MEMS-05: Vozík na vozíku

REFERÁT V RÁMCI PREDMETU MODELOVANIE ELEKTROMECHANICKÝCH SYSTÉMOV

ZS 2022/23, 3. roč. Bc. ApE

Ivan Zeman

Odovzdané dňa:	Bodov	Poznámka:
Hodnotenie: – správy (max. 18b.)	spolu:	
– riešenia (max. 14 b.)		
- prezentácie a prednesu (max. 8 b.)		

Komentáre pri jednotlivých dátumoch kontroly správy:

Dátum: v1 16.11.2022

Dátum: v6 26.11.2022

- Pekná práca, správne výsledky
- Komentáre sú vyznačené v texte. Týkajú sa viac-menej formálnej úpravy.

Final 22.12.2022 14:00

Pozor na označenia premenných

- V Súpise symbolov chýbajú rozmery
- Pozor b a b: koeficient tlmenia a tiež koeficient čitateľa nezmysel v (1.2.4): $(b_1 = b_2 + b_2)$ a pod. Treba použiť iné písmeno
- s. 18: [**B**], [**C**^T], [**D**^T] To má byť vstupný vektor, riadkový výstupný a priamy prenos zo vstupu na výstup *d*. Nijaké matice, v žiadnom prípade!
- V prezentácii sa na mnohých obrazovkách nachádzajú rovnice s veľmi malým fontom !!!

Zadanie

Analyzujte mechanický systém podľa obrázka.

Literatúra:

[1] Equations of Motion for the Multi Degree of Freedom (MDOF) Problem Using Lagrange's Equations https://www.youtube.com/watch?v=uAKD5CGZuSs

(iný prístup k zostaveniu matematického modelu – slúži pre kontrolu výsledného modelu)

Pre vyšetrovanie zvoľte vhodné parametre systému, pri ktorých sa začínajú prejavovať jeho frekvenčné vlastnosti (rezonancia a pod.) určené na základe priebehov PrCh systému a odpovedajúcich LFCh.

Správa musí obsahovať nasledovné výstupy:

- 1) Zostavenie rovníc obvodu a z nich dopovedajúcej maticovej rovnice.
- 2) Nájdenie prenosovej funkcie systému v symbolickom MATLABe. Uveďte ju v (1) v symbolickom tvare a (2) v numerickom tvare pre zvolené hodnoty parametrov.
- 3) Popis priebehov PrCh a LFCh (a aký systém ide). Hodnoty núl a pólov uveďte v tabuľke
- 4) Vyšetrenie závislosti zmeny vlastností systému (voľte aspoň 2 ďalšie hodnoty) PrCh a jeho LFCh od každého z parametrov systému pričom ostatné parametre zostávajú na pôvodných hodnotách.
- 5) Charakteristiku (slovne) vplyvu jednotlivých parametrov na dynamické vlastnosti systému.
- 6) Model systému v Simulinku odvodený z rovníc obvodu (nepoužite iba blok Transfer Function!).
- 7) Odozvy systému so základnými parametrami zo Simulinku na harmonický budiaci signál odpovedajúci pri troch rôznych frekvenciách zvolených tak, aby vystihovali frekvenčné vlastnosti systému (spravidla v extréme LAFCH a v dvoch ďalších bodoch jeden pri nižšej a druhý pri vyššej frekvencii, kde sa výrazne prejavuje zmena fázy, príp. zmena amplitúdy LFCh).
- 8) Odvodenie stavového modelu systému. Simuláciou overte, že ide o ten istý systém porovnajte s výsledkami získanými v bode 2.
- 9) Ekvivalentný elektrický obvod (zvoľte si metódu) odvodený na základe elektromechanickej analógie.
- 10) Simulácia modelu mechanického a elektrického systému pomocou programu Simscape. Porovnaním odoziev s tými v bode 2 overíte správnosť odvodeného matematického modelu.
- 11) Zostavenie GUI v MATLABe umožňujúceho pohodlnú (user friendly) a rýchlu analýzu systému.
- 12) V závere dôsledne analyzujte dosiahnuté výsledky (o aký systém ide, aké sú použité metódy riešenia, aké sú dosiahnuté výsledky, aký majú vplyv jednotlivé parametrov na zmenu vlastností a pod.).

Sprievodná správa sa odovzdáva:

- <u>v elektronickej forme</u>: správa vo Worde a PowerPointová prezentácia (zostavené v šablóne) + súbory v MATLABE. Presné inštrukcie pre zbalenie a označenie súborov sú uvedené v šablóne správy.
- v tlačenej forme (jednostranne/obojstranne vytlačená správa, zopnutá v ľavom hornom rohu). Prvý list správy je úvodný, na druhom je uvedené toto zadanie, potom nasleduje vlastný text práce. Predbežná kontrola v 9.-10. týždni semestra. Termín zaslania súborov (zip/arj/...): 2 dni (= 48 hod.) pred vyučovaním predmetu MEMS (obhajobou v poslednom týždni ZS) t.j. v stredu 21.12.2022 do 10:50.

Obsah

Z_{ϵ}	idanie		2
Z	oznam sy	mbolov a skratiek	4
Ú	vod		5
1.	Vypı	acovanie	5
	1.1	Zostavenie rovníc obvodu a z nich odpovedajúce maticové rovnice	5
	1.2	Nájdenie prenosových funkcií systému	7
	1.3	Prechodové a logaritmické-frekvenčné charakteristiky	9
	1.3.1	Prechodová a logaritmická-frekvenčná charakteristika pre G1(s)	9
	1.3.2	Prechodová a logaritmická-frekvenčná charakteristika pre G2(s)	10
	1.3.3	Prechodová a logaritmická-frekvenčná charakteristika pre G3(s)	11
	1.4	Vyšetrenie závislosti zmeny vlastností systému od zmien parametrov	12
	1.4.1	Vyšetrenie závislosti zmeny vlastností systému od zmeny m1	12
	1.4.2	Vyšetrenie závislosti zmeny vlastností systému od zmeny m2	13
	1.4.3	Vyšetrenie závislosti zmeny vlastností systému od zmeny k1	13
	1.4.4	Vyšetrenie závislosti zmeny vlastností systému od zmeny k2	14
	1.4.5	Vyšetrenie závislosti zmeny vlastností systému od zmeny b1	15
	1.4.6	Vyšetrenie závislosti zmeny vlastností systému od zmeny b2	16
	1.5	Modelovanie systému v stavovom priestore	17
	1.5.1	Odvodenie stavového modelu	17
	1.5.2	Nájdenie prenosovej funkcie pomocou stavového modelu	18
	1.5.3	Zhodnotenie výsledkov získaných zo stavového modelu obvodu	20
	1.6	Modelovanie systému v Simulinku	20
	1.6.1	Simulačný model v Simulinku	20
	1.6.2	Prechodová a logaritmická-frekvenčná charakteristika pre G1(s)	21
	1.6.3	Prechodová a logaritmická-frekvenčná charakteristika pre G2(s)	22
	1.6.1	Zhodnotenie výsledkov získaných zo stavového modelu obvodu	22
	1.7	Modelovanie systému v simulačnom prostredí Simscape	22
	1.7.1	Nájdenie prenosovej funkcie pomocou modelu v Simscape	24
2	Záve	r	25
Z	oznam po	oužitej literatúry	26
3	Prílo	hy	27
	3.1	Zoznam príloh	27
	Príloha	A: Najdenie_TF.m	27
	Príloha	B: Simscape_model_M.m	30
	Príloha	E: Simulink_model_M.m	32
	Príloha	F: Stavovy_model_G1_M.m	33
	Príloha	G: Stavovy_model_G2_M.m	35
	Príloha	G: Vysetrenie_vplyvu_zmeny_parametrov_G3.m	36

Zoznam symbolov a skratiek

Symboly

A matica systému v stavovom popise

a koeficient v menovateli prenosovej funkcie

b koeficient tlmenia (pri translačnom pohybe) [Ns/m]

b, **B** vstupný vektor, vstupná matica

 c, c^T, C koeficient v čitateli prenosovej funkcie, výstupný vektor (transponovaný), výstupná matica

d priamy prenos zo vstupu na výstup v stavovom popise

f(t), F(s) sila [N] – časová funkcia, operátorový obraz

G prenosová funkcia

k koeficient pružnosti (pružiny) [N/m]

n nula prenosovej funkcie

m hmotnosť [kg]

q vektor neznámych posunutí (dráh) telies

s Laplaceov operátor, pól prenosovej funkcie

t čas [s]

x(t), X(s) dráha [m] – časová funkcia, operátorový obraz

Horné indexy

T transponovaný

Skratky

DOF stupeň voľnosti (Degree Of Freedom)

LFCh logaritmická-frekvenčná charakteristika

PrCh prechodová charakteristika

TF Prenosová funkcia (Transer function)

Úvod

Hlavnú podstatu tohto referátu tvorí **analýza translačného mechanického systému** podľa obr. 0.1, pozostávajúceho z dvoch tuhých telies – vozíkov – s hmotnosťami m_1 a m_2 , dvoch pružín s koeficientmi tuhosti k_1 a k_2 a dvoch tlmičov s koeficientmi tlmenia b_1 a b_2 .

Obr. 1.1.1 Translačný mechanický systém – vozík na vozíku

Ako budiace signály (vstupné veličiny) vystupujú sily $f_1(t)$ a $f_2(t)$. Pružiny a hmoty pritom predstavujú zásobníky energie, v tlmičoch sa energia stráca. Vzhľadom na súčet možných pohybov každého telesa, ak ostatné telesá sú v pokoji, ide o systém s dvoma stupňami voľnosti (2 DOF).

1. Vypracovanie

Analýzu translačného mechanického systému budeme vykonávať na základe bodov obsiahnutých v kapitole Zadanie.

1.1 Zostavenie rovníc systému a z nich odpovedajúce maticové rovnice

Pre zistenie vplyvu jednotlivých síl v systéme použijeme metódu uvoľnenia, t.j. osamostatníme každé teleso a nakreslíme na neho pôsobiace sily (silový diagram).

Sily pôsobiace na prvé teleso:

- a) Prvé teleso sa pohybuje, druhé stojí (obr. 1.1.1a)
- b) Prvé teleso stojí, druhé sa pohybuje (obr. 1.1.1b)
- c) Všetky sily pôsobiace na prvé teleso (obr. 1.1.1c)

Obr. 1.1.1 Rozklad síl pôsobiacich na prvé teleso

Z rozkladu síl zostavíme pohybovú rovnicu telesa v Laplaceovej transformácii:

$$[k_1 + k_2 + s(b_1 + b_2) + m_1 s^2] X_1(s) - (k_2 + sb_2) X_2(s) = F_1(s)$$
(1.1.1)

Sily pôsobiace na druhé teleso:

- a) Prvé teleso stojí, druhé sa pohybuje (obr. 1.1.2a)
- b) Druhé teleso stojí, prvé sa pohybuje (obr. 1.1.2b)
- c) Všetky sily pôsobiace na druhé teleso (obr. 1.1.2c)

Obr. 1.1.2 Rozklad síl pôsobiacich na druhé teleso

Odpovedajúca pohybová rovnica telesa v Laplaceovej transformácii:

$$(k_2 + sb_2 + m_2 s^2) X_2(s) - (k_2 + sb_2) X_1(s) = F_2(s)$$
(1.1.2)

Rovnice (1.1.1) a (1.1.2) prepíšeme do maticového tvaru:

$$\begin{bmatrix} k_1 + k_2 + s(b_1 + b_2) + m_1 s^2 & -(k_2 + sb_2) \\ -(k_2 + sb_2) & k_2 + sb_2 + m_2 s^2 \end{bmatrix} \cdot \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} = \begin{bmatrix} F_1(s) \\ F_2(s) \end{bmatrix}$$
(1.1.3)

Pre všeobecný tvar matice (1.1.3) platí:

$$\mathbf{M}.\mathbf{x}(\mathbf{s}) = \mathbf{f}(\mathbf{s}) \tag{1.1.4}$$

kde M je matica mechanických impedancií, x(s) je vektor neznámych posunutí (dráh) telies a f(s) je vektor síl pôsobiacich na jednotlivé telesá.

Z maticovej rovnice (1.1.3) vypočítame, Cramerovým pravidlom, hodnoty neznámych posunutí (dráh) telies $X_1(s)$ a $X_2(s)$.

$$X_1(s) = \frac{\begin{vmatrix} F_1(s) & -(k_2 + sb_2) \\ F_2(s) & k_2 + sb_2 + m_2 s^2 \end{vmatrix}}{\det M}$$
(1.1.5)

$$X_2(s) = \frac{\begin{vmatrix} (k_1 + k_2 + sb_1 + sb_2 + m_1 s^2 & F_1(s) \\ -(k_2 + sb_2) & F_2(s) \end{vmatrix}}{\det M}$$
(1.1.6)

1.2 Nájdenie prenosových funkcií systému

Pre vyšetrenie dynamických vlastností daného mechanického systému potrebujeme zistiť nasledovné prenosové funkcie:

$$G_1(s) = \frac{X_1}{F_1} \tag{1.2.1}$$

$$G_2(s) = \frac{X_2}{F_1} \tag{1.2.2}$$

$$G_3(s) = \frac{X_2 - X_1}{F_1} \tag{1.2.3}$$

pričom $G_3(s)$ predstavuje prenosovú funkciu posunu malého vozíka po plošine veľkého, pri súčasnom pôsobení sily F_1 .

