"Deep learning from scratch"

~ Chapter 5 "Back propagation" ~

Chapter 5.1 Computational graph

Chapter 5.2 Chain rule

Chapter 5.3 backward propagation

2018/06/18 Yousuke Ogata

5.1 Computational Graph

- To understand backpropagation, explain by...
 - Mathematics
 - -> Strict, but tooooooo hard to learn *all*
 - Computational graph
 - -> could be understood visually: more easier...?

```
ref) lecture in Stanford univ, "CS231n" ( <a href="http://cs231n.github.io/">http://cs231n.github.io/</a> )
```


(Wikipedia: "Graph theory" https://en.wikipedia.org/wiki/Graph_theory, 2018/06/15)

(Wikipedia: "Graph theory" https://en.wikipedia.org/wiki/Graph_theory, 2018/06/15)

Graph theory (in Neuroimaging)

- Construct from Vertices (Nodes) and Edges
 - Vertex : ROI or single-voxel
 - Edge : functional connectivity
 - Path :a sequence of vertices in which all succeeding vertices are connected by edges
- To analyze relationship of graph, calculate
 - Distance: the minimum length among all paths connecting vertices
 - Degree : the number of edges connecting to it

Cf) Seven Bridges of Königsberg, four-color problem etc...

 Q1: Taro bought two apples. Apple is priced ¥100 (with exclude VAT:10%).

How much taro needs to pay?

 Q1: Taro bought two apples. Apple is priced ¥100 (with exclude VAT:10%).

How much taro needs to pay?

Q2: Taro bought two apples and three oranges.
 Apple is priced ¥100, Orange is priced ¥150(VAT:10%).
 How much taro needs to pay?

Q2: Taro bought two apples and three oranges.
 Apple is priced ¥100, Orange is priced ¥150(VAT:10%).
 How much taro needs to pay?

Forward propagation

Backward propagation

computes values from inputs(left) to output(right) => forward propagation

transfer gradient from output(right) to inputs(left) => Backward propagation

"Local" processing

- Computational graph allowed us to obtain a result by transferring "local operations"
 - => can ignore "global" processing

"Local" processing

- Computational graph allowed us to obtain a result by transferring "local operations"
 - => can ignore "global" processing

"Local" processing

- Computational graph allowed us to obtain a result by transferring "local operations"
 - => can ignore "global" processing

Just means...

= can focus only "local" operations in each nodes

- Why computational graph was used for explain backward propagation??
 - => calculate gradient efficiently

- Why computational graph was used for explain backward propagation??
 - => calculate gradient efficiently

- Why computational graph was used for explain backward propagation??
 - => calculate gradient efficiently

- Why computational graph was used for explain backward propagation??
 - => calculate gradient efficiently

- Why computational graph was used for explain backward propagation??
 - => calculate gradient efficiently

Forward propagation: price(or pay)

Backward propagation: fluctuation of price

5.2 Chain rule

 Chain rule: a formula for computing the <u>derivative</u> of the <u>composition of two or more functions</u>.
 (from wikipedia, "Chain rule")

5.2 Chain rule

- In backpropagation, it pass "local" gradient to previous node.
 - => based on chain rule

5.2 Chain rule

- In backpropagation, it pass "local" gradient to previous node.
 - => based on chain rule

Composite function

Composite function: function composed of multiple functions

Chain rule:

When a function is represented by a composite function, the derivative of the composite function can be represented by the product of the differentiation of the each functions.

Chain rule:

When a function is represented by a composite function, the derivative of the composite function can be represented by the product of the differentiation of the each functions.

$$z = t^{2}$$

$$t = x + y$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial t} \frac{\partial t}{\partial x}$$

Example:

$$\frac{\partial z}{\partial t} = 2t$$

$$\frac{\partial z}{\partial x} = 1$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial t} \frac{\partial t}{\partial x} = 2t \cdot 1 = 2(x+y)$$

Chain rule in graph

 In the backpropagation, the product of the input to the node and local derivative(= partial derivative) in the node is transferred to next node

5.3 Backpropagation

Backward propagation in addition node

$$z = x + y$$

$$\frac{\partial z}{\partial x} = 1$$

$$\frac{\partial z}{\partial y} = 1$$

Forward propagation

Backward propagation

=> merely transfer input to output as intact

Backward propagation in multiplication node

Backpropagation of multiplication needs to the value of input signals (at forward propagation)

=>Thus, implementation of multiplication node require holding the input value

Example: Paid for apple

