

CALIDAD DE LECTURAS Y LIMPIEZA

Laura Natalia González, MSc

Romain Guyot, PhD

FORMATOS DE DATOS

FASTA

FASTQ

FAST5 (binarios)

FASTA

>gi|5524211|gb|AAD44166.1| cytochrome b
LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV
EWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLG
LLILILLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWYFLFAYAILRSVPNKLGGVLALFLSIVIL
GLMPFLHTSKHRSMMLRPLSQALFWTLTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGX
IENY

FASTQ

- •Línea 1 (comienza con @)
- •Línea 2
- •Línea 3 (comienza con +)
- •Línea 4 —ASCII char

FASTQ

```
S - Sanger Phred+33, raw reads typically (0, 40)

X - Solexa Solexa+64, raw reads typically (-5, 40)

I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)

J - Illumina 1.5+ Phred+64, raw reads typically (3, 41)

with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)

(Note: See discussion above).

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

P - PacBio Phred+33, HiFi reads typically (0, 93)
```


ANTES DE EMPEZAR

- ¿Cuántas lecturas tenemos en cada archivo?
- ¿Qué diferencia hay entre los formatos de salida de cada secuenciador?

CALIDAD

FASTQC

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Basic Statistics

Measure	Value
Filename	<pre>good_sequence_short.txt</pre>
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	250000
Sequences flagged as poor quality	0
Sequence length	40
%GC	45

Per base sequence quality

Per base sequence quality

Per base sequence content

Per base sequence content

LIMPIEZA

ILLUMINA – ION TORRENT NANOPORE

LECTURAS ILLUMINA O ION TORRENT

R1BeginsInR2

This situation happens when target sequence plus primers are are less than read length (e.g. target size of 100 on 2x150 sequencing run)

3 NoOverlap

This situation happens when target sequence plus primers are are more than 2 times read length (e.g. target size of 400 on 2x150 sequencing run)

¿QUÉ LIMPIAMOS?

- Secuencias de adaptadores de PCR o secuenciación
- Regiones de baja calidad
- Lecturas de baja calidad (total o ventanas)
- Lecturas muy cortas

AGREGAR UN PIE DE PÁGINA

TRIMMOMATIC

- ILLUMINACLIP
- SLIDINGWINDOW
- LEADING
- TRAILING
- CROP
- HEADCROP
- MINLEN

HiFi READS

base sequence

LLAMADO DE BASES

FAST5 (HDF5) a FASTQ

Data

Sequence

Basecalled

ONT Read calling

summary_file.txt

filename	FAK47038_aa36ef836fd50817477a5770772dffc63bfed2eb_30
read_id	188e2a0b-780c-440d-9223-61d8979dd002
run_id	aa36ef836fd50817477a5770772dffc63bfed2eb
batch_id	0
channel	70
mux	3
start_time	9688.985500
duration	1.610500
num_events	1288
passes_filtering	TRUE
template_start	9689.318000
num_events_template	1022
template_duration	1.278000
sequence_length_template	545
mean_qscore_template	11.462492
strand_score_template	3.165753
median_template	79.270927
mad_template	9.512511
catin median_template	79.270927
Sistema General de Regalías	9.512511

ONT demultiplexing

Deepbinner: Demultiplexing barcoded ONT reads with deep convolutional neural networks (CNN). The network is trained to classify barcodes based on the raw nanopore signal.

Guppy

In contrast to Deepbinner, guppy barcoding requires basecalling of all reads and detects barcodes in the sequence

ONT Read calling, cleaning and filtering

Sequencer ONT: raw fast5 files

- Transform fast5 signal in fastq standard format Guppy, Bonito
- Optional Demultiplexing and removing adapters Guppy options
- Optional Find and remove adapters from reads Porechop
- Optional Quality filtering using the <u>sequencing_summary.txt</u> information: <u>Guppy options</u>, <u>filtlong</u>, <u>nanofilt</u>

Guppy is a neural network based basecaller that in addition to basecalling also performs filtering of low quality reads, clipping of Oxford Nanopore adapters and estimation of methylation probabilities per base

Calculate depth of coverage

depth of coverage estimation:

- Count how much base pairs in all sequenced reads? total_pb
- What is the expected genome size? genome_size

depth_of_coverage = total_pb/genome_size

Reads Quality control: NanoPlot

Read lengths vs Average read quality plot

Summary statistics

General summary		
Active channels	512.0	
Mean read length	6,315.6	
Mean read quality	10.9	
Median read length	2,517.0	
Median read quality	11.1	
Number of reads	10,847,854.0	
Read length N50	16,816.0	
Total bases	68,510,227,164.0	

What is N50 and L50?

- → N50, length of the contig at 50% assembly: 75 kb
- → L50, number of contigs until 50% assembly: 3

GRACIAS