Pre nájdenie prenosových funkcií použijeme výpočtový softvér MATLAB. Dostávame výsledky prenosových funkcií v symbolickom tvare:

• Prenosová funkcia $G_1(s)$:

$$G_1(s) = \frac{X_1}{F_1} = \frac{c_2 s^2 + c_1 s + c_0}{a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$
(1.2.4)

kde:

$$a_0 = k_1 k_2$$
 $c_0 = 2k_2$
 $a_1 = b_1 k_2 + b_2 k_1$ $c_1 = 2b_2$
 $a_2 = k_2 m_2 + b_1 b_2 + k_2 m_1 + k_1 m_2$ $c_2 = m_2$
 $a_3 = b_1 m_2 + b_2 m_1 + b_2 m_2$
 $a_4 = m_1 m_2$

• Prenosová funkcia $G_2(s)$:

$$G_2(s) = \frac{X_2}{F_1} = \frac{c_2 s^2 + c_1 s + c_0}{a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$
(1.2.5)

kde:

$$a_0 = k_1 k_1$$
 $c_0 = 2k_2 + k_1$
 $a_1 = b_1 k_2 + b_2 k_1$ $c_1 = 2b_2 + b_1$
 $a_2 = k_1 m_2 + k_2 m_1 + k_2 m_2 + b_1 b_2$ $c_2 = m_1$
 $a_3 = m_2 + b_2 m_1 + b_2 m_2$
 $a_4 = m_1 m_2$

• Prenosová funkcia $G_3(s)$:

$$G_3(s) = \frac{X_2 - X_1}{F_1} = -\left(\frac{c_{21}s^2 + c_{11}s + c_{01}}{a_{41}s^4 + a_{31}s^3 + a_{21}s^2 + a_{11}s + a_{01}} - \frac{c_{22}s^2 + c_{12}s + c_{02}}{a_{42}s^4 + a_{32}s^3 + a_{22}s^2 + a_{12}s + a_{02}}\right)$$
(1.2.6)

kde:

$$\begin{array}{lll} a_{01} = k_1 k_2 \\ a_{11} = b_1 k_2 + b_2 k_1 & c_{01} = 2 k_2 \\ a_{21} = k_2 m_2 + b_1 b_2 + k_2 m_1 + k_1 m_2 & c_{11} = 2 b_2 \\ a_{31} = b_1 m_2 + b_2 m_1 + b_2 m_2 & c_{21} = m_2 \\ a_{41} = m_1 m_2 & c_{02} = 2 k_2 + k_1 \\ a_{02} = k_1 k_2 & c_{12} = 2 b_2 + b_1 \\ a_{12} = b_1 k_2 + b_2 k_1 & c_{22} = m_1 \\ a_{22} = k_2 m_2 + b_1 b_2 + k_2 m_1 + k_1 m_2 \\ a_{32} = b_1 m_2 + b_2 m_1 + b_2 m_2 \\ a_{42} = m_1 m_2 & \end{array}$$

Pre získanie prenosových funkcií v numerickom tvare, dosadíme do prenosových funkcií (1.2.4, 1.2.5, 1.2.6) konkrétne hodnoty jednotlivých prvkov systému, zapísaných v tab. 1.

Tab.1 Hodnoty prvkov použitých pre výpočet prenosových funkcií v numerickom tvare:

<i>m</i> ₁ [kg]	<i>m</i> ₂ [kg]	k_1 [N/m]	k_2 [N/m]	<i>b</i> ₁ [Ns/m]	b ₂ [Ns/m]	<i>F</i> ₁ [N]	F_2 [N]
0.5	0.1	400	80	8	1,6	10	0

Po dosadení konkrétnych hodnôt z tab. 1 získavame prenosové funkcie :

• G₁(s) v numerickom tvare:

$$G_1(s) = \frac{s^2 + 16s + 800}{0.5s^4 + 17.6s^3 + 1008s^2 + 12800s + 320000}$$
(1.2.7)

• $G_1(s)$ upravenú pre $a_0 = 1$:

$$G_1(s) = \frac{3,125.10^{-6}s^2 + 5.10^{-5}s + 0,0025}{1,563.10^{-6}s^4 + 5,5.10^{-5}s^3 + 0,00315s^2 + 0,04s + 1}$$
(1.2.8)

• G₂(s) v numerickom tvare:

$$G_2(s) = \frac{16s + 800}{0.5s^4 + 17.6s^3 + 1008s^2 + 12800s + 320000}$$
(1.2.9)

• $G_2(s)$ upravenú pre $a_0 = 1$:

$$G_2(s) = \frac{5.10^{-5}s + 0,0025}{1,563.10^{-6}s^4 + 5,5.10^{-5}s^3 + 0,00315s^2 + 0,04s + 1}$$
(1.2.10)

• G₃(s) v numerickom tvare:

$$G_3(s) = \frac{-s^2}{0.5s^4 + 17.6s^3 + 1008s^2 + 12800s + 320000}$$
(1.2.11)

• $G_3(s)$ upravenú pre $a_0 = 1$:

$$G_3(s) = \frac{-3,125.10^{-6}s^2}{1,563.10^{-6}s^4 + 5,5.10^{-5}s^3 + 0,00315s^2 + 0,04s + 1}$$
(1.2.12)

1.3 Prechodové a logaritmické-frekvenčné charakteristiky

V tejto kapitole sa budeme podrobnejšie zaoberať nameranými prechodovými (PrCh) a logaritmickými-frekvenčnými (LFCh) charakteristikami, pomocou ktorých môžeme stručne popísať nami vyšetrovaný dynamický systém. Správnosť opisu systému si môžeme čiastočne overiť aj pomocou získaných koreňov príslušných prenosových funkcií.

1.3.1 Prechodová a logaritmická-frekvenčná charakteristika pre $G_1(\mathbf{s})$

Prenosovej funkcii $G_1(s)$ (1.2.8), pri výpočte ktorej boli použité parametre podľa tab. 1, zodpovedá prechodová a logaritmická-frekvenčná charakteristika na obr. 1.3.1.

Obr. 1.3.1 Prechodová a logaritmická–frekvenčná charakteristika pre $G_1(s)$ (Najdenie_TF.m)

Na základe nameranej prechodovej charakteristiky (obr. 1.3.1), môžeme o takto vyšetrovanom dynamickom systéme vyhlásiť, že:

- má maximálny prekmit $h_{max} = 3,35.10^{-3}$,
- dobu maximálneho prekmitu $t_{max} = 0.124$ sekundy,
- dobu ustálenia 1,2 sekundy,
- je stabilný, kmitavý, tlmený.

Nuly a póly prenosovej funkcie $G_1(s)$ (1.2.8) získame prostredníctvom výpočtu koreňov čitateľa a menovateľa prenosu. Hodnoty núl a pólov daného prenosu sú zapísané v tab. 2.

Tab. 2 Nuly a póly výslednej prenosovej funkcie $G_1(s)$ (Najdenie_TF.m)

nuly	$n_{1,2}$	0 ± 5i	póly	S _{1,2}	-0 ± 12,6217i
				S _{3,4}	$-0 \pm 3,9614i$

Na základe núl a pólov (tab. 2), si môžeme o vyšetrovanom systéme overiť, že je:

- je **stabilný** (póly prenosu majú záporné reálne časti)
- je kmitavý, tlmený (menovateľ prenosu obsahuje aspoň 1 komplexný koreň)

1.3.2 Prechodová a logaritmická-frekvenčná charakteristika pre $G_2(\mathbf{s})$

Prenosovej funkcii $G_2(s)$ (1.2.10), pri výpočte ktorej boli použité parametre podľa tab. 1, zodpovedá prechodová a logaritmická-frekvenčná charakteristika na obr. 1.3.2.

Obr. 1.3.2 Prechodová a logaritmická–frekvenčná charakteristika pre $G_2(s)$ (Najdenie_TF.m)

Na základe nameranej prechodovej charakteristiky (obr. 1.3.2), môžeme o takto vyšetrovanom dynamickom systéme vyhlásiť, že:

- má maximálny prekmit $h_{max} = 4,48.10^{-3}$,
- dobu maximálneho prekmitu $t_{max} = 0.155$ sekundy,
- dobu ustálenia 1,3 sekundy,
- je stabilný, kmitavý, tlmený.

Nuly a póly prenosovej funkcie $G_2(s)$ (1.2.10) sú zapísané v tab. 3.

Tab. 3 Nuly a póly výslednej prenosovej funkcie pre $G_2(s)$ (Najdenie_TF_MSP.m)

nuly	n_1	0	póly	S _{1,2}	-0 ± 12,6217i
				S _{3,4}	$-0 \pm 3,9614i$

Na základe núl a pólov (tab. 3), si môžeme o vyšetrovanom systéme overiť, že je:

- je **stabilný** (póly prenosu majú záporné reálne časti)
- je **kmitavý**, **tlmený** (menovateľ prenosu obsahuje aspoň 1 komplexný koreň)

1.3.3 Prechodová a logaritmická-frekvenčná charakteristika pre $G_3(s)$

Prenosovej funkcii G_3 (s) (1.2.12), pri výpočte ktorej boli použité parametre podľa tab. 1, zodpovedá prechodová a logaritmická-frekvenčná charakteristika na obr. 1.3.3.

Obr. 1.3.3 Prechodová a logaritmická-frekvenčná charakteristika pre $G_3(s)$ (Najdenie_TF.m)

Na základe nameranej prechodovej charakteristiky (obr. 1.3.3), môžeme o takto vyšetrovanom dynamickom systéme vyhlásiť, že:

- má maximálny prekmit $h_{max} = 1,3.10^{-3}$,
- dobu maximálneho prekmitu $t_{max} = 0.161$ sekundy,
- dobu ustálenia 1,5 sekundy,
- je stabilný, kmitavý, tlmený.

Nuly a póly prenosovej funkcie $G_3(s)$ (1.2.12) sú zapísané v tab. 4.

Tab. 4 Nuly a póly výslednej prenosovej funkcie pre $G_3(s)$ (Najdenie_TF_MSP.m)

nuly	$n_{1,2}$	0	póly	S _{1,2}	-0 ± 12,6217i
				S _{3,4}	$-0 \pm 3,9614i$

Na základe núl a pólov (tab. 4) si môžeme o vyšetrovanom systéme overiť že je:

- je **stabilný** (póly prenosu majú záporné reálne časti)
- je kmitavý, tlmený (menovateľ prenosu obsahuje aspoň 1 komplexný koreň)

1.4 Vyšetrenie závislosti zmeny vlastností systému od zmien parametrov $m_1, m_2, k_1, k_2, b_1, b_2$.

Pri analýze dynamických vlastností vyšetrovaného mechanického systému (obr. 0.1) budeme pokračovať už iba s prenosovou funkciou $G_3(s)$ v symbolickom tvare (1.2.6), pri výpočte ktorej boli použité parametre podľa tab. 1. V nasledujúcich simulačných experimentoch budeme **meniť parametre jednotlivých prvkov systému** $(m_1, m_2, k_1, k_2, b_1, b_2)$ a **vyšetrovať ich vplyv** pri posune malého vozíka po plošine veľkého, za súčasného pôsobení sily F_1 .

Pre zmenené parametre jednotlivých prvkov systému vypočítame nové prenosové funkcie, pričom priebehy ich PrCh a LFCh zobrazíme v spoločných grafoch spolu s PrCh a LFCh pôvodných prenosových funkcií – vždy jeden graf pre jeden prvok systému. Z výsledných priebehov analyzujeme vlastnosti vyšetrovaného systému.

1.4.1 Vyšetrenie závislosti zmeny vlastností systému od zmeny m₁

Na základe výslednej závislosti, realizovanej pre 3 rôzne hodnoty parametra m_1 (obr. 1.4.1), môžeme konštatovať že:

- Pri nižšej hodnote hmotnosti telesa m₁ je, v PrCh, menší maximálny prekmit v kratšom čase, kmitanie prebieha na nižších hodnotách zosilnenia, perióda kmitov sa skracuje, doba ustálenia nastáva skôr. V LFCh sa veľkosť frekvenčnej odozvy predlžuje s rastúcou kruhovou frekvenciou, fázový posun začína klesať pri vyššej hodnote kruhovej frekvencii a má plynulejší priebeh.
- Pri vyššej hodnote hmotnosti telesa m₁ je, v PrCh, menší maximálny prekmit za dlhší čas, kmitanie prebieha na nižších hodnotách zosilnenia, perióda kmitov sa predlžuje, doba ustálenia nastáva neskôr. V LFCh sa veľkosť frekvenčnej odozvy posúva na nižšie hodnoty amplitúdy, fázový posun začína klesať pri nižšej hodnote kruhovej frekvencii.

