Appunti del corso di algebra e geometria

Adriano Oliviero

07/04/22 - oggi

Indice

1	08/03/22 1.1 Richiami di logica 1.2 Teoria degli insiemi 1.3 Funzioni	4
2	09/03/22 2.1 Funzioni (continuo) 2.2 Algebra lineare	
3	15/03/22 3.1 Algebra lineare (continuo) 3.2 Piano Cartesiano	
4	16/03/22 4.1 Continuo di ieri (Def)	11 11
5	22/03/22 5.1 Sistemi di equazioni lineari (accenni) 5.2 Matrici	
6	23/03/22 6.1 Operazioni tra matrici	
7	29/03/22 7.1 Sistemi di equazioni lineari	17 17
8	30/03/22 8.1 Sistema lineare \longrightarrow sistema a scalini	19
9	05/04/22 9.1 Ultime considerazioni sui sistemi lineari	21 21
10	06/04/22	23
11	08/04/22 11.1 Definizione di vettori linearmente indipendenti	25 26
12	12/04/22	28
13	13/04/22 13.1 Continuando da ieri, Corollario 1	30
14	27/04/22 14.1 Torniamo ai sistemi lineari	31 33
15	29/04/22	34
16	04/05/22	35
17	10/05/22	37

$18\ 11/05/22$	39
19 13/05/22	42

 $20\ 18/05/22$

Introduzione

Questi appunti sono scritti seguendo le lezioni della prof.ssa Anna Iezzi e sono distribuiti sotto la licenza LATEX. Il repository originario per questi (ed altri appunti) è su github.

Licenza

% geometria_algebra.tex
% Copyright 2022 M. Y. Adriano Oliviero

This work may be distributed and/or modified under the conditions of the LaTeX Project Public License, either version 1.3 of this license or (at your option) any later version. The latest version of this license is in http://www.latex-project.org/lppl.txt and version 1.3 or later is part of all distributions of LaTeX version 2005/12/01 or later.

This work has the LPPL maintenance status 'maintained'.

The Current Maintainer of this work is M. Y. Adriano Oliviero.

This work consists of the file geometria_algebra.tex and the derived files geometria_algebra.pdf and other output.

$1 \quad 08/03/22$

1.1 Richiami di logica

```
P: proposizione logica \bigvee_{\mathbf{F}} \mathbf{V} Vero (valori di verità) P = \text{``Napoli \`e in Campania'': } \mathbf{V} P(n) = \text{``n \`e pari''} \downarrow P(2): \mathbf{V} P(3): \mathbf{F}
```

Connettivi logici

• Negazione: ¬, "non"

• Congiunzione: \land , "e"

• Disgiunzione: v, "o"

• Implicazione: \Rightarrow , "se \cdots allora \cdots "

 \bullet Doppia implicazione: $\Leftrightarrow,$ "se e solo se"

Tavole di verità

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

Quantificatori

• ∀:"Per ogni"

• ∃: "Esiste almeno uno"

• ∃!: "Esiste ed è unico"

Esempio:

1. " $\forall n$ naturale, n è pari": **F**" $\exists n$ naturale: (\leftarrow tale che) n è pari": **V**

2. $P(x) = \{x \text{ è uno studente in aula A3-T2}\}\$ $Q(x) = \{x \text{ è iscritto ad un corso di ingegneria}\}\$ $\forall x, P(x) \Rightarrow Q(x)$

3. P(n) = "n è un numero pari" Q(n) = "n è divisibile per 4" $\forall n$ naturale, $Q(n) \Rightarrow P(n)\mathbf{V}$ $\forall n$ naturale, $P(n) \Rightarrow Q(n)\mathbf{F}$

 $\underline{\text{Importante:}} \ Q(n) \Rightarrow P(n) \ \underline{\grave{\text{e}} \ \text{equivalente}} \ \text{a} \ \neg Q(n) \Rightarrow \ \neg P(n)$

1.2 Teoria degli insiemi

<u>INSIEME</u>: collezione di oggetti, detti <u>elementi</u> dell'insieme. Un **insieme** è una collezione di oggetti detti **elementi** dell'insieme. Convenzionalmente gli insiemi si denotano con lettere maiuscole e gli elementi con lettere minuscole.

Descrizione di un insieme

1. Per elencazione (se l'insieme ha un numero finito di elementi):

$$\mathbb{A} = \{\underbrace{0, 2, 4, 6, 8, 10}_{elementi} \}$$

$$4 \in \mathbb{A} \text{ (4 appartiene ad } \mathbb{A})$$

$$5 \notin \mathbb{A} \text{ (5 non appartiene ad } \mathbb{A})$$

2. Per proprietà caratteristica:

$$\overline{\mathbb{A}} = \{ n : n \text{ è un numero pari: } 0 \le n \le 10 \}$$

3. Diagramma di Eulero-Venn (ancora una volta se l'insieme ha un numero finito di elementi):

 $\underline{\mathbf{Def}}$: La cardinalità di un insieme è il numero di elementi che un insieme contiene e si denota: \mathbb{A} ha cardinalità $|\mathbb{A}|$

<u>Def</u>: Insieme vuoto: insieme che non contiene nessun elemento, si denota con \emptyset , $\{\}$ e ha cardinalità $|\emptyset| = 0$

I principali insiemi numerici

 $\mathbb{N} = \{0, 1, 2, 3, \cdots\}$: numeri naturali

 $\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$: numeri naturali

 $\mathbb{Q} = \{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \}$

R: numeri reali

C: numeri complessi

Inclusione di insiemi

• $\mathbb{A} \subseteq \mathbb{B}$ (\mathbb{A} è contenuto in \mathbb{B}) \Leftrightarrow ($\forall x, x \in \mathbb{A} \Rightarrow x \in \mathbb{B}$)

 $\mathbb{B} \supseteq \mathbb{A}(\mathbb{B} \text{ contiene } \mathbb{A})$

Se $\mathbb{A} \subseteq \mathbb{B}$, diciamo che \mathbb{A} è un sottoinsieme di \mathbb{B}

Esempio:

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$

•
$$\mathbb{A} = \mathbb{B} \Leftrightarrow (x \in \mathbb{A} \Leftrightarrow x \in \mathbb{B}) \Leftrightarrow (\underbrace{\mathbb{A} \subseteq \mathbb{B} \land \mathbb{B} \subseteq \mathbb{A}})$$

doppia inclusione

Operazioni tra gli insiemi

Siano A e B due insiemi

1. Intersezione $\leftrightarrow \land$:

$$\overline{\mathbb{A} \cap \mathbb{B}} \coloneqq \{x : x \in \mathbb{A} \underset{\text{e''}}{\wedge} x \in \mathbb{B}\}$$

Se $\mathbb{A}\cap\mathbb{B}=\varnothing$ allora \mathbb{A} e \mathbb{B} sono detti disgiunti

Proprietà:

- $\mathbb{A} \cap \emptyset = \emptyset$
- $A \cap B = B \cap A$
- $\bullet \ \mathbb{A} \subseteq \mathbb{B} \Rightarrow \mathbb{A} \cap \mathbb{B} = \mathbb{A}$

2. <u>Unione</u> $\leftrightarrow \lor$:

 $\mathbb{A} \cup \mathbb{B} \coloneqq \{x : x \in \mathbb{A} \lor x \in \mathbb{B}\}$

Proprietà:

- $\mathbb{A} \cup \emptyset = \mathbb{A}$
- $\mathbb{A} \cup \mathbb{B} = \mathbb{B} \cup \mathbb{A}$
- $\bullet \ \mathbb{A} \subseteq \mathbb{B} \Rightarrow \mathbb{A} \cup \mathbb{B} = \mathbb{B}$
- $\mathbb{A} \subseteq \mathbb{A} \cup \mathbb{B}, \mathbb{B} \subseteq \mathbb{A} \cup \mathbb{B}$

3. Differenza $\leftrightarrow \$:

 $\mathbb{B} \backslash \mathbb{A} := \{ x : x \in \mathbb{B} \land x \notin \mathbb{A} \}$

Proprietà:

- $\mathbb{A}\backslash\emptyset=\mathbb{A}$
- $\emptyset \backslash \mathbb{A} = \mathbb{A}$

4. Prodotto cartesiano $\leftrightarrow \times$:

$$\mathbb{A} \times \mathbb{B} := \{ \underbrace{(a,b)} : a \in \mathbb{A}, b \in \mathbb{B} \}$$

coppie ordinate

Proprietà:

- $|\mathbb{A} \times \mathbb{B}| = |\mathbb{A}| \cdot |\mathbb{B}|$
- $\mathbb{A} \times \emptyset = \emptyset = \emptyset \times \mathbb{A}$

 $\mathbb{A}_1, \dots, \mathbb{A}_n$ insiemi

$$\mathbb{A}_1 \times \cdots \times \mathbb{A}_n = \{(a_1, \cdots, a_n) : a_i \in \mathbb{A}_i, \forall i\}$$

1.3 **Funzioni**

Def: Siano \mathbb{A}, \mathbb{B} due insiemi:

Una funzione $f: \mathbb{A} \to \mathbb{B}$ è una legge che associa ad ogni elemento di \mathbb{A} , uno ed un solo elemento di \mathbb{B} .

dominio codominio

Se $y = f(x), x \in \mathbb{A}$, allora y è l'immagine di x e x è la controimmagine di y

Esempio:

 $A = \{1, 2, 3\}$ $\mathbb{B} = \{a, b, c, d\}$

 $\begin{array}{c} f: \mathbb{A} \longrightarrow \mathbb{B} \\ 1 \longmapsto a \end{array}$

 $2 \longmapsto a$ $3 \longmapsto c$

a è l'immagine di 1 e 2 (f(1) = a = f(2))

1è una controimmagine di \boldsymbol{a}

<u>Def</u>: Sia $f : \mathbb{A} \to \mathbb{B}$ una funzione e sia $\mathbb{X} \subseteq \mathbb{A}$:

 $f(x)\coloneqq\{f(x):x\in\mathbb{X}\}$ è l'immagine di \mathbb{X} tramite f

 $Im(f) := f(\mathbb{A})$ è l'immagine della funzione

2.1 Funzioni (continuo)

<u>Def</u>: Una funzione $f: \mathbb{A} \to \mathbb{B}$ si dice <u>iniettiva</u> se $\forall x \neq y \Rightarrow f(x) \neq f(y)$ (elementi distinti di \mathbb{A} hanno immagini distinte) $\Leftrightarrow f(x) = f(y) \Rightarrow x = y$

<u>Def</u>: Una funzione $f : \mathbb{A} \to \mathbb{B}$ si dice <u>suriettiva</u> se Im(f) = B, o equivalentemente se $\forall y \in \mathbb{B}, \exists x \in \mathbb{A} : f(x) = y$

<u>Def:</u> Una funzione $f : \mathbb{A} \to \mathbb{B}$ si dice <u>biettiva</u> o <u>biunivoca</u> se è al tempo stesso iniettiva e suriettiva

Esempio:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to x^2$$

- È iniettiva? No, perchè f(-1) = 1 = f(1)
- È suriettiva? No, perchè $f(x) = x^2 \ge 0 \forall x \in \mathbb{R} \Rightarrow Im(f) \subseteq \mathbb{R}^+ \Rightarrow Im(f) \ne \mathbb{R}$

Se un insieme possiede delle operazioni che verificano certe proprietà, è una struttura algebrica.

<u>Def:</u> Sia $\mathbb X$ un insieme, un'operazione binaria interna è una funzione dal prodotto cartesiano $x \times x$ in $\mathbb X$.

$$*: x \times x \to x$$
$$(x, y) \to x * y$$

$$X = \mathbb{R}$$

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(x,y) \to x + y$
Proprietà di $(\mathbb{R}, +)$:

- 1. Commutatività: $x + y = y + x, \forall x, y \in \mathbb{R}$
- 2. Associatività: $(x + y) + z = x + (y + z), \forall x, y, z \in \mathbb{R}$
- 3. Elemento neutro: $\exists x' \in \mathbb{R} : x + x' = x' + x = x, \forall x \in \mathbb{R}, x' = 0$
- 4. Opposto: $\exists x' \in \mathbb{R} : x + x' = x' + x = 0, \forall x \in \mathbb{R}, (x' = -x)$

$$\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(x,y) \to x \cdot y$
Proprietà di (\mathbb{R}, \cdot) :

- 1. Commutatività: $x \cdot y = y \cdot x, \forall x, y \in \mathbb{R}$
- 2. Associatività: $(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in \mathbb{R}$
- 3. Elemento neutro: $\exists x' \in \mathbb{R} : x \cdot x' = x' \cdot x = x, \forall x \in \mathbb{R}, x' = 1$
- 4. Elemento inverso: $\exists x' \in \mathbb{R} : x \cdot x' = x' \cdot x = 0, \forall x \in \mathbb{R}, (x' = \frac{1}{x})$

Infine + e · soddisfano la proprietà distributiva: $\forall x,y,z \in \mathbb{R}, x \cdot (y+z) = x \cdot y + x \cdot z$

Sia $\mathbb{K} \neq \emptyset$ un insieme dotato di due operazioni binarie:

- $\bullet \ + : \mathbb{K} \times \mathbb{K} \to \mathbb{K}$
- $\bullet \ \cdot \colon \mathbb{K} \times \mathbb{K} \to \mathbb{K}$

 $(\mathbb{K},+,\cdot)$ è detto un campo se verificano le proprietà elencate prima, con + distributiva e \mathbb{K} al posto di \mathbb{R}

Esempio:

 $\mathbb{F}_2 = \{0, 1\}$

- $\bullet : \mathbb{F}_2 \cdot \mathbb{F}_2 \to \mathbb{F}_2$
 - $(0,0) \to 0$
 - $(0,1)\to 0$
 - $(1,0) \rightarrow 0$
 - $(1,1) \rightarrow 1$
- $\bullet \ + : \mathbb{F}_2 \times \mathbb{F}_2 \to \mathbb{F}_2$
 - $(0,0)\to 0$
 - $(0,1) \to 1$
 - $(1,0) \to 1$
 - $(1,1) \to 1$

2.2 Algebra lineare

Wikipedia:

Branca della matematica che si occupa dello studio di spazi vettoriali (o anche detti spazi lineari), di trasformazioni lineari e di sistemi di equazioni lineari.

Molti problemi di matematica e fisica verificano la seguente proprietà:

Se $v, w \in \mathbb{X}$ sono due soluzioni del problema, allora anche v + w e $\lambda v, \lambda \in \mathbb{R}$ (+ e · operazioni su \mathbb{X}) sono soluzioni del problema. Problemi di questo tipo sono detti *lineari*.

Nozione base: spazio vettoriale

I vettori sono usati in fisica per rappresentare, grandezze fisiche caratterizzate da:

- una direzione
- un verso
- un'intensità

Tali grandezze sono grandezze vettoriali e si differenziano dalle grandezze scalari, definite unicamente dall'intensità. Geometricamente, un vettore si rappresenta tramite un segmento orientato nel piano euclideo, denotato Π .

Def: Un segmento orientato è una coppia di punti ordinata $(A, B \in \Pi \times \Pi)$.

 $\vec{AB} \coloneqq (A,B)$

<u>Def</u>: Due segmenti orientati \vec{AB} e \vec{CD} si dicono <u>equipollenti</u> se il quadrilatero avente vertici, ordinatamente, ABDC è un parallelogramma, quindi se hanno:

- stessa lunghezza
- direzione parallela
- stesso verso

L'equipollenza è una relazione di equivalenza, e verifica 3 proprietà:

- riflessiva
- \bullet simmetrica
- transitiva

Def: Un vettore geometrico è una classe di equipollenza

Sia O un punto fissato nel piano Π , per ogni segmento orientato \vec{AB} esiste un punto $P \in \Pi$ tale che \vec{OP} è equipollente ad \vec{AB} .

 \vec{OP} è equipollente a tutti i segmenti orientati equipollenti ad \vec{AB} e posso sceglierlo come rappresentante della classe di equipollenza di \vec{AB} .

Quindi abbiamo una biezione:

 $\mathbb{V} = \{ \text{Vettori geometrici nel piano} \} \{ \text{segmento orientato } \vec{OP}, P \in \Pi \} \}$

$3 \quad 15/03/22$

3.1 Algebra lineare (continuo)

Nozione base: spazio vettoriale (continuo)

Correzione della definizione di campo:

- Esistenza dell'elemento neutro $\exists 0 \in \mathbb{R} : x + 0 = 0 + x = x, \forall x \in \mathbb{R}$
- Esistenza dell'opposto:

```
\exists x' \in \mathbb{R} : x + x' = x' + x = 0, \forall x \in \mathbb{R}
```

Fissiamo $O \in \pi$ (piano ordinario).

 $\mathbb{V} = \{ \text{vettori geometrici del piano} \} \Leftrightarrow \{ \text{segmenti orientati } \vec{OP}, P \in \pi \}$

Con un abuso di notazione, consideriamo:

 $\mathbb{V} = \{\text{segmenti orientati } \vec{OP}, P \in \pi \}$

 $\forall \vec{v} \in V, \exists P \in \pi : \vec{v} = \vec{OP} \text{ Operazioni su } \mathbb{V}$

- Somma di vettori
 - siano $\vec{v}, \vec{w} \in \mathbb{V}$ e siano $P, Q \in \pi$:

 $\vec{v} = \vec{OP}$

 $\vec{w} = \vec{OQ}$

Definiamo:

 $\vec{v} + \vec{w} = \vec{OR}$, tale che il quadrilatero OPRQ è un parallelogramma. (regola del parallelogramma)

Nota: Se $O, P \in Q$ sono collineari (hanno la stessa direzione), costruisco R tale che $OQ \in RP$ hanno la stessa lunghezza Operazione binaria interna:

$$+: \mathbb{V} \times \mathbb{V} \to \mathbb{V}$$

$$(\vec{v}, \vec{w}) \rightarrow \vec{v} + \vec{w}$$

• Moltiplicazione per scalari

Sia $\vec{v} \in \mathbb{V}$ e sia $P \in \pi : \vec{v} = \vec{OP}$.

