• occurrence probability of $T_{\ell}A_{i}$ related papers

Term		Sı	ubcateg	ory labels			D (id-)	D., L. L. T.	Publication
labels	S_i		\mathcal{CC}_i		A_i		Papers (title)	Probability	years
Tc ₁₇₂ A ₅₄	S ₁₁	0.0100	CC ₁₂	0.0032	A_{54}	0.0379	Arc Welding Robot Systems for Large Steel Constructions	0.00012076	1983
$Tc_{181}A_{55}$		0.0050	cc_2	0.0032	A_{55}	0.0275	Walking robot for underwater construction	0.00004391	1983
Tc237A54	S ₁₁	0.0100	cc ₁₂₀	0.0064	A ₅₄	0.0379	Arc welding robot with maximum flexibility for large steel construction	0.00024152	1984
$Tc_{236}A_{54}$		0.0050	cc ₈	0.0032	A_{54}	0.0379	Application of intelligent robot arc-welding system to large-sized steel	0.00006038	1985
$Tc_{171}A_{54}$		0.0050	cc ₁₃	0.0032	A_{54}	0.0379	Robotized welding of large offshore constructions	0.00006038	1986
Tc43A14	S125	0.0050	CC ₁₂₀	0.0064	A ₁₄	0.0138	Development of positioning systems for autonomous robots on construction sites	0.00004391	1989
Tc97.A31		0.0050	CC42	0.0128	A ₃₁	0.0069	Framework for construction robot fleet management system	0.00004391	1990
Tc_7A_1	S ₆₅	0.0050	cc ₆₃	0.0032	A_1	0.0189	Automation and robotics for road construction and maintenance	0.00003019	1990
Tc19A50	S33	0.0100	CC36	0.0192	A_{50}	0.0516	Position-force adaptive control of a robot with applications in construction	0.00098804	1991
Tc11A20	S34	0.0050	CC36	0.0192	A_{20}	0.0138	Automation of surface treatment in construction by using a robot	0.00013174	1991
$Tc_{97}A_{31}$		0.0050	CC ₄₂	0.0128	A_{31}	0.0069	Construction robot fleet management system prototype	0.00098804	1991
$Tc_{115}A_4$	S ₇₆	0.0050	CC ₉₅	0.0096	A_4		SSR: a mobile robot on ferromagnetic surfaces	0.00000823	1992
$Tc_{82}A_{24}$		0.0050	CC ₃₃	0.0032	A_{24}	1 1111/24	Real-time robot path planning using the potential function method	0.00003568	1993
$Tc_{64}A_{20}$	S ₆	0.0846	CC ₃₈	0.0064	A_{20}	0.0138	Position-force adaptive control for construction robots		
Tc97A7		0.0050	CC42	0.0128	A ₇	0.0207	Managing multiple construction robots with a computer	0.00074652	1993
Tc106A32	S39	0.2289	CC52	0.0032	A ₃₂	0.0310	Model-based guidance by the longest common subsequence algorithm for indoor autonomous vehicle navigation using computer vision	0.00010704	1993

Tc80A24	S ₁₀	0.0050	CC ₆₅	0.0096	A_{24}	0.0224	Map representation of a large in-door environment with path planning and navigation abilities for an autonomous mobile robot with its implementation on a real robot		1993
Tc13A14		0.0050	CC ₁₁₅	0.0224	A ₁₄	0.0138	Self-Position Measuring Method for Moving Robot Working at Construction Sites	0.00015370	1994
Tc97A48		0.0050	CC ₄₂	0.0128	A_{48}	0.0034	Logistics Support System for Construction Robotics Implementation	0.00002196	1994
Tc87A50		0.0050	CC ₅	0.0160	A_{50}	0.0516	Study on active vibration control of arm for construction machinery – modelling and linear-control simulation	0.00041168	1994
Tc75A22	S74	0.0050	CC73	0.1282	A_{22}	0.0534	Path planning and sensing for an experimental masonry building robot	0.00340326	1994
$Tc_{137}A_{45}$	S ₅₀	0.0050	CC79	0.0256	A_{45}	0.0241	Construction robot force control in cleaning operations	0.00030739	1994
Tc51A50	S ₂₂	0.0100	cc ₁₀	0.0096	A_{50}	0.0516	On the dynamic control of a hydraulic large range robot for construction applications	0.00049402	1995
Tc84A24		0.0050	CC ₁₀₃	0.0224	A_{24}	0.0224	A behavioral language for motion planning in building construction	0.00024976	1995
Tc ₈₄ A ₃₄		0.0050	CC ₁₀₃	0.0224	A ₃₄	0.0413	Integration of CAD drawings and construction robot motion controllers	0.00046109	1996
Tc ₁₆₄ A ₅₀		0.0050	CC ₁₁₄	0.0128	A_{50}	0.0516	Construction robot for three-dimensional shapes based on the nesting behavior of paper wasps	0.00032935	1996
Tc ₁₃ A ₁₄		0.0050	CC ₁₁₅	0.0224	A_{14}	0.0138	Self-position measuring method for moving robot working at construction sites (2nd report, improvement of pillar- detecting algorithm)	0.00015370	1996
$T_{c79}A_{22}$	S ₂₁	0.0050	CC70	0.0096	A_{22}	0.0534	Controlled hydraulics for a direct drive brick laying robot	0.00025524	1996
Tc116A58		0.0050	CC70	0.0096	A_{58}	0.0069	Development of interior finishing unit assembly system with robot: WASCOR IV research project report	0.00003293	1996
Tc78A22	S ₁	0.0149	CC71	0.0032	A ₂₂	0.0534	Technological aspects in the development of a mobile bricklaying robot	0.00025524	1996
Tc27A11		0.0050	CC90	0.0256	A ₁₁	0.0551	Automatic generation of the controlling-system for a wall construction robot	0.00070261	1996
$Tc_{140}A_{46}$	s_1	0.0149	CC ₁₂₁	0.0032	A_{46}	0.0052	Robotic mapping of building interior - Precision analysis	0.00002470	1997

							Steel frame welding robot systems and their application at		
$Tc_{170}A_{54}$	S ₁₄	0.0697	CC ₁₄	0.0032	A_{54}	0.0379	the construction site	0.00084533	1997
Tc117A34	S70	0.0050	CC26	0.0256	A ₃₄	0.0413	Robot assembly system for the construction process automation	0.00052696	1997
Tc ₁₈₉ A ₃₂		0.0050	cc ₂₆	0.0256	A_{32}	0.0310	A fuzzy navigation system for mobile construction robots	0.00039522	1997
Tc ₁₈₉ A ₅₆		0.0050	CC ₂₆	0.0256	A ₅₆	0.0688	Feasibility of automating military's environmental operations	0.00087826	1997
Tc60A53	S ₁₄	0.0697	CC ₄₆	0.0128	A_{53}	0.0069	Development of a distributed multiple mobile robot control system for automatic highway maintenance and construction	0.00061478	1997
Tc33A12		0.0050	CC49	0.0160	A_{12}	0.0241	Selection of optimal construction robot using genetic algorithm	0.00019212	1997
Tc121A26	S154	0.0050	CC90	0.0256	A ₂₆	0.0052	The development of a rapid-prototyping technique for mechatronic-augmented heavy plant	0.00006587	1997
Tc42A53	S54	0.1393	CC90	0.0256	A ₅₃	0.0069	Distributed control of a multiple tethered mobile robot system for highway maintenance and construction	0.00245913	1997
$Tc_{205}A_{50}$		0.0050	CC ₉₂	0.0064	A_{50}	0.0516	Programming construction robots using virtual reality techniques	0.00016467	1997
Tc29A12	S 39	0.2289	CC96	0.0096	A_{12}	0.0241	Vision-based interactive path planning for robotic bridge paint removal	0.00530250	1997
Tc_6A_1	S66	0.0050	CC ₆₄	0.0064	A_1	0.0189	A new facility for testing accurate positioning systems for road construction robotics	0.00006038	1998
Tc_5A_1	S ₆₇	0.0050	cc ₆₅	0.0096	A_1	0.0189	AutoPave: Towards an automated paving system for asphalt pavement compaction operations	0.00009057	1998
Tc4A1	S 6	0.0846	CC73	0.1282	A_1	0.0189	Automated and robotics-based techniques for road construction	0.02052933	1998
Tc31A12	S94	0.0050	cc ₉₆	0.0096	A_{12}	0.0241	Automation infrastructure system for a robotic 30-ton bridge crane	0.00011527	1998
$Tc_{200}A_{56}$		0.0050	cc ₈₁	0.0032	A_{56}	0.0688	Teleoperation control of ETS-7 robot arm for on-orbit truss construction	0.00010978	1999

							D 1		1
Tc70A38		0.0050	CC89	0.0096	A ₃₈	0.0155	Development of a Construction Robot for Marking on Ceiling Boards: 2nd Report, Drawing a Long Straight Line on the Ceiling	0.00007410	1999
Tc118A34	S ₁₃₈	0.0050	CC26	0.0256	A ₃₄	0.0413	Robot assembly system for computer-integrated construction	0.00052696	2000
$Tc_{226}A_7$	S44	0.0050	CC ₄₃	0.0064	A_7	0.0207	Impedance control of a hydraulically actuated robotic excavator	0.00006587	2000
$Tc_{57}A_2$	S39	0.2289	cc ₆₁	0.0032	A_2	0.0086	Process and quality control with a video camera, for a floor-tilling robot	0.00063125	2000
Tc169A12		0.0050	CC ₁₅	0.0032	A ₁₂	0.0241	Development of a teachingless robot system for welding a large-sized box-type construction	0.00003842	2001
$Tc_{54}A_{19}$	S ₁₁₈	0.0050	CC ₁₁₅	0.0224	A_{19}	0.0138	LAN-based building maintenance and surveillance robot	0.00015370	2002
Tc41A14	S39	0.2289	CC ₅₆	0.0032	A ₁₄	0.0138	A framework for rapid local area modeling for construction automation	0.00101000	2002
Tc224A7	S45	0.0050	CC89	0.0096	A_7	0.0207	Automated excavation in construction using robotics trajectory and envelop generation	0.00009880	2002
Tc95A30	S ₆	0.0846	CC100	0.0032	A_{30}	0.0103	Blind Bulldozing: Multiple Robot Nest Construction	0.00027995	2003
Tc ₁₂₄ A ₃₈	S ₁₄	0.0697	CC ₁₁₅	0.0224	A ₃₈	0.0155	Development of a construction robot for marking on ceiling boards (3rd report, prototype of the laser pointer system)	0.00242070	2003
Tc87A ₂₆	S ₈	0.0199	CC ₅	0.0160	A ₂₆	0.0052	Application of Robots Using Pneumatic Artificial Rubber Muscles for Operating Construction Machines	0.00016467	2003
Tc ₁₄₄ A ₅	S ₈₆	0.0050	CC ₈₇	0.0032	A_5	0.0120	Construction robot path-planning for earthwork operations	0.00001921	2003
Tc187A56		0.0050	CC31	0.0160	A ₅₆	0.0688	Field test of remote control system for construction machines using robot arm	0.00054891	2004
Tc187A56		0.0050	CC31	0.0160	A ₅₆	0.0688	Development of remote control system of construction machinery using pneumatic robot arm	0.00054891	2004
Tc138A45	S33	0.0100	CC43	0.0064	A ₄₅	0.0241	Analysis of a climbing parallel robot for construction applications	0.00015370	2004
Tc222A7	S 47	0.0050	CC47	0.0032	A ₇	0.0207	A control architecture for robotic excavation in construction	0.00003293	2004

Tc33A12		0.0050	CC ₄₉	0.0160	A ₁₂	0.0241	Application of GA in optimal robot selection for bridge restoration	0.00019212	2004
Tc ₁₈₂ A ₅₅	S ₁	0.0149	CC62	0.0224	A ₅₅	0.0275	The study of remotely teleoperated robotic manipulator system for underwater construction	0.00092217	2004
$Tc_{56}A_2$	S ₅₄	0.1393	cc ₆₂	0.0224	A_2	0.0086	Real-time Sense-and-Act' operation for construction robots	0.00268967	2004
$Tc_{76}A_{24}$		0.0050	CC ₇₃	0.1282	A_{24}	0.0224	Spatial model for path planning of multiple mobile construction robots	0.00142717	2004
Tc216A6	S54	0.1393	CC ₁₀₂	0.0032	A_6	0.0723	Automating inspection and documentation of remote building construction using a robotic camera	0.00322761	2005
$Tc_{26}A_{11}$	S ₂₂	0.0100	cc ₂₅	0.0064	A ₁₁	0.0551	A heavy climbing robotic platform for geotechnical applications	0.00035130	2005
$Tc_{23}A_{11}$	S ₂₃	0.0050	CC ₂₆	0.0256	A_{11}	0.0551	Climbing robots with adaptive grippers for construction	0.00070261	2005
Tc93A3	S39	0.2289	cc ₃₆	0.0192	A_3	0.0069	A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications	0.00303000	2005
Tc_3A_1	S54	0.1393	CC67	0.0064	A_1	0.0189	Robotic systems for pavement lane painting operations	0.00169065	2005
Tc ₁₃₂ A ₄₂	S ₁₄	0.0697	CC ₁₀₉	0.0064	A_{42}	0.0086	Example of experimental use of 3D measurement system for construction robot based on component design concept	0.00038424	2006
Tc ₂₃₂ A ₅₁	S ₈₇	0.0100	CC ₁₀₉	0.0064	A_{51}	0.0052	Pose estimation of construction materials using multiple id devices for construction automation	0.00003293	2006
Tc55A19	S 38	0.0050	CC ₁₁₄	0.0128	A ₁₉	0.0138	Sustainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance	0.00008783	2006
Tc22A11	S24	0.0050	CC27	0.0032	A ₁₁	0.0551	A distributed feedback mechanism to regulate wall construction by a robotic swarm	0.00008783	2006
Tc ₁₀₅ A ₃₂	S ₁₄₂	0.0050	CC31	0.0160	A ₃₂	0.0310	Wireless sensor-driven intelligent navigation robots for indoor construction site security and safety	0.00024701	2006
Tc154A50		0.0050	CC46	0.0128	A_{50}	0.0516	Control architecture characteristics for intelligence in autonomous mobile construction robots	0.00032935	2006

