

Fakultet for Teknologi og Realfag

Eksamen vår 2024

Emnekode: MA-111

08. mai 2024 09:00 - 12:00

Generell informasjon

Antall sider inkl. forside: 3

Tillatte hjelpemidler: Vedlagt formelark og kalkulator. Se vedlagt formelark på slutten av oppgavesettet. Merknader:

- Hver oppgave teller like mye ved sensur.
- Skriv ned oversiktlige svar og vis alle nødvendige mellomregninger skriv ned hva du gjør og hvorfor du gjør det.

Kontakt under eksamen: Vuk Milanovic, tlf: 900 46 227, e-mail: vuk.milanovic@uia.no

Oppgave 1

Gitt to vektorer $\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ og $\vec{b} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, regn ut $\vec{v} = \vec{a} - 2\vec{b}$.

Tegn vektorene \vec{a}, \vec{b} og \vec{v} som piler i et koordinatsystem.

Oppgave 2

Regn ut vinkelen θ mellom vektorene \vec{a} og \vec{b} fra Oppgave 1.

Oppgave 3

Multipliser matrisa $\mathbf{V} = \begin{bmatrix} 1 & -1 \\ 1 & -2 \end{bmatrix}$ med vektoren \vec{b} fra Oppgave 1.

Oppgave 4

Regn ut \mathbf{AB} når du vet at: $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}$, og $\mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Oppgave 5

Regn ut \mathbf{DC} for følgende matriser: $\mathbf{C} = \begin{bmatrix} 1 & 3 \\ -1 & -3 \\ 0 & 1 \end{bmatrix}$, og $\mathbf{D} = \begin{bmatrix} 2 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix}$.

Oppgave 6

Vis at $\mathbf{S} = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$ er ei skaleringsmatrise.

Oppgave 7

Finn egenverdiene og egenvektorene til matrisa ${\bf S}$ fra Oppgave 6.

Oppgave 8

Lag matrisa $\mathbf{R}(180^{\circ}, \mathbf{p})$ som roterer 180° mot klokka om punktet $\mathbf{p} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. (Bruk homogene koordinater)

Oppgave 9

Bruk matrisa **R** fra Oppgave 8 til å roterere vektorene $\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ og $\vec{v} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, for å vise at vektorene blir rotert som de skal. Tegn figur.

Oppgave 10

Finn matrisa $\mathbf{R}(\vec{n}, \theta)$ som roterer vektorer 90° i rommet om z-aksen. Sjekk svaret ved å regne ut at $\mathbf{R}(\vec{n}, \theta)\vec{u} = \vec{u}$, der $\vec{u} = \vec{n}$.

Formler og uttrykk

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$tr(M) = m_{11} + m_{22}$$

$$\det(\mathbf{M}) = m_{11}m_{22} - m_{12}m_{21}$$

$$g = \frac{1}{2}(m_{11} + m_{22} \pm \sqrt{(m_{11} - m_{22})^2 + 4m_{12}^2})$$

$$\vec{u} = \begin{bmatrix} m_{12} \\ g - m_{11} \end{bmatrix}$$

$$\mathbf{R}(heta) = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

$$\mathbf{T}(\mathbf{p}) = egin{bmatrix} 1 & 0 & p_1 \ 0 & 1 & p_2 \ 0 & 0 & 1 \end{bmatrix}$$

Rotasjon i rommet: $\mathbf{R}(\vec{n}, \theta) = \mathbf{I}\cos\theta + \mathbf{N}(1-\cos\theta) + \mathbf{A}\sin\theta$, der

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} n_1^2 & n_1 n_2 & n_1 n_3 \\ n_2 n_1 & n_2^2 & n_2 n_3 \\ n_3 n_1 & n_3 n_2 & n_3^2 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix}$$