

Introdução à Probabilidade e Estatística 2015/2016 - $2^{\rm o}$ Semestre

Ficha Nº 7: Intervalos de Confiança e Testes de Hipóteses

1. O departamento de recursos humanos da empresa que pretende recrutar funcionários para uma nova área de negócio, está a realizar um estudo para averiguar se o tipo de teste feito é adequado para o perfil de candidatos que procura. Para tal, seleccionou aleatoriamente a classificação no teste de 15 candidatos do sexo masculino e 15 candidatos do sexo feminino. De entre as várias análises estatísticas realizadas apresentam-se os seguintes resultados:

Group Statistics								
		Sexo	N	Mean	Std. Deviation	Std. Error Mean		
Ī	Resultados	Masculino	15	94,40		4,775		
	no teste	Feminino	15	98,20	15,167	3,916		

Tests of Normality									
	Kolmogorov-Smirnov Sh						lk		
	Sexo	Statistic	df	Sig.	Statistic	df	Sig.		
Resultados	Masculino	,145	15	,200	,943	15	,425		
no teste	Feminino	,152	15	,200	,949	15	,505,		

			Indepe	ndent S	Samples Tes	t		
		Levene's Test for t-test for Equality of Means Equality of Variances						
					Mean	Ctd Frank	90% Co	onfidence
		F	Sig.	Df	Difference	Std. Error Difference	Interval of the Difference	
					Difference		Lower	Upper
Resultados	Equal Variances assumed	,761	,390	28	-3,800	6,175		6,705
no teste	Equal variances not assumed			26,97	-3,800	6,175		6,719

- (a) Verifique, ao nível de significância de 1%, se existe evidência suficiente nos resultados para afirmar que, em média, os candidatos do sexo masculino verificam o requisito exigido de uma classificação mínima no teste de 115.
- (b) Calcule o *p-value* associado ao teste da alínea anterior.
- (c) Determine o intervalo a 90% de confiança para a variância da classificação no teste dos candidatos do sexo feminino.

- (d) Diga, ao nível de significância de 1% se existem diferenças significativas na classificação média do teste entre os candidatos do sexo masculino e os candidatos do sexo feminino. Justifique convenientemente a sua resposta.
- 2. Um fabricante da indústria cerâmica pretende determinar se duas novas ligas premium, uma nacional e uma importada, possuem uma resistência ao calor superior à da liga standard já utilizada. Para tal foram realizados testes em que, para 20 fornadas de cada tipo de liga, se registou a temperatura máxima de resistência ao calor. Apresentam-se abaixo alguns dos resultados obtidos com a análise dos dados realizada com recurso ao software SPSS.

Tests of Normality

	Liga	Kolmogorov-	Smir	nov ^a	Shapiro-Wilk		
	Liga	Statistic	df	Sig.	Statistic	df	Sig.
Tomporatura do	Premium Importada	,276	20	,000	,750	20	,000
Temperatura de resistência (ºC)	Premium Nacional	,156	20	,200*	,926	20	,129
	Standard	,106	20	,200*	,973	20	,825

a. Lilliefors Significance Correction

One-Sample Test

	Test Value = 1535							
	τ	df	Sig. (2-tailed)	Mean Difference				
Temperatura de resistência (ºC) Liga Premium nacional	3,869	19	?	6,48261				

Independent Samples Test

		ne's Test for y of Variances	t-test for Equality of Means				
		F	Sig.	Mean Std Frror Interven		99% Con Interval Differ	of the
						Lower	Upper
Temperatura de resistência (ºC)	Equal variances assumed	1,697	,200	25,42954	2,80969	,	33,04816
Premium nacional vs Standard	Equal variances not assumed			25,42954	2,80969		

- (a) As amostras recolhidas provêm de populações com distribuição normal?
- (b) Podemos afirmar, ao nível de significância de 10%, que a temperatura de resistência média da liga *premium* nacional é diferente de 1535?
- (c) Calcule o *p-value* associado ao teste da alínea anterior.
- (d) Com que confiança, podemos dizer que a variância da temperatura de resistência da liga *standard* se encontra entre [71.12, 166.04]?
- (e) Será que existe evidência estatística suficiente nos dados, ao nível de significância de 1%, para dizer que a temperatura de resistência média da nova liga *premium* nacional é significativamente diferente da liga *standard*? E significativamente melhor?
- 3. Foram retiradas 25 peças da produção diária de uma máquina, encontrando-se, para uma certa medida, uma média de 5.2 mm. Sabe-se que as medições têm distribuição normal. Construa intervalos de confiança para média populacional aos níveis de confiança de 90%, 95% e 99%.
 - (a) Com base num desvio-padrão populacional de 1.2 mm.

