67939 - Topics in Learning Theory

(Due: 16/06/24)

Exercise 1

Lecturer: Prof. Amit Daniely

Name: Hadar Tal

Exercise 1

The moment generating function (MGF) of a random variable X is $M_X(\lambda) = \mathbb{E}[e^{\lambda X}]$. Assume that M_X is defined for any λ in a non-empty segment (-a, a). Show that

1. $M_X^{(k)}(0) = \mathbb{E}[X^k]$

Using the definition of the moment-generating function, we can write:

$$M_X^{(k)}(t) = \frac{d^k}{d\lambda^k} \mathbb{E}[e^{\lambda X}]$$

Using the power series expansion of the exponential function

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

we can write

$$M_X^{(k)}(t) = \frac{d^k}{d\lambda^k} \mathbb{E}\left(\sum_{m=0}^{\infty} \frac{\lambda^m X^m}{m!}\right)$$

Because the expected value is a linear operator, we have:

$$M_X^{(k)}(t) = \frac{d^k}{d\lambda^k} \sum_{m=0}^{\infty} \mathbb{E}\left(\frac{\lambda^m X^m}{m!}\right) = \sum_{m=0}^{\infty} \frac{d^k}{d\lambda^k} \left(\frac{\lambda^m}{m!}\right) \mathbb{E}[X^m]$$

Using the k-th derivative of the m-th power

$$\frac{d^k}{d\lambda^k}\lambda^m = \begin{cases} \tilde{m}^k \lambda^{m-k}, & \text{if } k \le m\\ 0, & \text{if } k > m \end{cases}$$

when

$$\tilde{m}^k = \prod_{i=0}^{k-1} (m-i) = \frac{m!}{(m-k)!}$$

then we have

$$\begin{split} M_X^{(k)}(\lambda) &= \sum_{m=0}^\infty \frac{d^k}{d\lambda^k} \left(\frac{\lambda^m}{m!}\right) \mathbb{E}[X^m] = \sum_{m=k}^\infty \frac{\tilde{m^k}\lambda^{m-k}}{m!} \mathbb{E}[X^m] = \sum_{m=k}^\infty \frac{m!\lambda^{m-k}}{(m-k)!m!} \mathbb{E}[X^m] \\ &= \sum_{m=k}^\infty \frac{\lambda^{m-k}}{(m-k)!} \mathbb{E}[X^m] = \frac{t^{n-n}}{(n-n)!} \mathbb{E}[X^n] + \sum_{m=k+1}^\infty \frac{\lambda^{m-k}}{(m-k)!} \mathbb{E}[X^m] \\ &= \mathbb{E}[X^k] + \sum_{m=k+1}^\infty \frac{\lambda^{m-k}}{(m-k)!} \mathbb{E}[X^m] \end{split}$$

Setting $\lambda = 0$ in the above equation, we get

$$M_X^{(k)}(0) = \mathbb{E}[X^k] + \sum_{m=k+1}^{\infty} \frac{0^{m-k}}{(m-k)!} \mathbb{E}[X^m] = \mathbb{E}[X^k]$$

which completes the proof.

2. Show that for a centered Gaussian X with variance σ^2 , $M_X(\lambda) = e^{\frac{\lambda^2 \sigma^2}{2}}$. In other words, being σ -SubGaussian is equivalent to having MGF that is bounded by the MGF of a centered Gaussian with variance σ^2 .

Let X be a centered Gaussian random variable with mean $\mathbb{E}[X] = 0$ and variance $\text{var}(X) = \sigma^2$. The moment generating function (MGF) of X is defined as:

$$M_X(\lambda) = \mathbb{E}[e^{\lambda X}].$$

Since X is Gaussian, X has the probability density function:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

Therefore, the MGF $M_X(\lambda)$ is:

$$M_X(\lambda) = \int_{-\infty}^{\infty} e^{\lambda x} f_X(x) dx = \int_{-\infty}^{\infty} e^{\lambda x} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} dx$$

Combining the exponents, we get:

$$M_X(\lambda) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{\lambda x - \frac{x^2}{2\sigma^2}} dx$$

Completing the square in the exponent:

$$\lambda x - \frac{x^2}{2\sigma^2} = -\frac{1}{2\sigma^2} \left(x^2 - 2\sigma^2 \lambda x \right) = -\frac{1}{2\sigma^2} \left(x^2 - 2\sigma^2 \lambda x + \sigma^4 \lambda^2 - \sigma^4 \lambda^2 \right) = -\frac{1}{2\sigma^2} \left((x - \sigma^2 \lambda)^2 - \sigma^4 \lambda^2 \right).$$

