Отчёт по практическому заданию №1. Численное дифференцирование.

Козлов Кирилл 305 группа 16 апреля 2025 г.

Содержание

1	Постановка задачи	3
2	Вывод погрешности аппроксимации	3
	2.1 Разложение функции в ряд Тейлора	3
	2.2 Учёт абсолютной ошибки $\alpha(i)$	3
	2.3 Итоговый вид ошибки	3
3	Вывод оптимального значения шага h_{\min} , при котором погрешность	
	аппроксимации минимальна	4
4	Обоснование выбора функции f(x)	4
5	Величина относительной погрешности округления чисел с плавающей	
	точкой ϵ_1 на ЭВМ, используемом для проведения численного экспери-	
	мента (стандарт IEEE 754). Оценка на h_{\min} через ϵ_1 .	4
	5.1 Относительная погрешность округления в IEEE 754 (double)	4
	5.2 Оценка h_{\min} через $arepsilon_{\mathrm{mach}}$	4
6	Результаты численного в по поиску \hat{h}_{\min}	5
	6.1 Численный эксперимент	5
	6.2 Графики	6
	6.3 Сравнение \hat{h}_{\min} и h_{\min}	6
7	Заключение	6
8	Примечание	7
	8.1 Sanyer indepanded	7

1 Постановка задачи

Требуется написать программу, демонстрирующую, стремится ли погрешность аппроксимации к 0 при $h \longrightarrow 0$ при работе с числами с плавающей точкой. Вариант разностного оператора, аппроксимирующего соответсвующую производную на равномерной сетке с шагом h:

$$y_{x,i} = \frac{y_{i+1} - y_i}{h} \approx y'(x_i)$$

2 Вывод погрешности аппроксимации

2.1 Разложение функции в ряд Тейлора

Для функции f(x) разложим $f(x_{i+1})$ в ряд Тейлора в окрестности точки x_i :

$$f(x_{i+1}) = f(x_i) + hf'(x_i) + \frac{h^2}{2}f''(x_i) + O(h^3)$$

Аппроксимация производной односторонней разностной схемой:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$$

Подставляя разложение, получаем:

$$f'(x_i) = \frac{f(x_i) + hf'(x_i) + \frac{h^2}{2}f''(x_i) + O(h^3) - f(x_i)}{h} = f'(x_i) + \frac{h}{2}f''(x_i) + O(h^2)$$

Это показывает, что метод имеет погрешность порядка O(h).

2.2 Учёт абсолютной ошибки $\alpha(i)$

Пусть измеренные значения функции содержат погрешность $\alpha(i)$, т.е. вместо истинного $f(x_i)$ имеем зашумленное значение:

$$\tilde{f}(x_i) = f(x_i) + \alpha(i)$$

Тогда численное приближение производной будет:

$$\tilde{f}'(x_i) = \frac{\tilde{f}(x_{i+1}) - \tilde{f}(x_i)}{h} = \frac{(f(x_{i+1}) + \alpha(i+1)) - (f(x_i) + \alpha(i))}{h} =$$

$$= \frac{f(x_{i+1}) - f(x_i)}{h} + \frac{\alpha(i+1) - \alpha(i)}{h} = f'(x_i) + \frac{h}{2}f''(x_i) + \frac{\alpha(i+1) - \alpha(i)}{h} + O(h^2)$$

2.3 Итоговый вид ошибки

Общая ошибка разностной аппроксимации с учётом абсолютной ошибки измерений:

$$\epsilon = \left| \tilde{f}(x_i) - f'(x_i) \right| = \left| \frac{h}{2} f''(x_i) + \frac{\alpha(i+1) - \alpha(i)}{h} \right| + O(h^2)$$

3 Вывод оптимального значения шага h_{\min} , при котором погрешность аппроксимации минимальна

Общая ошибка — сумма двух видов ошибок:

$$\epsilon(h) = \left| \frac{h}{2} f''(x) \right| + \left| \frac{2\alpha}{h} \right|$$

Чтобы найти оптимальное h, при котором ошибка минимальна, возьмём производную $\epsilon(h)$ по h и приравняем к нулю:

$$\frac{d}{dh}\left(\frac{h}{2}f''(x) + \frac{2\alpha}{h}\right) = 0$$

$$\frac{1}{2}f''(x) - \frac{2\alpha}{h^2} = 0$$

Решаем относительно h:

$$h^2 = \frac{4\alpha}{f''(x)}$$

$$h_{\min} = \sqrt{\frac{4\alpha}{|f''(x)|}}$$

4 Обоснование выбора функции f(x)

Выберем элементарную функцию, значение в нуле которой явно известно, например, $\sin(x)$ в точке $\frac{\pi}{4}$. Точное значение производной также известно в точке $\frac{\pi}{4}$: $f'(\frac{\pi}{4}) = \cos(\frac{\pi}{4})$ Выбор $\sin(x)$ удобен, так как значения и производные легко вычисляются.