Tc145A5	S87	0.0100	CC ₆₅	0.0096	A_5	0.0120	Closure to "construction robot path-planning for earthwork operations" by Sung-Keun Kim, Jeffrey S. Russell, and Kyo-Jin Koo	0.00011527	2006
Tc_2A_1	S ₆₈	0.0050	cc ₆₈	0.0032	A_1	0.0189	A 3D model based control of an excavator	0.00003019	2006
Tc_1A_1	S ₆₉	0.0050	CC ₆₉	0.0032	A_1	0.0189	Autonomous robot for pavement construction in challenging environments	0.00003019	2006
Tc ₁₉₇ A ₅₀	S ₈₁	0.0100	CC ₇₉	0.0256	A_{50}	0.0516	Research on RBF-PID control for the 6-DOF motion base in construction tele-robot system	0.00131739	2006
Tc27A8	S39	0.2289	CC90	0.0256	A_8	0.0293	Development of a real-time control system architecture for automated steel construction	0.01716999	2006
$Tc_{215}A_6$	S39	0.2289	cc ₁₀₃	0.0224	A_6	0.0723	The study in using an autonomous robot for pavement inspection	0.03711747	2007
Tc93A56	S ₃₉	0.2289	cc ₃₆	0.0192	A_{56}	0.0688	Graphical modeling and simulation for design and control of a tele-operated clinker clearing robot	0.03029998	2007
Tc33A50		0.0050	CC49	0.0160	A_{50}	0.0516	A multicriteria approach for the optimal design of 2 DOF parallel robots used in construction applications	0.00041168	2007
Tc76A52		0.0050	CC ₇₃	0.1282	A_{52}	0.0103	Modified stereo vision calibration method for construction robot	0.00065870	2007
Tc ₁₉₉ A ₅₆	S ₃₉	0.2289	cc ₈₀	0.0096	A_{56}	0.0688	Development of immersive Augmented Reality Interface for Construction Robotic System	0.01514999	2007
$Tc_{229}A_8$		0.0050	CC ₉₁	0.0032	A_8	0.0293	Pre-acting manipulator for shock isolation in steel construction	0.00004666	2007
$Tc_{168}A_{54}$		0.0050	cc ₁₆	0.0032	A_{54}	0.0379	Construction of welding robot network control system	0.00006038	2008
Tc89A29	S ₁₁₄	0.0050	CC36	0.0192	A ₂₉	0.0310	Development of prototype of a unmanned transport robot for transport of construction materials	0.00029641	2008
Tc119A34	S 39	0.2289	CC79	0.0256	A ₃₄	0.0413	Anti-swinging input shaping control of an automatic construction crane	0.02423998	2008
Tc ₁₉₈ A ₅₆	S ₆	0.0846	CC ₇₉	0.0256	A ₅₆	0.0688	Improved force feedback control method for construction telerobot	0.01493042	2008
Tc86A56		0.0050	CC86	0.0385	A ₅₆	0.0688	Construction telerobot system with virtual reality (development of a bilateral construction robot)	0.00131739	2008

$Tc_{149}A_{50}$	S89	0.0050	CC ₉₀	0.0256	A_{50}	0.0516	Development of an automated verticality alignment system for a vibro-lance	0.00065870	2008
Tc71A22	S ₁₈	0.0100	CC ₁₀₅	0.0096	A_{22}	0.0534	Feasibility verification of brick-laying robot using manipulation trajectory and the laying pattern optimization	0.00051049	2009
Tc ₉₁ A ₂₉	S ₁₁₃	0.0050	cc ₁₁₁	0.0032	A ₂₉	0.0310	A laser-technology-based lifting-path tracking system for a robotic tower crane	0.00004940	2009
Tc ₁₉₂ A ₅₆	S ₁₃₄	0.0050	cc ₁₁₃	0.0128	A_{56}	0.0688	Haptic interaction in tele-operation control system of construction robot based on virtual reality	0.00043913	2009
Tc ₁₀₄ A ₃₂	S14	0.0697	CC25	0.0064	A ₃₂	0.0310	Light-weight 3D LADAR system for construction robotic operations	0.00138326	2009
Tc ₁₆₇ A ₅₄	S ₁₄	0.0697	CC ₃₂	0.0096	A_{54}	0.0379	Simulation of industrial robots for laser welding of load bearing construction	0.00253598	2009
Tc ₁₈₆ A ₅₆	S ₁₃₃	0.0050	CC ₃₆	0.0192	A_{56}	0.0688	Tele-operation construction robot control system with virtual reality	0.00065870	2009
Tc ₁₂₈ A ₄₁	S ₈₁	0.0100	CC59	0.0032	A_{41}	0.0138	Work state identification using primitive static states - Implementation to demolition work in double-front work machines	0.00004391	2009
$Tc_{209}A_6$	S104	0.0050	CC73	0.1282	A_6	0.0723	Bridge inspection robot system with machine vision	0.00461087	2009
Tc ₁₉₀ A ₅₆	S ₁₃₅	0.0050	cc ₂₆	0.0256	A_{56}	0.0688	Virtual reality-based teleoperation construction robot control system with 3D visor device	0.00087826	2010
$Tc_{160}A_{50}$		0.0050	CC45	0.0096	A_{50}	0.0516	Specific mechanisms for construction mobile robots	0.00024701	2010
$Tc_{162}A_{50}$	S ₅₇	0.0050	CC ₇₉	0.0256	A_{50}	0.0516	Labview based control and simulation of a construction robot	0.00065870	2010
Tc198A56	S ₆	0.0846	CC79	0.0256	A ₅₆	0.0688	Research on improved force feedback control method for construction telerobot	0.01493042	2010
Tc199A56	S39	0.2289	CC80	0.0096	A ₅₆	0.0688	Development of immersive augmented reality interface system for construction robotic system	0.01514999	2010
Tc ₁₉₆ A ₅₀	S ₆	0.0846	CC ₈₄	0.0064	A_{50}	0.0516	Bilateral hydraulic servo control system based on force sense for construction robot	0.00279945	2010
Tc201A50	S ₆	0.0846	CC86	0.0385	A_{50}	0.0516	Research on bilateral hydraulic servo control system of construction robotics	0.01679673	2010

Tc86A56		0.0050	CC86	0.0385	A_{56}	0.0688	Study on master-slave control method using load force and impedance identifiers for Tele-operated hydraulic construction robot	0.00131739	2010
$Tc_{214}A_6$		0.0050	CC ₁₀₄	0.0032	A_6	0.0723	Robot-aided tunnel inspection and maintenance system	0.00011527	2011
$Tc_{211}A_6$	S ₁₀₉	0.0199	cc ₁₀₇	0.0032	A_6	0.0723	Strateg+D171 Autonomous robots to inspect pavement distresses	0.00046109	2011
Tc49A17	S ₁₅₇	0.0050	CC ₁₁₂	0.0096	A ₁₇	0.0103	A conceptualization for the automation of a lift car operation in high rise building construction	0.00004940	2011
Tc164A50		0.0050	CC ₁₁₄	0.0128	A ₅₀	0.0516	LTL-based decentralized supervisory control of multi- robot tasks modelled as Petri nets	0.00032935	2011
$Tc_{20}A_{11}$		0.0050	cc ₂₈	0.0032	A_{11}	0.0551	Concept of a wall building industrial robotic system	0.00008783	2011
$Tc_{24}A_{40}$	S ₈	0.0199	CC ₃₈	0.0064	A_{40}	0.0034	Development of pressure observer to measure cylinder length of harbor-construction robot	0.00004391	2011
Tc155A52	S ₁₀₈	0.0050	CC ₆₂	0.0224	A_{52}	0.0103	Study on a vision sensing system for the parameter estimation of a serial construction robot	0.00011527	2011
Tc94A30	S ₁₀₉	0.0199	CC62	0.0224	A ₃₀	0.0103	A plan for lunar outpost construction by using robots	0.00046109	2011
Tc25A9	S 39	0.2289	CC ₁₁₅	0.0224	A_9	0.0069	Tunnel boring machine positioning automation in tunnel construction	0.00353500	2012
Tc13A38		0.0050	CC ₁₁₅	0.0224	A ₃₈	0.0155	High accuracy position marking system applying mobile robot in construction site	0.00017291	2012
Tc ₁₃ A ₅₄		0.0050	CC ₁₁₅	0.0224	A_{54}	0.0379	Automatic welding robot system for the horizontal position in the shipyard	0.00042266	2012
Tc125A38		0.0050	CC ₁₁₉	0.0032	A ₃₈	0.0155	Development of high accuracy position marking system in construction site applying automated mark robot	0.00002470	2012
Tc ₁₆₅ A ₅₄	S ₁₆	0.0050	CC ₁₉	0.0032	A_{54}	0.0379	Model analysis and experimental technique on computing accuracy of seam spatial position information based on stereo vision for welding robot	0.00006038	2012
Tc ₁₈₉ A ₅₆		0.0050	cc ₂₆	0.0256	A ₅₆	0.0688	Autonomous task control system of construction tele- robot based on stereo vision	0.00087826	2012
Tc10A11	S25	0.0050	CC29	0.0032	A ₁₁	0.0551	Autonomous Construction of a Roofed Structure: Synthesizing Planning and Stigmergy on a Mobile Robot	0.00008783	2012

$Tc_{68}A_{22}$	S ₇₂	0.0050	cc ₃	0.0064	A ₂₂	0.0534	Development of refractory brick construction robot in steel works	0.00017016	2012
Tc ₁₈₄ A ₅₆		0.0050	CC ₆₂	0.0224	A ₅₆	0.0688	Research on ROI image processing technology of teleoperation construction robot based on trinocular stereo vision		2012
Tc48A17	s ₁₁ 9	0.0050	CC ₆₇	0.0064	A ₁₇	0.0103	Sensor Based Motion Planning and Estimation of High- rise Building Facade Maintenance Robot	0.00003293	2012
Tc ₁₀₀ A ₃₂	S ₁₄	0.0697	CC ₇₃	0.1282	A ₃₂	0.0310	Study on 3-D laser-scanning-based machine vision system for robotic construction vehicles	0.02766520	2012
Tc191A56		0.0050	CC84	0.0064	A ₅₆	0.0688	Force feedback control of tele-operated construction robot based on regression model	0.00021957	2012
$Tc_{86}A_{25}$		0.0050	cc ₈₆	0.0385	A ₂₅	0.0069	Application of a position-force control method in a master-slave teleoperation construction robot system	0.00013174	2012
Tc ₈₆ A ₂₅		0.0050	CC ₈₆	0.0385	A_{25}	0.0069	Operability of a control method for grasping soft objects in a construction teleoperation robot tested in virtual reality	0.00013174	2012
Tc ₈₆ A ₂₅		0.0050	CC ₈₆	0.0385	A_{25}	0.0069	Master-slave control method with force feedback for grasping soft objects using a teleoperation construction robot	0.00013174	2012
Tc35A12	S ₁₄	0.0697	CC ₉₀	0.0256	A ₁₂	0.0241	Human-robot-environment interaction interface for robotic grit-blasting of complex steel bridges	0.00430347	2012
Tc84A29		0.0050	CC ₁₀	0.0096	A_{29}	0.0310	Autonomous robotic dozing for rapid material removal	0.00014821	2013
Tc ₁₀₉ A ₃₂		0.0050	CC ₁₁₂	0.0096	A ₃₂	0.0310	Human-robot integration for pose estimation and semi- autonomous navigation on unstructured construction sites	0.00014821	2013
Tc53A19	S ₅₄	0.1393	CC ₁₁₆	0.0032	A ₁₉	0.0138	A novel surface segmentation approach for robotic manipulator-based maintenance operation planning	0.00061478	2013
Tc18A11	S26	0.0050	CC30	0.0032	A ₁₁	0.0551	Development of fail-safety system for building wall cleaning robot	0.00008783	2013
Tc ₁₅₇ A ₅₀		0.0050	CC ₃₇	0.0032	A_{50}	0.0516	Mutli-robot distributed control for construction tasks based on intelligent beacons	0.00008234	2013
$Tc_{62}A_{20}$	S ₃₇	0.0050	CC ₄₀	0.0032	A_{20}	0.0138	Autonomous thin spray-on liner application in irregular tunnel and mine roadway surfaces	0.00002196	2013

					l			
	0.0050	CC ₄₉	0.0160	A_{24}	0.0224		0.00017840	2013
S ₈	0.0199	CC ₅	0.0160	A ₃₇	0.0155	Potentials of robotic fabrication in wood construction: Elastically bent timber sheets with robotically fabricated finger joints	0.00049402	2013
	0.0050	CC ₅₄	0.0032	A ₃₁	0.0069	Design and research of a construction robot based on series parallel structure	0.00001098	2013
	0.0050	CC90	0.0256	A ₅₆	0.0688	Geometric and kinematics modeling of tele-operated virtual construction robot	0.00087826	2013
S54	0.1393	CC95	0.0096	A ₃₄	0.0413	An implementation of a teleoperation system for robotic beam assembly in construction	0.00553304	2013
S39	0.2289	CC ₁₁₂	0.0096	A ₂₉	0.0310	Potential of Time-of-Flight Range Imaging for Object Identification and Manipulation in Construction	0.00681749	2014
S39	0.2289	cc ₂₆	0.0256	A_{50}	0.0516	Chip-based real-time gesture tracking for construction robot's guidance	0.03029998	2014
	0.0050	CC45	0.0096	A_{50}	0.0516	Modified discrete event simulation algorithm for control of automated construction operations	0.00024701	2014
	0.0050	CC ₄₅	0.0096	A_{50}	0.0516	Automating construction operations using discrete event simulation models (control simulation design)	0.00024701	2014
S ₆₄	0.0050	cc ₆₀	0.0032	A_2	0.0086	Robotic tile placement: Tools, techniques and feasibility	0.00001372	2014
S ₁₃₆	0.0100	CC ₆₂	0.0224	A ₅₆	0.0688	Development of a teleoperation system for a construction robot	0.00153696	2014
S39	0.2289	CC ₆₂	0.0224	A ₂₁	0.0172	Automatic detection and verification of pipeline construction features with multi-modal data	0.00883749	2014
	0.0050	CC75	0.0545	A ₃₄	0.0413	Development of a BIM-based automated construction system	0.00111978	2014
S92	0.0050	CC92	0.0064	A_8	0.0293	Virtual prototyping for robotic fabrication of rebar cages in manufactured concrete construction	0.00009332	2014
S39	0.2289	CC98	0.0064	A ₁₂	0.0241	of a steel bridge for robotic maintenance systems	0.00353500	2014
	0.0050	CC98	0.0064	A_{34}	0.0413	A Tree-Based Algorithm for Construction Robots	0.00013174	2014
	\$54 \$39 \$39 \$136 \$39	s ₈ 0.0199 0.0050 0.0050 s ₅₄ 0.1393 s ₃₉ 0.2289 0.0050 0.0050 s ₆₄ 0.0050 s ₁₃₆ 0.0100 s ₃₉ 0.2289 0.0050 0.0050 s ₃₉ 0.2289 0.0050 0.0050 s ₉₂ 0.0050 s ₃₉ 0.2289	S8 0.0199 cc5 0.0050 cc ₅₄ 0.0050 cc ₉₀ S54 0.1393 cc ₉₅ S39 0.2289 cc ₁₁₂ S39 0.2289 cc ₂₆ 0.0050 cc ₄₅ S64 0.0050 cc ₆₀ S136 0.0100 cc ₆₂ S39 0.2289 cc ₆₂ S92 0.0050 cc ₉₂ S39 0.2289 cc ₉₈	s_8 0.0199 cc_5 0.0160 0.0050 cc_{54} 0.0032 0.0050 cc_{90} 0.0256 s_{54} 0.1393 cc_{95} 0.0096 s_{39} 0.2289 cc_{112} 0.0096 s_{39} 0.2289 cc_{26} 0.0256 0.0050 cc_{45} 0.0096 s_{64} 0.0050 cc_{60} 0.0032 s_{136} 0.0100 cc_{62} 0.0224 s_{39} 0.2289 cc_{62} 0.0224 s_{92} 0.0050 cc_{92} 0.0064 s_{39} 0.2289 cc_{92} 0.0064	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S8 0.0199 cc5 0.0160 A37 0.0155 0.0050 cc54 0.0032 A31 0.0069 0.0050 cc90 0.0256 A56 0.0688 854 0.1393 cc95 0.0096 A34 0.0413 839 0.2289 cc112 0.0096 A29 0.0310 839 0.2289 cc26 0.0256 A50 0.0516 0.0050 cc45 0.0096 A50 0.0516 864 0.0050 cc45 0.0096 A50 0.0516 8136 0.0100 cc62 0.00224 A56 0.0688 839 0.2289 cc62 0.0224 A21 0.0172 0.0050 cc75 0.0545 A34 0.0413 892 0.0050 cc92 0.0064 A8 0.0293 839 0.2289 cc98 0.0064 A12 0.0241	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0050 Cc ₅ 0.0160 A ₂₄ 0.0224 loading operation by genetic algorithm 0.00017640

