

# Facet & Embed (Dividir e Incrustar)

Visualización de Información - IIC2026

Profesor: Denis Parra

(Clase de hoy: Hernán Valdivieso)

#### Planificación semanal

- Ya está subida la tarea 2 (2 semanas y 1 día)
- Ya está subida la entrega 2: Presentaciones (2 semanas y 4 días)
- Mañana control 1 a las 18:30

| y 20 do agosto  | 3  | Initioda y Carranoa    | ao piot estaticos (entei, exit, apaate) | т отсерскогт                            |
|-----------------|----|------------------------|-----------------------------------------|-----------------------------------------|
| 3 y 5 de sept   | 5  | Rules of thumb         | d3 animaciones                          | Tablas (+altair):                       |
| 10 y 12 de sept | 6  | Redes (1)              | D3: grafos                              | Redes (2)                               |
| 7 y 19 de sept  | 7  | Color                  | feriado fiestas patrias                 | feriado fiestas patrias                 |
| 4 y 26 de sept  | 8  | Manipulación           | D3: manipulacion/ interactividad        | Manipulación 2                          |
| 1 y 3 de oct    | 9  | Datos Espaciales       | D3: datos espaciales                    | IR / Mineria Texto                      |
| 8 y 10 de oct   | 10 | Visualización de Texto | D3: texto                               | Series de Tiempo (Nebil)                |
| 15 y 17 de oct  | 11 |                        | Presentaciones entrega 2 proyecto       | 711 BY 50 VAC                           |
| 22 y 24 de oct  | 12 | Visual StoryTellings   | d3 canvas                               | Charla Invitada                         |
| 29 y 31 de oct  | 13 | Casos de Estudio I     | d3 e idyll                              | feriado religioso                       |
| 5 y 7 de nov    | 14 | Casos de Estudio II    |                                         | Casos de Estudio III                    |
| 12 y 14 de nov  | 15 | Charla                 |                                         | Charla                                  |
| 19 y 21 de nov  | 16 | Fin de curso           |                                         | Último jueves antes de finalizar clases |
| 26 y 28 de nov  | 17 |                        |                                         | Presentaciones finales                  |
| 3 y 5 de dic    | 18 |                        |                                         |                                         |
| 10 y 12 de dic  | 19 | Suben notas a Banner   |                                         |                                         |

#### Contenidos

- Facet
  - Yuxtaposición
  - Partición
  - Superposición
- Embed

Todo con ejemplos 😀

#### Facet

Tamara Munzner define, en su libro, *facet* como "dividir" (*to split*).

Hablar de *facet* implica analizar decisiones de diseño que involucran partir la pantalla en múltiples vistas.

- Yuxtaposición (juxtapose): uno al lado de otro.
- Partición (partition): partir la información.
- Superposicion (Superimpose): superponer información.

#### Juxtapose



#### Partition



#### → Superimpose



### Yuxtaposición y vistas coordinadas

- → Share Encoding: Same/Different Compartir Encoding
  - → Linked Highlighting





→ Share Data: All/Subset/None Compartir información







→ Share Navigation Compartir navegación



## ldiom: linked highlighting



- Permite ver cómo datos contiguos en una vista distribuyen en otra.
- Información: toda compartida.
- Encoding: diferente entre vistas.

| System      | Exploratory Data Visualizer (EDV)                                 |
|-------------|-------------------------------------------------------------------|
| What: Data  | Tables.                                                           |
| How: Encode | Bar charts, scatterplots, and histograms.                         |
| How: Facet  | Partition: multiform views. Coordinate: linked high-<br>lighting. |

## ldiom: cross filtering

- vistas
- Combinar filtros com multiples
  Información: toda a subset compartidos

- Encoding: igual entre vistas.
- https://square.github.io/crossfilter/



## ldiom: bird's-eye maps



- Minimapa: vista general al detalle.
- Información: todo a subset compartido.
- Encoding: compartido
- Navegación: compartida y bidireccional
- https://observablehq.com/
  @hernan4444/visualizacio
  n-de-toma-de-cursos-uc-b
  anner

