Ch. 07 二維影像的繪圖

影像(image)是用二維陣列來表示,主要分成

色階(indexed)影像和全彩(true color)影像

影像種類

種類	說明
二元影像(Binary Images)	可允許2個像素(pixel)值,其值 為0或1
灰階影像(Gray Scale Images)	可允許256個像素值,其值為0 至255,代表不同的灰階
色階影像(Indexed Images)	可允許256個像素值,其值為0 至255,代表不同的顏色
全彩影像(true color image)	RGB Images, R為紅色, G為綠色, B為藍色,每個原色可允許256個像素值,總共可允許28*28*28 (一千6百萬)個顏色

全彩影像的顏色交織(color interleave)

格式	影像變數維度
Pixel Interleave	(3,m,n),交織維度3在第1維,以點為單位做顏色混合 每一pixel含(r,g,b)各一個值
Line or Row Interleave	(m,3,n),交織維度3在第2維,以線為單位做顏色混合 每一掃描線,分別以r,g,b三條掃描線組成
Band Interleave	(m,n,3),交織維度3在第3維,以面為單位做顏色混合 每一影像,分別以r,g,b三張影像所組成

每一掃描線含有多個pixel,每張影像含有多條掃描線。

IDL支援的影像格式

影像格式	全名
ВМР	BitMap
GIF	Graphics Interchange Format 檔案小,影像品質 尚可,常用在網頁
JPEG或JPG	Joint Photographic Experts Group 為全彩影像, 影像清晰且檔案大小適中
PNG	Portable Network Graphics
PPM	Portable PixMap
SRF	Sun RasterFile
TIFF或TIF	Tagged Image File Format 影像格式的品質最好,但檔案大

衛星影像上常用的HDF(Hierarchical Data Format), NetCDF 醫學影像上常用的DICOM(Digital Imaging and Communication in Medicine)

FILEPATH函數

函數	說明
Result = FILEPATH(Filename)	回傳IDL系統檔案的路徑,其中Filename是系統檔案的名稱

FILEPATH函數的關鍵字

關鍵字	說明
SUBDIRECTORY	設定預設系統檔案目錄的子目錄

```
path = filepath('rose.jpg')
print,path
subdir=['examples','data']
path1=FILEPATH('rose.jpg',SUBDIRECTORY=subdir)
print,path1
end
```

READ_IMAGE函數語法

語法	說明
Result =	輸入檔名Filename,RGB是三
<pre>READ_IMAGE(Filename[,R,G,B])</pre>	原色

WRITE_IMAGE函數語法

語法	說明
WRITE_IMAGE(Filename, Format, Data[,R,G,B])	儲存檔名Filename,影像格式 Format,IDL變數Data,RGB是 三原色

Format

A scalar string containing the name of the file format to write. The following are the supported formats:

BMP · GIF · JPEG, PNG, PPM, SRF, TIFF

QUERY_IMAGE函數語法

語法	說明
Result =	輸入檔名Filename,查詣影像
QUERY_IMAGE(Filename)	檔的資訊

QUERY_IMAGE函數的關鍵字

關鍵字	說明
CHANNELS= variable	回影像的頻道數
DIMENSIONS = variable	回傳影像的維度
NUM_IMAGES = variable	回影像的張數
PIXEL_TYPE = variable	回傳像素的資料型態
TYPE = string	回傳影像的格式

查詢影像詳細資訊,以減少影像讀取時的錯誤。

info=QUERY_IMAGE('rose.jpg')
print,info;回傳0表示影像檔不在目前的工作目錄中

subdir = ['examples','data']
path = FILEPATH('rose.jpg',SUBDIRECTORY=subdir)
info1=QUERY_IMAGE(path)
print,info1;回傳1表示影像檔存在IDL系統目錄中

info2 = QUERY_IMAGE('ASAS201710311200.JPG')
print,info2 ;回傳1表示影像檔在目前的工作目錄中
end

```
subdir = ['examples','data']
path = FILEPATH('rose.jpg',SUBDIRECTORY=subdir)
info1=QUERY IMAGE(path, CHANNELS=channels 1,$
DIMENSIONS=dims, TYPE=type 1,$
PIXEL TYPE=ptype, NUM IMAGES=num)
print,info1;回傳1表示影像檔存在IDL系統目錄中
print,'channels_1=',channels_1
print, 'type 1=', type 1
                               info2 = QUERY IMAGE('ASAS201710311200.JPG', $
print, 'dims=', dims
                                CHANNELS=channels 1,$
print,'ptype=',ptype,' num=',num
                                DIMENSIONS=dims, TYPE=type 1,$
                                PIXEL_TYPE=ptype, NUM_IMAGES=num)
                               print,info2;回傳1表示影像檔在目前的工作目錄中
                               print, 'channels 1=', channels 1
                               print,'type_1=', type_1
                               print, 'dims=', dims
                               print, 'ptype=',ptype,' num=',num
                               end
```

