

Reconstructing Groups of Nearby Muons

Jim Pivarski

Texas A&M University

29 July, 2010

For full details, see *Lepton Jets as a Signature for Dark Matter* by Chaouki Boulahouache, Exotica, March 16:

http://indico.cern.ch/material Display.py?contribld = 2&material Id = slides&confld = 87421

- Pamela discovered a source of high-energy positrons in primary cosmic rays (2008)
 - could be undiscovered nearby pulsars
 - could be WIMP-WIMP annihilation
- ▶ If it's WIMP-WIMP annihilation, the observed cross-section is too large for the "WIMP miracle" scenario
- Introducing a long-range force in the dark matter sector, mediated by "a" (new boson; $m_a \sim 1~{\rm GeV}/c^2$), enhances annihilation cross-section in the present universe (when WIMPs have low velocity)
- $m_a \sim 1 \; {
 m GeV}/c^2$ also explains lack of excess in antiprotons: kinematically forbidden

hep-ph/0810.0713

Very quick motivation (2/2)

Jim Pivarski

- Not a specific model, but a general theoretical idea ("Lepton Jets")
 - many different scenarios proposed
 - other properties of a are not restricted
 there may be several a; with different
 - masses, leading to cascades
- Need to be able to reconstruct the general signature of "collimated leptons," or low-mass, high-p groups of leptons (muons)

"Lepton Jets" at CMS

Jim Pivarski

4/29

https://twiki.cern.ch/twiki//bin/viewauth/CMS/ExoticaMuonJets

TWiki > CMS Web > EXOTICA > ExoticaMuons > ExoticaMuonJets (25-Jul-2010, JimPivarski)

Complete: ↓ Lepton Jets Analysis

- ↓ Group

 - ↓ Organization/Task list
 - ↓ Task list ↓ Resources
 - - ↓ Physics Results
 - ↓ Benchmark results plots
 - ↓ Presentations and notes/papers
 - ↓ Event samples
 - ↓ Monte Carlo: muon iet guns
 - ↓ Alternating jet-gun sample
 - ↓ Monte Carlo: sample models
 - ↓ Monte Carlo: background skims
 - ↓ Real Data
 - ↓ Known bugs in samples
 - ↓ Analysis Software
 - ↓ Installation and compiling
 - ↓ Compiling everything in the full framework
 - ↓ Compiling only pat::MultiMuonCandidates in strict FWLite
 - ↓ Skimming datasets with CRAB
 - ↓ Generating samples on LPC Condor
 - Analysis: constructing muon jets (LeptonJetEquivalenceClassProducer documentation)
 - ↓ Analysis: making plots (MultiMuonCandidate documentation)
 - ↓ With FWLite
 - ↓ Without FWI ite

Groups working on "Lepton Jets"

Princeton

- * Nadia Adam
- * Valerie Halyo
- * Adam Hunt

Rice

* Chaouki Boulahouache

Texas A&M

- * Jim Pivarski
 - * Aysen Tatarinov
- * Alexei Safonov

Florida State

* Sergei Gleyzer

But this talk will only be on the A&M work; more later...

- ▶ Develop a " μ -group" object, like any other object in CMS
 - study its performance
 - use it in searches
- Software model:

- pat::MultiMuonCandidate is a persistent group of N muons with methods to perform vertexing and specialized isolation (neighboring muons must not cancel each other out!)
- ► LeptonJetsEquivalenceClassProducer groups muons according to their "closeness" (next page)
- MultiParticleByMassGunProducer simulates pairs and quadruplets of muons uniformly in mass-momentum space
- ► SVN repository: https://svnweb.cern.ch/cern/wsvn/LeJOG/trunk/

Merging muons into groups

Jim Pivarski 6/29

Muons are grouped if

- they are "close" to each other
- they're close to another muon which is close to another, etc.

No dependence on the order of the grouping process, easy to analyze

- ▶ Definition of "closeness" is tunable, with these ingredients:
 - $ightharpoonup \Delta R$: geometrically close in a metric with uniform background
 - m_{inv}: guarantees that low-mass objects will be found, regardless of boost
 - ► P_{vertex}: requires a consistent track vertex
 - opposite charge: avoids connecting groups that can't be from the same neutral resonance

Grouping efficiency vs. reconstructed mass and ΔR (denominator: reconstructed two muons; numerator: grouped them)

 $\Delta R < 0.2$

 $m_{\mathsf{inv}} < 5 \; \mathsf{GeV}/c$

 $P_{\text{vertex}} > 1\%$

(Note low efficiency due to vertexing failures for collinear muons)

Optimization: group by

$$(m_{
m inv} < 5~{
m GeV}/c$$
 and $P_{
m vertex} > 1\%)$ or $\Delta R < 0.1$

- ▶ We guarantee that we get low-mass objects
- Usually require them to vertex well
- Except when they're very close together

