Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line
 - COVID-19 test results on a random sample

Key Challenge:

 Evaluation measures such as accuracy are not wellsuited for imbalanced class

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because this trivial model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	0	10
CLASS	Class=No	0	990
	Pata Mining, 2 nd Ed	dition	5

2/15/2021

Which model is better?

A

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	0	10
	Class=No	0	990

Accuracy: 99%

B

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
	Class=No	500	490

Accuracy: 50%

Which model is better?

A

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	5	5
	Class=No	0	990

B

	PREDICTED		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
	Class=No	500	490

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5
Recall (r) = $\frac{10}{10+0}$ = 1
F - measure (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
Accuracy = $\frac{990}{1000}$ = 0.99

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5
Recall (r) = $\frac{10}{10+0}$ = 1
F - measure (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
Accuracy = $\frac{990}{1000}$ = 0.99

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	1	9
CLASS	Class=No	0	990

Precision (p) =
$$\frac{1}{1+0}$$
 = 1
Recall (r) = $\frac{1}{1+9}$ = 0.1
F-measure (F) = $\frac{2*0.1*1}{1+0.1}$ = 0.18
Accuracy = $\frac{991}{1000}$ = 0.991

Which of these classifiers is better?

A

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) = 0.8

Recall (r) = 0.8

F - measure (F) = 0.8

Accuracy = 0.8

B

		PREDICTED CLASS		
			Class=Yes	Class=No
	ACTUAL CLASS	Class=Yes	40	10
		Class=No	1000	4000

Precision (p) = ~ 0.04

Recall (r) = 0.8

F - measure (F) = ~ 0.08

Accuracy = ~ 0.8

Measures of Classification Performance

	PREDICTED CLASS		
AOTHAI		Yes	No
ACTUAL CLASS	Yes	TP	FN
02.	No	FP	TN

 α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

$$ErrorRate = 1 - accuracy$$

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN \ Rate = \frac{TN}{TN + FP}$$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

$$Power = sensitivity = 1 - \beta$$

А	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	10	40

Precision $(p) = 0.8$				
TPR = Recall(r) = 0.8				
FPR = 0.2				
F-measure $(F) = 0.8$				
Accuracy $= 0.8$				

$$\frac{TPR}{FPR} = 4$$

В	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	40	10	
	Class=No	1000	4000	

Precision (p) = 0.038
TPR = Recall (r) = 0.8
FPR = 0.2
F-measure (F) = 0.07
Accuracy = 0.8

$$\frac{TPR}{FPR} = 4$$

Which of these classifiers is better?

А	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	40
ACTUAL CLASS	Class=No	10	40

Precision
$$(p) = 0.5$$

TPR = Recall $(r) = 0.2$
FPR = 0.2
F - measure = 0.28

В	PREDICTED CLASS		
		Class=Yes	Class=No
	Class=Yes	25	25
ACTUAL CLASS	Class=No	25	25

Precision
$$(p) = 0.5$$

TPR = Recall $(r) = 0.5$
FPR = 0.5
F - measure = 0.5

С	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	40	10

Precision (p) =
$$0.5$$

TPR = Recall (r) = 0.8
FPR = 0.8
F - measure = 0.61

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- □ (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

ROC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
 - By using different thresholds on this value, we can create different variations of the classifier with TPR/FPR tradeoffs
- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM