STATS 415: Assessing Model Accuracy Part 1 + linear regression

Prof. Liza Levina

Department of Statistics, University of Michigan

Assessing model accuracy

- Supervised learning: predicting an outcome
- Regression: predicting a continuous outcome
- Classification: predicting a categorical outcome
- Before we develop methods, we need to decide how to evaluate them
- Will start from simple methods as examples to build up assessment tools

Regression

- Suppose we observe a quantitative y_i and $x_i = (x_{i1}, x_{i2}, \dots, x_{ip})$ for $i = 1, \dots, n$
- We believe that there is a relationship between *y* (response) and at least one of the *x*'s (predictors).
- · We can model the relationship as

$$y_i = f(x_i) + \varepsilon_i$$

where $f(\cdot)$ is an unknown function and ε_i is an unobserved random error with mean zero, $E(\varepsilon_i) = 0$.

Example: Income vs Education

Example: Income vs Education and Seniority

Estimating $f(\cdot)$

- "Statistical learning" refers to using the data to "learn" $f(\cdot)$.
- Why do we want to learn $f(\cdot)$?
 - Prediction: If we can produce a good estimate for f(·) (and the variance of ε is not too large) we can make accurate predictions for the response, y, for a new value of x.
 - Inference: if we are interested in the type of relationship between y
 and the x's.

How Do We Estimate $f(\cdot)$?

We need a set of training data

$$(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$$

- We then use the training data and a statistical method to estimate $f(\cdot)$.
- Statistical learning methods:
 - Parametric methods
 - Non-parametric methods

Parametric Methods

- Reduce the problem of estimating f(·) to estimating a set of parameters (numbers).
- Step 1: Make an assumption about the functional form of $f(\cdot)$, for example a linear model:

$$f(x_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

- Step 2: Use the training data to fit the model, i.e., estimate the unknown parameters such as $\beta_0, \beta_1, ..., \beta_p$; for example, with ordinary least squares (OLS).
- This course will cover many more complex and flexible models than linear regression, and methods superior to OLS for fitting them.

Example: A Linear Regression Estimate

$$f = \beta_0 + \beta_1 \times \text{education} + \beta_2 \times \text{seniority}$$

Non-parametric Methods

- They do not make explicit assumptions about the functional form of $f(\cdot)$.
- Advantage: They accurately fit a wider range of possible shapes of $f(\cdot)$ (more flexible), therefore likely more accurate
- Disadvantage: A very large number of observations is required to obtain an accurate estimate of $f(\cdot)$.

Example: A Thin-Plate Spline Estimate

Prediction Accuracy vs Model Interpretability

Why not just always use a more flexible method?

- A simple method such as linear regression is much easier to interpret (inference). For example, in linear regression β_j is the average increase in y for a one unit increase in x_j holding all other variables constant.
- Even for prediction purposes, a simple model can be more accurate if there are not enough data points to fit a more flexible model
- Overfitting: too much flexibility follows the noise too closely

Example of overfitting by a flexible method

Need to design model assessment tools that take all this into account

The Linear Regression Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$

- Start with a simple concrete example
- · A parametric, linear model
- Parameters are very easy to interpret
- β₀ is the intercept (i.e. the predicted value for y if all the x's are zero)
 centered data: beta0=0
- β_j is the slope for the *j*th variable x_j (i.e. the predicted change in y for one unit increase in x_j if all other variables are held constant).

Ordinary Least Squares (OLS)

We estimate the parameters using least squares, i.e.

$$\arg \min_{\beta_0,\beta_1,...,\beta_p} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2$$

Solving the OLS problem*

- * optional material
 - The problem is quadratic in the unknown variables (β 's)

$$\arg \min_{\beta_0,\beta_1,...,\beta_p} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} \cdots - \beta_p x_{ip})^2$$

• To minimize, take derivative with respect to each β , set to 0, and solve the system of linear equations: for example,

$$\frac{d}{d\beta_1} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} \cdots - \beta_p x_{ip})^2 = \frac{2}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} \cdots - \beta_p x_{ip}) x_{i1}$$

