Mutually Recursive Definition

- A good hub links to many good authorities
- A good authority is linked from many good hubs
- Model using two scores for each node:
 - Hub score and Authority score
 - Represented as vectors \boldsymbol{h} and \boldsymbol{a}

Hubs and Authorities

Each page i has 2 scores:

- Authority score(权威度值): *a_i*
- Hub score(导航度值): *h_i*

HITS algorithm:

- Initialize: $a_i^{(0)} = 1/\sqrt{N}$, $h_i^{(0)} = 1/\sqrt{N}$
- Then keep iterating until convergence:
 - $\forall i$: Authority: $a_i^{(t+1)} = \sum_{i \to i} h_i^{(t)}$
 - $\forall i$: Hub: $h_i^{(t+1)} = \sum_{i \to i} a_i^{(t)}$
 - ∀*i*: Normalize:

$$\sum_{11/4/2022} \left(a_i^{(t+1)} \right)^2 = 1, \sum_{j} \left(h_j^{(t+1)} \right)^2 = 1$$

Hubs and Authorities

- HITS converges to a single stable point
- Notation:
 - Vector $\mathbf{a} = (a_1 ..., a_n), \quad \mathbf{h} = (h_1 ..., h_n)$
 - Adjacency matrix A (NxN): $A_{ij} = 1$ if $i \rightarrow j$, 0 otherwise
- Then $h_i = \sum_{i \to j} a_j$ can be rewritten as $h_i = \sum_j A_{ij} \cdot a_j$ So: $h = A \cdot a$
- Similarly, $a_i = \sum_{j o i} h_j$ can be rewritten as $a_i = \sum_j A_{ji} \cdot h_j = A^T \cdot h$

Hubs and Authorities

HITS algorithm in vector notation:

• Set:
$$a_i = h_i = \frac{1}{\sqrt{n}}$$

Repeat until convergence:

$$h = A \cdot a$$

$$\mathbf{a} = A^T \cdot h$$

lacksquare Normalize $oldsymbol{a}$ and $oldsymbol{h}$

• Then:
$$a = A^T \cdot (A \cdot a)$$

new a

Convergence criterion:

$$\sum_{i} \left(h_i^{(t)} - h_i^{(t-1)} \right)^2 < \varepsilon$$

$$\sum_{i} \left(a_i^{(t)} - a_i^{(t-1)} \right)^2 < \varepsilon$$

a is updated (in 2 steps):

$$a = A^T(A \ a) = (A^T A) \ a$$

h is updated (in 2 steps):

$$h = A (A^T h) = (A A^T) h$$

Repeated matrix powering

Existence and Uniqueness

$$-h = \lambda A a$$

$$= a = \mu A^T h$$

$$\bullet$$
 $h = \lambda \mu A A^T h$

$$a = \lambda \mu A^T A a$$

$$\lambda = 1 / \sum h_i$$

$$\mu = 1 / \sum a_i$$

- Under reasonable assumptions about A, HITS converges to vectors h* and a*:
 - h* is the principal eigenvector (主特征向量) of matrix A A^T
 - a^* is the principal eigenvector of matrix $A^T A$

Example of HITS

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$h(yahoo) = .58 .80 .80 .79788$$
 $h(amazon) = .58 .53 .53 .57577$
 $h(m'soft) = .58 .27 .27 .23211$
 $a = \mu A^T h$
 $a(yahoo) = .58 .58 .62 .62628$
 $a(amazon) = .58 .58 .62 .62628$
 $a(m'soft) = .58 .58 .62 .62628$

PageRank and HITS

- PageRank and HITS are two solutions to the same problem:
 - What is the value of an in-link from u to v?
 - In the PageRank model, the value of the link depends on the links into
 - In the HITS model, it depends on the value of the other links out of u
- The destinies of PageRank and HITS were very different