Note Title 04-10-2012 Pi belining 1ns Data fath
Control Path INST RESULT Register File.

-> Memory (Data & Instruction) MATHS Inst. fer second $\frac{1}{2}$ = 109 = 1 billion

Wastage?

Ex — Execute (ADD/MULTIPLY)

MEM — Memory Access (Load/sine)

WB — Write result back to register.

How does one stage work: New Data Written into the is visible dest. latch $= IPC \times f$ # insts. Assume: Pipeline has k stages

A -> Algori7hmic work. dock cycle time &A A pipelined processor can have a smaller clock cycle Specdup with a sifeline: Assume: k stages. Non-pipelined n instructions. Tot-Time = nk

Speedup_{RATIO} =
$$nk = k$$

 $n+k-1$ $1+(k-1)$
Speedup_{RATIO} = k

More you pipeline - De More is the speedup

Lim

Quetro	What	stops	me	from	having	a	thousand
			1	<i>J</i>			
			Stage	pipel	ine?		
	MIIS		ARM-9		Gre-2-1	Pup	Int l
	Processor		- •				P-Extreme
0.1.1							
Pipeline Depth.	5		8		12		22
Depth.							
	What	limi t	s 7he	e mun	ober of	bi	beline
					7		
					stone 1		

* You cannot arbitrarily increase the frequency.

-> Power

-D Algorithmic Wk for stages

 $\begin{pmatrix} A \\ k \end{pmatrix}$

Latch delay-d.

Cc.time > A + ol

 $\int_{C^{c}-bme}^{2} \frac{1}{A+d}$

man.
freq.

After a certain point, frequency

Cannot increase further.

* There are several some other limiters

Hazards

HAZARDS

					the time?	
	(1) lu	$1d \gamma_{4}, \qquad \gamma_{5}$	$\begin{cases} (\gamma_2) \\ (\gamma_4) \\ (\gamma_6) \end{cases}$	LOAD -USE	HAZARD	
					•	
		/ <i>J</i> =	אלעו	FX	mem WB	
Forwa	rding. Pro	ducer I	ns truction	→ Co	nsumer Inst	
		produce	r is read	y	at which ?	

2) Find the latest point at which the consumer needs the data
3) Draw a line from:
Production foing D consumption foing
Production foint —
Consump Hon
form f
4) IF THE LINE
· goes to bottom right
(ahead an lome)
e goes to bottom right (ahead an lime) (con forward)
· goes to the bottom left
goes to the bottom left (behind in lime)
(cannot forward)
(cumor jordans)

How do you fix a load-ruse hogard?