Stats 140SL LaTeX Assignment

Hayley Todd

October 24th, 2018

Contents

1	Introduction
2	Growing Up
	2.1 My Family
	2.2 My Animals
3	About Arizona
4	Some R Code using TLI data (with a splash of Greek)
	4.1 Some computations
	4.2 Some plots
	4.3 A nice table
	4.4 Math and Greek
	4.4.1 And a matrix

1 Introduction

In this document I will be showcasing my ability to use LATEX in R while also telling you about my home state of **Arizona** and some other R code.

2 Growing Up

In this section I will talk about growing up in Arizona, specifically my family and my animals.

2.1 My Family

I was born in **Scottsdale** in **1997**. I have *1 older brother* who went to **Northern Arizona University**. He is now a member of the *US Air Force*. Here is a table with more information on my family.

Table 1: My family info

our_names	our_ages	our_sexes
Hayley	21	F
Chase	30	M
Ron	70	M
Suzette	60	F

2.2 My Animals

I owned a bunch of rescue animals growing up. Those animals included:

(i) a Llama

(ii) Horses

- (iii) Donkeys
- (iv) Pigs
- (v) A Sheep
- (vi) Dogs
- (vii) Cats

These are the animals we currently own:

- Two dogs
- · Two cats

3 About Arizona

Arizona's state flag is red, blue, and yellow. The state flower is the saguaro. They are both shown below.

4 Some R Code using TLI data (with a splash of Greek)

Let's look at a data set in R that shows the Math scores from Texas Assessment of Academic Skills.

```
grade sex disadvg ethnicty tlimth
##
## 1
                   YES HISPANIC
         6
             М
## 2
         7
             Μ
                    NO
                           BLACK
                                     88
             F
                    YES HISPANIC
## 3
         5
                                     34
         3
                   YES HISPANIC
## 4
            М
                                     65
## 5
         8
                    YES
                                     75
            М
                           WHITE
## 6
         5
             Μ
                    NO
                           BLACK
                                     74
```

4.1 Some computations

Lets find the average score among women and men. For this I will be showing the R code I used to get these results.

```
womentli <- subset(tli, sex == "F")
mentli <- subset(tli, sex == "M")
paste0("Average score among women: ",mean(womentli$tlimth))
## [1] "Average score among women: 75.5490196078431"
paste0("Average score among men: ",mean(mentli$tlimth))
## [1] "Average score among men: 77.2857142857143"</pre>
```

4.2 Some plots

We could also plot a couple different types of graphs to display the distribution of scores for both Hispanic and White ethnicities. For this section, I will not be showing my R code. The plots are shown below

Distribution of Scores among Hispanic Ethnicity

Scores for White Ethnicity by Grade Level

4.3 A nice table

We can also observe the different means and standard deviations based on grade level.

Table 2: Math Score Means and Standard Deviation Based on Grade Level

Grade Level	Mean	SD
3	69.4	19.66
4	75.13	10.56
5	75.13	16.53
6	82.26	11.37
7	80.78	11.38
8	71.36	15.95

4.4 Math and Greek

Trigonometric functions can be expressed using identities that involve one another. For example

$$\sin(\theta) = \pm \sqrt{(1 - \cos^2 \theta)}$$

However some are more complicated, such as

$$\sec(\theta) = \pm \frac{\csc(\theta)}{\sqrt{\csc^2(\theta) - 1}}$$

.

4.4.1 And a matrix

Finally, III be making a matrix with my favorite numbers along the diagonal.