MA 102 (Mathematics II)

Department of Mathematics, IIT Guwahati

Tutorial Sheet No. 3 January 27, 2017

(1) Let D be a closed and bounded subset of \mathbb{R}^n . Prove that if $f: D \to \mathbb{R}$ is continuous then it is uniformly continuous.

- (2) Show that the function $f: \mathbb{R}^n \to \mathbb{R}$ (n > 1) defined by $f(X) = \sin(\|X\|^2)$ is not uniformly continuous on \mathbb{R}^n .
 - (Thus, the function $f(x,y) := \sin(x^2 + y^2)$ is not uniformly continuous on \mathbb{R}^2 .)
- (3) Prove that \sqrt{x} is Lipschitz continuous on $[1, \infty)$.
- (4) Let $F: S \subseteq \mathbb{R} \to \mathbb{R}^3$ and $G: S \subseteq \mathbb{R} \to \mathbb{R}^3$ where S is an open set in \mathbb{R} . Let $t_0 \in S$. Prove that $(F \times G)'(t_0) = (F'(t_0) \times G(t_0)) + (F(t_0) \times G'(t_0))$. (The cross product of F and G at t is defined as the cross product of the vectors F(t) and G(t), that is, $(F \times G)(t) := F(t) \times G(t)$.)
- (5) Find the arc length of the following curves.
 - (a) $r(\theta) = (2\cos^2\theta, 2\cos\theta\sin\theta), \ 0 \le \theta \le \pi.$
 - (b) $r(t) = (t^2, t^3), 1 < t < 2.$
- (6) Reparametrize the following curves in terms of arc length.
 - (a) $r(t) = \frac{t^2}{2} \hat{i} + \frac{t^3}{3} \hat{k}$ $(0 \le t \le 2)$
 - (b) $r(t) = (3 \cos t^2) \hat{i} + (3 \sin t^2) \hat{j}$ $(0 \le t \le 2\pi)$.
- (7) Find T(t), N(t) and κ for the circular helix $F(t) = (a\cos(t), a\sin(t), bt)$ in the space where a > 0 and b > 0.
- (8) Consider the curve $r(t) = t \hat{i} + t^2 \hat{j} + \frac{2}{3}t^3 \hat{k}$. Find the equations of the unit tangent, principal normal, and binormal to this curve at the point $(1, 1, \frac{2}{3})$. For this curve show that the curvature $\kappa = 2(1+2t^2)^{-2}$.
- (9) An object moves counterclockwise along a circle of radius $r_0 > 0$ with a constant speed $v_0 > 0$. Set up the coordinate system so that the circle lies in the xy-plane with the origin as its center and so that the object is on the positive x-axis at time 0 and moves counterclockwise around the circle. Show that the position vector of the object is given by $R(t) = r_0 \left(\cos(v_0 t/r_0) \hat{i} + \sin(v_0 t/r_0) \hat{j} \right)$. Find formulas for the velocity and acceleration of the object.

---***---