Worked Examples using R, Introductory Statistics, 7th ed. by Neil Weiss

Charles Carter*

October 1, 2014

Contents

1	The	Nature of Statistics	4				
	1.1	Descriptive Statistics	4				
	1.2	Inferential Statistics	4				
	1.3	Classifying Statistical Studies	4				
	1.4	Classifying Statistical Studies	4				
	1.5	Simple Random Samples	4				
	1.6	Random-Number Tables	4				
	1.7	Systematic Random Sampling	5				
	1.8		5				
	1.9		5				
	1.10		5				
	1.11		5				
	1.12		5				
	1.13		5				
2	Organizing Data 5						
	2.1	Variables and Data	5				
	2.2	Variables and Data	5				
	2.3	Variables and Data	5				
	2.4	Variables and Data	5				
	2.5	Grouping Quantitative Data	6				
	2.6		8				
	2.7		8				
	2.8		8				
	2.9		8				
	2.10		8				
	2.11		8				
	2.12		8				

^{*}cccarter@troy.edu

			8
			8
	2.15		8
	2.16		8
	2.17		8
	2.18		8
3	Descript	tive Measures	8
4	Probabil	lity Concepts	8
5	Discrete	e Random Variables	8
6	The Nor	rmal Distribution	8
	6.1 Exa	mple 6.1,	8
	6.2 Exa	mple 6.2,	8
	6.3 Exa	mple 6.3,	8
	6.4 Exa	mple 6.4,	8
	6.5 Exa	mple 6.5,	8
	6.6 Exa	mple 6.6,	8
	6.7 Exa	mple 6.7,	8
		mple 6.8,	8
		mple 6.9,	8
		mple 6.10,	8
		mple 6.11,	8
		mple 6.12,	8
		mple 6.13, Using Technology to Obtain Normal Percentiles .	8
		mple 6.14, Normal Probability Plots	9
7	The San	npling Distribution of the Sample Mean	10
8	Confider	nce Intervals for One Population Mean	10
0		mple 8.1, Estimating a Population Mean	10
		imple 8.2, Introducing Confidence Intervals	10
		mple 8.3, Interpreting Confidence Intervals	12
		imple 8.4, The One-Sample z-Interval Procedure	12
		imple 8.5, Using Technology to Obtain a z-Interval	12
		imple 8.6, Introducing the Margin of Error	12
		imple 8.7, Sample Size for Estimating μ	12
		imple 8.8, Finding the t-Value Having a Specified Area to the	14
	o.o Exal Righ		12
	- 0	Introduction of the Cone-Sample t-Interval Procedure	12
		imple 8.9, The One-Sample t-Interval Procedure	
			12 12
	o.11 Exa	mple 8.11, Choosing a Confidence Interval Procedure	12

9	Hypothesis Tests for One Population Mean	12
	9.1 Example 9.1, Choosing the Null and Alternative Hypotheses	12
	9.2 Example 9.2, Choosing the Null and Alternative Hypotheses	12
	9.3 Example 9.3, Choosing the Null and Alternative Hypotheses	12
	9.4 Example 9.4, The Logic of Hypothesis Testing	13
	9.5 Example 9.5, Type I and Type II Errors	13
	9.6 Example 9.6, Obtaining the Critical Values	13
	9.7 Example 9.7, The One-Sample z-Test	14
	9.8 Example 9.8, The One-Sample z-Test	15
	9.9 Example 9.9, The One-Sample z-Test	15
	9.10 Example 9.10,	17
	9.11 Example 9.11,	17
	9.12 Example 9.12,	17
	9.13 Example 9.13,	17
	9.14 Example 9.14,	17
	9.15 Example 9.15,	17
	9.16 Example 9.16,	17
	9.17 Example 9.17,	17
	9.18 Example 9.18,	17
	9.19 Example 9.19,	17
	9.20 Example 9.20,	17
	9.21 Example 9.21,	17
10	Inferences for Two Population Means	17
	·	
11	Inferences for Population Standard Deviations	17
12	Inferences for Population Proportions	17
13	Chi-Square Procedures	17
	om square recodures	
14	Descriptive Methods in Regression and Correlation	17
	14.1 Linear Equations	17
	14.2 y-Intercept and Slope	18
	14.3 Introducing the Least Squares Criterion	19
	14.4 The Regression Equation	20
	14.5 Using Technology to Obtain a Scatter Diagram	21
	14.6 Using Technology to Obtain a Regression Line	22
	14.7 Introduces the Coefficient of Determination	23
	14.8 Computing Formulas for the Sum of Squares	25
	14.9 Using Technology to Obtain a Coefficient of Determination $$	26
	14.10The Linear Correlation Coefficienbt	26
	$14.11 \mathrm{Using}$ Technology to Obtain a Linear Correlatiion Coeffecient	27
15	Informatial Mathods in Pagressian and Correlation	27

