with

$$\overline{c}_4 = c_4 - z^* A^4 = 0 - (4/3 \quad 2/3 \quad -1) \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 1/3,$$

and we get

	x_1	x_2	x_4	ξ_1	ξ_2	ξ_3	
2/3	0	0	1/3	-7/3	-5/3	0	
$x_2 = 1/6$	0	1	(1/3)	1/6			
$x_1 = 4/9$	1	0	-1/9	1/9	2/9	0	
$\xi_3 = 2/3$	0	0	1/3	-4/3	-2/3	1	

Since the only positive reduced cost occurs in column 3, we set $j^+=3$. Furthermore since $\min\{x_2/(1/3),\xi_3/(1/3)\}=x_2/(1/3)=1/2$, we let $k^-=2$, K=(3,1,6), and pivot around the red circled 1/3 to obtain

	x_1	x_2			ξ_2	ξ_3	
1/2	0	-1	0	-5/2	-3/2	0	
$x_4 = 1/2$	0	3	1	1/2	-1/2	0	
$x_1 = 1/2$	1	1/3	0	1/6	1/6	0	
$\xi_3 = 1/2$	0	-1	0	-3/2	-1/2	1	

At this stage there are no positive reduced costs, and we must compute

$$z^* = (-1 - 1 - 1) - (-5/2 - 3/2 \ 0) = (3/2 \ 1/2 - 1),$$
$$y^+ A^3 - c_3 = (-1/6 \ 1/2 - 1/3) \begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} + 3 = 13/2,$$
$$z^* A^3 = -(3/2 \ 1/2 - 1) \begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} = 3/2,$$

SO

$$\theta^{+} = \frac{13}{3},$$

$$y^{+} = (-1/6 \ 1/2 \ -1/3) + \frac{13}{3}(3/2 \ 1/2 \ -1) = (19/3 \ 8/3 \ -14/3).$$