# 数论基础

# ZZQ323

# 2025年3月2日

# 目录

| 1           | 小学的整数知识                               |                                |   |  |
|-------------|---------------------------------------|--------------------------------|---|--|
| 2           | · · · · · · · · · · · · · · · · · · · |                                |   |  |
|             | 2.1                                   | 欧几里得算法                         | 3 |  |
|             | 2.2                                   | 贝祖定理(Bézout's Identity)or 裴蜀定理 | 4 |  |
| 3 GCD 相关的知识 |                                       |                                | 6 |  |
|             | 3.1                                   | 奇奇怪怪的等式                        | 6 |  |
|             | 3.2                                   | 拉梅定理                           | 7 |  |
|             | 3.3                                   | 欧几里得算法、更相减损数、Stein 算法          | 7 |  |
|             | 3.4                                   | LCM                            | 7 |  |
|             | 3.5                                   | 代数基本定理                         | 7 |  |
|             | 3.6                                   | 计算方法证明                         | 7 |  |
|             | 3.7                                   | LCM 与 GCD 的关系                  | 8 |  |
| 4           | 丢番图                                   |                                |   |  |
| 5           | 二阶                                    | 丢番图解的通解问题                      | 9 |  |
|             | 5.1                                   | 图解证明                           | 9 |  |

|   | 5.2 | 扩展欧几里得算法求特解            | 10 |
|---|-----|------------------------|----|
|   | 5.3 | 丢番图例题 * 可跳过            | 11 |
|   | 5.4 | 多元丢番图                  | 11 |
| 6 | 同余  |                        | 12 |
|   | 6.1 | 基本性质                   | 13 |
|   | 6.2 | 一元线性同余方程               | 13 |
|   | 6.3 | 费马小定理                  | 13 |
|   |     | 6.3.1 二项式式展开证明         | 13 |
|   |     | 6.3.2 多项式展开证明          | 14 |
|   |     | 6.3.3 模算法证明            | 14 |
|   | 6.4 | 求逆                     | 15 |
|   | 6.5 | 中国剩余定理 *               | 16 |
| 7 | 欧拉  | 函数                     | 18 |
|   | 7.1 | 同余类、剩余系                | 18 |
|   |     | 7.1.1 概念与性质            | 18 |
|   |     | 7.1.2 剩余系的复合           | 19 |
|   | 7.2 | 欧拉函数与欧拉定理              | 19 |
|   | 7.3 | 素数幂模同余方程、素数模同余方程与整数多项式 | 19 |
|   |     | 摘要                     |    |
|   |     |                        |    |

还在想的摘要 hh

你好,LaTeX!

# 1 小学的整数知识

• 整数可以表示成多项式  $n=c_km^k+c_{k-1}m^{k-1}+c_{k-2}m^{k-2}+\cdots+c_1m^1+c_0m^0$  , 其中最高项不为 0  $c_k\neq 0$ 

- 如果 b 能整除 a,那么 b 表示为 b|a,这个时候 b 是 a 的因数; r 就 是其中的余数。
- 素数(只能被······的自然数)、合数、整除、公因子、最大公因子 gcd (或者用括号表示)、最小公倍数 lcm
- 若  $(a_1, a_2, a_3, \ldots, a_{n-1}, a_n) = 1$ ,那么称  $a_1, a_2, a_3, \ldots, a_{n-1}, a_n$  互素;只有  $i, j \in [1, n]$ &&  $i \neq j$  &&  $(a_{i,a_j}) = 1$ ,这样才叫两两互素
- 整数之间的除法才有余数可言
- 因数分解最佳算法复杂度是  $\ln^{\left(\frac{\ln n}{\ln (\ln n)}\right)^{\frac{1}{2}}}$  (n)
- 为什么说最大的梅森素数是  $M_{44497} = 2^{44497} 1$ ? 更大的就计算不出来了吗?
- 约定: a %n 得到结果的正负由被除数 a 决定, 与 n 无关
- 四则运算的结合律、交换律、分配律不影响取模

## 2 带余除法

### 2.1 欧几里得算法

首先根据带余除法这个式子,我们可以列出:

$$a = bq_1 + r_1 \tag{1}$$

$$b = r_1 q_2 + r_2 (2)$$

$$r_1 = r_2 q_3 + r_3 \tag{3}$$

:

