Discovering Association Patterns Based on Mutual Information

Bon K. Sy

Queens College/CUNY

Computer Science Department

bon@bunny.cs.qc.edu

Key points

- New concept for association patterns
 - support + interestingness/dependency
- Steps towards optimal association pattern discovery
 - Aprior property and mutual information measure
 - Probability model identification and inference
- What did we learn about proposed pattern approach?
 - Application of pattern approach to classification problems
 - Comparison: pattern approach, naïve Bayes & neural network

Agenda

- Meaning of association
- New concept on association pattern
- Association pattern discovery
- Pattern approach for classification problems
- Effectiveness and usefulness

Meaning of association

- What is an association pattern?
 - (A:0 B:1 C:0) where A,B,C are binary-valued variables
 - Pr(A:0 B:1 C:0) as a support measure
- ◆ Association rule A:0 -> B:1
 - Support: Pr(A:0 B:1) Confidence: Pr(A:0|B:1)
 - Logic inference: $Pr(A:0 \rightarrow B:1) \Leftrightarrow Pr(not(A:0) \text{ or } B:1)$
 - Conditional probability: Pr(B:1| A:0)

Deriving association rule is hard!

- Exponential number of combinations to make association rules from association patterns
 - Consider a pattern (A:0 B:1 C:0 D:1)
 - 46 possible rules in form of X -> Y even there are redundant rules; e.g. A:0 ->B:1 C:0 => A:0 B:1-> C:0

$$\sum_{i=1}^{n} \sum_{j=1}^{n-i} \binom{n}{i} \binom{n-i}{j}$$

Deriving association rule is hard!

- Spurious association
 - Suppose A:0 -> B:1 \Leftrightarrow if A:0 then B:1
 - How do we know it's not E:0 -> A:0 first, then E:0 -> B:1
- Interestingness or level of dependency
 - Pr(A:0 B:1) = 0.64, Pr(A:0) = Pr(B:1) = 0.8
 - Support measure = 0.64, confidence = 0.8
 - But A:0 and B:1 are independent of each other!

New concept for association patterns

- Criteria for significant association patterns:
 - Support measure
 - Interestingness/level of dependency
 - Mutual information measure in event pattern level:

$$Log_2 \frac{\Pr(A:0 \cap B:1)}{\Pr(A:0) \Pr(B:1)}$$

New concept for association patterns

In two-variable case (Kullback)

$$E[MI(A,B)] = \sum \Pr(A,B) Log_2 \frac{\Pr(A \cap B)}{\Pr(A) \Pr(B)} \to \frac{\chi^2}{2N}$$

• Unfortunately statistical convergence does not behave well in high order patterns with multiple variables.

New concept for association patterns

High order patterns with multiple variables

$$MI(x1, x2...xn) \rightarrow \left(\frac{1}{\Pr(x1, x2...xn)}\right) \left(\frac{\chi^2}{2N}\right)^{\left(\frac{\hat{E}}{E'}\right)^{\frac{2}{2}}}$$

where $MI(x1,x2...xn) = Log_2Pr(x1 \ x2 \ ... \ xn)/Pr(x1)Pr(x2)...Pr(xn)$

N =sample population size

 χ^2 = Pearson chi-square test statistic defined as $(oi - ei)^2/ei$

 \hat{E} = Expected entropy measure of estimated probability model

E' = Maximum possible entropy of estimated probability model

O =order of the association pattern (i.e., n in this case)

- Discovering significant association patterns requires:
 - Joint probability information Pr(x1,x2,...xn)
 - Marginal probability information Pr(x1), Pr(x2), ... Pr(xn)
 - Appropriate support threshold α related to population size N
- Properties for significant association patterns:
 - Support measure $Pr(x1,x2,...xn) > \alpha$ %

$$MI(x1, x2...xn) > \left(\frac{1}{\Pr(x1, x2...xn)}\right) \left(\frac{\chi^2}{2N}\right)^{\left(\frac{\hat{E}}{E'}\right)^{\frac{o}{2}}}$$

- Bad news: Number of association patterns grows exponentially with respect to the order of the patterns.
- Good news: Properties for pruning
 - A priori property (Agrawal)
 - Mutual information convergence test

Pruning based on a prior property:

Pruning based on insufficient support:

Pruning based on mutual information criterion:

If Pr(A:1,B:0,C:0) < 0.30375Then MI(A:1,B:0,C:0) < 0

- Trick on optimizing discovery process
 - Minimize counting related to high order pattern discovery based on low order pattern information:
 - Suppose
 - Pr(A:1,B:1,C:0) = 0.4
 - Pr(A:0,B:0,C:1) = 0.1
 - Pr(A:0,B:1,C:1) = 0.1
 - Pr(A:1,B:0,C:1) = 0.1
 - Then Pr(A:1, B:0,C:0) < 0.3

■ Key Concept (Sy 2001 and this paper):

Probabilistic inference on high order pattern information from existing information and that of low order patterns!

