Chen-Zhu Xie

谢尘竹

Portfolio: 🗘 🔼 in

Scholar:

Preference: 6

Contact: **∠** X

Personality: aries INTP ab

Education

Nanjing University	College of Engineering and Applied Sciences Nanjing, Jiangsu					
Doctor of Philosophy	Optical Engineering	Q.E. − Top 15%	Nonlinear Fourier Optics 🕡 – 2025.06			
Dissertation: "Analytic 3D vector linear non-uniform & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\epsilon}}, \bar{\bar{\chi}}$ dielectrics"						
Master 's Studies	Quantum Electronics	Courses Score – 93.5 🌎	THz OAM Source			
Northeastern University School of Physics, College of Science Shenyang, Liaoning						
Northeastern Unive	ersity Sch	ool of Physics, College of Scien	Shenyang, Liaoning			
Northeastern Unive	Applied Physics	ool of Physics, College of Scien	Shenyang, Liaoning DDTank Aimbots - 2020.06			
Bachelor of Science	Applied Physics	GPA Rank − 1/400	, 6,			

Research Projects

Vector NonlinearFourier Crystal Optics

Solving
$$\left[(\nabla \times)^2 - k_0^2 \bar{\bar{\epsilon}} \cdot \right] \underline{\boldsymbol{E}}(\boldsymbol{r}) = k_0^2 \bar{\bar{\chi}} : \mathcal{F}_{\omega}^{-1} \left[\widetilde{\boldsymbol{E}}_{\mathrm{p}} \widetilde{\boldsymbol{E}}_{\mathrm{p}} \right] (\boldsymbol{r}) \right]$$
 analytically

- First & fastest white box solver ever for this inhomogeneous $\mathbb{C}^3(\mathbb{R}^3)$ wave equation \circ or other similar equations, with unprecedented efficiency-accuracy product
- No competitors for the time being: other methods or software including
 k-space RK4, pseudo-spectral, SSF, Green's Function methods, FDTD, COMSOL...
- \bullet Reproduced well-known papers, all of which provide either zero or wrong theory:
 - o Nat.Photo. #proven theoratically wrong by this project #femtosecond pump
 - \circ O.E. #Bloembergen's legacy2 #experiment | O.M.E. #z-component
 - \circ O.E. | Q.E. #high N.A. $\#\bar{\chi}$ anisotropy

Complex Vector Linear

Analytic
$$E(r) \in \mathbb{C}^3(\mathbb{R}^3)$$
 to $\left[(\nabla \times)^2 - k_0^2 \bar{\varepsilon} \cdot \right] E(r) = 0$ where $\varepsilon_{ij} \in \mathbb{C}$ 2023.02 –

- Fourier Crystal Optics
- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- Next generation will come really close to the exact solution with highly !hermitian ε̄
 Reproduced well-known papers, some are purely experimental (too hard to model):
 - teproduced wer known papers, some are purely experimental (too hard to model).
 - \circ J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.
 - o JOSA.A. | O.E. #tightly focus #\bar{\varepsilon} anisotropy | Light.Sci.App. | O.E. | decks 1 2 3 ... \ \bar{\varepsilon}

Real Scalar Nonlinear

Closed-form
$$E_3(r) \in \mathbb{C}(\mathbb{R}^3)$$
 in $\left[\nabla^2 + k_3^2 \right] E_3(r) = -k_{03}^2 \chi(r) E_1(r) E_2(r)$ 2022.02 –

Fourier Crystal Optics

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Reproduced well-known papers & models with maximum accuracy & efficiency:
 - o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
 - \circ L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
 - O.L. | P.R.A.

decks 1234 ... (7)

Scientific Activities

[0] The 4th Nanjing University Doctoral Interdisciplinary Innovation Forum	Nanjing, Jiangsu
"Analytic vector linear & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\epsilon}}, \bar{\bar{\chi}}$ dielectrics" Talk [slides]	2024.05.30
[-1] 2023 CSOE-NJU ¹ Book Club Meeting & Sharing Session "A guided tour to Ray & Wave Optics Simulation" Talk [slides]	Nanjing, Jiangsu 2023.12.09
[-2] Academic Café Salon of the Research Group	Nanjing, Jiangsu
"Bi-directional notes on Nonlinear Optics in a roam-like app: RoamEdit" Talk [*.pdf]	2021.05.21

