

BYTE SAVER

ASSEMBLY MANUAL

Cromemco

Specialists in computer peripherals

2432 Charleston Rd., Mountain View, CA 94043 • (415) 964-7400

BYTESAVER ASSEMBLY INSTRUCTIONS

The Cromemco BytesaverTM kit can be assembled in about one evening. All components are mounted on the component side of the pc board (the side with the printed legend) and soldered on the opposite side. Be sure to use high-quality rosin core solder for the assembly and a fine-tipped low wattage soldering iron.

() Solder in position the 10 14-pin IC sockets, the 6 16-pin IC sockets, and 8 24-pin IC sockets.

() Solder in position the $\frac{1}{4}$ watt resistors:

R1	47K	yellow-violet-orange
R2	10K	brown-black-orange
R3	180	brown-gray-brown
R4	1K	brown-black-red
R5	9.1K	white-brown-red
R6	1.5K	brown-green-red
R7	1K	brown-black-red
R8	47	yellow-violet-black
R9	1K	brown-black-red
R10	10	brown-black-black
R11	5.6K	green-blue-red
R12	5.6K	green-blue-red
R13	10K	brown-black-orange
R14	5.6K	green-blue-red
R15	180	brown-gray-brown
R16-R39	18K	brown-gray-orange

() Next install the 1N914 diodes. NOTE we recommend that no diode be installed in the diode position just below transistor Q0. When using the Bytesaver we recommend that the PROM containing the Bytemover software be inserted in PROM position zero. By not installing this diode there will be no chance of accidentally programming this PROM.

When installing the diodes be careful to orient them properly, noting the position of the cathode (banded) end. Due to the close spacing of the holes in the pc board, the diodes should be mounted on end.

() Now install the 23 capacitors as shown on the pc board. Be careful that the electrolytic capacitors are oriented with the positive (+) end as shown.

() Now solder the transistors in place taking care to orient them properly. Note that Q8 and Q9 are 2N3906 transistors, and Q10 is a type MPS6560. All other transistors are type 2N3904.

() Install the pc board switch, SW1, in the upper left corner of the board.

- () Install the Cromemco high-speed pulse transformer, model XT8K, in position T1. Note that the leads are asymmetrically positioned so that there is only one correct orientation of the transformer.
- () Now install IC14, the positive twelve volt regulator IC, using a 6-32 X $\frac{1}{4}$ screw and nut.
- () Next install the heatsink in the upper right corner of the board just starting the nuts on the 6-32 x 3/8 screws. Install IC12 and IC 13 being sure to place the insulating washer between IC13 and the heat sink. The nylon screw must be used to hold IC13 in place. (The insulating washer supplied may have to be trimmed with a pair of scissors to clear the protrusions of the heatsink.) Tighten the nuts on the screws in the heatsink assembly only after all screws have been inserted. Take care that the leads on the voltage regulators do not come in contact with sides of the openings in the heatsink.
- () Next install three jumper wires to select where the Bytesaver is to reside in memory space. Each of the three high order address lines (A15, A14, and A13) may be tied either to the corresponding "H" or "L" terminal. For the Bytesaver to reside in the top 8K of memory space, for example, the three jumper wires would be installed as shown:

- () Now install the ICs in their sockets being careful to orient pin one of each IC as shown by the small white dot on the pc board at each IC position. Install a PROM containing Bytemover software in PROM position 0.

The assembly of your Bytesaver is now complete. Detailed operating instructions are given in the Bytemover software manual.

PROM AVAILABILITY: Additional 2704 and 2708 PROMs are available from Cromemco. The 2704 is \$50 each, and the 2708 is \$75. Our PROMs are factory fresh, full speed devices that we purchase directly form the manufacturer.

WAIT STATE: Should you wish to use low speed 2704 or 2708 PROMs in your Bytesaver (with access times greater than 450 ns) there is a provision for a wait state. Simply insert a jumper wire, as shown, between IC10 and IC11. No jumper wire need be inserted here when using full-speed PROMs.