Thus, the integral becomes:

$$M_X(\lambda) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\sigma^2\lambda)^2} e^{\frac{\sigma^2\lambda^2}{2}} dx$$

Since the first term inside the integral is a normal distribution that integrates to 1, we get:

$$M_X(\lambda) = e^{\frac{\sigma^2 \lambda^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\sigma^2\lambda)^2} dx = e^{\frac{\sigma^2 \lambda^2}{2}}$$

Therefore, the MGF of X is:

$$M_Y(\lambda) = e^{\frac{\lambda^2 \sigma^2}{2}}$$

This shows that being σ -SubGaussian is equivalent to having an MGF that is bounded by the MGF of a centered Gaussian with variance σ^2 .

3. Show that if X is uniform over [a,b] then $M_X(\lambda) = \frac{e^{\lambda b} - e^{\lambda a}}{\lambda (b-a)}$.

Let X be a random variable uniformly distributed over the interval [a, b]. The probability density function of X is:

$$f_X(x) = \frac{1}{b-a}$$
, for $a \le x \le b$

The moment generating function (MGF) of X is defined as:

$$M_X(\lambda) = \mathbb{E}[e^{\lambda X}] = \int_a^b e^{\lambda x} f_X(x) dx$$

Substituting the PDF of X:

$$M_X(\lambda) = \int_a^b e^{\lambda x} \frac{1}{b-a} \, dx$$

Since $\frac{1}{b-a}$ is a constant, we can factor it out:

$$M_X(\lambda) = \frac{1}{b-a} \int_a^b e^{\lambda x} dx$$

To solve the integral, we use the antiderivative of $e^{\lambda x}$:

$$\int e^{\lambda x} \, dx = \frac{1}{\lambda} e^{\lambda x} + C$$

Evaluating this from a to b, we get:

$$\int_{a}^{b} e^{\lambda x} dx = \frac{1}{\lambda} e^{\lambda x} + C \Big|_{a}^{b} = \frac{1}{\lambda} \left(e^{\lambda b} - e^{\lambda a} \right).$$

Therefore,

$$M_X(\lambda) = \frac{1}{b-a} \cdot \frac{1}{\lambda} \left(e^{\lambda b} - e^{\lambda a} \right) = \frac{e^{\lambda b} - e^{\lambda a}}{\lambda (b-a)}.$$

This completes the proof that the moment generating function of a uniform random variable over [a, b] is:

$$M_X(\lambda) = \frac{e^{\lambda b} - e^{\lambda a}}{\lambda(b-a)}$$

Exercise 2

1. Show that if X_i is σ_i -SubGaussian for i = 1, 2 then $X_1 + X_2$ is $(\sigma_1 + \sigma_2)$ -SubGaussian ¹.

Let X_1 and X_2 be σ_1 -SubGaussian and σ_2 -SubGaussian random variables, respectively. This means that for any $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[e^{\lambda(X_1 - \mathbb{E}[X_1])}\right] \le e^{\frac{\lambda^2 \sigma_1^2}{2}} \quad \text{and} \quad \mathbb{E}\left[e^{\lambda(X_2 - \mathbb{E}[X_2])}\right] \le e^{\frac{\lambda^2 \sigma_2^2}{2}}$$

We need to show that $X_1 + X_2$ is $(\sigma_1 + \sigma_2)$ -SubGaussian, i.e.,

$$\mathbb{E}\left[e^{\lambda(X_1+X_2-\mathbb{E}[X_1+X_2])}\right] \leq e^{\frac{\lambda^2(\sigma_1+\sigma_2)^2}{2}}$$

Consider the expectation:

$$\mathbb{E}\left[e^{\lambda(X_1+X_2-\mathbb{E}[X_1]-\mathbb{E}[X_2])}\right] = \mathbb{E}\left[e^{\lambda(X_1-\mathbb{E}[X_1])}e^{\lambda(X_2-\mathbb{E}[X_2])}\right]$$

Using Hölder's inequality with p=q=2 (since $\frac{1}{p}+\frac{1}{q}=1$ and $p,q\geq 0$), we get:

$$\mathbb{E}\left[e^{\lambda(X_1-\mathbb{E}[X_1])}e^{\lambda(X_2-\mathbb{E}[X_2])}\right] \leq \left(\mathbb{E}\left[e^{2\lambda(X_1-\mathbb{E}[X_1])}\right]\right)^{1/2} \left(\mathbb{E}\left[e^{2\lambda(X_2-\mathbb{E}[X_2])}\right]\right)^{1/2}$$

