

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

CONSTRUINDO OS REAIS \mathbb{R}

UMA INTRODUÇÃO AOS CORTES DE DEDEKIND

Renan Wenzel - 11169472

Pedro Magalhães Rios - prios@icmc.usp.br

26 de abril de 2022

1 Breve Introdução

O uso dos cortes de Dedekind tem como preceito a construção dos números reais a partir dos racionais, e se baseia em subconjuntos específicos que satisfazem o axioma do supremo. A forma que isso resulta nos números reais segue de um teorema (que assumiremos ser verdade aqui) que diz que o conjunto dos reais é o único corpo ordenado que satisfaz o axioma do Supremos, ou seja, mostrando que os cortes satisfazem ele, seu conjunto deve ser R também.

Sem mais delongas, vx'amos definí-los a seguir e provar algumas propriedades antes de prosseguir com a construção dos reais em seguida.

2 Definição e Resultados básicos

Definição 1 (Cortes). Um corte é um conjunto $\alpha \subset \mathbb{Q}$ tal que:

- i) $\alpha \neq \emptyset$ $e \alpha \neq \mathbb{Q}$;
- ii) Se $p \in \alpha, q \in \mathbb{Q}$ e q < p, então $q \in \alpha$;
- iii) Se $p \in \alpha$, então existe $r \in \alpha$ tal que r < p.

Vale adicionar alguns comentários para esclarecer e entender essa definição. Em primeiro lugar, garantimos que um corte não será vazio e nem o conjunto todo, até porque iremos de alguma forma construir os reais a partir disso, então um corte não pode totalizar os racionais. A segunda propriedade garante que todo elemento racoinal à esquerda de um corte também pertencerá a ele. Por fim, a última propriedade afirma que um corte não possui um elemento maximal, visto que, dado qualquer número pertencente ao corte, é possível encontrar um maior que ele.

Antes de provarmos que há um axioma do supremo, é necessário definir uma relação de ordem entre os cortes. Utilizaremos como base as relações de pertinências entre conjuntos.

Definição 2. Uma relação de ordem < entre cortes é dada por: $\alpha < \beta \Rightarrow \alpha \subsetneq \beta$

Verifiquemos, por fim, que essa relação é realmente uma ordem:

Prova:. No que segue, sejam α, β, γ cortes de Dedekind

a) Transitividade: Suponha que $\alpha < \beta, \beta < \gamma$. Explicitamente falando, isso significa que $\alpha \subsetneq \beta, \beta \subsetneq \gamma$. A partir disto, seque das propriedades de pertinência de conjuntos que:

$$\alpha \subseteq \beta \subseteq \gamma \Rightarrow \alpha \subseteq \gamma$$
.

Logo, por definição, $\alpha < \gamma$.

b)Tricotomia: Em primeiro lugar, suponha que $\alpha < \beta$. Então, $\alpha \subseteq \beta$, ou seja, α está exclusivamente contido em β , do que segue que β não pode estar exclusivamente contido em α , isto é, $\beta \not< \alpha$. A prova de que se $\beta < \alpha$, então $\alpha \not< \beta$ é análoga. Por fim, caso $\alpha = \beta$, então $\alpha \subseteq \beta$ e $\beta \subseteq \alpha$, tal que a contenção não é restrita em nenhum dos casos. Destarte, apenas a igualdade pode ocorrer.

Portanto, < define uma ordem entre os cortes. ■

3 O Axioma do Supremo

Nesta seção, provaremos que o conjunto dos cortes munido da ordem definida satisfaz o axioma do supremo.

Teorema:. O conjunto \mathbb{R} munido da ordem de cortes satisfaz o axioma do supremo.

Prova:. Seja A um conjunto não-vazio de \mathbb{R} e $\beta \in \mathbb{R}$ um limitante superior de A. Seja $\gamma = \bigcup_{\alpha \in A} \alpha$. Como A é não-vazio, existe um elemento $\alpha_0 \in A$ não-vazio (pois é um corte). Como $\alpha_0 \subseteq \gamma, \gamma \neq \emptyset$ e $\gamma \subset \beta$, já que $\beta > \alpha$ para todo corte α .

Precisamos, também, explicar que γ não é o conjunto todo dos racionais. Para tal, note que, como $\beta > \alpha$ para todo $\alpha, \beta > \bigcup_{\alpha \in A} = \gamma$. Por β ser um corte, $\beta \subsetneq \mathbb{Q}$ e, como a relação de ordem definida é contenção de conjuntos restrita, temos

$$\gamma \subseteq \beta \subseteq \mathbb{Q} \Rightarrow \gamma \subseteq \mathbb{Q}.$$

Desta forma, $\gamma \neq \mathbb{Q}$.

O próximo passo é mostrar que γ não possui máximo. Para isso, tome $r \in \gamma$. Então, $r \in \alpha_0$ para algum α_0 , tal que existe um $s \in \alpha_0$ para o qual vale s > r. Assim, não importa qual elemento de γ seja selecionado, sempre é possível encontrar um outro maior que ele.