- (b) Com base num desvio-padrão amostral de 1.2 mm.
- (c) Justifique as diferenças obtidas.
- 4. Pretende-se analisar os salários, por sexo, do pessoal em início de carreira duma determinada área. As tabelas seguintes foram obtidas com recurso ao SPSS e fornecem alguns elementos para descrever a amostra recolhida:

N		Mean	Std. Deviation		
salário	1100	2606.4205	696.79819		

	Gender	N	Mean	Std. Deviation
colório			2476.9510	689.57645
salário	Masculino	631	2702.6506	687.00971

	Independent Samples Test												
		Equa	s Test for lity of ances		t-test for Equality of Means								
		F	Sig.	Df	Sig.(2- tailed)	Mean Difference	Std. Error Difference	90% Conf Interval of the Lower					
Resultados	Equal Variances assumed	.034	.854	В	.000	С	41.95173	-308.014	-143.345				
no teste	Equal variances not assumed			1006.36	.000	-225.6996	41.97410	-308.068	-143.331				

Com base nestes resultados:

- (a) Calcule o intervalo a 90% de confiança para a média global dos salários do pessoal em início de carreira.
- (b) Indique os valores de A, B e C.
- (c) Existem ou não diferenças significativas entre os salários médios iniciais nos 2 sexos?
- 5. Registou-se o comprimento, em metros, dos saltos de 10 atletas portugueses do sexo masculino em provas de triplo salto em pista coberta:

14.97	15.32	15.02	15.33	15.10	14.75	15.66	15.05	15.05	15.25

Tenha em conta que $\sum\limits_{i=1}^{10}x_i=151.5$ e que $\sum\limits_{i=1}^{10}x_i^2=2295.8$ e que o comprimento dos saltos dos atletas portugueses do sexo masculino (em provas de triplo salto) é uma variável aleatória com distribuição normal com valor médio μ e desvio padrão σ metros. Determine:

(a) a confiança do intervalo [14.95, 15.35] para o comprimento médio dos saltos.

- (b) o intervalo de confiança a 99% para a variabilidade do comprimento dos saltos dos atletas portugueses do sexo masculino em provas de triplo salto.
- (c) Teste, para um nível de significância de 10%, se é razoável admitir que o comprimento médio dos saltos é superior a 15.25 metros.
- 6. O Serviço Nacional de Saúde (SNS) afirma que a proporção de asmáticos numa certa população masculina é inferior a 10%. Um médico, pensando que este valor é muito baixo, deseja testar esta hipótese e escolhe ao acaso 200 homens do ficheiro dos seus doentes tendo verificado que 31 doentes sofrem de asma.
 - (a) Teste se o médico deve avisar o SNS de que a sua estimativa não está correcta?
 - (b) Calcule o *p-value* associado a este teste.
 - (c) Qual a potência de teste para $p_1=0.18$?
 - (d) Calcule o intervalo de confiança para a verdadeira proporção de asmáticos.
- 7. Foram efetuados estudos em Lisboa com o objectivo de determinar a concentração de monóxido de carbono (CO) perto de vias rápidas. Para isso recolheu-se uma amostra de 20 pequenos volumes de ar, para os quais se determinaram a respectiva concentração de CO (em partes por milhão, ppm), usando um espectrómetro. Tais medições resultaram numa média de valores de 100,5ppm com variância de 27,5ppm2, tendo-se verificado que em 5 das medições a concentração observada ultrapassava os 110ppm. Obteve-se, ainda, para uma confiança de 95% que a concentração de CO segue uma distribuição normal.
 - (a) Teste a hipótese de a variância da concentração esperada de CO ser inferior a 25ppm2, indicando os pressupostos que tenha de fazer. (Use um nível de significância de 1%.)
 - (b) Deduza um intervalo de confiança a 90% para a concentração média de CO na população.
 - (c) Qual a dimensão da amostra que deveria considerar, para que o erro de estimativa não ultrapasse os 0,3ppm. (Considere nível de significância de 5%)
- 8. Certa linha de fabrico está programada de modo a produzir uma percentagem de artigos defeituosos não superior a 3%. De modo a verificar se o processo está sob controlo, são recolhidas periodicamente amostras de 50 artigos. A determinada altura verificou-se que uma dessas amostras continha dois artigos defeituosos e o encarregado declarou o processo fora de controlo, dando ordens para a interrupção do mesmo.
 - (a) Considerando um nível de significância de 5% diga se o encarregado agiu bem.
 - (b) Calcule o *p-value* associado a este teste.
 - (c) Calcule a potência do teste considerado na alínea a) para $p_1=0.035$ e para $p_1=0.1$. Que conclusões pode retirar sobre dois valores?

