Biomass estimation on 0.25-ha FOS BCI data

Maxime Rejou-Mechain
14 February 2017

Load data

```
library(BIOMASS)
library(proj4)
#Read in data
load("BCIdata7")
FosData<-BCIdata7
# D in cm
FosData$Dcm<-FosData$DBH/10
# Focus on trees > 10 cm
FosData<-FosData[FosData$Dcm>=10,]
# Quadrat indices
qxqy.2.indexH<-function(qx,qy,qridsize) output=paste(floor(qx/qridsize),floor(qy/qridsize),sep
FosData$QuadID<-gxgy.2.indexH(FosData$gx,FosData$gy,scale)</pre>
halfScale<-scale/2
QuadXrel<-rep(seq(halfScale,dimX-halfScale,scale),length(seq(halfScale,dimY-halfScale,scale)))
QuadYrel<-rep(seq(halfScale,dimY-halfScale,scale),each=length(seq(halfScale,dimX-halfScale,sca
QuadXabs<-(1-QuadXrel/dimX)*(1-QuadYrel/dimY)*CoordUTM[1,1]+QuadXrel/dimX*(1-QuadYrel/dimY)*Co
ordUTM[2,1]+QuadYrel/dimY*(1-QuadXrel/dimX)*CoordUTM[4,1]+QuadXrel*QuadYrel/(dimX*dimY)*CoordU
QuadYabs<-(1-QuadXrel/dimX)*(1-QuadYrel/dimY)*CoordUTM[1,2]+QuadXrel/dimX*(1-QuadYrel/dimY)*Co
ordUTM[2,2]+QuadYrel/dimY*(1-QuadXrel/dimX)*CoordUTM[4,2]+QuadXrel*QuadYrel/(dimX*dimY)*CoordU
Quadlatlong<-as.data.frame(project(cbind(QuadXabs,QuadYabs), proj=CodeUTM,inverse=T))
CoordQuadrat < - data.frame(QuadID=gxgy.2.indexH(QuadXrel,QuadYrel,scale),
                        X=QuadXabs,
                        Y=QuadYabs,
                        lon=Quadlatlong$V1,
                        lat=Quadlatlong$V2)
long.latChave<-cbind(lon=mean(CoordQuadrat$lon),lat=mean(CoordQuadrat$lat))</pre>
```

Location of the plot

Retrieve wood density

```
## [1] "Calling http://taxosaurus.org/retrieve/27facd63cb24dacdf9ed033dfc8a5caa"
## [1] "Calling http://taxosaurus.org/retrieve/b78662916b485bb791b41086f4a73e74"
## [1] "Calling http://taxosaurus.org/retrieve/b2455f37608fcf3283c60599605f92c7"
## [1] "Calling http://taxosaurus.org/retrieve/cbb6ef159d7e9e7cc863600d7a9c7c11"
## [1] "Calling http://taxosaurus.org/retrieve/927e22fec1899a10fbf8256488a2618f"
## [1] "Calling http://taxosaurus.org/retrieve/71a5adcf0f94778bbd12eec16958200a"
## [1] "Calling http://taxosaurus.org/retrieve/cf071aedf80bce935bf61ee071aeb428"
## [1] "Calling http://taxosaurus.org/retrieve/66a35026ea6af13b0e6a737a1396e6a2"
```

```
## The reference dataset contains 16467 wood density values
## Your taxonomic table contains 222 taxa
```

FosData\$WD=dataWD\$meanWDFosData\$sdWD=dataWD\$sdWD

Construct H-D models

No HD model for now

Estimating biomass and associated uncertainties

Below, we used a Bayesian Monte-Carlo scheme to estimate the mean AGB and associated credibility interval per plot.

Using Feldpausch et al. 2012 regional Weibull models

Table 1. AGB estimates per plots using Feldpaush et al. 2012 H-D models

0 1 239.9 213.6 272.8 0 2 206.7 181.5 237.6 142.0 0 3 130.5 120.7 0 4 193.6 174.3 215.8 227.0 282.3 1 0 251.5 172.7 214.9 1 1 192.3 1 2 254.2 220.7 296.3 214.5 267.5 1 3 237.8 1 4 230.8 202.5 267.4 335.2 2 0 296.9 264.6 2 1 260.1 227.3 303.5 2 2 2 1 9 . 2 193.2 251.2 170.6 211.0 2 3 189.3 2_4 188.6 171.6 207.9 227.9 3 0 252.5 283.6

