

Sph2Pob: Boosting Object Detection on Spherical Images with Planar Oriented Boxes Methods

Xinyuan Liu^{1,2}, Hang Xu³, Bin Chen^{1,2}, Qiang Zhao¹, Yike Ma¹, Chenggang Yan³, Feng Dai^{1*}

¹Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

²University of Chinese Academy of Sciences, Beijing, China

³Hangzhou Dianzi University, Hangzhou, China

Macao, S.A.R. August 19-25, 2023.

Overview

- Unlike conventional paradigm, in proposed paradigm spherical boxes are transformed to planar oriented boxes, and then IoU and Loss are indirectly calculated.
- The proposed paradigm overcomes the nondifferentiable issue of spherical IoU and enriches Loss design for spherical detection.

★Sph2Pob★: well approximated box transform

Spherical/Panoramic Image

- Spherical/Panoramic image is a natural extend of comon planar image.
- It has the whole 360° view with richer information and higher practice value.

Environment Perception

Visual Question&Answer

Security Tracking

Spherical Bounding Box

- Spherical bounding box is defined as $(\theta, \phi, \alpha, \beta, \gamma)$.
- $p(\theta, \phi)$ is the tangent point of the sphere and rectangular tangent plane.
- α and β are the horizontal and vertical fields of view of the spherical bounding box.

- ullet γ is rotated angle around center-axis $n(heta,\phi)$.
- ullet Apart from γ , another rotated angle Δ coupled with box-pair exists on sphere. [our insight]
- ullet we call γ as external angle, while Δ as internal angle.

internal angle

Overlap(IoU) Calculation

Exact Method

Approximate Method

Approximate Method

Method

differentiablity
speed
accuracy

Overlap(IoU) Calculation

Sph-IoU

FoV-IoU

Sph2Pob-IoU(Our)

- ✓ Try to move boxes to the equator, which is the line with no distortion on ERP-images.
- × Fail to ensure the boxes after moving on the equator.
- × Ignore the internal angle, so relative poses change.

- ✓ Continue to move boxes to the equator.
- ✓ Ensure the boxes on the equator.
- ✓ Preserve the internal angle and relative pose.

Sph2Pob

- Spherical Geometric Transformation can move boxes without any infoloss.
- Spherical-Planar Mapping is also used to calculate more general loss beyond IoU.

Mathematical Details

1. Compute position and pose.

$$\boldsymbol{n} = \boldsymbol{n}(\theta, \phi) = [nx, ny, nz]^{\top}$$

$$= [\sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi)]^{\top}$$

$$\boldsymbol{p} = \boldsymbol{p}(\theta, \phi) = \frac{\partial \boldsymbol{n}(\theta, \phi)}{\partial \phi} = [px, py, pz]^{\top}$$

$$= [\cos(\phi)\cos(\theta), \cos(\phi)\sin(\theta), -\sin(\phi)]^{\top}$$

2. Construct spherical transformation.

$$oldsymbol{R} = \left[oldsymbol{v}_x, oldsymbol{v}_y, oldsymbol{v}_z
ight]^ op = \left[rac{oldsymbol{n}_1 + oldsymbol{n}_2}{\|oldsymbol{n}_1 + oldsymbol{n}_2\|}, rac{oldsymbol{n}_1 - oldsymbol{n}_2}{\|oldsymbol{n}_1 - oldsymbol{n}_2\|}, oldsymbol{v}_x imes oldsymbol{v}_y
ight]^ op$$

Spherical Geometric Transformation

Spherical-Planar **Mapping**

3. Transform position and pose.

$$\hat{m{n}}(\hat{ heta},\hat{\phi}) = m{R} \; m{n}(heta,\phi) \qquad \qquad [\hat{m{p}}_1,\hat{m{p}}_2] = m{R} \; [m{p}_1,m{p}_2]$$

4. Compute Internal Angle.

$$\Delta = \Delta_1 + \Delta_2 = \arccos(\hat{\boldsymbol{p}}_1 \cdot \hat{\boldsymbol{p}}_{ref}) + \arccos(\hat{\boldsymbol{p}}_2 \cdot \hat{\boldsymbol{p}}_{ref})$$

5. Map spherical boxes to planar boxes.

$$\mathcal{B}_i^{\mathcal{P}} = (x_i, y_i, w_i, h_i, a_i) = (\hat{\theta}_i, \hat{\phi}_i, \hat{\alpha}_i, \hat{\beta}_i, \hat{\Delta}_i)$$

 $a_i = \Delta_i + \gamma_i, i = 1, 2$

★ IoU & Loss ★

 $IoU^{\mathcal{S}}(\boldsymbol{B}_{1}^{\mathcal{S}},\boldsymbol{B}_{2}^{\mathcal{S}}) \approx IoU^{\mathcal{P}}(Sph2Pob(\boldsymbol{B}_{1}^{\mathcal{S}},\boldsymbol{B}_{2}^{\mathcal{S}})) \qquad Loss^{\mathcal{S}}(\boldsymbol{B}_{1}^{\mathcal{S}},\boldsymbol{B}_{2}^{\mathcal{S}}) \approx Loss^{\mathcal{P}}(Sph2Pob(\boldsymbol{B}_{1}^{\mathcal{S}},\boldsymbol{B}_{2}^{\mathcal{S}}))$

Experiments

Scatter of different IoU.

• Comprehensive comparison of box transform methods.

