Diszkrét matematika

1. gyakorlat: Halmazok,

avagy: más halmozza az élvezeteket, míg a matematikus élvezi a halmazokat...

(A diasort készítette Németh Gábor Árpád, Gonda János, Koch-Gömöri Richárd, Mérai László anyagait felhasználva)

1. Feladat (metszet, unió, különbség, komplementer)

Legyen az alaphalmaz $U = \{0,1,2,3,4,5,6,7,8,9\}$, $A = \{x | x \in \mathbb{N} \land 1 \le x \le 4\}$, $B = \{0,2,4,8\}$, $C = \{\text{az egyjegyű prímszámok}\}$.

- a. Határozza meg a következő halmazokat:
 - A ∩ B
 - *B* ∪ *C*
 - A\C
 - <u>\(\bar{C} \)</u>

Legyen az alaphalmaz $U = \{0,1,2,3,4,5,6,7,8,9\},$

$$A = \{x | x \in \mathbb{N} \land 1 \le x \le 4\},\$$

$$B = \{0,2,4,8\},\$$

$$C = \{az egyjegyű prímszámok\} = \{2,3,5,7\}.$$

- a. Határozza meg a következő halmazokat:
 - $A \cap B$: $u \in A \cap B \Leftrightarrow u \in A \wedge u \in B$ $A \cap B = \{2,4\}$
 - B ∪ C:
 u ∈ B ∪ C ⇔ u ∈ B ∨ u ∈ C
 B ∪ C = {0,2,3,4,5,7,8}
 - A \ C:
 u ∈ A \ C ⇔ u ∈ A ∧ u ∉ C
 A \ C = {1,4}
 - \bar{C} : $u \in \bar{C} = U \setminus C \Leftrightarrow u \in U \wedge u \notin C$ $C = \{0,1,4,6,8,9\}$

Legyen az alaphalmaz $U = \{0,1,2,3,4,5,6,7,8,9\},$

$$A = \{x | x \in \mathbb{N} \land 1 \le x \le 4\},\$$

$$B = \{0,2,4,8\},\$$

$$C = \{az egyjegyű prímszámok\} = \{2,3,5,7\}.$$

b. Tekintsük az X = {A,B,C} halmazrendszert. Határozza meg a következő halmazokat:

- $\cap X$ $u \in \cap X \Leftrightarrow \forall (A \in X): u \in A$ $\cap X = \{2\}$
- $\cup X$ $u \in \cup X \Leftrightarrow \exists (A \in X): u \in A$ $\cup X = \{0,1,2,3,4,5,7,8\}$

• Legyen az alaphalmaz $U = \{0,1,2,3,4,5,6,7,8,9\},$

```
A = \{x | x \in \mathbb{N} \land 1 \le x \le 4\},\
```

$$B = \{0,2,4,8\},\$$

 $C = \{az egyjegyű prímszámok\} = \{2,3,5,7\}.$

 $X = \{A,B,C\}$ halmazrendszer.

c. Állapítsa meg a következő kijelentések logikai értékét, ha $Y = \{\{x | x \in U \text{ \'es } x \text{ p\'aros}\}, \{x | x \in U \text{ \'es } x \text{ p\'aratlan}\}\}.$

- $A \subseteq B$ $A \subseteq B \Leftrightarrow \forall (u \in A): u \in B$ $hamis: 1 \in A \land 1 \notin B;$
- $\{\emptyset\}\subseteq X\cup Y;$ $X\cup Y=\left\{A,B,C,Y_{p\acute{a}ros},Y_{ptlan}\right\}$ $hamis: \{\emptyset\}\subseteq X\cup Y\Leftrightarrow\emptyset\in X\cup Y; egyik\ sem\ \ddot{u}reshalmaz:\emptyset\neq A,\emptyset\neq B,\emptyset\neq C,\emptyset\neq Y_{p\acute{a}ros},\emptyset\neq Y_{ptlan}$
- $A \in X \cup Y$; $igaz: A \in \{A, B, C, Y_{p\'aros}, Y_{ptlan}\} = X \cup Y$;

