COSC 3340/6309

Final Examination

Thursday, July 6, 2017, 11 am – 2 pm

Final grades only through PeopleSoft Open Book and Notes

YOU MUST USE THE CONSTRUCTIONS GIVEN IN CLASS

1. Construct a regular expression over {a,b,c} for the language accepted by this nfa:

	a	b	C	=======================================
$\rightarrow A$	1	B,C	1	0
В	В	/	C	1
C	1	A,B	/	1

2. Prove that the language L(G) is not regular where G is the following cfg:

$$G = (\{S,A,B\}, \{a,b\}, \{S\rightarrow Abb|B, A\rightarrow aS, B\rightarrow b\}, S).$$
 Note: You must first determine L(G).

3. Construct a reduced dfa for the following extended regular expression over $\{0,1\}$:

$$[(10^*)^* \cap 0^*10^*]$$

Note: You must first determine nfas for $(10^*)^*$ and 0^*10^* , then do the intersection. The answer must then be reduced.

4. Construct a Chomsky normal form grammar for L(G) for the following cfg G:
$$G = (\{S,B\}, \{a,b,c,d\}, \{S \rightarrow Sb|Ba, B \rightarrow cBdB|S|\epsilon\}, S).$$

Note: You must first remove all \(\varepsilon\) and all unit productions.

5. Construct a Greibach normal form grammar for L(G) for the following CNF G:

$$G = (\{S,A\}, \{a,b\}, \{S \rightarrow ASS | A, A \rightarrow SSS | aba\}, S).$$
 You must first remove all unit productions. You must derive all the productions for S and A; indicate how

Note: You must first remove all unit productions. You must derive all the productions for S and A; indicate how the result looks for S' and A'.

Prove that the following language L is not contextfree:
$$L = \{0^n 1^n 0^{n+2} \mid n \ge 1\}$$
.

- 7. Consider the class CFA of all context free languages over the fixed alphabet A.
 - (a) Is CF_A countable?
 - (b) Is the class NOTCF_A countable where NOTCF_A consists of all languages / over A that are not context free?
 - (c) Is the class CF_A ∩ NOTCF_A countable?

For each question, you must give a precise argument substantiating your answer.

8. Construct a Turing machine for the language in Question 6, $L = \{0^n1^n0^{n+2} \mid n \ge 1\}$. Note: Describe first the process in English; then translate this into moves of the Turing machine.

9. Let L₁ and L₂ be arbitrary languages, subject to the specification in either (i) or (ii). Consider the following four questions:

(Q2) Is L_1-L_2 empty? (Q1) Does L₁-L₂ contain a given fixed word w?

(Q3) Does $L_1 \cap L_2$ contain a given fixed word w? (Q4) Is $L_1 \cap L_2$ empty? For each of these four questions explain with reasons whether the general problem is recursive, not recursive but r. e., or non-r. e., provided

(i) Both L₁ and L₂ are recursive.

(ii) L₁ is r. e., but not recursive and L₂ is recursive. Note that there are eight different questions to be answered.

Points: 1:6 2:8 3:15 4:11 5:12 6:12 7:13 8:8 9:15