DEC 2 9 2003 47 APRANCIA CALLON

SEQUENCE LISTING

1 10>	Schlievert, Patrick M. Roggiani, Manuela Stoehr, Jennifer Ohlendorf, Douglas	
<120>	MUTANTS OF STREPTOCOCCAL TOXIN A AND METHODS OF USE	
<130>	600.311USWO	
<140> <141>	US 08/973,391 1998-03-12	
<150> <151>	PCT/US96/10252 1996-06-07	
	US 08/480,261 1995-06-07	
<160>	14	
<170>	PatentIn version 3.1	
<210> <211> <212> <213>	1 29 DNA Artificial Sequence	
<220> <223>	Primers for producing mutants	
<400> ccatca	1 cggg tggattcttg aaacaggtg	29
<210> <211> <212> <213>	47 DNA	
<220> <223>	Primers for producing mutants	
<400> ccatca	2 cgcc ccccgtcgac gataaaatag ttgctaagct acaagct	47
<210> <211> <212> <213>	DNA	
<220> <223>	Primers for producing mutants	
<400> ccatca	3 accat caccaagaag aaataattac atattaaata caatacatat gtaataataa	60
taaata	stata aataaaataa ttacatatta aaaataatac ttaattataa aaacactata	120

atttcca	ataa	atattaataa	ataattaaaa	ataaaataat	aaataattaa	tc	172
<210> <211> <212> <213>		ficial Sequ	ience				
<220> <223>	Prim	ers for pro	oducing muta	ants	,		
<400>	4						
ccatca	ccat	caccaagaag	aaataattac	atattaaata	caatacatat	gtaataataa	60
taaatat	tata	aataaaataa	ttacatatta	aaaataatac	ttaattataa	aaacactata	120
atttcca	ataa	atattaataa	ataattaaaa	ataaaataat	aaataattaa	tc	172
<210> <211> <212> <213>		ficial Sequ	ience				
<220> <223>	Prim	ers for pro	oducing muta	ants			
<400> ccatcac	5 ccat	caccaagaag	aaataattac	atattaaata	caatacatat	gtaataataa	60
taaata	tata	aataaaataa	ttacatatta	aaaataatac	ttaattataa	aaacactata	120
atttcca	ataa	atattaataa	ataattaaaa	ataaaataat	aaataattaa	tc	172
<210><211><211><212><213>	6 172 DNA Arti	ficial Sequ	ience				
<220> <223>	Prim	ners for pro	oducing mut	ants			
<400> ccatca	-	caccaagaag	aaataattac	atattaaata	caatacatat	gtaataataa	60
taaata	tata	aataaaataa	ttacatatta	aaaataatac	ttaattataa	aaacactata	120
atttcc	ataa	atattaataa	ataattaaaa	ataaaataat	aaataattaa	tc	172
<210> <211> <212> <213> <220>	7 172 DNA Arti	ificial Seq	uence				
<223>	Prin	mers for nr	oducina mut	ante			

<4002 ccaticaci	n cat caccaagaag a	aaataattac	atattaaata	caatacatat	gtaataataa	60
						120
taaatat	ata aataaaataa	ttacatatta	aaaataatac	ttaattataa	aaacactata	120
atttcca	taa atattaataa	ataattaaaa	ataaaataat	aaataattaa	tc	172
	8				•	
	172 DNA					
	Artificial Sequ	ence				
<220>						
	Primers for pro	ducing muta	ants			
<400>	8					
ccatcac	cat caccaagaag	aaataattac	atattaaata	caatacatat	gtaataataa	60
taaatat	ata aataaaataa	ttacatatta	aaaataatac	ttaattataa	aaacactata	120
						170
atttcca	taa atattaataa	ataattaaaa	ataaaataat	aaataattaa	tc	172
	9					
	60 DNA					
	Artificial Sequ	ence				
40005						
<220> <223>	Primers for pro	ducing muta	ants			
		-				
<400>	9 cat caccaagaag	aaataattac	atattaaata	caatacatat	gtaataataa	60
••••	, , , , , , , , , , , , , , , , , , ,					
<210>	10					
<211>	112					
<212>	DNA					
<213>	Artificial Sequ	ence				
<220>						
<223>	Primers for pro	ducing mut	ants			
<400>	10					60
taaatat	ata aataaaataa	ttacatatta	aaaataatac	ttaattataa	aaacactata	60
atttcca	taa atattaataa	ataattaaaa	ataaaataat	aaataattaa	tc	112
<210>	11					
<211>	172					
<212> <213>		lence			•	
~~13/	crrcrar bequ					
<220>	Drimove for pro	oducina mut	ants			
<223>	Primers for pro	Jaucing mut	anco			
<400>	11 ccat caccaagaag	22242245	+.+++		· otaatantna	60
ccatca	ccat caccaagaag	aaaldattäC	, alallaaald	. caalacalat	. ycaacaacaa	00

. .

