Sheaf representations and duality in logic

Steve Awodey

Henrik Forssell

June 10, 2016

1 Outline

- 1. Gelfand Duality
- 2. Grothendieck duality for commutative rings
- 3. Sheaf representation for toposes 1: Lambek and Moerdijk
- 4. Sheaf representation for toposes 2: Awodey
- 5. Stone duality for Boolean algebras
- 6. Lawvere duality and others
- 7. Sheaf representation for pretoposes
- 8. Stone-type dualities for pretoposes

2 Gelfand duality

Let X be a space, and consider the ring of real-valued functions,

$$C(X) = Top(X, \mathbb{R}).$$

This is a (contravariant) functor from "geometry" to "algebra":

$$\mathcal{C}: \mathsf{Top^{op}} \longrightarrow \mathsf{CRng}.$$

It is full and faithful if we restrict to compact Hausdorf spaces and bounded continuous functions $C^*(X)$:

$$\mathcal{C}^* : \mathsf{KHaus}^\mathsf{op} \hookrightarrow \mathsf{CRng}.$$

Theorem 1 (Gelfand duality). KHaus is dual to the category of all commutative rings of the form $C^*(X)$ and ring homomorphisms between them.

It then requires some work to determine which rings are of the form $C^*(X)$! They are called C^* -algebras.

When can we recover the space X from its ring of functions $C^*(X)$?

• The points $x \in X$ determine maximal ideals in the ring $\mathcal{C}^*(X)$,

$$M_x = \{ f : X \longrightarrow \mathbb{R} \mid f(x) = 0 \}$$

• The (Zariski) topology on the set $\mathsf{MaxIdI}(A)$ in any ring A has a basis of open sets of the form:

$$B_a = \{ M \in X \mid a \notin M \}, \quad a \in A.$$

• If A is a C^* -algebra, then this specification will determine a compact Hausdorf space $X = \mathsf{MaxIdI}(A)$ such that $A \cong \mathcal{C}(X)$.

Theorem 2 (Gelfand-Stone-Naimark). KHaus is dual to the category of C^* -algebras,

$$\mathsf{KHaus}^\mathsf{op} \simeq C^* \mathsf{Alg}.$$

3 Grothendieck's sheaf representation for commutative rings

Grothendieck extended this duality from C^* -algebras to all commutative rings, by generalizing on the "geometric" side from spaces to (affine) schemes,

$$Scheme_{aff}^{op} \simeq CRng.$$

The essential change was to generalize the "ring of values" from the constant ring \mathbb{R} to a ring \mathcal{R} that "varies continuously over the space X", i.e. a *sheaf of rings*.

The various rings \mathcal{R}_x generalize the *local rings* of real-valued functions that vanish at $x \in X$.

This allows every commutative ring A to be seen as a ring of continuous functions on a suitable space X_A , with values in a suitable sheaf of rings \mathcal{R} on X_A .

Definition 3. A ring (commutative, with unit $1 \neq 0$) is called *local* if it has a unique maximal ideal. Equivalently:

x + y is a unit implies x is a unit or y is a unit.

Theorem 4 (Grothendieck). Let A be a ring. There is a space X with a sheaf of rings \mathcal{R} such that:

- 1. for every $p \in X$, the stalk \mathcal{R}_p is a local ring,
- 2. for the ring of global sections, we have: $\Gamma(\mathcal{R}) \cong A$.

Thus every ring is isomorphic to the ring of global sections of a sheaf of local rings.

The **space** X is the *prime spectrum* Spec(A):

- 1. points $p \in \operatorname{Spec}(A)$ are prime ideals $p \subseteq A$,
- 2. the topology has basic opens of the following form, for all $f \in A$:

$$B_f = \{ p \in \mathsf{Spec}(A) \mid f \not\in p \}.$$

The structure sheaf \mathcal{R} is determined by "localizing" A at f,

$$\mathcal{R}(B_f) = [f]^{-1}A$$

where $A \to [f]^{-1}A$ freely inverts all of the elements f, f^2, f^3, \dots

The **stalk** \mathcal{R}_p is then the localization of A at p,

$$\mathcal{R}_p = S^{-1}A,$$

where $S = A \setminus p$.

