CHEMISTRY IN CESM2

EIRIK ROLLAND ENGER

December 7, 2022

MOTIVATION

SSW Atmospheric Blocking Motivation Implementation Sea Ice

STRATOSPHERIC SUDDEN WARMINGS

Motivation Implementation SSW Atmospheric Block

STRATOSPHERIC SUDDEN WARMINGS

- Defined as a wind reversal (eastward) at 10 hPa (~ 25 km), 60 °N
- Big improvement from including updated parametrizations of turbulent mountain stress (TMS), surface stress due to unresolved topography
- A lack of stratospheric internal variability without a high-top atmosphere

Motivation Implementation SSW Atmospheric Blocking

STRATOSPHERIC SUDDEN WARMINGS

EVOLUTION OF THE OZONE LAYER

- WACCM6 is able to reproduce the evolution of the ozone layer (also SH polar ozone hole)
- Ozone variability in the tropical stratosphere improves on the inclusion of an internally generated quasi-bilennial oscillation (QBO)

ATMOSPHERIC BLOCKING

Frequency of the meridional gradient of 500-hPa geopotential height below a threshold of GHGS>0, GHGN<-5 m/degree

$$\begin{aligned} \text{GHGS} &= \frac{Z(\phi_0) - Z(\phi_S)}{\phi_0 - \phi_S} \\ \text{GHGN} &= \frac{Z(\phi_N) - Z(\phi_0)}{\phi_N - \phi_0} \end{aligned}$$

where $\phi_N=78.75\,^\circ N+\Delta,\,\phi_0=60\,^\circ N+\Delta,\,\phi_S=41.25\,^\circ N+\Delta$ and $\Delta=-3.75^\circ,0^\circ,3.75^\circ$ [1].

^[1] D'Andrea et al. "Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988". 1998

 Motivation
 Implementation
 SSW
 Atmospheric Blocking

 Ozone
 Sea Ice

BLOCKING FREQUENCY

 Motivation
 Implementation
 SSW
 Atmospheric Blocking

 Ozone
 Sea Ice

SEA ICE

- The September NH sea ice extent is better in WACCM6 than in CAM6
- Less downward surface SW and LW in WACCM6 due to higher LWP¹ which in turn is due to higher aerosol number.
- \Rightarrow Tropospheric aerosol chemistry impacts $\overline{\text{Arctic sea ice.}}$

^[3] Gettelman et al. "The Whole Atmosphere Community Climate Model Version 6 (WACCM6)". 2019

¹ liquid water path

IMPLEMENTATION

COMPUTATIONAL COST

Table 1: Approximate costs of running different atmosphere models (From lecture by Mills)

Configuration	Resolution	Chemistry	Core-hours/simulation years
CAM6	1°, 32 L	CAM	3700
WACCM6	2°, 70 L	MA	5400
WACCM6	1°, 70 L	TSMLT	22 000
WACCM6-SC	1°, 70 L	SC	6000
WACCM6-SD	1°, 88 L	TSMLT	23 000

SPATIAL

· Neutral chemistry model versions of WACCM6

- Neutral chemistry model versions of WACCM6
 - TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) default

- Neutral chemistry model versions of WACCM6
 - TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) default
 - TS (troposphere and stratosphere mechanism)

- Neutral chemistry model versions of WACCM6
 - TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) default
 - TS (troposphere and stratosphere mechanism)
 - MA (Middle atmosphere)

- Neutral chemistry model versions of WACCM6
 - TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) default
 - TS (troposphere and stratosphere mechanism)
 - MA (Middle atmosphere)
 - Similar the older WACCM4, available in nominal 2° only

- Neutral chemistry model versions of WACCM6
 - TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) default
 - TS (troposphere and stratosphere mechanism)
 - MA (Middle atmosphere)
 - Similar the older WACCM4, available in nominal 2° only
 - Reduced set of tropospheric reactions

- Neutral chemistry model versions of WACCM6
 - TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) default
 - TS (troposphere and stratosphere mechanism)
 - MA (Middle atmosphere)
 - Similar the older WACCM4, available in nominal 2° only
 - Reduced set of tropospheric reactions
 - MAD (Middle atmosphere with D region ion chemistry)

- Neutral chemistry model versions of WACCM6
 - TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) default
 - TS (troposphere and stratosphere mechanism)
 - MA (Middle atmosphere)
 - Similar the older WACCM4, available in nominal 2° only
 - Reduced set of tropospheric reactions
 - MAD (Middle atmosphere with D region ion chemistry)
 - · Adds 15 positive and 21 negative ions

- Neutral chemistry model versions of WACCM6
 - TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) default
 - TS (troposphere and stratosphere mechanism)
 - MA (Middle atmosphere)
 - Similar the older WACCM4, available in nominal 2° only
 - Reduced set of tropospheric reactions
 - MAD (Middle atmosphere with D region ion chemistry)
 - Adds 15 positive and 21 negative ions
 - Thus, below 75 km electrons are no longer the main negative charge carrier

- Neutral chemistry model versions of WACCM6
 - TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) default
 - TS (troposphere and stratosphere mechanism)
 - MA (Middle atmosphere)
 - Similar the older WACCM4, available in nominal 2° only
 - Reduced set of tropospheric reactions
 - MAD (Middle atmosphere with D region ion chemistry)
 - Adds 15 positive and 21 negative ions
 - Thus, below 75 km electrons are no longer the main negative charge carrier
- Additional thermosphere eXtension (WACCM-X)

CHEMISTRY IN TSMLT

MAM4 (Modal Aerosol Model), also used in CAM6, but WACCM6 adds chemistry.