Por fim, afirmamos que $\gamma = \sup A$. Já sabemos que γ é cota superior de todo α , visto que $\gamma > \alpha$. Seja $\gamma' \in \mathbb{R}$ tal que $\gamma' < \gamma$, ou seja, $\gamma' \subsetneq \gamma$, de modo que existe um $q \in \gamma'$ e que $q \notin \gamma$. Assim, existe um $\alpha \in A$ para o qual $q \in \alpha$ e, consequentemente, $\gamma' < \alpha \leq \gamma$. Portanto, $\gamma = \sup A$, mostrando que o conjunto \mathbb{R} satisfaz o axioma do supremo.

4 Axiomas de Corpo

Juntando o que obtivemos nas últimas duas seções, chegamos em um conjunto $\mathbb R$ formado pelos cortes e que satisfaz o axioma do supremo. A seguir, vamos acrescentar duas operações, + e ., a fim de tornar este conjunto um corpo ordenado.

Definição 3 (Soma). Em \mathbb{R} , defina a seguinte operação entre os cortes:

$$\alpha + \beta := \{r + s : r \in \alpha, s \in \beta\}$$

Proposição:. $(\mathbb{R}, +)$ é um grupo abeliano (satisfaz as propriedades de soma de corpo) cujo elemento nulo é $\theta := \{r \in \mathbb{Q} : r < 0\}$

<u>Prova:</u> Para poupar tempo, mostraremos apenas a propriedade do elemento nulo. Deixando ela explícita, queremos mostrar que $\alpha + \theta = \alpha$ e, se tratando de conjuntos, isso é o mesmo que mostrar que $\alpha + \theta \subseteq \alpha$ e $\alpha \subseteq \alpha + \theta$. Com efeito, tome $\alpha \in \mathbb{R}$ e seja θ como no enunciado acima. Segue que:

$$\alpha + \theta = \{r + q : r \in \mathbb{Q}, q < 0\}$$

Mas, note que r+q < r, ou seja, $r+q \in \alpha$ pela propriedade 2 dos cortes. Com isso, $\alpha+\theta \subseteq \alpha$

Por outro lado, sejam $s, r \in \alpha$ tais que s > r. Então, r - s < 0, tal que $r - s \in \theta$ e $r = s + (r - s) \in \alpha + \theta$. Destarte, $\alpha \subseteq \alpha + \theta$, donde seque que $\alpha + \theta = \alpha$.

Antes de dar a definição do produto em si, definimos a operação, para $\alpha > \theta, \beta > \theta, \alpha \circ \beta := \{pq : p \in \alpha, q \in \beta\}$ e afirmamos (sem provar que ela) é um corte. Com isso, o produto entre cortes é dado por:

Definição 4 (Produto). Em \mathbb{R} , defina a sequinte operação entre os cortes:

$$\alpha \cdot \beta = \begin{cases} \alpha \circ \beta, & se \ \alpha > \theta, \beta > \theta \\ (-\alpha) \circ \beta, & se \ \alpha < \theta, \beta > \theta \\ \alpha \circ (-\beta), & se \ \alpha > \theta, \beta < \theta \\ (-\alpha) \circ (-\beta), & se \ \alpha < \theta, \beta < \theta \end{cases}$$

O elemento neutro da multiplicação é o conjunto $\mathbf{1} := \{q \in \mathbb{Q} : q < 1\}$

Proposição:. $(\mathbb{R}, .)$ satisfaz as propriedades de multiplicação de corpo

Prova:. Para poupar tempo, mostraremos apenas a propriedade do elemento neutro. Com efeito, seja $\alpha > \theta$. Então,

$$\alpha \cdot \mathbf{1} = \{ pq : p \in \alpha, q < 1 \}$$

 $Assim, \ os \ elementos \ de \ \alpha \cdot \mathbf{1} \ s\~ao \ tais \ que \ pq$

Por outro lado, tome um elemento de $p, q \in \alpha, p < q$ Então, $p = (p \cdot q^{-1}) \cdot q$. Como $p < q, p \cdot q^{1} < q$, de forma que $p \in \alpha 1$, mostrando como $\alpha \subseteq \alpha \cdot 1$. Portanto, $\alpha = \alpha \cdot 1$.

5 A Conclusão

Com essas duas coisas, obtivemos um corpo odernado que satisfaz a propriedade do supremo, donde segue de um resultado famoso na matemática que ele deve ser os reais \mathbb{R} . Aqui, muitos passos foram pulados para economizar tempo, mas para quem se interessar, posso mandar coisas extras e exercícios sobre cortes e a construção.

Enfim conclui-se a construção de Dedekind dos números reais.

Referências

[1] Rudin, w.: "Principles of Mathematical Analysis", 3rd ed., McGraw-Hill Book Company, New York, 1976