QCM n° 10

TТ		1	-	. 1	
Un	peu	de	ca	IC11	١.

Soit $P = X^6 - 3X^5 - 6X^4 + 6X^3 + 9X^2 - 6X + 1$ Calculez P(4) et donnez Échauffement n°1 le quotient et le reste de la division euclidienne de P par (X-4).

Montrer que pour tous $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}$, le polynôme $X^n \sin \theta - X \sin(n\theta) +$ Échauffement n°2 $\sin((n-1)\theta)$ est divisible par $X^2 - 2X\cos\theta + 1$

QCM - cocher une case si la phrase qui suit est correcte.					
Question n°1 La somme des quatre racines caraut :	omplexes du polynôme $7X^4 + 2X^2 - 3X + 5$				
$\begin{array}{c} \square & 0 \\ \square & \frac{3}{5} \end{array}$	$\begin{array}{cc} \square & -\frac{2}{7} \\ \square & -2 \end{array}$				
Question n°2 Soit P un polynôme complexe tel l'ordre 3. Alors 0	que 0 soit une racine de P' (polynôme dérivé)				
\square est une racine de P d'ordre $P(0)$ \square est une racine de P d'ordre 2	\square est une racine de P d'ordre 4 \square n'est pas forcément racine de P				
Question n°3 Quel est le coefficient de X^n dan?	s le polynôme $P = (1 + X + X^2 + \dots + X^n)^2$				
□ 1 □ 2	$\begin{array}{c} \square & n \\ \square & n+1 \end{array}$				

Question n°4 Soit P un polynôme unitaire à coefficients réels dont toutes les racines dans $\mathbb C$ sont de module 1. Alors son coefficient constant vaut

\square 1	□ 1 ou -1
\square 0	\Box un réel quel conque de $[-1,1]$

Question n°5	Si P et Q sont deux polynômes de degré n , quel est le degré de $PQ' - P'Q$?			
		□ $2n-1$ □ il est inférieur à $2n-2$		
Question n°6	Soit $n \geqslant 1$. Combien vaut $\prod_{k=1}^{n} (2$	$-e^{i\frac{2k\pi}{n}})?$ $\square 3^{n/2}$ $\square 2^n - 1$		
	Soit P, Q, R trois polynômes co X)) implique-t-elle que $P = R$?	emplexes. À quelle condition sur Q , l'égalité		
$\Box Q = 1$ $\Box Q \text{ est constant}$	ant	\square Q est non constant \square Q est non nul		
	nes simples? rs le cas	dans $\mathbb{C}[X]$. À quelle condition $P(X^2)$ est-il		
Question n°9 permet de dire que		e $XP(X) = (X-1)Q(X)$. Quelle condition		
$\Box P(0) = 0$ $\Box P(1) = 0$		$ \Box P(0) \neq 0 \Box P(1) \neq 0 $		
Question n°10 premiers entre eux		e de degré $\geqslant 1$. Les polynômes P et P' sont		
$\Box \deg P = 1$ $\Box P \text{ admet un}$	e unique racine	\square P' ne divise pas P \square toutes les racines de P sont simples		
Question n°11	Un polynôme réel P qui n'a pas	s de racine réelle est		
\square irréductible \square de degré 2		 □ de degré pair □ de coefficient dominant strictement positif 		