

Report No. : EED32L00202001 Page 1 of 97

TEST REPORT

Product : Media Center
Trade mark : **KICKER**

Model/Type reference : KMC100, KMC5

Serial Number : N/A

Report Number : EED32L00202001 FCC ID : 2ADQMKMC1001

Date of Issue : Aug.23, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

CPS Distributors, Inc. 6024 Parretta Drive, Kansas City, MO. 64120,USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Jay Zheng

Alex Wu

Approved by:

Ware Xin

Ware Xin

Compiled by:

Approved by:

Reviewed by:

Report Seal

Report Seal

Check No.: 3096311576

2 Version

Version No.	Date	Description
00	Aug.23, 2019	Original
,		73 73
(0		

Page 3 of 97

3 Test Summary

rest Summary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Model No.: KMC100, KMC5

Only the model KMC100 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference model name.

Page 4 of 97

4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	4
5 TEST REQUIREMENT	
5.1 TEST SETUP	5
5.1.1 For Conducted test setup.	
5.1.2 For Radiated Emissions test setup	
5.1.3 For Conducted Emissions test setup	6
5.2 TEST ENVIRONMENT	6
5.3 TEST CONDITION	6
6 GENERAL INFORMATION	7
6.1 CLIENT INFORMATION	7
6.2 GENERAL DESCRIPTION OF EUT	7
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
6.4 DESCRIPTION OF SUPPORT UNITS	
6.5 TEST LOCATION	_
6.6 DEVIATION FROM STANDARDS	
6.7 ABNORMALITIES FROM STANDARD CONDITIONS	
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6.9 Measurement Uncertainty (95% confidence levels, K=2)	
7 EQUIPMENT LIST	11
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A): 20dB Occupied Bandwidth	
Appendix B): Carrier Frequency Separation	
Appendix C): Dwell Time	
Appendix D): Hopping Channel Number	
Appendix E): Conducted Feak Output Fower	
Appendix 7): Band-edge for Kir Conducted Emissions	
Appendix H): Pseudorandom Frequency Hopping Sequence	
Appendix I): Antenna Requirement	
Appendix J): Restricted bands around fundamental frequency (Radiated)	
Appendix K): Radiated Spurious Emissions	76
PHOTOGRAPHS OF TEST SETUP	87
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	89

Page 5 of 97

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Page 6 of 97

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:	0	0
Temperature:	24°C	
Humidity:	58 % RH	
Atmospheric Pressure:	1010mbar	(40)

5.3 Test Condition

Ī	Test Mode	Tv	RF Channel			
	rest wode	Tx	Low(L)	Middle(M)	High(H)	
I	GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79	
	8DPSK(DH1,DH3, DH5)	2402NITZ ~2480 NITZ	2402MHz	2441MHz	2480MHz	

Page 7 of 97

6 General Information

6.1 Client Information

Applicant:	CPS Distributors, Inc.		
Address of Applicant: 6024 Parretta Drive, Kansas City, MO. 64120,USA			
Manufacturer:	CPS Distributors, Inc.		
Address of Manufacturer:	A1,A5 Building, No.6, Xinxing Industrial Park, Xinhe Village, Fuyong Town, Bao'an District, Shenzhen City,Guangdong Province,China		
Factory:	SKYPINE ELECTRONICS (SHEN ZHEN) CO.,LTD.		
Address of Factory:	A1,A5 Building, No.6, Xinxing Industrial Park, Xinhe Village, Fuyong Town, Bao'an District, Shenzhen City,Guangdong Province,China		

6.2 General Description of EUT

Product Name:	Media Center			
Model No.(EUT):	KMC100, KMC5			
Test Model No.:	KMC100	100		1
Trade mark:	AKICKER	6		0
EUT Supports Radios application:	BT 2.1+EDR , 2402-2480MHz			
Power Supply:	DC 12V		15	
Sample Received Date:	Jul. 26, 2019		(62)	
Sample tested Date:	Jul. 26, 2019 to Aug. 21, 2019			

Report No. :EED32L00202001 Page 8 of 97

6.3 Product Specification subjective to this standard

0	1	0.4000.41.1	- 04001411-	1/28	1		\			
13.3	Frequency:	10.4	z~2480MHz	(6,4))	(6.4)	}			
Bluetooth			2.1+EDR							
	n Technique:		Frequency Hopping Spread Spectrum(FHSS)							
Modulation			GFSK, π/4DQPSK, 8DPSK							
	f Channel:	79	- (25))	(25)		- (3)			
	Channel Type:		Frequency Ho	pping systen	ns		160			
Hardware		N/A								
Software \	Version:	N/A				4.876				
Test Powe	er Grade:	2DH5:40	DH5:40/40/35 2DH5:40 3DH5:40							
Test Softw	vare of EUT:	BlueTest	3 (manufactur	er declare)						
Antenna T	ype:	PCB Ant	enna		21%		-115			
Antenna C	Gain:	0dBi)			68			
Test Volta	ge:	DC 12V	0		6		100			
Operation	Frequency ea	ch of channe	el							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
100	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz			
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz			
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz			
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz			
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz			
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz			
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz			
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz			
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz			
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz			
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz			
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz			
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz			
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz			
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz			
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz			
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz			
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz			
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz			
20	2421MHz	40	2441MHz	60	2461MHz					

Report No. :EED32L00202001 Page 9 of 97

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 3368385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DC newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Courieus coniccion toet	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 11 of 97

