

Figure 1: Boek 3

Contents

Voorwoord	1
Bal die horizontaal stuitert	2
ellipse en background	12
Bal die schuin stuitert	19
text	25

Voorwoord

Figure 1: Het logo van De Jonge Onderzoekers

Figure 2: Het logo van Codestarter

Dit is het Processing boek van de Dojo. Processing is een programmeertaal. Dit boek leert je die programmeertaal.

Over dit boek

Dit boek heeft een CC-BY-NC-SA licensie.

Figure 3: De licensie van dit boek

(C) Dojo Groningen 2016-2017

Het is nog een beetje een slordig boek. Er zitten tiepvauten in en de opmaak is niet altijd even mooi.

Daarom staat dit boek op een GitHub. Om precies te zijn, op https://github.com/richelbilderbeek/Dojo. Hierdoor kan iedereen die dit boek te slordig vindt minder slordig maken.

```
float x = 150;
float v = 100;
float snelheid naar rechts = 1;
float botsingen = 0;
void setup()
  size(300, 200);
void draw()
  background(0, 0, 0);
  stroke(128, 0, 0);
  fill(255, 0, 0);
  ellipse(x, y, 50, 50);
  text(x, 10, 20);
  fill(0, 255, 0);
  text(y, 10, 40);
  fill(0, 0, 255);
  text(botsingen, 10, 60);
  fill(random(255), random(255), random(255));
  text("PONG", width / 2, height / 2);
  x = x + snelheid_naar_rechts;
  if (x > 275)
  {
   snelheid_naar_rechts = -snelheid_naar_rechts;
   botsingen = botsingen + 1;
  if (x < 25)
  {
    snelheid_naar_rechts = -snelheid_naar_rechts;
```

Eindopdracht

Figure 34: Eindopdracht text

Zet linksboven de tekst: aantal botsingen: in het wit. Zet daaronder de waarde van botsingen in het wit. Haal de rest van de tekst weg. Het aantal botsingen moet ook hoger worden als je links botst.

Bal die horizontaal stuitert

Figure 4: Eindopdracht Bal Die Horizontaal Stuitert

In deze les gaan we een bal horizontaal laten stuiteren.

Een bal met een snelheid

```
float x = 300;
float snelheid = 2;

void setup()
{
    size(600, 100);
}

void draw()
{
    ellipse(x,50,100,100);
    x = x + snelheid;
    if (x > 650)
    {
        x = -50;
    }
}
```

Opdracht 1

 $Type \; de \; code \; van \; \texttt{Een} \; \; \texttt{bal} \; \; \texttt{met} \; \; \texttt{een} \; \; \texttt{snelheid} \; over. \; \; Zet \; de \; waarde \; van \; \texttt{snelheid} \; op \; \texttt{1}. \; \; Wat \; zie \; je?$

Antwoord 1

Je ziet dat de bal rustig naar rechts beweegt. Als de bal rechts het beeld uit gaat, komt deze vanaf links weer in het beeldscherm.

```
float x = 300;
float snelheid = 1;

void setup()
{
    size(600, 100);
}

void draw()
{
    ellipse(x,50,100,100);
    x = x + snelheid;
    if (x > 650)
    {
        x = -50;
    }
}
```


Figure 5: Oplossing 1

Opdracht 2

Zet de waarde van snelheid op 0. Wat zie je?

