Семинар 16.07.22

Note 1

05234104040342a8b0f8cccc3ba532a2

««Алгебра над полем» — это «ствекторное пространство, снабжённое билинейным произведением.»

Note 2

2dbf3b8106f34daead1805a80b0fb28a

Пусть X — топологическое пространство. (ег-Алгебра всех комплексных функций, непрерывных на X)) обозначается (ег-C(X).)

Note 3

3d6e19dd257402ab78d8b26cf54203

Пусть G — группа, X — топологическое пространство. $\{ (cs) \}$ Действием группы G на пространство $X_{\|}$ называется $\{ (cs) \}$ отображение

$$G \times X \to X$$
, $(g, x) \mapsto g(x)$,

 $\}$ такое, что {{c2::} $\forall x \in X$

$$gh(x) = g(h(x)) \quad \forall g, h \in G,$$

 $e(x) = x.$

Note 4 fa2504287a1

Пусть G — группа, X — топологическое пространство. Если поствано действие G на X, то G называется поструппой, действующей на X.

Note 5

f1bfa6fbf90b4a28a445080a7d8d954c

Пусть X — топологическое пространство, G — группа, действующая на X. «съз Скрещенным произведением алгебры C(X) и группы G называется алгебра сумм «съз

$$a = \sum_{g \in G} a_g(x) T_g,$$

 $\}$ где {{c2::Для всех g

$$a_g \in C(X)$$
, T_g — формальный символ.

Note 6

19d452193f4649e48c0c687527934e5e

Пусть X — топологическое пространство, G — группа, действующая на X. «Скрещенное произведение C(X) и G обозначается «Ск

$$C(X) \rtimes G$$
.

Note 7

c4f3819a786b4827a2d83e150447f344

Пусть X — топологическое пространство, G — группа, действующая на X. Тогда для $a,b\in C(X)\rtimes G$

$$\text{(c3:} ab\text{)} \stackrel{\text{def}}{=} \text{(c2:} \sum_{g \in G} c_g(x) T_g, \text{)}$$

где

$$c_g(x) = \sup_{g_1g_2=g} a_{g_1}(x) \cdot b_{g_2}(g_1^{-1}(x)).$$

Note 8

d74629e9c365489a886707b75712917f

Пусть X — топологическое пространство. Для удобства, любой элемент $f \in C(X)$ (кеза-отождествляется), с оператором (кеза-отождествляется), с оператором (кеза-отождествляется).

$$u(x) \mapsto f(x)u(x),$$

 $C(X) \to C(X).$

Note 9

 $0060 adf 86 b 044 24 ca 2977 e \\ 10 cf \\ 57149 b$

Пусть X — топологическое пространство, G — группа, действующая на X, каза $g \in G$, каза Отображение вида

$$u(x) \mapsto u(g^{-1}(x))$$

 \parallel называется \parallel сь: оператором сдвига по элементу g.

Пусть X — топологическое пространство, G — группа, действующая на X, (севе $g\in G$.)) (севе Оператор сдвига по элементу g)) обозначается (севе T_q .))

Note 11

297c8hf8e714c45h1849042d8856179

Пусть X — топологическое пространство, G — группа, действующая на $X,\ g,h\in G$. Тогда

$$T_gT_h=\text{(cl::}T_{gh}.\text{)}$$

Note 12

00bb47328c6444bb9b5075d0838b28c

Пусть X — топологическое пространство, G — группа, действующая на X. Тогда (са: $C(X) \rtimes G$) — это подалгебра в (са: алгебре $\mathcal{L}(C(X),C(X))$,)) порождённая (са: C(X) и всеми T_g .

Note 13

91b2aedf157843449d78550095cf2a5a

Пусть X — топологическое пространство, G — группа, действующая на X. Тогда если $a,b\in C(X)$ и $g,h\in G$, то

$$a(x)T_g \cdot b(x)T_h = \{\{can} a(x) \cdot b(g^{-1}(x)) \cdot T_{gh}\}\}$$

Note 14

530881c476554c1298eec9c9922e8976

Пусть X — топологическое пространство, G — группа, действующая на X. Тогда если $a,b\in C(X)$ и $g,h\in G$, то

$$a(x)T_g \cdot b(x)T_h = a(x) \cdot b(g^{-1}(x)) \cdot T_{gh}$$

В чём ключевая идея доказательства?

$$T_g b(x) = T_g b(x) T_g^{-1} \cdot T_g.$$

Пусть X — топологическое пространство, G — группа, действующая на X. Тогда если $a\in C(X)$ и $g\in G$, то

$$T_g a(x) T_g^{-1} = \{\{a(g^{-1}(x))\}\}$$

Note 16

83c514e338044a1b7080d65431ea8a9

Пусть X — топологическое пространство, G — группа, действующая на X. Тогда если $g \in G$, то

$$T_g^{-1}:u(x)\mapsto \{(\operatorname{cl}:u(g(x)).\}\}$$