CS217 - Algorithm Design and Analyis Homework Assignment 5

Group Name: Static

Group Members: Zhenjia Xu, Jiacheng Yang

Zhuolin Yang, Wenda Qiu

15th Dec, 2016

4 Linear Programs and Farkas Lemma

Exercise 4.2.

Necessity.

Obviously if $y \in \{0,1\}$ and the set $C := \{u \in V \mid y_u = 1\}$ is a minimal vertex cover, then y is a feasible solution (every edge is covered by a node, namely $\forall (u,v) \in E, y_u + y_v \geq 1$). To show the solution is a basic solution, we firstly show that the following lemma is true.

Lemma 1. If C is a minimal vertex cover, then $\forall u \in C$, $\exists v \notin C$, such that $(u, v) \in E$.

Proof. Otherwise if there exists x satisfied that $\forall (u,v) \in E$ and $v \notin C$. Then remove u from C and we can get C'. Obviously C' is a vertex cover, which contradicts to the fact that C is a minimal vertex cover.

Considering the nodes u satisfying $u \notin C$, then $m + u \in I(y)$ holds. These nodes donate an identity matrix in $A_{I(y)}$. Then considering the nodes u which is in the vertex cover, then according to the lemma, we can find another adjacent vertex $v \notin C$, and $y_u + y_v = 1$, namely $id(u, v) \in I(y)$ where id(u, v) stands for the serial number of the edge (u, v). Hence $A_{I(y)}$ is consisted of two kinds of rows, and one of them is $a_{id(u,v)}$ (either u or v is in C and $(u,v) \in E$) and a_{m+i} (i is not in C). By Gauss elimination, it is obvirusly that rank $(A_{I(y)}) = n$, hence y is a basic solution.

Sufficiency.

Firstly we will show that given a basic and feasible solution $y, y_u \in \{0, 1\}$ holds. We can construct a graph G' = (V', E') where $V' = \{u \mid y_u \in (0, 1)\}$ and $E' = \{(u, v) \mid u, v \in V', y_u + y_v = 1\}$. Then we know that the degree of each vertex i is at least one, otherwise the i-th column of $A_{I(y)}$ is a zero vector $(y_i \neq 0)$ and every edge (u, v) is not "tight", contradicting to the fact that $A_{I(y)}$ is a non-singular matrix.

Lemma 2. If a graph G has n vertexes and n edges, then there must be a cycle in G.

Proof. Otherwise G is a forest and has at most n-1 edges.

According to the lemma, G' has a cycle c_1, c_2, \ldots, c_t . Let E_c be the set containing the serial number of the edges in the cycle. With the rearrangement of the rows, the submatrix A_{E_c} itself become:

$$\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

And obviously the above matrix is singular (and the original matrix A is singular too), which leads the contradictions.

Then we will show that $C := \{u \in V \mid y_u = 1\}$ is a minimal vertex cover. Showing that $y_u \in \{0,1\}$, we can easily know that y is a vertex cover. If y is not a minimal vertex cover, then there must be a node $p \in C$, after we remove which we can obtain another vertex cover y'. Consider the p-th column of A, and according to the lemma 1, we can see that there is no adjacent node q such that $y_p + y_q = 1$, which means that the p-th column of A is a zero vector, which leads a contradiction.

Exercise 4.6. FLGV: According to FLGV-2, we have:

$$\exists \mathbf{y} \in \mathbf{R}^m : A^T \mathbf{y} > 0, \mathbf{b}^T \mathbf{y} < 0$$

if FLGV-1 also holds, there exists $\mathbf{x} \geq 0$, $A\mathbf{x} = \mathbf{b}$. because $A\mathbf{x} = \mathbf{b}$ can be written as $\mathbf{b}^{T} = \mathbf{x}^{T} A^{T}$, we have:

$$\mathbf{b}^T \mathbf{y} = \mathbf{x}^T A^T \mathbf{y}$$

Because $A^T \mathbf{y} \geq 0$, $\mathbf{x} \geq 0$, we can get $\mathbf{x}^T A^T \mathbf{y} \geq 0$.

but according to FLGV-2, $\mathbf{b}^T \mathbf{y} < 0$, which is a contradictory, so FLGV-2 implies that FLGV-1 does not hold.

FLLPV: According to FLLPV-2, we have:

$$\exists \mathbf{y} \in \mathbb{R}^m : \mathbf{y} \ge 0, A^T \mathbf{y} \ge 0, \mathbf{b}^T \mathbf{y} < 0$$

if FLLPV-1 also holds, there exists $\mathbf{x} \geq 0$, $A\mathbf{x} \leq \mathbf{b}$. because $A\mathbf{x} \leq \mathbf{b}$ can be written as $\mathbf{b}^T \geq \mathbf{x}^T A^T$, and \mathbf{y} holds $\mathbf{y} \geq 0$, we have:

$$\mathbf{b}^T \mathbf{y} \ge \mathbf{x}^T A^T \mathbf{y}$$

Because $A^T \mathbf{y} \ge 0$, $\mathbf{x} \ge 0$, we can get $\mathbf{b}^T \mathbf{y} \ge \mathbf{x}^T A^T \mathbf{y} \ge 0$.

but according to FLLPV-2, $\mathbf{b}^T \mathbf{y} < 0$, which is a contradictory, so FLLPV-2 implies that FLLPV-1 does not hold.