Obr. 1.4.1 Vyšetrenie závislosti zmeny vlastností systému pri zmene parametra m_1 , ostané parametre podľa tab. 1 (Vysetrenie_vplyvu_zmeny_parametrov_G3.m)

1.4.2 Vyšetrenie závislosti zmeny vlastností systému od zmeny m_2

Na základe výslednej závislosti, realizovanej pre 3 rôzne hodnoty parametra m_2 (obr. 1.4.2), môžeme konštatovať že:

- Pri nižšej hodnote hmotnosti telesa m₁ je, v PrCh, menší maximálny prekmit v kratšom čase, kmitanie prebieha na nižších hodnotách zosilnenia, perióda kmitov sa skracuje, doba ustálenia nastáva skôr. V LFCh sa veľkosť frekvenčnej odozvy posúva na nižšie hodnoty amplitúdy len pri nízkych hodnotách kruhovej frekvencii do 44, 8 rad/s. Fázový posun začína klesať pri vyššeej hodnote kruhovej frekvencii a má plynulejší priebeh.
- Pri vyššej hodnote hmotnosti telesa m₁ je, v PrCh, menší maximálny prekmit za dlhší čas, kmitanie prebieha na nižších hodnotách zosilnenia, perióda kmitov sa predlžuje, doba ustálenia nastáva neskôr. V LFCh sa veľkosť frekvenčnej odozvy posúva na nižšie hodnoty amplitúdy, fázový posun začína klesať pri vyššej hodnote kruhovej frekvencii.

Obr. 1.4.2 Vyšetrenie závislosti zmeny vlastností systému pri zmene parametra m_2 , ostané parametre podľa tab. 1 (Vysetrenie_vplyvu_zmeny_parametrov_G3.m)

1.4.3 Vyšetrenie závislosti zmeny vlastností systému od zmeny k_1

Na základe výslednej závislosti, realizovanej pre 3 rôzne hodnoty parametra k_1 (obr. 1.4.3), môžeme konštatovať že:

• Pri **nižšej hodnote tuhosti pružiny** k_1 je, v PrCh, menší maximálny prekmit v dlhšom časovom horizonte, kmitanie prebieha na nižších hodnotách zosilnenia, perióda kmitov sa predlžuje, doba ustálenia nastáva neskôr. V LFCh sa veľkosť frekvenčnej odozvy posúva

na vyššie hodnoty amplitúdy len pri nízkych hodnotách kruhovej frekvencii do hodnoty približne 28,8 rad/s. Fázový posun začína klesať pri nižšej hodnote kruhovej frekvencii.

• Pri vyššej hodnote tuhosti pružiny k₁ je, v PrCh, menší maximálny prekmit v kratšom čase, kmitanie prebieha na nižších hodnotách zosilnenia, perióda kmitov sa skracuje, doba ustálenia nastáva skôr. V LFCh sa veľkosť frekvenčnej odozvy posúva na nižšie hodnoty amplitúdy, fázový posun začína klesať pri vyššej hodnote kruhovej frekvencii.

Obr. 1.4.3 Vyšetrenie závislosti zmeny vlastností systému pri zmene parametra k_1 , ostané parametre podľa tab. 1 (Vysetrenie_vplyvu_zmeny_parametrov_G3.m)

1.4.4 Vyšetrenie závislosti zmeny vlastností systému od zmeny k_2

Na základe výslednej závislosti, realizovanej pre 3 rôzne hodnoty parametra k_2 (obr. 1.4.4), môžeme konštatovať že:

- Pri nižšej hodnote tuhosti pružiny k₂ je, v PrCh, menší maximálny prekmit v dlhšom časovom horizonte, kmitanie prebieha na nižších hodnotách zosilnenia, perióda kmitov sa predlžuje, doba ustálenia nastáva neskôr. V LFCh sa veľkosť frekvenčnej odozvy posúva na vyššie hodnoty amplitúdy, fázový posun má výrazne nižšiu hodnotu.
- Pri vyššej hodnote tuhosti pružiny k₂ je, v PrCh, menší maximálny prekmit v kratšom čase, kmitanie prebieha na nižších hodnotách zosilnenia, perióda kmitov sa skracuje, doba ustálenia nastáva skôr. V LFCh sa veľkosť frekvenčnej odozvy posúva na nižšie hodnoty amplitúdy, fázový posun začína klesať pri vyššej hodnote kruhovej frekvencii.

Obr. 1.4.4 Vyšetrenie závislosti zmeny vlastností systému pri zmene parametra k_2 , ostané parametre podľa tab. 1 (Vysetrenie_vplyvu_zmeny_parametrov_G3.m)

1.4.5 Vyšetrenie závislosti zmeny vlastností systému od zmeny b_1

Na základe výslednej závislosti, realizovanej pre 3 rôzne hodnoty parametra b_1 (obr. 1.4.5), môžeme konštatovať že:

• Pri nižšej hodnote koeficientu tlmenia tlmiča b₁ je, v PrCh, menší maximálny prekmit, kmitanie prebieha na vyšších hodnotách zosilnenia, perióda kmitov ostáva zachovaná. V LFCh sa veľkosť frekvenčnej odozvy posúva na vyššie hodnoty amplitúdy, pri hodnote kruhovej frekvencie od približne 13 rad/s do približne 83 rad/s. Fázový posun sa do hodnoty kruhovej frekvencie približne 24 rad/s zvyšuje a od tejto hodnoty sa ďalej znižuje.

Obrázok 1.4.5 Vyšetrenie závislosti zmeny vlastností systému pri zmene parametra b_1 , ostané parametre podľa tab. 1 (Vysetrenie_vplyvu_zmeny_parametrov_G3.m)

• Pri vyššej hodnote koeficientu tlmenia tlmiča b₁ je, v PrCh, väčší maximálny prekmit, kmitanie prebieha na vyšších hodnotách zosilnenia, perióda kmitov ostáva zachovaná. V LFCh sa veľkosť frekvenčnej odozvy posúva na nižšie hodnoty amplitúdy, do hodnoty kruhovej frekvencie približne 83 rad/s. Fázový posun zvyšuje.

1.4.6 Vyšetrenie závislosti zmeny vlastností systému od zmeny b_2

Na základe výslednej závislosti, realizovanej pre 3 rôzne hodnoty parametra b_2 (obr. 1.4.6), môžeme konštatovať že:

- Pri nižšej hodnote koeficientu tlmenia tlmiča b₂ je, v PrCh, väčší maximálny prekmit, kmitanie prebieha na vyšších hodnotách zosilnenia, perióda kmitov ostáva zachovaná. V LFCh sa veľkosť frekvenčnej odozvy posúva na vyššie hodnoty amplitúdy, pri hodnote kruhovej frekvencie od približne 13 rad/s do približne 83 rad/s. Fázový posun sa do hodnoty kruhovej frekvencie približne 24 rad/s zvyšuje a od tejto hodnoty sa ďalej znižuje.
- Pri vyššej hodnote koeficientu tlmenia tlmiča b₂ je, v PrCh, menší maximálny prekmit, kmitanie prebieha na nižších hodnotách zosilnenia, perióda kmitov ostáva zachovaná. V LFCh sa veľkosť frekvenčnej odozvy posúva na nižšie hodnoty amplitúdy. Fázový posun sa do hodnoty kruhovej frekvencie približne 24 rad/s znižuje a od tejto hodnoty sa ďalej zväčšuje.

Obrázok 1.4.6 Vyšetrenie závislosti zmeny vlastností systému pri zmene parametra b_2 , ostané parametre podľa tab. 1 (Vysetrenie_vplyvu_zmeny_parametrov_G3.m)

1.5 Modelovanie systému v stavovom priestore

Pre potrebu overenia správnosti doteraz využívaných postupov a metód, vedúcich k získaniu TF priebehov vyšetrovaného dynamického systému, budeme ďalej tento systém vyšetrovať **modelovaním v stavovom priestore**, pričom opätovne budeme vychádzať z už odvodených základných pohybových rovníc (1.1.1. a 1.1.2.).

1.5.1 Odvodenie stavového modelu

Z rovníc (1.1.1. a 1.1.2.) najskôr vyjadríme najvyššie derivácie a pravé strany rozpíšeme po jednotlivých členoch:

$$sm_1 sX_1 = F_1 - X_1 k_1 - X_1 k_2 - X_1 sb_1 - X_1 sb_2 + X_2 k_2 + X_2 sb_2$$
 (1.5.1)

$$m_2 s X_2 = F_2 - X_2 k_2 - X_2 s b_2 + X_1 k_2 + X_1 s b_2 \tag{1.5.2}$$

Zavedieme substitúcie: $sX_1 = X_3$, $sX_2 = X_4$ pričom $sX_1 = V_1$, $sX_2 = V_2$, takže stavový vektor bude: $\mathbf{q} = [X_1, X_2, X_3, X_4]^T$

Rovnice po zavedení substitúcií budú vyzerať nasledovne:

$$m_1 s X_3 = F_1 - (k_1 + k_2) X_1 - (b_1 + b_2) X_3 + X_2 k_2 + X_4 b_2$$
 (1.5.3)

$$m_2 s X_4 = F_2 - X_2 k_2 - X_4 b_2 + X_1 k_2 + X_3 b_2 (1.5.4)$$

Rovnice vydelíme hmotnosťami a výsledná sústava rovníc bude:

$$sX_1 = X_3$$

$$sX_1 = X_3$$

$$sX_3 = \frac{1}{m_1}F_1 - \frac{k_1 + k_2}{m_1}X_1 - \frac{b_1 + b_2}{m_1}X_3 + \frac{k_2}{m_1}X_2 + \frac{b_2}{m_1}X_4$$

$$sX_4 = \frac{1}{m_2}F_2 + \frac{k_2}{m_2}X_1 - \frac{k_2}{m_2}X_2 + \frac{b_2}{m_2}X_3 - \frac{b_2}{m_2}X_4$$

$$(1.5.5)$$

Čo po prepise do maticového tvaru dáva rovnicu dynamiky v tvare $s\mathbf{q}(s) = \mathbf{A}\mathbf{q}(s) + \mathbf{b}\mathbf{u}(s)$, kde \mathbf{A} predstavuje maticu dynamiky a \mathbf{b} vektor vstupov:

$$\begin{bmatrix} sX_1 \\ sX_2 \\ sX_3 \\ sX_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k_1 + k_2}{m_1} & \frac{k_2}{m_1} & -\frac{b_1 + b_2}{m_1} & \frac{b_2}{m_1} \\ \frac{k_2}{m_2} & -\frac{k_2}{m_2} & \frac{b_2}{m_2} & -\frac{b_2}{m_2} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{m_1} \\ 0 \end{bmatrix} F_1$$
 (1.5.6)

Nakoľko potrebujeme zistiť dráhy posunu telies $(X_1 \text{ a } X_2)$, výstupný vektor bude v tvare $\mathbf{y}(s) = \mathbf{Cq}(s) + \mathbf{Du}(s)$, kde \mathbf{C} predstavuje maticu výstupov a \mathbf{D} maticu priameho prenosu zo vstupu na výstup:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$$
(1.5.7)

1.5.2 Nájdenie prenosovej funkcie pomocou stavového modelu

Stavové rovnice zapíšeme do MATLABu v tvare matíc a vektorov, pričom následne do nich dosadíme hodnoty z tab. 1. Pre nájdenie prenosovej funkcie $G_1(s)$ bude platiť:

$$[\mathbf{A}] = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{(\mathbf{k}_1 + \mathbf{k}_2)}{\mathbf{m}_1} & \frac{\mathbf{k}_2}{\mathbf{m}_1} & -\frac{(\mathbf{b}_1 + \mathbf{b}_2)}{\mathbf{m}_1} & \frac{\mathbf{b}_2}{\mathbf{m}_1} \\ \frac{\mathbf{k}_2}{\mathbf{m}_2} & -\frac{\mathbf{k}_2}{\mathbf{m}_2} & \frac{\mathbf{b}_2}{\mathbf{m}_2} & -\frac{\mathbf{b}_2}{\mathbf{m}_2} \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\mathbf{m}_1} \\ 0 \end{bmatrix}$$

$$\mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} 0 \end{bmatrix}$$

Pre nájdenie prenosovej funkcie $G_2(s)$ bude platiť:

$$[\mathbf{A}] = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{(\mathbf{k}_1 + \mathbf{k}_2)}{\mathbf{m}_1} & \frac{\mathbf{k}_2}{\mathbf{m}_1} & -\frac{(\mathbf{b}_1 + \mathbf{b}_2)}{\mathbf{m}_1} & \frac{\mathbf{b}_2}{\mathbf{m}_1} \\ \frac{\mathbf{k}_2}{\mathbf{m}_2} & -\frac{\mathbf{k}_2}{\mathbf{m}_2} & \frac{\mathbf{b}_2}{\mathbf{m}_2} & -\frac{\mathbf{b}_2}{\mathbf{m}_2} \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\mathbf{m}_1} \\ 0 \end{bmatrix}$$

$$\mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} 0 \end{bmatrix}$$

Na základe stavového modelu v tvare matíc a vektorov (1.5.8), vytvorených pre nájdenie prenosovej funkcie $G_1(s)$ dostávame, riešením v MATLABe, pri použití parametrov podľa tab. 1, výslednú prenosovú funkciu v numerickom tvare:

$$G_1(s) = \frac{3,125.10^{-6}s^2 + 5.10^{-5}s + 0,0025}{1,563.10^{-6}s^4 + 5,5.10^{-5}s^3 + 0,00315s^2 + 0,04s + 1}$$
(1.5.10)

Prenosovej funkcii stavového modelu (1.5.10) zodpovedá prechodová a logaritmickáfrekvenčná charakteristika (obr.1.5.1):

Obr. 1.5.1 Prechodová a logaritmická-frekvenčná charakteristika pre $G_1(s)$ (Stavovy_model_G1_M.m)

Na základe stavového modelu v tvare matíc a vektorov (1.5.9), vytvorených pre nájdenie $G_2(s)$, dostávame, riešením v MATLABe, pri použití parametrov podľa tab. 1, **výslednú prenosovú funkciu v numerickom tvare**:

$$G_2(s) = \frac{5.10^{-5}s + 0,0025}{1,563.10^{-6}s^4 + 5,5.10^{-5}s^3 + 0,00315s^2 + 0,04s + 1}$$
(1.5.11)

Prenosovej funkcii stavového modelu (1.5.11) zodpovedá prechodová a logaritmickáfrekvenčná charakteristika (obr.1.5.2).

Obr. 1.5.2 Prechodová a logaritmická-frekvenčná charakteristika pre $G_2(s)$ (Stavovy_model_G2_M.m)

1.5.3 Zhodnotenie výsledkov získaných zo stavového modelu systému

Pri porovnaní nájdených prenosových funkcií modelovaním v stavovom priestore (1.5.10 a 1.5.11), s prenosovými funkciami získanými v kapitolách 1.2 a 1.3 (1.2.8 a 1.2.10), je zrejmé, že prenosové funkcie a ich prechodové a logaritmické-frekvenčné charakteristiky sú **totožné**. Na základe týchto skutočností môžeme predpokladať, že sme pri využívaní rôznych metód riešenia postupovali správne.

1.6 Modelovanie systému v Simulinku

Analýzu vyšetrovaného dynamického systému môžeme vykonať aj pomocou simulačného modelu v simulačnom prostredí MATLAB Simulink. Analýza systému, touto metódou, nám zároveň poslúži aj na overenie správnosti predchádzajúcich riešení.

1.6.1 Simulačný model v Simulinku

Simulačný model vytvárame prostredníctvom základných pohybových rovníc (1.1.1 a 1.1.2) odvodených v kap. 1.1.

Výsledný simulačný model obvodu (obr. 1.6.1) nám umožňuje, pomocou bloku Scope, sledovať priebehy posunutí dráh X_1 a X_2 priamo v prostredí Simulinku. Prenosom nameraných výsledkov do pracovného priestoru MATLABu, sme schopní zistiť prenosové funkcie modelu a k nim zobraziť aj odpovedajúce prechodové a logaritmické-frekvenčné charakteristiky (obr. 1.6.2) nami vyšetrovaného systému. Porovnaním výsledkov s výsledkami z predchádzajúcich metód riešenia si overíme správnosť simulačného modelu.

V simulačnom modeli boli použité parametre jednotlivých blokov podľa tab. 1.

Obr. 1.6.1 Simulačný model vyšetrovaného dynamického systému (Simulink_model_S.slx)

1.6.2 Prechodová a logaritmická-frekvenčná charakteristika pre $G_1(s)$

Z dostupných výsledkov jednotlivých posunutí dráh X_1 a X_2 , získame, pomocou výpočtov uskutočnených v pracovnom priestore MATLABu, prechodovú a logaritmickú-frekvenčnú charakteristiku pre $G_1(s)$ (Obr. 1.6.2)

Obr. 1.6.2 Prechodová a logaritmická-frekvenčná charakteristika pre $G_1(s)$ (Simulink_model_M.m)

1.6.3 Prechodová a logaritmická-frekvenčná charakteristika pre $G_2(s)$

Prenosovej funkcii $G_2(s)$, získanej prostredníctvom výpočtov uskutočnených v pracovnom priestore MATLABu, zodpovedá nasledujúca prenosová a logaritmická-frekvenčná charakteristika (Obr.1.6.3).

Obr. 1.6.3 Prechodová a logaritmická-frekvenčná charakteristika pre $G_2(s)$ (Simulink_model_M.m)

1.6.4 Zhodnotenie výsledkov získaných zo stavového modelu obvodu

Na základe zobrazených PrCh a LFCh môžeme konštatovať, že výsledky dosiahnuté modelovaním systému v Simulinku sú totožné s výsledkami získanými v kapitolách 1.2 a 1.3 (1.2.8 a 1.2.10). Tým pádom môžeme predpokladať, že sme pri využívaní rôznych metód riešenia postupovali správne.

1.7 Modelovanie systému v simulačnom prostredí Simscape

Analýzu vyšetrovaného dynamického systému môžeme vykonať aj pomocou simulačného modelu v simulačnom prostredí Simscape. Analýza systému, touto metódou, nám zároveň poslúži aj na overenie správnosti predchádzajúcich riešení.

Najskôr zostavíme mechanický systém v ktorom zadáme hodnoty jednotlivých prvkov podľa tab. 1. Pri zostavovaní ekvivalentného elektrického obvodu použijeme tzv. **m-C analógiu**, pri ktorej [1]:

- zdroje sily nahradíme prúdovými zdrojmi, $i \approx f$
- trecie elementy nahradíme odpormi $b \approx \frac{1}{R}$
- pružiny nahradíme cievkami $\frac{1}{k} \approx L$
- hmotnosti nahradíme kondenzátormi $C \approx m$ (ktoré musia byť uzemnené!).

Mechanický systém (vyznačený zelenou farbou) a k nemu zostavený ekvivalentný elektrický obvod (vyznačený modrou farbou) sú znázornené na obr. 1.7.1.

Obr. 1.7.1 Mechanický systém a k nemu ekvivalentný elektrický obvod v prostredí Simscape (Simscape_model_S.slx)

Po spustení simulácie získavame grafické zobrazenie porovnania priebehov posunutí dráh X_1 a X_2 (obr 1.7.2) pre mechanický systém a jemu ekvivalentný elektrický obvod.

Obr. 1.7.2 Priebehy posunutí dráh X_1 a X_2 pre elektrický obvod a mechanický systém (Simscape_model_S.slx)

Na základe obr. 1.7.2, môžeme konštatovať, že nami vyšetrovaný namodelovaný mechanický systém a k nemu odvodený ekvivalentný elektrický obvod, generujú rovnaké výsledky a teda sú skutočne ekvivalentnými systémami.

1.7.1 Nájdenie prenosovej funkcie pomocou modelu v Simscape

Pomocou získaných hodnôt posunutí dráh X_1 a X_2 môžeme, prostredníctvom pracovného priestoru v MATLABe, zobraziť PrCh a LFCh mechanického systému pre prenosové funkcie pre $G_1(s)$ (1.2.1) a $G_2(s)$ (1.2.2). Ich priebehy sú zobrazené na obr. 1.7.3 a obr. 1.7.4.

Obr. 1.7.3 Prechodová a logaritmická–frekvenčná charakteristika pre $G_1(s)$ (Simscape_model_M.m)

Obr. 1.7.4 Prechodová a logaritmická–frekvenčná charakteristika pre $G_2(s)$ (Simscape_model_M.m)

Na základe zobrazených PrCh a LFCh (obr. 1.7.3 a obr. 1.7.4), môžeme konštatovať, že výsledky získané touto metódou sú zhodné s výsledkami získanými zo všetkých predošlých metód, čo potvrdzuje správnosť všetkých riešení.

2 Záver

Hlavnou podstatou tohto referátu bola **analýza mechanického systému** s dvoma stupňami voľnosti – t.j. vozík na vozíku – pozostávajúceho z dvoch tuhých telies (vozíkov) s hmotnosťami m_1 a m_2 , dvoch pružín s koeficientmi tuhosti k_1 a k_2 a dvoch tlmičov s koeficientmi tlmenia b_1 a b_2 .

Analýzu vyšetrovaného mechanického systému sme vykonali **na základe prenosových funkcií systému** a k nim prislúchajúcich **prechodových a logaritmických-frekvenčných charakteristík**. Zo zobrazených charakteristík sme boli schopní popísať daný systém a určiť jeho základné vlastnosti. Závery vyplývajúce z popisov charakteristík sme si zároveň overili prostredníctvom **koreňov prenosových funkcií** – núl a pólov.

Prenosové funkcie vyšetrovaného systému sme získali viacerými metódami, ktoré nám zároveň slúžili na kontrolu ich správnosti. Rovnaké výsledky prenosových funkcií sme získali zo všetkých riešených metód a teda – **metódy uvoľnenia** (silových diagramov) a **pohybových rovníc, modelovaním systému v stavovom priestore**, modelovaním systému v **Simulinku**, modelovaním systému v **Simscape**,

Zo získaných výsledkov sme jednoznačne zistili, že nami vyšetrovaný systém je **stabilný**, **kmitavý a tlmený**.

Analýzu mechanického systému sme vykonávali aj pozorovaním zmien v prechodovej a logaritmickej-frekvenčnej charakteristike, vzhľadom na **zmenu hodnôt jednotlivých prvkov**. So zmenou parametrov jednotlivých prvkov $m_1, m_2, k_1, k_2, b_1, b_2$ sa v prechodovej charakteristike menili hodnoty a periódy kmitov, a v logaritmickej-frekvenčnej charakteristike sa menili veľkosti frekvenčných odoziev spolu s fázovými posunmi.

Výsledky získané prostredníctvom analýzy daného mechanického systému môžu neskôr poslúžiť pri **návrhu a dimenzovaní,** prípadne **vyšetrovaní,** rovnakého alebo podobného, mechanického systému.

Zoznam použitej literatúry

[1].FEDÁK, V.: *Modelovanie elektromechanických sústav*. Technická univerzita v Košiciach. 2015. ISBN: 978-80-553-2111-0.

3 Prílohy

3.1 Zoznam príloh

- **Príloha A: Najdenie_TF.m** (Program pre výpočet a zobrazenie TF na základe metódy uvoľnenia a pohybových rovníc)
- **Príloha B:** Simscape_model_M.m (Program pre výpočet a zobrazenie TF prostredníctvom modelovania systému v prostredí Simscape)
- **Príloha C: Simscape_model_S.slx** (Simulačná schéma systému, v prostredí Simscape, pre zobrazenie posunutí dráh telies)
- Príloha D: Simulink_model.slx (Bloková schéma mechanického systému)
- **Príloha E: Simulink_model_M.m** (Program pre výpočet a zobrazenie TF prostredníctvom blokovej schémy v Simulinku)
- **Príloha F: Stavovy_model_G1_M.m** (Program pre výpočet a zobrazenie TF pre $G_1 = \frac{X_1}{F_1}$ prostredníctvom modelovania systému v stavovom priestore)
- **Príloha G: Stavovy_model_G2_M.m** (Program pre výpočet a zobrazenie TF pre $G_2 = \frac{X_2}{F_1}$ prostredníctvom modelovania systému v stavovom priestore)
- **Príloha G: Vysetrenie_vplyvu_zmeny_parametrov_G3.m** (Program pre vyšetrenie zmien odoziev systému pri zmenách parametrov systému)

