System Program:

data representation - int

Honguk Woo

Encoding Integers

• w-bit vector : $[x_{w-1}, x_{w-2},, x_0]$

Unsigned (0, positive)

$$\underline{B2U}(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$
Binary to Unsigned

- e.g., 4bit binary -> integer
 - 1111
 - Unsigned 2+2+2+10=15
 - Two's Complement

Two's Complement (negative, 0, positive)

$$\underline{B2T}(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
 Binary to Those amplement

Sign Bit (most significant bit)

Encoding Integers

- Sign Bit
 - For two's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

```
short int x = 15213; /* 2 byte long */ short int y = -15213;
```

Unsigned

Two's Complement

X

$$y = 2^n - x$$

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

Two's Complement Encoding

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15212		1/5212

Sum 15213 -15213

• Unsigned, 4 bits

```
1111 (15, max)
:
:
0111 (7)
:
:
0000 (0, min)
```

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

• Two's complement, 4 bits

Numeric Ranges

- Unsigned Values
 - *UMin* = 0 000...0
 - $\bullet UMax = 2^w 1$ 111...1

- Two's Complement Values
 - $TMin = -2^{w-1}$ 100...0
 - $TMax = 2^{w-1} 1$
- Other Values
 - -1 111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

- Observations
 - |TMin| = TMax + 1
 - Asymmetric range
 - UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

	W				
	8	16	32	64	
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615	
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808	

Encoding Integers w/ Sign

- Two's Complement
 - e.g., $7_{10} = 00111_2$ $-7_{10} = 11001_2$
 - 2^{w-1} non-negatives (including zero)
 - 2^{w-1} negatives
 - unique zero representation
 - easy for hardware
 - leading 0 : non-negative
 - leading 1 : negative

two's compliment

Unsigned & Signed Numeric Values

- Equivalence
 - Same encodings for nonnegative values
- Uniqueness
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding
- ⇒ Can Invert mappings
 - U2B(\mathbf{x}) = B2U⁻¹(\mathbf{x})
 - Bit pattern for unsigned integer
 - T2B(\mathbf{x}) = B2T⁻¹(\mathbf{x})
 - Bit pattern for two's complement integer

X	B2U(x)	B2T(x)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	<u>-1</u>

Mapping Btwn. Signed & Unsigned

Mappings between unsigned and two's complement numbers:
 Keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Relation btwn. Signed & Unsigned

Maintain Same Bit Pattern

Large negative weight becomes

Large positive weight

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

• Two's complement, 4 bits

• Unsigned, 4 bits

Conversion Visualized

Signed vs. Unsigned in C programming

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix 00, 42949672590
- Casting
 - Explicit casting btwn. signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=
 - Examples (W=32):

TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant ₂	Relation	Evaluation
0U	==	unsigned
0	<	signed
0U	>	unsigned
-2147483647-1	>	signed
-2147483647-1	<	unsigned
-2	>	signed
-2	>	unsigned
2147483648U	<	unsigned
(int) 2147483648U	>	signed
	0U 0 0U -2147483647-1 -2147483647-1 -2 -2 2147483648U	0U == 0 <

Summary: Casting Signed ↔ Unsigned

- Signed and unsigned casting
 - Bit pattern is maintained
 - But reinterpreted
 - Can have unexpected effects: adding or subtracting 2^w
 - Expression containing signed and unsigned int
 - int is cast to unsigned !!!

Quiz : output ?

Hint : unsigned i

```
#include <stdio.h>
int main() {
        unsigned i;
        int a[3] = \{1, 2, 3\};
        for (i = sizeof(a)/sizeof(int) - 1; i>=0; i--)
                printf("%d\n", a[i]);
        return 0;
                                                           Unsigned
```

Sign Extension

- Sign Extension of Shipe e.g. 32 bit integer -> 64 bit integer

 - Extend sign bit for the higher bits
- Task
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value

Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

	Decimal	Нех	Binary		
X	15213	3B 6D	00111011 01101101		
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101		
У	-15213	C4 93	11000100 10010011		
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011		

Sign Extension Example, why

```
• 1100 : -8 + 4 = -4
```

• 11100 :
$$-16 + 8 + 4 = -4$$

```
Add -2^w: -16 (decrease)
```

Convert -2^{W-1} to 2^{W-1} : $-8 \rightarrow 8$ (increase)

$$2^{W-1} * 2 = 2^{W}$$

Truncating Numbers Truncate: out

- Truncating a number can alter its value
 - A form of overflow
- Truncating an unsigned x (w bit long) to x' (k bit long)
 - Truncating x to k bits is equivalent to computing x mod 2^k $B2U_{k}([x_{k-1}, x_{k-2}, ..., x_{0}]) = B2U_{k}([x_{k-1}, x_{k-2}, ..., x_{0}]) \mod 2^{k}$
- Truncating a signed x (w bit long) to x' (k bit long) $B2T_k([x_{k-1}, x_{k-2}, ..., x_0]) = U2T_k(B2U_w([x_{w-1}, x_{w-2}, ..., x_0]) \mod 2^k)$

```
x = 50323; // 0x0000C493
     int sx = (short) x; // -15213 0x C493
                          // -15213
int
          v = sx;
```

Summary - Expanding, Truncating

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers *u*, *v*
 - Compute true sum Add₄(u, v)
 - Values increase linearly with u and v

Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior Additions 25 Signed vs. unsigned addition in C: int s, t, u, v; s = (int) ((unsigned) u + (unsigned) v); t = u + v· Will give s == t Operands: w bits u ν True Sum: w+1 bits u + vDiscard Carry: w bits $TAdd_{w}(u, v)$

TAdd Overflow

- Functionality
 - True sum requires w+1 bits
 - Drop off MSB
 - Treat remaining bits as2's complement integer

True Sum

Visualizing 2's Complement Addition

- Values
 - 4-bit two's comp.
 - Range from -8 to +7
- Wraps Around
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - If sum $< -2^{w-1}$
 - Becomes positive

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Signed Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits after multiplication

Power-of-2 Multiply with Shift

- Operation
 - $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
 - Both signed and unsigned

Operands: w bits

k

True Product: w+k bits

Discard *k* bits: *w* bits

$$UMult_w(u, 2^k)$$

 $\mathrm{TMult}_{w}(u, 2^{k})$

- Examples
 - · u << 3

 $u\cdot 2^k$

$$\star$$
 (u << 5) - (u << 3) ==

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Mult./Div.

- Two's complement multiplication by a power of 2
 - int s, unsigned k (0≤k<w)
 - s << k (in C program) yields s * v 2k
- Two's complement division by a power of 2
 - int s, unsigned k (0≤k<w)
 - s >> k (in C program) yields $\lfloor s / 2^k \rfloor$
 - (NOTE) >> should be an arithmetic shift-right
- Bit level behaviors for signed and unsigned power-of 2 multiplications/divisions are the same

Data repre.

- Bit pattern
- Int
- Floating point numbers