

Report Number: 19784 DLS Project: 6383

Code of Federal Regulations 47 PART 90—PRIVATE LAND MOBILE RADIO SERVICES

Subpart Z—Wireless Broadband Services in the 3650-3700 MHz Band

THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

Formal Name: PMP450AP 3.65GHz OFDM Radio

Kind of Equipment: Point-to-Multipoint Digital Transmission Transceiver

Frequency Range: 3652.5 to 3697.5 MHz (5 MHz bandwidth)

3655 to 3695 MHz (10 MHz bandwidth) 3660 to 3690 MHz (20 MHz bandwidth)

Test Configuration: Stand-alone

Model Number(s): C036045A001A,C036045A002A, C036045A003A, C036045A004A

Model(s) Tested: C036045A004A

Serial Number(s): MAC Address: 0A003E4030BC

Date of Tests: February 5th to 13th, 2014

Test Conducted For: Cambium Networks

3800 Golf Road, Suite 360

Rolling Meadows, IL 60008, USA

NOTICE: "This test report relates only to the items tested and must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 – 2014, D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

SIGNATURE PAGE

Company: Model Tested: Report Number: DLS Project:

Cambium Networks C036045A004A 19784 6383

Tested By:

Craig Brandt Senior Test Engineer

Craig Branott

Reviewed By:

William Stumpf **OATS** Manager

Approved By:

Brian Mattson General Manager

Company: Model Tested: Report Number:

Cambium Networks C036045A004A

Report Number: 19784
DLS Project: 6383

Table of Contents

i. Cover Page	1
ii. Signature Page	
iii. Table of Contents	3
iv. NVLAP Certificate of Accreditation	
1.0 Summary of Test Report	6
2.0 Introduction	
3.0 Test Facilities	
4.0 Description of Test Sample	
5.0 Test Equipment	
6.0 Test Arrangements	
7.0 Test Conditions	
8.0 Modifications Made To EUT for Compliance	
9.0 Additional Descriptions	
10.0 Results	
11.0 Conclusion	
Appendix A – Test Photos	
Appendix B – Measurement Data	
B1.0 Duty Cycle of Test Unit - for RMS measuremer	
B1.0a - 5MHz Bandwidth	
B1.0b - 10MHz Bandwidth	
B1.0c - 20MHz Bandwidth	21
B2.0 Transmitter Output Power and Power Density	23
B2.0 Transmitter Output Fower and Fower Bensity	
B3.0 Occupied Bandwidth - 99% power bandwidth	
B3.0a – 5MHz Bandwidth	
B3.0b – 10MHz Bandwidth	
B3.0c – 20MHz Bandwidth	
B4.0 Transmitter Unwanted Emissions	37
B4.0a – RF Conducted, 5MHz Bandwidth	
B4.0b – RF Conducted, 10MHz Bandwidth	
B4.0c – RF Conducted, 20MHz Bandwidth	
B4.0d – Radiated 30 to 1000MHz	
B4.0e – Radiated 1 to 18GHz from Cabinet	
B4.0f – Radiated 18 to 37GHz from Sector Antenna	91

Company: Cambium Networks Model Tested: C036045A004A

Report Number: 19784
DLS Project: 6383

B5.0 Transmitter RF Conducted Band-edge with Frequency Stability	92
B5.0a – 5MHz Bandwidth, Low Channel	
B5.0b – 5MHz Bandwidth, High Channel	
B5.0c – 10MHz Bandwidth, Low Channel	
B5.0d – 10MHz Bandwidth, High Channel	
B5.0e – 20MHz Bandwidth, Low Channel	
B5.0f – 20MHz Bandwidth, High Channel	148
B6.0 Radiated Band Edge Compliance	159
B6.0a – 5MHz Bandwidth	
B6.0b – 10MHz Bandwidth	164
B6.0c – 20MHz Bandwidth	
B7.0 AC Line Conducted Emissions	

Company: Model Tested: Report Number: DLS Project: Cambium Networks C036045A004A 19784 6383

Report Number: 19784 DLS Project: 6383

1.0 Summary of Test Report

It was determined that the Cambium Networks PMP450AP 3.65GHz OFDM Radio, Model C036045A004A, complies with the requirements of CFR 47 Part 90 Subpart Z.

Applicable Technical Requirements Tested:

Section	Description	Procedure	Note	Compliant?
Pt 90.1321	Duty Cycle of Test Unit - for	See Cambium	1	NA
(a) & (b)	RMS measurements	Networks' PBA		
Pt 90.1321	Transmitter Output Power and	See Cambium	1	Yes
(a) & (b)	Power Density	Networks' PBA		
Pt 2.1049	Occupied Bandwidth - 99%	FCC Publication	1	Yes
	power bandwidth	KDB 971168 D01 Power		
		Meas License Digital		
		Systems v02r01 Section 4.2		
Dt 00 1222(a)	Transmittan Hayyanta d	FCC Publication	1	Yes
Pt 90.1323(a)	Transmitter Unwanted	KDB 971168 D01 Power	1	res
Pt 2.1051	Emissions	Meas License Digital		
Pt 2.1053		Systems v02r01		
		Sections 3.0 & 7.0		
Pt 2.1055	Transmitter RF Conducted	FCC Publication	1	Yes
	Band-edge with Frequency	KDB 971168 D01 Power		
	Stability	Meas License Digital		
		Systems v02r01		
		Section 9.30		
Pt 90.1323(a)	Radiated Band Edge	FCC Publication	2	Yes
Pt 2.1053	Compliance	KDB 971168 D01 Power		
		Meas License Digital		
		Systems v02r01		
15 207()	ACT: C 1 4 IF : :	Section 7.0	2	37
15.207(a)	AC Line Conducted Emissions	ANSI C63.10-2009	3	Yes
		Section 6.2		

Note 1: RF conducted measurement.

Note 2: Radiated emission measurement.

Note 3: Informative.

2.0 Introduction

From February 5th through February 13th, 2014 the PMP450AP 3.65GHz OFDM Radio, Model C036045A004A, as provided from Cambium Networks, was tested to the requirements of CFR 47 Part 90 Subpart Z. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.

Report Number: 19784 DLS Project: 6383

3.0 Test Facilities

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128

Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

4.0 Description of Test Sample

Description:

Point-to-Multipoint 3.65 GHz Fixed Access Wireless Transceiver with Sector (17 dBi) external antenna with 5 MHz, 10 MHz or 20 MHz channel bandwidth. The 17 dBi antenna operates with OFDM modulation.

