MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, a tanári gyakorlatnak megfelelően jelölve a hibákat és a hiányokat.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a **javító által adott pontszám** a mellette levő téglalapba kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.
- 5. Az ábrán kívül a **ceruzával írt részeket** a javító tanár nem értékelheti.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon!
- 2. A pontozási útmutató pontjai tovább **bonthatók**, hacsak az útmutató másképp nem rendelkezik. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban **zárójelben szerepel** egy megjegyzés vagy mértékegység, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 6. Egy feladatra adott **többféle megoldási próbálkozás** közül csak egy, a vizsgázó által megjelölt változat értékelhető.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 9. A vizsgafeladatsor II. B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek az értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1.		
$A = \{1; 2; 3; 4; 5; 6; 7; 8\}$	1 pont	
$B = \{3, 6, 9\}$	1 pont	
$A \cap B = \{3, 6\}$	1 pont	
$A \setminus B = \{1; 2; 4; 5; 7; 8\}$	1 pont	
Összesen:	4 pont	

2.	
660 (gramm)	2 pont
Összesen:	2 pont

Megjegyzés: A konzervdoboz tömegének megállapításáért (90 gramm) 1 pont jár.

3.		
$(x-3)^2 = x^2 - 6x + 9$	1 pont	
(Az egyenlet rendezve:) $x^2 - 4x - 5 = 0$.	1 pont	
$x_1 = 5, x_2 = -1$	1 pont	
Összesen:	3 pont	

4.		
D	2 pont	Nem bontható.
Összesen:	2 pont	

Megjegyzés: Ha a vizsgázó egynél több választ ad meg, akkor 0 pontot kap.

5.		
12	2 pont	
Összesen:	2 pont	

6.		
Egy 20%-os áremelés 1,2-szeresére,	1 pont	
a kétszeri áremelés $1, 2 \cdot 1, 2 = 1,44$ -szeresére változtatja az eredeti árat.	1 pont	
Ez 44%-os áremelésnek felel meg.	1 pont	
Összesen:	3 pont	

7.		
Egy szám akkor osztható 3-mal, ha számjegyeinek összege osztható 3-mal.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
2+5+8+2=17	1 pont	
Így X lehetséges értékei: 1; 4; 7.	1 pont	
Összesen:	3 pont	

Megjegyzés: Ha a vizsgázó mind a tíz lehetséges számjegy kipróbálásával adja meg válaszát, akkor a teljes pontszám jár.

8.		
C	2 pont	Nem bontható.
Összesen:	2 pont	

Megjegyzés: Ha a vizsgázó egynél több választ ad meg, akkor 0 pontot kap.

9.		
x = 31	2 pont	
Összesen:	2 pont	

11.		
A téglalap körülírt körének átmérője a téglalap átlója.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A téglalap átlójának hossza $\sqrt{4,2^2 + 5,6^2}$ (= 7) (cm).	1 pont	
A kör sugara 3,5 (cm).	1 pont	
Összesen:	3 pont	

12.		
$\frac{9}{12} = 0.75$	2 pont	A százalékban megadott helyes válasz is elfogad- ható.
Összesen	2 pont	

II.A

13. a)		
$5 - 2 \cdot 2 = 1 \text{ (igaz)}$	1 pont	
$(-3) - 2 \cdot (-2) = 1$ (igaz)	1 pont	
Összesen:	2 pont	

13. b)		
A kör középpontja az AB szakasz C felezőpontja,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
ennek koordinátái (1; 0).	1 pont	
A kör sugara az AC szakasz,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
ennek hossza $\sqrt{20}$.	1 pont	Legalább egy tizedesjegy- re helyesen kerekített ér- ték elfogadható.
A kör egyenlete: $(x-1)^2 + y^2 = 20$.	1 pont	
Összesen:	5 pont	

13. c)		
Az f merőleges az AB szakaszra.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$Az f$ egy normálvektora a \overrightarrow{BA} vektor,	1 pont	Az f egyenes (2; 1) nor- málvektora az e egyenes
ennek koordinátái (8; 4).	1 pont	egyenletéből is kiolvasha- tó.
Az f egyenlete: $8x + 4y = 8 \cdot (-3) + 4 \cdot (-2)$,	1 pont	
azaz 8x + 4y = -32.	1 pont	2x + y = -8
Összesen:	5 pont	

14. a)		
(A kérdezett szöget α-val jelölve) alkalmazzuk a ko- szinusztételt:	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$7^2 = 5^2 + 8^2 - 2 \cdot 5 \cdot 8 \cdot \cos \alpha.$	1 pont	
Ebből $\cos \alpha = \frac{1}{2}$,	1 pont	
azaz (mivel egy háromszög egyik szögéről van szó) $\alpha = 60^{\circ}$.	1 pont	
Összesen:	4 pont	