Príloha A: Najdenie_TF.m

```
Program pre výpočet prenosových funkcií
응
              pomocou sysbolického MATLABu
응
                Znázornenie PrCh a LFCh
    zadanie: 2DOF mechanický systém - vozik na voziku
용 |
왕
  Autor: Ivan Zeman
                                             02/11/2022
          .____
clear, clc, clf, format compact
syms s k1 k2 b1 b2 m1 m2 F1 F2 %deklarácia symbolických premenných
% Zadanie vstupných hodnôt
disp('Analýza mech. systému - Vozík na vozíku')
m1x=0.5; m2x=0.1; k1x=400; k2x=80; b1x=8; b2x=1.6; F1x=10; F2x=0;
Tstep=1.5; wmin=0; wmax=1e3;
                                               % parametre pre Step a
Bode
color='r';
                                               % farba grafu b,r,y,m,c,
```

```
% Záspis systému a výpočet TF v symbolickom tvare
M = [k1+k2+s*b1+s*b2+m1*s*s]
                                     -k2-s*b2
                                                                 %matica mechanických
impedancií
   -k2-s*b2
                                k2+s*b2+m2*s*s];
                                                          %vektor budiacich síl
f=[F1; F2];
systému
                                                          %submatica pre X1
MX1=[f M(:,2)];
X1=det(MX1)/det(M);
                                                          %výpočet posunutia dráhy
X1 Cramerovým pravidlom
MX2=[M(:,1) f ];
                                                          %submatica pre X2
                                                          %výpočet posunutia dráhy
X2=det(MX2)/det(M);
X2 Cramerovým pravidlom
G1=X1/F1
                                                          %nájdenie TF G1(s) v
sysmbolickom tvare
                                                          %nájdenie TF G2(s) v
G2=X2/F1
sysmbolickom tvare
G3=(X2-X1)/F1
                                                          %nájdenie TF G3(s) v
sysmbolickom tvare
% Spracovanie údajov TF v symbolickom tvare pre prechod do num. MATLABu -
[cit,men]=numden(G1);
cit=subs(cit, {k1,k2,b1,b2,m1,m2,F1,F2}, {k1x,k2x,b1x,b2x,m1x,m2x,F1x,F2x});
% dosadenie hodnôt do polynómu čitateľa
\texttt{men=subs} \, (\texttt{men} \, , \{\texttt{k1} \, , \texttt{k2} \, , \texttt{b1} \, , \texttt{b2} \, , \texttt{m1} \, , \texttt{m2} \, , \texttt{F1} \, , \texttt{F2} \} \, , \{\texttt{k1x} \, , \texttt{k2x} \, , \texttt{b1x} \, , \texttt{b2x} \, , \texttt{m1x} \, , \texttt{m2x} \, , \texttt{F1x} \, , \texttt{F2x} \} \, ) \, ;
% dosadenie do polynómu menovateľa
b=sym2poly(cit);
                                                          % b - koeficienty polynómu
čitateľa b(s)
a=sym2poly(men);
                                                          % a - koeficienty polynómu
menovateľa a(s)
b=double(b);
                                                          % Prechod do numerickeho
MATLABu
a=double(a);
G1=tf(b,a)
                                                          % Výsledná TF v numerickom
MATLABe - G1
G1=tf(b/a(end),a/a(end))
                                                          % TF upravená pre a0=1
(normovanie TF)
% Spracovanie údajov TF v symbolickom tvare pre prechod do num. MATLABu -
[cit,men]=numden(G2);
cit=subs(cit, {k1,k2,b1,b2,m1,m2,F1,F2}, {k1x,k2x,b1x,b2x,m1x,m2x,F1x,F2x});
% dosadenie hodnôt do polynómu čitateľa
men=subs(men, \{k1, k2, b1, b2, m1, m2, F1, F2\}, \{k1x, k2x, b1x, b2x, m1x, m2x, F1x, F2x\});
% dosadenie do polynómu menovateľa
b=sym2poly(cit);
                                                          % b - koeficienty polynómu
čitateľa b(s)
a=sym2poly(men);
                                                          % a - koeficienty polynómu
menovateľa a(s)
b=double(b);
                                                          % Prechod do numerickeho
MATLABu
a=double(a);
G2=tf(b,a)
                                                          % Výsledná TF v numerickom
MATLABe - G2
```

```
% TF upravená pre a0=1
G2=tf(b/a(end),a/a(end))
(normovanie TF)
% Spracovanie údajov TF v symbolickom tvare pre prechod do num. MATLABu -
[cit,men]=numden(G3);
\mathtt{cit} = \mathtt{subs}(\mathtt{cit}, \{k1, k2, b1, b2, m1, m2, F1, F2\}, \{k1x, k2x, b1x, b2x, m1x, m2x, F1x, F2x\});
% dosadenie hodnôt do polynómu čitateľa
\texttt{men=subs} \, (\texttt{men}, \{\texttt{k1}, \texttt{k2}, \texttt{b1}, \texttt{b2}, \texttt{m1}, \texttt{m2}, \texttt{F1}, \texttt{F2}\}, \{\texttt{k1x}, \texttt{k2x}, \texttt{b1x}, \texttt{b2x}, \texttt{m1x}, \texttt{m2x}, \texttt{F1x}, \texttt{F2x}\}) \, ;
% dosadenie do polynómu menovateľa
b=sym2poly(cit);
                                               % b - koeficienty polynómu
čitateľa b(s)
a=sym2poly(men);
                                               % a - koeficienty polynómu
menovateľa a(s)
b=double(b);
                                               % Prechod do numerickeho MATLABu
a=double(a);
G3=tf(b,a)
                                               % Výsledná TF v numerickom MATLABe
G3=tf(b/a(end),a/a(end))
                                               % TF upravená pre a0=1 (normovanie
TF)
           % Vykreslovanie a popis priebehov PrCh a LFCh - G1
subplot(121); step(G1,Tstep,color), grid on,
     title('Prechodová charakteristika pre G 1', 'FontSize', 16)
     xlabel('\rightarrow T','FontSize',16)
                                                                         %popis osi
X
     ylabel('\rightarrow X_1/F_1', 'FontSize',16)
                                                                           %popis
osi Y
                       %úprava popisu osí - farba, veľkosť, bold
     ax = qca
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
subplot(122); bode(G1, {wmin, wmax}, color), grid on
     title('Frekvenčná charakteristika pre G 1', 'fontsize', 16)
     xlabel('\rightarrow
\omega', 'FontSize', 16), ylabel('\rightarrow\phi', 'FontSize', 16)
     set(findall(gcf,'type','line'),'linewidth',2) % inštrukcia pre zmenu
hrúbky čiary
     ax = gca
                       %úprava popisu osí - farba, veľkosť, bold
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
figure(2) % Vykreslovanie a popis priebehov PrCh a LFCh - G1
subplot(121); step(G2,Tstep,color), grid on,
    title('Prechodová charakteristika pre G 2', 'FontSize', 16)
     xlabel('\rightarrow T', 'FontSize',16)
                                                                         %popis osi
X
     ylabel('\rightarrow X 2/F 1', 'FontSize', 16)
                                                                           %popis
osi Y
                       %úprava popisu osí - farba, veľkosť, bold
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
subplot(122); bode(G2,{wmin,wmax},color), grid on
     title('Frekvenčná charakteristika pre G 2', 'fontsize', 16)
     xlabel('\rightarrow
\omega', 'FontSize',16), ylabel('\rightarrow\phi', 'FontSize',16)
```

```
set(findall(gcf,'type','line'),'linewidth',2) % inštrukcia pre zmenu
hrúbky čiary
     ax = gca
                    %úprava popisu osí - farba, veľkosť, bold
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
figure(3) % Vykreslovanie a popis priebehov PrCh a LFCh - G1
subplot(121); step(G3,Tstep,color), grid on,
    title('Prechodová charakteristika pre G_3', 'FontSize', 16)
     xlabel('\rightarrow T', 'FontSize',16)
                                                                %popis osi
X
    ylabel('\rightarrow (X 2-X 1)/F 1', 'FontSize', 16)
%popis osi Y
     ax = gca
                    %úprava popisu osí - farba, veľkosť, bold
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
subplot(122); bode(G3,{wmin,wmax},color), grid on
     title('Frekvenčná charakteristika pre G 3', 'fontsize', 16)
     xlabel('\rightarrow
\omega', 'FontSize',16), ylabel('\rightarrow\phi', 'FontSize',16)
     set(findall(gcf,'type','line'),'linewidth',2) % inštrukcia pre zmenu
hrúbky čiary
     ax = gca %úprava popisu osí - farba, veľkosť, bold
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
%výpočet núl a pólov pre TF - G1
disp('G1 - nuly a poly')
roots([0.0008 0 0.02])
                                           %výpočet koreňov čitateľa
roots([0.0004 0 0.07 0 1])
%výpočet núl a pólov pre TF - G2
disp('G2 - nuly a poly')
roots([0.02])
                                         %výpočet koreňov čitateľa
roots([0.0004 0 0.07 0 1])
%výpočet núl a pólov pre TF - G3
disp('G3 - nuly a poly')
roots([-0.0008 0 0])
                                                   %výpočet koreňov
čitateľa
roots([0.0004 0 0.07 0 1])
```

Príloha B: Simscape_model_M.m

```
clear, clc, clf, format compact
Tstep=1.5; wmin=0; wmax=1e3
                                                      % parametre pre Step a
Bode
Tsim=0.05;
                                                      % doba simulácie v
Simulinku (experimentálne určená)
color='r';
                                                      % farba grafu
b,r,y,m,c,
%Nastavenie vstupov/výstupov(io) v Simscape a prenos do workspace
model = 'Simscape model S';
open_system(model)
%Nájdenie TF pre G1=X1/F1
io(1) = linio('Simscape_model_S/F',1,'input');
io(2) = linio('Simscape_model_S/X1',1,'output');
linsys1 = linearize(model,io);
G1=tf(linsys1) %Nájdenie TF pre G1=X1/F1
%Nájdenie TF pre G2=X2/F1
io2(1) = linio('Simscape model S/F',1,'input');
io2(2) = linio('Simscape model S/X2',1,'output');
linsys2 = linearize(model,io2);
G2=tf(linsys2)
                    %Nájdenie TF pre G2=X2/F1
%Nájdenie TF pre G3=X1/F1
io(1) = linio('Simscape model S/F',1,'input');
io(2) = linio('Simscape model S/X1',1,'output');
linsys1 = linearize(model,io);
G1=tf(linsys1)
                    %Nájdenie TF pre G1=X1/F1
%Nájdenie TF pre G4=X2/F1
io2(1) = linio('Simscape model S/F',1,'input');
io2(2) = linio('Simscape model S/X2',1,'output');
linsys2 = linearize(model,io2);
                    %Nájdenie TF pre G2=X2/F1
G2=tf(linsys2)
%Zobrazenie PrCh - možnosť upraviť vzhľad (v nastaveniach) o LFch a pod.
(viac info HELP)
%linearSystemAnalyzer(linsys1,linsys2)
%Zobrazenie PrCh
figure(1) % Vykresľovanie a popis priebehov PrCh a LFCh - G1
subplot(121); step(G1,Tstep,color), grid on,
    title('Prechodová charakteristika pre G1', 'FontSize', 16)
     xlabel('\rightarrow T', 'FontSize',16)
                                                                 %popis osi
X
     ylabel('\rightarrow X2/F1','FontSize',16)
                                                                 %popis osi
Y
                     %úprava popisu osí - farba, veľkosť, bold
     ax = gca
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
subplot(122); bode(G1, {wmin, wmax}, color), grid on
     title('Frekvenčná charakteristika pre G1', 'fontsize', 16)
     xlabel('\rightarrow
\omega', 'FontSize', 16), ylabel('\rightarrow\phi', 'FontSize', 16)
     set(findall(gcf,'type','line'),'linewidth',2) % inštrukcia pre zmenu
hrúbky čiary
     ax = qca
                   %úprava popisu osí - farba, veľkosť, bold
```

```
ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
figure(2) % Vykresľovanie a popis priebehov PrCh a LFCh - G1
subplot(121); step(G2,Tstep,color), grid on,
    title('Prechodová charakteristika pre G2', 'FontSize', 16)
    xlabel('\rightarrow T', 'FontSize', 16)
                                                                 %popis osi
X
    ylabel('\rightarrow X2/F1','FontSize',16)
                                                                 %popis osi
Y
                    %úprava popisu osí - farba, veľkosť, bold
     ax = gca
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
subplot(122); bode(G2, {wmin, wmax}, color), grid on
     title('Frekvenčná charakteristika pre G2', 'fontsize', 16)
     xlabel('\rightarrow
\omega', 'FontSize', 16), ylabel('\rightarrow\phi', 'FontSize', 16)
     set(findall(gcf,'type','line'),'linewidth',2) % inštrukcia pre zmenu
hrúbky čiary
    ax = gca %úprava popisu osí - farba, veľkosť, bold
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold':
```

Príloha E: Simulink_model_M.m

```
8 +------
         Program pre výpočet a zobrazenie TF
            pomocou mech. modelu v Simscape
일 |
         Nastavenie vstupov/výstupov v Simscape
% | Znázornenie PrCh a LFCh pre TF: G1=X1/F1 a G2=X2/F1
% | zadanie: 2DOF mechanický systém - vozik na voziku
용
% | Autor: Ivan Zeman
% +-----
clear, clc, clf, format compact
m1=0.5; m2=0.1; k1=400; k2=80; b1=8; b2=1.6; F1=10; F2=0;
Tstep=1.5; wmin=0; wmax=1e3
                                                   % parametre pre
Step a Bode
Tsim=1.5;
                                              % doba simulácie v
Simulinku (experimentálne určená)
                                               % farba grafu
color='r';
b,r,y,m,c,
%Nastavenie vstupov/výstupov(io) v Simscape a prenos do workspace
model = 'simulink model';
open system(model)
%Nájdenie TF pre G1=X1/F1
io1(1) = linio('simulink model/F1',1,'input');
io1(2) = linio('simulink model/X1',1,'output');
```

```
linsys1 = linearize(model,io1);
G1=tf(linsys1) %Nájdenie TF pre G1=X1/F1
%Nájdenie TF pre G2=X2/F1
io2(1) = linio('simulink model/F1',1,'input');
io2(2) = linio('simulink model/X2',1,'output');
linsys2 = linearize(model,io2);
                    %Nájdenie TF pre G2=X2/F1
G2=tf(linsys2)
%Zobrazenie PrCh
figure(1) % Vykresľovanie a popis priebehov PrCh a LFCh - G1
subplot(121); step(G1,Tstep,color), grid on,
    title('Prechodová charakteristika pre G1', 'FontSize', 16)
     xlabel('\rightarrow T','FontSize',16)
                                                                 %popis osi
X
     ylabel('\rightarrow X2/F1','FontSize',16)
                                                                 %popis osi
Y
     ax = qca
                    %úprava popisu osí - farba, veľkosť, bold
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
subplot(122); bode(G1, {wmin, wmax}, color), grid on
     title('Frekvenčná charakteristika pre G1', 'fontsize', 16)
     xlabel('\rightarrow
\omega', 'FontSize', 16), ylabel('\rightarrow\phi', 'FontSize', 16)
     set(findall(gcf, 'type', 'line'), 'linewidth', 2) % inštrukcia pre zmenu
hrúbky čiary
     ax = gca
               %úprava popisu osí - farba, veľkosť, bold
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
figure(2) % Vykresľovanie a popis priebehov PrCh a LFCh - G1
subplot(121); step(G2,Tstep,color), grid on,
    title('Prechodová charakteristika pre G2', 'FontSize', 16)
     xlabel('\rightarrow T', 'FontSize', 16)
                                                                 %popis osi
X
     ylabel('\rightarrow X2/F1','FontSize',16)
                                                                 %popis osi
Y
                    %úprava popisu osí - farba, veľkosť, bold
     ax = gca
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
subplot(122); bode(G2, {wmin, wmax}, color), grid on
     title('Frekvenčná charakteristika pre G2', 'fontsize', 16)
     xlabel('\rightarrow
\omega', 'FontSize',16), ylabel('\rightarrow\phi', 'FontSize',16)
     set(findall(gcf,'type','line'),'linewidth',2) % inštrukcia pre zmenu
hrúbky čiary
                    %úprava popisu osí - farba, veľkosť, bold
     ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
```