Method	Consistency			Time	-cost	Detection		
	R_{all}	$\mathbf{R}_{low} \uparrow$	$\mathbf{R}_{high} \uparrow$	$\mathbf{T}_{cpu} \downarrow$	$\mathbf{T}_{cuda} \!\!\downarrow$	AP ↑	$\mathbf{AP}_{50} \uparrow$	$AP_{75} \uparrow$
Sph	0.7819	0.9922	0.4274	0.0364	0.0033	10.7	24.3	7.8
Fov	0.9600	0.9974	0.8860	0.0372	0.0034	10.9	25.0	7.9
Sph2Pob	0.9989	0.9990	0.9988	2.2275	0.0096	11.5	25.7	8.2
Unbiased	1.0000	1.0000	1.0000	46.4417	-	_	-	-

• Ablation studies about edge & angle calculation.

Edge	Error↓(mean±std)	R↑	Angle	Error ↓(mean±std)	R↑	
arc	0.0016 ± 0.0042	0.9989	original	0.0025 ± 0.0086	0.9946	
chord	0.0023 ± 0.0063	0.9974	equator	0.0016 ± 0.0042	0.9989	
tangent	0.0086 ± 0.0192	0.9681	project	0.0017 ± 0.0043	0.9987	

Evaluations

• Evaluation on different Loss.

Loss	360-Indoor				PANDORA		
Loss	AP↑	$\mathbf{AP}_{50} \uparrow$	AP ₇₅ ↑	AP↑	$\mathbf{AP}_{50} \uparrow$	AP ₇₅ ↑	
L1	10.2	23.0	7.8	10.3	24.3	6.6	
L1 [†]	9.9	21.9	7.7	10.1	23.7	6.8	
GWD [†] [Yang et al., 2021b]	6.8	14.5	5.6	5.9	12.3	5.0	
KLD [†] [Yang et al., 2021c]	9.5	21.5	6.8	10.3	23.5	7.1	
KFIoU [†] [Yang et al., 2022b]	8.5	19.7	6.2	9.6	23.2	5.6	
IoU [†] [Yu <i>et al.</i> , 2016]	9.8	22.1	6.8	10.4	24.8	6.9	
GIoU [†] [Rezatofighi et al., 2019]	10.5	23.9	7.8	10.3	24.7	6.8	
DIoU [†] [Zheng et al., 2020]	11.0	24.6	8.2	10.4	24.8	7.0	
$CIoU^{\dagger}$ [Zheng et al., 2021]	11.5	25.7	8.2	10.5	25.3	7.0	

• Evaluation on different detectors.

Detector	Loss		360-Indo	or	PANDORA			
Detector		AP↑	$\mathbf{AP}_{50} \uparrow$	$\mathbf{AP}_{75} \uparrow$	AP↑	$\mathbf{AP}_{50} \uparrow$	AP ₇₅ ↑	
Faster R-CNN	L1	12.5	28.1	9.1	11.0	27.8	6.2	
raster K-CIVIN	CI _o U [†]	12.9	29.1	9.4	11.3	28.6	7.1	
SSD	L1	10.8	27.6	6.3	9.5	25.8	4.6	
33D	CI _o U [†]	12.0	28.7	8.0	10.5	26.9	6.0	
FCOS	L1	8.8	20.2	6.7	7.7	19.7	4.4	
1000	CI ₀ U [†]	9.2	21.0	7.0	8.8	21.2	5.6	

• Evaluation on different components, including Lable Assignment, Loss, NMS.

Label	Loss	NMS		360-Indo	or	PANDORA		
Assignment			AP↑	$\mathbf{AP}_{50} \uparrow$	AP ₇₅ ↑	AP↑	$\mathbf{AP}_{50} \uparrow$	AP ₇₅ ↑
-			9.8	22.2	7.0	10.4	23.8	6.9
\checkmark			10.2	23.0	7.8	10.3	24.3	6.6
	\		11.0	25.4	7.8	10.6	24.5	6.9
		✓	9.8	22.1	6.8	10.4	23.9	6.9
\checkmark	\		11.5	25.7	8.2	10.5	25.3	7.0
\checkmark	✓	√	11.6	26.1	8.4	10.6	25.7	7.1

Visualized Comparsions (360Indoor)

- Some easily confused bed/sofa/table-like objects are labeled as bed.
- With L1, predicted bboxes are coarse and category-wrong.

Ground Truth

Visualized Comparsions (360Indoor)

- Some easily confused bed/sofa/table-like objects are labeled as bed.
- With our CloU[†], predicted bboxes are more compact even though category-wrong.

Ground Truth

(Ours) CloU[†]

Visualized Comparsions (PANDORA)

- The cablinet is rotated with some angle, and lights are tiny.
- With L1, predicted box of the cablinet is corse with wrong angle, and lights are missing.

Ground Truth L1

Visualized Comparsions (PANDORA)

- The cablinet is rotated with some angle, and lights are tiny.
- With our CloU[†], the cablinet is more tight with right angle, and lights are catched.

Ground Truth

(Ours) CloU[†]

Thank You!

 Paper: Sph2Pob: Boosting Object Detection on Spherical Images with Planar Oriented Boxes Methods

Codes: https://github.com/AntXinyuan/sph2pob

• Contact:

• Xinyuan Liu: liuxinyuan21s@ict.ac.cn

Hang Xu: hxu@hdu.edu.cn

• Feng Dai: fdai@ict.ac.cn