- ENGR 447-01 Control Systems (Fall 2016)
- A. A small signal model of an N type MOSFET driving an inductive load is shown below. Use circuit theory to find the system differential equations in the state space matrix form as in eq. (5-1) and (5-2) in Handout 5. Remember: there is going to be one first order differential equation per storage element (i.e. an inductor or a capacitor).
 - What is the order of the system?
 - What are the state variables?

List of constants and variables:

- $v_i(t)$ = System input (volts).
- $v_o(t)$ = System output (volts).
- g_m = Transconductance (constant) (S) = (Ω^{-1})
- $C_M = c_{gd} =$ Miller capacitance (constant) (F). It is between input and output and creates an undesirable feedback.
- $R_o = \text{Output resistance (constant) } (\Omega).$
- $R = \text{Load resistance (constant) } (\Omega).$
- L = Load inductance (constant) (H).

ANSWER A:

- First identify the energy storage elements and write their equations:

$$C_M$$
: $i_{CM} = C_M \frac{dv_{CM}}{dt}$; L : $v_L = L \frac{di_L}{dt}$

- State variables are those whose derivatives exist; hence the state vector is:

$$\mathbf{x} = \begin{bmatrix} v_{CM} \\ i_I \end{bmatrix}$$

- Rewrite energy storage elements equations with derivatives alone on the left hand side:

$$C_{M}: \frac{dv_{CM}}{dt} = \frac{1}{C_{M}} i_{CM}; \qquad L: \frac{di_{L}}{dt} = \frac{1}{L} v_{L} \Longrightarrow \frac{d}{dt} \begin{bmatrix} v_{CM} \\ i_{L} \end{bmatrix} = \begin{bmatrix} \frac{1}{C_{M}} i_{CM} \\ \frac{1}{L} v_{L} \end{bmatrix}$$
(1)

Now find the right hand side, i.e. i_{CM} and v_L , in terms of state variables v_{CM} , i_L and input v_i from above circuit.

- To do so, first write the general state space equations (input is v_i , output is v_o):

$$\frac{d\mathbf{x}}{dt} = \frac{d}{dt} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} = \mathbf{A} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} + \mathbf{B} v_i$$

$$\mathbf{y} = v_o = \mathbf{C} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} + \mathbf{D} v_i$$

Note the dimensions of variables: input size = 1, output size = 1, state vector size = 2; hence: A is 2 X 2, B is 2 X 1, C is 1 X 2 and D is 1 X 1; substitute equation 1 for the derivatives:

$$\frac{d}{dt} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} = \begin{bmatrix} \frac{1}{C_M} & i_{CM} \\ \frac{1}{L} & v_L \end{bmatrix} = \underbrace{\begin{bmatrix} \cdots & \cdots \\ \cdots & \cdots \end{bmatrix}}_{l} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} + \underbrace{\begin{bmatrix} \cdots \\ \cdots \end{bmatrix}}_{l} v_i$$
 (2)

$$v_o = \overbrace{[\cdots \quad \cdots]}^{\mathbf{C}} \begin{bmatrix} v_{CM} \\ i_I \end{bmatrix} + \overbrace{[\cdots]}^{\mathbf{D}} v_i$$
 (3)

- It is easier to begin with an equation for v_o as v_o is used in future; apply Kirchhoff's voltage law (KVL) around the outer loop:

$$v_i = v_{CM} + v_o \Longrightarrow v_o = -v_{CM} + v_i \tag{4}$$

- From above, the matrix expression for output v_o may be written:

$$v_o = \overbrace{[-1 \quad 0]}^{\mathbf{C}} \begin{bmatrix} v_{CM} \\ i_I \end{bmatrix} + \overbrace{[1]}^{\mathbf{D}} v_i$$
 (5)

- To find the first row of **A** and **B** matrices in equation (2), apply Kirchhoff's current law (KCL) at the node right after the capacitor (see figure on page 1):

$$i_{CM} = i + i_1; \quad i = g_m v_i \implies i_{CM} = g_m v_i + i_1$$
 (6)

- Apply KCL at "Drain" node in the figure:

$$i_1 = i_2 + i_L; \quad i_2 = \frac{v_o}{R_o} \Longrightarrow \quad i_1 = \frac{v_o}{R_o} + i_L$$
 (7)

- Substitute for: v_o from (4):

$$i_1 = \frac{-v_{CM} + v_i}{R_o} + i_L \tag{8}$$

Substitute (8) in (6):

$$i_{CM} = g_m v_i + i_1 \Longrightarrow i_{CM} = g_m v_i + \frac{-v_{CM} + v_i}{R_o} + i_L$$
 (9)

- Factor v_i and rewrite (9) in proper variables order:

$$i_{CM} = -\frac{1}{R_o} v_{CM} + i_L + \left(g_m + \frac{1}{R_o}\right) v_i \tag{10}$$

- Divide (10) by $1/C_M$:

$$\frac{1}{C_M}i_{CM} = -\frac{1}{R_0C_M}v_{CM} + \frac{1}{C_M}i_L + \left(\frac{g_m}{C_M} + \frac{1}{R_0C_M}\right)v_i \tag{11}$$

- The first row of **A** and **B** matrices in equation (2) may now be filled:

$$\frac{d}{dt} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} = \begin{bmatrix} \frac{1}{C_M} & i_{CM} \\ \frac{1}{I} & v_L \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{A}}{R_o C_M} & \frac{1}{C_M} \\ \dots & \dots \end{bmatrix} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} + \begin{bmatrix} \frac{g_m}{C_M} + \frac{1}{R_o C_M} \\ \dots & \dots \end{bmatrix} v_i$$
(12)

- It remains to find v_L in terms of v_{CM} , i_L , v_i . Note that:

$$v_o = i_L R + v_L \Longrightarrow \qquad v_L = v_O - i_L R \tag{13}$$

- Substitute for v_o from (4):

$$v_L = v_o - i_L R; \ v_o = -v_{CM} + v_i \implies v_L = -v_{CM} + v_i - i_L R$$
 (14)

Divide above by L and rewrite in proper variables order:

$$\frac{1}{L}v_L = -\frac{1}{L}v_{CM} - \frac{R}{L}i_L + \frac{1}{L}v_i \tag{15}$$

- The 2nd row of (12) may now be filled:

$$\frac{d}{dt} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} = \begin{bmatrix} \frac{1}{C_M} & i_{CM} \\ \frac{1}{L} & v_L \end{bmatrix} = \begin{bmatrix} -\frac{1}{R_o C_M} & \frac{1}{C_M} \\ -\frac{1}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} + \begin{bmatrix} \frac{g_m}{C_M} + \frac{1}{R_o C_M} \\ \frac{1}{L} \end{bmatrix} v_i$$
(16)

Final answer:

$$\frac{d}{dt}\begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} = \begin{bmatrix} -\frac{1}{R_o C_M} & \frac{1}{C_M} \\ -\frac{1}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} + \begin{bmatrix} \frac{g_m}{C_M} + \frac{1}{R_o C_M} \\ \frac{1}{L} \end{bmatrix} \underbrace{v_i}_{\mathbf{u}}; \qquad v_o = \underbrace{\begin{bmatrix} \mathbf{C} \\ -1 & 0 \end{bmatrix}}_{\mathbf{X}} \begin{bmatrix} v_{CM} \\ i_L \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{D} \\ \mathbf{i}_L \end{bmatrix}}_{\mathbf{u}} + \underbrace{\begin{bmatrix} \mathbf{D} \\ \mathbf{I} \end{bmatrix}}_{\mathbf{u}} v_i$$

B. (Use MATLAB) Substitute the following numbers for the constants in the system state space differential equations and find the system transfer function $G(s) = \frac{V_o(s)}{V_i(s)}$ by equation (5 – 7) in