The affine scheme $(\mathsf{Spec}(A), \mathcal{O})$ represents A as a "ring of continuous functions"

$$f: \mathsf{Spec}(A) \longrightarrow \mathcal{R}$$
,

except that the ring \mathcal{R} is itself "varying continuously over the space Spec(A)" (i.e. it is a sheaf).

The local ring \mathcal{R}_p has a **unique maximal ideal**, consisting of "those functions $f: \operatorname{Spec}(A) \longrightarrow \mathcal{R}$ that vanish at p".

It is a "representation" of A because there is always an injective homomorphism

$$A \cong \Gamma(\mathcal{R}) \rightarrowtail \prod_{p} \mathcal{R}_{p}$$
.

Corollary 5 (Sub-direct-product representation). Every ring A is isomorphic to a subring of a direct product of local rings.

4 Lambek-Moerdijk sheaf representation for toposes

Definition 6. A (small, elementary) topos is called *sublocal* if its subterminal lattice Sub(1) has a unique maximal ideal. Equivalently, for $x, y \in Sub(1)$:

$$x \lor y = 1$$
 implies $x = 1$ or $y = 1$.

Theorem 7 (Lambek-Moerdijk 1982). Let \mathcal{E} be a topos. There is a space X with a sheaf of toposes $\tilde{\mathcal{E}}$ such that:

- 1. for every $p \in X$, the stalk $\tilde{\mathcal{E}}_p$ is a sublocal topos,
- 2. for the topos of global sections, we have: $\Gamma(\tilde{\mathcal{E}}) \cong \mathcal{E}$.

Thus every topos is isomorphic to the topos of global sections of a sheaf of sublocal toposes.

The space X is the so-called (sub) spectrum of the topos, $Spec(\mathcal{E})$.

It is the prime spectrum of the distributive lattice Sub(1):

- 1. the points $P \in \mathsf{Spec}(\mathcal{E})$ are prime ideals $P \subseteq \mathsf{Sub}(1)$,
- 2. the basic opens have the following form, for all $q \in Sub(1)$:

$$B_q = \{ P \in \mathsf{Spec}(\mathcal{E}) \mid q \not\in P \}.$$

The lattice of all open sets of $Spec(\mathcal{E})$ is isomorphic to the ideal completion of Sub(1),

$$O(\mathsf{Spec}(\mathcal{E})) = \mathsf{IdI}(\mathsf{Sub}(1))$$
.

The structure sheaf $\tilde{\mathcal{E}}$ is determined by "slicing" \mathcal{E} at $q \in \mathsf{Sub}(1)$,

$$\tilde{\mathcal{E}}(B_q) = \mathcal{E}/q$$
.

This takes the place of localization. Note that it also "inverts" all those elements $p \in \mathsf{Sub}(1)$ with $q \leq p$.

For the global sections Γ , we have:

$$\Gamma(\tilde{\mathcal{E}}) \cong \tilde{\mathcal{E}}(B_{\top}) = \mathcal{E}/1 \cong \mathcal{E}$$
.

So the topos of global sections of $\tilde{\mathcal{E}}$ is indeed isomorphic to \mathcal{E} .

The stalk $\tilde{\mathcal{E}}_P$ at a prime ideal $P \in \operatorname{Spec}(\mathcal{E})$ is the filter-quotient topos,

$$\tilde{\mathcal{E}}_P = \varinjlim_{q \notin P} \mathcal{E}/q,$$

at the prime filter $Sub(1)\P$.

One then has:

$$\operatorname{Sub}_{\tilde{\mathcal{E}}_{P}}(1) \cong P$$
,

so the stalk topos $\tilde{\mathcal{E}}_P$ is indeed sublocal.

Again, there is always an injection from the global sections into the product of the stalks,

$$\mathcal{E} \cong \Gamma(\tilde{\mathcal{E}}) \rightarrowtail \prod_{P \in X} \tilde{\mathcal{E}}_P$$
.

Corollary 8 (Sub-direct-product representation for toposes). Every topos \mathcal{E} is isomorphic to a subtopos of a direct product of sublocal toposes.

We have the following **logical interpretation** of the sheaf representation:

- ullet A topos $\mathcal E$ is (the term model of) a theory in Intuitionistic Higher-Order Logic.
- A sublocal topos S is one that has the disjunction property:

$$\mathcal{S} \vdash p \lor q$$
 iff $\mathcal{S} \vdash p$ or $\mathcal{S} \vdash q$,

for all "propositions" p, q.