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} (4)$$

$$r_{n-2} = r_{n-1}q_n + r_n (5)$$

首先  $r_1 < b$ ,否则的话多的部分会使得 q 变大来吸纳; 其次可以知道  $b > r_1 > r_2 > \cdots > r_{n-1} > r_n > 0$ ; 这满足数列收敛的条件——因此  $r_n$  有极限且极限为 0;由此一来,只要 n 足够大,那么最后一项就是:

$$r_{n-2} = r_{n-1}q_n (6)$$

ps: 有些参考书会写到 n+1, 其实都是一样的。 那么一步步反带入:

$$r_{n-2} = r_{n-1}q_n \tag{7}$$

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} = r_{n-1}q_nq_{n-1} + r_{n-1}$$
(8)

$$r_{n-4} = r_{n-3}q_{n-2} + r_{n-2} = (r_{n-1}q_nq_{n-1} + r_{n-1})q_{n-2} + r_{n-1}q_n$$

$$= r_{n-1}q_nq_{n-1}q_{n-2} + r_{n-1}q_{n-2} + r_{n-1}q_n$$
(9)

:

$$b = g(q_n, q_{n-1}, q_{n-2}, \dots, q_4, q_3) \cdot r_{n-1}$$
(10)

$$r_1 = f(q_n, q_{n-1}, q_{n-2}, \dots, q_3, q_2) \cdot r_{n-1}$$
(11)

$$a = h(q_n, q_{n-1}, q_{n-2}, \dots, q_2, q_1) \cdot r_{n-1}$$
(12)

由于不同项数的组合顺序是不一样的,而且  $q_i$  之间也大概率不相同 (偷懒); 所以不难看出:  $f \neq g \neq h$  (三个互不相等)。进而证明了,a、b 之间的 gcd 就是  $r_{n-1}$ 。

### 2.2 贝祖定理(Bézout's Identity)or 裴蜀定理

如果 d = (a, b),则  $\exists q p \in Z$ ,st. d = pa + qb。在算法中,我们可以理解为"有一系列的 d,但是只有最小公倍数是这个式子里面最小的——从而来化简式子"证明如下:因为存在  $r_{n-1}$  对 a、b 的唯一表示;

$$b = g(q_n, q_{n-1}, q_{n-2}, \dots, q_4, q_3) \cdot r_{n-1}$$
(13)

$$a = h(q_n, q_{n-1}, q_{n-2}, \dots, q_2, q_1) \cdot r_{n-1}$$
(14)

所以,必然存在;

$$r_{n-1} = \frac{b}{g(q_n, q_{n-1}, q_{n-2}, \dots, q_4, q_3)}$$

$$r_{n-1} = \frac{a}{h(q_n, q_{n-1}, q_{n-2}, \dots, q_2, q_1)}$$
(15)

$$r_{n-1} = \frac{a}{h(q_n, q_{n-1}, q_{n-2}, \dots, q_2, q_1)}$$
(16)

也就是

$$gcd(a,b) = d = \frac{b}{g(q_n, q_{n-1}, q_{n-2}, \dots, q_4, q_3)}$$

$$gcd(a,b) = d = \frac{a}{h(q_n, q_{n-1}, q_{n-2}, \dots, q_2, q_1)}$$
(18)

$$gcd(a,b) = d = \frac{a}{h(q_n, q_{n-1}, q_{n-2}, \dots, q_2, q_1)}$$
(18)