7 Equipment List

RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020			
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020			
Attenuator	HuaXiang	SHX370	15040701	03-01-2019	02-28-2020			
Signal Generator	Keysight	N5181A	MY46240094	03-01-2019	02-28-2020			
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-09-2019	01-08-2020			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020			
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	700	01-09-2019	01-08-2020			
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	(0)	01-09-2019	01-08-2020			
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-09-2019	01-08-2020			
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-09-2019	01-08-2020			
Communicati on test set	R&S	CMW500	107929	04-28-2019	04-27-2020			
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020			
PC-1	Lenovo	R4960d	34%	03-01-2019	02-28-2020			
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020			
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020			
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020			
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020			
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-01-2019	02-28-2020			
high-low temperature test chamber	DongGuangQi nZhuo	LK-80GA	QZ20150611 879	03-01-2019	02-28-2020			
Temperature/ Humiditi Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020			

Page 12 of 97

Cal. Due date

Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020
Temperature/ Humidity Indicator	Defu	TH128	/	06-14-2019	06-13-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-08-2019	05-07-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-07-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-12-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-19-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-05-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020

Conducted disturbance Test

Serial

Cal. date

Page 13 of 97

	3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2020			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020			
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-11-2020			
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020			
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-24-2021			
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-04-2021			
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021			
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 2	07-26-2019	07-25-2020			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021			
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-27-2020			
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020			
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019			
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020			
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020			
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019			
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020			
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020			
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020			
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020			
Cable line High-pass filter	Fulai(3M) Sinoscite	SF106 FL3CX03WG 18NM12- 0398-002	5217/6A 	01-09-2019	01-08-2020			
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020			
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020			
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020			
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020			
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020			

Page 14 of 97

3M full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020		
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020		
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020		
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-24-2021		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-24-2021		
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020		
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-24-2021		
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021		
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020		
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020		
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020		
Preamplifier	Agilent	8449B	3008A02425	07-12-2019	07-11-2020		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020		
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-28-2020		
Fully Anechoic Chamber	TDK	FAC-3)	01-17-2018	01-15-2021		
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020		
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020		

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	N/A	
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix K)

Page 16 of 97

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9574	0.87106	PASS
GFSK	MCH	0.9572	0.86091	PASS
GFSK	НСН	1.019	0.86410	PASS
π /4DQPSK	LCH	1.279	1.1688	PASS
π /4DQPSK	MCH	1.271	1.1661	PASS
π /4DQPSK	НСН	1.274	1.1710	PASS
8DPSK	LCH	1.276	1.1560	PASS
8DPSK	MCH	1.276	1.1534	PASS
8DPSK	НСН	1.276	1.1571	PASS

Page 17 of 97

Test Graph

Page 18 of 97

Page 19 of 97

Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	hannel. Carrier Frequency Separation [MHz]	
GFSK	LCH	0.900	PASS
GFSK	MCH	0.974	PASS
GFSK	НСН	0.946	PASS
π/4DQPSK	LCH	0.728	PASS
π/4DQPSK	MCH	1.242	PASS
π/4DQPSK	НСН	0.828	PASS
8DPSK	LCH	0.834	PASS
8DPSK	MCH	1.282	PASS
8DPSK	НСН	1.006	PASS

Page 21 of 97

Test Graph

Page 22 of 97

Page 23 of 97

Page 24 of 97

Appendix C): Dwell Time

Result Table

Mode	Packet	Chann el	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.388867	320	0.124	0.31	PASS
GFSK	DH1	MCH	0.390133	320	0.125	0.31	PASS
GFSK	DH1	нсн	0.39014	320	0.125	0.31	PASS
GFSK	DH3	LCH	1.64667	160	0.263	0.66	PASS
GFSK	DH3	MCH	1.64667	160	0.263	0.66	PASS
GFSK	DH3	НСН	1.64667	160	0.263	0.66	PASS
GFSK	DH5	LCH	2.8796	106.7	0.307	0.77	PASS
GFSK	DH5	мсн	2.8796	106.7	0.307	0.77	PASS
GFSK	DH5	нсн	2.8796	106.7	0.307	0.77	PASS

Page 25 of 97

Test Graph

Page 26 of 97

Page 27 of 97

Page 28 of 97

Appendix D): Hopping Channel Number

Result Table

Mode	Mode Channel. Number of Hopping Channel		Verdict	
GFSK	Нор	79	PASS	
π/4DQPSK	Нор	79	PASS	
8DPSK	Нор	79	PASS	

Page 29 of 97

Test Graph

Report No. :EED32L00202001 Page 30 of 97

Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	1.298	PASS
GFSK	MCH	3.554	PASS
GFSK	НСН	3.438	PASS
π/4DQPSK	LCH	-1.422	PASS
π/4DQPSK	MCH	1.259	PASS
π/4DQPSK	НСН	1.684	PASS
8DPSK	LCH	-0.974	PASS
8DPSK	MCH	1.761	PASS
8DPSK	НСН	2.126	PASS

Page 31 of 97

Test Graph

Page 32 of 97

Page 33 of 97

Page 34 of 97

Appendix F): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
0501		0.400	1.290	Off	-60.189	-18.71	PASS
GFSK	LCH	2402	0.248	On	-57.793	-19.75	PASS
0.504	GFSK HCH	0.400	3.638	Off	-57.272	-16.36	PASS
GFSK		2480	1.502	On	-53.338	-18.5	PASS
/4D0D01/		0.400	-3.414	Off	-58.642	-23.41	PASS
π/4DQPSK	LCH	2402	0.285	On	-58.037	-19.72	PASS
-/4DODOK	11011	0.400	-0.227	Off	-58.108	-20.23	PASS
π/4DQPSK	HCH 2480	2480	1.722	On	-53.850	-18.28	PASS
appok		0.400	-3.304	Off	-59.541	-23.3	PASS
8DPSK	LCH	2402	0.092	On	-58.070	-19.91	PASS
0DDCK	11011	0400	-0.168	Off	-58.031	-20.17	PASS
8DPSK	HCH	HCH 2480	1.735	On	-54.272	-18.27	PASS

