0.1 Definitions

Given a function f(x) and two x-values a and b. The change in f relative to the change in x for these values is given as

$$\frac{f(b) - f(a)}{b - a} \tag{1}$$

In MB we have seen that the expression above gives the slope of the line that passes through the points (a, f(a)) and (b, f(b)). In a mathematical context, it is particularly interesting to examine (1) when b approaches a.

By introducing the number h, and setting b = a + h, we can write (1) as

$$\frac{f(a+h) - f(a)}{h}$$

To **differentiate** involves examining the limit of this fraction as h approaches 0.

Note

In the text and figures above, we have assumed that b > a, but this is not a prerequisite for the expressions to be valid.

0.1 The derivative

Given a function f(x). The **derivative** of f at x = a is then given as

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 (2)

The line that has the slope f'(a), and passes through the point (a, f(a)), is called the **tangent line** to f for x = a.

Example 1

Given $f(x) = x^2$. Find f'(2).

Answer

We have that

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h}$$

$$= \lim_{h \to 0} \frac{2^2 + 4h + (h)^2 - 2^2}{h}$$

$$= 4$$

Example 2

Given $f(x) = x^3$. Find f'(a).

Answer

We have that

$$f'(a) = \lim_{h \to 0} \frac{(a+h)^3 - a^3}{h}$$

$$= \lim_{h \to 0} \frac{a^3 + 3a^2h + 3ah^2 + h^3 - a^3}{h}$$

$$= \lim_{h \to 0} \left(3a^2 + 3ah + h^2\right)$$

$$= 3a^2$$

Thus, $f'(a) = 3a^2$.

Alternative definition

An equivalent version of (2) is

$$f'(a) = \lim_{b \to a} \frac{f(b) - f(a)}{b - a} \tag{3}$$

Linearization of a Function

Given a function f(x) and a variable k. Since f'(a) represents the slope of f(a) for x = a, an approximation to f(a + k) would be

$$f(a+k) \approx f(a) + f'(a)k$$

It is often useful to know the difference ε between an approximation and the actual value:

$$\varepsilon = f(a+k) - [f(a) + f'(a)k] \tag{4}$$

We note that $\lim_{k\to 0} \frac{\varepsilon}{k} = 0$, and reformulate (4) into a formula for f(a + k):

¹This is left as an exercise for the reader.

0.2 Linearization of a function

Given a function f(x) and a variable k. Then there exists a function $\varepsilon(k)$ such that

$$f(a+k) = f(a) + f'(a)k + \varepsilon \tag{5}$$

where $\lim_{k\to 0} \frac{\varepsilon}{k} = 0$.

The approximation

$$f(a+k) \approx f(a) + f'(a)k \tag{6}$$

is called the **linear approximation** of f(a+k).

0.2 Rules of Differentiation

The Derivative Function

Example 2 on page 3 highlights something important; if the limit in (2) exists, then f'(a) will be expressed in terms of a. And although a is considered a constant along the way to this expression, there is nothing to prevent us from treating a as a variable afterwards. If f'(a) results from differentiating the function f(x), it is also convenient to rename a to x:

0.3 The derivative function

Given a function f(x). The **derivative function** of f is the function that results from replacing a in (2) with x. This function is written as f'(x).

Example

Given $f(x) = x^3$. Since $f'(a) = 3a^2$, $f'(x) = 3x^2$.

¹See Example 2, page 3.

The language box

Alternative notations for f' are (f)' and $\frac{d}{dx}f$.

Derivative with respect to

The differentiation we have seen so far has been a fraction with a difference of x-values in the denominator and the associated difference of f-values in the numerator. We say that f is differentiated with **respect to** x. In this book series, we will primarily look at functions that depend on only one variable. Given a function f(x), it is then understood that f' symbolizes f differentiated with respect to x.