Leave the opposite-sign requirement for later

- ▶ If we have two low-mass $(m < 5 \text{ GeV}/c^2)$ dimuons in an event, what is the probability that they will be merged into two groups or one group? (denominator: reco'ed four muons; numerator: grouped them)
 - lacktriangle $\alpha_{
 m pair-pair}$ is the 3D angle between dimuons
 - m_{pair-pair} is the parent particle mass
 - "crossed" means 1-2, 3-4 gets reconstructed as 1-3, 2-4

- ► Can be tuned with grouping criteria: loose "closeness" criteria yield higher efficiency for pairs and higher probability of pair-merging
- ► The plots above came from a flat-generated pair-pair gun; should try with realistic cascades because it could depend on kinematics

Extra muons in group

Jim Pivarski 10/29

- μ -groups can absorb an extra muon from unrelated tracks in the event
- Below: simulations with increasing amounts of pile-up ($\frac{N_{\rm extra}}{N_{\rm total}}$ vs. η) left: TrackerMuon-groups, right: GlobalMuon-groups

Despite extra tracks identified as muons (red), the extra-muonsin-group (yellow) is controlled by $P_{\text{vertex}} > 1\%$

We'll also soon see that fake TrackerMuons can be controlled with quality cuts

Acceptance and efficiency

Jim Pivarski 11/29

► Try reconstructing muons in four separate collections: TrackerMuons, StandAloneMuons, StandAlone-SET algorithm, and GlobalMuons

- TrackerMuons have high efficiency everywhere, but they also have (curably) high backgrounds
- StandAloneMuon efficiency depends on how close the muons approach each other in the muon system (next slide)
- ► GlobalMuon efficiency ≤ StandAloneMuon efficiency
 - probability of crossing in the muon system depends on kinematics of the decay
 - ▶ this would make it more complicated to quote limits on Lepton Jets derived from Global Muons
- ▶ I tried StandAlone-SET because I knew that it is an alternative to the standard StandAloneMuons
 - it wasn't designed for nearby-muon efficiency
 - we won't be using it

Efficiency vs. crossing

Jim Pivarski 13/29

- StandAloneMuon inefficiencies are driven by reconstruction issues for muons that overlap in the muon system
- ► Test: propagate generator-level muons to planes of constant-z in the endcap and cylinders around the beamline in the barrel
- ▶ Plot efficiency as a function of trajectory intersections: $\Delta \phi_{MF2}$ is $\phi_{\mu^+} - \phi_{\mu^-}$ at z=828.561 cm, ΔR ME2 is radial difference

Efficiency vs. crossing

Jim Pivarski 14/29

- ▶ Same thing in the barrel: $\Delta\phi_{MB3}$ and ΔZ_{MB3} on a cylinder of radius 618.269 cm
- ▶ Not completely understood: inefficiencies are off-centered from zero
- ► Suggests that this plot is "out of focus" the intersection that drives inefficiency is perhaps at smaller radius than barrel?

TrackerMuon Backgrounds

Jim Pivarski

- ▶ Before moving on, we should address backgrounds with TrackerMuons
- Number of reconstructed muons N_{muons} in the InclusiveMu5_Pt* samples (all QCD backgrounds, including decay-in-flight):

All sets of track cuts include $p_T > 5 \text{ GeV}/c$

GlobalMuon distributions are nearly independent of sensible cuts

▶ The one cut that makes TrackerMuons as pure as GlobalMuons is $N_{\text{segments}} \ge 2$ for segment-and-track arbitrated segments

TrackerMuon Backgrounds

Jim Pivarski 16/29

- Same plot, split up by the number of real muons in the event
 - defining "real muons" by number of unique GenParticle muons matched to all reconstructed muons
- As you can see, TrackerMuons with $N_{\text{segments}} \geq 2$ (open purple boxes) are narrowly distributed around the true number of muons

▶ TrackerMuon efficiency with $N_{\text{segments}} \ge 2$ (and other quality cuts) is still $\sim 95\%$ without a hard-to-model dip when pairs cross each other in the muon system

- It may be a challenge to quantify our trigger efficiency
- ► Issues in L1:
 - when multiple muons pass through the same chamber, only one may be read out
 - if an L1 muon is constructed from some μ^+ segments and some μ^- segments, they may fail to be reconstructed as a single high-p_T muon
 - this is not fully modeled in the L1 emulator! (not for the CMSSW_3_6_3 version that I'm using, anyway...)