Type of Equipment / Frequency Range:

Stand-Alone / 3652.5 to 3697.5 MHz (5 MHz bandwidth) 3655 to 3695 MHz (10 MHz bandwidth)

3660 to 3690 MHz (20 MHz bandwidth)

Physical Dimensions of Equipment Under Test:

Length: 8 in. Width: 2.25 in. Height: 9.5 in.

Power Source:

30 VDC (Power Over Ethernet to Radio)

120 Vac, 60 Hz using Power supply model: PSA15M-300 (AP)

Internal Frequencies:

292kHz, 940-1000kHz, 4MHz (Switching Power Supply Frequencies) 40 MHz, 25 MHz, 20MHz

Report Number: 19784 DLS Project: 6383

Transmit Frequencies Used For Test Purpose:

5 MHz Channel Bandwidth: Low channel: 3652.5 MHz

Middle channel: 3675 MHz High channel: 3697.5 MHz

10 MHz Channel Bandwidth: Low channel: 3655 MHz

Middle channel: 3675 MHz High channel: 3695 MHz

20 MHz Channel Bandwidth: Low channel: 3660 MHz

Middle channel: 3675 MHz High channel: 3690 MHz

Type of Modulations:

OFDM: QPSK (worst case) used for testing, 16QAM, 64QAM, 256QAM

Description of Circuit Board(s) / Part Number:

Cambium Networks PC Board	MAC Address: 0A003E4030BC
17 dBi Sector antenna	Laird C030045D901A revAA

Report Number: 19784 DLS Project: 6383

5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

D.L.S. Wisconsin

			VV 15CO115111			
Description	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Dates	Cal Due Dates
Receiver	Rohde & Schwarz	ESI 40	837808/005	20Hz – 40GHz	7-23-13	7-23-14
LISN	Solar	9252-50-R- 24-BNC	961019	9kHz – 30MHz	5-24-13	5-24-14
Low Pass Filter	Mini-Circuits	VLFX-1125	R UU92600920	30MHz-1GHz	8-13-13	8-13-14
Filter- High- Pass	SOLAR	7930-120	090702	120 kHz – 30 MHz	1-3-14	1-3-15
Limiter	Electro-Metrics	EM-7600	706	9 kHz – 30 MHz	1-3-14	1-3-15
Preamplifier	Rohde & Schwarz	TS-PR10	032001/004	9 kHz – 1 GHz	1-4-14	1-4-15
Preamp	Ciao	CA118-4010	101	1GHz-18GHz	2-26-13	2-26-14
Preamp	Miteq	AMF-8B-180265- 40-10P-H/S	438727	18GHz-26GHz	8-12-13	8-12-14
Preamp	Rohde & Schwarz	TS-PR40	052002/025	26GHz-40GHz	5-23-13	5-23-14
Horn Antenna	EMCO	3115	6204	1GHz-18GHz	6-3-13	6-3-15
Horn Antenna	EMCO	3116	2549	18GHz-40GHz	9-6-12	9-6-14
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	9-13-12	9-13-14
Antenna	EMCO	3146	1205	200 MHz – 1 GHz	9-19-12	9-19-14
High Pass Filter	Q Microwave, Inc.	100462	1	4.2GHz - 18GHz	5-23-13	5-24-14
High Pass Filter	Q Microwave, Inc.	100462	2	4.2GHz - 18GHz	5-23-13	5-24-14
High Pass Filter	Planar	CL22500-9000- CD-SS	PF1229/0728	15GHz-40GHz	8-14-13	8-14-14
Signal Generator	Rohde & Schwarz	SMT 03	DE23762	5kHz - 3GHz	7-23-13	7-23-14
Tunable Dipole Set	Com-Power, Corp.	AD-100	40139	80MHz - 1GHz	N/A	N/A
Temperature Chamber	Test Equity	1007C	R035716	-73° C to +175° C	4-27-13	4-27-14

Report Number: 19784 DLS Project: 6383

6.0 Test Arrangements

Radiated Emissions Measurement Arrangement:

All radiated emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to FCC Publication KDB 971168 D01 Power Meas License Digital Systems v02r01 and per the FCC accepted KDB procedure documented in the Cambium Networks PBA for this project, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for additional photos of the test set up.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

RF Conducted Emissions Measurement Arrangement:

All RF conducted emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to FCC Publication KDB 971168 D01 Power Meas License Digital Systems v02r01 and per the FCC accepted KDB procedure documented in the Cambium Networks PBA for this project, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for additional photos of the test set up.

7.0 Test Conditions

Temperature and Humidity:

66°F at 20% RH, or notes on the test data

Supply Voltage:

30 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using Phihong power supply model: PSA15M-300 (AP)

Report Number: 19784 DLS Project: 6383

8.0 Modifications Made To EUT for Compliance

No modifications were needed for the OFDM transmitters.

9.0 Additional Descriptions

Mode of operation: Measurements were taken for QPSK modulation (as worst case) at the lowest, middle, and highest channels of operation. Output Port A & Port B were tested. Port A was tested as representative of Port B. Port A was equal to/or worst case over Port B per Cambium Networks. 5, 10 and 20 MHz channel bandwidths were tested. Continuous Transmit, Continuous Receive, and Continuous Scan modes were tested.

Emission Designators: 5M0X1D, 10M0X1D, 20M0X1D

10.0 Results

Measurements were performed in accordance with FCC Publication KDB 971168 D01 Power Meas License Digital Systems v02r01, ANSI C63.10-2009, and per the FCC accepted KDB procedure documented in the Cambium Networks PBA for this project. Graphical and tabular data can be found in Appendix B at the end of this report.

11.0 Conclusion

The PMP450AP 3.65GHz OFDM Radio, Model C036045A004A, as provided from Cambium Networks tested from February 5th to 13th, 2014 **meets** the requirements of CFR 47 Part 90 Subpart Z.

Appendix A – Test Photos

Company: Cambium Networks Model Tested: C036045A004A

Report Number: 19784 DLS Project: 6383

Photo Information and Test Setup:

Item 0: PMP450AP 3.65GHz OFDM Radio, Model C036045A004A

Item 1: Phihong Power Supply, Model PSA15M-300 (AP) Item 2: Unshielded Power Over Ethernet cable, 1.5m long

Item 3: Unshielded CAT 5e Ethernet cable to remote PC, 10m long

Item 4: 2 x Shielded RF cables, each with 1dB loss at 3.65GHz, 0.3m long

Item 5: Laird 17dBi Sector Antenna, Model C030045D901A revAA

Radiated Below 1 GHz - Front

Company: Cambium Networks Model Tested: C036045A004A

Report Number: 19784 DLS Project: 6383

Appendix A – Test Photos

Radiated Below 1 GHz - Side

Radiated Above 1 GHz - Close-up

Radiated Above 1 GHz

Radiated from Cabinet

Page 13 of 177

Appendix A – Test Photos

Company: Cambium Networks Model Tested: C036045A004A

Report Number: 19784 DLS Project: 6383

RF Conducted

Frequency Stability at Extreme Conditions

Page **14** of **177**

Report Number: 19784 DLS Project: 6383

Appendix A – Test Photo

AC Line Conducted - Front

AC Line Conducted - Back - View 1

AC Line Conducted - Back - View 2

Page 15 of 177

Company: Cambium Networks
Model Tested: C036045A004A

Report Number: 19784

Report Number: 19784 DLS Project: 6383

Appendix B – Measurement Data

B1.0 Duty Cycle of Test Unit - for RMS measurements

Rule Part: FCC Part 90.1321 (a) and (b)

Duty cycle correction needed for special procedure for Output Power and

Power Density test per the FCC accepted KDB procedure as documented

in the Cambium Networks PBA for this project.