Handout 5 (all numbers: 5 significant digits i.e. use "vpa (..., 5)" command:

- $g_m = 0.005 \text{ S}.$
- $C_M = 20 \times 10^{-12} \text{ F.}$
- $R_o = 200 \Omega$
- $R = 1000 \Omega$
- $L = 10^{-4} \text{ H}$
- C. When v_i is a step input of 1 volt, find the system response $v_o(t)$ by finding the inverse Laplace transform of $V_o(s)$ symbolically by MATLAB. Plot system response v_o vs. time using MATLAB control system toolbox: first define the transfer function by "tf" command and then use "step" command to plot the response (don't specify the final time in step command).

COMMENTS:

- As seen below, the step response is negative even though the input is a positive unit step; this is because the circuit is an inverting amplifier.
- Compare the symbolic results to that of the control system toolbox. Note that y(t) obtained symbolically is an exact closed form solution which is not available in control system toolbox.

PART B:

```
syms s t
               % Laplace symbols.
% Circuit Data:
gm = 0.005;
cm = 20e-12;
ro = 200;
r = 1000;
1 = 1e-4;
% A,B,C,D matrices:
A = [-1/(cm*ro), 1/cm; -1/1, -r/1]
B = [gm/cm + 1/(ro*cm); 1/1]
C = [-1, 0]
D = 1
Gs = C * (s*eye(2) - A)^{1} * B + D;
Gs = simplifyFraction(Gs);
vpa(Gs, 5);
disp(' ******* G(s):')
pretty(ans)
% Make the leading coefficient in denominator = 1:
[NN, DD] = numden(Gs) % Separate the numerator and denominator.
DDcs = coeffs(DD)
                       % Find denominator coefficients of powers of s.
DD = DD/DDcs(3)
                       % Divide both denominator and numerator by the
```

ENGR 447-01 Control Systems (Fall 2016)

```
% coeff of s^2.
NN = NN/DDcs(3)
DD = collect(DD)
NN = collect(NN)
% Reconstruct G(s):
Gs = NN/DD
% Answer part B:
disp(' ************* Simplified G(s):')
vpa(Gs, 5)
pretty(ans)
```

```
A =
  1.0e+10 *
  -0.0250 5.0000
  -0.0000 -0.0010
B =
  1.0e+08 *
   5.0000
   0.0001
   -1 0
D =
    1
****** G(s):
7 2 15
 (-3.3554 10 s + 8.0531 10 s + 8.3886 10 ) 1.0
      7 2 15
    3.3554 10 s + 8.7242 10 s + 1.0066 10
NN =
33554432*s^2 - 8053063680000001*s - 83886080000000010000000
```

ENGR 447-01 Control Systems (Fall 2016)

```
DD =
33554432*s^2 + 8724152320000001*s + 10066329600000010000000
DDcs =
[ 10066329600000010000000, 8724152320000001, 33554432]
DD =
s^2 + (8724152320000001*s)/33554432 + 78643200000000078125/262144
NN =
s^2 - (8053063680000001*s)/33554432 - 65536000000000078125/262144
DD =
s^2 + (8724152320000001*s)/33554432 + 78643200000000078125/262144
NN =
s^2 - (8053063680000001*s)/33554432 - 65536000000000078125/262144
Gs =
(8724152320000001*s)/33554432 + 78643200000000078125/262144)
***** Simplified G(s):
ans =
-(1.0*(-1.0*s^2 + 2.4e8*s + 2.5e15))/(s^2 + 2.6e8*s + 3.0e15)
                         15
 (-1.0 s + 2.4 10 s + 2.5 10) 1.0
       2 8 15
      s + 2.6 10 s + 3.0 10
```

Part C:

```
Ys = Gs * 1/s
Ys = vpa(Ys,5);
yt = ilaplace(Ys);
```

Continuous-time transfer function.

