# **Fetal Health Visual Analysis**

# **Anurag Dinesh Karmarkar**

------StartOfCode------

```
In [2]: #Importing required packages
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [3]: #Creating The dataset variable
fetal_p = 'fetal_health.csv'
```

```
In [4]: #Reading the dataset and displaying the head
fetal = pd.read_csv(fetal_p)
fetal.head(10)
```

Out[4]:

|   | baseline<br>value | accelerations | fetal_movement | uterine_contractions | light_decelerations | severe_dece |
|---|-------------------|---------------|----------------|----------------------|---------------------|-------------|
| 0 | 120.0             | 0.000         | 0.0            | 0.000                | 0.000               |             |
| 1 | 132.0             | 0.006         | 0.0            | 0.006                | 0.003               |             |
| 2 | 133.0             | 0.003         | 0.0            | 0.008                | 0.003               |             |
| 3 | 134.0             | 0.003         | 0.0            | 0.008                | 0.003               |             |
| 4 | 132.0             | 0.007         | 0.0            | 0.008                | 0.000               |             |
| 5 | 134.0             | 0.001         | 0.0            | 0.010                | 0.009               |             |
| 6 | 134.0             | 0.001         | 0.0            | 0.013                | 0.008               |             |
| 7 | 122.0             | 0.000         | 0.0            | 0.000                | 0.000               |             |
| 8 | 122.0             | 0.000         | 0.0            | 0.002                | 0.000               |             |
| 9 | 122.0             | 0.000         | 0.0            | 0.003                | 0.000               |             |
|   |                   |               |                |                      |                     |             |

10 rows × 22 columns

```
In [5]: # Data Description
# This dataset indicates the various factors instrumental in determining the h
ealth of a fetus.
# The dataset features the Cardiotocograms data for many fetuses. Cardiotocogr
am is a device which monitors
# the fetal health by using various factors. The factors are mentioned in the d
ataset.
# There are also some features related to a histogram, such as histogram mean,
max, etc. which
# indicate the features of the histogram plotted using each record.
```

## -----DataCleaning------

```
In [6]: #A small code to look at the type of data stored in each and every column
         print(fetal.shape)
         for i in range(22):
             print(type(fetal.iloc[0,i]))
         (2126, 22)
         <class 'numpy.float64'>
         <class 'numpy.float64'>
         <class 'numpy.float64'>
         <class 'numpy.float64'>
         <class 'numpy.float64'>
         <class 'numpy.float64'>
        <class 'numpy.float64'>
        <class 'numpy.float64'>
        <class 'numpy.float64'>
         <class 'numpy.float64'>
         <class 'numpy.float64'>
         <class 'numpy.float64'>
        <class 'numpy.float64'>
        <class 'numpy.float64'>
         <class 'numpy.float64'>
         <class 'numpy.float64'>
        <class 'numpy.float64'>
        <class 'numpy.float64'>
        <class 'numpy.float64'>
         <class 'numpy.float64'>
         <class 'numpy.float64'>
         <class 'numpy.float64'>
```

In [7]: # Because we have all data as numerical hence describing the dataset Transposi
 ng for a better view
 fetal.describe().T

Out[7]:

