

Partial Differential Equations: 偏微分方程

Gtm214 and Evans 笔记

作者: 果果

目录

第1章	Laplace Eqution	2
1.1	Recall math analysis and Study Partial differential equation	2
	1.1.1 integral formula	2
	1.1.2 Laplace equation and Harmonic function	3
	1.1.3 Dirichlet problem of laplace equation	4
1.2	Mean value principle	4
1.3	Interior gradient estimate	5
第2章	Maximum prinple	7
2.1	Elliptic partial differential equation of second order	7
2.2	weak and strong maximum prinple	7
第3章	Possion eqution	9
第4章	Sobolve space and Hölder space	10
4.1	Weak derivative	10
4.2	sobolve space	10
4.3	Approximation	11
4.4	Extensions	12
4.5	Trace	12
4.6	Sobolev inequality	12
4.7	Morrey's inequality	13
4.8	General Sobolev inequality	14
4.9	COMPACTNESS	14

Introduction

算是自己的第一本 $ext{LTEX}$ 书,以前只是打一些小型笔记,希望可以对我的研究生生涯有所帮助,说是笔记,不如说抄书。

第1章 Laplace Eqution

拉普拉斯方程,是连接数学分析和偏微分方程的一个桥梁

本文记号如下

- 拉普拉斯算子: Δ
- 哈密顿算子: ▽
- 梯度: grad
- 散度: div
- 方向导数: v
- •
- •
- •
- •

1.1 Recall math analysis and Study Partial differential equation

先回顾需要用到的数学分析的定理

1.1.1 integral formula

定理 1.1 (分部积分)

设 $u, v \in C^1[a, b]$, 则

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du$$

分部积分是一维的情况,通过考虑多元(高维)的情况,推广为下面的公式

定理 1.2 (格林第一公式)

设 $w, v \in C^2(\Omega)$, 则

$$\int_{\Omega} \nabla w \nabla v dx + \int_{\Omega} v \Delta w dx = \int_{\partial \Omega} v \frac{\partial w}{\partial v} dS$$

证明

$$\int_{a}^{b} u dv + \int_{a}^{b} v du = uv \Big|_{a}^{b} \Longrightarrow \int_{\Omega} u \partial_{i} v dx + \int_{\Omega} v \partial_{i} u dx = \int_{\partial \Omega} u v dS$$

$$\int_{\Omega} \partial_i w \partial_i v dx + \int_{\Omega} v \partial_{ii} w dx = \int_{\partial \Omega} v \partial_i w dS$$

再将i从1加到n则有,

$$\int_{\Omega} \nabla w \nabla v dx + \int_{\Omega} v \Delta w dx = \int_{\partial \Omega} v \frac{\partial w}{\partial v} dS$$

证毕

 \bigcirc

定理 1.3 (格林第二公式)

设 $u, v \in C^2(\Omega)$, 则

$$\int_{\Omega} (v\Delta w - w\Delta v) dx = \int_{\partial\Omega} v \frac{\partial w}{\partial v} - w \frac{\partial v}{\partial v} dS$$

证明 由定理1.2得

$$\int_{\Omega} \nabla w \nabla v dx + \int_{\Omega} v \Delta w dx = \int_{\partial \Omega} v \frac{\partial w}{\partial v} dS$$

由于w,v的对称性,交换w,v的位置,

$$\int_{\Omega} \nabla v \nabla w dx + \int_{\Omega} w \Delta v dx = \int_{\partial \Omega} w \frac{\partial v}{\partial v} dS$$

上式相减, 获得了格林第二公式, 证毕。

1.1.2 Laplace equation and Harmonic function

这节开始算是进入偏微分方程的内容了。

定义 1.1 (调和函数)

u is a harmonic function $\iff \Delta u = 0$

*

引理 1.1

u is a harmonic function, A is an orthogonal matrix, then V(x) = u(Ax) is a harmonic function. 即调和函数在正交变换下仍然调和,长度是调和的不变量。

C

引理 1.2

u is a harmonic function $\Longleftrightarrow u(x) = f(r), x \in \mathbb{R}^n, r = |x|$

通过引 1.2 将关于 x 的偏微分方程转化为关于 r 的常微分方程,由链式法则得:

$$\partial_{i}u = f'(r)\partial_{i}r = f'(r)\frac{x_{i}}{r}, \partial_{ii}u = f''(r)\frac{x_{i}^{2}}{r^{2}} + f'(r)\frac{r^{2} - x_{i}^{2}}{r^{3}}$$
$$\Delta u = 0 \Longleftrightarrow \sum_{i=1}^{n} \partial_{ii}u = 0$$

$$\sum_{i=1}^{n} \partial_{ii} u = f''(r) + f'(r)(\frac{n-1}{r}) = 0 \iff f'(r)r^{n-1} = C_1$$

则可以解出 f(r),

$$f(r) = \begin{cases} C_1 lnr + C_2, n = 2\\ \frac{C_1}{2 - n} r^{2 - n} + C_2, n \ge 3 \end{cases}$$

定义 1.2 (基本解 fundamental soluation)

$$\Gamma(x) = \begin{cases} \frac{1}{2\pi} \ln|x|, n = 2\\ \frac{1}{2(2-1)w_n} |x|^{2-n}, n \ge 3 \end{cases}$$

 $w_n = ||\partial B_1||_n$

基本解的性质:

• x = 0 为奇点 singularity, 且可积

•
$$\Delta\Gamma = 0$$
 in $R \setminus \{0\}$

•

$$\int_{\partial B} \frac{\partial \Gamma}{\partial \nu} dS = 1, r > 0$$

1.1.3 Dirichlet problem of laplace equation

定理 1.4 (格林恒等式 Green identity)

设 $u \in C^2[a,b]$, 则

$$u(x) = \int_{\Omega} \Gamma(x - y) \Delta u(y) dy - \int_{\partial \Omega} \left[\Gamma(x - y) \frac{\partial u}{\partial v} - u \frac{\partial \Gamma}{\partial v} \right] dS_y$$

定理 1.5 (迪利克雷问题 Dirichlet problem)

$$\left\{ \begin{array}{ll} \Delta u = 0, in & \Omega \\ u = \phi, on & the & \partial \Omega \end{array} \right.$$

我们先讲目光放在 Ω 为 balls 的问题上面

定义 1.3 (格林函数 Green' function 和 possion 核)

$$G(x, y) = \Gamma(x, y) - \Phi(x, y)$$

 $K(x, y) = \frac{\partial G}{\partial y}$

然后 Φ 在内部拉普拉斯等于 0,在边界等于基本解。将边界上是任意函数转化为固定的函数. 再通过格林第二公式和格林恒等式能得到

$$u(x) = \int_{\partial \Omega} \phi(y) \frac{\partial G}{\partial v} dS_y$$

会产生两个问题, G(x,y) 是否存在, 如果存在, 他是否真的是解。

1.2 Mean value principle

调和函数的平均值原则, 本文后面简称 MVP, Ω is a bounded domain in $R^n, u \in C(\Omega)$.

定理 1.6 (平均值原则 Mean value principle)

if $\forall B_{r(x)} \in \Omega$

$$u(x) = \frac{1}{w_n r^{n-1}} \int_{\partial B_{r(x)}} u(y) dS_y$$

or

$$u(x) = \frac{n}{w_n r^n} \int_{B_{r(x)}} u(y) dy$$

then u satisfies MVP

我们首先断言,上面两个等式完全等价. 且 $||\partial B_r||_n = w_n r^n - 1$, $||B_r||_n = \frac{w_n r^n}{n}$

$$u(x) = \frac{1}{w_n r^{n-1}} \int_{\partial B_{r(x)}} u(y) dS_y$$

$$r^{n-1}u(x) = \frac{1}{w_n} \int_{\partial B_{R(x)}} u(y) dS_y$$

左右同时对r变上限积分

$$\int_0^r s^{n-1}u(x)ds = \frac{1}{w_n} \int_0^r \int_{\partial B_{s(x)}} u(y)dS_y ds$$

$$\frac{u(x)r^n}{n} = \frac{1}{w_n} \int_{B_{r(x)}} u(y)dy$$

证毕

定理 1.7

(1)if $u \in C^2(\Omega)$ is harmonic in Ω then u satisfies the MVP in Ω

(2)if $u \in C(\Omega)$ satisfies the MVP, then u is smooth and harmonic in Ω

(1)

