

Abstract

[PROBLEMS] To provide a novel method for the allylation of N-acylhydrazones by which enantioselectively allylated N-acylhydrazines can be efficiently obtained.

[MEANS FOR SOLVING PROBLEMS] A method for the production of enantioselectively allylated N-acylhydrazines represented by the general formula [3]:

[wherein R⁰ is an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, or -COOR¹ (wherein R¹ is a hydrocarbon group); R² is acyl; R³ and R⁴ are each hydrogen, or one of R³ and R⁴ is hydrogen and the other is a hydrocarbon group; and R⁵ and R⁶ are each independently hydrogen or a hydrocarbon group], characterized by reacting an N-acylhydrazone represented by the general formula [1]:

[wherein R⁰ and R² are as defined above] with an allylating agent such as allyltrichlorosilane or crotyltrichlorosilane in the presence of a chiral phosphine oxide.