- 1. Hi he estat pensant i em sembla que abans d'entrar en el que és la transfinitud en si hauríem de donar una volta per tot el que serien les bases generals de la **TEORIA DE CONJUNTS**.
- 2. Comencem pel començament: un *conjunt* és una col·lecció de coses que en diem *elements*.
- 3. Plot twist: no totes les col·leccions de coses són conjunts.
- 4. Va haver-hi un temps que hom creia que més o menys sí que ho són. Volent dir aquest "més o menys" que tampoc és que ningú s'hagués plantejat mai el tema amb gaire profunditat. Es tenia la noció intuïtiva que els conjunts són col·leccions de coses i s'anava fent.
- 5. En concret, al segle XIX, que és quan en Cantor i en Dedekind per qui em demanaven abans operaven, la cosa anava així.
- 6. En particular, s'acceptava tàcitament la validesa del que després s'ha vingut a anomenar "axioma de comprensió sense restriccions": donada una propietat qualsevol que poden tenir les coses, existeix el conjunt de coses que la satisfan.
- 7. Existeix el conjunt de nombres primers que conté precisament aquelles coses que compleixen la propietat "ser un nombre primer". Existeix el conjunt de coses de color blau que conté precisament aquelles coses que compleixen la propietat "ser de color blau".
- 8. També existeixen el *conjunt buit* \emptyset que respon a una propietat abstracta que no compleix cap cosa i per tant no té cap element i el *conjunt universal* $\mathbb U$ que respon a una propietat abstracta que compleixen totes les coses i per tant totes les coses en són elements.
- 9. Després van venir el segle XX i un paio que es deia Bertrand Russell que es va posar a pensar molt fort sobre aquesta noció.
- 10. Considerem un moment el conjunt universal que hem esmentat fa una estona. Hem dit que és aquell conjunt tal que totes les coses en són elements. I en particular, com que ell mateix és també una cosa doncs tenim que serà un element de si mateix.
- 11. Això que un conjunt sigui un element d'ell mateix pot semblar exòtic però és una propietat com qualsevol altra que segons l'axioma de comprensió que hem vist tindran alguns conjunts com el conjunt universal, el conjunt de tots els conjunts i molts altres.
- 12. Considerem ara la propietat complementària a aquesta. Els conjunts que **no** es tenen a ells mateixos com a element. Segons l'axioma de comprensió sense restriccions, aquesta propietat també ens defineix un conjunt: el conjunt de conjunts que no són element d'ells mateixos.
- 13. Anomenarem a aquest conjunt, jo què sé, K. I ens preguntem a continuació si K és un element d'ell mateix.
- 14. Suposant que efectivament K és un element d'ell mateix, per la pròpia definició de K això implica que no és un element d'ell mateix, cosa que contradiu la hipòtesi.

- 15. I si en canvi suposem que no ho és això vol dir que no compleix la propietat de no ser un element d'ell mateix, cosa que implica que sí que ho és, contradient altre cop la hipòtesi.
- 16. La mateixa existència del conjunt K, per tant, ens aboca a una contradicció. Hem trobat una col·lecció de coses que no pot existir com a conjunt.
- 17. No sé si en Bertrand Russell va ser el primer en topar amb aquesta idea, però segurament sí que va ser el primer en adonar-se que representava un problema molt greu. I per això s'anomena "la paradoxa de Russell".
- 18. El problema és que si tenim una matemàtica que pot demostrar coses que són òbviament mentida com l'existència d'aquest conjunt K, aleshores cap resultat que ens proporcioni aquesta ciència té cap valor perquè aquest podria ser tant veritat com mentida.
- 19. La cosa a més té una importància especial perquè el concepte de conjunt és absolutament ubic en la matemàtica. Seria molt difícil trobar un text matemàtic modern en que no fes aparició en algun moment.
- 20. Tant és així que de fet es pot arribar a desenvolupar tota la matemàtica a partir només de la teoria de conjunts i sense fer servir essencialment cap altre concepte que el de *conjunt pur*. Un conjunt pur és un conjunt tal que tots els seus elements són alhora conjunts purs.
- 21. Però tornem al problema de la inconsistència descobert per Russell. La manera com en general s'ha adreçat la qüestió és restringint la idea intuïtiva de conjunt per mitjà d'unes regles estrictes que no donin lloc a contradiccions.
- 22. Per arribar a afirmar "existeix el conjunt A amb totes les coses que compleixen la propietat P" necessitarem justificar aquesta existència seguint aquestes regles, entre les que de ben segur no hi haurà l'axioma que deia que ho podíem afirmar directament.
- 23. D'aquests jocs de regles en diem "sistemes axiomàtics" i se n'han anat proposant diversos des d'aleshores. De cadascuna de les teories de conjunts basades en aquests sistemes en diem una "teoria axiomàtica de conjunts".
- 24. De la teoria de conjunts amb la que treballaven els matemàtics del segle XIX o que s'ensenya encara avui dia als nens de primària, basada únicament en la noció intuïtiva de conjunt, en diem "teoria de conjunts naïf".

- 25. D'un sistema axiomàtic per la teoria de conjunts voldrem bàsicament tres coses:
 - 1. Que l'entitat que descrigui es correspongui a la nostra noció intuïtiva de conjunt.
 - 2. Que sigui *consistent*: que no ens pugui dur alhora a afirmar una cosa i la contrària com amb la paradoxa de Russell.
 - 3. Que sigui *complet*: que doni resposta a totes les qüestions que ens puguem plantejar sobre teoria de conjunts. O dit d'una altra manera, que donat qualsevol enunciat en el que apareguin conjunts, o ell o bé la seva negació es puguin demostrar a partir dels axiomes.
- 26. El punt 1 és subjectiu perquè d'intuïció cadascú té la seva i a tot al que podem aspirar és a un conveni. Hi ha una multiplicitat de teories de conjunts on en cadascuna el concepte "conjunt" té uns matisos diferents i una que convenim que dona lloc a les matemàtiques "estàndard".
- 27. A més aquí hi entren posicionaments filosòfics que són una qüestió bàsicament prematemàtica i que jo tot i tenir personalment triat el meu els trobo fruit d'una discussió més propera a la religió que a una altra cosa.
- 28. Hi ha per exemple una secta que es diuen els *finitistes* que rebutgen l'existència de conjunts infinits perquè la troben herètica o quelcom semblant.
- 29. De fet tampoc és que sigui un posicionament tan descabellat, si vas a mirar. Estem dient que el que fem és plasmar la nostra intuïció de conjunt com un joc de regles formals i l'infinit en si és un concepte que té ramificacions que desafien la intuïció.
- 30. Per exemple l'*Hotel Infinit de Hilbert*. Parlem un moment de l'Hotel Infinit de Hilbert.
- 31. Posem que ens trobem treballant a la recepció d'un hotel que té infinites habitacions. I que estem amb l'hotel ple fins la bandera. Totes les habitacions ocupades. En aquell moment arriba un client nou que vol una habitació.
- 32. La nostra experiència limitada als hotels finits ens diu que si tenim un hotel complet i arriba un client nou, no el podrem acomodar i li hem de dir que sentint-ho molt s'haurà de buscar un altre establiment.
- 33. Però en un hotel infinit sí que podrem obtenir una habitació lliure per ell encara que partim de tenir-les totes ocupades. Tot el que hem de fer és agafar cada client de l'habitació n i moure'l cap a la n+1 i després donar-li l'habitació 0 que ha quedat lliure al nou hoste.
- 34. Un finitista ens dirà que aquest resultat contraintuïtiu entra en conflicte amb el punt 1 dels que hem dit abans i per tant en la nostra teoria de conjunts no hi ha d'haver infinits.

