Occupancy Detection MT7038

Anton Stråhle & Max Sjödin

Fall 2020

Data

The occupancy status of a room was observed for a few days. Snapshots of the features below were taken every minute.

- Features
 - ▶ Temperature
 - CO2
 - Humidity
 - HumidityRatio
 - ▶ Light
- Response
 - Occupancy
 - Occupied
 - Unoccupied

Brief Exploration

Figure: Boxplots of Features: Standardized and unstandardize

Brief Exploration

- Unbalanced data set
 - ▶ Many more unoccupied data points than occupied

As the data set consists of minutley snapshots the sets cannot be combined and then resampled as we might have almost identical data points in all three sets.

Our solution to this problem was to upsample the Occupied class in both the training and validation sets so that the we had an even split in both.

- ► SVM
- ► Logistic Regression
 - ▶ Regular, Boosted & Weighted

- Why? Good for classification and should generalize well with low costs
- How? ▶ Using the package e1071 and the function svm
 - Linear, polynomial and radial kernels

Kernel	Cost	TestAccuracy
Linear	0.00013	0.83940
Radial	0.00100	0.83490
Polynomial Degree 4	0.00004	0.83752

Figure: SVM Accuracies

SVM

Figure: Linear

Figure: Polynomial

Figure: Radial

	Linear		Radial		Polynomial	
	0	1	0	1	0	1
0	1409	144	1376	124	1391	137
1	284	828	317	848	302	835

Figure: Confusion Matrices

Kernel	Cost	TestAccuracy
Linear	0.00013	0.83940
Radial	0.00100	0.83490
Polynomial Degree 4	0.00004	0.83752

Figure: SVM Accuracies

Logistic regression

- Why? ▷ Good for classification and can be further optimized with boosting algorithms and regularization
- How? ▶ Regular GLM, Boosting, Lasso and Ridge
 - ▶ Boosting using the package mboost and the function glmboost
 - ▶ Lasso/Ridge using the package glmnet and the function glmnet
 - ightharpoonup Find optimal λ manually using validation set

Logistic regression

Method	TestAccuracy
Logit	0.86979
Boosting	0.85854
Lasso	0.85516
Ridge	0.84390

Figure: Logistic Regression Accuracies

Discussion

Method	TestAccuracy
Linear	0.97861
Polynomial Degree 2	0.97861
Logit	0.97861
Boosting	0.97861
Lasso	0.97861
Radial	0.97824
Ridge	0.97824

Method	TestAccuracy
Logit	0.86904
Boosting	0.85854
Lasso	0.85516
Ridge	0.84015
Linear	0.83940
Polynomial Degree 4	0.83527
Radial	0.83452

Figure: Including Light

Figure: Exluding Light

Improvements

- ▶ The methods explored
- ▷ Different ensemble methods
- ▶ Further exploration of the missclassified points