

概述

SL3038 是一款支持宽电压输入的 开关降压型 DC-DC 控制器,最高输入电 压可超过 150V。SL3038 具有低待机功 耗、高效率、低纹波、优异的母线电压调 整率和负载调整率等特性。支持大电流输 出,输出电流可高达 10A 以上。

SL3038 同时支持输出恒压和输出 恒流功能。通过设置 CS 电阻可设置输出 恒流值。通过设置 FB1、FB2 引脚的分压 电阻可设置输出恒压值。

SL3038 采用固定频率的 PWM 控制方式,典型开关频率为 140KHz。轻载时会自动降低开关频率以获得高的转换效率。

SL3038 内部集成软启动以及过温保护电路,输出短路保护,限流保护等功能,提高系统可靠性。

SL3038 采用 SOP8 封装。

特点

- ◆ 宽输入电压范围: 8V~150V
- ◆ 输出电压从 5V 到 30V 可调
- ◆ 支持输出恒压恒流
- ◆ 支持输出 12V/10A, 5V/3.1A
- ◆ 高效率:可高达 96%
- ◆ 工作频率: 140KHz
- ◆ 低待机功耗
- ◆ 内置过温保护
- ◆ 内置软启动
- ◆ 内置输出短路保护

应用

- ◆ 车充、电池充电
- ◆ 恒压源
- ◆ 电动汽车、电动自行车、电瓶车
- ◆ 扭扭车、卡车

典型应用电路图

封装及管脚分配

管脚定义

管脚号	管脚名	描述		
1	DRV	接外部 MOS 管栅极		
2	VDD	芯片电源		
3	FB1	输出反馈电压正端采样		
4	FB2	输出反馈电压负端采样		
5	VCC	内部 5V LDO 输出,接电容。		
6	VSN	电感电流检测电阻负端		
7	VSS	芯片地		
8	VSP	电感电流检测电阻正端		

内部电路方框图

极限参数 (注1)

符号	描述	参数范围	单位
VDD	VDD 端最大电压	33	V
Vmax	FB1,FB2,VCC,VSP,VSN,DRV 脚电压	-0.3~6	V
P _{SOP8}	SOP8 封装最大功耗	0.8	W
T_{A}	工作温度范围	-20~85	°C
$T_{ m STG}$	存储温度范围	-40~120	°C
T_{SD}	焊接温度范围(时间小于30秒)	240	°C
V _{ESD}	静电耐压值 (人体模型)	2000	V

注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

宽电压开关降压型DC-DC转换器

电特性(除非特别说明, V_{DD} =12V, T_{A} =25 $^{\circ}$ C)

参数	符号	测试条件	最小值	典型值	最大值	单位		
电源电压								
VDD 钳位电压	V_{DD}	IVDD<10mA		33		V		
欠压保护开启	VDD_ON	V _{DD} 上升		6		V		
欠压保护关闭	VDD_OFF	VDD下降		4		V		
电源电流	电源电流							
工作电流	I_{OP}	DRV负载 1nF电容		1		mA		
启动电流	I _{STARTUP}	VDD=5V		40	100	uA		
功率管电流限流								
过流保护阈值	VCS_LMT			300		mV		
输出电流与输出电压采样								
VSP,VSN 电压降	VCS		145	150	155	mV		
FB1,FB2 电压差	VFB		369	380	391	mV		
开关频率								
开关频率	FS			140		KHz		
DRV 驱动						_		
DRV 脚电压	V_{DRV}			5.5		V		
DRV 上升时间	T_{RISE}	DRV 脚接 1nF 电容		30		ns		
DRV 下降时间	$\mathrm{T_{FALL}}$	DRV 脚接 1nF 电容		30		ns		
过温保护								
过温保护	OTP_TH			150		°C		
LDO	LDO							
VCC 电压	VCC			5.5		V		

典型特性曲线

输出电压与输入电压及输出电流特性曲线(V0=5V)

效率与输入电压及输出电流特性曲线(V0=5V)

输出电压与输入电压及输出电流特性曲线(V0=12V)

效率与输入电压及输出电流特性曲线(V0=12V)

应用指南

概述

SL3038 是一款兼容宽输入电压范围的开关降压型DC-DC控制器。其支持输入电压可超过150V。

SL3038 采用固定频率的PWM峰值电流模控制方式,具有低待机功耗、快的响应速度,以及优异的母线电压与负载调整率。典型开关频率为 140KHz。轻载时会自动降低开关频率以获得高的转换效率。

SL3038 同时支持输出恒压与输出恒流。 SL3038 内部集成软启动以及过温保护电路,输出短路保护,限流保护等功能,提高系统可靠性。

最大输出电流设置

最大输出电流通过连接于VSP与VSN之间的电阻设置(参见图1应用电路图):

$$IOUT_MAX = \frac{VCS}{R5}$$

VCS 典型值为 150mV。例如 R5=100mOhm 则输出限流为 1.5A。

输出电压设置

通过连接于FB1, FB2 脚的分压电阻R1, R3, R2, R4 设置输出电压。电阻选择应满足R1=R2, R3=R4。

$$VOUT = \frac{R3 + R1}{R1} * VFB$$

其中 VFB 典型值为 380mV。

电感取值

电感典型取值在 33uH到 100uH之间,大的电感值可获得小的纹波电流有助于提高效率。另一方面需注意电感的ESR, ESR过大会降低效率。

MOS 管选择

首先要考虑MOS管的耐压,一般要求MOS管的耐压高过最大输入电压的 1.2-1.5 倍以上。此外,MOS管的导通电阻RDSON要小,RDSON越小,损耗在MOS管上的功率也越小,系统转换效率就越高。然而RDSON并非越小越好,因为另外一方面还需考虑MOS管的节电容,节电容过大则会导致开关损耗加大从而降低转换效率。需综合评估折衷RDSON和节电容以获得高的转换效率。

过温保护

芯片内部集成过温保护,当芯片温度达到过温保护点(典型值为150度)时,系统会关断功率管,从而限制输入功率,增强系统可靠性。

封装信息

SOP8 封装尺寸图:

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0.061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0. 006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3. 800	4. 000	0. 150	0. 157	
E 1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	