9. A poluição atmosférica é medida em dois locais distintos, um no centro de uma pequena cidade (Y) e outro numa zona rural, 15Km mais a sul, (X). As medições foram efectuadas 3 dias por semana, durante 4 meses e com idênticos instrumentos de medição. Em alguns dos dias não foram efectuadas medições devido a falhas de equipamento. Os resultados registados foram os seguintes:

$$\sum_{i=1}^{31} x_i = 158.218, \sum_{i=1}^{31} x_i^2 = 898.501, s_Y^2 = 3.8026 \text{ e} \quad \sum_{i=1}^{21} y_i^2 = 735.734$$

Considere que X e Y seguem uma distribuição normal.

- (a) Construa o intervalo de confiança a 95% para a comparação média da poluição atmosférica nos locais analisados. O que pode concluir?
- (b) Construa o i ntervalo de confiança a 98% para a variância da poluição atmosférica na zona rural.
- 10. Dois laboratórios (A e B) avaliam a quantidade de cloro de amostras de água recolhidas à mesma hora de cada dia. Considerando que as amostras recolhidas são independentes, e com base nos *outputs* abaixo,
 - (a) Construa o intervalo de confiança para a diferença entre as duas médias.
 - (b) Existe evidência suficiente nos resultados para afirmar, com uma confiança de 99%, que existem diferenças significativas entre os dois laboratórios?

Tests of Normality

	Kolmogorov-	Shapiro-Wilk				
	Statistic	df	Sig.	Statistic	df	Sig.
LabA	,229	7	,200	,867	7	,176
LabB	,250	7	,200*	,856	7	,147

a. Lilliefors Significance Correction*. This is a lower bound of the true significance

Group Statistics										
	Grupo	N	Mean	Std. Deviation	Std. Error Mean					
1 = h A	1	7	1,4671	0,45121	0,17054					
LabA	2	7	1,4929	0,44575	0,16848					

				Inde	ependen	t Samples Te	est			
		Levene'	s Test for							
			lity of ances			t	-test for Equ	ality of Means		
						Sig.	Mean		90% Con	fidence
		F	Sig.	t	df	(2-tailed)	Difference	Std. Error Difference	Interval of the	e Difference
						(2-tailed)	Difference		Lower	Upper
LabA	Equal Variances assumed	0,004	0,952	0,107	12	0,916	-0,02571	0,23973	-0,54803	?
LabA	Equal variances not assumed			0,107	11,998	0,916	-0,02571	0,23973	?	0,49661

11. Um investigador pretende estudar a capacidade de concentração dos alunos do ensino universitário antes e depois do almoço. Com esse objectivo, seleccionou aleatoriamente uma amostra de 10 alunos e mediu-se, utilizando um determinado coeficiente, a capacidade de concentração de cada aluno antes e depois do almoço:

Antes	52	45	55	50	55	47	50	46	56	53
Depois	50	49	51	48	53	43	49	47	55	50

Tests of Normality	Kolmogorov-Smirnova	Shapiro-Wilk				
Statistic	df	Sig.	Statistic	df	Sig.	
Antes	0,150	10	0,200	0,928	10	0,429
Depois	0,139	10	0,200	0,968	10	0,870

	lests of Normality										
	Kolmogo	rov-Sm	nirnova	Sha	piro-W	lk					
	Statistic	df	Sig.	Statistic	df	Sig.					
Antes-Depois	,234	10	,128	,879	10	,127					
a Lillioforc Sig	nificanco	Corroc	tion								

a. Lilliefors Significance Correction

			Paired Sam	ples Test			
			Paired Diffe	rences			
		Mean	Std. Deviation	Std. Error Mean	t	df	Sig. (2-tailed)
Pair 1	Antes - Depois	1,400	2,413	0,763	1,835	9	0,100

	One-sample statistics										
	N	Mean	Std. Deviation	Std. Error Mean							
Antes	10	50,90	3,957	1,251							

			One-	Sample lest	
			T	Test Value = 10	
					nterval of the Difference
	t	df	Mean Difference	Lower	Upper
Antes	?	9	40,900	?	,

