Operations on Relations

Lecture 5
Discrete Mathematical
Structures

Operations on Relations

- Part I: Basic Operations on Relations
 - ☐ Set operations on relations
 - Inverse
 - Composition
 - Closure of Relation
- Part II: Computer Representation and Warshall's Algorithm
 - Representation of Relations in Computer
 - □ Transitive closure and Warshall's Algorithm

Operations on Relations: (1)

- Relations are sets, so, all the operations on sets are applicable for relations.
 - Examples on the set of natural numbers:

```
■ "<" ∪ "=" = "≤"
```

Operations on Relations (2)

Inverse

- $\square R^{-1} = \{(y,x) | (x,y) \in R\}$
 - Note: if *R* is a relation from *A* to *B*, *R*⁻¹ is a valid relation from *B* to *A*.
- $\Box (R^{-1})^{-1} = R$
 - Proof: $(R^{-1})^{-1} = \{(x,y) | (y,x) \in R^{-1}\} = \{(x,y) | (x,y) \in R\}$
- $\Box (R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$
 - Proof:

$$(x,y) \in (R_1 \cup R_2)^{-1} \Leftrightarrow (y,x) \in R_1 \cup R_2$$

 $\Leftrightarrow (y,x) \in R_1 \text{ or } (y,x) \in R_2 \Leftrightarrow (x,y) \in R_1^{-1} \text{ or } (x,y) \in R_2^{-1}$
 $\Leftrightarrow (x,y) \in R_1^{-1} \cup R_2^{-1}$

Operations on Relations (3)

- Composition
 - □ Rule:

```
If R_1 \subseteq A \times B, R_2 \subseteq B \times C, (A,B,C) are sets)
then: the composition of R_1 and R_2, written as R_2^{\circ} R_1 is a relation from A to C, and R_2^{\circ} R_1 = \{(x,z) | x \in A, z \in C, \text{ and there exists some } y \in B, such that (x,y) \in R_1, (y,z) \in R_2}
```

Composition of Relation

■ $(x,z) \in R_2^{\circ}$ R_1 if and only if $x \in A$, $z \in C$, and there exists some $t \in B_r$ such that $(x,t) \in R_1$, $(t,z) \in R_2$

Composition: Examples

■ Let $A=\{a,b,c,d\}$, R_1 , R_2 are relations on A: $R_1 = \{(a,a),(a,b),(b,d)\}$ $R_2 = \{(a,d),(b,c),(b,d),(c,b)\}$ then: $R_2^{\circ}R_1 = \{(a,d),(a,c)\}$ $R_1 \circ R_2 = \{(c,d)\}$ $R_1^{\circ}R_1 = \{(a,a),(a,b),(a,d)\}$ $(R_1 \circ R_1) \circ R_1 = \{(a,a), (a,b), (a,d)\}$

Power of Composition

$$\begin{cases} R^0 = I_A \\ R^{n+1} = R \circ R^n \end{cases}$$

 R^n corresponds the relation defined by the path of length n in Digraph of R.

Properties of Relation Composition(1)

Associative Law

$$(R_3^{\circ} R_2)^{\circ} R_1 = R_3^{\circ} (R_2^{\circ} R_1)$$

(where, $R_1 \subseteq A \times B$, $R_2 \subseteq B \times C$, $R_3 \subseteq C \times D$)

- □ Proof
- $□ (x,y)∈(R_3° R_2)° R_1 \Leftrightarrow x∈A, y∈D, and there exists s∈B, such that xR_1s and s(R_3° R_2)y \Leftrightarrow there exist t∈C, such that xR_1s, sR_2t, tR_3y \Leftrightarrow x(R_2° R_1)t, tR_3y \Leftrightarrow (x,y)∈R_3° (R_2° R_1)$

Properties of Relation Composition(2)

Inverse of composition

$$\square (R_2^{\circ} R_1)^{-1} = R_1^{-1} R_2^{-1} \text{ (where } R_1 \subseteq A \times B, R_2 \subseteq B \times C)$$

- □ Proof
- $\square(x,y) \in (R_2^{\circ} R_1)^{-1} \Leftrightarrow (y,x) \in R_2^{\circ} R_1 \Leftrightarrow \text{there}$ exists some $t \in B$, such that yR_1t and $tR_2x \Leftrightarrow xR_2^{-1}t$ and $tR_1^{-1}y \Leftrightarrow (x,y) \in R_1^{-1} R_2^{-1}$

Properties of Relation Composition(3)