- 35. Per altra banda, una matemàtica construïda només sobre conjunts finits és difícil que arribi a assolir la potència que té la normal de tota la vida. Com fas per exemple geometria analítica si no pots dir que un segment està format per infinits punts? Doncs ni idea.
- 36. Els punts 2 i 3, és a dir, que el sistema axiomàtic que adoptem per la teoria de conjunts a sigui consistent i complet, en canvi, sí que són qüestions perfectament objectivables. Però aquí entren Kurt Gödel i els seus teoremes d'incompletesa.
- 37. Gödel es va adonar que donat un sistema de la mena que estem tractant que sigui prou potent com per respondre qüestions aritmètiques bàsiques, seria possible traduir una afirmació com "aquesta afirmació no és demostrable en aquest sistema" en forma d'equació aritmètica que a continuació podríem introduir dins del propi sistema perquè ens proporcionés una resposta, generant una paradoxa de l'estil de la que hem vist abans amb Russell.
- 38. Per tant no és possible que si el nostre sistema és consistent sigui alhora complet i pugui resoldre totes les qüestions que li plantegem. Sempre hi haurà coses que des dels nostres axiomes no podrem ni demostrar ni refutar. Terrible.
- 39. La part d'expressar una oració en llenguatge natural com "aquesta afirmació no és demostrable en aquest sistema" en forma de proposició processable per un sistema axiomàtic formal es diu molt ràpid però és una liada en ella mateixa bastant important.
- 40. En llenguatge natural podem referir-nos a "aquesta frase" dins de la mateixa frase a la que ens estem referint saltant alegrement entre nivells de metallenguatge i el receptor ho entén sense més problema perquè el cervell humà és molt pràctic i té facilitat per aquestes coses.
- 41. Per exemple, podem dir "aquesta frase és mentida" creant una paradoxa d'autoreferència i qui ho sent de seguida entén la broma sense que el cervell li entri en un bucle infinit en processar-ho ni agafar-li una embòlia ni morir-se ni res.
- 42. Però fer-li aquest mateix joc a un sistema formal fet per distingir allò veritable d'allò fals d'una manera ben fonamentada és força més complicat. No tindrem manera de dir "aquesta frase" o "aquest sistema" així amb un adjectiu demostratiu i a cascar-la.
- 43. Haurem de buscar-nos la vida per declarar els conceptes de manera explícita. Es una mica com la llengua dels ents.
- 44. El que va haver de fer en Gödel per dur a terme això va ser d'alguna manera "programar" sobre paper en forma d'equacions aritmètiques el comportament d'un sistema axiomàtic mínim que pogués resoldre aquelles mateixes equacions aritmètiques.
- 45. El cop d'intuïció que devia fer falta per afrontar tota aquesta feinada avorridíssima amb la convicció que al final hi ha una conclusió formal valuosa és una cosa que sempre m'ha admirat bastant.

- 46. Una altra conseqüència dels teoremes d'incompletesa de Gödel és que la consistència d'un d'aquests sistemes no es pot arribar a demostrar d'una manera matemàtica.
- 47. I per tant mai podrem estar realment segurs que els axiomes que haguem escollit per parlar de conjunts no ens portin a una contradicció com va passar amb la teoria de conjunts naïf del segle XIX i la paradoxa de Russell.
- 48. Recapitulant doncs, de les tres coses que voldríem per un sistema axiomàtic que ens permeti discórrer amb rigor per la teoria de conjunts i, per extensió, per tota la matemàtica: una és subjectiva, l'altra no la podem tenir garantida i la tercera és impossible. Ai las.
- 49. Existeix un conjunt d'axiomes concret, però, que donat que sembla que a la seva manera satisfà *prou* tots tres punts s'ha pres per conveni general com que representa la teoria de conjunts (i per extensió la matemàtica) "estàndard".
- 50. Se'l coneix com a *ZFC*, amb les Z i F per Zermelo i Fraenkel, que són dos senyors, i la C de "axiom of choice". Quan parlem de conjunts sense dir res més s'entén que ens referim exactament a aquells ens que compleixen aquests axiomes i no a una altra cosa.
- 51. El sistema axiomàtic ZFC consta de nou axiomes i em temo que tuiter no és un lloc gaire adequat per entrar a detallar-los un per un, ja que seria una cosa feixuga i avorridíssima.
- 52. És exactament el que faré.
- 53. L'axioma d'extensionalitat diu que dos conjunts iguals són el mateix conjunt.
- 54. Això d'entrada pot semblar que no digui gran cosa però aquí darrere hi ha una característica bastant profunda que separa el món immutable de les idees i les abstraccions matemàtiques del món sensible de les coses on ens veiem lamentablement forçats existir nosaltres.
- 55. Quan diem "2 + 2 és igual a 4", inherentment a això va lligat que a qualsevol proposició on veiem un "2 + 2" el podem substituir per un "4" i la seva validesa no es veu afectada pel canvi, perquè són la mateixa cosa i tenen exactament les mateixes propietats.
- 56. Aquest fet és una part essencial del discórrer matemàtic, de fet. En canvi, en el món sensible si veiem un cotxe igual pel nostre no necessàriament ha de ser el nostre i si fem amb ell el que faríem amb el nostre podem tenir problemes amb la justícia.
- 57. És obvi que a causa d'això discórrer en el món sensible ha de ser per força molt més esgotador, feixuc i desagradable. No saps mai si dues coses iguals són la mateixa o no, hòstia puta.
- 58. Tornant als conjunts, direm que dos conjunts són iguals quan tinguin exactament els mateixos elements i per l'axioma d'extensionalitat qualsevol propietat que tingui un també la tindrà l'altre.
- 59. Per exemple, la propietat de ser un element d'un tercer conjunt donat. Si A = B, i $A \in C$, podem estar segurs que $B \in C$. I això és en virtut d'aquest primer axioma. Saludem tots a l'axioma d'extensionalitat.

- 60. L'axioma d'emparellament diu que donats dos elements qualssevol a i b (no necessàriament diferents) existeix un conjunt $\{a,b\}$ format per precisament aquests dos elements.
- 61. L'existència del conjunt d'un sol element queda subsumida en aquest axioma, quan a i b siguin la mateixa cosa. Tots els elements de $\{a,a\}$ són element de $\{a\}$ i viceversa, per tant tenen els mateixos elements, per tant són iguals, i per tant, per l'anterior axioma d'extensionalitat són el mateix conjunt. Aquest raonament seria una mica formalitzar la idea que els conjunts són col·leccions sense ordre ni repetició, pel cas de parells de la forma $\{a,a\}$.
- 62. L'emparellament d'elements ens permet construir algunes estructures interessants amb conjunts. Per exemple, si tenim dos elements a i b podem formar els conjunts $\{a\}$ i $\{a,b\}$ i després emparellar aquests per formar $\{\{a\},\{a,b\}\}.$
- 63. Aquesta estructura ens interessa per la seva asimetria. No és el mateix $\{\{a\}, \{a,b\}\}\}$ que $\{\{b\}, \{b,a\}\}$. I com que és asimètrica podem definir-hi un ordre, dir que un element va davant de l'altre. Per això en diem "parell ordenat" i ho escrivim amb la notació $(a,b) = \{\{a\}, \{a,b\}\}$.
- 64. Els parells ordenats són una cosa que es fa servir bastant, per exemple per jugar a barcos.
- 65. Amb parells ordenats podem construir alhora llistes finites d'elements: [a, b, c, d, e] = ((((a, b), c), d), e). Tot i que en matemàtiques normalment en diem tuples i les escrivim en la forma (a, b, c, d, e).
- 66. El que és interessant d'això és que totes aquestes estructures les podem tractar matemàticament, manipular-les i formular teoremes sobre elles fent servir res més que la teoria de conjunts que surt d'aquests axiomes, donat que les hem definit com res més que un tipus particular de conjunt.
- 67. L'axioma de la unió diu que donat un conjunt tal que els seus elements són altres conjunts aleshores els elements d'aquests conjunts units constitueixen alhora un conjunt.
- 68. És a dir que si tenim el conjunt $\{\{a,b\},\{c,d\},\{e\}\}$ aleshores existeix el conjunt unió $\bigcup \{\{a,b\},\{c,d\},\{e\}\} = \{a,b,c,d,e\}$.
- 69. Combinant els axiomes d'emparellament i d'unió podem fer l'operació d'únió binària de tota la vida, o sigui, l'operació que pren dos conjunts i uneix els seus elements en un de sol: donats els conjunts A i B, existeix el conjunt parella $\{A, B\}$ i d'aquest la unió $\bigcup \{A, B\} = A \cup B$
- 70. Aquesta operació d'unió binària dona lloc a una altra construcció interessant. Amb ella podem definir la funció $S(X) = X \cup \{X\}$. És a dir, donat un conjunt qualsevol X, construïm un nou conjunt prenent aquest i afegint-li ell mateix com a element.
- 71. Per exemple, aplicada al conjunt $\{a,b\}$: $S(\{a,b\}) = \{a,b,\{a,b\}\}$. D'aquesta funció en diem "successor" i direm que el successor del conjunt $\{a,b\}$ és $\{a,b,\{a,b\}\}$.

