

CS 247 – Scientific Visualization Lecture 6: Scalar Fields, Pt. 2 [preview]

Markus Hadwiger, KAUST

Reading Assignment #3 (until Feb 14)

Read (required):

- Data Visualization book, finish Chapter 3 (read starting with 3.6)
- Data Visualization book, Chapter 5 until 5.3 (inclusive)

Scalar Fields

Contours

Set of points where the scalar field f(x) has a given value c:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^n : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

bilinear interpolation

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

Contours

Set of points where the scalar field f(x) has a given value c:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^2 : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

bilinear interpolation

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

Contours

Set of points where the scalar field f(x) has a given value c:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^3 : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

bilinear interpolation

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

What are contours?

Set of points where the scalar field s has a given value c:

$$S(c) := \{ x \in \mathbb{R}^n \colon f(x) = c \}$$

Examples in 2D:

- height contours on maps
- isobars on weather maps

Contouring algorithm:

- find intersection with grid edges
- connect points in each cell

Example

contour levels

---4 ---4? ---6- ε ---8+ ε

2 types of degeneracies:

- isolated points (*c*=6)
- flat regions (*c*=8)

Basic contouring algorithms:

- cell-by-cell algorithms: simple structure, but generate disconnected segments, require post-processing
- contour propagation methods: more complicated, but generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):

- process nodes in ccw order, denoted here as x_0, x_1, x_2, x_3
- compute at each node \mathbf{x}_i the reduced field $\tilde{f}(x_i) = f(x_i) (c \varepsilon)$ (which is forced to be nonzero)
- take its sign as the ith bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:

•
$$\tilde{f}(x_i) < 0$$

• $\tilde{f}(x_i) > 0$

$$\circ \quad \tilde{f}(x_i) > 0$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

•
$$f(x_i) < c$$

• $f(x_i) \ge c$

o
$$f(x_i) \ge c$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

$$\bullet \quad f(x_i) \le c$$

o
$$f(x_i) > c$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

Orientability (1-manifold embedded in 2D)

Orientability of 1-manifold:

Possible to assign consistent left/right orientation

Iso-contours

- Consistent side for scalar values...
 - greater than iso-value (e.g, *left* side)
 - less than iso-value (e.g., *right* side)
- Use consistent ordering of vertices (e.g., larger vertex index is "tip" of arrow; if (0,1) points "up", "left" is left, ...)

not orientable

Moebius strip (only one side!)

$$\bullet \ \tilde{f}(x_i) < 0$$

•
$$\tilde{f}(x_i) < 0$$

• $\tilde{f}(x_i) > 0$

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

not orientable

Moebius strip (only one side!)

Triangle meshes

- Edges
 - Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise) (e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)
- Triangles
 - Consistent front side vs. back side
 - Normal vector; or ordering of vertices (CCW/CW)
 - See also: "right-hand rule"

Topological consistency

To avoid degeneracies, use symbolic perturbations:

If level c is found as a node value, set the level to c- ε where ε is a symbolic infinitesimal.

Then:

- contours intersect edges at some (possibly infinitesimal) distance from end points
- flat regions can be visualized by pair of contours at c- ε and c+ ε
- contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.

(except where the boundary is hit)

Ambiguities of contours

What is the correct contour of c=4?

Two possibilities, both are orientable:

- connect high values ————
- connect low values

Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

Bi-Linear Interpolation: Critical Points

Critical points are where the gradient vanishes (i.e., is the zero vector)

here, the critical value is 2/3=0.666...

"Asymptotic decider": resolve ambiguous configurations (6 and 9) by comparing specific iso-value with critical value (scalar value at critical point)

Linear interpolation in 1D:

$$f(\alpha) = (1 - \alpha)v_1 + \alpha v_2$$

Line embedded in 2D (linear interpolation of vertex coordinates/attributes):

$$f(\alpha_1, \alpha_2) = \alpha_1 v_1 + \alpha_2 v_2$$
 $f(\alpha) = v_1 + \alpha (v_2 - v_1)$ $\alpha_1 + \alpha_2 = 1$ $\alpha = \alpha_2$

$$f(\alpha) = v_1 + \alpha(v_2 - v_1)$$
$$\alpha = \alpha_2$$

Line segment:

$$\alpha_1, \alpha_2 \geq 0$$

 $\alpha_1, \alpha_2 \ge 0$ (\rightarrow convex combination)

Compare to line parameterization with parameter t:

$$v(t) = v_1 + t(v_2 - v_1)$$

Linear combination (*n*-dim. space):

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

Affine combination: Restrict to (n-1)-dim. subspace:

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

Convex combination:

$$\alpha_i \geq 0$$

(restrict to simplex in subspace)

The weights α_i are the *n* normalized **barycentric** coordinates

→ linear attribute interpolation in simplex

$$lpha_1 v_1 + lpha_2 v_2 + \ldots + lpha_n v_n = \sum_{i=1}^n lpha_i v_i$$
 $lpha_1 + lpha_2 + \ldots + lpha_n = \sum_{i=1}^n lpha_i = 1$
 $lpha_i \ge 0$

attribute interpolation

spatial position interpolation

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \sum_{i=1}^n \alpha_i v_i$$

$$\alpha_1 + \alpha_2 + \ldots + \alpha_n = \sum_{i=1}^n \alpha_i = 1$$

Can re-parameterize to get (n-1) *affine* coordinates:

$$lpha_1 v_1 + lpha_2 v_2 + lpha_3 v_3 =$$
 $ilde{lpha}_1 (v_2 - v_1) + ilde{lpha}_2 (v_3 - v_1) + v_1$
 $ilde{lpha}_1 = lpha_2$
 $ilde{lpha}_2 = lpha_3$

Contours in triangle/tetrahedral cells

Linear interpolation of cells implies piece-wise linear contours.

