1 - Esercizio (7 punti)

Versione 1

Con riferimento alla rete in Figura, si consideri che il dispositivo A debba inviare un file al dispositivo B tramite una connessione TCP. I parametri iniziali della connessione TCP siano i seguenti: MSS=300 [B], RCWND=12 MSS, SSTHRESH= 5 MSS. Si supponga inoltre che la dimensione dei segmenti di apertura della connessione (SYN, SYNACK) e di riscontro (ACK) sia pari a 60 [B].

Considerato che il file da trasferire sia di 24 [KB], e che:

- il valore del time out è $t_{out} = 1$ [ms] (avviato <u>all'inizio</u> della trasmissione di un segmento)
- appena prima che A invii il segmento #34, A riceva un segmento TCP dal dispositivo B in cui è segnalato un campo di *window* pari a 3 [KB].

Indicare:

- 1. Se la trasmissione sulla connessione TCP diventa continua su uno dei tre link. In caso positivo, indicare il tempo (dall'istante t=0) oltre cui la trasmissione diventa continua e su quale collegamento
- 2. Il tempo di trasferimento del file (dall'inizio dell'apertura della connessione TCP fino alla ricezione dell'ultimo ACK)
- 3. Il tempo di trasferimento del file supponendo che il 6° segmento in trasmissione vada perso. Si supponga inoltre che il TCP scarti i segmenti fuori sequenza.

```
T1 = (300*8) / C1 = 48 us

T2 = (300*8) / C2 = T1/3 = 16 us

T3 = (300*8)/C3 = T1/2 = 24 us

T1_ack = (60*8) / C1 = 9.6 us

T2_ack = (60*8) / C2 = T1_ack/3 = 3.2 us

T3_ack = (60*8)/C3 = T1_ack/2 = 4.8 us
```

```
RTT = (T_1 + t_1) + (T_2 + t_2) + (T_3 + t_3) + (T_3 - ack + t_3) + (T_2 - ack + t_2) + (T_1 - ack + t_1) =
= 2* (t_1 + t_2 + t_3) + T_1 + T_2 + T_3 + T_1 - ack + T_2 - ack + T_3 - ack = 605.6 us

Topen = 2* (t_1 + t_2 + t_3 + T_1 - ack + T_2 - ack + T_3 - ack) = 535.2 us

Filesize = L / MSS = 24000/300 = 80

RCWND_new = 3000/300 = 10 MSS
```

1. La trasmissione diventerebbe continua sul link R1-R2 quando Wc >= RTT/T1 = 12.6

Dato che RCWND = 12 MSS, concludiamo che la trasmissione non diventa mai continua sul link A-R1.

2. Ttot = Topen + 12RTT + 7T1 = 8.1384ms

3. Ttot= Topen + tout+2T1+14RTT+9T1=10.5416ms

Dopo il time out

Versione 2

Con riferimento alla rete in Figura, si consideri che il dispositivo A debba inviare un file al dispositivo B tramite una connessione TCP. I parametri iniziali della connessione TCP siano i seguenti: MSS=600 [B], RCWND=12 MSS, SSTHRESH= 5 MSS. Si supponga inoltre che la dimensione dei segmenti di apertura della connessione (SYN, SYNACK) e di riscontro (ACK) sia pari a 60 [B].

Considerato che il file da trasferire sia di 24 [KB], e che:

- il valore del time out è $t_{out} = 1$ [ms] (avviato <u>all'inizio</u> della trasmissione di un segmento)
- appena prima che A invii il segmento #34, A riceva un segmento TCP dal dispositivo B in cui è segnalato un campo di window pari a 3 [KB].

Indicare:

- 4. Se la trasmissione sulla connessione TCP diventa continua su uno dei tre link. In caso positivo, indicare il tempo (dall'istante t=0) oltre cui la trasmissione diventa continua e su quale collegamento
- 5. Il tempo di trasferimento del file (dall'inizio dell'apertura della connessione TCP fino alla ricezione dell'ultimo ACK)
- 6. Il tempo di trasferimento del file supponendo che il 6° segmento in trasmissione vada perso. Si supponga inoltre che il TCP scarti i segmenti fuori sequenza.

```
T_1 = (600*8) / C_1 = 96 \text{ us}
T_2 = (600*8) / C_2 = T_1/3 = 32 \text{ us}
T_3 = (600*8) / C_3 = T_1/2 = 48 \text{ us}
T_1 = (60*8) / C_1 = 9.6 \text{ us}
T_2 = (60*8) / C_2 = T_1 = 6 \text{ us}
T_2 = (60*8) / C_3 = T_1 = 6 \text{ us}
T_3 = (60*8) / C_3 = T_1 = 6 \text{ us}
T_3 = (60*8) / C_3 = T_1 = 6 \text{ us}
T_3 = (60*8) / C_3 = T_1 = 6 \text{ us}
T_3 = (71 + 1) + (72 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (73 + 1) + (7
```