Definiamo $\lambda \cdot \vec{v} = \vec{OR}$

- -O, P, R sono collineari
- $-\overline{OR} = |\lambda|OP$
- $-\vec{QR}$ è orientato concordemente a \vec{QP}

 \vec{OR} è orientato discordemente a \vec{OP} se

$$\lambda < 0 \lor \lambda = 0, R = O$$

Questa è un'operazione binaria esterna:

 $\cdot: \mathbb{R} \times \mathbb{V} \to \mathbb{V}$

$$(\lambda, \vec{v}) \rightarrow \lambda \cdot \vec{v}$$

3.2 Piano Cartesiano

$${P: P \in \pi} \leftrightarrow {(x,y): x, y \in \mathbb{R}} = \mathbb{R}^2$$

 $\mathbb{V} = \{\text{segmenti orientati } \vec{OP}, P \in \pi\} = \{\text{vettori geometrici nel piano}\}$

In particolare esiste una biezione:

 $\mathbb{V} \leftrightarrow \mathbb{R}^2$

 $\forall P \in \pi, \overrightarrow{OP} \rightarrow (x, y)$, dove x, y sono rispettivamente ascissa e ordinata di P

 $\vec{OP} \leftarrow (x, y)$ dove P(x, y)

Vogliamo tradurre le operazioni su \mathbb{V} in operazioni su \mathbb{R}^2 :

1. $\vec{v} = \vec{OP}, P(x_P, y_P)$

 $\vec{w} = \vec{OQ}, Q(x_Q, y_Q) \vec{v} + \vec{w} = \vec{OR}$: quali sono le coordinate di R?

 $OPQR \Rightarrow A(x_A, y_A)$ parallelogramma con punto medio di PQ e OR

A punto medio di $PQ \Rightarrow \{x_A = \frac{x_P + x_Q}{2}, y_A = \frac{y_P + x_Q}{2}\}$

A punto medio di $OR \Rightarrow \{x_A = \frac{x_R}{2}, y_A = \frac{y_R}{2}\}$

 $\Rightarrow \{x_R = x_P + x_Q, y_R = y_P + y_Q\}$

Operazione binaria interna:

 $+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$

 $((x_1,y_1),(x_2,y_2)) \mapsto (x_1+x_2,y_1+y_2)$

2. $\vec{v} \in \mathbb{V}, \vec{v} = \vec{OP}, P(x_P, y_P), \lambda \in \mathbb{R}$

 $\lambda \cdot \vec{v} = \vec{OR}$: quali sono le coordinate di R?

$$\vec{OR} = \lambda \cdot \vec{OP}$$

OPH e ORK sono simili per costruzione con rapporto di proporzioni $|\lambda|$.

<u>Due casi</u>:

(a) $\lambda \ge 0$ \vec{OR} è concord con \vec{OP} e quindi:

$$x_R = |\lambda| x_P = \lambda x_P$$

 $y_R = |\lambda| y_P = \lambda y_P$

(b) $\lambda < 0$ \vec{OR} è discorde con \vec{OP} e quindi:

$$x_R = -|\lambda|x_P = \lambda x_P$$
$$y_R = -|\lambda|y_P = \lambda y_P$$

Operazione binaria esterna:

$$: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$(y,(x,y)) \mapsto \lambda \cdot (x,y) \coloneqq (\lambda x, \lambda y)$$

In conclusione abbiamo definito due operazioni su \mathbb{R}^2 "compatibili" con le operazioni definite su \mathbb{V} :

$$\bullet \ +: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$((x_1,y_1),(x_2,y_2)) \mapsto (x_1,y_1) + (x_2,y_2) := (x_1+y_1,x_2+y_2)$$

$$\bullet : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$(\lambda, (x_2, y_2)) \mapsto \lambda \cdot (x_2, y_2) \coloneqq (\lambda \cdot x, \lambda \cdot y)$$

Proprietà di + e · :

1. Commutatività:

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, (x_1, y_1) + (x_2, y_2) = (x_2, y_2) + (x_1, y_1)$$

2. Associatività:

$$\forall (x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2, ((x_1, y_1) + (x_2, y_2)) + (x_3, y_3) = (x_1, y_1) + ((x_2, y_2) + (x_3, y_3))$$

3. Elemento neutro (+):

$$(0,0) \in \mathbb{R}^2$$
 è tale che $(x,y) + (0,0) = (0,0) + (x,y) = (x,y)$

4. Elemento opposto:

$$\forall (x,y) \in \mathbb{R}^2, \exists (x',y') \in \mathbb{R}^2 : (x,y) + (x',y') = (x',y') + (x,y) = (0,0)$$

5. Distributività rispetto a vettori:

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \forall \lambda \in \mathbb{R} \\ \lambda \cdot ((x_1, y_1) + (x_2, y_2)) = \lambda \cdot (x_1, y_1) + \lambda \cdot (x_2, y_2)$$

6. Distributività rispetto a scalari:

$$\forall (x,y) \in \mathbb{R}^2, \forall \lambda, \mu \in \mathbb{R}$$
$$(\lambda + \mu) \cdot (x,y) = \lambda \cdot (x,y) + \mu \cdot (x,y)$$

7. Senza nome:

$$\lambda\mu\cdot(x,y)=\lambda\cdot(\mu\cdot(x,y))$$

8. Elemento neutro (\cdot) :

$$1 \cdot (x, y) = (x, y) \forall (x, y) \in \mathbb{R}^2$$

 $(\mathbb{R}^2, +, \cdot)$ è il primo esempio di "spazio vettoriale" su \mathbb{R} .

Più in generale uno spazio vettoriale (o spazio lineare) è una struttura algebrica composta da:

- un campo K, i cui elementi sono detti scalari
- un insieme V, i cui elementi sono detti vettori
- due operazioni binarie caratterizzate da determinate proprietà

<u>Def</u>: Sia \mathbb{K} (K da korper in tedesco) un campo. Uno spazio vettoriale su \mathbb{K} è un insieme \mathbb{V} dotato di due operazioni:

- \bullet +: $\mathbb{V} \times \mathbb{V} \to \mathbb{V}$
- $\bullet \ \cdot : \mathbb{K} \times \mathbb{V} \to \mathbb{V}$

Che verificano le seguenti proprietà:

- 1. Commutatività: $\forall v, w \in \mathbb{V}, v + w = w + v$
- 2. Associatività: $\forall u, v, w \in \mathbb{V}, (u+v) + w = u + (v+w)$
- 3. Elemento neutro:

$$\exists 0 \in \mathbb{V} : 0 + v = v + 0 = v, \forall v \in \mathbb{V}$$

4. Elemento opposto:

$$\forall v \in \mathbb{V}, \exists v' \in \mathbb{V} : v + v' = v' + v = 0$$

5. Distributività rispetto alla somma di vettori:

$$\forall v, w \in \mathbb{V}, \forall \lambda \in \mathbb{K}, \lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$$

6. Distributività rispetto alla somma di scalari:

$$\forall v \in \mathbb{V}, \forall \lambda, \mu \in \mathbb{K}, (\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$$

- 7. $\forall v \in \mathbb{V}, \forall \lambda, \mu \in \mathbb{K}, \lambda \mu \cdot v = \lambda \cdot (\mu \cdot v)$
- 8. $1 \cdot v = v, \forall v \in \mathbb{V}$

Gli elementi di V sono chiamati vettori e gli elementi di K sono chiamati scalari.

 $K = \mathbb{R}$: spazio vettoriale reale

 $K = \mathbb{C}$: spazio vettoriale complesso

Osservazioni: Sia $\mathbb V$ un K-spazio vettoriale:

- $\bullet\,$ in $\mathbb V$ esiste un unico vettore nullo che denotiamo $\underline{0}$
- $\forall v \in V$ esiste un unico opposto che denotiamo -v
- $\forall v \in V \text{ si ha } 0 \cdot v = \underline{0}$
- $\forall \lambda \in K \text{ si ha } \lambda \cdot \underline{0} = \underline{0}$
- Siano $\lambda \in K, v \in K : \lambda \cdot v = \underline{0} \Rightarrow o v = \underline{0}$

$4 \quad 16/03/22$

4.1 Continuo di ieri (Def)

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$((x_1, y_1), (x_2, y_2)) \mapsto (x_1, y_1) + (x_2, y_2) \coloneqq (x_1 + x_2, y_1 + y_2)$$

$$*: \mathbb{R}^2 \times \mathbb{R}^2$$

$$((x_1, y_1), (x_2, y_2)) \mapsto (x_1, y_1) * (x_2, y_2) \coloneqq (x_1 \cdot x_2, y_1 \cdot y_2)$$

$$(\mathbb{R}^2, +, *) \text{ è un campo? NO!}$$

$$\triangle : \mathbb{R}^2 \times \mathbb{R}^2$$

$$((a, b), (c, d)) \mapsto (a, b) \triangle (c, d) = (ac - bd, ad + bc)$$

$$\text{Mostrare che } (\mathbb{R}^2, +, \triangle) \text{ è un campo.}$$

$$\underline{\text{Indizio: } \mathbb{R}^2 \leftrightarrow \mathbb{C} = \{a + ib, b \in \mathbb{R}, i^2 = -1\}$$

$$(a, b) \leftrightarrow a + ib$$

$$(a, b) \mapsto a + ib$$

$$\text{Nota che } \mathbb{C} \text{ è un campo}$$

REVISIONE FINITA QUI

Esempi di spazi vettoriali

- 1. $\mathbb{V} = \{ \text{Vettori geometrici nello spazio} \} = \{ \text{segmenti orientati } \overrightarrow{OP}, P \text{ nello spazio} \} \longleftrightarrow \mathbb{R}^3$ Definiamo + e · in modo analogo al caso dei vettori nel piano e $(\mathbb{V}, +, \cdot)$ è uno spazio vettoriale reale.
- 2. L'n-spazio vettoriale su \mathbb{R} (o su \mathbb{K}) $n \in \mathbb{N}, n \geq 1$

```
\mathbb{R}^n = \mathbb{R} \times \dots \times \mathbb{R} = \{(x_1, \dots, x_n) : x_i \in \mathbb{R} \,\forall i\}
Definiamo +: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \ e \cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n
(x_1, \dots, x_n) + (y_1, \dots, y_n) := (x_1 + y_1, \dots, x_n + y_n)
\lambda \in \mathbb{K} incompleto
\forall n \geq 1, (\mathbb{R}^n, +, \cdot) è uno spazio vettoriale reale chiamato n-spazio vettoriale <u>numerico</u> su \mathbb{R}.
Elemento neutro: 0 = (0, \dots, 0)
Elemento opposto di x = (x_1, \dots, x_n) \ e^{-x} = (-x_1, \dots, -x_n)
Osservazione: n = 1 : \mathbb{R} è uno spazio vettoriale su \mathbb{R} (ogni campo \mathbb{K} è uno spazio vettoriale su se stesso)
In maniera analoga definiamo + e \cdot su
k^n = \{(x_1, \dots, x_n) : x_i \in K \forall i\}
(k^n, +, \cdot) è uno spazio vettoriale su \mathbb{K} chiamato n-spazio vettoriale numerico su \mathbb{K}.
Esempio: k = \mathbb{C}, \mathbb{C}^n
\overline{k} = \mathbb{F}_2, \mathbb{F}_2^n
```

3. Funzioni da un insieme a un campo

Sia X un insieme qualunque e K un campo

 $\mathbb{V} = \{ \text{funzioni } f : \mathbb{X} \to \mathbb{K} \}$

• Binaria interna: $+: V \times V \to V$ $(f,g) \to f + g$ dove $f + q: X \to K$ $x \mapsto (f+g)(x) := f(x) + g(x)$

• Binaria esterna: $\cdot: K \times V \to V$ $(\lambda \cdot)$ incompleto

4. Polinomi a coefficisnti reali in una indeterminata

Sia x un'indeterminata.

Un polinomio a coefficienti reali nell'indeterminata x è un'espressione formale del tipo:

 $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_i \in \mathbb{R} \, \forall i$

Se $a_n \neq 0$ diremo che n è il grado di P e scriviamo deg(P) = n.

 $\mathbb{R}[x] := \{ \text{polinomi a coefficienti reali nell'indeterminata } x \text{ (di grado arbitrario)} \}$

Esempio: $P(x) = 3x^4 + 2x^3 - x + 5 \in \mathbb{R}[x], \ deg(P) = 4$

 $\overline{+:\mathbb{R}[x]}\times\mathbb{R}[x]\to\mathbb{R}[x]$ $P(x) = a_n x^n + \dots + a_1 x + a_0$ $Q(x) = b_n x^n + \dots + b_1 x + b_0$ $(P+Q)(x) := (a_n + b_n)x^n + \dots + (a_1 + b_1)x + a_0 + b_0$ $\cdot: \mathbb{R} \times \mathbb{R}[x] \to \mathbb{R}[x]$

 $P \in \mathbb{R}[x], P = a_n x^n + \dots + a_1 w x + a_0$

 $(\lambda \cdot P)(x) := \lambda a_n x^n + \dots + \lambda a_1 x + \lambda a_0$

 $(\mathbb{R}[x], +, \cdot)$ è uno spazio vettoriale su \mathbb{R} .

In modo analogo si definisce $(K[x], +, \cdot)$ dove

 $K[x] = \{\text{polinomi a coefficienti in } \mathbb{K} \text{ in un'indeterminata}\}$

Molti problemi di matemadica/fisica hanno la proprietà che l'insieme delle soluzioni ha una struttura di spazio vettoriale. Esempi:

•
$$\begin{cases} x + 2y + z = 0 \\ y + 7z = 0 \end{cases}$$

$$S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + z = 0 \text{ e } y + 7z = 0\} = \{(13t, -7t, t), t \in \mathbb{R}\}$$

$$S \text{ ha una struttuta di spazio vettoriale (cose che vedremo più avanti)}$$

22/03/225

Sistemi di equazioni lineari (accenni) 5.1

Equazione lineare in n incognite:

$$x_1, \dots, x_n : a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

 $a_i \in \mathbb{R}, \forall i, b \in \mathbb{R}$

Sistema di n equazioni lineari in n incognite:

$$\begin{cases} a_{11}x_1 + a_{12} + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22} + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2} + \dots + a_{nn}x_n = b_n \end{cases}$$

Una soluzione del sistema di sopra è un vettore $(x_1, \dots, x_n) \in \mathbb{R}^n$ che verifica tutte le equazioni.

Esempi:

$$\begin{cases} x + y + z = 6 \\ 2x - y = 0 \end{cases}$$

<u>Una</u> soluzione di questo sistema è $(1,2,3) \in \mathbb{R}^3$.

Domande: Supponiamo di avere un sistema lineare:

- 1. Esiste almeno una soluzione?
- 2. "Quante" sono?
- 3. Come si interpreta geometricamente il corrispondente insieme di soluzioni?

5.2 Matrici

- Un esempio di spazio vettoriale
- Uno strumento conciso per rappresentare oggetti *parola incomprensibile*, tra cui molti dell'algebra lineare

Sia \mathbb{K} un campo. Siano $m, n \ge 1$ due numeri

Def: Una matrice $m \times n$ a elementi in \mathbb{K} è una tabella rettangolare di $m \cdot n$ elementi di \mathbb{K} , disposti su m righe e n colonne

Notazione

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{ij} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{ij} & \cdots & a_{2n} \\ \vdots & & & & & \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{bmatrix}$$

 $(a_{ij})_{1 \le i \le n \ \land \ 1 \le j \le n} : i$ è la riga e j è la colonna, come in c++ (o qualunque linguaggio "normale")

Ciascuno degli elementi a_{ij} è detto entrata (o coefficiente) delle matrici

Un po' di terminologia

- Se n=m, una matrice $n\times n$ si dice matrice <u>quadrata</u> di ordine n, ha due diagonali (solo se è quadrata eh)
- Una matrice $1 \times n$ è chiamata vettore riga. Una matrice $n \times 1$ è chiamata vettore colonna.

Notazione:

$$M_{m,n}(K) = \{ \text{matrici } n \times m \text{ a coefficienti in } K \}$$

 $M_n(K) \coloneqq \{ \text{matrici quadrete di ordine } n \}$

<u>Def:</u> Siano $A = (a_{ij}), B = (b_{ij}) \in M_{m,n}(K).$ Diciamo che A = B se $a_{ij} = b_{ij} \forall 1 \le i \le n, 1 \le j \le n$ Definiamo due operazioni su $M_{m,n}$:

• Somma di matrici

$$+: M_{m,n} \times M_{m,n} \to M_{m,n}(K)$$

 $(A,B) \longmapsto A+B$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = (a_{ij}) \in M_{m,n}(K)$$

$$B = \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \\ b_{m1} & \cdots & b_{mn} \end{bmatrix} = (b_{ij}) \in M_{m,n}(K)$$

$$A+B:=\begin{bmatrix} a_{11}+b_{11} & \cdots & a_{1n}+b_{1n} \\ \vdots & & \\ a_{m1}+b_{m1} & \cdots & a_{mn}+b_{mn} \end{bmatrix}=(a_{ij}+b_{ij}) \text{ incompleto }, \text{ probabilmente } \in M_{m,n}(K)$$

• Moltiplicazione per scalari

$$: K \times M_{m,n}(K) \to M_{m,n}(K)$$

 $(\lambda, A) \longmapsto \lambda \cdot A$

$$A = (a_{ij}) \in M_{m,n}(K)$$

$$\lambda \in K$$

$$\lambda \cdot A = (\lambda a_{ij}) \in M_{m,n}(K)$$

Proprietà:

1. + è commutativa:
$$A + B = B + A$$

2. + è associativa:
$$(A+B)+C=A+(B+C)$$

$$0_{m,n} = \begin{bmatrix} 0 & \cdots & 0 & \vdots & 0 & \cdots & 0 \end{bmatrix}$$

$$A = (a_{ij}) \Rightarrow -A = (-a_{ij})$$

5.
$$\lambda \cdot (A+B) = \lambda \cdot A + \lambda \cdot B$$

6.
$$(\lambda + \mu) \cdot A = \lambda \cdot A + \mu \cdot A$$

7.
$$(\lambda \mu) \cdot A = \lambda \cdot (\mu \cdot A)$$

8.
$$1 \cdot A = A \forall m, n \ge 1$$
 interi, $(M_{m,n}(K), +, \cdot)$ è uno spazio vettoriale su \mathbb{K}

• <u>Prodotto di matrici</u> (prodotto riga per colonna):

$$(a_1 \cdots a_n) \in M_{1,n}(K)$$
: vettore riga

$$(b_1 \cdots b_n) \in M_{n,1}(K)$$
: vettore colonna

$$(a_1 \cdots a_n) \cdot (b_1 \cdots b_n) \coloneqq a_1 b_1 + \cdots + a_n b_n = \sum_{k=1}^n a_k b_k$$

Generalizziamo al prodotto di due matrici:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & \cdots & b_{1p} \\ b_{q1} & \cdots & b_{qp} \end{bmatrix} = \begin{bmatrix} c_{ij} \end{bmatrix}$$

 c_{ij} =prodotto della *i*-esima riga di A e della *j*-esima colonna di B

Per definire il prodotto abbiamo bisogno che n=q

$$\forall \ 1 \geq i \geq n, \ \forall \ 1 \geq j \geq p$$
 definiamo

$$c_{ij} = (a_{i1} \cdots a_{in}) \cdot (b_{1j} \cdots b_{nj}) = a_{i1}b_{1j} + \cdots + a_{in}b_{nj} = \sum_{n=1}^{n} a_{ik}b_{kj}$$

Più formalmente, il prodotto di due matrici è una funzione:

$$M_{m,n}(K) \times M_{n,p}(K) \to M_{m,p}(K)$$

 $(A,B) \mapsto C = AB$

$$A = (a \cdot \cdot) \cdot 1 < i < m \quad 1 < i < n$$

Operazioni tra matrici 6.1

Proprietà

1. Non è commutativa

Due matrici quadrate $A, B \in \mathcal{M}_n(K)$ commutano se AB = BA.