Test Procedure: RBW = 1 MHz; VBW = 3 MHz; Span = zero span; Sweep time set as

appropriate to capture the on and off times of one complete cycle.

Limits: Informative.

Results: EUT is transmitting at a duty cycle less than 100%.

The duty cycle correction factor was measured and applied to the output

power (RMS) and Power Density (RMS) measurements.

Notes: None.

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Duty Cycle during testing

Operator: Craig B

5 MHz channel bandwidth; QPSK

Comment: ON time = 2.284569 ms during 2.501002 ms cycle

x = 2.284569 / 2.501002 = 0.913461

Duty cycle correction factor = $10\log(x) = 0.393 \text{ dB}$

ON + OFF time of 1 cycle = 2.501002 ms

Date: 6.FEB.2014 13:26:04

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Duty Cycle during testing

Operator: Craig B

5 MHz channel bandwidth; QPSK

Comment: ON time = 2.284569 ms during 2.501002 ms cycle

x = 2.284569 / 2.501002 = 0.913461

Duty cycle correction factor = $10\log(x)$ = **0.393 dB**

ON time of 1 cycle = 2.284569 ms

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Duty Cycle during testing

Operator: Craig B

10 MHz channel bandwidth; QPSK

Comment: ON time = 2.404810 ms during 2.501002 ms cycle

x = 2.404810 / 2.501002 = 0.961539

Duty cycle correction factor = $10\log(x) = 0.17 \text{ dB}$

ON + OFF time of 1 cycle = 2.501002 ms

Date: 6.FEB.2014 12:25:15

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Duty Cycle during testing

Operator: Craig B

10 MHz channel bandwidth; QPSK

Comment: ON time = 2.404810 ms during 2.501002 ms cycle

x = 2.404810 / 2.501002 = 0.961539

Duty cycle correction factor = $10\log(x) = 0.17 \text{ dB}$

ON time of 1 cycle = 2.404810 ms

Date: 6.FEB.2014 12:27:16

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Duty Cycle during testing

Operator: Craig B

20 MHz channel bandwidth; QPSK

Comment: ON time = 2.404810 ms during 2.501002 ms cycle

x = 2.416834 / 2.501002 = 0.966346

Duty cycle correction factor = $10\log(x) = 0.15 \text{ dB}$

ON + OFF time of 1 cycle = 2.501002 ms

Date: 6.FEB.2014 13:47:22

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Duty Cycle during testing

Operator: Craig B

20 MHz channel bandwidth; QPSK

Comment: ON time = 2.404810 ms during 2.501002 ms cycle

x = 2.416834 / 2.501002 = 0.966346

Duty cycle correction factor = $10\log(x) = 0.15 \text{ dB}$

ON time of 1 cycle = 2.416834 ms

Report Number: 19784 DLS Project: 6383

Appendix B – Measurement Data

B2.0 Transmitter Output Power and Power Density

Rule Part: FCC Part 90.1321 (a) and (b)

Test Procedure: Tested per the FCC accepted KDB procedure as documented in the

Cambium Networks PBA for this project.

Limit: e.i.r.p. of 25 Watts (44 dBm) per 25 MHz

e.i.r.p. of 1 Watt (30 dBm) per 1 MHz

Results:

Compliant

Notes:

Only tested QPSK modulation mode as determined worst case by Cambium Networks. Only tested output port A as determined worst case by Cambium Networks.

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Tests: Transmitter Maximum E.I.R.P.

Operator: Craig B

Comment: 5 MHz channel BW mode; Port A

Antenna Gain = 17 dBi sector antenna

Measurement taken at end of Cambium Networks cable that connects to

the antenna (1 dB cable loss).

Recorded levels are measured RF conducted levels + 17 dBi antenna gain + 3 dB (2-port MIMO operation) + 0.393 dB (correction for duty cycle)

EIRP Limit: 25 W / 25 MHz; 1 W / 1 MHz

= 44 dBm / 25 MHz; 30 dBm / 1 MHz

RBW = 1 MHz; VBW = 3 MHz;**Detector = RMS**

Trace mode = max hold; Sweep time = 10 seconds per Cambium Networks

Span = $1.5 \times 1.5 \times 1.5$

Measurement using peak-search function of spectrum analyzer

Band power integrated over a 25 MHz bandwidth for EIRP / 25 MHz measurement (span = 30 MHz)

Peak EIRP Power (dBm): Low channel (3652.5 MHz)

Power setting 19 (total of both chains)

1 over setting 15 (total of coth chams)		
Modulation	120 V	
Type	+20 °C	
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	35.88	29.72

Peak EIRP Power (dBm): Mid channel (3675 MHz)

Power setting 19 (total of both chains)

1 ower setting 15 (total of both chams)			
Modulation	120 V		
Type	+20 °C		
ODCK	EIRP / 25 MHz	EIRP / 1 MHz	
QPSK	36.05	29.87	

Peak EIRP Power (dBm): **High channel** (3697.5 MHz)

Power setting 18 (total of both chains)

	10 W of South B 10 (votal of cour officials)		
Modulation	120 V		
Type	+20 °C		
ODCV	EIRP / 25 MHz	EIRP / 1 MHz	
QPSK	35.31	29.13	

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Tests: Transmitter Maximum E.I.R.P.

Operator: Craig B

Comment: 10 MHz channel BW mode; Port A

Antenna Gain = 17 dBi sector antenna

Measurement taken at end of Cambium Networks cable that connects to

the antenna (1 dB cable loss).

