A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Robert M. Hanson St. Olaf College

American Crystallographic Association 74th Annual Meeting, Denver, Colorado 9 July 2024

The International Tables identifies the 230 space groups that are possible for crystal structures.

1	<i>P</i> 1	2	<i>P</i> -1	3	<i>P</i> 2	4	P2 ₁	5	C2
6	Pm	7	Pc	8	Cm	9	Cc	10	P2/m
11	P2 ₁ /m	12	C2/m	13	P2/c	14	P2 ₁ /c	15	C2/c
16	P222	17	P222 ₁	18	P2 ₁ 2 ₁ 2	19	P2 ₁ 2 ₁ 2 ₁	20	C222 ₁
21	C222	22	F222	23	1222	24	<i>1</i> 2 ₁ 2 ₁ 2 ₁	25	Pmm2
26	Pmc2 ₁	27	Pcc2	28	Pma2	29	Pca2 ₁	30	Pnc2
31	Pmn2 ₁	32	Pba2	33	Pna2 ₁	34	Pnn2	35	Cmm2
36	Cmc2 ₁	37	Ccc2	38	Amm2	39	Aem2	40	Ama2
41	Aea2	42	Fmm2	43	Fdd2	44	Imm2	45	lba2
46	lma2	47	Pmmm	48	Pnnn	49	Pccm	50	Pban
51	Pmma	52	Pnna	53	Pmna	54	Pcca	55	Pbam
56	Pccn	57	Pbcm	58	Pnnm	59	Pmmn	60	Pbcn
61	Pbca	62	Pnma	63	Cmcm	64	Cmce	65	Cmmm
66	Cccm	67	Cmme	68	Ccce	69	Fmmm	70	Fddd
71	Immm	72	lbam	73	Ibca	74	Imma	75	P4
76	P4 ₁	77	P4 ₂	78	P 4 ₃	79	<i>1</i> 4	80	<i>I</i> 4 ₁
81	P-4	82	<i>I</i> -4	83	P4/m	84	P4 ₂ /m	85	P4/n
86	P4 ₂ /n	87	14/m	88	/4 ₁ /a	89	P422	90	P42 ₁ 2
91	P4 ₁ 22	92	P4 ₁ 2 ₁ 2	93	P4 ₂ 22	94	P4 ₂ 2 ₁ 2	95	P4 ₃ 22
96	P4 ₃ 2 ₁ 2	97	<i>I</i> 422	98	<i>I</i> 4 ₁ 22	99	P4mm	100	P4bm
101	P4 ₂ cm	102	P42nm	103	P4cc	104	P4nc	105	P4 ₂ mc
106	P4 ₂ bc	107	I4mm	108	I4cm	109	14 ₁ md	110	<i>I</i> 4 ₁ <i>cd</i>
111	P-42m	112	P-42c	113	P-42 ₁ m	114	P-42 ₁ c	115	P-4m2

