世

东 南 大 学 考 试 卷(A卷)

课	程 名	称	算法设计基础					考	考试学期 2019-2020-2 得分								
适月	用 专	业	,	计算	机	表	ś试	形式		开	卷		考试	时间	长度	150	分钟
(可	携	带	纸	质	教	材	`	课	件	`	讲	义	•	笔	记)

1. 判断题 (共10分,每小题2分)

a)	$T(n) = n + 7T(n/5) = \theta(n)$ ()
b)	P 类问题可多项式时间验证一个解()
c)	K 团问题可多项式时间内规约(≤p)到集合覆盖问题的实例()
d)	近似算法的近似比可能小于 1)
e)	随机算法是可能得到最优解的)

- 2. 给定n个班会活动 $A = \{a_1, a_2, ..., a_n\}$,以及两个教室,每个班会活动 a_i 可表示为 $[s_i, f_i]$, 即开始时间和结束时间。请设计算法安排尽量多的班会活动到两个教室中,使得任意 两个安排的班会活动不冲突。(共15分)
- 3. 给定一个正整数数组A[1,2,...,n],现要从中选出一些数,满足数组中任意相邻的3个 数最多有一个可被选中(即对任意i, A[i-1], A[i], A[i+1]三个数最多可被选中一个)。 请设计一算法使得选出的数总和最大。(共 10 分)
- 4. 考虑这样一个出租车派单问题: 给定一个网络G = (V, D), 其中 $\forall v_i \in V$ 表示节点, D = $\{d_{ij}\}, v_i, v_j \in V$ 表示任意两个节点之间的行程距离,满足三角不等式,即 $\forall v_i, v_i, v_k$, 有 $d_{ij} + d_{ik} \ge d_{ik}$ 。 假 设 现 在 有 n 辆 出 租 车 $A = \{a_1, a_2, ..., a_n\}$ 和 m 个 乘 客 R = $\{r_1, r_2, ..., r_m\}$, 其中 $n \ge m$ 。每辆出租车 $a_k \in A$ 的节点位置定义为 $v(a_k)$,每个乘客 r_l 的 位置定义为 $v(r_i)$ 。现在出租车平台公司希望为每个乘客安排一辆出租车,目标是最小 化空载距离和,即所有的出租车到乘客的空载距离总和最小。如图所示,有两辆出租 车 a_1 和 a_2 ,他们所在节点分别是 v_1 和 v_4 ,同时有两个乘客 r_1 和 r_2 ,他们所在节点分别 是 v_2 和 v_3 。如果将 a_1 分配给 r_1 , a_2 分配给 r_2 ,那么空载距离和为: $d_{12} + d_{34} = 10$ 。 现在某平台提出一种贪心方案, 步骤如下:

Step1: 对于任意的乘客 η 以及任意的出租车 a_k ,如果他们之间的距离, $d_{\nu(a_k)\nu(r_l)}$ 最短, 则匹配成功,即将出租车 a_k 分配给乘客 η ;

Step2: 移除 Step 1 中匹配成功的出租车和乘客;

Step3: 重复 Step 2~3, 直到所有的乘客分配完毕。

如图所示,首先匹配成功的是乘客 r_1 和出租车 a_1 ,因为他们之间的距离 $d_{v(a_1)v(r_1)}=4$ 最 短。然后匹配成功的是乘客 r_2 和出租车 a_2 。

试问该贪心方法是否为最优方法?如果不是,请给出一个反例并且设计最优方法;如 果是,请给出证明。(共10分)

卧

5. 某电路板两侧分别有n个焊点,分别记做焊点1,2,...,n,如图所示。根据电路设计图,现在需要将顶层的焊点i ($1 \le i \le n$)与底层的焊点 $\pi(i)$ 用导线联通,即需要n条直线 ($i,\pi(i)$) ($1 \le i \le n$)来连接n对焊点。

两条直线 $(i,\pi(i))$ 与 $(j,\pi(j))$ 相交,如果i < j 但 $\pi(i) > \pi(j)$ 成立的话。反之亦然。两条直线的交点称为交叉点。如图所示的例子中,一共有 9 个交叉点。

请设计一个分治算法为任意给定的n对焊点计算总共的交叉点个数。你设计的算法复杂度不能高于 $O(n\log n)$ 。(共 15 分)

6. X 数轴上从左到右有n个不等间距的点a[1,2,...,n],给定一根长度为L的绳子,求绳子最多能覆盖其中的几个点。(共 15 分)

请设计一个 $O(n^2)$ 时间的算法。

请问是否存在O(n)时间的算法?请尝试说明要点。

- 7. 假定 0/1 背包问题中,有 3 个背包,每个背包容量分别为 C_1 , C_2 , C_3 ,给定 n个物品 $A = \{a_1, a_2, ..., a_n\}$,每个物品 a_i 可表示为 (v_i, w_i) ,即价值和重量。请设计一动态规划方法将物品装入这三个背包,使得每个背包装入物品重量不超过各自容量,且装入物品的总价值最大。(共 15 分)
- 8. 给定n个物体 $A = \{a_1, a_2, ..., a_n\}$,请分析随机取出两个物体的概率,并设计一个算法以等概率取出两个物体,给出算法思想及伪代码。(共 10 分)