Tugas Project UAS Machine Learning Kelas C

Ganjil 2023 - 2024

Ketentuan tugas:

- Buatlah kelompok yang terdiri dari 3 4 orang
- Buatlah laporan (boleh dalam Jupyter Notebook, atau laporan biasa)
- Kumpulkan laporan beserta kode Python (tanpa dataset) di Lentera
- Deadline: 18 Desember 2023, 23.00 WIB

Carilah dataset terkait image classification selain CIFAR-10

- Contoh daftar dataset: https://paperswithcode.com/datasets?task=image-classification
- Selain daftar di atas juga diperbolehkan

Ulaslah hal – hal di bawah ini dalam laporan yang kalian buat. Sebagai catatan, acuan di bawah sifatnya arahan yang tidak kaku, tim mahasiswa boleh berkreasi:

- 1. Tuliskan judul (Laporan Project UAS Machine Learning), nama dan NRP masing masing anggota kelompok
- 2. Pengenalan dataset
- 3. Jelaskan data preprocessing yang dilakukan
- 4. Jelaskan metode CNN yang digunakan (boleh menggunakan Alexnet atau metode lain)
- 5. Carilah konfigurasi parameter parameter CNN yang memberikan hasil terbaik. Parameter parameter tersebut di antaranya:
 - o Batch size
 - Kernel initializer (He atau Glorot atau yang lain)
 - o Jumlah hidden layer dan tipenya (convolutional atau fully connected)
 - o Jumlah channels pada hidden layer
 - Jumlah neurons/pixels per channel
 - o Kernel size pada hidden layer
 - Stride pada hidden layer
 - Activation function untuk hidden layer (ReLU atau yang lain)
 - Jumlah neuron pada
 - Activation function untuk output layer (softmax atau yang lain)
 - Loss function (MSE atau cross entropy atau yang lain)
 - Menggunakan teknik regularization atau tidak (dropout atau yang lain)
 - Memanfaatkan operasi max pooling atau tidak
 - o Dan lain lain

Jumlah konfigurasi yang dicoba: 10 - 20 jenis konfigurasi. Buatlah tabel sederhana seperti ini (tabel boleh ditambah parameter lain jika dirasa perlu):

Table 7-5 Configurations for Our CNN Experiments

CONFIGURATION	LAYERS	REGULARIZATION	TRAIN ERROR	TEST ERROR
Conf1	C64×16×16, K=5,		2%	39%
	S=2, ReLU			
	C64×8×8, K=3,			
	S=2, ReLU			
	F10, softmax,			
	cross-entropy			
	loss			
Conf2	C64×16×16, K=3,		33%	35%
	S=2, ReLU			
	C16×8×8, K=2,			
	S=2, ReLU			
	F10, softmax,			
	cross-entropy			
	loss			
Conf3	C64×16×16, K=3,	Dropout=0.2	30%	30%
	S=2, ReLU	Dropout=0.2		
	C16×8×8, K=2,			
	S=2, ReLU			
	F10, softmax,			
	cross-entropy			
	loss			

Lakukan Analisa mengapa suatu konfigurasi memberikan hasil terbaik dibanding yang lain. Analisa juga dari sisi *training time* (*computational cost* dari konfigurasi tersebut).

6. Daftar referensi yang digunakan