ネットワーク レポート (3I44 吉髙僚眞)

目的

- インターネット層における、IPプロトコルを使ったIPルーティングについて理解し、どのようにIPパケットを 伝送しているかを理解する。
- ubuntu(Linux)の基本的なネットワーク設定について理解する。
- Wiresharkを用いてパケットキャプチャを行い、IPパケット、MACフレームの構造について理解する。
- NATやNAPT(IPマスカレード)の目的と用途について理解する。

実験1: ネットワークインターフェース(NIC)とIPアドレス、ネットワーク ルーティング

動作確認

[exp1-1]

2025-06-29 report.md

[exp1-2]

ネットワーク図

intnet1 192.168.10.0/24

intnetA 192.168.100.0/24

ルーティングテーブル

[exp1-1]

ネットワーク	ネクストホップ
192.168.10.0/24	直接接続

ネットワーク	ネクストホップ
192.168.100.0/24	直接接続
192.168.20.0/24	192.168.100.20

[exp1-1]

ネットワーク	ネクストホップ
192.168.20.0/24	直接接続
192.168.100.0/24	直接接続
192.168.10.0/24	192.168.100.10

NAPT, IPマスカレード

動作確認

[exp1-1]

[exp1-2]

ネットワーク図

intnetA 192.168.100.0/24

[exp1-1]

ネットワーク	ネクストホップ	メトリック
192.168.10.0/24	直接接続	0
192.168.100.0/24	直接接続	0
192.168.20.0/24	192.168.100.20	1
10.0.4.0/24	192.168.100.20	1

[exp1-2]

ネットワーク	ネクストホップ	メトリック
192.168.20.0/24	直接接続	0
192.168.100.0/24	直接接続	0
192.168.10.0/24	192.168.100.10	1
10.0.4.0/24	直接接続	0

実験2 Wiresharkを使ってパケットキャプチャする

ネットワーク間

1. ICMPパケット一つ(往復分)を詳細を観察し、ICMPパケットの構造をレポートにまとめる

要求

フィールド	値
Ethernet ヘッダ	
宛先 MAC	08:00:27:aa:f7:3f
送信元 MAC	08:00:27:84:b8:a7
EtherType	0x0800
IP ヘッダ	
Version / IHL	0x45
DSCP / ECN	0x00
Total Length	0x0054
Identification	0x2ef8
Flags / Frag Offset	0x4000
TTL	0x40
Protocol	0x01
Header Checksum	0x1255
送信元 IP	192.168.100.10
宛先 IP	192.168.20.1

フィールド	値
ICMP ヘッダ	
Туре	0x08
Code	0x00
Checksum	0xc214
Identifier	0x000b
Sequence Number	0x0000

応答

フィールド値Ethernet ヘッダの8:00:27:84:b8:a7宛先 MAC08:00:27:aa:f7:3f送信元 MAC08:00:27:aa:f7:3fEtherType0x0800IPv4 ヘッダOx45

フィールド	値
DSCP / ECN	0x00
Total Length	0x0054
Identification	0x599c
Flags / Frag Offset	0x0000
TTL	0x40
Protocol	0x01
Header Checksum	0x27b1
送信元 IP	192.168.20.1
宛先 IP	192.168.100.10
ICMP ヘッダ	
Туре	0x00
Code	0x00
Checksum	0x9943
Identifier	0x000d
Sequence Number	0x0001

ICMPヘッダの構造

- ICMPパケットは、L1のイーサネットヘッダ、L2のIPヘッダ、L3のICMPヘッダからなる。
- ICMPヘッダの構造
 - Type
 - Code
 - o Checksum
 - Identifier(BE)
 - Identifier(LE)
 - Sequence number(BE)
 - Sequence(LE)
 - Timestamp
 - Data

のような要素からなる。

• 要求と応答でTypeが異なっていることからその部分にはエコー要求の場合は8,エコー応答の場合は0が入ることがわかる。

外部との通信

1. キャプチャするNICの位置によって、ICMPパケット(IPフレーム)の内容がどのように変わっているか確認し、ex1-2で何が行われているか(実験1でex1-2に対してどのような設定を行ったのかを考えて)考察する。

要求

値
08:00:27:aa:f7:3f
08:00:27:84:b8:a7
0x0800
0x45
0x00
0x0054
0x1747
0x4000
0x40
0x01

フィールド	値
Header Checksum	0x4385
送信元 IP	192.168.100.10
宛先 IP	172.16.15.26
ICMP ヘッダ	
Туре	0x08
Code	0x00
Checksum	0x6986
Identifier	0x000e
Sequence Number	0x0001

応答

フィールド値Ethernet ヘッダの8:00:27:84:b8:a7送信元 MAC08:00:27:aa:f7:3f

フィールド	値
EtherType	0x0800
IPv4 ヘッダ	
Version / IHL	0x45
DSCP / ECN	0x00
Total Length	0x0054
Identification	0x02ea
Flags / Frag Offset	0x0000
TTL	0x3c
Protocol	0x01
Header Checksum	0x9be2
送信元 IP	172.16.15.26
	192.168.100.10
ICMP ヘッダ	
Туре	0x00
Code	0x00
Checksum	0x7186
Identifier	0x000e
Sequence Number	0x0001

考察

この実験ではexp1-2でIPマスカレードする設定を追加したため、exp1-1のパケットがexp1-2でアドレス変換されているはずである。しかし、そのような変換は見られなかった、これはIPアドレスが変換される前のパケットを見ているからだと考えられる。

また、先ほどと異なっている部分を考えると、TTLが1つ下がっていることがわかる。これは外部のネットワークに出る時にルーター(exp1-2)が1つ値を減らしたからだと考えられる。

今回の実験で理解できたこと、できなかったこと

- インターネット層における、IPプロトコルを使ったIPルーティングについて理解し、どのようにIPパケットを 伝送しているかは理解できたと思う。
- Linuxのネットワーク設定の方法については理解できた。
- Wiresharkを用いてパケットキャプチャを行う方法、IPパケット、MACフレームの構造について理解できた。
- NATやNAPT(IPマスカレード)の目的と用途について理解できた。