REAL LIFE EXAMPLES USING MATPLOTLIB

import matplotlib.pyplot as plt import pandas as pd

GAS Price Dataset

reading the gas price data set gas=pd.read_csv(r'C:\Users\user\Downloads\gas_prices.csv') gas

-	→	V
_	•	
		_

→ ▼		Year	Australia	Canada	France	Germany	Italy	Japan	Mexico	South Korea	UK	USA
	0	1990	NaN	1.87	3.63	2.65	4.59	3.16	1.00	2.05	2.82	1.16
	1	1991	1.96	1.92	3.45	2.90	4.50	3.46	1.30	2.49	3.01	1.14
	2	1992	1.89	1.73	3.56	3.27	4.53	3.58	1.50	2.65	3.06	1.13
	3	1993	1.73	1.57	3.41	3.07	3.68	4.16	1.56	2.88	2.84	1.11
	4	1994	1.84	1.45	3.59	3.52	3.70	4.36	1.48	2.87	2.99	1.11
	5	1995	1.95	1.53	4.26	3.96	4.00	4.43	1.11	2.94	3.21	1.15
	6	1996	2.12	1.61	4.41	3.94	4.39	3.64	1.25	3.18	3.34	1.23
	7	1997	2.05	1.62	4.00	3.53	4.07	3.26	1.47	3.34	3.83	1.23
	8	1998	1.63	1.38	3.87	3.34	3.84	2.82	1.49	3.04	4.06	1.06
	9	1999	1.72	1.52	3.85	3.42	3.87	3.27	1.79	3.80	4.29	1.17
	10	2000	1.94	1.86	3.80	3.45	3.77	3.65	2.01	4.18	4.58	1.51
	11	2001	1.71	1.72	3.51	3.40	3.57	3.27	2.20	3.76	4.13	1.46
	12	2002	1.76	1.69	3.62	3.67	3.74	3.15	2.24	3.84	4.16	1.36
	13	2003	2.19	1.99	4.35	4.59	4.53	3.47	2.04	4.11	4.70	1.59
	14	2004	2.72	2.37	4.99	5.24	5.29	3.93	2.03	4.51	5.56	1.88
	15	2005	3.23	2.89	5.46	5.66	5.74	4.28	2.22	5.28	5.97	2.30
	16	2006	3.54	3.26	5.88	6.03	6.10	4.47	2.31	5.92	6.36	2.59
	17	2007	3.85	3.59	6.60	6.88	6.73	4.49	2.40	6.21	7.13	2.80
	18	2008	4.45	4.08	7.51	7.75	7.63	5.74	2.45	5.83	7.42	3.27

✓ Line Graph

```
# plotting a Line Graph
plt.figure(figsize=(8,5), dpi=150)# resize of the image
plt.plot(gas.Year,gas.USA,label='USA',marker='.') #plotting the gas price in different years
plt.plot(gas.Year,gas.Canada, label='Canada',marker='.') #plotting the gas price in differer
plt.plot(gas.Year,gas.Japan, label='Japan',marker='.') #plotting the gas price in different
plt.plot(gas.Year,gas ['South Korea'], label='South Korea',marker='.') #plotting the gas pri
plt.title('Gas price overtime in USD', fontdict={'fontweight':'bold','fontsize':15})
plt.xlabel ('Year',fontdict={'fontweight':'bold'}) # labeling the X-axis ad making it bold
plt.ylabel ('Gas Price',fontdict={'fontweight':'bold'}) # Labeling the Y-axis and making it
plt.xticks(gas.Year[::2])# to change the ticks of years displayed
plt.grid(color='green', linestyle='--', linewidth=1)
plt.savefig('Gas Price overtime',dpi=300)# to save this graph
plt.legend() # it shows the labels on the graph
plt.show()
```


→ FIFA DATA SET

fifa= pd.read_csv(r'C:\Users\user\Downloads\fifa_data.csv')
fifa

	Unnamed: 0	ID	Name	Age	Photo	Natio
0	0	158023	L. Messi	31	https://cdn.sofifa.org/players/4/19/158023.png	А
1	1	20801	Cristiano Ronaldo	33	https://cdn.sofifa.org/players/4/19/20801.png	
2	2	190871	Neymar Jr	26	https://cdn.sofifa.org/players/4/19/190871.png	
3	3	193080	De Gea	27	https://cdn.sofifa.org/players/4/19/193080.png	
4	4	192985	K. De Bruyne	27	https://cdn.sofifa.org/players/4/19/192985.png	
18202	18202	238813	J. Lundstram	19	https://cdn.sofifa.org/players/4/19/238813.png	
18203	18203	243165	N. Christoffersson	19	https://cdn.sofifa.org/players/4/19/243165.png	
18204	18204	241638	B. Worman	16	https://cdn.sofifa.org/players/4/19/241638.png	
18205	18205	246268	D. Walker-Rice	17	https://cdn.sofifa.org/players/4/19/246268.png	
18206	18206	246269	G. Nugent	16	https://cdn.sofifa.org/players/4/19/246269.png	