REPAIR: If for any reason you need service on your Bytesaver, you may return it to Cromemco along with a check for \$35. The \$35 covers the cost of repair and return postage. We reserve the right to not repair any Bytesaver that we judge to be unserviceable.

BYTESAVER PARTS LIST

C1 - C8	0.1 uF	IC1	74123
C9 - C15	10uF 50v.	IC2	7474
C16	.005	IC3	7402
C17	680 pF	IC4	7406
C18	.01 uF	IC5	7406
C19	680 pF	IC6	7402
C20	220 pF	IC7	7406
C21 - C23	0.1 uF	IC8	7442
		IC9	74LS04
D1 - D19	1N914 or 1N4531	IC10	74LS10
		IC11	74LS04
Q0 - Q7	2N3904	*IC12	340T-5.0 or 7805
Q8, Q9	2N3906	*IC13	320T-5.0 or 7905
Q10	MPS6560	*IC14	340T-12 or 7812
Q11, Q12	2N3904	IC15	7432 or 74LS32
		IC16	74367
R1	47K	IC17	74367
R2	10K	IC18	74367
R3	180	IC19	74367
R4	1K		
R5	9.1K		
R6	1.5K		
R7	1K	3	#6 X 3/8 screws
R8	47	1	#6 X 1/4 screw
R9	1K	**1	#6 X 3/8 nylon screw
R10	10	5	#6 nuts
R11	5.6K	1	Heatsink
R12	5.6K		
R13	10K		
R14	5.6K		
R15	180		
R16-R39	18K		
SW1	pc board switch		
T1	Cromemco XT8K high-speed pulse transformer.		
<u>Sockets</u>			
10	14 pin		
6	16 pin		
8	24 pin		

Hardware

3	#6 X 3/8 screws
1	#6 X 1/4 screw
**1	#6 X 3/8 nylon screw
5	#6 nuts
1	Heatsink

Documentation

Assembly manual
Bytemover manual
Schematic diagram

Other

Insulating washer to be used under IC13

Bytesaver pc board

* NOTE: The three voltage regulator ICs (IC 12, 13 and 14) may look physically similar, but they are not interchangeable. Each must be mounted in the proper IC location.

** NOTE: The nylon screw is used to secure IC13. It is important that the screw be inserted from the pc board side of the assembly so that the head of the screw is against the foil side of the pc board.

BYTEMOVER

SOFTWARE FOR THE CROMEMCO BYTESAVER

Cromemco

Specialists in computer peripherals

2432 Charleston Rd., Mountain View, CA 94043 • (415) 964-7400

CROMEMCO BYTEMOVER 3.1 OPERATING INSTRUCTIONS

Cromemco BYTEMOVER software is designed to be used with the Cromemco 8K BYTESAVER. When you purchase a Bytesaver with one 2704 PROM, the Bytemover software comes preprogrammed in the 2704 PROM.

The 2704 PROM containing the Bytemover software is normally inserted into PROM location 0 on the Bytesaver board. The Bytemover software can be used to program a PROM in any of the PROM locations on the Bytesaver board. The Bytemover software can also be used to transfer programs from PROM to RAM. The operation of the Bytemover software is controlled by the setting of the front panel sense switches on the Altair computer. To use the Bytemover software there must be a RAM board in the Altair beginning at location zero in memory; further, this RAM board must be unprotected for proper execution of the Bytemover software.

STEP-BY-STEP INSTRUCTIONS

- 1) Before using the Bytesaver you must install three jumper wires to set the location of the Bytesaver in memory space. This is shown in Figure 1. The assembled Bytesaver comes with A13, A14, and A15 each tied to the corresponding "Hi" pad to position the board at the very top of memory. In the following instructions it is assumed that this is the jumper connection used.
- 2) With the Altair 8800 power turned off, plug the Bytesaver board into the computer.
- 3) Be sure that the program power on the Bytesaver is turned OFF (program power switch in the down position.)
- 4) Turn on the Altair. Raise the reset switch, then raise the stop switch, and then raise the reset switch once again to initialize the Altair.
- 5) Raise address switches A15, A14, and A13. All other address switches should be down.
- 6) Raise the examine switch. You are now examining the contents of the first byte of PROM in PROM location zero of the Bytesaver memory board (memory location 340 000). If the PROM supplied with your Bytesaver is in this PROM location the data lights will read "061", the first byte of the Bytemover program.