- 72. Si apliquem la funció successor al conjunt buit $\emptyset^{(8)}$, aquell conjunt que no té cap element, tenim que $S(\emptyset) = \emptyset \cup \{\emptyset\} = \{\emptyset\}$. En aquest context, al conjunt buit l'anomenarem $\mathbf{0}$ (zero) i del resultat d'aplicar-li la funció successor, el conjunt d'un sol element que és el conjunt buit, en direm $\mathbf{1}$ (u).
- 73. Si apliquem ara la funció successor al conjunt 1, tenim que $S(1) = 1 \cup \{1\} = \{0, 1\}$. Obtenim un nou conjunt amb els dos elements 0 i 1 i d'aquest en diem 2 (dos).
- 74. Aplicant ara la funció successor a 2, obtenim $S(2) = 2 \cup \{2\} = \{0, 1, 2\}$, un conjunt amb tres elements que en diem 3 (tres).
- 75. I així, amics, és com neixen els nombres ♥.
- 76. L'axioma de l'infinit diu que existeix un conjunt $I = \{0, 1, 2, 3, 4, 5, ...\}$ que conté tots els nombres que surten d'aplicacions successives de la funció successor al conjunt buit tal com els hem definit abans.
- 77. Més formalment, existeix un conjunt I tal que $\emptyset \in I$ i que a més donat qualsevol element $x \in I$ tenim que també $x \cup \{x\} \in I$.
- 78. Dels elements d'aquest conjunt I i de tots els que tenen la mateixa cardinalitat en diem "conjunts finits". De tots els altres, inclòs el mateix conjunt I, en diem "conjunts infinits".
- 79. I aquesta simplement és la definició de la dicotomia finit/infinit que es sol fer anar quan es treballa amb el sistema d'axiomes ZFC. Però per a realment comprendre-la ens mancaria primer saber ben bé què vol dir això de "tenir la mateixa cardinalitat". I per això haurem d'aprendre a comptar.
- 80. La cardinalitat és la mesura de la quantitat d'elements que té un conjunt. Que dos conjunts tinguin la mateixa cardinalitat vol dir que tenen la mateixa quantitat d'elements.
- 81. Per saber si dos conjunts tenen la mateixa quantitat d'elements el que fem és mirar d'establir entre ells una correspondència un a un que se'n diu "bijecció". Si som capaços d'establir-la, aleshores diem que els dos conjunts tenen la mateixa cardinalitat.

82. Així doncs, si en un conjunt podem establir-hi una bijecció amb algun dels elements del conjunt $I = \{0, 1, 2, 3, 4, 5, \ldots\}$, direm que aquest conjunt és finit.

- 83. Com hem vist abans, aquests elements són conjunts que inclouen alhora tots els conjunts que han anat sortint abans en l'aplicació successiva de la funció successor a partir del conjunt buit $0 = \emptyset$, és a dir $1 = \{0\}$, $2 = \{0, 1\}$, $3 = \{0, 1, 2\}$, $4 = \{0, 1, 2, 3\}$, $5 = \{0, 1, 2, 3, 4\}$ i així successivament.
- 84. Si tenim per exemple el conjunt $\{a, b, c, d, e\}$ veiem que podem establir una bijecció amb el conjunt $5 = \{0, 1, 2, 3, 4\}$ de la següent manera (entre moltes altres):

$$a \rightarrow 0$$

$$b \rightarrow 1$$

$$c \rightarrow 2$$

$$d \rightarrow 3$$

$$e \rightarrow 4$$

- 85. Per tant sabem que el conjunt $\{a, b, c, d, e\}$ és finit i direm que té una cardinalitat de 5. Els elements de I els farem servir com a mesura estàndard de la cardinalitat dels conjunts finits. En direm "nombres naturals" i en aquest context ens referirem a ell mitjançant el símbol \mathbb{N} .
- 86. De fet tot aquest procés és exactament el que fa un nen quan compta els elements d'un conjunt qualsevol d'ítems concrets que té al davant. Els va assenyalant un per un assignant-los nombres consecutius i al final sap amb quin dels elements de N pot establir-hi una bijecció.
- 87. Recordeu l'Hotel Infinit de Hilbert (33)?
- 88. En aquella maniobra de fer córrer tots els clients de l'habitació n cap a la n+1 estàvem de fet establint una bijecció entre el conjunt I i el conjunt I sense l'element 0, per tal de poder encabir el nou client en l'habitació 0.
- 89. En altres paraules, estem demostrant que I té la mateixa quantitat d'elements que I traient-li un element, segons la definició de "tenir la mateixa quantitat d'elements" que hem donat.
- 90. Això amb els conjunts finits no passa. Si a un conjunt finit li trèiem un element, el resultat té estrictament menys elements que l'original. El que vindria a ser al que estem acostumats que passi a la nostra quotidianitat finita.
- 91. Al segle XIX, abans de tot això de l'axiomatització, un senyor que es deia Richard Dedekind buscava una manera de caracteritzar la infinitat que fos purament interna a la teoria de conjunts; que no fes referència a cap concepte extern, com per exemple són els nombres naturals.
- 92. La definició que va desenvolupar va ser precisament aquesta propietat de la que estem parlant: un conjunt és infinit quan es pot posar en bijecció (té la mateixa quantitat d'elements) amb una de les seves parts pròpies, o sia, un subconjunt estricte d'ell mateix.
- 93. En ZFC es pot demostrar que els conjunts que caracteritza aquesta definició són exactament els mateixos que els de la definició que hem dit abans que faríem servir (els conjunts que no es poden posar en bijecció amb algun element de I), però això no té perquè ser així en altres sistemes axiomàtics.

- 94. I això és perquè, encara que sempre fem servir la paraula "conjunt", sistemes axiomàtics diferents poden estar parlant de coses (lleugerament) diferents.
- 95. De fet, ni tant sols en ZFC fem servir la definició de Dedekind perquè per demostrar l'equivalència amb la que hem donat inicialment necessitem un axioma particular que és el de l'elecció (la C de ZFC), que és controvertit, sempre es deixa pel final i s'evita si es pot evitar.
- 96. Fer servir la definició d'infinit de Dedekind implicaria que per demostrar molts teoremes on intervé d'alguna manera la infinitat necessitariem recórrer a l'axioma de l'elecció; i resulta que ens agrada mantenir tanta matemàtica com sigui possible dins de ZF sense la C. Quan arribem a l'axioma de l'elecció (no sé quan) veurem per què.
- 97. A nosaltres no ens preocupa com a Dedekind el fet de fer servir els nombres naturals per a definir el concepte d'infinitat perquè com que els hem desenvolupat com un tipus particular de conjunt ja no són una cosa externa a la teoria de conjunts, sinó una part d'ella mateixa.
- 98. Dels conjunts que són infinits segons la definició de Dedekind (i que poden ser o no infinits segons el sistema axiomàtic en el que estiguem treballant) avui dia en diem *Dedekind-infinits*.
- 99. De l'axioma de l'infinit (i possiblement l'ajut d'algun altre que encara devem tenir pendent) es deriva una cosa força important que és el *principi d'inducció matemàtica*.
- 100. Així en general la inducció és un tipus de raonament que consisteix en la construcció d'una regla general a partir de l'observació d'un conjunt de casos concrets. Veiem passar quatre o cinc corbs negres i concloem que tots els corbs són negres. Amb dos collons.
- 101. En matemàtiques també volem arribar a conclusions generals d'una manera anàloga però:
 - Requerim un total rigor i per tant hem d'estar estrictament segurs que podem parlar per tots els corbs.
 - Els nostres conjunts de corbs són generalment infinits.
 - Les nostres demostracions són necessàriament finites.
- 102. Per això fem servir coses com l'anomenat "principi d'inducció matemàtica"; si tenim una propietat P aplicada als nombres naturals on podem validar que:
 - Es dóna P(0).
 - Donada qualsevol $n \in \mathbb{N}$ tal que es doni P(n) aleshores també es donarà P(n+1).
- 103. Donat que sabem que serà cert que P(0), i d'aquí podrem deduir consecutivament P(1), P(2), P(3), ... podrem concloure que P es donarà per totes les $n \in \mathbb{N}$.

