58. NH2(amide ion)

59. N2H4 (hydrazine)

60 .SOCl2(Thionyl chloride)

61.SO2Cl2 (sulfuryl chloride)

62. PC12F3

63. XeO6 (perxenate ion)

64. O3

65. N3 (Azide ion)

66. CH3 (methyl carbocation)

476: Sp3d2

Shape: Octahedral'

$$SN = 2 + 1$$

$$= 3$$

$$Hyb: Sp2$$

$$Shape: V|Bent$$

Hyb: Sp² Shape: Trigonal planar.

Myb: Sp3
Shape: Trigmal pyramidal.
Shape: Trigmal pyramidal.

68. CFClBrI

(Q) Is it a regular tetrahedral?

path to success

CAREER INSTITUTE
KOTA (RAJASTHAN)

- 69. HNO3
- 70. HNO2
- 71. CO3
- 72. SnCl2
- 73. BF4
- 74. PF3

- 69
 - W-COSP3
- 70 U Ö
- (71) (C) (O):

Hybridization (N): Sp²

Hyb: SP3 Shape: Tetrahedral

P P F Shape: Trigmal pyramidal Shape: Trigmal pyramidal

75. AsCl3

76. SbC15

77. SeF6

2-78.SbF5

79. SbF4

80. SiH4(silane)

Shape: Octahedral. | Square bipyramidol.

Shape: Square pyramidel.

Shape: See-Saw.

Shape: fetrahedral.

Hyb: Sp3

81. HgCl2

(gi)

Cl—Hg—Cl

Hyb: SP

Geo/Shape: Linear.

82. OCN

m

:0-C=N

Hyb: Sp

Geo | shape: Linear.

83. CS2

85)

s = C = S

Hyb: SP

Geo 1 Shape: Lineau.

84. H2S

(क्ष्प)

M S F

Hyb, 26,3

Geolshape: Bent

85. NF3

c/NF

Hyb: Sp2

4ev | Shape: Trigon al pyramide

86. SNF3

87. AsCl4

88. IF4

89. OCS

91. SiO4

5-92. IO6

Shape: Octaheelra.

1. In the following compound $\overset{1}{C}H_2 = \overset{2}{C}H - \overset{3}{C}H_2 - C \equiv CH$, the $C_2 - C_3$ bond is of the type :

(A)
$$sp - sp^2$$

(B)
$$sp^{3} - sp^{3}$$

(B)
$$sp^3 - sp^3$$
 (C) $sp - sp^3$

$$(D) sp^2 - sp^3$$

$$H \downarrow C = C - H$$

$$H \downarrow C = C - H$$

$$Sp^{2}$$

$$Sp^{2}$$

- (C2 Hy) 2. If ethylene molecule lies in X-Y plane then nodal planes of the π -bond will lie in
 - (A) XZ plane
 - (C) In a plane that bisects C–C axis

- (B) YZ plane
- (D) XY plane

3. Which of the following contains maximum number of lone pairs on the central atom? JEE (2005, 1M)

- (a) ClO_3^- (b) XeF_4 (c) SF_4

4. Specify the coordination geometry around and hybridisation of N and B atoms in a 1 : 1 complex of BF₃ and NH₃.

(a) N: tetrahedral, sp^3 ; B: tetrahedral, sp^3 JEE (2002, 3M)

(b) N : pyramidal, sp^3 ; B: pyramidal, sp^3

(c) N: pyramidal, sp^3 ; B: planar, sp^2

(d) N: pyramidal, sp^3 ; B: tetrahedral, sp^3

5. In which of the following species is the underlined carbon having sp³ - hybridisation?

[AIEEE 2002]

(A) $CH_3 - \underline{C}OOH$

(B) CH₃CH₂OH

(C) CH₃COCH₃

(D) $CH_2 = \underline{C}H - CH_3$

$$(a) \qquad H \qquad c = C - C' - H$$

$$H \qquad H \qquad H$$

(Q) Are the given species isostructural or not? Justify

* etll are iss structural: fe fra hedral.

Isostructural: Molecule/ions having same geometry/shape are isostructural species

(Q) Are the given isostructural or not justify?

The correct statement about ICl₅ and ICl₄ is

(2019 Main, 8 April II)

- (a) ICl₅ is square pyramidal and ICl₄ is tetrahedral
- (b) ICl₅ is square pyramidal and ICl₄ is square planar
- (c) Both are isostructural
- (d) ICl₅ is trigonal bipyramidal and ICl₄ is tetrahedral

(Q) Are the given species isostructural [BN2] and CO2.

Sol:
$$N = 0 = N$$
 $0 = C = 0$
Shape: Linear dinear.

The linear structure assumed by

JEE (1991, 1M)

- (a) $SnCl_2$ (b) CS_2
- (c) NO_2^+
- (d) NCO⁻

$$\mathcal{B}$$
 S = C = S

linear.

Find hybridisation of underlined atom

(C) $CH_3 - CH_2 - CH_3$

(D) $CH_3 - C - NH_2$

Alcohol.

Carboxylic acid.

Alkane.

Amide

$$(d) \qquad H \rightarrow C \rightarrow C \qquad \ddot{N}H_2$$