Práctica N° 5 - Inferencia de tipos

Aclaraciones:

Los ejercicios marcados con el símbolo \bigstar constituyen un subconjunto mínimo de ejercitación. Sin embargo, aconsejamos fuertemente hacer todos los ejercicios.

Gramáticas a tener en cuenta:

■ Términos anotados

```
\begin{split} M ::= x \mid \lambda x \colon & \sigma.M \mid M M \mid \mathsf{True} \mid \mathsf{False} \mid \mathsf{if} \ M \ \mathsf{then} \ M \ \mathsf{else} \ M \\ \mid \mathsf{zero} \mid \mathsf{succ}(M) \mid \mathsf{pred}(M) \mid \mathsf{isZero}(M) \mid \mu x \colon & \sigma.M \end{split}
```

Donde la letra x representa un *nombre de variable* arbitrario. Tales nombres se toman de un conjunto infinito dado $\mathfrak{X} = \{w, w_1, w_2, \dots, x, x_1, x_2, \dots, y, y_1, y_2, \dots, f, f_1, f_2, \dots\}$

- Términos sin anotaciones
 - $U ::= x \mid \lambda x.U \mid U \mid \mathsf{True} \mid \mathsf{False} \mid \mathsf{if} \ U \ \mathsf{then} \ U \ \mathsf{else} \ U \mid \mathsf{zero} \mid \mathsf{succ}(U) \mid \mathsf{pred}(U) \mid \mathsf{isZero}(U) \mid \mu x.U \mid \mathsf{vero}(U) \mid \mathsf{ve$
- Tipos

 $\tau ::= \mathsf{Bool} \mid \mathsf{Nat} \mid \tau \to \tau \mid X_n$

Donde n es un número natural, de tal modo que X_n representa una variable de tipos arbitraria tomada de un conjunto $\mathfrak{T} = \{X_1, X_2, X_3, \ldots\}$.

Nota: también podemos referirnos a las variables de tipos como incógnitas.

Ejercicio 1

Determinar qué expresiones son sintácticamente válidas y, para las que lo sean, indicar a qué gramática pertenecen (tipos, términos anotados o términos sin anotaciones).

I.
$$\lambda x\colon \mathsf{Bool.succ}(x)$$
 V. X_1 II. $\lambda x.\mathsf{isZero}(x)$ VI. $X_1\to (\mathsf{Bool}\to X_2)$ III. $X_1\to\sigma$ VII. $\lambda x\colon X_1\to X_2.$ if zero then True else zero $\mathsf{succ}(\mathsf{True})$ IV. $\mathit{erase}(f\ y)$ VIII. $\mathit{erase}(\lambda f\colon \mathsf{Bool}\to \mathsf{s}.\lambda y\colon \mathsf{Bool}.f\ y)$

Ejercicio 2

Determinar el resultado de aplicar la sustitución S a las siguientes expresiones

$$S(\{x:X_1\to \mathsf{Bool}\})$$

$$II. \ S=\{X_1:=X_2\to X_3,\ X_4:=\mathsf{Bool}\} \quad S(\{x:X_4\to \mathsf{Bool}\})\vdash S(\lambda x\colon X_1\to \mathsf{Bool}.x)\colon S(\mathsf{Nat}\to X_2)$$

Ejercicio 3

Unir con flechas los tipos que unifican entre sí (entre una fila y la otra). Para cada par unificable, exhibir el mqu ("most general unifier").

$$X_1 o X_2$$
 Nat $X_2 o$ Bool $X_3 o X_4 o X_5$
$$X_1 ext{Nat} o$$
 Bool (Nat o X_2) o Bool Nat o $X_2 o$ Bool

Ejercicio 4

Decidir, utilizando el método del árbol, cuáles de las siguientes expresiones son tipables. Mostrar qué reglas y sustituciones se aplican en cada paso y justificar por qué no son tipables aquéllas que fallan.

