Job No.: Van den Bemd Address: Lot 2 Old Hill Rd, Porangahau, New Date: 7/22/2022

Zealand

Latitude: -40.299367 **Longitude:** 176.609913 **Elevation:** 34 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind ARI	500 Years	Max Height	4.8 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	46.47 m/s
Wind Pressure	1.3 KPa	Lee Zone	NO	Ultimate ARI	100 Years
Wind Category	Very High				

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 4.80 m Cpe = -0.9 pe = -1.05 KPa pnet = -1.05 KPa

For roof CP,e from 4.80 m To 9.60 m Cpe = -0.58 KPa pnet = -0.58 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 24 m Cpe = 0.7 pe = 0.82 KPa pnet = 1.21 KPa

For side wall CP,e from 0 m To 4.80 m Cpe = pe = -0.76 KPa pnet = -0.76 KPa

Maximum Upward pressure used in roof member Design = 1.05 KPa

Maximum Downward pressure used in roof member Design = 0.62 KPa

Maximum Wall pressure used in Design = 1.21 KPa

Maximum Racking pressure used in Design = 1.16 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 5800 mm Try Purlin 300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

First Page

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.46 S1 Downward =13.93 S1 Upward =25.01

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.28 Kn-m	Capacity	4.72 Kn-m	Passing Percentage	368.75 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	3.48 Kn-m	Capacity	6.30 Kn-m	Passing Percentage	181.03 %
$M_{0.9D\text{-W}nUp}$	-3.12 Kn-m	Capacity	-3.87 Kn-m	Passing Percentage	124.04 %
$V_{1.35D}$	0.88 Kn	Capacity	14.47 Kn	Passing Percentage	1644.32 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.40 Kn	Capacity	19.30 Kn	Passing Percentage	804.17 %
$ m V_{0.9D ext{-}WnUp}$	-2.15 Kn	Capacity	-24.12 Kn	Passing Percentage	1121.86 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 8.84 mm Limit by AS1170.0 Table C1 Span/250 = 23.20 mm Deflection under Dead and Service Wind = 11.94 mm Limit by AS1170.0 Table C1 Span/120 = 48.33 mm

Reactions

Maximum downward = -2.40 kn Maximum upward = -2.15 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 6000 mm Internal Rafter Span = 13000 mm Try Rafter 2x300x45 LVL8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 7.61 S1 Upward = 7.61

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 30 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{1.35D}$ 42.78 Kn-m Capacity 21.82 Kn-m Passing Percentage 51.01 % $M_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 116.61 Kn-m Capacity 29.1 Kn-m Passing Percentage 24.95 %

Second page

$M_{0.9D ext{-W}nUp}$	-104.57 Kn-m	Capacity	-36.38 Kn-m	Passing Percentage	34.79 %
V1.35D	13.16 Kn	Capacity	43.42 Kn	Passing Percentage	329.94 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	35.88 Kn	Capacity	57.88 Kn	Passing Percentage	161.32 %
$ m V_{0.9D ext{-}WnUp}$	-32.17 Kn	Capacity	-72.36 Kn	Passing Percentage	224.93 %

Deflections

Modulus of Elasticity = 7000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 425.015 mm Limit by AS1170.0 Table C1 Span/250 = 52.00 mm Deflection under Dead and Service Wind = 637.52 mm Limit by AS1170.0 Table C1 Span/120 = 108.33 mm

Reactions

Maximum downward = 35.88 kn Maximum upward = -32.17 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 4

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 39.01 Kn > -32.17 Kn

Rafter Design External

External Rafter Load Width = 3000 mm External Rafter Span = 4411 mm Try Rafter 240x45 LVL8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.94 S1 Downward =13.82 S1 Upward =13.82

