Fig. 1

Fig. 2

Fig. 3

Fig. 4

EC₅₀ values (µm)

		50	<u> </u>
		Group I mGluRs	
		mGluR1a	mGluR5a
	Glu	4.9 ± 0.21	3.1 ± 0.23
•	ACPD	15 ± 2.2	23 ± 2.6
	AP4	NE	NE
BcACPD	DHS-4-79	8.4 ± 0.88	5.5 ± 0.73
	6c	121 ± 10	57±6
	6d	>1000	>1000
,	6a	232 ± 23	•91±11
	6b	1.6 ± 0.14	0.72 ± 0.11

		Group II mGluRs	
		mGluR2	mGluR3/1a
	Glu	0.29 ± 0.07	1.9 ± 0.31
,	ACPD	2.0 ± 0.3	40 ± 5.8
	AP4	NE	NE
BcACPD	DHS-4-79	1.2 ± 0.14	13 ± 1.8
]	6c	54 ± 9	185 ± 87
	6d	>1000	>1000
	6a	38 ± 10	255 ± 84
	6b	0.33 ± 0.06	2.2 ± 1.5

		Group III mGluRs	
		mGluR4a	mGluR6
	Glu	9.8 ± 0.81	4.9 ± 0.37
	ACPD	~ 800	82 ± 6.2
	AP4	0.33 ± 0.087	0.28 ± 0.025
BcACPD	DHS-4-79	82 ± 8.6	29 ± 16
	6c	~1000	~ 800
	6d	>1000	>1000
	6a	>1000	>1000
	6b	23 ± 7.1	5.3 ± 0.93

Fig. 5

Fig. 6

Fig. 7

()

Fig. 8

Ho
$$CO_2H$$

I-Serine

CbzHN

HO CO_2Me

OBn

 CO_2Me
 MeO_2C

OBn

 CO_2Me

NHCbz

 CO_2Me

OBn

 MeO_2C

OBn

 CO_2Me
 MeO_2C

OBn

 CO_2Me
 MeO_2C

OBn

 CO_2Me
 MeO_2C
 CO_2Me
 MeO_2C
 CO_2Me
 OH
 O

Fig. 9

Fig. 10
$$CO_2H$$

$$CO_2Me$$

$$HO_2C$$

$$NH_2$$

$$HO_2C$$

$$NH_2$$

$$Fig. 10$$

Fig. 11

; ;)

Fig. 13

Fig. 14

Fig. 15

Fig. 16