Space Weather Highlights 27 January - 02 February 2020

SWPC PRF 2318 03 February 2020

Solar activity was very low. Region 2757 (N05, L=089, class/area Cso/100 on 27 Jan) decayed to played before rotating around the W. limb. No Earth-directed CMEs were observed in available coronagraph imagery.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal to moderate throughout the reporting period.

Geomagnetic field activity range from quiet to active. Isolated active conditions were observed on 30 Jan while unsettled conditions were observed on 28-27 Jan, 31 Jan and 02 Feb. Solar wind measurements suggested all enhancements in geomagnetic activity were in response to intermittent influence from the Southern Crown coronal hole. The remainder of the reporting period was quiet.

Space Weather Outlook 03 February - 29 February 2020

Solar activity is expected to be very low throughout the outlook period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to range from normal to high levels. High levels are expected on 07-13 Feb, in response to a negative polarity CH HSS. The remainder or the outlook period is expected to be at normal to moderate levels.

Geomagnetic field activity is expected to range from quiet to active levels. Active conditions are likely on 06 Feb and 26 Feb; unsettled conditions are likely on 07-09 Feb, 25 Feb and 27 Feb. Enhancements in geomagnetic activity are in response to influence from multiple, recurrent, coronal hole high speed streams. The remainder of the outlook period is expected to be at quiet levels.

Daily Solar Data

	Radio	Sun	Sunspot	t	X-ray		Flares							
	Flux	spot	Area	Ba	Background		X-ray	<u>y</u>	Optical					
Date	10.7cm	No.	(10 ⁻⁶ hem	i.)	Flux		C M	X	S	1	2 3	4		
27 January	73	12	100	A8.1	0	0	0	0	0	0	0	0		
28 January	74	11	70	A8.1	0	0	0	0	0	0	0	0		
29 January	74	11	60	A8.1	0	0	0	0	0	0	0	0		
30 January	74	11	60	A8.2	0	0	0	0	0	0	0	0		
31 January	74	11	20	A8.1	0	0	0	0	0	0	0	0		
01 February	73	11	10	A7.9	0	0	0	0	0	0	0	0		
02 February	72	0	0	A7.9	0	0	0	0	0	0	0	0		

Daily Particle Data

	(pro	Proton Fluer otons/cm ² -d			_	Electron Flue trons/cm ² -da	
Date	>1 MeV	>10 MeV	>100 MeV	>	>0.6 MeV	>2MeV	>4 MeV
27 January	4.9e+05		2.2e+04	4.0e	+03	2.2e	e+05
28 January	5.5e+05		2.2e+04	4.0e	+03	1.4e	±+05
29 January	2.2e+05		2.2e+04	3.8e	+03	7.3e	±+04
30 January	4.8	8e+05	2.2e+04	3.8e	+03	6.5e	±+05
31 January			2.0e+04	3.8e	+03	1.5e	±+07
01 February	4.4e+05		2.2e+04	4.1e	4.1e+03		±+07
02 February	3.1	e+05	2.1e+04	3.9e	+03	1.5e	e+07

Daily Geomagnetic Data

	N	Middle Latitude		High Latitude	Estimated			
]	Fredericksburg		College	Planetary			
Date	A	K-indices	A	K-indices	A	K-indices		
27 January	2	0-1-1-0-1-1-0-0	0	0-0-0-0-0-0-0	3	1-1-1-0-0-0-0		
28 January	4	1-1-1-0-1-1-3	2	0-0-2-0-0-0-1-1	5	1-1-1-1-0-1-1-3		
29 January	6	2-2-2-1-1-1-2	9	2-2-3-4-1-1-1	9	3-3-2-2-1-1-2-2		
30 January	9	1-2-2-1-2-4-2-2	20	1-1-5-3-4-5-3-1	12	2-3-2-2-4-3-3		
31 January	6	2-3-1-2-1-1-1	12	2-4-2-5-2-0-0-0	8	3-4-2-2-1-1-1		
01 February	4	1-0-0-1-2-2-1-2	6	0-0-0-2-4-2-1-1	6	1-1-1-1-2-2-2		
02 February	4	1-1-1-0-1-1-2-2	2	1-0-0-0-1-2-1	9	2-1-1-1-0-1-3-2		

