Paradigmas de Programación

Razonamiento ecuacional Inducción estructural

2do cuatrimestre de 2024 Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Introducción

Inducción estructural

Extensionalidad

Isomorfismos de tipos

Motivación

Validación y verificación de programas

¿Cómo mostramos que un programa hace lo que tiene que hacer?

- Existen diferentes técnicas para abordar este problema.
- ► En esta materia veremos **prueba formal de propiedades** para razonar sobre el comportamiento de programas.
- ▶ ∀xs :: [a]. length xs = length (reverse xs)
- ▶ ∀xs :: [a]. reverse xs = reverse (reverse xs)

Prueba formal de propiedades

Queremos demostrar que ciertas expresiones son equivalentes.

Usos

- Probar que un programa es correcto
- ► Razonar sobre optimizaciones/alternativas

```
f x + f x = 2 * f x

map f (map g xs) = map (f . g) xs
```

Hipótesis de trabajo

Vamos a asumir que

1. Trabajamos con estructuras de datos **finitas**.

Técnicamente: con tipos de datos inductivos.

- 2. Trabajamos con **funciones totales**.
 - Las ecuaciones deben cubrir todos los casos.
 - La recursión siempre debe terminar.
- 3. El programa **no depende del orden** de las ecuaciones.

```
vacia [] = True

vacia \_ = False \xrightarrow{\text{vacia}} vacia [] = True

vacia \_ = False
```

Relajar estas hipótesis es posible pero más complejo.

Igualdades por definición

Principio de reemplazo

Sea e1 = e2 una ecuación del programa. Las siguientes operaciones preservan la igualdad de expresiones:

- 1. Reemplazar cualquier instancia de e1 por e2.
- 2. Reemplazar cualquier instancia de e2 por e1.

Si una igualdad se puede demostrar usando sólo el principio de reemplazo, decimos que la igualdad vale **por definición**.

Ejemplo: principio de reemplazo

```
Considerar el siguiente programa (damos nombre a las ecuaciones):

sucesor :: Int -> Int

{SUC} sucesor n = n + 1

sucesor (factorial 10) + 1

= (factorial 10 + 1) + 1 por SUC

= sucesor (factorial 10 + 1) por SUC
```

Igualdades por definición

```
Ejemplo: principio de reemplazo
\{L0\} length [] = 0
\{L1\} length (\_:xs) = 1 + length xs
\{SO\} suma [] = 0
\{S1\} suma (x : xs) = x + suma xs
Veamos que length ["a", "b"] = suma [1, 1]:
           length ["a", "b"]
         = 1 + length ["b"] por L1
         = 1 + (1 + length []) por L1
        = 1 + (1 + 0) por L0
        = 1 + (1 + suma []) por S0
         = 1 + suma [1] por S1
         = suma [1, 1]
                      por S1
```

Introducción

Inducción estructural

Extensionalidad

Isomorfismos de tipos

Inducción sobre booleanos

El principio de reemplazo no alcanza para probar todas las equivalencias que nos interesan.

```
Ejemplo
{NT} not True = False
{NF} not False = True
; Podemos probar \forall x :: Bool. not (not x) = x?
El problema es que la expresión
                     not (not x)
está "trabada": no se puede aplicar ninguna ecuación.
```

Inducción sobre booleanos

Principio de inducción sobre booleanos

Si $\mathcal{P}(\text{True})$ y $\mathcal{P}(\text{False})$ entonces $\forall x :: Bool. <math>\mathcal{P}(x)$.

```
Ejemplo
```

```
\{NT\} not True = False
```

 ${NF}$ not False = True

Para probar $\forall x :: Bool. not (not x) = x$, basta probar:

1. not (not True) = True.

```
not (not True) = not False = True \uparrow
NT NF
```

2. not (not False) = False.

```
not (not False) = not True = False \uparrow NF NT
```

Inducción sobre pares

Inducción y tipos de datos

Cada tipo de datos tiene su propio principio de inducción.