Distribution Law

$$\Box (G \cup H)^{\circ} F = G^{\circ} F \cup H^{\circ} F$$
(where $F \subseteq A \times B$, and H , $G \subseteq B \times C$)

- $\Box (G \cap H)^{\circ} F \subseteq G^{\circ} F \cap H^{\circ} F$
 - Why the equality doesn't hold?
 - A wrong proof: $G^{\circ}F \cap H^{\circ}F \subseteq (G \cap H)^{\circ}F$
 - □ if $(x,y) \in G^{\circ}F \cap H^{\circ}F$, then $(x,y) \in G^{\circ}F$, $(x,y) \in H^{\circ}F$. So, there exists some t, such that $(x,t) \in F$, and $(t,y) \in G$, $(t,y) \in H$. So, $(t,y) \in G \cap H$, it follows that $(x,y) \in (G \cap H)^{\circ}F$

Operations and Relation Matrix

$$M_{R \cap S} = M_R \wedge M_S$$

$$M_{R \cup S} = M_R \vee M_S$$

$$M_{R^{-1}} = (M_R)^T$$

Suppose that $M_R = [r_{ij}], M_S = [s_{ij}], M_{S \circ R} = [t_{ij}]$ then, $t_{ij} = 1$ if and only if $(i,t) \in R, (t,j) \in S$ for some $t \in B$, so, $r_{it} = 1$, $s_{tj} = 1$, which results in $M_R \otimes M_S[i,j] = 1$

Let
$$A = \{a_1, ..., a_n\}$$
, $B = \{b_1, ..., b_p\}$, $C = \{c_1, ..., c_m\}$
 $R \subseteq A \times B$, $S \subseteq B \times C$, then $M_{S \circ R} = M_R \otimes M_S$

Connectivity Relation

Connectivity relation, R^{∞} on some set A is defined as:

 $\forall x, y \in A, (x, y) \in R^{\infty}$ if and only if there is some path in R from x to y

Note:
$$R^{\infty} = R \cup R^2 \cup R^3 \cup \dots = \bigcup_{n=1}^{\infty} R^n$$

So,
$$M_{R^{\infty}} = M_R \vee M_{R^2} \vee M_{R^3} \vee \cdots$$

= $M_R \vee (M_R)_{\otimes}^2 \vee (M_R)_{\otimes}^3 \vee \cdots$

Inverse Keeping Properties of Relation

- Reflexivity: $\forall x$, $(x,x) \in R_1 \Leftrightarrow (x,x) \in R_1^{-1}$
- Irreflexivity: $\forall x$, $(x,x) \notin R_1 \Leftrightarrow (x,x) \notin R_1^{-1}$
- **Symmetry**: $\forall x,y$, if $(x,y) \in R_1^{-1}$, then $(y,x) \in R_1$, since R_1 is symmetric, $(x,y) \in R_1$, $\therefore (y,x) \in R_1^{-1}$
- Antisymmetry: $\forall x,y$, if $(x,y) \in R_1^{-1}$, $(y,x) \in R_1^{-1}$, then $(y,x) \in R_1$, $(x,y) \in R_1$, since R_1 is antisymmetric, x=y.
- Transitivity: $\forall x,y,z$, if $(x,y) \in R_1^{-1}$, $(y,z) \in R_1^{-1}$, then $(y,x) \in R_1$, $(z,y) \in R_1$, since R_1 is transitive, $(z,x) \in R_1$, $\therefore (x,z) \in R_1^{-1}$

Composition Keeping Properties of Relation

- Reflexivity: $\forall x$, $\because (x,x) \in R_1$ and $(x,x) \in R_2$, $\therefore (x,x) \in R_2^{\circ} R_1$
- Irreflexivity: counterexample: $R_1 = \{(a,b)\}, R_2 = \{(b,a)\}, \text{ then } R_2 \circ R_1 = \{(a,a)\}$
- **Symmetry**: counterexample: $R_1 = \{(c,b),(b,c)\}, R_2 = \{(c,d),(d,c)\}, \text{ then } R_2 \circ R_1 = \{(b,d)\}$
- Antisymmetry: counterexample: $R_1 = \{(a,b)\}, R_2 = \{(b,a)\},$ then $R_2 \cap R_1 = \{(a,a)\}$
- **Transitivity**: counterexample: $R_1 = \{(x,t),(y,s)\}, R_2 = \{(t,y),(s,z)\}, \text{ then } R_2 \circ R_1 = \{(x,y),(y,z)\}$

Summary of Keeping Properties

	reflexivity	irreflexivity	symmetry	anti- symmetry	transitivity
R_1^{-1}	✓	✓	✓	✓	✓
$R_1 \cap R_2$	✓	√	✓	✓	✓
$R_1 \cup R_2$	✓	√	✓	×	×
$R_1^{\circ}R_2$	✓	×	×	×	×

Closure – the Idea

an object

- 1. circle (property)
- 2. Contain the object
- 3. If there is a green circle which satisfies above 1,2, then it must contain the orange circle.

