Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 244.4 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 4.60, tilsynelatende blå størrelseklass $m_B = 7.57$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 4.60, tilsynelatende blå størrelseklass $m_B=6.57$

Stjerna C: Tilsynelatende visuell størrelseklasse m₋V = 11.84, tilsynelatende

blå størrelseklass m_B = 14.81

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 11.84, tilsynelatende blå størrelseklass $m_B = 13.81$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.56 og store halvakse a=55.48 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.56 og store halvakse a=17.88 AU.

Filen 1F.txt

Ved bølgelengden 506.76 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 11.50 Tilsynelatende størrelsklasse m_V 11.25 11.00 10.75 10.50 10.25 10.00 20 10 30 60 70 Ó 40 50 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 17.80 solmasser, temperatur på 71.10 Kelvin og tetthet 2.05e-21 kg per kubikkmeter

Gass-sky B har masse på 16.00 solmasser, temperatur på 38.90 Kelvin og tetthet 2.91e-21 kg per kubikkmeter

Gass-sky C har masse på 20.80 solmasser, temperatur på 74.60 Kelvin og

tetthet 8.76e-21 kg per kubikkmeter

Gass-sky D har masse på 21.00 solmasser, temperatur på 71.10 Kelvin og tetthet 8.91e-21 kg per kubikkmeter

Gass-sky E har masse på 30.10 solmasser, temperatur på 18.80 Kelvin og tetthet 1.72e-20 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer fra Planck-stråling alene

STJERNE B) stjernas overflate består hovedsaklig av helium

STJERNE C) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE D) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE E) stjerna har et degenerert heliumskall

Filen 1L.txt

Stjerne A har spektralklasse B9 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 8.59

Stjerne B har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 6.32

Stjerne C har spektralklasse M1 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 1.44

Stjerne D har spektralklasse K4 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 7.67

Stjerne E har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V = 9.43

Filen 1P.txt

Partiklene har hastighetskomponent langs synsretningen som er Gaussisk fordelt med gjennomsnittsverdi på 100 m/s i retning mot deg

$Filen~2A/Oppgave 2A_Figur 1.png$

2 ·

1 -

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.4280000000000004707346 AU.

Tangensiell hastighet er 48337.302017749607330188 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.140 AU.

Kometens avstand fra jorda i punkt 2 er r2=6.575 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=19.191.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9320 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00098 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=750.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9954 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 776.70 nm.

Filen 4A.txt

Stjernas masse er 1.73 solmasser.

Stjernas radius er 0.48 solradier.

Filen 4C.png

Figur 4C 1.8000 1.6500 1.5000 Sannsynlighetstetthet i 10⁻⁴ % 1.3500 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 -250 250 500 -1000 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 13.95 millioner K

Filen 4G.txt

Massen til det sorte hullet er 3.71 solmasser.

r-koordinaten til det innerste romskipet er
r $=11.23~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=17.78~\mathrm{km}.$