Abstract

This paper consists of the worked examples in each chapter of *Introductory Statistics, 7th Edition* by Neil Weiss, using the R programming language

1 The Nature of Statistics

1.1 Descriptive Statistics

This example contains no code.

1.2 Inferential Statistics

This example contains no code.

1.3 Classifying Statistical Studies

This example contains no code.

1.4 Classifying Statistical Studies

This example contains no code.

1.5 Simple Random Samples

```
#create vector of officials
library(prob)

## Error in library(prob): there is no package called 'prob'

off <- c('G', 'L', 'S', 'A', 'T')

#part a, list of samples of size 2

urnsamples(off, 2)

## Error in eval(expr, envir, enclos): could not find function
"urnsamples"

#part d, list of samples of size 4

urnsamples(off, 4)

## Error in eval(expr, envir, enclos): could not find function
"urnsamples"</pre>
```

1.6 Random-Number Tables

```
#generate 15 random integers between 1 and 728
sample(1:728, 15)
## [1] 279 419 151 207 654 655 253 53 455 644 183 570 420 339 521
```

1.7 Systematic Random Sampling

```
#declare variables
pop <- 728
sos <- 15
division <- floor(pop / sos)
division
## [1] 48
start <- sample(1:division, 1)
start
## [1] 9
#generate sequence
s <- seq(start, pop, division)
s
## [1] 9 57 105 153 201 249 297 345 393 441 489 537 585 633 681</pre>
```

- 1.8
- 1.9
- 1.10
- 1.11
- 1.12
- 1.13

2 Organizing Data

2.1 Variables and Data

This example contains no code.

2.2 Variables and Data

This example contains no code.

2.3 Variables and Data

This example contains no code.

2.4 Variables and Data

This example contains no code.

2.5 Grouping Quantitative Data

```
#read in the data
invest <- read.csv("data/Tb02-01.txt")</pre>
str(invest)
## 'data.frame': 40 obs. of 1 variable:
## $ DAYS: int 70 64 99 55 64 89 87 65 62 38 ...
w <- cut(invest$DAYS, c(30, 40, 50, 60, 70, 80, 90, 100), right = FALSE)
invest$CAT <- w
table(invest$CAT)
## [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)
## 3 1 8 10 7 7 4
x <- table(invest$CAT)</pre>
y <- prop.table(x)</pre>
z \leftarrow merge(x, y, by.x = "Var1", by.y = "Var1")
##
      Var1 Freq.x Freq.y
## 1 [30,40) 3 0.075
```


- 2.6
- 2.7
- 2.8
- 2.9
- 2.10
- 2.11
- 2.12
- 2.13
- 2.14
- 2.15
- 2.16
- 2.17
- 2.18
- 3 Descriptive Measures
- 4 Probability Concepts
- 5 Discrete Random Variables
- 6 The Normal Distribution
- 6.1 Example 6.1,
- 6.2 Example 6.2,
- 6.3 Example 6.3,
- 6.4 Example 6.4,
- 6.5 Example 6.5,
- 6.6 Example 6.6,
- 6.7 Example 6.7,
- 6.8 Example 6.8,
- 6.9 Example 6.9,
- 6.10 Example 6.10,
- 6.11 Example 6.11,
- 6.12 Example 6.12,
- 6.13 Example 6.13, Using Technology to Obtain Normal Percentiles