Page 35 of 97

Page 36 of 97

Page 37 of 97

Page 38 of 97

Appendix G): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	1.172	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	3.81	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	3.112	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-2.526	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	-0.354	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	-1.73	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-2.529	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-0.373	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	-0.775	<limit< td=""><td>PASS</td></limit<>	PASS

Page 40 of 97

Test Graph

Page 42 of 97

Page 43 of 97

Page 44 of 97

Page 45 of 97

Page 46 of 97

Page 47 of 97

Page 49 of 97

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Page 50 of 97

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 51 of 97

Appendix J): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	AL	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
Test Procedure:	Below 1GHz test procedur a. The EUT was placed on at a 3 meter semi-anech determine the position of the top was mounted on the top c. The antenna height is was determine the maximum polarizations of the antented. For each suspected emitthe antenna was tuned to table was turned from 0 e. The test-receiver system Bandwidth with Maximum f. Place a marker at the enfrequency to show compounds. Save the spectrum.	the top of a rota noic camber. The of the highest radiers away from the of a variable-heigaried from one many value of the field from are set to maission, the EUT was set to Peal m Hold Mode. Ind of the restricted bliance. Also means a rotated of the restricted of the set of the peal means are set to Peal m	table wa iation. e interfere ight anter eter to fo d strength ake the m was arran meter to degrees to k Detect I	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasurement ged to its no 4 meters a o find the no function a losest to the emissions	rs above the group above the groun above the groun rizontal and verticent. worst case and the maximum readin and Specified the transmit in the restricted and the re
	for lowest and highest c Above 1GHz test procedur g. Different between above to fully Anechoic Chamber meter (Above 18GHz the house to the EUT in the lowest to the EUT in the lowest test of the EUT in the EUT in the lowest test of the EUT in	hannel re as below: e is the test site, of per and change for e distance is 1 m powest channel, the nents are perform found the X axis	change from table leter and fine Highes hed in X, is positioning the characteristics of the	om Semi- 0.8 meter table is 1.5 st channel Y, Z axis p ng which i	Anechoic Cham to 1.5 meter). positioning for t is worse case.
_imit:	Frequency	Limit (dBµV/m		1	mark
	30MHz-88MHz	40.0	1 (2011)		eak Value
	88MHz-216MHz	43.5		•	eak Value
	216MHz-960MHz	46.0		·	eak Value
	960MHz-1GHz	54.0	(6)		eak Value
	JOUIVII IZ- I GI IZ		Jak valut		
		540		Averso	مراد/ مر
	Above 1GHz	54.0 74.0			value Value

Page 52 of 97

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2342.2215	32.18	13.61	-42.46	62.23	65.56	74.00	8.44	Pass	Horizontal
2	2390.0000	32.25	13.37	-42.44	49.59	52.77	74.00	21.23	Pass	Horizontal
3	2402.1464	32.26	13.31	-42.43	86.49	89.63	74.00	-15.63	Pass	Horizontal

Page 53 of 97

Mode:	GFSK Transmitting	Channel:	2402	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2340.6758	32.18	13.60	-42.46	59.19	62.51	74.00	11.49	Pass	Vertical
2	2390.0000	32.25	13.37	-42.44	49.70	52.88	74.00	21.12	Pass	Vertical
3	2402.1464	32.26	13.31	-42.43	89.55	92.69	74.00	-18.69	Pass	Vertical

Page 54 of 97

Mode:	GFSK Transmitting	Channel:	2402	
Remark:	AV			

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.38	41.56	54.00	12.44	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	74.05	77.19	54.00	-23.19	Pass	Horizontal
			No.							- H

Page 55 of 97

Mode:	GFSK Transmitting	Channel:	2402	
Remark:	AV			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.40	41.58	54.00	12.42	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	77.10	80.24	54.00	-26.24	Pass	Vertical
					100		120			-11-

Page 56 of 97

Mode:	GFSK Transmitting	Channel:	2480	
Remark:	PK			

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Γ	1	2479.9900	32.37	13.39	-42.39	89.42	92.79	74.00	-18.79	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	49.78	53.14	74.00	20.86	Pass	Horizontal
-	-11-		- 10			1.25					-11-

Page 57 of 97

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8949	32.37	13.39	-42.39	93.21	96.58	74.00	-22.58	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	50.31	53.67	74.00	20.33	Pass	Vertical
			No.		1.25					-4-

Page 58 of 97

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1327	32.37	13.39	-42.40	78.56	81.92	54.00	-27.92	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	38.27	41.63	54.00	12.37	Pass	Horizontal
- 1					100		120			-11-

Page 59 of 97

Mode:	GFSK Transmitting	Channel:	2480	
Remark:	AV			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1327	32.37	13.39	-42.40	80.36	83.72	54.00	-29.72	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	38.71	42.07	54.00	11.93	Pass	Vertical
- 1					100		120			-11-

Page 60 of 97

Mode:	π/4DQPSK Transmitting	Channel:	2402	
Remark:	PK			

Test Graph

N	O Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
•	1 2390.0000	32.25	13.37	-42.44	48.87	52.05	74.00	21.95	Pass	Horizontal
	2 2402.1464	32.26	13.31	-42.43	83.13	86.27	74.00	-12.27	Pass	Horizontal
100			No.	•	100		124	•		-11-

Page 61 of 97

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.27	52.45	74.00	21.55	Pass	Vertical
2	2402.2653	32.26	13.31	-42.43	86.26	89.40	74.00	-15.40	Pass	Vertical
- 15		- 10			1.25					-4-