116	P-4c2	117	P-4b2	118	P-4n2	119	<i>I</i> -4 <i>m</i> 2	120	<i>I</i> -4 <i>c</i> 2
121	<i>I</i> -42 <i>m</i>	122	I-42d	123	P4/mmm	124	P4/mcc	125	P4/nbm
126	P4/nnc	127	P4/mbm	128	P4/mnc	129	P4/nmm	130	P4/ncc
131	P4 ₂ /mmc	132	P4 ₂ /mcm	133	P4 ₂ /nbc	134	P4 ₂ /nnm	135	P4 ₂ /mbc
136	P4 ₂ /mnm	137	P4 ₂ /nmc	138	P4 ₂ /ncm	139	I4/mmm	140	I4/mcm
141	I4 ₁ /amd	142	I4 ₁ /acd	143	<i>P</i> 3	144	<i>P</i> 3 ₁	145	P3 ₂
146	R3	147	P-3	148	R-3	149	<i>P</i> 312	150	<i>P</i> 321
151	P3 ₁ 12	152	P3 ₁ 21	153	P3 ₂ 12	154	P3 ₂ 21	155	R32
156	P3m1	157	P31m	158	P3c1	159	P31c	160	R3m
161	R3c	162	P-31m	163	P-31c	164	P-3m1	165	P-3c1
166	R-3m	167	R-3c	168	<i>P</i> 6	169	<i>P</i> 6 ₁	170	<i>P</i> 6 ₅
171	<i>P</i> 6 ₂	172	P6 ₄	173	P 6 ₃	174	P-6	175	P6/m
176	P6 ₃ /m	177	<i>P</i> 622	178	P6 ₁ 22	179	P6 ₅ 22	180	P6 ₂ 22
181	<i>P</i> 6 ₄ 22	182	<i>P</i> 6 ₃ 22	183	P6mm	184	P6cc	185	<i>P</i> 6 ₃ <i>cm</i>
186	P6 ₃ mc	187	P-6m2	188	P-6c2	189	P-62m	190	P-62c
191	P6/mmm	192	P6/mcc	193	P6 ₃ /mcm	194	P6 ₃ /mmc	195	P23
196	F23	197	<i>I</i> 23	198	P2 ₁ 3	199	<i>I</i> 2 ₁ 3	200	<i>Pm</i> -3
201	Pn-3	202	Fm-3	203	Fd-3	204	<i>Im</i> -3	205	Pa-3
206	la-3	207	P432	208	P4 ₂ 32	209	F432	210	F4 ₁ 32
211	<i>I</i> 432	212	P4 ₃ 32	213	P4 ₁ 32	214	<i>I</i> 4 ₁ 32	215	P-43m
216	F-43m	217	<i>I</i> -43 <i>m</i>	218	P-43n	219	F-43c	220	I-43d
221	Pm-3m	222	Pn-3n	223	Pm-3n	224	Pn-3m	225	Fm-3m
226	Fm-3c	227	Fd-3m	228	Fd-3c	229	Im-3m	230	la-3d

Each space group can be described using multiple settings.

The BCS identifies 611 "conventional" space group settings.

ITA-settings for the space group P2/c (No. 13) [unique axis b]

ITA number	Setting
13	P 1 2/c 1
13	P 1 2/n 1
13	P 1 2/a 1
13	P 1 1 2/a
13	P 1 1 2/n
13	P 1 1 2/b
13	P 2/b 1 1
13	P 2/n 1 1
13	P 2/c 1 1

ITA-settings for the space group P2/c (No. 13) [unique axis b]

One setting is the "standard" setting.

ITA number	Setting
13	P 1 2/c 1
13	P 1 2/n 1
13	P 1 2/a 1
13	P 1 1 2/a
13	P 1 1 2/n
13	P 1 1 2/b
13	P 2/b 1 1
13	P 2/n 1 1
13	P 2/c 1 1

The BSC describes settings using matrix transformations in relation to the standard setting.

The inline "(P,p)" notation describes the matrix in a convenient linear column-based format.

The general position of the group P 1 1 2/n (No. 13)

The calculations are performed applying the following transformation matrix

Transformation matrix (P, p): a,-a-c,b; 0,0,0

Matrix form: (**P**, **p**) =
$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

11A number	Setting
13	P 1 2/c 1
13	P 1 2/n 1
13	P 1 2/a 1
13	P 1 1 2/a
13	P 1 1 2/n
13	P 1 1 2/b
13	P 2/b 1 1
13	P 2/n 1 1
13	P 2/c 1 1

Introduction: Group-Subgroup relationships

When comparing crystal structures, we are often interested in how their symmetries differ.

How do their lattices compare?

What symmetry elements have been lost or gained?

What sort of distortions relate one structure to another?

Introduction: Group-Subgroup relationships

The BSC also describes subgroup relationships using (P,p) matrices.

