PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-129647

(43)Date of publication of application: 02.06.1988

(51)Int.Cl.

H01L 21/88

(21)Application number: 61-276960

20.11.1986

(71)Applicant: FUJITSU LTD

(72)Inventor: GOTO HIROSHI

(54) SEMICONDUCTOR DEVICE

(57)Abstract:

(22)Date of filing:

PURPOSE: To avoid copying of a circuit based on observation of the circuit, by forming an element on a substrate, forming a semiconductor layer on the substrate or a wiring formed thereon, introducing conductive impurities in the layer, and forming a wiring pattern. CONSTITUTION: In a p-type silicon (p-Si) substrate 1, n-type impurities are introduced, and diffused layer wirings 1S and 1D are formed. A gate insulating layer 2 is a silicon dioxide (SiO2) layer, which is formed by thermal oxidation. For example, as a wiring pattern, which is formed by introducing the n-type impurities into a p-type polycrystalline (poly Si) layer 3, a gate electrode 3G and a diffused layer wiring 3W, which is connected to the electrode 3G, are formed. The semiconductor layer is electrically isolated through a ground layer and the insulating layer. In this structure, since the wiring pattern of the integrated

circuit cannot be observed through a microscope, the copying of the constituent circuit can be avoided.

①特許出願公開

昭63-129647 ⑩公開特許公報(A)

@Int Cl.4

庁内整理番号 識別記号

母公開 昭和63年(1988)6月2日

H 01 L 21/88

P-6708-5F

審査請求 未請求 発明の数 1 (全3頁)

69発明の名称 半導体装置

> 頤 昭61-276960 到特

願 昭61(1986)11月20日 22出

⑫発 明 者 藤 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

富士通株式会社 **犯出** 顖

神奈川県川崎市中原区上小田中1015番地

弁理士 井桁 貞一 20代 理

1. 発明の名称

半導体装置

2. 特許請求の範囲

基板上に被着された半導体層に導電性不純物を、 導入して形成した配線パターンを有し、

該配線パターンは下地層と絶縁層、またはpn 接合により電気的に分離されていることを特徴と する半導体装置。

3. 発明の詳細な説明

(概要)

基板に素子形成後、基板上、またはその上に形 成された配線上に半導体層を形成し、ここに導電 性不純物を導入して配線パターンを形成すること により、目で見ただけでは回路が分からない半導 体装置を提起し、回路のコピーを防止する。

(産業上の利用分野)

本発明は回路のコピーを防止する対策を施した 半導体装置に関する。

半導体装置の高集積化、高密度化により超大規 模集積回路(VLSI)が実現し、メーカ間の競争は激 化し、その構成回路は秘密を必要とする部分や、 場合が多くなってきた。

(従来の技術と、

発明が解決しようとする問題点)

従来の集積回路は顕微鏡で配線パターンを観察 することにより、その構成回路が分かってしまう ので、何らかの対策が望まれていた。

(問題点を解決するための手段)

上記問題点の解決は、基板上に被着された半導 体層に導電性不純物を導入して形成した配線パタ ーンを有し、

核配線パターンは下地層と絶縁層、またはpn 接合により電気的に分離されている本発明による 半導体装置により達成される。

第1図は本発明の半導体装置の構造を説明する 斜視図である。

図において、1はp型珪素(p-Si)基板で、ここにn型不純物を導入して拡散層配線IS、10が形成されている。

拡散層配線IS、10は電界効果トランジスタ (PET) のソース、ドレイン領域と、これに接続す る配線層を形成している。

2 はゲート絶縁層で熱酸化により形成された二酸化珪素(SiOz)層である。

3 は、例えば p 型の多結晶珪素(ポリSi)層 (または、炭化珪素(SiC)層)である。ここに n 型不純物を導入して形成された配線パターンとし て、ゲート電極3Gとこれに接続する拡散層配線3H が形成されている。

説明のために、図ではp-Si基板 1 と、Si0 x層 2 と、ポリSi層 3 は分離して描かれているが、もちろん実際には密着して形成されている。

第2図(1)、(2)において、1は約10Ωcaのp-Si基 板で、この上にゲート絶縁層、およびスルー絶縁 層として熱酸化により厚さ 500 A のSiO₂層 2 を形 成する。

つぎに、n型不純物として砒素イオン(As*) を注入して深さ3500人の拡散層配線1S、1Dを形成 する。

As*の注入条件はエネルギ 80 KeV 、ドーズ量 5E14 (5×10'4) cm-*である。

拡散層配線IS、10はそれぞれFET のソース、ドレイン領域と配線層を形成する。

つぎに、拡散層配線IS、1Dの間隔を含むFET 形成領域に硼素イオン(B*) を注入する。

B^{*}の注入条件はエネルギ 50 KeV 、ドーズ量 5B12 cm^{-*}である。

つぎに、拡散層配線1S、1Dの間隔に位置する PET のチャネル形成領域に換イオン(P*) か、またはAs*の注入によりカウンタドープしてしきい 値電圧(V_{**}) を調整する。

第2図(3)、(4)において、化学気相成長(CVD)法

(作用) .

本発明は、半導体層に導電性不純物を導入して 形成された配線パターンは見ただけではパターン が分からないことを利用したものである。

この半導体層が半絶縁性の場合はこの層に導入する導電性不純物はp型でも、n型でもよいが、接続しようとする下地層が半導体層の場合はこの層の導電型に合わせる。

また、この半導体層が p (n)型の場合はこの 層に導入する導電性不純物は n (p)型にし、配 線パターンを p n 接合分離にする。

さらに、この半導体層は下地層と絶縁層を介して電気的に分離する。場合によっては絶縁層を省略して、配線パターンと下地層とでpn接合を形成して電気的に分離することもできる。

(実施例)

第1図を例にとり、実施例を説明する。

第2図(1)~(4)は本発明の実施例を説明する平面 図と断面図である。

により、半導体層として厚さ4000 A の p 型ポリSi 層 3 (または、p 型SiC 層)を形成する。

この層のp型化は成長時にドープするか、または成長後 B*の注入により行う。

ポリSi層 3 にn型不純物として前と同一条件でAs*を注入し、配線パターンとして、ゲート電極3Gとこれに接続する拡散層配線3Wを形成する。

この後は、通常の工程により個間絶縁層を形成し、下地層との接続部において層間絶縁層にコンタクト孔を閉口し、基板全面にアルミニウム(AI)層を被着し、この層をパターニングして配線を形成し、配線を覆ってカバー膜をつけてウェハブロセスを完成する。

第3図は本発明の他の実施例を説明する平面図 である

図において、基板上にFET 4、5、6が形成されており、これらを相互に配線する隠したい回路領域をp型ポリSi層3で形成する。

つぎに、所定の回路に従って、p型ポリSi層 3 に P・か、またはAs・を注入して拡散層配線3Mを 形成する。

(発明の効果)

以上詳細に説明したように本発明によれば、 飯鏡で集積回路の配線パターンを観察することが できないため、その構成回路のコピーを防止でき

4. 図面の簡単な説明

第1図は本発明の半導体装置の構造を説明する 斜視図、

第2図(1)~(4)は本発明の実施例を説明する平面図と断面図、

第3図は本発明の他の実施例を説明する平面図 である。

図において、

lは p-Si 基板、

1S、1Dはソース、ドレイン領域と拡散層配線、

2 は SiO. 層、

3はポリSi層、または SiC層、

3Mは拡散層配線、 3Gはゲート電極、 4、5、6はFET である。

代理人 弁理士 井桁頁-

