

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 9-Circuite logice secvențiale: registre numărătoare, pila de registre

Outline

- □ Registre
 - Paralel
 - Serie
- Numărătoare
 - Sincron
 - Asincron
- ☐ Pila de registre

Registre

- Reprezinta o colectie/grupare de n bistabile
- □ Nr maxim de valori a unui registru pe n biti – 2ⁿ valori binare
- Folosit pentru memorarea unui cuvant de date/unei stari curente a sistemului

Registru cu încărcare în paralel – iesire în paralel

☐ La fiecare front crescator valoarea registrului se actualizeaza cu *Data In*

Registru cu încărcare în paralel – ieșire în paralel

- ☐ Prezinta semnale de incarcare (*Load*)
- La fiecare front crescator valoarea registrului se actualizeaza cu Data In, daca este activ semnalul de Load

Load	Stare viitoare (<i>Data Out</i>)
0	Nu se schimba
1	Data In

Registru cu încărcare paralelă – iesire paralelă

Registru cu încărcare în paralel – ieșire în paralel

Registru cu încărcare serie – ieșire în paralel

- Functia de deplasare (shift-are) in interiorul registrului
- Datele se introduc serial in registru o singura intrare de date
- La fiecare activare a semnalului de Load (Shift), datele se deplaseaza in cadrul registrului
- Incarcarea a n biti necesita n ciclii de clock

Registru cu încărcare în serie – ieșire în paralel

Registru cu încărcare serie – ieșire în paralel

Shift	Starea Curenta	Starea viitoare
0	Q3Q2Q1Q0	Q3Q2Q1Q0 (nu se schimba)
1	Q3Q2Q1Q0	DataInQ3Q2Q1

Registru cu intrare seriala – iesire paralela

Registre - clasificare

Număratoare

- circuite secvenţiale sincrone a caror diagrama de stare are un singur ciclu, si baleiază o secvenţă de stări impuse de proiectant.
- ☐ de regulă este inițializat cu starea ,,0", după care la fiecare impuls de numărare, comuta într-o nouă stare.
- caracterul asincron al unui numărător este dat de faptul că impulsul de tact nu comandă simulatan toate bistabilele numărătorului.
- Funcție de direcția de parcurgere a secvenței de stări:
 - numărător în sens crescător,
 - numărător în sens descrescător,
 - numărător reversibil (ambele sensuri).

Numarator asincron- realizat cu bistabile T

Numărător asincron cu memorarea semnalului de anulare

Observație

- □ Dacă intrările J=K=,,1", bistabilul J-K are același comportament cu un bistabil T cu intrarea T=,,1";
- Iniţial prin activarea (,,0") intrării asincrone de reset, numărătorul se aduce în starea 0 iar apoi sub comanda impulsului de numărare parcurge secvenţa de stări;

Determinați:

- Sensul de numărare și secvența de stări parcurse;
- Elaborați diagrama de timp pentru o secvență completă de numărare.

Numărător asincron crescător modulo 5

Starea	Q_2	Q_1	Q_0
	22	21	20
000	0	0	0
001	0	0	1
010	0	1	0
011	0	1	1
100	1	0	0
101	1	0	1
110	1	1	0
111	1	1	1

Numărător asincron cu memorarea semnalului de anulare

Numărător asincron crescător modulo 5 cu memorarea semnalului de anulare

Numărătoare asincrone: sumar

- Impulsul de numărare nu comandă simultan toate bistabilele;
- Dezavantaj: întârzierile introduse de bistabilele numărătorului pot genera impulsuri parazite la decodificare;
- Dacă nu sunt filtrate aceste impulsuri pot genera comenzi eronate în sistem.

