TP de méthodes de résolution de problèmes NP-complets

2012 UM2

Table des matières

1	Par	tie thé	eorique	2
	1.1	Sur le	problème de la couverture sommet minimale : trois approches différentes :	2
		1.1.1	Première approche : la programmation linéaire en nombres entiers .	2
		1.1.2	Seconde approche : la recherche d'un couplage maximal	4
	1.2	Sur le	problème de la couverture d'ensembles	5
		1.2.1	Modélisation du problème à l'aide de la PLNE	5
		1.2.2	Procédure d'arrondis	6
		1.2.3	Existence d'un algorithme f -approché	6
		1.2.4	Cas ou $f = 2$	6
	1.3	Sur le	problème du couplage maximum de poids minimum	7
		1.3.1	Modélisation du problème	7
		1.3.2	Modélisation du problème appliquée au graphe de la figure $2 \ \dots \ \dots$	7
		1.3.3	Solution optimale entière $z(ILP)$	8
		1.3.4	Solution optimale $z(LP)$ pour le programme relaxé $\ldots \ldots$	8
		1.3.5	Conclusion sur la pertinence de la formulation	8
	1.4	Sur le	problème de la coupe maximum	8
		1.4.1	Complexité	8
		1.4.2	Un algorithme 2-approché	9
		1.4.3	Atteindre la borne	9
	1.5	Sur le	problème de partition	Q.

	1.6	Sur le	problème du sac à dos simple	10
		1.6.1	Construction d'un algorithme approché	10
		1.6.2	Contruction d'un schéma d'approximation	11
	1.7	Progra	mmation dynamique	11
		1.7.1	Sur le problème de la partition $\dots \dots \dots \dots \dots$	11
		1.7.2	Le problème du sac à dos	11
		1.7.3	Le problème du voyageur de commerce	11
	1.8	Sur le	produit matriciel	11
		1.8.1	Nombre d'opérations nécessaires pour un produit	12
		1.8.2	Nombre de parenthésages possibles d'un produit de k matrices	12
		1.8.3	Récurrence	12
		1.8.4	Exemple	12
	1.9	Résolu	tion numérique	12
	1.10	Seuil d	l'approximation pour le problème Bin Packing	12
	1.11		l'approximation pour le problème de la coloration de sommets (resp. es)	12
	1.12	Compa	araison de branch and bound et branch and cut	12
		1.12.1	Polytope associé à PL_0	13
		1.12.2	Résolution graphique	14
		1.12.3	Résolution par la méthode du simplexe	14
		1.12.4	Recherche d'une solution à valeur entière	15
2	Part	tie pra	tique	18

Chapitre 1

Partie théorique

- 1.1 Sur le problème de la couverture sommet minimale : trois approches différentes :
- 1.1.1 Première approche : la programmation linéaire en nombres entiers

Justification de l'utilisation de la Programmation Linéaire en Nombres Entiers

On considère le problème de la couverture minimale sous la forme suivante :

$$\begin{cases} \min z = \sum_{j=1}^{n} x_i \\ x_r + x_s \ge 1, \quad \forall \{v_r, v_s\} \in E \\ x_j \in \{0, 1\} \quad j = 1, ; n \end{cases}$$

La fonction objectif représente le nombre de sommets utilisés par la solution du problème. Le fait de minimiser la fonction objectif permet d'assurer la couverture minimale. Chacune des clauses est relative à une arête du graphe, et impose qu'au moins un des sommets adjacents à cette arête soit dans la couverture.

On a donc bien un problème de Programmation Linéaire en Nombres Entiers permettant de résoudre le problème de la couverture minimale.

Justification des clauses

Considérons le graphe donné par la figure 1.1.1.