EXAMPLE: Transfer the Bytemover program from PROM to RAM beginning at location zero in RAM.

- 1) Raise the reset switch.
- 2) Depress the unprotect switch (on the Altair front panel).
- 3) Raise A15, A14, and A13. Raise the examine switch. The data lights should read "061" octal.

4) Now set the sense switches for the task to be done, refering to Fig. 2.

A15 - Down	to transfer from PROM to RAM
A14 - Down	for the transfer of 1K bytes.
A13 - Down	
A12 - Down	All down since we are transferring from the same PROM that contains BYTEMOVER (PROM 0)
A11 - Down	
A10 - Down	
A9 - Down	All down for storage to begin at location zero in RAM.
A8 - Down	

5) Push the run switch. In less than one second the contents of PROM will be transferred to RAM. (Of course the contents of the PROM are unaffected by this operation.

6) Raise the STOP switch.

7) Raise the reset switch. Note that the data lights read "061".

EXAMPLE: Program a 2708 PROM inserted in PROM location 1. This PROM is to be programmed with the contents of the first 1K bytes of RAM beginning at location zero in memory. The Bytemover software is still in the PROM in PROM location zero on the Bytesaver board.

1) Raise the reset switch.

2) Depress the unprotect switch (on the Altair front panel)

3) Raise A15, A14, and A13. Raise the examine switch. The data lights should read "061" octal.

4) Raise the protect switch on the Bytesaver board (i.e. program power switch to the ON position). The protect light on the Altair front panel should go off when this switch is raised.

5) Now set the sense switches for the task to be done:

A15 - Up	to program a PROM
A14 - Down	(always down for PROM programming)
A13 - Down	
A12 - Down	To select the PROM 1K higher in memory than the PROM that contains BYTEMOVER
A11 - Up	
A10 - Down	
A9 - Down	All down for transfer to begin at location zero in RAM.
A8 - Down	

6) Push the RUN switch. Note that panel light A9 is blinking at a rate of about twice per second. When this light stops blinking the PROM programming is complete.

7) Raise the STOP switch.

8) Now note the INTE light on the Altair front panel. If this light is on, the BYTEMOVER VERIFIER has verified that the contents of the programmed PROM are indeed identical to the contents of the selected 1K bytes of RAM. If this light is off, the PROM has not programmed correctly; this could be due, for example, to a defective PROM.

EXAMPLE: Altair 8K BASIC can be stored in seven 2708 PROMs. Given that these seven PROMs are in PROM locations 1 through 7 on the BYTESAVER board, 8K BASIC can easily be transferred into RAM using the following procedure:

- 1) Raise the RESET switch.
- 2) Depress the unprotect switch (on the Altair front panel).
- 3) Raise A15, A14, and A13. Raise the examine switch. The data lights should read "061" octal.
- 4) Now set the sense switches for the task to be done:

A15 - Down to transfer from PROM to RAM.
A14 - Up for a 7K transfer
A13 - Down
A12 - Down To begin transfer from the PROM 1K higher
A11 - Up in memory than the BYTEMOVER program.
A10 - Down
A9 - Down All down for storage to begin at location
A8 - Down zero in RAM.

- 5) Push the RUN switch. In less than one second BASIC will be loaded into RAM (it sure beats paper tape!). Raise the STOP switch.