Page 62 of 97

Mode:	π/4DQPSK Transmitting	Channel:	2402	
Remark:	AV			

Test Graph

N	O Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.41	41.59	54.00	12.41	Pass	Horizontal
2	/ /4II/ I4h4	32.26	13.31	-42.43	71.04	74.18	54.00	-20.18	Pass	Horizontal
201		- 11	No.	•	123%					-11-

Page 63 of 97

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.40	41.58	54.00	12.42	Pass	Vertical
2	2402.2653	32.26	13.31	-42.43	71.02	74.16	54.00	-20.16	Pass	Vertical
- 1					100		120			-11-

Page 64 of 97

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8949	32.37	13.39	-42.39	87.65	91.02	74.00	-17.02	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.66	53.02	74.00	20.98	Pass	Horizontal
-11		- 10			-15		100			-4-

Page 65 of 97

Mode:	π/4DQPSK Transmitting	Channel:	2480	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9900	32.37	13.39	-42.39	91.44	94.81	74.00	-20.81	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	50.76	54.12	74.00	19.88	Pass	Vertical
- 1			Name of the last		100		120	•		-11-

Page 66 of 97

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV	(0,0)	(6,0)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	87.99	91.36	54.00	-37.36	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.43	40.79	54.00	13.21	Pass	Horizontal

Page 67 of 97

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	88.79	92.16	54.00	-38.16	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	39.95	43.31	54.00	10.69	Pass	Vertical
54.0					-15					-4-

Page 68 of 97

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

ı	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	48.87	52.05	74.00	21.95	Pass	Horizontal
	2	2402.0275	32.26	13.31	-42.43	82.69	85.83	74.00	-11.83	Pass	Horizontal
	100										

Page 69 of 97

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.76	51.94	74.00	22.06	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	87.83	90.97	74.00	-16.97	Pass	Vertical
- 1					100		124			-11-

Page 70 of 97

Mode:	8DPSK Transmitting	Channel:	2402	
Remark:	AV			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.40	41.58	54.00	12.42	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	69.98	73.12	54.00	-19.12	Pass	Horizontal
-11		-			100					-11-

Page 71 of 97

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.43	41.61	54.00	12.39	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	71.93	75.07	54.00	-21.07	Pass	Vertical
-11		- 10			1.25					-4-

Page 72 of 97

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	87.67	91.04	74.00	-17.04	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.44	52.80	74.00	21.20	Pass	Horizontal
3	2485.6020	32.38	13.37	-42.40	62.38	65.73	74.00	8.27	Pass	Horizontal

Page 73 of 97

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9424	32.37	13.39	-42.39	91.43	94.80	74.00	-20.80	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.75	53.11	74.00	20.89	Pass	Vertical

Page 74 of 97

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Γ	1	2480.0851	32.37	13.39	-42.40	74.16	77.52	54.00	-23.52	Pass	Horizontal
Γ	2	2483.5000	32.38	13.38	-42.40	37.29	40.65	54.00	13.35	Pass	Horizontal
_	-11-			Name of the last		100		120			-11-

Page 75 of 97

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-42.40	77.18	80.54	54.00	-26.54	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.67	41.03	54.00	12.97	Pass	Vertical

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 76 of 97

Appendix K): Radiated Spurious Emissions

Receiver	Setup:
----------	--------

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	- /	30	30
1.705MHz-30MHz	30	- \	<u> </u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. :EED32L00202001 Page 77 of 97

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	e :		GFSK 7	Transmitti	ng		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	38.74	18.54	40.00	21.46	Pass	Н	PK
2	87.1387	8.74	1.08	-32.09	47.77	25.50	40.00	14.50	Pass	Н	PK
3	189.9690	9.95	1.61	-31.97	45.65	25.24	43.50	18.26	Pass	Н	PK
4	325.0065	13.75	2.14	-31.79	38.14	22.24	46.00	23.76	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	38.98	29.41	46.00	16.59	Pass	Н	PK
6	909.9750	22.16	3.60	-31.48	34.43	28.71	46.00	17.29	Pass	Н	PK
7	36.7907	11.27	0.68	-32.12	40.20	20.03	40.00	19.97	Pass	V	PK
8	87.2357	8.76	1.08	-32.08	41.88	19.64	40.00	20.36	Pass	V	PK
9	208.8859	11.13	1.71	-31.94	48.53	29.43	43.50	14.07	Pass	V	PK
10	325.0065	13.75	2.14	-31.79	41.40	25.50	46.00	20.50	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	39.53	29.96	46.00	16.04	Pass	V	PK
12	909.9750	22.16	3.60	-31.48	33.15	27.43	46.00	18.57	Pass	V	PK

Mode):		GFSK 7	Transmitti	ng			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	41.43	21.23	40.00	18.77	Pass	Н	PK
2	86.9447	8.70	1.08	-32.09	41.85	19.54	40.00	20.46	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	48.86	29.76	43.50	13.74	Pass	Н	PK
4	324.9095	13.75	2.14	-31.80	40.90	24.99	46.00	21.01	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	40.25	30.68	46.00	15.32	Pass	Н	PK
6	909.9750	22.16	3.60	-31.48	34.14	28.42	46.00	17.58	Pass	Н	PK
7	36.6937	11.24	0.67	-32.11	41.12	20.92	40.00	19.08	Pass	V	PK
8	88.3028	9.01	1.09	-32.09	47.00	25.01	43.50	18.49	Pass	V	PK
9	190.8421	10.03	1.62	-31.97	47.20	26.88	43.50	16.62	Pass	V	PK
10	324.9095	13.75	2.14	-31.80	38.67	22.76	46.00	23.24	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	39.54	29.97	46.00	16.03	Pass	V	PK
12	909.9750	22.16	3.60	-31.48	34.73	29.01	46.00	16.99	Pass	V	PK