The purple square:

- 1. square (property)
- 2. Contain the object
- 3. Any square contain the object contain the purple square as well

Closure: the Generic Definition

- Let R be a relation on A, P is some property, R₁ is called P closure if:
 - \square R_1 has property P is
 - \square $R \subseteq R_1$
 - If there is some relation R' on A has property P and includes R as well, then $R_1 \subseteq R'$

Reflexive Closure

- Reflexive closure of R is $R \cup I_A$
 - \square For any $x \in A$, $(x,x) \in I_A$, so, $(x,x) \in R \cup I_A$
 - $\square R \subseteq R \cup I_A$
 - □ Let R' is a reflexive relation on A, and $R \subseteq R'$, then, for any $(x,y) \in R \cup I_A$, $(x,y) \in R$, or $(x,y) \in I_A$. In both cases, $(x,y) \in R'$, so, $R \cup I_A \subseteq R'$

Symmetric Closure

- Symmetric closure of R is $R \cup R^{-1}$
 - □ For any $x,y \in A$, if $(x,y) \in R \cup R^{-1}$, then $(x,y) \in R$ or $(x,y) \in R^{-1}$, it follows that $(y,x) \in R^{-1}$, or $(y,x) \in R$, then $(y,x) \in R \cup R^{-1}$
 - $\square R \subseteq R \cup R^{-1}$
 - □ Let R' is a symmetric relation on A, and $R \subseteq R'$, then, for any $(x,y) \in R \cup R^{-1}$, $(x,y) \in R$, or $(x,y) \in R^{-1}$.
 - Case 1: $(x,y) \in R$, then $(x,y) \in R'$
 - Case 2: $(x,y) \in R^{-1}$, then $(y,x) \in R$, then $(y,x) \in R'$. Since R' is symmetric, $(x,y) \in R'$

So, $R \cup R^1 \subseteq R'$

M

Transitive Closure

Let R be a relation on a set A. Then R^{∞} is the transitive closure of R. Proof:

- 1. If $(x,y) \in R^{\infty}$, $(y,z) \in R^{\infty}$, then there exist $s_1, s_2, ..., s_j$ and $t_1, t_2, ..., t_k$, such that $(x,s_1), (s_1,s_2), \cdots, (s_j,y), (y,t_1), (t_1,t_2), \cdots, (t_k,z) \in R$, so, $(x,z) \in R^{\infty}$.
- $2.R \subset R^{\infty}$
- 3. Let R' is a transitive relation on A, and includes R as well. If $(x,y) \in R^{\infty}$, then there exist $t_1,t_2,...,t_k$, such that $(x,t_1),(t_1,t_2),\cdots,(t_k,y) \in R$, then $(x,t_1),(t_1,t_2),\cdots,(t_k,y) \in R'$ however, R' is transitive, so, $(x,y) \in R'$.

Linked List and Its Implementation

Representing a Digraph as a Matrix

$\lceil 0 \rceil$	1 0	1	0	0	1
1	0	1	0	0	0
0	0	0	1	1	1
0	0	0	0	0	0
0		0	1	0	0
1	0	0	0	0	0

Matrix as a 2-dimensional array *A*[][]

Representing a Digraph as a Linked List

Indexed by Vertices

Adding a New Edge: a Comparison

Adding a pair (i, j) to a relation R

Using matrix:

Simply: MAX[i,j]←1

Using linked list:

P←*P*+1

 $TAIL[P] \leftarrow I$

 $\text{HEAD}[P] \leftarrow J$

 $NEXT[P] \leftarrow VERT[I]$

 $VERT[I] \leftarrow P$

Insert the new item in front of the list of vertex *i*

Checking Transitivity Using Matrix

Determine whether a relation with p

RESULT←T ordered pairs is transitive or not

FOR I=1 THRU N

FOR J=1 THRU NIF (MAT[I,J]=1) THEN

 N^2 different MAT[I,J], among which P are "1"

Execute *P* times at most

FOR K=1 THRU NIF (MAT[J,K]=1 and MAT[I,K]=0) THEN RESULT=F

So, the total steps executed $T_A = PN + (N^2 - P)$.

