1.a)

i) The bandgap
$$E_G = E_c - E_v = 1$$
 eV. [2]

- ii) The intrinsic level E_i , lies midgap when $N_c = N_v$ [2]
- iii) $\Delta V = (1 \text{ eV} 0.8 \text{ eV})/(1 \text{eV/V}) = 0.2 \text{V}$. When drawn on energy plot is must be in eV though and ΔV multiplied by e. [4]

iv)
$$\mathcal{E} = 0.2\text{V}/5\mu\text{m} = 0.2\text{V}/(5 \ 10^{-6} \text{ m}) = 40000\text{V/m} = 40 \ \text{kV/m}.$$
 [4]

- v) applying a positive voltage is lowering the PE. If $\Delta V = 0.2$ V then the battery needs to supply this voltage. [4]
- vi) polarity of the electrons flow "down the hill" reducing their PE or opposite to the direction of the electric field. The holes go in the opposite direction. [4]

b)

i)
$$\phi_m < \phi_{pSi}$$
. [2]

ii) With reference to the energy band diagram below.

$$\phi_p = E_F - E_v$$

$$p = N_v exp\left(\frac{E_v - E_f}{kT}\right) = N_v exp\left(\frac{-\phi_p}{kT}\right)$$

$$p = N_A = N_v exp\left(\frac{-\phi_p}{kT}\right)$$

$$-\phi_p = kT ln\left(\frac{N_A}{N_v}\right) = 0.026 \times ln\left(\frac{10^{16}}{1.8 \times 10^{19}}\right)$$

$$\phi_p = 0.195 \text{ eV}$$

$$\phi_{pSi} - \phi_m = \phi_B - \phi_p = 0.395 \text{ eV} - 0.195 = 0.2 \text{ eV}$$

ANSWERS

iii) built-in voltage p+n junction

$$V_{bi} = 0.026 ln \left(\frac{N_A N_D}{n_i^2} \right) = 0.026 ln \left(\frac{10^{16} \times 10^{18}}{(1.45 \times 10^{10})^2} \right) = 0.82 \ eV.$$

 V_{bi} for the Schottky contact is $\phi_{pSi} - \phi_m = 0.2$ eV.

Thus a smaller forward voltage (V_{ON}) will need to be applied for carriers to diffuse across the smaller Schottky contact than the pn diode. Therefore V_{ON} Schottky diode $< V_{ON}$ pn diode

[4]

c) Answer the following questions with "yes" or "no":

- i) yes. [1]
- ii) yes [1]
- iii) no
- iv) no [1]
- v) no [1]
- vi) no [1]
- vii) no [1]
- viii) yes. [1]
- ix) yes [1]
- x) yes [1]

ANSWERS

2. a) $p - n + N_D - N_A = 0$. [4]

p: free hole concentration

n: free electron concentration

N_D: ionised donor atoms

N_A: ionised acceptor atoms

From the formulae sheet: $n = N_c exp\left(\frac{E_F - E_C}{kT}\right) \& p = N_v exp\left(\frac{E_v - E_F}{kT}\right)$ thus

$$n \times p = N_c \times N_v exp\left(\frac{E_v - E_c}{kT}\right) = N_c \times N_v exp\left(\frac{-E_G}{kT}\right)$$

from the formulae sheet we find the expression of $n_i = \sqrt{N_c \times N_v} exp\left(\frac{-E_G}{2kT}\right)$

proving that $n \times p = n_i^2$

c) In the region with compensated n-doping, extract the majority carrier concentration (n) from charge neutrality and mass action law:

$$n \times p = n_i^2$$
 thus $p = \frac{n_i^2}{n}$ put into charge neutrality equation and rewrite: [10]

$$-n^2 + (N_D - N_A)n + n_i^2 = 0$$

solve quadratic equation:

$$n = \frac{-(N_D - N_A) - \sqrt{(N_D - N_A)^2 + 4 \times n_i^2}}{-7}$$

$$n = \frac{-9 \times 10^{17} - \sqrt{(9 \times 10^{17})^2 + 4 \times (1.45 \times 10^{10})^2}}{-2}$$

$$n = 9 \times 10^{17} cm^{-3}$$
 [4]

[Note, if just $n = N_D - N_A$ is given without calculation or without explanation, only 1 mark will be allocated]

$$p = \frac{n_{\rm f}^2}{n} = \frac{\left(1.45 \times 10^{10}\right)^2}{9 \times 10^{17}} = 2.34 \times 10^2 cm^{-3} [2]$$

In the bulk region where no compensation doping occurs, the usual approximations can be applied:

$$p = N_A = 10^{17} \text{ cm}^{-3} [2]$$

$$n = \frac{n_l^2}{p} = \frac{(1.45 \times 10^{10})^2}{10^{17}} = 2.1 \times 10^3 cm^{-3} [2]$$

d)

i) forward biased [2]

ii) n-region because a) the depletion region is smallest and b) the minority carrier concentration is lowest as determined by the mass action law. [4]

iii) putting all geometrical parameters in cm:

$$J = e \times \left(D_n \frac{\Delta n_p}{X_n} + D_p \frac{\Delta p_n}{X_p} \right) = 1.6 \times 10^{-19} \times \left(50 \times \frac{10^5}{150 \times 10^{-7}} + 20 \times \frac{10^2}{100 \times 10^{-7}} \right)$$

 $J = 5.33 \cdot 10^{-8} \text{ A cm}^{-2}$

Marking scheme: 4 marks for correct equation, 2 marks for correct solution [6]

3.a) [10]

marking scheme: ΔE_F correct: [4]; voltage shifts correct [2]; general band diagram correct [4].

b)

- i) diffusion.
- ii) diffusion. [1]
- iii) diffusion. [1]
- iv) drift.
- v) diffusion.

c)

- i) v_{be} small such that the variation of the current I₀ is linear within that region [4]
- ii) referring to the figure below, the base current i₁ is due to the minority carrier gradient in the emitter. [5]

$$i_l = i_b = \frac{eD_{pE}}{X_E} (p'_n - p_{no})A$$

$$i_b = \frac{eD_{pE}p_{no}}{X_E} \left(exp\left(\frac{v_{be}}{V_T}\right) - 1 \right) A$$

$$i_b = \frac{eD_{pE}n_i^2}{\chi_E N_{DE}} \left(exp\left(\frac{v_{be}}{v_T}\right) - 1 \right) A$$

$$iv) i_2 = g_m v_{b_{\ell}}$$
 [2]

4

the output current is the diffusion current of electrons in the base. $I_C = \frac{eD_{nE}n_t^2}{X_BN_{AB}} \left(exp\left(\frac{v_{be}}{v_T}\right) - 1\right)A$

 X_B is the undepleted base width. When the output voltage $|V_{CE}|$ increases, the reverse bias $|V_{CB}|$ increases, increasing the depletion width extending into the base and thus decreasing X_B .

A possible sketch can be:

 $W_{B2}W_{B1}W_{B}$ x (nm) When the reverse bias across the BC junction increases, the depletion region extending from the junction into the base is increasing, decreasing the effective base width (W_{B1} to WB2) as a result the gradient in the minority carrier concentration in the base is increasing (solid line to dashed line) and thus the diffusion current increases. This diffusion current is I_{C} .