

ULN2001, ULN2002 ULN2003, ULN2004

Seven Darlington arrays

Datasheet - production data

Features

- Seven Darlingtons per package
- Output current 500 mA per driver (600 mA peak)
- Output voltage 50 V
- Integrated suppression diodes for inductive loads
- Outputs can be paralleled for higher current
- TTL/CMOS/PMOS/DTL compatible inputs
- Input pins placed opposite to output pins to simplify layout

Description

The ULN2001, ULN2002, ULN2003 and ULN 2004 are high-voltage, high-current Darlington arrays each containing seven open collector Darlington pairs with common emitters. Each channel is rated at 500 mA and can withstand peak currents of 600 mA. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to simplify board layout.

The versions interface to all common logic families: ULN2001 (general purpose, DTL, TTL, PMOS, CMOS); ULN2002 (14 - 25 V PMOS); ULN2003 (5 V TTL, CMOS); ULN2004 (6 - 15 V CMOS, PMOS).

These versatile devices are useful for driving a wide range of loads including solenoids, relay DC motors, LED display filament lamps, thermal printheads and high-power buffers.

The ULN2001A/2002A/2003A and 2004A are supplied in a 16-pin DIP package with a copper leadframe to reduce thermal resistance. They are available also in small outline package (SO-16) as ULN2001D1/2002D1/2003D1/2004D1.

ULN2003 is also available in TSSOP16 package, for reduced application space.

Contents

1	Diagram	3			
2	Pin configuration	4			
3	Maximum ratings	5			
4	Electrical characteristics	6			
5	Test circuits	7			
6	Typical performance characteristics				
7	Package information	1			
	7.1 DIP-16L package information	1			
	7.2 SO-16 Narrow package information	3			
	7.3 TSSOP16 package information	6			
8	Order codes	9			
9	Revision history	0			

1 Diagram

Figure 1. Schematic diagram

2 Pin configuration

16 OUT 1 IN 1 15 OUT 2 IN 2 14 OUT 3 IN 3 13 OUT 4 IN 4 12 OUT 5 IN 5 11 OUT 6 IN 6 10 OUT 7 IN 7 9 COMMON FREE WHEELING DIODES GND 8 5-1977/1

Figure 2. Pin connections (top view)

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _O	Output voltage	50	V
V _I	Input voltage (for ULN2002A/D - 2003A/D - 2004A/D)	30	V
I _C	Continuous collector current	500	mA
I _B	Continuous base current	25	mA
I _F	Clamping diode continuous current	350	mA
V _R	Clamping diode reverse voltage	50	V
T _A	Operating ambient temperature range	- 40 to 85	°C
T _{STG}	Storage temperature range	- 55 to 150	°C
TJ	Junction temperature	150	°C
ESD	Electrostatic discharge rating - HBM	2	kV

Table 2. Thermal data

Symbol	Parameter	DIP-16	SO-16	TSSOP16	Unit
R _{thJA}	Thermal resistance junction-ambient, Max.	70	64.7	93.3	°C/W
R _{thJC}	Thermal resistance junction-case (top), Max.		22	30.7	°C/W
R _{thJB}	Thermal resistance junction-board, Max.		31.5	68.5	°C/W

Note:

Maximum power dissipation is a function of $T_{J(max)}$, R_{thJA} and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A) / R_{thJA}$. Operating at the absolute maximum T_J of +150°C can affect reliability.

4 Electrical characteristics

 $T_A = 25$ °C unless otherwise specified.

Table 3. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
		V _{CE} = 50 V, (<i>Figure 3</i>)			50		
		T _A = 85 °C, V _{CE} = 50 V (<i>Figure 3</i>)			100		
I _{CEX}	Output leakage current	T_A = 85 °C for ULN2002, V_{CE} = 50 V, V_I = 6 V (<i>Figure 4</i>)			500	μΑ	
		T_A = 85 °C for ULN2002, V_{CE} = 50 V, V_I = 1V (<i>Figure 4</i>)			500		
		$I_C = 100 \text{ mA}, I_B = 250 \mu\text{A}$		0.9	1.1		
V _{CE(SAT)}	Collector-emitter saturation voltage (<i>Figure 5</i>)	$I_C = 200 \text{ mA}, I_B = 350 \mu\text{A}$		1.1	1.3	V	
		$I_C = 350 \text{ mA}, I_B = 500 \mu\text{A}$		1.3	1.6		
		for ULN2002, V _I = 17 V		0.82	1.25		
1.	Input ourront (Figure 6)	for ULN2003, V _I = 3.85 V		0.93	1.35	mA	
I _{I(ON)}	Input current (Figure 6)	for ULN2004, V _I = 5 V		0.35	0.5	IIIA	
		V _I = 12 V		1	1.45		
I _{I(OFF)}	Input current (Figure 7)	T _A = 85 °C, I _C = 500 μA	50	65		μΑ	
V _{I(ON)}	Input voltage (Figure 8)	$V_{\text{CE}} = 2 \text{ V, for ULN2002} \\ I_{\text{C}} = 300 \text{ mA} \\ \text{for ULN2003} \\ I_{\text{C}} = 200 \text{ mA} \\ I_{\text{C}} = 250 \text{ mA} \\ I_{\text{C}} = 300 \text{ mA} \\ \text{for ULN2004} \\ I_{\text{C}} = 125 \text{ mA} \\ I_{\text{C}} = 200 \text{ mA} \\ I_{\text{C}} = 275 \text{ mA} \\ I_{\text{C}} = 350 \text{ mA} \\ I_{\text{C}$			13 2.4 2.7 3 5 6 7 8	V	
h _{FE}	DC Forward current gain (Figure 5)	for ULN2001, $V_{CE} = 2 V$, $I_C = 350 \text{ mA}$	1000				
C _I	Input capacitance			15	25	pF	
t _{PLH}	Turn-on delay time	0.5 V _I to 0.5 V _O		0.25	1	μs	
t _{PHL}	Turn-off delay time	0.5 V _I to 0.5 V _O		0.25	1	μs	
I _R	Clamp diode leakage current	V _R = 50 V			50	пΔ	
'R	(Figure 9)	$T_A = 85 ^{\circ}C, V_R = 50 V$			100	μΑ	
V _F	Clamp diode forward voltage (Figure 10)	I _F = 350 mA		1.7	2	V	

