《软件分析与验证》

命题逻辑

贺飞 清华大学软件学院

2024年3月17日

- 1. 语法
- 2. 语义
- 3. 证明系统
- 4. 小结

语法

命题逻辑的符号集(alphabet)包括:

- 命题常元 ⊤ (代表 true) 和 ⊥ (代表 false);
- 命题变元;
- 逻辑联结词 ¬, ∧, ∨, → 和 ↔。

其中 ⊤, ⊥ 和命题变元统称为原子命题。

定义(合式公式)

命题逻辑的<mark>合式公式</mark>(well-formed formula, 简称公式) 递归定义如下:

- ▼, ⊥ 和命题变元是合式公式;
- 如果 F 是合式公式, 那么 $\neg F$ 也是合式公式;
- 如果 F, G 是合式公式, 那么 $F \wedge G, F \vee G, F \rightarrow G$ 和 $F \leftrightarrow G$ 也是合式公式。

其中,

- 原子命题也称原子公式 (atom)
- 原子公式和原子公式的非称为文字 (literal)

一些约定:

- 以小写字母 p, q, r 表示命题变元
- 以大写字母 F, G 表示命题逻辑公式
- 以入与于母 F, G 农小叩越逻辑公司
- 逻辑联结词的优先级: ¬,∧,∨,→,↔

语义

令<mark>变元赋值</mark> (assignment, 简称赋值, 又称真值指派) 为一个从变元集到真值集 $\{true, false\}$ 的函数。设 ρ 为赋值, $\rho(p)$ 返回变元 p 在 ρ 中被指派的值。

定义(命题逻辑公式的语义)

公式 F 在赋值 ρ 下的取值 (evaluation), 记为 $\llbracket F \rrbracket_{\rho}$, 递归定义如下:

$$\begin{split} & \llbracket \top \rrbracket_{\rho} = true \\ & \llbracket \bot \rrbracket_{\rho} = false \\ & \llbracket p \rrbracket_{\rho} = \rho(p), \text{ 其中 } p \text{ 是 } F \text{ 中的一个变元} \\ & \llbracket \neg F \rrbracket_{\rho} = \begin{cases} true, \text{ 如果} \llbracket F \rrbracket_{\rho} = false \\ false, \text{ 如果} \llbracket F \rrbracket_{\rho} = true \end{cases} \end{split}$$

定义(命题逻辑公式的语义(续))

$$[F \land G]_{\rho} = \begin{cases} true, & \text{如果}[F]_{\rho} = true \text{ 且 } [G]_{\rho} = true \\ false, & \text{否则} \end{cases}$$

$$\begin{cases} true, & \text{如果}[F]_{\rho} = true \text{ 函 } [G]_{\rho} = true \end{cases}$$

$$[F \lor G]_{\rho} = \begin{cases} true, & \text{如果}[F]_{\rho} = true \text{ 或 } [G]_{\rho} = true \\ false, & \text{否则} \end{cases}$$

$$[F \to G]_{\rho} = \begin{cases} false, & \text{如果}[F]_{\rho} = true \text{ 且 } [G]_{\rho} = false \\ false, & \text{otherwise} \end{cases}$$

 $\llbracket F \leftrightarrow G \rrbracket_{\rho} = \begin{cases} true, & \text{如果}\llbracket F \rrbracket_{\rho} = \llbracket G \rrbracket_{\rho} \\ false. & \text{否则} \end{cases}$

例

请确定公式 $F \colon p \land q \to p \lor \neg q$ 在赋值

$$\rho = \{p \mapsto \mathit{true}, q \mapsto \mathit{false}\}$$

下的取值。

解

因为
$$\llbracket p \rrbracket_{\rho} = true$$
 且 $\llbracket q \rrbracket_{\rho} = false$, 故 $\llbracket p \wedge q \rrbracket_{\rho} = false$ 。 又有 $\llbracket \neg q \rrbracket_{\rho} = true$,故 $\llbracket p \vee \neg q \rrbracket_{\rho} = true$ 。

所以 $[F]_{\rho} = true$ 。

- 一个命题逻辑公式 F 是
 - 可满足的 (satisfiable),当且仅当存在一个赋值 ρ 使得 $[F]_{\rho}$ 为真;
 - 有效的(或永真的)(valid),当且仅当对任意赋值 ρ ,[F] $_{\rho}$ 都为真;
 - 不可满足的(或永假的)(unsatisfiable),当且仅当对任意赋值 ρ , [F] $_{\rho}$ 都为假。

F 是永真式常常记作 $\models F$ 。

例

- p 是可满足式
- $p \lor \neg p$ 是有效式
- p ∧ ¬p 是不可满足式

例

证明公式 $p \land q \rightarrow p \lor \neg q$ 是永真式。

证明.

p	q	$ \neg q$	$p \wedge q$	$p \vee \neg q$	原式
1	1	0	1	1	1
1	0	1	0	1	1
0	1	0	0	0	1
0	0	1	0	1	1

表: 真值表

真值表最后一列全为 1, 说明原公式在任意赋值下都为真, 因此为 永真式。证毕。

定理

F是永真式当且仅当 $\neg F$ 是永假式。

证明.