14. b)		
Ha $\cos x = \frac{1}{2}$,	1 pont	
akkor (a megadott intervallumon) $x = \frac{\pi}{3}$,	1 pont	
$vagy x = \frac{5\pi}{3}.$	1 pont	
Ha $\cos x = -\frac{1}{2}$,	1 pont	
akkor (a megadott intervallumon) $x = \frac{2\pi}{3}$,	1 pont	
$vagy x = \frac{4\pi}{3}.$	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó megoldását fokban (helyesen) adja meg, akkor ezért összesen 1 pontot veszítsen. Ha a vizsgázó periódussal együtt vagy a $[-\pi, \pi]$ intervallumon adja meg az egyenlet megoldásait, akkor ezért összesen 1 pontot veszítsen.

14. c)			
I) igaz			2 jó válasz esetén 1 pont,
II) hamis		2 pont	1 jó válasz esetén 0 pont
III) hamis		_	jár.
	Összesen:	2 pont	

15. a)		
(A szöveg alapján felírható egyenlet:)		
$440 = \frac{2 \cdot 5 + (n-1) \cdot 3}{2} \cdot n.$	1 pont	
Ebből $3n^2 + 7n - 880 = 0$.	2 pont	
A negatív gyök $\left(-\frac{55}{3}\right)$ a feladatnak nem megoldása.	1 pont	
n = 16	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó a sorozat tagjait egyenként kiszámolva vizsgálja a kívánt összeg elérését, és jó eredményre jut, akkor a teljes pontszám jár.

15. b)		
(Keressük a következő egyenlet megoldását:)		
$500 = 5 \cdot \frac{1,2^n - 1}{1,2 - 1} .$	1 pont	
$21 = 1,2^n$	2 pont	
(Mindkét oldal 10-es alapú logaritmusát véve)	1 4	
$\lg 21 = \lg 1, 2^n$	1 pont	$\log_{1,2} 21 = n$
$\lg 21 = n \cdot \lg 1,2$	1 pont	
$n \approx 16,7$	1 pont	
Ez azt jelenti, hogy a sorozatnak legalább 17 tagját	1 pont	
kell összeadni, hogy az összeg elérje az 500-at.	1 point	
Összesen:	7 pont	

Megjegyzések: Ha a vizsgázó a sorozat tagjait egyenként kiszámolva vizsgálja a kívánt összeg elérését, és jó eredményre jut, akkor a teljes pontszám jár. Ha a vizsgázó egyenlet helyett egyenlőtlenséggel dolgozik, akkor a megfelelő pontok járnak.

II. B

16. a)		
Ha naponta <i>x</i> -szeresére nőtt az algás terület, akkor $1.5 \cdot x^7 = 27$.	1 pont	
$x = \sqrt[7]{18} \approx$	1 pont	
≈ 1,5	1 pont	
Az algás terület naponta körülbelül az 1,5-szeresére növekedett.	1 pont	
Összesen:	4 pont	

16. b)		
A medence alaplapja egy 2,4 m oldalhosszúságú sza-		
bályos hatszög, ennek területe $T_{\text{alaplap}} = 6 \cdot \frac{2.4^2 \cdot \sqrt{3}}{4} \approx$	2 pont	
$\approx 14,96 (\mathrm{m}^2).$	1 pont	
A medence oldalfalainak összterülete $T_{\text{oldalfal}} = 6 \cdot 2, 4 \cdot 0, 4 = 5,76 (\text{m}^2).$	1 pont	
Így összesen körülbelül 20,7 m² felületet burkoltak csempével.	1 pont	Más helyesen kerekített jó válasz is elfogadható.
A medence térfogata $V = T_{\text{alaplap}} \cdot m = 6 \cdot \frac{2,4^2 \cdot \sqrt{3}}{4} \cdot 0,4 \approx$	1 pont	
$\approx 5,986 \text{ (m}^3).$	1 pont	
Körülbelül 5986 liter víz fér el a medencében.	1 pont	Más helyesen kerekített jó válasz is elfogadható (pl. 6000 l vagy 5990 l).
Összesen:	8 pont	

16. c)		
Ha például a kék és a sárga színt választották ki, ak-		
$kor \binom{6}{3} (= 20)$ különböző módon választható ki az a	2 pont	
három vízsugár, amelyet a kék színnel világítanak		
meg (a másik három fénysugarat ugyanekkor sárga		
színnel világítják meg).		
A megvilágításhoz két színt háromféleképpen választhatnak ki (kék-sárga, kék-piros, piros-sárga).	1 pont	
$3 \cdot \binom{6}{3} =$	1 pont	
= 60 különböző megvilágítás lehetséges.	1 pont	
Összesen:	5 pont	

