8 Days of EchoKey — Day 2: Recursion Axis—Angle to ZYZ Synthesis with Layout Awareness

EchoKey Team (CC0)

September 6, 2025

Abstract

This Day 2 note introduces the *Recursion* generator in the EchoKey 7-operator frame and shows a complete, implementation–ready derivation for rewriting the symbolic gate $\operatorname{ek_rec}(\theta) = e^{-i\theta (\mathbf{a}_2 \cdot \boldsymbol{\sigma})}$ into the native ZYZ Euler basis $\operatorname{RZ}(\alpha) \operatorname{RY}(\beta) \operatorname{RZ}(\gamma)$. We formalize: (i) the operator and axis–angle mapping, (ii) a layout–aware per–wire frame $\mathbf{A}^{(q)} \in \mathbb{R}^{7\times 3}$, (iii) a compiler rewrite rule with correctness, and (iv) a fidelity metric used to validate exactness.

1 Background and Notation

Let $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ denote the Pauli 3-vector

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

In the EchoKey frame we fix a matrix $\mathbf{A} \in \mathbb{R}^{7 \times 3}$ whose rows \mathbf{a}_k^{\top} are unit vectors in \mathbb{R}^3 (one row per generator). For any coefficient vector $\mathbf{c} \in \mathbb{R}^7$ the traceless Hamiltonian is

$$H_{\mathrm{EK}}(\mathbf{c}) = \sum_{k=1}^{7} c_k E_k^{\circ}, \qquad E_k^{\circ} \equiv \mathbf{a}_k \cdot \boldsymbol{\sigma},$$
 (1)

with equivalent Pauli vector $\boldsymbol{\alpha} = \mathbf{A}^{\top} \mathbf{c}$ so that $H_{\mathrm{EK}}(\mathbf{c}) = \boldsymbol{\alpha} \cdot \boldsymbol{\sigma}$.

Day 2 choice (Recursion). We select the second row $\mathbf{a}_2 \equiv \mathbf{A}[2]$ and define the single-qubit unitary gate

$$ek \operatorname{rec}(\theta) \stackrel{\text{def}}{=} e^{-i\theta (\mathbf{a}_2 \cdot \boldsymbol{\sigma})}. \tag{2}$$

Convention: all rows of **A** are normalized, so $\|\mathbf{a}_k\| = 1$.

2 Axis–Angle Form of $ek rec(\theta)$

Any single-qubit SU(2) rotation has the axis-angle form

$$U(\varphi, \hat{\mathbf{n}}) = \cos \frac{\varphi}{2} \mathbb{I} - i \sin \frac{\varphi}{2} (\hat{\mathbf{n}} \cdot \boldsymbol{\sigma}), \qquad \hat{\mathbf{n}} \in \mathbb{S}^2.$$
 (3)

Comparing (2) and (3) gives the identification

$$\hat{\mathbf{n}} = \mathbf{a}_2, \qquad \varphi = 2\theta.$$
 (4)

Thus ek_rec(θ) is a Bloch-sphere rotation by angle $\varphi = 2\theta$ about the fixed axis $\hat{\mathbf{n}} = \mathbf{a}_2$.

3 ZYZ Euler Decomposition

Every $U \in SU(2)$ can be written (up to a global phase) as a ZYZ Euler product

$$U \doteq RZ(\alpha) RY(\beta) RZ(\gamma),$$
 (5)

for some $(\alpha, \beta, \gamma) \in \mathbb{R}^3$. A useful set of relations between the Euler angles and the axis–angle parameters $(\varphi, \hat{\mathbf{n}} = (n_x, n_u, n_z))$ is (up to branch choices):

$$\cos\frac{\varphi}{2} = \cos\frac{\beta}{2}\cos\frac{\alpha+\gamma}{2},\tag{6}$$

$$n_z \sin \frac{\varphi}{2} = \cos \frac{\beta}{2} \sin \frac{\alpha + \gamma}{2},\tag{7}$$

$$n_x \sin \frac{\varphi}{2} = \sin \frac{\beta}{2} \cos \frac{\alpha - \gamma}{2},\tag{8}$$

$$n_y \sin \frac{\varphi}{2} = \sin \frac{\beta}{2} \sin \frac{\alpha - \gamma}{2}. \tag{9}$$

Given $(\varphi, \hat{\mathbf{n}})$ one can recover (α, β, γ) by any numerically stable inversion of (6)–(9) or, equivalently, by synthesizing the exact 2×2 unitary¹ and decomposing it with a ZYZ Euler routine. In practice we take $(\varphi, \hat{\mathbf{n}}) = (2\theta, \mathbf{a}_2)$ from (4) and use a stable decomposer to obtain (α, β, γ) .

Rewrite rule (mathematical statement). For all $\theta \in \mathbb{R}$,

$$\operatorname{ek_rec}(\theta) \doteq \operatorname{RZ}(\alpha(\theta)) \operatorname{RY}(\beta(\theta)) \operatorname{RZ}(\gamma(\theta)),$$
 (10)

where (α, β, γ) are the ZYZ Euler angles of $U(2\theta, \mathbf{a}_2)$.