Com base nos *outputs* apresentados responda às seguintes questões:

- (a) Construa um intervalo a 98% de confiança para a diferença entre a capacidade média de concentração antes e depois do almoço.
- (b) Verifique se existe evidência suficiente nos resultados para afirmar que existem diferenças significativas entre a capacidade de concentração antes e depois do almoço.
- (c) Teste se podemos admitir uma variabilidade da capacidade de concentração antes do almoço igual 10.
- (d) Calcule o p-value associado ao teste de hipóteses da alínea anterior.
- (e) Considere o teste de hipóteses $H_0: \mu_X \leq k \ vs \ H_1: \mu_X > k$, onde μ_X representa o valor médio da capacidade de concentração antes do almoço. Sabendo que se rejeita a hipótese H_0 , ao nível de significância de 5%, para um valor de $\bar{x} > 56$, determine o valor da constante k.

12. A uma eleição concorrem três candidatos A, B e C. Qualquer deles admite desistir se esperar obter menos de 10% dos votos. Uma sondagem a 150 potenciais eleitores revelou as seguintes intenções de voto:

	A	В	С
Nº de Intenções de Voto	12	74	64

- (a) Determine um intervalo de confiança a 95% para a proporção de votos no candidato B.
- (b) Teste, ao nível de significância de 5% se o candidato A deve desistir.
- (c) Calcule o *p-value* associado ao teste da alínea anterior.
- (d) Qual é o número máximo de intenções de voto que um dos candidatos poderia obter para que fosse levado a desistir? (Considere um nível de confiança de 99%)
- 13. Suponha que o teor de nicotina de duas marcas de cigarros foi analisado, não se tendo rejeitado a hipótese de serem provenientes de populações com distribuição normal, nem de possuírem homogeneidade de variâncias. Admita que, numa amostra de 40 cigarros da marca A, o teor médio é 2.65mg e o desvio padrão 0.23mg e, numa amostra de 35 cigarros da marca B, o teor médio é 2.30mg e o desvio padrão 0.22mg.
 - (a) Teste, para uma confiança de 99%, se o teor médio de nicotina dos cigarros da marca A é superior ao teor médio de nicotina dos cigarros da marca B.
 - (b) Calcule o p-value associado ao teste da alínea anterior.
 - (c) Se o verdadeiro valor do teor médio de nicotina dos cigarros da marca A for de 2.1mg, determine a potência associada ao teste $H_0: \mu_A = 2.5 \ vs \ H_1: \mu_A \neq 2.5$.
- 14. Para comparar a resistência ao esforço físico de duas populações, A e B, submeteram-se dois grupos de indivíduos, um de cada população, a um exercício na passadeira rolante, medindo-se o tempo (em minutos) até ao consumo máximo de oxigénio.

Considere que X e Y representam o tempo (em minutos) até ao consumo máximo de oxigénio para cada indivíduo da população A e da população B, respectivamente. Admite-se que X e Y têm distribuição normal. Caso necessite utilize os seguintes resultados:

$$\sum_{i=1}^{10} x_i = 109.9, \sum_{i=1}^{10} (x_i - \bar{x})^2 = 49.41, \sum_{i=1}^{11} y_i = 174.7 \text{ e } \sum_{i=1}^{11} (y_i - \bar{y})^2 = 111.74$$

- (a) Indique estimativas pontuais para o valor médio e desvio padrão de Y.
- (b) Determine um intervalo a 90% de confiança para o tempo médio até ao consumo máximo de oxigénio dos indivíduos da população B.

- (c) Obteve-se o seguinte intervalo de confiança para a razão de variâncias das duas populações:]0.0995; 2.584[. Determine o nível de confiança desse intervalo.
- 15. Com o objectivo de estudar algumas características dos jogadores de futebol que participam no Campeonato Europeu de Futebol de 2008, que está a decorrer na Áustria e na Suíça, foi recolhida aleatoriamente uma amostra de 72 jogadores, para os quais foram registados os valores das seguintes variáveis: país de origem, posição em campo (guarda-redes, defesa, médio, avançado), altura (em cm), peso (em kg), idade (em anos) e número de internacionalizações. Na amostra recolhida, 12 jogadores são da República Checa e 12 são da Grécia.