At the same time, it is useful to be aware that a function can depend on several variables. For example, the function

$$f(x,y) = x^2 + y^3$$

is a **multivariable function**, dependent on both x and y. In this case, we can use $\frac{d}{dx}f$ to indicate differentiation with respect to x, and $\frac{d}{dx}f$ to indicate differentiation with respect to y. The reader may like to explain for themselves why the following is true:

$$\frac{\mathrm{d}}{\mathrm{d}x}f = 2x \qquad , \qquad \frac{\mathrm{d}}{\mathrm{d}y}f = 3y^2,$$

0.2.1 The Derivative of Elementary Functions

0.4 The Derivative of Elementary functions

For a variable x and a constant r, the following are true:

$$(e^x)' = e^x \tag{7}$$

$$(x^r)' = rx^{r-1} \tag{8}$$

$$(\ln x)' = \frac{1}{x} \tag{9}$$

0.5 The Derivative of Composite Functions

Given a constant a and the functions f(x) and g(x). Then,

$$(a \cdot f)' = a \cdot f' \tag{10}$$

$$(f+g)' = f' + g'$$
 (11)

$$(f - g)' = f' - g' (12)$$

0.6 The Second Derivative

Given a differentiable function f(x). Then, the **second derivative** of f is given as

$$\left(f'\right)' = f'' \tag{13}$$

0.7 The Derivative of a Vector Function

Given the functions f(t), g(t), and v(t) = [f(t), g(t)]. Then,

$$v'(t) = [f'(t), g'(t)] \tag{14}$$

0.2.2 Chain, Product, and Quotient Rules in Differentiation

0.8 The Chain Rule

For a function f(x) = g[u(x)], we have:

$$f'(x) = g'(u)u'(x) \tag{15}$$

Example

Find f'(x) when $f(x) = e^{x^2 + x + 1}$.

Answer

We set $u = x^2 + x + 1$, and then

$$g(u) = e^u$$
 $g'(u) = e^u$ $u'(x) = 2x + 1$

Thus,

$$f'(x) = g'(u)u'(x)$$

= $e^{u}(2x + 1)$
= $e^{x^{2}+x+1}(2x + 1)$

0.9 The Product Rule

Given the functions f(x), u(x), and v(x), where f = uv, then

$$f' = u'v + uv'$$

Example 1

Find the derivative of the function $f(x) = x^2 e^x$.

Answer

We set $u(x) = x^2$ and $v(x) = e^x$, then

$$f = uv$$
 $u' = 2x$ $v' = e^x$

Thus,

$$f' = 2xe^x + x^2e^x$$
$$= xe^x(2+x)$$

0.10 The Division Rule

Given the functions f(x), u(x), and v(x), where $f = \frac{u}{v}$. Then,

$$f' = \frac{u'v - uv'}{v^2} \tag{16}$$

Example

Find the derivative of the function $f(x) = \frac{\ln x}{x^4}$.

Answer

We set $u(x) = \ln x$ and $v(x) = x^4$, then

$$f = \frac{u}{v} \qquad \qquad u' = x^{-1} \qquad \qquad v' = 4x^3$$

Thus,

$$f' = \frac{x^{-1} \cdot x^4 - \ln x \cdot 4x^3}{x^8}$$
$$= \frac{1 - 4 \ln x}{x^5}$$

Note: We could also find f' by setting $u(x) = \ln x$ and $v(x) = x^{-4}$, and then using the product rule.

0.11 L'Hopitals rule

Given two differentiable functions f(x) and g(x), where

$$f(a) = g(a) = 0$$

Then,

$$\lim_{x\to a}\frac{f}{g}=\lim_{x\to a}\frac{f'}{g'}$$

Example

Find the limit of $\lim_{x\to 0} \frac{e^x - 1}{x}$.

Answer

We set $f(x) = e^x - 1$ and g(x) = x, noting that f(0) = g(0) = 0. Therefore,

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{f}{g}$$

$$= \lim_{x \to 0} \frac{f'}{g'}$$

$$= \lim_{x \to 0} \frac{e^x}{1}$$

$$= 1$$

Explanations

0.8 The Chain Rule (explanation)

Let's consider three functions f, g, and u, where¹

$$f(x) = g\left[u(x)\right]$$

f is directly described by x, while g is indirectly described by x, via u(x).