I. λz . if z then zero else succ(zero)

V. if True then $(\lambda x. zero)$ zero else $(\lambda x. zero)$ False

II. λy . $succ((\lambda x.x) y)$

VI. $(\lambda f.$ if True then fzero else f False) $(\lambda x.$ zero)

III. λx . if isZero(x) then x else (if x then x else x)

IV. $\lambda x.\lambda y.$ if x then y else $\operatorname{succ}(\operatorname{zero})$ VII. $\lambda x.\lambda y.\lambda z.$ if z then y else $\operatorname{succ}(x)$

Ejercicio 5 ★

Utilizando el árbol de inferencia, inferir el tipo de las siguientes expresiones o demostrar que no son tipables. En cada paso donde se realice una unificación, mostrar el conjunto de ecuaciones a unificar y la sustitución obtenida como resultado de la misma.

- \bullet $\lambda x. \lambda y. \lambda z. z x y z$
- $\bullet \ \lambda x. \ x \ (w \ (\lambda y.w \ y))$
- $\lambda x.\lambda y. xy$
- $\lambda x.\lambda y. yx$

- $\lambda x.(\lambda x. x)$
- $\lambda x.(\lambda y.\ y)x$
- $(\lambda z.\lambda x. \ x \ (z \ (\lambda y. \ z)))$ True

Ejercicio 6 (Numerales de Church)

Indicar tipos σ y τ apropiados de modo que los términos de la forma $\lambda y: \sigma.\lambda x: \tau.y^n(x)$ resulten tipables para todo n natural. El par (σ, τ) debe ser el mismo para todos los términos. Observar si tienen todos el mismo tipo. Notación: $M^0(N) = N, M^{n+1}(N) = M(M^n(N))$. Sugerencia: empezar haciendo inferencia para n = 2 – es decir, calcular $\mathbb{W}(\lambda y.\lambda x.y(yx))$ – y generalizar el resultado.

Ejercicio 7

- I. Utilizar el algoritmo de inferencia sobre la siguiente expresión: $\lambda y.(x \ y) \ (\lambda z.x_2)$
- II. Una vez calculado, demostrar (utilizando chequeo de tipos) que el juicio encontrado es correcto.
- III. ¿Qué ocurriría si x_2 fuera x?

Ejercicio 8

Tener en cuenta el tipo de los pares definido como: $\tau ::= \dots \mid \tau \times \tau$

Con expresiones nuevas definidas como: $M := ... \mid \langle M, M \rangle \mid \pi_1(M) \mid \pi_2(M)$

Y las siguientes reglas de tipado:

$$\frac{\Gamma \vdash M \colon \sigma \quad \Gamma \vdash N \colon \tau}{\Gamma \vdash \langle M, N \rangle \colon \sigma \times \tau} \qquad \frac{\Gamma \vdash M \colon \sigma \times \tau}{\Gamma \vdash \pi_1(M) \colon \sigma} \qquad \frac{\Gamma \vdash M \colon \sigma \times \tau}{\Gamma \vdash \pi_2(M) \colon \tau}$$

Se extiende el algoritmo \mathbb{W} con las siguientes reglas:

 $\mathbb{W}(\langle U_1, U_2 \rangle) \stackrel{def}{=} S\Gamma_1 \cup S\Gamma_2 \vdash S\langle M, N \rangle : S(\sigma \times \tau)$

- $\blacksquare \ \mathbb{W}(U_1) = \Gamma_1 \vdash M : \sigma$
- $S = \text{mgu } \{ \rho \stackrel{?}{=} \phi \mid x : \rho \in \Gamma_1 \land x : \phi \in \Gamma_2 \}$

 $\mathbb{W}(\pi_1(U)) \stackrel{def}{=} S\Gamma \vdash S\pi_1(M) : S\sigma$ donde:

- $\blacksquare \ \mathbb{W}(U) = \Gamma \vdash M : \rho$
- $\blacksquare S = \text{mgu } \{ \rho \stackrel{?}{=} \sigma \times \tau \}$

 $\mathbb{W}(\pi_2(U)) \stackrel{def}{=} S\Gamma \vdash S\pi_2(M) : S\tau$ donde:

- $\blacksquare \ \mathbb{W}(U) = \Gamma \vdash M : \rho$
- $S = \text{mgu } \{ \rho \stackrel{?}{=} \sigma \times \tau \}$
- I. Tipar la expresión $(\lambda f.\langle f,\underline{2}\rangle)$ $(\lambda x.x \underline{1})$ utilizando la versión extendida del algoritmo.
- Intentar tipar la siguiente expresión utilizando la versión extendida del algoritmo.

$$(\lambda f.\langle f \underline{2}, f \text{ True}\rangle) (\lambda x.x)$$

Mostrar en qué punto el algoritmo falla y por qué motivo.

Ejercicio 9 ★

Se extienden el Cálculo Lambda y algoritmo de inferencia para soportar uniones disjuntas de la siguiente

$$\begin{array}{lll} \tau & ::= & \dots \mid \tau + \tau \\ M & ::= & \dots \mid \mathsf{left}_\tau(M) \mid \mathsf{right}_\tau(M) \mid \mathsf{case}\, M \, \mathsf{of} \, \, \mathsf{left}(x) \leadsto M \, |\!| \, \mathsf{right}(y) \leadsto M \end{array}$$

 $\mathbb{W}(\mathsf{left}(U)) \stackrel{def}{=} \Gamma \vdash \mathsf{left}_{X}(M) : \sigma + X$

donde:

- \blacksquare X variable fresca.

 $\mathbb{W}(\mathsf{right}(U)) \stackrel{def}{=} \Gamma \vdash \mathsf{right}_{X}(M) : X + \tau$

- $\mathbb{W}(U) = \Gamma \vdash M : \underline{\tau}$
- \blacksquare X variable fresca.

 $\mathbb{W}(\mathsf{case} \ \underline{U_1} \ \mathsf{of} \ \mathsf{left}(x) \rightsquigarrow \underline{U_2} \ | \ \mathsf{right}(y) \rightsquigarrow \underline{U_3}) \stackrel{def}{=}$ $S\Gamma_1 \cup S\Gamma_{2'} \cup S\Gamma_{3'} \vdash S$ (case M_1 of left $(x) \rightsquigarrow M_2$ | right $(y) \rightsquigarrow M_3$) : $S\tau_2$

- $\blacksquare \ \mathbb{W}(U_1) = \Gamma_1 \vdash M_1 : \underline{\tau_1}$
- $\blacksquare \ \mathbb{W}(U_3) = \Gamma_3 \vdash M_3 : \underline{\tau_3}$
- $\begin{array}{l} \blacksquare \ \, \boxed{\tau_y} = \left\{ \begin{array}{l} \beta \text{ si } y: \beta \in \Gamma_3 \\ \text{Variable fresca en otro caso} \end{array} \right. \\ \blacksquare \ \, \boxed{\Gamma_{2'}} = \Gamma_2 \ominus \{x\} \\ \blacksquare \ \, \boxed{\Gamma_{3'}} = \Gamma_3 \ominus \{y\} \end{array} \label{eq:tau_point}$

$$\bullet S = \operatorname{mgu} \left(\left\{ \tau_{1} \stackrel{?}{=} \tau_{x} + \tau_{y}, \tau_{2} \stackrel{?}{=} \tau_{3} \right\} \cup \left\{ \rho \stackrel{?}{=} \sigma \mid z : \rho \in \Gamma_{i} \wedge z : \sigma \in \Gamma_{j} \wedge i, j \in \left\{ 1, \frac{2', 3'}{3} \right\} \right)$$

Utilizando esta extensión del algoritmo, encontrar los juicios de tipado más generales para los siguientes términos o indicar por qué no es posible:

- I. case left(1) of left(x) \rightsquigarrow isZero(x) | right(y) \rightsquigarrow True
- II. case $\operatorname{right}(z)$ of $\operatorname{left}(x) \leadsto \operatorname{isZero}(x) \| \operatorname{right}(y) \leadsto y$
- III. case right(zero) of left(x) \rightsquigarrow isZero(x) $\|$ right(y) \rightsquigarrow y
- IV. case x of left(x) \rightsquigarrow isZero(x) | right(y) \rightsquigarrow y
- V. case left(z) of left(x) $\rightsquigarrow z$ | right(y) $\rightsquigarrow y$
- VI. case z of left(x) \rightsquigarrow z \parallel right(y) \rightsquigarrow y

Ejercicio 10

Se extienden el Cálculo Lambda y algoritmo de inferencia para soportar listas de la siguiente manera:

$$\begin{array}{lll} \tau & ::= & \dots & \mid & [\tau] \\ M & ::= & \dots & \mid & [&]_\tau & \mid & M :: M & \mid & \mathsf{foldr}\,M \; \mathsf{base} \hookrightarrow M; \; \mathsf{rec}(h,r) \hookrightarrow M \end{array}$$

 $\mathbb{W}([\]) \stackrel{def}{=} \emptyset \vdash [\]_X : [X]$ con X variable fresca

 $\mathbb{W}(U::V) \stackrel{def}{=} S\Gamma_1 \cup S\Gamma_2 \vdash S(M::N): S\tau$ donde:

 $\mathbb{W}(\mathsf{foldr}\,U\,\mathsf{base}\hookrightarrow V;\;\mathsf{rec}(h,r)\hookrightarrow W)\stackrel{def}{=}S\Gamma_1\cup S\Gamma_2\cup S\Gamma_{3'}\vdash S(\mathsf{foldr}\,M\,\mathsf{base}\hookrightarrow N;\;\mathsf{rec}(h,r)\hookrightarrow O):S\sigma_2$ donde:

- $W(U) = \Gamma_1 \vdash M : \sigma_1$
- $\blacksquare \ \mathbb{W}(V) = \Gamma_2 \vdash N : \sigma_2$
- $\Gamma_{3'} = \Gamma_3 \ominus \{h, r\}$

- $\tau_h = \left\{ \begin{array}{l} \alpha \text{ si } h : \alpha \in \Gamma_3, \\ \text{variable fresca si no} \end{array} \right.$ $\tau_r = \left\{ \begin{array}{l} \beta \text{ si } r : \beta \in \Gamma_3, \\ \text{variable fresca si no} \end{array} \right.$
- $\bullet S = \operatorname{mgu} \left(\left\{ \sigma_1 \stackrel{?}{=} [\tau_h], \sigma_2 \stackrel{?}{=} \sigma_3, \sigma_3 \stackrel{?}{=} \tau_r \right\} \cup \left\{ \rho \stackrel{?}{=} \sigma \mid x : \rho \in \Gamma_i \land x : \sigma \in \Gamma_j \land i, j \in \{1, 2, 3'\} \right\} \right)$

Utilizando esta extensión del algoritmo, encontrar los juicios de tipado más generales para los siguientes términos o indicar por qué no es posible:

- I. foldr $x :: [\]$ base $\hookrightarrow [\]$; $rec(h, r) \hookrightarrow isZero(h) :: r$
- II. foldr $(\lambda x.\operatorname{succ}(x)) :: []$ base $\hookrightarrow []$; $\operatorname{rec}(x,r) \hookrightarrow \operatorname{if} p \ x$ then x :: r else r
- III. foldr x base $\hookrightarrow x$; $rec(h, r) \hookrightarrow isZero(h) :: r$
- IV. foldr x base \hookrightarrow True; $rec(h, x) \hookrightarrow x$