ESERCIZI SUI NUMERI COMPLESSI 2

- (1) Sia $z = 1/2 + i\sqrt{3}/2$. Calcolare la forma trigonometrica di z e di z^3 . Risolvere lo stesso esercizio per i numeri: $1/2 i\sqrt{3}/2$, $\sqrt{3}/2 + i/2$ e $3/\sqrt{2} i3/\sqrt{2}$.
- (2) Determinare la parte reale e la parte immaginaria del numero complesso z che ha modulo 2 e argomento $\frac{5\pi}{6}$. Svolgere lo stesso esercizio se il modulo è $\sqrt{2}$ e l'argomento è 75° .
- (3) Trovare la parte reale, la parte immaginaria, il modulo e l'argomento principale dei seguenti numeri complessi:

$$z = 3$$
, $z = -3$, $z = i - \sqrt{3}$, $z = -i\pi/2$.

(4) Sia z il numero complesso 1+i. Il numero complesso z^3 è:

- (5) Sia $z = \rho(\cos(\theta) + i \sin(\theta))$ un numero complesso non nullo, scritto in forma trigonometrica. Trovare la forma trigonometrica del coniugato di z e quella dell'inverso di z.
- (6) Trovare un numero complesso z_0 tale che per qualsiasi numero complesso z il numero z_0z sia ottenuto ruotando il vettore z intorno all'origine in senso antiorario di 45 gradi. Svolgere lo stesso esercizio per la rotazione oraria di $\frac{\pi}{2}$ radianti.
- (7) Siano $z = \rho(\cos(\theta) + i sen(\theta))$ e $z' = \rho'(\cos(\theta') + i sen(\theta'))$ due numeri complessi in forma trigonometrica. L'argomento di

$$\frac{z^2}{2z'}$$

è:

$$\begin{array}{c|c} 2\theta - \theta'; & \hline \mathbf{V} \ \mathbf{F} \\ \frac{\theta^2}{2\theta'}; & \hline \mathbf{V} \ \mathbf{F} \\ \theta - \theta' & \hline \mathbf{V} \ \mathbf{F} \end{array}$$

- (8) Sia $z = 1/2 + i\sqrt{3}/2$. Determinare il numero $z^{39} z^{36}$.
- (9) Trovare tutte le soluzioni delle seguenti equazioni, verificando la correttezza del risultato.

$$z^4 = -1$$
, $z^3 = 1+i$, $z^3 = -1+i$ $z^7 = 1$, $z^5 = -1/2+i\sqrt{3}/2$.

(10) Sia ρ la relazione d'equivalenza definita sui numeri complessi non nulli da

$$z\rho z' \quad \Leftrightarrow \quad Arg(z) = Arg(z')$$

Determinare la classe del numero i ed un insieme di rappresentanti per le classi d'equivalenza di ρ su $\mathbb{C}.$

(11) Sia $z=2/\sqrt{2}-i2/\sqrt{2}.$ Calcolare la forma trigonometrica di z, di z^{10} e di $z^{-2}.$