1) Well Defined Function

A function is well defined if it satisfies the following two conditions: $f: A \rightarrow B$

(i) (Existence of Image)

For all $x \in A$, there exists a $y \in B$,

Such that f(x) = y.

$$(\forall x \in A, \exists y \in B, \ni f(x) = y.)$$

(ii) (Uniqueness of Image)

(Accept One to one or Many to one only)

For any $x_1 \in A$, $y_1 and y_2 \in B$, such that

$$f(x_1) = y_1$$
 and $f(x_1) = y_2$,

Then $y_1 = y_2$.

2) Composition Function

DEFINITION Composite Functions

Given two functions f and g, the composite function $f \circ g$ is defined by $(f \circ g)(x) = f(g(x))$. It is evaluated in two steps: y = f(u), where u = g(x). The domain of $f \circ g$ consists of all x in the domain of g such that u = g(x) is in the domain of f (Figure 1.8).

EXAMPLE 5 Working with composite functions Identify possible choices for the inner and outer functions in the following composite functions. Give the domain of the composite function.

a.
$$h(x) = \sqrt{9x - x^2}$$
 b. $h(x) = \frac{2}{(x^2 - 1)^3}$

SOLUTION

- **a.** An obvious outer function is $f(x) = \sqrt{x}$, which works on the inner function $g(x) = 9x x^2$. Therefore, h can be expressed as $h = f \circ g$ or h(x) = f(g(x)). The domain of $f \circ g$ consists of all values of x such that $9x x^2 \ge 0$. Solving this inequality gives $\{x: 0 \le x \le 9\}$ as the domain of $f \circ g$.
- **b.** A good choice for an outer function is $f(x) = 2/x^3 = 2x^{-3}$, which works on the inner function $g(x) = x^2 1$. Therefore, h can be expressed as $h = f \circ g$ or h(x) = f(g(x)). The domain of $f \circ g$ consists of all values of g(x) such that $g(x) \neq 0$, which is $\{x: x \neq \pm 1\}$.

EXAMPLE 6 More composite functions Given $f(x) = \sqrt[3]{x}$ and $g(x) = x^2 - x - 6$, find (a) $g \circ f$ and (b) $g \circ g$, and their domains.

SOLUTION

a. We have

$$(g \circ f)(x) = g(f(x)) = (\underbrace{\sqrt[3]{x}}_{f(x)})^2 - \underbrace{\sqrt[3]{x}}_{f(x)} - 6 = x^{2/3} - x^{1/3} - 6.$$

Because the domains of f and g are $(-\infty, \infty)$, the domain of $f \circ g$ is also $(-\infty, \infty)$.

b. In this case, we have the composition of two polynomials:

$$(g \circ g)(x) = g(g(x))$$

$$= g(x^{2} - x - 6)$$

$$= (x^{2} - x - 6)^{2} - (x^{2} - x - 6) - 6$$

$$= (x^{2} - x - 6)^{2} - (x^{2} - x - 6) - 6$$

$$= x^{4} - 2x^{3} - 12x^{2} + 13x + 36.$$

The domain of the composition of two polynomials is $(-\infty, \infty)$.

3) Even function and Odd function

DEFINITION Symmetry in Functions

An **even function** f has the property that f(-x) = f(x), for all x in the domain. The graph of an even function is symmetric about the y-axis. Polynomials consisting of only even powers of the variable (of the form x^{2n} , where n is a nonnegative integer) are even functions.

An **odd function** f has the property that f(-x) = -f(x), for all x in the domain. The graph of an odd function is symmetric about the origin. Polynomials consisting of only odd powers of the variable (of the form x^{2n+1} , where n is a nonnegative integer) are odd functions.

4) Inverse Functions:

2 Definition Let f be a one-to-one function with domain A and range B. Then its **inverse function** f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \iff f(x) = y$$

for any y in B.

(a) Existence of inverse Functions

Let f be a one-to-one function on a domain D with a range R. Then f has a unique inverse f^{-1} with domain R and range D such that

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(y)) = y$,

where x is in D and y is in R.

Such that f(x) and $f^{-1}(x)$ are both bijective functions.

(b) The relation between the domain and range of f(x) and $f^{-1}(x)$

domain of
$$f^{-1}$$
 = range of f

range of
$$f^{-1} = \text{domain of } f$$

5) Simplification of inverse Trigonometric Functions

EXAMPLE 13 Simplify the expression $\cos(\tan^{-1}x)$.

SOLUTION 1 Let $y = \tan^{-1}x$. Then $\tan y = x$ and $-\pi/2 < y < \pi/2$. We want to find $\cos y$ but, since $\tan y$ is known, it is easier to find $\sec y$ first:

$$\sec^2 y = 1 + \tan^2 y = 1 + x^2$$

$$\sec y = \sqrt{1 + x^2}$$
 (since $\sec y > 0$ for $-\pi/2 < y < \pi/2$)

Thus
$$\cos(\tan^{-1} x) = \cos y = \frac{1}{\sec y} = \frac{1}{\sqrt{1 + x^2}}$$

6) Solving inequality with Absolute value sign

EXAMPLE 2 Solve the inequality |x-3| + |x+2| < 11.

SOLUTION Recall the definition of absolute value:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

It follows that

$$|x-3| = \begin{cases} x-3 & \text{if } x-3 \ge 0 \\ -(x-3) & \text{if } x-3 < 0 \end{cases}$$
$$= \begin{cases} x-3 & \text{if } x \ge 3 \\ -x+3 & \text{if } x < 3 \end{cases}$$

Similarly

$$|x+2| = \begin{cases} x+2 & \text{if } x+2 \ge 0 \\ -(x+2) & \text{if } x+2 < 0 \end{cases}$$
$$= \begin{cases} x+2 & \text{if } x \ge -2 \\ -x-2 & \text{if } x < -2 \end{cases}$$

These expressions show that we must consider three cases:

$$x < -2$$
 $-2 \le x < 3$ $x \ge 3$

CASE I If x < -2, we have

$$|x-3| + |x+2| < 11$$

 $-x+3-x-2 < 11$
 $-2x < 10$
 $x > -5$

CASE II If $-2 \le x < 3$, the given inequality becomes

$$-x + 3 + x + 2 < 11$$

5 < 11 (always true)

CASE III If $x \ge 3$, the inequality becomes

$$x - 3 + x + 2 < 11$$

 $2x < 12$
 $x < 6$

Combining cases I, II, and III, we see that the inequality is satisfied when -5 < x < 6. So the solution is the interval (-5, 6).

7) Logarithmic Function

$$\log_a x = y \iff a^y = x$$

$$\log_a(a^x) = x$$
 for every $x \in \mathbb{R}$ $a^{\log_a x} = x$ for every $x > 0$

8) Graphs

(a) Graphs of Exponential Functions and Logarithmic Function

DEFINITION The Natural Exponential Function

The **natural exponential function** is $f(x) = e^x$, which has the base e = 2.718281828459...

Larger values of b

(b) Graphs of Power Functions and Root Functions

9) Change of Base Formula

For any positive number a ($a \ne 1$), we have

$$\log_a x = \frac{\ln x}{\ln a}$$

Proof:

Let $y = log_a x$

Then

 $a^y = x$

Taking natural logarithms of the both sides of this equation,

We get

ylna = lnx.

Therefore y

 $y = \frac{\ln a}{\ln x}$

10) Exercises:

- 1) Solve the equation |2x-1|-|x+5|=3.
- 2) Solve the inequality $|x-1|-|x-3| \ge 5$.
- 3) Sketch the graph of the function $f(x) = |x^2 4|x| + 3$.

4) The population of a certain species in a limited environment with initial population 100 and carrying capacity 1000 is

$$P(t) = \frac{100,000}{100 + 900e^{-t}}$$

Where t is measured in years.

- (a) Graph this function and estimate how long it takes for the population to reach 900.
- (b) Find the inverse of this function and explain its meaning.
- (c) Use the inverse function to find the time required for the population to reach 900. Compare with the result of part (a).

5) Bacteria Population

Under ideal conditions a certain bacteria population is known to double every three hours. Suppose that there are initially 100 bacteria.

- (a) What is the size of the population after 15 hours?
- (b) What is the size of the population after t hours?
- (c) Estimate the size of the population after 20 hours.
- (d) Graph the population function and estimate the time for the population to reach 50,000.

6) Human Population

Use a graphing calculator with exponential regression capability to model the population of the world with the data from 1950 to 2000 in Table 1 below. Use the exponential model to estimate the population in 1993 and to predict the population in the year 2010.

TABLE I

Year	Population (millions)
1900	1650
1910	1750
1920	1860
1930	2070
1940	2300
1950	2560
1960	3040
1970	3710
1980	4450
1990	5280
2000	6080

- 7) Give the domains of the following functions:
 - $f(x) = x^3 2x^2 + 6$ (a)
 - (b) $f(x) = \sqrt[3]{2x^2 8}$
 - (c) $g(x) = \left| \frac{x^2 4}{x + 3} \right|$
 - (d) $f(x) = \frac{\sqrt{3x^2-12}}{x+1}$
 - (e) $f(x) = \begin{cases} \frac{|x-1|}{x-1} & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$
- $f(x) = x + \frac{1}{x}$ and $g(x) = \frac{x+1}{x+2}$. 8)

Find the following functions:

(b) gof, (c) fof and (d) gog(a) fog,

and their domains.

- Prove that $cos(sin^{-1}x) = \sqrt{1-x^2}$. 9)
- Simplify the following expressions: 10)
 - (a) $tan(sin^{-1}x)$ (b) $sin(tan^{-1}x)$
 - (c) $cos(2 tan^{-1} x)$
- Find the domains and the ranges of $y = f(x) = \frac{x+1}{2x+1}$ and it's 11) inverse function $y = f^{-1}(x)$.