|                                                        | count  | mean       | std       | min   |     |
|--------------------------------------------------------|--------|------------|-----------|-------|-----|
| baseline value                                         | 2126.0 | 133.303857 | 9.840844  | 106.0 | 126 |
| accelerations                                          | 2126.0 | 0.003178   | 0.003866  | 0.0   | (   |
| fetal_movement                                         | 2126.0 | 0.009481   | 0.046666  | 0.0   | (   |
| uterine_contractions                                   | 2126.0 | 0.004366   | 0.002946  | 0.0   | (   |
| light_decelerations                                    | 2126.0 | 0.001889   | 0.002960  | 0.0   | (   |
| severe_decelerations                                   | 2126.0 | 0.000003   | 0.000057  | 0.0   | (   |
| prolongued_decelerations                               | 2126.0 | 0.000159   | 0.000590  | 0.0   | (   |
| abnormal_short_term_variability                        | 2126.0 | 46.990122  | 17.192814 | 12.0  | 32  |
| mean_value_of_short_term_variability                   | 2126.0 | 1.332785   | 0.883241  | 0.2   | (   |
| percentage_of_time_with_abnormal_long_term_variability | 2126.0 | 9.846660   | 18.396880 | 0.0   | (   |
| mean_value_of_long_term_variability                    | 2126.0 | 8.187629   | 5.628247  | 0.0   | 2   |
| histogram_width                                        | 2126.0 | 70.445908  | 38.955693 | 3.0   | 37  |
| histogram_min                                          | 2126.0 | 93.579492  | 29.560212 | 50.0  | 67  |
| histogram_max                                          | 2126.0 | 164.025400 | 17.944183 | 122.0 | 152 |
| histogram_number_of_peaks                              | 2126.0 | 4.068203   | 2.949386  | 0.0   | 2   |
| histogram_number_of_zeroes                             | 2126.0 | 0.323612   | 0.706059  | 0.0   | (   |
| histogram_mode                                         | 2126.0 | 137.452023 | 16.381289 | 60.0  | 129 |
| histogram_mean                                         | 2126.0 | 134.610536 | 15.593596 | 73.0  | 12  |
| histogram_median                                       | 2126.0 | 138.090310 | 14.466589 | 77.0  | 129 |
| histogram_variance                                     | 2126.0 | 18.808090  | 28.977636 | 0.0   | 2   |
| histogram_tendency                                     | 2126.0 | 0.320320   | 0.610829  | -1.0  | (   |
| fetal_health                                           | 2126.0 | 1.304327   | 0.614377  | 1.0   |     |
| 4                                                      |        |            |           |       |     |

```
In [8]: #checking dataset for the null values
         fetal.isnull().sum()
Out[8]: baseline value
                                                                     0
        accelerations
                                                                     0
        fetal movement
                                                                     0
        uterine contractions
        light decelerations
                                                                     0
        severe decelerations
                                                                     0
        prolongued decelerations
                                                                     0
        abnormal_short_term_variability
                                                                     0
        mean value of short term variability
                                                                     0
        percentage of time with abnormal long term variability
        mean_value_of_long_term_variability
                                                                     0
        histogram width
                                                                     0
        histogram min
                                                                     0
        histogram_max
                                                                     0
        histogram_number_of_peaks
                                                                     0
        histogram number of zeroes
                                                                     0
        histogram mode
                                                                     0
        histogram_mean
                                                                     0
        histogram median
                                                                     0
        histogram_variance
                                                                     0
        histogram_tendency
                                                                     0
        fetal_health
                                                                     0
        dtype: int64
In [9]: #checking dataset for the na values(because its all numeric)
         fetal.isna().sum()
Out[9]: baseline value
                                                                     0
                                                                     0
        accelerations
        fetal movement
                                                                     0
        uterine_contractions
                                                                     0
        light_decelerations
                                                                     0
        severe decelerations
                                                                     0
        prolongued decelerations
                                                                     0
        abnormal_short_term_variability
                                                                     0
        mean value of short term variability
                                                                     0
        percentage_of_time_with_abnormal_long_term_variability
                                                                     0
        mean_value_of_long_term_variability
                                                                     0
        histogram width
                                                                     0
        histogram_min
                                                                     0
        histogram_max
                                                                     0
        histogram number of peaks
                                                                     0
        histogram_number_of_zeroes
                                                                     0
        histogram_mode
                                                                     0
        histogram mean
                                                                     0
        histogram_median
        histogram_variance
                                                                     0
        histogram tendency
                                                                     0
        fetal health
                                                                     0
        dtype: int64
```

```
In [10]: # Getting The type of values in our target variable
    fetal['fetal_health'].value_counts()

Out[10]: 1.0    1655
    2.0    295
    3.0    176
    Name: fetal_health, dtype: int64

In [11]: #As we are planing to do classification hence changing the target from numeric
    to labels
    fetal['fetal_health'].replace({1.0 : "Normal" , 2.0: "Suspect" , 3.0 :"Pathalo
        gical"},inplace = True)
    fetal['fetal_health'].value_counts()
```

Out[11]: Normal 1655 Suspect 295 Pathalogical 176

Name: fetal\_health, dtype: int64

### ------Data Visulatization -----

```
In [12]: # One variable Plots
```

Out[13]: <matplotlib.axes.\_subplots.AxesSubplot at 0x28ab0109fc8>

### Pie Chart of Fetal Health



In [14]: # We ran the feature seelction process for our dataset in WEKA and selected to p three features and thought of plottig their # spread across the target variable ie. featal health

```
In [15]: # The first feature is "mean_value_of_short_term_variability" and for showing
    its spread we have used the

# violinplot from the seaborne package

# By looking at this graph we can say that when the value of 'mean_value_of_sh
    ort_term_variability' is between 0-1 than

# chances for fetus being suspect are more

# OTOH then value is around 1 its more possible that fetus is normal
    sns.violinplot(x=fetal['fetal_health'], y=fetal['mean_value_of_short_term_vari
    ability'] ).set_title('Mean Value Of Short Term Variability across fetal healt
    h')
    plt.xlabel("Fetal Health")
    plt.ylabel("Mean Value Of Short Term Variability")
```

