Modules and Homomorphism

July 27,2020

Definition 1. Let R be a ring, an (left) \mathbf{R} – **module** (denoted by A) is an abelian group with a function $R \times A \to A$ satisfies $\forall r, s \in \mathbb{R}, \forall a, b \in A$, the following conditions holds:

$$r(a+b) = ra + rb$$
$$(r+s)a = ra + sa$$
$$(rs)a = r(sa)$$

note:

- (i) Let R be a ring with identity, and A satisfies: $1_R a = a, \forall a \in A$, then A is called **unitary** R-module
- (ii) If R is a division ring and A is an unitary R-module, then A is called vector space

Corollary 1. $\forall r \in \mathbb{R}, a \in \mathbb{A}, we have:$

- (i) $r0_A = 0_A, 0_r a = 0_A$
- (ii) -ra = (-r)a = r(-a)
- (iii) n(ra)=(nr)a=r(na)

Proof. the proof is trivial

Definition 2. Let R be a ring and A, B be R-module. A R – module homomorphism f is an abelian group homomorphism $A \to B$ satisfies: $\forall a, b \in A, r \in R$:

$$f(a+b) = f(a) + f(b), f(ra) = rf(a)$$

if f is an abelian group monomorphism(resp.epimorphism, isomorphism) then f is called an R-module monomorphism(resp.epimorphism, isomorphism). The kernel of f is the kernel of f as an abelian group homomorphism: $\ker f = \{a \in A | f(a) = 0_B\}$

note:

- (i) f is monomorphism if and only if $\ker f = 0_A$
- (ii) f is isomorphism if and only if there is an R-module $g: B \to A$ such that: $fg = 1_B, gf = 1_A$
- (iii) $f(0_A) = 0_B$

Definition 3. Let R be a ring and A be an R-module. A submodule of A, say B, is a subset of A, satisfies: $\forall a, b \in A, r \in R$:

$$a - b \in B, ra \in B$$

In other words, B is a subgroup of A and is closed under the map. It's obviously that B is an R-module itself. A submodule of a vector space is called a subspace.

EXAMPLES

- (i) Let $f:A\to B$ be an R-module homomorphism, then $\ker f$ is a submodule of A and $\operatorname{Im} f$ is a submodule of B
- (ii) Let I be a left ideal of R, A an R-module, S a nonempty subset of A. Define IS as follows:

$$IS = \{ \sum_{i=1}^{n} r_i s_i | r_i \in I, s_i \in S, n \in \mathbb{N}^* \}$$

then IS is a submodule of A

(iii) Let A be an R-module and $A_i, i \in I$ is a family of submodules of A.Then $\cap_{i \in I} A_i$ is a submodule of A

Definition 4. Let R be a ring, A a R-module. X is a nonempty set of A. **A submodule generatedby X** is the intersection of all submodules that contains X.Let B is the submodule generated by X. If X is finite, then B is called **finitely generated**; If $X = \{a\}$, then B is called **cyclic submodule**. Let B_i , $i \in I$ be a family of submodules of A, the submodule generated by $\bigcup_{i \in I} B_i$ is called the **sum** of submodules B_i , $i \in I$.

REMARK Submodule generated by X is the smallest submodule that contains X. In other words, Let B be the submodule of A generated by X and C is any submodule of A that contains X, we must have: $B \subset C$.

To prove this, we only need to notice that $B = \bigcap_{X \subset C} C$. For any submodule that contains X, it must on the right side.

Theorem 1. Let R be a ring, A an R-module, X a subset of A, $\{B_i \mid i \in I\}$ a family of submodules of A and $a \in A$. Let $Ra = \{ra \mid r \in R\}$.

- (i) Ra is a submodule of A
- (ii) The cyclic submodule C generated by $\{a\}$ is $\{ra + na \mid r \in R, n \in \mathbb{Z}\}$
- (iii) The submodule generated by X is

$$\{\sum_{i=1}^{n} r_i a_i + \sum_{j=1}^{m} s_j b_j \mid r_i \in \mathbb{R}, n, m \in \mathbb{N}^*, a_i, b_j \in X, s_j \in \mathbb{Z}\}$$

Proof. (i) $\forall ra, sa \in Ra, \forall t \in R$, we have:

$$ra - sa = (r - s)a \in Ra, \ t(sa) = (ts)a \in Ra$$

According to the definition of submodule, Ra is a submodule of A.

