Towards Wearable Cognitive Assistance

Presenter: Wenqi Xu

Cognitive Decline

- 20 million Americans are affected by cognitive decline survivors of stroke; mild cognitive impairment; Alzheimer disease
- Cognitive decline can manifest itself in many ways inability to recognize people, locations and objects
- One month delay in nursing home admissions in the US could save over \$1 billion

Can Wearable Technology Help?

- Wearable devices such as Google Glass offer a glimmer of hope to users in cognitive decline.
- Continuously capture, interpret, and give guidance
- System Architecture:

All sensors see what you see and hear what you hear; Processing the sensor input in real time on a cloud; Getting result faster than a person can think; Give guidance to users saying something you could do

Hypothetical Scenario of Cognitive Assistance

"Barack is saying hello to you"

"Please stop and check traffic"

"Your dog wants to go out for a walk"

Why Today? Advances in 3 Areas

Challenges

1. Crisp Interactive Response

2. Graceful Degradation of Services

3. Coarse-grain Parallelism

Challenge 1: Crisp Interactive Response

Humans are amazing fast, accurate and rubust

face detection under hostile condition < 700 ms

face recognition 370 – 620 ms

is this sound from a human 4 ms

VR head tracking < 16 ms

Goal: Latency of infrastructure = tens of millisecond

Conquering Latency

Choice 1: Standalone apps

Offloading vs. Standalone (OCR)

Offloading saves latency and energy

Metric	Standalone	With Offload
Per-image speed (s)	10.49	1.28
Per-image energy(J)	12.84	1.14

Choice 2: offload to cloud

RTT is too long optimal Amazon site ~74 ms heavy tailed distribution

Solution 1: Crisp Interactive Response

Offload to cloudlet

data center in box bring cloud closer 1-hop Wi-Fi access typical RTT < 10 ms

Exp. – Cloudlet Shortens Latency

Cloudlet shortens response time

Challenge 2. Graceful Degradation of Services

What if offloading impossible?

Situation 1: No cloudlet

Situation 2: No network

Goal: still work during failures – with performance drop

Solution 2. Graceful Degradation of Services

Use fallback resources

No cloudlet No network

Application-specific fidelity vs. Crispness & battery life

Challenge 2. Coarse-grain Parallelism

Goal: reuse existing work, but...

· Programming languages are different

 Runtime systems are different (different OSes, closedsource, etc.)

Solution 3. Coarse-grain Parallelism

VM Ensemble and PubSub Backbone

Solution 3. Coarse-grain Parallelism

VM Ensemble and PubSub Backbone

Exp. – Gabriel Overhead

System Architecture

Prototype Implementation

Prototype

Back-end Server

GDK Preview

TCP Connection

Speech Guidance

Ice pack to cool down Glass

Prototype Implementation

Cloudlet: 4 advanced desktop machines

Running OpenStack - Virtualized Cloud Computing Platform

Prototype Implementation

Prototype

Cognitive Engines

Face Recognition

Object Recognition (1. MOPED 2. STF)

OCR (1. Tesseract 2 VeryPDF)

Motion Classifier

Augmented Reality

Activity Detection

Commercial Product

Based on Accelerometer

Exp. – Full System Performance

Cognitive Engines are slower

		Cognitive Engine	FPS	Response time (ms)				Glass Life	
		Cognitive Engine	FFS	1%	10%	50%	90%	99%	Glass Life
		Face Recognition	4.4	196	389	659	929	1175	
		Object (MOPED)	1.6	877	962	1207	1647	2118	
		Object (STF)	0.4	4202	4371	4609	5055	5684	
		OCR (Open)	14.4	29	41	87	147	511	~1 hour
		OCR (Comm)	2.3	394	435	522	653	1021	
		Motion Classifier	14.0	126	152	199	260	649	
Γ		Augmented Reality	14.1	48	72	126	192	498	

Exp. – Full System Performance

Cognitive Engines require different FPS

O a maritima . Em arima	FPS	Response time (ms)					Olean Life
Cognitive Engine		1%	10%	50%	90%	99%	Glass Life
Face Recognition	4.4	196	389	659	929	1175	
Object (MOPED)	1.6	877	962	1207	1647	2118	
Object (STF)	0.4	4202	4371	4609	5055	5684	
OCR (Open)	14.4	29	41	87	147	511	~1 hour
OCR (Comm)	2.3	394	435	522	653	1021	
Motion Classifier	14.0	126	152	199	260	649	
Augmented Reality	14.1	48	72	126	192	498	

More in Paper

1. Token-based flow control improves response time a lot

2. Gabriel supports multi-VM parallelism

3. Tradeoff between fidelity reduction and crisp user interaction

Conclusion & Future Work

