Al Powered Predictive Maintenance

Eric Aschari, Chenle Chen, Chelsey Tao, Minghui Zhu Fall 24

Task Description

Introduction | Dataset | Models | Discussion | Conclusion

- Our goal: build a multi-class classifier to predict machine states—either 'no failure' or one of five specific failure types.
- Why is this important? Predictive
 maintenance minimizes costly downtime in
 automated production lines, a critical
 challenge in Industry 4.0.
- Dataset: We're using the Al4I 2020
 Predictive Maintenance Dataset.
- Our evaluation metrics? Precision, recall, F1-score, and Matthews correlation coefficient.

Data Preparation

Introduction | Dataset | Models | Discussion | Conclusion

1. Exploratory Data Analysis

- Verify no missing values.
- Visualize data using boxplots (numeric features) and bar plots (categorical data).
- Analyzed feature distributions and key patterns, including correlations (using pandas).

2. Label Restructuring:

- Instances with simultaneous failures combined to "Multiple failures" (self-implemented).
- Seven classes: No Failure + 5 failure types + Multiple Failures.

3. Handling Class Imbalance:

- Addressed imbalance: 96.5% of data labeled as "No Failure")
 - Stratified sampling (using sklearn).
 - Class-weighted loss functions during training (using sklearn).

4. Preprocessing Steps

- Feature scaling applied to numeric features (using sklearn).
- Binning of continuous variables for decision trees (self-implemented).
- One-hot encoding used for categorical features (using sklearn).

Data Preparation

Introduction | Dataset | Models | Discussion | Conclusion

Numeric features

|--|

Categorical features

Type (L, M, H)

Individual Failure Types

Tool Wear Failure Heat Dissipation Failure	Power Failure	Overstrain Failure	Random Failures
--	---------------	--------------------	-----------------

Correlations

- 87.6% correlation between Air temperature and Process temperature
- -87.5% correlation between Torque and Rotational speed
- → No features excluded as correlation below 90%

Performance Metrics

Introduction | Dataset | Models | Discussion | Conclusion

Metric	Description	
Accuracy	Proportion of correctly classified instances out of the total instances.	
Precision	Proportion of correctly classified positives.	
Recall	Proportion of correctly classified actual positives.	
F1-Score	Harmonic mean of precision and recall.	
Matthews Correlation Coefficient (MCC)	Balanced measure of the correlation between predicted and actual labels, considering all confusion matrix elements, even for imbalanced datasets.	

→ Evaluation using Matthews Correlation Coefficient is crucial due to large label imbalance in dataset!

Naive Classifier - Baseline (self-implemented)

Introduction | Dataset | Models | Discussion | Conclusion

Classification type

Naive classifier → always predicts 'No failure'

Trainable parameters

None

Hyperparameters

None

Results

Metric	Test Score
Accuracy	0.965
Precision	1.0
Recall	0.965
F1-Score	0.982
Matthews Correlation	0.0

Interpretation

- Naive classifier reaches 96.5% accuracy!
 - → Strong accuracy baseline
- Naive classifier only classifies as 'No failure'
 - → 100% precision due to no false positives
- Matthews correlation of 0.0
 - → Predictions by naive classifier are no better than random guessing

Decision Tree based Classifier (self-implemented)

Introduction | Dataset | Models | Discussion | Conclusion

Classification type

Decision trees

Trainable parameters

Tree structure

Hyperparameters

- Binning of continuous feature values
 - → Equal width binning implemented
- Number of decision trees for Random Forest (RF)
 - \rightarrow 100 trees
- Range of rows and columns to use for RF
 - → minimum 500 examples
 - → minimum 4 attributes
- Method against overfitting
 - → Pruning

Decision Tree based Classifier - Results

Introduction | Dataset | Models | Discussion | Conclusion

Decision Tree Results

Metric	Test Score	
Accuracy	0.968	
Precision	0.981	
Recall	0.968	
F1-Score	0.974	
Matthews Correlation	0.441	

Interpretation

- Decision tree reaches a F1-score of 97.4% while having a Matthews correlation of 0.441
 - → No random guessing!
- Random Forest has a lower Matthews correlation coefficient than decision tree
 - → Due to random sampling of examples
 - → Should implement stratified sampling for RF

Random Forest Results

Metric	Test Score
Accuracy	0.966
Precision	0.997
Recall	0.966
F1-Score	0.981
Matthews Correlation	0.191

