Даровских Денис ИВТ-12М, вариант 5

Варианты	$\int_{-1}^{1} \frac{4}{(1+x^2)^2} dx$	$\int_0^1 \frac{4}{1+x^2} dx$	$\int_{\frac{1}{2}}^{1} \frac{6}{\sqrt{x(2-x)}} dx$	$\int_0^1 rac{8}{1+x^2} dx$	$\int_0^1 \frac{4}{\sqrt{4-x^2}} dx$	$\int_{-1}^{1} \frac{8}{2 + 2x^2} dx$	$\int_{-1}^{1} \frac{5}{\sqrt{8 - 4x^2}} dx$
Методы правых и левых прямоугольников	1	2	3	4	5	6	7
Метод центральных прямоугольников	8	21	12	23	19	25	16
Метод трапеций	9	11	27	13	28	15	17
Метод Симпсона	10	22	20	24	14	26	18

1. Последовательная программа по расчету интеграла (1 занятие)

Создайте пустой проект C++ в VS. Добавьте, напишите, отладьте исходные коды для расчета интеграла по Вашему варианту. Оцените время и точность (относительно аналитического значения) расчета интеграла в зависимости от количества интервалов (равномерное разбиение, 100, 1000, 10000, 100000, 1000000).

Аналитическое решение:

$$\int_{0}^{2} \frac{4}{\sqrt{4-x^{2}}} = \left[u = \frac{x}{2}; \frac{du}{dx} = \frac{1}{2}; dx = 2du \right] = \int_{0}^{2} \frac{8}{\sqrt{4-4u^{2}}} du = 4 \int_{0}^{2} \frac{1}{\sqrt{4-4u^{2}}} du = 4 \int_{0$$

Выполнение:

intervalov: 100
right - 2.09285 time: 1 microseconds
left - 2.09595 time: 0 microseconds
intervalov: 1000

right - 2.09424 time: 5 microseconds left - 2.09455 time: 5 microseconds

intervalov: 10000

right - 2.09438 time: 93 microseconds left - 2.09441 time: 97 microseconds

intervalov: 100000

right - 2.09439 time: 555 microseconds left - 2.0944 time: 635 microseconds

intervalov: 1000000

right - 2.09439 time: 5509 microseconds left - 2.0944 time: 5597 microseconds

С увеличением количества интервалов увеличивается точность и время выполнения.

2. Программа по расчету интеграла с отключением векторизации

Добавьте метод по расчету интеграла с отключенным векторизатором и сравните полученные результаты.

Выполнение:

intervalov: 100
right - 2.09285 time: 1 microseconds
left - 2.09595 time: 0 microseconds
intervalov: 1000
right - 2.09424 time: 5 microseconds
left - 2.09455 time: 5 microseconds
intervalov: 10000
right - 2.09438 time: 54 microseconds
left - 2.09441 time: 56 microseconds
intervalov: 100000
right - 2.09439 time: 542 microseconds
left - 2.0944 time: 565 microseconds
intervalov: 1000000
right - 2.09439 time: 5540 microseconds
left - 2.09439 time: 5540 microseconds
left - 2.0944 time: 5643 microseconds

Время выполнения практически не изменилось, видимо векторизатор выключен по умолчанию.

3. Программа по расчету интеграла с автоматическим параллелизатором

Добавьте метод по расчету интеграла с автоматической параллелизацией(/Qpar). Оцените точность и время выполнения программы, запуская ее с теми же параметрами, что и последовательную программу. Есть ли выигрыш по времени выполнения?

Параметр:

Выполнение:

```
intervalov: 100
right - 2.09285 time: 2 microseconds
left - 2.09595 time: 0 microseconds
intervalov: 1000
right - 2.09424 time: 5 microseconds
left - 2.09455 time: 5 microseconds
intervalov: 10000
right - 2.09438 time: 54 microseconds
left - 2.09441 time: 61 microseconds
intervalov: 100000
right - 2.09439 time: 545 microseconds
left - 2.0944 time: 563 microseconds
intervalov: 1000000
right - 2.09439 time: 5491 microseconds
left - 2.0944 time: 5675 microseconds
```

Выигрыша по времени нет.

4. Программа по расчету интеграла в разных потоках

Добавьте метод по расчету интеграла в разных потоках с использованием библиотеки <thread> (поддерживается с C++11 стандарта).

Выполнение:

intervalov: 100
right - 2.09285 time: 757 microseconds
left - 2.09285 time: 90 microseconds
intervalov: 1000
right - 2.09424 time: 106 microseconds
left - 2.09424 time: 89 microseconds
intervalov: 10000
right - 2.09438 time: 108 microseconds
left - 2.09438 time: 112 microseconds
intervalov: 100000
right - 2.09439 time: 440 microseconds
left - 2.09439 time: 397 microseconds
intervalov: 1000000
right - 2.09439 time: 4414 microseconds
left - 2.09439 time: 3488 microseconds

Разделение вычислений на 4 потока уменьшило время работы.