Recorded levels are measured RF conducted levels + 17 dBi antenna gain + 3 dB (2-port MIMO operation) + 0.17 dB (correction for duty cycle)

EIRP Limit: 25 W / 25 MHz; 1 W / 1 MHz

= 44 dBm / 25 MHz; 30 dBm / 1 MHz

RBW = 1 MHz; VBW = 3 MHz;**Detector = RMS**

Trace mode = max hold; Sweep time = 10 seconds per Cambium Networks

Span = $1.5 \times 1.5 \times 1.5$

Measurement using peak-search function of spectrum analyzer

Band power integrated over a 25 MHz bandwidth for EIRP / 25 MHz measurement (span = 30 MHz)

Peak EIRP Power (dBm): **Low channel** (3655 MHz)

Power setting 22 (total of both chains)

1 ower setting 22 (total of both chams)			
Modulation	120 V		
Type	+20 °C		
ODCK	EIRP / 25 MHz	EIRP / 1 MHz	
QPSK	38.40	29.39	

Peak EIRP Power (dBm): **Mid channel** (3675 MHz)

Power setting 22 (total of both chains)

Modulation	120	V
Type	+20 °C	
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	38.55	29.51

Peak EIRP Power (dBm): **High channel** (3695 MHz)

Power setting 22 (total of both chains)

	1 0 11 01 00 000 00 00 00 00 00 00 00 00		
Modulation	120 V		
Type	+20 °C		
ODCV	EIRP / 25 MHz	EIRP / 1 MHz	
QPSK	38.71	29.64	

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Tests: Transmitter Maximum E.I.R.P.

Operator: Craig B

Comment: 20 MHz channel BW mode; Port A

Antenna Gain = 17 dBi sector antenna

Measurement taken at end of Cambium Networks cable that connects to

the antenna (1 dB cable loss).

Recorded levels are measured RF conducted levels + 17 dBi antenna gain + 3 dB (2-port MIMO operation) + 0.15 dB (correction for duty cycle)

EIRP Limit: 25 W / 25 MHz; 1 W / 1 MHz

= 44 dBm / 25 MHz; 30 dBm / 1 MHz

RBW = 1 MHz; VBW = 3 MHz;**Detector = RMS**

Trace mode = max hold; Sweep time = 10 seconds per Cambium Networks

Span = $1.5 \times 1.5 \times 1.5$

Measurement using peak-search function of spectrum analyzer

Band power integrated over a 25 MHz bandwidth for EIRP / 25 MHz measurement (span = 30 MHz)

Peak EIRP Power (dBm): Low channel (3660 MHz)

Power setting 25 (total of both chains)

1 over seeing 20 (total of com chams)			
Modulation	120 V		
Type	+20 °C		
QPSK	EIRP / 25 MHz	EIRP / 1 MHz	
	41.27	29.32	

Peak EIRP Power (dBm): **Mid channel** (3675 MHz)

Power setting 25 (total of both chains)

1 ower setting 25 (total of both chains)			
Modulation	120 V		
Type	+20 °C		
QPSK	EIRP / 25 MHz	EIRP / 1 MHz	
	41.40	29.44	

Peak EIRP Power (dBm): **High channel** (3690 MHz)

Power setting 25 (total of both chains)

Modulation	120 V		
Type	+20 °C		
QPSK	EIRP / 25 MHz	EIRP / 1 MHz	
	41.53	29.62	

Report Number: 19784 DLS Project: 6383

Appendix B - Measurement Data

B3.0 Occupied Bandwidth - 99% power bandwidth

Rule Part: FCC Part 2.1049 - Occupied bandwidth

Test Procedure: KDB 971168 D01 Power Meas License Digital Systems v02r01

4.2 Occupied bandwidth - power bandwidth (99%)

Description: SPAN = 1.5 to 5 times the OBW

RBW = 1% to 5% of OBW

 $VBW \ge 3 \times RBW$ Detector = Peak

Trace mode = max hold

Measure the width of the emission using the 99% power bandwidth function of

the spectrum analyzer

Limit: Informative

Notes: Only tested QPSK modulation mode as determined worst case by Cambium Networks.

Only tested output port A as determined worst case by Cambium Networks.

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: Low Channel: Transmit = 3652.5 MHz

Output power setting: 19 5 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 4.55 MHz

Date: 6.FEB.2014 14:46:05

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: Mid Channel: Transmit = 3675 MHz

Output power setting: 19 5 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 4.55 MHz

Date: 6.FEB.2014 14:48:05

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: High Channel: Transmit = 3697.5 MHz

Output power setting: 18 5 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 4.55 MHz

Date: 6.FEB.2014 14:49:47

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: Low Channel: Transmit = 3655 MHz

Output power setting: 22 10 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 9.08 MHz

Date: 6.FEB.2014 14:35:22

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: Mid Channel: Transmit = 3675 MHz

Output power setting: 22 10 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 9.08 MHz

Date: 6.FEB.2014 14:38:23

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: High Channel: Transmit = 3695 MHz

Output power setting: 22 10 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 9.08 MHz

Date: 6.FEB.2014 14:41:19

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: Low Channel: Transmit = 3660 MHz

Output power setting: 25 20 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 18.16 MHz

Date: 6.FEB.2014 14:17:00

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: Mid Channel: Transmit = 3675 MHz

Output power setting: 25 20 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 18.16 MHz

Date: 6.FEB.2014 14:23:15

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: High Channel: Transmit = 3690 MHz

Output power setting: 25 20 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 18.16 MHz

Date: 6.FEB.2014 14:29:08

Company: Cambium Networks Model Tested: C036045A004A

Report Number: 19784 DLS Project: 6383

Appendix B – Measurement Data

B4.0 Transmitter Unwanted Emissions

Rule Part: FCC Part 90.1323(a) - Emission limits

FCC Part 2.1051 - Spurious emissions at antenna terminals FCC Part 2.1053 - Field strength of spurious radiation

Test Procedure: KDB 971168 D01 Power Meas License Digital Systems v02r01

6.0 Spurious Emissions at Antenna Terminals7.0 Field Strength of Spurious Radiation

RBW = 1 MHz; VBW = 3 MHz; Detector = peak; Trace mode = max hold

RF Conducted: The EUT was connected to a spectrum analyzer through a cable and attenuator. The output power set to the same level as was used in the Transmitter Output Power test.

Radiated from cabinet (1-18 GHz): Both ports of the EUT were terminated with 50 Ohm terminations. Both ports were active during testing.

Radiated from 17 dBi antenna (30-1000 MHz and 18-37 GHz): EUT was connected to 17 dBi sector antenna. Both ports were active during testing.

Limit: The power of any emission outside a licensee's frequency band(s) of operation

shall be attenuated below the transmitter power (P) within the licensed band(s) of

operation, measured in watts, by at least 43 + 10 log (P) dB.

Calculated limit = -13 dBm.

