MoskaliovYV 11012025-105609

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.486	-129.9	19.485	99.7	0.029	50.5	0.431	-62.4
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
2.8	0.473	-168.0	10.058	75.0	0.043	51.9	0.278	-87.1
3.5	0.480	-178.9	8.017	66.8	0.051	52.1	0.259	-96.2
4.2	0.487	172.2	6.706	59.3	0.060	51.3	0.244	-102.7
4.9	0.501	164.5	5.698	51.7	0.068	49.6	0.227	-110.9
5.6	0.497	158.1	4.949	45.2	0.079	48.1	0.213	-115.9
6.3	0.508	149.8	4.422	38.1	0.088	44.3	0.196	-126.0
7.4	0.535	137.7	3.704	27.2	0.101	40.3	0.147	-142.3

и частоты $f_{\scriptscriptstyle \rm H}=2.1$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=6.3$ $\Gamma\Gamma$ ц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \rm B}.$

- 1) 9.7 дБ
- 2) 14.2 дБ
- 3) 28.3 дБ
- 4) 4.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.038	67.5	0.366	-57.1
1.1	0.320	-155.5	12.461	91.4	0.040	67.2	0.341	-59.1
1.2	0.323	-159.5	11.379	88.9	0.043	67.1	0.320	-61.2
1.3	0.326	-162.8	10.531	86.9	0.046	67.0	0.302	-62.9
1.4	0.331	-165.9	9.800	85.0	0.049	66.9	0.285	-65.0
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
1.6	0.335	-171.5	8.475	81.1	0.055	66.3	0.256	-68.8
1.7	0.338	-173.9	7.988	79.7	0.058	66.1	0.243	-70.7
1.8	0.342	-176.0	7.561	78.3	0.061	66.0	0.232	-72.8
1.9	0.344	-178.6	7.147	76.2	0.064	65.5	0.222	-74.8
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1

и частоты $f_{\scriptscriptstyle \rm H}=1.2$ ГГц, $f_{\scriptscriptstyle \rm B}=1.7$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{н}}...f_{\text{в}}$, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

- 1) 3.1 дБ
- 2) 1.6 дБ
- 3) 6.2 дБ
- 4) 1.5 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.7	0.467	-175.1	10.688	73.7	0.042	57.9	0.238	-91.0
2.8	0.468	-176.6	10.275	72.5	0.043	57.9	0.234	-92.9
2.9	0.470	-178.1	9.920	71.4	0.044	57.8	0.232	-94.6
3.0	0.473	-179.5	9.569	70.2	0.045	57.8	0.230	-96.3
3.1	0.473	179.2	9.284	69.3	0.047	57.7	0.229	-97.5
3.2	0.474	177.9	9.002	68.2	0.048	57.5	0.227	-98.8
3.3	0.476	176.6	8.722	67.2	0.049	57.4	0.226	-100.0
3.4	0.477	175.3	8.446	66.0	0.051	57.3	0.225	-101.3
3.5	0.479	174.0	8.174	64.8	0.052	57.2	0.224	-102.6
3.6	0.480	172.8	7.966	63.9	0.053	57.0	0.222	-103.4
3.7	0.480	171.7	7.761	62.9	0.055	56.8	0.221	-104.2

и частоты $f_{\text{H}}=3.2~\Gamma\Gamma$ ц, $f_{\text{B}}=3.7~\Gamma\Gamma$ ц. **Найти** модуль s_{21} в дB на частоте f_{B} .

- 1) -25.2 дБ
- 2) -13.1 дБ
- 3) 17.8 дБ
- 4) -6.4 дБ

Найти точку (см. рисунок 2), соответствующую коэффициенту отражения от нормированного импеданса $z=0.9+0.93\mathrm{i}$.

Рисунок 2 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.353	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Найти точку (см. рисунок 3), соответствующую s_{22} на частоте 1.5 ГГц.

Рисунок 3 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Задан двухполюсник на рисунке 4, причём R1 = 280.49 Ом.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.