Oplossing 6

```
float x = 150;
float y = 100;
float snelheid_naar_rechts = 1;
float botsingen = 0;
void setup()
{
  size(300, 200);
void draw()
  background(0, 0, 0);
  stroke(128, 0, 0);
  fill(255, 0, 0);
  ellipse(x, y, 50, 50);
  text(x, 10, 20);
  fill(0, 255, 0);
  text(y, 10, 40);
  fill(0, 0, 255);
  text(botsingen, 10, 60);
  fill(random(255), random(255), random(255));
  text("PONG", width / 2, height / 2);
  x = x + snelheid_naar_rechts;
  if (x > 275)
    snelheid_naar_rechts = -snelheid_naar_rechts;
  {
    snelheid_naar_rechts = -snelheid_naar_rechts;
```

Opdracht 7

Figure 33: Opdracht 7

Maak botsingen hoger als de bal teken de rechter muur komt.

```
float x = 150;
float v = 100;
float snelheid_naar_rechts = 1;
void setup()
  size(300, 200);
void draw()
  background(0, 0, 0);
  stroke(128, 0, 0);
  fill(255, 0, 0);
  ellipse(x, y, 50, 50);
  text(x, 10, 20);
  fill(0, 255, 0);
  text(y, 10, 40);
  fill(random(255), random(255), random(255));
  text("PONG", width / 2, height / 2);
  x = x + snelheid_naar_rechts;
  if (x > 275)
   snelheid_naar_rechts = -snelheid_naar_rechts;
  if (x < 25)
  {
   snelheid_naar_rechts = -snelheid_naar_rechts;
```

Opdracht 6

Figure 32: Opdracht 6

Maak een variabele erbij: aantal_botsingen. aantal_botsingen heeft als beginwaarde nul. Zet deze waarde op het scherm, in het wit.ex

Antwoord 2

De bal staat nu stil
float x = 300;
float snelheid = 0;

void setup()
{
 size(600, 100);
}

void draw()
{
 ellipse(x,50,100,100);
 x = x + snelheid;
 if (x > 650)
 {
 x = -50;
 }
}

Figure 6: Oplossing 2

Opdracht 3

Zet de waarde van snelheid op -1. Wat zie je?

Het getal -1 spreek je uit als 'min een'. Het is het getal een lager dan nul.

Antwoord 3

De bal gaat nu naar links en komt niet meer in beeld.

```
float x = 300;
float snelheid = -1;

void setup()
{
    size(600, 100);
}

void draw()
{
    ellipse(x,50,100,100);
    x = x + snelheid;
    if (x > 650)
    {
        x = -50;
    }
}
```


Figure 7: Oplossing 3

Opdracht 4

Figure 8: Opdracht 4

Zorg dat als de bal links uit beeld gaat, deze weer rechts verschijnt. Doe dit door een tweede if te maken

Oplossing 4

```
float x = 150;
float y = 100;
float snelheid_naar_rechts = 1;
void setup()
  size(300, 200);
void draw()
  background(0, 0, 0);
  stroke(128, 0, 0);
  fill(255, 0, 0);
  ellipse(x, y, 50, 50);
  text(x, 10, 20);
  fill(0, 255, 0);
  text(y, 10, 40);
  x = x + snelheid_naar_rechts;
  if (x > 275)
    snelheid_naar_rechts = -snelheid_naar_rechts;
  if (x < 25)
    snelheid_naar_rechts = -snelheid_naar_rechts;
```

Opdracht 5

Figure 31: Opdracht 5

Zet de tekst PONG bovenin en midden op het scherm. De tekst moet een willekeurige kleur krijgen. Gebruik width om het midden te bepalen.

```
float x = 150;
float v = 100;
float snelheid_naar_rechts = 1;
void setup()
  size(300, 200);
void draw()
  background(0, 0, 0);
  stroke(128, 0, 0);
  fill(255, 0, 0);
  ellipse(x, y, 50, 50);
  text(x, 10, 20);
  text(y, 10, 40);
  x = x + snelheid_naar_rechts;
  if (x > 275)
   snelheid_naar_rechts = -snelheid_naar_rechts;
  if (x < 25)
  {
   snelheid_naar_rechts = -snelheid_naar_rechts;
```

Opdracht 4

Figure 30: Opdracht 4

29

Met fill kun je de kleur van je tekst bepalen. Na de eerste text, zet de fill op groen.