FIGURE 1.1 – Exemple

Figure 1.2 – Solution

Sur ce graphe, le programme linéaire en nombres entiers est le suivant :

$$\begin{cases} \min z = x_A + x_B + x_C \\ x_A + x_B \ge 1 \\ x_A + x_C \ge 1 \\ x_B + x_C \ge 1 \\ x_A, x_B, x_C \in \{0, 1\} \end{cases}$$

Il est très simple ici de comprendre pourquoi il est impossible de considérer le programme linéaire suivant :

$$\begin{cases} \min z = x_A + x_B + x_C \\ x_A + x_B = 1 \\ x_A + x_C = 1 \\ x_B + x_C = 1 \\ x_A, x_B, x_C \in \{0, 1\} \end{cases}$$

Ce programmme ne permet pas de résoudre la couverture minimale sur le graphe donné par la figure 1.1.1. Quelque soit le sommet choisi dans un premier lieu pour appartenir à la couverture minimale, il est impossible d'en choisir un second pour compléter cette dernière. Prenons un exemple, nous forçons le sommet A à appartenir à la couverture minimale (respectivement B et C). Ce choix force : $x_B = 0$ et $x_C = 0$ (respectivement, $x_A = 0$ et $x_C = 0$, et $x_A = 0$ et $x_B = 0$). Il est donc impossible de respecter la clause $x_B + x_C = 1$, le problème (au vu de sa modélisation) n'aurait donc pas de solution, or le graphe de la figure 1.1.1 montre le contraire.

Une borne inférieure des solutions optimales

On cherche à montrer qu'une solution optimale du programme linéaire en nombres entiers est une borne inférieure de toute solution optimale du programme relaxé. Raisonnons par l'absurde et considérons une solution optimale du programme linéaire, notée n^* telle qu'il existe x^* solution optimale du problème relaxé vérifiant $x^* < n^*$. Toute solution du programme linéaire est solution du programme relaxé ¹. Ceci implique : n^* solution du programme relaxé, et donc $x^* < n^*$ impossible. On a donc : $n^* \le x^*$ ce qui est la définition d'une borne inférieure.

A propos de la relaxation de contrainte

Pour démontrer que la relaxation des contraintes d'intégrité implique $x_r \geq \frac{1}{2}$ ou $x_s \geq \frac{1}{2}$, le raisonnement par l'absurde sera utilisé. Soient x_s et x_r les variables relatives aux sommets r et s adjacents à l'arête (rc) et telles que, après relaxation des contraintes, on a : $x_r < \frac{1}{2}$ et $x_s < \frac{1}{2}$. On en déduit donc que $x_r + x_s < 1$ et donc la contrainte liée à l'arête (rs) est violée, l'hypothèse de départ est donc fausse. On a donc, $\forall (rs) \in V : x_r \geq \frac{1}{2}$ et $x_s \geq 12$.

Une 2-approximation

Mettons en évidence le pire des cas pouvant se présenter : pour une arête $(rs) \in V$, un seul sommet est nécessaire pour la couverture de cette dernière dans le cas de la couverture minimale, mais l'algorithme approché retourne : $x_r = x_s = \frac{1}{2}$. Après la phase d'arondis, on a $x_r = x_s = 1$ est donc les deux sommets appartiennent à la solution approchée, cette phase multiplie donc au pire le nombre de sommets (pour chaque clause par 2), ce qui implique que le cardinal de la solution approximée est au plus 2 fois la solution optimale.

Cet algorithme est donc une 2-approximation.

Dans le cas d'un graphe valué

1.1.2 Seconde approche: la recherche d'un couplage maximal

Une 2-approximation

Commençons par prouver que l'algorithme retourne une couverture des arêtes par les sommets. Considérons donc une arête (rs) non couverte par l'ensemble de sommets retourné par l'algorithme, par définition du couplage, il serait donc possible d'ajouter (rs) au couplage. Or le couplage calculé par l'algorithme est maximal, on en déduit que l'arête (rs) telle qu'elle est définie ne peut exister et donc que l'ensemble de sommets obtenu couvre l'ensemble des arêtes du graphe.

^{1.} Une solution appartenant) $\mathbb N$ appartient aussi à $\mathbb R$

Appelons c le couplage calculé par l'algorithme et x^* la solution optimale du problème de la couverture par les sommets, on sait que $\operatorname{Card} c \leq \operatorname{Card} x^*$, or pour construire la solution approchée, on ajoute à C les deux extrêmités des arêtes utilisées pour le couplage. On a donc :

$$\operatorname{Card} C = 2 \times \operatorname{Card} c \leq 2 \times \operatorname{Card} x^*$$

$$\Longrightarrow \frac{\operatorname{Card} C}{\operatorname{Card} x^*} = 2$$

Exemple de graphe foireux

Le graphe suivant met en évidence la borne 2 de l'algorithme.