The general position of the group P2/c (No. 13) [unique axis b] in the basis of its supergroup P2/m (No. 10) [unique axis b]

Transformation matrix (P, p): a-c,b,2c; 0,0,1/2

Matrix form: (**P**, **p**) =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & 1/2 \end{pmatrix}$$

Click here to get the general position of the standard/default setting in text format Click here to get the general position of the transformed setting in text format

N	Standa	rd/Default Setting	Transformed				
N	(x,y,z) form matrix form		(x,y,z) form	matrix form			
	(0,0,0) + set						
1	x,y,z	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	x,y,z	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$			
2	-x,y,-z+1/2	$ \left(\begin{array}{ccccccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}\right) $	-x,y,-z+2	$ \left(\begin{array}{ccccccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 2 \end{array}\right) $			

https://github.com/BobHanson/CLEG

Introduction: Group-Subgroup relationships

Bilbao Crystallographic Server → Transformations → Special Setting → Transformation matrix

Help

Transformation matrix

To change the basis of the group general positions is used the transformation matrix *P*:

$$\begin{bmatrix} & -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} & 0 \\ 1/4 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} & 1/4 \\ & 0 \end{bmatrix}$$

Inverse transformation $Q=P^{-1}$:

$$\begin{bmatrix} & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} & -1/4 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} & 0 \\ & 0 \end{bmatrix}$$

The linear part of the transformation P=(P,p) implies the change of basis vectors **a**, **b**, **c**: (**a'**, **b'**, **c'**) = (**a**, **b**, **c**) P

P is the transformation matrix from the basis of the supergroup to the basis of the subgroup. Because we are going to the basis of supergroup, each representative (R) is transformed with the transformation matrix P using: R (in new basis) = P * R * Q

My challenge: modeling settings and subgroup relationships in Jmol

The Problem: How to express relationships concisely

- Simple, concise
- Comprehensive
- Flexible

The Problem: How to express relationships concisely

- Simple, concise
- Comprehensive
- Flexible
- Linear string of characters
- Scriptable

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Settings: Combine ITA space group number with BCS (P,p) notation:

P 1 2/m 1	10:a,b,c;0,0,0	P 1 2/c 1	13:a,b,c;0,0,0
P 1 1 2/m	10:c,a,b;0,0,0	P 1 1 2/n	13:a,-a-c,b;0,0,0
P 2/m 1 1	10:b,c,a;0,0,0	P 2/b 1 1	13:b,c,a;0,0,0

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Settings: Combine ITA space group number with BCS (P,p) notation:

P 1 2/m 1	10:a,b,c;0,0,0	P 1 2/c 1	13:a,b,c;0,0,0
P 1 1 2/m	10:c,a,b;0,0,0	P 1 1 2/n	13:a,-a-c,b;0,0,0
P 2/m 1 1	10:b,c,a;0,0,0	P 2/b 1 1	13:b,c,a;0,0,0

Simple!

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Settings: Allow for defaults "a,b,c" and ";0,0,0":

P 1 2/m 1	10	P 1 2/c 1	13
P 1 1 2/m	10:c,a,b	P 1 1 2/n	13:a,-a-c,b
P 2/m 1 1	10:b,c,a	P 2/b 1 1	13:b,c,a

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Settings: Allow for defaults "a,b,c" and ";0,0,0":

P 1 2/m 1	10	P 1 2/c 1	13
P 1 1 2/m	10:c,a,b	P 1 1 2/n	13:a,-a-c,b
P 2/m 1 1	10:b,c,a	P 2/b 1 1	13:b,c,a

Concise!

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Subgroups: Expand ITA "P2/m > P2/c" notation:

10 > a-c,b,2c;0,0,1/2 > 13

Transformation matrix (P, p): a-c,b,2c; 0,0,1/2

Matrix form: (**P**, **p**) =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & 1/2 \end{pmatrix}$$

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Subgroups: Add "!" meaning "not" or "inverse of":

10:b,c,a > **!b,c,a** > 10

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Subgroups: Allow chaining:

```
10:b,c,a > !b,c,a > 10

10 > a-c,b,2c;0,0,1/2 > 13

13 > a,-a-c,b > 13:a,-a-c,b
```

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Subgroups: Allow chaining by :