Out[15]: Text(0, 0.5, 'Mean Value Of Short Term Variability')



Out[16]: Text(12.085, 0.5, 'Percentage Of Time With Abnormal Long Term Variability')



```
In [17]: # The next selected feature was Histogram Mean and we have represeted it acros
    s fetal health using box plot
    # We can say that the average value of Histogram mean for pathalogical featus
    is way less in comparision to the Normal &
    # Suspect featus
    sns.boxplot( x=fetal['fetal_health'], y=fetal['histogram_mean'] )
    plt.title("Histogram Mean across fetal health")
    plt.xlabel("Fetal Health")
    plt.ylabel("Value of Histogram Mean")
```

Out[17]: Text(0, 0.5, 'Value of Histogram Mean')



In [18]: # Two Variable Plots





In [21]: # In this plot we have Abnormal Short Term Variability with fetal movement acc
 ording to fetal health
 sns.lmplot(data =fetal,x="abnormal\_short\_term\_variability",y="fetal\_movement",
 hue="fetal\_health",legend\_out=False)
 plt.title('Abnormal Short Term Variability Vs Fetal Movement by Fetal Health')
 plt.xlabel('Abnormal Short Term Variability')
 plt.ylabel('Fetal Movement')
 plt.show()



```
In [22]: # In this plot we have Mean Value Of Long Term Variability with fetal movement
    according to fetal health
    sns.lmplot(data =fetal,x="mean_value_of_long_term_variability",y="fetal_moveme
    nt",hue="fetal_health",legend_out=False)
    plt.title('Mean Value Of Long Term Variability Vs Fetal Movement by Fetal Heal
    th')
    plt.xlabel('Mean Value Of Long Term Variability')
    plt.ylabel('Fetal Movement')
    plt.show()
```



In [23]: # Three and mutli variable plots

```
In [24]: #Multi variable Box Plot
    # In the following plot we have tried to show the range of our feature attribu
    tes by making a multi variable box plot.
    # We can see that all the features are in different numeric ranges so for furt
    her modeling we have to normalize/ scale
    # each value in a similar range.

plt.figure(figsize=(20,10))
    sns.boxenplot(data = fetal)
    plt.xticks(rotation=90)
    plt.title('Mutlivariable Box Plot')
    plt.show()
```



Scatter Matrix of types of variablity



In [26]: # We have plotted 3 variables amongst each other in a pair plots with a color
 code according to fetal health
 # giving us 6 plots and 3 kernel density estimate plots.
 dataforplot = fetal[['baseline value','fetal\_movement','uterine\_contractions',
 'fetal\_health']]
 sns.pairplot(dataforplot, kind="scatter", hue ='fetal\_health',height =5,aspect
 = 1, markers=["o", "s", "D"])
 plt.suptitle('Pair Plot')
 plt.show()



# In [27]: #Heat Map # By looking at the heat map we can clearly say that 'accelerations', 'prolongu ed\_decelerations', #'abnormal\_short\_term\_variability', 'percentage\_of\_time\_with\_abnormal\_long\_term \_variability', #'mean\_value\_of\_long\_term\_variability' these features are highly correlated wi th fetal health corrmat= fetal.corr() plt.figure(figsize=(15,15)) cmap = sns.diverging\_palette(250, 10, s=80, l=55, n=9, as\_cmap=True) sns.heatmap(corrmat,annot=True, cmap=cmap, center=0) plt.title('Corelation Heat Map')

### Out[27]: Text(0.5, 1, 'Corelation Heat Map')



In [28]: #References:

- # 1. Kaggle.com. 2020. Fetal Health Classification. [online] Available at:
- # <https://www.kagqle.com/andrewmvd/fetal-health-classification> [Accessed 10 April 2021].
- # 2. Matplotlib.org. n.d. Matplotlib: Python plotting Matplotlib 3.4.1 docum entation. [online] Available at:
- # <https://matplotlib.org/> [Accessed 10 April 2021].
- # 3. Seaborn.pydata.org. n.d. seaborn: statistical data visualization seabor n 0.11.1 documentation. [online] Available at:
- # <https://seaborn.pydata.org/index.html> [Accessed 10 April 2021]
- # 4. Pandas.pydata.org. n.d. pandas Python Data Analysis Library. [online] A vailable at:
- # <https://pandas.pydata.org/> [Accessed 10 April 2021].

| <br>EndOFCode |
|---------------|
| <br>EndOFCode |