211.3

217.4

156.8

Plot AGBCred_2.5Cred_97.5

166.3

207.1

287.4

302.0

194.9

0 0 185.2

3 1 243.6

3 2 255.6

3 3 173.9

```
3_4 229.9
             191.2
                       291.7
4 0 302.4
             269.9
                       339.6
4 1 210.7
             189.1
                       236.7
4_2 231.7
             198.8
                       273.1
4_3 237.9
             212.4
                       267.5
             222.8
4 4 252.8
                       289.0
5 0 370.9
             321.7
                       437.0
5_1 250.8
             224.9
                       284.1
5 2 298.0
             260.8
                       343.6
                       388.9
5 3 331.4
             285.5
5 4 209.4
             185.0
                       242.3
             273.6
6_0 319.3
                       383.1
6_1 285.4
             253.5
                       327.7
6 2 282.8
             250.3
                       325.9
6 3 208.2
             188.5
                       229.0
6_4 207.3
             189.7
                       229.8
7_0 333.7
             279.3
                       402.8
7 1 264.7
             236.4
                       299.4
7_2 264.1
             229.7
                       309.2
7_3 252.2
             223.7
                       289.0
7 4 277.5
             241.5
                       320.0
8 0 243.6
             208.2
                       284.7
8_1 281.7
             243.0
                       332.2
8 2 349.8
             294.5
                       425.6
8 3 269.1
             241.0
                       301.7
8_4 371.4
             321.5
                       440.9
9_0 219.9
             192.4
                       257.9
                       282.4
9 1 239.5
             206.9
9 2 256.3
             227.2
                       296.5
9_3 237.5
             216.3
                       261.4
9_4 243.3
             210.3
                       283.4
```

Using Chave et al. 2014 Equation 7 model

Table 4. AGB estimates per plots using Chave et al. 2014 model

0_0 180.8	161.8	205.4
0_1 236.0	206.7	273.8
0_2 204.8	176.4	247.5
0_3 128.3	117.4	140.3
0_4 191.0	169.7	216.7
1_0 248.0	219.1	279.8
1_1 188.7	166.5	214.1
1_2 257.5	216.1	312.4
1_3 231.0	205.2	262.1
1_4 228.6	198.8	268.9
2_0 299.0	260.2	350.2
2_1 259.3	219.1	305.9
2_2 217.2	189.5	256.7
2_3 185.4	165.8	208.7
_ 2_4 184.0	165.7	205.0
3_0 251.5	220.2	287.0
3_1 245.1	205.4	295.7
3 2 256.6	213.1	315.2
3_3 169.9	151.4	192.2
3_4 233.2	188.7	303.8
4_0 299.1	264.2	344.2
4_1 206.3	182.3	236.6
4_2 232.4	196.3	282.5
4_3 233.7	203.9	269.6
4_4 249.4	215.5	293.6
5_0 381.1	321.3	470.1
5_1 246.6	213.8	282.2
5_2 295.0	256.0	348.9
5_3 337.6	284.4	405.6
5_4 206.7	180.6	241.0
6_0 325.3	270.2	409.1
6_1 283.0	244.8	330.6
6_2 280.8	241.5	328.2
6_3 202.6	182.7	225.8
6_4 205.0	185.2	230.9
7_0 348.7	274.9	455.3
7_1 260.2	228.7	297.3
7_2 265.9	226.4	325.7
7_3 250.2	217.0	293.4
7_4 272.6	236.1	317.2
8_0 246.3	206.7	302.4
8_1 283.2	239.5	348.1
8_2 357.6	288.5	445.9
8_3 268.1	233.7	309.4
8_4 372.6	314.1	453.4
9_0 218.4	188.1	261.1
9_1 241.1	202.2	294.0
9_2 257.5	220.0	308.6

9_3 231.5 208.2 255.5 9 4 244.2 203.9 298.7

Calculating the maximum height and the Lorey's height per (sub)plot
FosData\$Hchave<-retrieveH(D=FosData\$Dcm,coord=long.latChave)\$H

Max height
maxHchave<-tapply(FosData\$Hchave,FosData\$QuadID,max)
maxHfeld<- tapply(FosData\$Hfeld,FosData\$QuadID,max)

Lorey height
FosData\$BAm<-(pi*(FosData\$Dcm/2)^2)/10000
FosData\$HBAchave<-FosData\$Hchave*FosData\$BAm
FosData\$HBAfeld<-FosData\$Hfeld*FosData\$BAm
LoreyChave<-tapply(FosData\$HBAchave,FosData\$QuadID,sum)/tapply(FosData\$BAm,FosData\$QuadID,sum)
LoreyFeld<-tapply(FosData\$HBAfeld,FosData\$QuadID,sum)/tapply(FosData\$BAm,FosData\$QuadID,sum)
Mean wood density
meanWD=tapply(FosData\$WD,FosData\$QuadID,mean)</pre>