- The subdirect-product embedding is a logical completeness theorem with respect to such "semantic" toposes S.
- The sheaf representation is a Kripke-style completeness theorem for IHOL, with $\tilde{\mathcal{E}}$ as a "sheaf of possible worlds".

4.1 Lambek's modified sheaf representation for toposes

But this result is **not entirely satisfactory**, because we would like the "semantic worlds" S to also have the *existence property*:

$$\mathcal{S} \vdash (\exists x : A)\varphi(x)$$
 iff $\mathcal{S} \vdash \varphi(a)$ for some closed $a : A$,

(we know that we can prove completeness with respect to such).

Definition 9. A topos S is called **local** if the terminal object 1 is indecomposable and projective, i.e. the global sections functor

$$\Gamma = \operatorname{Hom}_{\mathcal{S}}(1, -) : \mathcal{S} \longrightarrow \mathsf{Set}$$

preserves coproducts and epimorphisms.

Note that a local topos has **both** the disjunction and existence properties.

Lambek gave the following improvement over the sublocal sheaf representation:

Theorem 10 (Lambek 1989). Let \mathcal{E} be a topos. There is a faithful logical functor $\mathcal{E} \rightarrowtail \mathcal{F}$ and a space X with a sheaf of toposes $\tilde{\mathcal{F}}$ such that:

- 1. for every $p \in X$, the stalk $\tilde{\mathcal{F}}_p$ is a **local** topos,
- 2. for the topos of global sections, we have: $\Gamma(\tilde{\mathcal{F}}) \cong \mathcal{F}$.

Thus every topos is a **subtopos** of one that is isomorphic to the topos of global sections of a sheaf of **local** toposes.

This suffices for a *sub-direct-product representation* into **local** toposes, and therefore gives the desired *logical completeness* with respect to **local** toposes.

But conceptually it is still not entirely satisfactory.

5 Local sheaf representation for toposes

In my thesis, I proved:

Theorem 11 (A. 1998). Let \mathcal{E} be a topos. There is a space X with a sheaf of toposes $\tilde{\mathcal{E}}$ such that:

- 1. for every $p \in X$, the stalk $\tilde{\mathcal{E}}_p$ is a **local** topos,
- 2. for the topos of global sections, we have: $\Gamma(\tilde{\mathcal{E}}) \cong \mathcal{E}$.

Thus every topos is isomorphic to the global sections of a sheaf of **local** toposes.

As before, this gives a *sub-direct-product representation*,

$$\mathcal{E}
ightarrow \prod_p \mathcal{S}_p$$

into a product of local toposes S_p , and therefore implies the desired *logical* completeness of IHOL with respect to local toposes.

The stronger result also gives better "Kripke semantics" for IHOL, since the "sheaf of possible worlds" now has **local** stalks.

For **classical** higher-order logic, more can be said:

Lemma 12. Every local **boolean** topos is well-pointed, i.e. the global sections functor,

$$\Gamma = \operatorname{Hom}_{\mathcal{S}}(1, -) : \mathcal{S} \longrightarrow \mathsf{Set}$$

is faithful.

A well-pointed topos is essentially a model of set theory.

Corollary 13. Every boolean topos is isomorphic to the global sections of a sheaf of well-pointed toposes.

For boolean toposes, we therefore have the representation,

$$\mathcal{B} \rightarrowtail \prod_p \mathcal{S}_p$$

as sub-direct-product of well-pointed toposes S_p , along with its logical counterpart:

Corollary 14. Classical HOL is complete with respect to models in well-pointed toposes.

These are **standard** models of classical HOL, taken in varying ("non-standard") models of set theory.

Taking the global sections $\Gamma: \mathcal{S}_p \to \mathsf{Set}$ of each such well-pointed model then embeds any boolean topos \mathcal{B} into a power of Set :

$$\mathcal{B} \rightarrowtail \prod_p \mathcal{S}_p \rightarrowtail \prod_p \mathsf{Set}_p \cong \mathsf{Set}^X\,,$$

The various composites $\mathcal{B} \to \mathcal{S}_p \rightarrowtail \mathsf{Set}$ are Henkin style, "non-standard" models of HOL in Set.

Corollary 15. Classical HOL is complete with respect to Henkin models in Set.

These Henkin models can be taken as the points of the space $X_{\mathcal{E}}$ for the sheaf representation.

