無機化学

第Ⅰ部	非金属元素	3
1	水素	3
1.1	性質	3
1.2	同位体	3
1.3	製法	3
1.4	反応	3
2	貴ガス	3
2.1	性質	3
2.2	生成	3
2.3	ヘリウム	3
2.4	ネオン	3
2.5	アルゴン	3
3	ハロゲン	4
3.1	単体	4
3.2	ハロゲン化水素	5
3.3	ハロゲン化銀	6
3.4	次亜塩素酸塩...................................	6
3.5	塩素酸カリウム	6
4	酸素	7
4.1	酸素原子	7
4.2	酸素	7
4.3	オゾン	7
4.4	酸化物	8
4.5	水	8
5	硫黄	9
5.1	硫黄	9
5.2	硫化水素	9
5.3	二酸化硫黄(亜硫酸ガス)	10
5.4	硫酸	11
5.5	チオ硫酸ナトリウム (ハイポ)	11
5.6	重金属の硫化物	12
6	窒素	12
6.1	窒素	12
6.2	アンチーア	19

6.3	一酸化二窒素(笑気ガス)	12
6.4	一酸化窒素	12
6.5	二酸化窒素	13
6.6	硝酸	13
7	リン	14
7.1	υν	14
7.2	十酸化四リン	14
7.3	リン酸	14
8	炭素	15
8 8.1	炭素 炭素	15 15
•		
8.1	炭素	15
8.1 8.2	炭素	15 15
8.1 8.2 8.3	炭素	15 15 16
8.1 8.2 8.3	炭素	15 15 16 17

第I部

非金属元素

1 水素

1.1 性質

- 1 無色 2 無臭の 3 気体
- 最も4軽い
- 水に溶け(5)にくい

1.2 同位体

¹H 99% 以上 ²H (**6D**)0.015% ³H (**7T**) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- 8赤熱したコークスに 9水蒸気を吹き付ける工業的製法

$$C + H_2O \longrightarrow H_2 + CO$$

- 10水(11水酸化ナトリウム水溶液)の電気分解 $2 H_2 O \longrightarrow 2 H_2 + O_2$
- 12 イオン化傾向が 13 H₂ より大きい 金属と希薄強酸

$$\mathfrak{P}$$
 Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow

• 水素化ナトリウムと水 $NaH + H_2O \longrightarrow NaOH + H_2$

1.4 反応

• 水素と酸素 (爆鳴気の燃焼)

$$2 H_2 + O_2 \longrightarrow H_2O$$

加熱した酸化銅(Ⅱ)と水素

$$CuO + H_2 \longrightarrow Cu + H_2O$$

2 貴ガス

(14)He, (15)Ne, (16)Ar, (17)Kr, Xe, Rn

2.1 性質

- 18無色19無臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が 20 極めて小さい
- 電気陰性度が[21] 定義されない

2.2 生成

 40 K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式:Ar N_2 , O_2 に次いで 3 番目に空気中での存在量が 多い(約 1%)。

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	I_2
分子量	小			
分子間力	弱			
反応性	強			弱
沸点・融点	低			
常温での状態	22 気体	23 気体	24 液体	25)固体
色	26 淡黄色	(27) <mark>黄緑</mark> 色	28]赤褐色	29]黒紫色
特徴	30 <mark>特異</mark> 臭	31 刺激 臭	揮発性	32]昇華性
H ₂ との反応	33 <mark>冷暗所</mark> でも	③4 <mark>)常温</mark> でも〔35〕光で	(36)加熱 して	高温で平衡状態
112 2 0)) 🗸 / (1)	爆発的に反応	爆発的に反応	37 <u>触媒</u> により反応	38 <mark>加熱</mark> して 39 <u>触媒</u> により一部反応
水との反応	水を酸化して酸素と	 41 一部とけて反応	(42)一部とけて反応	(43)反応しない
/// こ 0 / 文/心	(40) <u>激しく</u> 反応		(42) - BISCO CIXIN	(44)Klaq には可溶
用途	保存が困難	<u>45 CIO </u> による	C=C ❖	47 ヨウ素デンプン 反応で
/13/25	Kr や Xe と反応	(46) 殺菌・漂白 作用	C≡C の検出	[48] <mark>青紫</mark> 色

3.1.2 製法

 ● フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液 の電気分解 工業的製法

 $KHF_2 \longrightarrow KF + HF$

- $\boxed{49}$ 塩化ナトリウム水溶液 の電気分解 塩素 工業的製法 $2\,\mathrm{NaCl} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Cl}_2 + \mathrm{H}_2 + 2\,\mathrm{NaOH}$
- $\boxed{50$ 酸化マンガン (IV) に $\boxed{51$ 濃塩酸 を加えて加熱 塩素 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Lambda} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$
- 52高度さらし粉 と $\overline{53}$ 塩酸 塩素 $\operatorname{Ca(ClO)_2 \cdot 2\, H_2O} + 4\operatorname{HCl} \longrightarrow \operatorname{CaCl_2} + 2\operatorname{Cl_2}\uparrow + 4\operatorname{H_2O}$
- 54 さらし粉 と 55 塩酸 塩素 $\operatorname{CaCl}(\operatorname{ClO}) \cdot \operatorname{H}_2\operatorname{O} + 2\operatorname{HCl} \longrightarrow \operatorname{CaCl}_2 + \operatorname{Cl}_2\uparrow + 2\operatorname{H}_2\operatorname{O}$
- 臭化マグネシウムと塩素 Q素 $MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$
- ヨウ化カリウムと塩素 ョウ素 $2 \, \mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2 \, \mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

- フッ素と水素 $H_2+F_2\stackrel{\mathring{\pi}_{\stackrel{}{=}}\sigma}{\longrightarrow} 2\,HF$
- 臭素と水素 $H_2 + \mathrm{Br}_2 \xrightarrow{\bar{\mathrm{All}}^{\mathrm{all}} \bar{\mathrm{C}} \bar{\mathrm{C}} \bar{\mathrm{C}} \bar{\mathrm{C}}} 2\,\mathrm{HBr}$
- フッ素と水 $2 F_2 + 2 H_2 O \longrightarrow 4 HF + O_2$
- 塩素と水 Cl₂ + H₂O ⇒ HCl + HClO
- 臭素と水
 Br₂ + H₂O ⇒ HBr + HBrO
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応 $I_2 + I^- \longrightarrow I_3^-$

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$ $\mathrm{Cl_2},\mathrm{HCl},\mathrm{H_2O}$ \downarrow 56 水 に通す (HCl の除去) $\mathrm{Cl_2},\mathrm{H_2O}$ \downarrow 57 濃硫酸 に通す (H_2O の除去) $\mathrm{Cl_2}$

3.1.5 塩素のオキソ酸

オキソ酸・・・ 58 酸素を含む酸性物質

+ VII	59 HClO₄	60 過塩素酸	$\begin{array}{c c} & O \\ H - O - Cl - O \\ O \\ \end{array}$
			O
+ V	61 HCIO ₃	62 塩素酸	H - O - Cl - O
+ III	63 HCIO ₂	64	H - O - Cl - O
+ I	65 HCIO	66)次亜塩素酸	H - O - Cl

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HBr	HI	
色・臭い		67無色 68 刺激	臭		
沸点	20°C	−85°C	−67°C	−35°C	
水との反応	69よく溶ける				
水溶液	[70]フッ化水素酸	71 塩酸	72 臭化水素酸	73 ヨウ化水素酸	
(強弱)	[74]弱酸	₹ ≪ 75 強酸 < 7	6)強酸 < [77]	強酸	
用途 (78)ガラス と反応 (79)アンモニア の検出 半導(半導体加工	インジウムスズ		
加处	⇒ ポリエチレン瓶	各種工業	一一一一一一一	酸化物の加工	

3.2.2 製法

- 80 ホタル石 に 81 濃硫酸 を加えて加熱(82 弱酸遊離) フッ化水素 $CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2 HF \uparrow$
- 83水素と84塩素塩化水素工業的製法 H₂+Cl₂ → 2 HCl↑
- 85 塩化ナトリウム に 86 濃硫酸 を加えて加熱 塩化水素 (87 弱酸・88 揮発性 酸の追い出し) NaCl + H_2SO_4 $\xrightarrow{\Lambda}$ NaHSO $_4$ + HCl \uparrow

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $\mathrm{SiO}_2 + 4\,\mathrm{HF}(\mathrm{g}) \longrightarrow \mathrm{SiF}_4 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 ${
 m SiO_2+6\,HF(aq)}\longrightarrow {
 m H_2SiF_6}\uparrow + 2\,{
 m H_2O}$

3.3 ハロゲン化銀 3 ハロゲン

 ● <u>89塩化水素</u>による <u>90アンモニア</u>の検出 HCl + NH₃ → NH₄Cl

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgBr	AgI
固体の色	91)黄褐色	92 🚊 色	93 淡黄色	94黄色
水との反応	95よく溶ける	96)ほとんど溶け ^ヵ	ない
光との反応	97 感光	感	光性 (→ 98 <mark>/</mark>	(g)

3.3.2 製法

• 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮 $Ag_2O+2HF\longrightarrow 2\,AgF+H_2O$

• ハロゲン化水素イオンを含む水溶液と $\boxed{99$ 硝酸銀水溶液 $\mathbf{Ag^+} + \mathbf{X^-} \longrightarrow \mathbf{AgX} \downarrow$

3.4 次亜塩素酸塩

3.4.1 性質

[100]酸化剤として反応([101]殺菌・[102]漂白作用) $ClO^- + 2H^+ + 2e^- \longrightarrow Cl^- + H_2O$

3.4.2 製法

・ 水酸化ナトリウム水溶液と塩素2 NaOH + Cl₂ → NaCl + NaClO + H₂O

• 水酸化カルシウムと塩素 $Ca(OH)_2 + Cl_2 \longrightarrow CaCl(ClO) \cdot H_2O$

3.5 塩素酸カリウム

化学式: [103]KCIO₃

3.5.1 性質

[104]酸素 の生成([105]二酸化マンガン を触媒に加熱) $2 \, \mathrm{KClO}_3 \, \frac{\mathrm{MnO}_2}{\Delta} \, 2 \, \mathrm{KCl} + 3 \, \mathrm{O}_2 \, \uparrow$

⇒[145]極性

4 酸素

4.1 酸素原子

同106位体:酸素 (O_2) 、107オゾン (O_3)