(ii) First we need to show that $C = \{ra + na \mid r \in R, n \in \mathbb{Z}\}$ itself is a submodule of A. The reason is as follows: $\forall r_1, r_2, s \in \mathbb{R}, n_1, n_2 \in \mathbb{Z}$:

$$(r_1a + n_1a) - (r_2a + n_2a) = (r_1 - r_2)a + (n_1 - n_2)a \in C$$

 $s(r_1a + n_1a) = (sr_1)a + s(n_1a) = (sr_1)a + (n_1s)a = (sr_1 + n_1s)a \in C$

Hence C is a submodule of A that contains $\{a\}$. Besides, for any submodule B_i that contains $\{a\}$, it's obviously $ra \in B_i, r \in R$ and $na \in B_i, n \in \mathbb{Z}$. Hence $C \subset B_i$.

Let B be the submodule generated by X. Then $B = \bigcap_{i \in I} B_i$, $B \subset C$ because C is a submodule of A contains X, hence one of B_i . $C \subset B$ is trivial since $C \subset B_i$ hence $C \subset \bigcap_{i \in I} B_i = B$. Therefore, B = C.

(iii) The method to proving (iii) is the same as the method used in (ii).

REMARK In Theorem 1(ii), if R is a ring with identity and C an unitary module over R. The submodule generated by $\{a\}$ is Ra as $na = (n1_R)a, n1_R \in R$.

Theorem 2. Let B be a submodule of a module A over a ring R. Then the quotient group A/B is an R-module with the action of R on A/B given by:

$$r(a + B) = ra + B$$

The map $\pi: A \to A/B$ given by $a \mapsto a + B$ is an R-module epimorphism with $\ker \pi = B$

Proof. First, we will show the ring acts on A/B is well-defined: Let a+B=a'+B, hence $a-a'\in B$. For any $r\in R$, we have $r(a-a')\in B$ as B is a submodule of A. Hence we have ra+B=ra'+B, which means r(a+B)=r(a'+B). Therefore the action is well-defined.

Second, we will show A/B is an R-module with action given above. A/B is itself an abelian group. For any $r, s \in R$, we have:

$$(r+s)(b+B) = (r+s)b + B = (rb+sb) + B = (rb+B) + (sb+B) = r(b+B) + s(b+B)$$

For any $a+B, b+B \in A/B, r \in R$, we have:

$$r((a+B)+(b+B)) = r(a+b+B) = r(a+b)+B = (ra+rb)+B = (ra+B)+(rb+B) = r(a+B)+r(b+B)$$

The associative law is easy to prove. Thus A/B is an R-module with action given above. \Box

Theorem 3. (isomorphism theorems)

(i) Let A, B be R-module and $f: A \to B$ an R-module homomorphism. Then we have:

$$A/\ker f \cong \operatorname{Im} f$$

If f is an epimorphism then $A/\ker \cong B$

(ii) Let B and C be submodules of a module A over a ring R. Then:

$$B/(B \cap C) \cong (B+C)/C$$

(iii) Let B and C be submodules of a module A over a ring R.If $C \subset B$, then B/C is a submodule of A/C, and:

$$(A/C)/(B/C) \cong A/B$$

Proof. Proofs of the theorem is the same as those in the condtions of group and ring. \Box

Theorem 4. Let R be a ring and $\{A_i \mid i \in I\}$ a nonempty family of R-modules, $\prod_{i \in I} A_i$ the direct product of the abelian group A_i and $\sum_{i \in I}$ the direct sum of the abelian group A_i .

- (i) $\prod_{i \in I} A_i$ is an R-module with the action of R given by $r\{a_i\} = \{ra_i\}$
- (ii) $\sum_{i \in I} A_i$ is a submodule of $\prod_{i \in I} A_i$
- (iii) For each $k \in I$, the canonical projection $\pi_k : \prod A_i \to A_k$ is an R-module epimorphism.
- (iv) For each $k \in I$, the canonical injection $\iota_k : A_k \to \sum A_i$ is an R-module monomorphism.