但是还是不够明确,回到之前的:

$$r_{n-2} = r_{n-1}q_n \tag{19}$$

$$r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} = r_{n-1}q_nq_{n-1} + r_{n-1}$$
(20)

$$r_{n-4} = r_{n-3}q_{n-2} + r_{n-2} = (r_{n-1}q_nq_{n-1} + r_{n-1})q_{n-2} + r_{n-1}q_n$$

$$= r_{n-1}q_nq_{n-1}q_{n-2} + r_{n-1}q_{n-2} + r_{n-1}q_n$$
(21)

$$b = g(q_n, q_{n-1}, q_{n-2}, \dots, q_4, q_3) \cdot r_{n-1}$$
(22)

$$r_1 = f(q_n, q_{n-1}, q_{n-2}, \dots, q_3, q_2) \cdot r_{n-1}$$
(23)

$$a = h(q_n, q_{n-1}, q_{n-2}, \dots, q_2, q_1) \cdot r_{n-1}$$
(24)

$$a = bq_1 + r_1 \tag{25}$$

然后带入到最初的式子:

$$a = bq_1 + r_1 \tag{26}$$

$$a = bq_1 + f(q_n, q_{n-1}, q_{n-2}, \dots, q_3, q_2) \cdot r_{n-1}$$
(27)

$$r_{n-1} = \frac{1}{f(q_n, q_{n-1}, q_{n-2}, \dots, q_3, q_2)} a + \frac{q_1}{f(q_n, q_{n-1}, q_{n-2}, \dots, q_3, q_2)} b$$
 (28)

然后……好像也没证明

正确的证明是:

$$a = bq_1 + r_1 \tag{29}$$

$$r_1 = a - bq_1 \tag{30}$$

$$b = r_1 q_2 + r_2 \tag{31}$$

$$= (a - bq_1)q_2 + r_2$$

$$r_2 = b - (a - bq_1)q_2 (32)$$

$$r_1 = r_2 q_3 + r_3$$

$$= (b - (a - bq_1)q_2)q_3 + r_3$$
(33)

$$r_{n-1} = F(q)a + G(q)b \tag{34}$$

# 3 GCD 相关的知识

### 3.1 奇奇怪怪的等式

$$gcd(a, b) = gcd(a, a + b)$$
$$= gcd(a, k \cdot a + b)$$
$$= gcd(a + k \cdot b, b)$$

由贝祖定理知: 如果 d=(a,b),则  $\exists \ q \ p \in Z$ , $st.\ d=pa+qb$ 。而上面两个式子无非就是令 b=ka+b 或者 a=kb+a,展开来都是一致的,不需要证明什么东西。甚至,你令  $a=\frac{a+b}{2}$ 、 $b=\frac{a-b}{2}$ ,这样搞换底也是可以的。

#### 3.2 拉梅定理

用欧几里得算法计算两个正整数的最大公约数,需要的除法次数不会超过两个整数中较小的那个十进制数的位数的5倍。

其实也就是:  $O(n) \le 5 \log_{10}(\min(a, b))$ 

### 3.3 欧几里得算法、更相减损数、Stein 算法

不知道怎么插入代码

#### 3.4 LCM

#### 3.5 代数基本定理

任意一个大于1的正整数都可以被分解为素数的乘积;

$$n = P_1^{\alpha_1} P_2^{\alpha_2} P_3^{\alpha_3} P_4^{\alpha_4} P_5^{\alpha_5}$$

### 3.6 计算方法证明

下面假设:

$$a = p_1^{c_1} p_2^{c_2} \cdots p_n^{c_n} \tag{35}$$

$$b = p_1^{f_1} p_2^{f_2} \cdots p_n^{f_n} \tag{36}$$

所以:

$$gcd(a,b) = p_1^{c_1} p_2^{c_2} \cdots p_n^{c_n} \cdot p_1^{f_1} p_2^{f_2} \cdots p_n^{f_n}$$
(37)

$$= p_1^{\min(c_1, f_1)} p_2^{\min(c_2, f_2)} \cdots p_n^{\min(c_n, f_n)}$$
(38)

$$lcm(a,b) = p_1^{\max(c_1,f_1)} p_2^{\max(c_2,f_2)} \cdots p_n^{\max(c_n,f_n)}$$
(39)

$$gcd(a,b) \cdot lcm(a,b) = a \cdot b \tag{40}$$

#### 3.7 LCM 与 GCD 的关系

观察例题 1:

问题描述: 给定两个正整数 G 和 L,问满足  $\gcd(x, y, z) = G$  和  $\lim(x, y, z) = L$  的 (x, y, z)有多少个? 注意,(1,2,3)和(1,3,2)是不同的。

图 1: 一道 hdu4497 的例题

这里有一个显然的性质:

 $L\%G \equiv 0$ 

# 4 丢番图

在学习丢番图方程时,常从线性或简单二次形式入门,再逐步了解更复杂的高次或几何形式。

主要有以下类型:

- 线性丢番图: ax + by = c
- 多元线性丢番图:  $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_{n-1}x_{n-1} + a_nx_n = c$
- 高次丢番图:  $x^n + y^n = z^n$ 
  - 勾股定理:  $x^2 + y^2 = c^2$
  - 大费马定理:  $x^n + y^n = z^n$  when n > 2 the equation is invalid.
  - Pell 方程(一个双曲线):  $x^2 Dy^2 = 1$
- 指数丢番图:  $a^x + b^y = c^z$

相关问题: 椭圆方程上的有理点构造问题。扩展欧几里得算法(线性情况)、连分数法(二次 Pell 方程)、Lattice-based 方法(格上求解)。

# 5 二阶丢番图解的通解问题

#### 5.1 图解证明

对于 ax + by = c, 如果  $gcd(a, b) \mid c$  (也就是 c% gcd(a, b) = 0) 注: 这里的 c 也可能是的负的······因为······ 对于一个特解  $x_0$ 、 $y_0$ ,我可以很顺利地得到对应的整数通解:

$$x = x_0 + \frac{b}{\gcd(a, b)}n$$
$$y = y_0 - \frac{a}{\gcd(a, b)}n$$

原因就是: x 每增加一个 1  $x = x_0 + n$  ,那么对应到等式中 y 就需要减少一个  $\frac{a}{b}$ 

那么 x 每增加一个 b  $x=x_0+bn$ ,那么对应到等式中 y 就需要减少一个  $\frac{ab}{b}=a$ 

基于此,给 x 和 y 的系数同时除以 gcd,那么就可以得到最小步长的通解公式,保障不会漏掉什么通解。

但要是如果  $\gcd(a,b) \nmid c$  (也就是  $c\% \gcd(a,b) \neq 0$ ),那么就不会有任何一个点在格子点上,自然也不会有什么整数解……一个解都没有!



图 2: 二阶丢番图图解

#### 5.2 扩展欧几里得算法求特解

首先已知:  $pa + qb = \gcd(a, b)$ ; 这里只是把  $pa + qb = \gcd(a, b)$  写成了  $xa + yb = \gcd(a, b)$ ; 由前面的步骤可知,x、y 都是 f(q),只要从上往下化简,表示出  $r_{n-1}$ ,其中的一大坨  $q_n$  就是 x 以及 y 了;

但是具体的:

$$a = bq_1 + r_1 \tag{41}$$

$$r_1 = a - bq_1 \tag{42}$$

$$b = r_1 q_2 + r_2 \tag{43}$$

$$=(a-bq_1)q_2+r_2$$

$$r_2 = b - (a - bq_1)q_2 (44)$$

$$r_1 = r_2 q_3 + r_3 \tag{45}$$

$$=(b-(a-bq_1)q_2)q_3+r_3$$

:

$$r_{n-1} = F(q)a + G(q)b \tag{46}$$

在这里我们改写成:  $r_{n-1} = xa + yb$ , 也即:

$$x = F(q)$$

$$y = G(q)$$

怎么计算这么长的 F、G 呢?

注意到,在最小一个子问题的讨论中,我们会得到  $a'x+b'y=\gcd(a,b)$ 。那么,在上一层的求解中,我们就知道了下一层已经满足了这个条件;但是,我们保存了每一层的 a、b,子递归中的 a、b 并非我们所有的 a、b,所以我们需要调整 x、y 以适应这一层 a、b 的结论

$$\begin{cases} a' = b, \\ b' = a \mod b, \end{cases}$$

$$\Rightarrow bx + (a \mod b)y = \gcd(a, a \mod b) = \gcd(a, b)$$

$$\Rightarrow bx + (a \mod b)y = bx + (a - \lfloor \frac{a}{b} \rfloor * b)y = \gcd(a, b)$$

$$\Rightarrow ay + bx - \lfloor \frac{a}{b} \rfloor * by = \gcd(a, b)$$

$$\Rightarrow ay + b(x - \lfloor \frac{a}{b} \rfloor y) = \gcd(a, b)$$

那么对于这一层的 x、y,是不是又能通过下面那一层的 x、y 模拟了呢?

