

Applied Statistics for Data Scientists with R

About Me

Md. Ahsanul Islam
Analysis Executive at Kantar Market Research
M.Sc. & B.Sc. in Statistics at University of Chittagong
Ex-executive (Analysis) at Luminaries Research Ltd.

<u>LinkedIn</u> <u>GitHub</u>

The capacity to learn is a gift

The ability to learn is a skill

The willingness to learn is a choice.

- Brian Patrick Herbert

Course Prerequisite

- Common sense
- Basic computer skills
- Programming skill is not required
- Ability to use search engines
- Willingness to learn

Role of Statistics in Data Science

"Statistics is the foundation of predictive modeling, machine learning and Al."

Exploratory data analysis (EDA) and data preprocessing.

Statistical Estimation and Optimization Techniques.

- Sampling Techniques.
- Experimental Design.
- Hypothesis Testing.
- Statistical Modeling.

What is Statistics?

- Statistics is a branch of mathematics that deals with the collection, organization, analysis, interpretation, and presentation of data.
- The focus is in quantitative data to extract meaningful information.

Note: "Statistics" and "Statistic" are not the same thing.

A scenario where statistical knowledge helps

- Suppose you are a senior data analyst at a manufacturing company.
- Your boss notices that Machine A's products have fewer defects than Machine B's, but it's not clear if this difference is real or just random variation.
- Your job is to find out if Machine B truly has a problem.
- You may require to use an appropriate sampling technique and statistical test to test the hypothesis.

Another scenario where statistical knowledge helps

- You are a data analyst for an e-commerce company.
- Your boss wants to predict how much revenue the company will generate during the upcoming Ramadan and what factors might influence the trend.
- This will help in planning marketing campaigns, and inventory management.
- You may require to use an appropriate explainable predictive model.

Statistics vs Applied Statistics

• Statistics is about creating the "tools," whereas Applied Statistics is about using those "tools" to address real-world challenges.

Major Tools Used in Applied Statistics

Why Use R instead of Other Programming Languages?

- Specifically designed for statistics by statisticians.
- Thousands of packages for statistical analysis.
- Excellent for data visualization.
- Easy to learn.
- Mostly academic and research focused.

What Will You Learn?

- R programming fundamentals
- Data manipulation and visualization
- Applied statistical techniques
- Building predictive models
- Developing Shiny apps

• Extra: SPSS basics for analysis.

Refer to course outline for details.

13

- SPSS
- STATA
- JSON

A couldn't dare to list anything in this slide.

					LOCATION				
				AUS (N=44	4) FIN (N=	46) K	OR (N=47)	— Total	
			Capita th Exp.						
		ı	/lin / Max	9.0 / 16.1	9.8 / 16.2	20.2	/ 29.4	9.0 / 29.4	
		1	Med [IQR]	13.3 [10.1;15.3	3] 12.9 [11.2;	14.6] 21.9	[21.5;24.6]	15.2 [12.5;21.5]	
		1	Mean (std)	12.8 (2.6)	13.0 (2.0)	23.2	(2.6)	16.5 (5.4)	
			N (NA)	44 (0)	46 (0)	47 (137 (0)	
			` '		40 (0)	47 (•)	101 (0)	
		Per	Capita GDP	'					
		ľ	/lin / Max	0.5 / 1.3	0.6 / 1.3	0.3 /	1.7	0.3 / 1.7	
		Med [IQR]		0.8 [0.6;1.2]	1.0 [0.7;1.2] 0.8	0.7;1.4]	0.8 [0.7;1.2]	
		1	Mean (std)	0.9 (0.3)	0.9 (0.2)	1.0 (0.4)	0.9 (0.3)	
		1	N (NA)	44 (0)	46 (0)	47 (0)	137 (0)	
		USD	Capital						
		1	/lin / Max	35.7 / 627.4	23.4 / 501.	0 3.2 /	552.2	3.2 / 627.4	
		1	Med [IQR]	157.2 [67.1;408.4]	168.4 [67.9;384.7	84.4	[23.2;335.0]	127.7 [49.8;393.6]	
		1	Mean (std)	238.7 (198.7)	217.5 (167	.1) 181.	5 (198.4)	212.0 (188.7)	
		1	N (NA)	44 (0)	46 (0)	47 (0)	137 (0)	
Descriptiv	e stati	stics by	group						
group: AUS	vars		n sd	median trimme		min	max range		
LOCATION TIME	1 4	1.0 14 1992.5		1.00 1.00 1992.50 1992.50			.00 0.00		
PC HEALTHXP	3 4			13.27 12.8				8 -0.20 -1.71	
PC_GDP	4 4	4 0.9	0 0.30	0.80 0.89	9 0.33 6).52 1	.34 0.8	1 0.27 -1.65	0.0
JSD_CAP	5 4	4 238.6	7 198.67	157.23 220.4	1 162.53 39	5.72 627	.40 591.6	8 0.64 -1.14	29.9
LAG_CODES	6 4	4 1.0	0.00	1.00 1.00	0.00 1	1.00 1	.00 0.0	0 NaN NaN	0.0
OTAL_SPEND	7 4	3 4886.0	4 4546.03	2921.40 4359.3	1 3328.69 479	.11 14503	.87 14028.7	6 0.78 -0.85	693.
roup: FIN									
•	vars			median trimmed	mad mi	in max	range s	kew kurtosis	se
OCATION	1 4	6 2.0	0.00	2.00 2.00	0.00 2.6	00 2.00	0.00	NaN NaN 0	00.0
IME		6 1992.5		.992.50 1992.50					.98
C_HEALTHXP	3 4			12.89 13.03	2.58 9.8				30
C_GDP	4 4			0.97 0.93	0.32 0.6				0.03
ISD_CAP	5 4		2 167.09		174.65 23.4				1.64
LAG_CODES OTAL_SPEND	6 4 7 4		4 0.21 9 908.86	1.00 1.00 851.32 1080.53			1.00 4 2637.49 0		0.03 1.00
roup: KOR									
group. Kon	vars	n mea	n so	l median trimm	ed mad	min	max ran	ge skew kurtosis	,
OCATION	1 4						3.00 0.		
IME		7 1993.0		1993.00 1993.0				00 0.00 -1.28	
C HEALTHXP	3 4							14 1.07 -0.20	
C GDP	4 4							39 0.47 -1.27	
JSD_CAP	5 4							02 0.81 -0.99	
LAG_CODES	6 4							00 6.42 40.13	
TOTAL_SPEND	7 /	7 9905 9	0 10013 30	3729.28 7762.4	40 E146 43 10	2 04 2020	C CE 20102 '	74 0 06 0 00	1460.

- PDF from rmarkdown
- Word file from rmarkdown
- HTML file from rmarkdown
- Publish to rpubs.com
- R Shiny Webapp
- Flexdashboard
- Slide using xarigan

Some Things to Remember During Live Classes

- Take short notes if required
- Stay muted and turn off camera if not asked to turn on
- Ask questions in the chat.
 Answers will be given at the end of each part of the lessons.
- Stay focused on the classes.
 DO NOT BROWSE FACEBOOK or do others tasks during class time.

To Learn Effectively

- Please attend the live classes regularly
- Reserve some time of your day to practice the codes
- Discussing problems with your peers (classmates) is encouraged
- Share what you have learned with others after each module
- Do projects, solve real problems in your field
- Take good care of your health

We learn more by looking for the answer to a question and not finding it than we do from learning the answer itself.

- Lloyd Alexander