## ldiom: bird's-eye maps



- Minimapa: vista general al detalle.
- Información: todo a subset compartido.
- Encoding: compartido
- Navegación: compartida y bidireccional
- https://observablehq.com/ @hernan4444/visualizacio
   n-de-toma-de-cursos-uc-b
   anner

### Idiom: Small multiples - Cerebral

- Navegación: compartida
- Información: instancia compartida, pero diferentes atributos.
- Encoding: el mismo entre todos



### Idiom: Small multiples

http://projects.flowingdata.com/tut/linked small multiples demo/



#### Vistas coordinadas: Design choice interaction



#### Vistas coordinadas: Design choice interaction

#### ¿Por qué?

- Beneficios: ojos vs memoria.
  - Baja carga cognitiva mover los ejes entre 2 vistan que recordar estados de 2 vistas que requieren cambiar de una a otra.
- Costo: Area para visualizar, se reduce el área de cada gráfico.

## ¿Por qué no usar animaciones?

- Dificultad de comparación en:
  - Regiones contiguas
  - Áreas pequeñas
  - Grupos con animaciones ya definidas.

Dejar para las transiciones animadas



#### **BI Visualization Gallery**

#### BI Visualization Gallery: Dashboard and Report Examples

View and interact with dashboards, analyses and paginated reports.



Interactive Visualizations



Machine Learning



**Paginated Reports** 

https://www.inetsoft.com/evaluate/bi visualization gallery/

#### Contenidos

- Facet
  - Yuxtaposición
  - Partición
  - Superposición
- Embed

Todo con ejemplos 😀

#### Partición I





Particionar y agrupar son términos opuestos.

- Particionar es natural cuando consideramos partir desde lo más generar y gradualmente ir particionando la información.
- Agrupar es más natural cuando partimos de los detalles y vamos agrupando la información para consolidar una vista general.

• Extra: condicionar es un sinónimo de particional que es usado más comúnmente en la literatura sobre estadística.

#### Partición II

- ¿Cómo dividir la información entre vistas?
  - Dividir en regiones por atributos.
  - Dar encodings asociados a items espacialmente próximos
  - El orden de las divisiones tiene implicaciones importantes para los patrones visibles.
    - https://sanddance.azurewebsites.net/BeachPartyApp/BeachPartyApp.html



#### Partición III

- No estrictamente una línea
  - Vista: De general al detalle
  - Glifos: small/iconic
    - Objeto con estructura interna que surge de múltiples marcas

Zoom: https://observablehq.com/@d3/zoomable-circle-packing

Cuidado con agrupar y zoom: https://www.data-to-viz.com/caveat/bin\_size.html

Hide/Show: https://observablehq.com/@d3/collapsible-tree

#### Partición: -----

- Bar chart con barras agrupadas
  - Difícil analizar la información acumulada de un grupo entre diferentes grupos.
- Bar chart con barras stacked
  - Difícil analizar la información de un elemento del grupo entre cada barra.





## Partición: List alignment

- Bar chart con barras agrupadas
  - Difícil analizar la información acumulada de un grupo entre diferentes grupos.
- Bar chart con barras stacked
  - Difícil analizar la información de un elemento del grupo entre cada barra.
- https://bl.ocks.org/mbostock/4679202





System: HIVE

 División por diferentes atributos a medida que se avanza en la profundidad.



- System: HIVE
- División por diferentes atributos a medida que se avanza en la profundidad.
- Cambio en el orden de partición.
- Cambio en los colores según algún atributo.



- System: HIVE
- División por diferentes atributos a medida que se avanza en la profundidad.
- Cambio en el orden de partición.
- Cambio en los colores según algún atributo.



Cambio en el encoding.

System: HIVE

Cambio de tamaño de las áreas.

• Resultado: *Treemap* 



#### Demos

Morphing geojson polygons into rectangles

https://github.com/sebastian-meier/d3.geo2rect

Mapas Origen Destino

https://github.com/sebastian-meier/d3.layout.odmap

#### Contenidos

- Facet
  - Yuxtaposición
  - Partición
  - Superposición
- Embed

Todo con ejemplos 😀

### Superposición

Diferentes conjunto de objetos repartidos en la vista donde es perfectamente distinguibles cada grupo de forma visual.

