Вопрос 1.9. Линейные обыкновенные дифференциальные уравнения и системы. Фундаментальная система решений. Метод вариации постоянных для решения неоднородных уравнений.

Ответ:

Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения вида

$$F(t, x, x', x'', ..., x^{(n)}) = 0$$

где x = x(t) — неизвестная функция (возможно, вектор-функция; в таком случае часто говорят о системе дифференциальных уравнений), зависящая от переменной времени t, штрих означает дифференцирование по t. Число n называется порядком дифференциального уравнения. Для решения линейных неоднородных дифференциальных уравнений используется Метод Лагранжа (дифференциальные уравнения).

Линейные дифференциальные уравнения

Def: ЛДУ ::= $y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_n(x)y = f(x)$ (3), где $p_i(x)$ — произвольные функции.

Def: Линейные дифференциальный оператор ::= $L[x] = y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-1)} + p_3(x)y^{(n-1)}$

Def: Однородное ЛДУ — $f(x) \equiv 0$, (иначе неоднородное).

Свойства ЛД**У**: если имеем систему решений, то любая их ЛК — тоже решение (обычная линейность); $y \equiv 0$ всегда решение.

Def: Уравнение с постоянными коэффициентами ::= ЛДУ, такое что все $p_i(x)$ =const.

Def: Функции φ_l , ... φ_n ЛНЗ на $\langle a, b \rangle ::= \sum c_i \varphi_i = 0 \Longrightarrow$ все $c_i = 0$.

Th: Общее решение неоднородного ЛДУ — сумма общего решения соответствующего однородного уравнения и любого частного решения.

Методы решения однородного ЛДУ

Def: система векторов ЛНЗ, если нет их тождественно нулевой линейной комбинации Запись (3) эквивалентна системе уравнений:

$$\begin{cases} y_{1}' = y_{2} \\ \dots \\ y_{n-1}' = y_{n} \\ y_{n}' = f - a_{n} y_{n} - \dots - a_{1} y_{1n} \end{cases}$$
(4)

Либо, что эквивалентно, y'=A(x)y+f(x), где A(x) — матрица, x, y, f(x) — вектора.

Def: Определитель Вронского для φ_l , ... φ_n (n-l раз дифференцируемы) ::= $W(x) = |w_{ij}|$, $w_{ij} = \varphi_i^{(i-l)}$.

Th: $y_1, ..., y_n$ — ЛНЗ на (a, b) <=> W(x) <> 0 на (a, b) для любого x.

Th: Если y_1 , ..., y_n — ЛНЗ на (a, b) и являются решение однородного ЛДУ => фундаментальная система решений, Соответственно, их линейная комбинация — Общее решение.

Уравнение с постоянными коэффициентами

Def: Метод Эйлера ::= будем искать решение в виде $y = \Gamma e^{\lambda x}$ ($\Gamma \in \mathbb{R}^n$, $\lambda \in \mathbb{C}$), тогда имеем $\Gamma \lambda e^{\lambda x} = A \Gamma e^{\lambda x}$, таким образом $(A - \lambda E) \Gamma = 0$ (E — единичная матрица). Нетривиальные решения существуют при $det(A-\lambda E)=0$, таким образом имеем полиномиальное уравнение для λ . Вид фундаментальной системы решений зависит от корней полинома.

- Все корни различны: λ_{l} , ..., $\lambda_{n} => \Gamma_{l}$, ..., Γ_{n} и $\Gamma_{l}e^{\lambda l}$ решения системы. Если λ корень кратности k: решения: $\Gamma_{l}e^{\lambda l}$, $\Gamma_{2}te^{\lambda l}$, ..., $\Gamma_{2}t^{k-l}e^{\lambda l}$.
- 2.

Метод вариации постоянных коэффициентов для решения неоднородных уравнений.

Для неоднородных уравнений часто используется следующая техника – решаем однородное уравнение, а коэффициенты в линейной комбинации представим функциями – дальше подставим в уравнение. Нулевое решение сокращается – для остатка решаем элементарное уравнение. Работает, не всегда (понимать надо!).