Welcome!

ELEC 8560 – Computer Networks

Introduction

1

Outline

- What is the Internet?
- Internet structure
- Protocol layers models

- Recommended reading: Forouzan Chapter 1
- Extra reading: Kurose and Ross Chapter 1

ELEC 8560 - Computer Networks - Dr. Sakr

Outline

- What is the Internet?
- Internet structure
- Protocol layers models

ELEC 8560 - Computer Networks - Dr. Sakr

3

Data Communication

- Data communication is the exchange of data between two devices via some form of transmission media
- A data communications system has five components: sender, receiver, message, transmission medium, and protocol (set of rules)

ELEC 8560 - Computer Networks - Dr. Sakr

,

Data Flow

- Simplex: Only one of the two connected devices can send or receive
- Half-duplex: Each station can send or receive, not at the same time
- Full-duplex: Both stations can send or receive at the same time

5

Networks

- A network is the interconnection of a set of devices capable of communication
- Devices can be:
 - Host: a large computer, desktop, laptop, workstation, cellular phone, printer, etc.
 - Connecting device to forward data: a router, switch, etc.
- Devices are connected by communication links
- Networks must meet certain criteria:
 - Performance: delay, throughput, etc.
 - Reliability: packet losses, robustness, etc.
 - Security

mobile network

ELEC 8560 - Computer Networks - Dr. Sakr

Physical Topology

 Topology of a network is the geometric representation of the relationship of all the links and devices (nodes) to one another

Switch or Hub

■ Basic topologies:

• Mesh: fully-connected, every device has a dedicated point-to-point link to every other device (i.e., n(n-1) links)

 Star: every device has a dedicated point-to-point link to a central controller

 Bus: multipoint connection, all nodes are connected to a (backbone) bus cable

 Ring: every device has a dedicated point-to-point link to two devices on either sides

ELEC 8560 - Computer Networks - Dr. Sakı

7

7

Network Types

- A network can be of two types:
 - Local area network (LAN): usually privately owned and connects some hosts in a single office, building, or campus (i.e., limited in size)

 Wide area network (WAN): has a wider geographical span, spanning a town, a state, a country, or even the world

It is rare to see a LAN or a WAN in isolation today; they are connected to one another

→ an internetwork or internet

ELEC 8560 - Computer Networks - Dr. Sakr

Network of networks: Interconnected Internet Service Providers (ISPs)

- Billions of connected devices
 - Hosts: end systems
 - Packet switches: forward packets
 - Communication links: fiber, copper, radio, satellite, etc.
 - Protocols: HTTP, Skype, Ethernet, 4G, Wi-Fi, TCP, IP, etc.

ELEC 8560 - Computer Networks - Dr. Sakr

C

Outline

- What is the Internet?
- Internet structure
- Protocol layers models

ELEC 8560 - Computer Networks - Dr. Sakr

Internet Structure

- Network edge:
 - Hosts: clients and servers
 - · Servers often in data centers

ELEC 8560 - Computer Networks - Dr. Sakr

11

11

Internet Structure

- Network edge:
 - Hosts: clients and servers
 - Servers often in data centers
- Access networks and physical media:
 - Wired and wireless communication links
 - Home (DSL, cable, FTTH), cellular (3G, 4G, 5G), or enterprise (Ethernet, Wi-Fi) networks

ELEC 8560 - Computer Networks - Dr. Sakr

Internet Structure

- Network edge:
 - · Hosts: clients and servers
 - · Servers often in data centers
- Access networks and physical media:
 - Wired and wireless communication links
 - Home (DSL, cable, FTTH), cellular (3G, 4G, 5G), or enterprise (Ethernet, Wi-Fi) networks
- Network core:
 - Interconnected routers
 - Forwards packets from one router to the next, across links on path from source to destination

ELEC 8560 - Computer Networks - Dr. Sakr

13

13

Internet Structure (cont.) Given millions of access ISPs, how to connect them together? connecting each access ISP to each other directly doesn't scale each other directly doesn't scale ELEC 8560 - Computer Networks - Dr. Sakr

15

Outline

- What is the Internet?
- Internet structure
- What is a protocol?
- Protocol layers models

ELEC 8560 - Computer Networks - Dr. Sakr

What is a Protocol?

- A protocol is a set of rules that governs data communication
- It define the format, order of messages sent and received among nodes, and actions taken on message transmission and reception
- Sender, receiver, and all intermediate devices need to follow to be able to communicate directly

18

ELEC 8560 - Computer Networks - Dr. Sakr

17

Example: A Three-layer Protocol

- Each layer perform two opposite task in each direction
- Notice the logical connection between each peer layers:
 - An imaginary direct connection through which they can send and receive messages

TCP/IP Protocol Stack

- Transmission Control Protocol/Internet Protocol
- A 5-layer protocol used in the Internet today
 - Application: supporting network applications
 - HTTP, IMAP, SMTP, DNS
 - Transport: process-process data transfer
 - TCP, UDP
 - Network: routing of datagrams from source to destination (host-to-host connection)
 - IP, routing protocols
 - Data Link: data transfer between neighboring network elements
 - Ethernet, 802.11 (Wi-Fi)
 - Physical: puts bits "on the wire"

Application

Transport

Network

Data Link

Physical

ELEC 8560 - Computer Networks - Dr. Sakr

19

19

Services, Layering, and Encapsulation

Application

Transport

Network

Data Link

Physical

source

Application layer exchanges messages to implement some application service using services of transport layer

Transport layer protocol transfers M (e.g., reliably) from one *process* to another, using services of network layer

- Transport layer protocol encapsulates application layer message, M, with transport layer header H_t to create a transport layer segment
- H_t used by transport layer protocol to implement its service

Application

Transport

Network

Data Link

Physical

destination

2

ELEC 8560 - Computer Networks - Dr. Sakr

Example: End-to-End Communication via Internet Destination (B) Switches do not Router change objects H_t M H_n H_t M $H_n H_t M$ $H_n H_t M$ H₁ H_n H_t M Communication from A to B Router Link 2 Link 3 ELEC 8560 - Computer Networks - Dr. Sakr 24

Example: End-to-End Communication via Internet (cont.)

• Notice identical objects at peer layers

Switches are not shown because they do not change objects

26

OSI Model

- Open Systems Interconnection (OSI) by the International Organization for Standardization (ISO)
- Was expected to replace TCP/IP but did not happen

ELEC 8560 - Computer Networks - Dr. Sakr

27

27

Summary

- We covered:
 - · Network elements
 - Internet structure
 - What is a protocol?
 - Layering and service models

ELEC 8560 - Computer Networks - Dr. Sakr