Le graphe Une couverture minimale Un couplage maximale La solution renvoyée

Application de l'algorithme

1.2 Sur le problème de la couverture d'ensembles

1.2.1 Modélisation du problème à l'aide de la PLNE

On considère le problème de la couverture d'ensemble, défini par : Soit $E = \{e_1, \ldots, e_n\}$, soient S_1, \ldots, S_m des sous-ensembles non vides de E tels que $\forall i \in \{1, \ldots, m\}$, on a : $S_i \subset E$. On associe à chaque ensemble S_j un poids $w_j \geq 0$. Le problème consiste à trouver une collection de sous-ensemble de poids minimum et telle que $\bigcup_{i=1}^m S_i = E$.

Ce problème peut s'exprimer à l'aide de la Programmation Linéaire en Nombres entiers de la manière suivante :

$$\begin{cases} minz = \sum_{i=1}^{m} w_i x_i \\ \sum_{x_j/e_i \in x_j} x_j \ge 1 \quad \forall e_i \in E \\ x_i \in \{0, 1\} \end{cases}$$

1.2.2 Procédure d'arrondis

Soit $f = \max_{i=1,\dots,n} f_i$, avec f_i le cardinal de l'ensemble des sous-ensembles de E contenant $e_i : f_i = |\{j : e \in S_j\}|$.

Définissons la procédure d'arrondis suivante :

$$x_i = \begin{cases} 1 & \text{si} & x_i \ge \frac{1}{f} \\ 0 & \text{sinon} \end{cases}$$

Cherchons à démontrer que cette procédure d'arrondis garantit une solution réalisable. Pour ce faire, nous allons procéder par l'absurde. Supposons qu'il existe un sommet k qui ne repsecte pas sa contrainte d'intégrité associée, à savoir :

$$\sum_{x_j/e_k \in x_j} < 1$$

Les variables x_j de cette contrainte étant définies positives et entières, le cas pris en considération si dessus implique que toutes les variables de l'inéquation sont nulles pour le programme en nombres entiers et donc :

$$\forall x_j/e_k \in x_j < \frac{1}{f}$$

dans le cas de la version relaxée du problème. Or ceci n'est possible que si le nombre de sous-ensemble contenant x_k est supérieur à f, ce qui est impossible par définition. Tous les sommets respectent donc leur contrainte d'intégrité et on en déduit que la procédure d'arrondis garantit une solution réalisable.

1.2.3 Existence d'un algorithme f-approché

Considérons l'agorithme 1

Algorithm 1 Approximation couverture par ensemble

- 1: Exprimer le problème en programmation linéaire en nombres entiers
- 2: Résoudre la version relaxée
- 3: Réaliser la procédure d'arrondis

En utilisant la procédure d'arrondis étudiée plus haut, on sait que pour chaque clause, il existe x_k tel que $x_k \geq \frac{1}{f}$, au pire des cas 2 , chaque x_k est multiplié par f, ce qui implique que la solution obtenue est au plus f fois plus grande que la solution optimale. Il s'agit donc d'un algorithme f-approché.

1.2.4 Cas ou f = 2

Si f=2 alors le problème devient une couverture minimum par sommets.

^{2.} cas similaire à celui de l'exercice 1

1.3 Sur le problème du couplage maximum de poids minimum

1.3.1 Modélisation du problème

Soit un graphe G = (V, E) avec V l'ensemble de ses sommets et E l'ensemble de ses arêtes. Soit $\{\forall (i,j) \in E, X_{(i,j)}\}$ un ensemble de variables booléennes qui indiquent le choix de l'arête (i,j) correspondante dans le couplage. Soit $P_{(i,j)}$ le poids de l'arête (i,j).

