# **Avoiding Road Traffic Congestion using Dynamic Traffic Assignment Approach**

# PROJECT SYNOPSIS

# **BACHELOR OF ENGINEERING Computer Engineering**

SUBMITTED BY

Adil Hussain Mohammad Moheed Inamdar Ajay Singh Rajpurohit

Under the guidance of Mrs. Deepti Nirwal



Department of Computer Engineering P. E. S. Modern College of Engineering, Pune.

**July 2017** 

# **Contents**

| 1   | Title                                    | 1 |
|-----|------------------------------------------|---|
| 2   | Domain                                   | 1 |
| 3   | Keywords                                 | 1 |
| 4   | Team                                     | 1 |
| 5   | Objective                                | 1 |
| 6   | Scope                                    | 1 |
| 7   | Feasibility Study                        | 2 |
| 8   | Technical Details                        | 2 |
| 9   | Innovativeness and Usefulness            | 2 |
| 10  | Brief Description                        | 3 |
| 11  | Probable Deadline for project completion | 4 |
| 12  | References                               | 4 |
| Lis | st of Figures                            |   |
|     | 1 System Architecture Diagram            | 3 |

#### 1 Title

Incremental Traffic Assignment Approach to avoid Road Traffic Congestion.

#### 2 Domain

Embedded Systems, Distributed Control Systems

# 3 Keywords

Decentralized, Incremental Traffic Assignment, Greedy Algorithm, Web Service, IoT, Web Databases.

### 4 Team

Group Id: 4

Team Members:

- 1. Adil Hussain 41024
- 2. Mohammand Moheed Inamdar 41025
- 3. Ajay Singh Rajpurohit 41061

# 5 Objective

- 1. To Observe Current Traffic Conditions.
- 2. To Mediate Road Traffic Flow.
- 3. To Dynamically Control Traffic Signals.

## 6 Scope

- 1. IoT Based Traffic Signal Control (Arduino)
- 2. Decentralized Algorigthm to create changes in Signal timings

#### 7 Feasibility Study

- 1. Necessary Tools and their feasibility:
  - Arduino Uno v3, low cost, feasible.
  - Internet GSM Connectivity, low cost, feasible.
- 2. Schedule Feasibility
  - Low number of modules.
  - Use of Simulation to speed up development.
- 3. Economic feasibility
  - Commodity hardware.
  - Google Traffic API is free to use.
  - Redis DB is free to use.
- 4. Ethical Feasibility
  - License applied to our project is GNU GPLv3.0
  - No copyrights or license laws were disobeyed.
- 5. Operational Feasibility
  - Beneficial as it uses Least Modification to current Traffic System.
  - Doesn't inhibit driver's experience.
  - Reduces chances of Congestion Creation by preventing it from building up.

#### 8 Technical Details

#### **Platform**

• Linux for Arduino

#### **Software Specification**

• Python 2.7+, 3.5+

#### **Hardware Specification**

Arduino Uno

#### **Dataset**

LatLong Objects from Google Traffic API

#### 9 Innovativeness and Usefulness

- 1. Implementation of an Automatic Solution to Traffic Assignment Problem
- 2. Dynamic / Self-Optimizing Solution
- 3. Deployable over any existent Traffic Systems

# 10 Brief Description



Figure 1: System Architecture Diagram

- 1. Road ID: The roads connected to the current signal
- 2. LatLong Objects: Objects defined via Google Traffic API. Contains Coordinates of point locations to consider (road).
- 3. HeatMap: The density map of traffic with respect to a colour gradient.
- 4. Cycle Time: The duration of Red, Green and Yellow lights for each lane as a Set.

#### 11 Probable Deadline for project completion

Last week of March - 2018

#### 12 References

- (1) Alain Kibangou, et. al., "An Integrated and Scalable Platform for Proactive Event-Driven Traffic Management," *Arxiv.org*, 8th March 2017.
- (2) Carlos Gershenso, "Self-Organizing Traffic Lights," Arxiv.org, 5th Feb 2008.
- (3) Moshe E. Ben-Akiva, et. al., "A dynamic traffic assignment model for highly congested urban networks," *Elsevier*, 6th Feb 2012.
- (4) Pu Wang, et. al., "Understanding Road Usage Patterns in Urban Area," *SCIENTIFIC REPORTS*, vol 2, no. 1001, 20 December 2012.
- (5) Nasrin Taherkhani and Samuel Pierre, "Centralized and Localized Data Congestion Control Strategy for Vehicular Ad Hoc Networks Using a Machine Learning Clustering Algorithm," *IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS*, March 20, 2016.