Création de jeux de données pour l'entraînement de réseaux de neurones

Pierre Minier

Université de Bordeaux

14 septembre 2023

Introduction : stage en Espagne

Figure 1 – Université de Deusto, Bilbao (ES)

Introduction : objectifs du stage

(a) Pré-traitement des images

(b) Architecture adéquate de CNN

Figure 2 – Classification de tumeurs

Introduction Minier 14 septembre 2023 3 / 34

Sommaire

- Spécification sur le pré-traitement
- Découpe d'images
- 3 Partition en jeux de données
- 4 Augmentation de données
- Standardisation
- 6 Expérience

Introduction Minier 14 septembre 2023 4 / 34

Base de données vs. Jeux de données

Base de données

Ensemble des images labelisées.

Jeux de données

Partitions de la base de données.

- Entraı̂nement ($\sim 70\%$) : optimisation du modèle
- Validation ($\sim 15\%$) : contrôle durant l'optimisation
- Test ($\sim 15\%$) : évaluation du modèle optimisé

Nécessité d'indépendance et de diversité dans les exemples.

Particularités des images

Spécificités de la base de données

Irrégularités, dimensions variables et peu d'images.

Figure 3 – Quelques exemples d'irrégularités

Pourquoi découper les images?

• Entrée CNN : 224x224 ou 299x299

• Certaines images : 4000x3000

Découpe d'images MINIER 14 septembre 2023 7 / 34

Pourquoi découper les images?

Entrée CNN : 224x224 ou 299x299

• Certaines images: 4000x3000

Avantages	Inconvénients	
Avantages	Inconvénients	
Pas de perte de détails liée à	Perte de bandes de pixels laté-	
une compression	rales	
Démultiplication du nombre	Perte de labels sur certaines	
d'éléments de la base de don-	découpes sans cellules obser-	
nées	vables	

Découpe d'images MINIER 14 septembre 2023

8 / 34

Pourquoi découper les images?

Entrée CNN: 224x224 ou 299x299

• Certaines images: 4000x3000

Avantages	Inconvénients	
Pas de perte de détails liée à	Perte de bandes de pixels laté-	
une compression	rales	
Démultiplication du nombre	Perte de labels sur certaines	
d'éléments de la base de don-	découpes sans cellules obser-	
nées	vables	

Perte de données

5% de pixels sont perdus avec les inconvénients cités.

Découpe d'images MINIER 14 septembre 2023

9 / 34

Contraintes

Notations

 P_i est la ième partition, C_i sa capacité et D_i sa diversité.

- Indépendance : Les découpes d'une même image sont corrélées.
- Capacités cibles : $C_1 > 0.5$ et $C_1 + C_2 + C_3 = 1$.
- Diversités cibles : $D_1 = D_2 = D_3 = 1/3$

Partitionnement Séquentiel (PS)

Figure 4 – Exemple d'un partitionnement séquentiel

Algorithme (1/3)

Algorithm 1 Initialisation

- 1: F : Liste des familles de découpes viables, triée par nombre de pixels décroissant
- 2: C_i : Capacité restante de la partition P_i
- 3: Tant que $F[1] > min(C_2, C_3)$ Faire
- 4: $P_1 \leftarrow F[1]$
- 5: Mettre à jour C_1
- 6: Supprimer F[1] de F
- 7: Fin Tant que

Algorithme (2/3)

Algorithm 2 Équilibrage des partitions

```
1: i \leftarrow 1

2: Tant que min(|P_2|, |P_3|) < |P_1| Faire

3: Si F[i] < min(C_2, C_3) Alors

4: Affecter F[i] à P_2 ou à P_3 (tour à tour si possible)

5: Mettre à jour C_2 ou C_3

6: Supprimer F[i] de F

7: Fin Si

8: i \leftarrow i + 1

9: Fin Tant que
```

11: Affecter les éléments de F à P_1

Algorithme (3/3)

Algorithm 3 Itérations

```
1: N \leftarrow |F|
 2: i \leftarrow 1
 3: Tant que F[|F|] < max(C_1, C_2, C_3) et i < N Faire
        Si F[i] < min(C_1, C_2, C_3) Alors
 4:
            Affecter F[i] à P_1, à P_2 ou à P_3 (tour à tour si possible)
 5:
            Mettre à jour C_1, C_2 ou C_3
 6:
            Supprimer F[i] de F
 7:
        Fin Si
 8:
     i \leftarrow i + 1
 9.
10: Fin Tant que
```

Hyper-paramètre

Initialisation de la partition P_1

Soient:

- $N_1(\mu)$: le nombre d'images initialisant la partition P_1 ,
- ullet μ : l'hyper-paramètre introduit, à valeur dans]0,1],
- F[i]: la proportion de pixels de la ième famille dans la classe,
- C_2 et C_3 : les capacités respectives de P_2 et P_3 .

