Client

TA

Certificate No: D2450V2-SN712 Jul10

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 712

Calibration Procedure(s)

TMC-XZ-01-027

Calibration procedure for dipole validation kits

Calibration date:

July 15, 2010

Condition of the calibrated item

In Tolerance

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID# C	al Date(Calibrated by, Certificate No.)	Scheduled Calibr	ation
Power Meter NRVD	101253	18-Jun-10 (TMC, No.JZ10-248)	Jun-11	
Power sensor NRV-Z5	100333	18-Jun-10 (TMC, No. JZ10-248)	Jun-11	
Reference Probe ES3DV3	SN 3149	25-Sep-09(SPEAG, No.ES3-3149_Sep09)	Sep-10	
DAE4	SN 777	09-Jul-10(TMC, No.DAE4-777_Jul10)	Jul-11	
RF generator E4438C	MY4509287	9 17-Jun-10(TMC, No.JZ10-302)	Jun-11	
Network Analyzer 8753E	US38433212	02-Aug-09(TMC, No.JZ09-056)	Aug-10	

	Name	Function	Signature
Calibrated by:	Lin Hao	SAR Test Engineer	献卷
Reviewed by:	Qi Dianyuan	SAR Project Leader	2000
Approved by:	Xiao Li	Deputy Director of the laboratory	ART.

Issued: July 15, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratoty.

Certificate No: D2450V2-712_Jul10

Page 1 of 9

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Certificate No: D2450V2-712_Jul10

Methods Applied and Interpretation of Parameters:

 Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.

Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
exactly below the center marking of the flat phantom section, with the arms oriented parallel to
the body axis.

Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the
measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
power. No uncertainty required.

 Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.

SAR measured: SAR measured at the stated antenna input power.

SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna

 SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions DASY system configuration, as

DASY5	V5.0
Advanced Extrapolation	
2mm Oval Phantom ELI4	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2450 MHz ± 1 MHz	
	Advanced Extrapolation 2mm Oval Phantom EL14 10 mm dx, dy, dz = 5 mm

Head TSL parameters The following parameters a

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mhc/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.78 mho/m ± 6 %
Head TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	1
SAR measured	250 mW input power	13.3 mW/g
SAR normalized	normalized to 1W	53.2 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	53.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured =	250 mW input power	6.22 mW/g
SAR normalized	normalized to 1W	24.9 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	25.0 mW /g ± 16.5 % (k=2)

^{*} Correction to nominal TSL parameters according to d), chapter "SAR Sensitvities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1,95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6%	2.02 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C	244	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 mW/g
SAR normalized	normalized to 1W	52.4 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	52.6 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.18 mW/g
SAR normalized	normalized to 1W	24.7 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	24.8 mW /g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8Ω + 2.0 jΩ	
Return Loss	- 26.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.3Ω + 5.1 jΩ	
Return Loss	- 25.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,155 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

DASY5 Validation Report for Head TSL

Date/Time: 2010-7-15 9:15:30

Test Laboratory: TMC, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: SN: 712

Communication System: CW Frequency: 1800 MHz Duty Cycle: 1:1 Medium: Head 2450MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.78 \text{ mho/m}$; $\epsilon_r = 40.0$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3149; ConvF(5.18, 5.18, 5.18); Calibrated: 25.09.09

Electronics: DAE4 Sn777; Calibration: 09.07.10

Phanton: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.1 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.22 mW/gMaximum value of SAR (measured) = 17.1 mW/g

Certificate No: D2450V2-712_Jul10

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 2010-7-15 10:37:31

Test Laboratory: TMC, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: SN: 712

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Medium: Body 1800MHz

Medium parameters used; f = 2450 MHz; σ = 2.02 mho/m; ϵ , = 52.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3149; ConvF(4.97, 4.97, 4.97); Calibrated: 25.09.09

Electronics: DAE4 Sn777; Calibration: 09.07.10

Phanton: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) =29.1 W/kg

 $SAR(1 g) = 13.1 \ \text{mW/g}; \ SAR(10 g) = 6.18 \ \text{mW/g}$ Maximum value of SAR (measured) = $16.5 \ \text{mW/g}$

Certificate No: D2450V2-712_Jul10

Page 8 of 9

Impedance Measurement Plot for Body TSL