地球の地殻に 108 最も多く存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式:O2

4.2.1 性質

- [121]無色[122]無臭の[123]気体
- 沸点 −183°C

4.2.2 製法

- [124]液体空気の分留 工業的製法
- $\boxed{125}$ 水 ($\boxed{126}$ 水酸化ナトリウム水溶液) の $\boxed{127}$ 電気分解 $2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{H}_2\uparrow + \mathrm{O}_2\uparrow$
- 128 過酸化水素水 (129 オキシドール) の分解 $2 \operatorname{H}_2\operatorname{O}_2 \xrightarrow{\operatorname{MnO}_2} \operatorname{O}_2 \uparrow + 2 \operatorname{H}_2\operatorname{O}$
- 130 塩素酸カリウム の熱分解 $2 \text{ KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KCl} + 3 \text{ O}_2 \uparrow$

4.2.3 反応

[131]酸化剤としての反応

$$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$$

4.3 オゾン

化学式: [132]O₃

4.3.1 性質

- (133)ニンニク 臭((134)特異 臭)を持つ(135)淡青色の(136)気体(常温)
- 水に[137]少し溶ける
- [138]殺菌・[139]脱臭作用

4.3.2 製法

酸素中で $\boxed{146}$ 無声放電 \angle 強い $\boxed{147}$ 紫外線 を当てる $3\,\mathrm{O}_2 \longrightarrow 2\,\mathrm{O}_3$

4.3.3 反応

- $\boxed{148$ 酸化</u>剤としての反応 $O_3 + 2 \, \mathrm{H}^+ + 2 \, \mathrm{e}^- \longrightarrow O_2 + \mathrm{H}_2 \mathrm{O}$
- 湿らせた (149) ヨウ化カリウムでんぷん紙を (150) 青色に変色

$$O_3 + 2 KI + H_2O \longrightarrow I_2 + O_2 + 2 KOH$$

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酸化物	両性酸化物	酸性酸化物
元素	[151]陽性の大きい金属元素	[152]陽性の小さい金属元素	153 非金属 元素
水との反応	[154] 塩基性	[155]ほとんど溶けない	[156]酸性 ([157]オキソ酸)
中和	[158]酸と反応	[159]酸・塩基 と反応	[160] <mark>塩基</mark> と反応

両性酸化物 · · · (161)アルミニウム (162)AI) , (163)亜鉛 (164)Zn) , (165)スズ (166)Sn) , (167)鉛 (168)Pb)*1

- $\bigcirc M$ $CO_2 + H_2O \longrightarrow H_2CO_3$
- $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$
- $\bigcirc 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}_3$

4.4.1 反応

● 酸化銅(Ⅱ)と塩化水素

 $CuO + 2HCl \longrightarrow CuCl_2 + H_2O$

• 酸化アルミニウムと硫酸

 $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O$

4.5 水

4.5.1 性質

- 169 極性分子
- 周りの4つの分子と 170 水素結合
- 異常に 171 高い 沸点
- 172 隙間の多い結晶構造(密度:固体 173 <液体)
- 特異な [174] 融解曲線

4.5.2 反応

• 酸化カルシウムと水

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

• 二酸化窒素と水

$$3 \text{ NO}_2 + \text{H}_2 \text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$$

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	〔175〕 <mark>斜方</mark> 硫黄	176 単斜 硫黄	〔177〕 <mark>ゴム状</mark> 硫黄
化学式	178 S ₈	179 <mark>S₈</mark>	[180]S _x
色	〔181〕 <u>黄</u> 色	<u>182)黄</u> 色	〔183〕 <u>黄</u> 色
構造	(184) <mark>塊状</mark> 結晶	185 針状 結晶	[186] <mark>不定形</mark> 固体
融点	113°C	119°C	不定
構造	S S	S S S S	
CS ₂ との反応	[187] <mark>溶ける</mark>	(188) <mark>溶ける</mark>	[189]溶けない

CS₂··· 無色・芳香性・揮発性 ⇒ 190 無極性 触媒

5.1.2 反応

● 高温で多くの金属 (Au, Pt を除く) と反応

例Fe Fe+S
$$\longrightarrow$$
 FeS

● 空気中で 191 青色の炎を上げて燃焼

$$S + O_2 \longrightarrow SO_2$$

5.2 硫化水素

化学式: [192]H₂S

5.2.1 性質

- [193]無色[194]腐卵臭
- 195 弱酸性

$$\begin{cases} \boxed{196} \text{H}_2\text{S} &\Longrightarrow \text{H}^+ + \text{HS}^- \\ \boxed{197} \text{HS}^- &\Longrightarrow \text{H}^+ + \text{S}^{2-} \end{cases} \qquad K_1 = 9.5 \times 10^{-8} \text{ mol/L}$$

$$K_2 = 1.3 \times 10^{-14} \text{ mol/L}$$

● 198 還元 剤としての反応

$$H_2S \longrightarrow S + 2H^+ + 2e^-$$

重金属イオン M²⁺ と 199 <u>難容性の塩</u>を生成

$$M_2^+ + S^{2-} \Longrightarrow MS \downarrow$$

5.2.2 製法

● 硫化鉄(Ⅱ)と希塩酸

$$FeS + 2 HCl \longrightarrow FeCl_2 + H_2S \uparrow$$

● 硫化鉄(Ⅱ)と希硫酸

$$\mathrm{FeS} + \mathrm{H_2SO_4} \longrightarrow \mathrm{FeSO_4} + \mathrm{H_2S} \!\uparrow$$

5.2.3 反応

• 硫化水素とヨウ素

$$H_2S+I_2 \longrightarrow S+2\,HI$$

酢酸鉛(Ⅱ)水溶液と硫化水素(200)H₂Sの検出)
 (CH₃COO)₂Pb + H₂S → 2 CH₃COOH + PbS↓

5.3 二酸化硫黄(亜硫酸ガス)

化学式: [201] SO₂ 電子式: : O: S:: O

5.3.1 性質

- [202]無色、[203]刺激臭の[204]気体
- 水に 205 溶けやすい
- [206]弱酸性

 $(207)SO_2 + H_2O \Longrightarrow H^+ + HSO_3^ K_1 = 1.4 \times 10^{-2} \text{ mol/L}$

● [208]還元剤([209]漂白作用)

 $SO_2 + 2 H_2O \longrightarrow SO_4^{2-} + 4 H^+ + 2 e^-$

• 210酸化剤(211 H_2S などの強い還元剤に対して) $SO_2 + 4H^+ + 4e^- \longrightarrow S + 2H_2O$

5.3.2 製法

● 硫黄や硫化物の 212 燃焼 工業的製法

 $2 H_2 S + 3 O_2 \longrightarrow 2 SO_2 + 2 H_2 O$

• [213] <u>亜硫酸ナトリウム</u>と希硫酸

 $Na_2SO_3 + H_2SO_4 \xrightarrow{\Delta} Na_2SO_4 + SO_2 \uparrow + H_2O$

● [214]銅と[215]熱濃硫酸

 $\mathrm{Cu} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{CuSO}_4 + \mathrm{SO}_2 \,\!\uparrow + 2\,\mathrm{H}_2\mathrm{O}$

5.3.3 反応

• 二酸化硫黄の水への溶解

 $SO_2 + H_2O \longrightarrow H_2SO_3$

• 二酸化硫黄と硫化水素

 $SO_2 + 2H_2S \longrightarrow 3S + 2H_2O$

• 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

 $2\,\mathrm{KMnO_4} + 5\,\mathrm{SO_2} + 2\,\mathrm{H_2O} \longrightarrow 2\,\mathrm{MnSO_4} + 2\,\mathrm{H_2SO_4} + \mathrm{K_2SO_4}$

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- 216無色(217無臭の(218)液体
- 水に 219 非常によく溶ける
- 溶解熱が (220) 非常に大きい
- [221]水に濃硫酸を加えて希釈
- (222)不揮発性で密度が(223)大きく、(224)粘度が大き い濃硫酸
- [225] <mark>吸湿性・[226] 脱水作用 濃硫酸</mark>
- 227 強酸性 希硫酸

 $\left(\begin{array}{ccc} (228) \text{H}_2\text{SO}_4 & \Longrightarrow \text{H}^+ + \text{HSO}_4^- & K_1 > 10^8 \text{mol/L} \end{array}\right)$

- 229 弱酸性 濃硫酸 (230水が少なく、231)H₃O⁺の 濃度が小さい)
- 232酸化剤として働く 熱濃硫酸

 $(233)H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_2 + 2H_2O$

● 234 アルカリ性土類金属 (235 Ca, 236 Be)、 237 Pb と難容性の塩を生成希硫酸

5.4.2 製法

[238]接触法 工業的製法

1. 黄鉄鉱 FeS₂ の燃焼

$$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \longrightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$$

$$(S + \operatorname{O}_2 \longrightarrow \operatorname{SO}_2)$$

- 2. [239]酸化バナジウム触媒で酸化 $2 \operatorname{SO}_2 + \operatorname{O}_2 \xrightarrow{\operatorname{V_2O}_5} 2 \operatorname{SO}_3$
- 3. 240 濃硫酸 に吸収させて 241 発煙硫酸 とした後、 希硫酸を加えて希釈

$$SO_3 + H_2O \longrightarrow H_2SO_4$$

5.4.3 反応

- 硝酸カリウムに濃硫酸を加えて加熱 $KNO_3 + H_2SO_4 \longrightarrow HNO_3 + KHSO_4$
- スクロースと濃硫酸 $C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12 C + 11 H_2O$
- 水酸化ナトリウムと希硫酸 $H_2SO_4 + 2 NaOH \longrightarrow Na_2SO_4 + 2 H_2O$
- 銅と熱濃硫酸 $Cu + 2 H_2 SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2 H_2 O$
- 銀と熱濃硫酸

 $2 \operatorname{Ag} + 2 \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{Ag}_2 \operatorname{SO}_4 + \operatorname{SO}_2 + 2 \operatorname{H}_2 \operatorname{O}$

• 塩化バリウム水溶液と希硫酸 $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCl$

5.5 チオ硫酸ナトリウム (ハイポ)