4 Layout-Aware Per-Wire Frames

On a multi-qubit device, each *physical* wire $p \in \{0, ..., n-1\}$ may carry its own local frame $\mathbf{A}^{(p)} \in \mathbb{R}^{7\times 3}$ (e.g., different \mathbf{a}_2 orientations). Denote by phys: {logical qubits} $\rightarrow \{0, ..., n-1\}$ the layout mapping chosen by placement/routing.

Axis resolution:
$$\hat{\mathbf{n}}$$
 (for gate on logical q) = $\mathbf{a}_2^{(\text{phys}(q))}$, $\varphi = 2\theta$. (11)

The rewrite must therefore be performed *after* the layout is known (or using the current mapping in the pass property set) to ensure the correct per–wire axis is used.

5 Compiler Rewrite and Correctness

Traversing a circuit DAG, replace every instance of $\operatorname{ek_rec}(\theta)$ by the ZYZ Euler product computed from (3)–(10) with axis resolved by (11). Formally, writing \mathcal{R} for the transformation:

$$\mathcal{R}\left[\text{ ek_rec}(\theta)\right] = \text{RZ}\left(\alpha(\theta)\right) \text{RY}\left(\beta(\theta)\right) \text{RZ}\left(\gamma(\theta)\right). \tag{12}$$

Correctness. For each gate, \mathcal{R} uses the exact SU(2) matrix $U(2\theta, \hat{\mathbf{n}})$ with $\hat{\mathbf{n}}$ chosen per (11). Since ZYZ Euler synthesis is complete for SU(2), there exists (α, β, γ) with RZ(α)RY(β)RZ(γ) $\doteq U$. Therefore every local replacement preserves the unitary up to a global phase, and so does the full circuit.

¹From (3): $U = \cos(\varphi/2) \mathbb{I} - i \sin(\varphi/2) (n_x \sigma_x + n_y \sigma_y + n_z \sigma_z)$

6 Validation Metric

For small n we compare the exact unitaries $U_{\rm in}$ (materialized by replacing ek_rec with its 2×2 matrix) and $U_{\rm out}$ (after rewriting) using the global-phase-insensitive overlap

$$\mathcal{F}(U_{\rm in}, U_{\rm out}) = \frac{\left| \text{Tr} \left(U_{\rm in}^{\dagger} U_{\rm out} \right) \right|}{2^n} \in [0, 1]. \tag{13}$$

Exact synthesis yields $\mathcal{F} \approx 1.000\,000\,000\,000$ numerically.

7 Worked Examples

Below **A** is the shared frame unless specified; all rows are unit–norm.

Ex 1: 1q simple: $ek_{rec}(0.37)$ then H. The first gate rewrites to ZYZ with axis a_2 ; H is native.

Ex 2: 1q sequence: RZ(0.11) ek_rec(-0.42) RY(0.23) ek_rec(0.80) RX(-0.31). Both ek_rec gates rewrite independently.

Ex 3: 2q: H_0 ek_rec⁽⁰⁾(0.5) $CX_{0\to 1}$ ek_rec⁽¹⁾(-0.25) $RZ^{(1)}(0.40)$. Axes are resolved per wire, potentially distinct if $\mathbf{A}^{(0)} \neq \mathbf{A}^{(1)}$.

Ex 4: n-q chain with per–site frames: each wire p has its own $\mathbf{A}^{(p)}$ with distinct $\mathbf{a}_2^{(p)}$; insert ek_rec^(p) (0.17(p+1)) on each site and CNOTs between neighbors. The rewrite uses (11) at each site.

8 Optional: Recovering the Pauli Basis

When rank(\mathbf{A}) = 3 the right inverse $\mathbf{B} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top}$ satisfies

$$S_i = \sum_{k=1}^{7} B_{ik} E_k^{\circ} = \sigma_i, \qquad i \in \{x, y, z\},$$
 (14)

so the chosen EchoKey generators span the Pauli basis exactly. This justifies treating $\mathbf{a}_2 \cdot \boldsymbol{\sigma}$ as a physical rotation axis.

9 Edge Cases and Numerics

- Degenerate axis: if $\|\mathbf{a}_2\| \approx 0$ or NaN, the gate is ill–posed (reject).
- Branch cuts: Euler angles are not unique; any consistent branch yields identical unitaries up to global phase.
- Placement order: apply the rewrite after layout is available to honor per-wire frames.

Complexity. The pass is linear in the number of ek_rec gates. Each ZYZ synthesis is $\mathcal{O}(1)$ for 2×2 matrices.

10 Repro Checklist

- 1. Choose frames $\{\mathbf{A}^{(p)}\}_{p=0}^{n-1}$ (unit rows).
- 2. Build the circuit with symbolic $ek_{rec}(\theta)$ gates.

- Resolve axis n̂ = a₂^{(phys(q))} and angle φ = 2θ for each gate.
 Compute U via (3) and synthesize ZYZ angles to replace the gate.
- 5. Validate with (13); expect $\mathcal{F} \approx 1$.

License. This document and the associated code are released under CC0-1.0 (Public Domain).