证明 $\forall B_{r(x)} \in \Omega, \rho \in (0, r),$

$$\int_{B_{\rho(x)}} \Delta u(y) dy = \int_{\partial B_{\rho(x)}} \frac{\partial u}{\partial \nu} dS = \rho^{n-1} \frac{\partial}{\partial \rho} \int_{\partial B_{\rho(x)}} u(x + \rho w) dS_w$$

u is harmonic, $\Delta u = 0$,

$$\rho^{n-1} \frac{\partial}{\partial \rho} \int_{\partial B_{1(x)}} u(x + \rho w) dS_w = 0$$

令ρ趋于0

$$\int_{\partial B_{1(x)}} u(x + \rho w) dS_w = C = w_n u(x)$$

(2) 略

注 u is subharmonice

$$\Delta u > 0, u(x) < \frac{1}{w_n r^{n-1}} \int_{\partial B_{r(x)}} u(y) dS_y$$

u is superharmonice

$$\Delta u < 0, u(x) > \frac{1}{w_n r^{n-1}} \int_{\partial B} u(y) dS_y$$

1.3 Interior gradient estimate

定理 1.8 (Interior gradient estimate)

u is harmonic $\in B_R(x_0)$,then

$$|Du| \leq \frac{n}{R} \max_{\partial B} |u|$$

 \Diamond

证明 通过旋转变换可以将 $Du(x_0) = \partial u = (\partial u(x_0), 0, 0, 0, \dots), \forall r > 0$, 根据 MVP 有

$$\begin{split} \partial u(x_0) &= \frac{n}{w_n r^n} \int_{B_{r(x_0)}} \partial u(y) dy = \frac{n}{w_n r^n} \int_{\partial B_{r(x_0)}} u(y) v_1 dS_y \\ &|\partial_i u| \leq \frac{n}{w_n r^n} \int_{\partial B_{r(x_0)}} |u(y)| dS_y \leq \frac{n}{w_n r^n} \max_{\partial B} |u| w_n r^{n-1} = \frac{n}{R} \max_{\partial B} |u| \end{split}$$

并且可以推广到高维形式

定理 1.9

u is harmonic $\in B_R(x_0)$,then

$$|D^{\alpha}u| \leq \frac{C}{R^k} \max_{\partial B} |u|$$

其中
$$|\alpha| = k, C = C(n, k)$$

 \sim

定理 1.10 (Liouville theorem)

 $u: \mathbb{R}^d \to \mathbb{R}$ be harmonic and bounded. Then u is constant.

 $_{\odot}$

证明 由导数估计不等式

$$|Du| \le \frac{n}{R} \max_{\partial B} |u|$$

令 R 趋于正无穷,则

$$Du = 0, u = C$$

定理 1.11 (Harnack inequality)

u is harmonic, u>0 in $B_{(x_0,r)}$, for every subdomain, $\Omega'\subset\subset\Omega$, there exists a constant with

$$\max_{\Omega'} u \le c \inf_{\partial \Omega'} u$$

注 Ω' C C Ω 表示 Ω' 是 Ω 的子集并且 Ω' 的闭包是紧的

m

证明 我们考虑特殊的 $\Omega' = B_{(x_0,r)}, B_{(x_0,4r)} \subset \Omega \, \forall y_1, y_2 \in \Omega'$

$$\begin{split} u(y_1) &= \frac{n}{w_n r^n} \int_{B_{r(y_1)}} u(y) dy \\ &\leq \frac{n}{w_n r^n} \int_{B_{2r(x_0)}} u(y) dy \\ &= \frac{n3^n}{w_n 3^n r^n} \int_{B_{2r(x_0)}} u(y) dy \\ &\leq \frac{n3^n}{w_n 3^n r^n} \int_{B_{3r(y_2)}} u(y) dy \\ &= 3^n u(y_2) \end{split}$$

两个不等式是由区间的包含关系获得的,并且这里的 y_1, y_2 是任取的,特别的,取到最大值与最小值的时候 Harnack inequality 成立,说明了调和函数内部的任意两个点可以互相控制

第2章 Maximum prinple

这一章需要探究二阶线性椭圆算子的极大值原理, 在拉普拉斯算子的内容中, 我们运用了旋转不变性, 所有我们需要寻求其他不同的方法来探究. 并且这一章我们的 Ω 是 \mathbb{R}^n 的一个有界子区域, 并且 $f \in C^2(\Omega)$

