${\bf Communication_{SS~2021}~Networks~2}$

Assignment 3

Group 06

Name	Mat.Nummer
Paul Kloker	12034928
Juan Aramis Oposich	11701238

1 Task description

2 Procedure

2.1 Host discovery with nmap

There are different techniques to discover active hosts on a network. One of them is the use of nmap, which is a free and open source tool for network discovery and security auditing. To find the missing host in 10.0.0.0/16 the following command was used:

\$ nmap --privileged -sn -n -T5 --min-parallelism 100 --min-hostgroup 100
10.0.0.0/16

To speed up the discovery process, which can take very long time in large networks, multiple options were added to the bare nmap command \$ nmap 10.0.0.0/16. This reduced the waiting time to 23 minutes, which is still quite long.

Table 1 shows the result of this nma	p host discovery	v search in 10.1.0.0)/8 and 10.0.0.0	1/8.
Table I bliews the result of this fille	ip Hobe dibootel	, bearen in ioii co.	<i>,,</i> 0 and 10.0.0.0	,

No.	Network	IP address	latency
1	10.0.0.0/8	10.0.4.1	0.0075s
2	10.0.0.0/8	10.0.4.2	0.23s
3	10.0.0.0/8	10.0.120.1	0.20s
4	10.0.0.0/8	10.0.120.2	0.0085s
5	10.0.0.0/8	10.0.132.1	0.024s
6	10.0.0.0/8	10.0.132.68	0.18s
7	10.0.0.0/8	10.0.248.1	0.78s
8	10.0.0.0/8	10.0.248.2	0.16s
9	10.1.0.0/8	10.1.6.1	0.18s
10	10.1.0.0/8	10.1.6.110	0.18s
11	10.1.0.0/8	10.1.7.1	1.5s
12	10.1.0.0/8	10.1.7.123	0.78s

Table 1: Discovered IP addresses

Later research and additional information showed that the 6th found IP address 10.0.132.68 belongs to the missing host.

2.2 Ping measurements

To identify which IP address belongs to the landline and satellite host a simple ping command was sent out to the according DNS names. landline.cn2lab.cn.tuwien.ac.at was resolved to 10.1.6.110 and satellite.cn2lab.cn.tuwien.ac.at to 10.1.7.123.

In order to obtain information about the network topology and the Round Trip Time (RTT) and loss rate of each host, the ping command was used as well. For each IP address from table 1 the following command was adapted and executed:

```
$ ping -c 50 -R 10.1.7.123 > 10_1_7_123.txt
```

This delivered 50 individual measurements of the RRT which were then saved to a text file and are discussed in section 3.

With the -R the record route option was activated. That means all internet modules that route this message add their IP address to the IP option field. This method is better than just using the command traceroute because here the reverse path is recorded as well.

Some recorded routes show that the reverse path can be different from the forward path. This is for example the recorded route of the satellite host:

```
RR: pc18.cn2lab.cn.tuwien.ac.at (192.168.88.118)
10.0.120.2 (10.0.120.2)
10.0.248.2 (10.0.248.2)
10.1.7.1 (10.1.7.1)
satellite.cn2lab.cn.tuwien.ac.at (10.1.7.123)
satellite.cn2lab.cn.tuwien.ac.at (10.1.7.123)
10.0.4.2 (10.0.4.2)
border.cn2lab.cn.tuwien.ac.at (192.168.88.2)
pc18.cn2lab.cn.tuwien.ac.at (192.168.88.118)
```

2.3 Network topology

Using the data of the nmap and ping commands, the network topology could be identified and a network diagram created which can be seen in figure 1. Table 2 shows the routing tables of the three routers. Some entries could not be identified by just using the ping command on the lab pc.

