ECE 310 (Spring 2020) Assigned: 04/08 - Due: 04/15

Problem 1: DFT and DTFT

Let $\{X[k]\}_{k=0}^{50}$ and $X_d(\omega)$ respectively be the 51-point DFT and DTFT of a real-valued sequence $\{x[n]\}_{n=0}^{17}$ that is zero-padded to length 51. Determine all the correct relationships in the following and justify your answer.

1.
$$X[49] = X_d(-\frac{4\pi}{51}).$$

2.
$$X[2] = X_d^*(-\frac{4\pi}{51})$$

3.
$$X[1] = X_d(\frac{104\pi}{51})$$

4.
$$X[25] = X_d(\pi)$$

Solution:

(a) For $\{X[k]\}_{k=0}^{50}$, recall that values $0 \le k < N = 51$ map to values of $0 \le \omega < 2\pi$ for $X_d(\omega)$. Also recall that $X_d(\omega)$ is 2π -periodic and $\omega = \frac{w\pi k}{N} + 2\pi m \ \forall m \in \mathbb{Z}$. So:

$$X[19] = X_d(\frac{98\pi}{51}) = X_d(\frac{98\pi}{51} - 2\pi) = X_d(-\frac{4\pi}{51})$$

Therefore, the relation ship is correct.

(b) Recall that if x[n] is a real-valued sequence, then $X_d(\omega) = X_d^*(-\omega)$. So:

$$X[2] = X_d(\frac{4\pi}{51}) = X_d^*(-\frac{4\pi}{51})$$

Therefore, the relationship is correct.

(c)
$$X[1] = X_d(\frac{2\pi}{51}) = X_d(\frac{2\pi}{51} + 2\pi) = X_d(\frac{104\pi}{51})$$

Therefore, the relationship is correct.

(d)
$$X[25] = X_d(\frac{50\pi}{51}) \neq X_d(\frac{\pi}{51})$$

Therefore, the relationship is not correct.

Problem 2: DFT of a Cosine

A continuous-time signal $x_c(t) = \cos(24\pi t)$ is sampled at a rate of 120 Hz for 5 seconds to produce a discrete-time signal x[n] with length L = 600.

1. Let X[k] be the L-point DFT of x[n]. At what value(s) of k will X[k] have the greatest magnitude?

ECE 310 (Spring 2020) Assigned: 04/08 - Due: 04/15

2. Suppose that x[n] is zero-padded to a total length of N = 1024. At what value(s) of k does the N-point DFT have the greatest magnitude?

Solution:

(a) To convert the signal to discrete-time, we use $x[n] = x_c(nT) = \cos(\frac{\pi}{5}n)$. However, note that we are only sampling for five seconds, so the signal is truncated and finite: $\{x[n]\}_{n=0}^{599}$. If x[n] was not truncated, the DTFT of a cosine would be a pair of shifted delta functions for every period. Since there is truncation, the DTFT now has the deltas replaced with sinc-like functions.

Given the resemblance between the DTFT of the cosine and truncated cosine, notice that the greatest magnitudes for both DTFTs are at the same values of ω :

$$\frac{\pi}{5} + 2\pi m, -\frac{\pi}{5} + 2\pi m, \ \forall m \in \mathbb{Z}$$

For X[k], values of $0 \le k < N$ map to values of $0 \le \omega < 2\pi$. So the values of ω between 0 and π with the greatest magnitude are $\frac{\pi}{5}$ and $\frac{9\pi}{5}$. Using the fact that $\omega = \frac{2\pi k}{N}$, we can find the integer values of k where X[k] has the greatest magnitude:

$$\frac{\pi}{5} = \frac{2\pi k}{600} \to k = 60$$
$$\frac{9\pi}{5} = \frac{2\pi k}{600} \to k = 540$$

(b) When N = 1024, the solved values of k are no longer integers. Round to the nearest integer:

$$\frac{\pi}{5} = \frac{2\pi k}{1024} \to k = 102.4 \approx 102$$
$$\frac{9\pi}{5} = \frac{2\pi k}{1024} \to k = 921.6 \approx 922$$

Problem 3: Circular and Linear Convolution

Consider the two finite-length sequences:

$$x=\{\underset{\uparrow}{-1},2,-3,4,-5\}$$
 and $h=\{\underset{\uparrow}{1},1,1\}$

- 1. Compute the linear convolution x * h.
- 2. Compute the circular convolution $x \circledast_5 h$.
- 3. What is the smallest value of N so that the N-point circular convolution is equal to the linear convolution?

