Predicting Customer Churn in Banking Industry Using Machine Learning

Presenter: Mengdi Hao

Video: https://www.youtube.com/watch?v=Uu5CIWsGsVc

Motivation & Research Question

Motivation

- In recent decades, options for customers to store their money has been rapidly increasing.
- → Customer churn has been one of the top issues for many banks!

Research Questions

- What factors indicate a customer churning or not?
- Can banks detect who are more likely to churn and take measures to those customers?

Dataset Introduction

- Generated from a deep learning model: <u>Kaggle link</u>
- Dimension: 165,034 observations, 11 variables
- Variables:

credit score, geography, gender, age, tenure, balance, number of products, has credit card or not, is active member or not, estimated salary, exited or not

No missing values

Data Processing – Detect Outliers

Categorical

Numerical

Data Exploration – Visualization

Data Exploration – Visualization

High imbalance! Need to be handled!

- Apply down-sampling technique only on training data;
- After: 49,086 observations

Supervised Learning – Logistic Regression

Model	CV AUC score	
Default LR	0.8188	
Tuned LR	0.819	
Improvement after tuning	0.02%	

Parameter	Meaning	
С	regularization strength	
penalty	regularization type	
solver	optimization algorithm	

Generally consistent with insights from correlation matrix.

Supervised Learning – KNN

Model	CV AUC score
Default KNN	0.8417
Tuned KNN	0.8691
Improvement after tuning	2.74%
Improvement on optimal LR	5.01%

Parameter	Meaning	
	number of nearest	
n_neighbors	neighbors to	
	consider	
weights	way to weight the	
Weights	neighbors' vote	
metric	define the distance metric used	
	specify the power	
p	parameter of the	
	Minkowski metric	

Generally consistent with logistic regression.

Supervised Learning – Random Forest

Model	CV AUC score
Default RF	0.8727
Tuned RF	0.8849
Improvement after tuning	1.22%
Improvement on optimal KNN	1.58%

Parameter	Meaning
n_estimators	number of trees
max_depth	maximum depth of tree
min_samples_split	minimum samples required for splitting a node
min_samples_leaf	minimum samples required for a leaf
max_features	number of features to consider for a split

Generally consistent with logistic regression and KNN.

Supervised Learning – Stacking

Model	CV AUC score
Stacking	0.8853
Improvement on optimal RF	0.04%

Step by step improvement!

Unsupervised Learning – K means Clustering

K	CV AUC score	Improvement?
2	0.8849	×
3	0.8849	×
4	0.8851	×
5	o.8848	×
6	0.8851	×
7	0.8848	×

No obvious elbow point!

Unsupervised Learning – PCA

Hard to distinguish the two classes.

AUC score using PCA result: 0.8716, no improvement!

Unsupervised Learning – PCA & Clustering

К	CV AUC score	Improvement?
2	0.8727	×
3	0.8729	×
4	0.873	×
5	0.8728	×
6	0.8728	×
7	0.8725	×

No obvious elbow point again!

Model Evaluation

Classification Report:				
	Precision	Recall	F1-score	Support
o	0.94	0.81	0.87	39133
1	0.52	0.8	0.63	10378
accuracy	0.8		49511	
macro avg	0.73	0.8	0.75	49511
weighted avg	0.85	0.8	0.82	49511

Generally, the model performance is good!

Error Analysis – Misclassified Observations

	Age	Balance	NumOfProducts	IsActiveMember	True Label
count	9659	9659	9659	9659	9659
mean	0.315031	0.331976	-0.597615	0.390413	0.215033
std	1.033138	0.991838	0.830157	0.487868	0.410866
min	-2.271851	-0.875434	-1.017052	o	o
25%	-0.352048	-0.875434	-1.017052	o	o
50%	0.2126	0.725191	-1.017052	o	0
75%	0.890178	1.160012	-1.017052	1	0
max	6.08494	3.125753	4.475049	1	1

Potential Improvement Strategies:

- Create Interactive Features
- Resampling Techniques
- Hyperparameter Tuning

Seem to be some patterns?

Conclusion

What factors indicate a customer churning or not?

- Age;
- Geography;
- IsActiveMember;
- NumOfProducts.

Can banks detect who are more likely to churn and take measures to those customers?

Yes!

- ROC-AUC score: 0.8864;
- Recall for churn class: 0.80.

