NEURAL NETWORKS

Name - Shivam Malviya Roll No. - 18EC01044

Table Of Content

- Introduction
- Activation Functions
- Classifications
- Training
- Advantages
- Disadvantages
- Achievements
- Conclusion
- References

Inspiration

In 1943, Warren McCulloch, a neurophysiologist, and a young mathematician, Walter Pitts, wrote a paper on how neurons might work.

The first artificial neural network was invented in 1958 by psychologist Frank Rosenblatt, it is called Perceptron.

Neuron

Neuron

Neuron

$$\chi \xrightarrow{w} \rightarrow a = \sigma(z)$$

$$\chi \xrightarrow{\text{Linear}} z = w^{T}\chi \xrightarrow{\text{Non-Linear}} a = \sigma(z)$$

$$\chi \xrightarrow{\text{Mapping}} z = w^{T}\chi \xrightarrow{\text{Mapping}} a = \sigma(z)$$

Activation Functions

Activation Functions

Neural Network

Classification

Based on connection patterns

Feedforward NN

Feedback NN

Loss Function - The output of loss function tells us how well our neural network model the given dataset.

Loss Function in Regression

$$\mathcal{L} = \sum_{m} (errors)^2$$

m = No. of data points

Loss Function in Classification

$$\mathcal{L} = \frac{-\sum (ylog(p) + (1-y)log(1-p))}{m}$$

m = No. of data points

$$\bullet \longrightarrow y = 1$$

$$\bullet \longrightarrow y = 1$$

Forward Propagation

$$a^{[l]}$$
 = Activation of L- layer

$$a^{[0]} \longrightarrow a^{[1]} \longrightarrow a^{[2]} \longrightarrow a^{[3]}$$

Direction of flow of calculation

Backward Propagation

$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \rightarrow \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[3]}} \rightarrow \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[2]}} \rightarrow \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[2]}} \rightarrow \frac{\partial \mathcal{L}}{\partial \mathbf{W}$$

Direction of flow of calculation

Advantages

• It can capture very complex patterns

Universal Approximation Theorem

Advantages

• Parallel processing capabilities

GPU

Advantages

 High tolerance to noisy data

• Ability to work with incomplete knowledge

Disadvantages

• Requires a lot of data

Disadvantages

• Require a huge computational power

Takes a lot of time to train

Disadvantages

• Unexplained behaviour of a neural network

Applications

• Deepmind's AlphaGo Zero

- > No. of atoms in the observable universe = 10^{80}
- \rightarrow No. of board positions in the chess = 10^{120}

> No. of board positions in the go $= 10^{170}$

Applications

• Word Embedding

Applications

• Automatic Colorization

Conclusion

 Neural Networks have ability to perform tasks at which humans are good and computers are bad.

 Other algorithms may perform better in easy tasks.

References

- Graph illustrating the impact of data available on performance of traditional machine learning algorithms. - Research Gate.
 By: Benoit Gallix
- Image Colorization with Deep Convolutional Neural Networks
 By: Jeff Hwang and You Zhou
- Efficient Estimation of Word Representations in Vector Space. By : Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean
- Mastering Chess and Shogi by Self-Play with a General Reinforcement
 Learning Algorithm. By: David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
 Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
 Lillicrap, Karen Simonyan, Demis Hassabis