17. a)		
Az 1. csoporthoz tartozó diagram helyes.	1 pont	
A 2. csoporthoz tartozó diagram helyes.	1 pont	
A vizsgázó a két csoport adatait megfelelően megkülönböztette egymástól.	1 pont	
Az első csoporthoz tartozó diagramon a nagy magasságú oszlopok (az átlaghoz közel) középen vannak, a másodikon pedig a két szélen;	1 pont	Megfigyelés megfogalma- zása.
ez azt jelenti, hogy a második esetben nagyobb lehet a szórás.	1 pont	Következtetés a megfigye- lés alapján.
Összesen:	5 pont	

17. b)		
Az 1. csoport pontszámainak átlaga 6,	1 pont	Ezek a pontok járnak a
szórása $\sqrt{1,7} \approx 1,30$.		szórás értékének számo-
A 2. csoport pontszámainak átlaga 6,	1 pont	lógéppel történő helyes
szórása $\sqrt{14} \approx 3,74$.	1 pont	kiszámolásáért is.
A 2. csoport pontszámainak szórása nagyobb.	1 pont	
Összesen:	5 pont	

17. c)		
Az olcsóbb fajtából x kg-ot, a másikból $(14 - x)$ kg-ot veszünk.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
(A feladat szövege alapján felírható egyenlet:) $x \cdot 4500 + (14 - x) \cdot 5000 = 14 \cdot 4600$	2 pont	
4500x - 5000x + 70000 = 64400	1 pont	
x = 11,2	1 pont	
Az olcsóbb fajtából 11,2 kg, a drágább fajtából 2,8 kg szükséges a keverékhez.	1 pont	
Ellenőrzés a szöveg alapján.	1 pont	
Összesen:	7 pont	

18. a)		
Péter megnyert három csatát (kettőt elvesztett), egy csata pedig döntetlenre végződött,	1 pont	
így Péter előtt összesen hét kártya van az első mérkőzés után.	1 pont	
Összesen:	2 pont	

18. b)		
Péter úgy vihetett el két lapot, ha egy csatát nyert és ötöt elveszített, vagy két csatában döntetlent ért el, és	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg-
négyet elveszített.	1 point	oldásból derül ki.
András lapjainak (egyetlen lehetséges) sorrendje: 2, 3, 4, 5, 6, 1.	2 pont	
Összesen:	3 pont	

18. c)		
Péter az első két lapot $6 \cdot 5 = 30$ -féleképpen tudja letenni (összes eset száma).	1 pont	
Ezek közül a következő esetekben viszi el András első két lapját: (3; 4), (3; 5), (3; 6), (4; 5), (4; 6), (5; 4), (5; 6), (6; 4), (6; 5).	3 pont*	
A kedvező esetek száma 9.	1 pont	
A kérdéses valószínűség $\frac{9}{30} = 0.3$.	1 pont	A százalékban megadott helyes válasz is elfogad- ható.
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó a kedvező esetek felsorolásánál egy hibát követ el, akkor a csillaggal jelölt 3 pontból 2 pontot, ha két hibát követ el, akkor 1 pontot kapjon. Három vagy annál több hiba elkövetése esetén nem jár pont. Hibának számít valamelyik megfelelő eset kihagyása, kétszeri felsorolása, vagy nem megfelelő eset megadása.

18. d) első megoldás		
Az összes lehetséges csata száma ezekkel a lapokkal 3! · 3!=	1 pont	Ez a 2 pont jár az összes lehetséges eset felsorolá-
= 36.	1 pont	sáért is.
András akkor nyer pontosan kettőt, ha (valamilyen sorrendben) a 3-1, 6-5, 4-6 csaták,	1 pont	Ez a 3 pont jár az összes
vagy a 4-1, 6-5, 3-6 csaták zajlanak le.	1 pont	kedvező eset felsorolásá-
Ezek 2·3! = 12-féleképpen valósulhatnak meg (kedvező esetek száma).	1 pont	ért is.
A kérdéses valószínűség $\frac{12}{36} = \frac{1}{3}$.	1 pont	A százalékban megadott helyes válasz is elfogad- ható.
Összesen:	6 pont	

18. d) második megoldás		
Feltehetjük, hogy András a 3, 4, 6 sorrendben játssza	1 pont	
ki a lapjait.	1 pont	
Ekkor Péter 3! = 6-féleképpen teheti le a számkártyá-	1 pont	
it (összes eset):	1 point	
1, 5, 6		
1, 6, 5		
5, 1, 6	1 pont	
5, 6, 1	1 pont	
6, 1, 5		
6, 5, 1		
András az 1, 6, 5 és a 6, 1, 5 esetben nyer kétszer.	1 pont	
A kedvező esetek száma 2.	1 pont	
2 1		A százalékban megadott
A kérdéses valószínűség $\frac{2}{6} = \frac{1}{3}$.	1 pont	helyes válasz is elfogad-
0 3		ható.
Összesen:	6 pont	