2. È associativa

$$\forall A \in M_{m,n}(K), \forall B \in M_{n,P}(K), \forall C \in M_{P,q}(K)$$

$$(AB)C = A(BC)$$

3. È distributiva rispetto a +

$$\forall A, B \in M_{m,n}(K), \forall C \in M_{n,P}(K), \forall D \in M_{n,P}(K)$$

$$(A+B)C = AC + BC$$

$$A(C+D) = AC + AD$$

- 4. Due elementi neutri, uno a destra e uno a sinistra (perchè · non è commutativa).
 - a destra: I tale che $AI = A, \forall A \in M_{m,n}(K)$
 - a sinistra: I tale che $IA = A, \forall A \in M_{m,n}(K)$

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \cdot \begin{bmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \Rightarrow \begin{cases} aa' + bd' + cd' = a \rightsquigarrow a' = 1, \ d' = 0, \ g' = 0 \\ ab' + be' + ch' = b \rightsquigarrow b' = 0, \ d' = 0, \ g' = 0 \end{cases}$$
 incompleto

$$\begin{bmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

<u>Def:</u> $\forall n \ge 1$, la matrice <u>unità</u> o <u>identità</u> di ordine n è

$$I_n = (\delta_{ij})_{1 \le i \le n, \ 1 \le j \le n}$$

$$\delta_{ij} = \begin{cases} 1 & se \ i = j \\ 0 & se \ i \neq j \end{cases}$$

Quindi $\forall A \in \mathcal{M}_{m,n}(K)$ abbiamo:

$$I_m A = A$$

$$AI_n = A$$
,

Cioè I_m è l'elemento neutro a sinistra e I_n è l'elemento neutro a destra.

N.B.: $\forall a, b \in \mathbb{R}$, $(a+b)^2 = a^2 + 2ab + b^2$ perchè in \mathbb{R} , la moltiplicaizone è commutativa.

$$\forall A, B \in \mathcal{M}_n(\mathbb{R})$$

$$(A+B)^2 =$$

$$(A+B)(A+B) =$$

$$(A+B)A + (A+B)B =$$

$$A^2 + BA + AB + B^2$$

non si può semplificare perchè nelle matrici il prodotto non è commutativo

Se
$$A \in \mathcal{M}_n(K)$$
, $\forall K \geq 1$, denotiamo $A^K = A \cdot A$

Lavoriamo ora con $\mathcal{M}_n(K) \rightsquigarrow \mathcal{M}_n(K) \times \mathcal{M}_n(K) \to \mathcal{M}_n(K)$

$$(A,B) \longmapsto AB$$

In questo caso I_n è l'elemento neutro (a destra e a sinistra) rispetto al prodotto.

<u>Def:</u> $A \in \mathcal{M}_n(K)$ si dice <u>invertibile</u> se $\exists B \in \mathcal{M}_n(K)$ tale che $AB = BA = I_n$

Osservazioni

1. Se B esiste allora è unica.

Dim:

Se
$$C$$
 è tale che $AC = I_n = CA$, allora:

$$B = BI_n = B(AC) = (BA)C = I_nC = C \Rightarrow B = C$$

Chiamiamo B l'inversa di A e la denotiamo A^{-1} .

2. Se B soddisfa $AB = I_n$ o $BA = I_n$ allora $B = A^{-1}$

Esempi

• I_n e invertibile e $I_n^{-1} = I_n$

$$\bullet \ O_n = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

•
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in \mathcal{M}_2(\mathbb{R})$$

 $\exists B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R})$ Incompleto

$$\bullet \ \ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{cases} a+3b=1 \\ 2a+4b=0 \\ c+3d=0 \\ 2c+4d=1 \end{cases} \Rightarrow \begin{cases} -2b+3b=1 \\ a=-2b \\ c=-3d \\ -6d+4d=1 \end{cases} \Rightarrow \begin{cases} b=1 \\ a=-2 \\ c=\frac{3}{2} \\ d=-\frac{1}{2} \end{cases}$$

Quindi
$$A^{-1} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

Osservazione: Supponiamo che A sia invertibile.

 $\exists A^{-1}$

Sia B una matrice tale che

$$AB = I_n$$

Voglio dimostrare che $BA = I_n$

$$BA = I_n BA = A^{-1} ABA = A^{-1} I_n A = A^{-1} A = I_n$$

Proposizione

 $\overline{\text{Siano } A, B \in \mathcal{M}_n(K)}$ invertibili.

Allora AB è invertibile e $(AB)^{-1} = B^{-1}A^{-1}$

 Dim

Infatti:
$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

6.2 Altra terminologia

<u>Def</u>: Sia $A = (a_{ij}) \in \mathcal{M}_{m \times n}(K)$.

La trasposta di A è la matrice $n \times m$:

$$A^{T} = (a_{ji}) = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & & & & \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} \in \mathcal{M}_{n,m}(K)$$

Esempio:

<u>Def</u>: Una matrice quadrata $A \in \mathcal{M}_n(K)$ si dice simmetrica se $A^T = A$.

Se invece $A^T = -A$, A si dice **anti**simmetrica.

Esempio:

$$A = \begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 5 & 6 & 7 \\
3 & 6 & 8 & 9 \\
4 & 7 & 9 & 10
\end{bmatrix}
A^{T} = \begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 5 & 6 & 7 \\
3 & 6 & 8 & 9 \\
4 & 7 & 9 & 10
\end{bmatrix}$$

Osservazione: se $A = (a_{ij})$ è antisimmetrica $\Rightarrow a_{ij} = -a_{ji} \ \forall i, j,$

Quando i = j, $a_{ii} = a_{ii} \Rightarrow 2a_{ii} = 0 \Rightarrow a_{ii} = 0$

<u>Def</u>: Una matrice quadrata $A \in \mathcal{M}_n(K)$ si dice ortogonale se $(A^T)A = I_n = A(A^T) \rightsquigarrow A^{-1} = A^T$

Esempio: $\forall \theta \in \mathbb{R}$ la matrice

incompleto (?)

$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 4 & 5 & 6 \end{bmatrix}$$
 triangolare inferiore

$$\begin{bmatrix} -2 & 0 & 7 & 0 \\ 0 & 1 & -8 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & \pi \end{bmatrix} \text{triangolare superiore}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$
 diagonale

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
scalare

<u>Def:</u> Una matrice quadrata $A \in \mathcal{M}_n(K)$ si dice:

- triangolare inferiore (risp. superiore) se $a_{1j} = 0$ se j > i (risp. se j < i)
- diagonale se è al tempo stesso triangolare superiore e triangolare inferiore, ossia se a_{ij} = $0 \forall i \neq j$
- scalare se A è diagonale con tutti gli elementi uguali sulla diagonale, cioè: $A = \lambda I_n, \lambda \in K$.

$7 \quad 29/03/22$

7.1 Sistemi di equazioni lineari

<u>Def</u>: Siano x_1, \dots, x_n n indeterminante.

Un'equazione lineare nelle indeterminate x_1, \dots, x_n a coefficienti in \mathbb{K} è un'equazione della forma:

(*) $a_1x_1 + a_2x_2 + \dots + a_nx_n = b, a_i \in K \forall i, b \in K$

Una soluzione di (*) è un elemento $(x_1, \dots, x_n) \in K^n$ che sostituito alla n-upla (x_1, \dots, x_n) dà luogo ad un'identità.

L'equazione (*) si dice omogenea (rispettivamente non omogenea) se b = 0 (se $b \neq 0$).

Sistema di eq lineari: consideriamo simmetricamente un eq. lineari in x_1, \dots, x_n .

<u>Def</u>: il sistema (**) si deice omogeneo (risp non omogeneo) se $b_i = 0 \,\,\forall i$ (se $\exists i \in \{1, \dots, m\}$)

Def:

- Una soluzione di (**) è un elemento $(x_1, \dots, x_n) \in K^n$ che è soluzione simultanea di tutte le eq. lineari.
- Un sistema si dice <u>compatibile</u> se possiede almeno una soluzione. Si dice <u>incompatibile</u> se non possiede soluzioni.
- Due sistemi si dicono equivalenti se hanno lo stesso sistema di soluzioni.

Esempi ($\mathbb{K} = \mathbb{R}$):

- 1. Un sistema omogeneo in n indeterminante è sempre compatibile in quanto $(0, \dots, 0) \in \mathbb{K}^n$ è sempre soluzione.
- 2. non lo segno

$$3. \begin{cases} x_1 + x_2 = 0 \\ x_1 - x_2 = 1 \end{cases}$$

"addizionando le due equazioni" otteniamo:

$$x_1 + x_2 + (x_1 - x_2) = 0 + (1) \Rightarrow 2x_1 = 1 \Rightarrow x_1 = \frac{1}{2}$$

sostituendo $x_1 = \frac{1}{2}$ nella I equazione, trovo $x_2 = -\frac{1}{2}$.

Quindi il sistema possiede l'unica soluzione $(\frac{1}{2}, -\frac{1}{2}) \in \mathbb{R}^2$

$$4. \begin{cases} x_1 + x_2 = 2 \\ 3x_1 - 3x_2 = 6 \end{cases}$$

è compatibile e possiede infinite soluzioni date dalle soluzioni di

$$x_1 + x_2 = 2 \Rightarrow x_1 = 2 - x_2$$

L'insieme delle soluzioni S è costituito dalle coppie ordinate $(x_1, x_2) \in \mathbb{R}^2$ tali che:

$$\begin{cases} x_1 = 2 - t \\ x_2 = t \end{cases}, t \in \mathbb{R}$$
$$S = \{(2 - t, t), t \in \mathbb{R}\} \subseteq \mathbb{R}^2$$

$$\underline{a}: \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n - b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

Notazione matriciale di un sistema:
$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$A = (a_{ij}) = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \in M_{m,n}(K)$$

$$\begin{bmatrix} x_1 \end{bmatrix}$$

Vettore (colonna) della indeterminante: $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

Vettore dei termini noti: $b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \in M_{m,1}(K)$ Riscriviamo (**) come: AX = b

La matrice:
$$(A : b) = \begin{bmatrix} a_{11} & a_{1n} & \vdots & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & a_{mn} & \vdots & b_m \end{bmatrix}$$

Consideriamo il sistema seguent

$$\begin{cases} x_1 + x_2 + x_3 = 3\\ 2x_2 - x_3 = 1 \end{cases}$$

$$3x_3 = -3$$

La sua matrice orlata:

$$\begin{bmatrix} 1 & 1 & 1 & \vdots & 3 \\ 0 & 2 & -1 & \vdots & 1 \\ 0 & 0 & 3 & \vdots & -3 \end{bmatrix}$$

Risolvo per sostituzione:

$$\begin{cases} x_1 = 4 \\ x_2 = 0 \\ x_2 = -1 \end{cases}$$

Procedendo dal basso verso l'alto trovo che il sistema possiede l'unica soluzione $(4,0,-1) \in \mathbb{R}^3$ Un sistema di questo tipo è detto "a scalini" o "a gradini".

Def: Una matrice a scalini (o a gradini) è una matrice avente le seguenti proprietà:

- 1. Ogni riga, dopo la prima, inizia con almeno uno zero in più rispetto alla riga precedente
- 2. Se una riga è nulla allora ogni riga sottostante è nulla su ogni riga (se presente) è detto pivot.

Un sistema lineare si dice a scalini (o a gradini) se la sua matrice orlata è una matrice a scalini. Def: Esempi:

Il primo elemento dive

1.
$$\begin{bmatrix} 1 & 1 & 1 & \vdots & 3 \\ 0 & 2 & -3 & \vdots & 1 \\ 0 & 0 & 3 & \vdots & -3 \end{bmatrix}$$
è una matrice a scalini.

pivot: 1, 2, 3

2.
$$\begin{bmatrix} 1 & -1 & 2 & 4 & 5 & \vdots & 3 \\ 0 & 2 & -3 & \vdots & 1 & & \\ 0 & 0 & 3 & \vdots & -3 & & \end{bmatrix}$$
è una matrice a scalini.

INCOMPLETO: SI È SPENTO IL PC

8 30/03/22

8.1 Sistema lineare \rightarrow sistema a scalini.

Algoritmo (o metodo di eliminazione) di Gauss-Jordan.

Tale metodo consiste nell'effettuare delle operazioni successive sulle equazioni del sistema (o equivalentemente sulle righe della matrice orlata) che non ne alterino l'insieme delle soluzioni.

Operazioni elementari:

$$(*) = \begin{cases} a_1 x_1 + \dots + a_n x_n = b \\ a_{1'} x_1 + \dots + a_{n'} x_n = b' \end{cases}$$

1. Il sistema (*) è equivalente a:

$$(**) = \begin{cases} a_{1'}x_1 + \dots + a_{n'}x_n = b' \\ a_{1}x_1 + \dots + a_{n}x_n = b \end{cases}$$

Scambiare tra loro due equazioni di un sistema non cambia l'insieme delle soluzioni.

2. Il sistema (*) di partenza è equivalente a:

$$(**) = \begin{cases} \lambda a_1 x_1 + \dots + \lambda a_n x_n = \lambda b \\ a_{1'} x_1 + \dots + a_{n'} x_n = b' \end{cases}, \ \lambda \neq 0, \ \lambda \in \mathbb{K}$$

Moltiplicare (primo e secondo membro) per uno scalare non nullo non cambia l'insieme delle soluzioni:

 (x_1, \dots, x_n) è soluzione di $a_1x_1 + \dots + a_nx_n = b$

 (x_1, \dots, x_n) è soluzione di $\lambda a_1 x_1 + \dots + \lambda a_n x_n = \lambda b$

3. Il sistema (*) è equivalente al sistema in cui un'equazione è sostituita con quella ottenuta sommando ad essa un multiplo di un'altra equazione:

$$(**) = \begin{cases} a_1x_1 + \dots + a_nx_n + \lambda(a_{1'}x_1 + \dots + a_{n'}x_n) = b + \lambda b' \\ a_{1'}x_1 + \dots + a_{n'}x_n = b' \end{cases}$$

 $\underline{\text{Dim}}$:

 (x_1, \dots, x_n) è soluzione di $(*) \Leftrightarrow (x_1, \dots, x_n)$ è soluzione di (**)

 \Rightarrow) Assumiamo che (x_1, \dots, x_n) è soluzione di (*)

$$a_1x_1 + \dots + a_nx_n = b$$

 $a_{1'}x_1 + \dots + a_{n'}x_n = b'$
 $b = a_1x_1 + \dots + a_nx_n$
 $b' = a_{1'}x_1 + \dots + a_{n'}x_n$

 $b + b' = b + \lambda b'$

Sostituisco $b \in b'$

$$a_1x_1 + \dots + a_nx_n + \lambda(a_{1'}x_1 + \dots + a_{n'}x_n) = b + \lambda b'$$

$$\Leftarrow$$
) (x_1,\cdots,x_n) è soluzione di $(**)\Rightarrow\cdots(x_1,\cdots,x_n)$ è soluzione di $(*)$

Operazioni elementari sulle equazioni di un sistema

- I. One Scambiare tra loro due equazioni del sistema
- II. Two Moltiplicare un'equazione per uno scalare <u>non nullo</u>
- III. Three Sostituire un'equazione con quella ottenuta "sommando" ad essa un multiplo di un'altra equazione

Operazioni elementari sulle righe di una matrice

1.

I. Scambiare tra loro due righe di una matrice

$$R_i \leftrightarrow R_j : \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 9 & 10 & 11 & 12 \\ 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

II. Moltiplicare una riga della matrice per uno scalare non nullo:

$$R_i \leftarrow \lambda R_i : \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix} \xrightarrow{R_1 \leftarrow 2R_1} \begin{bmatrix} 2 & 4 & 6 & 8 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$

III. Sostituire una riga della matrice con quella ottenuta sommando ad essa un multiplo di un'altra riga:

$$R_i \leftarrow R_i \lambda R_j : \begin{bmatrix} 9 & 10 & 11 & 12 \\ 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{R_1 \leftarrow R_1 - 9R_3} \begin{bmatrix} 0 & -8 & -16 & -24 \\ 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

Algoritmo di Gauss-Jordan: Successione di operazioni elementari che permettono di trasformare il sistema (o la corrispondente matrice orlata) in un sistema a scalini (in una matrice a scalini) equivalente al sistema di partenza.

Esempio:

$$\begin{array}{|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\
\hline \end{array}
\xrightarrow{R_2 \leftarrow R_2 - 5R_1}
\begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & -4 & -8 & -12 \\
9 & 10 & 11 & 12
\end{bmatrix}
\xrightarrow{R_3 \leftarrow R_3 - 9R_1}$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & -4 & -8 & -12 \\
0 & -8 & -16 & -24
\end{bmatrix}
\xrightarrow{R_3 \leftarrow R_3 - 2R_2}
\begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & -4 & -8 & -12 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

NB: L'output dell'algoritmo non è unico perchè dipende dalle scelte effettuate

Risoluzione di un sistema lineare con il metodo di eliminazione di Gauss-Jordan Supponiamo di avere un sistema lineare qualsiasi:

- 1. Scriviamo la corrispondente matrice orlata A
- 2. Utilizziamo l'algoritmo di Gauss-Jordan per ottenere da A una matrice B a scalini equivalente per righe
- 3. Se l'ultimo pivot di B appartiene all'ultima colonna, il sistema non è compatibile.
- 4. Scriviamo il sistema a scalini corrispondente a B e lo risolviamo introducendo delle eventuali variabili libere

Esempio:

1. Con numeri:

(a)
$$\begin{cases} x_3 + 2x_4 = 3 \\ 2x_1 + 4x_2 - 2x_3 = 4 \\ 2x_1 + 4x_2 - x_3 + 2x_4 = 7 \end{cases} \Rightarrow \begin{bmatrix} 0 & 0 & 1 & 2 & 3 \\ 2 & 4 & -2 & 0 & 4 \\ 2 & 4 & -1 & 2 & 7 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \Rightarrow$$

(b)
$$\begin{bmatrix} 2 & 4 & -2 & 0 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 2 & 4 & -1 & 2 & 7 \end{bmatrix} \xrightarrow{R_3 \leftarrow R_3 - R_1} \begin{bmatrix} 2 & 4 & -2 & 0 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix} \xrightarrow{R_3 \leftarrow R_3 - R_2}$$
$$\begin{bmatrix} 2 & 4 & -2 & 0 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(c) È compatibile (l'ultimo pivot (1) non appartiene all'ultima colonna).

Variabili libere: x_2, x_4

Risolvo:

$$\begin{cases} 2x_1 + 4x_2 - 2x_3 = 4 \\ x_3 + 2x_4 = 3 \\ 0 = 0 \end{cases} \Rightarrow \begin{cases} 2x_1 + 4x_2 - 2x_3 = 4 \\ x_3 = 3 - 2x_4 \end{cases} \Rightarrow \begin{cases} 2x_1 + 4x_2 - 6 - 4x_4 = 4 \\ x_3 = 3 - 2x_4 \end{cases} \Rightarrow \begin{cases} x_1 = 5 - 2s - 2t \\ x_2 = s \\ x_3 = 3 - 2t \\ x_4 = t \end{cases} s, t \in \mathbb{R}$$

 $\mathbb{S} = \{(5 - 2s - 2t, s, 3 - 2t, t), s, t \in \mathbb{R}\} : \infty^2 \text{ solutioni}$

2. Con parametro: INCOMPLETO

$$\begin{array}{l} 3. \quad \text{(a)} \Rightarrow \begin{pmatrix} a & -a & 0 & 1 & 1-a \\ 1 & -2 & -1 & 0 & 0 \\ 0 & 1 & a & 1 & a-1 \end{pmatrix} \\ \text{(b)} & \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & -2 & -1 & 0 & 0 \\ a & -a & 0 & 1 & 1-a \\ 0 & 1 & a & 1 & a-1 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_2 - aR_1} \begin{pmatrix} 1 & -2 & -1 & 0 & 0 \\ 0 & a & a & 1 & 1-a \\ 0 & 1 & a & 1 & a-1 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3 - aR_2} \begin{pmatrix} 1 & -2 & -1 & 0 & 0 \\ 0 & 1 & a & 1 & a-1 \\ 0 & a & a & 1 & 1-a \end{pmatrix} \xrightarrow{R_3 \leftrightarrow R_3 - aR_2} \begin{pmatrix} 1 & -2 & -1 & 0 & 0 \\ 0 & 1 & a & 1 & a-1 \\ 0 & 0 & a-a^2 & 1-a & 1-a^2 \end{pmatrix} \leftarrow \text{a scalini } \forall a \\ a - a^2 = 0 \Leftrightarrow a = 0 \lor a = 1 \\ a = 0 \to \begin{pmatrix} 1 & -2 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \text{compatibile} \\ a = 1 \to \begin{pmatrix} 1 & -2 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \leftarrow \text{compatibile} \\ a \neq 0, a \neq 1 \\ \begin{pmatrix} 1 & -2 & -1 & 0 & 0 \\ 0 & 1 & a & 1 & a-1 \\ 0 & 0 & a-a^2 & 1-a & 1-a^2 \end{pmatrix} \to \begin{cases} x_1 - 2x_2 - x_3 = 0 \\ x_2 + ax_3 = a - 1 - x_4 \\ (a-a^2)x_3 = 1-a^2 - (1-a)x_4 \end{cases}$$

05/04/229

Idea:

 $(*)AX = b, A \in \mathcal{M}_n(K), b \in M_{n,1}(K),$

Ultime considerazioni sui sistemi lineari

```
A invertibile.
\exists A^{-1} \in M_{\ell}K): A^{-1}A = AA^{-1} = In
Quindi abbiamo:
A^{-1}AX = A^{-1}b \Leftrightarrow InX = A^{-1}b \Leftrightarrow X = A^{-1}b
Proposizione (metodo dell'inversa)
\overline{\text{Sia } A \in \mathcal{M}_n(K)} una matrice <u>invertibile</u> e b \in M_{n,1}(K). Allora il sistema
AX = b
possiede l'unica soluzione X = A^{-1}b
```

Come si calcola l'inversa di una matrice?

L'algoritmo di Gauss-Jordan offre un metodo efficiente per il calcolo dell'inversa di una matrice.

$$\begin{array}{|c|c|c|c|}\hline 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} & \stackrel{R_3 \leftarrow R_3 - 7R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & -6 & -12 \end{pmatrix} \\
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & -6 & -12 \end{pmatrix} \\
A \in \mathcal{M}_n(K) \\
P_r \cdots P_2 P_1 A = In \\
(A & \vdots & In) & \rightarrow (In & \vdots & A^{-1}) \\
\text{Sistema lineare omogeneo a coefficienti in } \mathbb{K} \\
\begin{pmatrix} * & * & In \\ * & In \\ * & * & In \\ *$$

 S_0 è un sottoinsieme di K^n con qualche interessante proprietà.

1. $\underline{0}=(0,\cdots,0)\in S_0$ (il vettore nullo è sempre soluzione di un sistema omogeneo) $\Rightarrow S_0\neq 0$

2. Se
$$(x_1, \dots, x_n), (y_1, \dots, y_n) \in S_0 \Rightarrow (x_1, \dots, x_n) + (y_1, \dots, y_n) \in S_0$$
 Dim:

Se
$$(x_1, \dots, x_n), (y_1, \dots, y_n) \in S_0$$

 \downarrow

 $\forall i, a_{i1}x_1 + \dots + a_{in}x_n = 0, \quad a_{i1}y_1 + \dots + a_{in}y_n = 0$

Mostriamo che $(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n) \in S_0$, cioè $(x_1 + y_1, \dots, x_n + y_n)$ verifica $a_{i1}x_1 + \dots + a_{in}x_n = 0, \forall i$

Abbiamo:

$$\forall i \quad a_{i1}(x_1 + y_1) + \dots + a_{in}(x_n + y_n) =$$

$$= a_{i1}x_1 + a_{i1} + \dots + a_{in}x_n + a_{in}y_n =$$

$$= a_{i1}x_1 + \dots + a_{i1}x_n + a_{in}y_1 + \dots + a_{in}y_n$$

3. Se $(x_1, \dots, x_n) \in S_0 \Rightarrow \lambda(x_1, \dots, x_n) \in S_0, \forall \lambda \in \mathbb{K}$

Dim:

$$(x_1, \dots, x_n) \in S_0 \Rightarrow \forall i \quad a_{i1}x_1 + \dots + a_{in}x_n = 0$$

Mostriamo che
$$\forall \lambda \in K$$
, $\lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n) \in S_0 : \forall i$ abbiamo: $a_{i1}(\lambda x_1) + \dots + a_{in}(\lambda x_n) = \lambda(a_{i1}x_1 + \dots + a_{in}x_n) = 0$

Le proprietà 1, 2 e 3 fanno di S_0 un "sottospazio vettoriale" di K^n

Più in generale definiamo:

Def: Sia V uno spazio vettoriale du K.

Un sottioinsieme w di V $(w \subseteq V)$ si dice sottospazio vettoriale se:

1.
$$w \neq \emptyset$$

Osservazioni:

2.
$$\forall w_1, w_2 \in W : w_1 + w_1 \in W$$

3.
$$\forall w \in W, \forall \lambda \in K : \lambda w \in W$$

• La proprietà 3 implica che $0 \in W$.

$$\underline{\underline{\mathrm{Dim}}} \colon W \neq 0 \Rightarrow \exists w \in W \xrightarrow{\boxed{3} \ con \ \lambda = 0} 0 \cdot w = \underline{0} \in W$$

- Un sottospazio vettoriale è uno spazio vettoriale:
- Il vettore nullo $0 \in W$ per l'osservazione precedente
- $\forall w \in W, (-1) \cdot w = -w \in W$
- Tutte le altre proprietà discendono da V in quanto $W \subseteq V$.

Esempi

1. L'insieme delle soluzioni di un sistema lineare omogeneo a n incognite e a coefficienti in K è un sottospazio vettoriale di K^n .

2.
$$V = K^n$$

$$W = \{(0, x_2, \dots, x_n) : x_i \in K \quad \forall i = 2, \dots, n\}$$

Vediamo che W è un sottospazio vettoriale di K^n :

1.
$$W \neq \emptyset$$
, poichè $(0, \dots, 0) \in W$

2. Siano
$$\underline{\mathbf{x}} = (0, x_2, \dots, x_n), \ \mathbf{y} = (0, y_2, \dots, y_n) \in W$$

Allora

$$\underline{\mathbf{x}} + \mathbf{y} = (0, x_2, \dots, x_n) + (0, y_2, \dots, y_n) = (0, x_2 + y_2, \dots, x_n + y_n)$$

3. Sia
$$\underline{\mathbf{x}} = (0, x_2, \dots, x_n) \in W, \quad \lambda \in K$$

Allora
$$\lambda \cdot \underline{\mathbf{x}} = (0, \lambda x_2, \dots, \lambda x_n) \in W$$

Nota che W è l'insieme delle soluzioni del sistema lineare omogeneo

$$\Big\{x_1 = 0$$

4. Ogni spazio vettoriale V ha due sottospazi vettoriali "banali":

$$W_1 = \{\underline{0}\}$$

$$W_2 = V$$

5. V spazio vettoriale su K

$$v \in V$$
.

$$W = \langle v \rangle := \{ \lambda v : \lambda \in K \}$$

(a)
$$\underline{0} = 0 \cdot v \in W$$

(b)
$$w_1, w_2 \in W \Rightarrow \exists \lambda_1, \lambda_2 \in K : w_1 = \lambda_1 v \text{ e}$$

 $w_2 = \lambda_2 v \Rightarrow w_1 + w_2 = \lambda_1 v + \lambda_2 v = (\lambda_1 + \lambda_2) v \in W$

(c)
$$w \in W \Rightarrow \exists \lambda \in K : w = \lambda v$$

$$\forall \mu \in K \quad \mu w = \mu \lambda v \in W$$

Quindi W è un sottoinsieme vettoriale di V chiamato retta vettoriale

$$V = \mathbb{R}^2, v = (1, 1)$$

$$W = \langle v \rangle = \{\lambda(1,1) : \lambda \in \mathbb{R}\} = \{(\lambda,\lambda) : \lambda \in \mathbb{R}\} = \{(x,y) \in \mathbb{R}^2 : y = x\}$$
 (passa per l'origine)

Più in generale, $v = (a, b) \in \mathbb{R}^2$ Allora $\langle v \rangle = \{(\lambda a, \lambda b \lambda \in \mathbb{R}\}$ è la retta passante per l'origine definita dall'equazione bx - ay = 0

$10 \quad 06/04/22$

Mi sono perso qualcosa, stavo mangiando una pizzetta

<u>Def</u>: Sia V uno spazio vettoriale su K.

Un sottoinsieme $W \subseteq \text{hlIncompleto}$

<u>Def</u>: (equivalente): $W \subseteq V$ è un sottospazio vettoriale se e solo se:

- 1. $W \neq 0$
- 2. $\forall w_1, w_2 \in W, \forall \lambda, \mu \in K$ $\lambda w_1 + \mu w_2 \in W$

7 _ m3

$$w_1 = \{(x, y, x) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$$

$$w_2 = \{(x, y, x^2) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$$

1. w_1 + un sottospazio di \mathbb{R}^3

- (a) $w_1 \neq \emptyset$ poichè $(0,0,0) \in W_1$
- (b) $(\forall w_1, w_2 \in W_1, \forall \lambda, \mu \ni \mathbb{R}: \lambda w_1 + \mu w_2 \in W_1)$

Siano $w_1, w_2 \in W_1$. Allora $\exists x_1, y_1, x_2, y_2 \in \mathbb{R}$ tali che $w_1 = (x_1, y_1, z_1), w_2 = (x_2, y_2, z_2)$.

 $\forall \lambda \mu \in \mathbb{R}$ abbiamo:

$$\lambda w_1 + \mu w_2 = \lambda(x_1, y_1, z_1) + \mu(x_2, y_2, z_2) = (\lambda x_1 + \mu x_2)\lambda y_1 + \mu y_2, (\lambda x_1 + \mu x_2) = (x', y', z') \in W_1,$$

 $x' = \lambda x_1 + \mu x_2$

 $y' = \lambda y_1 + \mu y_2$ hlpotrebbe essere sbagliato

2.
$$w_2 = \{(x, y, x^2) : x, y \in \mathbb{R}\}$$

$$w_1 = (3, 0, 9)$$

$$w_2 = (2, 1, 4)$$

$$\lambda = 1$$
 $\lambda w_1 + \mu w_2 = (1, -1, 5) \notin W_2: 5 \neq 1^2$

 $\mu = -1$

$$(x_1, y_1, x_1^2) + (x_2, y_2, x_2^2) = (x_1 + x_2, y_1 + y_2, x_1^2 + x_2^2) \Rightarrow$$

 $\Rightarrow (x_1 + x_2)^2 \neq x_1^2 + x_2^2$

tutte le u e le w sono maiuscole (si me ne sono accorto ora) Proposizione: Sia V uno spazio vettoriale su K e siano $u, w \subseteq V$ due sottospazi di V. Allora anche $u \cap w$ è un sottospazio vettoriale.

Ricordiamo: $u \cap w = \{V : v \in u \text{ e } v \in W\}$

Dim:

- 1. $u \cap w \neq 0$ poichè $0 \in u$ (u è un sottospazio) e $0 \in w$ (w è un sottospazio)
- 2. $\forall v_1, v_2 \in u \cap w$, $\forall \lambda, \mu \in K$

Allora $\lambda v_1 + \mu v_2 \in u \cap W$ (poichè $u \in w$ sono sottospazi e $v_1, v_2 \in u \in v_1, v_2 \in W$)

Esempio:

```
Più in generale dati n sottospazi w_1, w_n
w_1 \cap \cdots \cap w_n = \bigcap_{i=1}^n w_i è un sottospazio.
    Attenzione:
   1. u \cup w in generale non è un sottospazio
       Esempio:
       V = \mathbb{R}^2
       u = \{(x,0) : x \in \mathbb{R}\}
       w = 0, y : y \in \mathbb{R}
       v_1, v_2 \in u \cup w : v_1 + v_2 \notin u \cup w
       v_1 = (1,0)
       v_2 = (0,1)
       v_1 + v_2 = (1,1) \notin u \cup w
    Osservazione: w \subseteq v sottospazio.
    Il complementare V \setminus W = \{v \in V : v \notin W\} non è mai un sottospazio di V perchè 0 \notin V \setminus W (0 \in W)
    Idea: Vogliamo costruire un sottospazio che contiene due sottospazi di U e W
    Proposizione: Sia V uno spazio vettoriale su K e siano U, W due sottospazi vettoriali di V.
    Allora l'insieme:
                                                                   U + W = \{u + w : u \in U, w \in W\}
è un sottospazio vettoriale di V chiamato sottospazio somma di U e W.
    Osservazione: U \cup W \subseteq U + W
    Infatti U \subseteq U + W : \forall u \in U, u = u+0
    W \subseteq U + W : \forall w \in W, w = 0+w
    Facciamo vedere che u + w è un sottospazio di V:
   1. u + w \neq 0 poichè 0 = 0 + 0 \in U + W
   2. Siano v_1, v_2 \in u + w. Allora \exists u_1, u_2 \in U, w_1, w_2 \in W:
    v_1 = u_1 + w_1
    v_2 = u_2 + w_2
    Siano \lambda \mu \in K
    Allora abbiamo:
    \lambda v_1 + \mu v_2 = \lambda (u_1 + w_1) + \mu (u_2 + w_2) =
= \lambda u_1 + \lambda w_1 + \mu u_2 + \mu w_2 =
= \lambda u_1 + \mu u_2 + \lambda w_1 + \mu w_2 \in U + W
     prof cambia blocco appunti V = \mathbb{R}^2
    U = \langle (1,0) \rangle incompleto
<u>Def:</u> U, W sottospazi di V
        U \cap W = \{ 0 \} allora U + W è detto SOMMA DIRETTA di U \in W e so denota U \oplus W.
    Se V = U + W (O+) allora U \in W si dicono supplementari. ______Riardiamo: \langle (a,b) \rangle = \{\lambda(a,b) : \lambda \in \mathbb{R}\} = \{\} incompleto
    Proposizione: Sia V = U + W. Allora V = U + W se e solo se ogni elemento di v si scrive in modo unico nella forma u + w, u \in U, w \in W.
    Dim:
    \Rightarrow) Supponiamo che V = U + W
    Siano u_1 \in U, w_1 \in W e u_2 \in U, w_2 \in W: V = u_1 + w_1 = u_2 + w_2 (vogliamo far vedere che u_1 = u_2 e w_1 = w_2)
       u_1 - u_2 = u_1 - u_2 \Rightarrow u_1 - u_2 \in U \cap W = \{ 0 \} \Rightarrow u_1 = u_2
    • w_1 - w_2 = w_1 - w_2 \Rightarrow u_1 - u_2 \in U \cap W = \{ \ \underline{0} \ \} \Rightarrow u_1 = u_2
```

incompleto

incompleto Esempi

1.
$$V = \mathbb{R}^3$$

$$v_1 = (1, 2, 0), \quad v_2 = (1, 0, 1) \in \mathbb{R}^3$$

v = (-1, 4, -3) è combinazione lineare di v_1 e v_2 .