5 Величина относительной погрешности округления чисел с плавающей точкой ϵ_1 на ЭВМ, используемом для проведения численного эксперимента (стандарт IEEE 754). Оценка на h_{\min} через ϵ_1 .

5.1 Относительная погрешность округления в IEEE 754 (double)

В стандарте IEEE 754 для чисел двойной точности (double) относительная машинная погрешность (unit roundoff) определяется как:

$$\varepsilon_{\rm mach} = 2^{-53} \approx 1.11 \times 10^{-16}$$

Это означает, что при вычислениях ошибки округления не превышают примерно 16 знаков после запятой.

5.2 Оценка h_{\min} через ε_{\max}

$$h_{\min} = \sqrt{\frac{4\alpha}{|f''(x)|}}$$

где $\alpha \leq f(x_{i+1})\varepsilon_{\text{mach}}$. Тогда

$$h_{\min} = \sqrt{\frac{4\alpha}{|f''(x)|}} \le \sqrt{\frac{4f(x_{i+1})\varepsilon_{\mathrm{mach}}}{|f''(x)|}}$$

Если взять, например, функцию $f(x)=\sin(x)$, подставить значения $\varepsilon_{\rm mach}$ и производной в точке $\frac{\pi}{4}$:

$$h_{\min} \approx \sqrt{\frac{4 \times 1.11 \times 10^{-16}}{0.71}} \approx \sqrt{3.12 \times 10^{-16}} \approx 1.76 \times 10^{-8}$$

6 Результаты численного в по поиску \hat{h}_{\min}

6.1 Численный эксперимент

Результаты численного эксперимента приведены в таблице (1), где представлены ошибки аппроксимации $\varepsilon(h)$ при различных значениях h.

h	$\varepsilon(h)$	
10^{0}	4.3×10^{-1}	
10^{-1}	3.6×10^{-2}	
10^{-2}	3.54×10^{-3}	
10^{-3}	3.53×10^{-4}	
10^{-4}	3.53×10^{-5}	
10^{-5}	3.53×10^{-6}	
10^{-6}	3.53×10^{-7}	
10^{-7}	3.58×10^{-8}	
10^{-8}	3.05×10^{-9}	
10^{-9}	3.6×10^{-8}	
10^{-10}	9.24×10^{-7}	
10^{-11}	5.36×10^{-6}	
10^{-12}	5.73×10^{-6}	
10^{-13}	1.21×10^{-3}	
10^{-14}	3.43×10^{-3}	
10^{-15}	7.00×10^{-2}	
10^{-16}	4.03×10^{-1}	
10^{-17}	7.07×10^{-1}	

Таблица 1: Ошибка аппроксимации для различных h

6.2 Графики

На графике показана зависимость ошибки аппроксимации от значения h.

Рис. 1: График ависимости ошибки аппроксимации от значения h

На следующем графике более детально показан отрезок от $[10^{-9}, 10^{-7}]$

Рис. 2: График зависимости ошибки аппроксимации от значения h на отрезке $[10^{-9},10^{-7}]$

6.3 Сравнение \hat{h}_{\min} и h_{\min}

Из таблицы видно, что ошибка уменьшается к $h=10^{-8}$, затем возрастает. Аналитически получили, что $h_{\min}\approx 1.76\times 10^{-8}$, численно также получили порядок $\hat{h}_{\min}\approx 10^{-8}$

7 Заключение

Эксперименты подтвердили, что при уменьшении h ошибка сначала уменьшается, достигает минимума при h_{\min} , а затем начинает расти из-за ошибки округления. Численное значение \hat{h}_{\min} совпадает с теоретически предсказанным h_{\min} с высокой точностью.

8 Примечание

8.1 Запуск программы

В терминале ввести: make Будет выведена таблица: $\mid h \mid$ Approx. Derivative $\mid \varepsilon(h) \mid$ А также нарисован график зависимости ошибки аппроксимации от значения h.