2.1 Elliptic partial differential equation of second order

定义 2.1

$$Lu(x) = \sum_{i,j=1}^{n} a_{ij} u_{x^i y^j} + \sum_{i=1}^{n} b_i u_{x^i} + c(x) u(x)$$

- Symmetry: 其中 A 是二次项系数矩阵, 我们要求 A 是对称矩阵, 这个限定不是那么重要
- Ellipticity: 存在常数 $\lambda > 0$, 使得

$$\lambda |\xi|^2 \le \sum_{i,j=1}^n a_{ij} \xi_i \xi_j$$

即系数矩阵中 A 对于任何 x 是正定的,且所有特征值大于 $\lambda > 0$

• Boundedness of the coefficients: 存在常数 K, 使得 $|a_{ij}|$, $|b_i|$, $|c(x)| \leq K$ 则称 L 为二阶线性椭圆算子,显然,拉普拉斯算子的 $\mathbf{A} = \mathbf{E}$, $b_i = 0$, c(x) = 0,满足上列条件是一个特殊的椭圆算子. 并且我们需要对 c 加以限制,才能得到极大值原则.

2.2 weak and strong maximum prinple

定理 2.1 (次调和的弱极值原理)

 $u \in C^2(\Omega) \cap C^0(\bar{\Omega}), \Delta u \geq 0$ in Ω . then

$$\max_{\Omega} u = \max_{\partial \Omega} u$$

证明 先考虑 $\Delta u > 0$ 的情况,如果极大值取到内部 x_0 ,知道 $\Delta u(x_0) \leq 0$ 矛盾对于一般的情况构造 $v(x) = e^{x_1}$,则 $\Delta v = v \geq 0$,任取 $\varepsilon > 0$,有 $\Delta(u + \varepsilon v) > 0$,得到

$$\max_{\Omega} u + \varepsilon v = \max_{\partial \Omega} u + \varepsilon v$$

再令 ε 趋于0,得证

我们需要将拉普拉斯算子推广到一般的二阶椭圆算子

定理 2.2 (椭圆算子的弱极值原理)

假设 c=0, 并且 $Lu \geq 0$, 那么

$$\max_{\Omega} u = \max_{\partial \Omega} u$$

证明 同上定理, 先考虑 Lu > 0 的情况, 如果在内部取到最大值, 则 $u_{x_i}(x_0) = 0$, 系数矩阵 A 半负定. $Lu \le 0$, 矛盾回到一般情况, 构造函数 $v(x) = e^{\alpha x_1}$, $\alpha > 0$

$$Lv = (\alpha^2 a_1 1 + \alpha b_1)v(x)$$

当α足够大时间,

$$Lv = L(u + \varepsilon v) > 0$$

同理得证

推论 2.1 (Dirichlet problem 解的唯一性)

 $Lu = f \ in \ \Omega$ $u = \psi \ on \ \partial \Omega$

最多只有一个解

证明 假设有两个解 $u_1, u_2, \diamondsuit W = u_1 - u_2, 则$

$$Lw=0\ in\ \Omega$$

$$w=0\ on\ \partial\Omega$$

 $\emptyset \ w \le 0, -w \le 0, w = 0u_1 = u_2$

引理 2.1 (Hopf)

 $c(x) \le 0$

 $Lu \geq 0$ in $\Omega \subset \mathbb{R}^n$

取 $x_0 \in \partial \Omega$ 满足

- $u(x_0) \ge u(x)$
- $u(x_0) \ge 0$
- u 在 x₀ 连续

那么

$$\frac{\partial u}{\partial v}(x_0) > 0$$

 $\frac{\partial u}{\partial v}(x_0) \ge 0$

是显然的, 我们要证不等关系严格成立。暂略

定理 2.3 (椭圆算子的强极值原理)

 $c=0, Lu \geq 0$ 则若 u 在内部取到最大值,则 u 是常数

 $c \le 0, Lu \ge 0, u \ge 0$ 则若 u 在内部取到最大值,则 u 是常数

第3章 Possion eqution

第4章 Sobolve space and Hölder space

进入比较现代的理论了, 前面算古典理论.