To define the space $X_{\mathcal{E}}$ of models:

In the **sublocal** case, the points were *prime ideals* $p \subseteq \mathsf{Sub}(1)$. These correspond exactly to *lattice homomorphisms*

$$p: \mathsf{Sub}_{\mathcal{E}}(1) \longrightarrow \mathbf{2}$$
.

For the **local** case, we instead take *coherent functors*

$$P: \mathcal{E} \longrightarrow \mathsf{Set}$$
.

These correspond exactly to Henkin models of (the theory represented by) \mathcal{E} .

The **topology** is given (roughly speaking) by basic open sets of the following form, for all formulas φ :

$$V_{\varphi} = \{ P \mid P \models \varphi \}$$

The structure sheaf $\tilde{\mathcal{E}}$ is first defined as a stack on \mathcal{E} by "slicing",

$$\tilde{\mathcal{E}}(A) = \mathcal{E}/A$$
.

The stack is first strictified to a **sheaf**, and then transferred from \mathcal{E} to the space $X_{\mathcal{E}}$ of models using a topos-theoretic covering theorem due to Butz and Moerdijk.

For the **global sections** Γ , we then have:

$$\Gamma(\tilde{\mathcal{E}}) \simeq \mathcal{E}/1 \cong \mathcal{E}.$$

And for the **stalks** $\tilde{\mathcal{E}}_P$ we have the colimit,

$$\tilde{\mathcal{E}}_P = \underset{A \in \int P}{\underline{\lim}} \mathcal{E}/A,$$

where the (filtered!) category of elements $\int P$ of the Henkin model P takes the place of the prime filter.

6 Toward logical duality

The results for toposes suggest an analogous treatment for **pretoposes** which would be somewhat better, because the models involved would all be **standard** ones, rather than Henkin style, non-standard models.

We then have the possibility of a **logical duality theory** analogous to Grothendieck's duality for schemes and commutative rings, with the sheaf representation playing the role of a **logical structure sheaf**.

This can be seen as a generalization of classical Stone duality for Boolean algebras (= Boolean rings): from a logical point of view, we have a **Stone duality for first-order logic**, with the classical theory for Boolean algebras appearing as the propositional case.

7 Boolean algebras and Stone duality

Recall that for a boolean algebra B we have the Stone space $\mathsf{Spec}(B)$, defined exactly as for the subterminal lattice $\mathsf{Sub}_{\mathcal{E}}(1)$ of a topos \mathcal{E} (i.e. the prime spectrum). We can represent the **points** $p \in \mathsf{Spec}(B)$ as boolean homomorphisms,

$$p: B \longrightarrow \mathbf{2}$$
.

We can recover B from the space Spec(B) as the **clopen subsets**, which are represented by continuous maps,

$$f: \mathsf{Spec}(B) \longrightarrow \mathbf{2}$$
,

where **2** is given the discrete topology. (This is just a **constant** sheaf representation!)

There is a contravariant equivalence of categories,

The functors are given just by homming into 2.

Logically, a Boolean algebra is (the Lindenbaum-Tarski algebra of) a **theory in propositional logic**, and a boolean homomorphism $B \longrightarrow \mathbf{2}$ is a **model**, i.e. a truth-valuation.

We shall generalize this situation by replacing Boolean algebras with (Boolean) pretoposes, representing **first-order** logical theories, and replacing **2**-valued models with **Set**-valued models.

8 Lawvere duality

Consider first the simpler case of equational logic, rather than full first-order logic:

- In place of a Boolean algebra representing a "propositional theory", we have a category \mathbb{C}_T with finite products, representing an algebraic theory T (such as groups).
- \mathbb{C}_T may be taken to be the *dual* of the category $T\mathsf{Alg}_{fg}$ of all finitely generated free algebras and algebra homomorphisms between them.
- The general T-algebras then correspond to FP-functors $\mathbb{C}_T \longrightarrow \mathsf{Set}$, where the category Set now plays the role of the "ring of values", in place of the Boolean algebra $\{0 \leq 1\}$ of "truth values".