Alerts and Warnings Issued

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
29 Jan 0234	WARNING: Geomagnetic K = 4	29/0233 - 0600
30 Jan 1649	WARNING: Geomagnetic $K = 4$	30/1650 - 2100
30 Jan 1811	ALERT: Geomagnetic K = 4	30/1759
30 Jan 2056	EXTENDED WARNING: Geomagnetic K =	4 30/1650 - 2359
30 Jan 2336	EXTENDED WARNING: Geomagnetic K =	4 30/1650 - 31/0600
31 Jan 0253	EXTENDED WARNING: Geomagnetic K =	4 30/1650 - 31/0600
31 Jan 0459	ALERT: Geomagnetic $K = 4$	31/0459
31 Jan 0502	EXTENDED WARNING: Geomagnetic K =	4 30/1650 - 31/0900

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7cm	A Index	Kp Index	Date	10.7cm	A Index	Kp Index
03 Feb	70	5	2	17 Feb	72	5	2
04	70	5	2	18	72	5	2
05	70	5	2	19	72	5	2
06	70	12	4	20	72	5	2
07	70	10	3	21	72	5	2
08	70	10	3	22	72	5	2
09	70	8	3	23	72	5	2
10	70	5	2	24	72	5	2
11	70	5	2	25	72	8	3
12	70	5	2	26	72	12	4
13	70	5	2	27	72	10	3
14	70	5	2	28	72	5	2
15	70	5	2	29	72	5	2
16	71	5	2				

Energetic Events

	Time		X-ray		Opti	cal Informat	P	eak	Sweep Freq			
	Half			Integ	Imp/	Location	Rgn	Radi	o Flux	Inter	sity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV

No Events Observed

Flare List

					Optical							
		Time		X-ray	Imp/	Location	Rgn					
Date	Begin	Max	End	Class	Brtns	Lat CMD	#					
31 Jan	1447	1503	1523	A9.6			2757					

Region Summary

	Location	n .	Sı	inspot C	nspot Characteristics					Flares					
	Locuito	Helio		Extent			Mag		K-ray		Optical				
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	M	X	S	1	2	3	4
Region 2757															
24 Jan	N04E30	85	10	3	Bxo	2	В								
25 Jan	N03E14	87	20	3	Bxo	4	В				1				
26 Jan	N04W01	89	60	5	Cao	8	В				1				
27 Jan	N05W14	89	100	5	Cso	2	В								
28 Jan	N04W28	90	70	5	Hsx	1	Α								
29 Jan	N04W42	91	60	3	Hsx	1	Α								
30 Jan	N04W56	92	60	3	Hsx	1	Α								
31 Jan	N04W70	93	20	1	Hrx	1	Α								
01 Feb	N03W84	94	10	1	Axx	1	Α								
02 Feb	N03W98	94	plage					0	0	0	2	0	0	0	0

Still on Disk. Absolute heliographic longitude: 89

Recent Solar Indices (preliminary) Observed monthly mean values

	S	Sunspot N				Radio	Flux	Geomagnetic		
	Observed values	•		th values	Pe	enticton		Planetary	-	
Month	SEC RI	RI/SEC	SEC		1	0.7 cm	Value	Ap	Value	
				2018				•		
February	16.0	6.4	0.40	13.7	7.6	72.0	73.3	7	9.1	
March	6.0	1.5	0.25	11.5	5.9	68.4	71.9	8	8.6	
April	7.0	5.3	0.76	9.6	4.7	70.0	70.6	7	8.0	
May	15.0	7.9	0.53	9.2	4.5	70.9	70.2	8	7.6	
June	19.7	9.4	0.48	9.1	4.3	72.5	70.0	7	7.4	
July	1.3	1.0	0.77	9.4	4.2	69.7	70.0	6	7.3	
August	10.0	5.2	0.53	9.0	4.0	69.1	70.0	10	7.3	
September	5.7	2.0	0.35	8.7	3.9	68.3	70.1	9	7.3	
October	6.9	2.9	0.42	9.2	4.1	69.5	70.3	7	7.1	
November	7.3	2.9	0.48	9.5	4.0	68.9	70.4	6	7.0	
December	5.6	1.9	0.34	9.3	3.6	70.0	70.3	7	6.9	
				2019						
January	16.0	4.6	0.29	9.0	3.2	71.6	70.0	6	6.8	
February		0.5		8.7	3.0	70.6	69.8	7	6.7	
March	14.8	5.6	0.39	8.3	2.8	71.5	69.7	6	6.6	
April	11.5	5.5	0.48	7.9	2.6	72.4	69.6	6	6.7	
May	18.1	5.9	0.34	7.4	2.3	71.3	69.6	7	6.7	
June	11.6	0.7	0.06	7.3	2.2	68.1	69.6	5	6.5	
July	1.6	0.5	0.31	7.0	2.1	67.1	69.7	6	6.3	
August	2.5	0.3	0.16			67.0		7		
September	2.6	0.7	0.27			68.1		10		
October	1.8	0.2	0.11			67.4		8		
November	1.1	0.3	0.27			70.2		4		
December	7.2	1.0	0.14			70.9		4		
				2020						
January	9.2	3.8	0.41			72.3		5		

