

0 - Data overview

train.csv: 9912 x 14 with 12 binary features

test.csv: unknown x 13

9912 RGB images in train folder

Features:

ld	Pawpula rity	Subject Focus	Eyes	Face	Near	Action	Accessory	Group	Collage	Human	Occlusion	Info	Blur
Hex string	Integer in [1,100]	{0,1}	{0, 1}	{0,1}	{0, 1}	{0, 1}	{0, 1}	{0, 1}	{0, 1}	{0, 1}	{0, 1}	{0, 1}	{0, 1}

0 - Constraints

Test data not given, need to submit Kaggle notebook

GPU runtime ≤ 9 hours

Don't overcomplicate!

Metric:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

0 - Project methodology

- 1. Exploratory data analysis
- 2. Simple models on tabular data
- 3. Models for score prediction from raw images

0 - Project methodology

- 1. Exploratory data analysis
- 2. Simple models on tabular data
 - a. Why? Ease of interpretability
- 3. Models for score prediction from raw images

Figure 1: Histogram of pawpularity scores (x=Scores, y=Number)

		feature	VIF
1 - Exploratory data analysis	0	Subject Focus	1.048292
Exploratory data arranyolo	1	Eyes	10.118170
Check VIF for each predictor < 10	2	Face	13.715668
Check vii loi each predictor < 10	3	Near	5.762924
	4	Action	1.010174
	5	Accessory	1.090942
	6	Group	1.163850
	7	Collage	1.452023
	8	Human	2.064939
	9	Occlusion	2.073562
	10	Info	1.412621
	11	Blur	1.595109

Check VIF for each predictor < 10 PCA

Subject Focus 1.048292 0 10.118170 Eyes 2 13.715668 Face 3 Near 5.762924 Action 4 1.010174 5 Accessory 1.090942

Group

Collage

Human

Info

Blur

Occlusion

6

7

8

9

10

11

feature

VIF

1.163850

1.452023

2.064939

2.073562

1.412621

1.595109

Separate into 10 score quantiles (1-10, 11-20, ...)

 Since predictors are <u>binary</u>, plot <u>frequency</u> of each <u>predictor in each quantile</u>

Approaches attempted

- 1. Logistic regression (as 100-class classification problem)
- 2. Linear regression
- 3. ElasticNet regression (L1 and L2 penalties)
- 4. Decision tree regressor
- 5. Random forest regressor (number of estimators = 50)

Assessment:

Mean 5-fold cross validation RMSE

Method	Logistic regression	Linear regression	ElasticNet	Decision tree regressor	Random forest regressor (DTR as base)
RMSE	23.386	20.600	20.589	20.854	20.763

Base decision tree

Too many leaf nodes!

Pruned decision tree

- alpha in [10⁻⁶, 10⁻¹]
- Optimal <u>alpha = 0.1</u>

Random forest regressor

- Find most significant features
- Simplest model within 1SD of lowest mean 10-fold CV RMSE has features:

Random forest regressor

- Find most significant features
- Simplest model within 1SD of lowest mean 10-fold CV RMSE has features:

Method	Logistic regression	Linear regression	ElasticNet	Decision tree regressor	Random forest regressor (DTR as base)
RMSE	23.386	20.600	20.589	20.854	20.763
				20.666	20.630

Other simple model adjustments:

- 1. Random forest with number of estimators = 300 (RMSE: 20.623)
- 2. XGBoost (RMSE: 20.812)
- Adding more estimators in sequence would only lead to overfitting

The end of the line for simple models?

Formulation of our problem:

- As regression: the output range of values should be constrained, but it isn't
- As classification: but some classes are more similar than others

Ordinal regression

learning a classifier $h: \mathcal{X} \to \mathcal{Y}$ from data $(X_1, Y_1), ..., (X_n, Y_n)$

where $X_i \in \mathcal{X}$, $Y_i \in \mathcal{Y} = \{1, 2, ..., k\} \forall i \in \{1, ..., n\}$ such that the average loss L over all (X, Y) pairs (i.e. $\mathbb{E}_{X \times Y}[L(Y, h(X))]$) is minimised. [2]

Loss differs from cross-entropy

- "5" misclassified as "6" less wrong than "5" misclassified as "12"
- But in cross entropy, same penalty

Method	Ordinal logistic regression	Linear ordinal ridge regression	Logistic regressi on	Linear regres sion	ElasticNet	Decision tree regressor	Random forest regressor (DTR as base)	XGB oost
RMSE	21.182	20.601	23.386	20.600	20.589	20.623	20.630	20.8 12

