Modifications:

RRT*: Initial sample biasing of 13%, increases up to 30% the closer it gets to goal

PRM: Aborts build graph earlier if there is a path found between start and goal every 1000 samples

==> Higher cost but much less time spent and number of nodes

==> The higher the number of samples the more optimal it

To make it run more traditionally remove

if (k%1000==0){

if(isPathExists(graph, startNode, goalNode)){

printf("path exists\n");

break;

}

inside of void buildPRM

For 4 DoF arm in map2

	planner	cost	timespent	Num Nodes	Average Success Rate	Success Rate Alone
1	0	13.5800367333333 33	0.01566831779964 5563	821.6	0.75	0.8
2	1	13.861291214	0.03557180190000 503	844.8	1.0	1.0
3	2	8.43031553846153 9	0.08353283376919 324	323.461538461538 45	0.65	0.65
4	3	14.3879039400000 01	0.38361067542102 417	2238.84210526315 8	0.95	0.95

For 3DoF arm in map2

Performs a bit worse since hyperparameters were not changed for comparison purposes

	Algorithm	Average Cost	Average Time	Average Number of No	Average Success Rate	Success Rate Alone
1	0	6.45644125176470 6	0.31240271611761 056	17406.6470588235 28	0.85	0.9
2	1	5.91022662352941 2	0.00387505223539 73534	76.1176470588235 4	0.85	0.85
3	2	4.53336386666666 6	0.02875969446686 212	114.866666666666666666666666666666666666	0.75	0.8
4	3	6.153340746	0.17792452194998 99	1052.0	1.0	1.0

Discussion:

- 1: The most suitable planner for this environment is RRT connect as it has the fastest runtime while maintaining a high success rate
- 2: The issue with this planner is that the path cost is suboptimal Issue RRT: Not very high success rate → requires too many samples to converge

→ sample inefficient

Issue RRT*: High memory overhead and low success rate for higher dimensional problems

Issue PRM: Slower and uses too many samples

3: RRT connect could be improved by combining concepts of RRT* to enable more rewiring

Bonus:

Ran same 4dof sample 10 times in map4 (sample has 100% success rate for all planners)

	Algorithm	Mean Cost	Mean Time	Mean Number of Node
1	0	14.070804	0.00956273289957 606	460.5
2	1	9.542855	0.00263623359933 25896	12.9
3	2	9.567073	0.00375427320032 02897	34.6
4	3	10.4901144	0.17905836919999 27	1402.0

	Algorithm	Std Dev Cost	Std Dev Time	Std Dev Number of No
1	0	2.36218065612777 03	0.00673117318248 1774	395.196786424181 3
2	1	0.36736425211074 8	0.00029500389610 162607	2.18326971917504 2
3	2	0.55585430543543 52	0.00096182448960 00997	18.1426446681721 56
4	3	0.63818152896495 25	0.12180140611823 978	516.397779494322 3