$$y = x_{\overline{1}} - y_{\overline{1}}$$
$$x = y_{\overline{1}}$$

#### 5.3 丢番图例题 \* 可跳过

主要是算法问题 顺便复习 c++ 饿啊啊啊。

### 5.4 多元丢番图

实际上就是形如:  $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_{n-1}x_{n-1} + a_nx_n = c$  式子的这么一个解。

当且仅当  $gcd(a_1, a_2, a_3, \dots, a_{n-1}, a_n) \mid c$ ,这个方程组有 tmd 无数个解。然后呢,像下面这样直接求解就行了。



# № 例 6.15 线段上的格点数量

问题描述:在二维平面上,给定两个格点  $p_1 = (x_1, y_1)$ 和  $p_2 = (x_2, y_2)$ ,问线段  $p_1p_2$  上除了  $p_1, p_2$  外还有几个格点? 设  $x_1 < x_2$ 。

(a) 题目 3a



#### 例 6.17 青蛙的约会(洛谷 P1516)

问题描述:两只青蛙住在同一条纬度线上,它们各自向西跳,直到碰面为止。除非这 两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观 的青蛙,你被要求写一个程序判断这两只青蛙是否能够碰面,会在什么时候碰面。把这两 只青蛙分别叫作青蛙 A 和青蛙 B,并且规定纬度线上 0°处为原点,由东向西为正方向,单 位长度为1米,这样就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙E的出发点坐标是 y。青蛙 A 一次能跳 m 米,青蛙 B 一次能跳 n 米,两只青蛙跳一次所花 费的时间相同。纬度线总长 L 米。求它们跳了几次以后才会碰面?

输入:输入5个整数x,y,m,n,L。

输出:输出碰面所需要的次数,如果永远不可能碰面,则输出一个字符串 "Impossible".

(b) 题目 3b

图 3

$$\begin{cases} a_1x_1 + a_2x = d_2t_2 \\ d_2t_2 + a_2x = d_3t_3 \\ \vdots \\ d_{n-1}t_{n-1} + a_nx = d_nt_n \end{cases}$$

#### 同余 6

长成:  $a \equiv b \pmod{n}$  就是同余式。

#### 6.1 基本性质

- 1. 正整数 a, b 对 n 取模, 它们的余数相同, 记作:  $a \equiv b \pmod{n}$
- 2. 若 a-k\*n=b, 则  $a\equiv b\pmod{n}$ ; 换而言之,我们可以将同余式  $a\equiv b\pmod{n}$  与等式  $a\equiv b+k*n$  互化
- 3. 若  $a \equiv b \pmod{n}$  且  $c \equiv b \pmod{n}$ ,则  $a \equiv c \pmod{n}$
- 4. 若  $a \equiv b \pmod{n}$ , 则  $a + c \equiv b + c \pmod{n}$
- 5. 若  $a \equiv b \pmod{n}$ ,且  $c \equiv d \pmod{n}$ ,则  $a + c \equiv b + d \pmod{n}$  or  $a + d \equiv b + c \pmod{n}$ (乘法的结论类似)

#### 6.2 一元线性同余方程

若 a - k \* m = b,则  $a \equiv b \pmod{m}$ ;换而言之,我们可以将同余式  $a \equiv b \pmod{m}$  与等式  $a \equiv b + k * m$  互化.

那么,基于此  $ax \equiv b \pmod{m}$   $\Rightarrow$  ax + my = b;

设  $d = \gcd(a, m)$ , 如果有  $d \mid b$  (也即  $b \mod d == 0$ ), 那么有 d 个解答; 反之无解。

至于为什么有 d 个,那是因为:  $x = x_0 + \frac{m}{d}n$ ,由于解之间的间隔是  $\frac{m}{d}$ ,模 m 下的解是周期性的,而每个解对应于不同的同余类。

如果恰好 d=1,那么就有唯一解!