Oplossing 4

```
float x = 300;
float snelheid = -1;

void setup()
{
    size(600, 100);
}

void draw()
{
    ellipse(x,50,100,100);
    x = x + snelheid;
    if (x > 650)
    {
        x = -50;
    }
    if (x < -50)
    {
        x = 650;
    }
}</pre>
```

Opdracht 5

Denk na: wat moet er met de snelheid gebeuren om de bal te laten stuiteren (van links naar rechst)? Als je durft: probeer dit zonder verder te lezen!

Als tegen de linkerkant komt, moet de bal de bal naar rechts gaan. Als tegen de rechterkant komt, moet de bal de bal naar links gaan.

Opdracht 6

Figure 9: Opdracht 6

Laat de bal nu van links naar rechts stuiteren

Opdracht 3

Figure 29: Opdracht 3

Het programma laat nu de x zien. Laat eronder nu ook de y coordinaat op het scherm zien.

Figure 28: Oplossing 2

```
float x = 150;
float y = 100;
float snelheid_naar_rechts = 1;
void setup()
  size(300, 200);
void draw()
  background(0, 0, 0);
  stroke(128, 0, 0);
  fill(255, 0, 0);
  ellipse(x, y, 50, 50);
  text(x, 10, 20);
  x = x + snelheid_naar_rechts;
  if (x > 275)
   snelheid_naar_rechts = -snelheid_naar_rechts;
  if (x < 25)
   snelheid_naar_rechts = -snelheid_naar_rechts;
```


text(100, 200, 300); text("Hallo", 100, 200); 'Lieve computer, zet de tekst 100 op het scherm met als linkerbovenhoek (200, 300)

'Lieve computer, zet de tekst Hallo op het scherm met als linkerbovenhoek (100, 200)

27

Oplossing 6

```
float x = 300;
float snelheid = 1;

void setup()
{
    size(600, 100);
}

void draw()
{
    ellipse(x,50,100,100);
    x = x + snelheid;
    if (x > 550)
    {
        snelheid = -1;
    }
    if (x < 50)
    {
        snelheid = 1;
    }
}</pre>
```

Opdracht 7

Figure 10: Opdracht 7

Laat de bal nu met een snelheid van 2 pixels per keer bewegen.

```
float x = 300;
float snelheid = 2;

void setup()
{
    size(600, 100);
}

void draw()
{
    ellipse(x, 50, 100, 100);
    x = x + snelheid;
    if (x > 550)
    {
        snelheid = -2;
    }
    if (x < 50)
    {
        snelheid = 2;
    }
}</pre>
```

Opdracht 8

Verander in de code:

van	naar
snelheid = 2;	<pre>snelheid = -snelheid;</pre>
snelheid = -2 ;	<pre>snelheid = -snelheid;</pre>

snelheid = -snelheid;

'Lieve computer, verander het (min of plus)teken van snelheid'

Het getal -1heeft een minteken. Het getal $1~({\rm ook~goed:}~+1)$ heeft een plusteken.

Oplossing 1

Figure 27: Oplossing 1

26

Opdracht 2

Voeg na ellipse de volgende regel toe:

text(x, 10, 20);

text

Tekst wordt veel gebruikt, ook in games, voor bijvoorbeeld een score.

Hier zie je 'Zork, the underground empire', een van de beroemdste tekstavonturen ooit:

```
richel@druten: ~/GitHubs/Zork -- + ×
File Edit Tabs Help
richel@druten: ~/GitHubs/Zork$ ./Zork
Welcome to Dungeon. This version created 11-MAR-91.
You are in an open field west of a big white house with a boarded
front door.
There is a small mailbox here.
>
```

Figure 26: Zork

Opdracht 1

```
Run deze code:
float x = 150;
float y = 100;
float snelheid_naar_rechts = 1;
void setup()
  size(300, 200);
void draw()
  background(0, 0, 0);
  stroke(128, 0, 0);
  fill(255, 0, 0);
  ellipse(x, y, 50, 50);
  x = x + snelheid_naar_rechts;
  if (x > 275)
   snelheid_naar_rechts = -snelheid_naar_rechts;
  if (x < 25)
  {
   snelheid_naar_rechts = -snelheid_naar_rechts;
```