8

```
mu <- 100
sigma <- 16
ptile <- qnorm(0.90, mu, sigma)
ptile
## [1] 120.5048</pre>
```

6.14 Example 6.14, Normal Probability Plots

```
#read in the data
income <- read.csv("data/Tb06-03.txt")
str(income)
## 'data.frame': 12 obs. of 1 variable:
## $ AGI: num 9.7 93.1 33 21.2 81.4 51.1 43.5 10.6 12.8 7.8 ...
qqnorm(income$AGI, datax = TRUE)</pre>
```

Normal Q-Q Plot

7 The Sampling Distribution of the Sample Mean

8 Confidence Intervals for One Population Mean

8.1 Example 8.1, Estimating a Population Mean

```
#read in the data
prices <- read.csv("data/Tb08-01.txt")
str(prices)
## 'data.frame': 36 obs. of 1 variable:
## $ PRICE: num 53.8 54.4 45.2 42.9 49.9 48.2 41.6 58.9 48.6 53.1 ...
hist(prices$PRICE, breaks = 5)</pre>
```

Histogram of prices\$PRICE


```
sum <- sum(prices$PRICE)
n <- nrow(prices)
mu <- sum / n
#alternatively
mu1 <- mean(prices$PRICE)</pre>
```

The estimated population, μ , from the sample mean, \bar{x} , is 49.2777778.

8.2 Example 8.2, Introducing Confidence Intervals

```
#read in the data
prices <- read.csv("data/Tb08-01.txt")
str(prices)
## 'data.frame': 36 obs. of 1 variable:
## $ PRICE: num 53.8 54.4 45.2 42.9 49.9 48.2 41.6 58.9 48.6 53.1 ...
hist(prices$PRICE, breaks = 5)</pre>
```

Histogram of prices\$PRICE


```
sum <- sum(prices$PRICE)
n <- nrow(prices)
mu <- sum / n
sigma <- 7.2
s <- sigma / sqrt(n)
cat(sum, n, mu, sigma, s)
## 1774 36 49.27778 7.2 1.2
confidence.interval <- simple.z.test(prices$PRICE, sigma, conf.level = 0.9544)
## Error in eval(expr, envir, enclos): could not find function
"simple.z.test"
confidence.interval
## [1] 46.87889 51.67667</pre>
```

- 8.3 Example 8.3, Interpreting Confidence Intervals
- 8.4 Example 8.4, The One-Sample z-Interval Procedure
- 8.5 Example 8.5, Using Technology to Obtain a z-Interval
- 8.6 Example 8.6, Introducing the Margin of Error
- 8.7 Example 8.7, Sample Size for Estimating μ
- 8.8 Example 8.8, Finding the t-Value Having a Specified Area to the Right
- 8.9 Example 8.9, The One-Sample t-Interval Procedure
- 8.10 Example 8.10, The One-Sample t-Interval Procedure
- 8.11 Example 8.11, Choosing a Confidence Interval Procedure
- 9 Hypothesis Tests for One Population Mean
- 9.1 Example 9.1, Choosing the Null and Alternative Hypotheses

This example contains no code.

9.2 Example 9.2, Choosing the Null and Alternative Hypotheses

This example contains no code.

9.3 Example 9.3, Choosing the Null and Alternative Hypotheses

This example contains no code.

9.4 Example 9.4, The Logic of Hypothesis Testing

Null hypothesis is $H_0: \mu = 454$. Alternative hypothesis is $H_\alpha: \mu \neq 454$.

```
# load the data file
weights <- read.csv("data/Tb09-01.txt")</pre>
str(weights)
## 'data.frame': 25 obs. of 1 variable:
## $ WEIGHT: int 465 456 438 454 447 449 442 449 446 447 ...
#declare and initialize variables
mu <- 454
sigma <- 7.8
n <- 25
xbar <- mean(weights$WEIGHT)</pre>
ztest <- (xbar - mu) / (sigma / sqrt(n))</pre>
ztest
## [1] -2.564103
#determine the result of the test
result <- pnorm(ztest)</pre>
result
## [1] 0.005172149
#use simple z test from UsingR package
library(UsingR)
## Error in library(UsingR): there is no package called 'UsingR'
conf.int <- simple.z.test(weights$WEIGHT, sigma = sigma, conf.level = 0.9544)</pre>
## Error in eval(expr, envir, enclos): could not find function
"simple.z.test"
conf.int
## [1] 446.8814 453.1186
```

The claimed weight of the population is μ per bag, 454 grams. The mean sample weight is \bar{x} per bag, 450 grams. The z value is -2.5641026, which is more than two standard deviations below the population mean.

