3D Modelleme

Name1, No1, mail1 Name2, No2, mail2 Name3, No3, mail3

Özet—Yapısal kalp hastalığı (SHD), kardiyovasküler tıpta yeni bir alandır. Geleneksel görüntüleme yöntemleri hastalık teşhisi kavramı etrafında yapılandırıldıkları için, SHD müdahalelerinin ihtiyaçlarını desteklemekde yetersiz kalmaktadır. SHD müdahaleler, görüntülemenin prosedür içi planlamasını, simülasyonunu ve tahmin edilmesini gerektiren geleneksel görüntüleme kavramlarını bozar. Transkateter SHD müdahalelerinde, altın standartta bir açık kavite cerrahi alanının olmaması, hekimleri dokunsal geri bildirim ve kardiyak anatominin görsel doğrulaması fırsatından mahrum eder. Bu nedenle, görüntülemeye bağımlılık prosedürel rehberlikte, yeni nesil prosedürel beceri setlerinin, görsel alan kavramının ve preklinik cihaz geliştirmeyi, hekimi için periprosedürel planlama döneminde teknolojiler kullanılır. Klinik bakım ve prosedür planlamasında 3 boyutlu (3D) baskının uyarlanması, transkateter müdahaleler için erken teşhiste önemlidir. Hesaplama modellemenin 3B'ye entegrasyonu baskı, cihaz testinde akışkanlar mekaniğinin araştırma ve geliştirme anlayışını hızlandırdı. 3D baskı, hesaplamalı modelleme ve nihayetinde vapay zekanın dahil edilmesi, sağlık uygulamalarının sevrini değiştiriyor. Transkateter yapısal kalp müdahaleleri derinlemesine incelenmeyi gerektirir. Geleneksel görüntüleme ile sağlanmayan kardiyak patofizyoloji ve cihaz etkileşimlerinin periprosedürel anlasılması gerekmektedir.

Anahtar kelimeler—3D baskı, bilgisayarlı tomografi, hesaplamalı modelleme, sol atriyal uzantı, transkateter aort kapak değişimi, transkateter mitral kapak değişimi, transözofageal ekokardiyogram, yapay zeka, yapısal kalp hastalığı

I. Giriş

Bu doküman Pamukkale Üniversitesi Bilgisayar Mühendisliği Bölümü CENG 104 kodlu Bilgisayar Mühendisliği Semineri dersi için hazırlanan sunum dosyasıdır. Biçim olarak "IEEE Transactions Journals and Conferences" şablonu kullanılmıştır.

Tablo I Doküman İçindeki Referans Tipleri

Referans tipi	Açıklama
sec:	section(bölüm)
subsec:	subsection(alt bölüm)
fig:	figure(şekil)
tab:	table(tablo)

II. 3D BASKI, BİLGİSAYARLI MODELLEME VE AI'NIN TEMELLERİ

- A. 3D MODELLEME NEDİR?
- B. 3D BASKI TEKNOLOJİLERİNE GENEL BAKIŞ
- C. VERİ BÖLÜMLEME VE GÖRÜNTÜ OLUŞTURMA İLKE-LERİ
- III. YAPISAL KALP HASTALIKLARINDA 3D BASKI
- A. TRANSKATETER AORTİK KAPAKÇIK DEĞİŞİMİ İÇİN 3D BASKI
- B. TRANSKATETER MİTRAL KAPAKÇIK DEĞİŞİMİ İÇİN 3D BASKI VE SANAL SİMÜLASYON
- C. TRANSKATETER TRİKÜSPİD KAPAKÇIK TAMİR VE DEĞİŞİMLERİ İÇİN 3D BASKI
- D. HASTA EĞİTİMİ
 - IV. 3D BASKININ GÜNCEL KISITLAMALARI
 - V. 3D BASKININ ÖTESİNDE: BİLGİSAYARLI MODELLEME VE AI'NİN TEMELLERİ
 - VI. YAPAY ZEKANIN SHD'DE ROLÜ

VII. GİRİŞİMCİLERİN VE GİRİŞİMSEL GÖRÜNTÜLEME HEKİMLERİNİN EĞİTİMİ

VIII. TEKNOLOJİDE AŞILMASI GEREKEN ZORLUKLAR

IX. SONUÇ

X. KAYNAK

- A. Kaynaklar
 - Makale: [1]

