9/17/24
Finish 1.4 \$ 1.5
Ruap, A & Motrix (Min) is a faction which takes \$ ER \$ Spite
out A'x ERM.
Theorem: IC A & Matrix (un, n) of the form (a, az in)
Theorem: It A & Motoriv (un, n) of the form (a, az) & Theorem: It A & Motoriv (un, n) of the form (a, az) & B & Motoriv (un, n) of the form (a, az) B & Motoriv (un, n) of the form (a, az
Comelary: Ax = b has a solution If & any If Ax = b
$ \begin{array}{c} \overleftarrow{b} \in \text{Spon} \left\{ \overrightarrow{a}_{1} \overrightarrow{a}_{2} \dots \overrightarrow{a}_{n} \right\}. \end{array} $
Pleminder: Span & a., az, an } is the set of all linear combinations of those vectors
$Cx: A = \begin{pmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ 3 & -2 & -7 \end{pmatrix}$ $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, when is $Ax = b$ consistent
3 -2 -3 b3 m (0, 12 to b2 to b) Consistent (1, 3, 4, b) (0, 12, 10, b2 to b) (0, 12, 10, b2 to b)
Answer: Whenever (f) = 0 (bz-z'bz-sb,) (7)
Theorn: Let $A \in Mat(m,n)$, The Allanyace equivalent: a. For all $b \in \mathbb{R}^m$, A be his a solution. b. Each $\vec{b} \in \mathbb{R}^m$ is a linear cumbinhum of A 's column vectors.
C. A Columis veetos span GIRM.
Short cot: for the (she) & vi=(she), their dot models
Short cut: for $\vec{J} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \notin \vec{v} = \begin{pmatrix} v_2 \\ v_3 \end{pmatrix}$, their dot product is $\vec{U} \cdot \vec{v} = u_1 \cdot u_2 \cdot v_3 + \dots \cdot u_n \cdot v_n$. Then, for we write $A = \begin{pmatrix} R_1 \\ R_{-n} \end{pmatrix}$, then $A = \begin{pmatrix} R_1 \\ R_{-n} \end{pmatrix}$.