4.1 Weak derivative

定义 4.1 (弱导数 weak derivative)

设 $u, v \in L^1_{loc}(\Omega)$, 称 $v \in U$ 的 α 阶弱导数, 记为 $D^{\alpha}u = v$, 若

$$\int_{\Omega} u D^{\alpha} \phi dx = (-1)^{|\alpha|} \int_{\Omega} D^{\alpha} u \phi dx$$

对任意的 $\phi \in C_c^{\infty}(\Omega)$

引理 4.1 (弱导数的唯一性)

若α阶弱导数存在,则在零测度外唯一

 \odot

4.2 sobolve space

固定 $1 \le p \le \infty$, k 是非负整数

定义 4.2 (sobolev space)

Sobolev space $W^{k,p}(\Omega)$ 包含了所有局部可积函数 $u:\Omega\to R$, 满足对任意的多重指标 α , $|\alpha|\le k$, $D^\alpha u$ 在弱导意义下存在,且 $D^\alpha u\in L^p(\Omega)$

*

定义 4.3 (sobolev 空间的范数)

 $u \in W^{k,p}(\Omega)$ 的范数为

$$||u||_{W^{k,p}} = \left(\sum_{|\alpha| \le k} \int_{\Omega} |D^{\alpha}u|^p dx\right)^{\frac{1}{p}}, 1 \le p < \infty$$

$$||u||_{W^{k,p}} = \sum_{|\alpha| \le k} ess \sup_{\Omega} |D^{\alpha}u|, p = \infty$$

$$H^k(\Omega) = W^{k,2}(\Omega)$$

容易知道它是一个 Hilbert space. 且 $H^0(\Omega) = L^2(\Omega)$

若 n=1 的时候, 且 Ω 是开区间, 则 $u \in W^{1,p}$ 当且仅当 u 是绝对连续函数 (导数几乎处处存在), 且属于 $L^{(\Omega)}$, 不幸的是, 这个结论只对 n=1 成立, 在一般情况下的函数要么不连续, 要么无界

定理 4.1

设 $u \in W^{1,p}((0,1))$ 则 u 几乎处处等于一个绝对连续函数, 存在 $1 \le p < \infty$, 且 u' 几乎处处存在, $u' \in L^p((0,1))$

此外 sobolve space 是一个好空间, 把他看作函数空间, 则是一个 Banach space

定义 4.4 (Hölder continues)

对于 $\gamma \in (0,1]$, 如果函数 $u: \Omega \to R$, Ω 为开集, 满足

$$|u(x) - u(y)| \le C|x - y|^{\gamma}$$

则称 u 为 γ 阶 Hölder 连续的。

容易发现, 如果函数是 Hölder 连续,则函数是连续的, $\frac{|u(x)-u(y)|}{|x-y|^{\gamma}} \leq C, x \neq y$ 定义 Hölder 半范数

$$[u]_{C^{0,r}(\Omega)} = \sup_{\Omega} \frac{|u(x) - u(y)|}{|x - y|^{\gamma}}$$

(注意他不一定正定)

定义为 γ 阶 Hölder 范数

$$||u||_{C^{0,r}(\Omega)} = ||u||_{C(\Omega)} + [u]_{C^{0,r}(\Omega)}$$

PDE 中的函数经常是需要求微分的,于是我们做更一般的定义:

定义 4.5 (Hölder Space)

记为 $C^{k,r}(\Omega)$,他包含了所有函数 u 是 k 阶连续可微,且 u 的 k 阶偏导数有界且为为 γ 阶 Hölder 连续且 他的范数为

$$||u||_{C^{k,r}(\Omega)} = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{C(\Omega)} + \sum_{|\alpha| = k} [u]_{C^{0,r}(\Omega)}$$

函数空间 $C^{k,r}(\Omega)$ 为 Banach 空间

定义 4.6

 $W^{k,p}_0(\Omega)$ 为 C^∞_c 在 $W^{k,p}(\Omega)$ 中的闭包

4.3 Approximation

定义 4.7 (磨光算子)

取一个 $\phi \in C_c^{\infty}$, 满足

$$\int_{R^n} \phi dx = 1$$

$$spport(\phi) = B(0, 1)$$

$$\phi_{\varepsilon} = \frac{1}{\varepsilon^n} \phi(\frac{x}{\varepsilon})$$

 $\Leftrightarrow f \in L^p_{loc}, f^{\varepsilon} = \phi_{\varepsilon} * f \longrightarrow f \quad in \quad L^p_{loc}$