$Tc_{67}A_{21}$		0.0050	cc ₁₀₁	0.0032	A ₂₁	0.0172	Modeling and control of automated pipe hoisting in oil and gas well construction	0.00002745	2015
Tc111A32	S143	0.0050	CC ₁₀₅	0.0096	A ₃₂	0.0310	Construction site navigation for the autonomous excavator Thor	0.00014821	2015
Tc40A14	S ₁₂₇	0.0100	cc ₁₁₃	0.0128	A ₁₄	0.0138	Position reaction force control of teleoperation construction robot for grasping soft objects	0.00017565	2015
Tc ₁₅₈ A ₅₂	S ₆	0.0846	CC ₁₁₃	0.0128	A ₅₂	0.0103	Automated measurement and estimation of concrete strength by mobile robot with small-sized grinding drill	0.00111978	2015
Tc ₁₀₈ A ₃₄	S54	0.1393	CC ₁₁₈	0.0417	A ₃₄	0.0413	Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites	0.02397650	2015
Tc ₁₃₅ A ₅₄	S39	0.2289	cc ₂₀	0.0064	A ₅₄	0.0379	Intuitive task programming of stud welding robots for ship construction	0.00555500	2015
$Tc_{61}A_{20}$	S39	0.2289	CC ₄₁	0.0032	A ₂₀	0.0138	Automatic path-planning algorithm for realistic decorative robotic painting	0.00101000	2015
Tc85A25		0.0050	CC50	0.0064	A ₂₅	0.0069	Design and construction of a translational parallel robot for drilling tasks	0.00002196	2015
$Tc_{21}A_{22}$		0.0050	CC ₇₅	0.0545	A ₂₂	0.0534	Towards a new BIM 'dimension'-translating BIM data into actual construction using robotics	0.00144638	2015
Tc ₁₉₉ A ₅₆	S39	0.2289	cc ₈₀	0.0096	A ₅₆	0.0688	Augmented reality-based tele-robotic system architecture for on-site construction	0.01514999	2015
$Tc_{202}A_{56}$	S ₁₃₆	0.0100	cc ₈₆	0.0385	A ₅₆	0.0688	Development of a telerobotics system for construction robot using virtual reality	0.00263478	2015
Tc ₁₃₆ A ₁₄	S ₁₂₆	0.0050	cc ₁₀₈	0.0032	A ₁₄	0.0138	Robotic SHM and Model-Based Positioning System for Monitoring and Construction Automation	0.00002196	2016
Tc ₁₇₇ A ₅₆	S 6	0.0846	CC20	0.0064	A ₅₆	0.0688	Estimation for torques applied to the master side in a construction robot teleoperation system	0.003/3201	2016
Tc122A54		0.0050	CC21	0.0032	A ₅₄	0.0379	Research on Improving the Efficiency and Welding Quality of Welding Robot for Construction Machinery Structure	0.00006038	2016
Tc ₁₈₀ A ₅₅		0.0050	CC3	0.0064	A ₅₅	0.0275	Parameter study of chain trenching machines of Underwater Construction Robots via analytical model	0.00008783	2016
$Tc_{45}A_{18}$	S39	0.2289	CC ₄₄	0.0417	A_{18}	0.0069	Robotic 3D-printing for building and construction	0.00656499	2016

Tc148A29	S85	0.0050	CC73	0.1282	A ₂₉	0.0310	Machine Learning approach to Automatic Bucket Loading	0.00197609	2016
Tc76A34		0.0050	CC73	0.1282	A ₃₄	0.0413	Site Automation: Automated/Robotic On-Site Factories	0.00263478	2016
$Tc_{21}A_{22}$		0.0050	CC ₇₅	0.0545	A_{22}	0.0534	Simulation of automated construction using wire robots	0.00144638	2016
Tc ₁₉₅ A ₅₆		0.0050	CC ₇₈	0.0032	A ₅₆	0.0688	Support system for slope shaping based on a teleoperated construction robot	0.00010978	2016
Tc203A56	S39	0.2289	CC86	0.0385	A ₅₆	0.0688	Support system for teleoperation of slope shaping by a construction robot	0.06059995	2016
$Tc_{218}A_{61}$		0.0050	CC ₉	0.0064	A ₆₁	0.0034	A realisation of a construction scale robotic system for 3D printing of complex formwork	0.00001098	2016
Tc28A12	S96	0.0050	CC99	0.0032	A ₁₂	0.0241	Smart automation system dedicated to in frastructure and construction	0.00003842	2016
Tc ₈₃ A ₂₄	S ₃₉	0.2289	CC ₁₀₅	0.0096	A ₂₄	0.0224	A cable-driven robot for architectural constructions: a visual-guided approach for motion control and path-planning	0.00492375	2017
$Tc_{110}A_{32}$	S ₁₄	0.0697	cc ₁₁₀	0.0160	A ₃₂	0.0310	Automatic interpretation of unordered point cloud data for UAV navigation in construction	0.00345815	2017
Tc234A52	S ₆	0.0846	CC ₁₁₄	0.0128	A ₅₂	0.0103	Using local force measurements to guide construction by distributed climbing robots	0.00111978	2017
Tc16A58		0.0050	CC32	0.0096	A ₅₈	0.0069	Robotic system for plaster and finishing works on the construction site	0.00003293	2017
$Tc_{238}A_{55}$		0.0050	CC ₄	0.0032	A ₅₅	0.0275	Development of a remotely controlled semi-underwater heavy carrier robot for unmanned construction works	0.00004391	2017
Tc44A16		0.0050	cc44	0.0417	A ₁₆	0.0189	SMCSPO based 3D printing simulator control for building construction	0.00039247	2017
Tc44A16		0.0050	CC ₄₄	0.0417	A ₁₆	0.0189	Development of 3D printing simulator nozzle system using PID control for building construction	0.00039247	2017
Tc44A16		0.0050	CC ₄₄	0.0417	A ₁₆	0.0189	Automation of robotic concrete printing using feedback control system	0.00039247	2017
Tc44A16		0.0050	CC44	0.0417	A ₁₆	0.0189	Classification of building systems for concrete 3D printing	0.00039247	2017
Tc87.A55	S 8	0.0199	CC ₅	0.0160	A ₅₅	0.0275	Active control for rock grinding works of an underwater construction robot consisting of hydraulic rotary and linear actuators	0.00087826	2017

		1		1			1		
$Tc_{217}A_{60}$		0.0050	CC ₅₇	0.0032	A ₆₀	0.0086	A method based on C-K Theory for fast STCR development: The case of a drilling robot design	0.00001372	2017
Tc176A55	S6	0.0846	CC6	0.0032	A ₅₅	0.0275	Development of the control algorithm for longitudinal motion of Underwater Construction Robot with trenching	0.00074652	2017
$T_{c_{77}}A_{22}$		0.0050	CC ₇₂	0.0032	A ₂₂	0.0534	A Stochastic Learning Approach for Construction of Brick Structures with a Ground Robot	0.00008508	2017
Tc223A50	S43	0.0050	CC ₇₃	0.1282	A ₅₀	0.0516	Online Learning Control of Hydraulic Excavators Based on Echo-State Networks	0.00329348	2017
$Tc_{73}A_8$	S ₁₄	0.0697	CC75	0.0545	A_8	0.0293	Beam for the steel fabrication industry robotic systems	0.01110450	2017
Tc ₂₁ A ₃		0.0050	CC ₇₅	0.0545	A_3	0.0069	Model-based development of robotic systems and services in construction robotics	0.00018663	2017
Tc ₁₂₀ A ₃₄	S ₁₂₇	0.0100	cc ₈₂	0.0192	A ₃₄	0.0413	Scene understanding for adaptive manipulation in robotized construction work	0.00079043	2017
$Tc_{204}A_{56}$	S ₁₃₇	0.0050	cc ₈₆	0.0385	A_{56}	0.0688	A master-slave control method with gravity compensation for a hydraulic teleoperation construction robot	0.00131739	2017
$Tc_{27}A_{34}$		0.0050	CC ₉₀	0.0256	A ₃₄	0.0413	Robotic fabrication of freeform foam structures with quadrilateral and puzzle shaped panels	0.00052696	2017
$Tc_{221}A_{62}$	S39	0.2289	CC94	0.0032	A_{62}	0.0017	PyroShield - A HVAC fire curtain testing robot	0.00012625	2017
Tc98A32	S ₈₂	0.0050	CC ₉₆	0.0096	A ₃₂	0.0310	Target-Focused Local Workspace Modeling for Construction Automation Applications	0.00014821	2017
Tc99A32	S ₁₀₉	0.0199	CC ₁₀₃	0.0224	A ₃₂	0.0310	Automated localization of UAVs in GPS-denied indoor construction environments using fiducial markers	0.00138326	2018
$Tc_{84}A_{24}$		0.0050	CC ₁₀₃	0.0224	A ₂₄	0.0224	Construction equipment collision-free path planning using robotic approach	0.00024976	2018
Tc ₈₄ A ₃₃		0.0050	CC ₁₀₃	0.0224	A ₃₃	0.0069	A robotic wearable exoskeleton for construction worker's safety and health	0.00007685	2018
Tc84A45		0.0050	CC ₁₀₃	0.0224	A ₄₅	0.0241	Identification of usage scenarios for robotic exoskeletons in the context of the Hong Kong construction industry	0.00026897	2018
Tc142A46	S14	0.0697	CC ₁₁₀	0.0160	A ₄₆	0.0052	Mapping and localization module in a mobile robot for insulating building crawl spaces	0.0005/636	2018
Tc ₁₇₄ A ₅₅		0.0050	CC ₁₁₃	0.0128	A_{55}	0.0275	Study on down-cutting ladder trencher of an underwater construction robot for seabed application	0.00017565	2018

$Tc_{107}A_{32}$	S ₂₉	0.0149	cc ₁₁₈	0.0417	A_{32}	0.0310	SLAM-driven intelligent autonomous mobile robot navigation for construction applications	0.00192668	2018
Tc38A32	S39	0.2289	CC ₁₁₈	0.0417	A ₃₂	0.0310	Building an integrated mobile robotic system for real-time applications in construction	0.02954248	2018
Tc38A32	S39	0.2289	cc ₁₁₈	0.0417	A ₃₂	0.0310	Vision-based integrated mobile robotic system for real- time applications in construction	0.02954248	2018
$Tc_{233}A_{43}$	S ₆	0.0846	CC ₁₇	0.0032	A_{43}	0.0086	Implementation of Admittance Control on a Construction Robot Using Load Cells	0.00023329	2018
Tc17A11	S28	0.0050	CC31	0.0160	A ₁₁	0.0551	The study on the integrated control system for curtain wall building façade cleaning robot	0.00043913	2018
$Tc_{225}A_7$	S48	0.0199	CC ₃₁	0.0160	A_7	0.0207	Modular data communication methods for a robotic excavator	0.00065870	2018
$T_{c_{45}}A_{18}$	S39	0.2289	CC44	0.0417	A_{18}	0.0069	Large-scale 3D printing by a team of mobile robots	0.00656499	2018
Tc50A18	S48	0.0199	CC ₄₄	0.0417	A ₁₈	0.0069	MAP - A Mobile Agile Printer Robot for on-site Construction	0.00057087	2018
Tc ₁₇₈ A ₅₅	S ₆	0.0846	CC ₅	0.0160	A_{55}	0.0275	Active control strategy for trenching work of track-based underwater construction robot	0.00373261	2018
$Tc_{103}A_{32}$	S ₁₀₉	0.0199	cc73	0.1282	A ₃₂	0.0310	The Autonomous Vehicle CELiNA as Educational Platform on Final Works in Computer Science	0.00790434	2018
Tc ₁₅₀ A ₅₀	S ₁₄₆	0.0050	CC ₇₃	0.1282	A_{50}	0.0516	Real-time simulation of construction workers using combined human body and hand tracking for robotic construction worker system		2018
Tc ₁₂₇ A ₃₉	S ₁₅₈	0.0050	CC ₇₃	0.1282	A ₃₉	0.0017	Multimodal Trip Hazard Affordance Detection on Construction Sites	0.00010978	2018
Tc32A51	S 39	0.2289	CC73	0.1282	A_{51}	0.0052	Stacked hourglass networks for markerless pose estimation of articulated construction robots	0.01514999	2018
Tc32A59	S 39	0.2289	CC73	0.1282	A ₅₉	0.0069	Industrial Robot Control with Object Recognition based on Deep Learning	0.02019998	2018
Tc32A6	S 39	0.2289	CC73	0.1282	A_6	0.0723	Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks	0.21209983	2018