Ejemplo

```
{FST} fst (x, _) = x

{SND} snd (_, y) = y

{SWAP} swap (x, y) = (y, x)

¿Podemos probar \forall p :: (a, b). fst p = snd (swap p)?

Las expresiones (fst p) y (snd (swap p)) están "trabadas".
```

Inducción sobre pares

Principio de inducción sobre pares

```
Si \forall x :: a. \forall y :: b. \mathcal{P}((x, y)) entonces \forall p :: (a, b). \mathcal{P}(p).
```

```
Ejemplo
```

```
{FST} fst (x, _) = x

{SND} snd (_, y) = y

{SWAP} swap (x, y) = (y, x)

Para probar \forall p :: (a, b). fst p = snd (swap p)

basta probar:

\forall x :: a. \forall y :: b. fst (x, y) = snd (swap (x, y))

fst (x, y) = x = snd (y, x) = snd (swap (x, y))

\uparrow \uparrow \uparrow snd SWAP
```

Inducción sobre naturales

Naturales

data Nat = Zero | Suc Nat

Principio de inducción sobre naturales

Si
$$\mathcal{P}(\texttt{Zero})$$
 y $\forall n :: \texttt{Nat.}$ ($\underbrace{\mathcal{P}(n)}_{\texttt{hipótesis inductiva}} \Rightarrow \underbrace{\mathcal{P}(\texttt{Suc } n)}_{\texttt{tesis inductiva}}$), entonces $\forall n :: \texttt{Nat.}$ $\mathcal{P}(n)$.

Inducción sobre naturales

Ejemplo $\{SO\}$ suma Zero m = m $\{S1\}$ suma (Suc n) m = Suc (suma n) m Para probar $\forall n :: Nat. suma n Zero = n$ basta probar: 1. suma Zero Zero = Zero. Inmediato por S0. 2. suma n Zero = $n \Rightarrow$ suma (Suc n) Zero = Suc n. H.I. TΙ suma (Suc n) Zero = Suc (suma n Zero) = Suc n H.I.

Inducción estructural: Caso general

Tipos de datos inductivo

```
\begin{array}{rcl} \operatorname{data} & T & = & \operatorname{CBase}_1 \left\langle \operatorname{\textit{parámetros}} \right\rangle & \dots & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &
```

Principio de inducción estructural

Sea ${\mathcal P}$ una propiedad acerca de las expresiones tipo T tal que:

- \triangleright \mathcal{P} vale sobre todos los constructores base de T,
- P vale sobre todos los constructores recursivos de T, asumiendo como hipótesis inductiva que vale para los parámetros de tipo T,

entonces $\forall x :: T. \mathcal{P}(x)$.

Inducción estructural

Ejemplo: principio de inducción sobre listas

```
data [a] = [] | a : [a]
```

Sea $\mathcal P$ una propiedad sobre expresiones de tipo [a] tal que:

- ▶ P([])

Entonces $\forall xs :: [a]. \mathcal{P}(xs).$

Inducción estructural

Ejemplo: principio de inducción sobre árboles binarios

data AB a = Nil | Bin (AB a) a (AB a)

Sea ${\mathcal P}$ una propiedad sobre expresiones de tipo AB $\,$ a tal que:

- ▶ $\mathcal{P}(\text{Nil})$
- $ightharpoonup \forall i :: AB a. \forall r :: a. \forall d :: AB a.$

$$(\underbrace{(\mathcal{P}(\mathtt{i}) \land \mathcal{P}(\mathtt{d}))}_{\mathsf{H.l.}} \Rightarrow \underbrace{\mathcal{P}(\mathtt{Bin} \ \mathtt{i} \ \mathtt{r} \ \mathtt{d})}_{\mathsf{T.l.}})$$

Entonces $\forall x :: AB \ a. \ \mathcal{P}(x)$.

