Recitation 3

March 14, 2013

Problem

The Hadamard matrices H_0, H_1, H_2, \ldots are defined as follows:

- H_0 is the 1×1 matrix [1].
- For k > 0, H_k is the $2^k \times 2^k$ matrix

$$H_k = \left[\begin{array}{c|c|c} H_{k-1} & H_{k-1} \\ \hline H_{k-1} & -H_{k-1} \end{array} \right]$$

Throughout this problem assume that the numbers involved are small enough that basic arithmetic operations like addition and multiplication take unit time.

- a. What is H_0 ? What is H_1 ? What is H_2 ?
- b. Compute $H_0 \cdot (z)$, $H_1 \cdot \begin{bmatrix} x \\ y \end{bmatrix}$ and $H_2 \cdot \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$, where a, b, c, d, x, y and z are numbers.
- c. Assume you have a black-box that computes $H_{k-1} \cdot v$ for any column vector v (of the appropriate size). Show how to use two calls to this black box, plus $O(2^k)$ additional work, to compute $H_k \cdot u$ for any column vector u (of the appropriate size). Briefly prove the correctness of your approach.
- d. Design a recursive algorithm that takes as input a non-negative integer k and a column vector v of appropriate size and computes $H_k \cdot v$.
- e. Analyze (and prove) your algorithm's runtime. Express the runtime in terms of the size of the input vector $n = 2^k$.

Solution

Part (a)

Part (b)

$$H_0 \cdot (z) = \begin{bmatrix} z \end{bmatrix} \qquad H_1 \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x-y \end{bmatrix} \qquad H_2 \cdot \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a+b+c+d \\ a-b+c-d \\ a+b-c-d \\ a-b-c+d \end{bmatrix}$$
 (2)

Part (c)

Let \vec{v}_{top} be a vector of size 2^{k-1} consisting of the first half of \vec{v} , and let \vec{v}_{bot} be a vector of the same size consisting of the second half of \vec{v} .

Call our black box on \vec{v}_{top} and assign the output to a vector \vec{a} . Do the same for \vec{v}_{bot} and assign the output to a vector \vec{b} .

Let $p = \vec{a} + \vec{b}$ and $q = \vec{a} - \vec{b}$ be vectors of size 2^{k-1} . We then form $\vec{v'} = H_k \cdot \vec{v}$ by appending \vec{q} to \vec{p} .

Proof of Correctness

Consider the following derivation:

$$H_k \cdot \vec{v} = \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix} \cdot \begin{bmatrix} v_0 \\ v_1 \\ \dots \\ v_{2^k} \end{bmatrix}$$
 definition of H_k (1)
$$= \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix} \cdot \begin{bmatrix} \vec{v}_{top} \\ \vec{v}_{bot} \end{bmatrix}$$
 definition of \vec{v}_{top} and \vec{v}_{bot} (2)
$$= \begin{bmatrix} [H_{k-1} \cdot \vec{v}_{top} + H_{k-1} \cdot \vec{v}_{bot}] \\ [H_{k-1} \cdot \vec{v}_{top} - H_{k-1} \cdot \vec{v}_{bot}] \end{bmatrix}$$
 matrix multiplication (3)
$$= \begin{bmatrix} \vec{a} + \vec{b} \\ \vec{a} - \vec{b} \end{bmatrix}$$
 definition of a and b (4)
$$= \begin{bmatrix} \vec{p} \\ \vec{q} \end{bmatrix}$$
 definition of p and q (5)
$$= \vec{v'}$$

The only step that may need a little more justification is (3).

To see why (3) is true, consider the process of computing the matrix multiplication in (2). To get the i^{th} element of the resulting vector, we compute the sum

$$\sum_{j=1}^{2^k} h_{ij} v_j$$

We can break this sum into these two chunks:

$$\left(\sum_{j=1}^{2^{k-1}} h_{ij}v_j\right) + \left(\sum_{j=1+2^{k-1}}^{2^k} h_{ij}v_j\right)$$

Now when $1 \le i \le 2^{k-1}$, we see that these two terms are in fact just

$$\begin{bmatrix} i^{th} \text{ row of } H_{k-1} \end{bmatrix} \cdot \vec{v}_{top} + \begin{bmatrix} i^{th} \text{ row of } H_{k-1} \end{bmatrix} \cdot \vec{v}_{bot}$$

And when $1 + 2^{k-1} \le i \le 2^k$, then the terms become

$$\begin{aligned} & \left[i^{th} \text{ row of } H_{k-1}\right] \cdot \vec{v}_{top} + \left[i^{th} \text{ row of } -H_{k-1}\right] \cdot \vec{v}_{bot} \\ & = \left[i^{th} \text{ row of } H_{k-1}\right] \cdot \vec{v}_{top} - \left[i^{th} \text{ row of } H_{k-1}\right] \cdot \vec{v}_{bot} \end{aligned}$$

Hence the first half of the entries of the resulting vector are given by the following vector sum:

$$[H_{k-1} \cdot \vec{v}_{top}] + [H_{k-1} \cdot \vec{v}_{bot}]$$

And the second half is given by

$$[H_{k-1} \cdot \vec{v}_{top}] - [H_{k-1} \cdot \vec{v}_{bot}]$$

as claimed in (3).

Part (d)

Apply-Hadamard (k, \vec{v})

Takes a non-negative integer k and a vector \vec{v} (of the appropriate size) and returns $H_k \cdot \vec{v}$.

```
1
       if k = 0
 2
             then return \vec{v}
 3
       else do
             \vec{v}_{top} \leftarrow a vector consisting of the first 2^{k-1} components of \vec{v}
 4
             \vec{v}_{bot} \leftarrow \text{a vector consisting of the last } 2^{k-1} \text{ components of } \vec{v}
 5
 6
             \vec{a} \leftarrow \text{Apply-Hadamard}(k-1, \vec{v}_{top})
 7
            \vec{v} \leftarrow \text{Apply-Hadamard}(k-1, \vec{v}_{bot})
             \vec{p} \leftarrow \vec{a} + \vec{b}
 8
             \vec{q} \leftarrow \vec{a} - \vec{b}
 9
             \vec{v'} \leftarrow \vec{q} appended to \vec{b}
10
11
```

Part (e)

The recursive algorithm given above makes two calls to itself on input k-1, and then does 2^k additional work when it does constant-time computations to find each entry of v'. So, the height of the recursive-call tree is k, since after k recursive calls k=0 and the recursion ends. Referring to the diagram of the recurrence tree below (where T denotes the recursive function), we see that the total work done on a given level l of the tree is thus $2^l \cdot 2^{k-l} = 2^k$, where the level of the root is 0. Hence the total work done over all levels of the tree is $k \cdot 2^k$, giving a time complexity of $O(k \cdot 2^k)$ for our algorithm.

Recurrence Tree for APPLY-HADAMARD(k, v)

