Exercice 1 – Récipient en composite sous pression

On considère un récipient cylindrique fermé aux extrémités fabriqué par enroulement filamentaire (*filament winding*) d'un composite carbone/époxyde de modules : $E_1 = 140$ MPa ; $E_2 = 10$ MPa ; $G_{12} = 7$ MPa ; et : $V_{12} = 0.3$. L'angle de l'enroulement soit $\theta = 53^\circ$. Le récipient a un diamètre D = 64 cm et l'épaisseur e de la paroi est dix fois plus petite que le diamètre. Le récipient est soumis à une pression interne p = 1380 MPa.

Déterminer l'état de contraintes du composite dans les axes d'orthotropie du matériau. En déduire l'état de déformations.

Exercice 2 – Modules apparents d'un matériau orthotrope : essais dans les axes d'orthotropie et essais hors axes

On considère une couche composite à renfort de fibres unidirectionnelles. Le comportement de ce matériau est considéré élastique linéaire avec isotropie transverse dans le plan orthogonal à la direction des fibres.

On choisit le repère de telle manière que le plan OX_1X_2 coïncide avec le plan de la couche, et les axes OX_1 et OX_2 soient parallèle et orthogonal à la direction des fibres, respectivement.

- 1. Ecrire la forme des matrices de rigidité [C] et de souplesse [S] dans les axes (on utilise la notation de Voigt pour la représentation de contraintes et des déformations).
- 2. Pour mesurer les paramètres élastiques de la couche, on applique une sollicitation de traction simple dans la direction OX_1 . Etudier les déformations produites par cette sollicitation et en déduire la signification des modules de l'ingénieur pour le matériau.
- 3. On applique ensuite une sollicitation de cisaillement dans le plan OX_1X_2 . Etudier les déformations produites par cette sollicitation et en déduire la signification des modules de l'ingénieur pour le matériau.
- 4. Conclure sur le nombre de mesures nécessaires pour caractériser complètement le comportement élastique de ce matériau.
- 5. On change maintenant de repère, et on considère un repère $Ox_1x_2x_3$ obtenu par rotation de $OX_1X_2X_3$ d'un angle δ autour de l'axe OX_3 . Etudier les déformations produites dans le matériau par un essai de traction simple dans la direction Ox_1 et par un essai de cisaillement simple dans le plan Ox_1x_2 . En déduire l'expression des modules élastiques apparents de la couche hors les axes d'orthotropie.

Exercice 3 – Représentation des symétries élastiques : les invariants polaires du tenseur Q On considère une couche de matériau, dont les propriétés de rigidité dans le plan de la couche sont exprimées par les composantes du tenseur Q dans un système d'axes fixé (unité GPa) :

26.48	7.17	9.55	
7.17	11.09	3.78	
9.55	3.78	9.13	

- 1. Ecrire les relations à vérifier pour savoir si le matériau représenté par ce tenseur de rigidité est bien orthotrope dans le plan x_1 - x_2 .
- 2. A partir des composantes de **Q** exprimées dans les deux repères, calculer les paramètres polaires :

Qu'est-ce qu'on peut conclure sur la symétrie élastique de ce matériau ?

Exercice 4 – Construction d'un stratifié : rotation d'une couche orthotrope

On considère une couche de matériau orthotrope UD verre/époxyde. Les propriétés de rigidité de la couche sont exprimées en termes des modules de l'ingénieur :

$$E_1 = 38.60 \text{ GPa}$$
; $E_2 = 8.27 \text{ GPa}$; $G_{12} = 4.14 \text{ GPa}$; et: $V_{12} = 0.26$.

On empile trois couches de ce matériau pour construire une plaque rectangulaire stratifiée. Dans le repère global de la plaque, les angles d'orientation des couches sont [0/30/90] (angles exprimés en degrés). Expliciter dans le repère global les propriétés de rigidité de chaque couche en termes du tenseur \mathbf{Q} .

Exercice 5

Le tableau suivant donne les modules de l'ingénieur dans le plan 1-2 pour des couches constituées de divers matériaux composites.

	Acier	UD	UD	UD	tissu
		verre/epoxyde	bore/epoxyde	carbone/epoxyde	carbone/epoxyde
E ₁ (GPa)	210	38.60	204	181	54
E_2 (GPa)	210	8.27	18.5	10.3	54
G ₁₂ (GPa)	80.77	4.14	5.59	7.17	4
v_{12}	0.3	0.26	0.23	0.28	0.045

Pour chaque matériau, calculer:

- 1. le tenseur **S** de souplesse réduit dans les axes d'orthotropie ;
- 2. la variation de la composante S_{11} en fonction de l'angle d'orientation α dans le matériau :

$$S_{xx}(\alpha) = c^4 S_{11} - 2sc^3 S_{16} + s^2 c^2 (S_{12} + 2S_{66}) - 2s^3 c S_{26} + s^4 S_{22},$$

avec : $c = \cos \alpha$ et $s = \sin \alpha$;

- 3. calculer les valeurs du module de Young $E_{xx}(\alpha)$ en correspondance des orientations $\alpha = 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$;
- 4. tracer les graphiques cartésiens et polaires de $E_{xx}(\alpha)$ et $G_{xy}(\alpha)$.