La première modélisation intuitive est la suivante :

Maximiser

$$\sum_{(i,j)\in E} (X_{(i,j)} \times H) - \sum_{(i,j)\in E} (X_{(i,j)} \times P_{(i,j)})$$

Sous contraintes

$$\forall i \in V, \sum_{(i,j) \in E} X_{(i,j)} + \sum_{(j,i) \in E} X_{(j,i)} \le 1$$
$$\forall (i,j) \in E, X_{(i,j)} \in \{0,1\}$$
$$\forall (i,j) \in E, P_{(i,j)} \ge 0$$

avec H une constante très grande. Cependant, après quelques instants de réflexion, nous pouvons imaginer une modélisation plus élégante :

Minimiser

$$\sum_{(i,j)\in E} (X_{(i,j)} \times P_{(i,j)})$$

Sous contraintes

$$\forall i \in V, \sum_{(i,j) \in E} X_{(i,j)} + \sum_{(j,i) \in E} X_{(j,i)} = 1$$
$$\forall (i,j) \in E, X_{(i,j))} \in \{0,1\}$$
$$\forall (i,j) \in E, P_{(i,j))} \ge 0$$

En effet, les contraintes forcent le couplage à être maximum tandis que la fonction objectif le force à tendre vers le poids minimum.

1.3.2 Modélisation du problème appliquée au graphe de la figure 2

Minimiser

$$\epsilon \times X_{ab} + \epsilon \times X_{bc} + \epsilon \times X_{ac} + M \times X_{ae} + M \times X_{cd} + M \times X_{bf} + \epsilon \times X_{df} + \epsilon \times X_{de} + \epsilon \times X_{fe}$$

Sous contraintes

$$X_{ab} + X_{ac} + X_{ae} = 1$$

 $X_{ab} + X_{bc} + X_{bf} = 1$
 $X_{ac} + X_{bc} + X_{cd} = 1$
 $X_{cd} + X_{de} + X_{df} = 1$

$$X_{ae} + X_{de} + X_{df} = 1$$

$$X_{ef} + X_{df} + X_{bf} = 1$$

$$\forall (i, j) \in E, X_{(i,j)} \in \{0, 1\}$$

$$\epsilon \ge 0$$

$$M > 0$$

1.3.3 Solution optimale entière z(ILP)

Sur un exemple de cette taille, il est facile de trouver une solution à la main. Il y a plusieurs solutions optimales de poids total $M + 2\epsilon$ sur cet exemple; l'une d'entre elles est le couplage $\{(a,b),(c,d),(e,f)\}$.

La résolution de ce PLNE par glpsol (solveur de GLPK) donne bien la même solution.

1.3.4 Solution optimale z(LP) pour le programme relaxé

Relaxer le programme revient à transformer la contrainte d'intégrité des $X_{(i,j)}$ en la contrainte suivante :

$$\forall (i,j) \in E, 0 \le X_{(i,j)} \le 1$$

En rentrant le PL relaxé dans glpsol, nous obtenons le couplage de poids total 3ϵ :

$$\{X_{ab} = 0.5; X_{ac} = 0.5; X_{bc} = 0.5; X_{df} = 0.5; X_{ef} = 0.5; X_{de} = 0.5\}$$

1.3.5 Conclusion sur la pertinence de la formulation

La solution trouvée au PLNE étant optimale, la formulation du problème semble être pertinente.

1.4 Sur le problème de la coupe maximum

1.4.1 Complexité

A chaque itération de l'algorithme, la valeur de la coupe maximale augmente au minimum d'une unité. Or la valeur de la coupe maximale étant bornée par le nombre d'arêtes, on obtient donc que l'algorithme effectue au plus m opérations. On a donc un algorithme en O(m).

1.4.2 Un algorithme 2-approché

Considérons (Y_1, Y_2) la coupe renvoyée par l'algorithme, nous chercherons dans un premier temps à montrer que chaque sommet dans Y_1 admet au moins autant d'arêtes dans Y_2 que dans Y_1 .

Pour ce faire, considérons un sommet $v \in Y_1$, supposons que ce sommet possède plus d'arêtes dans Y_1 que dans Y_2 , nous noterons a_1 le nombre d'arêtes incidentes à v dans Y_1 et a_2 le nombre d'arêtes adjacentes à v dans Y_2 . Déplacer v de Y_1 vers Y_2 reviendrait à diminuer la coupe de a_2 et augmenter celle-ci de a_1 , or d'après l'hypothèse de départ $a_2 < a_1$, on observerait une augmentation de la valeur de la coupe, ce qui est impossible si (Y_1, Y_2) est une coupe retournée par l'algorithme. On en déduit donc que l'hypothèse de départ est fausse.

