Mid Sem: Systems Thinking

Instruction: Ignore the terms 'CO', these are for admin purpose

(Q1). Consider the following system:

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{s^2 + 3s + 2} \tag{1}$$

Draw two separate block diagrams for the above transfer function, one in series and one in parallel connection, to represent state-space formulation. [25 + 25], (CO: 1, 3)

(Q2).

where f_{u1} and f_{u2} are viscous friction coefficients and f_{u3} is damping constant. For this system

- (1) Derive the transfer function $G(s) = \frac{X_2(s)}{F(s)}$, where F(s) is the transfer function of f_1 . [75] (CO: 2.3)
- (2) Derive a state-space model with x_1 as output. [note that states should not be taken as a combination of position and/or velocity of M_1, M_2] [75] (CO: 3)