DIGITAL LOGIC CIRCUITS

Logic Gates

Boolean Algebra

Map Specification

Combinational Circuits

Flip-Flops

Sequential Circuits

Introduction

BASIC LOGIC BLOCK - GATE -

Types of Basic Logic Blocks

- Combinational Logic Block
 Logic Blocks whose output logic value
 depends only on the input logic values
- Sequential Logic Block
 Logic Blocks whose output logic value
 depends on the input values and the
 state (stored information) of the blocks

Functions of Gates can be described by

- Truth Table
- Boolean Function
- Karnaugh Map

COMBINATIONAL GATES

Name	Symbol	Function	Truth Table
AND	A X	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1
OR	А	X = A + B	A B X 0 0 0 0 0 1 1 1 1 1 1 1
I	A — X	X = A'	A X 0 1 1 0
Buffer	A — X	X = A	A X 0 0 1 1
NAND	A X	X = (AB)'	A B X 0 0 1 0 1 1 1 1 0 1 1 0
NOR	A B	X = (A + B)'	A B X 0 0 1 0 1 0 1 1 0 0 1 1 0
XOR Exclusive OR	А	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 1 1 0 1 1
XNOR Exclusive NOR or Equivalence	А В	X = (A ⊕ B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1

BOOLEAN ALGEBRA

Boolean Algebra

- * Algebra with Binary(Boolean) Variable and Logic Operations
- * Boolean Algebra is useful in Analysis and Synthesis of Digital Logic Circuits
 - Input and Output signals can be represented by Boolean Variables, and
 - Function of the Digital Logic Circuits can be represented by Logic Operations, i.e., Boolean Function(s)
 - From a Boolean function, a logic diagram can be constructed using AND, OR, and I

Truth Table

- * The most elementary specification of the function of a Digital Logic Circuit is the Truth Table
 - Table that describes the Output Values for all the combinations of the Input Values, called *MINTERMS*
 - n input variables $\rightarrow 2^n$ minterms

Usefulness of this Table [15] and [16] : De Morgan's Theorem

- Simplification of the Boolean function
- Derivation of equivalent Boolean functions to obtain logic diagrams utilizing different logic gates
 - -- Ordinarily ANDs, ORs, and Inverters
- -- But a certain different form of Boolean function may be convenient to obtain circuits with NANDs or NORs
- → Applications of De Morgans Theorem

EQUIVALENT CIRCUITS

Many different logic diagrams are possible for a given Function

COMPLEMENT OF FUNCTIONS

A Boolean function of a digital logic circuit is represented by only using logical variables and AND, OR, and Invert operators.

- → Complement of a Boolean function
 - Replace all the variables and subexpressions in the parentheses appearing in the function expression with their respective complements

$$A,B,...,Z,a,b,...,z \Rightarrow A',B',...,Z',a',b',...,z'$$

 $(p+q) \Rightarrow (p+q)'$

- Replace all the operators with their respective complementary operators

- Basically, extensive applications of the De Morgan's theorem

$$(x_1 + x_2 + ... + x_n)' \Rightarrow x_1'x_2'... x_n'$$

 $(x_1x_2 ... x_n)' \Rightarrow x_1' + x_2' + ... + x_n'$

SIMPLIFICATION

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for simplifying Boolean expressions.

KARNAUGH MAP

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products form of Boolean Function, or Truth Table) is

- Rectangle divided into 2ⁿ cells
- Each cell is associated with a Minterm
- An output(function) value for each input value associated with a mintern is written in the cell representing the minterm
- → 1-cell, 0-cell

Each Minterm is identified by a decimal number whose binary representation is identical to the binary interpretation of the input values of the minterm.

RNAUGH MAP

W

3

2

V

00

$$F(u,v,w,x) = \sum (1,3,6,8,9,11,14)$$

ADJACENT CELLS

Rule: xy' + xy = x(y+y') = x

Adjacent cells

binary identifications are different in one bit
 → minterms associated with the adjacent
 cells have one variable complemented each other

Cells (1,0) and (1,1) are adjacent Minterms for (1,0) and (1,1) are x • y' --> x=1, y=0 x • y --> x=1, y=1

F = xy'+ xy can be reduced to F = x

From the map

= xy'+ xy = x

Digital VPg Pouit MPHECATION - MOR WX **WX** u'v'w'x' + u'v'w'x + u'v'wx + u'v'wx'uv = u'v'w'(x'+x) + u'v'w(x+x')= u'v'w' + u'v'w = u'v'(w'+w)= u'v'u X u'v'w'x'+u'v'w'x+u'vw'x'+u'vw'x+uvw'x'+uvw'x+uv'w'x'+uv'w'x = u'v'w'(x'+x) + u'vw'(x'+x) + uvw'(x'+x) + uv'w'(x'+x)= u'(v'+v)w' + u(v'+v)w'= (u'+u)w' = w'**\WX** W W X X

Map Simplification

$$F(u,v,w,x) = \sum (0,1,2,9,13,15)$$

(0,1), **(0,2)**, **(0,4)**, **(0,8)** Adjacent Cells of 1 Adjacent Cells of 0

(1,0), **(1,3)**, **(1,5)**, **(1,9)**

(15,14)

Adjacent Cells of 15 (15,7), (15,11), (15,13),

Merge (0,1) and (0,2) --> u'v'w' + u'v'x' Merge (1,9) --> v'w'x

> Merge (9,13) --> uw'x

Merge (13,15) --> uvx

F = u'v'w' + u'v'x' + v'w'x + uw'x + uvxBut (9,13) is covered by (1,9) and (13,15) F = u'v'w' + u'v'x' + v'w'x + uvx

Map Simplification

IMPLEMENTATION OF K-MAPS - Sum-of-Products Form -

Logic function represented by a Karnaugh map can be implemented in the form of I-AND-OR

A cell or a collection of the adjacent 1-cells can be realized by an AND gate, with some inversion of the input variables.

Map Simplification

Logic function represented by a Karnaugh map can be implemented in the form of I-OR-AND

If we implement a Karnaugh map using 0-cells, the complement of F, i.e., F', can be obtained. Thus, by complementing F' using DeMorgan's theorem F can be obtained

17

Map Simplification

In some logic circuits, the output responses for some input conditions are don't care whether they are 1 or 0.

In K-maps, don't-care conditions are represented by d's in the corresponding cells.

Don't-care conditions are useful in minimizing the logic functions using K-map.

- Can be considered either 1 or 0
- Thus increases the chances of merging cells into the larger cells
 - --> Reduce the number of variables in the product terms

s = xy' + x'y= x ⊕ y

Full Adder

X

FLIP FLOPS

Characteristics

- 2 stable states
- Memory capability
- Operation is specified by a Characteristic Table

In order to be used in the computer circuits, state of the flip flop should have input terminals and output terminals so that it can be set to a certain state, and its state can be read externally.

CLOCKED FLIP FLOPS

In a large digital system with many flip flops, operations of individual flip flops are required to be synchronized to a clock pulse. Otherwise, the operations of the system may be unpredictable.

Clock pulse allows the flip flop to change state only when there is a clock pulse appearing at the c terminal.

We call above flip flop a Clocked RS Latch, and symbolically as

INTEGRATED CIRCUITS

Classification by the Circuit Density

- SSI several (less than 10) independent gates
- MSI 10 to 200 gates; Perform elementary digital functions;
- Decoder, adder, register, parity checker, etc

 LSI 200 to few thousand gates; Digital subsystem
- Processor, memory, etc

 VLSI Thousands of gates; Digital system
- VLSI Thousands of gates; Digital system Microprocessor, memory module