Optimization

Seyoung Yun

References

- http://lear.inrialpes.fr/workshop/osl2013/slides/ osl2013_bach.pdf
- https://github.com/abursuc/dldiy-practicals/blob/master/ slides/Slide_October19.pdf
- http://cs231n.github.io/optimization-1/
- http://ruder.io/optimizing-gradient-descent/

Training Algorithm

Loss Function

$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} \ell\left(Y^{(i)}, \widehat{Y}^{(i)}(\beta)\right)$$

- How to optimize it?
 - Gradient Descent: $\beta(t+1) = \beta(t) \gamma(t)\nabla L(\beta(t))$
 - Some variants of GD
 - Stochastic gradient descent and its variants

Gradient

1-D example

• Gradient:
$$\frac{dL(\beta)}{d\beta} = \lim_{h \to 0} \frac{L(\beta+h) - L(\beta)}{h}$$

Step Size

$$\gamma \left| \frac{dL(\beta)}{d\beta} \right|$$
 : the length of the update

2D cases

• Gradient :
$$\nabla L(\beta) = \begin{bmatrix} \frac{\partial L(\beta)}{\partial \beta_1} \\ \frac{\partial L(\beta)}{\partial \beta_2} \end{bmatrix}$$

Gradient Descent

 Zigzag: why? it is very hard to find a step size than is good for multi dimensional cases (vertical vs. horizontal)

Gradient descent vs Newton

$$\beta(t+1) = \beta(t) - \gamma(t) \nabla L(\beta(t))$$
 vs.

Newton

$$\beta(t+1) = \beta(t) - \gamma \nabla^2 L(\beta(t))^{-1} \nabla L(\beta(t))$$

- Newton converges faster to local minima
 - The inverse Hessian matrix control the step size adaptively
- No one want to compute a Hessian (or worst: inverse it)

Momentum

momentum:
$$\Delta\beta(t+1) = \eta\Delta\beta(t) + \gamma\nabla f(\beta)$$

$$\beta(t+1) = \beta(t) - \Delta\beta(t+1)$$

AdaGrad

AdaGrad:
$$\beta(t+1) = \beta(t) - \frac{\gamma}{\sqrt{G_t + \varepsilon}} \nabla L(\beta(t))$$
 $G_{t+1} = G_t + (\nabla L(\beta(t)))^2$

element-wise

RMSProp

RMSProp:
$$G_t = \eta G_{t-1} + (1 - \eta)(\nabla L(\beta(t)))^2$$

$$\beta(t+1) = \beta(t) - \frac{\gamma}{\sqrt{G_t + \varepsilon}} \nabla L(\beta(t))$$

Adam

Adam:
$$M_t = \eta_1 M_{t-1} + (1-\eta_1) \nabla L(\beta(t))$$

$$G_t = \eta_2 G_{t-1} + (1-\eta_2) (\nabla L(\beta(t)))^2$$

$$\beta(t+1) = \beta(t) - \frac{\gamma}{\sqrt{G_t + \varepsilon}} M_t$$

Adam

Adam:
$$M_t = \eta_1 M_{t-1} + (1 - \eta_1) \nabla L(\beta(t))$$

$$G_t = \eta_2 G_{t-1} + (1 - \eta_2) (\nabla L(\beta(t)))^2$$

$$\hat{M}_t = \frac{M_t}{1 - \eta_1^t} \quad \hat{G}_t = \frac{G_t}{1 - \eta_2^t}$$

$$\beta(t+1) = \beta(t) - \frac{\gamma}{\sqrt{G_t + \varepsilon}} M_t$$

Optimization

Image by Alec Radford

Optimization

Image by Alec Radford

Batch vs mini-Batch vs SGD

Batch Gradient Descent

$$\beta \leftarrow \beta - \eta \nabla L(\beta)$$

Mini-batch Gradient Descent

$$\beta \leftarrow \beta - \eta \nabla \left(\sum_{\tau=1}^{B} \ell(Y^{(i_{\tau})}, \widehat{Y}^{(i_{\tau})}(\beta)) \right)$$

Stochastic Gradient Descent

$$\beta \leftarrow \beta - \eta \nabla \ell(Y^{(i)}, \widehat{Y}^{(i)}(\beta))$$

SGD fluctuation

Learning rate decay

Now, eta is a function of the number of iterations, epochs,