Proof. (i) $\prod_{i \in I} A_i$ is itself an abelian group. For any $r, s \in R$, $\{a_i\}, \{b_i\} \in \prod_{i \in I} A_i$ we have:

$$\begin{split} r(\{a_i\} + \{b_i\}) &= r(\{a_i + b_i\}) = \{r(a_i + b_i)\} \\ &= \{ra_i + rb_i\} = \{ra_i\} + \{rb_i\} \text{ (by definition of plus in direct product)} \\ &= r\{a_i\} + r\{b_i\} \\ (r+s)\{a_i\} &= \{(r+s)a_i\} = \{ra_i + sa_i\} \\ &= \{ra_i\} + \{sa_i\} \\ &= r\{a_i\} + s\{a_i\} \\ (rs)\{a_i\} &= \{(rs)a_i\} = \{r(sa_i)\} = r\{sa_i\} = r(s\{a_i\}) \end{split}$$

Thus $\prod_{i \in I} A_i$ is an R-module.

(ii) $\sum_{i \in I} A_i$ consists of those elements $\{a_i\}$ with only finite number of a_k are not 0_{A_k} . Thus $\sum_{i \in I} A_i$ is obviously a subset of $\prod_{i \in I} A_i$. For any $\{a_i\}, \{b_i\} \in \sum_{i \in I} A_i$:

$${a_i} - {b_i} = {a_i - b_i}$$

It's trivial that $\{a_i - b_i\}$ has at most $n_1 + n_2$ elements are not 0, where n_1 is the number of elements in $\{a_i\}$ that are not 0 and similar for n_2 . Hence $\{a_i - b_i\} \in \sum_{i \in I} A_i$ For any $r \in R$, we have:

$$r\{a_i\} = \{ra_i\}$$

 $\{ra_i\}$ has the same number of non-zero elements as $\{a_i\}$ does. Hence $\{ra_i\} \in \sum_{i \in I} A_i$. Therefore, $\sum_{i \in I} A_i$ is a submodule of $\prod_{i \in I} A_i$.

(iii) Canonical projection $\pi_k: \prod_{i\in I} A_i \to A_k, \{a_i\} \mapsto a_k$ satisfies:

$$\pi_k(\{a_i\} + \{b_i\}) = \pi_k(\{a_i + b_i\}) = a_k + b_k = \pi_k(\{a_i\}) + \pi_k(\{b_i\})$$
$$\pi_k(r\{a_i\}) = \pi_k(\{ra_i\}) = (ra_i)_k = ra_k = r\pi_k(\{a_i\})$$

Thus π_k is an R-module homomorphism. It's obviously that π_k is epimorphism since for each $a_k \in A_k$, we have: $\pi_k(\mathbf{a'_k}) = a_k$ where $\mathbf{a'_k}$ is the element with only the k^{th} element is a_k and others are 0.

(iv) Canonical injection $\iota_k : A_k \to \sum_{i \in I} A_i, a_k \mapsto \mathbf{a_k}$ where $\mathbf{a_k}$ is the element with k^{th} element is a_k and others are 0. ι_k is easily to be proved as an R-module homomorphism. And it's trivial that $\ker \iota_k = 0_{A_k}$. Therefore ι_k is monomorphism.

Theorem 5. If R is a ring, $\{A_i \mid i \in I\}$ a family of R-modules, C an R-module, and $\{\phi_i : C \to A_i \mid i \in I\}$ a family of R-module homomorphisms, then there is a unique R-module homomorphism $\phi : C \to \prod_{i \in I} A_i$ such that $\pi_i \phi = \phi_i, \forall i \in I$. Hence $\prod_{i \in I} A_i$ is the product of $\{A_i \mid i \in I\}$ in the category of R-modules.

Proof. The R-module homomorphism is easy to see:

$$\phi: \mathcal{C} \to \prod_{i \in I} A_i, c \mapsto \{\phi_i(c)\}_{i \in I}$$

 ϕ is easy to be proved as an R-module homomorphism. Hence we have: $\pi_k \phi(c) = \pi_k(\{\phi_i(c)\}_{i \in I}) = phi_k(c), c \in \mathbb{C}, k \in I$. Thus we have $\pi_i \phi = \phi_i, i \in I$.