化学式: [242]Na₂S₂O₃

[243]硫酸イオン 244 チオ硫酸イオン

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- [245]還元剤として反応

例水道水の脱塩素剤(カルキ抜き)

$$246$$
 $2 S_2 O_3^{2-} \longrightarrow S_4 O_6 + 2 e^-$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱 $n \operatorname{Na_2SO_3} + \operatorname{S}_n \longrightarrow n \operatorname{Na_2S_2O_3}$

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

 $I_2 + 2\operatorname{Na_2S_2O_3} \longrightarrow 2\operatorname{NaI} + \operatorname{Na_2S_4O_6}$

5.6 重金属の硫化物

	酸性でも沈澱(全液性で沈澱)				中性	・塩基性で沈	澱(酸性でに	は溶解)	
Ag_2S	HgS	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
<u>247</u>	248 黒色	249黒色	250黒色	251 褐色	252黒色	253黒色	<u>254</u>	255 白 色	256)淡赤色

257 低

イオン化傾向

[258]高

[259]極小 塩の溶解度積 (K_{sp}) [260]小

6 窒素

6.1 窒素

化学式:N₂

6.1.1 性質

- <u>261</u>無色<u>262</u>無臭の<u>263</u>気体
- 空気の 78% を占める
- ・ 水に溶け(264)にくい((265)無極性分子)
- 常温で (266) **不活性** (食品などの (267) 酸化防止)
- 高エネルギー状態([268]高温・[269]放電)では反応

6.1.2 製法

- 270 液体窒素の分留 工業的製法
- [271] 亜硝酸アンモニウムの [272] 熱分解 $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

6.1.3 反応

• 窒素と酸素

$$\mathrm{N_2} + 2\,\mathrm{O_2} \longrightarrow 2\,\mathrm{NO_2} \left\{ \begin{array}{c} \mathrm{N_2} + \mathrm{O_2} \longrightarrow 2\,\mathrm{NO} \\ \\ 2\,\mathrm{NO} + \mathrm{O_2} \longrightarrow 2\,\mathrm{NO_2} \end{array} \right.$$

• 窒素とマグネシウム $3 \operatorname{Mg} + \operatorname{N}_2 \longrightarrow \operatorname{Mg}_3 \operatorname{N}_2$

6.2 アンモニア

化学式: [273]NH₃

6.2.1 性質

- 274 無色 275 刺激臭の 276 気体
- (277)水素結合
- 水に278 非常によく溶ける (279 上方 置換)
- [280] 塩基性

$$\left(\begin{array}{c} (281) \text{NH}_3 + \text{H}_2\text{O} \Longrightarrow \text{NH}_4^+ + \text{OH}^- \\ K_1 = 1.7 \times 10^{-5} \text{ mol/L} \end{array} \right)$$

- 282 塩素の検出
- 高温・高圧で二酸化炭素と反応して、 283 尿素を生成

6.2.2 製法

284 ハーバーボッシュ法 工業的製法 [285]低温[286]高圧で、[287]四酸化三鉄([288]Fe₃O₄) 触媒

 $N_2 + 3 H_2 \Longrightarrow 2 NH_3$

• [289]塩化アンモニウムと [290]水酸化カルシウムを混ぜ

 $2 \text{ NH}_4 \text{Cl} + \text{Ca}(\text{OH})_2 \longrightarrow 2 \text{ NH}_3 \uparrow + \text{Ca}(\text{Cl}_2 + 2 \text{ H}_2\text{O})$

6.2.3 反応

• 硫酸とアンモニア $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \longrightarrow (\text{NH}_4)_2 \text{SO}_4$

● 塩素の検出

 $NH_3 + HCl \longrightarrow NH_4Cl \downarrow$

• アンモニアと二酸化炭素 $2 \, \mathrm{NH_3} + \mathrm{CO_2} \longrightarrow (\mathrm{NH_2})_2 \mathrm{CO} + \mathrm{H_2O}$

6.3 一酸化二窒素(笑気ガス)

化学式: 291 N₂O

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- [292]麻酔効果

6.3.2 製法

293 硝酸アンモニウム の熱分解 $NH_4NO_3 \xrightarrow{\Lambda} N_2O + 2H_2O$

6.4 一酸化窒素

化学式: [294]NO

6.4.1 性質

- [295]無色[296]無臭の[297]気体
- 中性で水に溶けにくい
- 空気中では 298 酸素とすぐに反応

6.5 二酸化窒素 6 窒素

• 血管拡張作用·神経伝達物質

6.4.2 製法

[299]銅と[300]希硝酸

 $3 \operatorname{Cu} + 8 \operatorname{HNO}_3 \longrightarrow 3 \operatorname{Cu}(\operatorname{NO}_3)_2 + 2 \operatorname{NO} + 4 \operatorname{H}_2 \operatorname{O}$

6.4.3 反応

酸素と反応

 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$

6.5 二酸化窒素

化学式: [301]NO₂

6.5.1 性質

- [302]赤褐色[303]刺激臭の[304]気体
- ・ 水と反応して(305)強酸性((306)酸性雨の原因)
- 常温では(307)四酸化二窒素((308)無色)と(309)平衡状態 $2 \text{ NO}_2 \Longrightarrow \text{N}_2\text{O}_4$
- 140°C 以上で熱分解 $2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{O}_2$

6.5.2 製法

(310)銅と(311)濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$

硝酸 6.6

化学式: [312]HNO₃

6.6.1 性質

- 313無色(314)刺激臭で(315)揮発性の(316)液体
- 水に(317)よく溶ける
- [318]強酸性

 $319 \text{HNO}_3 \Longrightarrow \text{H}^+ + \text{NO}_3^- \qquad K_1 = 6.3 \times 10^1 \text{mol/L}$

- <u>320 褐色瓶</u> に保存(<u>321</u>)光分解)
- 322 酸化剤としての反応 希硝酸 $HNO_3 + H^+ + e^- \longrightarrow NO_2 + H_2O$

• [323]酸化剤としての反応 濃硝酸 $HNO_3 + 3H^+ + 3e^- \longrightarrow NO + 2H_2O$

- イオン化傾向が小さい Cu、Hg、Ag も溶解
- (324)AI, (325)Cr, (326)Fe, (327)Co, (328)Ni lt 329酸化皮膜が生じて不溶濃硝酸 = [330]不動態
- [331]王水 ([332]濃塩酸:1[333]濃硝酸=3:1) は、Pt,Au も溶解
- NO₃ は (334) 沈殿を作らない ⇒ (335) 褐輪反応で検出

6.6.2 製法

(336)オストワルト法

 $NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$

- 1. [337] <u>白金</u>触媒で [338] アンモニア を [339] 酸化 $4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{O}$
- 2. [340]空気酸化

 $2\,\mathrm{NO} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{NO}_2$

- 3. 341水と反応 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$
- 342 硝酸塩に 343 濃硫酸 を加えて加熱 $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3 \uparrow$

6.6.3 反応

- アンモニアと硝酸 $NH_3 + HNO_3 \longrightarrow NH_4NO_3$
- 硝酸の光分解 $4 \text{ HNO}_3 \xrightarrow{\mathcal{H}} 4 \text{ NO}_2 + 2 \text{ H}_2 \text{O} + \text{O}_2$
- 亜鉛と希硝酸 $Zn + 2\operatorname{HNO}_3 \longrightarrow Zn(\operatorname{NO}_3)_2 + \operatorname{H}_2 \!\uparrow$
- 銀と濃硝酸 $Ag + 2 HNO_3 \longrightarrow AgNO_3 + H_2O + NO_2 \uparrow$

7 リン

7.1 リン

7.1.1 性質

三種類の同 344 素体がある

_ I _ / / / I _ (<u>0) / </u>	二住族の同じて					
名称	<u>345黄</u> リン	<u>346</u> 赤 リン	黒リン			
化学式	347)P ₄	348)P _x	P_4			
融点	44°C	590°C*2	610°C			
発火点	35°C	260°C				
光八点	(349) <mark>水中</mark> に保存	350マッチの側薬	_			
密度	$1.8 \mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7 \mathrm{g/cm^3}$			
毒性	351)猛毒	352)微毒	353)微毒			
構造	PPP	$P \rightarrow P$	略			
CS ₂ への溶解	(354)溶ける	<u>355)溶けない</u>	356 溶けない			

7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法 $2 \operatorname{Ca_3}(PO_4)_2 + 6 \operatorname{SiO_2} + 10 \operatorname{C} \longrightarrow 6 \operatorname{CaSiO_3} + 10 \operatorname{CO} + P_4$
- ・ 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200°C、1.2 × 10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: [357]P₄O₁₀

7.2.1 性質

- 白色で昇華性のある固体
- [358]潮解性 (水との親和性が[359]非常に高い)
- 乾燥剤
- 水を加えて加熱すると反応(360)加水分解)

7.2.2 製法

[361]リンの燃焼

 $P_4 + 5 O_2 \longrightarrow P_4 O_{10}$

7.2.3 反応

水を加えて加熱

 $P_4O_{10} + 6 H_2O \longrightarrow 4 H_3PO_4$

7.3 リン酸

化学式: 362 H₃PO₄

7.3.1 性質

[363]中酸性

7.3.2 反応

- リン酸と水酸化カルシウムの完全中和 $2\,H_3PO_4 + 3\,Ca(OH)_2 \longrightarrow Ca_3(PO_4)_2 + 6\,H_2O$
- リン酸カルシウムとリン酸が反応して重過リン酸石 灰が生成

 $Ca_3(PO_4)_2 + 4H_3PO_4 \longrightarrow 3Ca(H_2PO_4)_2$

• リン酸カルシウムと硫酸が反応して過リン酸石灰が 牛成

 $\begin{array}{cccc} \mathrm{Ca_3(PO_4)_2} & + & 2\,\mathrm{H_2SO_4} & \longrightarrow & \mathrm{Ca(H_2PO_4)_2} & + \\ 2\,\mathrm{CaSO_4} & & & \end{array}$

8 炭素

8.1 炭素

8.1.1 性質

炭素の同(365)素体

- (366)ダイアモンド
- [367]黒鉛([368]グラファイト)
- 無定形炭素

用途 顔料・脱臭剤 (活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• [369]フラーレン

用途 医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

グラフェン

用途 半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

• カーボンナノチューブ

用途 水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	370 ダイアモンド	<u>[371]黒鉛</u>
特徴	372 <u>無</u> 色 373 透明で屈折率が大きい固体	374 <u>黒</u> 色で(375)光沢がある固体
密度	$3.5 \mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	[376] <mark>正四面体</mark> 方向の[377] <mark>共有結合</mark> 結晶	(378)ズレた層状 構造((379)ファンデルワールス <u>カ</u>)
硬さ	380 非常に硬い	381 軟らかい
沸点	382高い	<u> 383)高い</u>
電気伝導性	<u> 384なし</u>	<u> </u>
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式: [386]CO