F 是永真式,

当且仅当 $\llbracket F \rrbracket_{\rho}$ 对任何赋值 ρ 都为真(根据永真式定义), 当且仅当 $\llbracket \neg F \rrbracket_{\rho}$ 对任何赋值 ρ 都为假 (根据 \neg 的语义),

当且仅当 $\neg F$ 是永假式(根据永假式定义)。

语义蕴涵 17 / 42

定义(语义蕴涵)

给定两个公式 F 和 G,如果对任意赋值 ρ ,只要 $[F]_{\rho}$ 为真, $[G]_{\rho}$ 就必为真,就称 F 语义蕴涵(*implies*)G,或称 G 是 F 的有效推论(*consequence*),记为 $F \Rightarrow G$ 。

例如: $p \lor \neg q$ 是 $p \land q$ 的有效推论; \top 是 \bot 的有效推论。

证明 $F \Rightarrow G$ 的方法:

- 证明 $F \to G$ 是永真式(比如真值表法)
- 基于一个演绎系统进行推理(即将讨论)
- 证明 $\neg(F \to G)$ 是不可满足式(可借助 SAT/SMT 求解器进行)

定义(语义等价)

给定两个公式 F 和 G, 如果 $F \Rightarrow G$ 且 $G \Rightarrow F$, 就称 F 和 G 语义 等价 (semantically equivalent), 记作 $F \Leftrightarrow G$.

例如: $p \wedge (q \vee r)$ 与 $(p \wedge q) \vee (p \wedge r)$ 语义等价。

F 与 G 语义等价的充要条件是在任意赋值 ρ 下它们的取值都相同,即 $\llbracket F \rrbracket_{\rho} = \llbracket G \rrbracket_{\rho}$ 。

根据命题逻辑的语义,下面公式成立:

可将任意命题逻辑公式语义等价地转换成只包含 \bot ,¬, \land 及命题变元的公式。

证明系统

常见的命题逻辑证明系统有 1:

- 公理系统
- 自然演绎系统
- 相继式演算系统

下面介绍命题逻辑的相继式演算系统 S_{PL}

¹https://en.wikipedia.org/wiki/Proof_calculus

相继式 22 / 42

定义(相继式)

一个相继式 (sequent) 是形如

$$F_1,\ldots,F_m\vdash G_1,\ldots,G_n$$

的式子, 其中 \vdash 称相继符, F_1, \ldots, F_m 称前件, G_1, \ldots, G_n 称后件。

例如: $p, q \vdash p \lor \neg q$ 是一个相继式,包含两个前件,分别是 p 和 q, 以及一个后件,为 $p \lor \neg q$ 。

相继式的语义要求在所有前件都成立的情况下,至少有一个后件成立,即:

$$F_1 \wedge \cdots \wedge F_m \to G_1 \vee \cdots \vee G_n$$

如果上式在命题逻辑下是有效式,则称对应的相继式为有效式。

以 Γ 和 Δ 表示公式序列,推理规则(inference rule)的一般形式 为:

(规则名)
$$\frac{\Gamma_1 \vdash \Delta_1 \dots \Gamma_n \vdash \Delta_n}{\Gamma_{n+1} \vdash \Delta_{n+1}}$$
 条件

推理规则的中央是一条横线。横线上方有若干个相继式,代表规则 的前提。横线下方有一个相继式,代表规则的结论。

每条规则有若干个前提和一个结论。称有 0 个前提的规则为公理。

(左合取)
$$\frac{\Gamma, P, Q \vdash \Delta}{\Gamma, P \land Q \vdash \Delta}$$
 (右合取) $\frac{\Gamma \vdash P, \Delta}{\Gamma \vdash P \land Q, \Delta}$ (右合取) $\frac{\Gamma \vdash P, \Delta}{\Gamma \vdash P \land Q, \Delta}$ (左析取) $\frac{\Gamma, P \vdash \Delta}{\Gamma, P \lor Q \vdash \Delta}$ (右析取) $\frac{\Gamma \vdash P, Q, \Delta}{\Gamma \vdash P \lor Q, \Delta}$ (左否定) $\frac{\Gamma \vdash P, \Delta}{\Gamma, \neg P \vdash \Delta}$ (右否定) $\frac{\Gamma, P \vdash \Delta}{\Gamma, \neg P, \Delta}$ (右蕴涵) $\frac{\Gamma, P \vdash Q, \Delta}{\Gamma, P \to Q \vdash \Delta}$ (包含) $\frac{\Gamma, P \vdash Q, \Delta}{\Gamma, P \to Q, \Delta}$ (切) $\frac{\Gamma \vdash C, \Delta}{\Gamma \vdash \Delta}$