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 30 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	2.46 Kn-m	Capacity	6.08 Kn-m	Passing Percentage	247.15 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	6.71 Kn-m	Capacity	8.10 Kn-m	Passing Percentage	120.72 %
$M_{0.9D\text{-W}n\text{U}p}$	-6.02 Kn-m	Capacity	-10.13 Kn-m	Passing Percentage	168.27 %
V _{1.35D}	2.23 Kn	Capacity	17.37 Kn	Passing Percentage	778.92 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	6.09 Kn	Capacity	23.16 Kn	Passing Percentage	380.30 %
$ m V_{0.9D ext{-}WnUp}$	-5.46 Kn	Capacity	-28.94 Kn	Passing Percentage	530.04 %

Deflections

Modulus of Elasticity = 7000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 11.39 mm Limit by AS1170.0 Table C1 Span/250 = 17.33 mm Deflection under Dead and Service Wind = 15.37 mm Limit by AS1170.0 Table C1 Span/120 = 36.11 mm

Reactions

Maximum downward = 6.09 kn Maximum upward = -5.46 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -28.35 kn > -5.46 Kn

Single Shear Capacity under short term loads = -9.75 Kn > -5.46 Kn

4/9

Girt Design Front and Back

Girt's Spacing = 700 mm

Girt's Span = 6000 mm

Try Intermediate 300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K8 Downward = 0.94

K8 Upward =0.23

S1 Downward = 13.93

K5 = 1

S1 Upward =35.97

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$

1.91 Kn-m

Capacity

1.92 Kn-m

Passing Percentage

100.52 %

 $V_{0.9D\text{-W}nUp}$

1.27 Kn-m

Capacity

 $24.12\;Kn\text{-m}$

Passing Percentage

1899.21 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 7.94 mm

Limit by AS1170.0 Table C1 Span/120 = 50.00 mm

Sag during installation = 65.81 mm

Reactions

Maximum = 1.27 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 4333 mm

Try Intermediate 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1

K4 = 1

K5 = 1

K8 Downward = 1.00

K8 Upward =0.62

S1 Downward = 9.63

S1 Upward =21.14

Shear Capacity of timber = 3 MPa

Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow

1.28 Kn-m

Capacity

1.45 Kn-m

Passing Percentage

113.28 %

 $V_{0.9D\text{-W}nUp}$

1.18 Kn-m

Capacity

12.06 Kn-m

Passing Percentage

1022.03 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 22.22 mm Limit by AS1170.0 Table C1 Span/120 = 36.11 mm Sag during installation = 17.91 mm

Reactions

Maximum = 1.18 kn

Middle Pole Design

Geometry

200 SED H5 (Minimum 250 dia. at Floor Level)	Dry Use	Height	3300 mm
Area	49063 mm2	As	36796.875 mm2
Ix	191650391 mm4	Zx	1533203 mm3
Iy	191650391 mm4	Zx	1533203 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 39 m2

Dead	9.75 Kn	Live	9.75 Kn
Wind	24.18 Kn	Snow	0.00 Kn
Moment wind	Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K 1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	706.50 Kn	PhiMnx Wind	44.52 Kn-m	PhiVnx Wind	87.14 Kn
PhiNcx Dead	423.90 Kn	PhiMnx Dead	26.71 Kn-m	PhiVnx Dead	52.28 Kn

Checks

$$(Mx/PhiMnx)+(N/phiNcx) = 0.74 < 1 OK$$

$$(Mx/PhiMnx)^2 + (N/phiNcx) = 0.52 < 1 OK$$

Deflection at top under service lateral loads = 37.63 mm < 44.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 600 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 29.99 Kn-m

Shear Wind = 8.33 Kn

Pile Properties

Safety Factory 0.55

Hu = 3.99 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 8.33 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 3.60 < 1 OK

End Pole Design

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied

7/9

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 6.5 m^2

Moment Wind = 7.50 Kn-m Shear Wind = 2.08 Kn

Pile Properties

Safety Factory 0.55

Hu = 3.99 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 8.33 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.90 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 7.50 Kn-m Shear Wind = 2.08 Kn

Pile Properties

Safety Factory 0.55

Hu = 3.99 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 8.33 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.90 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1300) x Ks(1.5) x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1300)

Skin Friction = 13.65 Kn

Weight of Pile + Pile Skin Friction = 16.44 Kn

Uplift on one Pile = 32.18 Kn

Uplift is ok