taaatatata	aataaaataa	ttacatatta	aaaataatac	ttaattataa	aaacactata	120
atttccataa	atattaataa	ataattaaaa	ataaaataat	aaataattaa	tc	172
<210> 12 <211> 1851 <212> DNA <213> Stre	eptococcus	pyogenes				
<220> <221> CDS <222> (828 <223>	3)(1583)					
<400> 12	tanatantat	ttgagagett	atcatcgata	agcttacttt	tcgaatcagg	60
_						120
_				gatttaccag		
acgtatatac	tcacatcacg	caatcggcaa	ttgatgacat	tggaactaaa	ttcaatcaat	180
ttgttactaa	caagcaacta	gattgacaac	taattctcaa	caaacgttaa	tttaacaaca	240
ttcaagtaac	tcccaccago	tccatcaatg	cttaccgtaa	gtaatcataa	cttactaaaa	300
ccttgttaca	tcaaggtttt	ttctttttgt	cttgttcatg	agttaccata	actttctata	360
ttattgacaa	ctaaattgac	aactcttcaa	ttatttttct	gtctactcaa	agttttcttc	420
atttgatata	gtctaattcc	accatcactt	cttccactct	ctctaccgtc	acaacttcat	480
catctctcac	tttttcgtgt	ggtaacacat	aatcaaatat	ctttccgttt	ttacgcacta	540
tcactactat	gtcacctaaa	atatacccct	tatcaatcgc	ttctttaaac	tcatctatat	600
-	_			ataaaaataa		660
				ttttttaaaa		720
-				tattggtgaa		780
						836
ctttttaaat	ctagaggaga	a acccagatat	aaaatggagg	aatatta at Me 1	g gaa aac t Glu Asn	830
aat aaa aa Asn Lys Ly 5	a gta ttg a s Val Leu l	aag aaa atg Lys Lys Met 10	gta ttt ttt Val Phe Phe	gtt tta gt Val Leu Va 15	g aca ttt l Thr Phe	884
ctt gga ct Leu Gly Le 20	u Thr Ile	tog caa gag Ser Gln Glu 25	gta ttt gct Val Phe Ala 30	caa caa ga a Gln Gln As	c ccc gat p Pro Asp 35	932
cca agc ca Pro Ser Gl	a ctt cac n Leu His 7 40	aga tct agt Arg Ser Ser	tta gtt aaa Leu Val Lys 45	a aac ctt ca s Asn Leu Gl	a aat ata n Asn Ile 50	980

•	tat Tyr	ttt Phe	ctt Leu	tat Tyr 55	gag Glu	ggt Gly	gac Asp	cct Pro	gtt Val 60	act Thr	cac His	gag Glu	aat Asn	gtg Val 65	aaa Lys	tct Ser	1028
,	gtt Val	gat Asp	caa Gln 70	ctt Leu	tta Leu	tct Ser	cac His	cat His 75	tta Leu	ata Ile	tat Tyr	aat Asn	gtt Val 80	tca Ser	ggg Gly	cca Pro	1076
	Asn												gag Glu				1124
	tta Leu 100	ttt Phe	aag Lys	gat Asp	aaa Lys	aac Asn 105	gtt Val	gat Asp	att Ile	tat Tyr	ggt Gly 110	gta Val	gaa Glu	tat Tyr	tac Tyr	cat His 115	1172
	ctc Leu	tgt Cys	tat Tyr	tta Leu	tgt Cys 120	gaa Glu	aat Asn	gca Ala	gaa Glu	agg Arg 125	agt Ser	gca Ala	tgt Cys	atc Ile	tac Tyr 130	gga Gly	1220
	ggg Gly	gta Val	aca Thr	aat Asn 135	cat His	gaa Glu	ggg Gly	aat Asn	cat His 140	tta Leu	gaa Glu	att Ile	cct Pro	aaa Lys 145	aag Lys	ata Ile	1268
	gtc Val	gtt Val	aaa Lys 150	gta Val	tca Ser	atc Ile	gat Asp	ggt Gly 155	atc Ile	caa Gln	agc Ser	cta Leu	tca Ser 160	ttt Phe	gat Asp	att Ile	1316
	gaa Glu	aca Thr 165	aat Asn	aaa Lys	aaa Lys	atg Met	gta Val 170	act Thr	gct Ala	caa Gln	gaa Glu	tta Leu 175	gac Asp	tat Tyr	aaa Lys	gtt Val	1364
	aga Arg 180	aaa Lys	tat Tyr	ctt Leu	aca Thr	gat Asp 185	aat Asn	aag Lys	caa Gln	cta Leu	tat Tyr 190	act Thr	aat Asn	gga Gly	cct Pro	tct Ser 195	1412
	aaa Lys	tat Tyr	gaa Glu	act Thr	gga Gly 200	tat Tyr	ata Ile	aag Lys	ttc Phe	ata Ile 205	cct Pro	aag Lys	aat Asn	aaa Lys	gaa Glu 210	agt Ser	1460
	ttt Phe	tgg Trp	ttt Phe	gat Asp 215	Phe	ttc Phe	cct Pro	gaa Glu	cca Pro 220	gaa Glu	ttt Phe	act Thr	caa Gln	tct Ser 225	aaa Lys	tat Tyr	1508
				Tyr										Thr		caa Gln	1556
			Val	tac Tyr				Lys		ctt	tttg	ctt	ttgg	caac	ct		1603
	tac	ctac	tgc	tgga	ttta	ga a	attt	tatt	g ca	attc	tttt	att	aatg	taa	aaac	cgctca	1663
	ttt	gatg	agc	ggtt	ttgt	ct t	atct	aaag	g ag	cttt	acct	cct	aatg	ctg	caaa	atttta	1723
	aat	gttg	gat	tttt	gtat	tt g	tcta	ttgt	a tt	tgat	gggt	aat	ссса	ttt	ttcg	acagac	1783
	atc	gtcg	ıtgc	cacc	tcta	ac a	ccaa	aato	a ta	gaca	ggag	ctt	gtag	ctt	agca	actatt	1843