应用推理规则进行推导的过程:

- 由下而上的考察推理规则——从结论出发,确认需要证明的前提有哪些。
- 需要强调的是,推理过程只涉及语法,不涉及公式的具体语义(语义正确性由推理系统的可靠性保证,后面讨论)。

从结论到前提, 每条规则减少一个逻辑联结词。

(左合取)
$$\frac{\Gamma, P, Q \vdash \Delta}{\Gamma, P \land Q \vdash \Delta}$$

(左析取) $\frac{\Gamma, P \vdash \Delta \quad \Gamma, Q \vdash \Delta}{\Gamma, P \lor Q \vdash \Delta}$
(左否定) $\frac{\Gamma \vdash P, \Delta}{\Gamma, \neg P \vdash \Delta}$
(左蕴涵) $\frac{\Gamma \vdash P, \Delta \quad \Gamma, Q \vdash \Delta}{\Gamma, P \to Q \vdash \Delta}$

从结论到前提, 每条规则减少一个逻辑联结词。

(右合取)
$$\frac{\Gamma \vdash P, \Delta \qquad \Gamma \vdash Q, \Delta}{\Gamma \vdash P \land Q, \Delta}$$
(右析取)
$$\frac{\Gamma \vdash P, Q, \Delta}{\Gamma \vdash P \lor Q, \Delta}$$
(右否定)
$$\frac{\Gamma, P \vdash \Delta}{\Gamma \vdash \neg P, \Delta}$$
(右蕴涵)
$$\frac{\Gamma, P \vdash Q, \Delta}{\Gamma \vdash P \to Q, \Delta}$$

(包含)
$$\overline{\Gamma, P \vdash P, \Delta}$$
 (切) $\overline{\Gamma \vdash C, \Delta \quad \Gamma, C \vdash \Delta}$

- 其中包含规则是一条没有前提的公理,我们使用它来终结一个推导过程(或推导过程的一个分支)。
- 甘岑(G. Gentzen)证明了切规则是一条冗余规则,即所有使用了切规则的证明,都可以用一个不使用切规则的证明来替代。虽然切规则是一条冗余规则,但加上切规则会大大减少证明的步骤,简化证明的过程。

证明 $\vdash p \land q \rightarrow p \lor \neg q$ 。

证明.

右析取
$$\frac{-$$
 包含
$$\frac{-}{p,q\vdash p,\neg q}}{p,q\vdash p\lor \neg q}$$
 右薀涵
$$\frac{-}{p\land q\vdash p\lor \neg q}$$

Г

定义(推导树)

推导树 (derivation tree) 是一棵满足下列条件的树:

- 每一个中间节点对应一个相继式;
- 每一个叶子结点要么为空, 要么也对应一个相继式;
- 每一个由父节点和子节点构成的片段, 形如

$$\frac{F_1 \quad \dots \quad F_n}{G}$$
,

都对应某个推理规则的实例。

定义(证明树)

所有叶子结点都是空的推导树称为证明树 ($proof\ tree$)。如果存在一棵以相继式 S 为根节点的证明树,就说 S 是可证明的。

证明树搜索过程:

- 1. 从给定的相继式 S_0 出发,构造一棵只包含 S_0 节点的推导树;
- 2. 在上一步得到的推导树中,挑选一个不为空的叶子结点 S 以及一个可应用的推理规则

$$\frac{S_1 \quad \dots \quad S_n}{S}$$

扩展推导树以增加新的叶子节点 S_1, \ldots, S_n , 并连接它们与 S 的边;

3. 反复执行上一步,直至推导树无法再扩展为止,称此时的推导 树为最大推导树。

最大推导树:

- 如果其叶子结点都为空,那么它就是一棵证明树,搜索成功;
- 反之, 如果存在不为空的叶子结点, 搜索失败。

证明
$$\vdash (q \rightarrow r) \rightarrow (p \lor q \rightarrow p \lor r)$$
。

证明.