- 104. Podem demostrar, doncs, infinites coses (que *P* es dóna per cadascun dels infinits nombres naturals) amb una demostració finita, un raonament format per un conjunt finit de passos lògics. I això és una eina potentíssima.
- 105. Aquest principi el necessitem per demostrar coses tan bàsiques com la validesa de la commutativitat de la suma, que a+b=b+a. I la validesa del principi, alhora, es demostra partint de l'axioma de l'infinit, així com la construcció de funcions recursives com la suma mateixa.
- 106. El que no sé jo és com es convencen ells mateixos d'aquestes coses (la validesa de la commutativitat de la suma, per exemple) els finitistes de qui he estat parlant abans (28) (escup al terra). Possiblement admetin la inducció com a axioma en ell mateix, però ni idea.
- 107. L'axioma d'especificació diu que donat un conjunt A i una propietat P que els seus elements poden tenir o no tenir, existeix un conjunt B format per tots aquells elements del conjunt A que satisfan la propietat P.
- 108. Aquest axioma és interessant perquè s'assembla bastant a l'axioma de comprensió sense restriccions, del que vam parlar gairebé al començament⁽⁶⁾, i que havia provocat tot el pollastre de la paradoxa de Russell.
- 109. Però aquesta vegada, en operar dins d'un conjunt que ja és preexistent, ens evitem caure en paradoxes de l'estil "tenim el conjunt de conjunts que no es pertanyen a ells mateixos".
- 110. Quan un element no pertanyi a un conjunt generat per aquest axioma, no podrem concloure directament que satisfan la negació de la propietat P. També podria ser que no pertanyessin al conjunt inicial A.
- 111. Així esquivem conclusions que ens podrien dur a contradiccions de l'estil paradoxa de Russell que ens tornarien a dur a la inconsistència de tot el sistema.
- 112. I tanmateix podem definir coses com "el conjunt del nombres naturals que són primers", sempre i quan puguem prèviament demostrar l'existència del conjunt dels nombres naturals, cosa que ja hem fet a partir de l'axioma de l'infinit.
- 113. Per això de fet volíem l'axioma de comprensió, no per generar contradiccions que ens fessin replantejar els fonaments de tota la matemàtica i la solidesa de la seva connexió amb la veritat.
- 114. Amb l'axioma d'especificació també podem definir coses l'operació binària d'intersecció de tota la vida: $A \cap B = \{a \in A \mid a \in B\}$, és a dir, els elements de A que tenen la propietat de ser alhora un element de B.
- 115. O el conjunt complement: $A \setminus B = \{a \in A \mid a \notin B\}$; el conjunt d'elements de A que tenen la propietat de **no** ser un element de B.
- 116. Per fer servir aquest axioma d'especificació per crear una paradoxa a l'estil Russell hauríem de fer alguna cosa com $K = \{A \in \mathbb{U} \mid A \notin A\}$, on \mathbb{U} és el conjunt universal⁽⁸⁾, aquell que ho conté **tot** com a element.
- 117. Necessitariem demostrar prèviament l'existència d'aquest conjunt universal U, i això amb ZFC no es pot fer. De fet veurem que es pot demostrar la **no** existència de l'universal.

- 118. Si comencem suposant que existeix un conjunt universal, l'axioma de comprensió sense restriccions esdevé un corol·lari l'axioma d'especificació queda reduït al de comprensió sense restriccions, simplement fent $A=\mathbb{U}$. I aquest axioma hem vist abans que ens porta a la paradoxa de Russell⁽¹²⁾, un contrasentit. Per tant la hipòtesi que existeix un conjunt universal ha de ser forçosament falsa.
- 119. D'aquesta mena d'argument (prendre una hipòtesi com a certa, veure que ens porta a una contradicció i concloure per tant que la hipòtesi falsa) se'n diu reducció a l'absurd i és un recurs bàsic i habitual en les demostracions matemàtiques.
- 120. L'axioma de regularitat té una formulació una mica estranya perquè d'aquesta manera serveix per descartar l'existència de tota una tipologia de conjunts que la seva existència ens fa nosa.
- 121. Diu: tot conjunt que no sigui buit té un element que és disjunt amb ell.

 Disjunt vol dir que no en comparteix cap element, que la seva intersecció és el conjunt buit.
- 122. Suposem un conjunt A que sigui un element d'ell mateix. És a dir $A \in A$.

 Amb l'axioma d'emparellament podem construir el conjunt que només el té a ell com element, el seu conjunt singletó $\{A\}$.
- 123. Aquest $\{A\}$ no és el conjunt buit perquè té un element i aquest únic element A no és disjunt amb ell, ja que $A \in \{A\}$ i alhora $A \in A$. Per tant per l'axioma de regularitat no poden existir ni $\{A\}$ ni tampoc A. Ni cap altre conjunt que sigui element d'ell mateix.
- 124. Una característica del conjunt universal U és que en tenir-ho tot com a element per definició també s'hi ha de tenir a ell mateix, i per tant pel que acabem de veure l'axioma de regularitat també descarta la seva existència, talment com ho feia (per un altre argument) el d'especificació.
- 125. Seguint un raonament molt semblant a l'anterior, l'axioma de regularitat també ens descarta estructures com $A \in B \in A, A \in B \in C \in A$, i en general cicles de qualsevol llargària.
- 126. I encara més, ens descarta qualsevol seqüència infinita de la forma $A_0 \ni A_1 \ni A_2 \ni A_3 \ni A_4 \ni \dots$ encara que el cicle no es repeteixi mai. Tota seqüència de descens que es faci seguint la relació " \in " (és element de) entre conjunts ha d'anar a parar forçosament al conjunt buit.
- 127. De la "prohibició" que es doni $A \in A$ se'n deriva que l'aplicació iterada de la funció successor⁽⁷¹⁾ no pot tornar a portar a un element per el que ja hem passat. És a dir, que per qualsevol conjunt A, $S(S(S(\ldots S(A)))) \neq A$.
- 128. I d'aquí es deriva que construccions basades en aquesta funció com la dels nombres natural tenen una estructura *ordenada*: donats dos elements que no siguin el mateix sempre podem dir que un dels dos va abans que l'altre.
- 129. D'això se'n diu una relació antisimètrica; \leq és una relació antisimètrica perquè si tenim que $a \leq b$ i $b \leq a$ aleshores a = b. Les relacions d'ordre com \leq tenen la propietat antisimètrica (entre d'altres que aniran sortint més endavant).

- 130. Tal com vam definir els nombres naturals $(^{85})$, on cada $n \in \mathbb{N}$ és $n = \{0, 1, 2, 3, \dots, n-1\}$, la relació \leq entre nombres naturals és exactament la mateixa que \subseteq (és un subconjunt de): $n \leq m$ si i només sí $\{0, 1, 2, 3, \dots, n-1\} \subseteq \{0, 1, 2, 3, \dots, m-1\}$.
- 131. La relació \subseteq considerada entre conjunts de qualsevol mena manté la propietat antisimètrica, de fet: si $A \subseteq B$ i $B \subseteq A$ aleshores A = B.
- 132. L'axioma de reemplaçament diu que si tenim un conjunt domini qualsevol i una funció que puguem definir mitjançant construccions dins la teoria de conjunts aleshores també existeix el conjunt imatge format pels resultats de la funció aplicats a cada element del domini.
- 133. O sia, que si tenim per exemple el conjunt $A = \{a, b, c, d\}$ i la funció $f(x) = \{x\}$, que donat un element ens retorna el conjunt format només per aquell element, que podíem construir amb l'axioma d'emparellament⁽⁶⁰⁾, aleshores per l'axioma de reemplaçament existeix el conjunt $f(A) = \{\{a\}, \{b\}, \{c\}, \{d\}\}.$
- 134. Una altra cosa que també podríem fer amb aquest axioma és aplicar-ho a un conjunt $A = \{a_0, a_1, a_2\}$ i a la funció f(x) = (x, b), fent servir aquells parells ordenats que també havíem construït quan parlàvem de l'axioma d'emparellament i un element b arbitrari.
- 135. Això ens donaria el conjunt de parells ordenats $f(A) = \{(a_0, b), (a_1, b), (a_2, b)\}$. Aquesta maniobra que hem fet sobre el conjunt A que podríem fer per a qualsevol element b que volguéssim la podem fer servir per definir una funció de b tal com $g(b) = \{(a_0, b), (a_1, b), (a_2, b)\}$.
- 136. Aplicant ara l'axioma de reemplaçament a un conjunt $B = \{b_0, b_1\}$ amb aquesta funció g obtindríem que existeix un conjunt $g(B) = \{\{(a_0, b_0), (a_1, b_0), (a_2, b_0)\}, \{(a_0, b_1), (a_1, b_1), (a_2, b_1)\}\}.$
- 137. Si a aquest conjunt li apliquem l'axioma de la unió⁽⁶⁷⁾ obtenim $\{(a_0,b_0),(a_1,b_0),(a_2,b_0),(a_0,b_1),(a_1,b_1),(a_2,b_1)\}$. Això és, el conjunt de tots els parells ordenats que podem formar amb un element de A i un element de B.
- 138. D'això se'n diu *producte cartesià* i és un altre dels conceptes importantíssims en matemàtiques. Per exemple, per jugar a barcos. Les jugades són parells ordenats i el taulells són productes cartesians.
- 139. Havíem vist anteriorment que comptar consisteix bàsicament en trobar bijeccions entre conjunts. Anem a veure què passa quan comptem els elements dels productes cartesians.