The OLS problem in matrix form *

- * optional material
 - To convert everything to matrix form, add a column of "1"s in front of the data matrix, and write

$$X_{n\times(p+1)} = [1,X], \ \beta = (\beta_0,\beta_1,\ldots,\beta_p)^T$$

The model is then

$$Y = X\beta + \varepsilon$$

where *Y* is *n*-vector of responses and ε is *n*-vector of errors

• The OLS problem is

$$\min_{\beta} (Y - X\beta)^T (Y - X\beta)$$

The solution is

$$\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)^T = (X^T X)^{-1} X^T Y$$

If errors are i.i.d. (independent identically distributed) normals $N(0, \sigma^2)$, $\hat{\beta} \sim N(\beta, \frac{\sigma^2}{n}(X^TX)^{-1})$ (unbiased, normally distributed)

Fitted Model

- Fitted model: $\hat{f}(x) = \hat{eta}_0 + \hat{eta}_1 x_1 + \dots + \hat{eta}_p x_p$
- Fitted values: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}$
- Residuals: $\hat{\varepsilon}_i = y_i \hat{y}_i$
- Residual sum of squares (RSS): $\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}$

Goodness of Fit: R^2

- Some of the variation in y can be explained by changes in x's and some cannot.
- Total variation (Total Sum of Squares): $\sum_{i=1}^{n} (y_i \bar{y})^2$
- Unexplained variation (Residual Sum of Squares): $\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}$
- R^2 : the fraction of variance "explained" by x.

$$R^2 = 1 - \frac{\mathsf{RSS}}{\sum (y_i - \bar{y})^2}$$

- R^2 is always between 0 and 1.
- $R^2 = 0$ means no variance in y is explained by x. $R^2 = 1$ means perfect fit to the data $(\hat{y}_i = y + i \text{ for all } i)$.

Remarks on R^2

• R² near 0 could be ...

Remarks on \mathbb{R}^2

 R² close to 0 does not mean that y and x are not linearly related. It could also mean a high error variance.

Remarks on R^2

• Likewise, R^2 close to 1 does not mean the linear model is correct.

Population and Least Squares Lines

Population line

how to get population line

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Least Squares line

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

- We really want to know β_0 through β_p , i.e. the population line. We estimate them with $\hat{\beta}_0$ through $\hat{\beta}_p$, i.e. the least squares line.
- The estimates (our best guesses) $\hat{\beta}_0$ through $\hat{\beta}_p$ are not perfect, just like the sample mean \bar{x} is not a perfect estimate of the population mean $\mu = E(X)$.

Population vs Sample lines

Red: population; Blue: least squares

Some Relevant Inference Questions

- Can we "be sure" x_j is a useful predictor? In other words, are we sure $\beta_i \neq 0$?
- Can we "be sure" that at least one of our variables is a useful predictor?
- These questions can be answered by hypothesis tests

Is x_i a useful predictor?

- Hypothesis testing framework: assume x_j is not useful ($\beta_j = 0$) and see if there is enough evidence to reject this hypothesis.
- $H_0: \beta_i = 0 \text{ vs } H_a: \beta_i \neq 0$
- Because $\hat{\beta}$ is approximately normal, t-test applies: calculate the t-statistic

$$t = |\hat{eta}_j|/\mathsf{SD}(\hat{eta}_j)$$

• If t is large (equivalently p-value is small) we can reject $H_0: \beta_j = 0$ and conclude x_j is useful in this model.

Marketing example (from the book)

- Response: product sales
- Predictors: money spent on advertising in different media
- Simple regression, model 1: regress Sales on TV ad spending

	Coefficient	Std Err	t-value	p-value
Intercept	7.033	0.458	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

 Simple regression, model 2: regress Sales on Newpaper ad spending

	Coefficient	Std Err	t-value	p-value
Intercept	12.35	0.621	19.88	< 0.0001
Newspaper	0.547	0.0166	3.30	< 0.0001

Testing individual variables in multiple regression

 Is there a (statistically detectable) linear relationship between Newspapers and Sales after all the other variables have been accounted for?

	Coefficient	Std Err	t-value	p-value
Intercept	2.939	0.312	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
Radio	0.189	0.0086	21.89	< 0.0001
Newspaper	-0.0010	0.0059	-0.18	0.860

 Almost all the explaining that Newspapers could do in simple regression has already been done by TV and Radio in multiple regression!