To prove the uniqueness of ϕ , let f be another R-module homomorphism $f: C \to \prod_{i \in I} A_i$ with $\pi_i f = \phi_i, i \in I$. We need to prove that $\phi = f$. If there is some $c \in C$ such that $f(c) \neq \phi(c)$, then f(c) and $\phi(c)$ have at lease one position with different elements, let's say the k^{th} element. Then we have: $\pi_k(\phi(c)) \neq \pi_k(f(c))$, which means $\phi_k(c) \neq \phi_k(c)$. This is obviously not gonna happen. Therefore we must have $\phi = f$.

Theorem 6. If R is a ring, $\{A_i \mid i \in I\}$ a family of R-modules,D an R-module, and $\{\psi_i : A_i \to D \mid i \in I\}$ a family of R-module homomorphisms, then there is a unique R-module homomorphism $\psi : \sum_{i \in I} A_i \to D$ such that $\psi \iota_i = \psi_i, \forall i \in I$. Hence $\prod_{i \in I} A_i$ is the coproduct of $\{A_i \mid i \in I\}$ in the category of R-modules.

Proof. The R-module homomorphism ψ is easy to see:

$$\psi: \sum_{i \in I} A_i \to D, \{a_i\}_{i \in I} \mapsto \sum_{i \in I} \psi_i(a_i)$$

Here $\sum_{i\in I} \psi(a_i)$ means we add finite many nonzero elements together. ψ is easy to be seen as an R-module homomorphism. And it's easy to prove that $\psi \iota_i = \psi_i$.

To prove the uniqueness of ψ , let f be another R-module homomorphism with $f\iota_i = \psi_i$. Then for any $\{a_i\} \in \sum_{i \in I} A_i$, we have:

$$f(\{a_i\}) = f(\sum_{i \in I} \mathbf{a_i}) = f(\sum_{i \in I} \iota_i(a_i)) = \sum_{i \in I} (f\iota_i)(a_i) = \sum_{i \in I} \psi_i(a_i)$$

Thus $f = \psi$. We have proved the uniqueness of ψ

Theorem 7. Let R be a ring and $A_1, A_2, ..., A_n$ R-modules. Then $A \cong A_1 \bigoplus A_2 \bigoplus ... \bigoplus A_n$ if and only if for each i = 1, 2, ..., n there are R-module homomorphism $\pi_i : A \to A_i$ and $\iota_i : A_i \to A$ such that:

- (i) $\pi_i \iota_i = 1_{A_i} \text{ for } i = 1, 2, ..., n$
- (ii) $\pi_j \iota_i = 0$ for $j \neq i$
- (iii) $\iota_1 \pi_1 + \iota_2 \pi_2 + \dots + \iota_n \pi_n = 1_A$

Proof. (\Rightarrow) If $A \cong A_1 \bigoplus A_2 \bigoplus ... \bigoplus A_n$, let π_i, ι_i be the canonical projection and injection. It's easy to prove that π_i, ι_i satisfy conditions(i)-(iii)

 $(\Leftarrow) \text{ If } \pi_i, \iota_i \text{ satisfy (i)-(iii)}. \text{ Let } \pi_i', \iota_i' \text{ be the canonical projection and injection between } A_1 \bigoplus A_2 \bigoplus \ldots \bigoplus A_n \text{ and } A_i. \text{Let } \phi: A_1 \bigoplus A_2 \bigoplus \ldots \bigoplus A_n \to A \text{ be given by } \phi = \iota_1 \pi_1' + \iota_2 \pi_2' + \ldots + \iota_n \pi_n' \text{ and } psi: A \to A_1 \bigoplus A_2 \bigoplus \ldots \bigoplus A_n \text{ by } \psi = \iota_1' \pi_1 + \iota_2' \pi_2 + \ldots + \iota_n' \pi_n. \text{ Then it's easy to verify that } \phi \psi = 1_A \text{ and } \psi \phi = 1_{A_1 \bigoplus A_2 \bigoplus \ldots \bigoplus A_n}. \text{ Therefore } A \cong A_1 \bigoplus A_2 \bigoplus \ldots \bigoplus A_n.$