• Legyen az alaphalmaz $U = \{0,1,2,3,4,5,6,7,8,9\},$

```
A = \{x | x \in \mathbb{N} \land 1 \le x \le 4\},\
```

$$B = \{0,2,4,8\},\$$

 $C = \{az egyjegyű prímszámok\} = \{2,3,5,7\}.$

 $X = \{A,B,C\}$ halmazrendszer.

c. Állapítsa meg a következő kijelentések logikai értékét, ha $Y = \{\{x | x \in U \text{ \'es } x \text{ p\'aros}\}, \{x | x \in U \text{ \'es } x \text{ p\'aratlan}\}\}.$

- $C \cap \emptyset = \emptyset$; $u \in A \cap B \Rightarrow u \in A \land u \in B \Rightarrow u \in B \Rightarrow A \cap B \subseteq B$ igaz: $\emptyset \subseteq C \cap \emptyset \subseteq \emptyset \Rightarrow C \cap \emptyset = \emptyset$;
- $2 \subseteq A$;

 **hamis: 2 nem halmaz;
- $\{2\} \subseteq A$; igaz: $\{2\} \subseteq A \Leftrightarrow 2 \in A = \{1,2,3,4\}$;

• Legyen az alaphalmaz $U = \{0,1,2,3,4,5,6,7,8,9\},$

$$A = \{x | x \in \mathbb{N} \land 1 \le x \le 4\},\$$

$$B = \{0,2,4,8\},\$$

 $C = \{az egyjegyű prímszámok\} = \{2,3,5,7\}.$

 $X = \{A,B,C\}$ halmazrendszer.

c. Állapítsa meg a következő kijelentések logikai értékét, ha $Y = \{\{x | x \in U \text{ \'es } x \text{ p\'aros}\}, \{x | x \in U \text{ \'es } x \text{ p\'aratlan}\}\}.$

- 4 ∈ *B*
- $3 \in A \cap B$;
- $\{1,2\} \subseteq A$;
- $2 \in X \cup Y$;
- $\{2\} \in X \cup Y$;

Keressünk olyan A, B, C halmazokat, amelyekre egyszerre teljesülnek a következők:

- 1. $A \cap B \neq \emptyset$,
- 2. $A \cap C = \emptyset$,
- 3. $(A \cap B) \setminus C = \emptyset$

Jelöljük az alaphalmazt megint *U*-val:

$$\emptyset \neq A \cap B = (A \cap B) \cap U = \\ (A \cap B) \cap (\bar{C} \cup C) = \\ (A \cap B \cap \bar{C}) \cup (A \cap B \cap C) = \\ (A \cap B) \setminus C \cup (A \cap B \cap C) = \\ (A \cap B) \setminus C \cup (A \cap C) \cap B = \\ 1. \text{ \'es 2. behelyettesit\'evel...} \\ = (\emptyset \setminus C) \cup (\emptyset \cap B) = \\ \emptyset \cup \emptyset = \emptyset$$

...tehát $A \cap B \neq \emptyset$ és $A \cap B = \emptyset$ kellene, hogy teljesüljön, ami **ellentmondás**.

Legyen $A = \{a, b, c, d\}$, $B = \{c, d\}$, $C = \{a, e\}$. Mutassuk meg, hogy ekkor $A \setminus (B \setminus C) = (A \setminus B) \cup (B \cap C)$. Igaz-e ez az állítás tetszőleges A, B, C halmazokra?

4. feladat (Halmazrendszer)

Tekintsük az $X = \{\{1,2,3\}, \{2,3,4,5\}, \{0,2,3,7\}\}$ halmazrendszert. Határozza meg a következő halmazokat:

• $\cap X$;

• $X \cup \{\{3,5,7\},\{1\},\{2\}\};$

• $\cup (X \cup \{\{3,5,7\},\{1\},\{2\}\});$

• \cap ($X \cup \{\{3,5,7\},\{1\},\{2\}\}\}$).

