Corso di Algebra per Informatica

Lezione 17: Esercizi

- (1) Una relazione binaria ρ su un insieme a si dice *asimmetrica* se $(\forall x, y \in a)(x\rho y \to \neg(y\rho x))$. Dimostrare che una relazione transitiva è asimmetrica se e solo se è antiriflessiva.
- (2) Prossima volta. Dimostrare che una relazione $\rho = (a \times a, g)$ è sia simmetrica che antisimmetrica se e solo se $g \subseteq diaga$.
- (3) Sia $\rho = (\mathbb{N} \times \mathbb{N}, \in)$. Quali delle proprietà enunciate (riflessività, antiriflessività, simmetria, ecc.) soddisfa ρ ?
- (4) Disegnare i diagrammi di Hasse di $(P(P(\emptyset), \subseteq), \text{ di } (P(P(\emptyset), \in) \text{ e di } (P(P(\emptyset))), \subseteq).$
- (5) Verificare che ρ^{\wedge} e ρ^{\vee} definite a lezione sono rispettivamente di ordine stretto e largo.
 - Sia (s, ρ) un insieme ordinato. Un elemento x di s si dice minimale se $(\forall y \in s)((x\rho y \lor y\rho x) \to x\rho y)$. x si dice invece massimale se $(\forall y \in s)((x\rho y \lor y\rho x) \to y\rho x)$.
- (6) Sia (s, ρ) un insieme ordinato. Dimostrare che un elemento x di s è minimale se e solo se $(\neg(\exists y \in s))((y\rho x) \land x \neq y)$.
- (7) Sia (s, ρ) un insieme ordinato. Dimostrare che il massimo (il minimo) di s, se esiste, è l'unico massimale (risp. minimale).
- (8) Consideriamo $\leq = (\mathbb{N} \times \mathbb{N}, g)$, ovvero la relazione di ordine usuale su \mathbb{N} . Sia ora x un insieme, sia $s = \mathbb{N} \cup \{x\}$ e definiamo $\rho = (s \times s, g_{\rho})$ dove $g_{\rho} = g \cup \{(x, x)\}$. L'insieme è bene ordinato? È totalmente ordinato? Ammette massimo? Quanti elementi massimali ha e quanti minimali?
- (9) Sia ρ la relazione binaria su \mathbb{Z} così definita: $m\rho n \iff (m|n \land mn \ge 0)$.
 - Verificare che ρ è una relazione d'ordine.
 - (\mathbb{Z}, ρ) è bene ordinato? E totalmente ordinato?
 - Trovare, se possibile, minimo e massimo in (\mathbb{Z}, ρ) .
 - Descrivere l'insieme degli elementi confrontabili con −1 e quello degli elementi confrontabili con 2.
- (10) Sia $s = \{2^n \mid n \in \mathbb{N}\}$. Dimostrare che l'applicazione $n \in \mathbb{N} \mapsto 2^n \in s$ è un isomorfismo tra (\mathbb{N}, \leq) e (s, \leq) .
- (11) Con la notazione dell'esercizio precedente, trovare un isomorfismo tra (\mathbb{N}, \leq) and (s, |).