Fondamenti di automatica

Esercizi di riepilogo sulla prima parte del corso

Classificazione dei sistemi

D1. Classificare il sistema dinamico descritto dall'equazione

$$y(t+2) + 2y(t+1) + 3y(t+1)u(t) + y(t) = u(t)$$

D2. Classificare il sistema dinamico descritto dall'equazione

$$\ddot{y}(t) - \cos(t)y(t) = 0$$

Risposta asintotica

D3. Calcolare, se esiste, il valore asintotico della risposta impulsiva di un sistema LTI con f.d.t.

$$G(s) = \frac{s+4}{2s+s^2}$$

D4. Per un sistema LTI con f.d.t.

$$G(s) = \frac{s-1}{s^2 + s}$$

e ingresso $u(t) = [2 + \cos(2t)]1(t)$, determinare quale tra le seguenti affermazioni è vera

1) $y_f(t)$ converge a $5 + \sin(t)1(t)$; 2) $y_f(t)$ diverge; 3) $y_f(t)$ converge a $-\sin(t)1(t)$; 4) $y_f(t)$ è limitata;

Modi naturali

D5. Determinare i modi naturali di un sistema LTI descritto da

$$\ddot{y} = -2\,\dot{y} - 5\,y + 3\,\dot{u}$$

D6. Determinare i modi naturali di un sistema LTI descritto da

$$\ddot{y} + 4\dot{y} + 4y = 4\dot{u}$$

1

Stabilità interna e esterna

D7. Studiare la stabilità interna ed esterna del sistema LTI descritto da

$$\begin{cases} \dot{x}_1 &= -2x_1 + u \\ \dot{x}_2 &= -x_1 + x_2 - u \\ y &= x_1 + u \end{cases}$$

D8. Studiare la stabilità interna ed esterna del sistema LTI descritto da

$$\begin{cases} \dot{x}_1 = 2x_2 + u \\ \dot{x}_2 = -x_1 - u \\ y = x_1 + u \end{cases}$$

Stabilità esterna

D9. Per il sistema LTI descritto da

$$-\ddot{y} + 9y = \dot{u} - 3u$$

dire se esistono ingressi limitati tali da far divergere l'uscita e nel caso, esistano, determinarne uno.

D10. Per il sistema LTI descritto da

$$\ddot{y} + 10\,y = \dot{u} + 2\,u$$

dire se esistono ingressi limitati tali da far divergere l'uscita e nel caso, esistano, determinarne uno.

Sistemi non lineari

D11. Determinare i punti di equilibrio del sistema non lineare descritto da

$$\dot{x} = 2 - u x$$

e studiarne la stabilità.

D12. Determinare i punti di equilibrio del sistema non lineare descritto da

$$\begin{cases} \dot{x}_1 = x_2 - x_1 \\ \dot{x}_2 = (x_1 - 2)(1 - x_2) \\ y = x_1 + 2x_2 \end{cases}$$

e studiarne la stabilità.

Risposta libera

D13. Per il sistema dinamico lineare

$$\begin{cases} \dot{x}_1 = x_1 + u \\ \dot{x}_2 = 3x_1 - 2x_2 \\ y = x_1 + 2x_2 \end{cases}$$

2

determinare per quali condizioni iniziali la risposta libera $y_{\ell}(t)$ è limitata.

${f D14.}$ Per il sistema dinamico lineare

$$\begin{cases} \dot{x}_1 = -10x_1 + x_2 + u \\ \dot{x}_2 = x_1 - 10x_2 \\ y = x_1 - x_2 + u \end{cases}$$

determinare per quali condizioni iniziali la risposta libera $y_\ell(t)$ è convergente a 0.

Soluzioni

- D1. tempo discreto, non-lineare, tempo-invariante, non autonomo;
- **D2.** tempo-continuo, lineare tempo-variante, autonomo;
- **D3.** 2;
- **D4.** diverge;
- **D5.** $e^{-t}\sin(2t)$, $e^{-t}\cos(2t)$; **D6.** e^{-2t} , te^{-2t} ;
- D7. non è internamente stabile ma è esternamente stabile;
- **D8.** marginalmente stabile ma esternamente instabile;
- **D9.** non esistono;
- **D10.** ad esempio $u(t) = \cos(\sqrt{10}t)$;
- **D11.** $x_e = 2/u_e$ con $u_e \neq 0$, as intoticamente stabile per $u_e > 0$, instabile per $u_e < 0$;
- **D12.** $x_{e,1} = x_{e,2} = 1$ instabile, $x_{e,1} = x_{e,2} = 2$ as intoticamente stabile;
- **D13.** $x_1(0) = 0$;
- **D14.** $\forall x(0)$.