

Московский Физико-Технический Институт

Отчет о выполнении лабораторной работы

5.1.2 Эффект Комптона

Выполнили: Костылев Владислав Шатров Игорь

Аннотация

Цель работы: С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ - квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Содержание

1	Введение	3
2	Экспериментальная установка	3
3	Результаты измерений и обработка данных	4
4	Заключение	7
5	Список литературы	7

1 Введение

Рассеяние γ -лучей в веществе относится к числу явлений, в которых особенно ясно проявляется двойственная природа излучения. Волновая теория, хорошо объясняющая рассеяние длинноволнового излучения, испытывает трудности при описании рассеяния рентгеновских и γ -лучей. Эта теория, в частности, не может объяснить, почему в составе рассеянного излучения, измеренного Комптоном, кроме исходной волны с частотой ω_0 появляется дополнительная длинноволновая компонента, отсутствующая в спектре первичного излучения.

Появление этой компоненты легко объяснимо, если считать, что γ -излучение представляет собой поток квантов (фотонов), имеющих энергию $\hbar\omega$ и импульс $p=\hbar\omega/c$. Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим - интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

Рассмотрим элементарную теорию эффекта Комптона. Пусть электрон до соударения покоился (его энергия равна энергии покоя mc^2), а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , где $\gamma=\left(1-\beta^2\right)^{-1/2}$, $\beta=v/c$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становятся соответственно равным и $\hbar\omega_1$ и $\hbar\omega_1/c$.

Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$\frac{\hbar\omega_{0}}{c} = \gamma mv\cos\varphi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv\sin\varphi = \frac{\hbar\omega_{1}}{c}\sin\theta$$

Решая совместно эти уравнения и переходя от частот ω_0 и ω_1 к длинам волн λ_0 и λ_1 , нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_K (1 - \cos \theta) \tag{1}$$

где λ_0 и λ_1 - длины волн γ -кванта до и после рассеяния, а величина

$$\Lambda_{\rm K} = \frac{h}{mc} = 2,42 \cdot 10^{-10} {\rm cm}$$

Основной целью данной работы является проверка соотношения (1). Применительно к условиям нашего опыта формулу (1) следует преобразовать от длин волн к энергии γ -квантов. Как нетрудно показать, соответствующее выражение имеет вид

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{2}$$

Здесь $\varepsilon_0 = E_0/(mc^2)$ — выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ - выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол $\theta, m-$ масса электрона.

2 Экспериментальная установка

Блок-схема установки изображена на рисунке ниже.

Источником излучения 1 служит 137Cs, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диаметром 40 мм и высотой 100 мм).

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее ФЭУ) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на аноде ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге.

3 Результаты измерений и обработка данных

Для обработки результатов используется формула (2) с замененными энергиями квантов на $N(\theta)$.

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta) \tag{3}$$

Далее, устанавливая сцинтилляционный датчик под разными углами мы получаем картины пиков, по которым мы измеряем уже номера каналов, в которых пик:

Рис. 1. $\theta = 0^0$

Отобразим это все в одной таблице:

Рис. 11. $\theta = 100^0$

Рис. 12. $\theta = 110^0$

Рис. 13. $\theta = 120^0$

Теперь построим график, используя формулу (3), откладывая по оси абсцисс $1-\cos\theta$, а по оси ординат величину $1/N(\theta)$:

theta, градусы	0	10	20	30	40	50	60	70	80	90	100	110	120
1 - cos(theta)	0	0,015192	0,060307	0,133975	0,233956	0,357212	0,5	0,65798	0,826352	1	1,173648	1,34202	1,5
N, номер канала	852	886	843	778	682	618	527	478	438	397	364	333	319
1/N	0,001174	0,001129	0,001186	0,001285	0,001466	0,001618	0,001898	0,002092	0,002283	0,002519	0,002747	0,003003	0,003135

С учётом связи между Е и N:

$$mc^2(\frac{1}{E(90)} - \frac{1}{E(0)}) = 1$$
 (4)

или

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_\gamma \frac{N(90)}{N(0) - N(90)},$$
 (5)

где $E_{\gamma}=662$ кэВ - энергия налетающего кванта, значение взято из экспериментальной установки.

Теперь определим энергию покоя частицы, на которой происходит комптоновское рассеяние первичных γ -частиц, используя формулы (4), (5). Для начала определим наилучшие значения N, для углов 90 и 0 градусов:

$$N_{\text{naun}}(0) = \frac{1}{\frac{1}{N(0)}} = \frac{1}{0,001142} = 876 \pm 14$$

$$N_{\textit{haua}}(90) = \frac{1}{\frac{1}{N(90)}} = \frac{1}{0,001142 + 0,001371} = 398 \pm 9$$

Тогда:

$$mc^2 = 662 * \frac{398}{876 - 398} = (551 \pm 11) K \ni B$$

4 Заключение

В данной работе с помощью сцинтилляционного спектрометра было исследовано энергетическое распределение γ-квантов, рассеянных на графите.

Полученные экспериментальные данные позволили определить энергию рассеянных γ -квантов в зависимости от угла рассеяния, а также оценить энергию покоя частиц, на которых происходит комптоновское рассеяние.

5 Список литературы

- Ф. Ф. Игошин, Лабораторный практикум по общей физике. Квантовая физика. Физматкнига, 2012.
- И. В. Савельев, Курс общей физики: учебное пособие для вуза: в 5 томах. 6-е изд., стер. Т. 1: Механика. Лань, 2021.
- И. В. Савельев, Курс общей физики. В 5тт. Т. 5 Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц: Учебное пособие. 5-е изд., испр. Лань, 2021.
- Ю. М. Ципенюк, Кванотовая микро- и макрофизика. Физматкнига, 2006.