

# Non-Linear Data Structure Graph





**Asst. Prof. Kumar Prasun**Computer Application Department
Padmakanya Multiple Campus, Baghbazar

+977 9851149487



#### Graphs

- What is Graph?
- Representation of Graph
  - Matrix representation of Graph
  - **→** Linked List representation of Graph
- **▶** Elementary Graph Operations
  - → Breadth First Search (BFS)
  - → Depth First Search (DFS)
  - Spanning Trees
  - Minimal Spanning Trees
  - → Shortest Path



# **Adjacency matrix**

- ▶ A diagrammatic representation of a graph may have limited usefulness. However such a representation is not feasible when number of nodes an edges in a graph is large
- It is easy to store and manipulate matrices and hence the graphs represented by them in the computer
- ▶ Let G = (V, E) be a simple diagraph in which V = {v₁, v₂,...., vₙ} and the nodes are assumed to be ordered from v₁ to vₙ
- ▶ An n x n matrix A is called Adjacency matrix of the graph G whose elements are aii are given by

$$\mathbf{a}_{ij} = \begin{cases} 1 & if(V_i, V_j) \in E \\ 0 & otherwise \end{cases}$$



# **Adjacency matrix**

- ▶ An **element** of the adjacency matrix is either **0** or **1**
- ▶ Any matrix whose elements are either 0 or 1 is called bit matrix or Boolean matrix
- ► For a given graph G =m (V, E), an **adjacency matrix** depends upon the ordering of the elements of V
- ▶ For different ordering of the elements of V we get different adjacency matrices.





# **Adjacency matrix**



- ▶ The number of elements in the ith row whose value is 1 is equal to the out-degree of node Vi
- ▶ The number of elements in the j<sup>th</sup> column whose value is 1 is equal to the in-degree of node V<sub>j</sub>
- ► For a NULL graph which consist of only n nodes but no edges, the adjacency matrix has all its elements 0. i.e. the adjacency matrix is the NULL matrix



#### **Power of Adjacency matrix**

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^2 = \mathbf{A} \times \mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^{2} = \mathbf{A} \times \mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^{3} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A}^{4} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 3 & 0 & 2 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

- ▶ Entry of 1 in ith row and jth column of A shows existence of an edge (V<sub>i</sub>, V<sub>i</sub>), that is a path of length 1
- ► Entry in A² shows no of different paths of exactly length 2 from node V<sub>i</sub> to V<sub>i</sub>
- ► Entry in A³ shows no of different paths of exactly length 3 from node V<sub>i</sub> to V<sub>i</sub>



# Path matrix or reachability matrix

- Let G = (V,E) be a simple diagraph which contains n nodes that are assumed to be ordered.
- ▶ A n x n matrix P is called path matrix whose elements are given by

$$P_{ij} = \begin{cases} 1, if \ there \ exists \ path \ from \ node \ V_i \ to \ V_j \\ 0, otherwise \end{cases}$$



# **Adjacency List Representation**





# **Graph Traversal**

- ► Two Commonly used Traversal Techniques are
  - → Depth First Search (DFS)
  - → Breadth First Search (BFS)



#### **Depth First Search (DFS)**

- ▶ It is like preorder traversal of tree
- Traversal can start from any vertex V<sub>i</sub>
- ▶ V<sub>i</sub> is visited and then all vertices adjacent to V<sub>i</sub> are traversed recursively using DFS



# **Depth First Search (DFS)**







A B D C F E



#### **Breadth First Search (BFS)**

- $\triangleright$  This methods starts from vertex  $V_0$
- $\triangleright$  V<sub>0</sub> is marked as visited. All vertices adjacent to V<sub>0</sub> are visited next
- Let vertices adjacent to V<sub>0</sub> are V<sub>1</sub>, V<sub>2</sub>, V<sub>2</sub>, V<sub>4</sub>
- ▶ V<sub>1</sub>, V<sub>2</sub>, V<sub>3</sub> and V<sub>4</sub> are marked visited
- ▶ All unvisited vertices adjacent to V<sub>1</sub>, V<sub>2</sub>, V<sub>3</sub>, V<sub>4</sub> are visited next
- ▶ The method continuous until all vertices are visited
- ▶ The algorithm for BFS has to maintain a list of vertices which have been visited but not explored for adjacent vertices
- The vertices which have been visited but not explored for adjacent vertices can be stored in queue