Publications

- [0] P. Chen, X. Xu, T. Wang, C. Zhou, D. Wei, J. Ma, J. Guo, X. Cui, X. Cheng, C. Xie, S. Zhang, S. Zhu, M. Xiao, and Y. Zhang, Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing, Nature Communications 14, 5523 (2023)
- [-1] J. Guo, Y. Zhang, H. Ye, L. Wang, P. Chen, D. Mao, C. Xie, Z. Chen, X. Wu, M. Xiao, and Y. Zhang, Spatially Structured-Mode Multiplexing Holography for High-Capacity Security Encryption, ACS Photonics 10, 757–763 (2023)

Academic Focus

Next generation high N.A. 3D vector non-uniform analytic	c linear & nonlinear Fourier crystal optics 😱	2024.06 -
!Paraxial k_0^{ω} High N.A. 3D vector non-uniform analytic	c linear & nonlinear Fourier crystal optics 😱	2024.03 -
Emphasizing G_{xyz}^{ω} 3D vector non-uniform analytic	c linear & nonlinear Fourier crystal optics 😱	2023.12 -
Involving $\bar{\bar{\chi}}^{(2)}_{\omega}$ anisotropy Vector non-uniform analytic	c linear & nonlinear Fourier crystal optics 😱	2023.06 -
!Unitary $G^\pm_\omega \Leftarrow$!Hermitian $\bar{\bar{\varepsilon}}^\omega_{\mathrm{r}} \Rightarrow$ Non-uniform analytic	c linear & nonlinear Fourier crystal optics 😱	2023.03 -
Solution E_{ω}^{\pm} to $(\nabla^2 + k_{\omega\pm}^2) E_{\omega}^{\pm} \propto P_{\omega\pm}^{(2)}$ Analytic	c linear & nonlinear Fourier crystal optics 😱	2022.09 -
Solution $\mathcal{F}[E_3] = \mathcal{F}[f(\mathcal{F}^{-1}[\cdot])]$ to the Eq. below Not	nlinear angular spectrum theory for SFG 😱	2022.06 –
Solution $\mathcal{F}[E_3] = \iiint \cdot \text{to} \left(\nabla^2 + k_3^2\right) E_3(r) \propto P_3^{(2)}(r)$	Nonlinear convolution solution to SFG 😱	2022.03 -
Nonlinear THz LiNbO3-based metasurface	Quit THz project formally COMSOL	- 2022.01
BWOPO + THz optical parametric amplification	Mathematica BookxNote Pro	- 2021.12
THz backward optical parametric oscillator (BWOPO)	Mathematica VBA Excel	- 2021.11
Multi-cycle THz orbital angular momentum (OAM) source	RoamEdit Blender	- 2021.11
Narrow-band THz OAM source via Optical Rectification (OR)	Python Blender	- 2021.10
\bigcirc Electricity $\xrightarrow{\text{produce}}$ Acoustics $\xrightarrow{\text{modulate}}$ Optics	RoamEdit VBA Excel	- 2021.07
\bigcirc Visible Photons $\xrightarrow{\text{SPDC}}$ THz Spectroscopy	BookxNote Pro GeoGebra VBA Excel	- 2021.06
Cavity Phase Matching = Sheet OPO	Paint 3D RoamEdit GeoGebra VBA Excel	- 2021.05
THz Holography via Optical Rectification	Matlab GeoGebra VBA Excel	- 2021.01
\bigcirc Femtosecond laser $\xrightarrow{\text{Optical Rectification}}$ Terahertz (THz)	GeoGebra VBA Excel	- 2020.12
Multicycle THz pulse generation by OR in LiNbO ₃ crystals	VBA PowerPoinT	- 2020.10

 $^{^{1}}$ The Nanjing University student branch of the Chinese Society for Optical Engineering