140. Per exemple, si fem el producte cartesià del conjunt $3 = \{0, 1, 2\}$ i $2 = \{0, 1\}$, veiem que el podem posar en bijecció amb el conjunt $6 = \{0, 1, 2, 3, 4, 5\}$:

$$\begin{array}{cccc} (0,0) & \to & 0 \\ (0,1) & \to & 1 \\ (1,0) & \to & 2 \\ (1,1) & \to & 3 \\ (2,0) & \to & 4 \\ (2,1) & \to & 5 \end{array}$$

141. És a dir, la cardinalitat del producte cartesià entre el conjunt 3 i el conjunt 2 és la mateixa que la cardinalitat del conjunt 6. El que expressat en notació seria: $|3 \times 2| = |6|$.

(notació: |A| vol dir "la cardinalitat de A" i $A \times B$ vol dir "el producte cartesià de A i B").

- 142. És fàcil veure que en conjunts finits es compleix que $|A \times B| = |A| \times |B|$. Podríem de fet desenvolupar uns rudiments d'aritmètica a partir dels axiomes que hem anat veient i demostrar que és una conseqüència lògica i impepinable de la teoria de conjunts.
- 143. Anem a mirar què passa quan ho fem amb conjunt infinits. Amb $\mathbb{N}\times 3$ podem fer la bijecció:

$$\begin{array}{ccccc} (0,0) & \rightarrow & 0 \\ (0,1) & \rightarrow & 1 \\ (0,2) & \rightarrow & 2 \\ (1,0) & \rightarrow & 3 \\ (1,1) & \rightarrow & 4 \\ (1,2) & \rightarrow & 5 \\ (2,0) & \rightarrow & 6 \\ & & \vdots \\ (5342,1) & \rightarrow & 16027 \\ (5342,2) & \rightarrow & 16028 \\ (5343,0) & \rightarrow & 16029 \\ & & \vdots \end{array}$$

- 144. No podem llistar infinits ítems però sí que podem copsar com podem establir una correspondència un a un entre tots els elements de $\mathbb{N} \times 3$ i els de \mathbb{N} sense ometre'n ni repetir-ne cap a les dues bandes.
- 145. I per tant encara que a primer cop d'ull ens pogués semblar alguna altra cosa podem dir que tenen exactament la mateixa quantitat d'elements: $|\mathbb{N} \times 3| = |\mathbb{N}|$

146. Comptar els elements de $|\mathbb{N} \times \mathbb{N}|$ se'ns complica una mica més. No podem fer la bijecció amb \mathbb{N} tal com l'hem fet abans perquè no passaríem mai de la primera "fila":

$$\begin{array}{cccc} (0,0) & \to & 0 \\ (0,1) & \to & 1 \\ (0,2) & \to & 2 \\ & & \vdots \\ (0,6423) & \to & 6423 \\ (0,6424) & \to & 6424 \\ & \vdots & & \vdots \end{array}$$

- 147. I per tant estaríem ometent tots elements de $\mathbb{N} \times \mathbb{N}$ on el primer component del parell ordenat és diferent de zero i per tant no seria una bijecció. Però això no vol dir que la bijecció no existeixi, només que per trobar-la potser ens farà falta ser una mica més creatius.
- 148. Si enlloc d'anar fila per fila com hem estat fent anem diagonal per diagonal, sí que podrem completar la bijecció:

$$\begin{array}{cccc} (0,0) & \to & 0 \\ (0,1) & \to & 1 \\ (1,0) & \to & 2 \\ (0,2) & \to & 3 \\ (1,1) & \to & 4 \\ (2,0) & \to & 5 \\ (0,3) & \to & 6 \\ & \vdots & & \\ \end{array}$$

- 149. I per tant també podrem establir una correspondència un a un entre tots els elements de $\mathbb{N} \times \mathbb{N}$ i els elements de \mathbb{N} que no ometi ni repeteixi cap element a les dues bandes. I per tant el conjunt $\mathbb{N} \times \mathbb{N}$ també tindrà la mateixa cardinalitat que \mathbb{N} : $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.
- 150. En aquest moment un es comença a preguntar si aquesta capacitat absorbent de les cardinalitats infinites arriba fins a que tots els conjunts infinits tinguin la mateixa cardinalitat i simplement haguem de ser més o menys enginyosos per trobar la bijecció que els relaciona.
- 151. I el fet que donats dos conjunts no siguem capaços de trobar aquesta bijecció no vol dir que aquesta no existeixi. L'absència d'evidència no equival a l'evidència d'absència a la vida en general i en la matemàtica especialment.
- 152. Per demostrar que la bijecció entre dos conjunts no existeix més enllà de la nostra capacitat de trobar-la o imaginar-nos-la ens cal alguna mena d'argument més fort i rigorós. I això és el que va descobrir en Georg Cantor. Però abans ens caldrà parlar del següent axioma.
- 153. L'axioma del conjunt potència diu que donat un conjunt qualsevol existeix el conjunt dels seus subconjunts.
- 154. És a dir, si tenim per exemple el conjunt $\{a,b\}$, aleshores també ha d'existir el conjunt de conjunts $\{\emptyset, \{a\}, \{b\}, \{a,b\}\}$ format per tots aquells $S \subseteq \{a,b\}$.
- 155. Si hi afegim un nou element c, el conjunt potència de $\{a, b, c\}$ seran tots els subconjunts de $\{a, b\}$ més altre cop tots els subconjunts de $\{a, b\}$ però afegint c a cadascun d'ells.
- 156. És a dir que el conjunt potència de $\{a, b, c\}$ seran per un costat els mateixos quatre de $\{a, b\}$: \emptyset , a, b, $\{a, b\}$ i per l'altre aquests altres quatre: $\{c\}$, $\{a, c\}$, $\{b, c\}$, $\{a, b, c\}$. En total, vuit.
- 157. O sigui, que quan afegim un element a un conjunt la cardinalitat del seu conjunt potència, si més no en conjunts finits, se'ns duplica.
- 158. El conjunt potència del conjunt buit serà el conjunt format per l'únic subconjunt que hi ha del conjunt buit que és el mateix conjunt buit, o sigui el conjunt amb un sol element $\{\emptyset\}$.
- 159. Aplicant la inducció a aquests dos fets podríem demostrar que en els conjunts finits la cardinalitat del conjunt potència serà igual a 2 elevat a la cardinalitat del conjunt inicial.
- 160. No exactament per això, sinó per una qüestió de fet més general però fortament relacionada amb aquesta, la notació que modernament es fa servir per indicar el conjunt potència del conjunt A és " 2^{A} ".
- 161. Així doncs, posant el que hem vist en notació, per conjunts finits tenim que: $|2^A|=2^{|A|}$.
- 162. Com que en l'aritmètica de \mathbb{N} sabem que $2^n > n$ per qualsevol n doncs podem deduir que en el que es refereix a conjunts finits $|2^A| > |A|$.
- 163. Si volguéssim generalitzar això a qualsevol tipus de conjunt finit o infinit podem veure d'entrada que hi ha una bijecció trivial entre qualsevol conjunt $A = \{a_0, a_1, a_2, \ldots\}$ i el conjunt de singletons $\{\{a0\}, \{a1\}, \{a2\}, \ldots\}$ que és un subconjunt de 2^A i per tant: $|2^A| \geq |A|$.