25

Oplossing 8

Figure 11: Opdracht 8

```
float x = 300;
float snelheid = 2;

void setup()
{
    size(600, 100);
}

void draw()
{
    ellipse(x, 50, 100, 100);
    x = x + snelheid;
    if (x > 550)
    {
        snelheid = -snelheid;
    }
    if (x < 50)
    {
        snelheid = -snelheid;
    }
}</pre>
```

Eindopdracht

Figure 12: Eindopdracht Bal Die Horizontaal Stuitert

Laat de bal nu omhoog en omlaag stuiteren.

Eindopdracht

Figure 25: Eindopdracht Bal Die Schuin Stuitert

24

Laat nu de bal ook stuiteren als deze de bovenkant raakt.

```
float x = 150;
float v = 100;
float snelheid_naar_rechts = 1;
float snelheid_omlaag = 1;
void setup()
{
  size(300, 200);
void draw()
  ellipse(x, y, 50, 50);
  x = x + snelheid_naar_rechts;
  y = y + snelheid_omlaag;
  if (x > 275)
   snelheid_naar_rechts = -snelheid_naar_rechts;
  if (x < 25)
  {
   snelheid_naar_rechts = -snelheid_naar_rechts;
  if (y > 175)
  {
   snelheid_omlaag = -snelheid_omlaag;
```

ellipse en background

In deze les gaan we leren hoe je ovalen tekent.

Hier zie je een beroemde game, Bubble Bobble, dat veel met cirkels werkt:

Figure 13: Bubble Bobble

Opdracht 1

Run deze code

```
float x = -50;
float snelheid = 1;

void setup()
{
    size(400, 100);
}

void draw()
{
    stroke(x, x, x);
    fill(x, x, x);
    ellipse(x, height / 2, 50, 50);
    x = x + snelheid;
    if (x > width + 50)
    {
        x = -50;
    }
}
```


Figure 14: Oplossing 1

Opdracht 2

Figure 15: Opdracht 2

Verander het derde en vierde getal van ellipse (de 100s), zodat de ovaal twee keer zo hoog wordt.

Oplossing 3

```
float x = 150;
float y = 100;
float snelheid_naar_rechts = 1;
float snelheid_omlaag = 1;

void setup()
{
    size(300, 200);
}

void draw()
{
    ellipse(x, y, 50, 50);
    x = x + snelheid_naar_rechts;
    y = y + snelheid_omlaag;
    if (x > 275)
    {
        snelheid_naar_rechts = -snelheid_naar_rechts;
    }
    if (x < 25)
    {
        snelheid_naar_rechts = -snelheid_naar_rechts;
    }
}</pre>
```

Opdracht 4

Figure 24: Opdracht 4

22

Laat de bal nu omhoog stuiteren als de bal de onderkant van het scherm raakt.

```
float x = 150;
float y = 100;
float snelheid_naar_rechts = 1;
float snelheid_omlaag = 1;

void setup()
{
    size(300, 200);
}

void draw()
{
    ellipse(x, y, 50, 50);
    x = x + snelheid_naar_rechts;
    if (x > 275)
    {
        snelheid_naar_rechts = -snelheid_naar_rechts;
    }
    if (x < 25)
    {
        snelheid_naar_rechts = -snelheid_naar_rechts;
    }
}</pre>
```

Opdracht 3

Figure 23: Opdracht 3

21

Laat de bal nu ook naar onder bewegen. Hij hoeft nog niet te stuiteren.

