DQN Network with Memory Learning a Sequence Task

By: Saqar Sabzali, Maria Kesa

TA: Soan Kim, Amir Mesbah

Introduction

- We were interested in comparing artificial learning to biological learning→
 We trained a RL model on a cognitive task
- Delayed Match to Sample Task
- Biological organisms obey the Matching Law:

C: choice R: reward

Q. Do artificial agents also obey the Matching Law?

Methods

- Two datasets
- Increasing difficulty
- RNN structure complexities
- Three reward magnitudes

Hidden size	64, 128
Learning rate	0.001, 0.0001
Discount factor	0.99
Batch size	32
Replay buffer size	100,000
Train steps	50,000, 200,000

Experiments

Tasks

(0, : delayed period)

Possible actions: 0, 1, 2, 3, 4, 5, 6

- Reward: 0
- Reward: -1

Possible actions: 0, 1, 2, 3, 4, 5, 6

- Reward: 1, 10, 100
- Reward: -1

Matching Law Effect on Accuracy

Discussion

- Similarities between natural & artificial intelligence: Biological learning and artificial learning can show convergence in response to the same reinforcement principles
- Experiments beyond the laboratory: It is possible to scale sequence tasks in artificial agents beyond what laboratory animals are capable of

Future directions

- Tasks with an irregular sequence length
- Other RL algorithms
- Transfer learning to other tasks
- Transformers instead of RNN's

Thank you!

