ETH zürich

Introduction to Scientific Computation Lecture 1 Fall 2018

Git v2, Complexity, Floating-point arithmetic Numerical stability

Git v2

Create program.py consisting of K lines

git add program.py

git commit -m "implemented program"

File Status Lifecycle

(c) http://git-lectures.github.io

ETH zürich

git checkout commit i

Local Git repository

Local Git repository

commit 1 Index commit 2 commit N

Local Git repository

Local Git repository

Check here for more examples:

http://git-lectures.github.io

One of definitions: it is a measure of computational cost In order to give a more formal definition quite a big formalism should be introduced (see materials for this week). We will operate with a concept.

The notion of complexity is about how good or bad is the algorithm. We want to think in an abstract way, independent of:

- implementation details (Python, C++, matlab)
- hardware (stm32, intel Pentium D, Intel Core i7-8700K)
- etc and whatnot

Let us operate constant time operation (elementary operations).

Remember: real runtime doesn't matter (doesn't it ?)

$$3 + 5 =$$

$$\begin{array}{r}
0011 \\
0101 \\
\hline
1000
\end{array}$$

Let us operate constant time operation (elementary operations).

Remember: real runtime doesn't matter (doesn't it ?)

$$3 + 5 =$$

$$\begin{array}{r} 0011 \\ 0101 \\ \hline 1000 \end{array}$$

$$T(n) = c \cdot n$$
 c - is a cost for summation of one bits

Let us operate constant time operation (elementary operations).

Remember: real runtime doesn't matter (does it ?)

$$3 + 5 =$$

$$\begin{array}{r}
 0011 \\
 0101 \\
\hline
 1000
\end{array}$$

$$T(n) = c \cdot n \qquad \qquad c \text{ - is a cost for summation of one bits} \\ c_1\text{- for cpu1} \\ c_2\text{- for cpu2}$$

In order to get rid of c we will use **Asymptotic complexity** with big-O notation.

In order to get rid of c we will use **Asymptotic complexity** with big-O notation.

<u>Definition:</u> for any monotonic functions f(n) and g(n) from positive integers to the positive integers f(n) = O(g(n)) when there exists constants c > 0 and $n_0 > 0$ such that

$$f(n) \le c \cdot g(n)$$
, for all $n \ge n_0$

Big-O Complexity Chart

(c) http://www.bigocheatsheet.com

???

Representation of numbers

Fixed point

The most straightforward format for the representation of real numbers is **fixed point** representation, a.k.a **Qm.n** format.

Qm.n number is in the range $[-2^m, 2^m - 2^{-n}]$ with the resolution 2^{-n} requires m + n + 1 bits for storage.

Representation of numbers

Floating point

We are mostly interested in **floating point numbers** represented as e.g.

$$1.2345 = \underbrace{12345}_{\text{significand base}} \times \underbrace{10}_{-4}$$

IEEE 754

ETH zürich

Single and double precision

$$X = \pm 1.\overline{b_1 b_2 \dots b_K} \cdot 2^e$$

$$X \in [X - \Delta X, X + \Delta X],$$

Single

Double

Absolute accuracy

$$\Delta X \le \frac{1}{2} 2^{-K} * 2^e \le |X| \cdot 2^{-K-1}$$

Relative accuracy

$$\frac{\Delta X}{X} \le 2^{-K-1}$$

The **relative accuracy** of single precision is $10^{-7} - 10^{-8}$, while for double precision is $10^{-14} - 10^{-16}$.

A float32 takes 4 bytes, float64, or double precision, takes 8 bytes.

These are the only two floating point-types supported in hardware.

You should use double precision in CSE and single on GPU/Data Science.

Format	Total bits	Significand bits	Exponent bits	Smallest number	Largest number
Single precision	32	23 + 1 sign	8	ca. 1.2 · 10-38	ca. 3.4 · 10 ³⁸
Double precision	64	52 + 1 sign	11	ca. 5.0 · 10-324	ca. 1.8 · 10308

Machine zero exists

```
import numpy as np

n = 1.0
d = np.inf
i = 0

while d > 0:
    d = n - n / 2
    n = n / 2
    i += 1

(1 / 2)**(i - 2)
5e-324
```

```
import numpy as np

n = 1.0
d = np.inf
i = 0

while d > 0:
    d = n - n / 2
    n = n / 2
    i += 1

(1 / 2)**(i - 1)
```

0.0

See code