OLASILIK TEORISI VE ISTATISTIK

İki Değişkenli Olasılık

- Bu bölümde yapılan bir deneyin iki değişkene bağlı olan sonuçları dikkate alınacaktır.
- Örneğin: Bir gazete yöneticisi, politikasını belirlemek için ekonomi sayfasını okuyan müşterilerin yaşları ile ilgilenebilir.
- Burada A olayı ekonomi sayfasının okunması,
- B olayı da yaşlar ile ilgili bilgiyi tanımlamaktadır.
- B olayı B_1 (\leftarrow 25), B_2 (26 40), B_3 (41 \rightarrow) olarak ayrık alt olaylardan oluşabilir.
- A olayı da A₁ (hiç okumuyor), A₂ (ara sıra okuyor), A₃ (devamlı okuyor) şeklinde ayrık alt olaylardan oluştuğu düşünülebilir.
- Bu rasgele deneyde;

İki Değişkenli Olasılık

• Şekil1'de görüldüğü gibi A ve B olaylarının sonuçları birleşerek iki değişkenli sonuçları oluşturmuşlardır. Toplam sonuç sayısı A'nın sonuç sayısı ile B'nin sonuç sayıları çarpımı kadardır (3 x 3 = 9). Bu sonuçlara olasılıklar da bağlanabilir. Verdiğimiz örneğin alan araştırması sonuçları Çizelge_2 verildiği gibi olsun.

(A) Ekonomi Sayfasını Okuma	(B) Yaşlar			
	(B_1) (\leftarrow 25)	(B ₂) (26 – 40)	$(B_3) (41 \rightarrow)$	Toplam
(A ₁) Hiç okumuyor	0,13	0,02	0,03	0,18
(A ₂) Ara sıra okuyor	0,11	0,13	0,21	0,45
(A ₃) Düzenli okuyor	0,03	0,21	0,13	0,37
Toplam	0,27	0,36	0,37	1

Gazetede Ekonomi Sayfası Okuma

- Burada deneysel olasılığın kullanıldığını görüyoruz. Eğer araştırmanın geniş bir örneklem de yapıldığı düşünülür ise bu sonuçların olasılıklara yaklaştığı düşünülebilir. Böylece gazete okuyucu kitlesinin davranışları hakkında bilgi alınabilir.
- Örneğin; $P(A_1 \cap B_2) = 0.02$
- olan sonucun 26 40 yaş grubunda, ekonomi sayfasını okumayanların 0,02 olduğu söylenebilir. Burada şu iki tanım verilebilir.

- Kenar Olasılıklar: İki değişkenli olasılıklarda (çapraz tablo oluşturuluyor) tekil olay olasılıklarına P(A_i) ya da P(B_i) kenar olasılık denir.
- Ortak Olasılıklar: İki değişkenli olasılıklarda arakesit olasılıkları P(A_i∩B_j)
 ortak olasılıklar denir.

Burada kenar olasılıklar örneğin P(A_i), A_i olayını oluşturan ve birbirlerinden ayrık olan

$$A_i \cap B_1; A_i \cap B_2; ...; A_i \cap B_r$$

olasılıklarının toplamına eşittir.

$$P(A_i) = P(A_i \cap B_1) + P(A_i \cap B_2) + \dots + P(A_i \cap B_r)$$

• Bu sonuç P(B_i) için de geçerlidir. Yani

$$P\left(B_{j}\right) = P\left(A_{1} \cap B_{j}\right) + P\left(A_{2} \cap B_{j}\right) + \dots + P\left(A_{k} \cap B_{j}\right)$$

 Ekonomi sayfasını okuma örneğinde rasgele seçilmiş bir kimsenin bu sayfayı ara sıra okuyor olma olasılığı:

$$P(Arasıra \ okuyor) = P[Arasıra \ okuyor \cap (\leftarrow 25 yaş)]$$

+ $P[Arasıra \ okuyor \cap (26 yaş - 40 yaş)]$
+ $P[Arasıra \ okuyor \cap (41 yaş \rightarrow)]$
= $0,11+0,13+0,21=0,45$

• Benzer şekilde,

$$P(D\ddot{u}zenli\ okuyor) = 0,37$$

$$P(Hiconormal of constant of the constant of$$

$$P(25yaş$$
 ve daha $k \ddot{u} \varsigma \ddot{u} \dot{k}) = 0,27$

$$P(26yas 40yas arasi) = 0.36$$

$$P(41yaş$$
 ve daha büyük) = 0,37

- A₁ A₂ ... A_k ayrık ve bütünü tamamlayan olaylar olduğu için olasılıkları toplamı 1 dir. Aynı durum B olayları için de geçerlidir.
- Aynı durum arakesit olayları olan $(A_i \cap B_j)$
- ait ortak olasılıklar için de geçerlidir.
- Yani

$$\sum_{j=1}^{r} \sum_{i=1}^{k} P(A_i \cap B_j) = 1$$

- Genellikle uygulamada kenar olasılıkları ile çok ilgilenilmez.
- Örneğin, yukarıda verilen araştırmada (26-40) yaş grubunda ekonomi sayfasını okuyanlar bizi daha çok ilgilendirebilir.
- Ya da, bir sigorta şirketinde sağlık sigortası yaptıran müşterilerden herhangi birinin bir yıl içinde sigorta primi almak için başvurma olasılığı yerine (50-60) yaş grubunda olan müşterilerden birinin başvurması olasılığı bizi daha çok ilgilendirir.

- Bu iki örnekte görüldüğü gibi istenen olasılık bir ek koşul altında belirlenmektedir. Burada, belli bir olayın gerçekleşme olasılığı, bir başka olayın gerçekleşmesi verilmişken ilgilenmemizi gerektirmektedir. Bu duruma koşullu olasılık diyoruz.
- **Tanım:** A ile B iki olay olsun. B olayı verilmişken A olayının gerçekleşme olasılığına koşullu olasılık denir ve P(A/B) ile gösterilir. P(B)>0 olma şartı ile

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

olarak tanımlanır. Benzer şekilde eğer koşul A olayı ise P(A)>0 şartı ile

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

 Ekonomi sayfası ile ilgili araştırmada rasgele seçilmiş bir kişinin (26-40) yaş grubunda olduğu bilindiğine göre bu sayfayı ara sıra okuma olasılığı:

$$P \Big[\operatorname{Arasıra} \quad \operatorname{okuma} / \left(26 - 40\right) \operatorname{yaş} \quad \operatorname{grubu} \Big] = \frac{P \Big[\operatorname{Arasıra} \quad \operatorname{okuma} \bigcap \left(26 - 40\right) \operatorname{yaş} \quad \operatorname{grubu} \Big]}{P \Big[\left(26 - 40\right) \operatorname{yaş} \quad \operatorname{grubu} \Big]}$$

$$=\frac{0.13}{0.36}=0.36$$

• ya da

$$P\big[\operatorname{\textit{Hiç}} \ \ okumuyor / \ 25yaş \ \ ve \ \ daha \ \ k\"{u}\'{c}\'{u}k\big] = \frac{P\big[\operatorname{\textit{Hiç}} \ \ okumuyor \cap 25yaş \ \ ve \ \ k\"{u}\'{c}\'{u}k\big]}{P\big(25yaş \ \ ve \ \ k\"{u}\'{c}\'{u}k\big)}$$

$$=\frac{0.13}{0.27}=0.48$$

- Örnek: Büyük bir şehirde elektrik kesintilerinin nedenleri incelendiğinde elde edilen verilerden aşağıdaki sonuçlara varılmıştır. Kesintilerin 0,05'i trafo arızasına, 0,80'i hattın zarar görmesine, 0,01'i her iki nedene de bağlıdır. Aşağıdaki olasılıkları hesaplayın?
- A)Hattın arızalı olduğu verilmişken, trafonun da arızalı olması olasılığı

```
A: {Trafo arızalı}

B: {Hattın arızalı olması}
```

A)Hattın arızalı olduğu verilmişken, trafonun da arızalı olması olasılığı

B:{Hattın arızalı olması}

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0.01}{0.80} = \frac{1}{80}$$

 B)Trafo arızası verilmişken, hattın da arızalı olması

$$P(B/A) = \frac{0.01}{0.05} = \frac{1}{5}$$

 C)Hattın arızalı olmadığı ve trafonun arızalı olması

$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$
$$= 0.05 - 0.01 = 0.04$$

D)Hattın arızalı olmadığı verilmişken, trafonun arızalı olması

$$P(A/\overline{B}) = \frac{P(A \cap \overline{B})}{P(\overline{B})} = \frac{0.04}{0.20} = \frac{1}{5}$$

• E)Trafonun veya hattın arızalı olması

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0.05 + 0.80 - 0.01 = 0.84$$