9.5 Example 9.5, Type I and Type II Errors

This example contains no code.

9.6 Example 9.6, Obtaining the Critical Values

```
left.tail <- qnorm(0.05)
left.tail
## [1] -1.644854

right.tail <- qnorm(0.95)
right.tail
## [1] 1.644854

two.tail.left <- qnorm(0.025)
two.tail.left
## [1] -1.959964

two.tail.right <- qnorm(0.975)
two.tail.right
## [1] 1.959964</pre>
```

9.7 Example 9.7, The One-Sample z-Test

Null hypothesis is $H_0: \mu = \$51.46$. Alternative hypothesis is $H_\alpha: \$51.46$

```
# load the data file
books <- read.csv("data/Tb09-05.txt")</pre>
str(books)
## 'data.frame': 40 obs. of 1 variable:
## $ PRICE: num 56 46.2 47.3 54 53.7 ...
#declare and initialize variables
mu <- 51.46
sigma <- 7.61
n <- 40
xbar <- mean(books$PRICE)</pre>
right.tail = 0.01
ztest <- (xbar - mu) / (sigma / sqrt(n))</pre>
ztest
## [1] 2.850829
right.crit <- qnorm(1 - right.tail)</pre>
right.crit
## [1] 2.326348
```

The z statistic is 2.8508286, which is greater than the critical value of 2.3263479, so we reject the null hypothesis.

9.8 Example 9.8, The One-Sample z-Test

Null hypothesis is $H_0: \mu = 800$. Alternative hypothesis is $H_\alpha: < 800$

```
# load the data file
rda <- read.csv("data/Tb09-06.txt")</pre>
str(rda)
## 'data.frame': 18 obs. of 1 variable:
## $ CALCI: int 686 433 743 647 734 641 993 620 574 634 ...
#declare and initialize variables
mu <- 800
sigma <- 188
n <- 18
xbar <- mean(rda$CALCI)</pre>
left.tail = 0.05
ztest <- (xbar - mu) / (sigma / sqrt(n))</pre>
ztest
## [1] -1.187287
left.crit <- qnorm(left.tail)</pre>
left.crit
## [1] -1.644854
```

The z statistic is -1.1872874, which is less than the critical value of -1.6448536, so we do not reject the null hypothesis.

9.9 Example 9.9, The One-Sample z-Test

Null hypothesis is $H_0: \mu = 60$. Alternative hypothesis is $H_\alpha: \neq 60$

```
# load the data file
cheetah <- read.csv("data/Tb09-07.txt")
str(cheetah)

## 'data.frame': 35 obs. of 1 variable:
## $ SPEEDS: num 57.3 57.5 59 56.5 61.3 57.6 59.2 65 60.1 59.7 ...

#histogram of the data set
hist(cheetah$SPEEDS, breaks = 15, xlab = "Cheetah Speeds", ylab = "Counts", main = "Histogram of</pre>
```

Histogram of Cheetah Speeds Sample


```
#declare and initialize variables
mu <- 60
sigma <- 3.2
n <- 35
xbar <- mean(cheetah$SPEEDS)
tails = 0.05
ztest <- (xbar - mu) / (sigma / sqrt(n))
ztest
## [1] -0.8768475
crits <- qnorm(c( tails / 2, (1 - tails / 2)))
crits
## [1] -1.959964 1.959964</pre>
```

The z statistic is -0.8768475, which is less than the critical values of -1.959964, 1.959964, so we do not reject the null hypothesis.