Usado muchas veces en mapas.



### ¿Qué decisión tomar si usan superposición?

- Cantidad de conjuntos a repartir en la vista: 2 es aceptables, 3 teniendo cuidado en el diseño.
- Cantidad de elementos del conjunto a repartir en la vista. Depende del conjunto. Muchos puntos es diferentes a muchas líneas.
- Será estático o la superposición se hará de forma dinámica.

### Superposición estática

- Primera capa son las carreteras.
  - Con el hue se distingue la carretera principal de las secundarias.
  - Usar alto contraste con el fondo.
- Capa de fondo: la región
  - Color desaturado para agua, áreas de arenas y parque
  - El usuario puede enfocar selectivamente la atención.
- Uso del contraste con *luminance* para escalas de gris.





### Superposición dinámica

- Forma interactiva basada en la selección: hover
  o click para que aparezca más información
- http://bl.ocks.org/d3indepth/b6d4845973089bc1 012dec1674d3aff8
- En el ejemplo anterior, hacer *click* en un botón va agregando líneas sobre el gráfico.





## Límites de la superposición

https://www.data-to-viz.com/caveat/spaghetti.html





### Límites de la superposición

- Pocos conjuntos y muchas líneas: mala idea
- Estudio empírico: Superposición contra yuxtaposición
  - El mismo espacio de pantalla para múltiples vistas versus una superpuesta.

#### Resultados

- o Para tareas locales: usar superposición.
- Para tareas globales: usar juxtaposición.
- Tarea local: máximo, mínimo
- Tarea global: pendientes, discriminación: "esta línea en general tiene valores más altos que esta otra"

### Idiom: Trellis plots

- Superposición diferenciando am grupos por el color.
- Partición por un atributo.
- Eje Y ordenado por la mediana.

| System        | Trellis                                                                                     |
|---------------|---------------------------------------------------------------------------------------------|
| What: Data    | Multidimensional table: three categorical key attributes, one quantitative value attribute. |
| What: Derived | Medians for each partition.                                                                 |
| How: Encode   | Dot charts aligned in 2D matrix.                                                            |
| How: Facet    | Partitioned by any combination of keys into regions.                                        |





#### Contenidos

- Facet
  - Yuxtaposición
  - Partición
  - Superposición
- Embed

Todo con ejemplos 😀

#### Embed (Incrustar) Focus + Context

#### Combinar información en una pantalla

- Elide
  - Filtrar y agregar datos de forma selectiva
- Superponer
  - Lente local (Ya vimos el global en superposición)
- Distorsión geométrica
  - Forma de distorsionar
  - Cuantas regiones distorsionar (focus)
  - Extensión de la distorsión

#### **→** Embed

→ Elide Data



→ Superimpose Layer



→ Distort Geometry



#### Embed: Elide

https://observablehq.com/@clpuc/analyzing-the-design-space-for-visualizing-neural-attenti



### **Embed: Superponer lentes**



[ChronoLenses and Sampling Lens in Tominski et al., 2014]

# Embed: Superponer lentes (ChornoLenses)



### Embed: Superponer lentes



(c) Enrichment

[Extended Lens in Tominski et al., 2014]

## Embed: Distorsión geométrica

https://bost.ocks.org/mike/fisheye/



### Embed: Fisheye Lens

- Forma de distorción: radial
- Focus: una distorsión a la vez
- Extención: local





## Embed: Stretch and Squish Navigation

- Forma de distorción: rectangular.
- Focus: multiples.
- Extención: global.
- https://youtu.be/GdaPj8a9QEo?t=117





### Embed: Costos y beneficios de la distorsión

- Beneficios: combina el focus con la información de contexto en una vista.
- Costos:
  - Comparaciones en distancias distorsionadas.
  - Efectos de la distorsión quedan poco clara si no se conoce la estructura original.
  - El seguimiento de un objeto se puede distorsionar.











# Facet & Embed (Dividir e Incrustar)

Visualización de Información - IIC2026

Profesor: Denis Parra

(Clase de hoy: Hernán Valdivieso)