Seaborn

• is also a data visualization library which is build on top of matplotlib.

Load the dataset from seaborns *load_dataset* module

```
In [10]:
              sns.get_dataset_names()
                                           # it will give you the datasets name
Out[10]: ['anagrams',
           'anscombe',
           'attention',
           'brain networks',
           'car_crashes',
           'diamonds',
           'dots',
           'exercise',
           'flights',
           'fmri',
           'gammas',
           'geyser',
           'iris',
           'mpg',
           'penguins',
           'planets',
           'taxis',
           'tips',
           'titanic']
```

Out[17]:

	carat	cut	color	clarity	depth	table	price	x	у	z
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
53935	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76	3.50
53936	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.61
53937	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.56
53938	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
53939	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64

53940 rows × 10 columns

Bar Plots

```
In [19]:
           1 df.cut.value_counts()
Out[19]: Ideal
                       21551
         Premium
                       13791
         Very Good
                       12082
         Good
                       4906
         Fair
                       1610
         Name: cut, dtype: int64
In [23]:
           1
              cut_price = df.groupby(by = 'cut')['price'].mean()
           2
           3 x = cut_price.index
           4 y = cut_price.values
```


Color Palettes in Seaborn:

'Accent', 'Accent r', 'Blues', 'Blues r', 'BrBG', 'BrBG r', 'BuGn', 'BuGn r', 'BuPu', 'BuPu r', 'CMRmap', 'CMRmap r', 'Dark2', 'Dark2 r', 'GnBu', 'GnBu r', 'Greens', 'Greens r', 'Greys', 'Greys r', 'OrRd', 'OrRd r', 'Oranges', 'Oranges r', 'PRGn', 'PRGn r', 'Paired', 'Paired r', 'Pastel1', 'Pastel1 r', 'Pastel2', 'Pastel2 r', 'PiYG', 'PiYG r', 'PuBu', 'PuBuGn', 'PuBuGn r', 'PuBu r', 'PuOr', 'PuOr r', 'PuRd', 'PuRd r', 'Purples', 'Purples r', 'RdBu', 'RdBu r', 'RdGy', 'RdGy r', 'RdPu', 'RdPu r', 'RdYlBu', 'RdYlBu r', 'RdYlGn', 'RdYlGn r', 'Reds', 'Reds r', 'Set1', 'Set1 r', 'Set2', 'Set2 r', 'Set3', 'Set3 r', 'Spectral', 'Spectral r', 'Wistia', 'Wistia r', 'YIGn', 'YIGnBu', 'YIGnBu r', 'YIGn_r', 'YIOrBr', 'YIOrBr_r', 'YIOrRd', 'YIOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm r', 'copper', 'copper r', 'crest', 'crest r', 'cubehelix', 'cubehelix r', 'flag', 'flag r', 'flare', 'flare r', 'gist earth', 'gist earth r', 'gist gray', 'gist gray r', 'gist heat', 'gist heat r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist yarg r', 'gnuplot', 'gnuplot2', 'gnuplot2 r', 'gnuplot r', 'gray', 'gray r', 'hot', 'hot r', 'hsv', 'hsv r', 'icefire', 'icefire r', 'inferno', 'inferno r', 'jet', 'jet r', 'magma', 'magma r', 'mako', 'mako r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism r', 'rainbow', 'rainbow r', 'rocket', 'rocket r', 'seismic', 'seismic r', 'spring', 'spring r', 'summer', 'summer r', 'tab10', 'tab10 r', 'tab20', 'tab20 r', 'tab20b', 'tab20b r', 'tab20c', 'tab20c r', 'terrain', 'terrain r', 'turbo', 'turbo r', 'twilight', 'twilight r', 'twilight shifted', 'twilight shifted r', 'viridis', 'viridis r', 'vlag', 'vlag r', 'winter', 'winter r'

Horizontal Bar Plots

```
In [48]: 1 plt.figure(figsize = (3,5))
2 sns.barplot(x = 'price', y = 'cut',data = df, orient = 'h') # orient = 'v
3 plt.show()
```


Line Plots

Scatter Plot

Distribution Plot

```
In [104]:
                 import warnings
                 warnings.filterwarnings('ignore')
                 sns.distplot(a = df.price)
In [105]:
                 plt.show()
               0.0004
               0.0003
             Density
0.0002
               0.0001
               0.0000
                                    5000
                                              10000
                                                         15000
                                                                    20000
                                              price
```

Reg Plot

· fits a best fit line on the dataset

```
In [112]:
             1 \times = list(range(1,11))
             y = [4, 3, 2, 5, 4, 5, 3, 4, 7, 3]
In [114]:
                sns.regplot(x = x,y = y)
             2 plt.xlabel("x-value")
                plt.ylabel("y-value")
                plt.show()
              7
              6
              5
            y-value
              4
              3
              2
                                                             10
                                      x-value
```

Box Plot

```
In [116]: 1 sns.boxplot(df.price)
2 plt.show()
```



```
In [124]: 1 sns.boxplot(x = 'color', y = 'price',data = df)
2 plt.show()
```


Ġ color Ĥ

Heatmap

In [128]: 1 df.corr()

7500

5000 2500

Out[128]:

	carat	depth	table	price	x	у	z	
carat	1.000000	0.028224	0.181618	0.921591	0.975094	0.951722	0.953387	
depth	0.028224	1.000000	-0.295779	-0.010647	-0.025289	-0.029341	0.094924	
table	0.181618	-0.295779	1.000000	0.127134	0.195344	0.183760	0.150929	
price	0.921591	-0.010647	0.127134	1.000000	0.884435	0.865421	0.861249	
x	0.975094	-0.025289	0.195344	0.884435	1.000000	0.974701	0.970772	
у	0.951722	-0.029341	0.183760	0.865421	0.974701	1.000000	0.952006	
z	0.953387	0.094924	0.150929	0.861249	0.970772	0.952006	1.000000	

In [131]:

```
1 sns.heatmap(df.corr(), annot = True)
2 plt.show()
```


Good

■ Fair

Pairplot

In []: 1