#### 0.1 Prawo odbicia

Promień padający, promień odbity i normalna do powierzchni granicznej wystawiona w punkcie padania promienia leżą w jednej płaszczyźnie i kąt padania równa się kątowi odbicia  $\alpha_1 = \alpha_2$ .



W wyniku odbicia zmienia się tylko

kierunek rozchodzenia się fali, nie zmienia się jej długość.

### 0.2 Załamanie światła na granicy dwóch ośrodków przeźroczystych

Jeśli światło pada na granicę dwóch przeźroczystych ośrodków, to zwykle jego część odbija się(zgodnie z prawem odbicia),a część wchodzi do drugiego ośrodka, zmieniając na ogół kierunek swojego biegu. Mówimy wtedy, że światło się załamuje.

Prawo załamania (Prawo Snelliusa) sformułowane w 1621. Stosunek sinusa kąta padania do sinusa kąta załamania jest równy stosunkowi bezwzględnego współczynnika załamania ośrodka drugiego  $n_2$  do bezwzględnego współczynnika załamania ośrodka pierwszego  $n_1$ , czyli współczynnikowi względnemu załamania światła ośrodka drugiego względem pierwszego.



$$\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = \frac{v_1}{v_2} \tag{0.1}$$

Zmiana kierunku spowodowana jest tym,że światło w różnych ośrodkach rozchodzi się z różną prędkością w zależności od gęstości optycznej ośrodka.

### 0.3 Bezwzględny i względny współczynnik załamania ośrodka. Prawo załamania

Prawo załamania. Stosunek sinusa kąta padania do sinusa kąta załamania jest równy stosunkowi bezwzględnego współczynnika załamania ośrodka drugiego  $n_2$  do bezwzględnego współczynnika załamania ośrodka pierwszego  $n_1$ , czyli współczynnikowi względnemu załamania światła ośrodka drugiego względem pierwszego.

$$\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = \frac{v_1}{v_2} \tag{0.2}$$

Współczynnik załamania ośrodka jest miarą zmiany prędkości rozchodzenia się fali w danym ośrodku w stosunku do prędkości w innym ośrodku.

$$n = \frac{\sin(\alpha)}{\sin(\beta)} \tag{0.3}$$

Bezwzględny współczynnik załamania światła to współczynnik załamania względem próżni dany jest wzorem

$$n = \frac{c}{v} \tag{0.4}$$

gdzie:

v - prędkość światła w danych ośrodkach

c - prędkość światła w próżni (c = 299 792 458 m/s)

*n* - bezwzględny współczynnik załamania.

Względny współczynnik załamania to stosunek bezwzględnego współczynnika załamania ośrodka drugiego  $n_2$  do bezwzględnego współczynnika załamania ośrodka pierwszego  $n_1$ . (Prawo załamania)

## 0.4 Analiza biegu promieni w przezroczystej płytce płasko-równoległej.

Płytką płasko-równoległościenną może być np. szyba. Jeśli po obu stronach płytki płasko-równoległej są dwa jednakowe ośrodki (np. powietrze), to promień wychodzący jest równoległy do promienia padającego. Jeżeli jednak po obu stronach płytki płasko-równoległej są dwa różne ośrodki (np. powietrze i woda), to promień światła w wodzie nie jest równoległy do promienia światła w powietrzu. Przesunięcie promienia po przejściu przez płytkę zależy od grubości płytki *d*, kąta padania α oraz od współczynnika załamania światła *n* materiału płytki. Współczynnik załamania *n* jest zależny od długości rzeczywistej płytki *d* oraz pozornej grubości płytki *h*. Pozorną grubość *h* wyznacza się mierząc przesunięcie tubusa mikroskopu między położeniami ostrego widzenia kresek umieszczonych na obu powierzchniach płytki.



$$h = \frac{d}{n} \tag{0.5}$$

# 0.5 Budowa mikroskopu - jak biegnie promień. Od czego zależy powiększenie obrazu widzianego w mikroskopie?

Mikroskop optyczny służy do generowania powiększonego obrazu badanego przedmiotu przy wykorzystaniu specjalnego układu optycznego składającego się zwykle z kilku lub kilkanastu soczewek.

Obiektyw zbiera światło wychodzące (lub odbite) z przedmiotu i tworzy jego powiększony obraz (rzeczywisty), natomiast okular, przy oku, dodatkowo powiększa ten obraz.



Powiększenie kątowe mikroskopu optycznego wyraża się wzorem:

 $w = (x*D)/(f_ob*f_ok)$  gdzie x - długość rury tubusu, D - odległość dobrego widzenia (250 mm), fob i fok odpowiednio: ogniskowa obiektywu i okularu. Przy znanych oddzielnie powiększeniach okularu i obiektywu powiększenie mikroskopu optycznego jest iloczynem tych powiększeń  $p = p_1p_2$  W praktyce stosuje się powiększenia od kilkudziesięciu do ponad tysiąckrotnych.

| C | 0.5 Budowa mikroskopu - jak biegnie promień. Od czego zależy powiększenie obrazu widzianego w mikroskopie?        |
|---|-------------------------------------------------------------------------------------------------------------------|
| C | Aby w mikroskopie powstał ostry obraz, obraz wytworzony przez obiektyw musi znaleźć się prawie w ognisku okularu. |
|   |                                                                                                                   |
|   |                                                                                                                   |