- 9.10 Example 9.10,
- 9.11 Example 9.11,
- 9.12 Example 9.12,
- 9.13 Example 9.13,
- 9.14 Example 9.14,
- 9.15 Example 9.15,
- 9.16 Example 9.16,
- 9.17 Example 9.17,
- 9.18 Example 9.18,
- 9.19 Example 9.19,
- 9.20 Example 9.20,
- 9.21 Example 9.21,
- 10 Inferences for Two Population Means
- 11 Inferences for Population Standard Deviations
- 12 Inferences for Population Proportions
- 13 Chi-Square Procedures
- 14 Descriptive Methods in Regression and Correlation

14.1 Linear Equations

```
# load the data file
wp <- read.csv("data/Tb14-01.txt", sep = "\t")
str(wp)
## 'data.frame': 5 obs. of 2 variables:
## $ TIME: num 5 7.5 15 20 22.5
## $ COST: int 125 175 325 425 475

x <- wp$TIME
y <- 25 + (20 * x)
line <- lm(y ~ x)</pre>
```

```
plot(x, y, xlim = c(0,25), ylim = c(0,500))
abline(line)
```


14.2 y-Intercept and Slope

```
# load dummy data
x <- c(-1:10)
y <- 25 + (20 * x)
line <- lm(y ~ x)
plot(x, y, xlim = c(-1,10), ylim = c(-50,200))
abline(line)
abline(v=0,col="red", lty = 2)
abline(h=0,col="red", lty = 3)</pre>
```


14.3 Introducing the Least Squares Criterion

```
x \leftarrow c(1,1,2,4)
y \leftarrow c(1,2,2,6)
df <- data.frame(x,y)</pre>
df
##
   х у
## 1 1 1
## 2 1 2
## 3 2 2
## 4 4 6
plot(df, xlim = c(0, 4), ylim = c(0, 6)) line <- lm(y \sim x)
line
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept)
                              X
   -0.25
                           1.50
```


14.4 The Regression Equation

```
# load Orion data
orion <- read.csv("data/Tb14-02.txt", sep = "\t^{"})
str(orion)
## 'data.frame': 11 obs. of 2 variables:
## $ AGE : int 5 4 6 5 5 5 6 6 2 7 ...
## $ PRICE: int 85 103 70 82 89 98 66 95 169 70 ...
s <- lm(orion$PRICE ~ orion$AGE)
S
##
## Call:
## lm(formula = orion$PRICE ~ orion$AGE)
##
## Coefficients:
## (Intercept)
                 orion$AGE
      195.47
                  -20.26
plot(orion$AGE, orion$PRICE)
abline(s)
```



```
# find y for x equals 3 and 4
s$coefficients
## (Intercept) orion$AGE
## 195.46847 -20.26126
intercept <- s$coefficients[[1]]
slope <- s$coefficients[[2]]
three.year.old.Orion <- intercept + ( slope * 3)
three.year.old.Orion
## [1] 134.6847
four.year.old.Orion <- intercept + ( slope * 4)
four.year.old.Orion</pre>
## [1] 114.4234
```

14.5 Using Technology to Obtain a Scatter Diagram

```
# load Orion data
orion <- read.csv("data/Tb14-02.txt", sep = "\t")
str(orion)</pre>
```

```
## 'data.frame': 11 obs. of 2 variables:
## $ AGE : int 5 4 6 5 5 5 6 6 2 7 ...
## $ PRICE: int 85 103 70 82 89 98 66 95 169 70 ...
plot(orion$AGE, orion$PRICE)
```


14.6 Using Technology to Obtain a Regression Line

```
# load Orion data
orion <- read.csv("data/Tb14-02.txt", sep = "\t")
str(orion)

## 'data.frame': 11 obs. of 2 variables:
## $ AGE : int 5 4 6 5 5 5 6 6 2 7 ...
## $ PRICE: int 85 103 70 82 89 98 66 95 169 70 ...
s <- lm(orion$PRICE ~ orion$AGE)
s

##
## Call:
## lm(formula = orion$PRICE ~ orion$AGE)</pre>
```

```
##
## Coefficients:
## (Intercept) orion$AGE
## 195.47 -20.26
plot(orion$AGE, orion$PRICE)
abline(s)
```