- Includes the chemical families O_X, NO_X, HO_X, ClO_X and BrO_X, as well as CH₄
- Allows growth of sulfate aerosols, so the prognostic stratospheric aerosols can increase in width
- Maximum altitude of 20 km for eruptions outputting more than 3.5 Tg SO_2

MOZART (Model for OZone And Related chemical Tracers)

- The chemical mechanism in CESM2, available from WACCM6, but also CAM-chem
- See table 2² for a complete list of chemical reactions included in CESM2 when run with the TSMLT (troposphere, stratosphere, mesosphere, lower thermosphere) configuration.

²https://agupubs.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1029%2F2019MS001882&file=jame21103-sup-0003-2019MS001882+Table_SI-S02.pdf

Motivation Implementation Extra computations Chemistry
Spatial Solar and Geomagnetics

STRATOSPHERIC AEROSOL OPTICAL DEPTH

Stratospheric aerosol optical depth at different locations agree well

[3] Gettelman et al. "The Whole Atmosphere Community Climate Model Version 6 (WACCM6)". 2019

LUMPING

- TSMLT has 231 solution species
- Species are lumped togheter to reduce the computational cost
- Example: C₁₀H₁₆ in MOZART-4 turned into five new lumped species, with APIN, BPIN, LIMON, MYRC and BCARY giving the primary degradation rates.

SOLAR AND GEOMAGNETICS

- Photoionization and heating rates uses parametrization of Solomon and Qian (2005), with input from the F_{10.7} index
- Ion-pair production rates are prescribed
- Low energy electrons included by the parametrized auroral oval model by Roble and Ridley (1994)
- Input to the model is HP, hemispheric power, related to the $K_{\rm p}$ index:

$$\textit{HP} = \begin{cases} 16.82 \exp(0.32 K_p) - 4.86, & K_p \leq 7 \\ 153.13 + 73.4 (K_p - 7.0), & K_p > 7 \end{cases}$$

• Since WACCM3, E region ionosphere is represented with a chemistry consisting of O⁺, O₂⁺, N⁺, N₂⁺, NO⁺

Colorado State University

REFERENCES I

- F. D'Andrea et al. "Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988". In: Climate Dynamics 14.6 (May 1998), pp. 385–407. ISSN: 1432-0894. DOI: 10.1007/s003820050230. URL: https://doi.org/10.1007/s003820050230.
- R. R. Garcia et al. "Simulation of secular trends in the middle atmosphere, 1950–2003". In: Journal of Geophysical Research: Atmospheres 112.D9 (2007). DOI: https://doi.org/10.1029/2006JD007485.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JD007485.URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JD007485.
- A. Gettelman et al. "The Whole Atmosphere Community Climate Model Version 6 (WACCM6)". In: Journal of Geophysical Research: Atmospheres 124.23 (2019), pp. 12380—12403. DOI: https://doi.org/10.1029/2019JD030943.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JD030943.URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD030943.

REFERENCES II

- Daniel R. Marsh et al. "Climate Change from 1850 to 2005 Simulated in CESM1(WACCM)". In: Journal of Climate 26.19 (2013), pp. 7372–7391. DOI: 10.1175/JCLI-D-12-00558.1. URL: https://journals.ametsoc.org/view/journals/clim/26/19/jcli-d-12-00558.1.xml.
- Daniel R. Marsh et al. "Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing". In: Journal of Geophysical Research: Atmospheres 112.D23 (2007). DOI: https://doi.org/10.1029/2006JD008306. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2006JD008306. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JD008306.
- Michael J. Mills et al. "Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM)". In: Journal of Geophysical Research: Atmospheres 121.5 (2016), pp. 2332–2348. DOI: https://doi.org/10.1002/2015JD024290. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015JD024290. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JD024290.

REFERENCES III

- Michael J. Mills et al. "Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)". In: Journal of Geophysical Research: Atmospheres 122.23 (2017), pp. 13, 061–13, 078.

 DOI: https://doi.org/10.1002/2017JD027006. eprint:
 https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017JD027006. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JD027006.
- R. G. Roble and E. C. Ridley. "A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km)". In: Geophysical Research Letters 21.6 (1994), pp. 417–420. DOI: https://doi.org/10.1029/93GL03391.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/93GL03391.URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/93GL03391.

REFERENCES IV

Stanley C. Solomon and Liying Qian. "Solar extreme-ultraviolet irradiance for general circulation models". In: Journal of Geophysical Research: Space Physics 110.A10 (2005). DOI: https://doi.org/10.1029/2005JA011160. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2005JA011160. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005JA011160.