## 6.3 费马小定理

#### 6.3.1 二项式式展开证明

考虑  $(1+x)^p$  的二项式展开:

$$(1+x)^p = \sum_{i=0}^p \binom{p}{i} a_i = \binom{p}{0} a_0 + \binom{p}{1} a_1 + \binom{p}{2} a_2 + \dots + \binom{p}{p-1} a_{p-1} + \binom{p}{p} a_p$$

根据:  $C_n^m = \frac{n!}{(n-m)!m!}$ ,且 p 是素数的情况下,我们知道: 除了  $C_p^0$  或  $C_p^p$ ,其他都会被 mod p 给化掉:

$$(1+x)^p = \binom{p}{0}a_0 + \binom{p}{p}a_p = 1 + x^p \pmod{p}$$
$$(1+x)^p - x^p = 1 \pmod{p}$$

这就是经典的幂函数数列  $b_n = n^p$ ,上述式子可化为:  $b_{n+1} - b_n = 1$ 。由 累加可得:  $b_n = b_1 + n - 1 = 1^p + n - 1 = n$ ,则  $b_a = a^p = a$  德政

#### 6.3.2 多项式展开证明

考虑  $a^p$  的多项式展开:

$$(1_1 + 1_2 + 1_3 + \dots + 1_{a-1} + 1_n)^p = \sum_{i=0}^p \binom{p}{k_1, k_2, \dots, k_n} 1^x = \sum_{i=0}^p \binom{p}{k_1, k_2, \dots, k_n}$$

在  $\operatorname{mod} p \perp p$  是质数的情况下,除了  $\binom{p}{p,0,0,\dots,0,0}$  、  $\binom{p}{0,p,0,\dots,0,0}$  等等都会变成 0 (因为没有数能消掉 p 除了它自己);

会变成 0 (因为没有数能消掉 p 除了它自己); ps: 
$$\binom{n}{n_1, n_2, n_3, \dots, n_{m-1}, n_m} = \frac{n!}{n_1! n_2! \dots n_{m-1}! n_m!}$$
 那么在全选一个的情况下,就会有:

$$(1_1 + 1_2 + 1_3 + \dots + 1_{a-1} + 1_n)^p = a^p = 1^p + 1^p + \dots + 1^p + 1^p = a \pmod{p}$$
  
德政

#### 6.3.3 模算法证明

我们首先考虑整数  $a, 2a, 3a, \ldots, (p-1)a$ 。 这些数都不等于其他数对 p 的模数,也不等于 0。 意思就是,他们这一组数是独一无二的。

如果这样,那么有:  $r \times a \equiv s \times a \pmod{p}$ ,  $1 \le r < s \le p-1$ ; 那么,两边消去 a 将得到  $r \equiv s \pmod{p}$ ,这是不可能的,因为 r 和 s 都在 1 和 p - 1 之间。

因此,前面的假设不成立, $a,2a,3a,\ldots,(p-1)a$  在 mod p 的情况下总能对应  $1,2,\ldots p-1$ 。

因为是一一对应,但又不好确定谁对谁的关系,所以我们把他们当成整体,全部乘起来:  $a \times 2a \times 3a \times ... \times (p-1) \times a \equiv 1 \times 2 \times 3 \times ... \times (p-1) \pmod{p}$  这意味着:  $a^{p-1} \times (p-1)! \equiv (p-1)! \pmod{p}$ 。 从这个表达式的两边消去 (p-1)!,我们得到:  $a^{p-1} \equiv 1 \pmod{p}$ 。

#### 6.4 求逆

求逆就是一元同余方程有唯一解的时候——如果没有唯一解答,那么就有"不止一个逆元",这就很怪了。

- 扩展欧几里得,把已知的数字当作 a,模数当作 b ——这个已经见过 多次了
- 费马小定理得知  $a^p = p \pmod{p}$ ,那么其实就是  $a \cdot a^{p-2} = 1 \pmod{p}$
- 如果 a 的模逆是自身 a (在 mod p 的情况下),那么 a=1

# 例 6.21 乘法逆元(洛谷 P3811)

问题描述: 给定 n,p,求  $1\sim n$  所有整数在模 p 意义下的乘法逆元。 $1\leqslant n\leqslant 3\times 10^6$ , $n\leqslant p\leqslant 20000528,p$  为质数。

