Assignment 2

Li Yueheng s2306706

2022.1.24

Problem 5

 $\forall z \in A_{r,R}(z_0)$, suppose $z = z_0 + le^{i\theta}$. Define $d := \min\{\frac{1}{2}(l-r), \frac{1}{2}(R-l)\}$. We claim that the open neighborhood $B_d(z)$ of z that lies within $A_{r,R}(z_0)$. Proof of the claim: $\forall w \in B_d(z)$, by the triangle inequality we have

$$r < l - d \le ||z_0 - z| - |z - w|| \le |z_0 - w| \le |z_0 - z| + |z - w| \le l + d < R$$

Therefore every point in $B_d(z)$ lies in $A_{r,R}(z_0)$. Therefore $A_{r,R}(z_0)$ is open.

Problem 6

Notice that $\mathbb{Q} \times i\mathbb{Q}$ is a countable dense set in \mathbb{C} due to the following reasons:

- 1.Q is dense in \mathbb{R} , so every complex number can be approximated by a complex number in $\mathbb{Q} \times i\mathbb{Q}$ in the sense that both its real and imaginary parts are approximated to any accuracy.
- 2. the inequality $|z| \le |Rez| + |Imz|$ shows the approximation in 1. is also an approximation in the sense of the metric topology on the complex plane.
- $3.\mathbb{Q} \times i\mathbb{Q}$ is a countable set, which is due to the diagonal rule of Cantor and the countability of \mathbb{Q} (which is also due to the diagonal rule)