Infatti

$$2v_1 + (-3)v_2 = (2,4,0) - (3,0,3) = (-1,4,-3) = v$$

2.
$$V = \mathbb{R}^3$$

$$v_1 = (1, 2, 3), \quad v_2 = (3, 2, 1), \quad v_3 = (-1, 6, 13) \in \mathbb{R}^3$$

Domande:

- (a) 0 = (0,0,0) è combinazione lineare di v_1 , $v_2 \in v_3$?
 - Si! La combinazione lineare banale restituisce sempre il vettore nullo:

$$0 \cdot v_1 + 0 \cdot v_2 + 0 \cdot v_3 = \underline{0}$$

(b) esiste una combinazione lineare non banale di v_1, v_2, v_3 che restituisce il vettore nullo?

$$\exists \lambda, \mu, \delta \in \mathbb{R}, \quad (\lambda, \mu, \delta) \neq (0, 0, 0) \text{ tali che } \lambda v_1 + \mu v_2 + \delta v_3 = \underline{0}?$$

$$\lambda(1,2,3) + \mu(3,2,1) + \delta(-1,6,13) = (0,0,0) \Rightarrow$$

$$\Rightarrow$$
 $(\lambda + 3\mu - \delta, 2\lambda + 2\mu + 6\delta, 3\lambda + \mu + 13\delta) $\Rightarrow$$

$$\Rightarrow \begin{cases} \lambda + 3\mu - \delta = 0 \\ 2\lambda + 2\mu + 6\delta = 0 \end{cases}$$
 sistema lineare omogeneo

$$\begin{pmatrix} 1 & 3 & -1 & 0 \\ 2 & 2 & 6 & 0 \\ 3 & 1 & 13 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow -2R_1 \wedge R_3 \leftarrow R_3 - 3R_1} \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & -4 & 8 & 0 \\ 0 & -8 & 16 & 0 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - 2R_2} \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & -4 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} \lambda + 3\mu - \delta = 0 \\ -4\mu + 8\delta = 0 \end{cases} \Rightarrow \begin{cases} \lambda = -3\mu + \delta = -5\delta \\ \mu = 2\delta \end{cases}$$

$$S = \{(-5\delta, 2\delta, \delta) : \delta \in \mathbb{R}\}$$

 $\forall \delta \neq 0$ otteniamo i coefficienti di una combinazione lineare non banale che restituisce il vettore nullo

$$\delta = 1 : (-5, 2, 1)$$

$$-5v_1 + 2v_2 + v_3 = -5(1,2,3) + 2(3,2,1) + (-1,6,13) = (0,0,0)$$

Osservazioni

• L'insieme delle combinazioni lineari di $v \in V$ è la retta vettoriale $\langle v \rangle$:

$$\langle v \rangle := \{ \lambda v : \lambda \in K \}$$

• $\forall i = 1, \dots, n, v_i$ è combinazione lineare di v_1, \dots, v_n :

$$v_i = 0 \cdot v_1 + \dots + 0 \cdot v_{i-1} + 1 \cdot v_i + 0 \cdot v_{i+1} + \dots + 0 v_n$$

• Dalla definizione di sottospazio segue che se $v_1, \dots, v_n \in W$ e W è un sottospazio, allora tutte le combinazioni lineari di v_1, \dots, v_n appartengono a W.

L'insieme

$$\langle v_1, \dots, v_n \rangle := \{ \lambda_1 v_1 + \dots + \lambda_n v_n : \lambda_i \in K, \forall i = 1, \dots, n \}$$

è un sottospazio di V chiamato il sottospazio generato (o *span* o copertura lineare) da (di) v_1, \dots, v_n .

È il "più piccolo" sottospazio di V che contiene v_1, \dots, v_n :

Se W è un sottospazio che contiene v_1, \dots, v_n

$$\langle v_1, \dots, v_n \rangle \subseteq W$$

Esempio

$$V = M_2(\mathbb{R})$$

$$\begin{split} v_1 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad v_2 &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ &< v_1, v_2 > = < \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} > = \left\{ a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} : a, b \in \mathbb{R} \right. \\ &= \left\{ \begin{pmatrix} a & 0 \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right. \\ &= \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right. \\ &\left(\begin{matrix} 1 & 3 \\ -3 & 1 \end{matrix} \right) \in < v_1, v_2 > \\ &< v_1, v_2 > = M_2(\mathbb{R})? \text{ No, perchè } \begin{pmatrix} 1 & 2 \\ -3 & 2 \end{pmatrix} \not\in < v_1, v_2 > \end{split}$$

 $\langle v_1, v_2 \rangle \subset M_2(\mathbb{R})$

Osservazione

 $\forall m \leq n$

$$< v_1, \cdots, v_m > \subseteq < v_1, \cdots, v_m, v_{m+1}, \cdots, v_n$$

 \uparrow ogni combinazione lineare di v_1, \cdots, v_m è anche combinazione lineare di v_1, \cdots, v_n

$$\lambda_1 v_1 + \lambda_n v_n = \lambda_1 v_1 + \dots + \lambda_m v_m + 0 \cdot v_{m+1} + \dots + 0 \cdot v_n$$

Ripartiamo dall'esercizio 1 del foglio 2:

$$V = \mathbb{R}^2$$
, $v = (1, 2), w = (3, 4) \in \mathbb{R}^2$

Abbiamo mostrato che:

• $\forall (a,b) \in \mathbb{R}^2, \exists \lambda, \mu \in \mathbb{R} : (a,b) = \lambda(1,2) + \mu(3,4)$, o equivalentemente, $(a,b) \in \langle (1,2), (3,4) \rangle$

Poichè $<(1,2),(3,4)>\subseteq \mathbb{R}^2$, otteniamo che $<(1,2),(3,4)>=\mathbb{R}^2$, cioè (1,2) e (3,4) "generano" tutto \mathbb{R}^2 attraverso le loro combinazioni linerai.

Diremo che $\{(1,2),(3,4)\}$ è un "sistema di generatori" di \mathbb{R}^2

• $(0,0) = \lambda(1,2) + \mu(3,4) \Leftrightarrow \lambda = \mu = 0$, cioè l'unica combinazione lineare di (1,2) e (3,4) che restituisce il vettore nullo è quella banale. Diremo che (1,2) e (3,4) sono linearmente indipendenti.

Più in generale definiamo:

<u>Def</u>: Sia V uno spazio vettoriale su K

Diciamo che $v_1, \dots, v_n \in V$ generano V oppure che $\{v_1, \dots, v_n\}$ è un sistema di generatori di V se:

$$\langle v_1, \dots, v_n \rangle = V$$

Osservazione: Poichè abbiamo sempre $\langle v_1, \dots, v_n \rangle \subseteq V$, per mostrare che $\{v_1, \dots, v_n\}$ è un sistema di generatori di V basta dimostrare che

$$V \subseteq \langle v_1, \dots, v_n \rangle$$

cioè che $\forall v \in V, \exists \lambda_1, \dots, \lambda_n \in K$ tali che

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n$$

11.1 Definizione di vettori linearmente indipendenti

Def: (difficile, la chiede 100%): Sia V uno spazio vettoriale su K.

I vettori $v_1, \dots, v_n \in K$ si dicono **linearmente indipendenti** se $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_n v_n = \underline{0} \Rightarrow \lambda_1 = \dots = \lambda_n = 0$, o equivalentemente se l'unica combinazione lineare di v_1, \dots, v_n che restituisce il vettore nullo è quella banale. Altrimenti, se esistono $\lambda_1, \dots, \lambda_n$ non tutti nulli $((\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0))$ tali che $\lambda_1 v_1 + \dots + \lambda_n v_n = \underline{0}, v_1, \dots, v_n$ Esempio si dicono linearmente dipendenti.

$$V$$
 = \mathbb{R}^3

$$v_1 = (8, -2, 0), \quad v_2 = (0, 3, 4), \quad v_3 = (-2, 2, 2) \in \mathbb{R}^3$$

<u>Domanda</u>: v_1, v_2, v_3 sono linearmente indipendenti?

Siano $\lambda, \mu, \delta \in \mathbb{R}$ tali che:

$$\lambda v_1 + \mu v_2 + \delta v_3 = \underline{0} \Rightarrow \lambda(8, -2, 0) + \mu(0, 3, 4) + \delta(-2, 2, 2) = (0, 0, 0) \Rightarrow \Rightarrow \begin{cases} 8\lambda - 2\delta = 0 \\ -2\lambda + 3\mu + 2\delta = 0 \end{cases}$$

$$\begin{pmatrix} 8 & 0 & -2 & \vdots & 0 \\ -2 & 3 & 2 & \vdots & 0 \\ 0 & 4 & 2 & \vdots & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + \frac{1}{4}R_1} \begin{pmatrix} 8 & 0 & -2 & 0 \\ 0 & 3 & \frac{3}{2} & 0 \\ 0 & 4 & 2 & 0 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - \frac{4}{3}R_2} \begin{pmatrix} 8 & 0 & -2 & 0 \\ 0 & 3 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} 8\lambda - 2\delta = 0 \\ 8\lambda - 2\delta = 0 \\ 3\mu + \frac{3}{2}\delta = 0 \end{cases} \Rightarrow \begin{cases} \lambda = \frac{1}{4}\delta \\ \mu = -\frac{1}{2}\delta \end{cases}$$

$$S = \{(\frac{1}{4}\delta, -\frac{1}{2}\delta, \delta) : \delta \in \mathbb{R}\}$$

$$\delta = 4 \rightsquigarrow (1, -2, 4)$$

$$v_1 - 2v_2 + 4v_3 = (0, 0, 0)$$

 $\Rightarrow v_1, v_2$ e v_3 sono linearmente dipendenti

Osservazioni

- 1. Un vettore $v \in V$ è linearmente dipendente se e solo se v = 0
 - \Leftarrow) se $v = \underline{0}$ allora $1 \cdot v = \underline{0} \Rightarrow v$ è linearmente dipendente
 - $\Rightarrow) \quad \exists \lambda \neq 0 : \lambda v = \underline{0} \Rightarrow \lambda^{-1} \lambda v = \lambda^{-1} \ \underline{0} \Rightarrow 1 \cdot v = \underline{0}$
- 2. Due vettori $v_1, v_2 \in V$ sono linearmente dipendenti $\Leftrightarrow \exists \lambda \in K$ tale che $v_1 = \lambda v_2$ o $v_2 = \lambda v_1$.

Esempio: $V = \mathbb{R}^3$

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix} = 3v_1 \Rightarrow v_1, v_2 \text{ sono linearmente dipendenti.}$$

Infatti se $v_2 = 3v_1 \Rightarrow 3v_1 - v_2 = 0$

 \Leftarrow) Supponiamo $\exists \lambda \in K : v_1 = \lambda v_2 \text{ o } v_2 = \lambda v_1.$

Se
$$v_1 = \lambda v_2 \Rightarrow 1 \cdot v_1 - \lambda v_2 = 0$$

Se
$$v_2 = \lambda v_1 \Rightarrow \lambda v_1 - v_2 = 0$$

In ogni caso v_1, v_2 sono linearmente dipendenti.

 \Rightarrow) Supponiamo v_1, v_2 linearmente dipendenti $\Rightarrow \exists \lambda_1 \lambda_2 \in K, (\lambda_1, \lambda_2) \neq (0, 0) : \lambda_1 v_1 + \lambda_2 v_2 = 0$

Se
$$\lambda_1 \neq 0 \Rightarrow v_1 = -\frac{\lambda_2}{\lambda_1} v_2$$

Se
$$\lambda_2 \neq 0 \Rightarrow v_2 = -\frac{\lambda_1}{\lambda_2} v_1$$

Quindi
$$\exists \lambda \in K : v_1 = \lambda v_2 \text{ o } v_2 = \lambda v_1$$

Esempio: $v_1 = (1, 2, 3)$, $v_2 = (0, 0, 0) \in \mathbb{R}^3$ sono linearmente dipendenti poichè $v_2 = 0 \cdot v_1 \Rightarrow 0 \cdot v_1 + (-1)v_2 = 0$

3. $v_1, \dots, v_n \in V$ sono linearmente dipendenti $\Leftrightarrow \exists i \in \{1, \dots, n\}$ tale che v_i è combinazione lineare degli altri.

Esempio:
$$v_1 = (1, 1, 1), \quad v_2 = (1, -1, 3), \quad v_3 = (2, 0, 4)$$

$$v_1,v_2,v_3$$
sono linearmente dipendenti poichè v_3 = $v_1+v_2 \Rightarrow v_1+v_2-v_3$ = $\underline{0}$

4. Se l'insieme $\{v_1, \dots, v_n\}$ contiene il vettore nullo allora v_1, \dots, v_n sono linearmente dipendenti.

<u>Def</u>: Un sottoinsieme finito $\{v_1, \dots, v_n\}$ di V si dice <u>base</u> di V se:

- 1. v_1, \dots, v_n sono linearmente indipendenti
- 2. v_1, \dots, v_n generano $V, \forall v \in V$ $\exists \lambda_1, \dots, \lambda_n \in K : \lambda_1 v_1 + \dots + \lambda_n v_n = v.$

<u>Def:</u> Sia V uno spazio vettoriale su K e siano $v_1, \dots, v_n \in V$

• Diciamo che $\{v_1, \dots, v_n\}$ è un sistema di generatori o che v_1, \dots, v_n generano V se

$$\langle v_1, \dots, v_n \rangle = V$$

o equivalentemente se

$$\forall v \in V, \exists (\lambda_1, \dots, \lambda_n) \in K^n$$

tali che

$$(*)\lambda_1v_1 + \dots + \lambda_nv_n = v$$

Proposizione: Sia V

• Diciamo che v_1, \dots, v_n sono linearmente indipendenti se $\lambda_1 v_1 + \dots + \lambda_n v_n = \underline{0} \Rightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$ $[(\lambda_1, \dots, \lambda_n) = (0, \dots, 0)]$

• Diciamo che $\{v_1, \dots, v_n\}$ è una base di V se:

1.
$$v_1, \dots, v_n$$
 generano V

2. v_1, \dots, v_n sono linearmente indipendenti.

uno spazio vettoriale su K e sia $\{v_1, \dots, v_n\}$ una base di V

Allora
$$\forall v \in V \exists ! (\lambda_1, \dots, \lambda_n) \in K^n$$
 tale che

$$\lambda_1 v_1 + \dots + \lambda_n v_n = \mu_1 v_1 + \dots + \mu_n v_n$$

allora
$$(\lambda_1, \dots, \lambda_n) = (\mu_1, \mu_n) \Leftrightarrow \lambda_i = \mu_i, \forall i = 1, \dots, n$$

I coefficienti $\lambda_1, \dots, \lambda_n \in K$ della combinazione lineare (*) Si dicono le coordinate di v rispetto alla base $\{v_1, \dots, v_n\}$ e $(\lambda_1, \dots, \lambda_n)$ si dice la n-upla delle coordinate di v rispetto alla base $\{v_1, \dots, v_n\}$

 $\underline{\text{Dim}}$

Poichè $\{v_1, \dots, v_n\}$ è una bse allora i vettori v_1, \dots, v_n sono linearmente indipendenti.

La conclusione segue dall'esercizio 6-(d) del foglio 4

Esempio

$$\overline{V} = \mathbb{R}^2$$

$$v_1 = (1,0), \quad v_1 = (0,1) \in \mathbb{R}^2$$

• v_1, v_2 generano $\mathbb{R}^2 : \forall (a, b) \in \mathbb{R}^2$

$$(a,b) = a(1,0) + b(0,1)$$

• v_1, v_2 sono linearmente indipendenti. Infatti se $\lambda_1, \lambda_2 \in \mathbb{R}$ sono tali che:

$$\lambda_1(1,0) + \lambda(0,1) = (0,0) \Rightarrow (\lambda_1,\lambda_2) = (0,0)$$

Quindi $\mathbb{B} = \{(1,0), (0,1)\}$ è **una** base di \mathbb{R}^2

Si noti che parliamo di **una** base di \mathbb{R}^2 , in quanto essa non è unica.

 $w_1 = (1,2), w_2 = (3,4)$ generano \mathbb{R}^2 e sono linearmente indipendenti

$$\Rightarrow \mathbb{B}' = w_1, w_2$$
è un'altra base di \mathbb{R}^2

<u>Def:</u> Due vettori $v_1, v_2 \in \mathbb{R}^2$ si dicono collineari se v_1, v_2 sono linearmente dipendenti, cioè se $\exists \lambda \in K$ tale che: $v_1 = \lambda v_2$ o $v_2 = \lambda v_1$

Geometricamente è semplice vedere che ogni coppia di vettori non collineari v_1, v_2 costituisce una base di \mathbb{R}^2

Vedremo che tutte le basi di \mathbb{R}^2 sono della forma $\{v_1, v_2\}$ con v_1, v_2 non collineari.

In particolare tutte le basi di \mathbb{R}^2 sono costituite da 2 elementi

Lemma (di Steinitz)

Sia V uno spazio vettoriale con base $\mathbb{B} = \{v_1, \dots, v_n\}$ e siano $w_1, \dots, w_m \in V$

 w_1, \dots, w_m sono linearmente indipendenti $\Rightarrow m \leq n$

Utilizziamo il lemma di Steinitz per dimostrare il risultato seguente:

Teorema di equipotenza delle basi

Sia V uno spazio vettoriale su K.

Siano $\{v_1, \dots, v_n\}$ e $\{w_1, \dots, w_n\}$ due basi di V.

Allora n = m

Dim: Idea: $m = n \Leftrightarrow m \le n$ e $m \ge n$.

• Poichè $\{v_1,\cdots,v_n\}$ è una base di V e v_1,\cdots,v_n sono linearmente indipendenti $\xrightarrow{lemma} m \leq n$

• Poichè $\{w_1, \cdots, w_n\}$ è una base di V e v_1, \cdots, v_n sono linearmente indipendenti $\xrightarrow{lemma} n \leq m$

Quindi $m \le n$ e $n \le m \Leftrightarrow n = m$

Def: Sia V uno spazio vettoriale su K e sia $\{v_1, \dots, v_n\}$ una base finita di V.

Il numero n si dice *dimensione* di V e si denota

 $dim_K(V)$ o più semplicemente dim(V)

Se $V = \{\underline{0}\}$ allora si pone dim(V) = 0.

Se $V = \{0\}$ oppure se V ha una base finita diciamo che V ha dimensione finita.

