

Gerade Pyramide mit quadratischem Grundriss

Ermittlung und Darstellung des Kantenwinkels am Grat der Pyramide

Der Winkel wird durch die Kanten- und die Seitenfläche aufgespannt. Die Winkelebene schneidet den Grat der Pyramide rechtwinklig.

gegeben sind Höhe \mathbf{h} und Kantenlänge \mathbf{a} gesucht ist $\boldsymbol{\omega}$

Kantenwinkel am Grat einer geraden Pyramide mit quadratischem Grundriss, rechnerisch ermittelt Norbert Reschke

$$h_a = \sqrt{\left(\frac{a}{2}\right)^2 + h^2}$$

$$\sin \alpha = \frac{h}{h_a}$$

Kantenwinkel am Grat einer geraden Pyramide mit quadratischem Grundriss, rechnerisch ermittelt

$$\sin\beta = \frac{h_a}{g}$$

Kantenwinkel am Grat einer geraden Pyramide mit quadratischem Grundriss, rechnerisch ermittelt Norbert Reschke

Kantenwinkel am Grat einer geraden Pyramide mit quadratischem Grundriss, rechnerisch ermittelt

Norbert Reschke

$$\sin \omega = \frac{\frac{d}{2}}{h_g}$$

Kantenwinkel am Grat einer geraden Pyramide mit quadratischem Grundriss, rechnerisch ermittelt

Norbert Reschke

Ermittlung und Darstellung des Kantenwinkels $\,\omega$ am Grat der Pyramide Veranschaulichung der Lage (der Ebene) des Winkels

Gerade Pyramide mit quadratischem Grundriss

$$h_a = \sqrt{\left(\frac{a}{2}\right)^2 + h^2}$$

$$\sin \alpha = \frac{h}{h_a}$$

$$g = \sqrt{\left(\frac{a}{2}\right)^2 + h_a^2}$$

$$\sin\beta = \frac{h_a}{g}$$

$$h_g = a * \sin \beta$$

$$\sin \omega = \frac{\frac{d}{2}}{h_g}$$

Kantenwinkel am Grat einer geraden Pyramide mit quadratischem Grundriss, rechnerisch ermittelt Norbert Reschke