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Subgroups: Allow chaining:

```
10:b,c,a > !b,c,a > 10

10 > a-c,b,2c;0,0,1/2 > 13

$ print matrix("!b,c,a > a-c,b,2c;0,0,1/2 > a,-a-c,b", "abc")

13 > a,-a-c,b > 13:a,-a-c,b

-b+c,-b-c,a;0,1/2,0

10:b,c,a > -b+c,-b-c,a:0,1/2,0 > 13:a,-a-c,b
```

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

$$10 > a-c,b,2c;0,0,1/2 > 13$$
 group to subgroup (standard settings)

$$10:b,c,a > -b+c,-b-c,a:0,1/2,0 > 13:a,-a-c,b$$
 nonstandard group to nonstandard subgroup

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Examples

$$10 > a-c,b,2c;0,0,1/2 > 13$$
 group to subgroup (standard settings)

Comprehensive!

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Allow Hermann-Mauguin notation?

P 2/m 1 1 > !b,c,a > P 2/m	nonstandard to standard setting
P 2/m > a-c,b,2c;0,0,1/2 > P 2/c	group to subgroup (standard settings)
P 2/c > a,-a-c,b > P 1 1 2/n	standard to nonstandard
P 2/m 1 1 > -b+c,-b-c,a;0,1/2,0 > P 1 1 2/n	nonstandard group to nonstandard subgroup

p

(for human consumption only!)

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Q: Allow Hall notation (for standard setting only)

$$(-P 2y):b,c,a > !b,c,a > (-P 2y)$$
 nonstandard to standard setting
$$(-P 2y) > a-c,b,2c;0,0,1/2 > (-P 2cy)$$
 group to subgroup (standard settings)
$$(-P 2cy) > a,-a-c,b > (-P 2cy):a,-a-c,b$$
 standard to nonstandard
$$(-P 2y):b,c,a > -b+c,-b-c,a:0,1/2,0 > (-P 2cy):a,-a-c,b$$
 nonstandard group to nonstandard subgroup

(completely machine readable; no ITA referencing)

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Q: Allow Hall notation (for standard setting only)

$$(-P 2y):b,c,a > !b,c,a > (-P 2y)$$
 nonstandard to standard setting
$$(-P 2y) > a-c,b,2c;0,0,1/2 > (-P 2cy)$$
 group to subgroup (standard settings)
$$(-P 2cy) > a,-a-c,b > (-P 2cy):a,-a-c,b$$
 standard to nonstandard
$$(-P 2y):b,c,a > -b+c,-b-c,a:0,1/2,0 > (-P 2cy):a,-a-c,b$$
 nonstandard group to nonstandard subgroup

(completely machine readable; no ITA referencing) Flexible!

tabular description of BCS group/maximal subgroup relationships through index 4:

i	cleg	tr_type	tr_subtype	det	index	conj_class
1	1>2a,a+b,a+c>1	k	eu	2	2	a
2	1>2a,a+b,c>1	k	eu	2	2	b
3	1>2a,b,a+c>1	k	eu	2	2	С
191	8>a-2c,b,2c>9	k	eu	2	2	a
192	8>a,b,2c>9	k	eu	2	2	b
193	9>1/2a-1/2b,1/2a+1/2b,c>1	t		0.5	2	a
194	9>a,b,-a+c;0,1/4,0>7	k	ct	1	2	a
202	9>a,b,3c>9	k	eu	3	3	e
203	10>a,b,c>2	t		1	2	a
204	10>a,b,c>3	t		1	2	a
205	10>a,b,c>6	t		1	2	a
206	10>a-c,b,2c;0,0,1/2>10	k	eu	2	2	a
1558	69>-b,a,c>64	k	ct	1	2	С
1559	69>b,c,a>64	k	ct	1	2	d
1560	69>c,a,b>64	k	ct	1	2	е
1561	69>c,b,-a>64	k	ct	1	2	f
1562	69>a,b,c>65	k	ct	1	2	a
1563	69>c,a,b>65	k	ct	1	2	b
3764	230>a-b,b+c,-1/2a-1/2b+1/2c;1/2,0,1/2>167	t		1.5	4	a
3765	230>a,b,c>206	t		1	2	a
3766	230>a,b,c>214	t		1	2	a
3767	230>a,b,c>220	t		1	2	a