Esempi

- 1. \mathbb{R}^2 è uno spazio vettoriale di dimensione 2, poichè abbiamo visto che $\{(1,0),(0,1)\}$ è una base di \mathbb{R}^2 .
- 2. $V = K^n = \{(x_1, \dots, x_n) : x_i \in K, \forall i = 1, \dots, n\}, n \ge 1 \text{ Siano}$

$$e_1 = (1, 0, \dots, 0)$$

$$e_2 = (0, 1, \dots, 0)$$

:

$$e_n = (0, \dots, 0, 1)$$

È facile mostrare che $\{e_1, \dots, e_n\}$ è una base di K^n detta **base canonica** di K^n .

Quindi $dim_K K^n = n$.

$$\forall x' = (x_1, \dots, x_n) \in K^n$$
, abbiamo

$$x' = x_1e_1 + x_2e_2 + \dots + x_ne_n$$

cioè x' è la n-upla delle coordinate di x' rispetto a $\{e_1, \dots, e_n\}$

3. $V = M_2(\mathbb{R})$

Siano:

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} = aE_{11} + bE_{12} + cE_{21} + dE_{22}.$$

Si mostra facilmente che $E_{11}, E_{12}, E_{21}, E_{22}$ siano linearmente indipendenti.

Quindi $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ è una base di $M_2(\mathbb{R}) \Rightarrow dim_{\mathbb{R}}$ hlincompleto

 $V, \mathbb{B} = \{v_1, \dots, v_n\}$ una base di V.

Consideriamo la funzione

$$\varphi_{\mathbb{R}}:V\to K^n$$

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n \mapsto (\lambda_1, \dots, \lambda_n)$$

• iniettiva: se v, w sono tali che $\varphi_{\mathbb{B}}(v) = \varphi_{\mathbb{B}}(w) \Rightarrow v = w$.

$$v, w \in V \Rightarrow v = \lambda_1 v_1 + \dots + \lambda_n v_n$$

 $w = \mu_1 v_1 + \dots + \mu_n v_n$

• suriettiva? $\forall (\lambda_1, \lambda_n) \in K^n, \exists v \in V \text{ tale che}$

$$\varphi_{\mathbb{R}} = (\lambda_1, \dots, \lambda_n)$$

Basta prendere $v = \lambda_1 v_1 + \dots + \lambda_n v_n$

Quindi $\varphi_{\mathbb{B}}$ è biettiva.

Inoltre $\varphi_{\mathbb{B}}$ soddisfa le seguenti proprietà:

1. $\forall w_1, w_2 \in V, \varphi_{\mathbb{B}}(w_1 + w_2) = \varphi_{\mathbb{B}}(w_1) + \varphi_{\mathbb{B}}(w_2)$. Dim

Siano $w_1w_2 \in V$. Quindi $\exists \lambda_1, \dots, \lambda_n, \mu_1, \dots, \mu_n \in K$ tali che

$$w_1 = \lambda_1 v_1 + \dots + \lambda_n v_n, \quad w_2 = \mu_1 v_1 + \dots + \mu_n v_n$$

Quindi $\varphi_{\mathbb{B}}(w_1) = (\lambda_1, \dots, \lambda_n), \varphi_{\mathbb{B}}(\mu_1, \dots, \mu_n)$

Ora
$$w_1 + w_2 = \lambda_1 v_1 + \dots + \lambda_n v_n + \mu_1 v_1 + \dots + \mu_n v_n = (\lambda_1 \mu_1) v_1 + \dots + (\lambda_n \mu_n) v_n$$

$$\varphi_{\mathbb{B}}(w_1 + w_2) = (\lambda_1 + \mu_1, \dots, \lambda_n + \mu_n) = (\lambda_1, \dots, \lambda_n) + (\mu_1, \dots, \mu_n) = \varphi_B(w_1) + \varphi_B(w_2)$$

2. $\forall \lambda \in K$ Incompleto

Le proprietà 1 e 2 fanno di φ_B quella che chiameremo un'"applicazione lineare".

Chiamiamo φ_B isomorfismo coordinato rispetto alle basi B.

<u>Teorema</u> (di esistenza della base): Sia $V \neq \{\underline{0}\}$

 $L = \{v_1, \dots, v_p\}$ un insieme di vettori linearmente indipendenti

 $G = \{v_1, \dots, v_p, \dots, v_m\}, m \ge p$, un sistema di generatori.

Allora esiste una base B di V tale che

$$L \subseteq B \subseteq G$$

Prima della dimostrazione:

Corollario 1: Sia $V \neq \{0\}$ uno spazio vettoriale di dimensione finita. Allora:

- 1. Da qualsiasi sistema di generatori è possibile estrarre una base di V
- 2. È possibile completare qualsiasi insieme di vettori linearmente indipendenti a una base di V

Esempio

$$V = \mathbb{R}^3$$

$$v_1 = (1, 2, 3), v_2 = (4, 6, 9) \in \mathbb{R}^3$$

 $L = \{(1,2,3),(4,6,9)\}$ è un insieme di vettori linearmente indipendenti.

$$L \subseteq G = \{(1,2,3), (4,6,9), (1,0,0), (0,1,0), (0,0,1)\}$$

G è un sistema di generatori.

Per il teorema esiste una base B di \mathbb{R}^3 tale che

$$L \subseteq B \subseteq G$$

<u>Tentativo</u> 1: $\{(1,2,3),(4,6,9),(1,0,0)\}$

Linearmente indipendenti?: Siano $\lambda, \mu, \delta \in \mathbb{R}$:

$$\lambda(1,2,3) + \mu(4,6,9) + \delta(1,0,0) = (0,0,0)$$

$$\Rightarrow \begin{cases} \lambda + 4\mu + \delta = 0 \\ 2\lambda + 6\mu = 0 \\ 3\lambda + 9\mu = 0 \end{cases} \Rightarrow \begin{cases} \mu = -\delta \\ 0 = 0 \\ \lambda = -3\mu \end{cases} \Rightarrow \begin{cases} \mu = -\delta \\ \lambda = 3\delta \end{cases} \Rightarrow S = \{(3\delta, -\delta, \delta) : \delta \in \mathbb{R}\}$$

 $\delta = 1 \rightsquigarrow (3, -1, 1) \Rightarrow 3(1, 2, 3) - (4, 6, 9) + (1, 0, 0) = (0, 0, 0) \Rightarrow$ sono linearmente dipendenti.

Tentativo 1: $\{(1,2,3),(4,6,9),(0,1,0)\}$

Linearmente indipendenti?

1. No $\rightsquigarrow \{(1,2,3),(4,6,9),(0,1,0)\}$ Incompleto

$13 \quad 13/04/22$

13.1 Continuando da ieri, Corollario 1

Corollario 2: Sia V uno spazio vettoriale su K di dimensione n.

- 1. Ogni sistema di generatori di V con n elementi è una base di V
- 2. Ogni insieme di n vettori linearmente indipendenti è una base di W

Dim

1. $G = \{v_1, \dots, v_n\}$ sistema di generatori

Per il corollario 1 \exists una base B di V tale che

$$B \subseteq G \Rightarrow B = G$$
, cioè G è una base di V

B ha n elementi poichè dim(V) = n

2. $L = \{v_1, \dots, v_n\}, v_1, \dots, v_n$ sono linearmente indipendenti.

Per il corollario 1, \exists una base B di V tale che

$$L \subseteq B \Rightarrow B = L$$

Proposizione: Sia V uno spazio vettoriale di dimensione finita.

 $\overline{\text{Sia }W \text{ un sottospazio di }V}$. Allora:

- 1. $dim(W) \le dim(V)$
- 2. $dim(W) = dim(V) \Leftrightarrow V = W$

 $\overline{\text{Sia }} n = dim(V)$

1. Si mostra che anche W è di dimensione finita (non è scontato) hlvedi note della prof, non lo spiega qui in classe.

Sia dunque $\{w_1, \dots, w_m\}$ una base finita di W

Ora w_1, \dots, w_m sono vettori linearmente indipendenti di $W \subseteq V \xrightarrow{Lemma\ di\ Steinitz} m \le n \Leftrightarrow dim(W) \le dim(V)$

 $2. \Leftarrow$) ovvio.

 \Rightarrow) Supponiamo dim(W) = dim(V) = n.

Sia $B = \{w_1, \dots, w_n\}$ una base di W.

Ora w_1, \dots, w_n sono vettori linearmente indipendenti di V e quindi B è anche una base di V.

$$W = \langle w_1, \dots, w_n \rangle = V$$

↑ sistema di generatori di W, ↑ sistema di generatori di V

Osservazione: W è un sottospazio, $dim(W) = 0 \Leftrightarrow W = \{0\}$

Def: Sia V uno spazio vettoriale e $W \subseteq V$ un sottospazio.

Allora l'intero

$$dim(V) - dim(W)$$

Si dice **codimensione** di W in V

<u>Teorema</u> (formula di Grassman):

Sia V uno spazio vettoriale, siano U, W due sottospazi di V di dimensione finita.

Allora $U \cap W$ e U + W hanno dimensione finita e

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

In particular se $U \oplus W$ è somma diretta $(U \cap W = \{\underline{0}\})$ allora $dim(U \cap W) = 0$ e dim(U + W) = dim(U) + dim(W)

Esempi mancanti, non so se possono servire.

Proposizione: Siano U, W due sottospazi di V tali che $U \cap W = \{0\}$.

Siano $B_u, \overline{B_w}$ due basi rispettivamente di $U \in W$, allora $B_u \cup B_w$ è una base di $U \oplus W$

Dim: per esercizio

<u>Def</u>: Sia V uno spazio vettoriale su K e sia $\{v_1, \dots, v_p\}$ un sottoinsieme finito di V, il **rango** di $\{v_1, \dots, v_p\}$ è la dimensione del sottospazio vettoriale generato da v_1, \dots, v_p .

Equivalentemente, il rango è il numero massimo di vettori linearmente indipendenti in $\{v_1, \dots, v_p\}$. Esempio:

 $rg(\{(0,1,0,0),(0,0,1,0),(0,1,1,0)\}) = 2$

 v_1, v_2 linearmente indipendenti.

Osservazioni:

- 1. $0 \le rg(\{v_1, \dots, v_p\}) \le p$
 - $rg(\lbrace v_1, \dots, v_n \rbrace) = 0 \Leftrightarrow v_1 = \dots = v_n = 0$
 - $rg(\{v_1, \dots, v_p\}) = p \Leftrightarrow v_1, \dots, v_p$ sono linearmente indipendenti
- 2. Se dim(V)=ne $v_1,\cdots,v_p\in V$ allora $rg(\{v_1,\cdots,v_p\})\leq min\{p,n\}$

$14 \quad 27/04/22$

Def: Sia V uno spazio vettoriale su \mathbb{K} e sia

 $\{v_1, \dots, v_p\}$ un sottoinsieme finito di V. Il RANGO di $\{v_1, \dots, v_p\}$ è la dimensione del sottospazio vettoriale generato da $\{v_1, \dots, v_p\}$:

 $rg(\lbrace v_1, \dots, v_p \rbrace) = dim(\langle v_1, \dots, v_p \rangle)$

Equivalentemente è il numero massimo di vettori linearmente indipendenti in $\{v_1, \dots, v_p\}$.

<u>Def</u>: Sia $A \in \mathcal{M}_{m,n}(\mathbb{K})$.

Il rango per righe di A è il rango dell'insieme delle sue righe (vettori in \mathbb{K}^n).

Il rango per colonne di A è il rango dell'insieme delle sue colonne (vettori $n \mathbb{K}^m$)

Esempio:

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix} \in \mathcal{M}_{(3,4)}(\mathbb{R}).$$

Rango per righe di $A = rg(\{(1,0,0,1),(0,1,0,0),(1,-1,0,1)\}) = dim(\langle (1,0,0,1),(0,1,0,0),(1,-1,0,1)\rangle) = 2$

Rango per colonne di $A = rg(\{(1,0,1),(0,1,-1),(0,0,0),(1,0,1)\}) = dim(<(1,0,1),(0,1,-1),(0,0,0),(1,0,1)>) = 2im(<(1,0,1),(0,1,-1),(0,0,0),(1,0,1)>) = 2im(<(1,0,1),(0,1,-1),(0,1,-1),(0,1,-1)>) = 2im(<(1,0,1),(0,1,-1),(0,1,-1)) = 2im(<(1,0,1),(0,1,-1),(0,1,-1),(0,1,-1)>) = 2im(<(1,0,1),(0,1,-1),(0,1,-1)) = 2im(<(1,0,1),(0,1,-1),(0,1,-1),(0,1,-1)) = 2im(<(1,0,1),(0,1,-1),(0,1,-1)) = 2im(<(1,0,1),(0,1,-1)$

Teorema: Il rango per righe e il rango per colonne di una matrice coincidono.

Possiamo dunque chiamare semplicemente RANGO di $A \in \mathcal{M}_{m,n}(\mathbb{K})$ il rango per righe (o per colonne) di A. Lo denotiamo rg(A).

Osservazione: Se $A \in \mathcal{M}_{m,n}(\mathbb{K}) \Rightarrow rg(A) \leq min\{m,n\}$

Esempio:

$$M = \begin{pmatrix} \boxed{1} & 2 & 3 & 4 & 5 \\ 0 & \boxed{6} & 7 & 8 & 9 \\ 0 & 0 & 0 & \boxed{10} & 11 \\ 0 & 0 & 0 & 0 & \boxed{12} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$rg(M) = 4 \quad \boxed{\text{Incompleto}}$$

Proposizione: Il rango di una matrice a scalini è uguale al numero di righe non nulle.

Dim

È facile mostrare che le righe non nulle di una matrice a scalini sono linearmente indipendenti.

Proposizione: Sia $A \in \mathcal{M}_{m,n}(\mathbb{K})$

Siano $B \in \mathcal{M}_m(\mathbb{K}), C \in \mathcal{M}_n(\mathbb{K})$ due matrici invertibili.

Allora rg = (A) = rg(BA) = rg(AC), cioè moltiplicare a destra o a sinistra per una matrice invertibile non modifica il rango di A

<u>Corollario</u>: Il rango di una matrice A è uguale al rango di una matrice a scalini B ottenuta da A attraverso delle operazioni elementari. Inoltre il sottospazio generato dalle righe di A è lo stesso del sottospazio generato dalle righe di B

<u>Idea della dim</u>: ogni operazione elementare corrisponde alla moltiplicazione a sinistra per una matrice elementare e le matrici elementari sono invertibili.

Applicazioni

1. Calcolare una base e la dimensione di

$$U = \langle (1, -3, 2, 0, 1), (1, 1, 3, 1, 3), (3, -5, 2, 1, 7), (-1, 7, -1, 0, 1), (0, 4, 1, 1, 2) \rangle$$

$$dim(U) = rg(\{v_1, v_2, v_3, v_4, v_5\}) = rg\begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -3 & 2 & 0 & 1 \\ 1 & 1 & 3 & 1 & 3 \\ 3 & -5 & 2 & 1 & 7 \\ -1 & 7 & -1 & 0 & 1 \\ 0 & 4 & 1 & 1 & 2 \end{pmatrix} \xrightarrow{\text{incompleto}} \begin{pmatrix} 1 & -3 & 2 & 0 & 1 \\ 0 & 4 & 1 & 1 & 2 \\ 0 & 4 & -4 & 1 & 4 \\ 0 & 4 & 1 & 1 & 2 \end{pmatrix} \xrightarrow{\text{incompleto}} \begin{pmatrix} 1 & -3 & 2 & 0 & 1 \\ 0 & 4 & 1 & 1 & 2 \\ 0 & 0 & -5 & 0 & 2 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \leftarrow \text{ha 4 righe non nulle}$$

$$\Rightarrow rg(A) = dim(U) = 4$$
e una base di U è $\{(1, -3, 2, 0, 1), (0, 4, 1, 1, 2), (0, 0, -5, 0, 2), (0, 0, 0, -1, 0)\}$

2. $\{(1,1,1),(1,2,2),(1,2,3)\}$ è una base di \mathbb{R}^3 ? $\{(1,1,1),(1,2,2),(1,2,3)\}$ è una base di $\mathbb{R}^3 \Leftrightarrow (1,1,1),(1,2,2)$

 $\{(1,1,1),(1,2,2),(1,2,3)\}$ è una base di $\mathbb{R}^3 \Leftrightarrow (1,1,1),(1,2,2),(1,2,3)$ sono linearmente indipendenti?

$$\Leftrightarrow rg\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} = 3 \text{ Incompleto}$$

Proposizione: Una matrice quadrata $A \in \mathcal{M}_n(\mathbb{K})$ è invertibile $\Leftrightarrow rg(A) = n$. (Una matrice quadrata è invertibili se e solo se ha rango massimo).

Esempio:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 Per quali valori di \mathbb{K} è invertibile?

 \downarrow Riduzione a scalini

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & k-9 \end{pmatrix}$$

$$rg(A) = 3 \Leftrightarrow k-9 \neq 0 \Leftrightarrow k \neq 9$$

A è invertibile.

 $\underline{\text{Dim}}: (A \in \mathcal{M}_n(\mathbb{K}) \text{ è invertibile} \Leftrightarrow rg(A) = n)$ \Rightarrow) Sia $A \in \mathcal{M}_n(\mathbb{K})$ invertibile $\Leftarrow \exists A^{-1} \in \mathcal{M}_n(\mathbb{K})$

tale che $A \cdot A^{-1} = In$ creare nuova "rightdim" macro con minipage

Allora abbiamo $rg(A) = rg(AA^{-1}) = rg(In) = n$ (il rango non cambia se moltiplicato per una matrice invertibile) (In è una matrice a scalini senza righe nulle).

 \Leftarrow) Sia $A \in \mathcal{M}_n(\mathbb{K})$ di rango n e siano R_1, \dots, R_n le righe di A. $\Rightarrow \{R_1, \dots, R_n\}$ è una base di \mathbb{K}

Siano:

$$E_1 = (1, 0, \dots, 0)$$

 $E_2 = (0, 1, \dots, 0)$
 \vdots
 $E_n = (0, 0, \dots, 1)$

Quindi $\exists b_{ij} \in \mathbb{K}$ tali che:

$$E_1 = b_{11}R_1 + b_{12}R_2 + \dots + b_{1n}R_n$$

$$E_2 = b_{21}R_1 + b_{22}R_2 + \dots + b_{2n}R_n$$

: $E_n = b_{n1}R_1 + b_{n2}R_2 + \dots + b_{nn}R_n$

Sia
$$B = (b_{ij})_{1 \leq i \leq n; \ 1 \leq j \leq n} \in \mathcal{M}_n(\mathbb{K})$$

È facile mostrare $BA = In \Rightarrow A$ è invertibile

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad rg(A) = 2$$

$$(1,0) = 1(1,0) + 0(1,1)$$

$$(0,1) = -1(1,0) + 1(1,1)$$

$$\left| \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \right| \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

14.1 Torniamo ai sistemi lineari

Teorema di Rouchè-Capelli (mannaggia ai francesi, 2006): (Criterio di compatibilità di un sistema)

Un sistema lineare di m equazioni in n incognite

$$AX = b$$

dove
$$A \in \mathcal{M}_{m,n}(\mathbb{K}), \quad b \in \mathcal{M}_{m,n}(\mathbb{K}), X = \begin{pmatrix} x1 \\ \vdots \\ x_n \end{pmatrix}$$

è compatibile se e solo se ra(A)ra(A|b)

rg(A)rg(A|b).