Page 78 of 97

Mode) :		GFSK T	Transmitti	ng			Channel:		2480	2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	49.3049	13.20	0.79	-32.12	38.23	20.10	40.00	19.90	Pass	Н	PK	
2	86.9447	8.70	1.08	-32.09	41.46	19.15	40.00	20.85	Pass	Н	PK	
3	208.8859	11.13	1.71	-31.94	49.00	29.90	43.50	13.60	Pass	Н	PK	
4	324.8125	13.75	2.14	-31.80	40.54	24.63	46.00	21.37	Pass	Н	PK	
5	649.9890	19.40	3.10	-32.07	39.63	30.06	46.00	15.94	Pass	Н	PK	
6	892.9983	22.02	3.59	-31.62	40.97	34.96	46.00	11.04	Pass	Н	PK	
7	36.6937	11.24	0.67	-32.11	42.08	21.88	40.00	18.12	Pass	V	PK	
8	88.9819	9.17	1.09	-32.09	46.92	25.09	43.50	18.41	Pass	V	PK	
9	191.5212	10.09	1.62	-31.96	45.97	25.72	43.50	17.78	Pass	V	PK	
10	325.0065	13.75	2.14	-31.79	40.19	24.29	46.00	21.71	Pass	V	PK	
11	649.9890	19.40	3.10	-32.07	38.99	29.42	46.00	16.58	Pass	V	PK	
12	875.0515	21.80	3.55	-31.70	33.44	27.09	46.00	18.91	Pass	V	PK	

Mode	e:		π/4DQI	PSK Tran	smitting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	40.65	20.45	40.00	19.55	Pass	Н	PK
2	88.0118	8.94	1.08	-32.08	40.87	18.81	43.50	24.69	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	49.46	30.36	43.50	13.14	Pass	Н	PK
4	325.0065	13.75	2.14	-31.79	40.99	25.09	46.00	20.91	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	39.84	30.27	46.00	15.73	Pass	Н	PK
6	879.7080	21.86	3.55	-31.66	35.65	29.40	46.00	16.60	Pass	Н	PK
7	36.6937	11.24	0.67	-32.11	41.03	20.83	40.00	19.17	Pass	V	PK
8	87.5268	8.83	1.08	-32.08	46.92	24.75	40.00	15.25	Pass	V	PK
9	189.4839	9.90	1.61	-31.97	46.20	25.74	43.50	17.76	Pass	V	PK
10	325.0065	13.75	2.14	-31.79	39.26	23.36	46.00	22.64	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	40.06	30.49	46.00	15.51	Pass	V	PK
12	908.0348	22.15	3.60	-31.50	38.40	32.65	46.00	13.35	Pass	V	PK

Page 79 of 97

Mode) :		π/4DQI	PSK Tran	smitting			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	42.39	22.19	40.00	17.81	Pass	Н	PK
2	87.3327	8.79	1.08	-32.09	41.03	18.81	40.00	21.19	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	49.13	30.03	43.50	13.47	Pass	Н	PK
4	330.0510	13.86	2.16	-31.76	40.74	25.00	46.00	21.00	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	40.64	31.07	46.00	14.93	Pass	Н	PK
6	909.9750	22.16	3.60	-31.48	32.72	27.00	46.00	19.00	Pass	Н	PK
7	36.6937	11.24	0.67	-32.11	41.28	21.08	40.00	18.92	Pass	V	PK
8	88.8849	9.14	1.09	-32.08	46.99	25.14	43.50	18.36	Pass	V	PK
9	190.6481	10.01	1.61	-31.96	45.60	25.26	43.50	18.24	Pass	V	PK
10	325.0065	13.75	2.14	-31.79	37.13	21.23	46.00	24.77	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	40.24	30.67	46.00	15.33	Pass	V	PK
12	879.7080	21.86	3.55	-31.66	35.29	29.04	46.00	16.96	Pass	V	PK

Mode	e:		π/4DQI	PSK Tran	smitting			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	42.82	22.62	40.00	17.38	Pass	Н	PK
2	62.8863	10.85	0.91	-32.04	39.89	19.61	40.00	20.39	Pass	Н	PK
3	88.1088	8.97	1.08	-32.09	41.12	19.08	43.50	24.42	Pass	Н	PK
4	208.8859	11.13	1.71	-31.94	48.79	29.69	43.50	13.81	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	40.01	30.44	46.00	15.56	Pass	Н	PK
6	909.9750	22.16	3.60	-31.48	34.61	28.89	46.00	17.11	Pass	Н	PK
7	36.6937	11.24	0.67	-32.11	40.46	20.26	40.00	19.74	Pass	V	PK
8	88.5939	9.08	1.09	-32.09	46.67	24.75	43.50	18.75	Pass	V	PK
9	190.9391	10.04	1.62	-31.97	46.27	25.96	43.50	17.54	Pass	V	PK
10	325.0065	13.75	2.14	-31.79	37.71	21.81	46.00	24.19	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	40.32	30.75	46.00	15.25	Pass	V	PK
12	879.7080	21.86	3.55	-31.66	35.15	28.90	46.00	17.10	Pass	V	PK

