Switches in the US Macroeconomic Data using the Rudebusch-Svensson VAR model

first_name last_name
 Your institution
first_name@last_name.com

12-Oct-2014 16:55:49

Abstract

This report investigates switches in the parameters of a simple VAR model by Rudebusch and Svensson (1999) estimated on US data. 4 variants of the modelare estimated: (i) the first model has constant parameters; (ii) the second model allows for switches in the policy parameters only; (iii) the third specification allows for switches in volatility only; (iv) the fourth variant allows for independent switches in both parameters and the volatility of shocks.

We find ample evidence in favor of switching parameters...

1 Model code

```
8: % new file with name :: svar_core.rs
8: endogenous Y, "Output gap", PAI, "Inflation", I, "Fed Funds rate"
11: exogenous EPAI, "Phil. curve shock", EY, "IS curve shock", EI, "Taylor rule shock"
14: parameters alpha_pai1, "$\alpha_{\pi,1}$", alpha_pai2, "$\alpha_{\pi,2}$", alpha_y, "$\alpha_{y}$", c_pai
15: c_y, "$c_{y}$", beta_y1, "$\beta_{y,1}$", beta_y2, "$\beta_{y,2}$", beta_r, "$\beta_{r}$",
18: observables I, Y, PAI
21: model(linear)
       # alpha_pai = 1/sig_pai;
25:
      \# beta_y = 1/\text{sig_y};
26:
27:
      # gam_i = 1/sig_i;
      alpha_pai*PAI = c_pai + alpha_pai1*PAI\{-1\} + alpha_pai2*PAI\{-2\} +alpha_y*Y\{-1\} + EPAI;
29:
      beta_y*Y = c_y + beta_y1*Y\{-1\} + beta_y2*Y\{-2\} - beta_r*(I\{-1\}-PAI\{-1\}) + EY;
32:
      gam_i*I = c_i + gam_i*rho_i*I\{-1\} + gam_i*(1-rho_i)*(gam_y*Y+gam_pai*PAI) + EI;
36:
38: steady_state_model(imposed)
39: xx_ssmdef_1=alpha_pai-alpha_pai1-alpha_pai2;
40: xx_ssmdef_2=gam_i*(1-rho_i);
41: xx_ssmdef_3=beta_r*(gam_pai-1);
42: xx_ssmdef_4=c_y-beta_r*c_i/xx_ssmdef_2-xx_ssmdef_3*c_pai/xx_ssmdef_1;
43: xx_ssmdef_5=beta_y-beta_y1-beta_y2+beta_r*gam_y+xx_ssmdef_3*alpha_y/xx_ssmdef_1;
45: Y=xx_ssmdef_4/xx_ssmdef_5;
46: PAI=c_pai/xx_ssmdef_1+alpha_y*Y/xx_ssmdef_1;
47: I=c_i/xx_ssmdef_2+gam_y*Y+gam_pai*PAI;
50: parameterization
       alpha_pai1, 0.9, 0.05, 1.5, gamma_pdf(0.9);
51:
       alpha_pai2, 0.05 , -1 , 1 , normal_pdf(0.9);
52:
       alpha_y, 0.1, 0.05, 1.5, gamma_pdf(0.9);
53:
       54:
       c_y, 0 , -1 , 1 , normal_pdf(0.9);
55:
```

```
beta_y1, 0.9, 0.1, 1.5, gamma_pdf(0.9);
56:
       beta_v2, 0.05 , -2 , 2 , normal_pdf(0.9);
57:
       beta_r, 0.1, 0.05, 1 , gamma_pdf(0.9);
58:
1: % new file with name :: switching_volatility.rs
1: parameters vol_tp_1_2, vol_tp_2_1
3: parameters(vol,2) sig_pai, "$\sigma_{\pi}$" sig_y, "$\sigma_{\y}$", sig_i, "$\sigma_{\i}$"
5: parameterization
                   0.1, 0.05, 3, weibull_pdf(0.9);
6: sig_pai(vol,1),
7: sig_pai(vol,2), 0.1, 0.05, 3, weibull_pdf(0.9);
8: sig_y(vol,1), 0.1, 0.05, 3, weibull_pdf(0.9);
9: sig_y(vol,2), 0.1, 0.05, 3, weibull_pdf(0.9);
10: sig_i(vol,1), 0.1, 0.05, 3, weibull_pdf(0.9);
11: sig_i(vol,2), 0.1, 0.05, 3, weibull_pdf(0.9);
13: vol_tp_1_2, 0.15,0.1, 0.5, beta_pdf(0.9);
14: vol_tp_2_1, 0.15,0.1, 0.5, beta_pdf(0.9);
16: parameter_restrictions
18: sig_pai(vol,2)>=sig_pai(vol,1);
1: % new file with name :: switching_policy.rs
1: parameters pol_tp_1_2 pol_tp_2_1
3: parameters(pol,2) rho_i, "$\rho_{i}$" gam_y, "$\gamma_{y}$" gam_pai, "$\gamma_{\pi}$" c_i, "$c_{i}$"
5: parameterization
6: rho_i(pol,1), 0.6, 0.1, 0.7, beta_pdf(0.9);
7: rho_i(pol,2), 0.6, 0.1, 0.7, beta_pdf(0.9);
8: gam_y(pol,1), 0.5, 0.1, 1.5, gamma_pdf(0.9);
9: gam_y(pol,2), 0.5, 0.1, 1.5, gamma_pdf(0.9);
10: gam_pai(pol,1), 1.5, 0.5, 3, gamma_pdf(0.9);
11: gam_pai(pol,2), 1.0, 0.5, 3, gamma_pdf(0.9);
12: c_i(pol,1), 0 , -1, 1, normal_pdf(0.9);
13: c_i(pol,2), 0 , -1, 1, normal_pdf(0.9);
```