Results:

Compliant

Notes:

Only tested QPSK modulation mode as determined worst case by Cambium Networks. Only tested output port A as determined worst case by Cambium Networks.

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.FEB.2014 09:19:47

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 11.FEB.2014 09:21:33

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 11.FEB.2014 09:23:32

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.FEB.2014 09:25:02

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 11.FEB.2014 09:27:00

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.FEB.2014 09:29:09

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 11.FEB.2014 09:30:45

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 11.FEB.2014 09:32:25

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.FEB.2014 09:33:47

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Mid Channel: 3675 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 11.FEB.2014 09:35:46

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: 3697.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.FEB.2014 09:38:30

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: 3697.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 11.FEB.2014 09:40:22

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: 3697.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 11.FEB.2014 09:42:20

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: 3697.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.FEB.2014 09:43:40

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: 3697.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 11.FEB.2014 09:45:03

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.FEB.2014 08:49:28

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 11.FEB.2014 08:51:40

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 11.FEB.2014 08:53:40

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.FEB.2014 08:55:40

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 11.FEB.2014 08:57:38

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Mid Channel: 3675 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.FEB.2014 09:01:10

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 11.FEB.2014 09:02:40

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Mid Channel: 3675 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 11.FEB.2014 09:04:22

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Mid Channel: 3675 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.FEB.2014 09:06:05

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Mid Channel: 3675 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 11.FEB.2014 09:07:29

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.FEB.2014 09:09:45

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 11.FEB.2014 09:11:15

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 11.FEB.2014 09:12:45

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.FEB.2014 09:13:50

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 11.FEB.2014 09:15:13

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 10.FEB.2014 14:52:23

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: $43 + 10\log(P)$ below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 10.FEB.2014 15:17:14

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: $43 + 10\log(P)$ below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 10.FEB.2014 15:20:12

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 10.FEB.2014 15:22:34

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: $43 + 10\log(P)$ below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 10.FEB.2014 15:25:16

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 10.FEB.2014 15:29:50

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 10.FEB.2014 15:32:00

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: $43 + 10\log(P)$ below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 10.FEB.2014 15:34:30

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 10.FEB.2014 15:37:03

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 10.FEB.2014 15:39:20

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.FEB.2014 08:29:59

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 11.FEB.2014 08:32:00

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 11.FEB.2014 08:33:31

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.FEB.2014 08:35:18

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: $43 + 10\log(P)$ below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 11.FEB.2014 08:37:04

FCC Part 15.209 / FCC Part 2.1053

Electric Field Strength

EUT: PMP450 AP 3.65 GHz, Model C036045A004A; Unit 2

Manufacturer: Cambium Networks
Operating Condition: 66 deg. F; 20% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Transmitter Spuriuos emissions with 17 dBi antenna Comment: L,M,H channels, 5,10,20 MHz ch BWs, powersetting 25

Date: 02-13-2014

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A213a_F1H_Final"

Comment
or
PEAK Tx OFF
PEAK broadband
PEAK broadband
PEAK None
PEAK broadband
PEAK None
PEAK None
I

FCC Part 15.209 / FCC Part 2.1053

Electric Field Strength

EUT: PMP450 AP 3.65 GHz, Model C036045A004A; Unit 2

Manufacturer: Cambium Networks
Operating Condition: 66 deg. F; 20% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Transmitter Spuriuos emissions with 17 dBi antenna Comment: L,M,H channels, 5,10,20 MHz ch BWs, powersetting 25

Date: 02-13-2014

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A213a_F1V_Final"

2/13/2014 12:	59PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
45.580000	48.57	11.96	-23.9	36.6	40.0	3.4	1.00	280	QUASI-PEAK	broadband
77.200000	53.02	5.90	-23.5	35.4	40.0	4.6	1.30	320	QUASI-PEAK	broadband
30.640000	47.99	11.31	-24.3	35.0	40.0	5.0	1.00	260	QUASI-PEAK	broadband
537.560000	39.62	18.35	-20.2	37.8	46.0	8.2	1.00	270	QUASI-PEAK	broadband
375.000000	38.37	15.20	-21.4	32.2	46.0	13.8	1.50	135	QUASI-PEAK	None
111.565000	37.82	12.11	-23.0	26.9	43.5	16.6	1.00	340	QUASI-PEAK	broadband
488.790000	29.17	17.63	-20.8	26.0	46.0	20.0	1.00	190	QUASI-PEAK	broadband
800.000000	20.71	21.70	-18.3	24.1	46.0	21.9	2.30	30	QUASI-PEAK	None
250.000000	32.11	12.40	-22.1	22.5	46.0	23.5	1.00	30	QUASI-PEAK	None
1000.000000	20.56	24.60	-16.9	28.3	54.0	25.7	2.00	200	QUASI-PEAK	None
335.770000	26.90	14.82	-21.6	20.1	46.0	25.9	1.50	80	QUASI-PEAK	broadband
974.990000	20.73	23.90	-17.3	27.4	54.0	26.6	2.30	180	QUASI-PEAK	None
425.000000	22.01	16.50	-21.0	17.5	46.0	28.5	1.00	270	QUASI-PEAK	None

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Tests: Transmitter Unwanted Emissions

Operator: Craig B

Comment: Both transmit chains active at power setting 25

Transmit from 17 dBi sector antenna

5, 10, 20 MHz channel BWs; Modulation: QPSK

Low, Mid, High channels

RBW = 1 MHz; VBW = 3 MHz; Detector = peak; Max hold

Limit: -13 dBm

Frequency and Polarization (MHz)	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Correction factor for cable between Signal Gen. and subst. antenna (dB)	Gain of subst. antenna (dBi)	Strength of emission [ERP] (dBm)	Limit (dBm)	Margin (dB)
537.56 vertical	50.77	-40.90	8.33	2.15	-49.23	-13	36.23
541.39 horizontal	62.17	-32.40	8.33	2.15	-40.73	-13	27.73

ERP = Signal generator output - cable loss + antenna gain - 2.15

No Cabinet Radiated Emissions were found from 1 to 18GHz

Low, Mid & High Channels

5MHz, 10MHz, & 20MHz Channel bandwidths

Power Setting 25

No Radiated Emissions were found from 18 to 37GHz

Low, Mid & High Channels

5MHz, 10MHz, & 20MHz Channel bandwidths

Power Setting 25

17dBi Antenna

Company: Cambium Networks Model Tested: C036045A004A

Report Number: 19784 DLS Project: 6383

Appendix B – Measurement Data

B5.0 Transmitter RF Conducted Band-edge with Frequency Stability

Rule Part: FCC Part 2.1055 - Frequency stability

Test Procedure: KDB 971168 D01 Power Meas License Digital Systems v02r01

9.30 Frequency Stability

The EUT was connected to a spectrum analyzer through a cable and attenuator. The ambient temperature was varied from -30 °C to +50 °C, and the supply voltage was varied from 102 VAC to 138 VAC. For each condition, the lower and upper band edge was measured to show the frequency of the transmitter does not drift out of its authorized band of operation.

