcal F\to 2^{\mathcal G}$,其中 $2^{\mathcal G}$ 表示 $\mathcal G$ 的幂集。 σ 表示了一个拼音对应的所有可能的汉字。

对于一个由 n 个拼音构成的序列 $S=s_1s_2\cdots s_n$,我们需要需要确定每个单字拼音 s_i 对应的中文字符 w_i ,使得中文序列 $w_1w_2\cdots w_n$ 最佳。给定 $S=s_1s_2\cdots s_n$,我们定义 $P(w_1w_2\cdots w_n)$ 为 $w_1w_2\cdots w_n$ 与 S 的匹配概率。

形式化地,我们需要找到一个 $W=w_1w_2\cdots w_n$,满足 $w_i\in\sigma(s_i), \forall i\in\{1,2,\cdots,n\}$,使得

$$P(w_1w_2\cdots w_n)$$

最大。

2.2 公式推导

由隐马尔可夫模型 [1], 根据条件概率的定义, 我们有

$$\ln P(w_1 w_2 ... w_n) = \ln P(w_1) + \ln P(w_2 \mid w_1) + \ln P(w_3 \mid w_1 w_2) + \dots + \ln P(w_n \mid w_1 w_2 \cdots w_{n-1})$$

$$= \sum_{i=1}^n \ln P(w_i \mid w_1 w_2 \cdots w_{i-1}). \tag{1}$$

这一结果也是很容易理解的: 我们可以将 $w_1w_2\cdots w_n$ 看作是一个序列,找到最佳的 w_i 的过程即为"汉字接龙"的过程,在给定 $w_1w_2\cdots w_{i-1}$ 的条件下,我们需要找到一个 w_i 使得 $w_1w_2\cdots w_i$ 的匹配概率最大。例如,输入数据为 dong wu yuan,我们已经得到 $w_1= \eth, w_2=$ 物,在这个条件下,我们需要找到 $w_3\in \sigma($ yuan) 使得 $P(\eth h | w_3)$ 最大。由于因能使该概率最大,因此最合理的选择。

在基于字的 m 元模型中,我们认为在长度为 m 的汉字串中, w_i 仅仅与前 m-1 个汉字有关。因此,我们可以将上述公式进一步简化为

$$\sum_{i=1}^{n} \ln P(w_i \mid w_{i-m+1} \cdots w_{i-1}),$$

当 m=3 时,即为基于字的三元模型,我们需要最大化 $\sum_{i=1}^n \ln P(w_i \mid w_{i-2}w_{i-1})$,或者等价地,求

$$\sum_{i=1}^{n} (-\ln P(w_i \mid w_{i-2}w_{i-1}))$$

的最小值。

由条件概率公式,对于每一项而言,有

$$P(w_i \mid w_{i-2}w_{i-1}) = \frac{P(w_{i-2}w_{i-1}w_i)}{P(w_{i-2}w_{i-1})}.$$

再根据极大似然的思想,由于数据量足够大,所以可以用频次之比来估计概率之比。所以,上式可以近似为

$$P(w_i \mid w_{i-2}w_{i-1}) \approx \frac{n(w_{i-2}w_{i-1}w_i)}{n(w_{i-2}w_{i-1})},$$

其中 $n(\cdot)$ 表示该汉字串在数据中的出现次数。

2.3 图论建模

我们可以将上述问题建模为一个有向无环图(Directed Acyclic Graph, DAG),如下所示:

图 1: 有向无环图 [2]

建图如下: 其中 w_0 为虚拟源点, w_{n+1} 为虚拟汇点。给 $\sigma(\cdot)$ 中的元素排序,记 $w_{i,j}$ 为拼音 $s_i \in \mathcal{F}$ 所对应的第 j 个汉字。则 $w_{i-1,k}$ 与 $w_{i,j}$ 之间的边权满足

$$cost(w_{i-1,k}, w_{i,j}) = \begin{cases}
-\ln(P(w_{i,j})), & \text{if } i = 1, \\
-\ln(P(w_{i,j} \mid w_{i-1,k})), & \text{if } i = 2, \\
\min_{v \in \sigma(s_{i-2})} (-\ln(P(w_{i,j} \mid v \mid w_{i-1,k})), & \text{if } 3 \leq i \leq n, \\
0, & \text{if } i = n+1.
\end{cases}$$

这样我们得到了一个有向无环图。题目所求即为 w_0 到 w_{n+1} 的路径最小值。

2.4 动态规划求解

DAG 上最短路可以使用动态规划 [3] 的思想来解决。设 f(i,j) 表示从 w_0 开始,到达 $w_{i,\cdot}$ 这一层对应的 $w_{i,j}$ 所需边权和的最小值。则对于某一点 $w_{i,j}$ 而言,可以枚举它从上一层的哪一个点 $w_{i-1,k}$ 转移过来,即可得 到状态转移方程:

$$f(i,j) = \max_{k \le |\sigma(s_{i-1})|} (f(i-1,k) + \cot(w_{i-1,k}, w_{i,j})).$$

题目所求的 w_0 到 w_{n+1} 的路径最小值, 即为 $f(n+1,w_{n+1})$ 。

3 实验结果

定义字准确率 p_1 为

句准确率 p2 为

$$p_2 = \frac{$$
所有汉字均正确的句子个数
总句数

除了三元模型以外,我还实现了模型更为简单的二元模型,即 w_i 的选择仅与 w_{i-1} 有关; 最终得到实验结果如下表所示:

评价指标	二元模型	三元模型
句准确率	38.92%	46.51%
字准确率	83.72%	87.53%
平均单次响应时长	$0.0135 \; \mathrm{s}$	$0.5909 \; \mathrm{s}$
总响应时长	6.801 s	296.1 s

表 2: 在测试集上的实验效果

实验效果较为理想。由于三元模型比二元模型复杂,所以对应的两种准确率均更高;而模型的复杂性也会导致所用计算时间更长,使得响应时长更长。具体代码和实验数据已上传并开源于[4]。

4 总结

总而言之,我使用条件概率的方法,将拼音输入法问题建模为一个有向无环图上的最短路问题,通过使用 和极大似然的思想,将图上边权的计算简化为数据中的频次之比,并最终使用动态规划的方法求解。

事实上,部分自然语言处理问题背后的原理与拼音输入法问题类似,本质上都是在已确定输出的前 i 个 token 的情况下,预测第 i+1 个 token 的概率分布,并输出概率最大的 token。

我觉得这个问题的解决方法比较有启发性,因为条件概率在《概率论与数理统计》课程中是一个非常重要的概念;解决拼音输入法这个问题也很有意义,因为拼音输入法是我们日常生活中不可或缺的一部分。我通过利用课上学到的知识,将这两者结合起来,这让我感到非常有成就感。

参考文献

[1] Hidden Markov model - Wikipedia, 2024, https://en.wikipedia.org/wiki/Hidden_Markov_model.

- [2] Directed acyclic graph Wikipedia, 2024, https://en.wikipedia.org/wiki/Directed_acyclic_graph.
- [3] Dynamic programming Wikipedia, 2024, https://en.wikipedia.org/wiki/Dynamic_programming.
- [4] Ze-en Xiong, LeverImmy/Probability-and-Statistics-Thesis · GitHub, 2024, https://github.com/LeverImmy/Probability-and-Statistics-Thesis/.