14.7 Introduces the Coefficient of Determination

```
# load Orion data
orion <- read.csv("data/Tb14-02.txt", sep = "\t")
str(orion)

## 'data.frame': 11 obs. of 2 variables:
## $ AGE : int 5 4 6 5 5 5 6 6 2 7 ...
## $ PRICE: int 85 103 70 82 89 98 66 95 169 70 ...

y.sub.ybar <- orion$PRICE - mean(orion$PRICE)
y.sub.ybar

## [1] -3.6363636 14.3636364 -18.6363636 -6.6363636 0.3636364
## [6] 9.3636364 -22.6363636 6.3636364 80.3636364 -18.6363636
## [11] -40.6363636</pre>
```

```
y.sub.ybar.sqr <- y.sub.ybar^2</pre>
y.sub.ybar.sqr
## [1] 13.2231405 206.3140496 347.3140496 44.0413223
                                                          0.1322314
## [6] 87.6776860 512.4049587 40.4958678 6458.3140496 347.3140496
## [11] 1651.3140496
t <- data.frame(orion,y.sub.ybar,y.sub.ybar.sqr)
s <- lm(orion$PRICE ~ orion$AGE)
yhat <- s$coefficients[[1]] + (s$coefficients[[2]] * t$AGE)</pre>
t$yhat <- yhat
yhat.sub.ybar <- t$yhat - mean(t$PRICE)</pre>
t$yhat.sub.ybar <- yhat.sub.ybar
y.sub.yhat.sqr <- (t$PRICE - t$yhat)^2</pre>
t$y.sub.yhat.sqr <- y.sub.yhat.sqr
yhat.sub.ybar.sqr <- (yhat - mean(t$PRICE))^2</pre>
t$yhat.sub.ybar.sqr <- yhat.sub.ybar.sqr
##
     AGE PRICE y.sub.ybar y.sub.ybar.sqr
                                           yhat yhat.sub.ybar
                            13.2231405 94.16216 5.525799
## 1
      5 85 -3.6363636
## 2
          103 14.3636364
                             206.3140496 114.42342
                                                     25.787060
                           347.3140496 73.90090
## 3
       6
           70 -18.6363636
                                                   -14.735463
                                                    5.525799
      5
## 4
          82 -6.6363636 44.0413223 94.16216
## 5
      5
          89 0.3636364
                             0.1322314 94.16216
                                                    5.525799
## 6
     5 98 9.3636364 87.6776860 94.16216
                                                     5.525799
## 7
     6 66 -22.6363636 512.4049587 73.90090 -14.735463
## 8 6 95 6.3636364 40.4958678 73.90090 -14.735463
## 9 2 169 80.3636364 6458.3140496 154.94595 66.309582
          70 -18.6363636 347.3140496 53.63964
## 10 7
                                                    -34.996724
## 11 7
          48 -40.6363636 1651.3140496 53.63964
                                                   -34.996724
##
     y.sub.yhat.sqr yhat.sub.ybar.sqr
## 1
          83.94522
                          30.53445
## 2
          130.49460
                           664.97245
## 3
          15.21703
                          217.13386
## 4
          147.91819
                           30.53445
                           30.53445
## 5
          26.64792
                           30.53445
## 6
          14.72900
## 7
          62.42424
                          217.13386
## 8
         445.17198
                          217.13386
## 9
         197.51644
                         4396.96071
## 10
         267.66139
                         1224.77069
          31.80554
                         1224.77069
## 11
sst <- sum(t$y.sub.ybar.sqr)</pre>
sst
## [1] 9708.545
ssr <- sum((t$yhat - mean(t$PRICE))^2)</pre>
ssr
## [1] 8285.014
```

```
r.sqrd <- ssr / sst
r.sqrd
## [1] 0.8533733
sse <- sum((t$PRICE - t$yhat)^2)
sse
## [1] 1423.532</pre>
```