Limit: Amplitude level of -13 dBm at the lower and upper band edges (3650 MHz and

3700 MHz)

Results: Compliant.

Notes:

Only tested QPSK modulation mode as determined worst case by Cambium Networks. Only tested output port A as determined worst case by Cambium Networks.

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 120 V

Power level at band edge = -26.54 dBm/MHz

Date: 7.FEB.2014 08:45:40

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 138 V

Power level at band edge = -26.64 dBm/MHz

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 102 V

Power level at band edge = -26.63 dBm/MHz

Date: 7.FEB.2014 08:50:25

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

30 °C, 120 V

Power level at band edge = -26.81 dBm/MHz

Date: 7.FEB.2014 09:38:37

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

40 °C, 120 V

Power level at band edge = -27.00 dBm/MHz

Date: 7.FEB.2014 11:18:32

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

50 °C, 120 V

Power level at band edge = -27.28 dBm/MHz

Date: 7.FEB.2014 12:49:59

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

10 °C, 120 V

Power level at band edge = -26.39 dBm/MHz

Date: 7.FEB.2014 15:38:14

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

0 °C, 120 V

Power level at band edge = -26.30 dBm/MHz

Date: 10.FEB.2014 09:18:30

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-10 °C, 120 V

Power level at band edge = -26.36 dBm/MHz

Date: 10.FEB.2014 10:43:45

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-20 °C, 120 V

Power level at band edge = -26.08 dBm/MHz

Date: 10.FEB.2014 12:38:03

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19

Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-30 °C, 120 V

Power level at band edge = -26.02 dBm/MHz

Date: 10.FEB.2014 13:54:13

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 120 V

Power level at band edge = -25.88 dBm/MHz

Date: 7.FEB.2014 08:57:51

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 138 V

Power level at band edge = -26.03 dBm/MHz

Date: 7.FEB.2014 09:00:24

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 102 V

Power level at band edge = -26.10 dBm/MHz

Date: 7.FEB.2014 08:55:25

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

30 °C, 120 V

Power level at band edge = -26.35 dBm/MHz

Date: 7.FEB.2014 09:33:01

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

40 °C, 120 V

Power level at band edge = -26.90 dBm/MHz

Date: 7.FEB.2014 11:14:56

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

50 °C, 120 V

Power level at band edge = -27.10 dBm/MHz

Date: 7.FEB.2014 12:46:46

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

10 °C, 120 V

Power level at band edge = -25.50 dBm/MHz

Date: 7.FEB.2014 15:34:52

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

0 °C, 120 V

Power level at band edge = -25.43 dBm/MHz

Date: 10.FEB.2014 09:14:53

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-10 °C, 120 V

Power level at band edge = -25.49 dBm/MHz

Date: 10.FEB.2014 10:40:58

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-20 °C, 120 V

Power level at band edge = -25.25 dBm/MHz

Date: 10.FEB.2014 12:34:50

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-30 °C, 120 V

Power level at band edge = -25.16 dBm/MHz

Date: 10.FEB.2014 13:51:06

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 120 V

Power level at band edge = -23.14 dBm/MHz

Date: 6.FEB.2014 15:01:09

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 138 V

Power level at band edge = -23.12 dBm/MHz

Date: 6.FEB.2014 15:03:58

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 102 V

Power level at band edge = -23.08 dBm/MHz

Date: 6.FEB.2014 15:06:27

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

30 °C, 120 V

Power level at band edge = -23.65 dBm/MHz

Date: 7.FEB.2014 09:45:48

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

40 °C, 120 V

Power level at band edge = -24.48 dBm/MHz

Date: 7.FEB.2014 11:02:20

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

50 °C, 120 V

Power level at band edge = -24.81 dBm/MHz

Date: 7.FEB.2014 13:05:53

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

10 °C, 120 V

Power level at band edge = -22.66 dBm/MHz

Date: 7.FEB.2014 15:08:07

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

0 °C, 120 V

Power level at band edge = -22.33 dBm/MHz

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW $\geq 1\%$ OBW VBW $\geq 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-10 °C, 120 V

Power level at band edge = -21.76 dBm/MHz

Date: 10.FEB.2014 10:26:26

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-20 °C, 120 V

Power level at band edge = -21.61 dBm/MHz

Date: 10.FEB.2014 11:43:02

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-30 °C, 120 V

Power level at band edge = -21.12 dBm/MHz

Date: 10.FEB.2014 13:37:53

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 120 V

Power level at band edge = -19.99 dBm/MHz

Date: 6.FEB.2014 15:12:45

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 138 V

Power level at band edge = -19.92 dBm/MHz

Date: 6.FEB.2014 15:14:21

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 102 V

Power level at band edge = -19.85 dBm/MHz

Date: 6.FEB.2014 15:11:31

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

30 °C, 120 V

Power level at band edge = -20.54 dBm/MHz

Date: 7.FEB.2014 09:50:39

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

40 °C, 120 V

Power level at band edge = -21.24 dBm/MHz

Date: 7.FEB.2014 10:59:30

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

50 °C, 120 V

Power level at band edge = -21.47 dBm/MHz

Date: 7.FEB.2014 13:02:36

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

10 °C, 120 V

Power level at band edge = -19.54 dBm/MHz

Date: 7.FEB.2014 15:04:31

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

0 °C, 120 V

Power level at band edge = -19.15 dBm/MHz

Date: 10.FEB.2014 08:59:21

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-10 °C, 120 V

Power level at band edge = -18.75 dBm/MHz

Date: 10.FEB.2014 10:22:58

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-20 °C, 120 V

Power level at band edge = -18.80 dBm/MHz

Date: 10.FEB.2014 11:40:29

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 22

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-30 °C, 120 V

Power level at band edge = -18.44 dBm/MHz

Date: 10.FEB.2014 13:35:05

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 120 V

Power level at band edge = -14.05 dBm/MHz

Date: 6.FEB.2014 15:26:54

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 138 V

Power level at band edge = -14.03 dBm/MHz

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 102 V

Power level at band edge = -14.01 dBm/MHz

Date: 6.FEB.2014 15:32:05

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

30 °C, 120 V

Power level at band edge = -14.80 dBm/MHz

Date: 7.FEB.2014 10:03:46

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

40 °C, 120 V

Power level at band edge = -15.42 dBm/MHz

Date: 7.FEB.2014 10:40:29

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

50 °C, 120 V

Power level at band edge = -16.14 dBm/MHz

Date: 7.FEB.2014 13:33:46

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

10 °C, 120 V

Power level at band edge = -13.42 dBm/MHz

Date: 7.FEB.2014 14:49:39

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 24

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

0 °C, 120 V

Power level at band edge = -16.81 dBm/MHz

Date: 10.FEB.2014 08:44:09

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW $\geq 1\%$ OBW VBW $\geq 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: Transmit = 3660 MHz Output power setting: 24