 $Switches \ in \ the \ US \ Macroeconomic \ Data \ using \ the \ Rudebusch-Svensson \ VAR \ model \ 12-Oct-2014 \ 16:55:49 \ 4$

2 Description of variables

Table # 1: Endogenous Variables

Model code	Description
I	Fed Funds rate
PAI	Inflation
Y	Output gap

Table # 2: Exogenous Variables

D
Description
Taylor rule shock
Phil. curve shock
IS curve shock

Table # 3: Observed Variables

Model code	Description
I	Fed Funds rate
PAI	Inflation
Y	Output gap

3 Model equations

```
EQ1: alpha_pai*PAI-(c_pai+alpha_pai1*PAI{-1}+alpha_pai2*PAI_AUX_L_1{-1}+alpha_y*Y{-1}+EPAI)=0;

EQ2: beta_y*Y-(c_y+beta_y1*Y{-1}+beta_y2*Y_AUX_L_1{-1}-beta_r*(I{-1}-PAI{-1})+EY)=0;

EQ3: gam_i*I-(c_i+gam_i*rho_i*I{-1}+gam_i*(1-rho_i)*(gam_y*Y+gam_pai*PAI)+EI)=0;

EQ4: PAI_AUX_L_1-PAI{-1}=0;

EQ5: Y_AUX_L_1-Y{-1}=0;
```

4 Estimation results

Table # 4: Estimation Results

parameter	Prior distr	Prior prob	low	high	svar_constant	svar_policy	svar_volatility	svar_policy_volatility
$\alpha_{\pi,1}$	gamma	0.9	0.05	1.5	0.1429	0.1435	0.1427	0.1426
$\alpha_{\pi,2}$	normal	0.9	-1	1	0.09042	0.09074	0.08927	0.08841
α_y	gamma	0.9	0.05	1.5	0.1726	0.1694	0.1681	0.1655
c_{π}	normal	0.9	-1	1	2.122	2.1	2.119	2.092
c_y	normal	0.9	-1	1	-0.4236	-0.4645	-0.4015	-0.4427
$\beta_{y,1}$	gamma	0.9	0.1	1.5	2.283	2.191	0.9232	1.032
$\beta_{y,2}$	normal	0.9	-2	2	3.61	3.593	2.77	2.914
eta_r	gamma	0.9	0.05	1	0.1314	0.132	0.1345	0.1343
σ_{π}	weibull	0.9	0.05	3	0.002802	0.002799	_	_
σ_y	weibull	0.9	0.05	3	0.02455	0.02436	_	_
σ_i	weibull	0.9	0.05	3	0.001116	0.001065	_	_
$ ho_i$	beta	0.9	0.1	0.7	0.8897	_	0.947	_
γ_y	gamma	0.9	0.1	1.5	0.2067	_	0.1126	_
γ_{π}	gamma	0.9	0.5	3	1.489	_	1.629	_
c_i	normal	0.9	-1	1	0.3927	_	0.1285	_
$\rho_i(\mathrm{pol},1)$	beta	0.9	0.1	0.7	_	0.2285	_	0.9856
$\rho_i(\mathrm{pol},\!2)$	beta	0.9	0.1	0.7	_	0.877	_	0.8447
$\gamma_y(\text{pol},1)$	gamma	0.9	0.1	1.5	_	0.1376	_	0.1561
$\gamma_y(\text{pol},2)$	gamma	0.9	0.1	1.5	_	0.1886	_	0.08697
$\gamma_{\pi}(\mathrm{pol},1)$	gamma	0.9	0.5	3	_	2.929	_	1.768
$\gamma_{\pi}(\mathrm{pol},\!2)$	gamma	0.9	0.5	3	_	1.384	_	1.768
$c_i(\text{pol},1)$	normal	0.9	-1	1	_	0.04525	_	0.4883
$c_i(\text{pol},2)$	normal	0.9	-1	1	_	0.42	_	-1.186
$pol_tp_1_2$	beta	0.9	0.1	0.5	_	0.09504	_	0.09743