Page 80 of 97

Mode	e :		8DPSK	Transmit	ting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	43.49	23.29	40.00	16.71	Pass	Н	PK
2	88.2058	8.99	1.09	-32.09	40.79	18.78	43.50	24.72	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	48.76	29.66	43.50	13.84	Pass	Н	PK
4	325.0065	13.75	2.14	-31.79	40.60	24.70	46.00	21.30	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	38.51	28.94	46.00	17.06	Pass	Н	PK
6	900.5651	22.10	3.60	-31.57	34.69	28.82	46.00	17.18	Pass	Н	PK
7	36.6937	11.24	0.67	-32.11	41.06	20.86	40.00	19.14	Pass	V	PK
8	88.5939	9.08	1.09	-32.09	46.43	24.51	43.50	18.99	Pass	V	PK
9	192.2972	10.17	1.62	-31.96	45.46	25.29	43.50	18.21	Pass	V	PK
10	325.0065	13.75	2.14	-31.79	37.89	21.99	46.00	24.01	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	38.30	28.73	46.00	17.27	Pass	V	PK
12	879.7080	21.86	3.55	-31.66	35.48	29.23	46.00	16.77	Pass	V	PK

Mode	e:		8DPSK	Transmit	ting			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	41.81	21.61	40.00	18.39	Pass	Н	PK
2	62.6923	10.90	0.91	-32.04	40.83	20.60	40.00	19.40	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	49.11	30.01	43.50	13.49	Pass	Н	PK
4	330.0510	13.86	2.16	-31.76	40.86	25.12	46.00	20.88	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	38.44	28.87	46.00	17.13	Pass	Н	PK
6	879.7080	21.86	3.55	-31.66	37.17	30.92	46.00	15.08	Pass	Н	PK
7	36.6937	11.24	0.67	-32.11	40.28	20.08	40.00	19.92	Pass	V	PK
8	88.7879	9.12	1.09	-32.09	46.67	24.79	43.50	18.71	Pass	V	PK
9	190.0660	9.96	1.61	-31.97	46.44	26.04	43.50	17.46	Pass	V	PK
10	325.0065	13.75	2.14	-31.79	37.21	21.31	46.00	24.69	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	38.02	28.45	46.00	17.55	Pass	V	PK
12	879.6110	21.86	3.55	-31.66	35.21	28.96	46.00	17.04	Pass	V	PK

Page 81 of 97

Mode	e:		8DPSK	Transmit	ting			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	41.42	21.22	40.00	18.78	Pass	Н	PK
2	87.7208	8.88	1.08	-32.09	41.57	19.44	40.00	20.56	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	49.47	30.37	43.50	13.13	Pass	Н	PK
4	324.9095	13.75	2.14	-31.80	41.24	25.33	46.00	20.67	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	40.23	30.66	46.00	15.34	Pass	Н	PK
6	909.9750	22.16	3.60	-31.48	33.12	27.40	46.00	18.60	Pass	Н	PK
7	36.6937	11.24	0.67	-32.11	40.73	20.53	40.00	19.47	Pass	V	PK
8	88.8849	9.14	1.09	-32.08	46.78	24.93	43.50	18.57	Pass	V	PK
9	190.4540	9.99	1.61	-31.96	45.60	25.24	43.50	18.26	Pass	V	PK
10	325.0065	13.75	2.14	-31.79	38.18	22.28	46.00	23.72	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	39.68	30.11	46.00	15.89	Pass	V	PK
12	896.0056	22.05	3.59	-31.59	43.08	37.13	46.00	8.87	Pass	V	PK

Page 82 of 97

Transmitter Emission above 1GHz

Mode	e:		GFSK 7	Transmitti	ng			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1198.2198	28.10	2.66	-42.89	62.62	50.49	74.00	23.51	Pass	Н	PK
2	2000.3000	31.70	3.47	-42.61	66.11	58.67	74.00	15.33	Pass	Н	PK
3	2798.9799	32.88	4.24	-42.23	64.31	59.20	74.00	14.80	Pass	Н	PK
4	4804.1203	34.50	4.55	-40.66	54.16	52.55	74.00	21.45	Pass	Н	PK
5	7206.2804	36.31	5.81	-41.02	51.31	52.41	74.00	21.59	Pass	Н	PK
6	12446.629	39.57	7.66	-41.11	46.03	52.15	74.00	21.85	Pass	Н	PK
7	1996.7500	31.68	3.47	-42.61	39.96	32.50	54.00	21.50	Pass	Н	AV
8	2799.0299	32.88	4.24	-42.23	40.01	34.90	54.00	19.10	Pass	Н	AV
9	1996.8997	31.68	3.47	-42.62	64.67	57.20	74.00	16.80	Pass	V	PK
10	2655.1655	32.65	4.09	-42.30	59.37	53.81	74.00	20.19	Pass	V	PK
11	2796.9797	32.88	4.23	-42.23	62.25	57.13	74.00	16.87	Pass	V	PK
12	4804.1203	34.50	4.55	-40.66	53.27	51.66	74.00	22.34	Pass	V	PK
13	7206.2804	36.31	5.81	-41.02	51.32	52.42	74.00	21.58	Pass	V	PK
14	11015.534	38.61	7.55	-41.12	44.95	49.99	74.00	24.01	Pass	V	PK
15	1997.1797	31.68	3.47	-42.61	39.44	31.98	54.00	22.02	Pass	V	AV
16	2796.4197	32.87	4.23	-42.23	40.68	35.55	54.00	18.45	Pass	V	AV