Honors & Awards

		Doctoral Interdisciplinary Forum (Oral)	2nd place	0	¥500	Nanjing	U.	2024.05
	Academia	Doctor's Qualification Exam (Oral)	Excellent	(Top 15%	Nanjing	U.	2024.01
		Bachelar Thesis 🕠 & Defense	Excellent	()	1/90	Northeastern	U.	2020.06
	Competition	Three Provinces Achievement Expo	Exhibition	()	Leader	Three Pr	OV.	2019.10
		"Challenge Cup" Tech Competition	Grand prize	0	Leader	Liaoning Pi	OV.	2019.06
	Scholarships	Academic Fellowship	1st class		¥40,000	Nanjing	U.	2020-24
	-	"Jinchuan" Scholarship	1st place	0	¥5,000	Northeastern	U.	2019.04
	& Fellowships	Academic Scholarship	1st place		¥2,000	Northeastern	U.	2018.06
		Entrance Scholarship	3rd place		¥5,000	Leshan No.1 H	I.S.	2013.09
	Honors	Graduation with Honor	Outstanding	5		Northeastern	U.	2020.07
	&	League Member	Excellent	0		Northeastern	U.	2019.11
	Titles	Undergraduate Student	Excellent	()		Northeastern	U.	2018.12
	Mambayahina	Chinese Society for Optical Engineering	Member	()		Nanjing	U.	2021-25
N	Memberships	"Qian Sanqiang" Talent Class	Head	(I.H.E.P.	(2017-20

Personal Projects

Behind NLAST ²	0 ightarrow 1 : Techniques crafted from scratch in my acedemic project : NLAST	2022.02 -				
	→ Managed to realize <i>tree</i> -print feature in CMD lines without knowing <i>any tree</i> -packages					
	→ in order to visualize run-time Call Stack with buried checkpoints & display crucial info					
	to understand the <i>hierarchical structure</i> of my code from a more <i>abstract</i> perspective					
	Enabled <i>multi-threads</i> to accelerate <i>for loops</i> in python while preserving the <i>loops'</i> ord					
	→ Implemented through utilizing the <i>producer-consumer model</i> (producer = thread pool)	ducer = thread pool)				
	Allow users to select which parts of the codes in the for loops to parallelize in CPU					
	Transform <i>multi-layer for loops</i> into <i>nested multi-threads</i> : each thread = a new thread p	ool				
	Future model will move away from <i>python</i> as the primary language & shift to GPU					
	• Favoring GPU is driven by "fields in physics = arrays/matrices in math/programs"					
	→ Haven't decided which to employ: CUDA, Jax, webGL2, webGPU, Mojo or Bend?					
	→ Developed a log file system to track & record the operating status for debugging					
	→ to output script parameters (**kwargs) for rapid reproducibility of data in the future					
	to store data files & folders, and their metadata for swift data import and reutilization					
	Achieved automatic skipping of functions that return repeated values stored in memory					
	via @decorators: let precomputation assess whether to execute the decorated function					
,	→ Wrap <i>matplotlib</i> into plot_1d(, _2d, _3d, .gif) for data visualization					
	→ also sped up by customized multi-threading Matlab Mathematica JavaScr	ipt Python 🕠				
abView Projects	BB84 QKD protocol simulation & distributed optical fiber sensing	- 2021.06				
	→ Verified the information security of photon polarization state-related BB84 protocol	C				
	Visualized the distribution of anomalies along the fiber optic cable from user data	LabView G				

²Non-linear Angular Spectrum Theory (= Nonlinear Fourier Optics in ??)