FLEV: According to FLEV-2, we have:

$$\exists \mathbf{y} \in \mathbb{R}^m : \mathbf{y} \geq 0, A^T \mathbf{y} \geq 0, \mathbf{b}^T \mathbf{y} < 0$$

if FLEV-1 also holds, there exists $A\mathbf{x} \leq \mathbf{b}$.

because $A\mathbf{x} \leq \mathbf{b}$ can be written as $\mathbf{b}^T \geq \mathbf{x}^T A^T$, and \mathbf{y} holds $\mathbf{y} \geq 0$, we have:

$$\mathbf{b}^T \mathbf{y} > \mathbf{x}^T A^T \mathbf{y}$$

Because $A^T \mathbf{y} = 0$, we can get $\mathbf{b}^T \mathbf{y} \ge \mathbf{x}^T A^T \mathbf{y} = 0$.

but according to FLEV-2, $\mathbf{b}^T \mathbf{y} < 0$, which is a contradictory, so FLEV-2 implies that FLEV-1 does not hold.

Exercise 4.7.

$FLGV \Rightarrow FLLPV$

Construct A' = (A I) where I is identity matrix. Use algorithm for FLGV on A' and b. Then we have exact one of the following:

1.
$$\exists x' \in \mathbb{R}^{n+m} : x' \geq 0, A'x' = b.$$

Let $x' = \binom{x}{x''}, x \in \mathbb{R}^n, x'' \in \mathbb{R}^m.$
So we have $b = A'x' = Ax + Ix'' = Ax + x'' \geq Ax$, thus $x \geq 0, Ax \leq b$

2.
$$\exists y \in \mathbb{R}^m : A'^T y \ge 0, b^T y < 0.$$

So we have
$$\begin{cases} A^T y \ge 0 \\ I^T y \ge 0 \end{cases}$$
, thus $y \ge 0, A^T y \ge 0, b^T y < 0$

$FLLPV \Rightarrow FLGV$

Construct $A' = \begin{pmatrix} A \\ -A \end{pmatrix}$, $b' = \begin{pmatrix} b \\ -b \end{pmatrix}$. Use algorithm for FLLPV on A' and b'. Then we have exact one of the following:

1.
$$\exists x \in \mathbb{R}^n : x \geq 0, A'x \leq b'.$$

So we have
$$\begin{cases} Ax \leq b \\ -Ax \leq -b \end{cases}$$
, thus $x \geq 0, Ax = b$

2.
$$\exists y' \in \mathbb{R}^{2m} : y' \geq 0, A'^T y' \geq 0, b^T y' < 0.$$

Let $y' = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, where $y_1 \in \mathbb{R}^m, y_2 \in \mathbb{R}^m.$
So we have $A'^T y' = A^T y_1 - A^T y_2 = A^T (y_1 - y_2) \geq 0, \ b'^T y' = b^T y_1 - b^T y_2 = b^T (y_1 - y_2) < 0.$
Let $y \in \mathbb{R}^m, y = y_1 - y_2$, thus $A^T y \geq 0, b^T y < 0$

$FLEV \Rightarrow FLLPV$

Construct $A' = \begin{pmatrix} A \\ -I \end{pmatrix}$ where I is identity matrix, $b' = \begin{pmatrix} b \\ 0 \end{pmatrix}$. Use algorithm for FLEV on A' and b'. Then we have exact one of the following:

1.
$$\exists x \in \mathbb{R}^n : A'x \leq b'$$
.
So we have $\begin{cases} Ax \leq b \\ -Ix \leq 0 \end{cases}$, thus $x \geq 0, Ax \leq b$

2.
$$\exists y' \in \mathbb{R}^{n+m} : y' \geq 0, A'^T y' = 0, b'^T y' < 0.$$

Let $y' = \begin{pmatrix} y \\ y'' \end{pmatrix}, y \in \mathbb{R}^m, y'' \in \mathbb{R}^n.$
So we have $A'^T y' = A^T y - I y'' = 0, b'^T y' = b^T y < 0$, thus $y \geq 0, A^T y \geq 0, b^T y < 0$

$FLLPV \Rightarrow FLEV$

Construct A' = (A - A). Use algorithm for FLLPV on A' and b. Then we have exact one of the following:

1.
$$\exists x' \in \mathbb{R}^{2n} : x' \geq 0, A'x' \leq b$$
.
Let $x' = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, where $x_1 \in \mathbb{R}^n, x_2 \in \mathbb{R}^n$.
So we have $A'x' = Ax_1 - Ax_2 = A(x_1 - x_2) \leq b$.
Let $x \in \mathbb{R}^n, x = x_1 - x_2$, thus $Ax \leq b$

2.
$$\exists y \in \mathbb{R}^m : y \ge 0, A'^T y \ge 0, b^T y < 0.$$

So we have
$$\begin{cases} A^T y \ge 0 \\ -A^T y \ge 0 \end{cases}$$
, thus $A^T y = 0, b^T y < 0$