# **Breadth First Search (BFS)**





**V**<sub>0</sub>| **V**<sub>1</sub> **V**<sub>2</sub> | **V**<sub>4</sub> **V**<sub>6</sub> **V**<sub>3</sub> | **V**<sub>5</sub>



# **Write DFS & BFS of following Graphs**





#### **Procedure : DFS (vertex V)**

- ▶ This procedure traverse the graph G in DFS manner.
- ▶ V is a starting vertex to be explored.
- ▶ Visited[] is an array which tells you whether particular vertex is visited or not.
- ▶ W is a adjacent node of vertex V.
- ▶ S is a Stack, PUSH and POP are functions to insert and remove from stack respectively.



#### **Procedure : DFS (vertex V)**

```
1. [Initialize TOP and Visited]
   visited[] ← 0
   TOP ← 0
2. [Push vertex into stack]
   PUSH (V)
3. [Repeat while stack is not Empty]
   Repeat Step 3 while stack is not empty
       v \leftarrow POP()
       if visited[v] is 0
       then visited [v] \leftarrow 1
            for all W adjacent to v
                if visited [w] is 0
              then PUSH (W)
            end for
       end if
```

#### **Procedure : BFS (vertex V)**

- ▶ This procedure traverse the graph G in BFS manner
- ▶ V is a **starting vertex** to be explored
- Q is a queue
- visited[] is an array which tells you whether particular vertex is visited or not
- ▶ W is a adjacent node f vertex V.



#### **Procedure : BFS (vertex V)**

```
1. [Initialize Queue & Visited]
   visited[] \leftarrow 0
   F \leftarrow R \leftarrow 0
2. [Marks visited of V as 1]
   visited[v] \leftarrow 1
3. [Add vertex v to Q]
   InsertQueue(V)
4. [Repeat while Q is not Empty]
   Repeat while Q is not empty
     v ← RemoveFromQueue()
     For all vertices W adjacent to v
        If visited[w] is 0
       Then visited[w] \leftarrow 1
              InsertQueue(w)
```



# **Spanning Tree**

- ▶ A Spanning tree of a graph is an undirected tree consisting of only those edges necessary to connect all the nodes in the original graph
- ▶ A spanning tree has the **properties** that
  - → For any pair of nodes there exists only one path between them
  - → Insertion of any edge to a spanning tree forms a unique cycle
- ▶ The particular **Spanning for a graph** depends on the **criteria** used to **generate** it
- ▶ If **DFS search** is use, those edges traversed by the algorithm forms the edges of tree, referred to as **Depth First Spanning Tree**
- ▶ If BFS Search is used, the spanning tree is formed from those edges traversed during the search, producing Breadth First Spanning tree



# **Construct Spanning Tree**





B C C G H

**DFS Spanning Tree** 

**BFS Spanning Tree** 





**DFS Spanning Tree** 



**BFS Spanning Tree** 

#### **Minimum Cost Spanning Tree**

- ▶ The **cost of a spanning tree** of a weighted undirected graph is the sum of the costs(weights) of the edges in the spanning tree
- ▶ A minimum cost spanning tree is a spanning tree of least cost
- ► Two techniques for Constructing minimum cost spanning tree
  - → Prim's Algorithm
  - → Kruskal's Algorithm



# **Prims Algorithm**



| A – B   4 | A – D   6 | C - E   5 |
|-----------|-----------|-----------|
| A – E   5 | B – E   3 | C - D   1 |
| A - C   6 | B - C   2 | D-E 7     |

Let X be the set of nodes explored, initially X = { A }





Step 1: Taking minimum Weight edge of all Adjacent edges of X={A}



Step 2: Taking minimum weight edge of all Adjacent edges of X = { A , B }



We obtained minimum spanning tree of cost:

$$4 + 2 + 1 + 3 = 10$$

Step 3: Taking minimum weight edge of all Adjacent edges of X = { A , B , C }



Step 4: Taking minimum weight edge of all Adjacent edges of X = {A,B,C,D}



# Kruskal's Algorithm



**Step 1:** Taking min edge (C,D)



**Step 2:** Taking next min edge (B,C)



**Step 3:** Taking next min edge (B,E)



**Step 4**: Taking next min edge (A,B)



so we obtained minimum spanning tree of cost: 4 + 2 + 1 + 3 = 10





# **Construct Minimum Spanning Tree**





#### **Shortest Path Algorithm**

- ► Let **G** = (**V**,**E**) be a simple diagraph with **n vertices**
- ▶ The problem is to **find out shortest distance** from a **vertex to all other vertices** of a graph
- ▶ Dijkstra Algorithm it is also called Single Source Shortest Path Algorithm





