Exercise 2

Jan-Philipp Kolb, Stefan Zins and Matthias Sand
1 Februar 2016

Example A

Estimation for the European Social Survey under stratified design

- Download ESS for Sweden and Denmark
- Import data to R and merge the two datasets
- Define a survey object (stratified design)
- Calculate the unbiased totals for the tv consumption

Download and Import ESS

• Download the ESS dataset for Denmark (Sampling Data and Country File) of the 5th round

Packages for data import

• Use the package foreign or memisc for import

```
library(foreign)
library(memisc)
```

Load the ESS dataset and the country file

Define a survey object

library(survey)

Define a survey object:

```
svydes_NE <- svydesign(id=~1,strata=~cntry, fpc=~N, data=NE)</pre>
```

```
svytable(~tvtot,svydes_NE)
```

Example B

- Load the survey package and the api datasets.
- Compute the mean of the Academic Performance Index (2000), assuming SRS
- Use other allocations
- Select a StrSRS from apipop for each allocations.
- Estimate the mean of api00 from different samples (equal, proportional, optimal).

The survey library

Load survey library and dataset apistrat

library(survey)

The dataset apistrat is a sample of schools from apipop stratified by stype.

data(api)

head(apistrat)

cds	stype	name	sname	snum
19647336097927	Е	Open Magnet: Ce	Open Magnet: Center for Individual (Char	2077
19647336016018	\mathbf{E}	Belvedere Eleme	Belvedere Elementary	1622
19648816021505	\mathbf{E}	Altadena Elemen	Altadena Elementary	2236
19647336019285	\mathbf{E}	Soto Street Ele	Soto Street Elementary	1921
56739406115430	\mathbf{E}	Walnut Canyon E	Walnut Canyon Elementary	6140
56726036084917	\mathbf{E}	Atherwood Eleme	Atherwood Elementary	6077
56726036055800	\mathbf{E}	Township Elemen	Township Elementary	6071
15633216109078	Ε	Thorner (Dr. Ju	Thorner (Dr. Juliet) Elementary	904

Stratified designs

Assuming the selection within the strata was done by SRS, define a svydesign object that enables you to make unbiased point and variance estimates.

• Estimate the mean of variable api00.

```
mean(apistrat$api00)
```

```
## [1] 652.82
```

Allocations

Now you should try different allocations.

Using stype as a stratification variable calculate the allocation of a sample of 60 schools from apipop. Use

- equal allocation
- proportional allocation (proportional to nr. of schools)
- optimal allocation (with regard to api99 allocation)

Select a StrSRS from apipop for each of your allocations.

Equal allocation

Proportional allocation

```
n <- 2000

nh <- tapply(apipop$api99,apipop$stype,function(x)sum(x)/sum(apipop$api99)*n)
samp <- strSRsample(apipop$stype,nh)

ap <- apipop[samp,]</pre>
```

Estimation

• Estimate again the mean of api00 from your three different samples.

```
svy_equal <- svydesign(id=~1,strata=~stype, fpc=~N, data=s_equal)
svymean(s_equal$api00,svy_equal)

## mean SE
## [1,] 684.95 12.444

library(devtools)
install_github("BernStZi/SamplingAndEstimation/r/sampaest",ref="short")</pre>
```