► Issues in HLT:

- uses StandAloneMuon reconstruction, with the inefficiencies already presented
- only need to reconstruct one StandAloneMuon at HLT, not two, but reconstruction can still be confused by overlaps
- Also, time-dependence as trigger conditions change

QCD backgrounds: one μ -group Jim Pivarski 19/29

- ► The Standard Model has two clear signals in the one μ -group channel: J/ψ and $\phi(1020)$ (yellow)
- $lackbox{b}
 ightarrow c
 ightarrow s$ with two semi-leptonic decays also correlates muons (red)

QCD backgrounds: one μ -group Jim Pivarski

20/29

- ▶ The Standard Model has two clear signals in the one μ -group channel: J/ψ and $\phi(1020)$ (yellow)
- $lackbox{b}
 ightarrow c
 ightarrow s$ with two semi-leptonic decays also correlates muons (red)
- Only-one-muon (grey/blue) suppressed with opposite-sign grouping

QCD backgrounds: one μ -group Jim Pivarski

21/29

lacksquare Just for fun: what it would look like without $N_{\text{segments}} \geq 2$ cut

22/29

- Asking for a second μ -group reduces the QCD backgrounds to 1 pb
- ▶ Many of the models we've looked at have \sim pb cross-sections or at least limits can be set with 1–100 pb $^{-1}$
- ► Since we're looking for new resonances, we get more sensitivity by searching for peaks: the QCD backgrounds are roughly flat in mass

Signals: mass peaks

Pair-pair $\boldsymbol{\mu}$ gun with both pairs having the same mass

Extra- $\mathcal{U}(1)$ dark matter model with $\gamma_{\rm dark} o \mu^+ \mu^-$, $m_\gamma = 1~{\rm GeV}/c^2$

Jim Pivarski 23/29

NMSSM Higgs with $h \rightarrow aa \rightarrow 4\mu$ $(m_h = 100, m_a = 2 \text{ GeV}/c^2)$

Same with $h_{\rm dark} o \gamma_{\rm dark} \gamma_{\rm dark}$, $m_h=3~{
m GeV}/c^2$ and $m_\gamma=1~{
m GeV}/c^2$

Signals: mass peaks

Pair-pair $\boldsymbol{\mu}$ gun with both pairs having the same mass

Extra- $\mathcal{U}(1)$ dark matter model with $\gamma_{\rm dark} o \mu^+ \mu^-$, $m_\gamma = 1~{\rm GeV}/c^2$

Jim Pivarski 24/29

NMSSM Higgs with $h \rightarrow aa \rightarrow 4\mu$ $(m_h = 100, m_a = 2 \text{ GeV}/c^2)$

Same with $h_{
m dark} o \gamma_{
m dark} \gamma_{
m dark}, \ m_h = 3~{
m GeV}/c^2$ and $m_\gamma = 1~{
m GeV}/c^2$

Isolation variables

Jim Pivarski

Normal muon isolation: in each other's cones and double-counting

μ-group isolation: one cone around group momentum axis

- $\sum |p_T|$ in a cone of $\Delta R < 0.3$
- Vertical axis only applies to backgrounds (the rest are arbitrarily normalized)

Displaced vertices

Jim Pivarski 26/29

- ► To have avoided detection so far, dark-sector boson must be weakly coupled to Standard Model
- In an extreme case, it could decay far from beamline
- ▶ Displaced-dimuon efficiency (denominator: all $pT_2 > 5$ GeV/c, $|\eta_1| < 2.4$, mass < 5 GeV/ c^2 ; numerator: found trigger or muon-groups, respectively)
 - ► HLT muon trigger depends on StandAloneMuon with beamline-constraint
 - ightharpoonup special 7-iteration tracking (for γ conversions; light green) doesn't help much in its out-of-the-box configuration

Displaced vertices

Jim Pivarski 27/29

- Quality cuts seem to be cutting both signal and background: something should possibly be loosened for the displaced-vertex case
- ▶ Left: QCD background effective cross-section; right: signal efficiency
- ► Top: no quality cuts; bottom: with quality cuts

Displaced vertices

Jim Pivarski 28/29

- ▶ Quality cuts seem to be cutting both signal and background: something should possibly be loosened for the displaced-vertex case
- ▶ Left: QCD background effective cross-section; right: signal efficiency
- ► Top: no quality cuts; bottom: with quality cuts
- ► Same for GlobalMuons (uncut GlobalMuon backgrounds are 1 pb/cm)

- ▶ Muon-grouping algorithm designed to find low-mass resonances, no matter how boosted or how many are in the event
- StandAlone/GlobalMuon inefficiencies traced to overlapping trajectories in the endcap, still not clear in the barrel
- ► TrackerMuons have high, uniform efficiency, and large backgrounds can be suppressed by requiring $N_{\text{segments}} \ge 2$ with track-and-segment arbitration
- Understanding the exact trigger efficiency will be challenging
- Two μ -group QCD backgrounds are 1 pb and \sim flat in mass
- Displaced vertex case has not been fully optimized