Tc76A36		0.0050	CC ₇₃	0.1282	A ₃₆	0.0086	Synthesis of the AC and DC Drives Fault Diagnosis Method for the Cyber-physical Systems of Building Robots	0.00054891	2018
Tc76A36		0.0050	CC73	0.1282	A ₃₆	0.0086	A cyber-physical system of diagnosing electric drives of building robots	0.00054891	2018
$Tc_{73}A_{22}$	S ₁₄	0.0697	cc ₇₅	0.0545	A_{22}	0.0534	Concept studies of automated construction using cable- driven parallel robots	0.02024939	2018
$Tc_{37}A_{13}$	S ₂₉	0.0149	CC ₇₅	0.0545	A_{13}	0.0034	Design of Robot based Work Progress Monitoring System for the Building Construction Site	0.00027995	2018
Tc21A15		0.0050	CC75	0.0545	A ₁₅	0.0086	BIM plus Robot Creates a New Era of Building Construction	0.00023329	2018
$Tc_{21}A_{15}$		0.0050	CC ₇₅	0.0545	A_{15}	0.0086	UAV-Enabled Site-to-BIM Automation: Aerial Robotic- and Computer Vision-Based Development of As- Built/As-Is BIMs and Quality Control	0.00023329	2018
Tc21A63		0.0050	CC ₇₅	0.0545	A ₆₃	0.0086	Perspectives on a BIM-integrated software platform for robotic construction through Contour Crafting	0.00023329	2018
Tc ₂₁ A ₉		0.0050	CC ₇₅	0.0545	A_9	0.0069	Information modeling of an underground laboratory for the R&D of mining automation and tunnel construction robotics	0.00018663	2018
$Tc_{198}A_{55}$	S ₆	0.0846	CC ₇₉	0.0256	A_{55}	0.0275	Dynamics modeling and structural analysis of underwater construction robot	0.00597217	2018
Tc12A43	S129	0.0100	CC82	0.0192	A ₄₃	0.0086	Workpiece Modeling for Adaptive Robotized Construction Work	0.00016467	2018
Tc12A43	S ₁₂₉	0.0100	CC82	0.0192	A ₄₃	0.0086	Adaptive perception and modeling for robotized construction joint filling	0.00016467	2018
$Tc_{69}A_{22}$		0.0050	cc ₈₂	0.0192	A ₂₂	0.0534	Enhancing perceived safety in human-robot collaborative construction using immersive virtual environments	0.00051049	2018
Tc203A56	S 39	0.2289	CC86	0.0385	A ₅₆	0.0688	Teleoperated construction robot using visual support with drones	0.06059995	2018
$Tc_{86}A_{34}$		0.0050	CC ₈₆	0.0385	A_{34}	0.0413	FOAM Custom Single Task Construction Robot	0.00079043	2018
Tc ₁₇₃ A ₅₅	S ₆	0.0846	CC ₉	0.0064	A_{55}	0.0275	A propulsion performance test of underwater construction robot light work ROV uri-L in circulation water channel	0.00149304	2018

Tc212A6	S54	0.1393	CC ₁₀₆	0.0032	A_6	0.0723	Construction and usage of three-dimensional data for road structures using terrestrial laser scanning and UAV with photo grammetry	0.00322761	2019
Tc131A36	S39	0.2289	CC ₁₁₀	0.0160	A ₃₆	0.0086	Framework for automated registration of UAV and UGV point clouds using local features in images	0.00315625	2019
Tc9A11	S ₂₉	0.0149	cc ₁₁₈	0.0417	A ₁₁	0.0551	Monocular Vision-Based Parameter Estimation for Mobile Robotic Painting	0.00342521	2019
$Tc_{123}A_{24}$	S48	0.0199	cc ₁₁₈	0.0417	A_{24}	0.0224	Implementation of an augmented reality AR workflow for human robot collaboration in timber prefabrication	0.00185532	2019
Tc ₁₀₈ A ₂₄	S ₅₄	0.1393	CC ₁₁₈	0.0417	A_{24}	0.0224	An Occupancy Grid Mapping enhanced visual SLAM for real-time locating applications in indoor GPS-denied environments	0.01298727	2019
Tc ₁₃₉ A ₅₄	S ₁₉	0.0100	cc ₂₂	0.0064	A ₅₄	0.0379	Collaborative Welding System using BIM for Robotic Reprogramming and Spatial Augmented Reality	0.00024152	2019
$Tc_{133}A_{33}$	S39	0.2289	CC22	0.0064	A_{33}	0.0069	Towards mobile projective AR for construction co-robots	0.00101000	2019
Tc159A54		0.0050	CC23	0.0032	A ₅₄	0.0379	Construction of the Remote Welding System based on Power Line Communication	0.00006038	2019
Tc14A11	S ₃₁	0.0050	CC ₃₄	0.0032	A ₁₁	0.0551	Man-machine Cooperation of Building Robot Based on Interactive Force Information	0.00008783	2019
Tc44A11		0.0050	CC44	0.0417	A ₁₁	0.0551	3D printing for construction based on a complex wall of polymer-foam and concrete	0.00114174	2019
Tc44A18		0.0050	CC44	0.0417	A_{18}	0.0069	Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing	0.00014272	2019
$Tc_{60}A_2$	S ₁₄	0.0697	CC ₄₆	0.0128	A_2	0.0086	Measuring and positioning system design of robotic floor- tiling	0.00076848	2019
Tc60A29	S14	0.0697	CC46	0.0128	A ₂₉	0.0310	Tip Localization Analysis for Mobile Manipulator in Construction Field	0.00276652	2019
Tc90A29	S39	0.2289	CC ₅₈	0.0032	A ₂₉	0.0310	Soft Additive Fabrication Processes: Material Indeterminacy in 3D Printing	0.00227250	2019
Tc ₁₀₂ A ₃₂	S39	0.2289	CC66	0.0032	A ₃₂	0.0310	Vision-Based Obstacle Removal System for Autonomous Ground Vehicles Using a Robotic Arm	0.00227250	2019

							Ţ	-	
Tc32A15	S ₃₉	0.2289	CC ₇₃	0.1282	A_{15}	0.0086	Computer vision for real-time extrusion quality monitoring and control in robotic construction	0.02524998	2019
$Tc_{32}A_{32}$	S ₃₉	0.2289	CC ₇₃	0.1282	A ₃₂	0.0310	Real-Time Scene Segmentation Using a Light Deep Neural Network Architecture for Autonomous Robot Navigation on Construction Sites	0.09089993	2019
Tc32A32	S39	0.2289	CC ₇₃	0.1282	A ₃₂	0.0310	LNSNet: Lightweight navigable space segmentation for autonomous robots on construction sites	0.09089993	2019
Tc32A50	S39	0.2289	CC73	0.1282	A_{50}	0.0516	Vision-based estimation of excavator manipulator pose for automated grading control	0.15149988	2019
Tc32A51	S 39	0.2289	CC73	0.1282	A_{51}	0.0052	A vision-based marker-less pose estimation system for articulated construction robots	0.01514999	2019
Tc4A50	S ₆	0.0846	CC ₇₃	0.1282	A_{50}	0.0516	Analytical design of an underwater construction robot on the slope with an up-cutting mode operation of a cutter bar	0.05598909	2019
$Tc_{76}A_{22}$		0.0050	CC ₇₃	0.1282	A ₂₂	0.0534	Automated Brick Pattern Generator for Robotic Assembly using Machine Learning and Images	0.00340326	2019
Tc76A28		0.0050	CC73	0.1282	A_{28}	0.0189	Teaching robots to perform construction tasks via learning from demonstration	0.00120761	2019
Tc76A33		0.0050	CC73	0.1282	A ₃₃	0.0069	Semantic Relation Detection between Construction Entities to Support Safe Human-Robot Collaboration in Construction	0.00043913	2019
Tc76A36		0.0050	CC73	0.1282	A ₃₆	0.0086	Formulation of the optimization problem of the cyber- physical diagnosis system configuration level for construction mobile robots	0.00054891	2019
Tc206A58	S ₁₉	0.0100	CC75	0.0545	A_{58}	0.0069	Automatical acquisition of point clouds of construction sites and its application in autonomous interior finishing robot		2019
Tc92A30	S ₅₄	0.1393	CC ₇₅	0.0545	A ₃₀	0.0103	Robotic construction & Prototyping of a 3D-printed Mars surface habitat	0.00783847	2019
Tc92A38	S54	0.1393	CC 75	0.0545	A ₃₈	0.0155	An Automated System for Projection of Interior Construction Layouts	0.01175771	2019

							Game Simulation to Support Construction Automation in		
Tc21A37		0.0050	CC75	0.0545	A ₃₇	0.0155	Modular Construction Using BIM and Robotics Technology-Stage I		2019
Tc193A56	S140	0.0050	CC77	0.0032	A ₅₆	0.0688	Flexible virtual fixtures for human-excavator cooperative system	0.00010978	2019
Tc ₁₆₃ A ₅₀	S ₈₄	0.0149	CC ₇₉	0.0256	A_{50}	0.0516	YouWasps: Towards Autonomous Multi-Robot Mobile Deposition for Construction	0.00197609	2019
Tc ₆₉ A ₄₃	S ₅₄	0.1393	cc ₈₂	0.0192	A_{43}	0.0086	Planning and Execution for Geometrically Adaptive BIM- Driven Robotized Construction Processes	0.00230543	2019
Tc69A43	S54	0.1393	CC82	0.0192	A ₄₃	0.0086	Autonomous motion planning and task execution in geometrically adaptive robotized construction work	0.00230543	2019
$Tc_{235}A_{50}$		0.0050	cc ₈₃	0.0032	A_{50}	0.0516	Dynamic analysis of high precision construction cable- driven parallel robots	0.00008234	2019
Tc ₁₄₆ A ₅	S ₈₄	0.0149	cc ₈₅	0.0064	A_5	0.0120	Development of an earthmoving machinery autonomous excavator development platform	0.00011527	2019
Tc146A5	S84	0.0149	CC85	0.0064	A_5	0.0120	Robotic autonomous systems for earthmoving in military applications	0.00011527	2019
$Tc_{86}A_{16}$		0.0050	CC ₈₆	0.0385	A ₁₆	0.0189	Determinants of Adoption of Robotics in Precast Concrete Production for Buildings	0.00036228	2019
Tc ₈ A ₁₀	S 6	0.0846	CC89	0.0096	A_{10}	0.0138	Trajectory adaptation for an impedance controlled cooperative robot according to an operator's force	0.00111978	2019
Tc208A59	S54	0.1393	CC ₁₁₀	0.0160	A ₅₉	0.0069	An autonomous robotic platform for automatic extraction of detailed semantic models of buildings	0.00153696	2020
$Tc_{213}A_6$	S 79	0.0100	cc ₁₁₀	0.0160	A_6	0.0723	LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection	0.00113272	2020
Tc101A32	S144	0.0149	CC ₁₁₈	0.0417	A ₃₂	0.0310	An integrated UGV-UAV system for construction site data collection	0.00192668	2020
Tc ₁₀₁ A ₄₅	S ₁₄₄	0.0149	cc ₁₁₈	0.0417	A_{45}	0.0241	Construction of SLAM Algorithm for Window Cleaning Robot Moving Along Window Frame	0.00149855	2020
Tc38A46	S39	0.2289	CC ₁₁₈	0.0417	A ₄₆	0.0052	A scene-adaptive descriptor for visual SLAM-based locating applications in built environments	0.00492375	2020

		1	1	ı		I		1	
$Tc_{123}A_{11}$	S48	0.0199	cc ₁₁₈	0.0417	A_{11}	0.0551	Cooperative Aerial-Ground Multi-Robot System for Automated Construction Tasks (wall)	0.00456695	2020
Tc36A12	S 79	0.0100	CC ₁₁₈	0.0417	A ₁₂	0.0241	Automated Defect Quantification in Concrete Bridges Using Robotics and Deep Learning (bridge)	0.00099902	2020
$Tc_{39}A_{14}$		0.0050	cc ₁₁₈	0.0417	A ₁₄	0.0138	Development of construction robots using crazyflie	0.00028543	2020
Tc16A11		0.0050	CC32	0.0096	A ₁₁	0.0551	Robotic 3D clay printing of prefabricated non- conventional wall components based on a parametric- integrated design	0.00026348	2020
Tc46A16	S144	0.0149	CC44	0.0417	A ₁₆	0.0189	Inspecting manufacturing precision of 3D printed concrete parts based on geometric dimensioning and tolerancing	0.00117742	2020
Tc44A16		0.0050	CC ₄₄	0.0417	A ₁₆	0.0189	Automation in the Construction of a 3D-Printed Concrete Wall with the Use of a Lintel Gripper	0.00039247	2020
Tc44A22		0.0050	CC44	0.0417	A_{22}	0.0534	Bricklaying robot moving algorithms at a construction site	0.00110606	2020
Tc44A22		0.0050	CC44	0.0417	A ₂₂	0.0534	Additive manufacturing of cantilever - From masonry to concrete 3D printing	0.00110606	2020
$Tc_{33}A_{24}$		0.0050	CC ₄₉	0.0160	A_{24}	0.0224	Generalized task allocation and route planning for robots with multiple depots in indoor building environments	0.00017840	2020
Tc85A50		0.0050	CC50	0.0064	A_{50}	0.0516	The problem of manipulation and angular orientation of gripping devices of construction robots	0.00016467	2020
Tc ₁₂₉ A ₄₁	S ₅₄	0.1393	CC ₆₄	0.0064	A_{41}	0.0138	Optimization of Grasping Efficiency of a Robot Used for Sorting Construction and Demolition Waste	0.00122956	2020
Tc ₁₁₆ A ₃₄		0.0050	cc ₇₀	0.0096	A ₃₄	0.0413	Generic design aided robotically facade pick and place in construction site dataset	0.00019761	2020
Tc188A56	S139	0.0100	CC73	0.1282	A ₅₆	0.0688	A General Approach for Automating Teleoperated Construction Machines	0.00878260	2020
Tc ₁₈₈ A ₅₆	S ₁₃₉	0.0100	CC ₇₃	0.1282	A ₅₆	0.0688	Direct-visual-operation support system for unmanned construction	0.00878260	2020
Tc ₁₅₃ A ₅₀	S ₁₈	0.0100	CC ₇₃	0.1282	A_{50}	0.0516	Robot construction simulation using deep reinforcement learning+B21B4:B22B6B4:B20B4:B24BB4:B20	0.00658695	2020
Tc32A12	S39	0.2289	CC73	0.1282	A ₁₂	0.0241	Measurement for cracks at the bottom of bridges based on tethered creeping unmanned aerial vehicle	0.07069994	2020

