Überwachung der Luftqualität in geschlossenen Räumen

Projekt Industrielle Produktion und Industrie 4.0 WiSe2021 Prof. Christian Drumm und Prof. Matthias Meinecke

Simons, Matthias Meyer, Fabian 3104576 3125420

Frühzeitiges Auffordern zum Lüften bei schlechter Luftqualität soll zu einer Verringerung des Infektionsrisikos in geschlossenen Räumen führen

Umgebungsluft

Problemstellung:

- Infektionen mit Covid-19 müssen vorgebeugt werden
- Lüften als wichtigste Maßnahme in geschlossenen Räumen
- Wann und wie lange sollte gelüftet werden?

Zielsetzung:

- Messung und Echtzeit Bewertung der Luftqualität
- Informationen über Luftqualität und Handlungsempfehlungen
- Use-Case im Büro, Klassenzimmer und im privaten Bereich etc.

Lösungsidee:

- CO₂ Gehalt als Qualitätsmerkmal messen und regelbasiert bewerten
- Information via visuellem Feedback und E-Mail Benachrichtigung

CO2-Konzentration (ppm)	Hygienische Bewertung	Empfehlung	Signal
<1000	Hygienisch unbedenklich	Keine weitere Maßnahme	Grün leuchtende LED
1000-2000	Hygienisch auffällig	Empfehlung zum lüften	Gelb leuchtende LED
>2000	Hygienisch inakzeptabel	Lutten	Rot leuchtende LED
			Benachrichtigung per E-Mail

Lösungsidee:

OF APPLIED SCIENCES

Lösungskonzept unterteilt sich in System- und Hardwareebene

Systemebene Messsystem Datenübertragung Cloud (AWS) Ausgabe

- Messsystem dient zur Datenaufnahme und visuellem Feedback bezüglich der Luftqualität
- Daten werden via MQTT zu AWS gesendet und in Datenbank gespeichert
- Ausgabe in Jupyter Notebook und E-Mail Benachrichtigung

Hardwareebene

- MQ-135 zur CO₂-Messung in ppm
 - Kalibrierung durch BME280
- Datenverarbeitung und -übertragung mit ESP8266
 Microcontroller
- Visuelles Feedback durch RGB LED

Ungeeignete Sensorik für den Anwendungsfall

- Schwankung der Messwerte
- Sprunghaftes Verhalten
- Unrealistische nicht nachvollziehbare Ergebnisse
- Schlechte Luftqualität trotz dauerhaftem lüften

Ausblick:

- MQ-135 durch MH-Z19C ersetzen
 - Deutliche verlässlichere Messergebnisse
 - verfügt über interne Temperaturmessung (BME280)
- LCD Modul zur unmittelbaren Darstellung des CO2-Gehalts

Lessons-Learned:

- Intensivere Recherche vor Anschaffung
- Größerer Fokus auf Projektmanagement
 - Ziele & Anforderungen definieren
 - Inhalt & Umfang eingrenzen

Anhang

Die Dokumentation sowie der Code und Screenshots von AWS befinden sich im folgendem Github Repository:

https://github.com/MatthiasSimons/airquality-measurement-device

FH Aachen Eupener Str. 70 52066 Aachen www.fh-aachen.de