Theorem 16 (Lawvere 1963). There is an equivalence of categories,

$$T\mathsf{Alg} \ \simeq \ FP(T\mathsf{Alg}_{fg}^\mathsf{op},\mathsf{Set}) \,.$$

9 Lawvere duality and others

The following dualities are determined in essentially the same way:

Lawvere	equational logic operations and equations	finite product categories
Gabriel-Ulmer	relational logic operations, =, relations	finite limit categories
Makkai	regular logic operations, =, relations, ∃	regular categories

- In each case the "algebraic" side consists of a structured category representing the logical theory, and the "spatial" side consists of structure-preserving functors into Set, which are the models.
- Recovering the "algebra" from the "space" (the theory from the models) requires a Stone-like representation/completeness theorem.
- But the situation with the further logical operations \forall , \Rightarrow , and \neg is somewhat different, because they have a contravariant aspect that cannot be recovered from homomorphisms of models.

10 Stone duality for pretoposes (A.-Forssell)

The further generalization of Stone duality to Boolean pretoposes works like this:

Boolean algebra ${\cal B}$	Boolean pretopos $\mathcal B$
propositional theory	first-order theory
homomorphism	pretopos functor
$B \longrightarrow 2$	$\mathcal{B} \! \longrightarrow \! \mathbf{Set}$
truth-valuation	elementary model
topological space	topological groupoid
Spec(B)	$\mathbf{Spec}(\mathcal{B})$
of all valuations	of all models and isos
continuous function	coherent functor
$Spec(B) \!\longrightarrow\! 2$	$\mathbf{Spec}(\mathcal{B}) \!\longrightarrow\! \mathbf{Set}$
clopen set	coherent sheaf

Theorem 17 (A.-Forssell 2008). There is a contravariant adjunction,

in which the functors are given by homming into Set.

The spectrum $\mathbf{Spec}(\mathcal{B})$ of a Boolean pretopos \mathcal{B} is the groupoid of models and isos, topologized by "satisfaction of formulas".

Recovering \mathcal{B} from $\mathbf{Spec}(\mathcal{B})$ amounts to recovering an elementary theory from its models. This is done by taking the coherent, equivariant sheaves on $\mathbf{Spec}(\mathcal{B})$, using results from topos theory.

Makkai has found a related equivalence:

$$\overrightarrow{BPreTop} \simeq \overrightarrow{UltraGpd^{op}}$$

We replace Makkai's **ultraproduct** structure on the groupoids of models by a Stone-Zariski type **logical topology**.

For us, however, the "semantic" functor,

$$Spec : \mathbf{BPreTop} \longrightarrow \mathbf{StoneTopGpd}^{op}$$

is **not full**: there are continuous functors between the groupoids of models that do not come from a "translation of theories".

Compare the case of commutative rings A, B: a continuous function

$$f: \mathsf{Spec}(B) \longrightarrow \mathsf{Spec}(A)$$

need not come from a ring homomorphism $h: A \longrightarrow B$.

11 Sheaf representation for pretoposes (A.-Breiner)

As for rings and affine schemes, we can equip the spectrum $\mathbf{Spec}(\mathcal{B})$ of the pretopos \mathcal{B} with a "structure sheaf" $\tilde{\mathcal{B}}$, defined as in the sheaf representation for toposes:

• start with the presheaf of categories $\tilde{\mathcal{B}}: \mathcal{B}^{\mathrm{op}} \longrightarrow \mathbf{Cat}$ with,

$$\tilde{\mathcal{B}}(X) \cong \mathcal{B}/X$$
,

for all $X \in \mathbb{B}$. This is a **stack** because \mathcal{B} is a pretopos.

- Strictify to get a sheaf of categories on \mathcal{B} .
- Use the equivalence of toposes,

$$\mathbf{Sh}(\mathbb{B}) \simeq \mathbf{Sh}_{\mathsf{eq}}(\mathbf{Spec}(\mathcal{B}))$$

 $\mathbf{Spec}(\mathcal{B})$ is determined so that this equivalence holds.

• Move $\ddot{\mathcal{B}}$ along this equivalence in order to get an equivariant sheaf on $\mathbf{Spec}(\mathcal{B})$.

The transported $\tilde{\mathcal{B}}$ is an equivariant sheaf of local, boolean pretoposes on the topological groupoid $\mathbf{Spec}(\mathcal{B})$.