		1						1	1
Tc32A24	S39	0.2289	CC ₇₃	0.1282	A_{24}	0.0224	Proximity Prediction of Mobile Objects to Prevent Contact-Driven Accidents in Co-Robotic Construction	0.06564995	2020
Tc32A37	S39	0.2289	CC73	0.1282	A ₃₇	0.0155	Augmented drawn construction symbols: A method for ad hoc robotic fabrication	0.04544996	2020
Tc ₁₃₀ A ₂₈	S ₅₄	0.1393	CC ₇₃	0.1282	A ₂₈	0.0189	Teaching robots to perform quasi-repetitive construction tasks through human demonstration	0.03381302	2020
Tc ₁₃₀ A ₄₁	S ₅₄	0.1393	CC ₇₃	0.1282	A ₄₁	0.0138	Deep learning of grasping detection for a robot used in sorting construction and demolition waste	0.02459129	2020
Tc ₁₃₀ A ₄₁	S ₅₄	0.1393	CC ₇₃	0.1282	A ₄₁	0.0138	Vision-based robotic system for on-site construction and demolition waste sorting and recycling	0.02459129	2020
Tc75A16		0.0050	CC ₇₃	0.1282	A ₁₆	0.0189	Structural stay-in-place formwork for robotic in situ fabrication of non-standard concrete structures: A real scale architectural demonstrator	0.00120761	2020
Tc76A24		0.0050	CC73	0.1282	A_{24}	0.0224	Complete coverage path planning using reinforcement learning for Tetromino based cleaning and maintenance robot		2020
Tc76A29		0.0050	CC ₇₃	0.1282	A_{29}	0.0310	What lies beneath: Material classification for autonomous excavators using proprioceptive force sensing and machine learning		2020
$Tc_{33}A_8$		0.0050	CC ₇₃	0.1282	A_8	0.0293	Agent based modeling to optimize workflow of robotic steel and concrete 3D printers	0.00180030	2020
Tc143A48	S17	0.0050	CC 75	0.0545	A ₄₈	0.0034	Combining the Robot Operating System with Building Information Modeling for Robotic Applications in Construction Logistics		2020
Tc74A22	S39	0.2289	CC75	0.0545	A_{22}	0.0534	BIM-based task-level planning for robotic brick assembly through image-based 3D modeling	0.06653370	2020
Tc227A16		0.0050	CC93	0.0032	A ₁₆	0.0189	Bond properties of reinforcing bar penetrations in 3D concrete printing	0.00003019	2020
$Tc_{65}A_{21}$	S ₈₀	0.0050	CC ₉₅	0.0096	A ₂₁	0.0172	Sampling robot for primary circuit pipelines of decommissioned nuclear facilities	0.00008234	2020
Tc52A19	S 39	0.2289	CC ₁₁₇	0.0032	A ₁₉	0.0138	Construction of land base station for uav maintenance automation	0.00101000	2021

$Tc_{63}A_{16}$	S ₃₉	0.2289	CC39	0.0032	A ₁₆	0.0189 Rol	ootic spray polymer for c	coating oncrete m	of onite	self-sensing oring	metakaolin	0.00138875	2021
-----------------	-----------------	--------	------	--------	-----------------	------------	------------------------------	----------------------	-------------	-----------------------	------------	------------	------

• occurrence probability of ThA_i related papers

Term				Subcateg	ory lab	pels			Denoug (title)	Duob obility	Publication
labels	a_i	P	b_i	P	ch_i	P	A_i	P	Papers (title)	Probability	years
Th ₁₅₈ A ₅₅	a ₆	0.0807	b ₅₂	0.0441	ch ₄	0.0041	A ₅₅	0.0275	Development of a survey and inspection robot system for underwater construction works	0.000040	1974
Th9A11	a4	0.0311	b ₁₅	0.0132	ch ₂	0.6585	A_{11}	0.0551	Blockbot: A robot to automate construction of cement block walls	0.001489	1988
$Th_{25}A_{54}$		0.5776	b ₆₇	0.0573	ch_2	0.6585	A_{54}	0.0379	Using robots in the tubular structural constructions	0.082490	1988
Th157A50		0.5776	b_{52}	0.0441	ch ₃	0.1707	A_{50}	0.0516	A concept of control system for construction robot	0.022433	1989
Th35A21	a_2	0.2236	b_2	0.1278	ch ₆	0.0407	A_{21}	0.0172	Pipe manipulator enhancements for increased automation	0.001999	1989
$Th_{141}A_7$	a_4	0.0311	b ₁₂	0.0573	ch ₆	0.0407	A_7	0.0207	A master-slave manipulator for excavation and construction tasks	0.000149	1989
Th35A7	a_2	0.2236	b_2	0.1278	ch ₆	0.0407	A_7	0.0207	Robots and automated systems for the civil and construction industries	0.002398	1990
$Th_{62}A_7$	a_2	0.2236	b_2	0.1278	ch ₁	0.1260	A_7	0.0207	Air-force construction automation robotics	0.007435	1992
$Th_{156}A_6$	a_3	0.5776	b ₁₂	0.0573	ch ₁	0.1260	A_6	0.0723	A remotely operated building inspection cell	0.030135	1992
$Th_{123}A_{31}$	a_2	0.2236	b_{52}	0.0441	ch ₂	0.6585	A_{31}	0.0069	Automation of concrete slab-on-grade construction	0.004466	1992
Th ₆₁ A ₂₉	a_5	0.0373	b ₂₇	0.0132	ch ₂	0.6585	A_{29}	0.0310	Robotic materials handling for automated building construction technology	0.001005	1992
Th157A47		0.5776	b ₅₂	0.0441	ch ₃	0.1707	A ₄₇	0.0034	Outpost service and construction robot (OSCR)	0.001496	1992
$Th_{36}A_{7}$	a ₃	0.5776	b ₁₂	0.0573	ch ₆	0.0407	A ₇	0.0207	Object-oriented programming in robotics research for excavation	0.002777	1992
$Th_{33}A_{20}$	a ₃	0.5776	b ₂₁	0.0044	ch ₂	0.6585	A_{20}	0.0138	Full-scale building with interior finishing robot	0.002307	1993
$Th_{39}A_{22}$	a_3	0.5776	b_{55}	0.0044	ch ₂	0.6585	A_{22}	0.0534	Prototype robotic masonry system	0.008941	1993
Th ₁₄₂ A ₇	a_4	0.0311	b ₁₂	0.0573	ch ₂	0.6585	A_7	0.0207	Artificial intelligence in the control and operation of construction plant-the autonomous robot excavator	0.002419	1993
$Th_{126}A_6$	a_5	0.0373	b_2	0.1278	ch ₂	0.6585	A_6	0.0723	Articulated multi-vehicle robot for inspection and testing of pipeline interiors =	0.022665	1993
$Th_{36}A_{21}$	a ₃	0.5776	b ₁₂	0.0573	ch ₆	0.0407	A_{21}	0.0172	Automation potential of pipe laying operations	0.002315	1993
$Th_{151}A_{21}$		0.5776	b ₅₂	0.0441	ch ₁	0.1260	A ₂₁	0.0172	Air Force construction automation/robotics	0.005519	1994
$Th_{40}A_{22}$	a_2	0.2236	b ₅₆	0.0088	ch ₂	0.6585	A_{22}	0.0534	Mobile robot for on-site construction of masonry	0.006922	1994
$Th_{40}A_{22}$	a_2	0.2236	b ₅₆	0.0088	ch ₂	0.6585	A_{22}	0.0534	A mobile robot for on-site construction of masonry	0.006922	1994

$Th_{19}A_{22}$	a_2	0.2236	b_2	0.1278	ch ₂	0.6585	A ₂₂	0.0534	Application specific realisation of a mobile robot for on-site construction of masonry	0.100372	1994
Th98A6	a ₃	0.5776	b ₁₉	0.0132	ch ₂	0.6585	A_6	0.0723	A robotic manipulator for inspection and maintenance of tall structures	0.036342	1994
Th ₁₃ A ₂₉	a_3	0.5776	\mathbf{b}_7	0.0529	ch ₂	0.6585	A ₂₉	0.0310	Modularity of PRM type cartesian robots and their application in the production of construction materials	0.062300	1994
Th ₆₀ A ₃₄	a_3	0.5776	b ₁₂	0.0573	ch ₂	0.6585	A ₃₄	0.0413	Robotics and automation in the construction of the sliding domes of King Fahd's extension of the prophet's holy mosque in Madinah, Kingdom of Saudi Arabia	0.089989	1994
$Th_{22}A_{58}$	a_3	0.5776	b_{32}	0.0793	ch ₂	0.6585	A_{58}	0.0069	Robot for interior-finishing works in building: Feasibility analysis	0.020767	1994
$Th_{25}A_{53}$		0.5776	b ₆₇	0.0573	ch ₂	0.6585	A_{53}	0.0069	Requirements for application of robotics and automation in highway maintenance and construction tasks	0.014998	1994
$Th_{23}A_{24}$		0.5776	b ₃₂	0.0793	ch ₂	0.6585	A ₂₄	0.0224	Construction process simulation with rule-based robot path planning	0.067492	1994
Th ₁₂₄ A ₅₉	a_2	0.2236	b ₁₂	0.0573	ch ₂	0.6585	A_{59}	0.0069	First results in autonomous retrieval of buried objects	0.005806	1995
$Th_{10}A_{11}$	a ₃	0.5776	b ₁₆	0.0132	ch ₂	0.6585	A ₁₁	0.0551	High tractive power wall-climbing robot	0.027689	1995
$Th_{34}A_{20}$	a_3	0.5776	b ₃₂	0.0793	ch ₂	0.6585	A_{20}	0.0138	Conceptual design of a flooring robot: development methodology and results	0.041533	1995
Th49A34		0.5776	b ₃₆	0.0220	ch ₂	0.6585	A ₃₄	0.0413	Automatic assembly of a commercial cavity block system	0.034611	1995
$Th_{25}A_{54}$		0.5776	b ₆₇	0.0573	ch ₂	0.6585	A ₅₄	0.0379	New TIG arc welding processes and welding robot for construction of storage tank	0.082490	1995
Th ₂₅ A ₅₄		0.5776	b ₆₇	0.0573	ch ₂	0.6585	A ₅₄	0.0379	Development of welding robot technology for civil engineering and construction	0.082490	1995
Th ₂₈ A ₁₁		0.5776		0.1278	ch ₂	0.6585	A ₁₁	0.0551	Wall assembly robot - its development and its integration in construction management Mauerwerksroboter - Entwicklung und Integration in die Ausfuehrungs-planung	0.267660	1995
Th ₈₈ A ₄₄	a ₃	0.5776	b_2	0.1278	ch ₆	0.0407	A ₄₄	0.0155	Task planning experiment toward an autonomous robot system for the construction of overhead distribution lines	0.004647	1995
Th_1A_1	a_2	0.2236	b ₃₂	0.0793	ch ₂	0.6585	A_1	0.0189	Evolution of an automated crack sealer: A study in construction technology development	0.022106	1996
Th59A28	a ₃	0.5776	b ₁₅	0.0132	ch ₂	0.6585	A_{28}	0.0189	Development of a construction robot for marking on ceiling boards	0.009518	1996
$Th_{127}A_6$	a ₃	0.5776	b ₃₆	0.0220	ch ₂	0.6585	A_6	0.0723	Automatic task modelling for sewer studies	0.060570	1996

$Th_{41}A_{22}$	a ₅	0.0373	b ₁₂	0.0573	ch ₂	0.6585	A_{22}	0.0534	Methods of control for robotic brick masonry	0.007499	1996
Th25A54		0.5776	b ₆₇	0.0573	ch ₂	0.6585	A_{54}	0.0379	Compact arc welding robot system for huge construction parts	0.082490	1996
Th ₂₈ A ₁₇		0.5776		0.1278	ch ₂	0.6585	A ₁₇	0.0103	Development of automated cleaning system for construction aluminum scaffolding boards	0.050186	1996
$Th_{64}A_{50}$		0.5776	b ₃₀	0.0441	ch ₃	0.1707	A_{50}	0.0516	Control of construction robots using camera-space manipulation	0.022433	1996
$Th_{11}A_{11}$	a ₃	0.5776	b ₁₇	0.0044	ch ₂	0.6585	A ₁₁	0.0551	Concept of a robot for interior building trades by the example of wall slits in masonry	0.009230	1997
Th_8A_8	a_3	0.5776	b_2	0.1278	ch ₃	0.1707	A_8	0.0293	Construction manipulators of steel towers for the transmission of electricity	0.036865	1997
Th ₆₂ A ₂₉	a_2	0.2236	b_2	0.1278	ch ₁	0.1260	A ₂₉	0.0310	Development of the construction methods for distribution line materials using a robot system remotely controlled from the ground	0.011152	1998
Th ₂₄ A ₁₇	a_2	0.2236	b ₆₇	0.0573	ch ₂	0.6585	A ₁₇	0.0103	Development of automated construction system for high-rise reinforced concrete buildings	0.008709	1998
$Th_{13}A_{8}$	a ₃	0.5776	b_7	0.0529	ch ₂	0.6585	A_8	0.0293	Robotic assembly of rebar cages for beams and columns	0.058839	1998
Th60A54	a ₃	0.5776	b ₁₂	0.0573	ch ₂	0.6585	A_{54}	0.0379	Robotic welding speeds Olympic Stadium construction	0.082490	1998
Th106A49		0.5776	b ₄₉	0.0264	ch ₆	0.0407	A ₄₉	0.0017	Construction manipulators for transmission towers	0.000107	1998
Th ₁₅₂ A ₅₆	a_3	0.5776	b ₆₇	0.0573	ch ₁	0.1260	A_{56}	0.0688	Tele-operated construction robot using virtual reality - (CG presentation of virtual robot for increasing working efficiency)	0.028700	2000
Th151A56		0.5776	b ₅₂	0.0441	ch ₁	0.1260	A_{56}	0.0688	Master-Slave Control for Tele-Operation Construction Robot System	0.022077	2000
$Th_{12}A_{11}$	a_2	0.2236	b_7	0.0529	ch ₂	0.6585	A_{11}	0.0551	Designing for automated construction	0.042873	2000
$Th_{19}A_{12}$	a_2	0.2236	b_2	0.1278	ch ₂	0.6585	A_{12}	0.0241	Development of a robotic bridge maintenance system	0.045329	2000
$Th_{96}A_{45}$	a_3	0.5776	b ₃₄	0.0044	ch ₂	0.6585	A_{45}	0.0241	Automated cleaning of windows on standard facades	0.004038	2000
Th ₁₁₂ A ₅₄		0.5776	b ₁₁	0.0044	ch ₂	0.6585	A_{54}	0.0379	Welding automation in space-frame bridge construction	0.006345	2001
$Th_{32}A_{20}$	a_2	0.2236	b ₁₂	0.0573	ch ₃	0.1707	A ₂₀	0.0138	Technological enhancement and creation of a computer-aided construction system for the shotcreting robot	0.003010	2001
Th85A42	a_2	0.2236	b ₃	0.0220	ch ₁	0.1260	A ₄₂	0.0086	Disaster restoration work for the eruption of Mt Usuzan using an unmanned construction system	0.000534	2002
$Th_{128}A_6$	a ₃	0.5776	b ₇₀	0.0176	ch ₂	0.6585	A_6	0.0723	Adaptive control strategy of climbing robot for inspection applications in construction industry	0.048456	2002
$Th_{143}A_7$	a_4	0.0311	b_{33}	0.0044	ch ₂	0.6585	A_7	0.0207	Robotic excavation in construction automation	0.000186	2002