- 164. Anem a explorar la possibilitat $|2^A| = |A|$, és a dir, que el conjunt potència d'un conjunt tingui la mateixa cardinalitat que aquest conjunt i per tant que puguem establir una bijecció entre ells.
- 165. Posem un conjunt A amb elements $\{a,b,c,d,e,f,\ldots\}$ i una bijecció φ que per cadascun dels subconjunts de A ens dona un element de A de manera unívoca i exhaustiva. Alguna cosa com:

$$\begin{array}{lll} \varphi(\{d,e\}) & = & a \\ \varphi(\{c,b,f,\ldots\}) & = & b \\ \varphi(\emptyset) & = & c \\ \varphi(\{a,d,f\}) & = & d \\ & \vdots & & & \\ \end{array}$$

- 166. De totes aquestes correspondències en algunes es donarà el cas que $\varphi(W) \in W$ i en d'altres no. En la mostra d'exemple que he posat es donaria per la segona i la quarta i no es donaria en la segona i la tercera. I podem construir un conjunt K amb totes les $\varphi(W)$ tals que $\varphi(W) \notin W$.
- 167. Aquest conjunt K és un subconjunt de A i per tant un element de 2^A i per tant té la seva $\varphi(K)$ que pot pertànyer o no pertànyer a K.
- 168. Que $\varphi(K) \in K$ tal com hem definit el conjunt K voldria dir que K és d'aquells elements de 2^A tals que $\varphi(K) \notin K$. I que $\varphi(K) \notin K$ voldria dir que és d'aquells tals que $\varphi(K) \in K$. Això és una contradicció i per tant la hipòtesi que existia una bijecció entre 2^A i A ha de ser falsa.
- 169. Per tant doncs, com que hem vist abans que $|2^A| \ge |A|$ i ara veiem que $|2^A| \ne |A|$, podem concloure que $|2^A| > |A|$. O sigui que donat un conjunt qualsevol sempre existeix un altre conjunt amb una cardinalitat estrictament més gran.
- 170. Fins i tot per un conjunt infinit com \mathbb{N} tenim que $|2^{\mathbb{N}}| > |\mathbb{N}|$.
- 171. I també tindrem un $2^{2^{\mathbb{N}}}$ que serà un altre infinit més gran que l'infinit de $2^{\mathbb{N}}$. I així successivament infinites vegades.
- 172. I més enllà, de fet. Ja que la seqüència infinita de conjunts \mathbb{N} , $2^{\mathbb{N}}$, $2^{2^{\mathbb{N}}}$, $2^{2^{\mathbb{N}}}$, ... la podem unir en un sol conjunt amb l'axioma de la unió. I aquest conjunt enorme fins i tot dins l'espècie dels conjunts infinits també tindrà un conjunt potència que serà estrictament més gran. Amb el que si volem podrem tornar a fer tot el procés que acabem de fer amb \mathbb{N} . I així fins la nàusea.
- 173. Tornant a l'argument que hem vist pel que 2^A no el podem posar en bijecció amb A, això és el que es coneix com a "diagonalització de Cantor".
- 174. A l'escola es sol explicar restringit al cas de N i intentant posar-lo en bijecció no amb la seva potència sinó amb el conjunt dels nombres reals i construint aquesta bijecció fent una cosa rara amb els dígits. Però és que allà no foten mai res bé.

- 175. Per veure que aquest conjunt de nombres reals \mathbb{R} té efectivament la mateixa cardinalitat de $2^{\mathbb{N}}$ primer hauríem de saber què carai és això dels nombres reals.
- 176. Hem vist fins ara els nombres naturals que són cadascun com el representant de tots els conjunts finits d'una cardinalitat donada.
- 177. Hem vist que un nombre natural és en realitat un conjunt que construïm per mitjà d'aplicacions successives de la funció successor $S(x) = x \cup \{x\}$ sobre el conjunt buit \emptyset que és el nombre zero.
- 178. Podem definir les relacions d'ordre < i \leq entre nombres naturals com les relacions entre conjunts \in i \subseteq , respectivament.
- 179. Un cop tenim això ens podem pràcticament oblidar de l'estructura interna d'aquests nombres naturals en tant que conjunts i tractar-los com els hem vist sempre abans de saber que eren de fet conjunts:
- 180. Com entitats abstractes de les que només ens interessen les seves propietats "externes".
- 181. A partir d'aquí podem fer coses com per exemple demostrar fent servir els axiomes que hem vist i la deducció purament lògica que per cada nombre natural n existeix una única funció $f_n(m)$ definida sobre els naturals que compleixi que:

$$f_n(0) = n$$

$$f_n(S(m)) = S(f_n(m))$$

182. Per exemple:

$$f_{5}(3) = f_{5}(S(2))$$

$$= S(f_{5}(2))$$

$$= S(f_{5}(S(1)))$$

$$= S(S(f_{5}(1)))$$

$$= S(S(f_{5}(S(0))))$$

$$= S(S(S(f_{5}(0))))$$

$$= S(S(S(5)))$$

$$= S(S(6))$$

$$= S(7)$$

$$= 8$$

183. Sí amics, la funció $f_n(m)$ no és altra cosa que la suma n+m i d'aquí $f_5(3)=5+3=8$. Acabem de descobrir la suma de nombres naturals.

- 184. La suma és una funció molt interessant perquè ens dona la cardinalitat de la unió de dos conjunts disjunts a partir només de les seves respectives cardinalitats.
- 185. És a dir, que si sé que dins d'aquesta mà tinc dues bales i en l'altra n'hi tinc tres puc saber que quan ajunti les dues mans en tindré cinc sense necessitat de visualitzar mentalment els conjunts de dues i tres bales unint-se, visualitzar a continuació el conjunt de totes les bales juntes i després fer mentalment el comptatge d'aquestes cinc bales. Puc fer-ho oblidant-me de fet de les bales en si i pensant només en aquestes entitats abstractes que es diuen nombres i l'aritmètica que els manega.
- 186. Això es diu abstracció i és una eina poderosíssima. És bàsicament al que es dedica la matemàtica. A fer abstraccions.
- 187. L'abstracció ens dóna accés a un coneixement que sense ella seria senzillament impossible quan intervenen conjunts mínimament grans.
- 188. Jo sóc absolutament incapaç de crear-me una imatge mental d'un conjunt de 4332 carxofes amb més precisió que un piló així indeterminat.
- 189. Però fent servir l'aritmètica sé gairebé instantàniament que puc dividir el piló en tres pilons més petits de la mateixa quantitat cadascun perquè 4332 és múltiple de 3 perquè els seus dígits compleixen allò que sumats són un múltiple de 3.
- 190. A partir de la funció suma podríem definir una altra funció tal com "donats dos nombres a i b, aquell nombre c que caldria sumar a b perquè ens donés a". D'això en diem "resta" i també és força útil per fer coses de comptables.
- 191. No obstant té el problema que el nombre c que surt a la definició no sempre existeix donats qualssevol a i b. Per exemple, no hi ha cap nombre natural que puguem sumar a 7 perquè ens doni 4.
- 192. Els matemàtics expressen aquest fet dient que els nombres naturals no són tancats respecte a l'operació de resta. Com sí que ho són respecte l'operació de suma: donats dos nombres naturals qualssevol existeix la seva suma que és un altre nombre natural.
- 193. Això fa que els nombres naturals no em serveixin per representar conceptes com el balanç de carxofes que resulta si ara mateix en disposo de 4 i estic compromès a entregar-ne 7.
- 194. Necessitaríem una altra mena de nombres que poguessin representar aquest concepte que és més ampli que el de purament la cardinalitat d'un conjunt finit.
- 195. Però que alhora mantinguessin totes les propietats que tenen els nombres naturals, ja que ens interessa seguir fent amb ells tot el que hem estat fent amb els nombres naturals. Només volem estendre'ls per representar una mena de concepte més sofisticat però que inclou l'anterior.
- 196. Com que el que volem és que la resta de dos d'aquesta nova mena de nombres ens doni, a diferència del que passava amb els naturals, un altre nombre d'aquesta mateixa mena el que fem és representar-los precisament com una resta de naturals de manera abstracta: 'a b'.