TV程序的語法

語法	說明
TV,Image[,Position]	宣告影像區域號碼Position。 0左上區域,1右上,2左下,3右下
TV,Image(,x,y]	宣告影像左下角位置(X,Y),影像從視窗的 左下角原點平移到(X,Y)位置

影像像素(pixel)值的範圍是[0,255]時,使用TV程序。 像素值不在此範圍時,則使用TVSCL程序,此程序會自動 把像素值轉換至[0,255]後再顯像。

TV程序的關鍵字

關鍵字	說明
/ORDER	改變影像的顯示順序(display order),由上位下
TRUE=[1 2 3]	宣告影像的顏色交織維度,1:在第一維度,2:在第二維度,3:在第三維度
XSIZE=value	宣告影像的寬度
YSIZE=value	宣告影像的高度
/CENTIMETERS	宣告長度的單位為公分
/INCHS	宣告長度的單位為吋(英寸)

```
window,xsize=600,ysize=500
subdir=['examples','data']
path = FILEPATH('rose.jpg',SUBDIRECTORY=subdir)
image1 = READ IMAGE(path)
help,image1
path2 = FILEPATH('examples.tif',SUBDIRECTORY=subdir)
image2 = READ_IMAGE(path2)
                                    redChannel=REFORM(image1(0,*,*))
help,image2
                                    greenChannel=reform(image1(1,*,*))
                                    blueChannel=reform(image1(2,*,*))
image3 = READ_IMAGE(path2,r,g,b)
                                    help,redChannel
help,image3,r,g,b
                                    TV,redChannel,2
                                    temp2 = CONGRID(redChannel, 108, 81)
TV,image1,TRUE=1,0
                                    TV,temp2,300,400
TV,image1,TRUE=1,3,/ORDER
                                    erase
                                    imagesize=size(redChannel)
TV,image1,TRUE=1
                                    ;TV,redChannel,0
TV,image1,TRUE=1,300,0
                                    TV,redChannel
                                    TV,greenChannel,imagesize[1]/2,imagesize[2]/2
                                    TV,blueChannel,imagesize[1],imagesize[2]
                                    end
```

練習1

查詢IDL系統中在examples\data目錄內的moon_landing.png, Day.jpg及Night.jpg等3張圖檔的影像相關資訊。再分別讀取存到3個變數中,接著顯示這3個變數的相關資訊。

```
subdir = ['examples','data']
path = FILEPATH('moon_landing.png',SUBDIRECTORY=subdir)
info1=QUERY IMAGE(path, CHANNELS=channels 1,$
 DIMENSIONS=dims, TYPE=type 1,$
 PIXEL_TYPE=ptype, NUM_IMAGES=num)
print,info1;回傳1表示影像檔存在IDL系統目錄中
print, 'channels 1=', channels 1
print, 'type_1=', type_1
print,'dims=',dims
print,'ptype=',ptype,' num=',num
image1=read_image(path)
help,image1
TV,image1,0
path2=filepath('Day.jpg',subdirectory=subdir)
info2=query_image(path2,Channels=chan_2,
dimensions=dims_2,type=type_2,pixel_type=ptype_2,$
 num_images=num_2)
 print, 'channels 2=', chan 2
 print,'dims_2=',dims_2
 image2=read_image(path2)
TV,image2,true=1,1
```

```
Window,1
path3=filepath('Night.jpg',subdirectory=subdir)
info3=query_image(path3,Channels=chan_3,Dimensions=dims_3,type=type_3,pixel_type=ptype_3,

num_images=num_3)
print,'chan_3=',chan_3
print,'dims_3=',dims_3
image3=read_image(path3)
TV,image3,true=1
end
```