Hanging Assist AFK/Bot script for game \[\text{Duel City} \] — a knock-off \[\text{Yu-Gi-Oh} \] -2020.04 Automatic matching: Players (PVP), NPCs (PVE) • Automatic switching: Multiple accounts supported + Anti-disconnection • Display program stages: Real time understanding of current software state • Stackable record: Incrementally output history for every hang-up to the log file.ini ▶ which is also loaded as the configuration file for the next boot • to restore the program state from the last exit EPL 🞧 Extended 1A2B A Code-breaking Game \lceil Bulls and cows \rfloor : Guessing 4 digits \rightarrow 1-9 digits -2019.09• Hardware - MicroController (C8051F350.h) version of Original 1A2B: Guessing 4 numbers • Software - VC++6.0 version of Upgraded 1A2B: Guessing 1-9 numbers Keil.C | C++ 🔼 😱 **DDTank Aimbots** -2018.04An inverse solving toolkit for a projectile game similar to Angry Birds Established an aerodynamic model with air resistance R = -kv for the game DDTank ightharpoonup by solving $v' \propto R + F$, where driving force F = gravity G + wind force W \rightarrow which lead to the core transcendental equation $1 - e^{kt} + kt = k^2 M(\mathbf{F}; \Delta \mathbf{r}, \hat{\mathbf{v}}_0)$ \rightarrow that can be numerically solved by Newton's method for t with given $k, F; \Delta r, \hat{v}_0$ Finally, for each Δr , \hat{v}_0 , one can obtain corresponding initial velocity $v_0(k, F; t, M)$ $lue{}$ after k, F are determined (by the game engine itself) $ightharpoonup v_0$ ends up the very info required to accurately hit an enemy at a distance of Δr from you Software Features: multi-OS/end, multi-hit mode, multi-trajectory, multi-thread supported → Multi-OS: classic Web game on Windows, Mobile game on Android & Android Emulator \rightarrow Multi-hit mode: charge-mode for value v_0 , drag mode (like angry birds) for extended curve → Multi-trajectory: predicts up to $6 = (1+2) \cdot 2$ trajectories for the player: split 3 + backward 3→ Multi-threading: succeeded in coordinating multiple timers to implement multi-threading Capturing game data semi-automatically with computer vision purely → call *dm.findmulticolorEX()* in dm.dll for pixel-level monitoring VBA Excel | E4A | EPL 🔼 😯 Three e-books Freely explored math, physics, and programming with raw intellect -2017.09• Book 1: mainly on mathematics, some intriguing chapters are: ▶ Multinomial theorem: $(\Sigma_{i=1}^n a_i)^m = \sum_{\substack{n \\ \Pi_{i=1}^n b_i!}} \Pi_{i=1}^n a_i^{b_i}$ over $\{b_i \geq 0\}$, where $\Sigma_{i=1}^n b_i = m$ → Strive to get the general formula for the n-th derivatives $f(g(x))^{(n)}$ of a composite function → Connection between the sums of certain series and the indefinite integrals of their terms \rightarrow Explaining Euler's formula a+b-c=n through topology → Retracing the birth of the determinant calculation rules Pook 2: up to 12 programs designed to solve mathematical / physical problems → Multinomial theorem \Longrightarrow Microstate count $\Omega_l = \frac{(g_l + a_l - 1)!}{(g_l - 1)!a_l!}$ of Bose-Einstein systems \rightarrow All solutions $\{b_i\}$ that meet the condition $\sum_{i=1}^m i \cdot b_i = m$ of the Faà di Bruno Formula \rightarrow Deep recursion algorithms for partition number P(n) & the two aforementioned contexts \longrightarrow General solution $\{x_i\}$ of multivariable linear Diophantine equation $\sum_{i=1}^n a_i \cdot x_i = b$ \rightarrow Complete solution $v_{\text{max}}, v_{\text{min}}$ to the Double Comb/Ruler problem \rightarrow Minimum integer solution x, y of linear Diophantine equation $a \cdot x + b \cdot y = c$ ▶ Book 3: geometry-related mathematics & physics ▶ Spherical trigonometry: from which I designed a non-Euler angle rotation operator for NLAST \bullet which converts direction θ , ϕ of a 3D real vector v between two coordinate systems ▶ Special relativity: Had it been animated (by Manim?), it would have looked stunning C++ 🞧

Historical Details

Doctoral -	Activities 🕠	Academia 🜎	- 24 – 27 clock4	2022.09 – 2025.06
Postgraduate -	Activities Courses	Academia 🜎	- 22 – 24 clock3	2020.09 - 2022.06
Undergraduate -	Activities Courses		- 18 – 22 clock2	2016.09 – 2020.06
Senior-high-school -	Activities 🕠		- 15 – 18 clock1	2013.09 – 2016.06