Inducción estructural

Ejemplo: principio de inducción sobre polinomios

```
data Poli a = X
                          | Cte a
                          | Suma (Poli a) (Poli a)
                          | Prod (Poli a) (Poli a)
Sea \mathcal{P} una propiedad sobre expresiones de tipo Poli a tal
que:
   \triangleright \mathcal{P}(X)
   \triangleright \forallk :: a. \mathcal{P}(\mathsf{Cte}\ \mathsf{k})
   ▶ ∀p :: Poli a. ∀q :: Poli a.
             ((\mathcal{P}(\mathtt{p}) \land \mathcal{P}(\mathtt{q})) \Rightarrow \mathcal{P}(\mathtt{Suma} \ \mathtt{p} \ \mathtt{q}))
   ▶ ∀p :: Poli a. ∀q :: Poli a.
             ((\mathcal{P}(\mathtt{p}) \land \mathcal{P}(\mathtt{q})) \Rightarrow \mathcal{P}(\mathtt{Prod} \ \mathtt{p} \ \mathtt{q}))
Entonces \forall x :: Poli \ a. \ \mathcal{P}(x).
```

Ejemplo: inducción sobre listas

```
\{MO\} map f [] = []
\{M1\} map f (x : xs) = f x : map f xs
\{AO\} [] ++ ys = ys
\{A1\}\ (x : xs) ++ ys = x : (xs ++ ys)
Propiedad. Si f :: a \rightarrow b, xs :: [a], ys :: [a], entonces:
         map f(xs ++ ys) = map f xs ++ map f ys
Por inducción en la estructura de xs. basta ver:
 1. Caso base, \mathcal{P}([]).
 2. Caso inductivo, \forall x :: a. \forall xs :: [a]. (\mathcal{P}(xs) \Rightarrow \mathcal{P}(x : xs)).
```

con $\mathcal{P}(xs) :\equiv (map f (xs ++ ys) = map f xs ++ map f ys)$.

Ejemplo: inducción sobre listas

Caso base:

```
map f ([] ++ ys)

= map f ys por AO

= [] ++ map f ys por AO

= map f [] ++ map f ys por MO
```

Caso inductivo:

Ejemplo: relación entre foldr y foldl

Propiedad. Si $f :: a \rightarrow b \rightarrow b, z :: b, xs :: [a], entonces:$

$$\underbrace{\text{foldr f z xs = foldl (flip f) z (reverse xs)}}_{\mathcal{P}(xs)}$$

Por inducción en la estructura de xs. El caso base $\mathcal{P}([])$ es fácil. Caso inductivo, $\forall x :: a. \forall xs :: [a]. (\mathcal{P}(xs) \Rightarrow \mathcal{P}(x :: xs))$:

Para justificar el paso faltante (???), se puede demostrar:

Lema. Si g :: b -> a -> b, z :: b, x :: a, xs :: [a], entonces:

```
foldl g z (xs ++ [x]) = g (foldl g z xs) x
```

Introducción

Inducción estructural

Extensionalidad

Isomorfismos de tipos

Extensionalidad

Usando el principio de inducción estructural, se puede probar:

Extensionalidad para pares

Si p :: (a, b), entonces
$$\exists x :: a. \exists y :: b. p = (x, y).$$

data Either a b = Left a | Right b

Extensionalidad para sumas

Si e :: Either a b, entonces:

- ▶ o bien ∃x :: a. e = Left x
- ▶ o bien ∃y :: b. e = Right y

Puntos de vista intensional vs. extensional

¿Vale la siguiente equivalencia de expresiones?

mergesort = insertionSort

Depende del punto de vista.

- Punto de vista intensional. (va con "s")
 Dos valores son iguales si están definidos de la misma manera.
- Punto de vista extensional.
 Dos valores son iguales si son indistinguibles al observarlos.

Ejemplo

mergesort e insertionSort

- no son intensionalmente iguales;
- ▶ sí son extensionalmente iguales: computan la misma función.

Principio de extensionalidad funcional

```
Sean f, g :: a -> b.
```

Propiedad inmediata

Sif = g entonces $(\forall x :: a. f x = g x)$.

Principio de extensionalidad funcional

Si $(\forall x :: a. f x = g x)$ entonces f = g.

Principio de extensionalidad funcional

Ejemplo: extensionalidad funcional

```
{I} id x = x {C} (g . f) x = g (f x) {S} swap (x, y) = (y, x)
```

Veamos que swap . swap = id :: (a, b) -> (a, b). Por extensionalidad funcional, basta ver:

```
\forall p :: (a, b). (swap . swap) p = id p
```

Por inducción sobre pares, basta ver:

```
\forall x :: a. \forall y :: b. (swap . swap) (x, y) = id (x, y)
```

```
En efecto: (swap . swap) (x, y)
= swap (swap (x, y)) (por C)
= swap (y, x) (por S)
= (x, y) (por S)
= id (x, y) (por I)
```

Resumen: razonamiento ecuacional

Razonamos ecuacionalmente usando tres principios:

1. Principio de reemplazo

Si el programa declara que e1 = e2, cualquier instancia de e1 es igual a la correspondiente instancia de e2, y viceversa.

