

SIG-SIG-KEM (simplified)

Choose METHHOD and SUITES

 $Msg_1 = (METHOD, SUITES, G_X, [EAD_1])$

- If agree on METHOD and SUITES. (ct_kem, k_kem) = KEM.Encap(G_X)
 G Y = ct kem, G XY = k kem
- TH_2 = H(G_Y, H(Msg_1))
- PRK_2e = HKDF_Extract(TH_2, G_XY), PRK_3e2m = PRK_2e
- MAC_2 = mac(PRK_3e2m, 2, C_R || ID_CRED_R || TH_2 || CRED_R || EAD_2)
- SIG_2 = Sign(sk_R, (ID_CRED_R, (TH_2 || CRED_R || [EAD_2]), MAC_2))
- Ptxt_2 = (C_R, ID_CRED_R, SIG_2, [EAD_2])

 $Msg_2 = (G_Y, Ptxt_2 \oplus KDF(PRK_2e, 0, TH_2, Ptxt_2_length))$

- Verify Sig_2 (verify Responder), if it fails then abort. G_XY = KEM.Decap(sk_kem, G_Y)
- TH_3 = H(TH_2, , Ptxt_2,), PRK_4e3m = PRK_3e2m
- MAC_3 = mac(PRK_4e3m, 6, ID_CRED_I || TH_3 || CRED_I || [EAD_3])
- SIG_3 = Sign(sk_I, (ID_CRED_I, (TH_3 || CRED_I || [EAD_3]), MAC_3))
- Ptxt_3 = (ID_CRED_I, SIG_3, [EAD_3])
- K_3 = KDF(PRK_4e3m, 3, TH_3, key_length)
- TH_4 = H(TH_3, Ptxt_3, CRED_I), PRK_out = KDF(PRK_4e3m, 7, TH_4, hash_lenght)

 $Msg_3 = AEAD.Enc(K_3, \{IV_3\}, Ptxt_3, \{AD_3\})$

- Decrypt Msg_3 then Verify Sig_3 (verify Initiator), if it fails then abort
- TH_4 = H(TH_3, Ptxt_3, CRED_I), PRK_out = KDF(PRK_4e3m, 7, TH_4, hash_lenght)

Shared Key = KDF(PRK_out, 10, " ", hash_length)

KEM-KEM (simplified)

(pk_kem, sk_kem) = KEM.KeyGen(), G_X = pk_kem
(ct_auth_R, K_auth_R) = KEM.Encap(pk_R)
Enc auth R = AEAD.Enc(K auth R, ID CRED I)

Msg_1 = (METHOD, SUITES, G_X, [EAD_1]) + ct_auth_R + Enc_auth_R

Choose METHHOD and SUITES

Should have IV, Nonce to use with AEAD.Enc (YES): $TH_1 = H(Msg_1)$

 $AAD = TH_1$

 $IV_1 = KDF(K_auth_R, -1, TH_1, IV_length)$

If agree on METHOD and SUITES.

K_auth_R = KEM.Decap(sk_R, ct_auth_R), ID_CRED_I = AEAD.Dec(K_auth_R, Enc_auth_R)
Verify CRED_I (verify Initiator), (ct_auth_I, K_auth_I) = KEM.Encap(pk_I)
(ct_kem, k_kem) = KEM.Encap(G_X), G_Y = ct_kem, G_XY = k_kem

- TH 2 = H(G Y, H(Msg 1))

- PRK 2e = HKDF Extract(TH 2, G XY), PRK 3e2m = HKDF Extract(SALT 3e2m, K auth R)
- MAC_2 = mac(PRK_3e2m, 2, C_R || ID_CRED_R || TH_2 || CRED_R || EAD_2)
- Ptxt 2=(C R, ID CRED R, MAC 2, [EAD 2])

 $Msg_2 = (G_Y, Ptxt_2 \oplus KDF(PRK_2e, 0, TH_2, Ptxt_2_length)) +$ ct_auth_1

- Verify MAC_2 and CRED_R if it fails then abort. G_XY = KEM.Decap(sk_kem, G_Y)
 K auth_I = KEM.Decap(sk_I, ct_auth_I)
- TH_3 = H(TH_2, , Ptxt_2,), PRK_4e3m = HKDF_Extract(SALT_4e3m, K_auth_I)
- MAC_3 = mac(PRK_4e3m, 6, ID_CRED_I || TH_3 || CRED_I || [EAD_3])
- Ptxt_3 = (ID_CRED_I, MAC_3, [EAD_3])
- K 3 = KDF(PRK 4e3m, 3, TH 3, key length)
- TH_4 = H(TH_3, Ptxt_3, CRED_I), PRK_out = KDF(PRK_4e3m, 7, TH_4, hash_lenght)

 $Msg_3 = AEAD.Enc(K_3, \{IV_3\}, Ptxt_3, \{AD_3\})$

- Decrypt **Msg_3**, if it fails then abort
- TH_4 = H(TH_3, Ptxt_3, CRED_I), PRK_out = KDF(PRK_4e3m, 7, TH_4, hash_lenght)

Shared Key = KDF(PRK_out, 10, " ", hash_length)