Th ₁₅₂ A ₅₆	a ₃	0.5776	b ₆₇	0.0573	ch ₁	0.1260	A_{56}	0.0688	Development of a hydraulic tele-operated construction robot using virtual reality: New master-slave control method and an evaluation of a visual feedback system	0.028700	2003
Th ₁₅₀ A ₅₆	a_2	0.2236	b_1	0.0088	ch ₂	0.6585	A ₅₆	0.0688	A Tele-operated Humanoid Robot Drives a Backhoe in the Open Air	0.008932	2003
Th ₁₁₃ A ₅₄	a_3	0.5776	b_{10}	0.0044	ch ₂	0.6585	A ₅₄	0.0379	Portable robotic system for steel H-beam welding	0.006345	2003
$Th_{28}A_{11}$		0.5776		0.1278	ch ₂	0.6585	A ₁₁	0.0551	A cleaning robot for construction out-wall with complicated curve surface	0.267660	2003
Th ₉₁ A ₅₆	a_1	0.0497	b ₆₇	0.0573	ch ₃	0.1707	A ₅₆	0.0688	A remotely controlled robot operates construction machines	0.003345	2003
Th55A28	a ₃	0.5776	b ₃₆	0.0220	ch ₆	0.0407	A_{28}	0.0189	Manipulators help out with plaster panels in construction	0.000979	2003
Th ₁₁₇ A ₅₅	a_1	0.0497	b_2	0.1278	ch ₁	0.1260	A_{55}	0.0275	Distance measurement technology development at remotely teleoperated robotic manipulator system for underwater constructions	0.002203	2004
$Th_{60}A_{28}$	a_3	0.5776	b_{12}	0.0573	ch ₂	0.6585	A_{28}	0.0189	Construction of ceiling adsorbed mobile robots platform utilizing permanent magnet inductive traction method	0.041245	2004
$Th_{26}A_8$		0.5776	b ₄₉	0.0264	ch ₂	0.6585	A_8	0.0293	Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the NIST RoboCrane	0.029419	2004
Th ₁₄ A ₆₃		0.5776	\mathbf{b}_7	0.0529	ch ₂	0.6585	A ₆₃	0.0086	Automated construction by contour crafting - related robotics and information technologies	0.017306	2004
Th ₂₈ A ₁₁		0.5776		0.1278	ch ₂	0.6585	A_{11}	0.0551	A service robot for construction industry	0.267660	2004
Th ₁₀₇ A ₅₆		0.5776		0.1278	ch ₁	0.1260	A ₅₆	0.0688	Graphical simulation of remote control construction robot based on virtual reality	0.064024	2005
$Th_{65}A_{60}$	a_1	0.0497	b ₇₀	0.0176	ch ₂	0.6585	A_{60}	0.0086	A robotized drilling system for rocky wall consolidation	0.000496	2005
$Th_{129}A_6$	a ₃	0.5776	b ₇₄	0.0132	ch ₂	0.6585	A_6	0.0723	Multiconfigurable inspection robots for low diameter canalizations	0.036342	2005
$Th_{130}A_6$	a_3	0.5776	b ₇₀	0.0176	ch ₂	0.6585	A_6	0.0723	Application of robots for inspection and restoration of historical sites	0.048456	2005
Th ₂₈ A ₁₁		0.5776		0.1278	ch ₂	0.6585	A ₁₁	0.0551	The analysis of the curtain wall installation robot: Based on the test in the construction site	0.267660	2005
Th ₈₁ A ₄₀	a ₂	0.2236	b ₄₉	0.0264	ch ₃	0.1707	A ₄₀	0.0034	Development of a parallel typed robot with a sensorless observer for harbor construction	0.000347	2005

Th ₇ A ₁₁	a_5	0.0373	b ₂₀	0.0044	ch ₃	0.1707	A ₁₁	0.0551	Development of hybrid robot for construction works with pneumatic actuator	0.000154	2005
Th84A41	a_1	0.0497	b ₃₀	0.0441	ch ₁	0.1260	A_{41}	0.0138	Development of a remote control system for construction machinery for rescue activities with a pneumatic robot	0.000380	2006
Th ₁₁₈ A ₅₅	a_2	0.2236	b ₃	0.0220	ch ₁	0.1260	A_{55}	0.0275	Experiment on teleoperation of underwater backhoe with haptic information	0.001709	2006
Th94A56	a_2	0.2236		0.1278	ch ₁	0.1260	A_{56}	0.0688	A novel distributed telerobotic system for construction machines based on modules synchronization	0.024783	2006
Th ₁₈ A ₁₁	a ₃	0.5776	b ₃₂	0.0793	ch ₁	0.1260	A ₁₁	0.0551	Automation of incineration plant demolition and utilization of information technology	0.031791	2006
Th ₈₆ A ₄₂		0.5776	b_3	0.0220	ch ₁	0.1260	A_{42}	0.0086	Examination of practical utility of remotely controlled robots in disasters	0.001380	2006
$Th_{53}A_{23}$	a ₃	0.5776	b ₆₆	0.0044	ch ₂	0.6585	A_{23}	0.0017	Using rescue robots to increase construction site safety	0.000288	2006
Th51A59		0.5776	b ₃₀	0.0441	ch ₂	0.6585	A_{59}	0.0069	Massive rock handling by a breaker - Graspless manipulation and object recognition	0.011537	2006
$Th_{25}A_{34}$		0.5776	b ₆₇	0.0573	ch ₂	0.6585	A ₃₄	0.0413	Construction automation based on parts and packets unification	0.089989	2006
Th_8A_{11}	a ₃	0.5776	b_2	0.1278	ch ₃	0.1707	A ₁₁	0.0551	A multidegree-of-freedom manipulator for curtain-wall installation	0.069393	2006
Th89A44		0.5776		0.1278	ch ₃	0.1707	A ₄₄	0.0155	The application of the human-robot cooperative system for construction robot manipulating and installing heavy materials	0.019517	2006
Th38A21	a_2	0.2236	b ₆₉	0.0044	ch ₁	0.1260	A_{21}	0.0172	Control schemes for tele-robotic pipe installation	0.000214	2007
Th93A44		0.5776	b_2	0.1278	ch ₁	0.1260	A ₄₄	0.0155	Intuitive OCU (Operator Control Unit) of MFR (Multipurpose Field Robot) on construction site	0.014405	2007
Th_1A_1	a_2	0.2236	b ₃₂	0.0793	ch ₂	0.6585	A_1	0.0189	Concrete paving productivity improvement using a multi-task autonomous robot	0.022106	2007
$Th_{80}A_6$	a ₃	0.5776	b ₅₈	0.0308	ch ₂	0.6585	A_6	0.0723	A UAV for bridge inspection: Visual servoing control law with orientation limits	0.084797	2007
$Th_{16}A_{63}$	a_6	0.0807	b ₂₅	0.0308	ch ₂	0.6585	A_{63}	0.0086	Cable-suspended robotic contour crafting system	0.001411	2007
$Th_{146}A_8$	_	0.5776	b ₂₆	0.0176	ch ₂	0.6585	A_8	0.0293	Design of a bolting robot for constructing steel structure	0.019613	2007
Th ₂₅ A ₆₃		0.5776	b ₆₇	0.0573	ch ₂	0.6585	A ₆₃	0.0086	Cable-suspended robotic contour crafting system (vol 17, pg 45, 2007)	0.018748	2007
$Th_{56}A_{28}$	a_3	0.5776	b ₄₂	0.0088	ch ₃	0.1707	A_{28}	0.0189	Design of a ceiling glass installation robot	0.001645	2007

$Th_{63}A_6$	a_3	0.5776	b ₃₂	0.0793	ch ₃	0.1707	A_6	0.0723	Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel	0.056532	2007
Th ₈ A ₁₁	a ₃	0.5776	b_2	0.1278	ch ₃	0.1707	A ₁₁	0.0551	Development of the curtain wall installation robot: Performance and efficiency tests at a construction site	0.069393	2007
Th_8A_{44}	a ₃	0.5776	b_2	0.1278	ch ₃	0.1707	A ₄₄	0.0155	MFR (Multipurpose Field Robot) for installing construction materials	0.019517	2007
Th ₇₀ A ₃₄		0.5776	b ₆₀	0.0088	ch ₃	0.1707	A ₃₄	0.0413	Robotic technologies for the automatic assemble of massive beams in high-rise building	0.003589	2007
Th90A44		0.5776	b ₆₇	0.0573	ch ₃	0.1707	A ₄₄	0.0155	Human-robot cooperation control for installing heavy construction materials	0.008749	2007
Th ₁₂₂ A ₅₆	a_1	0.0497	b ₁₂	0.0573	ch ₁	0.1260	A_{56}	0.0688	Remote control of backhoe at construction site with a pneumatic robot system	0.002469	2008
Th95A44	a_3	0.5776	b ₃₂	0.0793	ch ₁	0.1260	A_{44}	0.0155	Power assist devices for installing plaster panels in construction	0.008941	2008
Th_2A_1	a_3	0.5776	b_{52}	0.0441	ch ₂	0.6585	A_1	0.0189	A robotic system for road lane painting	0.031727	2008
$Th_{13}A_{8}$	a ₃	0.5776	b ₇	0.0529	ch ₂	0.6585	A_8	0.0293	A new type of bolting robot for steel-frame structure constructions	0.058839	2008
Th ₃₇ A ₂₁	a_2	0.2236	b ₂₅	0.0308	ch ₃	0.1707	A ₂₁	0.0172	A comparison of two innovative technologies for safe pipe installation - "Pipeman" and the Stewart-Gough platform-based pipe manipulator	0.002026	2008
Th ₅₇ A ₂₈	a_3	0.5776	b ₄₄	0.0088	ch ₃	0.1707	A_{28}	0.0189	Human robot cooperative control and task planning for a glass ceiling installation robot	0.001645	2008
$Th_{139}A_{60}$	a_3	0.5776	b ₁₂	0.0573	ch ₃	0.1707	A_{60}	0.0086	Autonomous drilling robot for landslide monitoring and consolidation	0.004861	2008
Th ₇₁ A ₃₄		0.5776	b ₄₅	0.0176	ch ₃	0.1707	A_{34}	0.0413	Wearable haptic glove using micro hydraulic system for control of construction robot system with VR environment	0.007179	2008
Th ₈₉ A ₁₀		0.5776		0.1278	ch ₃	0.1707	A_{10}	0.0138	A human-robot cooperative system helps out with glass panels in construction	0.017348	2008
$Th_{144}A_8$	a_2	0.2236	b ₆₃	0.0088	ch ₆	0.0407	A_8	0.0293	Development of automation system for steel construction based on robotic crane	0.000234	2008
Th_3A_1	a_1	0.0497	b_2	0.1278	ch ₂	0.6585	A_1	0.0189	Chronological development history of X-Y table based pavement crack sealers and research findings for practical use in the field	0.007915	2009
$Th_{129}A_6$	a_3	0.5776	b ₇₄	0.0132	ch ₂	0.6585	A_6	0.0723	Design, Construction, and testing of a new class of mobile robots for cave exploration	0.036342	2009

$Th_{13}A_8$	a ₃	0.5776	b ₇	0.0529	ch ₂	0.6585	A_8	0.0293	Experimental evaluation of a robotic bolting device in steel beam assembly	0.058839	2009
Th ₂₆ A ₂₉		0.5776	b ₄₉	0.0264	ch ₂	0.6585	A ₂₉	0.0310	Basic study of smart robotic construction lift for increasing resource lifting efficiency in high-rise building construction	0.031150	2009
Th ₁₄₅ A ₈	a ₃	0.5776	b ₆₃	0.0088	ch ₃	0.1707	A_8	0.0293	Robotic automation system for steel beam assembly in building construction	0.002542	2009
Th92A44	a_2	0.2236	b ₂₄	0.0088	ch ₂	0.6585	A ₄₄	0.0155	Climbing and pole line hardware installation robot for construction of distribution lines	0.002010	2010
Th50A45	a ₃	0.5776	b ₃₆	0.0220	ch ₂	0.6585	A ₄₅	0.0241	Self-traveling robotic system for autonomous abrasive blast cleaning in double-hulled structures of ships	0.020190	2010
$Th_{66}A_{10}$	a_3	0.5776	b ₂₅	0.0308	ch ₂	0.6585	A_{10}	0.0138	Implementation of a foldable 3-DOF master device to a glass window panel fitting task	0.016152	2010
$Th_{14}A_8$		0.5776	b_7	0.0529	ch ₂	0.6585	A_8	0.0293	Mechanism and analysis of a robotic bolting device for steel beam assembly	0.058839	2010
Th54A26	a_2	0.2236	b ₆₁	0.0132	ch ₃	0.1707	A ₂₆	0.0052	Development of a dual robotic arm system to evaluate intelligent system for advanced construction machinery	0.000261	2010
Th_8A_{44}	a ₃	0.5776	b_2	0.1278	ch ₃	0.1707	A ₄₄	0.0155	An improved multipurpose field robot for installing construction materials	0.019517	2010
Th ₁₁₉ A ₅₆	a_2	0.2236		0.1278	ch ₁	0.1260	A ₅₆	0.0688	Tele-operation construction robot control system with virtual reality technology	0.024783	2011
$Th_{68}A_{33}$	a_2	0.2236	b ₄₅	0.0176	ch ₂	0.6585	A ₃₃	0.0069	Wearable robotic system using hydraulic actuator	0.001786	2011
$Th_{20}A_{12}$	a ₃	0.5776	b ₅₇	0.0132	ch ₂	0.6585	A ₁₂	0.0241	Field application of a robotic system on cable stays of incheon bridge for snow removal	0.012114	2011
Th10A19	a ₃	0.5776	b ₁₆	0.0132	ch ₂	0.6585	A ₁₉	0.0138	Development of building-façade maintenance robot with docking station based on vertical climbing mechanism	0.006922	2011
Th_4A_{20}	a_3	0.5776	b_2	0.1278	ch ₂	0.6585	A_{20}	0.0138	Robot system for removing asbestos sprayed on beams	0.066915	2011
Th97A45	a ₅	0.0373	b ₂₆	0.0176	ch ₂	0.6585	A ₄₅	0.0241	An experimental study of automatic cleaning tool and robot for façade in high-rise buildings	0.001042	2011
Th ₁₄₈ A ₈	a ₆	0.0807	b ₂₄	0.0088	ch ₂	0.6585	A_8	0.0293	Real-time nde of steel cable using elasto-magnetic sensors installed in a cable climbing robot	0.001371	2011
Th ₂₆ A ₁₇		0.5776	b ₄₉	0.0264	ch ₂	0.6585	A ₁₇	0.0103	Development of robotic-crane based automatic construction system for steel structures of high-rise buildings	0.010383	2011