2. Principio de inducción estructural

Para probar \mathcal{P} sobre todas las instancias de un tipo T, basta probar \mathcal{P} para cada uno de los constructores (asumiendo la H.I. para los constructores recursivos).

3. Principio de extensionalidad funcional

Para probar que dos funciones son iguales, basta probar que son iguales punto a punto.

Corrección del razonamiento ecuacional

Se puede demostrar

quickSort = insertionSort

pero quickSort e insertionSort no son el mismo código.

Corrección con respecto a observaciones

Si demostramos e1 = e2 :: A, entonces para toda posible "observación" obs :: A -> Bool.

obs e1 → True si y sólo si obs e2 → True

Demostración de desigualdades

¿Cómo demostramos que **no** vale una igualdad e1 = e2 :: A?

Por la contrarrecíproca de la anterior, basta con encontrar una observación obs :: A -> Bool que las distinga.

Ejemplo

Demostrar que no vale la igualdad:

```
id = swap :: (Int, Int) -> (Int, Int)

obs :: ((Int, Int) -> (Int, Int)) -> Bool

obs f = fst (f (1, 2)) == 1

obs id \rightsquigarrow True
```

obs swap \rightsquigarrow False

Introducción

Inducción estructural

Extensionalidad

Isomorfismos de tipos

Misma información, distinta forma

¿Qué relación hay entre los siguientes valores?

```
("hola", (1, True)) :: (String, (Int, Bool))
((True, "hola"), 1) :: ((Bool, String), Int)
```

Representan la misma información, pero escrita de distinta manera.

Podemos transformar los valores de un tipo en valores del otro:

```
f :: (String, (Int, Bool)) -> ((Bool, String), Int)
f (s, (i, b)) = ((b, s), i)
```

```
g :: ((Bool, String), Int) -> (String, (Int, Bool))
g ((b, s), i) = (s, (i, b))
```

Se puede demostrar que:

$$g \cdot f = id$$
 $f \cdot g = id$

Isomorfismos de tipos

Definición

Decimos que dos tipos de datos A y B son isomorfos si:

- 1. Hay una función f :: A -> B total.
- 2. Hay una función g :: B -> A total.
- 3. Se puede demostrar que g . $f = id :: A \rightarrow A$.
- 4. Se puede demostrar que f . $g = id :: B \rightarrow B$.

Escribimos A \simeq B para indicar que A y B son isomorfos.

Ejemplo de isomorfismo: currificación

Ejemplo

```
Veamos que ((a, b) -> c) \simeq (a -> b -> c).

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry f (x, y) = f x y
```

Ejemplo de isomorfismo: currificación

```
Veamos que
uncurry . curry = id :: ((a, b) \rightarrow c) \rightarrow (a, b) \rightarrow c
Por extensionalidad funcional, basta ver que si f :: (a, b) -> c:
(uncurry . curry) f = id f :: (a, b) \rightarrow c
Por extensionalidad funcional, basta ver que si p :: (a, b):
(uncurry . curry) f p = id f p :: c
Por inducción sobre pares, basta ver que si x :: a, y :: b:
(uncurry . curry) f(x, y) = id f(x, y) :: c
En efecto:
          (uncurry . curry) f (x, y)
      = uncurry (curry f) (x, y) (Def. (.))
      = curry f x y
                                          (Def. uncurry)
      = f(x, y)
                                          (Def. curry)
                                          (Def. id)
      = id f (x, y)
(Y vale también curry . uncurry = id).
```

Más isomorfismos de tipos

(a, b)

$$\simeq$$
 (b, a)

 (a, (b, c))
 \simeq
 ((a, b), c)

 a -> b -> c
 \simeq
 b -> a -> c

 a -> (b, c)
 \simeq
 (a -> b, a -> c)

 Either a b -> c
 \simeq
 (a -> c, b -> c)