JSON description of ITA space group settings for Jmol:

```
▼ 226:
    clegId: "47:a,b,c"

▼ 227:
    clegId: "48:a,b,c"

▼ 228:
    clegId: "48:a,b,c;1/4,1/4,1/4"

▼ 229:
    clegId: "49:a,b,c"

▼ 230:
    clegId: "49:c,a,b"

▼ 231:
    clegId: "49:b,c,a"
```

Jmol scripting for calculation:

Transformation matrix (P, p): a-c,b,2c; 0,0,1/2

Matrix form: (**P**, **p**) =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & 1/2 \end{pmatrix}$$

Click here to get the general position of the standard/default setting in text format Click here to get the general position of the transformed setting in text format

	Standard/Default Setting						Transformed						
N	(x,y,z) form		matrix form (x,y					n matrix form					
					((0,0,0) +	set						
1	x,y,z	(1 0 0	0 1 0	0 0 1	0 0	x,y,z	(1 0 0	0 1 0	0 0 1	0000	
2	-x,y,-z+1/2	(-1 0 0	0 1 0	0 0 -1	0 0 1/2	-x,y,-z+2	(-1 0 0	0 1 0	0 0 -1	0 0 2	

Jmol scripting for calculation:

Transformation matrix (P, p): a-c,b,2c; 0,0,1/2

Matrix form: (**P**, **p**) =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & 1/2 \end{pmatrix}$$

Click here to get the general position of the standard/default setting in text format Click here to get the general position of the transformed setting in text format

	Standa	rd/Defaul	Transformed							
N	(x,y,z) form matrix form				(x,y,z) form	m matrix form				
				(0,0,0) +	set					
1	x,y,z	(1 0 0	0 0 1 0 0 1	0)	x,y,z	(1 0 0	0 1 0	0 0 1	0 0
2	-x,y,-z+1/2	(-1 0 0	0 0 1 0 0 -1	0 0 1/2	-x,y,-z+2	(-1 0 0	0 1 0	0 0 -1	0 0 2

Jmol scripting for visualization of settings:

modelkit zap spacegroup 140 draw ID uc1 unitcell color red draw ID ax1 axes

Jmol scripting for visualization of settings:

modelkit zap spacegroup 140
draw ID uc1 unitcell color red
draw ID ax1 axes
modelkit add F {0.60 0.20 0.25/1}
modelkit add N wyckoff c packed
connect 1.0 2.1

Jmol scripting for visualization of settings:

modelkit zap spacegroup 140 draw ID uc1 unitcell color red

draw ID ax1 axes

modelkit add F {0.60 0.20 0.25/1}

modelkit add N wyckoff c packed

connect 1.0 2.1

modelkit spacegroup "140:a-b,a+b,c" packed

draw ID uc2 unitcell fill nomesh color translucent 0.8

Jmol scripting for visualization of settings:

modelkit zap spacegroup 140

draw ID uc1 unitcell color red

draw ID ax1 axes

modelkit add F {0.60 0.20 0.25/1}

modelkit add N wyckoff c packed

connect 1.0 2.1

modelkit spacegroup "140:a-b,a+b,c" packed

draw ID uc2 unitcell fill nomesh color translucent 0.8

connect 1.0 2.1; center unitcell; zoom 100

Jmol scripting for visualization of settings:

modelkit zap spacegroup 140

draw ID uc1 unitcell color red

draw ID ax1 axes

modelkit add F {0.60 0.20 0.25/1}

modelkit add N wyckoff c packed

connect 1.0 2.1

modelkit spacegroup "140:a-b,a+b,c" packed

draw ID uc2 unitcell fill nomesh color translucent 0.8

connect 1.0 2.1; center unitcell; zoom 100

rotate z -35; rotate x -80

Jmol scripting for visualization of settings:

Can someone explain this to me?