Numarator sincron

□ Numărătoarele îşi increm/decrem conținutul când primesc semnal de activare/numărare (E)

Numarator sincron

Se obţine din numărătorul anterior înclocuind HS ci half add/substract cell

□ Tabel de adevăr:

Ε	D	Operations						
0	X	No change						
1	0	Count up						
1	1	Count down						
Operation table								

□ Tebel de adevăr:

D	Q,	C,	C _{i+1} D _i						
0	0	0	0 0						
0	0	1	0 1						
0	1	0	0 1						
0	1	1	1 0						
1	0	0	0 0						
1	0	1	1 1						
1	1	0	0 1						
1	1	1	0 0						
HAS truth table									

$$D_i = Q_i \oplus C_i$$

$$C_{i+1} = D'Q_iC_i + DQ_i'C_i$$

Numărător sincron în ambele sensuri cu o valoare de start încărcabilă

Load	Ε	D	Operations						
0	0	X	No change						
0	1	0	Count up						
0	1	1	Count down						
1	X	X	Load the input						
Operation table									

Numărător sincron în ambele sensuri cu o valoare de start încărcabilă

Load	E	D	Operations						
0	0	X	No change						
0	1	0	Count up						
0	1	1	Count down						
1	X	X	Load the input						
	Operation table								

Numărător sincron în ambele sensuri cu o valoare de start încărcabilă

Aplicație

Să se implementeze un numărător crescător modulo M=10 folosind următorul numărător:

Load	E	D	Operations					
0	0	X	No change					
0	1	0	Count up					
0	1	1	Count down					
1	X	X	Load the input					
Operation table								

Aplicație: soluție

Numărătoare mixte (I)

□ Blocuri asincrone conectate sincron

Numărătoare mixte (II)

□ Blocuri sincrone conectate asincron

Pila de registre

Colecție de registre pentru accesul rapid al informației:

Pila de registre

☐ Celula pilei de registre 1 port citire/ 1 port scriere:

Pila de registre: aritectura

Realizaţi un numărător folosind FF-uri de tip J-K care numără după următoarea secvenţă:

^{*}Exemplu preluat din curs LD 2013 - Adrian Mihailescu

- Indicaţii:
- construiţi tabelul de adevăr pentru determinarea expresiei intrărilor J-K
- 2. Completați J-K funcție de starea următoare (ex. starea curentă 0, starea următoare e trecută pe rândul următor: st. 2) și de tabelul excitațiilor

Q _n	Q_{n+1}	J	K
0	0	0	х
0	1	1	Х
1	0	X	1
1	1	Х	0

- Indicaţii:
- construiţi tabelul de adevăr pentru determinarea expresiei intrărilot J-K
- 2. Completați J-K funcție de starea următoare (ex. starea curentă 0, starea următoare e trecută pe rândul următor: 2, ș.m.d.)

I	Starea	Q_2	Q,	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
	0	0	0	0	0	X	1	X	0	X
	2	0	1	0	1	X	X	0	0	X
Ł										

- Indicaţii:
- construiţi tabelul de adevăr pentru determinarea expresiei intrărilot J-K
- 2. Completați J-K funcție de starea următoare (ex. starea curentă 0, starea următoare e trecută pe rândul următor: 2, ș.m.d.)

Starea	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0	
0	0	0	0	0	X	1	X	0	X	
2	0	1	0	1	X	X	0	0	X	
6	1	1	0	X	0	X	0	1	X	
7	1	1	1	X	0	X	1	X	0	
5	1	0	1	X	0	0	X	X	1	
4	1	0	0	X	1	0	X	0	X	
0	0	0	0							

- ☐ Indicaţii:
- Minimizăm funcţiile Ji(Q0,Q1,Q2) Ki(Q0,Q1,Q2)
 Stările prin care nu trece numărătoul sunt notate cu "don't care"

$$J_0 = Q_2 Q_1$$

$$K_0 = \overline{Q_1}$$

$$J_1 = \overline{Q_2}$$

$$J_2 = Q_1$$

$$K_1 = Q_0$$

$$K_{2}$$
 Q_{2}
 Q_{000}
 Q_{000}

$$K_2 = \overline{Q_0} \overline{Q_1}$$

4. Implementare cu FF-uri J-K M-S şi porţi logice ŞI:

4. Implementare cu FF-uri J-K M-S şi porţi logice ŞI-NU:

Întrebări?

Enough Talking Let's Get To It!!Brace Yourselves!!

