

Merging, Joining, and Concatenating

There are 3 main ways of combining DataFrames together: Merging, Joining and Concatenating. In this lecture we will discuss these 3 methods with examples.

Example DataFrames

```
In [3]:
```

```
import pandas as pd
```

```
In [4]:
```

In [5]:

In [6]:

```
In [7]:
df1
Out[7]:
    Α
          C D
      В
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
In [8]:
df2
Out[8]:
          С
    Α
      В
             D
  A4 B4 C4
             D4
5 A5 B5 C5
             D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
In [12]:
df3
Out[12]:
              С
                  D
     Α
         В
    A8
         В8
             C8
                 D8
 8
 9
    Α9
         B9
             C9
                 D9
   A10 B10 C10 D10
 11 A11 B11 C11 D11
```

Concatenation

Concatenation basically glues together DataFrames. Keep in mind that dimensions should match along the axis you are concatenating on. You can use **pd.concat** and pass in a list of DataFrames to concatenate together:

In [10]:

pd.concat([df1,df2,df3])

Out[10]:

	Α	В	С	D
0	A0	В0	C0	D0
1	A1	B1	C1	D1
2	A2	B2	C2	D2
3	A3	В3	C3	D3
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	A6	В6	C6	D6
7	A7	B7	C7	D7
8	A8	В8	C8	D8
9	A9	В9	C9	D9
10	A10	B10	C10	D10
11	A11	B11	C11	D11

In [18]:

pd.concat([df1,df2,df3],axis=1)

Out[18]:

	Α	В	С	D	Α	В	С	D	Α	В	С	D
0	A0	В0	C0	D0	NaN							
1	A1	B1	C1	D1	NaN							
2	A2	B2	C2	D2	NaN							
3	А3	В3	C3	D3	NaN							
4	NaN	NaN	NaN	NaN	A4	В4	C4	D4	NaN	NaN	NaN	NaN
5	NaN	NaN	NaN	NaN	A5	В5	C5	D5	NaN	NaN	NaN	NaN
6	NaN	NaN	NaN	NaN	A6	В6	C6	D6	NaN	NaN	NaN	NaN
7	NaN	NaN	NaN	NaN	A7	В7	C7	D7	NaN	NaN	NaN	NaN
8	NaN	A8	В8	C8	D8							
9	NaN	A9	В9	C9	D9							
10	NaN	A10	B10	C10	D10							
11	NaN	A11	B11	C11	D11							

Example DataFrames

In [28]:

In [29]:

left

Out[29]:

	Α	В	key
0	A0	В0	K0
1	A1	B1	K1
2	A2	B2	K2
3	АЗ	ВЗ	K3

In [30]:

right

Out[30]:

	С	D	key
0	C0	D0	K0
1	C1	D1	K1
2	C2	D2	K2
3	СЗ	D3	K3

Merging

The **merge** function allows you to merge DataFrames together using a similar logic as merging SQL Tables together. For example:

In [35]:

```
pd.merge(left,right,how='inner',on='key')
```

Out[35]:

	Α	В	key	С	D
0	Α0	В0	K0	C0	D0
1	A1	В1	K1	C1	D1
2	A2	B2	K2	C2	D2
3	А3	ВЗ	K3	СЗ	D3

Or to show a more complicated example:

In [37]:

In [39]:

```
pd.merge(left, right, on=['key1', 'key2'])
```

Out[39]:

	Α	В	key1	key2	С	D
0	A0	В0	K0	K0	C0	D0
1	A2	B2	K1	K0	C1	D1
2	A2	B2	K1	K0	C2	D2

```
In [40]:
```

```
pd.merge(left, right, how='outer', on=['key1', 'key2'])
```

Out[40]:

	Α	В	key1	key2	С	D
0	A0	В0	K0	K0	C0	D0
1	A1	B1	K0	K1	NaN	NaN
2	A2	B2	K1	K0	C1	D1
3	A2	B2	K1	K0	C2	D2
4	А3	В3	K2	K1	NaN	NaN
5	NaN	NaN	K2	K0	C3	D3

In [41]:

```
pd.merge(left, right, how='right', on=['key1', 'key2'])
```

Out[41]:

	Α	В	key1	key2	С	D
0	A0	В0	K0	K0	C0	D0
1	A2	B2	K1	K0	C1	D1
2	A2	B2	K1	K0	C2	D2
3	NaN	NaN	K2	K0	C3	D3

In [42]:

```
pd.merge(left, right, how='left', on=['key1', 'key2'])
```

Out[42]:

	Α	В	key1	key2	С	D
0	Α0	В0	K0	K0	C0	D0
1	A1	В1	K0	K1	NaN	NaN
2	A2	B2	K1	K0	C1	D1
3	A2	B2	K1	K0	C2	D2
4	А3	ВЗ	K2	K1	NaN	NaN

Joining

Joining is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame.

In [46]:

In [47]:

```
left.join(right)
```

Out[47]:

	Α	В	С	D
K0	A0	В0	C0	D0
K 1	A1	B1	NaN	NaN
K2	A2	В2	C2	D2

In [48]:

```
left.join(right, how='outer')
```

Out[48]:

	Α	В	С	D
K0	A0	В0	C0	D0
K 1	A1	B1	NaN	NaN
K2	A2	B2	C2	D2
K3	NaN	NaN	СЗ	D3

Great Job!