Фамилия			
+ aminimin			

1. В некоторой криптосистеме используется поточный блочный шифр в детерминированном режиме CTR.

Ответе на вопросы ниже

Nº	Задание	Ответ	
а	Предполагая стойкость блочного шифра с функцией		
	зашифрования $\it E$, является ли описанная криптосистема стойкой		
	при одноразовом использовании ключа в теоретическом		
	(предельном) смысле? (записать в ответ да или нет) Почему? (на		
	доп листах)		
b	Предполагая стойкость блочного шифра с функцией		
	зашифрования $\it E$, является ли описанная криптосистема стойкой		
	при многоразовом использовании ключа (ключ используется		
	для шифрования нескольких сообщений) в теоретическом		
	(предельном) смысле? (записать в ответ да или нет) Почему? (на		
	доп листах)		
С	Пусть в качестве \emph{E} используется функция зашифрования AES, с		
	длинной ключа 128 бит, размер блока 128 бит, параметр		
	стойкости принять равным 126 бит.		
	Предполагая, что при реализации криптосистемы использован		
	процессор, с частотой 16гГц, и на за шифрование одного блока		
	требуется 4 такта, оценить вероятность взлома криптосистемы в		
	ближайшие 10 лет (предположить, что ключ не меняется).		
	NB. В данной модели претендент как бы шифрует одно большое,		
	длинное сообщение на фиксированном ключе, получая его от		
	противника поблочно, и поблочно отправляя результат.		
d	Аналогично заданию с, только вместо AES использовать ГОСТ		
	«МАГМА», размер блока 64 бита, размер ключа 128 бит. Параметр		
	стойкости предположить равным 120 бит.		
	Не заполнять!	/6	/6

2. После анализа симметричной криптосистемы была получена следующая оценка стойкости в сведении к псевдослучайной функции $Adv[A,C] \leq \frac{tn}{N}(\frac{tQ}{N} + Adv_{prf}[B,E])$, где E – функция зашифрования блочного шифра, Q – максимальное число обращений к криптосистеме при фиксированном ключе, $N=2^n,n$ – размер блока блочного шифра, t – размер выхода криптосистемы.

Ответе на вопросы ниже

Nº	Задание	Ответ
а	Предполагая стойкость блочного шифра с функцией	
	зашифрования E , является ли описанная криптосистема стойкой в теоретическом (предельном) смысле? (записать в ответ да или	
	нет) Почему? (на доп листах)	
b	Пусть в качестве E используется функция зашифрования AES, с	
	длинной ключа 128 бит, размер блока 128 бит, параметр	
	стойкости принять равным 126 бит. Пусть размер выхода	
	криптосистемы – 256 бит.	

	Пусть противник способен взаимодействовать с криптосистемой		
	каждые 4 такта. Противник имеет 16 ядерный процессор с		
	частотой 32 гГц. Оценить вероятность успешной атаки на		
	криптосистему для описанного противника, при условии что		
	доступ к системе он имел не более 30 секунд.		
С	Аналогично заданию b, только противник имел доступ к		
	криптосистеме в течении года.		
d	Аналогично заданию b, только вместо AES использовать ГОСТ		
	«МАГМА», размер блока 64 бита, размер ключа 128 бит. Параметр		
	стойкости предположить равным 120 бит.		
	Не заполнять!	/8	/8

3. После анализа симметричной криптосистемы была получена следующая оценка стойкости в сведении к семантической стойкости блочного шифра в режиме CRT $Adv[A,C] \leq \frac{(tQ)^7}{n^{16}}Adv_{SS}[B,E]$, где E — функция зашифрования блочного шифра в режиме CTR, Q — максимальное число обращений к криптосистеме при фиксированном ключе, $N=2^n,n$ — размер блока блочного шифра, t — размер выхода криптосистемы. Ответе на вопросы ниже

Nº	Задание	Ответ	
а	Предполагая стойкость блочного шифра с функцией		
	зашифрования E , является ли описанная криптосистема стойкой в		
	теоретическом (предельном) смысле? (записать в ответ да или		
	нет) Почему? (на доп листах)		
b	Пусть в качестве шифра E используется поточный шифр на основе		
	функции зашифрования AES, с длинной ключа 128 бит, размер		
	блока 128 бит, параметр стойкости принять равным 126 бит. Пусть		
	размер выхода криптосистемы – 256 бит.		
	Получить параметр стойкости описанной криптосистемы,		
	предполагая что ключ криптосистемы меняется каждые 2^{24}		
	операции обращения.		
С	Аналогично заданию b, тогда ключ меняется каждые 2^{17}		
	операции.		
d	Аналогично заданию b, только вместо AES использовать ГОСТ		
	«МАГМА», размер блока 64 бита, размер ключа 128 бит. Параметр		
	стойкости предположить равным 120 бит.		
	Не заполнять!	/6	/6

4. Выберите верные утверждения:

Nº	Задание	Ответ
a	Любая PRP является PRF	
b	Любая PRF является PRP	
С	Любая стойкая PRF является PRP	
d	Любая стойкая PRP является стойкой PRF	
е	Любая стойкая PRP с суперполиномиальным образом является стойкой PRF	
f	Любой стойкий блочный шифр является стойкой PRF	
g	Любой семантически стойкий шифр (одноразовое использование ключа) должен быть детерминированным	

h	Любой СРА стойкий шифр является семантически стойким при	
	одноразовом использовании ключа.	
	Не заполнять!	/8

n. Hard mode on.

Решить задачу 4.2. на странице 165 книги A Graduate Course in Applied Cryptography

+ 10 и итоговой оценке за семестр. Опционально (те можно не делать).