EXAMPLE: If you do not have BYTEMOVER in PROM, you can program a PROM with BYTEMOVER that is stored in RAM. The BYTEMOVER software (a listing of which is attached) must first be loaded into RAM beginning at location zero in memory. The BYTEMOVER software can then be burned into a PROM using the following procedure:

- 1) Raise the reset switch.
- 2) Depress the unprotect switch (on the Altair front panel).
- 3) Insert an erased PROM into PROM location 0 on the BYTESAVER board.
- 4) Examine location 000 240 in memory.
- 5) Raise the program power switch on the BYTESAVER board.
- 6) Set the sense switches with A15 and A14 and A13 up.
- 7) Push the RUN switch. When light A9 stops blinking the programming is complete. The INTE light will be on to verify correct programming.
- 8) Turn off PROM program power by depressing the switch on the BYTESAVER.

ERASING PROMs: The 2704 and 2708 PROMs are erased by shining intense UV light through their quartz window. One such UV source, the UV-85 PROM ERASER, is available for \$37.50 from the BYTE SHOP, 1063 El Camino Real, Mountain View, CA 94040.

Fig. 1. How to set the Bytesaver address in memory. The built Bytesaver comes with A15, A14, and A13 connected to the corresponding "Hi" terminals so that memory address occurs when these three bits are high. Any or all of these address lines may be connected to the corresponding "Lo" terminal to move the memory board lower in memory. There are thus eight positions in memory that this board can be used.

FIGURE 2. FUNCTION OF THE SENSE SWITCHES IN THE BYTEMOVER PROGRAM.

Fig. 3. Bytesaver physical layout.

BYTEMOVER ASSEMBLY LANGUAGE LISTING

```

0000          0000 * BYTEMOVER (T. M.) SOFTWARE FOR
0000          0001 * CROMEMCO 8K BYTESAVER (T. M.)
0000          0002 * VERSION 3.1
0000          0003 * SELF-RELOCATING SOFTWARE LOCATABLE AT ANY
0000          0004 * 1024 BYTE (1K) BOUNDARY IN MEMORY
0000          0009 * ROUTINE TO FIND ONESELF IN MEMORY
0000          0010 SP EQU 6
0000          0019 * DEFINE FIRST 4 BYTES IN MEMORY AS STACK
0000 31 00 00  0020 LXI SP, 0
0003          0029 * SAVE FIRST FOUR BYTES IN REGISTERS
0003 C1       0030 POP B
0004 D1       0040 POP D
0005          0049 * REPLACE BYTE 0 WITH A 'RETURN'
0005 2E C9     0050 MVI L, 0C9H
0007 F3       0051 DI
0008 E5       0060 PUSH H
0009 E5       0070 PUSH H
000A 00       0080 NOP
000B 00       0081 NOP
000C 00       0082 NOP
000D 31 04 00  0090 LXI SP, 4
0010 CD 00 00  0100 CALL 0
0013          0101 * ROM LOCATION NOW IN BYTE 3
0013 31 02 00  0110 LXI SP, 2
0016 E1       0120 PDP H
0017          0129 * RETURN BYTES 0-3
0017 31 04 00  0130 LXI SP, 4
001A D5       0140 PUSH D
001B C5       0150 PUSH B
001C          0159 * STORE ROM LOCATION IN SP
001C F9       0160 SPHL
001D 0E 00     0170 MVI C, 0
001F 59       0180 MOV E,C
0020 69       0190 MOV L,C
0021          0199 * INPUT SENSE SW COMMANDS
0021 DB FF     -> 0200 IN 255
0023 57       0210 MOV D,A
0024          0219 * STRIP RAM ADDRESS
0024 E6 07     0220 ANI 7
0026 07       0230 RLC
0027 07       0240 RLC
0028          0249 * STORE RAM ADDRESS IN BC
0028 47       0250 MOV B,A
0029 7A       0260 MOV A,D
002A          0269 * STRIP ROM ADDRESS
002A E6 38     0270 ANI 56
002C 0F       0280 RRC
002D 00       0290 NOP
002E 67       0300 MOV H,A
002F 39       0310 DAD SP
0030 2E 00     0320 MVI L, 0
0032 7A       0330 MOV A,D
0033 EB       0340 XCHG
0034          0341 * ADDRESS OF ROM BEING PROCESSED IN DE
0034          0349 * BRANCH TO TRANSFER OR PROGRAM ROUTINE