1. La trasmissione diventerebbe continua sul link R1-R2 quando Wc >= RTT/T1 = 7,2 Dato che RCWND = 12 MSS, concludiamo che la trasmissione diventa continua sul link A-R1.

Dall'analisi dei tempi si osserva che la trasmissione diventa continua all'istante t = Topen+6RTT = 4.6968 ms

3. Ttot = Topen + $2RTT + 2T1 + t_{out} + 6RTT + 2T1 + 2RTT + T1 + RTT = Topen + 11RTT + 5T1 + t_{out} = 9.6448 ms$

2 - Esercizio (6 punti)

Versione 1

Un router ha le seguenti interfacce e la seguente tabella di routing. Riceve i pacchetti con destinazione, dimensioni e impostazione del bit "Don't Fragment" indicati sotto. Usando la tabella apposita, si dica per ciascuno di essi come si comporta il router: inoltro diretto o indiretto, interfaccia di uscita, riga della tabella, motivazione pacchetto scartato.

* Si contrassegnino con un asterisco le azioni che si effettuerebbero nel caso il pacchetto da scartare non fosse scartato.

Eth0: Address: 131.175.23.196– Netmask: 255.255.255.128 – MTU: 1500 B Eth1: Address: 131.175.23.6 – Netmask: 255.255.255.128 – MTU: 1000 B Eth2: Address: 131.175.24.118 – Netmask: 255.255.255.128 – MTU: 1200 B

Network	Netmask	Next-hop
131.175.70.0	255.255.254.0	131.175.23.134
131.175.71.128	255.255.255.128	131.175.23.120
131.175.72.0	255.255.254.0	131.175.24.123
131.175.75.192	255.255.255.192	131.175.23.96
0.0.0.0	0.0.0.0	131.175.24.119

- 1. 131.175.23.122 (900B, D=1) da Eth0
- 2. 131.175.71.124 (1000B, D=1) da Eth2
- 3. 131.175.76.27 (1600B, D=0) da Eth0
- 4. 131.175.23.222 (1600B, D=1) da Eth2
- 5. 131.175.72.72 (1200B, D=1) da Eth0
- 6. 131.175.23.127 (500B, D=1) da Eth1

Versione 2

Un router ha le seguenti interfacce e la seguente tabella di routing. Riceve i pacchetti con destinazione, dimensioni e impostazione del bit "Don't Fragment" indicati sotto. Si dica per ciascuno di essi come si comporta il router: inoltro diretto o indiretto, interfaccia di uscita, riga della tabella, motivazione pacchetto scartato.

* Si contrassegnino con un asterisco le azioni che si effettuerebbero nel caso il pacchetto da scartare non fosse scartato.

Eth0: Address: 175.131.23.196– Netmask: 255.255.255.128 – MTU: 1500 B Eth1: Address: 175.131.23.6 – Netmask: 255.255.255.128 – MTU: 1000 B Eth2: Address: 175.131.24.118 – Netmask: 255.255.255.128 – MTU: 1200 B

Network	Netmask	Next-hop
175.131.70.0	255.255.254.0	175.131.23.134
175.131.71.128	255.255.255.128	175.131.23.120
175.131.72.0	255.255.254.0	175.131.24.123
175.131.75.192	255.255.255.192	175.131.23.96
0.0.0.0	0.0.0.0	175.131.24.119

- 1. 175.131.23.122 (900B, D=1) da Eth0
- 2. 175.131.71.124 (1000B, D=1) da Eth2
- 3. 175.131.76.27 (1600B, D=0) da Eth0
- 4. 175.131.23.222 (1600B, D=1) da Eth2
- 5. 175.131.72.72 (1200B, D=1) da Eth0
- 6. 175.131.23.127 (500B, D=1) da Eth1

La soluzione è la stessa per le due versioni

Pacchetto	Azione	Tipo inoltro (diretto/in diretto)	Riga tabella di routing	Interfacc ia (<u>solo</u> se usata)	Motivo di scarto (<u>solo</u> se il pacchetto è scartato)	Frammentazione (sì/no)
1	Inoltro	Diretto		ETH1		NO
2	Inoltro	Indiretto	Riga 1	ЕТН0		NO
3	Inoltro	Indiretto	Riga 5	ETH2		SI
4	Inoltro*	Diretto*		ETH0	Flag D=1	SI*
5	Inoltro	Indiretto	Riga 3	ETH2		NO
6	Passato ai livelli superiori					

3 - Esercizio (5 punti)

Si consideri il grafo in figura, che rappresenta una rete costituita da 7 *router* ed i costi dei relativi collegamenti.