C,O 電子の持つ $\overline{(392)}$ 電荷 $\overline{(393)}$ 電気性度の差による効果

| | CO の極性は〔394〕<mark>小さい</mark>

8.2.1 性質

- [395]無色[396]無臭で[397]有毒な気体
- ・ 赤血球のヘモグロビンの 398 Fe²⁺ に対して強い 399 酸化結合
- [400]中性で水に溶け [401]にくい。([402]水上置換)
- 403 可燃性、高温で404 還元性(405)鉄との親和性が非常に高い)

8.3 二酸化炭素 8 炭素

8.2.2 製法

■ 406 赤熱したコークス に 407 水蒸気 を吹き付ける 工業的製法

$$C + H_2O \longrightarrow CO + H_2$$

炭素の 408 不完全燃焼

$$2C + O_2 \longrightarrow 2CO$$

■ 409 ** を加えて加熱

$$\text{HCOOH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CO} \uparrow + \text{H}_2\text{O}$$

● 411シュウ酸に 412濃硫酸 を加えて加熱

$$(COOH)_2 \longrightarrow CO + CO_2 + H_2O$$

8.2.3 反応

燃焼

$$CO + O_2 \longrightarrow 2CO_2$$

• 鉄の精錬

$$\operatorname{Fe_2O_3} + 3\operatorname{CO} \longrightarrow 2\operatorname{Fe} + 3\operatorname{CO}_2 \left\{ \begin{array}{l} \operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2\operatorname{FeO} + \operatorname{CO}_2 \\ \operatorname{FeO} + \operatorname{CO} \longrightarrow \operatorname{Fe} + \operatorname{CO}_2 \times 2 \end{array} \right.$$

8.3 二酸化炭素

8.3.1 性質

- 413無色 414無臭で 415昇華性(固体は 416)ドライアイス)
- 大気の 0.04% を占める
- 水に 417 少し溶ける
- [418]弱酸性

8.3.2 製法

● (420)炭酸カルシウム を強熱 工業的製法

$$CaCO_2 \longrightarrow CaO + CO_2$$

● [421]希塩酸と [422]石灰石

$$CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$$

423 炭酸水素ナトリウムの熱分解

$$2\,\mathrm{NaHCO_3} \longrightarrow \mathrm{Na_2CO_3} + \mathrm{CO_2} + \mathrm{H_2O}$$

8.3.3 反応

• 二酸化炭素と水酸化ナトリウム

$$\mathrm{CO_2} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Na_2CO_3} + \mathrm{H_2O}$$

• [424] 石灰水 に通じると [425] 白濁 しさらに通じると [426] 白濁が消える

$$Ca(OH)_2 + CO_2 \Longrightarrow CaCO_3 \downarrow + H_2O$$

$$CaCO_3 + CO_2 + H_2O \Longrightarrow Ca(HCO_3)_2$$

9 ケイ素

9.1 ケイ素

9.1.1 性質

- [427]灰色で[428]光沢がある[429]共有結合結晶
- 430 硬いがもろい
- (431)半導体に使用(高純度のケイ素)*3
 高温にしたり微小の他電子を添加すると電気伝導性が(432)上昇(金属は高温で電気伝導性が(433)降下)

9.1.2 製法

- (434)ケイ砂と(435)一酸化炭素を混ぜて強熱 工業的製法 SiO₂ + 2 C → Si + 2 CO
- $\boxed{\textbf{436}$ ケイ砂 と $\boxed{\textbf{437}}$ マグネシウム 粉末を混ぜて加熱 $\operatorname{SiO}_2 + 2\operatorname{Mg} \longrightarrow \operatorname{Si} + 2\operatorname{MgO}$

9.2 二酸化ケイ素

化学式: [438]SiO₂

9.2.1 性質

- (439)無色(440)透明の(441)共有結合結晶
- 442 硬い
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- 443 酸性酸化物
- (444)シリカゲル (445)乾燥剤・吸着剤)の生成に用いられる多孔質、適度な数の(446)ヒドロキシ基

9.2.2 反応

- 447フッ化水素と反応
 SiO₂ + 4 HF → SiF₄↑ + 2 H₂O
- 448フッ化水素酸と反応
 SiO₂ + 6 HF → H₂SiF₆↑ + 2 H₂O

 $SiO_2 + Na_2CO_3 \longrightarrow Na_2SiO_3 + CO_2$

- $\boxed{452$ 水ガラス と $\boxed{453}$ 塩酸 から $\boxed{454}$ ケイ酸 の白色ゲル状沈澱が生じる反応 $\mathrm{NaSiO_3}+2\,\mathrm{HCl}\longrightarrow\mathrm{H_2SiO_3}\downarrow+2\,\mathrm{NaCl}$
- $\boxed{455$ ケイ酸 を加熱してシリカゲルを得る反応 $\text{H}_2 \text{SiO}_3 \xrightarrow{\Delta} \text{SiO}_2 \cdot n \text{ H}_2 \text{O} + (1-n) \text{H}_2 \text{O} \ (0 < n < 1)$

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

9.2 二酸化ケイ素 9.2 二酸化ケイ素

シリカゲル生成過程での構造変化

1. 二酸化ケイ素(シリカ) SiO_2

2. ケイ酸ナトリウム Na₂SiO₃

3. ケイ酸 $SiO_2 \cdot n H_2O$ $(0 \le n \le 1)$

4. シリカゲル $SiO_2 \cdot n H_2O \ (n \ll 1)$

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で [456]柔らかい 金属
- 全体的に反応性が高く、 457 灯油中に保存
- 原子一個あたりの自由電子が (458)1個 ((459)弱い (460) 金属結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$

化学式	Li	Na	K	Rb	Cs
融点	181°C	98°C	64°C	39°C	28°C
密度	0.53	0.97	0.86	1.53	1.87
構造		[461]体心立方格子([462]軽金属)			
イオン化エネルギー	大				— 小
反応力	小 —				<u> </u>
炎色反応	463	464)黄色	(465) 赤紫 色	466 深赤色	467 青紫色
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池年代測定	光電管 電子時計 (一秒の基準)

10.1.2 製法

水酸化物や塩化物の 468 溶融塩電解 (469 ダウンズ法) 工業的製法

[470]CaCl₂添加([471]凝固点降下)

 $2 \operatorname{NaCl} \longrightarrow 2 \operatorname{Na} + \operatorname{Cl}_2 \uparrow$

10.1.3 反応

• ナトリウムと酸素

 $4 \operatorname{Na} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Na}_2 \operatorname{O}$

• ナトリウムと塩素

 $2\,\mathrm{Na} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{NaCl}$

ナトリウムと水

 $2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{NaOH} + \mathrm{H}_2\!\uparrow$

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: 472 NaOH

10.2.1 性質

- 473 白色の固体
- [474]潮解性
- 水によくとける (水との親和性が [475] 非常に高い)
- 476 乾燥剤

• 強塩基性

$$\left(\begin{array}{c} \boxed{477} \text{NaOH} \Longrightarrow \text{Na}^+ + \text{OH}^- \\ \end{array}\right) K_1 = 1.0 \times 10^{-1} \text{mol/L}$$

• 空気中の (478) <u>二酸化炭素</u> と反応して、純度が不明
 酸の標準溶液 ((479) <u>シュウ酸</u>) を用いた中和滴定で濃度決定
 ((COOH)₂ + 2 NaOH → (COONa)₂ + 2 H₂O)

10.2.2 製法

(480)水酸化ナトリウム水溶液 の (481)電気分解 (イオン交換膜法) 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{NaOH} + \operatorname{H}_2 \uparrow + \operatorname{Cl}_2 \uparrow$

10.2.3 反応

塩酸と水酸化ナトリウム HCl+NaOH → NaCl+H₂O

塩素と水酸化ナトリウム2 NaOH + Cl₂ → NaCl + NaClO + H₂O

• 二酸化硫黄と水酸化ナトリウム $SO_2 + 2 NaOH \longrightarrow Na_2SO_3 + H_2O$

• 酸化亜鉛と水酸化ナトリウム水溶液 ${
m ZnO} + 2\,{
m NaOH} + {
m H_2O} \longrightarrow {
m Na_2}[{
m Zn(OH)_4}]$

• 二酸化炭素と水酸化ナトリウム $2 \operatorname{NaOH} + \operatorname{CO}_2 \longrightarrow \operatorname{Na_2CO_3} + \operatorname{H_2O}$

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム
化学式	482 Na ₂ CO ₃	483 NaHCO ₃
色	484 白	485 白 色
融点	850°C	486 熱分解
液性	(487) <u>塩基</u> 性	488] 弱塩基性
用途	<u>(489)ガラス</u> や石鹸の原料	胃腸薬・ふくらし粉

10.3.2 製法

10.3.3 反応

• Na₂CO₃ $\boxed{514}_{\text{CO}_3}^{2^-} + \text{H}_2\text{O} \Longrightarrow \text{HCO}_3^- + \text{OH}^-}$ $K_1 = 1.8 \times 10^{-4}$ • NaHCO₃ $\begin{cases} \boxed{515}_{\text{HCO}_3}^{2^-} \Longrightarrow \text{H}^+ + \text{CO}_3^{2^-} \\ \boxed{516}_{\text{HCO}_3}^{-} + \text{H}_2\text{O} \Longrightarrow \text{CO}_2 + \text{OH}^- + \text{H}_2\text{O}} \end{cases}$ $K_2 = 2.3 \times 10^{-8}$

11 2 族元素

[517]Be, [518]Mg, [519]アルカリ土類金属

11.1 単体

11.1.1 性質

化学式	520 Be	[521]Mg	(522)Ca	523 <mark>Sr</mark>	524 <mark>Ba</mark>	
融点	1282°C	649°C	839°C	769°C	729°C	
密度 (g/cm ³)	1.85	1.74	1.55	2.54	3.59	
525 還元力		小		大		
水との反応	(526)反応しない	[527] <mark>熱水</mark> と反応	528 <mark>冷水</mark> と反応	[529] <mark>冷水</mark> と反応	530 <mark>冷水</mark> と反応	
M(OH) ₂ の水溶性	531)難溶性([531] 難溶性([532] 弱塩基性)		[533] 可溶性([534] 強塩基性)		
難溶性の塩	(535)MCO ₃			536 MCO ₃ , MSO ₄		
炎色反応	537 示さない	538 示さない	539)橙赤	〔540 <u>紅</u>	541)黄緑	
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター	