```

0034 E6 80	0350 ANI 128
0036 0F	0360 RRC
0037 0F	0370 RRC
0038 C6 2D	0380 ADI 45
003A 21 00 00	0390 LXI H, 0
003D 6F	0400 MOV L,A
003E 39	0410 DAD SP
003F E9	0420 PCHL
0040	0500 * ROUTINE TO TRANSFER ROM TO RAM
0040 F9	0510 SPHL
0041 21 0B 00	0520 LXI H, 11
0044 39	0530 DAD SP
0045 EB	0550 XCHG
0046 F9	0560 SPHL STACK CONTAINS ROM LOCATION
0047 EB	0570 XCHG H&L CONTAIN LOOP ADDRESS
0048 11 00 00	0580 LXI D, 0
004B	0588 * START OF TRANSFER LOOP
004B	0589 * INCREMENT ROM ADDRESS
004B 3B	0590 DCX SP
004C	0599 * MOVE DATA FROM ROM TO RAM
004C F1	0600 POP 6
004D 02	0610 STAX B
004E	0619 * INCREMENT RAM ADDRESS
004E 03	0620 INX B
004F	0629 * INCREMENT BYTE COUNT
004F 13	0630 INX D
0050 7A	0640 MOV A,D
0051 E6 04	0650 ANI 4
0053 07	0660 RLC
0054 07	0670 RLC
0055 00	0680 NOP
0056 85	0690 ADD L
0057 6F	0700 MOV L,A
0058 E9	0710 PCHL
0059 00	0716 NOP
005A 00	0717 NOP
005B	0719 * JUMP TO 00B1 FROM TRANSFER ROUTINE
005B 3E 56	0720 MVI A, 56H
005D 85	0725 ADD L
005E 6F	0730 MOV L,A
005F E9	0740 PCHL
0060	1000 * ROUTINE TO PROGRAM ROM
0060 00	1010 NOP
0061	1019 * MOVE RAM ADDRESS INTO HL
0061 69	1020 MOV L,C ;ZERO
0062 7C	1030 MOV A,H ;ZERO
0063 60	1040 MOV H,B ;ZERO
0064	1049 * MOVE RAM ADDRESS INTO SP
0064 F9	1050 SPHL ;ZERO
0065 67	1060 MOV H,A ;ZERO
0066 2E 6B	1070 MVI L, 107 ;6BH
0068	1079 * INCREMENT RAM ADDRESS
0068 01 00 00	1080 LXI B, 0 ;ZERO B&C
006B	1089 * INCREMENT RAM ADDRESS
006B 3B	1090 DCX SP
006C	1098 * USE STAX AND POP 6 (PSW)
006C	1099 * TO MOVE DATA FROM ROM TO RAM

