CSE 3318 Notes 15: Shortest Paths

(Last updated 8/17/22 3:03 PM)

CLRS 22.3, 23.2

15.A. CONCEPTS

(Aside: https://dl-acm-org.ezproxy.uta.edu/doi/10.1145/2530531)

Input:

Directed graph with *non-negative* edge weights (stored as adj. matrix for Floyd-Warshall) Dijkstra – source vertex

Output:

Dijkstra – tree that gives a shortest path from source to each vertex Floyd-Warshall – shortest path between each pair of vertices ("all-pairs") as matrix

15.B. DIJKSTRA'S ALGORITHM – three versions

Similar to Prim's MST:

S = vertices whose shortest path is known (initially just the source)

Length of path
Predecessor (vertex) on path (AKA shortest path tree)

T = vertices whose shortest path is not known

Each phase moves a T vertex to S by virtue of that vertex having the shortest path among all T vertices.

Third version may be viewed as being BFS with the FIFO queue replaced by a priority queue.

1. "Memoryless" – Only saves shortest path tree and current partition.

(https://ranger.uta.edu/~weems/NOTES3318/dijkstraMemoryless.c)

```
Place desired source vertex x \in V in S T = V - \{x\} x. distance = 0 x.pred = (-1) while T \neq \emptyset

Find the edge (s, t) over all t \in T and all s \in S with minimum value for s. distance + weight(s, t) (i.e. scan adj. list for each <math>s) t. distance = s. distance + weight(s, t) t. pred = s T = T - \{t\} S = S \cup \{t\}
```

Since no substantial data structures are used, this takes $\Theta(EV)$ time.

2. Maintains T-table that provides the predecessor vertex in S for each vertex t ∈ T to give the shortest possible path through S to t. (https://ranger.uta.edu/~weems/NOTES3318/dijkstraTable.c)

Eliminates scanning all S adjacency lists in every phase, but still scans the list of the last vertex moved from T to S.

```
Place desired source vertex x \in V in S
T = V - \{x\}
x.distance = 0
x.pred = (-1)
for each t \in T
Initialize t.distance with weight of <math>(x, t) (or \infty if non-existent) and t.pred = x
```

```
while T \neq \emptyset
Scan T entries to find vertex t with minimum value for t.distance T = T - \{t\}
S = S \cup \{t\}
for each vertex x in adjacency list of t (i.e. (t, x))

if x \in T and t.distance + weight(t, x) < x.distance

x.distance = t.distance + weight(t, x)
x.pred = t
```

Analysis:

```
Initializing the T-table takes \Theta(V).
Scans of T-table entries contribute \Theta(V^2).
Traversals of adjacency lists contribute \Theta(E).
\Theta(V^2 + E) = \Theta(V^2) overall worst-case.
```

3. Replace T-table by a min-heap.

```
(https://ranger.uta.edu/~weems/NOTES3318/dijkstraHeap.cpp)
```

The time for updating distances and predecessors increases, but the time for selection of the next vertex to move from T to S improves.

```
Place desired source vertex x \in V in S
T = V - \{x\}
x.distance = 0
x.pred = (-1)
for each t \in T
       Initialize T-heap with weight (as the priority) of (x, t) (or \infty if non-existent) and t.pred = x
minHeapInit(T-heap) // a fixDown at each parent node in heap
while T \neq \emptyset
       Use heapExtractMin /* fixDown */ to obtain T-heap entry with minimum t.distance
       T = T - \{t\}
       S = S \cup \{t\}
       for each vertex x in adjacency list of t (i.e. (t, x))
               if x \in T and t.distance + weight(t, x) < x.distance
                       x.distance = t.distance + weight(t, x)
                       x.pred = t
                       minHeapChange(T-heap) // fixUp
```

Analysis:

```
Initializing the T-heap takes \Theta(V).
Total cost for heapExtractMins is \Theta(V \log V).
Traversals of adjacency lists and minHeapChanges contribute \Theta(E \log V).
\Theta(E \log V) overall worst-case, since E > V.
```

Which version is the fastest?

Theory Sparse
$$(E = O(V))$$
 Dense $(E = \Omega(V^2))$

1. $\Theta(EV)$ $\Theta(V^2)$ $\Theta(V^3)$

2. $\Theta(V^2)$ $\Theta(V^2)$ $\Theta(V^2)$ $\Theta(V^2)$

3. $\Theta(E \log V)$ $\Theta(V \log V)$ $\Theta(V^2 \log V)$

15.C. FLOYD-WARSHALL ALGORITHM

Based on adjacency matrices. Will examine three versions:

Warshall's Algorithm – After $\Theta(V^3)$ preprocessing, processes each path existence query in $\Theta(1)$ time.

Warshall's Algorithm with Successors (or predecessors or transitive vertices) - After $\Theta(V^3)$ preprocessing, provides a path in response to a path existence query in O(V) time (similar to dynamic programming backtrace).

Floyd-Warshall Algorithm (with Successors) - After $\Theta(V^3)$ preprocessing, provides each *shortest* path in O(V) time.

Warshall's Algorithm:

If zero-edge paths are useful for an application (i.e. reflexive, self-loops), the diagonal may be all ones.

Why does it work?

- a. Correct in use of transitivity.
- b. Is it *complete*?