BYTSCL函數的語法

語法	功能
Result = BYTSCL(Array)	轉換資料數值至[0,255],引數Array 是輸入影像

當影像變數內的數值不在[0,255]間時,TV程序顯現的影像顏色不對,IDL 會解讀超過[0,255]數值的輪迴。

所以需要BYTSCL函數,來轉換像素值至[0,255]之間。

BYTSCL函數的關鍵字

語法	功能
MAX=integer	定義舊資料轉換的最大值
MIN=integer	定義舊資料轉換的最小值
/NAN	忽略資料中無法定義的數
TOP=integer	定義新資料尺度的最大值

```
window,0, xsize=375, ysize=150
subdir=['examples','data']
path2 = FILEPATH('examples.tif',SUBDIRECTORY=subdir)
image2 = READ_IMAGE(path2,r,g,b)
info=QUERY IMAGE(path2,DIMENSIONS=dims,TYPE=type1,PIXEL TYPE=ptype,NUM I
MAGES=num)
print, info, type 1, dims
print,ptype,num
TV,image2 ;影像顏色不對,
print,max(image2),min(image2);顏色偏下層顏色,黑白系列會偏向黑色
image3=BYTSCL(image2)
                             window, 1, xsize=375, ysize=150
print,max(image3),min(image3)
                             image5=image2[125:364,0:149]
TV,image3
                             image6=BYTSCL(image5)
image4=REVERSE(image3,2)
                             TV,image6
TV,image4
                             image7=REVERSE(image6,2)
                             TV, image 7
                             image8=BYTSCL(image5,TOP=150,MAX=30,MIN=10)
                                        %將[10,30]轉換為[0,150]
                             print,max(image8),min(image8)
                             window, 2, xsize=375, ysize=150
                             TV, image 8
                             end
```

TVSCL程序

語法	說明
TVSCL, Image[,Position]	宣告影像區域號碼Position,引數 imge是輸入影像
TVSCL,Image[,X,Y]	宣告影像左下角位置(X,Y)

TVSCL程序是TV程序和BYTSCL函數的合成,會先以BYTSCL函數轉換像素值範圍至[0,255],最後再以TV程序顯示像。

TVSCL程序的關鍵字

關鍵字	說明
/ORDER	改變影像顯示的順序,由上往下
TRUE=[1 2 3]	宣告影像的顏色交織維度,1:在第一維,2:在第 二維,3:在第三維
XSIZE=value	定義影像的寬度
YSIZE=value	定義影像的高度
/CENTIMETERS	定義長度的單位為公分
/INCHS	定義長度的單位為吋(英寸)
TOP=integer	定義新資料尺度的最大值

```
window,0, xsize=375,ysize=150
subdir=['examples','data']
path = FILEPATH('examples.tif',SUBDIRECTORY=subdir)
image1 = READ_IMAGE(path,r,g,b)
TVSCL,image1
;image2=REVERSE(image1,2)
;TVSCL,image2
TVSCL,image1,/ORDER
```

end

將圖繪製到IDL.ps檔案中

```
subdir=['examples','data']
path = FILEPATH('examples.tif',SUBDIRECTORY=subdir)
image1 = READ IMAGE(path,r,g,b)
image2=REVERSE(image1,2)
SET PLOT,'PS';設定繪圖裝置為PS
DEVICE,FILENAME='new_IDL.ps';設定輸出的檔案名稱,若無則內定為idl.ps
TVSCL,image2,XSIZE=6,YSIZE=4,/INCHES ;將圖繪製到idl.ps檔案中
DEVICE,/CLOSE FILE ;關閉檔案
SET PLOT,'WIN';設定繪圖輸出裝置為Windows視窗
TVSCL,image2
end
```

graphic = VECTOR(U, V, [, X, Y] [,
Keywords=value] [, Properties=value])

North

60° Azimuth

30° Polar

West

240° Meteorological

South

DIRECTION_CONVENTION

DATA_LOCATION

Set this property to specify the position of the vectors or wind barbs at each data location. Possible values are:

____0 or "Tail" - Vectors are positioned so that the vector tail lies on each data location.

☐ 1 or "Center" - Vectors are positioned so that the vector center lies on each data location (the default).

2 or "Head" - Vectors are positioned so that the vector head lies on each data location.


```
wsp=[5,3,8,2,7,6,4]
wdir=[0,30,110,180,210,270,300]
u=wsp*cos(wdir*!dtor)
v=wsp*sin(wdir*!dtor)
y=replicate(1,7)
x=indgen(7)
vect1=vector(u,v,x,y,color='b',length_scale=2,head_angle=20,head_size=1,thick=1)
vect1.data_location=0 ;0--tail, 1--center, 2--head
vect1.yrange=[0,4]
text_1=text(6.5,1,'vector','b',/data)
y2=replicate(2,7)
wdir2=270-wdir ;for wind speed vector
u2=wsp*cos(wdir2*!dtor)
v2=wsp*sin(wdir2*!dtor)
vect2=vector(u2,v2,x,y2,color='k',/current,length_scale=2,head_angle=20,head_siz
e=1,thick=1)
vect2.yrange=[0,4]
vect2.data_location=0 ;0--tail, 1--center, 2--head
text_2=text(6.5,2,'wind','k',/data)
```

```
y3=replicate(3,7)
wdir3=90-wdir ;for ocean current vector
u3=wsp*cos(wdir3*!dtor)
v3=wsp*sin(wdir3*!dtor)
vect3=vector(u3,v3,x,y3,color='g',/current,length_scale=2,head_angle=20,head_size=1,thick=1)
vect3.yrange=[0,4]
vect3.data_location=0 ;0--tail, 1--center, 2--head
text_3=text(6.5,3,'current','g',/data)
vect1.title='vector plot'
vect1.save,"vector_plot_1.png"
end
```