Jmol scripting for visualization of settings:

```
modelkit zap spacegroup "13:a,b,c"
moveto axis b1
draw uc1 unitcell
draw sg1 spacegroup all
show symops
```

1	x,y,z	identity
2	-x,y,-z+1/2	2 axis
3	-x,-y,-z	Ci: 0 0 0
4	x,-y,z+1/2	c-glide plane translation: 0 0 1/2

Jmol scripting for visualization of settings:

modelkit zap spacegroup "13:a,b,c"
moveto axis b1
draw uc1 unitcell
draw sg1 spacegroup all
modelkit spacegroup "13:-a-c,b,a"
draw uc2 unitcell
draw sg2 spacegroup all

Jmol scripting for visualization of settings:

modelkit zap spacegroup "13:a,b,c"

moveto axis b1

draw uc1 unitcell

draw sg1 spacegroup all

modelkit spacegroup "13:-a-c,b,a"

draw uc2 unitcell

draw sg2 spacegroup all

modelkit spacegroup "13:c,b,-a-c"

draw uc3 unitcell

draw sg3 spacegroup all

Jmol scripting for visualization of settings:

modelkit zap spacegroup 13.1

moveto axis b1

draw uc1 unitcell

draw sg1 spacegroup all

modelkit spacegroup 13.2

draw uc2 unitcell

draw sg2 spacegroup all

modelkit spacegroup 13.3

draw uc3 unitcell

draw sg3 spacegroup all

Jmol scripting for visualization of settings:

modelkit zap spacegroup "13:a,b,c"

moveto axis b1

draw uc1 unitcell

draw sg1 spacegroup all

modelkit spacegroup "13:-a-c,b,a"

draw uc2 unitcell

draw sg2 spacegroup all

modelkit spacegroup "13:c,b,-a-c"

draw uc3 unitcell

draw sg3 spacegroup all

https://github.com/BobHanson/CLEG

Jmol scripting for visualization of subgroups:

modelkit zap spacegroup 230

zoom 60

draw ID uc1 unitcell color red

draw ID ax1 axes

modelkit add N Wyckoff G

connect 0.5 1.5

spacefill off

color property site

Jmol scripting for visualization of subgroups:

modelkit zap spacegroup 230

draw ID uc1 unitcell color red

draw ID ax1 axes

modelkit add N Wyckoff G

modelkit spacegroup "230>a-b,b+c,-1/2a-1/2b+1/2c;1/2,1,-1/2>167" packed

draw ID uc2 unitcell fill nomesh color translucent 0.8

connect 0.5 1.5

spacefill off

color property site

spin on

Jmol scripting for visualization of subgroups:

modelkit zap spacegroup 230

draw ID uc1 unitcell color red

draw ID ax1 axes

modelkit add N Wyckoff G

modelkit spacegroup "230>a-b,b+c,-1/2a-1/2b+1/2c;1/2,1,-1/2>167" packed

draw ID uc2 unitcell fill nomesh color translucent 0.8

connect 0.5 1.5

spacefill off

color property site

spin on

ISODISTORT/Jmol scripting for visualization of subgroups:

```
ISODISTORT: subgroup tree
```

Subgroup 1

221 Pm-3m, basis= $\{(0,-1,0),(-1,0,0),(0,0,-1)\}$, origin=(0,0,0), s=1, i=1

Maximal subgroups: 2

a=4.20000,b=4.20000,c=4.20000,alpha=90.00000,beta=90.00000,gamma=90.00000

Order parameters: GM1+ (a) Active k vectors: (0,0,0)

This subgroup does not produce any selected distortions

Subgroup 2

123 P4/mmm, basis={(1,0,0),(0,1,0),(0,0,1)}, origin=(0,0,0), s=1, i=3

Maximal subgroups: 3

a=4.20000,b=4.20000,c=4.20000,alpha=90.00000,beta=90.00000,gamma=90.00000

Order parameters: GM1+ (a) GM3+ (a,0)

Active k vectors: (0,0,0)

Subgroup 3

140 I4/mcm, basis={(-1,1,0),(-1,-1,0),(0,0,2)}, origin=(0,0,0), s=2, i=6

Maximal subgroups:

a=5.93970,b=5.93970,c=8.40000,alpha=90.00000,beta=90.00000,gamma=90.00000

Order parameters: R4+ (a,0,0) GM1+ (a) GM3+ (a,0)