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

ISES Solar Cycle Sunspot Number Progression Observed data through Jan 2020

Smoothed Sunspot Number Prediction

	Smoothed Sunspot Number 1 reduction													
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
2010	7	9	11	13	14	16	17	17	20	23	27	29		
	(1)	(2)	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)		
2011	19	30	56	54	42	37	44	51	78	88	97	73		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2012	58	33	64	55	69	65	67	63	61	53	62	41		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2013	63	38	58	72	79	53	57	66	37	86	78	90		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2014	82	102	92	68	68	62	60	64	78	54	62	68		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2015	56	40	33	45	53	40	40	39	47	38	37	35		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2016	34	34	33	23	31	12	19	30	27	20	13	11		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2017	16	16	11	19	11	12	11	20	26	8	3	5		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2018	4	6	2	5	8	9	1	5	2	3	3	2		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2019	5	1	6	6	6	1	1	0	1	0	0	1		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2020	4	4	3	3	3	3	2	2	2	2	2	2		
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)		
2021	2	1	1	1	1	1	1	1	1	1		MMOSPHER		
0	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10) 🔽	ORFICO		
8022	1	0	0	SWPC	C PRF ₀ 231	8 03 F jebi	ruary 2 ()20	0	0	0	0			
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	$(10)^{-1}$	(10)		

ISES Solar Cycle F10.7cm Radio Flux Progression Observed data through Jan 2020

Smoothed F10.7cm Radio Flux Prediction

				icu I I			'I'ux	1 / Cuic				
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	76 (***)	77 (***)	78 (***)	78 (***)	79 (***)	80 (***)	80 (***)	81 (***)	82 (***)	85 (***)	88 (***)	90 (***)
2011	91 (***)	93 (***)	96 (***)	100 (***)	106 (***)	111 (***)	115 (***)	118 (***)	118 (***)	118 (***)	120 (***)	122 (***)
2012	124 (***)	127 (***)	127 (***)	126 (***)	124 (***)	121 (***)	120 (***)	119 (***)	119 (***)	119 (***)	120 (***)	120 (***)
2013	119 (***)	118 (***)	117 (***)	117 (***)	118 (***)	121 (***)	124 (***)	128 (***)	132 (***)	135 (***)	135 (***)	136 (***)
2014	137 (***)	139 (***)	141 (***)	144 (***)	145 (***)	146 (***)	145 (***)	143 (***)	140 (***)	138 (***)	137 (***)	137 (***)
2015	136 (***)	134 (***)	131 (***)	127 (***)	123 (***)	120 (***)	116 (***)	113 (***)	111 (***)	108 (***)	105 (***)	103 (***)
2016	100 (***)	98 (***)	97 (***)	95 (***)	93 (***)	90 (***)	88 (***)	86 (***)	84 (***)	83 (***)	81 (***)	80 (***)
2017	79 (***)	79 (***)	79 (***)	78 (***)	78 (***)	77 (***)	77 (***)	76 (***)	76 (***)	75 (***)	75 (***)	74 (***)
2018	74 (***)	73 (***)	72 (***)	71 (***)	70 (***)	70 (***)	70 (***)	70 (***)	70 (***)	70 (***)	70 (***)	70 (***)
2019	70 (***)	70 (***)	70 (***)	70 (***)	70 (***)	70 (***)	70 (***)	69 (1)	69 (1)	68 (2)	67 (3)	66 (4)
2020	66 (4)	65 (5)	65 (6)	64 (7)	63 (8)	62 (8)	61 (9)	61 (9)	61 (9)	60 (9)	60 (9)	60 (9)
2021 norr	60 (9)	60 (9)	60 (9)	60 (9)	60 (9)	60 (9)	60 (9)	59 (9)	59 (9)	59 (9)	59 (9)	59 (9)
2022	59 (9)	59 (9)	59 (9)	N 2	C PR f 523 (9)	57.7	070 (9)		59 (9)	59 (9)	59 (9)	5 9 (9)

Solar Cycle Comparison charts are temporarily unavailable.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

https://www.swpc.noaa.gov/products/weekly-highlights-and-27-day-forecast----

Current

ftp://ftp.swpc.noaa.gov/pub/warehouse -- Online archive from 1997

https://www.ngdc.noaa.gov/stp/satellite/goes-r.html -- NCEI GOES data

textarchive

https://www.swpc.noaa.gov/products/solar-cycle-progression -- Solar Cycle

Progression web site