11.1.2 製法

塩化物の 542 溶融塩電解 工業的製法

11.1.3 反応

• マグネシウムの燃焼

$$2 \,\mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2 \,\mathrm{MgO}$$

• マグネシウムと二酸化炭素

$$2 \,\mathrm{Mg} + \mathrm{CO}_2 \longrightarrow 2 \,\mathrm{MgO} + \mathrm{C}$$

カルシウムと水

 $Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2 \uparrow$

11.2 酸化カルシウム(生石灰)

化学式: [543]CaO

11.2.1 性質

- [544] 白色
- <u>545</u>水との親和性が <u>546</u>非常に高い (<u>547</u>乾燥剤)
- 548 塩基性 酸化物
- 水との反応熱が[549]非常に大きい([550]加熱剤)

11.2.2 製法

(551)炭酸カルシウムの(552)熱分解

 $CaCO_3 \longrightarrow CaO + CO_2$

11.2.3 反応

• コークスを混ぜて強熱すると、 [553] 炭化カルシウム (「554] カーバイド) が生成

$$CaO + 3C \longrightarrow CaC_2 + CO \uparrow$$

[555]水と反応して[556]アセチレンが生成

$$CaC_2 + 2H_2O \longrightarrow CaH_2 \uparrow + Ca(OH_2)_2$$

11.3 水酸化カルシウム(消石灰)

化学式: [557]Ca(OH)₂

11.3.1 性質

- [558] 白色
- 水に 559 少し溶ける 固体
- 560強塩基 (561Ca(OH)₂ \Longrightarrow Ca(OH)⁺ + OH⁻ $K_1 = 5.0 \times 10^{-2}$)
- 水溶液は 562 石灰水

11.3.2 製法

[563]酸化カルシウムと [564]水 工業的製法

 $CaO + H_2O \longrightarrow Ca(OH)_2$

11.3.3 反応

- 塩素と反応して、(565) さらし粉が生成 Ca(OH)₂ + Cl₂ → CaCl(ClO) · H₂O
- 580°C 以上で 566 熱分解

 $Ca(OH)_2 \longrightarrow CaO + H_2O$

- ・ 二酸化炭素との反応
 Ca(OH)₂ + CO₂
 → CaCO₃ + H₂O
- 塩化アンモニウムとの反応
 2 NH₄Cl + Ca(OH)₂ → CaCl₂ + 2 NH₃↑ + 2 H₂O

11.4 炭酸カルシウム(石灰石)

化学式: [567] CaCO₃

11.4.1 性質

- <u>568</u> <u>白</u>色で、水に <u>569</u> <u>溶けにくい</u>
- [570]**鍾乳洞**の形成

11.4.2 反応

● 800°C 以上で 571 熱分解

 $CaCO_{3} \longrightarrow CaO + CO_{2}$

• $\overline{[572]$ 二酸化炭素 を多く含む水に $\overline{[573]}$ 溶解 $\overline{CaCO_3} + \overline{CO_2} + \overline{H_2O} \Longrightarrow \overline{Ca(HCO_3)_2}$

11.5 塩化マグネシウム・塩化カルシウム

化学式: [574] MgCl₂ · [575] CaCl₂

11.5.1 性質

[576] <mark>潮解</mark>性があり、水に[577] <mark>よく溶ける</mark> (水との親和性が[578] <mark>非常に高い</mark>)

[579]乾燥剤 塩化カルシウム、 [580]融雪剤

11.6 硫酸カルシウム 12 12 族元素

11.5.2 製法

- 海水から得た [581] にがりを濃縮 塩化マグネシウム 工業的製法
- [582]アンモニアソーダ法 ([583]ソルベー法) 塩化カルシウム 工業的製法

11.6 硫酸カルシウム

化学式: 584 CaSO₄

11.6.1 性質

[585] セッコウを約 150°C で加熱すると、[586] 焼きセッコウが生成

<u>[587]水</u>を加えると、<u>[588]発熱</u>・<u>[589]膨張</u>・<u>[590]硬化</u>して<u>[591]セッコウ</u>に戻る

 $CaSO_4 \cdot 2H_2O \rightleftharpoons CaSO_4 \cdot \frac{1}{2}H_2O + \frac{3}{2}H_2O$

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式: [592]BaSO₄

11.7.1 性質

- [593] 白色で、水に [594] ほとんど溶けない 固体
- 反応性が 595 低く、X 線を遮蔽

12 12 族元素

12.1 単体

12.1.1 性質

化学式	(596) <mark>Zn</mark>	(597)Cd	(598)Hg
融点	420°C	321°C	−39°C
密度	7.1	8.6	13.6
$M^{2+}aq + H_2S$	599 <u>台</u> 色の 600 ZnS ↓	(601)黄色の(602)CdS↓	603黒色の 604 HgS ↓
(沈澱条件)	(<u>605<mark>中塩基性</mark>)</u>	(606)全液性)	(<u>607)全液性</u>)
特性	高温の水蒸気と反応	Cd ²⁺ は Ca ²⁺ と類似	(608)合金を作りやすい
刊工	(609) <u>両性</u> 元素	⇒ イタイイタイ病	(<u>610)アマルガム</u>)
用途	<u>611トタン</u> (鉄にメッキ)	ニカド電池 (Ni-Cd)	体温計・蛍光灯

- 12 族の硫化物は 612 顔料や 613 染料 に利用
- HgS は 450°C で消火させると 614 赤色に変化

12.1.2 製法

関亜鉛鉱を焙焼して得た酸化亜鉛に、コークスを混ぜて加工 工業的製法 $2 \text{ ZnS} + 3 \text{ O}_2 \longrightarrow 2 \text{ ZnO} + 2 \text{ SO}_2$ $2 \text{ ZnO} + C \longrightarrow 2 \text{ Zn} + C \text{ O}$

12.1.3 反応

• 高温の水蒸気と反応 ${
m Zn} + {
m H_2O} \longrightarrow {
m ZnO} + {
m H_2} {
m \uparrow}$

• 塩酸と反応

 $Zn + 2HCl \longrightarrow ZnCl_2 + H_2 \uparrow$

• 水酸化ナトリウム水溶液と反応

 $\mathrm{Zn} + 2\,\mathrm{NaOH} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Na}_2[\mathrm{Zn}(\mathrm{OH})_4] + \mathrm{H}_2 \,\uparrow$

12.2 酸化亜鉛(亜鉛華)・水酸化亜鉛

化学式: [615]ZnO·[616]Zn(OH)₂

12.2.1 性質

- <u>617</u>白色で、水に <u>618 とけにくい</u> 固体
- 酸化亜鉛は 619 顔料
- 620両性酸化物/水酸化物
 (621)酸・(強) (622)塩基と反応 Zn²⁺ は、(623)OH⁻とも(624)NH₃とも錯イオンを形成

12.2.2 製法

- 亜鉛を燃焼 工業的製法 酸化亜鉛
 - $2\operatorname{Zn} + \operatorname{O}_2 \longrightarrow 2\operatorname{ZnO}$
- 亜鉛イオンを含む水溶液に、少量の 625 OH を加える 水酸化亜鉛

 $\operatorname{Zn}^{2+} + 2\operatorname{OH}^{-} \longrightarrow \operatorname{Zn}(\operatorname{OH})_{2} \downarrow$

12.2.3 反応

- 酸化亜鉛と塩酸
 - ${\rm ZnO} + 2\,{\rm HCl} \longrightarrow {\rm ZnCl_2} + {\rm H_2O}$
- 酸化亜鉛と水酸化ナトリウム水溶液

 $ZnO + 2 NaOH + H_2O \longrightarrow Na_2[Zn(OH)_4]$

• 水酸化亜鉛と塩酸

 $Zn(OH)_2 + 2HCl \longrightarrow ZnCl_2 + 2H_2O$

- 水酸化亜鉛と水酸化ナトリウム水溶液
 - $Zn(OH)_2 + 2 NaOH \longrightarrow Na_2[Zn(OH)_4]$
- 水酸化亜鉛の過剰な (626) アンモニア との反応 Zn(OH)₂ + 4 NH₃ → [Zn(NH₃)₄](OH)₂

12.3 塩化水銀(Ⅰ)•塩化水銀(Ⅱ)

化学式: 627 Hg₂Cl₂ · 628 HgCl

12.3.1 性質

- 白色で、水に溶けにくい固体で、微毒
- 白色で、水に少し溶ける固体で、猛毒

12.3.2 製法

水酸化銀(Ⅱ)と水銀の混合物を加熱

 $HgCl_2 + Hg \longrightarrow Hg_2Cl_2$

13 アルミニウム

13.1 アルミニウム

13.1.1 性質

- 密度が 629 小さく、 630 やわからかい 金属
- 展性・延性が [631] 大きく、電気・熱伝導率が [632] 高い

- 電気・熱伝導性が高い金属 ―

(633)Ag > (634)Cu > (635)Au > (636)Al

- 637両性元素(638濃硝酸には639不動態となり反応しない)
 表面の緻密な640酸化被膜が内部を保護(641 AI, 642 Cr, 643 Fe, 644 Co, 645 Ni *4)
 電気分解(646 陽極)で人工的に厚い酸化被膜をつける製品加工(647 アルマイト)
- イオン化傾向が 648 大きく、 649 還元力が 650 高い
- 651 テルミット 反応 (多量の 652 熱・ 653 光 が発生)