Let's use $f(x) = e^{x^2}$ as an example. If we know the value of x, we can easily calculate the value of f(x). For instance,

$$f(3) = e^{3^2} = e^9$$

But we can also write $g[u(x)] = e^{u(x)}$, where $u(x) = x^2$. This notation implies that when we know the value of x, we first calculate the value of u, then find the value of g:

$$u(3) = 3^2 = 9$$
 , $g[u(3)] = e^{u(3)} = e^9$

From (2), we have:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{g\left[u(x+h)\right] - g\left[u(x)\right]}{h}$$

We set k = u(x+h) - u(x). Thus,

$$\lim_{h \to 0} \frac{g\left[u(x+h)\right] - g\left[u(x)\right]}{h} = \lim_{h \to 0} \frac{g(u+k) - g(u)}{h}$$

From (5), we have:

$$g(u+k) - g(u) = g'(u)k + \varepsilon_g$$

Thus,

$$\lim_{h \to 0} \frac{g(u+k) - g(u)}{h} = \lim_{h \to 0} \frac{g'(u)k + \varepsilon_g}{h}$$
$$= \lim_{h \to 0} \left(g'(u) + \frac{\varepsilon_g}{k} \right) \frac{k}{h}$$

Since $\lim_{h\to 0} k = 0$, $\lim_{h\to 0} \frac{\varepsilon_g}{k} = 0$. Moreover, $\lim_{h\to 0} \frac{k}{h} = u'(x)$. Thus,

$$\lim_{h \to 0} \left(g'(u) + \frac{\varepsilon_g}{k} \right) \frac{k}{h} = g'(u)u'(x)$$

0.9 The Product Rule (explanation)

Given the functions f(x), u(x), and v(x), where

$$f = uv$$

From (0.1), then

$$f' = \lim_{h \to 0} \frac{u(x+h)v(x+h) - uv}{h}$$

Let's denote u(x+h) and v(x+h) as respectively \tilde{u} and \tilde{v} :

$$f' = \lim_{h \to 0} \frac{\tilde{u}\tilde{v} - uv}{h}$$

We can always add 0 in the form of $\frac{u\tilde{v}}{h} - \frac{u\tilde{v}}{h}$:

$$f' = \lim_{h \to 0} \left[\frac{\tilde{u}\tilde{v} - uv}{h} + \frac{u\tilde{v}}{h} - \frac{u\tilde{v}}{h} \right]$$
$$= \lim_{h \to 0} \left[\frac{(\tilde{u} - u)\tilde{v}}{h} + \frac{u(\tilde{v} - v)}{h} \right]$$

Since for any continuous function g, $\lim_{h\to 0} \tilde{g} = g$ and

$$\lim_{h\to 0} \frac{g(x+h)-g(x)}{h} = g', \text{ it is:}$$

$$f' = u'v + uv'$$

¹The square brackets [] in this context have the same meaning as ordinary parentheses, they are just used to make the expressions cleaner.

0.4 The Derivative of Elementary functions (explanation)

Equation (8)

Let's start by noting that

$$(\ln x^r)' = (r \ln x)'$$
$$= \frac{r}{r}$$

We set $u = x^r$. From the chain rule, we have:

$$\frac{r}{x} = (\ln u)'$$

$$= \frac{1}{u}u'$$

$$= \frac{1}{x^r}(x^r)'$$

Thus,

$$(x^r)' = \frac{r}{x}x^r = rx^{r-1}$$

Equation (9)

We have that $x = e^{\ln x}$. We set $u = \ln x$ and $g(u) = e^u$. Then x = g(u), and

$$g'(u) = e^{u} = e^{\ln x} = x$$
$$u'(x) = (\ln x)'$$

From the chain rule, we have:

$$(x)' = g'(u)u'(x)$$
$$= x (\ln x)'$$

Since (x)' = 1, we have:

$$1 = x \left(\ln x\right)'$$

Thus,

$$(\ln x)' = \frac{1}{x}$$

¹See exercise ??.

0.10 The Division Rule (explanation)

We have that

$$f' = \left(\frac{u}{v}\right)' = \left(uv^{-1}\right)'$$

From product rule and chain rule, then

$$f' = u'v^{-1} - uv^{-2}v'$$
$$= \frac{u'v - uv'}{v^2}$$

0.11 L'Hopitals rule (explanation)

Since f(a) = g(a) = 0, it is:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}$$

From (3), then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$