18207 rows × 89 columns

→ Histogram

```
#plotting a histogram
bins=[30,40,50,60,70,80,90,100]
plt.figure(figsize=(8,5), dpi=150)# resize of the image
plt.hist(fifa.Overall, color='blue', bins=bins) # using the overall column for the histigram
plt.title('Fifa 2018 Players Skills Performance', fontdict={'fontsize':20, 'fontweight': 'bc
plt.xlabel("Skill Level", fontdict={'fontweight': 'bold'}) #labeling the X-axis and making t
plt.ylabel('Numbers of Players', fontdict={'fontweight': 'bold'}) #labeling the Y-axis and m
plt.savefig('Fifa 2018 Players Skills Performance',dpi=300)# to save this graph
plt.show()
```

 $\overline{\mathbf{T}}$

→ Pie Chart 1

```
# Players that their preferred foot is left foot
leftfoot = (fifa['Preferred Foot'] == 'Left').sum()
# Another method to solve this
# leftfoot= fifa.loc[fifa['Preferred Foot']=='Left'].count().iloc[0]
leftfoot
```

→ 4211

```
# Players that their preferred foot is right foot
rightfoot = (fifa['Preferred Foot'] == 'Right').sum()
# Another method to solve this
# rightfoot= fifa.loc[fifa['Preferred Foot']=='Right'].count().iloc[0]
rightfoot
```

→ 13948

```
labels= ['Left Foot', 'Right Foot'] #labels
colors =['green','yellow'] # colors
plt.figure(figsize=(8,5), dpi=150)# resize of the image
plt.pie([leftfoot, rightfoot], labels=labels, colors=colors, autopct="%.1f%") #plotting the
plt.title('Preferred Foot of Fifa Players', fontdict={'fontsize':20,'fontweight': 'bold'})#l
plt.show()
```

 $\overline{2}$

Preferred Foot of Fifa Players

Pie Chart 2

```
# i want to strip the Fifa weight column of the ibs,the weight is still in pound tho
fifa.Weight = [
   int(''.join(filter(str.isdigit, x.strip('Ibs').strip()))) if isinstance(x, str) else x
   for x in fifa.Weight
]

# Display the cleaned Weight column
print(fifa.Weight[0])
```

→ 159.0

```
# Grouping the players by their weight
light_weight = fifa.loc[fifa.Weight < 125].count().iloc[0]
light_medium_weight = fifa.loc[(fifa.Weight >= 125) & (fifa.Weight < 150)].count().iloc[0]
medium_weight = fifa.loc[(fifa.Weight >= 150) & (fifa.Weight < 175)].count().iloc[0]
medium_heavy_weight = fifa.loc[(fifa.Weight >= 175) & (fifa.Weight < 200)].count().iloc[0]
heavy_weight = fifa.loc[fifa.Weight >= 200].count().iloc[0]

# Display the counts for each category
print("Light Weight:", light_weight)
print("Light Medium Weight:", light_medium_weight)
print("Medium Weight:", medium_weight)
print("Medium Heavy Weight:", medium_heavy_weight)
print("Heavy Weight:", heavy_weight)
```

→ Light Weight: 41

Light Medium Weight: 2290 Medium Weight: 10876 Medium Heavy Weight: 4583

Heavy Weight: 369

weight=[light_weight, light_medium_weight, medium_weight, medium_heavy_weight,heavy_weight]
labels=['Under 125',' 125- 149.9','150-174.9','175-199.9','Over 200']# to label the pie char
explode =[.5,0,0,0,.5] #since some of categories in the pie chart are close to each other, w
plt.style.use('ggplot')# changing the colour of the pie
plt.figure(figsize=(8,5), dpi=150)# resizing the image
plt.pie(weight,labels=labels, autopct="%.1f%%", pctdistance=0.7, explode=explode)
plt.title('Weight Distribution of Fifa Players (Ibs)', fontdict={'fontsize':20,'fontweight':
plt.show()

Weight Distribution of Fifa Players (lbs)

→ Box Plot

```
# comparring three football teams
Barcelona=fifa.loc[fifa.Club=='FC Barcelona']['Overall']# getting the overall performance of Real_Madrid=fifa.loc[fifa.Club=='Real Madrid']['Overall'] # getting the overall performance Cambridge_United=fifa.loc[fifa.Club=='Cambridge United']['Overall'] # getting the overall plabels= ['FC Barcelona','Cambridge United', 'Real Madrid']
plt.figure(figsize=(5,8), dpi=120)# resizing the image
box = plt.boxplot([Barcelona,Cambridge_United, Real_Madrid],labels= labels, patch_artist= for b in box['boxes']:
    b.set(color='blue', linewidth=2) # changing the edge color
    b.set(facecolor= 'yellow')# changing the facecolor
```

plt.title('Football Team Comparision of Overall Performance', fontdict={'fontsize':20,'fon'
plt.ylabel('FIFA Overall Rating') #labeling the Y- Axis

Football Team Comparision of Overall Performance