Versione 1

Si trovi, utilizzando la tabella, l'albero dei cammini minimi avente come radice il **nodo** A usando l'algoritmo di *Dijkstra*. Si disegni, a fianco al grafo, l'albero dei cammini minimi finale, indicando anche i costi dei collegamenti inclusi nell'albero.

	A	В	С	D	Е	F	G
Init	(0,-)	(inf,-)	(inf,-)	(inf,-)	(inf,-)	(inf,-)	(inf,-)
Step 1		(3,A)	#	#	(7,A)	(2,A)	(6,A)
Step 2		(3,A)	#	#	(7,A)		(5,F)
Step 3			(7,B)	#	(7,A)		(4,B)
Step 4			(6,G)	(9,G)	(5,G)		
Step 5			(6,G)	(7,E)			
Step 6				(7,E)			

Versione 2

Si trovi, utilizzando la tabella, l'albero dei cammini minimi avente come radice il **nodo** E usando l'algoritmo di *Dijkstra*. Si disegni, a fianco al grafo, l'albero dei cammini minimi finale, indicando anche i costi dei collegamenti inclusi nell'albero.

	A	В	С	D	Е	F	G
Init					(0,-)		
Step 1	(7,E)			(2,E)		(6,E)	(1,E)
Step 2	(7,E)	(2,G)	(3,G)	(2,E)		(4,G)	
Step 3	(7,E)	(2,G)	(3,G)			(4,G)	
Step 3 Step 4	(5,B)		(3,G)			(4,G)	
Step 5	(5,B)					(4,G)	
Step 6	(5,B)						

FCI, Appello 26/01/2021 SOLUZIONE!!! *Quesiti (9 punti)*

1 - (3 Punti)

Si consideri la rete in Figura, in cui sono presenti un flusso http tra C e B e 3 flussi interferenti, 1 tra A e B e 2 tra A e S:

- Quale è la capacità effettiva di trasferimento per il flusso http tra C e B? 2.5 Mb/s
- Quale capacità è disponibile per ciascuno dei flussi tra A e S? 3.5 Mb/s ciascuno
- Quale collegamento determina il collo di bottiglia per la connessione C-B? R2-B
- Qual è la banda residua sul collegamento A-R1? 0.5 Mb/s

2 - (3 Punti)

Si consideri il blocco di indirizzi CIDR 140.28.88.0/21. Quante sottoreti /26 si possono ottenere da questo blocco e quanti sono gli indirizzi assegnabili ad host in ciascuna sottorete? Scrivere in formato decimale (D) e binario (B) l'indirizzo della sottorete /26 n° 6 (si assuma che la prima rete è la n° 0, la seconda rete è la n° 1 e così via) e l'indirizzo di broadcast diretto.

Numero sottoreti /26: $2^{(26-21)} = 32$ Numero di indirizzi assegnabili ad host: $2^{6} - 2$ (indirizzi speciali)= 62

Indirizzo della rete n° 6 (D): 140.28.89.128/26 Indirizzo della rete n° 6 (B):

10001100.00011100.01011001.100000000 (i bit in rosso hanno un valore decimale pari a 6, identificando la rete n°6/26).

Indirizzo di broadcast della rete n° 6 (D): 140.28.89.191 Indirizzo di broadcast della rete n° 6 (B): 10001100.00011100.01011001.10111111

3 - (3 Punti)

Un sistema di accesso multiplo a divisione di tempo (TDMA) è caratterizzato da un rate trasmissivo sul canale di W=6 Mb/s e da una velocità netta per ciascun sottocanale (tributario) V=350 kb/s. Sapendo che in ciascuno slot vengono trasmessi

D=700 bit di dati e H=200 bit di overhead, e che il tempo di guardia Tg è di $50~\mu s$, calcolare il tempo di slot TS, il tempo di trama TT, e il numero N di sotto-canali.