- 197. Els nombres naturals quedaran representats en aquesta nova categoria amb restes de la forma 'a 0', donat que "aquell nombre c que caldria sumar a 0 perquè ens donés a" és exactament el mateix a.
- 198. Així, la resta que hem vist abans que no podíem fer dins dels naturals 4-7 ara seria la resta entre els nombres 4-0 i 7-0 i ens donaria simplement el nombre 4-7.
- 199. En l'aritmètica dels nombres naturals hi ha la propietat (que podríem demostrar aplicant la deducció a ZFC, etc etc) que (a+c)-(b+c)=a-b. Aquest fet es trasllada cap aquest nou tipus de nombres de manera que el nombre '4 7' és exactament el mateix que '5 8' que '0 3'.
- 200. El que podem fer és escollir un representant canònic per cada nombre-resta en el que almenys un dels dos components és zero, cosa que farà que aquest representat sigui únic per cada nombre. Pel cas 4-7 seria -3.
- 201. De fet, a l'hora d'escriure els nombres per fer aritmètica aquests zeros s'ometen i quan és al primer component (és a dir, '0-b') simplement s'escriu '-b' i en diem "nombres negatius".
- 202. Quan el zero és al segon component ('a-0') podem segons el context en què ens trobem indicar el signe de forma explícita fent '+a' o bé ometre'l i escriure només 'a', en consistència amb la notació del nombre natural al que és equivalent. D'això en diem "nombres positius".
- 203. D'aquests nous nombres-resta en diem "nombres enters", els podem representar a nivell de teoria de conjunts com a parells ordenats amb els dos components naturals de la resta (un d'ells zero), i el conjunt que formen l'escrivim \mathbb{Z} .
- 204. Com que un subconjunt seu (els positius) té una correspondència u a u amb els naturals tenim per una banda que $|\mathbb{N}| \leq |\mathbb{Z}|$. Com que el representem amb parells ordenats de \mathbb{N} per l'altra banda tenim que $|\mathbb{Z}| \leq |\mathbb{N} \times \mathbb{N}|$.
- 205. Però com que hem vist abans que $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, doncs resulta que $|\mathbb{Z}| \leq |\mathbb{N}|$. I si $|\mathbb{N}| \leq |\mathbb{Z}|$ i alhora $|\mathbb{Z}| \leq |\mathbb{N}|$ llavors ha de passar que $|\mathbb{Z}| = |\mathbb{N}|$. O sigui que el conjunt de nombres enters té exactament la mateixa cardinalitat infinita que el de nombres naturals. Ves per on.
- 206. Seguint un procediment anàleg a aquest però buscant el tancament de l'operació de divisió d'enters, arribem al conjunt de nombres racionals \mathbb{Q} , els "nombres racionals".
- 207. Els nombres racionals representen quantitats fraccionàries i proporcions enteres. Si tenim tres pastissos i els hem de repartir entre quatre amics, doncs hem de donar 3/4 de pastís a cadascú. Bé.
- 208. Respecte a la seva cardinalitat, pel mateix raonament que abans, també serà exactament la mateixa que $|\mathbb{N}|$. Un racional s'expressa com la divisió d'un parell d'enters a/b i en la teoria de conjunts es representarà amb un parell ordenat d'aquests dos enters.
- 209. De tots els parells a i b que poden representar el mateix racional s'agafa aquell en que els dos nombres no tenen cap factor comú i per tant són més petits, la fracció irreductible.

- 210. Uns grans amants de la proporció van ser el geòmetres grecs. El seu sentit de l'estètica els feia voler expressar qualsevol mesura en forma de fracció entera. També van ser capaços d'adonar-se que en general això no pot ser i aquest fet els va fer petar bastant el cap.
- 211. Imaginem un quadrat de costat 1. Pel teorema de Pitàgores el quadrat de la longitud de la diagonal hauria de ser igual a 2.

- 212. Posem que volem expressar aquesta longitud en forma de fracció irreductible a/b. Per tant, volem dos enters a i b tals que $(a/b)^2 = 2$. O sigui $a^2 = 2 \cdot b$.
- 213. Com que a^2 és igual a 2 multiplicat per alguna cosa (b) aleshores a^2 ha de ser un nombre parell. I quan el quadrat d'un nombre és parell aquest nombre també ha de ser parell. Per tant a és parell i per tant és igual a el doble d'un altre nombre: $a = 2 \cdot a'$. A partir d'aquí:

$$(2 \cdot a')^2 = 2 \cdot b^2$$

$$4 \cdot a'^2 = 2 \cdot b^2$$

$$2 \cdot a'^2 = b^2$$

- 214. I com que b^2 és igual a 2 multiplicat per alguna cosa (a'^2) i per tant parell, aleshores b també ha de ser un nombre parell. I com que tant a com b són nombres parells resulta que la fracció a/b no és irreductible perquè podem dividir tant el numerador com el denominador per 2 tot contradint la hipòtesi.
- 215. I això vol dir que no es pot expressar una cosa tant simple com la longitud de la diagonal d'un quadrat amb un nombre racional, una proporció entera amb la longitud del seu costat.
- 216. D'això els grecs se'n van adonar i es van preguntar a veure què diantre està passant aquí. I no van ser capaços de respondre. Aquesta qüestió no començaria a respondre's adequadament fins la il·lustració. Newton, Leibniz i tot l'assumpte del càlcul infinitesimal. Quedaven uns 2000 anys encara.
- 217. L'eina que necessitem per modelar l'espai que ens envolta, que és el que volien en definitiva aquests geòmetres de la Grècia antiga, és alguna mena de nombres amb els que puguem representar la noció intuïtiva que tenim dels punts d'una recta.

- 218. I els nombres racionals *gairebé* serveixen per això. Tenen el que es diu un ordre total igual que tenen els punts d'una recta i són densos igual que ho són els punts d'una recta.
- 219. Un ordre total és una relació \leq que donats qualssevol elements a,b i c compleix les propietats:
 - $reflexivitat: a \leq a$.
 - transitivitat: si $a \le b$ i $b \le c$ aleshores $a \le c$.
 - antisimetria: si $a \le b$ i $b \le a$ aleshores a = b.
 - totalitat: $a \leq b$ **o** $b \leq a$.
- 220. Un ordre és dens si per cada a < b existeix un c tal que a < c < b.
- 221. Aquestes propietats les compleixen tant els punts de la recta com els nombres racionals. I això despista molt.
- 222. El problema és que els punts d'una recta tal com els intuïm tenen una altra propietat subtil que els grecs tot i que apropar-s'hi bastant no van arribar a copsar del tot. Perquè és una cosa difícil d'abstreure i aïllar conceptualment com a element fonamental.
- 223. Imaginem un conjunt $A = \{a_0, a_1, a_2, a_3, \ldots\}$ (no necessàriament finit) de punts sobre la recta que estigui *acotat*. És a dir, que aquests punts no s'estenguin per tota la recta sinó que existeixi una *cota* damunt la recta per la que tots els punts de A es trobin situats cap al costat esquerre de la cota i corresponguin, per tant, a un nombre més petit.
- 224. En aquesta situació existirà un punt de la recta que essent més gran o igual que tots els punts de A serà més petit o igual que totes les cotes superiors de A. D'aquest punt en diem "suprem".

- Quan el conjunt A sigui finit aquest suprem concidirà amb el punt màxim del conjunt A, però en conjunts infinits no ha de ser necessàriament un punt de A. El que sí serà sempre que A estigui acotat és un punt ben definit de la recta; si A és acotat el seu suprem existeix.
- 226. D'aquesta propietat se'n diu completesa i els nombres racionals no la tenen.
- 227. Suposem que A és el conjunt de racionals q tals que $q^2 \le 2$. El suprem d'aquest conjunt hauria de ser $\sqrt{2}$, però hem demostrat abans que no existeix cap racional que elevat al quadrat doni 2. $\sqrt{2}$ no és un racional i per tant el subconjunt $A \subseteq \mathbb{Q}$, que certament és acotat (si $q^2 \le 2$ aleshores $q \le 2$ i per tant $2 \in \mathbb{Q}$ és cota de A), no té suprem.

228. Un grec que es va apropar molt a identificar el problema va ser Zenó d'Elea. Allò d'Aquil·les no aconseguint atrapar mai la tortuga.

- 229. Les successives distàncies entre Aquil·les i la tortuga serien el conjunt A i l'esdeveniment d'atrapar-la el suprem que estem trobant. De la mateixa manera que el suprem d'un conjunt acotat de nombres racionals pot no ser un racional, dins el cap de nombres racionals que tenien els grecs aquest esdeveniment no arribava mai.
- 230. Però en el món físic i en la també seva intuïció de la recta real sí que Aquil·les arriba a atrapar la tortuga. I això els desconcertava molt, pobres grecs.
- 231. Així, doncs, el que ens fa falta per representar els punts de la recta és alguna mena de nombre que tingui les propietats dels racionals i que a més el suprem de qualsevol conjunt acotat d'aquests nombres resulti en un altre nombre de la mateixa mena.
- 232. Un conjunt que sigui tancat respecte la funció suprem, en definitiva. A un conjunt ordenat que compleixi tota aquesta bateria de propietats (reflexivitat, transitivitat, antisimetria, totalitat, densitat i suprem) en diem un continu. Ni els nombres naturals, ni els enters, ni els racionals són conjunts continus. Dels conjunts que no son continus en diem discrets.
- 233. El procediment d'obtenir un continu a partir del conjunt discret dels racionals és el mateix que quan hem volgut tancar els naturals respecte la resta per obtenir els enters o els enters respecte la divisió per obtenir els racionals.
- 234. Com que l'operació suprem opera sobre conjunts en comptes de sobre parells com ho fan les operacions de resta o la divisió, aquests nous nombres els representarem fent servir no parells sinó conjunts de racionals, elements de $2^{\mathbb{Q}}$.
- 235. És a dir, que cada nombre *real* (així anomenarem aquest nou conjunt de nombres), el definim com el suprem d'un conjunt acotat de nombres racionals.
- 236. Igual que ens havia passat amb la resta i la divisió, el suprem de conjunts diferents ens pot resultar en el mateix nombre real.

