Memory requirements for generalised reachability games

Antonio Casares

Generalised reachability conditions

Let Σ be an alphabet and $L\subseteq \Sigma^*$ a (regular) language of finite words.

 $Reach(L) = \{ w \in \Sigma^{\omega} : \exists u \in \Sigma^{\omega} \text{ a prefix of } w \text{ such that } u \in L \}$

We will suppose that L is suffix-closed (we can always take $L \cdot \Sigma$).

Generalised reachability conditions are exactly topologically open conditions (without regularity assumptions).

Upper bound

If L is a regular language, let \mathcal{A} be the minimal deterministic automaton for it. Then, given a Reach(L)-game \mathcal{G} won by Eve, the game $\mathcal{G} \times \mathcal{A}$ is won by her positionally.

Conclusion

The automaton \mathcal{A} can be used as a memory structure for every Reach(L)-game and $M_L \leq |\mathcal{A}|$.

Examples

 $\Sigma = \{a, b\}$

Example 1: $L = aaa \cdot \Sigma^*$

Left quotients: $\varepsilon^{-1}L \subseteq a^{-1}L \subseteq aa^{-1}L \subseteq aaa^{-1}L$.

For every L-game, 1 memory state suffices (we meet the lower bound).

Example 2: $L = aa^*b \cdot \Sigma^*$

Left quotients: $\varepsilon^{-1}L \subseteq a^{-1}L \subseteq ab^{-1}L$.

The lower bound we provide is 1, but we need 2 memory states for a game with one vertex controlled by Eve.

Problem

Given a language L, what is the optimal memory required by the existential player (Eve) to win games with condition Reach(L)?

That is, what is the number M_L such that:

- If Eve wins a game with condition Reach(L), she has an strategy using memory of size at most M_L .
- For every L there exists a Reach(L)-game won by Eve where she requires at least M_L memory states to win.

Lower bound

For $w \in \Sigma^*$, its *left quotient* is

$$w^{-1}L = \{u \in \Sigma^* : wu \in L\}$$

The set of left quotients is naturally ordered by inclusion.

An antichain is a subset A of a partially ordered set such that every pair of elements of it are incomparable.

In [CFH14] the memory requirements for the universal player are established (i.e. topologically closed conditions):

Theorem [CFH14]

The memory required by the universal player is given by the size of a maximal antichain of left quotients of $L \cdot \Sigma^*$. (No regularity assumptions).

This lower bound holds for the existential player too, but it is not tight.

Lower bound

 M_L is at least as big as a maximal antichain of left quotients of $L \cdot \Sigma^*$.

References

[CFH14] Thomas Colcombet, Nathanaël Fijalkow, and F. Horn. "Playing Safe". In: FSTTCS. 2014.