Practical examples of writing programs and proving theorems in Idris.

Donovan Crichton

January 2020

Preliminaries

Propositional Logic

- Concerned with statements of verifiable facts.
- Used daily by programmers when reasoning about Boolean values.

Symbol	Meaning	Example
T, F	True, False	Boolean values.
p, q, r,	Propositions	Let $p = $ "It is raining."
_	Negation (Not)	$\neg p$
\wedge	Conjuction (And)	$p \wedge q$
V	Disjunction (Or)	$p \lor q$
\rightarrow	Implication (If)	$ extit{p} ightarrow extit{q}$
\leftrightarrow	Bi Implication (Iff)	$p \leftrightarrow q$
≡	Equivalence	$p\equiv q$
Т	Tautology	$p \vee \neg p \equiv \top$
	Contradiction	$p \wedge eg p \equiv ot$

Definitions of Connectives

Conjunction (And)

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction (Or)

<u> </u>			
р	q	$p \lor q$	
Т	Т	Т	
Т	F	T	
F	Т	T	
F	F	F	

Negation (Not)

i vegation i		
р	$\neg p$	
Т	F	
F	Т	

Implication (If)

		. ,
р	q	$p \rightarrow q$
Т	Т	T
Т	F	F
F	Т	T
F	F	Т

Bi Implication (Iff)

р	q	$p \leftrightarrow q$
T	Т	Т
Т	F	F
F	Т	F
F	F	Т

Logical Equivalence

p	q	$p \equiv q$
T	Т	Т
T	F	F
F	Т	F
F	F	Т

Proof Techniques

By Exhaustion

Idea: Prove by enumerating all possible cases.

Prove: $(\neg p \lor q) \leftrightarrow (p \rightarrow q)$.

р	q	$\neg p$	$\neg p \lor q$	p o q	$(\lnot p \lor q) \leftrightarrow (p o q)$
Т	Т	F	Т	Т	Т
T	F	F	F	F	T
F	Т	Т	Т	Т	T
F	F	Т	Т	Т	Т

Proof Techniques

By Appeal to Lemma

Idea: Introduce pre-proven smaller proofs (called a Lemma) to prove a larger proof.

- ▶ Lemma 1. $p \lor \neg p \equiv \top$.
- ▶ Lemma 2. $(p \equiv q) \equiv (p \leftrightarrow q)$.

Prove:
$$(p \leftrightarrow q) \lor \neg (p \equiv q) \leftrightarrow \top$$
.

$$(p \leftrightarrow q) \lor \neg (p \equiv q) \leftrightarrow \top$$

 $(p \equiv q) \lor \neg (p \equiv q) \equiv \top$

$$T \equiv T$$

Premise.

Lemma 2.

Lemma 1.

First Order (or Predicate) Logic

Extends propositional logic from reasoning about propositions to reasoning about sets.

Symbol	Meaning	Example
X, Y, Z,	Set Variables	Let $Y = \{2, 3, 4\}$.
<i>x</i> , <i>y</i> , <i>z</i> ,	Member Variables	Let $z=2$.
$P(x), Q(y), \dots$	Predicate Variables	Let $Q(y) = y > 1$.
$\forall x \in X, P(x)$	Universal Quantifier	$\forall y \in Y, Q(y)$
$\exists x \in X, P(x)$	Existential Quantifier	$\exists z \in Y, z = 2$

Proof Techniques

Induction

- Allows us to prove that a property P(x) holds $\forall x \in X$. Provided X is well-founded.
- Informally well-founded means "no infinite decreasing chains".

Prove:
$$\forall n \in \mathbb{N} (\exists y \in \mathbb{N}, y = n + 1)$$

$$y=0+1$$
 Base Case. $n=0$ \Box

$$y = (k+1)+1$$
 Inductive Step. $n = k+1$
= $k+2$

Why should I care?

- Types are just sets with flavour!
- **▶ Bool** = { *True*, *False*}
- ▶ Int = $\{-\infty, ..., -2, -1, 0, 1, 2, 3, ..., \infty\}$
- Mixing of flavours is not allowed!
- ► { True, -2," Hello", 1} Can really only be said to be a "thing" flavoured set.

Propositions as Types. Proofs as Programs

Curry-Howard in Idris

What is truth?

Vacuous Truths

Statements that are true because the premise cannot be satisfied. Often arise as a base case in proofs by induction.

- $ightharpoonup F
 ightharpoonup q \equiv T$
- $\triangleright \forall x \in \{\}P(x).$

Natural Numbers

Some small examples in Idris