Let $P=kN^2$, then $T_A=kN^3+(1-k)N^2$.

Transitivity Using Linked List

RESULT $\leftarrow T$ FOR I=1 THRU N ord $X \leftarrow VERT[I]$ WHILE $(X \neq 0)$ $J \leftarrow HEAD[X]$ $Y \leftarrow VERT[J]$ WHILE $(Y \neq 0)$

Determine whether a relation with pordered pairs is transitive or not

Averagely, P/N=D edges begin at a vertex, so, the function EDGE takes about D steps.

The total steps executed is ND^3 averagely. As before, we assume that $P=KN^2$ ($0 \le k \le 1$), so:

 $K \leftarrow \text{HEAD}[Y]$ TEST $\leftarrow \text{EDGE}[I, K]$ IF (TEST) THEN $Y \leftarrow \text{NEXT}[Y]$ ELSE RESULT $\leftarrow \text{F}$

 $Y \leftarrow \text{NEXT}[Y]$

 $T_L = N \left(\frac{kN^2}{N}\right)^3 = k^3 N^4$

 $X \leftarrow \text{NEXT}[X]$

Transitive Closure on Finite Set

If |A|=n, then the transitive closure of R is

$$\bigcup_{i=1}^{n} R^{i} = R \cup R^{2} \cup \cdots \cup R^{n}$$

Since the total of elements in A is n, if there is a path of length m from x to y, and m>n-1, then all the nodes on the path cannot be distinct. The segment between two identical nodes can be deleted, which means that: if $xR^{\infty}y$, then for some k, $1 \le k \le n$, such that $xR^{n}y$.

Warshall's Algorithm

- ALGORITHM MARSHALL
- 1. CLOSURE ← MAT
- 2. **FOR** *K*=1 **THRU** *N*
- a. **FOR** *I*=1 **THRU** *N*
- 1. **FOR** *J*=1 **THRU** *N*
- a. CLOSURE[I,J] ← CLOSURE[I,J] \lor (CLOSURE[I,K] \land CLOSURE[K,J])
- END OF ALGORITHM WARSHALL

K is the intermediate vertex between I, J.

Highest-numbered intermediate vertex

Correctness of Washall's Algorithm

- Notation:
 - □ The value of r_{ij} changes during the execution of the body of the "**for** k..." loop
 - After initializations: r_{ij}⁽⁰⁾
 - After the kth time of execution: r_{ij}(k)

Correctness of Washall's Algorithm

- If there is a simple path from s_i to s_j ($i \neq j$) for which the highest-numbered intermediate vertex is s_k , then $r_{ij}^{(k)}$ =true.
- Proof by induction:
 - □ Base case: $r_{ii}^{(0)}$ =true if and only if $s_i s_i \in E$
 - □ Hypothesis: the conclusion holds for $h < k(h \ge 0)$
 - Induction: the simple $s_i s_j$ -path can be looked as $s_i s_k$ -path+ $s_k s_j$ -path, with the indices h_1 , h_2 of the highest-numbered intermediate vertices of both segment **strictly**(simple path) less than k. So, $r_{ij}^{(h1)}$ =true, $r_{ij}^{(h2)}$ =true, then $r_{ij}^{(k-1)}$ =true, $r_{ij}^{(k-1)}$ =true(Remember, false to true can not be reversed). So, $r_{ii}^{(k)}$ =true

Correctness of Washall's Algorithm

- If there is **no** path from s_i to s_j , then r_{ij} =false.
- Proof
 - \square If r_{ii} =true, then only two cases:
 - \Box r_{ij} is set by initialization, then $s_i s_j \in E$
 - Otherwise, r_{ij} is set during the kth execution of (**for** k...) when $r_{ij}^{(k-1)}$ =true, $r_{ij}^{(k-1)}$ =true, which, recursively, leads to the conclusion of the existence of a $s_i s_j$ -path. (Note: If a $s_i s_j$ -path exists, there exists a simple $s_i s_j$ -path)

M

Home Assignments

- To be checked
 - □ Ex 4.6: 2,3,4,6,8,12
 - □ Ex 4.7: 7, 8, 12, 14, 19, 20, 23-24, 26-28, 30-31, 36-37
 - □ Ex 4.8: 8,10,12,14,18, 20, 23-25