Comparison of the AGB approaches

Chave Local HD Feldpausch

Feldpaush

Biomass estimation on 1-ha FOS BCI data

Maxime Rejou-Mechain 14 February 2017

Load data

```
library(BIOMASS)
library(proj4)
#Read in data
load("BCIdata7")
FosData<-BCIdata7
# D in cm
FosData$Dcm<-FosData$DBH/10
# Focus on trees > 10 cm
FosData<-FosData[FosData$Dcm>=10,]
# Quadrat indices
gxgy.2.indexH<-function(gx,gy,gridsize) output=paste(floor(gx/gridsize),floor(gy/gridsize),sep
FosData$QuadID<-gxgy.2.indexH(FosData$gx,FosData$gy,scale)
halfScale<-scale/2
QuadXrel<-rep(seq(halfScale,dimX-halfScale,scale),length(seq(halfScale,dimY-halfScale,scale)))
QuadYrel<-rep(seq(halfScale,dimY-halfScale,scale),each=length(seq(halfScale,dimX-halfScale,sca
le)))
QuadXabs<-(1-QuadXrel/dimX)*(1-QuadYrel/dimY)*CoordUTM[1,1]+QuadXrel/dimX*(1-QuadYrel/dimY)*Co
ordUTM[2,1]+QuadYrel/dimY*(1-QuadXrel/dimX)*CoordUTM[4,1]+QuadXrel*QuadYrel/(dimX*dimY)*CoordU
TM[3,1]
QuadYabs<-(1-QuadXrel/dimX)*(1-QuadYrel/dimY)*CoordUTM[1,2]+QuadXrel/dimX*(1-QuadYrel/dimY)*Co
ordUTM[2,2]+QuadYrel/dimY*(1-QuadXrel/dimX)*CoordUTM[4,2]+QuadXrel*QuadYrel/(dimX*dimY)*CoordU
TM[3,2]
Quadlatlong<-as.data.frame(project(cbind(QuadXabs,QuadYabs), proj=CodeUTM,inverse=T))
CoordQuadrat < - data.frame(QuadID=gxgy.2.indexH(QuadXrel,QuadYrel,scale),
                        X=QuadXabs,
                        Y=QuadYabs,
                        lon=Quadlatlong$V1,
                        lat=Quadlatlong$V2)
long.latChave<-cbind(lon=mean(CoordQuadrat$lon),lat=mean(CoordQuadrat$lat))</pre>
```

Location of the plot

Retrieve wood density

```
## [1] "Calling http://taxosaurus.org/retrieve/fe33b60b46547d477db41ceee138af4f"
## [1] "Calling http://taxosaurus.org/retrieve/e66173ee31d7a9e9299c51a2b6b28d85"
## [1] "Calling http://taxosaurus.org/retrieve/e87ac4cef8f4e738e066bafbde0db0ee"
## [1] "Calling http://taxosaurus.org/retrieve/cd0b53284d7a505d1cefe768200fc40a"
## [1] "Calling http://taxosaurus.org/retrieve/30f0962c73417670be4f28f69032bbf3"
## [1] "Calling http://taxosaurus.org/retrieve/1609b8ce3e15b69112a213277e5aaada"
## [1] "Calling http://taxosaurus.org/retrieve/e3006fffac69ad9f90114b1891f12ca3"
## [1] "Calling http://taxosaurus.org/retrieve/0eb62ac5a83ebf8a58efd05afe814f9b"
```

```
## The reference dataset contains 16467 wood density values
## Your taxonomic table contains 222 taxa
```

FosData\$WD=dataWD\$meanWD FosData\$sdWD=dataWD\$sdWD

Construct H-D models

No HD model for now

Estimating biomass and associated uncertainties

Below, we used a Bayesian Monte-Carlo scheme to estimate the mean AGB and associated credibility interval per plot.

Using Feldpausch et al. 2012 regional Weibull models

Table 1. AGB estimates per plots using Feldpaush et al. 2012 H-D models

0 0 185.8 166.5 208.9 0 1 238.9 211.5 269.7 0 2 206.7 181.8 241.7 0 3 130.9 119.8 141.9 0 4 193.7 174.9 215.5 227.1 279.7 1 0 251.0 171.4 215.7 1 1 191.8 1 2 255.1 221.1 299.0 213.3 267.8 1 3 237.7 203.3 263.5 1 4 230.4 262.0 2 0 297.4 341.3 2 1 259.4 224.0 303.2 252.1 2 2 2 1 9 . 5 194.4 170.5 210.1 2 3 189.1 2_4 188.2 170.9 207.9 225.3 3 0 252.8 283.6 3 1 244.0 211.0 286.9 3 2 256.1 219.0 307.5 3 3 173.8 157.2 193.3

