Gabarito Da Sexta Lista de Exercícios - Matemática Discreta

1. A operação é comutativa, mas não é associativa.

2.

- **a.** $x \circ y = 2.x + y$, não é comutativa e nem é associativa.
- **b.** $x \circ y = x + y$, é comutativa e é associativa.

3.

- a. é um semigrupo, não tem elemento neutro.
- **b.** não é semigrupo, pois não é associativa.
- **c.** não é semigrupo, S não é fechada sob a operação ° (ou seja a operação dentro do conjunto S não retorna um elemento que pertence ao conjunto S).
- d. é um semigrupo, não possui elemento neutro.
- 4. A operação e fechada sobre $M_{2}^{0}(\mathbb{Z})$, pois:

$$|1 z|$$
. $|1 w| = |1 w+z| \in M_2^0(\mathbb{Z})$.
 $|0 1|$ $|0 1|$ $|0 1|$

a multiplicação de matrizes é associativa. tem elemento neutro:

$$| 1 0 | \in M_2^0(\mathbb{Z}).$$

 $| 0 1 |$

é possui inversa:

o inverso de
$$| 1 z |$$
 é $| 1 - z | \in M_2^0(\mathbb{Z})$.
 $| 0 1 |$ $| 0 1 |$

assim a operação \circ sobre $M_{2}^{0}(\mathbb{Z})$ é um grupo.

5.

a.
$$x + (x \cdot y) = x \cdot (x + y)$$
 (propiedade distributiva e identidade)
 $= x \cdot x + x \cdot y$ (propriedade distributiva)
 $= x \cdot 1 + x \cdot y$ (propriedade de identidade)
 $= x(1+y)$ (propriedade distributiva)
 $= x \cdot 1$ (propiedade identidade)
 $= x$
b. $x + y' = x + (x' \cdot y + x \cdot y)'$

b.
$$x + y' = x + (x'.y + x.y)'$$

= $x + (y.(x'+x))'$ (propiedade distributiva)
= $x + (y.1)'$ (propiedade complementativa)
= $x + y'$ (propiedade identidade)

6.
$$x \circ y = x.y' + y.x'$$
 (definição de \circ)
= $y.x' + x.y'$ (propiedade comutativa)
= $y \circ x$ (definição de \circ)

7. pelo teorema da unicidade temos que:

Para qualquer x na álgebra booleana, se existir um elemento x, tal que $x+x_1=1$ e $x.x_1=0$, então $x_1=x$.

assim, tendo x = 0 e $x_1 = 1$ temos:

$$0 + 1 = 1$$
 e $0.1 = 0$, então $1' = 0$.

e tendo x = 1 e $x_1 = 0$ temos:

$$1 + 0 = 1$$
 e $1.0 = 0$, então $0' = 1$.