Tekintsük az $X = \{\{1,2,3\}, \{2,3,4,5\}, \{0,2,3,7\}\}$ halmazrendszert. Határozza meg a következő halmazokat:

```
• \cap X; \cap X = \{2,3\}
```

```
• X \cup \{\{3,5,7\}, \{1\}, \{2\}\};

X \cup \{\{3,5,7\}, \{1\}, \{2\}\} = \{\{1,2,3\}, \{2,3,4,5\}, \{0,2,3,7\}, \{3,5,7\}, \{1\}, \{2\}\}
```

```
• \cup (X \cup \{\{3,5,7\},\{1\},\{2\}\});

\cup (X \cup \{\{3,5,7\},\{1\},\{2\}\}) = \cup \{\{1,2,3\},\{2,3,4,5\},\{0,2,3,7\},\{3,5,7\},\{1\},\{2\}\}\}

= \{0,1,2,3,4,5,7\}
```

• $\cap (X \cup \{\{3,5,7\},\{1\},\{2\}\})$. Házi feladat

Legyen $A = \{\{a, b, c\}, \{a, d, e\}, \{a, f\}\}$. Mi lesz \cup A és \cap A?

Határozza meg az A, B, C halmazok elemeit, ha tudjuk, hogy

- $1. \qquad A \backslash B = \{1,3,5\},$
- $2. \qquad A \cup B \cup C = \{1,2,3,4,5,6\},\$
- 3. $(A \cap C) \cup (B \cap C) = \emptyset$,
- 4. $C \setminus B = \{2,4\} \text{ és}$
- 5. $(A \cap B) \setminus C = \{6\}.$
- 3-ból: $(A \cap C) \cup (B \cap C) = \emptyset$ $\Rightarrow A \cap C = \emptyset \land B \cap C = \emptyset$
- amiből: $A \cap C = \emptyset$ $\Rightarrow (A \cap B) \cap C = \emptyset \Rightarrow A \cap B = (A \cap B) \setminus C = \{6\}$
- amiből: $B \cap C = \emptyset$ (felhasználva 4-t) $\Rightarrow \underline{C} = C \setminus B = \{2,4\}$
- 1-ből és 5-ből: $\underline{A} = (A \setminus B) \cup (A \cap B) = \{1,3,5\} \cup \{6\} = \{1,3,5,6\}$
- 3-ból: $\emptyset = (A \cap C) \cup (B \cap C) = (A \cup B) \cap C$ (felhasználva 2-t) $\Rightarrow A \cup B = (A \cup B \cup C) \setminus C = \{1,2,3,4,5,6\} \setminus \{2,4\} = \{1,3,5,6\}$ $\Rightarrow \underline{B} = (A \cup B) \setminus (A \setminus B) = \{1,3,5,6\} \setminus \{1,3,5\} = \underline{\{6\}}$
- Összegezve: $A = \{1,3,5,6\}, B = \{6\}, C = \{2,4\}.$

Határozza meg az A, B, C halmazok elemeit, ha tudjuk, hogy

- 1. $A \setminus B = \{1,3,5\},\$
- 2. $A \cup B \cup C = \{1,2,3,4,5,6\},$
- 3. $(A \cap C) \cup (B \cap C) = \emptyset$,
- 4. $C \setminus B = \{2,4\} \text{ és }$
- $5. \qquad (A \cap B) \backslash \mathcal{C} = \{6\}.$

Ellenőrzés:

- 1. $A \setminus B = \{1,3,5,6\} \setminus \{6\} = \{1,3,5\}$
- 2. $A \cup B \cup C = \{1,3,5,6\} \cup \{6\} \cup \{2,4\} = \{1,2,3,4,5,6\}$
- 3. $(A \cap C) \cup (B \cap C) = (\{1,3,5,6\} \cap \{2,4\}) \cup (\{6\} \cap \{2,4\}) = \emptyset \cup \emptyset = \emptyset$
- 4. $C \setminus B = \{2,4\} \setminus \{6\} = \{2,4\}$
- 5. $(A \cap B) \setminus C = (\{1,3,5,6\} \cap \{6\}) \setminus \{2,4\} = \{6\} \setminus \{2,4\} = \{6\}.$

Legyen U az alaphalmaz, és $A, B, C \subseteq U$ tetszőleges halmazok. Igazoljuk a következő azonosságokat.

- $A \cup B = B \cup A$ $u \in A \cup B \Leftrightarrow u \in A \lor u \in B \Leftrightarrow u \in B \lor u \in A \Leftrightarrow u \in B \cup A$ A halmazok uniója kommutatív
- $(A \cap B) \cap C = A \cap (B \cap C)$ $u \in (A \cap B) \cap C \Leftrightarrow u \in A \cap B \wedge u \in C \Leftrightarrow (u \in A \wedge u \in B) \wedge u \in C$ $\Leftrightarrow u \in A \wedge (u \in B \wedge u \in C) \Leftrightarrow u \in A \wedge u \in B \cap C \Leftrightarrow u \in A \cap (B \cap C)$ A halmazok metszete kommutatív
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $u \in A \cup (B \cap C) \Leftrightarrow u \in A \lor u \in B \cap C \Leftrightarrow u \in A \lor (u \in B \land u \in C)$ $\Leftrightarrow (u \in A \lor u \in B) \land (u \in A \lor u \in C)$ $\Leftrightarrow u \in A \cup B \land u \in A \cup C \Leftrightarrow u \in (A \cup B) \cap (A \cup C)$

A halmazok metszete disztributív azok unióra nézve

Legyen U az alaphalmaz, és $A, B, C \subseteq U$ tetszőleges halmazok. Igazoljuk a következő azonosságokat.

• $\overline{A \cup B} = \overline{A} \cap \overline{B}$ de Morgan azonosság (1) $u \in \overline{A \cup B} \Leftrightarrow u \notin A \cup B$ $\Leftrightarrow u \notin A \land u \notin B$ $\Leftrightarrow u \in A \land u \in \overline{B}$ $\Leftrightarrow u \in \bar{A} \cap \bar{B}$ **VAGY**

$$(\bar{A} \cap \bar{B}) \cap (A \cup B) = ((\bar{A} \cap \bar{B}) \cap A) \cup ((\bar{A} \cap \bar{B}) \cap B) = ((\bar{A} \cap A) \cap \bar{B}) \cup (\bar{A} \cap (\bar{B} \cap B)) = \emptyset \cup \emptyset = \emptyset$$

$$(\bar{A} \cap \bar{B}) \cup (A \cup B) = (\bar{A} \cap \bar{B}) \cup ((A \cap \bar{B}) \cup A) \cup B = ((\bar{A} \cap \bar{B}) \cup (A \cap \bar{B})) \cup B \cup A = ((\bar{A} \cap \bar{B}) \cup (A \cap \bar{B})) \cup B \cup A = \bar{B} \cup B \cup A = U \cup A = U$$
Ezekből pedig következik, hogy:
$$\bar{A} \cap \bar{B} = A \cup B \text{ tehát } \bar{A} \cup \bar{B} = \bar{A} \cap \bar{B}.$$

Legyen U az alaphalmaz, és $A, B, C \subseteq U$ tetszőleges halmazok. Igazoljuk a következő azonosságokat.

```
• \overline{A \cap B} = \overline{A} \cup \overline{B}

de Morgan azonosság (2)

u \in \overline{A \cap B}

\Leftrightarrow u \notin A \cap B

\Leftrightarrow u \notin A \lor u \notin B

\Leftrightarrow u \in \overline{A} \lor u \in \overline{B}

\Leftrightarrow u \in \overline{A} \cup \overline{B}
```

