# PROBABILITY & STATISTICS

BS 1402

#### Contents

- •Simple Linear Regression
- •Least Squares Method for Fitted Linear Regression Model

## Linear Relationship

#### Linear Equation:

$$Y = \beta_0 + \beta_1 x,$$



Figure 11.1: A linear relationship;  $\beta_0$ : intercept;  $\beta_1$ : slope.

## The Simple Linear Regression (SLR) Model

The response *Y* is related to the independent variable *x* through the equation

$$Y = \beta_0 + \beta_1 x + \epsilon.$$

 $\beta_0$  and  $\beta_1$  are unknown intercept and slope parameters, respectively, and  $\epsilon$  is a random variable that is assumed to be distributed with  $E(\epsilon) = 0$ 

## The Simple Linear Regression (SLR) Model



## The Fitted Regression Model

An important aspect of regression analysis is, very simply, to estimate the parameters  $\beta_0$  and  $\beta_1$  (i.e., estimate the so-called regression coefficients).

Suppose we denote the estimates  $b_0$  for  $\beta_0$  and  $b_1$  for  $\beta_1$ . Then the estimated or fitted regression line is given by

$$\hat{y} = b_0 + b_1 x,$$

### Least Squares and the Fitted Model

A residual is an error in the fit of the model:

$$\hat{y} = b_0 + b_1 x,$$

Given a set of regression data  $\{(x_i, y_i); i = 1, 2, ..., n\}$  and a fitted model,  $\hat{y}_i = b_0 + b_1 x_i$ , the *i*th residual  $e_i$  is given by

$$e_i = y_i - \hat{y}_i, \quad i = 1, 2, \dots, n.$$

If a set of n residuals is large, then the fit of the model is not good.

Small residuals are a sign of a good fit.

## The Method of Least Squares

$$b_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} - b_{1} \sum_{i=1}^{n} x_{i}}{b_{0} = \frac{\sum_{i=1}^{n} y_{i}}{b_{0} = \frac{\sum_{i=1}^{n} y_{i}$$

#### Example 1:

Estimate the regression line for the pollution data of Table 11.1.

$$\sum_{i=1}^{33} x_i = 1104, \ \sum_{i=1}^{33} y_i = 1124, \ \sum_{i=1}^{33} x_i y_i = 41,355, \ \sum_{i=1}^{33} x_i^2 = 41,086$$

Therefore,

$$b_1 = \frac{(33)(41,355) - (1104)(1124)}{(33)(41,086) - (1104)^2} = 0.903643 \text{ and}$$

$$b_0 = \frac{1124 - (0.903643)(1104)}{33} = 3.829633.$$

Thus, the estimated regression line is given by

$$\hat{y} = 3.8296 + 0.9036x.$$

#### Example 1 Data:

Table 11.1: Measures of Reduction in Solids and Oxygen Demand

| Solids Reduction, | Oxygen Demand      | Solids Reduction, | Oxygen Demand      |
|-------------------|--------------------|-------------------|--------------------|
| x~(%)             | Reduction, $y$ (%) | x~(%)             | Reduction, $y$ (%) |
| 3                 | 5                  | 36                | 34                 |
| 7                 | 11                 | 37                | 36                 |
| 11                | 21                 | 38                | 38                 |
| 15                | 16                 | 39                | 37                 |
| 18                | 16                 | 39                | 36                 |
| 27                | 28                 | 39                | 45                 |
| 29                | 27                 | 40                | 39                 |
| 30                | 25                 | 41                | 41                 |
| 30                | 35                 | 42                | 40                 |
| 31                | 30                 | 42                | 44                 |
| 31                | 40                 | 43                | 37                 |
| 32                | 32                 | 44                | 44                 |
| 33                | 34                 | 45                | 46                 |
| 33                | 32                 | 46                | 46                 |
| 34                | 34                 | 47                | 49                 |
| 36                | 37                 | 50                | 51                 |
| 36                | 38                 |                   |                    |

Thank You.