MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2006 SOLUTION KEY

Team Round

A) Rotating around the vertical axis, a single cone(call it #1) with height AD is produced by $\triangle ADC$. Rotating around the horizontal axis, two cones sharing a common base and heights BD and DC (call them #2 and #3 respectively) are produced by $\triangle SABD$ and ADC.

Let
$$DC = AD = x$$
. $DB = 10 - x = \frac{x}{\sqrt{3}} \Rightarrow x = \frac{10\sqrt{3}}{\sqrt{3} + 1} = 15 - 5\sqrt{3} = 5(3 - \sqrt{3})$
Using V(cone) $= \frac{1}{3}\pi r^2 h$, V(cone #1) $= \frac{1}{3}\pi (DC)^2 (AD) = \frac{1}{3}\pi x^2 \cdot x = \frac{\pi x^3}{3}$,
 $V(\text{cone #2}) = \frac{1}{3}\pi (AD)^2 (BD) = \frac{1}{3}\pi x^2 (\frac{x}{\sqrt{3}}) = \frac{\sqrt{3}}{9}\pi x^3$
 $V(\text{cone #3}) = \frac{1}{3}\pi (AD)^2 (DC) = \frac{1}{3}\pi x^2 \cdot x = \frac{\pi x^3}{3}$
Thus, the difference is $\frac{\sqrt{3}}{9}\pi x^3 = \frac{125\pi\sqrt{3}}{9}(3 - \sqrt{3})^3 = \frac{125\pi\sqrt{3}}{9}(54 - 30\sqrt{3}) = \frac{250\pi(3\sqrt{3} - 5)}{9}$

- B) $1^2 + 2^2 = 5$, $5 + 3^2 = 14$, $14 + 4^2 = 30$, $30 + 5^2 = 55$ The difference between successive terms is the square of the next integer. \rightarrow 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, and finally, $4324 + 24^2 = 4900 = 70^2 \rightarrow \underline{70}$
- C) Let (a, b, c) denote the number of 2-, 3- and 4-legged Venutians respectively. Then 2a + 3b + 4c = 68, a + b + c = 26, $c \ge 3b$ and $a, b, c \ge 1$. The first two equations give us b + 2c = 16 or $c = \frac{16 b}{2}$. Substituting in the inequality, we have $\frac{16 b}{2} \ge 3b$, hence $16 \ge 7b$. Thus, b = 1 or 2 and because 2c = 16 b, it follows that b must be even, so b = 2. This implies c = 7 and, therefore, $a = 26 (2 + 7) = \underline{17}$.