VAGY

$$(\bar{A} \cup \bar{B}) \cap (A \cap B) = (\bar{A} \cap (A \cap B)) \cup (\bar{B} \cap (A \cap B)) = ((\bar{A} \cap A) \cap B) \cup ((\bar{B} \cap B) \cap A) = (\emptyset \cap B) \cup (\emptyset \cap A) = \emptyset \cup \emptyset = \emptyset$$

$$(\bar{A} \cup \bar{B}) \cup (A \cap B) = ((\bar{A} \cap \bar{B}) \cup (\bar{A} \cap B)) \cup (A \cap B) \cup \bar{B} = (\bar{A} \cap \bar{B}) \cup ((\bar{A} \cap B)) \cup (\bar{A} \cap B)) \cup \bar{B} = (\bar{A} \cap \bar{B}) \cup B \cup \bar{B} = (\bar{A} \cap \bar{B}) \cup B \cup \bar{B} = (\bar{A} \cap \bar{B}) \cup B \cup \bar{B} = \bar{A} \cup \bar{B}.$$
A fentiekből tehát: $\bar{A} \cup \bar{B} = A \cap B$, azaz $\bar{A} \cap \bar{B} = \bar{A} \cup \bar{B}$.

Legyen U az alaphalmaz, és $A, B, C \subseteq U$ tetszőleges halmazok. Igazoljuk a következő azonosságokat.

• $A \cup \overline{A} = U$

Egyik irány:

$$A \subseteq U \land \bar{A} \subseteq U \Rightarrow A \cup \bar{A} \subseteq U$$

Másik irány:

ha $u \in U$ és $u \notin A$, akkor $u \in \bar{A}$, így $u \in A \cup \bar{A}$, tehát $U \subseteq A \cup \bar{A}$, ezért $A \cup \bar{A} = U$

• $A \cap \bar{A} = \emptyset$

Egyik irány:

$$\emptyset \subseteq A \land \emptyset \subseteq \bar{A} \Rightarrow \emptyset \subseteq A \cap \bar{A}.$$

Másik irány:

ha az U egy u elemére $u \in A$, akkor $u \notin \overline{A}$, így $u \notin A \cap \overline{A}$, tehát $A \cap \overline{A} = \emptyset$.

• $\bar{\bar{A}} = A$. $u \in \bar{\bar{A}} \Leftrightarrow u \notin \bar{A} \Leftrightarrow u \in A$.

Legyen U az alaphalmaz, és $A, B, C \subseteq U$ tetszőleges halmazok. Igazoljuk a következő azonosságokat.

•
$$(A \cup B) \cup C = A \cup (B \cup C)$$

•
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

•
$$A \cap B = B \cap A$$

Igazolja a következő azonosságokat:

- $A \triangle \emptyset = A$;
- $A \triangle A = \emptyset$;
- $A \triangle (B \triangle C) = (A \triangle B) \triangle C$;
- $A \triangle (A \triangle B) = B$.

Legyen A, B, C tetszőleges halmazok. Igazoljuk a következő állításokat:

- ha $A \subseteq C$ és $B \subseteq C$, akkor $A \cup B \subseteq C$;
- ha $A \subseteq B$ és $A \subseteq C$, akkor $A \subseteq B \cap C$;
- $A \cup (B \cap A) = A$.

Legyen A és B nemüres halmazok. Igazolja a következő egyenlőségeket:

- $(A \backslash B) \cap B = \emptyset$;
- $(A \cup \overline{B}) \cap (\overline{A} \cup \overline{B}) = \overline{B}$.

11. feladat

Hozzuk egyszerűbb alakra a következő kifejezést: $(A \cup (A \cap B) \cup (A \cap B \cap C)) \cap (A \cup B \cup C)$.

Legyen az alaphalmaz U továbbá A, B, $C \subseteq U$ tetszőleges halmazok. Igazolja a következő egyenlőségeket:

- $\bullet (A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C);$
- $\bullet A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C);$
- $\bullet A \setminus (A \setminus (B \setminus C)) = A \cap B \cap C.$

13. Feladat (Descartes szorzat és szimmetrikus differencia)

Legyen $A = \{1,2\}$, $B = \{a, b, c\}$ és $C = \{2,3,4\}$. Határozza meg az alábbi halmazokat:

```
a) A \times A
= \{1,2\} \times \{1,2\} = \{(1,1), (1,2), (2,1), (2,2)\}
```