- Algorithm (in this paper) and implementation:
 - http://bonnet19.cs.qc.edu:7778/pls/rschdata/portal.login_dataMining
 - http://www.techsuite.net/kluwer/ (chapters 8 and 9)

- KDD forest cover type data set
 - 30x30 meter cells obtained from US Forest Service Region 2 Resource Information System (RIS) data.
 - http://kdd.ics.uci.edu/databases/covertype/covertype.data.html
 - http://kdd.ics.uci.edu/databases/covertype/covertype.task.html

- 581012 records; each with 54 attributes
 - 10 quantitative variables
 - 4 binary wilderness areas
 - 40 binary soil type variables (present/absent).

(New! ©)

■ 7 types of tree coverage

TREE TYPE COUNT

• Spruce/fir 211840

• Lodgepole pine 283301

• Ponderosa pine 35754

Cottonwood/willow 2747

• Aspen 9493

• Douglas-fir 17367

• Krummholz 20510

- Forest cover type classification problem:
 - Task 1 (Model attribute selection):
 - Identify few of the 40 binary-valued attributes about soil type information that covers sufficient data variability (measured by R-squared and residual).
 - Task 2 (Pattern discovery):
 - Identify statistically significant association patterns.
 - Task 3 (model identification):
 - Pattern-based classifier based on probability decision support models.
 - Task 4 (Comparative study):
 - Evaluate against naïve Bayes and neural network.

- Experiment setup:
 - Training data: 11340
 - Validation data: 3780
 - Test data: 565892
- Task 1 (Model attribute selection):
 - Data set: Training data (11340 records of 40 attributes)
 - Least Square Trimmed robust and tree regressions
 - S-SPLUS 4.5, XP with 2G Hz CPU, 512M memory
 - Six soil type attributes as predictors
 - R-squared value: 0.9665. Tree: 21 levels, 96 terminals

- Task 2 (Pattern discovery):
 - Data set: Training data (11340 records of 7 attributes)
 - Platform: Oracle 9.0.2 in Linux
 - Pattern discovery algorithm implemented as PL/SQL
 - Forest cover type as "response" variable (7 cases)
 - Any subset combination of value instantiation of the 6 predictors + response variable = association pattern
 - 64 (out of 3996) association patterns are significant.

- Task 3 (Model identification):
 - Breakdown by forest cover types:

• # of association patterns Forest cover	type
--	------

•	14	V55:1 (spruce/fir)
Ť	17	v 55.1 (sprace/111)

- 6 V55:7 (krummholz)
- 7 probability decision models M1, ... M7
 - Mi ⇔ Pr(V24 V27 V44 V49 V52 V53 V55_i')

- Task 4 (Comparative study):
 - Pattern-based classifier:

- 2 alternatives for comparison
 - Naïve Bayes and Neural network (Insightful Miner 1.0)
 - Neural network configuration:
 - Feed forward network
 - 1 fully connected hidden layer consisting of 10 nodes
 - Resilient propagation with a convergence tolerance = 0.0001, epochs = 50, and a learning rate = 0.01.

Effectiveness and usefulness

- Same training data set is used in all three cases:
 - Pattern-based classifier; Naïve Bayes; Neural network

- Test data used for comparative study:
 - 565892 records of six soil type attributes.
 - Objective: Predict forest cover type.

Effectiveness and usefulness

Test data 37.1% |49.7% |5.9% |0.1% |1.3% |2.7% |3.2% |
Distribution
By cover type

Effectiveness and usefulness

- Observation: Neural network under-performed comparing to the two other approaches
- Hypothesis: Biased statistical distribution.
- Validation based on data set of even distribution
 - 3780 records of validation data (or 540 each)

Validation								
data								Overall
	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	performance
Pattern								
classifier	0%	0%	0%	91.70%	35.70%	52.60%	61.10%	34.40%
Naïve								
Bayes	0%	0%	0%	91.70%	35.70%	52.60%	61.10%	34.40%
Neural net	0%	0%	0%	91.70%	35.70%	52.60%	61.10%	34.40%

Conclusion

- New concept of association patterns
- Algorithm for association pattern discovery
- Implementation as naïve PL/SQL inside
 Oracle data warehouse
- Comparative study that demonstrates competitive performance

Further information

- Information-statistical data mining and Oracle basics for warehouse building, with Arjun Gupta, ISBN 1-4020-7650-9, Kluwer academic publishers.
- Archived presentation slide:
 - http://www.techsuite.net/bonnet3/dm2003/DM2003.ppt
- Software for model identification:
 - http://www.techsuite.net/kluwer/ (chapter 9)

Further information

- Data warehouse system and association pattern discovery software
 - S-PLUS source code
 http://www.techsuite.net/kluwer/ (chapter 8)
 - Web accessible data warehouse:
 http://bonnet19.cs.qc.edu:7778/pls/rschdata/
 - Integrated environment for data warehouse and data mining:
 http://bonnet19.cs.qc.edu:7778/pls/rschdata/portal.login_dataMining

Further information

- Description of the data sets in the data warehouse:
 - Brief data definition for temperature, precipitation and water quality E-community (case 5288)
 - Data dictionary, index locator, and table size for water quality data
 - E-community (case 5265)
 - Description of the water quality data semantic meaning
 - E-community (case 5306)

Q and A

Bon K. Sy
Queens College/CUNY
Computer Science Department
bon@bunny.cs.qc.edu