Contours are unambiguous, making "marching triangles" even simpler than "marching squares".

Question: Why not split quadrangles into two triangles (and hexahedra into five or six tetrahedra) and use marching triangles (tetrahedra)?

Answer: This can introduce periodic artifacts!

Contours in triangle/tetrahedral cells

Illustrative example: Find contour at level *c*=40.0 !

original quad grid, yielding vertices ■ and contour
 triangulated grid, yielding vertices ● and contour

Bi-Linear Interpolation: Comparisons

linear

(2 triangles per quad; diagonal: bottom-left, top-right)

Markus Hadwiger 24

Bi-Linear Interpolation: Comparisons

linear

(2 triangles per quad; diagonal: top-left, bottom-right)

Markus Hadwiger 25

Bi-Linear Interpolation: Comparisons

bi-linear

Markus Hadwiger 26

From 2D to 3D (Domain)

2D - Marching Squares Algorithm:

- 1. Locate the contour corresponding to a user-specified iso value
- 2. Create lines

3D - Marching Cubes Algorithm:

- 1. Locate the surface corresponding to a user-specified iso value
- 2. Create triangles
- 3. Calculate normals to the surface at each vertex
- 4. Draw shaded triangles

Marching Cubes

- For each cell, we have 8 vertices with 2 possible states each (inside or outside).
- This gives us 2⁸ possible patterns = 256 cases.
- Enumerate cases to create a LUT
- Use symmetries to reduce problem from 256 to 15 cases.

Explanations

- Data Visualization book, 5.3.2
- Marching Cubes: A high resolution 3D surface construction algorithm, Lorensen & Cline, ACM SIGGRAPH 1987

Markus Hadwiger, KAUST 28

Contours of 3D scalar fields are known as isosurfaces. Before 1987, isosurfaces were computed as

- contours on planar slices, followed by
- "contour stitching".

The marching cubes algorithm computes contours directly in 3D.

- Pieces of the isosurfaces are generated on a cell-by-cell basis.
- Similar to marching squares, a 8-bit number is computed from the 8 signs of $\tilde{f}(x_i)$ on the corners of a hexahedral cell.
- The isosurface piece is looked up in a table with 256 entries.

How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:

- rotational symmetries of the cube
- reflective symmetries of the cube
- sign changes of $\tilde{f}(x_i)$

They published a reduced set of 14^{*)} cases shown on the next slides where

- white circles indicate positive signs of $\tilde{f}(x_i)$
- the positive side of the isosurface is drawn in red, the negative side in blue.

^{*)} plus an unnecessary "case 14" which is a symmetric image of case 11.

Do the pieces fit together?

- The correct isosurfaces of the trilinear interpolant would fit (trilinear reduces to bilinear on the cell interfaces)
- but the marching cubes polygons don't necessarily fit.

Example

- case 10, on top of
- case 3 (rotated, signs changed)

have matching signs at nodes but polygons don't fit.

Summary of marching cubes algorithm:

Pre-processing steps:

- build a table of the 28 cases
- derive a table of the 256 cases, containing info on
 - intersected cell edges, e.g. for case 3/256 (see case 2/28):
 (0,2), (0,4), (1,3), (1,5)
 - triangles based on these points, e.g. for case 3/256: (0,2,1), (1,3,2).

2-23

Loop over cells:

- find sign of $\tilde{f}(x_i)$ for the 8 corner nodes, giving 8-bit integer
- use as index into (256 case) table
- find intersection points on edges listed in table, using linear interpolation
- generate triangles according to table

Post-processing steps:

- connect triangles (share vertices)
- compute normal vectors
 - by averaging triangle normals (problem: thin triangles!)
 - by estimating the gradient of the field $f(x_i)$ (better)

Triangle Mesh Data Structure (1)

Store list of vertices; vertices shared by triangles are replicated

Render, e.g., with OpenGL immediate mode, ...

Redundant, large storage size, cannot modify shared vertices easily Store data values per face, or separately

Triangle Mesh Data Structure (2)

Indexed face set: store list of vertices; store triangles as indexes

Render using separate vertex and index arrays / buffers

Less redundancy, more efficient in terms of memory

Easy to change vertex positions; still have to do (global) search for shared edges (local information)

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

not orientable

Moebius strip (only one side!)

Triangle meshes

- Edges
 - Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise) (e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)
- Triangles
 - Consistent front side vs. back side
 - Normal vector; or ordering of vertices (CCW/CW)
 - See also: "right-hand rule"

Local Shading Equations

Standard volume shading adapts surface shading

Most commonly Blinn/Phong model

But what about the "surface" normal vector?

specular reflection

The Dot Product (Scalar / Inner Product)

Cosine of angle between two vectors times their lengths

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$$
 $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$

(standard inner product in Cartesian coordinates)

Many uses:

Project vector onto another vector, project into basis, project into tangent plane,

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama