复旦大学数学科学学院

2018~2019学年第一学期期末考试试卷

□ A 券 □ B 券

课程名称: _	数学分析 AI	_ 课程代码:	MATH120014		
开课院系: _	数学科学学院	_ 考试形式:	团卷		
姓 名:	学 号:	专业:			

提示:请同学们秉持诚实守信宗旨,谨守考试纪律,摒弃考试作弊。学生如有违反学校考试纪律的行为,学校将按《复旦大学学生纪律处分条例》规定予以严肃处理。

题 目	1	2	3	4	5	6	7	总分
得 分								

- 一(30分)、填空题(每题5分):
- (1) 设 f'(x) = 3(x-1)(x+1), f(0) = a. 则 f(x) 有三个不同的实零点的充分必要条件是 a 满足 ______.
- (2) $\int \frac{e^x 1}{xe^x + 1} \, dx = \underline{\qquad}.$
- (4) 设 $x_0 \in (0,1), x_{n+1} = x_n x_n^5 \ (n \ge 0).$ 若 $\lim_{n \to +\infty} n^{\alpha} x_n = \beta \in (0,+\infty), 则$ $\alpha =$
- (5) 平面直角坐标系中椭圆 $\frac{x^2}{5^2} + \frac{y^2}{4^2} = 1$ 在点 $P(\sqrt{5}, \frac{8\sqrt{5}}{5})$ 处的法线的斜率为
- (6) 设 \mathbb{R} 上函数 f(x) 任意次可导,满足 $f''(x) + f(x) = x^{2017}e^{2018x}$,且 f(0) = 1, f'(0) = 0.则 $f^{(2019)}(0) =$ ________.

二 (10 分)、 设 f(x) 在区间 [-1,1] 上连续, 在 (-1,1) 内三阶可导. 证明: 存在 $\xi \in (-1,1)$ 使得 $f'''(\xi) = 3\Big(f(1) - f(-1) - 2f'(0)\Big)$.

三 (10 分)、 设 y = y(x) 满足 $e^y + y - x = 0$. 试计算 $\frac{d^2y}{dx^2}$ 以及 $\int xy(x) dx$.

四 (15 分)、 设 f(x) 在 \mathbb{R} 上的二阶导数连续, 满足如下条件: (1) 任何直线与 其图像至多有两个交点; (2) 若直线 y = ax + b 与 y = f(x) 有两个交点, 则 $\lim_{x \to \infty} (f(x) - ax - b) = +\infty$. 证明: (1) $f''(x) \ge 0$; (2) 在任何区间 (α, β) 上, $f''(x) \ne 0$.

五 (10 分)、 设 $y = \ln \frac{x^2 + x + 1}{x^2 - x + 1}$, 试讨论该函数的单调性、极值、凸性、拐点, 求出它的渐近线, 并作出它的简图.

六 (10 分)、 设 f(x) 为 \mathbb{R} 上的有界可微函数,且对任何 x 均有 |f'(x)| < 1. 证明存在 M < 1 使得对任何 $x \in \mathbb{R}$ 成立 $|f(x) - f(0)| \le M|x|$.

七 (15 分)、 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内有两阶导数, 满足 f(a)=f(b)=0. 证明: 若在 (a,b) 内成立以下条件之一, 则在 [a,b] 上恒有 $f(x)\leq 0$:

 $(1) f''(x) - f(x) \ge 0; \quad (2) f''(x) - 4f'(x) + 4f(x) \ge 0; \quad (3) f''(x) + 4f'(x) + f(x) \ge 0.$