14.8 Computing Formulas for the Sum of Squares

```
# load Orion data
orion <- read.csv("data/Tb14-02.txt", sep = "\t")</pre>
str(orion)
## 'data.frame': 11 obs. of 2 variables:
## $ AGE : int 5 4 6 5 5 5 6 6 2 7 ...
## $ PRICE: int 85 103 70 82 89 98 66 95 169 70 ...
xx <- orion$AGE^2
yy <- orion$PRICE^2
xy <- orion$AGE * orion$PRICE</pre>
t <- data.frame(orion, xx, yy, xy)
     AGE PRICE xx yy xy
## 1 5 85 25 7225 425
## 2 4 103 16 10609 412
## 3 6 70 36 4900 420
## 4 5 82 25 6724 410
     5 89 25 7921 445
## 5
## 6 5
          98 25 9604 490
## 7
       6 66 36 4356 396
      6
## 8
           95 36 9025 570
      2 169 4 28561 338
## 9
## 10 7 70 49 4900 490
## 11 7 48 49 2304 336
sum.x <- sum(t$AGE)</pre>
sum.y <- sum(t$PRICE)</pre>
sum.xx <- sum(t$xx)</pre>
sum.yy <- sum(t$yy)</pre>
sum.xy <- sum(t$xy)</pre>
sst <- sum.yy - (sum.y^2 / nrow(t))
## [1] 9708.545
num <- (sum.xy - (sum.x * sum.y / nrow(t)))^2</pre>
den <- sum.xx - sum.x^2 / nrow(t)</pre>
ssr <- num / den
```

```
## [1] 8285.014

sse <- sst - ssr

sse

## [1] 1423.532
```

14.9 Using Technology to Obtain a Coefficient of Determination

```
# read in the data
orion <- read.csv("data/Tb14-02.txt", sep = "\t")</pre>
str(orion)
## 'data.frame': 11 obs. of 2 variables:
## $ AGE : int 5 4 6 5 5 5 6 6 2 7 ...
## $ PRICE: int 85 103 70 82 89 98 66 95 169 70 ...
s <- lm(orion$PRICE ~ orion$AGE)
summary(s)
##
## Call:
## lm(formula = orion$PRICE ~ orion$AGE)
## Residuals:
## Min 1Q Median
                           3Q
                                   Max
## -12.162 -8.531 -5.162 8.946 21.099
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 195.47 15.24 12.826 4.36e-07 ***
## orion$AGE -20.26
                          2.80 -7.237 4.88e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.58 on 9 degrees of freedom
## Multiple R-squared: 0.8534, Adjusted R-squared: 0.8371
## F-statistic: 52.38 on 1 and 9 DF, p-value: 4.882e-05
summary(s)$r.squared
## [1] 0.8533733
```

14.10 The Linear Correlation Coefficienbt

```
# read in the data
orion <- read.csv("data/Tb14-02.txt", sep = "\t")
str(orion)</pre>
```

```
## 'data.frame': 11 obs. of 2 variables:
## $ AGE : int 5 4 6 5 5 5 6 6 2 7 ...
## $ PRICE: int 85 103 70 82 89 98 66 95 169 70 ...

# initialize n, x, and y
n <- nrow(orion)
x <- orion$AGE
y <- orion$PRICE
# plug into formula
num <- sum(x * y) - (sum(x) * sum(y) / n)
den <- sqrt((sum(x^2) - (sum(x)^2/n)) * (sum(y^2) - (sum(y)^2 / n)))
r <- num / den
r

## [1] -0.9237821</pre>
```

14.11 Using Technology to Obtain a Linear Correlation Coeffecient

```
# read in the data
orion <- read.csv("data/Tb14-02.txt", sep = "\t")
str(orion)

## 'data.frame': 11 obs. of 2 variables:
## $ AGE : int 5 4 6 5 5 5 6 6 2 7 ...
## $ PRICE: int 85 103 70 82 89 98 66 95 169 70 ...
cor(orion)

## AGE PRICE
## AGE 1.0000000 -0.9237821
## PRICE -0.9237821 1.0000000</pre>
```

15 Inferential Methods in Regression and Correlation

16 Analysis of Variance (ANOVA)