Einführung in	die Mobile Robotik
WS 2017/18	

Aufgabenblatt 1

HTWG Konstanz Prof. Dr. Oliver Bittel

Aufgabe 1: Koordinatensysteme und Transformationen

Zum Rechnen mit Rotations- und Transformationsmatrizen sind folgende Funktionen in Python zu definieren. Benutzen Sie dazu das Paket numpy.matlib.

rot(theta)	liefert eine 2D-Rotationsmatrix mit Drehwinkel theta zurück.	
rotx(theta)	liefert eine elementare 3D-Rotationsmatrix mit Drehwinkel theta um Drechachse x zurück.	
roty(theta)	liefert eine elementare 3D-Rotationsmatrix mit Drehwinkel theta um Drechachse y zurück.	
rotz(theta)	liefert eine elementare 3D-Rotationsmatrix mit Drehwinkel theta um Drechachse z zurück.	
rot2trans(r)	wandelt die Rotationsmatrix r in eine homogene Trans-formationsmatrix um und liefert diese zurück.	
trans(t)	liefert eine homogene Translationsmatrix mit Translation t zurück. t ist ein Tupel der Größe 2 bzw. 3 für den 2D- bzw. 3D-Fall.	

Testen Sie Ihre Python-Funktionen, indem Sie die Aufgaben 2.1 und 2.2 aus der Vorlesung nachrechnen.

Aufgabe 2: Roboterkinematik

a) Die folgende Tabelle legt die Parameter des mobilen Greifarmroboters aus Aufgabe 2.4 aus der Vorlesung fest. Geben Sie den Punkt P im globalen KS O an.

x_R, y_R, θ	2, 1, 30°
l, h, r	0.6, 0.2, 0.1
a, b, α	0.1, 0.1, 40°
l_1, β_1	0.5, 30°
l_2, β_2	0.5, 10°

- b) Inverse Kinematik: Gegeben ist ein Punkt Z im <u>Roboter-KS R</u>. Leiten Sie durch algebraische oder geometrische Überlegungen die inverse Kinematik her. Berücksichtigen Sie dabei die Lösung der Aufgabe 2.5 aus der Vorlesung. Schreiben Sie eine Funktion, die aus Z die drei Drehwinkel der Gelenke α, β₁ und β₂ berechnet. Überprüfen Sie Ihr Ergebnis durch Vorwärtskinematik.
- c) Kartesische Bewegung: Schreiben Sie eine Funktion, die eine Bewegung des Greifarms durch Angabe einer Folge von Punkten im Roboter-KS durchführt. Überprüfen Sie Ihr Ergebnis durch Vorwärtskinematik.