输入:两个正整数 n 和 p。

输出:输出 n 行,第 i 行表示 i 在模 p 下的乘法逆元。

图 4: 递推求素数降低复杂度的例题

上题,对于任意 i > 1:

假设: 
$$\frac{p}{i} = k \dots r$$
  
 $\Rightarrow k \cdot i + r = 0 \pmod{p}$   
 $\Rightarrow k + r \cdot i^{-1} = 0 \pmod{p}$   
 $\Rightarrow i^{-1} = -\frac{k}{r} = k \cdot r^{-1} = (p - \frac{p}{i}) \cdot r^{-1} \pmod{p}$ 

# 6.5 中国剩余定理\*

首先,我们有同余方程,而有方程就有方程组:

$$x \equiv a_1 \pmod{m_1}$$
  
 $x \equiv a_2 \pmod{m_2}$   
 $\vdots$   
 $x \equiv a_3 \pmod{m_3}$ 

那么我们一个一个满足:

$$x = a_1 + m_1 n_1$$

$$x = a_2 + m_2 n_2$$

$$\vdots$$

$$x = a_r + m_r n_r$$

也就是会得到:

$$n_1 = \frac{a_2 + m_2 n_2 - a_1}{m_1} \pmod{m_2} = (a_2 + m_2 n_2 - a_1) * m_1^{-1} \pmod{m_2}$$

$$n_1 = \frac{a_3 + m_3 n_3 - a_1}{m_1} \pmod{m_3} = (a_3 + m_3 n_3 - a_1) * m_1^{-1} \pmod{m_3}$$

$$\vdots$$

$$n_1 = \frac{a_r + m_r n_r - a_1}{m_1} \pmod{m_r} = (a_r + m_r n_r - a_1) * m_1^{-1} \pmod{m_r}$$
把  $n_1$  当成 x,我们继续:

$$n_2 = \frac{a_3 + m_3 n_3 - a_2}{m_2} (\mod m_3) = (a_3 + m_3 n_3 - a_2) * m_2^{-1} (\mod m_3)$$

$$n_2 = \frac{a_4 + m_4 n_4 - a_2}{m_2} (\mod m_4) = (a_4 + m_4 n_4 - a_2) * m_2^{-1} (\mod m_4)$$

$$\vdots$$

$$n_2 = \frac{a_r + m_r n_r - a_2}{m_2} (\mod m_r) = (a_r + m_r n_r - a_2) * m_2^{-1} (\mod m_r)$$

事情直到  $n_{r-1}$  结束:  $n_{r-1} = \frac{a_r + m_r n_r - a_{r-1}}{m_{r-1}} \pmod{m_r} = (a_r + m_r n_r - a_{r-1}) * m_{r-1}^{-1} \pmod{m_r}$ 

然后把  $n_{r-2}$  算出来:  $n_{r-2} = [a_{r-1} + (a_r + m_r n_r - a_{r-1}) * m_{r-1}^{-1} * m_{r-1} - a_{r-2}] * m_{r-2}^{-1}$ 

还是举个例子:

$$\begin{cases} x = 2(\mod 3) \\ x = 3(\mod 5) \\ x = 2(\mod 7) \end{cases}$$

由第一个式子:  $\Rightarrow x = 2 + 3k$ 

;然后我们让第一个式子满足第二个式子:  $x = 2 + 3k = 3 \pmod 5$ ,解得  $k = 2 \pmod 5$  也即 k = 5n + 2,那么最终的式子变成: x = 2 + 3k = 2 + 3(5n + 2) = 2 + 15n + 6 = 15n + 8

故技重施:  $x = 15n + 8 = 2 \pmod{7}$ ,那么  $15n = 1 \pmod{7}$ , $n = 1 \pmod{7}$ 。然后 n = 7m + 1,则 x = 15n + 8 = 105m + 15 + 8 = 105m + 23。 具体证明: \*

# 7 欧拉函数

#### 7.1 同余类、剩余系

#### 7.1.1 概念与性质

同余类:对于所有的非零整数,把这么多数字不相交地分成 m 个集合,其中  $(mod\ m$ )同余(结果是同一个数字 r)的数字放一起,那么这 m 个集合,每一个都叫做同余类。