定理 4.2 (光滑函数内部的局部逼近)

设 $u \in W^{k,p}(U), 1 \le p < \infty$. 令 $u^{\varepsilon} = \phi_{\varepsilon} * u$, 那么有

$$u^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$$

$$u^{\varepsilon} \longrightarrow u \quad in \quad W_{loc}^{k,p}(U), \varepsilon \longrightarrow 0$$

 $U_{\varepsilon} = \{x \in U, dist(x, \partial U) > \varepsilon\}$

定理 4.3 (光滑函数的整体逼近)

设 $u \in W^{k,p}(U)$,U 有界, $1 \le p < \infty$. 则存在 $u_m \in C^{\infty} \cap W^{k,p}(U)$ 使得

$$u_m \longrightarrow u$$
 in $W^{k,p}(U)$

定理 4.4 (包含边界的光滑函数的整体逼近)

设 $u \in W^{k,p}(U)$,U 有界,且 $\partial U \neq C^1$ 的 $1 \leq p < \infty$.则存在 $u_m \in C^{\infty}(\overline{U})$ 使得

$$u_m \longrightarrow u \quad in \quad W^{k,p}(U)$$

4.4 Extensions

定理 4.5 (扩张定理)

U 有界,且 ∂U 是 C^1 的,取有界开集 V,使得 $U \subset C$ V,则存在有界线性算子 $\mathcal E$ 满足

$$\mathcal{E}: W^{1,p}(U) \longrightarrow W^{1,p}(\mathbb{R}^n)$$

 $\mathcal{E}u = u \quad in \quad U \quad a.e.$

 $spt(\mathcal{E}u)\subset V$

存在常数 C 使得

$$||\mathcal{E}u||_{W^{1,p}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(U)}$$

4.5 Trace

定理 4.6 (迹定理)

U有界,且 ∂U 是 C^1 的,则存在有界线性算子T满足

$$\mathcal{T}: W^{1,p}(U) \longrightarrow L^p(\partial U)$$

$$\mathcal{T}u = u|_{\partial U} \quad if \quad u \in W^{1,p}(U) \cap C(\overline{U})$$

$$||\mathcal{T}u||_{L^p(\partial U)} \le C||u||_{W^{1,p}(U)}$$

且这个不等式称为迹不等式,有一个重要的问题,什么样的函数的迹为零

定理 4.7

U有界,且 ∂U 是 C^1 的,设 $u \in W^{1,p}(U)$,则

$$\mathcal{T}u = 0 \Longleftrightarrow u \in W_0^{1,p}(U)$$

4.6 Sobolev inequality

我们先令 $1 \le p < n, u \in n$ 元函数,我们来探究 p, q 取何值时, 会有

$$||u||_{L^q(\mathbb{R}^n)} \le C||Du||_{L^p(U)}$$

我们先考虑特殊的情况, $u_k = u(kx)$ 带入计算

$$|u||_{L^q(\mathbb{R}^n)} < Ck^{1-\frac{n}{p}+\frac{n}{q}}||u||_{L^p(U)}$$

令指数为零, $1-\frac{n}{p}+\frac{n}{q}=0$, 解得 $q=\frac{np}{n-p}$, 且有关系 $\frac{1}{p}-\frac{1}{n}=\frac{1}{q}$, 我们定义 p 的 sobolev 共轭

$$p^* = \frac{np}{n-p}$$

定理 4.8 (Gagliardo-Nirenberg-Sobolev 不等式)

 $1 \le p < n$,则存在只依赖 p, n 的常数 C 使得

$$||u||_{L^{p^*}(R^n)} \le C||Du||_{L^p(R^n)}$$

for all $u \in C^1_c(\mathbb{R}^n)$

 \odot

定理 4.9 (估计 $W^{1,p}, 1 \le p < n$)

U 有界,且 ∂U 是 C^1 的,令 $u \in W^{1,p}(U)$,则 $u \in L^{p^*}(U)$,且满足不等式

$$||u||_{L^{p^*}(U)} \le C||u||_{W^{1,p}(U)}$$

常数 C 只与 p, n, U 有关

 \Diamond

证明 首先由延拓定理有

$$||\mathcal{E}u||_{W^{1,p}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(U)}$$

$$||\mathcal{E}u||_{L^{p^*}(R^n)} \le C||D\mathcal{E}u||_{L^p(R^n)}$$

则

$$||u||_{L^{p^*}(U)} \le ||\mathcal{E}u||_{L^{p^*}(R^n)} \le C||D\mathcal{E}u||_{L^p(R^n)} \le C||\mathcal{E}u||_{W^{1,p}(U)} \le C||u||_{W^{1,p}(U)}$$