Figure 1: Network diagram

router	destination	via	
r1	10.0.4.0/24	10.0.4.1	
r1	10.0.120.0/24	10.0.120.2	
r1	10.0.132.0/24	10.0.132.1	
r1	10.0.248.0/24	10.0.120.2	
r1	10.1.6.0/24	10.0.120.2	
r1	10.1.7.0/24	10.0.120.2	
r1	192.168.88.0/24	192.168.88.2	
r2	10.0.4.0/24	-	
r2	10.0.120.0/24	10.0.120.1	
r2	10.0.132.0/24	-	
r2	10.0.248.0/24	10.0.248.2	
r2	10.1.6.0/24	10.1.6.1	
r2	10.1.7.0/24	10.0.248.2	
r2	192.168.88.0/24	10.0.120.1	
r3	10.0.4.0/24	10.0.4.2	
r3	10.0.120.0/24	-	
r3	10.0.132.0/24	-	
r3	10.0.248.0/24	10.0.248.1	
r3	10.1.6.0/24	-	
r3	10.1.7.0/24	10.0.7.1	
r3	192.168.88.0/24	10.0.4.2	

Table 2: Routing table

3 Data analysis and comparison

- Welche daten liefert ping
- Grafische Darstellung (besonders Vergleich von Landline und Satellite)
- Vergleich mit den gemessenen Daten von Task 2

One of the most important as metrics of a real-time communication like VoIP is the end-to-end (T_{EE}) delay. In this context the ITU-T recommendation G.114 has classified the user acceptance for end-to-end delays in a VoIP call [ITU-TRecommendationG.114]:

End-to-End delay	User experience
$T_{EE} < 150$ $150 < T_{EE} < 300$ $T_{EE} \ge 300$	acceptable for all users noticeable quality degradation, but still acceptable for most users not acceptable

Table 3: Delay to user experience

To determine the one-way transmission time it is mandatory to divide the RRT value by two.

Figure 2: Propobility density of one way delay

4 Conclusion

Device	IP addresses	loss	RTT: min	avg	max	mdev
r1	10.0.120.2	0 %	$7.326~\mathrm{ms}$	8.116 ms	$8.910 \mathrm{\ ms}$	$0.420~\mathrm{ms}$
	10.0.4.1	0%	$7.370~\mathrm{ms}$	$8.117~\mathrm{ms}$	$8.911~\mathrm{ms}$	$0.457~\mathrm{ms}$
	10.0.132.1	0%	$7.402~\mathrm{ms}$	$8.164~\mathrm{ms}$	$8.910~\mathrm{ms}$	$0.431~\mathrm{ms}$
r2	10.0.120.1	0 %	153.474 ms	163.019 ms	313.394 ms	21.716 ms
	10.0.248.2	0%	$154.024~\mathrm{ms}$	$160.040~\mathrm{ms}$	$167.527~\mathrm{ms}$	$3.571~\mathrm{ms}$
	10.1.6.1	0%	$153.802~\mathrm{ms}$	$160.757~\mathrm{ms}$	$166.669~\mathrm{ms}$	$3.147~\mathrm{ms}$
r3	10.0.4.2	0 %	153.550 ms	163.382 ms	307.946 ms	20.883 ms
	10.0.248.1	6%	$747.294~\mathrm{ms}$	$759.654~\mathrm{ms}$	$777.453~\mathrm{ms}$	$9.390~\mathrm{ms}$
	10.1.7.1	8 %	$748.035~\mathrm{ms}$	$759.357~\mathrm{ms}$	$773.321~\mathrm{ms}$	$8.581~\mathrm{ms}$
Satellite	10.1.7.123	6 %	745.616 ms	759.713 ms	776.987 ms	$10.471 \; \text{ms}$
Landline	10.1.6.110	0 %	154.818 ms	159.911 ms	165.216 ms	$3.349~\mathrm{ms}$
Unknown host	10.0.132.68	0 %	$7.323~\mathrm{ms}$	8.189 ms	$8.966~\mathrm{ms}$	$0.518~\mathrm{ms}$

Table 4: Ping data from lab pc to different network devices (50 packets)