Other simple model adjustments:

- 1. Random forest with number of estimators = 300 (RMSE: 20.623)
- 2. XGBoost (RMSE: 20.812)
- Adding more estimators in sequence would only lead to overfitting

CNN architecture: ResNet

BatchNorm: increased network training speed and stability

Dropout: increases generalization

Sigmoid: maps all outputs into [0,1] which can be rescaled to [1,100]

Data preprocessing and augmentation

Hypothesise that significant cropping, random erasure, blur or colour jitter has unpredictable and adverse effect on Pawpularity

- Limit augmentation to horizontal flips on-the-fly to save RAM
- Resize to 224x224x3
- Normalize input channels of each images

<u>Training configuration</u>

- Stratified 80% train, 20% validation
- 20 epochs with early stopping
- MSE loss
- SGD, learning rate={various}, L2 regularization 0.001, momentum=0.9
- dropout=0.5

Why?

Empirically, research has shown dropout + L2 regularization + high momentum = best performance

Model/Para meters	Learning rate = 0.01	Learning rate = 0.001	Learning rate = 0.0001
ResNet-18	21.1673	18.5846	18.6221
ResNet-50	19.8544	<u>17.9965</u>	18.0132

Model output visualisation (t-SNE)

<u>Training configuration</u>

- Due to imbalance in score quantiles, improve generalizability with distribution-aware (weighted) RMSE loss function proposed by Yang et al.
- Computes average proportion of each score quantile in the training set, then
 use its inverse as weight
 - Weighted RMSE vs RMSE similar to LDAM vs cross-entropy

Let $p_i \ \forall i \in \{0,...,9\}$ denote the proportion of pets with scores in range [10i+1,10(i+1)]. Let $m = \max\{p_0,...,p_9\}$. Our weighted RMSE loss is $RMSE_{weighted} = \sqrt{\frac{1}{n}\sum_{i=1}^n \frac{m}{p_i}(y_i - \hat{y}_i)^2}$.

<u>Training configuration for new model</u>

- Stratified 80% train, 20% validation
- 20 epochs with early stopping
- Distribution-aware RMSE loss
- SGD, learning rate={various}, L2 regularization 0.001, momentum=0.9
- dropout=0.5

Training configuration for new model

• Model A (MSE loss, learning rate = 0.001): 17.9965

Model/Para meters	Learning rate = 0.01	Learning rate = 0.001 (Model B)	Learning rate = 0.0001
ResNet-50	17.1055	<u>13.3793</u>	13.6822

Kaggle test set results

- Not great...
- Perhaps alternative CNN structures?
 - EfficientNet

Model/Para meters	Model A	Model B
Test set RMSE	20.4521	<u>19.11171</u>

Why EfficientNet?

- Grid search for optimal scaling coefficient for each dimension of network
- MBConv blocks computationally cheap
 - Turns convolution into depthwise THEN pointwise
- Linear bottleneck in final layer of each block

EfficientNet training configuration (Model C)

- Stratified 80% train, 20% validation
- 20 epochs with early stopping
- MSE loss
- Adam, learning rate=0.001 (Adam converges faster)
- dropout=0.2

Note: Validation RMSE continuing to decrease

Suggesting further improvement possible

Model/Pa rameters	Model A	Model B	Model C
Best validation RMSE	17.9965	<u>13.3793</u>	14.8244

Kaggle test set results

- Model C outperformed all previous models, even without using weighted RMSE!
- Model C with weighted RMSE may perform even better, but didn't submit due to time constraints

Model/P aramete rs	Model A	Model B	Model C
Test set RMSE	20.4521	19.1117	<u>18.0441</u>

- Build CNN for automatically labelling a picture's metadata
 - May help us associate certain features with Pawpularity!

- Build CNN for automatically labelling a picture's metadata
 - May help us associate certain features with Pawpularity!
- Separate Pawpularity by animal species and breed (collect more info)

- Build CNN for automatically labelling a picture's metadata
 - May help us associate certain features with Pawpularity!
- Separate Pawpularity by animal species and breed (collect more info)
- Rigorous search of hyperparameter space (eg cross-validation with NN)
- CNN ensembling

- Build CNN for automatically labelling a picture's metadata
 - May help us associate certain features with Pawpularity!
- Separate Pawpularity by animal species and breed (collect more info)
- Rigorous search of hyperparameter space (eg cross-validation with NN)
- CNN ensembling
- Don't use CNN for feature extraction! Vision transformer?
 - Encode each image as sequence of patches
 - Feed into encoder
 - Self-attention detects relationships between patches

5 - Conclusion