Plot AGBCred_2.5Cred_97.5

```
191.8
3_4 230.3
                       287.7
4_0 302.2
             269.9
                       339.0
4 1 210.7
             189.9
                       234.2
4_2 231.2
             198.9
                       273.0
4_3 237.5
             210.7
                       270.6
4 4 253.1
             223.9
                       290.1
5 0 370.7
             321.0
                       429.4
5_1 250.1
             224.4
                       279.8
5 2 298.1
             262.2
                       344.7
5 3 330.7
             283.9
                       386.8
5 4 208.7
             184.2
                       240.9
             273.7
6_0 318.8
                       381.5
6_1 285.4
             254.6
                       325.1
6 2 282.9
             249.0
                       324.5
6 3 207.8
                       229.1
             189.9
6_4 207.2
             188.7
                       228.3
7_0 334.4
                       414.4
             280.2
7 1 264.2
             239.0
                       301.9
7_2 263.4
             230.1
                       308.0
7_3 252.1
             222.0
                       287.6
7 4 277.3
             243.9
                       317.3
8 0 243.6
                       289.2
             211.4
8_1 280.9
             241.2
                       332.5
8 2 352.1
             295.8
                       434.6
8 3 268.8
             239.0
                       303.9
8_4 368.0
             319.3
                       432.6
9_0 218.7
             189.9
                       253.4
9 1 239.4
             204.7
                       286.4
9 2 256.7
             226.4
                       297.1
9_3 237.5
             216.2
                       260.6
9_4 243.2
             210.0
                       287.6
```

Using Chave et al. 2014 Equation 7 model

Table 4. AGB estimates per plots using Chave et al. 2014 model

0_0 181.7	161.6	208.0
0_1 237.2	208.8	271.9
0_2 203.9	176.5	244.6
0_3 128.1	117.7	139.8
0_4 190.8	170.6	216.2
1_0 247.3	220.5	281.4
1_1 188.9	167.0	215.7
1_2 255.5	216.7	308.1
1_3 231.3	204.1	263.7
1_4 227.3	198.2	264.9
2_0 299.0	259.6	348.2
2_1 260.3	219.2	314.9
2_2 216.5	189.8	254.0
2_3 184.6	164.7	209.5
_ 2_4 183.8	165.2	206.3
3_0 249.9	220.8	285.1
3_1 243.8	210.1	290.5
3_2 258.1	212.8	319.5
3_3 169.6	151.2	192.6
3_4 234.4	189.3	307.4
4_0 299.6	262.4	344.2
4_1 206.9	182.3	234.3
4_2 232.4	193.5	285.0
4_3 233.6	204.6	270.6
4_4 247.2	214.4	294.6
5_0 380.0	317.1	464.8
5_1 246.5	218.1	283.4
5 2 292.7	251.2	347.9
5_3 337.5	282.8	412.5
5 4 206.6	177.7	245.2
6_0 326.7	269.6	413.1
6_1 285.6	246.2	337.4
6_2 280.2	242.1	326.2
	181.6	227.0
6_3 202.6		
6_4 205.3	183.6	232.1
7_0 347.4	275.5	449.0
7_1 260.6	229.8	304.4
7_2 263.6	224.7	320.8
7_3 249.3	215.7	289.4
7_4 272.2	235.3	323.9
8_0 247.3	208.4	310.3
8_1 283.7	239.3	352.7
8_2 355.9	293.1	443.3
8_3 268.6	232.9	315.0
8_4 373.5	312.9	454.4
9_0 218.4	187.8	264.9
9_1 241.6		298.9
9_2 256.8	221.7	311.2

9_3 231.7 209.2 257.8 9 4 245.1 204.5 301.9

Calculating the maximum height and the Lorey's height per (sub)plot
FosData\$Hchave<-retrieveH(D=FosData\$Dcm,coord=long.latChave)\$H

Max height
maxHchave<-tapply(FosData\$Hchave,FosData\$QuadID,max)
maxHfeld<- tapply(FosData\$Hfeld,FosData\$QuadID,max)

Lorey height
FosData\$BAm<-(pi*(FosData\$Dcm/2)^2)/10000
FosData\$HBAchave<-FosData\$Hchave*FosData\$BAm
FosData\$HBAfeld<-FosData\$Hfeld*FosData\$BAm
LoreyChave<-tapply(FosData\$HBAchave,FosData\$QuadID,sum)/tapply(FosData\$BAm,FosData\$QuadID,sum)
LoreyFeld<-tapply(FosData\$HBAfeld,FosData\$QuadID,sum)/tapply(FosData\$BAm,FosData\$QuadID,sum)
Mean wood density
meanWD=tapply(FosData\$WD,FosData\$QuadID,mean)</pre>

Comparison of the AGB approaches

Chave Local HD Feldpausch

Feldpaush

