老產鄉電大灣

学生实验实习报告册

学年学期:	2020 -2021 学年 口春区秋学期		
课程名称:	信号处理实验		
学生学院:	通信与信息工程学院		
专业班级:	01011803		
学生学号:	2018210203		
学生姓名:	杨童		
联系电话:			
	10777711010		

重庆邮电大学教务处制

课程名称	信号处理实验	课程编号	S01201A2010550004
实验地点	实验地点 移动通信技术实验室 YF304		2020. 10. 20
校外指导教 师	无	校内指导教 师	邵凯
实验名称	系统响应及系统稳定性		
评阅人签字		成绩	

一、实验目的

- 1、学会运用 MATLAB 求解离散时间系统的零状态响应;
- 2、学会运用 MATLAB 求解离散时间系统的单位取样响应;
- 3、学会运用 MATLAB 求解离散时间系统的卷积和。

二、实验原理

1、离散时间系统的响应

离散时间 LTI 系统可用线性常系数差分方程来描述,即

$$\sum_{i=0}^{N} a_i y(n-i) = \sum_{i=1}^{n} b_i x(n-j)$$

其中, ia (i=0, 1, ..., N) 和 jb (j=0, 1, ..., M) 为实常数。

MATLAB 中函数 filter 可对式(13-1) 的差分方程在指定时间范围内的输入序列所产生的响应进行求解。函数 filter 的语句格式为

$$y=filter(b,a,x)$$

其中, x 为输入的离散序列; y 为输出的离散序列; y 的长度与 x 的长度一样; b 与 a 分别为差分方程右端与左端的系数向量。

2、离散时间系统的单位取样响应

系统的单位取样响应定义为系统在 δ (n)激励下系统的零状态响应,用 h(n)表示。MATLAB 求解单位取样响应可利用函数filter,并将激励设为单位抽样序列。

MATLAB 另一种求单位取样响应的方法是利用控制系统工具箱提供的函数 impz 来实现。impz 函数的常用语句格式为

其中,参数 N 通常为正整数,代表计算单位取样响应的样值个数。

3、离散时间信号的卷积和运算

由于系统的零状态响应是激励与系统的单位取样响应的卷积,因此卷积运算在离散时间信号处

理领域被广泛应用。离散时间信号的卷积定义为

$$y(n) = x(n) * h(n) = \sum_{n=0}^{\infty} x(n)h(n-m) m = -\infty$$

可见,离散时间信号的卷积运算是求和运算,因而常称为"卷积和"。

MATLAB 求离散时间信号卷积和的命令为conv, 其语句格式为

y=conv(x, h)

其中,x 与h 表示离散时间信号值的向量; y 为卷积结果。用MATLAB 进行卷积和运算时,无法实现无限的累加,只能计算时限信号的卷积。

对于给定函数的卷积和, 我们应计算卷积结果的起始点及其长度。两个

时限序列的卷积和长度等于两个序列长度的和减1。

三、实验程序及结果分析

1, (1)

 $a1=[3 \ 4 \ 1];$

 $b1=[1 \ 1];$

subplot(3, 1, 1);

impz(b1, a1, 30);

grid on;

(2)

a2=[5/2 6 10];

b2=[1];

subplot(3, 1, 2);

impz (b2, a2, 30);

grid on;

由图可知,(1)比(2)稳定。

```
2、
nx = -1:6;
nh=-1:12;
x=uDT(nx)-uDT(nx-5);
h=(7/8). \hat{n}h.*(uDT(nh)-uDT(nh-10));
y=conv(x, h);
ny1=nx(1)+nh(1);
ny2=nx(end)+nh(end);
ny=ny1:ny2;
subplot(3, 1, 1);
stem(nx, x);
xlabel('n');
ylabel('x(n)');
axis([-4 20 0 5]);
grid on;
subplot(3, 1, 2);
stem(nh, h);
xlabel('n');
```

```
ylabel('h(n)');
axis([-4 20 0 5]);
grid on;
subplot(3, 1, 3);
stem(ny, y);
xlabel('n');
ylabel('y(n)');
axis([-4 20 0 5]);
grid on;
 文件(E) 编辑(E) 查看(V) 插入(I) 工具(I) 桌面(D) 窗口(W) 帮助(H)
                                               10
                                                            15
                                                                         20
                                                                         20
                                                                         20
```

四、思考题

1. matlab 的工具箱函数 conv,能用于计算两个有限长序列之间的卷积,但 conv 函数假定这两个序列都从 n=0 开始。试编写 M 文件计算 x(n)=[3,11,7,0,-1,4,2], $-3 \le n \le 3$ 和 h(n)=[2,3,0,-5,2,1], $-1 \le n \le 4$ 之间的卷积,并绘制 y(n)的波形图。

```
n1 = -3:3;
n2=-1:4;
x=[3 \ 11 \ 7 \ 0 \ -1 \ 4 \ 2];
y=[2 3 0 -5 2 1];
z=conv(x, y);
z1=n1(1)+n2(1);
z2=n1 (end) +n2 (end);
nz=z1:z2; stem(nz, z);
axis([-4 20 0 5]);
grid on;
```

文件(E) 编辑(E) 查看(V) 插入(I) 工具(I) 桌面(D) 窗口(W) 帮助(H)