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-10 °C, 120 V

Power level at band edge = -16.34 dBm/MHz

Date: 10.FEB.2014 10:10:10

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 24

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-20 °C, 120 V

Power level at band edge = -15.96 dBm/MHz

Date: 10.FEB.2014 11:29:46

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Lower Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 24

Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-30 °C, 120 V

Power level at band edge = -15.44 dBm/MHz

Date: 10.FEB.2014 13:23:00

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 120 V

Power level at band edge = -13.74 dBm/MHz

Date: 6.FEB.2014 15:36:28

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 138 V

Power level at band edge = -13.75 dBm/MHz

Date: 6.FEB.2014 15:38:01

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3695 MHz Output power setting: 25

Channel bandwidth: 10 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

20 °C, 102 V

Power level at band edge = -13.76 dBm/MHz

Date: 6.FEB.2014 15:39:41

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

30 °C, 120 V

Power level at band edge = -14.20 dBm/MHz

Date: 7.FEB.2014 09:57:57

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

40 °C, 120 V

Power level at band edge = -14.74 dBm/MHz

Date: 7.FEB.2014 10:52:23

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

50 °C, 120 V

Power level at band edge = -14.90 dBm/MHz

Date: 7.FEB.2014 13:30:39

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

10 °C, 120 V

Power level at band edge = -13.30 dBm/MHz

Date: 7.FEB.2014 14:38:29

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 24

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

0 °C, 120 V

Power level at band edge = -16.08 dBm/MHz

Date: 10.FEB.2014 08:40:09

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: RBW \geq 1% OBW VBW \geq 3 x RBW

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 24

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-10 °C, 120 V

Power level at band edge = -15.69 dBm/MHz

Date: 10.FEB.2014 10:07:07

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 24

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-20 °C, 120 V

Power level at band edge = -15.39 dBm/MHz

Date: 10.FEB.2014 11:26:51

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A
Test: Upper Band-Edge Measurements - Conducted

Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = auto couple

Trace = \max hold

High Channel: Transmit = 3690 MHz Output power setting: 24

Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

-30 °C, 120 V

Power level at band edge = -15.01 dBm/MHz

Date: 10.FEB.2014 13:20:05

Company: Cambium Networks Model Tested: C036045A004A

Report Number: 19784 DLS Project: 6383

Appendix B – Measurement Data

B6.0 Radiated Band Edge Compliance

Rule Part: FCC Part 90.1323(a) - Emission limits

FCC Part 2.1053 - Field strength of spurious radiation

Test Procedure: KDB 971168 D01 Power Meas License Digital Systems v02r01

7.0 Field Strength of Spurious Radiation

RBW = 1 MHz; VBW = 3 MHz; Detector = peak; Trace mode = max hold

Radiated from cabinet: Both ports of the EUT were terminated with 50 Ohm terminations. Both ports were active during testing.

Limit: The power of any emission outside a licensee's frequency band(s) of operation

shall be attenuated below the transmitter power (P) within the licensed band(s) of

operation, measured in watts, by at least $43 + 10 \log (P) dB$.

Calculated limit = -13 dBm.

Results:

Compliant

Notes:

Only tested QPSK modulation mode as determined worst case by Cambium Networks. Only tested output port A as determined worst case by Cambium Networks.

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19 Channel bandwidth: 5 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement

distance in meters.

Power level at band edge = $78.83 + 20\log(3) - 104.8 = -16.42 \text{ dBm/MHz}$

Vertical:

Date: 11.FEB.2014 13:13:03

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 19 Channel bandwidth: 5 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement

distance in meters.

Power level at band edge = $74.64 + 20\log(3) - 104.8 = -20.61 \text{ dBm/MHz}$

Horizontal:

Date: 11.FEB.2014 13:17:05

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Upper Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 19 Channel bandwidth: 5 MHz Both ports active and 50Ω terminated

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement

distance in meters.

Power level at band edge = $78.39 + 20\log(3) - 104.8 = -16.86 \text{ dBm/MHz}$

Vertical:

Date: 11.FEB.2014 13:08:28

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Upper Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 19 Channel bandwidth: 5 MHz Both ports active and 50Ω terminated

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement distance in maters

distance in meters.

Power level at band edge = $72.12 + 20\log(3) - 104.8 = -23.13 \text{ dBm/MHz}$

Horizontal:

Date: 11.FEB.2014 13:26:59

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement

distance in meters.

Power level at band edge = $75.46 + 20\log(3) - 104.8 = -19.79 \text{ dBm/MHz}$

Vertical:

Date: 11.FEB.2014 12:46:58

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: Transmit = 3655 MHz Output power setting: 22

Channel bandwidth: 10 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement

distance in meters.

Power level at band edge = $70.86 + 20\log(3) - 104.8 = -24.39 \text{ dBm/MHz}$

Horizontal:

Date: 11.FEB.2014 12:52:52

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Upper Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: Transmit = 3695 MHz Output power setting: 22 Channel bandwidth: 10 MHz Both ports active and 50Ω terminated

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement

distance in meters.

Power level at band edge = $75.33 + 20\log(3) - 104.8 = -19.92 \text{ dBm/MHz}$

Vertical:

Date: 11.FEB.2014 12:34:42

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Upper Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: Transmit = 3695 MHz Output power setting: 22 Channel bandwidth: 10 MHz Both ports active and 50Ω terminated

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement

distance in meters.

Power level at band edge = $69.10 + 20\log(3) - 104.8 = -26.15 \text{ dBm/MHz}$

Horizontal:

Date: 11.FEB.2014 12:58:28

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement distance in meters.

Power level at band edge = $70.64 + 20\log(3) - 104.8 = -24.61 \text{ dBm/MHz}$

Vertical:

Date: 11.FEB.2014 11:31:08

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = \max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25

Channel bandwidth: 20 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement distance in meters.

Power level at band edge = $66.18 + 20\log(3) - 104.8 = -29.07 \text{ dBm/MHz}$

Horizontal:

Date: 11.FEB.2014 11:39:30

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Upper Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: Transmit = 3690 MHz Output power setting: 25 Channel bandwidth: 20 MHz Both ports active and 50Ω terminated

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement

distance in meters.

