PEER-EVALUATION OF MATHEMATICAL WRITING FOR LINEAR ALGEBRA

Why are we doing this?

Communicating mathematical ideas clearly in writing is a skill that takes practice. It is challenging to learn how to write mathematics well while you are immersed in learning the concepts themselves. Evaluating the clarity of your own writing is also difficult because you know what you mean to say. Our goals in evaluating the mathematical writing of ours peers are to

- (1) provide useful formative feedback to our peers so that they may improve their writing,
- (2) discover that we face challenges that our peers are facing as they learn to write mathematics,
- (3) improve our own mathematical writing by analyzing and constructively critiquing the writing of others.¹

THE RUBRIC

Rating	Beginning (1)	Developing (2)	Accomplished (3)
Notation	Some variables and/or	Variables are all defined;	Variables are all defined;
	new/non-standard are	<u>few mistakes</u> are made	all standard notation is
	not defined; <u>consistent</u>	with standard notation; =	used correctly; new nota-
	mistakes are made with	is used correctly; for ex-	tion is efficient and helpful
	standard notation, e.g.,	ample, may make mistakes	
	Rn instead of \mathbb{R}^n ; = used	with \in and \subset	
	incorrectly		
Language &	Arguments are unclear or	Sometimes challening	Easy to read and un-
Clarity	confusing; contains many	to read or understand	derstand arguments; con-
	spelling and grammar mis-	arguments, contains <u>few</u>	tains very few spelling and
	takes; overuse of symbols	spelling and grammar	grammar mistakes; use of
	and equations instead of	mistakes; full sentences	full sentences balanced well
	sentences	used to clarify equations	with equations and sym-
		, <u>, , , , , , , , , , , , , , , , , , </u>	bols adding to the clarity;
Logic	Contains false statements;	Follows the proof hand-	Follows proof handbook;
	begins with or <u>assumes</u> the	book; <u>most</u> logical con-	connections between state-
	conclusion; quantifiers "for	nections clear; <u>few</u> miss-	ments are clear; quantifiers
	all", "there exists" used in-	ing/implied quantifiers; all	"for all", "there exists" are
	correctly; hard to under-	assumptions and conclu-	present and used correctly;
	stand logical connections	sion present	easy to follow argument
Completeness	Many details are missing;	Few missing details; most	All necessary details are
	Theorems are used with-	assumptions of Theorems	present; the assumptions
	out checking assumptions;	used are checked; things	of Theorems used are
	uses words like "obvious"	called "obvious" really are	checked; nothing "obvi-
	to cover up missing details	true and easy to check	ous" is left out

Date: May 6, 2021.

¹Recent research has shown that the best way to improve your mathematical writing is to read, analyze, and correct proofs that contain (serious) errors. See, for instance: A. Selden and J. Selden, *Validations of Proofs Considered as Texts: Can Undergraduates Tell Whether an Argument Proves a Theorem?*. Journal for Research in Mathematics Education, Vol. 34, No. 1 (2003), pp. 4–36. (stable link).

Some Common Errors

Notation.

- Declaring a variable, but incorrectly stating where it lives, e.g., $x \in \mathbb{R}$ when you should say that $x \in U$, where U is a subset of \mathbb{R} .
- Reusing one variable for two different purposes
- Interchanging \in and \subset
- Misuse of the zero vector $\vec{0}$ and the zero subspace $\{\vec{0}\}$
- Misuse of the number zero 0 and the empty set \emptyset

Language & Clarity.

 \bullet Overuse of symbols. For instance, \therefore and \because start to look a lot alike but have different meaning.²

Logic & Mathematical Errors.

Logic.

- Including false implications in a proof. For instance, writing: "Since $\{v, w\}$ is linearly independent, for a = 0, b = 0 we have $av + bw = \vec{0}$ " is incorrect. We could correct this to say: "Since $\{v, w\}$ is linearly independent, if $av + bw = \vec{0}$ then a = 0 and b = 0."
- To prove "if P then Q", you cannot assume that Q is true you must suppose that P is true and argue that Q is true.
- The negation of $P \Rightarrow Q$ is **not** "NOT $P \Rightarrow$ NOT Q". The negation of $P \Rightarrow Q$ is in fact the statement "P and NOT Q".
- Interchanging "there exsits = \exists " and "for all = \forall "
- Writing "Suppose" when you mean "Choose" (when proving an existence statement)
- Writing "Choose" when you should "Suppose" (when proving a "for all" statement)

Linear algebra.

- Misusing the scalar 0 and the vector $\vec{0}$ or $\vec{0}$.
- Using "span" incorrectly. For instance, $\{v_1, \ldots, v_k\} \neq \text{span}\{v_1, \ldots, v_k\}$, and $\text{span}\{e_1, \ldots, e_n\}$ is **not** a basis of \mathbb{R}^n the finite set $\{e_1, \ldots, e_n\}$ is a basis.

Calculus.

- Dropping "lim" from the calculation of a limit.
- \bullet Dropping " \sum " from manipulations involving series.
- Confusing a series $\sum_{n=1}^{\infty} a_n$ with the sequence of its terms $\{a_n\}_{n=1}^{\infty}$.

Completeness.

- Assuming that a proof must be written at a level appropriate for the instructor, and thus omitting important details. Think of proof writing as an opportunity to demonstrate your clear understanding of the topic.
- My advice: write your proof for your "future-self", i.e., write down all the details that you might forget later, or write your proof for an audience of your peers.

²Please, please, please **don't** use ∴ and ∵. See, it looks terrible!