- Logically, $\tilde{\mathcal{B}}$ is a sheaf of "local theories" on the groupoid of models, equipped with the logical topology.
- As before, $\hat{\mathcal{B}}$ has global sections $\Gamma \hat{\mathcal{B}} \simeq \mathcal{B}$. So the original "theory" \mathcal{B} is the "theory of all models".
- The stalk $\tilde{\mathcal{B}}_P$ at a model $P: \mathcal{B} \longrightarrow \mathsf{Set}$ is a well-pointed pretopos: it is the "elementary diagram" of the model P.

• The global sections functors $\Gamma_P : \tilde{\mathcal{B}}_P \to \mathsf{Set}$ are faithful **pretopos** morphisms, i.e. "complete models".

In sum, we have the following:

Theorem 18 (A.-Breiner 2013). Let \mathbb{B} be a boolean pretopos. There is a topological groupoid G with an equivariant sheaf of pretoposes $\widetilde{\mathbb{B}}$ such that:

- 1. for every $x \in G$, the stalk $\tilde{\mathbb{B}}_x$ is a well-pointed pretopos,
- 2. for the pretopos of global sections, we have: $\Gamma(\tilde{\mathbb{B}}) \cong \mathbb{B}$.

Thus every Boolean pretopos is isomorphic to the global sections of a sheaf of well-pointed pretoposes.

There is an analogous result for the non-Boolean case, with local pretoposes in place of well-pointed ones in the stalks.

The resulting sub-direct-product representation $\mathcal{B} \mapsto \prod_x \tilde{\mathcal{B}}_x$ yields:

Corollary 19 (Gödel completeness theorem). There is a pretopos embedding,

$$\mathcal{B} \rightarrowtail \prod_{x \in G} \tilde{\mathcal{B}}_x \rightarrowtail \prod_{x \in G} \mathsf{Set} \simeq \mathsf{Set}^{|G|}\,,$$

with |G| the set of points of the topological groupoid $G = \mathbf{Spec}(\mathcal{B})$ of models.

12 Logical schemes

For a Boolean pretopos \mathbb{B} , call the pair

$$(\mathbf{Spec}(\mathcal{B}),\tilde{\mathcal{B}})$$

an affine logical scheme.

A morphism of logical schemes

$$(h, \tilde{h}): (\mathbf{Spec}(\mathcal{B}), \tilde{\mathcal{B}}) \longrightarrow (\mathbf{Spec}(\mathcal{A}), \tilde{\mathcal{A}})$$

consists of a continuous groupoid homomorphism

$$h: \mathbf{Spec}(\mathcal{B}) \longrightarrow \mathbf{Spec}(\mathcal{A}),$$

together with a pretopos functor

$$\tilde{h}: \tilde{\mathcal{A}} \longrightarrow h_{\star}\tilde{\mathcal{B}}$$

over $\mathbf{Spec}(\mathcal{A})$.

Theorem 20 (A.-Breiner 2012). Every pretopos functor $A \longrightarrow B$ induces a morphism of the associated affine logical schemes. Moreover, the functor

$$\mathsf{Spec}: \mathbf{BPreTop^{op}} \longrightarrow \mathbf{LScheme}_{aff}$$

is full: every map of schemes comes from a map of pretoposes.

Corollary 21 (First-order logical duality). There is an equivalence,

$$\mathbf{BPreTop^{op}} \simeq \mathbf{LScheme}_{aff}$$
.

Thus the category of Boolean pretoposes is dual to the category of affine logical schemes.

13 References

- Lambek, J. and I. Moerdijk, Two sheaf representations of elementary toposes, in A.S. Troelstra and D. van Dalen (Eds.), *Brouwer Centenary Symposium*, North-Holland, Amsterdam, 1982.
- Lambek, J., On the sheaf of possible worlds, in: Adamek, Mac Lane (Eds.), *Categorical Topology*, World Scientific, Singapore, 1989.
- Awodey, S., Sheaf representation for topoi, J. Pure Appl. Algebra, 145, pp. 107–121, 2000.
- Lawvere, F.W., Functorial semantics of algebraic theories, *Proc. Nat. Acad. Sci. USA* 50, pp. 869–72, 1963.
- Makkai, M., Stone duality for first order logic, Adv. Math. 65(2), pp. 97–170, 1987.
- Awodey, S. and H. Forssell, First-order logical duality, Ann. Pure and Appl. Logic, 164(3), pp. 319–348, 2013.
- Breiner, S., Scheme representation for first-order logic, Ph.D. thesis, CMU, 2013.