In tal caso il sistema possiede ∞^{r-r} soluzioni, dove r = rg(A).

Esempio:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + x_4 = 3 \\ -x_2 - x_3 + 7x_4 = 6 \\ -x_1 - 2x_2 - 2x_3 + 3x_4 = k \end{cases}$$

Per quali valori di $k \in \mathbb{R}$ il sistema è compatibile?

$$\begin{pmatrix} 1 & 1 & 1 & 1 & \vdots & 1 \\ 1 & 0 & 0 & 1 & \vdots & 3 \\ 0 & -1 & -1 & 7 & \vdots & 6 \\ -1 & -2 & -2 & 3 & \vdots & k \end{pmatrix}$$

↓ Riduzione a scalini

$$\begin{pmatrix}
1 & 1 & 1 & 1 & \vdots & 1 \\
0 & -1 & -1 & 0 & \vdots & 2 \\
0 & 0 & 0 & 7 & \vdots & 4 \\
0 & 0 & 0 & 0 & \vdots & \frac{7k-23}{7}
\end{pmatrix}$$

 $rg(A|b) = \begin{cases} 3 & \text{se incompleto} \end{cases}$

<u>Dim</u> (Rouchè-Capelli): Il sistema AX = b è compatibile

 $\exists (x_1, \cdots, x_n) \in \mathbb{K}^n \text{ tale che}$

) incompleto

$$\begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \Rightarrow 1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m_1} \end{pmatrix} + \dots + \begin{pmatrix} a_{12} \\ \vdots \\ a_{m_2} \end{pmatrix} \text{incompleto}$$

Supponiamo ora che AX = b sia un sistema compatibile.

Sia r = rg(A) = rg(A|b).

Applicando il procedimento di Gauss-Jordan alla matrice orlata (A|b) associata al sistema,

otteniamo una matrice a scalini con r righe non nulle e quindi con r pivot.

(ovviamente, poichè il sistema è compatibile, l'ultimo pivot non appartiene all'ultima colonna)

Quindi il sistema possiede n-r variabili libere, cioè ∞^{n-r} soluzioni.

Osservazione: Se $b = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$, cioè se AX = b è un sistema omogeneo, allora $rg(A) = rg(A|b) \xrightarrow{\text{Rouchè-Capelli}}$ è sempre compatibile.

L'insieme delle soluzioni è un sottospazio vettoriale di \mathbb{K}^n di dimensione n-r, dove r=rg(A)

Esempio:

15 29/04/22

INCOMPLETO

$16 \quad 04/05/22$

- Come calcolare il determinate di una matrice A?
 - 1. Se $A = (a) \in \mathcal{M}_1(\mathbb{K}) \Rightarrow det(A) = a$
 - 2. Se $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K}) \Rightarrow det(A) = ad bc$
 - 3. Se $A \in \mathcal{M}_n(\mathbb{K})$ (in particulare $n \leq 3$)
 - Teorema di Laplace (è pratico quando esiste una riga o colonna con "tanti" zeri)
 - Algoritmo di Gauss-Jordan
 - Regola di Sarrus (n = 3)
- Come calcolare il rango di una matrice A?
 - 1. Se $A \in \mathcal{M}_{m,n}(\mathbb{K})$
 - Algoritmo di Gauss-Jordan (riduco a scalini e conto il numero di righe non nulle).
 - Principio dei minori orlati.
 - 2. Se $A \in \mathcal{M}_n(\mathbb{K})$ e $det(A) \neq 0 \Rightarrow rg(A) = n$.
- - Algoritmo di Gauss-Jordan (guarda l'ultimo pivot)
 - Teorema di Rouchè-Capelli (rg(A) = rg(A|b))

Risoluzione

- Dopo Gauss-Jordan individuo le variabili libere e "risolvo" il sistema a scalini per determinare le soluzioni.
- Se $A \in \mathcal{M}(\mathbb{K})$ e $det(A) \neq 0$ ⇒ metodo di Cramer.

Applicazioni lineari

Def: Siano $V \in W$ due spazi vettoriali su \mathbb{K} .

Una funzione

 $f:V\longrightarrow W$ si dice un'applicazione lineare se soddisfa le seguenti proprietà:

- 1. $f(v_1 + v_2) = f(v_1) + f(v_2), \forall v_1, v_2 \in V$
- 2. $f(\lambda v) = \lambda f(v), \forall \lambda \in \mathbb{K}, \forall v \in V$

Esempio:

1.
$$V = W = \mathbb{R}^2$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \mapsto (x+y,x)$$

$$f((1,0)) = (1+0,1) = (1,1)$$

$$f((0,1)) = (0+1,0) = (1,0)$$

(a) Siano $v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$. Allora:

$$f(v_1 + v_2) = f((x_1 + x_2, y_1 + y_2)) = (x_1 + x_2 + y_1 + y_2, x_1 + x_2) = (x_1 + y_1, x_1) + (x_2 + y_2, x_2)$$

(b) Sia $v = (x, y) \in \mathbb{R}^2, \lambda \in \mathbb{R}$. Allora:

$$f(\lambda v) = f((\lambda x, \lambda y)) = (\lambda x + \lambda y, \lambda x) = \lambda (x + y, x) = \lambda f(v)$$

Quindi f è un'applicazione lineare.

Geometricamente

$$v_1 = (1,1) \to f(v_1) = (2,1)$$
 $v_1 + v_2 = (0,3) \to f(v_1 + v_2) = (3,0)$

$$v_2 = (-1, 2) \rightarrow f(v_2) = (1, -1)$$

Osservazioni

- 1. 1 e 2 sono equivalenti alla condizione seguente: $f(\lambda v_1 + \mu v_2) = f(\lambda v_1) + f(\mu v_2) = \lambda f(v_1) + \mu f(v_2)$
- 2. Dalla prima osservazione si ottiene che se f è un'applicazione lineare $f(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 f(v_1) + \dots + \lambda_n f(v_n), \forall \lambda_1, \dots, \lambda_n \in \mathbb{K}; \forall v_1, \dots, v_n \in \mathbb{V}$
- 3. Se $f: V \to W$ è un'applicazione lineare allora se 0_V è il vettore nullo di V e 0_W è il vettore nullo di W, allora: incompleto

Un po' di terminologia

Def:

- Un'applicazione lineare $f: V \to V$ è detta endomorfismo
- Un'applicazione lineare $f:V\to K$ è detta una funzione lineare
- Un'applicazione lineare $f: V \to W$ è detta un isomorfismo se f è biunivoca ($\Leftrightarrow f$ iniettiva e suriettiva)
- Un isoformismo $f: V \to V$ è detto un <u>automorfismo</u> Un automorfismo è un endomorfismo biunivoco.

Esempi mancanti

Proposizione Sia $f: V \to W$ un'applicazione lineare.

Siano $v_1, \dots, v_n \in \mathbb{V}$ e siano $w_i = f(v_i) \quad \forall i = 1, \dots, n$. Allora v_1, \dots, v_n sono linearmente dipendenti $\Leftrightarrow w_1, \dots, w_n$ sono linearmente dipendenti dim: per esercizio

Proposizione : Siano $V \in W$ due spazi vettoriali su \mathbb{K} .

Sia $\{v_1, \dots, v_n\}$ una base di V e siano w_1, \dots, w_n vettori arbitrari di W.

Allora esiste un'unica applicazione lineare

 $f:V \to W$

tale che

 $f(v_i) = w_i, \forall i = 1, \dots, n.$

dim

Sia $v \in \mathbb{V}$ e siano $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tali che $v = \lambda_1 v_1 + \dots + \lambda_n v_n$. Allora

 $f(v) = f(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 f(v_1) + \dots + \lambda_n f(v_n)$ Quindi f è unica.

Esempio mancante

Proposizione : Sia $f: V \to W$ un'applicazione lineare. Allora:

- 1. Se S_V è un sottospazio vettoriale di $V \Rightarrow f(S_V) = \{f(v) : v \in S_V\} \subseteq W$ è un sottospazio di W.
- 2. Se S_W è un sottospazio di $W \Rightarrow f^{-1}(S_W)\{v \in V : f(v) \in S_W\} \subseteq V$ è un sottospazio di V.

Dim

- 1. Mostriamo che $f(S_V)$ è un sottospazio di W:
 - $f(S_V) \neq \emptyset : 0_W \in f(S_V)$ poichè $0_W = f(0_V) \in S_V$ perchè S_V è un sottospazio

```
• Siano w_1, w_2 \in f(S_V), \lambda, \mu \in \mathbb{K}.
               Allora, per definizione, \exists v_1 \in S_V tale che w_1 = f(v_1) e \exists v_2 \in S_V tale che w_2 = f(v_2) Disegno figo con tikz
              Allora abbiamo
              \lambda w_1 + \mu w_2 = \lambda f(v_1) + \mu f(v_2) = (\leftarrow \text{linearità}) f((\lambda v_1 + \mu v_2) \in S_V) perchè S_V è un sottospazio
               \Rightarrow \lambda w_1 + \mu w_2 \in f(S_V)
              Quindi f(S_V) è un sottospazio di W 2) sulle note incompleto
    Due casi particolari
    \overline{S_V = V \leadsto f(V)}: immagine di f
    S_W = \{0_W\} \leadsto f^{-1}(\{0_W\}) : \text{nucleo di } f
         Sia f: V \to W un'applicazione lineare.
         Il sottospazio di V
         ker (da kernel, nucleo), ker(f) := f^{-1}(\{0_W\}) = \{v \in V : f(V) = 0_W\}
         è detto nucleo di f
         Il sottospazio di W
         Im(f) := f(V) = \{f(v) : v \in V\}
         è detto immagine di f
         Se ker(f) è Im(f) hanno dimensione finita allora chiamiamo nullità la dimensione di ker(f) e rango la
         dimensione di Im(f).
         dim(ker(f))
         rg(f) := dim(Im(f))
         Esempio mancante
          10/05/22
Applicazioni lineari (continuo)
Richiamiamo
     f: V \to W
     f è un'applicazione lineare se \forall v_1, v_2 \in \mathbb{V}, \forall \lambda_1 \lambda_2 \in \mathbb{K}
     f(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 f(v_1) + \lambda_2 f(v_2)
    <u>NUCLEO</u>: Ker(f) := f^{-1}(0_w) = \{v \in \mathbb{V} : f(v) = 0_w\} \subseteq \mathbb{V} sottospazio di \mathbb{V}
    <u>IMMAGINE</u>: Im(f) := f(v) = \{f(v) : v \in \mathbb{V}\} \subseteq W sottospazio vettoriale di W
rg(f) \coloneqq dim(Im(f))
Osservazione : Sia f: \mathbb{V} \to W un'applicazione lineare e siano v_1, \dots, v_n \in \mathbb{V}. Allora
    f(\langle v_1, \dots, v_n \rangle) = \langle f(v_1), \dots, f(v_n) \rangle
    \dim
     f(\langle v_1, \dots, v_n \rangle) = f(\{\lambda_1 v_1, \dots, \lambda_n v_n : \lambda_1, \dots, \lambda_n \in \mathbb{K}\}) = \{f(\lambda_1 v_1, \dots, \lambda_n v_n) : \lambda_1, \dots, \lambda_n \in \mathbb{K}\} = \langle f(v_1), \dots, f(v_n) \rangle.
    Se \{v_1, \dots, v_n\} è una base di \mathbb{V}:
    Im(f) = f(v) = f(\langle v_1, \dots, v_n \rangle) = (v_1, \dots, v_n \text{ generano } V) \langle f(v_1, \dots, v_n) \rangle
    Quindi l'immagine di f: \mathbb{V} \to W è il sottospazio vettoriale generato dalle immagini degli elementi di una base di \mathbb{V}.
    rg(f) = dim(Im(f)) \le dim(\mathbb{V}) \leadsto dim(\mathbb{V}) - rg(f) = dim(Ker(f))
Teorema del rango (nullità + rango)
    Sia \mathbb{V} uno spazio vettoriale dimensione finito e sia f: \mathbb{V} \to W un'applicazione lineare. Allora dim(Ker(f))(nullità) + rg(f) = dim(\mathbb{V})
    Idea della dim
     \mathbb{V}, dim(\mathbb{V}) = n, \text{ e } Ker(f) \leq \mathbb{V} \Rightarrow dim(Ker(f) = p) \leq dim(\mathbb{V})
    Sia \{v_1, \dots, v_p\} base di Ker(f)
    Posso completare \{v_1, \dots, v_p\} a una base di \mathbb{V}. Quindi siano v_{p+1}, \dots, v_n tali che \{v_1, \dots, v_p, v_{p+1}, \dots, v_n\} è una base di \mathbb{V}. Si mostra che
\{f(v_{p+1}), \dots, f(v_n)\}\è una bse di Im(f).
Osservazione : Si noti che nell'enunciato del teorema non si è supposto che W è di dimensione finita.
Proposizione : Siano f: \mathbb{V} \to W e g: W \to U due applicazioni lineari. Allora la composizione
    g \circ f : V \longrightarrow U
              v \longmapsto g \circ f(v) := g(f(v))
```

Def:

17

dim: per esercizio $\forall v_1, v_2 \in \mathbb{V}, \forall \lambda_1 \lambda_2 \in \mathbb{K}$

 $g \circ f(\lambda_1 v_1 + \lambda_2 v_2) = (\text{da mostrare}) \lambda g \circ f(v_1) + \lambda_2 g \circ f(v_2)$

Esempio :

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 $g: R^2 \to (x, y, z) \mapsto (x + z, 2x + y)$ $(x, y) \mapsto \text{incompleto}$

Richiami:

Sia $f: \mathbb{V} \to W$ un'applicazione lineare.+

- f è suriettiva se $Im(f) = W \Leftrightarrow rg(f) = dim(W)$
- f è iniettiva se $\forall v_1, v_2 \in \mathbb{V}$ tali che $f(v_1) = f(v_2) \Rightarrow v_1 = v_2.$
- f è un isomorfismo se f è biettiva, cioè se f è iniettiva e suriettiva.

Se f è un isomorfismo allora esiste $f^{-1}: W \to \mathbb{V}$ tale che

$$f \circ f^{-1} = 1_W$$
 e $f^{-1} \circ f = 1_V$

È possibile mostrare che f^{-1} è anch'essa un'applicazione lineare biettiva, quindi un isomorfismo.

Esempio $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$(x,y) \mapsto (x+y,x-y)$$

• f è suriettiva?

Siano $v_1 = (x_1, y_1), v_2 = (x_2, y_2) \in \mathbb{R}^2$ tali che

$$f(v_1) = f(v_2) \Rightarrow (x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2) \Rightarrow \begin{cases} x_1 + y_1 = x_2 + y_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} 2x_1 = 2x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_1 - y_1 = x_2 - y_2 \end{cases} \Rightarrow \begin{cases}$$

• f è suriettiva?

$$Im(f) = f(R^2) = \langle f(1,0), f(0,1) \rangle = \langle (1,1), (1,-1) \rangle = \mathbb{R}^2$$

$$rg(f) = dim(Im(f)) = 2$$

Quindi f è suriettiva

Quindi f è un isomorfismo e quindi esiste l'applicazione lineare inversa

$$f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2: (\text{disegno con gli insiemi (tikz}))$$

Sia $(x', y') \in \mathbb{R}^2$ e sia $(x, y) \in \mathbb{R}^2$ tale che

$$f(x,y) = (x',y') \Rightarrow (x+y,x-y) = (x',y') \Rightarrow \begin{cases} x' = x+y \\ y' = x-y \end{cases} \Rightarrow \begin{cases} x'+y' = 2x \\ y' = x-y \end{cases} \Rightarrow \begin{cases} x'+y' = 2x \\ y' = x-y' = \frac{x'+y'}{2} - y' = \frac{x'-y'}{2} \end{cases}$$

$$f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x',y') \mapsto (\frac{x'+y'}{2},\frac{x'-y'}{2})$$

Sia $(x,y) \in \mathbb{R}^2$:

Sia
$$(x,y) \in \mathbb{R}^2$$
:

$$f^{-1}(f(x,y)) = f^{-1}(x+y,x-y) = \left(\frac{x+y+x-y}{2}, \frac{x+y(x-y)}{2}\right) = (x,y) \Rightarrow f^{-1} \circ f = f_{\mathbb{R}^2}.$$

Proposizione: Un'applicazione lineare $f: \mathbb{V} \to W$ è iniettiva se e solo se $Ker(f) = (0_{\mathbb{V}})$.

Nell'esempio $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$(x,y) \mapsto (x+y,x-y)$$

$$Ker(f) = \{(x,y): f(x,y) = (0,0)\} = \{(x,y): (x+y,x-y) = (0,0)\} = \{(x,y): \begin{cases} x+y=0 \\ x-y=0 \end{cases} \} = \{(0,0)\} \Rightarrow f \text{ è iniettiva}$$

dim

$$\Rightarrow$$
) Sia $f: \mathbb{V} \to W$ è iniettiva.

$$0_{\mathbb{V}} \in Ker(f)$$
 poichè $f(0_{\mathbb{V}}) = 0_W$.

Sia
$$v \in Ker(f) \Rightarrow f(\underline{v}) = 0_W = f(0_{\mathbb{V}}) \Rightarrow v = 0_{\mathbb{V}}.$$

Quindi $Ker(f) = \{0_{\mathbb{V}}\}\$

 \Leftarrow) Supponiamo $Ker(f) = \{0_{\mathbb{V}}\}.$

Siano
$$v_1, v_2 \in \mathbb{V}$$
 tali che $f(v_1) = f(v_2) \Rightarrow f(v_1) - f(v_2) = 0_W \Rightarrow v_1 - v_2 \in Ker(f) = \{0_{\mathbb{V}}\} \Rightarrow v_1 - v_2 = 0_{\mathbb{V}} \Rightarrow v_1 = v_2$ Quindi f è iniettiva.