Autrement dit, pour un sommet $v \in V$, en notant d_v le degré de v, v_c le nombre d'arêtes adjacentes à v traversant la coupe et v_s le nombre d'arêtes adjacentes à v ne la traversant pas, on peut écrire :

$$\begin{array}{rcl} & v_c + v_s & = & d_v & \text{or on a } v_c \geq v_s \\ \\ \Rightarrow & v_c & \geq & \frac{d_v}{2} \end{array}$$

Si l'on généralise sur l'ensemble du graphe, on peut en déduire :

$$|(Y_1, Y_2)| = \frac{1}{2} \sum_{v \in V} v_c$$

$$\geq \frac{1}{2} \sum_{v \in V} \frac{d_v}{2}$$

$$= \frac{m}{2}$$

On a donc : $|(Y_1, Y_2)| \ge \frac{m}{2}$, de plus comme vu précédemment, la valeur de la coupe maximale (que nous noterons OPT) est bornée par le nombre d'arêtes. On peut donc en déduire :

$$\frac{OPT}{|(Y_1,Y_2)|} \le \frac{m}{\frac{m}{2}} = 2$$

L'algorithme donné est donc bien un algorithme 2-approché.

1.4.3 Atteindre la borne

1.5 Sur le problème de partition

1.6 Sur le problème du sac à dos simple

1.6.1 Construction d'un algorithme approché

Complexité de l'algorithme

La complexité de l'algorithme, une fois les nombres triés, est en O(n). Cependant, il est possible de démontrer que la complexité des algorithmes de tris basés sur des fonctions de comparaisons ne peut être inférieures à $O(n \log n)$. la complexité de cet algorithme est donc similaire à la compléxité de l'algorithme de tri utilisé.

Minoration de cost(T)

Dans un premier temps nous montrerons que l'existence d'un indice j pour lequel $cost(T) + w_{j+1} > b$ n'est pas systématique, mais que si ce dernier n'existe pas, le problème n'existe pas non plus.

En effet, si cet indice n'existe pas, on a alors :

$$\sum_{i=1}^{n} w_1 \le b$$

On en déduit donc que la solution optimale est donnée par $T = \{1, n\}$. Ce qui en soit même n'a aucun intérêt³. Nous admettrons donc l'existence de cet indice j.

Supposons, à l'indice j, que $cost(T) \leq \frac{b}{2}$. Par définition de l'indice j, on a $cost(T) + w_{j+1} > b$, ce qui implique $w_{j+1} > \frac{b}{2}$ et donc :

$$w_{j+1} > cost(T)$$

 $\Rightarrow w_{j+1} > \sum_{i=1}^{j} w_i$
 $\Rightarrow w_{j+1} > w_i$

Or les éléments w_i étant triés, on a $w_j \geq w_{j+1}$. L'hypothèse de départ est donc fausse.

Performance relative de l'algorithme

Notons OPT la solution optimale au problème du sac à dos, et A la solution approchée donnée par l'algorithme. Rappelons, par définition du problème, que $OPT \leq b$. La performance relative nous est donnée par :

$$\frac{OPT}{A} \le \frac{b}{\frac{b}{2}} = 2$$

La performance relative de l'algorithme est donc 2.

 $^{3.\,}$ Le problème du sac à dos, dans cette configuration n'est plus NP-Complet

1.6.2 Contruction d'un schéma d'approximation

Complexité de l'algorithme

De façon très grossière, la construction de l'ensemble des sous-ensembles S_k de k éléments se fait en $k \times n^k$ opérations. On a donc une construction des sous-ensembles réalisée en :

$$\sum_{i=1}^{k} in^{i}$$

. Soit une construction en $O(n^k)$.

L'ensemble étant déjà trié, l'algorithme glouton s'éxécute en O(n), d'où une exécution totale de l'algorithme en $O(n^{k+1})$.