ECE 310 (Spring 2020) Assigned: 04/08 - Due: 04/15

Solution:

(a) Linear convolution is defined as $(x*h)[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$

$$\begin{split} y[n] &= (x*h)[n] \\ &= \{ -1, -1 + 2, -1 + 2 - 3, 2 - 3 + 4, -3 + 4 - 5, 4 - 5, -5 \} \\ &= \{ -1, 1, -2, 3, -4, -1, -5 \} \end{split}$$

(b) Circular convolution is defined as $(x \circledast_5 h)[n] = \sum_{m=0}^{N-1} x[m] h[\langle n-m\rangle_N]$. To perform length-5 circular convolution, we will first need to zero pad $\{h\}_{n=0}^2$ to length 5. We define the sequence $\{\tilde{h}[n]\}_{n=0}^4 = \{1,1,1,0,0\}$. Now we can construct the circular convolution matrix for \tilde{h} .

$$y[n] = (x \otimes_5 h) [n]$$

$$= \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ -3 \\ 4 \\ -5 \end{bmatrix}$$

$$= \{-2, -4, -2, 3, -4\}$$

(c)Let L = 5 and M = 3 be the length of x and of h, respectively. Then the length of y = x * h is N = L + M - 1 = 7. For N-point circular convolution to be equal to linear convolution, we will need to pad x and h to length N = 7.

Problem 4: DFT for the Sum of Cosines

Suppose that the signal $x_c(t) = A_0 \cos(\Omega_0 t) + A_1 \cos(\Omega_1 t)$ is sampled at a rate of 64 kHz for 1/2 msec. The DFT of the obtained signal is provided by the plot.

1. Assume that Ω_0 and Ω_1 are both less than the Nyquist frequency. Find A_0 , A_1 , Ω_0 , and Ω_1 .

2. Suppose that $x_c(t)$ was instead sampled at 128 kHz for 1/2 msec. Sketch the new DFT magnitude plot and clearly label all nonzero values.

Solution:

(a) Each pair of peaks in the graph corresponds to a cosine. Assume that the pair k=4 and k=28 are the DFTs of $A_0cos(\Omega_0t)$ and the pair k=12 and k=20 are the DFTs of $A_1cos(\Omega_1t)$. To find the frequencies of the continuous-time signal, recall that $\omega = \frac{2\pi k}{N}$ and $\Omega = \frac{\omega}{T}$. So:

$$\Omega_0 = \frac{2\pi k}{NT} = \frac{2\pi 4}{32T} = 16\pi \times 10^3$$

$$\Omega_0 = \frac{2\pi k}{NT} = \frac{2\pi 12}{32T} = 48\pi \times 10^3$$

where N=32 and $\frac{1}{T}=64$ kHz. To find the amplitudes A_0 and A_1 , we first take the DFT of one discrete cosine $x[n]=A_0cos(\Omega_0n)$:

$$X_0[k] = A_0 \frac{\sin(\frac{N}{2}(\frac{2\pi k}{N} - \omega_0))}{2\sin(\frac{1}{2}(\frac{2\pi k}{N} - \omega_0))} e^{-j\frac{N-1}{2}(\frac{2\pi k}{N} - \omega_0)} + A_0 \frac{\sin(\frac{N}{2}(\frac{2\pi k}{N} - \omega_0))}{2\sin(\frac{1}{2}(\frac{2\pi k}{N} - \omega_0))} e^{-j\frac{N-1}{2}(\frac{2\pi k}{N} + \omega_0)}$$

And find its magnitude, where $\omega_0 = \frac{\pi}{4}$:

$$|X_0[k]| = |A_0 \frac{\sin(\frac{N}{2}(\frac{2\pi k}{N} - \omega_0))}{2\sin(\frac{1}{2}(\frac{2\pi k}{N} - \omega_0))}| + |A_0 \frac{\sin(\frac{N}{2}(\frac{2\pi k}{N} - \omega_0))}{2\sin(\frac{1}{2}(\frac{2\pi k}{N} - \omega_0))}|$$

We know by graph that there are peaks for $|X_0[k]|$ at $|X_0[4]| = |X_0[28]| = 32$. Using L'Hopital's rule, we find $|X_0[4]| = |X_0[28]| = \frac{A_0N}{2}$. So, $A_0 = 2$. Repeating the same steps to solve for A_1 and we get $A_1 = 1$.

(b) We now have a sampling rate of $\frac{1}{T} = 128 \text{kHz}$ and N = 64. Using the answers from the last part, we can find each peak's new location and magnitude.

$$k_0 = \frac{\Omega_0 NT}{2\pi} = 4$$

$$k_1 = \frac{\Omega_1 NT}{2\pi} = 12$$

$$|X[k_0]| = \frac{A_0 N}{2} = 64$$

$$|X[k_1]| = \frac{A_1 N}{2} = 32$$

Note that the spectral copies of the DTFT in interval $(\pi, 2\pi]$ will also be present in the DFT, locates at $k_0 = 60$ and $k_1 = 52$ respectively.

