МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Стохастический анализ и стохатические дифференциальные уравнения

Домашняя работа №3

Группа ФН11-73Б

Вариант 2

Студент: Айгистова Д.Р.

Преподаватель: Облакова Т.В.

Опенка:

Задание

Рассматривается частично наблюдаемая последовательность $\{\xi_n, \eta_n\}, n \geq 1$, с ненаблюдаемой компонентой $\{\xi_n\}$ и наблюдаемой $\{\eta_n\}$, удовлетворяющая системе уравнений:

$$\xi_n - \alpha \xi_{n-1} = \varepsilon_n, \xi_0 = \gamma,$$

 $\eta_n = \xi_n + \nu_n,$

где $\{\varepsilon_n\}$ и $\{\nu_n\}$ – центрированные стационарные гауссовские шумы с $D\varepsilon_n = D_\varepsilon$, $D\nu_n = D_\nu$, случайная величина $\gamma \sim N(\nu, \sigma)$, причём γ , $\{\varepsilon_n\}$ и $\{\nu_n\}$ – не коррелированы.

- 1. Выбрав значения входных параметров α , μ , σ , D_{ε} , D_{ν} (ограничение $\|\alpha\| \leq 1$), смоделировать начальное условие ξ_0 и последовательность $\{\xi_n, \eta_n\}$ для $n = \overline{1, 100}$.
- 2. Используя реализацию $\{\eta_n\}$, построить фильтр Калмана $\{\hat{\xi_n}\}$ (на основании лекции №7).
- 3. Вычислить среднеквадратичную ошибку фильтра, сравнить с дисперсией ошибки наблюдения, объяснить результат.
- 4. Вывести на печать графики полученных реализаций $\{\xi_n\}$ и $\{\hat{\xi}_n\}$.
- 5. Повторить стохастический эксперимент 1-4 для негауссовских (возьмём равномерно распределённые) шумов $\{\varepsilon_n\}$ и $\{\nu_n\}$ с теми же характеристиками.
- 6. Сформулировать выводы.

Решение

1. Смоделируем начальное условие ξ_0 и последовательность $\{\xi_n, \eta_n\}$ для $n = \overline{1,100}$ с входными параметрами: $\alpha = 0.5, \ \mu = -1, \ \sigma = 1, \ D_{\varepsilon} = 0.2, \ D_{\nu} = 0.1.$

```
def generate_norm(mu, sigma, N, Deps, Dnu):
    eps = np.random.normal(0, np.sqrt(Deps), N)
    nu = np.random.normal(0, np.sqrt(Dnu), N)
    gamma = np.random.normal(mu, sigma, 1)
    xi = np.zeros(N)
    eta = np.zeros(N)
    xi[0] = gamma
    for n in range(1, N):
        xi[n] = eps[n] + alpha * xi[n - 1]
        eta[n] = xi[n] + nu[n]
    return eps, nu, xi, eta
```

$$\xi_0 = \gamma = -1.152.$$

См. рис. 1 и рис. 2. 2. Используя реализацию $\{\eta_n\}$, построим фильтр Калмана $\{\hat{\xi}_n\}$, алгоритм для построения возьмём из лекции №7:

$$\begin{cases} \hat{\xi}_n = \alpha \hat{\xi}_{n-1} + k_n \left(\eta_n - \alpha \hat{\xi}_{n-1} \right), \\ k_n = \frac{\alpha^2 k_{n-1} + \rho}{\alpha^2 k_{n-1} + \rho + 1}, \rho = \frac{D_{\varepsilon}}{D_{\nu}}, \\ \hat{\xi}_0 = \mu, k_0 = \frac{\sigma^2}{D_{\nu}}. \end{cases}$$

Рис. 1: Визуализация гауссовских шумов $\{\varepsilon_n\}$ и $\{\nu_n\}$

Рис. 2: Визуализация ненаблюдаемой компоненты $\{\xi_n\}$ и наблюдаемой $\{\eta_n\}$

При этом $\hat{P}_n = k_n D_{\nu}$ – ошибка фильтра $\xi_n - \hat{\xi}_n$.

```
def Kalman_filt(mu, sigma, N, Deps, Dnu, eta):
    ro = Deps / Dnu
    xi_hat = np.zeros(N)
    k = np.zeros(N)
    P = np.zeros(N)
    xi_hat[0] = mu
    k[0] = sigma ** 2 / Dnu
    for n in range(1, N):
        k[n] = (alpha ** 2 * k[n-1] + ro) / (alpha ** 2 * k[n - 1] + ro + 1)
        xi_hat[n] = alpha * xi_hat[n - 1] + k[n] * (eta[n] - alpha * xi_hat[n-1])
        P[n] = k[n] * Dnu
    return xi_hat, k, P, ro
```

3. Среднеквадратическая ошибка фильтра:

$$MSE = \frac{\sum_{i=0}^{N} (\xi_i - \hat{\xi}_i)^2}{N} = 0.0796.$$

Заметим, что $\hat{P}_{100}=k_{100}D_{\nu}=0.0685$ и MSE меньше, чем ошибка наблюдения $D_{\nu}=0.1$. Так происходит, потому что $k_n=\frac{\alpha^2k_{n-1}+\rho}{\alpha^2k_{n-1}+\rho+1}<1$.

- 4. На рисунках 3-5 представлена визуализация результатов, полученных в ходе выполнения 2 пункта задания.
- 5. Повторим стохастический эксперимент 1-4 для негауссовских ошибок $\{\varepsilon_n\} \sim R(-\sqrt{3D_\varepsilon}, \sqrt{3D_\varepsilon})$ и $\{\nu_n\} \sim R(-\sqrt{3D_\nu}, \sqrt{3D_\nu})$.

Код реализации:

```
def generate_uniform(Leps, Reps, Lnu, Rnu, mu, sigma, N, Deps, Dnu):
    eps = np.random.uniform(Leps, Reps, N)
    nu = np.random.uniform(Lnu, Rnu, N)
    gamma = np.random.normal(mu, sigma, 1)
    xi = np.zeros(N)
    eta = np.zeros(N)
    xi[0] = gamma
    for n in range(1, N):
        xi[n] = eps[n] + alpha * xi[n - 1]
        eta[n] = xi[n] + nu[n]
    return eps, nu, xi, eta, gamma
```

Среднеквадратическая ошибка фильтра:

$$MSE = \frac{\sum_{i=0}^{N} (\xi_i - \hat{\xi}_i)^2}{N} = 0.069.$$

Рис. 3: Визуализация фильтра Калмана $\{\hat{\xi_n}\}$

Рис. 4: Более детальная визуализация фильтра Калмана $\{\hat{\xi_n}\}$ для $n=\overline{0,50}$

Рис. 5: Визуализация ошибки фильтра, среднеквадратичной ошибки фильтра, дисперсии ошибки наблюдения

Рис. 6: Визуализация негауссовских шумов $\{\varepsilon_n\}$ и $\{\nu_n\}$

Рис. 7: Визуализация ненаблюдаемой компоненты $\{\xi_n\}$ и наблюдаемой $\{\eta_n\}$

Рис. 8: Визуализация фильтра Калмана $\{\hat{\xi_n}\}$

Рис. 9: Более детальная визуализация фильтра Калмана $\{\hat{\xi_n}\}$ для $n=\overline{0,50}$

Рис. 10: Визуализация ошибки фильтра, среднеквадратичной ошибки фильтра, дисперсии ошибки наблюдения

На рисунках 6-10 представлена визуализация результатов, полученных в ходе выполнения 5 пункта задания.

Вывод:

В ходе выполнения задания был изучен процесс построения фильтра Калмана на примере частично наблюдаемой последовательности. Были найдены ошибки фильтра. Все стохастические эксперименты были проведены для двух реализаций — на основе центрированных стационарных гауссовских шумов и на основе равномерно распределённых шумов. Для реализаций были построены необходимые графики. Анализ ошибок привёл к выводу, что ошибки фильтров Калмана \hat{P} и среднеквадратичные ошибки (MSE) меньше ошибок наблюдения D_{ν} , что следует из алгоритма построения фильтра Калмана.

Приложение:

Полная версия программы, написанной на Python доступна по ссылке:

Рис. 11: https://colab.research.google.com/drive/15lM $_K vsyrEZe$ – EA7i – zaqErmUdKhjfwG?usp = sharing