同余类全体构成的集合  $Z_m := \{r \mod m, 0 \le r < m\}$ ; 比如说: mod 5 的  $Z_5$  集合里面就包含  $[0]_5 = \{\ldots, -15, -10, -5, 0, 5, 10, \ldots\}$  、  $[1]_5 = \{\ldots, -14, -9, -4, 1, 6, 11, \ldots\}$  、  $[2]_5 = \{\ldots, -13, -8, -3, 2, 7, 12, \ldots\}$  、  $[3]_5 = \{\ldots, -12, -7, -2, 3, 8, 13, \ldots\}$  、  $[4]_5 = \{\ldots, -11, -6, -1, 4, 9, 14, \ldots\}$ 

既约同余类:对于 m 个同余类中的一个同余类 r mod m,如果余数的结果 r 和 m 互素,那么这个同余类就是既约同余类、既然约剩余类;

既约同余类全体全体构成一个集合  $Z_m^* = \{r \mod m, 0 \le r < m \land (r,m) = 1\};$ 

举个例子: 还是比如说 mod 16 这个例子, 那么  $Z_{16}$  就包含  $[0]_{16}$  ...  $[15]_{16}$ , 但是这里要求 (r, m) = 1; 所以  $[4]_{16}$ 、 $[8]_{16}$ 、 $[2]_{16}$  这种就会被剔除掉; 值得注意的是  $[0]_{16}$  也得剔除掉;

既约同余类的个数记作  $\varphi(m)$ ,也就是欧拉函数,表示的是小于等于 m 并且和 m 互质的数的个数

(完全)剩余系: 在模 m 体系中,对于任意一个整数 x,我都能在 m 个整数数组  $a_1, a_2, \ldots, a_n$  中找到对应的 r,那么这 m 个数就叫做(完全)剩余系。

有各种各样的剩余系,但本质上都是对余数 r 加减一个 mod 去实现的。

既约剩余系: 在剩余系里面挑出既约同余类的  $\mathbf{r}$ , 然后每个满足 (x, m) = 1 的  $\mathbf{x}$ , 都能找到对应的  $\mathbf{r}$ ;

#### 7.1.2 剩余系的复合

对于模数  $m = m_1 m_2$ ,有:  $Z_m = a Z_{m_1} + m_1 Z_{m_2}$ ,其中  $(a, m_1) = 1$ ; 证明:

已知:  $Z_{m_1} := \{r \mod m_1, 0 \le r < m_1\} = \{[0]_{m_1}, [1]_{m_1}, \dots, [m_1 - 1]_{m_1}\}$ 

 $Z_{m_2} := \{r \mod m_2, 0 \le r < m_2\} = \{[0]_{m_2}, [1]_{m_2}, \dots, [m_2 - 1]_{m_2}\}$ 

 $Z_m := \{r \mod m, 0 \le r < m\} = \{[0]_m, [1]_m, \dots, [m-1]_m\}$ 

其中:  $Z_m = Z_{m_1m_2} := \{r \mod m_1m_2, 0 \le r < m_1m_2\}$ 

也就是说: 对同一个满足  $(a, m_1)$  的 a 和  $m_1$ ,无论  $z \in Z_m$ , $x \in Z_{m_1}$ , $y \in Z_m$ 。怎么变,总能找到以下等式:  $z = ax + m_1y$ 

根据代数基本定理,我们知道一个整数可以被唯一分解为多个素数的乘积;那其实意味着,一个数可以被分解为多个不相干了向量(好像表述不太准确);

### 7.2 欧拉函数与欧拉定理

既约同余类的个数记作  $\varphi(n) = \sum_{i=1}^{n} |\gcd(n,i)=1|$ ,也就是欧拉函数,表示的是小于等于 n 并且和 n 互质的数的个数。

当 p 是质数,显然  $\varphi(p) = p - 1$ ; 特别地  $\varphi(1) = 1$ ,  $\varphi(2) = 1$ ; 欧拉函数是积性函数,因为: 所以。

## 7.3 素数幂模同余方程、素数模同余方程与整数多项式