$$\downarrow \downarrow$$

右蕴涵
$$\frac{ \text{右标取} \quad \frac{q \to r, p \lor q \vdash p, r}{q \to r, p \lor q \vdash p \lor r} }{q \to r \vdash p \lor q \to p \lor r}$$

$$\vdash (q \to r) \to (p \lor q \to p \lor r)$$

给定一条推理规则

$$\frac{\Gamma_1 \vdash \Delta_1 \dots \Gamma_n \vdash \Delta_n}{\Gamma_{n+1} \vdash \Delta_{n+1}}$$

只要它的所有前提都是有效式,则它的结论一定也是有效式,就称该规则是<mark>可靠的</mark> (sound)。

引理

SPL 的所有推理规则都是可靠的。

例

证明 S_{PL} 的包含公理是可靠的:

(包含)
$$\overline{\Gamma, P \vdash P, \Delta}$$

证.

只需证明 $\Gamma, P \vdash P, \Delta$ 是有效式, 即

 $\bigwedge \Gamma \wedge P \to P \vee \bigvee \Delta \tag{1}$

是有效式。在任何一个赋值下,无论 P 被指派的值为真还是假,显然公式(1)都为真。

证明 S_{PL} 的左蕴涵规则是可靠的:

(左蕴涵)
$$\frac{\Gamma \vdash P, \Delta \quad \Gamma, Q \vdash \Delta}{\Gamma, P \to Q \vdash \Delta}$$

证.

以 (1)、(2)、(3) 分别指代规则的两个前提(先左后右)和结论。设 (1)、(2) 都是有效式,需要证明 (3) 也是有效式。令 ρ 为 (3) 的任何一个赋值,

- 如果 $\llbracket \bigwedge \Gamma \rrbracket_{\rho} = false$ 或者 $\llbracket P \to Q \rrbracket_{\rho} = false$,则 $\llbracket (3) \rrbracket_{\rho} = true$ (根据相继式的语义);
- 否则, $\llbracket \bigwedge \Gamma \rrbracket_{\rho} = true$ 且 $\llbracket P \to Q \rrbracket_{\rho} = true$; 根据(1)是有效式,要么 $\llbracket P \rrbracket_{\rho} = true$,要么 $\llbracket \Delta \rrbracket_{\rho} = true$ 。如果 $\llbracket P \rrbracket_{\rho} = true$,则 $\llbracket Q \rrbracket_{\rho} = true$ (因为 $\llbracket P \to Q \rrbracket_{\rho} = true$),所以 $\llbracket \Delta \rrbracket_{\rho} = true$ (因为(2)是有效式)。因此,无论哪种情况, $\llbracket (3) \rrbracket_{\rho} = true$ (根据相继式的语义)。

综上,(3)是有效式,结论成立。

定理 (S_{PL} 的可靠性)

 S_{PL} 是可靠的 (sound), 即通过该演算系统推导出的所有结论都是有效式。

定理 (S_{PL} 的完备性)

S_{PL} 是完备的 (complete),即所有有效的相继式都可以通过该演算系统推导出来。

定理(命题逻辑的可靠性与完备性)

设 F 为任意命题逻辑公式,如果存在一棵以 $\vdash F$ 为根节点的证明树,则 F 必是永真式,即 $\models F$ 。如果 F 是永真式,即 $\models F$,则必定存在一棵以 $\vdash F$ 为根节点的证明树。

定理(命题逻辑的可判定性)

命题逻辑是可判定的 (decidable),即存在一个通用算法,对任意给定的命题逻辑公式,能够在有限时间内正确地判定出该公式是否是有效式。

证明.

回忆一下真值表法,虽然不是最优算法,但对任何命题逻辑公式, 总能在有限时间(指数时间)内完成是否是有效式的判定。

定理: F 是永真式当且仅当 $\neg F$ 是不可满足式。

- 可以应用可满足性判定算法间接判定是否永真
- 目前存在许多非常有效的可满足性判定算法

小结

总结: 命题逻辑 40 / 42

语法: 命题逻辑公式的构成

● 符号集: T, ⊥, 命题变元, 逻辑联结词

• 构造规则: 原子公式、文字、合式公式

语义:命题逻辑公式的含义

• 真值,变量赋值,公式取值

• 可满足式、永真式、不可满足式

• 语义蕴涵、语义等价

相继式演算系统 S_{PL} : 证明永真式

• 推理规则: 前件规则、后件规则、包含规则、切规则

● 推导树 ↔ 可推导

• 可靠性、完备性、可判定性

• 一阶逻辑

谢谢!