Mode	e:		GFSK T	Transmitti	ng			Channel	:	2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2440.9441	32.32	3.96	-42.42	57.89	51.75	74.00	22.25	Pass	Н	PK
2	4882.0000	34.50	4.81	-40.60	54.89	53.60	74.00	20.40	Pass	Н	PK
3	7323.0000	36.42	5.85	-40.92	50.06	51.41	74.00	22.59	Pass	Н	PK
4	9764.0000	37.71	6.71	-40.62	42.43	46.23	74.00	27.77	Pass	Н	PK
5	12205.000	39.42	7.67	-41.16	43.05	48.98	74.00	25.02	Pass	Н	PK
6	15108.807	40.51	9.55	-42.47	45.57	53.16	74.00	20.84	Pass	Н	PK
7	2441.3441	32.32	3.96	-42.41	62.37	56.24	74.00	17.76	Pass	V	PK
8	3599.0399	33.48	4.34	-41.61	52.85	49.06	74.00	24.94	Pass	V	PK
9	4882.0000	34.50	4.81	-40.60	52.96	51.67	74.00	22.33	Pass	V	PK
10	7323.0000	36.42	5.85	-40.92	52.28	53.63	74.00	20.37	Pass	V	PK
11	9764.0000	37.71	6.71	-40.62	42.36	46.16	74.00	27.84	Pass	V	PK
12	12205.000	39.42	7.67	-41.16	44.97	50.90	74.00	23.10	Pass	V	PK
13	2445.9941	32.32	3.97	-42.41	35.95	29.83	54.00	24.17	Pass	V	AV

Page 83 of 97

Mode	e:		GFSK	Transmitti	ng			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.1480	32.37	4.01	-42.40	57.22	51.20	74.00	22.80	Pass	Н	PK
2	3199.0133	33.28	4.65	-42.00	50.50	46.43	74.00	27.57	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	56.99	55.78	74.00	18.22	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	50.31	51.88	74.00	22.12	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	41.82	45.90	74.00	28.10	Pass	Н	PK
6	12400.000	39.54	7.86	-41.12	44.08	50.36	74.00	23.64	Pass	Н	PK
7	2479.9480	32.37	4.01	-42.40	60.33	54.31	74.00	19.69	Pass	V	PK
8	4960.0000	34.50	4.82	-40.53	53.73	52.52	74.00	21.48	Pass	V	PK
9	7440.0000	36.54	5.85	-40.82	51.88	53.45	74.00	20.55	Pass	V	PK
10	9920.0000	37.77	6.79	-40.48	41.62	45.70	74.00	28.30	Pass	V	PK
11	12400.000	39.54	7.86	-41.12	43.72	50.00	74.00	24.00	Pass	V	PK
12	13700.713	39.52	8.35	-41.21	46.24	52.90	74.00	21.10	Pass	V	PK
13	2480.3580	32.37	4.01	-42.40	35.72	29.70	54.00	24.30	Pass	V	AV

Mode	e:		π/4DQI	PSK Tran	smitting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3334.0223	33.33	4.54	-41.92	54.07	50.02	74.00	23.98	Pass	Н	PK
2	4840.1227	34.50	4.65	-40.63	62.76	61.28	74.00	12.72	Pass	Н	PK
3	7340.2894	36.44	5.85	-40.90	48.36	49.75	74.00	24.25	Pass	Н	PK
4	9608.0000	37.64	6.63	-40.76	42.42	45.93	74.00	28.07	Pass	Н	PK
5	12010.000	39.31	7.60	-41.21	42.42	48.12	74.00	25.88	Pass	Н	PK
6	14307.753	40.01	8.62	-41.88	46.33	53.08	74.00	20.92	Pass	Н	PK
7	4845.1127	34.50	4.67	-40.63	28.94	27.48	54.00	26.52	Pass	Н	AV
8	2401.9402	32.26	3.92	-42.43	56.69	50.44	74.00	23.56	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	47.63	46.02	74.00	27.98	Pass	V	PK
10	7206.0000	36.31	5.81	-41.02	47.49	48.59	74.00	25.41	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	42.21	45.72	74.00	28.28	Pass	V	PK
12	12010.000	39.31	7.60	-41.21	41.78	47.48	74.00	26.52	Pass	V	PK
13	14882.792	40.35	9.16	-42.30	45.83	53.04	74.00	20.96	Pass	V	PK

Page 84 of 97

Mode	e:		π/4DQI	PSK Tran	smitting			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2441.1441	32.32	3.96	-42.41	56.81	50.68	74.00	23.32	Pass	Н	PK
2	4882.0000	34.50	4.81	-40.60	51.87	50.58	74.00	23.42	Pass	Н	PK
3	7323.0000	36.42	5.85	-40.92	48.31	49.66	74.00	24.34	Pass	Н	PK
4	9764.0000	37.71	6.71	-40.62	41.51	45.31	74.00	28.69	Pass	Н	PK
5	12205.000	39.42	7.67	-41.16	43.04	48.97	74.00	25.03	Pass	Н	PK
6	14349.756	40.05	8.63	-41.97	46.17	52.88	74.00	21.12	Pass	Н	PK
7	2441.1441	32.32	3.96	-42.41	60.43	54.30	74.00	19.70	Pass	V	PK
8	4882.0000	34.50	4.81	-40.60	49.20	47.91	74.00	26.09	Pass	V	PK
9	7323.0000	36.42	5.85	-40.92	47.71	49.06	74.00	24.94	Pass	V	PK
10	9764.0000	37.71	6.71	-40.62	41.81	45.61	74.00	28.39	Pass	V	PK
11	12205.000	39.42	7.67	-41.16	42.95	48.88	74.00	25.12	Pass	V	PK
12	14874.791	40.35	9.15	-42.31	46.75	53.94	74.00	20.06	Pass	V	PK