Tests of Normalit	٠,

			,			
	Kolmogo	rov-Sm	nirnova	Sha	piro-W	ilk
	Statistic	df		Statistic	df	Sig.
Altura dos jogadores Checos	0,141	12	0,200*	0,946	12	0,574
Altura dos jogadores Gregos	0,167	12	0,200*	0,930	12	0,376
	ı	1			l	ı

a. Lilliefors Significance Correction

Independent Samples Test

		Levene's	Test for Equality of Variances
		F	Sig.
Altura dos jogadores	Equal variances assumed	1,047	0,317

Group Statistics

	Grupo	N	Mean	Std. Deviation	Std. Error Mean
Altura dos jogadores	1	12	178,00	5,527	1,595
	2	12	180,00	4,390	1,267

Com base nos resultados apresentados:

- (a) Determine um intervalo a 98% de confiança para a diferença entre as alturas médias dos jogadores checos e gregos. Justifique, convenientemente, a escolha do intervalo de confiança utilizado.
- (b) Indique a margem de erro associada ao intervalo anterior.
- (c) Para α =5%, diga se há diferença entre as alturas médias dos jogadores checos e gregos. Justifique, convenientemente, a sua resposta.
- (d) Averigue se podemos admitir que a altura média dos jogadores checos é superior a 175 cm (use um nível de significância de 1%).
- (e) Calcule o *p-value* associado ao teste anterior. Qual a conclusão a retirar a partir deste valor?
- (f) Qual deverá ser a altura média (amostral) dos jogadores checos de modo a poder considerar-se que a altura média (populacional) desses jogadores é superior a 175 cm, para um $\alpha=1\%$?
- (g) Será que existe evidência estatística suficiente nos dados, ao nível de significância de 1%, para dizer que a variância das alturas dos jogadores checos é superior à variância das alturas dos jogadores gregos?

^{*.} This is a lower bound of the true significance.

- 16. De 72 jogadores inquiridos, 36 jogam em equipas estrangeiras, 34 em equipas do país de origem e 2 não têm equipa. Um conhecido jornal desportivo tem na sua primeira página a seguinte notícia: "mais de 40% dos jogadores do Campeonato Europeu de Futebol de 2008 jogam em equipas estrangeiras". Considerando um nível de significância de 5%, diga se concorda ou não com esta notícia.
- 17. Foi levado a cabo um estudo para averiguar se a ausência às aulas durante o semestre de Inverno é maior num centro urbano do norte ou do sul. Para tal, forma seleccionados aleatoriamente dois grupos de alunos: um grupo na cidade de Braga (X) e o outro na cidade de Faro (Y). De 300 estudantes de Braga, 64 faltaram pelo menos um dia e de 400 de Faro, 51 faltaram um ou mais dias.
 - (a) Determine o intervalo de confiança a 99% para a diferença entre as proporções de estudantes que faltaram pelo menos um dia às aulas durante o Inverno.
 - (b) Teste, ao nível de significância de 1%, se é possível afirmar-se que, durante o Inverno, se falta (pelo menos um dia) mais às aulas na região norte do que na região sul.
 - (c) Calcule o *p-value* associado ao teste anterior. Qual a conclusão a retirar a partir deste valor?
 - (d) Obteve-se o seguinte intervalo de confiança para a proporção de faltas na região sul:]0.0913; 0.1637[. Determine o nível (ou coeficiente) de confiança desse intervalo. Qual o desvio padrão da variável aleatória que mede a pluviosidade anual nessa região?
- 18. Tome-se o seguinte exemplo, relativo a dois tipos de geradores (I e II), e considere-se que

$$n_X = 27, \ \bar{x} = 10.0241, \ s_X = 4.20283$$

 $n_Y = 23, \ \bar{y} = 10.0496, \ s_Y = 3.53775$

com as variáveis X e Y a representarem a produção de energia eléctrica em KW/h do gerador do tipo I e II, respectivamente, e que a produção de energia eléctrica de ambos segue uma distribuição normal.

- (a) Teste se existe evidência estatística suficiente (para um ?=1%) para afirmar que o valor esperado da produção de energia eléctrica é igual nos dois geradores.
- (b) Calcule o *p-value* associado ao teste anterior. Qual a conclusão a retirar a partir deste valor?
- (c) O fabricante afirma que o desvio padrão da produção de energia eléctrica através do gerador II é de 4KW/h. Comente a afirmação do fabricante.
- (d) Determine um intervalo a 98% de confiança para a razão entre a variabilidade da produção de energia eléctrica dos dois geradores.

(Dulce Gomes e Patrícia Filipe, IPE 2014/2015)