13.1.2 製法

- <u>[654]ボーキサイト</u>から得た <u>[655]酸化アルミニウム</u> (<u>[656]アルミナ</u>) の溶融塩電解 <u>工業的製法</u>
- バイヤー法
 - 1. $\overline{(657)}$ ボーキサイト を濃い $\overline{(658)}$ 水酸化ナトリウム 水溶液に溶解 $Al_2O_3 + 2 NaOH + 3 H_2O \longrightarrow 2 Na[Al(OH)_4]$
 - 2. 溶解しない不純物を濾過して、濾液を水で希釈して Al(OH)3 の種結晶を入れる $Na[Al(OH)_4] \longrightarrow NaOH + Al(OH)_3 \downarrow$
 - 3. 成長した $Al(OH)_3$ を強熱 $2 Al(OH)_3 \longrightarrow Al_2O_3 + 3 H_2O$
- ホールエール法
 - 1. [659] <mark>氷晶石</mark> Na₃ AlF₆ を融解し、酸化アルミニウムを溶解
 - 2. [660]炭素 電極で電気分解 $\left\{ \begin{array}{ll} {\rm \pmb{B}}{\rm \pmb{w}} & {\rm C} + {\rm O}^{2-} \longrightarrow {\rm CO} + 2\,{\rm e}^-, {\rm C} + 2\,{\rm O}^{2-} \longrightarrow {\rm CO}_2 + 4\,{\rm e}^- \\ {\rm \pmb{E}}{\rm \pmb{w}} & {\rm Al_3}^+ + 3\,{\rm e}^- \longrightarrow {\rm Al} \end{array} \right.$

13.1.3 反応

1. アルミニウムの燃焼

$$4 \text{ Al} + 3 \text{ O}_2 \longrightarrow 2 \text{ Al}_2 \text{O}_3$$

- 2. アルミニウムと高温の水蒸気
 - $2 \text{ Al} + 3 \text{ H}_2 \text{O} \longrightarrow \text{Al}_2 \text{O}_3 + 3 \text{ H}_2 \uparrow$
- 3. テルミット反応

 $Fe_2O_3 + 2Al \longrightarrow Al_2O_3 + 2Fe$

13.2 酸化アルミニウム・水酸化アルミニウム

化学式: [661]Al₂CO₃・[662]Al(OH)₃ 酸化アルミニウムの別称: [663]アルミナ

^{*4} てつこに

13.2.1 性質

- [664] 白色で、水に [665] 溶けにくい
- [666]両性酸化物/水酸化物

[667]酸・(強) [668]塩基と反応

Al³⁺ は<mark>[669]OH</mark>-と錯イオンを形成し、[670]NH₃ とは形成しない

13.2.2 製法

- バイヤー法
- アルミニウムイオンを含む水溶液に、少量の 671 塩基 を加える 水酸化アルミニウム $Al_3^+ + 3 OH^- \longrightarrow Al(OH)_3 \downarrow$

13.2.3 反応

• 酸化アルミニウムと塩酸

 $Al_2O_3 + 6HCl \longrightarrow 2AlCl + 3H_2O$

• 酸化アルミニウムと水酸化ナトリウム水溶液

 $Al_2O_3 + 2 NaOH + 3 H_2O \longrightarrow 2 Na[Al(OH)_4]$

- 水酸化アルミニウムと塩酸
 - $Al(OH)_3 + 3HCl \longrightarrow AlCl_3 + 3H_2O$
- 水酸化アルミニウムと水酸化ナトリウム水溶液 Al(OH)₃ + NaOH → Na[Al(OH)₄]

13.3 ミョウバン・焼きミョウバン

化学式: 672 AIK(SO₄)₂·12 H₂O · 673 AIK(SO₄)₂

13.3.1 性質

- 674 白色で、水に 675 溶ける 固体
- 676 酸性

(677)Al³⁺ + H₂O \implies Al(OH)₂ + H⁺ $K_1 = 1.1 \times 10^{-5} \text{ mol/L}$

● Al³⁺ は価数が 678 大きい 陽イオン

粘土([679]負の[680]疏水コロイド)で濁った水の浄水処理([681]凝析)

13.3.2 製法

硫酸化アルミニウムと硫酸カリウムの混合水溶液を濃縮

• 水への溶解

 $AlK(SO_4)_2 \longrightarrow Al_3^+ + K^+ + SO_4^{2-}$

14 スズ・鉛

14.1 単体

14.1.1 性質

化学式	(682) <mark>Sn</mark>	(683)Pb
特徴	灰白色で柔らかい金属	青白色で柔らかい金属
融点	232°C	328°C
密度	7.28	11.4
特性	684)両	<u>性</u> 元素
用途	<u>[685]ブリキ</u> (鉄にメッキ)	(686) <mark>鉛蓄</mark> 電池の(687)負極
用坯	688 放射	<mark>線</mark> の遮蔽

【合金】

 $Cu + Sn \cdots$ 689青銅

 $\operatorname{Sn} + \operatorname{Pb} \cdots$ (690)はんだ

14.1.2 製法

• 錫石 SnO_2 にコークスを混ぜて加熱 工業的製法

$$SnO_2 + 2C \longrightarrow Sn + 2CO$$

• 方鉛鉱 PbS を焙焼してから、コークスを混ぜて加熱 工業的製法

$$2 \operatorname{PbS} + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{PbO} + 2 \operatorname{SO}_2$$

 $\operatorname{PbO} + \operatorname{C} \longrightarrow \operatorname{Pb} + \operatorname{CO}$

14.1.3 反応

● 鉛と 691 希硝酸

$$3 \,\mathrm{Pb} + 8 \,\mathrm{HNO}_3 \longrightarrow 3 \,\mathrm{Pb}(\mathrm{NO}_3)_2 + 4 \,\mathrm{H}_2\mathrm{O} + 2 \,\mathrm{NO}$$

● 鉛と 692 酢酸

$$2 \text{ Pb} + 4 \text{ CH}_3 \text{COOH} + \text{O}_2 \longrightarrow 2 (\text{CH}_3 \text{COO})_2 \text{Pb} + 2 \text{ H}_2 \text{O}$$

スズと 693 塩酸

$$\operatorname{Sn} + 2\operatorname{HCl} \longrightarrow \operatorname{SnCl}_2 + \operatorname{H}_2 \!\uparrow$$

• 鉛蓄電池における反応

14.2 塩化スズ(Ⅱ)

- 14.2.1 性質
- 14.2.2 製法

スズと (694) 塩酸

 $\operatorname{Sn} + 2\operatorname{HCl} \longrightarrow \operatorname{SnCl}_2 + \operatorname{H}_2 \uparrow$

14.2.3 反応

塩化鉄(Ⅲ)水溶液と塩化スズ(Ⅱ)水溶液

$$2\operatorname{FeCl}_3 + \operatorname{SnCl}_2 \longrightarrow 2\operatorname{FeCl}_2 + \operatorname{SnCl}_4$$

備考 塩化スズ (IV) 水溶液と硫化水素

$$SnCl_4 + 2\,H_2S \longrightarrow SnS + S + 4\,HCl$$

14.3 酸化鉛 (IV) 14 スズ・鉛

14.3 酸化鉛(IV)

14.3.1 性質

[695] <mark>還元</mark>剤として働く

 $\boxed{696} \text{Sn}^{2+} \longrightarrow \text{Sn}^{4+} + 2 \, \text{e}^{-}$

14.3.2 製法

酢酸鉛(Ⅱ)水溶液にさらし粉を加える

14.3.3 反応

酸化鉛(IV) に濃塩酸を加えて加熱

 $\mathrm{PbO_2} + 4\,\mathrm{HCl} \longrightarrow \mathrm{PbCl_2} + 2\,\mathrm{H_2O} + \mathrm{Cl_2} \uparrow$

14.4 鉛の難溶性化合物

- 加熱すると溶けやすい
- [697] <u>酢酸鉛 (Ⅱ)</u> 紙を用いた [698] <u>硫化水素</u>の検出 ([699] <u>黒</u>色)

第Ⅲ部

遷移元素

d 軌道・f 軌道(内殻)の秋に電子が入っていき、最外殻電子の数は(700)1 か 2

(701)ランタノイド・(702)アクチノイド:f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

15 性質

- 単体は密度が[703]大きく、融点が[704]高い金属
- d 軌道の一部の電子も価電子
- ◆ 化合物やイオンは (705) 白色のものが多い
- 安定な (706) 錯イオン を形成しやすい ((707)d 軌道に空きがある)
- 単体や化合物は[708]触媒になるものが多い*5

• 酸化数が
$$\left\{ \begin{array}{c} 小さい \\ 大きい \end{array} \right\}$$
酸化物は $\left\{ \begin{array}{c} 709 \ \hline{\overline{$

16 鉄・コバルト・ニッケル

16.1 鉄

16.1.1 性質

- 常温で 711 強磁性
- イオン化傾向が水素より (712)大き

[713]強酸と反応([714]濃硝酸には[715]不動態となり反応しない)

- ▼ 716 高温の水蒸気と反応して (717) 緻密な (718) 黒錆が生成(酸化被膜)
- 湿った空気中では[719]粗い[720]赤錆を生成

酸化鉄(III)	Fe_2O_3	721 赤褐色	722 常磁性
四酸化三鉄	Fe_3O_4	723 <u>黒</u> 色	724]強磁性
酸化鉄(Ⅱ)	FeO	(725) <mark>黒</mark> 色	726 発火性

軟鋼	(727)鉄鋼	728	729 ステンレス鋼	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	(730) Cr, Ni	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*5} $\bigcirc VsO_5, MnO_2, Fe_3O_4, Pt$

16.1.2 製法

鉄の製錬工業的製法

(731)高炉(732)鉄鉱石(赤鉄鉱 [733]Fe2O3 ・磁鉄鉱 [734]Fe2O3 ・不純物)・ [735]コークス ・ [736]石灰石 を高温で反応

1. 一酸化炭素の再生

$$C + CO_2 \longrightarrow 2CO$$

2. 石灰石の強熱

$$CaCO_3 \longrightarrow CaO + CO_2$$

3. 748 スラグの生成

$$egin{array}{ll} \operatorname{CaO} + \operatorname{SiO}_2 & \longrightarrow \operatorname{CaSiO}_3 \\ \operatorname{CaO} + \operatorname{Al}_2\operatorname{O}_3 & \longrightarrow \operatorname{Ca}(\operatorname{AlO}_2)_2 \end{array}
ight\}$$
 セメントの原料など

749 転炉

[750] 鉄鉄に高温の [751] 酸素を吹き付けて [752] 鋼になる。

16.1.3 反応

• 塩酸との反応

$$Fe + 2 HCl \longrightarrow FeCl_2 + H_2 \uparrow$$

• 高温の水蒸気との反応

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + 4 \operatorname{H}_2 \uparrow$$