Príloha F: Stavovy_model_G1_M.m

```
용
         Znázornenie PrCh a LFCh pre TF: G1=X1/F1
용 |
용
    zadanie: 2DOF mechanický systém - vozik na voziku
% | Autor: Ivan Zeman
                                            19/11/2022
% +-----+
clear, clc, clf, format compact
disp('Analýza mech. systému - Vozík na vozíku')
% parametre systému
syms X1 X2 X3 X4 k1 k2 b1 b2 m1 m2 F1 F2; %deklarácia
symbolických premenných
m1x=0.5; m2x=0.1; k1x=400; k2x=80; b1x=8; b2x=1.6; F1x=10; F2x=0;
Tstep=1.5; wmin=0; wmax=1e3
                                             % parametre pre Step a Bode
color='r';
                                                 % farba grafu
b,r,y,m,c,
%% Stavový model zapísaný v tvare matíc a vektorov
disp('Stavový model v symbolickom tvare:')
     0
                    0
                                                     0
A=[
                                       1
       0
                     0
                                      0
                                                     1
-(k1+k2)/m1
                  k2/m1
                                  -(b1+b2)/m1
                                                   b2/m1
   k2/m2
                   -k2/m2
                                    b2/m2
                                                    -b2/m2]
b=[0; 0; 1/m1; 0]
cT = [1 \ 0 \ 0 \ 0]
d=[0]
% Náhrada symb.premenných hodnotami
m1=m1x; m2=m2x; k1=k1x; k2=k2x; b1=b1x; b2=b2x; F1=F1x; F2=F2x;
disp('Stavový po dosadení hodnôt parametrov:')
A=[
                     0
       0
                                      0
                                                    1
-(k1+k2)/m1
                                                   b2/m1
                  k2/m1
                                  -(b1+b2)/m1
   k2/m2
                   -k2/m2
                                                    -b2/m2]
                                     b2/m2
b=[0; 0; 1/m1; 0]
cT = [1 \ 0 \ 0 \ 0]
d=[0]
%% Výstupy
%výpočet tf: G1=X1/F1
disp('Výpis stavového modelu:')
printsys(A,b,cT,d)
disp('Výpis prenosovej funkcie G1:')
[num,den]=ss2tf(A,b,cT,d)
G1=tf(num/den(end),den/den(end))
disp('Vlastné hodnoty matice A:')
% format long (príkaz na zmenu formátu výsledného čísla)
disp('Póly prenosovej funkcie G1:')
roots(den)
format short
figure(1)
          %vykreľovanie priebehov G1
color='r';
subplot(1,2,1),step(A,b,cT,d),grid on
    title('Prechodová charakteristika G1', 'FontSize', 16)
```

```
xlabel('\rightarrow T','FontSize',16)
  ylabel('\rightarrow X1/F1','FontSize',14)
subplot(1,2,2),bode(A,b,cT,d),grid on
    title('Frekvenčná charakteristika G1','fontsize',16)
    xlabel('\rightarrow
\omega','FontSize',16),ylabel('\rightarrow\phi','FontSize',16)
    set(findall(gcf,'type','line'),'linewidth',2) % inštrukcia pre zmenu
hrúbky čiary
```

Príloha G: Stavovy_model_G2_M.m

```
Program pre výpočet a zobrazenie TF
           pomocou stavového modelu systému
        Znázornenie PrCh a LFCh pre TF: G2=X2/F1
% | zadanie: 2DOF mechanický systém - vozik na voziku
% | Autor: Ivan Zeman
                                           19/11/2022
clear, clc, clf, format compact
disp('Analýza mech. systému - Vozík na vozíku')
% parametre systému
syms X1 X2 X3 X4 k1 k2 b1 b2 m1 m2 F1 F2;
                                         %deklarácia
symbolických premenných
m1x=0.5; m2x=0.1; k1x=400; k2x=80; b1x=8; b2x=1.6; F1x=10; F2x=0;
Tstep=1.5; wmin=0; wmax=1e3
                                        % parametre pre Step a Bode
                                                  % farba grafu
color='r';
b,r,y,m,c,
%% Stavový model zapísaný v tvare matíc a vektorov
disp('Stavový model v symbolickom tvare:')
             0
A=[ 0
                                                    0
       0
                    0
                                     0
                                                    1
                                 -(b1+b2)/m1 b2/m1
b2/m2 -b2/m2]
-(k1+k2)/m1
k2/m2
                 k2/m1
-k2/m2
b=[0; 0; 1/m1; 0]
cT = [0 \ 1 \ 0 \ 0]
d=[0]
% Náhrada symb.premenných hodnotami
m1=m1x; m2=m2x; k1=k1x; k2=k2x; b1=b1x; b2=b2x; F1=F1x; F2=F2x;
disp('Stavový po dosadení hodnôt parametrov:')
               0
       0
                    0
                                                   1
                  k2/m1
                                 -(b1+b2)/m1
-(k1+k2)/m1
k2/m2
                                                  b2/m1
                 -k2/m2
                                    b2/m2
                                                  -b2/m2]
b=[0; 0; 1/m1; 0]
cT=[0 1 0 0]
d=[0]
%% Výstupy
%výpočet tf: G2=X2/F1
```

```
disp('Výpis stavového modelu:')
printsys(A,b,cT,d)
disp('Výpis prenosovej funkcie G2:')
[num,den]=ss2tf(A,b,cT,d)
G2=tf(num/den(end),den/den(end))
disp('Vlastné hodnoty matice A:')
% format long (príkaz na zmenu formátu výsledného čísla)
disp('Póly prenosovej funkcie G2:')
roots(den)
format short
figure(1) %vykreľovanie priebehov G2
subplot(1,2,1),step(A,b,cT,d),grid on
     title('Prechodová charakteristika G2', 'FontSize', 16)
     xlabel('\rightarrow T','FontSize',16)
     ylabel('\rightarrow X2/F1','FontSize',14)
subplot(1,2,2),bode(A,b,cT,d),grid on
     title('Frekvenčná charakteristika G2', 'fontsize', 16)
     xlabel('\rightarrow
\omega', 'FontSize',16), ylabel('\rightarrow\phi', 'FontSize',16)
     set(findall(gcf,'type','line'),'linewidth',2) % inštrukcia pre zmenu
hrúbky čiary
```

