Question 5 - Homework 8 - Number Systems

Question: For the following two functions f and g, determine $g \circ f$ and $f \circ g$. For each of the two compositions state clearly what the domain, codomain and the rule are.

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sin(3x)$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} e^{\frac{1}{x+2}} & \text{, if } x \neq -2\\ \pi & \text{, if } x = -2 \end{cases}$$

Solution:

When calculating $f \circ g$, we know $f \circ g = f \circ g(x) = f(g(x))$, where the function f is applied first, then g. Doing this for our corresponding functions, f and g, we get:

$$(f \circ g): \mathbb{R} \to [-1, 1]$$

$$x \mapsto \begin{cases} \sin(3e^{\frac{1}{x+2}}) & x \neq -2\\ \sin(3\pi) & x = -2 \end{cases}$$

where the domain for $f \circ g$ is \mathbb{R} , the codomain is [-1,1], and the rule is $f \circ g$, as defined above.

Similarly, for $g \circ f$, we know $g \circ f = g \circ f(x) = g(f(x))$, where the function g is applied first, then f. Doing this for our corresponding functions, g and f, we get:

$$f: \mathbb{R} \to \left[e^{\frac{1}{3}}, e\right]$$
$$x \mapsto e^{\frac{1}{\sin(3x) + 2}}$$

where the domain for $f \circ g$ is \mathbb{R} . For the codomain, we notice that $\sin(3x)$ oscillates between -1 and 1 which therefore, means $e^{\frac{1}{x+2}}$ also oscillates, but between $\frac{1}{3}$ and 1. Hence, $e^{\frac{1}{x+2}}$ will also oscillate between $e^{\frac{1}{3}}$ and e. Therefore, the codomain of $f \circ g$ is $[e^{\frac{1}{3}}, e]$. The rule is $f \circ g$, as defined above.