006C F1	1100 POP 6
006D 12	1110 STAX D
006E	1119 * INCREMENT ROM ADDRESS
006E 13	1120 INX D
006F	1129 * INCREMENT BYTE COUNT
006F 03	1130 INX B
0070	1138 * B STORES TWO CONSTANTS
0070	1139 * # COMPLETE PASSES & IN ROM CNT
0070 78	1140 MOV A, B
0071	1149 * # PASSES = 32 ?
0071 FE FC	1150 CPI 252
0073 3F	1160 CMC
0074 1F	1170 RAR
0075 1F	1180 RAR
0076	1198 * SET 64 TO 0 FOR TWO MINUTE TIMER VERSION
0076 E6 40	1200 ANI 64
0078	1201 * A=64 IF COMPLETED 32 PASSES
0078 2E 7D	1205 MVI L, 7DH
007A 85	1210 ADD L
007B 6F	1220 MOV L, A
007C E9	1225 PCHL
007D 2E 6B	1226 MVI L, 6BH
007F 78	1230 MOV A, B
0080 E6 04	1240 ANI 4
0082	1241 * A=4 IF END OF 1024 BYTE PASS
0082 07	1250 RLC
0083 07	1260 RLC
0084 07	1270 RLC
0085 85	1280 ADD L
0086 6F	1290 MOV L, A
0087	1291 * GO BACK TO 1090 UNLESS OVERFLOW
0087	1292 * THEN GO TO 1380 FOR
0087	1293 * ADDRESS SUBTRACTION
0087	1294 * OR 2135 FOR QUIT
0087 E9	1300 PCHL
0088 00	1350 NOP
0089 00	1360 NOP
008A 00	1370 NOP
008B	1378 * ANOTHER PROGRAM PASS TO BE DONE
008B	1379 * ADJUST ROM AND RAM ADDRESSES
008B 7C	1380 MOV A, H
008C 21 00 FC	1390 LXI H, 64512
008F	1399 * SUBTRACT 1024 FROM ROM ADDRESS
008F 39	1400 DAD SP
0090 F9	1410 SPHL
0091 21 00 FC	1420 LXI H, 64512
0094	1429 * SUBTRACT 1024 FROM RAM ADDRESS
0094 19	1430 DAD D
0095 EB	1440 XCHG
0096 67	1450 MOV H, A
0097 2E 6B	1460 MVI L, 107
0099 78	1470 MOV A, B
009A E6 FB	1480 ANI 248
009C	1489 * INCREMENT PASS CONTER BY ONE
009C C6 08	1490 ADI 8
009E 47	1495 MOV B, A
009F	1499 * GO BACK TO 1090

009F E9	1500 PCHL
00A0	2000 * ROUTINE TO LOAD BYEMOVER INTO ROM
00A0 DB FF	→ 2010 IN 255 ; IN SENSE (A15, A4, B0P)
00A2 47	2020 MOV B, A ; MOVE B GOT TO B REG
00A3 E6 EO	2030 ANI 224 ; STAIR A8 THRU A2
00A5 1E 00	2040 MVI E, 0 ; ZERO E REG
00A7 4B	2050 MOV C, E ; ZERO C REG
00A8 57	2060 MOV D, A ; MOVE E0 TO D REG
00A9 78	2070 MOV A, B ; MOVE D0 TO A0H.
00AA E6 1F	2080 ANI 31 ; CHECK SENSE SUB A8 THRU A2. (THEY AREN'T)
00AC 47	2090 MOV B, A ; PULL
00AD 67	2100 MOV H, A ; ZERO
00AE 2E 60	2110 MVI L, 96 ; 60H
00B0 E9	2120 PCHL ; GOTO 60H (ROUTINE TO PROGRAM ROM)
00B1	2121 * CHECK FOR 7K TRANSFER OF ROM TO RAM
00B1 C6 1A	2122 ADI 1AH
00B3 6F	2123 MOV L, A
00B4 DB FF	→ 2124 IN 255
00B6 E6 40	2125 ANI 64
00B8 0F	2126 RRC
00B9 0F	2127 RRC
00BA 85	2128 ADD L
00BB 6F	2129 MOV L, A
00BC E9	2130 PCHL
00BD	2133 * PROGRAMMER VERIFICATION ROUTINE
00BD	2134 * PART 1
00BD 7C	2135 MOV A, H
00BE 21 00 FC	2145 LXI H, 64512
00C1 39	2155 DAD SP
00C2 F9	2165 SPHL
00C3 2E CD	2175 MVI L, OCDH
00C5 67	2185 MOV H, A
00C6 E9	2195 PCHL
00C7 00	2205 NOP
00C8 00	2210 NOP
00C9 00	2215 NOP
00CA 00	2220 NOP
00CB	2229 * ROM TO RAM TRANSFER STOP ROUTINE
00CB FB	2230 EI
00CC E9	2240 PCHL
00CD	2248 * PROGRAMMER VERIFICATION ROUTINE
00CD	2249 * PART 2
00CD 7C	2250 MOV A, H
00CE 21 00 FC	2260 LXI H, 64512
00D1 19	2270 DAD D
00D2 EB	2280 XCHG
00D3 2E F1	2290 MVI L, 0F1H
00D5 67	2300 MOV H, A
00D6 01 00 00	2310 LXI B, 0
00D9 E9	2320 PCHL
00DA 00	2625 NOP
00DB	2629 * 7K TRANSFER COMPLETION CHECK
00DB D6 90	2630 SUI 90H
00DD 6F	2640 MOV L, A
00DE 7A	2650 MOV A, D
00DF C6 04	2660 ADI 4
00E1 57	2670 MOV D, A

