

Atividade: Quadradinhos de numeradores

Para o professor

Objetivos específicos

OE1 Reconhecer que, para cada $0 \le i \le 3$, as frações $\frac{i}{3}$, $\frac{2 \times i}{2 \times 3}$, $\frac{3 \times i}{3 \times 3}$ e $\frac{4 \times i}{4 \times 3}$ são iguais a partir da observação das representações destas frações na reta numérica.

Discussões sobre o desenvolvimento da atividade

- Recomenda-se que, nesta atividade, os alunos trabalhem individualmente ou em duplas. No entanto, é fundamental que os alunos sejam estimulados a explicar o raciocínio realizado.
- Nas retas numéricas apresentadas, as origens estão alinhadas e as unidades correspondem a segmentos unitários congruentes, o que garante que uma fração associada a um determinado ponto em uma reta seja a mesma fração nos pontos correspondentes nas demais retas.
- Caso seus alunos não percebam, aponte para o fato de que as segunda, terceira e quarta retas numéricas são obtidas por meio de subdivisões dos terços da primeira reta numérica em duas, três e quatro partes iguais, respectivamente. Para resolver o item c) desta atividade, se faz necessário dividir cada terço em cinco partes iguais.
- É importante, ao final da atividade, observar para os alunos que, nesta atividade, cada ponto marcado na reta numérica está sendo descrito por frações com numeradores e denominadores diferentes (isto é, por frações equivalentes) mas que, não obstante, por corresponderem ao mesmo ponto da reta numérica, estas frações são iguais.

Atividade

a) Preencha os quadradinhos □ com numeradores adequados de modo que cada fração corresponda a sua respectiva marca em cada reta numérica.

- b) Escreva quatro frações com numeradores diferentes (consequentemente com denominadores também diferentes) que correspondam ao ponto azul em destaque na figura.
- c) Determine uma fração de denominador 15 que corresponda ao ponto azul em destaque. Justifique sua resposta usando uma reta numérica!

OLIMPÍADA BRASILEIRA
O J DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

Itaú Social

Patrocínio:

a)

O			1			2			3
0	1	2	$\frac{3}{3}$	4	5	6	7	8	9
$\frac{0}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	$\overline{3}$	$\frac{4}{3}$	$\frac{5}{3}$	$\frac{6}{3}$	$\frac{7}{3}$	$\frac{8}{3}$	$\frac{9}{3}$
:	:		:	:	:	:	:	:	:
0			1			2			3
0	2	4	6	8	10	12	14	16	18
$\overline{6}$	$\frac{2}{6}$	$\frac{4}{6}$	$\frac{6}{6}$	$\frac{8}{6}$	$\frac{10}{6}$	$\frac{12}{6}$	$\frac{14}{6}$	$\frac{16}{6}$	$\frac{18}{6}$
:		:		:			:		:
									:
O			1			2			3
0	3	6	9	12	15	18	21	24	$\frac{}{27}$
$\frac{0}{9}$	$\frac{3}{9}$	$\frac{6}{9}$	$\frac{9}{9}$	$\frac{12}{9}$	$\frac{15}{9}$	$\frac{18}{9}$	$\frac{21}{9}$	$\frac{24}{9}$	$\frac{27}{9}$
:		i		:					:
									:
0			1			2			3
0	4	8	12	16	20	$\frac{}{24}$	28	32	36
$\overline{12}$	$\overline{12}$	$\overline{12}$	$\frac{12}{12}$	$\frac{16}{12}$	$\frac{20}{12}$	$\frac{24}{12}$	$\frac{28}{12}$	$\frac{32}{12}$	$\frac{36}{12}$

b) $\frac{4}{3}=\frac{8}{6}=\frac{12}{9}=\frac{16}{12}$.
c) No item b) foi estabelecido que o ponto azul corresponde a fração $\frac{4}{3}$ pois, ao se justapor 4 segmentos que são $\frac{1}{3}$ do segmento unitário (que está, aqui, servindo como unidade) a partir da origem 0, este ponto é a outra extremidade desta justaposição. Agora, ao se subdividir estes 4 segmentos que são $\frac{1}{3}$ do segmento unitário em 5 partes iguais, obtêm-se 20 segmentos justapostos que são $\frac{1}{15}$ do segmento unitário. Sendo o ponto azul extremo desta justaposição, segue-se que ele corresponde a fração $\frac{20}{15}$.

$\begin{matrix} 0 \\ $	$\frac{1}{3}$	$\frac{2}{3}$	$\begin{array}{c} 1 \\ \hline 3 \\ \hline 3 \end{array}$	$\frac{4}{3}$	$\frac{1}{5}$	$\begin{array}{c} 2 \\ \hline 6 \\ \hline 3 \end{array}$	$\frac{1}{7}$	$\frac{8}{3}$	$\frac{3}{9}$
0			1			2			3
0	5	10	15	20	25	30	35	40	45
$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$