Continued on next page

$Switches \ in \ the \ US \ Macroeconomic \ Data \ using \ the \ Rudebusch-Svensson \ VAR \ model 12-Oct-2014 \ 16:55:4910$

- Continued from previous page

parameter	Prior distr	Prior prob	low	high	svar_constant	svar_policy	$svar_volatility$	svar_policy_volatility
$pol_tp_2_1$	beta	0.9	0.1	0.5	_	0.04386	_	0.1618
$\sigma_{\pi}(\text{vol},1)$	weibull	0.9	0.05	3	_	_	0.002791	0.002785
$\sigma_{\pi}(\text{vol},2)$	weibull	0.9	0.05	3	_	_	0.002791	0.002785
$\sigma_y(\text{vol},1)$	weibull	0.9	0.05	3	_	_	0.01491	0.01513
$\sigma_y(\text{vol},2)$	weibull	0.9	0.05	3	_	_	0.04546	0.04045
$\sigma_i(\mathrm{vol},1)$	weibull	0.9	0.05	3	_	_	0.001268	0.0009077
$\sigma_i(\text{vol,2})$	weibull	0.9	0.05	3	_	_	0.0001857	8.989 e-05
$vol_tp_1_2$	beta	0.9	0.1	0.5	_	_	0.02907	0.06847
$vol_tp_2_1$	beta	0.9	0.1	0.5	_	_	0.1599	0.1505

Table # 5: Estimation Statistics

	svar_constant	svar_policy	svar_volatility	svar_policy_volatility
log-post:	1363	1361	1408	1432
log-lik:	1383	1384	1426	1457
log-prior:	-20.32	-22.81	-18.54	-25.34
log-endog_prior	0	0	0	0
number of active inequalities	0	0	0	0
log-MDD(Laplace)	1317+1.571i	1298 + 1.571i	1328	1310 + 1.571i
estimation sample	1985Q1:2013Q1	1985Q1:2013Q1	1985Q1:2013Q1	1985Q1:2013Q1
number of observations	113	113	113	113
number of parameters	15	21	20	26
number of func. evals	3728	2969	2779	4510
estimation algorithm	fmincon	fmincon	fmincon	fmincon
solution algorithm	$rise_1$	mfi	$rise_1$	mfi
start time:	12-Oct-2014 15:29:05	12-Oct-2014 15:29:05	12-Oct-2014 15:29:05	12-Oct-2014 15:29:05
end time:	12-Oct-2014 15:31:50	12-Oct-2014 15:32:01	12-Oct-2014 15:31:52	12-Oct-2014 15:36:17
total time:	0:2:45	0:2:55	0:2:46	0:7:11

Table # 6: Steady state values

	svar_constant	svar_policy		$svar_volatility$		svar_policy_volatility		
	$regime_{-1}$	regime_1	regime_2	$regime_1$	regime_2	regime_1	regime_2	regime_3 1
Fed Funds rate	0.01031	0.01546	0.009285	0.012	0.007607	0.04	0.01001	0.002752
Inflation	0.005942	0.005877	0.005877	0.005916	0.005909	0.005827	0.00582	0.005827
PAI_AUX_L_1	0.005942	0.005877	0.005877	0.005916	0.005909	0.005827	0.00582	0.005827
Output gap	-0.01217	-0.01321	-0.01318	-0.006346	-0.02195	-0.007198	-0.02134	-0.007117
$Y_AUX_L_1$	-0.01217	-0.01321	-0.01318	-0.006346	-0.02195	-0.007198	-0.02134	-0.007117

Figure # 1: Observed data from the US

Figure # 2: Smoothed probabilities for svar_constant model

Figure # 3: Smoothed probabilities for svar_policy model

Figure # 4: Smoothed probabilities for svar_volatility model

Figure # 5: Smoothed probabilities for svar_policy_volatility model

Figure # 6: svar_policy:: Observed vs pol_1(pol_1)

Figure # 7: svar_policy:: Observed vs pol_2(pol_2)

Figure # 10: svar_policy_volatility:: Observed vs pol_1(pol_1)

Figure # 14: Unobserved variables

Figure # 15: (Generalized) IRFs to a Taylor rule shock shock

Figure # 16: (Generalized) IRFs to a Phil. curve shock shock

Figure # 17: (Generalized) IRFs to a IS curve shock shock

Figure # 18: historical decomposition of Fed Funds rate

Figure # 19: historical decomposition of Inflation

Figure # 20: historical decomposition of PAI_AUX_L_1

Figure # 21: historical decomposition of Output gap

Figure # 22: historical decomposition of $Y_AUX_L_1$

Figure # 23: Variance decomposition of Fed Funds rate

Figure # 24: Variance decomposition of Inflation

Figure # 25: Variance decomposition of Output gap

Figure # 26: real-time forecasts for Fed Funds rate

Figure # 27: real-time forecasts for Inflation

Figure # 28: real-time forecasts for Output gap

Figure # 30: Vector autocorrelations(2)

Figure # 31: Smoothed shocks

Table # 7: Exogenous Variables

Model code	Description
EI	Taylor rule shock
EPAI	Phil. curve shock
EY	IS curve shock

Table # 8: Shock correlation structure in svar_constant

	EI	EPAI	EY
EI	1	-0.02267	-0.01879
EPAI	-0.02267	1	0.23
EY	-0.01879	0.23	1

Table # 9: Shock correlation structure in svar_policy

	EI	EPAI	EY
EI	1	-0.01291	0.01442
EPAI	-0.01291	1	0.231
EY	0.01442	0.231	1

Table # 10: Shock correlation structure in svar_volatility

	EI	EPAI	EY
EI	1	-0.02304	0.3151
EPAI	-0.02304	1	0.00692
EY	0.3151	0.00692	1

Table # 11: Shock correlation structure in svar_policy_volatility

	EI	EPAI	EY
EI	1	0.05	0.1989
EPAI	0.05	1	0.04611
EY	0.1989	0.04611	1_

Figure # 32: Empirical distribution of smoothed shocks

Figure # 33: svar_constant:: Posterior Impulse responses to a EI shock in irf

Figure # 34: svar_constant:: Posterior Impulse responses to a EPAI shock in irf

Figure # 35: svar_constant:: Posterior Impulse responses to a EY shock in irf

Figure # 36: svar_policy:: Posterior Impulse responses to a EI shock in regime_1

Figure # 37: svar_policy:: Posterior Impulse responses to a EI shock in regime_2

Figure # 38: svar_policy:: Posterior Impulse responses to a EPAI shock in regime_1

Figure # 39: svar_policy:: Posterior Impulse responses to a EPAI shock in regime_2

Figure # 40: svar_policy:: Posterior Impulse responses to a EY shock in regime_1

Figure # 41: svar_policy:: Posterior Impulse responses to a EY shock in regime_2

Figure # 42: svar_volatility:: Posterior Impulse responses to a EI shock in regime_1

Figure # 43: svar_volatility:: Posterior Impulse responses to a EI shock in regime_2

Figure # 44: svar_volatility:: Posterior Impulse responses to a EPAI shock in regime_1

Figure # 45: svar_volatility:: Posterior Impulse responses to a EPAI shock in regime_2

Figure # 46: svar_volatility:: Posterior Impulse responses to a EY shock in regime_1

Figure # 47: svar_volatility:: Posterior Impulse responses to a EY shock in regime_2

Figure # 48: svar_policy_volatility:: Posterior Impulse responses to a EI shock in regime_1

Figure # 49: svar_policy_volatility:: Posterior Impulse responses to a EI shock in regime_2

Figure # 50: svar_policy_volatility:: Posterior Impulse responses to a EI shock in regime_3

Figure # 51: svar_policy_volatility:: Posterior Impulse responses to a EI shock in regime_4

Figure # 52: svar_policy_volatility:: Posterior Impulse responses to a EPAI shock in regime

Figure # 53: svar_policy_volatility:: Posterior Impulse responses to a EPAI shock in regime

Figure # 54: svar_policy_volatility:: Posterior Impulse responses to a EPAI shock in regime

Figure # 55: svar_policy_volatility:: Posterior Impulse responses to a EPAI shock in regime

Figure # 56: svar_policy_volatility:: Posterior Impulse responses to a EY shock in regime_1

Figure # 57: svar_policy_volatility:: Posterior Impulse responses to a EY shock in regime_2

Figure # 58: svar_policy_volatility:: Posterior Impulse responses to a EY shock in regime_3

Figure # 59: svar_policy_volatility:: Posterior Impulse responses to a EY shock in regime_4

