Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-16 (canceled)

Claim 17 (currently amended): A compound of formula 1:

Ar¹-X-W-Ar² 1

wherein Ar1 is

wherein \mathbf{R}^{12} is selected from the group consisting of

$$R^{15}$$
 R^{13}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{30}
 R^{30}
 R^{31}
 R^{32}
 R^{31}
 R^{32}
 R^{31}
 R^{33}
 R^{31}
 R^{33}
 R^{31}
 R^{33}
 R^{31}
 R^{32}
 R^{32}
 R^{31}
 R^{32}
 R^{32}
 R^{33}
 R^{31}
 R^{33}
 R^{33}
 R^{31}
 R^{32}
 R^{32}
 R^{31}
 R^{32}
 R^{32}
 R^{33}
 R^{31}
 R^{32}
 R^{32}
 R^{32}
 R^{33}
 R^{33}
 R^{33}
 R^{33}
 R^{33}

R¹³ represents Cl, Br, COO(C₁₋₄)alkyl and if R⁹ is NO₂, Cl or Br, then R¹³ may also represent F or CH₃;

- 3 -

R¹⁴, R¹⁵, R³¹, R³²,

R³³ are each independently selected from the group consisting of H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-3}) alkyl, (C_{2-6}) alkenyl, (C_{1-4}) alkyl, (C_{1-4}) alkyl, or (C_{1-4}) alkyl, or (C_{1-4}) alkyl;

R³⁰ represents H, Cl, Br, COO(C₁₋₄)alkyl;

R^{12C} is a phenyl of formula

wherein R^{13C} , R^{14C} and R^{15C} each independently represents H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl, (C_{1-3}) alkyl, (C_{2-6}) alkenyl, O- (C_{1-4}) alkyl, S- (C_{4-4}) alkyl, halo, CF_3 , OCF_3 , OH, NO_2 , CN, SO_2NH_2 , SO_2 - (C_{4-4}) alkyl, $C(O)OR^4$ wherein R^4 is H or (C_{4-4}) alkyl, or NR^2R^3 wherein R^2 and R^3 each independently is H or (C_{4-4}) alkyl; provided that at least one of R^{13C} , R^{14C} and R^{15C} is other than hydrogen; or R^{12C} is

wherein R³⁰, R³⁴, R³², R³³ are as defined hereinbefore; and

R^{20A} is H, (C₁₋₄)alkyl, (C₃₋₇)cycloalkyl or (C₃₋₇)cycloalkyl-(C₁₋₃)alkyl-, wherein said alkyl, cycloalkyl or cycloalkylalkyl may be monosubstituted with -OH; and

X is S or O;

W is $CH_2C(O)N\mathbf{R}^6$ wherein \mathbf{R}^6 is H or (C_{1-4}) alkyl; and

Ar² is selected from the group consisting of

$$R^{11} \xrightarrow{R^9} R^{11} \xrightarrow{R^9} R^{11} \xrightarrow{R^9} R^{10} \text{ and } R^{10}$$

wherein \mathbb{R}^9 is halo or NO₂; and if \mathbb{R}^{13} is CI or Br, then \mathbb{R}^9 may also represent (C₁₋₃)alkyl; R¹⁰, R¹¹ are independently of each other selected from the group consisting of H, (C_{1-6}) alkyl, (C_{3-7}) Cycloalkyl, (C_{3-7}) Cycloalkyl- (C_{1-3}) alkyl, (C_{2-6}) alkenyl, $O(C_{1-6})$ 6)alkyl, S(C₁₋₆)alkyl, halo, CF₃, OCF₃, OH, NO₂, CN, -NR^{N1}R^{N2}, -C(O)R²¹, - (C_{1-3}) alkyl- $C(O)R^{21}$, $-C(O)OR^{22}$, $-(C_{1-3})$ alkyl- $C(O)OR^{22}$, $-SO_2$ - (C_{1-3}) alkyl- $C(O)OR^{22}$, wherein \mathbb{R}^{21} is (C_{1-4}) alkyl and \mathbb{R}^{22} is H or (C_{1-4}) alkyl; $-(C_{1-3})$ alkyl $-C(O)NH_2, C(O)NH_2, S(O)-(C_{1-6})$ alkyl, $-SO_2-(C_{1-6})$ alkyl, $-SO_2-$ phenyl, -SO₂-NH₂, phenyl, phenylmethyl, 2-, 3- or 4-pyridinyl, 1-pyrrolyl, whereby said phenyl, pyridinyl and pyrrolyl may have one or more substituents selected from the group consisting of halo, NO₂, C₁₋₃-alkyl and CF₃; wherein R^{N1} , R^{N2} each independently represent H or (C_{1-6}) alkyl, whereby R^{N1} and R^{N2} may be covalently bonded to each other to form together with the N-atom to which they are attached to a 4 to 7-membered heterocycle whereby the -CH₂group at the position 4 of a 6 or 7-membered heterocycle may be replaced by -O-, -S- or -NR^{N3}- wherein R^{N3} represents H, -C(O)OR²², (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-3}) alkyl, wherein \mathbb{R}^{22} is H or (C_{1-4}) alkyl;

or a pharmaceutically acceptable salt thereof.

Claim 18 (currently amended): The compound of formula 1 according to claim 17 wherein \mathbf{Ar}^1 is

wherein R12 is selected from the group consisting of

$$R^{15}$$
 R^{13}
 R^{13}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{15}
 R^{15}

wherein R^{13} , R^{14} , R^{15} , R^{20A} , R^{30} , R^{31} , R^{32} and R^{33} are as defined in claim 17.

Claim 19 (original): The compound of formula 1 according to claim 18 wherein

R¹³ represents CI or Br and

if R^9 is NO_2 , CI or Br, then R^{13} may also represent F or CH_3 ;

R¹⁴, R¹⁵,

R³¹, R³²,

 ${\bf R}^{33}$ are each independently selected from the group consisting of H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇)cycloalkyl-(C₁₋₃)alkyl, (C₂₋₆)alkenyl, O-(C₁₋₄)alkyl, S-(C₁₋₄)alkyl, halo, CF₃, OCF₃, OH, NO₂, CN, SO₂NH₂, SO₂-(C₁₋₄)alkyl, C(O)O ${\bf R}^1$ wherein ${\bf R}^1$ is H or (C₁₋₄)alkyl, or N ${\bf R}^2{\bf R}^3$ wherein ${\bf R}^2$ and ${\bf R}^3$ each independently is H or (C₁₋₄)alkyl; and ${\bf R}^{30}$ represents CI or Br.

Claim 20 (original): The compound of formula 1 according to claim 19 wherein **W** is CH₂C(O)NH.

Claim 21 (original): A compound according to claim 17 wherein

wherein R¹² is selected from the group consisting of

X is S;

 \boldsymbol{W} is $CH_2C(O)N\boldsymbol{R}^6$ wherein \boldsymbol{R}^6 is H or $(C_{1\text{--}4})alkyl;$ and \boldsymbol{Ar}^2 is

wherein \mathbf{R}^9 is halo or NO_2 ; or

Ar² is

wherein \mathbf{R}^9 is halo or NO_2 and \mathbf{R}^{10} is halo; or

Ar² is

$$R^9$$

wherein \mathbf{R}^9 is halo or NO₂, and \mathbf{R}^{10} is OMe, halo, OH, NO₂, phenyl, C(O)OH or C(O)OMe.

Claim 22 (canceled)

Claim 23 (original): A compound of formula 1, according to claim 17, wherein Ar¹ is:

and wherein \mathbf{R}^{12} selected from the group consisting of:

and

Claim 24 (canceled)

Claim 25 (currently amended): A compound of formula 1, according to claim 17, wherein

Ar² is selected from the group consisting of

wherein R9 is CI or NO2 and

R^{10A} is C₁₋₄alkyl;

 ${f R}^{10}$ is selected from the group consisting of (C_{1-4}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-3}) alkyl, (C_{2-6}) alkenyl, $O(C_{1-6})$ alkyl, $S(C_{1-6})$ alkyl, halo, CF_3 , OCF_3 , OH, NO_2 , CN, $-NR^{N1}R^{N2}$, $-C(O)R^{21}$, $-(C_{1-3})$ alkyl- $C(O)R^{21}$, $-C(O)OR^{22}$, $-(C_{1-3})$ alkyl- $C(O)OR^{22}$, $-(C_{1-3})$ alkyl- $C(O)NH_2$, $C(O)NH_$

wherein \mathbf{R}^{21} is (C_{1-4}) alkyl and \mathbf{R}^{22} is H or (C_{1-4}) alkyl;

wherein $\mathbf{R^{N1}}$, $\mathbf{R^{N2}}$ each independently represent H or (C_{1-6}) alkyl, whereby $\mathbf{R^{N1}}$ and $\mathbf{R^{N2}}$ may be covalently bonded to each other to form together with the N-atom to which they are attached to a 4 to 7-membered heterocycle whereby the -CH₂-group at the position 4 of a 6 or 7-membered heterocycle may be replaced by -O-, -S- or -N $\mathbf{R^{N3}}$ - wherein $\mathbf{R^{N3}}$ represents H, -C(O)O $\mathbf{R^{22}}$, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₃₋₇)cycloalkyl-(C₁₋₃)alkyl, wherein $\mathbf{R^{22}}$ is H or (C₁₋₄)alkyl.

Claim 26 (original): A compound of formula 1, according to claim 25, wherein Ar² is:

Claim 27 (canceled)

Claim 28 (original): A pharmaceutical composition comprising a compound of formula 1 as defined in claim 17, or a pharmaceutically acceptable salt thereof, and optionally one or more pharmaceutically acceptable carriers.

Claim 29 (canceled)

Claim 30 (original): A pharmaceutical composition for the treatment of HIV infection, comprising a compound of formula 1 as defined in claim 17, or a pharmaceutically acceptable salt thereof.

Claim 31 (canceled)