$$N_1(\mu) = \left| \left\{ i \mid F[i] > \mu \times \min(C_2, C_3) \right\} \right| \tag{1}$$

Estimation de l'hyper-paramètre (1/2)

Fonction de perte (de coût)

Soient:

- C_i^{eff} : la capacité effective pour la ième partition
- D_i^{eff} : la diversité effective pour la ième partition

$$L(\mu) = \frac{1}{6} \left[\sum_{i=1}^{3} |C_i - C_i^{eff}(\mu)| + \sum_{i=1}^{3} |D_i - D_i^{eff}(\mu)| \right]$$
(2)

$$\mu^* = \underset{\mu \in [0,1]}{\operatorname{argmin}} \ L(\mu) \tag{3}$$

Partitionnement Itératif (PI)

Estimation de l'hyper-paramètre (2/2)

Figure 5 – Fonction de perte PI

Partitionnement Itératif (PI)

Résultat

Figure 6 - Exemple d'un partitionnement itératif

Partitionnement Itératif avec Dépassement (PID)

Cas simple mettant en échec PI

Figure 7 – Partitionnement en 70-15-15 de 6 familles de même poids

Partitionnement Itératif avec Dépassement (PID)

Ajustement de la fonction de perte

Fonction de perte (de coût)

Soient:

- C_i^{eff} : la capacité effective pour la ième partition
- D_i^{eff} : la diversité effective pour la ième partition
- ε : excès de capacité autorisé pour les partitions P_2 et P_3

$$L(\mu, \varepsilon) = \frac{1}{6} \left[\sum_{i=1}^{3} |C_i - C_i^{\text{eff}}(\mu, \varepsilon)| + \sum_{i=1}^{3} |D_i - D_i^{\text{eff}}(\mu, \varepsilon)| \right]$$
(4)

$$(\mu^*, \varepsilon^*) = \underset{\mu \in [0,1], \ \varepsilon > 0}{\operatorname{argmin}} \ L(\mu, \varepsilon) \tag{5}$$

Partitionnement Itératif avec Dépassement (PID) Optimisation

Figure 8 - Fonction de perte PID

Partitionnement Itératif avec Dépassement (PID)

Figure 9 – Exemple d'un partitionnement itératif avec dépassement

Déséquilibre inter-classe

Définition

Disparité significative entre le nombre d'exemples disponibles pour chaque classe.

Déséquilibre inter-classe

Définition

Disparité significative entre le nombre d'exemples disponibles pour chaque classe.

Risque

Modèle biaisé en faveur des classes majoritaires pour minimiser l'erreur globale.

Déséquilibre inter-classe

Définition

Disparité significative entre le nombre d'exemples disponibles pour chaque classe.

Risque

Modèle biaisé en faveur des classes majoritaires pour minimiser l'erreur globale.

Solutions

Sur-échantillonage ou sous-échantillonage pour un équilibre artificiel.

Transformations

Figure 10 – 7 transformations géométriques

Stratégie pour équilibrer et augmenter

Figure 11 – Point d'équilibre, puis augmentations

Nombre d'augmentation

Formalisation

Soient:

- a : le nombre d'augmentations appliquées à la classe majoritaire
- r: le ratio arrondi du nombre de découpes entre les classes minoritaire et majoritaire. $r \in \mathbb{N}^*$
- t: le nombre de transformations disponibles. lci t=7

$$r \times a + (r - 1) \le t \tag{6}$$

Exemple numérique

Nombre d'images

Classe	Initialisation	Équilibre	Augmentations
D (train)	457	914	3656
PD (train)	892	892	3568
D (valid)	111	222	888
PD (valid)	206	206	824
D (test)	106	212	848
PD (test)	194	194	776

Table 1 – Évolution du nombre de découpes

Exemple numérique

Ratio du nombre d'images

Dataset	Initialisation	Équilibre	Augmentations
Train	1.95	1.02	1.02
Valid	1.86	1.07	1.07
Test	1.83	1.09	1.09

Table 2 – Ratio r (non arrondi)

Standardisation

Définition

Soit \mathcal{E} un ensemble de découpes de moyenne μ et d'écart type σ .

$$\forall x \in \mathcal{E}, \quad f(x) = \frac{x - \mu}{\sigma}$$
 (8)

Bonnes pratiques

- Augmentation, puis standardisation : mises à l'échelle consistantes
- Standardisation indépendante pour chaque dataset
- Standardisation indépendante pour chaque canal (RGB)

Standardisation MINIER 14 septembre 2023 31 / 34

Description

Figure 12 - Expériences menées

Expérience MINIER 14 septembre 2023

32 / 34

Résultats

Figure 13 – Fonction de perte sur la validation pour les 3 expériences

Expérience MINIER 14 septembre 2023 33 / 34

Conclusion

Figure 14 – Vue d'ensemble

Conclusion MINIER 14 septembre 2023 34 / 34