Assignment #1

Q 1): Solve the following recurrence relations using $\underline{master\ theorem}$, showing all the steps. $[10+10+10+10+10+10\ Marks]$

1)
$$T(n) = 3 T(n/2) + n^2$$

2)
$$T(n) = T(n/2) + 2^n$$

3)
$$T(n) = 2 T(n/2) + n \log n$$

4)
$$T(n) = 2 T(n/2) + n^{0.55}$$

5)
$$T(n) = 3 T(n/3) + \sqrt{n}$$

6)
$$T(n) = \sqrt{2} T(n/2) + \log n$$

 $\bf Q$ 2): Solve the following recurrence relations using $\underline{\bf recursion~tree}:$

[10+10+10+10 Marks]

1)
$$T(n) = 2T(n/3) + cn$$

2)
$$T(n) = T(n/3) + T(2n/3) + n$$
.

3)
$$T(n) = T(n-1) + T(n-2) + c$$

4)
$$T(n) = 2T(n/2) + \log n$$

Q 3): Write algorithms corresponding to above (Q 2) **recurrence relations**. [10+10+10+10 Marks]

Q 4): Prove that following is true using **substitution method**. **[10+10+10 Marks]**

1)
$$T(n) = 2 T(n/2) + c n$$
 is $\Omega(n \log n)$.

2)
$$T(n) = 2 T(n/2) + c n$$
 is $O(n \log n)$.

3)
$$T(n) = 8 T (n/2) + c n^2$$
 is $O(n^3)$

Q 5): On which one of the following master theorem cannot be applied and if so then why? [10+10+10+10+10 Marks]

1)
$$T(n) = 2 T(n/3) + n^3$$

2)
$$T(n) = 4 T(3n/5) + n$$

3)
$$T(n) = 2^n T(n/7) + n^2$$

4)
$$T(n) = 0.5 T(n/7) + c$$

5)
$$T(n) = T(5n/3) + n$$

6)
$$T(n) = 2 T(n/3) - n^2$$