ttatcgtc 1851

<210> 13

<211> 251

<212> PRT

<213> Streptococcus pyogenes

<400> 13

Met Glu Asn Asn Lys Lys Val Leu Lys Lys Met Val Phe Phe Val Leu 1 5 10 15

Val Thr Phe Leu Gly Leu Thr Ile Ser Gln Glu Val Phe Ala Gln Gln 20 25 30

Asp Pro Asp Pro Ser Gln Leu His Arg Ser Ser Leu Val Lys Asn Leu 35 40 45

Gln Asn Ile Tyr Phe Leu Tyr Glu Gly Asp Pro Val Thr His Glu Asn 50 55 60

Val Lys Ser Val Asp Gln Leu Leu Ser His His Leu Ile Tyr Asn Val 65 70 75 80

Ser Gly Pro Asn Tyr Asp Lys Leu Lys Thr Glu Leu Lys Asn Gln Glu 85 90 95

Met Ala Thr Leu Phe Lys Asp Lys Asn Val Asp Ile Tyr Gly Val Glu 100 105 110

Tyr Tyr His Leu Cys Tyr Leu Cys Glu Asn Ala Glu Arg Ser Ala Cys 115 120 125

Ile Tyr Gly Gly Val Thr Asn His Glu Gly Asn His Leu Glu Ile Pro 130 135 140

Lys Lys Ile Val Val Lys Val Ser Ile Asp Gly Ile Gln Ser Leu Ser 145 150 155 160

Phe Asp Ile Glu Thr Asn Lys Lys Met Val Thr Ala Gln Glu Leu Asp 165 170 175

Tyr Lys Val Arg Lys Tyr Leu Thr Asp Asn Lys Gln Leu Tyr Thr Asn 180 185 190

Gly Pro Ser Lys Tyr Glu Thr Gly Tyr Ile Lys Phe Ile Pro Lys Asn 195 200 205 Lys Glu Ser Phe Trp Phe Asp Phe Phe Pro Glu Pro Glu Phe Thr Gln 210 215 220

Ser Lys Tyr Leu Met Ile Tyr Lys Asp Asn Glu Thr Leu Asp Ser Asn 225 230 235 240

Thr Ser Gln Ile Glu Val Tyr Leu Thr Thr Lys 245 250

<210> 14

<211> 221

<212> PRT

<213> Streptococcus pyogenes

<400> 14

Gln Gln Asp Pro Asp Pro Ser Gln Leu His Arg Ser Ser Leu Val Lys
1 10 15

Asn Leu Gln Asn Ile Tyr Phe Leu Tyr Glu Gly Asp Pro Val Thr His 20 25 30

Glu Asn Val Lys Ser Val Asp Gln Leu Leu Ser His His Leu Ile Tyr 35 40 45

Asn Val Ser Gly Pro Asn Tyr Asp Lys Leu Lys Thr Glu Leu Lys Asn 50 55 60

Gln Glu Met Ala Thr Leu Phe Lys Asp Lys Asn Val Asp Ile Tyr Gly 65 70 75 80

Val Glu Tyr Tyr His Leu Cys Tyr Leu Cys Glu Asn Ala Glu Arg Ser 85 90 95

Ala Cys Ile Tyr Gly Gly Val Thr Asn His Glu Gly Asn His Leu Glu 100 105 110

Ile Pro Lys Lys Ile Val Val Lys Val Ser Ile Asp Gly Ile Gln Ser 115 120 125

Leu Ser Phe Asp Ile Glu Thr Asn Lys Lys Met Val Thr Ala Gln Glu 130 135 140

Leu Asp Tyr Lys Val Arg Lys Tyr Leu Thr Asp Asn Lys Gln Leu Tyr 145 150 155 160

Thr Asn Gly Pro Ser Lys Tyr Glu Thr Gly Tyr Ile Lys Phe Ile Pro 165 170 175

Lys Asn Lys Glu Ser Phe Trp Phe Asp Phe Phe Pro Glu Pro Glu Phe 180 185 190

Thr Gln Ser Lys Tyr Leu Met Ile Tyr Lys Asp Asn Glu Thr Leu Asp 195 200 205

Ser Asn Thr Ser Gln Ile Glu Val Tyr Leu Thr Thr Lys 210 215 220