Th ₂₈ A ₁₇		0.5776		0.1278	ch ₂	0.6585	A ₁₇	0.0103	Building of a sample scenario of a built-in guide type robot for external wall maintenance work of a skyscraper	0.050186	2011
Th ₂₈ A ₁₉		0.5776		0.1278	ch ₂	0.6585	A ₁₉	0.0138	Window contamination detection method for the robotic building maintenance system	0.066915	2011
Th ₂₈ A ₃₈		0.5776		0.1278	ch ₂	0.6585	A ₃₈	0.0155	Development of high accuracy position making system applying mark robot in construction site	0.075279	2011
Th ₁₅₃ A ₆	a ₃	0.5776	b_2	0.1278	ch ₃	0.1707	A_6	0.0723	Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration	0.091079	2011
Th82A41	a_2	0.2236	b ₆₁	0.0132	ch ₆	0.0407	A_{41}	0.0138	Development of double arm working machine for demolition and scrap processing	0.000165	2011
Th115A55	a ₃	0.5776	b_4	0.0044	ch ₂	0.6585	A_{55}	0.0275	A robotic system for underwater eco-sustainable wire-cutting	0.004615	2012
$Th_{27}A_{28}$	a ₃	0.5776	b ₄₆	0.0088	ch ₂	0.6585	A_{28}	0.0189	Autonomous construction of a roofed structure: Synthesizing planning and stigmergy on a mobile robot	0.006345	2012
$Th_{129}A_{6}$	a_3	0.5776	b ₇₄	0.0132	ch ₂	0.6585	A_6	0.0723	Hete+A184:H184rogeneous multi-configurable chained microrobot for the exploration of small cavities	0.036342	2012
$Th_{22}A_6$	a ₃	0.5776	b ₃₂	0.0793	ch ₂	0.6585	A_6	0.0723	Design and construction of an in-pipe robot for inspection and maintenance	0.218050	2012
Th ₂₈ A ₃₈		0.5776		0.1278	ch ₂	0.6585	A_{38}	0.0155	High Accuracy Position Marking System Applying Mobile Robot in Construction Site	0.075279	2012
$Th_{63}A_3$	a_3	0.5776	b_{32}	0.0793	ch ₃	0.1707	A_3	0.0069	Open robot control for services in construction	0.005384	2012
$Th_{64}A_{10}$		0.5776	b ₃₀	0.0441	ch ₃	0.1707	A ₁₀	0.0138	An easy handling system for installing heavy glass using human robot cooperation	0.005982	2012
$Th_{107}A_5$		0.5776		0.1278	ch ₁	0.1260	A_5	0.0120	Job planning and supervisory control for automated earthmoving using 3D graphical tools	0.011204	2013
Th ₁₃ A ₂₉	a_3	0.5776	b_7	0.0529	ch ₂	0.6585	A_{29}	0.0310	Development of an automated freeform construction system and its construction materials	0.062300	2013
$Th_{140}A_{63}$	a_6	0.0807	b ₅₇	0.0132	ch ₂	0.6585	A ₆₃	0.0086	Optimal machine operation planning for construction by Contour Crafting	0.000605	2013
Th51A7		0.5776	b ₃₀	0.0441	ch ₂	0.6585	A ₇	0.0207	Design and construction of a scale robotic excavator work-cell to test automated excavation algorithms	0.034611	2013
$Th_{147}A_{8}$	a_2	0.2236	b_7	0.0529	ch ₃	0.1707	A_8	0.0293	Robot-based construction automation: An application to steel beam assembly (Part I)	0.005905	2013

Th149A10	a ₃	0.5776	b ₆₂	0.0044	ch ₃	0.1707	A_{10}	0.0138	Prototype for glazed panel construction robot	0.000598	2013
Th_8A_8	a ₃	0.5776	b_2	0.1278	ch ₃	0.1707	A_8	0.0293	Robot-based construction automation: An application to steel beam assembly (Part II)	0.036865	2013
$Th_{58}A_{28}$		0.5776	b ₄₄	0.0088	ch ₃	0.1707	A_{28}	0.0189	Glazed ceiling panel construction robot	0.001645	2013
$Th_{64}A_{10}$		0.5776	b ₃₀	0.0441	ch ₃	0.1707	A_{10}	0.0138	Installation of heavy duty glass using an intuitive manipulation device	0.005982	2013
Th137.A55	a_2	0.2236	b_2	0.1278	ch ₁	0.1260	A_{55}	0.0275	Underwater construction robot for rubble leveling on the seabed for port construction	0.009913	2014
$Th_{131}A_6$	a_3	0.5776	b ₇₁	0.0044	ch ₂	0.6585	A_6	0.0723	Considerations regarding the construction of a minirobot for surveillance and inspection	0.012114	2014
Th ₁₂₁ A ₅₇	a ₃	0.5776	b_{83}	0.0088	ch ₂	0.6585	A_{57}	0.0034	Towards a vision controlled robotic home environment	0.001154	2014
Th47A5	a ₃	0.5776	b ₅₈	0.0308	ch ₂	0.6585	A_5	0.0120	Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system	0.014133	2014
Th_4A_6	a_3	0.5776	b_2	0.1278	ch ₂	0.6585	A_6	0.0723	A lightweight bridge inspection system using a dual-cable suspension mechanism	0.351303	2014
$Th_{31}A_2$		0.5776	b_1	0.0088	ch ₂	0.6585	A_2	0.0086	Towards On-Site Autonomous Robotic Floor Tiling of Mosaics	0.002884	2014
Th ₂₆ A ₁₀		0.5776	b ₄₉	0.0264	ch ₂	0.6585	A ₁₀	0.0138	Introduction of human-robot cooperation technology at construction sites	0.013844	2014
Th46A34		0.5776	b ₅₈	0.0308	ch ₂	0.6585	A ₃₄	0.0413	Collision-free 4D trajectory planning in Unmanned Aerial Vehicles for assembly and structure construction	0.048456	2014
$Th_{105}A_{47}$	a_2	0.2236	b_2	0.1278	ch ₃	0.1707	A_{47}	0.0034	Robotic explosive charging in mining and construction applications	0.001679	2014
Th72A34		0.5776	b ₄₂	0.0088	ch ₃	0.1707	A_{34}	0.0413	In-Situ fabrication: Mobile robotic units on construction sites	0.003589	2014
Th ₃₀ A ₁₉	a_2	0.2236	b ₅₇	0.0132	ch ₂	0.6585	A ₁₉	0.0138	A robotic cutting tool for contaminated structure maintenance and decommissioning	0.002680	2015
Th116A55	a ₃	0.5776	b ₅	0.0044	ch ₂	0.6585	A_{55}	0.0275	Design and construction of a robot hand prototype for underwater applications	0.004615	2015
Th ₁₂₁ A ₅₇	a ₃	0.5776	b_{83}	0.0088	ch ₂	0.6585	A_{57}	0.0034	Assistive robotic micro-rooms for independent living	0.001154	2015
Th_2A_6	a_3	0.5776	b ₅₂	0.0441	ch ₂	0.6585	A_6	0.0723	A low-cost robotic system for the efficient visual inspection of tunnels	0.121139	2015
Th52A29	a_6	0.0807	b ₁₃	0.0132	ch ₂	0.6585	A ₂₉	0.0310	Cable robot for non-standard architecture and construction: A dynamic positioning system	0.002177	2015

Th43A22		0.5776	b ₅₄	0.0044	ch ₂	0.6585	A_{22}	0.0534	Between Manual and Robotic Approaches to Brick Construction in Architecture Expanding the Craft of Manual Bricklaying with the Help of Video Projection Techniques	0.008941	2015
Th29A28	a ₃	0.5776	b ₄₅	0.0176	ch ₃	0.1707	A ₂₈	0.0189	Ceiling work scenario based hardware design and control algorithm of supernumerary robotic limbs	0.003290	2015
$Th_{108}A_5$	a_2	0.2236	b ₃₂	0.0793	ch ₁	0.1260	A_5	0.0120	Key challenges in automation of earth-moving machines	0.002692	2016
$Th_{136}A_6$	a ₃	0.5776	b ₁₉	0.0132	ch ₁	0.1260	A_6	0.0723	Design and analysis of climbing robot based on construction surface inspection	0.006954	2016
Th ₁₂₀ A ₅₆	a ₃	0.5776	b ₃₂	0.0793	ch ₁	0.1260	A ₅₆	0.0688	Prototyping a remotely-controlled machine for concrete surface griding operations	0.039739	2016
$Th_{110}A_{50}$	a ₄	0.0311	b ₅₂	0.0441	ch ₁	0.1260	A_{50}	0.0516	An electro-hydraulic servo controller for construction robot using system-on-chip device	0.000890	2016
Th44A22	a_6	0.0807	b ₂₆	0.0176	ch ₂	0.6585	A_{22}	0.0534	Automated construction of masonry buildings using cable- driven parallel robots	0.004999	2016
Th109A37		0.5776	b ₇₈	0.0088	ch ₂	0.6585	A ₃₇	0.0155	Study on parts processing of the traditional wooden construction method using articulated robot	0.005192	2016
Th ₁₀₉ A ₅₀		0.5776	b ₇₈	0.0088	ch ₂	0.6585	A_{50}	0.0516	Local search on trees and a framework for automated construction using multiple identical robots	0.017306	2016
Th ₁₄ A ₃₇		0.5776	b_7	0.0529	ch ₂	0.6585	A ₃₇	0.0155	Robotic timber construction - Expanding additive fabrication to new dimensions	0.031150	2016
Th23A29		0.5776	b_{32}	0.0793	ch_2	0.6585	A_{29}	0.0310	Autonomous construction with compliant building material	0.093450	2016
Th74A34	a ₃	0.5776	b ₉	0.0044	ch ₃	0.1707	A ₃₄	0.0413	Automation of modular assembly of structural frames for buildings	0.001795	2016
Th29A29	a ₃	0.5776	b ₄₅	0.0176	ch ₃	0.1707	A ₂₉	0.0310	Applications of supernumerary robotic limbs to construction works: Case studies	0.005384	2016
Th73A34		0.5776	b ₃₀	0.0441	ch ₃	0.1707	A ₃₄	0.0413	Human-Machine Interaction for Intuitive Programming of Assembly Tasks in Construction	0.017947	2016
Th ₁₀₄ A ₄₅	a ₃	0.5776	b ₃₅	0.0044	ch ₁	0.1260	A_{45}	0.0241	Development of a wall-climbing platform with modularized wall-cleaning units	0.000773	2017
$Th_{138}A_6$	a ₃	0.5776	b_2	0.1278	ch ₁	0.1260	A_6	0.0723	Autonomous robotic system with tunnel inspection tool positioning	0.067225	2017
$Th_{65}A_{30}$	a_1	0.0497	b ₇₀	0.0176	ch ₂	0.6585	A ₃₀	0.0103	Three types of robot builder for the unsupervised construction of Mars habitats	0.000595	2017

Th45A22	a ₃	0.5776	b ₅₉	0.0044	ch ₂	0.6585	A_{22}	0.0534	Robotic mechanical design for brick-laying automation	0.008941	2017
Th47.A6	a ₃	0.5776	b ₅₈	0.0308	ch ₂	0.6585	A_6	0.0723	Wall contact by octo-rotor UAV with one DoF manipulator for bridge inspection	0.084797	2017
Th22A15	a ₃	0.5776	b ₃₂	0.0793	ch ₂	0.6585	A ₁₅	0.0086	Development of a novel post-construction quality assessment robot system	0.025958	2017
$Th_{22}A_6$	a_3	0.5776	b ₃₂	0.0793	ch ₂	0.6585	A_6	0.0723	Design and construction of an inspection robot for the sewage pipes	0.218050	2017
Th ₁₆ A ₁₁	a_6	0.0807	b ₂₅	0.0308	ch ₂	0.6585	A_{11}	0.0551	Autonomous big-scale additive manufacturing using cable-driven robots	0.009031	2017
$Th_{15}A_{11}$		0.5776	b ₂₃	0.0044	ch ₂	0.6585	A_{11}	0.0551	JA-WA - A wall construction system using unilateral material application with a mobile robot	0.009230	2017
$Th_{67}A_{60}$		0.5776	b ₇₅	0.0044	ch ₂	0.6585	A_{60}	0.0086	Industrial robots application in the construction of buildings and structures	0.001442	2017
Th111A52		0.5776	b_{16}	0.0132	ch_2	0.6585	A_{52}	0.0103	Towards force-aware robot collectives for on-site construction	0.005192	2017
$Th_{46}A_6$		0.5776	b ₅₈	0.0308	ch ₂	0.6585	A_6	0.0723	Construction inspection with unmanned aerial vehicle [Bauwerksinspektion mit unbemannten Flugsystemen]	0.084797	2017
Th23A15		0.5776	b ₃₂	0.0793	ch ₂	0.6585	A ₁₅	0.0086	A Novel Building Post-Construction Quality Assessment Robot: Design and Prototyping	0.025958	2017
Th77A9		0.5776	b_2	0.1278	ch ₂	0.6585	A ₉	0.0069	Construction Techniques Used to Automatically Pass Standard Box Girders through Special Passenger-Line Tunnels	0.033457	2017
$Th_{28}A_6$		0.5776		0.1278	ch ₂	0.6585	A_6	0.0723	Bottom-up cognitive analysis of bionic inspection robot for construction site	0.351303	2017
Th75A34	a_5	0.0373	\mathbf{b}_7	0.0529	ch ₃	0.1707	A ₃₄	0.0413	Design of Modular Re-configurable Robotic System for Construction and Digital Fabrication	0.001389	2017
Th64A3		0.5776	b ₃₀	0.0441	ch ₃	0.1707	A_3	0.0069	On-Site Robotic Construction Assistance for Assembly Using A-Priori Knowledge and Human-Robot Collaboration	0.002991	2017
Th99A45	a ₃	0.5776	b ₃₇	0.0044	ch ₂	0.6585	A_{45}	0.0241	Floor cleaning robot with reconfigurable mechanism	0.004038	2018
$Th_{154}A_6$	a3	0.5776	b ₄₆	0.0088	ch ₂	0.6585	A_6	0.0723	Development of a robot for boiler tube inspection	0.024228	2018
Th98A45	a_3	0.5776	b ₁₉	0.0132	ch ₂	0.6585	A_{45}	0.0241	Glass facade cleaning robot with passive suction cups and self-locking trapezoidal lead screw drive	0.012114	2018
Th133A6	a ₃	0.5776	b ₃	0.0220	ch ₂	0.6585	A_6	0.0723	Automatic inspection of embankment by crawler-type mobile robot	0.060570	2018