1.7 Programmation dynamique

a

1.7.1 Sur le problème de la partition

Condition nécessaire sur la somme des poids des n objets

Récurrence

Complexité

Jeux d'essais

1.7.2 Le problème du sac à dos

Justification des formules

Exemple

Complexité

1.7.3 Le problème du voyageur de commerce

Exemple

Complexité

1.8 Sur le produit matriciel

- 1.8.1 Nombre d'opérations nécessaires pour un produit
- 1.8.2 Nombre de parenthésages possibles d'un produit de k matrices
- 1.8.3 Récurrence
- 1.8.4 Exemple
- 1.9 Résolution numérique

a

1.10 Seuil d'approximation pour le problème Bin Packing

a

1.11 Seuil d'approximation pour le problème de la coloration de sommets (resp. d'arêtes)

a

1.12 Comparaison de branch and bound et branch and cut

Nous considérons le programme linéaire suivant :

$$PL_0 \begin{cases} max \ z(x_1, x_2) = 2x_1 + x_2 \\ 2x_1 + 5x_2 \le 17 \\ 3x_1 + 2x_2 \le 10 \\ x_1, x_2 \ge 0 \end{cases}$$

1.12.1 Polytope associé à PL_0

1.12.2 Résolution graphique

Nous obtenons grâce à la résolution graphique :

$$\begin{cases} x_1 = \frac{10}{3} \\ x_2 = 0 \\ z = \frac{20}{3} \end{cases}$$

1.12.3 Résolution par la méthode du simplexe

Programme linéaire :

$$PL_0 \begin{cases} max \ z(x_1, x_2) = 2x_1 + x_2 \\ 2x_1 + 5x_2 \le 17 \\ 3x_1 + 2x_2 \le 10 \\ x_1, x_2 \ge 0 \end{cases}$$

Forme standard:

$$PL_0 \begin{cases} max \ z(x_1, x_2) = 2x_1 + x_2 \\ 2x_1 + 5x_2 + y_1 = 17 \\ 3x_1 + 2x_2 + y_2 = 10 \\ x_1, x_2, y_1, y_2 \ge 0 \end{cases}$$

Tableaux:

		2	1	0	0
0	$y_1 = 17$	2	5	1	0
0	$y_2 = 10$	3	2	0	1
	z = 0	-2	-1	0	0

		2	1	0	0
0	$y_1 = \frac{31}{3}$	0	$\frac{11}{3}$	1	$-\frac{2}{3}$
2	$x_1 = \frac{10}{3}$	1	$\frac{2}{3}$	0	$\frac{1}{3}$
	$z = \frac{20}{3}$	0	$\frac{1}{3}$	0	$\frac{2}{3}$

Tous les coûts réduits sont positifs ou nuls donc le simplexe est fini. La solution correspond bien à celle trouvée graphiquement :

$$\begin{cases} x_1 = \frac{10}{3} \\ x_2 = 0 \\ z = \frac{20}{3} \end{cases}$$

1.12.4 Recherche d'une solution à valeur entière

Branch and bound

Pour la méthode du Branch and bound, nous partons de la solution optimale réelle trouvée précédemment.

$$\begin{cases} x_1 = \frac{10}{3} \\ x_2 = 0 \end{cases} \quad z = \frac{20}{3}$$

Puis nous ajoutons la contrainte $x_1 \leq 3$ pour forcer x_1 à être entier.

Puis nous calculons les tableaux du simplexe avec la nouvelle contrainte.

		2	1	0	0	0
0	$y_1 = 17$	2	5	1	0	0
0	$y_2 = 10$	3	2	0	1	0
0	$y_3 = 3$	1	0	0	0	1
	z = 0	-2	-1	0	0	0

 y_3 sort de la base; x_1 rentre dans la base; le pivot devient $a_{3,1}=1$.

		2	1	0	0	0
0	$y_1 = 11$	0	5	1	0	-2
0	$y_2 = 1$	0	2	0	1	-3
2	$x_1 = 3$	1	0	0	0	1
	z = 6	0	-1	0	0	2

 y_2 sort de la base; x_2 rentre dans la base; le pivot devient $a_{2,2}=2$.

		2	1	0	0	0
0	$y_1 = \frac{17}{2}$	0	0	1	$-\frac{5}{2}$	2
1	$x_2 = \frac{1}{2}$	0	1	0	$\frac{1}{2}$	$-\frac{3}{2}$
2	$x_1 = 3$	1	0	0	0	1
	$z = \frac{13}{2}$	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$

Le simplexe est fini, nous ajoutons le résultat à l'arbre de branch and cut.

 x_1 a bien une valeur entière mais x_2 est devenu réel, nous ajoutons donc la contrainte $x_2 \le 0$. Comme $x_2 \ge 0$ par définition, nous obtenons la solution suivante :

Coupes de Gomory

Chapitre 2

Partie pratique