KAYNAKLAR

- [1] Marija Vukicevic Sandy Engelhardt Arash Kheradvar Chuck Zhang Stephen H. Little Johan Verjans Dorin Comaniciu William W. O'Neill Mani A. Vannanb Dee Dee Wang, Zhen Qian. 3d printing, computational modeling, and artificial intelligence for structural heart disease. : CARDIOVASCULAR IMAGING, 14(1):1–20, 2021.
- B. Sekiller

Şekil 1. 3D Baskı Modelleme İş Akışı

Şekil 5. Tıbbı Modernize Etmek

Şekil 2. Seviyelerini Elde Etmek İçin 3D Baskı Kılavuzlu Simulasyon Cerrahi

Şekil 6. Öne Çıkanlar

Şekil 3. Triküspit Kapak ve Sağ Kalbin Geometrik, Dijital, 3 Boyutlu Şekil 7. 3D Yazıcı <u>Teknolojileri</u> Basılması

eknolojileri							
Tablo 1 38 Yazıcı Teknolojileri							
Teknoloji	Yazo Materyal	Yaona Tekniği	Arblar ne Eksiler	Oygulansalar			
Stereolitografi (SLA)	Işığa Duyarlı Svo Reçine	Ultraviyole Lazer Kürleme	Artia: Biyid, sın deser baxas er çı ili esadiliz salip effal moldler. Bolleri De mateme badaş desteji şazlımınız gerdiyo yap, mazafi.	Bişik ve ayunlu modeler düstseryon, eğitin ve akş test amaşlı			
Sejá Lazer Sinterleme (SLS)	Işığa Duyarlı Parçacıklar	Niksek Güçlü Kızdötesi Lazer Sinterleme	Arthus Piniasia piasy ne dapankh model, destak paps. Eksiksi Duko pahal ne daha az erjahdili, az malasne basks.	Endestriyel seriyede uppdama			
Kaynayınş Birikim Modelleme (FOM)	Temoplastik Flament veya Metal Tel	Kaynaynış Birkin	árita: Diyák mályető, masáktó kallann na vypu, korrető molet. Ekülető Pöndőu kadeneli yörej kalleső, tek makene kedő.	Netacymiçin set ve piçti moleller			
Mirekepli	Toz Malzene (irneğin nişasta, alçı ve sın bağlayıcı)	Mürekkep Piskirtmeli ve Sw Citterne	Arthus Uggon malgetii, nispeten hub. Eksikel: Phinth yüney kalitesi, model güşlendirme için uzun bir son iden eye ihriyaş doşaş, az maletme hubes.	Bietorpe için karşk reski meleke			
Polijet	Ultraniyole (JV) ile Kürlenebilir Fotopolimerler	UV Barna Lanba Kürlene	Arters (ek watened bede, lijital matemeler (ranpat teskler er mateme stellklei), dis. Esklei: Pakal, kestek materjal kullammal di, i jem samse ; iku ibrahlu.	Varyanti karmaşık modi esneklik ve resk, doku takift eden modelle			
38 = 3 Boyut							

Şekil 4. Cerrahi Eğitimde Hiperrealizm

Şekil 8. 3D Baskı İçin Görüntüleme Teknikleri

Girintilene Yur	teni Téholoji	Arten	Ekolei	Uggdanakn
σ	Kuntuaris; EOG tesidene	tdián; nűemelcagá jzin; nilemelyeleğ labjun görütlen; gözelinlejü görütlijen; e málene	iydintadiolların ced sinasal İstinirlik, İyolaştıra nalyayor, yunçal ölüləri syffatililərinə	Debyl 30 lesis ləği oblammyaylar, biyili genler, rəffer ve luncre arterler ve dana
IR.	Njilmij XV sinenzy serbest nefes nerigalis kapil XV sinema	Koteżnyplanena geskyck (ayr lymiężniczałysyci, y używe sanacałysinińske, krymięsk dów la alfa sayru	talarzursztralna sirelei jódafszla nez aft, tála diplu zaysal jódnárák	taplarını 3 koydi (sarı lağı dalar ve kiyil dar Redat'ı hatalında ve pi yetçiliki
Edocardography	10 TTE/TEE	Genj kalenbilnik jeznensal jezim, tepus keleji lazoma, milenmel jedenij givindiene valler, dişik malyedi	tigil SIR, smi skutil pesa e kryti; eksi kalpasatmis girintilene	tafferi 3 knydir yaziri