定理 **4.10** (估计 $W_0^{1,p}, 1 \le p < n$)

U 有界开集, $u \in W_0^{1,p}(U)$,则对于任何 $q \in [1,p^*]$ 成立不等式

$$||u||_{L^q(U)} \le C||Du||_{L^p(U)}$$

常数 C 只与 p,q,n,U 有关

က

证明 由 $1 \le q \le p^*$, 由 Hölder 不等式

$$\int_{U} f^{q} dx = \int_{U} f^{q} \cdot 1 dx \le \left(\int_{U} f^{p^{*}} dx \right)^{\frac{q}{p^{*}}} \left(\int_{U} 1^{\frac{p^{*}}{p^{*} - q}} dx \right)^{\frac{p^{*} - q}{p^{*}}}$$

得到

$$||u||_{L^q(U)} \le C||u||_{L^{p^*}(U)} \le C||Du||_{L^p(U)}$$

p=n 是一个边界条件,我们希望 $u\in W^{1,n}(U)$,那么 $u\in L^\infty(U)$,然而事与愿违, $u=lnln(1+\frac{1}{|x|})$ 不满足

4.7 Morrey's inequality

本节研究另一种情况: $n , 我们希望如果 <math>u \in W^{1,p}(U)$, 那么它是 Hölder 连续的.

定理 4.11 (Morrey's inequality,n)

$$||u||_{C^{0,\gamma}(U)} \le C||u||_{W^{1,p}(\mathbb{R}^n)} \quad \forall u \in C^1(\mathbb{R}^n)$$

 \odot

C 只与 n, p 有关, 且 $\gamma = 1 - \frac{n}{n}$

定理 4.12 (拓展)

设U是有界集, ∂U 是 C^1 的

$$||u^*||_{C^{0,\gamma}(\overline{U})} \le C||u||_{W^{1,p}(\mathbb{R}^n)} \quad u*=u \quad a.e. \quad \forall u \in C^1(\mathbb{R}^n)$$

4.8 General Sobolev inequality

定理 4.13 (General Sobolev inequalities)

设U是有界集, ∂U 是 C^1 的,设 $u \in W^{k,p}$

(1) 如果 $k < \frac{n}{n}$ 则

$$||u||_{L^q(U)} \le C||u||_{W^{k,p}(U)}$$

其中 q 满足 $\frac{1}{q} = \frac{1}{p} - \frac{k}{n}$

(2) $\omega \mathbb{R} k > \frac{n}{p}, \, \diamondsuit \alpha = \frac{n}{p}$

若 α 是整数, 则对任意 $\gamma \in (0,1)$ 都有 $u \in C^{k-[\alpha]-1,\gamma}(\overline{U})$

对上述 γ ,有

$$||u||_{C^{k-[\alpha]-1,\gamma}}(\overline{U}) \le C||u||_{W^{k,p}(U)}$$

这些不等式不仅研究 sobolev 空间, 也会在之后的微分方程中的应用起作用.

4.9 COMPACTNESS

Sobolev 不等式已经揭示了 $L^{p^*}(U)$ 与 $W^{1,p}(U)(1 \le p < n)$ 之间的一些关系 $p^* = \frac{np}{n-p}$,我们先给出紧嵌入 (compactly embedded) 的定义

定义 4.8 (紧嵌人)

设X,Y是Banach空间, $X \subset Y$.如果

- (1) 对任意 $u \in X$, 都有 $||u||_Y \le C|u||_X$
- (2) 任意 X 中的有界序列在 Y 中有收敛子列

则称 X 可以紧嵌入 Y, 记住 $X \subset\subset Y$

我们的主要结果是:

定理 4.14 (Rellich-Kondrachov Compactness Theorem)

设U是有界开集, ∂U 是 C^1 的,设 $1 \le p < n$.则

$$W^{1,p}(U) \subset\subset L^q$$

对任意的 $q \in [1, p^*)$

 \Diamond