00E2 FE 3B	2680 CPI 56
00E4 3F	2685 CMC
00E5 3E 00	2690 MVI A, 0
00E7 1F	2700 RAR
00E8 85	2710 ADD L
00E9 6F	2720 MOV L, A
00EA E9	2730 PCHL
00EB	2879 * ROM PROGRAMMER STOP ROUTINE
00EB 00	2880 NOP
00EC 00	2881 NOP
00ED FB	2885 EI
00EE E9	2890 PCHL
00EF E9	2900 PCHL
00F0 E9	2906 PCHL
00F1	2918 * PROGRAMMER VERIFICATION ROUTINE
00F1	2919 * PART 3
00F1 3B	2920 DCX SP
00F2 F1	2930 POP 6
00F3 EB	2940 XCHG
00F4	2949 * COMPARE FOR GREATER
00F4 BE	2950 CMP M
00F5 EB	2960 XCHG
00F6 17	2970 RAL
00F7 E6 01	3000 ANI 1
00F9 2F	3010 CMA
00FA 3C	3011 INR A
00FB 85	3015 ADD L
00FC 6F	3020 MOV L, A
00FD 3B	3030 DCX SP
00FE 3B	3040 DCX SP
00FF	3050 * COMPARE FOR LESSER
00FF F1	3055 POP 6
0100 2F	3056 CMA
0101 EB	3058 XCHG
0102 86	3059 ADD M
0103 EB	3060 XCHG
0104 C6 07	3061 ADI A 1
0106 3F	3065 CMC
0107 17	3070 RAL
0108 E6 01	3090 ANI 1
010A 2F	3100 CMA
010B 3C	3101 INR A
010C 85	3105 ADD L
010D 6F	3110 MOV L, A
010E 03	3130 INX B
010F 13	3140 INX D
0110 78	3150 MOV A, B
0111 E6 04	3180 ANI 4
0113 2F	3190 CMA
0114 3C	3191 INR A
0115 85	3195 ADD L
0116 6F	3200 MOV L, A
0117 E9	3210 PCHL

BYTEMOVER VERSION 3.1 OCTAL LISTING

061 000 000 301 321 056 311 363 345 345 000 000 000 000 061 004 000
315 000 000 061 002 000 341 061 004 000 325 305 371 016 000 131
151 333 377 127 346 007 007 007 107 172 346 070 017 000 147 071
056 000 172 353 346 200 017 017 306 055 041 000 000 157 071 351
371 041 013 000 071 353 371 353 021 000 000 073 361 002 003 023
172 346 004 007 007 000 205 157 351 000 000 076 126 205 157 351
000 151 174 140 371 147 056 153 001 000 000 073 361 022 023 003
170 376 374 077 037 037 346 100 056 175 205 157 351 056 153 170
346 004 007 007 007 205 157 351 000 000 000 174 041 000 374 071
371 041 000 374 031 353 147 056 153 170 346 370 306 010 107 351
333 377 107 346 340 036 000 113 127 170 346 037 107 147 056 140
351 306 032 157 333 377 346 100 017 017 205 157 351 174 041 000
374 071 371 056 315 147 351 000 000 000 000 373 351 174 041 000
374 031 353 056 361 147 001 000 000 351 000 326 220 157 172 306
004 127 376 070 077 076 000 037 205 157 351 000 000 373 351 351
351 073 361 353 276 353 027 346 001 057 074 205 157 073 073 361
057 353 206 353 306 007 077 027 346 001 057 074 205 157 003 023
170 346 004 057 074 205 157 351 000 000 000 000 000 000 000 000