Oplossing 2

```
float x = -50;
float snelheid = 1;

void setup()
{
    size(400, 100);
}

void draw()
{
    stroke(x, x, x);
    fill(x, x, x);
    ellipse(x, height / 2, 50, 100);
    x = x + snelheid;
    if (x > width + 50)
    {
        x = -50;
    }
}
```

Opdracht 3

Figure 16: Opdracht 3

Voeg als eerste regel van draw toe:

background(255, 0, 0);

```
float x = -50;
float snelheid = 1;

void setup()
{
    size(400, 100);
}

void draw()
{
    background(255, 0, 0);
    stroke(x, x, x);
    fill(x, x, x);
    ellipse(x, height / 2, 50, 100);
    x = x + snelheid;
    if (x > width + 50)
    {
        x = -50;
    }
}
```

Opdracht 4

Figure 17: Oplossing 4

Maak de achtergrond nu magenta. Maak de rand van de cirkel zwart

Oplossing 1

```
float x = 150;
float y = 100;
float snelheid_naar_rechts = 1;

void setup()
{
    size(300, 200);
}

void draw()
{
    ellipse(x, y, 50, 50);
    x = x + snelheid_naar_rechts;
    if (x > 275)
    {
        snelheid_naar_rechts = -snelheid_naar_rechts;
    }
    if (x < 25)
    {
        snelheid_naar_rechts = -snelheid_naar_rechts;
    }
}</pre>
```

Opdracht 2

Figure 22: Opdracht 2

Maak een nieuwe variable aan met de naam snelheid_omlaag. Geef deze de beginwaarde van 1. De bal hoeft nog niet te bewegen.

15

Bal die schuin stuitert

In deze les gaan we een bal schuin laten stuiteren.

Een bal die horizontaal stuitert

```
float x = 150;
float snelheid_naar_rechts = 1;

void setup()
{
    size(300, 200);
}

void draw()
{
    ellipse(x, 100, 50, 50);
    x = x + snelheid_naar_rechts;
    if (x > 275)
    {
        snelheid_naar_rechts = -snelheid_naar_rechts;
    }
    if (x < 25)
    {
        snelheid_naar_rechts = -snelheid_naar_rechts;
    }
}</pre>
```

Opdracht 1

Figure 21: Opdracht 1

Maak een nieuwe variable aan met de naam y. Teken de ovaal op coordinaat (x, y). Zorg dat de code hetzelfde blijft doen

19

Oplossing 4

```
float x = -50;
float snelheid = 1;
void setup()
{
    size(400, 100);
}
void draw()
{
    background(255, 0, 255);
    stroke(0, 0, 0);
    fill(x, x, x);
    ellipse(x, height / 2, 50, 100);
    x = x + snelheid;
    if (x > width + 50)
    {
        x = -50;
    }
}
```

Opdracht 5

Zet de regel met background nu na size (binnen setup).

Figure 18: Oplossing 5

```
float x = -50;
float snelheid = 1;

void setup()
{
    size(400, 100);
    background(255, 0, 255);
}

void draw()
{
    stroke(0, 0, 0);
    fill(x, x, x);
    ellipse(x, height / 2, 50, 100);
    x = x + snelheid;
    if (x > width + 50)
    {
        x = -50;
    }
}
```

Opdracht 6

Figure 19: Opdracht 6

17

Maak de lijnkleur van de ovaal een willekeurige kleur: de rood, groen en blauw waarde moeten alledrie willekeurig zijn.

Oplossing 6

```
float x = -50;
float snelheid = 1;

void setup()
{
    size(400, 100);
    background(255, 0, 255);
}

void draw()
{
    stroke(random(256), random(256), random(256));
    fill(x, x, x);
    ellipse(x, height / 2, 50, 100);
    x = x + snelheid;
    if (x > width + 50)
    {
        x = -50;
    }
}
```

Eindopdracht

Figure 20: Eindopracht ellipse en background

Maak de ovaal rond, even hoog als het scherm, magenta, en met een rode rand. De achtergrond moet oranje zijn (oranje is vol rood, halfvol groen en geen blauw). Er mag geen sliert komen van oude ovalen.