| 0/2 | The key space (i.e. number of possible keys) in a shift cipher (i.e. Caser         | ×   |
|-----|------------------------------------------------------------------------------------|-----|
|     | Cipher) to encrypt plain text is                                                   |     |
|     | Assume that you are encrypting plaintext in a language that has 32 different lette | ers |

32 💿

26 0

25 (

الإهابة الصميحة



| 2/2 In stream<br>[K 1, K 2, | ciphers where the keystream generator produces keystream, K_n] to encrypt plaintext [P_1, P_2, P_n], the ciphertext will                                           |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | = be C_i                                                                                                                                                           |
|                             | KI+PJ O                                                                                                                                                            |
| 4                           | KJ D P J                                                                                                                                                           |
|                             | Enc_K_i (P_i)                                                                                                                                                      |
|                             | P_i mod K_i O                                                                                                                                                      |
| 2/2 Amo                     | ng the 3 encryption modes (ECB, CBC & CTR) for block ciphers.   offer(s) randomized encryption  Check the box of all that applies (more than on option is allowed) |
| -                           | CBC ☑                                                                                                                                                              |
|                             | ECB                                                                                                                                                                |
|                             | CTR P                                                                                                                                                              |

| 2/2 | Among the . | 3 encryption modes (ECB, CBC & CTR) for block ciphers.   can use parallelism to speed up encryption |
|-----|-------------|-----------------------------------------------------------------------------------------------------|
|     |             | Check the box of all that applies (more than on option is allowed                                   |
| 1   |             | CTR 🗹                                                                                               |
| ~   |             | ECB 🗹                                                                                               |
|     |             | свс 🗆                                                                                               |

| e), an | RSA encryption algorithm, assume that public encryption key is (x, and the private decryption key is (d), where (x) is the product of two prime numbers (p, q). To encrypt a message (M), one computes the = ciphertext C = Ciphertext C * X*(Y*W) -> this read *X to the power (Y*W) |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | C = M^(e) mod x                                                                                                                                                                                                                                                                       |
|        | C = M^(d) mod x O                                                                                                                                                                                                                                                                     |
|        | C = M*(e*d) mod x O                                                                                                                                                                                                                                                                   |
| 2/2    | Following on the question above, to decrypt C, one computes                                                                                                                                                                                                                           |
| 1      | M = C^(d) mod x                                                                                                                                                                                                                                                                       |
|        | M = C*(e) mod x O                                                                                                                                                                                                                                                                     |
|        | M = C*(e*d) mod x 🔘                                                                                                                                                                                                                                                                   |

0/2Following on the question above, knowing (x=p\*q), the decryption key (d) X

can be computed from (p,q,e) by solving

الإجبة الصحيحة

| 0/2 | In the Diffie-Hellman protocol, Alice and Bob want to ag<br>secret. They have two public numbers, a generator (x) as<br>number (w). Alice chooses (m) at random and sends | nd a large prime |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|     | The random and sends                                                                                                                                                      | .Bob             |
|     |                                                                                                                                                                           | x^w mod m O      |
| >   | (                                                                                                                                                                         | m*x mod w        |
|     |                                                                                                                                                                           | w*x mod m O      |

x\*m mod w

x\*m mod w

|   | e, Bob chooses (n) at random and send × |
|---|-----------------------------------------|
|   | x*w mod n O                             |
|   | x*n mod w O                             |
| × | n*x mod w                               |
|   | w*x mod n O                             |
|   | الإخابة الصحيحة                         |
|   | x*n mod w                               |

Following on the question above, the shared secret is

x\*w mod (m\*n)

w^(m+n) mod x

x^(m\*n) mod w

x^(m+n) mod w

Because of birthday attacks the length of hash function outputs should the key length of block ciphers to achieve equivalent security be the same as half of triple () double (

| 2/2 | Identify which of the following protection mechanisms is not helpful in addressing the problem of buffer overflow |
|-----|-------------------------------------------------------------------------------------------------------------------|
|     | StackGuard O                                                                                                      |
| ~   | TrustedPath                                                                                                       |
|     | Non-executable Stack O                                                                                            |

Address space randomization O

.The substitution cipher is insecure even in a ciphertext only attack 2/2

True (

False

2/2 The main vulnerability is the subsituation cipher is that they key space is too small

YPS O

No (



| such that the      | Number Generator is actually a deterministic function ame input (seed) will always result in the same output |
|--------------------|--------------------------------------------------------------------------------------------------------------|
|                    | stream                                                                                                       |
| ~                  | True                                                                                                         |
|                    | False O                                                                                                      |
| 0/2 Public salting | asswords increases the difficulty to launch a dictionary X .attack against a single user account             |
| ×                  | True 📵                                                                                                       |
|                    | False O                                                                                                      |
|                    | الإجبة الصحيدة                                                                                               |
|                    | False                                                                                                        |





True (



الإجابة الصحيحة



