Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 15: Raggiungibilità e controllabilità a tempo discreto (parte 3)

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

In questa lezione

- De Controllabilità di sistemi lineari a t.d.
- De Controllabilità e forma di Kalman
- ▶ Test PBH di controllabilità

Controllabilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t), x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum x(t) \in \mathbb{R}^n$$

$$0 = x(t) = F^{t}x_{0} + \sum_{k=0}^{t-1} F^{t-k-1}Gu(k) = F^{t}x_{0} + \mathcal{R}_{t}u_{t}$$

Insieme di stati x_0 controllabili al tempo t (= in t passi) allo stato x(t) = 0?

Quando possiamo controllare a zero tutti i possibili stati $x_0 \in \mathbb{R}^n$?

Spazio controllabile

$$X_C(t)=$$
 spazio controllabile in t passi $=\{x\in\mathbb{R}^n\ :\ F^tx\in \mathrm{im}(\mathcal{R}_t)\}$

Teorema: Gli spazi di controllabilità soddisfano:

$$X_C(1) \subseteq X_C(2) \subseteq X_C(3) \subseteq \cdots$$

Inoltre, esiste un primo intero $i \leq n$ tale che

$$X_C(i) = X_C(j), \forall j \geq i.$$

i = indice di controllabilità

 $X_C \triangleq X_C(i) = (\text{massimo}) \text{ spazio controllabile}$

Criterio di controllabilità

Definizione: Un sistema Σ a t.d. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$. Un sistema Σ a t.d. si dice (completamente) controllabile in t passi se $X_C(t) = \mathbb{R}^n$, con t indice di controllabilità.

$$\Sigma$$
 controllabile \iff im $(F^n) \subseteq$ im $(\mathcal{R}) = X_R$

$$\Sigma$$
 raggiungibile $(X_R = \mathbb{R}^n) \Rightarrow \Sigma$ controllabile

 Σ controllabile $\not\Rightarrow \Sigma$ raggiungibile !!!

Esempi

1.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
, $\alpha_1, \alpha_2 \in \mathbb{R} \implies$ non raggiungibile $\forall \alpha_1, \alpha_2 \in \mathbb{R} \implies$ ma controllabile se $\alpha_1 = 0$

2.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), \ \alpha_1, \alpha_2 \in \mathbb{R} \implies \begin{array}{l} \text{raggiungibile e quindi} \\ \text{controllabile} \end{array}$$

3.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
 \implies non raggiungibile ma controllabile (in 2 passi)

Controllabilità e forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$x_{NR}(t) = F_{22}^t x_{NR}(0)$$

- **1.** Σ controllabile $\iff \exists \, \overline{t} : F_{22}^t = 0, \ t \geq \overline{t} \Leftrightarrow F_{22}$ nilpotente (autovalori di $F_{22} = 0$)
- **2.** $X_R \subseteq X_C$ e $X_R = X_C$ se F_{22} invertibile
- **3.** Σ reversibile (= F invertibile) $\implies F_{22}$ invertibile $\implies X_R = X_C$

Test PBH di controllabilità

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

Teorema: Il sistema Σ è controllabile se e solo se la matrice PBH di raggiungibilità

$$\begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno (rank $[zI - F \ G] = n$) per ogni $z \in \mathbb{C}$ con $z \neq 0$.

N.B. La matrice PBH può essere valutata solo per gli $z \neq 0$ che sono autovalori di F!