Th_2A_6	a ₃	0.5776	b ₅₂	0.0441	ch ₂	0.6585	A_6	0.0723	Automatic traveling method for the self-propelled tunnel inspection system	0.121139	2018
$Th_{22}A_6$	a ₃	0.5776	b ₃₂	0.0793	ch ₂	0.6585	A_6	0.0723	Localisation of a mobile robot for bridge bearing inspection	0.218050	2018
Th_4A_6	a ₃	0.5776	b_2	0.1278	ch ₂	0.6585	A_6	0.0723	Tunnel structural inspection and assessment using an autonomous robotic system	0.351303	2018
$Th_{42}A_{22}$	a_6	0.0807	b ₅₃	0.0044	ch ₂	0.6585	A ₂₂	0.0534	CU-brick cable-driven robot for automated construction of complex brick structures: From simulation to hardware realisation	0.001250	2018
Th44A22	a_6	0.0807	b ₂₆	0.0176	ch ₂	0.6585	A ₂₂	0.0534	Process analysis of cable-driven parallel robots for automated construction	0.004999	2018
$Th_{16}A_{11}$	a_6	0.0807	b ₂₅	0.0308	ch ₂	0.6585	A ₁₁	0.0551	Cable-driven parallel robot for curtain wall modules automatic installation	0.009031	2018
Th ₇₆ A ₃₄	a_6	0.0807	b ₂₅	0.0308	ch ₂	0.6585	A ₃₄	0.0413	On the Improvements of a Cable-Driven Parallel Robot for Achieving Additive Manufacturing for Construction	0.006773	2018
Th ₁₁₄ A ₅₄		0.5776	b ₁₄	0.0044	ch ₂	0.6585	A_{54}	0.0379	A Changeable Jig-Less Welding Cell for Subassembly of Construction Machinery	0.006345	2018
$Th_{132}A_6$		0.5776	b ₇₂	0.0088	ch ₂	0.6585	A_6	0.0723	Robotic inspection tests of tunnel lining concrete with crack light- section device on variable guide frame	0.024228	2018
$Th_{132}A_6$		0.5776	b ₇₂	0.0088	ch ₂	0.6585	A_6	0.0723	Concrete inspection systems using hammering robot imitating sounds of workers	0.024228	2018
Th_6A_{11}		0.5776	b ₁₃	0.0132	ch ₂	0.6585	A ₁₁	0.0551	Robotic application of foam concrete onto bare wall elements - Analysis, concept and robotic experiments	0.027689	2018
Th ₅ A ₁₁		0.5776	b ₂₇	0.0132	ch ₂	0.6585	A ₁₁	0.0551	Improvement of the mobile robot location dedicated for habitable house construction by 3D printing	0.027689	2018
Th46A22		0.5776	b ₅₈	0.0308	ch ₂	0.6585	A_{22}	0.0534	Feasibility study for drone-based masonry construction of real-scale structures	0.062589	2018
$Th_{23}A_{30}$		0.5776	b ₃₂	0.0793	ch ₂	0.6585	A ₃₀	0.0103	Planetary Lego: Designing a Construction Block from a Regolith Derived Feedstock for In Situ Robotic Manufacturing	0.031150	2018
$Th_{77}A_6$		0.5776	b_2	0.1278	ch ₂	0.6585	A_6	0.0723	Automatic multi-image stitching for concrete bridge inspection by combining point and line features	0.351303	2018
Th ₂₈ A ₁₉		0.5776		0.1278	ch ₂	0.6585	A ₁₉	0.0138	Smart construction robot technology to improve construction and safety in outer walls of high-rise buildings	0.066915	2018
$Th_{28}A_{28}$		0.5776		0.1278	ch ₂	0.6585	A_{28}	0.0189	Automation of the execution of monolithic reinforced ceilings	0.092008	2018

$Th_{125}A_6$	a ₃	0.5776	b ₇₃	0.0044	ch ₃	0.1707	A_6	0.0723	A semi-autonomous mobile robot for bridge inspection	0.003141	2018
Th ₈₇ A ₄₂	a_2	0.2236	b ₆₁	0.0132	ch ₁	0.1260	A_{42}	0.0086	Dual-arm construction robot with remote-control function	0.000320	2019
Th86A42		0.5776	b_3	0.0220	ch ₁	0.1260	A_{42}	0.0086	Efforts to unmanned construction for post-disaster restoration and reconstruction	0.001380	2019
$Th_{135}A_6$	a_1	0.0497	b ₁₅	0.0132	ch ₂	0.6585	A_6	0.0723	Control of a hyper-redundant robot for quality inspection in additive manufacturing for construction	0.003126	2019
$Th_{69}A_{60}$	a_2	0.2236	b_{76}	0.0044	ch ₂	0.6585	A_{60}	0.0086	A novel holonomic mobile manipulator robot for construction sites	0.000558	2019
Th ₁₀₁ A ₄₅	a ₃	0.5776	b ₃₈	0.0044	ch ₂	0.6585	A_{45}	0.0241	Self-reconfigurable façade-cleaning robot equipped with deep- learning-based crack detection based on convolutional neural networks	0.004038	2019
Th ₁₀₀ A ₄₅	a ₃	0.5776	b ₃₉	0.0044	ch ₂	0.6585	A_{45}	0.0241	Four-wheel steering and driving mechanism for a reconfigurable floor cleaning robot	0.004038	2019
$Th_{103}A_{45}$	a ₃	0.5776	b_{40}	0.0044	ch ₂	0.6585	A_{45}	0.0241	Design and modelling of a modular window cleaning robot	0.004038	2019
Th ₁₀₂ A ₄₅	a ₃	0.5776	b ₄₁	0.0044	ch ₂	0.6585	A_{45}	0.0241	Parallel 2-DoF manipulator for wall-cleaning applications	0.004038	2019
Th79A38	a ₃	0.5776	b ₇₉	0.0088	ch ₂	0.6585	A ₃₈	0.0155	Mobile robot for marking free access floors at construction sites	0.005192	2019
Th79A38	a ₃	0.5776	b ₇₉	0.0088	ch ₂	0.6585	A ₃₈	0.0155	Development of automated mobile marking robot system for free access floor	0.005192	2019
$Th_{134}A_6$	a ₃	0.5776	b ₁₃	0.0132	ch ₂	0.6585	A_6	0.0723	QuicaBot: Quality Inspection and Assessment Robot	0.036342	2019
$Th_{48}A_{22}$	a ₃	0.5776	b ₃₆	0.0220	ch ₂	0.6585	A_{22}	0.0534	Labview based brick laying robot	0.044706	2019
Th ₁₇ A ₁₁	a_6	0.0807	b_{28}	0.0044	ch ₂	0.6585	A_{11}	0.0551	Design, modelling and simulation of novel hexapod-shaped passive damping system for coupling cable robot and end effector in curtain wall module installation application (wall)	0.001290	2019
Th ₁₆ A ₂₂	a_6	0.0807	b ₂₅	0.0308	ch ₂	0.6585	A22	0.0534	Investigation of robot systems in masonry construction [Baubetriebliche Untersuchung von Robotersystemen im Mauerwerksbau]	0.008749	2019
Th46A6		0.5776	b ₅₈	0.0308	ch ₂	0.6585	A_6	0.0723	Indoor visualization experiments at building construction site using high safety UAV	0.084797	2019
$Th_{51}A_{22}$		0.5776	b ₃₀	0.0441	ch ₂	0.6585	A_{22}	0.0534	Automatic brick masonry system and its application in on-site construction	0.089412	2019
Th ₁₄ A ₄₄		0.5776	\mathbf{b}_7	0.0529	ch ₂	0.6585	A ₄₄	0.0155	Towards Automated Installation of Reinforcement Using Industrial Robots	0.031150	2019
Th77A37		0.5776	b_2	0.1278	ch ₂	0.6585	A ₃₇	0.0155	Robotic fabrication of nail laminated timber	0.075279	2019

Th ₇₇ A ₃₇		0.5776	b_2	0.1278	ch ₂	0.6585	A ₃₇	0.0155	Adaptive automation strategies for robotic prefabrication of parametrized mass timber building components	0.075279	2019
Th77.A41		0.5776	b_2	0.1278	ch ₂	0.6585	A_{41}	0.0138	Construction waste recycling robot for nails and screws: Computer vision technology and neural network approach	0.066915	2019
$Th_{28}A_{30}$		0.5776		0.1278	ch ₂	0.6585	A_{30}	0.0103	In-situ construction method for lunar habitation: Chinese Super Mason	0.050186	2019
$Th_{21}A_{13}$		0.5776	b ₃₁	0.0044	ch ₃	0.1707	A_{13}	0.0034	User interfaces for human-robot interaction in field robotics	0.000150	2019
Th ₁₅₈ A ₃₆	a2	0.2236	b ₂₇	0.0132	ch ₁	0.1260	A ₃₆	0.0086	Controller area network standard for unmanned ground vehicles hydraulic systems in construction applications	0.000320	2020
Th ₇₈ A ₃₇	a3	0.5776	b ₄₈	0.0044	ch ₂	0.6585	A_{37}	0.0155	Flexible and transportable robotic timber construction platform – TIM	0.002596	2020
Th155A37		0.5776	b ₅₀	0.0044	ch ₂	0.6585	A ₃₇	0.0155	Automated manufacturing for timber-based panelised wall systems	0.002596	2020
Th ₈₃ A ₄₁		0.5776	b ₆₀	0.0088	ch ₂	0.6585	A ₄₁	0.0138	Development of an automatic sorting robot for construction and demolition waste	0.004615	2020
Th ₅₁ A ₂₂		0.5776	b ₃₀	0.0441	ch ₂	0.6585	A_{22}	0.0534	Automation of the construction process by using a hinged robot with interchangeable nozzles	0.089412	2021

• occurrence probability of TeA_i related papers

Term	S	Subcatego	ory lab	els	D (7.1)	D 1 1 11	Publication
labels	ce_i	P	A_i	P	Papers (title)	Probability	years
Te ₁₄ A ₅₄	ce ₁₄	0.1304	A ₅₄	0.0379	Application of robotics in bridge deck fabrication	0.493901	1989
Te ₂ A ₅₃	ce ₂	0.0870	A_{53}	0.0069	Robotics in highway construction & maintenance	0.059867	1995
Te9A29	ce ₉	0.0870	A ₂₉	0.0310	Automated construction system for high-rise reinforced concrete buildings	0.269401	2000
Te ₁₄ A ₃₅	ce ₁₄	0.1304	A_{35}	0.0103	Balancing human-and-robot integration in building tasks	0.134700	2004
Te_6A_{12}	ce ₆	0.0870	A_{12}	0.0241	Intelligent painting process planner for robotic bridge painting	0.209534	2007
Te_9A_{29}	ce ₉	0.0870	A_{29}	0.0310	Task management of robots for the automatic construction	0.269401	2008
Te ₁₀ A ₁₄	ce ₁₀	0.1304	A_{14}	0.0138	Position error modeling for automated construction manipulators	0.179600	2009
Te ₁₂ A ₃₅	ce ₁₂	0.0870	A_{35}	0.0103	Development of conceptual model of construction factory for automated construction	0.089800	2009
Te_7A_{21}	ce ₇	0.0435	A_{21}	0.0172	A performance evaluation of a Stewart platform based Hume concrete pipe manipulator	0.074833	2009
$Te_{10}A_{52}$	ce ₁₀	0.1304	A_{52}	0.0103	Relative accuracy enhancement system based on internal error range estimation for external	0.134700	2011
1 6702 132	CC10				force measurement in construction manipulator		
Te_4A_9	ce ₄	0.0435	A_9	0.0069	Dimension optimization of an orientation fine-tuning manipulator for segment assembly robots	0.029933	2011
	CC4				in shield tunneling machines		
Te_5A_{10}	ce ₅	0.0435	A_{10}	0.0138	A methodology to quantitatively evaluate the safety of a glazing robot	0.059867	2011
$Te_{11}A_{56}$	ce ₁₁	0.0435	A_{56}	0.0688	Evaluation of construction robot telegrasping force perception using visual, auditory and force	0.299334	2012
10112 100	0011				feedback integration		
$Te_{10}A_{35}$	ce ₁₀	0.1304	A_{35}	0.0103	Analysis on autonomous task trajectory tracking performance of construction robot with online	0.134700	2013
- 70 33	10				gravity compensation		
Te ₁₂ A ₃₅	ce ₁₂	0.0870	A_{35}	0.0103	A framework of indicators for assessing construction automation and robotics in the	0.089800	2015
		0.00=0		0.0011	sustainability context	0.000501	2016
Te ₆ A ₁₂	ce ₆	0.0870	A ₁₂	0.0241	Bridge maintenance automation	0.209534	2016
Te_1A_{11}	ce ₁	0.0435	A_{11}	0.0551	Potential benefits of digital fabrication for complex structures: Envitonmental assessment of a	0.239467	2017
		0.4204	Α	0.04.02	robotically fabricated concrete-wall	0.42.4700	2010
Te ₁₄ A ₃₅	ce ₁₄	0.1304	A_{35}	0.0103	Improved productivity, efficiency and cost savings following implementation of drone	0.134700	2018
	•	0.0425		0.0400	technology in the surveying industry	0.000017	2010
Te ₁₅ A ₁₆	ce ₁₅	0.0435	A_{16}	0.0189	Framework for human performance analysis in Unmanned Aircraft System (UAS) operations	0.082317	2018
					in dynamic construction environment (concrete printing)		

Te_3A_{22}	ce ₃	0.0435	A_{22}	0.0534	The analysis of factors influencing on efficiency of applying mobile bricklaying robots and tools	0.231984	2019
					for such analysis		
Te13A35	-	0.0435	A_{35}	0.0103	A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as	0.044900	2020
	ce ₁₃				Displaceable 3D Printers of Building Elements for the Construction Industry		
Te_2A_{22}	ce_2	0.0870	A_{22}	0.0534	Determining a numerical efficiency indicator for a mobile bricklaying robot	0.463968	2020
Te_8A_{21}	ce ₈	0.0435	A ₂₁	0.0172	Life cycle cost analysis of the steel pipe pile head cutting robot	0.074833	2020