Since X_1 is σ_1 -SubGaussian and X_2 is σ_2 -SubGaussian, we have:

$$\mathbb{E}\left[e^{2\lambda(X_1 - \mathbb{E}[X_1])}\right] \le e^{2\lambda^2\sigma_1^2} \quad \text{and} \quad \mathbb{E}\left[e^{2\lambda(X_2 - \mathbb{E}[X_2])}\right] \le e^{2\lambda^2\sigma_2^2}$$

Therefore,

$$\mathbb{E}\left[e^{\lambda(X_1+X_2-\mathbb{E}[X_1+X_2])}\right] \le \left(e^{2\lambda^2\sigma_1^2}\right)^{1/2} \left(e^{2\lambda^2\sigma_2^2}\right)^{1/2} = e^{\lambda^2\sigma_1^2}e^{\lambda^2\sigma_2^2} = e^{\lambda^2(\sigma_1^2+\sigma_2^2)}.$$

To show that $X_1 + X_2$ is $(\sigma_1 + \sigma_2)$ -SubGaussian, we use the triangle inequality for the variance:

$$\sigma_1^2 + \sigma_2^2 \le (\sigma_1 + \sigma_2)^2$$

Thus,

$$\mathbb{E}\left[e^{\lambda(X_1+X_2-\mathbb{E}[X_1+X_2])}\right] \le e^{\lambda^2(\sigma_1+\sigma_2)^2}.$$

Hence, $X_1 + X_2$ is $(\sigma_1 + \sigma_2)$ -SubGaussian.

Use the Hölder inequality $(\mathbb{E}[XY] \leq (\mathbb{E}[X^p])^{1/p} (\mathbb{E}[Y^q])^{1/q}$ if $\frac{1}{p} + \frac{1}{q} = 1$ and $p, q \geq 0$) on $\mathbb{E}[e^{\lambda(X - \mathbb{E}[X])}e^{\lambda(Y - \mathbb{E}[Y])}]$

2. For a sub-Gaussian random variable X, define $||X||_{vp}$ as the minimal σ for which X is σ -SubGaussian. Show that $||\cdot||_{vp}$ is a norm on the space of centered sub-Gaussian random variables. This norm is called the Proxy Variance norm and $||X||_{vp}$ is called the optimal proxy variance of X.

To show that $\|\cdot\|_{vp}$ is a norm, we need to verify the following properties for all centered sub-Gaussian random variables X and Y:

- (a) **Positivity**: $||X||_{vp} \ge 0$ and $||X||_{vp} = 0$ if and only if X = 0 almost surely.
- (b) **Homogeneity**: $||aX||_{vp} = |a|||X||_{vp}$.
- (c) Triangle Inequality: $||X + Y||_{vp} \le ||X||_{vp} + ||Y||_{vp}$.

Positivity By definition, $||X||_{vp}$ is the minimal σ such that X is σ -SubGaussian.

Since the variance of X is non-negative, σ must also be non-negative. Therefore, $||X||_{vp} \geq 0$.

If X = 0 almost surely, then X is deterministically zero, meaning it has no variability and does not deviate from its mean. Therefore, it is trivially σ -SubGaussian for any σ , and hence $||X||_{vp} = 0$.

Conversely, if $||X||_{vp} = 0$, then by definition, for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[e^{\lambda X}\right] \le e^{\frac{\lambda^2 \cdot 0^2}{2}} = 1$$

The moment generating function of X, $\mathbb{E}\left[e^{\lambda X}\right]$, being less than or equal to 1 for all λ implies that X must be zero almost surely. This is because the only random variable with this property is the constant zero. If X had any non-zero value with non-zero probability, the expectation $\mathbb{E}\left[e^{\lambda X}\right]$ would exceed 1 for some λ . Hence, $\|X\|_{vp} = 0$ implies that X = 0 almost surely.

Homogeneity Let $a \in \mathbb{R}$ and X be a centered sub-Gaussian random variable. We need to show that $||aX||_{vp} = |a|||X||_{vp}$.