When	Paths That Can Be Detected
Before j=0	$x \rightarrow y$
After j=0	$x \to 0 \to y$
After j=1	$x \to 1 \to y$ $x \to 0 \to 1 \to y$ $x \to 1 \to 0 \to y$
After j=2	$x \to 2 \to y$ $x \to 0 \to 2 \to y$ $x \to 1 \to 2 \to y$ $x \to 2 \to 0 \to y$ $x \to 2 \to 1 \to y$ $x \to 0 \to 1 \to 2 \to y$ $x \to 0 \to 1 \to 2 \to y$ $x \to 0 \to 2 \to 1 \to y$ $x \to 1 \to 0 \to 2 \to y$ $x \to 1 \to 2 \to 0 \to y$ $x \to 2 \to 0 \to 1 \to y$ $x \to 2 \to 1 \to 0 \to y$
	•••
After j=p	$x \rightarrow Permutation of subset of 0 p \rightarrow y$
After j=V-1	ALL PATHS

Math. Induction:

Suppose that there is only one path from vertex 5 to vertex 10 in a directed graph: $5 \rightarrow 7 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 10$. During the scan of which column will Warshall's algorithm record the presence of this path?

Warshall's Algorithm with Successors

Successor Matrix

Buc-ee's directions:

Initialize:

Warshall Matrix Update:

succ[i][j] = A succ[j][k] = B succ[i][k] = ?


```
for (j=0; j<V; j++)
  for (i=0; i<V; i++)
   if (s[i][j] != (-1))
     for (k=0; k<V; k++)
      if (succ[i][k]==(-1) && succ[j][k]!=(-1))
        succ[i][k] = succ[i][j];</pre>
```

Suppose code in box is removed for this graph:

Complete Example (https://ranger.uta.edu/~weems/NOTES3318/warshall.c) saving paths using successors:

	0	1	2	3	4		0	1	2	3	4
0	-1	-1	-1	3	-1	0	-1	-1	-1	3	-1
1	-1	-1	-1	3	4	1	-1	-1	-1	3	4
2	-1	1	-1	-1	-1	2	-1	1	-1	1	1
3	-1	-1	2	-1	-1	3	-1	2	2	2	2
4	-1	-1	-1	-1	-1	4	-1	-1	-1	-1	-1
	0	1	2	3	4		 0	 1			4
0	-1	-1	-1	3	-1	0	-1	3	3	3	3
1	-1		-1	3	4	1	-1	3	3	3	4
2	-1	1	<u>-1</u>	<u></u>	_	2	-1 -1	1	1	1	1
				-1 -1		3	-1 -1	2	2	2	2
3	-1	-1	2		-1						
4	-1 	-1 	-1 	-1 	-1 	4	<u>-1</u>	_1 	1 	_1 	1
	0	1	2	3	4		0	1	2	3	4
0	-1	-1	-1	3	-1	0	-1	3	3	3	3
1	-1	-1	-1	3	4	1	-1	3	3	3	4
2	-1	1	-1	1	1	2	-1	1	1	1	1
3	-1	-1	2	-1	-1	3	-1	2	2	2	2
4	-1	-1	-1	-1	-1	4	-1	-1	-1	-1	-1

Other ways to save path information:

Predecessors (warshallPred.c)

Transitive/Intermediate/Column (warshallCol.c)


```
for (j=0;j<n;j++)
  for (i=0;i<n;i++)
   if (pred[i][j]!=(-1))
     for (k=0;k<n;k++)
      if (pred[i][k]==(-1) && pred[j][k]!=(-1))
         pred[i][k]=pred[j][k];</pre>
```

Floyd-Warshall Algorithm with Successors (https://ranger.uta.edu/~weems/NOTES3318/floydWarshall.c)

After j = p has been processed, the *shortest path* from each x to each y that uses *only* vertices in $0 \dots p$ as intermediate vertices is recorded in matrix.

```
for (j=0;j<n;j++)
{
  for (i=0;i<n;i++)
    if (dist[i][j]<00)
     for (k=0;k<n;k++)
        if (dist[j][k]<00)
        {
        newDist=dist[i][j]+dist[j][k];
        if (newDist<dist[i][k])
        {
            dist[i][k]=newDist;
            succ[i][k]=succ[i][j];
        }
     }
}</pre>
```


	0	1	2	3	4
0		1	1		5
1			5	1	
2					1
3	1				10
4					

	0	1	2	3	4
0	00	1 1	1 2	00	5 4
1	00	00	5 2	1 3	00
2	00	00	00	00	1 4
3	1 0	00	00	00	10 4
4	00	00	00	00	00

0	00	1 1	_	3 00	4 5 4
1	00	00	5 2	1 3	00
2	00	00	00	00	1 4
3	1 0	2 0	2 0	00	6 0
4	00	00	00	00	00

0	0 00	1 1 1	2 1 2	3 2 1	4 5 4	0	0 3 1	1 1 1	2 1 2	3 2 1	4 2 2
1	00	00	5 2	1 3	00	1	2 3	3 3	3 3	1 3	4 3
2	00	00	00	00	1 4	2	00	00	00	00	1 4
3	1 0	2 0	2 0	3 0	6 0	3	1 0	2 0	2 0	3 0	3 0
4	00	00	00	00	00	4	00	00	00	00	00
	_										
	0	1	2	3	4		0	1	2	3	4
0	0 00	1 1 1	2 1 2	3 2 1	4 2 2	0	0 3 1	1 1 1	2 1 2	3 2 1	4 2 2
0 1	-			3 2 1 1 3		0	_				
	00	1 1	1 2	2 1	2 2		3 1	1 1	1 2	2 1	2 2
1	00	1 1	1 25 2	2 1 1 3	2 2 6 2	1	3 1 2 3	1 1 3 3	1 2 3 3	2 1 1 3	2 2 4 3
1 2	00	1 1 00 00	1 2 5 2 00	2 1 1 3 00	2 26 21 4	1	3 1 2 3 00	1 1 3 3 00	1 2 3 3 00	2 1 1 3 00	2 24 31 4

Note: In this example, zero-edge paths are not considered.