- b) $A \times B$ = $\{1,2\} \times \{a,b,c\} = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$
- c) $A \times A \times B$ = $\{1,2\} \times \{1,2\} \times \{a,b,c\}$ = $\{(1,1,a),(1,1,b),(1,1,c),(1,2,a),(1,2,b),(1,2,c),(2,1,a),(2,1,b),(2,1,c),(2,2,a),(2,2,b),(2,2,c)\}$
- d) $B \times A$ = $\{a, b, c\} \times \{1, 2\} = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$
- e) $(A \times A) \times B$ = $(\{1,2\} \times \{1,2\}) \times \{a,b,c\}$ = $\{((1,1),a),((1,1),b),((1,1),c),((1,2),a),((1,2),b),((1,2),c),((2,1),a),((2,1),b),((2,1),c),((2,2),a),((2,2),b),((2,2),c)\}$
- $f) \quad A \times (A \times B) \\ = \{1,2\} \times (\{1,2\} \times \{a,b,c\}) \\ = \{(1,(1,a)),(1,(1,b)),(1,(2,a)),(1,(2,b)),(1,(2,c)),(2,(1,a)),(2,(1,b)),(2,(2,a)),(2,(2,b)),(2,(2,c))\}$
- g) $A \triangle B$ = $\{1,2\} \triangle \{a,b,c\} = \{1,2,a,b,c\}$
- *h)* $A \triangle C$ = $\{1,2\} \triangle \{2,3,4\} = \{1,3,4\}$

Legyen A, B, C nemüres halmaz. Igazolja a következő egyenlőséget: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

15. feladat

Legyen A, B, C, D nemüres halmaz. Bizonyítsuk be, hogy $A \times B \subseteq C \times D$ akkor és csak akkor teljesül, ha $A \subseteq C$ és $B \subseteq D$.

16. feladat

Bizonyítsa be a következő összefüggést: $\overline{(\overline{A \cap B} \cup C) \cap \overline{A}} \cup \overline{B} \cup \overline{C} = A \cup \overline{B} \cup \overline{C}$.

17. feladat

Legyen A és B tetszőleges halmaz. Bizonyítsuk be, hogy $P(A \cap B) = P(A) \cap P(B)$, ahol P(A) jelöli A hatványhalmazát. Igaz-e az állítás unióval?

Döntse el, hogy igazak-e a következő egyenlőségek tetszőleges A,B,\mathcal{C} halmazokra. Állításait bizonyítsa!

```
1. \bar{A} \cap B = B \setminus A

u \in \bar{A} \cap B

\Leftrightarrow u \in \bar{A} \land u \in B

\Leftrightarrow u \notin A \land u \in B

\Leftrightarrow u \in B \setminus A

Tehát igaz
```

2. $(A \cap B) \setminus C = (A \setminus B) \cap C$ Ha például $C = \emptyset$, akkor $A \cap B = (A \cap B) \setminus C = (A \setminus B) \cap C = \emptyset$ tehát NEM igaz tetszőleges A,B halmazokra.

Másként:

```
 \begin{array}{l} (A \cap B) \backslash \mathcal{C} = A \cap B \cap \bar{\mathcal{C}} = \\ (A \backslash B) \cap \mathcal{C} = A \cap \bar{B} \cap \mathcal{C} \\ \Leftrightarrow \emptyset = (A \cap B \cap \bar{\mathcal{C}}) \bigtriangleup (A \cap \bar{B} \cap \mathcal{C}) = \\ A \cap \big( (B \cap \bar{\mathcal{C}}) \bigtriangleup (\bar{B} \cap \mathcal{C}) \big) = & (2 \ halmaz \ szimmetrikus \ differenciája \ a \ 2 \ halmaz \ uniójának \ részhalmaza) \\ A \cap \big( (B \cap \bar{\mathcal{C}}) \cup (\bar{B} \cap \mathcal{C}) \big) = A \cap (B \bigtriangleup \mathcal{C}) \\ \end{array}
```

tehát $(A \cap B) \setminus C = (A \setminus B) \cap C$ akkor és csak akkor áll fenn, ha A és $B \triangle C$ diszjunkt.

Döntse el, hogy igazak-e a következő egyenlőségek tetszőleges A,B,C halmazokra. Állításait bizonyítsa!

