$$\sqrt{5}(6x^2 - 6x + 1)$$
}. (Vea el ejemplo 6.3.8.) Sean $\mathbf{x} = \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}$ y $\mathbf{y} = \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix}$ dos vectores en \mathbb{R}^3 . Enton-

ces $(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = a_1 a_2 + b_1 b_2 + c_1 c_2$. Recuerde que en $\mathbb{P}_2[0, 1]$ se definió $\langle p, q \rangle = \int_0^1 p(x)$

$$q(x) dx$$
. Defina $T\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1$, $T\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \sqrt{3}(2x - 1)$ y $T\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \sqrt{5}(6x^2 - 6x + 1)$ }; por tanto,

$$T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = a + b\sqrt{3}(2x - 1) + c\sqrt{5}(6x^2 - 6x + 1)$$

У

$$\langle T\mathbf{x}, T\mathbf{y} \rangle = \int_0^1 \left[a_1 + b_1 \sqrt{3}(2x - 1) + c_1 \sqrt{5}(6x^2 - 6x + 1) \right] \\
\times \left[a_2 + b_2 \sqrt{3}(2x - 1) + c_2 \sqrt{5}(6x^2 - 6x + 1) \right] dx \\
= a_1 a_2 \int_0^1 dx + \int_0^1 b_1 b_2 3 (2x - 1)^2 dx + \int_0^1 c_1 c_2 \left[5(6x^2 - 6x + 1)^2 \right] dx \\
+ (a_1 b_2 + a_2 b_1) \int_0^1 \sqrt{3}(2x - 1) dx \\
+ (a_1 c_2 + a_2 c_1) \int_0^1 \sqrt{5}(6x^2 - 6x + 1) dx \\
+ (b_1 c_2 + b_2 c_1) \int_0^1 \left[\sqrt{3}(2x - 1) \right] \left[\sqrt{5}(6x^2 - 6x + 1) \right] dx \\
= a_1 a_2 + b_1 b_2 + c_1 c_2$$

Aquí se ahorró tiempo usando el hecho de que $\{1, \sqrt{3}(2x-1), \sqrt{5}(6x^2-6x+1)\}$ es un conjunto ortonormal. Por tanto, $T: \mathbb{R}^3 \to \mathbb{P}_2[0, 1]$ es una isometría.

RESUMEN 7.5

• Isometría

Una transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ se llama isometría si para todo \mathbf{x} en \mathbb{R}^n

$$|T\mathbf{x}| = |\mathbf{x}|$$

• Si T es una isometría de $\mathbb{R}^n \to \mathbb{R}^n$, entonces para todo x y y en \mathbb{R}^n

$$|T\mathbf{x} - T\mathbf{y}| = |\mathbf{x} - \mathbf{y}|$$
 y $T\mathbf{x} \cdot T\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$

- Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ una isometría, entonces:
 - i) Si $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ es un conjunto ortogonal, entonces $T\mathbf{u}_1, T\mathbf{u}_2, \ldots, T\mathbf{u}_n$ es un conjunto ortogonal.
 - ii) T es un isomorfismo.
- Una transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ es una isometría si y sólo si la representación matricial de T es ortogonal.