

AMENDMENTS TO THE CLAIMS:

1 1. (Currently Amended) A valve assembly adapted to be positioned into a urethra in a
2 mammal, including humans, the valve assembly comprising:

3 a) a valve holder comprising a substantially cylindrically shaped body to be inserted into
4 the urethra, and

5 b) a valve housing comprising a valve controlling an urine flow from a patients bladder,
6 the valve assembly being 'arranged in a sealed manner between the walls of the urethra,

7 wherein the cylindrical valve holder comprises a shape memory alloy to provide an
8 expandable element having the possibility to expand after the insertion of said valve holder to
9 increase its diameter at its upper end to provide a frustoconical portion, whereby the increase of
10 the diameter of the cylinder at its upper end is more than 15 % and whereby the increase of the
11 diameter of said cylindrical valve holder is temperature dependent; and

12 wherein the valve holder comprises at least two frustoconically shaped portions at one
13 end of the cylinder.

1 2. (Previously Presented) A valve assembly according to claim 1, wherein the
2 cylindrical valve holder increase its diameter at its lower end.

1 3. (Previously Presented) A valve assembly according to claim 1, wherein the valve
2 holder comprises at least two frustoconically shaped portions.

1 4. (Cancelled)

1 5. (Previously Presented) A valve assembly according to claim 1, wherein the valve
2 holder comprises at least two frustoconically shaped portions at one end of the cylinder as well

3 as at least one frustoconically shaped portion at the opposite end thereof.

1 6. (Previously Presented) A valve holder according to claim 1, wherein the holder and
2 the housing are detachable from each other when in place in the urethra.

1 7. (Previously Presented) A valve assembly according to claim 1, wherein the holder
2 and the housing are detachable from each other.

1 8. (Previously Presented) A valve assembly according to claim 1, wherein the valve
2 holder includes a first portion exhibiting a frustoconical shape, a second portion being essentially
3 cylindrical and a third portion exhibiting a frustoconical shape directed in opposite direction in
4 relation to the first portion.

1 9. (Previously Presented) A valve assembly according to claim 1, wherein the valve
2 holder includes a first portion exhibiting at least two parts having frustoconical shape, a second
3 portion being essentially cylindrical and a third portion exhibiting a frustoconical shape directed
4 in opposite direction in relation to the first portion.

1 10. (Previously Presented) A valve assembly according to claim 1, wherein the holder is
2 helix shaped wire arranged onto the valve housing.

1 11. (Previously Presented) A valve assembly according to claim 1, wherein the holder
2 comprises a helix shaped wire threaded on external threads arranged on the outside of the valve
3 housing.

1 12. (Currently Amended) A valve assembly according to claim ~~11~~ 11, wherein the
2 increase of the diameter of ~~the~~ a helix shaped wire at its upper end is more than 15 %.

1 13.(Amended) A valve assembly according to claim 11, wherein the increase of the
2 diameter of the cylinder at its upper end is at least 40 %.

1 14. (Currently Amended) A valve assembly according to claim ~~11~~ 12, wherein the
2 increase of the diameter of ~~the~~ a helix shaped wire at its upper end is at least 40 %.

1 15. (Currently Amended) A valve assembly according to claim ~~11~~ 12, wherein the
2 increase of the diameter of ~~the~~ a helix shaped wire at its upper end after expansion is at least 25
3 %.

1 16. (Currently Amended) A valve assembly according to claim ~~11~~ 12, wherein the
2 increase of the diameter of ~~the~~ a helix shaped wire at its lower ~~add~~ end is at least 10 %.

1 17. (Currently Amended) A valve assembly according to claim ~~11~~ 12, wherein the
2 increase of the diameter of ~~the~~ a helix shaped wire at its lower end after expansion is at least 20
3 %.

1 18. (Previously Presented) A valve assembly according to claim 1, wherein the increase
2 of the diameter of the cylindrical portion of the valve holder is less than 80 %.

1 19. (Previously Presented) A valve assembly according to claim 1, wherein said valve
2 holder comprise an expandable element having the possibility to shrink upon removal of said
3 valve housing.

1 20. (Currently Amended) A valve assembly according to claim 1, wherein the total
2 length of the assembly is less than the length of the female urethra where it is intended to be
3 inserted~~[,]~~.