|          | A | В  | C  | D        | Ε        | F        |
|----------|---|----|----|----------|----------|----------|
| Distance | 0 | 00 | 00 | $\infty$ | $\infty$ | $\infty$ |
| Visited  | 0 | 0  | 0  | 0        | 0        | 0        |

#### 1st Iteration: Select Vertex A with minimum distance



|          | A | В | С        | D        | Е        | F        |
|----------|---|---|----------|----------|----------|----------|
| Distance | 0 | ф | <b>6</b> | $\infty$ | $\infty$ | $\infty$ |
| Visited  | 1 | 0 | 0        | 0        | 0        | 0        |



#### 2<sup>nd</sup> Iteration: Select Vertex B with minimum distance

Cost of going to C via B = dist[B] + cost[B][C] = 1 + 1 = 2 Cost of going to D via B = dist[B] + cost[B][D] = 1 + 2 = 3 Cost of going to E via B = dist[B] + cost[B][E] = 1 + 4 = 5 Cost of going to F via B = dist[B] + cost[B][F] = 1 +  $\infty$  =  $\infty$ 

|          | A | В | С | D         | E  | F  |
|----------|---|---|---|-----------|----|----|
| Distance | 0 | 1 | 5 | <b>oo</b> | 00 | 00 |
| Visited  | 1 | 0 | 0 | 0         | 0  | 0  |





3<sup>rd</sup> Iteration: Select Vertex C via B with minimum distance

Cost of going to D via C = dist[C] + cost[C][D] = 2 +  $\infty$  =  $\infty$ Cost of going to E via C = dist[C] + cost[C][E] = 2 +  $\infty$  =  $\infty$ Cost of going to F via C = dist[C] + cost[C][F] = 2 +  $\infty$  =  $\infty$ 

|          | A | В | С | D | E | F  |
|----------|---|---|---|---|---|----|
| Distance | 0 | 1 | 2 | 3 | 5 | 00 |
| Visited  | 1 | 1 | 0 | 0 | 0 | 0  |



|          | A | В | С | D | Ε | F        |
|----------|---|---|---|---|---|----------|
| Distance | 0 | 1 | 2 | 3 | 5 | $\infty$ |
| Visited  | 1 | 1 | 1 | 0 | 0 | 0        |



4th Iteration: Select Vertex D via path A - B with minimum distance

Cost of going to E via D = dist[D] + cost[D][E] = 3 + 7 = 10

Cost of going to F via D = dist[D] + cost[D][F] = 3 + 6 = 9

|          | A | В | C | D | Е | F  |
|----------|---|---|---|---|---|----|
| Distance | 0 | 1 | 2 | 3 | 5 | 00 |
| Visited  | 1 | 1 | 1 | 0 | 0 | 0  |



|          | A | В | С | D | Е | F |
|----------|---|---|---|---|---|---|
| Distance | 0 | 1 | 2 | 3 | 5 | 9 |
| Visited  | 1 | 1 | 1 | 1 | 0 | 0 |



4<sup>th</sup> Iteration: Select Vertex E via path A – B – E with minimum distance

Cost of going to F via E = dist[E] + cost[E][F] = 5 + 2 = 7

|          | A | В | C | D | Е | F |
|----------|---|---|---|---|---|---|
| Distance | 0 | 1 | 2 | 3 | 5 | 9 |
| Visited  | 1 | 1 | 1 | 1 | 0 | 0 |



|          | A | В | С | D | Е | F |
|----------|---|---|---|---|---|---|
| Distance | 0 | 1 | 2 | 3 | 5 | 7 |
| Visited  | 1 | 1 | 1 | 1 | 1 | 0 |

Shortest Path from A to F is  $A \rightarrow B \rightarrow E \rightarrow F = 7$ 



#### **Shortest Path**

Find out shortest path from node 0 to all other nodes using Dijkstra Algorithm