Príloha G: Vysetrenie_vplyvu_zmeny_parametrov_G3.m

```
% +-----+
     Program pre vyšetrenie vplyvu zmeny parametrov
9
          jednotlivých prvkov mech. systému
<u>્</u>ટ્ર
                Znázornenie PrCh a LFCh
% zadanie: 2DOF mechanický systém – vozik na voziku
용
% | Autor: Ivan Zeman
                                          11/11/2022
% +-----+
clear, clc, clf, format compact
syms s k1 k2 B1 B2 m1 m2 F1 F2 %deklarácia symbolických premenných
disp('Analýza mech. systému - Vozík na vozíku')
m1x=0.5; m2x=0.1; k1x=400; k2x=80; B1x=8; B2x=1.6; F1x=10; F2x=0;
m11=0.1*m1x; m12=10*m1x;
m21=0.5*m2x; m22=2*m2x;
k11=0.5*k1x; k12=2*k1x;
k21=0.5*k2x; k22=2*k2x;
B11=0.5*B1x; B12=2*B1x;
B21=0.5*B2x; B22=2*B2x;
Tstep=1.5; wmin=0; wmax=1e3
color='r';
                                             % farba grafu b,r,y,m,c,
%Nájdená TF v symbolickom tvare
G3 = -((F1*k2 + F2*k2 + F1*B2*s + F2*B2*s + F1*m2*s^2)/(k1*k2 + B1*m2*s^3 + F1*m2*s^3)
B2*m1*s^3 + B2*m2*s^3 + k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 +
B1*k2*s + B2*k1*s + B1*B2*s^2) - (F1*k2 + F2*k1 + F2*k2 + F1*B2*s + F2*B1*s
+ F2*B2*s + F2*m1*s^2)/(k1*k2 + B1*m2*s^3 + B2*m1*s^3 + B2*m2*s^3 +
```

```
k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 + B1*k2*s + B2*k1*s +
B1*B2*s^2))/F1
% Spracovanie údajov TF v symbolickom tvare pre prechod do num. MATLABu -
 [cit,men]=numden(G3);
cit=subs(cit, {k1,k2,B1,B2,m1,m2,F1,F2}, {k1x,k2x,B1x,B2x,m1x,m2x,F1x,F2x});
% dosadenie hodnôt do polynómu čitateľa
men=subs(men, \{k1, k2, B1, B2, m1, m2, F1, F2\}, \{k1x, k2x, B1x, B2x, m1x, m2x, F1x, F2x\});
% dosadenie do polynómu menovateľa
b=sym2poly(cit);
                                                                                                                                          % b - koeficienty polynómu
čitateľa b(s)
a=sym2poly(men);
                                                                                                                                          % a - koeficienty polynómu
menovateľa a(s)
b=double(b);
                                                                                                                                          % Prechod do numerickeho
MATLABu
a=double(a);
                                                                                                                                          % Výsledná TF v numerickom
G3=tf(b,a)
MATLABe - G1
G3=tf(b/a(end),a/a(end))
                                                                                                                                      % TF upravená pre a0=1
 (normovanie TF)
%Zmena parametra m1 za m11
%Úprava TF v symbolickom tvare
Gm11 = -((F1*k2 + F2*k2 + F1*B2*s + F2*B2*s + F1*m2*s^2)/(k1*k2 + B1*m2*s^3)
+ B2*m11*s^3 + B2*m2*s^3 + k1*m2*s^2 + k2*m11*s^2 + k2*m2*s^2 + m11*m2*s^4
+ B1*k2*s + B2*k1*s + B1*B2*s^2) - (F1*k2 + F2*k1 + F2*k2 + F1*B2*s + F1*B
F2*B1*s + F2*B2*s + F2*m11*s^2)/(k1*k2 + B1*m2*s^3 + B2*m11*s^3 + B2*m2*s^3)
+ k1*m2*s^2 + k2*m11*s^2 + k2*m2*s^2 + m11*m2*s^4 + B1*k2*s + B2*k1*s +
B1*B2*s^2))/F1
[cit2,men2]=numden(Gm11);
                                                                                                                                  % oddelenie polynómov
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                                     % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                                       % dosadenie do polynómu menovateľa
                                                                                                                         % b - koeficienty polynómu
b2=sym2poly(cit2);
čitateľa b(s)
a2=sym2poly(men2);
                                                                                                                         % a - koeficienty polynómu
menovateľa a(s)
                                                                                                                         % Prechod do numerickeho MATLABu
b2=double(b2);
a2=double(a2);
                                                                                                                         % Výsledná TF v numerickom
Gm11=tf(b2,a2)
MATLABe
Gm11=tf(b2/a2(end),a2/a2(end))
                                                                                                                       % Výsledná TF v numerickom
MATLABe
%Zmena parametra m1 za m12
%Úprava TF v symbolickom tvare
Gm12 = -((F1*k2 + F2*k2 + F1*B2*s + F2*B2*s + F1*m2*s^2)/(k1*k2 + B1*m2*s^3)
+ B2*m12*s^3 + B2*m2*s^3 + k1*m2*s^2 + k2*m12*s^2 + k2*m2*s^2 + m12*m2*s^4
+ B1*k2*s + B2*k1*s + B1*B2*s^2) - (F1*k2 + F2*k1 + F2*k2 + F1*B2*s + F1*B
F2*B1*s + F2*B2*s + F2*m12*s^2)/(k1*k2 + B1*m2*s^3 + B2*m12*s^3 + B2*m2*s^3)
+ k1*m2*s^2 + k2*m12*s^2 + k2*m2*s^2 + m12*m2*s^4 + B1*k2*s + B2*k1*s +
B1*B2*s^2))/F1
[cit2,men2]=numden(Gm12);
                                                                                                                                  % oddelenie polynómov
čitateľa a menovateľa
```

```
\mathtt{cit2} = \mathtt{subs}(\mathtt{cit2}, \{\mathtt{m1}, \mathtt{m2}, \mathtt{k1}, \mathtt{k2}, \mathtt{B1}, \mathtt{B2}, \mathtt{F1}, \mathtt{F2}\}, \{\mathtt{m1x}, \mathtt{m2x}, \mathtt{k1x}, \mathtt{k2x}, \mathtt{B1x}, \mathtt{B2x}, \mathtt{F1x}, \mathtt{F2x}\})
                         % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2, {m1, m2, k1, k2, B1, B2, F1, F2}, {m1x, m2x, k1x, k2x, B1x, B2x, F1x, F2x})
                         % dosadenie do polynómu menovateľa
b2=sym2poly(cit2);
                                                                                                                        % b - koeficienty polynómu
čitateľa b(s)
a2=sym2poly(men2);
                                                                                                                        % a - koeficienty polynómu
menovateľa a(s)
b2=double(b2);
                                                                                                                        % Prechod do numerickeho MATLABu
a2=double(a2);
Gm12=tf(b2,a2)
                                                                                                                        % Výsledná TF v numerickom
MATLABe
Gm12=tf(b2/a2(end),a2/a2(end))
                                                                                                                        % Výsledná TF v numerickom
MATLABe
%PrCh a LFCh pre vplyv zmeny parametra m1
                               % Vykresľovanie a popis priebehov PrCh a LFCh pre vplyv zmeny
parametra m1
subplot(1,2,1), step(Gm11,Tstep,'r',G3,'g',Gm12,'b'),grid on,
        title('PrCh pri zmene m_1','FontSize',16)
              xlabel('\rightarrow T', 'FontSize',16)
              ylabel('(X 2-X 1)/F 1', 'FontSize', 16)
              legend('m_{1}/10','m_1','10*m_{1}')
                                                        %úprava popisu osí - farba, veľkosť, bold
              ax = gca
              ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
 'bold';
subplot(1,2,2), bode(Gm11, {wmin, wmax}, 'r', G3, 'g', Gm12, 'b'), grid on,
              title('LFCh pri zmene m 1', 'fontsize', 16)
              xlabel('\rightarrow
 \omega', 'FontSize',16), ylabel('\rightarrow\phi', 'FontSize',16)
              set(findall(gcf, 'type', 'line'), 'linewidth', 1.5) % inštrukcia pre zmenu
hrúbky čiary
              legend('m_{1}/10','m_1','10*m_{1}')
              ax = gca
                                                        %úprava popisu osí - farba, veľkosť, bold
              ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
 'bold';
 %Zmena parametra m2 za m21
 %Úprava TF v symbolickom tvare
Gm21 = -((F1*k2 + F2*k2 + F1*B2*s + F2*B2*s + F1*m21*s^2)/(k1*k2 + F1*m21*s^2)
B1*m21*s^3 + B2*m1*s^3 + B2*m21*s^3 + k1*m21*s^2 + k2*m1*s^2 + k2*m21*s^2 +
m1*m21*s^4 + B1*k2*s + B2*k1*s + B1*B2*s^2) - (F1*k2 + F2*k1 + F2*k2 + F2*k1 + F2*k1 + F2*k2 + F2*k1 + F2*k1 + F2*k2 + F2*k1 + F2*k1
F1*B2*s + F2*B1*s + F2*B2*s + F2*m1*s^2)/(k1*k2 + B1*m21*s^3 + B2*m1*s^3 + B
B2*m21*s^3 + k1*m21*s^2 + k2*m1*s^2 + k2*m21*s^2 + m1*m21*s^4 + B1*k2*s +
B2*k1*s + B1*B2*s^2))/F1
[cit2,men2]=numden(Gm21);
                                                                                                                                % oddelenie polynómov
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                                       % dosadenie hodnôt do polynómu čitateľa
% dosadenie do polynómu menovateľa
b2=sym2poly(cit2);
                                                                                                                        % b - koeficienty polynómu
čitateľa b(s)
a2=sym2poly(men2);
                                                                                                                        % a - koeficienty polynómu
menovateľa a(s)
b2=double(b2);
                                                                                                                        % Prechod do numerickeho MATLABu
a2=double(a2);
```

```
% Výsledná TF v numerickom
Gm21=tf(b2,a2)
MATLABe
Gm21=tf(b2/a2(end),a2/a2(end))
                                                                                                                                                                                          % Výsledná TF v numerickom
 %Zmena parametra m2 za m22
 %Úprava TF v symbolickom tvare
Gm22 = -((F1*k2 + F2*k2 + F1*B2*s + F2*B2*s + F1*m22*s^2)/(k1*k2 
B1*m22*s^3 + B2*m1*s^3 + B2*m22*s^3 + k1*m22*s^2 + k2*m1*s^2 + k2*m22*s^2 +
m1*m22*s^4 + B1*k2*s + B2*k1*s + B1*B2*s^2) - (F1*k2 + F2*k1 + F2*k2 + F2*k1 + F2*k1 + F2*k2 + F2*k1 + F2*k1 + F2*k2 + F2*k1 + F2*k1
F1*B2*s + F2*B1*s + F2*B2*s + F2*m1*s^2)/(k1*k2 + B1*m22*s^3 + B2*m1*s^3 + B
B2*m22*s^3 + k1*m22*s^2 + k2*m1*s^2 + k2*m22*s^2 + m1*m22*s^4 + B1*k2*s +
B2*k1*s + B1*B2*s^2))/F1
                                                                                                                                                                                                            % oddelenie polynómov
 [cit2,men2]=numden(Gm22);
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x,B2x,F1x,F2x})
                                       % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x,B2x,F1x,F2x})
                                        % dosadenie do polynómu menovateľa
b2=sym2poly(cit2);
                                                                                                                                                                                               % b - koeficienty polynómu
čitateľa b(s)
a2=sym2poly(men2);
                                                                                                                                                                                               % a - koeficienty polynómu
menovateľa a(s)
b2=double(b2);
                                                                                                                                                                                               % Prechod do numerickeho MATLABu
a2=double(a2);
Gm22=tf(b2,a2)
                                                                                                                                                                                           % Výsledná TF v numerickom
MATLABe
Gm22=tf(b2/a2(end),a2/a2(end))
                                                                                                                                                                                              % Výsledná TF v numerickom
MATLABe
 %PrCh a LFCh pre vplyv zmeny parametra m2
 figure(2)
                                                 % Vykresľovanie a popis priebehov PrCh a LFCh pre vplyv zmeny
parametra m2
subplot(1,2,1), step(Gm21,Tstep,'r',G3,'g',Gm22,'b'),grid on,
             title('PrCh pri zmene m 2', 'FontSize', 16)
                      xlabel('\rightarrow T', 'FontSize',16)
                      ylabel('(X 2-X 1)/F 1', 'FontSize', 16)
                      legend('m_{2}/2','m_{2}','2*m_{2}')
                                                                              %úprava popisu osí - farba, veľkosť, bold
                      ax = qca
                       ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
  'bold';
 subplot(1,2,2), bode(Gm21, {wmin, wmax}, 'r', G3, 'g', Gm22, 'b'), grid on,
                      title('LFCh pri zmene m 2', 'fontsize', 16)
                      xlabel('\rightarrow
 \omega', 'FontSize',16), ylabel('\rightarrow\phi', 'FontSize',16)
                      set(findall(gcf,'type','line'),'linewidth',1.5) % inštrukcia pre zmenu
hrúbky čiary
                       legend('m_{2}/2','m_{2}','2*m_{2}')
                                                                                         %úprava popisu osí - farba, veľkosť, bold
                      ax = qca
                      ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
 'bold';
 %Zmena parametra k1 za k11
 %Úprava TF v symbolickom tvare
Gk11 = -((F1*k2 + F2*k2 + F1*B2*s + F2*B2*s + F1*m2*s^2)/(k11*k2 + B1*m2*s^3)
+ B2*m1*s^3 + B2*m2*s^3 + k11*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 +
B1*k2*s + B2*k11*s + B1*B2*s^2) - (F1*k2 + F2*k11 + F2*k2 + F1*B2*s + B1*k2*s + B1*k
```

```
F2*B1*s + F2*B2*s + F2*m1*s^2)/(k11*k2 + B1*m2*s^3 + B2*m1*s^3 + B2*m2*s^3)
+ k11*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 + B1*k2*s + B2*k11*s +
B1*B2*s^2))/F1
[cit2,men2]=numden(Gk11);
                                                                                      % oddelenie polynómov
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                          % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                          % dosadenie do polynómu menovateľa
b2=sym2poly(cit2);
                                                                                 % b - koeficienty polynómu
čitateľa b(s)
a2=sym2poly(men2);
                                                                                 % a - koeficienty polynómu
menovateľa a(s)
b2=double(b2);
                                                                                 % Prechod do numerickeho MATLABu
a2=double(a2);
                                                                                 % Výsledná TF v numerickom
Gk11=tf(b2,a2)
MATLABe
Gk11=tf(b2/a2(end),a2/a2(end))
                                                                               % Výsledná TF v numerickom
MATLABe
%Zmena parametra k1 za k12
%Úprava TF v symbolickom tvare
Gk12 = -((F1*k2 + F2*k2 + F1*B2*s + F2*B2*s + F1*m2*s^2)/(k12*k2 + B1*m2*s^3)
+ B2*m1*s^3 + B2*m2*s^3 + k12*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 +
B1*k2*s + B2*k12*s + B1*B2*s^2) - (F1*k2 + F2*k12 + F2*k2 + F1*B2*s + F1
F2*B1*s + F2*B2*s + F2*m1*s^2)/(k12*k2 + B1*m2*s^3 + B2*m1*s^3 + B2*m2*s^3
+ k12*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 + B1*k2*s + B2*k12*s +
B1*B2*s^2))/F1
[cit2,men2]=numden(Gk12);
                                                                                      % oddelenie polynómov
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x,B2x,F1x,F2x})
                % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x,B2x,F1x,F2x})
                 % dosadenie do polynómu menovateľa
b2=sym2poly(cit2);
                                                                                 % b - koeficienty polynómu
čitateľa b(s)
                                                                                 % a - koeficienty polynómu
a2=sym2poly(men2);
menovateľa a(s)
                                                                                 % Prechod do numerickeho MATLABu
b2=double(b2);
a2=double(a2);
Gk12=tf(b2,a2)
                                                                                 % Výsledná TF v numerickom
Gk12=tf(b2/a2(end),a2/a2(end))
                                                                                 % Výsledná TF v numerickom
MATLABe
%PrCh a LFCh pre vplyv zmeny parametra k1
figure(3)
                     % Vykresľovanie a popis priebehov PrCh a LFCh pre vplyv zmeny
parametra k1
subplot(1,2,1), step(Gk11,Tstep,'r',G3,'g',Gk12,'b'),grid on,
     title('PrCh pri zmene k 1', 'FontSize', 16)
         xlabel('\rightarrow T','FontSize',16)
         ylabel('(X 2-X 1)/F 1', 'FontSize', 16)
         legend('k_{1}/2','k_{1}','2*k_{1}')
         ax = gca
                                      %úprava popisu osí - farba, veľkosť, bold
         ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
subplot(1,2,2), bode(Gk11, {wmin, wmax}, 'r', G3, 'g', Gk12, 'b'), grid on,
```

```
title('LFCh pri zmene k_1','fontsize',16)
                           xlabel('\rightarrow
 \omega', 'FontSize',16), ylabel('\rightarrow\phi', 'FontSize',16)
                           set(findall(gcf,'type','line'),'linewidth',1.5) % inštrukcia pre zmenu
 hrúbky čiary
                           legend('k {1}/2','k {1}','2*k {1}')
                                                                                                               %úprava popisu osí - farba, veľkosť, bold
                           ax = qca
                           ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
  'bold';
 %Zmena parametra k2 za k21
 %Úprava TF v symbolickom tvare
Gk21 = -((F1*k21 + F2*k21 + F1*B2*s + F2*B2*s + F1*m2*s^2)/(k1*k21 + F1*B2*s + F1*m2*s^2)/(k1*k21 + F1*m2*s
B1*m2*s^3 + B2*m1*s^3 + B2*m2*s^3 + k1*m2*s^2 + k21*m1*s^2 + k21*m2*s^2 +
m1*m2*s^4 + B1*k21*s + B2*k1*s + B1*B2*s^2) - (F1*k21 + F2*k1 + F2*k21 +
F1*B2*s + F2*B1*s + F2*B2*s + F2*m1*s^2)/(k1*k21 + B1*m2*s^3 + B2*m1*s^3 + B
B2*m2*s^3 + k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 + B1*k2*s +
B2*k1*s + B1*B2*s^2))/F1
 [cit2,men2]=numden(Gk21);
                                                                                                                                                                                                                                                    % oddelenie polynómov
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                                                                       % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                                                                           % dosadenie do polynómu menovateľa
b2=sym2poly(cit2);
                                                                                                                                                                                                                                    % b - koeficienty polynómu
čitateľa b(s)
a2=sym2poly(men2);
                                                                                                                                                                                                                                    % a - koeficienty polynómu
menovateľa a(s)
                                                                                                                                                                                                                                    % Prechod do numerickeho MATLABu
b2=double(b2);
a2=double(a2);
Gk21=tf(b2,a2)
                                                                                                                                                                                                                                    % Výsledná TF v numerickom
MATLABe
Gk21=tf(b2/a2(end),a2/a2(end))
                                                                                                                                                                                                                               % Výsledná TF v numerickom
MATLABe
 %Zmena parametra k2 za k22
 %Úprava TF v symbolickom tvare
Gk22 = -((F1*k22 + F2*k22 + F1*B2*s + F2*B2*s + F1*m2*s^2)/(k1*k22 + F1*B2*s + F1*m2*s^2)/(k1*k22 + F1*B2*s^2)/(k1*k22 + F1
B1*m2*s^3 + B2*m1*s^3 + B2*m2*s^3 + k1*m2*s^2 + k22*m1*s^2 + k22*m2*s^2 +
m1*m2*s^4 + B1*k22*s + B2*k1*s + B1*B2*s^2) - (F1*k22 + F2*k1 + F2*k22 + F3*k1 + F3*k22 + F3*k1 + F3*k22 + F3*k1 + F
F1*B2*s + F2*B1*s + F2*B2*s + F2*m1*s^2)/(k1*k22 + B1*m2*s^3 + B2*m1*s^3 + B
B2*m2*s^3 + k1*m2*s^2 + k22*m1*s^2 + k22*m2*s^2 + m1*m2*s^4 + B1*k22*s +
B2*k1*s + B1*B2*s^2))/F1
 [cit2,men2]=numden(Gk22);
                                                                                                                                                                                                                                                    % oddelenie polynómov
čitateľa a menovateľa
\mathtt{cit2} = \mathtt{subs}(\mathtt{cit2}, \{\mathtt{m1}, \mathtt{m2}, \mathtt{k1}, \mathtt{k2}, \mathtt{B1}, \mathtt{B2}, \mathtt{F1}, \mathtt{F2}\}, \{\mathtt{m1x}, \mathtt{m2x}, \mathtt{k1x}, \mathtt{k2x}, \mathtt{B1x}, \mathtt{B2x}, \mathtt{F1x}, \mathtt{F2x}\})
                                                % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2, \{m1, m2, k1, k2, B1, B2, F1, F2\}, \{m1x, m2x, k1x, k2x, B1x, B2x, F1x, F2x\})
                                                % dosadenie do polynómu menovateľa
b2=sym2poly(cit2);
                                                                                                                                                                                                                                    % b - koeficienty polynómu
čitateľa b(s)
a2=sym2poly(men2);
                                                                                                                                                                                                                                    % a - koeficienty polynómu
menovateľa a(s)
                                                                                                                                                                                                                                    % Prechod do numerickeho MATLABu
b2=double(b2);
a2=double(a2);
Gk22=tf(b2,a2)
                                                                                                                                                                                                                                    % Výsledná TF v numerickom
MATLABe
```

```
Gk22=tf(b2/a2(end),a2/a2(end))
                                                                                                                 % Výsledná TF v numerickom
MATLABe
 %PrCh a LFCh pre vplyv zmeny parametra k2
figure(4)
                                 % Vykresľovanie a popis priebehov PrCh a LFCh pre vplyv zmeny
parametra k2
subplot(1,2,1), step(Gk21,Tstep,'r',G3,'g',Gk22,'b'),grid on,
        title('PrCh pri zmene k_2','FontSize',16)
             xlabel('\rightarrow T', 'FontSize', 16)
             ylabel('(X_2-X_1)/F_1','FontSize',16)
             legend('k_{2}/2','k_{2}','2*k 2')
                                                       %úprava popisu osí - farba, veľkosť, bold
             ax = qca
              ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
subplot(1,2,2), bode(Gk21, {wmin, wmax}, 'r', G3, 'g', Gk22, 'b'), grid on,
              title('LFCh pri zmene k 2', 'fontsize', 16)
              xlabel('\rightarrow
 \omega', 'FontSize', 16), ylabel('\rightarrow\phi', 'FontSize', 16)
             set(findall(gcf, 'type', 'line'), 'linewidth', 1.5) % inštrukcia pre zmenu
hrúbky čiary
              legend('k 2/2', 'k 2', '2*k 2')
             ax = gca
                                                       %úprava popisu osí - farba, veľkosť, bold
              ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
 'bold';
%Zmena parametra b1 za b11
%Úprava TF v symbolickom tvare
Gb11 = -((F1*k2 + F2*k2 + F1*B2*s + F2*B2*s + F1*m2*s^2)/(k1*k2 + B11*m2*s^3)
+ B2*m1*s^3 + B2*m2*s^3 + k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 +
B11*k2*s + B2*k1*s + B11*B2*s^2) - (F1*k2 + F2*k1 + F2*k2 + F1*B2*s + F1
F2*B11*s + F2*B2*s + F2*m1*s^2)/(k1*k2 + B11*m2*s^3 + B2*m1*s^3 + B2*m2*s^3
+ k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 + B11*k2*s + B2*k1*s +
B11*B2*s^2))/F1
[cit2,men2]=numden(Gb11);
                                                                                                                             % oddelenie polynómov
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                                    % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                                      % dosadenie do polynómu menovateľa
F2x});
b2=sym2poly(cit2);
                                                                                                                     % b - koeficienty polynómu
čitateľa b(s)
a2=sym2poly(men2);
                                                                                                                     % a - koeficienty polynómu
menovateľa a(s)
                                                                                                                     % Prechod do numerickeho MATLABu
b2=double(b2);
a2=double(a2);
                                                                                                                    % Výsledná TF v numerickom
Gb11=tf(b2,a2)
MATLABe
Gb11=tf(b2/a2(end),a2/a2(end))
                                                                                                                    % Výsledná TF v numerickom
MATLABe
%Zmena parametra b1 za b12
%Úprava TF v symbolickom tvare
Gb12 = -((F1*k2 + F2*k2 + F1*B2*s + F2*B2*s + F1*m2*s^2)/(k1*k2 + B12*m2*s^3)
+ B2*m1*s^3 + B2*m2*s^3 + k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 +
B12*k2*s + B2*k1*s + B12*B2*s^2) - (F1*k2 + F2*k1 + F2*k2 + F1*B2*s + B12*k2*s + B12*k
F2*B12*s + F2*B2*s + F2*m1*s^2)/(k1*k2 + B12*m2*s^3 + B2*m1*s^3 + B2*m2*s^3)
```

```
+ k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 + B12*k2*s + B2*k1*s +
B1*B2*s^2))/F1
[cit2,men2]=numden(Gb12);
                                                                                      % oddelenie polynómov
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x,B2x,F1x,F2x})
                 % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2, {m1, m2, k1, k2, B1, B2, F1, F2}, {m1x, m2x, k1x, k2x, B1x, B2x, F1x, F2x})
                 % dosadenie do polynómu menovateľa
b2=sym2poly(cit2);
                                                                                % b - koeficienty polynómu
čitateľa b(s)
a2=sym2poly(men2);
                                                                                % a - koeficienty polynómu
menovateľa a(s)
                                                                                % Prechod do numerickeho MATLABu
b2=double(b2);
a2=double(a2);
Gb12=tf(b2,a2)
                                                                                % Výsledná TF v numerickom
MATLABe
Gb12=tf(b2/a2(end),a2/a2(end))
                                                                                % Výsledná TF v numerickom
MATLABe
%PrCh a LFCh pre vplyv zmeny parametra b1
                      % Vykresľovanie a popis priebehov PrCh a LFCh pre vplyv zmeny
figure(5)
parametra b1
subplot(1,2,1), step(Gb11,Tstep,'r',G3,'g',Gb12,'b'),grid on,
      title('PrCh pri zmene b_1','FontSize',16)
         xlabel('\rightarrow T', 'FontSize', 16)
         ylabel('(X 2-X 1)/F 1', 'FontSize', 16)
         legend('b_1/2','b_1','2*b_1')
         ax = qca
                                     %úprava popisu osí - farba, veľkosť, bold
         ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
subplot(1,2,2), bode(Gb11, {wmin, wmax}, 'r', G3, 'g', Gb12, 'b'), grid on,
         title('LFCh pri zmene b 1', 'fontsize', 16)
         xlabel('\rightarrow
\omega', 'FontSize', 16), ylabel('\rightarrow\phi', 'FontSize', 16)
         set(findall(gcf,'type','line'),'linewidth',1.5) % inštrukcia pre zmenu
hrúbky čiary
         legend('b 1/2','b 1','2*b 1')
                                      %úprava popisu osí - farba, veľkosť, bold
         ax = qca
         ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
'bold';
%Zmena parametra b2 za b21
%Úprava TF v symbolickom tvare
Gb21 = -((F1*k2 + F2*k2 + F1*B21*s + F2*B21*s + F1*m2*s^2)/(k1*k2 + F1*m2*s^2)
B1*m2*s^3 + B21*m1*s^3 + B21*m2*s^3 + k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 +
m1*m2*s^4 + B1*k2*s + B21*k1*s + B1*B21*s^2) - (F1*k2 + F2*k1 + F2*k2 + F2*k1 + F2*k
F1*B21*s + F2*B1*s + F2*B21*s + F2*m1*s^2)/(k1*k2 + B1*m2*s^3 + B21*m1*s^3
+ B21*m2*s^3 + k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 + B1*k2*s +
B21*k1*s + B1*B21*s^2))/F1
[cit2,men2]=numden(Gb21);
                                                                                      % oddelenie polynómov
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                          % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x, B2x, F1x,
                          % dosadenie do polynómu menovateľa
F2x});
b2=sym2poly(cit2);
                                                                                % b - koeficienty polynómu
čitateľa b(s)
```

```
a2=sym2poly(men2);
                                                                                                                           % a - koeficienty polynómu
menovateľa a(s)
b2=double(b2);
                                                                                                                           % Prechod do numerickeho MATLABu
a2=double(a2);
Gb21=tf(b2,a2)
                                                                                                                           % Výsledná TF v numerickom
MATLABe
Gb21=tf(b2/a2(end),a2/a2(end))
                                                                                                                        % Výsledná TF v numerickom
MATLABe
%Zmena parametra b2 za b22
%Úprava TF v symbolickom tvare
Gb22 = -((F1*k2 + F2*k2 + F1*B22*s + F2*B22*s + F1*m2*s^2)/(k1*k2 + F1*m2*s^2)/(
B1*m2*s^3 + B22*m1*s^3 + B22*m2*s^3 + k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 +
m1*m2*s^4 + B1*k2*s + B22*k1*s + B1*B22*s^2) - (F1*k2 + F2*k1 + F2*k2 + F2*k1 + F2*k
F1*B22*s + F2*B1*s + F2*B22*s + F2*m1*s^2)/(k1*k2 + B1*m2*s^3 + B22*m1*s^3)
+ B22*m2*s^3 + k1*m2*s^2 + k2*m1*s^2 + k2*m2*s^2 + m1*m2*s^4 + B1*k2*s +
B22*k1*s + B1*B22*s^2))/F1
[cit2,men2]=numden(Gb22);
                                                                                                                                   % oddelenie polynómov
čitateľa a menovateľa
cit2=subs(cit2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x,B2x,F1x,F2x})
                          % dosadenie hodnôt do polynómu čitateľa
men2=subs(men2,{m1,m2,k1,k2,B1,B2,F1,F2},{m1x,m2x,k1x,k2x,B1x,B2x,F1x,F2x})
                          % dosadenie do polynómu menovateľa
b2=sym2poly(cit2);
                                                                                                                           % b - koeficienty polynómu
čitateľa b(s)
a2=sym2poly(men2);
                                                                                                                           % a - koeficienty polynómu
menovateľa a(s)
                                                                                                                           % Prechod do numerickeho MATLABu
b2=double(b2);
a2=double(a2);
                                                                                                                           % Výsledná TF v numerickom
Gb22=tf(b2,a2)
Gb22=tf(b2/a2(end),a2/a2(end))
                                                                                                                           % Výsledná TF v numerickom
MATLABe
%PrCh a LFCh pre vplyv zmeny parametra b2
                                  % Vykresľovanie a popis priebehov PrCh a LFCh pre vplyv zmeny
figure(6)
parametra b2
subplot(1,2,1), step(Gb21,Tstep,'r',G3,'g',Gb22,'b'),grid on,
         title('PrCh pri zmene b 2','FontSize',16)
              xlabel('\rightarrow T', 'FontSize',16)
              ylabel('(X_2-X_1)/F_1','FontSize',16)
              legend('b_2/2','b_2','2*b_2')
              ax = qca
                                                          %úprava popisu osí - farba, veľkosť, bold
              ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
 'bold';
subplot(1,2,2), bode(Gb21, {wmin, wmax}, 'r', G3, 'g', Gb22, 'b'), grid on,
              title('LFCh pri zmene b 2', 'fontsize', 16)
              xlabel('\rightarrow
\omega', 'FontSize', 16), ylabel('\rightarrow\phi', 'FontSize', 16)
              set(findall(gcf, 'type', 'line'), 'linewidth', 1.5) % inštrukcia pre zmenu
hrúbky čiary
              legend('b 2/2','b 2','2*b 2')
              ax = qca
                                                        %úprava popisu osí - farba, veľkosť, bold
              ax.YColor = 'k'; ax.XColor = 'k'; ax.FontSize = 12; ax.FontWeight =
 'bold';
```