• 微量に含まれる炭素・鉄・水による [753] 局部電池 ([754] 食塩などが溶けていたら反応速度上昇)

正極(
$$\overline{755}$$
C) $O_2 + 2 H_2 O + 4 e^- \longrightarrow 4 OH^-$
負極($\overline{756}$ Fe) Fe \longrightarrow Fe²⁺⁺ $2 e^-$

757水酸化鉄(Ⅱ)の生成

$$Fe^{2+} + 2OH^{-} \longrightarrow Fe(OH)_{2}$$
 (758)緑色)

・速やかに (759)水酸化鉄(Ⅱ) が酸素により酸化

$$4 \operatorname{Fe}(OH)_2 + O_2 + 2 \operatorname{H}_2O \longrightarrow 4 \operatorname{Fe}(OH)_2$$

▼ 760 水酸化鉄 (III) の脱水

$$Fe(OH)_3 \longrightarrow FeO(OH) + H_2O$$
(酸化水酸化鉄(III)濃橙色)

 $2 \operatorname{Fe}(OH)_3 \longrightarrow \operatorname{Fe}_2 O_3 \cdot n \operatorname{H}_2 O + (3-n) \operatorname{H}_2 O$ (761)赤褐色)

(エバンスの実験)

16.2 硫酸鉄(Ⅱ)7水和物

化学式: (762) FeSO₄·7 H₂O

16.2.1 性質

- ▼763 青緑色の固体
- Fe²⁺ 半反応式

$$764$$
 Fe²⁺ \longrightarrow Fe³⁺ + e⁻

● 空気中で表面が [765] Fe₂(SO₄)₃ ([766] 黄褐色)

16.2.2 製法

鉄に[767] <mark>希硫酸</mark>を加えて、蒸発濃縮

 $\mathrm{Fe} + \mathrm{H_2SO_4} \longrightarrow \mathrm{FeSO_4} + \mathrm{H_2} \!\uparrow$

16.3 塩化鉄(Ⅲ)6水和物

化学式: [768] FeCl₃·6 H₂O

16.3.1 性質

- ▼ 769 黄褐色で 770 潮解性のある固体
- 771 酸性

 $\left(\begin{array}{cc} (772)\text{Fe}^{3+} + \text{H}_2\text{O} & \Longrightarrow \text{FE}(\text{OH})^{2+} + \text{H}^+ \end{array} \right) K_1 = 6.0 \times 10^{-3} \text{ mol/L}$

16.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

 $\begin{aligned} \operatorname{Fe} + 2 \operatorname{HCl} &\longrightarrow \operatorname{FeCl}_2 + \operatorname{H}_2 \uparrow \\ 2 \operatorname{FeCl}_2 + \operatorname{Cl}_2 &\longrightarrow 2 \operatorname{FeCl}_3 \end{aligned}$

16.4 鉄イオンの反応

	NaOH	$K_4[Fe(CN)_6]$	$K_3[Fe(CN)_6]$		
Fe ²⁺	773)Fe(OH) ₂ ↓	$\text{Fe}_2[\text{Fe}(\text{CN})_6]\downarrow$	$KFe[Fe(CN)_6]\downarrow$	774)変化なし	775 <mark>変化なし</mark>
776 淡緑色	(777) <mark>緑白</mark> 色	778青白色	779 濃青色	780 淡緑色	[781] <mark>淡緑</mark> 色
Fe ³⁺	782)Fe(OH) ₃ ↓	$KFe[Fe(CN)_6]\downarrow$	Fe[Fe(CN) ₆]aq	(783) Fe ²⁺ aq	$[Fe(NCS)]^{2+}$
784 黄褐色	<u>[785]赤褐</u> 色	(786) <u>濃青</u> 色	(787) <mark>暗褐</mark> 色	788 淡緑色	(789) <u>血赤</u> 色

- Fe²⁺, Fe³⁺ は、 [790] OH⁻ とも [791] OH⁻ とも錯イオンを形成しない
- ◆ ベルリンブルーとターンブルブルーは「792」同一物質

16.5 塩化コバルト(Ⅱ)

化学式: [793]CoCl₂

16.5.1 性質

- [794] 青色で [795] 潮解性のある固体
- 6 水和物は 796 淡赤色
- 塩化コバルト紙を用いた [797]水の検出
- CO³⁺ は 798 NH₃ と錯イオンを形成

16.6 硫酸ニッケル(Ⅱ)

化学式: [799]NiSO₄

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は 800 NH₃ と錯イオンを形成

17 銅

17.1 銅

17.1.1 性質

- 801 赤色の金属光沢
- 他の金属とさまざまな色の[802]合金
- 展性・延性が 803 大きく、電気・熱伝導性が 804 高い
- イオン化傾向が水素より [805]低く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆(806)酸に溶解)が生成
 807赤色の酸化銅(I) 乾・808青緑の錆(809)緑青)湿
- 空気中で加熱して、(810)黒色の(811)酸化銅(Ⅱ) (1000°C未満)・(812)赤色の(813)酸化銅(Ⅰ) (1000°C以上)

17.1.2 製法

銅の製錬 粗銅・ (814)電解精錬 純銅 工業的製法

<u>815 高炉</u> 816 黄銅鉱 (817 CuFeS₂)・818 コークス ・819 石灰石 ・820 ケイ砂 を高温で反応

822 転炉

転炉 │硫化銅(Ⅰ)に <mark>823)酸素</mark>を吹き付けて、 <mark>824)粗銅</mark>にする。

$$\begin{split} 2\operatorname{Cu}_2 S + 3\operatorname{O}_2 & \longrightarrow 2\operatorname{Cu}_2 O + 2\operatorname{SO}_2 \\ \operatorname{Cu}_2 S + 2\operatorname{Cu}_2 O & \longrightarrow 6\operatorname{Cu} + \operatorname{SO}_2 \end{split}$$

17.1.3 反応

• 銅と希硝酸

$$3 \text{ Cu} + 8 \text{ HNO}_3 \longrightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 4 \text{ H}_2\text{O} + 2 \text{ NO} \uparrow$$

● 銅と濃硝酸

$$Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 H_2O + 2 NO_2 \uparrow$$

• 銅と熱濃硫酸

$$Cu + 2 H_2 SO_4 \longrightarrow Cu SO_4 + 2 H_2 O + SO_2 \uparrow$$

17.2 硫酸銅(Ⅱ)5水和物

17.2.1 性質

- [825]青色の固体(結晶中の[826][Cu(H₂O)₄]²⁺の色)
- 温度による物質変化

$$5$$
 水和物 $\xrightarrow{102^{\circ}\text{C}}$ 827]3 水和物 $\xrightarrow{113^{\circ}\text{C}}$ 828]1 水和物 $\xrightarrow{150^{\circ}\text{C}}$ 829無水和物 $\xrightarrow{650^{\circ}\text{C}}$ 830]酸化銅(II) $= \text{H}_2\text{O}$ (検出)

- Cu²⁺ による 833 殺菌作用(農薬)
- 還元性を持つ有機化合物の検出*6

^{*6} フェーリング液・ベネディクト液

17.3 銅(Ⅱ)イオンの反応 18 銀

834 赤色の酸化銅(I)が生成

17.2.2 製法

銅に835濃硫酸をかけてから836加熱。

17.2.3 反応

17.3 銅(II) イオンの反応

	少々の塩基	過剰の NH ₃	濃塩酸	H ₂ S(<u>837)全液性</u>)
Cu ²⁺	838 Ca(OH) ₂ ↓	$[839][Ca(NH_3)_4]^{2+}$ aq	840)[CuCl ₄] ²⁻ aq	841)CuS↓
842青色	843 青白 色	<u>[844]深青</u> 色	845 黄緑色	846]黒色

炎色反応: 847 青緑色

● 加熱すると 848 分解

• Cu²⁺ は[849]NH₃と錯イオンを形成し、[850]OH⁻とは形成しない

17.4 銅の合金

(851) 黄銅 (真鍮)	<u>852)洋銀</u> (洋白)	853 白銅	854]青銅	855 ジュラルミン
856 Zn	857)Zn, Ni	858 Ni	859) <mark>Sn</mark>	860AI (主成分)
適度な強度と加工性	柔軟で錆びにくい	柔軟で錆びにくい	硬くて錆びにくい	軽くて丈夫
楽器・水道用具	食器・装飾品	五十円玉・五百円玉	像	航空機・車両

18 銀

18.1 銀

18.1.1 性質

- 展性・延性が (861)大きく、電気・熱伝導性が (862)最も高い
- イオン化傾向が水素より 863 小さい864 酸化力のある酸(865 硝酸・866 熱濃硫酸)と反応
- 空気中で酸化しにくいが、 867 硫化水素 とは容易に反応

18.1.2 製法

- 銅の電解精錬の 868 陽極泥 工業的製法
- 銀の化合物の 869 <u>熱</u>分解・ 870 <u>光</u>分解

18.2 銀(I) イオンの反応

871 硝酸銀水溶液

	少量の塩基	過剰の NH ₃	HCl	H ₂ S(<u>872)全液</u> 性)	K_2CrO_4
Ag^{2+}	873 Ag ₂ O↓	[874][Ag(NH ₃) ₂] ⁺	875)AgCl↓	876)Ag ₂ S↓	877)Ag ₂ CrO ₄ ↓
878無色	879褐色	(880)無色	<u>881 </u> 色	<u>882</u> <u>黒</u> 色	(883) <mark>赤褐</mark> 色

- 18.3 難溶性化合物の溶解性
- 19 クロム・マンガン
- 19.1 単体
- 19.2 クロム酸カリウム・二クロム酸カリウム
- 19.3 過マンガン酸カリウム
- 19.4 マンガンの安定な酸化数

第IV部

APPENDIX

A 気体の乾燥剤

固体の乾燥剤は[884] U字管につめて、液体の乾燥剤は[885] 洗気瓶に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)
酸性	(886)十酸化四リン	(887)P ₄ O ₁₀	酸性・中性	塩基性の気体([888]NH ₃)
段江	889]濃硫酸	890 H ₂ SO ₄	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+891 <mark>H₂S</mark> (892 <mark>還元剤</mark>)
中性	893 塩化カルシウム	894) CaCl ₂	ほとんど全て	895]NH₃
十庄	896)シリカゲル	897SiO ₂ · n H ₂ O	はこんと主し	特になし
塩基性	898酸化カルシウム	899 CaO	中性・塩基性	酸性の気体
恒至注	900ソーダ石灰	901)CaO ≿ NaOH) 中庄·塩基住	902 Cl ₂ , 903 HCl, 904 H ₂ S, 905 SO ₂ , 906 CO ₂ , 907 NO ₂