3.
$$(A \cup B) \cap (B \setminus A) = (A \cup B) \setminus (A \setminus B)$$

 $(A \cup B) \cap (B \setminus A) = (A \cup B) \cap (B \cap \overline{A}) = B \cap \overline{A} = B \setminus A$
 $(A \cup B) \setminus (A \setminus B) = (A \cup B) \cap (\overline{A} \cap B) = B$

 $B \setminus A = B$ akkor és csak akkor, ha $A \cap B = \emptyset$, így az egyenlőség általában nem igaz.

4.
$$(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$$

 $(A \cap B) \setminus C = A \cap B \cap \overline{C}$
 $(A \setminus C) \cap (B \setminus C) = (A \cap \overline{C}) \cap (B \cap \overline{C}) = A \cap B \cap \overline{C} \cap \overline{C}$

A két oldal egyenlő, tehát az egyenlőség igaz.

Döntse el, hogy igazak-e a következő egyenlőségek tetszőleges A,B,C halmazokra. Állításait bizonyítsa!

5.
$$(A \cup B) \setminus A = B$$

Nem igaz, mert például A = B esetén $(A \cup B) \setminus A = \emptyset$, azaz ekkor B (és így A is) csak \emptyset lehet.

6.
$$(A \cap B) \setminus C = (A \setminus B) \cap C$$

Legyen például $A = B$.
ekkor $(A \cup B) \setminus C = A \setminus C$
és $A \cup (B \setminus C) = A$

Az egyenlőség tehát csak akkor lehet igaz, ha A és C diszjunkt, tehát nem igaz tetszőleges A és C halmazokra.

Szorgalmi feladatok

19. feladat

Mutassa meg, hogy

- $a. \quad (A \backslash B) \cup B = A \cup B;$
- b. $(A \cup B) \backslash B = A \backslash B$.

20. feladat

Legyen A, B és C a H alaphalmaz részhalmaza. Igaz-e, hogy

- a. ha A = B, akkor $A \triangle C = B \triangle C$;
- b. ha $A \triangle C = B \triangle C$, akkor A = B;
- c. ha $A \subseteq B$, akkor $A \triangle C \subseteq B \triangle C$;
- d. ha $A \triangle C \subseteq B \triangle C$, akkor $A \subseteq B$.

21. feladat

Legyen U az alaphalmaz, A, B és C az U részhalmazai. Mutassa meg, hogy

- $a. \quad A \backslash B = A \cap \overline{B};$
- b. $\emptyset \subseteq A \backslash B \subseteq A$;
- c. $A \setminus B = \emptyset \Leftrightarrow A \subseteq B$;
- $d. \qquad A \backslash B = A \Leftrightarrow A \cap B = \emptyset;$
- $e. \qquad A = (A \backslash B) \cup (A \cap B);$
- $f. \qquad A \backslash B = B \backslash A \Leftrightarrow A = B;$
- g. $(A\backslash B)\backslash C = (A\backslash C)\backslash B;$
- *h.* $(A \setminus B) \setminus C = A \setminus (B \setminus C) \Leftrightarrow A \cap C = \emptyset;$

Szorgalmi feladatok

22. feladat

Legyen A, B és C a H alaphalmaz részhalmaza. Igaz-e, hogy B=C, ha

- $a. A \cap B = A \cap C$;
- b. $A \cup B = A \cup C$;
- c. $A \cup B = A \cup C$ és $A \cap B = A \cap C$?

Válaszát indokolja!

23. feladat

Legyen A és B a H alaphalmaz részhalmaza. Van-e megoldása az

- a. $A \cup X = B$
- b. $A \cap X = B$

egyenletnek, vagyis van-e H-nak olyan U részhalmaza, amellyel $A \cup U = B$ illetve $A \cap U = B$? Ha van megoldás, adja meg az összes megoldást. Mi a feltétele, hogy pontosan egy megoldása legyen az egyenletnek?

c. Van-e egyszerre megoldása az az $A \cup X = B$ és $A \cap Y = B$ egyenletnek? Ha van, adja meg az összes megoldást. Van-e közös megoldása a két egyenletnek?