Comparison with Sklearn Random Forest

- Sklearn Random Forest reaches an F1-score of 98.9%
 with a Matthews correlation coefficient of 0.755
 - → Decision boundaries for continuous variables is a treated as a trainable parameter instead of a hyperparameter
 - → Includes methods for smart sampling of examples

K-Nearest Neighbors (using Sklearn)

Introduction | Dataset | Models | Discussion | Conclusion

Classification type

 K-Nearest Neighbors - Multi-Class Classification, Instance-based learning

Trainable parameters

None

Hyperparameters

- Number of Neighbors \rightarrow k = 3
- Distance Metric → Euclidean
 Distance
- Weighting of neighbors (weights) →
 Default (uniform)
- Algorithm → "auto", automatically selects optimal search algorithm

Euclidean Distance:

$$d(x_i, x_j) = \sqrt{\sum_{k=1}^{n} (x_{ik} - x_{jk})^2}$$

KNN Results

Metric	Test Score	
Accuracy	0.969	
Precision	0.984	
Recall	0.969	
F1-Score	0.975	
Matthews Correlation	0.415	

Interpretation

- High performance (Accuracy → 96.9%)
- High F1-score: balance between precision and recall
- Moderate Matthews Correlation (41.5%)

Feed Forward Neural Network (built using Torch)

Introduction | Dataset | Models | Discussion | Conclusion

Classification type

Multi-Class Classification → Feed
 Forward Neural Network

Trainable parameters

 Weights and Biases in NN, hidden layer parameters + output later parameters

Hyperparameters

- Batch size → 32
- Epochs \rightarrow 200
- Learning Rate → 0.001
- Class Weights → Balanced

Weighted Cross-Entropy Loss

$$p(c|\mathbf{x}) = \frac{e^{z_c}}{\sum_{j=1}^C e^{z_j}}.$$

$$\mathcal{L}(\mathbf{z}, y) = -\sum_{c=1}^{C} w_c \, \delta_{c,y} \, \log ig(p(c|\mathbf{x})ig),$$

where $\delta_{c,y} = 1$ if c = y and 0 otherwise.

Adam Optimizer Equations

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{\theta} \mathcal{L}(\theta), \quad v_t = \beta_2 v_{t-1} + (1 - \beta_2) (\nabla_{\theta} \mathcal{L}(\theta))^2.$$

$$\hat{m}_t = \frac{m_t}{1-eta_1^t}, \quad \hat{v}_t = \frac{v_t}{1-eta_2^t}.$$

$$\theta \leftarrow \theta - \alpha \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon},$$

Feed Forward Neural Network

Introduction | Dataset | Models | Discussion | Conclusion

FFNN Results

Metric	Test Score	
Accuracy	0.983	
Precision	0.970	
Recall	0.983	
F1-Score	0.976	
Matthews Correlation	0.715	

Interpretation

- High performance (Accuracy → 98.3%)
- High F1-score: balance between precision and recall
- Higher Matthews Correlation Coefficient (71.5%)

Performance Differences

Comparing the models with only accuracy is not enough!

Model	Matthews Correlation Coefficient	Accuracy	Precision	Recall	F1-Score
Naive (Self-implemented)	0	0.965	1	0.965	0.982
Decision Tree (Self-implemented)	0.441	0.968	0.981	0.968	0.974
Random Forest (SKlearn)	0.755	0.985	0.993	0.985	0.989
Random Forest (Self-implemented)	0.191	0.966	0.997	0.966	0.981
K-NN (SKlearn)	0.414574	0.969	0.983541	0.969	0.975240
Neural Network (Built using Torch)	0.715	0.983	0.970	0.983	0.976

Conclusion

Introduction | Dataset | Models | Discussion | Conclusion

1. Class Imbalance

 MCC metrics needed to failure mode identification efficiency

2. Model Complexity and Tuning

- Traditional Models
 - E.g. decision trees and random forests
 - Effective without extensive tuning
- Complex Models
 - E.g. decision trees and random forests
 - May need extensive hyperparameter tuning or more data

The cost of a missed failure is high

Identify rare failure states early and accurately

Neural Networks!

Future Work

Introduction | Dataset | Models | Discussion | Conclusion

1. Additional Balancing Techniques

- Synthetic Minority Oversampling Technique
- Class-weight adjustments

2. Neural Network Optimization

- Use different network architectures (CNNs...)
- Tuning of the hyperparameters (learning rates, layers...)

3. Fairness and Ethics

 Need to be guided by principles of fairness and ethics.

Thank You!