CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:

- 1. Student Name: M.V.KANAKA SUDHEER
- 2. College: PARUL UNIVERSITY
- Department: CSE(AI)

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

PROPOSED SOLUTION

- To enable rapid and accurate fault detection and classification in a power distribution system, we propose a supervised machine learning-based model trained on electrical measurement data such as voltage and current phasors.
- Data Acquisition & Preprocessing
- Collect synchronized electrical measurements (voltage and current phasors) from PMUs (Phasor Measurement Units) or simulation environments (e.g., MATLAB Simulink, PSCAD).
- Simulate or label events as:
 - Normal condition
 - Line-to-Ground Fault (LG)
 - Line-to-Line Fault (LL)
 - Double Line-to-Ground Fault (LLG)
 - Three-Phase Fault (LLL)
- Feature Extraction
- Extract meaningful features to represent system behavior during faults:
- Time-domain features: RMS values, peak amplitude, zero-crossing rate
- Frequency-domain features: FFT coefficients, harmonic content
- Phasor features: Magnitude and angle of voltage and current phasors
- Derived features: Sequence components (positive, negative, zero), impedance trajectories

SYSTEM APPROACH

To design an efficient and intelligent fault detection and classification system for a power distribution network

Problem Definition

- Clearly define the classification problem:
 - Binary classification: Normal vs Fault
 - Multi-class classification: Type of fault (LG, LL, LLG, LLL)
- Objective: Reduce response time and improve fault localization accuracy.

ALGORITHM & DEPLOYMENT

Algorithm

- The fault detection and classification task involves two stages:
- Fault Detection (Binary Classification)
- Fault Type Classification (Multi-Class Classification)

The goal is to predict future power demand using historical load data. This helps in proactive load balancing and enhances fault prevention. specifically with an **LSTM neural network** (or ARIMA/Prophet if using classical methods)

RESULT

edunet

Prediction results

Display format for prediction results

Table view JSON view

prediction

1 50.0224609375

2

CONCLUSION

In this project, we successfully developed a comprehensive machine learning-based solution for fault detection, classification, and power load prediction in a power distribution system. By leveraging electrical measurement data such as voltage and current phasors, our system can accurately identify and classify various fault types including line-to-ground (LG), line-to-line (LL), double line-to-ground (LLG), and three-phase (LLL) faults.

FUTURE SCOPE

The proposed machine learning-based system lays a strong foundation for intelligent fault diagnosis and load forecasting in power distribution networks. However, there are several directions for further enhancement and practical adoption

REFERENCES

R. Das and T. S. Sidhu,

"A Fault Detection and Classification Scheme for Transmission Lines Using Artificial Neural Network",

IEEE Transactions on Power Delivery, vol. 20, no. 4, pp. 2541–2546, 2005.

M. Kezunovic,

"Smart fault location for smart grids",

IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 11–22, 2011.

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Kanaka Sudheer

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 17, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/5ed4c8c9-766b-4522-9059-7357e69d7e0c

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Kanaka Sudheer

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 21, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/565e3e1f-e0da-42fb-be3f-027112132c60

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Kanaka Sudheer

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 26 Jul 2025 (GMT)

Learning hours: 20 mins

GITHUB:-https://github.com/kanakasudheer/fault_detection

THANK YOU