Power level at band edge = $70.14 + 20\log(3) - 104.8 = -25.11 \text{ dBm/MHz}$

Vertical:

Date: 11.FEB.2014 11:16:57

Company: Cambium Networks

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Test: Upper Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: Transmit = 3690 MHz Output power setting: 25 Channel bandwidth: 20 MHz Both ports active and 50Ω terminated

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where D is the measurement

distance in meters.

Power level at band edge = $64.74 + 20\log(3) - 104.8 = -30.51 \text{ dBm/MHz}$

Horizontal:

Date: 11.FEB.2014 11:45:49

Company: Cambium Networks
Model Tested: C036045A004A

Report Number: 19784

Report Number: 19784 DLS Project: 6383

Appendix B – Measurement Data

B7.0 AC Line Conducted Emissions

Rule Part: FCC Part 15.207

INFORMATIVE

Test Procedure: ANSI C63.10-2009

Section 6.2

Limit: FCC Part 15.207(a)

Results: Compliant

Notes: This was an AC Conducted emissions measurement.

The EUT was powered from a representative AC Adapter with an input of

120 VAC 60 Hz.

FCC Part 15.207

Voltage Mains Test

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Manufacturer: Cambium Networks
Operating Condition: 72 deg. F, 16% R.H.
Test Site: DLS O.F. Screen Room

Operator: Craig B Test Specification: 120 V 60 Hz

Comment: Line 1; continuous Tx Date: 02-12-2014

SCAN TABLE: "Line Cond SR Final"

Short Description: Line Conducted Emissions

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 3.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "212aL1_fin"

2/12/2014 Frequenc	cy Level		Limit	Margin	Detector
MI	Hz dBµV	dB	dΒμV	dB	
0.15860 0.18480 0.22580 0.30540 0.33520 0.42740 0.86000 1.12000 1.81600 2.20800 2.43600 3.73600 20.25500 20.31800 20.38100 23.12600	56.90 51.80 51.80 60 45.30 44.80 60 44.00 60 43.00 60 42.30 60 44.40 60 43.10 60 42.00 60 41.90 60 47.90 60 48.30 60 48.30 60 48.30 60 48.30	13.6 13.0 12.5 11.9 11.7 11.4 10.9 10.7 10.6 10.6 10.7 11.4 11.4	66 64 63 60 59 57 56 56 56 56 60 60 60	5.3 7.4 10.8 14.8 14.5 13.3 13.0 13.7 11.6 12.9 14.0 14.1 12.1 11.7 11.8 9.5	QP Q
24.04400 24.35000		11.5 11.5	60 60	12.4 11.4	QP QP

MEASUREMENT RESULT: "212aL1_fin2"

			_		
2/12/2014 3: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector
0.182800 0.185200 0.246000 0.330000 0.331600 0.435400 2.008000 2.124000 2.208000 2.272000 2.276000 3.688000 20.318000 20.381000	39.50 40.60 31.30 32.20 32.00 31.00 31.80 31.50 31.10 30.90 30.80 45.30 45.20	13.0 13.0 12.3 11.7 11.7 11.4 10.6 10.6 10.7 10.7 10.7	54 54 52 50 49 47 46 46 46 46 46 50	14.9 13.6 20.6 17.3 17.4 16.1 14.2 14.5 14.9 14.9 15.1 15.2 4.7 4.8	CAV
23.126000 24.044000 24.350000	47.50 44.30 45.50	11.5 11.5 11.5	50 50 50	2.5 5.7 4.5	CAV CAV CAV

FCC Part 15.207

Voltage Mains Test

EUT: PMP450 AP 3.65 GHz, Model C036045A004A

Manufacturer: Cambium Networks
Operating Condition: 72 deg. F, 16% R.H.
Test Site: DLS O.F. Screen Room

Operator: Craig B Test Specification: 120 V 60 Hz

Comment: Line 2; continuous Tx Date: 02-12-2014

SCAN TABLE: "Line Cond SR Final"

Short Description: Line Conducted Emissions

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 3.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "212aL2_fin"

2/12/2014 3		Trand	Limit	Margin	Datastar
Frequency MHz	Level dBµV	Transd dB	dBµV	Margin dB	Detector
0.151400 0.182600 0.226800 0.333800 0.336000 0.429400 0.604000 0.852000 1.576000 2.148000 3.360000 3.768000 20.318000 20.381000 23.126000 24.044000	61.10 57.10 51.60 46.10 45.70 45.20 43.10 44.20 44.80 44.60 42.50 41.60 47.80 47.70 50.10 47.30	13.8 13.0 12.5 11.7 11.4 11.0 10.9 10.7 10.6 10.7 11.4 11.4 11.5 11.5	66 64 63 59 57 56 56 56 56 60 60	4.8 7.3 11.0 13.3 13.6 12.1 12.9 11.8 11.2 11.4 13.5 14.4 12.2 12.3 9.9 12.7	QP Q
24.350000	48.20	11.5	60	11.8	QP

MEASUREMENT RESULT: "212aL2_fin2"

2/12/2014 3:	14PM				
Frequency	Level	Transd	Limit	Margin	Detector
MHz	dBµV	dВ	dΒμV	dВ	
0 101100	20 50		- 4	15.0	
0.181400	38.50	13.1	54	15.9	CAV
0.186200	41.00	13.0	54	13.2	CAV
0.249800	32.00	12.2	52	19.8	CAV
0.331400	33.30	11.7	49	16.1	CAV
0.332000	33.10	11.7	49	16.3	CAV
0.428600	32.50	11.4	47	14.8	CAV
1.816000	31.90	10.7	46	14.1	CAV
1.944000	32.20	10.6	46	13.8	CAV
2.068000	32.20	10.6	46	13.8	CAV
2.124000	31.90	10.6	46	14.1	CAV
2.272000	31.40	10.7	46	14.6	CAV
3.692000	31.80	10.7	46	14.2	CAV
20.318000	44.90	11.4	50	5.1	CAV
20.381000	44.80	11.4	50	5.2	CAV
23.126000	47.10	11.5	50	2.9	CAV
24.044000	44.00	11.5	50	6.0	CAV
24.350000	45.10	11.5	50	4.9	CAV

Company: Cambium Networks Model Tested: C036045A004A

Report Number: 19784 DLS Project: 6383

END OF REPORT

Revision #	Date	Comments	By
1.0	02-17-2014	Preliminary Release	JS
1.1	02-17-2014	Minor edits, pgs 6, 10, 91, 94, 121, 130, 141, 172	JS