Active k vectors: (1/2,1/2,1/2), (0,0,0)

ISODISTORT/Jmol scripting for visualization of subgroups:

modelkit zap spacegroup "221:-b,-a,-c" unitcell [4.2 4.2 4.2 90 90 90] modelkit add Si Wyckoff a packed modelkit add Cl Wyckoff b packed modelkit add O Wyckoff d packed

ISODISTORT/Jmol scripting for visualization

ISODISTORT/Jmol scripting for visualization of subgroups:

modelkit zap spacegroup "221:-b,-a,-c" unitcell [4.2 4.2 4.2 90 90 90]

modelkit add Si Wyckoff a packed

modelkit add Cl Wyckoff b packed

modelkit add O Wyckoff d packed

modelkit spacegroup "221:-b,-a,-c > a,b,c > 123" packed

draw ID uc1 unitcell color red

draw ID ax1 axes

modelkit spacegroup "123 > -a+b,-a-b,2c;1,0,0 > 140" packed

draw ID uc2 unitcell fill nomesh translucent 0.8

ISODISTORT/Jmol scripting for visualization of subgroups:

modelkit zap spacegroup "221:-b,-a,-c" unitcell [4.2 4.2 4.2 90 90 90]

modelkit add Si Wyckoff a packed

modelkit add Cl Wyckoff b packed

modelkit add O Wyckoff d packed

modelkit spacegroup "221:-b,-a,-c > a,b,c > 123" packed

draw ID uc1 unitcell color red

draw ID ax1 axes

modelkit spacegroup "123 > -a+b,-a-b,2c;1,0,0 > 140" packed

draw ID uc2 unitcell fill nomesh translucent 0.8

connect 2.0 2.2

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Simple

P 1 2/m 1	10:a,b,c;0,0,0	P 1 2/c 1	13:a,b,c;0,0,0
P 1 1 2/m	10:c,a,b;0,0,0	P 1 1 2/n	13:a,-a-c,b;0,0,0
P 2/m 1 1	10:b,c,a;0,0,0	P 2/b 1 1	13:b,c,a;0,0,0

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Simple	P 1 2/m 1	10	P 1 2/c 1	13:a,b,c
 Concise 	P 1 1 2/m	10:c,a,b	P 1 1 2/n	13:a,-a-c,b
	P 2/m 1 1	10:b,c,a	P 2/b 1 1	13:b,c,a

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

- Simple
- Concise
- Comprehensive

```
10:b,c,a > !b,c,a > 10

10 > a-c,b,2c;0,0,1/2 > 13

13 > a,-a-c,b > 13:a,-a-c,b

10:b,c,a > -b+c,-b-c,a:0,1/2,0 > 13:a,-a-c,b
```

nonstandard to standard setting group to subgroup (standard settings) standard to nonstandard nonstandard group to nonstandard subgroup

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

- Simple
- Concise
- Comprehensive
- Flexible

```
10 > -b+c,-b-c,a:0,1/2,0 > 13 (for human or machine consumption)
```

P 2/m 1 1 > -b+c,-b-c,a:0,1/2,0 > P 1 1 2/n (for human consumption)

(-P 2y):b,c,a > -b+c,-b-c,a:0,1/2,0 > (-P 2cy):a,-a-c,b (for machine consumption)

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

- Simple
- Concise
- Comprehensive
- Flexible
- And it works!

A Concise Linear Encoding of Crystallographic Space Group Settings and Group-Subgroup Relationships (CLEG)

Many thanks to Branton
Campbell, Harold Stokes,
Mois Aroyo, and Gotzon
Madariaga for their
patience, support, and many
great conversations.

Thank you!

More Jmol implementations this afternoon!

182

Using Jmol to engage students and teach crystallography and crystallographic symmetry

Dean Johnston¹, Robert Hanson²

¹Otterbein University, Westerville, OH, USA. ² St. Olaf College, Northfield, MN, USA