Corollario (del teorema del rango)

Siano \mathbb{V} e W due spazi vettoriali tali che $dim(\mathbb{V}) = dim(W)$.

Sia $f: \mathbb{V} \to W$ un'applicazione lineare. Allora le seguenti affermazioni sono equivalenti:

• f è iniettiva

- \bullet f è suriettiva
- \bullet f è un isomorfismo

 $\underline{\dim}$

f è iniettiva $\Leftrightarrow Ker(f) = \{0_{\mathbb{V}}\} \Leftrightarrow dim(Ker(f)) = 0 \Leftrightarrow dim(Ker(f)) = 0 \Leftrightarrow rg(f) = dim(W) \Leftrightarrow f$ è suriettiva.

Osservazione $f: \mathbb{V} \to W$

- se $dim(\mathbb{V}) > dim(W) \Rightarrow f$ non è iniettiva $dim(Ker(f)) = dim(\mathbb{V}) - rg(f) > dim(W) - rg(f) \ge 0 \Rightarrow dim(Ker(f)) \ge 1$
- se $dim(\mathbb{V}) < dim(W) \Rightarrow f$ non è suriettiva

Matrici associate alle applicazioni lineari $\mathbb{V}, dim(V) = n, B = \{v_1, \dots, v_n\}$ base di \mathbb{V}

$$W, dim(W) = m, B'\{w_1, \dots, w_m\} \text{ base di } W$$

$$f: \mathbb{V} \to W \text{ un'applicazione lineare.}$$

$$f(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$\vdots$$

$$f(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

$$a_{ij} \in \mathbb{K}$$

Def: Chiamiamo la matrice di $f: \mathbb{V} \to W$ nelle basi $B = \{v_1, \dots, v_n\}, B'w_1, \dots, w_m$ una matrice incompleto

 $f(v_1), \dots, f(v_n)$ nella base di incompleto

esempio mancante INCOMPLETISSIMO

18 11/05/22

$$\mathbb{V}, \ B = \{v_1, \dots, v_n\} \\ W, \ B' = \{w_1, \dots, w_m\} \\ f : \mathbb{V} \to W \text{ applicazione lineare} \\ f(v_1) = a_{11}w_1 + a_{12}w_2 + \dots + a_{1m}w_m \\ \vdots \\ f(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m \\ M_{B'B}(f) = (a_{ij})_{1 \le i \le m1 \le j \le n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & & \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{pmatrix}$$

Esempio:

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x, y, z) \mapsto (x + 2y + 3z, -x + 5y - 7z)$$

$$B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \text{ base di } \mathbb{R}^3$$

$$B' = \{(1, 1), (1, -1)\} \text{ base di } \mathbb{R}^2$$

$$\mathcal{M}_{B'B}(f)$$

$$f(1, 0, 0) = (1, -1) = 0 \cdot (1, 1) + 1 \cdot (1, -1)$$

$$f(0, 1, 0) = (2, 5) = \frac{7}{2}(1, 1) - \frac{3}{2}(1, -1)$$

$$f(0, 0, 1) = (3, -7) = -2(1, 1) + 5(1, -1)$$

$$a(1, 1) + b(1, -1) = (2, 5) \Rightarrow \begin{cases} a + b = 2 \\ a - b = 5 \end{cases} \Rightarrow \begin{cases} a = \frac{7}{2} \\ b = -\frac{3}{2} \end{cases}$$

$$a(1, 1) + b(1, -1) = (3, -7) \Rightarrow \begin{cases} a + b = 3 \\ a - b = -7 \end{cases} \Rightarrow \begin{cases} a = -2 \\ b = 5 \end{cases}$$

$$\mathcal{M}_{B'B} = \begin{pmatrix} 0 & \frac{7}{2} & -2 \\ 1 & -\frac{3}{2} & 5 \end{pmatrix}$$

$$v = (1, -2, -1) \in \mathbb{R}^3$$

$$\mathcal{M}_{B'B}(f) \cdot v = \begin{pmatrix} 0 & \frac{7}{2} & -2 \\ 1 & -\frac{3}{2} & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} \text{incompleto} \end{pmatrix}$$
Calcolo dell'immagine di un vettore

```
Proposizione : \mathbb{V} con base B = \{v_1, \dots, v_n\}
     W con base B' = \{w_1, \dots, w_m\}
     f: \mathbb{V} \to W applicatione lineare
     Allora per ogni v = x_1 v_1 + \dots + x_n v_n si ha f(v) = y_1 w_1 + \dots + y_m w_m dove \begin{pmatrix} y_1 \\ \vdots \\ x_n \end{pmatrix} = \mathcal{M}_{B'B}(f) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}
     \mathbb{V} \text{ con base } B = \{v_1, \cdots, v_n\}
     W con base B' = \{w_1, \dots, w_m\}
     U con base B''=\{u_1,\cdots,u_p\}
     f: \mathbb{V} \to W, g: W \to U applicazione lineare
     \mathcal{M}_{B'B}(f),
                          M_{B''B'}(g)
     v \in \mathbb{V}, v = x_1v_1 + \dots + x_nv_n
      f(v) \in W, f(v) = y_1 w_1 + \dots + g_m w_m dove
     g(f(v) \in W) \in U, g(f(v)) = z_1u_1 + \dots + z_pu_p dove
             = \mathcal{M}_{B''B'}(g) \begin{pmatrix} y_1 \\ \vdots \\ x_n \end{pmatrix} = \mathcal{M}_{B''B'}(g) \mathcal{M}_{B'B}(f) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} 
     \mathcal{M}_{B''B}(g \circ f) = \mathcal{M}_{B''B'}(g)\mathcal{M}_{B'B}(f)
     La matrice del cambiamento di coordinate
     V, B = \{v_1, \dots, v_n\}, B' = \{v'_1, \dots, v'_n\} due basi
     idv: \mathbb{V}^B \to V^{B'}
v \mapsto v'
     \mathcal{M}_{B'B}(idv) è detta matrice del cambiamento di coordinate dalla base B alla base B'
     v = x_1 v_1 + \dots + x_n v_n = y_1 v_1' + \dots + y_n v_n'
              = \mathcal{M}_{B'B}(idv) \begin{pmatrix} x_1 \\ \vdots \end{pmatrix}
     Inoltre abbiamo:
     \mathcal{M}_{BB'}(idv)\mathcal{M}_{B'B}(idv) = \mathcal{M}_{BB}(idv) = I_n \Leftarrow idv(v_1) = 1v_1 + 0v_2 + \dots + 0v_n; idv(v_2) = 0v_1 + 1v_2 + \dots + 0v_n
     \Rightarrow \mathcal{M}_{BB'}(idv) = (\mathcal{M}_{B'B}(idv))^{-1}
Esempio:
V = \mathbb{R}^3
      B = \{(1,0,0), (0,1,0), (0,0,1)\}
      B' = \{(1, -1, 0), (0, -2, -1), (1, 1, 2)\}
     \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & -1 \\ 1 & 1 & 2 \end{bmatrix} = -4 + 1 + 1 = -2
     idv(1,-1,0) = (1,-1,0) = 1(1,0,0) + (-1)(0,1,0) + 0(0,0,1)
     \mathcal{M}_{B'B}(idv) = \begin{pmatrix} \frac{3}{2} & \frac{1}{2} & -1\\ -1 & -1 & 1\\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1\\ -1 & -2 & 1\\ 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}
     (1,0,0) = a_1(1,-1,0) + b_1(0,-2,-1) + c_1(1,1,2)
     (0,1,0) = a_2(1,-1,0) + b_2(0,-2,-1) + c_2(1,1,2)
     (0,0,1) = a_3(1,-1,0) + b_3(0,-2,-1) + c_3(1,1,2)
     Ci concentriamo ora al caso degli endomorfismi:
Def:
           Sia V uno spazio vettoriale.
           Un endomorfismo o un operatore lineare di \mathbb{V} è un'applicazione lineare
           f: \mathbb{V} \to \mathbb{V}
           L'insieme degli endomorfismi di \mathbb{V} si denota End(\mathbb{V}).
     Sia f \in End(\mathbb{V}) e sia B = \{v_1, \dots, v_n\} una base di \mathbb{V}. Allora
     \mathcal{M}_B(f) \coloneqq M_{BB}(f) \in \mathcal{M}_n(\mathbb{K})
     Sia B' un'altra base di \mathbb{V} allora
     \mathcal{M}_{B'}(f)
```


 $det(\mathcal{M}_{B'}(f)) = det(\mathcal{M}_{B'B}(idv)M_B(f)\mathcal{M}_{BB'}(idv)) = det(\mathcal{M}_{B'B}(idv))det(\mathcal{M}_B(f))det(\mathcal{M}_{BB'}(f)) = \frac{1}{det(\mathcal{M}_{BB'}(idv))} \cdot det(\mathcal{M}_B(f)) \cdot det(\mathcal{M}_{BB'}(idv)) + det(\mathcal{M}_{BB'}(idv))det(\mathcal{M}_{BB'}(idv))det(\mathcal{M}_{BB'}(idv)) + det(\mathcal{M}_{BB'}(idv))det(\mathcal{M}_{BB'$

 $det(\overline{\mathcal{M}_{BB'}}(idv))$

Partiamo da un esempio

$$\overline{\mathrm{Sia}\ f:\mathbb{R}^2\to\mathbb{R}^2}$$

$$B = \{v_1 = (1,1), v_2 = (1,-1)\}$$

$$\mathcal{M}_B(f) = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$$
, matrice diagonale

$$f(v_1) = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2v_1$$

$$f(v_1) = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -v_2$$

$$f(v_1 + v_2) = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} = 2v_1 - v_2$$

disegno geometrico con vettori

Autovalore

Autovettori

Autospazio

Operatore diagonale

Sia $\mathbb V$ uno spazio vettoriale su $\mathbb K$

Un endomorfismo $f \in End(\mathbb{V})$ si dice diagonalizzabile se esiste una base $B = \{v_1, \dots, v_n\}$ di \mathbb{V} tale che $\mathcal{M}_B(f)$ sia una matrice diagonale, cioè della forma

$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}, \lambda_i \in \mathbb{K}$$

Se ciò avviene Bè detta una base diagonalizzante di fe $\forall v_i \in B$ si ha

 $f(v_i) = \lambda_i v_i$

 λ_i autovalore, v_i autovettore

Sia \mathbb{V} uno spazio vettoriale e sia $f \in End(\mathbb{V})$. Def:

Un vettore $v \in \mathbb{V}$ si dice un <u>autovettore</u> di f se $v \neq 0_{\mathbb{V}}$ e se $\exists \lambda \in \mathbb{K}$ tale che $f(v) = \lambda v$

 λ è detto autovalore di f relativo all'autovettore v

Il sottoinsieme di \mathbb{K} costituito dagli autovalori di f è detto spettro di f.

Esempio:

• $f = idv \in End(\mathbb{V}), dim(\mathbb{V}) = n$.

Per ogni base B di \mathbb{V}

 $\mathcal{M}_B = I_n \Rightarrow idv$ è diagonalizzabile.

 $\forall v \in \mathbb{V}, id(v) = v = 1 \cdot v$

Quindi ogni $v \in \mathbb{V} \setminus \{0_{\mathbb{V}}\}$ è un autovettore di idv di autovalore 1.

incompleto

13/05/2219

Def: Sia \mathbb{V} uno spazio vettoriale su \mathbb{K} .

Sia $f \in End(\mathbb{V})$ un endomorfismo. Un vettore $v \in \mathbb{V}$ si dice autovettore se $v \neq 0_{\mathbb{V}}$ e se $\exists \lambda \in \mathbb{K}$ tale che $f(v) = \lambda v$.

Lo scalare λ si dice autovalore di f relativo all'autovettore v.

Il sottoinsieme di \mathbb{K} costituito dagli autovalori di f è detto spettro di f.

L'endomorfismo f si dice diagonalizzabile se possiede una base $B = \{v_1, \dots, v_n\}$ di autovettori, cioè se $\mathcal{M}_B(f) =$

$$\begin{pmatrix} \lambda_1 & 0 \\ \ddots & \\ 0 & \lambda_n \end{pmatrix}$$

Una tale base si dice base diagonale.

Proposizione : Siano $v_1, v_2 \in \mathbb{V}$ due autovettori relativi allo stesso autovalore λ per endomorfismo $f : \mathbb{V} \to \mathbb{V}$.

Siano $\mu_1, \mu_2 \in \mathbb{K}$ tali che $\mu_1 v_1 + \mu_2 v_2 \neq 0_{\mathbb{V}}$.

Allora $\mu_1 v_1 + \mu_2 v_2$ è un autovettore di autovalore λ .

Mostriamo che $f(\mu_1 v_1 + \mu_2 v_2) = \lambda(\mu_1 v_1 + \mu_2 v_2)$.

 $f(\mu_1 v_1 + \mu_2 v_2) = \mu_1 f(v_1) + \mu_2 f(v_2) = \mu_1 \lambda v_1 + \mu_2 \lambda v_2 = \lambda(\mu_1 v_1 + \mu_2 v_2) \sqcap$

Def: L'insieme

 $\mathbb{V}_{\lambda} := \{ v \in \mathbb{V} : v \text{ è un autovettore di } f \text{con autovalore} \lambda \} \cup \{0_{\mathbb{V}}\}$

è un sottospazio vettoriale di $\mathbb V$ detto autospazio relativo all'autovalore λ .

Proposizione : Se $v_1, \dots, v_p \in \mathbb{V}$ sono autovettori relativi agli autovalori $\lambda_1, \dots, \lambda_p \in \mathbb{K}$ e se questi λ_i sono a due a due distinti, allora v_1, \dots, v_p sono linearmente indipendenti

<u>Dim</u>: sulle note della prof (per induzione)

Obiettivo: Dato $f \in End(\mathbb{V})$, determinare se f è diagonalizzabile e, in tal caso, determinare una base diagonalizzante, ossia una base di autovettori.

Problema: Come determiniamo lo spettro di f?

Sia $f \in End(\mathbb{V})$. Sia λ un autovalore di f.

Allora
$$\exists v \neq 0_{\mathbb{V}}$$
 tale che $f(v) = \lambda v \Leftrightarrow f(v) - \lambda v = 0_{\mathbb{V}} \Leftrightarrow (f - \lambda i dv) \to f - \lambda i dv : \mathbb{V} \to \mathbb{V}$ $v \mapsto (f - \lambda i dv)(v) \coloneqq f(v) - \lambda v$ è un'applicazione lineare. \Leftrightarrow teorema del rango $rg(f - \lambda i dv) < n$

 \Leftrightarrow teorema del rango $rg(f - \lambda idv) < n$

$$\Leftrightarrow det(f - \lambda i dv) = 07$$

Sia B una base di \mathbb{V} . Allora:

 $det(f - \lambda i dv) = 0 \Leftrightarrow det(\mathcal{M}_B(f - \lambda i dv)) = 0 \Leftrightarrow def(\mathcal{M}_B(d) - \lambda I_n) = 0$

<u>Def</u>: Sia $A = (a_i j) \in \mathcal{M}_n(K)$ e sia T un'indeterminata.

Il determinante $P_A(T) := det(A - TI_n) = \begin{pmatrix} a_1 1 & a_1 2 & \cdots & a_1 n \\ a_2 1 & a_2 2 & \cdots & a_2 n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 1 & a_2 2 & \cdots & a_n n \end{pmatrix}$ è un polinomio di grado n in T detto

polinomio caratteristico di A.

Siano $f \in End(\mathbb{V})$, B una base di \mathbb{V} e $A = M_B(f)$, allora $P_A(T)$ è il polinomio caratteristico di f e si denota $P_f(T)$

Osservazione : Il polinomio caratteristico di un endomorfismo è indipendente dalla base scelta

Proposizione : Sia \mathbb{V} uno spazio vettoriale di dim n e sia $f \in End(\mathbb{V})$.

Allora λ è un autovalore di $f \Leftrightarrow \lambda$ è una radice di $P_f(T), (P_f(\lambda) = 0)$.

Osservazione : $P_f(T) \in \mathbb{K}[T]$ di grado n.

Quindi $P_f(T)$ ha al più n radici in \mathbb{K} .

Ne segue che f ha al più n autovalori distinti.

Ricorda:

- λ è un autovalore di $f \in End(\mathbb{V}) \Leftrightarrow P_f(T) = 0$.
- $\mathbb{V}_{\lambda}(f) = Ker(f \lambda idv)$
 - -v=0
 - $-v: f(v) = \lambda v \Leftrightarrow (f \lambda i dv)(v) = 0_{\mathbb{V}}$

Esempio:

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (y - z, -x + 2y, x - y + 2z)$
 $B: \text{ base canonica di } \mathbb{R}^3:$

- scrivere $M_B(f)$
- calcolare il polinomio caratteristico $P_f(T)$
- trovare le radici di $P_f(T)$ in \mathbb{R}^3

$$M_B(f) = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

$$P_f(T) = \begin{pmatrix} -T & 1 & -1 \\ -1 & 2 - T & -1 \\ 1 & -1 & 2 - T \end{pmatrix} \text{incompleto}$$

```
Teorema \mathbb{V}, dim(\mathbb{V}) = n, f \in End(\mathbb{V}), Spec(f) = \{\lambda_1, \dots, \lambda_k\} (insieme degli autovalori)
Allora: dim(V_{\lambda_1}(f)) + \dots + dim(V_{\lambda_k}(f)) \leq n
e l'uguagliansa sussiste se e solo se f è diagonalizzabile.
In tal caso: V = V_{\lambda_1}(f \oplus \dots \oplus V_{\lambda_k}(f)).
Ne segue che una base diagonalizzante per f è data dall'unione delle basi di ciascun autospazio.
```

Corollario : Se dim(V) = n e $f \in End(V)$ possiede n autovalori, allora f è diagonalizzabile. esempio mancante

$20 \quad 18/05/22$

incompleto

Fine

Ultimamente gli appunti sono pieni di grafici, mi è difficile prendere appunti, quindi lascio la scrittura di questo file al me del futuro che scriverà direttamente ricopiando gli appunti della professoressa. Inoltre sarebbe necessaria una revisione approfondita di tutto il file