

(a) KOH, I-R $^2$ , dioxane/H $_2$ O; (b) KOH, I-R $^3$ , dioxane/H $_2$ O; (c) KOH, 1,2-dibromoethane, dioxane/H $_2$ O; (d) KOH, dioxane/H $_2$ O.

(a) KOH, MeI,dioxane/ $H_2O$ ; (b) Baker's Yeast, D-glucose,  $H_2O$ ; (c) TBSOTf, 2,6-lutidine,  $CH_2Cl_2$ ; (d) LDA, THF; PhSeCI; (e) 30%  $H_2O_2$ ,  $CH_2Cl_2$ .

HS 
$$\stackrel{a}{\longrightarrow}$$
 HS  $\stackrel{CO_2Me}{\longrightarrow}$  8

(a) NaH,  $BrCH_2CO_2CH_3$ ; (b)  $H_2O_2$ , NaOH, MeOH; (c) basic Alumina,  $CH_2CI_2$ .

TBSÕ

10

$$\begin{array}{c|c} CI & \longrightarrow & MgBr & CI & DMAP \\ \hline & OH & 18 & \hline \end{array}$$

(a)Cp<sub>2</sub>ZrHCl, THF; (b) MeLi, Et<sub>2</sub>O -78 °C; (c) lithium 2-thienycyanocuprate; (d)enone **10**, THF -78 °C; (e) HF-pyridine, CH<sub>3</sub>CN; separate diastereomers (i) rabbit liver esterase, phosphate buffer, CH<sub>3</sub>CN.

Figure 6



(a) TBSCl, etc.; (b) n-BuLi; DMF; (c) Ac<sub>2</sub>O, pyridine; (d) Jones oxidation; (e) MeOH, AcCl; (f) PPh<sub>3</sub>, I<sub>2</sub>, imidazole, CH<sub>2</sub>Cl<sub>2</sub>.

$$CO_2R$$
 $CO_2CH_3$ 
 $CO_2CH_3$ 
 $CO_2CH_3$ 
 $CO_2CH_3$ 

low Rf + high Rf diastereomers

low Rf + high Rf diastereomers

38, 39

low Rf + high Rf diastereomers

40, 41

(a) t-BuLi, THF -78 °C; (b) Me<sub>2</sub>Zn; (c) HF-pyridine, CH<sub>3</sub>CN; separate diastereomers; (d) rabbit liver esterase, pH 7.2 phosphate buffer, CH<sub>3</sub>CN; (e) NiCl<sub>2</sub>, NaBH<sub>4</sub>, ethylenediamine, H<sub>2</sub>, THF;

(a) CICO $_2$ CH $_2$ CH $_3$ , Et $_3$ N, CH $_2$ CI $_2$ ; NH $_4$ OH (aq); (b) EDCI, N-hydroxysuccinimide, H $_2$ NCH $_2$ CH $_2$ OH, DMF.