排列組合

沈威宇

2025年2月4日

目錄

第一	-節	排列組合(Permutation and Combination)	1
	<u> </u>	計數方法	1
	= \	階乘(Factorial)	1
	三、	伽瑪函數(Gamma function).........................	1
	四、	排列	1
	五、	錯排	1
		(—) D_n	1
		(\equiv) D_m^n	2
	六、	環狀排列	2
		(一) 全相異物環狀排列	2
		(二) 不盡相異物環狀排列	2
	七、	組合數	3
		(一) <i>n</i> 非負整數域定義	3
		(二) <i>n</i> 非負實數域定義	3
		(三) <i>n</i> 實數域定義	3
		(四) m \ n 大於負一實部複數域定義	3
		(五) <i>m</i> 大於負一實部複數域、 <i>n</i> 複數域定義	3
	八、	二項式定理	4
		(一) 二項式定理	4
		(二) 多項式定理	4
		(三) 范德蒙恆等式(Vandermonde identity)	4
	九、	重複組合	5
	+、	巴斯卡公式	5
	+-	-、 組合恆等式	5
	+=	巴斯卡三角形(Pascal's triangle)/楊輝三角形	6
	+=	卡特蘭數(Catalan number)	6
		(一) 遞迴式	6
		(二) 一般式	6
		(三) 非正方形格點的卡特蘭數	6
	十匹	1、 指數級數公式推導	7

排列組合(Permutation and Combination) 第一節

計數方法

• 窮舉法:將所有可能——列舉出而計算數目的方法。

• 樹狀圖:畫出樹狀圖列舉而計算數目的方法。

階乘(Factorial)

$$n! = \begin{cases} \prod_{i=1}^{n} i, & \text{if } n \in \mathbb{N}, \\ 1, & \text{if } n = 0. \end{cases}$$

伽瑪函數(Gamma function)

階乘函數在正實部複數域上的擴展。

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t, \quad \Re(z) > 0$$

其中 $\Re(z)$ 指 z 之實部。 特別地,對於正實數z:

$$\Gamma(z) = (z - 1)!$$

四、 排列

- •排列:從 n 相異物中取 m 個排成一直列 $(0 \le m \le n)$,正逆序視為二,其排列總數 $P_m^n = \frac{n!}{(n-m)!} \circ$
- 不盡相異物排列:設有 n 物,共有 k 種,第 i 種有 m_i 個。全取排成一直列,正逆序視為二, 其排列總數為 $\frac{n!}{\prod_{i=1}^{n} m_i!}$ 。
- 重複排列:從 n 類相異物中,任取 m 個排成一直列,正逆序視為二,其中每類物品的個數均不 小於 m 且可重複選取,其排列總數為 n^m 。

錯排 五、

錯排:n 相異物全取作直線排列,其中 m 物($m \le n$)依次被限制不能排列於相異單一指定位置之排 列,其方法數稱 D_m^n 。當 m=n,錯排方法數稱 D_n 。

(-) D_n

• 遞迴式:

一般式:

$$D_n = n! \cdot \left(1 + \sum_{i=1}^n \frac{(-1)^i}{i!}\right)$$
$$= \sum_{i=0}^n (C_i^n \cdot (n-i)! \cdot (-1)^i)$$

• 錯排機率

$$\lim_{n\to\infty} \frac{D_n}{n!} = \frac{1}{e}$$

 (\square) D_m^n

$$D_{m}^{n} = \sum_{i=0}^{m} \left((-1)^{i} \cdot C_{i}^{m} \cdot (n-i)! \right)$$

六、 環狀排列

環狀排列:n 物全取排列成環狀,不同方法之判定僅考慮相對位置,不考慮絕對位置,惟翻轉(順時針 \rightleftharpoons 逆時針)視為二種。

(一) 全相異物環狀排列

全相異物全取作環狀排列方法數 =
$$\frac{n!}{m \cdot (n-m)!}$$

(二) 不盡相異物環狀排列

n 不盡相異物,全取作環狀排列,求其方法數。

· 法一:

子循環:一個長度 n 的給定直線排列,若其前 $\frac{n}{m}$ 物重複 m 次等同於原排列,且不存在 > 1 的 k 使原排列的前 $\frac{n}{m \cdot k}$ 物重複 k 次等同於原排列的前 $\frac{n}{m}$ 物,則稱原排列的前 $\frac{n}{m}$ 物為一個長度 $\frac{n}{m}$ 的子循環,稱原排列之子循環長度為 $\frac{n}{m}$ 、子循環數目為 m 。

令該 n 不盡相異物的所有可能直線排列中,有 d_i 個之子循環長度為 ℓ_i ,且 $\sum_{i=1}^m d_i =$ 該 n 不盡相異物直線排列方法數,則:

所求 =
$$\sum_{i=1}^{m} \frac{d_i}{\ell_i}$$

· 法二:

令該 n 不盡相異物可分為 k 相異類,第 i 類($1 \le i \le k$)有 m_i 件相同物。最大公因數 $\gcd(m_1, m_2, m_3, \ldots, m_k) = g$ 。令所求為 R。

2

- 最大公因數 g 為 1:

$$R = \frac{(n-1)!}{\prod_{i=1}^{k} \left(m_i!\right)}$$

- 最大公因數 g 為一質數 p:

$$R = \frac{1}{n} \cdot \left(\frac{n!}{\prod_{i=1}^{k} \left(m_i! \right)} - \frac{n!}{\prod_{i=1}^{k} \left(\frac{m_i}{p}! \right)} \right) + \frac{\left(\frac{n}{p} - 1 \right)!}{\prod_{i=1}^{k} \left(\frac{m_i}{p}! \right)}$$

- 最大公因數 g 為任一正整數:

令 g之所有相異質因數由小到大依序為 $p_1, p_2, p_3, \ldots, p_a$ 』

$$R = \sum_{j=0}^{q} \left((-1)^{j} \cdot \sum_{|Y|=j} \frac{\left(\sum_{i=1}^{k} \frac{m_{i}}{\prod_{y \in Y} y}\right)!}{\prod_{i=1}^{k} \left(\frac{m_{i}}{\prod_{y \in Y} y}!\right)} \right)$$
,其中 $Y \subseteq \{p_{1}, p_{2}, p_{3}, \dots, p_{q}\}$
,定義 $\prod_{y \in \emptyset} y = 1$

七、 組合數

組合數記作 C_m^n 或 $\binom{n}{m}$ 。

(一) n 非負整數域定義

從 n 相異物中每次取 m 個為一組($0 \le m \le n, m, n \in \mathbb{N}_0$)之組合數,即:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}, \quad 0 \le m \le n, \, m, \, n \in \mathbb{N}_0.$$

(二) n 非負實數域定義

$$\binom{n}{m} = \frac{\prod_{i=0}^{m-1} (n-i)}{m!}, \quad 0 \le m \le n, \ m \in \mathbb{N}_0, \ n \in \mathbb{R}_{\ge 0}.$$

(三) n實數域定義

$$\binom{n}{m} = \begin{cases} \frac{\prod_{i=0}^{m-1} (n-i)}{m!}, & 0 \le m \le n, \ m \in \mathbb{N}_0, \ n \in \mathbb{R}_{\ge 0}, \\ (-1)^m \cdot \binom{-n+m-1}{m}, & 0 \le m \le -n+m-1, \ m \in \mathbb{N}_0, \ n \in \mathbb{R}_{< 0}. \end{cases}$$

(四) $m \cdot n$ 大於負一實部複數域定義

$$\binom{n}{m} = \frac{\Gamma(n+1)}{\Gamma(m+1)\Gamma(n-m+1)}, \quad 0 \leq \Re(m) \leq \Re(n), \ m, \ n \in \mathbb{C}, \ \Re(n), \ \Re(m), \ \Re(n-m) \in \mathbb{R}_{>-1}.$$