- 237. Per fer una representació precisa escollirem un únic representant canònic d'entre tots els que ens donen el mateix real. De la mateixa manera que en els enters vam escollir aquells parells on hi havia un zero o en els racionals els que feien una fracció irreductible.
- 238. Aquest cop no serà tan fàcil de fer això perquè d'entrada estem tractant amb conjunts infinits en comptes de parells. Una manera d'escollir aquest representant únic són el que se'n diuen talls de Dedekind. Sí, el mateix Dedekind que va voler definir l'infinit sense fer servir el concepte de nombre. Ves per on.
- 239. Un tall de Dedekind és un conjunt de racionals A tal que:
 - No és buit. Existeix com a mínim un $p \in A$.
 - No és igual al conjunt de tots els racionals. Existeix com a mínim un $p \in \mathbb{Q} \setminus A$; és a dir, un $p \in \mathbb{Q}$ i que a més $p \notin A$.
 - Si $p \in A$, aleshores tot q < p també $q \in A$.
 - Si $p \in A$, aleshores existeix com a mínim un q > p que també $q \in A$.
- 240. Un tall de Dedekind vindria a ser doncs una partició dels racionals en dues parts no buides: els que estan per sota d'un determinat llindar (A) i els que estan per sobre $(\mathbb{Q} \setminus A)$ i amb unes característiques particulars en la frontera d'aquesta divisió.
- 241. Fixem-nos ara en les característiques que té la relació \subseteq respecte als talls de Dedekind.
- 242. Les tres primeres característiques del que hem definit com a ordre total (reflexivitat, transitivitat i antisimetria) la relació de subconjunt inclusiu ⊆ les té respecte a qualsevol mena de conjunt. D'això se'n diu ser un *ordre parcial*.
- 243. A més, amb els talls de Dedekind en particular complirà la propietat de la totalitat a causa del tercer punt de la nostra definició del que és un tall de Dedekind i que la relació \leq entre racionals és un ordre total. Per tant, la relació \subseteq és un ordre total del conjunt de talls de Dedekind.
- 244. Com que \subseteq és total, donats dos talls de Dedekind diferents $A \neq B$ s'ha de donar que $A \subset B$ o bé que $B \subset A$. Suposem sense perdre generalitat que el cas és $A \subset B$. Això és: A és un subconjunt propi de B. Tots els elements de A són element de B però existeix algun element de B que no és element de A. Anem a anomenar p a aquest element.
- 245. Per la propietat quarta dels talls de Dedekind, existeix un q > p que també $q \in B$. Aquest q el farem servir per definir un nou tall de Dedekind C format per tots els nombres racionals r tals que r < q.
- 246. Es pot comprovar que aquest conjunt C tal com l'hem definit té efectivament totes les propietats que defineixen un tall de Dedekind i que a més es dona que $A \subset C \subset B$. Per tant els talls de Dedekind són densos respecte la relació d'ordre \subseteq .

- 247. Suposem ara que tenim un conjunt no buit de talls de Dedekind $\Gamma = \{A_o, A_1, A_2, A_3, \ldots\}$ que pot ser infinit però es dona el cas que existeix un altre tall de Dedekind C tal que per a tot $A \in \Gamma$, $A \subseteq C$. És a dir, C és una cota superior de Γ i per tant Γ és acotat.
- 248. Si apliquem a Γ l'axioma de la unió⁽⁶⁷⁾, podrem comprobar que:
 - $\bigcup \Gamma$ és un tall de Dedekind perquè compleix les propietats amb les que els hem definit.
 - $\bigcup \Gamma$ és una cota superior de Γ : per a tot $A \in \Gamma$, $A \subseteq \bigcup \Gamma$.
 - De totes les cotes superiors C que pot tenir Γ , resulta que $\bigcup \Gamma \subseteq C$

És a dir, que $\bigcup \Gamma$ és la mínima de totes les cotes superiors de Γ respecte la relació d'ordre \subseteq . El que per definició és el valor suprem de Γ .

- 249. Per tant, els talls de Dedekind amb la relació ⊆ tenen totes les propietats necessàries per ser considerades un continu, i és el que farem servir per representar els nombres reals en la teoria de conjunts; el real representat és el valor suprem de tots els nombres racionals que conformen el tall o bé la frontera de la partició de ℚ.
- 250. Això vol dir que el nombre real 3 de fet el podem veure en teoria de conjunts el conjunt de tots els nombres racionals que són estrictament més petits que 3. I el nombre real $\sqrt{2}$ com tots els nombres racionals que són estrictament més petits que $\sqrt{2}$.
- 251. I qualsevol tractament matemàtic que es fa amb ells es pot fer en darrera instància amb teoremes i operacions de teoria de conjunts estrictament. En aquest sentit, tot aquell fato dels límits, derivades, integrals i la resta de l'estudi dels nombres reals que es fa en el càlcul infinitesimal és només un branca de la teoria de conjunts. Molt gros.
- 252. En notació, del conjunt dels nombres reals en diem \mathbb{R} . Com que els representem fent servir conjunts de racionals la seva cardinalitat ha de ser com a màxim la del conjunt dels conjunts de racionals, o siguis $|\mathbb{R}| \leq |2^{\mathbb{Q}}|$. I com que sabem de quan hem estudiat la cardinalitat dels racionals que $|\mathbb{Q}| = |\mathbb{N}|$, doncs és clar que $|\mathbb{R}| \leq |2^{\mathbb{N}}|$.
- 253. Per veure que alhora $|2^{\mathbb{N}}| \leq |\mathbb{R}|$ ens caldrà una bijecció entre $2^{\mathbb{N}}$ (el conjunt dels conjunts de naturals) i algun subconjunt de \mathbb{R} .
- 254. Anem doncs a construir aquesta bijecció. Suposem un element del conjunt de sortida $X \in 2^{\mathbb{N}}$. En tant que element de $2^{\mathbb{N}}$ aquest X serà un conjunt de nombres naturals, és a dir que $X \subseteq \mathbb{N}$.
- 255. Aplicant l'axioma de reemplaçament sobre aquest X i la funció $f: \mathbb{N} \to \mathbb{Q}$ tal que $f(n) = \frac{1}{10^{n+1}}$ obtindrem un f(X) que serà un conjunt de nombres racionals. A continuació d'aquest conjunt en farem el sumatori.

$$\sum f(\{0,1\}) = \sum \{1/10^{0+1}, 1/10^{1+1}\}$$

$$= \sum \{1/10^{1}, 1/10^{2}\}$$

$$= \sum \{1/10, 1/100\}$$

$$= 1/10 + 1/100$$

$$= 0, 1 + 1/100$$

$$= 0, 1 + 0, 01$$

$$= 0, 11$$

$$\sum f(\{2,3,5\}) = \sum \{1/10^{3}, 1/10^{4}, 1/10^{6}\} = 0,001101$$

$$\sum f(\emptyset) = \sum \emptyset = 0$$

257. Amb això tindríem ja definida una bijecció de com a mínim tots els subconjunts finits de \mathbb{N} cap a un cert subconjunt de \mathbb{R} . Però necessitem tractar tots els subconjunts de \mathbb{N} , també els que són infinits com ara el conjunt de nombres parells $\{0,2,4,6,8,\ldots\}$, el conjunt de nombres primers $\{2,3,5,7,11,\ldots\}$ o el mateix conjunt \mathbb{N} .

258.	
259.	
260.	
261.	
262.	
263.	
264.	
265.	
266.	
267.	
268.	
269.	
270.	
271.	
272.	
273.	