CS101 Data Structures and Algorithms

Lecture 04

Complexity Measures

Seven Typical Measures / Functions

- Constant c
- Linear n
- Quadratic n²
- Cubic n³
- Logarithmic log n
- Linear times Logarithmic nlog n
- Exponential bⁿ

Comparing the growth rates

Asymptotic Analysis

- Analyzing the algorithm performance for increasing input size is called Asymptotic Analysis (AA).
- AA is a static analysis, that is analysis based on the design and not run
 of the algorithm
- In AA we can afford to ignore the algorithm performance for initial values of input size.

Complexity Measures (Tractable)

- Big-Oh O
- Small-Oh O
- ullet Big-Omega $oldsymbol{\Omega}$
- Small-Omega ω
- Theta θ

Notation Explained

- f is big-oh of g, that is $f \sim O(g)$, or $f(n) \in O(n)$
- There exists $n_0 > 0$, c > 0 such that $f(n) \le cg(n)$ for all $n \ge n_0$

Notation Explained

- ullet f is big-Omega of g, that is f ${}^\sim \Omega({
 m g})$
 - There exists $n_0 > 0$, c > 0 such that f(n) >= cg(n) for all $n >= n_0$
- f is small-oh of g, that is $f \sim O(g)$
 - There exists $n_0 > 0$, c > 0 such that f(n) < cg(n) for all $n >= n_0$
- f is small-omega of g, that is f $\sim \omega(g)$
 - There exists $n_0 > 0$, c > 0 such that f(n) > cg(n) for all $n > = n_0$
- ullet f is Big-Theta or Theta of g, that is f ${}^\sim \theta({
 m g})$
 - There exists $n_0 > 0$, a, b > 0 such that a.g(n) < f(n) < b.g(n) for all $n > = n_0$