

トップエスイー ソフトウェア開発実践演習

IoTシステムへの機能追加検証手法

株式会社デンソー 株式会社デンソー 株式会社デンソー 片山 諒 北村 健志 田中 雄介 ryo.katayama.j7k@jp.denso.com takeshi.kitamura.j8t@jp.denso.com yusuke.tanaka.j6b@jp.denso.com

IoTシステムにおける問題点

IoTシステム開発では、コストを抑えた価値付加の 為に、機能を追加する際に、既にそのシステムに 組み込まれているセンサの活用が求められる。し かし、その為にはシステム内の複数のセンサ・デ 一タの的確な管理や共有可能データの効率的な 探索が必要となる。

手法・ツールの適用による解決

データフローダイアグラム(DFD)を拡張し、IoTシステム内に存在するデータの配置とその状態(ex.データの品質)を管理する事で、データの最適な活用を検証可能なデータモデルを提案した。

また、上記のデータモデルにおいて、<u>最適な機能配</u> 置を分析できるアルゴリズムを提案した。

提案手法

システム内のデータの流れだけでなく、データフロー上の各構成要素の品質・要件・制約条件を表現する方法を定義

要素 要素名 データの品質・要件・制約条件 pr_通信速度(Mbps) pr_処理成功率(%) --> Soc内通信 100000 99.99 --> Ether_1 500 99.98 --> LVDS 2000 99.99

要素	22	要素名	データの品質・要件・制約条件						
			pr_データソース	pr_ピクセル数	pr_データ量 (B/pix)	pr_最大 物標数	pr_最大 検知距離m		
		画像データA	周辺監視カメラ	1920×1080	1(モノクロ)	-	-		
データ ストア		画像データC	周辺監視カメラ	1280×720	1(モノクロ)	-	-		
ストア		画像データD	周辺監視カメラ	320×240	1(モノクロ)	-	-		
		物標データA	周辺監視LIDAR	-	10	256	100		

要素	29	要素名	データの品質・要件・制約条件					
			pr_データ ソース	pr_処理 速度(ms)	pr_処理 成功率(%)	po_Max_ T(ms)	po_Min_ ProcessRate(%)	
	0	画像圧縮A	周辺監視カメラ	10ms	99.99	-	-	
プロ		画像圧縮B	周辺監視カメラ	10ms	99.99	-	-	
セス		物標抽出A	LIDAR	30ms	99.99	-	-	
		人物認証A	カメラand LIDAR	10xDatasize	-	60	99.95	

分析アルゴリズム:

- 既存の情報源(周辺カメラと周辺監視LIDAR)を使った処理(人物認証A)を新たに追加する場合のデータの入手経路(A・B・C+a)を抽出
- 各々の経路が、追加する処理の制約条件を満たすかを判定

実施例でのアルゴリズム適用結果

各制約条件の判定方法

- 人物認証の要求反応速度・・・人物認証要求から60ms以内
- 人物認証の処理成功率・・・経路上の処理成功率の積算で99.95%以上
- 処理時間は、2つの入力(A-C=1)-4とa=4-6)のうち、より長い方を採用

ルート	①通信	②圧縮	③通信	④処理	⑤通信	⑥処理	処理時 間(ms)	処理成 功率	判定
<u>A+a</u>	10	-	40	25	1	30	75	99.98	NG
B+a	10	10	16	10	1	30	46	99.98	OK
C+a	10	10	1.6	1	1	30	32(22.6)	99.98	OK

提案手法を適用することで、経路Aを不適と判定

まとめ・今後の課題

- 提案したデータモデルとアルゴリズムを 適用することで機能配置を最適である か判定することができた
- 今回は単純な加算, 乗算で検討できる 例を取り扱ったが, 複雑な計算を取り扱 うように改善することでより多くのIoTシ ステムに適用できると考える
- 実際のシミュレータで評価するとより実 践的になると考える