Step 1: $||aX||_{vp} \le |a|||X||_{vp}$

Assume $||X||_{vp} = \sigma$. This means that for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[e^{\lambda X}\right] \le e^{\frac{\lambda^2 \sigma^2}{2}}$$

We need to show that aX is $|a|\sigma$ -SubGaussian. Consider the moment generating function of aX:

$$\mathbb{E}\left[e^{\lambda(aX)}\right] = \mathbb{E}\left[e^{a\lambda X}\right]$$

Using the sub-Gaussian property of X and the fact that a is a constant and $a\lambda$ spans that same range as λ , we have:

$$\mathbb{E}\left[e^{a\lambda X}\right] \leq e^{\frac{(a\lambda)^2\sigma^2}{2}} = e^{\frac{\lambda^2a^2\sigma^2}{2}} = e^{\frac{\lambda^2(|a|\sigma)^2}{2}}$$

This shows that aX is $|a|\sigma$ -SubGaussian. Therefore, $||aX||_{vp} \leq |a|||X||_{vp}$.

Step 2: $||aX||_{vp} \ge |a|||X||_{vp}$

If a=0, then aX=0 almost surely, and $||aX||_{vp}=0=|a|||X||_{vp}$.

Otherwise, Assume aX is τ -SubGaussian for some $\tau \geq 0$. This means that for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[e^{\lambda(aX)}\right] \le e^{\frac{\lambda^2\tau^2}{2}}.$$

Consider $\lambda' = \frac{\lambda}{a}$:

$$\mathbb{E}\left[e^{\lambda X}\right] = \mathbb{E}\left[e^{\lambda' a X}\right] \leq e^{\frac{(\lambda')^2 \tau^2}{2}} = e^{\frac{\lambda^2 \tau^2}{2a^2}}$$

By the definition of the sub-Gaussian property of X, we must have:

$$\frac{\tau^2}{a^2} \ge \sigma^2 \quad \Rightarrow \quad \tau \ge |a|\sigma.$$

Therefore, $||aX||_{vp} \ge |a|||X||_{vp}$.

Combining both steps, we have shown that $||aX||_{vp} = |a|||X||_{vp}$.

Triangle Inequality Let X and Y be centered sub-Gaussian random variables with $||X||_{vp} = \sigma_X$ and $||Y||_{vp} = \sigma_Y$.

From Exercise 2.1, we know that if X is σ_X -SubGaussian and Y is σ_Y -SubGaussian, then X + Y is $(\sigma_X + \sigma_Y)$ -SubGaussian. Therefore, the proxy variance norm satisfies the triangle inequality:

$$\begin{split} \mathbb{E}\left[e^{\lambda(X+Y)}\right] &\leq e^{\frac{\lambda^2(\sigma_X + \sigma_Y)^2}{2}} \Rightarrow \\ \|X+Y\|_{vp} &:= \min\{\sigma \mid \forall \lambda \in \mathbb{R}, \quad \mathbb{E}\left[e^{\lambda(X+Y)}\right] \leq e^{\frac{\lambda^2\sigma^2}{2}}\} \leq \sigma_X + \sigma_Y \Rightarrow \\ \|X+Y\|_{vp} &\leq \|X\|_{vp} + \|Y\|_{vp} \end{split}$$

Since the Proxy Variance operator $\|\cdot\|_{vp}$ satisfies positivity, homogeneity, and the triangle inequality, it is a norm on the space of centered sub-Gaussian random variables.

Exercise 3

1. Let X be a σ -SubGaussian random variable. Show that 2 $2\sigma \geq \sqrt{\mathrm{var}(X)}$.

²Hint: You can use the fact that for twice differentiable f and g, we have that if f(0) = g(0), f'(0) = g'(0) and $f(x) \le g(x)$ then $f''(0) \le g''(0)$

2. If $||X||_{vp} = \sqrt{\text{var}(X)}$, then X is called strictly sub-Gaussian. Show that if X is uniform on $\{-1,1\}$, then it is strictly sub-Gaussian. Conclude that the bound in Hoeffding's lemma is optimal.

 ${\bf 3. \ \ Show \ that \ a \ linear \ combination \ of \ independent \ strictly \ sub-Gaussians \ is \ strictly \ sub-Gaussian.}$

4. Show that for any $M \ge 1$, there is a random variable X with var(X) = 1 and $||X||_{vp} = M$.

Exercise 4

Show that there is a universal constant C > 0 for which the following holds. If X is a random variable such that for any $t \ge 0$,

$$\Pr(X - \mathbb{E}[X] \ge t) \le e^{-\frac{t^2}{2\sigma^2}} \quad \text{and} \quad \Pr(X - \mathbb{E}[X] \le -t) \le e^{-\frac{t^2}{2\sigma^2}}$$

then X is $(C\sigma)$ -SubGaussian³.

³Hint: You may use the fact that for a non-negative random variable Y, $\mathbb{E}[Y] = \int_0^\infty \Pr(Y \ge x) dx$