Is the multiple regression explaining anything?

http://blog.minitab.com/blog/adventures-in-statistics-2/understanding-analysis-of-variance-anova-and-the-f-test

- Need a hypothesis test for
 - H_0 : al $\beta_1 = \beta_2 = \cdots = \beta_p = 0$ against
 - H_a : at least one $\beta_i neq \hat{0}$
- Tested by the F-test in ANOVA (ANalysis Of VAriance) table.

$$F = \frac{(\mathsf{TSS} - \mathsf{RSS})/p}{\mathsf{RSS}/(n-p-1)}$$

	df	SS	MS	F-value	<i>p</i> -value
Explained	2	4860.2	2430.1	859.6	0.000
Unexplained	197	556.9	2.83		

Categorical (Qualitative) Predictors

- How do you put a categorical variable into a regression equation?
- Code them as indicator variables (dummy variables)
- For example, student status: "not student"=0 and "student"=1.

Interpretation

- Suppose we want to predict bank balance from income and student status.
- Let the new variable

$$Student = \left\{ \begin{array}{ll} 0 & \text{if not student} \\ 1 & \text{if student} \end{array} \right.$$

• Then the regression model is

$$\begin{array}{lll} \text{Balance} & = & \beta_0 + \beta_1 \times \mathsf{Income} + \beta_2 \times \mathsf{Student} \\ & = & \left\{ \begin{array}{ll} \beta_0 + \beta_1 \times \mathsf{Income} & \text{if not student} \\ \beta_0 + \beta_1 \times \mathsf{Income} + \beta_2 & \text{if student} \end{array} \right. \end{array}$$

 β₂ is the average extra balance (positive or negative) each month that students have for given income level. "Not student" is the "baseline".

	Coefficient	Std Err	t-value	<i>p</i> -value
Intercept	211.1	32.5	6.51	< 0.0001
Income	5.984	0.557	10.75	< 0.0001
StudentYes	382.7	65.3	5.859	< 0.0001

Interaction

- Our model has forced the line for students and the line for non-students to be parallel.
- Parallel lines say that income has the same effect on balance for students as for non-students.
- If lines aren't parallel then income affects students' and non-students' balances differently.
- Interaction effects: When the effect on y of increasing x_1 depends on another x_2 .

Parallel Regression Lines?

Regression equation

$$\begin{array}{lll} \text{Balance} & = & \beta_0 + \beta_1 \times \mathsf{Income} + \left\{ \begin{array}{ll} 0 & \text{if not student} \\ \beta_2 + \beta_3 \times \mathsf{Income} & \text{if student} \end{array} \right. \\ & = & \left\{ \begin{array}{ll} \beta_0 + \beta_1 \times \mathsf{Income} & \text{if not student} \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathsf{Income} & \text{if student} \end{array} \right. \end{array}$$

Should the Lines be Parallel?

	Coefficient	Std Err	t-value	p-value
Intercept	200.6	33.70	5.953	< 0.0001
Income	6.218	0.592	10.50	< 0.0001
StudentYes	476.7	104.4	4.568	< 0.0001
Income*Student	-2.00	1.73	-1.16	0.25

beta3??

whether rejected?

Interaction in Advertising

Sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times TV \times Radio$$

	Coefficient	Std Err	t-value	p-value
Intercept	6.750	0.2479	27.23	< 0.0001
TV	0.0191	0.0015	12.7	< 0.0001
Radio	0.0289	0.0089	3.24	0.0014
TV*Radio	0.0011	5.2e-5	20.7	< 0.0001

• Spending \$1 extra on TV increases average sales by $0.0191 + 0.0011 \times \text{Radio}$

Sales =
$$\beta_0 + (\beta_1 + \beta_3 \times Radio) \times TV + \beta_2 \times Radio$$

• Spending \$1 extra on Radio increases average sales by $0.0289 + 0.0011 \times TV$

Sales =
$$\beta_0 + (\beta_2 + \beta_3 \times TV) \times Radio + \beta_1 \times TV$$

Potential Fit Problems

There are a number of possible problems that one may encounter when fitting the linear regression model.

- Non-linearity of the data
- Dependence among errors
- Non-constant variance of error terms
- Outliers
- High leverage points hat{\beta}=(X^TX)^{-1}X^TY 如果X矩阵的列向量 x1,x2,x3是highly colinear的 那么X^TX很可能rank就