B 水の硬度

水の中の重荷 $\mathrm{Ca^{2+}}$ と $\mathrm{Mg^{2+}}$ を $\mathrm{CaCO_3}$ として換算した時の濃度 $[\mathrm{mg/L}]$

 $egin{align*} & \raisetangle & \raisetangl$

C 錯イオンの命名法

(主に遷移) 金属イオンに対して、[909]非共有電子対を持つ[910]分子や[911]イオンが[912]配位結合

「配位子の数(数詞)配位子 金属 (価数) 酸 (陰イオンの場合) イオン」

金属イオン Ag^+ Cu^+		ı ⁺	Cu ²⁺	Zn^{2+}			Fe ²⁺	Fe ³⁺	Co ³⁺	Ni ²⁻	Cr^{3+}	Al ³⁺			
配位数		913 <mark>2</mark>			914)4				<u>915)</u> 6						
916 <u>直線</u> 系 917 <u>正方</u> 形 918 <u>正四面体</u> 形 919 <u>正八面体</u> 形															
数	1	1		2			4		5		6		7	8	
数詞	920	920モノ		リジ	922トリ		<u> 923</u> テト		924ペンタ		925 ^ + + 9		26)ヘプタ	927	トクタ
	928 <mark>ビス</mark>		ビス	929トリ	<u>ス</u>										
配位子	配位子		NH ₃		CN^-	$_{\mathrm{H_2O}}$		$\mathrm{OH^-}$			Cl ⁻		H_2N-C	$\mathrm{CH_{2}CH_{2}}$	$-NH_2$
名称 93		のアン:	ミン	931シアニド		932	932アクア 9		ヒドロキシド		934)クロリド		935 エチレンジアミ		アミン

エチレンジアミン $\cdots 1$ 分子あたり 2 か所で $\boxed{936}$ 配位 結合

する (2 座配位子) (937 キレート 錯体)

• $[Zn(OH)_4]^{2-}$

[938]テトラヒドロキシド亜鉛(Ⅱ)酸イオン

• $[Zn(NH_3)_4]^{2+}$

939 テトラアンミン亜鉛(II) イオン

• $[Ag(S_2O_3)_2]^{3-}$

940ビス (チオスルファト) 銀(1) イオン

• $[Cu(H_2NCH_2CH_2NH_2)]^{2+}$

941 ビス (エチレンジアミン) 銅 (川) イオン

D 金属イオンの難容性化合物

		Cl-	SO_4^{2-}	$_{ m H_2S}$	$_{ m H_2S}$	OH ⁻	OH-	NH_3			
				酸性	中・塩基性	NH3	過剰	過剰			
K^+	942)沈殿しない	943)沈殿しない		(944)沈殿しない		(945)沈展			沈殿しない	(947)沈殿しない	(
	949無色	(950) #			<u></u> 51無色	952			953 <mark>無</mark> 色		+ -
Ba ²⁺	956)沈殿しない	957 BaSO ₄		958)沈殿しない		959 沈殿しない			沈殿しない	961 沈殿しない	
	963)無色	964) 白色		96	<u>55)無</u> 色	966	 色	1	967 <mark>無</mark> 色	968無色	1
Sr^{2+}	970 沈殿しない	971)SrSO ₄		972 沈殿しない		973 沈展	役しない	974	沈殿しない	975 沈殿しない	
	977 <u>無</u> 色	978 <u>É</u>	<u>1</u> 色	979)無色		980	<u>無</u> 色		981 <mark>無</mark> 色	982無色	
Ca ²⁺	984 沈殿しない	985 Ca	SO ₄	986	沈殿しない	987 沈展	受しない	98	8)Ca(OH) ₂	989 Ca(OH) ₂	
	991 <u>無</u> 色	992) <u>É</u>	<u>.</u> 色	99	93)無色	(994)	無色	(995 <u>自</u> 色	996 白 色	
Na ⁺	998 沈殿しない	999 沈殿	しない	1000	沈殿しない	[1001]沈原	殴しない_	1002	沈殿しない	[1003]沈殿しない	1
	<u>1005)無</u> 色	[1006]	<u>#</u> 色	10	07無色	1008	<u>無</u> 色	1	009無色	〔1010 <u>無</u> 色	
Mg^{2+}	[1012]沈殿しない	[1013]沈殿	しない	1014	沈殿しない_	[1015]沈[毀しない_	101	6)Mg(OH) ₂	1017)Mg(OH) ₂	[1
	〔1019〕無色	[1020] #	<u>#</u> 色	10	<u>21)無</u> 色	1022	<u>無</u> 色	1023 白 色		1024) 白 色	
Al ³⁺	[1026]沈殿しない	[1027]沈殿	しない	1028	沈殿しない_	(1029)A	I(OH) ₃	[103	30)AI(OH) ₃	[1031][Al(OH) ₄] ⁻	(
	<u>1033無</u> 色	(1034) <mark>#</mark>	<u>#</u> 色	_	35)無色	[1036]	<u>白</u> 色	1	037)白色	1038 白 色	
Mn ²⁺	1040 沈殿しない	[1041]沈殿	しない	[1042]	沈殿しない	1043	MnS	[104	4)Mn(OH) ₂	1045 Mn(OH) ₂	
	<u>1047無</u> 色	1048	<u>#</u> 色	10	<u>49)無</u> 色	1050	<u>炎桃</u> 色	1	051) 白色	1052 白 色	
Zn ²⁺	1054)沈殿しない	い 1055 沈殿しない		[1056]沈殿しない		1057 ZnS		105	[8]Zn(OH) ₂	$[1059][Zn(OH)_4]^{2-}$	[10
	1061無色	[1061]無色 [1062]無色 [1063]無色 [1068]沈殿しない [1069]沈殿しない [1070]沈殿しない				1064	<u>白</u> 色	_	065)白色	1066)無色	
Cr^{3+}					[1071]沈原			72 Cr(OH) ₃	[1073][Cr(OH) ₄]		
	1075無色			1077無色 1084)沈殿しない		1078		'ı —	<u> 79 <mark>灰緑</mark></u> 色	1080緑色	Ļ
Fe ²⁺	[1082]沈殿しない [1083]沈殿しない						FeS		86)Fe(OH) ₂	1087)Fe(OH) ₂	
2.1	1089無色	1090無色		1091無色			<u>)黒</u> 色		093 緑白 色	1094)緑白	
Fe ³⁺	1096 沈殿しない	1097 沈殿しない		(1098)Fe ²⁺)FeS		00)Fe(OH)₃	1101)Fe(OH) ₃	
21	1103無色			(1105)淡緑 色 (1112)CdS			<u>)黒</u> 色		107] <mark>赤褐</mark> 色	1108 赤褐 色	
Cd^{2+}	1110 沈殿しない						CdS		14)Cd(OH) ₂	1115 Cd(OH) ₂	1
a, 2±	1117無色	[1118]		1119黄色			<u>黄</u> 色		1121 白色	1122 白 色	
Co ²⁺	1124 沈殿しない	1125 沈展		1126 CoS			o(OH) ₂		28 Co(OH) ₂	1129 Co(OH) ₂	
37.2±	1131無色	1132)無色		1133 黒色			<u></u> 一色		1135]青色	1136青色	
Ni ²⁺	1138 沈殿しない	1139 沈展		1140 NiS			li(OH) ₂		42)Ni(OH) ₂	1143 Ni(OH) ₂	1
g 2+	1145無色	1146無色		1147 <u>黒</u> 色			<u>緑白</u> 色		149 緑白 色	1150緑白色	
Sn ²⁺	1152 沈殿しない	[1153]沈展		(1154)SnS		(1155)SnS		_	56)Sn(OH) ₂	[1157][Sn(OH) ₄] ²⁻	_
Pb^{2+}	1159無色	1160無色		1161 褐色			<u>褐</u> 色	_	1163白色	1164 白 色	
Pb	(1172) # #		7)PbSO ₄ (1168)PbS			(1169)PbS			70 Pb(OH) ₂	(1171)[Pb(OH) ₄] ²⁻	-
Cu ²⁺	1173 白色	(1174)		1175 <u>黒</u> 色 1182 CuS		1176 <u>黒</u> 色 1183 CuS		_	1177 白色	1178無色	1.
Cu	1180 沈殿しない							84)Cu(OH) ₂	1185 Cu(OH) ₂	1	
Hg^{2+}		<u> 1187無</u> 色 <u> </u>		1189 <u>台</u> 色 (1196)HgS			<u>)白</u> 色	_	1 <u>91]青白</u> 色 1198]HgO	1192青白 (1100 HgO	
11g		1194)沈殿しない 1195)沈殿しない					HgS 里 缶		1205 黄 色	1199 HgO	+
1	[1201] -	1201無色 1202無色 1208 Hg2 Cl2 (1209)沈殿しない		1203 <u>黒</u> 色 (1210)HgS		1204 <u>黒</u> 色 (1211)HgS				1206 <u>黄</u> 色	
Hg: 2+	1200 Has Cla	1 1 2 0 0 1 th 🖽	ひし ナシレン	1 11	0101HaS	11711	IH _a C	11	1212]H~∩	12121 <mark> ~(1</mark>	
${\rm Hg_2}^{2+}$	1208 Hg ₂ Cl ₂ 1215 白 色	(1209)沈殿 (1216)			210] <mark>HgS</mark> 217] <u>黒</u> 色		<u>]HgS</u>] <u>黒</u> 色	_	1212]HgO 1219]黄 色	1213 HgO 1220 黄 色	+

			Cl^-	$\mathrm{SO_4}^{2-}$	H_2S	H_2S	OH^-	OH^-	NH_3			
					酸性	中・塩基性	NH3	過剰	過剰			
Ag^+	1222 AgCl		[1223]沈殿しない		(1224)Ag ₂ S		1225]Ag ₂ S		[1	.226)Ag ₂ O	1227 Ag ₂ O	1
	[1229] 白 色	[1230]無色			[1231]黒色		[1232]黒色			1233 褐色	[1234]褐色	

E 金属イオンの系統分離