(五) m 大於負一實部複數域、n 複數域定義

$$\binom{n}{m} = \begin{cases} \frac{\Gamma(n+1)}{\Gamma(m+1)\Gamma(n-m+1)}, & 0 \leq \Re(m) \leq \Re(n), \ m, \ n \in \mathbb{C}, \ \Re(n), \ \Re(m), \ \Re(n-m) \in \mathbb{R}_{>-1}, \\ (-1)^m \cdot \binom{-n+m-1}{m}, & 0 \leq \Re(m) \leq \Re(-n+m-1), \ m, \ n \in \mathbb{C}, \ \Re(-n+m), \ \Re(m+1), \ \Re(-n) \in \mathbb{R}_{>}, \end{cases}$$

八、 二項式定理

(一) 二項式定理

$$(a+b)^{n}, \quad a, b, n \in \mathbb{C}, \ a+b \neq 0$$

$$=e^{n\left(\ln(|a+b|)+i\cdot\arg(a+b)\right)}$$

$$=\begin{cases} \sum_{m=0}^{n} \binom{n}{m} \cdot a^{m} \cdot b^{n-m}, & \Re(n) \in \mathbb{N}_{0}, \\ \sum_{m=0}^{\infty} \binom{n}{m} \cdot a^{m} \cdot b^{n-m}, & \Re(n) \notin \mathbb{N}_{0}, \ |a| < |b| \vee |a| |b| = 0. \end{cases}$$

其中

$$arg(x + yi) = atan2(y, x) \in (-\pi, \pi], \quad x, y \in \mathbb{R}$$

為 z = x + yi 的輻角主值; $|a| = \sqrt{\Re(a)^2 + \Im(a)^2}$ 。

(二) 多項式定理

$$\left(\sum_{i=1}^{m} x_{i}\right)^{n}, \quad x_{i}, n \in \mathbb{C}, \sum_{i=1}^{m} x_{i} \neq 0$$

$$= e^{n\left(\ln\left(\left|\sum_{i=1}^{m} x_{i}\right|\right) + i \cdot \arg\left(\sum_{i=1}^{m} x_{i}\right)\right)}$$

$$= \begin{cases} \sum_{\sum_{i=1}^{m} k_{i} = n} \frac{n!}{\prod_{i=1}^{n} (k_{i}!)} \prod_{i=1}^{n} x_{i}^{k_{i}}, \quad \Re(n) \in \mathbb{N}_{0}, \\ k_{i} \in \mathbb{N}_{0} \end{cases}$$

$$= \begin{cases} \sum_{\sum_{i=1}^{m} k_{i} = n} \frac{n!}{\prod_{i=1}^{n} (k_{i}!)} \prod_{i=1}^{n} x_{i}^{k_{i}}, \quad \Re(n) \notin \mathbb{N}_{0}, \quad \text{此表達式收斂}. \end{cases}$$

(三) 范德蒙恆等式(Vandermonde identity)

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Proof.

Consider a lattice path from (0,0) to (n,n) in a grid where each step moves either right (1,0) or up (0,1).

Since we must choose n steps to move right out of the total 2n steps, the total number of such paths is given by:

 $\binom{2n}{n}$.

Now, let's count the same paths differently. Choose an intermediate point (k, n - k) at step n. The number of ways to reach this point from (0,0) using k right steps and n-k up steps is $\binom{n}{k}$. From (k, n-k) to (n, n), we need n-k right steps and k up steps, which can be done in $\binom{n}{k}$ ways. Summing over all possible k, we obtain:

$$\sum_{k=0}^{n} \binom{n}{k}^{2}.$$

九、 重複組合

定義:由 n 類相異物中,任取 m 個為一組之方法數,其中每類物品的個數均不小於 m 且可重複選取。記作 H_m^n 。

$$H_m^n = C_m^{n+m-1}$$

= C_{n-1}^{n+m-1}

十、 巴斯卡公式

$$C_m^n = C_{m-1}^{n-1} + C_m^{n-1}$$

十一、 組合恆等式

$$\sum_{k=0}^{n} C_{k}^{n} = 2^{n}$$

$$\sum_{k=0}^{n} (-1)^{k} \cdot C_{k}^{n} = 0$$

$$\sum_{k=0}^{n} 2^{k} \cdot C_{k}^{n} = 3^{n}$$

$$\sum_{k=0}^{n} k \cdot C_{k}^{n} = n \cdot 2^{n-1}$$

$$\sum_{k=0}^{n} (C_{k}^{n})^{2} = C_{n}^{2n}$$

$$\sum_{k=0}^{n} k^{2} \cdot C_{k}^{n} = n \cdot (n-1) \cdot 2^{n-2} + n \cdot 2^{n-1}$$

$$\sum_{k=3}^{n} C_{2}^{k} = n \cdot 2^{n-1}$$

$$\left(\prod_{i=0}^{x} (k-i)\right) \cdot C_{k}^{n} = \left(\prod_{i=0}^{x} (n-i)\right) \cdot C_{k-x-1}^{n-k-1} \quad x < k, x \in \mathbb{N}$$

$$\sum_{k=0}^{n} \left(\left(\prod_{i=0}^{x} (k-i)\right) \cdot C_{k}^{n}\right) = \sum_{k=0}^{n} \left(\left(\prod_{i=0}^{x} (n-i)\right) \cdot C_{k-x-1}^{n-k-1}\right)$$

$$= \frac{n!}{(n-x-1)!} \cdot 2^{n-x-1}$$

$$x < n, x \in \mathbb{N}, \ \overline{E} \stackrel{\text{R}}{\otimes} \forall k < 0 : C_{k}^{n} = 0$$

十二、 巴斯卡三角形(Pascal's triangle)/楊輝三角形

定義:令最上面一列為第 0 列,向下每列遞增 1;每一列最左之數為第 0 個,向右每個遞增 1。巴斯卡三角形之第 n 列第 m 個數定義為 C_m^n 。

十三、 卡特蘭數 (Catalan number)

定義:所有在 $n \times n$ 格點中不越過對角線的單調路徑的個數。一個單調路徑從格點左下角出發,在格點右上角結束,每一步均為向上或向右。記作 C_n 。

(一) 遞迴式

$$\begin{cases} C_0 &= 1 \\ C_n &= \sum_{k=1}^n C_{k-1} \cdot C_{n-k} & (\ddot{\Xi} n > 0) \end{cases}$$

Proof. 令對角線為 y=x,第一次到達對角線上時的位置為 (k,k),則第一次到達對角線前的單調路徑數為 C_k ,第一次到達對角線後的單調路徑數為 C_{n-k} ,故對 n>0 成立。 $C_0=C_1=0$,亦成立。

(二) 一般式

$$C_n = C_n^{2n} - C_{n-1}^{2n}$$
$$= \frac{1}{n+1} \cdot C_n^{2n}$$

Proof. 自 (0,0) 至 (n,n) 的單調路徑數為 C_n^{2n} 。考慮這些路徑中不符合卡特蘭數定義者,其第一次跨越對角線 y=x 的點必在 y=x+1 上,將接下來的路徑對 y=x+1 鏡射,則終點 (n,n) 變為 (n-1,n+1) 。在此 $(n-1)\times(n+1)$ 格點中自 (0,0) 至 (n-1,n+1) 的單調路徑數為 C_{n-1}^{2n} 。故 $C_n=C_n^{2n}-C_{n-1}^{2n}=\frac{1}{n+1}\cdot C_n^{2n}$ 。

(三) 非正方形格點的卡特蘭數

定義:所有在 $n \times k$ 格點中不越過對角線的單調路徑的個數。一個單調路徑從格點左下角出發,在格點右上角結束,每一步均為向上或向右。

一般式:

十四、 指數級數公式推導

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{i=1}^{n} i^r = n + \sum_{k=1}^{n-1} (n-k)((k+1)^r - k^r)$$

$$= n + \sum_{k=1}^{n-1} (n-k) \sum_{j=0}^{r-1} {r \choose j} k^j$$