Advanced Marine Hydrodynamics NA61202 3-1-0

S De Chowdhury 1

¹Assistant Professor

Department of Ocean Engineering and Naval Architecture IIT Kharagpur

Lecture 5: Conservation Laws (Part I)

sdip@naval.iitkgp.ac.in

Spring 2023

Overview

Stresses in a Fluid Element

2 Transport Theorem

Conservation Laws

Idea of Fluid Stresses

Figure: Traction on an elemental area.

- Let δF be the force exerted by the Fluid exterior to δA in the direction of n̂ on the inner side of δA.
- We can define $T^n = \lim_{\delta A \to 0} \frac{\delta F}{\delta A} = \frac{dF}{dA}$.

- The traction Tⁿ is a vector telling us about force per unit area and having components Tⁿ_j.
- There is a relation which relates T^n with stresses.

Spring 2023

Stress components on a cube

Figure: Stress components.

Stress components on a tetrahedral element

Figure: Stress components on a tetrahedral element.

- $dS1 = dSn_1$; $dS2 = dSn_2$ and $dS3 = dSn_3$.
- volume of the element dV = hdS/3.

- Tⁿ be the traction on the surface dS.
- Let b₁ be the body force per unit mass.

Stress Equilibrium

- Let a1 is the acceleration of the element along x.
- If the mass of the element is $dm = \rho h dS/3$ and acceleration is a_1 , then as per Newton's 2nd Law,

$$(-\tau_{11}dSn_1 - \tau_{21}dSn_2 - \tau_{31}dSn_3 + T_1^ndS) + b_1hdS/3 = \rho hdSa_1/3.$$

- As $h \to 0$, $T_1^n = \tau_{11}n_1 + \tau_{21}n_2 + \tau_{31}n_3 = \sum_{j=1}^3 \tau_{j1}n_j$.
- in matrix-vector form $\begin{bmatrix} T_1^n \\ T_2^n \\ T_3^n \end{bmatrix} = \begin{bmatrix} \tau_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \tau_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \tau_{33} \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}.$
- The above is known as Cauchy's Theorem and the stress components are respresnted by a Tensor.

Transport Theorem

- $I(t) = \int_{V(x,y,z,t)} f(x,y,z,t) dV$.
- $\Delta I = I(t + \Delta t) I(t) = \int_{V(t+\Delta t)} f(x, y, z, t + \Delta t) dV \int_{V(t)} f(x, y, z, t) dV.$
- Assuming in Δt time interval, the volume V acquires a new volume $V+\mathrm{d}V$. Then, $\Delta I=\int_{V+\Delta V}\left(f+\Delta t\frac{\partial f}{\partial t}\right)\mathrm{d}V-\int_{V}f\mathrm{d}V=\int_{V}f\mathrm{d}V+\Delta t\int_{V}\frac{\partial f}{\partial t}\mathrm{d}V+\int_{\Delta V}f\mathrm{d}V+\Delta t\int_{\Delta V}\frac{\partial f}{\partial t}\mathrm{d}V-\int_{V}f\mathrm{d}V.$
- The first and the fifth term together cancels out. If the volume V is surrounded by the surface S then ΔV is the volume contained within S(t) and $S(t+\Delta t)$. This region has a thickness $V_n\Delta t$, where V_n is the component of the velocity in the direction normal to surface S_n . Thus, $\Delta t \int_{\Delta V} \frac{\partial f}{\partial t} \mathrm{d}V = \Delta t \int_S \frac{\partial f}{\partial t} \left(V_n \Delta t \right) \mathrm{d}S = \left(\Delta t \right)^2 \int_S \frac{\partial f}{\partial t} \left(V_n \right) \mathrm{d}S$. This can be neglected since we are only retaining terms upto order of Δt .

Contd..

- Using the same principle, the third term becomes $\int_{\Delta V} f dV = \int_{S} f V_{n} \Delta t dS$.
- $\Delta I = \Delta t \int_{V} \frac{\partial f}{\partial t} dV + \int_{S} (V_{n} \Delta t) f dS$.
- $\frac{\mathrm{d}I}{\mathrm{d}t} = \int_{V} \frac{\partial f}{\partial t} \mathrm{d}V + \int_{S} f V_{n} \mathrm{d}S.$
- Application of Gauss divergence theorem on the second term gives, $\frac{\mathrm{d}I}{\mathrm{d}t} = \int_V \left(\frac{\partial f}{\partial t} + \nabla f \cdot \mathsf{V}_n \right) \mathrm{d}V$

Conservation of Mass

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_V \rho \mathrm{d}V = 0.$$

Conservation of Momentum

- $\frac{d}{dt} \int_{V} \rho u_{i} dV = \int_{S} \tau_{ij} \hat{\mathbf{n}}_{j} dS + \int_{V} F_{i} dV$.
- The first term can be simplified using Gauss Divergence Theorem and $\frac{\mathrm{d}}{\mathrm{d}t}\int_V \rho u_i \mathrm{d}V = \int_V \left[\frac{\partial \tau_{ij}}{\partial x_i} + F_i\right] \mathrm{d}V.$

Continuity Equation

- By putting $f = \rho$ into transport theorem $\frac{d}{dt} \int_{V} \rho dV = \int_{V} \left[\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_{j}} (\rho u_{j}) \right] dV.$
- $\bullet \ \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho u_j \right) = 0.$