Test circuits 5

Figure 3. Output leakage current VCE OPEN ICEX S-5725

Figure 5. Collector-emitter saturation voltage

Figure 7. Input current (OFF)

8/21 DocID5279 Rev 14

6 Typical performance characteristics

Figure 13. Input current vs. input voltage

ULN2003A

Typ

Typ

Min

Input Voltage V_{IN} (V)

10/21 DocID5279 Rev 14

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

7.1 DIP-16L package information

Figure 19. DIP-16L package outline

Table 4. DIP-16L mechanical data

Dim.		mm.	
Dim.	Min.	Тур.	Max.
А			5.33
A1	0.38		
A2	2.92	3.30	4.95
b	0.36	0.46	0.56
b2	1.14	1.52	1.78
С	0.20	0.25	0.36
D	18.67	19.18	19.69
E	7.62	7.87	8.26
E1	6.10	6.35	7.11
е		2.54	
e1		17.78	
eA		7.62	
eB			10.92
L	2.92	3.30	3.81

7.2 SO-16 Narrow package information

Figure 20. SO-16 package outline

Table 5. SO-16 Narrow mechanical data

Di		mm.			inch.	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
a1	0.1		0.25	0.004		0.009
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1			45°	(typ.)		
D(1)	9.8		10	0.386		0.394
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
еЗ		8.89			0.350	
F(1)	3.8		4.0	0.150		0.157
G	4.60		5.30	0.181		0.208
L	0.4		1.27	0.150		0.050
M			0.62			0.024
S				max.)		0.021

Figure 21. SO-16 Narrow tape and reel drawing

Table 6. SO-16 Narrow tape and reel mechanical data

Dim.		mm.	
Diiii.	Min.	Тур.	Max.
А		-	330
С	12.8	-	13.2
D	20.2	-	-
N	60	-	-
Т	-	-	22.4
Ao	6.45	-	6.65
Во	10.3	-	10.5
Ко	2.1	-	2.3
Po	3.9	-	4.1
Р	7.9	-	8.1

7.3 TSSOP16 package information

C 0.25 mm **GAGE PLANE** П Ε A2 A1 \Box PIN 1 IDENTIFICATION 0080338

Figure 22. TSSOP16 package outline

Table 7. TSSOP16 mechanical data

Dim.	mm.			
Dilli.	Min.	Тур.	Max.	
A			1.20	
A1	0.05		0.15	
A2	0.90	1.00	1.05	
A3	0.39	0.44	0.49	
b	0.20		0.28	
b1	0.19	0.22	0.25	
С	0.13		0.17	
c1	0.12	0.13	0.14	
D	4.90	5.00	5.10	
E	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
е	0.65 BSC			
L	0.45	0.60	0.75	
L1		1.00 BSC		
0	0		8°	

Figure 23. TSSOP16 recommended footprint (dimensions are in mm)

Figure 24. TSSOP16 tape and reel drawing

Table 8. TSSOP16 tape and reel mechanical data

Dim.	mm.				
Dilli.	Min.	Тур.	Max.		
Α		-	330		
С	12.8	-	13.2		
D	20.2	-	-		
N	60	-	-		
Т	-	-	22.4		
Ao	6.7	-	6.9		
Во	5.3	-	5.5		
Ko	1.6	-	1.8		
Po	3.9	-	4.1		
Р	7.9	-	8.1		

18/21 DocID5279 Rev 14

8 Order codes

Table 9. Order codes

Part number	Package	
ULN2001A	DIP-16	
ULN2002A	DIP-16	
ULN2003A	DIP-16	
ULN2004A	DIP-16	
ULN2001D1013TR	SO-16 in tape and reel	
ULN2002D1013TR	SO-16 in tape and reel	
ULN2003D1013TR	SO-16 in tape and reel	
ULN2004D1013TR	SO-16 in tape and reel	
ULN2003TTR	TSSOP16 in tape and reel	

9 Revision history

Table 10. Revision history

Date	Revision	Changes
05-Dec-2006	5	Order code updated and document reformatted.
28-Aug-2007	6	Added Table 1 in cover page.
07-May-2012	7	Modified: Figure 12 on page 9. Added: Figure 13, 14, 15 and Figure 16 on page 9.
01-Jun-2012	8	Updated: DIP-16L package mechanical data Table 4 on page 12 and Figure 19 on page 11.
22-Jul-2015	9	Added Plastic DIP16-L package. Removed Device summary table. Updated Table 7: Order code. Added Section 7.2: Plastic DIP-16L package information. Minor text changes.
07-Nov-2017	10	Removed plastic DIP-16L package and associated order code ULN2003A
27-Jun-2018	11	Updated: I _{I(ON)} test condition in Table 3: Electrical characteristics.
09-Jul-2019	12	Added IF, VR, ESD parameters in Table 1: Absolute maximum ratings and note in Table 2: Thermal data.
23-Jul-2020	13	Added new part number ULN2003TTR in Table 9: Order codes and new Section 7.3: TSSOP16 package information.
30-Nov-2021	14	Updated Table 7: TSSOP16 mechanical data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