Mode	e:		π/4DQf	PSK Tran	smitting			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1600.6601	29.06	3.07	-42.89	56.64	45.88	74.00	28.12	Pass	Н	PK
2	2479.5480	32.37	4.01	-42.40	55.71	49.69	74.00	24.31	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	53.84	52.63	74.00	21.37	Pass	Н	PK
4	7439.2960	36.54	5.85	-40.82	48.89	50.46	74.00	23.54	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	41.26	45.34	74.00	28.66	Pass	Н	PK
6	12400.000	39.54	7.86	-41.12	43.57	49.85	74.00	24.15	Pass	Н	PK
7	2480.1480	32.37	4.01	-42.40	57.62	51.60	74.00	22.40	Pass	V	PK
8	4960.0000	34.50	4.82	-40.53	51.91	50.70	74.00	23.30	Pass	V	PK
9	7440.0000	36.54	5.85	-40.82	48.23	49.80	74.00	24.20	Pass	V	PK
10	9920.0000	37.77	6.79	-40.48	40.91	44.99	74.00	29.01	Pass	V	PK
11	12400.000	39.54	7.86	-41.12	43.31	49.59	74.00	24.41	Pass	V	PK
12	15932.862	41.77	10.06	-43.33	44.92	53.42	74.00	20.58	Pass	V	PK

Page 85 of 97

Mode:			8DPSK	Transmit	ting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1999.9000	31.70	3.47	-42.61	65.03	57.59	74.00	16.41	Pass	Н	PK
2	2798.5799	32.88	4.24	-42.23	64.89	59.78	74.00	14.22	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	49.55	47.94	74.00	26.06	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	46.82	47.92	74.00	26.08	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	42.14	45.65	74.00	28.35	Pass	Н	PK
6	12010.000	39.31	7.60	-41.21	43.03	48.73	74.00	25.27	Pass	Н	PK
7	1998.2300	31.69	3.47	-42.61	36.00	28.55	54.00	25.45	Pass	Н	AV
8	2801.1299	32.88	4.24	-42.23	35.66	30.55	54.00	23.45	Pass	Н	AV
9	1998.8999	31.69	3.47	-42.61	66.88	59.43	74.00	14.57	Pass	V	PK
10	2804.5805	32.89	4.24	-42.23	56.73	51.63	74.00	22.37	Pass	V	PK
11	4804.0000	34.50	4.55	-40.66	47.41	45.80	74.00	28.20	Pass	V	PK
12	7206.0000	36.31	5.81	-41.02	46.98	48.08	74.00	25.92	Pass	V	PK
13	9608.0000	37.64	6.63	-40.76	42.31	45.82	74.00	28.18	Pass	V	PK
14	12010.000	39.31	7.60	-41.21	42.42	48.12	74.00	25.88	Pass	V	PK
15	1997.2199	31.68	3.47	-42.61	36.01	28.55	54.00	25.45	Pass	V	AV

Mode:			8DPSK	Transmit	ting	111	Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2800.3800	32.88	4.24	-42.23	64.79	59.68	74.00	14.32	Pass	Н	PK
2	4882.0000	34.50	4.81	-40.60	52.13	50.84	74.00	23.16	Pass	Н	PK
3	7323.0000	36.42	5.85	-40.92	48.28	49.63	74.00	24.37	Pass	Н	PK
4	9764.0000	37.71	6.71	-40.62	41.04	44.84	74.00	29.16	Pass	Н	PK
5	12205.000	39.42	7.67	-41.16	43.07	49.00	74.00	25.00	Pass	Н	PK
6	13643.709	39.49	8.13	-41.19	45.76	52.19	74.00	21.81	Pass	Н	PK
7	2803.4300	32.89	4.24	-42.23	35.68	30.58	54.00	23.42	Pass	Н	AV
8	2803.3803	32.89	4.24	-42.23	66.05	60.95	74.00	13.05	Pass	V	PK
9	4882.0000	34.50	4.81	-40.60	49.48	48.19	74.00	25.81	Pass	V	PK
10	7323.0000	36.42	5.85	-40.92	48.24	49.59	74.00	24.41	Pass	V	PK
11	9764.0000	37.71	6.71	-40.62	40.43	44.23	74.00	29.77	Pass	V	PK
12	12205.000	39.42	7.67	-41.16	44.38	50.31	74.00	23.69	Pass	V	PK
13	15032.802	40.43	9.31	-42.36	46.29	53.67	74.00	20.33	Pass	V	PK
14	2805.7103	32.89	4.24	-42.22	35.67	30.58	54.00	23.42	Pass	V	AV

Mode:			8DPSK	Transmit	ting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2799.9800	32.88	4.24	-42.23	55.32	50.21	74.00	23.79	Pass	Н	PK
2	4960.0000	34.50	4.82	-40.53	53.93	52.72	74.00	21.28	Pass	Н	PK
3	7440.0000	36.54	5.85	-40.82	47.32	48.89	74.00	25.11	Pass	Н	PK
4	9920.0000	37.77	6.79	-40.48	41.25	45.33	74.00	28.67	Pass	Н	PK
5	12400.000	39.54	7.86	-41.12	42.66	48.94	74.00	25.06	Pass	Н	PK
6	13085.672	39.57	8.01	-41.65	46.76	52.69	74.00	21.31	Pass	Н	PK
7	2802.8400	32.88	4.24	-42.23	35.68	30.57	54.00	23.43	Pass	Н	AV
8	1996.6997	31.68	3.47	-42.62	65.13	57.66	74.00	16.34	Pass	V	PK
9	2802.9803	32.88	4.24	-42.22	56.82	51.72	74.00	22.28	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	51.36	50.15	74.00	23.85	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	49.23	50.80	74.00	23.20	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	41.40	45.48	74.00	28.52	Pass	V	PK
13	12400.000	39.54	7.86	-41.12	43.05	49.33	74.00	24.67	Pass	V	PK
14	1997.4497	31.68	3.47	-42.61	36.02	28.56	54.00	25.44	Pass	V	AV

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