1 21. (Previously Presented) A valve assembly according to claim 1, wherein the total
2 length of the valve is less than 60 mm.

1 22. (Previously Presented) A valve assembly according to claim 1, wherein the total
2 length of the valve assembly is between 5 and 40 mm, preferably 5-30 mm.

1 23. (Previously Presented) A valve assembly according to claim 1, wherein at least a
2 part of the length of the valve body of said valve assembly has a bending stiffness higher than
3 0.0004 Nm^2 (Newton square meter).

1 24. (Previously Presented) A valve assembly according to claim 1, wherein at least a
2 part of the length of the valve body of said valve assembly has a bending stiffness higher than
3 0.0004 Nm^2 (Newton square meter) and that at least a part of the length of the valve body of said
4 valve assembly has a bending stiffness lower than 0.05 Nm^2 (Newton square meter).

1 25. (Previously Presented) A valve assembly according to claim 1, wherein the part of
2 the valve assembly with bending stiffness higher than 0.0004 Nm^2 (Newton square meter) is less
3 than 80% of the length of the female urethra where it is intended to be inserted.

1 26. (Previously Presented) A valve assembly according to claim 1, wherein the part of
2 the valve assembly with bending stiffness higher than 0.0004 Nm^2 (Newton square meter) is less
3 than 50mm.

4 27. (Previously Presented) A valve assembly according to claim 1, wherein the part of
5 the valve assembly with bending stiffness higher than 0.0004 Nm^2 (Newton square meter) is less
6 than 40mm.

1 28. (Previously Presented) A valve assembly according to claim 1, wherein the part of
2 the valve assembly with bending stiffness higher than 0.0004 Nm^2 (Newton square meter) is
3 between 5 and 60 mm.

1 29.(Withdrawn) A valve adapted to be positioned into a urethra and in a valve assembly
2 according to claim 1, said valve for emptying a patient's urine collected within his bladder,
3 comprising: a tubular vane housing having an upper, lower, and central part and a channel
4 therein; a valve body situated at the lower part of the housing a valve seat situated below said
5 valve body, said central part having at least one drainage hole extending through said tubular
6 housing, said drainage hole located in the area between the upper end and the valve seat, said
7 channel of the valve housing in communication with said drainage hole, said valve body being
8 arranged to be moved in a longitudinal wherein the total length of the valve is less than 60 mm.

1 30.(Withdrawn) A valve adapted to be positioned into a urethra and in a valve assembly
2 according to claim 1, said valve for emptying a patient's urine collected within his bladder,
3 comprising: a tubular valve housing having an upper, lower, and central part and a channel
4 therein; a valve body situated at the lower end of the housing and attached to a valve rod which
5 in an opposite end thereof comprises a magnet accommodated in the upper portion of the valve;
6 and a valve seat situated below said valve body, said central part having at least one drainage
7 hole extending through said tubular housing, said drainage hole located in the area between the
8 upper part and the valve seat, said channel of the valve housing in communication with said
9 drainage hole, said valve body being arranged to be moved in a longitudinal direction by means
10 of a part of the valve rod extending below said valve rod.

1 31.(Withdrawn) A valve according to claim 1,

2 wherein the valve housing comprises a magnetic controlled valve.

1 32.(Withdrawn) A valve according to claim 1,

2 wherein the valve is electro-magnetically controlled.

1 33. (Previously Presented) A valve according to claim 1,

2 wherein the valve is mechanically controlled.

1 34. (Previously Presented) A valve according to claim 1,

2 wherein the valve is electro-magnetically or mechanically controlled independent of the pressure
3 in the bladder to be emptied.

1 35. (Previously Presented) A valve according to claim 1,

2 wherein the valve may be opened by means of an opening force being between 10 to 200 mN.

1 36. (Previously Presented) A valve according to claim 35, wherein the valve may be
2 opened by means of a opening force being between 20 to 100 mN.

1 37. (Previously Presented) A valve according to claim 30, wherein the valve is partly
2 flexible, and partly rigid, whereby the rigid part is shorter than 50 mm.

1 38. (Currently Amended) A method for emptying a patient's urine bladder, whereby [a]
2 the valve assembly in accordance with claim 1 is inserted in the urethra and influenced at time
3 intervals to open and empty said bladder.